25 Years of sensory drive: the evidence and its watery bias

Molly E. Cummingsa,* and John A. Endlerb

aDepartment of Integrative Biology, University of Texas, Austin, TX 78712, USA and bSchool of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3216, Australia

*Address correspondence to Molly E. Cummings. E-mail: mcummings@austin.utexas.edu

Handling editor: Rebecca C. Fuller

Received on 19 February 2018; accepted on 18 May 2018

Abstract

It has been 25 years since the formalization of the Sensory Drive hypothesis was published in the \textit{American Naturalist} (1992). Since then, there has been an explosion of research identifying its utility in contributing to our understanding of inter- and intra-specific variation in sensory systems and signaling properties. The main tenet of Sensory Drive is that environmental characteristics will influence the evolutionary trajectory of both sensory (detecting capabilities) and signaling (detectable features and behaviors) traits in predictable directions. We review the accumulating evidence in 154 studies addressing these questions and categorized their approach in terms of testing for environmental influence on sensory tuning, signal characteristics, or both. For the subset of studies that examined sensory tuning, there was greater support for Sensory Drive processes shaping visual than auditory tuning, and it was more prevalent in aquatic than terrestrial habitats. Terrestrial habitats and visual traits were the prevalent habitat and sensory modality in the 104 studies showing support for environmental influence on signaling properties. An additional 19 studies that found no supporting evidence for environmental influence on signaling traits were all based in terrestrial ecosystems and almost exclusively involved auditory signals. Only 29 studies examined the complete coevolutionary process between sensory and signaling traits and were dominated by fish visual communication. We discuss biophysical factors that may contribute to the visual and aquatic bias for Sensory Drive evidence, as well as biotic factors that may contribute to the lack of Sensory Drive processes in terrestrial acoustic signaling systems.

Key words: animal communication, sensory drive, sensory ecology, sexual selection

The Origins of Sensory Drive

When reviewing the evidence or impact of a particular scientific hypothesis, it is useful to provide the historical context in which it originated. At the time of the late 1980s, there were three main models for the evolution of female mate choice and the traits that males evolve to secure matings; Fisher’s runaway, Direct benefits, and Indirect benefits (good genes). For all three of these, the specific features of the male signal evolved to either genetically run away with female choice genes, indicate direct benefits to females, or indicate indirect benefits to offspring, and the direction of evolution was assumed to be arbitrary (Bradbury et al., 1987). At the time, the purpose of all of these models was to explain how male signaling traits could become common within a population. Meanwhile, there was little scientific discussion put forth for proposing models to predict which traits, or the specific features of male traits, that would be selected for under sexual selection, nor was there much interest in the effects of the signalling environment and sensory processes.

At the same time that sexual selection models in the 1980s were largely blind to sensory inputs, the field of sensory ecology was already well established and fully focused on how signaling traits and sensory systems are shaped by environments. Interest in the diversity of birdsong led researchers to test whether differential transmission
properties of species’ habitats was at the source of this variation ("the environmental selection hypothesis" Morton 1975; Richards and Wiley 1980). Similarly, visual ecology pioneers such as John Lythgoe, William McFarland, and others were taking a highly quantitative approach to determine whether visual pigments covaried with different underwater optical environments (McFarland and Munz 1975; Lythgoe 1979). Given the highly predictive power of sensory ecology coupled with the absence of predictive sexual selection models at this time, it is perhaps not surprising that a number of "sensory"-based models for female mate choice/male signaling trait evolution emerged on the scene in the early 1990s. Endler presented Sensory Drive in a discussion during the Dahlem Conference on Sexual Selection in 1987 and a follow-up symposium (Endler presented Sensory Drive in a discussion during the Dahlem Conference on Sexual Selection in 1987 and a follow-up symposium (Endler 1992a) from which the first formal description of Sensory Drive emerged (Endler 1992b). The idea spread and features of this model were explored in more detail by several people. Among these were Sensory Exploitation (Ryan and Rand 1990); Pre-existing Bias (Basolo 1990, 1995) and Sensory Traps (Christy 1995). All of these "sensory" models can be placed in the Sensory Drive scheme (see Endler and Basolo 1998 for a comparative review of these models), but for the purposes of this review we will restrict our focus to describing and accumulating evidence for the overall Sensory Drive model (Figure 1). While all sensory or receiver bias models contend that male signal evolution is predicted by female sensory biases, only the Sensory Drive model (described in detail below) explicitly describes from where those sensory biases arise and include the effects of the environment on both the signaler and senses (Endler 1992b; Endler and Basolo 1998).

What is Sensory Drive?

The Sensory Drive model outlined by Endler (1992b, 1993) was a truly comprehensive and predictive model for the origins of communication traits. In this model, both signal receiver preference functions and signal transmitter traits are predictable characters based on features of a species’ environment. The two main components of a communication dyad (receiver behavior and signaling traits) both co-evolve under the constraints of the abiotic (physical) and biotic (predatory and foraging) environment. While this model built upon previous sensory ecology insights into how the environment is likely to shape sensory systems and imposes constraints on signal transmission properties, it broadened the model to include how these environmental features influence key behaviors involved in the sexual selection process (mate choice and display behavior) and put it together in a larger evolutionary model. To quote directly from Endler (1992b), “These suites of traits should coevolve in predictable directions, determined by environmental biophysics, neurobiology and the genetics of the suites of traits—hence the term ‘sensory drive’.”

The critical feature that encapsulates the Sensory Drive hypothesis is the environment. As shown in Figure 1 (modified from Endler 1992b), the environmental conditions during communication events place selective pressures on the sensory systems to detect important features in its specific habitat (foraging items or other important traits under natural selection) and this influences receiver responses during mate choice encounters. Receivers with a sensory bias shaped by the biophysical properties of their habitat are likely to detect some stimuli better than others. This detection bias will result in receiver biases during mate choice and other choice encounters. For example, males that have communication features that match a female’s detectability bias will enjoy a detectability advantage (seen, heard or felt first and/or with the greatest sensory stimulation); this portion of Sensory Drive is known as Sensory Exploitation (Endler 1992b; Endler and Basolo 1998).

Part of the difficulty in reviewing the presence or absence of support for Sensory Drive is clarifying which portion of the Sensory Drive model is under examination; and/or whether researchers are able to test Sensory Drive in its entirety. There are many interacting steps involved in Sensory Drive (Figure 1) and researchers have taken a number of different approaches or have emphasized different subsets of steps in the model. To organize our discussion we divide Sensory Drive into two components, sensory and signalling. The sensory component of the Sensory Drive model predicts a tight correlation between receiver sensory detection properties and features within a species’ physical environment outside the realm of reproduction. The other major component of the Sensory Drive model, the signaling component, relates to the evolution of signaling traits in the communication dyad. It focuses on the strength of environmental constraints in shaping signal evolution to both match environmentally-induced sensory biases of the signal receiver and environmental transmission or other habitat features. Here, we present the evidence that has accumulated over 25 years in more detail, and examine some of the patterns that are emerging across habitats, modalities, and taxa.
Evidence for Sensory Drive

Since the early 1990s, much work has examined whether environmental variation can predict variation in the coevolution of sensory systems and signal design. Recent reviews of the model have found much empirical support for Sensory Drive processes (Cole 2013; Ryan and Cummings 2013; Price 2017), as well as some studies finding little evidence for its role in signal differentiation (Ey and Fischer 2009; Malone et al. 2014). In our review, we decided to examine the evidence for Sensory Drive in its most classic form — with an emphasis on environmental influence. Hence, we have limited our review to studies that examine whether environmental variation can predict variation in sensory tuning, signal characteristics or both. This means that several excellent studies that study Sensory Exploitation/Pre-existing Bias without an environmental component are not included in this current review (e.g., Basolo 1990; Ryan and Rand 1990; Rosenthal and Evans 1998; and others reviewed in Ryan and Cummings 2013). This exclusion is not meant to diminish the importance of Sensory Exploitation sensu strictu (the binding glue between sensory and signal coevolution) but rather focus our review around the feature that sets this coevolutionary process in motion (according to Sensory Drive) — the environment. It also allows us to ask questions about habitat bias in Sensory Drive studies, and whether some habitats show more support for Sensory Drive processes than others. We also ask whether certain components in the Sensory Drive model are better supported than others; and whether the support for Sensory Drive is biased for specific sensory modalities or taxonomic groups.

To examine the evidence for Sensory Drive and probe for habitat, modality, and taxonomic bias, we conducted a literature review of empirical studies in the field. For habitat classification, we categorized organisms communicating in either terrestrial or aquatic (both marine and freshwater) ecosystems. We searched for taxonomic bias by comparing the evidence for and against Sensory Drive between invertebrates and the major vertebrate classes; there were insufficient invertebrate studies to subdivide them by taxa. We restricted our analysis to the two most commonly investigated sensory modalities — vision and audition (with a modicum of vibration) due to the relative paucity of studies in other modes such as electroreception and chemoreception. While tests of Sensory Drive within chemoreception are beginning to accumulate (see references within Cole 2013), they are both few and relatively recent and we encourage future reviews to probe for habitat or taxonomic biases for chemosensory Sensory Drive processes.

Overall, we identified 154 studies that examined the evidence for some (or most) steps in the sensory drive model. Of these studies, 132 (86%) found evidence for Sensory Drive and 22 (14%) did not (Tables 1 and 2). While we should expect some portion of this lopsided ledger to be driven by a reporting bias for positive results, our aim with this review is to identify any patterns that are emerging in terms of where, in what sensory modality, and with what organism we see greater or lesser support for the sensory drive model. We examine the evidence for and against sensory drive in each of the main components of sensory drive (sensory and signaling) separately as well as the model as a whole. For each of these examinations, we then compare the evidence in terms of habitat, modality and taxonomic support.

Evidence for the environment influencing sensory components

We identified 36 empirical studies (Table 1) that directly tested the sensory component predictions of the sensory drive model (green steps in Figure 1). These studies found overwhelming support for the sensory component of the sensory drive model with 53 studies identifying support of sensory drive while 3 did not. Researchers interested in testing this component of the Sensory Drive hypothesis have often compared biophysical measurements from species-specific habitats with physiological measurements of sensory perception (e.g., Cummings and Partridge 2001; Cheroske et al. 2003; Fuller et al. 2003, 2004; Cummings 2004, 2007; Carleton et al. 2005; Seehausen et al. 2008; Fuller and Noa 2010; Veileux et al. 2013; Veileux and Cummings 2012; Bloch 2015; Bloch et al. 2015a; Sandkam et al. 2015; Tuset et al. 2016). Yet, in order to determine if this detectability bias has pleiotropic effects spilling into the sexual selection domain requires determining if these biases play a role in mate choice decisions. A few researchers have comprehensively tested this logistically complex question (e.g., Boughman 2001; Rodd et al. 2002; Garcia and Ramirez 2005; Maan et al. 2006; Seehausen et al. 2008; Arnqvist and Kolm 2010).

Of the studies that found evidence for sensory drive processes influencing sensory system tuning, 57% were in aquatic environments (Figure 2) and 83% involved vision (Figure 3). These studies were also dominated by teleost fish (45%) followed by invertebrates (19%), birds (15%), mammals (9%), and reptiles (8%, Figure 4). Using a Freeman–Halton exact test to compare the evidence for and against the sensory component of sensory drive, we found no significant differences in habitat, modality, or taxonomic group (Table 2). However, given so few studies in the “no evidence” column, a statistical approach to identify patterns is anemic from the beginning. Nonetheless, it is worth noting that the vast majority of these sensory studies fell in the domain of vision. Is this because human researchers are visually biased? Or is it because visual tuning is an easier modality to test in the lab and field? Or does vision respond more to the optical environment than the auditory senses to the auditory environment? Patterns could be entirely different in other sensory modes, for which there are still few data.

Environmental tuning mechanisms favor vision over other modalities?

Is there a mechanistic advantage of vision to respond to the environment more than the other sensory modalities? Vision scientists have been able to document how responsive the visual pathway is to environmental inputs in a number of taxa. Since the 1960s, it has been well documented that many teleosts employ a mixed chromophore strategy (different proportions of A1 and A2 prosthetic groups in photoreceptor outer segments) to tune their spectral sensitivity to ambient light conditions (Dartnall et al. 1961; Bridges 1965, 1972; Munz and Beatty 1965; Allen 1971; Loew and Dartnall 1976; Levine and MacNichol 1979; Munz and Mouat 1984). More recent work has also shown how differential expression of multiple opsin proteins in photoreceptor outer segments is biased based on optical inputs during development (Carleton and Kocher 2001; Fuller et al. 2004; Shand et al. 2008; Hofmann et al. 2010) as well as dietary influences (Sandkam et al. 2016). And we have become even more aware that sensory tuning can shift across the course of a day (Johnson et al. 2013); or as a function of steroid hormonal exposure (e.g., Friesen et al. 2017).

Note that many of these visual “tuning” mechanisms are restricted to certain aquatic taxa. Some fish and amphibian species contain dual chromophores in their retina (A1 and A2). By changing the ratio of A1:A2 in each photoreceptor’s outer segment, these aquatic and semi-aquatic species can tune the absorption maxima of the photoreceptor to match properties of their ambient light.
Major taxonomic group	Species group	Sense	Habitat	Sensory support	Signal support	Citation
Invertebrates	Beetle	Vision	Terrestrial	Yes	Yes	Théry et al. (2008)
Invertebrates	Bladder grasshoppers	Auditory	Terrestrial	Yes	Yes	Couldridge and van Staaden (2004)
Invertebrates	Butterflies	Vision	Terrestrial	Yes	Yes	Rutkowski et al. (2007)
Invertebrates	Cicadas	Auditory	Terrestrial	No		Sueur and Aubin (2003)
Invertebrates	Crabs	Vision	Terrestrial	Yes	Yes	Christy (1988)
Invertebrates	Crabs	Vision	Terrestrial	Yes	Yes	Christy et al. (2002)
Invertebrates	Crabs	Vision	Terrestrial	Yes	Yes	Christy et al. (2003)
Invertebrates	Crickets	Auditory	Terrestrial	No		Forrest (1991)
Invertebrates	Crickets	Auditory	Terrestrial	No		Jain and Balakrishnan (2012)
Invertebrates	Green Lacewings	Auditory	Terrestrial	No		Mendelson and Shaw (2005)
Invertebrates	Green Lacewings	Auditory	Terrestrial	No		Noh and Henry (2010)
Invertebrates	Moths	Auditory	Terrestrial	Yes		Henry and Wells (2004)
Invertebrates	Water Mites*	Vibratory*	Aquatic	Yes	Yes	Proctor (1991)
Invertebrates	Water Mites*	Vibratory*	Aquatic	Yes	Yes	Proctor (1992)
Invertebrates	Spiders	Vision	Terrestrial	Yes		Scheffer et al. (1996)
Invertebrates	Spiders	Vision	Terrestrial	Yes		Clark (2011)
Invertebrates	Spiders	Vision	Terrestrial	Yes		Wilgers and Hebets (2011)
Invertebrates	Spiders*	Vibratory*	Terrestrial	Yes		Elias et al. (2010)
Invertebrates	Stomatopods	Vision	Aquatic	Yes		Cronin et al. (2001)
Invertebrates	Stomatopods	Vision	Aquatic	Yes		Cronin and Caldwell (2002)
Invertebrates	Stomatopods	Vision	Aquatic	Yes		Cheroske et al. (2003)
Invertebrates	Stomatopods	Vision	Aquatic	Yes		Cheroske et al. (2006)
Invertebrates	Treehoppers*	Vibratory*	Terrestrial	Yes		Sullivan-Beckers and Cocroft (2010)
Invertebrates	Treehoppers*	Vibratory*	Terrestrial	Yes		McNett and Cocroft (2008)
Fish	Characins	Vision	Aquatic	Yes	Yes	Arnqvist and Kolm (2010)
Fish	Lake Malawi Cichlids	Vision	Aquatic	No		Smith et al. (2012)
Fish	Lake Victoria Cichlids	Vision	Aquatic	Yes		Seehausen et al. (1997)
Fish	Lake Victoria Cichlids	Vision	Aquatic	Yes	Yes	Maan et al. (2017)
Fish	Lake Victoria Cichlids	Vision	Aquatic	Yes		Seehausen et al. (2008)
Fish	Lake Victoria Cichlids	Vision	Aquatic	Yes	Yes	Maan et al. (2006)
Fish	Goodeids	Vision	Aquatic	Yes	Yes	Garcia and Ramirez (2005)
Fish	Guppies	Vision	Aquatic	Yes		Endler (1980)
Fish	Guppies	Vision	Aquatic	Yes	Yes	Endler (1983)
Fish	Guppies	Vision	Aquatic	Yes		Endler (1987)
Fish	Guppies	Vision	Aquatic	Yes	Yes	Endler (1991)
Fish	Guppies	Vision	Aquatic	Yes		Endler (1995)
Fish	Guppies	Vision	Aquatic	Yes		Cole and Endler (2016)
Fish	Guppies	Vision	Aquatic	Yes		Long and Rosengvist (1998)
Fish	Guppies	Vision	Aquatic	Yes		Chapman et al. (2009)
Fish	Guppies	Vision	Aquatic	Yes	Yes	Rodd et al. (2002)
Fish	Guppies	Vision	Aquatic	Yes	Yes	Gambling et al. (2003)
Fish	Guppies	Vision	Aquatic	Yes		Sandkam et al. (2015)
Fish	Killifish	Vision	Aquatic	Yes		Fuller et al. (2003)
Fish	Killifish	Vision	Aquatic	Yes		Fuller et al. (2005)
Fish	Killifish	Vision	Aquatic	Yes	Yes	Fuller and Noa (2010)
Fish	Killifish	Vision	Aquatic	Yes		Fuller (2002)
Fish	Killifish	Vision	Aquatic	Yes		Fuller and Travis (2004)
Fish	Ornate Rainbow Fish	Vision	Aquatic	Yes		Hancox et al. (2013)
Fish	Reef fish	Vision	Aquatic	Yes		Marshall (2000)
Fish	Rockfish	Auditory	Aquatic	Yes		Tuset et al. (2016)
Fish	Southern Pygmy perch	Vision	Aquatic	Yes		Morrongiello et al. (2010)
Fish	Sticklebacks	Vision	Aquatic	Yes		Reimchen (1989)
Fish	Sticklebacks	Vision	Aquatic	Yes		Boughman (2001)
Fish	Sticklebacks	Vision	Aquatic	Yes		Smith et al. (2004)
Fish	Sticklebacks	Vision	Aquatic	Yes		Veen et al. (2017)
Fish	Sticklebacks	Vision	Aquatic	Yes		Brock et al. (2017)

(continued)
Table 1 (continued)

Major taxonomic group	Species group	Sense	Habitat	Sensory support	Signal support	Citation
Fish	Suluwesi Fish	Vision	Aquatic	Yes		Gray et al. (2008)
Fish	Surfperch	Vision	Aquatic	Yes		Cummings and Partridge (2001)
Fish	Surfperch	Vision	Aquatic	Yes		Cummings (2004)
Fish	Surfperch	Vision	Aquatic	Yes	Yes	Cummings (2007)
Amphibians	Bolivian frogs	Auditory	Terrestrial			Bosch and Riva (2004)
Amphibians	Central Amazon frogs	Auditory	Terrestrial			Zimmerman (1983)
Amphibians	Central Amazon frogs	Auditory	Terrestrial			Kime et al. (2000)
Amphibians	Chorus frogs	Auditory	Terrestrial			Malone et al. (2014)
Amphibians	Concave-eared Torrent frog	Auditory	Terrestrial	Yes	Yes	Feng et al. (2006)
Amphibians	Cricket frogs	Auditory	Terrestrial	Yes		Ryan and Sullivan (1990)
Amphibians	Cricket frogs	Auditory	Terrestrial	Yes		Gamble et al. (2008)
Amphibians	Cricket frogs	Auditory	Terrestrial	Yes		Witte et al. (2005)
Amphibians	Green toads	Auditory	Terrestrial	No		Castellano et al. (2003)
Amphibians	Poison Frogs	Vision	Terrestrial	Yes		Maan and Cummings (2012)
Amphibians	Poison Frogs	Vision	Terrestrial	Yes		Cummings and Grothers (2013)
Amphibians	Rock Frogs	Vision	Terrestrial	Yes		Grafe et al. (2012)
Amphibians	Rock skipper frog	Auditory	Terrestrial	Yes		Boccle et al. (2009)
Amphibians	South American frogs	Auditory	Terrestrial	No		Penna and Solis (1998)
Amphibians	Streambank frogs	Auditory	Terrestrial	Yes		Odendaal et al. (1986)
Amphibians	Thailand frogs	Auditory	Terrestrial	Yes		Sun and Narins (2005)
Amphibians	Toads	Auditory	Terrestrial	Yes		Ryan and Sullivan (1989)
Amphibians	Treefrogs	Auditory	Terrestrial	Yes		Ziegler et al. (2011)
Amphibians	Tree-hole frogs	Auditory	Terrestrial	Yes		Lardner and Lakim (2002)
Reptiles	Anolis lizards	Vision	Terrestrial	Yes		Sigmond (1983)
Reptiles	Anolis lizards	Vision	Terrestrial	Yes	Yes	Leal and Fleishman (2002)
Reptiles	Anolis lizards	Vision	Terrestrial	No		Steinberg and Leal (2016)
Reptiles	Anolis lizards	Vision	Terrestrial	Yes	Yes	Leal and Fleishman (2004)
Reptiles	Anolis lizards	Vision	Terrestrial	Yes		Leal and Marshall (2000)
Reptiles	Anolis lizards	Vision	Terrestrial	Yes		Ord et al. (2007)
Reptiles	Anolis lizards	Vision	Terrestrial	Yes		Peters and Evans (2003)
Reptiles	Anolis lizards	Vision	Terrestrial	Yes		Peters et al. (2007)
Reptiles	Chameleons	Vision	Terrestrial	Yes		Stuart-Fox et al. (2007)
Reptiles	Chameleons	Vision	Terrestrial	Yes		Stuart-Fox and Moussalli (2008)
Birds	Amazonian birds	Auditory	Terrestrial	Yes		Tobias et al. (2010)
Birds	American redstarts	Auditory	Terrestrial	No		Date and Lemon (1993)
Birds	Antbirds	Auditory	Terrestrial	Yes		Nemeth et al. (2001)
Birds	Blue tits	Auditory	Terrestrial	No		Doutrelant and Lambrechts (2001)
Birds	Bowerbirds	Vision	Terrestrial	Yes		Madden and Tanner (2003)
Birds	Bowerbirds	Vision	Terrestrial	Yes		Endler and Day (2006)
Birds	Bowerbirds	Vision	Terrestrial	Yes		Doucet and Montogomery (2003)
Birds	Bowerbirds	Vision	Terrestrial	Yes		Endler et al. (2010)
Birds	Bowerbirds	Vision	Terrestrial	Yes		Kelley and Endler (2012)
Birds	Bowerbirds	Vision	Terrestrial	No	Borgia and Keny (2006)	
Birds	Carolina Wren	Auditory	Terrestrial	Yes		Gish and Morton (1981)
Birds	Chickens	Vision	Terrestrial	Yes		Hart et al. (2006)
Birds	Finches	Auditory	Terrestrial	Yes		Snell-Rood and Badyaev (2008)
Birds	Finches	Auditory	Terrestrial	No		Podos (2010)
Birds	Flycatchers	Auditory	Terrestrial	Yes		Francis et al. (2011)
Birds	Forest Birds	Vision	Terrestrial	Yes		Ryan and Brenowitz (1985)
Birds	Forest Birds	Vision	Terrestrial	Yes		Endler and Théry (1996)
Birds	Forest Birds	Vision	Terrestrial	Yes		Gomez and Théry (2004)
Birds	Forest Birds	Vision	Terrestrial	Yes		Gomez and Théry, 2007.
Birds	Forest Birds	Vision	Terrestrial	Yes		Uy and Stein (2007)
Birds	Great tits	Auditory	Terrestrial	Yes		Mockford and Marshall (2009)
Birds	Great tits	Auditory	Terrestrial	Yes		Slabbelkorn and Peet (2003)
Birds	Great tits	Auditory	Terrestrial	Yes		Slabbelkorn and der Boer-Vissoro (2006)
Birds	Green hyla	Auditory	Terrestrial	Yes		Kirschel et al. (2009)
Birds	Grey breastwood wren	Auditory	Terrestrial	Yes		Dingle et al. (2008)
Birds	House finches	Auditory	Terrestrial	Yes		Bermudez-Cuamatzin et al. (2011)
Birds	Juncos	Auditory	Terrestrial	Yes		Slabbelkorn et al. (2007)

(continued)
conditions. Evidence for chromophore mixing to match spectral properties of the underwater environment has been found in freshwater (Bridges 1972; Loew and Dartnall 1976), saltwater (Cummins and Partridge 2001) and anadromous fish (Munz and Beatty 1965; Munz and Mouat 1984). Furthermore, teleosts have shown greater plasticity than any other taxon in spectral tuning via differential expression in opsin proteins within their photoreceptors (Fuller et al. 2004, 2010; Hofmann et al. 2009, 2010; Carleton 2009; Parry et al. 2005). Moreover, marine invertebrates, such as stomatopods, have multiple means to alter spectral sensitivity via modification to intrarhabdomal filters, allowing for extensive tunability (Cronin et al. 2001; Marshall et al. 2007).

While terrestrial vertebrates (amphibians, reptiles, birds, and mammals) do not possess as many tuning mechanisms as some of the marine organisms [e.g., only a single chromophore (A1)], they still exhibit tunable variation in visual sensitivities. Warblers exhibit differential opsin expression between species that vary in optical habitats (Bloch 2015), as well as genetic variation in opsin genes that is functionally linked to changes in habitat use (Bloch et al. 2015a). Birds, in general, exhibit tremendous genetic variation in UV-sensitive cone opsin genes (SWS1, Hart and Hunt 2007), and variation in the proportion of different photoreceptor cone types. This variation has been attributed to variation in foraging ecology (Hart 2001). Furthermore, many birds and reptiles contain pigmented oil droplets in the inner segments of their photoreceptors that reduce the intensity and narrow the spectrum of light impinging upon the visual pigment in the outer segment (Liebman and Granda 1971; Liebman and Granda 1971; Liebman and Granda 1971). Furthermore, many birds and reptiles contain pigmented oil droplets in the inner segments of their photoreceptors that reduce the intensity and narrow the spectrum of light impinging upon the visual pigment in the outer segment (Liebman and Granda 1971; Liebman and Granda 1971; Liebman and Granda 1971). Furthermore, many birds and reptiles contain pigmented oil droplets in the inner segments of their photoreceptors that reduce the intensity and narrow the spectrum of light impinging upon the visual pigment in the outer segment (Liebman and Granda 1971; Liebman and Granda 1971; Liebman and Granda 1971). Furthermore, many birds and reptiles contain pigmented oil droplets in the inner segments of their photoreceptors that reduce the intensity and narrow the spectrum of light impinging upon the visual pigment in the outer segment (Liebman and Granda 1971; Liebman and Granda 1971; Liebman and Granda 1971). Furthermore, many birds and reptiles contain pigmented oil droplets in the inner segments of their photoreceptors that reduce the intensity and narrow the spectrum of light impinging upon the visual pigment in the outer segment (Liebman and Granda 1971; Liebman and Granda 1971; Liebman and Granda 1971). Furthermore, many birds and reptiles contain pigmented oil droplets in the inner segments of their photoreceptors that reduce the intensity and narrow the spectrum of light impinging upon the visual pigment in the outer segment (Liebman and Granda 1971; Liebman and Granda 1971; Liebman and Granda 1971). Furthermore, many birds and reptiles contain pigmented oil droplets in the inner segments of their photoreceptors that reduce the intensity and narrow the spectrum of light impinging upon the visual pigment in the outer segment (Liebman and Granda 1971; Liebman and Granda 1971; Liebman and Granda 1971). Furthermore, many birds and reptiles contain pigmented oil droplets in the inner segments of their photoreceptors that reduce the intensity and narrow the spectrum of light impinging upon the visual pigment in the outer segment (Liebman and Granda 1971; Liebman and Granda 1971; Liebman and Granda 1971). Furthermore, many birds and reptiles contain pigmented oil droplets in the inner segments of their photoreceptors that reduce the intensity and narrow the spectrum of light impinging upon the visual pigment in the outer segment (Liebman and Granda 1971; Liebman and Granda 1971; Liebman and Granda 1971). Furthermore, many birds and reptiles contain pigmented oil droplets in the inner segments of their photoreceptors that reduce the intensity and narrow the spectrum of light impinging upon the visual pigment in the outer segment (Liebman and Granda 1971; Liebman and Granda 1971; Liebman and Granda 1971). Furthermore, many birds and reptiles contain pigmented oil droplets in the inner segments of their photoreceptors that reduce the intensity and narrow the spectrum of light impinging upon the visual pigment in the outer segment (Liebman and Granda 1971; Liebman and Granda 1971; Liebman and Granda 1971). Furthermore, many birds and reptiles contain pigmented oil droplets in the inner segments of their photoreceptors that reduce the intensity and narrow the spectrum of light impinging upon the visual pigment in the outer segment (Liebman and Granda 1971; Liebman and Granda 1971; Liebman and Granda 1971). Furthermore, many birds and reptiles contain pigmented oil droplets in the inner segments of their photoreceptors that reduce the intensity and narrow the spectrum of light impinging upon the visual pigment in the outer segment (Liebman and Granda 1971; Liebman and Granda 1971; Liebman and Granda 1971). Furthermore, many birds and reptiles contain pigmented oil droplets in the inner segments of their photoreceptors that reduce the intensity and narrow the spectrum of light impinging upon the visual pigment in the outer segment (Liebman and Granda 1971; Liebman and Granda 1971; Liebman and Granda 1971). Furthermore, many birds and reptiles contain pigmented oil droplets in the inner segments of their photoreceptors that reduce the intensity and narrow the spectrum of light impinging upon the visual pigment in the outer segment (Liebman and Granda 1971; Liebman and Granda 1971; Liebman and Granda 1971). Furthermore, many birds and reptiles contain pigmented oil droplets in the inner segments of their photoreceptors that reduce the intensity and narrow the spectrum of light impinging upon the visual pigment in the outer segment (Liebman and Granda 1971; Liebman and Granda 1971; Liebman and Granda 1971). Furthermore, many birds and reptiles contain pigmented oil droplets in the inner segments of their photoreceptors that reduce the intensity and narrow the spectrum of light impinging upon the visual pigment in the outer segment (Liebman and Granda 1971; Liebman and Granda 1971; Liebman and Granda 1971). Furthermore, many birds and reptiles contain pigmented oil droplets in the inner segments of their photoreceptors that reduce the intensity and narrow the spectrum of light impinging upon the visual pigment in the outer segment (Liebman and Granda 1971; Liebman and Granda 1971; Liebman and Granda 1971). Furthermore, many birds and reptiles contain pigmented oil droplets in the inner segments of their photoreceptors that reduce the intensity and narrow the spectrum of light impinging upon the visual pigment in the outer segment (Liebman and Granda 1971; Liebman and Granda 1971; Liebman and Granda 1971). Furthermore, many birds and reptiles contain pigmented oil droplets in the inner segments of their photoreceptors that reduce the intensity and narrow the spectrum of light impinging upon the visual pigment in the outer segment (Liebman and Granda 1971; Liebman and Granda 1971; Liebman and Granda 1971). Furthermore, many birds and reptiles contain pigmented oil droplets in the inner segments of their photoreceptors that reduce the intensity and narrow the spectrum of light impinging upon the visual pigment in the outer segment (Liebman and Granda 1971; Liebman and Granda 1971; Liebman and Granda 1971). Furthermore, many birds and reptiles contain pigmented oil droplets in the inner segments of their photoreceptors that reduce the intensity and narrow the spectrum of light impinging upon the visual pigment in the outer segment (Liebman and Granda 1971; Liebman and Granda 1971; Liebman and Granda 1971). Furthermore, many birds and reptiles contain pigmented oil droplets in the inner segments of their photoreceptors that reduce the intensity and narrow the spectrum of light impinging upon the visual pigment in the outer segment (Liebman and Granda 1971; Liebman and Granda 1971; Liebman and Granda 1971). Furthermore, many birds and reptiles contain pigmented oil droplets in the inner segments of their photoreceptors that reduce the intensity and narrow the spectrum of light impinging upon the visual pigment in the outer segment (Liebman and Granda 1971; Liebman and Granda 1971; Liebman and Granda 1971). Furthermore, many birds and reptiles contain pigmented oil droplets in the inner segments of their photoreceptors that reduce the intensity and narrow the spectrum of light impinging upon the visual pigment in the outer segment (Liebman and Granda 1971; Liebman and Granda 1971; Liebman and Granda 1971). Furthermore, many birds and reptiles contain pigmented oil droplets in the inner segments of their photoreceptors that reduce the intensity and narrow the spectrum of light impinging upon the visual pigment in the outer segment (Liebman and Granda 1971; Liebman and Granda 1971; Liebman and Granda 1971). Further...
and Nelken 2007; Mockford and Marshall 2009) are modified by background noise levels. Auditory systems can be selectively tuned to respond to conspecific signals (e.g., auditory imprinting, Batista et al. 2016), as well as be modified by steroid hormones (Coffin et al. 2012). And some of the best examples of sensory tuning to the environment include the evolution of selective ultrasonic hearing capabilities among several species preyed upon by echolocating bats (Conner 1987; Windmill et al. 2006).

Table 2. Results of freeman-halton exact test results comparing differences in habitat, modality, and taxonomic group characteristics of supporting (yes) and non-supporting (no) studies testing the sensory (A), signaling (B), or both components (C) of the sensory drive model
A. Number studies testing the first component of Sensory Drive (Sensory systems tuned to environmental parameters)
Habitat
Aquatic
Terrestrial
Order
Invertebrates
Fishes
Amphibians
Reptiles
Birds
Mammals
Sense
Vision
Auditory

B. Number of studies testing the second component of Sensory Drive (Signalling traits varying by environmental parameters) |
Habitat	Yes	No	P = 0.0036
Aquatic	30	0	
Terrestrial	74	19	
Order	Yes	No	P = 0.0055
Invertebrates	14	6	
Fishes	27	0	
Amphibians	12	6	
Reptiles	10	0	
Birds	32	6	
Mammals	9	1	
Sense	Yes	No	P < 0.0001
Vision	59	1	
Auditory	40	18	

C. Number of studies testing both components of Sensory Drive (sensory and signaling coevolution) |
Habitat	Yes	No	n.a.
Aquatic	18	0	
Terrestrial	11	0	
Order	Yes	No	n.a.
Invertebrates	5	0	
Fishes	16	0	
Amphibians	1	0	
Reptiles	4	0	
Birds	3	0	
Mammals	0	0	
Sense	Yes	No	n.a.
Vision	25	0	
Auditory	2	0	

Note: vibratory studies listed in Table 1 are excluded for this analysis; and n.a. refers to inapplicability of the statistical test when only 1 column has numbers > 0.

Evidence for the environment influencing signal components

Our literature search found more than twice the number of studies exploring the signal components of the sensory drive model than the sensory components (Table 1, Figures 2–4). We identified 126 empirical studies that directly tested the signal predictions of the sensory drive model (blue components in Figure 1). Of these studies, 107 found support for sensory drive while 19 did not. Many researchers have tested this part of sensory drive by examining correlational patterns between male signaling characteristics and environmental parameters (Table 1: Morton 1975; Gish and Morton 1981; Reimchen 1989; Wiley 1991; Fleishman 1992; Marchetti 1993; Seehausen et al. 1997; Slabberkoorn and Peet 2003; Fuller 2002; Leal and Fleishman 2004; Gomez and Thery 2004, 2007; Ord et al. 2007; Stuart-Fox et al. 2007; Gray et al. 2008; Derryberry 2009; Ey et al. 2009; Elias et al. 2010; Morrongiello et al. 2010; Tobias et al. 2010; Potvin et al. 2011; Hanoxx et al. 2013; Brock et al. 2017); or species-specific detection biases (Madden and Tanner 2003; Feng et al. 2006; Cummings 2007; Arnqvist and Kolm 2010), or female mate preference functions (Boughman 2001; Maan et al. 2006; Seehausen et al. 2008; Kelley and Endler 2012).
3.4 Auditory signals and the biotic versus abiotic design pressures

The terrestrial environment significantly dominated the category of non-supporting sensory drive studies concentrating on signal components \((P = 0.0036, \text{Table 2}) \). The high concentration of these non-supporting studies involved auditory signals, a pattern that significantly deviated from random expectations \((P < 0.0001; \text{Table 2}) \). Why do we find a disproportionate number of auditory studies (of which most are in terrestrial environments) representing this category of no support for sensory drive? One important feature to consider is how sensory modes differ; auditory signals frequently compete simultaneously with both biotic and abiotic noise. Unlike a visual signal, which is directional and whose detection is based on how it is perceived against highly localized abiotic backgrounds (the adjacent surrounding area), auditory signals are essentially omnidirectional so it is more difficult to disentangle them from background noise coming from all directions. It is the competition to stand out against the biotic din of competing signals that has been shown to be the dominant predictor of divergence in a number of different auditory signalling systems (e.g., insects: Greenfield 2015; frogs: Wollerman and Wiley 2002; Amézquita et al. 2011; Malone et al. 2014; birds: Luther 2009; Grant and Grant 2010). As a general rule, acoustic signal reception has to contend with significantly more biotic interactions than visual signals. Hence, signal design in ecosystems crowded with auditory communicators should be associated with the biotic environmental soundscape being the better predictor for signal differentiation than the abiotic factors. This has been born out in a number of different animal taxa (Amézquita et al. 2011; Wilkins et al. 2013). One of the most thorough examinations of this principle comes from a large-scale comparison of 82 species of tropical forest birds, wherein Luther (2009) found that bird song divergence at dawn chorus was predicted by the composition of competing songs at each given time interval, rather than physical location or phylogenetic relatedness. Hence, for auditory signaling, the communication environment is often dominated by biotic factors more than abiotic features, and it is the selective factor driving signal diversification in predictable directions. However, auditory evolution may be less predictable than visual signal evolution because the auditory biotic factors are often more variable in space, and in both short-term and evolutionary time, than the largely physical factors affecting vision.

Evidence for complete sensory drive model (co-evolution of sensory and signaling features)

Of the 154 studies examining sensory drive processes, 29 tested and found support for the complete sensory drive model (Table 1).
Either tests not supporting the full model haven’t yet been conducted or the authors could not publish their negative results. The supporting studies were overwhelmingly focused in visual traits (86%, Figure 3) with a bias for aquatic environments (62%, Figure 2) and a majority (55%, Figure 4) of fish representatives [followed by invertebrates (17%), reptiles (14%), birds (10%), and amphibians (3%)].

The close similarity between characteristics of studies finding support for sensory components and the complete sensory drive model is not surprising. After all, the sensory drive model starts with the environment placing a directional change on sensory systems in specific environmental conditions. To find evidence for the complete Sensory Drive model, one needs to first find a match between sensory system bias predicted by environmental constraints and then a match between signals and that environmentally induced sensory bias. To tackle both components is a daunting endeavor, so it should come as no surprise that the subset of studies that completed this challenge is not very large (about 1 per year since the inception of Sensory Drive).

It is also not surprising that the majority of these few “full support studies” are mostly in aquatic environments. Since the early days of sensory drive, it was noted that aquatic environments place a more constraining force on the sensory environment than terrestrial habitats, particularly in visual systems. The water medium, unlike air, differentially absorbs and scatters wavelengths of light as a function of depth as well as biotic and abiotic factors in the water medium itself, such as tannins. Phytoplankton and zooplankton blooms along with detritus and other inorganic materials can also stain the waters in particular ways, leaving a very limited optical spectrum for the visual senses to process. When spectra are restricted, then sensory systems have fewer options for tuning and the predicted direction of tuning and signals becomes predictable based on first principles. However, when the spectrum is broad, the system is permissive and multiple solutions are equally plausible (Endler 1993a, 1993b).

A comparison across the different types of cichlid fish and the optical environments they inhabit demonstrate this principle quite well. The Lake Victorian cichlids differ in optical environment due to a predictable (and unidirectional) change in ambient spectra with depth. As species-specific depth ranges increase, ambient spectral bandwidth becomes narrower and redder. In this system, visual pigments follow this depth gradient shift as well as predictable shifts in male color reflectance to contrast against the shift in background spectra (Seehausen et al. 2008) that is also reflected in female choice for these signals (Maan et al. 2006). Meanwhile, in the Lake Malawi cichlids that inhabit clearer waters with a broader spectrum of ambient light, the optical environment is less constrained, and the multiple (6 main opsins) show no correlated pattern with expression and optical environment (Smith et al. 2012). This point was brought up by Endler in the early stages of Sensory Drive (Endler 1993a, 1993b), that environments that are optically constrained to narrow irradiance spectra favor a very specific color component for signal evolution, whereas environments containing broad spectra are very permissive, favouring diversity and making predictions more difficult. This same principle explains why there is strong support for sensory drive in the surfperch fishes optically extreme environment of an underwater kelp forest (Cummings 2007), yet more muted support in birds dwelling in tropical terrestrial forests (Gomez and Théry 2004; Maia et al. 2016).

Conclusions and Future Directions

There is broad support for the process of sensory drive in a variety of taxa and environments but the distribution among taxa and environments is uneven. The unevenness results from variation among habitats as well as in sensory capacities and sensory biophysics. Some combinations restrict what form sensory drive can take, making it predictable, but other combinations are very permissive, making predictions difficult or impossible. There may even be a tradeoff between environmental constraints and diversity. This predicts more diversity of senses and signals, and more diversity of species, in permissive habitats and species with multiple sensory modes than those with fewer modes or which live in more restrictive
habitats. These ideas need testing in as many taxa and habitats as possible. We also note that there is comparatively little work on sensory drive in chemoreception, vibration reception, and electroreception, and little work on the evolution of microhabitat and habitat choice relative to sensory drive. There is clearly a lot more to be done in exploring the directions and rates of sensory drive.

References

Allen DM, 1971. Photic control of the proportions of two visual pigments in a fish. *Vis Res* 11:1077–1112.

Amézquita A, Flechas SV, Lima AP, Gasser H, Hodl W, 2011. Acoustic interference and recognition space within a complex assemblage of dendrobatid frogs. *Proc Natl Acad Sci* 108:17058–17063.

Arlettaz R, Jones G, Racey PA, 2001. Effects of acoustic clutter on prey detection in bats. *Nature* 414:742–745.

Arnqvist G, Kolm N, 2010. Population differentiation in the swordtail characin *Corynorhina rupestris*: a role for sensory drive?. *J Evol Biol* 23:1907–1918.

Bar-Yosef O, Nelken I, 2007. The effects of background noise on the neural responses to natural sounds in cat primary auditory cortex. *Front Comput Neurosci* 1:3.

Basolo AL, 1990. Female preference predates the evolution of the sword in swordtail fish. *Science* 250:808–810.

Basolo AL, 1995. Phylogeographic evidence for the role of a pre-existing bias in sexual selection. *Proc R Soc B* 259:307–311.

Batista G, Johnson JL, Dominguez E, Costa-Mattioli M, Pena JL, 2016. SWS2 visual pigment evolution as a test of historically contingent patterns of plumage color evolution in warblers. *Evolution* 69:341–356.

Bloch NI, 2015. Evolution of opsin expression in birds driven by sexual selection and habitat. *Proc Roy Soc B* 282:20142321.

Bloch NI, Morrow JM, Chang BSW, Price TD, 2015a. SWS2 visual pigment expression and structure building by courting male stickleback fish. *Proc Roy Soc B* 282:20142321.

Boughman JW, 2001. Divergent sexual selection enhances reproductive isolation and habitat. *J Comp Physiol A* 187:407–412.

Brock CD, Cummings ME, Bolnick DI, 2017. Phenotypic plasticity drives a depth gradient in male conspicuousness in threespine stickleback *Gasterosteus aculeatus*. *Evolution* 71:2022–2036.

Brown CH, Gomez R, Waser PM, 1995. Old world monkey vocalizations: adaptation to the local habitat?. *Anim Behav* 50:945–963.

Brunn H, 2004. The impact of environmental noise on song amplitude in a territorial bird. *J Anim Ecol* 73:434–440.

Brumm H, Voss K, Kollmer I, Todt D, 2003. Acoustic communication in noise: regulation of call characteristics in a New World monkey. *J Exp Biol* 207:443–448.

Carleton KL, Kocher TD, 2001. Cone opsin genes of African cichlid fishes: tuning spectral sensitivity by differential gene expression. *Mol Biol Evol* 18:1540–1550.

Carleton KL, JWL, Bowmaker JK, Hunt DM, Seehusen O, 2005. Colour vision and speciation in Lake Victoria cichlids of the genus *Pfundamia*. *Mol Ecol* 14:4341–4353.

Carleton KL, 2009. Cichlid fish visual systems: mechanisms of spectral tuning. *Integr Zool* 4:75–86.

Castellano S, Giacomo C, Ryan MJ, 2003. Call degradation in diplid and tetrapod green toads. *Biol J Linn Soc* 78:111–26.

Chapman BB, Morrell LJ, Krause J, 2009. Plasticity in male courtship behaviour as a function of light intensity in guppies. *Behav Ecol Sociobiol* 63:1757–1763.

Cheroske AG, Cronin TW, Caldwell RL, 2003. Adaptive color vision in *Pulposquilla litoralis* (Stomatopoda, Lysiosquillidae) associated with spectral and sensitivity changes in light environment. *J Exp Biol* 206:373–379.

Cheroske AG, Barber PH, Cronin TW, 2006. Evolutionary variation in the expression of phenotypically plastic color vision in *Caribbean mantis shrimp* genus *Neogonodactylus*. *Mar Biol* 150:213–220.

Christy JH, 1988. Pillar function in the fiddler crab *Uca beebeyi* (II): competitive courtship signaling. *Ethology* 78:113–128.

Christy JH, 1995. Mimicry, mate choice, and the sensory trap hypothesis. *Am Nat* 141:171–181.

Christy JH, Backwell PRY, Goshima S, Kreuter T, 2002. Sexual selection for structure building by courting male fiddler crabs; an experimental study of behavioral mechanisms. *Behav Ecol* 13:366–74.

Christy JH, Baum JK, Backwell PRY, 2003. Attractiveness of sand mounds built by courting male fiddler crabs *Uca musci*: test of a sensory trap hypothesis. *Anim Behav* 66:89–94.

Clark DL, 2011. Spectral reflectance and communication in the wolf spider *Schizocosa ocreata* (Hentz): simultaneous crypsis and background contrast in visual signals. *Behav Ecol Sociobiol* 65:1237–1247.

Coiffer AB, Mohr RA, Sisneros JA, 2012. Saccular-specific hair cell addition correlates with reproductive state-dependent changes in the auditory saccular sensitivity of a vocal fish. *J Neurosci* 32:1366–1376.

Cole GL, 2013. Lost in translation: adaptation of mating signals in changing environments. *Spr Sci Res* 1:23–40.

Cole GL, Endler JA, 2016. Male courtship decisions are influenced by light environment and female receptivity. *Proc Roy Soc Lond B* 283:20160861.

Conner WE, 1987. Ultrasound: its role in the courtship of the arctic moth *Cyneta tenera*. *Cell Mol Life Sci* 45:1029–1031.

Coullidge VC, van Staaden MJ, 2004. Habitat-dependent transmission of male advertisement calls in blader grassshoppers (Orthoptera: pneumoteraeae), *J Exp Biol* 207:2777–2786.

Cronin TW, Caldwell RL, Marchsall J, 2001. Colour vision and female receptivity. *Can J Zool* 82:880–888.

Cronin TW, Caldwell RL, 2002. Tuning of photoreceptor function in three species of marmots. *J Comp Physiol A* 188:187–197.

Cummins ME, Partridge J, 2001. Visual pigments and optical habitats of the spiny dogfish *Squalus acanthias* a role for sensory drive?. *Anim Behav* 50:945–963.

Cummings ME, Crothers LC, 2013. Interacting selection diversifies warning signal in sticklebacks. *J Exp Biol* 216:239–251.

Cummings ME, 2007. Sensory trade-offs predict signal divergence in surfperches. *Evol Ecol* 21:693–710.

Cummings ME, 2004. Modelling divergence in luminance and chromatic detection performances across measured divergence in surfperch (Embiotocidae) habitats. *Vis Res* 44:1127–1145.

Cummings ME, 2007. Sensory trade-offs predict signal divergence in surfperch. *Evolution* 61:530–545.

Cummings ME, Crothers LC, 2013. Interacting selection diversifies warning signals in a polytypic frog: an examination with the strawberry poison frog. *Anim Behav* 45:189–202.

Danley PD, Husemann M, Chetta J, 2012. Acoustic diversity in Lake Malawi’s rock-dwelling cichlids. *Env Biol Fishes* 93:23–30.
Hart NS, 2001. The visual ecology of avian photoreceptors. *Prog Ret Eye Res* 20:675–703.
Hart NS, Linsen TJ, Collin SP, 2006. Cone photoreceptor oil droplet pigmentation is affected by ambient light intensity. *J Exp Biol* 209:4476–4787.
Hart NS, Hunt DM, 2007. Avian visual pigments: characteristics, spectral tuning, and evolution. *Am Nat* 169:57–82.
Heinlen M, Winkler H, 2003. Vertical lek placement of forest-dwelling manakin species (Aves, Pipridae) is associated with vertical gradients of ambient light. *Biol J Linn Soc* 80:647–658.
Heinsohn R, Legge S, Endler JA, 2005. Extreme reversed sexual dichromatism in birds without sex role reversal. *Science* 309:617–619.
Henry CS, Wells MLM, 2004. Adaptation or random change? The evolutionary response of birds to substrate properties in lacewings (Neuroptera: chrysopidae: chrysopera). *Anim Behav* 68:879–895.
Hinz C, Namekawa Ri, Behrmann-Godel J, Oppelt C, Jaeschke A et al., 2013. Olfactory imprinting is triggered by MHC peptide ligands. *Sci Reports* 3: 2800.
Hofmann CM, O’Quin KE, Marshall NJ, Cronin TW, Seehaussen O et al., 2009. The eyes have it: regulatory and structural changes both underlie cichlid visual pigment diversity. *PLoS Biol* 7:e1000266.
Hofmann CM, O’Quin KE, Smith AR, Carleton KL, 2010. Plasticity of opsin gene expression in cichlids from Lake Malawi. *Mol Ecol* 19:2064–2074.
Jacobs DS, Catto S, Mutumi GL, Finger N, Wehala PW, 2017. Testing the sensory drive hypothesis: geographic variation in echolocation frequencies of Geoffroy’s horseshoe bat (Rhinolophidae: rhinolophus clivosus). *PLoS ONE* 12:e0187769.
Jain M, Balakrishnan R, 2012. Does acoustic adaptation drive vertical stratification? A test in a tropical cricket assemblage. *Behav Ecol* 23:343–354.
Johnson AM, Stanis S, Fuller RC, 2013. Diurnal lighting patterns and habitat alter opsin expression and colour preferences in a killifish. *Proc Roy Soc B* 280:20130796.
Kelley LA, Endler JA, 2012. Illusions promote mating success in great bowerbirds. *Science* 335:335–338.
Kim TW, Christy JH, Choe JC, 2007. A preference for a sexual signal keeps females safe. *PLoS One* 2(5):e422.
Kime NM, Turner WR, Ryan MJ, 2000. The transmission of advertisement calls in Central American frogs. *Behav Ecol* 11:71–83.
Kirschel ANG, Blumstein DT, Cohen RE, Buermann W, Smith TB et al., 2009. Signal and mate quality can be explained in a nonsexual context. *Anim Behav* 65:1077–1083.
Maat R, Rubenstein DR, Shawkey MD, 2016. Selection, constraint, and the evolution of coloration in African starlings. *Evolution* 70:1064–1079.
Malone JH, Ribado J, Morzaryt Lemmon E, 2014. Sensory drive does not explain reproductive character displacement of male acoustic signals in the upland chorus frog *Pseudacris feriarum*. *Evolution* 68:1306–1319.
Marchetti K, 1993. Dark habitats and bright birds illustrate the role of the visual environment in species divergence. *Nature* 362:149–152.
Marshall J, 2000. Communication and camouflage with the same “bright” colours in reef fishes. *Philos Trans R Soc B* 355:1243–1248.
Marshall J, Cronin TW, Kleinlogel S, 2007. Statomopod eye structure and function: a review. *Arthrop Struct Dev* 36:420–448.
McFarland WN, Munz FW, 1975. Part III: the evolution of photopic visual pigments in fishes. *Vis Res* 15:1071–1080.
Mcnett GD, Cocroft RB, 2008. Host shifts favor vibrational signal divergence in *Enchobena binodata* treehoppers. *Behav Ecol* 19:650–656.
Mendelson TC, Shaw KL, 2005. Sexual behaviour: rapid speciation in an arthropod. *Nature* 433:375–376.
Miller PJO, Biassoni N, Samuels A, Tyack PL, 2000. Whale songs lengthen in response to sonar. *Nature* 405:309.
Mitani JC, Stulti J, 1998. The evolution of nonhuman primate loud calls: acoustic adaptation for long-distance transmission. *Primates* 39:171–182.
Mokford EJ, Marshall RC, 2009. Effects of urban noise on song and response behaviour in great tits. *Proc Biol Sci* 276:2979–2985.
Morrongiello JR, Bond NR, Cook DA, Wong BM, 2010. Nuptial coloration varies with ambient light environment in a freshwater fish. *J Evol Biol* 23: 2718–2725.
Morton ES, 1975. Ecological sources of selection on avian sounds. *Am Nat* 109:17–34.
Munz WRA, Mouat GSV, 1984. Annual variations in the visual pigments of brown trout inhabiting lochs providing different light environments. *Vis Res* 11:1575–1580.
Munz FW, Beatty DD, 1965. A critical analysis of the visual pigments of salmon and trout. *Vis Res* 51:17.
Nemeth E, Winkler H, Dabelsteen E, 2001. Differential degradation of antbird songs in a neotropical rainforest: adaptation to perch height?. *J Acoustic Soc Am* 110:3263–3274.
Noh S, Henry CS, 2010. Sexually monomorphic mating preferences contribute to premating isolation based on song in European green lacewings. *Evolution* 64:261–270.
Onzial EJ, Bull CM, Telford SR, 1986. Influence of the acoustic environment on the distribution of the frog *Randella riparia*. *Anim Behav* 34: 1836–1843.
Ord TJ, Peters RA, Clucas B, Stamps JA, 2007. Lizards speed up visual displays in noisy motion habitats. *Proc R Soc B* 274:1057–1062.
Parry JWL, Carleton KL, Spady T, Carboo A, Hunt DM, Bowman JK, 2005. Mix and match color vision: tuning spectral sensitivity by differential opsin gene expression in Lake Malawi cichlids. *Carr Biol* 15:1734–1739.
Patten MA, Rotenberry JT, Zak M, 2004. Habitat selection, acoustic adaptation, and the evolution of reproductive isolation. *Evolution* 58:2144–2155.
Penna M, Solis R, 1998. Frog call intensities and sound propagation in the South American temperate forest region. *Behav Ecol Sociobiol* 42:371–381.
Peters RA, Evans CS, 2003. Design of the Jacky dragon visual display: signal and noise characteristics in a complex moving environment. *J Comp Physiol A* 189:447–459.
Peters RA, Hemmi JM, Zeli J, 2007. Signaling against the wind: modifying motion-signal structure in response to increased noise. *Carr Biol* 17: 1231–1234.
Podos J, 2010. Acoustic discrimination of sympatric morphs in Darwin’s finches: a behavioural mechanism for assortative mating?. *Philos Trans R Soc B* 365:1033–1039.
Wiley RH, 1991. Associations of song properties with habitats for territorial oscine birds of Eastern North America. *Am Nat* 138:973–993.

Wilgers DJ, Hebets EA, 2011. Complex courtship displays facilitate male reproductive success and plasticity in signalling across variable environments. *Carr Zool* 57:175–186.

Wilkins MR, Seddon N, Safran RJ, 2013. Evolutionary divergence in acoustic signals: causes and consequences. *Trends Ecol Evol* 28: 156–166.

Windmill JFC, Jackson JC, Tuck EJ, Robert D, 2006. Keeping up with bats: dynamic auditory tuning in a moth. *Carr Biol* 16:2418–2423.

Witte K, Farris HE, Ryan MJ, Wilczynski W, 2005. How cricket frog females deal with a noisy world: habitat-related differences in auditory tuning. *Behav Ecol* 16:571–579.

Wollerman L, Wiley H, 2002. Background noise from a natural chorus alters female discrimination of male calls in a Neotropical frog. *Anim Behav* 63:15–22.

Ziegler L, Arim M, Narins PM, 2011. Linking amphibian call structure to the environment: the interplay between phenotypic flexibility and individual attributes. *Behav Ecol* 22:520–526.

Zimmerman BL, 1983. A comparison of structural features of calls of open and forest habitat frog species in the central Amazon. *Herpetologica* 39:235–245.