Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Emerging Molecular Assays for Detection and Characterization of Respiratory Viruses

Wenjuan Wu, PhDa,c, Yi-Wei Tang, MD, PhDa,b,d,*

Rapid detection and identification of viral pathogens causing respiratory tract infections is critical for initiating antiviral therapy, avoiding unnecessary antimicrobial therapy, preventing nosocomial spread, decreasing the duration of hospitalization, and reducing management costs. Molecular assays, which provide high sensitivity and specificity, short test turnaround time, and automatic, high-throughput batch processing, have played critical roles in rapid detection, screening, and identification of emerging respiratory viral pathogens, such as severe acute respiratory syndrome coronavirus (SARS-CoV) and novel A/H1N1 influenza (Flu) virus.1–3 The superiority of polymerase chain reaction (PCR), reverse transcription-PCR (RT-PCR), and other in vitro nucleic acid amplification assays over conventional methods for the diagnosis of respiratory viral infections has already been established.4,5 This article describes several emerging molecular assays that have potential applications in the diagnosis and monitoring of respiratory viral infections.

DIRECT NUCLEIC ACID DETECTION BY QUANTUM DOTS BIOSENSORS

Biosensors offer the possibility of real-time monitoring, and the deployment of these devices in the field would provide a means for prompt etiologic diagnosis. All
biosensors are essentially composed of a biologic recognition element or bioreceptor, which interacts with the analyte and responds in some manner that can be registered by a transducer. The bioreceptor is a crucial component, and its function is to impart selectivity so that the sensor responds only to a particular analyte or biomolecule of interest, hence avoiding interference from other substances. The transducer converts the microbial biorecognition event into an electrical signal detected using electrochemical, optical, or piezoelectric platforms.6,7 A biosensor specifically targeting nucleic acids through hybridization is called a genosensor. Genosensors have been used to for direct, on-demand, and real-time detection and discrimination of microbial pathogens in clinical specimens. Malamud and colleagues8 developed a group of genosensor-based assays to detect microbial pathogens in oral specimens for use in the diagnosis of multiple infectious diseases. A piezoelectric DNA biosensor to directly detect hepatitis B virus was developed based on the mass-transducing function of a quartz crystal microbalance and nucleic acid hybridization9, another hybridization-based amperometric biosensor, using osmium as an electrochemical indicator, was used for the detection and confirmation of virus-specific PCR products.10 A generic semidisposable fluorescence biosensor was developed to directly detect dengue virus RNA.11 A hybridization-based genosensor on gold film coupled with enzymatic electrochemical detection was designed to detect SARS-CoV RNA.12

Fluorescent semiconductor nanocrystals, known as quantum dots (Qdots), are colloidal particles consisting of a semiconductor core, a high band gap material shell, and typically an outer coating layer. The core-size–dependent photoluminescence with narrow emission bandwidths that span the visible spectrum and the broad adsorption spectra allow simultaneous excitation of mixed Qdot populations at a single wavelength. Qdots also exhibit several unique features: high quantum yield, high resistance to photodegradation, and better near-infrared emission.13,14 The new generation of Qdots has far-reaching potential for the study of intracellular processes in broad fields, including diagnostics.14 High-sensitivity bacterial detection using biotin-tagged phage and quantum-dot nanocomplexes has been described, which provides specific limits of detection at 10 bacterial cells/mL in 1 hour.15 A bead-based microfluidic device was developed to achieve an ELISA with Qdots as the labeling fluorophore for virus detection.16 Three groups have reported the use of Qdots conjugated to specific monoclonal antibodies to detect and identify the presence of respiratory syncytial virus (RSV) in a real-time manner, implying that Qdots may provide a method for early, rapid detection of RSV infections.17–19 In addition to microbial pathogen antigen detection, positively charged compact Qdot-DNA complexes were described that can detect H5N1 Flu-A virus nucleic acids presented at concentrations as low as 200 nmol.20 Simultaneous excitation of several emission-tunable Qdot populations can be combined with a pool of differentially labeled probes for multiplex target analysis.21,22 Qdot-based techniques are under development to detect a panel of respiratory viruses, producing more efficient assays that require smaller quantities of target nucleic acids.

AMPLIFICATION METHODS AND PLATFORMS

Loop-Mediated Isothermal Amplification

First described by Notomi and colleagues23 in 2000, loop-mediated isothermal amplification (LAMP) is a simple, rapid, and specific nucleic acid amplification method, which is characterized by the use of multiple primers specifically designed to recognize several distinct regions on the target gene. Amplification and detection of target genes can be completed in a single step, by incubating the mixture of samples, primers, DNA polymerase with strand displacement activity and substrates at
a constant temperature. Because amplification is isothermal, LAMP does not require special reagents or sophisticated temperature control devices. Because the increase in turbidity of the reaction mixture according to the production of precipitate correlates with the amount of DNA synthesized, real-time monitoring of the LAMP reaction can be achieved by turbidity measurement. With a detection limit of about one to two copies, LAMP is capable of detecting the presence of pathogenic agents earlier than PCR if the gene copy number is low.

LAMP has successfully been applied to the rapid and real-time detection of several emerging and reemerging human pathogens, including West Nile virus, dengue virus, Japanese encephalitis virus, monkeypox virus, Rift Valley virus, SARS-CoV, Chikungunya virus, and noroviruses. Poon and colleagues described the use of an RT-LAMP to detect Flu-A viruses covering H1 to H3. Another similar RT-LAMP assay was described more recently that detects Flu-A virus H1 and H3 subtype strains and Flu-B virus strains. At a limit of detection of 10 focus-forming units per mL, both assays can be completed within 3 hours, providing rapid and sensitive detection. Two one-step RT-LAMP assays with analytical sensitivities of 0.01 to 0.1 plaque-forming units (pfu) per reaction were developed specifically for detection of highly pathogenic avian Flu-A (H5N1) viruses and validated using H5N1 viral strains isolated over the past 10 years and clinical specimens. An RT-LAMP assay was reported to specifically detect the H9 subtype of avian Flu virus with a detection limit of 10 copies per reaction, 10-fold lower than that of RT-PCR. In Japan, the LAMP assay was used to rapidly subtype Flu-A virus and confirm two cases of influenza in patients who had returned from Thailand.

In addition to the detection and typing of Flu viruses, a subgroup-A/B–specific RT-LAMP assay was developed to amplify RSV to improve current diagnostic methods for RSV infections. The assay was validated using nasopharyngeal aspirates from children who had respiratory tract infections, and the results indicated that the RT-LAMP is more sensitive than viral isolation and antigen testing for RSV detection. Several LAMP-based assays were reported for rapid detection of SARS-CoV with the advantages of rapid amplification, simple operation, and ease of detection. LAMP-based assays have also been used to detect other respiratory viral pathogens, such as mumps, measles, and adenoviruses. In comparison to conventional RT-PCR, RT-LAMP assays demonstrated 10- to 100-fold enhanced sensitivity, with a detection limit of 0.01 to 10 pfu of virus in most cases.

Multiplex Ligation-Dependent Probe Amplification

Recently established in The Netherlands, multiplex ligation-dependent probe amplification (MLPA) makes use of both ligation and PCR. Inventively modified from previously described ligation-dependent PCR assays, the MLPA platform features greatly reduced probe concentrations and longer hybridization periods to generate conditions compatible with multiplex analysis. Each MLPA probe consists of a pair of oligonucleotides subject to ligation when hybridized to a target sequence, analogous to a padlock probe (see later discussion). One oligonucleotide consists of a 5’ fluorescent label, a universal forward primer binding site, and a target-specific recognition sequence at the 3’ end, whereas the other oligonucleotide consists of a target-specific recognition sequence at the 5’ end, a nonspecific stretch of DNA of defined length (“stuffer” sequence), and a universal reverse primer binding site at the 3’ end. Each MLPA assay is divided into three basic steps: (1) annealing of probes to their target sequences, (2) ligation of the probes, and (3) PCR amplification of ligated probes using universal primers. Multiplexing is achieved by varying the length of stuffer sequence for each unique set of probes used in the assay. Amplification
products are detected using high-resolution electrophoretic techniques, such as
capillary electrophoresis, and it is claimed that this approach allows relative
quantification.42

MLPA-based techniques have proved sufficiently sensitive, reproducible, and
sequence specific for use in screening human DNA. Recent studies have use of the
MLPA assay for the detection and identification of several pathogenic microorgan-
isms, including rapid characterization of Mycobacterium tuberculosis,45 and relative
quantification of targeted bacterial species in oral microbiota.46 Reijans and
colleagues47 described an MLPA technology–based RespiFinder assay to detect 15
respiratory viruses simultaneously in one reaction. In this case, the MLPA reaction
was preceded by a preamplification step that ensured detection of both RNA and
DNA viruses with the same specificity and sensitivity as individual monoplex real-
time RT-PCR assays. The RespiFinder assay showed satisfactory specificity and
perfect sensitivity for adenovirus, human metapneumovirus (hMPV), Flu-A, parain-
fluenza virus (PIV) types 1 and 3, rhinovirus (RhV), and RSV. Use of the RespiFinder
assay resulted in a 24.5% increase in the diagnostic yield compared with cell culture.
This assay is being extended to cover four additional bacterial pathogens that cause
respiratory tract infections: Mycoplasma pneumoniae, Chlamydophila pneumoniae,
Legionella pneumophila, and Bordetella pertussis.

Polymerase Chain Reaction Amplification Using Arbitrary Primers

PCR amplification techniques using arbitrary primers, including arbitrarily primed (AP)
PCR,48 sequence-independent single-primer amplification (SISPA),49 and randomly
amplified polymorphic DNA (RAPD),50 are generally based on the PCR amplification
of random DNA segments with short primers (usually a single 1 of 10 nucleotides) con-
taining arbitrary nucleotide sequences. RAPD-based assays have increasingly been
used to type microorganisms, especially during clinical outbreaks.51 The RAPD-
PCR technique seems to be practical and efficient for routine use in high-resolution
viral diversity studies by providing assemblage comparisons through fingerprinting,
probing, or sequence information.52 Similar techniques have been used to charac-
terize the polymerase gene and genomic termini of Nipah virus53 and avian Flu virus
genome sequences.54

On the other hand, AP-PCR and SISPA-based assays have mainly been used for the
discovery and characterization of novel and noncultivatable viruses.55 Because viral
pathogens do not possess conserved, universal genes, such as 16S rRNA genes, SIS-
PA was used in the early 1990s as a random PCR amplification strategy to amplify
known and unknown viral genes, including those of hepatitis C virus, rotavirus, and
norovirus.56–58 The AP-PCR technique was used successfully to obtain sequence
information on a novel hMPV after the virus was cultured.59 Wang and colleagues60,61
used a similar random amplification technique in conjunction with a long oligonucleo-
tide pan-viral microarray to simultaneously screen and detect hundreds of viral path-
ogens. This system has successfully been used for the detection of a human PIV-4
strain associated with respiratory failure,62 for identification of a novel gammaretrovi-
rus in a patient who had prostate tumors,63 for the diagnosis of a critical respiratory
illness caused by hMPV,64 and for the identification of cardioviruses related to Theiler
murine encephalomyelitis virus in human infections.65 Quan and colleagues66 recently
reported the use of a similar random amplification process followed by comprehensive
microarray analysis (GreeneChipResp) to detect diverse respiratory viral pathogens
and subtype Flu-A viruses.

A modified SISPA incorporating DNAse treatment has recently been used to
discover, identify, and characterize several novel bovine and human viral pathogens

Wu & Tang
directly from clinical samples. The same technology has been used for the character-
ization of common epitopes in enterovirus (EnV), identification of a novel human
coronavirus, detection of TT virus in stool samples collected during a gastroenteritis
outbreak, and discovery of novel unculturable viruses in specimens collected from
patients presenting with fever of unknown origin. Although PCR amplification
using arbitrary primers has been an extremely powerful approach for screening and
discovery of new or noncultivable viral pathogens directly from clinical specimens,
subsequent identification and confirmation steps are hindered by a background of
nonspecific random amplification products. Further development is thus required to
optimize this technology for routine diagnostic use in molecular microbiology
laboratories.

Target-Enriched Multiplexing Amplification

Multiplex PCR was developed to use numerous primers within a single reaction tube to
amplify nucleic acid fragments from different targets. Multiple sets of high-concentra-
tion primers in the conventional multiplex reaction often favor primer-dimer formation,
however, resulting in nonspecific amplification. To meet the challenges of conventional
multiplex PCR, Han and colleagues developed target-enriched multiplexing (TEM)-
PCR technology, which uses nested gene-specific primers at extremely low concentra-
tions to enrich specific targets during early PCR cycles and relies on universal forward
and reverse “superprimers” at high, but unequal, concentrations to achieve exponen-
tial asymmetric target amplification. TEM-PCR amplification has been reported for the
detection, typing, and semiquantification of 25 human papillomaviruses, detection
and differentiation of a panel of respiratory bacterial pathogens, detection and
and differentiation of 24 antituberculosis drug resistance-related mutations, determina-
tion of antibiotic resistance and detection of toxin-encoding genes in Staphylococcus
aureus, screening and differentiation of methicillin-resistant *S. aureus* and vancomy-
cin-resistant enterococci, and characterization and typing of Flu-A, including H5N1.

Using TEM technology, the ResPlex II assay was developed to detect Flu-A, Flu-B,
PIV-1, PIV-2, PIV-3, PIV-4, RSV, hMPV, RhV, EnV, and SARS-CoV in a single reac-
tion. When monoplex RT PCR is used for pathogen detection, the clinician often
does not consider the possible presence of other pathogens when given a positive
result. The multiplex approach offered by the ResPlex II system enhances diagnosis
through detection of respiratory viral etiologic agents in cases in which their presence
was unsuspected and an appropriate test consequently was not ordered by the clini-
cian. A recent study by Brunstein and colleagues revealed that, using the ResPlex
II kit covering 12 viral pathogens, 2.5% of specimens were coinfected with two or
three different viruses. (A low level of cross-reactivity between PIV-1 and PIV-3 was
noticed using this assay.) These coinfections are medically relevant, and effective
treatment of severe respiratory tract infections will increasingly require diagnosis of
all involved pathogens, as opposed to single-pathogen reporting. The original Re-
spLex II system detects only RNA viruses, but adenoviruses, bocavirus, and four coro-
naviruses have been added to a recently released new version of ResPlex II. Preliminary data indicate that the overall sensitivity and specificity of ResPlex II v2.0
is comparable to that of the ResPlex II panel. A notable number of previously negative
samples were found to be positive for one of the newly added bocavirus or corona-
virus targets (John Brunstein, 2009; personal communication). A factor that could
diminish the analytical and clinical performance of ResPlex II and ResPlex II v2.0 is
the potential for false-positive results caused by carryover of PCR products using
the Luminex platform.
Direct amplicon sequencing provides simple, rapid, and accurate means of detection and identification of amplification products. The need for robust, high-throughput methods to replace the elegant Sanger method, which was described more than 30 years ago, has led to the development of several new principles. Ronaghi and colleagues described in 1998 a pyrosequencing technique, a non–gel-based real-time approach to sequencing DNA by monitoring DNA polymerase activity. Pyrosequencing is based on enzymatic inorganic pyrophosphate release by DNA polymerase. This reaction is stoichiometric; the amount of light produced is proportional to the number of pyrophosphate molecules generated and, hence, the number of incorporated nucleotides. Unincorporated nucleotides are degraded with apyrase before the next nucleotide is added. In this way, sequence information on an interrogated region is generated quantitatively in real time. Although basic approaches to performing pyrosequencing remain the same, numerous commercial systems have been used widely to rapidly identify infectious agents and screen for antimicrobial drug resistance. Multiplexed pyrosequencing involving the simultaneous extension of several primers hybridized to one or more target DNA templates has gained broad acceptance in the fields of cytogenetics, pharmacogenetics, and medical genetics.

Most applications of pyrosequencing in the identification and characterization of respiratory viruses have focused on Flu-A. Based on pyrosequencing technology, a rapid and highly informative diagnostic assay was reported for the detection of H5N1 Flu viruses; sequencing of critical regions within the H5 virus was developed as a screening method during high volumes of H5N1 activity. A real-time RT-PCR pyrosequencing assay was developed that combines restriction enzyme digestion and direct sequencing to screen and verify H5 Flu infections in humans. Another RT-PCR assay with subsequent pyrosequencing analysis allows for a rapid, high-throughput, and cost-effective screening of subtype A/H1N1, A/H3N2, and A/H5N1 viruses and can clearly discriminate wild-type from a mutant viruses. A study reported by Bright and colleagues showed an alarming increase in the incidence of amantadine- and rimantadine-resistant H3N2 Flu-A viruses worldwide when the pyrosequencing technique was configured to cover a 44-base pair region of the M2 protein-encoding gene. Pyrosequencing assay capabilities were expanded to screen for 52 amino acid changes defined as avian or human specific, and pyrosequencing-based assays recently were designed for detection and surveillance of the most commonly reported mutations associated with resistance to neuraminidase inhibitors and the adamantanes. The latter detects mutations associated with resistance directly in clinical specimens, thus reducing the time required for testing and avoiding selection of novel sequence variants by cell culture. In addition, pyrosequencing-based assays have been reported for the characterization, quantification, typing, subtyping, and drug-resistance profiling of other viruses.

One unique feature of pyrosequencing is its theoretical adaptability to the analysis of any genetic marker, which allows for the detection of multiple known and unknown mutations in a single pyrosequencing reaction. Integration of high-throughput pyrosequencing with the Roche/454 instrument has become a powerful tool for whole genome sequencing without the need for additional equipment or molecular techniques other than standard PCR, Genome Sequencer FLX sample preparation, and the sequencing pipeline. Pyrosequencing generates sequence content quantitatively, which has made pyrosequencing a primary choice for quantifying specific mutations (eg,
detection of drug resistance–associated signatures) in mixed genomic populations. Because pyrosequencing byproducts inhibit the sequencing reaction, pyrosequencing read lengths are limited to less than 100 base pairs. Another drawback of pyrosequencing-based techniques includes secondary structure formation, which affects quality of the results, particularly with GC-rich targets. Additionally, it may be difficult to determine the precise number of nucleotides in a homopolymeric region based on peak heights.87 It is expected that pyrosequencing-based diagnostic devices will soon become available for rapid characterization and typing of viral pathogens.

Padlock Probes

Padlock probes, originated by Nilsson and colleagues114 in 1994, are linear oligonucleotides designed so that the two end segments, connected by a linker region, are both complementary to a target sequence. On hybridization to a target sequence, the two probe ends become juxtaposed and can be joined by a DNA ligase. Reacted probes can be detected by way of reporter molecules attached to the linker.115 Alternatively, an amplified signal can be obtained from the circularized probes by rolling circle amplification. Padlock probes provide a means for detection and quantification of large numbers of DNA or RNA sequences and for highly multiplexed genetic studies.116 The application of padlock probes for the detection of microbial pathogens is a recent trend in molecular diagnoses.117

The unique padlock probe design provides the benefit of speed and sensitivity derived from using a nucleic acid–based method, and the amount of information is greatly increased by extensive multiplexing. Indeed, this method was used to simultaneously detect and type 16 HA and 9 NA subtypes of avian Flu virus. The analysis is completed within approximately 4 hours and performed in a single reaction tube, which helps to decrease the risk for contamination, with just a few sequential additions of reagents before the readout is performed using an oligonucleotide array.118 Padlock probes combined with back-end microarray technology have been developed to detect foot-and-mouth disease, vesicular stomatitis, and swine vesicular disease viruses.119 Besides viral pathogens, padlock probe–based techniques have been rapidly extended in recent years to the identification and characterization of bacterial and fungal pathogens.120–124 In addition to the applicability of padlock probes for direct target detection, a universal primer binding site can be introduced into the probe and used for MLPA (see previous discussion).

Microarrays

Applications of microarrays to detect and characterize respiratory viruses began with solid arrays. The first respiratory pan-viral microarray system was described in 2002, which incorporated 1600 unique 70-mer oligonucleotide probes covering approximately 140 viral genome sequences.60–65 Resequencing microarrays were developed to use short oligonucleotides for the simultaneous identification of respiratory pathogens at both the species and strain level.125–127 Another comprehensive and panmicrobial microarray, the GreeneChipResp system, was developed for the detection of respiratory viruses and subtype identification of Flu-A viruses.66 Other recently developed solid microarray systems for detection and identification of a panel of respiratory viruses include the Infiniti analyzer, an integrated molecular diagnostic device incorporating microarray hybridization128; the electronic microarray-based Nano-chip85,129, the TaqMan Low Density Array cards, which use real-time PCR assays for 13 viruses and 8 bacteria known to cause pneumonia (Dean Erdman, 2009; personal communication); and the FilmArray, which detects and differentiates 17 viral
4 bacterial etiologies of respiratory tract infections (Mark Poritz, 2009; personal communication).

Suspension bead-based liquid xMAP microarrays have been developed by Luminex Corp, which are essentially three-dimensional arrays based on the use of microscopic polystyrene beads as the solid support and flow cytometry for bead and target detection.

Robust multiplexing detection is accomplished using different bead sets based on fluorescence. The system enables multiplexing of up to 100 analytes in a single reaction using small sample volumes. Numerous studies have described the use of xMAP technology for the detection and differentiation of nucleic acid sequences of microbial pathogens, including enteric bacteria, viruses, mycobacteria, fungi, and protozoa. A molecular typing method incorporating the suspension array was reported to characterize and type Flu-A viruses, including H5N1. The Luminex suspension array has been incorporated into several commercial devices as the detection platform to support the laboratory differential diagnosis of common respiratory viral pathogens. These include the xTAG Respiratory Viral Panel from Luminex Molecular Diagnostics, the ResPlex II assay from Qiagen, and the MultiCode-PLx RVP assay from EraGen Biosciences. The suspension array system exhibits rapid hybridization kinetics, flexibility in assay design and format, and relatively low costs, which have made it the most practical microarray platform for clinical diagnostic applications. Users should carefully determine the positive fluorescence threshold for each viral target in multiplexed, user-defined assays during validation.

Mass Spectrometry

Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) is widely used as a powerful proteomic tool. Its rapidity and high resolution provide another powerful platform for the detection and characterization of nucleic acid amplification products. The technology is premised on the capacity of MALDI-TOF MS to discriminate individual PCR products contained in complex amplification mixtures according to nucleotide base composition. The deconvolution algorithm allows base composition of PCR products to be deduced from mass spectrometrically measured molecular weights and the complementary nature of DNA, leading to organism identification. Early studies successfully used this technique to directly detect amplification products from PCR and ligase chain reaction (LCR). Soon after, the MALDI-TOF MS platform was linked to PCR amplification for genotypic analysis of hepatitis C virus and human papillomavirus. Detection of human herpesviruses from clinical specimens was performed using MALDI-TOF MS following multiplex PCR amplification. A MALDI-TOF MS-based genotyping assay has been described that monitors development of hepatitis B virus polymerase YMDD mutant genotypes during lamivudine treatment.

An integrated system, the Ibis T5000 Biosensor, has been developed to couple broad-range nucleic acid amplification to high-performance electrospray ionization MS and base-composition analysis. The system enables the identification and quantification of a broad set of pathogens, including all known bacteria, all major groups of pathogenic fungi, and the major families of viruses that cause disease in humans and animals, along with the detection of virulence factors and antibiotic resistance markers. The system has been used for rapid identification and strain typing of respiratory bacterial pathogens for epidemic surveillance, identification and genotyping of Acinetobacter baumannii strains in an outbreak associated with war trauma, determination of quinolone resistance in Acinetobacter species, genotyping of Campylobacter species, and rapid genotyping and clonal complex assignment of Staphylococcus aureus isolates. We have used this system
System	Company	Viruses/Genotypes Detected	Amplification Platform	Detection Platform	Characteristics
FimArray respiratory pathogen panel	Idaho Technology Inc (Salt Lake City, UT)	AdV, bocavirus, 4 CoV, Flu-A, Flu-B, hMPV, PIV-1, PIV-2, PIV-3, PIV-4, RSV, and RhV	Nested multiplex RT-PCR	Solid array analyzer	Integrated and closed system. Also covers 4 bacterial pathogens
Infiniti respiratory viral panel	AutoGenomics, Inc (Carlsbad, CA)	Flu-A, Flu-B, PIV-1, PIV-2, PIV-3, PIV-4, RSV-A, RSV-B, hMPV-A, hMPV-B, RhV-A, RhV-B, EnV, CoV, and AdV	Multiplex PCR and RT-PCR	Infiniti solid array analyzer	Detection step by the Infiniti analyzer is completely automatic
Jaguar system	HandyLab, Inc (Detroit, MI)	Flu-A, Flu-B, and RSV A/B	Multiplex real-time RT-PCR	Melting temperature analysis	Completely closed and automatic. Universal system compatible with detection of other pathogens. Throughput of 1–24 specimens/run
MultiCode-PLx respiratory virus panel	EraGen Biosciences (Madison, WI)	Flu-A, Flu-B, PIV-1, PIV-2, PIV-3, PIV-4, RSV, hMPV, RhV, AdV, and CoV	Multiplex PCR and RT-PCR	Luminex suspension array	Universal beads used for detection use EraCode sequences
NGEN Respiratory Virus (RVA) Analyte-specific reagent	Nanogen (San Diego, CA)	Flu-A, Flu-B, PIV-1, PIV-2, PIV-3, and RSV	Multiplex RT-PCR	NanoChip (solid chip)	Discontinued in 2008. Probe labeling, target capture, and detection accomplished using electronic microarray technology
ProFLU+, ProPARAFLU +^{161,162}	Prodesse, Inc (Waukesha, WI)	Flu-A, Flu-B, and RSV (ProFLU+); PIV-1, PIV-2, PIV-3, and PIV-4 (ProPARAFLU+)	Multiplex real-time RT-PCR	Melting temperature analysis	ProFLU+ FDA cleared. Limited multiplex formats (triplex)
---	---	---	---	---	---
ResPlex II^{78,84,85}	Qiagen (Valencia, CA)	Flu-A, Flu-B, PIV-1, PIV-2, PIV-3, PIV-4, RSV-A, RSV-B, hMPV, RhV, EnV, and SARS-CoV	TEM-RT-PCR	Luminex suspension array	Unique Tem-PCR permits multiple target screening in single reaction without significant loss in sensitivity
Seeplex respiratory virus detection assay¹⁶³	Seegene, Inc (Seoul, Korea)	Adv, hMPV, 2 CoV, PIV-1, PIV-2, PIV-3, Flu-A, Flu-B, RSV-A, RSV-B, and RhV	Two sets of multiplex RT-PCR	Gel electrophoresis	Dual priming oligonucleotide system
xTAG respiratory viral panel (RVP)^{137–139}	Luminex Molecular Diagnostics (Toronto, Canada)	Flu-A, Flu-B, PIV-1, PIV-2, PIV-3, PIV-4, RSV-A, RSV-B, hMPV, Adv, EnV, CoV, and RhV	Multiplex PCR and RT-PCR	Luminex suspension array	FDA cleared. Target-specific primer extension used in combination with universal detection beads

Abbreviations: Adv, adenoviruses; CoV, coronaviruses; EnV, enteroviruses; Flu, influenza virus; hMPV, human metapneumovirus; PIV, parainfluenza virus; RhV, rhinoviruses; RSV, respiratory syncytial virus; TEM, target enriched multiplex.
to detect *Ehrlichia*, *Anaplasma*, and *Rickettsia* pathogens directly from blood specimens for diagnosis of tick-borne sepsis (manuscript in preparation). In the field of diagnostic virology, this strategy successfully led to the inclusion of SARS-CoV in the coronavirus family.158 Furthermore, the Ibis T5000 Biosensor system has been used as a rapid and inexpensive tool for global surveillance of emerging Flu virus genotypes159 and rapid detection and molecular serotyping of adenoviruses.160 The system was able to detect and type all available Flu A genotypes, including recently emerged novel A/H1N1 (David Ecker, 2009; personal communication). The main advantages are high resolution, speed, and substantial degree of automation. The main disadvantages include the engineering difficulty of MS device miniaturization and need for continuous enrichment of databases with new genomic sequences.

MULTIPLEXING AMPLIFICATION AND HIGH-THROUGHPUT DETECTION SYSTEMS

Respiratory infections caused by a many bacterial, viral, and fungal pathogens often present with overlapping signs and symptoms nearly indistinguishable by clinical diagnosis. Molecular screening of at-risk populations for a group of possible viral pathogens is an exciting area of development in molecular microbiology. Several multiplexing amplification and high-throughput detection systems are commercially available for the detection and differentiation of a panel of respiratory viral pathogens. Examples include the FilmArray platform from Idaho Technology Inc; the Infiniti Respiratory Viral Panel from AutoGenomics, Inc.128; the Jaguar system from HandyLab, Inc.; the Multi-Code-PLx respiratory virus panel from EraGen Biosciences140,141; the NGEN Respiratory Virus ASR from Nanogen85,129, the proFLU+ and the proPARA-FLU+ from Prodesse, Inc.161,162; the ResPlex II assay from Qiagen78,84,85; the Seeplex respiratory virus detection assay from Seegene, Inc.163; and the xTAG Respiratory Viral Panel from Luminex Molecular Diagnostics137–139. Some of these systems cover all varieties of Flu A genotypes including recently emerged novel A/H1N1.164

A comparative summary of these devices is presented in Table 1. Relative simplicity, powerful multiplexing capabilities, and affordability for high-throughput detection make these platforms most attractive for screening and detection of a panel of respiratory viruses in clinical infectious disease diagnostics. Although not essential, the availability of Food and Drug Administration–cleared products is a critical step in getting these systems into less-experienced diagnostic microbiology laboratories. Opening of postamplification tubes and subsequent pipetting steps in the workflow of suspension arrays increases the risk for intra- and inter-run contamination for some assays. Careful attention should be paid to contamination control measures and the re-establishment of dedicated postamplification laboratory space in the real-time PCR era. Simultaneous testing for all possible pathogens is an efficient means to obtain a conclusive result and improves etiologic diagnosis.81,137,165 In addition, assaying for all potential pathogens may yield crucial information regarding coinfections or secondary infections.84,166,167 One study from the Netherlands indicated that implementation of multiple molecular assays for the etiologic diagnosis of lower respiratory tract infections increased the diagnostic yield considerably, yet did not reduce antibiotic use or costs.168 Clinical relevance and cost effectiveness of simultaneous multipathogen detection and identification strategies merit further investigation.

ACKNOWLEDGMENTS

The authors thank John Brunstein, David Ecker, Dean Erdman, Jiang Fan, and Mark Poritz for discussion, and James Chappell and Charles Stratton for reviewing the manuscript.
REFERENCES

1. Ksiazek TG, Erdman D, Goldsmith CS, et al. A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 2003;348(20):1953–66.
2. Drosten C, Günther S, Preiser W, et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 2003;348(20):1967–76.
3. Shinde V, Bridges CB, Uyeki TM, et al. Triple-reassortant swine influenza A (H1) in humans in the United States, 2005–2009. N Engl J Med 2009;360(25):2616–25.
4. Mahony JB. Detection of respiratory viruses by molecular methods. Clin Microbiol Rev 2008;21(4):716–47.
5. Nolte FS. Molecular diagnostics for detection of bacterial and viral pathogens in community-acquired pneumonia. Clin Infect Dis 2008;47(Suppl 3):S123–6.
6. Pejčić B, De Marco R, Parkinson G. The role of biosensors in the detection of emerging infectious diseases. Analyst 2006;131(10):1079–90.
7. Schultz JS. Sensitivity and dynamics of bioreceptor-based biosensors. Ann N Y Acad Sci 1987;506:406–14.
8. Malamud D, Bau H, Niedbala S, et al. Point detection of pathogens in oral samples. Adv Dent Res 2005;18(1):12–6.
9. Zhou X, Liu L, Hu M, et al. Detection of hepatitis B virus by piezoelectric biosensor. J Pharm Biomed Anal 2002;27(1–2):341–5.
10. Ju HX, Ye YK, Zhao JH, et al. Hybridization biosensor using di(2,2′-bipyridine) osmium (III) as electrochemical indicator for detection of polymerase chain reaction product of hepatitis B virus DNA. Anal Biochem 2003;313(2):255–61.
11. Kwakye S, Baemunner A. A microfluidic biosensor based on nucleic acid sequence recognition. Anal Bioanal Chem 2003;376(7):1062–8.
12. Abad-Valle P, Fernandez-Abedul MT, Costa-Garcia A. Genosensor on gold films with enzymatic electrochemical detection of a SARS virus sequence. Biosens Bioelectron 2005;20(11):2251–60.
13. Goldstein AN, Echer CM, Alivisatos AP. Melting in semiconductor nanocrystals. Science 1992;256(5062):1425–7.
14. Michalet X, Pinaud FF, Bentolila LA, et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005;307(5709):538–44.
15. Edgar R, McKinstry M, Hwang J, et al. High-sensitivity bacterial detection using biotin-tagged phage and quantum-dot nanocomplexes. Proc Natl Acad Sci U S A 2006;103(13):4841–5.
16. Liu WT, Zhu L, Qin QW, et al. Microfluidic device as a new platform for immuno-fluorescent detection of viruses. Lab Chip 2005;5(11):1327–30.
17. Agrawal A, Tripp RA, Anderson LJ, et al. Real-time detection of virus particles and viral protein expression with two-color nanoparticle probes. J Virol 2005;79(13):8625–8.
18. Bentzen EL, House F, Utley TJ, et al. Progression of respiratory syncytial virus infection monitored by fluorescent quantum dot probes. Nano Lett 2005;5(4):591–5.
19. Tripp RA, Alvarez R, Anderson B, et al. Bioconjugated nanoparticle detection of respiratory syncytial virus infection. Int J Nanomedicine 2007;2(1):117–24.
20. Lee J, Choi Y, Kim J, et al. Positively charged compact quantum Dot-DNA complexes for detection of nucleic acids. Chemphyschem 2009;10(5):806–11.
21. Chan P, Yuen T, Ruf F, et al. Method for multiplex cellular detection of mRNAs using quantum dot fluorescent in situ hybridization. Nucleic Acids Res 2005;33(18):e161.
22. Wu X, Liu H, Liu J, et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 2003; 21(1):41–6.
23. Notomi T, Okayama H, Masubuchi H, et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 2000; 28(12):e63.
24. Mori Y, Nagamine K, Tomita N, et al. Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation. Biochem Biophys Res Commun 2001; 289(1):150–4.
25. Parida M, Sannarangaiah S, Dash PK, et al. Loop mediated isothermal amplification (LAMP): a new generation of innovative gene amplification technique; perspectives in clinical diagnosis of infectious diseases. Rev Med Virol 2008; 18(6):407–21.
26. Lakshmi V, Neeraja M, Subbalaxmi MV, et al. Clinical features and molecular diagnosis of Chikungunya fever from South India. Clin Infect Dis 2008; 46(9): 1436–42.
27. Peyrefitte CN, Boubis L, Coudrier D, et al. Real-time reverse-transcription loop-mediated isothermal amplification for rapid detection of Rift Valley fever virus. J Clin Microbiol 2008; 46(11):3653–9.
28. Poon LL, Leung CS, Tashiro M, et al. Rapid detection of the severe acute respiratory syndrome (SARS) coronavirus by a loop-mediated isothermal amplification assay. Clin Chem 2004; 50(6):1050–2.
29. Poon LL, Leung CS, Chan KH, et al. Detection of human influenza A viruses by loop-mediated isothermal amplification. J Clin Microbiol 2005; 43(1): 427–30.
30. Ito M, Watanabe M, Nakagawa N, et al. Rapid detection and typing of influenza A and B by loop-mediated isothermal amplification: comparison with immunochromatography and virus isolation. J Virol Methods 2006; 135(2):272–5.
31. Imai M, Ninomiya A, Minekawa H, et al. Development of H5-RT-LAMP (loop-mediated isothermal amplification) system for rapid diagnosis of H5 avian influenza virus infection. Vaccine 2006; 24(44–46):6679–82.
32. Imai M, Ninomiya A, Minekawa H, et al. Rapid diagnosis of H5N1 avian influenza virus infection by newly developed influenza H5 hemagglutinin gene-specific loop-mediated isothermal amplification method. J Virol Methods 2007; 141(2): 173–80.
33. Jayawardena S, Cheung CY, Barr I, et al. Loop-mediated isothermal amplification for influenza A (H5N1) virus. Emerg Infect Dis 2007; 13(6):899–901.
34. Chen HT, Zhang J, Sun DH, et al. Development of reverse transcription loop-mediated isothermal amplification for rapid detection of H9 avian influenza virus. J Virol Methods 2008; 151(2):200–3.
35. Shirato K, Nishimura H, Saijo M, et al. Diagnosis of human respiratory syncytial virus infection using reverse transcription loop-mediated isothermal amplification. J Virol Methods 2007; 139(1):78–84.
36. Ushio M, Yui I, Yoshida N, et al. Detection of respiratory syncytial virus genome by subgroups-A, B specific reverse transcription loop-mediated isothermal amplification (RT-LAMP). J Med Virol 2005; 77(1):121–7.
37. Hong TC, Mai QL, Cuong DV, et al. Development and evaluation of a novel loop-mediated isothermal amplification method for rapid detection of severe acute respiratory syndrome coronavirus. J Clin Microbiol 2004; 42(5):1956–61.
38. Okafuji T, Yoshida N, Fujino M, et al. Rapid diagnostic method for detection of mumps virus genome by loop-mediated isothermal amplification. J Clin Microbiol 2005; 43(4):1625–31.
39. Yoshida N, Fujino M, Miyata A, et al. Mumps virus reinfection is not a rare event confirmed by reverse transcription loop-mediated isothermal amplification. J Med Virol 2008;80(3):517–23.

40. Fujino M, Yoshida N, Yamaguchi S, et al. A simple method for the detection of measles virus genome by loop-mediated isothermal amplification (LAMP). J Med Virol 2005;76(3):406–13.

41. Wakabayashi T, Yamashita R, Kakita T, et al. Rapid and sensitive diagnosis of adenoviral keratoconjunctivitis by loop-mediated isothermal amplification (LAMP) method. Curr Eye Res 2004;28(6):445–50.

42. Schouten JP, McElgunn CJ, Waaijer R, et al. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res 2002;30(12):e57.

43. Hsuih TC, Park YN, Zaretsky C, et al. Novel, ligation-dependent PCR assay for detection of hepatitis C in serum. J Clin Microbiol 1996;34(3):501–7.

44. Park YN, Abe K, Li H, et al. Detection of hepatitis C virus RNA using ligation-dependent polymerase chain reaction in formalin-fixed, paraffin-embedded liver tissues. Am J Pathol 1996;149(5):1485–91.

45. Bergval IL, Vijzelaar RN, Dalla Costa ER, et al. Development of multiplex assay for rapid characterization of Mycobacterium tuberculosis. J Clin Microbiol 2008;46(2):689–99.

46. Terefework Z, Pham CL, Prosperi AC, et al. MLPA diagnostics of complex microbial communities: relative quantification of bacterial species in oral biofilms. J Microbiol Methods 2008;75(3):558–65.

47. Reijans M, Dingemans G, Klaassen CH, et al. RespiFinder: a new multiparameter test to differentially identify fifteen respiratory viruses. J Clin Microbiol 2008;46(4):1232–40.

48. Welsh J, McClelland M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 1990;18(24):7213–8.

49. Reyes GR, Kim JP. Sequence-independent, single-primer amplification (SISPA) of complex DNA populations. Mol Cell Probes 1991;5(6):473–81.

50. Williams JG, Kubelik AR, Livak KJ, et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 1990;18(22):6531–5.

51. Power EG. RAPD typing in microbiology—a technical review. J Hosp Infect 1996;34(4):247–65.

52. Winget DM, Wommack KE. Randomly amplified polymorphic DNA PCR as a tool for assessment of marine viral richness. Appl Environ Microbiol 2008;74(9):2612–8.

53. Harcourt BH, Tamin A, Halpin K, et al. Molecular characterization of the polymerase gene and genomic termini of Nipah virus. Virology 2001;287(1):192–201.

54. Afonso CL. Sequencing of avian influenza virus genomes following random amplification. Biotechniques 2007;43(2):188, 190, 192.

55. Ambrose HE, Clewley JP. Virus discovery by sequence-independent genome amplification. Rev Med Virol 2006;16(6):365–83.

56. Lambden PR, Cooke SJ, Caul EO, et al. Cloning of noncultivatable human rotavirus by single primer amplification. J Virol 1992;66(3):1817–22.

57. Matsui SM, Kim JP, Greenberg HB, et al. The isolation and characterization of a Norwalk virus-specific cDNA. J Clin Invest 1991;87(4):1456–61.

58. Reyes GR, Purdy MA, Kim JP, et al. Isolation of a cDNA from the virus responsible for enterically transmitted non-A, non-B hepatitis. Science 1990;247(4948):1335–9.
59. van den Hoogen BG, de Jong JC, Groen J, et al. A newly discovered human pneumovirus isolated from young children with respiratory tract disease. Nat Med 2001;7(6):719–24.

60. Wang D, Coscoy L, Zylberberg M, et al. Microarray-based detection and genotyping of viral pathogens. Proc Natl Acad Sci U S A 2002;99(24):15687–92.

61. Wang D, Urisman A, Liu YT, et al. Viral discovery and sequence recovery using DNA microarrays. PLoS Biol 2003;1(2):e2.

62. Chiu CY, Rouskin S, Koshy A, et al. Microarray detection of human parainfluenza virus 4 infection associated with respiratory failure in an immunocompetent adult. Clin Infect Dis 2006;43(8):e71–6.

63. Urisman A, Molinaro RJ, Fischer N, et al. Identification of a novel Gammaretrovirus in prostate tumors of patients homozygous for R462Q RNASEL variant. PLoS Pathog 2006;2(3):e25.

64. Chiu CY, Alizadeh AA, Rouskin S, et al. Diagnosis of a critical respiratory illness caused by human metapneumovirus by use of a pan-virus microarray. J Clin Microbiol 2007;45(7):2340–3.

65. Chiu CY, Greninger AL, Kanada K, et al. Identification of cardioviruses related to Theiler’s murine encephalomyelitis virus in human infections. Proc Natl Acad Sci U S A 2008;105(37):14124–9.

66. Quan PL, Palacios G, Jabado OJ, et al. Detection of respiratory viruses and subtype identification of influenza A viruses by GreeneChipResp oligonucleotide microarray. J Clin Microbiol 2007;45(8):2359–64.

67. Allander T, Andreasson K, Gupta S, et al. Identification of a third human polyomavirus. J Virol 2007;81(8):4130–6.

68. Allander T, Emerson SU, Engle RE, et al. A virus discovery method incorporating DNase treatment and its application to the identification of two bovine parvovirus species. Proc Natl Acad Sci U S A 2001;98(20):11609–14.

69. Allander T, Tammi MT, Eriksson M, et al. Cloning of a human parvovirus by molecular screening of respiratory tract samples. Proc Natl Acad Sci U S A 2005;102(36):12891–6.

70. Dijkeng A, Halpin R, Kuzmickas R, et al. Viral genome sequencing by random priming methods. BMC Genomics 2008;9:5.

71. Shi MM. Enabling large-scale pharmacogenetic studies by high-throughput mutation detection and genotyping technologies. Clin Chem 2001;47(2):164–72.

72. van der Hoek L, Pyrc K, Jebbink MF, et al. Identification of a new human coronavirus. Nat Med 2004;10(4):368–73.

73. Braham S, Iturriza-Gomara M, Gray J. Detection of TT virus by single-primer sequence-independent amplification in multiple samples collected from an outbreak of gastroenteritis. Arch Virol 2009;154(6):981–5.

74. Jones MS, Kapoor A, Lukashov VV, et al. New DNA viruses identified in patients with acute viral infection syndrome. J Virol 2005;79(13):8230–6.

75. Jones MS, Lukashov VV, Ganac RD, et al. Discovery of a novel human picornavirus in a stool sample from a pediatric patient presenting with fever of unknown origin. J Clin Microbiol 2007;45(7):2144–50.

76. Han J, Swan DC, Smith SJ, et al. Simultaneous amplification and identification of 25 human papillomavirus types with Templex technology. J Clin Microbiol 2006;44(11):4157–62.

77. Benson R, Tondella ML, Bhatnagar J, et al. Development and evaluation of a novel multiplex PCR technology for molecular differential detection of bacterial respiratory disease pathogens. J Clin Microbiol 2008;46(6):2074–7.
78. Brunstein J, Thomas E. Direct screening of clinical specimens for multiple respiratory pathogens using the Genaco respiratory panels 1 and 2. Diagn Mol Pathol 2006;15(3):169–73.

79. Deng J, Zheng Y, Zhao R, et al. Culture versus polymerase chain reaction for the etiologic diagnosis of community-acquired pneumonia in antibiotic-pretreated pediatric patients. Pediatr Infect Dis J 2009;28(1):53–5.

80. Gegia M, Mdivani N, Mendes RE, et al. Prevalence of and molecular basis for tuberculosis drug resistance in the Republic of Georgia: validation of a QIAplex system for detection of drug resistance-related mutations. Antimicrob Agents Chemother 2008;52(2):725–9.

81. Tang YW, Kilic A, Yang Q, et al. StaphPlex system for rapid and simultaneous identification of antibiotic resistance determinants and Panton-Valentine leukocidin detection of staphylococci from positive blood cultures. J Clin Microbiol 2007;45(6):1867–73.

82. Podzorski RP, Li H, Han J, et al. MVPlex assay for direct detection of methicillin-resistant Staphylococcus aureus in Naris and other swab specimens. J Clin Microbiol 2008;46(9):3107–9.

83. Zou S, Han J, Wen L, et al. Human influenza A virus (H5N1) detection by a novel multiplex PCR typing method. J Clin Microbiol 2007;45(6):1889–92.

84. Brunstein JD, Cline CL, McKinney S, et al. Evidence from multiplex molecular assays for complex multipathogen interactions in acute respiratory infections. J Clin Microbiol 2008;46(1):97–102.

85. Li H, McCormac MA, Estes RW, et al. Simultaneous detection and high-throughput identification of a panel of RNA viruses causing respiratory tract infections. J Clin Microbiol 2007;45(7):2105–9.

86. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 1977;74(12):5463–7.

87. Ahmadian A, Ehn M, Hober S. Pyrosequencing: history, biochemistry and future. Clin Chim Acta 2006;363(1–2):83–94.

88. Ronaghi M, Uhlen M, Nyren P. A sequencing method based on real-time pyrophosphate. Science 1998;281(5375):363–5.

89. Borman AM, Linton CJ, Miles SJ, et al. Molecular identification of pathogenic fungi. J Antimicrob Chemother 2008;61(Suppl 1):i7–12.

90. Clarke SC. Pyrosequencing: nucleotide sequencing technology with bacterial genotyping applications. Expert Rev Mol Diagn 2005;5(6):947–53.

91. Tenover FC. Rapid detection and identification of bacterial pathogens using novel molecular technologies: infection control and beyond. Clin Infect Dis 2007;44(3):418–23.

92. Pourmand N, Elahi E, Davis RW, et al. Multiplex pyrosequencing. Nucleic Acids Res 2002;30(7):e31.

93. Costabile M, Quach A, Ferrante A. Molecular approaches in the diagnosis of primary immunodeficiency diseases. Hum Mutat 2006;27(12):1163–73.

94. Lu Y, Boehm J, Nichol L, et al. Multiplex HLA-typing by pyrosequencing. Methods Mol Biol 2009;496:89–114.

95. Pourmand N, Diamond L, Garten R, et al. Rapid and highly informative diagnostic assay for H5N1 influenza viruses. PLoS One 2006;1:e95.

96. Ellis JS, Smith JW, Braham S, et al. Design and validation of an H5 TaqMan real-time one-step reverse transcription-PCR and confirmatory assays for diagnosis and verification of influenza A virus H5 infections in humans. J Clin Microbiol 2007;45(5):1535–43.
97. Duwe S, Schweiger B. A new and rapid genotypic assay for the detection of neuraminidase inhibitor resistant influenza A viruses of subtype H1N1, H3N2, and H5N1. J Virol Methods 2008;153(2):134–41.

98. Bright RA, Medina MJ, Xu X, et al. Incidence of adamantane resistance among influenza A (H3N2) viruses isolated worldwide from 1994 to 2005: a cause for concern. Lancet 2005;366(9492):1175–81.

99. Waybright N, Petrangelo E, Lowary P, et al. Detection of human virulence signatures in H5N1. J Virol Methods 2008;154(1–2):200–5.

100. Bright RA, Shay DK, Shu B, et al. Adamantane resistance among influenza A viruses isolated early during the 2005–2006 influenza season in the United States. JAMA 2006;295(8):891–4.

101. Deyde VM, Nguyen T, Bright RA, et al. Detection of molecular markers of antiviral resistance in influenza A (H5N1) viruses using a pyrosequencing method. Antimicrob Agents Chemother 2009;53(3):1039–47.

102. Deyde VM, Xu X, Bright RA, et al. Surveillance of resistance to adamantanes among influenza A(H3N2) and A(H1N1) viruses isolated worldwide. J Infect Dis 2007;196(2):249–57.

103. Dharan NJ, Gubareva LV, Meyer JJ, et al. Infections with oseltamivir-resistant influenza A(H1N1) virus in the United States. JAMA 2009;301(10):1034–41.

104. Higgins RR, Eshaghi A, Burton L, et al. Differential patterns of amantadine-resistance in influenza A (H3N2) and (H1N1) isolates in Toronto, Canada. J Clin Virol 2009;44(1):91–3.

105. Lackenby A, Democratis J, Siqueira MM, et al. Rapid quantitation of neuraminidase inhibitor drug resistance in influenza virus quasispecies. Antivir Ther 2008;13(6):809–20.

106. Laplante JM, Marshall SA, Shudt M, et al. Influenza antiviral resistance testing in New York and Wisconsin, 2006 to 2008: methodology and surveillance data. J Clin Microbiol 2009;47(5):1372–8.

107. Elahi E, Pourmand N, Chaung R, et al. Determination of hepatitis C virus genotype by pyrosequencing. J Virol Methods 2003;109(2):171–6.

108. Gharizadeh B, Kalantari M, Garcia CA, et al. Typing of human papillomavirus by pyrosequencing. Lab Invest 2001;81(5):673–9.

109. Kramski M, Meisel H, Klempa B, et al. Detection and typing of human pathogenic hantaviruses by real-time reverse transcription-PCR and pyrosequencing. Clin Chem 2007;53(11):1899–905.

110. O’Meara D, Wilbe K, Leitner T, et al. Monitoring resistance to human immunodeficiency virus type 1 protease inhibitors by pyrosequencing. J Clin Microbiol 2001;39(2):464–73.

111. Rajeevan MS, Swan DC, Duncan K, et al. Quantitation of site-specific HPV 16 DNA methylation by pyrosequencing. J Virol Methods 2006;138(1–2):170–6.

112. Trama JP, Adelson ME, Mordechai E. Identification and genotyping of molluscum contagiosum virus from genital swab samples by real-time PCR and pyrosequencing. J Clin Virol 2007;40(4):325–9.

113. Hoper D, Hoffmann B, Beer M. Simple, sensitive, and swift sequencing of complete H5N1 avian influenza virus genomes. J Clin Microbiol 2009;47(3):674–9.

114. Nilsson M, Malmgren H, Samiotaki M, et al. Padlock probes: circularizing oligonucleotides for localized DNA detection. Science 1994;265(5181):2085–8.

115. Landegren U, Nilsson M. Locked on target: strategies for future gene diagnostics. Ann Med 1997;29(6):585–90.
116. Szemes M, Bonants P, de Weerdt M, et al. Diagnostic application of padlock probes—multiplex detection of plant pathogens using universal microarrays. Nucleic Acids Res 2005;33(8):e70.

117. van Doorn R, Szemes M, Bonants P, et al. Quantitative multiplex detection of plant pathogens using a novel ligation probe-based system coupled with universal, high-throughput real-time PCR on OpenArrays. BMC Genomics 2007;8:276.

118. Gyarmati P, Conze T, Zohari S, et al. Simultaneous genotyping of all hemagglutinin and neuraminidase subtypes of avian influenza viruses by use of padlock probes. J Clin Microbiol 2008;46(5):1747–51.

119. Baner J, Gyarmati P, Yacoub A, et al. Microarray-based molecular detection of foot-and-mouth disease, vesicular stomatitis and swine vesicular disease viruses, using padlock probes. J Virol Methods. 2007;143(2):200–6.

120. Kaocharoen S, Wang B, Tsui KM, et al. Hyperbranched rolling circle amplification as a rapid and sensitive method for species identification within the Cryptococcus species complex. Electrophoresis 2008;29(15):3183–91.

121. Kong F, Tong Z, Chen X, et al. Rapid identification and differentiation of Trichophyton species, based on sequence polymorphisms of the ribosomal internal transcribed spacer regions, by rolling-circle amplification. J Clin Microbiol 2008;46(4):1192–9.

122. Tong Z, Kong F, Wang B, et al. A practical method for subtyping of Streptococcus agalactiae serotype III, of human origin, using rolling circle amplification. J Microbiol Methods 2007;70(1):39–44.

123. van Doorn R, Slawiak M, Szemes M, et al. Robust detection and identification of multiple oomycetes and fungi in environmental samples using a novel cleavable padlock probe-based ligation-detection assay. Appl Environ Microbiol 2009;75(12):4185–93.

124. Wamsley HL, Barbet AF. In situ detection of Anaplasma spp. by DNA target-primed rolling-circle amplification of a padlock probe and intracellular colocalization with immunofluorescently labeled host cell von Willebrand factor. J Clin Microbiol 2008;46(7):2314–9.

125. Lin B, Blaney KM, Malanoski AP, et al. Using a resequencing microarray as a multiple respiratory pathogen detection assay. J Clin Microbiol 2007;45(2):443–52.

126. Malanoski AP, Lin B, Wang Z, et al. Automated identification of multiple microorganisms from resequencing DNA microarrays. Nucleic Acids Res 2006;34(18):5300–11.

127. Wang Z, Daum LT, Vora GJ, et al. Identifying influenza viruses with resequencing microarrays. Emerg Infect Dis 2006;12(4):638–46.

128. Raymond F, Carbonneau J, Boucher N, et al. Comparison of automated microarray detection with real-time PCR assays for detection of respiratory viruses in specimens obtained from children. J Clin Microbiol 2009;47(3):743–50.

129. Takahashi H, Norman SA, Mather EL, et al. Evaluation of the NanoChip 400 system for detection of influenza A and B, respiratory syncytial, and parainfluenza viruses. J Clin Microbiol 2008;46(5):1724–7.

130. Horan PK, Wheeless LL Jr. Quantitative single cell analysis and sorting. Science 1977;198(4313):149–57.

131. Armstrong B, Stewart M, Mazumder A. Suspension arrays for high throughput, multiplexed single nucleotide polymorphism genotyping. Cytometry 2000;40(2):102–8.
132. Dunbar SA, Vander Zee CA, Oliver KG, et al. Quantitative, multiplexed detection of bacterial pathogens: DNA and protein applications of the Luminex LabMAP system. J Microbiol Methods 2003;53(2):245–52.
133. Dunbar SA, Jacobson JW. Quantitative, multiplexed detection of *Salmonella* and other pathogens by Luminex xMAP suspension array. Methods Mol Biol 2007; 394:1–19.
134. McNamara DT, Thomson JM, Kasehagen LJ, et al. Development of a multiplex PCR-ligase detection reaction assay for diagnosis of infection by the four parasite species causing malaria in humans. J Clin Microbiol 2004;42(6):2403–10.
135. Schmitt M, Bravo IG, Snijders PJ, et al. Bead-based multiplex genotyping of human papillomaviruses. J Clin Microbiol 2006;44(2):504–12.
136. Tarr CL, Patel JS, Puhr ND, et al. Identification of *Vibrio* isolates by a multiplex PCR assay and rpoB sequence determination. J Clin Microbiol 2007;45(1):134–40.
137. Mahony J, Chong S, Merante F, et al. Development of a respiratory virus panel test for detection of twenty human respiratory viruses by use of multiplex PCR and a fluid microbead-based assay. J Clin Microbiol 2007;45(9):2965–70.
138. Merante F, Yaghoubian S, Janeczko R. Principles of the xTAG respiratory viral panel assay (RVP Assay). J Clin Virol 2007;40(Suppl 1):s31–5.
139. Pabbaraju K, Tokaryk KL, Wong S, et al. Comparison of the Luminex xTAG respiratory viral panel with in-house nucleic acid amplification tests for diagnosis of respiratory virus infections. J Clin Microbiol 2008;46(9):3056–62.
140. Lee WM, Grindle K, Pappas T, et al. High-throughput, sensitive, and accurate multiplex PCR-microsphere flow cytometry system for large-scale comprehensive detection of respiratory viruses. J Clin Microbiol 2007;45(8):2626–34.
141. Nolte FS, Marshall DJ, Rasberry C, et al. MultiCode-PLx system for multiplexed detection of seventeen respiratory viruses. J Clin Microbiol 2007;45(9):2779–86.
142. Muddiman DC, Anderson GA, Hofstadler SA, et al. Length and base composition of PCR-amplified nucleic acids using mass measurements from electrospray ionization mass spectrometry. Anal Chem 1997;69(8):1543–9.
143. Hurst GB, Doktycz MJ, Vass AA, et al. Detection of bacterial DNA polymerase chain reaction products by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom 1996;10(3):377–82.
144. Jurinke C, van den Boom D, Jacob A, et al. Analysis of ligase chain reaction products via matrix-assisted laser desorption/ionization time-of-flight-mass spectrometry. Anal Biochem 1996;237(2):174–81.
145. Kim YJ, Kim SO, Chung HJ, et al. Population genotyping of hepatitis C virus by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis of short DNA fragments. Clin Chem 2005;51(7):1123–31.
146. Hong SP, Shin SK, Lee EH, et al. High-resolution human papillomavirus genotyping by MALDI-TOF mass spectrometry. Nat Protoc 2008;3(9):1476–84.
147. Soderlund-Strand A, Dillner J, Carlson J. High-throughput genotyping of oncogenic human papilloma viruses with MALDI-TOF mass spectrometry. Clin Chem 2008;54(1):86–92.
148. Sjoholm MI, Dillner J, Carlson J. Multiplex detection of human herpesviruses from archival specimens by using matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 2008;46(2):540–5.
149. Hong SP, Kim NK, Hwang SG, et al. Detection of hepatitis B virus YMDD variants using mass spectrometric analysis of oligonucleotide fragments. J Hepatol 2004;40(5):837–44.
150. Lee CH, Kim SO, Byun KS, et al. Predominance of hepatitis B virus YMDD mutants is prognostic of viral DNA breakthrough. Gastroenterology 2006;130(4):1144–52.

151. Ecker DJ, Sampath R, Massire C, et al. Ibis T5000: a universal biosensor approach for microbiology. Nat Rev Microbiol 2008;6(7):553–8.

152. Ecker DJ, Sampath R, Blyn LB, et al. Rapid identification and strain-typing of respiratory pathogens for epidemic surveillance. Proc Natl Acad Sci U S A 2005;102(22):8012–7.

153. Ecker JA, Massire C, Hall TA, et al. Identification of Acinetobacter species and genotyping of Acinetobacter baumannii by multilocus PCR and mass spectrometry. J Clin Microbiol 2006;44(4):2921–32.

154. Wortmann G, Weintrob A, Barber M, et al. Genotypic evolution of Acinetobacter baumannii strains in an outbreak associated with war trauma. Infect Control Hosp Epidemiol 2008;29(6):553–5.

155. Hannis JC, Manalili SM, Hall TA, et al. High-resolution genotyping of Campylobacter species by use of PCR and high-throughput mass spectrometry. J Clin Microbiol 2008;46(4):1220–5.

156. Hujer KM, Hujer AM, Endimiani A, et al. Rapid determination of quinolone resistance in Acinetobacter spp. J Clin Microbiol 2009;47(5):1436–42.

157. Hall TA, Sampath R, Blyn LB, et al. Rapid molecular genotyping and clonal complex assignment of Staphylococcus aureus isolates by PCR/ESI-MS. J Clin Microbiol 2009;47(6):1733–61.

158. Sampath R, Hofstadler SA, Blyn LB, et al. Rapid identification of emerging pathogens: coronavirus. Emerg Infect Dis 2005;11(3):373–9.

159. Sampath R, Russell KL, Massire C, et al. Global surveillance of emerging Influenza virus genotypes by mass spectrometry. PLoS One 2007;2(5):e489.

160. Blyn LB, Hall TA, Libby B, et al. Rapid detection and molecular serotyping of adenovirus by use of PCR followed by electrospray ionization mass spectrometry. J Clin Microbiol 2008;46(2):644–51.

161. Legoff J, Kara R, Moulin F, et al. Evaluation of the one-step multiplex real-time reverse transcription-PCR ProFlu-1 assay for detection of influenza A and influenza B viruses and respiratory syncytial viruses in children. J Clin Microbiol 2008;46(2):789–91.

162. Liao RS, Tomalty LL, Majury A, et al. Comparison of viral isolation and multiplex real-time reverse transcription-PCR for confirmation of respiratory syncytial virus and influenza virus detection by antigen immunoassays. J Clin Microbiol 2009;47(3):527–32.

163. Kim SR, Ki CS, Lee NY. Rapid detection and identification of 12 respiratory viruses using a dual priming oligonucleotide system-based multiplex PCR assay. J Virol Methods 2009;156(1–2):111–6.

164. Ginocchio CC, St George K. Likelihood that an unsubtypeable influenza A result in the Luminex xTAG respiratory virus panel is indicative of novel A/H1N1 (swine-like) influenza. J Clin Microbiol 2009;47(7):2347–8.

165. Templeton KE, Schellinga SA, van den Eeden WC, et al. Improved diagnosis of the etiology of community-acquired pneumonia with real-time polymerase chain reaction. Clin Infect Dis 2005;41(3):345–51.

166. Chung JY, Han TH, Kim SW, et al. Respiratory picornavirus infections in Korean children with lower respiratory tract infections. Scand J Infect Dis 2007;39(3):250–4.
167. Pierangeli A, Gentile M, Di Marco P, et al. Detection and typing by molecular techniques of respiratory viruses in children hospitalized for acute respiratory infection in Rome, Italy. J Med Virol 2007;79(4):463–8.

168. Oosterheert JJ, van Loon AM, Schuurman R, et al. Impact of rapid detection of viral and atypical bacterial pathogens by real-time polymerase chain reaction for patients with lower respiratory tract infection. Clin Infect Dis 2005;41(10):1438–44.