Another Player in the Field: Involvement of Glycotoxins and Glycosative Stress in Insulin Secretion and Resistance

Paulo Matafome

1. Introduction

The term glycotoxins includes the group of advanced glycation end-products (AGEs) and their precursors, most of them highly reactive intermediary compounds, such as methylglyoxal (MG). MG originated as a byproduct of glucose and fructose metabolism and modifies arginine and lysine residues of biomolecules, namely proteins and DNA, forming AGEs [1–4]. Such reactions may occur intracellularly (cytoplasmic proteins and transcription factors) or with circulating (hemoglobin, albumin, or lipoproteins) and extracellular matrix proteins [1–4]. The AGEs Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine (MG-H1) and argpyrimidine are formed after MG-induced arginine modification, whereas lysine modification leads to methylglyoxal lysine dimer (MOLD) and (carboxyethyl)lysine (CEL) formation [5,6], reviewed by [7,8]. MG-mediated modification of intracellular proteins was shown to increase oxidative and nitrosative stress in different cell types,
but also to impair detoxification systems, weakening the activity of the proteasome and protein quality control pathways [1]. Modification of extracellular proteins may lead to AGE-mediated activation of membrane receptors (RAGE), which trigger intracellular inflammatory and oxidative pathways [9]. Extracellular AGES, namely MG-derived imidazolones (MG-derived) and \(\text{N}^\varepsilon -\text{carboxymethyl} \)-lysine (CML), are natural ligands of AGE receptors (RAGE), which, when activated (reviewed by [10]), trigger inflammatory and stress signaling pathways such as NF-\(\kappa \)B, responsible for the expression of inflammatory mediators and generation of oxidative stress [11–14]. Besides increasing oxidative stress generation through membrane receptor activation, intracellular AGES were also shown to induce the formation of superoxide anion, hydrogen peroxide, and peroxynitrite, as well as the depletion of antioxidant defenses in different cell types [15–20]. Moreover, the accumulation of MG-induced misfolded proteins, together with the modification of proteasome subunits and protein quality control pathways, was also shown to increase endoplasmic reticulum stress [21–24]. Glycotoxins may also have originated in the diet, namely foods rich in sugars and cooked at high temperatures. Intestinal absorption of glycotoxins and AGES has been shown, as well as their deposition in tissues (reviewed by [25]).

The glyoxalase (GLO) system, which is composed of GLO-1 and GLO-2, was discovered at the beginning of the 20th century in several tissues and was described to detoxify ketonic aldehydes, such as MG (reviewed by [1]). In the last decades, downregulation of the GLO system has been described in patients and animal models of diabetes and to be correlated with the progressive development of diabetic complications ([26–28], reviewed by [1]). The activity of the GLO system is glutathione (GSH)-dependent, so increased oxidative stress generation and depletion of antioxidant defenses lead to a self-perpetuating cycle of reactive oxygen species (ROS)/AGE formation. Intriguingly, normalization of glycemia does not completely prevent diabetic complications, from which originated the new concept of “metabolic memory”, based on a self-perpetuating cycle of AGE and reactive oxygen species (ROS) production sustained even after glucose normalization [3–29].

Insulin-independent cells (endothelial and glial cells, podocytes, and neurons) are more susceptible to AGEing (progressive accumulation of AGES and its consequences), which is associated with the traditional complications of diabetes (retinopathy, nephropathy, and peripheral neuropathy) (reviewed by [1,5]). Besides, AGEing has been involved in a myriad of other complications, from the cardiovascular and neurometabolic spectra, such as cardiac apoptosis, reduced NO bioavailability, impaired Ach-dependent relaxation, blood–brain barrier changes, or increased neurotoxic effects of beta-amyloid (reviewed by [1,5]).

Diverse studies mainly from the last decade have raised the hypothesis that, indeed, glycotoxins may also be implicated in the process of loss of metabolic homeostasis itself, and particularly in the impairment of insulin secretion and sensitivity. Such studies rely on the fact that MG formation and AGE accumulation may occur since the early stages of disease such as prediabetes [30]. Glycotoxins have been shown to reduce long-term beta-cell viability, despite some evidence of increased insulin secretion when acutely exposed to MG [31,32]. Moreover, MG was shown to bind to and modify plasma insulin, compromising its binding to the receptor [33,34]. Even after binding to the receptor, innumerable studies have shown glycotoxin-induced insulin resistance in cell lines, animal models, and humans, which will be discussed in the following sections. Although some findings in lean animal models were controversial because of the high doses used, insulin resistance was consistently observed in obese animal models with increased glycosative stress, while AGE-restricted diets have been shown to improve insulin sensitivity in normal, overweight, and diabetic patients (reviewed by [1]). Altogether, such mechanisms may contribute to the progressive deterioration of metabolic homeostasis observed in metabolic syndrome/prediabetes and later in type 2 diabetes. The next sections will discuss the impact of glycotoxins on the mechanisms governing insulin secretion and sensitivity.
2. Regulation of Insulin Secretion by Glycotoxins

Recent evidence supports the thesis that AGE deposition may occur since the early stages of disease such as prediabetes or even earlier, as a result of glucose metabolism or increased consumption of glycotoxins in the diet. Their progressive accumulation in the tissues since such early stages has been suggested to be involved in the onset of type 2 diabetes, namely insulin resistance and β-cell damage. In fact, the impact of MG on insulin secretion has been described in several studies. MG was shown to transiently activate insulin secretion under basal glucose concentrations, but to impair its secretion under hyperglycemic conditions or in the presence of acetylcholine [31,32]. Moreover, it was shown to hamper beta-cell survival and long-term insulin synthesis and secretion. Long-term deleterious effects of MG on β-cell lines (Ins-1 and RIN-m5F) have been shown in vitro, namely, redox-independent inhibition of insulin receptor substrate (IRS) 1 and PI3K/Akt pathway, generation of oxidative stress, mitochondrial damage through decreased membrane potential and ATP, and mitochondria-induced apoptosis [32,35–41]. Moreover, He et al. (2020) have demonstrated β-cell dysfunction and impaired glucose-stimulated insulin secretion after co-culture with AGE-pretreated macrophages, which was attributed to increased expression of proinflammatory cytokines [42]. Altogether, such mechanisms were demonstrated to be involved in MG-induced decrease of cell viability and insulin secretion.

2.1. Glycotoxins Involvement in the Development of Insulin Resistance

Reduction of insulin action in the sensitive tissue may be attributed to the inactivation of insulin receptor signaling pathway (insulin resistance) or to decreased insulin intrinsic activity. These two conditions have been shown in diabetic patients. Although most of the studies have focused on insulin resistance, reduction of insulin intrinsic activity due to glycation of the insulin molecule was recently shown to impair its ability to bind and activate the receptor, possibly contributing to systemic insulin resistance (Figure 1) [33,34].

2.2. In Vitro Studies

Insulin receptor inactivation has been shown in vitro after MG exposure in the most relevant insulin-sensitive cells. MG was shown to inhibit the insulin receptor substrate (IRS)-1 and PI3K/Akt pathway in muscle cells and 3T3 adipocytes [43–45]. Interestingly, impairment of GLUT4 trafficking to the cell membrane and glucose uptake were also shown in L6 myoblasts exposed to exogenous MG or following GLO-1 knockdown [43,44,46,47]. The authors showed that this was also associated with increased activation of apoptotic pathways. In hypoxic adipocytes, Tang et al. (2020) have demonstrated RAGE/NF-κB involvement in the development of insulin resistance [48]. Additionally, in cultured hepatocytes, Gaens et al. have shown increased expression of inflammatory markers after CML incubation [49]. In endothelial cells, insulin-mediated endothelial nitric oxide synthase (eNOS) activation and NO release were also shown to be impaired by MG in vitro [50].

Thus, the current body of evidence based on cell systems studies supports the idea that exposure to glycotoxins leads to the upregulation of proinflammatory pathways, which may be possibly involved in downregulation of the insulin receptor pathway (Figure 1). However, such studies rely on possible supraphysiological doses and only some of these results have been proven in animal models and human studies.
Figure 1. Overview of the mechanisms involved in glycotoxins-associated insulin resistance in adipose tissue (A), liver (B) and skeletal muscle (C). Dysregulation of the angiogenic process in the adipose tissue, with hypoxia and fibrosis, leads to activation of inflammatory pathways consequently to lipolysis and insulin resistance. Increased free fatty acids efflux to the liver and skeletal muscle leads to hepatic and muscular steatosis, which impair mitochondrial function and conduce to the chronic development of oxidative stress and activation of stress-response pathways that impair insulin signalling. Moreover, direct modification of the insulin molecules may also account for their lower binding to the insulin receptor. DNL, de novo lipogenesis; IRS, insulin receptor substrate; NEFA, Non-Esterified Fatty Acids; ROS, reactive oxygen species.
2.3. Development of Animal Models

GLO-1 knock-out in *Drosophila* was recently shown to resemble features of type 2 diabetes development, namely insulin resistance and glucose intolerance [51]. Similarly, Lodd et al. (2019) have shown increased susceptibility to diet-induced insulin resistance in GLO-1 knockout zebrafish [52]. On the other hand, GLO-1 knockout mice have shown a lower susceptibility to MG, due to a compensatory increase of other enzymatic systems, namely Aldo-keto reductases [53]. Despite such differences between models, which may suggest an acquirement of compensatory mechanisms in mammals, we do not know whether such mechanisms occur in physiological conditions or result from the gene knockout. Several animal models with MG administration were observed to develop insulin resistance, but only when supraphysiological doses were used (reviewed by [1]). Insulin resistance was observed after MG i.v. injection (50 mg/Kg) or administration in the drinking water (1%) to Sprague-Dawley rats [54–56]. Moreover, diets enriched with AGEs and MG-BSA were also shown to produce similar results, namely glucose intolerance and lower insulin receptor activation in muscle, liver, and adipose tissue. However, such results were mainly observed in db/db mice, without significant effects on normal mice [57,58]. MG production was observed in adipocytes due to increased Aldolase-A activation and decreased antioxidant defenses [59]. Our group has shown the accumulation of adipose tissue MG at levels similar to diabetic rats following oral administration (75 mg/Kg), but with little effects on adipose tissue insulin signaling [60,61]. MG was only observed to change plasma free fatty acids levels and to induce structural changes in the tissue (fibrosis, hypoxia, macrophage accumulation, and hypoadiponectinemia) and decreased blood supply, but normal insulin signaling and GLUT4 levels [61]. We have also shown that MG accumulation impairs adipose tissue response to hypoxia, leading to higher activation of inflammatory pathways, but insulin resistance was only observed in an experimental model of adipose tissue ischemia [62]. Adipose tissue insulin resistance in the presence of MG was only observed after high-fat diet-induced obesity. In obese rats, MG-induced alterations of the vascular architecture impair adipose tissue blood flow and expandability, conducting to hypoxia and adipose tissue insulin resistance, namely lower insulin receptor phosphorylation and GLUT4 levels [60]. Similar observations were made in the liver of the same animal model, where MG-induced AGE accumulation impairs the lipid metabolism of diet-induced obese rats, changing the hepatic lipidic profile to less esterification and unsaturation and causing inflammation, oxidative stress, and insulin resistance [63]. Accordingly, the grade of hepatic steatosis was shown to be proportional to liver CML levels in patients with obesity, suggesting a role for glycotoxins in the dysregulation of liver metabolism and development of non-alcoholic fatty liver disease [49].

Fructose is a known inducer of methylglyoxal through Aldolase B and its inhibition results in decreased fructose-induced MG formation [64,65]. In addition, fructose may directly react with aminoacids residues and form fructose-derived AGEs [66]. A high fructose intake was shown to result in MG accumulation in adipose tissue and not in the liver, mainly because of different constitutive expression of GLO-2, although MG was shown to mediate fructose-induced insulin resistance in the liver [67,68]. In the muscle, fructose-induced MG formation was shown in vitro in L6 myotubes and in vivo (20% in drinking water) in Sprague-Dawley, which were associated with decreased glucose homeostasis [69]. The direct involvement of glycation in muscle insulin resistance was shown in rats treated with AGE-albumin (20 mg/Kg/day), displaying insulin resistance and decreased GLUT4 in the muscle. Similarly, normal muscles incubated ex vivo with AGE-albumin (1 mg/mL) resulted in GLUT4 downregulation [70]. The effects of glycation were also suggested to involve increased extracellular matrix glycation [71].

The involvement of glycotoxins in the development of insulin resistance may be deeper than initially proposed, after recent evidence that maternal exposure to glycotoxins predisposes the offspring to insulin resistance in the adulthood. Toop et al. (2017) have shown increased adiposity and altered liver fat content in the offspring of rodents fed a diet rich in high-fructose corn syrup during the prenatal period [30]. Accordingly, using a similar approach, Francisco et al. (2018) have shown that maternal
consumption of methylglyoxal (60 mg/Kg/day) during pregnancy results in glucose intolerance and lower beta-cell function in the offspring at adulthood [72].

Thus, previous studies using in vitro and animal models should be carefully interpreted as most of them used supraphysiological MG doses (Table 1). Most likely, the initial idea that increased endogenous formation of MG or consumption of MG-enriched diets is enough to induce insulin resistance may not be true. On the other hand, depletion of antioxidant and detoxifying mechanisms due to the accumulation of MG adducts and MG-derived AGE may be relevant in impairing lipid and glucose metabolism in obesity (Figure 1). This suggests that glycation may have a role in obesity-associated insulin resistance, but not in lean models.

Table 1. Summary of experimental conditions and outcomes obtained in studies administrating glycotoxins and advanced glycation end-products (AGEs) to in vitro and animal models. MG, methylglyoxal.

Reference	Dose/Concentration	Administration Route	Duration	Model	Main Conclusions
Engelbrecht et al., 2013	400 uM MG	-	-	L6 myotubes	Impaired GLUT4 trafficking
Deshmuch et al., 2017	1–5 mM MG	-	-	L6 myotubes	Impaired insulin signalling
Wei et al., 2020	0.5–1 mM MG	-	-	HUVECs	Inhibition of insulin-induced NO release
Dhar et al., 2011	60 mg/kg/day MG	Subcutaneous minipump	28 days	Sprague-Dawley rats	Beta-cell dysfunction Decreased glucose tolerance Normal glucose tolerance
Truong et al., 2019	1% MG	Drinking water	18 weeks	C57BL/6N mice	Lower glucose tolerance Lowered liver insulin signalling
Guo et al., 2009	1% MG	Drinking water	5 weeks	Sprague-Dawley rats	Insulin resistance Increased renal AGEs excretion
Matafone et al, 2012	50–75 mg/kg/day MG	Drinking water	14 weeks	Wistar rats	AT glycation, fibrosis, and decreased irritation Normal glucose tolerance
Rodrigues et al., 2017	75 mg/kg/day MG	Drinking water	18 weeks	Aged Wistar rats (standard vs. high-fat diet)	Normal glucose tolerance Decreased glucose tolerance and AT insulin signalling in HFD-fed rats
Neves et al., 2019	75 mg/kg/day MG	Drinking water	18 weeks	Aged Wistar rats (standard vs. high-fat diet)	Decreased glucose tolerance and liver insulin signalling in HFD-fed rats Impaired liver lipidemic profile
Francisco et al., 2018	60 mg/kg/day MG	Gavage	21 days	Lactating female Wistar rats	Increased milk AGEs Increased body weight, adiposity and beta-cell dysfunction of the offspring
Hofmann et al., 2002	Diet rich AGEs (3.4-fold)	Oral	20 weeks	C57BL/KsJ db/db mice	Morphological alterations of the pancreas Insulin resistance in db/db, but not control mice
Cai et al., 2012	Isocaloric diet rich in MG-derived AGEs	Oral	-	4 generations of C57BL/6N mice	Depletion of antioxidant and anti-stress defenses Susceptibility to insulin resistance
Pinto-Junior, et al., 2018	Diet rich on AGE-albumin (12.6-fold to albumin of normal diet)	Oral	12 weeks	Wistar rats	Insulin resistance Lower muscle GLUT4 expression
2.4. Evidence in Human Studies

The relation between glycosative stress and insulin resistance has also been shown in humans and increased α-dicarbonyl levels were observed in patients with established type 2 diabetes [73]. Moreover, skin autofluorescence has been demonstrated to be correlated with the development of insulin resistance in patients with type 1 diabetic patients, which, although being attributed to increased AGEs levels, may not solely result from their accumulation [74]. Increased glycotoxins levels were also shown in patients with metabolically unhealthy obesity, when compared with metabolically healthy ones, as well as in patients newly diagnosed with type 2 diabetes. Such observations suggest a link with early stages of metabolic dysregulation such as prediabetes and avoiding the classical idea of glycosative stress being a consequence of chronic hyperglycemia [73,75]. Such a relation was also detailed by Jiménez et al. (2017), who have observed increased probability of developing prediabetes or type 2 diabetes according to the progressively higher serum AGEs levels seven years earlier [76]. In another study in children with obesity, insulin resistance was associated with increased CML levels and lower antioxidant activity [77]. Nevertheless, elevated serum AGEs levels are still to be correlated to the development of specific complications. Serum AGEs and sRAGE levels were not related to vascular complications in patients with prediabetes nor impaired glucose metabolism in patients with type 2 diabetes [78,79]. Although in higher levels, CML and sRAGE were also not associated with obesity or inflammation in unhealthy obese adolescents [80]. It is likely that total AGEs levels are not directly associated with insulin resistance or vascular complications, but modification of specific proteins or accumulation in tissue may be better markers of such complications.

Consumption of AGE-rich diets only causes a marginal increase in weight gain, although they were described to increase the odds of adolescents to develop metabolic syndrome [81,82]. On the other hand, AGE-restricted diets have been shown to improve insulin sensitivity in normal, overweight, and diabetic patients, showing the link between increased glycoxidative stress and impaired metabolic homeostasis [64,74,83–85]. Interestingly, the authors reported the best results in combination with physical exercise [85]. The authors also reported upregulation of endogenous protective mechanisms, such as SIRT1 and AGER1, in peripheral mononuclear blood cells, suggesting that lower consumption of dietary AGEs prevents the depletion of protective pathways against oxidative stress [84]. Nevertheless, most studies were performed with a small number of participants and future studies in larger populations are required.

3. Modulation of the GLO-1 System as a Strategy to Improve Insulin Sensitivity

Diminished GLO-1 activity has been linked with muscle insulin resistance and modulation of its activity has been pointed out as a promising strategy to improve not only muscle, but whole-body insulin sensitivity (reviewed by [86]). Diabetic patients were shown to have decreased levels of GLO-1 and NRF2 and increased Keap1 levels (negative NRF2 regulator) in skeletal muscle biopsies, suggesting a dysregulation of glycosative stress in the muscle of patients with type 2 diabetes [87]. Similarly, we have observed decreased GLO-1 activity in the visceral adipose tissue, not only in patients with type 2 diabetes, but also with prediabetes, suggesting that impaired GLO-1 function may in fact precede adipose tissue dysfunction and may be a good therapeutic target [88].

Several nutraceuticals such as the trans-resveratrol/hesperetin combination (tRES/HESP) have been shown to improve GLO-1 activity and vascular function in humans, but its ability to increase insulin sensitivity is still to be proven [89,90]. Upregulation of GLO-1 has been evaluated following NRF2 activation with several compounds, but sustained GLO-1 activation and protection against complications were still not achieved in most of the cases [91]. Recently, lower levels of glycotoxins were observed in patients with type 2 diabetes following berberine treatment (1.5 g/day during 3 months) and upregulation of GLO-1 activity in mice treated with Brazilian propolis was shown to reduce muscle inflammation [92]. Moreover, our group has recently shown that bariatric surgery and Liraglutide are able to produce a sustained increase of GLO-1 levels and activity in the epididymal
adipose tissue of obese diabetic rats, opening new therapeutic opportunities for improved adipose tissue function [88].

4. Conclusions and Future Perspectives

Glycotoxins are a heterogenous group of compounds that were initially thought to participate in the development of diabetic complications owing to their increased formation from glucose, mainly in insulin-independent cells. Later data evidenced their increased formation and accumulation in tissues since the early stages of disease, such as metabolically unhealthy obesity and prediabetes. Such accumulation has been suggested to result from dysregulated activity of detoxification systems, such as the glyoxalase system, as well as increased dietary consumption, namely from high-glucose and high-fructose foods processed at high temperatures. Importantly, many studies in in vitro systems and animal models have shown glycotoxin-induced insulin resistance, but they have used supraphysiological doses. Nevertheless, animal models with physiological doses of glycotoxins have shown higher levels of oxidative stress and inflammation, which results in higher susceptibility of adipose tissue and liver to develop insulin resistance in obesity. Moreover, restriction of glycotoxins in the diet was shown to improve insulin resistance in humans, showing their relevance in the process of metabolic dysregulation. However, despite recent evidence of improved metabolic function after GLO-1 upregulation, the usefulness of its modulation to prevent insulin resistance and metabolic dysregulation is still in the first step to be proven and achieved.

Funding: This research was funded by Portuguese Foundation of Science and Technology (Strategic Projects UID/NEU/04539/2013 and UID/NEU/04539/2019).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Matafome, P.; Rodrigues, T.; Sena, C.; Seiça, R. Methylglyoxal in Metabolic Disorders: Facts, Myths, and Promises. Med. Res. Rev. 2017, 37, 368–403. [CrossRef] [PubMed]
2. Kalapos, M.P. Where does plasma methylglyoxal originate from? Diabetes Res. Clin. Pract. 2013, 99, 260–271. [CrossRef] [PubMed]
3. Poulsen, M.W.; Hedegaard, R.V.; Andersen, J.M.; De Courten, B.; Bügel, S.; Nielsen, J.; Skibsted, L.H.; Dragsted, L.O. Advanced glycation endproducts in food and their effects on health. Food Chem. Toxicol. 2013, 60, 10–37. [CrossRef]
4. Allaman, I.; Bélanger, M.; Magistretti, P.J. Methylglyoxal, the dark side of glycolysis. Front. Neurosci. 2015, 9, 1–12. [CrossRef]
5. Schalkwijk, C.; Stehouwer, C. Methylglyoxal, a Highly Reactive Dicarbonyl Compound, in Diabetes, Its Vascular Complications, and Other Age-Related Diseases. Physiol. Rev. 2020, 100, 407–461. [CrossRef]
6. Kumagai, T.; Nangaku, M. Glyoxalase I overexpression ameliorates renal ischemia-reperfusion injury in rats. Am. J. Physiol. Ren Physiol. 2009, 296, 912–921. [CrossRef]
7. Baynes, J.W. The Maillard hypothesis on aging: Time to focus on DNA. Ann. N. Y. Acad. Sci. 2002, 959, 360–367. [CrossRef] [PubMed]
8. Roberts, M.J.; Wondrak, G.T.; Laurean, D.C.; Jacobson, M.K.; Jacobson, E.L. DNA damage by carbonyl stress in human skin cells. Mutat. Res. 2003, 522, 45–56. [CrossRef]
9. Yan, S.; Ramasamy, R.; Schmidt, A. Receptor for AGE (RAGE) and its ligands—Cast into leading roles in diabetes and the inflammatory response. J. Mol. Med. 2009, 87, 235–247. [CrossRef]
10. Goldin, A.; Beckman, J.A.; Schmidt, A.M.; Creager, M.A. Advanced glycation end products: Sparking the development of diabetic vascular injury. Circulation 2006, 114, 597–605. [CrossRef]
11. Bento, C.F.; Fernandes, R.; Matafome, P.; Sena, C.; Seia, R.; Pereira, P. Methylglyoxal-induced imbalance in the ratio of vascular endothelial growth factor to angiopoietin 2 secreted by retinal pigment epithelial cells leads to endothelial dysfunction. Exp. Physiol. 2010, 95, 955–970. [CrossRef] [PubMed]
12. Van der Jagt, D.L.; Hassebrook, R.K.; Hunsaker, L.A.; Brown, W.M.; Royer, R.E. Metabolism of the 2-oxoaldehyde methylglyoxal by aldose reductase and by glyoxalase-I: Roles for glutathione in both enzymes and implications for diabetic complications. *Chem. Biol. Interact.* 2001, 130–132, 549–562. [CrossRef]

13. Tang, C.; Minemoto, Y.; Dibling, B.; Purcell, N.H.; Li, Z.; Karin, M.; Lin, A. Inhibition of JNK activation through NF-kappaB target genes. *Nature* 2001, 414, 313–317. [CrossRef] [PubMed]

14. Queisser, M.A.; Yao, D.; Geisler, S.; Hammes, H.-P.; Nter Lochnit, G.; Schleicher, E.D.; Brownlee, M.; Preisser, K.T. Hyperglycemia Impairs Proteasome Function by Methylglyoxal. *Diabetes* 2009, 59. [CrossRef]

15. Negre-Salvayre, A.; Salvayre, R.; Augé, N.; Pamplona, R.; Porter-Otin, M. Hyperglycemia and glycation in diabetic complications. *Antioxidants Redox Signal.* 2009, 11, 3071–3109. [CrossRef] [PubMed]

16. Pun, P.B.L.; Logan, A.; Darley-Usmar, V.; Chacko, B.; Johnson, M.S.; Huang, G.W.; Rogatti, S.; Prime, T.A.; Methner, C.; Krieg, T.; et al. A mitochondria-targeted mass spectrometry probe to detect glyoxals: Implications for diabetes. *Free Radic. Biol. Med.* 2014, 67, 437–450. [CrossRef]

17. Sena, C.M.; Matafome, P.; Crisóstomo, J.; Rodrigues, L.; Fernandes, R.; Pereira, P.; Seiça, R.M. Methylglyoxal promotes oxidative stress and endothelial dysfunction. *Pharmacol. Res.* 2012, 65, 497–506. [CrossRef] [PubMed]

18. Ward, R.A.; McLeish, K.R. Methylglyoxal: A stimulus to neutrophil oxygen radical production in chronic renal failure? *Nephrol. Dial. Transplant.* 2004, 19, 1702–1707. [CrossRef]

19. Suh, K.S.; Choi, E.M.; Rhee, S.Y.; Kim, Y.S. Methylglyoxal induces oxidative stress and mitochondrial dysfunction in osteoblastic MC3T3-E1 cells. *Free Radic. Res.* 2014, 48, 206–217. [CrossRef] [PubMed]

20. Seo, K.; Ki, S.H.; Shin, S.M. Methylglyoxal induces mitochondrial dysfunction and cell death in liver. *Toxicol. Res.* 2014, 30, 193–198. [CrossRef]

21. Biswas, A.; Wang, B.; Miyagi, M.; Nagaraj, R.H. Effect of methylglyoxal modification on stress-induced aggregation of client proteins and their chaperoning by human alphaA-crystallin. *Biochem. J.* 2008, 409, 771–777. [CrossRef] [PubMed]

22. Banerjee, S.; Maity, S.; Chakraborti, A.S. Methylglyoxal-induced modification causes aggregation of myoglobin. *Spectrochim. Acta—Part A Mol. Biomol. Spectrosc.* 2016, 155, 1–10. [CrossRef] [PubMed]

23. Oliveira, L.M.A.; Gomes, R.A.; Yang, D.; Dennison, S.R.; Fam, í.; Phoenix, D.A.; Quintas, A. Insights into the molecular mechanism of protein native-like aggregation upon glycation. *Biophys. Acta—Proteins Proteom.* 2013, 1834, 1010–1022. [CrossRef] [PubMed]

24. Ansari, N.A.; Dash, D. Biochemical studies on methylglyoxal-mediated glycated histones: Implications for presence of serum antibodies against the glycated histones in patients with type 1 diabetes mellitus. *ISRN Biochem.* 2013, 1, 1–5. [CrossRef]

25. Delgado-Andrade, C.; Fogliano, V. Dietary Advanced Glycosylation End-Products (dAGEs) and Melanoidins Formed through the Maillard Reaction: Physiological Consequences of their Intake. *Annu. Rev. Food Sci. Technol.* 2018, 9, 271–291. [CrossRef]

26. Thornalley, P.J. The glyoxalase system: New developments towards functional characterization of a metabolic pathway fundamental to biological life. *Biochem. J.* 1990, 269, 1–11. [CrossRef]

27. McLellan, A.C.; Thornalley, P.J.; Benn, J.; Sonksen, P.H. Glyoxalase system in clinical diabetes mellitus and correlation with diabetic complications. *Clin. Sci.* 1994, 87, 21–29. [CrossRef]

28. Ceriello, A.; Ihnat, M.A.; Thorpe, J.E. Clinical review 2: The “metabolic memory”: Is more than just tight glucose control necessary to prevent diabetic complications? *J. Clin. Endocrinol. Metab.* 2009, 94, 410–415. [CrossRef]

29. McLellan, A.C.; Thornalley, P.J. Glyoxalase activity in human red blood cells fractioned by age. *Mech. Ageing Dev.* 1989, 48, 63–71. [CrossRef]

30. Toop, C.R.; Muhlhauser, B.S.; O’Dea, K.; Gentili, S. Impact of perinatal exposure to sucrose or high fructose corn syrup (HFCS-55) on adiposity and hepatic lipid composition in rat offspring. *J. Physiol.* 2017, 595, 4379–4398. [CrossRef]

31. Elmhiri, G.; Barella, L.F.; Vieau, D.; Camous, S.; Mathias, P.C.F.; Abdennabi-Najar, L. Acute exposure to a precursor of advanced glycation end products induces a dual effect on the rat pancreatic islet function. *Int. J. Endocrinol.* 2014, 2014. [CrossRef] [PubMed]

32. Fiory, F.; Lombardi, A.; Miele, C.; Giudicelli, J.; Beguinot, F.; Van Obberghen, E. Methylglyoxal impairs insulin signalling and insulin action on glucose-induced insulin secretion in the pancreatic beta cell line INS-1E. *Diabetologia* 2011, 54, 2941–2952. [CrossRef] [PubMed]
33. Schalkwijk, C.G.; Brouwers, O.; Stehouwer, C.D.A. Modulation of insulin action by advanced glycation endproducts: A new player in the field. *Horm. Metab. Res.* **2008**, *40*, 614–619. [CrossRef] [PubMed]
34. Jia, Y.; Olson, D.J.H.; Ross, A.R.S.; Wu, L.; Jia, Y.; Olson, D.J.H.; Ross, A.R.S.; Wu, L. Structural and functional changes in human insulin induced by methylglyoxal. *FASEB J.* **2006**, *20*, 1555–1557. [CrossRef] [PubMed]
35. Cao, D.S.; Zhong, L.; Hsieh, T.-H.; Abooj, M.; Bishnoi, M.; Hughes, L.; Premkumar, L.S. Expression of transient receptor potential ankyrin 1 (TRPA1) and its role in insulin release from rat pancreatic beta cells. *PLoS ONE* **2012**, *7*. [CrossRef] [PubMed]
36. Bo, J.; Xie, S.; Guo, Y.; Zhang, C.; Guan, Y.; Li, C.; Lu, J.; Meng, Q.H. Methylglyoxal Impairs Insulin Secretion of Pancreatic β-Cells through Increased Production of ROS and Mitochondrial Dysfunction Mediated by Upregulation of UCP2 and MAPKs. *J. Diabetes Res.* **2016**, *2016*. [CrossRef]
37. Gao, Y.; Liao, G.; Xiang, C.; Yang, X.; Cheng, X.; Ou, Y. Effects of phycocyanin on INS-1 pancreatic β-cell mediated by PI3K/Akt/FoxO1 signaling pathway. *Int. J. Biol. Macromol.* **2016**, *83*, 185–194. [CrossRef]
38. Gao, Y.; Liu, C.; Wang, G.; Cheng, X.; Ou, Y. Phycocyanin prevents methylglyoxal-induced mitochondrial-dependent apoptosis in INS-1 cells by Nrf2. *Food Funct.* **2016**, *7*, 1129–1137. [CrossRef]
39. Liu, C.; Cao, B.; Zhang, Q.; Zhang, Y.; Chen, X.; Kong, X.; Dong, Y. Inhibition of thioredoxin 2 by intracellular methylglyoxal accumulation leads to mitochondrial dysfunction and apoptosis in INS-1 cells. *Endocrine* **2020**, *68*, 103–115. [CrossRef]
40. Meeprom, A.; Chan, C.B.; Sompong, W.; Adisakwattana, S. Isomerolic acid attenuates methylglyoxal-induced apoptosis in INS-1 rat pancreatic β-cell through mitochondrial survival pathways and increasing glyoxalase-1 activity. *Biomed. Pharmacother.* **2018**, *101*, 777–785. [CrossRef]
41. Suh, K.S.; Choi, E.M.; Jung, W.W.; Kim, Y.J.; Hong, S.M.; Park, S.Y.; Rhee, S.Y.; Chon, S. Deoxyactein protects pancreatic β-cells against methylglyoxal-induced oxidative cell damage by the upregulation of mitochondrial biogenesis. *Int. J. Mol. Med.* **2017**, *40*, 539–548. [CrossRef] [PubMed]
42. He, S.; Hu, Q.; Xu, X.; Niu, Y.; Chen, Y.; Lu, Y.; Su, Q.; Qin, L. Advanced glycation end products enhance M1 macrophage polarization by activating the MAPK pathway: Macrophage activation by AGEs. *Biochem. Biophys. Res. Commun.* **2020**, *525*, 334–340. [CrossRef] [PubMed]
43. Engelbrecht, B.; Stratmann, B.; Hess, C.; Tschoepe, D.; Gawlowski, T. Impact of GLO1 Knock Down on GLUT4 Trafficking and Glucose Uptake in L6 Myoblasts. *PLoS ONE* **2013**, *8*, 2–10. [CrossRef] [PubMed]
44. Engelbrecht, B.; Mattern, Y.; Scheibler, S.; Tschoepe, D.; Gawlowski, T.; Stratmann, B. Methylglyoxal impairs GLUT4 trafficking and leads to increased glucose uptake in L6 myoblasts. *Horm. Metab. Res.* **2014**, *46*, 77–84. [CrossRef]
45. Riboulet-Chavey, A.; Pierron, A.; Durand, I.; Murdaca, J.; Giudicelli, J.; Van Obberghen, E. Methylglyoxal impairs the insulin signaling pathways independently of the formation of intracellular reactive oxygen species. *Diabetes* **2006**, *55*, 1289–1299. [CrossRef]
46. Andreozzi, F.; Raciti, G.A.; Negro, C.; Mannino, G.C.; Procopio, T.; Davalli, A.M.; Beguinot, F.; Sesti, G.; Miele, C.; Foili, F. The GLP-1 receptor agonists exenatide and liraglutide activate Glucose transport by an AMPK-dependent mechanism. *J. Transl. Med.* **2016**, *14*, 1–13. [CrossRef]
47. Deshmukh, A.B.; Bai, S.; Aarthty, T.; Kazi, R.S.; Banarjee, R.; Rathore, R.; Mv, V.; Hv, T.; Kumar Bhat, M.; Mj, K. Methylglyoxal attenuates insulin signaling and downregulates the enzymes involved in cholesterol biosynthesis. *Mol. Biosyst.* **2017**, *13*, 2338–2349. [CrossRef]
48. Tang, Y.; Wang, J.; Cai, W.; Xu, J. RAGE/NF-κB pathway mediates hypoxia-induced insulin resistance in 3T3-L1 adipocytes. *Biochem. Biophys. Res. Commun.* **2020**, *520*, 77–83. [CrossRef]
49. Gaens, K.H.J.; Niessen, P.M.G.; Rensen, S.S.; Buurman, W.A.; Greve, J.W.M.; Driessen, A.; Wolfs, M.G.M.; Hofker, M.H.; Bloemen, J.G.; Dejong, C.H.; et al. Endogenous formation of Nε-(carboxymethyl)lysine is increased in fatty livers and induces inflammatory markers in an in vitro model of hepatic steatosis. *J. Hepatol.* **2012**, *56*, 647–655. [CrossRef]
50. Wei, C.; Meng, L.; Zhang, Y. miR-450a-5p Eliminates MGO-Induced Insulin Resistance via Targeting CREB. *Int. J. Stem. Cells* **2020**, *13*, 46–54. [CrossRef]
51. Moraru, A.; Wiederstein, J.; Pfaff, D.; Fleming, T.; Miller, A.K.; Nawroth, P.; Teleman, A.A. Elevated Levels of the Reactive Metabolite Methylglyoxal Recapitulate Progression of Type 2 Diabetes. *Cell Metab.* **2018**, *27*, 926–934. [CrossRef] [PubMed]
52. Lodd, E.; Wiggenhauser, L.M.; Morgenstern, J.; Fleming, T.H.; Poschet, G.; Büttner, M.; Tabler, C.T.; Wohlfart, D.P.; Nawroth, P.P.; Kroll, J. The combination of loss of glyoxalase1 and obesity results in hyperglycemia. JCI Insight 2019, 4, 1–17. [CrossRef] [PubMed]

53. Schumacher, D.; Morgenstern, J.; Oguchi, Y.; Volk, N.; Kopf, S.; Greuner, J.; Nawroth, P.; Fleming, T.; Freichel, M. Compensatory mechanisms for methylglyoxal detoxification in experimental & clinical diabetes. Mol. Metab. 2018, 18, 143–152. [PubMed]

54. Dhar, A.; Dhar, I.; Jiang, B.; Desai, K.M.; Wu, L. Chronic methylglyoxal infusion by minipump causes pancreatic β-cell dysfunction and induces type 2 diabetes in Sprague-Dawley rats. Diabetes 2011, 60, 899–908. [CrossRef] [PubMed]

55. Guo, Q.; Mori, T.; Jiang, Y.; Hu, C.; Osaki, Y.; Yoneki, Y.; Sun, Y.; Hosoya, T.; Kawamata, A.; Ogawa, S.; et al. Methylglyoxal contributes to the development of insulin resistance and salt sensitivity in Sprague-Dawley rats. J. Hypertens. 2009, 27, 1664–1671. [CrossRef] [PubMed]

56. Truong, C.S.; Seo, E.; Jun, H.S. Psoralea corylifolia L. Seed Extract Attenuates Methylglyoxal-Induced Insulin Resistance by Inhibition of Advanced Glycation End Product Formation. Oxid. Med. Cell. Longev. 2019, 2019. [CrossRef]

57. Cai, W.; Ramdas, M.; Zhu, L.; Chen, X.; Striker, G.E.; Vlassara, H. Oral advanced glycation endproducts (AGEs) promote insulin resistance and diabetes by depleting the antioxidant defenses AGE receptor-1 and sirtuin 1. Proc. Natl. Acad. Sci. USA 2012, 109, 15888–15893. [CrossRef]

58. Hofmann, S.M.; Dong, H.; Li, Z.; Cai, W.; Altomonte, J.; Thung, S.N.; Zeng, F.; Fisher, E.A.; Vlassara, H. Improved insulin sensitivity is associated with restricted intake of dietary glycoxidation products in the db/db mouse. Diabetes 2002, 51, 2082–2089. [CrossRef]

59. Liu, J.; Desai, K.; Wang, R.; Wu, L. Up-regulation of aldolase A and methylglyoxal production in adipocytes. Br. J. Pharmacol. 2013, 168, 1639–1646. [CrossRef]

60. Rodrigues, T.; Matafome, P.; Sereno, J.; Carvalho, C.; Arslanagic, A.; et al. Methylglyoxal-induced glycation changes adipose tissue vascular architecture, flow and expansion, leading to insulin resistance. Sci. Rep. 2017, 7, 1698. [CrossRef]

61. Matafome, P.; Santos-Silva, D.; Crisóstomo, J.; Rodrigues, T.; Rodrigues, L.; Sena, C.M.; Pereira, P.; Seiça, R. Methylglyoxal causes structural and functional alterations in adipose tissue independent of obesity. Arch. Physiol. Biochem. 2012, 118, 58–68. [CrossRef]

62. Rodrigues, T.; Matafome, P.; Seiça, R. Methylglyoxal further impairs adipose tissue metabolism after partial decrease of blood supply. Arch. Physiol. Biochem. 2013, 119, 209–218. [CrossRef] [PubMed]

63. Neves, C.; Rodrigues, T.; Simões, C.; Castelhano, J.; Gonçalves, J.; Bento, G.; Gonçalves, S.; Seiça, R.; Domingues, M.R.; et al. Dietary glycoxidins impair hepatic lipidemic profile in diet-induced obese rats causing hepatic oxidative stress and insulin resistance. Oxid. Med. Cell. Longev. 2019, 2019. [CrossRef] [PubMed]

64. Zhang, D.M.; Jiao, R.Q.; Kong, L.D. High dietary fructose: Direct or indirect dangerous factors disturbing tissue and organ functions. Nutrients 2017, 9, 335. [CrossRef] [PubMed]

65. Liu, J.; Wang, R.; Desai, K.; Wu, L. Upregulation of aldolase B and overproduction of methylglyoxal in vascular tissues from rats with metabolic syndrome. Cardiovasc. Res. 2011, 92, 494–503. [CrossRef] [PubMed]

66. Gugliucci, A. Formation of Fructose-Mediated Advanced Glycation End Products and Their Roles in Metabolic and Inflammatory Diseases. Adv. Nutr. An. Int. Rev. J. 2017, 8, 54–62. [CrossRef]

67. Masterjohn, C.; Park, Y.; Lee, J.; Noh, S.K.; Koo, S.I.; Bruno, R.S. Dietary fructose feeding increases adipose methylglyoxal accumulation in rats in association with low expression and activity of glyoxalase-2. Nutrients 2013, 5, 3311–3328. [CrossRef]

68. Wei, Y.; Wang, D.; Moran, G.; Estrada, A.; Pagliassotti, M.J. Fructose-induced stress signaling in the liver involves methylglyoxal. Nutr. Metab. 2013, 10, 1–8. [CrossRef]

69. Rai, A.K.; Jaiswal, N.; Maurya, C.K.; Sharma, A.; Ahmad, I.; Ahmad, S.; Gupta, A.P.; Gayen, J.R.; Tamrakar, A.K. Fructose-induced AGEs-RAGE signaling in skeletal muscle contributes to impairment of glucose homeostasis. J. Nutr. Biochem. 2019, 71, 35–44. [CrossRef]

70. Pinto-Junior, D.C.; Silva, K.S.; Michalani, M.L.; Yonamine, C.Y.; Esteves, J.V.; Fabre, N.T.; Thieme, K.; Catanozi, S.; Okamoto, M.M.; Seraphim, P.M.; et al. Advanced glycation end products-induced insulin resistance involves repression of skeletal muscle GLUT4 expression. Sci. Rep. 2018, 8, 8109. [CrossRef]
Ahmad, K.; Lee, E.; Moon, J.; Park, S.-Y.; Choi, I. Multifaceted Interweaving Between Extracellular Matrix, Insulin Resistance, and Skeletal Muscle. *Cells* **2018**, *7*, 148. [CrossRef] [PubMed]

Francisco, F.A.; Barella, L.F.; Da Silva Silveira, S.; Saavedra, L.P.J.; Prates, K.V.; Alves, V.S.; Da Silva Franco, C.C.; Miranda, R.A.; Ribeiro, T.A.; Tófolo, L.P.; et al. Methyglyoxal treatment in lactating mothers leads to type 2 diabetes phenotype in male rat offspring at adulthood. *Eur. J. Nutr.* **2018**, *57*, 477–486. [CrossRef] [PubMed]

Kong, X.; Ma, M.Z.; Huang, K.; Qin, L.; Zhang, H.M.; Yang, Z.; Li, X.; Su, Q. Increased plasma levels of the methyglyoxal in patients with newly diagnosed type 2 diabetes *2*. *J. Diabetes* **2014**, *6*, 535–540. [CrossRef] [PubMed]

Uruska, A.; Gandecka, A.; Araszkiewicz, A.; Zozulinska-Ziolkiewicz, D. Accumulation of advanced glycation end products in the skin is accelerated in relation to insulin resistance in people with Type 1 diabetes mellitus. *Diabet. Med.* **2019**, *36*, 620–625. [CrossRef] [PubMed]

Uribarri, J.; Cai, W.; Woodward, M.; Tripp, E.; Goldberg, L.; Pyzik, R.; Yee, K.; Tansman, L.; Chen, X.; Mani, V.; et al. Elevated serum advanced glycation endproducts in obese indicate risk for the metabolic syndrome: A link between healthy and unhealthy obesity? *J. Clin. Endocrinol. Metab.* **2015**, *100*, 1957–1966. [CrossRef] [PubMed]

Jiménez, I.U.; Díaz-Díaz, E.; Castro, J.S.; Ramos, J.P.; León, M.C.; Alvarado Ríos, J.A.; Auriostigue Bautista, J.C.; Correa-Rotter, R.; Aguilar Salinas, C.A.; Larrea, F. Circulating Concentrations of Advanced Glycation end Products, its Association with the Development of Diabetes Mellitus. *Arch. Med. Res.* **2017**, *48*, 360–369. [CrossRef]

Lechuga-Sancho, A.M.; Gallego-Andujar, D.; Ruiz-Ocaña, P.; Visiedo, F.M.; Saez-Benito, A.; Schwarz, M.; Segundo, C.; Mateos, R.M. Obesity induced alterations in redox homeostasis and oxidative stress are present from an early age. *PloS ONE* **2013**, *13*, e0191547. [CrossRef]

Abdulle, A.; Inman, C.K.; Saleh, A.; Noshi, M.; Galani, D.; Abdelwareth, L.; Alsafar, H.; Elfatih, A.; Al Shamsi, H.; Ali, R.; et al. Metabolic dysfunction in Emirati subjects in Abu Dhabi: Relationship to levels of soluble RAGEs. *J. Clin. Transl. Endocrinol.* **2019**, *16*, 100192. [CrossRef]

Gateva, A.T.; Assyov, Y.S.; Tsakova, A.D.; Kamenov, Z.A. Serum AGES and sRAGE levels are not related to vascular complications in patients with prediabetes. *Diabetes Metab. Syndr. Clin. Res. Rev.* **2019**, *13*, 1005–1010. [CrossRef]

Garay-Sevilla, M.E.; Torres-Graciano, S.; Villegas-Rodriguez, M.E.; Rivera-Cisneros, A.E.; Wrobel, K.; Uribarri, J. Advanced glycation end products and their receptors did not show any association with body mass parameters in metabolically healthy adolescents. *Acta Paediatr. Int. J. Paediatr.* **2018**, *107*, 2146–2151. [CrossRef]

Cordova, R.; Knaze, V.; Viallon, V.; Rust, P.; Schalkwijk, C.G.; Weiderpass, E.; Wagner, K.H.; Mayen-Chacon, A.L.; Aglago, E.K.; Dahm, C.C.; et al. Dietary intake of advanced glycation end products (AGEs) and changes in body weight in European adults. *Eur. J. Nutr.* **2019**. [CrossRef] [PubMed]

Saha, A.; Poujary, P.; Chan, L.; Chauhan, K.; Nadkarni, G.; Coca, S.; Uribarri, J. Increased odds of metabolic syndrome with consumption of high dietary advanced glycation end products in adolescents. *Diabetes Metab.* **2017**, *43*, 469–471. [CrossRef] [PubMed]

Uribarri, J.; Cai, W.; Ramdas, M.; Goodman, S.; Pyzik, R.; Xue, C.; Li, Z.; Striker, G.E.; Vlassara, H. Restriction of advanced glycation end products improves insulin resistance in human type 2 diabetes: Potential role of AGER1 and SIRT1. *Diabetes Care* **2011**, *34*, 1610–1616. [CrossRef] [PubMed]

De Courten, B.; De Courten, M.P.; Soldatos, G.; Dougherty, S.L.; Straznicky, N.; Schlaich, M.; Sourris, K.; Chand, V.; Scheijen, J.; Kingwell, B.; et al. Diet low in advanced glycation end products increases insulin sensitivity in healthy overweight individuals: A double-blind, randomized, crossover trial. *Am. J. Clin. Nutr.* **2016**, *103*, 1426–1433. [CrossRef] [PubMed]

Macías-Cervantes, M.H.; Rodríguez-Soto, J.M.D.; Uribarri, J.; Díaz-Cisneros, F.J.; Cai, W.; Garay-Sevilla, M.E. Effect of an advanced glycation end product-restricted diet and exercise on metabolic parameters in adult overweight men. *Nutrition* **2015**, *31*, 446–451. [CrossRef]

Mey, J.T.; Haus, J.M. Dicarbonyl Stress and Glyoxalase-1 in Skeletal Muscle: Implications for Insulin Resistance and Type 2 Diabetes. *Front. Cardiovasc. Med.* **2018**, *5*, 1–9. [CrossRef]

Mey, J.T.; Blackburn, B.K.; Miranda, E.R.; Chaves, A.B.; Briller, J.; Bonini, M.G.; Haus, J.M. Dicarbonyl stress and glyoxalase enzyme system regulation in human skeletal muscle. *Am. J. Physiol. Regul. Integr. Comp. Physiol.* **2018**, *314*, R181–R190. [CrossRef]
88. Rodrigues, T.; Borges, P.; Mar, L.; Marques, D.; Albano, M.; Eickhoff, H.; Carrêlo, C.; Almeida, B.; Pires, S.; Abrantes, A.M.; et al. GLP-1 improves adipose tissue glyoxalase activity and capillarization improving insulin sensitivity in type 2 diabetes. *Pharm. Res.* **2020**, *161*, 105198. [CrossRef]

89. Rabbani, N.; Thornalley, P.J. Glyoxalase 1 modulation in obesity and diabetes. *Antioxidants Redox Signal.* **2019**, *30*, 354–374. [CrossRef]

90. Xue, M.; Weickert, M.O.; Qureshi, S.; Kandala, N.B.; Anwar, A.; Waldron, M.; Shafie, A.; Messenger, D.; Fowler, M.; Jenkins, G.; et al. Improved glycemic control and vascular function in overweight and obese subjects by glyoxalase 1 inducer formulation. *Diabetes* **2016**, *65*, 2282–2294. [CrossRef]

91. Yamawaki, K.; Kanda, H.; Shimazaki, R. Nrf2 activator for the treatment of kidney diseases. *Toxicol. Appl. Pharmacol.* **2018**, *360*, 30–37. [CrossRef] [PubMed]

92. Egawa, T.; Ohno, Y.; Yokoyama, S.; Yokokawa, T.; Tsuda, S.; Goto, K.; Hayashi, T. The protective effect of Brazilian propolis against glycation stress in mouse skeletal muscle. *Foods* **2019**, *8*, 439. [CrossRef] [PubMed]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).