WEIGHTED INEQUALITIES RELATED TO A MUCKENHOUPT AND WHEEDEN PROBLEM FOR ONE–SIDE SINGULAR INTEGRALS

MARÍA SILVINA RIVEROS AND RAÚL EMILIO VIDAL

(Communicated by J. Soria)

Abstract. In this paper we obtain for T^+, a one-sided singular integral given by a Calderón-Zygmund kernel with support in $(-\infty, 0)$, a $L^p(w)$ bound when $w \in A^+_1$. In [A. K. Lerner, S. Ombrosi and C. Pérez, A_1 Bounds for Calderón-Zygmund operators related to a problem of Muckenhoupt and Wheeden, Math. Res. Lett. 16 (2009), no. 1, 149–156.], the authors proved that this bound is sharp with respect to $||w||_{A_1}$ and with respect to p. We also give a $L^{1,\infty}(w)$ estimate, for a related problem of Muckenhoupt and Wheeden for $w \in A^+_1$. We improve the classical results, for one-sided singular integrals, by putting in the inequalities a wider class of weights.

1. Introduction

Let M be the classical Hardy-Littlewood maximal operator and w a weight (i.e. $w \in L^1_{\text{loc}}(\mathbb{R}^n)$ and $w > 0$). C. Fefferman and E. M. Stein in [5] proved an extension of the classical weak-type $(1, 1)$ estimate:

$$||Mf||_{L^{1,\infty}(w)} \leq C \int_{\mathbb{R}^n} |f(x)| Mw(x) \, dx,$$

(1.1)

where $C = C(n)$. This is a sort of duality for M. A consequence of this result, using an interpolation argument, is the following: if $1 < p < \infty$ and $p' = \frac{p}{p-1}$ then,

$$\int_{\mathbb{R}^n} (Mf(x))^p w(x) \, dx \leq C p' \int_{\mathbb{R}^n} |f(x)|^p Mw(x) \, dx,$$

where $C = C(n)$.

B. Muckenhoupt and R. Wheeden many years ago, in [18], conjectured that the analogue of (1.1) should hold for T, a singular integral operator, namely

$$\sup_{\lambda > 0} \lambda w(\{x \in \mathbb{R}^n : |Tf(x)| > \lambda \}) \leq C \int_{\mathbb{R}^n} |f(x)| Mw(x) \, dx,$$

(1.2)

where $C = C(n,T)$.

Mathematics subject classification (2010): 42B20, 42B25.

Keywords and phrases: One-sided singular integrals, Sawyer weights, weighted norm inequalities.

Supported by CONICET, and SECYT-UNC.
The best result along this line was given by C. Pérez in [20], where M is replaced by the slightly larger operator $M_{L(\log L)^{\varepsilon}}$, $\varepsilon > 0$,

$$||Tf||_{L^{1,\infty}(w)} \leq C 2^{\frac{1}{\varepsilon}} \int_{\mathbb{R}^n} |f(x)| M_{L(\log L)^{\varepsilon}} w(x) \, dx,$$

where $C = C(n, T)$.

The one-sided version of this result was obtained in [12] by M. Lorente, J. M. Martell, C. Pérez and M. S. Riveros.

M. C. Reguera in [22] and M. C. Reguera and C. Thiele in [23] proved that the Muckenhoupt-Wheeden conjecture is false. In [22] the author gives a first approach by putting in the right hand side the dyadic maximal operator. In [23] they disproved (1.2) for T the Hilbert transform.

On the other hand there is a variant of the conjecture (1.2) which has a lot of interest, namely the weak Muckenhoupt-Wheeden conjecture. The idea is to assume an a priori condition on the weight w. This condition can be read essentially from inequality (1.2): a weight $w \in A_1$ if there is a finite constant C such that $Mw(x) \leq Cw(x)$ a.e. $x \in \mathbb{R}^n$. Denote $||w||_{A_1}$ the smallest of these C. The conjecture is the following:

Let $w \in A_1$, then

$$\sup_{\lambda > 0} \lambda w(\{x \in \mathbb{R}^n : |Tf(x)| > \lambda\}) \leq C ||w||_{A_1} \int_{\mathbb{R}^n} |f(x)| w(x) \, dx,$$

where $C = C(n, T)$.

In [11], A. K. Lerner, S. Ombrosy and C. Pérez, exhibit a logarithmic growth

$$||Tf||_{L^{1,\infty}(w)} \leq C ||w||_{A_1} \log(e + ||w||_{A_1}) ||f||_{L^{1}(w)},$$

(1.3)

where $C = C(n, T)$. It is an open problem if this result obtained by the authors in [11] is the best possible. Recently, F. Nazarov, A. Reznikov, V. Vasyunin, A. Volberg, proved that the weak Muckenhoupt-Wheeden conjecture is also false. See [19].

To prove this logarithmic growth result, they had to study first the corresponding weighted L^p estimate for $1 < p < \infty$ and $w \in A_1$, ε

$$||Tf||_{L^p(w)} \leq C p p' ||w||_{A_1} ||f||_{L^p(w)},$$

(1.4)

where $C = C(n, T)$, being the last inequality, this time, fully sharp. See [11]. As a consequence of (1.3) and applying the Rubio de Francia’s algorithm they also get the following result, let $1 < p < \infty$, $w \in A_p$ and let T be a Calderón-Zygmund operator then

$$||T||_{L^{p,\infty}(w)} \leq C ||w||_{A_p} \log(e + ||w||_{A_p}) ||f||_{L^p(w)},$$

(1.5)

where $C = C(n, p, T)$.

The first result of this kind obtaining the precise constant dependence on the A_p norm of w of the operator norms of singular integrals, maximal functions, and other operators in $L^p(w)$ was obtained by S. M. Buckley in [2]. There, he proves that

$$||M||_{L^p(w)} \leq C ||w||_{A_p}^{\frac{1}{p-1}},$$
where \(C = C(n, p) \).

Recently T. Hytönen, C. Pérez and E. Rela in [9] improved this result by giving a sharp weighted bound for the Hardy-Littlewood maximal operator involving the Fujii-Wilson \(A_{\infty} \)-constant. Also T. Hytönen and C. Pérez in [8] improved (1.3), (1.4) and several well known results, using for all these cases the Fujii-Wilson \(A_{\infty} \)-constant.

In this paper we obtain similar results as the ones in (1.3), (1.4) and (1.5) for one-sided weights and one-sided singular integrals.

Now we will state the results obtained in this work. The definitions of Sawyer’s weights and one-sided operators will appear in the next section.

Theorem 1.1. Let \(1 < p < \infty \), \(w \in A_{1}^{+} \) and \(T^{+} \) be a one-sided singular integral, then,
\[
||T^{+}f||_{L^{p}(w)} \leq C p p' ||w||_{A_{1}^{+}} ||f||_{L^{p}(w)},
\]
(1.6)
where \(C = C(T^{+}) \).

Theorem 1.2. Let \(w \in A_{1}^{+} \) and \(T^{+} \) be a one-sided singular integral, then,
\[
||T^{+}f||_{L^{1, \infty}(w)} \leq C ||w||_{A_{1}^{+}} \log(e + ||w||_{A_{1}^{+}}) ||f||_{L^{1}(w)},
\]
(1.7)
where \(C = C(T^{+}) \).

Corollary 1.3. Let \(1 < p < \infty \), \(w \in A_{p}^{+} \) and \(T^{+} \) be a one-sided singular integral, then
\[
||T^{+}f||_{L^{p, \infty}(w)} \leq C ||w||_{A_{p}^{+}} \log(e + ||w||_{A_{p}^{+}}) ||f||_{L^{p}(w)},
\]
(1.8)
where \(C = C(T^{+}) \).

By a duality argument, Corollary 1.3 implies the following:

Corollary 1.4. Let \(1 < p < \infty \), \(w \in A_{p}^{-} \) and \(T^{-} \) be a one-sided singular integral, then for any measurable set \(E \)
\[
||T^{-}(\sigma \chi_{E})||_{L^{p}(w)} \leq C ||w||_{A_{p}^{-}} \frac{1}{A_{p}^{-}} \log(e + ||w||_{A_{p}^{-}}) \sigma(E) \frac{1}{p},
\]
(1.9)
where \(C = C(T^{-}) \) and \(\sigma = w^{\frac{1}{p} - 1} \).

In these results \(||w||_{A_{1}^{+}} \) is the best constant of the weight \(w \in A_{1}^{+} \). Clearly, every theorem has a corresponding one, reversing the orientation of \(\mathbb{R} \).

Theorems 1.1, 1.2 and Corollaries 1.3, 1.4, for one-sided singular integrals, improve the ones obtained in [11] by putting in the inequalities a wider class of weights (the Sawyer classes).

The article is organized as follows: in Section 2 we introduce notation, definitions and well known results. In Section 3 we prove some previous lemmas that will be essential to obtain the proofs of Theorems and Corollaries given in Section 4. In Section 5 we give a weaker version and a simplest proof of Lemma 3.2 of Section 3.
2. Preliminaries

In this section we give some definitions and well known results.

2.1. One-side singular integral operators and Sawyer’s weights

Definition 2.1. Let $f \in L^1_{\text{loc}}(\mathbb{R}^n)$. The one-sided maximal operators are defined as

$$M^+ f(x) = \sup_{h > 0} \frac{1}{h} \int_{x-h}^{x+h} |f(t)| \, dt, \quad M^- f(x) = \sup_{h > 0} \frac{1}{h} \int_{x-h}^{x} |f(t)| \, dt.$$

The good weights for these operators are the Sawyer weights A^+_p and A^-_p, see [25], [13], [14]. We recall the definition.

Definition 2.2. Let w be a non-negative locally integrable function and $1 \leq p < \infty$. We say that $w \in A^+_p$ if there exists $C(p) < \infty$ such that for every $a < x < b$

$$\frac{1}{(b-a)^p} \left(\int_a^x w \right)^{p-1} \left(\int_x^b w^{p-1} \right)^{-1} \leq C(p), \quad (2.1)$$

when $1 < p < \infty$, and for $p = 1$,

$$M^- w(x) \leq C(1) w(x), \quad \text{for a.e. } x \in (a,b), \quad (2.2)$$

finally $A^+_\infty = \bigcup_{p \geq 1} A^+_p$, see [15].

The smallest possible $C(1)$ in (2.2) here is denoted by $\|w\|_{A^+_1}$ and the smallest possible $C(p)$ in (2.1) here is denoted by $\|w\|_{A^+_p}$.

The classes A^-_p for $1 \leq p \leq \infty$ are defined in a similar way.

We also define

$$M^+_r f(x) = \sup_{h > 0} \left(\frac{1}{h} \int_{x-h}^{x+h} |f(t)|^r \, dt \right)^{\frac{1}{r}}, \quad M^-_r f(x) = \sup_{h > 0} \left(\frac{1}{h} \int_{x-h}^{x} |f(t)|^r \, dt \right)^{\frac{1}{r}},$$

where $r \geq 1$. Observe that $M^+_f \leq M^+_r f$ for all $r \geq 1$. Also, we will consider the following maximal operators introduced by F. J. Martín-Reyes, P. Ortega and A. de la Torre in [14],

$$M^+_g f(x) = \sup_{h > 0} \int_{x-h}^{x+h} |f(t)| g(t) \, dt \left(\int_{x-h}^{x+h} g(t) \, dt \right)^{-1},$$

$$M^-_g f(x) = \sup_{h > 0} \int_{x-h}^{x} |f(t)| g(t) \, dt \left(\int_{x-h}^{x} g(t) \, dt \right)^{-1},$$

where g is a positive locally integrable function on \mathbb{R}.

The classes $A^+_p(g)$, $1 \leq p \leq \infty$ are defined as follows, let w be non-negative locally integrable functions and let $1 \leq p < \infty$. We say that $w \in A^+_p(g)$ if there exists $C(p) < \infty$ such that for every $a < x < b$

$$\left(\int_a^x w \right) \left(\int_x^b g^p' \sigma \right)^{p-1} \leq C(p) \left(\int_a^b g \right)^p,$$

(2.3)

where $\sigma = w^{\frac{1}{p}-1}$, $\frac{1}{p} + \frac{1}{p'} = 1$, when $1 < p < \infty$. For $p = 1$,

$$M_g^{-}(g^{-1}w)(x) \leq C(1)g^{-1}w(x), \quad \text{a.e.} \ x \in (a,b).$$

In [14] it was proved that $w \in A^+_p(g)$, if, and only if M_g^+ is bounded from $L^p(w)$ into $L^p(w)$, for $1 < p < \infty$, and $w \in A^+_1(g)$, if, and only if M_g^+ maps $L^1(w)$ into $L^{1,\infty}(w)$. Observe that if $g \equiv 1$ then $A^+_p(g) = A^+_p$, for $1 \leq p \leq \infty$.

DEFINITION 2.3. We shall say that a function K in $L^1_{\text{loc}}(\mathbb{R}^n \setminus \{0\})$ is a Calderón-Zygmund kernel if the following properties are satisfied:

- $||\hat{K}||_{\infty} < C_1$
- $|K(x)| < \frac{C_2}{|x|^n}$
- $|K(x) - K(x-y)| < \frac{C_3|y|}{|x|^n + |y|}$, where $|y| < \frac{|x|}{2}$.

The Calderón-Zygmund singular integral operator associated to K is defined by

$$Tf(x) = p.v.(K * f)(x) = \lim_{\epsilon \to 0} \int_{\mathbb{R}^n / B_\epsilon(x)} K(x-y)f(y) dy,$$

and the maximal operator associated with this kernel K is

$$T^+f(x) = \sup_{\epsilon > 0} \int_{\mathbb{R}^n / B_\epsilon(x)} |K(x-y)||f(y)| dy.$$

A one-sided singular integral T^+ is a singular integral associated to a Calderón-Zygmund kernel with support in $(-\infty,0)$; therefore, in that case,

$$T^+f(x) = \lim_{\epsilon \to 0^+} \int_{x + \epsilon}^{\infty} K(x-y)f(y) dy.$$

Examples of such kernels are given by H. Aimar, L. Forzani and F. J. Martín-Reyes in [1]. The operator T^- is defined similarly.

REMARK 2.4.

1. In [1], it is proved that the one-sided singular integral T^+ is controlled by the one-sided maximal functions M^+ in the $L^p(w)$ norm if $w \in A^+_\infty$.

2. It is well known to that the classes A_p are included in A_p^+ and A_p^-; namely $A_p = A_p^- \cap A_p^+$. See [25], [13], [14].

3. The one-sided classes of weights satisfy the following factorization, $w \in A_p^+$ if only if $w = w_1 w_2^{1-p}$ with $w_1 \in A_1^+$ and $w_2 \in A_1^-$, and $\|w\|_{A_p^+} \leq \|w_1\|_{A_1^+} \|w_2\|_{A_1^-}^{p-1}$. See [25], [13], [14].

4. It is easy to check that $(M^- f)^\delta \in A_1^+$ for all $0 < \delta < 1$ with $\|(M^- f)^\delta\|_{A_1^+} \leq C \frac{1}{1-\delta}$.

Finally, we recall some definition concerning Lorentz $L^{p,q}(\mu)$ spaces. Let f be a measurable function on a measure space (X, \mathcal{M}, μ). The non-increasing rearrangement $f^*(t)$ of f is defined as

$$f^*(t) = \inf\{\lambda > 0 : \mu(\{x \in \mathbb{R}^n : |f(x)| > \lambda\}) \leq t\},$$

for all $0 < t < \infty$. The function f is said to belong to the Lorentz space $L^{p,q}(\mu)$ if the quantities

$$\|f\|_{L^{p,q}(\mu)} = \left(\frac{q}{p} \int_0^\infty \left[t^{1/p} f^*(t)\right]^q \frac{dt}{t}\right)^{1/q},$$

whenever $0 < p < \infty$ and $0 < q < \infty$, and

$$\|f\|_{L^{p,\infty}(\mu)} = \sup_{t > 0} \left[t^{1/p} f^*(t)\right],$$

when $0 < p \leq \infty$, are finite. For more details see [26].

3. Previous Lemmas

To obtain Theorems 1.1 and 1.2 we need to prove some previous results: a sharp weak reverse Hölder’s inequality for one-sided weights, a particular case of the Coifman-type estimate for one-sided singular integrals and one-sided maximal operator, and also build A_1^+ weights from duality with special control on the constant, based in the Rubio de Francia algorithm, see [6].

3.1. Sharp weak reverse Hölder’s inequality

F. J. Martín-Reyes proved a weak reverse Hölder’s inequality (see [13] Lemma 5).

Lemma 3.1. [13] (Sharp weak reverse Hölder’s inequality) Let $1 \leq p < \infty$ and $w \in A_p^+$. There exist positive numbers δ and C such that

$$\int_a^b w^{1+\delta} \leq CM^- (w \chi_{(a,b)})(b)^\delta \int_a^b w,$$

(3.1)
for every bounded interval \((a,b)\), and therefore
\[
M_{1+\delta}^{-}(w\chi_{(a,b)})(b) \leq CM^{-}(w\chi_{(a,b)})(b),
\]
and
\[
M_{1+\delta}^{-}(w)(b) \leq CM^{-}(w)(b).
\]
The constant \(C\) depends only on \(\delta\) and the constant of the \(A^+_p\) condition.

Here we will need to be more precise in the constants. In the proof of Lemma 3.1 the constant \(C\) depends on a constant \(\beta\) and the constant \(\delta\). If we choose \(\beta = (4^p||w||_{A^+_p})^{-1}\) and \(\delta = \frac{1}{4^{p+2}e^2||w||_{A^+_p}}\), when \(1 < p < \infty\), and \(\beta = (||w||_{A^+_1})^{-1}\) and \(\delta = \frac{1}{16e^2||w||_{A^+_1}}\), when \(p = 1\), following the same steps of the proof, we obtain that \(C \leq 2\).

Then we can rewrite the equation (3.1) as
\[
\int_{a}^{b} w^r w \leq 2M^{-}(w\chi_{(a,b)})(b)r_{w}^{-1}\int_{a}^{b} w, \tag{3.2}
\]
for every bounded interval \((a,b)\), and therefore
\[
M_{r_{w}}^{-}(w\chi_{(a,b)})(b) \leq 2M^{-}(w\chi_{(a,b)})(b),
\]
and
\[
M_{r_{w}}^{-}(w)(b) \leq 2M^{-}(w)(b), \tag{3.3}
\]
where \(r_{w} = 1 + \frac{1}{4^{p+2}e^2||w||_{A^+_p}}\), when \(p > 1\), and \(r_{w} = 1 + \frac{1}{16e^2||w||_{A^+_1}}\) when \(p = 1\).

The following Lemma will be necessary to prove good-\(\lambda\) result in the next section.

Lemma 3.2. Let \(1 < p < \infty\), \(w \in A^{-}_p\), \(a < b < c\) and \(E \subseteq (b,c)\) a measurable set. For all \(\varepsilon > 0\), there exists \(C = C(\varepsilon, p)\) such that if \(|E| < \varepsilon^{-C||w||_{A^{-}_p}}(b-a)\) then \(w(E) < \varepsilon w(a,c)\).

Proof. Let \(w \in A^{-}_p\). Let apply the analogous to equation (3.2), i.e.
\[
\int_{b}^{c} w^r \leq 2M^{+}(w\chi_{(b,c)})(b)r_{w}^{-1}\int_{b}^{c} w.
\]
This last inequality implies
\[
(M_{r_{w}}^{+}(w^{r_{w}-1}\chi_{(b,c)})(b))^{\frac{1}{r_{w}}} \leq 2M^{+}(w\chi_{(b,c)})(b),
\]
where we take \(r = r_{w} = 1 + \frac{1}{4^{p+2}e^2||w||_{A^+_p}}\), when \(p > 1\) and \(r = r_{w} = 1 + \frac{1}{16e^2||w||_{A^+_1}}\), when \(p = 1\).
Using the definition of M_g^+, with $g = w$, we have that for all $x \in (a, b)$

$$
\left(\frac{1}{w(a, c)} \int_b^c w^{-1} w \right)^{\frac{1}{r'}} \leq (M_w^+(w^{-1} \chi_{(x,c)})(x))^{\frac{1}{r'}}
\leq 2M^+(w\chi_{(x,c)})(x)
\leq 2M^+(w\chi_{(a,c)})(x),
$$

then

$$(a, b) \subseteq \left\{ x : M^+(w\chi_{(a,c)})(x) > \frac{1}{4} \left(\frac{1}{w(a, c)} \int_b^c w \right)^{\frac{1}{r'}} w(a, c),
\right\}.$$

Recalling that M^+ is of weak type $(1, 1)$ with respect to the Lebesgue measure, we get

$$
b - a < C_1 w(a, c)^{\frac{1}{r'}} \left(\int_b^c w \right)^{\frac{1}{r'}} w(a, c),
$$

where C_1 does not depend on the weight w. This last inequality says that $1 \in A^+_w$ (where r' is such that $\frac{1}{r'} + \frac{1}{p} = 1$), with constant C_1, see (2.3). Let $x \in (a, b)$, by hypothesis $E \subset (b, c)$ then

$$
M_w^+(\chi_E(x)) \geq \frac{1}{w(x, c)} \int_x^c \chi_E(t)w(t) dt \geq \frac{w(E)}{w(a, c)},
$$

obtaining that the interval $(a, b) \subset \{ x : M_w^+(\chi_E(x)) > \frac{w(E)}{2w(a, c)} \}$. Observe that M_w^+ is of weak type (r', r') with respect to the Lebesgue measure with constant $||M_w^+||_{L^{r'} \rightarrow L^{r', \infty}} = C_2$ (see [14]), then

$$
b - a \leq \left| \left\{ x : M_w^+(\chi_E(x)) > \frac{w(E)}{2w(a, c)} \right\} \right| \leq C_2 \left(\frac{2w(a, c)}{w(E)} \right)^{r'} |E|.
$$

Taking into account that $1 < r < 2$ and $C_2^{\frac{1}{r'}} \leq C_3$, where C_3 does not depend on p or $||w||_{A^p_\infty}$ (see [14]), then

$$
\frac{w(E)}{w(a, c)} < \left(C_2 \frac{|E|}{b - a} \right)^{\frac{1}{r'}} < C_3 e^{-\frac{C||w||_{A^p_\infty}}{r'}} < \epsilon,
$$

where the last inequality holds by choosing an appropriate C depending only on p and ϵ. □

3.2. The Coifman-type estimate

Now we give a particular case of the Coifman-type estimate. In order to do this we need a kind of good-λ inequality result. We will use the next result due to S. M. Buckley in [2].
Lemma 3.3. [2] Let \(g \in L^\infty(I) \) and \(T \) be an operator for which
\[
|\{x : T\phi(x) > \alpha\}| \leq \left(\frac{C p |\phi|_p}{\alpha} \right),
\]
for all \(\phi \in L^p(\mathbb{R}) \), sufficiently large \(p \) and \(\alpha \) and \(C \) being a constant independent of \(p \).

Then,
\[
|\{x : Tg(x) > \alpha\}| \leq C e^{\frac{c}{p}} |I|.
\]

Lemma 3.4. Let \(1 \leq p < \infty \), \(w \in A_p^- \), \(T^- \) be a one-sided singular integral and \(T^* \) the maximal operator related to \(T^- \). Then, there exist positive constants \(c_1, c_2 \), \(\gamma_0 > 0 \) such that for every \(0 < \gamma < \gamma_0 \)
\[
|\{x \in \mathbb{R} : T^* f(x) > 2\lambda, M^- f(x) < \gamma \lambda\}| < c_1 e^{-\frac{c_2}{p}} |\{T^* f(x) > \lambda\}|
\]
holds for \(f \in L^1(\mathbb{R}) \), \(\lambda > 0 \). Also, for all \(\epsilon > 0 \), there exists \(c' \) depending on \(\epsilon, \gamma_0 \) and \(p \) such that
\[
w \left(\left\{ x \in \mathbb{R} : T^* f(x) > 2\lambda, M^- f(x) < \frac{c' \lambda}{||w||_{A_p^-}} \right\} \right) < \epsilon w(\{T^* f(x) > \lambda\}).
\]

Proof. Since \(\{x : T^* f(x) > \lambda\} \) is an open set and it has finite measure for \(f \in L^1(\mathbb{R}) \), it can be written as a disjoint countable union of open intervals. Let \(J = (a, b) \) be such an interval. It is enough to prove that there exist \(c_1, c_2, c' \) and \(\gamma_0 \) such that
\[
|\{x \in J : T^* f(x) > 2\lambda, M^- f(x) < \gamma \lambda\}| < c_1 e^{-\frac{c_2}{p}} |J|,
\]
and
\[
w \left(\left\{ x \in J : T^* f(x) > 2\lambda, M^- f(x) < \frac{c' \lambda}{||w||_{A_p^-}} \right\} \right) < \epsilon w(J),
\]
for every \(0 < \gamma < \gamma_0 \) and every \(\lambda > 0 \). Let us take a sequence \(\{x_i\}_{i=0}^{\infty} \) in \(J = (a, b) \) in such a way that \(x_0 = b \) and \(x_{i-1} - x_i = x_i - a \) for every \(i > 0 \). Observe that we only
need to prove that
\[
|\{x \in (x_{i+1}, x_i) : T^* f(x) > 2\lambda, M^- f(x) < \gamma \lambda\}| < c_1 e^{-\frac{c_2}{p}} (x_{i+1} - x_{i+2}). \quad (3.5)
\]
By Lemma 3.2 there exists \(c' \) depending on \(\epsilon, \gamma_0, p, c_1, c_2 \), such that
\[
w \left(\left\{ x \in (x_{i+1}, x_i) : T^* f(x) > 2\lambda, M^- f(x) < \frac{c' \lambda}{||w||_{A_p^-}} \right\} \right) < \epsilon w(x_i, x_{i+2}). \quad (3.6)
\]
Let us show (3.5). Let \(i \in \mathbb{N} \), if \(\{ x \in (x_{i+1}, x_i) : T^*f(x) > 2\lambda, M^-f(x) < \gamma \lambda \} = \emptyset \) there is nothing to prove. We choose \(\bar{\sigma} < a \) such that \(x_i - a = a - \bar{\sigma} \) and

\[
\xi = \sup\{ x \in (x_{i+1}, x_i) : M^-f(x) \leq \gamma \lambda \}.
\]

Let us write \(f = f_1 + f_2 \) with \(f_1 = f \chi(\bar{\sigma}, \xi) \) then

\[
\{ x \in (x_{i+1}, x_i) : T^*f(x) > 2\lambda, M^-f(x) < \gamma \lambda \} \subset A \cup B,
\]

where

\[
A = \{ x \in (x_{i+1}, \xi) : T^*f_1(x) > \frac{1}{2} \lambda, M^-f(x) < \gamma \lambda \},
\]

\[
B = \{ x \in (x_{i+1}, \xi) : T^*f_2(x) > \frac{3}{2} \lambda, M^-f(x) < \gamma \lambda \}.
\]

The second set \(B \) is essentially empty for \(\gamma \) small enough. By standard estimation (see [1]), we get that for \(x \in (x_{i+1}, \xi) \), \(T^*f_2(x) \leq \frac{3}{2} \lambda \) then

\[
\left\{ x \in (x_{i+1}, \xi) : T^*f_2(x) > \frac{3}{2} \lambda, M^-f(x) < \gamma \lambda \right\} = \emptyset,
\]

for \(0 < \gamma < \gamma_0 \) small enough.

Now we work with set \(A \). Let \(\Omega = \{ x \in (x_{i+1}, \xi) : M^-f_1(x) > 3 \gamma \lambda \} \), observe that

\[
\int_{\mathbb{R}} f_1(t) \, dt \leq 4 \gamma \lambda (x_i - x_{i+1}).
\]

The last inequality implies that \(\Omega \subset (\bar{\sigma}, \bar{a}) \) with \(\bar{a} - \xi = \frac{\gamma}{4}(x_i - x_{i+1}) \). Let us write \(\Omega = \bigcup I_j \) where \(I_j = (a_j, b_j) \) are disjoint maximal intervals. Then

\[
\frac{1}{|I_j|} \int_{I_j} f_1(t) \, dt = 3 \gamma \lambda.
\]

We define \(I_j^+ = (b_j, c_j) \), \(|I_j^+| = 2 |I_j| \), \(\bar{\Omega} = \bigcup (I_j^+ \cup I_j) = \bigcup I_j \) and \(f_1 = g + h \) with

\[
g = f_1 \chi_{\mathbb{R}/\Omega} + \sum_j 3 \gamma \lambda \chi_{I_j}, \quad h = \sum_j h_j = \sum_j (f_1 - 3 \gamma \lambda) \chi_{I_j}.
\]

Observe that \(g \leq 3 \gamma \lambda \) and \(g \) has support in \((\bar{\sigma}, \bar{a}) \). Then using Lemma 3.3 we have

\[
\left\{ \left\{ x : T^*g(x) > \frac{\lambda}{4} \right\} \leq e^{\frac{\gamma}{\lambda}} (\bar{a} - \bar{\sigma}) \leq 32 e^{\frac{\gamma}{\lambda}} (x_{i+1} - x_{i+2}).\right.
\]
Now let us study $T^* h$ for $x \notin \tilde{\Omega}$,

$$|T^* h(x)| \leq \sum_j \int_{I_j} |h_j(y)(K(x - y) - K(x - b_j))| \, dy \leq C \sum_j \int_{I_j} |h_j(y)| \frac{y - b_j}{(x - b_j)^2} \, dy \leq \frac{3}{2} C \sum_j \frac{\delta_j}{\delta_j^2 + (x - b_j)^2} \int_{I_j} |h_j(y)| \, dy \leq 9 C \gamma \lambda \sum_j \frac{\delta_j}{\delta_j^2 + (x - b_j)^2} |I_j| \leq C \gamma \lambda \sum_j \frac{\delta_j^2}{\delta_j^2 + (x - b_j)^2},$$

where $\delta_j = c_j - a_j$. We write $\Delta(x) = \sum_j \frac{\delta_j^2}{\delta_j^2 + (x - b_j)^2}$.

Observe that if $x \in \tilde{\Omega}$ then $M^- f(x) \geq \gamma \lambda$. In fact, if $x \in I_j$, for some j, then by definition of Ω we have that $3 \gamma \lambda < M^- f_1(x) < M^- f(x)$. If $x \in I_{j+1}$ then

$$3 \gamma \lambda = \frac{1}{|I_j|} \int_{I_j} f_1(t) \, dt = \frac{x - a_j}{(x - a_j)|I_j|} \int_{a_j}^x f(t) \, dt \leq 3 M^- f(x).$$

By the exponential Carleson’s estimation, (see [3]), we have

$$\left| \left\{ x \in (x_{i+1}, \xi) : \Delta(x) > \frac{c}{f} \right\} \right| < C e^{-\frac{c}{f}} |(x_{i+1}, \xi)| \leq 2 C e^{-\frac{c}{f}} (x_{i+1} - x_{i+2}),$$

therefore

$$\left| \left\{ x \in (x_{i+1}, \xi) : T^* h(x) > \frac{1}{4} \lambda, M^- f(x) < \gamma \lambda \right\} \right| \leq C e^{-\frac{c}{f}} (x_{i+1} - x_{i+2}).$$

Putting together this last estimate with the ones for f_2 and g, we obtain the desired result. \(\square\)

Lemma 3.5. Let $p \geq 1$, $w \in A_p^-$ and let T^- be a one-sided singular integral. Then there exists a constant $C = C(p, T^-)$, such that

$$||T^- f||_{L^1(w)} \leq C ||w||_{A_p^-} ||M^- f||_{L^1(w)}.$$

Proof. By Lemma 3.4, for $\varepsilon = \frac{1}{4}$ exists c' such that

$$w\left(\left\{ x \in \mathbb{R} : T^* f(x) > 2 \lambda, M^- f(x) < \frac{c' \lambda}{||w||_{A_p^-}} \right\} \right) < \frac{1}{4} w(\{ T^* f(x) > \lambda \}).$$
Observe that
\[\int_0^N w(\{ T^- f > \lambda \}) \, d\lambda \leq 2 \int_0^N w(\{ T^* f > 2\lambda \}) \, d\lambda \leq B_1 + B_2, \]
where
\[B_1 = 2 \int_0^N w \left(\left\{ T^* f > 2\lambda, M^- f < \frac{c'r'}{|w|_{A_p}} \right\} \right) \, d\lambda, \]
\[B_2 = 2 \int_0^N w \left(\left\{ M^- f \geq \frac{c'r'}{|w|_{A_p}} \right\} \right) \, d\lambda. \]

For \(B_1 \), we obtain
\[B_1 = 2 \int_0^N w \left(\left\{ T^* f > 2\lambda, M^- f < \frac{c'r'}{|w|_{A_p}} \right\} \right) \, d\lambda \leq \frac{1}{2} \int_0^N w(\{ T^* f > \lambda \}) \, d\lambda. \]

It is easy to see that
\[\frac{1}{2} \int_0^N w(\{ T^* f > \lambda \}) \, d\lambda \leq \frac{2||w||_{A_p}}{c'} \int_0^{\frac{N}{2||w||_{A_p}}} \int_0^N w(\{ T^* f > \lambda \}) \, d\lambda, \]
then
\[||T^- f||_{L^1(w)} \leq \frac{4||w||_{A_p}}{c'} ||M^- f||_{L^1(w)}, \]

obtaining the desired result. \(\square \)

For the next result we shall need the following Lemma due to A. K. Lerner, S. Ombrosi and C. Pérez in [11].

Lemma 3.6. [11] Let \(1 < s < \infty \) and \(v \) be a weight. There exists an operator \(R \) in \(L^s(v) \) such that

- \(h \leq R(h) \)
- \(||R(h)||_{L^s(v)} \leq 2||h||_{L^s(v)} \)
- \(R(h)(v)^{\frac{1}{s}} \in A_1 \) with \(||R(h)(v)^{\frac{1}{s}}||_{A_1} \leq cs' \).

It is known that the weight \((M_r^- w)^{1-p'} \) belongs to the \(A^\infty \) class with the corresponding constants independent of \(w \). Hence the next Lemma is a particular case of the Coifman-type estimate.

Lemma 3.7. Let \(T^- \) be a one-sided singular integral, \(p, r \geq 1 \). Then there exists \(C = C(T^-) \) such that
\[\left| \frac{T^- f}{M_r^- w} \right|_{L^p(M_r^- w)} \leq C p' \left| \frac{M^- f}{M_r^- w} \right|_{L^{p'}(M_r^- w)}. \] (3.7)
Proof. By duality we have

\[\left| \frac{T^-f}{M^-_r w} \right|_{L^p'(M^-_r w)} = \sup_{\|h\|_{L^p(M^-_r w)}} \int_{\mathbb{R}} |T^-f| h \, dx. \]

Choosing \(s = p \) and \(v = M^-_r w \), by Lemma 3.6, there exists an operator \(R \) such that
\[R(h)(M^-_r w) \frac{1}{p} \in A_1 \] with \[\|R(h)(M^-_r w)\|_{A_1} \leq cp' \], then by Remark 2.4, item (2),
\[R(h)(M^-_r w) \frac{1}{p} \in A_1^- \] with \[\|R(h)(M^-_r w)\|_{A_1^-} \leq cp'. \]

Now using the Remark 2.4, item (3) and item (4), we have
\[\|R(h)\|_{A_3^-} = \|R(h)(M^-_r w)\|_{A_3^-}^\frac{1}{p} (M^-_r w)^{\frac{1}{2p} - 2} \]
\[\leq \|R(h)(M^-_r w)\|_{A_1^-}^\frac{1}{p} (M^-_r w)^{\frac{1}{2p}} \|A_1^-\|_{A_1^-}^2 \]
\[\leq cp' \left(\frac{c}{1 - \frac{1}{2pr}} \right)^2 \leq Cp'. \]

Finally by Lemma 3.5,
\[\int_{\mathbb{R}} |T^-f| h \, dx \leq \int_{\mathbb{R}} |T^-f| R(h) \, dx \leq C \|R(h)\|_{A_3^-} \int_{\mathbb{R}} M^-_r (f) R(h) \, dx \]
\[\leq Cp' \int_{\mathbb{R}} \frac{M^-_r f}{M^-_r w} R(h) M^-_r w \, dx \leq Cp' \left\| \frac{M^-_r f}{M^-_r w} \right\|_{L^p'(M^-_r w)} \|R(h)\|_{L^p(M^-_r w)}. \]

As \(\|h\|_{L^p(M^-_r w)} = 1 \) we have
\[\left| \frac{T^-f}{M^-_r w} \right|_{L^p'(M^-_r w)} \leq Cp' \left| \frac{M^-_r f}{M^-_r w} \right|_{L^p'(M^-_r w)}. \quad \square \]

4. Proof of the results

4.1. Proof of the Theorems

In order to prove Theorem 1.1 we first need to show the following result:

THEOREM 4.1. Let \(1 < p < \infty, \ 1 < r < 2, \ w \) a weight and \(T^+ \) be a one-sided singular integral. Then
\[\|T^+f\|_{L^p(w)} \leq Cpp'(r')^\frac{1}{p'} \|f\|_{L^p(M^-_r w)}, \] (4.1)

where \(C = C(T^+) \).
Proof. Observe that $T^−$ is the adjoint operator of T^+, with kernel supported in $(0, \infty)$. Also observe that as $(M^−_r w) ∈ A^+_1 \subset A^+_p$, then $(M^−_r w)^{1−\rho'} ∈ A^−_p \subset A^∞_w$. Therefore (4.1) is equivalent to prove

$$\left\| \frac{T^− f}{M^−_r w} \right\|_{L^p'(M^−_r w)} ≤ Cpp'(r') \left\| \frac{f}{w} \right\|_{L^p'(w)}.$$

By Hölder’s inequality

$$\frac{1}{b-a} \int_a^b f w^{−\frac{1}{p} \frac{1}{w}} ≤ \left(\frac{1}{b-a} \int_a^b w^r \right)^{\frac{1}{pr}} \left(\frac{1}{b-a} \int_a^b \left(f w^{−\frac{1}{p}} \right)^{(pr)'} \right)^{\frac{1}{pr'}},$$

and taking supremum we get

$$(M^− f(b))^{p'} ≤ (M^−_r w(b))^{p'−1}(M^−_{(pr)'_w}(f w^{−\frac{1}{p}})(b))^{p'},$$

then

$$\left\| \frac{M^− f}{M^−_r w} \right\|_{L^p'(M^−_r w)} ≤ \left\| M^−_{(pr)'} \left(f w^{−\frac{1}{p}} \right) \right\|_{L^p'}.$$

Now using that $||M^−_k g||_{L^s} ≤ C \left(\frac{s}{k} \right)^{\frac{1}{p'}} ||g||_{L^r}$, for $g = f w^{\frac{1}{p}}$, $k = (pr)'$ and $s = p'$ we get

$$\left\| \frac{M^− f}{M^−_r w} \right\|_{L^p'(M^−_r w)} ≤ C \left(\frac{rp−1}{r−1} \right)^{1−\frac{1}{pr}} \left\| \frac{f}{w} \right\|_{L^p'(w)} ≤ Cp \left(\frac{1}{r−1} \right)^{1−\frac{1}{pr}} \left\| \frac{f}{w} \right\|_{L^p'(w)}.$$

Observe that $t^{\frac{1}{r}} ≤ 2$ for $t ≥ 1$, then

$$\left(\frac{1}{r−1} \right)^{1−\frac{1}{pr}} ≤ (r')^{1−\frac{1}{r−1} + \frac{1}{pr}} ≤ 2(r')^{\frac{1}{pr'}}.$$

Finally applying Lemma 3.7 we get,

$$\left\| \frac{T^− f}{M^−_r w} \right\|_{L^p'(M^−_r w)} ≤ Cpp' \left\| \frac{M^− f}{M^−_r w} \right\|_{L^p'(M^−_r w)} ≤ Cpp'(r') \left\| \frac{f}{w} \right\|_{L^p'(w)}.$$

Proof of Theorem 1.1. This result is a consequence of Theorem 4.1. Using the equation (3.3), we observe that $r'_w \lesssim ||w||_{A^+_1}$ and $M^−_{r'_w}(w)(x) ≤ 2M^−(w)(x) ≤ 2||w||_{A^+_1} w(x)$ a.e. x. Then,

$$||T^+ f||_{L^p(w)} ≤ Cpp'(r'_w) \left\{ \int_R |f|^p(x) M^−_{r'_w}(w)(x) dx \right\}^{\frac{1}{p}} \lesssim Cpp'(||w||_{A^+_1}) \left\| \frac{1}{w} \right\|_{L^p(w)}.$$

Proof of Theorem 1.1. This result is a consequence of Theorem 4.1. Using the equation (3.3), we observe that $r'_w \lesssim ||w||_{A^+_1}$ and $M^−_{r'_w}(w)(x) ≤ 2M^−(w)(x) ≤ 2||w||_{A^+_1} w(x)$ a.e. x. Then,

$$||T^+ f||_{L^p(w)} ≤ Cpp'(r'_w) \left\{ \int_R |f|^p(x) M^−_{r'_w}(w)(x) dx \right\}^{\frac{1}{p}} \lesssim Cpp'(||w||_{A^+_1}) \left\| \frac{1}{w} \right\|_{L^p(w)}.$$

Proof of Theorem 1.1. This result is a consequence of Theorem 4.1. Using the equation (3.3), we observe that $r'_w \lesssim ||w||_{A^+_1}$ and $M^−_{r'_w}(w)(x) ≤ 2M^−(w)(x) ≤ 2||w||_{A^+_1} w(x)$ a.e. x. Then,
Proof of Theorem 1.2. Without loss of generality we assume that \(0 \leq f \in L^\infty_c(\mathbb{R})\).

Let

\[
\Omega = \{x \in \mathbb{R} : M^+f(x) > \lambda\} = \bigcup_j I_j = \bigcup_j (a_j, b_j),
\]

where \(I_j = (a_j, b_j)\) are the connected component of \(\Omega\) and they satisfy

\[
\frac{1}{|I_j|} \int_{I_j} f(y) \, dy = \lambda.
\]

Note that if \(x \notin \Omega\), then for all \(h \geq 0\)

\[
\frac{1}{h} \int_x^{x+h} f(y) \, dy \leq \lambda.
\]

Therefore \(f(x) \leq \lambda\) for a.e \(x \in \mathbb{R} \setminus \Omega\). Let \(I^-_j = (c_j, a_j)\) with \(c_j\) chosen so that \(|I^-_j| = 2|I_j|\) and set

\[
\tilde{\Omega} = \bigcup_j (I^-_j \cup I_j) = \bigcup_j I_j.
\]

We write \(f = g + h\) where

\[
g = f \chi_{\mathbb{R} \setminus \Omega} + \sum_{j=1}^{\infty} \lambda \chi_{I_j}, \quad h = \sum_{j=1}^{\infty} h_j = \sum_{j=1}^{\infty} (f - \lambda) \chi_{I_j}.
\]

Observe that \(0 \leq g(x) \leq \lambda\) for a.e. \(x\) and also that \(h_j\) has vanishing integral. Then

\[
w(\{x : |T^+f(x)| > \lambda\}) \leq w(\tilde{\Omega}) + w \left(\left\{ x \in \mathbb{R} \setminus \tilde{\Omega} : |T^+h(x)| > \frac{\lambda}{2} \right\} \right)
\]

\[
+ w \left(\left\{ x \in \mathbb{R} \setminus \tilde{\Omega} : |T^+g(x)| > \frac{\lambda}{2} \right\} \right) = \text{I} + \text{II} + \text{III}.
\]

We estimate \(\text{I}\):

\[
\text{I} = w(\tilde{\Omega}) \leq \sum_j (w(I^-_j) + w(I_j)),
\]

for each \(j\)

\[
w(I^-_j) = \frac{w(I^-_j)}{|I^-_j|} |I_j| = \frac{w(I^-_j)}{|I^-_j|} \frac{1}{\lambda} \int_{I_j} f(x) \, dx
\]

\[
= \frac{1}{\lambda} \int_{I^-_j} \int_{I_j} w(t) \, dt \, f(x) \, dx \leq \frac{3}{\lambda} \int_{I_j} \frac{1}{(x-c_j)^2} \int_{c_j}^x w(t) \, dt \, f(x) \, dx
\]

\[
\leq \frac{3}{\lambda} \int_{I_j} f(x) M^- w(x) \, dx.
\]
On the other hand, $(w,M^- w) \in A^+_1$ then M^+ is weak type $(1,1)$ with respect to this pair of weights, then
\[\sum_j w(I_j) = w(\{ x : M^+ f(x) > \lambda \}) < \frac{4}{\lambda} \int_{\mathbb{R}} f(t)M^- w(t) dt, \]
therefore
\[I = w(\tilde{\Omega}) \leq \frac{7}{\lambda} \int_{\mathbb{R}} f(t)M^- w(t) dt \leq \frac{7}{\lambda} ||w||_{A^+_1} \int_{\mathbb{R}} f(t)w(t) dt. \]

To estimate II, let $r_j = |I_j|/|I^- j|/2$. Now we use that h_j is supported in I_j, $\int_{I_j} h_j = 0$, and that K is supported in $(-\infty,0)$:
\[II = w\left(\left\{ x \in \mathbb{R} \setminus \tilde{\Omega} : |T^+ h(x)| > \frac{\lambda}{2} \right\} \right) \leq \frac{2}{\lambda} \int_{\mathbb{R} \setminus \tilde{\Omega}} |T^+ h(t)| w(t) dt \]
\[\leq \frac{2}{\lambda} \sum_j \int_{I_j} |h_j(y)| \int_{\mathbb{R} \setminus \tilde{\Omega}} |K(t-y) - K(t-a_j)| w(t) dt dy \]
\[= \frac{2}{\lambda} \sum_j \int_{I_j} |h_j(y)| \int_{-\infty}^{c_j} |K(t-y) - K(t-a_j)| w(t) dt dy. \]

Observe that it is suffice to obtain that for all $y \in I_j$,
\[\int_{-\infty}^{c_j} |K(t-y) - K(t-a_j)| w(t) dt \leq C \essinf_{\bar{I}_j} M^- (w\chi_{\mathbb{R} \setminus \bar{I}_j}). \]
To see this we use the condition of the kernel K,
\[\int_{-\infty}^{c_j} |K(t-y) - K(t-a_j)| w(t) dt = \sum_{k=1}^{\infty} \int_{a_j - 2^{-k} r_j}^{a_j - 2^{k+1} r_j} |K(t-y) - K(t-a_j)| w(t) dt \]
\[\leq C \sum_{k=1}^{\infty} \int_{a_j - 2^{k+1} r_j}^{a_j - 2^k r_j} \left| \frac{y-a_j}{(t-a_j)^2} \right| w(t) dt \]
\[\leq C \sum_{k=1}^{\infty} \frac{y-a_j}{(2^k r_j)^2} \int_{a_j - 2^k r_j}^{a_j - 2^{k+1} r_j} w(t) \chi_{(a_j - 2^k r_j, a_j - 2^{k+1} r_j)} dt \]
\[\leq C \sum_{k=1}^{\infty} \frac{1}{2^k (2^k r_j)^2} \int_{a_j - 2^k r_j}^{a_j - 2^{k+1} r_j} w(t) \chi_{(a_j - 2^k r_j, a_j - 2^{k+1} r_j)} dt, \]
where $C = C(T^+)$. If $x \in I_j$
\[\int_{-\infty}^{c_j} |K(t-y) - K(t-a_j)| w(t) dt \]
\[\leq C \sum_{k=1}^{\infty} \frac{1}{2^k} \frac{x-a_j+2^{k+1} r_j}{2^k r_j} \frac{1}{x-a_j+2^{k+1} r_j} \int_{a_j - 2^{k+1} r_j}^{x} w(t) \chi_{(a_j - 2^k r_j, a_j - 2^{k+1} r_j)} dt \]
\[\leq CM^- w\chi_{\mathbb{R} \setminus \bar{I}_j}(x) \sum_{k=1}^{\infty} \frac{1}{2^k} \left(\frac{x-a_j}{2^k r_j} + \frac{2^{k+1} r_j}{2^k r_j} \right) \leq CM^- (w\chi_{\mathbb{R} \setminus \bar{I}_j}(x), \]

therefore
\[
II \leq \frac{C}{\lambda} \sum_j \text{ess inf}_{I_j} M^- (w \chi_{R \setminus I_j}) \int_{I_j} |h_j(y)| \, dy \\
\leq \frac{C}{\lambda} \sum_j \int_{I_j} |h_j(y)| M^- (w \chi_{R \setminus I_j})(y) \, dy \\
\leq \frac{C}{\lambda} \left[\sum_j \int_{I_j} f(y) M^- (w \chi_{R \setminus I_j})(y) \, dy + \sum_j \int_{I_j} |g(y)| M^- (w \chi_{R \setminus I_j})(y) \, dy \right] \\
= \frac{C}{\lambda} (A + B).
\]

For A there is nothing to prove. To work with B we need to prove the following inequality
\[
M^- (w \chi_{R \setminus I_j})(y) \leq \frac{3}{2} \text{ess inf}_{z \in I_j} M^- (w \chi_{R \setminus I_j})(z),
\]
(4.2)
for all $y \in I_j$. In fact for $y, z \in I_j$,
\[
M^- (w \chi_{R \setminus I_j})(y) = \sup_{t < y} \frac{1}{y - t} \int_t^y w(s) \chi_{R \setminus I_j}(s) \, ds = \sup_{t < c_j} \frac{1}{y - t} \int_t^{c_j} w(s) \chi_{R \setminus I_j}(s) \, ds \\
\leq \sup_{t < c_j} \frac{3}{2} \frac{1}{y - t} \int_t^{c_j} w(s) \chi_{R \setminus I_j}(s) \, ds \leq \frac{3}{2} M^- (w \chi_{R \setminus I_j})(z).
\]

Then
\[
B = \sum_j \int_{I_j} |g(y)| M^- (w \chi_{R \setminus I_j})(y) \, dy = \sum_j \int_{I_j} \lambda M^- (w \chi_{R \setminus I_j})(y) \, dy \\
\leq \sum_j \int_{I_j} f(t) \, dt \frac{1}{|I_j|} \int_{I_j} M^- (w \chi_{R \setminus I_j})(y) \, dy \\
\leq \frac{3}{2} \sum_j \int_{I_j} f(t) \, dt \text{ ess inf}_{I_j} M^- (w \chi_{R \setminus I_j}) \leq \frac{3}{2} \sum_j \int_{I_j} f(t) M^- (w \chi_{R \setminus I_j})(t) \, dt.
\]

So
\[
II \leq \frac{C}{\lambda} \sum_j \int_{I_j} f(t) M^- (w \chi_{R \setminus I_j})(t) \, dt \leq \frac{C}{\lambda} \|w\|_{A^+_1} \int_{\mathbb{R}} f(t) w(t) \, dt.
\]

Finally we estimate III. First observe that doing the same proof that in (4.2) we obtain
\[
M^- (w \chi_{R \setminus \Omega})(y) \leq \frac{3}{2} \text{ess inf}_{z \in I_j} M^- (w \chi_{R \setminus \Omega})(z),
\]
(4.3)
for all $y \in I_j$.
By Chebichef’s inequality, using the fact that $g \leq \lambda$ and choosing $r = r_w = 1 + \frac{1}{16\pi ||w||_{A_1^+}}$ in order to apply Theorem 4.1 and equation (3.3), we get that

$$III = w \left(\left\{ x \in \mathbb{R} \setminus \tilde{\Omega} : |T^+ g| (x) > \frac{\lambda}{2} \right\} \right)$$

$$\leq \frac{2^p}{\lambda^p} \int_{\mathbb{R}} (|T^+ g| (x))^p w(x) \chi_{(\mathbb{R} \setminus \tilde{\Omega})} (x) \, dx$$

$$\leq \frac{2^p}{\lambda^p} (Cpp'((r')^{\frac{1}{p}}))^{\frac{1}{p}} \int_{\mathbb{R}} (|g| (x))^p M^-(w \chi_{(\mathbb{R} \setminus \tilde{\Omega})}) (x) \, dx$$

By Chebichef’s inequality, using the fact that f in $\tilde{\Omega}$, we have

$$\lim_{x \to r} f(x) f'(x) \leq C||w||_{A_1^+}$$

implies

$$III \leq \frac{2^{p+1}}{\lambda} (Cpp'((r')^{\frac{1}{p}}))^{\frac{1}{p}} \int_{\mathbb{R}} f(x) M^- w(x) \, dx$$

$$\leq \frac{2^{p+1}}{\lambda} (Cpp'(|w||_{A_1^+})^{\frac{1}{p}})^{\frac{1}{p}} ||w||_{A_1^+} \int_{\mathbb{R}} f(x) w(x) \, dx$$

$$\leq \frac{Cp^{p+1}}{\lambda} [pp' ||w||_{A_1^+}]^{\frac{1}{p}} \int_{\mathbb{R}} f(x) w(x) \, dx.$$}

We take $p = 1 + \frac{1}{\log(e+||w||_{A_1^+})}$ and observing that $t^{(\log(e+t))^{-1}}$ and t^{-1} are bounded for $t > 1$ we have

$$[pp' ||w||_{A_1^+}]^{\frac{1}{p}} \leq C \log(e+||w||_{A_1^+}) ||w||_{A_1^+},$$

and as $1 < p < 2$ we obtain

$$III \leq \frac{C}{\lambda} \log(e+||w||_{A_1^+}) ||w||_{A_1^+} \int_{\mathbb{R}} f(x) w(x) \, dx.$$}

Combining this estimate with I and II completes the proof. □

Remark 4.2. The choice of p, in proof of Theorem 1.2, is similar to the one given in [11]. The conjecture or goal was to find a linear dependence of the constant $||w||_{A_1}$. In [19] the authors proved that this is not possible. The nearest one is a $t \log t$.
dependence of the constant, by the kind of steps followed to approach to the result. Maybe it can be shown that a \(t \log^\varepsilon t \), dependence is possible, for some \(0 < \varepsilon < 1 \). To prove this result, a better estimate in Theorem 4.1 it should be obtain. C. Pérez in [21] conjectures that a \(t \log^\varepsilon t \) dependence is not possible.

4.2. Proof of the Corollaries

To prove the Corollary 1.3, we need to build \(A_1^+ \) weights with special control on the constant, based in the Rubio de Francia algorithm. In order to do this we need the one-sided version of the Buckley result sharp estimate in norm \(L^p \) of the Hardy-Littlewood maximal operator \(M \) respect to weights \(w \in A_p \). This Theorem was proved by F. J. Martín-Reyes and A. de la Torre in [17].

THEOREM 4.3. [17] If \(w \in A_p^- \) then

\[
||M^-||_{L^p(w)} \leq Cp'2^{p'}||w||_{A_p}^{\frac{1}{p'}}.
\] (4.4)

The equivalent of the following Lemma for weights in \(A_p^+ \), is proven in [4].

LEMMA 4.4. Let \(1 < q < \infty \) and let \(w \in A_q^+ \). Then there exists a nonnegative sublinear operator \(D \) bounded on \(L^q \) such that for any nonnegative \(h \in L^q(w) \):

1. \(h \leq D(h) \);
2. \(||D(h)||_{L^q(w)} \leq 2||h||_{L^q(w)} \);
3. \(D(h).w \in A_1^+ \) with \(||D(h).w||_{A_1^+} \leq Cq2^q||w||_{A_q^+} \),

where the constant \(C \) not depend on \(||w||_{A_1^+} \) and \(q \).

Proof. We define the operator \(S(h) = w^{-1}M^- (|h|w) \), then \(S \) is bounded in \(L^q(w) \), moreover, \(||S||_{L^q(w)} \leq Cq2^q||w||_{A_q^+} \), indeed using equation (4.4) we get,

\[
||S(h)||_{L^q(w)} = \left(\int_{\mathbb{R}} (w^{-1}M^- (|h|w))^{\frac{1}{q'}} w^{1-q'} \, dx \right)^{\frac{1}{q'}} = \left(\int_{\mathbb{R}} (M^- (|h|w))^{\frac{1}{q'}} w^{1-q'} \, dx \right)^{\frac{1}{q'}} \leq ||M^-||_{L^q(w)^{1-q'}} ||h||_{L^q(w)^{1-q'}} \leq Cq2^q ||w^{1-q'}||_{A_q^{1-q'}} ||h||_{L^q(w)}.
\]

Recalling that \(w \in A_q^+ \) implies \(w^{1-q'} \in A_{q'}^- \) and that \(||w^{1-q'}||_{A_q^-} = ||w||_{A_q^{-\frac{1}{1-q'}}} \), we get \(||S||_{L^q(w)} \leq Cq2^q||w||_{A_q^+} \), as claimed.

Now we define the operator \(D \) via the following convergent Neumann series:

\[
D(h) = \sum_{k=0}^{\infty} \frac{S^k(h)}{2^k||S||^k}, \quad \text{where} \quad ||S|| = ||S||_{L^q(w)}.
\]
Then (1) and (2) are clearly satisfied.
(3) It follows from the definition of D and the sublinearity of S that

$$S(D(h)) \leq 2\|S\|(D(h) - h) \leq 2\|S\|D(h),$$

therefore

$$M^-(D(h)w) = M^-(D(h)w)w^{-1}w = S(D(h))w \leq 2\|S\|D(h)w \leq cq2^q\|w\|_{A_q^+}D(h)w. \qed$$

Proof of Corollary 1.3. For $\alpha > 0$ we set $\Omega_\alpha = \{x \in \mathbb{R} : |T^+f(x)| > \alpha\}$ and let $\phi(t) = t \log(e + t)$. Applying Lemma 4.4 with $q = p$, we get a sublinear operator D bounded on L^p satisfying properties (1), (2), and (3). Using these properties and Theorem 1.2, we obtain

$$\int_{\Omega_\alpha} h\,wdx \leq \int_{\Omega_\alpha} D(h)\,wdx \leq \frac{C}{\alpha} \phi(\|D(h).w\|_{A_1^+})\|f\|_{L^1(D(h).w)}$$

$$\leq \frac{C}{\alpha} \phi(Cp2p\|w\|_{A_p^+}) \int_{\mathbb{R}} |f|D(h)\,wdx$$

$$\leq \frac{C}{\alpha} 2\phi(Cp2p)\phi(\|w\|_{A_p^+}) \left(\int_{\mathbb{R}} |f|^p\,wdx \right)^\frac{1}{p} \left(\int_{\mathbb{R}} D(h)^p wdx \right)^\frac{1}{p}$$

$$\leq \frac{C}{\alpha} \phi(\|w\|_{A_p^+})\|f\|_{L^p(w)}\|h\|_{L^p(w)}.$$

The proof is completed by taking the supremum over all h with $\|h\|_{L^p(w)} = 1$. \qed

Proof of Corollary 1.4. Given a one-sided singular operator T^-, its adjoint operator is T^+. Let $w \in A_p^-$ then $\sigma = w^{-\frac{1}{p'}} \in A_{p'}^+ \text{ with } \|\sigma\|_{A_p^+} = \|w\|_{A_p}^{-\frac{1}{p-1}}$. Applying Corollary 1.3 to the one-sided singular operator T^+ and the weight σ, we get

$$\|T^+\|_{L^{p'}(\sigma)} \leq C\|w\|_{A_p}^{-\frac{1}{p-1}} \log \left(e + \|w\|_{A_p}^{-\frac{1}{p-1}} \right) \|f\|_{L^{p'}(\sigma)}$$

$$\leq C\|w\|_{A_p}^{-\frac{1}{p-1}} \log(e + \|w\|_{A_p})\|f\|_{L^{p'}(\sigma)}.$$

From this, by duality we obtain

$$\|T^-\|_{L^p(w)} \leq C\|w\|_{A_p}^{-\frac{1}{p-1}} \log\left(e + \|w\|_{A_p}\right) \|f\|_{\sigma} \|_{L^{p,1}(\sigma)},$$

where $L^{p,1}(\sigma)$ is the standard weighted Lorentz space. Setting here $f = \sigma \chi_E$, where E is any measurable set, completes the proof. \qed
5. Appendix

We will give an easier proof of a slight weak version of Lemma 3.2.

In [24] M. S. Riveros and A. de la Torre, using Lemma 5 in [13], obtained another version of weak reverse Hölder’s inequality. If we use the equation (3.2), following the same steps of the proof in [24], we obtain a new result with special control on the constant.

Lemma 5.1. [24] (One-sided RHI) Let $1 \leq p < \infty$, $w \in A^+_p$ and $a < b < c$ with $b - a = 2(c - b)$. If $r = 1 + \frac{1}{4^{p+2}e^{e^p}\|w\|_{A^+_p}}$, for $p > 1$ and $r = 1 + \frac{1}{16e^{e\|w\|_{A^+_1}}}$, for $p = 1$ then

$$\frac{1}{b-a} \int_a^b w^r \leq C \left(\frac{1}{c-a} \int_a^c w \right)^r,$$

where C does not depend on the weight w.

The following Lemma is a slight weak version of Lemma 3.2.

Lemma 5.2. Let $p \geq 1$, $w \in A^-_p$, $a < b < c$ such that $2(b-a) = (c-b)$ and $E \subseteq (b,c)$ a measurable set. Then for every $\varepsilon > 0$ there exists $C = C(\varepsilon, p)$ such that if $|E| < e^{-C\|w\|_{A^-_p}}(b-a)$ then $w(E) < \varepsilon w(a,c)$.

Proof. We will use the analogous to Lemma 5.1 for A^-_p weights.

$$w(E) = \frac{1}{c-b} \int_b^c w \chi_E (c-b) \leq (c-b) \left(\frac{1}{c-b} \int_b^c w^r \right)^{\frac{1}{r}} \left(\frac{1}{c-b} \int_b^c \chi_E \right)^{\frac{1}{r'}}$$

$$= \left(\frac{|E|}{c-b} \right)^{\frac{1}{r'}} (c-b) C \frac{1}{c-a} \int_a^c w \leq \left(\frac{|E|}{b-a} \right)^{\frac{1}{r'}} C \int_a^c w \leq \varepsilon w(a,c),$$

where the last inequality is obtained by following the same steps as in (3.4). □

As a Corollary of Lemma 5.1 we obtain another proof of Proposition 3 in [13], this is

Corollary 5.3. Let $1 < p < \infty$ and $w \in A^+_p$. Then $w \in A^+_{p-\varepsilon}$, with $p - \varepsilon = \frac{p-1}{r(\sigma)} + 1$ where $\sigma = w^{1-p'}$ and $r(\sigma)$ is the one obtained in the analogous version of Lemma 5.1 for a weight in A^-_p.

Proof. In [24] it is proved that $w \in A^+_p$ if, and only if there exists $C > 0$ such that

$$\sup_{a,b,c,d} \frac{1}{(b-a)^p} \left(\int_a^b w \right)^p \left(\int_c^d w_p^{-1} \right)^{p-1} < C. \quad (5.1)$$
where the supremum is taken over all \(a, b, c, d \) such that \(a < b < c < d \) and \(2(b - a) = 2(d - c) = c - b \).

Let \(r = r(\sigma) \) be the one of Lemma 5.1 and \(a, b, c, d \) as in the previous line, then

\[
\left(\frac{1}{b - a} \int_a^b w \right) \left(\frac{1}{d - c} \int_c^d w^{p-\varepsilon-1} \right) \leq \left(\frac{1}{b - a} \int_a^b w \right) \left(\frac{1}{d - c} \int_c^d \sigma^r \right)^{\frac{p-1}{r}} \leq \left(\frac{1}{b - a} \int_a^b w \right) \left(\frac{1}{d - b} \int_b^d \sigma \right)^{p-1} \leq (C)^{p-1} ||w||_{A_p^r},
\]

where \(C \) does not depend on \(p \) nor \(w \). \(\square \)

Acknowledgement. We want to thank the referee for the helpful comments and indications. Also we want to thank to C. Pérez for suggesting this problem.

REFERENCES

[1] H. Aimar, L. Forzani and F. J. Martín-Reyes, *On weighted inequalities for singular integrals*, Proceedings of the American Mathematical Society, 125, (1997), 2057–2064.
[2] S. M. Buckley, *Estimates for operator norms on weighted spaces and reverse Jensen inequalities*, Trans. Amer. Math. Soc., 340 no. 1, (1993), 253–272.
[3] L. Carleson, *On convergence and growth of partial sums of Fourier series*, Acta Math. 116, (1966), 135–157.
[4] O. Dragićević, L. Grafakos, M. C. Pereyra and S. Petermichl, *Extrapolation and sharp norm estimates for classical operators on weighted Lebesgue spaces*, Publ. Math., 49 no. 1, (2005), 73–91.
[5] C. Fefferman, E. M. Stein, *Some maximal inequalities*, Amer. Jour. Math. 93, (1971), 107–115.
[6] J. García-Cuerva and J. L. Rubio de Francia, *Weighted Norm Inequalities and Related Topics*, North Holland Mathematics Studies 116, (1985).
[7] T. Hytönen, M. Lacey and C. Pérez, *Sharp weighted bounds for the q-variation of singular integrals*, Bulletin London Math. Soc. (2013); doi: 10.1112/blms/bds114.
[8] T. Hytönen and C. Pérez, *Sharp weighted bounds involving A∞*, Analysis and PDE 6, no 4, (2013) 777–818.
[9] T. Hytönen, C. Pérez and E. Rela, *Sharp Reverse Hölder property for A∞ weights on spaces of homogeneous type*, Journal of Functional Analysis 263, (2012) 3883–3899.
[10] A. K. Lerner, S. Ombrosi, and C. Pérez, *Sharp A1 bounds for Calderón-Zygmund operators and the relationship with a problem of Muckenhoupt and Wheeden*, Int. Math. Res. Not. IMRN 2008, no. 6, Art. ID rnm161, 11 pp.
[11] A. K. Lerner, S. Ombrosi, and C. Pérez, *A1 Bounds for Calderón-Zygmund operators related to a problem of Muckenhoupt and Wheeden*, Math. Res. Lett. 16 no. 1, (2009), 149–156.
[12] M. Lorente, J. M. Martell, C. Pérez and M. S. Riveros, *Generalized Hörmander condition and weighted endpoint estimates*, Studia Math. 195 no 2, (2009), 157–192.
[13] F. J. Martín-Reyes, *New proofs of weighted inequalities for the one-sided Hardy-Littlewood functions*, Proceedings for the American Mathematical Society. 117, (1993), 691–698.
[14] F. J. Martín-Reyes, P. Ortega and A. de la Torre, *Weighted inequalities for one-sided maximal functions*, Trans. Amer. Math. Soc. 319, (1990), 517–534.
[15] F. J. Martín-Reyes, L. Pick and A. de la Torre, *A∞ Condition*, Can. J. Math. 45 no 6, (1993), 1231–1244.
[16] F. J. Martín-Reyes and A. de la Torre, *Two weight norm inequalities for fractional one-sided maximal operators*, Proceedings of the American Mathematical Society. 117, (1993), 483–489.
[17] F. J. Martín-Reyes and A. de la Torre, Sharp weighted bounds for one-sided maximal operators, to appear in Collectanea Mathematica, 2015.

[18] B. Muckenhoupt, R. Wheeden, Personal communication to C. Pérez.

[19] F. Nazarov, A. Reznikov, V. Vasyunin, A. Volberg, Weak norm estimates of weighted singular operators and Bellman functions, Preprint, http://sashavolberg.files.wordpress.com/2010/11/a11_7loghilb11_21_2010.pdf.

[20] C. Pérez, Weighted norm inequalities for singular integral operators, J. London Math. Soc., 49, (1994), 296–308.

[21] C. Pérez, Personal communication.

[22] M. C. Reguera, On Muckenhoupt-Wheeden conjecture, Adv. Math. 227, No. 4, (2011), 1436–1450.

[23] M. C. Reguera and C. Thiele, The Hilbert transform does not map \(L^1(Mw)\) to \(L^{1,\infty}(w)\), Math. Res. Lett. 19 (2012), no. 1, 1–7.

[24] M. S. Riveros and A. de la Torre, On the best ranges for \(A_p^+\) and \(RH_p^+\), Czechoslovak Mathematical Journal, 51 (126), (2001), 285–301.

[25] E. Sawyer, Weighted inequalities for the one-sided maximal Hardy Littlewood maximal functions, Trans. Amer. Math. Soc. 297, (1986), 53–61.

[26] E. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton University Press., (1975).

(Received October 29, 2014)

María Silvina Riveros
Facultad de Matemática Astronomía y Física
Universidad Nacional de Córdoba
CIEM (CONICET) 5000 Córdoba, Argentina
e-mail: sriveros@famaf.unc.edu.ar

Raúl Emilio Vidal
Facultad de Matemática Astronomía y Física
Universidad Nacional de Córdoba
CIEM (CONICET) 5000 Córdoba, Argentina
e-mail: rauloemilio@gmail.com