Fe–rich olivine from an andesite dike in Miocene Shitara volcanic rocks, central Japan: a revised relationship between Mg/Fe ratio and Raman spectrum in olivine

Masaki ENAMI*, Aya NISHII**,†, Takashi MOURI**,‡, Motohiro TSUBOI*** and Yui KOUKETSU**

*Institute for Space–Earth Environmental Research, Nagoya University, Nagoya 464-8601, Japan
**Department of Earth and Planetary Sciences, Graduate School of Environmental Studies, Nagoya University, Nagoya 464-8601, Japan
***Department of Applied Chemistry for Environment, School of Science and Technology, Kwansei Gakuin University, Hyogo 669-1337, Japan
†Present address; Aichi Prefectural Tokai Commercial High School, Aichi 477-0031, Japan
‡Present address; Environmental Affairs Bureau, City of Nagoya, Nagoya 460-8508, Japan

Olivine is a major mineral in ultramafic and mafic rocks. Due to the higher Mg/Fe partition coefficient of olivine than the coexisting phases, the occurrences of Mg–poorer olivine grains, especially with Mg# [= Mg/(Mg + Fe2+)] = 0.2–0.6, are rarely reported, and thus, their spectroscopic data are limited. Fe–rich olivine phenocrysts showing compositional zoning with Mg# = ~0.5 (core) and ~0.3 (rim) and microphenocrysts with Mg# = ~0.4 (core) and ~0.2 (rim) occur in basaltic trachyandesite of Miocene Shitara volcanic rocks in central Japan. These olivine grains were investigated by Raman spectroscopy. Combining our data with the published values, we have revised the equation for Mg#–Raman spectrum relationship proposed by Mouri and Enami (2008) as follows: Mg# = 0.005446ω − 0.20259ω + 1.8442 (correlation coefficient r² = 0.984), where ω is the difference between the doublet peak positions (κ₂ − κ₁).

Keywords: Fe–rich olivine, Raman spectroscopy, Mg#, Solid solution, Shitara volcanic rocks

INTRODUCTION

Laser Raman spectroscopy is widely used in earth and planetary sciences because of its potential to analyze several kinds of information such as the temperature and pressure conditions of minerals at the time of crystallization, their chemical composition, and crystal structure (McMillan and Hofmeister, 1988; Dubessy et al., 2012; Bodnar and Frezzotti, 2020; Korsakov et al., 2020; Nasdala and Schmidt, 2020). Thus, Raman spectroscopy has been applied extensively to identify minute phases in terrestrial and extraterrestrial materials and to the non-destructive analysis of their chemical compositions.

Olivine grains occur widely in Earth’s crust and upper mantle, and in meteorites. They have a characteristic Mg# [= Mg/(Mg + Fe2+)], which is closely related to the host rocks and their modes of occurrence. Therefore, the composition of olivine grains retains important information on the petrogenesis of their host rocks. Guyot et al. (1986) demonstrated that the linear shift in the vibration peaks of SiO₄ tetrahedra, induced by Fe–Mg substitution, is useful for estimating the chemical composition of olivine. More specifically, the doublet near 820 and 850 cm⁻¹ has been used to identify the composition of olivine grains. Wang et al. (2004) and Kuebler et al. (2006) provided equations to describe the quantitative relationship between Mg# [= Mg/(Mg + Fe²⁺)] and doublet wavenumbers for the full range of forsterite (Mg₂SiO₄)–fayalite (Fe₂SiO₄) solid solution. Mouri and Enami (2008) and Ishibashi et al. (2012), respectively, proposed new parameters for the difference between the doublet wavenumbers (represented by ω) and a set of ΔMg# (= Mg#ref − Mg#) and Δν(= νref − ν) values with which the Mg# can be
estimated, where \(\nu \) is the wavenumber of the olivine spectrum for each Mg\# and \(\nu_{\text{ref}} \) is the wavenumber of an olivine grain with a reference value of Mg\#ref. Breitenfeld et al. (2018) analyzed 181 spectrum data using the partial least squares model and concluded that the peak near 850 cm\(^{-1} \) is best for estimating the Mg\# value.

Although the published spectroscopic data cover the forsterite–fayalite series, most of the data are reported for Mg\# > 0.6 or Fe-rich series with Mg\# < 0.2; therefore, data for olivine series with Mg\# = 0.25–0.5 are rare (Fig. 1). In this study, we conducted Raman spectroscopic analysis of Fe-rich olivine grains (Mg\# = 0.2–0.5) in Miocene volcanic rocks from Shitara province, central Japan. These data are useful for revising the compositional dependence of the Raman spectra on the forsterite–fayalite solid solution series, and based on our data, we propose a revised \(\omega - \text{Mg\#} \) diagram modified after Mouri and Enami (2008).

SAMPLE DESCRIPTION

The olivine–bearing sample studied was collected from the Toei-cho area where the Neogene Hokusetu Group and the Shitara igneous complex are widely distributed (e.g., Takada, 1978). Miocene andesitic dikes and sills, a member of the Shitara igneous complex, have intruded extensively into the sedimentary sequences of the Hokusetu Group (Geshi, 2003). The rock sample is dark greenish colored basaltic trachyandesite with a whole-rock composition of 54.4 wt% SiO\(_2\), 6.2 wt% Na\(_2\)O + K\(_2\)O, and FeO*/MgO ratio of 5.4 (Table 1), which is similar to the composition of other Shitara volcanic rocks such as alkali basalt–trachyandesite described by Geshi (2000, 2003).

Figure 1. (a) Cumulative diagram and (b) histogram of Mg\# of natural and synthetic olivine grains with the Raman spectroscopic data reported in the literature. The data are from Breitenfeld et al. (2018), Chopelas (1991), Guyot et al. (1986), Ishibashi et al. (2012), Kuebler et al. (2006), Mouri and Enami (2008), Weber et al. (2014), Yasuzuka et al. (2009), and RRUFF (https://rruff.info: 02 Nov., 2020).

Table 1. Whole-rock composition of an olivine-bearing andesite from the Miocene Shitara volcanic rocks in central Japan

	(wt\%)	(ppm)
SiO\(_2\)	54.35	V
TiO\(_2\)	1.90	Cr
Al\(_2\)O\(_3\)	14.62	Co
FeO*	13.10	Ni
MnO	0.23	Cu
MgO	2.17	Zn
CaO	5.89	Pb
Na\(_2\)O	4.47	Sr
K\(_2\)O	1.73	Y
P\(_2\)O\(_5\)	0.87	Zr
Total	99.33	Nb
		Ba
		Pb
		Th

The analytical procedures used in this study were identical to those in Wakasugi et al. (2020).
* Total iron as FeO.

The studied olivine grains occur as euhedral/subhedral phenocrysts (1–1.5 mm in size) and subhedral microphenocrysts (10–100 \(\mu \)m in size) in groundmass. The phenocrysts show clear compositional zoning with Mg\# = ~ 0.5 in the core and Mg\# = ~ 0.3 in the rim; the microphenocrysts are slightly Mg–poorer (Mg\# = 0.4–0.2) than the phenocrysts. The abundance of MnO, NiO, and CaO are 0.7–1.3, <0.1, and 0.2–0.4 wt%, respectively. In addition to olivine, the studied sample contains euhedral/subhedral phenocrysts of augite (Mg\# = 0.64–0.40), plagioclase (An\(_{31-39}\)), and a holocrystalline groundmass consisting of fine-grained plagioclase (An\(_{12-28}\)), augite (Mg\# = 0.60–0.50), ilmenite, and magnetite. The olivine phenocrysts are partly replaced by sheet silicate, probably stilpnomelane. Augite and plagioclase phenocrysts occasionally form aggregates with interfinger texture. These petrographical characteristics are similar to the P1-type Shitara volcanic rocks studied by Geshi (2000).
RESULTS AND DISCUSSION

Quantitative analysis of olivine was performed using an electron probe microanalyzer [EPMA, JEOL JXA–8900R (WDS)] at the Petrology Laboratory of Nagoya University. The accelerating voltage, specimen current, and beam diameter were maintained at 15 kV, 12 nA, and 2–3 µm, respectively. Matrix corrections were performed using the α-factor table of Kato (2005).

Raman spectra were obtained using a laser Raman micro–spectrophotometer (Nicolet Almega XR, Thermo Scientific) with a grating of 2400 lines/mm at the Petrology Laboratory of Nagoya University. The instrument was equipped with a 532 nm Nd–YAG laser, Peltier-cooled charge-coupled device (CCD) detector with 256 × 1024 pixels (Andro Technology), and an automated confocal microscope (Olympus BX51). The 100× objective lens from Olympus Mplan–BD has a numerical aperture of 0.9. The wavenumber resolution is about 1 cm$^{-1}$. The analytical reproducibility determined using the 520 cm$^{-1}$ band of Si wafer is ±0.3 cm$^{-1}$ (1σ) (Enami et al., 2007).

The Raman spectrum was separated using PeakFit v. 4.12 (SeaSolve) via a Voigt area function by subtracting background employing a linear baseline in the spectral range of 600–1200 cm$^{-1}$. Although Mouri and Enami (2008) denoted the doublets near 820 and 850 cm$^{-1}$ as κ2 and κ1, respectively, considering the converse notations in the literature, we referred these peaks as κ1 and κ2, respectively. In accordance with this change, the parameter ω (= κ2 – κ1), proposed by Mouri and Enami (2008), is now defined as ω = κ1 – κ2.

Table 2 lists the sets of Raman spectra and chemical compositions for the newly analyzed Fe-rich olivine grains. The Raman spectra data plotted in Figures 2–4 of Mouri and Enami (2008) are listed in Supplementary Table S1 (available online from https://doi.org/10.2465/jmps.201204). The abbreviations for minerals and end-members follow Whitney and Evans (2010).

Table 2. Doublet peak data and chemical compositions of olivine

Anal. No.	Texture	κ_1 (cm$^{-1}$)	κ_2 (cm$^{-1}$)	ω (cm$^{-1}$)	Chemical composition (apfu for total divalent cations = 2)
18	P (core)	817.1 (0.0)	845.5 (0.1)	28.4 (0.1)	Fe$^2+$ = 0.021, Mn = 0.947, Mg = 0.009, Ca = 0.001, Ni = 0.481
32	P (rim)	815.7 (0.2)	842.0 (0.4)	26.3 (0.1)	Fe$^2+$ = 0.033, Mn = 0.592, Mg = 0.011, Ca = 0.002, Ni = 0.303
30	G	815.9 (0.2)	844.2 (0.1)	28.3 (0.2)	Fe$^2+$ = 0.027, Mn = 0.764, Mg = 0.012, Ca = 0.001, Ni = 0.390
34	G	815.4 (0.2)	841.9 (0.1)	26.5 (0.2)	Fe$^2+$ = 0.035, Mn = 0.462, Mg = 0.009, Ca = 0.002, Ni = 0.236
22	G	815.2 (0.0)	841.2 (0.1)	26.0 (0.1)	Fe$^2+$ = 0.033, Mn = 0.429, Mg = 0.009, Ca = 0.002, Ni = 0.219

Note: ω = κ_2 – κ_1; apfu, atom per formula unit; Mg# = Mg/(Mg + Fe$^{2+}$); P, phenocryst; G, microphenocryst in groundmass.

* Total iron as Fe$^{2+}$.

The number in parentheses indicates the standard deviation (1σ).

Figure 2. Relationship between the positions of the strong doublet peaks (κ_1 and κ_2) and the Mg# of forsterite–fayalite series. * Linear 1 indicate the regression line for 22 data points [E (LT)]; and Linear 2 indicate the regression line for a set of two sample groups with high Mg# (>0.25, E (LH): 17 data points] and low Mg# (≤0.25, E (LL): 5 data points], respectively. ** Quadratic indicates regression curve for 22 data points [E (Q)]. In Figure 3 of Mouri and Enami (2008), the κ_1 and κ_2 data for 99–01, 99–02, and 7232915_G02 were plotted in the incorrected positions. These errors have been revised in this figure.

Mg# dependency of Raman spectra

Figure 2 shows the relationship between κ_1–Mg# and κ_2–Mg# obtained using the dataset provided in Mouri and Enami (2008) and in Table 2 (this study). The natural Fe–rich olivine contains varying amounts of tephroite (Mn$_3$SiO$_4$) component, which has lower κ_1 and higher κ_2 values (κ_1 = 807.5 ± 0.1 cm$^{-1}$ and κ_2 = 839.3 ± 0.1 cm$^{-1}$) than fayalite (κ_1 = 814.7 ± 0.3 cm$^{-1}$ and κ_2 = 836.8 ± 0.5 cm$^{-1}$).
cm$^{-1}$). Thus, with the incorporation of the tephroite component, the κ_1 value of the Fe-rich olivine decreases whereas the κ_2 value increases (Mouri and Enami, 2008). Regression analyses of the relationship between κ_1–Mg$#$ and κ_2–Mg$#$ in the forsterite–fayalite series (Fig. 2) were applied to the Mn–poor Mg–Fe olivine (Mn < 0.05 apfu) following Mouri and Enami (2008).

Mouri and Enami (2008) used the ω value for discussing the Mg$#$ dependency of the Raman spectra to avoid systematic errors in individual measurements of κ_i values. By considering the five new data points of olivine with Mg$# = 0.22$–0.48 (Table 2), we have revised the ω–Mg$#$ diagram from Mouri and Enami (2008) as shown in Figure 3.

Regression analysis

For regression analyses of the Mg$#$ dependencies on Raman spectra, the former studies have either used quadratic formulas to fit their Mg$#$ and κ_i (or ω) datasets (Wang et al., 2004; Kuebler et al., 2006; Mouri and Enami, 2008; Foster et al., 2013; Breitenfeld et al., 2018) or used linear formulas (Guyot et al., 1986; Yasuzuka et al., 2009; Ishibashi et al., 2012). In particular, Ishibashi et al. (2012) reported a clear dataset where the Raman spectra displayed linear variation with Mg$#$ for olivine grains with Mg$# > 0.63$.

Kolesov and Tanskaya (1996) analyzed the dependency of totally symmetric vibrations of olivine on compositions and reported that there were significant changes (steps) of the Raman wavenumber at around Mg$# = 0.6$ and 0.3; the step was most evident on the peak around 820 cm$^{-1}$. Gaisler and Kolesov (2007) also reported linear Mg$#$ dependencies on the peak positions of olivine groups with Mg$# > ~ 0.3$ and Mg$# \leq 0.3$, suggesting a one-step change of the wavenumber at around Mg$# = 0.2$–0.3. They attributed this dynamic effect to the interaction of spin and vibration that generates a phonon–magnon excitation in the disordered magnetic medium. Therefore, the relationships between κ_1–Mg$#$ and κ_2–Mg$#$ (Fig. 2) and ω–Mg$#$ (Fig. 3) are probably explained also by the combination of the two regression lines for the olivine groups, with Mg$#$ bordering ~ 0.2–0.3. Table 3 lists the intercepts and coefficients of the equations that depict the relationship between κ_1–Mg$#$, κ_2–Mg$#$, and ω–Mg$#$ after calibration using quadratic [E (Q)] and linear [E (LT), E (LH), and E (LL)] formulae, where LT, LH, and LL indicate the regression lines for Mg$#$ = 0–1, Mg$# > 0.25$, and Mg$# \leq 0.25$, respectively.

The controversies regarding the formulation of the Mg$#$ dependencies on the Raman spectra of olivine are in terms of the following conditions, i.e., if the use of (1) linear or polynomial formula, (2) single group data for the total solid solution or two groups bordering at ~ 0.2–0.3 Mg$#$, or (3) κ_i or ω as the Raman parameter is more appropriate for regression analysis of a forsterite–fayalite series. Although there is no logical basis for adopting a quadratic or higher-order formula (Breitenfeld et al.,
we employed a quadratic formula to fit the 17 Mn-poor data points in our previous paper (Mouri and Enami, 2008) because of the following reasons: (1) significant differences in the trends between olivine groups with Mg# > 0.6 and < 0.2, (2) lack of Raman data for olivine with Mg# = 0.2–0.6, and (3) slightly higher correlation coefficient (r^2) in the quadratic fitting ($r^2 = 0.956, 0.988$, and 0.991 for κ_1, κ_2, and ω values, respectively) compared to the linear fitting ($r^2 = 0.921, 0.980$, and 0.988 for κ_1, κ_2, and ω values, respectively).

Furthermore, while calibrating the 22 Mn-poor data that included the five values where Mg# ranged from 0.2 to 0.5, the quadratic fitting $E[Q]$ provided a higher correlation coefficient (r^2) in the quadratic fitting ($r^2 = 0.956, 0.988$, and 0.991 for κ_1, κ_2, and ω values, respectively) compared to the linear fitting ($r^2 = 0.921, 0.980$, and 0.988 for κ_1, κ_2, and ω values, respectively).

Table 3. Results of least-squares regressions for the relationship between the Mg# and the Raman parameters

Parameter	Equation	Formula	Composition	$Mg# = M0 + M1 \times 10^{-3} \times (κ_1^*, \omega)$	$M0$	$M1$	$M2$	r^2
$κ_1^*$	E (Q)	Quadratic	$0 \leq Mg# \leq 1.0$	-2.9556	2.9263	-5.438	0.966	
	E (LT)	Linear	$0 \leq Mg# \leq 1.0$	-0.9621	0.8020	0.937	0.935	
	E (LH)	Linear	$0.25 < Mg#$	-0.6404	0.6607	0.124	0.107	
	E (LL)	Linear	$Mg# \leq 0.25$	-0.5830	0.4985	-0.124	0.107	
$κ_2^*$	E (Q)	Quadratic	$0 \leq Mg# \leq 1.0$	-2.7746	0.9485	-0.510	0.985	
	E (LT)	Linear	$0 \leq Mg# \leq 1.0$	-1.6435	0.4630	0.982	0.966	
	E (LH)	Linear	$0.25 < Mg#$	-1.4892	0.4344	0.966	0.964	
	E (LL)	Linear	$Mg# \leq 0.25$	-1.2855	0.3667	0.764	0.764	
$ω$	E (Q)	Quadratic	$0 \leq Mg# \leq 1.0$	1.8442	-2.0259	5.446	0.984	
	E (LT)	Linear	$0 \leq Mg# \leq 1.0$	-2.3284	1.0113	0.963	0.964	
	E (LH)	Linear	$0.25 < Mg#$	-2.8849	1.1922	0.964	0.964	
	E (LL)	Linear	$Mg# \leq 0.25$	-1.0392	0.4869	0.894	0.894	

Note that the parameter $κ_1^*$ ($= κ_1 - 800$) was used instead of $κ_1$ to avoid a large absolute value of the intercept (M0) of the regression equation.

Figure 5. Comparisons of Mg# values calibrated using the new quadratic formula [E (Q),] with those calibrated using linear formulae E (LL) and E (LH) of $κ_1$, $κ_2$, and $ω$ values, and quadratic formula (ME08) proposed by Mouri and Enami (2008). Solid line indicates the Mg#(Q):Mg#(LL/LH) or Mg#(Q):Mg#(ME08) = 1:1.

Figure 5 compares the Mg#(Q) value calibrated using the quadratic function $E[Q]$ with those calibrated using the linear formulae $E[LL]$ and $E[LH]$ of $κ_1$, $κ_2$, and $ω$ values, and quadratic formula (ME08) proposed by Mouri and Enami (2008). The results were compared with those of linear fittings for two compositional groups of Mg# ≤ 0.25 [E (LL)] and Mg# > 0.25 [E (LH)].

The Mg# values have lower $D_{LL/LH–Q}$ than a relatively large difference in the Mg# between the two calibrations $D_{LL/LH–Q} = Mg#(LL/LH) - Mg#(Q)$: −0.05–0.08 and −0.02–0.13 for the olivine groups of Mg# ≤ 0.25 and Mg# > 0.25, respectively. The $D_{LL/LH–Q}$ values of the $κ_2$ peak also have relatively large differences of −0.04–0.05 and −0.01–0.04 for Mg# ≤ 0.25 and Mg# > 0.25, respectively. The $ω$ values have lower $D_{LL/LH–Q}$ than...
those of the κ_1 and κ_2 peaks; these values are -0.03–0.02 and -0.04–0.03 for $\text{Mg}# \leq 0.25$ and $\text{Mg}# > 0.25$, respectively. Consequently, the ω value produces similar $\text{Mg}#$ values for all forsterite–fayalite solid solutions with a difference of less than 0.04, regardless of which of the following regression formulae of the quadratic and linear fits is adopted:

$$\text{Mg}#(Q)_\omega = 0.005446\omega^2 - 0.20259\omega + 1.8442 \quad (r^2 = 0.984) \quad E(Q)_\omega,$$

$$\text{Mg}#(LH)_\omega = 0.04869\omega - 1.0392 \quad (r^2 = 0.894) \quad E(LH)_\omega,$$

and

$$\text{Mg}#(LH)_\omega = 0.11922\omega - 2.8849 \quad (r^2 = 0.964) \quad E(LH)_\omega.$$

The regression equation in Mouri and Enami (2008) overestimates the $\text{Mg}#$ values up to 0.06 compared to the revised $E(Q)_\omega$ equation, over a wide $\text{Mg}#$ range of about 0.1–0.8.

Comparison with previous studies

Figure 6 compares the results of regression analyses in this study and data with $\text{Mn} < 0.05$ apfu in the literature. The data from the terrestrial olivine grains with $\text{Mg}# > 0.6$ are most consistent with the regression curve $E(Q)_\omega$ (Fig. 6a). However, the data for terrestrial olivine grains with $\text{Mg}# < 0.6$ were more scattered than that for $\text{Mg}# > 0.6$. As the $\text{Mg}#$ of olivine decreases, the κ_1 and κ_2 doublet peaks gradually approach each other, and thus, their degree of overlapping increases (e.g., Kuebler et al., 2006). Therefore, with the decrease in $\text{Mg}#$, it becomes increasingly difficult to separate the two peaks and determine their exact positions. In addition, the results of the peak separation can vary depending on the function and model employed for peak fitting (Breitenfeld et al., 2018). The combined consequence is that the data of olivine grains with a lower $\text{Mg}#$ tend to have higher uncertainties and may be more scattered than the data of high $\text{Mg}#$ olivine grains.

The synthetic grains display relatively more scattered data than the terrestrial grains, with some of the former data being plotted far from the regression curve and the lines proposed in this study (Fig. 6b). Considerable cation re-ordering occurs at the octahedral sites of the Fe–Mg–Mn olivine during the quenching process (e.g., Akamatsu and Kumazawa, 1993; Henderson et al., 1996), and it was shown that the degree of order under room temperature reflects the sample cooling rate (Redfern et al., 1996). The cooling rates undergone by the synthetic olivine grains might not have fully recovered to those expected at room temperature conditions and from their $\text{Mg}#$ values. Con-
Consequently, each synthetic olivine grain might have retained various recovery rates for the ordering degree depending on its production process. Such a difference in the re-ordering degree might be one of the main factors for the variability in the Raman spectra of the synthetic olivine grains. However, this interpretation cannot explain why the Fe$_2$SiO$_4$ olivine data reported by Breitenfeld et al. (2018) deviates from the regression curve proposed here, and other factors need to be considered.

An olivine grain in a meteorite with Mg\# = 0.34 studied by Kuebler et al. (2006) produces a low \(\omega \) value (24.5 cm$^{-1}$), which is far from the expected \(\omega \) value. Foster et al. (2013) reported that an experimentally impacted olivine displays a different \(\omega - \text{Mg\#} \) trend, which systematically shifts to the lower Mg\# and/or higher \(\omega \) side compared to the un-impacted olivine. Although the olivine data reported by Kuebler et al. (2006) show a shift toward the higher Mg\# and/or lower \(\omega \) side, which is contrary to the effect reported by Foster et al. (2013), we suggest that any impact or other astronomical events experienced by the host meteorite might have some influence on the Raman spectra of the olivine.

CONCLUSIONS

EPMA and Raman spectroscopic analyses were performed on Fe-rich olivine grains (Mg\# = 0.2–0.5) in the andesitic rocks from the Miocene Shitara volcanic complex. Considering these data, we modified the equation proposed by Mouri and Enami (2008) to determine Mg\# using the wavenumber difference of a high-intensity doublet between 800 and 860 cm\(^{-1}\) (\(\omega = \kappa_2 - \kappa_1 \)). Some published data on the synthetic forsterite–fayalite series and olivine in meteorites are plotted far from the \(\omega - \text{Mg\#} \) regression equation proposed here. In some of the synthesized crystals, the degree of Mg–Fe ordering between the M(1) and M(2) sites may not reach the values expected from the room temperature and chemical composition due to different cooling rates during experiments. The difference in the degree of ordering might have affected the wavenumber of the Raman spectra. In addition, impact events experienced by meteorites might have affected the Raman spectra of olivine. We should take these points into account while applying the proposed regression equation to synthetic crystals or olivine in samples that may have been impacted.

ACKNOWLEDGMENTS

The authors thank the members of the petrology group at Nagoya University for discussions and comments. The constructive comments by J. Yamamoto and an anonymous reviewer, and the editorial suggestions by T. Kawakami were helpful in improving the manuscript. This research was partially supported by JSPS KAKENHI Grant Number JP17K05705 to M.E.

SUPPLEMENTARY MATERIAL

Supplementary Table S1 is available online from https://doi.org/10.2465/jmps.201204.

REFERENCES

Akamatsu, T. and Kumazawa, M. (1993) Kinetics of intracrystalline cation redistribution in olivine and its implication. Physics and Chemistry of Minerals, 19, 423-430.

Bodnar, R.J. and Frezzotti, M.L. (2020) Microscale chemistry: Raman analysis of fluid and melt inclusions. Elements, 16, 93-98.

Breitenfeld, L.B., Drink, M.D., Carey, J.C., Tague, T.J., et al. (2018) Predicting olivine composition using Raman spectroscopy through band shift and multivariate analyses. American Mineralogist, 103, 1827-1836.

Chopelas, A. (1991) Single crystal Raman spectra of forsterite, fayalite, and monticellite. American Mineralogist, 76, 1101-1109.

Dubessy, J., Caumon, M.-C. and Rull, F.E. (2012) European Mineralogical Union Notes in Mineralogy. 12, Raman spectroscopy applied to Earth sciences and cultural heritage. pp. xvii + 504, Mineralogical Society of Great Britain and Ireland.

Enami, M., Nishiyama, T. and Mouri, T. (2007) Laser Raman microspectrometry of metamorphic quartz: A simple method for comparison of metamorphic pressures. American Mineralogist, 92, 1303-1315.

Foster, N.F., Wozniakiewicz, P.J., Price, M.C., Kearsley, A.T. and Burchell, M.J. (2013) Identification by Raman spectroscopy of Mg–Fe content of olivine samples after impact at 6 km s\(^{-1}\) onto aluminium foil and aerogel: In the laboratory and in Wild-2 cometary samples. Geochemistry et Cosmochimica Acta, 121, 1-14.

Gaisler, S.V. and Kolesov, B.A. (2007) Raman spectra of olivine solid solutions (Fe$_x$Mg$_{1-x}$)$_2$SiO$_4$ and spin-vibration interaction. Journal of Structural Chemistry, 48, 61-65.

Geshi, N. (2000) Fractionation and magma mixing within intruding dike swarm: evidence from the Miocene Shitara-Otoge igneous complex, central Japan. Journal of Volcanology and Geothermal Research, 98, 127-152.

Geshi, N. (2003) Development of the Middle Miocene Otoge volcanic complex, Shitara district, central Japan. Journal of Geological Society of Japan, 109, 580-594 (in Japanese with English abstract).

Guyot, F., Boyer, H., Madon, M., Veldc, B. and Poirier, J.P. (1986) Comparison of the Raman microprobe spectra of (Mg, Fe)$_2$SiO$_4$ and Mg$_2$GeO$_4$ with olivine and spinel structures. Physics and Chemistry of Minerals, 13, 91-95.

Henderson, C.M.B., Knight, K.S., Redfern, S.A.T. and Wood, B.J. (1996) High-temperature study of octahedral cation exchange in olivine by neutron powder diffraction. Science, 271, 1713-1715.

Ishibashi, H., Arakawa, M., Yamamoto, J. and Kagi, H. (2012) Precise determination of Mg/Fe ratios applicable to terrestrial olivine samples using Raman spectroscopy. Journal of Raman
Kato, T. (2005) New accurate Bence-Albee α-factors for oxides and silicates calculated from the PAP correction procedure. Geostandards and Geoanalytical Research, 29, 83–94.

Kolesov, B.A. and Tanskaya, J.V. (1996) Raman spectra and cation distribution in the lattice of olivines. Materials Research Bulletin, 31, 1035–1044.

Korsakov, A.V., Kohn, M.J. and Perraki, M. (2020) Applications of Raman spectroscopy in metamorphic petrology and tectonics. Elements, 16, 105-110.

Kuebler, K.E., Jolliff, B.L., Wang, A. and Haskin, L.A. (2006) Extracting olivine (Fo–Fa) compositions from Raman spectral peak positions. Geochimica et Cosmochimica Acta, 70, 6201–6222.

McMillan, P.F. and Hofmeister, A. (1988) Infrared and Raman spectroscopy. In Reviews in Mineralogy Spectroscopic methods in Mineralogy and Geology (Hawthorne Frank, C. Ed.). Reviews in Mineralogy, 18, 99–159.

Mouri, T. and Enami, M. (2008) Raman spectroscopic study of olivine-group minerals. Journal of Mineralogical and Petrological Sciences, 103, 100–104.

Nasdala, L. and Schmidt, C. (2020) Applications of Raman spectroscopy in mineralogy and geochemistry. Elements, 16, 99–104.

Redfern, S.A.T., Henderson, C.M.B., Wood, B.J., Harrison, R.J. and Knight, K.S. (1996) Determination of olivine cooling rates from metal–cation ordering. Nature, 381, 407–409.

Takada, A. (1978) Structure of a cauldron in the Otoge ring complex, Shitara district, Aichi Prefecture, central Japan. Journal of Geological Society of Japan, 93, 107–120 (in Japanese with English abstract).

Wakasugi, Y., Wakaki, S., Tanioka, Y., Ichino, K., et al. (2020) A chronological and geochemical study of the Tadamigawa older–stage granites: Igneous activity in the west of the Tanakura Tectonic Line (TTL) of northeastern Japan. Geochemical Journal, 54, 203-220.

Wang, A., Kuebler, K.E., Jolliff, B.L. and Haskin, L.A. (2004) Mineralogy of a Martian meteorite as determined by Raman spectroscopy. Journal of Raman Spectroscopy, 35, 504–514.

Weber, I., Bottger, U., Pavlov, S.G., Jessberger, E.K. and Hubers, H.W. (2014) Mineralogical and Raman spectroscopy studies of natural olivines exposed to different planetary environments. Planetary and Space Science, 104, 163–172.

Whitney, D.L. and Evans, B.W. (2010) Abbreviations for names of rock–forming minerals. American Mineralogist, 95, 185–187.

Yasuoka, T., Ishibashi, H., Anakawa, M., Yamamoto, J. and Kagi, H. (2009) Simultaneous determination of Mg# and residual pressure in olivine using micro–Raman spectroscopy. Journal of Mineralogical and Petrological Sciences, 104, 395–400.

Manuscript received December 4, 2020
Manuscript accepted April 4, 2021
Manuscript handled by Tetsuo Kawakami