Remote sensing of river corridors: A review of current trends and future directions

Christopher Tomsett | Julian Leyland

Abstract
River corridors play a crucial environmental, economic, and societal role yet also represent one of the world's most dangerous natural hazards, making monitoring imperative to improve our understanding and to protect people. Remote sensing offers a rapidly growing suite of methods by which river corridor monitoring can be performed efficiently, at a range of scales and in difficult environmental conditions. This paper aims to evaluate the current state and assess the potential future of river corridor monitoring, whilst highlighting areas that require further investigation. We initially review established methods that are used to undertake river corridor monitoring, framed by the context and scales upon which they are applied. Subsequently, we review cutting edge technologies that are being developed and focussed around unmanned aerial vehicle and multisensor system advances. We also "horizon scan" for future methods that may become increasingly prominent in research and management, citing examples from within and outside of the fluvial domain. Through review of the literature, it has become apparent that the main gap in fluvial remote sensing lies in the trade-off between resolution and scales. However, prioritising process measurements and simultaneous multisensor data collection is likely to offer a bigger advance in understanding than purely from better surveying methods alone. Challenges regarding the legal deployment of more complex systems, as well as effectively disseminating data into the science community, are amongst those that we propose need addressing. However, the plethora of methods currently available means that researchers and monitoring agencies will be able to identify suitable techniques for their needs.

Keywords
autonomy, hazard monitoring, laser scanning, morphology, remote sensing, river monitoring, SfM, UAVs
Rivers play a crucial environmental and societal role, providing food, water, nutrients, flood and drought mitigation, transport, and potential energy, as well as providing habitats and supporting biodiversity that encourage recreational use (Postel & Richter, 2012). These ecosystem services are incredibly valuable, with freshwater resources contributing a significant component of the global natural capital (Costanza et al., 1997). This explains why 82% of the world’s population live on previously flooded land (Dilley, Chen, Deichmann, Lerner-Lam, & Arnold, 2005), whereas 87% have a river as their closest water body (Kummu, de Moel, Ward, & Varis, 2011). Conversely, rivers can present a considerable hazard to those in their vicinity, primarily through flooding (Hirabayashi et al., 2013). Flooding is identified as the most dangerous natural hazard, accounting for 43% of all disasters between 1995 and 2015, with flood events likely to become more severe as a result of climate change (UNISDR & CRED, 2015). Alongside flooding, bank erosion represents a hazard to those who reside near river banks (Islam & Guchhait, 2017; Thakur, Laha, & Aggarwal, 2012). However, world rivers are degrading in terms of water quality, sediment loads, and overall ecological diversity (Vörösmarty et al., 2010). Simultaneously, increasing rates of change in land cover across floodplains are affecting the hydrological regime, impacting on ecology, erosion, and flooding (Gregory, 2006; Remondi, Burlando, & Vollmer, 2016; Wasson et al., 2010). It is therefore imperative to monitor river corridors to (a) understand associated processes, (b) evaluate the nature of evolving hazards, (c) maintain ecological sustainability, and (d) preserve their integrity as a resource for future generations.

For the purposes of this review, “river corridors” can be defined broadly to include river channels, riparian zones, floodplains, and associated fluvial deposits, forming an overall classification framework, which can be used to aid research and management (Harvey & Gooseff, 2015). The dynamic interactions across the river corridor are especially important in the context of applied river management, whereby a holistic approach is necessary. River corridor units feed into management strategies and applied research, covering areas including hydrological exchange (Harvey & Gooseff, 2015; Malard, Tochner, Dole-Olivier, & Ward, 2002; Smith et al., 2008), ecosystem functionality (Brunke & Gonser, 1997; Poole, 2002; Stanford & Ward, 1993), monitoring of restored reaches (Bernhardt et al., 2007; Kail, Hering, Muhar, Gerhard, & Preis, 2007; Schneider et al., 2011), and geomorphic evolution (Magdaleno & Fernandez-Yuste, 2011; Ollero, 2010; Richards, Brasington, & Hughes, 2002).

Ultimately, we cannot view rivers as points or lines but as spatially continuous mosaics of information (Fausch, Torgersen, Baxter, & Li, 2002). Remote sensing techniques provide the ideal solution for river corridor monitoring due to their noninvasive nature, wide ranging spatial coverage, and repeatability. In order to fully understand the river corridor, we need data that are continuous over various scales, with remote sensing being the ideal solution to achieve this, allowing us to test the theory that has been presented, and provide a basis for our understanding of the fluvial form. Over time, river corridor research has been transformed through technological advances making surveys more accurate, efficient, and resolute both spatially and temporally (Entwistle, Heritage, & Milan, 2018; Marcus & Fonstad, 2010). Each advance in remote sensing allows subsequent progression in understanding. This enables novel research into the processes that are shaping river corridors, across scales ranging from grain dynamics to landform hydrological analysis. Herein, we define remote sensing in the broadest sense as any relevant noninvasive form of data collection.

2.1 A brief history of remote sensing of river corridors

In order to provide context for where we are, and where we may be heading, it is useful to know where we started in terms of remote sensing in the fluvial domain. During the 20th century, researchers began using early forms of remote sensing by studying aerial photos to investigate fluvial morphology and the driving processes involved (Coleman, 1969; Fairbairn, 1967; Kinoshita, 1967; Leopold & Langbein, 1966). The launch of the Landsat programme in 1972 led to a rapid uptake in remote sensing for fluvial research (Mertes, 2002), for example, to identify former river channels (Ghose, Kar, & Husain, 1979), investigate water quality and suspended sediment (Aranuvachapun & Walling, 1988), map flood hazards (Rango & Anderson, 1974), and understand the interactions between rivers and vegetation (Salo et al., 1986). By the turn of the century, it was considered that data with a resolution of 1 m were classed as high resolution (Mertes, 2002); however, this is no longer the case. Developments in airborne laser scanning (ALS) facilitated high-resolution collection of topographic data over large areas, allowing an improvement in the...
accuracy of data collected for applications such as flood modelling (Bowen & Waltermire, 2002; Cobby, Mason, & Davenport, 2001; Ruiz, González, Herms, & Bastianelli, 2002). The decision to stop degrading GPS data in 2000 facilitated more widespread use of remote sensing. Subsurface techniques more traditionally reserved for oceanic studies began to be used on fluvial systems for research in the early 2000's, with the deployment of acoustic doppler current profiling (ADCP) and multibeam echo sounding (MBES) methods (Muste, Yu, & Spasojevic, 2004; Parsons et al., 2005; Shields, Knight, Testa, & Cooper, 2003). Further improvements in resolution, but with limiting spatial extent, came through the use of terrestrial laser scanning (TLS) in the late 2000's (Heritage & Hetherington, 2007; Milan, Heritage, & Hetherington, 2007), breaking through the previous limits of spatial resolution offered by ALS and that were alluded to by Mertes (2002). Finally, a proliferation in the use of unmanned aerial vehicles (UAVs) in recent years has allowed the collection of high-resolution imagery from which dense models of the earth's surface are created over areas greater than achieved by TLS (Fonstad, Dietrich, Courville, Jensen, & Carbonneau, 2013; Lejot et al., 2007; Westoby, Brasington, Glasser, Hambrey, & Reynolds, 2012).

Whether or not there has been the genuine emergence of a subdiscipline in river sciences devoted to remote sensing, as proposed by Marcus and Fonstad (2010), is perhaps open for debate. We would argue that the remote sensing tools reviewed herein and the associated technical developments that we highlight are used across many disciplines of river science, driven by a desire to better understand the physical processes at work and effectively manage these systems.

2.2 | Current monitoring methods

One of the strengths of remote sensing lies in the broad range of temporal and spatial extents over which methods can be applied (Figure 2). However, there is no “perfect technique,” with factors such as cost, scale, and repeatability all playing an important role in determining the most appropriate method for a user (Figure 2). Many of the methods used have been thoroughly reviewed and can be used to inform researchers for deployment and processing, for example, UAV imagery (Westoby et al., 2012), TLS (Telling, Lyda, Hartzell, & Glennie, 2017), ALS (Hofle & Rutzinger, 2011), ADCP (Muste et al., 2004), and MBES (Jha, Mariethoz, & Kelly, 2013), as well as comparing between methods for bathymetric modelling (Kasvi, Salmela, Lotsari, Kumpula, & Lane, 2019). However, the aim of this review is not to provide a methodological overview but rather to evaluate the range of applications and how each approach can enhance our understanding of the river corridor.

2.2.1 | Roughness and grain size

Bed and bank studies have predominantly utilised statistical analysis of dense point clouds to extract roughness metrics. TLS has primarily been used to examine fine-scale roughness due to the high point density, for example, in exploring gravel bars (Heritage & Milan, 2009), variations in roughness pre-flood and post-flood (Picco et al., 2013), roughness across differing climatic drivers (Storz-Peretz, Laronne Jonathan, Surian, & Lucia, 2016), and bank skin drag coefficients (Leyland, Darby, Teruggi, Rinaldi, & Ostuni, 2015). Importantly,
research into how scan locations and grid cell size impacts roughness calculations has been undertaken to improve deployment (Baewert et al., 2014), and examining the potential for bed roughness extraction with through-water laser scanning has expanded the versatility of TLS (Smith, Vericat, & Gibbins, 2011).

Over larger spatial domains, roughness tends to be derived from overhead imagery. Structure from motion (SfM) techniques have been used for roughness calculations in flume experiments (Morgan, Brogan, & Nelson, 2017; Pearson, Smith, Klaar, & Brown, 2017) as well as field studies (Piton et al., 2018; Smith & Vericat, 2015; Woodget & Austrums, 2017) and river restoration analysis (see Figure 3; Marteau et al., 2017). UAV SfM therefore provides the ability to upscale the spatially limited static terrestrial based methods to feature and reach scales. Currently, calculating roughness over large areas is time consuming and further compounded by SfM data suffering from smoothing effects (Cook, 2017; Smith & Vericat, 2015). Yet ever increasing computer power may help extensive, high-resolution, roughness models become more feasible.

Below water, MBES techniques are predominantly used for bathymetric topography, although research by both Guerrero and Lamberti (2011) and Konsoer et al. (2017) utilised MBES data to investigate bed roughness across a range of study sites. Despite the methods not being fully explored, MBES data may provide insight into bed and bank roughness across reach scales and greater.

Grain size is somewhat harder to extract. Traditional image-based methods relate image texture to grain size (Carbonneau, Bergeron, & Lane, 2005; Graham, Rice, & Reid, 2005). More recent methods exploit SfM topography with high-resolution imagery (0.0015-m pixel size) from low flight heights (Langhammer, Lendzioch, Mrížovský, & Hartvich, 2017) and through relationships between roughness and in field grain-size measurements (Carbonneau, Bizzi, & Marchetti, 2018; Woodget & Austrums, 2017). Work by Woodget, Fyffe, and

FIGURE 2 A comparison of the spatial resolution and extent of various common survey methods along with temporal resolution, end user cost, and ease of data analysis in the subsequent bar graphs. It should be noted that end user cost is based on typical examples, for example, purchasing TLS equipment is expensive, whereas despite satellite data being expensive to produce, they are freely available in most circumstances. Despite ALS data being free in many circumstances to end users, it is limited in terms of temporal resolution and coverage, with further data collection being very expensive. The top panel was inspired by a similar concept developed in figure 12 of Bangen, Wheaton, Bouwes, Bouwes, and Jordan (2014) [Colour figure can be viewed at wileyonlinelibrary.com]
Carbonneau (2018) demonstrated how image texture on a series of individual images outperformed orthomosaics and SfM roughness measures. However, derived relationships may struggle in poorly sorted reaches (Pearson et al., 2017) and where sediment placement is irregular, causing the axis of measurement to be inconsistent.

TLS produces data volumes similar to those from SfM and thus is hampered by similar processing constraints. The technique has been successfully used to investigate grain-size packing distribution (Hodge, Brasington, & Richards, 2009), variations between systems (Storz-Peretz et al., 2016), submerged grain size (Smith et al., 2011), and grain size on large, complex gravel systems using mobile laser scanning (MLS; Wang, Wu, Huang, & Lee, 2011). Through-water TLS is ineffective for deeper channels, where instead, MBES data have been used to infer grain size using statistical inference techniques (Eleftherakis, Snellen, Amiri-Simkooei, Simons, & Siemes, 2014; Snellen, Eleftherakis, Amiri-Simkooei, Koomans, & Simons, 2013). However, the extensive calibration involved and limited spatial applicability restrict the scale of application over which the methods can be used.

2.2.2 | Flow characteristics

Both acoustic doppler velocimeters (ADVs) and ADCPs are used to investigate flow dynamics. The former is used to primarily investigate flow characteristics such as velocity and turbulence in both flume (Abad & Garcia, 2009; Buffin-Belanger, Rice, Reid, & Lancaster, 2006; Lawless & Robert, 2001; Schindler & Robert, 2005) and field set-ups (Buffin-Belanger & Roy, 2005; Lane et al., 1998; Strom & Papanicolaou, 2007; Wilcox & Wohl, 2007). Likewise, ADVs have also been used to investigate applied management problems such as weir construction (Bhuiyan, Hey, & Wormleaton, 2007) and the effects of ship wakes on near bank flow (Fleit et al., 2016). However, the requirement for a static deployment somewhat limits their application beyond fine scales.

Across feature and reach scales, ADCP sensors can be used to better understand flow dynamics, such as investigating the influence of surface ice on vertical separation and helical flow structures (Lotsari et al., 2015), the complex flow properties in the Mekong (Hackney et al., 2015), better calibration of a Delft3D flow model (Persparpour-Moghaddam & Rennie, 2018), and river confluence mixing processes (Gualtieri, Filizola, de Oliveira, Santos, & Ianniruberto, 2018). At the reach scale, ADCPs have been used to investigate flow variation through dynamic morphological systems (Guerrero & Lamberti, 2011), flow interaction with dune bed morphology (Parsons et al., 2005), and flow patterns through a variety of meandering, straight, and abandoned channels (Shields et al., 2003). With increasing portability and potential platform autonomy (Flener et al., 2015), the deployment versatility of such sensors is likely to improve further beyond their already extensive range of deployment opportunities.

Field-based particle image velocimetry (PIV) operates over smaller spatial extents, tracking tracer particles in a fluid over interrogation.
windows using pattern recognition (Adrian, 1991; Detert & Weitbrecht, 2015). Most systems are static for continual monitoring (Creutin, Muste, Bradley, Kim, & Kruger, 2003; Gunawan et al., 2012; Jodeau, Hauet, Paquier, Le Coz, & Dramais, 2008), yet advances in positional and attitudinal data have allowed helicopters (Fujita & Hino, 2003; Fujita & Kunita, 2011) and more recently UAVs (Bolognesi et al., 2017; Detert & Weitbrecht, 2015; Tauro, Pagano, Phamduy, Grimaldi, & Porfiri, 2015; Thumser, Haas, Tuhtan, Fuentes-Perez, & Toming, 2017) to improve spatial coverage. The method shows promise, producing velocity measurements within 5–8% of those measured from total station tracking (Bolognesi et al., 2017). Future work is looking to eliminate the need for artificial tracers and create a more versatile methodology (Charogiannis, Zadrazil, & Markides, 2016; Legleiter, Kinzel, & Nelson, 2017; Thumser et al., 2017), which would likely result in more widespread use of PIV as a field-based method.

Over larger spatial scales, calibrating against river width has allowed satellite sensors to provide discharge to within 10% of observed values (Bjerklie, Moller, Smith, & Dingman, 2005). To overcome issues with box channels, whereby river width does not increase with discharge, it is possible to use river island size for calibration (Feng et al., 2012). However, the sensitivity of the method is limited by the pixel resolution of the satellite image.

2.2.3 | Water quality

Static ADV and ADCP deployments are able to be used to estimate suspended sediment concentrations (SSC) in the water column through use of acoustic backscatter under laboratory (Ha, Hsu, Maa, Shao, & Holland, 2009; Schindler & Robert, 2004) and field conditions (Chanson, Reungoat, Simon, & Lubin, 2011; Elci, Aydin, & Work, 2009; Leyland et al., 2017). Likewise, the acoustic backscatter from MBES sensors can be used to infer SSC, having been tested in controlled and field conditions (Simmons et al., 2010; Simmons et al., 2017), providing the opportunity to collect SSC data across feature and reach scales, yet their use is not currently widespread.

At the reach scale and beyond, estimates of SSC require the use of satellite imagery. Medium resolution imagery (20–30 m) has been used to investigate SSC at the confluence of the Mississippi and Missouri Rivers, both of which have differing sediment regimes (Umar, Rhoads, & Greenberg, 2018), as well as along the Yangtze (Wang, Lu, Liew, & Zhou, 2009). However, the majority of studies tend to use coarser (250 m) MODIS data focussing on large, well-gauged rivers such as the Yangtze (Wang & Lu, 2010), the Amazon (Mangiarotti et al., 2013; Santos, Martínez, Filizola, Armijos, & Alves, 2018), the Changjiang (Lu, He, Li, & Ren, 2006), and the Solimões (Espinoza & Napoli, 2010), utilising statistical relationships between observed SSC values with red and infrared spectral bands. However, this method is limited to those rivers with continual monitoring of discharge and suspended sediment and large enough to be observed from satellites; therefore, alternative methods are required across smaller extents.

Despite water quality estimates derived from remote sensing being well established in estuarine and coastal zones (Brando & Dekker, 2003; Chen, Hu, & Muller-Karger, 2007; Hellweger, Schlosser, Lall, & Weissel, 2004), it is less well developed in the fluvial domain. However, efforts have been made to obtain fluvial water quality data from UAV imagery, such as pollution detection (Lega et al., 2012; Lega & Napoli, 2010). Attempts to replicate satellite data procedures relating spectral data to chlorophyll a, Secchi disc depth, and turbidity with UAV imagery have been limited in success (Larson, Milas, Vincent, & Evans, 2018; Su, 2017). Regardless, the increasing use of UAVs in river corridor monitoring will likely improve methods for water quality monitoring.

2.2.4 | Morphology

By far the largest volume of research in river corridor monitoring relates to the measurement and monitoring of morphology through the production of digital elevation models (DEMs). Applications of modern data collection techniques such as TLS and SIM now outweigh traditional point-based survey techniques in the literature. These new techniques are particularly well suited for surveying of small features, which typically demand high-accuracy, high-resolution data, to detect small changes between surveys.

TLS enables users to overcome the spatial limitations of cross-sectional surveys, especially in the downstream direction, through increased point density (O’Neal & Pizzuto, 2011; Resop & Hession, 2010). Analyses such as creating DEMs of difference, comparing voxel models, and point cloud analysis have all utilised TLS data for investigating morphological evolution (Heritage & Milan, 2009; Leyland et al., 2015; Milan et al., 2007; O’Neal & Pizzuto, 2011; Resop & Hession, 2010; Starek, Mitasova, Wegmann, & Lyons, 2013). The advent of MLS has enabled these studies to expand beyond the typical spatial constraints of TLS, producing high-resolution datasets across reach scales (Alho et al., 2009; Leyland et al., 2017; Lotsari et al., 2015).

UAV imagery produces data at similar resolutions to TLS, usually with lower accuracy (see Figure 4) but covering larger areas. The ease of set-up and data collection makes it an ideal tool for repeat surveying, which allows work to be carried out over specific time intervals such as on seasonal or annual cycles (Brunier et al., 2016; Cook, 2017; Flener et al., 2013; Marteau et al., 2017; Miříkovský & Langhammer, 2015; Mirijovsky & Vavra, 2012; Smith & Vericat, 2015), as well as targeting specific high-discharge events (Tamminga, Eaton, & Hugenholzt, 2015; Watanabe & Kawahara, 2016). It is also possible to use UAV-derived topographic models to classify geomorphic features such as new versus old gravel accumulations (Langhammer & Vackova, 2018), showing some potential beyond morphological change detection that future work might pursue.

To capture larger reach and landform scale, morphology currently requires the use of ALS or satellite imagery. At the reach scale, ALS has been combined with historical topographic data (De Rose & Basher, 2011; James, Hodgson, Ghoshal, & Latiolais, 2012), used to monitor planform shift (Lallias & Tacon, Liebault, & Piegay, 2014), and assessed the potential for gully erosion (Perroy, Bookhagen, Asner, & Chadwick, 2010). Likewise, these data can also be used to classify channel characteristics such as riffle, pool, and step sequences (Cavalli, Tarolli, Marchi, & Dalla Fontana, 2008; Marchamalo, Bejarano, Jalon,
Satellite data analysis and application have typically been limited to large rivers such as the Ganges and Brahmaputra (Baki & Gan, 2012; Legleiter, 2012; Lejot et al., 2007; Shintani & Fonstad, 2017; Tamminga, Hugenholtz, et al., 2015) and through-water SFM (Bagheri et al., 2015; Dietrich, 2017; Javernick et al., 2014; Shintani & Fonstad, 2017; Woodget et al., 2015) from UAV imagery can be used to collect ALS data.

Satellite data analysis and application have typically been limited to large rivers such as the Ganges and Brahmaputra (Baki & Gan, 2012; Legleiter, 2012; Lejot et al., 2007; Shintani & Fonstad, 2017; Tamminga, Hugenholtz, et al., 2015) and through-water SFM (Bagheri et al., 2015; Dietrich, 2017; Javernick et al., 2014; Shintani & Fonstad, 2017; Woodget et al., 2015) from UAV imagery can be used to collect ALS data.

Satellite data analysis and application have typically been limited to large rivers such as the Ganges and Brahmaputra (Baki & Gan, 2012; Legleiter, 2012; Lejot et al., 2007; Shintani & Fonstad, 2017; Tamminga, Hugenholtz, et al., 2015) and through-water SFM (Bagheri et al., 2015; Dietrich, 2017; Javernick et al., 2014; Shintani & Fonstad, 2017; Woodget et al., 2015) from UAV imagery can be used to collect ALS data.
high-resolution bathymetric datasets. The latter relies on clear water for optimal results, whereas the former relies on higher SSC to produce variations in spectral reflectance. Although no method clearly outperforms the other, it is apparent that choosing an appropriate technique is site and condition dependent.

Currently, reach-scale and larger scale bathymetric surveying relies heavily on boat-based MBES systems that can operate in a wide range of water conditions, being used extensively for research into the morphology of river beds and their interactions with flow dynamics (Best et al., 2010; Carling, Golz, Orr, & Radecki-Pawlik, 2000; de Almeida et al., 2016; Guerrero & Lambert, 2011; Hackney et al., 2015; Leyland et al., 2017; Parsons et al., 2005).

Alternatively, green wavelength ALS can collect bathymetry over lengths from one to tens of kilometres (Hilldale & Raff, 2008; Kinzel, Legleiter, & Nelson, 2013; Kinzel, Wright, Nelson, & Burman, 2007), yet footprint size that reduces accuracy and point density are limiting factors (Tonina et al., 2019). Despite these methods being available, the extra challenge in obtaining them makes bathymetric analysis less prominent in the literature. There has also been promise in using light aircraft to fly imaging sensors such as the compact airborne spectrographic imager, which are capable of collecting bathymetric data up to depths of 10 m in clear waters with errors in the region of 0.2 m (Legleiter et al., 2016; Legleiter & Fosness, 2019).

2.2.5 | Vegetation

Vegetation is present across nearly all river corridor domains, whether interacting with flow, influencing bank stability, or contributing to floodplain roughness. At fine scales, resolving the spatial extent of vegetation and discretising vegetation structure are crucial for establishing hydraulic roughness. The reasonable canopy penetration and high spatial resolution make TLS methods favourable. TLS-based voxel models in combination with flume tests are used to analyse plant drag and motion, highlighting differential flows in the canopy and subcanopy layers (Boothroyd, Hardy, Warburton, & Marjoribanks, 2017; Vasilopoulos, 2017). TLS has also been used to identify leafless Manning’s n values for different species across various flow scenarios (Antonarakis, Richards, Brasington, & Bithell, 2009), investigate spatially variable flow dynamics at differing depths due to submerged riparian vegetation (see Figure 5; Manners et al., 2013), and provide a link between vegetation roughness and subsequent trailing bar morphology (Bywater-Reyes, Wilcox, & Diehl, 2017). Identifying and quantifying areas of vegetation at the fine scale are important for applying drag coefficients, with Brodus and Lague (2012) successfully classifying TLS scans, whereas Jalonen et al. (2015) identified and calculated woody area from voxel models. For larger areas, boat-based MLS may provide opportunities...
for improved bank vegetation models (Alho et al., 2009; Saarinen et al., 2013).

UAV imagery has been used to monitor changes in vegetation pre- and post-flood (Watanabe & Kawahara, 2016), for investigating floodplain grassland phenology (Van Iersel et al., 2016), and to improve habitat classification (Casado et al., 2016; Rapple, Piegy, Stella, & Mercier, 2017; Woodget et al., 2017). However, it is less useful for characterising individual vegetation structure, requiring multiple surveys in leaf on and off conditions (Dandois, Baker, Olano, Parker, & Ellis, 2017).

ALS shows the greatest utility in river corridor vegetation monitoring. At reach scales, ALS has been used for riparian zone classification (Antonarakis, Richards, & Brasington, 2008; Gilvear, Tyler, & Davids, 2004; Michez et al., 2013), assessment of wood and debris retention (Abalharth, Hassan, Klinkenberg, Leung, & McCleary, 2015; Bertoldi, Gumell, & Welber, 2013), upsampling from TLS models (Manners et al., 2013), creating rainfall interception models (Berezowski, Chornanski, Kleniewska, & Szporak-Wasilewska, 2015), and for linking vegetation to morphological and anthropogenic contexts and needs (Bertoldi, Gumell, & Drake, 2011; Cartisano et al., 2013; Picco, Comiti, Mao, Tonon, & Lenzl, 2017). At landform scales, ALS has been used to identify sources and volumes of woody debris (Kasprow, Magilligan, Nislow, & Snyder, 2012), the health of riparian ecosystems (Michez et al., 2013), the influence of vegetation on groundwater connectivity (Emanuel, Hazen, McGlynn, & Jenco, 2014), bank stability (McMahon et al., 2017), and water temperature through shading (Greenberg, Hestir, Riano, Scheer, & Ustin, 2012; Loicq, Moatar, Jullian, Dugdale, & Hannah, 2018; Wawrzyniak, Allemand, Bailly, Lejot, & Piegay, 2017). ALS therefore contributes heavily to our understanding of riparian vegetation and, despite potential drawbacks such as cost and mobilisation, is a key method to consider for monitoring activities.

Most studies utilising satellite data create classifications (e.g., Yang, 2007) before investigating the temporal dynamics of vegetation and studying agricultural pressures (Apan, Raine, & Paterson, 2002; Jupiter & Marion, 2008), differing seasons (Makkeasom, Chang, & Li, 2009; Wang et al., 2011), and deforestation (Macedo et al., 2013) for example. Moreover, vegetation indices can be used to construct relationships between plant traits and spectral imagery. The enhanced vegetation index has been used to quantify evapotranspiration for mixed structure riparian forests (Nagler et al., 2005), the normalised difference vegetation index can be related to surface and groundwater (Fu & Burgher, 2015) or floodplain vegetation health and heterogeneity (Wen, Yang, & Saintilan, 2012), and the vegetation disturbance index can identify areas prone to gully rejuvenation after wildfires (Hyde, Jenco, Wilcox, & Woods, 2016).

By combining datasets, ALS and airborne imagery aided understanding of the ecological health of riparian vegetation over 12,000 km², identifying key areas that required ecosystem health management (Michez, Pieg, Lejeune, & Claessens, 2017). Likewise, high-resolution (2.4 m) Quickbird imagery and ALS data have contributed towards the production of hydrodynamic roughness models that are comparable with those obtained through traditional methods (Forzieri, Guarnieri, Vivoni, Castelli, & Preti, 2011; Forzieri, Moser, Vivoni, Castelli, & Canovaro, 2010), as well as to improving riparian vegetation classification across landform scales (Arroyo, Johansen, Armstong, & Phinn, 2010). The structural and intensity data provided by ALS provide a good trade-off between requisite detail and spatial coverage (Johansen, Phinn, & Witte, 2010), despite the low temporal resolution that limits such studies to specific time intervals (Figure 2).

2.2.6 Flooding

Flooding is an important physical process that facilitates channel–floodplain connectivity as well as posing an environmental hazard. Remote sensing provides data through which we can better understand, predict, and monitor flood events, across a range of scales.

Perhaps the most common flood relevant dataset that is produced is the DEM. Despite DEMs commonly being created for reach-scale (and larger) flood models, high-resolution DEMs have helped to improve local flood modelling in Glasgow compared with historical datasets (Coveney & Roberts, 2017) and local flood models produced for a rural village in the Apuseni Mountains, Transylvania, using a low-cost set-up to assess risk to a local school (Şerban et al., 2016). Despite no model validation in the latter case, it demonstrates the potential to improve understanding in typically low-priority locations.

Despite small-scale studies existing (e.g., Caviedes-Voullième, Morales-Hernández, López-Marijuan, Lacasta, & García-Navarro, 2013), it is more common for flood models to use ALS data over large areas to provide topographic information (Castellarin, Di Baldassarre, & Brath, 2011; Fang et al., 2010; Heritage, Woolf, Milano, & Tooth, 2019; Karim, Kinsey-Henderson, Wallace, Arthington, & Pearson, 2012), providing the optimum trade-off between detail and coverage. Improvements in satellite-derived elevation models such as those from TanDEM-X (12-m resolution) also open the possibility for larger scale DEMs for flood modelling (Krieger et al., 2007). ALS can be utilised to parameterise floodplain roughness in conjunction with satellite imagery (Straatsma & Baptist, 2008) and importantly allow for better mesh discretisation to account for local variations in roughness (Cobby, Mason, Horritt, & Bates, 2003). Satellite imagery is also typically used as a calibration and validation methods (Di Baldassarre, Schumann, & Bates, 2009) as well as for flood boundary delineation, which often utilises SAR interferometry to overcome cloud cover (Frappart, Seyler, Meyer, Leon, & Cazenave, 2005; Horritt, Mason, & Luckman, 2001; Kuenzer et al., 2013; Martinez & Le Toan, 2007; Martinis, Kersten, & Twele, 2015; Townsend, 2001), although there are examples using spectral imagery (Amarnath, 2014; Kuenzer et al., 2015; Proud, Fensholt, Rasmussen, & Sandholt, 2011). Due to the scales commonly used in modelling applications and associated calibration and validation, this is likely to remain the most common technique for reach and landform scale studies.

2.3 Real-world cross-scale applications

It is clear from the review above that remote sensing techniques are widely used across a range of domains in the river corridor but that most of the examples cited relate to research applications. However,
there are numerous examples of these techniques being transferred to applied contexts. For example, many nations now routinely collect ALS data to create national datasets of topography that can be easily accessed by the public (e.g., United Kingdom [Environment Agency, 2017], Australia [Geoscience Australia, 2018], and United States [USGS, 2018]). The use of ARC-Boats, a remotely piloted unmanned surface vehicle (USV) developed by HR Wallingford and the UK Environment Agency, has enabled new practices to be developed for collecting flow, depth, and SSC data. This is designed with end users in mind and being operated in various countries around the world such as Canada and New Zealand (HR Wallingford, 2014). TLS has been employed by the National Trust on the River Ouse to produce 3D models (National Trust, 2018) used for research and science communication. Recently, there has been a demonstrable uptake in the use of UAV equipment in industry, most likely due to their versatility and relatively low cost. They have been used for monitoring programmes on the River Dee in Wales (Cranfield University, 2018) and the Forth River Trust conservation, protection, and enhancement schemes (Forth Rivers Trust, 2018). As well as monitoring, they are also used to detect leaks from water networks (Thames Water, 2018) and have the potential to be used to monitor poor farming practices (WWF, 2018), which increases run-off and sediment delivery in to the fluvial domain. Likewise, the use of Sentinel 2 satellite imagery has helped to inform Department for Environment Food and Rural Affairs about areas that may be hotspots for sediment pollution from excessive run-off (Richman & Hambidge, 2017). It is clear that remote sensing methods are primed to expand beyond research applications, with a likelihood that their use will become increasingly common practice in the future.

3 | THE STATE OF THE ART

A plethora of studies that are undertaking remote sensing of river corridors across a range of domains and scales have been highlighted. Here, we present the state of the art in river corridor remote sensing, primarily relating to the use of UAVs and multi-instrument sensing.

Despite widespread use of UAV imagery in the literature, there is an inherent reliance on ground control points for georeferencing. Eliminating this requirement reduces field time and allows surveys to take place in inaccessible locations. By recording high-accuracy positional and attitudinal information of a sensor, the need for ground control points is largely eliminated (Gabrilik, 2015), enabling greater levels of autonomy. Global navigation satellite systems (GNSS) and inertial motion unit (IMU) sensors, in conjunction with postprocessing techniques, known as postprocessing kinematic positioning, allow the user to locate a sensor and the resulting location of each pixel on the Earth’s surface (Mian et al., 2015; Mostafa & Hutton, 2001). However, precise knowledge of camera parameters such as focal length and distortion are still required for accurate model location (James & Robson, 2014). This also enables the use of small-form factor laser scanners (such as the Velodyne LiDAR Puck, https://velodynelidar.com/vlp-16.html) to acquire UAV-based laser scanning (ULS). Originally, the majority of these systems relied on large UAVs (Deng, Zhu, Li, & Li, 2017; Gallay, Eck, Zgraggen, Kanuk, & Dvorny, 2016; Lin, Hyyppa, & Jaakkola, 2011; Nagai, Chen, Shibasaki, Kumagi, & Ahmed, 2009); however, lightweight systems have been developed, which can be mounted onto smaller platforms (Jaakkola et al., 2017; Mader, Blaskow, Westfeld, & Maas, 2015; Nakano, Suzuki, Omori, Hayakawa, & Kurodai, 2018; Roca, Martinez-Sanchez, Laguela, & Arias, 2016; Tommaselli & Torres, 2016). Currently, the high-accuracy GNSS and IMU systems required for ULS and direct georeferencing are expensive (upwards of £20K for ULS and ~£5K for direct georeferencing at the time of writing). A continued reduction in equipment costs will likely lead to an increased uptake in these methods, opening up avenues of research in previously inaccessible or dangerous locations or under hazardous conditions.

Combining multiple platforms and sensors is an exciting area of research that is yielding insights regarding river corridor function. The use of multiplatform configurations is not new, with multiple studies having combined ALS and satellite imagery datasets (Arroyo et al., 2010; Forzieri et al., 2010; Gilvear et al., 2004). However, there is evidence that interest in combining multiple high-resolution datasets obtained from both terrestrial, airborne, and surface systems is growing. Examples include combining aerial imagery from UAV platforms with ALS (Legleiter, 2012) and MLS (Flener et al., 2013), bathymetric ALS and ULS (Mandlburger et al., 2015), airborne imagery and ALS (Rapple et al., 2017), and multiple UAV flights with imagery and laser configurations (Mader et al., 2015). This has enabled researchers to improve their modelling of combined subaerial and subsurface morphology, better understand riparian vegetation encroachment, and enhance current data integration approaches; all of which would be more challenging through single dataset analysis.

Alongside solely airborne techniques, the combination of USVs and UAVs has become more prominent. Although there are examples of UAVs being used to “tether” USVs (Alvarez et al., 2018; Bandini et al., 2018), the majority of studies operate the platforms separately. By combining the two techniques, it is possible to collate information on either the topographic and bathymetric or the above and below canopy nature of a river corridor. Young et al. (2017) utilised a low-cost system to survey storage tanks in Bangalore with submetre accuracy. A more advanced set-up by Alvarez et al. (2018) obtained correlation results to ground truth data of $R > .98$ by combining echo sounder and SfM techniques. Alternatively, UAV and USV platforms can both collect imagery in addition to acoustics to improve estuarine mapping when compared with UAV imagery alone (Mancini, Frontoni, Zingaretti, & Longhi, 2015), although both methods are limited by vegetation shadowing. Powers, Hanlon, and Schmale (2018) performed USV tracking of a tracer dye “pollutant” from UAV imagery, demonstrating the power of real-time combined datasets, which may improve sampling and data acquisition, especially in unknown or difficult to observe environments.

Numerous vessels allow for simultaneous fluvial data collection. Both ADCP and MBES data were collected by Guerrero and Lamberti (2011), Hackney et al. (2015), and Leyland et al. (2017) for concurrent
process and form measurements that are spatially and temporally homogenous, imperative for inferring flow–bed interactions. Manufacturers are increasingly providing solutions for simultaneous bathymetric and topographic data collection from small vessels for coastal research, which could easily be deployed in the fluvial domain (Kongsberg, 2013; Unique Group, 2018).

UAV surveys that utilise multiple sensor payloads have focussed on combining laser scanners and imagery for disaster recovery and river monitoring (Nagai et al., 2009); high temporal, spatial, and spectral resolution landscape dynamics research (Gallay et al., 2016); and forestry mapping (Jaakkola et al., 2010). However, most studies currently focus on the use of one sensor on UAV deployments due to weight implications relating to flight time endurance.

Currently, state of the art remote sensing tools are in their infancy. The majority of future development will revolve around two key themes: (a) producing highly accurate data in a timely and cost-effective manner and (b) processing these data to gain maximum insight. The former will rely on technological enhancement of sufficient progress to reduce the costs of high-grade IMU units that are small enough to be mounted on autonomous platforms. The latter requires advances in big data handling and point cloud/spatial data analysis techniques to handle the significant quantities of data produced and leverage the understanding from these sensors. Much like the proliferation of TLS and SfM techniques, which have progressed through proof of concept phases and are now routinely used, multisensor integration and high-accuracy attitudinal information will likely follow a similar path.

4 | FUTURE DIRECTIONS

The following section seeks to “horizon scan” for the technological advances, which may contribute to enhanced river corridor monitoring in the near future.

4.1 | UAVs

UAV swarm technology may enable fluvial research and monitoring to be performed more efficiently. Swarm technology presents an architecture that is scalable, efficient, and robust and helps to mitigate certain aspects of risk associated with UAV deployment (Howden, 2009; Zhao, Zhao, Su, Ma, & Zhang, 2017). UAV swarms can either be controlled using group decision making or individual agent response (Howden, 2009), with coverage being either “distributed” into defined zones of operation or “free” for optimum coverage through parallel decision making (San Juan, Santos, & Andujar, 2018). Applications for swarm mapping have included surveillance missions, search and rescue operations, weed mapping, and oil spill mapping (Albani, Nardi, & Trianni, 2017; Howden, 2009; Nigam, Bieniawski, Kroo, & Vian, 2012; Odonkor, Ball, & Chowdhury, 2017; Pitre, Li, & Delbalzo, 2012; San Juan et al., 2018). However, studies remain focussed on using simulations to test either algorithms (Almeida, Hildmann, & Solmaz, 2017; Chen, Ye, & Li, 2017; Yang, Ji, Yang, Li, & Li, 2017; Zhao et al., 2017) or data processing techniques (Casbeer, Kingston, Beard, & McLain, 2006; Ruiz, Caballero, & Merino, 2018). Despite the lack of real-world testing due to physical and legal constraints, swarm technology may enable rapid acquisition of data for river corridor applications on unprecedented scales.

UAV object tracking provides the opportunity for smarter surveying deployments. Current work has utilised machine learning to recognise a defined object and subsequently track it (Bian, Yang, Zhang, & Xiong, 2016; Rodriguez-Canosa, Thomas, del Cerro, Barrientos, & MacDonald, 2012; Trilaksono, Triadhitama, Adiprawita, Wibowo, & Sreenatha, 2011). There has been a recognised need for such methods to be implemented in environmental research practices (Pereira et al., 2009), with detection and tracking already being applied to features such as rivers, canals, and roads (Lee & Hsiao, 2012; Lin & Saripalli, 2012; Rathinam et al., 2007; Rathinam, Kim, & Sengupta, 2008; Zhou, Kong, Wei, Creighton, & Nahavandi, 2015). Despite the potential, there seems to be little uptake in applied river corridor research, whereby predetermined or nonautonomous flights are the norm. The heavy lift requirements, difficulty in isolating features in spectrally homogenous environments, and the potential for false feature identification currently hinder use (Lee & Hsiao, 2012; Rathinam et al., 2007). If these issues can be overcome, the potential for platforms to routinely monitor with little human input is attractive when considering highly dynamic fluvial environments.

4.2 | AUVs

Traditionally utilised in the marine environment, autonomous underwater vehicles (AUVs) use active sensing to guide them through missions such as maintaining survey depth for consistent resolution sea bed mapping (Brothers et al., 2015; Covault, Kostic, Paull, Ryan, & Fildani, 2014; Maier et al., 2013; Tubau et al., 2015), coral reef mapping (Armstrong & Singh, 2012), submarine lava identification (McClinton & White, 2015), and sea bed classification (Lucieer, Hill, Barrett, & Nichol, 2013). Terrestrial water applications are less common and require careful consideration due to the complex motion of water alongside the need for improved object detection and avoidance (Li, Xie, Luo, & Shi, 2012; Zhao, Lu, & Anvar, 2010). However, fluvial research has employed AUVs to collect variables such as temperature, salinity, conductivity, and nitrate flows in both autonomous and semiautonomous systems (Singh et al., 2007; Tester, Kibler, Hobson, & Litaker, 2006). Likewise, flow patterns and sediment loading have been studied in estuarine conditions (Kruger, Stolkin, Blum, & Briganti, 2007; Rogowski, Terrill, & Chen, 2014) as well as reservoir surveying (Socucka & Veliskova, 2015), showing that the range of conditions AUVs can operate within. AUVs are also capable of tracking features such as pipelines and elevation contours in real world and simulated environments (Bennett & Leonard, 2000; Fallon, Folkesson, McClelland, & Leonard, 2013; Fiorelli et al., 2006; Ortiz, Simo, & Oliver, 2002; Sfahani, Vali, & Behnamgol, 2017; Xiang, Yu, Niu, & Zhang, 2016). This may allow smarter subsurface fluvial surveying
techniques whereby AUVs can navigate river channels effectively, collating datasets over large areas with minimal human input or risk.

4.3 | USVs

Like UAV surveys, USVs use GNSS equipment and IMUs to provide accurate sensor locations for data collection. USV deployment in fluvial environments ranges from topographic to biophysical data collection (Casper, Steimle, Hall, & Dixon, 2009; Mancini et al., 2015; Suhari & Gunawan, 2017; Wei & Zhang, 2016; Young et al., 2017). The majority of these systems focus on bathymetric data collection from echo sounders, yet there are examples of both camera and water quality sensors being used (Casper et al., 2009; Mancini et al., 2015), as well as sensors for tracking and analysing simulated pollutants in freshwater environments (Powers et al., 2018). Not only do USVs provide the potential for collating bathymetry and water properties but also the surrounding terrestrial environment such as bank morphology and vegetation. USV surveying is likely to follow a similar pattern to UAVs in their increasing use for environmental research, whereby the technology becomes advanced enough for users to deploy a vessel with minimum human input, even in more challenging flow conditions.

4.4 | Real-time monitoring using Internet of things

The Internet of Things (IoT) in environmental monitoring is becoming increasingly prominent, with the technology available for a suite of uses. IoT is the extension of the internet in to physical devices that perform a role (Miorandi, Sicari, De Pellegrini, & Chlamtac, 2012). Sensors communicate between devices through networks, frameworks, and control centres, to share information and analyse data (Gubbi, Buyya, Marusic, & Palaniswami, 2013; Mitra et al., 2016). IoT has been used for environmental applications in remote and inaccessible locations for hazard response networks and monitoring research (Martinez et al., 2017; Miorandi et al., 2012).

IoT in the hydrological domain has focussed on engineering and infrastructure monitoring. For example, the South to North River Project in China uses over 100,000 sensors with 130 differing purposes to monitor water quality, infrastructure, and security (Staedter, 2018); all of which is fed in to a cloud infrastructure updated as frequently as every 5 min. Similar installations on smaller scales include active river and wetland management for water treatment (Wang et al., 2013), real-time sewage monitoring in the United Kingdom to mitigate flooding scenarios (Edmondson et al., 2018), as well as conceptual designs of flood embankment monitoring systems (Michta, Szulim, Sojka-Piotrowska, & Piotrowski, 2017). Uses for research include groundwater and river monitoring to better inform hydrological traits related to climatic variables, infiltration, and surface run off (Malek et al., 2017; Shi, Zhang, & Wei, 2014). Being able to effectively utilise the data captured over an IoT infrastructure may see the greatest development. Effectively using various machine learning techniques on big datasets can aid in the prediction of flood events in real time as demonstrated by Bande and Shete (2017) and Furquim et al. (2018). IoT monitoring networks not only benefit research applications but also will have a large impact on applied monitoring techniques, providing near real time information for better decision making, improving overall monitoring efficiency and performance.

4.5 | Satellite remote sensing

Given the role of satellites in revolutionising our view of fluvial systems, it would be remiss not to point out future developments in this technology, which are centred around the launch of a greater number of platforms with payloads delivering data for increasingly focused applications. The NASA-based Surface Water and Ocean Topography mission (NASA, 2019a) will be used to study the volumes of freshwater available in medium to large lakes and rivers, helping to understand water availability and any such related hazards. Similarly, the NASA-ISRO SAR mission (NASA, 2019b) will be used to not only map flood extents for hazard monitoring but also improve monitoring of groundwater, benefiting those seeking to address questions linking groundwater to surface water supply. Alongside specific sensors, the increasing availability of higher resolution imagery below 1 m such as provided by WorldView3 (Longbotham, Pacifici, Baugh, & Camps-Valls, 2014) will provide a large repository of data that may be of use to river corridor monitoring. As river corridors are affected by wider hydrological and environmental conditions, missions such as the Water Cycle Observation Mission, which is observing the water cycle under global change (Shi et al., 2016), alongside ESA Biomass and Fluorescence Explorer missions, which will help in understanding root zone soil moisture and transpiration rates respectively (McCabe et al., 2017), will all help to improve our holistic understanding of river corridors.

Alongside advances in sensors, the way in which data is processed and automated will also impact river corridor monitoring. With satellites producing such vast quantities of data, there is a need for big data infrastructure, as previously alluded to, in regard to satellite systems. These systems would likely capture, process, analyse, and create outputs to inform decision in an automated process (Raspin et al., 2018; Rathore et al., 2015). Methods that would benefit from such a structure are beginning to be employed within the river corridor, which would provide the potential for continual monitoring (Durand et al., 2016; Frasson et al., 2019; Gleason, Garambois, & Durand, 2017). Yet there will still be the need for improved algorithms to cope with the inherent environmental variability that is present across the globe.

5 | KEY CHALLENGES

The proliferation of monitoring techniques and their application to river corridors means that we are in a “golden age” of remote sensing in this domain. Research applications are broad, and proof of concept work has delivered many innovations in platforms, sensors, and data processing techniques. Nonetheless, before innovative autonomous remote sensing solutions are routinely adopted for applied river corridor management, we believe that there are five key challenges that the community, and others, must address:
1. Platform innovation: Although sensors are now well developed, platforms currently rely on human interaction for direct or assisted control in defining survey routines. Adequate object detection and avoidance alongside improved autonomy will allow for true smart systems operating beyond line of sight and in challenging conditions, performing adaptive sampling for optimal data collection over larger areas.

2. Processing innovation: Current systems have accepted methods of best practice for the production of repeatable and comparable datasets. Increasing platform autonomy needs to be accompanied by the development of computationally efficient and robust methods for data processing. Given the volumes of data being produced by mobile laser scanning and SFM techniques for example, big data and machine learning processing techniques need to be embraced and such methods should be embedded as routine tools within appropriate community repositories (see no. 5 below).

3. Efforts to improve process monitoring: Current techniques focus heavily on remotely sensing of morphology. Process data (i.e., river flow characteristics) are challenging to acquire at the desired temporal and spatial scales, and we urge the community to push the boundaries in this domain. Utilisation of multiplatform and/or multisensor integration to collect simultaneous process and form measurements may lead to the biggest gains in environmental understanding across the river corridor.

4. Legislation for autonomous systems: A significant barrier that is to be overcome before the routine use of autonomous and multiphase systems is the legislation around operational safety, with restrictions on the operational range (e.g., within line of sight) a current limitation. Those regularly involved in river monitoring and research using these platforms need to be involved in the development of appropriate regulations by advocating safe use and practice within the domain. This should involve discussion with those implementing and developing the relevant laws and the creation of best operating practice guidelines for other researchers and practitioners to follow.

5. A river corridor data repository: The routine availability of remotely sensed river corridor data is patchy at best. Open data repositories such as the Department for Environment Food and Rural Affairs Data Services Platform (https://environment.data.gov.uk/) and the Channel Coastal Observatory (Southwest Regional Coastal Monitoring Programme, 2009) are demonstrating the benefits of well-organised, open-source data. A shift towards the community making their collected data available to a wider audience through an equivalent repository will enable others to benefit from information the original owners may have viewed as redundant, benefiting the community as a whole.

6. CONCLUDING REMARKS

This review reveals the sheer volume of remote sensing methods that are currently used to monitor various domains of the river corridor across a range of scales. This may include finer scale studies which utilise TLS, through to larger scale studies that use ALS and satellite data to support research and applied monitoring, with UAV imagery allowing for reach-scale topographic analysis alongside subsurface data from MBES and ADCP sensors. The majority of the work in the river corridor focusses on morphological evolution, with the processes that drive such topographic change being more difficult to observe. We advocate a shift towards improved process measurement techniques to better understand the interactions between flow, morphology, and associated ecological response. This will be facilitated by improved capabilities to collect simultaneous process and form measurements on multisensor platforms, as well as by the ever-improving processing power required to deal with the resultant large datasets.

The remote sensing tools now at our disposal make it possible to obtain extensive and accurate datasets that were previously unattainable, for use in a variety of applications in river corridor research and management. Remote sensing techniques are enabling new insights into complex interacting areas, for example, riparian vegetation and flow interactions and the resultant evolution of channel morphology. The evolution of techniques and decreasing equipment costs have helped progress research, management, and industrial applications, allowing users to select the most suitable from a plethora of techniques. The monitoring needs of river corridor researchers and managers can likely be met through remote sensing techniques, meaning that careful identification of the desired spatial and temporal resolution, alongside the required outcomes are likely the most important factors in deciding which methods to use.

ACKNOWLEDGEMENTS

C. T. thanks the Natural Environment Research Council and Engineering and Physical Sciences Research Council for studentship funding via the Next Generation Unmanned Systems Science (NEXUSS) Centre for Doctoral Training. We thank the editors and two anonymous reviewers for their constructive comments that improved an earlier version of this manuscript.

DATA AVAILABILITY STATEMENT

The data used to construct Figure 4 within this study are available from the corresponding author upon reasonable request.

ORCID

Christopher Tomsett https://orcid.org/0000-0002-6916-6063
Julian Leyland https://orcid.org/0000-0002-3419-9949

REFERENCES

Abad, J., & Garcia, M. (2009). Experiments in a high-amplitude Kinoshita meandering channel: 1. Implications of bend orientation on mean and turbulent flow structure. Water Resources Research, 45, 19. https://doi.org/10.1029/2008wr007016

Abalharth, M., Hassan, M., Klinkenberg, B., Leung, V., & McCleary, R. (2015). Using LIDAR to characterize logjams in lowland rivers. Geomorphology, 246, 531–541. https://doi.org/10.1016/j.geomorph.2015.06.036
Adrian, R. (1991). Particle-imaging techniques for experimental fluid mechanics. *Annual review of fluid mechanics*, 23(1), 261–304. https://doi.org/10.1146/annurev.fl.23.010191.001401

Albani, D., Nardi, D., & Trianni, V. (2017). Field coverage and weed mapping by UAV swarms. In A. Bicchi, & A. Okamura (Eds.), 2017 IEEE/RJS International Conference on Intelligent Robots and Systems (pp. 4319–4325). New York: Ieee.

Alho, P., Kukko, A., Hyyppä, H., Kaartinen, H., Hyyppä, J., & Jaakkola, A. (2009). Application of boat-based laser scanning for river survey. *Earth Surface Processes and Landforms*, 34(13), 1831–1838. https://doi.org/10.1002/esp.1879

Almeida, M., Hildmann, H., & Solmaz, G. (2017). Distributed UAV-swarm-based real-time geometric data collection under dynamically changing resolution requirements. In C. Stachniss, W. Forstner, & J. Schneider (Eds.), *International Conference on Unmanned Aerial Vehicles in Geomatics* (Vol. 42-2) (pp. 5–12). Gottingen: Copernicus Gesellschaft Mbh.

Alvarez, L., Moreno, H., Segales, A., Pham, T., Pillar, E., & Chilton, P. (2018). Merging unmanned aerial systems (UAS) imagery and echo soundings with an adaptive sampling technique for bathymetric surveys. *Remote Sensing*, 10(9), 1362.

Amarnath, G. (2014). An algorithm for rapid flood inundation mapping from optical data using a reflectance differencing technique. *Journal of Flood Risk Management*, 7(3), 239–250. https://doi.org/10.1111/jfr3.12045

Antonarakis, A., Richards, K., & Brasington, J. (2008). Object-based land cover classification using airborne LiDAR. *Remote Sensing of Environment*, 112(6), 2988–2998. https://doi.org/10.1016/j.rse.2008.02.004

Antonarakis, A., Richards, K., Brasington, J., & Bithell, M. (2009). Leafless roughness of complex tree morphology using terrestrial lidar. *Water Resources Research*, 45, 14. https://doi.org/10.1029/2008wr007666

Apan, A., Raine, S., & Paterson, M. (2002). Mapping and analysis of changes in the riparian landscape structure of the Lockyer Valley catchment, Queensland, Australia. *Landscape and Urban Planning*, 59(1), 43–57. https://doi.org/10.1016/s0169-2046(01)00246-8

Aranuvachapun, S., & Walling, D. E. (1988). Landsat-MSS radiance as a measure of suspended sediment in the Lower Yellow River (Hwang Ho). *Remote Sensing of Environment*, 25(2), 145–165. https://doi.org/10.1016/0034-4257(88)90098-3

Armstrong, R., & Singh, H. (2012). Mesophotic coral reefs of the Puerto Rico Shelf, Amsterdam: Elsevier Science Bv.

Arroyo, L., Johansen, K., Armstron, J., & Phinn, S. (2010). Integration of LiDAR and QuickBird imagery for mapping riparian biophysical parameters and land cover types in Australian tropical savannas. *Forestry and Ecology Management*, 259(3), 598–606. https://doi.org/10.1016/j.foreco.2009.11.018

Baever, H., Bimbose, M., Bryk, A., Kasch, K., Schmidt, K., & Morche, D. (2014). Roughness determination of coarse grained alpine river bed surfaces using Terrestrial Laser Scanning data. *Zeitschrift Fur Geomorphologie*, 58, 81–95. https://doi.org/10.1127/0372-8854/2013/s-00127

Bagheri, O., Ghodsiar, M., & Saadatseresht, M. (2015). Reach scale application of UAV plus SFM method in shallow rivers hyperspatial bathymetry. In H. Arefi, & M. Matagh (Eds.), *International Conference on Sensors & Models in Remote Sensing & Photogrammetry* (Vol. 41) (pp. 77–81). Gottingen: Copernicus Gesellschaft Mbh.

Bak, A., & Gan, T. (2012). Riverbank migration and island dynamics of the braided Jamuna River of the Ganges–Brahmaputra basin using multi-temporal Landsat images. *Quaternary International*, 263, 148–161. https://doi.org/10.1016/j.quaint.2012.03.016

Band, S., & Shele, V. (2017). Smart flood disaster prediction system using IoT & neural networks. New York: Ieee.

Bandini, F., Olesen, D., Jakobsen, J., Kittel, C., Wang, S., Garcia, M., & Bauer-Gottwein, P. (2018). Technical note: Bathymetry observations of inland water bodies using a tethered single-beam sonar controlled by an unmanned aerial vehicle. *Hydrology and Earth System Sciences*, 22(8), 4165–4181. https://doi.org/10.5194/hess-22-4165-2018

Bang, S., Wheaton, J., Bouwes, N., Bouwes, B., & Jordan, C. (2014). A methodological intercomparison of topographic survey techniques for characterizing wadeable streams and rivers. *Geomorphology*, 206, 343–361. https://doi.org/10.1016/j.geomorph.2013.10.010

Bennett, A., & Leonard, J. (2000). A behavior-based approach to adaptive feature detection and following with autonomous underwater vehicles. *IEEE Journal of Oceanic Engineering*, 25(2), 213–226. https://doi.org/10.1109/48.883985

Berezowskiz, T., Chormanski, J., Kleniwska, M., & Szporak-Wasilewska, S. (2015). Towards rainfall interception capacity estimation using ALS LiDAR data. In 2015 Ieee International Geoscience and Remote Sensing Symposium (pp. 735–738). New York: Ieee.

Bernhardt, E., Sadduth, E., Palmer, M., Allan, J., Meyer, J., Alexander, G., ... Pagano, L. (2007). Restoring rivers one reach at a time: Results from a survey of US river restoration practitioners. *Restoration Ecology*, 15(3), 482–493. https://doi.org/10.1111/j.1526-100X.2007.00244.x

Bertoldi, W., Gurnell, A., & Drake, N. (2011). The topographic signature of vegetation development along a braided river: Results of a combined analysis of airborne lidar, color air photographs, and ground measurements. *Water Resources Research*, 47, 13. https://doi.org/10.1029/2010wr010319

Bertoldi, W., Gurnell, A., & Welber, M. (2013). Wood recruitment and retention: The fate of eroded trees on a braided river explored using a combination of field and remotely-sensed data sources. *Geomorphology*, 180, 146–155. https://doi.org/10.1016/j.geomorph.2012.10.003

Best, J., Simmons, S., Parsons, D., Oberg, K., Czuba, J., & Malzone, C. (2010). A new methodology for the quantitative visualization of coherent flow structures in alluvial channels using multibeam echo-sounding (MBES), *Geophysical Research Letters*, 37(6). https://doi.org/10.1029/2009gl041852

Bhuivyan, F., Hey, R., & Wormleaton, P. (2007). Hydraulic evaluation of W-wire for river restoration. *Journal of Hydraulic Engineering-Asce*, 133(6), 506–609. https://doi.org/10.1061/(asce)0733-9429(2007)133:6(506)

Bian, C., Yang, Z., Zhang, T., & Xiong, H. (2016). Pedestrian tracking from an unmanned aerial vehicle. In Y. Baozong, R. Qiqi, Z. Yao, & A. N. Gaoyun (Eds.), *Proceedings of 2016 Ieee 13th International Conference on Signal Processing* (pp. 1067–1071). New York: Ieee.

Bjerklie, D., Moller, D., Smith, L., & Dingman, S. (2005). Estimating discharge in rivers using remotely sensed hydraulic information. *Journal of Hydrology*, 309(1), 191–209. https://doi.org/10.1016/j.jhydrol.2004.11.022

Bolognesi, M., Farina, G., Alvisi, S., Franchini, M., Pellegrinelli, A., & Russo, P. (2017). Measurement of surface velocity in open channels using a lightweight remotely piloted aircraft system. *Geomatics Natural Hazards & Risk*, 8(1), 73–86. https://doi.org/10.1080/19475705.2016.1184717

Bothroyd, R., Hardy, R., Warburton, J., & Marjoribanks, T. (2017). Modeling complex flow structures and drag around a submerged plant of varied posture. *Water Resources Research*, 53(4), 2877–2901. https://doi.org/10.1002/2016wr020186

Boven, Z., & Waltermire, R. (2002). Evaluation of light detection and ranging (LiDAR) for measuring river corridor topography. *Journal of the American Water Resources Association*, 38(1), 33–41. https://doi.org/10.1111/j.1752-1688.2002.tb01532.x

Brando, V., & Dekker, A. (2003). Satellite hyperspectral remote sensing for estimating estuarine and coastal water quality. *IEEE Transactions on...
Hilldale, R. C., & Raff, D. (2008). Assessing the ability of airborne LiDAR to map river bathymetry. *Earth Surface Processes and Landforms, 33*(5), 773–783. https://doi.org/10.1002/esp.1575

Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D., Watanabe, S., ... Kanae, S. (2013). Global flood risk under climate change. *Nature Climate Change, 3*(9), 816–821. https://doi.org/10.1038/nclimate1911

Hodge, R., Brasington, J., & Richards, K. (2009). Analysing laser-scanned digital terrain models of gravel bed surfaces: Linking morphology to sediment transport processes and hydraulics. *Sedimentology, 56*(7), 2024–2043. https://doi.org/10.1111/j.1365-3091.2009.01068.x

Hofle, B., & Rutzinger, M. (2011). Topographic airborne LiDAR in geomorphology: A technological perspective. *Zeitschrift FurGeomorphologie, 55*, 1–29. https://doi.org/10.1127/0372-8854/2011/0055S-0004

Horritt, M. S., Mason, D. C., & Luckman, A. J. (2001). Flood boundary delineation from synthetic aperture radar imagery using a statistical active contour model. *International Journal of Remote Sensing, 22*(13), 2489–2507. https://doi.org/10.1080/0143116011691902

Hossain, M. A., Gan, T. Y., & Baki, A. B. M. (2013). Assessing morphological changes of the Ganges River using satellite images. *Quaternary International, 304*, 142–155. https://doi.org/10.1016/j.quaint.2013.03.028

Howden, D. (2009). Continuous swarm surveillance via distributed priority maps. In K. Korb, M. Randall, & T. Hendtlass (Eds.), *Artificial Life: Borrowing from Biology, Proceedings* (Vol. 5865) (pp. 221–231). Berlin: Springer-Verlag Berlin.

Hyde, K. D., Jencso, K., Wilcox, A. C., & Woods, S. (2016). Influences of vegetation disturbance on hydrogeomorphic response following wildfire. *Hydrological Processes, 30*(7), 1131–1148. https://doi.org/10.1002/hyp.10691

Isikdogan, F., Bovik, A., & Passalacqua, P. (2015). Automatic channel network extraction from remotely sensed images by singularity analysis. *IEEE Geoscience and Remote Sensing Letters, 12*(11), 2218–2221. https://doi.org/10.1109/LGRS.2015.2458898

Islam, A., & Guchhait, S. K. (2017). Search for social justice for the victims of erosion hazard along the banks of river Bhagirathi by hydraulic control: A case study of West Bengal, India. *Environment and Development Sustainability, 19*(2), 433–459. https://doi.org/10.1007/s10668-015-9739-6

Jaakkola, A., Hyppä, J., Bukko, A., Yu, X. W., Kaartinen, H., Lehtomäki, M., & Lin, Y. (2010). A low-cost multi-sensorial mobile mapping system and its feasibility for tree measurements. *ISPRS Journal ofPhotogrammetry and Remote Sensing, 65*(6), 514–522. https://doi.org/10.1016/j.isprsjprs.2010.08.002

Jaakkola, A., Hyppä, J., Yu, X. W., Bukko, A., Kaartinen, H., Liang, X. L., ... Wang, Y. S. (2017). Autonomous collection of forest field reference-the outlook and a first step with UAV laser scanning. *Remote Sensing, 9*(8), 12. https://doi.org/10.3390/rs9080785

Jalonen, J., Jervala, J., Virtanen, J. P., Vaaja, M., Kurkela, M., & Hyppä, H. (2015). Determining characteristic vegetation areas by terrestrial laser scanning for floodplain flow modeling. *Water, 7*(2), 420–437. https://doi.org/10.3390/w7020420

James, L. A., Hodgson, M. E., Ghoshal, S., & Latiolais, M. M. (2012). Geomorphic change detection using historic maps and DEM differencing: The temporal dimension of geospatial analysis. *Geomorphology, 137*(1), 181–198. https://doi.org/10.1016/j.geomorph.2010.10.039

James, M. R., & Robson, S. (2014). Mitigating systematic error in topographic models derived from UAV and ground-based image networks. *Earth Surface Processes and Landforms, 39*(10), 1413–1420. https://doi.org/10.1002/esp.3609

Jaud, M., Passot, S., Le Bivic, R., Delacourt, C., Grandjean, P., & Le Dantec, N. (2016). Assessing the accuracy of high resolution digital surface models computed by PhotoScan® and MicMac® in sub-optimal survey conditions. *Remote Sensing, 8*(6), 465. https://doi.org/10.3390/rs08060465

Javvark, L., Brasington, J., & Caruso, B. (2014). Modeling the topography of shallow braided rivers using structure-from-motion photogrammetry. *Geomorphology, 213*, 166–182. https://doi.org/10.1016/j.geomorph.2014.01.006

Jha, S. K., Mariethoz, G., & Kelly, B. F. J. (2013). Bathymetry fusion using multiple-point geostatistics: Novelty and challenges in representing non-stationary bedforms. *Environmental Modelling & Software, 50*, 66–76. https://doi.org/10.1016/j.envsoft.2013.09.001

Jodeau, M., Hauet, A., Paquier, A., Le Coz, J., & Dramais, G. (2008). Application and evaluation of LS-PIV technique for the monitoring of river surface velocities in high flow conditions. *Flow Measurement and Instrumentation, 19*(2), 117–127. https://doi.org/10.1016/j.flowmeasinst.2007.11.004

Johansen, K., Phinn, S., & Witte, C. (2010). Mapping of riparian zone attributes using discrete return LiDAR, QuickBird and SPOT-5 imagery: Assessing accuracy and costs. *Remote Sensing of Environment, 114*(11), 2679–2691. https://doi.org/10.1016/j.rse.2010.06.004

Jones, A. F., Brewer, P. A., Johnstone, E., & Macklin, M. G. (2007). High-resolution interpretative geomorphological mapping of river valley environments using airborne LiDAR data. *Earth Surface Processes and Landforms, 32*(10), 1574–1592. https://doi.org/10.1002/esp.1505

Jung, H. C., Hamski, J., Durand, M., Alsdorf, D., Hassain, F., Lee, H., ... Hogue, A. (2010). Characterization of complex fluvial systems using remote sensing of spatial and temporal water level variations in the Amazon, Congo, and Brahmaputra Rivers. *Earth Surface Processes and Landforms, 35*(3), 294–304. https://doi.org/10.1002/esp.1914

Jupiter, S. D., & Marion, G. S. (2008). Changes in forest area along stream networks in an agricultural catchment of the Great Barrier Reef Lagoon. *Environmental Management, 42*(1), 66–79. https://doi.org/10.1007/s00267-008-9117-3

Kai, J., Hering, D., Muhan, S., Gerhard, M., & Preis, S. (2007). The use of large wood in stream restoration: Experiences from 50 projects in Germany and Austria. *Journal of Applied Ecology, 44*(6), 1145–1155. https://doi.org/10.1111/j.1365-2664.2007.01401.x

Karim, F., Kinsey-Henderson, A., Wallace, J., Arthington, A. H., & Pearson, R. G. (2012). Modelling wetland connectivity during overbank flooding in a tropical floodplain in north Queensland, Australia. *Hydrological Processes, 26*(18), 2710–2723. https://doi.org/10.1002/hyp.8364

Kasprak, A., Magilligan, F. J., Nislow, K. H., & Snyder, N. P. (2012). A LiDAR-derived evaluation of watershed-scale large woody debris sources and recruitment mechanisms: Coastal maine, USA. *River Research and Applications, 28*(9), 1462–1476. https://doi.org/10.1002/rra.1532

Kasvi, E., Salmela, J., Lotsari, E., Kumpula, T., & Lane, S. N. (2019). Comparison of remote sensing based approaches for mapping bathymetry of shallow, clear water rivers. *Geomorphology, 333*, 180–197. https://doi.org/10.1016/j.geomorph.2019.02.017

Kessler, A. C., Gupta, S. C., Doliver, H. A. S., & Thoma, D. P. (2012). Lidar quantification of bank erosion in Blue Earth County, Minnesota. *Journal of Environmental Quality, 41*(1), 197–207. https://doi.org/10.2134/jeq2011.0181

Khorraram, S., van der Wiele, C. F., Koch, F. H., Nelson, S. A. C., & Potts, M. D. (2016). Future trends in remote sensing. In *Principles of Applied Remote Sensing* (pp. 277–285). Cham: Springer International Publishing.

Kinoshita, R. (1967). An analysis of the movement of flood waters by aerial photography concerning characteristics of turbulence and surface flow. *Journal of the Japan society of photogrammetry, 6*(1), 1–17. https://doi.org/10.4287/jsprs1962.6.1
algorithm. In R. H. Tan, J. Sun, & Q. S. Liu (Eds.), Automatic Manufacturing Systems II, Pts 1 and 2 (Vol. 542-543) (pp. 1150–1154). Stafa-Zurich: Trans Tech Publications Ltd.

Lin, Y., Hyppa, J., & Jaakola, A. (2011). Mini-UAV-borne LiDAR for fine-scale mapping. IEEE Geoscience and Remote Sensing Letters, 8(3), 426–430. https://doi.org/10.1109/lgrs.2010.2079913

Lin, Y. C., & Saripalli, S. (2012). Road detection and tracking from aerial desert imagery. Journal of Intelligent & Robotic Systems, 65(1-4), 345–359. https://doi.org/10.1007/s10846-011-9600-6

Loicq, P., Moatari, F., Julian, Y., Dugdale, S. J., & Hannah, D. M. (2018). Improving representation of riparian vegetation shading in a regional stream temperature model using LiDAR data. Science of The Total Environment, 624, 480–490. https://doi.org/10.1016/j.scitotenv.2017.12.129

Longbotham, N., Pacifici, F., Baugh, B., & Camps-Valls, G. (2014, 24-27 June 2014). Prelaunch assessment of worldview-3 information content. Paper presented at the 2014 6th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS).

Lotsari, E., Wang, Y., Kaartinen, H., Jaakkola, A., Kukko, A., Vaaja, M., ... Alho, P. (2015). Gravel transport by ice in a subarctic river from accurate laser scanning. Geomorphology, 246, 113–122. https://doi.org/10.1016/j.geomorph.2015.06.009

Lu, C. D., He, B. Y., Li, M. T., & Ren, X. Y. (2006). Quantitative modeling of suspended sediment in middle Changjiang River from MODIS. Chinese Geographical Science, 16(1), 79–82. https://doi.org/10.1007/s11769-006-0026-1

Lucieer, V., Hill, N. A., Barrett, N. S., & Nichol, S. (2013). Do marine substrates ‘look’ and ‘sound’ the same? Supervised classification of multibeam acoustic data using autonomous underwater vehicle images. Estuarine Coastal and Shelf Science, 117, 94–106. https://doi.org/10.1016/j.ecss.2012.11.001

Macedo, M. N., Coe, M. T., DeFries, R., Uriarte, M., Brando, P. M., Neill, C., & Walker, W. S. (2013). Land-use-driven stream warming in southeastern Amazonia. Philosophical Transactions of the Royal Society B-Biological Sciences, 368(1619), 9. https://doi.org/10.1098/rstb.2012.0153

Mader, D., Blaskow, R., Westfeld, P., & Maas, H. (2015). UAV-based acquisition of 3D point cloud—A comparison of a low-cost laser scanner and SFM-tools. In C. Mallet, N. Paparoditis, I. Dowman, S. O. Elberink, A. M. Marteau, B., Vericat, D., Gibbins, C., Batalla, R. J., & Green, D. R. (2017). A geophone wireless sensor network for investigating glacier stick-slip motion. Computers & Geosciences, 105, 103–112. https://doi.org/10.1016/j.cageo.2017.05.005

Magdaleno, F., & Fernandez-Yuste, J. A. (2011). Meander dynamics in a changing river corridor. Geomorphology, 130(3-4), 197–207. https://doi.org/10.1016/j.geomorph.2011.03.016

Maier, K. L., Fildani, A., Paull, C. K., McHargue, T. R., Graham, S. A., & Caress, D. W. (2013). Deep-sea channel evolution and stratigraphic architecture from inception to abandonment from high-resolution autonomous underwater vehicle surveys offshore central California. Sedimentology, 60(4), 935–960. https://doi.org/10.1111/j.1365-3091.2012.01371.x

Makkeasom, A., Chang, N. B., & Li, J. H. (2009). Seasonal change detection of riparian zones with remote sensing images and genetic programming in a semi-arid watershed. Journal of Environmental Management, 90(2), 1069–1080. https://doi.org/10.1016/j.jenvman.2008.04.004

Malard, F., Tockner, K., Dole-Oliver, M. J., & Ward, J. J. (2002). Landscape perspective of surface-subsurface hydrological exchanges in river corridors. Freshwater Biology, 47(4), 621–640. https://doi.org/10.1046/j.1365-2427.2002.00906.x

Malek, S. A., Avanzi, F., Brun-Laguna, K., Maurer, T., Oroza, C. A., Hartsough, P. C., ... Glaser, S. D. (2017). Real-time alpine measurement system using wireless sensor networks. Sensors, 17(11), 30. https://doi.org/10.3390/s17112583

Mancini, A., Frontoni, E., Zingaretti, P., & Longhi, S. (2015). High-resolution mapping of river and estuary areas by using unmanned aerial and surface platforms. Paper presented at the Unmanned Aircraft Systems (ICUAS), 2015 International Conference on.

Mandlburger, G., Pfennigbauer, M., Riegli, U., Haring, A., Wieser, M., Glira, P., & Winiwarter, L. (2015). Complementing airborne laser bathymetry with UAV-based lidar for capturing alluvial landscapes. Remote Sensing for Agriculture, Ecosystems, and Hydrology XVII, 9637, 96370A.

Mangiarotti, S., Martinez, J. M., Bonnet, M. P., Buarque, D. C., Filizola, N., & Mazzega, P. (2013). Discharge and suspended sediment flux estimated along the mainstream of the Amazon and the Madeira Rivers (from in situ and MODIS Satellite Data). International Journal of Applied Earth Observation and Geoinformation, 21, 341–355. https://doi.org/10.1016/j.jag.2012.07.015

Manners, R., Schmidt, J., & Wheaton, J. M. (2013). Multiscale model for the determination of spatially explicit riparian vegetation roughness. Journal of Geophysical Research-Earth Surface, 118(1), 65–83. https://doi.org/10.1029/2011j002188

Marchamalo, M., Bejarano, M., de Jalón, D., & Marín, R. (2007). Fish habitat characterization and quantification using LiDAR and conventional topographic information in river survey. In C. M. U. Neale, M. Owe, & G. Durso (Eds.), Remote sensing for agriculture, ecosystems, and hydrology IX (Vol. 6742). Bellingham: SPIE-Int Soc Optical Engineering.

Marcus, W. A., & Forstnad, M. A. (2010). Remote sensing of rivers: The emergence of a subdiscipline in the river sciences. Earth Surface Processes and Landforms, 35(15), 1867–1872. https://doi.org/10.1002/esp.2094

Martete, B., Vericat, D., Gibbins, C., Batalla, R. J., & Green, D. R. (2017). Application of structure-from-motion photogrammetry to river restoration. Earth Surface Processes and Landforms, 42(3), 503–515. https://doi.org/10.1002/esp.4086

Martinez, J. M., & Le Toan, T. (2007). Mapping of flood dynamics and spatial distribution of vegetation in the Amazon floodplain using multitemporal SAR data. Remote Sensing of Environment, 108(3), 209–223. https://doi.org/10.1016/j.rse.2006.11.012

Martinez, K., Hart, J. K., Basford, P. J., Bragg, G. M., Ward, T., & Young, D. S. (2017). A geophone wireless sensor network for investigating glacier stick-slip motion. Computers & Geosciences, 105, 103–112. https://doi.org/10.1016/j.cageo.2017.05.005

Martinis, S., Kersten, J., & Twele, A. (2015). A fully automated TerraSAR-X based flood service. ISPRS Journal of Photogrammetry and Remote Sensing, 104, 203–212. https://doi.org/10.1016/j.isprsjprs.2014.07.014

McCabe, M. F., Rodell, M., Alsdorf, D. E., Miralles, D. G., Uijlenhoet, R., Wagner, W., ... Wood, E. F. (2017). The future of earth observation in hydrology. Hydrology and Earth System Sciences, 21(7), 3879–3914. https://doi.org/10.5194/hess-21-3879-2017

McClintock, J. T., & White, S. M. (2015). Emplacement of submarine lava flow fields: A geomorphological model from the Ninos eruption at the Galapagos Spreading Center. Geochemistry Geophysics Geosystems, 16(3), 899–911. https://doi.org/10.1002/2014gc005632

McMahon, J. M., Olley, J. M., Brooks, A. P., Smart, J. C. R., Rose, C. W., Curwen, G., ... Stewart-Koster, B. (2017). An investigation of controlling variables of riverbank erosion in sub-tropical Australia. Environmental Modelling & Software, 97, 1–15. https://doi.org/10.1016/j.envsoft.2017.07.014
Mertes, L. A. K. (2002). Remote sensing of riverine landscapes. *Freshwater Biology*, 47(4), 799–816. https://doi.org/10.1046/j.1365-2427.2002.00909.x

Mian, O., Lutes, J., Lipa, G., Hutton, J., Gavelle, E., & Borghini, S. (2015). Direct georeferencing on small unmanned aerial platforms for improved reliability and accuracy of mapping without the need for ground control points. *The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences*, 40(1), 397.

Michorz, A., Piegah, H., Lejeune, P., & Claessens, H. (2017). Multi-temporal monitoring of a regional riparian buffer network (>12,000 km) with LiDAR and photogrammetric point clouds. *Journal of Environmental Management*, 202, 424–436. https://doi.org/10.1016/j.jenvman.2017.02.034

Michez, A., Piegah, H., Toromanoff, F., Brogna, D., Bonnet, S., Lejeune, P., & Claessens, H. (2013). LiDAR derived ecological integrity indicators for riparian zones: Application to the Houille river in Southern Belgium/Northern France. *Ecological Indicators*, 34, 627–640. https://doi.org/10.1016/j.ecolind.2013.06.024

Michta, E., Szulim, R., Sojka-Piotrowska, A., & Piotrowski, K. (2017). IoT based flood embankments monitoring system. In R. S. Romanik, & M. Linczuk (Eds.), *Phytosens Applications in Astronomy, Communications, Industry, and High Energy Physics* (Vol. 10445). Bellingham: SPIE-Int Soc Optical Engineering.

Milan, D., Heritage, G., & Hetherington, D. (2007). Application of a 3D laser scanner in the assessment of erosion and deposition volumes and channel change in a proglacial river. *Earth Surface Processes and Landforms*, 32(11), 1657–1674. https://doi.org/10.1002/esp.1592

Miorandi, D., Sicari, S., De Pellegrini, F., & Chlamtac, I. (2012). Internet of things: Vision, applications and research challenges. *Ad Hoc Networks*, 10(7), 1497–1516. https://doi.org/10.1016/j.adhoc.2012.02.016

Mohijsky, J., & Langhammer, J. (2015). Multitemporal monitoring of the morphodynamics of a mid-stream mountain stream using UAS photogrammetry. *Remote Sensing*, 7(7), 8586–8609. https://doi.org/10.3390/rs70708586

Morhijovsky, J., Michalkova, M. S., Petitey, O., Macka, Z., & Trizna, M. (2015). Spatiotemporal evolution of a unique preserved meandering system in Central Europe—The Morava River near Litovel. *Catenia*, 127, 300–311. https://doi.org/10.1016/j.catena.2014.12.006

Morhijovsky, J., & Vavra, A. (2012). UAV photogrammetry in fluvial geomorphology. In 12th *International Multidisciplinary Scientific Geoconference, SgEm 2012*, Vol. li (pp. 909–916). Sofia: SteF2 Techology Ltd.

Mitra, P., Ray, R., Chatterjee, R., Basu, R., Saha, P., Raha, S., ... Saha, S. (2016). Flood forecasting using Internet of things and artificial neural networks. New York: Ieee.

Morgan, J. A., Brogan, D. J., & Nelson, P. A. (2017). Application of structure-from-motion photogrammetry in laboratory flumes, *Geomorphology*, 276, 125–143. https://doi.org/10.1016/j.geomorph.2016.10.021

Mostafa, M., & Hutton, J. (2001). Direct positioning and orientation systems: How do they work? What is the attainable accuracy. Paper presented at the *Proceedings, The American Society of photogrammetry and remote sensing annual meeting*, St. Louis, MO, USA, April.

Muse, M., Yu, K., & Spasojevic, M. (2004). Practical aspects of ADCP data use for quantification of mean river flow characteristics; Part I: Moving-vessel measurements. *Flow Measurement and Instrumentation*, 15(1), 1–16. https://doi.org/10.1016/j.flowmeasinst.2003.09.001

Nagai, M., Chen, T., Shibasaki, R., Kumagai, H., & Ahmed, A. (2009). UAV-Borne 3-D mapping system by multisensor integration. *IEEE Transactions on Geoscience and Remote Sensing*, 47(3), 701–708. https://doi.org/10.1109/tgrs.2008.2010314

Nagler, P. L., Cleverly, J., Glenn, E., Lamkin, D., Huet, A., & Wan, Z. M. (2005). Predicting riparian evapotranspiration from MODIS vegetation indices and meteorological data. *Remote Sensing of Environment*, 94(1), 17–30. https://doi.org/10.1016/j.rse.2004.08.009

Nakano, K., Suzuki, H., Omori, K., Hayakawa, K., & Kurodai, M. (2018). On a fundamental evaluation of a UAV equipped with a multichannel laser scanner. *ISPRS—International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences*, 42(2), 753–758. https://doi.org/10.5194/isprs-archives-XLII-2-753-2018

NASA. (2019a). Hydrology. Retrieved from https://swot.jpl.nasa.gov/hydrology.htm

NASA. (2019b). Water: Sustaining life. Retrieved from https://nisar.jpl.nasa.gov/missionthemes/water/

National Trust. (2018). River Ouse at Sheffield Park. Retrieved from https://www.nationaltrust.org.uk/sheffield-park-and-garden/features/river-ouste-at-sheffield-park

Nigam, N., Bieniawski, S., Kroo, I., & Vian, J. (2012). Control of multiple UAVs for persistent surveillance: Algorithm and flight test results. *Ieee Transactions on Control Systems Technology*, 20(5), 1236–1251. https://doi.org/10.1109/tcst.2011.2167331

Onsion, P., Ball, Z., & Chowdhury, S. (2017). A distributed intelligence approach to using collaborating unmanned aerial vehicles for oil spill mapping. In *Proceedings of the Asme International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2017* (Vol. 2a). New York: Amer Soc Mechanical Engineers.

Ollero, A. (2010). Channel changes and floodplain management in the meandering middle Ebro River, Spain. *Geomorphology*, 117(3–4), 247–260. https://doi.org/10.1016/j.geomorph.2009.01.015

O’Neal, M. A., & Pizutto, J. E. (2011). The rates and spatial patterns of annual riverbank erosion revealed through terrestrial laser-scanner surveys of the South River, Virginia. *Earth Surface Processes and Landforms*, 36(5), 695–701. https://doi.org/10.1002/esp.2098

Ortiz, A., Simo, M., & Oliver, G. (2002). A vision system for an underwater cable tracker. *Machine Vision and Applications*, 13(3), 129–140. https://doi.org/10.1007/s001300100065

Oyen, A., Koenders, R., Aria, S., Lindenbergh, R., Li, J., & Donselaar, M. (2012). Application of synthetic aperture radar methods for morphological analysis of the Salar de Uyuni distal fluvial system. In 2012 *Ieee International Geoscience and Remote Sensing Symposium* (pp. 3875–3878). New York: Ieee.

Parsapour-Moghaddam, P., & Rennie, C. D. (2018). Calibration of a 3D hydrodynamic meandering river model using fully spatially distributed 3D ADCP velocity data. *Journal of hydraulic engineering*, 144(4), 04018010. https://doi.org/10.1061/ASCEHY.1943-7900.0001424

Parsons, D. R., Best, J. L., Orfeo, O., Hardy, R. J., Kostaschuk, R., & Lane, S. N. (2005). Morphology and flow fields of three-dimensional dunes, Rio Parana, Argentina: Results from simultaneous multibeam echo sounding and acoustic Doppler current profiling. *Journal of Geophysical Research-Earth Surface*, 110(F4), 9. https://doi.org/10.1029/2004JF000231

Passalacqua, P., Do Trung, T., Fouchou-Georgiou, E., Sapiro, G., & Dietrich, W. E. (2010). A geometric framework for channel network extraction from lidar: Nonlinear diffusion and geodesic paths. *Journal of Geophysical Research: Earth Surface*, (F1), 115.

Pavelsky, T. M., & Smith, L. C. (2008). RivWidth: A software tool for the calculation of river widths from remotely sensed imagery. *Ieee Geoscience and Remote Sensing Letters*, 5(1), 70–73. https://doi.org/10.1109/LGRS.2007.908305

Pearson, E., Smith, M. W., Klarer, M. J., & Brown, L. E. (2017). Can high resolution 3D topographic surveys provide reliable grain size estimates in
gravel bed rivers? Geomorphology, 293, 143–155. https://doi.org/10.1016/j.geomorph.2017.05.015

Pereira, E., Beneatela, R., Correia, J., Felix, L., Goncalves, G., Morgado, J., & Sousa, J. (2009). Unmanned air vehicles for coastal and environmental research. Journal of Coastal Research, 1557–1561.

Perry, R. L., Bookhagen, B., Asner, G. P., & Chadwick, O. A. (2010). Comparison of gully erosion estimates using airborne and ground-based LiDAR on Santa Cruz Island, California. Geomorphology, 118(3-4), 288–300. https://doi.org/10.1016/j.geomorph.2010.01.009

Picco, L., Comiti, F., Mao, L., Tonon, A., & Lenzi, M. A. (2017). Medium and short term riparian vegetation, island and channel evolution in response to human pressure in a regulated gravel bed river (Piave River, Italy). Catena, 149, 760–769. https://doi.org/10.1016/j.catena.2016.04.005

Picco, L., Mao, L., Cavalli, M., Buzzi, E., Rainato, R., & Lenzi, M. A. (2013). Evaluating short-term morphological changes in a gravel-bed braided river using terrestrial laser scanner. Geomorphology, 201, 329–334. https://doi.org/10.1016/j.geomorph.2013.07.007

Piton, G., Recking, A., Le Coz, J., Bellot, H., Huet, A., & Jodeau, M. (2018). Reconstructing depth-averaged open-channel flows using image velocimetry and photogrammetry. Water Resources Research, 54(6), 4164–4179. https://doi.org/10.1029/2017wr021314

Pitre, R. R., Li, X. R., & Delbalzo, R. (2012). UAV route planning for joint search and track missions—an information-value approach. ieee Transactions on Aerospace and Electronic Systems, 48(3), 2551–2565. https://doi.org/10.1109/taes.2012.6237608

Poole, G. C. (2002). Fluvial landscape ecology: Addressing uniqueness within the river discontinuum. Freshwater Biology, 47(4), 641–660. https://doi.org/10.1046/j.1365-2427.2002.00922.x

Postel, S., & Richter, B. (2012). Rivers for life: Managing water for people and nature. Island Press.

Powers, C., Hanlon, R., & Schmale, D. G. (2018). Tracking of a fluorescent dye in a freshwater lake with an unmanned surface vehicle and an unmanned aerial vehicle. In Tomsett and Leyland (2018), 800–805.

Powers, C., Hanlon, R., & Schmale, D. G. (2018). Tracking of a fluorescent dye in a freshwater lake with an unmanned surface vehicle and an unmanned aerial vehicle. In Tomsett and Leyland (2018), 800–805.
Schindler, R. J., & Robert, A. (2005). Flow and turbulence structure across the ripple-dune transition: An experiment under mobile bed conditions. *Sedimentology, 52*(3), 627–649. https://doi.org/10.1111/j.1365-3091.2005.00706.x

Schneider, P., Vogt, T., Schirmer, M., Doetsch, J., Linde, N., Pasquelle, N., ... Cirpka, O. A. (2011). Towards improved instrumentation for assessing river-groundwater interactions in a restored river corridor. *Hydrology and Earth System Sciences, 15*(8), 2531–2549. https://doi.org/10.5194/hess-15-2531-2011

Şerban, G., Rus, I., Vele, D., Breţcan, P., Alexe, M., & Petrea, D. (2016). Flood-prone area delimitation using UAV technology, in the areas hard-to-reach for classic aircrafts: case study in the north-east of Apuseni Mountains, Transylvania. *Natural Hazards, 82*(3), 1817–1832. https://doi.org/10.1007/s11069-016-2266-4

Sfahaní, Z., Vai, A., & Behnamgol, V. (2017). Pure pursuit guidance and sliding mode control of an autonomous underwater vehicle for pipeline tracking. In *2017 5th International Conference on Control, Instrumentation, and Automation* (pp. 279–283). New York: IEEE.

Shi, J., Dong, X., Zhao, T., Du, Y., Liu, H., Wang, Z., ... Jiang, L. (2016, 10–15 July 2016). The water cycle observation mission (WCOM): Overview. Paper presented at the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

Shi, Y., Zhang, L., & Wei, G. (2014). The design and application of the groundwater monitoring system based on the internet of things in the HeiHe river basin. In S. B. Choi, P. Yarlagadda, & M. AbdullahAwadud (Eds.), *Sensors, Mechatronics and Automation* (Vol. 511-512) (pp. 319–325). Stafa-Zurich: Trans Tech Publications Ltd.

Shields, F. D., Knight, S. S., Testa, S., & Cooper, C. M. (2003). Use of acoustic doppler current profilers to describe velocity distributions at the reach scale. *JAWRA Journal of the American Water Resources Association, 39*(6), 1397–1408. https://doi.org/10.1111/j.1752-1688.2003.tb04426.x

Shintani, C., & Fonstad, M. A. (2017). Comparing remote-sensing techniques collecting bathymetric data from a gravel-bed river, *International Journal of Remote Sensing, 38*(8-10), 2883–2902. https://doi.org/10.1080/01431161.2017.12080636

Simmons, S. M., Parsons, D. R., Best, J. L., Oberg, K. A., Czuba, J. A., & Kevill, G. M. (2017). An evaluation of the use of a multibeam echo-sounder for observations crossMark of suspended sediment. *Applied Acoustics, 126*, 81–90. https://doi.org/10.1016/j.apacoust.2017.05.004

Simmons, S. M., Parsons, D. R., Best, J. L., Orfeo, O., Lane, S. N., Kostaschuk, R., ... Pociwciardowski, P. (2010). Monitoring suspended sediment dynamics using MBES. *Journal of Hydraulic Engineering-Asce, 136*(1), 45–49. https://doi.org/10.1061/(asce)hy.1943-7900.0000110

Singh, A., Batalin, M., Chen, V., Stealey, M., Jordan, B., Fisher, J., ... Kaiser, W. (2007). Autonomous robotic sensing experiments at San Joaquin river. In *Proceedings of the 2007 IEEE International Conference on Robotics and Automation* (Vol. 1-10) (p. 4978+). New York: IEEE.

Smith, J., Bonell, M., Gibert, J., McDowell, W., Sudicky, E., Turner, J., & Harris, R. (2008). Groundwater-surface water interactions, nutrient fluxes and ecological response in river corridors: Translating science into effective environmental management. *Hydrological Processes, 22*(1), 151–157. https://doi.org/10.1002/hyp.6902

Smith, M., & Vericat, D. (2015). From experimental plots to experimental landscapes: Topography, erosion and deposition in sub-humid badlands from Structure-from-Motion photogrammetry. *Earth Surface Processes and Landforms, 40*(12), 1656–1671. https://doi.org/10.1002/esp.3747

Smith, M., Vericat, D., & Gibbins, C. (2011). Through-water terrestrial laser scanning of gravel beds at the patch scale. *Earth Surface Processes and Landforms, 37*(4), 411–421. https://doi.org/10.1002/esp.2254

Smith, M. W., & Vericat, D. (2014). Evaluating shallow-water bathymetry from through-water terrestrial laser scanning under a range of hydraulic and physical water quality conditions. *River Research and Applications, 30*(7), 905–924. https://doi.org/10.1002/rra.2687

Snellen, M., Eleftherakis, D., Amiri-Simkooei, A., Koomans, R. L., & Simons, D. G. (2013). An inter-comparison of sediment classification methods based on multi-beam echo-sounder backscatter and sediment natural radioactivity data. *Journal of the Acoustical Society of America, 134*(2), 959–970. https://doi.org/10.1121/1.4812858

Socuva, V., & Veliskova, Y. (2015). Evaluation of reservoir degradation state by autonomous underwater vehicle (AUV), In J. Riha, T. Julinek, & K. Adam (Eds.), *14th International Symposium - Water Management and Hydraulic Engineering 2015* (pp. 191–198). Brno: Brno Univ Technology, Fac Civil Engineering.

Southwest Regional Coastal Monitoring Programme. (2009). Swath bathymetry. Retrieved from http://www.channelcoast.org/southwest/survey_techniques/bathymetric/?link=swath_bathymetry.html

Staedter, T. (2018). 100,000 IoT sensors monitor a 1,400-kilometer canal in China. Retrieved from https://spectrum.ieee.org/tech-talk/telecom/internet-a-massive-Iot-sensor-network-keeps-watch-over-a-1400kilo-meter-canal

Stanford, J. A., & Ward, J. V. (1993). An ecosystem perspective of alluvial rivers—Connectivity and the hyporheic corridor. *Journal of the North American Benthological Society, 12*(1), 48–60. https://doi.org/10.2307/1467685

Starek, M. J., Mitsavosa, H., Wegmann, K. W., & Lyons, N. (2013). Space-time cube representation of stream bank evolution mapped by terrestrial laser scanning. *Ieee Geoscience and Remote Sensing Letters, 10*(6), 1369–1373. https://doi.org/10.1109/LGRS.2013.2241730

Storz-Peretz, Y., Laronne Jonathan, B., Surian, N., & Lucia, A. (2016). Flow recession as a driver of the morpho-texture of braided streams. *Earth Surface Processes and Landforms, 41*(6), 754–770. https://doi.org/10.1002/esp.3861

Straatsma, M. W., & Baptist, M. (2008). Floodplain roughness parameterization using airborne laser scanning and spectral remote sensing. *Remote Sensing of Environment, 112*(3), 1062–1080. https://doi.org/10.1016/j.rse.2007.07.012

Strom, K. B., & Papanicolaou, A. N. (2007). ADV measurements around a cluster microf or in a shallow mountain stream. *Journal of Hydraulic Engineering-Asce, 133*(12), 1379–1389. https://doi.org/10.1061/(asce)0733-9429(2007)133:12(1379)

Su, T. C. (2017). A study of a matching pixel by pixel (MPP) algorithm to establish an empirical model of water quality mapping, as based on unmanned aerial vehicle (UAV) images. *International Journal of Applied Earth Observation and Geoinformation, 58*, 213–224. https://doi.org/10.1016/j.jag.2017.02.011

Suhari, K., & Gunawan, P. (2017). The Anyar River depth mapping from surveying boat (SHUUMO) using ArcGIS and surfer. New York: IEEE.

Tamminga, A., Hugenholztz, C., Eaton, B., & Lapointe, M. (2015). Hyperspatial remote sensing of channel reach morphology and hydraulic fish habitat using an unmanned aerial vehicle (UAV): A first assessment in the context of river research and management. *River Research and Applications, 31*(3), 379–391. https://doi.org/10.1002/rra.2743

Tamminga, A. D., Eaton, B. C., & Hugenholztz, C. H. (2015). UAS-based remote sensing of fluvial change following an extreme flood event. *Earth Surface Processes and Landforms, 40*(11), 1464–1476.
Wen, L., Yang, X. H., & Saintilan, N. (2012). Local climate determines the NDVI-based primary productivity and flooding creates heterogeneity in semi-arid floodplain ecosystem. *Ecological Modelling*, 242, 116–126. https://doi.org/10.1016/j.ecolmodel.2012.05.018

Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., & Reynolds, J. M. (2012). ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications. *Geomorphology*, 179, 300–314. https://doi.org/10.1016/j.geomorph.2012.08.021

Wilcox, A. C., & Wohl, E. E. (2007). Field measurements of three-dimensional hydraulics in a step-pool channel. *Geomorphology*, 83(3-4), 215–231. https://doi.org/10.1016/j.geomorph.2006.02.017

Woodget, A., Carbonneau, P., Visser, F., & Maddock, I. (2015). Quantifying submerged fluvial topography using hyperspatial resolution UAS imagery and structure from motion photogrammetry. *Earth Surface Processes and Landforms*, 40(1), 47–64. https://doi.org/10.1002/esp.3613

Woodget, A. S., & Austrums, R. (2017). Subaerial gravel size measurement using topographic data derived from a UAV-SfM approach. *Earth Surface Processes and Landforms*, 42(9), 1434–1443. https://doi.org/10.1002/esp.4139

Woodget, A. S., Austrums, R., Maddock, I. P., & Habit, E. (2017). Drones and digital photogrammetry: From classifications to continuums for monitoring river habitat and hydromorphology. *Wiley Interdisciplinary Reviews: Water*, 4(4), 20. https://doi.org/10.1002/wat2.1222

Woodget, A. S., Fyffe, C., & Carbonneau, P. E. (2018). From manned to unmanned aircraft: Adapting airborne particle size mapping methodologies to the characteristics of sUAS and SFM. *Earth Surface Processes and Landforms*, 43(4), 857–870. https://doi.org/10.1002/esp.4285

WWF. (2018). Saving the earth—A sustainable future for soils and water. Retrieved from WWF: https://www.wwf.org.uk/updates/saving-earth-sustainable-future-soils-and-water

Xiang, X. B., Yu, C. Y., Niu, Z. M., & Zhang, Q. (2016). Subsea cable tracking by autonomous underwater vehicle with magnetic sensing guidance. *Sensors*, 16(8), 22. https://doi.org/10.3390/s16081335

Yamazaki, D., O’Loughlin, F., Trigg, M. A., Miller, Z. F., Pavelsky, T. M., & Bates, P. D. (2014). Development of the global width database for large rivers. *Water Resources Research*, 50(4), 3467–3480. https://doi.org/10.1002/2013wr014664

Yang, F., Ji, X., Yang, C., Li, J., & Li, B. (2017). Cooperative search of UAV swarm based on improved ant colony algorithm in uncertain environment. New York: IEEE.

Yang, X. (2007). Integrated use of remote sensing and geographic information systems in riparian vegetation delineation and mapping. *International Journal of Remote Sensing*, 28(1-2), 353–370. https://doi.org/10.1080/01431160600726763

Young, S., Peschel, J., Penny, G., Thompson, S., & Srinivasan, V. (2017). Robot-assisted measurement for hydrologic understanding in data sparse regions. *Water*, 9(7), 20. https://doi.org/10.3390/w9070494

Zhao, M., Zhao, L. L., Su, X. H., Ma, P. J., & Zhang, Y. H. (2017). Improved discrete mapping differential evolution for multi-unmanned aerial vehicles cooperative multi-targets assignment under unified model. *International Journal of Machine Learning and Cybernetics*, 8(3), 765–780. https://doi.org/10.1007/s13042-015-0364-3

Zhao, S., Lu, T., & Arvari, A. (2010). Multiple obstacles detection using fuzzy interface system for AUV navigation in natural water. New York: IEEE.

Zhou, H. L., Kong, H., Wei, L., Creighton, D., & Nahavandi, S. (2015). Efficient road detection and tracking for unmanned aerial vehicle. *IEEE Transactions on Intelligent Transportation Systems*, 16(1), 297–309. https://doi.org/10.1109/tits.2014.2331353

How to cite this article: Tomsett C, Leyland J. Remote sensing of river corridors: A review of current trends and future directions. *River Res Appl.* 2019;35:779–803. https://doi.org/10.1002/rra.3479