Proceeding Paper

Synthesis of Bis-Hydrazine Using Heterogeneous Catalysis †

Nassima Medjahed 1,2,*, Zahira Kibou 1,2, Amina Berrichi 1,2, Redouane Bachir 1 and Nourredine Choukchou-Braham 1

1 Laboratoire de Catalyse et Synthèse en Chimie Organique, Faculté des sciences, Université de Tlemcen, B.P. 119, Tlemcen 13000, Algeria; zahira_kibou@yahoo.fr (Z.K.); berrichi.amina@yahoo.fr (A.B.); redouane_bachir@hotmail.com (R.B.); nbchoukchou@yahoo.fr (N.C.-B.)
2 Faculté des Sciences et de la Technologie, Université de Ain Témouchent, B.P. 284, Ain Témouchent 46000, Algeria
* Correspondence: nassimamdj8@gmail.com
† Presented at the 25th International Electronic Conference on Synthetic Organic Chemistry, 15–30 November 2021; Available online: https://ecsoc-25.sciforum.net/.

Abstract: Hydrazine derivatives are known as a group of organic compounds containing C=N-N=C functional groups. This π-conjugated system enables electronic excitation in the visible and near-ultraviolet regions. This is of particular interest for many applications, such as corrosion inhibition dye-sensitized solar cells (DSSC), organogels, and fluorescent probes for analytical testing. In addition, many hydrazine derivatives show notable biological and therapeutic activities such as the treatment of tuberculosis, Parkinson’s disease, and hypertension. Schiff bases form a remarkable class of ligands because of their unique properties, such as stability under different conditions, diversity of donor sites, the flexibility of synthesis, and formation of ranges in various coordination geometries in a wide range of complexes. Their complexes have received widespread attention due to their wide range of applications, such as catalysis, electrochemistry, biological sciences, optics, guest chemistry, and molecular recognition. Therefore, from theoretical and practical points of view, the synthesis of hydrazine derivatives is an important issue. In the present study, we describe a new, efficient, and environmentally benign synthetic method for the formation of hydrazine derivatives with heterogeneous catalysis starting from ketones.

Keywords: heterogeneous catalysis; Bis-hydrazine; azines; ketazines

1. Introduction

Heterogeneous catalysis is one of the most important industrial processes in chemical manufacturing today. It is based on surface reactions, which require the adsorption of at least one reactant on the catalyst surface [1]. In recent years, the use of heterogeneous catalysts in organic synthesis has raised great interest due to its inherent advantages such as easy post-processing, reusability, and low cost [2]. As long as the active sites are not deactivated, the heterogeneous catalyst can be easily distinguished from the reaction mixture by simple filtration and reused in subsequent reactions. Heterogeneous catalysis also helps to minimize the waste generated from post-reaction processing and promotes the development of green chemical processes [3].

The azines (2,3-diaza-1,3-butadiene) of the formula R1R2C=N-N=CR1R2 are a class of functional compounds. They are sometimes called NN-linked diimines (C=NN=C) [4]. They have received increasing attention due to their chemical properties, and they facilitate the construction of medically important heterocyclic compounds involving cycloaddition reactions [5–8].

In addition, such compounds have been used to design covalent organic frameworks (COF) [9] and as building blocks of supramolecular chemistry [10,11]. Due to their interesting physical properties, azines have been used as conductive materials [12,13], ion-selective
optical sensors [14,15], and nonlinear optical (NLO) materials [16,17]. In addition, azines have potential biological properties (Figure 1), such as antibacterial [18], antihypertensive [19], antifungal [20], antibacterial [21], and anticancer [22] activities. They are useful candidates for drug development in the pharmacology industry.

Figure 1. Biologically active azines.

These compounds are usually synthesized by condensation of hydrazine and aldehyde/ketone [23]. With the latest developments in chemistry, several other methods of synthesizing azines have also been reported [24]. In recent years, the transition-metal-catalyzed, single-step scheme for the synthesis of azine has gained much attention [25]. In the present study, a nickel-based heterogeneous catalyst was utilized for the synthesis of ketazine derivatives with a new, efficient, and environmentally benign synthetic method in a short time at room temperature, resulting in high yields.

2. General Experimental Procedure

A mixture of acetophenone (2.08 mmol) in ethanol (15 mL) was stirred with hydrazine hydrate (1 mmol), and then a Ni-based heterogeneous catalyst was added to the mixture with a small amount. The reaction mixture was stirred at room temperature until solidified. The precipitated product was filtered, washed with water, dried, and then crystallized from ethanol to give (76–89% yield) of ketazines in less than 3 h (Scheme 1).

Scheme 1. General synthesis pathway of ketazines using Ni-based heterogeneous catalyst.

3. Results and Discussion

After optimization of the reaction conditions using different solvents in different temperatures, it was observed that the condensation of hydrazine hydrate with various acetophenone derivatives 1a-i proceeded smoothly in the presence of ethanol and nickel-based heterogeneous catalyst at room temperature, resulting in the formation of ketazines 2a-i with good-to-excellent yields in less than three hours (Scheme 2).
4. Conclusions

In summary, in this study, we reported the synthesis of ketazines (Bis-hydrazine derivatives) in the presence of a nickel-based heterogeneous catalyst using hydrazine hydrate and various acetophenone derivatives. The reaction was carried out with low catalyst loadings and short reaction times and, therefore, provides an economic and environmentally friendly approach.

Author Contributions: Methodology, N.M.; validation, N.C.-B. and Z.K.; writing—original draft preparation: N.M., writing—review and editing, Z.K., A.B.; supervision, N.C.-B., R.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Becker, C. From Langmuir to Ertl: The “Nobel” History of the Surface Science Approach to Heterogeneous Catalysis. In Encyclopedia of Interfacial Chemistry; Elsevier: Amsterdam, The Netherlands, 2018; pp. 99–106.
2. Dömling, A.; Wang, W.; Wang, K. Chemistry and Biology Of Multicomponent Reactions. Chem. Rev. 2012, 112, 3083–3135.
3. Poliakoff, M. Green Chemistry: Science and Politics of Change. Science 2002, 297, 807–810. [CrossRef] [PubMed]
4. Sumran, G.; Aggarwal, R.; Hooda, M.; Sanz, D.; Clarumunt, R.M. Unusual synthesis of azines and their oxidative degradation to carboxylic acid using iodobenzene diacetate. Synth. Commun. 2018, 48, 439–446. [CrossRef]
5. Huisgen, R. Cycloadditions definition, classification, and characterization. Angew. Chem. Int. Ed. Engl. 1968, 7, 321–328. [CrossRef]
6. Wagner-Jaurregg, T. Reaktionen von Azinen und Iminen (Azomethinen, Schiff’schenBasen) mitDienophilen. Synthesis 1976, 1976, 349–373. [CrossRef]
7. Goodall, G.W.; Hayes, W. Advances in cycloaddition polymerizations. Chem. Soc. Rev. 2006, 35, 280–312. [CrossRef] [PubMed]
8. Xiong, Y.; Yao, S.; Diess, M. Unusual [3 + 1] Cycloaddition of a Stable Silylene with a 2,3-Diazabuta-1,3-diene versus [4 + 1] Cycloaddition toward a Buta-1,3-diene. Organometallics 2010, 29, 987–990. [CrossRef]
9. Vyas, V.S.; Haase, F.; Stegbauer, L.; Savasci, G.; Podjaski, F.; Ochsenfeld, C.; Lotsch, B.V. A tunableazine covalent organic framework platform for visible light-induced hydrogen generation. Nat. Commun. 2015, 6, 8508. [CrossRef]
10. Kennedy, A.R.; Brown, K.G.; Graham, D.; Kirkhouse, J.B.; Kittner, M.; Major, C.; McHugh, C.J.; Murdoch, P.; Smith, W.E. Chromophore containing bipyridyl ligands. Part 1: Supramolecular solid-state structure of Ag(I) complexes. New J. Chem. 2005, 29, 826–832. [CrossRef]
11. Dragancea, D.; Arion, V.B.; Shova, S.; Rentschler, E.; Gerbeleu, N.V. Azine-bridged octacarboxylic acid complex. Angew. Chem. Int. Ed. 2005, 44, 7938–7942. [CrossRef]
12. Hauer, C.R.; King, G.S.; McCool, E.L.; Euler, W.B.; Ferrara, J.D.; Youngs, W.J. Structure of 2,3-butanedione dihydrazine and IR study of higher polyazines: A new class of polymeric conductors. J. Am. Chem. Soc. 1987, 109, 5760–5765. [CrossRef]
13. Chaloner-Gill, B.; Cheer, C.J.; Roberts, J.E.; Euler, W.B. Structure of glyoxaldihydrazine and synthesis, characterization, and iodine doping of unsubstituted polyazine. Macromolecules 1990, 23, 4597–4603. [CrossRef]
14. Martínez, R.; Espinosa, A.; Tarraga, A.; Molina, P. New Hg$^{2+}$ and Cu$^{2+}$ Selective Chromo- and Fluoroionophore Based on a Bichromophoric Azine. Org. Lett. 2005, 7, 5869–5872. [CrossRef]

15. Suresh, M.; Mandal, A.K.; Saha, S.; Suresh, E.; Mandoli, A.; Di Liddo, R.; Parrigotto, P.P.; Das, A. Azine-Based Receptor for Recognition of Hg$^{2+}$ Ion: Crystallographic Evidence and Imaging Application in Live Cells. Org. Lett. 2010, 12, 5406–5409. [CrossRef]

16. Centore, R.; P-nunzi, B.; Roviello, A.; Sirigu, A.; Villano, P. Synthesis, Characterisation, and Phase Behaviour of Some Azines with Potential Optical Nonlinearities of Second Order. Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A 1996, 275, 107–120. [CrossRef]

17. Custodio, J.M.F.; Ternavisk, R.R.; Ferreira, C.J.S.; Figueredo, A.S.; Aquino, G.L.B.; Napolitano, H.B.; Valverde, C.; Baseia, B. Using the Supemolecule Approach To Predict the Nonlinear Optics Potential of a Novel Asymmetric Azine. J. Phys. Chem. A 2019, 123, 153–162. [CrossRef] [PubMed]

18. Ristic, M.N.; Radulovic, N.S.; Dekic, B.R.; Dekic, V.S.; Ristic, N.R.; Stojanovic-Radic, Z. Synthesis and spectral characterization of asymmetric azines containing a coumarin moiety: The discovery of new antimicrobial and antioxidant agents. Chem. Biodivers. 2019, 16, e1800486. [CrossRef] [PubMed]

19. Nash, D.T. Clinical trial with Guanabenz, a new antihypertensive Agent. J. Clin. Pharmacol. New Drugs 1973, 13, 416–421. [CrossRef]

20. Kurteva, V.B.; Simeonov, S.P.; Stoilova-Disheva, M. Symmetrical acyclic aryl aldazines with antibacterial and antifungal activity. Pharmocol. Pharm. 2011, 2, 1–9. [CrossRef]

21. Cavallini, G.; Massarani, E.; Nardi, D.; Mauri, L.; Mantegazza, P. Antibacterial Agents. Some New Guanylhydrazone Derivatives. J. Med. Pharm. Chem. 1961, 4, 177–182.

22. Liang, C.; Xia, J.; Lei, D.; Li, X.; Yao, Q.; Gao, J. Synthesis, in vitro and in vivo antitumor activity of symmetrical bis-Schiff base derivatives of isatin. Eur. J. Med. Chem. 2014, 74, 742–750. [PubMed]

23. Chourasiya, S.S.; Kathuria, D.; Wani, A.; Bharatam, P.V. Azines: Synthesis, Structure, Electronic Structure and their Applications. Org. Biomol. Chem. 2019, 17, 8486–8521. [CrossRef]

24. Bauer, J.O.; Leitus, G.; Ben-David, Y.; Milstein, D. Direct Synthesis of Symmetrical Azines from Alcohols and Hydrazine Catalyzed by a Ruthenium Pincer Complex: Effect of Hydrogen Bonding. ACS Catal. 2016, 6, 8415–8419. [PubMed]

25. Qiu, D.; Mo, F.; Zhang, Y.; Wang, J. Recent Advances in Transition-Metal-Catalyzed Cross-Coupling Reactions with N-Tosylhydrazones. Adv. Organomet. Chem. 2017, 67, 151–219.