Star formation in the Local Group as seen by low-mass stars

Guido De Marchi (ESA), Nino Panagia (STScI), Giacomo Beccari (ESO), Elena Sabbi (STScI)
Motivations

• Solar mass stars account for most of the star formation in galaxies

• Low mass stars can form in small clouds as well as in big ones

• Need to probe diverse environments, Magellanic Clouds crucial for metallicity

• At redshift z~2, environment was similar to Magellanic Clouds
Spectroscopic search

![Graph showing spectroscopic search and signs of accretion]
Until JWST only feasible in the Milky Way
In the meanwhile…

New simple method combines HST broad- \((V, I)\) and narrow-band \((H\alpha)\) photometry and allows us to:

- identify all objects with \(H\alpha\) excess emission
- derive accretion luminosity and mass accretion rates
- for hundreds of stars simultaneously

De Marchi, Panagia & Romaniello 2010, ApJ, 715, 1
Beccari, Spezzi, De Marchi et al. 2010, ApJ, 720, 1108
De Marchi, Panagia & Sabbi 2011, ApJ, 740, 10
De Marchi, Panagia, Romaniello et al. 2011, ApJ, 740, 11
Spezzi, De Marchi, Panagia et al. 2012, MNRAS, 421, 78
De Marchi, Beccari & Panagia 2013, ApJ, 775, 68
Beccari, De Marchi, Panagia et al. 2015, A&A, 574, A44
De Marchi, Panagia, Beccari 2017, ApJ, submitted
H$_\alpha$ photometry

De Marchi, Panagia & Romaniello 2010
De Marchi et al. 2011b

LMC (SN 1987A)
gives $L(H_\alpha)$
H_α photometry

within $r < 20$ pc

~1,100 stars
Hα photometry

De Marchi, Panagia, Sabbi, et al. (in prep)

within $r < 120$ pc
$\sim 44,000$ stars
PMS stars in CMD

De Marchi, Panagia, Sabbi, et al. (in prep)
PMS stars in CMD

De Marchi, Panagia, Sabbi, et al. (in prep)
Multiple generations ubiquitous

- Multi-generation pattern always seen, $\Delta t \sim 10$ Myr
- Older PMS stars always more widely distributed

Beccari et al. 2010

De Marchi et al. 2013b
Different spatial distribution

- Multi-generation pattern always seen, $\Delta t \sim 10$ Myr
- Older PMS stars always more widely distributed
Accretion evolution with time

De Marchi, Panagia, Beccari 2017

R 136

$\log M_{\text{acc}} \ [M_\odot \, \text{yr}^{-1}]$

$\log \text{age} \ [\text{yr}]$

$4 M_\odot$

$3 M_\odot$

$2 M_\odot$

$1 M_\odot$
Accretion evolution with time

Sicilia-Aguilar et al. 2006; 2010

Hartmann et al. 1998
Accretion evolution with time

De Marchi, Panagia, Beccari 2017

Log $M_{\text{acc}} [M_\odot \text{ yr}^{-1}]$ vs Log age [yr]
Accretion evolution with time

- **R 136**

\[\log M_{\text{acc}} \text{ [M}_\odot \text{ yr}^{-1}] \]

- **a) 0.5–1.1 M\(_\odot\)**
 \[\alpha = -0.58 \pm 0.03 \]
 \[Q = -7.30 \pm 0.20 \]

- **b) 1.1–1.5 M\(_\odot\)**
 \[\alpha = -0.36 \pm 0.05 \]
 \[Q = -7.15 \pm 0.34 \]

- **c) 1.5–2.0 M\(_\odot\)**
 \[\alpha = -0.21 \pm 0.04 \]
 \[Q = -6.84 \pm 0.31 \]

- **d) 2.0–4.0 M\(_\odot\)**
 \[\alpha = -0.41 \pm 0.07 \]
 \[Q = -6.48 \pm 0.43 \]
Accretion evolution with time

\[
\log \dot{M}_{\text{acc}} \simeq 0.9 \log m - 0.6 \log t + c
\]

\[
c = \log \dot{M}_{\text{acc}} - 0.9 \log m + 0.6 \log t
\]
Accretion rate and metallicity

\[c \propto Z^{-1/3} \]

\[\log \dot{M}_{\text{acc}} \approx \log m - 0.6 \log t + c \]

\[\frac{dN}{dm} \propto m^\alpha \left[1 - e^{-\left(m/m_c \right)^\beta} \right] \]

\[t_{\text{dis}} \propto t_{\text{rh}} t_{\text{1}}^{-x_{\text{cr}}} \]

\[t_{\text{dis}} = t_{\text{0}} M_{\text{ini}}^{0.62} \]

\[m_c \approx 0.15 + 0.5 \times \left(t_{\text{dyn}} \right)^{3/4} \]

De Marchi, Panagia & Beccari 2017
Spectra of ~100 stars per field, easy with NIRSpec

R~1000–2700, 1.7 – 3.0 μm, include Paα, Brβ, Brγ

Rich sample of younger and older PMS stars
Summary

- Tarantula nebula hosts lots of PMS stars (~44000), most are older than R136
- Multi-generation patterns common, $\Delta t \sim 10$ Myr, younger generations always more concentrated
- Mass function variations across SF regions
- Mass accretion rate depends on metallicity, at low metallicity stars accrete more and longer, sizeable mass fraction accreted during PMS phase
Recent papers

This page provides a selection of our recent papers. Some papers have been submitted and some are still being written. You can scroll down or use the tabs bar on the left to select the papers that you want to see. If you want to know more about us, please visit us at:

qdemarchi@rssi.esa.int

Guido De Marchi (ESA), Nino Panagia (STScI, INAF-CT, Supernova Ltd), Martino Romaniello (ESO)

We have developed and successfully tested a new self-consistent method to reliably identify pre-main sequence (PMS) objects actively undergoing mass accretion in a resolved stellar population, regardless of their age. The method does not require spectroscopy and combines broad-band V and I photometry with narrow-band Hα imaging to: (1) identify all stars with excess Hα emission; (2) derive their Hα luminosity \(L(\text{H}\alpha) \); (3) estimate the Hα emission equivalent width; (4) derive the accretion luminosity \(L_{\text{acc}} \) from \(L(\text{H}\alpha) \); and finally (5) obtain the mass accretion rate \(M_{\text{acc}} \) from \(L_{\text{acc}} \) and the stellar parameters (mass and radius). By selecting stars with photometric accuracy in Hα better than 15%, the statistical uncertainty on the derived \(M_{\text{acc}} \) is typically <17%...