UNDERSTANDING FLAVOR MIXING
IN QUANTUM FIELD THEORY

M. BLASONE
Blackett Laboratory, Imperial College,
Prince Consort Road, London SW7 2BZ, U.K.
E-mail: m.blasone@ic.ac.uk

A. CAPOLUPO, G. VITIELLO
Dipartimento di Fisica and INFN,
Università di Salerno, I-84100 Salerno, Italy
E-mails: capolupo@sa.infn.it, vitiello@sa.infn.it

Abstract
We report on recent results showing that a rich non-perturbative vacuum structure is associated with flavor mixing in Quantum Field Theory. We treat explicitly the case of mixing among three generations of Dirac fermions. Exact oscillation formulas are presented exhibiting new features with respect to the usual ones. CP and T violation are also discussed.

1 Introduction
In recent years, there has been much progress in the understanding of flavor mixing in Quantum Field Theory (QFT). The original discovery of the unitary inequivalence of the mass and the flavor representations in QFT \cite{1}, has prompted further investigations on fermion mixing \cite{2,3,4,5,6}, as well as on boson mixing \cite{7,8,9,10,11}. It has emerged that the rich non-perturbative vacuum structure associated with field mixing, leads to phenomenologically relevant modification of the flavor oscillation formulas, exhibiting new features with respect to the usual quantum-mechanical ones \cite{12}.

In the following we discuss three flavor fermion mixing explicitly. A discussion of mixing of boson fields can be found in Ref. \cite{12}.

2 Three flavor fermion mixing
Let us consider the following Lagrangian density, describing three free Dirac fields with a mixed mass term (in the following we will refer explicitly to neutrinos):

$$\mathcal{L}(x) = \bar{\Psi}_f(x)(i\not{D} - M)\Psi_f(x),$$

(1)
where $\Psi_T = (\nu_e, \nu_\mu, \nu_\tau)$ and $M^\dagger = M$.

Among the various possible parameterizations of the three fields mixing matrix, we choose to work with the CKM matrix 13:

$$\Psi_f(x) = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13}e^{i\delta} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix} \Psi_m(x) \quad (2)$$

with $c_{ij} = \cos \theta_{ij}, s_{ij} = \sin \theta_{ij}$ being θ_{ij} the mixing angles, δ the CP-violating phase and $\Psi_m^T = (\nu_1, \nu_2, \nu_3)$.

Using Eq.(2), we diagonalize Eq.(1) to the Lagrangian for three Dirac fields, with definite masses:

$$L(x) = \bar{\Psi}_m(x) (i \not\partial - M_d) \Psi_m(x), \quad (3)$$

where $M_d = \text{diag}(m_1, m_2, m_3)$. To generate the mixing matrix Eq.(2), we define 1:

$$G_{12}(t) = e^{\theta_{12}L_{12}(t)}, \quad G_{23}(t) = e^{\theta_{23}L_{23}(t)}, \quad G_{13}(t) = e^{\theta_{13}L_{13}(\delta, t)}, \quad (4)$$

where

$$L_{12}(t) = \int d^3 x (\nu_1^\dagger(x)\nu_2(x) - \nu_2^\dagger(x)\nu_1(x)), \quad L_{23}(t) = \int d^3 x (\nu_2^\dagger(x)\nu_3(x) - \nu_3^\dagger(x)\nu_2(x)), \quad (5)$$

$$L_{13}(\delta, t) = \int d^3 x (\nu_1^\dagger(x)\nu_3(x)e^{-i\delta} - \nu_3^\dagger(x)\nu_1(x)e^{i\delta}).$$

We can thus write Eq.(2) in the form:

$$\nu_\sigma^\alpha(x) = G_\theta^{-1}(t) \nu_\sigma^\alpha(x) G_\theta(t), \quad (6)$$

with $(\sigma, i) = (e, 1), (\mu, 2), (\tau, 3)$ and

$$G_\theta(t) \equiv G_{23}(t)G_{13}(t)G_{12}(t). \quad (7)$$

From Eqs.(4)-(7), we see that the phase δ is unavoidable for three fields mixing, while it can be incorporated in the definition of the fields in the case of two flavors. Note also that other parameterizations of the mixing matrix can be reproduced by means of the generators Eq.(4), which do not commute among themselves (see below).
The free fields ν_i can be quantized in the usual way, (we use $t = x_0$):

$$\nu_i(x) = \sum_r \int d^3k \left[u_{k,i}(t)\alpha_{k,i}^r + v_{-k,i}(t)\beta_{-k,i}^{\dagger} \right] e^{i k \cdot x}, \quad i = 1, 2, 3 \quad (8)$$

with $\omega_{k,i} = \sqrt{k^2 + m^2_i}$. The vacuum for the mass eigenstates is denoted by $|0\rangle_m$: $\alpha_{k,i}^r |0\rangle_m = \beta_{-k,i}^{\dagger} |0\rangle_m = 0$. The anticommutation relations are the usual ones; the wave function orthonormality and completeness relations are those of Ref. 1.

By use of $G_\theta(t)$, the flavor fields can be expanded as:

$$\nu_{\sigma}(x) = \sum_r \int d^3k \left[u_{k,i}(t)\alpha_{k,\sigma}^r(t) + v_{-k,i}(t)\beta_{-k,\sigma}^{\dagger}(t) \right] e^{i k \cdot x}.$$

with $(\sigma, i) = (e, 1), (\mu, 2), (\tau, 3)$ and $\alpha_{k,\sigma}^r(t) \equiv G^{-1}_\theta(t)\alpha_{k,i}^r(t)$ and $\beta_{-k,\sigma}^{\dagger}(t) \equiv G^{-1}_\theta(t)\beta_{-k,i}^{\dagger}G_\theta(t)$.

The crucial point, is that the generator of the field mixing Eq. (2) does not annihilate the vacuum for the free fields. We are thus led to define a new state, the flavor vacuum, in the following way:

$$|0(t)\rangle_f \equiv G^{-1}_\theta(t)|0\rangle_m.$$

The unitary inequivalence (in the infinite volume limit) of $|0\rangle_m$ with $|0(t)\rangle_f$ has been rigorously proved for an arbitrary number of generations.

The explicit form of the above defined flavor annihilation operators (in the reference frame $k = (0, 0, |k|)$) is:

$$\alpha_{k,\sigma}^r(t) = c_{12}c_{13}\alpha_{k,1}^r s_{12}c_{13} \left(U_{12}^{k*}\alpha_{k,2}^r + e^r V_{12}^{k} \beta_{-k,2}^{\dagger} \right)$$
$$+ e^{-i\delta} s_{13} \left(U_{13}^{k*}\alpha_{k,3}^r + e^r V_{13}^{k} \beta_{-k,3}^{\dagger} \right), \quad (10)$$

$$\alpha_{k,\mu}^r(t) = (c_{12}c_{23} - e^{-i\delta}s_{12}s_{23}s_{13}) \alpha_{k,2}^r + s_{23}c_{13} \left(U_{23}^{k*}\alpha_{k,3}^r + e^r V_{23}^{k} \beta_{-k,3}^{\dagger} \right)$$
$$- (s_{12}c_{23} + e^{i\delta}s_{12}s_{23}s_{13}) \left(U_{12}^{k*}\alpha_{k,1}^r - e^r V_{12}^{k} \beta_{-k,1}^{\dagger} \right), \quad (11)$$

$$\alpha_{k,\tau}^r(t) = c_{23}c_{13}\alpha_{k,3}^r - (c_{12}s_{23} + e^{i\delta}s_{12}s_{23}s_{13}) \left(U_{23}^{k*}\alpha_{k,2}^r - e^r V_{23}^{k} \beta_{-k,2}^{\dagger} \right)$$
$$+ (s_{12}s_{23} - e^{i\delta}c_{12}s_{23}s_{13}) \left(U_{13}^{k*}\alpha_{k,1}^r - e^r V_{13}^{k} \beta_{-k,1}^{\dagger} \right), \quad (12)$$

3
Let us now consider the transformations acting on the triplet of free fields with different masses. The Lagrangian Eq. (3) is invariant under global $SU(3)$ transformations of the type $Ψ^\dagger \rightarrow e^{i κ} Ψ$, as a result, we have the conservation of the Noether charge $Q = \int d^4x I^0(x)$, with $I^0(x) = Ψ^\dagger_m(x)γ^0 Ψ_m(x)$, which is indeed the total charge of the system (i.e. the total lepton number).

Consider now the $SU(3)$ transformations acting on $Ψ_m$:

$$Ψ^\dagger_m(x) = e^{i α_j F_j} Ψ_m(x) , \quad j = 1, 2, ..., 8,$$

with $α_j$ real constants, $F_j = λ_j/2$ and $λ_j$ being the Gell-Mann matrices. For $m_1 \neq m_2 \neq m_3$, the Lagrangian is not generally invariant under (24) and we
obtain, by use of the equations of motion,
\[\delta \mathcal{L}(x) = i \alpha_j \bar{\Psi}_m(x) [F_j, M_d] \Psi_m(x) = -\alpha_j \partial_{\mu} J^\mu_{m,j}(x) \]
\[J^\mu_{m,j}(x) = \bar{\Psi}_m(x) \gamma^\mu F_j \Psi_m(x) \] \quad j = 1, 2, ..., 8. \tag{21} \]

The explicit form of the currents is:
\[J^\mu_{m,1} = \frac{1}{2} [\bar{\nu}_1 \gamma^\mu \nu_2 + \bar{\nu}_2 \gamma^\mu \nu_1] \quad J^\mu_{m,2} = -\frac{i}{2} [\bar{\nu}_1 \gamma^\mu \nu_2 - \bar{\nu}_2 \gamma^\mu \nu_1] \]
\[J^\mu_{m,3} = \frac{1}{2} [\bar{\nu}_1 \gamma^\mu \nu_3 - \bar{\nu}_3 \gamma^\mu \nu_1] \quad J^\mu_{m,4} = \frac{1}{2} [\bar{\nu}_1 \gamma^\mu \nu_3 + \bar{\nu}_3 \gamma^\mu \nu_1] \quad (22) \]
\[J^\mu_{m,5} = -\frac{i}{2} [\bar{\nu}_2 \gamma^\mu \nu_3 - \bar{\nu}_3 \gamma^\mu \nu_2] \quad J^\mu_{m,6} = \frac{1}{2} [\bar{\nu}_2 \gamma^\mu \nu_3 + \bar{\nu}_3 \gamma^\mu \nu_2] \]
\[J^\mu_{m,7} = -\frac{i}{2} [\bar{\nu}_2 \gamma^\mu \nu_3 - \bar{\nu}_3 \gamma^\mu \nu_2] \quad J^\mu_{m,8} = \frac{1}{2\sqrt{3}} [\bar{\nu}_1 \gamma^\mu \nu_1 + \bar{\nu}_2 \gamma^\mu \nu_2 - 2\bar{\nu}_3 \gamma^\mu \nu_3]. \]

The charges \(Q_{m,j}(t) \equiv \int d^3x J^0_{m,j}(x) \), satisfy the \(SU(3) \) algebra at equal times: \[[Q_{m,j}(t), Q_{m,k}(t)] = i f_{jkl} Q_{m,l}(t) \], with \(f_{jkl} \) totally antisymmetric. From (21) we see that \(Q_{m,3} \) and \(Q_{m,8} \) are conserved as \(M_d \) is diagonal. We can define the combinations:
\[Q_1 = \frac{1}{3} Q + Q_{m,3} + \frac{1}{\sqrt{3}} Q_{m,8}, \]
\[Q_2 = \frac{1}{3} Q - Q_{m,3} + \frac{1}{\sqrt{3}} Q_{m,8}, \]
\[Q_3 = \frac{1}{3} Q - \frac{2}{\sqrt{3}} Q_{m,8}, \quad (23) \]
\[Q_i = \sum_r \int d^3k \left(\alpha^r_{k,i} \alpha^r_{k,i} - \beta^r_{k,i} \beta^r_{k,i} \right) \] \quad i = 1, 2, 3. \tag{24} \]

These are nothing but the Noether charges associated with the non-interacting fields \(\nu_1, \nu_2 \) and \(\nu_3 \): in the absence of mixing, they are the flavor charges, separately conserved for each generation. The generator of the mixing transformations can be now written as:
\[G_{\theta}(t) = e^{i^{\theta_{23}} Q_{m,7}(t)} e^{i^{\theta_{13}} Q_{m,5}(t)} e^{i^{\theta_{12}} Q_{m,2}(t)} \quad (25) \]

Performing \(SU(3) \) transformations on the flavor triplet \(\Psi_f \) gives a similar structure for the currents as before. The related charges \(Q_{f,j}(t) \equiv \int d^3x J^0_{f,j}(x) \) still close the \(SU(3) \) algebra. Due to the off–diagonal (mixing) terms in the
mass matrix M, $Q_{f,3}(t)$ and $Q_{f,8}(t)$ are time–dependent. This implies an exchange of charge between ν_e, ν_μ, and ν_τ, resulting in the flavor oscillations.

In accordance with Eq.(23), we now define the flavor charges for mixed fields as

$$Q_e(t) \equiv \frac{1}{3}Q + Q_{f,3}(t) + \frac{1}{\sqrt{3}}Q_{f,8}(t),$$

$$Q_\mu(t) \equiv \frac{1}{3}Q - Q_{f,3}(t) + \frac{1}{\sqrt{3}}Q_{f,8}(t),$$

$$Q_\tau(t) \equiv \frac{1}{3}Q - \frac{2}{\sqrt{3}}Q_{f,8}(t).$$

with $Q_e(t) + Q_\mu(t) + Q_\tau(t) = Q$. These charges have a simple expression in terms of the flavor ladder operators ($\sigma = e, \mu, \tau$):

$$Q_\sigma(t) = \sum_r \int d^3k \left(\alpha_{k,\sigma}^\dagger(t)\alpha_{k,\sigma}(t) - \beta_{-k,\sigma}^\dagger(t)\beta_{-k,\sigma}(t) \right),$$

since they are connected to the Noether charges Q_σ of Eq.(23) via the mixing generator: $Q_\sigma(t) = G^{-1}_\sigma(t)\alpha(t)G_\sigma(t)$.

4 Neutrino oscillations

The oscillation formulas are obtained by taking expectation values of the above charges on the (flavor) neutrino state. Consider for example a ρ–flavor neutrino state defined as $|\nu_\rho\rangle \equiv \rho^\dagger(0)|0\rangle_f$ (for a discussion on the correct definition of flavor states see Refs[23]). Working in the Heisenberg picture, we obtain:

$$Q_{k,\sigma}^\rho(t) \equiv \langle \nu_\rho|Q_\sigma(t)|\nu_\rho\rangle - \int d^40 \langle Q_\sigma(t)|0\rangle_f$$

$$= \left| \left\{ \alpha_{k,\sigma}^\dagger(t), \alpha_{k,\sigma}(0) \right\} \right|^2 + \left| \left\{ \beta_{-k,\sigma}^\dagger(t), \alpha_{k,\sigma}(0) \right\} \right|^2,$$

(28)

$$Q_{k,\sigma}^{\bar{\rho}}(t) \equiv \langle \bar{\nu}_\rho|Q_\sigma(t)|\bar{\nu}_\rho\rangle - \int d^40 \langle Q_\sigma(t)|0\rangle_f$$

$$= - \left| \left\{ \beta_{k,\sigma}^\dagger(t), \beta_{-k,\sigma}^\dagger(0) \right\} \right|^2 - \left| \left\{ \alpha_{-k,\sigma}^\dagger(t), \beta_{k,\sigma}^\dagger(0) \right\} \right|^2,$$

(29)

where $|0\rangle_f \equiv |0(0)\rangle_f$ and $|\nu_\rho\rangle \equiv \beta_{k,\rho}^\dagger(0)|0\rangle_f$. Charge conservation is obviously ensured at any time: $\sum_\sigma Q_{k,\sigma}(t) = 1$. We remark that the expectation value of Q_{σ} cannot be taken on vectors of the Fock space built on $|0\rangle_n$, as shown in Refs[23]. Note that, in comparison with the two-flavor mixing, a vacuum contribution needs to be subtracted here: due to the presence of the CP violating phase δ, we have indeed $\int d^40 \langle Q_\sigma(t)|0\rangle_f \neq 0$.

6
The oscillation formulas for the flavor charges, on an initial electron neutrino state, then follow:

\[
Q_{k,e}(t) = 1 - \sin^2 2\theta_{12} \cos^2 \theta_{13} \left[\cos^2 \zeta_{12}^k \sin^2 (\Delta_{12}^k t) + \sin^2 \zeta_{12}^k \sin^2 (\Omega_{12}^k t) \right] - \sin^2 2\theta_{13} \cos^2 \theta_{12} \left[\cos^2 \zeta_{13}^k \sin^2 (\Delta_{13}^k t) + \sin^2 \zeta_{13}^k \sin^2 (\Omega_{13}^k t) \right]
\]

(30)

\[
\sin^2 2\theta_{13} \sin^2 \theta_{12} \left[\cos^2 (\xi_{12}^k - \xi_{13}^k) \sin^2 (\Delta_{23}^k t) + \sin^2 (\xi_{12}^k - \xi_{13}^k) \sin^2 (\Omega_{23}^k t) \right],
\]

and similar ones, with \(\Delta_{ij}^k \equiv (\omega_{k,j} - \omega_{k,i})/2 \) and \(\Omega_{ij}^k \equiv (\omega_{k,j} + \omega_{k,i})/2 \). These results are exact. The differences with respect to the usual formulas for neutrino oscillations are in the energy dependence of the amplitudes and in the additional oscillating terms. In the relativistic limit of Eq.(19), the traditional QM (Pontecorvo) formulas are recovered.

5 CP and T violation in QFT neutrino oscillations

The CP violation developed in neutrino oscillations is given in QM as:

\[
\Delta_{CP}(t) = P_{\nu_\sigma \rightarrow \nu_\rho}(t) - P_{\nu_\rho \rightarrow \nu_\sigma}(t).
\]

(31)

where \(\sigma, \rho = e, \mu, \tau \). The T violation can be obtained as:

\[
\Delta_{T}(t) = P_{\nu_\sigma \rightarrow \nu_\rho}(t) - P_{\bar{\nu}_\rho \rightarrow \bar{\nu}_\sigma}(t).
\]

(32)

with \(\Delta_{CP}(t) = \Delta_{T}(t) \) as a consequence of CPT invariance.

The QFT analogue of Eq.(31) is

\[
\Delta_{\sigma \tau}^{CP}(t) \equiv Q_{\sigma e}^{CP}(t) + Q_{e \sigma}^{CP}(t), \quad \rho, \sigma = e, \mu, \tau.
\]

(33)

with \(\sum_\sigma \Delta_{\sigma \tau}^{CP}(t) = 0 \) since \(\sum_\sigma Q_\sigma(t) = Q \) and \(\langle \nu_e | Q | \nu_e \rangle = 1, \langle \bar{\nu}_e | Q | \bar{\nu}_e \rangle = -1 \). For the case of an initial electron neutrino state, we obtain

\[
\Delta_{CP}^{e\mu}(t) = \frac{1}{2} \cos \theta_{13} \sin \delta \sin(2\theta_{12}) \sin(2\theta_{13}) \sin(2\theta_{23}) \left[U_{12}^2 \sin(2\Delta_{12}^k t) - V_{12}^2 \sin(2\Omega_{12}^k t) - U_{13}^2 \sin(2\Delta_{13}^k t) + V_{13}^2 \sin(2\Omega_{13}^k t) \right.
\]

\[
+ \left. (U_{12}^2 - V_{12}^2) \sin(2\Delta_{23}^k t) + (V_{12}^2 - V_{13}^2) \sin(2\Omega_{23}^k t) \right]
\]

(34)

and \(\Delta_{CP}^{e\tau}(t) = -\Delta_{CP}^{e\mu}(t) \).
For the study of T violation, defining $\Delta_T(t)$ as $\Delta_{\rho\sigma}^T(t) \equiv Q_{\rho}^\sigma(t) - Q_{\sigma}^\rho(t)$ does not seem to work. We have indeed: $\Delta_{\rho\sigma}^T(t) - \Delta_{\rho\sigma}^{CP}(t) \neq 0$ violating CPT invariance. The correct definition is then:

$$\Delta_{\rho\sigma}^{\rho\sigma}(t) \equiv Q_{\rho}^\sigma(t) - Q_{\rho}^{\sigma(-t)}$$

(35)

We obtain $\Delta_{\rho\sigma}^{\rho\sigma} \neq 0$ for $\sigma \neq e$ and $\Delta_{\rho\sigma}^{\rho\sigma} = \Delta_{\rho\sigma}^{\rho\sigma}$ in agreement with $Q_{\sigma}^e(-t) = -Q_{\bar{e}}^\sigma(t)$. Further work is in progress on this topic.

6 Conclusions

We have discussed the mixing of (Dirac) fermionic fields in Quantum Field Theory for the case of three flavors. We have constructed the flavor Hilbert space and studied the currents and charges for mixed fields (neutrinos). We have then derived the exact QFT oscillation formulas, a generalization of the usual QM Pontecorvo formulas. CP and T violation induced by neutrino oscillations have also been discussed.

Acknowledgments

M.B. and G.V. thank Prof. Y.L.Wu for the kind hospitality at the “International Conference on Flavor Physics”, Zhang-Jia-Jie, China, June 2001 and at the “International Workshop on Neutrino Physics”, Beijing, China, June 2001. This work has been supported by MURST and INFN. Partial support from INFM, EPSRC and ESF is also acknowledged.

References

1. M. Blasone and G. Vitiello, Annals Phys. 244 (1995) 283 [Erratum-ibid. 249 (1995) 363].
2. M. Blasone, P. A. Henning and G. Vitiello, Phys. Lett. B 451 (1999) 140; M. Blasone, in “Erice 1998, From the Planck length to the Hubble radius” 584-593. [hep-ph/9810329].
3. M. Blasone and G. Vitiello, Phys. Rev. D60 (1999) 111302.
4. M. Blasone, P. Jizba and G. Vitiello, [hep-th/0103087].
5. K. C. Hannabuss and D. C. Latimer, J. Phys. AA33 (2000) 1369.
6. K. Fujii, C. Habe and T. Yabuki, Phys. Rev. D 59 (1999) 113003 [Erratum-ibid. D 60 (1999) 099903].
7. K. Fujii, C. Habe and T. Yabuki, Phys. Rev. D 64 (2001) 013011.
8. M. Blasone, P.A. Henning and G. Vitiello, in “La Thuile 1996, Results and perspectives in particle physics” 139-152 [hep-ph/9605335].
9. M. Binger and C. Ji, Phys. Rev. D60 (1999) 056005.
10. M. Blasone, A. Capolupo, O. Romei and G. Vitiello, Phys. Rev. D 63 (2001) 125015.
11. C. Ji and Y. Mishchenko, [hep-ph/0105094].
12. S. M. Bilenky and B. Pontecorvo, Phys. Rep. 41 (1978) 225;
13. T. Cheng and L. Li, Gauge Theory of Elementary Particle Physics, Clarendon Press, Oxford, 1989;
 N. Cabibbo, Phys. Rev. Lett. 10 (1963) 531; M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49 (1973) 652.
14. C. Itzykson and J. B. Zuber, Quantum Field Theory (McGraw-Hill Book Co., New York, 1980)