Hadamard Extensions and the Identification of Mixtures of Product Distributions

Spencer L. Gordon∗ Leonard J. Schulman†

February 16, 2021

Abstract

The Hadamard Extension of a matrix is the matrix consisting of all Hadamard products of subsets of its rows. This construction arises in the context of identifying a mixture of product distributions on binary random variables: full column rank of such extensions is a necessary ingredient of identification algorithms. We provide several results concerning when a Hadamard Extension has full column rank.

1 Introduction

The Hadamard product for row vectors \(u = (u_1, \ldots, u_k) \), \(v = (v_1, \ldots, v_k) \) is the mapping \(\circ : \mathbb{R}^k \times \mathbb{R}^k \to \mathbb{R}^k \) given by

\[
\begin{align*}
u \circ v := (u_1 v_1, \ldots, u_k v_k)
\end{align*}
\]

The identity for this product is the all-ones vector \(1 \). We associate with vector \(v \) the linear operator \(v \circ = \text{diag}(v) \), a \(k \times k \) diagonal matrix, so that

\[
\begin{align*}
u \cdot v \circ = v \circ u.
\end{align*}
\]

Throughout this paper \(m \) is a real matrix with row set \([n] := \{1, \ldots, n\} \) and column set \([k] \); write \(m_i \) for a row and \(m^j \) for a column.

As a matter of notation, for a matrix \(Q \) and nonempty sets \(R \) of rows and \(C \) of columns, let \(Q|_R^C \) be the restriction of \(Q \) to those columns and rows (with either index omitted if all rows or columns are retained).

Definition 1. The Hadamard Extension of \(m \), written \(\mathcal{H}(m) \), is the \(2^n \times k \) matrix with rows \(m_S \) for all \(S \subseteq [n] \); where, for \(S = \{i_1, \ldots, i_\ell\} \), \(m_S = m_{i_1} \circ \cdots \circ m_{i_\ell} \); equivalently \(m_S^j = \prod_{i \in S} m_i^j \). (In particular \(m_\emptyset = 1 \).)

This construction has arisen recently in learning theory \cite{3,8} where it is essential to source identification for a mixture of product distributions on binary random variables. We explain the connection further in Section 5.

Motivated by this application, we are interested in the following two questions:

1. If \(\mathcal{H}(m) \) has full column rank, must there exist a subset \(R \) of the rows, of bounded size, such that \(\mathcal{H}(m|_R) \) has full column rank?

2. In each row of \(m \), assign distinct colors to the distinct real values. Is there a condition on the coloring that ensures \(\mathcal{H}(m) \) has full column rank?

In answer to the first question we show in Section 2:

Theorem 2. If \(\mathcal{H}(m) \) has full column rank then there is a set \(R \) of no more than \(k - 1 \) of the rows of \(m \), such that \(\mathcal{H}(m|_R) \) has full column rank.

∗Engineering and Applied Science, California Institute of Technology, slgordon@caltech.edu.
†Engineering and Applied Science, California Institute of Technology, schulman@caltech.edu. Research supported in part by NSF grant CCF-1909972.
Considering the more combinatorial second question, observe that if \(\mathbf{m} \) possesses two identical columns then the same is true of \(\mathbb{H}(\mathbf{m}) \), and so it cannot be full rank. Extending this further, suppose there are three columns \(C \) in which only one row \(r \) has more than one color. Then Rowspace \(\mathbb{H}(\mathbf{m}[^C]) \) is spanned by \(1[^C] \) and \(r[^C] \), so again \(\mathbb{H}(\mathbf{m}) \) cannot be full rank. Motivated by these necessary conditions, set:

Definition 3. For a matrix \(Q \) let NAE\((Q)\) be the set of nonconstant rows of \(Q \) (NAE = “not all equal”); let \(\varepsilon(Q[^C]) = |\text{NAE}(Q[^C])| - |C| \) and let \(\tau(Q) = \min_{C \neq \emptyset} \varepsilon(Q[^C]) \). If \(\tau(Q) \geq -1 \) we say \(Q \) satisfies the NAE condition.

In answer to the second question we have the following:

Theorem 4. If \(\mathbf{m} \) satisfies the NAE condition then

1. There is a restriction of \(\mathbf{m} \) to some \(k - 1 \) rows \(R \) such that \(\tau(\mathbf{m}|_R) = -1 \).
2. \(\mathbb{H}(\mathbf{m}) \) is full column rank.

(As a consequence also \(\mathbb{H}(\mathbf{m}|_R) \) is full column rank.)

Apparently the only well-known example of the NAE condition is when \(\mathbf{m} \) contains \(k - 1 \) rows which are identical and whose entries are all distinct. Then the vectors \(\mathbf{m}_1, \mathbf{m}_1[^1], \mathbf{m}_1[^2], \ldots, \mathbf{m}_1[^{k-1}] \) form a nonsingular Vandermonde matrix. This example shows that the bound of \(k - 1 \) in [a] is best possible.

For another example in which the NAE condition ensures that rank \(\mathbb{H}(\mathbf{m}) = k \), take the \((k-1)\)-row matrix with \(\mathbf{m}_i^j = 1 \) for \(i \leq j \) and \(\mathbf{m}_i^j = 1/2 \) for \(i > j \). Here the NAE condition is only minimally satisfied, in that for every \(\ell \leq k \) there are \(\ell \) columns \(C \) s.t. \(\varepsilon(\mathbf{m}[^C]) = -1 \).

For \(k > 3 \) the NAE condition is no longer necessary for \(\mathbb{H}(\mathbf{m}) \) to have full column rank. E.g., for \(k = 2^\ell \), the \(\ell \times k \) “Hamming matrix” \(\mathbf{m} = (-1)^{j_i} \) where \(j \) is a \(\ell \)-bit string \(j = (j_1, \ldots, j_\ell) \), forms \(\mathbb{H}(\mathbf{m}) \) = the Fourier transform for the group \((\mathbb{Z}/2)^\ell \), (often called a Hadamard matrix), which is invertible. Furthermore, almost all (in the sense of Lebesgue measure) \(|\log k| \times k \) matrices \(\mathbf{m} \) form a full-rank \(\mathbb{H}(\mathbf{m}) \). (This is because \(\det \mathbb{H}(\mathbf{m}) \) is a polynomial in the entries of \(\mathbf{m} \), and the previous example shows the polynomial is nonzero.) Despite this observation, the Vandermonde case, in which \(k - 1 \) rows are required, is very typical, as it is what arises in \(\mathbb{H}(\mathbf{m}) \) for a mixture model of observables \(X_i \) that are iid conditional on a hidden variable.

2 Some Theory for Hadamard Products, and a Proof of Theorem 2

For \(v \in \mathbb{R}^k \) and \(U \) a subspace, extend the definition \(v_\odot \) to

\[
v_\odot(U) = \{u \cdot v_\odot : u \in U\}
\]

and introduce the notation

\[
v_\odot(U) = \text{span}\{U \cup v_\odot(U)\}.
\]

We want to understand which subspaces \(U \) are invariant under \(v_\odot \). Let \(v \) have distinct values \(\lambda_1 > \ldots > \lambda_\ell \) for \(\ell \leq k \). Let the polynomials \(p_{v,i}(i = 1, \ldots, \ell) \) of degree \(\ell - 1 \) be the Lagrange interpolation polynomials for these values, so \(p_{v,i}(\lambda_j) = \delta_{ij} \) (Kronecker delta). Let \(B(v) \) denote the partition of \([k]\) into blocks \(B(v)[i] = \{j : v_j = \lambda_i\} \). Let \(V(i) \) be the space spanned by the elementary basis vectors in \(B(v)[i] \), and \(P(i) \) the projection onto \(V(i) \) w.r.t. standard inner product. We have the matrix equation

\[
p_{v,i}(v_\odot) = P(i).
\]

The collection of all linear combinations of the matrices \(P(i) \) is a commutative algebra, the \(B(v) \) projection algebra, which we denote \(A_{B(v)} \). The identity of the algebra is \(I = \sum P(i) \).

Definition 5. A subspace of \(\mathbb{R}^k \) respects \(B(v) \) if it is spanned by vectors each of which lies in some \(V(i) \).

For \(U \) respecting \(B(v) \) write \(U = \text{span}(U) \) for \(U(i) \subseteq V(i). \) Let \(D(i) = (U(i))^\perp \cap V(i) \). Then \((U(i))^\perp = D(i) \oplus \bigoplus_{j \neq i} V(j) \).
Lemma 6. Subspace U^\perp respects $B(v)$ if U does.

Proof. In general, $(\text{span}(W \cup W'))^\perp = W^\perp \cap W'^\perp$. So $U^\perp = \bigcap_i (U_i)^\perp = \bigoplus_i D_i$. □

Lemma 7. Subspace U respects $B(v)$ iff $U = \bigoplus (P_i U)$.

Proof. (\Leftarrow): Because this gives an explicit representation of U as a direct sum of subspaces each restricted to some V_i. (\Rightarrow): By definition U is spanned by some collection of subspaces $V_i' \subseteq V_i$; since these subspaces are necessarily orthogonal, $U = \bigoplus V_i'$. Moreover, since P_i annihilates $V_{(j)}$, $i \neq j$, and is the identity on V_i, it follows that each $V_i' = P_i U$.

Theorem 8. Subspace U is invariant under v_\otimes iff U respects $B(v)$.

Proof. (\Leftarrow): It suffices to show U^\perp is invariant under v_\otimes. By the previous lemma, it is equivalent to suppose that U^\perp respects $B(v)$. So let $d \in U^\perp$ and write $d = \sum_i d_i \in D_i$. Then $v \otimes d_i = \lambda_i d_i \in D_i$. So $v \otimes d = \sum v \otimes d_i \in \bigoplus D_i = U^\perp$.

(\Rightarrow): If $U = v_\otimes(U)$ then these also equal $v_\otimes(v_\otimes(U))$, etc., so U is an invariant space of $A_{B(v)}$, meaning, $aU \subseteq U$ for any $a \in A_{B(v)}$. In particular for $a = P_i$. So $U \supseteq \bigoplus (P_i U)$. On the other hand, since $\sum P_i = I$, $U = (\sum P_i) U \subseteq \bigoplus (P_i U)$. So $U = \bigoplus (P_i U)$. Now apply Lemma 7.

The symbol \subset is reserved for strict inclusion.

Lemma 9. If $S, T \subseteq [n]$ and Rowspace $\mathbb{H}(m|S) \subset$ Rowspace $\mathbb{H}(m|S \cup T)$, then there is a row $t \in T$ such that Rowspace $\mathbb{H}(m|S) \subset$ Rowspace $\mathbb{H}(m|S \cup \{t\})$.

Proof. Without loss of generality S, T are disjoint. Let $T' \subseteq T$ be a smallest set s.t. $\exists S' \subseteq S$ s.t. $m_{S'} \circ m_{T'} \notin$ Rowspace $\mathbb{H}(m|S)$. Select any $t \in T'$ and write $m_{S'} \circ m_{T'} = m_{S'} \circ m_{T'-\{t\}} \circ m_t$. By minimality of T', $m_{S'} \circ m_{T'-\{t\}} \in$ Rowspace $\mathbb{H}(m|S)$. But then $m_{S'} \circ m_{T'} \in$ Rowspace $\mathbb{H}(m|S \cup \{t\})$, so Rowspace $\mathbb{H}(m|S) \subset$ Rowspace $\mathbb{H}(m|S \cup \{t\})$.

Theorem 2 is now a consequence of Lemma 9.

It follows from Theorem 2 that we can check whether rank $\mathbb{H}(m) = k$ in time $O(n)^k$ by computing rank $\mathbb{H}(m|S)$ for each $S \in \binom{[n]}{k-1}$.

3 Combinatorics of the NAE Condition: Proof of Theorem 4(a)

Recall we are to show: 4(a). If $\tau(m) \geq -1$ then m has a restriction to some $k-1$ rows on which $\tau = -1$.

Proof. We induct on k. The (vacuous) base-case is $k = 1$. For $k > 1$, we induct on n, with base-case $n = k - 1$.

Supposing the Theorem fails for $k, k > 1$, let m be a k-column counterexample with least n. Necessarily every row is in NAE(m), and $n > k - 1 \geq 1$. We will show m has a restriction m' to $n - 1$ rows, for which $\tau(m') \geq -1$; this will imply a contradiction because, by minimality of m, m' has a restriction to $k - 1$ rows on which $\tau = -1$.

If $\tau(m) \geq 0$ then we can remove any single row of m and still satisfy $\tau \geq -1$.

Otherwise, $\tau(m) = -1$, so there is a nonempty S such that $|\text{NAE}(m^S)| = |S| - 1$; choose a largest such S. It cannot be that $S = [k]$ (as then $n = k - 1$). Arrange the rows NAE(m^S) as the bottom $|S| - 1$ rows of the matrix. As discussed earlier, for the NAE condition one may regard the distinct real values in each row of m simply as distinct colors; relabel the colors in each row above NAE(m^S) so the color above S is called “white.” (There need be no consistency among the real numbers called white in different rows.) See Figure 4.

Due to the maximality of $|S|$, there is no white rectangle on ℓ columns and $n - |S| - \ell + 1$ rows inside $m^{|S| - \ell} \cap \text{NAE}(m^S)$ for any $\ell \geq 1$. That is to say, if we form a bipartite graph on right vertices corresponding to the columns $[k] - S$, and left vertices corresponding to the rows $[n] - \text{NAE}(m^S)$, with non-white cells being edges, then any subset of the right vertices of size $\ell \geq 1$ has at least $\ell + 1$ neighbors within the left vertices.
Recall we are to show: \(4(\text{b})\) \(H(m)\) has full column rank if \(\pi(m) \geq -1\).

Proof. The case \(k = 1\) is trivial. Now suppose \(k \geq 2\) and that Theorem \(4(\text{b})\) holds for all \(k' < k\). Any constant rows of \(m\) affect neither the hypothesis nor the conclusion, so remove them, leaving \(m\) with at least \(k - 1\) rows. Now pick any set, \(C\), of \(k - 1\) columns of \(m\). By Theorem \(4(\text{a})\) there are some \(k - 2\) rows of \(m\), call them \(R'\), on which \(\pi(m|_{R'}) = -1\). Let \(v\) be a row of \(m\) outside \(R'\). Call the rows of \(m\) apart from \(v\), \(R''\). Since \(R''\) contains

Figure 1: Argument for Theorem \(4(\text{a})\). Upper-left region is white. Entries \((t, f(t))\) are not white.
Consider observable random variables X_1, \ldots, X_n that are statistically independent conditional on H, a hidden random variable supported on $\{1, \ldots, k\}$. (See causal diagram.)

The most fundamental case is that the X_i are binary. Then we denote $m^j_i = \Pr(X_i = 1|H = j)$. The model parameters are m along with a probability distribution (the mixture distribution) $\pi = (\pi_1, \ldots, \pi_k)$ on H.

Finite mixture models were pioneered in the late 1800s in [13, 14]. The problem of learning such distributions has drawn a great deal of attention. For surveys see, e.g., [5, 17, 11, 12]. For some algorithmic papers on discrete finite mixture models were pioneered in the late 1800s in [13, 14]. The problem of learning such distributions parameters are w in fact U. Since $\dim U = k$. (Further detail for the last step: let $w\not\in U$ s.t. $\dim U = V(i_0)$. Thus in fact $U = \mathbb{R}^k$. (Further detail for the last step: let $w\not\in U$ s.t. $\dim U = V(i_0)$. Then $w = (I - P(i_0))(w - w')$. Then $w + w'' \in \text{Rowspace } \mathbb{H}(m)$, and $w' + w'' = w$.)

5 Motivation

Consider observable random variables X_1, \ldots, X_n that are statistically independent conditional on H, a hidden random variable supported on $\{1, \ldots, k\}$. (See causal diagram.)

The most fundamental case is that the X_i are binary. Then we denote $m^j_i = \Pr(X_i = 1|H = j)$. The model parameters are m along with a probability distribution (the mixture distribution) $\pi = (\pi_1, \ldots, \pi_k)$ on H.

Finite mixture models were pioneered in the late 1800s in [13, 14]. The problem of learning such distributions has drawn a great deal of attention. For surveys see, e.g., [5, 17, 11, 12]. For some algorithmic papers on discrete finite mixture models were pioneered in the late 1800s in [13, 14]. The problem of learning such distributions parameters are w in fact U. Since $\dim U = k$. (Further detail for the last step: let $w\not\in U$ s.t. $\dim U = V(i_0)$. Then $w = (I - P(i_0))(w - w')$. Then $w' + w'' \in \text{Rowspace } \mathbb{H}(m)$, and $w' + w'' = w$.)

Connection to rank $\mathbb{H}(m)$. In general μ is not injective (even allowing for permutation among the values of H). For instance it is clearly not injective if m has two identical columns (unless π places no weight on those). More generally, and assuming all $\pi_j > 0$, it cannot be injective unless $\mathbb{H}(m)$ has full column rank.

One sufficient condition for injectivity, due to [16], is that there be $2k - 1$ “separated” observables X_i; X_i is separated if all m^j_i are distinct, or in our terminology, if no color recurs in m_i. (Further [8], one can lower bound the distance between $\mu(m, \pi)$ and any $\mu(m', \pi')$ in terms of $\min_{i,j} |m^j_i - m'^j_i|$ and the distance between (m, π) and (m', π).)

A weaker sufficient condition for injectivity of μ, due to [8], is that for every $i \in [n]$ there exist two disjoint sets $A, B \subseteq [n] \setminus \{i\}$ such that $\mathbb{H}(m|A)$ and $\mathbb{H}(m|B)$ have full column rank. (It is not known whether two disjoint such A, B are strictly necessary, but the implied $n \leq 2k - 1$ is in general best possible [15].)
References

[1] A. Anandkumar, D. Hsu, and S. M. Kakade. A method of moments for mixture models and hidden Markov models. In Proc. 25th Ann. Conf. on Computational Learning Theory, pages 33.1–33.34, 2012.

[2] K. Chaudhuri and S. Rao. Learning mixtures of product distributions using correlations and independence. In Proc. 21st Ann. Conf. on Computational Learning Theory, pages 9–20, 2008.

[3] S. Chen and A. Moitra. Beyond the low-degree algorithm: mixtures of subcubes and their applications. In Proc. 51st Ann. ACM Symp. on Theory of Computing, pages 869–880, 2019.

[4] M. Cryan, L. Goldberg, and P. Goldberg. Evolutionary trees can be learned in polynomial time in the two state general Markov model. SIAM J. Comput., 31(2):375–397, 2001. Prev. FOCS ’98.

[5] B. S. Everitt and D. J. Hand. Mixtures of discrete distributions, pages 89–105. Springer Netherlands, Dordrecht, 1981.

[6] J. Feldman, R. O’Donnell, and R. A. Servedio. Learning mixtures of product distributions over discrete domains. SIAM J. Comput., 37(5):1536–1564, 2008.

[7] Y. Freund and Y. Mansour. Estimating a mixture of two product distributions. In Proc. 12th Ann. Conf. on Computational Learning Theory, pages 183–192, July 1999.

[8] S. L. Gordon, B. Mazaheri, Y. Rabani, and L. J. Schulman. Source identification for mixtures of product distributions. arXiv:2012.14540, 2020.

[9] M. Kearns, Y. Mansour, D. Ron, R. Rubinfeld, R. Schapire, and L. Sellie. On the learnability of discrete distributions. In Proc. 26th Ann. ACM Symp. on Theory of Computing, pages 273–282, 1994.

[10] J. Li, Y. Rabani, L. J. Schulman, and C. Swamy. Learning arbitrary statistical mixtures of discrete distributions. In Proc. 47th Ann. ACM Symp. on Theory of Computing, pages 743–752, 2015.

[11] B. G. Lindsay. Mixture models: theory, geometry and applications. In NSF-CBMS regional conference series in probability and statistics, pages i–163. JSTOR, 1995.

[12] G. J. McLachlan, S. X. Lee, and S. I. Rathnayake. Finite mixture models. Annual Review of Statistics and Its Application, 6(1):355–378, 2019.

[13] S. Newcomb. A generalized theory of the combination of observations so as to obtain the best result. American Journal of Mathematics, 8(4):343–366, 1886.

[14] K. Pearson. Contributions to the mathematical theory of evolution III. Philosophical Transactions of the Royal Society of London (A.), 185:71–110, 1894.

[15] Y. Rabani, L. J. Schulman, and C. Swamy. Learning mixtures of arbitrary distributions over large discrete domains. In Proc. 5th Conf. on Innovations in Theoretical Computer Science, pages 207–224, 2014.

[16] B. Tahmasebi, S. A. Motahari, and M. A. Maddah-Ali. On the identifiability of finite mixtures of finite product measures. IEEE International Symposium on Information Theory (ISIT) 2018 and arXiv:1807.05444v1, 2018.

[17] D. M. Titterington, A. F. M. Smith, and U. E. Makov. Statistical Analysis of Finite Mixture Distributions. John Wiley and Sons, Inc., 1985.