Dynamics of D1-brane in I-brane Background

J. Klusoň *

Dipartimento di Fisica,
Università di Roma & Sezione di Roma 2, Tor Vergata
Via della, Ricerca, Scientifica, 1 00133 Roma ITALY
E-mail: Josef.Kluson@roma2.infn.it

ABSTRACT: This paper is devoted to the study of the effective field theory description of the probe D1-brane in the background of the system of two stacks of fivebranes in type IIB theory that intersect on $R^{1,1}$. We study the properties of the Dirac-Born-Infeld action for D1-brane moving in this background. We will argue that this action is invariant under an additional symmetry in the near horizon limit and that this new symmetry is closely related to the enhanced symmetry of the I-brane background considered recently in [hep-th/0508025]. We also solve explicitly the equation of motion of D1-brane in the near horizon limit.

KEYWORDS: D-branes.

*On leave from Masaryk University, Brno
1. Introduction and Summary

One of the most outstanding problems in string theory is the problem of string dynamics in the time dependent background. On the other hand there was great recent progress pioneered by work of A. Sen \[1, 2, 3, 4\] that showed that the rolling tachyon could be used to describe an decay of an unstable D-brane. It is very nice that Dirac-Born-Infeld (DBI)-like tachyon effective action \[5, 6, 7, 8\] can capture most of the aspects of the time dynamics of the tachyon.

The problem of the time dependence of the string theory was also analyzed from different point of view in the paper \[10\] where the time dependent motion of probe Dp-brane in the background of N NS5-branes was considered. Among many interesting results derived there was an observation that the radial motion of such a probe Dp-brane can be mapped to the time depend tachyon like condensation. It is then very tempting to conjecture that tachyon could have geometrical origin. Kutasov’s paper is also an example how probe Dp-brane dynamics could be useful for the study of properties of given background. In fact the probe D-brane analysis was very successful in the study of matrix theory (See \[32, 33\] for reviews and extensive list of references.) and AdS/CFT correspondence (See for example \[34\].) For that reason it seems to be natural to analyze the dynamics of the probe D-brane in all interesting backgrounds. One such example of a nontrivial string theory background was recently considered in a remarkable paper by N. Itzaki, D. Kutasov and N. Seiberg \[35\]. This background consists two stacks of fivebranes in type IIB theory that

Some related works are \[11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31\].
intersect on $R^{1,1}$. Very careful analysis presented there discovered many interesting results. For example, it was shown that there is an enhancement of the symmetry in the near horizon geometry of given background that in some sense mixes the world volume coordinate of I-brane with the transverse ones 3. This property was then analyzed in 28 from the point of view of the effective field theory living on the intersecting NS5-branes and also from the perspective of the closed string moving in this background. Unfortunately there is not enough place to review all results derived in this paper and we recommend the original paper 35 for more details with profound physical interpretation.

The goal of this paper is much modest. We will study the classical dynamics of the probe D1-brane in the I-brane background, where one can hope, according to arguments given above, that this dynamics could reflect some of the nontrivial predictions given in paper 35. To do this we will carefully examine the conserved charges for D1-brane moving in given background. We will see that in the near horizon limit of the I-brane geometry one can find on the world volume of D1-brane a new transformation. It turns out that this-scaling like transformation-is symmetry of the action in case of the pure time dependent dynamics on the world volume of D1-brane and also in case when all world volume scalar modes are spatial dependent only 4. Then with the help of the new conserved charge we will be able to solve the equations of motion explicitly. Following $^11, ^28$ we could expect that this time evolution of the probe D1-brane in I-brane background has holographic description in a dual $2 + 1$ dimensional Little String Theory 35.

Despite of the fact that the analysis given in this paper cannot much to say to the holographic formulation of I-dynamics we can still hope that it could be helpful for the study of the interesting properties of I-brane background. For example, an emergence of the scaling symmetry in the near horizon region is related to the enhancement of the world volume symmetry of I-brane from $(1,1)$ to $(2,1)$. We also hope that the conformal field theory description of D-brane dynamics in I-brane background will be determined and the solutions found in this paper could arise as a classical limit of the exact boundary state analysis. On the other hand we still believe that the DBI analysis of the probe could be extended in several directions. First of all, we are going to study the spatial dependent solutions of the D1-brane in the I-brane background. We can also study the dynamics of D1-brane probe in the background where some of the NS5-branes are not coincident. Another interesting problem seems to be the analysis of probe Dp-brane dynamics in the background of $1 + 1$ dimensional intersection of two orthogonal stacks of NS5-branes in the type IIA theory or in the background of $1 + 1$ dimensional intersection of two orthogonal stack of D5-branes in type IIB theory.

3This point was also confirmed in 36.

4The case of spatial dependent scalar fields will be analyzed in separate publication.
The organization of the paper is as follows. In the next section (2) we will review the properties of the DBI action in general background. We will also study the symmetry properties of given action and we will outline the general prescription how to obtain charges that either are conserved or obey the equation where on the left hand side is a divergence of given current while the right hand side contains an anomaly term that is a result of the explicit breaking of given symmetry in given action. In section (3) we will introduce the Lagrangian density for probe D1-brane in I-brane background and determine some conserved quantities that follow from the symmetry of D1-brane action in I-brane background. In section (4) we will solve the equation of motion for D1-brane in the near horizon limit where all modes on the world volume of D1-brane are homogeneous. We find explicit time dependence of the radial modes that describe the radial position of D1-brane. We will also find the relation between the dilatation symmetry that emerges on the world volume of D1-brane and the new symmetry that was discovered in the paper [35].

2. DBI action

The starting point of our analysis is Dirac-Born-Infeld action for Dp-brane in a general background

$$S = -\tau_p \int d^{p+1}x e^{-\Phi} \sqrt{-\det A_{\mu\nu}} , \ A_{\mu\nu} = \gamma_{\mu\nu} + F_{\mu\nu} ,$$

(2.1)

where τ_p is Dp-brane tension, $\Phi(X)$ is dilaton and where $\gamma_{\mu\nu} , \mu, \nu = 0, \ldots, p$ is embedding of the metric to the world volume of Dp-brane

$$\gamma_{\mu\nu} = g_{MN} \partial_\mu X^M \partial_\nu X^N , M, N = 0, \ldots, 9 .$$

(2.2)

In (2.1) the form $F_{\mu\nu}$ is defined as

$$F_{\mu\nu} = b_{MN} \partial_\mu X^M \partial_\nu X^N + \partial_\mu A_\nu - \partial_\nu A_\mu ,$$

(2.3)

where b_{MN} are components of NS two form. Thanks to the diffeomorphism invariance of the world volume theory it is natural to fix some space time coordinates X^M to be equal to the world volume coordinates x^μ:

$$X^\mu = x^\mu , \mu = 0, \ldots, p .$$

(2.4)

Note that this choice generally leads to the induced metric $\gamma_{\mu\nu}$ and two form $F_{\mu\nu}$ to be functions of x^μ and X^I where $I, J, \ldots = p + 1, \ldots, D$ label coordinate transverse to the world volume of Dp-brane:

$$\gamma_{\mu\nu} = g_{\mu\nu}(x^\mu, X^I) + g_{\mu I}(x^\mu, X^I)\partial_\nu X^I + g_{\nu J}(x^\mu, X^I)\partial_\mu X^J +$$

(2.5)
\[F_{\mu \nu} = b_{\mu \nu}(x^\mu, X^I) + b_{\mu I}(x^\mu, X^I) \partial_\nu X^I + b_{IJ}(x^\mu, X^I) \partial_\mu X^J + b_{IJ}(x^\mu, X^I) \partial_\mu X^J + \partial_\mu A_\nu - \partial_\nu A_\mu. \]

(2.5)

In the following we will consider the case when the background metric and two form field are block diagonal so that \(g_{\mu I} = g_{J \nu} = b_{I \nu} = 0 \). Now the equation of motion for \(X^K, K = p + 1, \ldots, 9 \) takes the form

\[\partial_K [e^{-\Phi} \sqrt{-\det A} + \frac{e^{-\Phi}}{2} \left[\partial_K g_{\mu \nu} + \partial_K g_{IJ} \partial_\mu X^I \partial_\nu X^J + \partial_\mu b_{\mu \nu} + \partial_\mu b_{IJ} \partial_\nu X^I \partial_\nu X^J \right] \left(A^{-1} \right)^{\mu \nu} \sqrt{-\det A} - \partial_\mu \left[e^{-\Phi} g_{K I} \partial_\nu X^I \left(A^{-1} \right)^{\nu \mu} \sqrt{-\det A} \right] - \partial_\mu \left[e^{-\Phi} b_{K I} \partial_\nu X^I \left(A^{-1} \right)^{\nu \mu} \sqrt{-\det A} \right] = 0, \]

(2.6)

where

\[\left(A^{-1} \right)_S^{\mu \nu} = \frac{1}{2} \left(\left(A^{-1} \right)^{\mu \nu} + \left(A^{-1} \right)^{\nu \mu} \right), \left(A^{-1} \right)_A^{\mu \nu} = \frac{1}{2} \left(\left(A^{-1} \right)^{\nu \mu} - \left(A^{-1} \right)^{\mu \nu} \right). \]

(2.7)

Finally, we should also determine the equation of motion for the gauge field \(A_\mu \):

\[\partial_\nu \left[e^{-\Phi} \left(A^{-1} \right)^{\nu \mu} \sqrt{-\det A} \right] = 0. \]

(2.8)

The power of the Lagrangian formalism is that it is manifestly covariant. Then it is natural to determine all possible conserved charges or currents, whose divergences are nonzero and that correspond to some explicitly broken symmetry in given action. The knowledge of these currents then considerably simplifies the analysis of the dynamics of Dp-brane. To do this we will be more general and start with the action

\[S = \int d^D x L(m^A, \phi^I(x), \partial_\mu \phi^I(x)), \]

(2.9)

where \(m^A, A = 1, \ldots, K \) are parameters that are contained in the action and where \(\phi^I \) are dynamical fields. Let us now consider the variation of the action under general transformation of coordinates \(x^\mu \) in the form

\[x'^\mu = x^\mu + \delta x^\mu, \]

(2.10)

where the infinitesimal \(\delta x^\mu \) is specified by a set of infinitesimal parameters \(\omega^i \)

\[\delta x^\mu = X^\mu_i(x) \delta \omega^i. \]

(2.11)

Under such a transformation the field \(\phi^I \) will, in general, transforms. Thus

\[\phi^I(x') = \phi^I(x) + \delta \phi^I(x), \]

(2.12)
where $\delta \phi^I$ is also specified by parameters $\delta \omega^i$ so
\[
\delta \phi^I = \Phi^I_i(x) \delta \omega^i ,
\] (2.13)
where Φ^I_i are functionals of ϕ^J and functions of x. Evidently, the total variation $\delta \phi^I$ derives both from the variation of the field function and from the variation of its argument:
\[
\phi^I(x') = \phi^I(x + \delta x) = \phi^I(x) + \partial_\mu \phi^I(x) \delta x^\mu = \phi^I(x) + \delta \phi^I(x) + \partial_\mu \phi^I(x) \delta x^\mu .
\] (2.14)
Thus we find
\[
\delta \phi^I(x) = \delta \phi^I(x) - \partial_\mu \phi^I(x) \delta x^\mu = [\Phi^I_i - \partial_\mu \phi^I] \delta \omega^i .
\] (2.15)
Let us also presume that the action is invariant under these symmetry transformations when parameters m^A transform as well
\[
m'^A = m^A + \delta m^A = m^A + \Omega_A^I(\phi, x) \delta \omega^i .
\] (2.16)
Then the variation of the action takes the form
\[
\delta S = \int \delta(d^D x) \mathcal{L} + \int d^D x \delta \mathcal{L} ,
\] (2.17)
where $\delta \mathcal{L}$ is the variation in the Lagrangian density caused by above variation of x^μ, ϕ^I and m^A and $\delta \left(d^D x \right)$ is the variation of the integration measure caused by variation of x^μ. In fact
\[
\delta \left(d^D x \right) = d^D x' - d^D x = \partial_\mu (X^\mu_i \delta \omega^i) d^D x .
\] (2.18)
Now remember that the variation of the Lagrangian density is equal to
\[
\delta \mathcal{L}(x) = \delta_0 \mathcal{L}(x) + \frac{\delta \mathcal{L}}{\delta m^A} \delta m^A + \partial_\mu \mathcal{L} \delta x^\mu ,
\] (2.19)
where the variation $\delta_0 \mathcal{L}$ is caused by variation of $\delta \phi^I$. Then the variation of S is
\[
\delta S = \int d^D x \partial_\mu \left(\mathcal{L} X^\mu_i \delta \omega^i + \frac{\delta \mathcal{L}}{\delta \phi^I} \delta \phi^I \right) + \int d^D x \frac{\delta \mathcal{L}}{\delta m^A} \Omega_A^I \delta \omega^i + \\
\quad + \int d^D x \left[\frac{\delta \mathcal{L}}{\delta \phi^I} \partial_\mu \frac{\delta \mathcal{L}}{\delta \phi^I} \right] \delta \phi^I .
\] (2.20)
If the fields obey the equation of motion that the expression on the last line vanishes. Then for the fields that obey the equation of motion the variation of the action is equal to
\[
\delta S = - \int d^D x \partial_\mu (\delta^\mu_i \delta \omega^i) + \int d^D x \frac{\delta \mathcal{L}}{\delta m^A} \Omega_A^I \delta \omega^i ,
\] (2.21)
where
\[j^\mu_i = \left(-L \delta^\mu_\nu + \frac{\delta L}{\delta \partial_\nu \phi^I} \partial_\nu \phi^I \right) X^\nu_i - \frac{\delta L}{\delta \partial_\mu \phi^I} \Phi^I_i. \] (2.22)

Now suppose that \(S \) is invariant when the variations are parameterized by constant \(\delta \omega^i \). Then (2.21) implies
\[0 = \int d^D x \left(-\partial_\mu j^\mu_i + \frac{\delta L}{\delta m^A} \Omega^A_i \right) \delta \omega^i. \] (2.23)

Consequently we get that the current \(j^\mu_i \) obeys the equation
\[\partial_\mu j^\mu_i = \frac{\delta L}{\delta m^A} \Omega^A_i. \] (2.24)

In case when \(\Omega^A_i \) vanish we obtain familiar result that the charge
\[Q_i(t) \equiv \int d^{D-1} x j^0_i \] (2.25)
is constant, independent on \(t \).

Now we apply this general discussion to the case of Dp-brane where as we know, the world volume fields are \(X^I \) and \(A_\mu \). Considering parameters \(m^A \), we will introduce them into the action in case when the action is not invariant without their transformations as well.

As the first example we determine components of the world volume stress energy tensor. To do this we consider following transformation
\[x'^\mu = x^\mu + \epsilon^\mu, \] (2.26)
where \(\epsilon^\mu = \text{const} \). This transformation corresponds to
\[X^\mu_i = \delta^\mu_\nu. \] (2.27)

Under this transformation the world volume fields transform as follows
\[X^I(x') = X^I(x) \Rightarrow \Phi^{X^I}_\mu = 0 , \]
\[A'_\mu(x') = A_\nu(x) \left(\frac{\partial x'^\mu}{\partial x^\nu} \right)^{-1} = A_\nu(x) \delta^\nu_\mu = A_\mu(x) \Rightarrow \Phi^{A_\mu}_\nu = 0. \] (2.28)

Since the action is manifestly invariant under these transformations there is no need to presume that the parameters \(m^A \) transform as well and the right hand side of the equation (2.24) is zero. Now using (2.27) and (2.28) we obtain the components of the world volume stress energy tensor
\[j^\mu_i \equiv T^\mu_\nu = \left(-L \delta^\mu_\kappa + \frac{\delta L}{\delta \partial_\kappa X^I} \partial_\kappa X^I + \frac{\delta L}{\delta \partial_\mu A_\sigma} \partial_\mu A_\sigma \right) \delta^\nu_\mu = \tau^\mu_\nu e^{-\Phi} \left(\delta^\mu_\nu - g_{IJ} \partial_\kappa X^J \left(A^{-1} \right)_A^\mu \partial_\nu X^I - b_{IJ} \partial_\kappa X^J \left(A^{-1} \right)_A^\mu \partial_\nu X^I - \partial_\nu A_\sigma \left(A^{-1} \right)_A^{\sigma \mu} \right) \sqrt{\det A} \] (2.29)
that obey the equation
\[\partial_\mu T^\mu_\nu = 0 . \] (2.30)

Even if it seems that the analysis performed above is well known we mean that it was useful to do it. Especially the case when the symmetry is explicitly broken will be important in the next section.

3. D1-brane in the background of I-brane

In this section we will study the dynamics of D1-brane in the background studied in the work [35]. Namely, we consider the intersection of two stack of NS5-branes. We have \(k_1 \) NS5-branes extended in \((0, 1, 2, 3, 4, 5)\) directions and the set of \(k_2 \) NS5-branes extended in \((0, 1, 6, 7, 8, 9)\) directions. Let us define

\[y = (x^2, x^3, x^4, x^5) , \]
\[z = (x^6, x^7, x^8, x^9) . \]

(3.1)

We have \(k_1 \) NS5-branes localized at the points \(z_n n = 1, \ldots, k_1 \) and \(k_2 \) NS5-branes localized at the points \(y_a, a = 1 \ldots, k_2 \). Every pairs of fivebranes from different sets intersect at different point \((y_a, z_n)\). The supergravity background corresponding to this configuration takes the form

\[\Phi(z, y) = \Phi_1(z) + \Phi_2(y) , \]
\[g_{\mu\nu} = \eta_{\mu\nu} , \mu, \nu = 0, 1 , \]
\[g_{\alpha\beta} = e^{2(\Phi_2 - \Phi_2(\infty))} \delta_{\alpha\beta} , \mathcal{H}_{\alpha\beta\gamma} = -\epsilon_{\alpha\beta\gamma\delta} \partial^\delta \Phi_2 , \alpha, \beta, \gamma, \delta = 2, 3, 4, 5 , \]
\[g_{pq} = e^{2(\Phi_1 - \Phi_1(\infty))} \delta_{pq} , \mathcal{H}_{pqr} = -\epsilon_{pqr\delta} \partial^\delta \Phi_1 , p, q, r, s = 6, 7, 8, 9 . \]

(3.2)

where \(\Phi \) on the first line means the dilaton and where

\[e^{2(\Phi_1 - \Phi_1(\infty))} = 1 + \sum_{n=1}^{k_1} \frac{l_s^2}{|z - z_n|^2} , \]
\[e^{2(\Phi_2 - \Phi_2(\infty))} = 1 + \sum_{a=1}^{k_2} \frac{l_s^2}{|y - y_a|^2} . \]

(3.3)

Our goal is to study properties of this background from the point of view of D1-brane probe when \(z_n = y_a = 0 \). The action for D1-brane moving in given background takes the form

\[S = -\tau_1 \int d^2x e^{-\Phi} \sqrt{-\det A} , \]

(3.4)
where we have implicitly used the static gauge so that the matrix \(A \) is equal to
\[
A_{\mu\nu} = g_{\mu\nu} + g_{1J} \partial_\mu X^I \partial_\nu X^J + b_{IJ} \partial_\mu X^I \partial_\nu X^J + \partial_\mu A_\nu - \partial_\nu A_\mu \, , \quad I, J = 2, \ldots, 9 .
\] (3.5)

To simplify notation let us denote
\[
e^{2(\Phi_1 - \Phi_1(\infty))} = H_1(z) , \quad e^{2(\Phi_2 - \Phi_2(\infty))} = H_2(y) ,
\] (3.6)

where for coincident branes we have
\[
H_1 = 1 + \frac{k_1 l_s^2}{|z|^2} , \quad H_2 = 1 + \frac{k_2 l_s^2}{|y|^2} .
\] (3.7)

Let us now consider the probe in the near horizon limit where
\[
\frac{k_1 l_s^2}{|z|^2} \gg 1 , \quad \frac{k_2 l_s^2}{|y|^2} \gg 1
\] (3.8)

so that we can write
\[
H_1 = \frac{\lambda_1}{|z|^2} , \quad \lambda_1 = k_1 l_s^2 , \quad H_2 = \frac{\lambda_2}{|y|^2} , \quad \lambda_2 = k_2 l_s^2 .
\] (3.9)

In the near horizon limit the action takes the form
\[
S = -\tau_1 \int d^2 x \frac{1}{g_1 g_2 \sqrt{H_1 H_2}} \sqrt{-\det A} ,
\] (3.10)

where
\[
A_{\mu\nu} = \eta_{\mu\nu} + H_1 \delta_{\mu r} \partial_\mu Z^p \partial_r Z^p + H_2 \delta_{\alpha \beta} \partial_\mu Y^\alpha \partial_\beta Y^\beta +
B_{\mu r} \partial_\mu Z^p \partial_r Z^p + B_{\alpha \beta} \partial_\mu Y^\alpha \partial_\beta Y^\beta + \partial_\mu A_\nu - \partial_\nu A_\mu ,
\] (3.11)

and where \(g_1 = e^{\Phi_1(\infty)} \) , \(g_2 = e^{\Phi_2(\infty)} \). According to arguments given in the paper \[35\] we can expect that D1-brane that moves in the near horizon limit possess some additional symmetry. In fact, it is easy to guess the form of such a transformation
\[
Z^p(x') = \Gamma Z^p(x) , \quad Y^\alpha(x') = \Gamma^{-1} Y^\alpha(x) , \quad A_\mu'(x') = A_\mu(x) , \quad x'^\mu = x^\mu ,
\] (3.12)

where \(\Gamma \) is a real parameter. Now we will argue that the action (3.10) is not generally invariant under the transformation (3.12). Firstly, using (3.12) we see that \(H_1 \) and \(H_2 \) transform as
\[
H_1(Z') = \frac{\lambda_1}{\Gamma^2 |Z|^2} = \Gamma^{-2} H_1(Z) ,
\]
\[
H_2(Y') = \frac{\lambda_2 |Y|^2}{\Gamma^2} = \Gamma^2 H_2(Y) .
\] (3.13)
so that $\sqrt{H_1 H_2}$ is invariant under (3.12). On the other hand using (3.13) we also see that Φ_1 and Φ_2 transform as

$$\Phi_1(Z') = -\ln \Gamma + \Phi_1(Z) , \quad \Phi_2(Y') = \ln \Gamma + \Phi_2(Y) .$$

Then (3.14) implies that $H_{pqr}(Z)$ and $H_{\alpha\beta\gamma}(Y)$ transform as

$$H_{pqr}(Z') = \Gamma^{-1} H_{pqr}(Z) , \quad H_{\alpha\beta\gamma}(Y') = \Gamma H_{\alpha\beta\gamma}(Y) .$$

Finally from the definition $H = db$ we get that b_{pq} and $b_{\alpha\beta}$ are invariant under the transformations (3.12)

$$b_{pq}(Z') = b_{pq}(Z) , \quad b_{\alpha\beta}(Y') = b_{\alpha\beta}(Y) .$$

This result implies that the expressions $b_{pq} \partial_\mu Z^p \partial_\nu Z^q , b_{\alpha\beta} \partial_\mu Y^\alpha \partial_\nu Y^\beta$ break the scale invariance of DBI action. In order to restore it we introduce two parameters m_1 , m_2 as

$$b_{pq} \partial_\mu Z^p \partial_\nu Z^q \rightarrow m_1 b_{pq} \partial_\mu Z^p \partial_\nu Z^q$$

and also

$$b_{\alpha\beta} \partial_\mu Y^\alpha \partial_\nu Y^\beta \rightarrow m_2 b_{\alpha\beta} \partial_\mu Y^\alpha \partial_\nu Y^\beta .$$

Then using (3.16) we see that in order to have an action invariant under this scaling transformation parameters m_1 and m_2 have to transform as

$$m_1' = \Gamma^{-2} m_1 , \quad m_2' = \Gamma^2 m_2 .$$

Finally using (3.12) and (3.19) we obtain following values of Φ_i and Ω^A

$$\Phi_i (Z^\nu) = Z^\nu , \quad \Phi_i (Y^\alpha) = -Y^\alpha , \quad \Phi_i (A^\mu) = 0 , \quad \Omega^m_i = -2m_1 , \quad \Omega^m_i = 2m_2 .$$

As a final remark note that the original action can be recovered from the action containing m_1 and m_2 simply by taking $m_1 = m_2 = 1$.

Now using (3.20) we get the form of the dilatation current

$$J_\mu^D = -\frac{\delta L}{\partial \partial_\mu Z^p} \Phi^Z_p - \frac{\delta L}{\partial \partial_\mu Y^\alpha} \Phi^Y_\alpha =$$

$$\tau_1 e^{-\Phi} \left(g_{\mu\nu} Z^p \partial_\nu Z^r \left(A^{-1} \right)_S^{\nu\mu} + b_{pq} \partial_\mu Z^p \partial_\nu Z^q \left(A^{-1} \right)_A^{\nu\mu} \right) \sqrt{-\det A} -$$

$$-\tau_1 e^{-\Phi} \left(g_{\alpha\beta} Y^\alpha \partial_\nu Y^\beta \left(A^{-1} \right)_S^{\nu\mu} + b_{\alpha\beta} \partial_\mu Y^\alpha \partial_\nu Y^\beta \left(A^{-1} \right)_A^{\nu\mu} \right) \sqrt{-\det A} .$$

Finally, we will calculate the term that appears on the right hand side of the equation (2.24)

$$\frac{\delta L}{\delta m^A} \Omega^A_D = -2 \frac{\delta L}{\delta m^1} m_1 + 2 \frac{\delta L}{\delta m^2} m_2 =$$

$$\tau_1 e^{-\Phi} \left(b_{pq} \partial_\mu Z^p \partial_\nu Z^q - b_{\alpha\beta} \partial_\mu Y^\alpha \partial_\nu Y^\beta \right) \left(A^{-1} \right)_S^{\nu\mu} \sqrt{-\det A} ,$$

(3.22)
where we have taken \(m^1 = m^2 = 1 \) in the end of calculation.

From the form of this anomaly term we see that the conservation of \(j^\mu_D \) is restored for homogenous modes or for modes that are spatial depend only since then the anomaly term vanishes thanks to the antisymmetry of \(b \). In this paper we restrict to the case of time dependent modes only. The case when world volume fields are spatial dependent will be discussed in separate publication.

Before we proceed we would like to write the expression for Hamiltonian density of Dp-brane moving in nontrivial background. The reason why we do this is that the Hamiltonian for D1-brane will play an important role in next section. More details considering the Hamiltonian density for Dp-brane in general background can be found, for example in [37, 38]. In fact, using the analysis given there we have shown in [12] that the Hamiltonian density for Dp-brane in curved background takes the form

\[
\mathcal{H} = \sqrt{-g_{00}} \sqrt{K} + \pi^a b_{ab},
\]

\[
\mathcal{K} = \Pi_I g^{IJ} \Pi_J + \pi^a \gamma_{ab} \pi^b + d_a g^{ab} d_b + e^{-2\Phi} r^2 \tau \det A_{ab},
\]

\[
\Pi_I = P_I + \pi^a b_{ai} = P_I + \pi^a (b_{ai} + \partial_a X^I b_{JI}) ,
\]

\[
d_a = \Pi_I \partial_a X^I + F_{ab} \pi^b, \]

\[
\gamma_{ab} = g_{ab} + \partial_a X^I g_{1J} \partial_b X^J, \quad A_{ab} = g_{ab} + \partial_a X^I \partial_b X^J g_{IJ} + F_{ab},
\]

\[
F_{ab} = \partial_a A_b - \partial_b A_a + b_{ab} + b_{IJ} \partial_b X^I \partial_b X^J d_a \sqrt{K},
\]

(3.23)

where \(a, b = 1, \ldots p \) label the spatial coordinates on the world volume of Dp-brane. Note that in (3.23) we presume the background where the metric \(g \) and two form \(b \) are block diagonal so that \(b_{ai} = g_{ai} = 0 \). Moreover, we will also consider the background with \(b_{ab} = 0 \) and \(g_{00} = -1 \). Now using (3.23) it is easy to see that the canonical equations of motion for \(X^K \) and \(A_a \) take the form

\[
\partial_0 X^I = \frac{\delta H}{\delta P_I} = \frac{g^{IJ} \Pi_J + \partial_a X^I g^{ab} d_b}{\sqrt{K}},
\]

\[
\partial_0 A_a = \frac{\delta H}{\delta \pi^a} = \frac{b_{aI} g^{IJ} \Pi_J + \gamma_{ab} \pi^b - F_{ab} g^{bc} d_c}{\sqrt{K}}.
\]

(3.24)

On the other hand the equation of motion for \(P_I \) are much more complicated. However we will not need their explicit forms since we use an existence of conserved charges. On the hand the equation of motion for \(\pi^a \) will be useful

\[
\partial_0 \pi^a = -\frac{\delta H}{\delta A_a} = \partial_{\text{c}} \left[\pi^a g^{cd} d_d - \pi^c g^{ad} d_d \right] - \partial_{\text{b}} \left[e^{-2\Phi} r^2 \tau (A^{-1})_{a}^{ba} \det A \right].
\]

(3.25)
4. Time dependent world volume fields

In this section we will study the case when all world volume modes are time dependent only. Moreover, for the D1-brane the situation simplifies further since now $a, b = 1$ and hence the quantities defined in (3.23) are equal to

$$\gamma_{11} = g_{11}, \quad A_{11} = g_{11}, \quad d_1 = 0, \quad \Pi_I = P_I. \quad (4.1)$$

Now thanks to the manifest rotation symmetry $SO(4)$ in the subspaces spanned by coordinates $z = (z^6, z^7, z^8, z^9)$ and $y = (y^2, y^3, y^4, y^5)$ we can reduce the problem to the study of the motion on two dimensional subspaces, namely we will presume that only following world volume modes are excited

$$z^6 = R \cos \theta, \quad z^7 = R \sin \theta, \quad (4.2)$$

and

$$y^2 = S \cos \psi, \quad y^3 = S \sin \psi. \quad (4.3)$$

For these modes K defined in (3.23) is equal to

$$K = P_R g^{RR} P_R + P_S g^{SS} P_S + P_\theta g^{\theta \theta} P_\theta + P_\psi g^{\psi \psi} P_\psi + \pi^1 g_{11} \pi^1 + e^{-2\Phi} \tau_1^2 g_{11} =$$

$$= \frac{\tau_1^2 R^2 S^2}{g_1 g_2 \lambda_1 \lambda_2} \left(1 + \frac{\lambda_2 g_1^2 g_2^2}{\tau_1^2 S^2} P_R^2 + \frac{\lambda_1 g_1^2 g_2^2}{\tau_1^2 R^2} P_S^2 + \frac{\lambda_2 g_1^2 g_2^2}{\tau_1^2 R^2 S^2} P_\theta^2 + \frac{\lambda_1 g_1^2 g_2^2}{\tau_1^2 R^2} P_\psi^2 + \frac{g_1^2 g_2^2 \lambda_1 \lambda_2}{\tau_1^2 R^2 S^2} \right), \quad (4.4)$$

where on the second line we have taken the near horizon limit. Note that for simplicity of notation we define $\pi \equiv \pi^1, A \equiv A_1$. Then using (4.4) the Hamiltonian density (3.23) takes the form

$$\mathcal{H} = \frac{\tau_1 R S}{g_1 g_2 \sqrt{\lambda_1 \lambda_2}^2} \left(1 + \frac{\lambda_2 g_1^2 g_2^2}{\tau_1^2 S^2} P_R^2 + \frac{\lambda_1 g_1^2 g_2^2}{\tau_1^2 R^2} P_S^2 + \frac{\lambda_2 g_1^2 g_2^2}{\tau_1^2 R^2 S^2} P_\theta^2 + \frac{\lambda_1 g_1^2 g_2^2}{\tau_1^2 R^2} P_\psi^2 + \frac{g_1^2 g_2^2 \lambda_1 \lambda_2}{\tau_1^2 R^2 S^2} \right). \quad (4.5)$$

In the same way we obtain that the zero component of the dilatation current j_D^0 (3.21) is equal to

$$j_D^0 \equiv d = -P_R R + P_S S. \quad (4.6)$$

Since the resulting densities do not depend on x^1 we will work with them instead of with corresponding charges.

Firstly, it is easy to see, using (4.5), that

$$\dot{P}_\theta = -\frac{\delta \mathcal{H}}{\delta \theta} = 0, \quad \dot{P}_\psi = -\frac{\delta \mathcal{H}}{\delta \psi} = 0, \quad \dot{\pi} = -\frac{\delta \mathcal{H}}{\delta A} = 0 \quad (4.7)$$
so that P_ψ, P_θ and π are constant. On the other hand the equations of motion for R and S take the form

$$
\dot{R} = \frac{\delta \mathcal{H}}{\delta P_R} = \frac{\tau_1 RS}{g_1 g_2 \sqrt{\lambda_1 \lambda_2}} \frac{\lambda_2 g_1^2 g_2^2}{\tau_1^2 S^2} \frac{P_R}{\lambda_1 \mathcal{H}},
$$

$$
\dot{S} = \frac{\delta \mathcal{H}}{\delta P_S} = \frac{\tau_1 RS}{g_1 g_2 \sqrt{\lambda_1 \lambda_2}} \frac{\lambda_1 g_1^2 g_2^2}{\tau_1^2 R^2} \frac{P_S}{\lambda_2 \mathcal{H}},
$$

where we have used the fact that \mathcal{H} is conserved. Now in order to find the time dependence of R, S we proceed in the standard way and use an existence of the conserved dilatation density (4.6) and conserved hamilton ian density (4.5). We begin with simpler case when $P_\psi = P_\theta = \pi = 0$.

4.1 Case of zero P_θ, P_ψ, π

In this case the Hamiltonian density is equal to

$$
\mathcal{H} = \frac{\tau_1 RS}{g_1 g_2 \sqrt{\lambda_1 \lambda_2}} \sqrt{1 + \frac{\lambda_2 g_1^2 g_2^2}{\tau_1^2 S^2} P_R^2 + \frac{\lambda_1 g_1^2 g_2^2}{\tau_1^2 R^2} P_S^2}.
$$

Let us also consider the situation when the dilatation density (4.6) vanishes and hence

$$
\frac{P_R}{S} = \frac{P_S}{R}.
$$

Inserting (4.8) into the equation (4.10) we get

$$
\frac{\dot{R}}{R} \lambda_1 = \frac{\dot{S}}{S} \lambda_2
$$

that implies

$$
R^{\lambda_1} C = S,
$$

where $C = e^{d_0}$ is an integration constant and where the meaning of d_0 will be given below. With the help of (4.10) and (4.12) we can rewrite the hamiltonian density (4.9) into the form

$$
\mathcal{H} = \frac{C R^{(\lambda_1 + \lambda_2)/\lambda_2}}{g_1 g_2 \sqrt{\lambda_1 \lambda_2}} \sqrt{\tau_1^2 + g_1^2 g_2^2 (\lambda_1 + \lambda_2) C^{-2} P_R^2 R^{-2 \lambda_1/\lambda_2}}
$$

that allows us to express P_R as a function of \mathcal{H} and R

$$
P_R^2 = \frac{\mathcal{H}^2 \lambda_1 \lambda_2}{(\lambda_1 + \lambda_2) R^2} - \frac{C^2 \tau_1^2}{g_1^2 g_2^2 (\lambda_1 + \lambda_2) R^{2 \lambda_1/\lambda_2}}.
$$
Finally, from (4.8) and (4.14) we get a differential equation for \(R \) in the form
\[
\dot{R} = \pm R \sqrt{\frac{\lambda_2}{\lambda_1(\lambda_1 + \lambda_2)} - \frac{\tau_1^2 R}{C^2 (g_1 g_2)^2 \lambda_1^2 \lambda_2 H^2 (\lambda_1 + \lambda_2)}}
\] (4.15)
that has the solution
\[
R = \left(\frac{\lambda_1 \lambda_2 (g_1 g_2)^2 H^2}{C^2 \tau_1^2} \right)^{\frac{\lambda_2}{2(\lambda_1 + \lambda_2)}} \left(\frac{1}{\cosh \sqrt{\frac{\lambda_1 + \lambda_2}{\lambda_1 \lambda_2} t}} \right)^{\frac{\lambda_1}{\lambda_1 + \lambda_2}},
\] (4.16)
where we have chosen the initial condition that for \(t = 0 \) D1-brane is in its turning point where \(\dot{R} = 0 \). Finally, using (4.12) and (4.16) we obtain the time dependence of \(S \)
\[
S = C \left(\frac{\lambda_1 \lambda_2 (g_1 g_2)^2 H^2}{C^2 \tau_1^2} \right)^{\frac{\lambda_1}{2(\lambda_1 + \lambda_2)}} \left(\frac{1}{\cosh \sqrt{\frac{\lambda_1 + \lambda_2}{\lambda_1 \lambda_2} t}} \right)^{\frac{\lambda_1}{\lambda_1 + \lambda_2}}.
\] (4.17)

The physical picture of the time evolution of D1-brane is following. The D1-brane leaves the world volume of I-brane at \(t = -\infty \), reaches its turning point at \(t = 0 \) and then it again moves to the world volume of I-brane. It would be certainly very interesting to propose the holographic interpretation of this dynamic situation as was done in case of Dp-brane in NS5-brane background in [28].

Let us now consider more general case when the dilatation current \(j_D^0 \) is nonzero and hence
\[
d = -P_R R + P_S S = -\lambda_1 \mathcal{H} \frac{\dot{R}}{R} + \lambda_2 \mathcal{H} \frac{\dot{S}}{S},
\] (4.18)
where we have used the equations of motion (4.8). The integration of the equation (4.18) gives
\[
\frac{d}{\mathcal{H}} + d_0 = \ln \left(\frac{S^{\lambda_2}}{R^{\lambda_1}} \right) \Rightarrow S = R^{\lambda_1/\lambda_2} e^{\frac{1}{\lambda_2} \left(\frac{\dot{S}}{\mathcal{H}} + d_0 \right)}.
\] (4.19)
Then using (4.18) and (4.19) we can express the Hamiltonian density (4.9) as
\[
\mathcal{H} = \sqrt{\frac{R^2 S^2 \tau_1^2}{(g_1 g_2)^2 (\lambda_1 \lambda_2)} + \frac{1}{\lambda_1} P_R R^2 + \frac{1}{\lambda_2} P_S S} = \sqrt{\frac{R^2 S^2 \tau_1^2}{(g_1 g_2)^2 (\lambda_1 \lambda_2)} + \frac{\lambda_1 + \lambda_2}{\lambda_1 \lambda_2} R^2 P_R^2 + \frac{d^2}{\lambda_2} + 2 P_R R \frac{d}{\lambda_2}}.
\] (4.20)

From (4.20) we now express \(P_R \) as function of \(R, S \)
\[
P_R = -\frac{d \lambda_1}{(\lambda_1 + \lambda_2) R} \pm \frac{\lambda_1 \lambda_2}{(\lambda_1 + \lambda_2) R} \sqrt{\frac{\mathcal{H}^2 (\lambda_1 + \lambda_2)}{\lambda_1 \lambda_2} - \frac{d^2}{\lambda_1 \lambda_2} - \frac{R^2 S^2 \tau_1^2}{\lambda (g_1 g_2)^2 \lambda_1 \lambda_2}}.
\] (4.21)
Consequently the equation of motion for R takes the form
\[
\dot{R} = \frac{R^2 P_R}{\lambda_1 \mathcal{H}} = -d \frac{1}{(\lambda_1 + \lambda_2)} R \pm \frac{\lambda_2 R}{(\lambda_1 + \lambda_2) \mathcal{H}} \sqrt{\frac{\mathcal{H}^2 (\lambda_1 + \lambda_2)}{\lambda_1 \lambda_2}} - \frac{d^2}{\lambda_1 \lambda_2} - \frac{(\lambda_1 + \lambda_2) R^2 S^2 \tau_1^2}{(g_1 g_2)^2 (\lambda_1 \lambda_2)^2}.
\] (4.22)

In order to solve the equation (4.22) we consider following ansatz
\[
R = K(t) e^{-\frac{d}{(\lambda_1 + \lambda_2) \mathcal{H} t}}
\] (4.23)
and insert it to the equation (4.22). Then we obtain a differential equation for K
\[
\dot{K} = \pm \frac{K}{\sqrt{\lambda_1 + \lambda_2}} \sqrt{\frac{\lambda_2}{\lambda_1} - \frac{d^2}{\mathcal{H}^2 (\lambda_1 + \lambda_2) \lambda_1} - \frac{\tau_1^2 e^{2d_0/\lambda_2}}{\mathcal{H}^2 (g_1 g_2)^2 \lambda_2^2}} K^{\frac{2(\lambda_1 + \lambda_2)}{\lambda_2}}.
\] (4.24)
where we have used the fact that for (4.23) we have
\[
R^2 S^2 = R^{2(\lambda_1 + \lambda_2)} e^{\frac{2d_0}{\lambda_2}} = K^{\frac{2(\lambda_1 + \lambda_2)}{\lambda_2}} e^{2d_0/\lambda_2}.
\] (4.25)

The equation (4.24) can be straightforwardly integrated with the result
\[
K = \left(\sqrt{\frac{\lambda_1 \lambda_2}{1 - \frac{d^2}{\mathcal{H}^2 (\lambda_1 + \lambda_2)}}} g_1 g_2 \mathcal{H} e^{-\frac{d_0}{\tau_1}} \right)^{\lambda_2/(\lambda_1 + \lambda_2)} \left(\cosh \sqrt{\frac{\lambda_1 + \lambda_2}{\lambda_1 \lambda_2} \sqrt{1 - \frac{d^2}{\mathcal{H}^2 (\lambda_1 + \lambda_2)}} t} \right)^{\frac{\lambda_2}{(\lambda_1 + \lambda_2)}}.
\] (4.26)

Finally using the result given above and (4.23) we obtain the time dependence of R
\[
R = e^{-\frac{1}{\sqrt{\lambda_1 + \lambda_2}} \left(\sqrt{\frac{\lambda_1 \lambda_2}{1 - \frac{d^2}{\mathcal{H}^2 (\lambda_1 + \lambda_2)}}} g_1 g_2 \mathcal{H} e^{-\frac{d_0}{\tau_1}} \right)^{\frac{\lambda_2}{(\lambda_1 + \lambda_2)}} \sqrt{\frac{\lambda_1 \lambda_2}{\tau_1}} \sqrt{1 - \frac{d^2}{\mathcal{H}^2 (\lambda_1 + \lambda_2)}}} \times \cosh \sqrt{\frac{\lambda_1 + \lambda_2}{\lambda_1 \lambda_2} \sqrt{1 - \frac{d^2}{\mathcal{H}^2 (\lambda_1 + \lambda_2)}} t}^{\frac{\lambda_2}{(\lambda_1 + \lambda_2)}}.
\] (4.27)

The time dependence of S then follows from (4.19) and from (4.27).

An importance of the solution given above will be seen below when we compare it with the solution obtained in the background introduced in [35]. To see this let us again write the Lagrangian for time dependent D1-brane in the near horizon limit
\[
\mathcal{L} = -\frac{\tau_1}{g_1 g_2} \sqrt{\frac{R}{\lambda_1}} \sqrt{\frac{S}{\lambda_2}} \sqrt{1 - \frac{\lambda_1}{R^2} \dot{R}^2 - \frac{\lambda_2}{S^2} \dot{S}^2}.
\] (4.28)
As the first step let us introduce two modes ϕ_1 and ϕ_2 defined as

$$\sqrt{\lambda_1} \frac{dR}{R} = d\phi_1, \sqrt{\lambda_2} \frac{dS}{S} = d\phi_2$$

(4.29)

or equivalently

$$R = e^{\sqrt{\lambda_1} \phi_1}, S = e^{\sqrt{\lambda_2} \phi_2}.$$

(4.30)

If we insert (4.30) into (4.28) we obtain

$$L = -\tau_1 e^{Q\phi} \sqrt{\lambda_1 \lambda_2 g_1 g_2} \sqrt{1 - (\partial_0 x^2)^2 - (\partial_0 \phi)^2}.$$

(4.31)

Following [35] we introduce two modes ϕ, x^2 through the relation

$$Q\phi = \frac{1}{\sqrt{\lambda_1}} \phi_1 + \frac{1}{\sqrt{\lambda_2}} \phi_2, \quad Qx^2 = \frac{1}{\sqrt{\lambda_2}} \phi_1 - \frac{1}{\sqrt{\lambda_1}} \phi_2,$$

(4.32)

where

$$Q = \frac{1}{\sqrt{\lambda_1}}, \quad \lambda = \frac{1}{\lambda_1} + \frac{1}{\lambda_2}.$$

(4.33)

Note that the inverse transformations to (4.32) take the forms

$$\phi_1 = \frac{1}{\sqrt{\lambda_1 + \lambda_2}} \left(\sqrt{\lambda_1} x^2 + \sqrt{\lambda_2} \phi \right),$$

$$\phi_2 = \frac{1}{\sqrt{\lambda_1 + \lambda_2}} \left(\sqrt{\lambda_1} \phi - \sqrt{\lambda_2} x^2 \right).$$

(4.34)

Then using (4.34) we can express the Lagrangian (4.31) as

$$L = -\frac{\tau_1 e^{Q\phi}}{\sqrt{\lambda_1 \lambda_2 g_1 g_2}} \sqrt{1 - (\partial_0 x^2)^2 - (\partial_0 \phi)^2}.$$

(4.35)

This result demonstrates an enhancement of symmetry in the near horizon region as was previously shown in [33]. In fact the form of the Lagrangian (4.33) suggests to interpret x^2 as a mode that describes the location of D1-brane in additional world volume direction of 2 + 1 dimensional object. Moreover, due to the fact that the Lagrangian (4.33) does not explicitly depend on x^2 the momentum P_2 conjugate to x^2

$$P_2 = \frac{\delta L}{\delta \partial_0 x^2} = \frac{\tau_1 e^{Q\phi}}{\sqrt{\lambda_1 \lambda_2 g_1 g_2}} \frac{\partial_0 x^2}{\sqrt{1 - (\partial_0 x^2)^2 - (\partial_0 \phi)^2}}$$

(4.36)

is conserved. We also see that the Hamiltonian H defined as

$$H = \partial_0 x^2 P_2 + \partial_0 \phi P_0 - L = \frac{\tau_1 e^{Q\phi}}{g_1 g_2 \sqrt{\lambda_1 \lambda_2}} \frac{1}{\sqrt{1 - (\partial_0 x^2)^2 - (\partial_0 \phi)^2}} =$$

$$= \sqrt{P_2^2 + P_0^2 + \frac{\tau_1^2}{\lambda_1 \lambda_2 (g_1 g_2)^2}} e^{2Q\phi}$$

(4.37)
is also conserved and equal to the energy E. Now using (4.37) we express P_ϕ as function of ϕ so that the equation of motion $\dot{\phi} = \frac{P_\phi}{H}$ implies a differential equation for ϕ

$$\frac{d\phi}{\sqrt{1 - \frac{P^2}{(E^2 - P^2)(g_1 g_2)^2 \lambda_1 \lambda_2}}} = \pm \sqrt{1 - \frac{P^2}{E^2}} dt \quad (4.38)$$

that has the solution

$$e^{Q \phi} = \frac{\sqrt{E^2 - P^2} (g_1 g_2) \sqrt{\lambda_1 \lambda_2}}{\tau_1} \frac{1}{\cosh Q \sqrt{1 - \frac{P^2}{E^2} t}} \quad (4.39)$$

or equivalently

$$\phi = \ln \left(\frac{\sqrt{E^2 - P^2} (g_1 g_2) \sqrt{\lambda_1 \lambda_2}}{\tau_1} \right) \frac{\sqrt{\lambda_1 \lambda_2}}{\lambda_1 + \lambda_2} + \ln \left(\frac{1}{\cosh Q \sqrt{1 - \frac{P^2}{E^2} t}} \right) \frac{\sqrt{\lambda_1 \lambda_2}}{\lambda_1 + \lambda_2} \quad (4.40)$$

Note that we have chosen the initial condition corresponding to D1-brane that reaches its turning point at $t = 0$. Then from the inverse transformations (4.34) and the fact that $x^2 = \frac{P^2}{E} t + x_0^2$ we obtain the time dependence of ϕ_1 and ϕ_2

$$\phi_1 = \sqrt{\frac{\lambda_1}{\lambda_1 + \lambda_2}} \left(\frac{P_2}{E} t + x_0^2 \right) + \sqrt{\frac{\lambda_2}{\lambda_1 + \lambda_2}} \phi \quad ,$$

$$\phi_2 = -\sqrt{\frac{\lambda_2}{\lambda_1 + \lambda_2}} \left(\frac{P_2}{E} t + x_0^2 \right) + \sqrt{\frac{\lambda_1}{\lambda_1 + \lambda_2}} \phi \quad . \quad (4.41)$$

Using (4.30) and also (4.40) we finally obtain

$$R = \exp \left(\sqrt{\frac{1}{\lambda_1 + \lambda_2}} \left(\frac{P_2}{E} t + x_0^2 \right) \right) \left(\sqrt{\frac{E^2 - P^2}{\tau_1^2} (g_1 g_2)^2 \lambda_1 \lambda_2} \right)^{\frac{\lambda_2}{2(\lambda_1 + \lambda_2)}} \times \left(\frac{1}{\cosh Q \sqrt{1 - \frac{P^2}{E^2} t}} \right)^{\frac{\lambda_2}{2(\lambda_1 + \lambda_2)}} \quad ;$$

$$S = \exp \left(-\sqrt{\frac{1}{\lambda_1 + \lambda_2}} \left(\frac{P_2}{E} t + x_0^2 \right) \right) \left(\sqrt{\frac{E^2 - P^2}{\tau_1^2} (g_1 g_2)^2 \lambda_1 \lambda_2} \right)^{\frac{\lambda_1}{2(\lambda_1 + \lambda_2)}} \times \left(\frac{1}{\cosh Q \sqrt{1 - \frac{P^2}{E^2} t}} \right)^{\frac{\lambda_1}{2(\lambda_1 + \lambda_2)}} \quad . \quad (4.42)$$
If we compare this solution with (4.27) we get following identification

\[P_2 = \frac{d}{\sqrt{\lambda_1 + \lambda_2}}, \quad x_0^2 = \frac{d_0}{\sqrt{\lambda_1 + \lambda_2}}. \] (4.43)

In summary, we have shown that the scaling symmetry that was found for D1-brane moving in the original background has clear relation to the enhancement symmetry presented in [35]. This result also gives a physical interpretation of the dilatation charge \(d \) that after rescaling corresponds to the conserved momentum \(P_2 \) in the new flat direction.

4.2 Case of nonzero \(P_\psi, P_\theta \) and \(\pi \)

For nonzero \(P_\psi, P_\theta \) and \(\pi \) the Hamiltonian density takes the form

\[
\mathcal{H} = \frac{RS}{g_1 g_2 \sqrt{\lambda_1 \lambda_2}} \sqrt{\frac{\tau^2_1 + \lambda_2 g_1^2 g_2^2}{S^2} P_R^2 + \frac{\lambda_1 g_1^2 g_2^2}{R^2} P_S^2 + \frac{g_1^2 g_2^2}{R^2 S^2} G},
\] (4.44)

where we have defined

\[G = \lambda_2 P_\theta^2 + \lambda_1 P_\psi^2 + \lambda_1 \lambda_2 \pi^2. \] (4.45)

As usual, the equations of motion for \(R \) and \(S \) take the form

\[
\dot{R} = \frac{R^2 P_R}{\lambda_1 \mathcal{H}},
\]
\[
\dot{S} = \frac{S^2 P_S}{\lambda_2 \mathcal{H}}.
\] (4.46)

For simplicity we restrict ourselves to the case of the vanishing dilatation density \(d = 0 \) bear in mind that this analysis can be easily extended to the case of nonzero \(d \) as we have shown in the previous section.

For \(d = 0 \) we again obtain the relation between \(R \) and \(S \) in the form

\[R^{\lambda_1/\lambda_2} C = S, \quad C = e^{\frac{d_0}{\lambda_2}}. \] (4.47)

Using also the fact that \(P_S = \frac{R}{S} P_R \) we express \(\mathcal{H} \) as function of \(R \) and \(P_R \) only

\[
\mathcal{H} = \frac{RS}{g_1 g_2 \sqrt{\lambda_1 \lambda_2}} \sqrt{\tau^2_1 + (g_1 g_2)^2 (\lambda_2 + \lambda_1) P_R^2 + \frac{g_1^2 g_2^2}{R^2 S^2} G =}
\]
\[
= \frac{CR^{\lambda_1/\lambda_2}}{g_1 g_2 \sqrt{\lambda_1 \lambda_2}} \sqrt{\tau^2_1 + (g_1 g_2)^2 (\lambda_1 + \lambda_2) C^{-2} P_R^2 R^{-2 \lambda_1/\lambda_2} + (g_1 g_2)^2 G C^{-2} R^{-2(\lambda_1 + \lambda_2)/\lambda_2}}. \] (4.48)
If we express \(P_R \) from (4.48) and insert it to the first equation in (4.46) we obtain the differential equation for \(R \)

\[
\dot{R} = \pm \left(\frac{1}{\lambda_1^2 \mathcal{H}^2} \left[\mathcal{H}^2 \lambda_1 \lambda_2 \frac{\mathcal{H}}{\mathcal{H}^2} - \frac{G}{(\lambda_1 + \lambda_2)} \right] R^2 - \frac{1}{\lambda_1^2 \mathcal{H}^2} \frac{C^2 \tau_1^2}{(g_1 g_2)^2 (\lambda_1 + \lambda_2)} R^{4 + 2 \lambda_1 / \lambda_2} \right)^{1/2}
\]

(4.49)

that has the solution

\[
R = \left(\frac{\lambda_1 \lambda_2 (g_1 g_2)^2 \mathcal{H}^2}{C^2 \tau_1^2} - \frac{G (g_1 g_2)^2}{C^2 \tau_1^2} \right)^{\frac{1}{2}} \cosh \left(\frac{\lambda_2}{2 (\lambda_1 + \lambda_2)} \right) \left(\frac{1}{\cosh \sqrt{\frac{\lambda_1 + \lambda_2}{\lambda_1 \lambda_2}}} - \frac{G (\lambda_1 + \lambda_2)}{\mathcal{H} (\lambda_1 \lambda_2)^2} \frac{t}{\tau_1} \right)^{\frac{\lambda_2}{2 (\lambda_1 + \lambda_2)}},
\]

\[
S = C \left(\frac{\lambda_1 \lambda_2 (g_1 g_2)^2 \mathcal{H}^2}{C^2 \tau_1^2} - \frac{G (g_1 g_2)^2}{C^2 \tau_1^2} \right)^{\frac{1}{2}} \cosh \left(\frac{\lambda_2}{2 (\lambda_1 + \lambda_2)} \right) \left(\frac{1}{\cosh \sqrt{\frac{\lambda_1 + \lambda_2}{\lambda_1 \lambda_2}}} - \frac{G (\lambda_1 + \lambda_2)}{\mathcal{H} (\lambda_1 \lambda_2)^2} \frac{t}{\tau_1} \right)^{\frac{\lambda_1}{2 (\lambda_1 + \lambda_2)}},
\]

(4.50)

where on the second line we have used the relation (4.47). We see that nonzero values of \(P_\theta \), \(P_\psi \) and \(\pi \) do not significantly change the resulting dynamics. The same situation was previously reported in the papers devoted to the study of the dynamics of Dp-brane in NS5-brane background.

Acknowledgement

This work was supported in part by the Czech Ministry of Education under Contract No. MSM 0021622409, by INFN, by the MIUR-COFIN contract 2003-023852, by the EU contracts MRTN-CT-2004-503369 and MRTN-CT-2004-512194, by the INTAS contract 03-516346 and by the NATO grant PST.CLG.978785.

References

[1] A. Sen, “Rolling tachyon,” JHEP **0204** (2002) 048 [arXiv:hep-th/0203211].

[2] A. Sen, “Tachyon matter,” JHEP **0207** (2002) 065 [arXiv:hep-th/0203265].

[3] A. Sen, “Field theory of tachyon matter,” Mod. Phys. Lett. A **17** (2002) 1797 [arXiv:hep-th/0204143].

[4] A. Sen, “Dirac-Born-Infeld action on the tachyon kink and vortex,” Phys. Rev. D **68** (2003) 066008 [arXiv:hep-th/0303057].

[5] A. Sen, “Supersymmetric world-volume action for non-BPS D-branes,” JHEP **9910** (1999) 008 [arXiv:hep-th/9909062].
[6] E. A. Bergshoeff, M. de Roo, T. C. de Wit, E. Eyras and S. Panda, “T-duality and actions for non-BPS D-branes,” JHEP 0005 (2000) 009 [arXiv:hep-th/0003221].

[7] M. R. Garousi, “Tachyon couplings on non-BPS D-branes and Dirac-Born-Infeld action,” Nucl. Phys. B 584 (2000) 284 [arXiv:hep-th/0003122].

[8] J. Kluson, “Proposal for non-BPS D-brane action,” Phys. Rev. D 62 (2000) 126003 [arXiv:hep-th/0004106].

[9] D. Kutasov, “D-brane dynamics near NS5-branes,” arXiv:hep-th/0405058.

[10] D. Kutasov, “Accelerating branes and the string / black hole transition,” arXiv:hep-th/0509170.

[11] Y. Nakayama, S. J. Rey and Y. Sugawara, “D-brane propagation in two-dimensional black hole geometries,” JHEP 0509 (2005) 020 [arXiv:hep-th/0507040].

[12] J. Kluson and K. L. Panigrahi, “Supertube dynamics in diverse backgrounds,” JHEP 0508 (2005) 033 [arXiv:hep-th/0506012].

[13] J. Kluson, “Remark about non-BPS Dp-brane at the tachyon vacuum moving in curved background,” arXiv:hep-th/0504062.

[14] W. H. Huang, “Anti-de Sitter D-branes in curved backgrounds,” JHEP 0507 (2005) 031 [arXiv:hep-th/0504013].

[15] J. Kluson and K. L. Panigrahi, “Anti-de Sitter D-brane dynamics,” arXiv:hep-th/0509065.

[16] S. Thomas and J. Ward, “Geometrical tachyon kinks and NS5 branes,” arXiv:hep-th/0502228.

[17] J. Kluson, “Note about non-BPS and BPS Dp-branes in near horizon region of N Dk-branes,” JHEP 0503 (2005) 071 [arXiv:hep-th/0502079].

[18] W. H. Huang, “Tubular solutions in NS5-brane, Dp-brane and macroscopic strings background,” JHEP 0502 (2005) 061 [arXiv:hep-th/0502023].

[19] B. Chen and B. Sun, “Note on DBI dynamics of Dbrane near NS5-branes,” Phys. Rev. D 72 (2005) 046005 [arXiv:hep-th/0501176].

[20] J. Kluson, “Non-BPS Dp-brane in Dk-brane background,” JHEP 0503 (2005) 044 [arXiv:hep-th/0501010].

[21] Y. Nakayama, K. L. Panigrahi, S. J. Rey and H. Takayanagi, “Rolling down the throat in NS5-brane background: The case of electrified D-brane,” JHEP 0501 (2005) 052 [arXiv:hep-th/0412038].

[22] B. Chen, M. Li and B. Sun, “Dbrane near NS5-branes: With electromagnetic field,” JHEP 0412 (2004) 057 [arXiv:hep-th/0412022].
[23] S. Thomas and J. Ward, “D-brane dynamics and NS5 rings,” JHEP 0502 (2005) 015 [arXiv:hep-th/0411130].

[24] D. Bak, S. J. Rey and H. U. Yee, “Exactly soluble dynamics of (p,q) string near macroscopic fundamental strings,” JHEP 0412 (2004) 008 [arXiv:hep-th/0411099].

[25] J. Kluson, “Non-BPS Dp-brane in the background of NS5-branes on transverse R**3 x S**1,” JHEP 0503 (2005) 032 [arXiv:hep-th/0411014].

[26] J. Kluson, “Non-BPS D-brane near NS5-branes,” JHEP 0411 (2004) 013 [arXiv:hep-th/0409298].

[27] D. Kutasov, “A geometric interpretation of the open string tachyon,” arXiv:hep-th/0408073.

[28] D. A. Sahakyan, “Comments on D-brane dynamics near NS5-branes,” JHEP 0410 (2004) 008 [arXiv:hep-th/0408070].

[29] A. Ghodsi and A. E. Mosaffa, “D-brane dynamics in RR deformation of NS5-branes background and tachyon cosmology,” Nucl. Phys. B 714 (2005) 30 [arXiv:hep-th/0408015].

[30] K. L. Panigrahi, “D-brane dynamics in Dp-brane background,” Phys. Lett. B 601 (2004) 64 [arXiv:hep-th/0407134].

[31] O. Saremi, L. Kofman and A. W. Peet, “Folding branes,” arXiv:hep-th/0409092.

[32] W. I. Taylor, “The M(atrix) model of M-theory,” arXiv:hep-th/0002016.

[33] W. I. Taylor, “Lectures on D-branes, gauge theory and M(atrices),” arXiv:hep-th/9801182.

[34] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri and Y. Oz, “Large N field theories, string theory and gravity,” Phys. Rept. 323, 183 (2000) [arXiv:hep-th/9905111].

[35] N. Itzhaki, D. Kutasov and N. Seiberg, “I-brane dynamics,” arXiv:hep-th/0508025.

[36] H. Lin and J. Maldacena, “Fivebranes from gauge theory,” arXiv:hep-th/0509235.

[37] U. Lindstrom and R. von Unge, “A picture of D-branes at strong coupling,” Phys. Lett. B 403 (1997) 233 [arXiv:hep-th/9704051].

[38] U. Lindstrom, M. Zabzine and A. Zheltukhin, “Limits of the D-brane action,” JHEP 9912 (1999) 016 [arXiv:hep-th/9910159].