Case Report

Contralateral Axillary Lymph Node Metastases at the Time of Primary Breast Cancer Diagnosis: Curative or Palliative Intent?

C. Zhou, M. C. Richir, M. W. H. Leenders, B. L. A. M. Langenhorst, H. P. Knol, and W. H. Schreurs

1 Department of Surgery, Medical Center Alkmaar, Alkmaar, The Netherlands
2 Department of Radiation Oncology, Medical Center Alkmaar, Alkmaar, The Netherlands

Correspondence should be addressed to C. Zhou; zhou.chao@me.com

Received 17 February 2013; Accepted 7 March 2013

Academic Editors: C. Barnett, S.-I. Kosugi, M. L. Quek, and Y. Takami

Copyright © 2013 C. Zhou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Contralateral axillary lymph node metastases (CAMs) in breast cancer patients are uncommon. CAM can be found at the time of primary breast cancer diagnosis or following prior treatment of breast cancer as a recurrence. This distinction may have important implications for disease staging and treatment selection. We report the case of a premenopausal woman with synchronous CAM. Despite extensive multimodality treatment, a recurrence was found 27 months after primary surgery. We reviewed the literature on histopathological tumor characteristics associated with CAM, lymphatic drainage of the breast to other sites than the ipsilateral axilla, and outcome of cases with CAM. This case contradicts current conceptions that CAM only develops from tumors with poor histopathological features. Emerging evidence shows that altered lymphatics play a central role in development of synchronous CAM. It is precisely this etiology that supports the concept that synchronous CAM occurs by lymphatic spread and not by hematogenous spread. Although controversial, treatment of synchronous CAM (without evidence of distant metastases) should therefore be of curative intent.

1. Background

Contralateral axillary lymph node metastases (CAMs) in breast cancer patients are uncommon [1]. Traditionally, all cases of CAM have been regarded as distant disease, and as such are treated with systemic therapy, either chemotherapy or hormonal. However, CAM can be found at the time of primary breast cancer diagnosis (synchronous CAM) or following prior treatment of breast cancer as a recurrence (metasynchronous CAM). Such a distinction may reflect different stages of disease and motivate either treatment with curative or palliative intent.

We report the case of a 47-year-old woman who was found to have synchronous CAM. We aimed to better understand this clinical phenomenon by reviewing the literature on lymphatic drainage of the breast to other sites than the ipsilateral axilla, histopathological tumor characteristics associated with CAM, and treatment and outcome of cases with synchronous CAM.

2. Case Report

A 47-year-old premenopausal woman presented to the outpatient breast cancer clinic of our hospital because of a palpable mass in the upper outer quadrant of her left breast. Ultrasonographic examination revealed heterogeneously dense breasts, with a solid mass measuring 3.6 cm × 2.6 cm in her left breast and one smaller solid mass. Axillary ultrasound showed multiple enlarged lymph nodes in the ipsilateral axilla, with a maximum diameter of 7.4 mm. Ultrasound-guided core biopsies of the masses in the left breast and fine-needle aspiration cytology (FNAC) of the lymph node in the left axilla were obtained. Pathological examination of the tissue from each of the solid masses revealed grade III invasive ductal carcinoma. The tumor expressed estrogen receptor and progesterone receptors but did not overexpress Her2/Neu. The specimen from the axillary lymph node contained malignant cells. Subsequent whole body positron emission tomography with 18-fluorodeoxyglucose
Ultrasound examination revealed a subcutaneous tumor. After discussing the risk and benefits of adjuvant hormonal therapy, she elected to start with adjuvant letrozole.

Eleven of 14 dissected lymph nodes from the right axilla were positive. Following surgery, she underwent locoregional radiotherapy for a dose of 50 Gy in daily fractions of 2 Gy over six cycles, every three weeks. After extensive discussion, she elected to undergo modified radical mastectomy (MRM) of her left breast, bilateral axillary lymph node dissection, and prophylactic MRM of her right breast. Tissue from the left breast contained a grade III invasive ductal carcinoma 2.0 cm × 2.0 cm, with negative margins. There was no evidence of carcinoma in the tissue from the right breast. Of 5 dissected lymph nodes from the left axilla, 4 contained metastases. Eleven of 14 dissected lymph nodes from the right axilla were positive. Following surgery, she underwent locoregional radiotherapy for a dose of 50 Gy in daily fractions of 2 Gy to the chest wall via opposing tangential fields with 6 MV photons. Overlapping fields were avoided by matched midline technique using the CT simulator. The supraclavicular and internal mammary fossae were not included in the target volume. After discussing the risk and benefits of adjuvant hormonal therapy, she elected to start with adjuvant letrozole.

Unfortunately, at followup 27 months after primary surgery, a mass was found at the presternum on physical examination. Ultrasound examination revealed a subcutaneous mass measuring 3.3 cm × 1.1 cm. Ultrasound-guided core biopsies of the lesion showed grade III invasive ductal carcinoma that was positive for ER and PR, but negative for HER-2 overexpression (42%) [3]. However, most of their patients were generally under treatment with curative intent. The above described studies support that synchronous CAMs develop through lymphatic drainage from the primary tumor and not by hematogenous spread. Therefore, synchronous CAM without systemic metastases might be considered as a curative disease because the spread is lympthogenic and not hematogenous. However, this concept remains controversial. For example, no classification for CAM is found in the most recent version of the AJCC Cancer Staging Manual, whereas it used to be classified as distant disease in older versions [10]. Despite of this lack of consensus, patients generally undergo treatment with curative intent.

Only a few reports have included treatment outcomes for synchronous CAM. After a median followup of 27 months, two of Morcos’ patients with synchronous CAM were alive without evidence of disease, seven patients were still alive with disease, and one had died, all of whom had both CAM and primary tumor eradicated [3]. Huston et al. describe one patient who is alive without disease after 35 months followup [2]. Our patient was also treated with curative intent but despite extensive multimodality treatment, she developed a recurrence 27 months after primary surgery. Although compelling evidence is lacking, it appears that some patients...
are curable by eradicating both CAM and the tumor, but prognosis for synchronous CAM is usually poor.

4. Conclusion

Our paper draws attention to the diagnostic and therapeutic challenge posed by the rare phenomenon of synchronous CAM. Although synchronous CAM has been considered as distant disease for several decades, emerging evidence shows that altered lymphatics play a central role in development of synchronous CAM. It is this etiology that supports the concept that synchronous CAM occurs by lymphatic spread and not by hematogenous spread. Although compelling evidence is lacking, treatment of synchronous CAM without evidence of distant metastases should therefore be of curative intent.

Abbreviations

CAMs: Contralateral axillary lymph node metastases
FNA: Fine-needle aspiration
18FDG-PET: Positron emission tomography with 18-fluorodeoxyglucose
CT: Computed tomography
MRM: Modified radical mastectomy
SNP: Sentinel lymph node biopsy procedure
LVI: Lymphovascular invasion.

Consent

Written informed consent was obtained from the patient for publication of this case report.

Conflict of Interests

All authors declare that they have no conflict of interests.

Authors’ Contribution

C. Zhou prepared and edited the paper. M. Richir and M. Leenders edited the paper. H. Knol was responsible for chemoradiotherapy and followup of the patient. B. Langenhorst and W. Schreurs were responsible for the chemoradiotherapy, operations, and followup of the patient.

References

[1] J. Daoud, M. Meziou, M. Kharrat, D. Sellami, T. Boudawara, and M. Frikha, “Contralateral axillary nodal metastases of breast cancer,” Bulletin du Cancer, vol. 85, no. 8, pp. 713–715, 1998.
[2] T. L. Huston, P. I. Pressman, A. Moore et al., “The presentation of contralateral axillary lymph node metastases from breast carcinoma: a clinical management dilemma,” Breast Journal, vol. 13, no. 2, pp. 158–164, 2007.
[3] B. Morcos, I. Jaradat, and M. El-Ghanem, “Characteristics of and therapeutic options for contralateral axillary lymph node metastasis in breast cancer,” European Journal of Surgical Oncology, vol. 37, no. 5, pp. 418–421, 2011.
[4] J. E. Devitt and A. W. Michalchuk, “Significance of contralateral axillary metastases in carcinoma of the breast,” Canadian Journal of Surgery, vol. 12, no. 2, pp. 178–180, 1969.
[5] C. I. Perre, C. A. Hoefnagel, B. B. R. Kroon, F. A. N. Zoetmulder, and E. J. T. Rutgers, “Altered lymphatic drainage after lymphadenectomy or radiotherapy of the axilla in patients with breast cancer,” British Journal of Surgery, vol. 83, no. 9, p. 1258, 1996.
[6] O. E. Nieweg, “Lymphatics of the breast and the rationale for different injection techniques,” Annals of Surgical Oncology, vol. 8, no. 9, pp. 71–73, 2001.
[7] E. Barranger, F. Montravers, K. Kerrou et al., “Contralateral axillary sentinel lymph node drainage in breast cancer: a case report,” Journal of Surgical Oncology, vol. 86, no. 3, pp. 167–169, 2004.
[8] T. M. Allweis, B. Parson, M. Klein et al., “Breast cancer draining to bilateral axillary sentinel lymph nodes,” Surgery, vol. 134, no. 3, pp. 506–508, 2003.
[9] C. Haagensen, The Lymphatics in Cancer, Saunders, Philadelphia, PA, USA, 1972.
[10] S. B. Edge, D. R. Byrd, C. C. Compton, A. G. Fritz, F. L. Greene, and A. Trotti, Eds., AJCC Cancer Staging Manual, Springer, New York, NY, USA, 7th edition, 2010.