Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Do green supply chain management practices improve organizational resilience during the COVID-19 crisis? A survival analysis of global firms

Muhammad Ullah a, Muhammad Zahid b, Syed Muhammad All-e-Raza Rizvi c, Qazi Ghulam Mustafa Qureshi d, Farman Ali e,∗

a Department of Management Sciences, Comsats University Islamabad, Pakistan
b Department of Management Sciences, City University of Science & Information Technology, Peshawar, Pakistan
c Université Clermont Auvergne, Clermont-Ferrand, France
d Université Paris Est Créteil, Paris, France
e Department of Business Administration, Iqra National University, Peshawar, Pakistan

ARTICLE INFO

Article history:
Received 13 June 2022
Received in revised form 10 August 2022
Accepted 12 August 2022
Available online 17 August 2022

JEL classification:
G01
G32
G12
M14
Q56

Keywords:
Green supply chain management
COVID-19
Global firms
Financial markets
Organizational resilience

ABSTRACT

This study investigates whether green supply chain management (GSCM) practices help companies to be resilient against the buffer effect in the context of COVID-19. Building on the instrumental version of stakeholder theory, companies implementing GSCM practices should build environmental skills and competitive advantage to cope with a crisis caused by supply chain disruptions. Our survival analysis, conducted on 5,696 firms headquartered in 35 countries, shows clear evidence that GSCM companies’ market prices recover quickly from the shock. Considering mounting pressure on environmental issues, this study documents the new benefits of GSCM for companies confronted with a global financial shock. By applying a large sample, the study has originality and implications for stakeholders, including investors, governments, and policymakers, to push firms to become more eco-friendly and resilient.

1. Introduction

Extreme events like natural disasters, terrorist attacks, and pandemics frequently disrupt the supply chain and paralyze the financial markets. Hamel and Välikangas (2003) stated that “the world is becoming turbulent faster than organizations are becoming resilient”. Soon after naming it COVID-19 on the February 11, the current pandemic caused a severe 1-week decline after mid-February in the US market since the 2008 financial crisis due to the severe supply chains disruption (Fasan et al., 2021).

Besides, firms are under significant pressure from stakeholders to adopt environmentally sustainable practices (Flammer, 2013). Concerning the supply chains, firms are embracing the green supply chain management (hereafter, GSCM) practices by selecting suppliers and sourcing partners fulfilling environmental criteria (for example, ISO 14000, energy consumption, etc.) (Fasan et al., 2021). GSCM refers to a firm’s performance by improving its supply chain management to reduce the use of materials, energy, or water and to find more eco-efficient solutions.

The importance of these issues for firms leads us to question whether GSCM mitigates the negative consequences of the supply chain disruptions caused by COVID-19. Following Staw et al. (1981) and Meyer (1982), researchers have attempted to understand how organizations respond to external threats (Linnenluecke, 2017). Previous studies, for instance, Gittell et al. (2006) and Hamel and Välikangas (2003), focused on how firms adapt their business models in a turbulent environment. Organizational resilience (hereafter, OR), critical for firm success (Richtnérand Löfsten, 2014), is thus gaining more attention in the management literature. Organizational resilience is “the ability of a system to persist despite disruptions and the ability to regenerate and maintain existing organization” (Desjardine et al., 2019; Gunderson and Pritchard, 2002). Resilience is thus referred to as a firm’s ability to adapt to exogenous shocks and quick

https://doi.org/10.1016/j.econlet.2022.110802
0165-1765/© 2022 Elsevier B.V. All rights reserved.
of materials, energy or water, and to find more eco-efficient solutions by improving supply chain management". Environmental data from Refinitiv are reliable and are widely used in academic literature. Refinitiv rates thousands of companies on a scale from 0 (the lowest) to 100; however, we divide the scores by 100 to bring them between 0 and 1. As a robustness check, we also perform the analysis using the specific "environmental supply chain management" information obtained from Refinitiv, also used by Fasan et al. (2021). Based on this, we create a binary variable (GSCMD) that equals 1 if "the firm uses environmental criteria (ISO 14000, energy consumption, etc.) in the selection process of its suppliers or sourcing partners" and 0 otherwise.

2.1.3. Control variables

We also include other variables in the analysis to account for their likely effect on OR in the crisis. Precisely, we have the environmental performance index (EPI) scores developed by Yale University in our study. Other variables such as the firm size (Size) are measured by the firm’s assets divided by the industry average; the book to market value ratio (B/M), debt to assets ratio (D/A), age (Age) calculated by the natural log of firm years from incorporation, historical beta (Beta) to firms local index calculated monthly over five years return, percentage of research & development expenditure to sales (RD), and capital expenditures scaled by total assets (CAPEX). Since research & development expenditure data is scarce, following Fama and French (2002), we include a dummy for RD, denoted by RDD. RDD is equal to 1 if research & development expenditure data is available and 0 otherwise. Besides these financial indicators, we also include a dummy for the firm’s industry and region of the firm’s country.

2.2. Sample

Our initial sample includes 7,576 firms available in the Refinitiv ESG dataset. As summarized in Table 1, the non-availability of necessary variables data reduced our final sample to 5,696 firms from 35 countries; 2,132 firms are headquartered in the USA, followed by China (656) and Japan (417). Though the sample is unbalanced, excluding the USA firms from the sample does not affect our results.

Descriptive statistics and correlation matrix are presented in Table 2. We winsorize the financial data at 1% and 99% levels to mitigate the impact of potential outliers. The time to recovery (OR) does not portray correct information since there are right-censored observations. Therefore, we present the summary statistics of RECOV Pr, which is equal to 1 if a firm is recovered within the 60 days time window and 0 otherwise. The mean RECOV Pr is 0.67, indicating that 67% of firms’ prices were retrieved within the time window. The mean GSCM is 0.39.

Table 1

Sample selection	N
Refinitiv ESG data	7,576
Less: Green Supply Chain Management data unavailable	24
Less: EPI data of firm observations unavailable	306
Less: Datastream data is not available	1,429
Less: less than 20 observations by country	121
Final sample	5,696

2. Methodology

2.1. Variables

2.1.1. Organizational resilience (OR)

Following DesJardine et al. (2019) and Marsat et al. (2022), we measure OR by the time to recovery of the daily stock prices to the pre-crisis level. We consider the stock prices on February 17, 2020, as the pre-crisis level because after this date stock markets started a decline in the third week of February 2020 (Ding et al., 2021). Following DesJardine et al. (2019) and Marsat et al. (2022), we measure OR in different time windows. To mitigate potential concerns that other variables may drive the recovery, we restrict the first time window to 20 trading days. To capture the full recovery trajectories of most firms, we extend the last time window to 120 trading days. We thus observe OR in six observation windows ranging from 20 to 120 trading days with almost one-month (20 trading days) increment.

2.1.2. Green supply chain management (GSCM)

GSCM reflects a firm’s performance in improving its supply chain management to reduce the use of materials, energy, or water and to find more eco-efficient solutions. To measure GSCM, we use Resource Use scores from Refinitiv Datastream, formerly known as Thomson Reuters ASSET4. “The resource use score reflects a company’s performance and capacity to reduce the use of materials, energy and to find more eco-efficient solutions. To measure GSCM, we use Resource Use scores from Refinitiv Datastream, formerly known as Thomson Reuters ASSET4. “The resource use score reflects a company’s performance and capacity to reduce the use of materials, energy and water, and to find more eco-efficient solutions by improving supply chain management”. Environmental data from Refinitiv are reliable and are widely used in academic literature. Refinitiv rates thousands of companies on a scale from 0 (the lowest) to 100; however, we divide the scores by 100 to bring them between 0 and 1. As a robustness check, we also perform the analysis using the specific “environmental supply chain management” information obtained from Refinitiv, also used by Fasan et al. (2021). Based on this, we create a binary variable (GSCMD) that equals 1 if “the firm uses environmental criteria (ISO 14000, energy consumption, etc.) in the selection process of its suppliers or sourcing partners” and 0 otherwise.

2.2. Sample

Our initial sample includes 7,576 firms available in the Refinitiv ESG dataset. As summarized in Table 1, the non-availability of necessary variables data reduced our final sample to 5,696 firms from 35 countries; 2,132 firms are headquartered in the USA, followed by China (656) and Japan (417). Though the sample is unbalanced, excluding the USA firms from the sample does not affect our results.

Descriptive statistics and correlation matrix are presented in Table 2. We winsorize the financial data at 1% and 99% levels to mitigate the impact of potential outliers. The time to recovery (OR) does not portray correct information since there are right-censored observations. Therefore, we present the summary statistics of RECOV Pr, which is equal to 1 if a firm is recovered within the 60 days time window and 0 otherwise. The mean RECOV Pr is 0.67, indicating that 67% of firms’ prices were retrieved within the time window. The mean GSCM is 0.39.

Table 1

Sample selection	N
Refinitiv ESG data	7,576
Less: Green Supply Chain Management data unavailable	24
Less: EPI data of firm observations unavailable	306
Less: Datastream data is not available	1,429
Less: less than 20 observations by country	121
Final sample	5,696

2.2. Sample

Our initial sample includes 7,576 firms available in the Refinitiv ESG dataset. As summarized in Table 1, the non-availability of necessary variables data reduced our final sample to 5,696 firms from 35 countries; 2,132 firms are headquartered in the USA, followed by China (656) and Japan (417). Though the sample is unbalanced, excluding the USA firms from the sample does not affect our results.

Descriptive statistics and correlation matrix are presented in Table 2. We winsorize the financial data at 1% and 99% levels to mitigate the impact of potential outliers. The time to recovery (OR) does not portray correct information since there are right-censored observations. Therefore, we present the summary statistics of RECOV Pr, which is equal to 1 if a firm is recovered within the 60 days time window and 0 otherwise. The mean RECOV Pr is 0.67, indicating that 67% of firms’ prices were retrieved within the time window. The mean GSCM is 0.39.

Table 1

Sample selection	N
Refinitiv ESG data	7,576
Less: Green Supply Chain Management data unavailable	24
Less: EPI data of firm observations unavailable	306
Less: Datastream data is not available	1,429
Less: less than 20 observations by country	121
Final sample	5,696

2. Methodology

2.1. Variables

2.1.1. Organizational resilience (OR)

Following DesJardine et al. (2019) and Marsat et al. (2022), we measure OR by the time to recovery of the daily stock prices to the pre-crisis level. We consider the stock prices on February 17, 2020, as the pre-crisis level because after this date stock markets started a decline in the third week of February 2020 (Ding et al., 2021). Following DesJardine et al. (2019) and Marsat et al. (2022), we measure OR in different time windows. To mitigate potential concerns that other variables may drive the recovery, we restrict the first time window to 20 trading days. To capture the full recovery trajectories of most firms, we extend the last time window to 120 trading days. We thus observe OR in six observation windows ranging from 20 to 120 trading days with almost one-month (20 trading days) increment.

2.1.2. Green supply chain management (GSCM)

GSCM reflects a firm’s performance in improving its supply chain management to reduce the use of materials, energy, or water and to find more eco-efficient solutions. To measure GSCM, we use Resource Use scores from Refinitiv Datastream, formerly known as Thomson Reuters ASSET4. “The resource use score reflects a company’s performance and capacity to reduce the use of materials, energy and water, and to find more eco-efficient solutions by improving supply chain management”. Environmental data from Refinitiv are reliable and are widely used in academic literature. Refinitiv rates thousands of companies on a scale from 0 (the lowest) to 100; however, we divide the scores by 100 to bring them between 0 and 1. As a robustness check, we also perform the analysis using the specific “environmental supply chain management” information obtained from Refinitiv, also used by Fasan et al. (2021). Based on this, we create a binary variable (GSCMD) that equals 1 if “the firm uses environmental criteria (ISO 14000, energy consumption, etc.) in the selection process of its suppliers or sourcing partners” and 0 otherwise.

2.2. Sample

Our initial sample includes 7,576 firms available in the Refinitiv ESG dataset. As summarized in Table 1, the non-availability of necessary variables data reduced our final sample to 5,696 firms from 35 countries; 2,132 firms are headquartered in the USA, followed by China (656) and Japan (417). Though the sample is unbalanced, excluding the USA firms from the sample does not affect our results.

Descriptive statistics and correlation matrix are presented in Table 2. We winsorize the financial data at 1% and 99% levels to mitigate the impact of potential outliers. The time to recovery (OR) does not portray correct information since there are right-censored observations. Therefore, we present the summary statistics of RECOV Pr, which is equal to 1 if a firm is recovered within the 60 days time window and 0 otherwise. The mean RECOV Pr is 0.67, indicating that 67% of firms’ prices were retrieved within the time window. The mean GSCM is 0.39.

Table 1

Sample selection	N
Refinitiv ESG data	7,576
Less: Green Supply Chain Management data unavailable	24
Less: EPI data of firm observations unavailable	306
Less: Datastream data is not available	1,429
Less: less than 20 observations by country	121
Final sample	5,696
Therelationshipcanbeexpressedasfollows:

\[\text{the positive impact of covariates on the probability of recovery at time } t. \]

We perform the survival analysis to examine whether GSCM improves OR during the COVID-19 crisis. We specifically employ the Cox Proportional Hazard model (Cox, 1972), which estimates the impact of covariates on the probability of recovery at time t. The relationship can be expressed as follows:

\[h_t(t) = h_0(t) e^{(\beta X)} \]

Where \(h_t(t) \) represents the probability of recovery for observation ith. \(h_0(t) \) is the baseline hazard function which this model leaves unestimated. \(X \) represents the independent as well as the set of control variables. Whereas \(\beta \) is the beta coefficient and its positive sign indicates that the respective covariate has a positive link with OR (i.e., a negative association with time to recovery).

The COVID-19 crisis may have a different effect across different countries; therefore, a random effect at the country level may affect the relationship. We thus consider the existence of a random effect at the country level. Our analysis uses the Shared Frailty Cox PH model to test for shared frailty at the country level.

Table 3

Organizational Resilience (Time to Recovery)	(1)	(2)	(3)	(4)	(5)	(6)
RECOV Pr	.05	.27***	.33***	.35***	.32***	.29***
GSCM	(2.82)	(4.57)	(5.58)	(6.16)	(5.61)	(4.89)
EPI	1.2	2.18**	1.12	1.02	1.27	1.97*
SIZE	(1.08)	(2.01)	(1.17)	(1)	(1.17)	(1.83)
B/M	.02***	.02**	.02**	.01***	.01**	.01
ROA	(5.13)	(4.21)	(3.29)	(2.92)	(2.33)	(1.3)
D/A	.21***	.18***	.19***	.18***	.18***	.17***
Age	(7.8)	(6.51)	(6.87)	(6.51)	(6.24)	(5.66)
ROA	.24	.4**	.69**	.71**	.82**	1.34***
D/A	(5.11)	(5.21)	(5.28)	(5.75)	(3.47)	(3.17)
Beta	.12***	.12**	.13**	.13**	.08**	.08**
RD	.43***	.34**	.32**	.32**	.28**	.34**
Age	(4.87)	(3.9)	(3.71)	(3.9)	(3.37)	(3.96)
Beta	(5.71)	(5.21)	(5.28)	(5.75)	(3.47)	(3.17)
RD	.01	.05	.12**	.09***	.16***	.16***
RDD	(1.5)	(1.33)	(3.4)	(2.62)	(4.53)	(4.41)
CAPEX	.09**	.04**	.04**	.04**	.03**	.02***
Industry	(.986)	(.974)	(.915)	(.921)	(.69)	(.51)
Region	(.986)	(.974)	(.915)	(.921)	(.69)	(.51)
theta	-.07	-.1*	-.1*	-.1*	-.09	.03
Recovered N	(.145)	(.213)	(.231)	(.29)	(.19)	(.37)
Observations	(.371)	(.277)	(.95)	(.87)	(.02)	(1.58)

Organizational Resilience (OR) is the dependent variable, measured by time to recovery. GSCM represents green supply chain management measured by resource use scores from Refinitiv. \(* p<0.01, ** p<0.05, * p<0.1 \)
Table 4
Impact of GSCM on organizational resilience (Cox PH Shared Frailty Model).

	Time	Time	Time	Time	Time	Time
GSCM	.02	.1***	.12***	.14***	.12***	.09**
	(.52)	(2.67)	(3.37)	(3.84)	(3.23)	(2.35)
Controls	Yes	Yes	Yes	Yes	Yes	Yes
Industry	Yes	Yes	Yes	Yes	Yes	Yes
Region	Yes	Yes	Yes	Yes	Yes	Yes
Observations	5696	5696	5696	5696	5696	5696

Organizational resilience (OR) is the dependent variable, measured by time to recovery. GSCM is a dummy variable that is equal to 1 if “a firm uses environmental criteria (ISO 14000, energy consumption, etc.) in the selection process of its suppliers or sourcing partners”, and 0 otherwise. t-values are in parentheses.

Table 5
Robustness check (60 days time window).

	(1)	(2)	(3)	(4)	(5)	(6)
	OR	OR	OR	RECOV Pr.	S.Loss	
Weibull	.34***	.34***	.39***	.43***	−.03***	
(5.84)	(5.76)	(6.61)	(6.68)	(−7.42)		
GSCM	Yes	Yes	Yes	Yes	Yes	Yes
Controls	Yes	Yes	Yes	Yes	Yes	Yes
Industry	Yes	Yes	Yes	Yes	Yes	Yes
Region	Yes	Yes	Yes	Yes	Yes	Yes
Observations	5696	5696	5696	5696	5696	5694

OR represents the Organizational Resilience measured by time to recovery. “RECOV Pr” represents the probability of recovery, equals 1 if a firm is recovered in the 60 days time window, and 0 otherwise. S.Loss represents the severity of maximum loss in stock prices in the 60 days time window. GSCM represents green supply chain management measured by resource use scores from Refinitiv. t-values are in parentheses.

As a robustness check, we first re-estimate the previous models by replacing GSCM with the binary variable (GSCMD). As shown in Table 4, the relationship is consistent with our previous findings. Secondly, we re-estimate other shared frailty survival models, i.e., Weibull, Gompertz, and Exponential models, and the Probit model using the RECOV Pr and OLS regression model using the severity of loss (S.Loss) in market prices. For a 60-day time window, Table 5 shows the results are coherent with our previous findings. Moreover, further tests, not tabulated, show that the relationship is the same for firms from high and low carbon-intensive sectors. This is coherent with the findings of Fasan et al. (2021) that GSCM is positively and significantly related to firms’ performance recovery irrespective of environmentally sensitive industry.

Overall, our findings suggest that GSCM improves a firm’s ability to deal with the financial crisis caused by COVID-19. We find that GSCM significantly mitigates the time to recover from the crisis, enhancing the organization’s financial resilience. We found this finding robust to alternative measures of GSCM and OR and using different analysis models.

In line with the instrumental version of the stakeholder theory (Donaldson and Preston, 1995; Jones, 1995), GSCM may benefit firms to cope with the COVID-19 crisis because of environmental skills and long-term relations with stakeholders leading to competitive advantage. Since Fasan et al. (2021) found that GSCM is positively related to abnormal returns, our results complement their finding that GSCM also improves firms’ share price recovery.

4. Conclusion

This study at hand tackled an unexplored question of investigating whether GSCM improves a firm’s recovery from the COVID-19 crisis. This study provides empirical evidence that the firms that implement GSCM practices are far better in recovery from the adverse effects of economic and financial crises resulting from the COVID-19 pandemic. After performing the survival analysis over an international sample from 35 countries, our findings suggest that implementing GSCM practices help firms to cope with the COVID-19 crisis since they recover quickly. In other words, the firms with GSCM practices recover to their performance, such as pre-crisis share price levels earlier than those without GSCM practices. Results of additional statistical tools suggest that our findings are robust and can be used for policy implications for various stakeholders directly or indirectly related to those firms. The study has theoretical and methodological significance by investigating the rarely tested relationship between the GSCM and the organizational resilience of global companies during the COVID-19 crisis.

Since previous studies did not agree on the GSCM effectiveness, we make an important contribution to the academic literature by highlighting its unexplored benefit, namely organizational resilience. Our findings stimulate corporate managers to prepare for situations like COVID-19 in the future and all stakeholders, including investors, governments, and policymakers, to push firms to become more eco-friendly and resilient.

Data availability

The authors do not have permission to share data.

Acknowledgments

The authors would like to thank the City University Center for Sustainability Studies (CUCSS) for providing the companies’ data used in this study. We also thank the Economics Letters editor, Max Corce, and two anonymous reviewers for their invaluable comments.
References

Amankwah-Amoah, J., Syllias, J., 2020. Can adopting ambitious environmental sustainability initiatives lead to business failures? An analytical framework. Bus. Strategy Environ. 29 (1), 240–249.

Barratt, M., Oke, A., 2007. Antecedents of supply chain visibility in retail supply chains: a resource-based theory perspective. J. Oper. Manage. 25 (6), 1217–1233.

Bruna, M.G., Nicolò, D., 2020. Corporate reputation and social sustainability in the early stages of start-ups: A theoretical model to match stakeholders’ expectations through corporate social commitment. Finance Res. Lett. 35, 101508.

Cox, D.R., 1972. Models and life-tables regression. JR Stat. Soc. Ser. B 34, 187–220.

Danso, A., Adomako, S., Amankwah-Amoah, J., Owusu-Agyei, S., Konadu, R., 2019. Environmental sustainability orientation competitive strategy and financial performance. Bus. Strategy Environ. 28 (5), 885–895.

DesJardine, M., Bansal, P., Yang, Y., 2019. Bouncing back: Building resilience through social and environmental practices in the context of the 2008 global financial crisis. J. Manag. 45 (4), 1434–1460. http://dx.doi.org/10.1177/0149206317708854.

Ding, W., Levine, R., Lin, C., Xie, W., 2021. Corporate immunity to the COVID-19 pandemic. J. Financ. Econ. 141 (2), 802–830. http://dx.doi.org/10.1016/j.jfineco.2021.03.005.

Donaldson, T., Preston, L.E., 1995. The stakeholder theory of the corporation: Concepts, evidence, and implications. Acad. Manag. Rev. 20 (1), 65–91. http://dx.doi.org/10.2307/2588887.

Fama, E.F., French, K.R., 2002. Testing trade-off and pecking order predictions about dividends and debt. Rev. Financ. Stud. 15 (1), 1–33. http://dx.doi.org/10.1093/rfs/15.1.1.

Fasan, M., Zaro, E.S., Zaro, C.S., Porco, B., Tiscini, R., 2021. An empirical analysis: Did green supply chain management alleviate the effects of COVID-19? Bus. Strategy Environ. 30 (5), 2702–2712.

Flammer, C., 2013. Corporate social responsibility and shareholder reaction: The environmental awareness of investors. Acad. Manag. J. 56 (3), 758–781. http://dx.doi.org/10.5465/amj.2011.0744.

Freeman, R.E. 2010. Strategic Management: A Stakeholder Approach. Cambridge University Press, Cambridge.

Gittell, J.H., Cameron, K., Lim, S., Rivas, V., 2006. Relationships layoffs, and organizational resilience: airline industry responses to september 11. J. Appl. Behav. Sci. 42 (1), 300–329.

Gunderson, L., Pritchard, D., 2002. Resilience of Large-Scale Resource Systems. Island Press, Washington DC.

Hamel, G., Välikangas, L., 2003. The quest for resilience. Harv. Bus. Rev. 81 (9), 52–63.

Jones, T.M., 1995. Instrumental stakeholder theory: A synthesis of ethics and economics. Acad. Manag. Rev. 20 (2), 404–437.

Jorgenson, D.W., Wilcoxen, P.J., 1990. Environmental regulation and US economic growth. Rand J. Econ. 31, 4–340.

King, A.A., Lenox, M.J., 2001. Lean and green? An empirical examination of the relationship between lean production and environmental performance. Prod. Oper. Manage. 10 (3), 244–256.

Linnenluecke, M.K., 2017. Resilience in business and management research: A review of influential publications and a research agenda. Int. J. Manag. Rev. 19 (1), 4–30.

Ortiz-de Mandojana, N., Bansal, P., 2016. The long-term benefits of organizational resilience through sustainable business practices. Strateg. Manag. J. 37 (8), 1615–1631. http://dx.doi.org/10.1002/smj.2410.

Marsat, S., Pijourlet, G., Ullah, M., 2021. Is there a trade-off between environmental performance and financial resilience? International evidence from the subprime crisis. Account. Finance 61 (3), 4061–4084. http://dx.doi.org/10.1111/afci.12726.

Marsat, S., Pijourlet, G., Ullah, M., 2022. Does environmental performance help firms to be more resilient against environmental controversies? International evidence. Finance Res. Lett. 44, 102028. http://dx.doi.org/10.1016/j.frl.2021.102028.

Meyer, A.D., 1982. Adapting to environmental jolts. Adm. Sci. Quart. 27 (1), 5–57.

Rao, P., Holt, D., 2005. Do green supply chains lead to competitiveness and economic performance? Int. J. Oper. Prod. Manag.

Refinitiv, 2021. Environmental, social and governance scores from refinitiv. Retrieved from https://www.refinitiv.com/content/dam/marketing/en_us/documents/methodology/refinitiv-esg-scores-methodology.pdf.

Richtnér, A., Lofsten, H., 2014. Managing in turbulence: how the capacity for resilience influences creativity. R D Manag. 44 (2), 137–151.

Semenova, N., Hassel, L.G., 2015. On the validity of environmental performance metrics. J. Bus. Ethics 132 (2), 249–258. http://dx.doi.org/10.1007/s10551-014-2323-4.

Sen, S., 2009. Linking green supply chain management and shareholder value creation. IUP J. Supply Chain Manag. 6.

Seuring, S.A., 2001. Green supply chain costing: joint cost management in the polyester linings supply chain. Greener Manag. Int. (33), 71–80.

Staw, B.M., Sandelands, L.K., Dutton, J.E., 1983. Threat rigidity effects in organizational behavior: A multilevel analysis. Adm. Sci. Quart. 50, 1–524.

Van Hoek, R.L., 1999. From reversed logistics to green supply chains. Supply Chain Manag. Int. J.

Zahid, M., Rahman, H.U., Muneer, S., Butt, B.Z., Isah-Chikajji, A., Memon, M.A., 2019. Nexus between government initiatives integrated strategies, internal factors and corporate sustainability practices in Malaysia. J. Clean. Prod. 241, 118329.

Zahller, K.A., Arnold, V., Roberts, R.W., 2015. Using CSR disclosure quality to expect corporate social commitment. Finance Res. Lett. 35, 102028. http://dx.doi.org/10.1016/j.frl.2021.102028.