ON CONTRACTIBLE EDGES IN CONVEX DECOMPOSITIONS

FERRAN HURTADO AND EDUARDO RIVERA-CAMPO

Abstract. Let \(\Pi \) be a convex decomposition of a set \(P \) of \(n \geq 3 \) points in general position in the plane. If \(\Pi \) consists of more than one polygon, then either \(\Pi \) contains a deletable edge or \(\Pi \) contains a contractible edge.

1. Introduction

Let \(P \) be a set of \(n \geq 3 \) points in general position in the plane. A convex decomposition of \(P \) is a set \(\Pi \) of convex polygons with vertices in \(P \) and pairwise disjoint interiors such that their union is the convex hull \(CH(P) \) of \(P \) and that no point in \(P \) lies in the interior of any polygon in \(\Pi \). A geometric graph with vertex set \(P \) is a graph \(G \), drawn in the plane in such a way that every edge is a straight line segment with ends in \(P \).

Let \(\Pi \) be a convex decomposition of \(P \). We denote by \(G(\Pi) \) the skeleton graph of \(\Pi \), that is the plane geometric graph with vertex set \(P \) in which the edges are the sides of all polygons in \(\Pi \). An edge \(e \) of \(\Pi \) is an interior edge if \(e \) is not an edge of the boundary of \(CH(P) \).

An interior edge \(e = uv \) of \(\Pi \) is deletable if the geometric graph \(G(\Pi) - e \), obtained from \(G(\Pi) \) by deleting the edge \(e \), is the skeleton graph of a convex decomposition of \(P \). Neumann-Lara et al. [6] proved that if a convex decomposition \(\Pi \) of a set \(P \) of \(n \) points consists of more that \(\frac{3n-2k}{2} \) polygons, where \(k \) is the number of vertices of \(CH(P) \), then \(\Pi \) has at least one deletable edge.

An interior edge \(e = uv \) of \(\Pi \) is contractible from \(u \) to \(v \) if the geometric graph \(G(\Pi)/\mathbf{uv} = (G(\Pi) - \{x_1u,x_2u,\ldots,x_mu,uv\}) + \{x_1v,x_2v,\ldots,x_mv\} \) is a skeleton graph of a convex decomposition of \(P \setminus \{u\} \), where \(x_1, x_2, \ldots, x_m \) are the remaining vertices of \(G(\Pi) \) which are adjacent to \(u \).

A simple convex deformation of \(\Pi \) is a convex decomposition \(\Pi' \) obtained from \(\Pi \) by moving a single point \(x \) along a straight line segment, together with all the edges incident with \(x \), in such a way that at each stage we have a convex decomposition of the corresponding set of points. Deformations of plane graphs have been studied by several authors, both theoretically and algorithmically, see for instance [3, 4, 7] and [1, 2, 5], respectively.

Let \(P_1 \) and \(P_2 \) be sets of \(n \geq 3 \) points in general position in the plane. A convex decomposition \(\Pi_1 \) of \(P_1 \) and a convex decomposition \(\Pi_2 \) of \(P_2 \) are isomorphic if there is an isomorphism of \(G(\Pi_1) \) onto \(G(\Pi_2) \), as abstract plane graphs, such that the boundaries of \(CH(P_1) \) and \(CH(P_2) \) correspond to each other with the same orientation.

Ferran Hurtado worked at Universitat Politècnica de Catalunya until his death in 2014.
Eduardo Rivera-Campo, Universidad Autónoma Metropolitana-Iztapalapa, erc@xanum.uam.mx.
Partially supported by Conacyt, México.
Thomassen [7] proved that if Π_1 and Π_2 are isomorphic convex decompositions, then Π_2 can be obtained from Π_1 by a finite sequence of simple convex deformations. As a tool, Thomassen proved that if Π is a convex decomposition with at least two polygons, then there is an isomorphic convex decomposition Π' that can be obtained from Π by a finite number of simple convex deformations that preserve the boundary and such that Π' contains either a deletable edge or a contractible edge. In this note we prove that every convex decomposition Π with at least two polygons contains an edge which is deletable or contractible. Furthermore, if P contains at least one interior point, then Π contains a contractible edge.

2. Preliminary results

Let Π be a convex decomposition of P containing no deletable edges. For every interior edge e of $G(\Pi)$, the graph $G(\Pi) - e$ has an internal face Q_e which is not convex and at least one end of e is a reflex vertex of Q_e.

We define an abstract directed graph $\overrightarrow{G(\Pi)}$ with vertex set P in which $\overrightarrow{uv} \in A(\overrightarrow{G(\Pi)})$ if and only if u is a reflex vertex of Q_{uv}. Notice that for each interior edge uv of $G(\Pi)$, the directed graph $\overrightarrow{G(\Pi)}$ contains at least one of the arcs \overrightarrow{uv} and \overrightarrow{vu} (see Fig. 1).

Remark 1.

1. The outdegree of every vertex u of $\overrightarrow{G(\Pi)}$ is at most 3.
2. The outdegree of every vertex u in the boundary of $CH(P)$ is 0.
3. An interior vertex u of Π has outdegree 3 in $\overrightarrow{G(\Pi)}$ if and only if u has degree 3 in $G(\Pi)$.
4. If $\overrightarrow{uw}, \overrightarrow{vu} \in A(\overrightarrow{G(\Pi)})$, then uv and uw lie in a common face of $G(\Pi)$.

For two points α and β in the plane, we denote by $r(\alpha\beta)$ the ray, with origin α, that contains the segment $\alpha\beta$.

Lemma 2. An edge uv of Π is not contractible from u to v if and only if there are edges yx and xu, lying in a common face of $G(\Pi)$ that contains vertex u, such that the ray $r(yx)$ meets the edge uv at point u_t, with $u \neq u_t \neq v$, and that the triangular region defined by x, u_t and u contains no point of P in its interior.

Proof. It is easy to see that the existence of such edges yx and xu implies that the edge uv cannot be contracted from u to v; we proceed to prove the sufficiency part of the
lemma. Let uv be an interior edge of Π with u not lying in the boundary of $CH(\Pi)$ and let x_1, x_2, \ldots, x_m be the remaining vertices of $G(\Pi)$ which are adjacent to u. We contract the edge uv in a continuous way as follows: Slide the point u along the ray $r(uv)$, together with the edges x_1u, x_2u, \ldots, x_mu (see Fig. 2).

If uv is not contractible from u to v, then either the transformed graph $T(G(\Pi))$ becomes non planar or one of its faces becomes non convex. This implies that we must reach a point $u_t = u + t(v - u)$, with $0 < t < 1$, such that there are two edges yx_i and x_iu_t lying in a common face, which become collinear in $T(G(\Pi))$ (see Fig. 3).

Notice that two or more different pairs of edges yx_i, x_iu_t and yx_j, x_ju_t may become collinear simultaneously; in such a case we may choose any of those pairs and proceed with the proof.

The triangular region defined by x_i, u_t and u is the region swept by the edge x_iu, $0 \leq s \leq t$ and therefore it contains no point of P in its interior. The lemma follows since the edges yx_i and x_iu lie in a common face of $G(\Pi)$ and the ray $r(yx_i)$ meets the edge uv at the point u_t. □

Let N denote the set of arcs \vec{uv} of $G(\Pi)$ such that the edge uv is not contractible from u to v in Π. For each $\vec{uv} \in N$ let $y = y_{uv}$, $x = x_{uv}$ and u_t be as in Lemma 2. Since the edges $y_{uv}x_{uv}$ and $x_{uv}u$ lie in a common face of $G(\Pi)$ and the triangular region, defined by x_{uv}, u_t and u, contains no point of P in its interior, the geometric graph $G(\Pi) - x_{uv}u$ contains a face $Q_{x_{uv}u}$ in which x_{uv} is a reflex vertex and therefore $\vec{x_{uv}u} \in A(G(\Pi))$.

This defines a function $f : N \rightarrow A(G(\Pi))$ given by $f(\vec{uv}) = \vec{x_{uv}u}$.

Notice that the arcs $f(\vec{uv})$ and \vec{uv} form a directed path in $G(\Pi)$ with length 2 and middle vertex u. This implies that if $f(\vec{uv}_1) = f(\vec{uv}_2)$, then $u_1 = u_2$. Moreover, if uv_1, uv_2 and uv_3 are distinct arcs such that $f(\vec{uv}_1) = f(\vec{uv}_2) = f(\vec{uv}_3) = \vec{xu}$, then u is adjacent in $G(\Pi)$ to v_1, v_2, v_3 and to x, which is not possible by Remark 1, since u has outdegree 3 in $G(\Pi)$. It follows that there are no three arcs in N with the same image under the function f and therefore $|\text{Im}(f)| = |N| - |U|$, where U is the set of points u of P for which there is a pair of arcs $\vec{uv}, \vec{uv} \in N$ such that $f(\vec{uv}) = f(\vec{uv})$.

![Figure 2. Contracting an edge uv continuously.](image-url)
Figure 3. Edges yx and xu_1 become collinear.

Lemma 3. Let Π be a convex decomposition of P with no deletable edges. If $U \neq \emptyset$, then there is a function $g : U \rightarrow A\left(\overrightarrow{G(\Pi)}\right)$ such that for each $u \in U$, $g(u)$ is not in the image of the function f.

Proof. Let $u \in U$ and let v, w and $x = x_{uv} = x_{uw}$ be points in P such that $f(\overrightarrow{uv}) = f(\overrightarrow{uw}) = \overrightarrow{xu}$. If u has degree larger than 3 in $G(\Pi)$, let $z \notin \{v, w, x\}$ be such that uz is an edge of $G(\Pi)$. By Remark 1, the outdegree of u in $\overrightarrow{G(\Pi)}$ is at most 2, therefore \overrightarrow{zu} is not an arc of $\overrightarrow{G(\Pi)}$. It follows that \overrightarrow{xu} must be an arc of $\overrightarrow{G(\Pi)}$. In this case $g(u) = \overrightarrow{xu} \notin \text{Im}(f)$ since $z \neq x$ and \overrightarrow{xu} is the unique arc in $\text{Im}(f)$ that ends at u.

If u has degree 3 in $G(\Pi)$, then u has outdegree 3 in $\overrightarrow{G(\Pi)}$, by Remark 1 and therefore \overrightarrow{xu} is an arc $\overrightarrow{G(\Pi)}$. We claim that in this case $g(u) = \overrightarrow{xu} \notin \text{Im}(f)$. Let l_{ux} denote the line containing the edge ux, and let y_{uv} and y_{uw} be points in P such that the rays $r(y_{uv}x)$ and $r(y_{uw}x)$ intersect the edges uv and uw, respectively.

Without loss of generality we assume that l_{ux} is a vertical line such that v and y_{uw} lie to the left of l_{ux} and w and y_{uv} lie to the right of l_{ux} (see Fig. 4). Clearly the angles
\[\angle y_u x u \text{ and } \angle y_w x u \text{ are smaller than } \pi, \text{ it is easy to see that } \angle y_u w x u \text{ is also smaller than } \pi. \]

Therefore if \(xz \) is an edge of \(\Pi \) with \(z \notin \{u, y_u, y_w\} \), then \(\overrightarrow{xz} \) is not an arc of \(\overrightarrow{G(\Pi)} \). This implies that if \(\overrightarrow{ux} \in \text{Im}(f) \), then \(\overrightarrow{ux} = f(\overrightarrow{xy_u}) \) or \(\overrightarrow{ux} = f(\overrightarrow{xy_w}) \) since \(f(\overrightarrow{d}) \) and \(\overrightarrow{d} \) form a directed path of length 2 for each arc \(\overrightarrow{d} \in N \).

Suppose \(\overrightarrow{ux} = f(\overrightarrow{xy_u}) \). By the definition of \(f \), there is an edge \(y_{xy_u} u \) such that the ray \(r(y_{xy_u} u) \) intersects the edge \(x y_{yu} \). Since \(v \) and \(w \) are the only vertices different from \(x \) which are adjacent to \(u \) in \(G(\Pi) \), one of them must be the vertex \(y_{xy_u} \). Since both edges \(uw \) and \(x y_{yu} \) lie in the right halfplane defined by \(l_{ux} \) then \(r(uw) \) cannot intersect the edge \(x y_{yu} \) and therefore \(y_{xy_u} \neq w \). Finally, since \(r(y_{yu} x) \) intersects the edge \(uv \), \(r(vu) \) cannot intersect the edge \(x y_{yu} \). Therefore \(\overrightarrow{ux} \neq f(\overrightarrow{xy_u}) \); analogously \(\overrightarrow{ux} \neq f(\overrightarrow{xy_w}) \). □

3. Main results

In this section we prove our main results.

Theorem 4. Let \(P \) be a set of points in general position in the plane. If \(\Pi \) is a convex decomposition of \(P \) consisting of more than one polygon, then either \(\Pi \) contains a deletable edge or \(\Pi \) contains a contractible edge.

Proof. Assume the result is false and \(\Pi \) contains no deletable edges and no contractible edges. Define the directed graph \(\overrightarrow{G(\Pi)} \) as in the previous section, notice that \(A(\overrightarrow{G(\Pi)}) \neq \emptyset \) since \(\Pi \) contains at least two polygons. Since \(\Pi \) contains no contractible edges, \(N = A(\overrightarrow{G(\Pi)}) \).

Let \(B = B(\overrightarrow{G(\Pi)}) \) be the set of arcs of \(\overrightarrow{G(\Pi)} \) of the form \(\overrightarrow{uw} \), with \(w \) in the boundary of \(CH(P) \), and let \(\overrightarrow{uw} \in B \). By Remark 1, \(w \) has outdegree 0 in \(\overrightarrow{G(\Pi)} \) which implies \(\overrightarrow{uw} \notin \text{Im}(f) \).
If $U = \emptyset$, then $\text{Im} \left(f \right) \subset A \left(G(\Pi') \right) \setminus B$, therefore $|N| = |\text{Im} \left(f \right)| \leq |A \left(G(\Pi) \right) \setminus B| \leq |A \left(G(\Pi) \right)| - 3$, which is not possible since Π contains no deletable edges and $|B| \geq 3$.

And if $U \neq \emptyset$, by Lemma 3 no arc in $\text{Im} \left(g \right)$ lies in $\text{Im} \left(f \right)$, therefore $\text{Im} \left(f \right) \subset A \left(G(\Pi) \right) \setminus \left(\text{Im} \left(g \right) \cup B \right)$. In this case $|\text{Im} \left(f \right)| \leq |A \left(G(\Pi) \right)| - |\text{Im} \left(g \right)| - |B|$, since $g(u) \notin B$. This is a contradiction since $A \left(G(\Pi) \right) = N$, $|\text{Im} \left(g \right)| = |U|$, $|B| \geq 3$ and $|\text{Im} \left(f \right)| = |N| - |U|$. \hfill \Box

Corollary 5. Let Π be a convex decomposition of a set of points P in general position in the plane. If P contains at least one interior point, then Π contains at least one contractible edge.

Proof. Let Π' be a convex decomposition of P obtained from Π by removing deletable edges, one at a time, until no such edges remain, and let $G(\Pi')$ be the corresponding directed abstract graph. Since P contains an interior point, Π' contains at least one interior edge.

By Theorem 4, there is an arc $\bar{uv} \in A \left(G(\Pi') \right)$ such that uv is contractible from u to v in Π'. If uv is not contractible in Π, then by Lemma 1 there are edges yx and xu lying in a common face of $G(\Pi)$ such that the ray $r(yx)$ meets the edge uv at an interior point u, and that the triangular region yu,u contains no point of P in its interior. This implies that the geometric graph $G(\Pi) - xu$ contains a face Q_x in which x is a reflex vertex and therefore xu is not deletable in Π and \overline{xu} is an arc of $G(\Pi)$.

Let R be the face of $G(\Pi)$ which contains both edges yx and xu. Since Π' is obtained from Π by deleting edges but no points, then there is a face R' of $G(\Pi')$ which contains the edge xu and the region bounded by R, let $y' \in P$ be such that $y'x$ is an edge of R'. Notice that $y' \neq y$ otherwise uv could not be a contractible edge of Π' because the ray $r(y'x)$ meets the edge uv at the point u (Fig. 8 left). Nevertheless, since the face R' contains the edge xu and the region bounded by R, the ray $r(y'x)$ also meets the edge uv at an interior point u' (Fig. 8 right) which again is a contradiction. \hfill \Box

Corollary 6. Let Π be a convex decomposition of a set of points P in general position in the plane and Q be the set of points in the boundary of $CH(P)$. There is a sequence $P = P_0, P_1, \ldots, P_m = Q$ of subsets of P, and a sequence $\Pi_0, \Pi_1, \ldots, \Pi_m$ of convex decompositions of P_0, P_1, \ldots, P_m, respectively, such that $\Pi_0 = \Pi$, Π_m consists of the boundary of $CH(P)$ and for $i = 0, 1, \ldots, k$, Π_{i+1} is obtained from Π_i by contracting an edge and for $i = k + 1, k + 2, \ldots, m - 1$, Π_{i+1} is obtained from Π_i by deleting an edge.

Proof. By Corollary 5, if P_i contains interior points, then Π_i has a contractible edge. If P_i contains no interior points, then each interior edge of Π_i is a deletable edge. \hfill \Box
Figure 5. Left: Ray $r(yx)$ meets edge uv at the point u_t. Right: Ray $r(y'x)$ meets edge uv at an interior point u_t'.

References

[1] Barrera-Cruz, F., Haxell, P., Lubiw, A.: Morphing planar graph drawings with unidirectional moves, In Proceedings of the Mexican Conference on Discrete Mathematics and Computational Geometry Honoring Jorge Urrutia on the occasion of his 60th birthday (2013), 57–65.

[2] Biedl, T., Lubiw, A., Petrick, M., Spriggs, M.: Morphing orthogonal planar drawings, ACM Trans. Algorithms 9 (2013), no. 4, Art 29, 24 pp.

[3] Cairns, S. S.: Deformations of plane rectilinear complexes, American Mathematical Monthly 51 (1944), 247–252.

[4] Grünbaum, B., Shepard, G. C.: The geometry of planar graphs, In Proceedings of the 8th British Combinatorial Conference, H.N.V. Temperley, ed. London Math. Soc. Lecture Note Series vol. 52, Cambridge University Press, (1981), 124–150.

[5] Guibas, L., Hershberger, J., Suri, S.: Morphing simple polygons, Discrete Comput. Geom 24 (2000), no. 1, 1–34.

[6] Neumann-Lara, V., Rivera-Campo, E., Urrutia, J.: A note on convex decomposition of points in the plane, Graphs and Combinatorics 20 (2004), 1–3.

[7] Thomassen, C.: Deformations of plane graphs, Journal of Combinatorial Theory Series B 34 (1983), 244–257.