Whole genome sequencing and comparative genomic analyses of *Planococcus alpniumensis* MSAK28401^T, a new species isolated from Antarctic krill

Yuanyuan Wang^{1†}, Lingbo Ma^{3†}, Jian He¹, Zixuan Liu¹, Shaoping Weng², Lumin Wang³, Jianguo He^{1,2} and Changjun Guo^{1,2*}

Abstract

Background: Extremophiles have attracted much attention in the last few decades, as they possess different properties by producing certain useful metabolites. However, the secondary metabolism of the extremophiles of Antarctic krill has received little attention.

Results: In this study, a new bacterial strain MSAK28401^T from Antarctic krill was isolated and identified. The results of analysis on phenotypic, chemotaxonomic, and genomic characteristics showed that the strain MSAK28401^T belongs to the genus *Planococcus*. Cells of this strain were cocccoid (0.89–1.05 μm) and aerobic. The majority of the fatty acid content was C_{15:0} anteiso (37.67 ± 0.90%) followed by C_{16:1} ω7c alcohol (10.37 ± 1.22%) and C_{16:0} iso (9.36 ± 0.71%). The calculated average nucleotide identity and DNA–DNA hybridization values between the strain MSAK28401^T and type strains *P. citreus* DSM 20549^T and *P. rifietoensis* M8^T were lower than 91 and 70%, respectively. The strain MSAK28401^T (≡KCTC 43283^T and MCCC 1k05448^T) represented a new member of the genus *Planococcus* and was named *P. alpniumensis* sp. nov. Moreover, genes involved in the degradation of aromatic compounds (e.g., salicylate, gentisate, and quinate) were found in the genome, implying that strain MSAK28401^T has an aromatic compound as its potential metabolite. This work will help us understand the genomic characteristics and potential metabolic pathway of *Planococcus* from Antarctic krill.

Conclusions: This study reported the genomic information and phenotypic characteristics of the new strain *P. alpniumensis* MSAK28401^T isolated from Antarctic krill, and provided the genome information of *Planococcus* strains for further studying the function roles in aromatic compound metabolism.

Keywords: *Planococcus*, Antarctic krill, Genomic analysis, Extremophiles

Background

The genera *Planococcus* was initially found and proposed by Migula and has been continuously revised [1]. It was classified as *Planococcaceae* of *Firmicutes*, and 30 species had been published to date. Recently, the species *P. okeanokites* and *P. mcmeekinii* [2], *P. psychrophilum* [3], *P. stackebrandtii*, and *P. alkanoelasticum* [4, 5] were reclassified to the genera *Planomicrobium* based on phenotypic
properties, G+C content in DNA, fatty acid composition, and menaquinone profiles. *P. halophilus* was classified under the genera *Marinococcus* [6, 7]. These changes indicated that genus *Planococcus* and *Planomicrobium* have a close phylogenetic relationship. Usually, the main splitting points of the 16S rRNA sequence between the genera *Planococcus* and *Planomicrobium* were located at sites 183 and 190 (*E. coli* counting), which in the *Planococcus* are T and A, whereas in the *Planomicrobium* are C and G [8].

Planococcus has the following known features: Gram-positive, multicellular morphology (coci, short rod, or rod), aerobic, and no sporulation [8]. Representative strains of genus *Planococcus* usually grow in cold and/or saline-alkali soil with high salt concentrations, e.g., Arctic, Antarctic, and marine environments [9–11]. *Planococcus* has attracted much attention because they can produce carotenoids of biotechnological significance; this metabolite has potential applications as the ingredient of cosmetics, food or feed additives, and antioxidants [12]. *Planococcus* can also degrade and process various contaminants, such as heavy metals and phenols, and play an important role in the bioremediation of extreme environments [13, 14].

In the present study, a new strain *P. alpinumensis* MSAK28401T of the genus *Planococcus* from Antarctic krill was isolated and identified using taxonomic, phylogenetic, chemotaxonomic, whole-genomic, and comparative genomic analysis.

Results

Isolation, identification, and phylogenetic analysis

The single-bacterial MSAK28401T was obtained by mixing culture on Luria-Bertani (LB) agar. The 16S rRNA sequence alignment against GenBank revealed that the strain MSAK28401T belonged to the genus *Planococcus*, and it showed 98.62, 98.55, 98.43, 98.20, and 97.79% similarity with the corresponding gene sequences of *P. citreus* DSM20549T, *P. rifietornsis* M8T, *P. maitriensis* S1T, *P. dechangensis* NEAU-ST10-9T, and *P. maritimus* DSM17275T, respectively (additional File 1: Table S1). The 16S rRNA phylogenetic tree showed that strain MSAK28401T was clustered with four species of the genus *Planococcus*, and placed in an independent branch (Fig. 1). These results suggested that strain MSAK28401T belongs to the genus *Planococcus*.

![Fig. 1 The NJ tree shows Planococcus sp. at the position of concerned taxa on the 16S rRNA gene. Bootstrap values of ≥70% were shown at nodes](image-url)
Phenotypic characterization

The transmission electron microscopy observations showed that cell coccoid and the diameter of strain MSAK28401T was 0.89–1.05 μm with a thick cell wall (Fig. 2A). The isolates could grow in the range of 4–50 °C, and the optimal growth temperature was 30 °C (Fig. 2B). The phenotypic characteristics of strain MSAK28401T and related species as shown in Table 1. Strain MSAK28401T differed from the type strains of P. citreus DSM20549T, P. rifietornsis M8T, and P. maitriensis S1T in the assimilation of β-methyl-D-glucoside, D-aspartic acid, L-arginine, quinic acid, D-glucuronic acid, and L-malic acid. Strain MSAK28401T was distinguished from other species of the genus Planococcus by using some carbon sources and by producing acids from certain sugars. Phenotypic characteristics
Table 1 Differential phenotypic characteristics of Planococcus sp. and closely related Planococcus species

Characteristic	1	2	3	4=5=6=7
Carbon source utilization:				
Dextrin	−	+	+	−
D-Cellobiose	−	−	+	−
D-Turanose	+	+	+	NR
α-D-Lactose	−	+	+	−
D-Melibiose	−	+	−	+
β-Methyl-D-Glucosside	−	+	+	NR
α-D-Glucose	−	−	+	+
D-Mannose	+	+	−	+
D-Fructose	−	+	+	−
D-Galactose	+	+	−	+
3-Methyl Glucose	+	+	−	NR
D-Sorbitol	+	+	+	NR
D-Mannitol	+	+	+	−
D-Arabitol	−	+	−	NR
D-Glucose-6-PO4	−	−	−	NR
D-Aspartic Acid	−	+	+	+
L-Alanine	−	+	+	−
L-Arginine	−	+	+	−
L-Aspartic Acid	−	−	−	+
L-Glutaric Acid	−	+	+	−
L-Pyroglutamatic Acid	−	−	+	−
D-Galacturonic Acid	−	+	+	−
L-Galactonic Acid Lactone	−	+	+	−
D-Gluconic Acid	+	+	−	NR
D-Glucuronic Acid	−	+	+	−
Glucuronamid	−	+	+	−
Quinic Acid	−	+	+	−
D-Lactic Acid Methyl Ester	+	+	−	NR
L-Malic Acid	−	+	+	−
Treen 40	+	+	+	NR
β-Hydroxy-D,L	−	−	−	NR
Butyric Acid	−	+	+	−
α-Keto-Butyric Acid	−	−	+	−
Acetoacetic Acid	+	+	+	NR
Propionic Acid	−	−	−	+
Acetic Acid	+	+	+	NR
Chemical sensitivity:				
1% NaCl	+	+	+	+
4% NaCl	+	+	+	+
8% NaCl	−	−	−	−
Tetrazolium Violet	+	−	−	NR
Nalidixic Acid	−	−	−	NR
Lithium Chloride	+	+	+	NR
Aztreonam	+	+	+	NR

1 MSAK28401: data from this study, 2 P. citreus DSM 20549, 3 P. rifietoensis MB1, 4 P. maitrienensis S11, 5 Alam et al., 2003, 6 Suresh et al., 7 Gan et al., 2018, + present, − absent, NR not reported

Table 2 Cellular fatty acid composition of Planococcus sp. and P. citreus DSM 20549, P. rifietoensis MB1, and P. maitrienensis S11

Fatty acids	1	2	3	4=5=6=7
C12:0	1.29 ± 0.37	1.14 ± 0.57	2.57 ± 1.29	−
C14:0 iso	7.80 ± 0.18	1.41 ± 0.85	9.26 ± 0.17	−
C15:0 anteiso	37.67 ± 0.90	44.22 ± 5.39	37.28 ± 1.60	27.3 ± 2.05
C15:0 iso	6.44 ± 0.47	0.66 ± 0.54	3.51 ± 0.57	2.8 ± 1.62
C16:0	1.33 ± 0.21	7.15 ± 1.13	1.96 ± 0.63	7.2 ± 1.11
C16:0 iso	9.36 ± 0.71	5.89 ± 1.45	9.05 ± 3.38	9.2 ± 3.33
C16:1 ω11c	1.38 ± 0.07	2.35 ± 0.94	1.49 ± 0.25	−
C16:1 ω7c alcohol	10.37 ± 1.22	6.32 ± 0.59	9.71 ± 0.68	N
C17:0	2.14 ± 0.66	3.03 ± 1.04	2.14 ± 0.24	5.3 ± 1.03
C17:0 10-methyl	0.35 ± 0.03	0.26 ± 0.09	0.50 ± 0.16	N
C17:0 anteiso	5.76 ± 0.47	14.18 ± 0.72	5.84 ± 1.05	66 ± 1.61
C17:0 iso	2.41 ± 0.29	0.53 ± 0.56	1.58 ± 0.34	N
C17:1 iso (anteiso)	2.03 ± 0.34	4.31 ± 0.31	2.96 ± 0.26	N
C17:1 iso ω10c	1.25 ± 0.07	0.28 ± 0.00	1.16 ± 0.32	N
C17:1 ω9c	2.92 ± 0.15	0.64 ± 0.00	3.95 ± 1.83	N
C18:0	0.53 ± 0.12	4.71 ± 1.22	1.01 ± 0.93	4.0 ± 1.05
C18:0 iso	1.61 ± 0.02	1.46 ± 0.50	2.29 ± 0.63	3.1 ± 1.55
C18:1 ω9c	1.04 ± 0.36	1.13 ± 0.45	1.33 ± 0.41	4.2 ± 1.70
C19:0 anteiso	0.34 ± 0.07	0.89 ± 0.17	0.44 ± 0.03	N

All values < 0.5% are not shown;
All the strains were tested under the same growth conditions;
1 MSAK28401, 2 P. citreus DSM 20549, 3 P. rifietoensis MB1, 4 P. maitrienensis S11,
− not detected, N none data
= Data from Alam et al. (2003), Data from Gan et al. (2018), Data from: Suresh Gan et al. (2007)
suggested that the strain MSAK28401 may represent a new Planococcus species and was named P. alpniumenisis sp. nov.

Fatty acid analysis
The details of the fatty acid profiles of the strain MSAK28401 and three related species of P. citreus DSM 20549, P. rifietoensis MB1, and P. maitrienensis S11 were described (Table 2). These major fatty acids (> 5%) of strain MSAK28401 were C15:0 anteiso (37.67 ± 0.90%), C16:1 ω7c alcohol (10.37 ± 1.22%), and C16:0 iso (9.36 ± 0.71%). The main fatty acid with the highest content is C15:0 anteiso. The other major fatty acids that were the most abundant in strain MSAK28401, namely, C16:0 iso (9.36 ± 0.71%), C16:1 ω7c alcohol (10.37 ± 1.22%), and C14:0 iso (7.80 ± 1.15%), showed quantitative differences with those in the two related type species. Results of comparing fatty acid types and proportions suggested that the strain MSAK28401 can be distinguished from the two species of a cluster in the phylogeny.
Table 3 Genome statistics of the Planococcus sp.

Attribute	Value	% of totala
Genome size (bp)	3,930,779	100.00
DNA coding region (bp)	3,380,475	86.00
DNA G+C (bp)	1,631,417	47.15
DNA scaffolds	10	–
Total genes	3998	100.00
Protein coding genes	3835	95.92
RNA gene	101	2.53
Pseudo genes	62	1.55
Gene with function prediction	3258	
Genes assigned to COGs	2765	69.16
Genes assigned Pfam domains	10	0.25
Genes with signal peptides	169	4.23
Genes with transmembrane helices	1123	28.09
CRISPR repeats	219	5.45

*The total is based on either the size of the genome in base pairs or the total number of protein coding genes in the annotated genome.

Genome properties and mining

The genome of strain MSAK28401T formed from 10 contigs, and the genomic length was 3,930,779 bp. The G+C content was 47.15%. We identified 3998 genes and 3897 codifying sequences (Table 3 and Fig. 3A) and assigned them to 27 subsystems with SEED viewer using the RAST pipeline (Fig. 3B and additional File 2: Table S2). Nevertheless, only 26% (1150, genes) of this genome was annotated, and the other 74% was not assigned to the RAST subsystems. The most represented subsystem features were amino acids and derivatives (266), carbohydrates (214), protein metabolism (203), cofactors, vitamins, prosthetic group, and pigments (138). Notably, several genes involved in dormancy and sporulation were also found in strain MSAK28401T.

Carbohydrate-related enzymes and activity annotations of presumed genes showed that 24 genes encoded glycosyl transferases (GT) and 21 genes encoded glycosyl hydrolases (GH) (Fig. 4A and additional File 3: Table S3). KofamKOALA analysis results showed that almost all of the major metabolic pathways of bacteria were found in the genome of strain MSAK28401T (Fig. 4B and additional File 4: Table S4). Most genes were related to amino acid and carbohydrate metabolism, suggesting that MSAK28401T might possess the efficient nutrient uptake systems. In-depth analysis of the metabolic pathways of the strain MSAK28401T revealed that genes related to aromatic hydrocarbon degradation pathways, such as catechol 2,3-dioxygenase (gene 0402), 4-oxalocrotonate tautomerase (gene 2794), and S-(hydroxymethyl) glutathione dehydrogenase / alcohol dehydrogenase (gene 2852) (Additional File 5: Table S5). Notably, 4-oxalocrotonate tautomerase (EC 5.3.2.-4-OT) is an enzyme that forms part of a bacterial metabolic pathway that oxidatively catabolizes toluene, o-xylene, 3-ethyltoluene, and 1,2,4-trimethylbenzene into intermediates of the citric acid cycle. In addition, we mapped the relevant pathways of aromatic hydrocarbons that the isolate may be involved in degradation (Fig. 4C). Above results indicated this isolate have a potential for application to the process of aromatic hydrocarbon metabolism.

Genetic relatedness and Pan-genome analysis

The phylogenetic tree of GBDP determined the phylogenetic position of strains, and it showed that the strain MSAK28401T was clustered with P. citreus DSM 20549T and P. rifietoensis M8T (Fig. 5). The DDH and ANIb values between the strain MSAK28401T and related species P. citreus DSM 20549T and P. rifietoensis M8T were less than 70 and 91%, respectively (Table 4 and Table 5), which were below the threshold for species delineation. The above results support the affiliation of the strain MSAK28401T to a new species of the genus Planococcus.

The pan-genome analysis of strains P. alpiuniensis MSAK28401T, P. citreus DSM 20549T, and P. rifietoensis M8T was depicted in a Venn diagram (Fig. 6). The three strains of Planococcus possessed 3363 gene families, whereas a “core” genome comprised 2853 clusters of orthologous, accounting for 84.5% of all gene families. Most of the annotation functions of homologous clusters were involved in biological process, hydrolase activity, ion binding, molecular function, and transferase activity. A total of 63 unshared protein clusters were found in the strain MSAK28401T, whereas 6 and 4 unshared protein clusters were found in the strains of P. citreus DSM 20549T and P. rifietoensis M8T, respectively. Remarkably, the number of unshared clusters of the strain MSAK28401T was higher than those of these related species. Approximately 84% of unshared clusters involved biological processes, such as those involving nucleobase-containing compounds, cellular aromatic compounds, macromolecules, nitrogen compounds, and heterocycle metabolism, thereby indicating the unique advantages in its biological process compared with the other related strains.

Secondary metabolites

Screening the genes of secondary metabolites showed two different gene clusters, which both belong to the terpene biosynthesis-related clusters (Fig. 7A). Cluster 1 displayed orphan Biosynthetic gene clusters (BGCs), which were unable to identify the known homologous gene cluster. Cluster 2 (3,001,607-3,022,437 nucleotides) was 66% similar to the known BGC (BGCC0000645), which was a gene cluster comprising carotenoids.
biosynthetic carotenoids. Nevertheless, the low similarity of predicted gene clusters may represent the production of new metabolites.

Islands of genome

Thirty-seven genomic islands were predicted in this new strain MSAK28401T by IslandViewer 4, and the localization of the predicted genomic islands is shown in Fig. 7B. The 37 genomic islands were made up of 971 genes from the range of 4000–320,000 bp. Among these, 581 genes were hypothetical proteins with no function, 29 genes were mobile element protein, but genes producing secondary metabolites were not found within the genomic islands.
Discussion

The species of *Planococcus* are the dominant species in many marine environments, e.g., deep sea, salt marshes, and intertidal zones [5]. These aerobic heterotrophic bacteria degrade a variety of hydrocarbons, so they can make a significant contribution to the reduction of hydrocarbon contamination in the marine environment [5, 15]. Thirty species of *Planococcus* have been characterized. Notably, six typical strains have been found in the Antarctic, namely, *P. faecalis* [16], *P. versutus* [17], *P. maitriensis* [18], *P. antarcticus*, *P. psychrophilus* [9], and *P. mcmeekinii* [19]. In this work, we isolated and identified a
new species strain MSAK28401T belonging to the genus *Planococcus* from Antarctic krill.

Defining a new species involves two consecutive steps, namely, 16S rRNA gene analysis and calculation of several parameters of the genome [20]. In conformity to this scheme, we analyzed the 16S rRNA sequence of strain MSAK28401T and found that the similarity between the corresponding gene sequence and related stains within genus *Planococcus* was less than 98.7%. This finding supported the idea that this strain might be a new species, because some species recently proposed in the genus *Planococcus* had similar or highly similar values in the 16S rRNA gene [17, 21, 22]. Chun et al. proposed a minimum standard to the taxonomy of prokaryotes using genomic data [20]. The whole-genome analysis results showed that the threshold values of ANI for species differentiation were 95–96%, which were generally accepted. The calculated ANI values of the genome of related strains of *Planococcus* were less than 91%, thereby indicating that the strain belongs to a novel species within the genus *Planococcus*. Furthermore, the morphology, phenotype, and whole-genome analysis of the strain MSAK28401T showed that it represented a new member of the genus *Planococcus* and was named *P. alpniuensis* sp. nov.

Genus *Planococcus* is a halophilic bacterium known for producing various secondary metabolites [23], which are often referred to as anti-inflammatory, antimicrobial, pharmaceutically significant, and chemotherapeutic [24]. Ganapathy et al. identified a new carotenoid (methyl glucosyl-3,4-dehydro-apo-8-lycopenoate) with...
Table 5 Calculated ANIb values for available genomes of the type strains from the type species of the genera included in the genus Planococcus (the accession numbers for these genomes are in parentheses)

Species	Planococcus sp	DSM 14505\(^T\)	DSM 22276\(^T\)	DSM 20549\(^T\)	DSM 24743\(^T\)	ATCC 43650\(^T\)	17275\(^T\)	S1\(^T\)	DSM 23997\(^T\)	M8\(^T\)	ISL-16\(^T\)	PAMC 21323	L10.15\(^T\)	SCU63\(^T\)
Planococcus sp	100													
DSM 14505\(^T\)	72.95	100												
DSM 22276\(^T\)	72.07	79.62	100											
DSM 20549\(^T\)	90.31	72.44	71.27	100										
DSM 24743\(^T\)	72.04	80.17	88.82	72.01	100									
ATCC 43650\(^T\)	72.09	81.52	80.90	72.03	81.63	100								
17275\(^T\)	84.92	72.73	72.12	85.04	72.27	72.36	100							
S1\(^T\)	87.86	72.30	71.07	89.22	71.11	71.25	83.85	100						
DSM 23997\(^T\)	87.07	72.57	71.56	87.83	71.55	71.66	83.59	88.93	100					
M8\(^T\)	90.49	72.74	71.75	92.26	71.88	72.01	84.58	88.51	87.36	100				
ISL-16\(^T\)	72.59	73.09	71.78	72.50	71.93	72.15	72.08	72.76	72.50	72.46	100			
PAMC 21323	71.99	79.50	85.59	71.75	86.72	81.10	72.13	71.59	71.52	71.78	72.13	100		
L10.15\(^T\)	71.77	79.70	80.76	71.53	81.16	81.85	71.91	71.32	71.14	71.68	71.89	81.25	100	
SCU63\(^T\)	72.34	72.86	72.22	72.22	72.33	71.97	72.48	72.26	72.36	80.83	72.15	72.00	100	

Planococcus sp, Planococcus antarcticus DSM 14505\(^T\), Planococcus donghaensis DSM 22276\(^T\), Planococcus citreus DSM 20549\(^T\), Planococcus halocryophilus DSM 24743\(^T\), Planococcus kocurii ATCC 43650\(^T\), Planococcus maritimus 17275\(^T\), Planococcus maitriensis S1\(^T\), Planococcus plakortidis DSM 23997\(^T\), Planococcus rifietoensis M8\(^T\), Planococcus salinarum ISL-16\(^T\), Planococcus sp. PAMC 21323, Planococcus versutus L10.15\(^T\), Planococcus halotolerans SCU63\(^T\).
antioxidant activity from *P. maritimus* MKU009 [25]. Nevertheless, two clusters of genes that may be involved in the synthesis of terpenes were discovered by scanning potential secondary metabolites in strain MSAK2840T. Cluster 2 had 66% similarity with the gene cluster of the carotenoid biosynthesis of *Halobacillus halophilus* DSM 2266, which can help the strain resist oxidative stress. Genes associated with aromatic compound metabolism, one of the most common and persistent contaminants in environments [26], were found. In general, degradation of hydrocarbons, e.g., salicylate, gentisate, and quinate degradation, was a function of *Planococcus* [23].

By identifying vertical genetic homologous gene clusters from unique common ancestors, comparative analysis can help clarify the relationship between different species and the evolution and adaptability of the genome [23, 27]. The strain MSAK2840T shared 2853 gene clusters with *P. citreus* DSM 20549T and *P. rifioetinosis* M8T, and had 63 unshared protein clusters. The functional distribution of homologous gene families in core genomes showed that most homologous gene families encode the
basal metabolism of bacteria, such as protein processing, folding, and secretion and DNA and RNA metabolism [28]. Notably, the number of unshared clusters in strain MSAK28401T was significantly higher than these related species among themselves (Fig. 6). The biological processes of unshared clusters of strain MSAK28401T are aromatic compound, nitrogen compound, macromolecule, and heterocycle metabolic processes, indicating the unique advantages in its biological process than other related strains.

Conclusion
The analysis of genomic, chemotaxonomic, and phenotypic traits showed that the strain MSAK28401T belongs to a new species of the genus Planococcus, named *P. alpniuensis* sp. nov, whose type strain is MSAK28401T. Furthermore, genomic characterization
and comparative analysis showed that the strain P. alpniumensis MSAK28401\(\text{T}\) contained many genes related to the metabolism and transportation of amino acids and carbohydrates, thereby suggesting that MSAK28401\(\text{T}\) might possess an efficient nutrient uptake system. Screening the secondary metabolite genes found two different types of terpene biosynthesis-related clusters. Cluster 2 was similar to carotenoids (66% of genes showed similarity), thereby indicating that these predicted gene clusters may represent the production of new metabolites. Finally, genes (catechol 2,3-dioxygenase (gene 0402), 4-oxalocrotonate tautomerase (gene 2794), and S-(hydroxymethyl) glutathione dehydrogenase / alcohol dehydrogenase (gene 2852)) involved in the degradation of aromatic compounds (e.g., salicylate, gentisate, and quinate) were identified, indicating the potential metabolism of an aromatic compound of the new species.

Description of P. alpniumensis sp. nov.

This study reported the genomic information and phenotypic characteristics of the new strain P. alpniumensis MSAK28401\(\text{T}\) isolated from Antarctic krill. Cells were Gram-stain positive, aerobic, non-motile and coccoid (0.89–1.05 μm). After 3 days of culture on LB medium at 28 °C, the colonies were orange and round, no-flagellum, no-spore, no-mobility, growth temperature range from 4 to 45 °C, and 30 °C is the optimum growth temperature, as well as anaerobic growth does not occur. Tween 40 hydrolyzes the colony, while gelatin and casein do not. The carbon sources were D-turanose, 3-methyl glucose, D-galactose, D-sorbitol, D-mannitol, D-mannose, D-lactic acid methyl ester, and D-gluconic acid, but not dextrin, β-methyl-D-glucoside, α-D-lactose, L- pyrogallic acid, D- l-leuconbose, D-melibiose, D-galactose, D-glucuronic acid, D-glucose-6-PO4, D-fructose, D-arabitol, L-glutamic acid, D-galacturonic acid, L-malic acid, L-alanine, L-arginine, D- aspartic acid, D-glucuronic acid, L-galactonic acid lactone, glucuronamide, and quinic acid. C\textsubscript{15:0} anteiso, C\textsubscript{16:1} \(\omega7\)c alcohol, C\textsubscript{15:0} iso, C\textsubscript{16:0} iso, C\textsubscript{17:0} anteiso, and C\textsubscript{14:0} iso were the major fatty acids (>5%) of the strain. Content of DNA G + C was 47.15%. The type species was P. alpniumensis, MSAK28401\(\text{T}\) (KCTC 43283\(\text{T}\) and MCCC 1k05448\(\text{T}\)).

Methods

Bacterial isolation

Antarctic krill was collected from Antarctica (58°33.1′ W, 63°6.3′ S) in 2016. It was washed with sterile seawater thrice under aseptic conditions to remove superficial residual sediments and microbes. Three Antarctic krill samples from a collected site were ground and homogenized as one specimen. Then, the milled samples were diluted with approximately 1 ml of sterile water, collected in a 2 ml aseptic centrifuge tube, and centrifuged at 3500 rpm for approximately 5–10 min. An inoculation loop was used to obtain a small amount of supernatant liquid, which was spread on agarmixed LB. Bacteria in inoculated dishes were allowed to multiply at 10 °C until the colonies became visible. The colonies were randomly isolated from the agar plates, picked, and sub-cultured almost thrice under the same conditions. The same strains were preserved in 20% glycerin liquid medium at −80 °C for future use.

Phylogenetic tree construction

16S rRNA gene sequence of strain MSAK28401\(\text{T}\) was amplified and sequenced through the sequencing DNA service of TSINGKE Biological Technology, China and then compared with the EzBioCloud database [29]. ClustalW program was used for sequencing against the closest type strains [30] to analyze phylogeny. The Neighbor-Joining phylogenetic tree was established using MEGA-X [31]. The robustness of the phylogenetic tree was evaluated through bootstrap analysis (1000 replicates) [32].

Phenotypic characterization

After incubating the MSAK28401\(\text{T}\) strain on LB-Agar-Powder plates for 48 h at 25 °C, transmission electron microscopy confirmed the morphological characteristics. Motility was examined by stab-culture in semi-solid medium according to the method of Gerhardt et al. Oxidase activity was tested using 1% (w/v) tetramethyl-p-phenylenediamine. Formation of spores was monitored by phase-contrast microscopy on cells cultured on LB agar at 30 °C for up to 7 days. Growth at different temperatures (4, 10, 16, 25, 30, 37, 45, and 50 °C) was determined and bacterial concentration was measured as optical density at 600 nm. Under manufacturer-induced conditions, phenotypic characterization of this strain and two reference strains (P. citreus DSM20549\(\text{T}\) and P. rifietornsis M8\(\text{T}\), which were obtained from Marine Culture Collection of China, MCCC) were identified using Biolog Gen III microstation. Strains P. citreus DSM20549\(\text{T}\), P. rifietornsis M8\(\text{T}\), and the strain MSAK28401\(\text{T}\) were incubated together at 25 °C for 30 h and the results were tested.

Chemotaxonomic analysis

For cellular fatty acid analysis, strains MSAK28401\(\text{T}\), P. citreus DSM20549\(\text{T}\), and P. rifietornsis M8\(\text{T}\) were incubated together on LB-Agar-Powder at 25 °C for 2 days. Culture was harvested and prepared, and fatty acid methyl esters were separated based on the method proposed by Sasser [33] and were tested by the MIDI Sherlock Microbial Identification system.
Genome sequencing and mining
Total DNA of the genome was purified from a purely cultured strain MSAK28401T using a DNA extraction kit (TaKaRa, Japan) following the manufacturer’s protocol. PacBio sequencing and analysis were conducted by OE Biotech Co., Ltd. (Shanghai, China). The total DNA obtained was subjected to quality control via agarose gel electrophoresis and quantified by Qubit. The library was constructed utilizing the SMRTbell template prep kit 1.0 from Pacific Biosciences. Single-molecule real-time (SMRT) sequencing was performed on the PacBio Sequel platform. SMRT Analysis 2.3.0 was used to filter low-quality reads [34, 35]. The filtered reads were assembled into a contig without gaps. Falcon was used for the de novo assembly of these reads [36]. This draft genome sequence of MSAK28401T was collected in GenBank and was given the accession number JAAMTH00000000.

A circular genome map of this strain MSAK28401T was generated with CGView server (http://cgvie ca/) [37, 38]. Gene prediction of the assembled genome was performed with Prodigal v2.6.3 [39], and an assembled genome was masked with RepeatMasker v4.0.7 [40]. Annotation was completed with Rapid Annotation using Subsystem Technology (RAST 2.0) [2, 41, 42]. The genome-BLAST Distance Phylogeny (GBDP) [43] method compared these whole-genome sequences at nucleotide level, calculates DNA-DNA hybridization (dDDH) value, and a phylogenetic tree was constructed. The Average Nucleotide Identity (ANlb) value between genomes was calculated using JSpeciesWS Online Service [44]. Predictive genes were functionally classified using e-values of 1e-5 in five databases, namely, Non-Redundant Protein Database (NR), Gene Ontology (GO) Database, Swiss-Prot, Clusters of Orthologous Groups (COG), and Kyoto Encyclopedia of Genes and Genomes (KEGG)(http://www.genome.jp/kegg/pathway.html) [45, 46].

Pan-genome and comparative genome-wide analysis
To compare genomes, the reference genome sequence of this bacteria was downloaded from the GenBank database. The pan-genome sequence comparative analysis of this strain MSAK28401T was performed using the GBDP method [43]. Genomic homogeneous clustering analysis, including the genetic ontology of all predicted protein-coding genes, was performed using OrthoVenn2 [47].

Additional files

Additional file 1. The similarity of bacterial 16S rRNA.
Additional file 2. Subsystems of genes according to SEED database (RAST server).
Additional file 3. Carbohydrate-Active enZYmes (CAZy) database annotated classification statistics.
Additional file 4. KEGG database annotated classification statistics.
Additional file 5. KEGG database notes summary table.

Acknowledgments
The authors thank Professor Li Wenjun, Dr. Liu Lan, Dr. Li Shuai, and all members of the ecological environment research team for their valuable help in classification and identification of the new species. The author also thanks to Dr. Zhang Lingyu from our laboratory for her help in the genome analysis of the new species.

Authors’ contributions
C.J.G. and J.G.H. conceived the study. Y.Y.W., L. B. M., and L. M. W. performed sample preparation of Antarctic krill. Y.Y.W. and J.H. performed the isolation and culture of Antarctic krill and extraction of bacterial DNA. Y.Y.W. and Z.X.L. performed fatty acid analysis and phenotypic characterization of bacteria. Y.Y.W and S. P. W. performed the genome analyses of bacteria. Y.Y.W. and C.J.G. wrote the manuscript. All the authors read and agree on the final manuscript.

Funding
This work was supported by the National Key Research and Development Program of China (Nos. 2018YFD0900504 and 2018YFD0900501), the Science and Technology Planning Project of Guangzhou (No. 201904020043), the China Agriculture Research System (No. CARS-46), the Guangdong Key Research and Development Program (No. 2019B020217001), Guangdong Provincial Special Fund for Modern Agriculture Industry Technology Innovation Teams, and the Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) (No. 311021006). This work is not supported by a funder.

Availability of data and materials
All data generated or analyzed during this study are included in this published article and its supplementary information files. The datasets presented in this study can be found in online repositories. The datasets generated and/or analyzed during the current study are available in the (NCBI) repository, https://www.ncbi.nlm.nih.gov/ (JAAMTH00000000).

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Abbreviations
ANlb: Average nucleotide identity; dDDH: DNA-DNA hybridization; LB: Luria-Bertani; SMRT: Single-molecule real-time; GBDP: The Genome-Blast Distance Phylogeny; NR: Non-Redundant Protein Database; GO: Gene Ontology; COG: Clusters of Orthologous Groups; KEGG: Kyoto Encyclopedia of Genes and Genomes; RAST: Rapid Annotation using Subsystem Technology; GT: glycosyl transferases; GH: glycosyl hydrolases; BGCs: Biosynthetic gene clusters.
Author details
1 State Key Laboratory for Biocontrol / Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, People’s Republic of China. 2 Guangdong Province Key Laboratory for Aquatic Economic Animals, and Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, People’s Republic of China. 3 Key Laboratory of the East China Sea and Oceanic Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Shanghai 116023, People’s Republic of China.

Received: 26 April 2021 Accepted: 6 October 2021 Published online: 22 October 2021

References

1. Nakagawa Y, Sakane T, Yokota A. Emendation of the genus Planococcus and transfer of Flavobacterium oceanokozos Zobell and Upham 1944 To the genus Planococcus as Planococcus oceanokozes comb. nov. Int J Syst Bacteriol 1996; 46(4):866–870.

2. Aziz RK, Bartels D, Best AA, DeLong M, Dizd T, Edwards RA, et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics. 2008;9:75.

3. Dai X, Wang YN, Wang BJ, Liu SJ, Zhou YG. Planomicrobium chinense sp nov., isolated from coastal sediment, and transfer of Planococcus psychrophilus and Planococcus alcalitaticus to Planomicrobium as Planomi crobium psychrophilum comb. nov and Planomicrobium alcalitaticum comb. nov. Int J Syst Evol Micr. 2005;55(2):699–702.

4. Mayilraj S, Prasad GS, Suresh K, Saini HS, Shivaji S, Chakraborti T. Planococcus stackebrandtii sp nov., isolated from a cold desert of the Himalayas, India. Int J Syst Evol Micr. 2005;55(1):91–4.

5. Engelhardt MA, Daly K, Swannell R, Head IM. Isolation and characterization of a novel hydrocarbon-degrading, gram-positive bacterium, isolated from intertidal beach sediment, and description of Planococcus alcalitaticus sp nov. J Appl Microbiol. 2001;90(2):237–47.

6. Hao MV, Kocur M, Komagata K. Halophilus marinae sp nov., a Halophilic coccus. Int J Syst Bacteriol. 1976;26:53–7.

7. Novitsky TJ, Kushner DJ. Marinococcus gen-Nov, a new genus of motile Ccoci with Meso-Diaminopimelic acid in the cell-wall and Mannnocyclus-Albus Sp-Nov and Marinococcus-Halophilus (Novitsky and Kushner) comb-Nov. J Gen Appl Microbiol. 1985;30:449–59.

8. Novitsky TJ, Kushner DJ. Planococcus halophilus sp. nov., a Facultatively Halophilic coccus. Int J Syst Bacteriol. 1976;26:53–7.

9. Zhang B, Yang R, Zhang G, Liu Y, Zhang D, Zhang W, et al. Characteristics of Planococcus antioxidans sp. nov., an antioxidant-producing strain isolated from the desert soil in the Qinghai–Tibetan plateau. Microbiologically. 2020;9(6):1183–96.

10. Reddy G, Prakash J, Vairamani M, Prabhakar S, Matsumoto GI, Shivaji S. Planococcus antarcticus and Planococcus psychrophilus sp nov. isolated from cyanobacterial mat samples collected from ponds in Antarctica. Extremophiles. 2002;6(3):253–61.

11. Yoon J, Kang S, Lee S, Oh K, Oh T. Planococcus salinarum sp nov., isolated from a marine solar saltern, and emended description of the genus Planococcus. Int J Syst Evol Micr. 2010;60(4):754–8.

12. Mykytynuk NCS, Wilhelm RC, Whyte LG. Planococcus halophilus sp nov., an extreme sub-zero species from high Arctic permafrost. Int J Syst Evol Micr. 2012;62(8):1937–44.

13. P L, C S. Metabolic engineering towards biotechnological production of carotenoids in microorganisms. Appl Microbiol Biot 2002, 60(2):1–11.

14. Sun J, Xu L, Zhang Z, Li Y, Tang Y, Wu X. Diverse bacteria isolated from microtherm oil-production water. Anton Lueew Int J G. 2014;105(2):401–11.

15. Hupert-Kocurek K, Guzik U, Wójcieszynska D. Characterization of catechol-2,3-dioxygenase from Planococcus sp. strain SS5 induced by high phenol concentration. Acta Biochim Pol. 2012;59(3):345–51.

16. Suresh KA, Mody K, Jha B. Evaluation of biosurfactant/bioemulsifier production by a marine bacterium. Bull Environ Contam Toxicol. 2007;79(6):617–21.

17. Kim JH, Kang HJ, Yu BJ, Kim SC, Lee PC. Planococcus faecalis sp. nov., a carotenoid-producing species isolated from stools of Antarctic penguins. Int J Syst Evol Micr. 2015;65(10):3373–8.
42. Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S, Olsen GJ, et al. RASTk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep. 2015;5:8365.

43. Meier-Kolthoff JP, Auch AF, Klenk HP, Goker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. Bmc Bioinformatics. 2013;14:60.

44. Richter M, Rossello-Mora R, Oliver GF, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics. 2016;32(6):929–31.

45. Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30.

46. Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 1999;27(1):29–34.

47. Xu L, Dong Z, Fang L, Luo Y, Wei Z, Guo H, et al. OrthoVenn2: a web server for whole-genome comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res. 2019;47(W1):W52–8.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.