Effect of Weekly Long-Acting Growth Hormone Replacement Therapy Compared to Daily Growth Hormone on Children With Short Stature: A Meta-Analysis

Liyan Ma†, Liangyi Li‡, Wen Pan§, Congfu Huang∥, Limei Liu∥∥, and Xiaoxiao Zhang‡∥∥∗

† Department of Pediatrics, General Hospital of Ningxia Medical University, Yinchuan, China, ‡ Department of Endocrinology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China, § Department of General Internal Medicine, Qingdao Fuwai Cardiovascular Hospital, Qingdao, China, ∥ Department of Pediatrics, Longgang District Maternity & Child Healthcare Hospital, Shenzhen, China, ∥∥ Department of Pediatrics, Chongqing Jiangbei Hospital of Traditional Chinese Medicine, Chongqing, China, ‡∥∥ Department of Child Healthcare, Longgang District Maternity & Child Healthcare Hospital, Shenzhen, China

Background: We performed a meta-analysis to evaluate the efficacy and safety of weekly long-acting growth hormone replacement therapy compared to daily growth hormone in children with short stature.

Methods: A systematic literature search up to April 2021 was performed and 11 studies included 1,232 children with short stature treated with growth hormone replacement therapy at the start of the study; 737 of them were using weekly long-acting growth hormone replacement therapy and 495 were using daily growth hormone. They were reporting relationships between the efficacy and safety of long-acting growth hormone replacement therapy and daily growth hormone in children with short stature. We calculated the odds ratio (OR), and mean difference (MD) with 95% confidence intervals (CIs) to assess the efficacy and safety of weekly long-acting growth hormone replacement therapy compared to daily growth hormone in children with short stature using the dichotomous or continuous method with a random or fixed-effect model.

Results: Long-acting growth hormone replacement therapy had significantly lower height standard deviation scores chronological age (MD, −0.10; 95% CI, −0.13 to −0.08, p <0.001), and insulin-like growth factor binding protein-3 (MD, −0.69; 95% CI, −1.09 to −0.30, p <0.001) compared to daily growth hormone in children with short stature. However, growth hormone replacement therapy had no significantly difference in height velocity (MD, −0.09; 95% CI, −0.69–0.5, p = 0.76), height standard deviation scores bone age (MD, −0.04; 95% CI, −0.10–0.02, p = 0.16), insulin-like growth factor 1 standard deviation scores (MD, 0.26; 95% CI, −0.26–0.79, p = 0.33), and incidence of adverse events (OR, 1.16; 95% CI, 0.90–1.50, p = 0.25) compared to daily growth hormone in children with short stature.
BACKGROUND

Growth hormone replacement therapy was first shown to cure growth hormone insufficiency in the late fifties (1). Growth hormone was manufactured by recombinant DNA technique in the early eighties, which increased its possible usages (2). The growth hormone usage has been accepted by the Food and Drug Administration in idiopathic short stature (3). Randomized controlled trials have shown that everyday recombinant human growth hormone can improve height velocity and efficiently progress body composition in subjects with idiopathic short stature (4–6). The use of growth hormone in cancer survivors and short children with RASopathies, chromosomal breakage syndromes, or DNA-repair disorders should be carefully evaluated owing to an increased risk of recurrence, primary cancer, or second neoplasia in these individuals (7). Early growth hormone replacement therapy was limited to two or three intramuscular injections weekly, which were rapidly substituted by subcutaneous injections every day due to the added suitability. Many studies have demonstrated that subcutaneous injections every day are effective as the early treatments of growth hormone insufficiency in terms of producing insulin-like growth factor 1 and encouraging linear growth (8, 9). However, the need for injections every day causes non-compliance, higher health care costs, and reduced efficiency (10). This causes a decrease in height velocity in subjects with poor compliance (10, 11). Multiple characteristic problems occur in the long-term administration of growth hormone therapy that can decrease their effectiveness. Some of the recognized problems for long-term adherence comprise the injections method, the injection difficulty, pain produced by the injections, the device type used for the injections, parental apparent benefits and formulary changes, and many others (10, 11). The creation of pens, needle-free strategies, and infusion pumps with their limited applications helped in recovering compliance (12). Presently, oral administration is not similarly effective as injections in clinical practice (12). Many long-acting growth hormone formulae that need one injection every week, 2 weeks, or month have been developing offering a potential substitute to accomplish similar effectiveness and safety (13). Compared to daily recombinant human growth hormone treatment, a long-acting growth hormone treatment needs one injection every week can probably save almost 300 injections year, and can also offer better suitability, tolerance, and compliance than daily injections (14). To maximize the growth effects of growth hormone treatment and its other physiological benefits, there have been many different advanced pharmaceutical tools used to improve the growth hormone preparations (15–17). The six types of long-acting growth hormone formulae that have been studied are pegylated molecules, depot formulae, growth hormone molecules bound to albumin, prodrug formulae, growth hormone molecules bound to Fab antibodies, and growth hormone synthetic proteins (18). However, long-acting growth hormone effectiveness and safety in children with short stature is still conflicting. As an outcome, this meta-analysis aimed to generate efficacy and safety of weekly long-acting growth hormone replacement therapy compared to daily growth hormone in children with short stature.

METHODS

The present study followed the meta-analysis of studies in the epidemiology statement (19), which was performed following an established protocol.

Study Selection

Included studies were that with statistical measures of association (odds ratio [OR], mean difference [MD], frequency rate ratio, or relative risk, with 95% confidence intervals [CIs]) between the efficacy and safety of long-acting growth hormone replacement therapy and daily growth hormone in children with short stature.

Human studies only in any language were considered. Inclusion was not restricted by study size or type. Publications excluded were review articles and commentary and studies that did not supply a degree of relationship. Figure 1 shows the whole study process.

The articles were included in the meta-analysis when the next inclusion criteria were met:

1. The study was a randomized control trial or retrospective study.
2. The target population is children with short stature treated with growth hormone replacement therapy.
3. The intervention program was growth hormone replacement therapy.
4. The study included comparisons between the long-acting growth hormone replacement therapy and daily growth hormone.

The exclusion criteria were:
1. Studies that did not determine efficacy and safety of weekly long-acting growth hormone replacement therapy compared to daily growth hormone in children with short stature.
2. Studies with growth hormone replacement therapy in children with short stature.
3. Studies did not focus on the effect of comparative results.

Identification
A search protocol strategy was organized according to the PICOS principle (20) as follows: P (population): children with short stature treated with growth hormone replacement therapy; I (intervention/exposure): growth hormone replacement therapy; C (comparison): the long-acting growth hormone replacement therapy and daily growth hormone; O (outcome): change in the height velocity, height standard deviation scores chronological age, height standard deviation scores bone age, insulin-like growth factor 1, insulin-like growth factor binding protein-3, and incidence of adverse events in children with short stature; and S (study design): no restriction (21).

Screening
Data were abbreviated based on the following: study associated and subject associated features onto a homogeneous form, the primary author last name, study period, publication year, country, the studies region, and design of the study; type of the population, the total number and subjects number, demographic data and clinical and treatment features; the evaluation period associated with measurement, quantitative method and qualitative method of assessment, source of information, and outcomes’ assessment; and statistical analysis MD or relative risk, with 95% CI of relationship among the efficacy and safety of long-acting growth hormone replacement therapy and daily growth hormone in children with short stature (22). If a study
fit for inclusion based upon the above-mentioned principles, data were extracted individually by two authors. In case of discrepancy, the corresponding author gave a final choice. When there were diverse data from a study, the data were extracted separately. For bias risk in the studies: each study was assessed using two authors who individually evaluated the methodological quality of the selected studies. We used the “risk of bias tool” from the RoB 2: A revised Cochrane risk-of-bias tool for randomized trials to evaluate methodological quality (23). In terms of the evaluation criteria, each study was valued and allocated to one of the next three risks of bias: low: if all quality criteria were met; unclear or moderate: if one or more of the quality criteria were partly met or unclear, or high: if one or more of the criteria were not met, or not included. Any discrepancies were addressed by a reassessment of the original article.

Eligibility
The main result concentrated on measuring the efficacy and safety of weekly long-acting growth hormone replacement therapy compared to daily growth hormone in children with short stature. An assessment of the effects of efficacy and safety of long-acting growth hormone replacement therapy and daily growth hormone in children with short stature was extracted forming a summary.

Inclusion
Sensitivity analyses were limited only to studies reporting the relationship between the efficacy and safety of long-acting growth hormone replacement therapy and daily growth hormone in children with short stature. For subcategory and sensitivity analysis, we compared long-acting growth hormone replacement therapy to daily growth hormone treatment.

Statistical Analysis
The dichotomous or continuous method with random-effect or fixed-effect models was used to calculate the odds ratio (OR) or mean difference (MD) and 95% CI. We used the Chi-square test to perform biological heterogeneity analyses between different studies. We calculated the I^2 index; the I^2 index is from 0 to 100%. Values of about 0, 25, 50, and 75% indicate no, low, moderate, and high heterogeneity, respectively (24). When I^2 was higher than 50%, we chose the random-effect model; when it was lower than 50%, we used the fixed-effect model. A subgroup analysis was performed by stratifying the original evaluation per liver cancer and chemotherapy different outcomes as described before. In this analysis, a p-value for differences between subgroups of ≤0.05 was considered statistically significant. Publication bias was evaluated quantitatively using the Egger regression test (publication bias considered present if p ≥0.05), and qualitatively, by visual examination of funnel plots of the logarithm of ORs or MDs versus their standard errors (SE) (22). All p-values were 2-tailed. All calculations and graphs were performed using Reviewer manager version 5.3 (The Nordic Cochrane Centre, The Cochrane Collaboration, Copenhagen, Denmark).

RESULTS
A total of 1,245 unique studies were identified, of which 11 studies (between 2012 and 2021) fulfilled the inclusion criteria and were included in the study (25–35).

The 11 studies included 1,232 children with short stature treated with growth hormone replacement therapy at the start of the study; 737 of them were using weekly long-acting growth hormone replacement therapy and 495 were using daily growth hormone. All studies evaluated the efficacy and safety of weekly long-acting growth hormone replacement therapy compared to daily growth hormone in children with short stature.

The study size ranged from 25 to 440 children with short stature treated with growth hormone replacement therapy at the start of the study. The details of the 11 studies are shown in Table 2. Ten studies reported data stratified to height velocity; seven studies reported data stratified to height standard deviation scores chronological age; five studies reported data stratified to height standard deviation scores bone age; six studies reported data stratified to insulin-like growth factor 1 standard deviation scores; two studies reported data stratified to insulin-like growth factor binding protein-3; and 10 studies reported data stratified to insulin-like growth factor binding protein-4.
to the incidence of adverse events. Several studies adjusted data stratified analysis based on the dose given and were extracted separately. Their comparison results are shown in Figures 2–7.

Long-acting growth hormone replacement therapy had significantly lower height standard deviation scores chronological age (MD, −0.10; 95% CI, −0.13 to −0.08, p <0.001) with low heterogeneity (I² = 23%), and insulin-like growth factor binding protein-3 (MD, −0.69; 95% CI, −1.09 to −0.30, p <0.001) with low heterogeneity (I² = 38%) compared to daily growth hormone in children with short stature as shown in Figures 2 and 6.

However, growth hormone replacement therapy had no significantly difference in height velocity (MD, −0.09; 95% CI, −0.69 to 0.50, p = 0.76) with high heterogeneity (I² = 83%), height standard deviation scores bone age (MD, −0.10; 95% CI, −0.10–0.02, p = 0.16) with low heterogeneity (I² = 38%), insulin-like growth factor 1 standard deviation scores (MD, 0.28; 95% CI, −0.26–0.79, p = 0.33) with high heterogeneity (I² = 92%), and incidence of adverse events (OR, 1.16; 95% CI, 0.90–1.50, p = 0.25) with no heterogeneity (I² = 0%) compared to daily growth hormone in children with short stature as shown in Figures 1, 3–5, 7.

Selected studies stratified analysis that adjusts for children age, and ethnicity was not performed since no studies reported or adjusted for these factors.

Based on the visual examination of the funnel plot as well as on quantitative measurement by the Egger regression test, there was no indication of publication bias (p = 0.86). Though, most of the comprised studies were evaluated to be of a low methodological quality. All studies did not have selective reporting bias, and no articles had incomplete result data and selective reporting.

DISCUSSION

This meta-analysis study based on 11 studies included 1,232 children with short stature treated with growth hormone replacement therapy at the start of the study; 737 of them were using weekly long-acting growth hormone replacement therapy and 495 were using daily growth hormone (25–35).

Long-acting growth hormone replacement therapy had significantly lower height standard deviation scores chronological age, and insulin-like growth factor binding protein-3 compared to daily growth hormone in children with short stature.

However, long-acting growth hormone replacement therapy had no significant difference in height velocity, height standard deviation scores bone age, insulin-like growth factor 1 standard deviation scores chronological age, and insulin-like growth factor binding protein-3 compared to daily growth hormone in children with short stature.

TABLE 2 | Characteristics of the selected studies for the meta-analysis.

Study	Country	Total	High-dose long-acting growth hormone every week	Growth hormone every day
Peter (24)	Multicenter	51	39	12
Hwang (25)	Korea	60	30	30
Khadilkar (26)	Multicenter	178	91	87
Zeilinska (27)	Multicenter	52	41	11
Chatelain (28)	Multicenter	25	12	13
Luo (29)	China	440	291	149
Hwang (30)	Korea	42	14	28
Qiao (31)	China	98	49	49
Sävendahl (32)	Multicenter	59	45	14
Maniatis (33)	USA	161	105	56
Bright (34)	Germany	66	20	46
Sum		**1,232**	**737**	**495**

FIGURE 2 | Forest plot of the change in height velocity in long-acting growth hormone replacement therapy compared to daily growth hormone.
deviation scores, and incidence of adverse events compared to daily growth hormone in children with short stature (25–35). However, the analysis of outcomes should be done with caution because of the small sample size of most of the selected studies in our meta-analysis (eight studies out of 11 <100 subjects); proposing the need for more studies to confirm these results or possibly to significantly affects confidence in the outcome assessment, e.g., height standard deviation scores bone age comparison with its relatively low p-value = 0.16.

The insulin-like growth factor 1 standard deviation scores levels shown in these trials were within the normal range. Earlier studies have also shown a rise of serum insulin-like growth factor binding protein-3 in long-acting growth hormone replacement therapy compared to daily growth hormone.
The adverse events related to long-acting growth hormone replacement therapy were numerous, e.g., injection site pruritus, arthralgia, hematomata, hematoma, adrenal insufficiency, erythema, anemia, abnormal liver function test results, peripheral edema, hypothyroidism, pyrexia, rash, headache, and vomiting. These adverse events were generally mild, and none of the adverse events caused subject withdrawal. The most frequently described adverse events in subjects taking long-acting growth hormone therapy were injection site pruritus, anemia, hypothyroidism, pyrexia, rash, headache, and vomiting (25–35).

Long-acting growth hormone replacement therapy had no significant difference in height velocity, height standard deviation scores, and incidence of adverse events compared to daily growth hormone in children with short stature; suggesting that both are equivalent. However, the significant difference found in height standard deviation scores chronological age, and insulin-like growth factor binding protein-3 should be further studied since the number of studies used to determine these significant differences were small. This meta-analysis showed the relationship between the efficacy and safety of long-acting growth hormone replacement therapy and daily growth hormone in children with short stature. However, further studies are needed to validate these potential relationships. Also, further studies are needed to deliver a clinically meaningful difference in the results. These studies must comprise larger with more homogeneous samples. This was also suggested before in a similar meta-analysis study that showed a similar effect of weekly long-acting growth hormone replacement therapy compared to daily growth hormone in children with short stature treated with growth hormone replacement therapy (45). Well-conducted studies are also required to evaluate these factors and the combination of different subject-level data, children’s age, and ethnicity; since our meta-analysis study could not answer whether they are related to the outcomes. In summary, long-acting growth hormone replacement therapy had no significant difference in

FIGURE 7 | Forest plot of the incidence of adverse events in long-acting growth hormone replacement therapy compared to daily growth hormone.
height velocity, height standard deviation scores bone age, insulin-like growth factor 1 standard deviation scores, and incidence of adverse events compared to daily growth hormone in children with short stature. Further studies are required to validate these findings.

Limitations
There may be selection bias in this study because many studies selected were excluded from the meta-analysis. However, the excluded studies did not fulfill the inclusion criteria of our meta-analysis. Also, whether the results are associated with age and ethnicity or not could not be answered. The study designed to evaluate the relationship between the efficacy and safety of weekly long-acting growth hormone replacement therapy compared to daily growth hormone in children with short stature was based on data from previous studies, which might cause bias induced by incomplete details. The meta-analysis was based on a small number of studies (11 studies); eight studies were small, ≤100. Variables including children’s age, ethnicity, and nutritional status of subjects were also the possible bias-inducing factors. Some unpublished articles and missing data might lead to a bias in the pooled effect. Subjects were using different treatment schedules, dosages, and health care systems. Lastly, none of the selected studies showed data on thyroid function, so the meta-analysis of this result was not accessible. The selected studies included patients with short stature, but they did not define properly which criteria were used to conceptualize short stature. The inclusion or exclusion criteria of the selected studies also did not mention information on whether or not patients with genetic syndromes were included, whether systemic diseases were excluded, and whether patients with idiopathic short stature, short family stature, or constitutional short stature were included. These criteria vary widely in the populations studied. It is not recorded whether or not patients with growth hormone deficiency were included, either isolated or associated with multiple pituitary deficiencies. The impact of puberty and hormone replacement with glucocorticoids and sex steroids was also not assessed in most of the selected studies to the extent that did not allow us to analyze its effect in our meta-analysis. Final we height was not evaluated properly in the selected studies, an outcome that should always be the consistent objective of studies involving growth.

CONCLUSIONS
Long-acting growth hormone replacement therapy had significantly lower height standard deviation scores chronological age, and insulin-like growth factor binding protein-3 compared to daily growth hormone in children with short stature. However, growth hormone replacement therapy had no significant difference in height velocity, height standard deviation scores bone age, insulin-like growth factor 1 standard deviation scores, and incidence of adverse events compared to daily growth hormone in children with short stature. Further studies are required to validate these findings. However, the analysis of outcomes should be done with caution because of the small sample size of most of the selected studies in our meta-analysis; proposing the need for more studies to confirm these results or possibly to significantly affects confidence in the outcome assessment.

DATA AVAILABILITY STATEMENT
The original contributions presented in the study are included in the article/supplementary material. Further inquiries can be directed to the corresponding author.

AUTHOR CONTRIBUTIONS
Conception and design: XZ. Administrative support: All authors. Provision of study materials or subjects: All authors. Collection and assembly of data: JC, LL, WP, CH, and LL. Data analysis and interpretation: All authors. Manuscript writing: All authors. Final approval of manuscript: All authors. All authors contributed to the article and approved the submitted version.

REFERENCES
1. Raben M. Treatment of a Pituitary Dwarf With Human Growth Hormone. J Clin Endocrinol Metab (1958) 18(8):901–3. doi: 10.1210/jcem-18-8-901
2. Flodh H. Human Growth Hormone Produced With Recombinant DNA Technology: Development and Production. Acta Paediatrica (1986) 75:1–9. doi: 10.1111/j.1651-2227.1986.tb0356.x
3. Richmond E, Rogol AD. Current Indications for Growth Hormone Therapy for Children and Adolescents. Curr Indications Growth Hormone Ther (2010) 18:92–108. doi: 10.1159/000316130
4. Hodson EM, Willis NS, Craig JC. Growth Hormone for Children With Chronic Kidney Disease. Cochrane Database Syst Rev (2012) 2:1–39. doi: 10.1002/14651858.CD003264.pub3
5. Bryant J, Loveman E, Chase D, Mihaylova B, Cave C, Gerard K, et al. Clinical Effectiveness and Cost-Effectiveness of Growth Hormone in Adults in Relation to Impact on Quality of Life: A Systematic Review and Economic Evaluation. Health Technol Assess (2002) 6(19):1–96.
6. Cave CB, Bryant J, Milne R. Recombinant Growth Hormone in Children and Adolescents With Turner Syndrome. Cochrane Database Syst Rev (2003) 1:1–29. doi: 10.1002/14651858.CD003887
7. Boguszewski CL, Boguszewska M. Growth Hormone’s Links to Cancer. Endocr Rev (2019) 40(2):558–74. doi: 10.1210/er.2018-00166
8. Laursen T, Gravholt CH, Heickendorff L, Drustrup J, Kappelgaard A-M, Jørgensen JO, et al. Long-Term Effects of Continuous Subcutaneous Infusion Versus Daily Subcutaneous Injections of Growth Hormone (GH) on the Insulin-Like Growth Factor System, Insulin Sensitivity, Body Composition, and Bone and Lipoprotein Metabolism in GH-Deficient Adults. J Clin Endocrinol Metab (2001) 86(3):1222–8. doi: 10.1210/jc.86.3.1222
9. Jørgensen JO, Möller N, Lauritzen T, Christiansen JS. Pulsatile Versus Continuous Intravenous Administration of Growth Hormone (GH) in GH-Deficient Patients: Effects on Circulating Insulin-Like Growth Factor-I and Metabolic Indices. J Clin Endocrinol Metab (1990) 70(6):1616–23. doi: 10.1210/jcem-70-6-1616
10. Cutfield WS, Derraik JG, Gunn AJ, Reid K, Delany T, Robinson E, et al. Non-Compliance With Growth Hormone Treatment in Children is Common and
this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Ma, Li, Pan, Huang, Liu and Zhang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.