Cross verification of independent dose recalculation, log files based, and phantom measurement-based pretreatment quality assurance for volumetric modulated arc therapy

Ce Han¹,* | Jinling Yi¹,* | Kecheng Zhu¹ | Yongqiang Zhou¹ | Yao Ai¹ | Xiaomin Zheng¹ | Congying Xie² | Xiance Jin¹

¹Department of Radiation and Medical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
²Department of Radiation and Medical Oncology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China

Author to whom correspondence should be addressed. Xiance Jin
E-mail: jinxc1979@hotmail.com; Telephone: 0086-577-88069370.

Abstract
Independent treatment planning system (TPS) check with Mobius3D software, log files based quality assurance (QA) with MobiusFX, and phantom measurement-based QA with ArcCHECK were performed and cross verified for head-and-neck (17 patients), chest (16 patients), and abdominal (19 patients) cancer patients who underwent volumetric modulated arc therapy (VMAT). Dosimetric differences and percentage gamma passing rates (%GPs) were evaluated and compared for this cross verification. For the dosimetric differences in planning target volume (PTV) coverage, there was no significant difference among TPS vs Mobius3D, TPS vs MobiusFX, and TPS vs ArcCHECK. For the dosimetric differences in organs at risks (OARs), the number of metrics with an average dosimetric differences higher than ±3% for TPS vs Mobius3D, TPS vs MobiusFX, and TPS vs ArcCHECK were 1, 1, 7; 2, 1, 4; 1, 1, 5 for the patients with head-and-neck, abdomen, and chest cancer, respectively. The %GPs of global gamma indices for Mobius3D and MobiusFX were above 97%, while it ranged from 92% to 96% for ArcCHECK. The %GPs of individual volume-based gamma indices were around 98% for Mobius3D and MobiusFX, except for γPTV for chest and abdominal cancer (88.9% to 92%); while it ranged from 86% to 99% for ArcCHECK. In conclusion, some differences in dosimetric metrics and gamma passing rates were observed with ArcCHECK measurement-based QA in comparison with independent dose check and log files based QA. Care must be taken when considering replacing phantom measurement-based IMRT/VMAT QA.

KEY WORDS
cross verification, independent dose check, log files based QA, phantom measurement-based QA, volumetric modulated arc therapy

1 | INTRODUCTION

The inherent complexity and inverse optimization features of intensity-modulated radiotherapy (IMRT) require a standard quality assurance (QA) procedure to ensure an accurate delivery of expected dose distribution in patients.¹ A report from imaging and radiation oncology core (IROC) demonstrated that there was approximately 10% to 23% delivery failure during a basic head-and-neck IMRT QA using a 7%/4 mm to 5%/4 mm acceptability criterion, which clearly indicated the challenge and necessity of pretreatment QA for IMRT.²

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2020 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals LLC on behalf of American Association of Physicists in Medicine.
As a novel IMRT delivery technique, volumetric modulated arc therapy (VMAT) has more degrees of freedom by simultaneously moving multileaf collimators (MLCs) and gantry, as well changing the dose rate, which also renders it sensitive to calculation and delivery errors and requires more intensive QA procedures.3

Traditionally, the pretreatment IMRT QA was carried out by irradiating a phantom-detector combination to measure the consistency between delivered and calculated dose distribution.1 However, studies pointed out that phantom measurement QA may not be able to detect some types of failures in the IMRT process, such as dose calculation errors, plan transfer errors, etc.4 Additionally, the use of water equivalent phantoms for dose recalculation and delivery over-simplifies the QA processes, because water equivalent phantoms do not represent patients’ real geometry and tissue heterogeneities.5 Another shortcoming of measurement-based QA is its labor-intensive and time-consuming characteristics, and requires access to the treatment machine.

A growing interest in using machine log files and independent treatment planning system (TPS) dose recalculation for IMRT QA has been proposed.6–9 It has been reported that linear accelerator (Linac) log files based QA is able to provide insight into machine parameters that was not possible with phantom-based QA and to improve the efficiency of patient-specific QA.10,11 Additionally, log files based QA could assess the actual delivered dose by reconstructing the dose on patients’ original computer tomography (CT) image sets.12 However, the accuracy of log files based QA has also been questioned and concerned.13 It has been reported that in some cases the recorded MLC position in the log files did not agree with the observed positions.14 Currently, it is still no consensus on whether the Linac log files and independent TPS dose checks are effective enough to be alternative to phantom measurement-based QA. The purpose of this study was to investigate the dosimetric agreement among independent TPS dose recalculation, log file-based, and phantom measurement-based QA in patients who underwent VMAT at different tumor sites.

2 MATERIALS AND METHODS

2A Patients and treatment planning

Patients who underwent VMAT treatments from January 2019 to June 2019 were randomly selected and enrolled in this study. One- or two-arc VMAT plans were optimized with the SmartArc algorithm in the Pinnacle TPS (Philips Healthcare, Fitchburg, WI) for a 6-MV X-ray beam. One-arc plans were optimized with a gantry angle from 181° to 180°. For two-arc plans, the first arc rotated clockwise from 181° to 180°, and the second arc rotated counterclockwise from 180° to 181°. The collimator was set 15° for all plans. A maximum leaf motion constraint of 0.46 cm/deg and a final arc space of 4 degree were set for both one-arc and two-arc VMAT plans with a dose grid of 3 mm × 3 mm × 3 mm during the VMAT optimization. Detailed target volume delineations and optimization parameters were reported in previous studies.15–17 All plans were delivered on an Elekta Synergy linac (Elekta Ltd, Crawley, UK) with a MOSAIQ record and verify system (version1.60Q3, IMPAC Medical Systems, Inc., Sunnyvale, CA).

2B Independent dose check

Mobius3D software (Mobius Medical Systems, Houston, TX) was applied in this study to verify the VMAT plans generated by Pinnacle TPS independently using a collapsed cone convolution/superposition algorithm.18,19 Before the clinical application, the Mobius3D software was commissioned with measured percent depth doses (PDD) and profiles for field sizes 4 × 4–40 × 40 cm², adjusted the parameters of our Linac beam models carefully adjusted to scale the model correctly. The accuracy of the model was verified using Mobius Verification Phantom™ (MVP). After the generation of VMAT plans in Pinnacle, DICOM data of the plans (CT images, RTPlan, RTStructure, and RTDose) were exported into the Mobius3D software for recalculation. The PTV prescription doses were 50 Gy/25fx for head-and-neck, 60 Gy/30fx for chest, 45 Gy/25fx for abdomen, respectively.

2C Log files based QA

MobiusFX (Mobius Medical Systems LP, Houston, TX) is able to use log files to access the delivery accuracy of IMRT/VMAT plans. After the treatment delivery, machine log files recorded the actual linac delivery information which contains the MLC positions, gantry, dose rate, MU, control points, etc. In this study, the machine log files were generated during the treatment delivery for real patients rather than in QA mode. Then, the log files were uploaded to MobiusFX for dose reconstruction. After the automatic background calculation, we could not only obtain the 3D dose distribution under the actual treatment state of the accelerator, but also 3D plan percentage gamma passing rate (%GPs) and individual volume-based 3D gamma passing rates.20

2D Phantom measurement-based QA

Phantom measurement-based QA was carried out by a 3D diode array ArcCHECK phantom (Model 1220: Sun Nuclear Corporation, USA). During phantom dosimetric verification, an ArcCHECK movie (ACML) file was generated containing calculated gantry angles as a function of time. The reconstructed dose distributions were generated by a 3DVH program (Sun Nuclear Corporation, USA) using a planned dose perturbation (PDP) algorithm with the ACML files, RTPlan, RTStructure, and RTDose exported from TPS. Both global gamma index and individual volume-based gamma index were applied for QA analysis. Detailed phantom-based pretreatment VMAT QA with ArcCHECK and 3DVH had been reported in previous studies.20,21

2E Evaluation parameters and statistical analysis

The dosimetric evaluation parameters for target coverage and OARs sparing comparison were extracted from dose–volume histograms
DVHs). Target parameters, such as D$_{\text{max}}$, D$_{\text{mean}}$, V$_{95}$, V$_{100}$ (percentage of the volume irradiated by 95% and 100% of the prescription dose), D$_2$, and D$_98$ (dose irradiated to 2% and 98% of the volume) of the PTV were extracted and compared. For OARs sparing comparison, different Dx and Vx parameters were extracted and compared for different cancer sites. Variables were summarized as mean values with standard deviations. All the statistical analyses were performed with SPSS 22.0 (spss Inc., Chicago, IL, USA). A P $<$ 0.05 is considered statistically significant and all reported P values are two-sided.

RESULTS

A total of 52 patients with cancers in head-and-neck (17 patients), chest (16 patients), and abdomen (19 patients) underwent VMAT treatment were enrolled in this study. The dosimetric differences resulted from TPS vs independent dose check with Mobius3D, TPS vs reconstructed dosimetric distribution with MobiusFX QA, and TPS vs. ArcCHECK-based measurement QA, were analyzed and reported using ANOVA. Figure 1 shows one typical DVH comparison of one abdominal cancer patients. Detailed dosimetric differences for head-and-neck cancer patients.

Metrics	Dosimetric differences (%)	P	Notes			
	M3D	MFX	ArcCHECK	M3D vs MFX	M3D vs ArcCHECK	MFX vs ArcCHECK
Planning target volume						
D$_{\text{max}}$	0.41 ± 0.97	0.54 ± 1.33	1.17 ± 1.87	0.82	0.19	0.27
D$_{\text{mean}}$	−0.02 ± 0.93	−0.05 ± 1.01	−1.33 ± 1.85	0.95	0.02	0.02
V$_{95}$	−0.28 ± 1.53	−0.39 ± 1.57	−1.94 ± 1.63	0.86	0.01	0.02
V$_{100}$	−2.56 ± 2.67	−2.06 ± 2.19	−2.77 ± 2.64	0.62	0.83	0.48
D$_98$	−0.14 ± 2.84	−0.29 ± 2.73	−2.49 ± 1.76	0.88	0.02	0.03
D$_2$	0.33 ± 0.99	−1.44 ± 6.24	0.15 ± 2.02	0.25	0.91	0.29
Left parotid						
D$_{50}$	−0.50 ± 2.93	−0.69 ± 2.96	−5.68 ± 3.51	0.88	<0.001	<0.001
D$_{\text{mean}}$	−0.93 ± 1.44	−1.03 ± 1.73	−3.08 ± 2.91	0.90	0.01	0.02
Right parotid						
D$_{50}$	−0.50 ± 2.93	−0.69 ± 2.96	−5.68 ± 3.51	0.88	<0.001	<0.001
D$_{\text{mean}}$	−0.93 ± 1.44	−1.03 ± 1.73	−3.08 ± 2.91	0.90	0.01	0.02
Brainstem						
D$_{\text{max}}$	−2.14 ± 1.45	−0.11 ± 6.59	−0.59 ± 3.42	0.24	0.37	0.78
D$_1$	−2.08 ± 1.87	−1.81 ± 1.92	−3.24 ± 2.96	0.77	0.21	0.14
Cord						
D$_{\text{max}}$	−0.64 ± 2.21	−0.20 ± 2.53	−4.07 ± 3.11	0.67	0.002	0.001
D$_1$	1.86 ± 2.97	1.42 ± 2.29	−3.21 ± 2.86	0.68	<0.001	<0.001
Lens						
D$_{\text{max}}$	11.45 ± 10.65	9.87 ± 7.95	0.17 ± 11.78	0.70	0.01	0.02

Notes: TPS: treatment planning system; M3D: Mobius3D software; MFX: MobiusFX software
and-neck, chest, and abdominal cancer patients were shown in Tables 1, 2, and 3, respectively.

For the dosimetric differences in PTV coverage, there was no significant difference among TPS vs Mobius3D, TPS vs MobiusFX, and TPS vs ArcCHECK for patients with head-and-neck cancer. The difference in V100 of PTV for patients with abdominal cancer was about \(-3.46\% \pm 2.33\%\) for TPS vs ArcCHECK, no significant difference in other PTV metrics was observed for abdominal cancer patients. For patients with chest cancer, the dosimetric differences in V100 of PTV for patients with abdominal cancer were shown in Table 4.

For the dosimetric differences in OARs, the number of metrics with an average dosimetric difference higher than \(\pm 3\%\) for TPS vs Mobius3D, TPS vs MobiusFX, and TPS vs ArcCHECK were 1, 1, 7; 2, 1, 4; 1, 1, 5 for the patients with head-and-neck, abdomen, and chest cancer, respectively. Only for head-and-neck cancer patients, there were 1, 1, and 3 metrics with an average dosimetric difference higher than \(\pm 5\%\) for TPS vs Mobius3D, TPS vs MobiusFX, and TPS vs ArcCHECK, respectively. The average %GPs of global volume-based gamma indices were 98.0\% \pm 0.7\%, 98.0\% \pm 0.7\%, 92.5\% \pm 2.7\%; 98.9\% \pm 1.1\%, 98.7\% \pm 1.2\%, 94.4\% \pm 3.6\%; and 98.8\% \pm 1.1\%, 98.2\% \pm 1.3\%, 96.3\% \pm 3.4\% for Mobius3D, MobiusFX, and ArcCHECK in patients with head-and-neck, chest, and abdominal cancer, respectively. The average %GPs of individual volume-based gamma indices ranged from 97.3\% \pm 1\% to 100\% \pm 0.1\%, 97.3\% \pm 1.7\% to 100\% \pm 0.1\%, 86.2\% \pm 5.3\% to 99.1\% \pm 1.7\%; 92.0\% \pm 4.5\% to 99.5\% \pm 1.5\%, 91.6\% \pm 4.1\% to 99.3\% \pm 1.8\%, 88.4\% \pm 9.0\% to 96.1\% \pm 3.2\%; and 90.4\% \pm 9.8\% to 99.8\% \pm 0.2\%, 88.9\% \pm 9.8\% to 99.9\% \pm 0.3\%, 93.4\% \pm 5.1\% to 97.5\% \pm 3.2\% for Mobius3D, MobiusFX, and ArcCHECK in patients with head-and-neck, chest, and abdominal cancer, respectively. Detailed %GPs results are shown in Table 4.

Table 2

Percentage dosimetric differences between TPS vs M3D, TPS vs MFX, and TPS vs ArcCHECK for chest cancer patients.

Metrics	Dosimetric differences (%)	p				
Planning target volume						
Dmax	1.60 \(\pm\) 1.31	1.78 \(\pm\) 1.21	0.82 \(\pm\) 1.91	0.75	0.18	0.10
Dmean	-0.23 \(\pm\) 1.29	-0.21 \(\pm\) 1.28	-1.18 \(\pm\) 1.58	0.96	0.08	0.07
V95	-2.49 \(\pm\) 2.58	-2.57 \(\pm\) 2.61	-2.27 \(\pm\) 3.25	0.95	0.83	0.78
V100	-5.94 \(\pm\) 5.25	-4.00 \(\pm\) 2.65	-4.92 \(\pm\) 3.86	0.21	0.51	0.56
D98	-2.87 \(\pm\) 3.30	-2.73 \(\pm\) 3.17	-2.00 \(\pm\) 2.81	0.91	0.47	0.54
D2	1.23 \(\pm\) 1.23	1.27 \(\pm\) 1.24	0.03 \(\pm\) 1.50	0.95	0.02	0.02
Lung						
V5	0.06 \(\pm\) 2.77	0.24 \(\pm\) 2.75	-1.03 \(\pm\) 2.15	0.86	0.27	0.20
V10	-0.22 \(\pm\) 1.51	-0.06 \(\pm\) 1.44	-2.79 \(\pm\) 2.14	0.81	<0.001	<0.001
V13	-0.61 \(\pm\) 1.46	-0.44 \(\pm\) 1.43	-3.38 \(\pm\) 1.90	0.78	<0.001	<0.001
V20	-2.29 \(\pm\) 1.41	-2.24 \(\pm\) 1.58	-4.09 \(\pm\) 1.67	0.92	0.004	0.003
V30	-4.28 \(\pm\) 2.29	-4.51 \(\pm\) 2.59	-4.41 \(\pm\) 2.07	0.79	0.88	0.91
Dmean	-1.35 \(\pm\) 1.16	-1.16 \(\pm\) 1.08	-3.04 \(\pm\) 1.74	0.73	0.002	0.001
Heart						
V30	-1.64 \(\pm\) 1.61	-1.62 \(\pm\) 1.56	-1.96 \(\pm\) 1.48	0.97	0.59	0.57
V40	-2.95 \(\pm\) 3.02	-2.97 \(\pm\) 2.97	-1.94 \(\pm\) 2.67	0.99	0.36	0.35
Dmean	0.29 \(\pm\) 1.24	0.35 \(\pm\) 1.14	-2.85 \(\pm\) 2.03	0.92	<0.001	<0.001
Cord						
Dmax	-0.54 \(\pm\) 1.96	-0.01 \(\pm\) 1.78	-2.41 \(\pm\) 2.40	0.50	0.004	0.003
D1	0.85 \(\pm\) 2.11	1.29 \(\pm\) 1.94	-3.13 \(\pm\) 2.96	0.60	<0.001	<0.001

Notes: M3D, Mobius3D software; MFX, MobiusFX software; TPS, treatment planning system.

DISCUSSION

In this study, multiple pretreatment QA methods: independent TPS dose check, log files based QA and ArcCHECK-based measurement QA, were performed and compared for 52 patients who underwent VMAT. The dosimetric differences resulted from independent TPS dose check, log files based QA, and ArcCHECK measurement-based QA were similar, although measurement-based QA showed several more metrics with larger errors. Gamma indices verifications showed consistent results.

The interests of using independent dose recalculation as an alternative pretreatment IMRT QA method are still on growing.
verify the monitor unit (MU) of IMRT plans and achieved an average deviation of 0.5% ± 1.1% and 1.1% ± 2.9% for high dose region and individual beams, respectively. Acceptable agreement between TPS and Monte Carlo based QA were quite consistent in this study.

In this study, the dosimetric differences achieved by independent dose check with Mobius3D were relatively small. Except for V100 of PTV for chest cancer and Dmax of Lens for the head-neck cancer patients, no other metrics showed a dosimetric difference higher than ±5%. Similar results had been reported in a previous study, in which strong coincidence between doses estimated by log files based QA with Mobius3D and 3DVH was observed. Similarly, Song et al demonstrated that although the dose reconstructed from MobiusFX and 3DVH were not identical, they were generally similar to each other in their verification for 10 prostate, 10 head-and-neck, and 10 chest cancer patients who underwent VMAT.

Gamma index evaluation results further demonstrated that independent dose check with Mobius3D and log files based QA with MobiusFX showed a higher consistency with TPS than ArcCHECK-based measurement did, as shown in Table 4. The %GPs of individual volume-based gamma indices were variable for ArcCHECK (from 86% to 99%). These same Mobius3D model was used in MobiousFX to reconstruct the dose on patients CT with delivered log files. However, although most of the relative dosimetric differences were small, significant differences were observed in a few numbers of metrics between Mobius3D vs ArcCHECK and MobiusFX vs ArcCHECK. This was a bit different from a previous study, in which strong coincidence between doses estimated by log files based system and the ionization chamber/ArcCHECK-3DVH software was observed. Similarly, Song et al demonstrated that although the dose reconstructed from MobiusFX and 3DVH were not identical, they were generally similar to each other in their verification for 10 prostate, 10 head-and-neck, and 10 chest cancer patients who underwent VMAT.

Table 3 Percentage dosimetric differences between TPS vs M3D, TPS vs MFX, and TPS vs ArcCHECK for abdomen cancer patients.

Metrics	Dosimetric differences (%)	P				
	M3D	MFX	ArcCHECK	M3D vs MFX	M3D vs ArcCHECK	MFX vs ArcCHECK
Planning target volume						
Dmax	2.47 ± 0.96	2.79 ± 1.07	2.38 ± 1.23	0.47	0.83	0.35
Dmean	1.44 ± 0.94	1.66 ± 1.48	−0.31 ± 1.43	0.67	0.002	<0.001
V95	−0.98 ± 1.16	−1.09 ± 1.15	−1.13 ± 1.75	0.84	0.79	0.95
V100	−0.47 ± 2.45	−0.74 ± 2.69	−3.46 ± 2.33	0.79	0.01	0.02
D98	−1.58 ± 1.52	−1.80 ± 1.93	−0.88 ± 2.32	0.78	0.36	0.24
D2	2.50 ± 0.79	2.92 ± 1.57	1.29 ± 1.38	0.42	0.02	0.003
Left kidney						
V15	3.29 ± 2.47	2.96 ± 3.56	−3.90 ± 5.24	0.83	<0.001	<0.001
V20	3.15 ± 5.09	1.82 ± 6.06	−2.23 ± 7.61	0.60	0.03	0.10
Dmean	0.85 ± 1.17	0.95 ± 1.19	−2.62 ± 1.78	0.86	<0.001	<0.001
Right kidney						
V15	1.35 ± 4.38	0.87 ± 5.00	−4.36 ± 2.44	0.77	0.001	0.002
V20	−0.46 ± 6.25	−0.25 ± 5.48	−3.74 ± 3.55	0.92	0.12	0.10
Dmean	1.55 ± 1.81	1.58 ± 1.74	−2.38 ± 3.21	0.98	<0.001	<0.001
Liver						
V30	2.38 ± 3.34	2.41 ± 3.47	−1.93 ± 3.92	0.98	0.004	0.004
Dmean	0.88 ± 1.01	0.97 ± 1.15	−0.45 ± 2.35	0.88	0.04	0.03
Cord						
Dmax	2.27 ± 2.11	2.77 ± 2.19	−0.17 ± 4.03	0.66	0.02	0.01
D1	3.04 ± 2.10	3.73 ± 2.90	−1.01 ± 4.75	0.61	0.001	0.001

Notes: M3D, Mobius3D software; MFX, MobiousFX software; TPS, treatment planning system.
should be assured when abandoning measurement performance of Linac, especially the MLC positioning accuracy of VMAT. Independent check and log files of VMAT patients. DVH metrics with relative high dosimetric errors were observed with ArcCHECK measurement due to the output variations during treatment delivery which was not considered in log files.

Although independent TPS check and log files based QA achieved higher accuracy than phantom measurement-based QA for VMAT patients. DVH metrics with relative high dosimetric errors were still observed for both independent TPS check and log files based QA. Care much be taken when considering replacing the phantom measurement-based QA for VMAT/IMRT. The accuracy of independent check and log files need further verification. The daily performance of Linac, especially the MLC positioning accuracy should be assured when abandoning measurement-based QA for VMAT/IMRT.

5 CONCLUSIONS

Cross verification of independent dose check, log files based QA and phantom measurement-based QA showed reasonable accuracy for VMAT in the head-and-neck, chest and abdominal cancer patients. Some differences in dosimetric metrics and gamma passing rates were observed with ArcCHECK measurement-based QA in comparison with independent dose check and log files based QA. Care must be taken when considering replacing the phantom measurement-based QA for IMRT/VMAT.

ACKNOWLEDGMENTS

This work was partially funded by Wenzhou Municipal Science and Technology Bureau (2018ZY016 and Y20190181), and National Natural Science Foundation of China under Grant (No. 11675122).

CONFLICT OF INTEREST

The authors have declared that no competing interest exists.

REFERENCES

1. Ezzell GA, Galvin JM, Low D, et al. 082 - guidance document on delivery, treatment planning, and clinical implementation of IMRT: Report of the IMRT subcommittee of the AAPM radiation therapy committee. Med Phys. 2003;30:2089–2115.
2. Carson ME, Molineau A, Taylor PA, et al. Examining credentialing criteria and poor performance indicators for IROC Houston’s anthropomorphic head and neck phantom. Med Phys. 2016;43:6491–6496.
3. Otto K. Volumetric modulated arc therapy: IMRT in a single gantry arc. Med Phys. 2008;35:210–317.
4. Nelms BE, Zhen H, Tome WA. Per-beam, planar IMRT QA passing rates do not predict clinically relevant patient dose errors. Med Phys. 2011;38:1037–1044.
5. Kry SF, Molineau A, Kerns JR, et al. Institutional patient-specific IMRT QA does not predict unacceptable plan delivery. Int J Radiat Oncol Biol Phys. 2014;90:1195–1201.
6. Litzenberg DW, Moran JM, Fraass BA. Verification of dynamic and segmental IMRT delivery by dynamic log file analysis. J Appl Clin Med Phys. 2002;3:63–72.
7. Stell AM, Li JG, Zeidan OA, et al. An extensive log-file analysis of step-and-shoot intensity modulated radiation therapy segment delivery errors. Med Phys. 2004;31:1593–1602.
8. Dietmar G, Stock M, Kroupa B, et al. Patient-specific IMRT verification using independent fluence-based dose calculation software: experimental benchmarking and initial clinical experience. Phys Med Biol. 2007;52:4981–4992.
9. Teke T, Bergman AM, Kwa W, et al. Monte Carlo based, patient-specific RapidArc QA using Linac log files. Med Phys. 2010;37:116–123.
10. Sun B, Ranagaraj D, Palaniswaamy G, et al. Initial experience with TrueBeam trajectory log files for radiation therapy delivery verification. Pract Radiat Oncol. 2013;3:e199–e208.
11. Agnew CE, King R, Hounsell A, et al. Implementation of phantomless IMRT delivery verification using Varian DynaLog files and R/V output. Phys Med Biol. 2012;57:6761–6777.
12. Tyagi N, Yang K, Gersten D, et al. A real time dose monitoring and dose reconstruction tool for patient specific VMAT QA and delivery. Med Phys. 2012;39:7194–7204.
13. Childress N, Chen Q, Yi R, Parallel O. IMRT QA using treatment log files is superior to conventional measurement-based method. J Appl Clin Med Phys. 2015;16:5385.
14. Agnew A, Agnew CE, Gratton MW, et al. Monitoring daily MLC positional errors using trajectory log files and EPID measurements for IMRT and VMAT deliveries. Phys Med Biol. 2014;59:N49–N63.
15. Jin X, Yi J, Zhou Y, et al. Comparison of whole-field simultaneous integrated boost VMAT and IMRT in the treatment of nasopharyngeal cancer. Med Dosim. 2013;38:418–423.
16. Jin X, Yi J, Zhou Y, et al. CRT combined with a sequential VMAT boost in the treatment of upper thoracic esophageal cancer. *J Appl Clin Med Phys*. 2013;14:153–161.

17. Deng X, Han C, Chen S, et al. Dosimetric benefits of intensity-modulated radiotherapy and volumetric-modulated arc therapy in the treatment of postoperative cervical cancer patients. *J Appl Clin Med Phys*. 2017;18:25–31.

18. Mackie T, Scrimger J, Battista J. A convolution method of calculating dose for 15-MV x rays. *Med Phys*. 1985;12:188–196.

19. Ahnesjo A. Collapsed cone convolution of radiant energy for photon dose calculation in heterogeneous media. *Med Phys*. 1989;16:577–592.

20. Yi J, Han C, Zheng X, et al. Individual volume-based 3D gamma indices for pretreatment VMAT QA. *J Appl Clin Med Phys*. 2017;18:28–36.

21. Jin X, Yan H, Han C, et al. Correlation between Gamma index passing rate and clinical dosimetric difference for pretreatment 2D and 3D volumetric modulated arc therapy dosimetric verification. *Br J Radiol*. 2015;88:20140577.

22. Leal A, Sanchez-Doblado F, Arrans R, et al. Routine IMRT verification by means of an automated Monte Carlo simulation system. *Int J Radiat Oncol Biol Phys*. 2003;56:58–68.

23. Tyagi N, Yang K, Yan D. Comparing measurement-derived (3DVH) and machine log file-derived dose reconstruction methods for VMAT QA in patient geometries. *J Appl Clin Med Phys*. 2014;15:4645.

24. Fontenot JD. Evaluation of a novel secondary check tool for intensity-modulated radiotherapy treatment planning. *J Appl Clin Med Phys*. 2014;15:207–215.

25. Katsuta Y, Kadoya N, Fujita Y, et al. Patient-specific quality assurance using Monte Carlo dose calculation and Elekta log files for prostate volumetric-modulated arc therapy. *Technol Cancer Res Treat*. 2017;16:1220–1225.

26. Song JY, Jeong JU, Yoon MS, et al.Dosimetric evaluation of MobiusFX in the RapidArc delivery quality assurance comparing with 3DVH. *PLoS One*. 2017;12:e0183165.