Physical and Functional Interaction of CARMA1 and CARMA3 with Iκ Kinase γ-NFκB Essential Modulator*

Received for publication, March 1, 2004, and in revised form, June 4, 2004
Published, JBC Papers in Press, June 7, 2004, DOI 10.1074/jbc.M402244200

Romania Stilo‡§, Domenico Liguoro*, Bruno Di Jesò, Silvestro Formisano**, Eduardo Consiglio**, Antonio Leonardi**, and Pasquale Vito****

From the BioGeM Consortium, **Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università degli Studi di Napoli “Federico II,” Via S. Pansini 5, 80131 Napoli, Italy, ***Centro di Enderocrinologia ed Oncologia Sperimentale, 80131 Napoli, Italy, †Dipartimento Scienze e Tecnologie Biologiche ed Ambientali, Università degli Studi di Lecce, 73100 Lecce, Italy, and ‡Dipartimento Scienze Biologiche ed Ambientali, Università degli Studi del Sannio di Benevento, Via Port’Arsa 11, 82100 Benevento, Italy

CARMA proteins are scaffold molecules that contain a caspase recruitment domain and a membrane-associated guanylate kinase-like domain. CARMA1 plays a critical role in mediating activation of the NFκB transcription factor following antigen receptor stimulation of both B and T lymphocytes. However, the biochemical mechanism by which CARMA1 regulates activation of NFκB remains to be determined. Here we have shown that CARMA1 and CARMA3 physically associate with Iκ kinase γNFκB essential modulator (IκK-NEMO) in lymphoid and non-lymphoid cells. CARMA1 participates to an inducible large molecular complex that contains IκK/NEMO, Bcl10, and IκK/β kinases. Expression of the NEMO-binding region of CARMA3 exerts a dominant negative effect on Bcl10-mediated activation of NFκB. Thus, our results provide direct evidence for physical and functional interaction between CARMA and the IκK complex and offer a biochemical framework to understand the molecular activities controlled by CARMA-1, -2, and -3 and Bcl10.

The Rel/NFκB signaling pathway and the transcription factors that it activates have emerged as critical regulators of normal immune and inflammatory response, cell proliferation, differentiation, apoptosis, and oncogenesis (1–3). A key event in the canonical NFκB cascade is the activation of the Iκ kinase (IκK) complex, which is composed of three subunits: IκKα, IκKβ, and IκKγ/NFκB essential modulator (NEMO) (4). Whereas IκKα and IκKβ have catalytic kinase activity, NEMO is an important regulatory subunit, and deficiency of this protein results in complete lack of NFκB activation (5). Once activated, the IκK complex is responsible for the phosphorylation and subsequent proteasome-mediated degradation of the inhibitory proteins IκBs (4). Degradation of IκBs frees NFκB and allows its translocation in the nucleus, where it activates transcription of target genes (4).

In T cells, activation of the IκK complex following antigen receptor stimulation requires the activity of PKCθ (6–8) and the function of the caspase recruitment domain (CARD)-containing proteins Bcl10 (9) and CARMA1 (10–16). CARD is a protein-protein interaction motif, originally identified as a conserved sequence present in various molecules involved in regulation of apoptosis, such as RAIDD, several caspases, and the Caenorhabditis elegans genes ced-3 and ced-4 (17). However, a number of CARD-containing proteins are not implicated in apoptotic signaling but participate in signal transduction pathways that regulate the activation state of NFκB (17). Bcl10 was initially identified in a subset of MALT B cell lymphomas with t (1, 14)(p22,q32) (18, 19). This 233-amino acid protein is ubiquitously expressed and contains an amino-terminal CARD domain. Bcl10−/− lymphocytes show absence of NFκB activation following antigen receptor stimulation or PMA/ionomycin-induced cell activation (9, 20–31). In addition to immunological deficiencies, Bcl10-null murine embryos develop exencephaly that leads to embryonic lethality, indicating that Bcl10 plays pleiotropic roles in the embryonic and adult lives of mammalian organisms (9).

The CARD-containing proteins CARMA1 (also known as CARD1/Bimp2), CARMA2 (CARD14/Bimp3), and CARMA3 (CARD10/Bimp1) share high degrees of sequence, structure, and functional homology (20–23). On the other hand, the three CARMA proteins display tissue-specific distribution, suggesting that they may sub-serve distinct biochemical functions in different cell types (20–23). CARMA proteins belong to the membrane-associated guanylate kinase-like (MAGUK) family of proteins that can function as molecular scaffolds that assist recruitment and assembly of signal transduction molecules and contain an SH3 domain, one or several PDZ domains, and a GUK domain (24).

Similar to Bcl10−/− lymphocytes, CARMA1-deficient lymphocytes exhibit reduced activation of NFκB in response to antigen receptor cross-linking (12). However, the mechanism by which Bcl10 and CARMA proteins activate the IκK complex is still undefined. Here we have shown that CARMA1 and CARMA3 physically associate with NEMO, thereby regulating activation of the NFκB transcription factor.

MATERIALS AND METHODS

Two-hybrid Screening—Two-hybrid screening was performed using the Matchmaker system (Clontech) as previously described (25). Briefly, yeast strain AH109 was transformed with bait plasmids by lithium acetate/PEG 3000 procedure and selected on synthetic dropout plates lacking tryptophane. Transformant colonies were analyzed for expression of the GAL4 bait fusion protein by immunoblot analysis. For library screening, yeast AH109 expressing GAL4/NEMO fusion protein

This paper is available on line at http://www.jbc.org

34323
CARMA Proteins Associate with NEMO

was transformed with a human erythroleukemia cDNA library cloned in pACT2 vector (Clontech). 2 × 10⁶ library clones were screened for interaction with GAL4-NEMO.

Cell Culture and Antibodies—HEK293 cells were cultured in Dulbecco’s modified Eagle’s medium supplemented with 10% FCS and transfected by calcium phosphate precipitation using 10 μg of plasmidic DNA.

Jurkat cells were cultured in RPMI supplemented with 10% FCS. Sources of antisera and monoclonal antibodies were the following: anti-CARMA1, Apotech; anti-FLAG, Sigma; anti-NEMO, anti-c-myc, anti-HA, Santa Cruz Biotechnology, BD Pharmingen; anti-β1, anti-phospho-β1, New England Biolabs. Anti-Bcl-2 antibody has been described elsewhere (26). Rabbit antisera to CARMA3 was generated in rabbits and the polyclonal antisera was specific to CARMA3 (as an antigen).

Immunoblot Analysis and Coprecipitation—Cell lysates were made in lysis buffer (150 mM NaCl, 20 mM Hepes, pH 7.4, 1% Triton X-100, 10% glycerol, and a mixture of protease inhibitors). Proteins were separated by SDS-PAGE, transferred onto nitrocellulose membrane, and incubated with primary antibodies followed by horseradish peroxidase-conjugated secondary antibodies (Amersham Biosciences). Blots were developed using the ECL system (Amersham Biosciences) for immunoblot experiments. Cell lysates were used in lysis buffer supplemented with protease inhibitors, and immunocomplexes were bound to protein A/G, resolved by SDS-PAGE, and analyzed by immunoblot assay.

Recombinant Protein Production and in Vitro Binding Assays—His-tagged recombinant CARMA3 polypeptides were expressed from pET 28 vector (Novagen) in BL21 bacterial strain. Carboxyl terminus of CARMA3 was modified with a tryptophane tag (Novagen) in BL21 bacterial strain. Recombinant polypeptides containing the region Ile600-Leu800 of CARMA3 were expressed from pET 28 vector (Novagen) in BL21 bacterial strain. Recombinant polypeptides containing the region Ile600-Leu800 of CARMA3 were expressed from pET 28 vector (Novagen) in BL21 bacterial strain. Recombinant polypeptides containing the region Ile600-Leu800 of CARMA3 were expressed from pET 28 vector (Novagen) in BL21 bacterial strain.

Cell Culture and Antibodies—HEK293 cells were cultured in Dulbecco’s modified Eagle’s medium supplemented with 10% FCS and transfected by calcium phosphate precipitation using 10 μg of plasmidic DNA.

Jurkat cells were cultured in RPMI supplemented with 10% FCS. Sources of antisera and monoclonal antibodies were the following: anti-CARMA1, Apotech; anti-FLAG, Sigma; anti-NEMO, anti-c-myc, anti-HA, Santa Cruz Biotechnology, BD Pharmingen; anti-β1, anti-phospho-β1, New England Biolabs. Anti-Bcl-2 antibody has been described elsewhere (26). Rabbit antisera to CARMA3 was generated in rabbits and the polyclonal antisera was specific to CARMA3 (as an antigen).

Immunoblot Analysis and Coprecipitation—Cell lysates were made in lysis buffer (150 mM NaCl, 20 mM Hepes, pH 7.4, 1% Triton X-100, 10% glycerol, and a mixture of protease inhibitors). Proteins were separated by SDS-PAGE, transferred onto nitrocellulose membrane, and incubated with primary antibodies followed by horseradish peroxidase-conjugated secondary antibodies (Amersham Biosciences). Blots were developed using the ECL system (Amersham Biosciences) for immunoblot experiments. Cell lysates were used in lysis buffer supplemented with protease inhibitors, and immunocomplexes were bound to protein A/G, resolved by SDS-PAGE, and analyzed by immunoblot assay.

Recombinant Protein Production and in Vitro Binding Assays—His-tagged recombinant CARMA3 polypeptides were expressed from pET 28 vector (Novagen) in BL21 bacterial strain. Carboxyl terminus of CARMA3 was modified with a tryptophane tag (Novagen) in BL21 bacterial strain. Recombinant polypeptides containing the region Ile600-Leu800 of CARMA3 were expressed from pET 28 vector (Novagen) in BL21 bacterial strain. Recombinant polypeptides containing the region Ile600-Leu800 of CARMA3 were expressed from pET 28 vector (Novagen) in BL21 bacterial strain. Recombinant polypeptides containing the region Ile600-Leu800 of CARMA3 were expressed from pET 28 vector (Novagen) in BL21 bacterial strain.
we looked for CARMA1 elution, a partially overlapping profile was obtained. We also examined the elution profile of the adapter protein Bcl10, which in lymphoid cells mediates activation of NFκB via interaction with CARMA1. When compared with NEMO and CARMA1, elution of Bcl10 was observed in fractions containing proteins of lower molecular mass (Fig. 4A).

Fig. 1. Interaction of CARMA3 with NEMO constructs in a yeast two-hybrid assay. A and B, schematic representation of the constructs used in the yeast two-hybrid experiments. Yeast strain AH109 was transformed with the indicated plasmids and plated on selective media. Yeast colonies were scored as positive when vigorous growth developed in <5 days. A negative was scored when yeast failed to grow within 12 days. Assays were done for five to ten independent yeast colonies.
Fig. 2. Interaction of CARMA3 with NEMO in mammalian cells. A, specificity of the antiserum to CARMA3 used in this study. Left panel, HEK293 cells were transfected with a vector that was empty or expressing FLAG-tagged CARMA3₆₀₀₋₁₀₃₂. 24 h later, cell lysates were separated by SDS-PAGE and transferred onto membranes subsequently probed with anti-CARMA3 rabbit antiserum or preimmune rabbit serum as indicated. Right panel, lysates from HEK293 cells transfected with a plasmid encoding for FLAG-tagged CARMA3₆₀₀₋₁₀₃₂ or empty vector were immunoprecipitated with anti-CARMA3 antisera. Immunocomplexes were separated by SDS-PAGE and transferred onto membranes subse-
Remarkably, when we examined elution of these proteins in lysates of stimulated Jurkat cells, the elution peaks of CARMA1 and Bcl10 both appeared shifted toward the NEMO-containing fractions (Fig. 4A).

Immunoprecipitation of the NEMO-containing fractions with anti-NEMO antibody allowed us to coimmunoprecipitate Bcl10, CARMA1, and IkBα from lysates of stimulated cells, indicating that both CARMA1 and Bcl10 participate to the

Fig. 3. Cell stimulation regulates association of CARMA3 with NEMO. **A**, recombinant histidine-tagged CARMA3 polypeptides were purified with nickel-nitrilotriacetic acid-agarose beads and mixed with lysates from Jurkat cells left untreated or treated with PMA (20 ng/ml) and ionomycin (1 μM) for 30 min. After washing, agarose beads were boiled in SDS-sample buffer, separated by SDS-PAGE, and transferred onto nitrocellulose membrane probed with anti-NEMO antibody. A fraction of the reaction mixture was separated by SDS-PAGE and stained with Coomassie Blue to visualize recombinant CARMA3 polypeptides. **B**, left panel, lysates from Jurkat cells left untreated or treated with PMA (20 ng/ml) and ionomycin (1 μM) for the indicated time periods were analyzed for binding to recombinant CARMA3 as described in panel A. Right panel, activation of NFκB following PMA/ionomycin treatment was assessed by examining the phosphorylation state and degradation of IkB. **C**, cell lysates prepared from Jurkat cells left untreated or treated with PMA (20 ng/ml) and ionomycin (1 μM) for 30 min were immunoprecipitated with anti-NEMO mAb or an isotype-matched antibody (anti-myc). Immunoprecipitated material was separated by SDS-PAGE and blotted onto membranes hybridized with anti-CARMA1 antibody. Membranes were subsequently probed with anti-NEMO antibody to verify similar amounts of immunoprecipitated NEMO in treated and untreated samples.

CARMA Proteins Associate with NEMO

by guest on July 24, 2018http://www.jbc.org/Downloaded from
FIG. 4. CARMA1 participates to the IκK complex. A, gel filtration analysis of NEMO, CARMA1, and Bcl10 in Jurkat cells. Cell extracts were prepared from Jurkat cells left untreated or stimulated with PMA/ionomycin for 30 min and fractionated through a Superdex 200 column. Fractions were analyzed for the presence of CARMA1, NEMO, and Bcl10 by immunoblot assay. B, coimmunoprecipitation of CARMA1, Bcl10, and the IκK complex. Fractions were pulled as indicated and immunoprecipitated with anti-NEMO. Immunoprecipitated material was analyzed for the presence of CARMA1, Bcl10, and IκKα/β by immunoblot analysis. C, the same fractions as in panel B were immunoprecipitated with anti-CARMA and analyzed by immunoblot for the indicated coprecipitating proteins.
600–800-kDa complex containing NEMO, IkKa, and IkKβ (Fig. 4B). Similar results were obtained when NEMO-containing fractions were immunoprecipitated with anti-CARMA antisera (Fig. 4C).

CARMA3 Modulates Bcl10-induced NFκB Activation—The interaction of CARMA3 and CARMA1 with NEMO prompted us to investigate whether deletion mutants of CARMA3 may influence Bcl10-induced activation of NFκB. Indeed, Fig. 5 shows that expression of polypeptides containing the NEMO-binding region of CARMA3 reduces activation of NFκB mediated by expression of Bcl10 (Fig. 5A). This inhibition was specific for Bcl10, because no effect on activation of NFκB induced by other activators was observed (Fig. 5B).

The association of NEMO and CARMA reported here provides a biochemical framework to understand the molecular mechanisms by which CARMA-1, -2, and -3 and Bcl10 regulate activation of NFκB. Bcl10 functions as a positive regulator of lymphocyte proliferation and specifically links antigen receptor signaling to NFκB activation (9). In addition, during embryonic development the function of Bcl10 is necessary for the correct neural tube closure, suggesting a general requirement of Bcl10 for proper IkK regulation and NFκB signaling (9) in different cell types. The three CARMA proteins appear to be key players in mediating the tissue-specific, Bcl10-dependent, activation of NFκB. CARMA1 is expressed in a variety of adult tissues, including thymus, spleen, liver, and peripheral blood leukocytes (20, 21). CARMA2 is expressed mostly in placenta, whereas CARMA3 is expressed in fetal lung, liver, and kidney (21). Because Bcl10 is ubiquitously expressed, it may utilize the corresponding tissue-specific CARMA to regulate activation of the IkK complex.

Recent evidence indicates that Bcl10-mediated activation of NFκB requires Lys63-linked ubiquitination of NEMO, which is mediated by the paracaspase MALT1 and the ubiquitin-conjugating complex E2 (27). Together with these observations, our data allow the proposition of the following model (Fig. 6). In resting cells, Bcl10 is found presynthesized with the ubiquitin-conjugating complex and MALT1 (27). Following stimulation, Bcl10 binds to CARMA via a CARD-CARD interaction, carry-
ing the ubiquitin-conjugating complex in close proximity to NEMO, which associates to the region Ile⁶⁰⁰-Leu⁸⁰⁰ of CARMA. The close proximity of NEMO to the ubiquitin-conjugating complex results in Lys⁶³-linked ubiquitination of NEMO. This event eventually determines activation of the I_K/H₉₂₆₀K complex, which, in turn, triggers NF_{xB} activation.

Several pieces of evidence support this model. First, lack of either Bcl10, CARMA1, or MALT1 results in the complete absence of NF_{xB} activation following stimulation with PMA and ionomycin (9, 13–16, 28). Second, CARMA mutants unable to recruit Bcl10 act as dominant negative inhibitors of PMA- and ionomycin-induced NF_{xB} activation (12). Third, whereas deletions of the C-terminal GUK domain do not interfere with the ability of CARMA to induce NF_{xB} activity, deletion of the SH3 and PDZ domains reduces the levels of NF_{xB} activation (23).

The importance of CARMA in linking Bcl10/MALT1 to NEMO may extend to cellular processes other than lymphocyte activation and central nervous development. Future studies will be aimed at exploring the potential role of this pathway in a variety of biological systems.

Acknowledgments—We thank Drs. Renato Acquaviva, Pasquale De Luca, and Carlo Ceglia for technical assistance and Drs. Francesco Pacifico and Luigi Formisano for critical reading of the manuscript.

REFERENCES
1. Weiss, A., and Littman, D. R. (1994) Cell 76, 263–274
2. Clements, J. L., Boerth, N. J., Lee, J. R., and Koretzky, G. A. (1999) Annu. Rev. Immunol. 17, 89–108
3. Gerondakis, S., Grossmann, M., Nakamura, Y., Pohl, T., and Grumont, R. (1999) Oncogene 18, 6888–6895
4. Karin, M. (1999) Oncogene 18, 8867–8874
5. Yamazaki, S., Courtin, G., Besaia, C., Whiteside, S. T., Weil, R., Agou, F., Kirk, H. E., Kay, R. J., and Israel, A. (1998) Cell 93, 1231–1240
6. Dienz, O., Hehner, S. P., Droge, W., and Schmitz, M. L. (2000) J. Biol. Chem. 275, 24547–24551
7. Lin, X., O’Mahony, A., Mu, Y., Geleziunas, R., and Greene, W. C. (2000) Mol. Cell. Biol. 20, 2933–2940
8. Sun, Z., Arendt, C. W., Ellmeser, W., Schaeffler, E. M., Sunshine, M. J., Gandhi, L., Annes, J., Petrillka, D., Kupfer, A., Schwartzberg, P. L., and Littman, D. R. (2000) Nature 404, 402–407
9. Ruland, J., Duncan, G. S., Elia, A., del Barco Barrantes, I., Nguyen, L., Plyte, S., Millar, D. G., Bouchard, D., Wakeham, A., Ohashi, P. S., and Mak, T. W. (2001) Cell 104, 33–42
10. Egawa, T., Albrecht, B., Favier, B., Sunshine, M. J., Mirchandani, K., O’Brien, W., Thome, M., and Littman, D. R. (2003) Curr. Biol. 13, 1252–1258
11. Pomerantz, J. L., Denny, E. M., and Baltimore, D. (2002) EMBO J. 21, 5184–5194
12. Gaide, O., Favier, B., Legier, D. F., Bonnet, D., Brison, B., Valitutti, S., Bron, C., Tschopp, J., and Thome, M. (2002) Nat. Immunol. 3, 836–843
13. Wang, D., You, Y., Case, S. M., McAllister-Lucas, L. M., Wang, L., DiStefano, P. S., Nunez, G., Bertin, J., and Lin, X. (2002) Nat. Immunol. 3, 830–835
14. Jun, J. E., Wilson, L. E., Vinuesa, C. G., Lesage, S., Blerzy, M., Moospe, L. A., Cook, M. C., Kucharska, E. M., Harp, H., Penninger, J. M., Domashen, H., Hong, N. A., Glynne, R. J., Nelms, K. A., and Goodnow, C. C. (2003) Immunity 18, 751–762

FIG. 6. Model for NF_{xB} activation via CARMA, Bcl10, and MALT1. A complex of proteins, comprising Bcl10, MALT1, UBC13, MMS2, and CARMA, associates to the I_K/H₉₂₆₀K complex following stimulation, facilitating Lys⁶³-linked ubiquitination of NEMO on Lys³⁹⁹. This results in activation of the I_K complex, which triggers NF_{xB} activation.
CARMA Proteins Associate with NEMO

15. Newton, K., and Dixit, V. M. (2003) Curr. Biol. 13, 1247–1251
16. Hara, H., Wada, T., Bakal, C., Kozieradzki, I., Suzuki, S., Suzuki, N., Nghiem, M., Griffiths, E. K., Krawczyk, C., Bauer, B., D'Acquisto, F., Ghosh, S., Yeh, W. C., Bauer, G., Rottapel, R., and Penninger, J. M. (2003) Immunity 18, 763–775
17. Bouchier-Hayes, L., and Martin, S. J. (2002) EMBO Rep. 3, 616–621
18. Willis, T. G., Jadayel, D. M., Du, M. Q., Peng, H., Perry, A. R., Abdul-Rauf, M., Price, H., Karran, L., Majekodunmi, O., Wlodarska, I., Pan, L., Crock, T., Hamoudi, R., Isaacson, P. G., and Dyer, M. J. (1999) Cell 96, 35–45
19. Zhang, Q., Siebert, R., Yan, M., Hinzmann, B., Cui, X., Xue, L., Rakestraw, K. M., Naeve, C. W., Beckmann, G., Weiszenburger, D. D., Sanger, W. G., Nowotny, H., Vesely, M., Callet-Bauchu, E., Salles, G., Dixit, V. M., Rosenthal, A., Schlegelberger, B., and Morris, S. W. (1999) Nat. Genet. 22, 63–68
20. Gaide, O., Martinon, F., Micheau, O., Bonnet, D., Thome, M., and Tschopp, J. (2001) FEBS Lett. 496, 121–127
21. Bertin, J., Wang, L., Guo, Y., Jacobson, M. D., Poyet, J. L., Srinivasula, S. M., Merriam, S., DiStefano, P. S., and Alnemri, E. S. (2001) J. Biol. Chem. 276, 11877–11882
22. McAllister-Lucas, L. M., Inohara, N., Lucas, P. C., Ruland, J., Benito, A., Li, Q., Chen, S., Chen, F. F., Yamaoka, S., Verma, I. M., Mak, T. W., and Nunez, G. (2001) J. Biol. Chem. 276, 30589–30597
23. Wang, L., Guo, Y., Huang, W. J., Ke, X., Poyet, J. L., Manji, G. A., Merriam, S., Gluckmann, M. A., DiStefano, P. S., Alnemri, E. S., and Bertin, J. (2001) J. Biol. Chem. 276, 21405–21409
24. Fanning, A. S., and Anderson, J. M. (1999) Curr. Opin. Cell Biol. 11, 432–439
25. Vito, P., Pellegrini, L., Guiet, C., and D’Adamo, L. (1999) J. Biol. Chem. 274, 1533–1540
26. Guiet, C., and Vito, P. (2000) J. Cell Biol. 148, 1131–1140
27. Zhou, H., Wertz, I., O’Leary, K., Utzschneider, K., Seshagiri, S., Eby, M., Xiao, W., and Dixit, V. M. (2004) Nature 427, 167–171
28. Rueff-Brasse, A. A., French, D. M., and Dixit, V. M. (2003) Science 302, 1581–1584
29. Koseki, T., Inohara, N., Chen, S., Carrio, R., Merino, J., Hottiger, M. O., Nabel, G. J., and Nunez, G. (1999) J. Biol. Chem. 274, 9955–9961
30. Srinivasula, S. M., Ahmad, M., Lin, J. H., Poyet, J. L., Fernandez-Almendros, T., Tsichlis, P. N., Alnemri, E. S. (1999) J. Biol. Chem. 274, 17846–17854
31. Costanzo, A., Guiet, C., and Vito, P. (1999) J. Biol. Chem. 274, 20127–20132
Physical and Functional Interaction of CARMA1 and CARMA3 with IkappaB Kinase gamma
-NFkappaB Essential Modulator

Romania Stilo, Domenico Liguoro, Bruno Di Jeso, Silvestro Formisano, Eduardo Consiglio, Antonio Leonardi and Pasquale Vito

J. Biol. Chem. 2004, 279:34323-34331.
doi: 10.1074/jbc.M402244200 originally published online June 7, 2004

Access the most updated version of this article at doi: 10.1074/jbc.M402244200

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 31 references, 13 of which can be accessed free at
http://www.jbc.org/content/279/33/34323.full.html#ref-list-1