Program Behavior Analysis and Clustering using Performance Counters

Sai Praveen Kadiyala
I²R, A*STAR, Singapore
saipk@i2r.a-star.edu.sg

Akella Kartheek*
BITS-Pilani Hyderabad, India
sukruthkartheek@gmail.com

Tram Truong-Huu
I²R, A*STAR, Singapore
truonght@i2r.a-star.edu.sg

ABSTRACT

Understanding the dynamic behavior of computer programs during normal working conditions is an important task, which has multiple security benefits such as the development of behavior-based anomaly detection, vulnerability discovery, and patching. Existing works achieved this goal by collecting and analyzing various data including network traffic, system calls, instruction traces, etc. In this paper, we explore the use of a new type of data, performance counters, to analyze the dynamic behavior of programs. Using existing primitives, we develop a tool named perfextract to capture data from different performance counters for a program during its startup time, thus forming multiple time series to represent the dynamic behavior of the program. We analyze the collected data and develop a semi-supervised clustering algorithm that allows us to classify each program using its performance counter time series into a specific group and to identify the intrinsic behavior of that group. We carry out extensive experiments with 18 real-world programs that belong to 4 groups including web browsers, text editors, image viewers, and audio players. The experimental results show that the examined programs can be accurately differentiated based on their performance counter data regardless of whether programs are run in physical or virtual environments.

CCS CONCEPTS

• Security and privacy → Malware and its mitigation. Intrusion/anomaly detection and malware mitigation.

KEYWORDS

Performance counters, Dynamic behavior analysis, Time series clustering

ACM Reference Format:

Sai Praveen Kadiyala, Akella Kartheek, and Tram Truong-Huu. 2020. Program Behavior Analysis and Clustering using Performance Counters. In DYNAMICS 2020: DYnamic and Novel Advances in Machine Learning and Intelligent Cyber Security (DYNAMICS) Workshop, Dec. 07, 2020, Texas, USA. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/nnnnnn.nnmmmm

1 INTRODUCTION

The latest trends in program analysis show an increase in emphasis on the dynamic approach compared to the static approach [7]. In the dynamic approach, programs are executed in a controlled environment and their behavior is observed during the execution time. The interaction of programs with the operating system (OS) and generated data during the execution are collected and analyzed. High-level features such as application programming interface (API) calls, network traffic and registry changes have demonstrated the effectiveness [2, 6, 10, 15]. However, programs are increasingly sophisticated, especially malicious programs (malware), which usually exhibit evasive behavior when being run in a controlled execution environment. This motivates the research community to explore the use of low-level features such as performance counters as they are more resistant to external attacks [4, 5, 11]. Performance counters have been initially introduced for the purpose of analyzing complex systems for debugging related issues. With the help of available digital logic that increments the counters after the occurrence of a specific event, these counters keep track of various micro-architectural events, thus enabling dynamic monitoring of program behavior. We believe that performance counter-based profilers give deeper insights into system dynamics with lower overhead compared to their software profiler counterparts. Nevertheless, performance counter data also has its own drawback related to the non-determinism characteristic: several performance counters generate different values at different execution times [3]. This makes the program analysis task based on performance counters more challenging, thus requiring a more robust approach.

Advocating the use of performance counters, we carry out in this work an empirical study on program behavior analysis using a machine learning technique. We propose a data collection approach that could overcome the drawback of performance counter data discussed above. Precisely, rather than collecting performance counters data just at only one time instant and use this data as the sole input for analysis, we propose to collect performance counters of a program over a long period (e.g., during startup time of the program), thus forming a time series for each performance counter. We note that while there exist a large number of performance counters, we focus on per-program performance counters, which count the number of micro-architectural events triggered by a specific program. We use a machine learning technique to learn not only the correlation between performance counters but also the change in the pattern of a specific performance counter over time. This approach allows us simultaneously to represent the spatial-temporal correlation and to identify the intrinsic dynamic behavior of each program through its performance counter time series. While collecting performance counter data is an easy task, labeling data to use in supervised learning techniques is not straightforward due to
the involvement of large man-hours and the requirement of specific domain knowledge. Thus, we adopt a clustering algorithm, which is a semi-supervised learning technique, to classify programs based on their performance counter time series into different groups, each having different dynamic behavior. The contribution of our work is summarized as follows.

- We develop a tool named perfextract using existing primitives (TypePerf1) to collect data from various performance counters during a specific time window, e.g., during startup time of programs. We note that while TypePerf has been developed to collect data from a performance counter at a given time instant, perfextract allows us to simultaneously collect data from various performance counters and form time series for each counter. This allows us to capture the behavior of each performance counter over time. We also note that there exist 28 per-program performance counters in Windows operating systems, we collect data from 23 counters since the remaining 5 counters are not useful for our work.
- We use a semi-supervised clustering algorithm, seeded k-means clustering, to classify programs, each being represented by multiple time series of performance counters, into different groups. We also adopt seeded k-means clustering to develop a new algorithm that detects whether a new program has been installed or deviated from its “normal” behavior. We analyze the dynamic behavior of each program group based on the changes in each performance counter over time.
- We carry out extensive experiments with 18 real-world Windows programs belonging to 4 groups: web browsers, text editors, image viewers, and audio players. We run these programs in both physical and virtual environments and use perfextract to collect data before doing analysis.

The rest of paper is organized as follows. In Section 2, we discuss related work on dynamic analysis of programs using both high-level and low-level features. In Section 3, we describe our data collection framework and dynamic behavior analysis technique. In Section 4, we present the experiments with various scenarios and analysis of results before we conclude the paper in Section 5.

2 RELATED WORK

Characterizing the behavior of programs based on their dynamic features is an established methodology in the field of system security. In [10], Salehi et al. used API call return value recorded during the runtime of a program as features in modeling the program behavior. In a novel fashion, Zhaqi et al. used API calls along with their arguments for analyzing program behavior [15]. In [2], Das et al. developed a semantics-based online malware detection approach based on API call sequences. In [6], an RNN-LSTM model has been developed for program analysis. The authors used the top-ranked API call sequences based on their Term Frequency and Inverse Document Frequency (TF-IDF).

There also exist several works that used low-level features for program behavior analysis. In [4], Dinkarrao et al. used performance counter data to craft adversarial attacks on malware detectors. The authors focused on malware in Linux operating systems (OS), which has less attraction compared to Windows OS. In [5], Harris et al. used the performance counter data for understanding the cyclic interference caused by cache contention, thereby detecting external attacks. In [11], the authors proposed to use performance counter data for profiling of web browsers during their runtime and detecting obfuscation codes hidden in web browsers. The authors demonstrated the effectiveness of the proposed approach with Linux OS. In [9], Nisarg et al. used performance counters along with machine learning models for malware detection in Linux OS. The authors used a statistical-based methodology to select the performance counters that are to be monitored. Similarly, in [8], Ozosoy et al. developed a malware-aware processor (MAP), which has a dedicated component to detect malware based on performance counters. In [12], Tang et al. used performance counter data to differentiate the behavior of two Windows applications: Internet Explorer and Adobe Acrobat Reader. On one hand, most of the above works (except [12]) focused on Linux OS. On the other hand, they did not consider the changes in performance counters over time. In this work, we consider programs running in Windows OS and develop an approach that considers the spatial-temporal correlation of performance counter data in the form of time series. This may overcome the effect of non-determinism of performance counter data.

3 PROGRAM BEHAVIOR ANALYSIS AND CLUSTERING FRAMEWORK

In this section, we present the proposed framework for program behavior analysis and clustering. We start with an overview description and then describe the details of framework implementation and algorithm.

3.1 Framework Overview

In Fig. 1, we depict the proposed framework, which consists of two components: data collection and program clustering. In the data collection component, we build up a program execution environment (e.g., a Windows virtual machine running in Oracle VirtualBox) with the perfextract tool integrated. This allows us to quickly refresh the environment after completing the analysis of each program. Given a program to be analyzed, we detonate the program in the execution environment and trigger the perfextract tool to collect performance counter data. The output of the data collection component is a set of time series that will be analyzed by a clustering algorithm.

We advocate for clustering algorithms to classify programs into different groups since they do not need a labeled dataset, which could be hard to obtain in practice. We adopt k-means clustering to classify each program based on its time series of performance counters into different groups. We assume that there would be a normal working period that all the programs exhibit their normal behavior. The collected data during this normal working period creates the seeding clusters (e.g., the three clusters as shown on the right side of Fig. 1 and allows us to process new samples during the inference phase). Given a new data sample, the clustering algorithm will identify the best cluster that the sample belongs to. If the distance to the nearest cluster is larger than a threshold, the sample will form a new cluster, indicating that the program has not been

1TypePerf: https://ss64.com/nt/typeperf.html
recognized by the clustering algorithm. This can be due to two reasons: either the program has been newly installed in the system and it was run for the first time or the program has changed its behavior due to updates or security attacks.

3.2 Extraction of Performance Counter Data

We now present the details of the extraction of performance counter data using the perfextract tool. We note that the number of performance counters could vary depending on the operating system run on the analyzing host. In Windows OS, there is a total of 28 per-program performance counters that can be collected. However, during our experiments, we realized that there are 5 counters whose values do not change over time. We decided to not collect the data from those counters as they do not contribute to differentiating the programs. The description of the remaining 23 performance counters is given in Table 1.

For each performance counter, perfextract periodically collects its value using a primitive available for Windows OS, i.e., TypePerf. The time interval between collection instants is predefined (e.g., every 1 second) so as to not cause significant overhead (i.e., query the values too frequently) or miss the behavior changes of the counter (i.e., the interval is too long). We also define a time window for the collection duration so that the performance counters of each program will be collected in a specific duration, e.g., 30 seconds. It is worth mentioning that it may be useful to collect the data for the entire execution duration of the program as the more data collected, the better the representation of program behavior. However, the execution duration of each program depends on the nature of its application and usage behavior of users, leading to heterogeneous execution durations of programs. For instance, a user may use a web browser for a few minutes for entertainment but he may use a text editor for hours to work. Nevertheless, if the time window is too short we may not have sufficient data for analyzing program behavior. Furthermore, to avoid the bias from the usage behavior of users, we collect the performance counter data during the start time of programs, e.g., during the first 30 seconds when programs are launched. In actual implementation, we can use a program monitor to trigger perfextract when a program is started. Collection of performance counter data at the start time of programs may work well with benign programs that do not exhibit evasive behavior. Thus, there is a need for a more advanced approach (e.g., using a random collection) to avoid such an evasive behavior. We keep this task for future work when we work with malware samples.

Consequently, we obtain 23 time series, each having multiple values (e.g., 30 values collected over 30 seconds) representing the temporal evolution of a performance counter. By analyzing the time series, we analyze the temporal behavior of performance counters rather than comparing a particular value of performance counter among programs. While two programs may have the same temporal behavior of certain performance counters, they may differ from each other by the time series from the other performance counters. With the support of machine learning that could learn the correlation from multi-dimensional data with both temporal and spatial correlation, we use performance counter time series to cluster programs into different groups, each having similar behavior. As discussed in the introduction, this could help one to identify unauthorized programs installed in the systems or detect abnormal behavior of a particular program, which has been previously installed and run in the system.

3.3 Program Clustering and Fingerprinting

In this section, we present an algorithm that analyzes the data collected from performance counters as presented in the previous section to perform program clustering and fingerprinting. By clustering, we mean that computer programs are classified into different groups based on their functionalities tied to the performance counter values, e.g., text editors, web browsers, audio players, and image viewers. We refer to this clustering approach as coarse-grained clustering. By fingerprinting, we perform fine-grained clustering of data samples (i.e., each data sample is a set of time series) collected at different time instants of a particular program so as to identify the program by its performance counter data. Obviously, the number of groups (clusters) in the fine-grained clustering approach is much larger compared to that of the coarse-grained approach. Given the number of program groups and the total number of programs installed in the system, we use a conventional clustering algorithm such as k-means clustering to process the data. We note that k-means clustering algorithm aims at minimizing the total distance of every data sample to its cluster centroid. Given a dataset to be classified into k groups where k is provided as an input, the partition of the samples in the dataset is achieved by minimizing the following objective function:

$$
\sum_{i=1}^{k} \sum_{x \in G_i} ||x - \mu_i||^2
$$

(1)
Algorithm 1 \text{clusterProgram}(X)

\textbf{Require: } X \quad \triangleright \text{time series of performance counter data} \\
\textbf{Require: } D \quad \triangleright \text{existing labeled data samples} \\
\textbf{Ensure: } C \quad \triangleright \text{Cluster of the input sample} \\
1: \{G, \beta\} \leftarrow \text{getNearestCluster}(X, D) \\
2: \textbf{if } d < \beta \textbf{ then} \quad \triangleright \beta \text{ is a predefined threshold} \\
3: \quad \text{Add sample } X \text{ to cluster } G \\
4: \textbf{else} \\
5: \quad \text{Create a new cluster} \\
6: \textbf{end if}

where \(\mu_i \) is the centroid of cluster \(G_i \). Seeded \(k \)-means \([1]\) is a semi-supervised clustering algorithm based on \(k \)-means. It used a small set of labeled data to initialize \(k \)-means in computing the centroids rather than choosing a random number of clusters.

In Algorithm 1, we present the adopted clustering algorithm for program clustering. Given a data sample that includes 23 time series of 23 respective performance counters, the algorithm starts by identifying the nearest cluster for the sample based on the distance from the sample to the centroid of the cluster. This step is performed by line 1 in Algorithm 1. The output of the function \text{getNearestCluster}(X, D) is the index of the nearest cluster \((G) \), and the distance between the sample and the centroid of the cluster \((d) \), normalized based on the samples in the nearest cluster. If the distance is smaller than a predefined threshold \((\beta) \), the sample is considered part of the cluster. Otherwise, it will form a new cluster, which indicates that a new program has been executed or a previously-seen program has deviated from its normal behavior.

It is to be noted that the function \text{getNearestCluster}(X, D) will compute the distance from sample \(X \) to all the seeding clusters. There may exist multiple seeding clusters that are close to sample \(X \) with a distance smaller than \(\beta \). The function will return the closest cluster to the sample. The challenging issue is how to determine the threshold to decide whether a program is newly-installed in the system or it deviates from its previous behavior. A naive approach is to set \(\beta = 1 \), corresponding to the distance from the centroid to the farthest data sample of the nearest cluster. However, this approach may not work well in practice due to the non-linear characteristic of the multi-modal data and the clusters are not in a spherical shape. There exist in the literature other approaches that can be used to compute the distance from a sample to a cluster centroid such as Euclidean distance or z-score \([13]\). We note that Algorithm 1 can be used for both cases: coarse-grained clustering and fine-grained clustering with a minor change in the parameter \(k \) of the seeded \(k \)-means clustering algorithm.

4 EXPERIMENTAL RESULTS

In this section, we present various experiments carried out to demonstrate the effectiveness of the proposed approach. We first present the experimental setup and the programs used in our experiments before we present the analysis of results.

4.1 Experimental Setup and Programs

We carried out all the experiments in a virtual machine with 16GB RAM and Windows 10 Operating System using Oracle VirtualBox.
Table 2: Programs Used in Experiments

No.	Domain	Programs	#Samples
1	Text editor	Atom, gVim, Notepad, Notepad++, Sublime Text	20 each
2	Web browser	Brave, Google Chrome, Internet Explorer, Vivaldi, Firefox	20 each
3	Image viewer	WildBit, ImageGlass, FastStone, MS Paint, XnView	20 each
4	Audio player	Clementine, foobar2000, VLC	20 each

Figure 2: Time series of Handle Counts (a) and Page File Bytes (b) of various programs.

We implemented `perfextract` in Python, which also provides various libraries for data processing and analysis. We used 18 popular programs belonging to 4 application domains including text editors, web browsers, image viewers, and audio players. The selected programs are presented in Table 2. For each of the programs, we collected 20 data samples by launching the program with 20 different input arguments, e.g., opening a web browser with 20 randomly-chosen websites or launching a text editor with 20 different text files. It is worth mentioning again that each data sample includes 23 time series of performance counters presented in Table 1, each having 30 values for a duration of 30 seconds. Furthermore, to reduce the bias of the data to any particular run, for each input argument, we executed the monitored program (e.g., text editor, web browser) ten times, each commencing at a random instance in time. This increases the randomness of data so that the machine learning algorithms will learn the data pattern (i.e., the temporal behavior of programs) rather than a particular value. Consequently, we have collected 3600 (18 x 20 x 10) data samples for 18 programs, which will be used for the experiments. In Fig. 2, we plot the time series of two performance counters (i.e., Handle Counts and Page File Bytes) of various programs. We see that there is a significant separation in the behavior of the performance counter data among programs. This allows machine learning algorithms to learn program behavior and differentiate them efficiently.

4.2 Analysis of Results

4.2.1 Coarse-grained and Fine-grained Clustering. In this experiment, we fed all 3600 data samples to the clustering algorithm (k-mean clustering), given the number of clusters (i.e., 4 clusters...
in case of coarse-grained clustering and 18 clusters in case of fine-grained clustering). In Fig. 3 and Fig. 4, we present the box plot representation of intra-cluster and inter-cluster distances for the clusters resulted from the clustering algorithm. The intra-cluster distance of a cluster is computed as the mean of the distance from all the samples belonging to the cluster to its centroid. The inter-cluster distance of a cluster is computed as the mean of the distance from its centroid to the centroid of the remaining clusters. As expected, the intra-cluster distance of most of the clusters is smaller than the inter-cluster distance. We also obtained a very small standard deviation of the distances with the fine-grained clustering scenario. This demonstrates that data samples belonging to the same cluster have similar behavior that allows the clustering algorithm to learn their similarity and pattern.

To further demonstrate the effectiveness of our clustering approach, we use t-SNE [14] to produce the two-dimensional scatter plots of the clustering results using coarse-grained and fine-grained approaches. We note that t-SNE is a technique for visualization of high-dimensional data by applying dimensionality reduction to the data before plotting to a two or three-dimensional plot. In Fig. 5, the results show that even though each group of programs is distributed at different locations, there is a clear separation among clusters of programs and application types. This insight provides us the motivation to develop the algorithm to detect new programs installed in the system or behavior deviation of existing programs.

4.2.2 Identification of Unknown Programs. In this experiment, we evaluate the capability of the proposed approach to detect unknown programs. Given the 18 programs used for our experiments, we randomly selected 4 programs, among them 3 programs are considered as seeding clusters and the remaining program is considered as an unknown program. With seeding clusters, we mean that all the data samples of the 3 programs are analyzed by the clustering algorithm forming 3 different clusters whose labels are known a priori. Given a data sample of the unknown program, we used Algorithm 1 to compute the distance between the data sample and the centroids of the 3 seeding clusters and determine whether a new cluster is formed or not. If a new cluster is formed, it indicates that the proposed approach is able to detect the unknown program executed in the system. Otherwise, it fails to do so.
Table 3: Selected Instances for Testing of Clustering Model

No.	Experimental Instances	Result
1	gVim, Notepad, Notepad++	Atom
2	Atom, Brave, Google Chrome	gVim
3	Sublime Text, Google Chrome, Vivaldi	Notepad
4	Atom, Firefox, Vivaldi	Notepad++
5	Brave, Google Chrome, Vivaldi	Sublime Text
6	gVim, Vivaldi, Clementine	Brave
7	Notepad, Internet Explorer, WildBit	Google Chrome
8	Atom, Vivaldi, Clementine	Firefox
9	gVim, Firefox, VLC	Internet Explorer
10	Notepad++, FastStone, foobar2000	Vivaldi
11	Atom, Brave, Clementine	WildBit
12	Sublime Text, Brave, Google Chrome	FastStone
13	Atom, Notepad, Vivaldi	ImageGlass
14	Clementine, Google Chrome, Internet Explorer	MS Paint
15	Atom, Brave, Vivaldi	XnView

With 18 programs, there are $12240 = \left(\frac{18}{3}\right) \times 15$ experimental instances that could be examined. We carried out the experiments with 5000 random instances, resulting in a detection ratio of 98.7%. In Table 3, we present 15 such experimental instances, among which the proposed approach fails to detect the unknown program in two instances. Analyzing the data of these two instances, we observed that performance counter data of Vivaldi and Brave (i.e., the instance in row 6) are very close. Similar trends were also observed in the case of row 9 between Firefox and Internet Explorer. In reason of this behavior could be the fact that all the web browsers use the same rendering engine. In Fig. 6, we present several two-dimensional scatter plots of data points randomly selected from 4 programs using t-SNE. We observe that there is a clear separation among clusters. We verified the cluster index obtained by the clustering algorithm against ground truth data. To determine the value of parameter β (i.e., the distance threshold of deviation), we performed a grid search in the range $[0, 1]$ and selected the value that yields the best performance.

We also performed experiments of the detection of unknown programs at the coarse-grained and fine-grained levels. At the coarse-grained level, we considered all the seeding programs are clustered into 3 clusters while the unknown program should form the fourth cluster. At the fine-grained level, there will be 17 seeding clusters and the unknown program should form the 18th cluster. In Fig. 7, we present the t-SNE plots for these two experiments with labels obtained from our clustering algorithm. The results show that in both cases, the unknown program forms a new cluster that is well separated from the seeding clusters.

Figure 6: Two-dimensional scatter plots of various clusters using t-SNE.

4.2.3 Detection of Behavior Deviation. As we discussed earlier, existing programs (that have been installed in the systems) could change their normal behavior due to various reasons such as updates or being tampered by viruses or attackers. While program updates may not cause any harmful consequences, programs tampered by viruses or attackers may lead to data loss. Thus, it is beneficial to detect such deviation as earlier as possible. In this experiment, we demonstrate that the proposed approach could detect such a behavior deviation. We introduced a deviation in Google Chrome with a custom extension, which consecutively opens many photos on the Amazon website. In Fig. 8, we present the deviation of performance counter data (i.e., Page File Bytes, I/O Data Operations, Handle Counts and Pool Paged Bytes) in comparison with one of the data samples collected during its normal working conditions, i.e., the data samples collected with Google Chrome when opening the Amazon website without the customized extension. We used Algorithm 1 to determine whether a data sample of a program has “significantly” deviated from its normal behavior. We have also run
the original k-means clustering algorithm on the dataset of Google Chrome that included the data samples collected during normal working conditions and the samples that are collected with the custom extension. The clustering results show that the data samples are separately clustered into two groups. As the label of the samples collected during normal conditions is known, the remaining cluster includes all the data samples collected with custom extension, representing the behavior deviation of Google Chrome.

4.2.4 Bare-metal vs Virtual Environment. While we have done all the experiments in a virtual environment (i.e., executing the programs in a virtual machine and collect performance counter time series for analysis), the proposed approach can also be applied to a bare-metal environment. To demonstrate this, we have run the perfextract tool in a physical host and collected the performance counter time series of the programs. In Fig. 9, we plot the time series of two performance counters (Handle Counts and Page File Bytes) of Google Chrome when running in a virtual machine and in a bare-metal environment. We can observe that there is a change in the values of the performance counters (i.e., the number of events of Handle Counts and Page File Bytes in the virtual machine is
fewer than that in a bare-metal environment). However, evolution trends remain the same for both environments. As we discussed earlier, the proposed approach learns not only the dynamic behavior of a program from the values of performance counters but also the correlation among the values through its changing trends (i.e., evolution trends) over time. Thus, the clustering model when deployed to the bare metal environment may need to be retrained on the data collected in this environment so as to adapt to the new data distribution and achieve the desired performance.

5 CONCLUSIONS

In this paper, we presented a clustering-based approach to analyze program behavior in a given environment using performance counters. We collected the data from various performance counters as time series and analyzed program behavior based on temporal and spatial correlations represented by the time series. We developed a tool to ease the collection of data using existing primitives provided by the operation systems (e.g., Windows OS provides TypePerf to collect the current value of a performance counter). We adopted a conventional clustering algorithm, k-means clustering, to cluster programs at both coarse-grained level (i.e., based on type of programs) and fine-grained level (i.e., differentiating among programs). We also adopted the algorithm to detect new/unknown programs installed in the system, as well as behavior deviation of existing programs due to software updates or tampering activities. We carried out experiments with 18 programs that belong to 4 different groups (web browsers, text editors, image viewers and audio players). The experimental results show that the proposed approach manages to accurately cluster programs into their respective groups. The results also demonstrate that the proposed approach can be used to detect whether a new program emerges (i.e., it is a newly-installed program) or an existing program has deviated from its normal behavior. For future work, we aim at further developing the proposed approach to perform malware detection using performance counter time series.

ACKNOWLEDGMENTS

This research is supported by the Agency for Science, Technology and Research (A*STAR) under its RIE2020 AME Core Funds (SERC Grant No. A1916g2047). We would like to thank Partha Pratim Kundu, Sin G. Teo and Vasudha Ramnath for their valuable feedback and fruitful discussion during the implementation of this work.

REFERENCES

[1] S. Basu, A. Banerjee, and R. J. Mooney. 2002. Semi-supervised Clustering by Seeding. In Proc. IJCL 2002. PRML, Sydney, Australia, 27–34.
[2] Sanjeev Das, Yang Liu, Wei Zhang, and Mahintham Chandramohan. 2016. Semantics-based online malware detection: Towards efficient real-time protection against malware. IEEE Trans. Inf. Forensics Secur. 11, 2 (Feb. 2016), 289–302.
[3] Sanjeev Das, Jan Werner, Manos Antonakakis, Michalis Polychronakis, and Fabian Monrose. 2019. SoK: The challenges, pitfalls, and perils of using hardware performance counters for security. In Proc. 2019 IEEE Symposium on Security and Privacy (S&P). IEEE, San Francisco, USA, 20–38.
[4] Sai Manoj Pudukottai Dinakaran, Sairaj Amberkar, Sahil Bhat, Abhijit Dhavile, Hossein Sayadi, Avesta Susan, Housman Homayoun, and Setareh Rafatirad. 2019. Adversarial attack on microarchitectural events based malware detectors. In Proc. 2019 56th Annual Design Automation Conference. IEEE, San Francisco, USA, 1–6.
[5] Austin Harris, Shijia Wei, Prateek Sahni, Pranav Kumar, Todd Austin, and Mohit Tiwari. 2019. Cyclone: detecting contention-based cache information leaks through cyclic interference. In Proc. 52nd Annual IEEE/ACM International Symposium on Microarchitecture. IEEE, Columbus, OH, USA, 57–72.
[6] J Matthew and MA Ajay Kumar. 2018. API Call Based Malware Detection Approach Using Recurrent Neural Network—LSTM. In Proc. International Conference on Intelligent Systems Design and Applications. Springer, Vellore, India, 87–99.
[7] Ori Or-Meir, Nir Nissim, Yuval Elovich, and Lior Rokach. 2019. Dynamic malware analysis in the modern era—a state of the art survey. ACM Computing Surveys (CSUR) 52, 5 (2019), 1–48.
[8] Mletem Osayo, Khaled N Khassawneh, Caleb Donovick, Jakob Goredik, Nael Abu-Ghazaleh, and Dmitry Ponomarev. 2016. Hardware-based malware detection using low-level architectural features. IEEE Trans. Comput. 65, 11 (Mar. 2016), 3332–3344.
[9] Nisarg Patel, Avesta Susan, and Housman Homayoun. 2017. Analyzing hardware-based malware detectors. In Proc. 54th ACM/EDAC/IEEE Design Automation Conference (DAC). IEEE, Austin, TX, USA, 1–6.
[10] Zahra Salehi, Ashkan Sami, and Mahboobe Ghiassi. 2017. MAAR: Robust features to detect malicious activity based on API calls, their arguments and return values. Engineering Applications of Artificial Intelligence 59 (2017), 93–102.
[11] Rashid Tahir, Sultan Durzani, Faizan Ahmed, Hammas Saeed, Fareed Zaffar, and Saqib Basya. 2019. The browsers strike back: Countering cryptojacking and parasitical miners on the web. In Proc. IEEE Conference on Computer Communications (INFOCOM 2019). IEEE, Paris, France, 703–711.
[12] Adrian Tang, Simha Sethumadhavan, and Salvatore J Stolfo. 2014. Unsupervised anomaly-based malware detection using hardware features. In Proc. International Workshop on Recent Advances in Intrusion Detection. Springer, Gothenburg, Sweden, 109–129.
[13] Vijayanand Thangavelu, Dinul Mon Divakaran, Rishi Sairaj, Suman Sankar Bhunia, and Mohan Gurusamy. 2019. DEFT: A Distributed IoT Fingerprinting Approach Using Recurrent Neural Network—LSTM. In Proc. 52nd Annual IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED). IEEE, Columbus, OH, USA, 57–72.
[14] J.P. van der Maaten and G.E. Hinton. 2008. Visualizing High-Dimensional Data Using t-SNE. Journal of Machine Learning Research 9 (Nov. 2008), 2579–2605.
[15] Zhaqoi Zhang, Panpan Qi, and Wei Wang. 2020. Dynamic Malware Analysis with Feature Engineering and Feature Learning. In Proc. 34th AAAI Conference on Artificial Intelligence. AAAI Press, Palo Alto, California, USA, 1210–1217.