Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
SHORT COMMUNICATION

Clinical investigation of intestinal fatty acid-binding protein (I-FABP) as a biomarker of SARS-CoV-2 infection

Rafael Simone Saia¹*, Humberto Giusti¹, Fábio Luís-Silva²,³, Karina de Jesus Bonicenha Pedroso⁴, Maria Auxiliadora-Martins², Karen Mirna Loro Morejón⁴, Augusto Marcussi Degiovani⁵, Márcia Regina Cadelca⁶, Aníbal Basile-Filho²

¹ Laboratory of Intestinal Pathophysiology, Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
² Division of Intensive Care Medicine, Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
³ Intensive Care Unit, Fundação Hospital Santa Lydia, Ribeirão Preto, São Paulo, Brazil
⁴ Hospital Unimed Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
⁵ Intensive Care Unit, Santa Casa de Misericórdia, Ribeirão Preto, São Paulo, Brazil
⁶ Intensive Care Unit, Hospital e Maternidade Santa Isabel, Jabaquara, São Paulo, Brazil

A R T I C L E I N F O

Article history:
Received 4 August 2021
Revised 21 September 2021
Accepted 23 September 2021

Keywords:
intestinal epithelial cells
cytokines
inflammation
COVID-19
interleukin-6

A B S T R A C T

Objectives: SARS-CoV-2 exhibits tropism for the gastrointestinal tract; however, lesions in enterocytes and their correlation with disease severity and patient prognosis are still unknown.

Methods: SARS-CoV-2 patients were enrolled in 5 medical centres in São Paulo, Brazil and their clinical characteristics and laboratory findings recorded. At admission, day 7 and day 14 of hospitalisation, plasma and urine samples were collected, and cytokine levels and intestinal fatty acid-binding protein (I-FABP) concentrations measured.

Results: COVID-19 patients displayed ≈48-, 74- and 125-fold increased urinary I-FABP levels at admission (n=283; P<0.001), day 7 (n=142; P<0.01) and day 14 (n=75; P<0.01) of hospitalisation. Critically ill patients and nonsurvivors showed higher I-FABP concentrations compared with patients with less severe illness. At admission, infected patients demonstrated enhanced production of plasma interferon (IFN)-γ and interleukin (IL)-6. The receiver operating characteristic curve suggested I-FABP as a biomarker for COVID-19 disease severity at admission (P<0.0001; Youden index=0.89); area under the curve=0.699). Patients with I-FABP >6.89 showed higher IL-6 and C-reactive protein levels (P<0.001) at admission and had a prolonged length of hospital stay.

Conclusions: Our findings revealed damage to enterocytes in SARS-CoV-2 infection, which is associated with illness severity, poor prognosis and exacerbated inflammatory response.

© 2021 The Author(s). Published by Elsevier Ltd on behalf of International Society for Infectious Diseases.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Gastrointestinal (GI) symptoms, including vomiting, abdominal discomfort and diarrhoea, have been reported in COVID-19 infections at the onset of hospitalisation, affecting 10%–30% of patients (Parasa et al., 2020). SARS-CoV-2 RNA has been detected in faeces and stomach, duodenum and colon biopsies (Lin et al., 2020; Zhao et al., 2020). COVID-19 patients with ongoing diarrhoea have displayed enhanced concentration of faecal calprotectin (a marker of gut inflammation), as well as systemic interleukin (IL)-6 production, regardless of viral load (Effenberger et al., 2020). Although SARS-CoV-2 exhibits tropism for the GI tract, it remains unknown whether lesions in the intestinal epithelium occur.

Intestinal fatty acid-binding protein (I-FABP) is a cytosolic protein expressed in mature enterocytes of the small and large intestines (Pelser et al., 2003). A basal level of urinary I-FABP represents the physiological turnover rate of the epithelium, whilst its increment may indicate enterocytes cell damage. In sepsis and in-

https://doi.org/10.1016/j.ijid.2021.09.051
1201-9712/© 2021 The Author(s). Published by Elsevier Ltd on behalf of International Society for Infectious Diseases. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Parameters	Healthy Volunteers (n=37)	SARS-CoV-2 infected patients	Nonsurvivors (n=102)	Survivors (n=181)	Nonsurvivors (n=66)	Survivors (n=76)	Nonsurvivors (n=33)	Survivors (n=42)	
Gender M/F (%)	33/67 †	60/40	52/48	57/43	51/49	57/46	51/49	67/34	48/52 †
Age (years)	55 [49-60] ‡	61 [50-71]	69 [62-77] §	62 [54-70]	68 [58-77] †	61 [53-70]	68 [58-77] ‡	74 [62-84]	85 [71-104] §
BMI, kg/m²	27.5 [24.5-30.3] †	36.5 [26.7-34.2]	28.7 [26.0-35.3]	31.5 [27.5-35.2]	29.0 [25.9-35.8]	29.3 [26.8-34.4]	28.5 [25.5-37.6]	28.9	85 [71-104] §
MAP, mmHg	90.0 [80.0-96.7]	93.3 [80.5-99.1]	88.0 [76.0-96.0]	93.0 [78.0-98.3]	91.0 [78.3-98.3]	87.0 [75.0-96.7]	85.0 [79-98.9]	85.5 [77-99.4]	87 [83-104] §
HR, beats/min	75 [69-79] †	85 [73-92]	86 [77-98]	85 [72-96]	90 [79-98]	85 [76-96]	91 [83-104] §	91 [83-104] §	91 [83-104] §
Smoker/ex-smoker	0 (0) v	29 (16.0)	31 (30.4) b	15 (19.7)	16 (24.2)	8 (19.0)	8 (24.2)	8 (24.2)	8 (24.2)
Arterial hypertension	10 (20.0) v	99 (54.7)	74 (72.5) b	51 (87.1)	67 (78.5)	50 (75.6)	50 (75.6)	50 (75.6)	50 (75.6)
Cardiorespiratory diseases	2 (1.7)	32 (18.7)	31 (40.4) a	18 (28.7)	22 (33.3)	11 (26.2)	11 (26.2)	11 (26.2)	11 (26.2)
Diabetes	2 (5.4)	61 (33.7)	50 (49.0) a	33 (44.3)	29 (43.9)	19 (45.2)	18 (45.4)	18 (45.4)	18 (45.4)
Pulmonary diseases	0 (0) v	9 (5.0)	15 (14.7) b	2 (2.6)	7 (10.6)	2 (4.8)	2 (4.8)	2 (4.8)	2 (4.8)
Chronic kidney diseases	0 (0) v	7 (3.9)	9 (8.8) c	2 (2.6)	5 (7.6)	0 (0)	0 (0)	0 (0)	0 (0)
Thyroid disease	1 (2.7)	3 (1.1)	12 (11.8)	12 (11.8)	12 (11.8)	12 (11.8)	12 (11.8)	12 (11.8)	12 (11.8)
Dyslipidaemia	2 (5.4)	23 (12.7)	16 (15.7)	15 (19.7)	11 (16.7)	9 (14.2)	9 (14.2)	9 (14.2)	9 (14.2)
Degenerative diseases	0 (0) v	1 (0.3)	9 (8.8) c	0 (0)	4 (6.1) c	0 (0)	0 (0)	0 (0)	0 (0)
Neurological diseases	1 (2.7)	12 (6.6)	6 (5.9)	8 (10.5)	7 (10.6)	5 (11.9)	5 (11.9)	5 (11.9)	5 (11.9)
Malignancies	0 (0) v	2 (1.1)	15 (14.7) c	1 (1.3)	9 (13.6) c	1 (1.2) c	1 (1.2) c	1 (1.2) c	1 (1.2) c
Other diseases	3 (8.1) v	8 (3.9)	13 (12.7) c	5 (6.6)	8 (13.2)	3 (7.1)	5 (15.2)	5 (15.2)	5 (15.2)

Table 1

Demographic, clinical characteristics and laboratory parameters of healthy volunteers and SARS-CoV-2 infected patients (Survivors and Nonsurvivors)

Legend: ALT (alanine aminotransferase); AST (aspartate aminotransferase); BMI (body mass index); CRP (C-reactive protein); Ethnicity (C = Caucasian, AA = Afro American, H = Hispanic); HR (heart rate); ICU (intensive care unit); LDH (lactate dehydrogenase); MAP (mean arterial pressure); PaCO₂ (partial pressure of carbon dioxide in arterial blood); PaO₂ (partial pressure of oxygen in arterial blood); SaO₂ (arterial oxygen saturation).

[†] Values expressed as median (interquartile range)

[‡] Healthy volunteers with standardized reference values

[§] Severe/critical care type was defined as respiratory failure requiring mechanical ventilation and ICU admission

[v] P < 0.05

[† †] P = 0.01 and † † † P < 0.001 vs SARS-CoV-2 patients (survivors and nonsurvivors) at the admission

[† † †] P = 0.05

[† † † †] P = 0.01 and † † † † P < 0.001 vs survivors SARS-CoV-2 patients at the respective period of hospitalisation
flammary bowel disease (IBD), the increased urinary concentration of I-FABP has been confirmed as a reliable biomarker and predictor of disease reactivation, worse prognosis and clinical complications (Ho et al., 2020). Therefore, our study assessed the levels of I-FABP in hospitalised patients with SARS-CoV-2 infection and investigated its role as a predictor of disease severity and poor prognosis.

This prospective cohort study enrolled 283 inpatients from 5 medical centres (Hospital das Clínicas, Hospital Santa Lydia, Hospital Unimed and Santa Casa de Misericórdia in Ribeirão Preto city and also Hospital e Maternidade Santa Isabel in Jaboticabal city), São Paulo State, Brazil (Supplementary methods). SARS-CoV-2 infection was confirmed through viral RNA detection in nasopharyngeal swabs by real-time reverse transcriptase-polymerase chain reaction, and positive cases were recruited from April 23rd to September 25th 2020. Comorbidities such as GI disorders (IBD, celiac disease and cancer), HIV, and alcohol and drugs addictions were exclusion criteria. At admission, day 7 and day 14 of hospitalisation (in intensive or intensive care unit), venous blood and urine samples were collected in the morning (06:00-08:00), chilled and transferred to the research laboratory. Total blood and urine were centrifuged (1200 g, 15 min, 4 °C), the supernatants aliquoted and kept at -70 °C for further analysis. Healthy volunteers were seronegative for the presence of anti-SARS-CoV-2 immunoglobulin (Ig)M and IgG antibodies (Supplementary methods).

I-FABP and cytokines [tumour necrosis factor (TNF)-α, interferon (IFN)-γ and IL-6] were quantified by enzyme-linked immunosorbent assay, according to the manufacturer’s instructions (R&D Systems, Minneapolis, MN, USA). Urinary data were normalised to creatinine concentrations (LabTest, Lagoa Santa, MG, Brazil). Continuous variables were expressed as median (interquartile range [IQR]) or 10–90 percentile range and then compared using Mann-Whitney U-test or Kruskal-Wallis test (Supplementary results). Categorical variables were compared by Fisher’s exact test.
or Pearson χ^2 test. Statistical significance was considered different when $P<0.05$.

Table 1 lists the demographic, clinical characteristics, and laboratory findings of SARS-CoV-2 patients (survivors and nonsurvivors) and healthy volunteers. Nonsurvivors showed higher number of underlying comorbidities (cardiovascular and pulmonary diseases, diabetes, degenerative and malignancies), as well as deviations of the laboratory parameters (anaemia, leucocytosis, lymphocytopenia, D-dimers, C-reactive protein (CRP), lactate dehydrogenase, serum creatinine and urea), requirement of mechanical ventilation and intensive care at admission. At day 7 and day 14 of hospitalisation, aging, pre-existing diseases, leucocytosis, and the need for mechanical ventilation were relevant factors in nonsurvivor patients.

Noteworthy, COVID-19 patients displayed \approx48-, 74- and 125-fold increased urinary I-FABP levels at admission, day 7 and day 14 of hospitalisation, respectively (Figure 1A; $P<0.001$). Critically ill patients showed higher I-FABP concentrations compared with those in the infirmary within the same hospital stay periods (Figure 1B). Likewise, nonsurvivor patients were distinguished by increased I-FABP levels in contrast to survivors (Figure 1C). At admission, the inflammatory response was characterised by augmented plasma IFN-γ and IL-6 levels in SARS-CoV-2 patients (Figure 1D). Interestingly, urinary IL-6 concentrations were elevated in infected patients and nonsurvivors (Figure 1E). The receiver operating characteristic (ROC) curve analysis indicated I-FABP as a good biomarker for disease severity and predictor for poor prognosis of COVID-19 at admission (Figure 1F; Vouden index=6.89; $p<0.0001$) and prolonged hospital stay (Figure 1G). Patients with I-FABP \geq6.89 ng/mg showed higher plasma and urine IL-6 and serum CRP concentrations, suggesting an interaction between inflammation and damage to enterocytes (Figure 1G).

Epithelial cells from ileum and colon express angiotensin-converting enzyme-2, the host cell entry receptor of coronaviruses, invading them for replication (Hoffmann et al., 2020) and shedding virions for several weeks after the onset of illness (Zhao et al., 2020). Enteric symptoms reflect a break in the gut mucosa homeostasis, triggering the immune response and cytokine release syndrome (Effenberger et al., 2020). Soluble protein mediators, such as IFN-γ and IL-6, are key drivers of inflammation-associated enterocyte damage and responsible for increased gut mucosal permeability (Neurath, 2014; Wang et al., 2001). Indeed, our findings confirmed the detrimental contribution of SARS-CoV-2 to the loss of enterocyte membrane integrity, which is correlated with increased I-FABP levels (up to day 14 after hospitalisation) and patient clinical condition. Moreover, patients with I-FABP \geq6.89 ng/mg also showed exacerbated IL-6 production, a predictive cytokine of disease progression and acute respiratory distress syndrome complication (Santa Cruz et al., 2021). Our results revealed that increased I-FABP levels at admission may predict poor prognosis and SARS-CoV-2 illness severity, such as need for intensive care, mechanical ventilation and prolonged hospital stay.

Abbreviations list

AUC: area under curve; CRP: C-reactive protein; ELISA: enzyme-linked immunosorbent assay; GI: gastrointestinal; IBD: inflammatory bowel diseases; IFN-γ: interferon-γ; Ig: immunoglobulin; IL: interleukin; ROC curve: receiver operating characteristic curve; RT-PCR: reverse transcriptase-polymerase chain reaction; TNF-α: tumour necrosis factor-α.

Funding

This study was supported by The Brazilian National Council for Scientific and Technological Development (CNPq, Grant #401337/2020-0), Ministry of Health and Ministry of Science, Technology and Innovation; The São Paulo Research Foundation (FAPESP, Grant #2020/10097-5); Foundation for Support to Education, Research and Assistance (FAEPA, Grant #416/2020 and #827/2021). The manuscript content is solely the responsibility of the authors and does not necessarily represent the official view of the Research Foundations.
Ethics approval

The study protocol was approved by the Research Ethics Committee of Clinics Hospital of Ribeirão Preto Medical School, University of São Paulo (protocol CAAE 30794820.7.0000.5440) and all patients or family members gave their informed consent to participate in this research.

Patient and public involvement

Patients and/or the public were not involved in the design, or conduct, or reporting, or dissemination plans of this research.

Acknowledgments

We are grateful to the excellent support of the medical teams (doctors, nurses, physiotherapists and psychologists) in the hospitals involved in this study: 1) Santa Lydia Hospital: Dr. Marcelo César Carboneri, Dr. Walther de O. Campos Filho, Bárbara R. Bauduíno Brandão, Eliane Bernardes de Queiróz, Luís F. de Melo Bougleux, Paula C. Trugillo Silva Neves, Renata C. Braulio da Silva, Silmara Miamoto, Silvio Tolomeotti; 2) Unimed Ribeirão Preto Hospital: Dr. Gustavo Ribeiro de Oliveira, Dr. Plínio José E. de Camargo, Adriana de Fátima S. dos Santos, Bruna Maritan da Costa, Giovana A. Faggion Nomellini, Larissa Mil-Homens Albergaria; 3) Santa Casa de Misericórdia de Ribeirão Preto: Dr. Luiz C. Fontes Mega, Mariana C. Corrêa Marcola, Rafael Cruz da Silva; and 4) Hospital e Maternidade Santa Isabel: Dr. Pedro Miguel Verardino, Edson Alves Julião, Nayara A. Poltronieri Correa.

Contributors

Study concept and design: RSS, HG, FLS, ABF. Involved in patient care: FLS, MAM, KMLM, AMD, MRC. Patient recruitment: RSS, HG, FLS, KJBP, MAM, AMD, MRC. Laboratory Analyses: RSS, HG. Data collection: RSS, HG, FLS, KJBP. Statistical analysis: RSS, ABF. Drafting the manuscript: RSS. All the authors edited the manuscript and have approved the final version.

Preprint Server

The present results have not been published as a preprint version.

Supplementary methods and results

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.ijid.2021.09.051.

References

Effenberger M, Grabherr F, Mayr L, Schwarzerl J, Naize M, Seifert M, et al. Faecal calprotectin indicates intestinal inflammation in COVID-19. Gut 2020;69(8):1543–4. doi:10.1136/gutjnl-2020-321388.

Ho SS, Wall C, Garry RB, Keenan J, Day AS. A Pilot Study Evaluating Novel Urinary Biomarkers for Crohn’s Disease. Inflamm Intest Dis 2020;5(4):212–20. doi:10.1159/000510682.

Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herfert T, Erichsen S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020;181(2):271–80 e8. doi:10.1016/j.cell.2020.02.052.

Lin L, Jiang X, Zhang Z, Huang S, Fang Z, Gu Z, et al. Gastrointestinal symptoms of 95 cases with SARS-CoV-2 infection. Gut 2020;69(6):997–1001. doi:10.1136/gutjnl-2020-321013.

Neurath MF. Cytokines in inflammatory bowel disease. Nat Rev Immunol 2014;14(5):329–42. doi:10.1038/nri3661.

Parasa S, Desai M, Thoguluva Chandrasekar V, Patel HK, Kennedy KF, Roesch T, et al. Prevalence of Gastrointestinal Symptoms and Fecal Viral Shedding in Patients With Coronavirus Disease 2019: A Systematic Review and Meta-analysis. JAMA 2020;3(6). doi:10.1001/jamanetworkopen.2020.11335.

Pelsers MM, Namiot Z, Kisielewski W, Namiot A, Januszkiewicz M, Hermens WT, et al. Intestinal-type and liver-type fatty acid-binding protein in the intestine. Tissue distribution and clinical utility. Clin Biochem 2003;36(7):529–35. doi:10.1016/s0009-9236(03)00096-1.

Santa Cruz A, Mendes-Frias A, Oliveira AL, Dias L, Matos AR, Carvalho A, et al. Interleukin-6 is a Biomarker for the Development of Fatal Severe Acute Respiratory Syndrome Coronavirus 2 Pneumonia. Front Immunol 2021;12. doi:10.3389/fimmu.2021.613422.

Wang Q, Yang CH, Hasselgren PO. Intestinal permeability is reduced and IL-10 levels are increased in septic IL-6 knockout mice. Am J Physiol 2001;281(3):R1013–23. doi:10.1152/ajpregu.2001.281.3.R1013.

Zhao F, Yang Y, Wang Z, Li L, Liu L, Liu Y. The Time Sequences of Respiratory and Rectal Viral Shedding in Patients With Coronavirus Disease 2019. Gastroenterology 2020;158(3):1158–60 e2. doi:10.1053/j.gastro.2020.05.035.