NORMALOID WEIGHTED COMPOSITION OPERATORS
ON H^2

DEREK THOMPSON

Abstract. When φ is an analytic self-map of the unit disk with Denjoy-Wolff point $a \in \mathbb{D}$, and $\rho(W_{\psi, \varphi}) = \psi(a)$, we give an exact characterization for when $W_{\psi, \varphi}$ is normaloid. We also determine the spectral radius, essential spectral radius, and essential norm for a class of non-power-compact composition operators whose symbols have Denjoy-Wolff point in \mathbb{D}. When the Denjoy-Wolff point is on $\partial \mathbb{D}$, we give sufficient conditions for several new classes of normaloid weighted composition operators.

1. Introduction

In this paper, we are interested in weighted composition operators on the classical Hardy space H^2, the Hilbert space of analytic functions $f(z) = \sum_{n=0}^{\infty} a_n z^n$ on the open unit disk \mathbb{D} such that

$$\|f\|^2 = \sum_{n=0}^{\infty} |a_n|^2 < \infty.$$

A composition operator C_φ on H^2 is given by $C_\varphi f = f \circ \varphi$. When φ is an analytic self-map of \mathbb{D}, the operator C_φ is necessarily bounded. A Toeplitz operator T_ψ on H^2 is given by $T_\psi f = P(\psi f)$ where P is the projection back to H^2. When $\psi \in H^\infty$, the space of bounded analytic functions on \mathbb{D}, we simply have $T_\psi f = \psi f$, since ψf is guaranteed to be in H^2, and all such Toeplitz operators are bounded. Throughout this paper, we will assume $\psi \in H^\infty$. We write $W_{\psi, \varphi} = T_\psi C_\varphi$ and call such an operator a weighted composition operator. We are interested in when such operators are normaloid.

For a bounded operator T, we have the following definitions:

- $\sigma(T)$ is the spectrum of T.
- $\rho(T)$ is the spectral radius of T.
- $\rho_e(T)$ is the essential spectral radius of T.

\textit{2010 Mathematics Subject Classification.} Primary: 47B33, 47B20; Secondary: 47B35, 47A10.

\textit{Key words and phrases.} normaloid operator, convexoid operator, hyponormal operator, composition operator, weighted composition operator, spectraloid operator, spectral radius, numerical radius.

The author was funded by the Taylor University Distinguished Lecturer award.
• $W(T)$ is the numerical range of T.
• $\|T\|_e$ is the essential norm of T.
• $r(T)$ is the numerical radius of T.

An operator T is:

1. **self-adjoint** if $T = T^*$.
2. **normal** if $T^*T = TT^*$.
3. **hyponormal** if $T^*T \geq TT^*$.
4. **cohyponormal** if $T^*T \leq TT^*$.
5. **normaloid** if $\|T\| = \rho(T)$.
6. **convexoid** if the closure of $W(T)$ is the convex hull of $\sigma(T)$.
7. **spectraloid** if $\rho(T) = r(T)$.
8. **power-compact** if T^n is compact for some positive integer n.

Here is a list of well-known facts which we will use repeatedly:

1. We have the following sequences of implications:
 self-adjoint \Rightarrow normal \Rightarrow (co)hyponormal \Rightarrow normaloid / convexoid \Rightarrow spectraloid
2. if $\psi \in H^\infty$, then $\|T\psi\| = \|\psi\|_\infty$.
3. For a bounded operator T, we have
 $$\|T\|_e = \inf \{\|T - Q\| : Q \text{ is compact}\}$$
 $$\rho_e(T) = \lim_{k \to \infty} (\|T^k\|_e)^{1/k}$$
 $$\rho(T) = \lim_{k \to \infty} (\|T^k\|)^{1/k}.$$

Throughout this paper, we will focus on weighted composition operators where $\rho(W_\psi, \varphi) = |\psi(a)|\rho(C_\varphi)$, where a is the Denjoy-Wolff point of C_φ. This is a large class, including every power-compact weighted composition operator [7, Theorem 4.3], and many weighted composition operators whose compositional symbol converges uniformly to its Denjoy-Wolff point [5, Corollary 10]. Due to the norm inequality $\|W_\psi, \varphi\| \leq \|T\psi||C_\varphi|| = \|\psi\|_\infty\|C_\varphi\|$, we will often assume $|\psi(a)| = \|\psi\|_\infty$. It is unclear whether this is necessary, but we do have $\|\psi\|_2$ as a lower bound for $|\psi(a)|$ when $\rho(C_\varphi) = 1$.

Proposition 1.1. Suppose φ is an analytic self-map of \mathbb{D} with Denjoy-Wolff point a, $\psi \in H^\infty$, W_ψ, φ is normaloid, and $\rho(W_\psi, \varphi) = |\psi(a)|$. Then $\|\psi\|_2 \leq |\psi(a)|$.

Proof.

$$|\psi(a)| = \rho(W_\psi, \varphi) = \|W_\psi, \varphi\| \geq \|W_\psi, \varphi 1\|_2 = \|\psi\|_2.$$

The organization of the rest of the paper is as follows. In Section 2, we consider the case when the Denjoy-Wolff point a of φ belongs to \mathbb{D}. In Section 3, we show that if a belongs to $\partial \mathbb{D}$, the set of operators for which $\rho(W_\psi, \varphi) = |\psi(a)|\rho(C_\varphi)$ is non-trivial. For such operators, we discover new classes of normaloid weighted composition operators in Section 4. We end
with further questions about normaloid weighted composition operators in Section 5.

2. $a \in \mathbb{D}$

When the Denjoy-Wolff point a of φ is in \mathbb{D}, C_φ is rarely normaloid, as the next theorem shows.

Theorem 2.1. If the Denjoy-Wolff point of φ is in \mathbb{D}, then C_φ is normaloid if and only if $\varphi(0) = 0$.

Proof. By [3, Theorem 3.9], the spectral radius of C_φ is 1. By [3, Corollary 3.7], we have

$$\left(\frac{1}{1 - |\varphi(0)|^2} \right)^{1/2} \leq \|C_\varphi\| \leq \left(\frac{1 + |\varphi(0)|}{1 - |\varphi(0)|} \right)^{1/2}$$

and we have $\|C_\varphi\| = 1$ if and only if $\varphi(0) = 0$. \square

Unsurprisingly, then, we show that if $\rho(W_\psi,\varphi) = |\psi(a)|\rho(C_\varphi)$, then W_ψ,φ is normaloid if and only if ψ has a particular form. For the interior fixed point case, since $\rho(C_\varphi) = 1$, that assumption is really $\rho(W_\psi,\varphi) = |\psi(a)|$. Since this case also always has $|\psi(a)| \leq \rho(W_\psi,\varphi) \leq \|W_\psi,\varphi\|$, the next theorem focuses on when $|\psi(a)| = \|W_\psi,\varphi\|$.

Theorem 2.2. Suppose φ is an analytic self-map of the disk with Denjoy-Wolff point $a \in \mathbb{D}$, and $\psi \in H^\infty$. Then $|\psi(a)| = \|W_\psi,\varphi\|$ if and only if ψ has the form

$$\psi = \psi(a) \frac{K_a}{K_a \circ \varphi}.$$

Proof. First, assume the two values are equal. Suppose $\varphi(0) = 0$ so that $\|W_\psi,\varphi\| = |\psi(0)|$. However,

$$|\psi(0)| = \|W_\psi,\varphi\| \geq \|W_\psi,\varphi 1\| = \|\psi\| = \sqrt{|\psi(0)|^2 + |\psi'(0)|^2 + \frac{|\psi''(0)|^2}{2} + \ldots}$$

and we only have equality if every derivative of ψ at 0 is 0, making ψ constant (equal to $\psi(0)$), which trivially fits the required form, since $K_0 = 1$.

Now, suppose $\varphi(a) = a$, for some $a \in \mathbb{D}$ other than 0. The weighted composition operator $W_{\zeta,\tau}$ where $\zeta = \sqrt{1 - |a|^2} \frac{1}{1 - az}, \tau = \frac{a - \bar{z}}{1 - az}$ is unitary by [1] Theorem 6. Note that τ switches a and 0 and is an involution and $W_{\zeta,\tau}$ is its own inverse. Therefore $W_{\zeta,\tau}W_\psi,\varphi W_{\zeta,\tau}$ is unitarily equivalent to W_ψ,φ, and it is again a weighted composition operator W_f, g, where $f = (\zeta)(\psi \circ \tau)(\zeta \circ \varphi \circ \tau)$ and $g = \tau \circ \varphi \circ \tau$. Since $g(0) = 0$, by the same logic as above, f is a constant function, and the constant is $f(0) = \psi(a)$. Therefore, we have

$$\psi \circ \tau = \frac{\psi(a)}{(\zeta)(\zeta \circ \varphi \circ \tau)}.$$
and now composing both sides with \(\tau \), and recalling \(\tau \circ \tau = z \), we have

\[
\psi = \frac{\psi(a)}{(\zeta \circ \tau)(\zeta \circ \varphi)} = \psi(a) \left(\frac{1}{1 - \overline{a}z} \right) (1 - \overline{a}\varphi)
\]

\[
= \psi(a) \frac{K_a}{K_a \circ \varphi}.
\]

For the other direction, suppose \(\psi \) has the form given in equation (2.2), and we will show that \(|\psi(a)| = \|W_{\psi,\varphi}\| \). By the same logic as the other direction, \(W_{\psi,\varphi} \) is unitarily equivalent to \(W_{\zeta,\tau}W_{\psi,\varphi}W_{\zeta,\tau} \), and again, this is a weighted composition operator of the form \(W_{f,g} \), \(f = (\zeta \circ \varphi \circ \tau) \), \(g = \tau \circ \varphi \circ \tau \). Using the form for \(\psi \) from Equation (2.1), we see that \(f = (\zeta) (\psi(a)) (\zeta \circ \varphi \circ \tau) = \psi(a) \).

Then \(W_{f,g} = \psi(a)C_g \), and since \(g(0) = 0 \), \(||C_g|| = 1 \), so we have \(||W_{\psi,\varphi}|| = ||W_{f,g}|| = ||\psi(a)|| ||C_g|| = ||\psi(a)|| \), \(\square \).

From this, we have an immediate corollary about when \(W_{\psi,\varphi} \) is normaloid.

Corollary 2.3. Suppose \(\varphi \) is an analytic self-map of the disk with Denjoy-Wolff point \(a \in \mathbb{D} \), \(\psi \in H^\infty \), and \(\rho(W_{\psi,\varphi}) = |\psi(a)| \). Then \(W_{\psi,\varphi} \) is normaloid if and only if \(\psi \) has the form

\[
\psi = \psi(a) \frac{K_a}{K_a \circ \varphi}.
\]

Proof. Note that we have \(|\psi(a)| \leq \rho(W_{\psi,\varphi}) \leq ||W_{\psi,\varphi}|| \) since \(a \in \mathbb{D} \). Then if \(W_{\psi,\varphi} \) is normaloid, we have \(||W_{\psi,\varphi}|| = \rho(W_{\psi,\varphi}) = |\psi(a)| \), where the second equality is by hypothesis. If instead we assume \(\psi \) has the given form, by Theorem 2.2 we have \(|\psi(a)| = ||W_{\psi,\varphi}|| \), therefore \(|\psi(a)| = \rho(W_{\psi,\varphi}) = ||W_{\psi,\varphi}|| \), so \(W_{\psi,\varphi} \) is normaloid. \(\square \)

In the previous corollary, we assumed that \(\rho(W_{\psi,\varphi}) = |\psi(a)| = |\psi(a)| \rho(C_{\varphi}) \).

The next corollary shows this case includes all power-compact weighted composition operators with \(\psi \in H^\infty \), and Section 3 shows it includes several different classes of \(W_{\psi,\varphi} \) with Denjoy-Wolff point of \(\varphi \) on \(\partial \mathbb{D} \).

Corollary 2.4. Suppose \(\varphi \) is an analytic self-map of \(\mathbb{D} \) with Denjoy-Wolff point \(a \in \mathbb{D} \), \(\psi \in H^\infty \), and \(W_{\psi,\varphi} \) is power-compact. Then \(W_{\psi,\varphi} \) is normaloid if and only if \(\psi \) has the form

\[
\psi = \psi(a) \frac{K_a}{K_a \circ \varphi}.
\]
Proof. By [7, Proposition 4.3], if $W_{\psi,\varphi}$ is compact, then $\rho(W_{\psi,\varphi}) = |\psi(a)|$, so Theorem 2.2 applies. If $W_{\psi,\varphi}$ is power-compact, we still have that the spectral radius is the absolute value of its largest eigenvalue, and $W^*_{\psi,\varphi}(K_a) = \overline{\psi(a)K_a}$, so $\rho(W_{\psi,\varphi}) = |\psi(a)|$. \hfill \Box

This form for ψ is not unexpected, since the same form is required for $W_{\psi,\varphi}$ to be normal when the fixed point of φ belongs to \mathbb{D} [1, Proposition 8], or even for $W_{\psi,\varphi}$ to be cohyponormal (in [4], they are shown to be equivalent when $a \in \mathbb{D}$). However, while normality requires a much stricter characterization for φ, here we show that this form for ψ is sufficient for $W_{\psi,\varphi}$ to be normaloid, while allowing for many different forms for φ.

At the end of [3], the authors ask how often we have $\sigma(W_{\psi,\varphi}) = \psi(a)\sigma(C_\varphi)$. The work above shows that there are weighted composition operators with φ having Denjoy-Wolff point a where this is false.

Example 2.5. In [6, Theorem 3.7], examples are given of weights $\psi \in H^\infty$ such that $W_{\psi,\varphi}$ is hyponormal when $\varphi(z) = \frac{sz}{1-(1-s)z}$, $0 < s < 1$. Every hyponormal operator is normaloid, but the weights are not as prescribed in Corollary 2.3. Therefore, it must be that $\rho(W_{\psi,\varphi}) > |\psi(0)|$.

When φ has Denjoy-Wolff point $a \in \mathbb{D}$, the primary differentiation of spectrum comes from whether or not φ has a fixed point or a periodic point on $\partial \mathbb{D}$. Here, we obtain a partial result, that gives the spectral radius in Example 2.5. The proof of the following theorem is heavily borrowed from theorems about C_φ in [3].

Remark 2.6. Let φ_n denote the nth iterate of φ, i.e. $\varphi_n = \varphi \circ \varphi \cdots \circ \varphi$, n times. By the discussion ahead of [3, Theorem 7.36], when φ has Denjoy-Wolff point in \mathbb{D}, is analytic in a neighborhood of the closed disk, and is not an inner function, there is an integer n so that the set $S_n = \{ w : |w| = 1 \text{ and } |\varphi_n(w)| = 1 \}$ is either empty or consists only of the finitely many fixed points of φ_n on the circle. The essential spectral radius of C_φ is

$$\rho_e(C_\varphi) = \max\{\varphi_n'(w)^{-1/2n} : w \in S_n\}.$$

If S_n is empty, then C_φ is power-compact, which we have covered, so we will assume S_n is nonempty. We will say that the chosen element b of S_n establishes $\rho_e(C_\varphi)$.

Theorem 2.7. Suppose φ, not an inner function, is an analytic self-map of \mathbb{D} which is univalent on \mathbb{D} and analytic in a neighborhood of $\partial \mathbb{D}$, with Denjoy-Wolff point $a \in \mathbb{D}$. Suppose $b \in \partial \mathbb{D}$ establishes $\rho_e(C_\varphi)$. Let $\psi \in H^\infty$ be continuous at b and let $|\psi(b)| = ||\psi||_\infty$. Then

(1) $|W_{\psi,\varphi}|_e = |\psi(b)||C_\varphi|_e$,
(2) $\rho_e(W_{\psi,\varphi}) = |\psi(b)\rho_e(C_\varphi)|$, and
(3) $\rho(W_{\psi,\varphi}) = \max\{|\psi(a)|, |\psi(b)|\rho_e(C_\varphi)|\}$.

Proof. By [3, Theorem 7.31], we have that

$$\rho_e(C_\varphi) = \lim_{k \to \infty} \left(\limsup_{|w| \to 1} \frac{\|K\varphi_k(w)\|}{\|Kw\|} \right)$$

and this happens in particular as \(w \) approaches the element \(b \) of \(\partial \mathbb{D} \) that gives the maximum value in the definition in Remark 2.6.

Now, we adapt the proof from [3, Proposition 3.13.] to show that\[\|W_{\psi,\varphi}\|_e \geq |\psi(b)|\|C_\varphi\|_e.\]

Let \(w_j \) be a sequence in \(\mathbb{D} \) tending to \(\partial \mathbb{D} \). Then the normalized weight sequence\[k_j = \frac{Kw_j}{\|Kw_j\|}\]tends to 0 weakly as \(j \) approaches infinity. If \(Q \) is an arbitrary compact operator on \(H^2 \), then \(Q^*(k_j) \to 0 \).

Now, \(\|W_{\psi,\varphi}\|_e = \inf\{\|W_{\psi,\varphi} - Q\| : Q \text{ is compact}\} \), and for \(Q \) compact,

\[
\|W_{\psi,\varphi} - Q\| \geq \limsup_{j \to \infty} \|(W_{\psi,\varphi} - Q)^*k_j\|
= \limsup_{j \to \infty} \|W_{\psi,\varphi}^*k_j\|
= \limsup_{j \to \infty} |\psi(w_j)|\|C_\varphi^*k_j\|.
\]

Since \(\|C_\varphi\|_e = \limsup_{j \to \infty} \|C_\varphi^*k_j\| \) is achieved by taking \(w_j \) tending towards \(b \), and likewise \(\limsup_{j \to \infty} |\psi(w_j)| = |\psi(b)| = \|\psi\|_\infty \) is achieved by taking \(w_j \) towards \(b \), we have \(\limsup_{j \to \infty} |\psi(w_j)|\|C_\varphi^*k_j\| = |\psi(b)|\|C_\varphi\|_e \) and \(\|W_{\psi,\varphi}\|_e \geq |\psi(b)|\|C_\varphi\|_e. \)

For the other direction, note that since the compact operators are an ideal, \(T_{\psi}Q \) is compact for any compact operator \(Q \), and if \(B \subseteq A \), then \(\inf A \leq \inf B \). Then

\[
\|W_{\psi,\varphi}\|_e = \inf\{\|W_{\psi,\varphi} - Q\| : Q \text{ is compact}\}
\leq \inf\{\|W_{\psi,\varphi} - T_{\psi}Q\| : Q \text{ is compact}\}
= \inf\{\|T_{\psi}(C_\varphi - Q)\| : Q \text{ is compact}\}
\leq \inf\{\|T_{\psi}\|\|C_\varphi - Q\| : Q \text{ is compact}\}
= \inf\{\|\psi\|_\infty\|C_\varphi - Q\| : Q \text{ is compact}\}
= \inf\{|\psi(b)|\|C_\varphi - Q\| : Q \text{ is compact}\}
= |\psi(b)|\inf\{\|C_\varphi - Q\| : Q \text{ is compact}\}
= |\psi(b)|\|C_\varphi\|_e.
\]

Therefore we have \(\|W_{\psi,\varphi}\|_e = |\psi(b)|\|C_\varphi\|_e.\)

Suppose momentarily that \(b \) is a fixed point of \(\varphi \). Since \(\varphi \) is analytic in a neighborhood of \(\partial \mathbb{D} \) (i.e. continuous at \(b \)), the above gives the same result if \(\psi \) is replaced by \(\psi \circ \varphi_k \) for any \(k \). Then,
\[\rho_e(W_{\psi, \varphi}) = \lim_{k \to \infty} \left(\|W_{\psi, \varphi}^k\|_e \right)^{1/k} \]

\[= \lim_{k \to \infty} \left(\|T_{(\psi)(\psi_o\varphi)(\psi_o\varphi_2)\ldots(\psi_o\varphi_{k-1})C\varphi_k}\|_e \right)^{1/k} \]

\[= \lim_{k \to \infty} \left(|\psi(b)|^k \|C\varphi_k\|_e \right)^{1/k} \]

\[= |\psi(b)| \lim_{k \to \infty} \left(\|C\varphi_k\|_e \right)^{1/k} \]

\[= |\psi(b)| \rho_e(C\varphi). \]

Now, while \(b \) may not be a fixed point of \(\varphi \), we know it is the fixed point of some \(n \)th iterate \(\varphi_n \). Furthermore, we know that \(\rho_e(W_{\psi, \varphi}) = \lim_{k \to \infty} \left(\|W_{\psi, \varphi}^k\|_e \right)^{1/k} \) is a convergent sequence. Therefore, every subsequence converges to \(\rho_e(W_{\psi, \varphi}) \).

By taking the subsequence with indices \(nk \) values of finite multiplicity. By [7, Proposition 4.3], any eigenvalue of \(W_{\psi, \varphi} \) must be of the form \(\sigma \) in \(\mathbb{C} \) and the largest of those values in magnitude is \(|\psi(b)| \). Furthermore, we know that \(|\psi(b)| \rho_e(C\varphi) \).

The complement in \(\sigma(W_{\psi, \varphi}) \) of the essential spectrum consists of eigenvalues of finite multiplicity. By [7, Proposition 4.3], any eigenvalue of \(W_{\psi, \varphi} \) must be of the form

\[\{0, \psi(a), \psi(a)\varphi'(a), \psi(a)(\varphi'(a))^2, \psi(a)(\varphi'(a))^3, \ldots \} \]

and the largest of those values in magnitude is \(\psi(a) \). This value is necessarily in \(\sigma(W_{\psi, \varphi}) \), since \(W_{\psi, \varphi}^* (K_a) = \overline{\psi(a)K_a} \).

Therefore, \(\rho(W_{\psi, \varphi}) = \max\{|\psi(a)|, |\psi(b)|\rho_e(C\varphi)\} \).

\[\square \]

Corollary 2.8. Suppose \(\varphi \), not an inner function, is an analytic self-map of \(\mathbb{D} \) which is univalent on \(\mathbb{D} \) and analytic in a neighborhood of \(\overline{\mathbb{D}} \), with Denjoy-Wolff point \(a \in \mathbb{D} \). Suppose \(b \in \partial \mathbb{D} \) establishes \(\rho_e(C\varphi) \). Let \(\psi \in H^\infty \) be continuous at \(b \) and let \(|\psi(b)| = \|\psi\|_\infty \).

Suppose further that \(W_{\psi, \varphi} \) is normaloid. Then, either \(\|W_{\psi, \varphi}\| = \rho(W_{\psi, \varphi}) = |\psi(a)| \) and \(\psi = \psi(a)K_a^{\psi(1)} \), or \(\|W_{\psi, \varphi}\| = \rho(W_{\psi, \varphi}) = \rho_e(W_{\psi, \varphi}) = |\psi(b)|\rho_e(C\varphi) \).

Proof. By Theorem 2.7, \(\rho(W_{\psi, \varphi}) = \max\{|\psi(a)|, |\psi(b)|\rho_e(C\varphi)\} \). If \(\rho(W_{\psi, \varphi}) = |\psi(a)| \), by Theorem 2.2 \(\psi \) has the form \(\psi = \psi(a)K_a^{\psi(1)} \). Otherwise, \(\rho(W_{\psi, \varphi}) = |\psi(b)|\rho_e(C\varphi) \).

\[\square \]

Example 2.9. Let \(W_{\psi, \varphi} \) be the hyponormal operator given by \(\psi(z) = \frac{2z}{2z-1} \), \(\varphi(z) = \frac{z}{z-1} \) [4, Example 3.8]. Then \(\rho(W_{\psi, \varphi}) = |\psi(1)|\varphi'(1)^{-1/2} = \sqrt{2}e \).

While neither Theorem 2.7 nor Corollary 2.8 gives sufficient conditions for \(W_{\psi, \varphi} \) to be normaloid, Theorem 2.7 does accomplish something else. An operator \(T \) is said to be essentially normaloid if \(\rho_e(T) = \|T\|_e \).

Corollary 2.10. Suppose \(\varphi \), not an inner function, is an analytic self-map of \(\mathbb{D} \) which is univalent on \(\mathbb{D} \) and analytic in a neighborhood of \(\overline{\mathbb{D}} \),
with Denjoy-Wolff point \(a \in D \). Let \(b \) be a fixed point of \(\varphi \) on \(\partial D \) such that establishes \(\rho_\varphi(C_\varphi) \). Let \(\psi \in H^\infty \) be continuous at \(b \) and let \(|\psi(b)| = \|\psi\|_\infty \). Then \(W_{\psi,\varphi} \) is essentially normaloid if and only if \(C_\varphi \) is essentially normaloid.

Proof. This is an immediate consequence of (1) and (2) in Theorem 2.7. \(\square \)

Example 2.11. Let \(\varphi(z) = e^{-z}, \psi = e^{-z} \). Then \(|\psi(0)| = 1 \) and \(|\psi(1)| \varphi'(1)^{-1/2} = \sqrt{2} < 1 \). Since \(\psi \) is not of the form \(|\psi(0)| K_0 \), \(W_{\psi,\varphi} \) is not normaloid. However, since \(C_\varphi \) is essentially normaloid ([3, Theorem 7.31, 7.36]), therefore so is \(W_{\psi,\varphi} \).

3. Uniformly Convergent Iteration (UCI)

We now turn our attention to when \(\varphi \) has Denjoy-Wolff point \(a \in \partial D \).

We wish to continue to assume that \(\rho(W_{\psi,\varphi}) = |\psi(a)| \rho(C_\varphi) \). Our goal in this section, before determining when such operators are normaloid, is to show that this class is non-trivial. To do so, we will put restrictions on how the iterates of \(\varphi \) converge to the Denjoy-Wolff point. This definition is from [5], where this hypothesis is used to determine the spectrum of weighted composition operators in this setting.

The Denjoy-Wolff Theorem [3, Theorem 2.51] states that all analytic self-maps of \(D \) other than elliptic automorphisms have a point in \(\overline{D} \) that they converge to under iteration on compact subsets of \(D \). Here, we ask the convergence to be stronger.

Definition 3.1 (Uniformly Convergent Iteration). We say \(\varphi \) is UCI if \(\varphi \) is an analytic self-map of \(D \) and the iterates of \(\varphi \) converge uniformly to the Denjoy-Wolff point uniformly on all of \(D \), rather than compact subsets of \(D \).

If \(\varphi \) is UCI and the Denjoy-Wolff point \(a \) of \(\varphi \) belongs to \(D \), then \(W_{\psi,\varphi} \) is power-compact [5, Corollary 2], so we have already covered that scenario in Section 2 without requiring this additional hypothesis.

Analytic self-maps of \(D \) that exhibit UCI while having Denjoy-Wolff point \(a \) on \(\partial D \) are a non-trivial set, and include maps whose derivative at the Denjoy-Wolff point are both less than 1 (e.g. \(\varphi(z) = (z + 1)/2 \)) and equal to 1 (e.g. \(\varphi(z) = 1/(2 - z) \)) [5, Example 5]. A simple sufficient condition for UCI when \(\varphi'(a) < 1 \) is that \(\varphi_N(D) \subseteq D \cup \{a\} \) for some \(N \) [5, Theorem 4]. This includes, then, any linear-fractional map with Denjoy-Wolff point on the boundary and \(\varphi'(a) < 1 \).

The main reason to now introduce this definition is the following theorem, proved in [5].

Theorem 3.2. Suppose \(\varphi \) is UCI with Denjoy-Wolff point \(a \in \partial D \), \(\psi \in H^\infty \) is continuous at \(a \), and \(\psi(a) \neq 0 \). Then:

- (1) \(\sigma_p(\psi(a)C_\varphi) \subseteq \sigma_{ap}(T_\psi C_\varphi) \subseteq \sigma(T_\psi C_\varphi) \subseteq \sigma(\psi(a)C_\varphi) \),
(2) If $\sigma_p(C_{\varphi}) = \sigma(C_{\varphi})$, then $\sigma(T_{\psi}C_{\varphi}) = \sigma(\psi(a)C_{\varphi})$.

(3) If $\varphi'(a) < 1$, then $\sigma(T_{\psi}C_{\varphi}) = \sigma(\psi(a)C_{\varphi})$ and $\sigma_p(W_{\psi,\varphi}) = \sigma_p(\psi(a)C_{\varphi})$.

We have an immediate corollary regarding the spectral radius.

Corollary 3.3. Suppose φ is UCI with Denjoy-Wolff point $a \in \partial \mathbb{D}$, $\psi \in H^\infty$ is continuous at a, and $\psi(a) \neq 0$. Then $\rho(W_{\psi,\varphi}) = |\psi(a)|\rho(C_{\varphi})$.

Proof. If $\varphi'(a) < 1$, then (3) of the Theorem 3.2 makes this clear. If $\varphi'(a) = 1$, note that $1 \in \sigma_p(C_{\varphi})$, so $\psi(a) \in \sigma_p(\psi(a)C_{\varphi})$, and therefore by (1) of Theorem 3.2 $\rho(W_{\psi,\varphi}) \geq |\psi(a)|$. Again by (1), we also have $\sigma(W_{\psi,\varphi}) \subseteq \sigma(\psi(a)C_{\varphi})$, so $\rho(W_{\psi,\varphi}) \leq \rho(\psi(a)C_{\varphi}) = |\psi(a)|\rho(C_{\varphi}) = |\psi(a)|$, since $\rho(C_{\varphi}) = 1$ [3, Theorem 3.9]. Therefore $\rho(W_{\psi,\varphi}) = |\psi(a)| = |\psi(a)|\rho(C_{\varphi})$. \hfill \qed

4. $a \in \partial \mathbb{D}$

Here we follow the same path as Section 2. We will continue to assume that we have $\rho(W_{\psi,\varphi}) = |\psi(a)|\rho(C_{\varphi})$, and will seek to determine conditions for which $\|W_{\psi,\varphi}\|$ is the same. We will also obtain a few corollaries for when φ is explicitly UCI.

Theorem 4.1. Suppose φ is an analytic self-map of \mathbb{D} with Denjoy-Wolff point $a \in \partial \mathbb{D}$, $\psi \in H^\infty$, and ψ is continuous at the Denjoy-Wolff point a of φ, with $\|\psi\|_\infty = |\psi(a)|$. Furthermore, assume $\rho(W_{\psi,\varphi}) = |\psi(a)|\rho(C_{\varphi})$. If C_{φ} is normaloid, then $W_{\psi,\varphi}$ is normaloid.

Proof. Note that

$$
\|W_{\psi,\varphi}\| \leq \|T_{\psi}\|\|C_{\varphi}\|
= |\psi|\|C_{\varphi}\|
= |\psi(a)|\|C_{\varphi}\|
= |\psi(a)|\rho(C_{\varphi})
= \rho(W_{\psi,\varphi}) \leq \|W_{\psi,\varphi}\|.
$$

\hfill \qed

Example 4.2. If $\psi = e^z$ and $\varphi = (z + 1)/2$, then $\|\psi\|_\infty = e = \psi(1)$. Since C_{φ} is cohyponormal and therefore normaloid [3, Theorem 8.7], $W_{\psi,\varphi}$ is normaloid and also convexoid.

While examples generated by Theorem 4.1 are reasonable to come by when $\varphi'(a) < 1$, they are actually impossible to come by when $\varphi'(a) = 1$.

Theorem 4.3. Suppose φ is an analytic self-map of \mathbb{D} with Denjoy-Wolff point $a \in \partial \mathbb{D}$ and $\varphi'(a) = 1$. Then C_{φ} is not normaloid.

Proof. The proof is analogous to Theorem 2.1. The spectral radius for C_{φ} is $\varphi'(a)^{-1/2}$ when $a \in \partial \mathbb{D}$ [3, Theorem 3.9], so here we have $\rho(C_{\varphi}) = 1$. Since $\varphi(0) \neq 0$, we know $\|C_{\varphi}\| > 1$, therefore C_{φ} is not normaloid. \hfill \qed
However, there are known weighted composition operators where $\varphi'(a) = 1$ and $W_{\psi,\varphi}$ is normaloid - even self-adjoint [2]. We make a minor adjustment to Theorem 4.1 to generate new examples of normaloid weighted composition operators in this setting.

Corollary 4.4. Suppose φ is an analytic self-map of D with Denjoy-Wolff point a, $\psi \in H^\infty$ is continuous at a, and $f \in H^\infty$ is also f is continuous at a, with $\|f\|_\infty = |f(a)|$. If $W_{\psi,\varphi}$ is normaloid and $\rho(W_{\psi,\varphi}) = |f(a)|\rho(W_{\psi,\varphi})$, then $W_{f\psi,\varphi}$ is normaloid.

Proof. The proof is identical to Theorem 4.1, with a mere adjustment of symbols:

$$\|W_{f\psi,\varphi}\| \leq \|T_f\|\|W_{\psi,\varphi}\| = \|f\|_\infty\|W_{\psi,\varphi}\| = |f(a)|\|W_{\psi,\varphi}\| = |f(a)|\rho(W_{\psi,\varphi}) = \rho(W_{f\psi,\varphi}) \leq \|W_{f\psi,\varphi}\|.$$

□

Example 4.5. Suppose $\psi(z) = \frac{1}{z^2}, f(z) = e^z$. Then $W_{\psi,\psi}$ is self-adjoint and therefore normaloid by [2, Theorem 6]. Since ψ is UCI [5, Example 5], we have $\rho(W_{f\psi,\psi}) = |f(1)|\|\psi(1)\| = |f(1)|\rho(W_{\psi,\psi})$. Since $|f(1)| = e = \|f\|_\infty$, we have that $W_{f\psi,\psi}$ is normaloid.

We end this section with a few extra facts for when φ is UCI and $\varphi'(a) < 1$.

Theorem 4.6. Suppose φ is UCI, the Denjoy-Wolff point a of φ is on ∂D, and $\varphi'(a) < 1$. Then $W_{\psi,\varphi}$ is convexoid if and only if $W_{\psi,\varphi}$ is spectraloid.

Proof. Every convexoid operator is spectraloid. In the other direction, assume $W_{\psi,\varphi}$ is spectraloid, so that $\rho(W_{\psi,\varphi}) = r(W_{\psi,\varphi})$. Note that by (3) of Theorem 3.2, the spectrum of $W_{\psi,\varphi}$ is a closed disk centered at the origin, completely filling in the set $\{\lambda \in \mathbb{C} : |\lambda| \leq \rho(W_{\psi,\varphi})\}$. Since $\rho(W_{\psi,\varphi}) = r(W_{\psi,\varphi})$, this set is necessarily also the closure of the numerical range. Therefore, $W_{\psi,\varphi}$ is convexoid.

□

Corollary 4.7. Suppose φ is UCI, the Denjoy-Wolff point a of φ is on ∂D, and $\varphi'(a) < 1$. If $W_{\psi,\varphi}$ is normaloid, then $W_{\psi,\varphi}$ is convexoid.

Proof. Every normaloid operator is spectraloid, so $W_{\psi,\varphi}$ is spectraloid. By Theorem 4.6, if $W_{\psi,\varphi}$ is spectraloid, it is also convexoid.

□

5. Further Questions

Here we summarize the questions raised by the work of this paper.

1. If $W_{\psi,\varphi}$ is normaloid and $\rho(W_{\psi,\varphi}) = |\psi(a)|\rho(C_\varphi)$, is it necessary that $|\psi(a)| = \|\psi\|_\infty$?
(2) Can the many hypotheses of Theorem 2.7 be weakened, to identify \(\rho_e \) in the general setting when \(\varphi \) has interior Denjoy-Wolff point and \(C_\varphi \) is not power-compact?

(3) Can we then characterize all normaloid weighted composition operators where \(\varphi \) has Denjoy-Wolff point in \(\mathbb{D} \)?

(4) What are the necessary conditions for \(W_{\psi,\varphi} \) to be normaloid when the Denjoy-Wolff point of \(\varphi \) is on \(\partial \mathbb{D} \)?

(5) Ultimately, can we get an exact characterization of when \(W_{\psi,\varphi} \) is normaloid?

ACKNOWLEDGEMENTS

The author would like to thank the Taylor University Distinguished Lecturer program for funding this research, and the reviewer for his extremely helpful comments.

REFERENCES

1. P. S. Bourdon, S. K. Narayan, Normal weighted composition operators on the Hardy space \(H^2(\mathbb{D}) \), *J. Math. Anal. Appl.* **367** (2010), 278-286.
2. C. C. Cowen, G. Gunatillake, and E. Ko, Hermitian weighted composition operators and Bergman extremal functions. *Complex Anal. Oper. Theory*, **7(1)** (2013), 69-99.
3. C. C. Cowen and B.D. MacCluer, *Composition Operators on Spaces of Analytic Functions*, CRC Press, Boca Raton, 1995. MR **97i**:47056.
4. C. C. Cowen, S. Jung, and E. Ko, Normal and cohyponormal weighted composition operators on \(H^2 \), *Operator Theory: Advances and Applications* **240** (2014), 69-85.
5. C. C. Cowen, E. Ko, D. Thompson and F. Tian, Spectra of some weighted composition operators on \(H^2 \), *Acta Sci. Math. (Szeged)*, **82** (2016), 221-234.
6. M. Fatehi, M. Haji Shaabani, Thompson, D., Quasinormal and Hyponormal Weighted Composition Operators on \(H^2 \) and \(A^\alpha_\mathbb{D} \) with Linear Fractional Compositional Symbol, *Complex Analysis and Operator Theory*. (2017). doi:10.1007/s11785-017-0683-3
7. C. Hammond, *On the Norm of a Composition Operator*, Thesis, University of Virginia, 2003.

TAYLOR UNIVERSITY, UPLAND, IN, 46989

E-mail address: theycallmedt@gmail.com