A conformational sensor based on genetic code expansion reveals an autocatalytic component in EGFR activation

Martin Baumdick\(^1\), Márton Gelléri\(^{1,2}\), Chayasith Uttamapinant\(^3\), Václav Beránek\(^3\), Jason W. Chin\(^3\) & Philippe I.H. Bastiaens\(^{1,2}\)

Epidermal growth factor receptor (EGFR) activation by growth factors (GFs) relies on dimerization and allosteric activation of its intrinsic kinase activity, resulting in transphosphorylation of tyrosines on its C-terminal tail. While structural and biochemical studies identified this EGF-induced allosteric activation, imaging collective EGFR activation in cells and molecular dynamics simulations pointed at additional catalytic EGFR activation mechanisms. To gain more insight into EGFR activation mechanisms in living cells, we develop a Förster resonance energy transfer (FRET)-based conformational EGFR indicator (CONEGI) using genetic code expansion that reports on conformational transitions in the EGFR activation loop. Comparing conformational transitions, self-association and auto-phosphorylation of CONEGI and its Y845F mutant reveals that Y\(_{845}\) phosphorylation induces a catalytically active conformation in EGFR monomers. This conformational transition depends on EGFR kinase activity and auto-phosphorylation on its C-terminal tail, generating a looped causality that leads to autocatalytic amplification of EGFR phosphorylation at low EGF dose.
imerization of EGFR by GFs activates its intrinsic kinase activity, which trans-phosphorylates tyrosine residues on the C-terminal receptor tail, SH2- or PTB-containing signal transducing proteins are then recruited to these phosphorylated tyrosines, propagating the signal in the cytoplasm. Structural data of EGFR indicate that in absence of ligand, a closed tethered extracellular domain (ECD) and association of the intracellular tyrosine kinase domain (TKD) with the negatively charged plasma membrane (PM) by two polybasic stretches favor steric auto-inhibition of EGFR’s intrinsic kinase activity. Ligand binding to EGFR is coupled to conformational changes in the extra- and intracellular domains and overcomes intrinsic auto-inhibition resulting in allosteric activation via asymmetric dimer formation of the TKD. For this, the α-helix located in the N-lobe of the TKD moves from its out-conformation to an ordered in-conformation, while the activation loop frees the catalytic cleft and undergoes conformational rearrangements of ~20 Å. Despite the steric auto-inhibitory features, autonomous EGFR phosphorylation was observed in several cancer types including breast and lung cancer that either exhibit high EGFR surface concentrations through EGFR overexpression or harbor oncogenic mutations favoring an active conformation. Spontaneous auto-phosphorylation of unliganded EGFR can occur due to thermal fluctuations that overcome intrinsic steric auto-inhibition. These auto-phosphorylation events can trigger an autocalytic amplification mechanism when they induce an active conformation that further catalyzes EGFR auto-phosphorylation. Molecular dynamics simulations suggested that Y845 phosphorylation in the EGFR activation loop suppresses intrinsic disorder in the α-helix, thereby stabilizing an active receptor conformation as well as increasing EGFR dimerization.

We therefore investigate whether EGFR can adopt an active conformation upon Y845 phosphorylation and how this impacts on collective EGFR phosphorylation dynamics in living cells. A clear avenue to obtain a better insight in collective EGFR activation is to monitor conformational dynamics of the TKD. For this, we engineer a FRET-based conformational EGFR indicator (CONEGI) using genetic code expansion. In contrast to existing kinase activity sensors based on substrate phosphorylation, CONEGI is designed to report on conformational transitions in a functional domain of the EGFR TKD by the change in distance and orientation of a fluorophore conjugated to an unnatural amino acid (UAA) relative to the fluorescent protein mCitrine inserted into a conformationally invariant region. Based on structural data, we identify the end of the TKD as an insertion site for mCitrine that is conformationally invariant and does not affect EGFR function. UAA incorporation and subsequent site-specific labeling at position 851 creates a FRET-based sensor that reports on conformational transitions of the EGFR activation loop. This construct retains EGFR dimerizing and catalytic functionality. Monitoring conformational transitions together with dimerization and auto-phosphorylation and comparing these readouts to a CONEGI Y845F mutant reveals that an active conformation in monomeric receptors is induced by Y845 phosphorylation. We then show that Y845 phosphorylation depends on auto-phosphorylation of the C-terminal tail, which creates an autocalytic loop that amplifies EGFR phosphorylation at low, non-saturating EGF concentrations.

Results

Design and performance of CONEGI. To monitor conformational states of the TKD, we engineered multiple FRET-based conformational EGFR sensor variants, in which the donor, monomeric Citrine (mCitrine), was always genetically encoded at the same rigid region of the TKD and genetic code expansion and bioorthogonal labeling chemistry were used to position the acceptor, Atto590, at different, flexible structures of the TKD that change conformation upon activation (Fig. 1a). This hybrid sensor design allows measuring structural changes in different key functional TKD regions relative to the donor. Conformational movements of these TKD regions will alter the distance and angle between mCitrine and Atto590 resulting in changes in FRET efficiency, which can be quantified by fluorescence lifetime imaging microscopy (FLIM). mCitrine was selected as donor because of its mono-exponential fluorescence decay profile and the membrane-permeable Atto590 as acceptor because of its high extinction coefficient (~120,000), high quantum yield (QY: 0.8), and spectral overlap with mCitrine (R0 = 5.9 nm).

By aligning active (red; PDB: 2J5F) and inactive (cyan; PDB: 2GS7) crystal structures of the EGFR TKD (Fig. 1b), we identified a conformationally invariant region at the TKD end, where we inserted mCitrine between amino acids (aa) Q958 and G959 (EGFR-QG-mCitrine). This site is exposed to the protein surface and not part of the asymmetric as well as the symmetric dimerization interface or regions known to be essential for kinase activity (Supplementary Fig. 1a). To further minimize perturbation of the TKD structure and constrain the mCitrine orientation, we used two linkers that form an antiparallel coiled-coil helix for mCitrine insertion. EGFR-QG-mCitrine was fully active and correctly localized as apparent from its similar localization and EGF-induced phosphorylation as compared to C-terminally tagged EGFR (EGFR-mCitrine) (Fig. 1c; Supplementary Fig. 1b, c), which was shown to follow the localization and activity of endogenous EGFR. We then selected three regions (kinase loop 2, α-helix, and activation loop) that showed substantial differences between the active and inactive conformation for Atto590 attachment (Fig. 1b). We replaced the coding sequences of amino acids K713 in the kinase loop 2, K730 and D737 in the α-helix and K843 and K851 in the activation loop with an amber codon and also inserted an amber codon between the coding sequence for E712 and K713. This resulted in the creation of a series of EGFR(TAGXXX)-QG-mCitrine variants, where XXX indicates the amber codon position. We estimated the distances between the QG site that included the maximum linker length and each proposed site of Atto590 attachment. The obtained distances (R) of ~7.4–8.5 nm were sufficiently close to the Förster radius (R0 = 5.9 nm) of the employed FRET pair resulting in estimated FRET efficiencies (FRET) between 10 and 21% for the different variants as calculated by $E_{\text{FRET}} = \frac{R^6}{R_0^6 + R^6}$ (Supplementary Table 1). This showed that the 851 site yielded the highest (21%) FRET efficiency. We conjugated Atto590 to the desired site in the TKD in a two-step process to generate conformational EGFR indicators (CONEGIs): first, we used a derivative of the pyrolysyl-tRNA synthetase/tRNA_CUA pair from Methanosarcina mazei to express each EGFR(TAGXXX)-QG-mCitrine gene and direct the incorporation of added UAA bicyclo[6.1.0]nonyne-lysine (BCNK)[23,24]; second, we labeled each EGFR(BCNKXXX)-QG-mCitrine variant, where XXX indicates the position of BCNK incorporation, with a tetrazine-Atto590 (tet-Atto590) conjugate via an inverse electron demand Diels–Alder reaction.

Expression of EGFR(BCNKXXX)-QG-mCitrine variants in HEK293T cells was dependent on BCNK (Fig. 1d). Whereas EGFR(BCNK851)-QG-mCitrine was expressed at a comparable level to EGFR-QG-mCitrine, all other variants exhibited reduced expression (Fig. 1d). EGFR(BCNKXXX)-QG-mCitrine labeling with tet-Atto590 was selective, as judged by both, fluorescence imaging of cell lysates following SDS-PAGE, and co-localization of mCitrine and Atto590 fluorescence at the PM and intracellular compartments as visualized in living cells by confocal microscopy (Fig. 1d, e). All EGFR(BCNKXXX)-QG-mCitrine variants
exhibited a similar localization as compared to an EGFR variant C-terminally tagged with mTurquoise (EGFR-mTurquoise) (Supplementary Fig. 1d). In addition to their comparable PM distribution (Supplementary Fig. 1d, e), all CONEGI constructs exhibited pericentriolar localization similar to EGFR-mTurquoise. This pericentriolar compartment was identified to be the Rab11-positive recycling endosome (Supplementary Fig. 1f), which was previously shown to maintain EGFR at the PM by continuous recycling15,25.

To experimentally determine whether EGFR(BCNKXXX)-QG-mCitrine labeling with Atto-590 results in FRET, we imaged the fluorescence lifetime (τ) of mCitrine at the PM after addition of...
Fig. 1 Design and performance of CONEGI. **a** Schematic representation of CONEGI. mCitrine is fused to the C-terminal end of the tyrosine kinase domain (TKD) using a coiled-coil linker (dashed line) and Atto590 (red star) is site-specifically attached to the activation loop. **b** Alignment of active (red; PDB: 2J5F) and inactive (cyan; PDB: 2G57) crystal structures of the EGFR TKD. mCitrine insertion (QG, yellow) and BCNK incorporation sites (blue, black arrows) are indicated. **c** Relative phosphorylation (PY72/EGFR) of EGFR-mCitrine or EGFR-QG-mCitrine upon EGF stimulation determined by western blot analysis (n = 4; two-way analysis of variance (two-way ANOVA)) (Supplementary Fig. 1b). **d** Fluorescence images and western blot analysis following SDS-PAGE of HEK293T cell lysates showing Atto590 fluorescence and expression level of EGFR-QG-mCitrine and CONEGIs depending on BCNK. Blots were probed with anti-EGFR and anti-Tubulin (left). Normalized relative EGFR expression (EGFR/Tub) (middle) and Atto590 fluorescence intensity (right) of EGFR-QG-mCitrine and CONEGIs (n = 3 blots). **e** Representative mCitrine and Atto590 fluorescence images of EGFR-QG-mCitrine and CONEGIs in HEK293T cells and corresponding green/magenta overlay. **f** Representative fluorescence images of EGFR(BCNK851)-QG-mCitrine upon tetrazine-Atto590 labeling and corresponding τ. **g** Mean in CONEGIs and EGFR-QG-mCitrine (QG: n = 10 cells; 712/713: n = 8; 730: n = 6; 730: n = 11; 737: n = 7; 843: n = 10; 851: n = 17) at the PM upon tetrazine-Atto590 addition. **h** Dependency of τ in CONEGIs and EGFR-QG-mCitrine (QG: n = 42 cells; 712/713: n = 36; 713: n = 43; 730: n = 36; 737: n = 30; 843: n = 44; 851: n = 32) on mean Atto590 fluorescence intensity (f) of Atto590) at the PM after 20 min labeling. Data points represent individual cells. τ, fluorescence lifetime of mCitrine. Scale bars, 10 μm. EGF stimulation, 100 ng ml⁻¹.

To examine whether the EGFR(BCNKKX)-QG-mCitrine variants retain their activity upon BCNK incorporation, we quantified the phosphorylation on tyrosines 1086 (Y1086) and 1148 (Y1148) by measuring the interaction of mCherry-tagged phosphotyrosine-binding domain (PTB-mCherry) with each EGFR(BCNK)-QG-mCitrine variant upon EGF stimulation by FLIM [26]. EGF-induced PTB-mCherry recruitment to EGFR (BCNK843)-QG-mCitrine and EGFR(BCNK851)-QG-mCitrine at the PM resulted in a corresponding drop in τ (Fig. 2c, d). This decrease in τ was comparable to that of EGFR-QG-mCitrine upon EGF-mediated PTB-mCherry recruitment, whereas EGF-induced phosphorylation of other variants (712/713, 713, 730, and 737) only marginally increased as judged by minimal decreases in τ of mCitrine (Fig. 2d). To examine whether other phosphorylation sites were affected by BCNK incorporation and Atto590 labeling, we quantified the relative phosphorylation (pY/EGFR) on the Grb2-binding site Y1068 [27] for all CONEGIs by western blot analysis. Consistent with PTB-mCherry recruitment, CONEGI-843 and -851 exhibited a similar EGF-induced fold-change in Y1068 phosphorylation as compared to EGFR-QG-mCitrine, but the relative phosphorylation level of CONEGI-843 was drastically reduced (Fig. 2e, f; Supplementary Fig. 2c). The other CONEGIs showed increased autonomous phosphorylation (CONEGI-712/713 and -713) or responded only marginally to EGF (CONEGI-712/713, -713, -730, and -737), indicating that their activation mechanism was impaired (Fig. 2e, f; Supplementary Fig. 2c).

Immunofluorescence staining against pY1068 in fixed HEK293T cells expressing EGFR(BCNK851)-QG-mCitrine showed that EGF-mediated phosphorylation at the PM was comparable to that of EGFR-QG-mCitrine (Fig. 2g; Supplementary Fig. 2d), which shows that EGFR(BCNK851)-QG-mCitrine at the PM is fully functional. Tet-Atto590 labeling did not affect autonomous or ligand-dependent EGFR phosphorylation of EGFR(BCNK851)-QG-mCitrine (Supplementary Fig. 2e). We therefore conclude that CONEGI-851 (from now on denoted as CONEGI) most closely follows the native activation mechanism of EGFR.

To investigate whether the change in FRET upon EGF activation detected in CONEGI is of intra- or intermolecular origin, we measured τ of EGFR-QG-mCitrine (donor only) upon co-expression with an EGFR(BCNK851) variant that was labeled with Atto590 (acceptor only). τ of EGFR-QG-mCitrine in the presence of Atto590-labeled EGFR(BCNK851) (2.992 ± 0.006 SEM) was close to that of EGFR-QG-mCitrine (3.033 ± 0.006 SEM).
and only marginally decreased upon EGF stimulation (Fig. 2h, i; Supplementary Fig. 2f), showing that FRET in CONEGI reports on intramolecular conformational rearrangements. To demonstrate that the change in FRET efficiency in CONEGI originates from the rearrangement of the activation loop rather than from mCitrine reorientation upon dimerization, we locked the TKD into an inactive conformation using the ATP analog EGFR inhibitor Lapatinib28. This abolished EGF-induced CONEGI phosphorylation (Supplementary Fig. 2g), but did not prevent EGF-induced dimerization as measured by homo-FRET between mCitrine using fluorescence anisotropy29 (Fig. 2j; Supplementary Fig. 2h). Importantly, this EGF-induced phosphorylation.
dimerization of CONEGI with a Lapatinib locked TKD conformation did not result in a decrease in τ as observed for CONEGI in absence of inhibitor (Fig. 2k). This shows that CONEGI exclusively reports conformational transitions of the activation loop, but not reorientation of mCitrine upon dimerization.

A catalytic conformation by activation loop phosphorylation. Phosphorylation of Y845 was previously described to affect both the conformation of the EGF TKD, and to enhance its dimerization. We therefore explored if Y845 phosphorylation in the activation loop is linked to an EGFR conformational state that is catalytically active without dimerization. For this, we compared the dimerization and conformational transition of CONEGI upon its ligand-independent phosphorylation to that of a CONEGI-Y845F mutant. Ligand-independent phosphorylation of EGFR is known to occur upon phosphatase inhibition by pervanadate (PV) or upon high EGFR expression levels. Under both conditions, the intrinsic EGFR kinase activity surpasses the reverse dephosphorylating activity of phosphatases, resulting in an increased steady state phosphorylation level of EGFR.

EGF administration at saturating dose (100 ng ml⁻¹) resulted in a drop in anisotropy of CONEGI (independent of UAA incorporation or Atto590 labeling), showing EGF-induced dimerization (Fig. 3a; Supplementary Fig. 3a, b). This dimerization-induced drop in anisotropy could be affected by the efficiency of UAA incorporation in response to the amber stop codon, resulting in the expression of truncated CONEGI (~43 ± 0.4% (SEM), Supplementary Fig. 3c). This truncated CONEGI lacks the donor fluorophore mCitrine, but potentially could interact with full length CONEGI. We therefore measured the amount of full length CONEGI at the PM by determining the fluorescence ratio of EGF-Alexa647 (100 ng ml⁻¹, binds to all CONEGI constructs) to mCitrine (only expressed on full length CONEGI) (Supplementary Fig. 3d).

The identical fluorescence ratio of EGF-BCN(K851)-QG-mCitrine and full length EGF-BCN(K851)-QG-mCitrine (Supplementary Fig. 3d) showed that truncated CONEGI did not reach the PM. The identical anisotropy responses to EGF of EGF-QG-mCitrine and unlabeled EGFR (BCN(K851)-QG-mCitrine also confirmed that only full length CONEGI was present at the PM (Supplementary Fig. 3a). The relatively smaller EGF-induced change in anisotropy for CONEGI can be accounted for by the ~14.3 ± 0.8% (SEM) reduction in mCitrine fluorescence lifetime by FRET to Atto590.

EGF stimulation led to a concurrent increase in phosphorylation of Y1068 and Y845 (Fig. 3b; Supplementary Fig. 3e, f). In contrast, the anisotropy of CONEGI did not change upon PV treatment over a time course of 20 min, in which Y1068 and Y845 phosphorylation reached similar levels as compared to EGF stimulation (Fig. 3a–c; Supplementary Fig. 3a, e, f). This demonstrates that the majority of ligand-independent phosphorylated CONEGI is monomeric. Both EGF and PV induced a conformational change in CONEGI as apparent from the change in τ. However, while EGF provoked a rapid drop in τ, PV treatment resulted in a slower decrease in agreement with the differential phosphorylation kinetics (Fig. 3b–d; Supplementary Fig. 3e–g). This shows that not only EGF-stimulated dimers but also phosphorylated monomers undergo a conformational change in the activation loop upon phosphorylation. For CONEGI-Y845F expressing HEK293T cells, a significantly smaller and slower change in τ upon PV was observed showing that Y845 phosphorylation induces a conformational change in the activation loop (Fig. 3f; Supplementary Fig. 3h). This was parallelly by a significantly lower Y1068 auto-phosphorylation in CONEGI-Y845F as compared to that of CONEGI, revealing that Y845 phosphorylation results in a catalytically more active CONEGI conformation (Fig. 3e; Supplementary Fig. 3i).

We next investigated the dependence of ligand-independent phosphorylation on the expression level of CONEGI in relation to the conformational transition of the activation loop. Exploiting the cell-to-cell variance in mCitrine fluorescence, allowed us to relate CONEGI expression to phosphorylation on Y1068 as measured by immunofluorescence. We could clearly observe an expression level-dependent increase in auto-phosphorylation that was absent in its Y845F mutant (Fig. 3g, i; Supplementary Fig. 3j). This increase in auto-phosphorylation was not due to an increase in dimers at higher expression as apparent from the fluorescence anisotropy as function of CONEGI expression (Supplementary Fig. 3a). In an analogous experiment, we related CONEGI expression by its fluorescence intensity to its conformational state by fluorescence lifetime in many individual cells. Here, we could clearly observe a CONEGI expression level-dependent conformational transition that was absent in the CONEGI-Y845F mutant (Fig. 3h, i). Together, these data show that CONEGI but not its Y845F mutant is able to activate other CONEGI molecules via Y845 phosphorylation, resulting in catalytic amplification. In order to estimate at which EGF phosphorylation levels this spontaneous amplification in EGFR phosphorylation can occur, we determined the level of CONEGI expression in relation to endogenous EGFR expression in non-
Y845 phosphorylation induces an active conformation of EGFR monomers. a Mean mCitrine fluorescence anisotropy of CONEGI upon EGF or pervanadate (PV) treatment (Supplementary Fig. 3a, b) (N = 3 experiments; n = 30–47 fields of view/condition; unpaired two-tailed t-test). b, c Normalized relative Y1068 (pY1068/CONEGI) (b) or pY845 phosphorylation (pY845/CONEGI) (c) of CONEGI upon EGF or PV treatment by western blot analysis (n = 3) (Supplementary Fig. 3e, f). d Change in Δτ of CONEGI (upper panel) at the PM and the difference between EGF and PV treatment (ΔΔτ) (lower panel) (EGF: n = 19 cells; PV: n = 6) (Supplementary Fig. 3g). e Normalized relative Y1068 phosphorylation (pY1068/CONEGI) of CONEGI or CONEGI-Y845F upon PV treatment by western blot analysis (n = 3; unpaired two-tailed t-test) (Supplementary Fig. 3i). f Change in Δτ of CONEGI and CONEGI-Y845F upon PV treatment (upper panel) and the difference (ΔΔτ) between CONEGI and CONEGI-Y845F (lower panel) (CONEGI: n = 6 cells; Y845F: n = 8; two-way ANOVA) (Supplementary Fig. 3h). g Relative Y1068 phosphorylation (pY1068/EGFR) of CONEGI and CONEGI-Y845F at increasing EGFR expression levels as measured by mCitrine intensity per cell (F50, F100, F150, F200) binned as follows: <230, 230–330, 330–430, >430) (CONEGI: n = 80 cells; Y845F: n = 81; unpaired two-tailed t-test). h Mean τ in CONEGI and CONEGI-Y845F at increasing EGFR expression levels (n = 47 cells/variant; unpaired two-tailed t-test). i Relative Y1068 phosphorylation (pY1068/EGFR) of CONEGI and CONEGI-Y845F versus their τ of mCitrine upon increasing expression levels (F50, F100, F150, F200) (CONEGI: n = 80 cells; Y845F: n = 81; unpaired two-tailed t-test). j Distribution of relative EGFR expression in MCF10A (n = 125 cells), A431 (n = 129), and CONEGI-expressing HEK293T cells (n = 80) as derived from fluorescence histograms of EGF-Alexa647 binding per cell to the respective cell lines (Supplementary Figure 3k). EGFR stimulation, 100 ng ml⁻¹. PV treatment, 0.33 mM. Error bars: SEM. τ fluorescence lifetime of mCitrine.

Comparison of EGF-Alexa647 binding to CONEGI in HEK293T cells and that of endogenous EGFR in A431 and MCF10A cells revealed that between ~2 x 10⁻⁵–5 x 10⁻⁵ CONEGIs are expressed per cell (Supplementary Fig. 3k). Matching the intensity distribution of the EGF-Alexa647 fluorescence bound to CONEGI to the distribution of mCitrine intensities of
EGFR dimers can induce autocalytic activation of monomers. We next investigated whether ligand-induced EGFR dimers can activate receptor monomers. At saturating EGF dose (100 ng ml\(^{-1}\)), all receptors are occupied with ligand and are activated by the canonical dimerization mechanism. However, catalytic amplification can take place at sub-saturating EGF dose (20 ng ml\(^{-1}\)) because only a fraction of receptors will be occupied by ligand (20–30%); estimated by the ratio of EGF-Alexa647/mCitrine fluorescence at 20 ng/ml over 100 ng/ml EGF-Alexa647 per cell (Supplementary Fig. 4a). We therefore compared CONEGI and CONEGI-Y845F phosphorylation and conformational dynamics in cells that were stimulated with saturating or sub-saturating EGF dose. Upon stimulation with saturating EGF dose, CONEGI and CONEGI-Y845F exhibited similar rapid \(\Delta \tau_{1068}\) phosphorylation reaching comparable levels (Fig. 4a; Supplementary Fig. 4b). CONEGI and CONEGI-Y845F also exhibited similar activation loop dynamics as apparent from the comparable change in \(\tau\) over time (Fig. 4b; Supplementary Fig. 4d). This is consistent with the activation loop being rearranged to an open conformation in both CONEGI and its Y845F mutant by the canonical allosteric dimerization mechanism. A similar EGF-induced decrease in anisotropy for CONEGI and CONEGI-Y845F confirmed that Y845F mutation does not affect its dimerization (Supplementary Fig. 4c).

However, upon stimulation of cells with sub-saturating EGF dose, \(\Delta \tau_{1068}\) phosphorylation of CONEGI reached within 1 min ~39 ± 9% (SEM) of that at saturating EGF dose to further increase over time to ~72 ± 12% (SEM), showing a clear amplification of \(\Delta \tau_{1068}\) phosphorylation over time. This amplification was absent in CONEGI-Y845F, which after rapid initial activation remained stable at ~49 ± 7% (SEM) of that of CONEGI at saturating EGF (Fig. 4c; Supplementary Fig. 4b). Strikingly, the change in \(\tau\) of CONEGI-Y845F upon sub-saturating EGF stimulation was significantly slower and of lesser magnitude as compared to that of CONEGI, which was comparable to that at saturating EGF (Fig. 4d; Supplementary Fig. 4e). This shows that EGFR-ACTIVATED CONEGI dimers induce an active conformation in unliganded CONEGI monomers by \(\Delta \tau_{845}\) phosphorylation (Fig. 4e; Supplementary Fig. 4f). The question remained if \(\Delta \tau_{845}\) is directly phosphorylated by the intrinsic kinase activity of EGFR or whether this happens indirectly by recruitment or activation of another tyrosine kinase that is dependent on C-terminal tyrosine auto-phosphorylation of EGFR. It was previously shown that Y to A mutation of the Y1068 in the C-terminal tail strongly suppressed \(\Delta \tau_{845}\) phosphorylation\(^{37}\). To address if \(\Delta \tau_{845}\) phosphorylation happens via direct trans-phosphorylation or indirectly via recruitment of a tyrosine kinase to the phosphorylated C-terminal tail, we investigated \(\Delta \tau_{845}\) phosphorylation and conformational dynamics of a C-terminal tail truncated CONEGI mutant (CONEGI-ΔD969). This mutant retained its ability to dimerize (Supplementary Fig. 4g), but was severely impaired in \(\Delta \tau_{845}\) phosphorylation (Fig. 4f; Supplementary Fig. 4h). At saturating EGF dose, CONEGI-ΔD969 followed closely the conformational dynamics of CONEGI (Fig. 4g; Supplementary Fig. 4i), consistent with activation by the allosteric dimerization mechanism. However, at sub-saturating EGF dose, the change in \(\tau\) of CONEGI-ΔD969 was significantly slower and of lesser magnitude as compared to that of CONEGI (Fig. 4h; Supplementary Fig. 4i). In fact, C-terminal attenuation of the conformational transition as the Y845F mutation (compare Fig. 4h to 4d). This shows that C-terminal auto-phosphorylation on EGFR is necessary to recruit or activate another tyrosine kinase that activates monomers by trans-phosphorylation on Y845\(^{37}\). These activated monomers can phosphorylate EGFR on the C-terminal tail, closing an autocalytic loop.

Discussion

Many insights in the ligand-induced allosteric dimer activation mechanism of EGFR were gained by structural studies that captured different conformations of the ECD and the TKD\(^{2,5}\). On the other hand, genetically encoded optical kinase substrate sensors provided information about spatially resolved EGFR phosphorylation dynamics\(^{26,38}\), but could not relate EGFR conformational dynamics to its phosphorylation activity. To bridge this gap, we developed the conformational sensor CONEGI that reports on conformational transitions in the activation loop of the EGFR TKD in living cells, thereby enabling us to relate EGFR’s conformation to its phosphorylation activity and dimerization.

We designed multiple CONEGI variants in a hybrid approach using genetic code expansion in order to detect conformational dynamics in different key functional regions of the TKD. The limited availability of membrane-permeable dyes restricted the selection of an acceptor fluorophore with the spectral properties to form a FRET pair with mCitrine. This likely explains why existing conformational, FRET-based EGFR sensors are either based on protein labeling of the ECD\(^{39,40}\) or on in vitro labeling of intracellular domains\(^{41}\). The development of approaches to deliver membrane-impermeable dyes into cells\(^{42}\) or of novel membrane-permeable fluorophore species, e.g., near-infrared silicon-rhodamine dyes\(^{43}\) will facilitate the generation of similar conformational FRET sensors in the future. Here, we proved BCNK-labeling with the membrane-permeable Atto590 to be stable and highly specific in living cells (Fig. 1d, e, g, h). BCNK incorporation at the individual sites of the EGFR TKD affected kinase functionality to a different extent. Increased autonomous phosphorylation of CONEGI-712/713 and -713 might be caused by perturbation of inhibitory electrostatic interactions of kinase loop 2 with the PM\(^7\). The low EGF-induced fold-change in phosphorylation of CONEGI-737 could originate from hindrance of salt bridge formation between K721 and E738 that is essential for adopting the active conformation\(^{39}\) or from perturbation of the α-helix structure. In contrast, BCNK incorporation at position 851 in the activation loop was compatible with kinase function probably because the activation loop is a highly flexible region and the incorporation site is sufficiently apart from the catalytically important DFG motif (830–832), \(\Delta \tau_{845}\) and a β-strand that turns into a two-turn helix upon activation\(^{10}\).

With CONEGI, we investigated if and by which mechanism catalytic EGFR activation occurs. The comparison in dimerization (by fluorescence anisotropy) and conformational transitions in the activation loop (by FLIM) of CONEGI with its Y845F mutant, not only showed the conformational transition driven by allosteric interactions in EGFR-activated EGFR dimers\(^2\), but also that \(\Delta \tau_{845}\) phosphorylation induces a conformational change in EGFR monomers. That this conformational transition induced by \(\Delta \tau_{845}\) phosphorylation leads to a catalytically more active conformation was apparent from the increased \(\Delta \tau_{1068}\) auto-phosphorylation on CONEGI monomers with respect to the CONEGI–Y845F mutant (Fig. 3e–i).

Oligomerization at sub-saturating EGF dose has been proposed to amplify receptor phosphorylation beyond what is
expected from liganded EGFR dimers only44. In principle, this could explain the amplification of phosphorylation that we ascribe to autocatalysis. However, under these conditions, we detected an equivalent decrease in anisotropy for CONEGI and its Y845F mutant showing that they exhibited identical self-association levels. While the dimerization level of the CONEGI Y845F mutant correlated with half-maximum Y1068 phosphorylation with respect to saturating EGF dose, Y1068 phosphorylation of CONEGI reached ~72% of that at saturating EGF dose (Fig. 4a, c). This difference of ~22% in Y1068 phosphorylation showed that CONEGI dimers can phosphorylate CONEGI monomers. Furthermore, we could also show that at high CONEGI expression levels or inhibition of phosphatases by PV, Y845 phosphorylation induced a catalytically active conformation by displacing the activation loop that enabled trans-phosphorylation between EGFR monomers on Y1068. The PV-induced residual conformational transition in CONEGI-Y845F that correlated with a lower Y1068 phosphorylation suggests that besides Y845 phosphorylation, additional posttranslational reactions such as ubiquitination or interactions with other proteins could contribute to generate a catalytically competent conformation.
in EGFR monomers. BCNK incorporation at the known ubiquitination site K\textsubscript{845}15 did not alter the phosphorylation activity of CONEGI (Fig. 2d, e, g), but other ubiquitination sites (e.g., K\textsubscript{843}) close to the EGFR activation loop could affect the conformation of the activation loop and thereby its kinase activity. However, we previously showed that EGFR monomers are inefficiently ubiquitinated13 in line with Y\textsubscript{845} phosphorylation, being the dominant mechanism for EGFR phosphorylation amplification.

The diminished Y\textsubscript{845} phosphorylation and impaired conformational transition in C-terminal tail truncated CONEGI-ΔD969 monomers, further showed that these depend on auto-phosphorylation of the C-terminal tail (Fig. 4f, h). EGFR autocatalysis can therefore occur by an Y\textsubscript{845} phosphorylation induced catalytically active conformation in EGFR monomers that trans-phosphorylate EGFR monomers on their C-terminal tail. These auto-phosphorylation events on the C-terminal tail then induce the recruitment or activation of a tyrosine kinase that phosphorylates Y\textsubscript{845} on EGFR monomers, thereby generating a looped conformation of the ECD3 Src is known to be activated by C-terminally phosphorylated EGFR and capable of phosphorylating Y\textsubscript{845}46,47 and therefore likely involved in this autocatalytic amplification on EGFR.

Theoretically, the autocatalytic phosphorylation mechanism can generate only one collective state in which all receptors are fully active48. Therefore, the question arises how autocatalytic activation is regulated by interaction with other enzymatic activities. We previously demonstrated that continuous vesicular recycling of EGFR monomers through perinuclear areas with high protein tyrosine phosphatase (PTP) activity of ER-associated PTPs, counteracts spontaneous autocatalytic EGFR activation by Y\textsubscript{845} dephosphorylation on recycling receptors13. The spatial separation of PTP activity from EGFR activity at the PM thereby provides a means via which cells can suppress autonomous autocatalytic activation while maintaining responsiveness to EGFR. The collective response properties of EGFR to EGF at the PM thereby allow for a non-competitive and non-complex arrangement with recursive interaction with PTPrG in the form of a double negative feedback14,36,48,49.

Autocatalytic EGFR activation can lead to full EGFR phosphorylation at the PM above a threshold EGF concentration14,50,51. However, EGFR is organized in clusters of 100–200 nm in diameter with up to 250 EGFR monomers32,52,53 limiting the reach of autocatalysis. This could effectively create nanoscopic systems that can locally sense and robustly respond to growth factors.

Methods

Antibodies. Rabbit anti-EGFR (western blot 1:1000; 4267, Cell Signaling Technology, Danvers, MA), goat anti-EGFR (western blot 1:1000; AF231, R&D Systems, Minneapolis, MN), mouse anti-pY1068 (western blot 1:1000; immunofluorescence: 1:200; 2236, Cell Signaling Technology), mouse anti-pY845 (western blot 1:1000; 558381, BD Biosciences, Heidelberg, Germany), mouse anti-phosphotyrosine (PY72) (western blot 1:730; P1721, InVivo Biotech Services, Henningdorf, Germany), mouse monoclonal anti-a-Tubulin (western blot 1:4000; Sigma-Aldrich, St. Louis, MO), rabbit anti-GAPDH (western blot 1:1000; 2118, Cell Signaling Technology), living colors rabbit anti-GFP (western blot 1:1000; 63293, Clontech, Mountain View, CA), IRDye 680 donkey anti-mouse IgG (western blot 1:10000; LI-COR Biosciences, Lincoln, NE), IRDye 800 donkey antibody anti-rabbit IgG (western blot 1:10000; LI-COR Biosciences), Alexa Fluor® 647 donkey anti-mouse IgG (immunofluorescence 1:200; Thermo Fisher Scientific Inc., Waltham, MA).

Plasmids. Restriction and ligation enzymes were purchased from New England Biolabs (NEB, Frankfurt am Main, Germany), mCitrine-N1, mCherry-N1, and mTurquoise1-N1 were generated by insertion of AgeI/BgIII PCR fragments of mCitrine, mCherry, and mTurquoise cDNA in pEGFP-C1 (Clontech, Mountain View, CA). Fusions of EGFR and PTB domain with fluorescent proteins were generated through restriction-ligation of EGFR and PTB domain cDNA into the appropriate vector. To generate EGFR-QG-mCitrine, mCitrine flanked with a linker sequence (LAAAYSILLSLSIY-mCitrine-SDSSNLSSILSIYAAAL) was inserted between Q958 and Q959 of EGFR. Site-directed mutagenesis PCR using PfuUltra high-fidelity DNA polymerase (Agilent Technologies, Santa Clara, CA) replaced coding sequences in EGFR-QG-mCitrine with an amber codon (TAG) to generate NCN incorporation sites and was also used to fuse BCNK to CONEGI-Y845F mutant. NotI/NheI EGFR (TAG)-QG-mCitrine PCR fragments were inserted in a (U6-PytT*)2/EFa1-Pyrs plasmid previously described in ref.23. The BCNK incorporation system consists of two plasmids, (U6-PyT*)2/EFa1-Pyrs to express the tRNA synthetase and peRF1(ES5D) for expression of a modified eukaryotic release factor 1 (eRF1), peRF1(ES5D) was refolded in vitro, followed by intein splicing (NES) LAKLKLALDLGKS attached via a flexible 4x (SGGGS) linker to the N-terminus of PyRS. The plasmid was created from a previously reported construct24 by inverse PCR followed by insertion of the 4x (SGGGS) linker via blunt end ligation. A complete list with all relevant primers is provided in Supplementary Table 2. All constructs were sequence verified and tested for correct expression.

Reagents. Human EGF (Peprotech, Hamburg, Germany) was shock frozen at a concentration of 100 μg ml-1 in PBS + 0.1% BSA and stored at −80 °C. Pervanadate was freshly prepared by adding sodium orthovanadate (S6508, Sigma-Aldrich) to H\textsubscript{2}O\textsubscript{2} (30%) according to ref.30. BCNK was described earlier in ref.24. Site-specific C-terminal labeling of HEGF with Alexa647maleimide (Life Technologies, Darmstadt, Germany) was carried out as described in ref.25. Briefly, the His-CDm-Inet(Cys)-sHEGF-(Cys) plasmid (kindly provided by Professor Luc Brunsveld, University of Technology, Eindhoven), was expressed in Escherichia coli BL21 (DE3) and protein was purified by Ni-NTA affinity chromatography from inclusion bodies. Purified protein was refolded in vitro, followed by in vitro splicing and size exclusion chromatography. This purified human EGF was then C-terminally labeled with a fivefold molar excess of Alexa647-maleimide, excess dye was removed by dialysis, and the labeled protein stored in PBS at −20 °C. Tet-Ato290 was synthesized by conjugating Atto590-NHS ester (79636, Sigma-Aldrich) to tet-NH\textsubscript{2} in the presence of N,N-Diisopropylethylamine (DIPea). The product was purified using high-performance liquid chromatography (HPLC) and
the identity of the compound confirmed by mass spectrometry. Laptatinib (23177-92-2, Cayman Chemical, Ann Arbor, MI) was solubilized in ethanol to a stock concentration of 10 mM and stored at 4 °C.

Crystal structure. PDB files of crystal structures of the active and inactive EGFFR TKD were downloaded from the RSCB protein data bank. Alignment of the crystal structures and measurement of the distances between insertion sites were performed using the program MacPyMOL (http://www.pymol.org).

Cell culture and site-specific labeling. Identities of HEK293T (ATCC, CRL-11268), MCF10A (ATCC, CRL-1637), and A431 (DSMZ—ACSO) cells were determined by DNA profiling using eight different and highly polymorphic short tandem repeat (STR) loci and testing for the presence of mitochondrial DNA sequences from rodent cells as mouse, rat, Chinese and Syrian hamster (DSMZ) and tested regularly for mycoplasma contamination using MycoAlert Mycoplasma detection kit (Lonza). MCF10A cells were grown in DMEM/F12 media supplemented with 10% fetal bovine serum, 2 mM l-glutamine and 1% non-essential amino acids (NEAAs) and maintained at 37 °C in 5% CO₂. Transfection of mammalian cells with plasmid DNA was achieved using FuGene 6 according to the manufacturer’s protocol. HEK293T cells in one well of an eight-well LabTek (for confocal microscopy and FLIM) were transfected with 250 ng of the EGF expression plasmid, 100 ng (U6-PyTrf)/EGFR-PylRS and 100 ng perFi (E55D). Cells in one well of a 24-well dish (for western blot analysis) were transfected with 500 ng of the EGF expression plasmid, 100 ng (U6-PyTrf)/EGFR-PylRS and 100 ng perFi (E55D). Cells were incubated overnight at 37 °C with 5% CO₂ and BCNK was washed out 20 min. Following lysis, samples were cleared by centrifugation for 10 min, 13,000 r.p.m. the EGFR expression plasmid, 100 ng (U6-PyTrf)/EGFR-PylRS and 100 ng perFi (E55D). HEK293T cells in MatTekS (for anisotropy) were transfected with 1000 ng of the EGF expression plasmid, 100 ng (U6-PyTrf)/EGFR-PylRS and 100 ng perFi (E55D). The perFi (E55D) was chosen for its good signal to noise ratio and its brightness. The pPy argument was chosen because it contains ?-PylRS, and 100 ng peRF1 (E55D). Media was replaced by fresh media supplemented with 1 mM BCN before addition of the transfection mix to the cells. Cells were incubated overnight at 37 °C with 5% CO₂ and BCNK was washed out on the next day. Labeling was performed using 400 mM tet-Atto590 in DMEM for 20 min at room temperature (RT). The washout of free diffusing tet-Atto590 was carried out for at least 2 h with media exchange every 15–20 min.

Western blotting and in-gel fluorescence. Cells were lysed in ready-made cell lysis buffer (9803, Cell Signaling Technology) supplemented with Complete Mini EDTA-free protease inhibitor (Roche Applied Science, Heidelberg, Germany) and 100 µl phosphatase inhibitor cocktail 2 and 3 (P5726 and P0044, Sigma-Aldrich). Following lysis, samples were cleared by centrifugation at 15,000 r.p.m. at 4 °C. Bis-Tris-PAGE was performed using the X-cell II mini electrophoresis apparatus (Life Technologies) according to the manufacturer’s instructions. Proteins were transferred to preactivated polyvinylidene difluoride (PVDF) membranes (Merck Chemicals, Darmstadt, Germany) and incubated with the respective primary antibodies at 4 °C overnight. Detection was performed using species-specific IR-Dye 800 secondary antibodies (LI-COR Biosciences, Bad Homburg vor der Höhe, Germany) and the Odyssey Infrared Imaging System (LI-COR Biosciences). The range of mCitrine intensity bins was 0.3–5.0 × 10⁶ photons. To determine the fluorescence lifetime, which was in the range of 2–5 × 10⁶ photons, mCitrine was excited by a 507 nm pulsed laser with an average power of 0.025 mW on the sample (LDH 507, Picoquant GmbH) and fluorescence of mCitrine was collected using a narrow-band emission filter (HQ 537/26, Chroma, Olching, Germany). FLIM data were analyzed using the global analysis code described in ref. 36 to obtain images of the mean fluorescence lifetime τ. Pixels with <50 counts were excluded from analysis. To measure the fluorescence lifetime at periphery of each cell that mostly encompasses the PM, we first derived whole cell masks, which were then eroded by 10 pixels. From the ‘XOR’ operation of the two masks, we obtained the 10-pixel wide peripheral masks from which the mean fluorescence lifetime τ was determined. Image processing was performed in ImageJ (http://imagej.nih.gov/ij/).

Widefield anisotropy. Anisotropy microscopy was performed on an Olympus IX81 inverted microscope (Olympus) equipped with a 20×/0.7 NA objective using an Orca CCD camera (Hamamatsu Photonics, Hamamatsu City, Japan) and an incubation chamber (EMBL). mCitrine and Atto590 were excited using a MT20 illumination system and an emission filter set (498–519/591–606 nm) was used. The mean anisotropy r was determined using a single photon avalanche diode (PDM Series, MPD, Picoquant GmbH) and the Odyssey Infrared Imaging System (LI-COR Biosciences) equipped with an external dichroic mirror, a dichroic beam splitter, and a temperature controlled incubation chamber (EMBL). mCitrine and Atto590 or mCherry was observed. Live cells were imaged in imaging media at 37 °C and 5% CO₂ and stimulated with 20 ng ml⁻¹ EGF, 100 ng ml⁻¹ EGF, or 0.33 mM PV.

Fluorescence lifetime imaging microscopy. FLIM data were obtained with the Olympus FV1000 laser scanning microscope (Olympus) equipped with an external unit, PicQuant’s compact FLIM and FCS upgrade kit laser scanning microscopes (Picquant GmbH, Berlin, Germany) using a 60×/1.35 NA OIL UPLSApo objective (Olympus). The lasers were coupled to the FV1000 through an independent port and controlled with Seapill software (Picquant GmbH). Detection of photons was achieved using a single photon avalanche diode (PDM Series, MPD, Picquant GmbH) and timed using a single photon counting module (Picoharp 300, Picquant GmbH). Using the SymPhoTime software V3.13 (Picquant GmbH) images were collected with an integration time of ~2 min collecting 3–5 × 10⁶ photons. mCitrine was excited by a 507 nm pulsed laser with an average power of 0.025 mW on the sample (LDH 507, Picoquant GmbH) and fluorescence of mCitrine was collected using a narrow-band emission filter (HQ 537/26, Chroma, Olching, Germany). FLIM data were analyzed using the global analysis code described in ref. 36 to obtain images of the mean fluorescence lifetime τ. Pixels with <50 counts were excluded from analysis. To measure the fluorescence lifetime at periphery of each cell that mostly encompasses the PM, we first derived whole cell masks, which were then eroded by 10 pixels. From the ‘XOR’ operation of the two masks, we obtained the 10-pixel wide peripheral masks from which the mean fluorescence lifetime τ was determined. Image processing was performed in ImageJ (http://imagej.nih.gov/ij/).

Quantifying CONEGI expression level. In order to determine the expression level of CONEGI in HEK293T cells, EGF-Alexa647 (100 ng ml⁻¹) was administered to A431, MCF10A, and CONEGI-expressing HEK293T cells. The amounts of bound EGF-Alexa647 per cell was determined by measuring the fluorescence intensity with confocal fluorescence microscopy for individual cells and integrating the intensity post-acquisition per cell. From these data, fluorescence intensity histograms were generated that represent the relative expression levels of EGF and CONEGI in the respective cells (Supplementary Fig. 3k). In order to determine the expression level of CONEGI in HEK293T cells at which phosphorylation amplification occurs, the median of the EGF-Alexa647 fluorescence distribution was matched to that of the mCitrine fluorescence per cell distribution obtained from immunofluorescence (Fig. 3g). Assuming that MCF10A cells express 10⁵ receptors per cell and A431 cells 10⁰ receptors per cell allowed the estimation of CONEGI expression, which was in the range of 2–5 × 10⁶ receptors per cell.

Statistical analysis. All results are expressed as mean ± SEM or in Tukey box plots. Statistical analysis was performed with GraphPad Prism, version 6.0e for Mac (GraphPad Software, La Jolla, CA, USA). Statistical significance was estimated either by paired or unpaired two-tailed t-tests or by two-way analysis of variance.
Data availability

Data supporting the findings of this manuscript are available from the corresponding authors upon reasonable request.

Received: 4 May 2018 Accepted: 10 August 2018
Published online: 21 September 2018

References

1. Schlessinger, J. Ligand-induced, receptor-mediated dimerization and activation of EGFR receptor. Cell 110, 669–672 (2002).
2. Zhang, X., Gureasko, J., Shen, K., Cole, P. A. & Kuriyan, J. An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell 125, 1137–1149 (2006).
3. Wagner, M. J., Stacey, M. M., Liu, B. A. & Pawson, T. Molecular mechanisms of SH2- and PTB-domain-containing proteins in receptor tyrosine kinase signaling. Cold Spring Harb. Perspect. Biol. 5, a00987 (2013).
4. Batzer, A. G., Blakie, P., Nelson, K., Schlessinger, J. & Margolis, B. The phosphotyrosine interaction domain of Src binds an LNXPXQ motif on the epidermal growth factor receptor. Mol. Cell Biol. 15, 4403–4409 (1995).
5. Ferguson, K. M. et al. EGFR activates its receptor by releasing interactions that autoinhibit ectodomain dimerization. Mol. Cell 11, 507–517 (2003).
6. Arkhipov, A. et al. Architecture and membrane interactions of the EGFR receptor. Cell 152, 557–569 (2013).
7. Endres, N. F. et al. Conformational coupling across the plasma membrane in activation of the EGFR receptor. Cell 152, 543–556 (2013).
8. Sutto, L. & Gervasio, F. L. Effects of oncogenic mutations on the conformational free-energy landscape of EGFR kinase. Proc. Natl Acad. Sci. USA 110, 10616–10621 (2013).
9. Shan, Y. et al. Oncogenic mutations counteract intrinsic disorder in the EGFR kinase and promote receptor dimerization. Cell 149, 860–870 (2012).
10. Shan, Y., Arkhipov, A., Kim, E. T., Pan, A. C. & Shaw, D. E. Transitions to spontaneous phosphorylation suppression to EGFR signaling. eLife 4, e12223 (2015).
11. Arteta, C. L. & Engelman, J. A. ERBB receptors: from oncogene discovery to basic science to mechanism-based cancer therapeutics. Cancer Cell 25, 282–303 (2014).
12. Sharma, S. V. & Settleman, J. Eribb in lung cancer. Exp. Cell Res. 315, 557–571 (2009).
13. Masuda, H. et al. Role of epidermal growth factor receptor in breast cancer. Breast Cancer Res. Treat. 136, 331–345 (2012).
14. Reynolds, A. R., Tischer, C., Verveer, P. J., Rocks, O. & Bastiaens, P. I. EGFR activation coupled to inhibition of tyrosine phosphatases causes lateral signal propagation. Nat. Cell Biol. 5, 447–453 (2003).
15. Bakker, E. & Bastiaens, P. I. EGFR-dependent re-routing of vesicular recycling switches spontaneous phosphorylation suppression to EGFR signaling. eLife 4, e13889 (2015).
16. Lemmon, M. A. & Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 141, 1117–1134 (2010).
17. Bolbat, A. & Schulz, C. Recent developments of genetically encoded optical sensors for cell biology. Biol. Cell 109, 1–23 (2017).
18. Greco, H. E. et al. In situ analysis of tyrosine phosphorylation networks by FLIM on cell arrays. Nat. Methods 7, 467–472 (2010).
19. Walthner, K. A., Papke, B., Sinn, M. B., Michel, K. & Kinkhabwala, A. Precise measurement of protein interacting fractions with fluorescence lifetime imaging microscopy. Mol. Biosyst. 7, 322–336 (2011).
20. Sabet, O. et al. Ubiquitination switches EphA2 vesicular traffic from a continuous safeguard to a finite signalling mode. Nat. Commun. 6, 8047 (2015).
21. Wouters, F. S. & Bastiaens, P. I. Fluorescence lifetime imaging of receptor tyrosine kinase activity in cells. Curr. Biol. 9, 1127–1130 (1999).
22. Carter, R. E. & Sorkin, A. Endocytosis of functional epidermal growth factor receptor-green fluorescent protein chimera. J. Biol. Chem. 273, 35000–35007 (1998).
23. Schmid, W. H., Elssasser, S. J., Uppuluripati, C. & Chin, J. W. Efficient multisite unnatural amino acid incorporation in mammalian cells via optimized pyrrolysyl tRNA synthetase/tRNA expression and engineered eRF1. J. Am. Chem. Soc. 136, 15577–15583 (2014).
24. Lang, K. et al. Genetic encoding of bicyclononyne and trans-cyclooctene for site-specific protein labeling in vitro and in live mammalian cells via rapid fluorescent Diels–Alder reactions. J. Am. Chem. Soc. 134, 10317–10320 (2012).
25. Roepstorff, K. et al. Differential effects of EGFR ligands on endocytic sorting of the receptor. Traffic 10, 1115–1127 (2009).
26. Offterdinger, M., Georg, V., Girdon, A. & Bastiaens, P. I. Imaging phosphorylation dynamics of the epidermal growth factor receptor. J. Biol. Chem. 279, 36972–36981 (2004).
27. Okutani, T. et al. Grb2/Ash binds directly to tyrosines 1068 and 1086 and indirectly to tyrosine 1148 of activated human epidermal growth factor receptor in intact cells. J. Biol. Chem. 269, 31310–31314 (1994).
28. Bjorkelund, H., Gedda, L., Malmqvist, M. & Andersson, K. Resolving the EGFR–EGFR interaction characteristics through a multiple-temperature, multiple-inhibitor, real-time interaction analysis approach. Mol. Clin. Oncol. 1, 343–352 (2013).
29. Squire, A., Verveer, P. J., Rocks, O. & Bastiaens, P. I. Red-edge anisotropy microscopy enables dynamic imaging of homoe-FRET between green fluorescent proteins in cells. J. Struct. Biol. 147, 62–69 (2004).
30. Huyer, G. et al. Mechanism of inhibition of protein-tyrosine phosphatases by vanadate and pervanadate. J. Biol. Chem. 272, 843–851 (1997).
31. Thomas, C. Y. et al. Spontaneous activation and signaling by overexpressed epidermal growth factor receptors in glioblastoma cells. Int. J. Cancer 104, 19–27 (2003).
32. Monast, C. S., Furcht, C. M. & Lazzara, M. J. Computational analysis of the regulation of EGFR by protein tyrosine phosphatases. Biophys. J. 102, 2012–2021 (2012).
33. Sato, K., Sato, A., Aoto, M. & Fukami, Y. c-Src phosphorylates epidermal growth factor receptor in intact cells. Cell 110, 269–275 (2002).
34. Bjorkelund, H. et al. Resolving the EGF-signal transduction through a combination of fluorescent probes. J. Biol. Chem. 272, 336–343 (2007).
35. Needham, S. R. et al. EGFR oligomerization organizes kinase-active dimers in the plasma membrane. J. Biol. Chem. 282, 5561–5569 (2007).
36. Grecco, H. E., Schmitt, M. & Bastiaens, P. I. Signaling from the living plasma membrane. Cell 144, 897–909 (2011).
37. Kovacs, E. et al. Analysis of the role of the C-terminal tail in the regulation of the epidermal growth factor receptor. Mol. Cell Biol. 35, 3083–3102 (2015).
38. Huyer, G. et al. Mechanism of inhibition of protein-tyrosine phosphatases by vanadate and pervanadate. J. Biol. Chem. 272, 843–851 (1997).
39. Bolbat, A. et al. Recent developments of genetically encoded optical sensors for cell biology. J. Biol. Chem. 109, 1–23 (2017).
40. van der Heijden, S. R. et al. EGFR oligomerization organizes kinase-active dimers into competent signalling networks. Nat. Commun. 7, 13307 (2016).
41. Stanoev, A. et al. Interdependence between EGFR and phosphatases spatially established by vesicular dynamics generates a growth factor sensing and responding network. Cell Syst. https://doi.org/10.1016/j.cels.2018.06.006 (2018).
42. Schmier, W. H., Elssasser, S. J., Uppuluripati, C. & Chin, J. W. Efficient multisite unnatural amino acid incorporation in mammalian cells via optimized pyrrolysyl tRNA synthetase/tRNA expression and engineered eRF1. J. Am. Chem. Soc. 136, 15577–15583 (2014).
43. Lang, K. et al. Genetic encoding of bicyclononyne and trans-cyclooctene for site-specific protein labeling in vitro and in live mammalian cells via rapid fluorescent Diels–Alder reactions. J. Am. Chem. Soc. 134, 10317–10320 (2012).
44. Roepstorff, K. et al. Differential effects of EGFR ligands on endocytic sorting of the receptor. Traffic 10, 1115–1127 (2009).
45. Offterdinger, M., Georg, V., Girdon, A. & Bastiaens, P. I. Imaging phosphorylation dynamics of the epidermal growth factor receptor. J. Biol. Chem. 279, 36972–36981 (2004).
56. Grecco, H. E., Roda-Navarro, P. & Verveer, P. J. Global analysis of time correlated single photon counting FRET-FLIM data. Opt. Express 17, 6493–6508 (2009).

Acknowledgements

This project was partially funded by the following grants: EMBO Short-Term Fellowship (ASTF no: 122-2015) to M.B., MC_U105181009 and MC_UP_A024_1008 to J.W.C. and MRC-Nikon Case Studentship to V.B. We thank Dr. A. Sachdeva for synthesizing tetrazine-Atto590, Dr. P. Bieling and Dr. A. Krämer for critically reading the manuscript.

Author contributions

P.I.H.B. conceived the project. M.B. designed the conformational sensor, cloned sensor constructs, and acquired and analyzed the data. C.U. and V.B. provided previously unpublished expression constructs and instruction on site-specific fluorophore labeling. M.G. analyzed anisotropy data. M.B., J.W.C., and P.I.H.B. wrote the manuscript with input from all authors.

Additional information

Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-018-06299-7.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2018