Abstract

This paper focuses on data structures for multi-core reachability, which is a key component in model checking algorithms and other verification methods. A cornerstone of an efficient solution is the storage of visited states. In related work, static partitioning of the state space was combined with thread-local storage and resulted in reasonable speedups, but left open whether improvements are possible. In this paper, we present a scaling solution for shared state storage which is based on a lockless hash table implementation. The solution is specifically designed for the cache architecture of modern CPUs. Because model checking algorithms impose loose requirements on the hash table operations, their design can be streamlined substantially compared to related work on lockless hash tables. Still, an implementation of the hash table presented here has dozens of sensitive performance parameters (bucket size, cache line size, data layout, probing sequence, etc.). We analyzed their impact and compared the resulting speedups with related tools. Our implementation outperforms two state-of-the-art multi-core model checkers (SPIN and DiVinE) by a substantial margin, while placing fewer constraints on the load balancing and search algorithms.

1 Introduction

Many verification problems are highly computational intensive tasks, which can benefit from extra speedups. Considering the recent trends in hardware, these speedups can only be delivered by exploiting the parallelism of the new multi-core processors.

Reachability, or full exploration of the state space, is a subtask of many verification problems [7,9]. In model checking, reachability has been parallelized in the past using distributed systems [7]. With shared-memory systems, these algorithms can benefit from the low communication costs as has been demonstrated already [2]. In this paper, we show how state-of-the-art multi-core model
checkers, like SPIN \cite{spin} and DiVinE \cite{dinvine}, can be improved by a large factor (factor two compared to DiVinE and four compared to SPIN) using a carefully designed concurrent hash table as shared state storage.

Motivation. Holzmann and Bošnacki used a shared hash table with fine grained locking in combination with the stack slicing algorithm in their multicore extension of the SPIN model checker \cite{spin,hbosnacki}. This shared storage enabled the parallelization of many of the model checking algorithms in SPIN: safety properties, partial order reduction and reachability. Barnat et al. implemented the same method in the DiVinE model checker \cite{dinvine}. They also implemented the classic method of static state space partitioning, as used in distributed model checking \cite{dcm}. They found the static partitioning method to scale better on the basis of experiments. The authors also mention that they were not able to investigate a potentially better solution for shared state storage, namely the use of a lockless hash table.

Fig. 1 shows the different architectures discussed thus far. The differences of
Table 1: Differences between architectures

Arch.	Sync. point(s)	Pro’s and Cons
Fig 1a	Queue	Local (cache efficient) storage, static load balancing, high comm. costs, limited to BFS
Fig 1b	Shared store, stack	Shared storage, static load balancing, lower comm. costs, limited to (pseudo) DFS
Fig 1c	Shared store(, queue)	Shared storage, flexible load balancing, no or fewer limits on exploration algorithm

These architectures are summarized in Table 1 and have been extensively discussed in [4]. From this, we deduce that the shared storage solution is both the simplest and the most flexible, in the sense that it allows any preferred exploration algorithm (except for true DFS which is inherently hard to parallelize). This includes (pseudo) DFS, which enables fast searches for deadlocks and error states [23]. SPIN already demonstrated this [15], but unfortunately does not show the desirable scalability (as we will demonstrate). Load balancing in SPIN is handled by the stack slicing algorithm [15], a specific case of explicit load balancing requiring DFS. In fact, any well-investigated load balancing solution [25] can be used and tuned to the specific environment, for example, to support heterogenous systems or BFS exploration. In conclusion, it remains unknown whether reachability, based on shared state storage, can scale.

Lockless hash tables and other efficient concurrent data structures are well known. Hash tables themselves have been around for a while now [18]. Meanwhile, variants like hopscotch [14] and cuckoo hashing [20] have been invented which optimize towards faster lookup times by reorganizing and/or indexing items upon insert. Hopscotch being particularly effective for parallelization, because of its localized memory behavior. Recently, also many lockless algorithms were proposed in this area [8, 22]. All of them providing a full set of operations on the hash table, including: lookup, insertion, deletion and resizing. They favor rigor and completeness over simplicity. None of these is directly suited to function as shared state storage inside a model checker, where it would have to deal with large state spaces, that grow linearly with a high throughput of new states.

Contribution. The contribution of this paper is an efficient concurrent storage for states. This enables scaling parallel implementations of reachability for any desirable exploration algorithm. To this end, the precise needs that parallel model checking algorithms impose on shared state storage are evaluated and a fitting solution is proposed given the requirements we identified. Experiments show that the storage scales significantly better than algorithm that uses static partitioning of the state space [4], but also beats state-of-the-art model checkers. These experiments also contribute to the a better understanding of the performance of the latest versions of these model checkers (SPIN and DiVinE),
which enables fair comparison.

With an analysis we also show that our design will scale beyond current state-of-the-art multi-core CPUs.

Furthermore, we contribute to the understanding of the more practical aspects of parallelization. With the proposed hash table design, we show how a small memory working set and taking into account the steep memory hierarchy can benefit the scalability on multi-core CPUs.

Overview. Section 2 gives some background on hashing, and parallel algorithms and architectures. Section 3 presents the lockless hash table that we designed for parallel state storage. But only after we evaluated the requirements that fast parallel algorithms impose on such a shared storage. This helps the understanding of the reasoning behind the design choices we made. The structure is implemented in a model checker together with parallel reachability algorithms. In Section 4 then, the performance is evaluated against that of DiVinE 2 \[3\] and SPIN, which respectively use static partitioning and shared storage with stack slicing. A fair comparison can be made between the three model checkers on the basis of a set of models from the BEEM database that report the same number of states for both SPIN and DiVinE. Our model checker reuses the DiVinE next-state function and also reports the same number of states. We end this paper with some incentives we have for future work on the same topic and the conclusions (Section 5).

2 Preliminaries

Reachability in Model Checking In model checking, a computational model of the system under verification (hardware or software) is constructed, which can then be used to compute all possible states of the system. The exploration of all states can be done symbolically using binary decision diagrams to represent sets of states and transitions or explicitly storing full states. While symbolic evaluation is attractive for a certain set of models, others, especially highly optimized ones, are better handled explicitly. We focus on explicit model checking in this paper.

Explicit reachability analysis can be used to check for deadlocks and invariants and also to store the whole state space and verify multiple properties of the system at once. A reachability run is basically a search algorithm which calls for each state the *next-state* function of the model to obtain its successors until no new states are found. Alg. 1 shows this. It uses, e.g., a stack or a queue \(T\), depending on the preferred exploration order: depth or breadth first. The initial state \(s_0\) is obtained from the model and put on \(T\). In the while loop on Line 1, a state is taken from \(T\), its successors are computed using the model (Line 3) and each new successor state is put into \(T\) again for later exploration. To determine which state is new, a set \(V\) is used usually implemented with a hash-table.

Possible ways to parallelize Alg. 1 have been discussed in the introduction. A common denominator of all these approaches is that the strict BFS or DFS
Data: Sequence $T = \{s_0\}$, Set $V = \emptyset$

1. while state ← T.get() do
2. count ← 0;
3. for succ in next-state (state) do
4. count ← count + 1;
5. if V.find-or-put (succ) then
6. T.put(succ);
7. end
8. end
9. if 0 == count then
10. //DEADLOCK, print trace..
11. end
12. end

Algorithm 1: Reachability analysis

order of the sequential algorithm is sacrificed in favor of local stacks or queues (fewer contention points). When using a shared state storage (in a general setup or with stack slicing), a thread-safe set V is required, which will be discussed in the following section.

Load Balancing. A naive parallelization of reachability is a limited sequential BFS exploration and then handing of the found states to several threads that start executing Alg. $T = \{\text{part of BFS exploration}\}$ and V is shared. This is called static load balancing. For many models this will work due to common diamond-shaped state spaces. Models with synchronization points, however, have flat helix-shaped state spaces, so threads will run out of work when the state space converges. A well-known problem that behaves like this is the Tower of Hanoi puzzle; when the smallest disk is on top of the tower only one move is possible at that time.

Sanders describes dynamic load balancing in terms of a problem P, a (reduction) operation $work$ and a split operation. P_{root} is the initial problem (in the case of Alg $T = \{\text{initial state}\}$). Sequential execution takes $T_{\text{seq}} = T(P_{\text{root}})$ time units. A problem is (partly) solved when calling $work(P, t)$, which takes $\min(t, T(P))$ units of time. For our problem, $work(P, t)$ is the reachability algorithm with $P = T$ and t has to be added as an extra input, that limits the number of iterations of the while loop (line 1). When threads become idle, they can poll others for work. On which occasion, the receiver will split its own problem ($\text{split}(P) = \{P_1, P_2\} \rightarrow T(P) = T(P_1) + T(P_2)$) and send one of the results to the polling thread. We implemented synchronous random polling and did not notice real performance overhead compared to no load balancing.

Parallel architectures We consider multi-core and multi-CPU systems. A common desktop PC has a multi-core CPU, allowing for quick workspace verifi-
cation runs with a model checker. The typical server, nowadays, has multiple of such CPUs on one board. Ideal for performance model checking, but more complex to program due to the more complex bus structure with different latencies and non-uniform memory access.

The cache coherence protocol ensures that each core has a global view of the memory. While the synchronization between caches may cost little, the protocol itself causes overhead. When all cores of a many-core system are under full load and communicate with each other, the data bus can be easily exhausted. The cache coherence protocol cannot be preempted. To efficiently program these machines, few options are left. One way is to completely partition the input as done in [4], this ensures per-core memory locality at the cost of increased inter-die communication. An improvement of this approach is to pipeline the communication using ring buffers, this allows prefetching (explicit or hardwired). This is done in [19]. If these options are not possible for the given problem, the option that is left is to minimize the memory working set of the algorithm [22]. We define the memory working set as the number of different memory locations that the algorithm updates in the time window that these usually stay in local cache. A small working set minimizes coherence overhead.

Locks are used for mutual exclusion and prevent concurrent accesses to a critical section of the code. For resources with high contention, locks become infeasible. Lock proliferation improves on this by creating more locks on smaller resources. Region locking is an example of this, where a data structure is split into separately locked regions based on memory locations. However, this method is still infeasible for computational tasks with high throughput. This is caused by the fact that the lock itself introduces another synchronization point; and synchronization between processor cores takes time.

Lock-free algorithms (without mutual exclusion) are preferred for high-throughput systems. Lockless algorithms postpone the commit of their result until the very end of the computation. This ensures maximum parallelism for the computation, which may however be wasted if the commit fails. That is, if meanwhile another process committed something at the same memory address. In this case, the algorithm need so ensure progress in a different way. This can be done in varyingly complicated ways and introduces different kinds of lockless implementations: an algorithm is considered lock-less if there is guaranteed system-wide progress; i.e. always one thread can continue. A wait-free algorithm also guarantees per-thread progress.

Many modern CPUs implement an “Compare&Swap” operation (CAS) that ensures atomic memory modification, while at the same time preserving data consistency if used in the correct manner. For data structures, it is easy to construct lockless modification algorithms by reading the old value in the structure, performing the desired computation on it and writing the result back using CAS. If the latter returns true, the modification succeeded, if not, the computation needs to be redone with the new value or some other collision resolution
should be applied.

If a CAS operation fails (returns false), the computational efficiency decreases. However, in the normal case, where the time between reading a value from the data structure and writing it back is typically small due to short computations, collisions will rarely occur. So lockless algorithms can achieve a high level of concurrency there. Although it should not go unmentioned that an instruction like CAS easily costs 100–1000 of instruction cycles depending on the CPU architecture. Thus, abundant use defies the purpose of lockless algorithms.

Quantifying parallelism is usually done by normalizing performance gain with regard to the sequential run: $S = T_{seq}/T_{par}$ Linear speedups grow proportional to the number of cores and indicate that an algorithm scales. The efficiency gives a measure of how much the extra computing power materialized into speedups: $E = (N \times T_{par})/T_{seq}$, where N is the number of cores.

E can be larger than 1, in which case we speak of super-linear speedups. They can occur in several situations:

- more cache becomes available with the extra CPU reducing the amount of lookups in secondary memory,
- a more efficient algorithm, than the sequential one, is found, or
- the parallelization introduces randomization, which exponentially decreases the likelihood of taking the longest path in a search problem [12].

A parallel search for error states or deadlocks, could thus greatly benefit from a shared state storage, since it allows depth-preferred exploration [24].

Hashing is a well-studied method for storing and retrieving data with time complexity $O(1)$ [18]. A hash function h is applied to the data, yielding an index in an array of buckets that contain the data or a pointer to the data. Since the domain of data values is usually unknown and much larger than the image of h, hash collisions occur when $h(D_1) = h(D_2)$ with $D_1 \neq D_2$. Structurally, collisions can be resolved either by inserting lists in the buckets (chaining) or by probing subsequent buckets (open addressing). Algorithmically, there is a wealth of options to maintain the “chains” and calculate subsequent buckets [10]. The right choice to make depends entirely on the requirements dictated by the algorithms that use the hash table.
Generalized cuckoo hashing employs $d > 1$ independent hash functions and buckets of size n \cite{20}. Elements are inserted in bucket $h_i \ (i \in \{1, \ldots, d\})$ which is the least full. It is well known that this method already improves the distribution exponentially compared to the case where $d = 1$ \cite{1}. But cuckoo hashing also ensures constant time lookups by recursively reassigning all elements in the bucket to another h_i, if a fixed file-ratio m/n for a bucket is reached. The process is recursive, because the rearrangement may trigger other buckets to reach the threshold m/n. If the rearrangement does not terminate, a resize of the table is triggered.

Because cuckoo hashing requires d independent memory references for each operation, it is hard to parallelize efficiently on general purpose hardware. Therefore, hopscotch hashing was introduced \cite{14}. It keeps $d = 1$, but uses the same reordering principle to move elements within a fixed size of their primary location. The fixed size is usually chosen within the range of a cache line, which is the minimum block size that can be mapped to the CPU’s L1 cache.

3 A Lockless Hash Table

In principle, Alg. \cite{1} seems easy to parallelize, in practice it is difficult to do this efficiently because of the memory intensive behavior, which becomes more obvious when looking at the implementation of V. In this section, we present an overview of the options in hash table design. There is no silver bullet design and individual design options should be chosen carefully considering the requirements stipulated by the use of the hash table. Therefore, we evaluate the demands that the parallel model checking algorithms place on the state storage solution. We also mention additional requirements that come from used hardware and software systems. Finally, a specific hash table design is presented.

3.1 Requirements on the State Storage

Our goal is to realize an efficient shared state storage for parallel model checking algorithms. Traditional hash tables associate a piece of data to a unique key in the table. In model checking, we only need to store and retrieve states, therefore the key is the data of the state. Henceforth, we will simply refer to it as data. Our specific model checker implementation introduces additional requirements, discussed later. First, we list the definite requirements on the state storage:

- The storage needs only one operation: find-or-put. This operation inserts the state vector if its not found or yields a positive answer without side effects. This operation needs to be concurrently executable to allow sharing the storage among the different processes. Other operations are not necessary for reachability algorithms and their absence simplifies the algorithms thus lowering the strain on memory and avoiding cache line sharing. This in sharp contrast to standard literature on concurrent hash tables, where often a complete solution is presented optimizing them for more generalized access patterns \cite{8,22}.
• The storage should not require memory allocation during operation, for the obvious reasons that this behavior would increase the memory footprint.

• The use of pointers on a per-state basis should be avoided. Pointers take a considerable amount of memory when large state spaces are explored (more than 10^8 states are easily reachable with today’s model checking systems), especially on 64-bit machines. In addition, pointers increase the memory footprint.

• The time efficiency of find-or-put should scale with the number of processes executing it. Ideally, the individual operations should – on average – not be slowed down by other operations executing at the same time ensuring close-to linear speedup. Many hash table algorithms have a large memory footprint due to their probe behavior or reordering behavior upon inserts. They cannot be used concurrently under high-throughputs as is the case here.

Specifically, we do not require the storage to be resizable. The available memory on a system can safely be claimed by the table, since the most of it will be used for it anyway. This requirement is justifiable, because exploring larger models is more lucrative with other options: (1) disk-based model checkers [17] or (2) bigger systems. In sequential operation and especially in presence of a delete operation (shrinking tables), one would consider resizing for the obvious reason that it improves locality and thus cache hits, in a concurrent setting, however, these cache hits have the opposite effect of causing the earlier described cache line sharing among CPUs or: dirty caches. We tested some lockless and concurrent resizing mechanisms and observed large decreases in performance.

Furthermore, the design of the used model checker also introduces some specific requirements:

• The storage stores integer arrays or vectors of known length vector-size. This is the encoding format for states employed in the model checker.

• The storage should run on common x86 architectures using only the available (atomic) instructions.

While the compatibility with the x86 architecture allows for concrete analysis, the applicability is not limited to it. Lessons learned here are transferrable to other similar settings where the same memory hierarchy is present and the atomic operations are available.

3.2 Hash Table Design

The first thing to consider is the type of hash table to choose. Cuckoo hashing is an unlikely candidate, since it requires updates on many locations upon inserts. Using such an algorithm would easily result in a high level of cache line
sharing and an exhaustion of the processor bus with cache coherence traffic as we witnessed in early attempts at creating a state storage.

Hopscotch hashing could be considered because it combines a low memory footprint with constant lookup times even under higher load factors. But among the stated requirements, scalable performance is the most crucial. Therefore, we choose a simpler design which keeps the memory footprint as low as possible. Later we will analyze the difference with hopscotch hashing. These considerations led us to the following design choices:

- **Open addressing** is preferred, since chaining would incur in-operation memory allocation or pre-allocation at different addresses leading to more cache line sharing.

- **Walking-the-line** is a name we gave to linear probing on the cache line followed by double hashing as also employed in [8, 14]. The first allows a core to benefit mostly from one prefetched cache line, while the second mode realizes better distribution.

- **Separated data** (vectors) in an indexed array (buckets*|vector|) ensures that the bucket array stays short and subsequent probes can be cached.

- **Hash memoization** speeds up probing, by storing the hash (or part of it) in the bucket. This prevents expensive lookups in the data array [8].

- A \(2^n\) sized **table** gives good probing distribution and can avoid the expensive modulo instruction, because the \(n\) least-significant bits of the hash can be used as an index in the bucket array.

- **Lockless** operation using a dedicated value to indicate free places in the hash array (zero for example). One bit of the hash can be used to indicate whether the vector was already written to the data array or whether this is still in progress [8].

- **Compare-and-swap** is used as the atomic function on the buckets, which are now in either of the following distinguishable states: empty, being written and complete.

The required table size may become a burden when aiming to utilize the complete memory of the system. To allow different sized tables, constant sized division can be used [26].

3.3 Algorithm

Alg. 3 shows the find-or-put operation. Buckets are represented by the **Bucket** array, the separate data by the **Data** array and hash functions used for double hashing by \(h_i\). Probing continues indefinitely (Line 4) or until either a free bucket is found for insert (Line 8–10) or the data is found to be in the hash table (Line 15–17). The for loop on Line 5 handles the walking-the-line sequential
Figure 2: State diagram of buckets

probing behavior (Alg. 4). The other code inside this for loop handles the synchronization among threads. It requires explanation.

Buckets store memoized hashes and the write status bit of the data in the *Data* array. Fig. 2 shows the possible states of the buckets in the hash table, memoized hashes are depicted as x_i, and the write state of the data array is either *write* (Line 7), meaning that the data is being written or *done* (Line 9), meaning that the write is completed. Whenever a write started for a hash value x_1 the state of the bucket can never become empty again, nor can it be used for any other hash value. This ensures that the probe sequence remains deterministic and cannot be interrupted.

Several aspects of the algorithm guarantee correct lock-less operation:

- The CAS operation on Line 7 ensures that only one thread can claim an empty bucket, marking it as non-empty with the hash value to memoize and with *write*.

- The while loop on Line 14 waits until the write to the data array has been completed, but it only does this if the memoized hash is the same as the hash value for the vector (Line 13).

So the critical synchronization between threads occurs when both try to write to an empty slot. The CAS operation ensures that only one will succeed and the other can carry on with the probing, either finding another empty bucket or finding the state in another bucket. This design can be seen as a lock on the lowest possible level of granularity (individual buckets), but without a true locking structure and associated additional costs. The algorithm implements the “lock” as while loop, which resembles a spinlock (Line 14). Although it could be argued that this algorithm is therefore not lockless, it is possible to implement a resolution mechanism in the case that the “blocking” thread dies or hangs ensuring local progress (making the algorithm wait-free). This is usually done by making each thread fulfill local invariants, whenever they could not be met by other threads [13]. It can be done by directly looking into the buffer of
Algorithm 3: The find-or-put algorithm

Algorithm 4: Walking the (cache) line
the writing thread, whenever the “lock” is hit, and finish the write locally when
the writing thread died. Measurements showed, however, that the “locks” are
rarely hit under normal operation, because of the hash memoization.

The implementation of the described algorithm requires exact guarantees
by the underlying memory model. Reordering of operations by compilers and
processors needs to be avoided across the synchronization points or else the
algorithm is not correct anymore. It is, for example, a common optimization
to execute the body of an if statement before the actual branching instruction.
This enables speculative execution, keeping the processor pipeline busy as long
as possible. This would be a disastrous reordering when applied to Line 8 and
Line 9: the actual write would happen before the bucket is marked as full,
allowing other threads to write to the same bucket.

The Java Memory Model makes precise guarantees about the possible com-
muting of memory reads and writes, by defining a partial ordering on all state-
ments that effect the concurrent execution model [11, Sec. 17.4]. A correct
implementation in Java should declare the bucket array as a volatile variable
and use the \texttt{java.util.concurrent.atomic} for atomic references and CAS.
A C implementation is more difficult, because the ANSI C99 standard does
not state any requirements on the memory model. The implementation would
depend on the combination of CPU architecture and compiler. Our implemen-
tation uses \texttt{gcc} with x86 64-bit target platforms. A built-in function of \texttt{gcc}
is used for the CAS operation and reads and writes from and to buckets are
marked volatile.

Alg. 3 was modeled in PROMELA and checked with SPIN. One bug concern-
ing the combination of write bit and memoized hash was found and corrected.

we intend to deliver a more thorough analysis at a later time. Table ?? shows
the how expected number of probes depends for successful and unsuccessful
lookups (reads and writes) is dependent on the fillrate.

4 Experiments

4.1 Methodology

We implemented the hash table of the previous section in our own model
checking toolset LTSmin, which will be discussed more in later sections. For
the experimental results it suffices to know that LTSmin reuses the next-state
function of Divine. Therefore, a fair comparison with DiVinE can be made.
We also did experiments with the latest multi-core capable version of the model
checker Spin [16]. For all the experiments, the reachability algorithm was used,
because it gives the best evaluation of the performance of the state storage. Spin
and DiVinE 2 use static state space partitioning [4,16], which is a breadth-first
exploration with a hash function that assigns each successor state to the queue
of one thread. The threads then use their own state storage to check whether
states are new or seen before.

All model checkers were configured for maximum performance in reachabil-
Table 2: Benchmark suite for DiVinE, LTSmin and SPIN (*)

Anderson.6	at.5	at.6	Bakery.6
Bakery.7	Blocks.4	Brp.5	Cambridge.7
Frogs.5	Hanoi.3	Iprotocol.6	Elevator_planning.2
Firewire_link.5	Fischer.6	Frogs.4	Iprotocol.7
Lamport.8	Lam.6	Lam.7	Leader_filters.7
Loyd.3	Mcs.5	Needham.4	Peterson.7
Phils.6	Phils.8	Production_cell.6	Szymanski.5
Telephony.4	Telephony.7	Train_gate.7	

For DiVinE and LTSmin this meant that we used compiled (DiVinE also contains a model interpreter), with an initial hash table size large enough to contain the models state space, while not triggering a resize of the table. For SPIN, we turned off all analysis options, state compression and other advanced options. To compile spin models we used the flags: `-O3 -DNOCOMP -DNOREDUCE -DNOBOUNDCHECK -DNOCOLLAPSE -DNOCORE=N -DSAFTY -DMEMLIM=1000000; To run the models we used the options: `-m10000000 -c0 -n -w28`. The machines we used to run experiments are AMD Opteron 8356 16-core servers running a patched Linux 2.6.32 kernel. All programs were compiled using gcc 4.4 in 64-bit mode with maximum compiler optimizations (`-O3`).

A total of 31 models randomly chosen from the BEEM database [21] have been used in the experiments (only too small and too large models have been filtered out). Every run was repeated at least four times, to exclude any accidental mis-measurements. Special care has been taken to keep all the parameters across the different model checkers the same. Especially SPIN provides a rich set of options with which models can tuned to perform optimal. Using these parameters on a per-model basis could give faster results than presented here, just like if we optimized Divine for each special case. It would, however, say little about the scalability of the core algorithms.

Therefore, we decided to leave all the parameters the same for all the models. Resizing of the state storage could be avoided in all cases by increasing its initial size. This means that small models use the same large state storage as large models.

4.2 Results

Representing the results of so many benchmark runs in a concise and clear manner can hardly be done in a few graphs. Figure 3 shows the run times of only three models for all model checkers. We see that DiVinE is the fastest

\footnote{During the experiments we found large performance regression in the newer 64bit kernels, which where solved with the help of the people from the Linux Kernel Mailing List: \url{https://bugzilla.kernel.org/show_bug.cgi?id=15618}}
model checker for sequential reachability. Since the last published comparison between DiVinE and SPIN \cite{2}, DiVinE has been improved with a model compiler and a faster next-state function\footnote{See release notes version 2.2}. The figure shows that these gains degraded the scalability, which is a normal effect as extensively discussed in \cite{16}. SPIN is only slightly slower than DiVinE and shows the same linear curve but with a more gentle slope. We suspect that the gradual performance gains are caused by the cost of the inter-thread communication.

Figure 3: Runtimes of three BEEM models with SPIN, LTSmin and DiVinE

LTSmin is slower in the sequential cases. We verified that this behavior is caused by allocation-less hash table; with smaller hash table sizes the sequential runtimes match those of DiVinE. However, we did not bother optimizing these results, because with two cores LTSmin is already at least as fast as DiVinE.

To show all models in a similar plot is hardly feasible. Therefore, Fig. 4 and 5 compare the relative runtimes per model of two model checkers: T_{DiVinE} and T_{LTSmin}. Fig. 10 in the appendix shows the speedups measured with LTSmin and DiVinE. We attribute the difference in scalability to the extra synchronization points needed for the interprocess communication by DiVinE. Remember that the model checker uses static state space partitioning, meaning that most successor states are queued at other cores. Another disadvantage of DiVinE, is that it uses a management thread. This causes the regression at 16 cores.

SPIN shows inferior scalability even though it also uses a shared hash table and load balancing based on stack slicing. We can only guess that the spinlocks SPIN uses in its hash table (region locking) are not as efficient as a lockless hash table. However, we had far better results even with the slower pthread locks. It might also be that the stack slicing algorithm does not have a consistent granularity, because it uses the irregular search depth as a time unit (using the
Figure 4: Runtimes of BEEM models with LTSmin and DiVinE 2
terms from Sec. \[T(work(P, \text{depth})). \]

Figure 6: Total runtime and speedups of Spin, Divine 2 and LTSmin-mc

Fig. 6 shows the average times (a) and speedups (b) over all models and for all model checkers. These are only the marked models in Table 2 because they have the same state count in all tested model checkers.
4.3 Shared Storage Parameters

To verify our claims about the hash table design, we collected internal measurements and synthetic benchmarks. First, we looked at the number of times that the write-busy “lock” was hit. Fig. 7 plots the lock hits against the number of cores for several different sized models. For readability, only the highest and most interesting models where chosen. Even for the largest models (at.6) the number of locks is a very small fraction of the number of find-or-put calls: 160M (equal to the number of transitions).

![Figure 7: Times the algorithm “locks”](image)

We measured how the average throughput of Alg. 3 (number of find-or-put calls) is effected by the fill-rate, the table size and the read write ratio. Fig. 8 shows measurements done with synthetic input data that simulates one ratio and n (random) reads on the hash table. Both figures show that average throughput remains largely unaffected by high fill-rate, even up to 99.9%. This shows that the asymptotic time complexity of open-addressing hash tables poses little real problems in practice. An observable side effect of large hash tables, is lower throughputs for low fill rates due to more cache misses. Our hash table amplifies this because it uses a pre-allocated data array and no pointers. This explains the sequential performance difference between DiVinE, SPIN and our model checker. The following section will follow up on this.

We also measured the effect of varying the vector size (not in the figures) and did not find any noticeable change in the figures (except for the expected lower throughputs). This showed us that hash memoization and a separate data array do a good job. At this point, many other questions can be asked and answered by further investigation. These would be out of scope now, but are on our list of future work.
Figure 8: Effect of fill-rate and size/rw-write on average throughput

5 Discussion and Conclusions

We designed a hash table suitable for application in reachability analysis. We implemented it as part of a model checker together with different exploration algorithms (pseudo BFS and pseudo DFS) and explicit load-balancing. We demonstrated the efficiency of the complete solution, by comparing the abso-
lute speedups compared to the SPIN 5.2.4 and the DiVinE 2.2 model checkers, leading tools in this field. We claim two times better scalability than DiVinE and five times better than SPIN on average. We also investigated the properties of the hash table with regard to its behavior under different fill rates and found it to live up to the requirements we imposed.

Limitations. Without the use of pointers the current design cannot cope with variably sized state vectors. In our model checker, this does not pose a problem because states are always represented by a vector of a static length. Our model checker LTSmin can handle different front-ends. It connects to DiVinE-cluster, DiVinE 2.2, PROMELA (via the NipsVM), mCRL, mCRL2 and ETF (internal symbolic representation of state spaces). Some of these input languages require variably sized vectors (NIPS). This is solved by an initial exploration, that continues until a stable vector is found. So far, this limitation did not pose a problem.

The results in the sequential case proved around 20% slower than DiVinE 2.2. We can explain this because we have one extra level of indirection (function calls) to abstract from the language front-end. But, this is not the only reason. It turns out that for large models we are actually as fast as DiVinE. Small models, however, underperform compared to DiVinE (up to 50% as can be seen in the figures with absolute speedups). The difference here is caused by the pointer-less and allocation-less data structure, which simply introduces more cache misses with low fill rates. When we embrace pointers and allocation this could be remedied, but the question is whether such a solution will still scale, because cache hits can cause cache line sharing and thus extra communication in parallel operation.

Discussion. We make several observations based on the results presented here:

- Centralized state storage scales better and is more flexible. It allows for pseudo DFS (like the stack slicing algorithm), but can also facilitate explicit load balancing algorithms. The latter opens the potential to exploit heterogeneous systems. Early results with load balancing showed a few percent overhead compared to static load balancing.

- Performance-critical parallel software needs to be adapted to modern architectures (steep memory hierarchies). An indication of this can be seen in the performance difference between DiVinE, SPIN and LTSmin. DiVinE uses an architecture which is directly derived from distributed model checking and the goal of SPIN was for “these new algorithms [...] to interfere as little as possible with the existing algorithms for the verification of safety and liveness properties” [15]. With LTSmin, on the other hand,
we had the opportunity to tune our design to the architecture of the machine. We noticed that avoiding cache line sharing and keeping a simple design was instrumental to handle the system’s complexities.

- Holzmann made the conjecture that optimized sequential code does not scale well [16]. In contrast, our parallel implementation is faster in absolute numbers and also exhibits excellent scalability. We suspect that the (entirely commendable) design choice of SPIN’s multi-core implementation to support most of SPIN’s existing features is detrimental to scalability. In our experience, parallel solutions work best if they are tailored to each individual problem.

- Scalable enumerative reachability is a good starting point for future work on multi-core (weak) LTL model checking, symbolic exploration and space-efficient explicit exploration.

Future work. As mentioned above, this work has been conducted in the broader context of the LTSmin model checker. The goal of LTSmin is to deliver language independent model checking algorithms without a performance penalty. We do this by finding a suitable representation for information from the language engine that is normally used for optimization. By means of a dependency matrix [5] this information is preserved and utilized for symbolic exploration, (distributed) reachability and (distributed) state space minimization with bisimulation [6]. In this work, we showed indeed that we do not have to pay a performance penalty for language independent model checking.

for multi-core mCRL algorithms by using POSIX shared memory to accommodate the inherently sequential implementation of mCRL.

By exploring the possible solutions and gradually improving this work, we found a wealth of variables hiding in the algorithms and the models of the BEEM database. As can be seen from the figures, different models show different scalability. By now we have some ideas where these differences come from. For example, an initial version of the exploration algorithm employed static load balancing by means of an initial BFS exploration and handing of the states from the last level to all threads. Several models where insensitive to this static approach, others, like hanoi.x and frogs.x, are very sensitive due to the form of there state space. Dynamic load balancing did not come with a noticeable performance penalty for the other models, but hanoi and frogs are still in the bottom of the figures. There are still many options open to improve shared memory load balancing and remedy this.

We also experimented with space-efficient storage in the form of a tree compression. Results, also partly based on algorithms presented here, are very promising and we intend to follow up on that.
6 Acknowledgements

We thank the chair of Computational Materials Science at UTwente for making their cluster available for our experiments. In particular, we thank Anton Starikov for aiding our experiments and at the same time configuring the cluster to facilitate them. We thank Petr Ročkai and Jiří Barnat for the help and support they provided on the DiVinE toolkits. We also thank the Linux Kernel developers for their help in tracing down the cause of the performance regression on newer kernels. This resulted in 10% improvements of the results.

References

[1] Yossi Azar, Andrei Z. Broder, Anna R. Karlin, and Eli Upfal. Balanced allocations. SIAM J. Comput., 29(1):180–200, 2000.

[2] Jiří Barnat, Luboš Brim, and P. Ročkai. Scalable multi-core LTL model-checking. In Model Checking Software, volume 4595 of LNCS, pages 187–203. Springer, 2007.

[3] Jiří Barnat, Luboš Brim, and Petr Ročkai. DiVinE 2.0: High-Performance Model Checking. In 2009 International Workshop on High Performance Computational Systems Biology (HiBi 2009), pages 31–32. IEEE Computer Society Press, 2009.

[4] Jiří Barnat and Petr Ročkai. Shared hash tables in parallel model checking. Electronic Notes in Theoretical Computer Science, 198(1):79 – 91, 2008. Proceedings of the 6th International Workshop on Parallel and Distributed Methods in verifiCation (PDMC 2007).

[5] S. C. C. Blom, J. C. van de Pol, and M. Weber. Bridging the gap between enumerative and symbolic model checkers. Technical Report TR-CTIT-09-30, University of Twente, Enschede, June 2009.

[6] Stefan Blom and Simona Orzan. A distributed algorithm for strong bisimulation reduction of state spaces. STTT, 7(1):74–86, 2005.

[7] Luboš Brim. Distributed verification: Exploring the power of raw computing power. In Luboš Brim, Boudewijn Haverkort, Martin Leucker, and Jaco van de Pol, editors, Formal Methods: Applications and Technology, volume 4346 of Lecture Notes in Computer Science, pages 23–34. Springer, August 2006.

[8] Cliff Click. Lock-free hash table. Talk at JavaOne 2007, 2007.

[9] Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Terminator: Beyond safety (tool paper).
[10] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. *Introduction to Algorithms, Third Edition*. The MIT Press, 3 edition, September 2009.

[11] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. *The Java Language Specification, Third Edition*. Addison-Wesley Longman, Amsterdam, 3 edition, June 2005.

[12] D. P. Helmbold and C. E. McDowell. Modeling speedup (n) greater than n. *IEEE Trans. Parallel Distrib. Syst.*, 1(2):250–256, 1990.

[13] Maurice Herlihy and Nir Shavit. *The Art of Multiprocessor Programming*. Morgan Kaufmann, March 2008.

[14] Maurice Herlihy, Nir Shavit, and Moran Tzafrir. Hopscotch hashing. *Distributed Computing*, pages 350–364, 2008.

[15] Gerard J. Holzmann. A stack-slicing algorithm for multi-core model checking. *Electronic Notes in Theoretical Computer Science*, 198(1):3 – 16, 2008. Proceedings of the 6th International Workshop on Parallel and Distributed Methods in Verification (PDMC 2007).

[16] Gerard J. Holzmann and Dragan Bošnacki. The design of a multicore extension of the spin model checker. *IEEE Trans. Softw. Eng.*, 33(10):659–674, 2007.

[17] Shahid Jabbar and Stefan Edelkamp. Parallel external directed model checking with linear I/O. *Verification, Model Checking, and Abstract Interpretation*, pages 237–251, 2006.

[18] Witold Litwin. Linear hashing: a new tool for file and table addressing. In *VLDB ’1980: Proceedings of the sixth international conference on Very Large Data Bases*, pages 212–223. VLDB Endowment, 1980.

[19] Michael Monagan and Roman Pearce. Parallel sparse polynomial multiplication using heaps. In *ISSAC ’09: Proceedings of the 2009 international symposium on Symbolic and algebraic computation*, pages 263–270, New York, NY, USA, 2009. ACM.

[20] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. *Journal of Algorithms*, 51(2):122 – 144, 2004.

[21] R. Pelánek. Beem: Benchmarks for explicit model checkers. In *Proc. of SPIN Workshop*, volume 4595 of *LNCS*, pages 263–267. Springer, 2007.

[22] Chris Purcell and Tim Harris. Non-blocking hashtables with open addressing. *Distributed Computing*, pages 108–121, 2005.

[23] V. Rao and Vipin Kumar. Superlinear speedup in parallel state-space search. *Foundations of Software Technology and Theoretical Computer Science*, pages 161–174, 1988.

23
A APPENDIX A – SPEEDUPS

This appendix contains detailed figures about per-model speedups with the different model checkers.

![Figure 9: Speedup of BEEM models with LTSmin](image)

Figure 9: Speedup of BEEM models with LTSmin
Figure 10: Speedup of BEEM models with DiVinE 2.2

Figure 11: Speedup of BEEM models with SPIN