This is the accepted manuscript made available via CHORUS. The article has been published as:

High Magnetic Shear Gain in a Liquid Sodium Stable Couette Flow Experiment: A Prelude to an \(\alpha-\Omega \) Dynamo
Stirling A. Colgate, Howard Beckley, Jiahe Si, Joe Martinic, David Westpfahl, James Slutz, Cebastian Westrom, Brianna Klein, Paul Schendel, Cletus Scharle, Travis McKinney, Rocky Ginanni, Ian Bentley, Timothy Mickey, Regnar Ferrel, Hui Li, Vladimir Pariev, and John Finn
Phys. Rev. Lett. \textbf{106}, 175003 — Published 28 April 2011
DOI: 10.1103/PhysRevLett.106.175003
High Magnetic Shear Gain in a Liquid Sodium Stable Couette Flow Experiment
A Prelude to an $\alpha - \Omega$ Dynamo

Stirling A. Colgate, Howard Beckley (deceased), Jiahe Si, Joe Martinic, David Westpfahl, James Shutz, Cebastian Westrom, Brianna Klein, Paul Schendel, Cletus Scharle, Travis McKinney, Rocky Ginanni, Ian Bentley, Timothy Mickey, Regnar Ferrel, and Hui Li
1T-2, MS B-227, Los Alamos National Laboratory, Los Alamos, NM 87545; colgate@lanl.gov
2Department of Physics, New Mexico Institute of Mining and Technology, Socorro, NM 87801 and
3T-5, Los Alamos National Laboratory, Los Alamos, NM 87545;

The Ω-phase of the liquid sodium $\alpha-\Omega$ dynamo experiment at NMIMT in cooperation with LANL has demonstrated a high toroidal field B_ϕ that is $\simeq 8 \times B_r$, where B_r is the radial component of an applied poloidal magnetic field. This enhanced toroidal field is produced by the rotational shear in stable Couette flow within liquid sodium at a magnetic Reynolds number $Rm \simeq 120$. Small turbulence in stable Taylor-Couette flow is caused by Ekman flow at the end walls, which causes an estimated turbulence energy fraction of $(be/v)^2 \sim 10^{-3}$.

PACS numbers: 52.72.+v, 52.30.cv, 95.30.Qd
Keywords: Dynamos — MHD — turbulence

Major world-wide efforts are underway to understand astrophysical phenomena that depend upon magnetic fields, e.g., planetary, solar, and stellar magnetic fields, X-rays, cosmic rays, TeV gamma rays, jets and radio lobes powered by active galactic nuclei (AGNs), and to interpret Faraday rotation maps of galaxy clusters. Yet, so far, there is no universally accepted explanation for the inferred large-scale magnetic fields. A process, called the $\alpha - \Omega$ dynamo [1–3], has been proposed which involves two orthogonal conducting fluid motions, shear and helicity. When the two motions are comparable, it is often described as a stretch, twist, and fold or "fast" dynamo, and is claimed to be produced by turbulence alone [4], [5]. The problem is that a turbulent dynamo must create these two orthogonal motions coherently from semi-random turbulent motions alone. Fluid turbulence causes the diffusion of magnetic flux as well as momentum [6], so that a field twisted one way by a turbulent eddy at one moment of time may be partially twisted the opposite way the next instant of time leading to a net diffusion of magnetic flux, [7].

A natural way to achieve a near unbounded multiplication of large scale astrophysical magnetic flux is to use large scale near-stable rotational shear flows (as in AGN accretion disks and in stars) in combination with transverse, transient, rotationally coherent sources of helicity. The rotational shear flow can stretch and wind-up an embedded, transverse magnetic flux through a large number of turns (the Ω effect, the subject of this paper). When the winding number is large, the corresponding helicity, the α effect, can be correspondingly smaller in order to make positive dynamo gain. We have long believed that a unique source of coherent helicity is plumes, [8, 9], driven either by star-disk collisions in AGNs [10] or large scale (density scale height) convective elements in the base of the convective zone in stars [11]. In shear flows turbulence is expected to be relatively small when stability is imposed by either an angular momentum gradient or an entropy gradient. The finite rotation of plumes [12] on the other hand occurs because of the delayed turbulent mixing of the plume with the background matter. The necessary angle of rotation from toroidal to poloidal is $\pi/2$ radians, but because of time dependent diffusion of the plume with the background fluid, a measured absolute rotation of $\sim \pi$ radians results in a net rotation of the flux by $\sim \pi/2$ radians, ideal for the $\alpha - \omega$ dynamo.

In this experiment the high Ω-gain in low turbulence flow contrasts with a smaller Ω-gain in higher turbulence shear flows. This result supports the ansatz that large scale astrophysical magnetic fields can be created by semi-coherent large scale motions in which turbulence plays only a smaller, diffusive role that enables magnetic flux linkage.

Two liquid sodium dynamo experiments have produced positive exponential gain, but the flows were constrained by rigid walls unlike astrophysical flows [13, 14]. The rigid walls restrict turbulent eddy size by the distance from the wall, according to the log-law of the walls [15], thereby producing lower turbulence. Three recent experiments used the Dudley-James [16] or Von Karman flows where both are counter rotating and converging flows at the mid-plane and are driven by either two counter rotating propellers or two counter rotating vaned turbine impellers, respectively, [17–22]). Unconstrained turbulence is induced by the Helmholtz instability at the shearing mid-plane. This combination of coherent shearing motions and unconstrained shear-driven turbulence resulted in a maximum Ω-gain of only unity, [22]. Recognizing the enhanced resistivity of the mid-plane turbulence, the team at Wisconsin added a mid-plane baffle to reduce the turbulence, following which the Ω-gain increased to $\simeq 4$ [7]. The von Karman Sodium 2 (VKS2) experiment in the same geometry produced exponential gain [23]. However, the dynamo action was explained not by turbulence but primarily by the production of helicity by the large coherent vortices produced by the radial
rigid vanes of the impeller [24]. (Ferro magnetism added additional gain to this source of helicity.)

The New Mexico $\alpha - \Omega$ dynamo experiment [25, 26] is designed to explore the $\alpha \Omega$ possibility in the laboratory using coherent fluid motions in low-turbulence, moderate shear, stable Couette flow in the annular volume between two coaxial cylinders, $R_2/R_1 = 2$ rotating at the stable angular velocities $\Omega_1/\Omega_2 = (R_2/R_1)^2 = 4$ (see Figure 1). This is closely analogous to natural fluid motions that occur in astrophysical bodies [8, 10, 27]. The results of the first phase, (Ω-phase), of this two-phase experiment are presented here.

Besides the rotating Couette flow in the annular volume, Fig.1 also indicates the Ekman flow, a thin fluid layer flowing along the boundaries of the annular volume. This flow is driven by fluid friction with the end walls whose surface rotates at $\Omega_2 < \Omega_{\text{fluid}}$. The Ekman flow produces both a torque and a small but finite level of turbulence [28] in the radial return flow. This turbulence adds a small turbulent resistivity to the resistivity of metallic sodium. The Ekman layer, $(\Delta z \approx R_1/Re^{1/2} = 4.08 \times 10^{-3} \text{ cm})$ flows "up" (towards the axis) along each end surface and then radially back through the Couette flow to the outer cylinder, R_2. Pressure sensors in the end wall and magnetic sensors within the magnetic probe housing are also shown schematically. The poloidal magnetic flux produced by two coils (left) is superimposed (right) showing the flux lines from the Maxwell calculation [29], with the ferro-magnetic iron shield and steel shaft included. The magnetic flux of the radial field crosses the high shear of the liquid sodium Couette flow producing the enhanced toroidal field. The B_r field from the Maxwell calculations agrees with the calibrated probe measurements to 10%.

For the magnetic measurements 20kW in an AC induction motor is used to drive stable Couette flow through a gear train with clutches and power take-off that rotates the two cylinders at the fixed ratio of $\Omega_1 = 4\Omega_2$. The outer cylinder can also be disengaged from the gear train by a clutch, and a DC motor is used to accelerate or brake the outer cylinder independently from the driven inner cylinder. This allows different Ω_1/Ω_2 ratios to be explored. The DC motor housing (stator) is mounted on bearings. A torque arm with two force sensors connects the motor stator to ground, so that the torque on the DC motor can be measured separately from the drive of the inner cylinder. This arrangement allows us to measure the torque between the two cylinders due to the Ekman flow along the surface of the end plates which rotate more slowly at Ω_2. (The torque due to viscosity alone would be smaller by $1/Re^{1/2}$.)

In particular, when the inner cylinder is driven at higher speed by the AC motor, the Ekman fluid torque tries to spin up or accelerate the outer cylinder. Two torques counteract this acceleration: 1) the friction in the bearings that support the rotation of the outer cylinder and 2) the torque on the DC motor when used as a generator, or brake. In Fig. 2 (left) the crosses are the measurements of the braking force exerted by the DC motor torque arm; the dashed line is the calibrated bearing torque (measured by disengaging the inner cylinder drive and rotating the outer cylinder with the DC motor alone). The sum of these two torques is equal to the Ekman fluid torque spinning up the outer cylinder.

In Fig. 2 (left) the minimal Ekman flow torque, G_{torq}, occurs at $\Omega_1/\Omega_2 \approx 3.25$, less than the limit of stable Couette flow of 4. The measured torque value is $2 \times 10^8 \text{ dyne-cm}$, close to the approximation that the torque equals the inward radial flux of angular momentum in the two Ekman layers [28] and at the radial velocity of $\nu_1/2$ and 2 layers. Therefore $G_{\text{torq}} = (\Delta \nu_2)\Omega_1^2 \nu_1^3 / 4$.

In Fig 2 (right), the measured pressures are compared to the calculated pressures corresponding to two different angular velocity power laws. The upper (dashed) curve corresponds to ideal, maximum shear, stable Couette flow, or $\Omega \propto R^{-2}$, but the experimental points follow the lower solid curve corresponding to $\Omega \propto R^{-3/2}$. The Ekman flow torque has distorted the angular velocity profile and reduced the shear in the Couette volume relative to that of ideal Couette flow. High shear occurs in the thin boundary layers (with small Rm) in contact with the inner and outer cylinder walls.

Turbulent flow at such high Reynolds number $Re \approx$
sodium at the mid-plane, is the primary diagnostic of the experiment. It consists of 6 multiple, 3-axis, magnetic field Hall effect detectors at the mid-plane in the annular space between the two cylinders and contained in an aero-dynamically shaped housing. (The fluid friction drag produced by this housing, primarily Ekman flow, is estimated to be \(\sim 0.1 \) of the end-wall Ekman torque.) The \(\Omega \)-gain was then measured using an applied calibrated \(B_r \) magnetic field as a function of the coil currents. Because of the high gain in \(B_o \) and the lack of perfect orthogonality of the Hall detectors, the measured \(B_r \) would be expected to be contaminated by a small fraction of the much larger \(B_o \) field.

Fig 3 confirms that the measurements are repeatable by showing four experiments over-laid, but the absolute error is \(\sim 10\% \). The \(\Omega \)-gain ratio of \(\times 8 \) is repeated with a low bias field of \(B_r \approx 12 \, \text{G} \). The time variation between each run reflects slight changes in the measurement time relative to the Couette flow relaxation time and hence, the angular velocity distribution. The repeatability as well as several earlier runs in the previous six months gives us confidence that the conclusion of high \(\Omega \)-gain is valid. Note that the ideal \(\Omega \)-gain could be as high as \(\sim R_m/2\pi \approx 20 \) \(\times 8 \), but several factors contribute to a reduced gain. 1) The reduced shear, \(\delta \Omega/\delta R \approx 1.5 \) rather than 2, a factor of 0.75. 2) The geometry of the current flow is now two directions, re-entrant rather than the "ideal" single direction, a factor of \(\sim 0.5 \). 4) In addition the current must flow radially from an inner to an outer annulus of conducting sodium. The resistance of this additional current path further reduces the effective gain. 5) Finally we estimate the effective resistivity of the Ekman driven turbulence and find it modest compared to the sodium.
In Fig 3 caption the Ekman turbulent stress is estimated to be \(\tau_{Ek} \approx 2.6 \times 10^4 \) dynes/cm\(^2\), and so the turbulent fluid velocities become \(v_t \approx (\tau_{Ek}/\rho)^{1/2} \approx 51 \) cm/s. The turbulent diffusivity is \(\eta_t = \eta_0 \lambda^3 \) where \(\lambda \) is the largest effective eddy size, \(\lambda \approx (R - 2 - R_1)/3 = 5 \) cm and so \(\eta_t \approx 83 \) cm\(^2\)/s as compared to hot liquid sodium of \(\eta_0 \sigma \approx 750 \) cm\(^2\)/s or only a 9% increase in resistivity.

The expected back-reaction is observed when the radial component of the applied poloidal field is increased from \(\approx 12 \) G to \(\approx 250 \) G. This results in an added torque between the cylinders producing additional current and torque in the drive motor, \(\approx \times 1.5 \). The \(\Omega \)-gain ratio is reduced from \(\times 8 \) to \(\approx \times 3 \). The observed delay of several seconds for the back reaction torque to reach equilibrium is presumably the spin-down time for the Couette flow to reach a new, modified velocity profile. The back reaction stress, \(B_R B_\phi/8\pi \approx 7.7 \tau_{Ek} \) is consistent with the assumption that this stress reduces the shear in the Couette flow and hence reduces the \(\Omega \)-gain. The pressure distribution and hence, the inferred Couette flow angular velocity distribution has yet to be measured. In order to estimate the difference in applied power, \(\approx 10\)kW, the specific magnetic field energy density, \(B_\phi^2/8\pi \) is dissipated at \(\Omega > \times (Vol) \) where the volume of high \(B_\phi \) is estimated as \((Vol) \approx (L/3)(\pi/2)(R_2^3 - R_1^3) \). This results in a power of \(\approx 8 \) kW, roughly consistent with the measured increase in power of 10 kW.

A large \(\Omega \)-gain in low turbulent shear flow in a conducting fluid is demonstrated. This is likely to be the mechanism of the \(\Omega \)-gain of a coherent \(\alpha - \Omega \) astrophysical dynamo. This experiment has been funded by NSF, Univ. of Calif., NMIMT, & LANL.

[1] Parker, E.N. 1955, APJ, 121, 29
[2] Krause, F., & Rädler, K.H. 1980, Mean-Field Magnetohydrodynamics and Dynamo Theory. (Oxford: Pergamon Press)
[3] Parker, E.N. 1979, Cosmical Magnetic Fields, their Origin and their Activity. (Oxford: Claredon)
[4] Nordlund, A.; Brandenburg, A.; Jennings, R.L.; Rüdiger, M.; and others., 1992, APJ, 392, 647
[5] Zeldovich, Ya.B., Ruzmaikin, A.A., & Sokoloff, D.D. 1983, Magnetic Fields in Astrophysics. (New York: Gordon and Breach Science Publishers)
[6] Tobias, S.M., and Cattaneo, F., 2008, PRL 101, 125003
[7] Rahbarnia, K., et al., 2010, Bul. APS, DPP, NP9-73, 218
[8] Pariev, V.I., & Colgate, S.A., 2007, APJ, 658: 129-160
[9] Willette, G. T., Stochastic excitation of the solar oscillations by convection, (Ph.D. 1994), Cal Tech
[10] Pariev, V.I., and Colgate, S.A., 2007, APJ, 658: 114-128.
[11] Mestel, L. 1999, Stellar Magnetism. (Oxford: Claredon)
[12] Beckley, H.F., Colgate, S.A., Romero, V.D., and Ferrel, R., 2003, Astrophys. J., 599, 702
[13] Gailitis, A., Lielausis, O., Platacis, E., et al.: 2001, Phys. Rev. Lett. 84, 4365
[14] Stiegitz, R., Müller, U.: 2001, Physics of Fluids 13, 561
[15] Landau, L.D. & Lifshitz, E.M., 1959, Fluid Mechanics. Pergamon Press, London
[16] Dudley, M.L., James, R.W.: 1989, Proc. R. Soc. London, Ser. A 425, 407
[17] Forest, C.B., Bayliss, R.A., Kendrick, R.D., Nornberg, M.D., O’Connell, R., Spence, E.J.: 2002, Magnetohydrodynamics 38, 107
[18] Lathrop, D.L., Shew, W.L., and Sisan, D.R., 2001, Plasma Phys. & Controlled Fusion 43, A151
[19] Odier, P., Pinton, J.-F., and Fauve, S., 1998, Phys. Rev. E 58, 7397.
[20] Pefferly, N.L., Cawthorne, A. B. and Lathrop, D.P., 2000, Phys Rev. E 61, 5287
[21] Petrelis, F., Bourgoin, M., Marie, L., Burguete, J., Chiffaudel, A., Daviaud, F., Fauve, S., Odier, P., and Pinton, J.-F., 2003, Phys Rev. Lett, 90, 174501
[22] Spence, E.J., Nornberg, M.D., Jacobson, C.M., Parada, C.A., Taylor, N.Z., Kendrick, R.D., and Forest, C.B., 2007, Phys. Rev. Lett. 98 164503.