Transfer/Breakup Channel Couplings in Sub-barrier Fusion Reactions

C. Beck
Département de Recherches Subatomiques, Institut Pluridisciplinaire Hubert Curien, IN2P3-CNRS and Université de Strasbourg - 23, rue du Loess BP 28, F-67037 Strasbourg Cedex 2, France
E-mail: christian.beck@iphc.cnrs.fr

Abstract. With the recent availability of state-of-the-art radioactive ion beams, there has been a renew interest in the investigation of nuclear reactions with heavy ions near the Coulomb barrier. The role of inelastic and transfer channel couplings in fusion reactions induced by stable heavy ions can be revisited. Detailed analysis of recent experimental fusion cross sections by using standard coupled-channel calculations is first discussed. Multi-neutron transfer effects are introduced in the fusion process below the Coulomb barrier by analyzing $^{32}\text{S}+^{90,96}\text{Zr}$ as benchmark reactions. The enhancement of fusion cross sections for $^{32}\text{S}+^{96}\text{Zr}$ is well reproduced at sub-barrier energies by NTFus code calculations including the coupling of the neutron-transfer channels following the Zagrebaev semi-classical model. Similar effects for $^{40}\text{Ca}+^{90}\text{Zr}$ and $^{40}\text{Ca}+^{96}\text{Zr}$ fusion excitation functions are found. The breakup coupling in both the elastic scattering and in the fusion process induced by weakly bound stable projectiles is also shown to be crucial. In the second part of this work, full coupled-channel calculations of the fusion excitation functions are performed by using the breakup coupling for the more neutron-rich reaction and for the more weakly bound projectiles. We clearly demonstrate that Continuum-Discretized Coupled-Channel calculations are capable to reproduce the fusion enhancement from the breakup coupling in $^6\text{Li}+^{59}\text{Co}$.

1. Introduction
Quantal tunnelling effects have been widely studied in heavy-ion fusion reactions at bombarding energies at the vicinity and below the Coulomb barrier [1, 2, 3, 4, 5]. In low-energy fusion reactions, the simple one-dimensional barrier-penetration model (1D-BPM) [1, 2] is based upon a real potential barrier resulting from the attractive nuclear and repulsive Coulomb interactions. For light- and medium-mass nuclei, one only assumes that the di-nuclear system (DNS) fuses as soon as it has reached the region inside the barrier i.e. within the potential pocket. If the system can evolve with a bombarding energy high enough to pass through the barrier and to reach this pocket with a reasonable amount of energy, the fusion process will occur after a complete amalgation of the colliding nuclei forming the compound nucleus (CN). On the other hand, for sub-barrier energies the DNS has not enough energy to pass through the barrier. The specific role of multi-step nucleon-transfers in sub-barrier fusion enhancement still needs to be investigated in detail both experimentally and theoretically [6, 7, 8, 9, 10, 11, 12, 13, 14, 15] for reactions induced by stable neutron-rich beams. In a complete description of the fusion dynamics the transfer channels in standard coupled-channel (CC) calculations [2, 8, 10, 14, 15, 16] have to be taken into account accurately. It is known, for instance, that neutron transfers...
may induce a neck region of nuclear matter in-between the interacting nuclei favoring the fusion process to occur. In this case, neutron pick-up processes can occur when the nuclei are close enough to interact each other significantly [7, 8], if the Q-values of neutron transfers are positive. It was shown that sequential neutron transfers can lead to the broad distributions characteristic of many experimental fusion cross sections. Finite Q-value effects can lead to neutron flow and a build up of a neck between the target and projectile [8]. The situation of this neck formation of neutron matter between the two colliding nuclei could be considered as a “doorway state” to fusion. In a basic view, this intermediate state induced a barrier lowering. As a consequence, it will favor the fusion process at sub-barrier energies and enhance significantly the fusion cross sections. Experimental results have already shown such enhancement of the sub-barrier fusion cross sections due to the neutron-transfer channels with positive Q-values [6, 9].

In reactions induced by weakly bound nuclei and/or by halo nuclei, the influence on the fusion process of coupling both to collective degrees of freedom and to transfer/breakup channels is a key point [3, 4, 5] for the understanding of N-body systems in quantum dynamics [1]. The best known halo nuclei are \(^{11}\)Be and \(^{13}\)C, with a one-neutron halo. Due to their very weak binding energies, a diffuse cloud of neutrons for the \(^{6}\)He and \(^{11}\)Li halo nuclei or an extended spatial distribution for the loosely bound proton in the \(^{8}\)B or \(^{17}\)F proton-rich nuclei would lead to larger total reaction (and fusion) cross sections at sub-barrier energies as compared to 1D-BPM model predictions. This enhancement is well understood in terms of the dynamical processes arising from strong couplings to collective inelastic excitations of the target (such as “normal” quadrupole and octupole modes) and projectile (such as soft dipole resonances). However, in the case of reactions where at least one of the colliding nuclei has a sufficiently low binding energy for the breakup channels to become among the most competitive processes, conflicting conclusions were reported in the literature [3, 4, 5, 17, 18].

Recent studies with Radioactive Ion Beams (RIB) indicate that the halo nature of \(^{6,8}\)He and \(^{11}\)Be nuclei [19, 20, 21, 22, 23, 24, 25], for instance, does not enhance the fusion probability as anticipated. Rather the prominent role of one- and two-neutron transfers in \(^{6,8}\)He induced fusion reactions was definitively demonstrated. On the other hand, the effect of non-conventional transfer/stripping processes appears to be less significant for stable weakly bound projectiles. Several experiments involving \(^{6}\)Be, \(^{7}\)Li, and \(^{6}\)Li projectiles on medium-mass targets have been undertaken.

In this work, after a brief description of some selected experimental results in Section 2, we will discussed in 3.1) standard CC calculations with and without coupling of the multi-nucleon transfer in the fusion process induced by stable beams at sub- and near-barrier energies and in 3.2) Continuum-Discretized Coupled-Channel (CDCC) calculations taking into account the effect of the breakup of weakly bound nuclei on the elastic scattering, and consequently on the the total reaction cross section and on the fusion cross section and the magnitude of the breakup itself.

2. Experimental results
We first present the role of inelastic and transfer channel couplings in the experimental data we obtained in the study of fusion reactions induced by stable \(^{32}\)S projectiles [26]. The breakup coupling in both elastic scattering data and in the fusion data are also shown for weakly bound \(^{6,7}\)Li projectiles [27, 28].

2.1. \(^{32}\)S + \(^{90}\)Zr and \(^{32}\)S + \(^{96}\)Zr reactions
In order to investigate the role of neutron transfers we further study \(^{32}\)S + \(^{90}\)Zr and \(^{32}\)S + \(^{96}\)Zr as benchmark reactions. Fig. 1 displays the measured fusion cross sections for \(^{32}\)S + \(^{90}\)Zr (open circles) and \(^{32}\)S + \(^{96}\)Zr (points).
We present the analysis of excitation functions of evaporation residues (ER) cross sections recently measured with high precision. The experiment was performed at the HI-13 tandem accelerator of the China Institute of Atomic Energy (CIAE), Beijing with small energy steps and good statistical accuracy for these reactions [26]. The fusion excitation functions were measured for 32S + 90Zr (open circles) and 32S + 96Zr (solid points) as a function of the center-of-mass energy. The error bars of the experimental data taken from Ref. [26] represent purely statistics uncertainties. (Courtesy of H.Q. Zhang)

In Fig. 3 we introduce the experimental fusion-barrier (BD-Fusion) distributions (see open points) obtained for the two reactions by using the three-point difference method of Ref. [8] as applied to the data points of Ref. [26] plotted in Fig. 1. It is interesting to note that in both cases the BD-Fusion and BD-QEL barrier distributions are almost identical up to $E_{c.m.} \approx 85$ MeV.

Although in order to reach a very detailed understanding of the role of nucleon transfers (i.e., both neutron and proton transfers) in the fusion processes below the Coulomb barrier, we would have needed much more high-precision experimental fusion data with higher statistics at very low bombarding energies, the Zagrebaev model [10] including the multi-nucleon transfer channels will be used in one of the following Sections.
2.2. $^6\text{Li} + ^{59}\text{Co}$ and $^7\text{Li} + ^{59}\text{Co}$ reactions
The total fusion excitation functions were measured for the $^{6,7}\text{Li} + ^{59}\text{Co}$ reactions [28] at the VIVITRON facility of the IPHC Strasbourg and the Pelletron facility of São Paulo by using γ-ray techniques. Their ratios are presented in Fig. 2 with comparisons with other lighter targets such as ^{24}Mg [30] and ^{28}Si [29, 31, 32]. The theoretical curves are the results of 1D-BPM calculations [1, 2] (solid line) and fits using the prescription of Wong [16] (dashed line), respectively. None of the two theories take into account the breakup channel coupling that is discussed in great details in one of the following sections.

3. Coupled channel analysis
Analysis of experimental fusion cross sections by using standard CC calculations is first discussed with the emphasis of the role of multi-neutron transfer in the fusion process below the Coulomb barrier for $^{32}\text{S} + ^{90,96}\text{Zr}$ as benchmark reactions.

3.1. $^{32}\text{S} + ^{90}\text{Zr}$ and $^{32}\text{S} + ^{96}\text{Zr}$ reactions
A new CC computer code named NTFUs [33, 34, 35, 36] taking the neutron transfer channels into account in the framework of the semiclassical model of Zagrebaev [10] has been developed. The effect of the neutron transfer channels yields a fairly good agreement with the data of sub-barrier fusion cross sections measured for $^{32}\text{S} + ^{96}\text{Zr}$, the more neutron-rich reaction [26]. This was initially expected from the positive Q-values of the neutron transfers as well as from the failure of standard CC calculation of quasi-elastic barrier distributions without neutron-transfers coupling [13] as shown by the solid line in Fig. 3(b).

By fitting the experimental fusion excitation function displayed in Fig. 1 with CC calculations [26, 33, 34], we concluded [35, 36] that the effect of the neutron transfer channels produces significant enhancement of the sub-barrier fusion cross sections of $^{32}\text{S} + ^{96}\text{Zr}$ as compared to $^{32}\text{S} + ^{90}\text{Zr}$. A detailed inspection of the $^{32}\text{S} + ^{90}\text{Zr}$ fusion data presented in Fig. 1 along with the negative Q-values of their corresponding neutron transfer channels lead us to speculate with the absence of a neutron transfer effect on the sub-barrier fusion for this reaction. With the semiclassical model developed by Zagrebaev [10] we propose to definitively demonstrate the significant role of neutron transfers for the $^{32}\text{S} + ^{96}\text{Zr}$ fusion reaction by fitting its experimental excitation function with CCDEF code [43] calculations, as shown in Fig.3. Similar results can be obtained with the NTFUs code [33, 34] (not shown). The perfect fit is obtained for the quasielastic scattering (solid circles) cross sections [13] for both $^{32}\text{S} + ^{90}\text{Zr}$ and $^{32}\text{S} + ^{96}\text{Zr}$. However, the experimental $^{32}\text{S} + ^{90}\text{Zr}$ fusion barrier distribution shows a dip where the calculations shows a strong low-energy peak. This disagreement is not yet fully understood.

The new oriented object NTFUs code [33, 34], using the Zagrebaev model [10] was implemented (at the CIAE) in C++, using the compiler of ROOT [37], following the basic equations of Ref. [38]. Let us first remind the values chosen for the deformation parameters and the excitation energies that are given in Refs. [2, 39, 40] (see Tables given in [35] for more details). The quadrupole vibrations of both the ^{90}Zr and ^{96}Zr are weak in energy; they lie at comparable energies. The ^{90}Zr nucleus presents a complicated situation [41]: its low-energy spectrum is dominated by a 2^+ state at 1.748 MeV and by a very collective $B(E3;3^− \rightarrow 0^+) = 51 \text{ W.u.}$ $3^−$ state at 1.897 MeV. CC calculations explained the larger sub-barrier enhancement as due mainly to the strong octupole vibration of the $3^−$ state in $^{36}\text{S} + ^{96}\text{Zr}$ [42]. However, the agreement is not so satisfactory below the barrier for $^{32}\text{S} + ^{96}\text{Zr}$ (see solid line of Fig. 3.b), as well as for $^{40}\text{Ca} + ^{96}\text{Zr}$ [9] and, therefore, there is the need to take the multi-neutron transfer channels into account as accurately as possible.

The main functions of the code NTFUs are designed to calculate the fusion excitation functions with normalized barrier distribution (based on experimental data) given by CCDEF [43], we take the dynamical deformations into account. In order to introduce the role of neutron
Figure 3. Barrier distributions (BD) from the fusion ER (open circles) cross sections [26], plotted in Fig.1, and quasielastic scattering (solid circles) cross sections [13] for 32S+90Zr (a) and 32S+96Zr (b). The dashed and solid black lines represent uncoupled calculations (1D-BPM) and the CC calculations of usion cross sections without neutron transfer coupling. The red dash-dotted line represents the CC calculations with neutron transfer coupling for the 32S+96Zr reaction. (Courtesy of H.Q. Zhang)

transfers, the NTfus code [33, 34] applies the Zagrebaev model [10] to calculate the fusion cross sections $\sigma_{fus}(E)$ as a function of center-of-mass energy E. Then the fusion excitation function can be derived using the following formula [10]:

$$T_l(E) = \int f(B) \frac{1}{N_{tr}} \sum_k \int_{-E}^{Q_0(k)} \alpha_k(E,l,Q) \times P_{HW}(B,E+Q,l) dQ dB.$$ \hspace{1cm} (1)

and
\[\sigma_{\text{fus}}(E) = \frac{\pi \hbar^2}{2\mu E} \sum_{l=0}^{l_c} (2l + 1) T_l(E). \]

where \(T_l(E) \) are the transmission coefficients, \(E \) is the energy given in the center-of-mass system, \(B \) and \(f(B) \) are the barrier height and the normalized barrier distribution function, \(P_{HW} \) is the usual Hill-Wheeler probability. \(l \) is the angular momentum whereas \(l_c \) is the critical angular momentum as calculated by assuming no coupling (well above the barrier). \(\alpha_k(E, l, Q) \) and \(Q_0(k) \) are, respectively, the probabilities and the \(Q \)-values for the transfers of \(k \) neutrons. And \(1/N_l \) is the normalization of the total probability taking into account the neutron transfer channels.

The NTFus code [33, 34] uses the ion-ion potential between two deformed nuclei as developed by Zagrebaev and Samarin in Ref. [38]. Either the standard Woods-Saxon form of the nuclear potential or a proximity potential [44] can be chosen. The code is also able to predict fusion cross sections for reactions induced by halo projectiles [35, 36]; for instance \(^6\)He + \(^{64}\)Zn [23, 45]. In the following, only the comparisons for \(^{32}\)S + \(^{90}\)Zr and \(^{32}\)S + \(^{96}\)Zr reactions are discussed in some detail.

For the high-energy part of the \(^{32}\)S + \(^{90}\)Zr excitation function, one can notice a small over-estimation of the fusion cross sections at energies above the barrier up to the point used to calculate the critical angular momentum. This behavior can be observed at rather high incident energies - i.e. between about 82 MeV and 90 MeV (shown as the dashed line in Fig. 3.(a) for \(^{32}\)S + \(^{90}\)Zr reaction). We want to stress that the corrections do not affect our conclusions that the transfer channels have a predominant role below the barrier for \(^{32}\)S + \(^{96}\)Zr reaction, as shown by the dotted-dashed red curve in Fig. 3.(b).

As expected, we obtain a good agreement with calculations not taking any neutron transfer coupling into account for \(^{32}\)S + \(^{90}\)Zr as shown by the solid line of Fig. 3.(a) (the dashed line are the results of calculations performed without any coupling). On the other hand, there is no significant over-estimation at sub-barrier energies. As a consequence, it is possible to observe the strong effect of neutron transfers on the fusion for the \(^{32}\)S + \(^{96}\)Zr reaction. Moreover, the barrier distribution function \(f(B) \) extracted from the data contains the information of the neutron transfers. These information are also contained in the transmission coefficients, which are the most important parameters for the fusion cross sections to be calculated accurately. The \(f(B) \) function as calculated with the three-point formula [8] will mimic the differences induced by the neutron transfer taking place in sub-barrier energies where the cross section variations are very small (only visible if a logarithm scale is employed for the fusion excitation function). It is interesting to note that the Zagrebaev model [10] implies a modification of the Hill-Wheeler probability and does not concern the barrier distribution function \(f(B) \). Finally, the code allows us to perform each calculation by taking the neutron transfers into account or not.

The calculation with the neutron transfer effect is performed up to the channel +4n (k=4), but we have seen that we obtain the same overall agreement with data up to channels +5n and +6n [35]. As we can see on Fig. 3.(b), the solid line representing standard CC calculations without the neutron transfer coupling (the dotted line is given for uncoupled calculations) does not fit the experimental data well at sub-barrier energies. On the other hand, the dotted line displaying NTFus calculations taking the neutron transfer coupling into account agrees perfectly well with the data. As expected, the Zagrebaev semiclassical model’s correction (by including four sequential neutron transfer channels as well as the low-lying quadrupole and octupole vibrations) applied at sub-barrier energies enhances the calculated cross sections. Moreover, it allows to fit the data reasonably well and therefore illustrates the strong effect of positive-Q-value neutron transfers for the fusion of \(^{32}\)S + \(^{90}\)Zr at subbarrier energies.
Figure 4. Ratios of the elastic scattering cross-sections to the Rutherford cross sections as a function of c.m. angle for the 6Li+59Co system [59]. The curves correspond to CDCC calculations with (solid lines) and without (dashed lines) 6Li \rightarrow α + d breakup couplings to the continuum for incident 6Li energies of (a) 30 MeV, (b) 26 MeV, (c) 18 MeV and (d) 12 MeV. (This figure has been adapted from the work of Ref. [59])

The present full CC analysis of 32S + 96Zr fusion data [26, 35] using NTfus [33, 34] confirms perfectly well first previous CC calculations [10] describing well the earlier 40Ca + 90,96Zr fusion data [9] and, secondly, very recent fragment-γ coincidences measured for 40Ca + 96Zr multi-neutron transfer channels [41]. These facts show again the effect of the positive-Q-value neutron transfers on the sub-barrier fusion processes. In addition to the fusion excitation function, the neutron transfer cross section measurement for the 32S + 96Zr system should provide useful information on the coupling strength of neutron transfer channels, which will allow us to reach a much deeper understanding of the role of neutron transfer mechanisms, sequential or simultaneous, in the fusion processes.

3.2. 6Li + 59Co and 7Li + 59Co reactions

For reactions induced either by weakly bound nuclei [17, 18, 29, 30, 31, 32, 46, 47, 48, 49, 50, 51, 52] or by exotic nuclei [19, 20, 21, 22, 23, 45, 54, 55, 56, 57, 58], the breakup channel is open and plays a key role in the fusion process near the Coulomb barrier similarly to the transfer-channel coupling described in the previous section. It is therefore appropriate to use the Continuum-Discretized Coupled-Channel (CDCC) approach [59, 60, 61, 62] to describe the influence of the breakup channel in both the elastic scattering and the fusion process at sub-barrier and
near-barrier energies.

Theoretical calculations (including CDCC predictions given in Refs. [59, 61]) indicate only a small enhancement of total fusion for the more weakly bound 6Li below the Coulomb barrier (see curves of Fig.2), with similar cross sections for both 6Li+59Co reactions at and above the barrier [28]. It is interesting to notice, however, that the same conclusions have been reached for other targets such as 24Mg [30] and 28Si [29, 31, 32] as can be clearly seen in the plot of Fig. 2. These results are consistent with rather low breakup cross sections measured for the 6Li+59Co reactions even at incident energies larger than the Coulomb barrier [46, 47, 48]. But the coupling of the breakup channel is extremely important for the CDCC analysis of the angular distributions of the elastic scattering [59] as shown in Fig. 4 for 6Li+59Co. The curves show the results of calculations with (solid lines) and without (dashed lines) 6Li → α + d, t breakup couplings. The main conclusion is that effect of breakup on the elastic scattering is stronger for 6Li than 7Li.

A more detailed investigation of the breakup process in the 6Li+59Co reaction with particle coincidence techniques is now proposed to discuss the interplay of fusion and breakup processes. Coincidence data compared to three-body kinematics calculations reveal a way how to disentangle the contributions of breakup, incomplete fusion and/or transfer-reemission processes [46, 47, 48].

Fig. 5 displays experimental (full rectangles) and theoretical angular distributions (solid lines) for the sequential (SBU) and direct (DBU) projectile breakup processes at the two indicated bombarding energies for the 6Li+59Co reaction. Here we use the terminology of DBU and SBU for breakup through non-resonant (direct) and resonant states (sequential) of the continuum, respectively. Other authors may prefer to use this terminology (SBU) in the case where the BU occurs after a transfer of particle(s). In the present CDCC calculations the α+d binning scheme has been appropriately altered to accord exactly with the measured continuum excitation energy ranges. For this reaction it has not been necessary to use the sophisticated four-body CDCC framework proposed by M. Rodriguez-Gallardo et al., [63].

The relative contributions of the 6Li SBU and DBU to the incomplete fusion/transfer process has been discussed earlier [46, 47, 48] by considering the corresponding lifetimes obtained by using a semi-classical approach. We concluded [46, 47, 48] that the flux diverted from complete fusion to incomplete fusion would arise essentially from DBU processes via high-lying continuum (non-resonant) states of 6Li: this is due to the fact that both the SBU mechanism and the low-lying DBU processes from low-lying resonant 6Li states occur at large internuclear distances.

It is interesting to mention that, in contrast to the 6Li+65Cu reaction [49] but in agreement with the 6Li+28Si reaction [31], we have not observed in 6Li+59Co any significant contribution of other 6Li resonant states (4.31 MeV 2+ and 5.65 MeV 1+) in our data than the contribution of the first 2.86 MeV 3+ resonant state.

For the 6Li+198Pt reaction, Shrivastava et al. [50] have measured cross-sections for the d capture (i.e. corresponding to an incomplete fusion scenario d-ICF) that are much larger than transfer (TR) cross sections. These non-resonant contributions were assumed to arise exclusively from DBU in the case of the 6Li+209Bi reaction [51] at $E_{lab} = 36$ MeV and 40 MeV, whereas ICF yields were found to represent a large fraction of the total reaction cross-section in this energy range [52].

The fact that a significant contribution of the direct breakup process is also present for the medium-mass target 59Co is rather consistent with either the stripping breakup mechanism proposed for the heavy 208Pb target [53] and/or with a competitive direct breakup for the light 28Si target [31].

In the CDCC calculations of 6Li+59Co the α + d binning scheme is appropriately altered to accord exactly with the measured continuum excitation energy ranges. For this reaction it was not necessary to use a sophisticated four-body CDCC framework. The CDCC cross sections
Figure 5. Experimental [46, 47, 48] and theoretical CDCC [35] angular distributions for the SBU (i.e. for the first excited state 3^+ at $E = 2.186$ MeV of 6Li) and DBU projectile breakup processes (see text for details) obtained at $E_{lab} = 25.5$ MeV and 29.6 MeV for 6Li+59Co. The chosen experimental continuum excitation energy ranges are given. (Courtesy of F.A. Souza)

[59] are in agreement with the experimental ones [17, 47, 48], both in shapes and magnitudes within the uncertainties. The relative contributions of the 6Li SBU and DBU to the incomplete fusion/transfer process has been discussed in great details in Refs. [46, 47, 48] by considering the corresponding lifetimes obtained by using a semi-classical approach fully described in a previous publication [46]. We conclude that the flux diverted from complete fusion to incomplete fusion would arise essentially from DBU processes via high-lying continuum (non-resonant) states of 6Li; this is due to the fact that both the SBU mechanism and the low-lying DBU processes from low-lying resonant 6Li states occur at large internuclear distances [46, 47, 48]. Work is
Figure 6. Ratios of the elastic scattering cross-sections to the Rutherford cross sections as a function of c.m. angle for the $^7\text{Be}+^{58}\text{Ni}$ system [66] for incident ^7Be energies of (a) 15.09 MeV, (b) 17.13 MeV, (c) 18.53 MeV (d) 19.93 MeV and (e) 21.43 MeV. The solid and dashed curves denote full and no coupling to the continuum. (This figure has been adapted from the work of Ref. [18])

in progress to study incomplete fusion for $^6\text{Li}+^{59}\text{Co}$ within a newly developed 3-dimensional classical trajectory model [64, 65].

This 3-dimensional classical dynamical model of reactions induced by weakly bound nuclei at near-barrier energies [65] allows a quantitative study of the role and importance of incomplete fusion dynamics in asymptotic observables, such as the population of high-spin states in reaction products as well as the angular distribution of direct alpha-production. Preliminary model calculations indicate that incomplete fusion is an effective mechanism for populating high-spin states, and its contribution to the direct alpha production yield diminishes with decreasing energy towards the Coulomb barrier. It also becomes notably separated in angles
from the contribution of no-capture breakup events. This should facilitate the experimental
disentanglement of these competing reaction processes.

3.3. Coupled-channel calculations for reactions induced by halo nuclei

So far the application of the classical dynamical model of Diaz-Torres [64, 65] has been limited to
weakly-bound stable nuclei. In the near future it will be of interest to undertake a systematical
comparison of this model prediction with standard CC and CDCC prescriptions and to study
its possible extensions to halo nuclei, as well.

As far as exotic halo projectiles are concerned we have already initiated a systematic study of
8B and 7Be induced reactions data [66] with an improved CDCC method [60]. Fig. 6 displays the
analysis of the elastic scattering for the 7Be+58Ni system [66]. The curves correspond to CDCC
calculations with (solid lines) and without (dashed lines) 7Be $\rightarrow \alpha + ^3$He breakup couplings to
the continuum. The 6Li and 7Be calculations were similar, but with a finer continuum binning
for 7Be. As compared to 7Be+58Ni (similar to 6Li+58,64Ni) our CDCC analysis of 8B+58Ni
reaction [60] while exhibiting a large breakup cross section (consistent with the systematics) is
rather surprizing as regards the consequent weak coupling effect found to be particularly small
on the near-barrier elastic scattering. Another CDCC study [67] was also found to be also in
excellent agreement with the data [66].

Recently, the scattering process of 17F from 58Ni target was investigated [55] slightly above
the Coulomb barrier and total reaction cross sections were extracted from the Optical-Model
analysis. The small enhancement as compared to the reference (tightly bound) system 16O+58Ni is
here related to the low binding energy of the 17F valence proton. This moderate effect is mainly
triggered from a transfer effect, as observed for the $2n$-halo 6He [19, 20] and the $1n$-halo 11Be
[54] in contrast to the $1p$-halo 8B+58Ni reaction where strong enhancements are triggered from
a breakup process [57].

4. Summary, conclusions and outlook

The role of inelastic and multi-nucleon transfer channels as well as of the breapup channel
coupling in fusion reactions has been revisited in reactions induced by medium-light ions near
the Coulomb barrier by using either standard CC calculations or three-body CDCC techniques.

First we have investigated the fusion process (excitation functions and extracted barrier
distributions [26]) at near- and sub-barrier energies for the two neighbouring reactions 32S +
90Zr and 32S + 96Zr. For this purpose a new computer code named NTFus [33, 34, 35, 36] is in
the process of being developed by taking the coupling of the multi-neutron transfer channels
into account in the framework of the semi-classical model of Zagrebaev [10].

The effect of neutron couplings provides a fair agreement with the present data of sub-
barrier fusion for 32S + 96Zr. This was initially expected from the positive Q-values of the
neutron transfers as well as from the failure of previous CC calculation of quasi-elastic barrier
distributions without coupling of the neutron transfers [13]. With the agreement obtained by
fitting the present experimental fusion excitation function and the CC calculation at sub-barrier
energies, we concluded [35] that the effect of the neutron transfers produces a rather significant
enhancement of the sub-barrier fusion cross sections of the 32S + 96Zr system as compared to
the 32S + 90Zr system.

At this point we did not try to reproduce all the details of the fine structures observed
in the fusion barrier distributions. We believe that to achieve this final goal it will first be
necessary to measure the neutron transfer cross sections to provide a much deeper understanding
on the coupling strength of neutron transfer channels, sequential or simulatneous, because its
connection with fusion is not yet fully explained [41].

In the second part of this work, we have studied the breakup coupling on elastic scattering
and fusion by using the CDCC approach with a particular emphasis on a very detailed analysis of
the 6Li+59Co reaction. The CDCC formalism, with continuum–continuum couplings taken into account, is probably one of the most reliable methods available nowadays to study reactions induced by exotic halo nuclei, although many of them have added complications like core excitation and three-body structure. The respective effects of transfer/breakup are finally outlined for reactions induced by 1p-halo, 1n-halo and 2n-halo nuclei.

The complexity of such reactions, where many processes compete on an equal footing, necessitates kinematically and spectroscopically complete measurements [68], i.e. ones in which all processes from elastic scattering to fusion are measured simultaneously, providing a technical challenge in the design of broad range detection systems. An experimental prototype using an active-target time-projection chamber (AT-TPC) is underway at MSU/NSCL [69, 70]. The AT-TPC is a dual functionality device containing both traditional active-target and time-projection chamber capabilities. The detector consists of a large gas-fileld chamber installed in an external magnetic field.

A full understanding of the reaction dynamics involving couplings to the breakup and nucleon-transfer channels will need high-intensity RIB and precise measurements of elastic scattering, fusion processes and yields leading to the breakup itself. A new experimental program with SPiRAL beams and medium-mass targets is getting underway at GANIL, in order to prepare more exclusive experiments at SPiRAL2.

Acknowledgments

I acknowledge all the members of the accelerator teams of the VIVITRON Strasbourg, of the USP Pelletron São Paulo, and of the CIAE Beijing for the excellent conditions under which these very difficult experiments were performed, and also for their very kind hospitality and assistance. I would like to thank A. Szanto de Toledo and S.J Sanders for being respectively the initiator and the spokesperson of the first experiment performed in Strasbourg as well as A. Diaz-Torres, K. Hagino, N. Keeley, F. Liang, A. Richard, N. Rowley, F.A. Souza and H.Q. Zhang for very fruitfull discussions on most of the theoretical aspects that are investigated in this work.
F, Stroe L, Torresi D, Vardaci E, and Vitturi A 2010 Phys. Rev. C 82 054604
[56] Kohley Z, Liang F, Shapira D, Varner R L, Gross C J, Allmond J M, Caraley A L, Coello E A, Favela F, Lagergren K, and Mueller P E 2011 Phys. Rev. Lett. 107 202701
[57] Aguilera E F and Kolata JJ 2011 Phys. Rev. C 85 014603
[58] Rudolph M J, Gosser Z Q, Brown K, Hudan S, de Souza R T, Chhihi A, Jacquot B, Famiano M, Liang J F, Shapira D, and Mercier D 2012 Phys. Rev. C 85 024605
[59] Beck C, Keeley N, and Diaz-Torres A 2007 Phys. Rev. C 75 054605; arXiv:nucl-th/0703085 (2007)
[60] Keeley N, Mackintosh R S, and Beck C 2010 Nucl. Phys. A 834 792
[61] Diaz-Torres A, Thompson I J, and Beck C 2003 Phys. Rev. C 68 044607; arXiv:nucl-th/0307021 (2003)
[62] Beck C, Rowley N, Papka P, Courtin S, Rousseau M, Souza F A, Carlin N, Liguori Neto F, De Moura M M, Del Santo M G, Suade A A I, Munhoz M G, Szanto E M, Szanto De Toledo A, Keeley N, Diaz-Torres A, and Hagino K 2010 Int. J. Mod. Phys. E20 943; arXiv:1009.1719 (2010)
[63] Rodriguez-Gallardo M, Arias J M, Gomez-Camacho J, Moro A M, Thompson I J, and Tostevin J A 2009 Phys. Rev. C 80 051601
[64] Diaz-Torres A, Hinde D J, Tostevin J A, Dasgupta M, Gasques I R 2007 Phys. Rev. Lett. 98 152701; arXiv:nucl-th/0703041 (2007)
[65] Alexis Diaz-Torres 2010 Journal of Physics G Nuclear and Particle Physics 37 075109; Alexis Diaz-Torres 2011 Computer Physics Communications 182 1100
[66] Aguilera E F, Martinez-Quiroz E, Lizcano D, Gomez-Camacho A, Kolata J J, Lamm L O, Guimaraes V, Lichtenthaler R, Camargo O, Becchetti F D, Jiang H, DeYoung P A, Mears P J, and Belyaeva T L 2009 Phys. Rev. C 79 021601
[67] Lubian J, Correa T, Aguilera E F, Canto L F, Gomez-Camacho A, Quiroz E M, and Gomes P R S 2009 Phys. Rev. C 79 064605
[68] Papka P and Beck C 2012 in Clusters in Nuclei, Vol. 2 Edited by C. Beck, Lecture Notes in Physics 848 (Springer-Verlag, Heidelberg, 2012) p. 299
[69] http://www.nscl.msu.edu/exp/asttpc and J.J. Kolata (private communication)
[70] Suzuki D, Ford M, Bazin D, Mittig W, Lynch W G, Ahn T, Aune S, Galyaev E, Fritsch A, Gilbert G, Montes F, Shore A, Yurkon J, Kolata J J, Browne J, Howard A, Roberts A L, and Tang X T 2012 Nuclear Instruments and Methods in Physics Research Section A 691 39