Methods for the Reconstruction of Parallel Turbo Codes

M. Cluzeau, M. Finiasz, and J.-P. Tillich
We intercept a noisy bitstream and want to recover the (encrypted) information.
Overview of the problem

- Code reconstruction consists in finding the code and an efficient decoder for the intercepted bitstream,
 - if nothing is known about the encoder, this is generally a hard problem.

- Depending on the type of code, some techniques exist:
 - convolutional codes,
 - linear block codes,
 - LDPC codes.

 [Valembois, Filliol, Barbier, Sendrier, Côte…]

- Here we focus on parallel turbo codes.
We consider rate $\frac{1}{3}$ parallel turbo codes using 2 systematic convolutional encoders and a permutation Π.

We want to find P, Q, P', Q' and Π from the interleaved outputs X, Y and Z, with some noise.
First Step of Reconstruction
Isolating the outputs

We apply convolutional code reconstruction techniques:

▷ search short parity check equations valid for offsets of any multiple of n ($n = 3$ for standard interleaving).

▷ they will only involve bits of X and Y
 ➔ we can isolate Z,
 ➔ with enough equations we can recover P' and Q'.

Deciding which of the reconstructed X and Y was indeed X is impossible:

▷ Reconstruction only works for the correct choice:
 ➔ in case of failure we start over.
We can find the block length by using linear block code reconstruction techniques:

- again search for parity check equations,
- longer equations involving bits of \mathbb{Z}.

For a permutation of length N and no puncturing, the shortest block length with parity checks equations involving bits of \mathbb{Z} is equal to $3N$.

Second Step of Reconstruction
Finding the block/permutation length

We can find the block length by using linear block code reconstruction techniques:

▷ again search for parity check equations,
 ➔ longer equations involving bits of \mathbb{Z}.

For a permutation of length N and no puncturing, the shortest block length with parity checks equations involving bits of \mathbb{Z} is equal to $3N$.

N can be large, depending on the noise level this step can be very expensive,

▷ synchronization patterns or other similar things can help guess the correct length.
Now one has to recover P, Q and Π from X and Z with some noise.

- P and Q can be exhaustively searched for,
- recovering Π is the hard part.

We propose two methods:

- search for low weight parity check equations,
- guess the positions of Π one by one, using a “decoder” to decide which is correct.
Using Parity Checks
The input X is first permuted...
Using Parity Checks

\[\begin{align*}
X & = 10010101 \\
X_\Pi & = 10001011 \\
Z & = 10010101
\end{align*} \]

...then encoded by \(P/Q \).

\[\frac{1+D+D^3}{1+D} \]
Using Parity Checks

The same process is applied to each block.
We receive noisy versions of X and Z, we want to recover Π.
Using Parity Checks

X	X_{II}	Z
10010101	100010111	10010101
00100011	111000000	11110111
10101100	01000111	01001000
01111101	11111000	11110101
10001010	00100101	00100010
00010111	10101010	10110011

X_{II} and Z are linked by parity check equations.
Using Parity Checks

X and Z are linked by parity check equations,

X_{Π} and Z by permuted parity checks.
Using Parity Checks

X	X_{II}	Z
1 0 0 1 0 1 0 1	1 0 0 0 1 0 1 1	1 0 0 1 0 1 0 1
0 0 1 0 0 0 1 1	1 1 1 0 0 0 0 0	1 1 1 1 0 1 1 1
1 0 1 0 1 1 0 0	0 1 0 0 0 1 1 1	0 1 0 0 1 0 0 0
0 1 1 1 1 0 1 1	1 1 1 1 1 1 0 0	1 1 1 0 1 0 0 1
1 0 0 0 1 0 1 0	0 0 1 0 0 1 0 1	0 0 1 0 0 0 1 0
0 0 0 1 0 1 1 1	1 0 1 0 1 0 1 0	1 0 1 1 0 0 1 1
0 1 0 0 1 1 0 0	0 0 0 1 0 1 1 0	0 0 0 0 0 1 1 0
0 0 0 1 1 0 1 0	0 0 1 0 1 1 0 0	0 0 0 0 1 1 0 0
0 1 1 1 0 0 0 0	0 1 0 1 1 0 0 0	0 0 0 1 1 0 0 0

- **permutation shifts**
- **parity check shifts**

X_{II} and Z are linked by parity check equations, and any shift is also valid.
Each parity check we find gives us information on P and Q and on Π.

- X
 - $\begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 \ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 \ 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \ 0 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 \ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \ \end{bmatrix}$
 - X_{Π}
 - $\begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \ 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \ 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \ \end{bmatrix}$
 - Z
 - $\begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \ 1 & 1 & 1 & 1 & 0 & 1 & 1 \ 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \ 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 \ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \ \end{bmatrix}$

- $1 + D^2 + D^3 + D^4$
 - $1 + D^2$
 - $\begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \ \end{bmatrix}$

- $1 + D^4 + D^5$
 - $1 + D^3$
 - $\begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \ \end{bmatrix}$
Each parity check found is of the form λP on the X_Π part and λQ on the Z part

- one knows λQ and the weight of λP
- it is possible to classify the P, Q pairs depending on their parity checks.

Once P/Q is known, one knows λP too and gets even more information on Π.

For low noise levels this technique is very efficient.

For higher noise levels, only some parity check equations are found, leaving parts of Π unknown.
Using a Convolutional Decoder
For this technique, P/Q has to be known or guessed.

One wants to find the first position x of Π: $\Pi(x) = 1$

- there are N possibilities,
- for each of the M intercepted blocks, one knows the first output bit of the convolutional encoder P/Q → the first “column” of Z
- each of the N “columns” of X corresponds to a different set of input bits.

For each possible value of x, one computes the entropy of the internal state of the convolutional encoder P/Q,

- N distributions of M samples each.
When guessing x two cases can occur:

- For the correct choice ($\Pi(x) = 1$), the entropy on the encoder state should be quite low
 - directly related to the noise level
- For an incorrect choice ($\Pi(x) \neq 1$), this entropy will be higher
 - equivalent to having an unrelated input bit.

Among the N computed distributions:

- $N - 1$ will follow a “bad” distribution,
- 1 will follow the “good” distribution.

The “bad” and “good” distributions can be computed through sampling if the noise level is known.
For a Gaussian noise of standard deviation σ quite high, the "target" distributions can still be distinguished.
We use a straightforward algorithm:

- the positions of Π are recovered sequentially,
- at each step the most “probable” positions are selected using a Neyman-Pearson test:
 - we fix a threshold and keep all candidates above this threshold,
 - at step i, we consider the $i - 1$ previous steps were successful:
 - if no position is above the threshold, the candidate is discarded,
- once we reach the end, only a few candidates for Π should remain.
Using a Convolutional Decoder

Practical results

N	σ	M	(theory)	running time
64	0.43	50	(48)	0.2 s
64	0.6	115	(115)	0.3 s
64	1	1380	(1380)	12 s
512	0.6	170	(169)	11 s
512	0.8	600	(597)	37 s
512	1	2800	(2736)	173 s
512	1.1	3840	(3837)	357 s
512	1.3	29500	(29448)	4477 s
10000	0.43	300	(163)	8173 s
10000	0.6	250	(249)	7043 s

Complexity in $\Theta(N^2 M 2^m)$:

- however, the larger N, the larger M must be.
We can predict the number of intercepted words required to reconstruct the turbo code:

- for low noise levels only few words are required.

Particularly efficient technique for Gaussian noise:

- the distributions are quite messy for a BSC

Recovery can fail for two reasons:

- the number of candidates explodes
 - happens when M is too small.
- the number of candidates drops to 0
 - bad choice for P/Q, or bad luck with the noise distribution.
Further Improvements

- Both techniques can be adapted to punctured turbo codes
 - the complexity will increase significantly (at least by a factor N).

- Both methods can be combined:
 - one should always spend a few seconds/minutes searching for low weight parity checks,
 - it helps find P/Q, and decreases the cost of the second algorithm.