Evaluation of Allelopathic Potentials from Medicinal Plant Species in Phnom Kulen National Park, Cambodia by the Sandwich Method

Yourk Sothearith 1,2, Kwame Sarpong Appiah 1, Takashi Motobayashi 1,*, Izumi Watanabe 3, Chan Somaly 2, Akifumi Sugiyama 4 and Yoshiharu Fujii 1,*

1 Department of International Environmental and Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan; thearith.yourk@gmail.com (Y.S.); ksappiah90@gmail.com (K.S.A.)
2 Ministry of Environment, Morodok Techco (Lot 503) Tonle Bassac, Phnom Penh 12301, Cambodia; somalychan.ca@gmail.com
3 Laboratory of Environmental Toxicology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan; wataizumi@cc.tuat.ac.jp
4 Research Institute for Sustainable Humanosphere (RISH), Kyoto University, Kyoto 611-0011, Japan; akifumi_sugiyama@rish.kyoto-u.ac.jp
* Correspondence: takarice@cc.tuat.ac.jp (T.M.); yfujii@cc.tuat.ac.jp (Y.F.)

Abstract: Phnom Kulen National Park, in north-western Cambodia, has huge richness in biodiversity and medicinal value. One hundred and ninety-five (195) medicinal plant species were collected from the national park to examine allelopathic potentials by using the sandwich method, a specific bioassay for the evaluation of leachates from plants. The study found 58 out of 195 medicinal plant species showed significant inhibitory effects on lettuce radicle elongation as evaluated by standard deviation variance based on the normal distribution. Three species including Iris pallida (4% of control), Parabarium micranthum (7.5% of control), and Peliosanthes teta (8.2% of control) showed strong inhibition of lettuce radicle elongation less than 10% of the control. The results presented could present as a benchmark for isolation and identification of allelochemicals among medicinal plants used in Cambodia.

Keywords: allelopathy; allelochemicals; leachates; sandwich method

1. Introduction

Plant species in the natural diversity have been used by humans to treat numerous diseases worldwide. The various modes of medicinal plant use associated with traditional knowledge were found in different ways in different regions [1]. Hundreds of species have been used for curing various diseases such as fever, malaria, cough, flu, asthma, colds, chest diseases, skin itch, acne, headache, jaundice, nausea, ulcer, tumours, typhus, stomach pain, heart attack, chills, inflammation, herpes, hepatitis, swelling, and among others. [2]. Over the last three decades, no less than 80% of people worldwide relied on medicinal plants for primary healthcare and other factors [3]. Medicinal plants are a significant source of bioactive substances in the development of most drugs [4,5]. In the natural ecology, bioactive phytochemical constituents include alkaloids, tannins, flavonoids and some other phenolic compounds present in medicinal plants that produce a definite physiological action effect either on humans, animals, and other plants [6]. Interestingly, a wide range of these secondary metabolites was reported to have strong relativity in allelopathic activity [7]. Some bioactive compounds contained in medicinal plants including ferulic, coumaric, vanillic, caffeic and chlorogenic acids in medicinal plants were found to possess plant growth inhibitory effect [8,9]. The term allelopathy was introduced by Molisch in 1937, referring to a phenomenon observed in many plants that influence the physiological process of neighbouring plants and or organisms, interacting through secondary
metabolites [10,11]. In this process, chemicals—called allelochemicals—are released from plants that impose allelopathic influences (stimulatory or inhibition) into the environment through volatilization, leaching, root exudation and decomposition of plant residues in soil [12]. Allelopathic substances from either specialized or varying amounts of different plant organs are consisted in a vast array of seemingly disconnected structures and possess different modes of action which are mostly interpreted in ecology as a defence against other plants, pests, or diseases [13,14]. Allelochemicals can also stimulate or inhibit the germination, growth, and development of plants [15,16]. The incorporation of allelopathic substances released from plant residues was introduced to reduce the use of synthetic herbicides which were reported to harmful to human health and to cause environmental deterioration [17–19]. Consequently, allelopathic potentials of medicinal plant species were suggested as a practical option for sustainable weed management [20–22]. A previous study linked the allelopathic potential of medicinal plants to the medicinal values (relative frequency of citation, fidelity level, and use values) of plants [23]. Research have focused much attention on the search for novel natural plant products to promote sustainable agriculture. This study, therefore, focused on medicinal plants in Phnom Kulen National Park, a region known for its cultural and medicinal value, in north-western Cambodia. The national park named from a lychee tree species (Litchi chinensis), elevated up to 500 m and covering 37,373 ha, was expected to have around 1500 plant species. However, only 500 species were currently recorded in taxonomy among 775 known plant species [24]. It is also believed that the medicinal value from this area is likely different from other regions in Cambodia, and it is home to 389 medicinal plant species associated with traditional knowledge that has been elucidated by the School for Field Studies in 2017 [25,26]. One hundred and ninety-five medicinal plant species belonging to 81 different families were collected from the national park to evaluate allelopathic potentials by using the sandwich method.

2. Materials and Methods

2.1. Material

The parts used of the medicinal plant species were collected and dried up (oven oven-dried at 60 °C for 3 hours) at the target area before being transferred for testing at the Laboratory of Department of International Environment and Agriculture, Tokyo University of Agriculture and Technology, Japan. The various plant parts collected for this study were leaves, stems, barks, bulbs, rhizomes, tubers, roots, flowers and fruits. Lettuce (Lactuca sativa L.) was selected as a test plant material in the bioassay due to its reliability in germination and its susceptibility to inhibitory and stimulatory chemicals [27].

2.2. Sandwich Method

The sandwich method was introduced as a very useful tool for large scale allelopathic activity screening of plant leachates [28]. Multi-dish plastic plates were used as shown in Figure 1. Agar without plant material was set up as the untreated control. After lettuce seeding in each well, the multi-dish plastic plates were sealed with plastic tape, marked with a corresponding label and kept in an incubator (NTS Model MI-25S) at 25°C for three days. With three replication treatments, the germination percentage of the lettuce seedlings were measured and recorded including the mean of radicle and hypocotyl growth.

2.3. Statistical Analysis

The treatment tested was arranged in a complete randomized design with three replicates. Statistical analysis of the experimental data was conducted with Microsoft Excel 2010. And the means, standard deviation (SD), and SD variance (SDV) were also evaluated.

\[
\text{Elongation} = \left(\frac{\text{Average length of treatment radicle/hypocotyl}}{\text{Average length of control radicle/hypocotyl}} \right) \times 100
\]
The elongation percentages of radicle and hypocotyl of lettuce seedlings were affected by leachates from 195 medicinal plant species in the sandwich bioassay (Table 1). In this study, the radicle elongation percentages of lettuce seedlings were in the range of 4.0% to 132.5% and 3.1% to 119.7% for 10 mg and 50 mg, respectively. In both the 10 mg and 50 mg treatments, the lettuce radicle elongations were inhibited more than hypocotyl elongations. Concerning the 10 mg oven oven-dried treatment, we observed that only 58 species showed significant inhibition on lettuce radicle growth as evaluated by using standard deviation variance (SDV). The radicle growth elongation of >90% occurred in 64 species, 70–90% in 61 species, 50–70% in 36 species, 30–50% in 25 species, and 4–30% in 9 species. The six families with highest species number in all examined medicinal plants were Rubiaceae (13 species), Fabaceae (12 species), Euphorbiaceae (12 species), Apocynaceae (10 species), Moraceae (7 species) and Zingiberaceae (7 species). Our study found that 34 species from different plant families showed less than 50% of radicle elongation percentage. However, only three species from different families such as Iridaceae, Apocynaceae and Asparagaceae had lettuce radicle elongation growth less than 10%. The species with the strongest inhibition on lettuce radicle elongation was Iris pallida (4% of control), followed by Parabarrium micranthum (7.5% of control), Peliosanthes teta (8.2% of control), Crinum latifolium (21.3% of control), Suregada multiflora (21.3% of control), Ervatamia microphylla (22.4% of control), Allophyllus serrulatus (23.3% of control) and Eupatorium odoratum (24.1% of control). Nonetheless, the phytochemicals that linked to phytotoxicity and the inhibitory activities of these top inhibiting medicinal plants might contain compounds or some unknown chemical constituents.
Table 1. The radicle and hypocotyl elongation percentages of lettuce seedlings grown containing oven-dried plant materials tested using the sandwich method.

Scientific Name	Plant Families	Part Used	10 mg R	10 mg H	50 mg R	50 mg H	Criteria
Iris pallida Lam	Iridaceae	Rhizome	4.0	3.1	0	***	
Parabarium micranthum (A.DC.)	Apocynaceae	Leaf	7.5	5.9	3.2	*****	
Pelosanthes teta Andrew	Asparagaceae	Leaf	8.2	7.2	19.7	*****	
Crinum latifolium L	Amaryllidaceae	Bulb	21.3	13.0	13.0	****	
Sureaua multiflora Baill	Euphorbiaceae	Stem	21.3	35.5	12.4	****	
Eruvatilis microphylla Kerr	Apocynaceae	Leaf	22.4	46.6	10.3	****	
Allophylus serrulatus Radlk	Sapindaceae	Leaf	23.3	17.5	12.8	****	
Eupatorium odoratum (L.) R.M.King & H.Rob	Asteraceae	Leaf	24.1	30.5	11.5	****	
Stephania rotunda Linn	Menispermaceae	Tuber	28.7	24.6	10.0	***	
Cicelya barbata Miers	Menispermaceae	Leaf	31.4	44.7	14.4	***	
Jasminum nobile C.B.Clarke	Oleaceae	Stem	31.7	89.1	24.4	***	
Kaempferia galanga Linn	Zingiberaceae	Bulb	32.1	34.1	21.6	***	
Holarhena curtisii King & Gamble	Apocynaceae	Leaf	32.7	85.4	25.6	***	
Mimosa pudica Linn	Fabaceae	Leaf	32.8	76.4	21.1	***	
Eletherine bulbosa (Mill.) Urb	Iridaceae	Flower	34.5	28.5	19.1	***	
Cleistanthus tomentosus Hance	Euphorbiaceae	Stem	36.3	30.5	10.3	***	
Sindora siamensis Teysm	Fabaceae	Bark	37.5	27.0	12.2	***	
Cassia siame Lam	Fabaceae	Leaf	38.0	86.0	29.0	***	
Phyllanthus amarus Schum. cl Thonn	Phyllanthaceae	Stem	38.6	56.0	13.2	***	
Spirolebias cambodiannum Baill	Apocynaceae	Stem	38.8	64.2	25.2	***	
Terminalia cordisca Pierre	Combretaceae	Bark	39.4	71.9	14.1	***	
Adina cordifolia Hok. F	Rubiaceae	Stem	39.7	35.5	9.40	***	
Croton oblongifolius Roxb	Euphorbiaceae	Leaf	41.0	43.3	21.6	***	
Carallia brachiata (Lour.) Merr	Rhizophoraceae	Bark	42.6	72.3	26.5	***	
Euphorbia hirta Linn	Euphorbiaceae	Leaf	43.3	83.8	21.2	***	
Bracca javanica (Linn) Merr	Simaroubaceae	Stem	43.8	21.8	68.6	***	
Courouzia guianensis Aubert	Lecythidaceae	Flower	43.9	45.3	19.6	***	
Dialium cochincheninse Pierre	Fabaceae	Bark	43.9	67.2	14.2	***	
Cyperus rotundus Linn	Cyperaceae	Leaf	44.8	106	11.5	***	
Dracaena angustifolia Roxb	Asparagaceae	Leaf	45.0	95.3	31.7	***	
Hymenocardia punctata Wall. ex Lindl	Euphorbiaceae	Stem	46.4	58.9	69.3	***	
Melaleuca leucadendra L	Myrtaceae	Leaf	46.6	74.5	22.3	***	
Diospyros decandra Lour	Ebenaceae	Bark	47.3	77.7	31.2	***	
Dillenia pentagyna Roxb	Dilleniaceae	Stem	49.5	58.1	13.1	***	
Ficus pumila L	Moraceae	Leaf	50.2	69.9	18.1	***	
Diospyros nitida Merr	Ebenaceae	Leaf	50.3	39.1	15.6	***	
Rhodomyrtus tomentosa (Ait) Hassk	Myrtaceae	Leaf	50.4	80.2	24.3	***	
Streptacaulon juventus Merr	Apocynaceae	Stem	50.7	84.4	27.8	*	
Kaempferia parviflor Wall. ex Baker	Zingiberaceae	Bulb	50.8	108	120	*	
Acacia harmandiana (Pierre) Gagnep	Fabaceae	Bark	51.6	70.9	84.5	*	
Derrick scandens (Roxb.) Benth	Fabaceae	Stem	51.6	36.9	20.1	*	
Peltophorum dasycladhich (Misq.) Kurz	Caesalpinioideae	Bark	52.3	85.2	77.8	*	
Tetracera schdens (L.) Merr	Dilleniaceae	Leaf	52.7	111	46.1	*	
Harrisonia perforata Merr	Rutaceae	Bark	53.4	87.9	91.5	*	
Spatholobus parviflorous Kunz	Fabaceae	Stem	54.2	93.2	111	*	
Lagerstroemia floribunda Jack	Lythraceae	Bark	57.3	47.7	109	*	
Scoparia dulcis L	Plantaginaceae	Stem	57.6	107	95.0	*	
Ampelocissus matrinii Planche	Vitaceae	Stem	58.8	59.5	118	*	
Macaranga triloba (Blume) Muell.Arg	Euphorbiaceae	Stem	59.2	72.1	107	*	
Acalypha boehmerioides Misq.	Euphorbiaceae	Leaf	60.0	106	41.5	*	
Pteridium aquinimum (L) Kuhn	Dennstaedtiaceae	Bark	60.3	71.7	107	*	
Coptosapelta flavescens North	Rubiaceae	Stem	60.7	125	73.9	*	
Nepenthes kampotiana Lecomte	Nepenthaceae	Flower	60.9	114	123	*	
Plumbago zeylanica L	Plumbaginaceae	Stem	61.0	103	26.1	*	
Mesua ferrea L	Calophyllaceae	Leaf	61.1	69.8	95.5	*	
Scindapsus officinalis (Roxb.) Schott	Araceae	Stem	61.1	70.3	80.7	*	
Scientific Name	Plant Families	Part Used	10 mg R	10 mg H	50 mg R	50 mg H	Criteria
-------------------------	----------------	-----------	---------	---------	---------	---------	----------
Moringa oleifera Lamk	Moringaceae	Bark	62.5	112	13.9	61.9	*
Pandanus tectorius Parkinon ex Du Roi	Pandanaceae	Leaf	63.0	122	28.3	87.1	*
Dillenia orthata Wall. ex Hook.f	Dilleniaceae	Bark	63.3	100	35.6	90.6	
Alpinia conchigera Grulf	Zingiberaceae	Bark	63.7	117	45.3	117	
Oroxyllum indicum (Linn.) Kurz	Bignoniaceae	Bark	64.7	120	41.4	132	
Careya sphaerica Roxb	Lecythidaceae	Leaf	67.4	138	35.1	129	
Blumea balsamifera DC	Asteraceae	Bark	68.7	120	49.8	129	
Croton lachnocarpus Benth.	Euphorbiaceae	Leaf	69.1	126	75.2	115	
Eleusine indica (L) Gaertn	Poaceae	Leaf	69.2	126	55.3	115	
Aquilaria crassna Pierr	Thymeleaceae	Root	69.7	126	44.9	115	
Drynaria quercifolia (L.) J Sm	Polygodaceae	Leaf	69.9	133	44.9	115	
Lagerstroemia calyculata Kurz	Lythraceae	Leaf	70.2	126	75.2	115	
Ergothroxyllum cambodiamum Pierre	Erythroxylaceae	Stem	70.6	126	44.9	115	
Cnestis pulala (Lour.) Merr	Connaraceae	Leaf	70.9	133	44.9	115	
Capparis micranthta DC	Capparaceae	Stem	70.7	126	75.2	115	
Glycosmis pentaphylla (Retz) Correa	Rutaceae	Stem	70.5	133	44.9	115	
Ventilago cristata Pierre	Rhamnaceae	Stem	70.7	126	75.2	115	
Dioscorea rugosa desert	Solanaeaceae	Stem	70.9	133	44.9	115	
Solanum touroum Swartz	Solanaeaceae	Stem	71.2	126	75.2	115	
Hoya diversifolia Blume	Asclepiadaceae	Leaf	72.1	126	44.9	115	
Bauhinia bassacensis Pierre	Fabaceae	Stem	72.6	133	44.9	115	
Garcinia villersiana Pierre	Clusiaceae	Stem	72.6	133	44.9	115	
Polyalthia everta (Pierre) Finet et Gagnep	Annonaceae	Stem	72.9	126	75.2	115	
Gardenia philastri Pierre-ex-Pit	Rubiaceae	Stem	73.4	133	44.9	115	
Schlechteria olerosa (Lour.) Oken	Sapindaceae	Stem	78.0	126	75.2	115	
Entada phaseoloides Merr	Fabaceae	Stem	78.0	126	75.2	115	
Calamus rudement Lour	Arecaceae	Stem	78.0	126	75.2	115	
Tilia corda triandra Diels	Menispermaeae	Stem	78.0	126	75.2	115	
Alstonia scholaris R-Br	Apocynaceae	Bark	78.0	126	75.2	115	
Congea tomentosa Roxb	Lamiaceae	Stem	78.0	126	75.2	115	
Gnetum montanum Markgr	Gnetaceae	Stem	78.0	126	75.2	115	
Andrographis paniculata (Burm.f.)	Acanthaceae	Stem	78.0	126	75.2	115	
Anacardium occidentale Linn	Anacardiaceae	Stem	78.0	126	75.2	115	
Imperata cylindrica Beav	Poaceae	Stem	78.0	126	75.2	115	
Sterculia lycophora Hance	Sterculiaceae	Stem	78.0	126	75.2	115	
Melodorum fruticosium Lour	Annonaceae	Stem	78.0	126	75.2	115	
Physalis angulata L	Solanaeaceae	Stem	78.0	126	75.2	115	
Afcelia xylorcarpa (Kurz) Craib	Fabaceae	Bark	78.0	126	75.2	115	
Licuyla spinosa Wurbm	Arecaceae	Stem	78.0	126	75.2	115	
Diospyros venosa Wall	Ebenaceae	Stem	81.4	133	44.9	115	
Illigeria rhodanta Hance	Hermiadaceae	Stem	81.4	133	44.9	115	
Asplenum nidus L	Aspleniaceae	Leaf	81.4	133	44.9	115	
Shorea roxburghii G Don	Dipterocarpaceae	Bark	81.4	133	44.9	115	
Mallotus paniculatus (Lam.) Mull.Arg	Euphorbiaceae	Stem	81.4	133	44.9	115	
Gymnophyto seseoides Mart	Amananthaceae	Flower	81.4	133	44.9	115	
Lithl chinensis Sonn	Sapindaceae	Stem	81.4	133	44.9	115	
Elaeocarpus stipularis Plume	Elaeocarpaceae	Stem	81.4	133	44.9	115	
Lea rubra Bl	Vitaceae	Stem	81.4	133	44.9	115	
Streblus asper Lour	Moraceae	Stem	81.4	133	44.9	115	
Kalanchoe Integra Kuntze	Crassulaceae	Stem	81.4	133	44.9	115	
Anthocephalus chinensis (Lam.)	Rubiaceae	Bark	81.4	133	44.9	115	
Microcos paniculata L	Malvaceae	Stem	81.4	133	44.9	115	
Manilkara hexandra (Rosxb.) Dubard	Sapotaceae	Leaf	81.4	133	44.9	115	
Uvaria rufa Blume	Annonaceae	Stem	81.4	133	44.9	115	
Pristatomeris tetrandra (Rosxb.) K.Schum	Rubiaceae	Stem	81.4	133	44.9	115	
Memecylon laevigatum Blume	Melastomataceae	Stem	81.4	133	44.9	115	
Anomum xanthioides Wall.	Zingiberaceae	Stem	81.4	133	44.9	115	
Scientific Name	Plant Families	Part Used	10 mg	50 mg	Criteria		
-------------------------	----------------------	-----------	-------	-------	----------		
Tinospora crispa (Linn) Miers ex Hook	Menispermaceae	Stem	87.0	134	45.0	112	
Morinda tomentosa Roth	Rubiaceae	Stem	87.1	119	50.6	73.0	
Ficus sagitta Vahl	Moraceae	Leaf	87.4	159	74.9	150	
Psydrax pergracilis (Bourd.) Ridsdale	Leguminosae	Stem	87.4	101	80.1	117	
Cassia alata L	Linderniaceae	Stem	87.5	135	69.2	117	
Lindernia crustacea (L.) F.Muell	Linderniaceae	Stem	87.5	135	69.2	117	
Parameria laevisata (Juss.) Moldenke	Apocynaceae	Bark	87.7	123	58.0	127	
Albizia lebek (L.) Benth	Mimosaceae	Stem	87.9	108	42.2	84.3	
Lygodium latifolia	Lygodiaceae	Stem	90.3	126	54.8	90.5	
Hydnophytum formicarium	Rubiaceae	Tuber	88.8	118	77.6	128	
Scleria terrestris	Euphorbiaceae	Stem	91.0	104	74.4	94.8	
Broussonetia papyrifera (L.) L. Her. ex Vent	Urticaceae	Stem	89.2	114	55.8	123	
Colona auriculata (Desv.) Craib	Moraceae	Stem	89.6	117	80.3	117	
Tithonia diversifolia Schott	Asteraceae	Stem	89.7	100	54.7	90.5	
Madhuca butyracea (A.Chev)	Sapotaceae	Bark	90.0	110	29.0	86.0	
Cassia alata	Leguminosae	Stem	90.3	110	39.7	96.7	
Lindernia crustacea	Euphorbiaceae	Stem	89.2	114	55.8	123	
Colona auriculata	Moraceae	Stem	89.6	117	80.3	117	
Madhuca butyracea	Sapotaceae	Bark	90.0	110	29.0	86.0	
Cassia alata	Leguminosae	Stem	87.4	101	80.1	117	
Ficus hirta	Moraceae	Stem	100	141	75.5	127	
Caesalpinia sappan	Fabaceae	Bark	100	141	75.5	127	
Clidemia hirta	Fabaceae	Bark	100	141	75.5	127	
Zizyphus cambodiana	Rhamniaceae	Stem	99.3	129	77.0	132	
Smilax glabra	Euphorbiaceae	Stem	97.2	150	79.9	154	
Ancistrocladus tectorius (Lour.) Merr	Rhamniaceae	Stem	97.6	115	27.5	69.0	
Curcuma aromatica	Zingiberaceae	Stem	97.8	119	81.3	121	
Salacia chinensis	Celastraceae	Stem	97.9	106	69.3	102	
Lygodium flexuosum	Rhamniaceae	Leaf	98.6	141	76.5	116	
Scheffera elliptica	Araliaceae	Stem	98.9	154	61.0	124	
Zizyphus oenoplia	Rhamniaceae	Stem	98.9	122	42.9	96.0	
Cymbidium aloifolium	Orchidaceae	Stem	99.2	112	61.8	129	
Fagraea fragrans	Loganiaceae	Stem	99.2	98.2	107	110	
Musanga cambodiensis	Rhamniaceae	Stem	99.3	129	77.0	132	
Smilax ovalifolia	Euphorbiaceae	Stem	100	125	53.7	101	
Ficus hirta	Moraceae	Stem	100	141	75.5	127	
Caesalpinia sappan	Fabaceae	Bark	100	141	75.5	127	
Clidemia hirta	Fabaceae	Bark	100	141	75.5	127	
Zizyphus cambodiensis	Rhamniaceae	Stem	102	130	91.1	140	
Pouzolzia zeifan	Rhamniaceae	Stem	102	120	76.6	132	
Aganosma marginata	Apocynaceae	Stem	102	114	94.1	116	
Eurycoma longifolia	Smaragdaceae	Bark	102	91.7	54.9	53.9	
4. Discussion

We observed that *Iris pallida* showed higher plant growth inhibitory activity (4% of control) than *Eleutherine bulbosa* (34% of control) on lettuce radicle elongation among the Iridaceae family. Irises contain up to 80 genera and 300 species that are distributed worldwide, but abundant and diversified in Southern Africa and Asia. Many of them are common ornamental plants [29]. The *Iris* species are rich sources of isoflavonoids and flavonoids [30]; and they are primarily used in traditional medicine [31–33]. Sweet iris (*Iris Pallida*) is a perennial herb native to the Dalmatian coast, Croatia [34]. Iridals (tritepenoids) from sweet iris were reported to prevent cancer formation and act as antiplasmodial [35,36]. The content of irones extracted from iris rhizomes contain aromatic principles which mostly responsible for the characteristic scent, and also commercialize in many industries [37,38]. Additionally, many compounds were also reported from the leaf and rhizome of iris essential oil. The major compounds were fatty acids, alkanes, aromatic compounds, sesquiterpenes, and triterpenes [14]; however, its allelochemicals were yet to be reported. On the other hand, *Eleutherine bulbosa*, known as an exotic ornamental and medicinal plant, is native to South America. The underground bulbous part was reported to have a wide range of pharmacognostical and physicochemical properties [39]. Some bioactive compounds contained in ethyl acetate extract of bulbs *Eleutherine bulbosa* including phenolic compounds, flavonoids, quinones and saponins were also reported [40].

The extract of the bulbs of *Eleutherine bulbosa* was reported to have strong activity in the direct bio-autography assay with phytopathogenic fungus *Cladosporium sphaerospermum* [41]. Four compounds were isolated from fungitoxic components including eleutherinone [8-methoxy-1-methyl-1,3dihydro-naphtho(2,3-c)fur-an-4,9-dione]; eleutherin [9-methoxy1(R),3(S)-dimethyl-3,4-dihydro-1H-benzo(g) isochromene-5,10-dione]; isoeleutherin...
[9-methoxy-1(R),3(R)-dimethyl-3,4-dihydro-1H-benzo(g) isochromene-5,10-dione] and eleutherol [4-hydroxy-5-methoxy-3(R)-methyl-3H-naphtho (2,3-c)furan-1-one].

Parabarium micranthum showed the strongest inhibition activity (7.5% of control) among the other ten medicinal plants in Apocynaceae family. *Parabarium micranthum* known as a climbing shrub is native to China but widespread across in East and Southeast Asia and Himalayas. The branches of *P. micranthum* have inconspicuous lenticels and its leave-ovate elliptics are 5–8 cm long and 1.5–3 cm wide. Some part like bark and roots are used for the treatment of infantile paralysis, rheumatalgia, injury, and fractures [42]. Two phytochemical compounds were also identified including 2,2-dimethoxybutane and 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one. The containing of catechol and quinic acid in this plant was contributed to extract in anti-aging activities [43].

Another interesting medicinal plant is *Peliosanthes teta* from Asparagaceae family. This plant also showed strong inhibitory activity (8.2% of control) in leachates treatment. *Peliosanthes teta* is a perennial herb with thick roots, short stem and blade-linear leaves. The solitary flower and bursting seed of this plant were shown during the early stage [43]. Although a monotypic genus of *Peliosanthes teta* ranging from India to China, it is well distributed in southeast Asia, particularly in wet evergreen forest [44]. The medicinal values such as earache treatment, energy tonic, circulation and postpartum care were also reported [45,46]. However, its allelochemicals have not yet been exploited.

5. Conclusions

This is the first comprehensive screening of medicinal plants used in Cambodia to evaluate their allelopathic effects. The results presented could serve as a benchmark to elucidate chemical involvement in allelopathy phenomenon. Such information could help researchers to develop new and potent bioactive compounds from natural products to enhance sustainable agriculture and effective use of biological functions. We hereby presented *Iris pallida* for the next study in the isolation and identification of allelochemicals.

Author Contributions: Conceptualization, Y.S., K.S.A. and Y.F.; methodology, C.S., K.S.A. and Y.F.; validation, C.S. and K.S.A.; resources, A.S. and Y.F.; funding acquisition, A.S. and Y.S.; data curation, Y.S.; writing—initial draft preparation, Y.S.; writing—review and editing, Y.S., K.S.A., I.W. and Y.F.; supervision, T.M. and Y.F. All authors have read and agreed to the published version of the manuscript.

Funding: This research received funding from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan. This work was also partly supported by JST CREST Grant Number JPMJCR1702 and JSPS KAKENHI Grant Number 26304024.

Data Availability Statement: No new data were created or analyzed in this study.

Acknowledgments: The authors thank the Japanese Ministry of Education, Culture, Sports, Science, and Technology (MEXT) for providing the scholarship to the first author at Tokyo University of Agriculture and Technology. We also thankfully acknowledge to Ministry of Environment, Ministry of Agriculture, Forestry and Fishery and the community at Phnom Kulen National Park, Cambodia, for assisting in sample collection and transferring for this research study.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. WHO. WHO Guidelines on Safety Monitoring of Herbal Medicines in Pharmacovigilance Systems; World Health Organization: Geneva, Switzerland, 2004.
2. Ishaque, M.; Shahani, M.N. Survey and Domestication of Wild Medicinal Plants of Sindh; Survey Report; KAKC: Islamabad, Pakistan, 1998; pp. 2–3.
3. Ekor, M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. *Front. Neurol.* 2014, 4, 177. [CrossRef] [PubMed]
4. Paul, A.C.; Michael, J.B. The Ethnobotanical Approach to Drug Discovery. *Sci. Am.* 1994, 270, 82–87.
5. Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Last 25 Years. *J. Nat. Prod.* 2007, 70, 461–477. [CrossRef] [PubMed]
6. Sharma, S.; Devkota, A. Allelopathic potential and phytochemical screening of four medicinal plants of Nepal. *Sci. World J.* 2015, 12, 36–61. [CrossRef]

7. Fujiy, Y.; Furukawa, M.; Hayakawa, Y.; Sugawara, K.; Shibuya, T. Survey of Japanese Medicinal Plants for the Detection of Allelopathic Properties. *Weed Res. Jpn.* 1991, 36, 36–42.

8. Modallai, N.M.; Al-Charchafchi, F.M.R. Allelopathic effect of Artemisia harba alba on germination and seedling growth of Anabasis setifera. *Pak. J. Biol. Sci.* 2006, 9, 1795–1798. [CrossRef]

9. Nazir, T.; Uniyal, A.K.; Todaria, N.P. Allelopathic behavior of three medicinal plant species on traditional agriculture crops of Garhwal Himalaya, India. *Agrofor. Syst.* 2006, 3, 183–187.

10. Rizvi SJ, H.; Haque, H.; Singh, V.K.; Rizvi, V. A discipline called allelopathy. In *Allelopathy;* Rizvi, S.J.H., Rizvi, V., Eds.; Springer: Dordrecht, The Netherland, 1992; pp. 1–10.

11. Rice, E.L. *Allelopathy,* 2nd ed.; Academic Press: New York, NY, USA, 1984.

12. Fujiy, Y.; Hiradate, S. *Allelopathy: New Concepts and Methodology;* Science Publishers Inc.: Enfield, NH, USA, 2007.

13. Tongma, S.; Kobayashi, K.; Usui, K. Allelopathic activity of Mexican sunflower [Tithonia diversifolia (Hemsl.) A. Gray] in soil under natural field conditions and different moisture conditions. *Weed Biol. Manag.* 2001, 1, 115–119. [CrossRef]

14. Mykhailenko, O. Composition of Volatile Oil of Iris pallida Lam. From Ukraine. *Turk. J. Pharm. Sci.* 2018, 15, 85–90. [CrossRef]

15. Macías, F.A.; Marin, D.; Oliveros-bastidas, A.; Varela, R.M.; Simonet, A.M.; Molinillo, J.M.G. Allelopathy as a new strategy for sustainable ecosystems development. *Biol. Sci. Space Technol.* 2003, 17, 18–23. [CrossRef]

16. Zeng, R.S.; Mallik, A.U.; Luo, S. *Allelopathy in Sustainable Agriculture and Forestry,* Springer: New York, NY, USA, 2008.

17. Singh, H.P.; Batish, D.R.; Kohli, R.K. Allelopathic Interactions and Allelochemicals: New Possibilities for Sustainable Weed Management. *CRC Crit. Rev. Plant Sci.* 2003, 22, 239–311. [CrossRef]

18. Khanh, T.D.; Elzaawely, A.A.; Chung, I.M.; Ahn, J.K.; Tawata, S.; Tawata, S.; Xuan, T.D. Role of allelochemicals for weed management in rice. *Allelopath. J.* 2007, 19, 85–96.

19. Kropf, M.J.; Walter, H. EWRS and the challenges for weed research at the start of a new millennium. *Weed Res.* 2000, 40, 7–10. [CrossRef]

20. Fujiy, Y. Screening and Future Exploitation of Allelopathic Plants as Alternative Herbicides with Special Reference to Hairy Vetch. *J. Crop. Prod.* 2001, 4, 257–275. [CrossRef]

21. Hong, N.H.; Xuan, T.D.; Eiji, T.; Hiroyuki, T.; Mitsuhiro, M.; Khanh, T.D. Screening for allelopathic potential of higher plants from Southeast Asia. *Crop Prot.* 2003, 22, 829–836. [CrossRef]

22. Mekky, M.S. Allelopathic effects of blue gum (Eucalyptus globules), sweet basil (Ocimum basilicum), wormwood (Artemisia annua) and sweet potato (Ipomoea batatas) extracts on seeds germination and seedling development of some weed species. *Egypt. J. Appl. Sci.* 2008, 23, 95–106.

23. Appiah, K.S.; Mardani, H.K.; Osivand, A.; Kpabitey, S.A.; Oikawa, Y.; Fiji, Y. Exploring Alternative Use of Medicinal Plants for Sustainable Weed Management. *Sustainability* 2017, 9, 1468. [CrossRef]

24. Hayes, B.; Mould, A.; Khoul, E.H.; Hartmann, T.; Calame, T.; Boughey, K.; Yon, T. A Biodiversity Assessment of Phnom Kulen National Park, with Recommendations for Management. 2013. Available online: https://www.rufford.org/files/11488-1%20Detailed%20Final%20Report_0.pdf (accessed on 20 December 2020).

25. Ashwell, D.A.; Walston, N. An Overview of the Use and Trade of Plants and Animals in Traditional Medicine Systems in Cambodia. 2008. Available online: http://www.trafficj.org/publication/08_medical_plants_Cambodia.pdf (accessed on 20 December 2020).

26. SFS. *Research in Phnom Kulen National Park: Summary of Research to Date and Proposed Topics;* Survey Report; The School for Field Studies: Siem Reap, Cambodia, 2017; p. 2.

27. Fujiy, Y.; Shibuya, T.; Yasuda, T. Survey of Japanese weed and crops for the detection of water-extractable allelopathic chemicals using Richards’ function fitted to lettuce germination test. *Weed Res. Jpn.* 1990, 35, 362–370. [CrossRef]

28. Fujiy, Y.; Shibuya, T.; Nakatani, K.; Itani, T.; Hiradate, S.; Parvez, M.M. Assessment method for allelopathic effect from leaf litter leachates. *Weed Biol. Manag.* 2004, 23, 19–23. [CrossRef]

29. Goldblatt, P.; Manning, J.C.; Sebsebe Demissew, S. Two new species of Zygotritonia Mildbr. (Iridaceae: Crocoideae) from eastern tropical Africa with notes on the morphology of the genus. *S. Afr. J. Bot.* 2015, 86, 37–41. [CrossRef]

30. Williams, C.H.A.; Harborne, J.B.; Colasante, M. Flavonoid and xanthone patterns in bearded Iris species and the pathway of chemical evolution in the genus. *Biochem. Syst. Ecol.* 1997, 25, 309–325. [CrossRef]

31. Garrett, J.T. *The Cherokee Herbal: Native Plant Medicine from the Four Directions;* Bear & Company: Rochester, VT, USA, 2003.

32. Wang, H.; Cui, Y.; Zhao, C. Flavonoids of the Genus Iris (Iridaceae). *Mini-Rev. Med. Chem.* 2010, 10, 643–661. [CrossRef]

33. Wollenweber, E.; Stevens, J.F.; Klimo, K.; Knauf, J.; Frank, N.; Gerhäuse, G. Cancer Chemopreventive in vitro Activities of Isoflavonones Isolated from Iris germanica. *Planta Med.* 2003, 69, 15–20. [CrossRef] [PubMed]

34. De Baggio, T.; Tucker, A.O. *The Encyclopedia of Herbs: A Comprehensive Reference to Herbs of Flavor and Fragrance,* Timber Press Inc.: Portland, OR, USA, 2009.

35. Bonfils, J.P.; Puiguet, F.; Culine, S.; Sauvage, Y. Cytotoxicity of iridals, triterpenoids from Iris, on human tumor cell lines A2780 and K562. *Planta Med.* 2001, 67, 79–81. [CrossRef] [PubMed]

36. Benoît, F.V.; Imbert, C.; Bonfils, J.P.; Sauvage, Y. Antiplasmodial and antifungal activities of iridal, a plant triterpenoid. *Phytochemistry* 2003, 62, 747–751. [CrossRef]
37. Lim, T.K. Modified Stems, Roots and Bulbs. *In Edible Medicinal and Non Medicinal Plants;* Springer: Dordrecht, The Netherlands, 2016.

38. Harborne, J.B.; Baxter, H. *Chemical Dictionary of Economic Plants;* John Wiley Sons: Hoboken, NJ, USA, 2001; p. 85.

39. Rani, V.S.; Nair, B.R. Pharmacognostic and physicochemical evaluation of bulbs of *Eleutherine bulbosa* (Miller) Urban, a medicinal plant. *J. Pharmacogn. Phytochem.* 2015, 4, 273–277.

40. Alves, T.M.A.; Kloos, H.; Zani, C.L. Eleutherinone, a Novel Fungitoxic Naphthoquinone from *Eleutherine bulbosa* (Iridaceae). *Mem. Inst. Oswaldo Cruz* 2003, 98, 709–712. [CrossRef]

41. Rani, V.S.; Eleutherinone, B.R.N. Antimicrobial effects of crude extracts of *Eleutherine bulbosa*. *J. Med. Aromat. Plant Sci.* 2011, 33, 46–52.

42. Li, P.T.; Leeuwenberg, A.J.M.; Middleton, D.J. Apocynaceae. *Flora China* 1995, 16, 143–188.

43. Ismail, N.A.B. Documentation, Anti-Aging Activities and Phytochemical Profiling of Selected Medicinal Plants Used by Jakun Women in Kampung Peta, Mersing, Johor. Ph.D. Thesis, Universiti Tun Hussein Onn Malaysia, Parit Raja, Malaysia, 2017.

44. Jessop, J.P. A Revision of *Peliosanthes* (Liliaceae). *Blumea* 1976, 23, 141–159.

45. Rahman, M.A.; Uddin, S.B.; Wilcock, C.C. Medicinal plants used by Chakma tribe in Hill Tracts districts of Bangladesh. *Knowl. Creat. Diffus. Util.* 2007, 6, 508–517. [CrossRef]

46. Walker, T. *An Examination of Medicinal Ethnobotany and Biomedicine Use in Two Villages on the Phnom Kulen Plateau;* Project Report; Hollins University: Virginia, VA, USA, 2017.