Risk of liver cancer among US male veterans with cirrhosis, 1969–1996

EC Persson*,1, SM Quraishi1, TM Welzel2, JD Carreon1, G Gridley1, BI Graubard1 and KA McGlynn1

1Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20852-7234 USA; 2Klinikum der JW Goethe-Universität Frankfurt am Main, Medizinische Klinik I, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany

BACKGROUND: Liver cancer incidence rates in the United States have increased for several decades for reasons that are not entirely clear. Regardless of aetiology, cirrhosis is a strong risk factor for liver cancer. As mortality from cirrhosis has been declining in recent decades, it is possible that the risk of liver cancer among persons with cirrhosis has been affected.

METHODS: Data from the US Veterans Affairs medical records database were analysed after adjustment for attained age, race, number of hospital visits, obesity, diabetes, and chronic obstructive pulmonary disease. Hazard ratio (HR) and 95% confidence interval (95% CI) were calculated using Cox proportional hazards modelling. Survival analyses were conducted using age as the time metric and incidence of cirrhosis as a time-dependent covariate.

RESULTS: Among 103,257 men with incident cirrhosis, 788 liver cancers developed. The HR of liver cancer was highest among men with viral-related cirrhosis (HR = 37.59, 95% CI: 22.57–62.61), lowest among men with alcohol-related cirrhosis (HR = 4.40–9.33) in 1969–1973 to 34.71 (95% CI: 23.10–52.16) in 1992–1996 for those with cirrhosis compared with those without. Regardless of the type, white men had higher HRs than black men. The HR of developing liver cancer increased from 6.40 (95% CI: 4.40–9.33) in 1969–1973 to 34.71 (95% CI: 23.10–52.16) in 1992–1996 for those with cirrhosis compared with those without.

CONCLUSION: In conclusion, the significantly increased HR of developing liver cancer among men with cirrhosis compared with men without cirrhosis in the United States may be contributing to the increasing incidence of liver cancer.

British Journal of Cancer (2012) 107, 195–200. doi:10.1038/bjc.2012.193 www.bjcancer.com

Published online 15 May 2012
© 2012 Cancer Research UK

Keywords: liver cancer; cirrhosis; epidemiology; cohort; US Veterans Affairs

Incidence rates of primary liver cancer in the United States have been increasing since 1980 (Altekruse et al, 2009). In the United States, known risk factors for liver cancer, the majority of which is hepatocellular carcinoma (HCC), include chronic infection with hepatitis B virus (HBV), chronic infection with hepatitis C virus (HCV) (Davila et al, 2004; Davila et al, 2011) and excessive alcohol consumption (Boisset et al, 2007). In addition, recent research has identified pre-existing diabetes (El-Serag et al, 2004), obesity (Neuschwander-Tetri and Caldwell, 2003) and metabolic syndrome (Welzel et al, 2011) as risk factors. Although changes in epidemiological patterns of risk factors may have influenced liver cancer incidence trends, other factors may also have contributed to the rising rates. For example, regardless of risk factor, 70–90% of liver cancers arise in livers that are affected with pre-existing cirrhosis (Schutte et al, 2009). In the United States, mortality due to cirrhosis has been declining since the early 1970s (National Center for Health Statistics (US), 2010) as treatment has improved (Kanwal et al, 2011). As cirrhosis and liver cancer are closely associated, the inverse trends in liver cancer incidence and cirrhosis mortality suggest that the two phenomena may be related. It is conceivable that as persons with cirrhosis are treated more successfully, the risk of developing liver cancer may be affected. To investigate this hypothesis, the relationship between liver cancer and cirrhosis was examined in a large cohort of US military veterans.

MATERIALS AND METHODS

Study cohort

The study utilised hospital discharge diagnoses that occurred between 1 July, 1969 and 30 September, 1996 at 142 US Veterans Affairs (VA) hospitals. This inpatient-only study population included all black (N = 816,395) and white (N = 3,599,650) male veterans between the ages of 18 and 100 years who were hospitalised at least once during the study period. Men belonging to ethnic/racial groups other than black or white were excluded from the study because of small numbers. Females were also excluded because of small numbers. Almost 26 million hospital discharge records were included. Hospital discharge diagnoses from 5,790,493 male veterans were identified. Persons were excluded (N = 917,867) for a number of reasons: non-veterans, age <18 years or >100 years, died at the first hospital admission, developed cancer during the first year of study entry or had prevalent cancer on first admission. In addition, 371,129 men were excluded because of failure to survive 1 year after diagnosis and 85,452 men were excluded who had a diagnosis of cirrhosis before or at the day of entry. In total, hospital discharge diagnoses of 4,416,045 male
Liver cancer among US veterans
EC Persson et al

The study included 4,416,045 study participants, of whom 103,257 were diagnosed with cirrhosis after at least one cirrhosis-free hospitalisation (Table 1). The most common type of cirrhosis was alcoholic cirrhosis (N = 92,208), followed by viral hepatitis-related cirrhosis (N = 779). The remaining cirrhosis diagnoses (idiopathic cirrhosis) were unrelated to either alcohol or viral hepatitis (N = 10,270). Among the 103,257 men who were diagnosed with cirrhosis, 788 subsequently developed liver cancer during follow-up (Table 2). In contrast, of the 4,312,788 men without cirrhosis, 3,620 subsequently developed liver cancer. The mean follow-up time among men with cirrhosis was 9.8 years among white men and 11.2 years among black men. In men with cirrhosis who developed liver cancer, the mean length of follow-up was 6.8 years for white men and 7.7 years for black men (data not shown).

Table 1 Characteristics of the study population, US Veterans Affairs inpatient hospitalisation database, 1969–1996

	No cirrhosis	All cirrhosis	Alcoholic cirrhosis	Viral cirrhosis	Idiopathic cirrhosis
All men					
No.	4,312,788	103,257	92,208	779	10,270
Person-years	50,541,819	1,032,636	916,591.7	933,72	106,707.4
Mean years follow-up	11.7	10.0	9.9	12.0	10.4
Mean no. of hospital visits	4.4	5.6	5.7	7.9	4.7
Median age					
Study entry	52.6	52.6	52.4	41.2	54.6
Study exit	64.7	62.8	62.7	50.1	64.3
No. COPD	711,897	22,869	20,789	92	1998
No. diabetes	558,076	17,708	15,375	153	2180
No. obesity	241,322	7031	6245	36	750
No. who develop liver cancer	3620	788	678	15	95
White men					
No.	3,512,949	86,701	77,299	649	8,753
Person-years	41,052,131	847,307	750,830.3	74,50	8,903.1
Mean years follow-up	11.7	9.8	9.7	11.5	10.2
Mean no. of hospital visits	4.4	5.6	6.8	7.8	4.6
Median age					
Study entry	53.6	53.2	53.0	42.3	55.3
Study exit	65.3	63.2	63.0	50.4	64.9
No. COPD	624,153	20,566	18,690	77	1799
No. diabetes	441,813	14,732	12,728	18	1886
No. obesity	206,455	6476	5758	34	684
No. who develop liver cancer	2677	662	569	11	82
Black men					
No.	799,839	15,556	14,909	130	1,517
Person-years	9,489,687.8	185,329.3	165,761.4	1892.2	17,675.7
Mean years follow-up	11.9	11.2	11.1	14.6	11.7
Mean No. of hospital visits	4.5	5.7	5.7	8.2	5.0
Median age					
Study entry	47.8	49.0	49.0	36.1	50.6
Study exit	60.2	60.3	60.3	49.6	61.1
No. COPD	87,744	2303	2099	15	189
No. diabetes	116,263	2976	2647	35	294
No. obesity	34,867	555	487	2	66
No. who develop liver cancer	943	126	109	4	13

Abbreviation: COPD = chronic obstructive pulmonary disease.
The results of the survival analysis by calendar year, in which cirrhosis was treated as a time-dependent variable, are displayed in Table 3. The analysis revealed a statistically significant increase (P\text{trend}=0.016) in liver cancer HRs for cirrhosis compared with veterans without any cirrhosis over time: 1969–1973: HR = 6.40 (95% CI: 4.40–9.33); 1974–1979: HR = 8.86 (95% CI: 6.47–12.14); 1980–1985: HR = 15.72 (95% CI: 11.30–21.86); 1986–1991: HR = 15.81 (95% CI: 10.86–23.03) and 1992–1996: HR = 34.71 (95% CI: 23.10–52.16). An examination of alcohol-related cirrhosis alone found very similar results (P\text{trend}=0.011) for: 1969–1973: HR = 6.92 (95% CI: 4.70–10.19); 1974–1979: HR = 8.42 (95% CI: 6.01–11.80); 1980–1985: HR = 12.78 (95% CI: 8.65–18.88); 1986–1991: HR = 14.77 (95% CI: 9.68–22.54) and 1992–1996: HR = 32.49 (95% CI: 20.35–51.86). The numbers of liver cancers associated with other types of cirrhosis were too small for calculation of the HRs by time period.

Liver cancer incidence rate between 1969 and 1996

Overall, the incidence rate of liver cancer increased from 1969 to 1996, from 8.1 out of 100 000 to 9.1 out of 100 000 person-years. Among white men, the incidence increased from 7.6 in 1969 to 8.5 out of 100 000 person-years in 1996, whereas among black men the incidence increased from 10.3 in 1969 to 11.5 out of 100 000 person-years in 1996 (data not shown). Further, the incidence rate of liver cancer among men with and without cirrhosis shown in Figure 1 is analogous to Table 3 over time. Between 1969 and 1996 the incidence of liver cancer among men with cirrhosis increased from 36.1 to 247.3 out of 100 000 person-years, whereas the incidence among men without cirrhosis only slightly increased from 6.5 to 7.9 out of 100 000 person-years. The incidence of liver cancer by race in men with cirrhosis increased from 31.5 to 256.0 out of 100 000 person-years among white men, and from 56.9 to 180.0 out of 100 000 person-years among black men. Men among without cirrhosis, a slightly increased incidence was evident among both white (from 6.2 in 1969 to 7.3 out of 100 000 person-years in 1996) and black men (from 7.6 to 10.6 out of 100 000 person-years, data not shown).

HR of liver cancer within calendar year by cirrhosis status

The results of the survival analysis by calendar year, in which cirrhosis was treated as a time-dependent variable, are displayed in Table 3. The analysis revealed a statistically significant increase (P\text{trend}=0.016) in liver cancer HRs for cirrhosis compared with veterans without any cirrhosis over time: 1969–1973: HR = 6.40 (95% CI: 4.40–9.33); 1974–1979: HR = 8.86 (95% CI: 6.47–12.14); 1980–1985: HR = 15.72 (95% CI: 11.30–21.86); 1986–1991: HR = 15.81 (95% CI: 10.86–23.03) and 1992–1996: HR = 34.71 (95% CI: 23.10–52.16). An examination of alcohol-related cirrhosis alone found very similar results (P\text{trend}=0.011) for: 1969–1973: HR = 6.92 (95% CI: 4.70–10.19); 1974–1979: HR = 8.42 (95% CI: 6.01–11.80); 1980–1985: HR = 12.78 (95% CI: 8.65–18.88); 1986–1991: HR = 14.77 (95% CI: 9.68–22.54) and 1992–1996: HR = 32.49 (95% CI: 20.35–51.86). The numbers of liver cancers associated with other types of cirrhosis were too small for calculation of the HRs by time period.

Liver cancer incidence rate between 1969 and 1996

Overall, the incidence rate of liver cancer increased from 1969 to 1996, from 8.1 out of 100 000 to 9.1 out of 100 000 person-years. Among white men, the incidence increased from 7.6 in 1969 to 8.5 out of 100 000 person-years in 1996, whereas among black men the incidence increased from 10.3 in 1969 to 11.5 out of 100 000 person-years in 1996 (data not shown). Further, the incidence rate of liver cancer among men with and without cirrhosis shown in Figure 1 is analogous to Table 3 over time. Between 1969 and 1996 the incidence of liver cancer among men with cirrhosis increased from 36.1 to 247.3 out of 100 000 person-years, whereas the incidence among men without cirrhosis only slightly increased from 6.5 to 7.9 out of 100 000 person-years. The incidence of liver cancer by race in men with cirrhosis increased from 31.5 to 256.0 out of 100 000 person-years among white men, and from 56.9 to 180.0 out of 100 000 person-years among black men. Men among without cirrhosis, a slightly increased incidence was evident among both white (from 6.2 in 1969 to 7.3 out of 100 000 person-years in 1996) and black men (from 7.6 to 10.6 out of 100 000 person-years, data not shown).
such as ultrasound and CT/MRI, has occurred in the last several decades. Arguably, before the advent of advanced imaging, cirrhosis patients might have died of hepatic decompensation before a nascent liver cancer could be detected. Another possibility is that the aetiology of the underlying cirrhosis may have changed over time. For example, if the proportion of viral-related cirrhosis and alcohol-related cirrhosis varied, the risk of developing liver cancer might appear to vary also, as viral-related cirrhosis has been reported to carry a higher risk than alcohol-related cirrhosis (Morgan et al, 2004; Bialecki and Di Bisceglie, 2005; Kanwal et al, 2011). Prior reports have suggested that the risk of liver cancer among persons with HBV-related cirrhosis is ~2–3%, whereas the comparable risks for HCV-related and alcohol-related cirrhosis are 1–7% and 1%, respectively (Morgan et al, 2004; Bialecki and Di Bisceglie, 2005). Consistent with these reports are the findings of the current study. Although the risk of liver cancer varied by type of cirrhosis, however, the HR of liver cancer associated with each type of cirrhosis was increased compared to no cirrhosis, suggesting that a shift in underlying aetiology does not completely account for the increased HRs over time.

Another possible explanation for increasing risk of liver cancer would be better screening for liver cancer over time. There is scant evidence, however, that screening for liver cancer in the United States has improved. For example, a recent report revealed that <20% of US patients with cirrhosis who later developed liver cancer received regular screening in the 1990s (Davila et al, 2010). In the current analysis, HRs of liver cancer were notably higher in white men than black men with most types of cirrhosis, and the exception of viral-related cirrhosis. This racial difference in liver cancer risk is not fully understood, but previous studies have noted that health care and survival trends vary by race, ethnic group and socioeconomic status (Artinyan et al, 2010). In regard to liver cancer, it has been reported that black persons are diagnosed at more advanced stages and experience a poorer survival than white persons (Davila and El-Serag, 2006). Our findings may suggest that white men with cirrhosis also receive better treatment, or treatment at an earlier stage of cirrhosis, and therefore are more likely to survive long enough to develop liver cancer. Mortality rates of cirrhosis support this suggestion. Between 1970 and 2006, the mortality rate of cirrhosis per 100 000 persons declined from 16.6 to 7.0 among white persons and from 88.1 to 9.1 among black persons. Although black persons experienced a greater percentage decline in cirrhosis mortality, rates among black persons have remained steadily higher than rates among white persons.

This investigation had a number of strengths, including a very large size of ~4.5 million persons with 26 million associated records. The study also had a long period of follow-up of almost three decades, which enabled a sufficient number of cancer outcomes to develop at different periods of follow-up. Clinical diagnoses were obtained from medical records and thus were not subject to recall bias. In addition, because minority populations tend to be overrepresented in the VA population, the study was large enough to examine the HRs separately in white and black men. Morgan et al (2010) noted that the potential for confounding by socioeconomic status may be limited because patients within the VA system are more likely to be similar socioeconomically than are persons who do not use the VA system (Randall et al, 1987). In addition, previous VA studies have shown similar health care utilisation and outcomes for black and white people (Deswal et al, 2004; Giordano et al, 2006).

Despite its notable strengths, the study also had some limitations. Persons who use the VA health care system are not restricted from using other health care systems. For example, as the VA system does not have many emergency rooms, VA patients who require acute care, might not present at a VA hospital. It is likely, however, that persons with chronic conditions, such as cirrhosis, would continue their care at the VA as the care would be

DISCUSSION

In the present study, the HR of developing liver cancer among men with cirrhosis compared with men without cirrhosis increased steadily between 1969 and 1996. Recent progress understanding the pathophysiology of cirrhosis and management of the complications of cirrhosis has resulted in reduced mortality rates among persons with end-stage liver disease in the United States (Grattagliano et al, 2011). Thus, it is possible that with improved survival among men with cirrhosis the risk of being diagnosed with other sequel is affected.

The development and overall availability of tools to manage cirrhosis complications has greatly improved in the United States in recent decades, although further improvement is certainly warranted (Kanwal et al, 2011). Since the early 1980s, these tools have included therapeutic options for the prevention of oesophageal varices and recurrent variceal haemorrhage (i.e., drug and endoscopic therapy, transjugular intrahepatic porto-systemic shunt); a lower threshold for diagnostic paracentesis in conjunction with earlier detection and treatment of infectious complications; the availability of treatment options for HBV- and HCV-infected patients with compensated cirrhosis; a rising awareness of the importance of renal function monitoring for the earlier diagnosis and management of hepatorenal syndrome; and liver transplantation (Hoefs and Runyon, 1985; Grossmann et al, 1990; Sabha et al, 1990; The Veterans Affairs Cooperative Variceal Sclerotherapy Group, 1991; Poynard et al, 1991; Rossie et al, 1997; Sharara and Rockey, 2001). The use of these and other options have almost certainly had an effect on cirrhosis mortality rates. Whether therapy of cirrhosis inadvertently leads to increases in the risk of liver cancer is not clear, although previous studies suggest that the risk of liver cancer increases linearly from the time of first diagnosis of cirrhosis. In addition, a recent report of an HCV-infected cohort in the VA system found that the incidence of HCC rose more dramatically than previously predicted (Kanwal et al, 2011). Although the cohort described by Kanwal et al (2011) was an HCV-infected cohort rather than a cirrhosis cohort, the majority of HCCs develop among persons with cirrhosis, thus supporting the findings of the current study.

Other possible explanations for the increased HR of liver cancer among men with cirrhosis are several. Better diagnostic detection of liver cancer through a wider application of imaging methods,
given without charge. Similarly, if an individual reported to an emergency room owing to their cancer, they would likely be referred back to the VA system. The current study was restricted to black and white males as there were too few females and non-white/non-black males to include. This study was also limited by little information on relevant covariates, such as cigarette smoking, alcohol consumption, diet, physical activity, and body mass. The use of medical conditions as proxy variables, such as COPD for smoking, cannot guarantee that the covariate effect is captured entirely. As such, adjustments for lifestyle variables were likely incomplete. Surrogate variables tend to be conservative estimates of true variables, and thus would be likely to underestimate the association rather than overestimate it. Other covariates, such as obesity, are almost certainly underascertained in the data, as medical records have much more complete information on conditions that are under treatment rather than conditions that are simply present. The ascertainment of infection with HBV and/or HCV was also incomplete. Blood tests to detect chronic infection with HBV were not available until the early 1970s, whereas tests for HCV were not available until the early 1990s. Other clinical data, laboratory data, and medical records were not available to verify diagnoses, diagnostic tests or treatment.

Finally, our study included only hospitalised veterans; persons who utilise the VA medical system have been reported to be of lower socioeconomic status and in poorer health compared with the general population (Agha et al, 2000), suggesting that caution should be exercised when extrapolating results to the general population.

In conclusion, the current study shows that the hazard of developing liver cancer among men with cirrhosis in the VA health care system significantly increased between 1969 and 1996. Although the increased hazard is compatible with numerous explanations, it is possible that better treatment of cirrhosis has resulted in higher hazards of liver cancer diagnoses over time. Further study of this question in other populations is warranted.

ACKNOWLEDGEMENTS

We thank the Medical Administration Service of the US Veterans Health Services and Research Administration for providing the data on which this study is based, and Eric Boyd and Dave S Campbell of Information Management Services Inc. for programming support. This research was supported by the Intramural Research Program of the National Cancer Institute, National Institutes of Health, Department of Health and Human Services.

Conflict of interest

The authors declare no conflict of interest.

REFERENCES

Agha Z, Lofgren RP, VanRuiswyk JV, Layde PM (2000) Are patients at veterans affairs medical centers sicker? A comparative analysis of health status and medical resource use. Arch Intern Med 160(21): 3252–3257
Alt ekru se SF, McGlynn KA, Reichman ME (2009) Hepatocellular carcinoma incidence, mortality, and survival trends in the United States from 1975 to 2005. J Clin Oncol 27(9): 1485–1491
Arti nyan A, Mailey B, Sanchez-Lu ege N, Khalili J, Sun CL, Bhatia S, Wagman LD, Nissen N, Colquhoun SD, Kim J (2010) Race, ethnicity, and socioeconomic status influence the survival of patients with hepatocellular carcinoma in the United States. Cancer 116(5): 1367–1377
Ash ton CM, Petersen NJ, Wray NP, Yu HJ (1998) The Veterans Affairs medical care system: hospital and clinic utilization statistics for 1994. Med Care 36(6): 793–803
Bialecki ES, Di Bisceglie AM (2005) Clinical presentation and natural course of hepatocellular carcinoma. Eur J Gastroenterol Hepatol 17(5): 485–489
Bosetti C, Levi F, Lucchini F, Zatonski WA, Negri E, La VC (2007) Worldwide mortality from cirrhosis: an update to 2002. J Hepatol 46(6): 827–839
Davila JA, El-Serag HB (2006) Racial differences in survival of hepatocellular carcinoma in the United States: a population-based study. Clin Gastroenterol Hepatol 4(1): 104–110
Davila JA, Henderson L, Kramer JR, Kanwal F, Richardson PA, Duan Z, El-Serag HB (2011) Utilization of surveillance for hepatocellular carcinoma among hepatitis C virus-infected veterans in the United States. Ann Intern Med 154(2): 85–93
Davila JA, Morgan RO, Richardson PA, Du XL, McGlynn KA, El-Serag HB (2010) Use of surveillance for hepatocellular carcinoma among patients with cirrhosis in the United States. Hepatology 52(1): 132–141
Davila JA, Morgan RO, Shaib Y, McGlynn KA, El-Serag HB (2004) Hepatitis C infection and the increasing incidence of hepatocellular carcinoma: a population-based study. Gastroenterology 127(5): 1372–1380
Deswal A, Petersen NJ, Soucek J, Ashton CM, Wray NP (2004) Impact of race on health care utilization and outcomes in veterans with congestive heart failure. J Am Coll Cardiol 43(5): 778–784
El-Serag HB, Tran T, Everhart JE (2004) Diabetes increases the risk of chronic liver disease and hepatocellular carcinoma. Gastroenterology 126(2): 460–468
Giordano TP, Morgan RO, Kramer JR, Hartman C, Richardson P, White Jr. CA, Suarez-Almazor ME, El-Serag HB (2006) Is there a race-based disparity in the survival of veterans with HIV? J Gen Intern Med 21(6): 613–617
Grattagliano I, Ubaldi E, Bonfante L, Portincasa P (2011) Management of liver cirrhosis between primary care and specialists. World J Gastroenterol 17(18): 2273–2282
Großzmann RJ, Bosch J, Grace ND, Conn HO, García-Tsao G, Navasa M, Alberts J, Rodes J, Fischer R, Berman M (1990) Hemodynamic events in a prospective randomized trial of propranolol versus placebo in the prevention of a first variceal hemorrhage. Gastroenterology 99(5): 1401–1407
Hoefs JC, Runyon BA (1985) Spontaneous bacterial peritonitis. Dis Mon 31(9): 1–48
Kanwal F, Hoang T, Kramer JR, Asch SM, Goetz MB, Zeringue A, Richardson P, El-Serag HB (2011) Increasing prevalence of HCC and cirrhosis in patients with chronic hepatitis C virus infection. Gastroenterology 140(4): 1182–1188
Morgan TR, Mandayam S, Jamal MM (2004) Alcohol and hepatocellular carcinoma. Gastroenterology 127(5 Suppl 1): S87–S96
National Center for Health Statistics (US). Health, United States (2009) with Special Feature on Medical Technology, 2010-2012. 2010. National Center for Health Statistics (US): Hyattsville (MD)
Neuschwander-Tetri BA, Caldwell SH (2003) Nonalcoholic steatohepatitis: summary of an AASLD Single Topic Conference. Hepatology 37(5): 1202–1219
Page WF, Mahan CM, Kang HK (1996) Vital status ascertainment through the files of the Department of Veterans Affairs and the Social Security Administration. Ann Epidemiol 6(2): 102–109
Peyrard T, Cales P, Pasta L, Ideo G, Pascal JP, Pagliaro L, Lembrec D (1991) Beta-adrenergic-antagonist drugs in the prevention of gastrointestinal bleeding in patients with cirrhosis and esophageal varices. An analysis of data and prognostic factors in 589 patients from four randomized clinical trials. Franco-Italian Multicenter Study Group. N Engl J Med 324(22): 1532–1538
Randall M, Kilpatrick KE, Pendergast JF, Jones KR, Vogel WB (1987) Differences in patient characteristics between veterans administration and community hospital. Implications for VA planning. Med Care 25(11): 1099–1104
Rosile M, Deibert P, Haag K, Ochs A, Olszewski M, Siegerstetter V, Hauenstein KH, Geiger R, Stepek C, Keller W, Blum HE (1997) Randomised trial of transjugular-intrahepatic-portal-systemic shunt versus endoscopy plus propranolol for prevention of varical rebleeding. Lancet 349(9058): 1043–1049
Sabbà C, Wettel GG, Cichetti DV, Ferraioli G, Taylor KJ, Nakamura T, Moriya S, Groszmann RJ (1990) Observer variability in echo-Doppler measurements of portal flow in cirrhotic patients and normal volunteers. Gastroenterology 98(6): 1603–1611
Liver cancer among US veterans
EC Persson et al

Schutte K, Bornschein J, Malfertheiner P (2009) Hepatocellular carcinoma—epidemiological trends and risk factors. Dig Dis 27(2): 80–92
Sharara AI, Rockey DC (2001) Gastroesophageal variceal hemorrhage. N Engl J Med 345(9): 669–681
The Veterans Affairs Cooperative Variceal Sclerotherapy Group (1991) Prophylactic sclerotherapy for esophageal varices in men with alcoholic liver disease. A randomized, single-blind, multicenter clinical trial. N Engl J Med 324(25): 1779–1784
Welzel TM, Graubard BI, Zeuzem S, El-Serag HB, Davila JA, McGlynn KA (2011) Metabolic syndrome increases the risk of primary liver cancer in the United States: A population-based case-control study. Hepatology 54(2): 463–471

This work is published under the standard license to publish agreement. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License.