Original Article

Simultaneous determination of some common food dyes in commercial products by digital image analysis

Mohammad-Hossein Sorouraddin a,*, Masoud Saadati a,b, Fariba Mirabia

a Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
b Department of Science, Ardabil Allameh Tabatabaei Campus, Farhangian University, Iran

Abstract

A simple and relatively fast image-analysis method using digital images, obtained with a flatbed scanner, has been described. The method was used for the simultaneous determination of four common food dyes, namely, carmoisine, brilliant blue, sunset yellow, and quinoline yellow, in binary mixtures in commercial products without a need for any prior separation steps. The results obtained were validated against a standard high-performance liquid chromatography method and a good agreement was obtained. The parameters affecting the experimental results were optimized. Under the optimal conditions, the method provided acceptable linear ranges (20–250 mg/L) with correlation coefficients higher than 0.998, suitable precision (relative standard deviation ≤ 4.5%), and limits of detection between 4.82 and 8.05 mg/L.

Keywords:
flatbed scanner
food additive
food color
image analysis
simultaneous determination

1. Introduction

Food additives are commonly used in processed foodstuff to improve appearance, flavor, taste, color, texture, nutritive value, and preservation. Color is the first quality attribute of food evaluated by consumers, and is therefore an important component of food quality relevant to market acceptance. Although increasing evidence in recent years indicates that the abuse of dyes may cause adverse effects, many kinds of dyes are still widely used due to their low price, high effectiveness, and excellent stability. Therefore, determination of food dyes is important to quality control and control the amount of use permitted [1]. Numerous methods such as sensitive spectrophotometry [2], differential spectrophotometry [3], derivative spectrophotometry [4], spectrophotometry using chemometrics [5,6], colorimetry using a homemade double-beam photocolorimeter [7], reflectometry using a homemade reflectometer [8], electrochemical methods [9,10], capillary electrophoresis [11], ion-pair high-performance liquid chromatography (HPLC) [12], electrokinetic chromatography [13], supercritical fluid extraction–capillary liquid chromatography (LC) [14], thin-layer chromatography [15], HPLC–mass spectrophotometry (MS) [16], solid-phase
of distance traveled by the dye to the distance traveled by the solvent, were estimated for the samples and the standard solutions. Various solid jelly powders (Farmand; Iran) and traditional chocolate (Morvarid, Minoo, Iran) samples were purchased from local supermarkets (Tabriz, Iran). An unnamed shoddy orange soft-drink sample was supplied by the Quality Control Laboratory of the Food and Drug Department of Tabriz University of Medical Sciences. Approximately 6 g of color-coated chocolates (shells) were transferred into a flask. The colored shells were then dissolved in distilled water, centrifuged, and diluted with an equal volume of 3M CH₃COOH solution. Approximately 200 mg (per 10 mL of sample) of white commercial wool yarn was washed with detergent, rinsed with distilled water, dried, and then added to the aforementioned diluted sample, and the mixture was heated (60 minutes at 60°C or 10 minutes at 90°C). The colored yarn was then taken out, and washed with plenty of distilled water. The dyes were recovered by mixing the yarns with 10 mL of NH₄(2M) and heating for 10 minutes at 90°C.

2.4. Analytical procedures

Different concentrations of dye samples were prepared by appropriate dilutions of stock solutions (1000 mg/L) with deionized water (Ghazi Company, Tabriz, Iran). To prepare the color spots of the dyes, the prepared solutions (20 μL) were spotted on Whatman No. 43 paper, left for a while (40 minutes), and placed on the glass plate of the flatbed scanner. The spots on the paper were separated by Microsoft Paint (XP) software. The selected images were saved in the bitmap format composed in the three channels of the RGB model using Photoshop. The magnitude of each component (red, green, and blue) was determined, and the color value was calculated by subtracting the suitable RGB channel intensities of samples from those of the white sheet. This procedure was performed using MATLAB.

2.5. High-performance liquid chromatography

The aforementioned method was validated by running a parallel HPLC test for the commercial food products. Measurements were made at 460 nm for CA, SY, and QY and at 640 nm for BL using NaH₂PO₄/Na₂HPO₄ buffer solution (pH = 6.0); acetonitrile (65.35 v/v) was used as the mobile phase with a flow rate of 0.9 mL/minute at room temperature. The retention times were 2.91, 3.06, and 3.51 minutes at the first channel (460 nm) for QY, SY, and CA, and 3.47 minutes at the second channel (640 nm) for BL. No efficient interaction between BL and CA was observed as they had similar retention times.

3. Results and discussion

3.1. The RGB color model and selection of the suitable RGB component

A digital image is intrinsically a multivariate system, which is a collection of data stored in pixels, each usually highly correlated to its neighbors [25]. The numerical information of
each pixel can be decomposed into three channels that correspond to red, green, and blue, which are added in various ways to reproduce a broad array of colors. This is known as the RGB model [26]. The abbreviation RGB is the initials of the three primary colors, red, green, and blue. Thus, a color in the RGB model is described by indicating how much of each component (red, green, or blue) is included (each component can vary from zero to a defined maximum value). Fig. 1 shows the linear RGB values corresponding to each wavelength. As shown in the figure, there are R, G, and B values on this plot for every wavelength.

The scanner optically scans the images and converts them to digital images (each point is expressed as an RGB triplet, the components of which vary from 0 to 255). These three parameters are the color intensities of the red (R), green (G), and blue (B) channels [27].

The absorption spectra of the dyes (at pH 6 and 11; recorded and represented in Fig. 2) indicate that the dyes were active in the ultraviolet and visible regions. Within the 400–700-nm range, the spectra of QY, CA, and SY are highly overlapped, whereas within the same range, a lower spectral overlapping was observed between BL and other dyes. Furthermore, a negligible spectral shift was observed, when the solution was made alkaline. Such a high overlapping (particularly between QY, SY, and CA) limits the analysis of these dyes in food products by conventional methods, whereas the proposed method was successfully applied for determining some dyes in binary mixtures. Considering the wavelengths of the maximum absorbance of the dyes (Fig. 2) and RGB values for each wavelength (Fig. 1), the suitable RGB component was selected for determination of any food color as an individual component or as a binary mixture (Table 1).

3.2. Optimization of parameters

3.2.1. Selection of suitable surface for dyes spotting

To study the effect of spotted surface on the analytical results, black surfaces (paper and fabric) were selected at the first step, because the RGB values are zero for black backgrounds. However, the color spots were not detectable on the scanned images with black backgrounds. Thus, white surfaces (paper and fabric) were investigated next. Because the RGB factors on the various white fabrics were not constant at 255 in different points of each surface, paper surfaces consisting of filter paper, paperboard, and two types of Whatman paper (1 Chr and No. 43) were tested for further studies. Because of the weak absorbance strength of the paperboard, the best spotted surface was determined by comparison of repeatability of analytical signals with the other three surfaces. Based on the data presented in Table 2, the Whatman paper no. 43 (i.e., the thick one) was selected as the optimized spotted surface.

3.2.2. Optimization of spotted sample volume

The optimum spotted sample volume was selected based on its effect on repeatability of results and determination efficiency. The influence of the spotted sample volume was studied in the 5–50 μL range. The results obtained showed that by increasing the volume of sample from 5 to 20 μL, analytical signals increase and then remain constant until 50 μL. With increases in volume, the repeatability also improved. Based on these results, 20 μL was selected as the suitable volume of spotted sample for scanning.

![Fig. 1 – RGB values for the pure spectral lines.](image)

![Fig. 2 – Absorption spectra of brilliant blue (1, 2), carmoisine (3, 4), sunset yellow (5, 6), and quinoline yellow (7, 8) at pH 6 and 11, respectively. Concentrations of all dyes are 10 g/L.](image)

| Analyte          | Food color with suitable component of RGB |
|------------------|------------------------------------------|
| Brilliant blue   | — R                                      |
| Brilliant blue   | Sunset yellow R                          |
| Brilliant blue   | Carmoisine R                             |
| Brilliant blue   | Quinoline yellow R                       |
| Carmoisine       | — G                                      |
| Carmoisine       | Brilliant blue G                         |
| Carmoisine       | Quinoline yellow G                       |
| Carmoisine       | Sunset yellow G                          |
| Sunset yellow    | — B                                      |
| Sunset yellow    | Brilliant blue B                         |
| Sunset yellow    | Carmoisine B                             |
| Quinoline yellow | — B                                      |
| Quinoline yellow | Brilliant blue B                         |
| Quinoline yellow | Carmoisine B                             |
3.2.3. Optimization of drying time of spots
In this study, drying time was defined as the time interval between spotting the analyte on paper and scanning it. To obtain constant signal for each spot, the time of its drying was studied between 0 and 70 minutes. The results obtained show that by increasing drying time, analytical signals fluctuate until the 40th minute, after which they remain constant. Therefore, the optimal drying time was selected as 40 minutes.

3.2.4. Effect of scanner dots per inch
Dots per inch (DPI) is a measure of spatial printing or video dot density, in particular the number of individual dots that can be placed in a line within the span of 2.54 cm (1 in.). By increasing the DPI of scanner, the quality of digital image and the time required for scanning can be increased. The effect of DPI was studied in the range of 75–300, and it was found that resolution of images had no effect on the obtained responses and on their reproducibility. Therefore, the resolution of scanner was adjusted at 75 DPI (the minimum value in scanners) in this study.

3.2.5. Effect of surrounding light
To investigate the effect of light on the obtained signals, two papers were spotted under the same conditions. For drying these spots, one of the papers was exposed to surrounding light and the other one was placed in a darkroom. It was concluded that the drying condition does not affect the analytical signals. Thus, other experiments were carried out under normal laboratory conditions (i.e., no need for a darkroom).

3.3. Quantitative features of the method
The analytical performance of the proposed method was validated by considering the dynamic linear range, square of correlation coefficient, limit of detection (LOD), and limit of quantification (LOQ) for the analytes (summarized in Table 3). In general, the LOD is taken as the lowest concentration of an analyte in a sample that can be detected, but not necessarily

| Table 2 – Statistical data for selection of spotted surface. |
|-------------------------------------------------------------|
| Relative standard deviation of signals (C = 50 mg/L, n = 6) | Analyte      | Kind of paper |
|-------------------------------------------------------------|
| 9.3             | Brilliant blue | Filter paper  |
| 8.9             | Carmoisine     |              |
| 7.7             | Quinoline yellow |          |
| 9.1             | Sunset yellow  |              |
| 14.2            | Brilliant blue | Whatman paper |
| 11.8            | Carmoisine     | (1 Chr)      |
| 15.2            | Quinoline yellow |         |
| 14.3            | Sunset yellow  |              |
| 2.6             | Brilliant blue | Whatman paper |
| 2.1             | Carmoisine     | (No. 43)     |
| 2.8             | Quinoline yellow |          |
| 1.9             | Sunset yellow  |              |

| Table 3 – Quantitative features of the method for the selected dyes. |
|-------------------------------------------------------------|
| Analyte             | LR (mg/L) | R²  | LOD (mg/L) | LOQ (mg/L) |
|---------------------|-----------|-----|------------|------------|
| Brilliant blue      | 20–250    | 0.9996 | 4.82     | 16.06     |
| Carmoisine          | 30–180    | 0.9982 | 7.23     | 24.11     |
| Quinoline yellow    | 30–250    | 0.9991 | 8.05     | 26.84     |
| Sunset yellow       | 30–250    | 0.9899 | 7.70     | 25.68     |

LOD = limit of detection (S/N = 3); LOQ = limit of quantification (S/N = 10); LR = linear range; R² = square of correlation coefficient.

| Table 5 – Tolerable concentration ratios for determination of 50 mg/L of each dye with the proposed method (relative error ± 5%). The analytes and interfering dyes are shown in horizontal and vertical columns, respectively. |
|-------------------------------------------------------------|
| Analyte | BL | CA | QY | SY |
|---------|----|----|----|----|
| BL      | —  | 50 | 60 | 60 |
| CA      | 30 | —  | 60 | 50 |
| QY      | 60 | 60 | —  | —  |
| SY      | 30 | 50 | —  | —  |

BL = brilliant blue; CA = carmoisine; QY = quinoline yellow; SY = sunset yellow.

| Table 4 – Analytical performances of some similar methods reported in the literature for determination of food dyes. |
|-------------------------------------------------------------|
| Parameter                          | Proposed method | Altınöz and Toptan [4]. | Al-Degs and El-Sheikh [5]. | Al-Degs [21]. | Alves et al [29]. | Huang et al [30]. | Berzas et al [31]. |
|------------------------------------|------------------|--------------------------|--------------------------|----------------|------------------|------------------|-------------------|
| Method                             | Image analysis   | Spec                     | Spec                     | Spec and HPLC | HPLC             | CE               | Spec              |
| Data processing                    | NN               | Derivative spectrophotometry | PARAFAC and BLLS/RBL    | 1.0–180       | 0.5–16          | 1–100            | 1–500             |
| Dynamic range (mg/L)               | 20–250           | 1.0–52                   | 1.0–180                  | 0.5–16         | 1–100            | 1–500            | 0.8–20            |
| Number of dyes studied             | 4                | 2                        | 3                       | 3              | 5                | 8                | 3                 |
| RSD (%)                            | 0.79–4.46        | 1.50–3.73                | <5                      | 2.2–3.2        | <3.87            | 2.04–4.96        | 0.4–1.15          |
| LOD (mg/L)                         | 4.82–8.05        | 0.002–0.05               | 0.22–0.54               | 0.04–0.3       | 0.01–0.1         | 0.5              | 0.003–0.06        |
| LOQ (mg/L)                         | 16.06–26.84      | NA                       | NA                      | NA             | NA               | NA               | NA                |

BLLS/RBL = bilinear least squares/residual bilinearization; CE = capillary electrophoresis; HPLC = high-performance liquid chromatography; LOD = limit of detection; LOQ = limit of quantification; NA = not available; NN = not needed; PARAFAC = parallel factor analysis; PLS/PCR = partial least squares/principal component regression; RSD = relative standard deviation; Spec = spectrophotometry.
quantified, under the stated conditions of the test. The LOQ is the lowest concentration of an analyte in a sample that can be determined with acceptable precision and accuracy under the stated conditions of the test [28].

Despite some limitations, the proposed model offers some advantages over other similar methods, such as simplicity (Table 4). The results indicated that wide linear ranges and good linearity ($R^2 > 0.99$) were achievable for the selected food colors. Acceptable detection and quantification limits in the range of 4.82–8.05 and 16.06–26.84 mg/L, respectively, were obtained by image analysis. Repeatability of the method was assessed by its application on the six similar standard solutions at three different concentrations (40, 90, and 180 mg/L). The relative standard deviations were obtained in the 0.79–4.46% range.

### 3.4. Study of the interference

The interference of a food dye over other dyes was investigated by analyzing solutions containing two dyes. The results obtained with tolerable maximum error of 5% in the reflectance reading are presented in Table 5. As it can be seen, the interference of a dye over another increases with increasing the molar absorbptivity of the interfering dye and spectral overlapping of the dyes. Because of the similarity of the RGB factors and the signals obtained for QY and SY in the software used, the examination of the interference of these dyes on each other was not possible.

### 3.5. Determination of food dyes in real samples

The BL, CA, SY, and QY dyes in various samples (solid jelly powders, traditional chocolate, and untiilted shoddy orange soft drink) were analyzed. The solutions of food samples were prepared as described in the “Preparation of the Real Sample Solutions” section. The dyes in each sample were then identified by paper chromatography. These samples were also subjected to an HPLC method. The results obtained for each of the two methods were then compared (Table 6). As it can be seen, the results obtained from the proposed method was in a good agreement with those obtained for the HPLC. There was also no significant difference between the results obtained by each of the two methods (t test).

### 4. Conclusion

The proposed analytical approach is a cheap analytical method for obtaining digital images and determination of food colors by a scanner. The optimized technique in conjunction with flatbed scanner was considered to be a facile, economical procedure, and nearly fast for analyzing some food colors in commercial samples. The method has been successfully used for the analysis of some dyes (BL, CA, QY, and SY) as model analytes. The method does not require any preliminary sample-preparation step. The methodology showed acceptable linear ranges for the analytes, with correlation coefficients higher than 0.998, and suitable precision. In this digital imaging method, the costs of equipment and software required are low, and the experimental setup and operating conditions are simple.

### Conflicts of interest

All contributing authors declare no conflicts of interest.

### References

[1] Wu D, Sun D-W. Colour measurements by computer vision for food quality control—a review. Trends Food Sci Tech 2014;29:5–20.

[2] Sahraei R, Farmany A, Mortazavi SS. A nanosilver-based spectrophotometry method for sensitive determination of tartrazine in food samples. Food Chem 2013;138:1239–42.

[3] Komissarchik S, Nyanikova G. Test systems and a method for express detection of synthetic food dyes in drinks. LWT Food Sci Technol 2014;58:315–20.

[4] Altnoz S, Toptan S. Simultaneous determination of indigotin and Ponceau-4R in food samples by using Vierordt’s method, ratio spectra first order derivative and derivative UV spectrophotometry. J Food Compos Anal 2005;18:517–30.

[5] Al-Degs YS, El-Sheikh AH. Spectrophotometric determination of food dyes in soft drinks by second order multivariate calibration of the absorbance spectra-pH data matrices. Dyes Pigments 2013;97:330–9.

[6] Schenone AV, Cuzloni MJ, Marsili NR, Goiocehea HC. Determination of tartrazine in beverage samples by stopped-flow analysis and three-way multivariate calibration of non-
linear kinetic-spectrophotometric data. Food Chem 2013;138:1928–35.

[7] Sorouraddin M-H, Rostami A, Saadati M. A simple and portable multi-colour light emitting diode based photocoulometer for the analysis of mixtures of five common food dyes. Food Chem 2013;127:308–13.

[8] Sorouraddin M-H, Saadati M. A simple fabrication of portable diffuse reflectometer for simultaneous analysis of common food dyes. Sens Actuators B Chem 2010;145:367–72.

[9] Yilmaz UT, Ergun F, Yilmaz H. Determination of the food dye carmine in milk and candy products by differential pulse polarography. J Food Drug Anal 2014;22:329–35.

[10] Gan T, Sun J, Meng W, Song L, Zhang Y. Electrochemical sensor based on graphene and mesoporous TiO2 for the simultaneous determination of trace colourants in food. Food Chem 2013;141:3731–7.

[11] Dossi N, Toniolo R, Pizzariello A, Susmel S, Perennes F, Gan T, Sun J, Meng W, Song L, Zhang Y. Electrochemical polarography. J Food Drug Anal 2014;22:329–35.

[12] de Andrade FI, Florindo Guedes MI, Pinto Vieira Zou T, He P, Yasen A, Li Z. Determination of seven synthetic food dyes in commercial soft drinks by TLC and ion-pair HPLC. Food Chem 2014;157:193–8.

[13] Huang HY, Chuang CL, Chiu CW, Chung MC. Determination of food colorants by microemulsion electrokinetic chromatography. Electrophoresis 2005;26:867–77.

[14] Avila M, Zougagh M, Escarpa A, Rios A. Determination of Sudan dyes in food samples using supercritical fluid extraction—capillary liquid chromatography. J Supercrit Fluids 2011;55:977–82.

[15] Vajković J, Andrić F, Ristivojević P, Radoićić A, Tešić Ž, Milojković-Opsenica D. Development and validation of a TLC method for the analysis of synthetic foodstuff dyes. J Liq Chromatogr Relat Technol 2013;36:2476–88.

[16] Zou T, He P, Yassen A, Li Z. Determination of seven synthetic dyes in animal feeds and meat by high performance liquid chromatography with diode array and tandem mass detectors. Food Chem 2013;138:1742–8.

[17] Long C, Mai Z, Yang Y, Zhu B, Xu X, Lu L, Zou X. Synthesis and characterization of a novel molecularly imprinted polymer for simultaneous extraction and determination of water-soluble and fat-soluble synthetic colorants in chilli products by solid phase extraction and high performance liquid chromatography. J Chromatogr A 2009;1216:8379–85.

[18] Shen Y, Zhang X, Prinyawiwatkul W, Xu Z. Simultaneous determination of red and yellow artificial food colourants and carotenoid pigments in food products. Food Chem 2014;157:553–8.

[19] Bonan S, Fedrizzi G, Menotta S, Elisabetta C. Simultaneous determination of synthetic dyes in foodstuffs and beverages by high-performance liquid chromatography coupled with diode-array detector. Dyes Pigm 2013;99:36–40.

[20] Murty MRVS, Chary NS, Prabhakar S, Prasada Raju N, Vairamani M. Simultaneous quantitative determination of Sudan dyes using liquid chromatography—atmospheric pressure photoionization—tandem mass spectrometry. Food Chem 2009;115:1556–62.

[21] Al-Deqs YS. Determination of three dyes in commercial soft drinks using HLA/GO and liquid chromatography. Food Chem 2009;117:485–90.

[22] He L, Su Y, Fang B, Shen X, Zeng Z, Liu Y. Determination of Sudan dye residues in eggs by liquid chromatography and gas chromatography—mass spectrometry. Anal Chim Acta 2007;594:139–46.

[23] Fashandi H, Amirshahi SH, Amani Tehran M, Gorji Kandi S. Evaluation of scanner capability for measuring the color of fabrics with different textures in different setups. Fiber Polym 2010;11:767–74.

[24] Soponar F, Catalin Mot A, Sarbu C. Quantitative determination of some food dyes using digital processing of images obtained by thin-layer chromatography. J Chromatogr A 2008;1188:295–300.

[25] Facco P, Bezzo F, Barolo M, Mukherjee R, Romagnoli JA. Monitoring roughness and edge shape on semiconductors through multiresolution and multivariate image analysis. AIChe J 2009;55:1147–60.

[26] Geladi PLM, Grahn HF, Burger JE. Multivariate images, hyperspectral imaging: background and equipment. In: Grahn HF, Geladi P, editors. Techniques and applications of hyperspectral image analysis. Chichester, UK: John Wiley & Sons, Ltd; 2007. p. 1–15.

[27] Giorgianni EJ, Madden TE. Digital color management: encoding solutions. Boston, MA: Addison-Wesley Longman Publishing Co; 1998.

[28] Shrivastava A, Gupta VB. Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron Young Sci 2011;2:21–5.

[29] Alves SP, Brum DM, Branco de Andradea NC, Netto ADP. Determination of synthetic dyes in selected foodstuffs by high performance liquid chromatography with UV-DAD detection. Food Chem 2008;107:489–96.

[30] Huang HY, Shih YC, Chen YC. Determining eight colorants in drinking water and milk beverages by capillary electrophoresis. J Chromatogr A 2002;959:317–25.