

ABSTRACT

\(A_{\text{deg}}\) is a self-stabilizing algorithm that computes a maximal independent set in a finite graph with approximation ratio \((\Delta + 2)/3\). In this note we show that under the central scheduler the number of moves of \(A_{\text{deg}}\) is not bounded by a polynomial in \(n\).

Keywords Self-stabilizing Algorithm, Maximal Independent Sets, Complexity

1 **Introduction**

There exist several self-stabilizing algorithms to compute a maximal independent set in a finite graph [1, 2, 3, 4, 5]. Algorithm \(A_{\text{deg}}\) proposed by Yen et al. is especial because it is the only one with a guaranteed approximation ratio. In Theorem 3.13 of [5] the authors prove that the approximation ratio of \(A_{\text{deg}}\) is \((\Delta + 2)/3\). The authors also prove that the algorithm stabilizes for every graph, but an upper bound for the move complexity was not given. In this note we show that for some graphs the move complexity grows exponentially with the size of the graph.

2 **Algorithm \(A_{\text{deg}}\)**

Let \(G(V, E)\) be an undirected finite graph. For \(v \in V\) denote by \(N(v)\) the set of neighbors of \(v\) and let \(N[v] = N(v) \cup \{v\}\). The degree \(d(v)\) of a node \(v \in V\) equals \(|N(v)|\). Let \(\Delta = \max\{d(v) \mid v \in V\}\) and denote by \(N^\leq(v)\) the set of neighbors of \(v\) with degree at most that of \(v\).

Algorithm \(A_{\text{deg}}\) uses a single variable \(\text{state}\) for each node. This variable can have the values \(\text{IN}\) and \(\text{OUT}\). Let \(I^\leq(v) = \{w \in N^\leq(v) \mid w.\text{state} = \text{IN}\}\). \(A_{\text{deg}}\) consists of the following two simple rules:

- **R1:** \(\text{state} = \text{OUT} \land I^\leq(v) = \emptyset \quad \rightarrow \quad \text{state} := \text{IN}\)
- **R2:** \(\text{state} = \text{IN} \land I^\leq(v) \neq \emptyset \quad \rightarrow \quad \text{state} := \text{OUT}\)

\(A_{\text{deg}}\) stabilizes under the central scheduler and if no rule is enabled the set \(I = \{v \in V \mid v.\text{state} = \text{IN}\}\) is a maximal independent set of \(G\) [5]. For regular graphs, algorithm \(A_{\text{MIS}}\) coincides with the algorithm proposed in [2]. Algorithm \(A_{\text{deg}}\) preferentially places nodes with smaller degree into state \(\text{IN}\). The intention is to find larger independent sets. The following theorem is proved in [5].

Theorem 1. \(A_{\text{deg}}\) has approximation ratio of \(A_{\text{deg}}\) is \((\Delta + 2)/3\).

3 **Construction of Graphs \(G_{d,w}\)**

In this section we construct a family of graphs \(G_{d,w}\) for which \(A_{\text{deg}}\) requires an exponentially growing number of moves. The construction of \(G_{d,w}\) depends on two parameters \(d \geq 1\) and \(w \geq 1\). Let \(H_w\) be a complete bipartite graph
with $2w$ nodes. The nodes of H_w consist of the two independent sets, the upper nodes $\{u_1, \ldots, u_w\}$ and the lower nodes $\{l_1, \ldots, l_w\}$. The graph $G_{d,w}$ basically consists of d copies of H_w. These graphs are arranged vertically and adjacent copies are connected by w edges: one edge between each node l_i of one copy of H_w and node u_i of the copy below. Furthermore, we attach to each node l_i of the lowest copy of H_w a node b_i. So far we have $2wd + w = w(2d + 1)$ nodes. Each node of any of the copies of H_w has degree $w + 1$. Next we attach more leaves to the nodes of the subgraphs H_w. The goal of this last step is to attain a graph, where the degree of a node is one less than the degrees of the neighbors that are one level higher. Fig. 1 shows the graph G_{13}. Note that $\text{deg}(u_i) = 5$ and $\text{deg}(l_i) = 4$.

![Figure 1: The graph G_{13} has 15 nodes and $\Delta = 5$.](image)

The number of nodes attached in the last step is equal to

$$w \left(\sum_{i=0}^{2d-1} i + 1 \right) = w(d(2d - 1) + 1)$$

Thus, graph $G_{d,w}$ has $w(2d + 1) + w(d(2d - 1) + 1) = w(2d^2 + d + 2)$ nodes and $\Delta = w + 2d$. Fig. 2 shows the graph G_{23}.

![Figure 2: The graph G_{23} has 36 nodes and $\Delta = 7$.](image)

4 Executing A_{deg} on G_{dw}

First we consider the graph G_{1w}. We start with an initial configuration where each node is in state OUT (see Fig. 3). In the first w steps all u_i execute rule R1 and change to state IN. Then node l_1 also changes to state IN, note that $\text{deg}(l_1) < \text{deg}(u_i)$. This enables rule R2 for all nodes u_i and one by one changes back to state OUT. Then node b_1 also executes rule R1 and changes to IN. This forces node l_1 to change back to state OUT. Now we are back at the initial configuration, except for node b_1 which is now in state IN. Next the described process repeats itself, with l_2 (resp. b_2) assuming the role of l_1 (resp. b_1). Then we are back again in the initial configuration except for nodes b_1 and b_2. This sequence repeats itself w times resulting in a configuration where all nodes but b_1, \ldots, b_w are in state OUT. In this execution rule R1 was executed at least w^2 times.

2
Next we consider the graph G_{2w} (see Fig. 2). We start again with an initial configuration where each node is in state OUT. We can repeat the execution described for graph G_{1w} for the upper copy of the bipartite graph H_w with the only difference the nodes u_i of the lower copy of H_w take over the role of the nodes b_i. To avoid confusion we denote the nodes of this copy of H_w by \overline{u}_i and $\overline{1}_i$. Thus, we reach a configuration where all nodes but nodes \overline{u}_i are in state OUT. At this point in time rule R1 has been executed at least w^2 times. Then node $\overline{1}_i$ changes to state IN. This forces all nodes \overline{u}_i to change back to OUT. Then node b_i also executes rule R1 and changes to IN. This forces node $\overline{1}_i$ to change back to state OUT. Now we are back at the initial configuration, except for node b_1 which is now in state IN. Then the whole process beginning with the upper copy of H_w repeats again. This time nodes $\overline{1}_i$ and b_2 take over the role of $\overline{1}_1$ and b_1. Thus, so far rule R1 has been executed at least $2w^2$ times. We can repeat the process w times. Thus, there exists an execution of A_{\deg} for G_{2w} that contains at least w^3 executions of rule R1.

This construction also works for graphs G_{dw} for any value of d. Hence, there is an execution of A_{\deg} for G_{dw} that contains at least w^{d+1} moves. Let $w = d$ and $n = w(2w^2 + w + 2) \in O(w^3)$. Then $w^{d+1} = (w^3)^{d+1} \in n^{O(n^{1/3})}$. Thus, there exist a graph with $O(n)$ nodes for which A_{\deg} requires $n^{O(n^{1/3})}$ moves.

Theorem 2. Using the central scheduler the number of moves of algorithm A_{\deg} is not bounded by a polynomial in n.

References

[1] Michiyo Ikeda, Sayaka Kamei, and Hirotsugu Kakugawa. A space-optimal self-stabilizing algorithm for the maximal independent set problem. In the Third International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT), pages 70–74, 2002.

[2] S.M. Hedetniemi, S.T. Hedetniemi, D.P. Jacobs, and P.K. Srimani. Self-stabilizing algorithms for minimal dominating sets and maximal independent sets. *Computer Mathematics and Applications*, 46(5-6):805–811, 2003.

[3] Volker Turau. Linear self-stabilizing algorithms for the independent and dominating set problems using an unfair distributed scheduler. *Information Processing Letters*, 103(3):88–93, July 2007.

[4] Well Y. Chiu, Chiuyuan Chen, and Shih-Yu Tsai. A 4n-move self-stabilizing algorithm for the minimal dominating set problem using an unfair distributed daemon. *Information Processing Letters*, 114(10):515 – 518, 2014.

[5] Li-Hsing Yen, Jean-Yao Huang, and Volker Turau. Designing self-stabilizing systems using game theory. *ACM Transactions on Autonomous and Adaptive Systems*, Volume 11, Issue 3, Article 18:1–27, 2016.