Individual patient data meta-analysis for the clinical assessment of coronary computed tomography angiography: protocol of the Collaborative Meta-Analysis of Cardiac CT (CoMe-CCT)

Georg M Schuetz1, Peter Schlattmann7, Stephan Achenbach3, Matthew Budoff8, Mario J Garcia5, Robert Roehle1, Gianluca Pontone6, Willem Bob Meijboom7, Daniele Andreini6, Hatem Alkadhi8, Lily Honoris4, Nuno Bettencourt9, Jörg Hausleiter10, Sebastian Leschka31, Bernhard L Gerber12, Matthijs FL Meijss13, Abbas Arjmand Shabestari14, Akira Sato1, Elke Zimmermann1, Uwe J Schoepf16, Axel Diederichsen17, David A Halon18, Vladimir Mendoza-Rodriguez19, Ashraf Hamdan20,21, Bjarne L Nørgaard22, Harald Brodofei23, Kristian A Øvrehus24, Shona MM Jenkins25, Bjørn A Halvorsen26, Johannes Rixe27, Mehraj Sheikh28, Christoph Langer29,30, Eugenio Martuscelli31, Andrea Romagnoli32, Arthur JHA Scholte33, Roy P Marcus34, Geir R Ulimoen35, Koen Nieman7,36, Hans Mickley17, Konstantin Nikolaou34, Jean-Claude Tardif37, Thorsten RC Johnson34, Simone Muraglia38, Benjamin JW Chow39, David Maintz40,41, Michael Laule42 and Marc Dewey1*

Abstract

Background: Coronary computed tomography angiography has become the foremost noninvasive imaging modality of the coronary arteries and is used as an alternative to the reference standard, conventional coronary angiography, for direct visualization and detection of coronary artery stenoses in patients with suspected coronary artery disease. Nevertheless, there is considerable debate regarding the optimal target population to maximize clinical performance and patient benefit. The most obvious indication for noninvasive coronary computed tomography angiography in patients with suspected coronary artery disease would be to reliably exclude significant stenosis and, thus, avoid unnecessary invasive conventional coronary angiography. To do this, a test should have, at clinically appropriate pretest likelihoods, minimal false-negative outcomes resulting in a high negative predictive value. However, little is known about the influence of patient characteristics on the clinical predictive values of coronary computed tomography angiography. Previous regular systematic reviews and meta-analyses had to rely on limited summary patient cohort data offered by primary studies. Performing an individual patient data meta-analysis will enable a much more detailed and powerful analysis and thus increase representativeness and generalizability of the results. The individual patient data meta-analysis is registered with the PROSPERO database (CoMe-CCT, CRD42012002780).

* Correspondence: dewey@charite.de
1 Department of Radiology, Charité - Universitätsmedizin Berlin Campus Mitte, Humboldt-Universität zu Berlin, Freie Universität Berlin, Charitéplatz 1, Berlin 10117, Germany
Full list of author information is available at the end of the article

© 2013 Schuetz et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Methods/Design: The analysis will include individual patient data from published and unpublished prospective diagnostic accuracy studies comparing coronary computed tomography angiography with conventional coronary angiography. These studies will be identified performing a systematic search in several electronic databases. Corresponding authors will be contacted and asked to provide obligatory and additional data. Risk factors, previous test results and symptoms of individual patients will be used to estimate the pretest likelihood of coronary artery disease. A bivariate random-effects model will be used to calculate pooled mean negative and positive predictive values as well as sensitivity and specificity. The primary outcome of interest will be positive and negative predictive values of coronary computed tomography angiography for the presence of coronary artery disease as a function of pretest likelihood of coronary artery disease, analyzed by meta-regression. As a secondary endpoint, factors that may influence the diagnostic performance and clinical value of computed tomography, such as heart rate and body mass index of patients, number of detector rows, and administration of beta blockade and nitroglycerin, will be investigated by integrating them as further covariates into the bivariate random-effects model.

Discussion: This collaborative individual patient data meta-analysis should provide answers to the pivotal question of which patients benefit most from noninvasive coronary computed tomography angiography and thus help to adequately select the right patients for this test.

Keywords: Collaborative meta-analysis on cardiac CT, CoMe-CCT, Coronary CT angiography, Individual patient data meta-analysis, IPD, Positive and negative predictive value, Pretest likelihood, Sensitivity and specificity, Study protocol

Background
Coronary artery disease (CAD) is the main cause of death in industrialized countries [1]. To allow early detection as well as accurately ruling out CAD, a reliable noninvasive test would have important advantages. To reliably exclude disease, a diagnostic test with a minimal proportion of false-negative results and thus a relatively high sensitivity should be used [2]. Coronary computed tomography (CT) angiography has already been evaluated comprehensively concerning its diagnostic accuracy potentials by single studies and meta-analyses. However, the influence of the clinical presentation, risk factors and prior test results of patients, which can be used to estimate the influence of the pretest likelihood of CAD on the positive and negative predictive values of coronary CT angiography, are not fully understood. A few single-center studies have been published dealing with the influence of the pretest likelihood of CAD on the diagnostic performance of CT. Meijboom et al. demonstrated in 254 symptomatic patients that the accuracy of coronary CT angiography was greatest in patients with low-to-intermediate pretest likelihood whereas the negative predictive value was substantially reduced in patients with high pretest likelihood [3]. This reduction of the negative predictive values in patients with high disease prevalence was also shown in a comparable study by Husmann et al. comprising 88 patients [4]. In 90 patients, Leber et al. also demonstrated that CT allows CAD to be accurately ruled out if an intermediate pretest likelihood is present [5]. Applying Bayesian analysis, Dewey et al. [6] confirmed that the diagnostic performance of both CT and magnetic resonance coronary angiography was influenced by the pretest likelihood. Pretest likelihood of CAD can be estimated according to clinical presentation and risk factors applying several tabulation tools [7-11] and the appropriateness of further testing may be estimated based on their results. Establishing and further elucidating the potential of pretest likelihood estimations to ensure the appropriateness of CT is an important aim of cardiovascular medicine. In a meta-regression analysis using disease prevalence as a surrogate marker for pretest likelihood, Schlattmann et al. further specified the boundaries of low-to-intermediate pretest likelihood for patients in whom coronary CT angiography can be applied as a reliable rule-out test [12] (Figure 1).

The analysis is based on summary patient collective data from primary study articles aggregated in a regular meta-analysis [13] and, thus, further specific patient-level information for more detailed subanalyses were not available.

The purpose and main aim of this project is thus to summarize the published and unpublished evidence on coronary CT angiography using IPD in a collaborative meta-analysis to draw more reliable and generalizable conclusions [14] concerning the appropriateness of CT in patients with varying presentations and thus pretest likelihoods [15]. The results should enable us to determine which patients benefit most from noninvasive coronary angiography and those less suited to undergo CT.

Moreover, the influence of additional patient and acquisition characteristics will also be summarized in our collaborative meta-analysis to allow us to draw important conclusions concerning the eligibility of patients for coronary CT angiography and the importance of specific technical requirements and methods of preparation.
Among these factors being discussed or having previously been shown to influence the diagnostic performance of coronary CT angiography is the heart rate of the patients during scanning, which may lead to motion artifacts, and the body mass index, which, if severely increased, can result in rather noisy nondiagnostic test results [16-18]. Also, technical factors such as the number of simultaneous CT detector rows and the administration of beta blockade to reduce heart rate and nitroglycerin to dilate the vessels have been shown in single-center studies to alter the diagnostic performance and image quality of coronary CT angiography [19-24]. In detail, subanalyses will be performed to investigate the following questions:

- Is there a decrease in diagnostic accuracy of coronary CT angiography in patients with a body mass index >30?
- Does heart rate control (heart rate <60 beats per minute) lead to an increase of accuracy?
- Does the use of ≥64-row CTs lead to an increase of diagnostic accuracy?
- Is there a difference in diagnostic accuracy between men and women after adjusting for differences in pretest likelihood?
- Is diagnostic accuracy higher in patients >70 years of age or younger patients after adjusting for differences in calcium score?
- Is a certain Agatston calcium score threshold a good universal predictor for coronary artery disease?
- Is diagnostic accuracy of CT different in patients with atypical or typical chest pain?

This IPD meta-analysis will enable us to perform the main and secondary analyses on an individual per-patient basis, the clinically most relevant level of analysis. The results may have relevant clinical implications because conventional coronary angiography (CCA) exposes the patients to infrequent yet considerable risks, such as myocardial infarction, coronary artery dissection and ventricular tachycardia [25,26], which might be avoided using CT in selected patient populations with suspected CAD. In addition, there are also economic considerations because CT might also be more cost effective [27].

Methods/Design

This is a study protocol for the collaborative IPD meta-analysis on coronary CT angiography in comparison to
conventional angiography as the gold standard, called Collaborative Meta-Analysis of Cardiac CT (CoMe-CCT). It was registered with the PROSPERO database [28,29] (registration number: CRD42012002780). This collaborative IPD meta-analysis is exempt from ethical approval as the analysis as well as the results for publication only involve de-identified data and all individual studies that will be summarized have received local ethics approval.

Identifying eligible studies for CoMe-CCT
Valid published and unpublished studies will be retrieved by directly contacting all corresponding authors from published studies on coronary CT versus CCA in patients with suspected CAD. This will be achieved by including the primary studies of a recent regular systematic review and meta-analysis by our working group [13], and performing an update of this review to identify most recent studies. A sensitive search strategy using the particular thesaurus terms of the specific databases in combination with free text word synonyms [2] will be used to search MEDLINE (via PubMed), EMBASE (via Ovid) and ISI Web of Science databases for updating the article pool of relevant studies (suggested search strategies for all databases are provided in Additional file 1). We will also search bibliographies of retrieved studies, systematic reviews and meta-analyses, and include results of abstracts presented at most recent congresses as suggested by clinical experts.

Key inclusion criteria are a prospective study design; use of a contemporary CT scanner with at least 12 simultaneous detector rows; use of ≥50% diameter reduction as the cut-off criterion for significant coronary artery stenoses in CT and CCA; application of CCA in all patients, regardless of the results of CT; provision of individual patient results for CT and CCA (positive, negative, and nondiagnostic), which allow calculation of 2×2 (excluding nondiagnostic results) or 3×2 (including nondiagnostic results) tables [30]; articles published in English or German; and provision of basic patient characteristics (age, gender, angina type, heart rate).

Studies with the following characteristics will be excluded: retrospective study design; overlap with other studies as indicated by the corresponding author.

Study screening and selection will be performed by two independent investigators. Retrieved articles will be searched after duplicate papers (from MEDLINE, EMBASE and ISI Web of Science) are identified and eliminated. In a first phase, titles and abstracts will be scanned and, in accordance with the inclusion and exclusion criteria, either discarded or retained for further investigation. In a second phase, the remaining potentially eligible articles will be reassessed in depth using the full text.

Methodological quality assessment
Two investigators will independently carry out the data extraction (including quality assessment) from all the retrieved published studies based on the full text articles. Discrepancies will be resolved in a consensus meeting, or, if agreement cannot be reached, they will be resolved in consensus with a third investigator. To assess and quantify the inter-rater agreement between the two investigators in evaluating methodological quality using the QUADAS tool [31], we will calculate the kappa statistics. The data extracted will be: general and detailed methodological study characteristics, characteristics of the study population, details of the CT technology used, and detailed reference standard (CCA) specifications.

Collection of individual patient data
An international steering committee of renowned experts from the field of noninvasive coronary CT angiography has been established to lead, oversee and represent the CoMe-CCT project. The steering committee consists of four clinical experts for cardiac CT: Stephan Achenbach, Erlangen, Germany; Matthew Budoff, Los Angeles, CA, USA; Mario J Garcia, New York, NY, USA; Marc Dewey, Berlin, Germany, and one clinical expert for CCA: Michael Laule, Berlin, Germany. The steering committee is completed by the project’s statistician Peter Schlattmann, Jena, Germany.

Corresponding authors of identified eligible published studies will be contacted using mail including a cover letter detailing the objectives of the collaborative meta-analysis, background information on IPD meta-analysis, and a CD containing a data collection file for input of individual patient results for the project. The details of the obligatory and additional patient and study characteristics are shown in Tables 1 and 2. The filled out data templates will be send back to us by either mail on CD or, more conveniently, by email. Further communication will mainly be performed by email or phone. Corresponding authors will also be contacted about unpublished data that will be eligible for inclusion in the collaborative meta-analysis if the inclusion criteria are met. To further enlarge the clinical data pool, authors will additionally be asked to provide data from registries. These data will not be included in the primary analyses, which are only based on data from the prospective studies.

Data management, security and validation
The same two investigators who will perform the electronic database search and identify published eligible studies for the regular review will also collect and assemble the IPD provided by the investigators of published and unpublished studies. Data will be sent as email attachments to the coordinating investigator of CoMe-CCT in an anonymized and de-identified way (without directly identifying information, that is, record numbers, names, addresses and so on will be removed). Data will be accepted in any kind of electronic format...
Table 1 Obligatory computed tomography technology and patient characteristics requested in the data file

Computed tomography characteristics	Patient and conventional coronary angiography characteristics
Publication from which the data is derived	Age and gender, type of symptoms (typical angina pectoris, atypical angina pectoris, chest pain, no pain, pain unknown)
Results of CT (positive, negative, nondiagnostic). Comment and explanation for nondiagnostic patients	Results of conventional coronary angiography (positive, negative, nondiagnostic). Comment and explanation for nondiagnostic patients

*At least one ≥50% stenosis in one vessel; no stenosis in any vessel and at least one vessel not fully evaluable.

Table 2 Additional computed tomography technology and patient characteristics requested in the data file

Additional computed tomography characteristics	Patient characteristics and additional tests
Effective radiation dose	Weight and height
Type of electrocardiographic gating	Derived body mass index
Number of detector rows used	Calcium score, heart rate during scanning, presence of cardiac risk factors (hypertension, diabetes, hyperlipidemia, current or former smoker, positive family history, prior myocardial infarction)
Beta blockade (type, route, dosage)	Results of rest electrocardiography
Nitroglycerin (type, dosage)	Results of stress electrocardiography
Contrast agent (type, concentration, flow, amount)	Results of stress echocardiography
Breath hold duration	Results of stress scintigraphy
also use WinBUGS [39]. If necessary, macros will be written to facilitate the use of three-level generalized linear mixed-effects models.

Based on the model described above, mean logit sensitivity and specificity with their standard error and 95% confidence intervals, estimates of the between-study variability in logit sensitivity and specificity, and the covariance between them will be estimated. These quantities will be back-transformed to the original ROC (Receiver Operating Characteristic) scale to obtain summary sensitivity, specificity and the diagnostic odds ratios. The derived logit estimates of sensitivity, specificity and respective variances are then used to construct a hierarchical summary ROC curve for CT with summary operating points for sensitivity and specificity on the curves and a 95% confidence contour ellipsoid.

Here the individual patient-specific covariates such as type and severity of symptoms, body mass index, beta blockade and sublingual nitroglycerin will be used in the regression analysis. This serves as tool to identify spectrum bias and clinically relevant influential factors.

For performing sensitivity analysis, the analysis will be redone by leaving out one study. The generalized linear mixed model is known to be sensitive to starting values. Thus an additional analysis with Bayesian methods using PROC MCMC, SAS 9.2 will be performed.

Discussion
We believe that this collaborative multi-centric and multi-continental IPD meta-analysis will have an important impact on the clinical management of patients with suspected CAD as it should provide an answer to the question of which patients benefit most from coronary CT angiography. Furthermore, additional factors that influence the diagnostic performance of CT in comparison to CCA can be identified in this meta-analysis. This IPD meta-analysis also holds the potential to analyze and compare the predictive value of cardiac CT and CCA for subsequent major adverse cardiovascular events. Finally, the CoMe-CCT may facilitate the adequate selection of patients for cardiac CT by estimating the pretest likelihood for disease and predicting the diagnostic performance for individual patients that should ultimately help to avoid unnecessary examinations and thus decrease the use of scarce health care resources in the future [40].

Trial status
Currently, in the course of performance of the IPD meta-analysis, we are in the state of data collection and data validation. No statistical analysis has yet been performed. The update search still has to be performed to be able to identify most recent articles and to contact the corresponding authors. At the time of study protocol submission, 54 single data sets from 40 authors and including more than 5,500 IPD comparing CT and CCA have been acquired.

Additional file

Additional file 1: Search Strategies for MEDLINE, EMBASE and ISI Web of Science.

Competing interests
PS and MD are supported by a grant of the German Federal Ministry of Education and Research (BMBF) for meta-analyses as part of the joint program “clinical trials” of the BMBF and the German Research Foundation (DFG). PS is also supported by another grant of the DFG (Schl 3–1) and has received lecture fees from Bayer-Scherding. MD has received grant support from Heisenberg Program of the DFG for a professorship (DE 1361/14-1), European Regional Development Fund (2007/2013/2 020/2007/2013 2/48), German Heart Foundation/German Foundation of Heart Research (F/23/08, F/27/10), Joint program from the DFG and the BMBF for meta-analyses for performing sensitivity analysis, the analysis will be redone by leaving out one study. The generalized linear mixed model is known to be sensitive to starting values. Thus an additional analysis with Bayesian methods using PROC MCMC, SAS 9.2 will be performed.

Discussion
We believe that this collaborative multi-centric and multi-continental IPD meta-analysis will have an important impact on the clinical management of patients with suspected CAD as it should provide an answer to the question of which patients benefit most from coronary CT angiography. Furthermore, additional factors that influence the diagnostic performance of CT in comparison to CCA can be identified in this meta-analysis. This IPD meta-analysis also holds the potential to analyze and compare the predictive value of cardiac CT and CCA for subsequent major adverse cardiovascular events. Finally, the CoMe-CCT may facilitate the adequate selection of patients for cardiac CT by estimating the pretest likelihood for disease and predicting the diagnostic performance for individual patients that should ultimately help to avoid unnecessary examinations and thus decrease the use of scarce health care resources in the future [40].

Trial status
Currently, in the course of performance of the IPD meta-analysis, we are in the state of data collection and data validation. No statistical analysis has yet been performed. The update search still has to be performed to be able to identify most recent articles and to contact the corresponding authors. At the time of study protocol submission, 54 single data sets from 40 authors and including more than 5,500 IPD comparing CT and CCA have been acquired.

Additional file

Additional file 1: Search Strategies for MEDLINE, EMBASE and ISI Web of Science.

Competing interests
PS and MD are supported by a grant of the German Federal Ministry of Education and Research (BMBF) for meta-analyses as part of the joint program “clinical trials” of the BMBF and the German Research Foundation (DFG). PS is also supported by another grant of the DFG (Schl 3–1) and has received lecture fees from Bayer-Scherding. MD has received grant support from Heisenberg Program of the DFG for a professorship (DE 1361/14-1), European Regional Development Fund (2007/2013/2 020/2007/2013 2/48), German Heart Foundation/German Foundation of Heart Research (F/23/08, F/27/10), Joint program from the DFG and the BMBF for meta-analyses for performing sensitivity analysis, the analysis will be redone by leaving out one study. The generalized linear mixed model is known to be sensitive to starting values. Thus an additional analysis with Bayesian methods using PROC MCMC, SAS 9.2 will be performed.

Discussion
We believe that this collaborative multi-centric and multi-continental IPD meta-analysis will have an important impact on the clinical management of patients with suspected CAD as it should provide an answer to the question of which patients benefit most from coronary CT angiography. Furthermore, additional factors that influence the diagnostic performance of CT in comparison to CCA can be identified in this meta-analysis. This IPD meta-analysis also holds the potential to analyze and compare the predictive value of cardiac CT and CCA for subsequent major adverse cardiovascular events. Finally, the CoMe-CCT may facilitate the adequate selection of patients for cardiac CT by estimating the pretest likelihood for disease and predicting the diagnostic performance for individual patients that should ultimately help to avoid unnecessary examinations and thus decrease the use of scarce health care resources in the future [40].

Trial status
Currently, in the course of performance of the IPD meta-analysis, we are in the state of data collection and data validation. No statistical analysis has yet been performed. The update search still has to be performed to be able to identify most recent articles and to contact the corresponding authors. At the time of study protocol submission, 54 single data sets from 40 authors and including more than 5,500 IPD comparing CT and CCA have been acquired.
including meta-analytic methods. PS is author of the book Medical Applications of Finite Mixture Models.

SA (MD) is the chairman of the Department of Cardiology. His main area of research is cardiac imaging, with a special focus on CT and noninvasive assessment of coronary atherosclerosis. He has authored approximately 150 original research papers and is associate editor of JACC Cardiovascular Imaging and the Journal of Cardiovascular CT. He has served as the chairman of the Society of Cardiovascular CT, and is currently a board member of the Society of Cardiovascular CT as well as the European Society of Cardiology.

MB (MD) is a cardiologist who has over 20 years’ experience with early detection of coronary artery disease using both coronary artery calcium scoring and CT angiography. He has published four books on the topic of cardiac CT and published over 450 MEDLINE-indexed articles on cardiovascular CT. He is past president of both the Society of Atherosclerosis Imaging and Prevention and Society of Cardiovascular Computed Tomography. He is currently a professor of medicine at the David Geffen School of Medicine at UCLA, and program director of Cardiology at Harbor-UCLA Medical Center.

MJG (MD) is chief of Division of Cardiology at the Montefiore Medical Center and professor of medicine at the Albert Einstein College of Medicine. He has part and post founding board member of the Society of Cardiovascular CT and member of the American Board of Cardiovascular Disease. His research interests include screening for CAD, management of chest pain in the emergency department, and imaging in heart failure.

HA (MD, MPH, EBCR) is an associate professor and senior radiologist. He is a board certified radiologist and board certified neuroradiologist. His main research interests are body CT, emergency radiology and abdominal imaging.

PP (MD) is a board certified radiologist working in collaboration with the Cardiac Research and Development Unit of the Faculty of Medicine of Porto. His research interests and publications are related to noninvasive detection of CAD and risk stratification.

JH (MD) is a board certified doctor for internal medicine and cardiology. He is currently vice director of the Medizinische Klinik I. He is a professor of medicine at the Ludwig-Maximilians-Universität München. As an interventional cardiologist, his clinical main focus includes the percutaneous treatment of coronary and valvular diseases. In addition, he has gained an international reputation as a noninvasive cardiologist focusing on noninvasive coronary imaging by CT imaging. He is an active member in several societies for cardiology and cardiovascular CT imaging.

SL is a senior staff radiologist working as the section head of CT and Emergency Radiology. His research interests are cardiovascular imaging, abdominal radiology, emergency radiology and forensic imaging. SL is editor of two books and author of more than 130 original and review articles and more than 20 book chapters.

BLG (MD, PhD) is a cardiologist and researcher working in the field of noninvasive cardiac imaging. BLG has published over 70 MEDLINE-indexed articles including works on cardiovascular imaging, cardiac MRI, CT and nuclear imaging. He is the treasurer of the working group for cardiovascular MR of the European Heart Association.

MFLM works as a resident. His clinical and research activities focus on cardiac CT and MRI, left ventricular hypertrophy and genetics.

AAS (MD) is a radiologist and associate professor of radiology. He is currently chairman of the Radiology and Cardiac CT Departments and his publications and particular interests are mainly related to cardiothoracic and body imaging. He has 14 MEDLINE-indexed and 18 ISI Web of Knowledge-indexed published papers, mostly in the field of cardiological and vascular imaging.

Schuetz et al. Systematic Reviews 2013, 2:13

http://www.systematicreviewsjournal.com/content/2/1/13

Page 7 of 10

Schuetz et al. Systematic Reviews 2013, 2:13

http://www.systematicreviewsjournal.com/content/2/1/13

Page 7 of 10

2013,
BLN is a cardiologist and researcher with longstanding experience in the field of cardiac diagnostic imaging. He is currently working as an associate professor and senior consultant. He has published more than 50 MEDLINE-indexed articles including works on cardiovascular CT imaging.

HB is a radiologist. His research interests include multiple aspects of cardiac CT, most notably noninvasive coronary angiography, assessment of myocardial viability and plaque analysis.

KAB is a fellow in Cardiology at Vejle Hospital and Odense University Hospital, departments of Cardiology, Vejle and Odense, Denmark. His research and PhD have focused on the use of coronary CT angiography in patients with suspected CAD.

SMMI (MD, MRC(R), BSc(Ions)) gained her degrees in Science and Medicine from the University of Glasgow in 2000 and 2002 respectively. She subsequently underwent clinical training in medicine and cardiology and, following research in the field of cardiac imaging, was awarded a postgraduate Doctor of Medicine degree in 2011, again conferred by the University of Glasgow. She has worked as a specialist registrar in clinical cardiology since 2008 and her subspecialty interests, research and publications are focused on cardiac imaging and heart failure.

BAH is a clinical staff cardiologist. His primary research interests are in cardiac imaging, cardiac CT and cardiac MRI.

JR is a physician working as a clinical and research fellow. His key activities both in clinical routine and science are cardiac CT as well as cardiac MRI. During the enrolment period of CoMe-CCT, JR was in charge of patient inclusion and patient data acquisition at Kerckhoff Heart and Thorax Center in Bad Nauheim, Germany.

MS is professor of radiology. His clinical and research interest is cross-sectional imaging.

CL is a cardiologist; he is American College of Cardiology Level 3 certified for cardiac CT and a Fellow of the Society of Cardiovascular Computed Tomography.

EM (MD, FESC) is associated professor of cardiology. He is chief of the catheterization laboratory (UOS of hemodynamics). His principal field of interest is interventional cardiology and imaging by CT. EM is author of 62 MEDLINE-indexed articles including works on coronary revascularization (CABRII and SOS trials), HCM, radiation (PROTECTION trial), studies comparing CCA and CT. He is author of two chapters of the book Cardiac CT. He is chairman of the working group of cardiac CT and nuclear cardiology of the Italian Society of Cardiology.

AR is a radiologist and researcher in the field of diagnostic imaging and particularly in cardiac imaging. He is chief of the Simple Operative Unit in Cardiac Radiology. AR has published over 30 MEDLINE-indexed articles including works on cardiovascular imaging, interventional radiology, radiation and abdominal radiology. He is author of several book chapters concerning cardiac radiology.

AJHAS (MD, PhD) is a cardiologist. His clinical and research interests include noninvasive cardiac imaging, diabetes mellitus and aortic diseases.

RPM is a medical student, working as a research assistant under the supervision of Konstantin Nikolau, MD and Fabian Bamberg, MD, MPH. His research interests include cardiovascular CT and cardiovascular MRI.

GRU is a radiologist with main occupation at the private Alexi Hospital in Oslo, working mainly with breast diagnostics. He is now a part-time PhD student at Akershus University Hospital, researching cardiac imaging.

KN is a cardiologist whose clinical and research interests include noninvasive cardiac imaging and acute cardiac care.

HM is consultant, professor and head of research. His main interest is in the area of ischemic heart disease. HM is the creator of Odense Chest Pain BioBank, which was established in 2010 to 2011 and includes 2,500 patients with a suspected acute myocardial infarction.

KN is a full professor of radiology, vice chair of the Department of Clinical Radiology, and section chief of MRI. His research interests include cardiovascular CT, dual energy CT, cardiovascular MRI, imaging of atherosclerosis, thoracic imaging and molecular imaging. KN has published more than 160 scientific papers, one book, and more than 20 book chapters. He also serves as a reviewer for numerous journals, including the American Journal of Radiology, Circulation, AJACC Imaging, European Journal of Radiology, Investigative Radiology, International Journal of Cardiovascular Imaging, Journal of Computer Assisted Tomography, Journal of the American College of Cardiology, Magnetic Resonance in Medicine, and others.

JCF (MD) is a cardiologist and director of the research center of the Montreal Heart Institute. He also leads the Canadian Atherosclerosis Imaging Network and holds the Université de Montréal-endowed research chair in atherosclerosis and Canada Research Chair in translational and personalized medicine.

TRCJ is a radiologist working as associate professor and head of CT. Among his research interests are cardiovascular CT and MRI and spectral CT. He has published some 75 peer-reviewed articles and three radiological textbooks.

SM is an interventional cardiologist working in the Cathlab of the Department of Cardiology. His research interests include interventional cardiology and cardiovascular imaging (simonemuraglia@yahoo.it).

BJWC is associate professor and staff cardiologist. He is the co-director of Cardiac Radiology and the director of the Postgraduate Cardiac Imaging Program. His research focuses on developing and evaluating novel imaging techniques with the goal of understanding their clinical applications and benefit to patient care.

DM is chairman of the Department of Radiology. His main research interests are cardiovascular imaging and image guided interventions.

ML is a senior physician and deputy director of the cardiac catheterization laboratory at the Department of Cardiology.

MD is a radiologist and researcher with vast experience in the field of diagnostic imaging and chief consultant. MD has published over 120 MEDLINE-indexed articles including works on cardiovascular imaging, claustrophobia, cost-effectiveness, meta-analyses, radiation and patient safety. He is an associate editor of Radiology and European Radiology and the editor of the books Coronary CT Angiography and Cardiac CT. He is also president of the 1898-founded Rontgen Society of Berlin and Brandenburg.

PS, SA, MB, MG, ML and MD are members of the steering committee of CoMe-CCT.

Acknowledgements

This collaborative meta-analysis based on individual patient data is funded by a grant of the German Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung – BMBF) (FKZ: 01KG1110) for meta-analyses as part of the joint program ‘clinical trials’ of the BMBF and the DFG.

We thank all collaborating authors who have already provided patient data for this IPD-metanalysis project at the time of writing.

Author details

1Department of Radiology, Charité - Universitätsmedizin Berlin Campus Mitte, Humboldt-Universität zu Berlin, Freie Universität Berlin, Charlottenplatz 1, Berlin 10117, Germany. 2Department of Medical Statistics, Informatics and Documentation (PS), University Hospital of Friedrich Schiller University Jena, Germany. 3Department of General Radiology, LMU, Ludwig-Maximilians Universität, München, Germany. 4Department of Radiology, Charité - Universitätsmedizin Berlin Campus Mitte, Ulmenweg 18, Berlin 10117, Germany. 5Department of Cardiology, Montefiore Medical Center, 1 Medical Center Drive, Bronx, NY 10467, USA. 6Department of Cardiology, Centro Cardiologico Monzino, IRCCS, Via C. Parea 4, Milan 20134, Italy. 7Department of Cardiology, Erasmus Medical Center, 22b Dr. Molewaterplein 30, Rotterdam, NL 3000, The Netherlands. 8Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland. 9Cardiovascular CT and Cardiac Magnetic Resonance Laboratory, Cardiovascular Diagnostic and Intervention Unit - Department of Cardiology, Centro Hospitalario de Vila Nova de Gaia Hospital, Rua Conceição Fernandes, V.N. Gaia 4434-502, Portugal. 10Klinik für Herz- und Kreislauferkrankungen im Erwachsenenalter, Deutsches Herzzentrum München, Klinik an der Technischen Universität München, München, Germany. 11Institute of Radiology, Kantonsspital St. Gallen, Rorschacher Strasse 95, St. Gallen 9007, Switzerland. 12Department of Cardiology, Cliniques Universitaires St. Luc, Université Catholique de Louvain, Brussels, Belgium. 13Department of Cardiology, University Medical Center Utrecht, H. de Paeleweg 100, 3584 CX, Utrecht LP 6935 GL, The Netherlands. 14Department of Radiology, Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran. 15Cardiovascular Division, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan. 16Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA. 17Department of Cardiology, Odense University Hospital, Sdr. Boulevard 29, Odense C 5000, Denmark. 18Department of Cardiovascular Medicine, Lady Davis Carmel Medical Center, Haifa, Israel. 19National Institute of Cardiovascular and Cardiovascular Surgery, "Manuel Fajardo" Medical Sciences Faculty, Medical Sciences University of Havana, Tomography Department.
Vedado, Plaza de La Revolución, The Havana, Cuba. 20Department of Internal Medicine/Cardiology, Deutsches Herzzentrum Berlin, Berlin, Germany. 21Heart Center, Chaim Sheba Medical Center, Tel Hashomer, Sacker Faculty of Medicine, Tel-Aviv University, Tel Hashomer, Israel. 22Department of Cardiology B, Aarhus University Hospital Skejby, Aarhus N DK- 8200, Denmark. 23University Department of Radiology, University Hospital – Tübingen, Hoppe-Seyler-Straße 3, Tübingen 72076, Germany. 24Department of Cardiology, Vejle Hospital, Vejle, Denmark. 25Department of Cardiology, Glasgow Royal Infirmary, Glasgow, UK. 26Department of Cardiology, Ostfold County Hospital, Fredrikstad N-1603, Norway. 27Medizinische Klinik I (Kardiologie, Angiologie), Universitätsklinikum Giessen und Marburg GmbH, Standort Giessen, Klinikstr. 33, Giessen 35392, Germany. 28Department of Radiology, Faculty of Medicine, Kuwait University, PO Box 24923, Safat 1310, Kuwait. 29Klinik für Innere Medizin III mit Schwerpunkt Kardiologie und Angiologie, UKSH, Campus Kiel, Schittenhelmstr. 12, Kiel D-24105, Germany. 30Kardiologische Klinik, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Georgstr. 11, Bad Oeynhausen 32545, Germany. 31Division of Cardiology, Department of Internal Medicine, University of Rome Tor Vergata, Viale Oxford 81, Rome 00133, Italy. 32Department of Radiology, University of Rome Tor Vergata, Viale Oxford 81, Rome 00133, Italy. 33Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, P.O. Box 96002300, RC Leiden, the Netherlands. 34Department of Clinical Radiology, Ludwig-Maximilians-Universität of Munich, Marchioninistrasse 15, Munich 81377, Germany. 35Department of Radiology, Akershus University Hospital, Lørenskog, Norway. 36Department of Radiology, Erasmus University Medical Center, ’s Gravendijkwal 230, Rotterdam, CE 3015, The Netherlands. 37Montreal Heart Institute, Université de Montréal, 5000 Nørreport Str. 62, Køln 50937, Germany. 38Department of Radiology, University of Münster, Albert-Schweitzer-Campus 1, Münster 48149, Germany. 39Department of Cardiology, Charité – Universitätsmedizin Berlin Campus Mitte, Humboldt-Universität zu Berlin, Freie Universität Berlin, Charitéplatz 1, Berlin 10117, Germany.

Received: 24 August 2012 Accepted: 17 January 2013
Published: 15 February 2013

References
1. Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Magid DS, Mallek GM, Marelli A, Matchar DB, Moy CS, Mozaffarian D, Mussolino ME, Nichol G, Paynter NP, Seshasayee A, Steinberg DH, Stukel TA, Todani TA, Vaccaro O, Vakil SN, Wang TJ, Williams DS: Heart disease and stroke statistics—2012 update: a report from the American Heart Association. Circulation 2012, 125:e2–e220.
2. Leeflang MM, Deeks JJ, Gatsonis C, deeks JJ: Systematic Reviews. Mobile: e2–e220. 2013.
3. Pryor DB, Shaw L, McCants CB, Lee KL, Mark DB, Harrell FE Jr, Multibaker LH, Callow RH: Value of the history and physical in identifying patients at increased risk for coronary artery disease. Am J Med 1997, 102:350–356.
4. Dewey M, Shaw L, McCants CB, Lee KL, Mark DB, Harrell FE Jr, Multibaker LH, Callow RH: Value of the history and physical in identifying patients at increased risk for coronary artery disease. Am J Med 1997, 102:350–356.
5. Schuchter P, Schuetz GM, Dewey M: Influence of coronary artery disease prevalence on predictive values of coronary CT angiography: a meta-regression analysis. Eur Radiol 2011, 21:9004–913.
6. Dewey M, Zimmermann E, Laule M, Pugliese F, Desbiolles L, Husmann L, Boersma E, de Jaegere P, Schuijf JD, Jung A, Kaul S, Krestin GP, de Feyter PJ: Meta-analysis: non-invasive coronary angiography using computed tomography versus magnetic resonance imaging. Ann Intern Med 2010, 152:167–177.
7. Riley RD, Lambert PC, Abo-Zaib G: Meta-analysis of individual participant data: rationale, conduct, and reporting. BMJ 2010, 340:c221.
8. Taylor AJ, Cerqueira M, Hodgson JM, Mark D, Min J, O’Gara P, Ruben GD: ACCF/SCCT/ACR/AHA/ASNC/NASCAT/Society of Cardiovascular Computed Tomography Appropriate Use Criteria Task Force: the Society of Cardiovascular Computed Tomography, the American College of Radiology, the American College of Cardiology, the American Society for Cardiovascular Magnetic Resonance. Circulation 2010, 122:525–655.
9. Schumacher JM, Kalluri A, Schindlau CM, Alkadhi H: Noninvasive coronary angiography with 64-section CT: effect of average heart rate and heart rate variability on image quality and stenosis detection. Radiology 2006, 241:378–385.
10. Dewey M, Zimmermann E, Laule M, Pugliese F, Desbiolles L, Husmann L, Boersma E, de Jaegere P, Schuijf JD, Jung A, Kaul S, Krestin GP, de Feyter PJ: Non-invasive coronary angiography with multislice computed tomography: impact of heart rate. Heart 2002, 88:470–474.
11. Genders TS, Steyerberg EW, Hunink MG, Laule M, Krestin GP, de Feyter PJ, Krestin GP, de Feyter PJ: Non-invasive coronary angiography using 64-slice computed tomography: effect of sublingual nitroglycerine on the diameter of coronary arteries. J Comput Assist Tomogr 2006, 30:542–506.
12. Dewey M, Hoffmann H, Hamm B: Multislice CT coronary angiography: effect of sublingual nitroglycerine on the diameter of coronary arteries. Röfo 2006, 178:605–606.
13. Dewey M, Hoffmann H, Hamm B: CT coronary angiography using 64 and 64 simultaneous detector rows: intradividual comparison. Fortschr Röntgenstr 2007, 179:581–586.
14. Genders TS, Zimmermann E, Laule M, Krestin GP, de Feyter PJ: Non-invasive coronary angiography using 64-slice computed tomography: effect of contrast-enhanced multidetector CT: influence of heart rate on image quality and stenosis detection. J Am Coll Cardiol 2005, 46:552–557.
15. Pesola H, Soininen E, Vapaavuori P, Kangas P, Strobel S, Mattila J, Uutela A, Borges AC, Verdecchia P, Schindlau CM, Schumacher JM, Kalluri A, Schindlau CM, Alkadhi H: Noninvasive detection of coronary artery stenoses with multislice computed tomography or magnetic resonance imaging. Ann Intern Med 2006, 145:407–415.
16. Diamond GA, Forester JS: Analysis of probability as an aid in the clinical diagnosis of coronary-artery disease. N Engl J Med 1979, 300:1350–1358.
influence of reconstruction technique and heart rate on image quality.
Radiology 2006, 238:75–86.
25. Noto TJ Jr, Johnson LW, Krone R, Weaver WF, Clark DA, Kramer JR Jr, Vetrovec GW: Cardiac catheterization 1990: a report of the registry of the Society for Cardiac Angiography and Interventions (SCA&I). Cath Cardiovac Diagn 1991, 24:75–83.
26. Scanlon PJ, Faxon DP, Audet AM, Carabello B, Dehmer CJ, Eagle KA, Legako RD, Leon DF, Murray JA, Nissen SE, Pepine CJ, Watson RM, Ritchie JL, Gibbons RJ, Cheitlin MD, Gardner TJ, Garson A Jr, Russell RO Jr, Ryan TJ, Smith SC Jr: ACC/AHA guidelines for coronary angiography: executive summary and recommendations. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Coronary Angiography) developed in collaboration with the Society for Cardiac Angiography and Interventions. Circulation 1999, 99:2345–2357.
27. Dewey M, Hamm B: Cost effectiveness of coronary angiography and calcium scoring using CT and stress MRI for diagnosis of coronary artery disease. Eur Radiol 2007, 17:1301–1309.
28. Booth A, Clarke M, Dooley G, Gherzi D, Moher D, Petticrew M, Stewart L: The nuts and bolts of PROSPERO: an international prospective register of systematic reviews. Syst Rev 2012, 1:2.
29. Stewart L, Moher D, Shekelle P: Why prospective registration of systematic reviews makes sense. Syst Rev 2012, 1:7.
30. Schuetz GM, Schlattmann P, Dewey M: Use of 3x2 tables with an intention to diagnose approach to assess clinical performance of diagnostic tests: meta-analytical evaluation of coronary CT angiography studies. BMJ 2012, 345:e6717.
31. Whiting P, Rutjes AW, Reitsma JB, Bossuyt PM, Kleijnen J: The development of QUADAS: a tool for the quality assessment of studies of diagnostic accuracy included in systematic reviews. BMC Med Res Methodol 2003, 3:25.
32. Chu H, Cole SR: Bivariate meta-analysis of sensitivity and specificity with sparse data: a generalized linear mixed model approach. J Clin Epidemiol 2006, 59:1331–1332.
33. Van Houwelingen HC, Zwinderman KH, Stijnen T: A bivariate approach to meta-analysis. Stat Med 1993, 12:2273–2284.
34. van Houwelingen HC, Arends LR, Stijnen T: Advanced methods in meta-analysis: multivariate approach and meta-regression. Stat Med 2002, 21:589–624.
35. Reitsma JB, Glas AS, Rutjes AW, Scholten RJ, Bossuyt PM, Zwinderman AH: Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews. J Clin Epidemiol 2005, 58:982–990.
36. Riley RD, Abrams KR, Sutton AJ, Lambert PC, Thompson JR: Bivariate random-effects meta-analysis and the estimation of between-study correlation. BMC Med Res Methodol 2007, 7:3.
37. Skrondal A, Rabe-Hesketh S: Generalized Latent Variable Modeling: Multilevel, Longitudinal, and Structural Equation Models. Boca Raton, FL: Chapman & Hall/CRC; 2004.
38. Skrondal A, Rabe-Hesketh S: Prediction in multilevel generalized linear models. J R Stat Soc Ser A Stat Soc 2009, 172:659–687.
39. Lunn DJ, Thomas A, Best N, Spiegelhalter D: WinBUGS – a Bayesian modelling framework: concepts, structure, and extensibility. Stat Comput 2000, 10:325–337.
40. Iglehart JK: Health insurers and medical-imaging policy—a work in progress. N Engl J Med 2009, 360:1030–1037.