Fast and precise map-making for massively multi-detector CMB experiments

D. Sutton,1* J. A. Zuntz,1 P. G. Ferreira,1 M. L. Brown,2 H. K. Eriksen,3,4 B. R. Johnson,5 A. Kusaka,6 S. K. Næss3 and I. K. Wehus7

1Oxford Astrophysics, University of Oxford, Denys Wilkinson Building, 1 Keble Road, Oxford OX1 3RH
2Kavli Institute for Cosmology Cambridge, Madingley Road, Cambridge CB3 OHA
3Institute of Theoretical Astrophysics, University of Oslo, PO Box 1029 Blindern, N-0315 Oslo, Norway
4Center of Mathematics for Applications, University of Oslo, PO Box 1053 Blindern, N-0316 Oslo, Norway
5University of California, Department of Physics, 279 LeConte Hall, Berkeley, CA 94720, USA
6The University of Chicago, The Kavli Institute for Cosmological Physics, 933 East 56th Street, Chicago, IL 60637, USA
7Department of Physics, University of Oslo, PO Box 1048 Blindern, N-0316 Oslo, Norway

Accepted 2010 May 3. Received 2010 April 30; in original form 2009 December 14

ABSTRACT

Future cosmic microwave background (CMB) polarization experiments aim to measure an unprecedentedly small signal – the primordial gravity wave component of the polarization field B mode. To achieve this, they will analyse huge data sets, involving years of time-ordered data (TOD) from massively multi-detector focal planes. This creates the need for fast and precise methods to complement the maximum-likelihood (ML) approach in analysis pipelines. In this paper, we investigate fast map-making methods as applied to long duration, massively multi-detector, ground-based experiments, in the context of the search for B modes. We focus on two alternative map-making approaches: destriping and TOD filtering, comparing their performance on simulated multi-detector polarization data. We have written an optimized, parallel destriping code, the DEStriping CARTographer (DESCART), that is generalized for massive focal planes, including the potential effect of cross-correlated TOD 1/f noise. We also determine the scaling of computing time for destriping as applied to a simulated full-season data set for a realistic experiment. We find that destriping can outperform filtering in estimating both the large-scale E- and B-mode angular power spectra. In particular, filtering can produce significant spurious B-mode power via EB mixing. Whilst this can be removed, it contributes to the variance of B-mode bandpower estimates at scales near the primordial B-mode peak. For the experimental configuration we simulate, this has an effect on the possible detection significance for primordial B modes. Destriping is a viable alternative fast method to the full ML approach that does not cause the problems associated with filtering, and is flexible enough to fit into both ML and Monte Carlo pseudo-\ell pipelines.

Key words: methods: data analysis – methods: statistical – cosmic background radiation.

1 INTRODUCTION

The temperature anisotropies of the cosmic microwave background (CMB) radiation, and recently the polarization anisotropies, have been used to constrain a set of cosmological parameters to establish a standard model of the Universe (Smoot et al. 1992; Hanany et al. 2000; Melchiorri et al. 2000; Kovac et al. 2002; Spergel et al. 2003; Hinshaw et al. 2009; Brown et al. 2009b; Chiang et al. 2010). The emphasis has now moved from revealing the contents and structure of the Universe to explaining the unknown physics that generated them. Underpinning the standard model is the paradigm of inflation, which hypothesizes a period of super-luminal expansion at very early times and identifies Gaussian, scale-free quantum fluctuations as the seeds of large-scale structure. Inflation models are predicted to uniquely generate tensor perturbations to the metric in the form of a stochastic gravitational-wave background that generates a divergence-free ‘B-mode’ polarization pattern in the CMB that is not generated by scalar perturbations (Seljak & Zaldarriaga 1997; Kamionkowski, Kosowsky & Stebbins 1997). The amplitude of the B-mode signal is inflation model dependent but is generally

*E-mail: dwps@astro.ox.ac.uk
predicted to be orders of magnitude smaller than the temperature anisotropy.

In order to detect such a subtle signal, we must build experiments of much greater sensitivity than has been possible so far. Due to the physical limits on the sensitivity of individual detectors, the next generation of CMB polarization experiments aim to achieve this by using very large arrays of detectors. For example, the Q/U Imaging Experiment (QUIET) is operating in its first phase with 91 detector horns, each of which produces four independent measurements (two of Q and two of U), and is planned to move to a 1500 horn arrangement in its second phase. Other examples include the balloon-borne SPIDER, which will operate with 1024 detectors in its largest band (MacTavish et al. 2008), EBEX (Oxley et al. 2005) which will use 1440 detectors over three bands and the ground-based POLARBEAR (Lee et al. 2008), which will use a total of 1274 detectors. The trend is the same for high-resolution temperature anisotropy experiments, such as APEX-SZ, which is operating with 330 detectors (Halverson et al. 2009), the Atacama Cosmology Telescope (ACT), which has begun operating with 1024 detectors per band (Kosowsky 2003; Fowler et al. 2007), and the South Pole Telescope, which has 465 in its largest band (Plagge et al. 2010).

To detect B modes using the new generation of experiments, tight control of experimental systematics will be required. One of these systematics is correlated noise. Detectors display long-term noise drifts that are characterized by a 1/f power spectrum, resulting in correlated noise in the time-streams. In addition to this, ground-based experiments see even larger 1/f noise sourced from atmospheric fluctuations, which may have a polarized element (Hanany & Rosenkranz 2003). These noise sources can also be correlated between detector time-streams, for example through detector read-out electronics and due to the spatial correlation of atmospheric fluctuations projecting on to the focal plane.

It is requisite of data analysis methods to characterize and reduce the effects of noise and systematic errors. The pipeline involves a number of steps of radical data compression. The raw output from the telescope detectors is time-ordered data (TOD), a massive data set that contains signal varying with the telescope pointing information. TOD is compressed into a data set of manageable size and in the natural form for a sky varying signal – a sky map. From the sky map, we estimate the set of angular power spectra, including the decomposition of the polarization field into E- and B-mode amplitudes (accounting for spatial systematics such as foregrounds), from which we estimate cosmological parameters. The best place to remove correlated noise and time-variant systematic errors is in the map-making step.

The two principal approaches to map-making for CMB experiments are the maximum-likelihood (ML) methods (Tegmark 1997a; Dore et al. 2001; Stompor et al. 2002; de Gasperis et al. 2005), which produce optimal maps slowly, and TOD filtering, which is used with Monte Carlo (MC) pseudo-Cl methods (Szapudi et al. 2001; Hivon et al. 2002) and is very fast but necessarily sub-optimal. The ML algorithms produce optimal maps in that they minimize the noise whilst completely preserving the signal. The whole pipeline from TOD to power-spectrum can be optimal and ML, including TOD noise estimation (Ferreira & Jaffe 2000) and power-spectrum estimation (Tegmark 1997b; Borrell 1999), the latter of which uses the analytic pixel-noise covariance matrix. This approach has been used very successfully and can be extended to include information on systematics (Stompor et al. 2002). Contemporary ML codes, such as ROMA (de Gasperis et al. 2005) and MAPCUMBA (Dore et al. 2001), do not require explicit evaluation of the pixel-noise covariance matrix or its inverse (known as the ‘weight matrix’), and have been convincingly demonstrated as viable options for single-detector Planck data analysis including polarization (Ashdown et al. 2009, and references therein). An ML code that includes detector correlations, called SANEPC, has recently been developed and successfully applied to the BLAST data set (Patanchon et al. 2008), a short duration balloon experiment involving hundreds of detectors.

As future data sets become very large, the ML algorithm becomes increasingly difficult to implement. The method may be tenable for some massively multi-detector experiments, but will require massive and expensive computing platforms and very long computation times. The later stages of CMB data analysis require information on noise power and correlation and the propagation of systematics in the maps that is effectively supplied by passing hundreds of MC simulations through the map-making pipeline (e.g. Hivon et al. 2002; MacTavish et al. 2008; Brown et al. 2009a; Takahashi et al. 2010). The ML algorithm is not suited for such tasks, creating the need for fast methods that can be used on medium-sized computing platforms and used over and over again. Such methods could be used to complement the ML algorithm in analysis pipelines, or even to replace it if their performances become close to optimal.

The common alternative to ML map-making is to apply a high-pass prewhitening filter to the TOD. The noise part of filtered TOD is uncorrelated, so a map with uncorrelated noise can be returned by averaging the filtered TOD corresponding to each pixel (a naive map). This fast method is very well suited to MC simulations, but critically distorts the signal part of the TOD. The MASTR method (Hivon et al. 2002) mitigates this effect by evaluating a filter transfer function from MC signal-only realizations that can be deconvolved in multi-pole space. This approach is non-optimal and introduces extra variance into the power spectrum estimates, especially at low-ℓ where the primordial B-mode signal is expected.

The destriping method is being developed as a ‘third way’ to CMB map-making (Burigana et al. 1997; Delabrouille 1998; Maino et al. 1999; Keihanen et al. 2004; Keihanen, Kurki-Suonio & Poutanen 2005; Kurki-Suonio et al. 2009; Keihanen et al. 2010). Destriping pre-whitens the TOD by approximating the low-frequency noise part as a series of offset functions, which are then subtracted from the TOD. Long baseline noise drifts from 1/f noise are subtracted without filtering the signal part of the TOD. The method is faster than ML map-making and is tuneable in that the offset function length can be varied, resulting in fast and dirty maps or slow and near optimal maps. Most destriping codes exploit the great-circle scanning strategy of satellite experiments to subtract long offset functions that are averages of the TOD in one re-pointing (see e.g. Ashdown et al. 2007 for a discussion). The MADAM code (Keihanen et al. 2005) was the first to incorporate noise information, through a prior on the offset function amplitude distribution that permits the use of short offset amplitudes. A variant of destriping that does not use noise information has recently been applied to total-intensity data from ACT to produce Sunyaev–Zeldovich (SZ) effect maps of galaxy clusters, using destriping baselines to model the inter-detector common-mode atmospheric noise (Hincks et al. 2009).

In a previous paper (Sutton et al. 2009), we showed that destriping with short baselines using noise information is near-optimal when applied to non-circular scanning strategies, such as the cross-linked, azimuth-only scans of ground-based experiments. In this paper, we extend the destriping algorithm to include information on noise correlations between detectors and investigate the performance of our new code, the DEStriping CARTographer (DESCART), as applied to multi-detector TOD simulations. For these simulations, the Q
and U signals are not modulated to the high-frequency white noise part of the spectrum, as is the case for half-wave plate modulation experiments, and are contaminated with $1/f$ noise. We compare it to the MASTER method with filtering, the established fast map-making method, to determine the strengths and limitations of the filtering approach for realistic future data sets.

Given the importance of computation time for large data sets, we also investigate the algorithmic scaling of DESCART as applied to a large full-season multi-detector data set. We concentrate on polarization measurements for B-mode experiments. The DESCART algorithm is also applicable to multi-detector SZ experiments, which we plan to investigate in a future paper.

This paper is organized as follows. In Section 2, we review map-making formalism of filtering and destriping in the context of multi-detector polarization data; in Section 3, we directly compare the filtering and destriping pipelines through simulations for a range of noise scenarios, comparing errors in time-streams, maps, and E- and B-mode angular power spectra; and in Section 4, we apply DESCART to a much larger simulation of a massively multi-detector experiment, focusing on algorithmic scalings and the partitioning of the analysis.

2 DESTRIPING AND FILTERING

2.1 The map-making problem

The map-making problem requires a solution for a sky map, x_p, given detector time-streams d_t, pointing information and possibly noise information. The TOD is modelled as

$$d_t = A_{tp} x_p + n_t$$

where A_{tp} is a pointing matrix that contains all of the relevant pointing information, t indexes time and p indexes sky pixel. The noise time-stream n_t is commonly assumed to be Gaussian and piece-wise stationary, satisfying

$$n_t = 0$$

$$n_t v_u = C_N.$$

In general, n_t is correlated noise, such that (3) is not diagonal. If the noise is stationary, its covariance (3) is well described as symmetric Toeplitz, or as a function of separation $C_{nt'} = f(t - t').$

If the instrumental beams are symmetric, the pointing matrix for a temperature measurement A_{tp} is composed of 1s and 0s and contains only one non-zero element per time row indicating which sky pixel the beam centre falls upon.

This basic framework can be extended to multiple detectors and to measurements of polarization. In the experimental configuration we simulate in this paper, each detector ‘pixel’ makes direct measurements of Q and U Stokes parameters in its own frame of reference. The rotation from sky to detector frame of reference is subsumed into the pointing matrix

$$P_{tp} = R(\theta_t) A_{tp},$$

$$R(\theta_t) = \begin{pmatrix} \cos 2\theta_t & \sin 2\theta_t \\ -\sin 2\theta_t & \cos 2\theta_t \end{pmatrix}. $$

For simplicity in notation, we define the pointing matrix for detector-Q time-streams as $P_{tp} = (\cos 2\theta_t, \sin 2\theta_t) A_{tp}$ and for detector-U time-streams as $P_{tp} = (-\sin 2\theta_t, \cos 2\theta_t) A_{tp}$. From this point we drop the distinction between them and consider P_{tp} as the appropriate pointing matrix for the time-stream indexed by k. The map on which the polarization pointing matrices operate contains maps of the Q and U Stokes parameters, concatenated end-to-end $x = (x^Q_k, x^U_k)$.

For multiple time-streams, we stack the polarization pointing matrices, data and noise time-streams end-to-end to produce the multi-detector analogue to the data model:

$$d = Px + n,$$

$$d = \begin{pmatrix} d^1_t \\ d^2_t \\ \vdots \\ d^n_t \end{pmatrix}, \quad n = \begin{pmatrix} n^1_t \\ n^2_t \\ \vdots \\ n^n_t \end{pmatrix}, \quad P = \begin{pmatrix} P^1_{tp} \\ P^2_{tp} \\ \vdots \\ P^n_{tp} \end{pmatrix}. $$

Given the data model, we can construct estimators for the sky map x. The ML solution to the map-making problem is

$$x = (P^T C_N^{-1} P)^{-1} P^T C_N^{-1} d,$$

where P^T is the transpose of P and has the effect of summing $1/f$ noise time-streams where $C_{nt'} = f(t - t').$ The solution becomes very simple, corresponding to naive binning and averaging,

$$x = (P^T P)^{-1} P^T d.$$

2.2 The destriping solution

The ML method can be approximated by the destriping algorithm (Sutton et al. 2009; Ashdown et al. 2009 and references therein). The noise vector n is modelled as being composed of two components: uncorrelated (or white) noise; and a series of discrete offset functions that represent all of the correlated noise.

With n^w_t representing the random Gaussian realization of white noise, the new data model for a single detector is

$$d_t = P_{tp} x_p + n^w_t + F_{tu} a_u$$

where the matrix F_{tu} maps a set of basis functions, with amplitudes a_u, on to the time-stream.

For multi-detector systems, we generalize the basis function amplitude vectors by concatenating them into a vector $a = (a^1_u, a^2_u, \ldots, a^n_u)$, and defining a block-diagonal multi-detector offset pointing matrix

$$F = \begin{pmatrix} F_{tu}^1 & 0 & \cdots \\ 0 & F_{tu}^2 & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix}. $$

The simplest choice of basis function is a constant offset

$$F_{tu} = \begin{cases} 1 & t \in \Delta_u \\ 0 & \text{otherwise}, \end{cases} $$

where Δ_u is a chunk of the time-stream with length λ_d. With this definition, $F_{tu} a_u$ becomes a vector of constant offsets, with amplitudes a, approximating the correlated noise. More complicated basis functions can be chosen, for example Fourier series or Legendre polynomials (Keihanen et al. 2004), though we focus on using short uniform baselines.
The amplitudes a will be Gaussian random numbers satisfying

$$\langle a_n \rangle = 0$$ \hspace{1cm} (13)

$$\langle a_n a_n^T \rangle = \mathbf{C}_{\text{true}}.$$ \hspace{1cm} (14)

With a as a second set of parameters, the posterior for both the map and the offset amplitudes is

$$P(x,a|d) \propto P(d|x,a)P(x)P(a),$$ \hspace{1cm} (15)

where we have used the fact that the CMB map and the offset amplitudes are completely independent. We do not wish to assume any prior for the CMB map, so we consider $P(x)$ to be constant.

The next step is to decide what prior information on the amplitudes to include through $P(a)$. If we have an estimate of the power spectrum of the correlated noise, which the offset functions are designed to approximate, we can include prior information through the offset covariance matrix \mathbf{C}_o. The probability distribution for the offsets is Gaussian

$$P(a) = |\mathbf{C}_o|^{-1/2} \exp \left(-\frac{1}{2} a^T \mathbf{C}_o^{-1} a \right),$$ \hspace{1cm} (16)

where \mathbf{C}_o is the covariance of the offset amplitude estimates (ignoring factors of 2π). If we have prior knowledge of \mathbf{C}_o, we can build a prior \mathbf{C}_o through

$$\mathbf{C}_o = (\mathbf{F}^T \mathbf{F})^{-1} \mathbf{F}^T \mathbf{C}_N \mathbf{F} (\mathbf{F}^T \mathbf{F})^{-1}.$$ \hspace{1cm} (17)

The joint posterior is a product of two Gaussians: the likelihood of the data and the prior for the amplitude estimates. We can maximize the posterior by minimizing the function f, where

$$f = -2 \ln P(x,a|d)$$

$$= (d - \mathbf{F}a - \mathbf{P}x)^T \mathbf{C}_w^{-1} (d - \mathbf{F}a - \mathbf{P}x) + a^T \mathbf{C}_o^{-1} a.$$ \hspace{1cm} (18)

Solving $\delta f/\delta a = 0$, we obtain an expression for the map

$$x = (\mathbf{P}^T \mathbf{C}_w^{-1} \mathbf{P})^{-1} \mathbf{P}^T \mathbf{C}_w^{-1} (d - \mathbf{F}a).$$ \hspace{1cm} (19)

This result can be understood as follows. The correlated noise $\mathbf{F}a$ is subtracted from time-stream d, leaving a time-stream composed of only signal and white noise, which is naively averaged into a map (the ML map for a time-stream with uncorrelated noise is the pixel average).

To determine the offsets, we begin by substituting (19) into (18) and gathering all the terms involving the pointing matrix \mathbf{P} into a new operator, \mathbf{Z},

$$f = (d - \mathbf{F}a)^T \mathbf{Z}^T \mathbf{C}_w^{-1} (d - \mathbf{F}a) + a^T \mathbf{C}_o^{-1} a,$$ \hspace{1cm} (20)

where

$$\mathbf{Z} = \mathbf{I} - \mathbf{P} (\mathbf{P}^T \mathbf{C}_w^{-1} \mathbf{P})^{-1} \mathbf{P}^T \mathbf{C}_w^{-1}.$$ \hspace{1cm} (21)

and \mathbf{I} is the identity matrix. \mathbf{Z} is a signal cleaning operator that estimates the naive map from the time-stream (including both signal and any noise that is indistinguishable from signal) and removes it.

Solving $\delta f/\delta a = 0$, we obtain an estimator for the offset amplitudes

$$(\mathbf{F}^T \mathbf{C}_w^{-1} \mathbf{Z} \mathbf{F} + \mathbf{C}_o^{-1}) a = \mathbf{F}^T \mathbf{C}_w^{-1} \mathbf{Z} d.$$ \hspace{1cm} (22)

This is an inverse problem like that of the ML algorithm. The system can be solved quickly, using the preconditioned conjugate gradients method, at a fraction of the processing time required to solve for the full ML map. An effective preconditioner \mathbf{K} can be constructed and applied easily from the offset prior covariance matrix

$$\mathbf{K} = (\mathbf{F}^T \mathbf{C}_w \mathbf{F} + \mathbf{C}_o^{-1}).$$ \hspace{1cm} (23)

Destriping solves the map-making problem by making an approximate model for the noise. In the limit that the offset functions perfectly model the correlated noise, the map solution is the ML map.

2.2.1 Destriping correlated time-streams

For multi-detector systems with noise uncorrelated between time-streams, the noise covariance matrix, \mathbf{C}_N, will be non-zero only in diagonal detector–detector blocks (which themselves will be symmetric Toeplitz). Cross-correlated noise will have non-zero off-diagonal detector–detector blocks in its \mathbf{C}_N which will lead to non-zero diagonal block in \mathbf{C}_o through equation (17).

The inversion of the \mathbf{C}_o is achieved by using some simplifying assumptions. To a good approximation, the individual detector blocks can be considered to be circulant and can be inverted individually very easily. A circulant matrix becomes diagonal in Fourier space and each Fourier mode ω, which is independent, can be inverted as a scalar. In the presence of non-zero off-diagonal detector blocks, each mode becomes an independent N^2_{detector} matrix, which we invert using the Cholesky decomposition. This is the same approach as is used in inverting the multi-detector noise matrix in SANEPIC (Patanchon et al. 2008). This entails the inversion of \mathbf{C}_o matrices of dimension n_{det} each, once, before the iterations begin, an $O(n_{\text{det}}^3)$ operation.

The resultant matrix $(\mathbf{C}_o^{-1})^{-1}(\omega)$ still has diagonal detector kk' blocks in Fourier space, so the matrix multiplication $\mathbf{C}_o^{-1}a$ are conducted in Fourier space to minimize the operation count

$$\tilde{v}_k(\omega) = \sum_{k'} \tilde{M}_{kk'}(\omega) v_{k'}(\omega).$$ \hspace{1cm} (24)

Here, the vectors \mathbf{w} and \mathbf{v} are multi-detector vectors of offsets, and the matrix \mathbf{M} is either \mathbf{C}_o^{-1} for the matrix application or \mathbf{K}^{-1} for the preconditioning step.

2.3 The filtering approach

Filtering approaches to map-making apply a time-domain filter to TOD in order to suppress noise or systematics in the time-stream, before naively binning the now uncorrelated time-streams. For a filter $h(t - \tau)$, the map estimate is

$$x = (\mathbf{P}^T \mathbf{P})^{-1} \mathbf{P}^T h * d.$$ \hspace{1cm} (25)

In this paper, we consider the effect of aggressive filters intended to suppress correlated noise rather than filters specific to experimental systematics. One choice of filter to suppress correlated noise is the prewhitening filter $\mathbf{H} = \sigma_w \mathbf{C}_w^{-1/2}$, where σ_w is the white noise standard deviation. The covariance of the TOD filtered in this way is diagonal $(\sigma_{\text{todd}}^2 \delta_{kk'})$. Another common choice is the overwhitening filter, $\mathbf{H} = \sigma_w^2 \mathbf{C}_w^{-1}$, filter, which further suppresses low-frequency noise.

The filter convolution is applied in the Fourier domain, where \mathbf{C}_N is diagonal. This requires a Fourier transform pair to be applied to the time-stream, both of which have an operational scaling of...
\(O(N, \log_2 N_{\text{segment}}) \), where \(N \) is the number of TOD and \(N_{\text{segment}} \) is the length of the segments over which the noise is stationary and correlated [e.g. the length of a constant-elevation scan (CES)].

2.4 Covariance of the estimated maps

Both of the pipelines used in this paper construct the final map using a naive binning step. The noise covariance of maps constructed using naive binning is

\[
\mathbf{C} = (\mathbf{P}^T \mathbf{P})^{-1} \mathbf{C}^{\text{TOD}}_N \mathbf{P}(\mathbf{P}^T \mathbf{P})^{-1},
\]

where \(\mathbf{C}^{\text{TOD}}_N \) is the covariance of the TOD. For the filtering pipeline, \(\mathbf{C}^{\text{TOD}}_N = \int e^{2iH} \mathbf{H}^\dagger \mathbf{H} d\omega \), which for the prewhitening filter is diagonal and produces a diagonal pixel covariance.

In the destriping pipeline, two sets of parameters are solved for: the map and the offset amplitudes. The Fisher matrix for the full parameter set is

\[
\mathbf{F} = \begin{pmatrix}
\delta^2 f / \delta x^2 & \delta^2 f / \delta x \delta a \\
\delta^2 f / \delta a \delta x & \delta^2 f / \delta a^2 \\
\end{pmatrix}
\]

\[
\mathbf{F} = \begin{pmatrix}
\mathbf{P}^T \mathbf{C}_w \mathbf{P} & (\mathbf{F}^T \mathbf{C}_w \mathbf{F} + \mathbf{C}^{-1}) \\
(\mathbf{P}^T \mathbf{C}_w \mathbf{F}) & (\mathbf{F}^T \mathbf{C}_w \mathbf{F} + \mathbf{C}^{-1})^{-1} (\mathbf{F}^T \mathbf{C}_w \mathbf{P}) \\
\end{pmatrix},
\]

where \(f \) is the posterior in (18). Inverting this matrix by partition gives the noise covariance of the destriped maps

\[
\mathbf{C} = (\mathbf{P}^T \mathbf{C}_w \mathbf{P})^{-1} \mathbf{P}^T \mathbf{C}^{\text{corr}}_N \mathbf{P}(\mathbf{P}^T \mathbf{P})^{-1},
\]

which can be solved for low-resolution maps of large angular scales (Keskitalo et al. 2009).

In this section, we analyse the comparative performance of the filtering and destriping pipelines as applied to simulations of a constant-elevation scanning multi-detector telescope. We begin by analysing time-stream and map domain errors; the latter for which we use the rms residual as the comparative statistic. We proceed to analysing spherical harmonic domain systematics and errors, for which we need to estimate the E- and B-mode angular power spectra. For this task we use the MC approach of Hivon et al. (2002), generalized for polarization power spectra as in Smith (2006) such that estimators do not mix E and B modes. E to B mixing is mitigated by applying an apodizing window function to the estimated maps. The window function we use is a symmetric circular cosine apodization around the map centre. The apodization is the same as that used in our previous paper (Sutton et al. 2009), to which we refer the reader for details. The method requires estimation of the power spectral noise bias \(\langle N^{\text{MC}}_N \rangle \) through MC noise-only simulations and estimation of the filter transfer function \(F_i \) through signal-only simulations. Finally, we analyse the statistical significance of the B-mode detection provided by the two pipelines.

3 COMPARISON OF THE PIPELINES

In this section, we analyse the comparative performance of the filtering and destriping pipelines as applied to simulations of a constant-elevation scanning multi-detector telescope. We begin by analysing time-stream and map domain errors; the latter for which we use the rms residual as the comparative statistic. We proceed to analysing spherical harmonic domain systematics and errors, for which we need to estimate the E- and B-mode angular power spectra. For this task we use the MC approach of Hivon et al. (2002), generalized for polarization power spectra as in Smith (2006) such that estimators do not mix E and B modes. E to B mixing is mitigated by applying an apodizing window function to the estimated maps. The window function we use is a symmetric circular cosine apodization around the map centre. The apodization is the same as that used in our previous paper (Sutton et al. 2009), to which we refer the reader for details. The method requires estimation of the power spectral noise bias \(\langle N^{\text{MC}}_N \rangle \) through MC noise-only simulations and estimation of the filter transfer function \(F_i \) through signal-only simulations. Finally, we analyse the statistical significance of the B-mode detection provided by the two pipelines.

Fig. 1 shows the range of filters investigated in the filtering pipeline. These comprise prewhitening \(\mathbf{C}^{\text{corr}}_N \) and overwhitening \(\mathbf{C}^{\text{corr}}_N \) filters, for low-frequency noise suppression, and a scan frequency filter, used for the suppression of scan-synchronous systematics.

The destriping results in this section make use of inter-time-stream noise correlation information. The benefit of including these correlations is dependent on the experimental set-up and for the polarized data set we simulated, the noise reduction when including the correlation was small. For other systems, including this information may be important. When applying the algorithm to simulated data in Section 4, correlation information was ignored as the experiment has negligible inter-detector correlated 1/f noise. The choice of destriping length is informed by the noise \(f_\lambda \); as we are incorporating prior noise information, a choice of destriping length \(\lambda_d \lesssim 0.1 / f_\lambda \) is used to approximate the optimal ML map as closely as possible.
Noise parameters used in the simulations. The spectral index of unity describes the correlated noise from detectors, whilst the spectral index of two describes atmospheric noise. The ranges of knee frequency chosen are 100 mHz, 500 mHz, 2 GHz, and 10 GHz, respectively in the Chanjnantor Scientific Reserve in Chile. At a sampling frequency of \(f_s = 100 \) Hz, the total integration time for the scans were 6 h and 38 min. We simulated an instrument with a Gaussian symmetric beam with full width at half-maximum (FWHM) = 12 arcmin and a focal plane consisting of 19 horns arranged in a hex pattern, each producing two time-streams. We show this arrangement in Fig. 2.

For each noise case, we generated 100 signal-plus-noise and 100 independent noise-only realizations. Each realization consisted of 38 time-streams, with Gaussian cross-correlated 1/f noise, Gaussian white noise and an independent CMB signal realization produced using SYNFAST (Gorski et al. 2005) from the input \(C_\ell \)s used in our previous paper (Sutton et al. 2009, for which the tensor-to-scalar ratio \(r = 0.1 \)).

Cross-correlated noise was generated by statistically correlating the 1/f streams. For each time-stream, a Fourier-space Gaussian random number vector \(\phi_d(f) \) was generated, where \(d \) indexes detectors. We built a correlation matrix \(A_{dd'} = \rho_{dd'} \sigma_d \sigma_{d'} \sqrt{f_{kd} f_{kd'}} \), where \(\sigma_d \) and \(f_{kd} \) are the noise standard deviation and knee frequency for stream \(d \), respectively, and \(\rho_{dd'} \) is the correlation coefficient for streams \(d \) and \(d' \). Correlated 1/f noise streams were produced by applying the Cholesky decomposition of this matrix to the set of \(\phi_d \) mode-by-mode:

\[
\eta_d(f) = P^{1/2}(f) \sum_{d'} L_{dd'} \phi_{d'}(f),
\]

where \(P(f) = (1/f)^{\alpha} \) and \(A = LL^T \).

To get time-domain noise stream realizations with the desired auto- and cross-power-spectra, each \(\eta_d(f) \) stream was Fourier transformed and added to an independent Gaussian white noise realization with standard deviation \(\sigma_d \). The white noise level itself was determined assuming a fiducial noise-equivalent \(Q \) (NEQ) of 248 \(\mu \text{K}\sqrt{s} \).

3.2 Time-streams and maps

Both pipelines approach map-making by suppressing noise in the time domain before naive binning. In the upper panel of Fig. 3, we show the results of using the methods on mean time-domain noise power. The time-stream power spectrum is composed of signal (red curve) and noise (black curve). Filtering suppresses both of these components, enforcing the flatness of the output TOD power (green curve). Destriping only affects the noise component of the TOD, suppressing its power at frequencies smaller than the destriping function length (blue curve), in this case at 1 Hz.

The noise in the destriped TOD comes from two components: unmodelled noise and destriping error. Unmodelled noise includes all noise sources at frequencies higher than the destriping length and some power beneath it, which decreases exponentially at frequencies beneath the destriping length, behaviour well described by the application of a transfer function to the noise spectrum, as described by Kurki-Suonio et al. (2009). Defining the reference baselines as \(r = (F^F)^{-1}F^Td_s \) (i.e. the average of the noise within a baseline)
which requires the cross-correlations \(\langle d_u e^T F^T \rangle - \langle F e d_u^T \rangle = 0 \). This facilitates the use of (30) to correct the destriped map covariance matrix as calculated by (28).

Fig. 4 shows example \(Q \) and \(U \) maps from DESCART and their residual maps (defined as estimated map minus the map used to simulate the data). The maps from the filtering pipeline are not shown, as they appear identical by eye. (For well cross-linked strategies, \(1/f \) is a subtle systematic that appears most strongly in power spectra.) The comparative power in the filtered residual maps is dependent on the S/N. Filtering forcibly produces white noise in the output maps, optimally suppressing correlated noise. In noise-dominated maps, this makes filtering more effective in minimizing map residuals.

We compare the residual maps, which give the best measure of errors on the sky by comparing the residual rms over the realization ensemble. Table 2 shows the rms residual for both pipelines for all the parameters simulated. When the S/N is small (19 and 91 horns), the residuals from filtering are smaller than those for destriping. For the higher S/N simulations (1000 horns), destriping produces smaller residuals than filtering. By a quirk of the parametrization, \(1/f^2 \) noise produces less noise at frequencies higher than \(f_d \), only for S/Ns greater than \(f_d \) than does \(1/f \) noise, leading to larger residuals in noise case 3 compared to noise case 4.

Filtering suppresses signal as well as noise and in high signal-to-noise regimes, the signal distortion contributes appreciably to the residuals. Signal distortion contributes more to the residuals when the required filtering is more aggressive, when either the knee frequency or spectral index of the correlated noise is increased. Example maps of signal distortion are shown in Fig. 5. The magnitude of the signal distortion is not dependent on the integration time over a pixel, but rather on the level of cross-linking and polarization angle dispersion in the pixel.

3.3 B-mode systematics from filtering

The systematic error effects of TOD filtering are well understood in the case of temperature data (e.g. Hivon et al. 2002), the dominant effect being the convolution of the estimated power spectrum with a filter transfer function, \(F^T \). This can be determined from MC signal-only realizations and can be deconvolved from the estimated power spectrum. In the case of polarization, E- and B-mode filter transfer functions can also be measured through simulations.

Our simulations show that B modes estimated using the filtering algorithm are biased by a spurious B-mode component caused by E \(\rightarrow \) B leakage. This leakage is absent when no filtering is applied to the TOD, as is the case with the destriping algorithm. It is also absent when the input maps are contrived to have no E modes.

Fig. 6 shows the spurious B mode from signal-only TOD simulations with zero input B mode. The left plot shows contrasting effects of TOD filtering: suppression of the observable B-mode power (by convolution with the filter transfer function \(F^T \)); and spurious B-mode power caused by distortions of the \(Q \) and \(U \) maps (such as those seen in Fig. 5). Both the B-mode suppression and the spurious B modes are greater for more aggressive filters with higher knee frequencies and spectral indices. The spurious B mode is non-negligible for all of the noise cases considered at the bandpowers of interest for measuring the primordial B mode (which peaks at \(\ell \sim 100 \)), with an amplitude of the order of the observable signal for \(r = 0.1 \).

The right-hand plot of Fig. 6 shows the spurious B mode and signal suppression from overwhitening and scan-frequency filters in comparison to the prewhitening filter. The overwhitening filters produce more spurious signal (and to a lesser degree, more signal noise. The authors of this paper believe that this is due to the fact that the overwhitening filters increase the noise level, leading to a higher correlation between the noise and the signal. This is further supported by the comparison of the residual maps, which show that the overwhitening filters produce more spurious signal than the prewhitening filters. Additionally, the authors state that this is a subtle systematic that appears most strongly in power spectra. Therefore, it is important to carefully consider the effects of filtering on the signal when interpreting the results of the analysis.
Figure 4. Example maps of Q and U Stokes parameters in μK from DESCART from simulations with white noise for 91 horns ($f_k = 200$ mHz and $\alpha = 1.0$). The top row is the map estimate and the bottom row is the residual map. A 10° graticule is overlaid.

The right-hand plot of Fig. 7 shows the biasing effect of the spurious B modes on F_B^ℓ as measured from MC signal-only simulations. F_B^ℓ is the ratio of the C_ℓs of the filtered signal-only map (including signal bias) and a binned map of signal-only TOD

$$F_B^\ell = \frac{\langle C_\ell^{\text{signal only}} + S_\ell^B \rangle}{\langle C_\ell^{\text{bias}} \rangle} = F_\ell^{\text{signal only}} + F_\ell^{+},$$

where S_ℓ^B is the spurious B-mode signal that leads to an additive filter bias, F_ℓ^{+}, of the filter function. The true B-mode filter transfer function is shown in the right-hand panel of Fig. 7 (dotted curve, estimated from B-mode-only signal simulations), compared to the additive filter bias (dashed curve, estimated from filtered simulations with zero input B mode) and the resulting biased function (solid curve).

The power spectra can be debiased by extending the MASTER approach to include a spurious signal bias in the same way as it includes a noise bias. If K_{bias} is the bandpower coupling kernel as defined for polarization in Hansen & Gorski (2003), the unbiased

Table 2. rms map residuals (in μK). See Table 1 for a description of the noise cases. The filter considered is the prewhitening filter. The destriping length was $\lambda_d = 1s$ for all except the $f_k = 5$-mHz simulations (noise case 6), where it was $\lambda_d = 20$ s.

Noise case	Descart Q	Descart U	Filtered	Filtered U
1	7.46	7.41	6.91	6.86
2	3.40	3.38	3.21	3.20
3	1.03	1.02	1.17	1.19
4	1.01	1.00	1.18	1.20
5	0.98	0.97	1.04	1.04
6	0.94	0.93	0.99	0.99

Power spectrum \hat{C}_ℓ can be returned by

$$\langle \hat{C}_\ell \rangle = K_{\ell} P_{\ell b} (\hat{C}_\ell - \langle \hat{C}_{\ell MC} \rangle - \langle \hat{S}_{\ell MC} \rangle)$$

(34)

where $P_{\ell b}$ is the binning operator defined in Hivon et al. (2002) and N_{ℓ} and S_{ℓ} are noise and spurious signal biases calculated over sets of MC simulations.

The E \rightarrow B leakage contributes more than just power. The variance of the leaked E modes contributes to the variance of the debiased B-mode estimates (see Section 3.4).

The results presented in this section are limited to the single experimental set-up described in Section 3.1. We have found that the bias and its variance can vary with the details of the scan-strategy and focal plane arrangement, and consideration should be given to minimizing this effect when implementing filtering methods.

3.4 Polarization power spectra errors

Using both pipelines, we have estimated unbiased mean E- and B-mode signals for each of the noise cases in Table 1. In the filtering pipeline, the modified estimator (34) was used to remove spurious power from E \rightarrow B leakage. Fig. 8 shows an example of the mean E- and B-mode estimates over the ensemble of realizations for one of the parameter sets together with bandpower variances calculated over the realization ensemble. In this section, we evaluate the pipelines based on the bandpower variances of the debiased E and B modes.

TOD filtering decreases the sensitivity of the power spectra to signal, particularly at large angular scales, as described by the filter transfer functions, F_ℓ, shown in Fig. 7 for the different noise cases and filters. These must be deconvolved from the power spectra estimates to produce an unbiased estimator of the CMB. Part of the gain of filtering noise correlations before mapping is counteracted by this loss of sensitivity to signal, as the signal-to-noise ratio (S/N) in heavily filtered modes is larger than can be achieved by optimal methods. In our simulations, destriping consistently produces smaller variance in the power spectra than filtering. Destriped power spectra do not require an F_ℓ deconvolution, as the estimator is by construction unbiased with respect to the sky signal and produces flat filter transfer functions.

Fig. 9 shows the ratio of the E-mode bandpower standard deviation from filtering to that from destriping, presented as a percentage error increase, and its variation with the noise correlation parameters, f_k and α, for both prewhitening and overwhitening filters. The error increase is larger for the more aggressive filters with higher knee frequency (or alternatively, filtering for simulations with more correlated noise). Likewise, the more aggressive overwhitening filter results in larger bandpower variances at large angular scales than the corresponding prewhitening filter for the same noise case.

The error increase is present in all signal-to-noise regimes simulated and shows only weak dependence on the S/N in the maps. Fig. 10 shows the effect of varying S/N on the E-mode error increase (for noise cases 1–3, with $f_k = 200$ mHz and $\alpha = 1$). This contrasts with the map pixel variance, where filtering and destriping outperform one another in noise- and signal-dominated regimes, respectively (see Table 2). As the filter transfer function is scalar, it is not dependent on the magnitude of the white noise, but on the noise correlation statistics. It does not depend on the ratio of the signal degradation in the map to the noise in the map and so the effect of white noise variation on the power spectra should be small.

Figure 5. Signal distortion in μK from (prewhitening) filtering in signal-only maps. The left-hand panel is Q and right-hand panel is U.

© 2010 The Authors. Journal compilation © 2010 RAS, MNRAS 407, 1387–1402

Downloaded from https://academic.oup.com/mnras/article-abstract/407/3/1387/1066006 on 30 July 2018
Figure 6. E→B leakage systematic induced by filtering. The left-hand panel shows spurious B-mode power (error bars) compared to the model B-mode power spectra (solid curves) suppressed by the prewhitening filter transfer functions. The least aggressive filter (red curves) suppresses the input B-mode power spectrum the least and also distorts the Q and U maps the least, resulting in less E→B leakage and less spurious B-mode power. The red plots are for filtering with $f_k = 50$ mHz and spectral index $\alpha = 1$, the black plots are for $f_k = 200$ mHz and $\alpha = 1$, the blue plots are for $f_k = 5$ mHz and $\alpha = 2$, and the green plots are for $f_k = 200$ mHz and $\alpha = 2$. The right-hand panel shows these effects for the overwhitening and scan frequency filters. Colour denotes the noise case (blue is case 4 and red is case 6), with the solid curves and plain error bars showing the prewhitening filter, dashed curve and diamond error bars showing the overwhitening filter, and the dotted black curve and star error bars showing the scan frequency filter.

Figure 7. Effects of noise correlation parameters on E- and B-mode filter transfer function. The left-hand plot shows the E-mode function for the filters considered. The solid curves denote prewhitening filters and the dashed curves denote overwhitening filters, with the colour of both denoting the noise case. We also show the filter transfer function for the scan-frequency filter. The right-hand plot shows the bias effect of the spurious B modes on the filter transfer function F_{BB}^{l} for the case with $f_k = 200$ mHz and $\alpha = 1$. The dotted curve is the unbiased filter transfer function F_{B}^{l} from B-mode-only simulations, the solid curve is the biased B-mode transfer function F_{BB}^{l} and the dashed curve is the additive filter bias F_{BB}^{l}.

Figure 8. Mean E-mode (left) and B-mode (right) estimates for simulations with $f_k = 200$ mHz and $\alpha = 1.0$, with white noise for 1000 horns. The black crosses are destriped estimates and the red crosses are filtered estimates. The solid lines are the input fiducial power spectra and the dashed line in the B-mode plot is the lensing B-mode component of the input spectrum. The large-scale B-mode bandpower variances are considerably enhanced for filtering compared to destriping, in this case preventing the detection of the primordial B-mode peak.
Fast and precise map-making

1397

Figure 9. E-mode error increase when using filtering instead of destriping, for simulations with varying f_k and α. The solid curves are for the prewhitening ($C^{-1/2}$) filter and the dashed curves are for the C^{-1} filter.

Figure 10. Effect of S/N on E-mode error increase. For simulations with white noise level for 19, 91 and 1000 detector horns, using $f_k = 200$ mHz and $\alpha = 1$. Only $C^{-1/2}$ filtering is considered.

B-mode bandpower errors are affected by both the loss of sensitivity due to the TOD filter and the extra variance from E \rightarrow B leakage described in Section 3.3. Fig. 11 shows the B-mode error increase for the different noise cases and filters. The increase is considerably higher than for the E mode, amounting to >50 per cent error increase at large angular scales for all of the noise cases simulated. Low-frequency noise filtering has a more pronounced effect on the error increase for B modes than for E modes, resulting in larger error increases for higher knee frequencies, higher spectral indices (in contrast to the E mode, as discussed above) and for the overwhitening filter. The disparity between this and the E mode can be explained by the greater influence of the E \rightarrow B leakage, for which variations in spectral index have a stronger effect. As noted in the previous section, the size of leakage, and thus the error increase reported here, can vary depending on the experimental setup.

3.5 B-mode detection significance

The primary goals of near-future CMB polarization experiments are the detection and characterization of the lensing component of the B-mode power spectrum, and the potential detection of the primordial gravity wave component. To achieve this, we will require high precision from our analysis methods and any extra error they contribute to the angular power spectrum will have an impact on these science goals.

To constrain the effect of bandpower variance differences on B-mode detection, we investigate the B-mode detection significance achieved by the pipelines. Fig. 12 shows the total B-mode detection significance per bandpower they return.

The hump-like shape of these curves is due to increasing bandpower variance due to Gaussian white noise at small angular scales and due to decreasing signal power at large angular scales. Destriping produces higher significance bandpower detections, with the improvement increasing when the correlation of the noise (through f_k and α) is higher, or if the filter is more aggressive.

A directly comparable statistic can be calculated by combining the bandpowers into a single data point, measuring the total significance of the detection. For this, we use the total significance estimator defined in our previous paper (Sutton et al. 2009) that produces the single data point by binning weighted to a fiducial model C^{fid}_ℓ – in this case the known input B-mode power spectrum – and weighted inversely by the bandpower variance σ^2_b.

\[
\hat{C} = \frac{\sum_b (C^{\text{fid}}_b/\sigma^2_b) \hat{C}_b}{\sum_b (C^{\text{fid}}_b)^2/\sigma^2_b}. \quad (35)
\]

Table 3 shows the B-mode detection significance, defined as $[\hat{C}/\sqrt{(\langle \hat{C}^2 - \langle \hat{C} \rangle \rangle)}}]$. We also show the significance of the detection of the primordial B-mode peak in the bandpower centred at $\ell = 100$. Whilst our chosen input noise level has not supported a 2σ detection for the peak, it shows filtering can shave almost 1σ off the weak detection from destriping.

4 APPLICATION TO A MASSIVELY MULTI-DETECTOR EXPERIMENT

The speed of map-making methods will become vital in future CMB experiments, as data set sizes increase. It is important therefore to understand the algorithmic scalings of the methods available and whether destriping is competitive as a fast map-maker. Destriping is linear with the number of pixels in the map, making it useful as a method for high-resolution analysis, but its scaling with data...
Figure 12. B-mode bandpowers detection significance (in multiples of the bandpower error σ) for different noise correlation parameters, \(f_k \) and \(\alpha \), and S/N. Top left: \(f_k = 50 \) mHz, \(\alpha = 1.0 \). Top right: \(f_k = 200 \) mHz, \(\alpha = 1.0 \). Bottom left: \(f_k = 200 \) mHz, \(\alpha = 2.0 \). Bottom right: \(f_k = 5 \) mHz, \(\alpha = 2.0 \).

Table 3. Total significance of primordial plus lensing B-mode detection.

\(f_k \)	\(\alpha \)	Descart	\(C_{N^{-1/2}} \) filter	\(C_{N^{-1}} \) filter
5 mHz	1.0	13.44	12.49	12.12
50 mHz	1.0	13.05	11.56	–
200 mHz	1.0	12.64	10.69	–
200 mHz	2.0	11.77	9.98	9.44

set size is the more relevant question for massively multi-detector small field experiments.

In this section, we address this question by applying the DESCART code to simulated full-season data from a massively multi-detector experiment to determine the scalability of the method to much larger data sets than those in the previous section. In Section 4.1, we determine the scaling of computing time and iteration number with the data set size. In Section 4.2, we investigate the effect on the map pixel variance of partitioning the analysis by scan, a procedure that may be necessary for very large data sets.

The simulations were produced using the pointing information from the first full-season of QUIET Q-band operation. The simulated data set comprises 202 CESs of a CMB sky patch with a total wall-clock observation time of 704.6 h at a sampling frequency of 50 Hz. Each CES includes time-streams from 68 detectors – produced by 17 hexagonally arranged horns with four polarization-sensitive diodes per horn. This produced \(4.7 \times 10^8 \) hours of integration time, summed over all the detectors. The total memory requirement for the whole data set was 67 Gb, rising to 101 Gb including pointing information.

1/f noise was simulated to be uncorrelated between detectors and between CESs. We choose a noise \(f_k \) of 200 mHz and an offset length of \(\lambda_d = 2 \) s. These simulations were produced to determine the scaling of software and use typical, fiducial noise characteristics. As such, neither the noise characteristics nor the simulations they produced are similar to real QUIET data.

4.1 Algorithmic scalings

We have investigated the scaling of computing time with data set size by applying DESCART to an increasingly larger set of CESs. In this scheme, all of the included data are used to estimate and subtract the naive map of the offset solutions – the operation \(ZFa \) from equation (22). Convergence of the PCG iterator is achieved when the offsets from all of the included time-streams satisfy the convergence criterion that the error vector \(\| \epsilon \| = \| Ax - b \| < \tau \| b \| \), where \(\| \| \) denotes the two-norm and the arbitrary stop tolerance \(\tau = 10^{-6} \). Using all of the available data to estimate the offset vector \(a \) means that the size of the system to be solved becomes very large when realistic data sets are involved.

However, the computation time of the algorithm scales linearly with the quantity of input data. Fig. 13 shows the scaling of computing time with the number of CESs included in the analysis. The computing time does not include the initial data load operations, which will be system-architecture-dependent, and the time plotted is an average: the total computing time required to analyse all 202
in (22) decreases and so the number of iterations required to solve the simpler set of equations reduces. The reduction in the iteration number is most marked when CESs are considered in pairs instead of independently. This is due to the increased level of cross-linking in the combined scanning strategy of the two CESs, both in revisitations of the map pixels and in variation of the polarization-sensitivity angles for the pixel. The vast majority of the reduction in iteration number in our simulations is achievable by including groups of four CESs.

The above arguments can be applied to increases in the number of horns. In the absence of inter-horn correlated noise, further horns are computationally identical to further CESs (other than in terms of cross-linking). We therefore argue that the scaling of the algorithm with horn numbers will also be linear. No inter-time-stream cross-correlated noise was included in the simulations for this section, so the effect of including a cross-correlated prior as in Section 2.2.1 was ignored. Including this effect results in an additional operation per iteration, in which the inverse of the Fourier-space inter-detector prior matrix is applied through the accuracy of the offset estimates, to making a map from the entire destriped data set. Destriped maps can be combined with a noise-weighted average, an operation that is mathematically identical, other than through the accuracy of the offset estimates, to making a map from the entire destriped data set.

The memory requirement for analysing complete data sets becomes untenable for massively multi-detector ground-based experiments, so partitioning the data for the destriping step is an attractive analysis option. Destriped maps can be combined with a noise-weighted average, an operation that is mathematically identical, other than through the accuracy of the offset estimates, to making a map from the entire destriped data set.

However, the accuracy of the offset amplitude estimation can be increased by including more data in the solution of equation (22). As argued in Section 4.1, the signal removal operator Z, which removes both signal and any noise that looks like signal, removes less noise if more data are considered. If it were to remove no noise at all, such that $Zn = n$, then the offsets become the reference offsets described in Section 3.2. We can expect that the pixel noise in the destriped maps will reduce as the offset amplitude estimates better model the correlated noise in the time-streams.

The larger scan sets in the upper panel were processed using 64 cores on eight nodes, whilst the smaller sets of the lower panel were processed using 16 cores on two nodes, so the panels are not directly comparable.

The operation count per iteration is dominated by the signal subtraction operation (21) that includes two large linear $O(N_{\alpha})$ processes — map binning and map projection. These dominate the smaller $O(N_d \log N_d)$ FFT operations associated with the prior C_a, as N_a is two orders of magnitude smaller than N_d. The total computation time depends on the number of iterations taken by the PCG algorithm to return a sufficiently precise estimate of the offset amplitudes. For the scanning strategies we consider, the number of iterations does not increase as more data are added: rather it decreases. This behaviour is shown in Table 4, which shows the mean iteration number required per CES set. This can be understood by noting that increasing the number of CESs included in the analysis provides a better estimated naive map in the Z operator of (21), so the operation ZF_a becomes closer to F_a (an effect enhanced by the lack of correlation in noise between CESs). With less noise wrongly identified as signal, the condition number of the destriping matrix

Table 4. Variation of mean iteration number with the number of CESs included in the analysis. For CES numbers between 40 and 202, the number of iterations remains constant. The mean iteration number is defined as the total number of PCG iterations required to map the whole data set divided by the number of CES sets required to analyse it.

Number of CESs	Number of iterations
1	27.25
2	17
4	16.3
8	15.4
40	14

Figure 13. Linear scaling of computation time with number of CESs included in destriping analysis, with a dotted linear curve shown for reference.

Upper panel: mean computing time per CES set for whole data set (202 CESs) using 64 processors. Lower panel: mean computing time per CES set for smaller data set (40 CESs) using 16 processors.

CESs for the upper panel, and 40 CESs for the lower panel, divided by the number of partitions of that size required to analyse the whole data set. In our analyses of the maps, the majority of the total computation time was taken by the data load.

The scan sets shown in both panels of Fig. 13 were processed with DESCART on the 610 node cluster Titan, at the University of Oslo. The larger scan sets in the upper panel were processed using 64 cores on eight nodes, whilst the smaller sets of the lower panel were processed using 16 cores on two nodes, so the panels are not directly comparable.

The operation count per iteration is dominated by the signal subtraction operation (21) that includes two large linear $O(N_{\alpha})$ processes — map binning and map projection. These dominate the smaller $O(N_d \log N_d)$ FFT operations associated with the prior C_a, as N_a is two orders of magnitude smaller than N_d. The total computation time depends on the number of iterations taken by the PCG algorithm to return a sufficiently precise estimate of the offset amplitudes. For the scanning strategies we consider, the number of iterations does not increase as more data are added: rather it decreases. This behaviour is shown in Table 4, which shows the mean iteration number required per CES set. This can be understood by noting that increasing the number of CESs included in the analysis provides a better estimated naive map in the Z operator of (21), so the operation ZF_a becomes closer to F_a (an effect enhanced by the lack of correlation in noise between CESs). With less noise wrongly identified as signal, the condition number of the destriping matrix

2 http://hpc.uio.no/index.php/Main_Page
Destriped maps were produced for different destriping partitions, then combined to produce a final map that uses all of the available data (in this case, the 40 CES data set). For a set of maps \(x_i\), with \(Q/U\) white noise covariances \(C_i\), the combined map is defined as
\[
x = \left(\sum_i C_i^{-1}\right)^{-1} \sum_i C_i^{-1}x_i.
\]
This ensures that the noise amplitude in the final maps is constant and any differences between them are solely due to changes in the error of the offset amplitude estimates. Fig. 14 shows the variation of the rms residual of \(Q\) and \(U\) in the final combined map with destriping partition size. Only pixels within the central region of the scan (the science field itself) were used to calculate the rms residual.

The effect of partition size on rms residual amounts to a 0.3 per cent reduction between destriping with 40 CESs and destriping with single CESs only. Of this change, the majority of the improvement is achieved by considering pairs of CESs, as was the case with iteration numbers and for the same reasons. The residual rms remains constant for CES numbers up to the full 202 CES data set.

A number of effects that naturally produce cross-linking within a single CES contribute to make this change small. In a separate analysis, we considered data from the central horn only to remove the cross-linking effects of the 17 horn focal plane. The variation in rms with CES number is qualitatively similar to that shown in Fig. 14, except that the rms reduction is much larger, amounting to a 3 per cent reduction in residuals when all 40 CESs are used to estimate offsets amplitudes rather than considering each CES separately.

The effect of destriping analysis partitioning has been investigated recently for the Planck experiment by Kurki-Suonio et al. (2009), who found a significant variation in destriping pixel residual rms with the length of scan considered. However, we note that the scanning strategies of the Planck and QUIET experiments have little in common – the Planck scanning strategy used revisited the vast majority of pixels only after a 6-month spin period, with the destriping relying on the cross-linking in a small number of polar pixels to determine amplitudes for offsets of the length of a single great circle scan. The scanning strategy considered here is heavily cross-linked for most pixels on small time-scales.

Our simulations suggest that destriping partitioning is an acceptable analysis technique when the partition consists of a few CESs. A caveat for this result is that it is based solely on the effects of \(1/f\) noise. Instrumental systematics, the simulation of which is beyond the scope of this paper, can be better constrained with larger data partitions. An example of this is scan-synchronous noise, which can be modelled by the offsets when large numbers of CESs with uncorrelated scan-synchronous noise are included, and which significantly increases the number of iterations required to solve for the offset amplitudes.

4.3 Resources summary

A year of data consisting of 600 h of data with 70 detectors sampled at 50 Hz can be analysed with this code on 64 typical modern processor cores in approximately 30 min. This will scale approximately linearly with increasing time and number of detectors.

This is fast enough that destriping can be included as part of an MC pipeline, replacing map-making with heavy filtering with only a small increase in computing time. It is also suitable as an alternative to ML map-making for performing repeated auxiliary tasks such as null tests in cases where running the full pipeline repeatedly is unfeasible.

The code and method can therefore be applied to the largest presently existing CMB polarization data sets to make high-resolution maps.

5 DISCUSSION

The ML map-making method has long been used in CMB data analysis pipelines to reduce sizeable TOD into optimal maps, which are optimal in the sense that the noise in the map is minimized without the loss of information – the sky signal in the maps is not distorted. However, applying the method is moving towards being untenable for future long duration, massively multi-detector CMB experiments, establishing the need for faster, approximate, map-making methods. Such methods will be crucial to simulating and removing experimental systematics with enough precision to search for the small primordial gravity wave signal in the CMB polarization field.

Significant study (see e.g. Ashdown et al. 2009 and their references) has been conducted into data analysis for space-based experiments, such as the Planck experiment. We have built upon this by evaluating fast map-making methods for massively multi-detector ground-based experiments, of which a large number are in development (see Brown et al. 2009a for a review). We have developed DESCART, an optimized, parallel destriping code, and applied it to simulations of TOD from such an experiment. We destriped using short baselines with a noise prior, a mode of operation that has been shown to produce near optimal maps (Sutton et al. 2009).

For large future data sets, the fastest map-making method under consideration is TOD filtering. Our comparison of the filtering and destriping approaches shows that, for the highly cross-linked scanning strategies we simulate, TOD filtering underperforms in power spectrum errors when compared to destriping. This result is due to two effects: the suppression of signal sensitivity by the noise filter, which decreases the S/N in the lower \(\ell\) bins, despite removing the effects of correlated noise; and the introduction of E \(\rightarrow\) B mixing by the TOD filter, which can be characterized and removed by TOD simulations, but which significantly contributes to the variance of the large angular scales. Of these effects, the latter (only present in the B-mode spectrum) is much more dominant, typically doubling the bandpower variance at the expected inflationary B-mode peak at \(\ell \approx 100\), although the variance increase is dependent on how aggressive the TOD filter is.

In our simulations, we find that bias from filtering can strongly affect the detection of the primordial B-mode peak (see Table 5).
This is true for the one realization of possible scan strategies, patch shapes and receiver array arrangements presented here; the full variation of the effect with the parameters of the scan and experiment is beyond the scope of this paper, and we expect that it can be ameliorated in many situations. It is also unclear how the leakage effect will scale for longer scanning-strategies and larger focal planes.

DESCART’s computing time depends on the length of the data set and the condition number of the destriping matrix. Each iteration of DESCART is dominated by operations that scale linearly with the size of the data set – the P and F operators and their transposes. The number of iterations is sensitive to the condition of the matrix, which is generally improved by the addition of more heavily cross-linked data, such that the number of iterations required to solve for offset amplitudes reduces slightly. For the simulations we considered, the computing time was dominated by the initial data-loading operation. This suggests that destriping can be potentially as fast a method as filtering.

The effect of an extended focal plane is to add sufficient cross-linking to a single scan that destriping offsets are well constrained by data from that scan alone. The gain from including multiple scans to estimate offset amplitudes is a reduction of the order of 0.3 per cent in map residuals, a gain that is almost entirely returned by combining a small number of scans.

The search for B modes will likely be dependent on how well experimental and physical systematics can be constrained and mitigated. Many of these systematics require aggressive filtering of the time-stream data prior to map-making. However, destriping has the potential to model some of these systematic effects in addition to correlated time-stream noise. For ground-based, CESs, the most important systematic is scan-synchronous signal, caused, for example, by ground pick-up in the side-lobes of the experimental beam and time-varying atmospheric noise. The presence of scan-synchronous signal tends to add considerably to the number of PCG iterations required to solve for offsets, as offsets have a limited capacity for modelling it. An alternative to filtering these modes is to solve for additional destriping offsets mapped by azimuth rather than by time. Such an approach is equivalent to the estimation and removal of ground signal recently applied to the QUaD data by Brown et al. (2009b). For total power experiments, the offsets can be mapped on to all the detectors within the horn, much as atmospheric common-mode offsets are mapped on to time-streams from multiple adjacent horns in the method of Hincks et al. (2009).

As part of the generalization of destriping to multiple detectors, we have included the possible effect of inter-detector correlated 1/f noise in the offset prior. The use of this information in the prior results in a marginal improvement in destriping performance, but for the experimental set-up we simulate, the effect is small. We note, however, that in other experimental situations, the inclusion of the correlation information could be important.

We have investigated the use of correlation information to constrain cross-correlated 1/f, but have ignored the possibility of cross-correlated white noise. Correlated white noise tends to affect detectors within the same horn, in which case it is optimally accounted for by including the correlations in the white noise covariance matrix, which we have considered to be uncorrelated here. The detectors in the same horn observe the same sky pixels, so this extra information does not lead to replacing the naive map evaluated in each destriping iteration with a more difficult solution, as the naive mapping operation is still diagonal in pixel-space. We plan to address experimental systematics, including correlated white noise and scan-synchronous signal, in a future paper.

ACKNOWLEDGMENTS

We are grateful to Bruce Winstein and the QUIET collaboration for useful discussions. The results in this paper were obtained by making use of the HEALPix and FFTW subroutine libraries and using the computing facilities of the Research Computing Services group at the University of Oslo, and in particular the Titan cluster. DS acknowledges the support of a Science and Technology Facilities Council PhD studentship, and JZ acknowledges support of an STFC Rolling Grant.

REFERENCES

Ashdown M. A. J. et al., 2007, A&A, 467, 761
Ashdown M. A. J. et al., 2009, A&A, 493, 753
Borrill J., 1999, preprint (astro-ph/9911389v1)
Brown M. L., Challinor A. D., North C. E., Johnson B. R., O’Dea D., Sutton D., 2009a, MNRAS, 397, 634
Brown M. L. et al., 2009b, ApJ, 705, 978
Burgiana C., Malaspina M., Mandolesi N., Danese L., Maino D., Bersanelli M., Maltoni M., 1997, preprint (astro-ph/9906360)
Chiang H. C. et al., 2010, ApJ, 711, 1123
de Gasperis G., Balbi A., Cabella P., Natoli P., Vittorio N., 2005, A&A, 436, 1159
Delabrouille J., 1998, A&AS, 127, 555
Dore O., Teyssier R., Bouchet F. R., Vibert D., Prunet S., 2001, A&A, 374, 358
Ferreira P. G., Jaffe A. H., 2000, MNRAS, 312, 89
Fowler J. W. et al., 2007, ApJ., 657, 43
Gorski K. M., Hivon E., Banday A. J., Wandelt B. D., Hansen F. K., Reinecke M., Bartelmann M., 2005, ApJ, 622, 759
Halverson N. W. et al., 2009, ApJ, 701, 42
Hanany S., Rosenkranz P., 2003, New Astron. Rev., 47, 1159
Hanany S. et al., 2000, ApJ, 545, L5
Hansen F. K., Gorski K. M., 2003, MNRAS, 343, 559
Hincks A. D. and the ACT Collaboration, 2009, preprint (arXiv:0907.0461)
Hinshaw G. et al., 2009, ApJS, 180, 225
Hivon E., Gorski K. M., Netterfield C. B., Crill P. C., Prunet S., Hansen F., 2002, ApJ, 567, 2
Kamionkowski M., Kosowsky A., Stebbins A., 1997, Phys. Rev. L., 78, 1205
Keihanen E., Kurki-Suonio H., Poutanen T., Maino D., Kurki-Suonio H., 2004, A&A, 428, 287
Keihanen E., Keihanen E., Kurki-Suonio H., Poutanen T., 2005, MNRAS, 360, 390
Keihanen E., Keskitalo R., Kurki-Suonio H., Poutanen T., Sirvio A. S., 2010, A&A, 510, A57
Keskitalo R. et al., 2009, preprint (arXiv:0906.0175)
Kosowsky A., 2003, New Astron. Rev., 47, 939
Kovac J. M., Leitch E. M., Pryke C., Carlstrom J. E., Halverson N. W., Holzapfel W. L., 2002, Nat., 420, 772
Kurki-Suonio H., Keihanen E., Keskitalo R., Poutanen T., Sirvio A. S., Maino D., Kurki-Suonio H., 2009, A&A, 506, 1511
Lee A. T. et al., 2008, in Kodama H., Ioka K., ed., AIP Conf. Ser. Vol. 1040, Accelerators in the Universe. Am. Inst. Phys., New York, p. 66
MacTavish C. J. et al., 2008, ApJ., 689, 655
Mallam D. et al., 1999, A&AS, 140, 383
Melchiorri A. et al., 2000, ApJ, 536, L63

Table 5. Significance of B-mode inflationary peak detection.

f_k	α	Descart	$C_N^{1/2}$ filter	C_N^{-1} filter
5 mHz	1.0	1.87	1.28	1.18
50 mHz	1.0	1.83	1.20	–
200 mHz	1.0	1.72	1.05	–
200 mHz	2.0	1.78	0.87	0.70
D. Sutton et al.

Oxley P. et al., 2005, preprint (astro-ph/0501111)
Patanchon G. et al., 2008, ApJ, 681, 708
Plagge T. et al., 2010, ApJ, 716, 1118
Seljak U., Zaldarriaga M., 1997, Phys. Rev. Lett., 78, 2054
Smith K. M., 2006, Phys. Rev. D, 74, 083002
Smoot G. F. et al., 1992, ApJ, 396, L1
Spergel D. N. et al., 2003, ApJS, 148, 175
Stompor R. et al., 2002, Phys. Rev. D, 65, 022003
Sutton D., Johnson B. R., Brown M. L., Cabella P., Ferreira P. G., Smith K. M., 2009, MNRAS, 393, 894
Szapudi I., Prunet S., Pogosyan D., Szalay A., Bond R. J., 2001, ApJ, 548, L115
Takahashi Y. D. et al., 2010, ApJ, 711, 1141
Tegmark M., 1997a, ApJ, 480, L87
Tegmark M., 1997b, Phys. Rev. D, 55, 5895

This paper has been typeset from a \LaTeX file prepared by the author.