Supplement of

Inter-comparison of online and offline methods for measuring ambient heavy and trace elements and water-soluble inorganic ions (NO$_3^-$, SO$_4^{2-}$, NH$_4^+$, and Cl$^-$) in PM$_{2.5}$ over a heavily polluted megacity, Delhi

Himadri Sekhar Bhowmik et al.

Correspondence to: Sachchida Nand Tripathi (snt@iitk.ac.in)

The copyright of individual parts of the supplement might differ from the article licence.
Fig. S1. Time series of secondary species (NO_3^-, SO_4^{2-} and NH_4^+) and Cl^- during (a) summer campaign at IITD, (b) winter campaign at IITD and (c) winter campaign at IITMD site during 2019.
Table S1. Seasonal average concentration of secondary species (NO$_3^-$, SO$_4^{2-}$ and, NH$_4^+$) and Cl$^-$ at IITD and IITMD.

Units in μg/m3	Summer IITD	Winter IITD	Winter IITMD						
	Avg±Stdev	Min	Max	Avg±Stdev	Min	Max	Avg±Stdev	Min	Max
Online NO$_3^-$	4.61±2.40	1.19	12.61	8.53±5.43	1.28	26.33	10.04±6.96	0.72	30.03
Offline NO$_3^-$	1.15±0.88	0.04	5.31	13.53±9.65	2.41	45.18	9.21±6.5	1.17	25.79
Online SO$_4^{2-}$	0.97±0.74	0.19	2.68	7.08±4.32	1.82	19.55	9.52±8.2	0.81	42.46
Offline SO$_4^{2-}$	5.17±4.19	0.66	16.31	12.18±5.75	2.61	31.68	10.84±10.34	1.57	39.58
Online NH$_4^+$	1.36±0.37	0.51	3.32	6.26±3.63	1.74	14.73	8.24±5.61	0.45	24.33
Offline NH$_4^+$	2.47±1.32	0.96	6.43	7.55±3.59	2.23	21.43	8.89±6.62	1.23	27.32
Online Cl$^-$	0.28±0.32	0.03	1.44	1.96±3.59	0.14	7.04	4.48±3.11	0.07	11.40
Offline Cl$^-$	1.64±0.73	0.28	3.47	3.46±1.86	1.14	8.57	5.18±3.61	0.32	14.12

Fig. S2. Scatter plots between Xact determined Cl$^-$ and offline measured Cl$^-$ concentrations in PM$_{2.5}$ during summer and winter campaign at IITD and during winter campaign at IITMD.
Figure S3. Time series of (a) light group metals, (b) heavy metals and (c) trace metals during summer and winter campaign at IITD and winter campaign at IITMD.

Table S2. Seasonal average concentration of elements at IITD and IITMD with MDLs.

Units in μg/m³	Summer IITD	Winter IITD	Winter IITMD	MDL_xact (ng/m³) or MDL_ICP-MS (µg/m³)									
	Avg	Stdev	Min	Max	Avg	Stdev							
Online Al	1.1442	3.2011	0.02	4.37	0.3438	0.6512	0.01	5.43	0.6820	0.5001	0.13	2.24	500
Offline Al	3.5220	1.1293	0.31	13.46	1.3343	1.4870	0.15	9.3	1.6646	1.2526	0.29	6.61	1.121
Online K	1.1930	0.5567	0.38	2.13	3.0451	2.2140	0.55	11.7	2.2780	1.6029	0.29	6.85	5.8
Offline K	1.7743	0.3936	0.67	3.05	3.8032	2.1616	1.11	12.9	2.6374	1.7313	0.39	5.58	0.366
Online Ca	1.4247	0.9429	0.24	3.58	0.5145	0.2398	0.06	1.35	0.3856	0.2265	0.11	1.11	1.5
Offline Ca	1.7680	0.8708	0.48	4.87	1.1780	0.4636	0.19	2.28	0.8686	0.4918	0.17	2.48	0.987
Online Ti	0.1144	0.0686	0.02	0.29	0.0424	0.0191	0.01	0.12	0.0340	0.0160	0.01	0.08	0.79
Offline Ti	0.1216	0.0643	0.02	0.27	0.0834	0.0292	0.01	0.21	0.0557	0.0209	0.01	0.10	0.065
Online V	0.0035	0.0027	0.00	0.00	0.0008	0.0006	0.00	0.00	0.0006	0.0004	0.0001	0.002	0.60
Offline V	0.0055	0.0018	0.00	0.01	0.0095	0.0101	0.00	0.03	0.0012	0.0004	0.0005	0.002	0.034
Online Cr	0.0037	0.0010	0.00	0.00	0.0008	0.0037	0.0001	0.00	0.0059	0.0042	0.001	0.018	0.58
Element	Offline Cr	0.0036	0.0014	0.00	0.009	0.0095	0.0030	0.00	0.0053	0.0019	0.001	0.009	0.021
---------	------------	--------	--------	-------	-------	--------	--------	-------	--------	--------	-------	-------	-------
Online Mn	0.0334	0.0211	0.01	0.09	0.0254	0.0137	0.00	0.0252	0.0166	0.003	0.068	0.71	
Offline Mn	0.0341	0.0172	0.01	0.11	0.0343	0.0154	0.00	0.0198	0.0093	0.004	0.044	0.012	
Online Fe	1.2613	0.5812	0.29	3.01	0.6049	0.2300	0.16	0.4358	0.2191	0.11	1.08	0.85	
Offline Fe	1.1948	0.6788	0.24	2.8	0.7044	0.2193	0.27	0.3742	0.1613	0.10	0.89	0.042	
Online Co	0.0013	0.0009	0	0.05	NA	NA	NA	NA	0.0003	0.0001	0.0001	0.0007	0.68
Offline Co	0.0013	0.0084	0	0.00	NA	NA	NA	NA	0.0003	0.0001	0.0001	0.0005	0.035
Online Ni	0.0019	0.0008	0	0.00	0.0010	0.0005	0	0.0021	0.0015	0.0004	0.0066	0.47	
Offline Ni	0.0037	0.0007	0	0.00	0.0297	0.0087	0	0.0193	0.0037	0.012	0.026	0.102	
Online Cu	0.0283	0.0180	0	0.08	0.0536	0.0394	0	0.0607	0.0466	0.009	0.19	0.39	
Offline Cu	0.0251	0.0179	0	0.1	0.0401	0.0308	0	0.0980	0.0621	0.019	0.26	0.074	
Online Zn	0.1989	0.1001	0	0.51	0.5006	0.2351	0.14	1.5431	0.3063	0.09	1.47	0.33	
Offline Zn	0.1950	0.1146	0	0.56	0.3103	0.1515	0.07	0.3781	0.2372	0.07	1.17	0.98	
Online As	0.0020	0.0007	0	0.005	0.0044	0.0021	0	0.0082	0.0040	0.002	0.017	0.31	
Offline As	0.0038	0.0009	0	0.006	0.0082	0.0028	0	0.0082	0.0028	0.002	0.016	0.036	
Online Se	0.0017	0.0006	0	0.003	0.0036	0.0024	0	0.0030	0.0022	0.0005	0.011	0.40	
Offline Se	0.0018	0.0006	0	0.003	0.0035	0.0019	0	0.0031	0.0017	0.0003	0.010	0.067	
Online Rb	0.0025	0.0020	0	0.006	0.0012	0.0010	0	0.0014	0.0012	0.002	0.006	0.95	
Offline Rb	0.0034	0.0012	0	0.008	0.0042	0.0013	0	0.0034	0.0009	0.002	0.005	0.057	
Online Sr	0.0088	0.0133	0	0.023	0.0124	0.0636	0	0.0043	0.0064	0.0006	0.037	1.1	
Offline Sr	0.0248	0.0062	0	0.08	0.0184	0.0322	0	0.0126	0.0040	0.009	0.034	0.063	
Online Zr	NA	NA	NA	NA	0.0014	0.0009	0	0.0006	0.0005	0.0003	0.002	1.6	
Offline Zr	NA	NA	NA	NA	0.0232	0.0012	0	0.0235	0.0011	0.018	0.025	0.121	
Online Mo	0.0003	0.0037	0	0.005	NA	NA	NA	NA	0.0002	0.0003	0.0001	0.0014	2.4
Offline Mo	0.0450	0.0001	0	0.05	NA	NA	NA	NA	0.0520	0.0056	0.04	0.09	0.097
Online Cd	0.0023	0.0009	0	0.007	0.0032	0.0017	0	0.0035	0.0025	0.0008	0.01	12	
Offline Cd	0.0021	0.0011	0	0.005	0.0049	0.0027	0	0.0077	0.0049	0.001	0.023	0.101	
Online Sn	0.0073	0.0020	0	0.014	0.0157	0.0140	0	0.0165	0.0133	0.007	0.096	20	
Offline Sn	0.0064	0.0020	0	0.011	0.0156	0.0079	0	0.0129	0.0082	0.003	0.051	0.041	
Online Sb	0.0201	0.0073	0	0.033	0.0237	0.0108	0	0.0209	0.0247	0.006	0.14	26	
Offline Sb	0.0196	0.0038	0	0.049	0.0191	0.0092	0	0.0205	0.0181	0.003	0.084	0.048	
Online Ba	0.0049	0.0358	0	0.013	0.1373	0.8084	0	0.0319	0.0770	0.001	0.41	1.9	
	0.0597	0.0038	0.01	0.13	0.1183	0.6416	0.00	5.85	0.1011	0.2092	0.005	1.17	0.097
----------	--------	--------	-------	-------	--------	--------	------	------	--------	--------	-------	------	-------
Offline Ba	0.1226	0.0947	0.01	0.55	0.4751	0.3879	0.08	2.09	0.3836	0.3867	0.07	2.24	0.63
Offline Pb	0.0941	0.1221	0.01	0.45	0.4349	0.3643	0.05	1.91	0.2349	0.2619	0.02	1.58	0.035

Figure S4. Box plots of rest of the elements measured offline and online during (a & b) summer campaign at IITD, (c & d) winter campaign at IITD, and (e & f) winter campaign at IITMD site.
Figure S5. Trends of element’s concentration in decreasing order for ICP-MS (a,c,e) and Xact 625i measurements (b,d,f) during winter and summer at IITD and during winter at IITMD.