Measurement of natural radioactivity concentrations in walnut collected from different markets in Sulaimanya city-Kurdistan region-Iraq

Jamal M.R. Abda1, Kamal O. Abdullah2, Adil M. Hussein3, 4Awaru Rasul muhammad, 5Amir Namiq Hassan

1Department of Physics, College of science, University of Sulaimany, Kurdistan Region, Iraq, Jamal.abda@univsul.edu.iq
2Department of Physics, College of science, University of Sulaimany, Kurdistan Region, Iraq, kamal.abdullah@univsul.edu.iq
3Department of Physics, College of science, University of Sulaimany, Kurdistan Region, Iraq, amir.hassan@univsul.edu.iq
4Department of Physics, College of science, University of Sulaimany, Kurdistan Region, Iraq, kamal.abdullah@univsul.edu.iq
5Department of Physics, College of science, University of Sulaimany, Kurdistan Region, Iraq, awaru.mahmmod@univsul.edu.iq

Abstract: Walnut is one of the most important and necessary foodstuffs in our daily lives and there are many species in Iraqi Kurdistan from different sources. Therefore, the significant point in this works is gamma rays measuring to estimate various radiation hazards via walnut consumption for different markets. The samples have been collected from different markets and locations in Sulaimanya governorate in Kurdistan region-Iraq.

The average specific activities for nuclides found with high probability for the walnut by using a vertical coaxial cylindrical High Purity Germanium Radiation Detector (HPGe). The specific activity for the shell of the walnut were for the three most important radionuclides 232Th, 226Ra and 40K were 14.842 ± 9.450, 7.226 ± 1.805, 107.2 ± 2.563 (Bq/kg) respectively, and for walnut pulp 232Th, 226Ra and 40K were 16.053 ± 8.861, 5.105 ± 1.540, 143.6 ± 2.884 (Bq/kg) respectively. The total average activities were within the average ranges of the accepted values in the world (45, 33 and 420 Bq/kg for 232Th, 226Ra and 40K respectively).

1 – Introduction

Most fruits, vegetables, grains and foods are exposed to various radiations, both from terrestrial, atmosphere and from cosmogenic it is followed by a series of decay [1-3]. We swallow daily and eat many of the things that we do not know the content of radioactive materials, one of these is walnuts, which is a natural food for every family in Sulaimanya.

Neither one of the research institutions nor any of the researchers have tested the presence, types, quantity, and permissible doses of radioactive materials in the walnut in Sulaimanya. The concentrations of radioactive substances increase in soil and plants in which they are higher in the cultivated land that contains high concentrations of radioactive materials [4]. The most radioactive nuclides sources of external radiation on earth in food and water are 232Th, 40K, 226Ra and fall out radioisotope 137Cs and the results indicate that the presence of radionuclides in drinks is higher than that in food [5].

Knowing the concentrations and permissible dosages of radioactive materials is important to know the harmful limits for humans [6] because they pass through eating it to our bodies and may be important sources of internal dose for people living in the region which make particular hazards [7]. Some geographical and terrestrial factors affect the ranges of concentrations of radioactive materials and the activity level are strongly depending on the origin of the ores. [8, 9].

Several factors contribute to the amount of radioactive nuclides taken from plants such as plant age or the soil kind [9, 10]. Radioactive nuclides remain in the layer of cultivated soil in so called
active zone of plant roots for many years [11]. The radioactivity levels in food grown in such soils may also increase, through various uptake mechanisms from soil to plant [12].

Walnut for consumption among Sulaimanya governorate in Kurdistan region of Iraq, mainly comes from imported walnut and considered an essential part of food, it imports from Hauraman/ Sulaimanya, Chilly, USA, Romania and Ukraine and other sources. The primary purpose of this study is, therefore, to determine the activity concentration levels of radionuclides in walnut and compare the results with natural radionuclide references.

A total of five kilograms of Walnut from different markets and several sources was collected in Sulaimanya city in Kurdistan region-Iraq, for analysis and to quantify the presence of natural radionuclides in it and to determine the activity concentrations and their corresponding hazard.

2 – Materials and methods

The walnut samples were collected from five different locations in Sulaimanya. Special type beakers (0.6 kg in a 1 liter Marinelli beaker) were used for processing and measuring the samples. The net weights of the samples were found from the difference between the weights of a sample-filled and empty beakers.

Finally, the beakers filled with samples and closed with caps and kept for one month for achieving the secular equilibrium.

The walnut core samples were isolated from the crusts, and then the shell samples were grinded well to become powder until they become homogeneous and placed in equal Marinelli beakers for 30 days to reach the secular radioactive equilibrium condition. A measurement of radioactivity and radionuclides in the samples was carried out by gamma spectrometry analyzer [1]. Using a vertical coaxial cylindrical coaxial High Purity Germanium Radiation Detector (HPGe) manufactured by Princeton Gamma Tech (PGT) based on a coaxial p-type with large crystal diameter 70.6 mm and length 70.7 mm. The detector specified with accurate energy resolution, full width at half maximum (FWHM), 1.1 keV for the energy 122 keV 57Co and 1.97 keV for the energy 1332 keV 60Co gamma-ray line and relative efficiency higher than 70% at 122 keV (57Co) as shown in figure (1). A high voltage power supply generates a voltage ranged (0–4000 V) to feed the detector through a preamplifier. Subsequently, the detector connected to a chain of electronic units for completing signal processing such; Main amplifier, Analogue to digital converter (ADC), Multichannel analyzer (MCA) and Commercial software Quantum Gold from Princeton Gamma-Tech (PGT) was used for data analysis that interfaced on PC. Gamma spectrometry was shielded by a thick shield (5 cm) of lead encasing the detector (10cm inner diameter, and 50cm of height).

![Figure 1](image.png)

Figure 1. Relative efficiency per energy peaks of the standard sources
The environmental background radiation achieved by the blank sample was subtracted from each spectrum of the samples [2]. The system is located inside cylindrical lead shield Kolga Model A340 about 10.1 cm high-performance copper/tin lined lead shield for Germanium radiation detectors to reduce the background scattering for the measured spectrum. Reducing the leakage current as a result of thermal noise of the detector has been done by cooling it with liquid nitrogen. This shield is eliminating the contribution of laboratory radiation background to the sample activity.

The analysis process was fixed for the duration of 6 hours to outcome gamma spectrum information that agrees with previous studies [13]. Determining the counting time to eliminate the error of counting statistics to less than 5% in the measured net peak area of the major gamma photo-peaks for 60Co. The samples were then placed on the top of the detector and were counted for 6 hours in an attempt to eliminate a counting error. Samples are 0.6 kg in a 1 liter Marinelli beaker which was designed to specially fit over a coaxial detector end cap so that the sample essentially surrounds the detector which is useful for the analysis of low-activity samples [3, 4]. The activity measurements of radionuclides results of the samples were used to calculate, activity concentrations of the radionuclides, the investigated level gamma indexes, radium equivalent activity, the absorbed gamma radiation dose and the effective dose exposure.

The photopeak at 1461 KeV was used for the measurement of 40K, whereas 186.1 KeV and 63.8 KeV, were used for the measurement of 226Ra and 232Th, respectively.

2.1 – Efficiency and Energy Calibration

The energy and efficiency calibrations were carried out before analyzing process of the samples as previously reported [14]. The calibrations of gamma energy and efficiency calibration of the system were found by some standard sources with known energies, such as 60Co to derive the calibration curve for energy and the efficiency of the gamma-ray spectrometry and energy that is in agreement with the study of [15]. HPGe- system distinguished by using the multi peak of the gamma ray line for the determination of the 226Ra and 232Th activities, and to obtain more accurate results for determining other extra radionuclide of the samples.

2.2 – Activity concentrations and Gamma Dose Rate

The specific activity or the activity concentration A of the radionuclides defined as the activity per unit mass of the sample (Bq/kg) and were determined using the following equation [16]:

$$A = \frac{C_n}{T_{\gamma} M \epsilon(E_{\gamma}) t_c}$$ \hspace{1cm} (1)

where C_n is the net count area per second (Total counts minus background counts), T_{γ} Is the absolute transition probability of the specific gamma, M is the mass of the sample (kg), $\epsilon(E_{\gamma})$ Is the HPGe detector efficiency in energy E_{γ} of the specific gamma energy and t_c is the counting time.

The investigated level gamma indexes (I_{γ}), used for the estimation of gamma radiation, is derived from the specific activity (A_c) in Bq/kg. For 226Ra, 232Th, and 40K, it was calculated using the following equation as reported in European Commission [17]:

$$I_{\gamma} = \frac{A_{Ra}}{300} + \frac{A_{Th}}{200} + \frac{A_{K}}{3000}$$ \hspace{1cm} (2)

where I_{γ} Is: activity concentration index, it is unitless and has a unitary value and its value must be equal or less than one. A_{Ra}, A_{Th} and A_{K} are the radium, thorium and potassium activity concentrations (Bq/kg).

A common radiological index that represents the activity concentrations and existing of natural radionuclide (226Ra, 232Th and 40K) in the terrestrial is called radium equivalent activity (Ra$_{eq}$) in Bq/kg to ensure the uniformity in the distribution of these natural radionuclides and this allows the comparison of specific activity of these materials that have different quantity of the three types of radionuclides and is given by [18-19]:

$$Ra_{eq} = A_{Ra} + 1.43 A_{Th} + 0.077A_{K}$$ \hspace{1cm} (3)
Where, A_{Ra}, A_{Th} and A_{K} are the activity concentrations of the radionuclides 226Ra, 232Th and 40K in Bq/kg respectively. The ratios of natural radionuclides are: 10 Bq/kg for 226Ra, 7 Bq/kg for 232Th and 130 Bq/kg for 40K. These ratios are participating in formulating R_{eq}, in which its maximum limit is 370 Bq/kg [20].

The absorbed gamma radiation dose from the air is calculated from the substrate at a height of 1 meter and is measured in nGy/h [14]. The sub-activities must be multiplied by a conversion factor in which determined for the average concentration of radionuclides from each radioactive series.

$$D = (R_{Ra}.A_{Ra}) + (R_{Th}.A_{Th}) + (R_{K}.A_{K})$$

Where: D is the absorbed dose rate of gamma radiation from the air(nGy/h), R_{Ra}, R_{Th} and R_{K} are the conversion factor for 226Ra, 232Th, 40K respectively, in which equals to 0.4551, 0.5835, 0.0429 (nGy hr$^{-1}$/Bq kg$^{-1}$) respectively, as given [20], therefore:

$$D(nGy/h) = 0.4551 A_{Ra} + 0.5835 A_{Th} + 0.0429 A_{K} \quad (4)$$

A_{Ra}, A_{Th}, and A_{K}, are the activity concentrations (Bq/kg) for 226Ra, 232Th and 40K respectively [21].

The effective dose exposure to the human in one year due to the soil radioactivity can be estimated by using a conversion factor of (0.7 Sv/Gy) recommended by the UNSCEAR report [20]. The annual effective dose rate (H_{ann}) in unit (mSv/y) is the best radiation risk indicator in which calculated from [20, 22-23]:

$$H_{ann}(mSv/y) = H(nGy/h) \times (365 \times 24)h \times 0.7 \text{ Sv/Gy} \times 10^{-6} = 0.006132 \times H(nGy/h) \quad (5)$$

The conversion coefficient for the absorbed dose in air to the received effective dose is 0.7Sv/Gy. The outdoor (or indoor) H_{ann} calculate by multiplying the above equation by 0.2 for outdoor and 0.8 for indoor, where the most people spent their times ~20% in outdoor.

Another important factor for internal exposure to the radio nuclides, is the internal hazard index H_{in}, in which given by the following equation [14,22]:

$$H_{in} = \frac{A_{Ra}}{185} + \frac{A_{Th}}{259} + \frac{A_{K}}{4810} \quad (6)$$

H_{in} must be less than unity (100%), for providing safety level and for protecting people. External hazard index H_{ex} equation is the same as H_{in}, but the only difference between the two equations of H_{in} and H_{ex}, is the number 185 replaced by 370.

Results and discussion:

In this research, the samples of walnut were divided into two parts (core and shell), and each one of them were checked and analyzed. Table (1) shows the specific activity of natural (226Ra, 232Th, 40K) radionuclides in walnut, in which the mean values from references [24-26] were tabulated also within it. The activity concentration for 226Ra, 232Th and 40K varied from (2.725 ± 1.853) to (7.226 ± 1.805) Bq/kg, from (0) to (16.053 ± 8.861) Bq/kg, and from (31.789 ± 1.329) to (143.6 ± 2.884) Bq/kg respectively as shown in figures (2–4). The average value of specific activity of natural 226Ra, 232Th, 40K and 137Cs radionuclides in walnut were, 4.6538, 5.1491 and 98.5789 Bq/kg, respectively. They were more less than the permitted mean values (50, 15 and 382 Bq/kg) of mentioned natural radionuclides [24-26], that is mean that there is no any hazard with these samples of walnuts.

The average value of specific activity of the (core) in walnut for natural 226Ra, 232Th and 40K radionuclides were, 3.318, 8.0265 and 129.3 Bq/kg but for them (shell) were respectively 5.9894, 7.421 and 67.8578 Bq/kg, that was indicated that the average value of the walnut core for 40K, was higher than that of the shell. The maximum value of specific activity of 226Ra, was found to be (5.105 ± 1.540) Bq/kg for sample 3 which is the core of Ukraine walnut type, but its maximum value of the shell was (7.226 ± 1.805) Bq/kg for the (sample 7-USA type), therefore the specific activity of the
shell is greater than that of the core but still less than the average permitted value (50 Bq/kg). The maximum recorded specific activity value for 232Th, was (16.053 ± 8.861) Bq/kg (sample 3-Ukraine type-core) and (14.842 ± 9.45) Bq/kg for (sample 7, USA type-shell) but not exceed the permitted value 15 Bq/kg. The maximum specific value for the 40K radionuclide was (135.7 ± 2.835) Bq/kg for the core of (sample 4 Romania type) and (107.2 ± 2.563) Bq/kg for the shell of (sample 6-Chili type) in which it is less than the average value 382 Bq/kg [24].

From table (2) and figure (5) show that the radium equivalent activity (Ra_{eq}) range is between 7.887 and 37.631 Bq/kg with a mean value of 16.6606 Bq/kg, which is below the average value, 18.98 Bq/kg [26]. On the other side of the same figure (5), the absorbed dose rate D of gamma radiation for all samples, has maximum value 17.022, which is more less than the mean standard value 59.293 nGy/h, therefore there is no any hazard.

The recorded values of the investigated level gamma indexes (I_{γ}) and internal hazard index H_{in}, were tabulated in table (2) as shown in figure (6). It has been shown that the maximum value of I_{γ} was 0.5275 (52.75%) for sample 4 (RO4-N) which is for the walnut core and it is greater than the exceed permitted value which is 0.164 (16.4%). Internal hazard index H_{in} has been calculated also as shown in table (2) with figure (5). The maximum value of H_{in} is 0.1154 (11.54%) for sample number 3 (UK3-N) which is in the core zone of the walnut, but still much less than the permitted value 0.94 (94%). As a result for all, this research denotes that these samples of walnuts are safe for eating that, for Romania (core) sample is greater than the average value. Besides that the Ra_{eq} (Bq/kg) for both USA (core) and USA (shell) are; 37.631 and 33.933 (Bq/kg) respectively, which are also greater than the average value recorded. Determination of the minimum detectable activity (MDA) of a radionuclide 137Cs being assessed through gamma ray spectrometry and also tabulated in table (1).

Table 1. Specific activity of the radionuclides 226Ra, 232Th and 40K with the Mean values.

Sample no.	Sample ID	Sample Name	Specific activity(Bq/kg)	226Ra	232Th	40K	MDA (Bq/kg)
1	SH1-N	Chili (core)	3.035 ± 2.032	0.00	143.6 ± 2.884	1.75E-02	
2	AM2-N	USA (core)	2.725 ± 1.853	0.000 ± 0.000	131.0 ± 3.011	2.29E-02	
3	UK3-N	Ukraine (core)	5.105 ± 1.540	16.053 ± 8.861	124.3 ± 2.801	2.01E-02	
4	RO4-N	Romania (core)	2.811 ± 0.926	0.00	135.7 ± 2.835	2.53E-02	
5	KH5-N	Sharbazer (core)	2.914 ± 1.211	0.00	111.9 ± 2.703	2.12E-02	
6	SH1-T	Chili (shell)	4.415 ± 1.586	0.000 ± 0.000	107.2 ± 2.563	2.25E-02	
7	AM2-T	USA (shell)	7.226 ± 1.805	14.842 ± 9.450	71.21 ± 2.395	1.97E-02	
8	UK3-T	Ukraine (shell)	5.924 ± 1.393	0.000 ± 0.000	62.21 ± 2.107	0.00	
9	RO4-T	Romania (shell)	6.933 ± 1.120	0.00	66.88 ± 1.966	1.76E-02	
10	KH5-T	Sharbazer (shell)	5.449 ± 1.437	0.000 ± 0.000	31.789 ± 1.329	2.15E-02	
	Median	50	15	Maximum	382 [24]	Median < 0.4 [25]	
Table 2. Gamma indexes (I_{γ}), Radium equivalent ($Raeq$), absorbed dose rate (D) and internal hazard index (H_{in}) for all samples with the mean values.

Sample no.	Sample ID	Sample Name	I_{γ}	$Raeq$(Bq/kg)	D(nGy/h)	H_{in}
1	SH1-N	Chili (core)	0.05766	14.092	7.541	0.0462
2	AM2-N	USA(core)	0.5275	12.812	6.860	0.0419
3	UK3-N	Ukraine(core)	0.1387	37.631	17.022	0.1154
4	RO4-N	Romania(core)	0.5460	13.259	7.100	0.0434
5	KH5-N	Ukraine(Shell)	0.0470	11.530	6.126	0.0390
6	SH1-T	Chili (shell)	0.0504	12.669	6.608	0.0461
7	AM2-T	USA(Shell)	0.1221	33.933	15.003	0.1111
8	UK3-T	Ukraine(Shell)	0.0404	10.714	5.364	0.0449
9	RO4-T	Romania(Shell)	0.0453	12.079	6.024	0.0513
10	KH5-T	Ukraine(Shell)	0.0287	7.887	3.887	0.0360
	Mean value [27]		**0.164**	**18.98**	**59.293**	**0.94**

Figure 2. Specific activity of radionuclides 226Ra for the samples.

Figure 3. Specific activity of radionuclides 232Th for the samples.
Figure 4. Specific activity of radionuclides ^{40}K for the samples.

Figure 5. Radium equivalent activity (Ra$_{eq}$) ranges and the absorbed dose rate of gamma radiation for the samples.

Figure 6. Activity concentration index I_{γ} and internal hazard index H_{in} for the samples.
Conclusion

In this study, activity concentrations for walnut has been studied and it was found that all of its values for the three radionuclides 226Ra, 232Th, 40K and 137Cs were under the average values. Gamma indexes (I_{γ}), the average value of radium equivalent activity (Ra_{eq}), absorbed dose rate (D) and internal hazard index (H_{in}). For all samples were with a good agreement with the national values except, there were two values of gamma indexes (I_{γ}) was higher than the mean value for sample 2 (the core of the USA one) and sample 4 (the core of Romania type). Besides that the Ra_{eq} (Bq/kg) for both USA (core) and USA (shell) are, greater than the average value recorded.

Acknowledgments

Authors wishing to acknowledge assistance or encouragement from our department and colleagues, special work by technical staff and Koya university – College of Science- Physics department.

References

[1] Dinh Chau, N., Dulinski M., Jodlowski, P., Nowak, J., Rozanski, K., Slezia, M. and Wachniew, “Natural radioactivity in groundwater-a review”, Isot. Environ. Health Stud., 47 (4), 415–437. (2011).
[2] Yang YX, Wu XM, Jiang ZY, Wang WX, Lu JG, et al.;”Radioactivity concentrations in soils of the Xiazhuan granite area”; China. Applied Radiation and Isotopes; 63: 255-259(2005).
[3] Tzortzis, M., H. Tsertos, S. Christofider, and G. Christodoulides.” Gamma-ray measurements of naturally occurring radioactive samples from Cyprus characteristic geological rocks”. Radiat. Meas,37:221–229(2003).
[4] Alshahri F, Alqahtani M.; “Chemical Fertilizers as a Source of 238U, 40K, 236Ra, 222Rn and Trace Metal Pollutant of the Environment in Saudi Arabia”; Environmental Science and Pollution Research; 22: 8339-8343,(2015).
[5] Yu, K.N., Mao, S.Y.;” Assessment of radionuclide contents in food in Hong Kong”; Health Phys. 77, 686–696,(1999).
[6] M. A. Misdaq, and W. Bourzik, Radioanal. Nucl. Chem. 254, 551 (2002).
[7] F. A. George, P. A. Mark;” Foodstuffs and cancer: Analysis of radionuclides and its radiation levels in common Ghanaian Maize”; Int. Journal of Science: Basic and Applied Research 12(1):1-7,(2013).
[8] C. Canbazoglu, M. Dogru, “A preliminary study on 226Ra, 232Th, 40K and 137Cs activity concentrations in vegetables and fruits frequently consumed by inhabitants of Elazig Region”, Turkey. Journal of Radioanalytical and Nuclear Chemistry. 295(2):1245-1249(2013).
[9] Lindahl et al.,” Natural radioactivity in winter wheat from organic and conventional agricultural systems”; Journal of Environmental Radioactivity 102, 163-169(2011).
[10] Golmakani, S., Moghaddam, M.V., et al.,” Factors affecting the transfer of radionuclides from the environment to plants”; Radiation Protection Dosimetry, 130 (3), 368-375 (2008).
[11] Friberg I, Vesenan R; “ Detection limits for 90Sr, 226Pu, 232Am and 238Cm in soil and pasture vegetation shortly after a nuclear accident”; Appl. Radiat. Isot. 4:229–237,(1999)
[12] N. N. Jibiri, I. P. Farai and S. K. Alausa; “Activity concentrations of 226Ra, 232Th and 40K in different food crops from a high background radiation area in Bitsichi, Jos Plateau, Nigeria”; Radiat Environ Biophys, 46:53–59(2007).
[13] Mohammad, W., Manzoor, A., and Sajid, I.; “Assessment of the risk associated with the gamma-emitting radionuclides from the soil of two cities in Central Karakorum”; Journal of Radioanalytical and Nuclear Chemistry, 303(1), pp.985-991,(2015).
[14] Nada F. Khadhim and Omer H. Adnan, “Measurement of natural radioactivity in Al-Dora Refinery by using (HPGe) detector”, Adv. Appl. Sci. Res., 7(4):197-208,(2016).
[15] Ali Abid,” Evaluation of Natural Radioactivity Levels for Local and Import of Cement in Iraq”, International Journal of Scientific & Engineering Research, Volume 5, Issue 3, ISSN 2229-5518(2014).
[16] S. Harb, A. H. El-Kamel, A. I. Abd El-Mageed, A. Abbady, and Wafaa Rashed"CONCENTRATION OF U-238, U-235, RA-226, TH-232 AND K40 FOR SOME GRANITE SAMPLES IN EASTERN DESERT OF EGYPT”, Proceedings of the 3rd
Environmental Physics Conference, Aswan, Egypt (2008).

[17] European Commission (EC), “Radiological protection principles concerning the natural radioactivity of building materials”, Radiation Protection Report (112), Environment, Nuclear Safety and Civil Protection, European Commission, (1999).

[18] Adil M. Hussein, “Natural Radioactivity and Radon Exhalation in the Sediment River Used in Sulaymaniyah Governorate”, Iraq. Dwellings. ARO-The Scientific Journal of Koya University, 6(2), 7-12.(2018).

[19] Marija M. Janković, Milica M. Rajačić, Tamara M. Rakić, Dragana J. Todorović,” Natural radioactivity in imported ceramic tiles used in Serbia. Processing and Application of Ceramics, 7(3), 123–127, (2013).

[20] UNSCEAR (2000),” Sources and effects of ionizing radiation", UNITED NATIONS PUBLICATION, 1 ISBN 92-1-142238- 8, V1, Sources, (2000).

[21] UNSCEAR, 1988. Sources and Effects of Ionizing Radiation. United Nations Scientific Committee on the Effects of Atomic Radiation, United Nations, New York.

[22] A.H. Taqi, A.M. Shaker, A.A. Battawy,” Natural radioactivity assessment in soil samples from Kirkuk city of Iraq using HPGe detector”, Int. J. Radiat. Res., Vol. 16 No. 4, (2018).

[23] Caridi F., Marguccio S., Belvedere A., Belmusto G.,” Measurements of Gamma Radioactivity in River Sediment Samples of the Mediterranean, Central Basin”, American Journal of Condensed Matter Physics, 5 (3), pp 61-68, (2015).

[24] Al-Masri, M.S., Mukallati, H., Al-Hamwi, A., Khalili, H., Hassan, M., Assaf, H., Amin, Y., and Nashawati, A., Natural radionuclides in Syrian diet and their daily intake, J. Radioanal. and Nucl. Chem., 260 (2), 405-412, 2004.

[25] M.Poschi and Leo M.L. Nollet,” Radionuclide Concentrations in Food and the Environment”, Taylor & Francis Group, (2007).

[26] Kathryn Higley,” Radionuclide Concentrations in Food and the Environment”, Food Science and Technology, Radionuclide Concentrations in Food and the Environment 2006-6576-209 Radiation, (2006).

[27] Saman Khabbat Ezzulddin, Ali Hassan Ahmed, Ahmed Ismael Samad, Sardar and Qader Othman,” Radioactivity Measurement of Nuts and Seeds Available in Erbil City Markets”, 6th International Conference and Workshops on Basic and Applied Sciences, Published by AIP Publishing, (2017).