Effect of postoperative corticosteroids on surgical outcome and aqueous autotaxin following combined cataract and microhook ab interno trabeculotomy

Megumi Honjo1,6, Reiko Yamagishi1,6, Nozomi Igarashi2, Chui Yong Ku1,2, Makoto Kurano3,4, Yutaka Yatomi3,4, Koji Igarashi2 & Makoto Aihara1

To evaluate the effect of postoperative corticosteroids on surgical outcome and autotaxin (ATX) levels after microhook ab interno trabeculotomy combined with cataract surgery (μLOT-CS), prospective, consecutive non-randomized case series comparing outcomes of 30 eyes with primary open angle glaucoma was performed. The aqueous ATX, intraocular pressure (IOP) and glaucoma medications were monitored for 3 months postoperatively. An in-vivo mouse μLOT model was generated. In vitro, ATX and fibrotic changes induced by dexamethasone (Dex) treatment following scratch (S) in cultured human trabecular meshwork (hTM) cells were assessed by immunofluorescence, immunoenzymatic assay, and RT-qPCR. Postoperative ATX at 1 week and the number of antiglaucoma medications at 3 months were significantly lower in non-steroid group, and steroid use was the only variable significantly associated with postoperative medications at 3 months in multiregression analyses. In vitro, ATX activity was significantly upregulated in the Dex + S group, and αSMA was significantly upregulated in the Dex and Dex + S groups. Fibronectin and COL1A1 were significantly upregulated in the S group. μLOT-CS decreased IOP and medications in the overall cohort, and non-use of postoperative steroids resulted in a smaller number of postoperative medications. Limiting postoperative steroids in μLOT may minimize IOP elevation and postoperative fibrosis.

Intraocular pressure (IOP) elevation is hypothesized to result from increased aqueous humor (AH) outflow resistance, mainly in the conventional outflow pathway1–3. This resistance involves the trabecular meshwork (TM) and Schlemm's canal (SC) tissues in cases of primary open angle glaucoma (POAG), which is the most common form of glaucoma4. The resistance in the distal pathway due to the damage of collector channels is also implicated in the advanced glaucoma5. Cellular responses involving the conventional pathway, such as regulation of the contractile properties of TM cells, remodeling and abnormal accumulation of extracellular matrix (ECM), adhesive interaction, and decreased SC permeability have been associated with glaucomatous degeneration of outflow pathway tissues6–9.

Trabeculotomy (LOT) is a surgical procedure in which the TM and inner wall of the SC, the main site of AH outflow resistance, are cleaved. Upon insult, the TM tissue responds by mediating local inflammation and initiating tissue remodeling10. We have previously reported that ab externo LOT was effective in reducing IOP, especially when combined with cataract surgery in patients with POAG, steroid-induced glaucoma, and exfoliation glaucoma10–12. The recently introduced minimally invasive glaucoma surgery (MIGS) represents a safer

1Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 1138655, Japan. 2Southern Specialist Eye Center, Melaka, Malaysia. 3Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan. 4Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan. 5BioScience Division, Reagent and Development Management, TOSOH Corporation, Kanagawa, Japan. 6These authors contributed equally: Megumi Honjo and Reiko Yamagishi. *Email: honjomegumi@gmail.com
and less traumatic surgical intervention for patients with mild to moderate glaucoma, and for those unable to tolerate standard medical therapy\textsuperscript{15,16}. Among the recent MIGS devices and techniques for ab-interno LOT\textsuperscript{15–17}, μLOT has proven to be a safe and effective procedure to lower IOP; with limited postoperative inflammation, especially when combined with cataract surgery (μLOT-CS) in open angle glaucoma (OAG) patients\textsuperscript{18–20}. Concerning postoperative inflammation, the efficacy of phacoemulsification combined with the iStent is comparable to phacoemulsification alone\textsuperscript{21}, suggesting that the need for postoperative topical corticosteroid therapy (TCT) after MIGS combined with cataract surgery may be limited\textsuperscript{22}. Although TCT has been employed routinely to suppress postoperative inflammation after intraocular surgery, it has been suggested that postoperative TCT may promote IOP elevation\textsuperscript{23,24}. Recently, Salimi et al. compared the surgical outcome of iStent, one of the MIGS for ab-interno LOT, combined with cataract surgery (iStent-CS) with versus without postoperative TCT; they found no significant difference with respect to postoperative inflammation or anterior chamber synechiae (PAS) formation; however, the steroid group had a higher number of IOP spikes compared with the non-steroid group\textsuperscript{25}.

We previously reported that the aqueous level of autotaxin (ATX), an enzyme involved in the generation of lysophosphatidic acid (LPA) via lysoPLD activity, is upregulated in OAG and plays a crucial role in the regulation of TM fibrosis and aqueous outflow resistance\textsuperscript{26–28}. ATX-LPA signaling is involved in multiple biological and pathophysiological processes, including vasculogenesis, pulmonary or liver fibrosis, and tumor progression\textsuperscript{29,30}. We confirmed that ATX is induced by dexamethasone (Dex) treatment in human TM (hTM) cells, and in turn induces a fibrotic response and ECM production in hTM cells via autocrine and paracrine manner\textsuperscript{31}.

LPA is a lipid mediator that promotes outflow resistance and mediates IOP elevation. In a previous study, we showed a positive correlation between aqueous upregulation of the ATX-LPA pathway and IOP\textsuperscript{32}. Given that the μLOT-CS procedure is associated with relatively minor trauma to TM tissues, similar to the iStent, we hypothesized that the use of postoperative TCT would provide little benefit in terms of inflammation suppression, but may predispose patients to deleterious postoperative effects such as IOP elevation. In addition, after the μLOT surgical procedure, the remodeling process may begin in the incised TM area. This could alter the profiles of several bioactive factors, including aqueous ATX (especially with corticosteroid treatment), and may play a role in postoperative pathogenic remodeling of outflow pathway tissues.

Here, we conducted a prospective study comparing the outcomes of POAG patients who underwent μLOT-CS with versus without postoperative TCT, and explored surgical outcomes according to postoperative TCT and aqueous ATX use. Aqueous ATX was upregulated in a mouse μLOT model. In addition, we demonstrated that Dex treatment induced significant ATX expression, as well as fibrotic and cytoskeletal changes, in hTM cells when combined with scratch (S) as a mechanical stress in vitro.

Results

Demographic data and surgical outcome of μLOT-CS in the steroid and non-steroid groups. The demographic and baseline clinical characteristics, and preoperative and postoperative values, of each group are presented in Table 1. There were no significant differences in age, sex, preoperative IOP, number of antiglaucoma medications, mean Mean deviation (MD), or preoperative aqueous ATX level. All eye surgeries (30 eyes; 15 each in the steroid and non-steroid groups) were performed without any complications.

Overall, the IOP and number of antiglaucoma medications decreased significantly, from 15.2 ± 3.5 mmHg and 2.2 ± 1.1 medications preoperatively to 13.3% (13.3%), the mean highest IOP value was significantly larger in the steroid group (P = 0.0304) (Fig. 1B). There were no severe postoperative complications in either group. No eyes exhibited hyphema with a height of more than 0.5 mm, or the need for additional washout or postoperative intervention. No eyes showed prolonged inflammation or a significant decrease in corneal endothelial cell density, and visual acuity was improved in all cases in both groups (data not shown). There was no significant difference in the extent of postoperative inflammation between the two groups, and only a few eyes showed an AC cell or flare grade of 1 or higher at 1 week, according to the Standardization of Uveitis Nomenclature (SUN) working group criteria (Table 1)\textsuperscript{30}. The decrease in the overall number of medications was also significantly greater in the non-steroid group (P = 0.0304) (Fig. 1B).

Relationship between aqueous ATX level and surgical outcome in the steroid and non-steroid groups. In the overall cohort, there was no significant difference in the mean aqueous ATX level between the preoperative value and that at 1 week postoperatively. Although there was no significant difference in the preoperative aqueous ATX level between the two groups, the ATX level at 1 week postoperatively was significantly lower in the non-steroid group (Table 1). One-way repeated measures ANOVA revealed that the change in ATX level was significantly greater in the non-steroid group (P = 0.0163).
Figure 1C,D illustrates the significant positive correlation between the change in ATX (preoperative vs. 1 week) and $\triangle IOP (1 \ W - pre)$ ($P = 0.0132$), which persisted at 3 months postoperatively ($P = 0.0036$) even though the anti-glaucomatous medications had been added at that time. This suggests a possible relationship between the aqueous ATX level and IOP regulation. The aqueous ATX level at 1 week increased by $\geq 10$ µg/L compared with the preoperative level in 15 eyes (50%) in the overall cohort, while the rate of increased ATX was almost the same in both groups (8 and 7 eyes in the non-steroid and steroid groups, respectively). The increased ATX level did not correlate with the $\triangle IOP$ in the non-steroid group; however, a significant correlation was observed in the steroid group ($P = 0.0164$, Fig. 1E). We speculated that the steroid-induced increase in the ATX level may have played a role in IOP elevation seen in some subjects of the steroid group.

To determine the factors associated with the number of postoperative medications at 3 months after adjusting for demographic and clinical variables, we performed simple and multiple regression analyses (Table 2). In the simple regression analysis, the highest IOP, steroid use, preoperative and postoperative (1-week) ATX levels, postoperative (1-week) IOP, and number of preoperative medications were positively associated with the number of postoperative medications; age, sex, and pre- and postoperative (3-month) IOP levels were not statistically

| Variables                      | Steroid | Non-steroid | P value  |
|-------------------------------|---------|-------------|----------|
| Patients (n)                  | 15      | 15          |          |
| Number of eyes (n)            | 15      | 15          |          |
| Gender (Male: female)         | 6:9     | 7:8         | NS*      |
| Age (years)                   | 70.7 ± 9.4 | 75.4 ± 6.7 | NS**     |
| Pre IOP (mmHg)                | 14.7 ± 3.7 | 15.7 ± 3.3 | NS**     |
| Post IOP (1 W) (mmHg)         | 15.9 ± 5.0 | 13.0 ± 3.2 | NS ($P = 0.0627$)** |
| Post IOP (3 M) (mmHg)         | 13.7 ± 2.8 | 12.6 ± 2.0 | NS**     |
| Pre medication                | 2.5 ± 1.1 | 1.9 ± 1.1 | NS**     |
| Post medication (3 M)         | 1.6 ± 1.3 | 0.1 ± 0.4 | 0.0002** |
| Pre ATX                       | 850.5 ± 659.7 | 625.9 ± 264.8 | NS**     |
| Post ATX (1 W)                | 869.8 ± 285.1 | 616.6 ± 174.4 | $P = 0.0066$** |
| IOP spike                     | 6       | 2           | NS*      |
| Highest IOP                   | 20.9 ± 7.3 | 15.7 ± 5.7 | $P = 0.0148$** |
| Range                         | 11–30   | 10–35       |          |

Table 1. Demographic characteristics and preoperative and postoperative values. Pre preoperative; Post postoperative; 1 W 1 week; SD standard deviation; IOP intraocular pressure; ATX autotaxin. IOP spike: > 25 mmHg. *Fisher’s exact test, **Mann–Whitney U test.
significant. In the multiple regression analysis, steroid use was the only variable significantly associated with the number of medications used at 3 months.

**LysoPLD activity in the mouse model of μLOT.** In clinical studies, we could not rule out effects of preoperative medication, or variation in IOP or aqueous ATX levels among individual subjects. Thus, we examined the effects of μLOT and simultaneous steroid treatment on aqueous ATX levels using the μLOT mouse model. Figure 2A illustrates the significant increase in lysoPLD activity in the μLOT + steroid group at 5 days compared with the control and steroid-only groups.
Table 2. Regression analysis of factors associated with the number of postoperative medications. B = regression coefficient or partial regression coefficient. 95% CI = 95% confidence interval of partial regression coefficient. β = standardized partial regression coefficient. adjusted R2 = adjusted coefficient of multiple determination.

|                | Simple regression analysis                  | Multiple regression analysis |
|----------------|--------------------------------------------|-----------------------------|
|                | B    | 95% CI | P value | B    | 95% CI | β     | P value |
| Post med       |      |        |         |      |        |       |         |
| Age            | −2.212 | −0.607 | 0.050 | 0.089 |        |       |         |
| Sex            | 0.066  | −0.489 | 0.216 | 0.409 |        |       |         |
| Steroid-use    | 0.265  | 0.340  | 0.803 | 0.0002|        |       |         |
| Pre med        | 0.360  | 0.035  | 0.658 | 0.033 |        |       |         |
| Pre ATX        | 120.14 | 0.088  | 0.687 | 0.016 |        |       |         |
| 1 W ATX        | 121.73 | 0.234  | 0.759 | 0.0017|        |       |         |
| Pre IOP        | 0.457  | −0.217 | 0.488 | 0.499 |        |       |         |
| highest IOP    | 3.405  | 0.291  | 0.784 | 0.0006|        |       |         |
| Post 1 W IOP   | 1.613  | 0.100  | 0.694 | 0.0138|        |       |         |
| Post 3 M IOP   | 0.616  | −0.0712| 0.593 | 0.112 |        |       |         |

(adjusted R2 = 0.4553)

Figure 2. Increased ATX activity in the mouse model of μLOT and conditioned medium of hTM cells. (A) LysoPLD activity in the aqueous humor (AH) of the mouse model of μLOT. LysoPLD activity was significantly elevated in the μLOT + steroid group at 5 days after surgery compared with the control and steroid groups. (B) LysoPLD activity in the conditioned medium. LysoPLD activity was significantly elevated in the mechanical stress (S) group compared with the control, and in the dexamethasone + stress (Dex + S) group compared with the control and Dex groups. *P < 0.05, **P < 0.01. Data are representative of three independent experiments. hTM: human trabecular meshwork.
LysoPLD activity in the conditioned medium. LysoPLD activity was significantly higher in the conditioned medium of cultured hTM cells in the S and Dex + S groups compared with the Dex group (Fig. 2B).

Effects of Dex and S on ATX expression and the fibrotic response in cultured hTM cells. We analyzed the mRNA expression levels of ATX and fibrotic markers in Dex and S-exposed hTM cells using RT-qPCR (Fig. 3). ATX expression was significantly increased in the Dex group, but not in the S or Dex + S groups (Fig. 3A). αSMA was significantly upregulated in the Dex and Dex + S groups, but not in the S group (Fig. 3B). Interestingly, fibronectin was significantly upregulated in the S group, but this upregulation was suppressed by...
Dex treatment (Fig. 3C). Regarding COL1A1 and CoL4A1, no significant upregulation was observed in the Dex or S treatment groups, but it was seen in the Dex + S group (Fig. 3D,E).

We also evaluated the relative mRNA expressions of TGF-β1-3 (Supplemental Fig. 1). The expression of TGF-β1 was significantly upregulated in the S and Dex + S groups. Also, there existed significant difference between Dex and S. The expression of TGF-β2 showed no significant difference among groups. The expression of TGF-β3 was significantly upregulated in S.

Expression of ATX and fibrotic markers in hTM as assessed by immunocytochemistry and western blotting. Immunocytochemistry (Fig. 4) and western blotting (Fig. 5) was used to examine the protein expression of ATX and cytoskeletal and fibrotic markers. A ROCK inhibitor (K115) was used to determine whether the cellular response could be suppressed, given that the Rho-ROCK pathway is downstream of ATX-LPA signaling. Figure 4 illustrates the significant upregulation in the expression of ATX (green) in the Dex, and Dex + S groups, although the RT-qPCR results suggested significant upregulation of ATX only in the Dex group. However, this result is in good accord with the lysoPLD activity shown in Fig. 2B. Although it showed the similar tendency, western blot analysis failed the significant difference of ATX expressions among groups. F-actin was also upregulated in the S and Dex groups, and enhanced in the Dex + S group in immunohistochemistry. Regarding fibrotic markers, αSMA was significantly upregulated in the Dex and Dex + S groups in immunocytochemistry (Fig. 4) and in S group and in western blot analysis (Fig. 5), in accordance with the RT-qPCR findings. In immunohistochemical analysis, fibronectin and COL1A1 upregulation were more obvious in the S group compared with the Dex and Dex + S groups. However, it showed the similar tendency, but these upregulations of cytoskeletal and fibrotic markers and attenuation by K115 were not significant by quantitative analysis using western blotting.

Discussion
Topical corticosteroids are effective in reducing anterior segment inflammation. The vulnerability of ocular tissue to damage and inflammation has warranted routine use of TCT after intraocular interventions. However, these medications are also known to be associated with several side effects, including delayed wound healing,
lowered resistance to infections, cataract formation, and increased IOP. Postoperative TCT (and resultant high corticosteroid concentrations in ocular tissue, especially in the conventional aqueous outflow pathway) has been
suggested to result in increased ECM deposition, reorganization of the cytoskeleton, fibrosis, and decreased TM cell phagocytosis, leading to increased aqueous outflow resistance and IOP elevation. This may be especially problematic for glaucoma patients; indeed, in more than 90% of POAG patients receiving corticosteroid treatment, IOP increases. For postoperative management after intracocular interventions in glaucoma patients, it is critical not only to minimize inflammation, but also to suppress and control IOP elevation.

In the present study, we assessed the impact of postoperative TCT on surgical outcome and aqueous ATX levels after μLOT-CS. In this prospective consecutive case series of POAG patients, a significant postoperative reduction in IOP was observed and fewer glaucoma medications were required. There was no significant difference in postoperative inflammation or IOP at 3 months according to the presence or absence of TCT in the postoperative regimen. However, significant reductions were observed in the postoperative IOP level and variation in aqueous ATX at 1 week, and in the number of antiglaucoma medications at 3 months, in the non-steroid group compared with the steroid group; steroid use was the only variable significantly associated with the number of postoperative (at 3 months) medications in multiregression analysis results. This suggests that TCT treatment after μLOT-CS can lead to an increase in the aqueous outflow resistance and IOP, thus necessitating a larger number of glaucoma medications.

Initially, we focused on the IOP within the first week postoperatively, i.e., when no glaucoma medications other than pilocarpine had been started. ΔIOP (1 W − pre) was significantly larger in the non-steroid group (Fig. 1A), and the highest IOP was significantly higher in the steroid group (Table 1). As shown in Fig. 1C, ΔIOP (1 W − pre) showed a significant correlation with the change in aqueous ATX level; this correlation persisted at 3 months (Fig. 1D), suggesting that the postoperative change in ATX level could continue to influence postoperative IOP control. The ATX level at 1 week postoperatively may vary not only according to postoperative TCT, but also in accordance with inflammation severity and residual hemorrhage. Indeed, half of the eyes in each group showed an elevated (by > 10 µg/L) ATX level, and there was no significant group difference in the proportion of such subjects. However, interestingly, a significant correlation between ΔIOP (1 W − pre) and elevated ATX was seen only in the steroid group (Fig. 1E). In a similar comparative study on the surgical outcome of iStent-CS versus without postoperative TCT by Salimi et al., in which surgical trauma to TM tissue was even less extensive compared with μLOT-CS, IOP spike frequency was higher in the steroid group. They observed the clinical outcome postoperatively for 6 months and there were no difference in number of postoperative medications during that period, however the number of postoperative medications was lower in non-steroid group at postoperative 3 months (0.62 ± 1.00 in steroid group and 0.27 ± 0.67 in nonsteroid group), although the difference was not significant (P = 0.071). Based on these results, we speculate that steroid-induced ATX elevation or variation may be related to postoperative fibrotic changes in TM tissue, and the resultant increases in aqueous outflow resistance and IOP.

Trauma from cataract surgery is known to produce a cascade of inflammatory pathways due to the release of arachidonic acid and production of prostaglandins via cyclooxygenase (COX)-1 and -2 enzyme activation. Excessive prostaglandin release likely leads to breakdown of the blood-aqueous barrier, possibly resulting in clinical symptoms such as pain, hyperemia, light sensitivity, and vision-threatening cystoid macular edema. Although TCT has long been the gold standard treatment modality for controlling this inflammation, by blocking the arachidonic pathway and preventing prostaglandin formation, several clinical studies have demonstrated that postoperative NSAIDs may act synergistically with the steroid by blocking COX enzymes, and could be superior to steroid treatment when used alone. Regarding the potential superiority of TCT over NSAID, sufficient evidence is lacking at this point, even after uncomplicated phacoemulsification. Several studies have examined the benefits of TCT after MIGS combined with cataract surgery. In a previous μLOT-CS case series with routine postoperative TCT, a significant IOP reduction was seen, from a preoperative mean of 16.4 ± 2.9 mmHg (slightly higher than in our study) to 11.8 ± 4.5 mmHg postoperatively; the results also showed a drop in the number of medications required, from 2.4 to 2.1 at 9.5 months postoperatively. Notably, the IOP reduction in this earlier study was comparable to that in the steroid group in the current study. In the same study, the postoperative AC flare was 6.3 pc/ms, which is within range of the baseline level. In another study, it was reported that the postoperative AC flare after μLOT returned to baseline at 1 month and was significantly lower compared with that associated with trabeculectomy at 6 months. In the present study, we did not monitor the patients for AC cell or flare quantitatively, so additional study using lase flare–cell meter will be needed for quantitative analysis; however, there were no significant differences in postoperative inflammation graded by SUN working group criteria between the non-steroid and steroid groups, and none of the eyes in either group showed prolonged inflammation at 1 week requiring additional anti-inflammatory medications. It is necessary to monitor postoperative inflammation closely and to adequately control prolonged iritis if it occurs. Given that μLOT may be accompanied by postoperative hyphema or breakdown of the blood-aqueous barrier, the results of the present study suggest that NSAIDs alone may be sufficient, and could potentially replace steroids in the treatment of typical inflammation after μLOT-CS. However, at the same time, we have to pay attention to the extent of TM incised in the present study, which was limited in the nasos for 4 o’clock. Different extents of LOT can result in more inflammation when the angle is opened to a greater extent. Further study will be needed to elucidate that NSAIDs alone can attain more severe inflammation.

Concerning the influence of postoperative hyphema and the breakdown of the blood-aqueous barrier on ATX expression, we previously found no significant correlation between the level of ATX in peripheral blood and AH. However, we also noted that oral administration of steroids decreased the circulating level of ATX, which is mainly secreted from adipose tissue under physiological conditions. Concerning the increase in serum concentration of steroids in the systemic circulation, TCT for 1 week postoperatively may have limited effects; however, further study of this issue is needed. Although our clinical results suggested a possible relationship between TCT and elevated aqueous ATX levels, variations in preoperative medications, baseline IOP, disease duration, ATX levels, and other clinical variables may have biased the results. Therefore, we used the in-vivo
or upregulation of TGFβ2, myocilin, or other factors reportedly associated with POAG and steroid-induced

Finally, we did not evaluate the formation of cross-linked actin networks, activity of ATX-ROCK axis in vitro. The responsiveness varied depending on each hTM cells, so we would like to determine whether steroid treatment may be effective in suppressing fibrosis upon the onset of this condition.

The results of this study are instructive for surgeons regarding the potential impact of TCT for µLOT-CS; it appears that TCT should be minimized or avoided after µLOT-CS due to concerns regarding myofibrogenic changes in hTM cells and resultant fibrosis of TM tissue. In the present study, we opened TM in the nasal for 4 o’clock in all patients. Tanito et al., reported that the different extents of LOT did not affect IOP reduction or postoperative medications, so we performed the minimized extent of LOT with the uniformity in all patients. However, TCT may be effective when severe inflammation occurs, presumably in cases when the greater extent of TM is incised.

There were several limitations to the present study. First, due to its prospective nature and limited number of recruited patients, aqueous ATX levels varied among the groups, although there was no significant group difference in preoperative values. In addition, the present study was a non-randomized study. Although we performed experiment using mouse model of µLOT to confirm the upregulation of aqueous ATX after µLOT, further randomized clinical study will be required. Second, the follow-up period was short. Our institution functions as a university hospital performing operations and patients usually receive postoperative medical care at community medical organization after 3 months, therefore we did not continue the observation after 3 months although there was no deposition of patients. Further studies with a larger number of patients and a longer follow-up will be needed. Third, we could not fully elucidate an additive effect between scratch and Dex treatment on the activity of ATX-ROCK axis in vitro. The responsiveness varied depending on each hTM cells, so we would like to perform further study of ELISA using patient’s aqueous humor or TM cells collected during the MIGS surgery to clarify this issue in the future study. Finally, we did not evaluate the formation of cross-linked actin networks, or upregulation of TGFβ2, myocilin, or other factors reportedly associated with POAG and steroid-induced glaucoma. Other than ATX, other cytokines could be affected by TCT and may also influence TM scarring, as we observed the upregulation of TGFβ1 and TGFβ3 in hTM cells by S (Supplemental Fig. 1). Additional studies comparing the levels of ATX and other factors including multiplex assay at various time points could further elucidate the mechanisms underlying TM tissue after surgery.

In summary, to our knowledge, this is the first study to report that postoperative TCT may be related to a higher number of postoperative glaucoma medications, possibly due to increased aqueous ATX and TM tissue fibrosis after µLOT-CS, and presumably after MIGS as a stand-alone procedure as well. The need for postoperative TCT, and its association with a higher number of glaucoma medications, should be assessed in larger, multicenter randomized control cohort studies including patients with a wider range of glaucoma subtypes and baseline IOP values, and longer follow-up periods.

**Materials and methods**

**Patients and clinical evaluation.** A prospective, consecutive non-randomized case series comparing the outcomes of 30 eyes of 30 Japanese POAG patients who underwent µLOT-CS, with versus without postoperative TCT, was conducted at the University of Tokyo Hospital. Thirty patients who underwent µLOT-CS between January 2019 and June 2019 to control IOP and treat visually relevant cataracts were enrolled in this study. All participants required surgical treatment for medical reasons and were using at least one antiglaucoma medication. The study was approved by the Institutional Review Board of the University of Tokyo and was registered with the University Hospital Medical Information Network Clinical Trials Registry of Japan (Registration ID: UMIN000027137, 26/04/2017). All procedures conformed to the Declaration of Helsinki. Written informed consent was obtained from all patients.

All subjects underwent a comprehensive ophthalmic examination, including a review of medical records, best-corrected visual acuity (BCVA), slit-lamp biomicroscopy, Goldmann applanation tonometry, gonioscopy, dilated fundus examination, and visual field examinations. The inclusion criteria were adult POAG patients...
(> 20 years old) who had undergone μLOT-CS with a minimum follow-up of 3 months. Patients with a history of ocular conditions other than OAG, steroid-induced glaucoma, cloudy corneas likely to impair gonioscopic examination, prior eye surgery (including laser trabecuoplasty), prior trauma, ocular surface disease, topical use of steroids within 3 months postoperatively, or a history of systemic use of steroids were excluded. The maximum preoperative IOP was determined within 1 month prior to surgery.

All surgeries were performed by one surgeon (M.H.). All the patients who received μLOT-CS by M.H. during the period, agreed to enter the study and met criteria were enrolled in the study consecutively. Participants were numbered according to when they entered the study, with “1” representing the first participant. The steroid group included subjects 1–15, who received TCT (0.1% betamethasone sodium phosphate four times a day) for 1 week postoperatively and took an antibiotic for 3 days preoperatively and 1 week postoperatively, a topical nonsteroidal anti-inflammatory drug (NSAID; Nepafenac 0.1% three times a day) for 8 weeks, and 1% pilocarpine (three times a day) for 4 weeks postoperatively. All patients taken off postoperative pilocarpine after 4 weeks. Subjects 16–30 were classified into the non-steroid group and received the same regimen but without TCT.

Postoperative evaluations were conducted at 1 day, 1 week, 3 weeks, 6 weeks, and 3 months postoperatively. Every evaluation visit included slit-lamp biomicroscopy, Goldmann applanation tonometry IOP measurement, and scoring of the number of antiglaucoma medications (in the case of combined medications, the sum of the active agents was used). AC cell or flare was graded according to the SUN working group criteria. Throughout the study, all examinations were conducted by two glaucoma specialists (M.H. and M.A.). A postoperative IOP spike was defined as an IOP increase ≥ 25 mmHg. Postoperative glaucoma medications were adjusted as follows. For IOP spikes occurring during the first week postoperatively, 250 mg of oral acetazolamide was prescribed as a single dose, as needed. After 1 week, topical antiglaucoma medications were added when the IOP increased by 3 mmHg or more with respect to baseline.

Surgical technique of μLOT-CS and AH collection. μLOT-CS was performed as previously reported. In brief, AH samples were collected and stored at the beginning of cataract surgery after paracentesis had been performed. Following a routine procedure of phacoemulsification and IOL implantation, with the anterior chamber (AC) filled with a viscoelastic material, the AC angle was visualized using a Swan–Jacob lens (Ocular Instruments, Bellevue, WA, USA). A Tanito ab interno microhook (Inami & Co, Ltd., Tokyo, Japan) was inserted through the side port, and the inner wall of the TM at the nasal 120° (from 2 to 6 o’clock in the right eye and from 6 to 10 o’clock in the left eye) was incised. The viscoelastic material was removed through I/A using balanced salt solution (BSS; Alcon Laboratories, Inc., Tokyo, Japan).

At 1 week postoperatively, AH was collected in the outpatient clinic again. Under topical anesthesia, approximately 70–100 μL AH was obtained using a 30-gauge syringe at the slit lamp and collected into a 1.5 mL PRO-TEOSAVE SS tube (Sumitomo Bakelite, Tokyo, Japan), which was stored at ~ 80 °C until sample processing.

Assessment of ATX and lysoPLD activity. The ATX levels in human AH was determined via a two-site immunoenzymatic assay with an ATX assay reagent using the Tosoh AIA system (Tosoh, Tokyo, Japan). ATX activity in the mouse AH and conditioned medium of cultured TM cells was evaluated based on lysoPLD activity, as described previously.

Mouse model of μLOT. All animals used in this study were treated in accordance with the ARVO Statement for the Use of Animals in Ophthalmic and Vision Research and the dictates of the Animal Use Committee of the University of Tokyo. Male C57BL/6 J mice were purchased from Japan Tokyo Laboratory Animals Science Co. Ltd. (Tokyo, Japan). Mice were bred and housed in clear cages loosely covered with air filters. The temperature was maintained at 21 °C under a 12-h:12-h light:dark cycle. All mice had access to food and water ad libitum. We used mice older than 8 weeks of age. It is well known that the conventional outflow tissue in mouse eyes is very similar to human eyes in terms of anatomy and physiology, and the reported diameter of SC visualized by OCT in living mouse was approximately 150–200 μm. In the mouse model of μLOT, a microneedle made of borosilicate glass which was an optimal size for mice eyes (tip diameter: 75–100 μm; outer diameter: 1.0 mm; World Precision Instruments, Sarasota, FL, USA) was inserted into the AC from the paracentesis and the angle area was scratched for 120° width. Antibiotic drug treatment, with or without 0.1% betamethasone eye drops, was then applied for 5 days.

Preparation of hTM cell culture and treatment. Primary hTM cells were isolated from human donor eyes and characterized as described previously according to the recommendation by Keller et al. Only well-characterized normal hTM cells, in which Dex-induced myocilin upregulation was confirmed by real-time quantitative polymerase chain reaction (RT-qPCR; passages 3–8), were used for subsequent studies. Three independent cell lines from different donors were used and the reproducibility was confirmed for every cell line. All in-vitro experiments were performed after overnight serum starvation. Cells were treated simultaneously with the indicated concentrations of ROCK inhibitor (K115, 10 μM; provided from Kowa Company, Nagoya, Japan) and Dex stimulation (100 nM; Sigma-Aldrich, St. Louis, MO, USA), with or without mechanical scratch (S) for 24 h or the appropriate vehicle control, and with the addition of the indicated concentration of fetal bovine serum. The S was in the form of four scratches of each well of the hTM cell monolayer, made with the blunt tip of an 18-G needle.

Immunocytochemistry. Immunocytochemistry was performed as described previously. The primary antibodies were anti-alpha smooth muscle actin (αSMA; Dako-Agilent, Santa Clara, CA, USA), anti-fibronectin (Santa Cruz Biotechnology, Dallas, TX, USA), rhodamine phalloidin (Thermo Fisher Scientific, Waltham, MA,
RNA extraction and RT-qPCR. To measure ATX levels in hTM cells and assess ECM gene expression, RT-qPCR was performed as described previously. Serum-starved (for 24 h) confluent cultures of hTM cells were treated with Dex (100 nM), with or without S, for 24 h and then subjected to RT-qPCR. mRNA levels were quantified by the ΔΔCt method. The sequences of PCR primers used were as follows: GAPDH: forward 5′-GGTTT GGTACC TCTG AGTGT TGT-3′ and reverse 5′-GGTTC CTTTGA AATG AGGAA TCTG-3′; TGF-β1, forward, 5′-GGTTC TGTATT CTAAG CTGAT CGT-3′ and reverse 5′-GAGAT ATTGT TGAAG GTGGA TCTG-3′; TGF-β2, forward, 5′-GTGACC AAGCTT CGCCG GTAAC TG-3′ and reverse 5′-GGAGCA ACACTG GCCGCG TCCA-3′; TGF-β3, forward, 5′-GGTTC GCCCTTCAATG GT-3′ and reverse 5′-TATAC GCCGT TGGGC AATG-3′. Target gene expression was normalized to that of GAPDH mRNA. All tests were conducted in triplicate to ensure reproducibility.

Western blotting. To measure ATX levels in hTM cells and assess ECM gene expression, western blotting was performed as described previously. After 1 dpi, cells were collected in RIPA Buffer (Thermo Fisher Scientific) containing protease inhibitors (Roche Diagnostics, Basel, Switzerland), sonicated, and centrifuged. The following protein concentration measurement and SDS-PAGE was performed as previously described. Protein bands were transferred to PVDF membranes (Bio-Rad Laboratories) and the membranes were immersed in Tris-buffered saline with Tween 20 (TBST) containing primary antibody. After washing, the membranes were immersed in TBST containing secondary antibody and reacted with ECL substrate (Thermo Fisher Scientific). Immune bands were detected by ImageQuant LAS 4000 mini (GE Healthcare, Chicago, IL, USA). Protein bands were stripped of antibodies using WB Stripping solution and incubated with mouse monoclonal antibody b -tubulin. b-tubulin served as the loading control. All membranes were purchased from Thermo Fisher Scientific (Waltham, MA USA), anti-ENPP2 (Abcam, Cambridge, MA, USA), anti-aSMA (Sigma-Aldrich Co., LLC St. Louis, MO USA, 1:1000), anti-fibronectin (1:1000; Abcam, Cambridge, MA, USA), anti-collagen type I (1:1000; Cell Signaling Technology, Danvers, MA, USA). HRP-conjugated second antibody (1:10,000) was purchased from Thermo Fisher Scientific (Waltham, MA, USA). Protein bands were detected by ImageQuant LAS 4000 mini (GE Healthcare, Chicago, IL, USA). The preoperative and postoperative clinical values of each group were compared using a Wilcoxon signed-rank sum test. Other parameters were analyzed using the Mann–Whitney U test, Chi-square test, and regression analyses. Variance inflation factors were calculated to check for multicollinearity. Group differences in repeated measurements were analyzed using one-way ANOVA with Tukey's post hoc test. All in vitro experimental data are shown as the mean ± standard deviation, unless otherwise noted. All data represent the means of at least three independent experiments. A P value < 0.05 was considered to indicate statistical significance.

Received: 12 July 2020; Accepted: 24 December 2020
Published online: 12 January 2021

References
1. Quigley, H. A. & Broman, A. T. The number of people with glaucoma worldwide in 2010 and 2020. Br. J. Ophthalmol. 90, 262–278 (2006).
2. Gabelt, B. T. & Kaufman, P. L. Changes in aqueous humor dynamics with age and glaucoma. Prog. Retin Eye Res. 24, 612–637 (2005).
3. Tamm, E. R. The trabecular meshwork outflow pathways: structural and functional aspects. Exp. Eye Res. 88, 648–655 (2009).
4. Kwon, Y. H., Fingert, J. H., Kuehn, M. H. & Alward, W. L. Primary open-angle glaucoma. N. Engl. J. Med. 360, 1113–1124 (2009).
5. Carreon, T., van der Merwe, E., Fellman, R. L., Johnstone, M. & Bhattacharya, S. K. Aqueous outflow—a continuum from trabecular meshwork to episcleral veins. Prog. Retin Eye Res. 57, 108–133 (2017).
6. Honjo, M. & Tanihara, H. Impact of the clinical use of rock inhibitor on the pathogenesis and treatment of glaucoma. Jpn. J. Ophthalmol. 62, 109–126 (2018).
7. Keller, K. E., Agra, M., Bradley, J. M., Kelley, M. J. & Acott, T. S. Extracellular matrix turnover and outflow resistance. Exp. Eye Res. 88, 676–682 (2009).
8. Vranka, J. A., Kelley, M. J., Acott, T. S. & Keller, K. E. Extracellular matrix in the trabecular meshwork: intraocular pressure regulation and dysregulation in glaucoma. Exp. Eye Res. 133, 112–125 (2015).
9. Stamer, W. D. & Clark, A. F. The many faces of the trabecular meshwork cell. Exp. Eye Res. 158, 112–123 (2017).
10. Tanihara, H. et al. Trabeculotomy combined with phacoemulsification and implantation of an intraocular lens for the treatment of primary open-angle glaucoma and coexisting cataract. Ophthalmic Surg. Lasers. 28, 810–817 (1997).

Scientific Reports | (2021) 11:747 | https://doi.org/10.1038/s41598-020-80736-w
11. Honjo, M. et al. Trabeculectomy ab externo, cataract extraction, and intraocular lens implantation: preliminary report. J. Cataract Refract Surg. 22, 601–606 (1996).
12. Honjo, M. et al. Phacoemulsification, intraocular lens implantation, and trabeculectomy to treat pseudoxfoliation syndrome. J. Cataract Refract Surg. 24, 781–786 (1998).
13. Francis, B. A. et al. Novel glaucoma procedures: a report by the American Academy of ophthalmology. Ophthalmology 118, 1466–1480 (2011).
14. Saheb, H. & Ahmed, I. I. Micro-invasive glaucoma surgery: current perspectives and future directions. Curr. Opin. Ophthalmol. 23, 96–104 (2012).
15. Lavi, C., Dallorto, L., Maule, M., Ceccarelli, M. & Fea, A. M. Minimally-invasive glaucoma surgeries (MIGS) for open angle glaucoma: A systematic review and meta-analysis. PLoS ONE 12, e0183142. https://doi.org/10.1371/journal.pone.0183142 (2017).
16. Steck, E. G. et al. Refractive outcomes among glaucoma patients undergoing phacoemulsification cataract extraction with and without Kahook Dual Blade goniotomy. Eye Vis. 6, 28. https://doi.org/10.1186/s40662-019-0153-2 (2019).
17. Ittoop, S. M., Seibold, L. K. & Kahook, M. Y. Current opinion in ophthalmology: novel glaucoma devices in the pipeline. Curr. Opin. Ophthalmol. 30(2), 112–124 (2019).
18. Tanito, M., Sano, I., Ikeda, Y. & Fujihara, E. Microhook ab interno trabeculotomy, a novel minimally invasive glaucoma surgery, in eyes with open-angle glaucoma with scleral thinning. Acta Ophthalmol. 94, e371–2. https://doi.org/10.1111/aos.12888 (2016).
19. Tanito, M., Ikeda, Y. & Fujihara, E. Effectiveness and safety of combined cataract surgery and microhook ab interno trabeculotomy in Japanese eyes with glaucoma: report of an initial case series. Jpn. J. Ophthalmol. 61, 457–464 (2017).
20. Tanito, M. Microhook ab interno trabeculotomy, a novel minimally invasive glaucoma surgery. Clin. Ophthalmol. 12, 43–48 (2018).
21. Samuelson, T. W. et al. Randomized evaluation of the trabecular micro-bypass stent with phacoemulsification in patients with glaucoma and cataract. Ophthalmology 118, 459–467 (2011).
22. Le, K. & Saheb, H. iStent trabecular micro-bypass stent for open-angle glaucoma. Clin. Ophthalmol. 8, 1937–1945 (2014).
23. Pleyer, U., Ursell, P. G. & Rama, P. Intraocular pressure effects of common topical steroids for post-cataract inflammation: Are they all the same?. Ophthalmol. Ther. 2, 55–72 (2013).
24. Razeghinejad, M. R. & Katz, L. J. Steroid-induced iatrogenic glaucoma. Ophthalmic Res. 47, 66–80 (2012).
25. Salimi, A., Winter, A., Li, C., Harasymowycz, P. & Saheb, H. Effect of topical corticosteroids on early postoperative intraocular pressure following combined cataract and trabecular microbypass surgery. J. Ocul. Pharmacol. Ther. 35, 413–420 (2019).
26. Honjo, M. et al. Role of the autotaxin-LPA pathway in dexamethasone-induced fibrotic responses and extracellular matrix production in human trabecular meshwork cells. Investig. Ophthalmol. Vis. Sci. 59, 21–30 (2018).
27. Keune, W.-J. et al. Steroid binding to autotaxin links bile salts and lysosphosphatid acid signalling. Nat. Commun. 7, 11248. https://doi.org/10.1038/ncomms11248 (2016).
28. Perrakis, A. & Moolenaar, W. H. Autotaxin: Structure-function and signaling. J. Lipid Res. 55, 1010–1018 (2014).
29. Honjo, M. et al. Autotaxin-lysophosphatidic acid pathway in intraocular pressure regulation and glaucoma subtypes. Investig. Ophthalmol. Vis. Sci. 59, 693–701 (2018).
30. Jabs DA, Nussenblatt RB, Rosenbaum JT. Standardization of Uveitis Nomenclature (SUN) Working Group. Standardization of uveitis nomenclature for reporting clinical data. Results of the First International Workshop. Am. J. Ophthalmol. 140:509–516 (2005).
31. Wang, Q. & Harasymowycz, P. Short-term intraocular pressure elevations after combined phacoemulsification and implantation of two trabecular micro-bypass stents: prednisolone versus loteprednol. J. Ophthalmol. https://doi.org/10.1155/2015/341450 (2015).
32. Wordering, R. J. & Clark, A. E. Effects of glucocorticoids on the trabecular meshwork: towards a better understanding of glaucoma. Prog. Retin Eye Res. 18, 629–667 (1999).
33. Jones, R. & Rhee, D. J. Corticosteroid-induced ocular hypertension and glaucoma: A brief review and update of the literature. Curr. Opin. Ophthalmol. 17, 163–167 (2006).
34. Clark, A. F. & Wordering, R. J. The role of steroids in outflow resistance. Exp. Eye Res. 88, 752–759 (2009).
35. Cardascia, N., Palmisano, C., Centoducati, T. & Alessio, G. Topical nonsteroidal anti-inflammatory drugs as adjuvant therapy in the prevention of macular edema after cataract surgery. Int. Ophthalmol. 37, 1127–1131 (2017).
36. Duong, H., Westfield, K. & Singleton, I. Treatment paradigm after uncomplicated cataract surgery: a prospective evaluation. Acta Ophthalmol. 93, e314–e315. https://doi.org/10.1111/aos.12221 (2015).
37. Juthani VV, Clearfield E, Roy S Chuck RS, and Cochrane Eyes and Vision Group. Non-steroidal anti-inflammatory drugs versus corticosteroids for controlling inflammation after uncomplicated cataract surgery. Cochrane Database Syst. Rev. 2, CD010516. https://doi.org/10.1002/14651858.CD010516.pub2 (2017).
38. Tanito, M., Manabe, K., Mohji, M., Takai, Y. & Matsuoka, Y. Comparison of anterior chamber flare among different glaucoma surgeries. Clin. Ophthalmol. 13, 1609–1612 (2019).
39. Sawa, M. Clinical application of laser flare–cell meter. Jpn. J. Ophthalmol. 34, 346–363 (1990).
40. Suzuki, H. et al. Decrease in circulating autotaxin by oral administration of prednisolone. Clin. Chim. Acta. 415, 74–80 (2013).
41. Honjo, M. et al. Effects of rho-associated protein kinase inhibitor Y-27632 on intraocular pressure and outflow facility. Investig. Ophthalmol. Vis. Sci. 42, 137–144 (2001).
42. Pattabiraman, P. P., Maddala, R. & Rao, P. V. Regulation of plasticity and fibrogenic activity of trabecular meshwork cells by Rho GTPase signaling. J. Cell Physiol. 229, 927–942 (2014).
43. Faralli, J. A., Filla, M. S. & Peter, D. M. Role of fibronectin in primary open angle glaucoma. Cells 8, 1518. https://doi.org/10.3390/ cells8121518 (2019).
44. Kasetti, R. B. et al. Transforming growth factor β2 (TGFβ2) signaling plays a key role in glucocorticoid-induced ocular hypertension. J. Biol. Chem. 293, 9854–9868 (2018).
45. Fini, E. M. et al. Steroid-induced ocular hypertension/glaucoma: focus on pharmacogenomics and implications for precision medicine. Prog. Retin Eye Res. 56, 58–83 (2017).
46. Aihara, M., Lindsey, I. D. & Weinreb, R. N. Experimental mouse ocular hypertension: Establishment of the model. Invest. Ophthalmol. Vis. Sci. 44, 4314–4320 (2003).
47. Li, X. G. et al. Visualization of conventional outflow tissue responses to netarsudil in living mouse eyes. Eur. J. Pharmacol. 787, 20–31. https://doi.org/10.1016/j.ejphar.2016.04.002 (2017).
48. Zhang, X. et al. In vivo imaging of Schlemm’s canal and limbal vascular network in mouse using visible-light OCT. Investig. Ophthalmol. Vis. Sci. 61, 23. https://doi.org/10.1167/iovs.61.2.23 (2020).
49. Keller, K. E. et al. Consensus recommendations for trabecular meshwork cell isolation, characterization and culture. Exp. Eye Res. 171, 164–173 (2018).
50. Igasaki, N. et al. Increased aqueous autotaxin and lysosphosphatidic acid levels are potential prognostic factors after trabeculectomy in different types of glaucoma. Sci. Rep. 8, 11304. https://doi.org/10.1038/s41598-018-29649-3 (2018).

Acknowledgements
The English in this document has been checked by at least two professional editors, both native speakers of English. For a certificate, please see: http://www.textcheck.com/certificate/6Y31xx.
Author contributions
M.H. wrote the main manuscript text and R.Y., C.K., N.I. and M.K. prepared figures 1-5. Y.Y., K.I. and M.A. prepared the materials. All authors reviewed the manuscript.

Funding
Supported by JSPS KAKENHI Grant Number 15K10854 (MH), Leading Advanced Projects for Medical Innovation (LEAP) from Japan Agency for Medical Research and Development (YY), a Grant-in-Aid for Scientific Research on Innovative Areas 15H05906 (YY), JSPS KAKENHI Grant Number 20H03573 (MK), and JSPS KAKENHI Grant Number 20H03839 (MA).

Competing interests
Koji Igarashi is an employee of TOSOH Corporation. The other authors have declared no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-020-80736-w.

Correspondence and requests for materials should be addressed to M.H.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021