Relative excitation of the seismic shear waves S_n and L_g as a function of source depth and their propagation from Melanesia and Banda arcs to Australia

BARAZANGI M. (*) - OLIVER J. (*) - ISACKS B. (*)

Received on October 7th, 1977

Relative excitation of the seismic shear waves S_n and L_g as a function of source depth and their propagation from Melanesia and Banda arcs to Australia

Barazangi M. (*) - Oliver J. (*) - Isacks B. (*)

Received on October 7th, 1977

RIASSUNTO. - L'attività sismica associata alla collisione della parte continentale della placca Australiana con gli archi oceanici della Melanesia lungo la Papua New Guinea e con l'arco di Banda, fornisce un'insolita opportunità per studiare l'excitazione relativa delle onde sismiche di taglio S_n e L_g. Tali onde sono prodotte da terremoti localizzati lungo gli archi negli ultimi 200 km della Terra e registrate dalle stazioni australiane WWSSN e Charters Towers (CTA) e ad Alice Springs (ASP). I tragitti per queste stazioni sono prevalentemente continentali. I dati mostrano chiaramente che, per eventi localizzati a profondità crostali, la L_g è la fase predominante nelle registrazioni, mentre la S_n è assente o molto debole. Per eventi più profondi di circa 50-70 km, la S_n diventa nella registrazione la fase dominante. Queste osservazioni sono in un accordo qualitativo con la definizione delle onde S_n e L_g, che sono i più importanti aspetti di onde superficiali, e le ampiezze dello spostamento della particella sono massime entro la crosta per le L_g e massime entro lo strato del mantello litosferico per le S_n. I dati suggeriscono che l'onda guida crostale per le L_g è più efficiente di quella per le S_n, o che la L_g è più facilmente eccitabile della S_n. Non si osserva nessuna chiara onda L_g per terremoti superficiali quando la lunghezza del segmento del tragitto che attraversa la struttura oceanica è superiore a circa 200 km. Inoltre, il vulcanismo Quaternario diffuso entro l'area « stabile » di Papua New Guinea a sud della cintura mobile non sembra disturbare l'efficace trasmissione dell'energia di taglio di alta frequenza (1 Hz). I tragitti relativi ad eventi localizzati lungo gli archi delle Nuove Ebridi, di Salomone e della Nuova Britannia fino all'Australasia, attraversano strutture oceaniche: da questi tragitti non si osserva nessuna onda L_g. La incapacità delle onde S_n di propagarsi lungo questi tragitti per eventi superficiali ed intermedi, può essere così spiegata: 1) Per le Nuove Ebridi l'incapacità delle onde S_n di propagarsi per quei tragitti che

(*) Department of Geological Sciences, Cornell University, Ithaca, New York 14853.
Barazangi M., Oliver J., Isacks B.

superano i 20° di distanza è legata all’età relativamente giovane (dal più basso al medio Eocene) della litosfera suboceanica del Mar di Corallo. Come proposto da Chin, Isacks e Barazangi (1979), detta litosfera relativamente sottile non è probabilmente un’onda guida efficiente per energia di taglio di 1 Hz ca. 2) L’incapacità delle onde Sn relative ad eventi localizzati lungo gli archi della parte settentrionale di Salomone e della Nuova Britannia di propagarsi, è probabilmente dovuta ad attenuazione anormale nel mantello superiore al di sotto del bacino di Woodlark e della Papua New Guinea sud-orientale. 3) L’incapacità delle onde Sn relative ad eventi più profondi di 150 km localizzati nella parte più occidentale della zona di immersione settentrionale di Benioff dell’arco della Nuova Britannia potrebbe essere dovuta a) all’isolamento strutturale del segmento discendente quasi verticale della placca in cui gli eventi avvengono, oppure alla complessità strutturale delle placche nella regione che interrompe l’onda guida delle onde Sn nelle stazioni Australiane. Questa caratteristica strutturale potrebbe essere il risultato della collisione della placca Australiana con l’arco della Nuova Britannia.

SUMMARY. - Seismic activity associated with the collision of the continental part of the Australian plate with the oceanic Melanesian arcs along Papua New Guinea and the Banda arc provides an unusual opportunity to study the relative excitation of the seismic shear waves Sn and Lg. These waves are produced by earthquakes located along the arcs in the upper 200 km of the earth and are recorded by the Australian WWSSN Stations at Charters Towers (CTA) and Alice Springs (ASP). The paths to these stations are predominantly continental. The data clearly show that for events located at crustal depths, Lg is the predominant phase on the records and Sn is either absent or very weak. For events deeper than about 50-70 km, Sn becomes the predominant phase on the records. These observations are in qualitative agreement with the explanations of Sn and Lg as higher modes of surface waves, for the particle displacement amplitudes are maximum within the crust for Lg and maximum within the lid of the lithospheric mantle for Sn. The data suggest that either the crustal wave guide for Lg is more efficient than that for Sn, or that Lg is more easily excited than Sn. No clear Lg is observed from shallow earthquakes when the length of the segment of the path crossing oceanic structure is greater than about 200 km. Also, widespread Quaternary volcanism within the « stable » area of central Papua New Guinea to the south of the mobile belt does not seem to affect the efficient transmission of high-frequency (1 Hz) shear energy.

The paths from events located along the New Hebrides, Solomon, and New Britain arcs to Australia traverse oceanic structure, and no Lg is observed from these paths. The inefficient propagation of Sn along these paths from both shallow and intermediate-depth events can be explained as follows: 1) For the New Hebrides case, the inefficiency of Sn propagation for paths exceeding about 20° distance is related to the relatively young age (Lower to Middle Eocene) of the suboceanic lithosphere of the Coral Sea. As proposed by Chin, Isacks and Barazangi (1979), such relatively thin lithosphere is probably not an efficient wave guide for shear energy of about 1 Hz). The inefficiency of Sn propagation from events located along the northern Solomon and the New Britain
are probably due to anomalous attenuation in the uppermost mantle beneath the Woodlark basin and beneath southeastern Papua New Guinea. 3) The inefficiency of Sn propagation from events deeper than about 150 km located in the westernmost part of the northerly-dipping Benioff zone of the New Britain arc could be due either to structural isolation of the nearly vertical descending segment of the plate in which the events occur, or could be due to structural complexity of the plates in the region which interrupts the wave guide for Sn to the Australian stations. This structural feature could be the result of the collision of the Australian plate and the New Britain arc.

INTRODUCTION.

The Melanesian island arcs of New Hebrides, Solomon, New Britain, and Papua New Guinea, as well as the Banda arc, are amongst the seismically most active and complex plate boundaries on earth. The Australian plate descends beneath these arcs into the upper mantle, and the continental part of the Australian plate is in collision with the Papua New Guinea and Banda arcs. Among other things, this unusual situation provides an exceptional opportunity to study the nature of propagation of high-frequency shear waves from sources at different depths and with varying amounts of oceanic and continental structures along the paths.

This paper concerns the relative excitation and propagation of the seismic shear waves Lg and Sn produced by earthquakes located along the Melanesian and Banda arcs and recorded at the two World-Wide Standardized Seismograph Network (WWSSN) stations of Charters Towers (CTA) and Alice Springs (ASP) located in Australia (see Figs. 1 and 2). Fortunately, these two stations are among the most sensitive stations of the world-wide network and have already produced large amounts of data on Lg and Sn that are available for examination. The distance from the sources to the stations varies from a minimum of about 1° to a maximum of about 25°. In particular, we examine two aspects of Lg and Sn. The first concerns the relative excitation of Lg and Sn as a function of the source depth. The propagation paths from Papua New Guinea-Banda sources to the CTA and ASP stations traverse the continental part of the Australian plate (the Arafura Sea is a very shallow sea with water depths that do not exceed about 200 m).
Fig. 1 Map of the southwest Pacific showing the Melanesian and Banda arcs and northeastern Australia. Selective contours of water depths are shown in fathoms. The 1000 fathoms' contour approximately marks the boundary of the continental lithosphere. Note that the Arafura Sea is a very shallow sea with water depths that do not exceed about 100 fathoms. Symbols' explanation is shown in the upper right hand corner of the figure, and see Fig. 5 for the depth distribution of the events used in this figure. This figure shows the results obtained at the Charters Towers (CTA) station in Australia.
The earthquakes along the Papua New Guinea collision boundary are distributed in about the upper 200 km of the earth along a diffuse but approximately vertical zone (see, for example, Denham, 1969; Johnson et al., 1971; Curtis, 1973a). Earthquakes in the Banda arc define a well-determined Benioff zone that dips at about 50° towards the Southeast Asia plate (Cardwell and Isacks, 1978). This geometry of the spatial distribution of shallow and intermediate-depth earthquakes relative to the continental Australian plate provides a unique opportunity to study the excitation of L_g and S_n as a function of source depth. Although many studies are available in the literature that discuss
different properties and characteristics of Lg and Sn (e.g., Isacks and Stephens, 1975; Ruzasen et al., 1977; Chinn et al., 1979, there is no study available concerning the relative excitation of these two phases as a function of source depth for a given region.

The second contribution of this paper concerns the nature of Sn propagation across the oceanic regions that separate the New Hebrides, Solomon and New Britain arcs from Australia. Propagation paths from sources located along these arcs traverse diverse tectonic environments on their way to Australia. Thus, while the Coral Sea is underlain by a relatively stable oceanic lithosphere of Early to Middle Eocene age (Gardner, 1970; Burns and Andrews et al., 1973; Andrews and Packham et al., 1975), the Woodlark basin is a very young oceanic basin with active sea floor spreading (Milsom, 1970; Karig, 1972; Lyenpfk et al., 1973).

The seismic phase Lg is a wave train of about one to two minutes in duration, usually emergent, and the beginning of the wave train travels with a group velocity of about 3.5 to 3.6 km/sec, the average shear velocity in the continental crust (Press and Ewing, 1952). As recorded on short-period instruments, the Lg phase has a predominant period of about 1 to 1.5 sec. The phase does not propagate across oceanic basins and only a 100 to 200 km segment of the path in oceanic structure is sufficient to eliminate the Lg phase (Oliver et al., 1955; Ewing et al., 1957). Although the phase is larger on the transverse component it is usually well-recorded on the radial and vertical components. For continental paths, Lg is the largest and most striking seismic phase on the short-period records produced by shallow earthquakes located within the continental crust.

Oliver and Ewing (1957, 1958a and 1958b) and Kowalski and Anderson (1964) proposed that Lg (as well as Sn) represents higher modes of surface waves at short periods. Using normal mode theory they showed that a simple increase of velocity with depth in a continental crust forms an effective «wave guide» that is sufficient to explain the Lg phase without the need to assume crustal low-velocity channels, as had been previously proposed. Recently, Kipps et al. (1973 and 1974) quantitatively demonstrated the validity of this interpretation using realistic source mechanisms and a realistic continental structure. They showed that group velocities of higher modes of Love waves at short periods are associated with amplitudes large enough to form the dominant Lg arrivals, and that particle displacement amplitudes
of these higher modes are almost completely confined to the continental crust.

The seismic phase S_n is a train of shear waves about one minute in duration with a predominant frequency of about 1 Hz as recorded on the three component, short-period instruments of the WWSSN, though S_n is typically largest on the transverse component. The phase propagates across oceanic and continental structures and is observed to a maximum distance of about 35° to 40° (e.g., Walker, 1977). The beginning of the phase travels with a group velocity of about 4.5 to 4.7 km/sec (e.g., Huestis et al., 1973). The velocity and frequency content suggest that the phase travels in the uppermost part of the mantle above the attenuating low-velocity zone; that is, the phase travels in the mantle lid of lithospheric plates. This property made the phase quite useful in mapping discontinuities in the horizontal lithospheric plates on earth (e.g., Molnar and Oliver, 1969; Barazangi and Isacks, 1971) as well as in mapping the extent of the descending lithospheric plates in the upper mantle (e.g., Oliver and Isacks, 1967; Utsu, 1971). Oliver and Ewing (1958b) and later Brune and Dorman (1963) suggested that S_n can be explained in terms of higher modes of surface waves at short periods in a manner similar to that proposed for the explanation of L_g.

For the S_n case, an increase of velocity with depth in the uppermost mantle forms an effective "wave guide" that can account for S_n in terms of normal mode theory. This explanation is in marked contrast to the proposal that the efficient propagation of S_n is due to low-velocity channels in the uppermost mantle (e.g., Shurbet, 1962 and 1964; Sutton and Walker, 1972). Recently, Stephens and Isacks (1977) used theoretical studies based on a realistic earth structure to demonstrate quantitatively the validity of the explanation of S_n in terms of higher modes. They found that the particle displacement amplitudes of higher modes with group velocity near that of S_n velocity are mostly restricted to depths above the low-velocity zone of the upper mantle and are largest within the mantle lid of lithosphere. Moreover, an important conclusion of their study is that at periods longer than about 1.5 seconds, higher modes with group velocity near that of S_n have considerable particle displacements in the low-velocity, low Q zone in the upper mantle and are, therefore, attenuated. This explains the observed predominance of S_n frequencies of about 1 Hz and larger (Isacks and
Fig. 3. Representative seismograms produced by shallow and intermediate depth earthquakes located along Papua New Guinea-Banda seismic zones and recorded at the CTA station in Australia. All records are produced by the horizontal components, short-period instruments. See Table 1 for the parameters of the events that produced these records, and see Fig. 1 for the locations of the events. The records are arranged in increasing depths. The group velocities (in km/sec) and identification of Lg and Ss phases are shown on the records. Note that for the four shallow events only Lg phase is recorded. As the depth of events increases, the Ss phase is also recorded, and for events deeper than about 100 km the train of seismic energy that follows Ss continues for more than four minutes well beyond the expected arrival time of the Lg phase. This could be explained by the conversion of Ss into Lg along the propagation path and the subsequent propagation of Lg within the crustal wave guide. Note that records 7 and 8 show only short-duration Ss phases since the propagation paths from these two events traverse oceanic structure.
Table 1. Parameters (1) of earthquakes shown in Figures 3 and 6.

Earthquake Number	Date	Origin Time hr.: min.: sec.	Latitude S	Longitude E	Depth Km	Distance (km) to CTA	Azimuth (°) to CTAE	Component at CTA
1	Sept. 26, 1968	16: 25: 46	4.50	139.30	5	16.90	157	E — W
2	June 9, 1969	06: 51: 15	3.26	142.91	17	17.04	169	E — W
3	Nov. 5, 1965	07: 34: 10.9	4.70	134.00	35	19.40	143	E — W
4	Nov. 10, 1969	15: 42: 35.1	5.57	142.06	44	15.00	165	E — W
5	July 2, 1968	18: 40: 11.3	2.70	139.01	72	18.67	158	E — W
6	Jan. 4, 1969	22: 36: 47.9	6.80	129.79	100	20.73	151	E — W
7	Jan. 7, 1969	01: 14: 15.6	6.20	146.44	111	13.80	181	E — W
8	Sept. 3, 1967	01: 23: 19.7	7.78	147.12	135	12.27	184	E — W
9	Apr. 20, 1967	00: 01: 26.1	5.57	129.71	174	21.61	133	E — W
A	July 29, 1969	06: 24: 22.7	14.84	167.30	128	20.73	252	N — S
B	Jan. 14, 1969	12: 35: 35	10.85	184.48	16	19.81	240	N — S
C	Aug. 22, 1969	15: 45: 05.9	7.59	155.92	82	15.56	216	E — W
D	Aug. 7, 1969	01: 49: 32.9	5.26	154.06	116	16.58	207	E — W
E	Aug. 30, 1969	12: 51: 57.5	5.63	148.29	162	14.50	188	N — S
F	Sept. 1, 1967	03: 31: 10.9	5.56	147.18	184	14.47	183	N — S
G	Apr. 13, 1968	17: 33: 11.2	5.43	146.92	226	14.38	182	N — S
H	Aug. 2, 1969	04: 30: 32	6.52	146.92	33	13.51	183	E — W
I	Aug. 15, 1969	03: 37: 52.9	3.45	144.39	22	16.64	174	N — S
J	Oct. 24, 1968	02: 02: 25	5.43	143.42	25	16.78	171	E — W

(1) All parameters are those reported by the Bulletins of the International Seismological Centre (ISC).
The explanation of \(L_g \) and \(S_n \) waves in terms of higher modes of surface waves predicts that excitation of these waves should be the strongest when the source is located in the crust for the \(L_g \) phase and when the source is located in the mantle lid of the lithosphere for the \(S_n \) phase. In this paper we present observations that support the above explanation.

The locations and the origin times of the events used in this study are those reported in the Bulletins of the International Seismological Centre (ISC). The body-wave magnitude of the events used varies from about 4.5 to 6.0. For every event used we examined all three components of the short-period records and searched for the existence or absence of \(L_g \) and \(S_n \) phases. If the phases are recorded, the group velocities of the first arrivals are determined; otherwise the expected time of arrivals using the determined \(L_g \) and \(S_n \) velocities are marked (see Fig. 3 and Table 1). We obtained \(L_g \) and \(S_n \) velocities that vary from 3.5 to 3.6 and from 4.5 to 4.6 km/sec, respectively. For any given propagation path, we have examined enough data to establish unambiguously a clear pattern. Moreover, data from the ASP station are examined to document the validity and the pattern of observations as obtained from the extensive data of the CTA station.

Relative excitation of \(L_g \) and \(S_n \) as a function of source depth.

The most striking observation in this study is the predominance of the \(L_g \) phase on the short-period records of CTA and ASP, especially the transverse component, produced by events located in about the upper 40 km of earth, in comparison with other seismic phases (see Fig. 3). The observed \(L_g \) is often emergent and has a duration of about two minutes. For events deeper than about 40 km, a weak but clear \(S_n \) arrival is observed on the short-period records (see Fig. 3). Figure 4 clearly shows that the ratio of the maximum amplitudes of \(L_g \) and \(S_n \) phases as measured on the transverse component relative to the maximum \(P \) amplitudes as measured on the vertical component is on the average about three times larger for the \(L_g \) case in comparison to the \(S_n \) case. This suggests that either the \(L_g \) crustal wave guide is a more efficient...
Fig. 4. This figure clearly shows that the ratio of the maximum amplitudes of L_g and S_n phases as measured on the transverse component relative to the maximum P amplitudes as measured on the vertical components versus depth of events is on the average about three times larger for the L_g case in comparison to the S_n case. These observations suggest that either the L_g crustal wave guide is a more efficient one than the uppermost mantle wave guide of S_n, or that L_g is more easily excited than S_n.

one than the uppermost mantle wave guide of S_n, or that L_g is more easily excited than S_n. Records produced by events deeper than about 70 km show large S_n arrivals and the train of seismic energy that follows S_n continues for more than four minutes, well beyond the expected arrival time of the L_g phase (see Figs. 3 and 5). Thus no distinctly separated L_g and S_n phases are recorded from events deeper than about 70 km. The continuous recording of seismic waves after the S_n arrival could be explained by the conversion of S_n into L_g along the propagation
path and the subsequent propagation of Lg within the crustal wave guide (see ISACKS and STEPHENS, 1975; CRAIN et al., 1979).

The above observations are in agreement with the quantitative explanations of Lg and Sn in terms of normal mode theory. Since the particle displacement amplitudes of the higher modes of surface waves that make up the Lg phase are largely restricted to the crust (KNOPF

\& al., 1975), and since the continental crust beneath the Australian shelf is about 35 km thick (JACOBSON and SMOR, 1977), then Lg will be excited most efficiently by sources located within the crust, as we have observed. The particle displacement amplitudes of the higher modes of surface waves that make up the Sn phase are largely restricted to the uppermost mantle (STEPHENS and ISACKS, 1977), and therefore,
Sn is excited very efficiently by sources in the uppermost mantle and hence deeper than about 40 km, as has been observed. The explanation of Sn in terms of normal mode theory can also account for the observed large Sn arrivals propagating across oceanic lithospheres from shallow events located within oceanic structures. The oceanic crust is much thinner than the continental crust and hence the sources are much closer to the Sn wave guide in the uppermost mantle. The occurrence of earthquakes to depths of about 150 km and deeper along the Papua New Guinea-Banda collision zone suggests structural continuity of the horizontal continental plate with the oceanic descending plate in the upper mantle as defined by the mantle events.

Sn waves generated by mantle events will encounter the much thicker continental crust near the surface and will be converted to Lg in a manner similar to that proposed originally by Isacks and Stephens (1975) for Sn to Lg conversion along continental margins. This mechanism can explain the observed continuous arrival of seismic energy between Sn and the expected Lg arrival produced by mantle events (see Fig. 3).

The Lg phase does not propagate across oceanic basins, and only a 100 to 200 km segment of the path in oceanic structure is sufficient to eliminate the phase (Oliver et al., 1955; Ewing et al., 1957). In this study we find similar observations where the Lg phase is eliminated by propagation in only about 200 km of oceanic structure (as defined by water depths greater than about 2 km) that exists between eastern Papua New Guinea and northeastern Australia (see Figs. 1 and 3). Moreover, the sudden disappearance of the Lg phase as found in this study (see, for example, records 1 and 2 in Fig. 6) suggests that there must be a critical distance for Lg propagation in the oceanic structure beyond which Lg is eliminated. This observation must be explained by any quantitative study of the lack of Lg transmission across oceanic structures.

It is worth noting here that Lg and Sn phases are efficiently transmitted across central Papua New Guinea where numerous (more than sixteen) stratovolcanoes of Quaternary age are scattered through a region of about 200 km in width and about 400 km in length (see Fig. 1). Basaltic rocks are dominant in eleven volcanoes, and andesitic-type rocks are dominant in the rest of the volcanoes (MacKenzie, 1976). The tectonic significance of these volcanoes is not understood since they are underlain by relatively stable old continental crust and the initiation of volcanism in early Pliocene is much more recent than the last episode.
Fig. 6. Representative seismograms produced by shallow and intermediate depth earthquakes located along the New Hebrides, Solomon, New Britain, and Papua New Guinea seismic zones and recorded at the CTA station in Australia. All records are produced by the horizontal components, short-period instruments. See Table 1 for the parameters of the events that produced these records, and see Fig. 1 for the locations of the events. The group velocities (in km/sec) of the expected beginning of Lg and Sn phases are indicated on the records. Inefficient Sn propagation from events A and B is related to the relatively young age of the suboceanic lithosphere of the Coral Sea. Inefficient Sn propagation from events C, D, and E is due to anomalous attenuation in the uppermost mantle beneath the Woodlark basin and beneath southeastern Papua New Guinea. Inefficient Sn propagation from the intermediate depth events F and G is due either to structural isolation of the plate in which the events occur, or to structural complexity of the plates near the collision zone that interrupts the Sn wave guide. This is in contrast to the efficient Sn propagation from the intermediate depth events located just south of the vertical zone (see records 7 and 8 in Fig. 3, and see also Fig. 7 b). Sn phase is not efficiently excited by shallow crustal events (records H, I, and J), and Lg is not recorded from events H and I since the propagation paths traverse an oceanic structure. However, when the length of the segment of the path crossing oceanic structure is less than about 200 km Lg is well recorded (record J).
of collision in early Miocene between the northern margin of Papua New Guinea and the New Britain arc (e.g., Mackenzie, 1976; Johnson, 1976). The transmission of high-frequency shear waves across this region suggests that there is no wide-spread zone of partially melted material in the crust or the uppermost mantle beneath the volcanoes to attenuate these waves.

INEFFICIENT PROPAGATION OF Sn FROM NEW HEBRIDES, SOLOMON AND NEW BRITAIN ARCS TO AUSTRALIA.

Inefficient Propagation of Sn and the Age of the Lithosphere.

Abundant data clearly show that Sn is not transmitted across the Coral Sea to the CTA station from shallow and intermediate depth events located along the New Hebrides and the southern part of the Solomon arcs (see Figs. 1 and 6, and Table 1). The distance from these events to the CTA station varies from about 18° to 25°. Molnar and Oliver (1969) were the first to report this «anomalous» inefficient Sn propagation in the Coral Sea; the observations do not fit the global pattern of Sn propagation, as mapped by Molnar and Oliver, in which the lithospheric regions in front of island arcs transmit Sn very efficiently, as in the western Pacific regions in front of the Tonga-Kermadec arc (Oliver and Isacks, 1967; Barazangi et al., 1972) and in front of the Bonin-Mariana arc (Sutton and Walker, 1972; Walker, 1977). Barazangi et al., (1974) showed that Sn propagates very efficiently along a 400 km wide region just to the west of the New Hebrides trench. As the Coral Sea region is for the most part of Early to Middle Eocene in age and has no obvious recently active tectonic structures that may be associated with anomalous attenuation in the uppermost mantle, the observations of inefficient transmission of Sn remained unexplained. However, two recent studies by Stephens and Isacks (1977) and Chinn et al., 1979, produced results that may help to explain the above observations. Chinn et al., observed that Sn propagates efficiently only to a maximum distance of about 15° along the eastern part of the Nazca plate. The Eocene age (about 50 to 60 m.y.) of this segment of the Nazca plate is comparable to that of the Coral Sea. This contrasts with efficient Sn
propagation for distances beyond 50° in the western Pacific (Walker, 1977) which has a Mesozoic age (>130 m.y.). Thus, there seems to be a relationship between the maximum distance along which Sn propagates efficiently and the age, and hence the thickness, of the oceanic plates.

Stephens and Isacks (1977) quantitatively explained Sn in terms of higher modes of surface waves. An important conclusion of their study is that for the oceanic structure they used, which has a 60 km thick lithosphere on top of a low velocity-low Q zone, higher modes with group velocity near Sn velocity and with periods longer than about 1.5 seconds have a considerable particle displacement in the low Q zone and are therefore subject to severe attenuation. This explains the predominance of high frequency waves (1 Hz and higher) associated with Sn, though in our study Sn waves have a predominant frequency of only about 1 Hz since the response of the short-period WWSSN instruments is peaked around 1 Hz. This conclusion of Stephens and Isacks may qualitatively explain the observed inefficient transmission of Sn across the Coral Sea. The thickness of a lithospheric plate with the age of the Coral Sea may be less by about a factor of 1.5 than the older western Pacific plate (Yoshi et al., 1976; Schubert et al., 1976; Turcotte and Oxburgh, 1978). Thus, for the thinner lithospheres of the Coral Sea and the Nazca plate, the 1 Hz component of higher modes of surface waves that make up Sn may have a substantial particle displacement in the low Q zone and are therefore attenuated if Sn propagates beyond a critical distance. If this explanation is correct then it predicts that for a given lithosphere the higher frequency components of Sn will travel farther and more efficiently than the lower frequency components. The results of Walker (1977) regarding Sn propagation in the Ontong Java plateau are in agreement with this prediction.

It must be mentioned here, however, that recent data on heat flow and magnetic anomalies in the eastern part of the Coral Sea (e.g., Larue et al., 1977) suggest the existence of a fossil spreading center in the region of an Oligocene age (about 30 m.y.). If anomalous uppermost mantle material still exists beneath this fossil feature, then it is possible to explain some of the inefficient Sn observations as due to propagation across this anomalous material.
Inefficient Propagation of Sn Across the Woodlark Basin and Southeastern Papua New Guinea.

Geological and geophysical data show that the Woodlark basin is a recently active marginal basin which is extensional in origin (MILSON, 1970; KARIG, 1972; LUYENDYK et al., 1973). This tectonic environment is usually associated with a zone of anomalous high attenuation, or low Q in the uppermost mantle beneath the basin (see, for example, BARAZANGI and ISACKS, 1971, for a detailed study of the Lau basin behind the Tonga Island arc). Thus, the observed inefficient transmission of Sn across the basin (see Fig. 1) suggests the presence of an anomalously low Q zone beneath the Woodlark basin.

A major feature of the geology and structure of southeastern Papua New Guinea (the Papuan peninsula) is the ultramafic belt, an ophiolite suite of rocks considered to result from the collision of continental crust with an active island arc during the late Eocene (e.g., DAVIES and SMITH, 1971; KARIG, 1972; MILSON, 1973). Extensive volcanism started in the late Miocene on the Papuan peninsula and offshore islands (JOHNSON et al., 1973) and is still active to the present time (see Fig. 1). The tectonic significance of this recent episode of volcanism is not understood. It could, however, be related to the extensional tectonics predominant in the adjacent Woodlark basin, and therefore, an anomalous low Q zone in the uppermost mantle may exist beneath the peninsula that may be responsible for the observed inefficient propagation of Sn.

Inefficient Propagation of Sn From Mantle Earthquakes Located Along the Collision Zone Between the Australian Plate and New Britain Arc.

The geology and structure of northern Papua New Guinea are influenced to a large extent by the collision, starting in the Miocene, of the continental part of the Australian plate with the Melanesian arc systems (e.g., DEWEY and BIRD, 1970; COLEMAN, 1971; KARIG, 1972; CURTIS, 1973 b; JOHNSON, 1976). The effects of the collision process has currently reached the northeastern part of Papua New Guinea along the western edge of the New Britain arc (see Fig. 1). Although the northerly dipping Benioff zone beneath the New Britain arc is well-defined, the structure of the region along the collision zone is
very complex and many tectonic models are proposed to describe the
depth structure of the region (see, for example, Johnson and Molnar, 1972;
Johnson, 1976). A major controversy concerns the existence, beneath
the region, of a well-defined descending lithospheric plate which is
continuous with a horizontal lithosphere, and what is the polarity of
such a descending plate.

The spatial distribution of earthquakes beneath the region (see
Fig. 7) does not delineate a well-defined Benioff zone in about the
upper 150 km of earth; the data can be interpreted to suggest either
a southwesterly or a north-easterly dipping Benioff zone (e. g.,
Dunham, 1969; Johnson et al., 1971; Curtis, 1973 a). However, a
striking feature of the spatial distribution of earthquakes is the near
vertical cluster of events between depths of about 150 and 250 km.
These events appear to be isolated from the diffuse pattern of hypocenters
to the south and also appear to be separated from the well-defined
northerly dipping Benioff zone beneath the New Britain arc to the
east (see Fig. 7 from Johnson et al., 1971).

In this study we observed that Sn waves are transmitted very
efficiently to Australia from subcrustal events located in the diffuse
pattern of hypocenters beneath northeast Papua New Guinea (see
Figs. 3 and 5). However, no Sn is observed from the events located in
the nearly vertical cluster of events. These observations may indicate
that the plate segment as defined by the vertical cluster of events is
structurally isolated in the upper mantle from any horizontal lithosphere
on the surface. Thus, Sn waves from these events would have to travel
high-frequency shear waves and hence interrupts the Sn wave guide to
a short distance through the low Q asthenosphere which attenuates the
the Australian stations. It is possible that the isolated segment of slab
was part of the northerly dipping slab that exists beneath the New
Britain arc but is now detached from it as a result of the collision of
the continental Australian plate and the New Britain arc.

An alternative explanation for the inefficient propagation of Sn from
the mantle events located in the nearly vertical cluster of events could
be due to deep structural complexity of the plates along the collision
zone. This structural complexity may prohibit the channelling of Sn-type
waves into the horizontal lithosphere and hence interrupts the wave
guide for Sn to the Australian stations.
Fig. 7. Two cross-sections showing the distribution of hypocenters in the upper 200 km of earth along the northern part of Papua New Guinea (section A) and along the northeastern part of Papua New Guinea close to the western edge of the New Britain arc (section B). The two sections are adopted from Johnson et al. (1971). The nature of L_g and S_n propagation as recorded at the CTA station is indicated by numbers which are explained at the bottom of the figure. Number 1 is represented by records 1, 2, 3, and 4 of Fig. 3; number 3 is represented by record 5 of Fig. 3; number 4 is represented by records 6 and 9 of Fig. 3; number 5 is represented by the records of Fig. 6 (except record 1); and finally number 6 is represented by records 7 and 8 of Fig. 3. Note the near vertical cluster of events between depths of about 150 and 250 km in section B. These events appear to be isolated from the diffuse pattern of hypocenters to the south and may indicate that the descending plate segment defined by these events is structurally isolated in the upper mantle from any horizontal lithosphere on the surface.
ACKNOWLEDGEMENTS.

The research reported in this paper was supported by the Office of Naval Research under contract N00014-75-C-1121, and by National Science Foundation Grant DES75-14815.

REFERENCES

ANDREWS, J., and G. PACKHAM, et al., 1975. - Initial reports of the deep sea drilling project, 30, Washington D. C. (U. S. Government Printing Office), p. 89 and p. 153.

BARAZANGI, M., and B. ISACKS, 1971. - Lateral variations of seismic wave attenuation in the upper mantle above the inclined earthquake zone of the Tonga island arc: deep anomaly in the upper mantle. «J. Geophys. Res.,» 76, pp. 8493-8510.

BARAZANGI, M., B. ISACKS, and J. OLIVER, 1972. - Propagation of seismic waves through and beneath the lithosphere that descends under the Tonga island arc. «J. Geophys. Res.», 77, pp. 952-958.

BARAZANGI, M., B. ISACKS, J. DUBOIS, and G. PASCAL, 1974. - Seismic wave attenuation in the upper mantle beneath the southwest Pacific. «Tectonophys.», 24, pp. 1-12.

BRUNE, J., and J. DORMAN, 1965. - Seismic waves and earth structure in the Canadian shield. «Bull. Seism. Soc. Am.», 53, pp. 107-209.

BURNEW, R., and J. ANDREWS, et al., 1975. - Initial reports of the deep sea drilling project, 21, Washington D. C., (U. S. Government Printing Office), p. 569.

CARDWELL, R., and B. ISACKS, 1978. - Geometry of the subducted lithosphere beneath the Banda sea in eastern Indonesia from seismicity and fault-plane solutions. «J. Geophys. Res.», 83, pp. 2825-2838.

CHINN, D., B. ISACKS, and M. BARAZANGI, 1979. High-frequency wave propagation in western South America along the continental margin, in the Nazca plate, and across the Altiplano, «Geophys. J. R. astr. Soc.», in press.

COLEMAN, R., 1971. - Plate tectonic emplacement of upper mantle peridotites along continental edges. «J. Geophys. Res.», 76, pp. 1212-1222.
RELATIVE EXCITATION OF THE SEISMIC SHEAR WAVES ETC.

Curtis, J., 1973 a. - The spatial seismicity of Papua New Guinea and the Solomon Islands. «J. Geol. Soc. Australia», 20, pp. 1-20.

Curtis, J., 1973 b. - Plate tectonics and the Papua New Guinea-Solomon Islands region. «J. Geol. Soc. Australia», 20, pp. 21-36.

Davies, R., and J. Smith, 1971. - Geology of eastern Papua. «Geol. Soc. Am. Bull.», 82, pp. 3299-3312.

Denham, D., 1969. - Distribution of earthquakes in the New Guinea-Solomon Islands region. «J. Geophys. Res.», 74, pp. 4290-4299.

Dewey, J., and J. Bino, 1970. - Mountain belts and the new global tectonics. «J. Geophys. Res.», 75, pp. 2625-2647.

Ewing, M., W. Jaquet, and F. Press, 1957. - Elastic Waves in Layered Media. McGraw-Hill, New York.

Gardner, J., 1970. - Submarine geology of the western Coral Sea. «Geol. Soc. Am. Bull.», 81, pp. 2399-2614.

Gardner, J., P. Molnar, and J. Oliver, 1973. - Regional Sn velocities and shear velocity in the upper mantle. «Bull. Seism. Soc. Am.», 63, pp. 469-475.

Isacks, B., and J. Oliver, 1964. - Seismic waves with frequencies from 1 to 100 cycles per second recorded in a deep mine in northern New Jersey. «Bull. Seism. Soc. Am.», 54, pp. 1941-1979.

Johnson, R., 1976. - Late Cainozoic volcanism and plate tectonics at the southern margin of the Bismarck Sea, Papua New Guinea. «The Western Pacific: Island Arcs, Marginal Seas, Geochemistry», P. Coleman (editor), Univ. W. Aust. Press, pp. 523-533.

Isacks, B., and C. Stebbins, 1975. - Conversion of Sn to Lg at a continental margin. Bull Seism. Soc. Am.», 65, pp. 275-294.

Johnson, R., D. Mackenzie, and I. Smith, 1971. - Seismicity and late Cenozoic volcanism in parts of Papua New Guinea. «Tectonophysics», 12, pp. 15-22.

Karig, D., 1972. - Remnant arcs. «Geol. Soc. Am. Bull.», 83, pp. 1057-1068.

Knopoff, L., F. Schult, and E. Kausel, 1973. - Interpretation of Lg. «Geophys. J. R. astr. Soc.», 33, pp. 389-404.
KAGOFF, L., F. SCHWAB, K. NAKASHIJI, and F. CHANG, 1974. - Evaluation of Lg as a discriminant among different continental crustal structures. « Geophys. J. R. astr. Soc. », 39, pp. 41-70.

NOVACH, R., and D. ANDERSEN, 1964. - Higher mode surface waves and their bearing on the structure of the earth's mantle. « Bull. Seism. Soc. Am. », 54, pp. 161-182.

LARUE, B., J. DANIEL, C. JOUANNIC, and J. RECY, 1977. - The south Reuss trough: Evidence for a fossil spreading zone. in « Geodynamics in South-West Pacific, Editions Technip, Paris, pp. 51-61.

LUYENDYK, B., K. MAC DONALD, and W. BRYAN, 1973. - Rifting history of the Woodlark basin in the southwest Pacific. « Geol. Soc. Am. Bull. », 84, pp. 1125-1134.

MACKENZIE, D., 1976. - Nature and origin of late Cainozoic volcanoes in western Papua New Guinea. in « Volcanism in Australasia », R. Johnson (editor), Elsevier Co., pp. 221-238.

MILSOM, J., 1970. - Woodlark basin, a minor center of sea-floor spreading in Melanesia. « J. Geophys. Res. », 75, pp. 7335-7339.

MILSOM, J., 1973. - Papuan ultramafic belt: gravity anomalies and the emplacement of ophiolites. « Geol. Soc. Am. Bull. », 84, pp. 2243-2258.

MILSOM, J., and J. OLIVER, 1969. - Lateral variations of attenuation in the upper mantle and discontinuities in the lithosphere. « J. Geophys. Res. », 74, pp. 2648-2682.

OLIVER, J., E. EWING, and F. PRESS, 1955. - Crustal structure of the Arctic region from the Lg phase. « Geol. Soc. Am. Bull. », 66, pp. 1063-1074.

OLIVER, J., E. EWING, M., 1975. - Higher modes of continental Rayleigh waves. « Bull. Seism. Soc. Am. », 67, 187-204.

OLIVER, J., E. EWING, M., 1958 a. - Normal modes of continental surface waves. « Bull. Seism. Soc. Amer. », 48, 33-49.

OLIVER, J., E. EWING, M., 1958 b. - The effect of surficial sedimentary layers on continental surface waves. « Bull. Seism. Soc. Am. », 48, 359-354.

OLIVER, J., ISACKS, B., 1967. - Deep earthquake zones, anomalous structures in the upper mantle, and the lithosphere. « J. Geophys. Res. », 72, pp. 4239-4275.

PRESS, F., E. EWING, M., Two slow surface waves across North America. « Bull. Seism. Soc. Am. », 62, 219-228.

RUEZIAN, A. J., NIKSIC, V. KHALAR, M., and M., 1977. - Propagation of Lg and lateral variations in crustal structure in Asia. « J. Geophys. Res. », 82, pp. 307-316.

SCHUBERT, G., C. FROIDEVAUX, YUEN D., 1976. - Oceanic lithosphere and asthenosphere: Thermal and mechanical structure. « J. Geophys. Res. », 81, pp. 3525-3540.
SHURIBET, D., 1962. - The high frequency P and S phases from the West Indies, « Bull. Seism. Soc. Am. », 52, pp. 957-962.

SHURIBET, D., 1964. - The high frequency S phase and the structure of the upper mantle. « J. Geophys. Res. », 69, pp. 2065-2070.

STEPHENS, C., ISAACS, B., 1977. - Toward an understanding of Sn: normal modes of Love waves in an oceanic structure. « Bull. Seism. Soc. Am. », 67, pp. 69-78.

SUTTON, G., WALKER, D., 1972. - Oceanic mantle phases recorded on seismographs in the northwestern Pacific at distances between 7° and 40°. « Bull. Seism. Soc. Am. », 62, pp. 631-655.

TURCOTTE, D., NAGIBER, E., 1978. - Mechanisms of continental drift. « Reports on Progress in Physics », 41, pp. 1249-1312.

UTSU, T., 1971. - Seismological evidence for anomalous structure of island arcs with special reference to the Japanese region. « Rev. Geophys Space Phys. », 9, pp. 879-890.

WALKER, D., 1977. - High-frequency Pn and Sn phases recorded in the western Pacific. J. Geophys. Res., 82, pp. 3350-3360.

YOSHII, T., Y. KINO, ITO, K., 1976. - Thickening of the oceanic lithosphere, in The Geophysics of the Pacific Ocean Basin and Its Margin. G. Sutton, M. Manghnani, and R. Moberly (editors). Geophysical Monograph 19. American Geophysical Union, Washington, D. C. 425-430.