AMPLE DIVISORS ON THE BLOW UP OF \mathbb{P}^n AT POINTS

E. BALLICO

(Communicated by Ron Donagi)

Abstract. Fix integers n, k, d with $n \geq 2, d \geq 2$ and $k > 0$; if $n = 2$ assume $d \geq 3$. Let P_1, \ldots, P_k be general points of the complex projective space \mathbb{P}^n and let $\pi : X \to \mathbb{P}^n$ be the blow up of \mathbb{P}^n at P_1, \ldots, P_k with exceptional divisors $E_i := \pi^{-1}(P_i), 1 \leq i \leq k$. Set $H := \pi^*(\mathcal{O}_{\mathbb{P}^n}(1))$. Here we prove that the divisor $L := dH - \sum_{1 \leq i \leq k} E_i$ is ample if and only if $L^n > 0$, i.e. if and only if $d^n > k$.

The aim of this paper is the proof of the following result conjectured in [1].

Theorem 0.1. Fix integers n, k, d with $n \geq 2, d \geq 2$ and $k > 0$; if $n = 2$ assume $d \geq 3$. Let P_1, \ldots, P_k be general points of the complex projective space \mathbb{P}^n and let $\pi : X \to \mathbb{P}^n$ be the blow up of \mathbb{P}^n at P_1, \ldots, P_k with exceptional divisors $E_i := \pi^{-1}(P_i), 1 \leq i \leq k$. Set $H := \pi^*(\mathcal{O}_{\mathbb{P}^n}(1))$. Then the divisor $L := dH - \sum_{1 \leq i \leq k} E_i$ is ample if and only if $L^n > 0$, i.e. if and only if $d^n > k$.

Here "general points" means "outside countably many proper subvarieties of the symmetric product $S^k(\mathbb{P}^n)$ of \mathbb{P}^n". For $n = 2$ and 3 Theorem 0.1 was proved in [1] (at least for $d \geq 5$). In [1], §3, the proof of Theorem 0.1 was reduced to the proof of a general lemma ([1], Lemma 2.1) which was proved there only for $n = 2$ and 3 (see in particular page 45, lines 4 and 5 from the bottom). We will prove that lemma for every n and hence obtain for free a proof of Theorem 0.1. Indeed we will prove the following more general result which is very classical (for $n = 2$ being due to Kronecker and Castelnuovo).

Lemma 0.2. Let X be a smooth projective variety of dimension $n \geq 2$. Take $H \in \text{Pic}(X), H$ very ample. Assume that (X, H) is not a scroll over a smooth curve, i.e. assume that X is not a \mathbb{P}^{n-1}-bundle $\pi : X \to C$ over a smooth curve with H degree 1 line bundle on each fiber. If $n = 2$ and $X = \mathbb{P}^2$ assume $\deg(H) \neq 2$. Let V be a linear subspace of $H^0(X, H)$ which induces an embedding of X. Let W be a general linear subspace of V with $\dim(W) = n$. Then for every hyperplane M of W the base locus of M is a reduced and irreducible curve.

Proof. First assume $n = 2$. Consider the embedding $X \subset \mathbb{P}(V)$ associated to V. By Lefschetz' theorem for a general pencil $\{H(\lambda)\}_{\lambda \in \mathbb{P}^1}$ of hyperplanes of X each $H(\lambda) \cap X$ is either a smooth curve or it has a single ordinary double point. We claim that, except for the list given, this implies that every $H(\lambda) \cap X$ is reduced and irreducible. Since $\text{Sing}(H(\lambda) \cap X)$ is finite, $H(\lambda) \cap X$ is reduced. In order to obtain a contradiction we assume that $H(\lambda) \cap X$ is reducible, say $H(\lambda) \cap X = A \cup B$ with

1991 Mathematics Subject Classification. Primary 14N05; Secondary 14C20, 14M20.
A irreducible and $B \neq \emptyset$. Since H is very ample, $H(\lambda) \cap X$ is 1-connected (see e.g. [3], Remark after the statement of Th. 1). Furthermore, outside the list given $H(\lambda) \cap X$ is 2-connected ([3], Th. 1). This implies that either $\text{card}(\text{Sing}(H(\lambda) \cap X)) \geq \text{card}(A \cap B) \geq 2$ or there is $P \in A \cap B$ with $A \cup B$ not an ordinary nodal curve at P, a contradiction. Now assume $n \geq 3$. Taking the 0-locus F_1, \ldots, F_{n-2} of $n-2$ general elements of V we obtain a smooth surface $X' := F_1 \cap \cdots \cap F_{n-2}$. Apply the first part to the case $(X', H|X', V|X')$. We may apply the case $n = 2$ because we did not require that $V = H^0(X, H)$, but only that V embeds X. Assume that $X' \cong \mathbb{P}^2$ and $\text{deg}(H|X') = 2$ or that $(X', H|X')$ is a scroll over a smooth curve. By the adjunction formula we have $K_{X'} \cong K_X \otimes H^{\otimes n-2}|X'$. Hence in both cases $K_X \otimes H^{\otimes n-1}$ is not spanned by global sections. By [2], Th. 1, and the assumption $n \geq 3$ the pair (X, H) is a scroll over a smooth curve.

References

1. F. Angelini, Ample divisors on the blow up of \mathbb{P}^3 at points, Manuscripta Math. 93 (1997), 39–48. MR 98d:14005
2. A. J. Sommese and A. Van de Ven, On the adjunction mapping, Math. Ann. 278 (1987), 593–603. MR 88j:14011
3. A. Van de Ven, On the 2-connectedness of very ample divisors on a surface, Duke Math. J. 46 (1979), 403–407. MR 82f:14032

Department of Mathematics, University of Trento, 38050 Povo, Trento, Italy
E-mail address: ballico@science.unitn.it