Toxic effects of the interaction of titanium dioxide nanoparticles with chemicals or physical factors

Kui Liu
Xialu Lin
Jinshun Zhao
Public Health Department of Medical School, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Ningbo University, Ningbo, Zhejiang Province, People’s Republic of China

Abstract: Due to their chemical stability and nonallergic, nonirritant, and ultraviolet protective properties, titanium dioxide (TiO$_2$) nanoparticles (NPs) have been widely used in industries such as electronics, optics, and material sciences, as well as architecture, medicine, and pharmacology. However, increasing concerns have been raised in regards to its ecotoxicity and toxicity on the aquatic environment as well as to humans. Although insights have been gained into the effects of TiO$_2$ NPs on susceptible biological systems, there is still much ground to be covered, particularly in respect of our knowledge of the effects of the interaction of TiO$_2$ NPs with other chemicals or physical factors. Studies suggest that interactions of TiO$_2$ NPs with other chemicals or physical factors may result in an increase in toxicity or adverse effects. This review highlights recent progress in the study of the interactive effects of TiO$_2$ NPs with other chemicals or physical factors.

Keywords: titanium dioxide, TiO$_2$, nanoparticles, interaction, chemicals, physical factors

Introduction

Nanoparticles (NPs) are raw materials used in nanotechnology, with a size range of 1–100 nm in no less than one of their three dimensions.1–3 Titanium dioxide (TiO$_2$) NPs consists of three polymorphs, including anatase, rutile, and brookite.4 TiO$_2$ NPs have been widely used in many products, such as toothpastes, sunscreens, cosmetics, food products, pharmaceuticals, and nanomedical reagents.5 TiO$_2$ particles have been considered as nontoxic mineral particles and traditionally used in the fields of cosmetics, food, and drugs. They were even used as “dust negative control” in many in vitro and in vivo toxicological investigations for many years.3,6 However, research evidence suggests that TiO$_2$ NPs may possess higher toxicity potential than their bulk materials.5,7,8 Zhao et al8 found that TiO$_2$ NPs caused higher cytotoxicity than fine particles in cell culture. Due to their very small size, NPs can penetrate basic biological structures, which may, in turn, disrupt their normal function.3,9 Recent research evidence shows that TiO$_2$ NPs may induce cellular toxicity effects in cardiac tissue.10 The toxicity effects of TiO$_2$ particles were also observed in cells of the circulatory system. Li et al11 found that the erythrocytes treated with TiO$_2$ NPs underwent abnormal sedimentation, hemagglutination, and hemolysis, which were totally different from those treated with TiO$_2$ fine particles. Lung tumors were also found in rats after lifetime exposure to high concentrations of TiO$_2$ particles.11 Moreover, a recent study showed oxidative stress in mice brain as well as overproliferation of all glial cells.12 These occurred in mice that were exposed to 2.5 mg/kg, 5 mg/kg, and 10 mg/kg body weight TiO$_2$ NPs through nasal administration for 90 days. The toxicokinetics (Figure 1) and toxic effects of
TiO$_2$ NPs$^{13-15}$ alone have been well documented in many in vivo and in vitro studies, but reviews of the effects (or toxicities) of the interaction of TiO$_2$ NPs with other chemicals or physical factors are currently unavailable. TiO$_2$ NPs may coexist with other chemicals or physical factors in the surrounding environment and occupational settings. In the field of nanomedicine, TiO$_2$ NPs are being used as drug carriers.3 Therefore, evaluating the interactive effects of TiO$_2$ NPs with other chemicals or physical factors is vital for the safe application of TiO$_2$ NPs. This review will mainly focus on the current knowledge concerning the effects of the interaction of TiO$_2$ NPs with other chemicals or physical factors and will identify areas where further improvement is needed.

Effects of TiO$_2$ NP interaction with metals and their compounds

With growing applications, TiO$_2$ NPs are rapidly entering the aquatic environment,16 and thus the aquatic environment is expected ultimately to be a sink for the sedimentation of these NPs. Consequently, these NPs will inevitably mix and interact with other aquatic pollutants, including metals and their compounds.17 In addition, NPs have been found to be capable of absorbing and separating metals from aqueous or organic solutions.18,19

TiO$_2$ NPs have been tested as a sorbent in the solid-phase extraction for preconcentrated lead (Pb) in river water and seawater.$^{20-22}$ Zhang et al20 investigated the potential acute toxicity of the interaction between TiO$_2$ NPs (50 nm and 120 nm) and lead acetate (PbAC) in mice. Suspensions of TiO$_2$ NPs (5 g/kg body weight) alone, PbAC (500 mg/kg) alone, and TiO$_2$ NPs (5 g/kg) plus PbAC (500 mg/kg) were administered to mice via oral gavage, respectively. No synergistic acute toxicity in mice was found after treatment with the combination of TiO$_2$ NPs and PbAC. However, Du et al23 found that, compared with the control (1% dimethyl sulfoxide), mixtures of TiO$_2$ NPs of different doses (21 nm, 80% anatase, 20% rutile) plus PbAC (1 µg/mL) induced a significant increase in reactive oxygen species (ROS) generation (at 0.001 µg/mL, 0.01 µg/mL, 0.1 µg/mL, 1 µg/mL, and 10 µg/mL of TiO$_2$), intracellular superoxide dismutase (SOD) activity (at 0.1 µg/mL and

Figure 1 Toxicokinetics and accumulation sites of titanium dioxide nanoparticles.

Note: Reprinted from Shi et al,13 Copyright 2013, with permission from BioMed Central Publishing.

Abbreviation: GI, gastrointestinal.
Arsenic (As) is a metalloid. Chronic As exposure could cause cancer, neuropathies, and bronchopulmonary, cardiovascular, and metabolic diseases. To reduce As pollution, TiO$_2$ NPs have been used as photocatalytic oxidants and/or absorption materials to remove As from water, which implies an interaction between As and TiO$_2$ NPs. Due to their small diameter, large surface area, and the ability to uptake –OH ions from solution, TiO$_2$ NPs could adsorb metal ions through electrostatic interaction. Evidence shows that variables such as pH and temperature may affect the absorption and/or desorption of As (III) and As (V) by TiO$_2$ NPs in the aqueous solution. Pena et al found that at 21°C–25°C and pH <8, TiO$_2$ NPs could be used to remove As (V) from solution through adsorption, but the maximum removal for As (III) occurred at about pH 7.5. Additionally, they demonstrated that the competing anions such as silicate, carbonate, and phosphate had a low effect on the adsorption capacities of TiO$_2$ NPs on As (III) and As (V) in a neutral pH range, which was in agreement with the results of Bang et al. Niu et al found that the adsorption of As (V) was more favored in acidic solution at 25°C, whereas the uptake of As (III) was preferred in alkaline solution by TiO$_2$ NPs at 25°C. The maximum uptake of As (V) and As (III) was 208 mg/g (pH =3.0) and 60 mg/g (pH =7.0). Their experiments also suggested that more than 80% of As (III) and 95% of As (V) adsorbed on TiO$_2$ NPs could be desorbed with 1.0 M sodium hydroxide solution within 1 hour, as demonstrated by desorption tests, which was confirmed by Bang et al. Jegadeesan et al indicated that the capacity for sorption to As by TiO$_2$ NP polymorphs might be affected by sorption site density, surface area (particle size), and crystalline structure. Wang et al stated that As toxicity on Ceriodaphnia dubia might increase when TiO$_2$ NPs (5–10 nm) interact with As in the ecosystem. They found that TiO$_2$ NPs less than 400 mg/L alone were nontoxic. The 24-hour median lethal concentration (LC$_{50}$) of As alone on Ceriodaphnia dubia was 3.68±0.22 mg/L. In addition, the presence of low concentrations of 50 mg/L TiO$_2$ NPs increased the toxicity of As significantly, and the LC$_{50}$ of As was also lowered to 1.43 mg/L. In summary, available studies show that pH, temperature, composite method, and crystalline structure may all be important for the adsorption of As (III) and As (V) by TiO$_2$ NPs, and an alkaline environment is suitable for the desorption of As (III) and As (V). More studies are needed to investigate the toxicity effects after combination of As with TiO$_2$ NPs.

Copper (Cu) is an important element in human physiological processes. Exposure to low doses of Cu$^{3+}$ is harmless because Cu is an essential trace element for the human body. Adverse immunotoxicological effects on human health could be caused only by an overexposure to Cu. Overexposure, especially a sublethal dose exposure of Cu, could induce immunotoxicity in mice, including cell-cycle arrest and cell death in the spleen and thymus. Fan et al found that TiO$_2$ NPs (at a concentration generally considered to be safe in the environment) remarkably enhanced the toxicity of Cu on Daphnia magna by increasing the bioaccumulation of Cu. In addition, they found that the Cu was adsorbed on to the TiO$_2$ NPs when ingested and was accumulated in the animals, thereby causing an increase in toxic effects.

Cadmium (Cd) is one of the most toxic elements to which human beings may be exposed. Cd compounds are widely used in rechargeable nickel-Cd batteries. Cigarette smoke, polluted foods, and batteries are the major sources of Cd pollution. Xia et al investigated the combined toxicity of cadmium chloride (CdCl$_2$) and TiO$_2$ NPs (25 nm) in human embryo kidney (HEK293T) cells. They found that cotreatment with 3.8 µm/L CdCl$_2$ and 7.5 µg/mL TiO$_2$ NPs exerted additive effects on the cellular oxidative damage by upregulation of heme oxygenase 1 gene expression, catalase activities, and malondialdehyde concentration. A combination of CdCl$_2$ (5.12 µm/L) TiO$_2$ NPs (10.05 µg/mL) showed synergistic effects on activities of SOD and ROS concentrations. Zhang et al assessed the bioaccumulation of Cd in carp in the presence of TiO$_2$ NPs (21 nm) and found that the presence of TiO$_2$ NPs and the accumulation of Cd in carp was positively correlated.

Hu et al investigated the combined effects of TiO$_2$ NPs (21 nm) and humic acid (HA) on the bioaccumulation of Cd in zebrafish. They found that the presence of TiO$_2$ NPs at 5–20 mg/L in water containing HA could alter the exposure of Cd and other potential heavy metals to zebrafish. The presence of TiO$_2$ NPs or HA alone with Cd slightly increased the uptake rate constants of Cd in fish. TiO$_2$ NPs have a slightly higher uptake than HA, whereas mixtures of HA and TiO$_2$ NPs with Cd slightly reduced the uptake rate constants. The mechanism underlying these combined effects is unclear.
Yang et al22 investigated Cd adsorption on polyacrylate-coated TiO\textsubscript{2} NPs, which could decrease the concentration of Cd ion in an aquatic environment and its effect on the bioavailability as well as toxicity of Cd to green algae Chlamydomonas reinhardtii. They found that Cd absorbed quickly on to TiO\textsubscript{2} NPs (anatase, 1–10 nm), reaching a steady state within 30 minutes. Interestingly, they found that the presence of TiO\textsubscript{2} NPs could alleviate the Cd toxicity to the green algae cells, which might be caused by TiO\textsubscript{2} NP adsorption on Cd2+, resulting in a decrease of free Cd ion in the medium and, further, its bioaccumulation in the algal cells. In addition, the electrostatic and potentially steric repulsions between TiO\textsubscript{2} NPs and algal cells might hinder their direct contact with each other and then prevent the internalization of TiO\textsubscript{2} NPs into the cells.

Taken together, toxicities of TiO\textsubscript{2} NPs alone have been well documented.10,44,45 However, knowledge of the combined effects of TiO\textsubscript{2} NPs with other chemicals is limited. The existing evidence suggests that TiO\textsubscript{2} NPs can absorb metal ions, including Pb, As, Cu, and Cd, in the solution. Meanwhile, interaction of TiO\textsubscript{2} NPs and metal compounds (see Table 1) may also result in the increased toxicity demonstrated by increased oxidative stress to cells and decreased LC\textsubscript{50} to aquatic organisms.23,40 Therefore, more ecology investigations and biology experiments of their combined toxicity should be carried out.

Table 1: Studies in vitro on the interactive effects of TiO$_2$ NPs with chemicals or physical factors

Reference	Supplier	Characteristics of TiO$_2$ NP	Dispersion method	Exposure concentration (μg/mL)
23	Degussa	21, 80% anatase, 20% rutile	10 min ultrasonication and 30 s vortex mixing	0.001, 0.01, 0.1, 1, 10
40	Degussa	25, 80% anatase, 20% rutile	Suspended fresh immediately before use	0, 0.25, 0.5, 0.75, 1, 1.25 TU (1 TU = 10.05 μg/mL)
49	Degussa	25–50, 80% anatase, 20% rutile	Vortexed for 2 min, ultrasonicated for 10 min	0, 1, 5, 10
55	Degussa	25, 80% anatase, 20% rutile	Ultrasoundated for 40 min	0, 10
57	Degussa	21, 80% anatase, 20% rutile	Ultrasonicated for 15 min	50
65	Degussa	20, 70%–85% anatase and 30%–15% rutile	Freshly prepared and diluted	0, 10, 50, 100, 200
66	Wanjin Material Corp, Degussa	4, 10, 25, or 60	Sonicated for 30 min	0, 1, 5
67	Degussa	20, 70%–85% anatase and 30%–15% rutile	Sonicated for 10–15 min	50, 100
70	Sigma Aldrich	NA	Sonicated for 10–15 min	200
75	Degussa	NA	NA	200
82	Degussa	NA	NA	61, 60

Abbreviations: ↑, combined effect showed a significant increase than TiO$_2$ NPs group and other factor group alone; ↓, combined effect showed a significant decrease than TiO$_2$ NPs group and other factor group alone; ↔, combined effect showed no significant difference than TiO$_2$ NPs group and other factor group alone; 8-OHdG, 8-hydroxydeoxyguanosine; GSH, glutathione; HO-1, heme oxygenase 1 gene; MMP, mitochondrial membrane potential; NA, data not available; NPs, nanoparticles; OGG1, 8-oxoguanine DNA glycosylase homologue 1; ROS, reactive oxygen species; SOD, superoxide dismutase; TiO$_2$, titanium dioxide; UVA, ultraviolet A; DNA, deoxyribonucleic acid; MDA, malondialdehyde; CAT, catalase activities; NO, nitric oxide; PARP, poly (ADP-ribose) polymerase; MTS, 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium; NAC, N-acetyl cysteine; LDH, lactic acid dehydrogenase; mRNA, messenger ribonucleic acid; BAX, Bcl-2-associated X protein; DMEM, Dulbecco’s Modified Eagle’s Medium; TU, toxic unit; MEM, Minimum Essential Medium; ADP, adenosine diphosphate; min, minutes; PbAC, Plumbi Acetatis; BPA, bisphenol A; HBE, human bronchial epithelial cell; NaF, sodium fluoride; h, hours; HaCaT, a cell type belonging to an immortal human keratinocyte line; RPMI, Roswell Park Memorial Institute; BCL2, B-cell lymphoma 2 protein.
2003–04, a nationally representative sample of the US population. They found that BPA was detectable in 96% of pregnant women. Therefore, interactions between TiO₂ NPs and BPA may occur when TiO₂ NPs are used as drug carriers in the human body. Zheng et al.⁶.evaluate the interactive effects of TiO₂ NPs (25–50 nm) with BPA on their physiochemical properties and in vitro toxicity in human embryo hepatocytes (L-02 cells). They found that TiO₂ NPs alone (0 mg/L, 0.1 mg/L, 1 mg/L, and 10 mg/L) or BPA alone (0 µmol/L, 0.1 µmol/L, 1 µmol/L, and 10 µmol/L) did not exert significant DNA and chromosomal damage, whereas the mixture of TiO₂ NPs and BPA induced a significant increase in oxidative stress, DNA double-strand breaks, and micronuclei formation in a weak synergistic manner. An increase in intracellular levels of BPA bound by TiO₂ NPs was hypothesized to be the reason behind the synergistic toxicity. This could have been determined if the investigators in this study used varying concentrations of TiO₂ NPs in the combination.

Dichlorodiphenyltrichloroethane (p,p′-DDT) was widely used as an effective insecticide, and had been proven to have genotoxicity, developmental toxicity, and endocrine-disruptive effects in human beings and a wide range of living organisms.⁷⁰–⁵² Therefore, the degradation of DDT had attracted great attention.⁵³,⁵⁴ Recently, TiO₂ NPs have been tested to degrade the p,p′-DDT, which increases the risk of exposure to mixtures of TiO₂ NPs and p,p′-DDT. Shi et al.⁵⁵ examined the interactive toxicities of p,p′-DDT and TiO₂ NPs (25 nm) at low concentrations in L-02 cells. The mixtures induced higher toxicity than TiO₂ NPs or p,p′-DDT alone. Combination of traces of TiO₂ NPs (0 µg/mL, 0.01 µg/mL, 0.1 µg/mL, and 1 µg/mL) and traces of p,p′-DDT (0 µmol/L, 0.001 µmol/L, 0.01 µmol/L, and 0.1 µmol/L) synergistically enhanced genotoxicity, as demonstrated by an increase in

Exposure time	Cell line	Culture medium	Combined factors/exposure condition	Combined effects
24 h	L-02	DMEM	PbAC/1 µg/mL	Cell viability↓, ROS↑, GSH↑, SOD↓, 8-OHdG↑, OGG1 expression↑
24 h	HEK293T	DMEM	CdCl₂/0.25, 0.5, 0.75, 1, 1.25 TU (1 TU = 5.12 µmol/L)	HO-1 gene express↑, OGG1 expression↑, SOD↓, ROS↑, MDA→, CAT↑
24 h	L-02	DMEM	BPA/0.1, 1, 10 µmol/L	Cell viability→, ROS↑, MDA↑, DNA double strand break↑, chromosomal damage↑
12, 24, 36 h	L-02	DMEM	p,p′-DDT/0, 0.001, 0.01, and 0.1 µmol/L	Cell viability→, apoptosis test→, ROS↑, MDA↑, 8-OHdG↑, DNA strand break↑, micronucleus frequency↑
72 h	16-HBE	RPMI-1640	NaF/0, 10, 20, 30 mg/L	Cell viability→, apoptosis test↑, SOD↓, MDA↑, NO↑
1 h	HaCaT	NA	Nitrite, UVA/nitrite: 0, 0.1, 0.5, 1, 2 mM; UVA: 365 nm, 0.6 mW/cm², 1 h	Cell viability↓, apoptosis test↑, protein tyrosine nitration↑
1 h	HaCaT	MEM	UVA/365 nm, 3.5 mW/cm², 1 h	Cell viability↓, SOD↓, ROS↑, MDA↑
0, 24, 48 h	Human peripheral blood lymphocytes	RPMI-1640	UVA/365 nm, 2.0 mW/cm², 0.0, 24, 48 h	Cell viability↓, sub-G1 phase↑, caspase-9↑, caspase-3↑, PARP↑, MPP↑, ROS↑DNA damage↑, micronucleus formation↑
4 h	HaCaT	DMEM	UVA/320–390 nm; 0, 2.5, 5.0, and 10 µg/L	MTS assay (A325, P25 and A25)↓, ROS↑
24 h	HaCaT	MEM	NAC, UVA/NAC: 5 mM, 2 h UVA: 365 nm, 3.5 W/cm², 1 h	Cell viability (UVA)↓, (UVA + NAC)↑, LDH (UVA + NAC)↑, apoptosis assay (UVA + NAC)↑, ROS (UVA + NAC)↓, MPP (UVA + NAC)↑, K6 mRNA (UVA + NAC)↑
12 h	U87-MG	DMEM	UVA/365 nm, 5 j/cm², 20 min	Cell viability↓, BCL2↓, BAX↑
10 min	Leukemia KS62	RPMI-1640	Daunorubicin, UVA/daunorubicin: 0.14 mM, 0.2 mM UVA: 100 s	Drug accumulation↑
oxidative stress, oxidative DNA adducts, DNA breaks, and chromosomal damage in L-02 cells. The adsorption of p,p'-DDT by TiO$_2$ NPs was approximately 0.3 mmol/g. Synergistic genotoxicity induced by a combination of traces of p,p'-DDT and TiO$_2$ NPs may be a potential environmental risk factor.

Sodium fluoride (NaF) and TiO$_2$ NPs are useful additives in household products such as toothpastes. Xie et al64 examined the combined effects of NaF and TiO$_2$ NPs (21 nm) in human bronchial epithelial cells (16-HBE) and found that combined exposure of NaF and TiO$_2$ NPs could enhance the oxidative stress in 16-HBE cells. In another study, Xu et al65 investigated the interactions of TiO$_2$ NPs with functional biomolecule lysozymes in culture cells. They found that lysozymes were adsorbed on to the surface of TiO$_2$ NPs (60 nm) via electrostatic attraction and hydrogen bonds. They therefore suggested that TiO$_2$ NPs might have some toxic impacts on biomolecules after interacting with biomolecule lysozymes. In summary, studies on the effects of TiO$_2$ NP interaction with organic or inorganic compounds are limited.

The existing evidence indicates that interaction of TiO$_2$ NPs with BPA, p,p'-DDT, or NaF may result in enhancement of oxidative stress and further cytotoxicity.

Effects of TiO$_2$ NP interaction with the physical factor UVA

TiO$_2$ NPs possess excellent optical and electrical properties.$^{59-61}$ Due to photocatalysis, TiO$_2$ NPs62,63 are used to degrade formaldehyde and thus improve air quality in the indoor environment. However, some studies suggest that TiO$_2$ NPs might be toxic under ultraviolet A (UVA), an electromagnetic radiation with wavelength range from 315 nm to 400 nm, ISO-21348. Lu et al64 found that TiO$_2$ NPs (20 nm) could induce photocatalytic nitration of the protein tyrosine, which could lead to prevalent post-translational modification by TiO$_2$ NPs as a result of oxidative and nitra-

tive stress. In another study, Tu et al65 found that nitrative stress induced by TiO$_2$ NPs (20 nm) under UVA radiation triggered apoptotic cell death in human keratinocyte cells. This result suggests that skincare products with TiO$_2$ NP components may cause damage to human keratinocyte cells under UVA radiation. Xue et al66 investigated the oxidative stress and cytotoxicity induced by different crystalline forms (anatase, rutile, and anatase/rutile) and sizes (4 nm, 10 nm, 21 nm, 25 nm, or 60 nm) of TiO$_2$ NPs in HaCaT cells under UVA irradiation. They found that TiO$_2$ NPs could induce ROS generation and toxicity in cells under UVA irradiation. Kang et al67 also showed that TiO$_2$ NPs (20 nm) and UVA (0.6 mW/cm2 for 1 hour) synergistically promoted ROS generation and triggered cell apoptosis. Yin et al68 examined the phototoxicity of TiO$_2$ NPs with different sizes and crystal forms (anatase and rutile) in human skin keratinocytes under UVA irradiation. They found that TiO$_2$ NPs are phototoxic to human skin keratinocytes, and that the phototoxicity is mediated by ROS generated during UVA radiation. Moreover, the phototoxicity of TiO$_2$ NPs was less with larger particle size and surface areas. Zhang et al69 investigated the combined effects of TiO$_2$ NPs and UVA exposure on African clawed frogs (Xenopus laevis). They found that, regardless of UVA exposure, the rate of X. laevis survival decreased with increased concentrations of TiO$_2$ NPs. Exposure to 10 nm TiO$_2$ NPs and UVA significantly decreased the rate of X. laevis survival. However, exposure to 32 nm TiO$_2$ NPs and UVA had no statistical effect on the rate of X. laevis survival. This experiment suggests that toxicity is related to the size of TiO$_2$ NPs to some extent.

Bar-Ilan et al70 also found that TiO$_2$ NPs under UV produced ROS as the major phototoxic agent to the development of zebrafish. Xue et al71 examined the chemoprotective effects of N-acetylcysteine (NAC) (5 mM pretreated for 2 hours) on TiO$_2$ NP-induced (21 nm, 200 µg/mL for 24 hours) oxidative stress and apoptosis in human keratinocytes under UVA (3.5 mW/cm2 for 1 hour). NAC,$^{72-74}$ a nutritional supplement for cysteine donating, is widely used as an antioxidant. They found that NAC could prevent TiO$_2$ NP-induced oxidative stress and apoptosis in cells. The protective effects of NAC on TiO$_2$ NP-induced apoptosis were related to modulation of ROS and intracellular nitric oxide levels. It is worth noting that the combined effect of TiO$_2$ NPs and UVA may be a double-edged sword. Wang et al75 investigated the antitumor effects of TiO$_2$ NPs excited with UVA irradiation both in vitro and in vivo. Their results revealed that TiO$_2$ NPs alone had no effect on glioma cell proliferation. However, when TiO$_2$ NPs were combined with UVA irradiation, the proliferation rate of cells was decreased significantly compared with controls (TiO$_2$ NPs alone or UVA alone). They further investigated the in vivo antitumor effects of combined TiO$_2$ NPs plus UVA on established glioma tumors. TiO$_2$ NPs plus UVA led to pronounced areas of necrosis, elevated indices of apoptosis, delayed tumor growth, and increased survival compared with the TiO$_2$ NPs alone or UVA alone. Moreover, the log-rank test for trend in survival analysis of tumors implanted in animals showed that the average survival duration was prolonged. Additionally, degradation, detoxification, and/or bactericidal effects of TiO$_2$ NPs under UVA to some pesticides or drugs in the ecosystem have been widely investigated.76,77 Under UV-irradiated conditions.
(λ > 350 nm), a TiO$_2$ electron excites an electron from the valance band to the conduction band and electron hole pairs are generated in the surface of TiO$_2$, which consists of the positive hole (h^+) and electron (e^-). The hole in the valance band has a positive redox potential and is capable of oxidizing organics, H$_2$O, and hydroxide ions on the surface of TiO$_2$ NPs, and eventually to generate hydroxyl radicals (OH). At the same time, the electron promoted from the valence band to the conduction band reduces oxygen into a superoxide radical (O$_2^-$). OH, O$_2^-$, and other perhydroxyl radicals have a strong oxidability to degrade pesticides, drugs, and organic substances (Figure 2). The photocatalytic effects of TiO$_2$ NPs have been indicated to degrade pesticides such as endosulfan and organochlorine.

Seitz et al79 found that TiO$_2$ NPs (100 nm; 0.2 mg/L) could reduce nearly 30% of the pirimicarb concentration under UV irradiation (40 W/m2 for 15 minutes), which resulted in an almost complete removal of pirimicarb toxicity to D. magna. Zhao et al80 indicated that TiO$_2$ NPs under UV irradiation could degrade oxytetracycline, which is widely used in both human and veterinary medicine. Higher degraded toxic byproducts were detected by a standardized bioluminescence assay of inhibition rate on Vibrio qinghaiensis sp.–Q67 (Q67), which indicates that a possible enhancement in ecological toxicity may occur after combination of TiO$_2$ NPs with oxytetracycline under UVA irradiation. These results indicate that the photocatalytic effect of TiO$_2$ NPs on pesticides and drugs under UVA irradiation may result in either increased or decreased toxicity, depending on the characteristics of the byproducts.

Li et al81 demonstrated that Ag–TiO$_2$ NPs showed a greater synergistic bactericidal activity under UV than TiO$_2$ (inert) or pure Ag NPs alone to Gram-positive bacteria Bacillus subtilis and Gram-negative bacteria Pseudomonas putida at 25°C. Additionally, Song et al82 found that the synergistic effect of TiO$_2$ NPs under UV irradiation could enhance the drug accumulation in targeted leukemia K562 cells and inhibit multidrug resistance. Their findings suggest that combined effects of TiO$_2$ NPs and UVA irradiation may be beneficial for tumor treatment. TiO$_2$ NPs have been well investigated in recent years for enhancing the photocatalytic activity, coating, and doping of zinc oxide (ZnO) on to its surface. Liao et al83 found that TiO$_2$/ZnO composite NPs had a higher photocatalytic activity in the degradation of methyl orange than both TiO$_2$ and shape-controlled NPs alone. Additionally, Jiang et al84 demonstrated that a combination of the nanosized TiO$_2$ and ZnO powders displayed high photocatalytic activity toward the decolorization of C.I. Basic Blue 41 in water under solar radiation, and a Ti/Zn molar ratio of 1:1 showed highest photocatalytic activity.

In conclusion, TiO$_2$ NPs excited with UVA irradiation could induce ROS generation and thus trigger photocatalytic nitration of the protein tyrosine, oxidative stress, and eventually cell apoptosis. Increased oxidative stress damage may be the principal toxic mechanism. Combined toxicity of TiO$_2$ NPs under UVA may be through ROS-mediated upregulation.

Figure 2 Interactive effects (degradation and absorption) of titanium dioxide (TiO$_2$) nanoparticles (NPs) with chemicals under ultraviolet A (UVA) radiation.

Abbreviations: OH, hydroxyl radicals; O$_2^-$, oxygen; O$_2^-$, superoxide radical; H$_2$O, water; e$^-$, electron; h$^+$, the positive hole.
Table 2 Studies in vivo on the interactive effects of TiO$_2$ NPs with chemicals or physical factors

Reference	Supplier	Characteristics of TiO$_2$ NP	Dispersion method	Living organism	
20	Zhejiang Hongsheng Nanotechnology	50, 120 NA NA	Sonicated for 20 min	Kun Ming mice	
32	Skyspring Nanomaterials Inc	5–10 NA NA	Mixed in a shaker for 24 h	Ceriodaphnia dubia	
35	Nanjing High Technology Material Degussa	13.5 Anatase NA	Sonicated for at least 30 min	Daphnia magna	
41	Degussa	21 NA 50	NA	Gyrrinus carpio	
42	Evonik Degussa	21 NA 50 ± 15	Pre-equilibrated for at least 24 h	Zebrafish	
43	Vivo Nano	1–10 Anatase NA	Coated with hydrophilic sodium polycrylate	Chlamydomonas reinhardtii	
58	Degussa	21 NA NA	Ultrasonicated for 10 min	Micrococcus lysodeikticus	
69	Alfa Aesar	5, 10, 32 NA	210, 115, 45	NA	Xenopus laevis 0
75	Sigma-Aldrich	NA Anatase and rutile NA	Sonicated for 30 min	Female BALB/c nude mice	
79	Degussa	21 80% anatase, 20% rutile	50 ± 15	D. magna	
80	Degussa	27 NA NA	Dispersed on 5 A or 13X surface	Vibrio qinghaiensis sp.-Q67	

Note: The combined effects are effects with TiO$_2$ NPs and combined factors, comparing with effects of nTiO$_2$ or combined factor alone.

Abbreviations: ↓, inhibit, decrease, suppress, or delay; ↑, increase; ↔, no significant changes; GSH, glutathione; NA, data not available; NPs, nanoparticles; ROS, reactive oxygen species; SOD, superoxide dismutase; T, temperature; TiO$_2$, titanium dioxide; UVA, ultraviolet A; MDA, malondialdehyde; CD, cadmium; HA, humic acid; NaHAsO$_4$, sodiumarsenate; OTC, oxytetracycline; min, minutes; PbAC, Plumbi Acetatis; h, hours; d, days; pH, the acidity or basicity of an aqueous solution; nTiO$_2$, nano-TiO$_2$.

of the death receptor Fas, and activation of the preapoptotic protein Bax. Of the death receptor Fas, and activation of the preapoptotic protein Bax. Of the death receptor Fas, and activation of the preapoptotic protein Bax. Of the death receptor Fas, and activation of the preapoptotic protein Bax. Of the death receptor Fas, and activation of the preapoptotic protein Bax. Of the death receptor Fas, and activation of the preapoptotic protein Bax. Of the death receptor Fas, and activation of the preapoptotic protein Bax. Of the death receptor Fas, and activation of the preapoptotic protein Bax. Of the death receptor Fas, and activation of the preapoptotic protein Bax. Of the death receptor Fas, and activation of the preapoptotic protein Bax. Of the death receptor Fas, and activation of the preapoptotic protein Bax. Of the death receptor Fas, and activation of the preapoptotic protein Bax. Of the death receptor Fas, and activation of the preapoptotic protein Bax. Of the death receptor Fas, and activation of the preapoptotic protein Bax. Of the death receptor Fas, and activation of the preapoptotic protein Bax. Of the death receptor Fas, and activation of the preapoptotic protein Bax. Of the death receptor Fas, and activation of the preapoptotic protein Bax. Of the death receptor Fas, and activation of the preapoptotic protein Bax. Of the death receptor Fas, and activation of the preapoptotic protein Bax. Of the death receptor Fas, and activation of the preapoptotic protein Bax. Of the death receptor Fas, and activation of the preapoptotic protein Bax. Of the death receptor Fas, and activation of the preapoptotic protein Bax. Of the death receptor Fas, and activation of the preapoptotic protein Bax. Of the death receptor Fas, and activation of the preapoptotic protein Bax. Of the death receptor Fas, and activation of the preapoptotic protein Bax. Of the death receptor Fas, and activation of the preapoptotic protein Bax. Of the death receptor Fas, and activation of the preapoptotic protein Bax. Of the death receptor Fas, and activation of the preapoptotic protein Bax. Of the death receptor Fas, and activation of the preapoptotic protein Bax. Of the death receptor Fas, and activation of the preapoptotic protein Bax. Of the death receptor Fas, and activation of the preapoptotic protein Bax. Of the death receptor Fas, and activation of the preapoptotic protein Bax. Of the death receptor Fas, and activation of the preapoptotic protein Bax. Of the death receptor Fas, and activation of the preapoptotic protein Bax. Of the death receptor Fas, and activation of the preapoptotic protein Bax. Of the death receptor Fas, and activation of the preapoptotic protein Bax. Of the death receptor Fas, and activation of the preapoptotic protein Bax. Of the death receptor Fas, and activation of the preapoptotic protein Bax. Of the death receptor Fas, and activation of the preapoptotic protein Bax. Of the death receptor Fas, and activation of the preapoptotic protein Bax. Of the death receptor Fas, and activation of the preapoptotic protein Bax. Of the death receptor Fas, and activation of the preapoptotic protein Bax. Of the death receptor Fas, and activation of the preapoptotic protein Bax. Of the death receptor Fas, and activation of the preapoptotic protein Bax. Of the death receptor Fas, and activation of the preapoptotic protein Bax. Of the death receptor Fas, and activation of the preapoptotic protein Bax. Of the death receptor Fas, and activation of the preapoptotic protein Bax. Of the death receptor Fas, and activation of the preapoptotic protein Bax. Of the death receptor Fas, and activation of the preapoptotic protein Bax. Of the death receptor Fas, and activation of the preapoptotic protein Bax. Of the death receptor Fas, and activation of the preapoptotic protein Bax. Of the death receptor Fas, and activation of the preapoptotic protein Bax. Of the death receptor Fas, and activation of the preapoptotic protein Bax. Of the death receptor Fas, and activation of the preapoptotic protein Bax. Of the death receptor Fas, and activation of the preapoptotic protein Bax. Of the death receptor Fas, and activation of the preapoptotic protein Bax. Of the death receptor Fas, and activation of the preapoptotic protein Bax. Of the death receptor Fas, and activation of the preapoptotic protein Bax. Of the death receptor Fas, and activation of the preapoptotic protein Bax. Of the death receptor Fas, and activation of the preapoptotic protein Bax. Of the death receptor Fas, and activation of the preapoptotic protein Bax. Of the death receptor Fas, and activation of the preapoptotic protein Bax. Of the death receptor Fas, and activation of the preapoptotic pro...
elucidate possible mechanisms of these combined effects. In addition, combined toxicity of TiO$_2$ NPs with ZnO/Fe$_2$O$_3$ is yet to be investigated by molecular biological and toxicological experiments. Meanwhile, studies on the combined toxicity of TiO$_2$ NPs with other nanosized particles in toxicity and nanomedicine are also urgently needed. Human epidemiological investigation on the combination of TiO$_2$ NPs with other chemicals is urgently encouraged because TiO$_2$ NPs are increasingly being used as drug carriers in nanomedicine. Studies on the combined effects of TiO$_2$ NPs with chemicals or physical factors on aquatic animals are also urgently needed. In addition, the combined effects of TiO$_2$ NPs with chemicals or physical factors may serve as a double-edged sword. Therefore, studies are also encouraged for TiO$_2$ NP application in heavy metal pollution prevention and tumor treatment.

Acknowledgments

The excellent assistance of Miss Ruth Magaye, Mrs Linda Bowman, and Mr Yaseen Habeeb in the preparation of this article is greatly appreciated. This work was partly supported by the National Nature Science Foundation of China (Grant No 81273111), the Foundations of Innovative Research Team of Educational Commission of Zhejiang Province (T200907), the Nature Science Foundation of Ningbo City (Grant No 2012A610185), the Ningbo Scientific Project (Grant Nos 2012C5019 and SZX11073), the Scientific Innovation Team Project of Ningbo (No 2011B82014), Innovative Research Team of Ningbo (2009B21002), and KC Wong Magna Fund in Ningbo University.

Disclosure

The authors report no conflicts of interest in this work.

References

1. Hagens WI, Oomen AG, de Jong WH, Cassee FR, Sips AJ. What do we (need to) know about the kinetic properties of nanoparticles in the body? Regul Toxicol Pharmacol. 2007;49:217–229.
2. Magaye R, Zhao J, Bowman L, Ding M. Genotoxicity and carcinogenicity of cobalt-, nickel- and copper-based nanoparticles. Exp Ther Med. 2012;4:551–561.
3. Zhao J, Castranova V. Toxicology of nanomaterials used in nanomedicine. Toxicol Environ Health B Crit Rev. 2011;14:593–632.

4. Cho WS, Kang BC, Lee JK, Jeong J, Che JH, et al. Comparative absorption, distribution, and excretion of titanium dioxide and zinc oxide nanoparticles after repeated oral administration. Particle and fibre toxicology. 2013;10:9.

5. Long TC, Tajuba J, Sama P, Saleh N, Swartz C, et al. Nanosize titanium dioxide stimulates reactive oxygen species in brain microglia and damages neurons in vitro. Environ Health Perspect. 2007;115:1631–1637.

6. Li SQ, Zhu RR, Zhu H, Xue M, Sun XY, et al. Nanotoxicity of TiO₂ nanoparticles to erythrocyte in vitro. Food Chem Toxicol. 2008;46:3626–3631.

7. Maguyre R, Zhao J. Recent progress in studies of metallic nickel and nickel-based nanoparticles’ genotoxicity and carcinogenicity. Environ Toxicol Pharmacol. 2012;34:644–650.

8. Zhao J, Bowman L, Zhang X, Vallyathan V, Young SH, et al. Titanium dioxide (TiO₂) nanoparticles induce JB6 cell apoptosis through activation of the caspase-8/Bid and mitochondrial pathways. J Toxicol Environ Health A. 2009;72:1141–1149.

9. Buzzea C, Pacheco, II, Robbie K. Nanomaterials and nanoparticles: sources and toxicity. Biointerfases. 2007;2:17–27.

10. Jawad H, Bozecocini AR, Ali NN, Harding SE. Assessment of cellular toxicity of TiO₂ nanoparticles for cardiac tissue engineering applications. Nanotoxicology. 2011;5:372–380.

11. Lee KP, Trochimowicz HJ, Reinhardt CF. Pulmonary response of rats exposed to titanium dioxide (TiO₂) by inhalation for two years. Toxicol Appl Pharm. 1985;79:179–192.

12. Ze Y, Hu R, Wang X, Li B, Su J, et al. Neurotoxicity and gene-expressed profile in brain injured mice caused by exposure to titanium dioxide nanoparticles. J Biomed Mater Res A. March 27, 2013;00A:3–9 [Epub ahead of print.]

13. Iavicoli I, Leso V, Bergamaschi A. Toxicological effects of titanium dioxide nanoparticles: a review of in vivo studies. Nanomater. 2012;2:5.

14. Magdolenova Z, Collins AR, Kumar A, Dhawam A, Stone V, et al. Mechanisms of genotoxicity: review of recent in vitro and in vivo studies with engineered nanoparticles. Nanotoxicology. 2013;1:1–73.

15. Shi H, Maguyre R, Castranova V, Zhao J. Titanium dioxide nanoparticles: a review of current toxicological data. Part Fibre Toxicol. 2013;10:15.

16. Sharma VK. Aggregation and toxicity of titanium dioxide nanoparticles in aquatic environment: a review. J Environ Sci Health A Toxic Hazard Subst Environ Eng. 2009;44:1485–1495.

17. Hartmann NB, Legros S, Von der Kammer F, Hofmann T, Baun A. The potential of TiO₂ nanoparticles as carriers for cadmium uptake in Lumbriculus variegatus and Daphnia magna. Aquat Toxicol. 2012;118:119:1–8.

18. Tavallali H. Alumina-coated magnetite nanoparticles for solid phase extraction of Cd in water samples. Chem Tech. 2013;3:1647–1651.

19. Mashhadizadeh MH, Karami Z. Solid phase extraction of trace amounts of Ag, Cd, Cu, and Zn in environmental samples using magnetic nanoparticles coated with 3-(trimethoxysilyl)-1-propional and modified with 2-amino-5-mercapto-1,3,4-thiadiazole and their determination by ICP-OES. J Hazard Mater. 2011;190:1023–1029.

20. Zhang R, Niu Y, Li Y, Zhao C, Song B, et al. Acute toxicity study of the interaction between titanium dioxide nanoparticles and lead acetate in mice. Environ Toxicol Pharmacol. 2010;30:52–60.

21. Bakirciolugu Y, Bakirciolugu D, Akman S. Biosorption of lead by filamentous fungal biomass-loaded TiO₂ nanoparticles. J Hazard Mater. 2010;178:1015–1020.

22. Kalfa OM, Yalçinkaya Ö, Türker AR. Synthesis of nano B₂O₃/TiO₂ composite material as a new solid phase extraction and its application to preconcentration and separation of cadmium. J Hazard Mater. 2009;166:455–461.

23. Du H, Zhu X, Fan C, Xu S, Wang Y, et al. Oxidative damage and OGG1 expression induced by a combined effect of titanium dioxide nanoparticles and lead acetate in human hepatocytes. Environmental Toxicology. 2011;27:590–597.

24. Barchowsky A, Cartwright IL, Reichard JF, Futscher BW, Lantz RC. Arsenic toxicology: translating between experimental models and human pathology. Environ Health Perspect. 2011;119:1356.

25. Guan X, Du J, Meng X, Sun Y, Sun B, et al. Application of titanium dioxide in arsenic removal from water: a review. J Hazard Mater. 2012;215:216–216.

26. Liu Y, Liang P, Guo L, Hu BY. Study on the adsorption behavior of heavy metal ions on nanometer TiO₂ supported on silica gel [in Chinese]. Acta Chim Sin. 2005;63:312–316.

27. Bleam WF, McBride MB. The chemistry of adsorbed Cu (II) and Mn (II) in aqueous titanium dioxide suspensions. J Colloid Interface Sci. 1986;110:335–346.

28. Pena ME, Korfiatis GP, Patel M, Lippincott L, Meng X. Adsorption of As(V) and As(III) by nanocrystalline titanium dioxide. Water Research. 2005;39:2327–2337.

29. Bang S, Patel M, Lippincott L, Meng X. Removal of arsenic from groundwater by granular titanium dioxide adsorbent. Chemosphere. 2005;60:389–397.

30. Niu HY, Wang JM, Shi YL, et al. Adsorption behavior of arsenic onto protonated titanate nanotubes prepared via hydrothermal method. Micropor Mesop Mat. 2009;122:28–35.

31. Jegadeesan G, Al-Abred SR, Sundaram V, Choi H, Scheckel KG, et al. Arsenic sorption on TiO₂ nanoparticles: size and crystallinity effects. Water Research. 2010;44:965–973.

32. Wang D, Hu J, Irons DR, Wang J. Synergistic toxic effect of nano-TiO₂ and As (V) on Ceriodaphnia dubia. STOTEN. 2011;409:1351–1356.

33. Malkin R, Malmström BG. The state and function of copper in biological systems. Adv Enzymol Relat Areas Mol Biol. 1970;177–244.

34. Mitra S, Keswani T, Dey M, Bhattacharya S, Sarkar S, et al. Copper-induced immunotoxicity involves cell cycle arrest and cell death in the spleen and thymus. Toxicology. 2012;293:1–3.

35. Fan W, Cui M, Liu H, Wang C, Shi Z, et al. NanoTiO₂ enhances the toxicity of copper in natural water to Daphnia magna. Environ Pollut. 2011;159:729–734.

36. Kjellström T. Mechanism and epidemiology of bone effects of cadmium. Adv Enzymol Relat Areas Mol biol. 1970:177–244.

37. Nordberg GF, Herber RFM, Alessio L. Cadmium in the human environment: toxicity and carcinogenicity. International Agency for Research on Cancer; 1992.

38. Dief K, Kraybill H, Dimitroff J. Toxic effects of cadmium: a review. Environmental Research. 1971;4:71–85.

39. Järup L. Hazards of heavy metal contamination. British Medical Bulletin. 2003;68:167–182.

40. Xia B, Chen J, Zhou Y. Cellular oxidative damage of HEK293T cells induced by combination of CdCl₂ and Nano-TiO₂. Journal of Huazhong University of Science and Technology Medical Sciences. 2011;31:290–294.

41. Zhang X, Sun H, Zhang Z, Niu Q, Chen Y, et al. Enhanced bioaccumulation of cadmium in carp in the presence of titanium dioxide nanoparticles. Chemosphere. 2007;67:160–166.

42. Hu X, Chen Q, Jiang L, Yu Z, Jiang D, et al. Combined effects of titanium dioxide and humic acid on the bioaccumulation of cadmium in zebrafish. Environ Pollut. 2011;159:1151–1158.

43. Yang WW, Miao AJ, Yang LY. Cd²⁺ Toxicity to a green alga Chlamydomonas reinhardtii influenced by its adsorption on TiO₂ engineered nanoparticles. PLoS One. 2012;7:e32300.

44. Shukla RK, Kumar A, Gurbani D, Pandey AK, Singh S, et al. TiO₂ nanoparticles induce oxidative DNA damage and apoptosis in human liver cells. Nanotoxicology. 2011:1–13.

45. Shukla RK, Sharma V, Pandey AK, Singh S, Sultana S, et al. ROS-mediated genotoxicity induced by titanium dioxide nanoparticles in human epidermal cells. Toxicol In Vitro. 2011;25:231–241.
46. Huang Y, Wong C, Zheng J, Bouwman H, Barra R, et al. Bisphenol A (BPA) in China: a review of sources, environmental levels, and potential human health impacts. Environment International. 2011;42:91–99.

47. Alexander HC, Dill DC, Smith LW, Guiney PD, Dorn P. Bisphenol A: acute aquatic toxicity. Environ Toxicol Chem. 1988;7:19–26.

48. Woodruff TJ, Zota AR, Schwartz JM. Environmental chemicals in pregnant women in the United States: NHANES 2003–2004. Environ Health Perspect. 2011;119:878–885.

49. Zheng D, Wang N, Wang X, Tang Y, Zhu L, et al. Effects of the interaction of TiO$_2$ nanoparticles with bisphenol A on their physicochemical properties and in vitro toxicity. J Hazard Mater. 2012;199–200:426–432.

50. Cohn BA, Wolff MS, Cirillo PM, Sholtz RI. DDT and breast cancer in young women: new data on the significance of age at exposure. Environ Health Perspect. 2007;115:1406.

51. Rogan WJ, Chen A. Health risks and benefits of bis (4-chlorophenyl)-1,1,1-trichloroethane (DDT). Lancet. 2005;366:763–773.

52. Rogan WJ, Ragan NB. Evidence of effects of environmental chemicals on the endocrine system in children. Pediatrics. 2003;112:247–252.

53. Zoro J, Hunter JM, EGLinton G, Ware G. Degradation of p,p'-DDT in reducing environments. Nature. 1974;247:235–237.

54. Garrison AW, NZengung VA, Avants JK, Ellington JJ, Jones WJ, et al. Phytodegradation of p,p'-DDT and the enantiomers of o,p'-DDT. Environmental Science and Technology. 2000;34:1663–1670.

55. Shi Y, Zhang JH, Jiang M, Zhu LH, Tan HQ, et al. Synergistic genotoxity caused by low concentration of titanium dioxide nanoparticles and p, p'-DDT in human hepatocytes. Environ Mol Mutagen. 2010;51:192–204.

56. O'Mullane DM, Kavanagh D, Ellwood RP, Chesters RK, Schafer F, et al. A three-year clinical trial of a combination of trimethaphosphate and sodium fluoride in silica toothpastes. J Dent Res. 1997;76:1776–1781.

57. Xie C, Liang GY, Ye B, PuYP Combined effects of sodium fluoride and nano-TiO$_2$ on human bronchial epithelial cells. Journal of Environmental and Occupational Medicine. 2009;26:242–244.

58. Xu Z, Liu XW, Ma YS, Gao HW. Interaction of nano-TiO$_2$ with lysosome: insights into the enzyme toxicity of nanoparticleized systems. Environ Sci Pollut Res Int. 2010;17:798–806.

59. Hui YLS. Research progress and application of photocatalysis of TiO$_2$. Materials Review. 2000;12:23–25.

60. Kwon S, Fan M, Cooper AT, Yang H. Photocatalytic applications of micro-and nano-TiO$_2$ in environmental engineering. Crit Rev Environ Sci Technol. 2008;38:197–226.

61. Aarthi T, Madras G. Photocatalytic degradation of rhodamine dyes with nano-TiO$_2$. Ind Eng Chem Res. 2007;46:7–14.

62. Yu H, Zhang K, Rossi C. Experimental study of the photocatalytic degradation of formaldehyde in indoor air using a nano-particulate titanium dioxide photocatalyst. Indoor and Built Environment. 2007;16:529–537.

63. WuYP, Zhang WM, Ma CF, LuYW, Liu L. Photocatalytic degradation of formaldehyde by diffuser of solar light pipe coated with nanometer titanium dioxide thin films. Science China Technological Sciences. 2010;53:150–154.

64. Lu N, Zhu Z, Zhao X, Tao R, Yang X, et al. Nano titanium dioxide photocatalytic protein tyrosine nitration: a potential hazard of TiO$_2$ on skin. Biochem Biophys Res Commun. 2008;370:675–680.

65. Tu M, Huang Y, Li HL, Gao ZH. The stress caused by nitrite with titanium dioxide nanoparticles under UVA irradiation in human keratinocyte cell. Toxicology. 2012;299:60–68.

66. Xue C, Wu J, Lan F, Liu W, Yang X, et al. Nano titanium dioxide induces the generation of ROS and potential damage in HeLaC7 cells under UVA irradiation. J Nanosci Nanotechnol. 2010;10:8500–8507.

67. Kang SJ, Lee YJ, Kim BM, Choi YJ, Chung HW. Cytotoxicity and genotoxicity of titanium dioxide nanoparticles in UVA-irradiated normal peripheral blood lymphocytes. Drug Chem Toxicol. 2011;34:277–284.

68. Yin JJ, Liu J, Ehrenshaft M, Roberts JE, Fu PP, et al. Phototoxicity of nano titanium dioxide in HaCaT keratinocytes – generation of reactive oxygen species and cell damage. Toxicol Appl Pharmacol. 2012;263:81–88.

69. Zhang J, Wages M, Cox SB, Maul JD, Li Y, et al. Effect of titanium dioxide nanomaterials and ultraviolet light coexposure on African clawed frogs (Xenopus laevis). Environ Toxicol Chem. 2012;31:176–183.

70. Bar-Ilan O, Louis KM, Yang SP, Pedersen JA, Hamers RJ, et al. Titanium dioxide nanoparticles produce phototoxicity in the developing zebrafish. Nanotoxicology. 2012;6:670–679.

71. Xue C, Liu W, Wu J, Yang X, Xu H. Chemoprotective effect of N-acetylcysteine (NAC) on cellular oxidative damages and apoptosis induced by nano titanium dioxide under UVA irradiation. Toxicology In Vitro. 2011;25:110–116.

72. Smilkstein MJ, Knapp GL, Kulig KW, Rumack BH. Efficacy of oral N-acetylcysteine in the treatment of acetaminophen overdose. Analysis of the national multicenter study (1976 to 1985). N Engl J Med. 1988;319:1557.

73. Aruoma OI, Halliwell B, Hoey BM, Butler J. The antioxidant action of N-acetylcysteine: its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid. Free Radical Biology and Medicine. 1989;6:593–597.

74. Baru N, Manns B, Lee H, Tonelli M. Systematic review of the impact of N-acetylcysteine on contrast nephropathy. Kidney Int. 2004;65:1366–1374.

75. Wang C, Cao S, Tie X, Qiu B, Wu A, et al. Induction of cytotoxicity by photoexcitation of TiO$_2$ can prolong survival in glial-maeseuring mice. Mol Biol Rep. 2011;38:523–530.

76. Moon J, Yum CY, Chung K-W, Kang M-S, Yi J. Photocatalytic activation of TiO$_2$ under visible light using Acid Red 44. Catalysis Today. 2003;87:87–86.

77. Srivinas C, Somasundaram N. Bacterialicidal and detoxification effects of irradiated semiconductor catalyst, TiO$_2$. Current Science-Bangalore. 2003;85:1431–1438.

78. Thomas J, Kumar KP, Chitra K. Synthesis of Ag doped nano TiO$_2$ as efficient solar photocatalyst for the degradation of endosulfan. Adv Sci Lett. 2011;4:108–114.

79. Seitz F, Bundschuh M, Dabrunz A, Bandow N, Schaumann GE, et al. Titanium dioxide nanoparticles detoxify pirimicarb under UV irradiation at ambient intensities. Environ Toxicol Chem. 2012;31:518–523.

80. Zhao C, Deng H, Li Y, Liu Z. Photodegradation of oxytetracycline in aqueous by 5A and 13X loaded with TiO$_2$ under UV irradiation. J Hazard Mater. 2010;176:884–892.

81. Li M, Noriega-Trevino ME, Nino-Martinez N, Marambio-Jones C, Wang J, et al. Synergistic bactericidal activity of Ag-TiO$_2$ nanoparticles in both light and dark conditions. Environ Sci Technol. 2011;45:8989–8995.

82. Song M, Zhang R, Dai Y, Gao F, Chi H, et al. The in vitro inhibition of multidrug resistance by combined nanoparticulate titanium dioxide and UV irradiation. Biomaterials. 2006;27:4230–4238.

83. Liao D, Badour C, Liao B. Preparation of nanosized TiO$_2$/ZnO composite catalyst and its photocatalytic activity for degradation of methyl orange. J Photochem Photobiol A Chem. 2008;194:11–19.

84. Panigrahi S, Basak D. Core-shell TiO$_2$ @ ZnO nanorods for efficient ultraviolet photodetection. Nanoscale. 2011;3:2336–2341.

85. Jiang Y, Sun Y, Liu H, Zhu F, Yin H. Solar photocatalytic decolorization of CI Basic Blue 41 in an aqueous suspension of TiO$_2$–ZnO. Dyes Pigm. 2008;77:78–83.

86. Yoo K-C, Yoon C-H, Kwon D, Hyun K-H, Woo SJ, et al. Titanium dioxide induces apoptotic cell death through reactive oxygen species-mediated Fas upregulation and Bax activation. Int J Nanomedicine. 2012;7:1203.

87. Sanders K, Degen LL, Mundt WR, Zucker RM, Dreher K, et al. In vitro photocytotoxicity and hazard identification of nano-scale titanium dioxide. Toxicol Appl Pharmacol. 2012;258:226–236.
88. Lankoff A, Sandberg WJ, Wegierek-Ciuk A, Lisowska H, Refsnes M, et al. The effect of agglomeration state of silver and titanium dioxide nanoparticles on cellular response of HepG2, A549 and THP-1 cells. *Toxicol Lett*. 2012;208:197–213.

89. Ekstrand-Hammarström B, Akfur CM, Andersson PO, Lejon C, Österlund L, et al. Human primary bronchial epithelial cells respond differently to titanium dioxide nanoparticles than the lung epithelial cell lines A549 and BEAS-2B. *Nanotoxicology*. 2012;6:623–634.

90. Magdolenova Z, Bilaničová D, Pojana G, Fjellsbø LM, Hudecova A, et al. Impact of agglomeration and different dispersions of titanium dioxide nanoparticles on the human related in vitro cytotoxicity and genotoxicity. *J Environ Monit*. 2012;14:455–464.