Helminth infections in domestic dogs from Russia

T. V. Moskvina¹ and A. V. Ermolenko²

¹. Department of Biodiversity and Marine Bioresources, Far Eastern Federal University, School of Natural Sciences, 690922 Vladivostok, Russia; ². Department of Zoological, Laboratory of Parasitology, Institute of Biology and Soil Science, Far-Eastern Branch of Russian Academy of Sciences, 690022 Vladivostok, Russia.

Corresponding author: T. V. Moskvina, e-mail: rabchan1992@gmail.com,
AVE: ermolenko_alexy@mail.ru

Received: 17-07-2016, Accepted: 04-10-2016, Published online: 15-11-2016

doi: 10.14202/vetworld.2016.1248-1258 How to cite this article: Moskvina TV, Ermolenko AV (2016) Helminth infections in domestic dogs from Russia, Veterinary World, 9(11): 1248-1258.

Abstract

Dogs are the hosts for a wide helminth spectrum including tapeworms, flatworms, and nematodes. These parasites affect the dog health and cause morbidity and mortality, especially in young and old animals. Some species, as Toxocara canis, Ancylostoma caninum, Dipylidium caninum, and Echinococcus spp. are well-known zoonotic parasites worldwide, resulting in high public health risks. Poor data about canine helminth species and prevalence are available in Russia, mainly due to the absence of official guidelines for the control of dog parasites. Moreover, the consequent low quality of veterinary monitoring and use of preventive measures, the high rate of environmental contamination by dog feces and the increase of stray dog populations, make the control of the environmental contamination by dog helminths very difficult in this country. This paper reviews the knowledge on canine helminth fauna and prevalence in Russia. Practical aspects related to diagnosis, treatment, and control of parasitic diseases of dogs in Russia are discussed.

Keywords: dog, helminth infections, Russia, zoonosis.

Introduction

Dogs are the most popular pets worldwide and are infested with many parasites, which may represent a health risk for humans, especially children, the elderly and the immune-compromised [1-3]. For instance, Dipylidium caninum, Echinococcus granulosus, Ancylostoma spp., and Toxocara canis are common parasites of dogs that can affect humans in different countries around the world. Knowledge about parasite species in domestic dogs, prevalence and intensity of helminth infestations in dog populations, transmission of canine parasites and the seasonal dynamics of parasite infestations are essential for control and prevention of helminthosis in domestic animals and humans.

Investigation of free-roaming dog populations as part of urban ecology is a major key for the solution of many ecological problems in industrial ecosystems [4,5].

In Russia, 40-50% of household owners keep a dog, and the total dog population amounts to 30 million [6]. Therefore, the growing number of owned dogs in urban areas in Russia has also been accompanied by substantial increases in the stray dog population. For example, the stray dog population amounts to 12,300 specimens in Kazan [7], 9500 in Novosibirsk (http://laboratorium.narod.ru/gelm.html) and 10,000 in Omsk [8]. Stray dogs do not receive medical attention and never, or rarely, receive anti-parasitic treatments. Thus, they represent a major source of spread of gastrointestinal helminth eggs, which are harmful for people [9,10]. This article is a compendium on helminth infestations in dogs in the Russian Federation, with particular focus on zoonoses.

The Russian Federation

The Russian Federation is the largest country in the world, covering 7,125,200 km² (6,612,100 sq. miles). Russia consists of seven basic climate zones. The humid continental climate predominates in all parts of the country: European Russia, in the south of West Siberia and in the south of the Russian Far East, including the cities of Moscow and Saint Petersburg, except for the tundra and the extreme southeast.

The Russian Federation is divided into eight large Federal Districts: Northwestern, South, Central, Volga, North Caucasian Federal district, Siberian, Urals, and Far East Federal District. There is lack of data about canine helminth communities and prevalence. The North Caucasian District [11-17] and Central Federal District [18-25] are the most commonly investigated areas. Sporadic reports are published from the Siberian [26-28], Volga [29-31], Ural [32], and Northwest districts [33]. A single report was published from the Far East Federal District [34] in the last 10 years (Tables-1-3 and Figure-1). The greatest number of helminth species was registered in the North-Caucasian Federal District, followed by the Volga Federal District (17 species and 11 species, respectively).

Helminthes of dogs in Russia

In Russia, dogs may be infested with a large number of helminths including cestodes, trematodes,
Phylum	Class	Order	Family	Species	Method	Region
Platyhelminthes	Trematoda	Plagiorchiida	Opistorchiida	*M. bilis*	AU	North Caucasian Federal District
				M. xanthosomus	AU	North Caucasian Federal District
				O. felineus	AU	North Caucasian Federal District, Siberian Federal District, Siberian Federal District, Ural Federal District
				C. sinensis	AU	Far Eastern Federal District
				D. lanceatum	AU	North Caucasian Federal District
				Dicrocoeliidae		
				D. caninum	AU; CE	Central Federal District, Siberian Federal District, Volga Federal District, North Caucasian Federal District, Volga Federal District, Siberian Federal District, Ural Federal District, Volga Federal District, Siberian Federal District, Far East Federal District
Cestode	Echinostomida	Cyclophylliidea	Echinostomatida	*E. perfoliatus*	AU	North Caucasian Federal District, Central Federal District, Siberian Federal District, Ural Federal District, Volga Federal District, Siberian Federal District, Far East Federal District
			Dipylliidae	*D. granulosus*	AU; CE	North Caucasian Federal District, Ural Federal District, Siberian Federal District, Volga Federal District, Siberian Federal District, Ural Federal District, Volga Federal District, Siberian Federal District, Far East Federal District
	Mesocestoidida			*M. lineatus*	AU	North Caucasian Federal District, Central Federal District
Taeniidae				*T. multiceps*	AU; CE	Siberian Federal District, North Caucasian Federal District, Siberian Federal District, Kazakhstan, Volga Federal District
Pseudophyllidea	Diphyllobothriidae			*T. pisiformis*	AU	North Caucasian Federal District, Central Federal District
Nematoda	Secernentea	Ascaridida	Ascarididae	*T. canis*	AU, CE	Central Federal District, North Caucasian Federal District, North-West Federal District, Volga Federal District, Siberian Federal District, Far East Federal District, Urals Federal District

(Contd…)

Veterinary World, EISSN: 2231-0916
and nematodes. The canine gastrointestinal helminth fauna includes 21 species (Table-1). There are eight species of tapeworms, from the following families: Taeniidae (4), Dipylidiidae (2), Mesocestoididae (1), and Diphyllobothriidae (1). Roundworms are made up of six species from the families Ascarididae (2), Ancylostomatidae (2), Strongiloididae (1), and Trichuridae (1). Flatworms include seven species from the families Opisthorchiidae (4), Dicrocoeliidae (1), and Diplostomatidae (1). Some species, such as Toxascaris leonina, T. canis, D. caninum, E. granulosus and A. caninum, are frequently found in dogs.

Table-1: Continued...

Phylum	Class	Order	Family	Species	Method	Region
Rhabditida	Strongyloida	Ancylostomatida	S. stercoralis	AU, CE		North Caucasian Federal District, Central Federal District, Siberian Federal District, Volga Federal District, Ural Federal District, Far East Federal District, Central Federal District, Siberian Federal District, Volga Federal District, North-Caucasian Federal District, Far East Federal District, Central Federal District, Siberian Federal District, North Caucasian Federal District, Central Federal District
Trichurida	Trichurida		T. vulpis (syn T. vulpis)	AU, CE		

AU=Autopsy method, CE=Coproscopically examination method, M. bilis=Methorchis bilis, M. xanthosomus=Methorchis xanthosomus, O. felineus=Opisthorchis felineus, C. sinensis=Clonorchis sinensis, D. lanceatum=Dicrocoelium lanceatum, A. alata=Alaria alata, E. perfoliatus=Echinochasmus perfoliatus, D. caninum=Dipylidium caninum, E. granulosus=Echinococcus granulosus, M. lineatus=Mesocestoides lineatus, T. multiceps=Taenia multiceps, T. hydatigena=Taenia hydatigena, T. ovis=Taenia ovis, T. pisiformis=Taenia pisiformis, D. latum=Diphyllobothrium latum, T. canis=Toxocara canis, T. leonina=Toxascaris leonina, S. stercoralis=Strongyloides stercoralis, A. caninum=Ancylostoma caninum, U. stenocephala=Uncinaria stenocephala, T. vulpis=Trichuris vulpis, T. vulpis=Trychocephalus vulpis, M. multiceps=Multiceps multiceps

Figure-1: Map of researched area.
Table 2: Prevalence and intensity (min and max intensity rates or mean intensity) data of dogs’ gastrointestinal helminths based on autopsy examination.

Region	Dagestan [16]	Kursk [21]	Altai [27]	North Caucasus [17]	Voronezh [20]	Caucasian mineral waters [14]	Ivanovo [18,19]	Kabardino-Balkarian Republic [12]	Moscow [24]
Total number of investigated dogs	n=320	n=67	n=72 dogs+826 fecal samples	n=35	n=12	n=385	n=173	n=17	n=86
D. lanceatum	9.3% 12.4±1.3	-	-	-	-	-	-	-	-
A. alata	8.7% 2.6±0.2	-	2.18%	16.5%	18.2%	11.1% 9-12	20.2%	29.4%	6.6% 12.6 for 1.5-3 years old dogs
T. hydatigena	66.5% 5.7±0.5	-	2.66%	-	-	20.2% 3-5	5.2%	29.4%	-
E. granulosus	66.8% 203.8±1.4	-	1.09%	80-100%	-	34.6% 11-246	-	76.5%	-
T. ovis	16.5% 2.0±0.1	-	1.45%	-	-	-	35.3%	-	-
M. lineatus	13.7% 2.4±0.2	-	-	-	-	1.7%	23.5%	-	-
D. caninum	26.2% 4.1±0.3	10.4%	38.01%	26%	12.8	72.7% 5-33	68.2%	61.5%	100% 5.8-19.8 (in dogs aged 1-6 months; 7-12 months and dogs 1.5-3 years old)
T. canis	81.8% 39.4±0.4	38.8%	43.95%	30.5%	12.8	-	72.2% 6-49	53.7%	70.6%
T. leonina	57.5% 12.6±0.8	7.46%	39.95%	-	-	35.8% 3-19	22.5%	41.2%	
A. caninum	27.8% 23.6±1.0	-	2.06%	-	-	62.3% 7-52	12.7%	53%	
U. stenocephala	23.4% 19.2±1.2	-	16.34%	46.3%	100%	18.5	30.9 8-91	57.7%	41.2% 128.8-36.8 (in dogs aged 1.5-3 years old)
O. felineus	6.5% 3.0±0.2	-	5.6%	-	-	-	-	-	
M. xanthosomus	6.5% 4.1±0.3	-	-	-	-	-	23.5%	-	
T. vulpis	-	8.95%	-	-	-	-	-	-	

(Contd...)
from different Russian regions (Tables-1-3). Other helminths such as *Mesoccephaloides lineatus* (Goeze, 1782), *Metorchis bilis* (Braun, 1890), *Metorchis xanthosomus* (Creplin, 1846), *Dicrocoelium lanceatum* (Stiles et Hassal, 1896), *Diphyllobothrium latum*, and *Strongyloides stercoralis* have only been sporadically reported in Russia. *Clonorchis sinensis* Looss, 1907 is an endemic species from the Asian Region; it was found in dogs from the Russian Far East [35]. Among *Taenia* species found in dogs from Russia, the most common parasites are *Taenia hydatigena*, followed by *Taenia multiceps*. Two species, *Taenia ovis* and *Taenia pisiformis*, have been found in the North Caucasian District only.

Diagnosis of Canine Helminth Parasites

The diagnosis of helminth parasites affecting dogs is made by coprological examination methods, *Strongyloides* larva detection techniques and post-mortem examination. Helminth eggs are usually detected in feces by ordinary coprological techniques such as Fulleborn’s method and Darling’s method; these methods are present low sensitivity for some helminth species and result in the underestimation of the real prevalence of some parasites [36-38]. Some flotation and sedimentation techniques are used only in Russia. For instance, Kotelnikov-Varenichev’s and Kotelnikov-Chrenov’s methods are centrifugal flotation techniques, which have high sensitivity for many helminth species [39-42]. Goryachev’s sedimentation technique proposed for detecting *Opisthorchis* eggs is also use in some studies (Table-4) [43]. However, other coprological examination methods using worldwide are not used in Russia. For example, TF-test® designed for detecting human gastrointestinal parasites [44] is frequency used for detecting helminth eggs in canine feces [45]. Some comparative study showed that the centrifugal flotation technique was more sensitive than centrifugal sedimentation and TF-test® for recovery *Ancylostoma* spp., *T. canis*, *Trichuris vulpis* eggs in canine feces [45]. Another method is Willis technique has high sensitivity for *T. canis* eggs in canine feces [46]. Moreover, recent study showed that this method performed better than the centrifugal flotation techniques and Hoffman-Pons-Janer technique for detecting *Ancylostoma* spp. in dog feces [47].

Traditional Baermann’s and modified Baermann-Orlov’s methods are used for *S. stercoralis* larva detection from canine feces [48,49]. Zink sulfate flotation technique which is sensitive for *S. stercoralis* larva is not used in Russia [50].

Necropsy examination is performed according to the standard procedures [49,51]; methods of total and part helminthological examination suggested by Skrjabin [52] used in parasitological study.

Prevalence of Helminth Infections in Dogs in Russia

Data obtained from reports in different regions showed broad prevalence rate fluctuations. The prevalence depends on climate, living conditions, and quality of veterinary care [53,54]. Many reports did not include data about the total prevalence of gastrointestinal parasites in dogs. However, individual prevalence rates for different parasites were greater than 50% in 37% of studies. High prevalence rates and a broad parasite spectrum were found in studies using the necropsy method (Table-2).

Overall, nine parasites species were found in studies using coproscopic examination methods. Some species, such as *M. xanthosomus*, *M. bilis*, *S. stercoralis*, *M. lineatus* and *D. latum*, were not
Table 3: Prevalence data (%) of gastrointestinal helminths based on coproscopically examinations.

City	Total number of investigated dogs	Method	T. hydatigena	D. caninum	E. granulosus	Opisthorchiidae	A. caninum	T. canis	T. leonina	U. stenocephala	T. vulpis
Machachkala [15]	42	Fulleborn’s method	33.3	26.1	16.6	-	- 61.9	38	26.1	-	
Kursk [21]	32	Fulleborn’s method	-	12.5	-	-	-	18.7	-	-	-
Voronezh [25]	587	Darling’s method; Fulleborn’s method	Taenia spp. 2.13	19.15	-	0.71	-	33.3	19.15	19.86	7.09
Barnaul [28]	1019	Fulleborn’s method; Kotelnikov-Chrenov’s method; Goryachev’s method	-	16.3	-	5.3 (n=150)	0.49	39.8	24.9	10.1	-
Kazan [31]	-	Fulleborn’s method; Kotelnikov-Chrenov’s method	Taenia spp. 4.8	11.1	-	3.2	3.2	46	28.5	-	-
Vladikavkaz [11]	179	Fulleborn’s method; Kotelnikov-Chrenov’s method; Kotelnikov-Varenichev’s method	-	6.45	-	-	9.68	12.9	1.08	-	-
Moscow [23]	367	Floatation method	-	-	-	-	-	33.4	10.2	27.3	-
Novosibirsk [26]	3564	Fulleborn’s method; Kotelnikov-Chrenov’s method	Taenia spp. 0.59-1.87	4.68-9.42*	-	0.35-3.91*	-	9.38-30.38*	3.77-6.94*	1.21-1.31*	0.14-2.93*
Saratov [29]	1563	Fulleborn’s method	-	8.9	-	-	1.2	63.6	7.4	2.9	-
Krasnodar [22]	689	Fulleborn’s method	T. pisiformis 0.58	4.35	-	-	1.31	12.77	7.69	1.01	1.31
Vladivostok [34]	97	Fulleborn’s method; Sedimentation method	Taenia sp. 2.1	2.1	-	10.3	1.03	-	4.1	-	-

*Min and max rates. T. hydatigena = Taenia hydatigena, D. caninum = Dipylidium caninum, E. granulosus = Echinococcus granulosus, A. caninum = Ancylostoma caninum, T. canis = Toxocara canis, T. leonina = Toxascaris leonina, U. stenocephala = Uncinaria stenocephala, T. vulpis = Trichuris vulpis
found on fecal examination. In some cases, it was also difficult to distinguish species of eggs Opisthorchiidae family [55] and eggs genus *Taenia* based only on morphological characters [56].

The most common species in Russia was *T. canis*, followed by *D. caninum*, *T. leonina*, and *Uncinaria stenocephala* (Tables-2 and 3). *A. caninum* was found in 52.3% of studies conducted in areas with a continental or temperate climate, where there are warm summers and high humidity, as these areas with a continental or temperate climate, where there are warm summers and high humidity, as these conditions are optimal for *A. caninum* larval development [57].

Flatworms of the genus *Metorchis* (Looss, 1899) are worldwide parasites of Cyprinidae fishes, and infest fish-eating mammals. In Russia, *M. xanthosomus* was found in Dagestan and Kabardino-Balkaria Republic, while *M. bilis* was found in Caucasian Minerals Water (Table-2). It is interesting that these species were found separately in different regions since both species have common intermediate hosts. The first host is the mollusk *Bithynia tentaculata* L. 1758 living in the Palearctic zone, except the North zone [58]. The second hosts are Cyprinidae fishes [59].

The cestode *M. lineatus* has a worldwide distribution. It has been found in Europe [60], the Middle East [61], Africa [62], North, and South America [63]. Adult worms live in small intestine of carnivorous mammals including fox, wolves, dogs, cats, coyotes, raccoons, and lynxes [64]. One case of the perineal larval stage was recorded in dogs from Germany [65]. This species spreads proglottids via the feces so it cannot be found with flotation methods. In Russia, dogs infested with *M. lineatus* were found in Dagestan with a low prevalence rate [16].

Dogs and People: Problem of Parasite Zoonoses

Most parasites species found in dogs from Russia have zoonotic potential. *T. canis* is the most common canine intestinal endoparasites worldwide. Humans are infected by *Toxocara* via ingestion of embryonated eggs in contaminated soil [66]; however, pet hair can also contain embryonated eggs [67]. The first importance reports about human toxocariasis in Russia were published in 1961-1962 [68,69]. Only in 1988 did the connection between the source of toxocariasis in dogs and nosoareal of toxocariasis in humans appear [70]. Recently, the problem of toxocariasis in humans and dogs has been highlighted worldwide. In the Russian Federation, toxocariasis has frequency appeared in children, especially in children with allergic diseases (31-47% of children with allergic diseases) [71]. Ocular toxocariasis is frequently recorded in children, whereas visceral toxocariasis is more frequently recorded in adults. Since 1991, *Toxocara* infestation rates in people have increased. For example, *Toxocara* infestation was recorded in 0.03 per 100,000 people in 1991 and in 2.32 per 100,000 people in 2012.

However, toxocariasis was recorded in 2.1 per 100,000 people from 2008 to 2012 [72]. Infestation rates are broadly variable in different regions and in people of different age groups. *Toxocara* prevalence in people from Russia is 5.4% in Moscow and Tula, 7.4% in Dagestan and 6% in the Irkutsk District [73]. The *Toxocara* prevalence was 16.7% in children from the Altay Region, whereas toxocariasis was recorded 6 times more frequently in adults from the Krasnodar region. *E. granulosus* is a widespread parasite, which has a major medical, veterinarian and socioeconomic cost. The adult parasite stage occurs in the canine small intestine, and people are infested by ingestion of contaminated food [74] or by direct contact with contaminated dogs that retain eggs on their coats [75]. Echinococcosis in humans is the most serious parasitic disease, as a fatal outcome is recorded in 2-23% of cases [76]. Higher prevalence rates appear in China, western and southern Russia, Southwestern Europe, South Africa and Central and South America [76]. The Orenburgskii Region is the most problematic territory in Russia, as echinococcosis was registered in 3.4±0.4 per 100,000 people [77]. Recently, DNA-based studies showed that *E. granulosus* comprise 10 genotypes which have been distinguished in different species [78]. *E. granulosus* s. s. (G1-G3), *E. canadensis* (G6, G8 and G10) were found in Russia [79].

Table-4: Comparison of coproscopically examination method using in Russia.

Method	Solution (Specific gravity)	Technique	Sensitivity
Fullborn [36]	NaCl (1.2)	Flotation	Good sensitivity for *Toxocara*, *Toxascaris* and *Trichuris* eggs which frequently appear in canine faeces
Darling [37,38]	NaCl + C₃H₈O₃ (1.21)	Flotation-sedimentation	Low sensitivity for flatworms and *Diphyllobothrium* eggs identification
Goryachev [43]	NaCl (1.2)	Sedimentation	Use only for *Opisthorchis* eggs detection
Kotelnikov-Varenichev [39-41]	ZnCl₂ (1.82)	Centrifugation flotation	High sensitivity for *Toxocara*, *Toxascaris* and *Trichuris* eggs, flatworms and cestode eggs
Kotelnikov-Chrenov [41,42]	NH₄NO₃ (1.28)		High sensitivity for flatworm eggs, *Taenia* eggs and nematode eggs

Available at www.veterinaryworld.org/Vol.9/November-2016/14.pdf
People are infrequently infested with *D. caninum*, which occurs through ingestion of feline fleas infected with tapeworms [80,81]. *D. caninum* infestation was also registered in Russia. Dipylidiasis was recorded in humans from the Orenburgskii Region [82], Moscow [83], and the Kabardino-Balkarian Republic [84].

Liver flukes of the genera *Clonorchis* Loos, 1907, *Metorchis*, and *Opisthorchis* Blanchard 1895, in the family Opisthorchiidae, exploit freshwater snails and fish as the first and second intermediate hosts, respectively. The final hosts, fish-eating birds and mammals, including dogs and humans, are infected by eating fish harboring infective metacercariae [85]. Feces of dogs infested with *Opisthorchis felineus* and *Metorchis* spp. are major sources of water contamination [86]. The largest infestation center is located in the Ob-Irtysh basin and includes 10 regions of Russia and Kazakhstan. The infestation rate is 51-82% in humans. The other intensive infestation center is Chulym River in the Krasnoyarsk region; the prevalence of *O. felineus* in people is 70-80% [87].

M. bilis is also found in fish from the Ob-Irtysh basin. The prevalence rate in people from West Siberia is 28.1% [88].

The flatworm *C. sinensis* is endemic to the Far Eastern region and it was also found in dogs and people from China and Korea [86,89]. *C. sinensis* is frequently found in people from the Russian Far East [90].

The tapeworm *M. lineatus* has major veterinary importance, and occasionally, it has been found in people [91]. In Russia, cases of *M. lineatus* infestation in humans have not been reported, however dog feces containing proglottids are major sources of environmental contamination.

D. latum is a common parasite of fish-eating mammals. Fecal contamination of water is a source of *D. latum* spread. In the last 10 years, only one report regarding canine infestation from Ivanovo was published. A big center of infestation located in Russia is Baikal Lake. Infestation rates in humans from the Irkutsk Region were 9.6 cases per 100,000 people [92].

Another flatworm, *Alaria alata*, has specific veterinary importance [93], however, several reports about human larval alariosis were published since 1973 [94,95]. In Russia, *A. alata* was found in dogs, foxes, wolves and badgers in the Vladimir, Ivanovo and Moscow regions, and in the Volgograd and Astrachan regions, in the North Caucasian District. Prevalence rates were 38.4-48.6% in farm dogs, 46.1-59.3% in stray dogs and 100% in wolves and foxes [96].

Control and Prevention

Zoonosis is the major veterinary and medical problem. Zoonotic infestations include well-known parasite species such as *T. canis* and *E. granulosus*, which have a worldwide distribution.

However, there are no official guidelines for the control of endoparasite infestations in dogs, such as that provided by the Companion Animal Parasite Council (CAPC: http://www.capcivet.org/) in the United States and the European Scientific Counsel Companion Animal Parasites (ESCCAP: http://www.esccap.org/) in Europe.

There is scant information about problems of veterinary epidemiology in Russia. Two guidelines for the sanitary and veterinary rules were published by the Veterinary Department of the Ministry of Agriculture of the Russian Federation (http://docs.cntd.ru/document/1200050554) with State Sanitary and Epidemiological Supervision of the Russian Federation (http://rospotrebnadzor.ru/documents/details.php?ELEMENT_ID=2890). Veterinarians do not have a native source of information for parasite epidemiology, life cycles or control measures [97].

Parasitology monitoring is provided irregularly. Poor living conditions and lack of anti-parasitic medication causes environmental contamination with helminth eggs [98]. Environmental contamination of helminth eggs is a big problem in many urban and rural areas in Russia, especially in agricultural areas, where feces are used for fertilizing. Currently, basic methods for dog helminth infections prevention include regular deworming of domestic animals, control of environmental contamination (avoid contamination of canine feces in public places), and spread of information about zoonotic parasites [99]. Moreover, control of food quality and pet diets help to prevent parasite infestations. For example, to prevent *C. sinensis* and *O. felineus* infestation in dogs, it is recommend to avoid the feeding of fresh cyprinid fishes [99].

Many dog owners cannot afford preventive measures and will act only when a life-threatening problem is affecting their animals. Furthermore, there are a large number of free-roaming dogs populations in the Russian cities. Government is not able to manage these animals due to the lack of adequate infrastructure and trained personnel to conduct an effective long-term population control program. As a result, pet dogs and cats are usually endangered by a wide range of parasites that may cause disease in them and eventually in their human counterpart.

Conclusions

The close contact between pets and humans may involuntarily represent a hazard for humans. Therefore, to avoid the potential risks associated with owning a pet, it is fundamental to maintain pets in good health and protect them from zoonotic pathogens.

Therefore, veterinary practitioners and medical physicians should work together toward improving the well-being and general health of both animals and humans.

Authors’ Contributions

MTV and AVE participated in the draft and revision of the manuscript. Both authors read and approved the final manuscript.
Acknowledgments

The authors are grateful to Far Eastern Federal University (FEFU), Russia for providing access for international and Russian scientist database.

Competing Interests

The authors declare that they have no competing interests.

References

1. Abere, T., Bogale, B. and Melaku, A. (2013) Gastrointestinal helminth parasites of pet and stray dogs as a potential risk for human health in Bahir Dar town, North-Western Ethiopia. Vet. World, 6: 388-392.
2. Neves, D., Lobo, L., Simeos, P.B. and Cardoso, L. (2014) Frequency of intestinal parasites in pet dogs from an urban area (Greater Oporto, northern Portugal). Vet. Parasitol., 200: 295-298.
3. Overgaauw, P.A., van Zutphen, L., Hoek, D., Yaya, F.O., Roelfsema, J., Pinelli, E., van Knapen, F. and Kortbeek, L.M. (2009) Zoonotic parasites in fecal samples and fur from dogs and cats in the Netherlands. Vet. Parasitol., 163: 115-122.
4. Massei, G., Fooks, A.R., Horton, D.L., Callaby, R., Sharma, K., Dhakal, I.P. and Dahal, U. (2016) Free roaming dogs in Central Nepal: Demographics, health and public knowledge, attitudes and practices. Zoonoses Public Health, DOI: 10.1111/zph.12280.
5. Garde, E., Acosta-Jamett, G. and Bronsvooort, B.M. (2013) Review of the risks of some canine zoonoses from free-roaming dogs in the post-disaster setting of Latin America. Animals, 3: 855-865.
6. Sermirina, I. (2007) Sobiaki i ih vladel’cy. (Dogs and their owners). Soc. ‘naja Real’nost’, 10: 35.
7. Shamsuvaleeva, J.S. and Rahimov, I.I. (2013) Osobennosti gel’mintov sobak i dikih psovyh v Kabardino-Balkarii (Association of helminths of carnivorous and its treatment in flat zone in Krasnodarskii Republic). Trud. KubGAU, 5, 147-150.
8. Berezina, E.S. (2002) Ecological characters of dogs population structures in towns. Ecological groups, size of population, population structure, communication. Vet. Patol., 1: 132-135.
9. Bittirov, A.M., Mantaeva, S.S., Shihaliev, M.A., Sarbasheva, M.M., Bidzhide, A.Z., Golubev, A.A. and Akieva, O.M. (2012) Jepizootologicheskaja ocenka gel’mintov sobak i dikh psyqv v Kabardino-Balkarian (Epizootological evaluation of dogs and wild canids helminths in Kabarino-Balkarian Republic). Agrarnaja Nauk., 9: 31-32.
10. Berezina, E.S. (2008) Frequency of intestinal parasites in dogs from an urban area (Greater Oporto, northern Portugal). Vet. Parasitol., 200: 295-298.
11. Kolesnikov, V.I. and Popov, O.V. (2012) Fauna of helminths of dogs in region the causcasus mineral waters. Nauchno Proizvodstvennyj Zhurnal Ovcy, Kozy, Sherstianoe Delo, 4: 49-52.
12. Kryuchkova, E.N., Abalihin, B.G., Egrov, S.V., Sokolov, E.A., Balandina, V.N. and Egrov, D.S. (2014) Parasitases of carnivorous pets of Ivanovo Region’s urban populations. Vests. Kostromskogo Gosudarstvennogo Univ. Im N. A. Nekrasova, 6: 41-44.
13. Massei, G., Fooks, A.R., Horton, D.L., Callaby, R., Sharma, K., Dhakal, I.P. and Dahal, U. (2016) Free roaming dogs in Central Nepal: Demographics, health and public knowledge, attitudes and practices. Zoonoses Public Health, DOI: 10.1111/zph.12280.
14. Musaev, M.C., Kurochkina, K.G. and Machieva, B.M. (2012) Helminthes of dogs in Makhachkala city. Russ. J. Parasitol., 3: 22-24.
15. Zhuravlev, A.S. (2008) Osnovnye gel’mintysoy sobak v regione Severnogo Kavkaza. (Major dogs’ helminthosis in North Caucasian Region). Vestn. Krajskojarskogo Gosudarstvennogo Agrarnogo Univ., 5: 257-259.
34. Moskvina, T.V. and Zheleznova, L.V. (2016) A survey on endoparasites and ectoparasites in domestic dogs and cats in Vladivostok, Russia 2014. Vet. Parasitol. Regional Stud. Rep., 1: 31-34.

35. Skrjabin, K.I., Pod’yapolskaya, V.P. and Shule, R.C. (1929) Rabota 60-jo sojuznoj gel’mintologicheskoi jekspeditsii v Dal’nevenstchnom krae. (Research of 60th allied expedition in Far East Region). Russ. Zhurnal Trop. Med., 1: 36.

36. Zolotov, A., Jawadzki, W. and Nowak, M. (2006) Comparison of two fecal flotation techniques for diagnostic of intestinal parasites infestations in swine and dogs. E. J. P. A. U., 9: 39.

37. Semashko, N.A. (2013) Gel’mintologicheskie metody issledovaniya (Helminths detection methods). In: Bol’shaja Medicinskaia Jenciklopediia (Big Medical Encyclopedia). Vol. 6. Directmedia, Moscow. 443-446.

38. Becker, A.C., Kraemer, E.C. and Strube, C. (2016) Sensitivity and efficiency of selected coproscopical methods-sedimentation, combined zinc sulfate sedimentation-flotation, and McMaster method. Parasitol. Res., 113: 2401-2406.

39. Lutfullin, M.H., Latypov, D.G. and Nikiforov, P.G. (2010) Gel’mintoonovskopicheskaja diagnostika trematodozov i puti uluchshenija ee jeffektivnosti, (Gelmintoovoskopicheskaya trematodoz diagnosis and ways of improving its efficiency). Uchenye Zapiski Kazanskogo Gosudarstvennoj Akad. Vet. Med. N. Je. Bauman., 207: 75-80.

40. Dolbin, D.A., Lutfullin, M.H. and Hayrullin, R.M. (2011) Universal coproscopy diagnosis of intestinal parasites. Uchewe Zapiski Kazanskoj Gosudarstvennoj Akad. Vet. Med. N. Je. Bauman., 207: 190-195.

41. Timerbaeva, R.R., Idrisov, A.A. and Lutfullin, M.H. (2014) Comparative efficacy of helmintovoscopy methods of diagnosis of swine helminthoses. Teor. Prak. Parazitarnykh Boleznej Zhitvnyh, 15: 314-317.

42. Kotelnikov, G.A. and Chrenov, V.M. (1992) Coproantigen detection for immunodiagnosis of echinococcosis and taeniasis in dogs and humans. Parasiology, 104: 347-355.

43. Goyachev, P.P. (1949) K metodike kropologicheskogo analiza na opistorhoz (Coprological examination method for opisthorchosis detection). Trud. Omsk. Med. In-ta., 11: 191-193.

44. Gomes, J.P., Hoshino-Shimizu, S., Dias, L.C., Araujo, A.J., Castilho, V.L. and Neves, F.A. (2004) Evaluation of a novel kit (TF-Test) for the diagnosis of intestinal parasitic infec-tions. J. Clin. Lab. Anal., 18: 132-138.

45. Katagiri, S. and Oliveira-Sequeira, T.C.G. (2008) Comparison of two fecal flotation techniques for diagnostic of intestinal parasitic infestations in Far East Region. Vet. Parasitol., 142: 129-133.

46. Loos-Frank, B. (1990) Cestodes of the genus Mesocestoides (Mesocestoididae) from carnivores in Israel. Isr. J. Zool., 37: 3-13.

47. De Ybáñez, R.R. and Alonso, F.D. (2007) Canine parasitic zoonoses in Bangkok temples. Vet. Parasitol., 142: 129-133.

48. Wirtherle, N., Wiemann, A., Ottenjann, M., Linzmann, H.E., Zeyhle, E. (1992) Coproantigen detection for immunodiagnosis of echinococcosis and taeniasis in dogs and humans. Parasiology, 104: 347-355.

49. Wang, Y., Wen, H., Zhou, P., Stringer, R., Rogan, M., and Zeyhle, E. (1992) Coproantigen detection for immunodiagnosis of echinococcosis and taeniasis in dogs and humans. Parasiology, 104: 347-355.

50. Yáñez-Osorio, J., Terres, A., and Pascual, M.J. (2006) Prevalence of parasites in soil and dog feces according to diagnostic tests. Vet. Parasitol., 142: 129-133.

51. Martínez-Carrasco, C., Berriatu, E., Garrio, M., Martinez, J., Alonso, F.D. and de Ybáñez, R.R. (2007) Epidemiological study of non-systemic parasitism in dogs in Southeast Mediterranean Spain assessed by coprological and post-mortem examination. Zoonoses Public Health, 54: 195-203.
70. Lysenko, A.J., Alekseeva, M.I., Avdjuhina, T.I., Kuprijanova, N.J., Cuckiridze, N.P. and Sokol’skaja, G.M. (1988) Geografija toksikaroz na SSR. Soobshhenie 2. Nozoareal (Toxocarosis geography in USSR. Second report. Nosological area). Med. Parazitol., 4: 78-80.

71. Berezina, E.S. (2006) Osobennosti rasprostraneniya toksikaroz v populjacijah sobak i cheloveka, (Characters of toxocarosis spreading in humans and dogs populations). Vet. Patol., 3: 45-56.

72. Shishkanova, L.V., Tverdohlebova, T.I., Ermakova, L.A., Dumbadze, O.S., Shirinyin, A.A. and Nagomy, S.A. (2014) Toxocara canis afection at the South of Russia. Teor. Prak. Parazitarnykh Bol’nez V Zhivotnyh, 15: 356-358.

73. Zamaziy, T.N. and Zdor, O.A. (2005) Peculiarities of epidemiology and clinical course of toxocariasis in contemporary conditions. Int. Med. J., 1: 133-135.

74. Adanir, R. and Tasci, F. (2013) Prevalence of helmith eggs in raw vegetables consumed in Burdur, Turkey. Food Control, 31: 482-484.

75. Eckert, T.J. and Deplazes, P. (2004) Biological, epidemiological, and clinical aspect of Echinococcosis, a zoonosis of increasing concern. Clin. Microbiol. Rev., 17: 107-135.

76. Eckert, J., Gemmel, M.A., Meslin, F.X. and Pawlowski, Z.S. (2001) WHO/OIE. Manual on Echinococcosis in Humans and Animals: A Public Health Problem of Global Concern. World Organisation for Animal Health, Paris, France.

77. Korneyev, A.G., Trishin, M.V., Solovykh, V.V., Krivulya, Y.S. and Bozhenova, I.V. (2014) Echinococcosis in the Orenburg region: Epidemiological, immunological and taxonomic aspects. Aktual’naja Infektologija, 4: 46-49.

78. McManus, D.P. (2013) Current status of the genetics and molecular taxonomy of Echinococcus species. Parasitology, 140: 1617-1623.

79. Konyaev, A.G., Trishin, M.V., Solovykh, V.V., Krbulya, Y.S. and Bozhenova, I.V. (2014) Echinococcosis in the Orenburg region: Epidemiological, immunological and taxonomic aspects. Aktual’naja Infektologija, 4: 46-49.

80. MeManus, D.P. (2013) Current status of the genetics and molecular taxonomy of Echinococcus species. Parasitology, 140: 1617-1623.

81. Jackson, D., Crozier, W.J., Andersen, S.E., Giles, W. and Bowen, T.E. (1977) Dipylidiasis in a 57-year-old woman. Med. J. Aust., 2: 740-741.

82. Chmeleva, L.A. and Kovaleva, L.N. (1968) Dva sluchaja dipilidioza v Orenburgskoj oblasti, (Two cases of dipilidiosis in Orenburg Region). Med. Parazitol., 150: 362-365.

83. Romanenko, N.A. (2003) Jepidemiologija dipilidioza detej v megapolise Moskva (Epidemiology of dipilidiosis in children from Moscow). Gig. Sutih., 5: 54-57.

84. Sarbakesha, MM., Bittirova, A.A., Atabieva, Z.A., Bittirov, A.M. and Bittirov, A.M. (2012) Regional epidemiology of human cestodiasis in the Kabardino-Balkar Republic. Jepidemiologija i Infekcionnye Boleznii, 6: 35-37.

85. King, S. and Scholz, T. (2001) Trematodes of the family Opisthorchiidae: A minireview. Korean J. Parasitol., 39: 209-211.

86. Lun, Z.R., Gasser, R.B., Lai, D.H., Li, A.X., Zhu, X.Q., Yu, X.B. and Fang, Y.Y. (2005) Clonorchiasis: A key foodborne zoonosis in China. Lancet Infect. Dis., 5: 31-41.

87. Nikolaeva, N., Nikolaeva, L. and Gigilev, N. (2005) Opistorchoz (Jepidemiologija, Klinika, Diagnostika, Lechenie), (Opisthorchosis (Epidemiology, clinic, diagnosis and treatment)). Vrach, 7: 17-20.

88. Ilyinskikh, Y.N., Novitsky, V.V., Ilyinskikh, N.N. and Lepyokhin, A.V. (2006) Assessment of the incidence of Opisthorchis felineus (Rivolta, 1884) and Metorchis bilis (Braun, 1890) infections in population of several regions of the West Siberia. Bjulleten’ Sibirskij Med. J., 5: 18-22.

89. Lin, R.Q., Tang, J.D., Zhou, D.H., Song, H.Q., Huang, S.Y., Chen, J.X., Chen, M.X., Zhang, H., Zhu, X.Q. and Zhou, X.N. (2011) Prevalence of Clonorchis sinensis infection in dogs and cats in subtropical Southern China. Parasit. Vectors, 4: 180.

90. Besprozvanny V.V., Ermolenko A.V., Rumianceva E.E., Voronok V.M. and Barkova A.D. (2013) Klonorhis (Clonorchis sinensis) i klonorhov v Primorskom krae (Clonorchis (Clonorchis sinensis) and clonorchiasis in Primorsky region). Dal’nau, Vladivostok.

91. Savchenkov, M.F., Chumachenko, I.G. and Turchinova, D.A. (2008) Diphyllobothriasis in Baikalsky region (epidemiologic observation). Sibirskij Med. Zhurnal, 78: 88-90.

92. Fuentes, M.V., Gala, M.T., Puchades, N. and Malone, J.B. (2003) Short report a new case report of human mesocestopodiosis infection in the United States. Am. J. Trop. Med. Hyg., 68: 566-567.

93. Petrov, Y.F., Kruchkova, E.N. and Trusova, A.V. (2004) The methodical position on preventive maintenance of alarosis of carnivores in Russian Federation. Russ. J. Parasitol., 2: 118-120.

94. Kramer, M.H., Eberhard, M.L. and Blankenberg, T.A. (1996) Respiratory symptoms and subcutaneous granuloma caused by mesocercariae: A case report. Am. J. Trop. Med. Hyg., 55: 447-448.

95. She, M., Maberley, A.L., Walters, J., Freeman, R.S. and Fallis, A.M. (1973) Intraretinal larval trematode. Trans. Am. Acad. Ophthalmo. Otalaryngol., 77: 784-791.

96. Petrov, Y.F., Kryuchkova, E.N. and Trusova, A.V. (2004) The methodical position on preventive maintenance of alarosis of carnivores in Russian Federation. Russ. J. Parasitol., 2: 118-120.

97. Makarov, V.V. (2004) Zoonoses. Vet. Patol., 3: 7-9.

98. Gorohov, V.V., Peshkov, R.A. and Gorochova, E.V. (2009) Toxocarosis as ecological problem. Vet. Patol., 1: 10-12.

99. Schuster, R.K., Heidrich, J., Pauly, A. and Nöckler, K. (2007) Liver flukes in dogs and treatment with praziquantel. Vet. Parasitol., 150: 362-365.
