Cryptanalysis of Guo et al.’s three-party password-based authenticated key exchange (G-3PAKE) protocol

Sung-Bae Choia, Eun-Jun Yoonb,∗

aKorea Institute of Science and Technology Information, Republic of Korea
bSchool of Computer Engineering, Kyungil University, Republic of Korea

Abstract

In 2008, Guo et al. have shown that Lu and Cao’s simple three-party protocol for password-authenticated key exchanges (S-3PAKE) is indeed completely insecure against a kind of man-in-the-middle attack and the undetectable on-line password guessing attack. In addition, they have provided an improved protocol (G-3PAKE) that addresses the identified security problems. However, this paper demonstrates G-3PAKE protocol still falls to undetectable on-line password guessing attack by any other client.

©2011 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of ICAE2011.

Keywords: Password-authenticated key exchange, Cryptanalysis, Three-party, Security

1. Introduction

To apply two-party password-based authenticated key exchange (2PAKE) protocols to a large scale peer-to-peer system, 2PAKE protocols have a common problem, that is, each pair of communication parties in a group needs to pre-share a secret. It means that each user has to keep a large number of secrets for communicating with a group of users. To solve this problem, various three-party password-based authenticated key exchange (3PAKE) protocols were proposed ([1, 2, 3, 4, 5]). In the 3PAKE protocols, a trusted server assists each pair of users to authenticate each other and share a session key. In addition, the user does not need to keep a large number of secrets for a group of users. With the server’s help, each user only shares one secret with the server in 3PAKE protocols.

Because users usually choose easy-to-remember passwords, PAKE protocols can be vulnerable to password guessing attacks. Unlike typical private keys, the password has limited entropy,

∗Corresponding author. Tel.: +82-53-850-7291; Fax: +82-53-850-7609.

Email address: ejyoon@kiu.ac.kr (Eun-Jun Yoon)
and is constrained by the memory of the user. For example, one alphanumerical character has 6 bits of entropy. Therefore, the goal of the attacker, which is to obtain a legitimate communication party’s password, can be achieved within a reasonable time. Thus, the password guessing attacks on PAKE protocols should be considered realistic. In general, the password guessing attacks can be divided into three classes (Kim et al. [5], Ding et al. [6]):

- Detectable on-line password guessing attacks: an attacker attempts to use a guessed password in an on-line transaction. He/she verifies the correctness of his/her guess using the response from server. A failed guess can be detected and logged by the server.
- Undetectable on-line password guessing attacks: similar to above, an attacker tries to verify a password guess in an online transaction. However, a failed guess cannot be detected and logged by server, as the server is not able to distinguish an honest request.
- Off-line password guessing attacks: an attacker guesses a password and verifies his/her guess off-line. No participation of server is required, so the server does not notice the attack from a malicious one.

In 2007, Lu and Cao ([1]) proposed a simple three-party password-based authenticated key exchange (S-3PAKE) protocol, where two clients, each shares a human-memorable password with a trusted server, can construct a secure session key. They argued that their S-3PAKE protocol can resist against various known attacks. In 2008, Guo et al. ([4]), however, have shown that Lu and Cao’s S-3PAKE protocol is indeed completely insecure against a kind of man-in-the-middle attack and the undetectable on-line password guessing attack. In addition, they have provided an improved protocol (G-3PAKE) that addresses the identified security problems. Nevertheless, this paper demonstrates G-3PAKE protocol still falls to undetectable on-line password guessing attack ([3, 4, 7]) by any other client.

2. A review of G-3PAKE protocol

This section briefly reviews G-3PAKE protocol ([4]).

2.1. Notations

- \(S, A, B \): a trusted server and two clients, respectively.
- \(pw_A, pw_B \): the password shared between \(A \) and \(S \) and between \(B \) and \(S \), respectively.
- \(k_{AS}, k_{BS} \): the MAC key shared between \(A \) and \(S \) and between \(B \) and \(S \), respectively.
- \(G, g, p \): a finite cyclic group \(G \) generated by an element \(g \) of prime order \(p \).
- \(M, N \): two elements in \(G \).
- \(x \in Z_p^* \): randomly choosing an element \(x \) of \(Z_p^* \).
- \(MAC(\cdot) \): a message authentication code.
- \(H_1(\cdot), H_2(\cdot) \): two secure one-way hash functions.
- \(|| \): a bitwise concatenation.

2.2. Protocol description

Assume that two clients \(A \) and \(B \) wish to agree on a common session key. As they do not hold any shared information in advance, they cannot directly authenticate each other and have to resort to the trusted server \(S \). The detailed steps of the G-3PAKE protocol, as shown in Fig. 1, are described as follows:
Step 1. To establish a MAC key k_{AS}, a secure 2PAKE protocol is executed between A and S.
Step 2. To establish a MAC key k_{BS}, a secure 2PAKE protocol is executed between B and S.
Step 3. A chooses a random number $x \in Z_p^*$, computes $X = g^x \cdot M_{pwA}$ and $\delta_A = MAC_{k_{AS}}(X)$, and then sends $A||X||\delta_A$ to B.
Step 4. B also chooses a random number $y \in Z_p^*$, computes $Y = g^y \cdot N_{pwB}$ and $\delta_B = MAC_{k_{BS}}(Y)$, and then sends $A||X||\delta_A||B||Y||\delta_B$ to S.
Step 5. Upon receiving $A||X||\delta_A||B||Y||\delta_B$, the server S first uses the shared MAC keys k_{AS} and k_{BS} to verify the MAC δ_A of X and the MAC δ_B of Y, respectively. If they do not hold, S terminates the protocol. Otherwise, S uses the passwords pwA and pwB to compute $g^x = X/M_{pwA}$ and $g^y = Y/N_{pwB}$, respectively. Then, S chooses another random number $z \in Z_p^*$ and computes $g^{\gamma_z} = (g^x)^z$ and $g^{\delta_z} = (g^y)^z$. Finally, S sends $X'||Y'$ to B, where $X' = g^{\gamma_z} \cdot H_1(A, B, S, g^{\gamma_z})$ and $Y' = g^{\delta_z} \cdot H_1(B, A, S, g^{\delta_z})$.
Step 6. Upon receiving $X'||Y'$, B computes $g^{\gamma_z} = Y'/H_1(B, A, S, g^{\gamma_z})$ with the password pw_B and computes $g^{\delta_z} = (g^{\gamma_z})^y$ with the random number y. B then forwards $X'||\alpha$ to A, where $\alpha = H_1(A, B, g^{\delta_z})$.
Step 7. Upon receiving $X'||\alpha$, A first computes $g^{\gamma_z} = X'/H_1(A, B, S, g^{\gamma_z})$ and $g^{\delta_z} = (g^{\gamma_z})^y$. Then, A checks whether $\alpha = H_1(A, B, g^{\delta_z})$ holds or not. If it does not hold, A terminates the protocol. Otherwise, A is convinced that g^{γ_z} is valid. In this case, A can compute the session key $SK_A = H_2(A, B, g^{\gamma_z})$. Finally, A sends β to B for validation, where $\beta = H_1(B, A, g^{\delta_z})$.
Step 8. Upon receiving β, B checks whether $\beta = H_1(B, A, g^{\delta_z})$ holds or not. If it does hold, B
can compute the session key $SK_B = H_2(A, B, g^{xZ})$. Otherwise, B terminates the protocol.

Finally, both A and B share a common session key $SK_A = SK_B = H_2(A, B, g^{xZ})$.

3. Cryptanalysis of G-3PAKE protocol

This section shows that G-3PAKE protocol is insecure to an undetectable on-line password guessing attack ([3, 4]), where a malicious client B of G-3PAKE is able to legally gain information about the password by repeatedly and indiscernibly asking queries to the authentication server. The attack scenario is outlined in Fig. 2. A more detailed description of the attack is as follows:

Figure 2: Undetectable on-line password guessing attack on on G-3PAKE protocol

Step 1. A operates as specified in the G-3PAKE protocol in the first step.

Step 2. Let B be a malicious client mediating between S and A. Upon receiving $A||X||\delta_A$ from the client A in Step 3 of the G-3PAKE protocol in Fig. 1, B first randomly generates X' and $\hat{\alpha}$, and then sends $X'||\hat{\alpha}$ to A as a message of Step 7 of the G-3PAKE protocol in Fig. 1. A would verify $\hat{\alpha}$. Even A may detect only once that $\hat{\alpha}$ is invalid, it really does not mean that S detects a failure of B’s malicious trial.
Step 3. On the other hand, B guesses a password pw_A^* and establishes an authenticated and private channel with S. B firstly computes $g^{x_A'} = X/M^{\text{pw}_A}$ for an unknown element $x_A' \in Z_p^*$. Then, B selects a random element $y \in Z_p^*$, and computes $Y' = (g^{x_A'})^y \cdot N^{\text{pw}_B}$ and $\delta_y = MAC_{k_B}(Y')$. Finally, B sends $A||X||\delta_y||B||Y'||\delta_y^S$ to S in Step 4 of the G-3PAKE protocol in Fig. 1.

Step 4. Upon receiving $A||X||\delta_y||B||Y'||\delta_y^S$, S firstly uses the shared MAC keys k_{AS} and k_{BS} to verify the MAC δ_y of X and the MAC δ_y^S of Y', respectively. Because they always hold, S decrypts ciphertexts X and Y' using M^{pw_A} and N^{pw_B}. Then, S selects a random value $z \in Z_p^*$ and computes

$$g^x = (g^z)^y \text{ and } g^{x\cdot z} = (g^{x\cdot y})^z$$

$$X' = g^{x\cdot z}\cdot H_1(A, B, S, g^z)^{\text{pw}_A}, \text{ and } Y' = g^{x\cdot z}\cdot H_1(B, A, S, g^{x\cdot y})^{\text{pw}_B}$$

Finally, S sends $X'||Y'$ to B in Step 5.

Step 5. Upon receiving $X'||Y'$, B computes

$$g^{x\cdot z} = Y'/H_1(B, A, S, g^{x\cdot y})^{\text{pw}_B} \text{ and } g^{x\cdot z} = X'/H_1(A, B, S, g^{x\cdot y})^{\text{pw}_A}$$

B checks if $(g^{x\cdot z})_B = g^{x\cdot z}$ in Step 4. If the check passes, then B confirms that the guessed password pw_A^* is the correct one.

Step 6. Otherwise, B repeatedly performs the above Steps 3-5 without being noticed by S.

Experiment to verify the proposed attack: The typical Pentium computer can search $\approx 17 \times 10^9$ password in an hour and the supercomputer ($\approx 70 \times 10^{12}$ per second) can search $\approx 252 \times 10^{15}$ password in an hour ([7]). In the case of the undetectable on-line password guessing attacks, additionally time is needed for the round trip delay time between the malicious user B and the server S as shown in Fig. 2, beside the guessing attack costs. Based on the proposed experiment (for the detail, please refer to our previous experiment ([7])), we can see that the proposed password guessing attacks are feasible.

4. Conclusions

Three-party authenticated key exchange technology has been widely deployed in various kinds of applications. In 2008, Guo et al. proposed an improved three-party password-based authenticated key exchange (G-3PAKE) protocol. However, we have demonstrated that G-3PAKE protocol still falls to undetectable on-line password guessing attack by any other client. For this reason, G-3PAKE protocol is insecure for practical application.

References

[1] Lu R X, Cao Z F, Simple three-party key exchange protocol, Computers and Security, Vol. 26, pp. 94-97, 2007.
[2] Yoon E J, Yoo K Y, Improving the novel three-party encrypted key exchange protocol, Computer Standards & Interfaces, Vol. 30, No. 5, pp. 309-314, 2008.
[3] Phan R C W, Yau W C, Goi B M, Cryptanalysis of simple three-party key exchange protocol (S-3PAKE), Information Sciences, Vol. 178, pp. 2849-2856, 2008.
[4] Guo H, Li Z, Mu Y, Zhang X, Cryptanalysis of simple three-party key exchange protocol. Computers & Security, Vol. 27, pp. 16-21, 2008.
[5] Kim H S, Choi J Y, Enhanced password-based simple three-party key exchange protocol, Computers & Electrical Engineering, Vol. 35, pp. 107-114, 2009.
[6] Ding Y, Horster P, Undetectable on-line password guessing attacks, ACM Operating Systems Review, Vol. 29, No. 4, pp. 77-86, 1995.
[7] Yoon E J, Yoo K Y, Cryptanalysis of a simple three-party password-based key exchange protocol, International Journal of Communication Systems, Vol. 24, No. 4, pp. 532-542, 2011.