System reduction using modified inverse distance measure and modified Cauer continued fraction method

R V S Sengar*, K Chatterjee, J Singh

1, 2Indian Institute of Technology (ISM) Dhanbad, Jharkhand, India
3G L Bajaj Institute of Technology & Management Gr. Noida, India

*Email: ramveerchiro@gmail.com

Abstract. A useful technique for obtaining the stable approximated model is proposed by combining modified inverse distance measure and modified Cauer continued fraction method. Modified inverse distance measure is based on pole clustering technique used to get the suitable dominant poles of the approximated model and modified Cauer continued fraction method has the advantages of approximation at the steady state as well as initial transient situations. Effectiveness of the proposed method is validated through considering numerical cases. The suggested method is computer oriented and simple in calculation.

Keywords - Order reduction, pole clustering, inverse distance measure, Cauer continued fraction, stability, integral of square of error.

1. Introduction

A mathematical analysis of linear time invariant systems may results to higher order differential equations. To reduce the computational complexity and easy controller design it is suitable to reduce such type of Higher Order System (HOS) in to Lower Order System (LOS). A number of methods are available in the literature for lower order modeling of Single-Input Single-Output (SISO) and Multi-Input Multi-Output (MIMO) Linear Time Invariant (LTI) systems in frequency and time domains [1-10 & 11-18]. Some of the techniques related to Perturbation [11] and aggregation [12] are based on the time response matching of HOS and LOS by considering the dominant Eigen values of the HOS and some other suitable parameters. Also, Modal analysis [13], Balanced realization [14], Optimal order reduction [15], Projection based method [16], Orthogonal decomposition [17], Laguerre polynomials [18] etc. are other methods available for order reduction of HOS in time domain.

All the above reduction methods proposed are computationally difficult, mathematically involved and not applicable for reduction of all HOSs. In this article a computationally simple, efficient, and computer oriented technique is suggested for lower order modeling of SISO and MIMO systems. The suggested technique is a combination of Modified Inverse Distance Measure (MIDM) and modified Cauer continued fraction method [19]. The MIDM method is utilizing the concept of pole clustering and is based on the
Inverse Distance Measure (IDM) proposed by Sinha [9] and Vishwakarma [8]. The method proposed by [8] is computationally lengthy as it uses several iterations depend upon the order of HOS and so suffers from a problem of difficult calculation and data feeding.

2. Statement of the suggested technique

The denominator of the Reduced Order Model (ROM) is synthesized by condensed cluster centers separately obtained for real and imaginary poles of HOS. The condensed cluster centers also called cluster centers are determined by proposed MIDM method. The numerator of the ROM is obtained by the modified Cauer continued fraction method [19] has the advantages of approximation at the steady state as well as initial transient situations. The method is explained as follows:

2.1. Synthesisation of denominator polynomial using method (MIDM) [21]

Let an nth order system is mathematically expressed as

\[H_n(s) = \frac{P_n(s)}{Q_n(s)} = \frac{P_0 + P_1s + P_2s^2 + \ldots + P_{n-1}s^{n-1}}{Q_0 + Q_1s + Q_2s^2 + \ldots + Q_n s^n} \] \hspace{1cm} (1)

The poles of this system are: \(\sigma_1, \sigma_2, \ldots, \sigma_n \) such that \(|\sigma_1| < |\sigma_2| < \ldots < |\sigma_n| \).

Suppose the required \(r \)-th order system is

\[H_r(s) = \frac{P_r(s)}{Q_r(s)} = \frac{P_0 + P_1s + P_2s^2 + \ldots + P_{r-1}s^{r-1}}{Q_0 + Q_1s + Q_2s^2 + \ldots + Q_r s^r} \] \hspace{1cm} (2)

The denominator of the required reduced order system can be obtained as follows:

Step-I: Find out the poles of the HOS and select the suitable pole clusters according to [21].

Step-II: To obtain the \(r \)-th order reduced system; 'r' pole cluster centers are required. The pole cluster center is the most dominant pole in that cluster and obtained as:

1. Let there are \(r \) poles \(\sigma_1', \sigma_2', \ldots, \sigma_r' \) in the \(j \)-th cluster such that \(|\sigma_1'| < |\sigma_2'| < \ldots < |\sigma_r'| \).
2. Set \(v = 1 \)
3. Compute the pole cluster center using [9]

\[c_v = \left[\frac{1}{\sum_{k=1}^{r} \left(\frac{1}{|\sigma_k'|} \right)} \right]^{-1} \] \hspace{1cm} (3)

4. Determine the most dominant pole cluster center using the (4) given by [21].

\[\sigma_v = -\lambda - \left[\log(1 + c_v) \right] \times (r \times n) \] \hspace{1cm} (4)

Where, \(\lambda \) = dominant pole in each cluster

Step-III: Now the denominator polynomial \(Q_r(s) \) of the ROM can be synthesized by considering different cases of pole clusters -

Case (i) - Pole clusters of the HOS having real poles only

\[Q_r(s) = (s - \sigma_1)(s - \sigma_2) \ldots (s - \sigma_r) \] \hspace{1cm} (5)

In equation (5), \(\sigma_1, \sigma_2, \ldots, \sigma_r \) are dominant poles centers obtained from (4).
Case (ii) – Pole clusters of HOS having real and complex both.
\[Q_r(s) = (s - \sigma_1)(s - \sigma_2) \ldots (s - \sigma_{r-2}) \left(\frac{s^*}{s - \phi_1} \right) \left(\frac{s*}{s - \phi_1} \right) \]

(6)

Where, \(\phi_i \) and \(\phi_1 \) are real and imaginary parts of complex conjugate cluster centers respectively.

Case (iii) – Pole clusters of HOS having complex pole clusters only
\[Q_r(s) = \left(\frac{s^*}{s - \phi_1} \right) \ldots \left(\frac{s^*}{s - \phi_{r/2}} \right) \left(\frac{s^*}{s - \phi_{r/2}} \right) \]

(7)

Now, the denominator polynomial of the ROM i.e. \(Q_r(s) \) is written as
\[Q_r(s) = q_0 + q_1s + q_2s^2 + \ldots + q_rs^r \]

(8)

2.2. Modified Cauer Continued Fraction

Step-1: Obtain the denominator polynomial \(Q_r(s) \) using the method MIDM described in section (2.1).

Step-2: Modified Cauer Continued Fraction for obtaining the numerator polynomial \(P_r(s) \) can be described as-

(i) Calculate the first ‘r’ quotients \(d_1, D_1, d_2, D_2 \) using the algorithm [19].

Fig. 1: Modified Routh array [19]
(ii) A new modified Routh array for \(r = 6 \) is built as shown in Fig. 1. First two rows are directly created from the coefficients of \(H_r(s) \). Remaining entries in the array are determined by [19].

So, ROM numerator polynomial is obtained as

\[
P_r(s) = p_0 + p_1s + p_2s^2 + \ldots + p_r s^r
\]

(9)

3. Numerical Examples

Numerical Example 1: Let a 4\(^{th}\) order system taken from Mittal [25].

\[
H_4(s) = \frac{s^3 + 7s^2 + 24s + 24}{s^4 + 10s^3 + 35s^2 + 50s + 24}
\]

The poles of the HOS taken from [25] are: \(-1, -2, -3, -4\)

For obtaining 2\(^{nd}\) order ROM, two poles obtained using MIDM given in Section (2.1) as \(\sigma_1' = -1.0459 \), and \(\sigma_2' = -3.0808 \).

Hence, Denominator polynomial \(Q_2(s) \) is obtained as

\[
Q_2(s) = s^2 + 4.1267s + 3.2222
\]

Numerator polynomial can be obtained from step-2 of Section (2.2) as:

\[
d_1 = 1 \begin{bmatrix} 24 & 50 & 35 & 10 & 1 \\ 24 & 24 & 7 & 1 \\ 26 & 28 & 9 & 1 \end{bmatrix}
\]

And so changed Routh array is

\[
d_1 = 1 \begin{bmatrix} 3.2222 & 4.1267 & 1 \\ 3.2222 & 1 & \end{bmatrix}
\]

Fig. 2: Modified Routh array for Example 1

Therefore, 2\(^{nd}\) order model obtained is as

\[
H_2(s) = \frac{s + 3.2222}{s^2 + 4.1267s + 3.2222}
\]
Table 1: The ISE and IAE Comparison for Example 1

Reduction Methods	Reduced Models	ISE	IAE
Proposed Method	$H_2(s) = \frac{s + 3.2222}{s^2 + 4.1267s + 3.2222}$	0.00508	0.1129
Pal [23]	$R_2(s) = \frac{16.008s + 24}{30s^2 + 42s + 24}$	0.2689	0.8054
Prasad and Pal [6]	$R_2(s) = \frac{s + 34.2645}{s^2 + 239.08082s + 34.2645}$	1.4584	1.000
Krishnamurthy [22]	$R_2(s) = \frac{155658.6152s + 40320}{65520s^2 + 75600s + 40320}$	1.6533	2.4090
Shieh and Wei [24]	$R_2(s) = \frac{s + 0.43184}{s^2 + 41.17368s + 0.43184}$	1.9171	10.0702

The performance indices i.e. Integral Square Error (ISE) and Integral of Absolute magnitude of Error (IAE) are calculated and compared between original and reduced order system are given in Table 1. The unit step and frequency response comparisons of ROM i.e. $H_2(s)$ and higher order model $H_4(s)$ are also shown in Fig. 3 respectively.

4. Extension to MIMO System

Numerical Example 2: Let 6th order HOS transfer function matrix taken from [20] described as

$$[H(s)] = \frac{1}{Q(s)} \begin{bmatrix} \beta_{11}(s) & \beta_{12}(s) \\ \beta_{21}(s) & \beta_{22}(s) \end{bmatrix}$$
Where, \(Q(s) = s^6 + 41s^5 + 571s^4 + 3491s^3 + 10060s^2 + 13100s + 6000 \)

\[
\begin{align*}
\beta_{11} &= 2s^5 + 70s^4 + 762s^3 + 3610s^2 + 7700s + 6000 \\
\beta_{12} &= s^5 + 38s^4 + 459s^3 + 2182s^2 + 4160s + 2400 \\
\beta_{21} &= s^5 + 30s^4 + 331s^3 + 1650s^2 + 3700s + 3000 \\
\beta_{22} &= s^5 + 42s^4 + 601s^3 + 3660s^2 + 9100s + 6000
\end{align*}
\]

The poles of this system are: \(-1, -2, -3, -5, -10, -20\)

The 2\(^{nd}\) order reduced model using proposed method is obtained as

\[
[H_2(S)] = \frac{1}{(s^2 + 6.1167s + 5.2595)} \begin{bmatrix}
2s + 5.2595 & s + 2.6297 \\
2s + 2.6297 & s + 5.2595
\end{bmatrix}
\]

Fig. 4: Frequency and step response comparisons Example 2

Table 2: Error index comparison for Example 2

\(h_{ij} = \frac{a_{ij}(s)}{Q_2(s)}\); \((i = 1, 2; j = 1, 2)\)	ISE \textbf{Suggested Technique}	ISE \[2\]	ISE \[6\]
\(h_{11}(s)\)	0.04519	0.038713	0.135505
\(h_{12}(s)\)	0.02957	0.028153	0.002446
\(h_{21}(s)\)	0.00896	0.007419	0.040013
The error index ISE is calculated between the original i.e. $H_6(s)$ and reduced model i.e. $H_2(s)$ and given in Table II. Also the frequency response of 2nd order approximated model and original model is shown in Fig. 4.

5. Conclusions
A new method for reducing a HOS is suggested by combining MIDM technique and modified Cauer continued fraction method. The suggested method has been elaborated using two different types of models having SISO and MIMO. The algorithm used for approximation is very simple in calculation and takes very little computation time. The proposed method of approximation is equally applicable in SISO as well as MIMO systems. Step and frequency response comparison of original HOS and ROM are given in Fig. 3 and Fig. 4 respectively, and follow the pattern of original system. For both numerical examples the error indices comparison via MATLAB are given in Tables 1 and 2 respectively.

6. References

[1] Sikander A and Prasad R 2017 A New Technique For Reduced-Order Modelling of Linear Time-Invariant System IETE Journal of Research 63(3) 316-324
[2] Parmar G, Mukherjee S and Prasad R 2007 System reduction using factor division algorithm and eigen spectrum analysis Appl. Math. Model 31 2542-2552
[3] Singh N, Prasad R and Gupta H O 2015 Reduction of Linear Dynamic Systems using Routh Hurwitz Array and Factor Division Method IETE Journal of Education 47(1) 25-29
[4] Sengar R V S, Chatterjee K and Singh J 2019 Mixed Approach of Order Reduction for Single-Input Single-Output (SISO) Systems. In: Singh S, Wen F, Jain M (Eds) Advances in System Optimization and Control Lecture Notes in Electrical Engineering Vol. 509 Springer, Singapore.
[5] Singh N, Prasad R and Gupta H O 2015 Reduction of Power System Model Using Balanced Realization, Routh and Pade Approximation Methods International Journal of Modelling and Simulation 28(1) 57-63
[6] Prasad R and Pal J 1991 Stable reduction of linear systems by continued fractions J. of Inst. Eng. India IE (I) 72 113-116
[7] Singh J, Chatterjee K and Vishwakarma C B 2015 Reduced order modeling for Linear dynamic Systems AMSE Advancements of modeling and simulation techniques 70(1) 71-85
[8] Vishwakarma C B 2011 Order reduction using Modified pole clustering and Pade approximations World Academy of Science, Engineering and Technology 56 787-791
[9] Sinha A K and Pal J 1990 Simulation based reduced order modeling using a clustering technique Comput. Electrical Eng. 16(3) 159-169
[10] Singh J, Chatterjee K and Vishwakarma C B 2014 MIMO system using eigen algorithm and improved Pade approximation SOP Trans. Appl. Math. 1(1) 60-70
[11] Kokotovic P V, Malley R E O’ and Sannuti P 1976 Singular perturbations and order reduction in control theory: an Overview Automatica 12 123-132
[12] Aoki M 1968 Control of large dynamic system by aggregation IEEE Trans. Autom. Control AC-13 246-253
[13] Davison E J 1966 A method for simplifying linear dynamic systems IEEE Trans. Autom. Control AC-11 93-101
[14] Moore B C 1981 Principle component analysis in linear systems: controllability, observability and order reduction IEEE Trans. Autom. Control 26 (1) 17-31
[15] Sinha N K and Bereznai G T 1971 Optimal approximation of high order systems by low order models International Journal of Control 14 951-959
[16] Druskin V L, Remis R F, Zaslavsky M and Zimmerling J T 2017 Projection-Based model-order reduction of large-scale maxwell systems International Conference on Electromagnetics in Advanced Applications (ICEAA) Verona 385-388
[17] Chaturantabut S and Sorensen D C 2010 Nonlinear model reduction via discrete empirical interpolation SIAM Journal on Scientific Computing 32(5) 2737-2764.
[18] Yuan J and Jiang Y 2017 A Parameterized Model Order Reduction Method for Parametric Systems based on Laguerre Polynomials International Journal of Control.
[19] Sarasu J and Parthasarathy R 1979 System reduction by Routh approximation and modified Cauer continued fraction Electronics Letters 15(21) 691-692
[20] Bistriz Y and Shaked U 1984 Minimal Pade reduction for multivariable systems Transactions ASME, Journal of Dynamic System Measurement and Control 106 293-299
[21] Sengar R S, Chatterjee K and Singh J 2018 A mixed approach for approximation of higher order linear time invariant systems International Journal of Engineering & Technology Vol. 7 (4.39) 375-380
[22] Krishnamurthy V and Seshadri V 1978 Model reduction using the Routh stability criterion IEEE Transactions on Automatic control 23(4) 729-731
[23] Pal J 1967 Stable reduced order Pade approximants using the Routh Hurwitz array IEEE Trans. Automat. Control Vol. AC-12 119-120
[24] Shieh L S and Wei Y J 1975 A mixed method for multivariable system reduction IEEE Trans. Automat. Control Vol. AC-20 429-432
[25] Mittal A K, Prasad R and Sharma S P 2004 Reduction of linear dynamics system using an error minimization technique J. Inst. Eng. India, IE (I) J. EL 84 201-206