Fabricating polyoxometalates-stabilized single-atom site catalysts in confined space with enhanced activity for alkynes diboration

Yiwei Liu, Xi Wu, Zhi Li, Jian Zhang, Shu-Xia Liu, Shoujie Liu, Lin Gu, Li Rong Zheng, Jia Li, Dingsheng Wang, & Yadong Li

Effecting the synergistic function of single metal atom sites and their supports is of great importance to achieve high-performance catalysts. Herein, we successfully fabricate polyoxometalates (POMs)-stabilized atomically dispersed platinum sites by employing three-dimensional metal-organic frameworks (MOFs) as the finite spatial skeleton to govern the accessible quantity, spatial dispersion, and mobility of metal precursors around each POM unit. The isolated single platinum atoms (Pt1) are steadily anchored in the square-planar sites on the surface of monodispersed Keggin-type phosphomolybdic acid (PMo) in the cavities of various MOFs, including MIL-101, HKUST-1, and ZIF-67. In contrast, either the absence of POMs or MOFs yielded only platinum nanoparticles. Pt1-PMo@MIL-101 are seven times more active than the corresponding nanoparticles in the diboration of phenylacetylene, which can be attributed to the synergistic effect of the preconcentration of organic reaction substrates by porous MOFs skeleton and the decreased desorption energy of products on isolated Pt atom sites.

1 Department of Chemistry, Tsinghua University, Beijing, China. 2 Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, China. 3 Shenzhen Geim Graphene Center and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China. 4 Key Laboratory of Polyoxometalate Science of the Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin, China. 5 College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, China. 6 Institute of Physics, Chinese Academy of Sciences, Beijing, China. 7 Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China. 8 These authors contributed equally: Yiwei Liu, Xi Wu. ✉email: li.jia@sz.tsinghua.edu.cn; wangdingsheng@mail.tsinghua.edu.cn; ydli@mail.tsinghua.edu.cn
S

ingle-atom site catalysts (SACs), as the size limitation of
nano-catalytic materials, have greatly promoted the de-
velopment of traditional heterogeneous catalysis and synthetic
chemistry\(^1\)–\(^4\). The peculiar influence of supports on the catalytic
behaviors and stability of single metal atom sites are wide
studied\(^5\)–\(^10\). To acquire stable atomic-scale dispersion, strong
metal–support interactions are requisite to suppress the higher
surface energy and mobility of single atoms and thereby prevent
their aggregation into nanoparticles (NPs)\(^1\)\(^1\)\(^1\)\(^2\). To date, a series
of supports have been applied to fabricate SACs, including
metal\(^\text{I}\), oxides\(^1\)\(^3\)–\(^17\), graphene\(^18\)–\(^21\), porous nitrogen-doped carbon\(^2\)\(^2\)–\(^2\)\(^7\), metal-organic frameworks (MOFs)\(^2\)\(^8\)–\(^3\)\(^0\), and
zeolites\(^1\)\(^3\)–\(^3\)\(^3\) etc. It should be noted that besides stabilizing SACs
and retaining their high dispersion under rigorous reaction
conditions, in some cases, supports can also act as regulators or
co-catalyst through modulating the electronic state of single metal
atoms\(^3\)\(^4\)–\(^3\)\(^6\). Hence, developing innovative supports to induce
synergistic or stimulative functions with single metal atoms
would be an effective approach for fabricating promising SACs.

An ideal support is expected to possess abundant anchoring
sites exposed and be functionalized to realize the synergistic
function. Based on these considerations, we speculate that poly-
oxometalates (POMs) would be a qualified candidate. Because, as
a kind of well-defined nanoscale metal-oxide clusters, POMs
have several advantages. Structurally, POMs are composed of the
corner- and edge-shared metal-oxygen octahedral\(^3\)\(^7\)–\(^3\)\(^\text{8}\), the
abundance of surface oxygen atoms provides a range of coordi-
nation sites for single metal cation\(^3\)\(^9\)–\(^4\)\(^0\). And the charge density
and coordination geometry of POMs surfaces are manipulatable
by adjusting their composition and structure\(^4\)\(^1\). As an example,
the classical Keggin-type POMs have up to five isomers (Sup-
plementary Fig. 1) that afford various anchor sites for single
atoms. In terms of properties, the strong Bronsted acidity and
reversible redox behavior of POMs allow them to be used as
effective co-catalyst to achieve the synergistic effect with other
catalytic active species\(^4\)\(^2\)–\(^4\)\(^3\). In addition, the simple synthesis route
and monodisperse nanoscale size of POMs provide a platform for
further combination with other substrates\(^4\)\(^4\)–\(^4\)\(^5\). However, in the
synthesis of conventional POM-based metallic nanomaterials,
metal precursors and POMs are both simply dispersed in the
liquid-phase systems without any space restrictions. Owing to the
limitation of the number of coordination sites on POMs surface,
when these unsaturated sites are completely occupied by single
metal atoms, an excess of metal precursors is prone to agglom-
erate into NPs until the surface is stabilized by POMs (Fig. 1)\(^6\)–\(^7\)\(^6\).
Although many efforts have been made, such as reducing the input
of metal precursors, the generation of NPs can hardly be
completely inhibited due to the spatially inhomogeneous dis-

currence caused by the high mobility of metal precursors\(^6\)–\(^8\)\(^6\).
Hence, to avoid their aggregation, in addition to controlling the
accessible quantity of metal precursors, it is also necessary to
restrict their spatial dispersion and mobility. Specifically, if we
could introduce a limited number of metal precursors around
each POM unit and guarantee their high dispersity and low
mobility, the vagrant single atoms would be immediately captured
by POMs when losing the protection of ligands during the
reduction process, which is expected to be achieved in confined
space.

Based on these principles, we elaborately selected MOFs, fea-
turing three-dimensional periodic spatial matrix structure\(^4\)\(^9\)–\(^5\)\(^3\), as
the spatially restricted domain skeleton to constrain the dis-
tribution and migration of platinum acetylacetonate precursors
surrounding Keggin-type phosphomolybdate (H\(_\text{I}\)P\(_\text{MO}_{12}\)O\(_\text{40}\),
denoted as phosphomolybdcic acid (PMo))\(^5\)\(^4\). A series of single
platinum atomic site catalysts stabilized by PMo were successfully
constructed in the various MOFs systems (denoted as Pt\(_\text{I}-\)
PMo@MOFs), including MIL-101, HKUST-1, and ZIF-67. In
contrast, either the absence of POMs or MOFs yielded only
platinum NPs. Remarkably, Pt\(_\text{I}-\)PMo@MIL-101 exhibited cata-
lytic activity far beyond that of Pt NPs in MIL-101 without PMo
by a factor of >7 in the diboration reaction of alkenes, which can
be attributed to the synergistic effect of the pre-concentration
of organic reaction substrates by porous MOFs skeleton and the
described desorption energy of products on isolated Pt atom sites.

Results and discussion

Synthesis and characterization of Pt\(_\text{I}-\)PMo@MIL-101. The
POMs-stabilized single platinum atom sites catalysts were syn-
thesized by reduction of platinum acetylacetonate precursors in
spatial confined MOFs skeleton. Typically, Keggin-type PMo
was introduced into MIL-101 by an in-situ synthesis method result-
ning in uniform dispersion of PMo without jeopardizing structural and
compositional features of MIL-101 (denoted as PMo@MIL-
101)\(^2\)\(^7\)–\(^2\)\(^9\). Owing to the size of PMo was bigger than the apertures
of the small cage (Cage A) but smaller than that of the big cages
(Cage B) of MIL-101 (Fig. 2a), the PMo can only occupy part of
the skeleton, and the PMo content is ~16 wt% determined by
ICP-OES. Comparing with the parent MIL-101, a noticeable
change in powder X-ray diffraction (PXRD) patterns of PMo@-
MIL-101 ~2θ = 7° was observed (Fig. 2b). This change can be
attributed to the ordered PMo assemblies residing in cage A
which is in line with previous studies on POMs/MOFs composite
materials\(^5\)\(^5\). Fourier-transformed infrared (FTIR) spectrum
(Fig. 2c) complimentary proved the successful injection of PMo
into the skeleton, and the characteristic absorption peaks
appeared between 800 and 1000 cm\(^{-1}\) indicated the intact Keggin
structure was not changed during synthesis. The microporous
feature was preserved in PMo@MIL-101 with a relatively high
Brunauer-Emmett-Teller (BET) surface area of ~1419 m\(^2\)/g
(Supplementary Fig. 2), which was beneficial for the spatial dis-
persion of metal precursors in the skeleton. Platinum acetyl-
cetonate was selected as the precursor owing to its relatively
matched molecular size (9.8 Å) with the cages of MIL-101 and
PMo. The Pt precursors were implanted into PMo@MIL-101
through a liquid-phase impregnation process. The platinum-
containing PMo@MIL-101 were then collected and reduced in H\(_2\)
atmosphere at 150°C to obtain isolated single Pt atom sites on
PMo@MIL-101 (denoted as Pt\(_\text{I}-\)PMo@MIL-101).

Transmission electron microscopy (TEM) was used to pre-
liminary investigate the size and morphology of Pt species in the
MOF skeleton. As shown in Fig. 3a, Pt\(_\text{I}-\)PMo@MIL-101 retained
the octahedral morphology and energy-dispersive X-ray spectro-
scopy images revealed that Cr, Mo, and Pt elements were
homogeneously distributed over the entire MOFs crystals with no
NPs observed (Fig. 3b and Supplementary Fig. 3). The Pt content
was ~0.24 wt%, determined by ICP-OES. To further confirm the
atomically dispersed nature of platinum, Pt\(_\text{I}-\)PMo@MIL-101 was
characterized by aberration-corrected high-angle annular dark-
field scanning transmission electron microscopy (AC HAADF-
STEM). We observed some brighter dots that can be identified as
Pt single atoms (Fig. 3c, highlighted by red circles). Extended X-
ray absorption fine structure (EXAFS) further provided critical
evidence of platinum’s atomic dispersion and its interaction with
PMo. As shown in Fig. 3e, only one notable peak contributed by
PtO\(_2\)-scattering paths was examined in the Fourier-transformed
(FT) \(k^2\)-weighted EXAFS spectrum. The Pt-Pt peak of Pt foil
standard at ~2.6 Å was not detected in Pt\(_\text{I}-\)PMo@MIL-101,
demonstrating the mere existence of isolated Pt single atoms. The
X-ray absorption near-edge structure (XANES) curve (Fig. 3d)
of Pt\(_\text{I}-\)PMo@MIL-101 showed a peak height between those of Pt and
PtO\(_2\), suggesting the Pt atoms possess the positive charge Pt\(_\text{II}\).
Fig. 1 Schematic illustration of the fabrication of different Pt nanomaterials. Pt nanoparticles are formed in the absence of either POMs or MOFs, and POM-stabilized single Pt atom sites can be constructed in the restricted domain space of MOFs.

Fig. 2 Structure and characterizations of $\text{H}_3\text{PMo}_{12}\text{O}_{40}$, MIL-101, and PMo@MIL-101.

- **a** The crystalline structures of Keggin-type $\text{H}_3\text{PMo}_{12}\text{O}_{40}$ and the pore structures and aperture size of MIL-101. O_t: terminal oxygen, O_b: bridge oxygen.
- **b** PXRD of MIL-101, PMo@MIL-101, and Pt$_{1}$-PMo@MIL-101, respectively.
- **c** FTIR of MIL-101, PMo@MIL-101, and Pt$_{1}$-PMo@MIL-101, respectively.
rather than Pt\(^0\). Furthermore, EXAFS fitting was carried out to obtain the quantitative structural configuration of Pt in Pt\(_1\)-PMo@MIL-101. A square planar coordination geometry structure constructed by four bridging oxygen on the surface of PMo was proposed as the most stable anchoring site for a single Pt atom (Fig. 3f, Supplementary Table 1), and this site was also further confirmed through density functional theory (DFT) calculation by comparing the formation energy of the anchored Pt atom (Supplementary Table 2). This configuration was consistent with atomically dispersed platinum on oxides and satisfied the empirical requirements of coordination chemistry. The quasi planar coordination geometry of a single Pt atom is key to its catalytic activity. The \(d\) orbitals of Pt atom in a uniform square planar field would be split into the \(d_{xz}\) and \(d_{yz}\) orbitals, indicating that six electrons would occupy the three lowest energy orbitals with the valence of +4. However, the single Pt atom with four nearest-neighbor O atoms in PMo@MIL-101 has a non-planar configuration. As seen in the cross-section, the distance of the Pt-O bond (2.013 Å) in the \(y\) direction is larger than that in the \(x\) direction (1.850 Å). This distorted square planar field would lead to an increase in the energy level of \(d_{xz}\) and \(d_{yz}\) orbitals, and the occupancy of \(d_{xz}\) orbital is changed from full-occupied to half-occupied (Supplementary Fig. 4). However, the half-occupied \(d_{xz}\) orbital is more active and will benefit the catalytic activity of Pt\(_1\)-PMo@MIL-101, which provides the active sites for reactants adsorbed in \(xz\) direction (such as bis(pinacolato) diboron molecule).

To clarify the necessity of both PMo and MOFs in the fabrication of isolated single Pt sites, we synthesized Pt samples without PMo or MIL-101 under the same conditions for Fig. 3 Characterizations of Pt\(_1\)-PMo@MIL-101. a TEM images. b HAADF-STEM images and corresponding element maps showing distributions of Pt (green), Cr (blue), and Mo (red), respectively. c Aberration-corrected HAADF-STEM images and corresponding Z-contrast analysis. d XANES of Pt \(L_3\)-edge for Pt\(_1\)-PMo@MIL-101 with reference materials Pt foil and PtO\(_2\). e Fourier transforms of \(k^3\)-weighted Pt \(L_3\)-edge EXAFS experimental data for Pt foil, Pt\(_1\)-PMo@MIL-101, and PtO\(_2\). f EXAFS-fitting curves of Pt\(_1\)-PMo@MIL-101 at \(R\) space and the inset is the proposed model for Pt\(_1\)-PMo@MIL-101. g EXAFS-fitting curves of Pt\(_1\)-PMo@MIL-101 at \(k\) space.
comparison. Despite there are six theoretically anchoring sites on each PMo unit, superfluous PMo was added (the molar ratio of PMo/Pt molar 10) to investigate whether spatial confinement is indispensable. As we predicted, massive Pt NPs were formed. Element line scan revealed that the surface of Pt NPs was protected by PMo and the average particle size of Pt NPs was ~2–3 nm (Supplementary Fig. 5). Likewise, without PMo in MIL-101, both nanoclusters and NPs formed in the cages and on the outside surface of MIL-101 (Supplementary Fig. 6), which can be attributed to the high mobility of Pt atoms and the shortage of anchoring sites on MOFs skeleton. X-ray photo-electric spectroscopy (XPS) was used to explore the interaction between Pt and PMo, and trace the atom trapping process. The binding energy of Pt 4f in Pt–PMo@MIL-101 was higher than that in Pt NPs@MIL-101 (Supplementary Fig. 7) demonstrating that the isolated Pt atom was positively charged, which was consistent with the XANES results. This was reasonable, because when Pt agglomerated into NPs in the absence of PMo its valence was near zero. Hence, Mo 3d signals were used for further analysis. The binding energy of Mo 3d in Pt–PMo@MIL-101 was slightly decreased compared with PMo@MIL-101 (Supplementary Fig. 7) indicating the existence of electronic interaction between PMo and the single Pt atom. Considering PMo could be reduced by H2 and the resulted heteropoly blue (reduced PMo, denoted as PMo$_{red}$) can act as both reductant and stabilizer to synthesize metal NPs, we proposed a POM assistant reducing mechanism to account for the formation of Pt–PMo@MIL-101 (Fig. 1). In a typical synthesis process, PMo was firstly reduced in the H2 atmosphere to form PMo$_{red}$. Comparing with the initial PMo, the surface charge density of PMo$_{red}$ was increased which promoted the attraction of Pt precursors around the surface oxygen of polyoxoanion. Then, the attracted Pt precursors were in-situ reduced by PMo$_{red}$ and trapped by the surface oxygen to form Pt–ISAS, the electron interaction between Pt–ISAS and electronegative PMo was proved by the slight shift of Mo 3d XPS spectrum which was beneficial for stabilizing isolated single Pt atoms. During this step, PMo$_{red}$ were oxidized to PMo to form a closed circle. In contrast, without PMo these mobile Pt precursors were directly reduced by H2 and grew together until resisted by the pores of MOFs. We carried out H2 temperature-programmed reduction for Pt(acac)$_2$@MIL-101 and Pt(acac)$_2$–PMo@MIL-101 (Supplementary Fig. 8). The reducing temperature decrease ~30° C after the introduction of PMo, which is consistent with our speculation.

Catalytic performance evaluation of Pt–PMo@MIL-101. In order to evaluate the catalytic performance of Pt–PMo@MIL-101, we chose the diboration reaction of alkenes as a model reaction based on the consideration of the inherent catalysis of Pt and the unique component and structural features of MOFs. Comparing with the few reported Pt-based heterogeneous catalysts for diboration reactions whose supports are usually oxides or hydroxides with low catalytic efficiency (turnover frequency < 50 h$^{-1}$), the pores of MOFs would act as nanosized reactors to accelerate the reaction via pre-concentration effect owing to the affinity between the organic substrates and the ligands of MOF skeleton. As we expected, the diboration reaction of phenylacetylene with bis(pinacolato)diboron (B$_2$pin$_2$) proceeds rapidly when using Pt–PMo@MIL-101 as the catalyst. Approximately 96% of phenylacetylene was converted in ~2 h, and almost complete conversion was observed after an additional 30 min. Besides the aimed diboration product, bare of other by-products, such as hydroborylated product, were observed by gas chromatography-mass spectrometer (GC-MS) analysis, and the total yield is as high as 98%. We calculated the turnover frequency (TOF) values based on the platinum content of Pt–PMo@MIL-101 which reached a high value of 1017 h$^{-1}$. Comparative studies using Pt NPs loaded in MIL-101 (denoted as Pt NPs@MIL-101) and the parent supports MIL-101 and PMo@MIL-101 were performed. The conversion percentage after 3 h under otherwise identical conditions reached only approximately 13% for Pt NPs@MIL-101, and no products were detected for MIL-101 and PMo@MIL-101 (Fig. 4a). Clearly, the active catalytic species was platinum, and the isolated single Pt atoms were much more efficient than NPs in catalysis process. To shed light on the origin of single Pt atomic site’s significant performance improvement over Pt NPs, we performed DFT calculations to understand the reaction mechanism. The energy evolution of Pt–PMo@MIL-101 and Pt NPs@MIL-101 catalyzed phenylacetylene diboration reactions was investigated by dividing into three steps. To balance the computational cost and accuracy, we simplified the computational model of Pt NPs@MIL-101 to the Pt (111) surface. As shown in Fig. 4c, the first step consists of the adsorption and dissociation of B–B bond in B$_2$pin$_2$, with the energy decrease of 1.86 eV on isolated Pt atom and 3.65 eV on Pt (111). In the following second step, the phenylacetylene was adsorbed on Pt sites and the dissociated two Bpin were sequentially inserted on acetylenic bond with a further energy reduction of 3.10 eV for isolated Pt atom and 3.17 eV for Pt NPs, respectively. These two steps were both energetically favorable on different Pt species, although a negligible increase in energy was observed during B–B bond dissociation on the single Pt atom (0.10 eV) and the first Bpin insertion on Pt(111) (0.17 eV). However, the desorption of the resulting product in the third step was an endothermic process. Owing to the multiple adsorption interactions between the product and Pt NPs, such as benzene ring and ethylenic bond strongly bonded with a terrace of Pt NPs, the desorption energy was as high as 4.40 eV compared with the corresponding 2.54 eV on the single Pt atom which well explained the better catalytic performance of Pt–PMo@MIL-101. The stability of the Pt–PMo@MIL-101 catalyst was also investigated. Both the structural integrity (Supplementary Fig. 9), isolated single platinum atomic sites dispersion (Supplementary Fig. 10), and the activity (Fig. 4b and Supplementary Fig. 11) of the recovered catalyst were maintained after reused over five cycles. No leaching was detected owing to the rigorous imprisonment of PMo in the MIL-101 skeleton. The remarkable performance of Pt–PMo@MIL-101 raised yet another issue, that was, whether MIL-101 subsidiarily promote the catalysis progress although there was no activity itself. Hence, hydrophilic inorganic support, Y zeolite, was used to compare with MIL-101. Pt NPs and the single Pt atoms are loaded in the pores of Y zeolite (denoted as Pt NPs@Y and Pt1@Y) through reported methods, and characterized by PXRD and TEM (Supplementary Fig. 12–14). Both two catalysts presented almost undetectable activities for diboration of phenylacetylene, which was obviously lower than that of Pt NPs@MIL-101 and Pt–PMo@MIL-101 (Fig. 4a). These results demonstrated that MIL-101 indeed contributed to the catalytic process, although it was catalytic inert for this reaction. Considering that the Pt catalytic activity center was located inside the porous skeleton, and the reaction substrates need to enter the skeleton to contact with Pt sites, to rationalize these observations, we investigated the adsorption abilities of MOF skeletons for phenylacetylene and B$_2$pin$_2$ under reaction conditions, and the concentrations of reactants on these selected substrates were all below the initial reaction concentrations to simulate the changes during the reaction process. As shown in Fig. 4d, e, MIL-101 exhibited conspicuous pre-concentration ability for both reactants, and this process was monitored by gas chromatography. After adsorption equilibrium reached, the calculated concentrations of reactants...
inside MIL-101 were higher than that in the residuary solution, even when the concentration decreased to only one-fifth of the initial. Obviously, in the inner space of the 3D skeleton, phenylacetylene and B2pin2 were “forced” to interact with single Pt atom sites, as they were confined in close proximity. In contrast, the pure inorganic support Y zeolite exhibited negligible adsorption for these two reactants, which should be responsible for the inert catalysis activities of Pt NPs@Y and Pt1@Y. It is possible to attribute the signally disparate adsorption behaviors of MIL-101 and Y zeolite to their different chemical compositions. To be more specific, the organic component (terephthalic acid) of MIL-101 frameworks afforded hydrophobic-hydrophobic and aromatic-aromatic interactions with the organic reactants, which did not exist in Y zeolite. Similar adsorption behaviors were also observed in liquid-phase adsorption desulfurization systems61.

Expansion of synthetic system. Successfully obtained PMo-stabilized isolated single Pt atoms in MIL-101, we intended to expand this strategy to other popular MOF systems with the appropriate porous structure to accommodate Keggin-type POMs as anchoring sites, such as HKUST-1 and ZIF-67 (Supplementary Fig. 15)65,66. PMo and platinum acetylacetonate were imported and constrained in these MOFs skeletons with similar synthetic procedures. After the reduction in H2, Pt1-PMo@HKUST-1 and Pt1-PMo@ZIF-67 were successfully synthesized. PXRD (Supplementary Fig. 16 and 17), FTIR (Supplementary Fig. 18 and 19) and N2 adsorption (Supplementary Fig. 20 and 21) proved the structural integrity and the presence of PMo in MOFs skeletons. HAADF-STEM images and elemental mappings of Pt1-PMo@HKUST-1 and Pt1-PMo@ZIF-67 shown in Fig. 5 indicated the homogeneous dispersion of Pt elements. The Pt content was

Fig. 4 Catalytic performance, mechanism, and pre-concentration effect.
a The catalytic activity of phenylacetylene diboration with different catalysts.
b The cyclic catalytic performance of Pt1-PMo@MIL-101. Reaction conditions: phenylacetylene (0.5 mmol) and B2pin2 (0.5 mmol), catalyst (20 mg), toluene (2 mL) as solvent, T = 100°C. Conversion is determined by GC analysis with dodecane as the internal standard. Selectivity is determined by GC-MS analysis.
c The calculated energy evolution of Pt1-PMo@MIL-101 and Pt (111) catalyzed diboration reactions.
d, e The pre-concentration effect of MIL-101 for phenylacetylene and B2pin2. The concentration and corresponding concentration ratio of phenylacetylene (d) and B2pin2 (e) in MIL-101 and reaction solutions.
determined ~0.41 wt% in Pt1-PMo@HKUST-1 and 0.13 wt% in Pt1-PMo@ZIF-67 by ICP-OES. The AC HAADF-STEM (Fig. 5c–g) and EXAFS (Fig. 5d–h) results indicated that in all cases, the Pt existed in the form of a single atom with positive charges, and the isolated Pt atoms were anchored on the surface of PMo by coordinating with four bridging O atoms. These results forcefully demonstrated the generalization of this spatial confinement strategy for fabricating POMs-stabilized single Pt sites in different MOFs.

In summary, we developed a novel strategy for fabricating POMs-based SACs in the domain-limited space of MOFs. This synthesis strategy is useful in various MOFs systems. Significantly, in the synergy of POM-stabilized single Pt atom sites and MOFs skeleton, Pt1-PMo@MIL-101 exhibited extremely outstanding catalytic performance over conventional Pt NPs in the diboration reaction of phenylacetylene. In consideration of the structural and functional diversity of POMs and porous materials, this strategy has the potential to be extended to other POM-based porous systems, not only limited to MOFs but also to other deliberately selected porous backbone materials, thereby constructing more innovative POMs-based single-atom sites catalysts for purposefully synergistic catalysis.

Methods

Synthesis of H$_2$PMo$_{12}$O$_{40}$@MIL-101 (PMo@MIL-101). The incorporation of H$_2$PMo$_{12}$O$_{40}$ into MIL-101 was realized by adding H$_2$PMo$_{12}$O$_{40}$ during the crystallization process of MIL-101. Typically, 1.0 g Cr(NO$_3$)$_3$·9H$_2$O, 0.42 g terephthalic acid, and 1.0 g H$_2$PMo$_{12}$O$_{40}$ were mixed in 10 mL deionized water and then stirred intensely for 4 h. The pH value of the mixture was adjusted to three by dropwise adding 1 M aqueous NaOH during the stirring process. Then, the mixture was transferred into a Teflon-lined autoclave and kept in an oven at 180 °C for 20 h without stirring. The resulting solid product was washed with DMF three times and then soaked in distilled water for 6 h under stirring. This process was repeated three times to ensure that H$_2$PMo$_{12}$O$_{40}$ was completely removed from the big capsules (Cage B) of MIL-101. The resulted product was dried at 80 °C in a vacuum oven for 24 h.

Synthesis of Pt1-PMo@MIL-101. In all, 20 mg Pt(acac)$_2$ was dissolved in 10 mL methanol and then 1.0 g PMo@MIL-101 was ultrasonically dispersed in the solution. After continuous stirring for 12 h, the solid was collected through centrifugation and washed with methanol to remove the surface attached Pt(acac)$_2$. The resulted product was dried at 80 °C in a vacuum oven for 24 h, and then reduced in 5% H$_2$ at 150 °C for 1 h to obtain Pt1-PMo@MIL-101.

X-ray absorption spectra collection and data processing. The X-ray absorption fine structure data were collected at 1W1B station in Beijing Synchrotron Radiation Facility (BSRF, operated at 2.5 GeV with a maximum current of 250 mA. The EXAFS spectra were obtained by subtracting the post-edge background from the overall absorption and then normalizing with respect to the edge jump step. Then, χ(k) data in the k-space were Fourier transformed to real (R) space using hanging windows (dx = 1.0 Å$^{-1}$) to separate the EXAFS contributions from different coordination shells. The quantitative information can be obtained by the least-squares curve fitting in the R space with a Fourier transform k space, using the module ARTEMIS of programs of IFEFFIT. The backscattering amplitude F(k) and phase shift φ(k) were calculated using FEFF8.0 code.

Catalytic diboration of phenylacetylene tests. In a typical procedure, phenylacetylene (0.5 mmol), B$_2$pin$_2$ (0.5 mmol), and catalyst (20 mg) were placed in a Shlenck tube equipped with a stir bar, and then toluene (2.0 mL) was injected and the mixture was stirred at 100 °C for the corresponding reaction time. After the reaction was completed, the mixture was cooled down to room temperature, and then GC and GC-MS with dodecane as the internal standard. The overall TOF value was measured upon completion of reactions and the calculation of it was based on the total Pt loading in the catalyst.

Liquid adsorption tests. Phenylacetylene (0.1–0.5 mmol) or B$_2$pin$_2$ (0.1–0.5 mmol) was added to toluene (2 mL) to obtain the aimed substrate solutions with different concentrations. The MIL-101 (0.1 g) was added into the solutions respectively. After being continuously stirred for 1 h, the MIL-101 was separated and the substrate concentration was calculated from the results analyzed by gas chromatography.
chromatography.

\[C_{\text{solution}} = \frac{M_{\text{before}}}{V_{\text{solution}}} \]

\[C_{\text{MIL-101}} = \left(\frac{M_{\text{before}} - M_{\text{after}}}{V_{\text{MIL-101}}} \right) \]

\[C_{\text{solution}} \] is the substrate concentration in solution. \(C_{\text{MIL-101}} \) is the substrate concentration in MIL-101 skeleton. \(M_{\text{before}} \) is the mass of added substrate before adsorption. \(M_{\text{after}} \) is the mass of substrate in the solution after adsorption which is calculated according to the GC results. \(V_{\text{solution}} \) is the volume of the solution. \(V_{\text{MIL-101}} \) is the space volume of MIL-101 which is 1.64 cm³/g calculated from the cif file.

Characterization. TEM images were taken on a Hitachi HT7700 transmission electron microscope. The high-resolution TEM, HAADF-STEM images, and the corresponding energy-dispersive X-ray mapping were recorded by a JEOL JEM-2100F high-resolution transmission electron microscope operating at 200 kV. Aberration-corrected HAADF-STEM images are taken on a JEOL JEM-ARM200F TEM/STEM with a spherical aberration corrector working at 300 kV. ICPE-OS was measured by Thermo Fisher IRIS Intrepid II. Nitrogen adsorption and desorption isotherms were obtained at 77 K using a Quantachrome Autosorb-1 instrument surface area analyzer. Powder X-ray diffraction patterns were measured with a Bruker D8 with Cu Ka radiation (λ = 1.5406 Å). XPS data were collected from a Thermo Fisher Scientific ESCALAB 250Xi XPS System, and the binding energy of the C1s peak at 284.8 eV was taken as an internal reference. FTIR spectroscopy was performed on a Bruker V70.

Data availability The additional data are provided in the Supplementary Information. All the data that support the findings of this study are available from the corresponding author upon reasonable request.

Received: 15 September 2020; Accepted: 14 June 2021; Published online: 09 July 2021

References

1. Wang, A., Li, J. & Zhang, T. Heterogeneous single-atom catalysis. *Nat. Rev. Chem.* 2, 65–81 (2018).
2. Zhang, N. Q. et al. Single-atom site catalysts for environmental catalysis. *Nano Res.* 13, 3165–3182 (2020).
3. Gao, C. et al. Heterogeneous single-atom photocatalysts: fundamentals and applications. *Chem. Rev.* 120, 12175–12216 (2020).
4. Coperet, C. et al. Surface organometallic and coordination chemistry toward single-site heterogeneous catalysis: strategies, methods, structures, and activities. *Chem. Rev.* 116, 323–421 (2016).
5. Yang, J. R., Li, W. H., Wang, D. S. & Li, Y. D. Single-atom materials: small structures determine macroproperties. *Small* 2, 2000051 (2021).
6. Thomas, J. M. Tens of thousands of atoms replaced by one. *Nat. Sci. China Mater.* 6, 32–56 (2015).
7. Fu, Q., Saltsburg, H. & Flytzani-Stephanopoulos, M. Active nonmetallic Au5. *Chem. Rev.* 121, 141–144 (2012).
8. Fu, Q. et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. *Science* 352, 797–801 (2016).
9. Sun, S. H. et al. Single-atom catalysis using Pt/graphene achieved through atomic layer deposition. *Sci. Rep.* 3, 1775 (2013).
10. Huang, F. et al. Anchoring Cu1 species over nanodiamond-graphene for semi-hydrogenation of acetylene. *Nat. Commun.* 10, 4431 (2019).
11. Zhang, L. et al. Graphene defect trap atomic Ni species for hydrogen and oxygen evolution reactions. *Chem* 4, 285–297 (2018).
12. Wang, H. et al. Doping monolayer graphene with single atom substitutions. *Nano Lett.* 20, 6261–6214 (2020).
13. Zhang, J. et al. Controlling N-doping type in carbon to boost single-atom site Cu catalyzed transfer hydrogenation of quinoline. *Nano Res.* 13, 3082–3087 (2020).
14. Tian, S. et al. Single-atom Fe with Fe3N2 structure showing superior performances for both hydrogen evolution reaction and transfer hydrogenation of nitrobenzene. *Sci. China Mater.* 64, 642–650 (2021).
15. Gu, J., Hsu, C. S., Bai, L., Chen, H. M. & Hu, X. Atomically dispersed Fe(3+) sites catalyze efficient CO2 electroreduction to CO. *Science* 364, 1091–1094 (2019).
16. He, Q. et al. Electrochemical conversion of CO2 to synths with controllable CO2/H2 ratios over Co and Ni single-atom catalysts. *Angew. Chem. Int. Ed.* 59, 3033–3037 (2020).
17. Liang, Z., Qu, C., Xia, D., Zou, R. & Xu, Q. Atomically dispersed metal sites in mof-based materials for electrocatalytic and photocatalytic energy conversion. *Angew. Chem. Int. Ed.* 57, 9604–9633 (2018).
18. Fang, X. et al. Single Pt atoms confined into a metal-organic framework for efficient photocatalysis. *Adv. Mater.* 30, 1705112 (2018).
19. Sun, T., Xu, L., Wang, D. & Li, Y. Metal organic frameworks derived single atom catalysts for electrocatalytic energy reduction. *Nano Res.* 12, 2067–2080 (2019).
20. Tang, Y. et al. Single rhodium atoms anchored in micropores for efficient transformation of methane under mild conditions. *Nat. Commun.* 9, 1231 (2018).
21. Sun, T. et al. Engineering of coordination environment and multiscale structure in single-site copper catalyst for superior electrocatalytic oxygen reduction. *Nano Lett.* 20, 6261–6214 (2020).
22. Shan, J., Li, M., Allard, L. F., Lee, S. & Flytzani-Stephanopoulos, M. Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts. *Nature* 551, 605–608 (2017).
23. Liu, Y. et al. A general strategy for fabricating isolated single metal atom site catalysts in Y zeolite. *J. Am. Chem. Soc.* 141, 9305–9311 (2019).
24. Liu, J., Serna, P., Aydin, C., Browning, N. D. & Gates, B. C. Supported molecular iridium catalysis: exploiting effects of metal nuclearity and supports as ligands. *J. Am. Chem. Soc.* 133, 16186–16191 (2011).
25. Lin, L. et al. Low-temperature hydrogen production from water and methanol using Pt/alpha-MoO3 catalysts. *Nature* 544, 80–83 (2017).
26. Li, M. et al. Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis. *Nat. Catal.* 2, 495–503 (2019).
27. Hiskia, A., Mylonas, A. & Papaconstantinou, E. Comparison of the photooxidation properties of polyoxometalates and semiconducting particles. *Chem. Soc. Rev.* 30, 62–69 (2001).
28. Vila-Nadal, L. & Cronin, L. Design and synthesis of polyoxometalate-framework materials from cluster precursors. *Nat. Rev. Mater.* 2, 17054 (2017).
29. Guo, G., Xu, Y., Cao, J. & Hu, C. An unprecedented vanadoniobate cluster with “trans-vanadium” biciped Keggin-type (V11N6O34(V2O3)). *Chem. Commun.* 47, 9411–9413 (2011).
30. Zhang, B. et al. Atomically dispersed Pt1-polyoxometalate catalysts: how does metal-support interaction affect stability and hydrogenation activity? *J. Am. Chem. Soc.* 141, 8185–8197 (2019).
31. Liu, Y., Jiao, K., Dong, R. X. & Lan, Y. Q. Polyoxometalate-based compounds for photo- and electrocatalytic applications. *Angew. Chem. Int. Ed.* 59, 20779–20793 (2020).
32. Sabyrov, K., Jiang, J., Yaghi, O. M. & Somorjai, G. A. Hydroisomerization of n-hexane using acidified metal-organic framework and platinum nanoparticles. *J. Am. Chem. Soc.* 139, 12382–12385 (2017).
33. Wang, S. S. & Yang, G. Y. Recent advances in polyoxometalate-catalyzed reactions. *Chem. Rev.* 115, 4893–4962 (2015).
34. Li, Y., Huang, L., Hu, J., Streb, C. & Song, Y.-F. Polyoxometalate-functionalized nanocarbon materials for energy conversion, energy storage and sensor systems. *Energy Environ. Sci.* 8, 779–789 (2015).
35. Wang, S. P. et al. Polyoxometalate-cycloextrim metal-organic frameworks: from tunable structure to customized storage functionality. *J. Am. Chem. Soc.* 141, 1847–1851 (2019).
46. Wang, Y. & Weinstock, I. A. Polyoxometalate-decorated nanoparticles. Chem. Sci. 7, 390–398 (2012).
47. Lin, Y. & Finke, R. G. Novel polyanion- and Bu4N+-stabilized, isolable, and redissolvable, 20-30 Å Ir300-900 nanoclusters: the kinetically controlled synthesis, characterization, and mechanism of formation of organic solvent-soluble, reproducible size, and reproducible catalytically active metal nanoclusters. J. Am. Chem. Soc. 116, 8335–8337 (1994).
48. Katsoulis, D. E. A survey of applications of polyoxometalates. Chem. Rev. 98, 359–388 (1998).
49. Xu, W. et al. Anisotropic reticular chemistry. Nat. Rev. Mater. 5, 764–779 (2020).
50. Ferey, G. et al. A chromium terephthalate-based solid with unusually large NATURE COMMUNICATIONS | (2021) 12:4205 | https://doi.org/10.1038/s41467-021-24513-x | www.nature.com/naturecommunications

51. Wang, Y. & Weinstock, I. A. Polyoxometalate-decorated nanoparticles. Chem. Sci. 7, 390–398 (2012).
52. Banerjee, R. et al. High-throughput synthesis of zeolitic imidazolate frameworks. J. Catal. 309, 293–303 (2012).
53. Li, P. et al. Metal-organic frameworks with photocatalytic bactericidal activity and redissolvable, 20-30 Å Ir300-900 nanoclusters: the kinetically controlled synthesis, characterization, and mechanism of formation of organic solvent-soluble, reproducible size, and reproducible catalytically active metal nanoclusters. J. Am. Chem. Soc. 116, 8335–8337 (1994).
54. Wu, P. et al. Carbon dioxide capture and efficient fixation in a dynamic porous coordination polymer. Nat. Commun. 10, 4362 (2019).
55. Lai, X. et al. Controllable proton-conducting pathways via situating polyoxometalates in targeting pores of a metal–organic framework. J. Mater. Chem. A 5, 9611–9617 (2017).
56. Hawthorne, M. F. & Maderna, A. Applications of radiolabeled boron clusters to the diagnosis and treatment of cancer. Chem. Rev. 99, 3421–3434 (1999).
57. Miyaura, N. & Suzuki, A. Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem. Rev. 95, 2457–2483 (1995).
58. Gritrane, A., Corma, A. & Garcia, H. Stereoselective single (copper) or double (platinum) boronation of alkenes catalyzed by magnesia-supported copper oxide or platinum nanoparticles. Chem. Eur. J. 17, 2467–2478 (2011).
59. Alonso, F., Moglie, Y., Pastor-Pérez, L. & Sepúlveda-Escribano, A. Solvent- and ligand-free diboration of alkynes and alkenes catalyzed by platinum nanoparticles on titania. ChemCatChem 6, 857–865 (2014).
60. Liu, Y. et al. Facile synthesis of a nanocrystalline metal-organic framework impregnated with a phosphovanadomolybdate and its remarkable catalytic performance in ultra-deep oxidative desulfurization. ChemCatChem 5, 3086–3091 (2013).
61. Cychosz, K. A., Wong-Foy, A. G. & Matzger, A. J. Liquid phase adsorption by microporous coordination polymers: removal of organosulfur compounds. J. Am. Chem. Soc. 130, 6938–6939 (2008).
62. Maes, M. et al. Separation of C5-hydrocarbons on microporous materials: complementary performance of MOFs and zeolites. J. Am. Chem. Soc. 132, 2284–2292 (2010).
63. Takaya, J. & Iwasawa, N. Catalytic, direct synthesis of Bis(borinate) compounds. ACS Catal. 2, 1993–2006 (2012).
64. Xu, L. et al. Mechanistic study of preferential CO oxidation on a Pt/NaY zeolite catalyst. J. Catal. 287, 114–123 (2012).
65. Sun, C. Y. et al. Highly stable crystalline catalysts based on a microporous metal-organic framework and polyoxometalates. J. Am. Chem. Soc. 131, 1883–1888 (2009).
66. Lan, Q. et al. Highly dispersed polyoxometalate-doped porous Co3O4 water oxidation photocatalysts derived from POM@MOF crystalline materials. Chem. Eur. J. 22, 15513–15520 (2016).