A Simple Proof of Siegel’s Theorem Using Mellin Transform

Zihao Liu

Abstract

In this paper, we present a simple analytic proof of Siegel’s theorem that concerns the lower bound of $L(1, \chi)$ for primitive quadratic χ. Our new method compares an elementary lower bound with an analytic upper bound obtained by the inverse Mellin transform of $\Gamma(s)$.

Keywords: Analytic number theory, Dirichlet L-function, Mellin transform, Siegel’s theorem, Siegel-Walfisz theorem

I. Introduction

In 1935, Siegel introduces the function

$$f(s) = (s) L(s, \chi_1) L(s, \chi_2) L(s, \chi_1 \chi_2)$$

where χ_1 and χ_2 are primitive quadratic characters modulo q_1 and q_2 respectively. By exploring its algebraic properties, he shows that a very strong lower bound can be established for $L(1, \chi)$:

Theorem 1 (Siegel). For all $\varepsilon > 0$ there exists a constant $C(\varepsilon) > 0$ such that

$$L(1, \chi) > C(\varepsilon) q^{-\varepsilon}$$

holds for any primitive quadratic χ modulo q.

Although the statement of Theorem 1 is analytic, it leads to strong conclusions in the distribution of prime numbers in arithmetic progressions. Using this result, Walfisz improved the zero-free region of $L(s, \chi)$ to obtain the prime number theorem for arithmetic progressions in the following form:

Theorem 2 (Siegel-Walfisz). Let $\pi(x; q, a)$ denotes the number of primes $\leq x$ that are $\equiv a$ (mod q). Then for all $A > 0$, there exists $C_A > 0$ such that the following estimate

$$\pi(x; q, a) = \frac{1}{\phi(q)} \int_2^x \frac{dt}{\log t} + O_A \left\{ x \exp \left(-C_A \sqrt{\log x} \right) \right\}$$

holds when $(a, q) = 1$ and $q \leq (\log x)^A$.

1
This result is very powerful in additive problems concerning primes. For instance, Vinogradov deduces from Theorem 2 that every large odd integer is a sum of three primes. Under Theorem 2, Mirsky[5] shows that every large integer is a sum of a prime and a k-free integer.

The original proof of Theorem 1 uses algebraic number theory. Later in 1949, Estermann[2] obtained a simple proof using purely analytic methods. Few decades after that, Goldfeld[3][4] gave a much more simplified analytic proof using contour integration. In this paper, we propose a new contour-integration proof of Theorem 1 based on the inverse Mellin transform of \(\Gamma(s) \). In particular, the new approach simplifies Goldfeld’s method because it uses Abelian summation instead of Cesàro summation\(^1\).

II. Analytic Lemmas

From now on, \(s = \sigma + it \) always denotes a complex number with an abscissa of \(\sigma \) and an ordinate of \(t \).

Lemma 1 (Phragmén-Lindelöf). If \(\phi(s) \) is regular and \(O(e^{\varepsilon|t|}) \), for any \(\varepsilon > 0 \), in the strip \(\sigma_1 \leq \sigma \leq \sigma_2 \), and

\[
\phi(\sigma_1 + it) \ll |t|^{k_1}, \quad \phi(\sigma_2 + it) \ll |t|^{k_2}
\]

then \(\phi(s) \ll |t|^\max(k_1, k_2) \) holds uniformly in \(\sigma_1 \leq \sigma \leq \sigma_2 \).

Proof. See §5.65 of [8]. Q.E.D.

Lemma 2. Let \(f(s) \) be defined as in (1), then for all \(\varepsilon > 0 \). The estimate

\[
f(s) \ll \varepsilon (q_1 q_2)^{1+\varepsilon} |t|^{2+\varepsilon}
\]

holds uniformly in \(\sigma \geq 0 \).

Proof. It is well known that when \(\sigma \) lies in a fixed strip and \(|t| \to \infty \), \(\zeta(s) \) and \(L(s, \chi) \) satisfies the following asymptotic functional equations\(^2\):

\[
\zeta(s) \ll |t|^{1/2-\sigma}\zeta(1-s)
\]

\[
L(s, \chi) \ll (q|t|)^{1/2-\sigma}|L(1-s, \chi)|
\]

where \(\chi \) is a primitive character modulo \(q \). For. Since \(\zeta(s) \) and \(L(s, \chi) \) converge absolutely for all \(\sigma \geq 1 + \varepsilon \), we see that when \(\sigma = -\varepsilon \), (5) and (6) can be simplified into

\[
\zeta(s) \ll \varepsilon |t|^{1/2+\varepsilon}
\]

\[
L(s, \chi) \ll \varepsilon (q|t|)^{1/2+\varepsilon}
\]

Plugging (7) and (8) into (1), we see that (4) holds for \(\sigma = -\varepsilon/4 \), and finally we can apply Lemma 1 to extend this estimate to \(\sigma \geq -\varepsilon/4 \). Q.E.D.

\(^*\)This is often known as the ternary Goldbach’s conjecture. See §25 and §26 of [1] for an account of Vinogradov’s proof.

\(^1\)A detailed description of these summation methods is accessible in §5.2 of [6]

\(^2\)See §10.1 of [6] for a full derivation.
Lemma 3. Let $\Gamma(s)$ denote the Gamma function. Then the estimate
\[\Gamma(s) \ll |t|^{\sigma - 1/2} e^{-\pi |t|/2} \tag{9} \]
holds whenever σ lies in a fixed interval.

Proof. By Stirling’s formula, we know that when σ lies in a fixed interval
\[
\log \Gamma(s) = \left(s - \frac{1}{2} \right) \log s - s + O(1)
\]
\[\begin{align*}
&= \left(s - \frac{1}{2} \right) \log \left(\frac{s}{\iota t} \right) + \left(s - \frac{1}{2} \right) \log \left(1 + \frac{\sigma}{\iota t} \right) - s + O(1) \\
&= \left(s - \frac{1}{2} \right) \log \left(\frac{s}{\iota t} \right) - \frac{s}{\iota t} + O(1)
\end{align*}\]
Taking real parts on both side, we see that as $t \to +\infty$ there is
\[\log |\Gamma(s)| = \left(\sigma - \frac{1}{2} \right) \log t - \pi t/2 + O(1) \tag{10}\]
Therefore, exponentiating on both side of (10) yields the desired result. Q.E.D.

Lemma 4. For all $y > 0$ there is
\[e^{-y} = \frac{1}{2\pi i} \int_{2-i\infty}^{2+i\infty} y^{-s} \Gamma(s) ds \tag{11}\]

Proof. The result follows directly by applying Mellin’s inversion formula to
\[\Gamma(s) = \int_0^\infty y^{s-1} e^{-y} dy \tag{12}\]
Q.E.D.

Lemma 5. For $0 < \sigma < 1$, we have $\zeta(\sigma) < 0$.

Proof. By partial summation, we have
\[\zeta(\sigma) = \frac{\sigma}{\sigma - 1} - \sigma \int_1^\infty x^{\sigma} \{x\} \, dx \leq \frac{\sigma}{\sigma - 1} \tag{13}\]
The right hand side immediately concludes the proof. Q.E.D.

Lemma 6. Let χ be nonprincipal character modulo q then $L(1, \chi) \ll \log q$.

3
Proof. Using the fact that $|\chi(n)| \leq 1$, we have

$$|L(1, \chi)| \leq \left| \sum_{n \leq N} \frac{\chi(n)}{n} \right| + \left| \sum_{n > N} \frac{\chi(n)}{n} \right|$$

$$\leq \sum_{n \leq N} \frac{1}{n} + \left[\frac{1}{x} \sum_{N < n \leq x} \chi(n) \right] \int_{N}^{\infty} \left(\sum_{N < n \leq t} \chi(n) \right) \frac{dt}{t^2}$$

$$\leq 1 + \sum_{2 \leq n \leq N} \frac{\int_{n-1}^{n} \frac{dt}{t} + \max_{x} \sum_{N < n \leq x} \chi(n)}{\int_{N}^{\infty} \left(\frac{1}{N} + \int_{N}^{\infty} \frac{dt}{t^2} \right)}$$

$$\leq 1 + \log N + \frac{2\phi(q)}{N} \ll \log N + \frac{q}{N}$$

Setting $N = q$ gives the desired result. Q.E.D.

Lemma 7. Let χ be a quadratic character such that $L(s, \chi)$ is free of real zeros in $s > 1 - \varepsilon$. Then $L(\beta, \chi) > 0$ holds for any $1 - \varepsilon < \beta < 1$.

Proof. Since $L(s, \chi)$ is continuous in $[1 - \varepsilon, 1]$ and $L(1, \chi) > 0$, the result immediately follows. Q.E.D.

Lemma 8. For any $\varepsilon > 0$ there exists a primitive quadratic χ_1 modulo q_1 and $1 - \varepsilon < \beta < 1$ such that $f(\beta) \leq 0$ holds for all quadratic χ_2 modulo q_2.

Proof. On one hand, if no χ can be found such that $L(s, \chi)$ has a zero in $(1 - \varepsilon, 1)$, then it follows from Lemma 5 and Lemma 7 that $f(\beta) < 0$ for all $1 - \varepsilon < \beta < 1$.

On the other hand, if we are unable to find a quadratic primitive χ such that $L(s, \chi)$ does possess a real zero in $(1 - \varepsilon, 1)$, then let $\chi_1 = \chi$ and β be the real zero so that $f(\beta) = 0$. Consequently for every $\varepsilon > 0$, there exists a primitive quadratic χ_1 modulo q_1 and $1 - \varepsilon < \beta < 1$ such that $f(\beta) \leq 0$. Q.E.D.

III. Proof of Siegel’s Theorem

Similar to Goldfeld’s method[3], our approach also studies the partial sum of $f(s)$

$$A(x, \beta) = \sum_{n \leq x} \frac{a_n}{n^\beta}$$

where a_n denote the Dirichlet series coefficient of $f(s)$ and $1 - \varepsilon < \beta < 1$ It follows from literature that $a_n \geq 0$ and $a_1 = 1$, so we have $A(x, \beta) \geq 1$ when $x \geq 1$. In addition, because the exponential decay function satisfies

$$e^{-n/x} \begin{cases} \geq 0 & n > x \\ \geq e^{-1} & n \leq x \end{cases}$$

we also have

$$1 \leq A(x, \beta) \leq e \sum_{n \geq 1} \frac{a_n}{n^\beta} e^{-x/n}$$

§This is an auxiliary result used to prove Dirichlet’s theorem. See §4.3 of [6] for a derivation

§See §21 of [1] for a detailed account
Now, we apply Lemma 4 to the exponential function in (15) so that
\[e^{-1} \leq \frac{1}{2\pi i} \int_{2-i\infty}^{2+i\infty} x^s \Gamma(s) f(s + \beta) ds \triangleq I \] (16)

To estimate the integral, we move the path of integration to \(\sigma = -\beta \) so that it follows from Lemma 2 that
\[I = x^{-1-\beta} \Gamma(1 - \beta) \lambda + f(\beta) + x^{-\beta} \int_{-\beta - i\infty}^{-\beta + i\infty} |\Gamma(s) f(s + \beta)| ds \] (17)
\[= x^{-1-\beta} \Gamma(1 - \beta) \lambda + f(\beta) + O \left\{ x^{-\beta} (q_1 q_2)^{1+\epsilon} \int_0^\infty t^{2+\epsilon} |\Gamma(-\beta + it)| dt \right\} \] (18)
where \(\lambda = L(1, \chi_1) L(1, \chi_2) L(1, \chi_1 \chi_2) \) is the residue of \(f(s) \) at \(s = 1 \). Since \(\Gamma(s+1) = s \Gamma(s) \), the remaining integral will be bounded by
\[\int_0^\infty t^{2+\epsilon} |\Gamma(-\beta + it)| dt \ll \frac{1}{1 - \beta} \int_0^\infty t^{5/2 - \beta + \epsilon} e^{-\pi t/2} dt \ll \frac{1}{1 - \beta} \]

Now, if we choose \(\beta \) and \(\chi \) according to Lemma 8, then we can ignore the \(f(\beta) \) term to simplify (18) into
\[1 \ll x^{-1-\beta} \lambda + x^{-\beta} q_1^{1+\epsilon} \] (19)
in which all \(\beta \) and \(q_1 \) terms in the coefficients are absorbed into \(\ll \). To simplify this even further, we set \(x^\beta = q_2^{1+\epsilon} \) for some small \(c > 0 \) so that the left hand side of (19) will still be positive even after subtracted by \(x^{-\beta} q_2^{1+\epsilon} \). To further simplify the right hand side, we apply Lemma 6 to \(\lambda \) so that for \(q_2 > q_1(\epsilon) \) there is
\[1 \ll x^{-1-\beta} \lambda \ll x^{-1-\beta} (\log q_1)(\log q_1 q_2)L(1, \chi_2) \ll x^\epsilon (\log q_2)L(1, \chi_2) \] (20)

Transforming this equation, we have
\[L(1, \chi_2) \gg x^{-\epsilon} (\log q_2)^{-1} \gg q_2^{-\epsilon(1+\epsilon)/\beta} (\log q_2)^{-1} \gg q_2^{-\epsilon \frac{\log q_2}{\log q_2}} (\log q_2)^{-1} \]

Without loss of generality, we assume \(\epsilon \leq 1/2 \), so that
\[L(1, \chi_2) \gg q_2^{-3\epsilon} (\log q_2)^{-1} \gg q_2^{-4\epsilon} \] (21)

This lower bound becomes Theorem 1 after a change of variable.

References

[1] Harold Davenport. *Multiplicative Number Theory*, volume 74 of *Graduate Texts in Mathematics*. Springer New York, New York, NY, 1980.

[2] T. Estermann. On Dirichlet’s L functions. *J. Lond. Math. Soc.*, 23:275–279, 1949.

[3] D. M. Goldfeld. A Simple Proof of Siegel’s Theorem. *Proceedings of the National Academy of Sciences*, 71(4):1055–1055, April 1974.
[4] Zihao Liu. On Goldfeld’s Proof of Siegel’s Theorem, 2021. https://arxiv.org/abs/2201.11145v1.

[5] L. Mirsky. The Number of Representations of an Integer as the Sum of a Prime and a k-Free Integer. *The American Mathematical Monthly*, 56(1):17, January 1949.

[6] Hugh L. Montgomery and Robert C. Vaughan. *Multiplicative number theory I: classical theory*. Number 97 in Cambridge studies in advanced mathematics. Cambridge University Press, Cambridge, UK ; New York, 2007. OCLC: ocm61757122.

[7] Carl Siegel. Über die classenzahl quadratischer zahlkörper. *Acta Arithmetica*, 1(1):83–86, 1935.

[8] E. C. Titchmarsh. *The theory of functions*. Oxford science publications. Oxford Univ. Press, Oxford, 2. ed., reprinted edition, 2002. OCLC: 249703508.

[9] Arnold Walfisz. Zur additiven Zahlentheorie. II. *Math Z*, 40(1):592–607, December 1936.