Let S be an irreducible smooth projective surface defined over an algebraically closed field k. For a positive integer d, let $\text{Hilb}^d(S)$ denote the Hilbert scheme that parametrizes the zero-dimensional subschemes of S of length d. Let E be a vector bundle on S, and let $\mathcal{H}(E) \to \text{Hilb}^d(S)$ be its Fourier–Mukai transform constructed using the structure sheaf of the universal subscheme of $S \times \text{Hilb}^d(S)$ as the kernel. We prove that two vector bundles E and F on S are isomorphic if the vector bundles $\mathcal{H}(E)$ and $\mathcal{H}(F)$ are isomorphic.

1. Introduction

Let S be an irreducible smooth projective surface defined over an algebraically closed field. For a positive integer d, let $\text{Hilb}^d(S)$ denote the Hilbert scheme that parametrizes the zero-dimensional subschemes of S of length d. Let

$$Z \subset S \times \text{Hilb}^d(S)$$

be the universal subscheme. Let

$$\beta : S \times \text{Hilb}^d(S) \to S \quad \text{and} \quad \gamma : S \times \text{Hilb}^d(S) \to \text{Hilb}^d(S)$$

be the natural projections. Given a coherent sheaf E on S, we have the Fourier–Mukai transform

$$\mathcal{H}(E) = \gamma_*(\mathcal{O}_Z \otimes \beta^*E) \to \text{Hilb}^d(S).$$

If E is locally free, then $\mathcal{H}(E)$ is also locally free because the restriction

$$\gamma|_Z : Z \to \text{Hilb}^d(S)$$

is a finite and flat morphism. Therefore, this Fourier–Mukai transform gives a map from the isomorphism classes of vector bundles on S to the isomorphism classes of vector bundles on $\text{Hilb}^d(S)$.

A natural question to ask is whether this map is injective or surjective. Note that since $\dim \text{Hilb}^d(S) > \dim S$ if $d \geq 2$, this map can’t be surjective when $d \geq 2$. Our aim here is to prove that this map is injective. More precisely, we prove the following:

Theorem 1.1. Two vector bundles E and F on S are isomorphic if and only if $\mathcal{H}(E)$ and $\mathcal{H}(F)$ are isomorphic.
Theorem 1.1 was proved earlier under the assumption that S is a K3 or abelian surface; this was done by Addington, Markman–Mehrotra and Meachan (see [Ad], [MM], and [MC]).

2. Vector bundles on curves and its symmetric product

Let k be an algebraically closed field. Let C be an irreducible smooth projective curve defined over k of genus g_C, with $g_C \geq 2$. The canonical line bundle of C will be denoted by K_C. Fix an integer $d \geq 2$. Let S_d denote the group of permutations of $\{1, \cdots, d\}$. The symmetric product

$$\text{Sym}^d(C) := C^d/S_d$$

is the quotient for natural action of S_d on C^d. Let $D \subset C \times \text{Sym}^d(C)$ be the universal divisor which consists of all $(x, \{y_1, \cdots, y_d\})$ such that $x \in \{y_1, \cdots, y_d\}$.

Let

$$p_1 : D \longrightarrow C \quad \text{and} \quad p_2 : D \longrightarrow \text{Sym}^d(C)$$

be the projections defined by

$$(x, \{y_1, \cdots, y_d\}) \mapsto x \quad \text{and} \quad (x, \{y_1, \cdots, y_d\}) \mapsto \{y_1, \cdots, y_d\}$$

respectively.

For any algebraic vector bundle E on C, define the direct image

$$S(E) := p_2^*p_1^*E \longrightarrow \text{Sym}^d(C),$$

where p_1 and p_2 are defined in (2.1). This $S(E)$ is locally free because p_2 is a finite and flat morphism.

If $0 = E_0 \subset E_1 \subset \cdots \subset E_{m-1} \subset E_m = E$ is the Harder–Narasimhan filtration of E, then define

$$\mu_{\text{max}}(E) := \frac{\text{degree}(E_1)}{\text{rank}(E_1)} \quad \text{and} \quad \mu_{\text{min}}(E) := \frac{\text{degree}(E/E_{m-1})}{\text{rank}(E/E_{m-1})}.$$

So $\mu_{\text{max}}(E) \geq \mu_{\text{min}}(E)$, and $\mu_{\text{max}}(E) = \mu_{\text{min}}(E)$ if and only if E is semistable.

Proposition 2.1. Let E and F be vector bundles on C such that

$$\mu_{\text{max}}(E) - \mu_{\text{min}}(E) < 2(g_C - 1) \quad \text{and} \quad \mu_{\text{max}}(F) - \mu_{\text{min}}(F) < 2(g_C - 1).$$

If the two vector bundles $S(E)$ and $S(F)$ (defined in (2.2)) are isomorphic, then E is isomorphic to F.

Proof. Let

$$\varphi : C \longrightarrow \text{Sym}^d(C)$$

be the morphism defined by $z \mapsto d \cdot z = (z, \cdots, z)$. Then $\varphi^*S(E)$ admits a filtration

$$0 = E(d) \subset E(d-1) \subset E(d-2) \subset \cdots \subset E(1) \subset E(0) = \varphi^*S(E)$$
such that
\[
E(d-1) = E \otimes K_C^\otimes(d-1) \quad \text{and} \quad E(i)/E(i+1) = E \otimes K_C^\otimes i
\]
for all \(0 \leq i \leq d-2\) (see [BN, p. 330, (3.7)]); in [BN] it is assumed that \(k = \mathbb{C}\), but the proof works for any algebraically closed field. Let
\[
0 = E_0 \subset E_1 \subset \cdots \subset E_{m-1} \subset E_m = E
\]
be the Harder–Narasimhan filtration of \(E\). For any \(j \in \mathbb{Z}\),
\[
\mu_{\max}(E \otimes K_C^\otimes j) = \mu_{\max}(E) + 2j(g_C - 1) \quad \text{and} \quad \mu_{\min}(E \otimes K_C^\otimes j) = \mu_{\min}(E) + 2j(g_C - 1).
\]
Hence the condition in (2.3) implies that
\[
\mu_{\max}(E \otimes K_C^\otimes j) < \mu_{\min}(E \otimes K_C^\otimes (j+1)).
\]
Therefore, from (2.4) and (2.5) we conclude the following:

- The Harder–Narasimhan filtration of \(\varphi^*S(E)\) has \(md\) nonzero terms.
- If
\[
0 = V_0 \subset V_1 \subset \cdots \subset V_{md-1} \subset V_{md} = \varphi^*S(E)
\]
is the Harder–Narasimhan filtration of \(\varphi^*S(E)\), then for any \(0 \leq j \leq d\),
\[
V_{mj} = E(d-j),
\]
where \(E(d-j)\) is the subbundle in (2.4).

More precisely, for any \(0 \leq j \leq d-1\) and \(0 \leq i \leq m\),
\[
V_{jm+i}/V_{jm} = E_i \otimes K_C^\otimes (d-j-1).
\]
In particular, we have
\[
V_m = E(d-1) = E \otimes K_C^\otimes(d-1).
\]

If \(S(E)\) and \(S(F)\) are isomorphic, comparing the Harder–Narasimhan filtrations of \(\varphi^*S(E)\) and \(\varphi^*S(F)\), and using (2.6), we conclude that \(E \otimes K_C^\otimes(d-1)\) is isomorphic to \(F \otimes K_C^\otimes(d-1)\). This implies that \(E\) is isomorphic to \(F\). \(\square\)

In [BN, Theorem 3.2], Proposition 2.1 was proved under that assumption that both \(E\) and \(F\) are semistable.

2.1. An example. We give an example to show that in general, \(S(E) = S(F)\) does not imply that \(E = F\).

Note that \(\text{Sym}^2(\mathbb{P}^1) \simeq \mathbb{P}^2\). If we identify \(\text{Sym}^2(\mathbb{P}^1)\) with \(\mathbb{P}^2\), then the universal degree two divisor
\[
D_2 \subset \mathbb{P}^1 \times \text{Sym}^2(\mathbb{P}^1) \simeq \mathbb{P}^1 \times \mathbb{P}^2
\]
is the zero locus of a section of the line bundle \(p^*(\mathcal{O}_{\mathbb{P}^1}(2)) \otimes q^*(\mathcal{O}_{\mathbb{P}^2}(1))\), where
\[
p : \mathbb{P}^1 \times \mathbb{P}^2 \longrightarrow \mathbb{P}^1 \quad \text{and} \quad q : \mathbb{P}^1 \times \mathbb{P}^2 \longrightarrow \mathbb{P}^2
\]
are the natural projections. From this we see that
\[S(\mathcal{O}_{\mathbb{P}^1}(1)) = \mathcal{O}_{\mathbb{P}^2} \oplus \mathcal{O}_{\mathbb{P}^2} \]
\[S(\mathcal{O}_{\mathbb{P}^1}(-1)) = \mathcal{O}_{\mathbb{P}^2}(-1) \oplus \mathcal{O}_{\mathbb{P}^2}(-1) \]
\[S(\mathcal{O}_{\mathbb{P}^1}) = \mathcal{O}_{\mathbb{P}^2} \oplus \mathcal{O}_{\mathbb{P}^2}(-1). \]

For any two vector bundles \(E \) and \(F \) on \(\mathbb{P}^1 \) we have \(S(E \oplus F) = S(E) \oplus S(F) \). From these observations it follows that
\[S(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^2}) = \mathcal{O}_{\mathbb{P}^2} \oplus \mathcal{O}_{\mathbb{P}^2}(-1) \oplus \mathcal{O}_{\mathbb{P}^2}(-1). \]

3. Vector bundles on surfaces and Hilbert scheme

Let \(S \) be an irreducible smooth projective surface defined over \(k \). For any \(d \geq 1 \), let \(\text{Hilb}^d(S) \) denote the Hilbert scheme parametrizing the 0–dimensional subschemes of \(S \) of length \(d \) (see [Fo]). Let \(\mathcal{Z} \subset S \times \text{Hilb}^d(S) \) be the universal subscheme which consists of all \((x, z) \in S \times \text{Hilb}^d(S)\) such that \(x \in z \). Let
\[q_1 : \mathcal{Z} \longrightarrow S \quad \text{and} \quad q_2 : \mathcal{Z} \longrightarrow \text{Hilb}^d(S) \]
be the projections defined by \((x, z) \mapsto x \) and \((x, z) \mapsto z\) respectively.

For any algebraic vector bundle \(E \) on \(S \), define the direct image
\[\mathcal{H}(E) := q_2 \ast (q_1^* E) \longrightarrow \text{Hilb}^d(S), \]
where \(q_1 \) and \(q_2 \) are the projections in (3.1). Since \(q_2 \) is a finite and flat morphism, the direct image \(\mathcal{H}(E) \) is locally free. We note that \(\mathcal{H}(E) \) is the Fourier–Mukai transform of \(E \) with respect to the kernel sheaf \(\mathcal{O}_{\mathcal{Z}} \) on \(S \times \text{Hilb}^d(S) \).

Theorem 3.1. Let \(E \) and \(F \) be vector bundles on \(S \) such that \(\mathcal{H}(E) \) (defined in (3.2)) is isomorphic to \(\mathcal{H}(F) \). Then the two vector bundles \(E \) and \(F \) are isomorphic.

Proof. If \(\iota : C \hookrightarrow S \) is an embedded irreducible smooth closed curve, then \(\iota \) induces a morphism
\[\text{Sym}^d(C) \hookrightarrow \text{Hilb}^d(S). \]

Fix a very ample line bundle \(\mathcal{L} \) on \(S \). Let
\[0 = E_0 \subset E_1 \subset \cdots \subset E_{m-1} \subset E_m = E \]
be the Harder–Narasimhan filtration of \(E \) with respect to \(\mathcal{L} \). Let \(Y \subset S \) be the subset over which some \(E_i \) fails to be a subbundle of \(E \). This \(Y \) is a finite subset because any torsionfree sheaf on \(S \) is locally free outside a finite subset. Also note that \(Y \) is the subset over which the filtration in (3.4) fails to be filtration of subbundles of \(E \).

For \(n \geq 1 \), let
\[\iota : C \longrightarrow S, \quad C \in |\mathcal{L}^\otimes n| \]
be an irreducible smooth closed curve lying in the complete linear system \(|L^{\otimes n}| \) such that \(\iota(C) \cap Y = \emptyset \). Since \(\mathcal{L} \) is very ample, such curves exist.

For each \(1 \leq i \leq m \), there is an integer \(\ell_i \) such that \(\iota^*(E_i/E_{i-1}) \) is semistable for a general member of \(C \in |L^{\otimes n}| \) if \(n \geq \ell_i \) [MR, p. 221, Theorem 6.1]. Take

\[
\ell' = \max\{\ell_1, \ldots, \ell_m\}.
\]

If \(n \geq \ell' \), then for a general \(C \in |L^{\otimes n}| \), the pulled back filtration

\[
0 = \iota^*E_0 \subset \iota^*E_1 \subset \cdots \subset \iota^*E_{m-1} \subset \iota^*E_m = \iota^*E
\]

coincides with the Harder–Narasimhan filtration of \(\iota^*E \). Indeed, this follows immediately from the following two facts:

1. \(\iota^*(E_i/E_{i-1}) \) is semistable for a general member of \(C \in |L^{\otimes n}| \) if \(n \geq \ell_i \), and
2. \(\mu(\iota^*(E_i/E_{i-1})) > \mu(\iota^*(E_{i+1}/E_i)) \) because \(\mu(E_i/E_{i-1}) > \mu(E_{i+1}/E_i) \).

Let \(W \) be a vector bundle \(S \). Define

\[
d_W := c_1(\mathcal{L}) \cdot c_1(W) \in \mathbb{Z}.
\]

As before, let

\[
\iota : C \to S, \quad C \in |L^{\otimes n}|
\]

be an irreducible smooth closed curve. We have

\[
(3.5) \quad \deg(\iota^*W) = n \cdot d_W.
\]

In other words, \(\deg(\iota^*W) \) depends linearly on \(n \). From the adjunction formula,

\[
2(\text{genus}(C) - 1) = c_1(L^{\otimes n}) \cdot c_1(L^{\otimes n} \otimes K_S),
\]

where \(K_S \) is the canonical line bundle of \(S \) (see [Ha, p. 361, Proposition 1.5]). Hence we have

\[
(3.6) \quad \text{genus}(C) = \frac{n^2(c_1(L) \cdot c_1(L)) + nd_{K_S} + 2}{2}
\]

(see (3.5)). In other words, \(\text{genus}(C) \) is a quadratic function of \(n \).

Comparing (3.5) and (3.6) we conclude that there is an integer \(\ell \geq \ell' \) such that for \(n \geq \ell \), we have

\[
\mu(\iota^*E_1) - \mu(\iota^*(E/E_{m-1})) < 2(\text{genus}(C) - 1),
\]

where \(C \in |L^{\otimes n}| \) is an irreducible smooth closed curve. Note that this implies that \(\text{genus}(C) \geq 2 \).

Consider the embedding in (3.3). The restriction of \(\mathcal{H}(E) \) (respectively, \(\mathcal{H}(F) \)) to \(\text{Sym}^d(C) \) coincides with \(S(\iota^*E) \) (respectively, \(S(\iota^*F) \)) constructed in (2.2). So \(S(\iota^*E) \) and \(S(\iota^*F) \) are isomorphic because \(\mathcal{H}(E) \) and \(\mathcal{H}(F) \) are isomorphic. Since \(S(\iota^*E) \) and \(S(\iota^*F) \) are isomorphic, from Proposition 2.1 it follows that \(\iota^*E \) and \(\iota^*F \) are isomorphic for a general \(C \in |L^{\otimes n}| \) with \(n \geq \ell \).
The line bundle L being ample, there is an integer ℓ'' such that for every $n \geq \ell''$, we have
\begin{equation}
H^1(S, E \otimes F^* \otimes K_S \otimes L^{\otimes n}) = 0.\tag{3.7}
\end{equation}
Take $n \geq \ell''$, and let
\[\iota : C \hookrightarrow S \]
be any irreducible smooth closed curve lying in $|L^{\otimes n}|$. Consider the short exact sequence of sheaves
\begin{equation}
0 \to F \otimes E^* \otimes \mathcal{O}_S(-C) \to F \otimes E^* \to (F \otimes E^*)|_C \to 0.\tag{3.8}
\end{equation}
Since $H^1(S, F \otimes E^* \otimes \mathcal{O}_S(-C)) = H^1(S, E \otimes F^* \otimes L^{\otimes n} \otimes K_S)^*$ (Serre duality), from (3.7) it follows that
\[H^1(S, F \otimes E^* \otimes \mathcal{O}_S(-C)) = 0. \]
Therefore, from the long exact sequence of cohomology groups associated to (3.8) we conclude that the restriction homomorphism
\begin{equation}
\rho : H^0(S, F \otimes E^*) \to H^0(C, (F \otimes E^*)|_C)\tag{3.9}
\end{equation}
is surjective.

Take $n \geq \max\{\ell, \ell''\}$, and let $C \in |L^{\otimes n}|$ be a general member. We know that ι^*E and ι^*F are isomorphic. Fix an isomorphism
\[I : \iota^*E \to \iota^*F. \]
So $I \in H^0(C, \iota^*(F \otimes E^*))$. Since ρ in (3.9) is surjective, there is a homomorphism
\[\tilde{I} \in H^0(S, F \otimes E^*) \]
such that $\rho(\tilde{I}) = I$. Let r be the rank of E (and also F). Consider the homomorphism of line bundles
\[- \bigwedge^r \tilde{I} : \bigwedge^r E \to \bigwedge^r F
\]
induced by I. Let
\[D(\tilde{I}) := \text{Div}(\bigwedge^r \tilde{I}) \]
be the effective divisor for $\bigwedge^r \tilde{I}$. We know that $D(\tilde{I})$ does not intersect C because the restriction $\rho(\tilde{I}) = I$ is an isomorphism. But C is an ample effective divisor, so C intersects any closed curve in S. Therefore, $D(\tilde{I})$ must be the zero divisor. Consequently, the homomorphism $\bigwedge^r \tilde{I}$ is an isomorphism. This implies that \tilde{I} is an isomorphism. So the two vector bundles E and F are isomorphic. □

References

[Ad] N. Addington, New derived symmetries of some hyperkähler varieties, arXiv:1112.0487.

[BN] I. Biswas and D. S. Nagaraj, Reconstructing vector bundles on curves from their direct image on symmetric powers, Archiv Math. 99 (2012), 327–331.

[Fo] J. Fogarty, Algebraic families on an algebraic surface, Amer. Jour. Math. 90 (1968), 511–521.

[Ha] R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52. Springer-Verlag, New York-Heidelberg, 1977.

[MC] C. Meachan, Derived autoequivalences of generalised Kummer varieties, arXiv:1212.5286.
[MM] E. Markman and S. Mehrotra, Integral transforms and deformations of K3 surfaces, preprint.
[MR] V. Mehta and A. Ramanathan, Semistable sheaves on projective varieties and their restriction to curves, *Math. Ann.* **258** (1982), 213–224.

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India

E-mail address: indranil@math.tifr.res.in

The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India

E-mail address: dsn@imsc.res.in