Guided waves as superposition of body waves

David R. Dalton*, Michael A. Slawinski†, Theodore Stanoev‡

Abstract

We illustrate properties of guided waves in terms of a superposition of body waves. In particular, we consider the Love and \(SH \) waves. Body-wave propagation at postcritical angles—required for a total reflection—results in the speed of the Love wave being between the speeds of the \(SH \) waves in the layer and in the halfspace. A finite wavelength of the \(SH \) waves—required for constructive interference—results in a limited number of modes of the Love wave. Each mode exhibits a discrete frequency and propagation speed; the fundamental mode has the lowest frequency and the highest speed.

1 Introduction

Let us consider Love wave and the \(SH \) waves to examine the concept of a guided wave within a layer as an interference of body waves therein. In the \(x_1x_3 \)-plane, the nonzero component of the displacement vector of the Love wave is (e.g., Slawinski, 2018, Section 6.3)

\[
 u^\ell_2(x_1, x_3, t) = C_1 \exp \left(-i \kappa s^\ell x_3 \right) \exp \left[i \left(\kappa x_1 - \omega t \right) \right] + C_2 \exp \left(i \kappa s^\ell x_3 \right) \exp \left[i \left(\kappa x_1 - \omega t \right) \right],
\]

where \(s^\ell := \sqrt{(v/\beta^\ell)^2 - 1} \), with \(v \) being the speed of the Love wave and \(\beta^\ell \) the speed of the \(SH \) wave; \(\omega \) and \(\kappa \) are the temporal and spatial frequencies, related by \(\kappa = \omega/v \). The \(SH \) waves travel obliquely in the \(x_1x_3 \)-plane; different signs in front of \(x_3 \) mean that one wave travels upwards and the other downwards. Their wave vectors are \(k^\pm := (\kappa, 0, \pm \kappa s^\ell) \). Considering their magnitudes,

\[
 \|k^\pm\| = \sqrt{\kappa^2 + (\kappa s^\ell)^2},
\]

we have

\[
 \|k^\pm\| = \kappa \sqrt{1 + (s^\ell)^2} = \kappa \frac{v}{\beta^\ell};
\]

from which it follows that

\[
 \frac{\beta^\ell}{v} = \frac{\kappa}{\|k^\pm\|} = \sin \theta,
\]

where \(\theta \) is the angle between \(k^\pm \) and the \(x_3 \)-axis. Thus, \(\theta \) is the angle between the \(x_3 \)-axis and a wavefront normal, which means that—exhibiting opposite signs—it is the propagation direction of upward and downward wavefronts.

2 Total reflection

A necessary condition for the existence of a guided wave is a total reflection on either side of the layer; the energy must remain within a layer. For the Love waves, this is tantamount to no transmission of the \(SH \)

*Department of Earth Sciences, Memorial University of Newfoundland, Canada; dalton.nfld@gmail.com
†Department of Earth Sciences, Memorial University of Newfoundland, Canada; mslawins@mac.com
‡Department of Earth Sciences, Memorial University of Newfoundland, Canada; theodore.stanoev@gmail.com
waves through the surface or the interface. The former is ensured by the assumption of vacuum above the surface; hence, total reflection occurs for all propagation angles, \(\theta\). The latter requires \(\beta_\ell < \beta_h\), where \(\beta_h\) is the speed of the \(SH\) wave within the halfspace. This inequality results in the existence of a critical angle, \(\theta_c = \arcsin(\beta_\ell/\beta_h)\), which is required for a propagation at postcritical angles, \(\theta > \theta_c\).

In view of expression (1), the lower limit of \(v\) is \(\beta_\ell\), for which \(\sin \theta = \beta_\ell/\beta_h = 1\); hence, \(\theta = \pi/2\). It corresponds to the \(SH\) waves that propagate parallel to the \(x_1\)-axis, and can be viewed as the Love wave.

The upper limit, \(v = \beta_h\), is a consequence of the critical angle, for which \(\sin \theta_c = \beta_\ell/\beta_h\). If \(\beta_h \to \infty\) — which corresponds to a rigid halfspace—\(\theta_c \to 0\); hence, the \(SH\) waves within the layer can propagate nearly perpendicularly to the interface and still exhibit a total reflection. This means that \(v \to \infty\), as can be also inferred from Figure 2.

These limits, \(\beta_\ell < v < \beta_h\), are a consequence of total reflection. Also, the upper limit needs to be introduced to ensure an exponential amplitude decay in the halfspace (e.g., Slawinski, 2018, Section 6.3.2).

3 Constructive interference

Guided waves—as superpositions of body waves—require a constructive interference of body waves. A necessary condition of such an interference is the same phase among the wavefronts of parallel rays. In Figure 1, this condition means that the difference between \(\|AB\|\) and \(\|AB'\|\) must be equal to a positive-integer multiple of the wavelength, \(\lambda\), taking into account the phase shift due to reflection. A reflection at the surface results in no phase shift (Udías, 1999, Sections 5.4 and 10.3.1), and the \(SH\)-wave postcritical phase shift at the elastic halfspace is presented by Udías (1999, equation (5.74)).

To illustrate the constructive interference—without discussing the phase shift as a function of the incidence angle—let us consider an elastic layer above a rigid halfspace, on which a transverse wave undergoes a phase change of \(\pi\) radians for any angle. In such a case, the propagation angle is (e.g., Saleh and Teich, 1991, Section 7.1)

\[
\theta_n = \arcsin \left(\frac{n\lambda}{Z} \right), \quad n = 1, 2, \ldots
\]

(2)

where \(\lambda\) is the wavelength of the \(SH\) wave, \(Z\) is the layer thickness and \(n\) is a mode of the guided wave; \(n = 1\) is the fundamental mode.

Thus—as a consequence of constructive interference—for a given \(SH\) wavelength and layer thickness, the propagation angles, \(\theta_n\), form a set of discrete values; each \(n\) corresponds to a mode of the guided wave. As illustrated in Figure 2, each mode has its propagation speed, which—in accordance with expression (1)—is

\[
v_n = \frac{\beta_\ell}{\sin \theta_n},
\]

(3)
Figure 2: Constructive interference for Love wave: The upgoing and downgoing SH wavefronts at two instants; their speed, $\|\beta_r\|$, remains constant—regardless of the wavefront orientation—but the Love-wave speed, $\|v_n\|$, whose direction, v_n, remains constant, increases as θ_n decreases.

where, as a consequence of total reflection, $\theta_n \in (\theta_1, \pi/2)$, where $\theta_1 > \theta_c$. The specific value of θ_1 depends on Z and λ; it corresponds to the first postcritical value for which $\|AB\| - \|AB'\| = 2 \|AB\| \cos^2 \theta = 2Z \cos \theta$ is a multiple integer of λ.

Examining Figure 2, we distinguish the upgoing and downgoing wavefronts, which compose the guided wave. Its longest permissible wavelength is twice the layer thickness, $\lambda_1 = 2Z$, which corresponds to the fundamental mode; $\lambda_2 = Z$, $\lambda_3 = 2Z/3$, and, in general, $\lambda_n = 2Z/n$.

4 Frequencies of body and guided waves

λ, referred to in the caption of Figure 1 and used in expression (2), corresponds to the SH wave; λ_n, where $n = 1, 2, \ldots$, corresponds to the guided wave. They are related by the propagation angle, θ_n, and by the layer thickness, Z.

The radial frequency of a monochromatic SH wave is constant, $\omega = 2\pi \beta_r / \lambda$. The radial frequencies of the Love wave are distinct for distinct modes, $\omega_n = 2\pi v_n / \lambda_n$. For a given model, β_r, β_h and Z, the relations between ω and ω_n, as well as among ω_n, where $n = 1, 2, \ldots$, are functions of n and θ_n; explicitly, $\omega_n = n \pi \beta_r / (Z \sin \theta_n)$, and, in general, its behaviour as a function of n cannot be examined analytically. However, in an elastic layer above a rigid halfspace, in accordance with expression (2),

$$\omega_n = n \pi \frac{\beta_r}{Z \sin \theta_n} = \pi \frac{\beta_r}{\lambda} = \frac{\omega}{2},$$

which is constant for all modes, and depends only on the radial frequency of the SH wave.

The constructive interference, illustrated in Figure 1, requires that

$$\|AB\| - \|AB'\| = a \lambda - b \lambda = (a - b) \lambda,$$

where—in contrast to $a = \|AB\| / \lambda$ and $b = \|AB'\| / \lambda$—$a - b$ is a positive integer; λ is the SH wavelength. Following trigonometric relations, we write

$$\|AB\| - \|AB'\| = \|AB\| - \|AB\| \cos(\pi - 2\theta) = \|AB\| (1 - \cos(\pi - 2\theta)) = 2 \|AB\| \cos^2 \theta.$$

Since $\|AB\| = Z / \cos \theta$, where θ is the SH-wave propagation angle, it follows that $2 \|AB\| \cos^2 \theta = 2Z \cos \theta$, and the constructive interference requires that $2Z \cos \theta = (a - b) \lambda$, where $(a - b) \in \mathbb{N}$; in other words,

$$\cos \theta = \frac{a - b}{2Z} \lambda,$$
where $\theta \geq \theta_c$, to ensure the total reflection, and $(a - b) \lambda \leq 2Z$, for $\theta \in \mathbb{R}$.

Using this result and the inverse trigonometric function, we write the first equality of expression (4) as

$$\omega_n = n\pi - \frac{\beta_\ell}{Z\sqrt{1 - \left(\frac{a_n - b_n}{2Z}\right)^2}\lambda^2},$$

(5)

which corresponds only to a given value of n and, hence, of θ_n, since $a_n - b_n$ changes with the propagation angle, and needs to be restricted to integer values for each n.

Following expression (5), we obtain

$$\frac{\omega_n}{\omega_{n+1}} = \frac{n}{n+1} \sqrt{1 - \left(\frac{a_{n+1} - b_{n+1}}{2Z}\right)^2\lambda^2}.$$

(6)

Since $\theta_{n+1} > \theta_n$, examining Figure 1 and considering given values of λ and Z, we see that—as θ increases—$\|\text{AB}\| - \|\text{AB'}\|$ decreases. Hence, $(a_n - b_n) > (a_{n+1} - b_{n+1})$, and the root in the numerator is greater than in the denominator. Consequently, the ratio of roots is greater than unity. However, $n/(n+1) < 1$.

We cannot, in general, determine analytically if the radial frequency of the nth mode is higher or lower than the frequency of the $n+1$ mode. To determine it, we need not only to specify Z and the model parameters, which result in θ_c, but also λ and n, to obtain θ_n and θ_{n+1}, with integer values of $\|\text{AB}\| - \|\text{AB'}\|$.

5 Numerical example

To obtain specific values, we let $Z = 1000$, $\beta_\ell = 2000$, $\beta_h = 3000$ and $\lambda = 50$, which means that $\theta_c \approx 0.73$, in radians, and $\omega = 2\pi\beta_\ell/\lambda \approx 251$. For the guided wave, in accordance with Figure 1, we obtain—numerically—$\theta_1 \approx 0.76$, which corresponds to $(a_1 - b_1) = 29$. To include higher modes, using expression (6), we obtain $\omega_1/\omega_2 \approx 0.52$, $\omega_2/\omega_3 \approx 0.69$ and $\omega_3/\omega_4 \approx 0.77$, which corresponds to, respectively, $(a_{n+1} - b_{n+1}) = 29 - n = 28$, 27 and 26, and to $\omega_2 = 17.60$, $\omega_3 = 25.55$ and $\omega_4 = 33.07$.

We might infer that the Love-wave fundamental mode, $n = 1$, exhibits the lowest radial frequency—which, following expression (5), is 9.123—and that the frequency increases monotonically with n. The highest allowable mode corresponds to $n = 29$, since, for that value, $(a_n - b_n) = 1$. For this mode, $\omega_{29} \approx 182.27$; also, $\omega_{28}/\omega_{29} \approx 0.966$. Frequencies of distinct modes are shown in the left-hand plot of Figure 3.

Examining expression (6), in view of these results, we conclude that—as n increases—both $n/(n+1)$ and the ratio of roots tend to unity; the former from below, the latter from above. The ratio of successive frequencies approaches the ratio of successive overtones for a vibrating string, $\frac{3}{2}, \frac{5}{3}, \frac{7}{4}, \ldots, \frac{29}{27}$.

Furthermore, using expression (3) and the computed values of θ_n, we can obtain the corresponding propagation speeds of the Love-wave modes. For the fundamental mode,

$$v_1 = \frac{\beta_\ell}{\sin\theta_1} = \frac{2000}{\sin(0.76)} = 2903.09,$$

which is the highest speed of this Love wave; it is smaller than $\beta_h = 3000$, as required. The lowest speed corresponds to $\theta_{29} = 1.55$, which is nearly $\pi/2$; hence, the SH waves propagate almost parallel to the layer. The speed of the resulting Love wave is $v_{29} = \beta_\ell/\sin\theta_{29} = 2000.63$, which is greater than $\beta_\ell = 2000$, as required. Speeds of distinct modes are shown in right-hand plot of Figure 3.
6 Conclusions

Superposition of body waves allows us to examine several properties of guided waves. Body-wave propagation at postcritical angles—required for a total reflection—results in the speed of the Love wave being between the speeds of the SH waves in the layer and in the halfspace. A finite wavelength of the SH waves—required for constructive interference—results in a limited number of modes of the Love wave. Each mode exhibits a discrete frequency and propagation speed; the first mode has the lowest frequency and the highest speed.

Acknowledgments

We wish to acknowledge the graphic support of Elena Patarini. This research was performed in the context of The Geomechanics Project supported by Husky Energy. Also, this research was partially supported by the Natural Sciences and Engineering Research Council of Canada, grant 202259.

References

Saleh, B. E. A. and Teich, M. C. (1991). Fundamentals of photonics. John Wiley & Sons.

Slawinski, M. A. (2018). Waves and rays in seismology: Answers to unasked questions. World Scientific, 2nd edition.

Udías, A. (1999). Principles of Seismology. Cambridge University Press.