GPNMB expression impacts prognosis and immune infiltration in cancers

Yang Wang
Xiangya Hospital Central South University

Qiong Chen (qiongch@163.com)
Xiangya Hospital Central South University  https://orcid.org/0000-0002-2534-8834

Primary research

Keywords: GPNMB, immune gene markers, prognosis, tumor-infiltrating

DOI: https://doi.org/10.21203/rs.3.rs-41771/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License.  Read Full License
Abstract

Background

Glycoprotein non-metastatic gene B (GPNMB) can regulate tumor progression by interacting with T cell function. However, the association between GPNMB and tumor-infiltrating immune cells and prognosis of various cancers is poorly understood.

Methods

We use the Oncomine and TIMER database to investigate GPNMB expression in multiple tumors. The PrognoScan database, Kaplan-Meier plotter are used to analyze tumor prognosis of GPNMB. R packages are used to perform multivariable cox regression analysis. We use TIMER and GEPIA database to explore the association between GPNMB expression and tumor immune infiltration levels, and immune cell markers. GPNMB related transcription factors and transcription-target networks are investigated via TTRUST database and GeneMANIA.

Results

A high level of GPNMB expression was significantly associated with poor prognosis in stomach adenocarcinoma (STAD). While, a high level of GPNMB expression was significantly associated with favorable prognosis in lung adenocarcinoma (LUAD). Besides, GPNMB expression levels can impact the prognosis in STAD and LUAD patients with lymph node metastasis. Moreover, GPNMB expression level has significant relationships with B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and DCs infiltrating levels in STAD and LUAD. Besides, various immune gene markers of STAD and LUAD are significantly related to GPNMB expression. In addition, the GPNMB related transcription factors are MITF and TP53. The transcript-target networks are mainly responsible for signal transduction in response to DNA damage, DNA damage response, signal transduction by p53 class mediator, mitotic G1 DNA damage checkpoint, G1 DNA damage checkpoint.

Conclusions

These results indicate that GPNMB is significantly associated with prognosis and immune infiltrating levels in various cancers patients, especially in STAD, LUAD patients. Multiple immune gene markers of STAD and LUAD are significantly related to GPNMB expression, especially monocyte, macrophage polarization, and functional T cells gene markers. Our study signifies that GPNMB plays an essential role in prognosis prediction and immune infiltration of STAD and LUAD.

Background

Cancer-related deaths are one of the critical events in the world. The conventional treatments for cancers are chemotherapy, target therapy, radiotherapy, and surgery. However, the 5-year survival status of cancer patients remains to be unexciting. There are various immune cell subpopulations in the solid tumor microenvironment, and they act as pro-tumorigenic roles or anti-tumorigenic roles by activating or inhibiting some kinds of immune cells[1-3]. Recently, immunotherapy plays a more and more critical role in cancers treatment such as adoptive cellular therapy, inhibitory antibodies of PD-1, and PD-L1, CTLA-4 [4-5]. The high density of effector T cells in solid tumors microenvironment is related to favorable prognosis[6]. Besides, tumor-infiltrating immune cells, including macrophages, Dendritic cells(NK cells), neutrophil granulocytes, can impact cancer immunotherapy efficacy [7]. The cancer immunotherapy is still in the early-stage[8]. The relationship between various cancers and microenvironment immune cells is poorly understood. Therefore, it is essential to find favorable immune-related biomarkers in various cancers types.

GPNMB is called glycoprotein non-metastatic gene B (NMB) and locates on the small arm of chromosome 7 (7p15), which express in multiple cancers and cells, including osteoblasts, macrophages and dendritic cells [9-10]. A study reported that knock-down of GPNMB would promote inflammatory cytokines IL-1β and TNF-α secretion by regulating M1, M2 polarization[11-14]. Another study reported that GPNMB could make inflammatory hepatic cells transfer to hepatocellular cancer in the process of chronic inflammation state[15]. Besides, GPNMB of infiltrating immune cells such as macrophages and dendritic cells, can inhibit T-cell activation or activate naive T-cells[16-19]. Also, GPNMB was detected highest in dendritic cells of antigen-presenting cells (APC), and it can bind to syndecan-4 of activated T cells to reduce T cells activation[20].

Furthermore, GPNMB can function as a tumor suppressor or tumor activator in cancers[21]. High expression of GPNMB was related to high risk of death in glioblastoma and lung cancer[22-23]. Besides, GPNMB can promote breast cancer or melanoma progression and metastasis by regulating T cells in the tumor microenvironment [24-26]. Interestingly, it was reported that GPNMB was a tumor suppressor gene in colon adenocarcinoma, and overexpression of GPNMB could inhibit colon cancer proliferation, invasion, and migration[27]. One study reported that anti-GPNMB mAb in the tumor microenvironment could inhibit colon cancer progression through increasing T cells [28]. These results indicated that GPNMB was associated with tumor infiltrating immune cells such as macrophages, T cells, and dendritic cells. However, the mechanisms between GPNMB and tumor immunology is not fully understood.

In our study, we used Oncomine, PrognoScan, and Kaplan-Meier plotter to explore whether GPNMB expression impacts tumor prognosis. Besides, we used TIMER to explore the association between GPNMB and tumor-infiltrating immune cells in various cancer types. Our study puts emphasis on the correlation between GPNMB expression and STAD, LUAD.

Methods
ONCOMINE database

ONCOMINE database (www.oncomine.org) is an online cancer microarray database, including DNA or RNA sequences analysis [29]. In our study, we collect GPNMB transcription expressions of different cancer tissues and adjacent normal tissues from the ONCOMINE database. We use p-value: 0.001, fold change: 1.5, gene rank: 10%, data type: mRNA as cut-off of p-value and fold change.

Timer

TIMER (https://cistrome.shinyapps.io/timer/) from TCGA, is an open website to investigate the correlation between genes and immune cell infiltration[30]. In our study, we use the "Gene module" to estimate the relationship between GPNMB expression and immune cell infiltration. Spearman's relation and statistical significance are used to evaluate the correlation between GPNMB expression and tumor-infiltrating immune gene markers. Moreover, the correlation standard is evaluated using the value: very weak (0.00–0.19), weak (0.20–0.39), moderate (0.40–0.59), strong (0.60–0.79), very strong (0.80–1.0). P-value < 0.05 is considered to be significantly different.

PrognoScan

PrognoScan database (http://www.abren.net/PrognoScan/) is a cancer microarray datasets that can be used to investigate the relationship of GPNMB expression and survival prognosis in multiple cancers types with a Cox P-value< 0.05 [31].

Kaplan-Meier Plotter

We used the Kaplan Meier plotter (http://kmplot.com/analysis/) to analyze the prognostic value of GPNMB expression in cancers such as breast, ovarian, lung, liver, and gastric cancer samples[32]. In Kaplan-Meier plotter, patients are divided into high and low expression group according to median values of mRNA expression and KM survival curves is used to validate the survival status. P-value < 0.05 is considered to be significantly different.

GEPIA Dataset

GEPIA (http://gepia.cancer-pku.cn/index.html) provides mRNA expression data of tumors and normal samples according to Cancer Genome Atlas (TCGA) and Genotype tissue Expression dataset projects [33]. In this study, we use GEPIA to confirm the relationship between GPNMB expression and immune gene markers in TIMER.

TRRUST

TRRUST (https://www.grnpedia.org/trrust/) is an open website to investigate transcript regulatory networks, and it contains 8444 transcription factor regulatory relationships[34].

GeneMANIA

GeneMANIA (http://www.genemania.org) is a web that could construct a protein interaction (PPI) network, gene interaction, co-expression, gene enrichment, and gene co-localization[35]. In this study, we use GeneMANIA to construct GPNMB related transcription factor-target network.

Statistical analysis

Multivariable Cox regression analysis was conducted with R package (version 3.6.3) using a significant level of 0.05.

Results

GPNMB mRNA expression in Different Cancer Types

We used the oncomine database (www.oncomine.org) to explore the expression of GPNMB expression in tumors and normal tissues of various cancer types. This study revealed that the GPNMB expression was higher in brain and CNS cancer, cervical cancer, esophageal cancer, gastric cancer, head and neck cancer, kidney cancer, liver cancer, lung cancer, leukemia, lymphoma, melanoma, pancreatic cancer, prostate cancer, and sarcoma compared to normal tissues (Figure 1A). Moreover, lower expression was detected in bladder, breast, colorectal, esophageal cancer, leukemia, lung, ovarian, and sarcoma cancers in some data sets. We summarized the detailed results of GPNMB expression in various cancer types and normal tissues in Figure 1B. GPNMB expression was significantly lower in BLCA (bladder urothelial bladder carcinoma), BRCA (invasive breast carcinoma), COAD (colon adenocarcinoma), READ (rectum adenocarcinoma), LUAD (lung adenocarcinoma), and UCEC (uterine corpus endometrial carcinoma) compared to adjacent normal tissues. Besides, GPNMB expression was significantly higher in CHOL (cholangiocarcinoma), ESCA (Esophageal carcinoma ), HNSC (head and neck cancer), KICH (kidney chromophobe), KIRC(kidney renal clear cell carcinoma), KIRP(Kidney renal papillary cell carcinoma), LIHC (liver hepatocellular carcinoma), LUSC (Lung squamous cell carcinoma), STAD(stomach adenocarcinoma) compared to adjacent normal tissues.

Potential Prognostic of GPNMB in Cancers

We used PrognoScan to explore the relationship between GPNMB expression and survival status of various cancer types in Figure 2. The associations between GPNMB expression and different cancer types prognosis from PrognoScan were displayed in Figure 3. Patients with high GPNMB expression had poor prognosis in colorectal, breast, skin cancer, prostate cancers (Figures 2/3). Patients with high GPNMB expression had favorable prognosis in lung cancer
(Figures 2/3). In addition, we used Kaplan-Meier plotter database to further explore whether GPNMB impacts the prognosis in various cancer types. The results showed that higher level of GPNMB expression was associated with poor prognosis in stomach adenocarcinoma (OS HR= 1.59, 95% CI =1.11-2.27, P = 0.011; RF5 HR = 2.61, 95% CI = 1.01-6.67, P = 0.039), LiHC cancer (OS HR= 1.83, 95% CI = 1.27-2.66, P = 0.0011), breast cancer (OS HR= 1.8, 95% CI = 1.27-2.56, P = 0.00082), and ovarian cancer (OS HR = 1.15, 95% CI = 1.01-1.31, P = 0.034, PF5 HR = 1.35, 95% CI = 1.19-1.53, P = 4e-6) (Figures 2I-P). The results showed that higher level of GPNMB expression was associated with favorable prognosis in lung adenocarcinoma(OS HR=0.7, 95%CI=0.51-0.96, P=0.028, Figures 2N )

**GPNMB expression influences the prognosis of gastric cancer and lung adenocarcinoma patients with clinical characteristics**

We used Kaplan-Meier plotter databases to explore whether GPNMB expression was related to clinical characteristics in gastric cancer patients. Overexpression of GPNMB was related to favorable OS in male patients. Overexpression of GPNMB was related to favorable PPS in male and female patients (P < 0.05). Specifically, overexpression of GPNMB was associated with favorable OS in stage 1 but was related to poor PPS of stage 2 (OS HR = 0.27, P = 0.0054; PPS HR =0.52, P = 0.048) in gastric cancer patients. Overexpression of GPNMB was associated with favorable OS in T3 stage and favorable PPS in T3-4 stage of gastric cancer patients (OS HR = 0.69, P = 0.035; PPS HR = 0.6, P = 0.014; PPS HR = 0.24, P = 0.016). Interestingly, high expression of GPNMB was associated with poor OS in M0 stage (OS HR =1.42, P = 0.015). High expression of GPNMB was associated with poor OS in N1, N1+2+3 stage and poor PPS in N1, N2, N1+2+3 stage (OS HR =1.42, P = 0.015; OS HR =1.5, P = 0.0038; PPS HR =1.81, P = 0.013; PPS HR =0.5, P = 0.0086; PPS HR =1.58, P = 0.003).

Overexpression of GPNMB was associated with poor OS in intestinal and diffuse Lauren classification but favorable OS in mixed Lauren classification (OS HR =1.58, P = 0.0042; OS HR =1.5, P = 0.019; OS HR =0.21, P = 0.0022). Overexpression of GPNMB was associated with poor PPS in diffuse Lauren classification(PPS HR =1.9, P = 0.0019). High expression of GPNMB was correlated with poor OS in well and moderate differentiated type but favorable OS in poorly differentiated type (OS HR =0.59, P = 0.011;OS HR =2.41, P = 0.0083; OS HR =6.43, P = 0.0044). Besides, high expression of GPNMB was correlated with favorable PPS in poorly differentiated type (PPS HR =0.49, P = 0.039) (Table II). These results indicate that GPNMB expression level is related to prognosis in gen-der, stage-2, T3-4 stage, N1-3 stage, M0 stage, Lauren classification and differentiation of gastric cancer patients.

In addition, we enrolled 410 LUAD patients from TCGA to explore the prognostic value of GPNMB and other clinical factors. The multivariable Cox regression analysis indicates that the OS of LUAD patients is significantly associated with GPNMB expression, T stage, N stage and stage (all P<0.05, figure 4).

Specifically, N stage signifies regional lymph node metastasis, and the present study reveal that GPNMB expression level can impact the prognosis in STAD, and LUAD patients with lymph node metastasis.

**GPNMB expression is associated with immune infiltration level in cancers**

We used TIMER to explore the association between GPNMB expression and immune infiltration levels in 39 cancer types. Our study reveals that GPNMB expression is significantly related to tumor purity in 27 cancer types and significantly related to B cell infiltration levels in 25 cancer types. Besides, GPNMB expression is significantly related to CD8+ T cells infiltrating levels in 21 cancer types, CD4+ T cells infiltrating levels in 23 cancer types, macrophages in 29 cancer types, neutrophils in 28 cancer types, and dendritic cells in 32 cancercetypes.

Then, we further investigated the relationship between GPNMB expression and immune infiltration in distinct cancers. Interestingly, our study reveals that GPNMB expression is significantly related to high immune infiltration level in Breast, COAD, LUAD, LiHC, STAD. GPNMB expression level had significant positive relationships with B cell (r =0.250, P =1.92E-15), CD8+ T cells (r =0.471, P = 4.43E-55), CD4+ T cells (r =0.379, P = 3.28E-34), macrophages (r = 0.581, P = 7.05E-90), neutrophils (r = 0.547, P =2.655E-75) and DCs (r =0.569, P = 1.34E-82) infiltrating levels in BRCA (Figure 5A). GPNMB expression level had significant positive relationships with B cell (r <0.200 , P = 4.56E-5), CD8+ T cells (r <0.382, P = 1.51E-15), CD4+ T cells (r = 0.443, P = 1.01E-20), macrophages (r = 0.746, P = 4.70E-73), neutrophils (r = 0.663, P = 3.90E-52) and DCs (r =0.727, P = 2.88E-67) infiltrating levels in COAD (Figure 5B). GPNMB expression level had significant positive relationships with B cells (r =0.492, P = 2.35E-22), CD8+ T cells (r =0.535, P = 1.10E-26), CD4+ T cells (r = 0.397, P = 2.03E-14), macrophages (r = 0.629, P = 6.50E-39), neutrophils (r = 0.542, P = 9.76E-28) and DCs (r =0.678, P = 3.57E-47) infiltrating levels in LiHC (Figure 5C).

GPNMB expression level had significant positive relationships with B cells (r =0.287, P = 1.30E-10), CD8+ T cells (r =0.339, P = 1.41E-14), CD4+ T cells (r = 0.309, P = 3.81E-12), macrophages (r = 0.593, P = 2.41E-47), neutrophils (r = 0.585, P = 1.26E-45) and DCs (r =0.697, P = 3.13E-72) infiltrating levels in LUAD (Figure 5D). In addition, GPNMB expression had no significant correlations with tumor purity and CD4+ T cells, macrophages infiltrating levels in LUSC(Figure 5E).

GPNMB expression level had significantly negative relationship with B cell (r =0.105, P = 0.0225) , CD8+ T cells (r =0.122, P = 7.77e-3), neutrophils (r = -0.113, P =1.36e-2) and DCs (r =-0.11, P = 0.0166) infiltrating levels in LUSC but the relationships were weak(Figure 5E). GPNMB expression level had significant positive relationship with CD8+ T cells (r =0.487 , P = 2.14E-23), CD4+ T cells (r =0.272, P = 1.3E-7), macrophages (r = 0.657, P = 4E-47), neutrophils (r = 0.621, P =5.62E-41) and DCs (r =0.761, P = 2.83E-71) infiltrating levels and had significant negative relationship with B Cell infiltrating levels (r =-0.261 , P = 3.52E-7) in STAD (Figure 5F). The results above displayed that GPNMB is tightly related to immune infiltration in Breast, COAD, LUAD, LiHC, STAD.

The relationship betweenGPNMB expression and immune markers

T cells are comprised of T cells CD8+ lymphocytes, helper T cells, memory T cells, and T regulatory cells (FOXP3+). And functional T cells are comprised of T helper cells, Treg, and T cell exhaustion. Our study used TIMER and GEPIA databases to investigate the relationship between GPNMB and immune cells

immune markers included CD8+ T cells, T cells (general), B cells, monocytes, TAMs, M1 and M2 macrophages, neutrophils, NK cells, DCs:functional T cells and exhausted T cells in STAD and LUAD with the control of LUSC(Table III and Figure 6). Gene markers of monocyte such as CD86 and CD115 have strong relationships with GPNMB expression, and gene markers of TAM such as CCL2, CD68, IL10 have a moderate or weak correlation with GPNMB, and M1 macrophages gene markers such as IRF5 has a weak association with GPNMB expression, and gene markers of M2 macrophages such as CD163, VSG4, MS4A4A have a moderate and strong association with GPNMB expression in STAD, and LUAD (Tables III, IV). Our study indicated that GPNMB expression level was significantly related to most of the immune cell’s immune markers in STAD, and LUAD, especially monocytes, TAMs, M1, and M2 macrophages markers. Nevertheless, the GPNMB expression level was significantly associated with only 20 immune markers in LUSC (Table III).Specially, we revealed CD86,
CD115 of Monocyte, CCL-2, CD68, IL10 of TAMs, IRF5 of M1 Macrophage, CD163, VSIG4 and MS4A4A of M2 phenotype are significantly correlate with GPNMB expression in STAD and LUAD (P < 0.05; Figure 6A–L). We further used the GEPIA database to verify the relationship between GPNMB expression and the immune markers of monocytes, TAMs, M1, and M2 macrophages markers in STAD, LUAD and LUSC, and the results were similar to those of TIMER (Table IV). Our results indicate that GPNMB is associated with macrophage polarization in STAD and LUAD.

Besides, GPNMB expression has a positive relationship with the DC infiltration level in STAD, and LUAD. DC immune markers such as HLA-DBP1, HLA-DQB1, HLA-DRA, HLA-DP1, BDCa1, BDCa4, and CD11c are significantly related to GPNMB expression. In addition, our study signified that GPNMB had a positive relationship with T helper cells (Th1, Th2, Tfh, and Th17), Treg and T cell exhaustion immune markers such as Tbet, STAT4, STAT1, IFN-γ, TNF-α, GATA3, STAT5A, IL13, BCL6, IL21, STAT3, FOXP3, CCR8, STAT5B, TGFB, PD-1, CTLA4, LAG3 and TIM-3 in STAD, and LUAD (P<0.0001, Table III). In summary, our study signifies that GPNMB plays an essential role in the immune microenvironment of STAD, and LUAD.

Enrichment analysis of GPNMB related transcription factorsfunctional networks

TTRUST database revealed that GPNMB related transcription factors were MITF and TPS3 (Table V). Also, we used GeneMANIA to construct the transcription-target network (figure 7). The functional analysis of the transcription-target network is mainly responsible for signal transduction in response to DNA damage, DNA damage response, signal transduction by p53 class mediator, mitotic G1 DNA damage checkpoint, G1 DNA damage checkpoint.

Discussion

GPNMB is a type I transmembrane glycoprotein and correlated with cancer growth and metastasis. GPNMB elevated in infiltrating immune cells such as macrophages, dendritic cells, CD14+ monocytes [16-19]. Besides, GPNMB can elevate T cells in the tumor microenvironment to promote cancer progression and metastasis [24-26]. In the present study, we reveal the association between GPNMB expression and various cancers prognosis. A higher level of GPNMB expression was associated with poor prognosis in gastric cancer. A higher level of GPNMB expression was associated with favorable prognosis in lung cancer. Also, our study signifies that GPNMB expression is associated with tumor infiltration level and immune cell markers of gastric cancer and lung adenocarcinoma.

In the present study, we used Oncomine and TIMER to explore the GPNMB expression in various cancer types and normal tissues. According to the oncomine database, GPNMB expression elevated in brain and CNS cancer, breast cancer, cervical cancer, esophageal cancer, gastric cancer, head and neck cancer, kidney cancer, leukemia, liver cancer, lung cancer, lymphoma, melanoma, pancreatic cancer, prostate cancer, and stroma. In contrast, GPNMB expression reduced in bladder, breast, colorectal, esophageal cancer, leukemia, lung, ovarian, and sarcoma cancers in some data sets (Figure 1A). Based on TIMER which includes TCGA data, GPNMB expression significantly reduced in BLCA, BRCA, COAD, READ, LUAD, and UCEC compared to adjacent healthy tissues; while GPNMB expression elevated in CHOL, HNSC, KICH, KIRC, KIRP, LUSC, LIHC, and STAD compared to adjacent normal tissues (Figure 1B). Then, we used PrognoScan and Kaplan-Meier Plotter to analyze the correlation between GPNMB expression and cancer prognosis. PrognoScan showed that high GPNMB expression was significantly associated with poor prognosis in blood, brain, colorectal, breast, skin cancer, prostate cancers (Figures 2/3). Besides, the Kaplan Meier plotter database indicated that a higher level of GPNMB expression correlated with poor prognosis in stomach adenocarcinoma, LIHC cancer, breast cancer, and ovarian cancer, and correlated with favorable prognosis in lung adenocarcinoma. In summary, our study reveals that GPNMB could be a prognostic biomarker in blood, brain, colorectal, breast, LUAD, melanoma, prostate, ovarian, LIHC, and gastric cancer.

Besides, low expression of GPNMB is associated with prognosis in gender, stage1-2, T3-4 stage, N1-3 stage, M0 stage, Lauren classification, and differentiation of gastric cancer (Table II). The multivariable Cox regression analysis indicates that the OS of LUAD patients from TCGA is significantly associated with GPNMB expression, T stage, N stage and stage (all P<0.05, figure 4). We can infer that GPNMB expression level can impact the prognosis in STAD and LUAD patients with lymph node metastasis.

Previous studies reported that tumor-infiltrating lymphocytes' density and location were significantly related to sentinel lymph node status and impacted survival status in colorectal cancer and melanoma [36-37]. In the present study, we investigated the correlations between GPNMB expression and tumor-infiltrating immune cells. The results indicate that GPNMB expression was correlated moderately or strongly with macrophages and DC and positively related to CD8+ T, CD4+ T cells, and neutrophils in BRCA, LIHC, LUAD, COAD, and STAD (Figures 3A-D, F). Furthermore, we investigated the association between GPNMB expression and tumor-infiltrating immune cells markers in STAD and LUAD with control of LUSC. Gene markers of monocyte such as CD86 and CD115 had strong relationships with GPNMB expression, and gene markers of TAM such as CCL2, CD68, IL10 had a moderate or weak correlation with GPNMB, and M1 macrophages gene markers such as IRF5 had a weak association with GPNMB expression, and gene markers of M2 macrophages such as CD163, VSIG4, MS4A4A had a moderate and strong association with GPNMB expression (Tables III, IV). All the results suggest that GPNMB expression plays a critical part in regulating tumor-infiltrating monocyte and macrophages in STAD, and LUAD. Moreover, Our study also signifies that GPNMB has a positive relationship with T helper cells (Th1, Th2, Tfh, and Th17), Treg and T cell exhaustion immune markers in STAD, and LUAD (P<0.0001, Table III). In summary, our study signifies that GPNMB plays a vital role in the immune microenvironment of STAD and LUAD. In addition, we used TTRUST to explore GPNMB related transcription factors, which are MITF and TPS3. GeneMANIA was used to construct a transcription-target network, which is mainly responsible for signal transduction in response to DNA damage, DNA damage response, signal transduction by p53 class mediator, mitotic G1 DNA damage checkpoint, G1 DNA damage checkpoint.

In melanoma, breast cancer, glioma, prostate cancer, lung cancer, and bladder cancer, It was reported that high expression of GPNMB could promote cancer cell progression and invasion, and downregulate cancer cell apoptosis [24-25,38-43]. In colon cancer, tumor-infiltrating immune cells such as T cells could reduce tumor progression and the density, distribution of immune cells could have advantages in predicting survival status than TNM or Duke’s classification [44-45]. In gastric cancer, DC cells recognize and present the tumor neoantigens to the T cells MHC molecule-s; then, effector T cells are activated, subsequently inhibiting gastric cancer cells [46-47]. GPNMB is detected highest in dendritic cells of antigen-presenting cells (APC), and it can bind to syndecan-4 of activated
T cells to reduce T cells activation[20]. The previous study reported that Th2 cells, T helper cell infiltration could produce antitumor immunity and impacted the survival status of cancer patients [48]. Therefore, the correlation between GPNMB and tumor immune infiltration could impact the prognosis in STAD and LUAD.

Conclusions

In summary, our study reveals that GPNMB expression could impact the prognosis of various cancer types such as lung adenocarcinoma, gastric cancer patients, and is positively related to immune cell infiltrating level in various cancer types, especially in STAD, and LUAD. Moreover, GPNMB expression plays a vital part in regulating monocyte, macrophage polarization, and functional T cells in STAD, and LUAD. Therefore, GPNMB could be a potential biomarker for the tumor immune infiltration and prognosis prediction in STAD, and LUAD.

Declarations

Acknowledgment

We sincerely thank the researchers for providing their databases information online, and it is our pleasure to acknowledge their contributions.

Funding

Not applicable

Conflicts of Interest:

The authors have no conflicts of interest to declare.

Ethical Statement:

The current study received approval from the Xiangya Hospital of Central South University according to the Declaration of Helsinki. The retrieval of every data was collected from the open web, confirming that all of the written informed consents were attained. The authors are accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Author Contributions

Yang Wang conceived, collected, analyzed the data. Qiong Chen conceptualized, developed an outline for the manuscript, revised the manuscript and approved the final version to be published. Yang Wang, Qiong Chen wrote the manuscript and approved the final manuscript.

Consent for publication

This manuscript is approved by all authors for publication.

Availability of data and materials

The datasets generated during our study are not publicly available but available on reasonable request.

References

1. David G. DeNardo, Donal J Brennan, Elton Rexthepaj, Brian Ruffell, Stephen L Shiao, Stephen F Madden, William M Gallagher, Nikhil Wadhwani, Scott D Keil, et al: Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov 1:54–67, 2011.
2. De Visser KE, Eichten A. Coussens LM: Paradoxical roles of the immune system during cancer development. Nat. Rev. Cancer 6:24–37, 2006.
3. Coventry BJ, Ashdown M, Henneberg M, Davies PC. W: The immune system and responses to cancer: Coordinated evolution. F1000Research 4:552, 2016.
4. Friedrich Prall T, Dührkop V, Weirich C, Ostwald P, Lenz, Horst Nizze, Malte Barten: Prognostic role of CD8 + tumor-infiltrating lymphocytes in stage III colorectal cancer with and without microsatellite instability. Hum Pathol 35:808–16, 2004.
5. Caroline Robert L, Thomas I, Bondarenko SO'Day J, Weber C, Garbe C L, Lebbe, Jean-François Baurain, Alessandro Testori, et al: Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med 364: 2517–26, 2011.
6. Niels Halama I, Zoernig A, Spille S, Michel M, Kloor S, Grauling-Halama K, Westphal P, Schirmacher, et al: Quantification of prognostic immune cell markers in colorectal cancer using whole slide imaging tumor maps. Anal Quant Cytol Histol 32: 333–40, 2010.
7. Jakob Nikolas Kather, Niels Halama. Harnessing the innate immune system and local immunological microenvironment to treat colorectal cancer. Br J Cancer. 2019;120(9):871–82.
8. Bonotto M, Silvio Ken Garattini, Basile D, Ongaro E, Fanotto V, Cattaneo M, Cortiula F, Iacono D., Giovanni Gerardo Cardellino, et al: Immunotherapy for gastric cancers: emerging role and future perspectives. Expert Review of Clinical Pharmacology 10(6): 609–619, 2017.
9. Weterman MA. N Ajubi, I M van Dinter, Degen WG. G N van Muijen, Ruitter DJ. H P Bloemers: Nmb, a novel gene, is expressed in low-metastatic human melanoma cell lines and xenografts. Int J Cancer 60(1): 73–81, 1995.
10. Persis S. Bandari, Jing Qian, Ghassan Yehia, Deval D Joshi, Paul B Maloof, Julius Potian, Hyun S Oh, Pedro Gascon, Jonathan S Harrison, et al. Hematopoietic growth factor inducible neurokinin-1 type: a transmembrane protein that is similar to neurokinin 1 interacts with substance P. Regul Pept...
111(1–3):169–78,2003.

16. Li Y-N. Lin Zhang, Li X-L. Da-Jiang Cui, Zheng H-D. Shuan-Ying Yang, independent predictor of sentinel lymph node status and survival in patients with cutaneous melanoma. J Mol Neurosci 55(2): 533 – 40,2015.

17. Chung JS. Yudate T, Tomihari M. Akiyoshi H, Cruz PD, Jr; Arizumi K. Binding of DC-HIL to dermatophytic fungi induces tyrosine phosphorylation and potentiates antigen presenting cell function. J Immunol 183(8): 5190–5198,2009.

18. Ripoll VM. Irvine KM, Ravasi T. Sweet MJ, Hume DA. Gpnmb is induced in macrophages by IFN-gamma and lipopolysaccharide and acts as a feedback regulator of proinflammatory responses. J Immunol 179(10): 6557–6566,2007.

19. Ahn JH. Yoon Lee, Jeon ChoonJu. Sang-Jin Lee, Lee B-H. Kang Duk Choi, Yong-Soo Bae: Identification of the genes differentially expressed in human dendritic cell subsets by cDNA subtraction and microarray analysis. Blood 100(5): 1742–1754,2002.

20. Chung JS. Dougherty I, Cruz PD, Jr; Arizumi K. Syndecan-4 mediates the coinhibitory function of DC-HIL on T cell activation. J Immunol 179(9): 5778–5784,2007.

21. Chung JS. Bonkobara M, Tomihari M. Cruz PD Jr; Arizumi K: The DC-HIL/syndecan-4 pathway inhibits human allogeneic T-cell responses. Eur J Immunol 39(4): 965–74,2009.

22. Kuan C-T. Kenji Wakiya, Dowell JM. James E Hemond 2nd, David A Reardon, Graner MW. Gregory J Riggins, Wikstrand C.J. Darell D Bigner: Glycoprotein nonmetastatic melanoma protein B, a potential molecular therapeutic target in patients with glioblastoma multiforme. Clin Cancer Res 12: 1970–82,2006.

23. Moses O. Oyewumi, Dharni Manickavasagam, Kimberly Novak, Daniel Wehrung, Nikola Paulic, Moussa FM., Gregory R Sondag, Fayez F Safadi : Osteoactivin (GPNMB) ectodomain protein promotes growth and invasive behavior of human lung cancer cells. Oncotarget 7(12): 13932–13944,2016.

24. April AN. Rose, Matthew G Annis, Zhifeng Dong, Francois Pepin, Michael Hallett, Morag Park, Peter M Siegel: ADAM10 releases a soluble form of the GPNMB/Osteoactivin extracellular domain with angiogenic properties. PLoS One 5(8): e12093,2010.

25. Rose AA. Pepin F, Russo C. Abou Khalil JE, Hallett M. Siegel PM: Osteoactivin promotes breast cancer metastasis to bone. Mol Cancer Res 5(10): 1001–1014,2007.

26. Tomihari M. Chung JS, Akiyoshi H. Cruz PD, Jr, Arizumi K: DC-HIL/glycoprotein Nmb promotes growth of melanoma in mice by inhibiting the activation of tumorousreactive T cells. Cancer Res 70(14): 5778–5787,2010.

27. Hassan Ashktorab H, Rahi M, Nouraie B, Shokrani E, Lee T, Haydari, Adeyinka O Laiyemo, Peter Siegel, Hassan Brim : GPNMB methylation: a new marker of potentially carcinogenic colon lesions. BMC Cancer 18(1),2018.

28. Kobayashi M. Jin-Sung Chung, Muhammad Beg, Yull Arriaga, Udit Verma, Kevin Courtney, John Mansour, Barbara Haley, Khan S, et al: Blocking Monocytic Myeloid-Derived Suppressor Cell Function via Anti-DC-HIL/GPNMB Antibody Restores the In Vitro Integrity of T Cells From Cancer Patients. Clin Cancer Res 25(2): 828–838,2019.

29. Daniel R. Rhodes, Jianjun Wang, Nicole Traugh, Qianming Chen, Jun S Liu, Li B, Shirley Liu X. TIMER: A web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res 77:e108–10,2017.

30. Li T. Jingyu Fan, Binbin Wang, Nicole Traugh, Qianming Chen, Jun S Liu, Li B, Shirley Liu X. TIMER: A web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res 77:e108–10,2017.

31. Li Y-N. Lin Zhang, Li X-L. Da-Jiang Cui, Zheng H-D. Shuan-Ying Yang, Wei-Lin Yang: Glycoprotein nonmetastatic B as a prognostic indicator in small cell lung cancer. APMIS 122(2): 140–146,2014.
39. April AN, Rose 1, Andrée-Anne Grosset, Zhifeng Dong, Caterina Russo, Patricia A Macdonald, Nicholas R Bertos, Yves St-Pierre, Ronit Simantov, Michael Hallett, et al: Glycoprotein nonmetastatic B is an independent prognostic indicator of recurrence and a novel therapeutic target in breast cancer. Clin. Cancer Res 16 (7): 2147–2156, 2010.

40. Denise A. Yardley, Robert Weaver, Michelle E Melisko, Mansoor N Saleh, Francis P Arena, Andres Forero, Tessa Cigler, Alison Stopeck, Dennis Citrin, et al: EMERGE: a randomized phase II study of the antibody-drug conjugate glembatumumab vedotin in advanced glycoprotein NMB-expressing breast cancer. J. Clin. Oncol 33 (14): 1609–1619, 2015.

41. Jeremy N. Rich, Qing Shi, Mark Hjelmeland, Thomas J Cummings, Chien-Tsun Kuan, Darell D Bigner, Christopher M Counter, Xiao-Fan Wang: Bone-related genes expressed in advanced malignancies induce invasion and metastasis in a genetically defined human cancer model. J. Biol. Chem 278 (18): 15951–15957, 2003.

42. Masaaki Onaga A, Ido S, Hasuiki H, Uto A, Moriuchi K, Nagata T Hori, Katsuhito Hayash, Hirohito Tsubouchi: Osteoactivin expressed during cirrhosis development in rats fed a choline-deficient, L-amino acid-defined diet, accelerates motility of hepatoma cells. J. Hepatol 39 (5): 779–785, 2003.

43. Maric G. M G Annis, Dong Z. A A N Rose, Ng S. D Perkins, MacDonald PA. V Ouellet, C Russo, P M Siegel: GPNMB cooperates with neuropilin-1 to promote mammary tumor growth and engages integrin alpha5beta1 for efficient breast cancer metastasis. Oncogene 34 (43): 5494–5504, 2015.

44. Franck Pagès A, Berger M, Camus F, Sanchez-Cabo A, Costes R, Molidor B, Mlecnik A, Kirilovsky M Nilsson, et al: Effector memory T cells, early metastasis, and survival in colorectal cancer. N Engl J Med 353 (25): 2654–2666, 2005.

45. Jérôme Galon A, Costes F, Sanchez-Cabo A, Kirilovsky B, Mlecnik C, Lagorce-Pagès M, Tosolini M, Camus A Berger, et al: Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313 (5795): 1960–1964, 2006.

46. Chen DS. Mellman I: Oncology meets immunology: the cancer-immunity cycle. Immunity 39: 1–10, 2013.

47. Kang BW, Kim JG, Lee IH, Bae HI, Seo AN. Clinical significance of tumor-infiltrating lymphocytes for gastric cancer in the era of immunology. World J Gastrointest Oncol 9: 293–9, 2017.

48. Mingming Wang Z, Li, Yu P: Identification of immune cells and mRNA associated with prognosis of gastric cancer. BMC Cancer 20: 206, 2020.

Tables

Table I. GPNMB expression in cancers versus normal tissues in ONCOMINE database
| Cancer type                             | Fold change | P-value  | sample size | reference |
|----------------------------------------|-------------|----------|-------------|-----------|
| Bladder cancer                         | 2.146       | 6.24E-07 | 126         | 20421545  |
| Brain and CNS cancer                   | 3.141       | 1.74E-08 | 45          | 11595965  |
| Astrocytoma                            | 4.695       | 2.21E-07 | 22          | 16697969  |
| Glialblastoma                          |            | 1.14E-06 | 27          | 16204036  |
| Glioblastoma                           | 3.313       | 0.000773 |             | 18307140  |
| Anaplastic Oligoastrocytoma            |            | 4.036     | 53          | 18438415  |
| Breast cancer                          | 1.859       | 1.40E-17 | 148         | 22522055  |
| Invasive breast carcinoma              | -1.859      | 1.68E-06 | 46          | 16474279  |
| Ductal Breast Carcinoma                | -1.859      | 1.02E-20 | 148         | 22522055  |
| Invasive ductal breast carcinoma       | -1.859      | 1.42E-31 | 1556        | 22522055  |
| Hepatocellular Carcinoma               | 7.07E-05    | 7.98E-07 | 40          | 18191186  |
| Colorectal cancer                      | 1.051       | 5.94E-10 | 5           | 20957034  |
| Colorectal adenoma                     | 3.63         | 3.93E-12 |             | 18171984  |
| Rectal adenoma                         | -1.051      | 5.23E-05 | 7           | 18171984  |
| Colorectal adenosarcoma                | -2.094      | 1.47E-09 | 45          | 20957034  |
| Esophageal cancer                      | 2.51        | 2.70E-14 | 53          | PMC3086948 |
| Squamous Cell Carcinoma                | -1.87       | 0.000674 | 8           | 15833844  |
| Barrett’s Esophagus                    | -1.909      | 6.02E-05 | 19          | 16449976  |
| Barrett’s Esophagus                    | -7.961      | 4.72E-11 | 15          | 21152079  |
| Gastric cancer                         | 4.456       | 4.03E-07 | 8           | 12925757  |
| Gastric Mixed Adenocarcinoma           | 2.596       | 9.85E-18 | 66          | 12925757  |
| Gastric intestinal type adenocarcinoma | 3.476       | 3.55E-07 | 13          | 12925757  |
| Diffuse Gastric Adenocarcinoma         | 4.06        | 1.31E-05 | 12          | 21132402  |
| Gastric Cancer                         | 3.823       | 0.001196 | 6           | 19081245  |
| Diffuse Gastric Adenocarcinoma         | 2.099       | 3.38E-05 | 4           | 17510386  |
| Head and neck cancer                   | 4.394       | 0.000847 | 6           | 17510386  |
| Oral cavity carcinoma                  | 3.039       | 2.64E-06 | 15          | 17510386  |
| Tongue Carcinoma                       | 2.473       | 3.67E-05 | 26          | 18254958  |
| Tongue Squamous Cell Carcinoma         | 2.692       | 1.25E-06 | 31          | 19138406  |
| Tongue Squamous Cell Carcinoma         | 2.994       | 8.26E-07 | 31          | 15833835  |
| Kidney cancer                          | 6.77        | 9.000774 | 4           | 12598325  |
| Papillary Renal Cell Carcinoma         | 11.809      | 9.000318 | 4           | 19445733  |
| Chromophobe Renal Cell Carcinoma       | 6.324       | 9.000572 | 19          | 19445733  |
| Papillary Renal Cell Carcinoma         | 3.574       | 1.25E-07 | 32          | 19470766  |
| Hereditary Clear Cell Renal Cell Carcinoma | 5.794        | 1.25E-07 |             | 16247393  |
| Leukemia                               | 15.252      | 6.23E-08 | 16          | 15778709  |
| Acute Lymphoblastic Leukemia           | -1.796      | 7.85E-18 | 70          | 20406941  |
| T-cell Leukemia                        | 10.073      | 1.13E-18 | 38          | 19098907  |
| Liver cancer                           | 3.282       | 5.24E-10 | 27          | 20421087  |
| Squamous Cell Lung Carcinoma           | -4.941      | 1.17E-12 | 20          | 11707567  |
| Lung Carcinoid Tumor                   | -2.036      | 3.39E-10 | 58          | 22613842  |
| Lung Adenocarcinoma                    | 2.14        | 7.07E-05 | 18          | 16243793  |
| Benign Melanocytic Skin Nevus          | 2.574       | 6.11E-05 | 45          | 16243793  |
| Cutaneous Melanoma                     | 2.473       | 3.039     | 15          | 17510386  |
| Melanoma                               | 4.394       | 0.000847 | 6           | 17510386  |
| Ovarian cancer                         | 4.814       | 5.04E-07 | 43          | 19486012  |
| Ovarian Serous Adenocarcinoma          | 4.177       | 8.01E-05 | 43          | 12750293  |
| Pancreatic cancer                      | 6.203       | 1.71E-14 | 39          | 19260470  |
| Pancreatic Adenocarcinoma              | 3.452       | 9.000758 | 12          | 12651607  |
| Pancreatic Adenocarcinoma              | 2.723       | 2.53E-06 | 52          | 12086878  |
| Prostate cancer                        | 5.701       | 1.94E-05 | 9           | 15994066  |
| Prostate Carcinoma                     | 8.00E+03    | 0.000683 | 6           | 15994066  |
| Breast cancer                          | 5.356       | 6.42E-07 | 23          | 14595015  |
| Myxoid/Round Cell Liposarcoma          | 5.356       | 5.69E-09 | 20          | 20401355  |
| Lymphobroma                            | 4.445       | 1.49E-42 | 44          | PMC2973325 |
| Diffuse Large B-Cell Lymphoma          | 136.629     | 1.28E-22 | 17          | PMC2973325 |
| Activated B-Cell-Like Diffuse Large B-Cell Lymphoma | 169.384 | 3.45E-28 | 28 | 15778709  |
| Centroblastic Lymphoma                 |             | 8.00E+03 | 8           | 19022772  |
| Burkitt’s Lymphoma                     | 45.152      | 1.07E-05 | 17          | 15778709  |
| Hodgkin’s Lymphoma                     | 15.291      | 6.54E-07 | 12          | 18794340  |
| Unspecified Peripheral T-Cell Lymphoma | 63.903      | 1.20E-17 | 28          | 17384354  |
| Malignant Fibrous Histiocytoma         | 5.701       | 1.94E-05 | 9           | 15994066  |
| Metastatic Seminoma                    | 5.356       | 6.42E-07 | 23          | 14595015  |
| Seminoma, NOS                          | 6.928       | 9.35E-07 | 12          | 16424014  |
| Embryonal Carcinoma, NOS               | 5.559       | 1.86E-06 | 15          | 16424014  |
| Teratoma, NOS                          | 6.846       | 2.81E-06 | 14          | 16424014  |
| Uterine Corpus Leiomyoma               | -1.513      | 8.48E-05 | 56          | 19022772  |
TABLE II. Correlation of GPNMB mRNA expression and clinical prognosis in gastric cancer with different clinical factors by Kaplan-Meier plotter.

| characteristics | Overall survival | PPS |
|-----------------|-----------------|-----|
|                 | (n = 881)       |     |
|                 | N               | Hazard ratio | P | N | Hazard ratio | P |
| SEX             |                 |               |   |   |               |   |
| Female          | 244             | 0.72(0.5-1.03) | 0.074 | 149 | 0.57(0.37-0.88) | 0.0099 |
| Male            | 544             | 0.73(0.57-0.92) | **0.0078** | 348 | 0.66(0.51-0.85) | **0.0015** |
| STAGE           |                 |               |   |   |               |   |
| 1               | 67              | 0.27(0.1-0.72) | **0.0054** | 31 | 0.32(0.06-1.67) | 0.15 |
| 2               | 140             | 1.65(0.77-3.56) | 0.2 | 105 | 2.52(0.98-6.51) | 0.048 |
| 3               | 305             | 0.79(0.59-1.05) | 0.1 | 142 | 1.28(0.81-2.02) | 0.29 |
| 4               | 148             | 1.24(0.81-1.9) | 0.33 | 104 | 1.55(0.94-2.58) | 0.086 |
| T stage         |                 |               |   |   |               |   |
| 1†              |                 |               |   |   |               |   |
| 2               | 241             | 1.46(0.95-2.24) | 0.084 | 196 | 1.56(0.99-2.45) | 0.052 |
| 3               | 204             | 0.69(0.49-1.98) | **0.035** | 150 | 0.61(0.39-0.91) | **0.014** |
| 4               | 38              | 1.63(0.69-3.82) | 0.26 | 29  | 0.24(0.07-0.84) | **0.016** |
| N stage         |                 |               |   |   |               |   |
| 0               | 74              | 0.44(0.19-1.03) | 0.052 | 41  | 0.56(0.16-1.59) | 0.23 |
| 1               | 225             | 1.59(1.05-2.41) | **0.027** | 169 | 1.81(1.13-2.89) | **0.013** |
| 2               | 121             | 1.99(0.99-2.56) | 0.052 | 105 | 0.56(0.29-0.85) | **0.0086** |
| 3               | 76              | 1.47(0.8-2.69) | **0.22** | 63  | 1.63(0.88-3.12) | 0.12 |
| 1+2+3          | 422             | 1.5(1.14-1.97) | **0.0038** | 337 | 1.58(1.16-2.51) | **0.003** |
| M stage         |                 |               |   |   |               |   |
| 0               | 444             | 1.42(1.07-1.87) | **0.015** | 342 | 1.33(0.98-1.8) | 0.07 |
| 1               | 56              | 0.76(0.41-1.42) | 0.39 | 36  | 1.57(0.72-3.43) | 0.26 |
| Lauren classification |             |               |   |   |               |   |
| intestinal      | 336             | 1.58(1.15-2.16) | **0.0042** | 192 | 1.42(0.94-2.15) | 0.093 |
| diffuse         | 241             | 1.51(0.72-2.42) | **0.019** | 176 | 1.91(1.26-2.68) | **0.0019** |
| mixed           | 32              | 0.21(0.07-0.62) | **0.0022** |     |               |   |
| differentiation  |                 |               |   |   |               |   |
| poorly differentiated | 165       | 0.59(0.39-0.89) | **0.011** | 49  | 0.49(0.25-0.98) | **0.039** |
| moderately differentiated | 67     | 2.41(1.23-4.73) | **0.0083** | 24  | 1.89(0.73-4.87) | 0.18 |
| well differentiated | 32     | 6.43(1.49-24.83) | **0.0044** |     |               |   |

†: variables missing. PPS: post-progression survival

TABLE III. Relationship between GPNMB expression and immune cell markers in TIMER.

STAD, stomach adenocarcinoma; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; TAM, tumor-associated macrophage; Th, T helper cell; Tfh, Follicular helper T cell; Treg, regulatory T cell; Cor, R value of Spearman’s correlation; None, correlation without adjustment. Purity, correlation adjusted by purity. *P < 0.05; **P < 0.001; ***P < 0.0001.
|       | COAD |       | STAD |       | LUAD |       | LUSC |       |
|-------|------|-------|------|-------|------|-------|------|-------|
|       | None | Purity | None | Purity | None | Purity | None | Purity |
| Cor   | 0.574 | ***  | 0.489 | ***  | 0.484 | ***  | 0.469 | ***  |
|       | 0.328 | ***  | 0.271 | ***  | 0.316 | ***  | 0.306 | ***  |
|       | 0.51  | ***  | 0.394 | ***  | 0.45  | ***  | 0.434 | ***  |
|       | 0.603 | ***  | 0.508 | ***  | 0.442 | ***  | 0.429 | ***  |
|       | 0.603 | ***  | 0.518 | ***  | 0.541 | ***  | 0.537 | ***  |
|       | 0.374 | ***  | 0.253 | ***  | 0.25  | ***  | 0.235 | ***  |
|       | 0.893 | ***  | 0.866 | ***  | 0.79  | ***  | 0.789 | ***  |
|       | 0.82  | ***  | 0.782 | ***  | 0.777 | ***  | 0.77  | ***  |
|       | 0.74  | ***  | 0.692 | ***  | 0.48  | ***  | 0.448 | ***  |
|       | 0.684 | ***  | 0.65  | ***  | 0.67  | ***  | 0.65  | ***  |
|       | 0.694 | ***  | 0.672 | ***  | 0.655 | ***  | 0.645 | ***  |
|       | -0.054 | 0.246 | -0.125 | *  | 0.074 | 0.131 | 0.064 | 0.211 |
|       | 0.378 | ***  | 0.395 | ***  | 0.425 | ***  | 0.424 | ***  |
|       | 0.323 | ***  | 0.257 | ***  | 0.104 | *  | 0.106 | *  |
|       | 0.884 | ***  | 0.858 | ***  | 0.787 | ***  | 0.78  | ***  |
|       | 0.848 | ***  | 0.822 | ***  | 0.757 | ***  | 0.746 | ***  |
|       | 0.887 | ***  | 0.866 | ***  | 0.86  | ***  | 0.855 | ***  |
|       | -0.126 | *  | -0.084 | 0.089 | 0.046 | 0.348 | 0.059 | 0.251 |
|       | 0.846 | ***  | 0.828 | ***  | 0.697 | ***  | 0.686 | ***  |
|       | 0.496 | ***  | 0.385 | ***  | 0.402 | ***  | 0.386 | ***  |
|       | 0.29  | ***  | 0.231 | ***  | 0.298 | ***  | 0.309 | ***  |
|       | 0.322 | ***  | 0.2561 | *** | 0.259 | ***  | 0.249 | ***  |
|       | 0.361 | ***  | 0.265 | ***  | 0.217 | ***  | 0.198 | **   |
|       | 0.368 | ***  | 0.288 | ***  | 0.256 | ***  | 0.255 | ***  |
|       | 0.356 | ***  | 0.292 | ***  | 0.297 | ***  | 0.281 | ***  |
|       | 0.135 | *  | 0.107 | *  | 0.016 | 0.749 | 0.015 | 0.773 |
|       | 0.292 | ***  | 0.253 | ***  | 0.185 | **  | 0.174 | **  |
|       | 0.758 | ***  | 0.701 | ***  | 0.607 | ***  | 0.591 | ***  |
|       | 0.519 | ***  | 0.43  | ***  | 0.416 | ***  | 0.39  | ***  |
|       | 0.72  | ***  | 0.654 | ***  | 0.572 | ***  | 0.56  | ***  |
|       | 0.76  | ***  | 0.7   | ***  | 0.571 | ***  | 0.556 | ***  |
|       | 0.487 | ***  | 0.39  | ***  | 0.414 | ***  | 0.394 | ***  |
|       | 0.811 | ***  | 0.772 | ***  | 0.631 | ***  | 0.624 | ***  |
|       | 0.857 | ***  | 0.855 | ***  | 0.768 | ***  | 0.76  | ***  |
| 0.571 | *** | 0.504 | *** | 0.487 | *** | 0.48 | *** | 0.372 | *** | 0.274 | *** | -0.098 | * | -0.117 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.576 | *** | 0.495 | *** | 0.507 | *** | 0.515 | *** | 0.395 | *** | 0.294 | *** | -0.058 | 0.197 | -0.075 |
| 0.591 | *** | 0.54 | *** | 0.321 | *** | 0.326 | *** | 0.389 | *** | 0.32 | *** | -0.067 | 0.133 | -0.081 |
| 0.429 | *** | 0.375 | *** | 0.325 | *** | 0.328 | *** | 0.269 | *** | 0.178 | *** | -0.169 | 0.0001 | -0.18 |
| 0.427 | *** | 0.384 | *** | 0.427 | *** | 0.149 | * | 0.345 | *** | 0.262 | *** | -0.008 | 0.853 | -0.034 |
| 0.575 | *** | 0.524 | *** | 0.419 | *** | 0.404 | *** | 0.444 | *** | 0.364 | *** | -0.019 | 0.67 | -0.033 |
| 0.068 | 0.145 | 0.073 | 0.14 | 0.224 | *** | 0.235 | *** | 0.106 | * | 0.126 | * | 0.174 | ** | 0.171 |
| 0.381 | *** | 0.365 | *** | 0.543 | *** | 0.538 | *** | 0.556 | *** | 0.497 | *** | 0.023 | 0.615 | 0.008 |
| 0.347 | *** | 0.292 | *** | 0.141 | * | 0.141 | * | 0.082 | 0.064 | 0.009 | 0.834 | -0.011 | 0.805 | -0.027 |
| 0.591 | *** | 0.516 | *** | 0.394 | *** | 0.383 | *** | 0.123 | * | 0.111 | * | 0.205 | ** | 0.211 |
| 0.349 | *** | 0.325 | *** | 0.391 | *** | 0.392 | *** | 0.235 | *** | 0.184 | *** | -0.083 | 0.064 | -0.092 |
| 0.403 | *** | 0.345 | *** | 0.451 | *** | 0.45 | *** | 0.199 | *** | 0.206 | *** | 0.156 | ** | 0.15 |
| -0.163 | ** | -0.199 | *** | -0.08 | 0.102 | -0.086 | 0.093 | 0.148 | ** | 0.085 | 0.06 | -0.146 | * | -0.146 |
| 0.669 | *** | 0.611 | *** | 0.488 | *** | 0.478 | *** | 0.466 | *** | 0.387 | *** | -0.013 | 0.77 | -0.038 |
| 0.687 | *** | 0.643 | *** | 0.603 | *** | 0.61 | *** | 0.517 | *** | 0.455 | *** | 0.018 | 0.69 | -0.011 |
| 0.302 | *** | 0.319 | *** | 0.457 | *** | 0.468 | *** | 0.31 | *** | 0.3 | *** | 0.109 | * | 0.107 |
| 0.760 | *** | 0.697 | *** | 0.501 | *** | 0.487 | *** | 0.376 | *** | 0.306 | *** | 0.218 | *** | 0.224 |
| 0.549 | *** | 0.467 | *** | 0.383 | *** | 0.367 | *** | 0.35 | *** | 0.243 | *** | -0.139 | * | -0.164 |
| 0.599 | *** | 0.528 | *** | 0.346 | *** | 0.328 | *** | 0.39 | *** | 0.28 | *** | -0.095 | * | -0.129 |
| 0.557 | *** | 0.468 | *** | 0.398 | *** | 0.387 | *** | 0.299 | *** | 0.203 | *** | -0.127 | * | -0.153 |
| 0.913 | *** | 0.894 | *** | 0.811 | *** | 0.811 | *** | 0.741 | *** | 0.71 | *** | -0.06 | 0.18 | -0.087 |
| 0.197 | *** | 0.163 | ** | 0.354 | *** | 0.329 | *** | 0.262 | *** | 0.154 | ** | -0.169 | ** | -0.199 |

**TABLE IV. Relationship between GPNMB expression and immune cell markers in GEPIA.**

STAD, stomach adenocarcinoma; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma. TAM, Tumor-associated macrophages. Tumor, correlation analysis in tumor tissue of TCGA. Normal, correlation analysis in normal tissue of TCGA.*P < 0.05; **P < 0.001; ***P < 0.0001.
| Description | gene markers | COAD Tumor | COAD Normal | STAD Tumor | STAD Normal | LUAD Tumor | LUAD Normal | LUAD Tumor | LUAD Normal | LUAD Tumor | LUAD Normal | L Tumor | L Normal |
|-------------|--------------|------------|-------------|------------|-------------|------------|-------------|------------|-------------|------------|-------------|---------|
| Monocyte    | CD86         | 0.87 ***   | 0.47 *      | 0.67 ***   | -0.35 *     | 0.57 ***   | 0.71 ***    | -0.05      | 0.27        |
|             | CD115 (CSF1R)| 0.82 ***   | 0.61 ***    | 0.62 ***   | 0.049 *     | 0.48 ***   | 0.38 *      | -0.05      | 0.27        |
| TAM         | CCL2         | 0.68 ***   | 0.004 0.98  | 0.2 ***    | 0.34 *      | 0.3 ***    | 0.08 0.55   | -0.04      | 0.36        |
|             | CD68         | 0.77 ***   | 0.33 *      | 0.65 ***   | -0.41 *     | 0.61 ***   | 0.69 ***    | 0.03       | 0.59        |
|             | IL10         | 0.49 ***   | 0.36 *      | 0.008 0.87 | -0.13 0.43  | 0.54 ***   | 0.63 ***    | -0.03      | 0.58        |
| M1 Macrophage| INOS (NOS2)  | -0.1 0.09  | 0.03 0.87   | -0.02 0.7  | -0.23 0.18  | 0.09 *     | -0.2 0.13   | 0.004 0.93 |
|             | IRF5         | 0.35 ***   | 0.16 0.32   | 0.28 ***   | 0.092 0.59  | 0.33 ***   | 0.36 *      | 0.11 *     | 0.04        |
|             | COX2 (PTGS2) | 0.17 *     | 0.19 0.22   | 0.05 0.37  | 0.39 *      | -0.06 0.19 | -0.05 0.71  | -0.0 0.47  |
| M2 Macrophage| CD163         | 0.62 ***   | 0.71 ***    | 0.51 ***   | 0.38 *      | 0.45 ***   | 0.65 ***    | -0.07      | 0.12        |
|             | VSIG4        | 0.8 ***    | 0.58 ***    | 0.52 ***   | 0.16 0.36   | 0.5 ***    | 0.19 0.14   | -0.08      | 0.09        |
|             | MS4A4A       | 0.84 ***   | 0.7 ***     | 0.73 ***   | 0.21 0.23   | 0.61 ***   | 0.66 ***    | -0.07      | 0.15        |

Table V. GPNMB related transcription factors (TRRUST)

| TF | Target  | Model of regulation | Reference (PIMD) |
|----|---------|---------------------|------------------|
| MITF | GPNMB   | Activation          | 18983539         |
| TP53 | GPNMB   | Unknown             | 15684612         |

Figures

Figure 1

GPNMB expression in various cancer types. (A) GPNMB expression in various cancers compared to normal tissues in the Oncomine database. (B) GPNMB expression in different tumors from TIMER (*P < 0.05, **P < 0.01, ***P < 0.001).
Figure 2

Kaplan-Meier survival curves of GPNMB in various cancer types in the PrognoScan (A–H) and Kaplan-Meier plotter databases (I–P). 

(A-B) Survival curves of OS and RFS in the breast cancer cohort. 

(C-D) Survival curves of OS and DFS in the colorectal cancer cohort. 

(E-F) Survival curves of OS and DSS in the lung cancer cohort. 

(G) OS survival curves of prostate cancer and renal cell carcinoma. 

(H) OS survival curves of melanoma cancer. 

(I-J) OS and RFS survival curves of gastric cancer. 

(K-L) OS and RFS survival curves of LIHC. 

(M) OS survival curves of breast cancer. 

(N) OS survival curves of lung adenocarcinoma. 

(O-P) OS and PFS survival curves of ovarian cancer. 

OS, overall survival; PFS, progression-free survival; DFS, disease-free survival; RFS, relapse-free survival; DSS, disease-specific survival. DMFS, distant metastasis-free survival; DRFS, distant Recurrence Free Survival.
Association between GPNMB expression and survival status of different cancer types in Prognoscan database.

| cancer type          | dataset    | N   | endpoint                      | HR(95%CI)       | Cox P |
|----------------------|------------|-----|-------------------------------|-----------------|-------|
| Bladder cancer       | GSE5287    | 30  | Overall Survival              | 1.05(0.77-1.44) | 0.748 |
| Bladder cancer       | GSE13507   | 165 | Disease Specific Survival     | 1.11(0.9-1.36)  | 0.343 |
| Blood cancer         | GSE4475    | 158 | Overall Survival              | 0.63(0.5-0.79)  | 7.88e-05|
| Blood cancer         | E-TABM-346 | 53  | Event Free Survival           | 0.89(0.51-1.56) | 0.693 |
| Blood cancer         | GSE2658    | 559 | Disease Specific Survival     | 0.91(0.77-1.06) | 0.231 |
| Brain cancer         | GSE4412-GPL96 | 74 | Overall Survival              | 1.86(1.42-2.43) | 5.9e-06|
| Breast cancer        | GSE19815   | 115 | Distant Metastasis Free Survival | 1.11(0.34-3.6)  | 0.858 |
| Breast cancer        | GSE7849    | 76  | Disease Free Survival         | 0.93(0.5-1.72)  | 0.816 |
| Breast cancer        | GSE12276   | 204 | Relapse Free Survival         | 1.28(1.03-1.55) | 0.027 |
| Breast cancer        | GSE6532-GPL570 | 87 | Distant Metastasis Free Survival | 0.81(0.68-1.2)  | 0.196 |
| Colorectal cancer    | GSE17536   | 177 | Disease Specific Survival     | 1.36(1.02-1.81) | 0.039 |
| Colorectal cancer    | GSE17537   | 55  | Overall Survival              | 1.44(1.04-2)    | 0.030 |
| Esophagus cancer     | GSE11595   | 34  | Overall Survival              | 1.29(0.8-2.08)  | 0.299 |
| Eye cancer           | GSE22138   | 63  | Distant Metastasis Free Survival | 0.61(0.41-0.91) | 0.015 |
| Head and neck cancer | GSE2837    | 28  | Relapse Free Survival         | 0.93(0.73-1.2)  | 0.595 |
| Lung cancer          | GSE31210-GPL570 | 204 | Relapse Free Survival         | 3.04(1.68-5.49) | 0.00024|
| Lung cancer          | GSE31210   | 204 | Overall Survival              | 1.75(1.12-2.74) | 0.015 |
| Lung cancer          | GSE14814   | 90  | Disease Specific Survival     | 0.73(0.56-0.95) | 0.019 |
| Ovarian cancer       | GSE9891    | 278 | Overall Survival              | 1.07(0.93-1.23) | 0.361 |
| Ovarian cancer       | GSE26712   | 185 | Disease Free Survival         | 1.04(0.93-1.18) | 0.489 |
| Ovarian cancer       | GSE17260   | 110 | Progression Free Survival     | 0.96(0.82-1.14) | 0.667 |
| Prostate cancer      | GSE16560   | 281 | Overall Survival              | 1.23(1-1.5)     | 0.0498|
| Renal cell carcinoma | E-DKFCZ-1  | 59  | Overall Survival              | 0.5(0.12-2.03)  | 0.333 |
| Skin cancer          | GSE19234   | 38  | Overall Survival              | 2.73(1.13-6.57) | 0.025 |
| Soft tissue cancer   | GSE50829   | 140 | Distant Recurrence Free Survival | 1.22(0.99-1.49) | 0.057 |

Multivariable Cox regression analysis in LUAD patients from TCGA.
Association between GPNMB expression and immune infiltration level in BRCA (invasive breast carcinoma), COAD (colon adenocarcinoma), LIHC (hepatocellular carcinoma), LUAD (lung adenocarcinoma), LUSC (lung squamous cell carcinoma), and STAD (stomach adenocarcinoma). (A) GPNMB expression is significantly negatively related to tumor purity and has significant positive correlations with infiltrating levels of B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells in BRCA. (B) GPNMB expression is significantly negatively related to tumor purity and has significant positive correlations with infiltrating levels of B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells in COAD. (C) GPNMB expression is significantly negatively related to tumor purity and has significant positive correlations with infiltrating levels of B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells in LIHC. (D) GPNMB expression is significantly negatively related to tumor purity and has significant positive correlations with infiltrating levels of B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells in LUAD. (E) GPNMB expression showed a very weak correlation with B cells, CD8+ T cells, neutrophils, and dendritic cells infiltration level in LUSC. (F) GPNMB expression is significantly negatively related to tumor purity, B cells and has significant positive correlations with infiltrating levels of CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells in STAD.
GPNMB expression is related to macrophage polarization in STAD (stomach adenocarcinoma), LUAD (lung adenocarcinoma), and LUSC (lung squamous cell carcinoma). The immune gene markers: CD86 and CSF1R of monocytes; CCL2, CD68, and IL10 of TAMs; NOS2, IRF5, and PTGS2 of M1 macrophages; CD163, VSIG4, and MS4A4A of M2 macrophages. (A–D) Relationships between GPNMB expression and monocytes (A), TAMs (B), and M1 (C) and M2 macrophages (D) gene markers in STAD. (E–H) Relationships between GPNMB expression and monocytes (E), TAMs (F), and M1 (G) and M2 macrophages (H) gene markers in LUAD. (I–L) Relationships between GPNMB expression and monocytes (I), TAMs (J), and M1 (K) and M2 macrophages (L) gene markers in LUSC. The LUSC acts as the control group, and GPNMB expression is not significantly related to macrophage polarization of LUSC.
Figure 7

Protein-protein interaction network of GPNMB related transcription factors networks (GeneMANIA). Protein-protein interaction (PPI) network and functional analysis, which indicate the gene enrichment in the target network of GPNMB related transcript factors. Different colors in the net-work edge signify the bioinformatics methods: physical interactions, co-expression, predicted, co-localization, pathway, genetic interactions and shared protein domains. The different colors of lines signify the enrichment genes biological functions.