Cell-permeable succinate prodrugs bypass mitochondrial complex I deficiency

Johannes K. Ehinger1,2,3, Sarah Piel1,2, Rhonan Ford4, Michael Karlsson1,2, Fredrik Sjövall1,5, Eleonor Åsander Frostner1,2, Saori Morota1, Robert W. Taylor6, Doug M. Turnbull6, Clive Cornell4, Steven J. Moss7, Carsten Metzsch8, Magnus J. Hansson1,2, Hans Fliri9 & Eskil Elmér1,2,10

Mitochondrial complex I (CI) deficiency is the most prevalent defect in the respiratory chain in paediatric mitochondrial disease. This heterogeneous group of diseases includes serious or fatal neurological presentations such as Leigh syndrome and there are very limited evidence-based treatment options available. Here we describe that cell membrane-permeable prodrugs of the complex II substrate succinate increase ATP-linked mitochondrial respiration in CI-deficient human blood cells, fibroblasts and heart fibres. Lactate accumulation in platelets due to rotenone-induced CI inhibition is reversed and rotenone-induced increase in lactate:pyruvate ratio in white blood cells is alleviated. Metabolomic analyses demonstrate delivery and metabolism of \(^{13}\text{C}\)succinate. In Leigh syndrome patient fibroblasts, with a recessive \textit{NDUFS2} mutation, respiration and spare respiratory capacity are increased by prodrug administration. We conclude that prodrug-delivered succinate bypasses CI and supports electron transport, membrane potential and ATP production. This strategy offers a potential future therapy for metabolic decompensation due to mitochondrial CI dysfunction.

1 Mitochondrial Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, BMC A13, 221 84 Lund, Sweden. 2 NeuroVive Pharmaceutical AB, Medicen Village, 223 81 Lund, Sweden. 3 Department of Otorhinolaryngology, Head and Neck Surgery, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, 221 85 Lund, Sweden. 4 Selcia Ltd, Fyfield Business and Research Park, Fyfield Road, Ongar CM5 0GS, Essex, UK. 5 Department of Intensive Care and Perioperative Medicine, Skåne University Hospital, 205 02 Malmö, Sweden. 6 Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK. 7 Isomerase Therapeutics Ltd, Chesterford Research Park, Cambridge CB10 1XL, UK. 8 Anaesthesia and Intensive Care, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, 221 85 Lund, Sweden. 9 Mitopharm Ltd, Fyfield Business and Research Park, Fyfield Road, Ongar CM5 0GS, Essex, UK. 10 Clinical Neurophysiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, 221 85 Lund, Sweden. Correspondence and requests for materials should be addressed to J.K.E. (email: johannes.ehinger@med.lu.se).
Paediatric mitochondrial disease due to complex I (CI) deficiency is a heterogeneous group of disorders, and can be due to alterations in either the nuclear or mitochondrial genome. It is the most prevalent defect in the respiratory chain in paediatric patients and often leads to serious or fatal neurological presentations, such as Leigh syndrome. There are currently very limited evidence-based treatment options directed towards mitochondrial respiratory chain dysfunction. Succinate is a mitochondrial substrate metabolized through complex II (CI). It is not cell membrane-permeable and exogenously given succinate has limited uptake into cells.

Here we describe that cell membrane-permeable prodrugs of succinate provide increased ATP-linked mitochondrial oxygen consumption in CI-deficient human cells and tissues, which offers a potential future intervention for patients with metabolic decompensation due to mitochondrial CI dysfunction.

Results

Drug development and screening. In a drug discovery program, >50 different prodrugs of succinate were designed, synthesized and evaluated for cell permeability and ability to support respiration independent of CI in human peripheral blood cells from healthy donors (platelets and mononuclear cells (PBMCs)) using an Oroboros O2k respirometer. Three compounds were selected for further evaluation: NV101-118 (NV118, diacetoxy-methyl succinate), NV101-189 (NV189, bis-(1-acetoxy-ethyl) succinate) and NV101-241 (NV241, 1-acetoxethyl acetoxymethyl succinate) (Fig. 1a). This article focuses on NV189, but qualitatively the results for all three prodrugs were similar and data on the other compounds are presented as Supplementary Figs.

Increased CI-linked respiration. At 100 µM, NV189 increased mitochondrial oxygen consumption in intact platelets with CI inhibition induced by the mitochondrial toxin rotenone (2 µM). Neither succinate nor monomethyl succinate, a monoester of succinate previously reported to be cell permeable, increased mitochondrial respiration (Fig. 1b; Supplementary Fig. 1a). In cells with normal CI function, oxygen consumption was also increased upon addition of 100 µM NV189 (Fig. 1c; Supplementary Fig. 1b). To exclude the possibility that increased respiration was due to an induction of proton leak through the mitochondrial inner membrane (uncoupling), the platelets were treated with the ATP synthase inhibitor oligomycin. This prompted a significant decrease in oxygen consumption, which indicates the extent of respiration linked to ADP phosphorylation (Fig. 1c; Supplementary Fig. 1b). Increased substrate supply, rather than uncoupling, was further demonstrated by measuring mitochondrial inner membrane potential with the positively charged membrane-permeable probe tetramethylrhodamine methyl ester (TMRM) in non-quench mode using fluorescence-activated cell sorting. TMRM fluorescence was increased in CI-inhibited human platelets upon addition of 250 µM NV189 and fluorescence increased further with ATP synthase inhibition, indicating mitochondrial membrane hyperpolarization (Fig. 1d). Cells with maximal uncoupled respiratory chain activity via titration of the protonophore carbonyl cyanide p-(trifluoromethoxy) phenyl-hydrazone (FCCP) increased oxygen consumption even more with addition of 250 µM NV189, further indicating increased substrate supply to the respiratory chain (Fig. 1e; Supplementary Fig. 1c). In blood cells, pre-permeabilized with the detergent digitonin, 250 µM NV189 did not induce any increase in respiration, while succinate control did, showing the need for intracellular metabolism for succinate to be released and made available to the mitochondria (Fig. 1f; Supplementary Fig. 1d).

To confirm that the increase in respiration is specifically due to respiration through CI, a cell-permeable prodrug of the CI inhibitor malonate, NV01-161, (NV161, diacetoxyethyl malonate, Fig. 1h) was designed, synthesized and evaluated (Supplementary Fig. 2). Intact cells exposed to succinate prodrugs were treated with NV161 with ensuing decrease in respiration (Fig. 1g; Supplementary Fig. 1e). The applicability of the platelet data to other cell types was evaluated by assessing respiration in PBMCs treated with NV189 with or without CI inhibition with similar results to those in platelets (Fig. 1i; Supplementary Fig. 1f, g).

Paediatric mitochondrial diseases primarily display symptoms from energy intense organs such as the liver, brain, muscles, retina and cochlea. In some reports, 30–40% of paediatric patients with respiratory chain CI dysfunction present with cardiomyopathy, a condition that is linked to higher mortality. Human atrial heart muscle biopsies from elective surgery were acquired and the fibres gently separated using forceps. The fibres were incubated with the CI inhibitor rotenone and subsequently treated with succinate prodrug, eliciting an increase in oxygen consumption (Fig. 1k; Supplementary Fig. 1h).

Attenuated lactate production. A hallmark of mitochondrial disease is lactic acidosis. When the mitochondrial energy production fails to comply with demand, pyruvate is converted to lactate to maintain the NAD pool, causing increased lactate levels and decreased pH in blood and cerebrospinal fluid in the patients. About 80% of patients with mitochondrial disease show signs of lactate accumulation. Incubation with NV189 decreased lactate production (Fig. 1l; Supplementary Fig. 1i, j). In blood cells, lactate accumulation in media was significantly decreased with NV189 (4.44 ± 0.19; Fig. 1m, n; Supplementary Fig. 1f).

Metabolomics confirms metabolism of delivered succinate. To elucidate the intracellular metabolism of NV189, a metabolomic assay was performed on PBMCs from four healthy donors. Cells were incubated with or without rotenone and with or without NV189 for 20 min. Using quantitative capillary electrophoresis mass spectrometry (CE-MS), the concentrations of 116 metabolites were determined. Delivery of intracellular succinate and anaplerosis of tricarboxylic acid (TCA) cycle intermediates were confirmed (Fig. 2a; Supplementary Fig. 3). The lactate:pyruvate ratio was increased when cells were inhibited with rotenone and normalized when the cells were treated with NV189 (Fig. 1l). No conclusive alterations due to drug treatment in metabolism of succinyl-CoA-related amino acids or glycolysis could be shown. Levels of cysteine were decreased, which could indicate oxidative stress. To investigate the time course of intracellular metabolism of delivered succinate, [1, 2, 3, 4-13C4]NV118 was synthesized, whereby the carbon atoms in NV118 that upon release would be fractionated. Quantification of the stable isotope 13C by GCMS confirmed the uptake and metabolism of succinate (Fig. 2b). This process continued for the duration of the experiment, confirming the uptake and metabolism of succinate by human platelets (Fig. 2b). This process continued for the duration of the experiment, confirming the uptake and metabolism of succinate by human platelets.
incubated with [1, 2, 3, 4-13C4]NV118 for 7.5, 15, 30, 120 and 240 min. Even at the first time point, [13C4]malate and [13C4]citrate were observed, demonstrating rapid entry of [13C4]succinate into the TCA cycle (Fig. 2b). There was also [13C6]citrate present, which indicates that [13C]oxaloacetate or [13C]malate had converted to pyruvate and through acetyl-CoA formed citrate with [13C]oxaloacetate (Fig. 2b; Supplementary Fig. 4), demonstrating continuous metabolism in the TCA cycle. The ratio of labelled species gradually declined with time but still after 240 min, there was a supply of labelled succinate available.
Respiration increased in Leigh syndrome patient fibroblasts. To evaluate the effect of NV189 on patient cells, fibroblasts from a patient with Leigh syndrome due to recessive nuclear DNA mutations in the structural CI gene NDUF52 and three control cell lines were investigated using a Seahorse Bioscience XF96 Extracellular Flux Analyzer (Fig. 3; Supplementary Fig. 5). The patient fibroblasts have previously been shown to exhibit severely decreased activity of CI, decreased CI assembly and lower expression of CI structural proteins.\(^\text{10}\) Pooled data from all experiments (Fig. 3c,d; Supplementary Fig. 5c,d) revealed a 25% decrease in basal oxygen consumption rate (OCR) and a 42% reduction in maximum uncoupled respiration in the Leigh syndrome patient cells compared with the mean of the control cell lines. After addition of NV189, the OCR was similar between

Figure 1 | Effects of mitochondrial complex II stimulation by the succinate prodrug NV189. (a) Structures of NV118, NV189 and NV241, succinate highlighted in red. (b) Respiration in platelets (plts) with rotenone-induced mitochondrial complex I (CI) inhibition. (c) ATP-generating respiration in platelets. (d) Mitochondrial membrane potential in complex I-inhibited platelets, ratio of basal TMRM fluorescence, n = 4. (e) Respiration in platelets with FCCP-induced uncoupling. (f) Respiration in digitonin-permeabilized platelets. (g) Effect on respiration in platelets with addition of the cell-permeable complex II inhibitor NV161. * indicate significant difference between NV161 and vehicle, n = 4. (h) Structure of NV161, malonate highlighted in red. (i) Respiration in peripheral blood mononuclear cells (PBMCs) with rotenone-induced CI inhibition, n = 4. (j) Convergent respiration in PBMCs, n = 4. * indicate significant difference between pre and post dosing. (k) Respiration in human heart muscle fibres (HHMFs), n = 5. (l) Lactate:pyruvate ratio in PBMCs at baseline, after rotenone CI inhibition and after treatment with NV189, n = 4. * indicates significant difference using Friedman's non-parametric paired test with Dunn's multiple comparisons test of all groups against control. For three data points, pyruvate was below detection limit and the estimated lower-quantification limit was used for calculating the ratio. (m) Lactate accumulation in 2 ml buffer containing 400 × 10\(^6\) platelets, incubated with or without rotenone, antimycin A and NV189, n = 5. (n) Lactate production in platelets, data quantification from previous panel. Mean with 95% confidence interval. All respirometric experiments in human platelets were performed with n = 6 individuals donors if not otherwise stated. All data presented as mean and s.e. if not otherwise stated. In all experiments, blood cells from separate donors are used for each n. *P<0.05, **P<0.01, ***P<0.001 (two-tailed paired or unpaired Student's t-test as appropriate, difference between test compound and control if not otherwise stated).

Figure 2 | Intracellular metabolism of exogenous prodrug-delivered succinate. (a) TCA cycle intermediates in peripheral blood mononuclear cells after 20 min incubation with or without rotenone and NV189 quantified using capillary electrophoresis mass spectrometry, n = 4. Data presented as mean and s.d. (b) Fraction of \(^{13}\text{C}\) isotope labelled carbons in TCA cycle intermediates and related metabolites in human platelets incubated with [1, 2, 3, 4-\(^{13}\text{C}\)]NV118 for 7.5, 15, 30, 120 or 240 min. Mean of n = 2. 2-OG, 2-oxoglutaric acid.
The patient cells had lower maximum respiration compared with control cells, but in the presence of NV189 the OCR of patient cells was similar to that of untreated control cells (Fig. 3e and Supplementary Fig. 5e). After rotenone inhibition of CI, both cell types elicited clear remaining respiratory activity in cells treated with NV189 (Fig. 3f; Supplementary Fig. 5f). The relative contribution of flux through CII to maximum uncoupled respiration for NV189 was 4.8% in the control cell lines and 3.8% in the Leigh syndrome cells. With treatment, this increased to 15.9% in control cells and to 28.8% in patient cell (Fig. 3g,h; Supplementary Fig. 5g,h), illustrating the dependence of CII substrates in the patient cells to reach normal respiratory function. When patient cells were treated with the prodrugs, the spare respiratory capacity (respiratory reserve, the ability of the cells to increase respiration from the endogenous baseline) as percentage of the endogenous baseline was similar to that of the control cell lines (Fig. 3i; Supplementary Fig. 5i). Succinate or dimethyl succinate (an ester previously suggested to be cell permeable11,12) did not exert any effects on either cell type (Supplementary Fig. 6).

Discussion

Mitochondrial disorders frequently present early in life with failure to thrive, myopathy and neuropathy, but the symptoms are very diverse13. At least 1 in 8,000 births will develop a mitochondrial disease14. Mitochondrial diseases are usually progressive and have a fluctuating clinical course. Periods of deterioration, such as during an intercurrent viral infection, are prompted by the increase in metabolic demand that the mitochondria cannot compensate for, resulting in metabolic...
few evidence-based treatment options are available. We describe
(Figs 1n and 4). Utilizing a cell-permeable prodrug strategy to
generation is alleviated and lactate production is attenuated
metabolism, the relative dependence on glycolysis for ATP
metabolically defect patient cells (Fig. 3i). By supporting aerobic
here by the normalization of spare respiratory capacity in
succinate. By supplying the mitochondria with substrates for
use. A cell-permeable prodrug of succinate can enter the
in vivo compounds lack sufficient plasma stability to be suitable for
feasible pharmacologic strategy with potential benefit in
conditions affecting mitochondrial function, such as CI
dysfunction or TCA cycle intermediate depletion in organic
acidemias. Here we demonstrate that prodrug-delivered succinate
can alleviate metabolic decompensation due to CI-related
mitochondrial dysfunction.

Methods
Human peripheral blood cells. The blood cell protocols were approved by the
regional ethics committee of Lund University, Sweden (permit no. 2013/181), and
written informed consent was acquired from each participant. From healthy
volunteers, venous blood was drawn to K$_2$-EDTA tubes (Vacutainer, BD, Franklin
Lakes, USA) via venous puncture. Platelets were isolated with consecutive
centrifugation steps as previously described16. Peripheral blood mononuclear cells
(PBMCs) were isolated using Lymphoprep (Axis-Shield, Dundee, Scotland).
Erythrocytes and PBMCs were loosely pelleted by 10 min centrifugation at 500g.
The pellet was resuspended in saline, layered on a Ficoll gradient and
centrifuged at 800g for 20–30 min. The resulting leukocyte layer was collected,
resuspended in saline and pelleted by 5 min centrifugation at 250g. The supernatant
was removed and the pellet resuspended in 100–200 μl of saline. Blood cells were
counted using an automated hematocytometer (SewLab Alfa, Boule Diagnostics,
Sweden). The number of biological replicates (blood cells derived from different
individual donors) are provided in the respective figure legends for all experiments.

Human cardiac muscle samples. Biopsies of human cardiac muscle were
obtained at the Department of Cardiothoracic Surgery, Skåne University Hospital,
Lund, Sweden. Pre-surgery informed consent was obtained from patients under-
going planned open-heart surgery such as mitral valve repair or maze procedure
for treatment of atrial fibrillation. Only superfluous tissue that otherwise would
have been discarded or located behind the suture line for the cannulation catheter
was collected (up to 2 g was collected, 50–100 mg used for each experiment).
Ethical permission was granted by the regional ethical review board of Lund,
Sweden (permit no. 2013/721, 2013/701). The biopsy was immediately transferred
to ice-cold preservation solution (BIOPS; 10 mM Ca-EGTA buffer, 0.1 μM free
calcaium, 20 mM imidazole, 20 mM taurine, 50 mM K-MES, 0.5 mM dithiothreitol,
6.56 mM MgCl$_2$, 5.77 mM ATP and 15 mM phosphocreatine, pH 7.1). It was
thereafter dissected under microscope using forceps to gently separate the fibres
and remove any fat and connective tissue. Biopsy wet weight was obtained before
respiratory measurements (Precisa 40SM-200A, Abbot, USA).

Cultured fibroblasts. Permit for research on fibroblasts was granted by the
Newcastle and North Tyneside 1 NRES Committee (REC reference 2002/205).
A cultured skin fibroblast cell line from a patient with clinical Leigh syndrome due
to a deficiency in the nuclear encoded structural mitochondrial CI protein
NDUFS2 (p.Arg118Gln; p.Met292Thr mutations), and relevant control cell lines from
healthy donors were provided by the Wellcome Trust Centre for Mitochondrial
Research at Newcastle University, UK10. The fibroblasts were cultured in minimum
essential medium (MEM) supplemented with 10% fetal bovine serum, 1% MEM
vitamins, 1% MEM non-essential amino acids, 2 mM l-glutamine, 50 μg ml$^{-1}$
streptomycin, 50 μ U ml$^{-1}$ penicillin, 50 μg ml$^{-1}$ uridine and 1 mM sodium
pyruvate at 37°C and 5% CO$_2$. Cells were collected using trypsin and split or used
for analysis at ~70–80% confluence and counted using an automated cell counter
(TC20, Bio-Rad, Hercules, USA).

Respirometry. For cells in monolayers, the Seahorse Bioscience XF96
Extracellular Flux Analyser (Seahorse Bioscience, North Billerica, USA) was used
as the instrument of choice, and for cells in suspension such as blood cells the Oroboros
O2k (Oroboros Instruments, Innsbruck, Austria) was used. Respiratory measure-
ments using Oroboros O2k were performed in stirred (750 rpm) 2 ml glass
chambers at 37°C. The media MiR05 (sucrose 110 mM, HEPES 20 mM, taurine
20 mM, K-lactobionate 60 mM, MgCl$_2$, 3 mM, KH$_2$PO$_4$, 10 mM, EGTA 0.5 mM and
bovine serum albumin 1 g l$^{-1}$, pH 7.1) was used in all experiments16,17. Data were
recorded using the DatLab software version 4, 5 or 6 (Oroboros Instruments).
Correction for instrumental background and air calibration was performed
according to the manufacturer’s instructions.

All experiments with platelets were performed with cell concentrations of
200 × 103 cells per ml and all experiments with PBMCs with 5 × 105 cells per ml.
In experiments with human heart fibres, ~10 mg of tissue was used in each run.
To inhibit mitochondrial CI, rotenone (2 μM) was used and to inhibit
mitochondrial complex III, antimycin A (1 μg ml$^{-1}$) was used. ATP synthase was
inhibited using oligomycin (1 μg ml$^{-1}$), evaluating the contribution of respiration
independent of ADP phosphorylation. Maximum uncoupled respiration of the
electron transport system was induced by titration of the protonophore carboxyl
cyanide FCCP until no further increase in respiration was detected. The test
compounds or control substances (succinate, dimethyl succinate, monomethyl
succinate, malonate, dimethyl malonate or dimethylsulphoxide (DMSO)) were
dosed as indicated in each figure.
Respirometric measurements in fibroblasts were performed using a Seahorse Bioscience XF96 Extracellular Flux Analyzer. The day before the experiment, fibroblasts were seeded out at 25,000 cells per well in cell growth medium in collagen-coated 96-well plates and kept at 37 °C and 5% CO2 overnight. Before the experiment, the growth medium was replaced by XF-Base Medium containing 2 mM l-glutamine, 5 mM sodium pyruvate and 10 mM glucose (pH 7.4) and the cells were kept at 37 °C, 5% CO2 and atmospheric O2 and CO2. Oxygen consumption was measured at routine state and after addition of 300 μM of N2024 or N189, its vehicle DMSO, dimethyl succinate or disodium succinate, followed by different concentrations of FCCP (0.125, 0.5, 1.0 and 1.5 μM), 2 µM rotenone and 1 μg ml−1 antimycin A. After FCCP and drug addition, the first data point was generally used, if not another data point was clearly higher, and for the remaining states the last data point before the subsequent addition was used. The FCCP dosing resulting in the highest uncoupled respiration was chosen for each analysis with each cell line and treatment.

All respirometric measurements, with the exception of the human heart fibroblasts, were corrected for non-mitochondrial oxygen consumption, obtained after the addition of antimycin A.

Isotope labelling. NV118 was synthesized incorporating all four carbons in the central succinate structure of the molecule with [13C] isotopes. Isolated platelets (106 ml−1) were kept at 37 °C in 2 ml MiR05 containing 5 mM glucose ([1, 13C]NV118), [1, 3, 4-13C3]NV118 was added in two boluses to a final concentration of 0.5 mM and the samples were incubated for 15, 30, 120 or 240 min. Extracts were prepared as described above. Metabolome measurements were carried out through Human Metabolome Technology Inc., Tsuruoka, Japan. Target metabolites and their isoformers were annotated based on their theoretical m/z value and migration time. Cells from the same two healthy volunteers were used for each experimental group.

Statistics. Statistical analyses were performed, and all figures generated, using Prism 6 (GraphPad Software, La Jolla, USA) if not otherwise stated. A P value of <0.05 was considered statistically significant. No blinding or randomization was performed, except for the metabolomics assays, where the lab performing the analyses was blinded to the intervention allocated to the samples. Data from blood cell respirometry have previously been reported to be normally distributed and parametric tests were used.

Data availability. All relevant data are contained within the paper and Supplementary Information files or available from the authors upon request.

References
1. Distelmaier, F. et al. Mitochondrial complex I deficiency: from organelle dysfunction to clinical disease. Brain 132, 833–842 (2009).
2. Pfeffer, G., Majamaa, K., Turnbull, D. M., Thorburn, D. & Chinnery, P. F. Treatment for mitochondrial disorders. Cochrane Database Syst Rev 4, CD004426 (2012).
3. Lightowlers, R. N., Taylor, R. W. & Turnbull, D. M. Mutations causing mitochondrial disease: What is new and what challenges remain? Science 349, 1494–1499 (2015).
4. Fliri, H. et al. Protected succinates for enhancing mitochondrial ATP-production. Patent WO2014053857 A1 (2014).
5. MacDonald, M. J., Fabien, L. A., Mertz, R. J. & Rana, R. S. Effect of esters of succinic acid and other citric acid cycle intermediates on insulin release and inositol phosphate formation by pancreatic islets. Arch. Biochem. Biophys. 269, 400–406 (1989).
6. Loeflin, J. L. et al. Isolated complex I deficiency in children: clinical, biochemical and genetic aspects. Hum. Mutat. 15, 123–134 (2000).
7. Robinson, B. H. Human complex I deficiency: clinical spectrum and involvement of oxygen free radicals in the pathogenesis of the defect. Biochim. Biophys. Acta 1364, 271–286 (1998).
8. Dugo, L. et al. Pediatric mitochondrial respiratory chain disorders in the Centro region of Portugal. Pediatr. Neurol. 40, 351–356 (2009).
9. Kirby, D. et al. Respiratory chain complex I deficiency: an underdiagnosed energy generation disorder. Neurology 52, 1255–1269 (1999).
10. Tuppen, H. A. et al. The p.292T-NDUF2 mutation causes complex I deficient Leigh syndrome in multiple families. Brain 133, 2952–2963 (2010).
11. Selak, M. A. et al. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell 7, 77–85 (2005).
12. Choi, Y. T. et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 515, 431–435 (2014).
13. DiMauro, S. Mitochondrial diseases. Biochim. Biophys. Acta 1658, 80–88 (2013).
14. Skladal, D., Halliday, J. & Thorburn, D. R. Minimum birth prevalence of mitochondrial respiratory chain disorders in children. Brain 126, 1903–1912 (2003).
15. Chinnery, P. F. & Turnbull, D. M. Clinical features, investigation, and management of patients with defects of mitochondrial DNA. J. Neurol. Neurosurg. Psychiatry 63, 559–563 (1997).
16. Sjovall, P. et al. Mitochondrial respiration in human viable platelets: methodology and influence of gender, age and storage. Mitochondrion 13, 7–14 (2013).
17. Gnaiger, E. et al. In Life in the Cold. (eds Heldmaier, G. & Klingenspor, M.) 431–442 (Springer, 2000).
18. Tanner, R. K., Fuller, K. L. & Ross, M. L. Evaluation of three portable blood lactate analysers: Lactate Pro, Lactate Scout and Lactate Plus. Eur. J. Appl. Physiol. 109, 551–559 (2010).
19. Perry, S. W., Norman, J. P., Barbieri, J., Brown, E. B. & Gelbard, H. A. Mitochondrial membrane potential probes and the proton gradient: a practical usage guide. Mitochondrion 12, 137–151 (2012).
20. Kami, K. et al. Metalomic profiling rationalized pyruvate efficacy in cybrid cells harboring MELAS mitochondrial DNA mutations. Mitochondrion 12, 644–653 (2012).
Acknowledgements

E.E., M.J.H., J.K.E., S.P., F.S., E.Å.F. and M.K. are funded by Swedish Research Council (2011-3470), Swedish government project and salary funding for clinically oriented medical research (ALF grants), Regional research and development grants (Southern healthcare region, Sweden), The Crafoord Foundation, The Royal Physiographic Society in Lund and the Linneå and Josef Carlson foundation. R.W.T. and D.M.T. are supported by The Wellcome Trust Centre for Mitochondrial Research (G006919), Newcastle University Centre for Ageing and Vitality (supported by the Biotechnology and Biological Sciences Research Council and Medical Research Council (G016354/1)), MRC Centre for Neuromuscular Disease (G000608-1), The MRC Centre for Translational Research in Neuromuscular Disease Mitochondrial Disease Patient Cohort (UK) (G0800674), The Lily Foundation, the UK NIHR Biomedical Research Centre in Age and Age Related Diseases award to the Newcastle upon Tyne Hospitals NHS Foundation Trust, and UK NHS Specialist Commissioners ‘Rare Mitochondrial Disorders of Adults and Children’ Service. The authors thank Per Wiersup, Per Paulsson, Henrik Bjursten and Johan Sjögren at the Department of Cardiothoracic Surgery at Skåne University Hospital for providing tissue samples. The authors also thank David Nicholls for constructive discussions.

Author contributions

E.E., M.J.H., F.S. and J.K.E. conceived the study. R.F., C.C., H.F. and S.J.M. designed new chemical entities. R.W.T. and D.M.T. provided cell lines. S.M., S.P., J.K.E., M.K., C.M., R.W.T., D.M.T., S.J.M. and E.Å.F. evaluated the properties of the compounds. J.K.E., S.P., and M.K. performed the statistical analysis. J.K.E. drafted the manuscript. J.K.E., M.J.H. and E.E. directed the study. All authors critically reviewed the manuscript and approved of the final version.