High-dimensional Kuramoto models on Stiefel manifolds synchronize complex networks almost globally

Johan Markdahla, Johan Thunbergb, Jorge Goncalvesa

aLuxembourg Centre for Systems Biomedicine, University of Luxembourg, Belval, Luxembourg

bSchool of Information Technology, Halmstad University, Halmstad, Sweden

Abstract

The Kuramoto model of coupled phase oscillators is often used to describe synchronization phenomena in nature. Some applications, e.g., quantum synchronization and rigid-body attitude synchronization, involve high-dimensional Kuramoto models where each oscillator lives on the n-sphere or $SO(n)$. These manifolds are special cases of the compact, real Stiefel manifold $St(p, n)$. Using tools from optimization and control theory, we prove that the generalized Kuramoto model on $St(p, n)$ converges to a synchronized state for any connected graph and from almost all initial conditions provided (p, n) satisfies $p \leq \frac{2}{3}n - 1$ and all oscillator frequencies are equal. This result could not have been predicted based on knowledge of the Kuramoto model in complex networks over the circle. In that case, almost global synchronization is graph dependent; it applies if the network is acyclic or sufficiently dense. This paper hence identifies a property that distinguishes many high-dimensional generalizations of the Kuramoto models from the original model.

Key words: Synchronization; Kuramoto model; Stiefel manifold; Multi-agent system; decentralization; networked robotics.

1 Introduction

The Kuramoto model and its many variations are canonical models of systems of coupled phase oscillators [Hoppensteadt and Izhikevich, 2012]. As such, they are abstract models that capture the essential properties observed in a wide range of synchronization phenomena. However, many properties of a particular system are lost through the use of these models. In this paper we study the convergence of a multi-agent system on the Stiefel manifold that includes the Kuramoto model as a special case. For a system of N coupled agents that are subject to various constraints, a high-dimensional Stiefel manifold may provide a more faithful approximation of reality than a phase oscillator model. The orientation of an agent in a swarm can, e.g., be modeled as an element of the circle, the sphere, or the rotation group—all of which are Stiefel manifolds. For a high-dimensional model to be preferable it must retain some property of the original system which is lost in phase oscillator models. That is indeed the case; we prove that if the complex network of interactions is connected, if all frequencies are equal, and a condition on the parameters of the manifold is satisfied, then the system converges to the set of synchronized states from almost all initial conditions. The same cannot be said about the Kuramoto model in complex networks on the circle S^1 in the case of oscillators with homogeneous frequencies [Rodrigues et al., 2016]. Under that model, guaranteed almost global synchronization requires that the complex network can be represented by a graph that is acyclic or sufficiently dense [Dörfler and Bullo, 2014].

To characterize all such graphs is an open problem.

Since the Stiefel manifold includes the n-sphere and the special orthogonal group as special cases, there is a considerable literature on synchronization on particular instances of the Stiefel manifold. Previous works that address synchronization on all Stiefel manifolds is limited to [Thunberg et al., 2018b] which relies on the so-called dynamic consensus approach (see Scardovi et al. [2007], Sarlette and Sepulchre [2009]). The dynamic consensus approach is used to stabilize the consensus manifold on $St(p, n)$ almost globally for any quasi-strongly connected digraph. However, dynamic consensus requires the introduction of auxiliary variables that are communicated in a second, undirected graph. The gradient descent flow studied in this paper is preferable to [Thunberg et al., 2018b] in the case of $p \leq \frac{2}{3}n - 1$.
since it provides the same convergence guarantees but uses less communication and computation. If $p > \frac{1}{2}n - 1$, then [Thunberg et al., 2018b] is preferable. Note that for modeling synchronization in nature the gradient descent flow is arguably always preferable since the auxiliary variables in [Thunberg et al., 2018b] do not have a physical interpretation.

The problem of almost global synchronization of multi-agent systems on nonlinear spaces has received some attention in the literature, see the survey [Sepulchre, 2011].

Until recently, there have been three main approaches: potential shaping which is based on gradient descent flows [Tron et al., 2012], probabilistic gossip algorithms [Mazzarella et al., 2014], and dynamic consensus algorithms. Markdahl et al. [2018a] shows that a fourth approach based on gradient descent flows, which can be interpreted as high-dimensional Kuramoto models, yields almost global synchronization on the n-sphere for all $n \geq 2$. It requires less communication and computation, but is limited to undirected graphs and certain manifolds. This paper establishes that it works not just on S^n but also on $St(p, n)$ when $p \leq \frac{1}{2}n - 1$.

The Kuramoto model on the n-sphere is known as the Lohe model [Lohel, 2010]. Many works on the Lohe model concern the complete graph case [Olfati-Saber, 2006; Lohel, 2010; Li and Spong, 2014; Lohel, 2013]. Almost global stability of the consensus manifold in the case of a complete graph and homogeneous frequencies has been shown for the Kuramoto model [Watanabe and Strogatz, 1994], Lohe model [Olfati-Saber, 2006], and on rather general manifolds [Sarlette and Sepulchre, 2009]. The Kuramoto model on networks is less well-behaved [Canale and Monzón, 2015]. Most results for the Lohe model on networks show convergence from a hemisphere [Zhu, 2013; Thunberg et al., 2018a] and [Zhang et al., 2018]. Many papers address the case of heterogeneous frequencies [Chi et al., 2014; Chandra et al., 2019; Ha et al., 2018]. Some concern the thermodynamic limit $N \to \infty$, where N denotes the number of agents [Chi et al., 2014; Tanaka, 2014; Ha et al., 2018; Frouvelle and Liu, 2019]. There is also a discrete-time model [Li, 2015].

Applications for synchronization on S^2 include synchronization of interacting tops [Ritoré, 1998], modeling of collective motion in flocks [Al-Abri et al., 2018], autonomous reduced attitude synchronization and balancing [Song et al., 2017], synchronization in planetary scale sensor networks [D. A. Paley, 2009], and consensus in opinion dynamics [Awdogdu et al., 2017]. Applications on S^3 include synchronization of quantum bits [Lohel, 2010] and models of learning [Crnkić and Jacimović, 2018]. The Kuramoto model on $SO(3)$ is of interest in rigid-body attitude synchronization [Sarlette and Sepulchre, 2009]. For engineers and physicists working with such applications it is important to know that the global behaviour of the Kuramoto model on the Stiefel manifold is qualitatively different from that of the original Kuramoto model. For control applications, almost global synchronization is desirable since the probability of convergence does not decrease as N increases. For model selection, the global behaviour of the real system should be taken into account.

2 Problem Formulation

2.1 Notation

The Frobenius inner product of $X, Y \in \mathbb{R}^{n \times p}$ is $g(X, Y) = (X, Y) = \text{tr} (X^\top Y)$. The norm of X is given by $\|X\| = (X, X)^{\frac{1}{2}}$. The gradient on $St(p, n) \subset \mathbb{R}^{n \times p}$ (in terms of g) of a function $V : St(p, n) \to \mathbb{R}$ is given by $\nabla V = \Pi \nabla \bar{V}$, where $\Pi : \mathbb{R}^{n \times p} \to T_X St(p, n)$ is an orthogonal projection operator. ∇ denotes the gradient in the ambient Euclidean space, and \bar{V} is any smooth extension of V on $\mathbb{R}^{n \times p}$.

A graph \mathcal{G} is a pair $(\mathcal{V}, \mathcal{E})$ where $\mathcal{V} = \{1, \ldots, N\}$ and \mathcal{E} is a set of 2-element subsets of \mathcal{V}. Throughout this paper, if an expression depends on an edge $e \in \mathcal{E}$ and two nodes $i, j \in \mathcal{V}$, then it is implicitly understood that $e = (i, j) = \{i, j\}$. Each element $i \in \mathcal{V}$ corresponds to a unique agent. Items associated with agent i carry the subindex i; we let $S_i \in St(p, n)$ denote the state of an agent, Π_i the orthogonal projection operator onto the tangent space $T_i St(p, n)$ at S_i, $\mathcal{N}_i = \{j \in \mathcal{V} | \{i, j\} \in \mathcal{E}\}$ the neighbor set of i, $\nabla_i V$ the gradient of V with respect to $S_i \in St(p, n)$, etc.

2.2 The Stiefel manifold

The compact, real Stiefel manifold $St(p, n)$ is the set of p-frames in n-dimensional Euclidean space \mathbb{R}^n [Edelman et al., 1998]. It can be embedded in $\mathbb{R}^{n \times p}$ as an analytic matrix manifold given by

$$St(p, n) = \{S \in \mathbb{R}^{n \times p} | S^\top S = I_p\}.$$

The dimension of $St(p, n)$ is $np - \frac{1}{2}p(p + 1)$ due to the constraints. Important instances of Stiefel manifolds include the n-sphere $S^n = St(1, n + 1)$, the special orthogonal group $SO(n) \simeq St(n - 1, n)$, and the orthogonal group $O(n) = St(n, n)$. Since $\|S\|^2 = p$ for all $S \in St(p, n)$, it holds that $St(p, n)$ is a subset of the sphere of radius $p^{\frac{1}{2}}$ in the space of real $n \times p$ matrices. As rough guideline, the Stiefel manifold can be used to model systems whose states are constant in norm and subject to orthogonality constraints.

Define the projections

$\text{skew} : \mathbb{R}^{n \times n} \to so(n) : X \mapsto \frac{1}{2}(X - X^\top)$ and $\text{sym} : \mathbb{R}^{n \times n} \to so(n)^\perp : X \mapsto \frac{1}{2}(X + X^\top)$.

The tangent space of $St(p, n)$ at S is given by

$$T_S St(p, n) = \{\Delta \in \mathbb{R}^{n \times p} | \text{sym} S^\top \Delta = 0\}.$$

Denote the tangent bundle of $St(p, n)$ by

$$TSt(p, n) = \{(S, \Delta) \in St(p, n) \times T_S St(p, n)\}.$$
The projection onto the tangent space, $\Pi : \text{St}(p, n) \times \mathbb{R}^{n \times p} \to T_S \text{St}(p, n)$, is given by

$$
\Pi(S, X) = S \text{ skew } S^\top X + (I_n - SS^\top)X.
$$

2.3 Synchronization on the Stiefel manifold

The synchronization set, or consensus manifold, C of the N-fold product of a Stiefel manifold is defined as

$$
C = \{(S_i)_{i=1}^N \in \text{St}(p, n)^N | S_i = S_j, \forall \{i, j\} \in E\},
$$

where $(S_i)_{i=1}^N$ denotes an N-tuple. The synchronization set is a (sub)manifold; it is diffeomorphic to $\text{St}(p, n)$ by the map $(S_i)_{i=1}^N \mapsto S$. Let $d_{ij} = \|S_i - S_j\|$ be the chordal distance between agent i and j. Given a graph (V, E), define the potential function $V : \text{St}(p, n)^N \to \mathbb{R}$ by

$$
V = \sum_{e \in E} a_{ij}d_{ij}^2 = \sum_{e \in E} a_{ij}\|S_i - S_j\|^2
+ \sum_{e \in E} a_{ij}(p - (S_i, S_j)),
$$

where $a_{ij} \in (0, \infty)$ satisfies $a_{ii} = a_{jj}$ for all $e \in E$. Note that V is a real-analytic function, $V \geq 0$, and $V|_C = 0$.

Denote $S = (S_i)_{i=1}^N$. Let $\nabla : (\mathbb{R}^{n \times p})^N \to [0, \infty)$ be a smooth extension of V obtained by relaxing the requirement $S \in \text{St}(p, n)^N$ to $S \in (\mathbb{R}^{n \times p})^N$. We only need ∇ to define the gradient of V in the embedding space $(\mathbb{R}^{n \times p})^N$ when restricted to $\text{St}(p, n)^N$. All smooth extensions hence give the same gradient $\nabla V|_C$. The system we study is the gradient descent flow on $\text{St}(p, n)^N$ given by

$$
\dot{S}_i = (\dot{S}_i)_{i=1}^N = -\nabla V = -\nabla_i V = \Pi_i \sum_{j \in N_i} a_{ij} S_j,
$$

where $S_i(0) \in \text{St}(p, n)$. Note that any equilibrium of (3) is a critical point of V and vice versa.

Since the system (3) is an analytic gradient descent, it will converge to an equilibrium point from any initial condition $[\text{Lageman} \ 2007]$. This property allows us to adopt a strong definition of what it means for (3) to reach consensus:

Definition 1 The agents are said to synchronize, or to reach consensus, if $\lim_{t \to \infty} S(t) \in C$, where S is the state variable of the gradient descent flow (3) and C is the consensus manifold defined by (1).

2.4 Problem statement

The aim of this paper is classify each instance of $\text{St}(p, n)$ as satisfying or not satisfying the following requirement: the gradient descent flow (3) with interaction topology given by any connected graph converges to the consensus manifold C from almost all initial conditions.

2.5 High-dimensional Kuramoto model

We chose to define the high-dimensional Kuramoto model in complex networks over the Stiefel manifold $\text{St}(p, n)$ as

$$
\dot{X}_i = \Omega_i X_i + X_i \Xi_i - \nabla_i V, \quad \forall i \in \mathcal{V},
$$

where $X_i \in \text{St}(p, n)$, $\Omega_i \in \text{so}(n)$, and $\Xi_i \in \text{so}(p)$. The definition of (4) is motivated by two reasons as we detail in the next paragraphs. Note that (4) is a first-order model where the right-hand side is the sum of a drift-term and a gradient descent flow, just like for the Kuramoto model. The variables Ω_i and Ξ_i are generalizations of the frequency term in the Kuramoto model. The expression $\Omega_i X_i + X_i \Xi_i$ is not the standard form of an element of $T_i \text{St}(p, n)$, but varying Ω_i, and Ξ_i spans the tangent space at any given X_i.

The model (4) encompasses the Kuramoto model. Better still, the following models are special cases of (4):

$$
\dot{R}_i = \Omega_i R_i + \sum_{j \in \mathcal{N}_i} a_{ij} R_i \text{ skew } R_j^\top R_j; \quad R_i \in \text{SO}(n),
$$

$$
\dot{x}_i = \Omega_i x_i + (I_{n+1} - x_i x_i^\top) \sum_{j \in \mathcal{N}_i} a_{ij} x_j, \quad x_i \in \mathbb{R}^n,
$$

$$
\dot{\vartheta}_i = \omega_i + \sum_{j \in \mathcal{N}_i} a_{ij} \sin(\vartheta_j - \vartheta_i), \quad \vartheta_i \in \mathbb{R},
$$

where $\Omega_i \in \text{so}(n)$, and $\omega_i \in \mathbb{R}$, and each system consists of N equations; one for each $i \in \mathcal{V}$.

To get (5) from (4), let $p = n$ and set $R_i = X_i$, $\Xi_i = 0$. Note that $\Pi_i : \mathbb{R}^{n \times n} \to T_i \text{O}(n)$ is given by $\Pi_i Y = X_i \text{ skew } X_i^\top Y$ since $X_i X_i^\top = I_n$. The restriction of $R_i(0) \in \text{SO}(n)$ implies that $R_i(t) \in \text{SO}(n)$ for all $t \in [0, \infty)$. To get (6) from (4), let $p = 1$ and set $x_i = X_i$. Note that $\Pi_i : \mathbb{R}^{n+1 \times 1} \to T_i \mathbb{S}^n$ is given by $\Pi_i y = (I_{n+1} - x_i x_i^\top)y_i$. To get (7) from (6) (and hence also from (4) via (6)), let $n = 2$, $x_i = [\cos \vartheta_i, \sin \vartheta_i]^\top$, $\omega_i = \langle e_2, \Omega_i e_1 \rangle$ and solve for $\dot{\vartheta}_i$.

The cases of homogeneous frequencies and zero frequencies are equivalent; i.e., (4) is equivalent to (3) in the case of $\Omega_i = 0$, $\Xi_i = 0$. To see this, introduce the variables $R = \exp(-t \Omega) \in \text{SO}(n)$, $Q = \exp(-t \Xi) \in \text{SO}(p)$, form a rotating coordinate frame $S_i = RX_i Q \in \text{St}(p, n)$, and change variables

$$
\dot{\hat{S}}_i = -R \hat{\Omega} X_i Q + \hat{R} \hat{X}_i Q - \hat{R} X_i \hat{\Xi} Q
$$
$$= - R\nabla_i V(X_i)_{i=1}^N Q$$
$$= R X_i Q Q^T \text{skew} \left(\left(X_i^T R \sum_{j \in N_i} a_{ij} X_j \right) Q + R(I_n - X_i Q Q^T X_i^T) R \sum_{j \in N_i} a_{ij} X_j Q \right)$$
$$= S_i \text{skew} \left(S_i^T \sum_{j \in N_i} a_{ij} S_j \right) + (I_n - S_i S_i^T) \sum_{j \in N_i} a_{ij} S_j,$$

is an AGAS equilibrium set of the gradient descent flow on $\text{St}(p, n)^N$ given by

$$\dot{S}_i = S_i \text{skew} \left(S_i^T \sum_{j \in N_i} a_{ij} S_j \right) + (I_n - S_i S_i^T) \sum_{j \in N_i} a_{ij} S_j.$$

The calculations involved in the proof of Theorem 4 are extensive. We give a brief proof sketch that covers the main ideas. All the details are provided in Appendix A.1 to A.5.

PROOF. If the linearization of (3) around an equilibrium $S = (S_j)_{j=1}^N \in \text{St}(p, n)$ has an eigenvalue with strictly positive real part, then that equilibrium is exponentially unstable by the indirect method of Lyapunov. We can also think of equilibria as critical points of V, i.e., points where the gradient is the zero vector. The nature of a critical point can often be determined by studying the Riemannian Hessian $H(S)$ of V, i.e., the first non-zero term in the Taylor expansion of V. Note that the Hessian matrix equals the linearization matrix, albeit multiplied by minus one. The instability criterion given by the indirect method of Lyapunov is hence equivalent to the necessary second-order optimality conditions.

Any set of exponentially unstable equilibria of a pointwise convergent system have a measure zero region of attraction [R.A. Freeman 2013]. Pointwise convergence means, roughly speaking, that the system does not admit any limit cycles. Every trajectory converges to some point. Gradient descent flows of analytic functions on compact analytic manifolds are pointwise convergent as a consequence of the Łojasiewicz gradient inequality [Lageman 2007]. The consensus manifold C is stable by Lyapunov’s theorem since $\dot{V} = \langle \nabla V, S \rangle = -\|\nabla V\|^2$. It follows that C is AGAS if $H(S)$ evaluated at any equilibrium $S \notin C$ has an eigenvalue with strictly negative real part.

Let $q : T\text{St}(p, n)^N \to \mathbb{R}$ denote the quadratic form obtained from the Riemannian Hessian $H(S)$ evaluated at a critical point $S \in \text{St}(p, n)^N$. The Hessian at $S \in \text{St}(p, n)^N$ is a symmetric linear operator $H : T_S \text{St}(p, n)^N \to T_S \text{St}(p, n)^N$ in the sense that

$$\langle (X_i)_{i=1}^N, (Y_i)_{i=1}^N \rangle = (H(S)(X_i)_{i=1}^N, (Y_i)_{i=1}^N)$$

[Absil et al. 2009]. As such, its eigenvalues are real. The quadratic form q therefore bounds the smallest eigenvalue of the linear operator $H(S)$ from above. Our goal is to establish exponential instability of all equilibria $S \notin C$ by finding a tangent vector $(\Delta_i)_{i=1}^N \in T_S \text{St}(p, n)^N$ such that

$$q((S_i)_{i=1}^N, (\Delta_i)_{i=1}^N) = \langle (\Delta_i)_{i=1}^N, H(S)(\Delta_i)_{i=1}^N \rangle < 0.$$

We want to use a tangent vector $(\Delta_i)_{i=1}^N$ whose representation in the eigenvector basis of $T_S \text{St}(p, n)^N$ is dominated
by the eigenvector of $H(S)$ with the smallest eigenvalue. The quadratic form q will then approximate the smallest eigenvalue multiplied by $\|\Delta_i\|_2^2$.

Consider tangent vectors pointing towards C, i.e., $\Delta_i = \Pi_i \Delta$ for some $\Delta \in \mathbb{R}^{n \times p}$. The intuition for this choice is that a small perturbation of the system where every agent is moved in the same direction should not result in an increase that a small perturbation of the system where every agent is moved in the same direction should not result in an increase of V (if the perturbations are similar they cancel each other for each pair $(i, j) \in \text{St}(p, n)$). Moreover, it is possible that there is a net increase in cohesion which would yield a decrease in V. We do not need to find an expression for the desired tangent vector, it suffices to prove that it exists.

We show that q only assumes negative values by solving an optimization problem to minimize an upper bound of q over $\text{St}(p, n)^N$. The upper bound is obtained by relaxing the complex network of relations between agents at an equilibrium and only consider the effect of pairwise interactions. For any equilibrium $S \notin C$ and pair (p, n) such that $p \leq \frac{\pi}{4} < 1$, we find that there is a tangent vector towards C which results in the upper bound on q being strictly negative. Any equilibrium $S \notin C$ is hence exponentially unstable. Throughout these steps, we do not utilize any particular property of the graph topology except connectedness. □

Remark 5 The inequality $p \leq \frac{\pi}{4} n - 1$ is sufficient for C to be AGAS. In a more general setting of Kuramoto models on closed Riemannian manifolds, it can be shown that a manifold being multiply connected precludes C being AGAS. A multiply connected manifold is, roughly speaking, a manifold with a hole, for example a torus. In particular, the only multiply connected Stiefel manifolds are $\text{St}(n-1, n) \simeq \text{SO}(n)$ and $\text{St}(n, n) = \text{O}(n)$ [James, 1976]. Further results on multistability of the Kuramoto model on $\text{SO}(n)$ are given in [DeVille, 2018]. The question if C is AGAS for all connected graphs on $\text{St}(p, n)$ where $\frac{\pi}{4} n - 1 < p \leq n - 2$ remains open. Using Monte Carlo experiments to estimate the probability measure of the region of attraction of C, we observe that C appears to be AGAS on some such Stiefel manifolds for networks over which $\text{St}(n-1, n)$ is multistable.

4 Numerical Examples

We provide numerical examples to illustrate the evolution of system (3) on $\text{St}(1, 2) = S^2$, $\text{St}(1, 3) = S^2 \times S^2$, and $\text{St}(2, 3) \simeq \text{SO}(3)$ when $d_{ij} = 1$. Let \mathcal{H}_N denote the cyclic graph over N nodes, i.e.,

$$\mathcal{H}_N = \{\{1, \ldots, N\}, \{\{i, j\} \subset \mathcal{V} \mid j = i + 1\}\},$$

where we set $N + 1 = 1$. The equilibrium set

$$Q_{1n} = \{\{x_i\}_{i=1}^N \in (S^n)^N \mid \exists R \in \text{SO}(n), \frac{1}{\sqrt{2}} \|\text{Log } R\| = \frac{2\pi}{N}, x_{i+1} = Rx_i, \forall i \in \mathcal{V}\},$$

is asymptotically stable for the system (3) if $n = 1$ and $N \geq 5$, but unstable for all $N \in \mathbb{N}$ if $n \geq 2$. This is illustrated in Fig. 1 and 2.

![Fig. 1. Two sets of trajectories for five agents on S^1 that are connected by the graph \mathcal{H}_5. The agents evolve from random initial conditions towards the sets C (left) and Q_{12} (right). The positive direction of time is from left to right in both figures.](image1)

![Fig. 2. The trajectories of five agents with on S^2 that are connected by the graph \mathcal{H}_5. The agents evolve from a point close to Q_{13} (i.e., close to the equator) towards C near the north pole.](image2)

To understand this difference, note that the complement of the circle is two open hemispheres. The consensus manifold C is asymptotically stable on any open hemisphere [Markdahl et al., 2018]. As such, we may move each agent an arbitrarily small distance from Q_{13}, perturbing them into an open hemisphere, whereby they will reach consensus.

Each element of $\text{St}(2, 3)$ is a pair of orthogonal unit vectors $(S_1e_1, S_2e_2) \in S^2 \times S^2$. They can be visualized as pairs of points on a single sphere. Consider the equilibrium set

$$Q_{23} = \{(S_i)_{i=1}^N \in (\text{St}(p, n))^N \mid S_{i+1}e_1 = S_ie_1, \exists R \in S^3, \frac{1}{\sqrt{2}} \|\text{Log } R\| = \frac{2\pi}{N}, S_{i+1} = RS_i, \forall i \in \mathcal{V}\}$$

on $\text{St}(2, 3) \simeq \text{SO}(3)$. In Q_{23}, the first unit vectors S_1e_1 are aligned with each other while the second unit vectors S_2e_2 are spread out over a great circle. If the states are slightly perturbed to leave Q_{23}, then they will often stay close to Q_{23} for all future times, see Fig. 3.

Note the difference in behavior of system (3) on S^2 and $\text{SO}(3)$. Why does the high-dimensional system on S^2 reach consensus while the system on $\text{St}(p, n)$ does not? Roughly speaking, the first vectors S_1e_1 all remain close to each other and this constrains the second vectors S_2e_2 to a tubular neighborhood of the great circle they started out on. The dynamics on the tubular neighborhood are sufficiently similar to the Kuramoto model on the circle that the second unit
vectors ultimately converge to a configuration that is similar to Q_{12} in Fig. 1.

5 Conclusions and Future Work

This paper formulates a Kuramoto model on the Stiefel manifold and studies its global behaviour. The Stiefel manifold includes both instances on which synchronization is multistable, i.e., the Kuramoto model on the circle and the Lohe model on the special orthogonal group $SO(n)$ [DeVille, 2018], and instances on which synchronization is almost globally stable, i.e., the n-sphere for $n \in \mathbb{N}\backslash\{1\}$ [Markdahl et al., 2018a]. As such, studying its global behaviour can give us further insight into the global behaviour of consensus seeking systems on more general manifolds. The consensus manifold on $St(p, n)$ is AGAS if the pair (p, n) satisfies $p \leq \frac{2}{3}n - 1$. We believe that this condition is conservative due to the inequalities involved in calculating an upper bound on the smallest eigenvalue of the Riemannian Hessian, see Appendix A.4 and A.5. Rather, we conjecture that a sharp inequality is given by $p \leq n - 2$, corresponding to all the simply connected Stiefel manifolds [James, 1976]. Related topics will be explored in future work.

6 Acknowledgments

The authors would like to thank the anonymous reviewers.

References

P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization Algorithms on Matrix Manifolds. Princeton University Press, 2009.

S. Al-Abri, W. Wu, and F. Zhang. A gradient-free 3-dimensional source seeking strategy with robustness analysis. IEEE Transactions on Automatic Control, 2018.

A. Aydogdu, S.T. McQuade, and N.P. Duteil. Opinion dynamics on a general compact Riemannian manifold. Networks & Heterogeneous Media, 12(3):489–523, 2017.

E. A Canale and P. Monzón. Exotic equilibria of Harary graphs and a new minimum degree lower bound for synchronization. Chaos: An Interdisciplinary Journal of Nonlinear Science, 25(2):023106, 2015.

S. Chandra, M. Girvan, and E. Ott. Continuous versus discontinuous transitions in the d-dimensional generalized Kuramoto model: Odd d is different. Physical Review X, 9(1):011002, 2019.

D. Chi, S.-H. Choi, and S.-Y. Ha. Emergent behaviors of a holonomic particle system on a sphere. Journal of Mathematical Physics, 55(5):052703, 2014.

A. Crnkić and V. Jaćimović. Swarms on the 3-sphere with adaptive synapses: Hebbian and anti-Hebbian learning rule. Systems & Control Letters, 122:32–38, 2018.

L. DeVille. Synchronization and stability for quantum Kuramoto. Journal of Statistical Physics, 2018.

F. Dörfler and F. Bullo. Synchronization in complex networks of phase oscillators: A survey. Automatica, 50(6):1539–1564, 2014.

A. Edelman, T.A. Arias, and S.T. Smith. The geometry of algorithms with orthogonality constraints. SIAM Journal on Matrix Analysis and Applications, 20(2):303–353, 1998.

A. Frouvelle and J.-G. Liu. Long-time dynamics for a simple aggregation equation on the sphere. In International workshop on Stochastic Dynamics out of Equilibrium, pages 457–479, 2019.

A. Graham. Kronecker Products and Matrix Calculus: With Applications. Wiley, 1981.

S.-Y. Ha, D. Ko, and S.W. Ryoo. On the relaxation dynamics of Lohe oscillators on some Riemannian manifolds. Journal of Statistical Physics, 2018.

U. Helmke and J.B. Moore. Optimization and Dynamical Systems. Springer, 2012.

F.C. Hoppensteadt and E.M. Izhikevich. Weakly Connected Neural Networks. Springer, 2012.

I.M. James. The Topology of Stiefel Manifolds. Cambridge University, 1976.

C. Lageman. Convergence of Gradient-Like Dynamical Systems and Optimization Algorithms. PhD thesis, University of Würzburg, 2007.

W. Li and M.W. Spong. Unified cooperative control of multiple agents on a sphere for different spherical patterns. IEEE Transactions on Automatic Control, 59(5):1283–1289, 2014.

W. Li. Collective motion of swarming agents evolving on a sphere manifold: A fundamental framework and characterization. Scientific Reports, 5. Article ID: 13603, 2015.

M.A. Lohe. Quantum synchronization over quantum networks. Journal of Physics A: Mathematical and Theoretical, 43(46):465301, 2010.

M.A. Lohe. Higher-dimensional generalizations of the Watanabe-Strogatz transform for vector models of synchronization. Journal of Physics A: Mathematical and Theoretical, 51(22):225101, 2018.

J. Markdahl, J. Thunberg, and J. Gonçalves. Almost global consensus on the n-sphere. IEEE Transactions on Automatic Control, 63(6):1664–1675, 2018.

J. Markdahl, J. Thunberg, and J. Gonçalves. Towards almost global synchronization on the Stiefel manifold. In
A Appendix

A.1 Equilibria are critical points

We start by characterizing the equilibria of system (3). At an equilibrium,

\[
S_i \, \text{skew} \left(S_i^\top \sum_{j \in N_i} a_{ij} S_j \right) + \left(I_n - S_i S_i^\top \right) \sum_{j \in N_i} a_{ij} S_j = 0.
\]

Since the two terms in this expression are orthogonal, we get

\[
\text{skew} \left(S_i^\top \sum_{j \in N_i} a_{ij} S_j \right) = 0,
\]

\[
\left(I_n - S_i S_i^\top \right) \sum_{j \in N_i} a_{ij} S_j = 0. \tag{A.1}
\]

Assume (A.1) holds. Define \(\Sigma_i = \sum_{j \in N_i} a_{ij} S_j \). Since \(\Sigma_i = S_i S_i^\top \Sigma_i \), it follows that \(\Sigma_i \in \text{Im} S_i \). Hence \(\Sigma_i = S_i \Gamma_i \) for some \(\Gamma_i \in \mathbb{R}^{p \times p} \). Moreover, since \(\text{skew} S_i^\top \Sigma_i = \text{skew} \Gamma_i = 0 \), we find that \(\Gamma_i \) is symmetric.

A.2 The Hessian on \(\text{St}(p, n)^N \)

The next step in the proof sketch of Theorem 4 is to determine the Hessian \(H = \nabla_k (\nabla_i V)_{st} \). Let \(F_{i, st} = (\Pi_i \nabla_i V)_{st} : \mathbb{R}^{N \times n \times p} \to \mathbb{R} \) be a smooth extension of \(F_{i, st} = (\nabla_i V)_{st} = \langle e_s, \nabla_i V e_t \rangle : \text{St}(p, n)^N \to \mathbb{R} \) obtained by relaxing the constraint \(S_i \in \text{St}(p, n) \) to \(S_i \in \mathbb{R}^{n \times p} \). Take a \(k \in \mathcal{V} \) and calculate

\[
\nabla_k F_{i, st} = \nabla_k (\Pi_i \nabla_i V)_{st} = \nabla_k \langle e_s, \Pi_i \nabla_i V e_t \rangle
\]

\[
= \nabla_k \langle e_s, -S_i \, \text{skew} \left(S_i^\top \sum_{j \in N_i} a_{ij} S_j \right) e_t \rangle - (I_n - S_i S_i^\top) \sum_{j \in N_i} a_{ij} S_j e_t \langle e_t, e_t \rangle
\]

\[
= -\nabla_k \langle e_s, S_i \, \text{skew} \left(S_i^\top \sum_{j \in N_i} a_{ij} S_j \right) e_t \rangle - \nabla_k \langle e_s, \sum_{j \in N_i} a_{ij} S_j e_t \rangle + \nabla_k \langle e_s, S_i S_i^\top \sum_{j \in N_i} a_{ij} S_j e_t \rangle.
\]

Using the rules governing derivatives of inner products with respect to matrices, introducing \(E_{st} = e_s e_t^\top = e_s \otimes e_t \), after
a few calculations, we obtain

$$\nabla_k \mathbf{F}_{i,s,t} = \begin{cases} -a_{ik} \pi \mathbf{E}_{st}^\top, & \text{if } k \in \mathcal{N}, \\
\mathbf{E}_{st} \text{ skew}(\mathbf{S}_i^\top \sum_{j \in \mathcal{N}} a_{ij} \mathbf{S}_j) + \sum_{j \in \mathcal{N}} a_{ij} \mathbf{S}_j \text{ sym}(\mathbf{S}_j^\top \mathbf{E}_{st}) + \\
\mathbf{E}_{st} \sum_{j \in \mathcal{N}} a_{ij} \mathbf{S}_j^\top \mathbf{S}_i & \text{if } k = i, \\
0 & \text{otherwise}. \end{cases}$$

Evaluate at an equilibrium, where $\sum_{j \in \mathcal{N}} a_{ij} \mathbf{S}_j = \mathbf{S}_i \Gamma_i$ and $\Gamma_i \in \mathbb{R}^{p \times p}$ is symmetric by Section A.1, to find

$$\nabla_k \mathbf{F}_{i,s,t} = \begin{cases} -a_{ik} \pi \mathbf{E}_{st}^\top, & \text{if } k \in \mathcal{N}, \\
\mathbf{S}_i \Gamma_i \text{ sym}(\mathbf{S}_i^\top \mathbf{E}_{st}) + \mathbf{E}_{st} \Gamma_i & \text{if } k = i, \\
0 & \text{otherwise}. \end{cases}$$

The Hessian on $\text{St}(p,n)^N$ is a $(N \times n \times p)^2$-tensor consisting of $N^2 np$ blocks $\mathbf{H}_{k,i,s} \in \mathbb{R}^{p \times p}$ formed by projecting the Hessian in $(\mathbb{R}^{n \times p})^N$ on the tangent space of \mathcal{S}_k

$$\mathbf{H}_{k,i,s} = \nabla_k (\nabla_i V)_{s,t} = \mathbf{H}_k \nabla_k \mathbf{F}_{i,s,t} = \mathbf{H}_k \nabla_k (\nabla_i V)_{s,t}.$$

A.3 The quadratic form

The quadratic form $q : \text{TSt}(p,n)^N \to \mathbb{R}$ determines the nature of a critical point \mathcal{S} in the sense of the necessary second-order optimality conditions [Nocedal and Wright, 1999]. Consider the quadratic form obtained from the Hessian $\mathbf{H}(\mathcal{S})$ evaluated at an equilibrium \mathcal{S} together with a tangent vector $(\Delta_i)_{i=1}^N \in \mathcal{T}_\mathcal{S} \text{St}(p,n)^N$, where $\Delta_i = \Pi_i \Delta$ for some $\Delta \in \mathbb{R}^{p \times p}$, i.e., the tangent vector is pointing towards the consensus manifold \mathcal{C}.

$$q = \sum_{i=1}^N \sum_{k=1}^N \langle \Delta_i, [\Delta_k, \nabla_k (\nabla_i V)_{s,t}] \rangle$$

$$= \sum_{i=1}^N \sum_{k=1}^N (\Pi_i \Delta, [\Pi_k \Delta, \nabla_k \mathbf{F}_{i,s,t}]).$$

Note that $\langle \Pi_k \mathbf{X}, \Pi_k \mathbf{Y} \rangle = \langle \Pi_k \mathbf{X}, \mathbf{Y} \rangle$. The quadratic form is hence

$$q = \sum_{i=1}^N \sum_{k=1}^N (\Pi_i \Delta, [\Pi_k \Delta, \nabla_k \mathbf{F}_{i,s,t}]).$$

Denote $\mathbf{P}_{k,i,s,t} = \langle \Pi_k \Delta, \nabla_k \mathbf{F}_{i,s,t} \rangle$. Then

$$\mathbf{P}_{k,i,s,t} = \begin{cases} (\Pi_k \Delta, -a_{ik} \pi \mathbf{E}_{st}^\top), & \text{if } k \in \mathcal{N}, \\
(\Pi_k \Delta, \mathbf{S}_i \Gamma_i \text{ sym}(\mathbf{S}_i^\top \mathbf{E}_{st}) + \mathbf{E}_{st} \Gamma_i) & \text{if } k = i, \\
0 & \text{otherwise}. \end{cases}$$

for the cases of $k \in \mathcal{N}, k = i,$ and $k \notin \mathcal{N} \cup \{i\}$ respectively. Denote $\mathbf{P}_{k,i} = [\mathbf{P}_{k,i,s,t}]$ and calculate

$$\mathbf{P}_{k,i} = \begin{cases} -a_{ik} \pi \Pi_k \Delta, & \text{if } k \in \mathcal{N}, \\
\mathbf{S}_i \text{ sym} \mathbf{S}_i^\top \Pi_k \Delta + \Pi_i (\Delta) \Gamma_i & \text{if } k = i, \\
0 & \text{otherwise}. \end{cases}$$

To see this, consider each case separately. For $k \in \mathcal{N},$

$$\mathbf{P}_{k,i,s,t} = \langle \Pi_k \Delta, \mathbf{S}_i \Gamma_i \text{ sym}(\mathbf{S}_i^\top \mathbf{E}_{st}) + \mathbf{E}_{st} \Gamma_i \rangle$$

$$= -a_{ik} \langle \Pi_k \Delta, \mathbf{E}_{st} \Gamma_i \rangle$$

whereby $\mathbf{P}_{k,i} = -a_{ik} \pi \Pi_k \Delta$. For the case of $k = i,$

$$\mathbf{P}_{i,i,s,t} = \langle \Pi_k \Delta, \mathbf{S}_i \Gamma_i \text{ sym}(\mathbf{S}_i^\top \mathbf{E}_{st}) + \mathbf{E}_{st} \Gamma_i \rangle$$

$$= \eta (\Pi_i \Delta)^\top \Sigma_i^\top \mathbf{S}_i E_{st} + \frac{1}{2} \text{tr}(\Pi_i \Delta)^\top \Sigma_i \Gamma_i + \frac{1}{2} \text{tr}(\Pi_i \Delta)^\top \Sigma_i \Gamma_i - \frac{1}{2} \text{tr}(\Pi_i \Delta)^\top \Sigma_i \Gamma_i$$

$$= \eta (\Pi_i \Delta)^\top \Sigma_i^\top \mathbf{S}_i E_{st} + \frac{1}{2} \text{tr}(\Pi_i \Delta)^\top \Sigma_i \Gamma_i + \frac{1}{2} \text{tr}(\Pi_i \Delta)^\top \Sigma_i \Gamma_i - \frac{1}{2} \text{tr}(\Pi_i \Delta)^\top \Sigma_i \Gamma_i$$

$$= \eta (\Pi_i \Delta)^\top \Sigma_i^\top \mathbf{S}_i E_{st} + \frac{1}{2} \text{tr}(\Pi_i \Delta)^\top \Sigma_i \Gamma_i + \frac{1}{2} \text{tr}(\Pi_i \Delta)^\top \Sigma_i \Gamma_i - \frac{1}{2} \text{tr}(\Pi_i \Delta)^\top \Sigma_i \Gamma_i$$

whereby $\mathbf{P}_{i,i} = \mathbf{S}_i \text{ sym} \mathbf{S}_i^\top \Pi_i \Delta + \Pi_i (\Delta) \Gamma_i$, $\mathbf{S}_i \text{ sym} \mathbf{S}_i^\top \Pi_i \Delta$.

This gives us the quadratic form

$$q = \sum_{i=1}^N \sum_{k=1}^N \langle \Pi_k \Delta, [\mathbf{P}_{k,i,s,t}] \rangle = \sum_{i=1}^N \sum_{k=1}^N \langle \Pi_k \Delta, \mathbf{P}_{k,i} \rangle$$

$$= \sum_{<k\in\mathcal{E}} (\Pi_k \Delta, \mathbf{P}_{i,k}) + \sum_{k \in \mathcal{E}} (\Pi_k \Delta, \mathbf{P}_{i,i}).$$

For ease of notation, let $q = 2 \sum_{<k\in\mathcal{E}} q_{ik} + \sum_{k \in \mathcal{E}} q_{ii}$, where

$$q_{ik} = \langle \Pi_i \Delta, \mathbf{P}_{i,k} \rangle = -a_{ik} \langle \Pi_i \Delta, \Pi_k \Delta \rangle$$

$$q_{ii} = \langle \Pi_i \Delta, \mathbf{P}_{i,i} \rangle$$

Calculate

$$q_{ik} = -a_{ik} \langle \Pi_i \Delta, \Pi_k \Delta \rangle$$

$$= a_{ik}(-\langle \Delta, \Delta \rangle + \frac{1}{2} \langle \mathbf{S}_i^\top \Delta, \Delta \rangle + \mathbf{S}_i^\top \Delta + \mathbf{S}_k^\top \Delta)$$

$$+ \frac{1}{2} \langle \mathbf{S}_i^\top \Delta, \mathbf{S}_i^\top \Delta \rangle - \frac{1}{2} \langle \mathbf{S}_i^\top \Delta, \mathbf{S}_i^\top \Delta \rangle$$

$$= a_{ik} \langle \Delta, \Delta \rangle + \frac{1}{2} \langle \mathbf{S}_i^\top \Delta, \Delta \rangle + \frac{1}{2} \langle \mathbf{S}_i^\top \Delta, \mathbf{S}_i^\top \Delta \rangle + \frac{1}{2} \langle \mathbf{S}_k^\top \Delta, \Delta \rangle + \frac{1}{2} \langle \mathbf{S}_k^\top \Delta, \mathbf{S}_k^\top \Delta \rangle$$
\[\begin{align*}
\frac{1}{2} \Delta^T S_i S_j^T \Delta + \frac{1}{2} \Delta^T S_k \Delta S_i S_j^T -
\frac{1}{2} \Delta^T S_i S_j S_k \Delta - \frac{1}{4} \Delta^T S_i S_j S_k \Delta^T S_k -
\frac{1}{4} S_i^T \Delta S_i S_j \Delta - \frac{1}{4} S_i^T \Delta S_i S_j \Delta^T S_k.
\end{align*} \]

Use the identity \(\text{tr } A B C D = \langle \text{vec } A^T, (D^T \otimes B) \text{vec } C \rangle \) [Graham 1981] and the notation \(d_1 = \text{vec } \Delta, d_2 = \text{vec } \Delta^T \) to write

\[q_{ik} = a_{ik}(-\|d_1\|^2 + \frac{1}{2} (d_1, (I_p \otimes S_i S_j^T) d_1) +
\frac{1}{2} (d_2, (S_i^T \otimes S_j^T) d_1) + \frac{1}{2} (d_1, (I_p \otimes S_i S_j S_k^T)) d_1) +
\frac{1}{2} (d_2, (S_i^T \otimes S_j S_k S_k^T)) d_2) -
\frac{1}{2} (d_1, (I_p \otimes S_i S_j S_k S_k^T)) d_1) -
\frac{1}{2} (d_2, (S_i^T \otimes S_j S_k S_k^T)) d_2) -
\frac{1}{2} (d_1, (I_p \otimes S_i S_j S_k S_k^T)) d_2),
\]

where \(Q_{ik} \) is given in Table A.1 and \(d = [d_1^T d_2^T]^T \).

Furthermore,

\[q_i = \langle \Pi_i \Delta, \Sigma_i \text{sym } S_i^T \Pi_i \Delta + \Pi_i (\Delta) \Gamma_i \rangle
= \langle \Pi_i \Delta, \Sigma_i \text{sym } S_i^T \Pi_i \Delta + \Pi_i (\Delta) \Gamma_i \rangle.
\]

Since \(\langle S_i^T \Pi_i \Delta, \text{sym } S_i^T \Pi_i \Delta \rangle = 0 \) by the orthogonality of symmetric and skew-symmetric matrices, we get

\[q_i = \langle \Pi_i \Delta, \Pi_i (\Delta) \Gamma_i \rangle
= \langle S_i \Delta - S_i \text{sym } S_i^T \Delta, (\Delta - S_i \text{sym } S_i^T \Delta) \Gamma_i \rangle
= \text{tr}(\Delta^T \Delta - 2 \text{sym}(S_i^T \Delta) S_i^T \Delta + (\text{sym } S_i^T \Delta)^2) \Gamma_i
= \text{tr}(\Delta^T \Delta - S_i^T \Delta S_i + S_i \Delta S_i^T) \Gamma_i
= \text{tr}(\Delta^T \Delta - \frac{1}{2} S_i^T \Delta S_i + S_i \Delta S_i^T) \Gamma_i
= \text{tr}(\Delta^T \Delta - \frac{1}{2} S_i^T \Delta S_i + S_i \Delta S_i^T) \Gamma_i
= \text{tr}(\Delta^T \Delta - \frac{1}{2} S_i^T \Delta S_i + S_i \Delta S_i^T) \Gamma_i
= \text{tr}(\Delta^T \Delta - \frac{1}{2} S_i^T \Delta S_i + S_i \Delta S_i^T) \Gamma_i.
\]

There is a constant permutation matrix \(K \in \text{O}(np) \) such that \(\text{vec } \Delta^T = K \text{vec } \Delta \) for all \(\text{vec } \Delta \in \mathbb{R}^{np} \) [Graham 1981]. Hence

\[d = [\text{vec } \Delta^T] = [I_{np}] \text{vec } \Delta = [I_{np}] d_1.
\]

The quadratic form \(q \) satisfies

\[q = \sum_{i \in V} \langle d, Q_i d \rangle + 2 \sum_{e \in E} \langle d, Q_{ik} d \rangle
= \langle d, \Big(\sum_{i \in V} Q_i + \sum_{k \in N_i} Q_{ik} \Big) d \rangle
= \langle d, [I_{np} K] d_1, \sum_{i \in V} Q_i + \sum_{k \in N_i} Q_{ik} \rangle [I_{np} K] d_1
= \langle d_1, M d_1 \rangle,
\]

where

\[M = \text{sym } [I_{np} K]^T Q [I_{np} K], \quad Q = \sum_{i \in V} Q_i + \sum_{k \in N_i} Q_{ik}.
\]

A.4 Upper bound of the smallest eigenvalue

We wish to show that \(q \) assumes negative values for some \(\Delta \in \mathbb{R}^{n \times p} \) at all equilibria \(S \notin C \). This excludes any such equilibria from being a local minimizer of the potential function \(V \) given by (2). If \(\text{tr } M \) is negative, then \(M \) has at least one negative eigenvalue. Calculate

\[\text{tr } M = \text{tr } \text{sym}(Q) \begin{bmatrix} I_{np} K^T & I_{np} \\ K & I_{np} \end{bmatrix} = \text{tr } A + 2 \text{tr } B K + \text{tr } C,
\]

where \(A, B, \) and \(C \) denote the three blocks of \(\text{sym } Q \). Let us calculate each of the three terms in \(\text{tr } M \) separately, starting with \(A \) and \(C \).

\[\text{tr } A = \sum_{i \in V} \text{tr}(\Gamma_i \otimes I_n - \frac{1}{2} \Gamma_i \otimes S_i S_i^T) +
\sum_{k \in N_i} \text{tr}(I_{np} + \frac{1}{2} I_p \otimes (S_i S_i^T + S_k S_k^T) -
\frac{1}{2} I_p \otimes S_i S_i^T S_k S_k^T) -
\sum_{k \in N_i} a_{ik} (np + p^2 - \frac{1}{2} \|S_i S_i^T\|^2).
\]

\[\text{tr } C = \sum_{k \in N_i} \text{tr}(I_{np} + \frac{1}{2} I_p \otimes (S_i S_i^T + S_k S_k^T) -
\frac{1}{2} I_p \otimes S_i S_i^T S_k S_k^T) -
\sum_{k \in N_i} a_{ik} (np + p^2 - \frac{1}{2} \|S_i S_i^T\|^2),
\]
\[
Q_{ik} = a_{ik} \left[-I_{np} + \frac{1}{2} \mathbf{I}_k \otimes (\mathbf{S}_i \mathbf{S}^T_i + \mathbf{S}_k \mathbf{S}^T_k) - \frac{1}{2} \mathbf{I}_p \otimes \mathbf{S}_i \mathbf{S}^T_i \mathbf{S}_k \mathbf{S}^T_k + \frac{1}{4} \mathbf{S}_i \otimes \mathbf{S}^T_i - \frac{1}{2} \mathbf{S}_i \otimes \mathbf{S}^T_i \mathbf{S}_k \mathbf{S}^T_k - \frac{1}{4} \mathbf{S}_k \otimes \mathbf{S}^T_k \right]
\]

Table A.1
The matrix \(Q_{ik}\).

where we utilize that

\[
\text{tr} \mathbf{X} \otimes \mathbf{Y} = \text{tr} \mathbf{X} \text{tr} \mathbf{Y},
\]

\[
\text{tr} \mathbf{SS}^T = \text{tr} \mathbf{S}^T \mathbf{S} = \text{tr} \mathbf{I}_p = p,
\]

\[
\text{tr} \mathbf{ZZ}^T \mathbf{WW}^T = (\text{tr} \mathbf{Z} \mathbf{W})^2 = \|\mathbf{Z} \mathbf{W}\|^2,
\]

for any \(\mathbf{X}, \mathbf{Y} \in \mathbb{R}^{n \times n}, \mathbf{S} \in \text{St}(p, n),\) and \(\mathbf{Z}, \mathbf{W} \in \mathbb{R}^{n \times q}\). Continuing,

\[
\text{tr} \mathbf{A} = \sum_{i \in \mathcal{V}} (n - \frac{3p}{4}) \text{tr} \mathbf{\Gamma}_i - \sum_{k \in \mathcal{N}_i} a_{ik}((n - p)p + \frac{p}{4}\|\mathbf{S}_i \mathbf{S}_i^T\|^2) - \sum_{i \in \mathcal{V}} \sum_{k \in \mathcal{N}_i} \left((n - \frac{3p}{4}) \langle a_{ik} \mathbf{S}_k, \mathbf{S}_i \rangle - a_{ik}((n - p)p + \frac{p}{4}\|\mathbf{S}_i \mathbf{S}_i^T\|^2) \right) = \sum_{i \in \mathcal{V}} \sum_{k \in \mathcal{N}_i} \left((n - \frac{3p}{4}) \langle a_{ik} \mathbf{S}_k, \mathbf{S}_i \rangle + \frac{p}{4}\|\mathbf{S}_i \mathbf{S}_i^T\|^2) \right)
\]

\[
\text{tr} \mathbf{C} = \sum_{i \in \mathcal{V}} \frac{1}{4} \text{tr} (\mathbf{S}_i \mathbf{\Gamma}_i \mathbf{S}_i^T \mathbf{I}_p) - \sum_{k \in \mathcal{N}_i} a_{ik} \text{tr}(\mathbf{S}_i \mathbf{S}_k^T \mathbf{S}_i \mathbf{S}_k^T) = \sum_{i \in \mathcal{V}} \frac{1}{4} \text{tr} (\mathbf{S}_i \mathbf{\Gamma}_i) - \sum_{k \in \mathcal{N}_i} \frac{1}{4} \text{tr}(\mathbf{S}_k \mathbf{S}_i) + \sum_{i \in \mathcal{V}} \sum_{k \in \mathcal{N}_i} \frac{1}{4} \langle a_{ik} \mathbf{S}_k, \mathbf{S}_i \rangle - \frac{1}{4} \langle \mathbf{S}_k, \mathbf{S}_i \rangle^2 = \sum_{i \in \mathcal{V}} \sum_{k \in \mathcal{N}_i} \left(\frac{1}{4} \langle a_{ik} \mathbf{S}_k, \mathbf{S}_i \rangle - \frac{1}{4} \langle \mathbf{S}_k, \mathbf{S}_i \rangle^2 \right)
\]

Note that

\[
\mathbf{B} = \sum_{i \in \mathcal{V}} -\frac{1}{4} \mathbf{\Gamma}_i \mathbf{S}_i^T \otimes \mathbf{S}_i + \sum_{k \in \mathcal{N}_i} a_{ik} \left(\frac{1}{2} \mathbf{S}_k^T \otimes \mathbf{S}_k - \frac{1}{2} \mathbf{S}_i \otimes \mathbf{S}_i \right) + \frac{1}{4} \mathbf{S}_i \otimes \mathbf{S}_i^T - \frac{1}{2} \mathbf{S}_i \otimes \mathbf{S}_i \mathbf{S}_k \mathbf{S}_k^T + \frac{1}{8} \mathbf{S}_i \otimes \mathbf{S}_i \mathbf{S}_k \mathbf{S}_k^T \mathbf{S}_k^T + \frac{1}{4} \mathbf{S}_i \otimes \mathbf{S}_i^T - \frac{1}{2} \mathbf{S}_i \otimes \mathbf{S}_i \mathbf{S}_k \mathbf{S}_k^T - \frac{1}{4} \mathbf{S}_k \otimes \mathbf{S}_k^T \right]
\]

To calculate \(\text{tr} \mathbf{BK}\), we utilize that \(\mathbf{K} = \sum_{a=1}^{n} \sum_{b=1}^{p} \mathbf{E}_{ab} \otimes \mathbf{E}_{ba}\), where the elemental matrix \(\mathbf{E}_{ab} \in \mathbb{R}^{n \times p}\) is given by \(\mathbf{E}_{ab} = \mathbf{e}_a \otimes \mathbf{e}_b\), for all \(a \in \{1, \ldots, n\}, b \in \{1, \ldots, p\}\) [Graham [1981]]:

\[
\text{tr} \mathbf{BK} = \sum_{i \in \mathcal{V}} -\frac{1}{4} \text{tr}(\mathbf{\Gamma}_i \mathbf{S}_i^T \mathbf{S}_i) \mathbf{K} + \sum_{k \in \mathcal{N}_i} a_{ik} \text{tr}(\frac{1}{4} \mathbf{S}_k^T \otimes \mathbf{S}_k - \frac{1}{8} \mathbf{S}_i \otimes \mathbf{S}_i \mathbf{S}_k \mathbf{S}_k^T \mathbf{K}) + \sum_{k \in \mathcal{N}_i} a_{ik} \langle \frac{1}{4} \mathbf{S}_k \mathbf{S}_k^T, \mathbf{K} \rangle - \frac{1}{8} \langle \mathbf{S}_i \mathbf{S}_i \mathbf{S}_k \mathbf{S}_k^T, \mathbf{K} \rangle + \sum_{k \in \mathcal{N}_i} a_{ik} \langle \frac{1}{4} \|\mathbf{S}_k\|^2 - \frac{1}{8} \langle \mathbf{S}_i \mathbf{S}_i \mathbf{S}_k \mathbf{S}_k^T, \mathbf{K} \rangle \rangle.
\]
where we utilize that
\[\sum_{a,b} (X_{ab})^2 = \|X\|^2, \quad \sum_{a,b} X_{ab} Y_{ab} = \langle X, Y \rangle\]
for all \(X, Y \in \mathbb{R}^{n \times m}\). Finally,
\[
\text{tr } BK = \sum_{i \in V} \sum_{k \in N_i} -\frac{a_{ik}}{4}(S_k, S_i)^2 + a_{ik}(\frac{5}{4} - \frac{1}{4}\|S_k S_k^T\|^2)
\]
\[
= 2 \sum_{i \in E} a_{ik}(\frac{5}{4} - \frac{1}{4}\|S_k S_k^T\|^2) + (1 - n + p)p).
\]
Adding up all four terms gives
\[
\frac{1}{2} \text{tr } M - \frac{1}{2} \text{tr } A + \text{tr } BK + \frac{1}{2} \text{tr } C
\]
\[
= \sum_{i \in E} a_{ik}(\frac{5}{4} - \frac{1}{4}\|S_k S_k^T\|^2) + (1 - n + p)p).
\]
This is expected since \(C\) is invariant under any tangent vector that belongs to its tangent space, \(\Delta_i |c = \langle \Pi_1 \Delta \rangle |_{c = 1} \in T_c \text{St}(p, n)^N\), and \(V\) is constant over \(C\). Also note that (A.2) is consistent with the corresponding expression in [Markdahl et al. 2018b] for the special case of \(N = \text{St}(1, n + 1)\).

A.5 Nonlinear programming problem

It remains to show that \(\text{tr } M\) given by (A.2) is strictly negative for each equilibrium configuration \(S \notin C\). To that end, we could consider the problem of maximizing \(\text{tr } M\) over all configurations \(S \notin C\) which satisfy the equations (A.1) that characterize an equilibrium set. However, that problem seems difficult to solve. Instead, we make use of the following inequality
\[
\frac{1}{2} \text{tr } M \leq |E| \max_{e \in E} a_{ik} \max_{X,Y} f(X, Y),
\]
\[
f(X, Y) = (n - \frac{p+1}{2}) \langle X, Y \rangle - \frac{p+2}{4}\|X^T Y\|^2 - \frac{1}{4}\|X, Y\|^2 + (1 - n + p)p),
\]
where \(f : \text{St}(p, n) \times \text{St}(p, n) \rightarrow \mathbb{R}\). If we can show that the upper bound on \(\text{tr } M\) is negative for all \(X \neq Y\), then we are done. Note that the inequality is sharp in the case of two agents and that \(f(X, X) = 0\) since this corresponds to consensus in a system of two agents.

Denote \(Z = X^T Y\). It is clear that \(\text{tr } Z \in [-p, p]\) since
\[
|\text{tr } Z| \leq \left| \sum_{i=1}^p \lambda_i \right| \leq p\|Z\|_2 \leq p\|X\|_2\|Y\|_2 = p.
\]
Consider a relaxation of (A.3) where \(Z \in \mathbb{R}^{n \times p}\) subject to \(\text{tr } Z \in [-p, p]\). Let \(f : \mathbb{R}^{p \times p} \rightarrow \mathbb{R}\) denote the extension of \(f\) given by
\[
f(Z) = (n - \frac{p+1}{2}) \text{tr } Z - \frac{p+2}{4}\|Z\|^2 + \frac{1}{4}(\text{tr } Z)^2 + (1 - n + p)p).
\]
Note that \(f\) being negative for all \(Z \in \mathbb{R}^{n \times p}\) with \(\text{tr } Z \in [-p, p]\) implies that \(f(X, Y)\) is negative for all \(X, Y \in \text{St}(p, n)\). To simplify \(f(Z)\), first observe that
\[
\|Z\|^2 = \sum_{i=1}^p |\lambda_i|^2 \geq \frac{1}{p} \|\lambda\|_1^2
\]
\[
= \frac{1}{p} \left(\sum_{i=1}^p |\lambda_i| \right)^2 \geq \frac{1}{p} \left(\sum_{i=1}^p |\text{Re } \lambda_i| \right)^2
\]
\[
\geq \frac{1}{p} \left(\sum_{i=1}^p |\text{Re } \lambda_i| \right)^2 = \frac{1}{p} (\text{tr } Z)^2,
\]
where Schur’s inequality relates the Frobenius norm of \(Z\) to its eigenvalues \(\lambda_1, \ldots, \lambda_p\) [R.A. Horn and C.R. Johnson, 2012]. Use the above inequality to write
\[
\frac{1}{2} \langle 2n - p \rangle \text{tr } Z - \frac{p+1}{2}(\text{tr } Z)^2 + (1 - n + p)p.
\]
Note that this upper bound on \(f(Z)\) is quadratic in \(Z\). The maximum of the quadratic is located at
\[
\text{tr } Z = \frac{(2n - p - 1)}{2p + 1}.
\]
Assume that the maximum of the parabola is larger than \(p\), i.e., \(\text{tr } Z \geq p\). Simplifying this inequality we find that \(p \leq \frac{2}{n} - 1\). Since the bound is a concave quadratic polynomial, its maximum value for \(\text{tr } Z \in [-p, p]\) is obtained at the feasible point that is closest to the optimal point, i.e., at \(\text{tr } Z = p\) where the bound equals 0. The value \(\text{tr } Z = p\) can only be achieved when \(Y = X\).