The variant of ADHMN construction associated with q-analysis

Atsushi Nakamula

Department of Physics, School of Science, Kitasato University, Sagamihara 228-8555, Japan

Abstract

A q-deformation of the ADHMN caloron construction is considered, under which the anti-selfdual (ASD) conditions of the gauge fields are preserved. It is shown that the q-dependent Nahm data with certain constraints are crucial to determine the ASD gauge fields, as in the case of ordinary caloron construction. As an application of the q-deformed ADHMN construction, we give a q-deformed caloron of Harrington-Shepard type. Some limits of the parameters are also considered.

Key words: Calorons, ADHM, q-deformation

PACS: 02.30.Gp, 11.15.-q, 11.27.+d

1 Introduction

The ADHM construction [1] is a vital tool to find out the exact solutions to the (anti-)selfdual (ASD) Yang-Mills equations in \mathbb{R}^4, explicitly. The construction is also effective for the instanton calculus of supersymmetric Yang-Mills theories, e.g.[2].

On the compactified flat space $\mathbb{R}^3 \times S^1$, there exist the solutions to ASD equations with a periodicity in the S^1 direction, i.e., the calorons, which have been discussed firstly in finite temperature field theories [3]. Nahm [4] has applied ADHM's approach to the construction of calorons successfully by introducing infinite dimensional functional (\mathcal{L}^2) space as a dual space, the Nahm transformation. In the limit that the size of constituent instanton is sufficiently large compared with the circumference of the S^1, one can reproduce the monopole solutions to the Bogomolnyi equations [5], the ASD equations in \mathbb{R}^3. On the

Email address: nakamula@sci.kitasato-u.ac.jp (Atsushi Nakamula).
other hand, the large circumference limit gives ordinary instanton solutions in \mathbb{R}^4. This aspect is strongly supported by the moduli space analysis of calorons [6]. We thus have an interpretation that calorons give the interpolation between instantons and monopoles [7]. There is another perspective of calorons that they may be interpreted as monopoles with a loop group as their gauge group [8,9].

Some years ago, there have been found very interesting types of the calorons through the ADHM/Nahm (ADHMN) constructions. One class of those is the calorons with non-trivial holonomy around S^1 at the spatial infinity [10,11,12,13], which brings gauge symmetry breaking through the Wilson loop mechanism. The other class is the symmetric calorons [7], i.e., the multi-caloron solutions with certain spatial symmetries. We expect that there is room for advanced applications of the ADHMN construction to discover new types of ASD solutions.

In a series of papers [14], Kamata and the present author have considered a q-analog of the BPS monopole construction, which gives an exact solutions to the ASD equation. They have used a variant formulation of the Nahm construction by introducing an ℓ^2 functional space as a dual space instead of Nahm’s L^2 space, and obtained the solution with a parameter q interpolating the BPS monopole ($q \to 1$) and the pure gauge configuration ($q \to 0$), a q-deformed BPS monopole. They also found that the q-deformed BPS monopole could be interpreted as a special case of the instantons with axial symmetry [15].

In this paper, we consider the generalization of the previous work by formulating the q-deformation of the ADHMN caloron construction, which contains the matrix Nahm data depending on q. As a concrete example, we will fix explicitly the vector \vec{V}_q critical to give the q-deformed caloron of Harrington-Shepard type [3], which is an exact solution to the ASD equation on $\mathbb{R}^3 \times S^1$.

This paper is organized as follows. In section 2, we give the q-deformed ADHMN formalism which yields ASD gauge fields, following a brief introduction of the ADHMN caloron construction. In section 3, we apply the formalism to yield a q-deformation of the Harrington-Shepard caloron. Some limits of the parameters for the q-deformed caloron are also considered. In the final section, we give concluding remarks and discussion.

2 The ADHMN construction on an ℓ^2 functional space

We consider the ADHMN construction in $Sp(1)$ formulation, i.e., the gauge group is restricted to $SU(2)$. In Nahm’s caloron construction, the $N \times N$
 Nahm data are crucial to determine the ASD configuration, which data are constrained by the following Nahm equations ($i = 1, 2, 3$) with respect to the continuous variable z,

\[
\frac{dT_i}{dz} - \frac{1}{2} \sum_{j,k=1}^{3} \epsilon_{ijk} [T_j, T_k] - [T_i, T_0] = \frac{1}{2} \text{tr}_2 \left(\sigma_i \Lambda^\dagger \Lambda \right) \delta(z - z_0),
\]

in addition to the anti-hermite conditions $T_i^\dagger = -T_i$. In the right hand side, the trace is over quaternion and Λ is an N component quaternion valued row vector. The distinction from the monopole Nahm data is that they are periodic in z with period $2z_0 := 2\pi/\beta$, where β is a circumference of S^1. The defining relations (1) are derived from the ASD conditions of the 1-dimensional “Dirac operator”,

\[
\Delta = \begin{bmatrix}
\Lambda \delta(z - z_0) \\
i\partial_z + x + i \sum_{\mu=0}^{3} T_\mu(z) \tau_\mu
\end{bmatrix},
\]

i.e., $\Delta^\dagger \Delta$ is commutative with arbitrary quaternion and has inverse. Here $x_\mu = (x_0, x_1, x_2, x_3)$ is a coordinate of $\mathbb{R}^3 \times S^1$, x_0 being that of S^1, $\tau_\mu = (1, i\sigma_1, i\sigma_2, i\sigma_3)$ is a quaternion element and $x := \sum_{\mu=0}^{3} x_\mu \tau_\mu$. If the Nahm data are given, we determine a vector \vec{V} of the form

\[
\vec{V} = \begin{bmatrix}
V(x_\mu) \\
v(z, x_\mu)
\end{bmatrix},
\]

where $V(x_\mu)$ is a quaternion valued function, and $v(z, x_\mu)$ is an N component quaternion valued column vector periodic in z with period $2z_0$, that is, $v(z, x_\mu)$ being an element of $L^2[I] \otimes V_N$, where $I := [-z_0, z_0]$. This vector is assumed to solve the differential equation taking into account the discontinuity at the boundary,

\[
\Delta^\dagger \vec{V} = 0,
\]

or writing down (4) definitely,

\[
\Lambda^\dagger \delta(z - z_0)V + (i\partial_z + x^\dagger + i \sum_{\mu=0}^{3} T_\mu \tau_\mu^\dagger)v(z) = 0.
\]

The procedure to find out the solution to (5) is as follows: we solve the differential equation at $z \neq z_0$ to fix $v(z)$ firstly, then determine the top component V by performing a short range integration at the boundary. In addition to (4), we impose a normalization condition $\langle \vec{V}, \vec{V} \rangle = 1$, where the inner product of the vector space with another vector $\vec{U} = \langle U, u(z) \rangle$ is defined as,

\[
\langle \vec{U}, \vec{V} \rangle = U^\dagger V + \int_{-z_0}^{z_0} u^\dagger(z)v(z)dz.
\]
The gauge connection obeying ASD conditions can be determined by this normalized vector up to gauge transformation as,

\[A = \langle \vec{V}, d\vec{V} \rangle. \]

(7)

We now consider a one parameter, \(q \), deformation of the ADHMN caloron construction which preserves the ASD condition of the gauge field. In [14], we have made such a deformation of the BPS monopole by introducing an \(\ell^2 \) functional space in place of \(L^2 \) functional space. We apply the same approach to the caloron construction described above. The differences to the previous work are the introduction of the \(N \times N \) periodic Nahm data and the periodicity on \(\vec{V} \).

We introduce an \(\ell^2 \) integrable periodic function \(v(z; q) \) depending on a parameter \(q \in (0, 1) \) in place of the \(L^2 \) integrable function considered in Nahm’s caloron construction. The period is set to be 2\(z_0 \), which is identical to the non-deformed case. Here we define the \(\ell^2 \) integrability of \(v(z; q) \) by the square integrability with the inner product defined on the infinite number of point set \(I_q := \{ z_n, -z_n \mid z_n = q^n z_0, n = 0, 1, 2, \ldots \} \). In the following, we will use the notation \(I_q^{(±)} := \{ ±z_n \} \), namely, \(I_q = I_q^{(+)} \oplus I_q^{(-)} \). We define the \(\ell^2 \) inner product of \(u(z; q) \) and \(v(z; q) \) as,

\[(u, v)_q = z_0(1 - q) \sum_{n=0}^{\infty} (u^\dagger(z_{n+1}; 1/q)v(z_n; q) + u^\dagger(-z_{n+1}; 1/q)v(-z_n; q)) q^n, \]

(8)

or by using the symbolic notation of the \(q \)-integration and the conjugate vector by \(* \), the description can be simplified into

\[(u, v)_q = \int_{-z_0}^{z_0} u^*(qz) v(z) d_q z. \]

(9)

Notice that the shift of argument in the conjugate, or left, vector. We, therefore, find that an \(\ell^2[I_q] \) function \(v(z; q) \) can be viewed as an infinite dimensional quaternion valued vector \(v(z; q) = v_+(z; q) \oplus v_-(z; q) \) with components

\[
\begin{align*}
v_+(z; q) &= \langle v(z_0; q), v(z_1; q), v(z_2; q), \cdots \rangle, \\
v_-(z; q) &= \langle v(-z_0; q), v(-z_1; q), v(-z_2; q), \cdots \rangle
\end{align*}
\]

(10)

and the * conjugation of this quaternion valued vector \(v^*(z; q) = v_+^*(z; q) \oplus v_-^*(z; q) \) being defined by the hermite conjugation in addition to the “twist” of \(q \),

\[
\begin{align*}
v_+^*(z; q) &= \langle v^\dagger(z_0; 1/q), v^\dagger(z_1; 1/q), v^\dagger(z_2; 1/q), \cdots \rangle, \\
v_-^*(z; q) &= \langle v^\dagger(-z_0; 1/q), v^\dagger(-z_1; 1/q), v^\dagger(-z_2; 1/q), \cdots \rangle.
\end{align*}
\]

(11)
Under this definition of the ℓ^2 inner product, we can confirm the “hermiticity” of q-difference operator iD_z [14], i.e., $(u, iD_z v)_q = (iD_z u, v)_q$, where $D_z \phi(z) := \phi(z) - \phi(qz)/z - qz$ for a function $\phi(z)$.

By using the $\ell^2[I_q]$ vector space introduced above, we now make a reformulation of the ADHMN construction of calorons. We define the “Dirac operator” by applying the q-difference operator,

$$
\Delta = \begin{bmatrix}
\Lambda \delta(z_0, z) \\
iD_z + x + i \sum_{\mu=0}^{3} T_\mu(z; q) \tau_\mu
\end{bmatrix},
$$

where $\delta(z, z_0)$ is given by a Kronecker delta rather than a delta function,

$$
\delta(z, z_0) := \frac{2}{(1 - q)z} \delta_{z, z_0}.
$$

In analogy with the vector (3), the deformed vector is set to be of the form

$$
\vec{V}_q = \begin{bmatrix}
V(x_\mu; q) \\
v(z, x_\mu; q)
\end{bmatrix},
$$

where $V(x_\mu; q)$ is a quaternion and $v(z, x_\mu; q)$ is a quaternion valued vector of $\ell^2[I_q] \otimes V_N$ rather than $L^2[I] \otimes V_N$, and its conjugation is

$$
\vec{V}_q^* = \begin{bmatrix}
V^\dagger(x_\mu; 1/q), v^\dagger(z, x_\mu; q)
\end{bmatrix},
$$

the second component being defined by (11). We define the inner product of those vectors by using (9) as,

$$
\langle \vec{U}, \vec{V} \rangle_q := U^\dagger(x_\mu; 1/q)V(x_\mu; q) + (u, v)_q.
$$

In accordance with the ADHMN construction, the ASD gauge fields are given by the condition that $\Delta^* \Delta$ is invertible and commutative with quaternion. The explicit form of $\Delta^* \Delta$ is given in the appendix. Here, we show the necessary conditions, the commutativity with quaternion, on the Nahm data

$$
T_i(z_n) = T_i(z_{n+1}), \quad T_i(-z_n) = T_i(-z_{n+1}),
$$

$$
T_i^*(z_n) = -T_i(z_n), \quad T_i^*(-z_n) = -T_i(-z_n),
$$

$$
D_z T_i - \frac{1}{2} \sum_{j,k=1}^{3} \epsilon_{ijk} [T_j, T_k] - [T_i, T_0] = \frac{1}{2} \text{tr}_2 (\sigma_i \Lambda^\dagger \Lambda) \delta_q(z, z_0),
$$

where $i = 1, 2, 3$. By the conditions (17), we find the Nahm data are “pseudo-constant” in each interval $I_q^{(\pm)}$, i.e., $T_i(z_n) = T_i(z_0)$, $T_i(-z_n) = T_i(-z_0)$ ($n = 5$).
1, 2, \cdots) so we have omitted the argument in (19). In spite of this, we should reserve the q-difference term in (19) to pick up the contribution of the boundary discontinuity, which can exist since $0 \notin I_q$. Obviously, the pseudo-constant conditions do not imply that the T_i’s are strictly constant matrices in the continuous interval I. The conditions (18) together with (17) are “twisted” anti-hermite conditions,

$$T_i^t(z_0; q) = -T_i(z_0; q^{-1}), \quad T_i^t(-z_0; q) = -T_i(-z_0; q^{-1}). \quad (20)$$

We find that (19) becomes the equations similar to the ADHM equation if $z \neq z_0$,

$$[T_1, T_2] + [T_3, T_0] = 0$$
$$[T_2, T_3] + [T_1, T_0] = 0$$
$$[T_3, T_1] + [T_2, T_0] = 0, \quad (21)$$

where $T_i = T_i(\pm z_0)$ are pseudo-constant matrices on each $I_q^{(\pm)}$, respectively, whereas $T_0 = T_0(z)$ is not constrained. At present, we have no proof that $\Delta^* \Delta$ is invertible for the general Nahm data subject to the constraints (17), (18) and (19), because of the curious ℓ^2 inner product. The presence of the inverse $f := (\Delta^* \Delta)^{-1}$ must be confirmed case by case after the Nahm data were fixed by the other constraints. For the (non-deformed) Nahm construction of $SU(2)$ monopoles, and also calorons [7], the Nahm data must enjoy the residue conditions which guarantee $\text{dim}_{\mathbb{R}} \ker(\Delta^t) = 1$ [17]. In our deformed construction, the corresponding constraints $\text{dim}_{\mathbb{R}} \ker(\Delta^*) = 1$ have to be confirmed as well.

As in the ordinary caloron construction, if the Nahm data are given, the vector \vec{V}_q is determined by the q-difference equation and the normalization condition,

$$\Delta^* \vec{V}_q = \Lambda^* \delta_q(z_0, z) V + (iD_z + x^\dagger + iT_\mu \tau_\mu^\dagger) v(z) = 0 \quad (22)$$

$$\langle \vec{V}_q, \vec{V}_q \rangle_q = V^t(q^{-1}) V(q) + (v, v)_q = 1. \quad (23)$$

The connection one-form is thus given by

$$A = \langle \vec{V}_q, d\vec{V}_q \rangle_q. \quad (24)$$

By construction, this reduces to (7) in the limit $q \to 1$. Finally, since we are considering Δ in the standard form, $\Delta = \Delta_0 + \lambda[0, x]$ for Δ_0 independent of x, the curvature two-form $F = dA + A \wedge A$ is given by the canonical way, with the inverse f and the ASD t’Hooft tensor $\bar{\eta}_{\mu \nu}$ such that,

$$F = \int_{-z_0}^{z_0} dz \int_{-z_0}^{z_0} dw \ v^*(qz) \bar{\eta}_{\mu \nu} f(z, qw) v(w) \ dx^\mu \wedge dx^\nu. \quad (25)$$
We can regard (25) that the ordinary matrix product in the original ADHM construction is replaced by the q-integral.

3 Example: a q-deformed caloron

In this section, we explicitly apply the q-deformed ADHMN caloron construction on ℓ^2 vector space formulated in the previous section. The Nahm data to be considered here are the simplest case, $N = 1$, in which case the data can be chosen,

$$T_\mu(z; q) = 0, \quad \Lambda = \lambda \cdot 1_2$$

where $\lambda \in \mathbb{R}$ and 1_2 is a real quaternion element. The first ansatz shows no boundary discontinuity in the Nahm data, which leads to the second one. In this case $\dim \ker(\Delta^*) = 1$ and there exists $f = (\Delta^* \Delta)^{-1}$, whose exact form is the same as the q-deformed monopole case [14]. The ASD conditions for the gauge field constructed by the Nahm data (26) are, therefore, fulfilled. We will find that this construction gives the q-deformed version of Harrington-Shepard caloron.

Having obtained the Nahm data, we next solve the difference equation (22) to find the unnormalized vector $\vec{V}_q^0 = i(V^0, v^0(z; q))$,

$$\lambda \delta_q(z_0, z)V^0 + (iD_z + x^\dagger)v^0(z; q) = 0.$$ (27)

If $z \neq z_0$, (27) is reduced to a linear homogeneous q-difference equation $(iD_z + x^\dagger)v(z) = 0$ so that v is easily solved by,

$$v^0(z, x; q) = e_q(i(1 - q)zx^\dagger)$$

where a q-exponential function $e_q(w)$ convergent at $|w| < 1$ is

$$e_q(w) := \sum_{n=0}^\infty \frac{w^n}{(q; q)_n} = \frac{1}{(w; q)_\infty},$$

and the q-shifted factorial $(a; q)_n = \prod_{k=1}^n (1 - aq^{k-1})$. It can be shown [16] that the second equality in (29) follows from the q-binomial theorem, and that $\lim_{q \to 1^-} e_q((1 - q)w) = e^w$. To find the first component, V^0, we implement the short q-integral ($\epsilon \to 0$) around the boundary z_0 taking into account the periodicity of $v(z; q)$,

$$0 = \int_{z_0 - \epsilon}^{z_0 + \epsilon} \left(\lambda \delta_q(z_0, z)V^0 + (iD_z + x^\dagger)v^0(z; q) \right) dq z = \lambda V^0 + i \int_{z_0 - \epsilon}^{z_0 + \epsilon} D_z v^0(z; q) dq z.$$ (30)

The second term of the right hand side can be evaluated by using the “fundamental theorem of q-calculus”, thus,
\[
\int_{z_0-\epsilon}^{z_0+\epsilon} D_z v^0 \, dz = \int_{z_0-\epsilon}^{z_0} D_z v^0 \, dz + \int_{-z_0}^{-z_0+\epsilon} D_z v^0 \, dz
\]
\[
= (v^0(z_0) - v^0(z_0 - \epsilon)) + (v^0(-z_0 + \epsilon) - v^0(-z_0))
\]
\[
= v^0(-z_0 + \epsilon) - v^0(z_0 - \epsilon),
\]
where we have used the periodicity \(v(z + 2z_0) = v(z)\). The boundary value of (28) together with the \(q\)-binomial theorem [16] gives, by using the spacetime variable \(\rho_\pm := x_0 \pm ir\) for \(r^2 = \sum_{i=1}^3 x_i^2\) and a quaternion \(\hat{x} = \sum_{i=1}^3 x_i \sigma_i / r\), that
\[
V^0 = -\frac{i}{\lambda} (R_+(\rho_+; q)(1 - \hat{x}) + R_-(\rho_--; q)(1 + \hat{x})) ,
\]
where
\[
R_\pm = \frac{1}{2} \left(\frac{1}{i\rho_\pm (1-q) z_0; q)_\infty} - \frac{1}{i\rho_\pm (1-q) z_0; q)_\infty} \right),
\]
and whose conjugation is
\[
R^*_\pm = \frac{1}{2} ((i\rho_\pm (1-q) z_0; q)_\infty - (-i\rho_\pm (1-q) z_0; q)_\infty).
\]

So we find that the normalized vector \(\hat{V}_q\) should be of the form
\[
\hat{V}_q = \hat{V}_q^0 \phi^{-1/2} = \left[-\frac{i}{\lambda} \left(R_+(\rho_+; q)(1 - \hat{x}) + R_-(\rho_--; q)(1 + \hat{x}) \right) / q_1 i x^1 (1 - q) z \right] \phi^{-1/2},
\]
where \(\phi^{-1/2}\) is a quaternion valued normalization function which will be fixed by (23), i.e., \((\phi^{-1/2})^*(\hat{V}_q^0, \hat{V}_q^0) q \phi^{-1/2} = 1\). The procedure to fix \(\phi^{-1/2}\) is in the similar manner to the \(q\)-deformation of BPS monopole case [14]. We finally find,
\[
\phi^{-1/2} = \frac{1}{2} \left\{ (K_+ - K_- + \Lambda_+ - \Lambda_-)^{-1/2} + (K_+ + K_- + \Lambda_+ + \Lambda_-)^{-1/2} \right\} 1
\]
\[
- \frac{1}{2} \left\{ (K_+ - K_- + \Lambda_+ - \Lambda_-)^{-1/2} - (K_+ + K_- + \Lambda_+ + \Lambda_-)^{-1/2} \right\} \hat{x},
\]
where the functions \(\Lambda_\pm\) and \(K_\pm\) are
\[
\Lambda_\pm = \frac{1}{i \rho_+} \sum_{n=0}^{\infty} \left(\frac{q^{\rho_+}; q_{2n}}{(q; q)_{2n+1}} \right)^2 \left(i (1-q) \rho_+ z_0 \right)^{2n+1} \pm (\rho_+ \leftrightarrow \rho_-) \tag{37}
\]
\[
K_\pm = \frac{2}{\lambda^2} (R^*_\pm R_\mp + R^*_\mp R_\pm). \tag{38}
\]
In this way, we have completed fixing the vector \(\hat{V}_q\) by the ADHMN construction on \(\ell^2\) vector space, which yields the \(q\)-deformation of Harrington-Shepard
caloron as will be shown later. The anti-selfduality of the gauge field is obvious from (25) as in the q-deformed monopole case [14]. The entire information on the gauge connection and the curvature is included in the vector \vec{V}_q, so that they can be obtained by the canonical way but are very complex form. Hereafter we consider \vec{V}_q at some limits of the parameters.

Firstly, it can be shown that the $q \to 1$ limit gives the ordinary Harrington-Shepard caloron. In this limit, the q-integral turns into the ordinary integral so that the L^2 function getting close to an L^2 function. Actually, since

$$\lim_{q \to 1} K_+ = \frac{2}{\lambda^2} (\cosh 2z_0 r - \cos 2z_0 x_0), \quad \lim_{q \to 1} K_- = 0,$$

and

$$\lim_{q \to 1} \Lambda_+ = \frac{\sinh 2z_0 r}{r}, \quad \lim_{q \to 1} \Lambda_- = 0,$$

we find the normalization function tends to

$$\lim_{q \to 1} \phi^{-1/2} = \phi^{-1/2}(HS) = \left(\frac{2}{\lambda^2} (\cosh 2z_0 r - \cos 2z_0 x_0) + \frac{\sinh 2z_0 r}{r} \right)^{-1/2}.$$

The vector \vec{V}_q, therefore, turns into

$$\lim_{q \to 1} \vec{V}_q = \left[\frac{2}{\lambda} \left(\sin x_0 z_0 \cosh r z_0 - i \cos x_0 z_0 \sinh r z_0 \hat{x} \right) \right] \phi^{-1/2}(HS),$$

which gives the Harrington-Shepard caloron exactly through the L^2 inner product (6). As pointed out in [7], this caloron yields the interpolation between the 1-instanton in \mathbb{R}^4 (as $z_0 \to 0$) and the BPS 1-monopole (as $\lambda \to \infty$). On the other hand, the q-deformed caloron at general q does not have the instanton limit ($z_0 \to 0$), since the q-interval does not include zero, $0 \notin I_q$.

Next, we consider the limit $\lambda \to \infty$, corresponding to the infinite instanton size, which is easily obtained from (35) and (36),

$$\lim_{\lambda \to \infty} \vec{V}_q = \left[e_q(i \hat{x}^\dagger (1 - q) z) \right] \phi^{-1/2}(q\text{-BPS}),$$

where

$$\phi^{-1/2}(q\text{-BPS}) = \lim_{\lambda \to \infty} \phi^{-1/2} = \frac{1}{2} \left\{ (\Lambda_+ - \Lambda_-)^{-1/2} + (\Lambda_+ + \Lambda_-)^{-1/2} \right\} 1$$

$$- \frac{1}{2} \left\{ (\Lambda_+ - \Lambda_-)^{-1/2} - (\Lambda_+ + \Lambda_-)^{-1/2} \right\} \hat{x},$$
This is exactly the q-deformed BPS monopole [14], which becomes the BPS 1-monopole when $q \to 1$, and the pure gauge ($F = 0$) when $q \to 0$.

Finally, we show the $q \to 0$ limit tends to the pure gauge, analogous to the “q-BPS” case. In our q-deformed caloron, the field strength two form is given by the double q-integral (25). In the $q \to 0$ limit, this double integral is reduced to the summation only at the boundary ($z = \pm z_0$),

$$
F \rightarrow z_0^2 \left(v^\dagger(z; 1/q) \eta_{\mu\nu} f(z_0, z_1) v(z_0) + v^\dagger(-z; 1/q) \eta_{\mu\nu} f(-z_0, -z_1) v(-z_0) \right. \\
+ v^\dagger(z; 1/q) \eta_{\mu\nu} f(z_0, -z_1) v(-z_0) \\
\left. + v^\dagger(-z; 1/q) \eta_{\mu\nu} f(-z_0, -z_1) v(-z_0) \right) dx^\mu \wedge dx^\nu,
$$

however, from the boundary condition of $f(z, w)$, this is automatically zero.

In summary, we have had the following diagram.

4 Concluding remarks

In this paper, we have constructed the ADHMN caloron construction on ℓ^2 vector space, which is a generalization of [14]. We have found the ASD necessary conditions on the matrix Nahm data, which are (17), (18) and (19). As a concrete example, we have made the q-deformed Harrington-Shepard caloron, which preserves the ASD conditions for general value of $q \in (0, 1)$.

Further application of the q-deformed caloron construction will be possible. It is intriguing to consider the q-deformed Nahm data for general matrix dimensions. In contrast to the $N = 1$ case considered in this paper, the q-deformed Nahm data of $N > 1$ have no counter part in the ordinary caloron construction at $q \to 1$, due to the pseudo constant condition (17). Such q-deformed Nahm data will be corresponding to a new class of gauge fields. As a naive example of $N = 2$ case, we can take an ansatz such as $T_0 = T_1 = T_2 = 0$, and $T_3 = iC(q)\sigma_3$, where $C(q)$ being a pseudo-constant with twist invariance, $C(q^{-1}) = C(q)$, and Λ to be a real quaternion, which Nahm data gives the
solution to (17), (18) and (19). The inverse of $\Delta^*\Delta$ can be constructed as in the $N = 1$ case, so that the gauge field is ASD. However, the Nahm data do not have $q \to 1$ counter part obviously. In fact, this leads to $\dim \ker(\Delta^*) = 2$, not to give an $Sp(1) \simeq SU(2)$ gauge field. From this consideration, the generalization to higher rank gauge group must be considered.

Finally, it will be straightforward to construct a q-deformed calorons of $N = 1$ with nontrivial holonomy at the spatial infinity by introducing the extra discontinuous points of the Nahm data in the q-interval I_q, similarly to [11]. This q-deformation will bring us the perspective of the q-caloron from the constituent q-monopoles, which is also quite interesting subject to study.

Acknowledgement

The author thanks Prof. Masaru Kamata for fruitful discussions. He is also grateful to the participants of the workshop “Fundamental Problems and Application of Quantum Field Theory” held at Yukawa Institute of Theoretical Physics in December 2005. This work is partially supported by Grant-in-Aid for Scientific Research from Japan Society for the Promotion of Science No.16540352.

A The ASD conditions

In this appendix, we give the explicit form of $\Delta^*\Delta$, which is necessary to be commutative with arbitrary quaternion. By using the formula of q-difference,

$$D_z \cdot \phi(z) = D_z \phi(z) + \phi(qz) \cdot D_z,$$ \hspace{1cm} (A.1)

we carry out the calculation of $\Delta^*\Delta$,
\[\Lambda^* \Lambda \delta_q(z_0, z) + (iD_z \otimes 1_N + 1 \otimes 1_N x^\dagger - 1 \otimes i \sum_{\mu=1}^4 T^*_\mu(z) \tau^\dagger_\mu) \]
\[\times (iD_z \otimes 1_N + 1 \otimes 1_N x^\dagger + 1 \otimes i \sum_{\mu=1}^4 T_\mu(z) \tau_\mu) \]
\[= \Lambda^* \Lambda \delta_q(z_0, z) - D^2_z \otimes 1_N + iD_z \otimes 1_N x_0 + 1 \otimes 1_N |x|^2 + 1 \otimes T^*_0(z)T_0(z) \]
\[- 1 \otimes D_z T_0(z) - D_z \otimes (T_0(qz) - T^*_0(z)) \]
\[- 1 \otimes \sum_{k=1}^3 D_z T_k(z) \tau_k + 1 \otimes \sum_{j,k=1}^3 T^*_j(z)T_k(z) \tau^\dagger_j \tau_k \]
\[- D_z \otimes \sum_{k=1}^3 \left(T_k(qz) \tau_k + T^*_k(z) \tau^\dagger_k \right) \]
\[+ 1 \otimes i \sum_{k=1}^3 \left(T_k(z) x^\dagger \tau_k - T^*_k(z) \tau^\dagger_k x \right) \]
\[+ 1 \otimes i \left(T_0(z) x^\dagger - T^*_0(z) x \right) \]
\[+ 1 \otimes \sum_{k=1}^3 \left(T^*_0(z)T_k(z) \tau_k + T^*_k(z)T_0(z) \tau^\dagger_k \right). \]

For the final formula to be commutative with quaternion, we need all of the terms including \(\tau_k \), \(x \) or \(x^\dagger \) vanish. Therefore, we find that it is necessary to hold the pseudo constant condition (17), the twisted anti-hermite condition (18) and the \(q \)-analog of the caloron Nahm equations,

\[D_z T_i(z) - \sum_{j,k=1}^3 \epsilon_{ijk} T_j(qz) T_k(z) - T_i(qz) T_0(z) + T_0(z) T_i(z) \]
\[= \Lambda^* \Lambda \delta_q(z_0, z), \quad (A.2) \]

which, together with (17), yields (19). Finally we obtain the operator on \(\ell^2[I_q] \otimes V_N \) without the boundary term,

\[\Delta^* \Delta = -D^2_z \otimes 1_N + 2ix_0 iD_z \otimes 1_N + 1 \otimes 1_N |x|^2 \]
\[- 1 \otimes \sum_{\mu=1}^4 (T^*_\mu(z) - 2ix_0) T_\mu(z) - 1 \otimes D_z T_0(z) - D_z \otimes (T_0(qz) + T^*_0(z)) \]
\[(A.3) \]

in which each entry of the \(N \times N \) matrices is a real quaternion.
References

[1] M.F. Atiyah, V.G. Drinfeld, N.J. Hitchin, Yu.I. Manin, Phys. Lett. A65 (1978) 185.

[2] V.V. Khoze, M.P. Mattis, M.J. Slater, Nucl. Phys. B536 (1999) 69.

[3] B.J. Harrington, H.K. Shepard, Phys. Rev. D17 (1978) 2122.

[4] W. Nahm, Self-Dual Monopoles and Calorons, in: Springer Lecture Notes in Phys., vol. 201, 1984, pp. 189-200.

[5] E.B. Bogomolny, Sov. J. Nucl. Phys. 24 (1976) 449.

[6] T.C. Kraan, Comm. Math. Phys. 212 (2000) 503.

[7] R.S. Ward, Phys. Lett. B582 (2004) 203.

[8] H. Garland, N.K. Murray, Comm. Math. Phys. 120 (1988) 335.

[9] P. Norbury, Comm. Math. Phys. 212 (2000) 557.

[10] K. Lee, P. Yi, Phys. Rev. D56 (1997) 3711; K. Lee, Phys. Lett. B426 (1998) 323.

[11] K. Lee, C. Lu, Phys. Rev. D58 (1998) 025011.

[12] T.C. Kraan, P. van Baal, Phys. Lett. B428 (1998) 268; T.C. Kraan, P. van Baal, Nucl. Phys. B533 (1998) 627; T.C. Kraan, P. van Baal, Phys. Lett. B435 (1998) 389.

[13] F. Bruckmann, P. van Baal, Nucl. Phys. B645 (2002) 105; F. Bruckmann, D. Nógádi, P. van Baal, Nucl. Phys. B698 (2004) 233.

[14] M. Kamata, A. Nakamura, Phys. Lett. B463 (1999) 257; M. Kamata, A. Nakamura, Journ. Phys. A 34 (2001) 10441.

[15] E. Witten, Phys. Rev. Lett. 38 (1977) 121.

[16] G. Gasper, M. Rahman, Basic Hypergeometric Series 2nd Ed., Cambridge, Cambridge Univ. Press, 2004.

[17] N.J. Hitchin, Comm. Math. Phys. 89 (1983) 45.