BMJ Open

Opioid-sparing effects of medical cannabis or cannabinoids for chronic pain: a systematic review and meta-analysis of randomised and observational studies

Atefeh Noori,1,2 Anna Miroshnychenko,1 Yaadwinder Shergill,1 Vahid Ashoorion,1 Yasir Rehman,1 Rachel J Couban,2 D Norman Buckley,3 Lehana Thabane1,4,1 Mohit Bhandari,1,4 Gordon H Guyatt,1 Thomas Agoritsas,1,5 Jason W Busse1,3,6,7

ABSTRACT

Objective To assess the efficacy and harms of adding medical cannabis to prescription opioids among people living with chronic pain.

Design Systematic review.

Data sources CENTRAL, EMBASE and MEDLINE.

Main outcomes and measures Opioid dose reduction, pain relief, sleep disturbance, physical and emotional functioning and adverse events.

Study selection criteria and methods We included studies that enrolled patients with chronic pain receiving prescription opioids and explored the impact of adding medical cannabis. We used Grading of Recommendations Assessment, Development and Evaluation to assess the certainty of evidence for each outcome.

Results Eligible studies included five randomised trials (all enrolling chronic cancer-pain patients) and 12 observational studies. All randomised trials instructed participants to maintain their opioid dose, which resulted in a very low certainty evidence that adding cannabis has little or no impact on opioid use (weighted mean difference (WMD) −3.4 milligram morphine equivalent (MME); 95% CI −12.7 to 5.8). Randomised trials provided high certainty evidence that cannabis addition had little or no effect on pain relief (WMD −0.18 cm; 95% CI −0.38 to 0.02; on a 10 cm Visual Analogue Scale (VAS) for pain) or sleep disturbance (WMD −0.22 cm; 95% CI −0.4 to −0.06; on a 10 cm VAS for sleep disturbance; minimally important difference is 1 cm) among chronic cancer pain patients. Addition of cannabis likely increases nausea (relative risk (RR) 1.43; 95% CI 1.04 to 1.96; risk difference (RD) 4%, 95% CI 0% to 7%) and vomiting (RR 1.5; 95% CI 1.01 to 2.24; RD 3%; 95% CI 0% to 6%) (both moderate certainty) and may have no effect on constipation (RR 0.85; 95% CI 0.54 to 1.35; RD −1%; 95% CI −4% to 2%) (low certainty).

Eight observational studies provided very low certainty evidence that adding cannabis reduced opioid use (WMD −22.5 MME; 95% CI −43.06 to −1.97).

Conclusion Opioid-sparing effects of medical cannabis for chronic pain remain uncertain due to very low certainty evidence.

PROSPERO registration number CRD42018091986

INTRODUCTION

Chronic pain affects approximately one in five adults and is a common reason for seeking medical care.1,2 Opioids are commonly prescribed for this condition, particularly in North America;3 however, they only provide benefit to a minority of patients. A 2018 systematic review of 96 trials found high certainty evidence that, versus placebo, opioids provide important pain relief (≥1 cm improvement on a 10 cm Visual Analogue Scale (VAS) for pain) to 12% of patients for whom they are prescribed.4 Moreover, opioids are associated with harms such as overdose and death,5,6 which are dose dependent.7–10 As a result, there is considerable interest in therapies that may allow patients with chronic pain using opioid therapy to reduce their opioid intake.

One promising approach is adding cannabis therapy, which low certainty evidence suggests may be similarly effective to opioids for reducing pain and improving physical functioning among people living...
with chronic pain. Experimental studies have shown that
opioids and cannabis have similar signal transduction systems, and observational studies in the USA demonstrated that the rates of opioid-related mortality reduced after cannabis was legalised. Between 64% and 77% of patients with chronic pain responding to cross-sectional surveys reported a reduction in long-term opioid use after adding medical cannabis to their treatment. A 2017 systematic review concluded that preclinical studies provided robust evidence for the opioid-sparing effects of cannabis. To clarify the issue, we undertook a systematic review of randomised controlled trials (RCT) and observational studies to explore the impact of adding medical cannabis on opioid dose, other patient-important outcomes and related harms in patients with chronic pain using prescribed opioid therapy.

This systematic review is part of the BMJ Rapid Recommendations project, a collaborative effort from the MAGIC Evidence Ecosystem Foundation (www.magiccvidnece.org) and BMJ. This systematic review informed a parallel guideline published on BMJ.com and MAGICapp (https://app.magicapp.org/#/guideline/jMMYPj).

METHODS
We followed standards for Meta-analysis Of Observational Studies in Epidemiology and Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines.

Eligibility criteria
We included RCTs and observational studies, including cohort studies and case–control studies, in any language, that explored the impact of adding medical cannabis (ie, phytocannabinoids, endocannabinoids or synthetic cannabinoids) on the use of prescription opioids among people living with chronic pain. We defined pain as chronic if patients reported that symptoms had persisted for ≥3 months. We excluded editorials, letters to the editor, preclinical studies, conference abstracts, case reports, case series, cross-sectional studies and studies with less than 2 weeks follow-up. We also excluded studies of recreational cannabis use as these products typically contain much higher amounts of the psychotropic cannabinoid tetrahydrocannabinol (THC) than would be administered for therapeutic purposes. We classified observational study designs according to recommendations by the Cochrane Observational Studies Methods Group.

Literature search and study selection
We searched the Cochrane Central Register of Controlled Trials (CENTRAL), EMBASE and MEDLINE from inception to March 2020 with no restriction on language of publication. An experienced medical librarian (RJ) developed our database-specific search strategies (online supplemental appendix A). We also searched the ClinicalTrials.gov registry to identify ongoing trials, and reference lists of all eligible studies and related systematic reviews for additional eligible studies. Two teams of paired reviewers independently screened titles, abstracts and full-text studies for eligibility using online systematic review software (Rayyan QCR, Qatar Computing Research Institute). Reviewers resolved disagreements through discussion.

Data collection
Using standardised forms and a detailed instruction manual, pairs of reviewers independently abstracted data from each eligible study, including study and patient characteristics, and details of treatment (eg, dose, formulation and duration of cannabis add-on therapy). Our primary outcome was opioid dose. We also captured all patient-important outcomes, as guided by the Initiative on Methods, Measurement, and Pain Assessment in Clinical Trials, including pain relief, sleep disturbance, physical and emotional functioning. Regarding adverse events, we focused on vomiting, nausea and constipation as a systematic review of values and preferences demonstrated that patients living with chronic pain experience gastrointestinal complaints as the most important opioid-induced adverse events. We contacted authors to obtain unpublished data.

Risk of bias assessment
Following training and calibration exercises two independent reviewers used a modified Cochrane risk of bias tool to assess the risk of bias among eligible RCTs according to the following domains: allocation concealment, blinding of participants, study personnel, outcome assessors and data analyst, and lost to follow-up (≥20% missing data were assigned high risk of bias). Response options for each item were ‘definitely or probably yes’ (assigned a low risk of bias) and ‘definitely or probably no’ (assigned a high risk of bias) (online supplemental table 1). We used criteria suggested by the CLARITY group to assess the risk of bias of observational studies including selection bias, confidence that all patients had the condition of interest, control for confounding variables, validity of outcome assessment(s), and infrequent missing data (<20%) (details available at www.evidencedpartners.com/resources/methodological-resources/). (online supplemental tables 2–3).

Data analysis
We calculated inter-rater agreement regarding the eligibility of full-text studies using an adjusted kappa (κ) statistic. We conducted separate analyses for RCTs and observational studies. All continuous measures for pain intensity and sleep disturbance were converted to a 10 cm VAS; the minimally important difference (MID) for both was 1 cm. All continuous outcomes that were reported by more than one study were pooled to derive the weighted mean difference (WMD) and associated 95% CI. We pooled binary outcomes (adverse events) as relative risks (RRs) and risk differences (RDs) and their
associated 95% CIs. We conducted all meta-analyses with random-effects models and the DerSimonian-Laird method.35

When studies reported effects on continuous outcomes as the median and IQR, we derived the mean and SD using the method presented by Wan et al.34 We also converted medians to means using the approach recommended by the Cochrane Handbook as a sensitivity analysis. When authors failed to report a measure of precision associated with mean differences, we imputed the SD from eligible studies that reported these measures (online supplemental technical appendix).35 We included each comparison reported by multiarm studies and calculated a correction factor to account for the unit of analysis error (ie, when information from a treatment arm is used more than once in the same meta-analysis).36 We explored the consistency of association between our pooled results and studies reporting the same outcome domains that were not possible to pool. We used Stata (StataCorp, Release V.15.1) for all analyses. Comparisons were two tailed using a threshold of p≤0.05.

Subgroup analyses and meta-regression
We examined heterogeneity among pooled RCTs using the I² statistic, and through visual inspection of forest plots for pooled observational data, because statistical tests of heterogeneity can be misleading when sample sizes are large and associated confidence intervals are therefore narrow.37 When we had at least two studies in each subgroup, we explored sources of heterogeneity with five prespecified subgroup hypotheses, assuming greater benefits with: (1) shorter versus longer duration of follow-up; (2) higher versus lower risk of bias; (3) enriched versus non-enriched study design; (4) chronic non-cancer versus chronic cancer-related pain and (5) higher versus lower THC content. We assumed similar directions of subgroup effects for harms, except for study design and THC content in which we expected greater harms with non-enriched trials and higher THC content. However, apart from item two (risk of bias), studies did not report sufficient data to undertake subgroup analyses.

The certainty of the evidence
We used the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach to assess the certainty of evidence on an outcome-by-outcome basis as high, moderate, low or very low.38 With GRADE, RCTs begin as high-certainty evidence, but can be rated down because of risk of bias, imprecision, inconsistency, indirectness or publication bias. We rated down for imprecision if the 95% CI associated with a pooled continuous outcome included half the MID, or if the estimate of precision associated with the RR for binary outcomes included no effect. We considered an I² value between 75% and 100% to represent considerable inconsistency.39 We rated down the certainty of evidence for indirectness if there were important differences between our research question and the patients enrolled, intervention tested or outcomes reported among studies contributing to our meta-analyses.40

Using GRADE, observational studies begin as low certainty evidence, and while they can be rated down further for the same reasons as RCTs, they can also be rated up in the presence of a large magnitude of the effect, a dose–response gradient or consideration of plausible confounders or other biases that increase confidence in the estimated effect.41 We only reported the pooling results of observational studies when they resulted in the same or higher certainty of evidence than evidence from RCTs. When there were at least 10 studies for meta-analysis, we explored for small-study effects by visual assessment of funnel plot asymmetry and Egger’s statistical test.42

Patients and public involvement
Patients and public were not involved in this research.

RESULTS
Of 5133 records identified, we reviewed 133 articles in full text, and 18 studies reported in 17 publications proved eligible (figure 1, online supplemental appendix B); five RCTs in four publications43–46 and 13 observational studies.47–59 One study enrolled a mixed group of opioid users; however, our attempts to contact the authors to acquire pain intensity data for the subgroup of patients prescribed opioids proved unsuccessful. All five RCTs43–46 and three observational studies31 34 35 enrolled patients with chronic cancer-related pain; the remaining 10 observational studies explored adding

![Figure 1](https://example.com/figure1.png)

Study selection process in review of opioid-sparing effects of cannabis in chronic pain.
cannabis to opioids for patients with chronic non-cancer pain (eg, chronic low back pain, fibromyalgia, painful chronic pancreatitis), 47 52 53 57–59 or a mix of cancer and non-cancer pain (table 1). 48–50 56

Among the 18 included studies, the percentage of female participants was 48% (median of individual trials 48%, IQR 43%–58%), and the median of the mean age was 56.3 (IQR 51.2–59.9). Follow-up ranged from 2 to 5 weeks among RCTs, and from 4 weeks to 6.4 years for observational studies. Only one RCT 45 used an enrichment design (following the open-label phase, patients with at least 15% improvement in pain were randomised to the intervention and control groups) and all RCTs advised patients to maintain stable doses of all other prescribed pain medications, including opioids, during the study period (table 1). All included RCTs, and three of the observational studies 48 51 52 administered synthetic cannabis products (ie, nabilone, dronabinol and nabix-mimole), five observational studies 49 50 56 59 59 reported different combinations of THC:Cannabinol (CBD) products, and six other observational studies 47 53–55 57 did not provide details on the type of cannabis or cannabinoids provided (table 1, online supplemental table 4). Ten studies reported receiving industry funding. 43–46 49 51 52 57 58 five studies 50 53–56 reported no-industry funding and three studies 47 48 59 did not report funding information (table 1).

Risk of bias of included studies
All included RCTs reported adequate allocation concealment and blinding of patients and healthcare providers; however, three trials 45 46 were at risk of bias due to high lost to follow-up (online supplemental table 5). Each RCT specified that they employed an intention-to-treat analysis. All observational studies were at high risk of bias, typically due to lack of confidence in the assessment of exposure, non-representative samples and insufficient control for confounding (online supplemental file 6–7).

Outcomes for medical cannabis add-on therapy
Opioid dose reduction
The primary limitation of RCTs was that all investigators instructed patients to not alter their dose of opioids. This represents a very serious indirectness of the findings regarding the research question, warranting rating down two levels, and was the primary reason for very low certainty evidence from the 1176 patients. 43–45 Their results raised the possibility that adding medical cannabis may not be associated with a reduction in opioid use among patients living with chronic cancer pain (WMD −3.4 milligram morphine equivalent (MME); 95% CI −12.7 to 5.9; table 2; online supplemental figure 1). There were no differences in effect based on the lost to follow-up (online supplemental figure 2); test of interaction p=0.758).

Very low certainty evidence from eight observational studies (seven of which enrolled people with chronic non-cancer pain) 47 48 50 51 53–55 58 59 raised the possibility that adding medical cannabis may reduce the use of opioids among patients with predominantly chronic non-cancer pain (WMD −22.5 MME; 95% CI −43.06 to −1.97; table 2; online supplemental figure 3). Three observational studies that could not be pooled, as they only reported opioid reduction as a percentage, also found that providing medical cannabis allowed patients to decrease their opioid dose. The first study assessed the impact of providing medical cannabis to 61 patients with chronic low back pain who were prescribed opioid therapy (median opioid dose was 21 mg MME/day) and reported that 52% of patients (32 of 61) stopped all use of opioids at a median follow-up of 6.4 years. 47 The second study 48 reported that of 94 patients with chronic pain (both cancer and non-cancer pain) who began using CBD hemp extract, 53% were able to decrease their use of prescription opioids at 8 weeks. A third study 49 included 600 patients with chronic pain who indicated willingness to taper their opioid dose and were administered 0.5g daily of medicinal cannabis for each 10% reduction in opioid dose. After 6 months follow-up, 55% of patients reported a 30% reduction in opioid dose on average and 26% of them discontinued opioid use.

Pain relief
High-certainty evidence from five RCTs 43–46 demonstrated that adding medical cannabis to opioid therapy resulted in trivial or no difference in cancer-related pain (WMD −0.18 cm; 95% CI −0.38 to 0.02 on the 10 cm VAS for pain; MID 1 cm; table 2; online supplemental figure 4). Results did not differ depending on lost to follow-up (online supplemental figure 5, a test of interaction p=0.623). Very low certainty evidence from observational studies suggested a large decrease in pain when medical cannabis was added to opioids (online supplemental figure 6).

Sleep disturbance
Five RCTs 43–46 provided high certainty evidence that adding medical cannabis to prescription opioids results in a trivial improvement in sleep disturbance in people living with cancer-related chronic pain (WMD −0.22 cm; 95% CI −0.4 to −0.06 on the 10 cm VAS for sleep disturbance; MID 1 cm; table 2; online supplemental figure 7). Results did not differ between trials reporting the low and high lost to follow-up (online supplemental figure 8, a test of interaction p=0.93). Very low certainty evidence from observational studies suggested an improvement in sleep disturbance when medical cannabis was added to opioids (online supplemental table 8).

Other reported outcomes
A single RCT 44 reported moderate certainty evidence that adding cannabis likely has little or no effect on emotional and physical functioning (online supplemental tables 9–10).

Adverse events
Nausea, vomiting or constipation
Four RCTs 43–46 provided moderate certainty evidence that adding medical cannabis to opioid therapy likely increases the incidence of nausea (RR 1.43, 95% CI 1.04 to 1.96; RD
Table 1 Characteristics of included studies (n=18)

Author-year (country)	Study design	No of participants (% prescribed opioids)	Type of chronic pain (specific condition)	Age mean (SD)	% Female	Baseline opioid dose	Follow-up duration	Medical cannabis dose	Analgesic contervention	Funding source
Fallon, 2017 study I (multicentre trial*)	Parallel arm RCT	n=399; nabiximols (n=20), placebo (n=199) (100%)	100% chronic cancer pain	59.8 (10.9)	43%	Receiving opioid therapy of <500 MME/day (nabiximols group: 199 MME/day±131; placebo group: 207 MME/day±135)	5 weeks	THC 27mg/mL; CBD 25mg/mL (maximum allowed daily dosage of 10 sprays)	Not enrolled if they planned to undergo clinical interventions that would affect pain	Otsuka Pharmaceutical
Fallon, 2017 study II (multicentre trial*)	Parallel arm RCT	n=206; nabiximols (n=103), placebo=103 (100%)	100% chronic cancer pain	61.5 (11.3)	49%	Receiving opioid therapy of <500 MME/day (nabiximols: 212 MME/day±136; placebo: 207 MME/day±121)	5 weeks	THC 27mg/mL; CBD 25mg/mL (maximum allowed daily dosage of 10 sprays)	Not enrolled if they planned to undergo clinical interventions that would affect pain	Otsuka Pharmaceutical
Johnson, 2010 (multicentre trial*)	Parallel arm RCT	n=177; THC:CBD extract (n=60), THC extract (n=58), placebo (n=59) (100%)	100% chronic cancer pain	60.2 (12.3)	46%	Receiving opioid therapy for at least 1 week before enrolment (THC:CBD: 258MME/day±789; THC: 188 MME±234; placebo: 367±886)	2 weeks	One spray: 2.7mg THC/2.5mg CBD. The maximum permitted dose: eight actuations over 3 hours and 48 actuations over 24-hours	Not enrolled if they planned to undergo clinical interventions that would affect pain	GW Pharmaceuticals
Lichtman, 2018 (multicentre)	Parallel arm RCT	n=398; nabiximol (n=199), placebo (n=198) (100%)	100% chronic cancer pain	60 (11.5)	46%	Receiving opioid therapy of <500 MME/day (nabiximols: 193 MME/day±130; placebo: 186 MME/day±121)	5 weeks	THC 27mg/mL; CBD 25mg/mL (maximum allowed daily dosage of 10 sprays)	Not enrolled if they planned to undergo clinical interventions that would affect pain	Otsuka Pharmaceutical
Portenoy, 2012 (multicentre)	Parallel arm RCT	n=360; nabiximols low dose (1–4 sprays/day) (n=91), medium dose (6–10 sprays/day) (n=88), high dose (11–16 sprays/day) (n=90), placebo (n=91) (100%)	100% chronic cancer pain	58 (12.2)	48%	Receiving opioid therapy of <500 MME/day (median was 120 MME/day; range 3–16 660)	5 weeks	THC 27mg/mL; CBD 25mg/mL (maximum allowed daily dosage of 10 sprays per day)	Not enrolled if they planned to undergo clinical interventions that would affect pain	GW Pharmaceuticals; Otsuka Pharmaceutical
Barlowe, 2019 (USA)	Retrospective chart review	Enrolled in MCP (n=34), not enrolled in MCP (n=19) (100%)	100% CNCP (chronic painful pancreatitis)	49.9 (10.5)	45%	Not enrolled in MCP 183 MME/day±284; enrolled in MCP 190 MME/day±273	Range 4-297 weeks	THC 10mg capsules of THC: CBD in a 1:1 ratio 3-times daily	Not enrolled if they planned to undergo clinical interventions as required	NR
Bellnier, 2018 (USA)	One-arm observational study	n=29 (100%)	90% CNCP; 10% cancer pain	61 (10)	65%	Patients were receiving a median opioid dose of 79.94 MME/day	13 weeks	THC 5mg capsules	Not enrolled if they planned to undergo clinical interventions as required	NR
Author-year (country)	Study design	No of participants (% prescribed opioids)	Type of chronic pain (specific condition)	Age mean (SD)	Gender	Baseline opioid dose	Follow-up duration	Medical cannabis dose	Analgesic co-intervention	Funding source
-----------------------	--------------	--	---	---------------	--------	---------------------	-------------------	---------------------	-------------------------	--------------
Capano, 2020 (USA)	One-arm observational study	n=131 (100%)	100% chronic pain (cancer and non-cancer)	56.1 (range: 39–70)	68%	Receiving at least 50 MME/day	8 weeks	30mg CBD/1mg THC	NR	Ananda Professional
Haroutounian, 2016 (Israel)	One-arm observational study	n=73 (35%)	93.2% CNCP; 6.8% chronic cancer pain	51.2 (15.4)	38%	Receiving a median opioid dose of 60 MME/day (range 45–90)	26 weeks	Cigarettes: 6% to 14% THC; 0.2% to 3.8% CBD; Oral: 11% to 19% THC; 0.5% to 5.5% CBD	All participants were encouraged to attempt gradual dose reduction and possible discontinuation of other analgesics	No-external funding
Maida, 2008 (Canada)	Prospective cohort	Enrolled in MCP (n=47), not enrolled in MCP (n=65) (100%)	100% chronic cancer pain	69.7 (10.1)	42%	Nabilone treated: 60 MME/day±64; Nabilone untreated: 67 MME/day±101	4 weeks	On average 1.79mg two times daily nabilone	Patients were permitted to use concomitant analgesics	Valeant Pharmaceuticals Canada
Narang, 2008 (USA)	One-arm observational study	n=30 (100%)	100% CNCP	Median=43.5 (range=21–67)	53%	Receiving an average opioid dose of 68 MME/day±57	4 weeks	Flexible dose schedule, dronabinol 5–20 mg three times daily	NR	Solvay Pharmaceuticals
O’Connell, 2019 (USA)	One-arm observational study	n=77 (100%)	100% CNCP	54.1 (range=26–76)	58%	Receiving a mean opioid dose of 140 MME/day±184	26 weeks	NR	NR	No industry funding
Pritchard, 2020 (USA)	Retrospective cohort	Cannabis and opioids course (n=22), opioids only (n=61) (100%)	100% chronic cancer pain	53.1 (11.7)	23%	MCP enrolled: 144 MME/day±129; MCP not enrolled: 119 MME/day±100	26 weeks	NR	NR	No industry funding
Pawasarat, 2020 (USA)	Retrospective chart review	Enrolled in MCP (n=137), not enrolled in MCP (n=95) (100%)	100% chronic cancer pain	58 (IQR:14.7)	56%	MCP enrolled: median 45 MME/day, IQR=135; MCP not enrolled: median 97.5 MME/day, IQR=150	Between 39 and 52 weeks for MCP enrolled; <26 weeks for not enrolled	NR	NR	No industry funding
Rod, 2019 (Canada)	One-arm observational study	n=600	100% chronic pain (cancer and non-cancer)	NR	NR	Receiving a mean opioid dose of 120 MME/day (range 90-240 MME/day)	26 weeks	CBD and THC ranged between 4% and 6%; Doses related directly to the opioid taper.	All participants indicated readiness to reduce opioid dose and also received psychological supports (eg, CBT, mindfulness, relaxation)	No external funding
Author-year (country)	Study design	No of participants (% prescribed opioids)	Type of chronic pain (specific condition)	Age mean (SD)	% Female	Baseline opioid dose	Follow-up duration	Medical cannabis dose	Analgesic cointervention	Funding source
-----------------------	-----------------------------------	--	--	---------------	----------	----------------------	-------------------	-----------------------	--------------------------------------	--------------------------------------
Takakuwa, 2020(USA)	One-arm observational study	n=61 (100%)	100% CNCP (back pain)	50 (11.4)	38%	Receiving a median opioid dose of 21 MME/day	Median of 6.4 years among patients who ceased opioids completely	NR	NR	The Society of Cannabis Clinicians
Vigil, 2017(USA)	Retrospective chart review	Enrolled in MCP (n=37), not enrolled (n=29)(100%)	100% CNCP (90% back pain)	56.3 (11.8)	36%	Maximum daily dosage of <200 MME/day (enrolled in MCP: mean 24 MME/days; not enrolled in MCP: mean 16 MME/days)	52 weeks	NR	NR	University of New Mexico Medical Cannabis Research Fund
Yassin, 2019 (Israel)	One-arm observational study	n=31 (100%)	100% CNCP (fibromyalgia)	33.4 (12.3)	90%	Receiving oxycodone 5mg three times/day	26 weeks	THC to CBD ratio was 1:4; 20g/month for 3 months, increased up to 30g/month at the end of 6 months	Patients were permitted to use standardised analgesic therapy (duloxetine 30mg once daily and Targin 5/2.5mg two times a day). All other opiates and atypical analgesics were stopped	NR

*In Belgium, Bulgaria, Czech Republic, Estonia, Germany, Hungary, Latvia, Lithuania, Poland, Romania, the UK and the USA.
†Based on the whole population including opioid users and non-users.
CBD, cannabidiol; CBT, cognitive behavioural therapy; CNCP, chronic non-cancer pain; FU, follow-up; MME, milligram morphine equivalent; NR, not reported; RCT, randomised controlled trial; THC, tetrahydrocannabinol.
Table 2: GRADE evidence profile of medical cannabis or cannabinoids for patients with chronic pain prescribed long-term opioid therapy

# of studies	# of Patients	FU duration (Weeks)	Risk of bias*	Inconsistency (I², p value)†	Indirectness‡	Imprecision§	Publication bias	Treatment association (95% CI)	Overall certainty of evidence
Opioid dose: morphine milligram equivalents (MME) per day									
4 RCTs	1176	2–5	No serious risk of bias ¶	No serious inconsistency (40%, p=0.15)	Very serious indirectness **	Serious imprecision ††	Not detected	WMD −3.4 MME (−12.7 to 5.8)	Very low
8 Observational studies	453	4–297	Serious risk of bias ‡‡	Serious inconsistency (visual inspection)	No serious indirectness	No serious imprecision	Not detected	WMD −22.5 MME (−43.06 to −1.97)	Very low
Pain: 10 cm VAS for pain; lower is better; the MID=1 cm									
5 RCTs	1536	2–5	No serious risk of bias	No serious inconsistency (28%, p=0.20)	No serious indirectness	No serious imprecision	Not detected	WMD −0.18 (−0.38 to 0.02)	High
Sleep disturbance: 10 cm VAS for sleep disturbance; lower is better; the MID=1 cm									
5 RCTs	1536	2–5	No serious risk of bias	No serious inconsistency (0%, p=0.45)	No serious indirectness	No serious imprecision	Not detected	WMD −0.22 (−0.39 to −0.06)	High
Nausea									
4 RCTs	1330	2–5	Serious risk of bias	No serious inconsistency (0%, p=0.88)	No serious indirectness	No serious imprecision	Not detected	RR 1.43 (1.04 to 1.96)	Moderate
Vomiting									
4 RCTs	1330	2–5	Serious risk of bias	No serious inconsistency (0%, p=0.50)	No serious indirectness	No serious imprecision	Not detected	RR 1.5 (1.01 to 2.24)	Moderate
Constipation									
3 RCTs	1153	5	Serious risk of bias §§	No serious inconsistency (0%, p=0.92)	No serious indirectness	Serious imprecision ††	Not detected	RR 0.85 (0.54 to 1.35)	Low

*We assessed risk of bias using a modified Cochrane risk of bias instrument.
†Inconsistency refers to unexplained heterogeneity of results. For RCTs an I² of 75%–100% indicates that heterogeneity may be considerable. We assessed heterogeneity of pooled observational studies through visual inspection of forest plots.
‡Indirectness results if the intervention, control, patients or outcomes are different from the research question under investigation.
§Serious imprecision refers to situations in which the CI includes both benefit and harm (the 95% CI includes 1 MID).
¶Some of the included RCTs were at high risk of bias, due to loss to follow-up (>20%); however, we did not rate down for risk of bias as subgroup analysis showed no difference in treatment effect between trials at high and low risk of bias for missing outcome data (test of interaction p=0.758 and p=0.623 for opioid dose reduction and pain respectively).
**Downgraded twice due to indirectness since all trials instructed participants to maintain their opioid dose during the study period.
††The 95% CI around the WMD includes no effect.
‡‡Studies are based on non-representative samples.
§§Most RCTs were at high risk of bias due to lost to follow-up (≥20%).
FU, follow-up; GRADE, Grading of Recommendations Assessment, Development and Evaluation; MID, minimally important difference; RCT, randomised controlled trial; RR, relative risk; VAS, Visual Analogue Scale; WMD, weighted mean difference.
4%, 95% CI 0% to 7%; online supplemental figures 9–10) and vomiting (RR 1.50; 95% CI 1.01 to 2.24; RD 3%; 95% CI 0% to 6%; online supplemental figures 11–12) in patients with cancer-related chronic pain prescribed opioid therapy. Three RCTs provided low certainty evidence that adding medical cannabis to opioid therapy may not increase constipation (RR 0.85, 95% CI 0.54 to 1.35; RD –1%; 95% CI –4% to 2%; online supplemental figures 13–14). Online supplemental table 11 summarises adverse events reported in observational studies.

DISCUSSION

Very low certainty evidence from randomised trials and observational studies was conflicting and leaves uncertain whether the addition of medical cannabis affects the use of prescribed opioids among people living with chronic pain. Compared with long-term opioid therapy for chronic cancer pain without medical cannabis, high certainty evidence showed that adding medical cannabis had little or no effect on pain or sleep disturbance. Results provided moderate certainty evidence that adding cannabis therapy to opioids likely increases both nausea (RR 1.43, 95% CI 1.04 to 1.96) and vomiting (RR 1.50; 95% CI 1.01 to 2.24) and low certainty evidence suggested no effect on constipation (RR 0.85, 95% CI 0.54 to 1.35).

Strengths of our review include a comprehensive search for eligible randomised and observational studies, appraisal of the risk of bias among individual studies, and use of the GRADE approach to rate the certainty of evidence. Our review has limitations, primarily due to features of primary studies eligible for review, which failed to report all recommended outcomes that have been established as important for people living with chronic pain. Most observational studies incorporated inadequate adjustment for confounding. All randomised trials, despite reporting this outcome, were not designed to address the effect of medical cannabis on opioid use. All eligible RCTs enrolled patients with chronic cancer-related pain, and the generalisability to non-cancer chronic pain is uncertain. Specifically, substitution effects of medical cannabis for prescription opioids may also differ between chronic cancer and non-cancer pain; however, lack of variability among studies eligible for our review precluded exploration of this subgroup effect. Studies included in our review administered different formulations of cannabis and cannabinoid products; however, pooled effects of outcomes reported in RCTs showed no important heterogeneity.

A meta-analysis of preclinical studies, a narrative systematic review, and several cross-sectional and case studies have reported an apparent reduction in opioid use with addition of cannabis therapy. In a national US population-based survey of 2774 cannabis users (both medical and non-medical use) 36% of respondents reported substituting cannabis for prescription opioids (discontinued opioid use). In this survey, the 60% of participants who identified as medical cannabis users were much more likely to substitute cannabis for prescription drugs than recreational users (OR 4.59; 95% CI 3.87 to 5.43). Another US survey that included 841 patients prescribed long-term opioid therapy for chronic pain reported that 61% used medical cannabis, and 97% of this subgroup reported coincident reduction of their opioid use. Consistent with these findings, very low certainty evidence from observational studies in our review also suggests that adding medical cannabis allows patients predominantly with chronic non-cancer pain to reduce their use of opioids. Although RCT results do not support reduction in opioid dose by adding medical cannabis for opioids, the evidence is also very low certainty, primarily because investigators instructed patients to maintain their current opioid dose. This is a critical limitation, despite the 2019 National Institute for Health and Care Excellence guideline having concluded that providing medical cannabis for chronic pain does not reduce opioid use on the basis of these trials. Future trials should randomise chronic pain patients who voluntarily agree to engage in a trial of opioid tapering to receive medical cannabis or placebo and report all patient-important outcomes. Forced opioid tapering is ineffective and may cause harm.

CONCLUSION

The opioid-sparing effects of medical cannabis for chronic pain remain uncertain. Based on moderate-to-high certainty evidence, adding medical cannabis to opioid therapy among chronic cancer pain patients had little or no effect on neither pain relief nor sleep disturbance and likely increases the risk of nausea and vomiting. The accompanying BMJ Rapid Recommendation provides contextualised guidance based on this evidence, as well as three other systematic reviews on benefits, harms and patients’ values and preferences.

Author affiliations

1Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
2The Michael G. DeGroote National Pain Center, McMaster University, Hamilton, Ontario, Canada
3Department of Anesthesia, McMaster University, Hamilton, Ontario, Canada
4Division of Orthopaedic Surgery, Department of Surgery, McMaster University, Hamilton, Ontario, Canada
5Division of of General Internal Medicine, University of Geneva Faculty of Medicine, Geneva, Switzerland
6The Chronic Pain Centre of Excellence for Canadian Veterans, Hamilton, Ontario, Canada
7The Michael G. DeGroote Centre for Medicinal Cannabis Research, McMaster University, Hamilton, Ontario, Canada
8Twitter @JasonWBusse

Contributors JWB, AN and GHG conceived and designed the study. RJC performed the literature search. AN, AM, YS, VA and YR selected the studies, extracted the relevant information, and assessed the risk of bias of selected studies. AN synthesised the data. AN wrote the first draft of the paper. AN, JWB, GHG and TA critically revised the manuscript for important intellectual content. AN, JWB, LT, GHG, MS and DNB interpreted the findings. JWB, LT and GHG provided methodological support. All authors reviewed the paper and approved the final version. The corresponding author attests that all listed authors meet authorship criteria and that no others meeting the criteria have been omitted.
Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.

Patient consent for publication Not required.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement Data are available on reasonable request to the corresponding author at: bussewj@cmcmaster.ca.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iDs
Lehana Thabane http://orcid.org/0000-0003-0355-9734
Jason W Busse http://orcid.org/0000-0002-0178-8712

REFERENCES
1. Schopflocher D, Taenzer P, Jovey R. The prevalence of chronic pain in Canada. Pain Res Manag 2011;16:445–50.
2. Schapport SM, Burt CW. Ambulatory care visits to physician offices, hospital outpatient departments, and emergency departments. United States, 2001-02. Vital Health Stat 13 2006;159:1–66.
3. International Narcotics Control Board. Narcotic drugs: estimated world requirements for 2019. Vienna: United Nations. Available: https://www.incb.org/documents/Narcotic-Drugs/Technical-Publications/2018/INCB-Narcotic_Drugs_Technical_Publication_2018.pdf [Accessed 2 Nov 2020].
4. Busse JW, Wang L, Kamaleldin M, et al. Opioids for chronic noncancer pain: a systematic review and meta-analysis. JAMA 2018;320:2448–60.
5. Gomes T, Greaves S, Martins D. Latest trends in Opioid-Related deaths in Ontario: 1991 to 2015. Toronto: Ontario Drug Policy Research Network, 2017.
6. Busse JW, Craigie S, Juirink DN, et al. Guideline for opioid therapy and chronic noncancer pain. CMAJ 2017;189:E599–66.
7. Gomes T, Mamdani MM, Paterson JM, et al. Trends in high-dose opioid prescribing in Canada. Can Fam Physician 2014;60:826–32.
8. Bedson J, Chen Y, Ashworth J, et al. Risk of adverse events in patients prescribed long-term opioids: a cohort study in the UK clinical practice research datalink. Eur J Pain 2019;23:908–22.
9. Gwira Baumbllt JA, Wiedeman C, Dunn JR, et al. High-Risk use by patients prescribed opioids for pain and its role in overdose deaths. JAMA Intern Med 2014;174:796–801.
10. Bonnert ASB, Logan JE, Ganoczy D, et al. A detailed exploration into the association between prescribed opioid dosage and overdose deaths among patients with chronic pain. Med Care 2016;54:435–41.
11. Attal N, Mazzantir GE, Pergorius-Verbe B, et al. Chronic neuropathic pain management in spinal cord injury patients. What is the efficacy of pharmacological treatments with a general mode of administration? (oral, transdermal, intravenous). Ann Phys Rehabil Med 2009;52:124–41.
12. Livingston MD, Barnett TE, Delcher C. And Opioid-Related deaths in Colorado, 2000–2015. Am J Public Health 2017;107:1827–9.
13. Bradford AC, Bradford WD. Medical marijuana laws reduce prescription medication use in Medicare Part D. Health Aff 2016;35:1230–6.
14. Bachhuber MA, Saloner B, Cunningham CO, et al. Medical cannabis laws and opioid analgesic overdose mortality in the United States, 1999–2010. JAMA Intern Med 2014;174:1668–73.
15. Boehnke KF, Litinas E, Claw DJ. Medical cannabis use is associated with decreased opiate medication use in a retrospective cross-sectional survey of patients with chronic pain. J Pain 2016;17:739–44.
16. Piper BJ, DeKeuster RM, Beals ML, et al. Substitution of medical cannabis for pharmaceutical agents for pain, anxiety, and sleep. J Psychopharmacol 2017;31:569–75.
17. Nielsen S, Sabioni P, Trigo JM, et al. Opioid-Sparing effect of cannabinoids: a systematic review and meta-analysis. Neuropsychopharmacology 2017;42:1752–65.
18. Busse JW, Vankranckxlven P, Zeng L. Medical cannabis for chronic pain: a clinical practice guideline. BMJ 2020.
19. Stroup DF, Berlin JA, Morton SC, et al. Meta-Analysis of observational studies in epidemiology: a proposal for reporting, meta-analysis of observational studies in epidemiology (moose) group. JAMA 2000;283:208–12.
20. Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 2009;339:b2700.
21. Classification of chronic pain. Classification of chronic pain. descriptions of chronic pain syndromes and definitions of pain terms, prepared by the International Association for the study of pain, Subcommittee on taxonomy. Pain Suppl 1986;3:51–226.
22. Lintzeris N, Driels I, Elias N, et al. Medicinal cannabis in Australia, 2016: the cannabis as medicine survey (CAMS-16). Med J Aust 2018;209:211–6.
23. Emsby MA, Ross SA, Mehmedic Z, et al. Potency trends of delta9-THC and other cannabinoids in confiscated marijuana from 1980–1997. J Forensic Sci 2000;45:14636J–30.
24. Reeves BC, Deeks JJ, Higgins JPT. Chapter 24: Including non-randomized studies on intervention effects. In: Higgins JPT TJ, Chandler J, Cumpston M, et al., eds. Editor: cochrane Handbook for systematic reviews of interventions version 6.1, 2020. www.training. cochrane.org/handbook;
25. Dworkin RH, Turk DC, Farrar JT, et al. Core outcome measures for chronic pain clinical trials: IMMPACT recommendations. Pain 2005;113:9–19.
26. Goshua A, Craigie S, Guyatt GH, et al. Patient values and preferences regarding opioids for chronic noncancer pain: a systematic review. Pain Med 2018;19:2469–80.
27. Aid EA, Sun X, Busse JW, et al. Specific instructions for estimating unclearly reported blinding status in randomized trials were reliable and valid. J Clin Epidemiol 2012;65:262–7.
28. Higgins JPT, Altman DG, Gletsche PC, et al. The Cochrane collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011;343:d5928.
29. Tool to Assess Risk of Bias. Clarity group at McMaster University, 2020. Available: www.evidencepartners.com/resources/methological-resources/ Evidence partner [Accessed 4 Nov 2020].
30. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics 1977;33:159–74.
31. Farrar JT, Young JP, Laboreaux L, et al. Clinical importance of changes in chronic pain intensity measured on an 11-point numerical pain rating scale. Pain 2001;94:149–58.
32. Zisapel N, Nir T. Determination of the minimal clinically significant difference on a patient visual analog sleep quality scale. J Sleep Res 2003;12:291–8.
33. DerSimonian R, Laird N. Meta-Analysis in clinical trials. Control Clin Trials 1986;7:177–88.
34. Wan X, Wang W, Liu J, et al. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol 2014;14:135.
35. Ma J, Liu W, Hunter A, et al. Performing meta-analysis with incomplete statistical information in clinical trials. BMC Med Res Methodol 2008;8:56.
36. Rücker G, Cates CJ, Schwarz G. Methods for including information from multi-arm trials in pairwise meta-analysis. Res Synth Methods 2017;8:392–403.
37. Rücker G, Schwarz G, Carpenter JR, et al. Undue reliance on I(2) in assessing heterogeneity may mislead. BMC Med Res Methodol 2008:8:79.
38. Guyatt GH, Oxman AD, Vist GE, et al. Grader: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ 2008;336:924–6.
39. Higgins JPT, Thomas J, Chandler J, eds. Cochrane Handbook for Systematic Reviews of Interventions version 6.0 (updated July 2019). Cochrane, 2019. www.training.cochrane.org/handbook
40. Guyatt GH, Oxman AD, Kunz R, et al. GRADE guidelines: 8. Rating the quality of evidence—indirectness. J Clin Epidemiol 2011;64:1303–10.
41 Guyatt GH, Oxman AD, Sultan S, et al. Grade guidelines: 9. rating up the quality of evidence. *J Clin Epidemiol* 2011;64:1311–6.

42 Egger M, Davey Smith G, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. *BMJ* 1997;315:629–34.

43 Fallow MT, Albert Lu, E. McQuade R, et al. Effects of a double-blind, randomized, placebo-controlled study of nabiximol oromucosal spray as an adjunctive therapy in advanced cancer patients with chronic pain unalleviated by optimized opioid therapy: two double-blind, randomized, placebo-controlled phase 3 studies. *Br J Pain* 2017;11:19–33.

44 Johnson JR, Barnell-Nugent M, Lossignol D, et al. Multicenter, double-blind, randomized, placebo-controlled, parallel-group study of the efficacy, safety, and tolerability of THC/CBD extract and THC extract in patients with intractable cancer-related pain. *J Pain Symptom Manage* 2010;39:167–79.

45 Lichtman AH, Lux EA, McQuade R, et al. Efficacy of dronabinol as an adjunctive treatment for chronic pain patients on opioid therapy. *J Pain Symptom Manage* 2018;55:179–88.

46 Portenoy RK, Ganae-Motan ED, Allende S, et al. Nabiximols for opioid-treated cancer patients with poorly-controlled chronic pain: a randomized, placebo-controlled, grade-3 controlled trial. *J Pain* 2012;13:438–49.

47 Barlowe TS, Kelani-Pace JL, Smith KD, et al. Effects of medical cannabis on use of opioids and hospital visits by patients with painful chronic pancreatitis. *Cleft Gastroenterol Hepatol* 2019;17:2608–9.

48 Bellnier T, Brown GW, Ortega TR. Preliminary evaluation of the efficacy, safety, and costs associated with the treatment of chronic pain with medical cannabis. *Ment Health Clin* 2018;6:110–5.

49 Capron A, Givon R, Wexen AD, et al. Efficacy of CBD hemp extract on opioid use and quality of life indicators in chronic pain patients: a prospective cohort study. *Postgrad Med* 2020;132:56–61.

50 Haroutounian S, Ratz Y, Ginosar Y, et al. The effect of medicinal cannabis on pain and quality-of-life outcomes in chronic pain: a prospective open-label study. *Clin J Pain* 2016;32:1036–43.

51 Maida V, Ennis M, Irani S, et al. Adjunctive nabilone in cancer pain and symptom management: a prospective observational study using propensity scoring. *J Support Oncol* 2008;6:119–24.

52 Nannah S, Gibson D, Wexen AD, et al. Efficacy of dronabinol as an adjuvant treatment for chronic pain patients on opioid therapy. *J Pain* 2008;9:254–64.

53 O’Connell M, Sandgren M, Frantzen L, et al. Medical cannabis: effects on opioid and benzodiazepine requirements for pain control. *Ann Pharmacother* 2019;53:1081–8.

54 Pritchard ER, Dayer L, Beiz J, et al. Effect of cannabis on opioid use in patients with cancer receiving palliative care. *J Am Pharm Assoc* 2020;60:244–7.

55 Pawasarat IM, Schultz EM, Frisby JC, et al. The efficacy of medical marijuana in the treatment of cancer-related pain. *J Palliat Med* 2020;23:809–16.

56 Rod K. A Pilot Study of a Medical Cannabis - Opioid Reduction Program. *AJPN* 2019;7:74.

57 Takakuwa KM, Hergenrather JY, Shofer FS, et al. The impact of medical cannabis on intermittent and chronic opioid users with back pain: how cannabis diminished prescription opioid usage. *Cannabis Cannabinoid Res* 2020;5:263–70.

58 Viggli JM, Stith SS, Adams IM, et al. Associations between medical cannabis and prescription opioid use in chronic pain patients: a preliminary cohort study. *PLoS One* 2017;12:e0187795.

59 Yassin M, Oron A, Robinson D. Effect of adding medical cannabis to analgesic treatment in patients with low back pain related to fibromyalgia: an observational cross-over single centre study. *Clin Exp Rheumatol* 2019;37 Suppl 116:113–20.

60 Okusanya BO, Asaolu IO, Ehiri JE, et al. Medical cannabis for the reduction of opioid dosage in the treatment of non-cancer chronic pain: a systematic review. *Syst Rev* 2020;9:167.

61 Zaller N, Topletz A, Frater S, et al. Profiles of medicinal cannabis patients attending compassion centers in Rhode island. *J Psychoactive Drugs* 2015;47:18–23.

62 Hazekamp A, Ware MA, Muller-Vahl KR, et al. The medicinal use of cannabis and cannabinoids—An international cross-sectional survey on administration forms. *J Psychoactive Drugs* 2013;45:199–210.

63 Lucas P, Walsh Z, Crosby K, et al. Substituting cannabis for prescription drugs, alcohol and other substances among medical cannabis patients: the impact of contextual factors. *Drug Alcohol Rev* 2016;35:326–33.

64 Cooper ZD, Bedi G, Ramesh D, et al. Impact of co-administration of oxycodone and smoked cannabis on analgesia and abuse liability. *Neuropsychopharmacology* 2018;43:2046–55.

65 Ishida JH, Wong PO, Cohen BE, et al. Substitution of marijuana for opioids in a national survey of US adults. *PLoS One* 2019;14:e0222577.

66 Corroon JM, Mischley LK, Sexton M. Cannabis as a substitute for prescription drugs - a cross-sectional study. *J Pain Res* 2017;10:989–98.

67 Reiman A, Welty M, Solomon P. Cannabis as a substitute for Opioid-Based pain medication: patient self-report. *Cannabis Cannabinoid Res* 2017;2:160–6.

68 The National Institute for Health and care excellence (NICE) cannabis-based medicinal products (NG144), 2019. Available: https://www.nice.org.uk/guidance/ng144/chapter/Recommendations#chronic-pain [Accessed 21 May 2021].

69 Mulla SM, Maqbool A, Sivananthan L, et al. Reporting of IMMPACT-recommended core outcome domains among trials assessing opioids for chronic non-cancer pain. *Pain* 2015;156:1615–9.

70 Frank JW, Carey E, Nolan C, et al. Association between opioid dose reduction against patients’ wishes and change in pain severity. *J Gen Intern Med* 2020;35:910–7.

71 Busse JW, Juruink D, Guyatt GH. Addressing the limitations of the CDC guideline for prescribing opioids for chronic non-cancer pain. *CMAJ* 2016;188:1210–1.

72 Wang L, Hong PJ, May C. Medical cannabis or cannabinoids for chronic pain: a systematic review and meta-analysis of randomized clinical trials. *BMJ* 2021.

73 Zeraatkar D, Cooper MA, Agarwall A. Long-Term and serious harms of medical cannabis or cannabinoids for chronic pain: a systematic review of non-randomized studies. *BMJ Open* 2021.

74 Zeng L, Lalvyan L, Wang X. Values and preferences towards medical cannabis or cannabinoids among patients with chronic pain: a mixed methods systematic review. *BMJ Open* 2021.