Abstract

Two opposing enzyme classes regulate fundamental elements of genome maintenance, gene regulation and metabolism, either through addition of an acetyl moiety by histone acetyltransferases (HATs) or its removal by histone de-acetyltransferases (HDACs), and are exciting targets for drug development. Importantly, dysfunctional acetylation has been implicated in numerous diseases, including cancer. Within the HAT superfamily the MYST family holds particular interest, as its members are directly involved in the DNA damage response and repair pathways and crucially, several members have been shown to be down-regulated in common cancers (such as breast and prostate). In the present study we focus on the development of lysine (K) acetyltransferase inhibitors (KATi) targeting the MYST family member Tip60 (Kat5), an essential protein, designed or discovered through screening libraries. Importantly, Tip60 has been demonstrated to be significantly down-regulated in many cancers which urgently require new treatment options. We highlight current and future efforts employing these KATi as cancer treatments and their ability to synergize and enhance current cancer treatments. We investigate the different methods of KATi production or discovery, their mechanisms and their validation models. Importantly, the utility of KATi is based on a key concept: using KATi to abrogate the activity of an already down-regulated essential protein (effectively creating a lethal knockout) provides another innovative mechanism for targeting cancer cells, while significantly minimizing any off-target effects to normal cells. This approach, combined with the rapidly developing interest in KATi, suggests that KATi have a bright future for providing truly personalized therapies.

Introduction

Histone acetylation is primarily regulated by two opposing classes of enzymes, histone acetyltransferases [HATs; also called lysine (K) acetyltransferases (KATs)] and histone deacetylases [HDACs; also known as lysine deacetylases (KDACs)] (Figure 1A). In addition, metabolic regulation of histone acetylation is mediated in part through acetyl-CoA cofactors [5,6]. Currently significant worldwide effort is being expended to investigate the use of HDAC inhibitors for the clinical treatment of cancer [7–9]. However, the therapeutic potential of hindering the opposing machinery, KATs, for the treatment of cancer has only recently been recognized [10–15].

KAT family

The KAT family consist of 17 members, as defined by the HUGO gene nomenclature committee. Within this there...
are several distinct families of KATs (based on sequence conservation in the HAT domain), with the largest and most diverse being the MYST family [3,5,10,15–20] (Figures 1B and 1C). The MYST family includes MOZ, YBF2, MOF and Tip60 (Figure 1C) [21–24]. Membership of the MYST family is defined by the presence of a conserved 3-region histone acetyltransferase domain (containing an acetyl-CoA binding site, a C2HC zinc finger and a helix-turn-helix DNA-binding

(c) 2016 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution Licence 4.0 (CC BY-NC-ND).
motif), responsible for their catalytic histone acetyltransferase activity. Variation between specific members is conferred through the presence of further structural features, such as zinc fingers, PHD fingers and chromodomains. The presence of these additional domains provides an insight into the substrate specificity of the family members. In addition to their well-known role in histone acetylation, the MYST family has a broad substrate range, with new non-histone targets regularly being reported (reviewed in [25,26]). Within the MYST family the importance of Tip60 is highlighted, as a Tip60 knockout is lethal [27]. This essential role for Tip60 is further demonstrated in cancer cells, where down-regulation results in cell death [28,29].

Tip60

The Kat5 gene encodes Tip60 and isoform 1 (of 4) is a \(\sim 60 \) kDa, 513aa long protein incorporating a histone acetyltransferase domain and a chromodomain (Figure 2A). Tip60 has many diverse substrates, which is reflected in its diverse role in cellular processes. These include the DNA damage response, the cell cycle, apoptosis, signalling and transcriptional regulation (for review see [29–31]). Importantly, Tip60 auto-acetylation at a key residue in the active site of its MYST domain (K327) regulates, but is not required for, its HAT activity [32,33].

Tip60 and genome stability

A key role of Tip60 is its regulation of the DNA double stand break (DSB) response through acetylation (leading to activation) of the apical kinase ataxia telangiectasia mutated (ATM) and other key DNA damage response and repair proteins (for review see [14,30]). Following a DSB Tip60 is responsible for acetylation of the inactive ATM homodimer, allowing monomerization of active ATM which then initiates the DNA damage response by phosphorylating multiple targets [29,31,34,35]. The importance of the Tip60-dependent activation of ATM is demonstrated following Tip60 knockdown, resulting in an abrogated DSB response and sensitivity to ionizing radiation [36]. Identification of this crucial genome protective role of Tip60 (activating ATM, the DSB response and DNA repair) has led to the proposal that the Tip60 haploinsufficiency observed (in breast and prostate cancer) allows Tip60 to function as an oncogene [27].
Tip60 down-regulation in cancer

Recently it has been demonstrated that several KATs are down-regulated in many different cancers [27,37–39]. Focusing specifically on Tip60, reduced Tip60 transcript expression has been observed in colon, lung, breast and other cancers [10,27,40–43]. Importantly, reduced Tip60 expression was associated with a significantly poorer 5-year disease free survival in primary melanoma patients ($P = 0.016$) and in metastatic melanoma patients ($P = 0.027$) [43]. The same study indicated that Tip60 expression was a significant independent prognostic marker for primary ($P = 0.024$) and metastatic melanomas ($P = 0.035$) [43].

Investigating Tip60 protein levels in cancer, a significant reduction in Tip60 staining (immunohistochemical) has been observed in patient breast and prostate cancer samples [19,27]. Our preliminary data supports this, as we also observed a significant reduction in total Tip60 protein levels in prostate and breast cancer (Figure 2B, Brown et al. unpublished).

Interestingly, we observed that Tip60 loss in prostate cancer correlated with an increasing Gleason score (indicating a worse prognosis), a correlation previously demonstrated in gastric cancer [44]. This is further supported by a recent study demonstrating significantly reduced expression (between 130 cancers and 55 controls) ($P = 0.003$) where an increasing reduction in Tip60 mRNA expression correlates with increasing Gleason score [45]. Reduced Tip60 expression has also been observed in breast, melanoma and prostate cancer cells [19,27,46]. In addition, recent unpublished work reported significantly reduced Tip60 levels in lung, pancreatic and breast cancer cell lines (compared with non-tumorigenic controls) [47]. Importantly, although Tip60 is undetectable in some samples previous work demonstrated that loss of Tip60 is lethal, therefore it is likely below the detection threshold of these assays. Together we believe this data suggests and merits testing of the hypothesis: Tip60 loss correlates with increasing disease severity.

Combined, results from multiple cancers indicate that many cancers types have low levels of Tip60 (required for survival) and that lower levels of Tip60 correlate with a worse prognosis. This leads to a novel hypothesis: Eliminating the remaining Tip60 activity in cancer cells (with already reduced protein levels) will cause apoptosis. Importantly, this hypothesis has been confirmed by multiple groups, using a wide range of techniques [1,5,10,15,29]. Consequently, Tip60 is an excellent candidate for targeted drug development of a targeted KAT inhibitor (KATi), which is supported by multiple groups producing targeted inhibitors and testing their efficacy in different cancer types [10,15,18].

KATi

The application of a lysine acetyltransferase inhibitor (KATi) (particularly in Tip60 low cancers) is based on a novel hypothesis: Transiently reducing the activity of a key protein essential for survival (below a crucial minimum threshold) results in death of cancer cells with already reduced levels of this protein, while allowing normal cells to survive (Figure 2C). Importantly, this hypothesis was recently validated in a breast cancer model [15].

Tip60 targeting KATi can be classed into two broad categories: designed small molecule inhibitors (Bisubstrate Inhibitor A [20], MG-149 [18], TH1834 [15]) or inhibitors from library screens (Lys-CoA [1], garcinol [48], curcumin [1], anacardic acid [3], pentamidine [5], NU9056 [10]) (Table 1). Of these Lys-CoA, anacardic acid, garcinol and curcumin are the best known but least specific, targeting Tip60 in addition to pCAF and CBP/p300 (all at various IC50s) (for review see [11,12,14]).

Structural analysis of Tip60 specific KATi

Currently, several inhibitors of Tip60 have been evaluated [3,5,10,15,18–20] (Table 1). Many of these inhibitors are similar in structure to acetyl-CoA, acting as competitive binders.

Several approaches have been used to identify new KATi candidate compounds. One approach is based on using the natural substrate as a core and linking this to various substituents. For example, covalently linking CoA to the lysine residue of a substrate peptide of various chain lengths [21]. This concept of bisubstrates was adopted later by several other groups, producing specific KAT inhibitors. Lys-CoA is obtained by connecting CoA and a single lysine residue via a methylene linker [25]. Lys-CoA is a potent KAT inhibitor as a general bifunctional substrate, with a pronounced selectivity towards p300, but also targeting pCAF and Tip60. Enhanced selectivity can be obtained by tailoring the peptide linker connecting CoA and Lys. To address the MYST family of enzymes, a series of H4 peptide-containing bisubstrate analogues was designed. One of these, HK16-CoA, was reported as a potent Tip60 inhibitor with an IC50 value in the low micromolar range [1]. Unfortunately, however, the compound was also found to display low permeability [1].

Currently, additional targeted design of KATi is underway, requiring testing [49,50].

Another approach is based on screening libraries of isolated natural compounds, which has provided several distinct key KATi, as natural compounds can span a wide range of functionality and complexity. The two main natural Tip60 KATi substances are garcinol and anacardic acid (Table 1). Garcinol is a polyisoprenylated benzophenone isolated from *Garcinia indica* with demonstrated IC50 values towards Tip60 in the micromolar range. However, there is a significant lack of selectivity, as the compound displays similar activity towards p300 and pCAF [51]. The molecule has been proposed to exhibit a dual binding mode, based on isothermal calorimetric binding data, with the hydroxy groups of the catechol unit interacting with the acetyl-CoA binding pocket and the isoprenoid units interacting with the substrate binding region [52]. Subsequent modifications to garcinol have been reported, primarily increasing selectivity towards p300 and CBP (low micromolar range) [53].
Table 1 | Tip60 small molecule inhibitors

Compound	Molecular targets	Structure	Reference
Pentamidine	Tip60	![Pentamidine Structure](image)	[5]
TH1834	Tip60	![TH1834 Structure](image)	[15]
NU9056	Tip60	![NU9056 Structure](image)	[10]
Anacardic acid	Tip60 PCAF CBP/p300	![Anacardic acid Structure](image)	[3,18,54]
MG-149	Tip60 hMOF	![MG-149 Structure](image)	[18]
Garcinol	Tip60	![Garcinol Structure](image)	[48]
Bisubstrate Inhibitor A	Tip60	![Bisubstrate Inhibitor A Structure](image)	[20]
Curcumin	P300/CBP PCAF Tip60	![Curcumin Structure](image)	[1,51]
Lys-CoA	P300/CBP PCAF Tip60	![Lys-CoA Structure](image)	[1]
Anacardic acid is found in the liquid of cashew nut shells and has been identified as a non-selective, non-competitive inhibitor of p300/CBP, PCAF and Tip60 [18]. The inhibitory effect towards its targets is similar under similar experimental conditions, but IC\textsubscript{50} values vary greatly between reports. The high lipophilicity of anacardic acid is a limiting factor towards its development as a therapeutic agent, with a range of modifications addressing both the salicylic acid moiety and the lipophilic chain proposed in order to enhance selectivity [54]. An example is MG-149 (Table 1), which is one of several 6-alkylsalicylates currently under investigation [18].

Curcumin is another natural substance reported to inhibit Tip60 activity [53]. Curcumin is a major component of Curcuma longa rhizome commonly used in Indian and Chinese traditional medicine. It has been reported to exhibit a mode of action involving covalent binding at a site away from the substrate and cofactor binding pocket. Although some selectivity towards different KAT enzymes could be noted, curcumin is a very promiscuous binder inhibiting other epigenetic targets such as lysine (K)-specific demethylase 1A (LSD1), DNA (cytosine-5)-methyltransferase 1 (DNMT1) and KDACs, as well as a wide range of related non-epigenetic proteins [55]. Curcumin is furthermore a known membrane disruptor, and hence some of its activity can most likely be traced to modes of action other than Tip60 binding. A number of analogues to curcumin have been developed aiming at improved selectivity and higher water solubility. Although some of analogues to curcumin have been developed aiming at better selectivity and higher water solubility. Although some of these analogues suffer the same issue of promiscuous binding as the parent compound [56].

Another approach to identify new KATi is in silico screening of small molecule databases, using the returned compounds as the basis for further derivatization. A high throughput screening of ~80,000 small molecules led to the production of NU9056. NU9056 specifically inhibits Tip60 activity with an IC\textsubscript{50} value of 2 μM. In prostate cancer cells NU9056 treatment induced apoptosis through caspase-3 [10]. Using this method other small molecule inhibitors of Tip60 have also been reported, Lys-CoA and Bisubstrate Inhibitor A [1,20].

An interesting molecule is pentamidine (PNT, Table 1). PNT has been used clinically against parasitic protozoa for over 70 years. Only recently was it reported that DNA and protein synthesis in human tumours was decreased following PNT treatment of whole cell extract, whereby PNT was proposed as an anti-tumour drug [5]. The mode of action is thought to be through inhibition of Tip60 activity, suggested by decreasing histone H2A acetylation and ATM activation, although the exact mechanism requires confirmation [5].

Using PNT as a model compound for Tip60 binding, the modes of interaction of PNT and acetyl-CoA were examined through extensive computational docking as a means of in silico drug design [15]. Since several KAT’s display highly conserved binding pockets, small variations in these could be analysed and used in order to enhance selectivity. This was exploited as the docked structure of PNT was combined with combinatorial chemistry to explore voids in the active site pocket, together with the discovery that the binding pocket carries differently charged ends interacting with specific amino acids. The resulting compound TH1834, designed entirely from rational drug design, was then synthesized and tested in breast and prostate cancer cells [15]. TH1834 alone induced DNA damage, which importantly was further increased when combined with IR in cancer cells but not in control cells. Mechanistically, it was proposed that the observed increased TH1834-induced γH2AX foci formation is due to inhibition of chromatin remodelling functions of Tip60 that are required for normal cellular maintenance, and a reduction in Tip60-dependent DNA repair signalling [15].

Targeted rational design, as demonstrated by the validation of TH1834 in vitro and in cells, is one in silico approach that holds strong promise for the future. This can begin based on known binders, or as a final stage in virtual high-throughput screening campaigns as a means to address selectivity issues found for many families of enzymes. For example, this method of drug discovery is useful for the MYST family enzymes, many ATP binding kinases and the serine protease family, all of which possess active site pockets showing very high structural similarity (within their respective families).

High throughput virtual screening of compounds targeting KAT enzymes resulted in the phthalimide analogue Bisubstrate Inhibitor A (Table 1), based on the acetyl-CoA binding site of the Tip60 yeast homologue Esa1 crystal structure. KAT inhibition efficacy and specificity was assessed using a radiometric in vitro assay, showing non-selective inhibitory activity with IC\textsubscript{50} values in the 100–200 μM range [20]. It is proposed that selectivity could be enhanced by subjecting the compound to targeted combinatorial chemistry, exploring specific aspects pertaining to the Tip60 active site.

As seen from the examples listed above, although the in silico drug design of KAT inhibitors is in its infancy, it demonstrates huge potential. Combining current large databases of compounds (e.g. the ZINC repository, comprising >20 million compounds) and present day screening software with highly parallel supercomputing clusters, screening for potential binders followed by rational design to enhance selectivity offers an attractive initial step prior to experimental synthesis and assays. No doubt, we will in the future see more compounds reported in the literature, where the initial stages of drug design is the result of in silico selection and refinement.

The potential of KATi as chemotherapy Current curcumin, one of the least specific KATi, is the only compound undergoing clinical trials for cancer (for review see [12,57]). Specific Tip60 targeting KATi have been shown to interfere with the DDR, providing additional benefits which can be exploited when Tip60 KATi are combined with other cancer treatments (such as IR and chemotherapeutics) which work through the production of DNA damage [15,28,29,36,58–61]. Indeed, Tip60 dependent acetylation of
E2F1 is required for repair of cisplatin induced DNA damage in human lung carcinoma and osteosarcoma cells [62,63]. Further supporting this,Tip60 inhibition combined with IR induces apoptosis in cervical, breast and prostate cancer cells [5,15].

Conclusions
Further knowledge is required to understand the molecular roles KATs play and the mechanisms that KATs influence, in cancer progression and maintenance. The challenge is translating understanding about these basic mechanisms underpinning cancer into clinically relevant applications, optimally producing a new class of chemotherapeutic drugs that will lead to a major breakthrough for the personalized treatment of cancer. The development of KATi is one such application. Clearly, the use of KATi to target cancer will become a focus for pre-clinical evaluation of cancer treatment. Within this, KATi focusing on Tip60 provide a clear benefit as in general, they specifically target cancer cells over healthy cells, are applicable to a number of common cancers requiring urgent additional treatment options which have been reported to be Tip60 low (i.e. breast and prostate), KATi are more specific and importantly can be combined with current chemotherapeutics for synergistic effect. Furthermore, this is combined with Tip60 as a potential new biomarker, optimally facilitating treatment when paired with a KATi therapeutic.

Funding
JALB and MJK are supported by Breast Cancer Research (BCR), Ireland. EB is supported by NUI Galway Millennium funding. LAE is funded by the Swedish Research Council (VR).

References
1 Wu, J., Xie, N., Wu, Z., Zhang, Y. and Zheng, Y.G. (2009) Bisubstrate Inhibitors of the MYST HATs Esa1 and Tip60. Bioorg. Med. Chem. 17, 1381–1386 CrossRef PubMed
2 Marmorstein, R. and Zhou, M.-M. (2014) Writers and readers of histone acetylation: structure, mechanism, and inhibition. Cold Spring Harb. Perspect. Biol. 6, a018762 CrossRef PubMed
3 Sun, Y., Jiang, X., Chen, S. and Price, B.D. (2006) Inhibition of histone acetyltransferase activity by anacardic acid sensitizes tumor cells to ionizing radiation. FEBS Lett. 580, 4353–4356 CrossRef PubMed
4 Farría, A., Li, W. and Dent, S.V.R. (2015) KATs in cancer: functions and therapies. Oncogene 34, 4901–132015 CrossRef PubMed
5 Kobayashi, J., Kata, A., Ota, Y., Ohba, R. and Komatsu, K. (2010) Bisbenzamidin derivative, pentamidine represses DNA damage response through inhibition of histone H2A acetylation. Mol. Cancer 9, 34 CrossRef PubMed
6 Montgomery, D.C., Sorum, A.W., Guasch, L., Nicklaus, M.C. and Meier, J.L. (2015) Metabolic regulation of histone acetyltransferases by endogenous acyl-CoA cofactors. Chem. Biol. 22, 1030–1039 CrossRef PubMed
7 Johnstone, R.W. (2002) Histone-deacetylase inhibitors: novel drugs for the treatment of cancer. Nat. Rev. Drug Discov. 1, 287–299 CrossRef PubMed
8 Martinet, N. and Bertrand, P. (2011) Interpreting clinical assays for histone deacetylase inhibitors. Cancer Manag. Res. 3, 117–141 PubMed
9 Wagner, J.M., Hackanson, B., Lubbert, M. and Jung, M. (2010) Histone deacetylase (HDAC) inhibitors in recent clinical trials for cancer therapy. Clin. Epigenetics 1, 117–136 CrossRef PubMed
10 Coffey, K., Blackburn, T.J., Cook, S., Golding, B.T., Griffin, R.J., Hardcastle, I.R., Hewitt, L., Huberman, K., McNeill, H.V., Newell, D.R. et al. (2012) Characterisation of a Tip60 specific inhibitor, NU9056, in prostate cancer. PLoS One 7, e45539 CrossRef PubMed
11 Simon, R.P., Robaa, D., Alhababi, Z., Sippl, W. and Jung, M. (2016) KATching-up on small molecule modulators of lysine acetyltransferases. J. Med. Chem. 59, 1249–1270 CrossRef PubMed
12 Manzo, F., Tambaro, F.P., Mai, A. and Altucci, L. (2009) Histone acetyltransferase inhibitors and preclinical studies. Expert Opin. Ther. Pat. 19, 761–774 CrossRef PubMed
13 Dekker, F.J. and Hasma, H.J. (2009) Histone acetyl transferases as emerging drug targets. Drug Discov. Today 14, 942–948 CrossRef PubMed
14 Jades, G., Rilaf, K., Ngolli, M., Daures, J.-P., Bignon, Y.-J., Rennault-Lloreta, F. and Bernard-Gallon, D. (2015) A bivalent role of Tip60 histone acetyltransferase in human cancer. Epigenomics 7, 1351–1363 CrossRef PubMed
15 Gao, C., Bourke, E., Scobie, M., Famme, M.A., Koolmeister, T., Helleday, T., Eriksaas, L.A., Lowndes, N.F. and Brown, J.J.L. (2014) Rational design and validation of a Tip60 histone acetyltransferase inhibitor. Sci. Rep. 4, 1–10
16 Sehy, B.R., Chatterjee, S., Modak, R., Esvariarmoorathy, M. and Kundu, T.K. (2013) Histone acetylation as a therapeutic target. Subcell. Biochem. 61, 567–596 CrossRef PubMed
17 Marmorstein, R. and Trievel, R.C. (2009) Histone modifying enzymes: structures, mechanisms, and specificities. Biochim. Biophys. Acta 1789, 58–68 CrossRef PubMed
18 Ghizzi, M., Wu, J., Gao, T., Hasma, H.J., Dekker, F.J. and Zheng, Y.G. (2012) α-Alkylacyltransferases are selective Tip60 inhibitors and target the acetyl-CoA binding site. Eur. J. Med. Chem. 47, 337–344 CrossRef PubMed
19 Hallidou, K., Ganaprapagasam, V.J., Mehta, P.B., Logan, J.R., Brady, M.E., Cook, S., Leung, H.Y., Neal, D.E. and Robson, C.N. (2003) Expression of Tip60, an androgen receptor coactivator, and its role in prostate cancer development. Oncogene 22, 2466–2477 CrossRef PubMed
20 Wu, J., Wang, J., Li, M., Yang, Y., Wang, B. and Zheng, Y.G. (2011) Small molecule inhibitors of histone acetyltransferase Tip60. Bioorg. Chem. 39, 53–58 CrossRef PubMed
21 Cole, P.A. (2008) Chemical probes for histone-modifying enzymes. Nat. Chem. Biol. 4, 590–597 CrossRef PubMed
22 Kaidi, A. and Jackson, S.P. (2013) KATs tyrosine phosphorylation couples chromatin sensing to ATM signalling. Nature 498, 70–74 CrossRef PubMed
23 Yang, X.-J. (2004) The diverse superfamily of lysine acetyltransferases and their roles in leukemia and other diseases. Nucleic Acids Res. 32, 959–976 CrossRef PubMed
24 Roth, S.Y., Denu, J.M. and Allis, C.D. (2001) Histone acetyltransferases. Ann. Rev. Biochem. 70, 81–120 CrossRef
25 Lau, O.D., Kundu, T.K., Soccio, R.E., Alt-Si-Ali, S., Khalil, E.M., Vassilev, A., Wolff, A.P., Nakatani, Y., Roeder, R.G. and Cole, P.A. (2000) HATs off: selective synthetic inhibitors of the histone acetyltransferases p300 and PCAF. Mol. Cell 5, 589–595 CrossRef PubMed
26 Sapouznit, V. and Cole, J. (2011) MYST-family histone acetyltransferases: beyond chromatin. Cell. Mol. Life Sci. 68, 1147–1156 CrossRef PubMed
27 Gennini, C., Squatrito, M., Lusie, C., Syed, N., Perna, D., Wark, L., Martinato, F., Sardella, D., Verrecchia, A., Bennett, S. et al. (2007) Tip60 is a haplo-insufficient tumour suppressor required for an oncogene-induced DNA damage response. Nature 448, 1063–1067 CrossRef PubMed
28 Hu, Y., Fisher, J.B., Koprowski, S., McAllister, D., Kim, M.-S. and Lough, J. (2009) Homozygous disruption of the Tip60 gene causes early embryonic lethality. Dev. Dyn. 238, 2912–2921 CrossRef PubMed
29 Sun, Y., Jiang, X., Chen, S., Fernandes, N. and Price, B.D. (2005) A role for the Tip60 histone acetyltransferase in the acetylation and activation of ATM. Proc. Natl. Acad. Sci. U.S.A. 102, 13182–13187 CrossRef PubMed
30 Sapouznit, V., Logan, J.R. and Robson, C.N. (2006) Cellular functions of Tip60. Int. J. Biochem. 31, 1496–1509
31 Sun, Y., Jiang, X. and Price, B.D. (2010) Tip60: connecting chromatin to DNA damage signaling. Cell Cycle 9, 930–936 CrossRef PubMed
49 Andreadi, F. and Del Rio, A. (2015) Computer-aided molecular design of compounds targeting histone modifying enzymes. Comput. Struct. Biotechnol. J. 13, 358–365 CrossRef PubMed
50 Yang, C., Ngo, L. and Zheng, Y.G. (2014) Rational design of substrate-based multivalent inhibitors of the histone acetyltransferase Tip60. Chem. Med. Chem. 9, 537–541
51 Balasubramaniam, K., Varier, R.A., Altaf, M., Swaminathan, V., Siddappa, N.B., Ranga, U. and Kundu, T.K. (2004) Curcumin a novel p300/CREB-binding protein-specific inhibitor of acetyltransferase, represses the acetylation of histone/nonhistone proteins and histone acetyltransferase-dependent chromatin transcription. J. Biol. Chem. 279, 51163–51171 CrossRef PubMed
52 Airl, M., Pradhan, S.K., Than, G.R., Vedamuthy, B.M., Agrawal, S., Dasgupta, D. and Kundu, T.K. (2009) Mechanism of p300 specific histone acetyltransferase inhibition by small molecules. J. Med. Chem. 52, 267–277 CrossRef PubMed
53 Collins, H.M., Abdelghany, M.K., Messmer, M., Yue, B., Davis, S.E., Kindle, K.B., Mantelingu, K., Asham, A., Winkler, G.S., Kundu, T.K. and Heery, D.M. (2013) Differential effects of garcinol and curcumin on histone and p53 modifications in tumour cells. BMC Cancer 13, 37 CrossRef PubMed
54 Soulo, J.A., Conte, M., Alvarez, R., Nebbioso, A., Carafa, V., Altucci, L. and de Lera, A.R. (2008) Synthesis of benzamides related to anacardic acid and their histone acetyltransferase (HAT) inhibitory activities. Chem. Med. Chem. 3, 1435–1442 CrossRef
55 Costi, R., Di Santo, R., Artico, M., Miele, G., Valentinii, P., Novellino, E. and Cereseto, A. (2007) Cinnamoyl compounds as simple molecules that inhibit p300 histone acetyltransferase. J. Med. Chem. 50, 1973–1977 CrossRef PubMed
56 Vyas, A., Dandawate, P. and Padhye, S. (2013) Perspectives on new synthetic curcumin analogs and their potential anticancer properties. Curr. Pharm. Des. 19, 2047–2069 PubMed
57 Gupta, S.C., Patchva, S. and Aggarwal, B.B. (2013) Therapeutic roles of curcumin: lessons learned from clinical trials. AAPS J. 15, 195–218 CrossRef PubMed
58 Bird, A.W., Yu, D.T., Pray-Grant, M.G., Qiu, Q., Harmon, K.E., Megee, P.C., Grant, P.A., Smith, M.M. and Christman, M.F. (2002) Acetylation of histone H4 by Esat1 is required for DNA double-strand break repair. Nature 419, 411–415 CrossRef PubMed
59 Chailleux, C., Tyteca, S., Papin, C., Boudiovec, F., Puget, N., Courilleau, C., Grigoriev, M., Canitrot, Y. and Trouche, D. (2010) Physical interaction between the histone acetyltransferase Tip60 and the DNA double-strand breaks sensor MRE11 complex. Biochem. J. 426, 365–371 CrossRef PubMed
60 Yang, J., Jiang, X., Xu, Y., Ayrapetov, M.K., Moreau, L.A., Whetstine, J.R. and Price, B.D. (2009) Histone H3 methyltransfer links DNA damage detection to activation of the tumour suppressor Tip60. Nat. Cell Biol. 11, 1376–1382 CrossRef PubMed
61 Bandypadhyay, K., Banerjee, J.-L., Martin, A., Blonski, C., Paredo, J. and Gerset, R.A. (2009) Spermidinyl-CoA-based HAT inhibitors block DNA repair and provide cancer-specific chemo- and radiosensitization. Cell Cycle 8, 2779–2779
62 Van Den Broeck, A., Nissou, D., Brambilla, E., Eymin, B. and Gazzeri, S. (2012) Activation of Tip60/E2F1/ERCC1 complex in human lung adenocarcinoma cells exposed to cisplatin. Carcinogenesis 33, 320–325 CrossRef PubMed
63 Miyamoto, N., Izumi, H., Noguchi, T., Nakajima, Y., Ohmiya, Y., Shiota, M., Kidani, A., Tawara, A. and Kohno, K. (2008) Tip60 as a potential marker in evolutionary studies. Mol. Biol. Evol. 25, 531–535 CrossRef PubMed
64 Hug, D.H. and Bryant, D. (2006) Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23, 254–267 CrossRef PubMed

Received 30 March 2016
doi:10.1042/BST20160081

© 2016 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution Licence 4.0 (CC BY-NC-ND).