Research Article

Application of Wireless Communication in Experimental Research of the Interface Bonding Condition between Asphalt Layers by Tensile Testing

Hua Yin,1 Daming Wang,2 Jianwei Zou,1 and Yaoting Zhu3

1Transportation Institute, Inner Mongolia University, Bridge Detection and Maintenance Engineering Technology Research Centre of Inner Mongolia Autonomous Region, Hohhot, China
2Civil Engineering College, Nanjing Forestry University, Nanjing, China
3Jiangxi Research Institute of Transportation, Nanchang, China

Correspondence should be addressed to Hua Yin; 311976327@imu.edu.cn

Received 3 July 2021; Accepted 19 August 2021; Published 7 September 2021

Academic Editor: Balakrishnan Nagaraj

Copyright © 2021 Hua Yin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The vigorous development of communication technology, especially the development of wireless network communication technology, has accelerated its informatization process in more and more industrial applications. In the field of monitoring and detection applications, the many advantages of wireless network transmission technology provide an important reference for high-quality compaction monitoring. Engineering practice shows that the construction technology of asphalt pavement is the ultimate guarantee of engineering quality. It is important to recognize that pavement performance is greatly influenced by interface bonding condition and interface failure can reduce the serviceability of pavements rather than their overall structural lifetime. This paper presents a laboratory test to investigate the bonding tensile performance between asphalt layers by tensile testing. The test methods and devices for determining the bond regarding tensile testing are summarized as follows. Different interface conditions have been analyzed herein: 0.2, 0.4, and 0.6 kg/m² with corresponding emulsified asphalt (MA) and SBS-modified MA. It is found that the stress-strain relationship of tensile testing for interface bonding is similar with low-carbon steels and it can be categorized into four zones. The results of tensile strength and damage displacement are discussed which are key parameters in describing the interface bonding condition and evaluating pavement performance.

1. Introduction

The interface bonding condition between asphalt layers is one of the most important factors that affect the performance of the pavement structure and have attracted more and more attention to study the bonding testing during recent years. This leads to the development of different test devices and corresponding parameters to characterize the bonding properties in numerous papers and scientific contributions, such as layer parallel direct shear test, wedge splitting test, torque test, and pull-off test [1–4]. In China, extensive technical specifications and rules of tack coat for asphalt layers have been set up but the standard test method for evaluating the quality of layer bonding does not exist. In general, in order to investigate the interfacial strength of layer bonding, two different laboratory tests are widely considered, namely, shear testing and tensile testing. Samples can be made in the laboratory or cored sampling on the pavement. Although shear-type tests are popular to being applied, there are some limitations to assess the interface bonding condition [5–8]. It is well recognized that shear stress is not the unique factor to result in poor bonding or loss of bonding and tensile stress is also a major factor contributing to the distresses of interface bonding [9].

The aim of this paper is the investigation of the bonding properties for asphalt layers and to assess interface tensile characteristics between layers of asphalt concrete. In this paper, the results of an improved direct tensile testing are presented and compared with the different materials for interface bonding by laboratory-prepared specimens.
2. Experimental Details

During the tensile testing of the interlayer bonding condition of asphalt, we followed the operating instruction for the materials and test methods of the “Study on the mechanical properties of tack coat between asphalt layers by interlaminar shear tests,” Applied Mechanics and Materials, https://www.scientific.net/AMM.361-363.1490 [10–13]. Beyond that, interlaminar shear test and tensile test were all experienced by this manuscript’s author. There are two kinds of experiments for raw materials and gradation of the same two asphalt mixtures. Specific materials and methods will be introduced and explained below. Relative data along with the manuscript of the “Study on the mechanical properties of tack coat between asphalt layers by interlaminar shear tests” are offered in information file.

The asphalt used in this test was AH-50 Asphalt produced by the Esso Asphalt Company. Limestone from Jiangxi province, China, was selected as aggregate according to relevant design standards. Two typical hot mix asphalt mixtures (AC-25 and ATB-25) were prepared to study the bonding performance between layers of asphalt concrete. The asphalt binder performance is given in Table 1.

Table 1: The asphalt binder performance.

Test	AH-50
Penetration (25°C, 100 g, 5 s) (0.1 mm)	53
Ductility (15°C, 5 cm/min) (cm)	>100
Softening point (°C)	50.5
Density (15°C) (g/cm³)	1.040
Thin film oven test (TFOT) (163°C, 5 h)	1
Mass loss (%)	
Penetration (%)	64.2
Ductility 10°C (cm)	4.3

![Figure 1: The graded curve of AC-25 (a) and ATB-25 (b) [9].](image)

According to the Marshall test, the optimal asphalt content of AC-25 is 3.9% and the optimal asphalt content of ATB-25 is 3.5%. The distribution of the graded aggregate is shown in Figure 1.

The asphalt mixture used in the test are divided into three parts: AC-25 HMA, cemented layer material and ATB-25 HMA from top to bottom. Firstly, the ATB-25
and AC-25 samples with diameter of 101.5 mm and height of 50 mm were made by Marshall principle. After cooling for two hours, apply the cementing layer material on the upper surface of ATB-25 sample and bond with the lower surface of AC-25 sample. The asphalt binders used are ordinary MA and SBS modified MA with three different asphalt dosages (0.2, 0.4, and 0.6 kg/m²). The related performance indicators are shown in Table 2.
Figure 2 is the configuration diagram of the direct tensile test in this study. A 50 kN Universal Servo-Hydraulic Testing Machine and a linear variable differential transformer (LVDT) are used to apply tensile force to the specimen under static or cyclic load conditions. The Universal Servo-Hydraulic Universal Testing Machine stretches the test sample at a constant rate of 5 mm/min, which makes the boundary between the two layers of the specimen produce tension and destroy. The test temperature of 25°C was selected. The corresponding tensile stress and displacement are recorded by the software of the equipment until the specimen failure. The load-extension relationship and the stress-strain relationship are shown in Figure 3.

3. Results and Discussion

During the tensile test programme, 28 specimens were tested using the tensile test equipment as mentioned above. Figure 3 illustrates the relationship between tensile stress and displacement. It is found that the stress-strain relationship of interface bonding is similar with low-carbon steels. Four stages can be used to represent this figure: (i) elastic stage, (ii) yield stage, (iii) hardening stage, and (iv) damage stage. At the beginning of the test, the tensile stress increases linearly and then reaches the yield strength.

(1) The linear growth of tensile stress in the elastic stage satisfies Hooke’s law and has an initial slope expressed as elastic modulus which is important and applied in the engineering

(2) If the loading continues to be applied after the elastic stage, the material will enter the yield stage and produce irreversible deformation. When the yield strength reaches and the specimen continues to extend, the stress fluctuates near the yield strength and strain increase

(3) Beyond the yield stage, stress increases continuously in the hardening stage due to the continuous loading. The material has the ability to resist further deformation. The specimen shows strain hardening, and the degree of hardening is related to the performance and content of the interface binder

(4) When the load is continued, the stress of the tensile curve reaches the maximum value, that is, the ultimate tensile strength, and the material loses its resistance to deformation and begins to get destroyed

Table 3 lists all the cemented layer materials used in the tensile test and the test results. The minimum tensile strength is 0.08 MPa and the maximum tensile strength is 0.18 MPa and the damage displacement range from 0.62 to 1.49 mm. It can be also found that the larger damage displacement generally indicates a higher level of interface bonding. The results show that the optimal amount of the binder is 0.4 kg/m²; SBS-modified MA can significantly improve the interfacial bonding strength of asphalt concrete. When cement is added to the interface material, the tensile strength is also improved, showing good tensile ductility.

4. Conclusion

Based on the laboratory test, the following conclusions can be drawn from the analysis of the interface bonding conditions between layers of asphalt concrete.

(1) The stress-strain relationship of tensile testing for interface bonding is similar with low-carbon steels and four stages can be used to represent: (i) elastic stage, (ii) yield stage, (iii) hardening stage, and (iv) damage stage

(2) The optimal amount of the binder for tensile strength is 0.4 kg/m²; SBS-modified MA can significantly improve the interfacial bonding strength of asphalt concrete. When cement is added to the interface material, the tensile strength is also improved, showing good tensile ductility

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This research was supported by the Natural Science Foundation of China’s Inner Mongolia Autonomous Region (Grant:
2020MS01013), the National Natural Science Foundation of China (Grant: 11562013), and the Inner Mongolia Autonomous Region Transportation Science and Technology Project (Grant: 222000-5206034).

References

[1] A. C. Collop, M. H. Sutanto, G. D. Airey, and R. C. Elliott, "Shear bond strength between asphalt layers for laboratory prepared samples and field cores," *Construction and Building Materials*, vol. 23, no. 6, pp. 2251–2258, 2009.

[2] L. N. Mohammad, A. Bae, M. A. Elseifi, J. Button, and N. Patel, "Effects of pavement surface type and sample preparation method on tack coat interface shear strength," *Transportation Research Record*, vol. 2180, no. 1, pp. 93–101, 2010.

[3] C. Raab, A. O. Abd el Halim, and M. N. Partl, "Interlayer bond testing using a model material," *Construction and Building Materials*, vol. 26, no. 1, pp. 190–199, 2012.

[4] R. M. Recasens, A. Martinez, and F. P. Jimenez, "Evaluation of effect of heat-adhesive emulsions for tack coats with shear test: from the road research laboratory of Barcelona," *Transportation Research Record*, vol. 1970, pp. 64–70, 2007.

[5] F. A. Santagata, G. Ferrotti, M. N. Partl, and F. Canestrari, "Statistical investigation of two different interlayer shear test methods," *Materials and Structures*, vol. 42, no. 6, pp. 705–714, 2009.

[6] C. Tozzo, N. Fiore, and A. D’Andrea, "Dynamic shear tests for the evaluation of the effect of the normal load on the interface fatigue resistance," *Construction and Building Materials*, vol. 61, pp. 200–205, 2014.

[7] S. Wu and C. Huaxin, "Experimental study on mechanical properties and bond condition at interlayer between asphalt surface and semi-rigid base," *Journal of Southeast University (Natural Science Edition)*, vol. 42, no. 2, pp. 406–412, 2016.

[8] Z. Zhi-shu and C. Y. xia, "Cement concrete pavement surface treatment and evaluation based on inter rubber asphalt stress absorbing layer," *Highway*, vol. 4, pp. 9–11, 2017.

[9] T. Jun-zhuang and S. Zeng-zhi, "Research on bond behavior of asphalt pavement based on simulation test," *Highway*, vol. 4, pp. 1–6, 2016.

[10] H. Yin, Y. Zhu, and C. Yin, "Study on the mechanical properties of tack coat between asphalt layers by interlaminar shear tests," *Applied Mechanics and Materials*, vol. 361-363, pp. 1490–1494, 2013.

[11] T. López-Montero and R. Miró, "Differences in cracking resistance of asphalt mixtures due to ageing and moisture damage," *Construction & Building Materials*, vol. 112, pp. 299–306, 2019.

[12] J. Zhang, A. N. Faruk, P. Karki, I. Holleran, X. Hu, and L. F. Walubita, "Relating asphalt binder elastic recovery properties to HMA cracking and fracture properties," *Construction and Building Materials*, vol. 121, pp. 236–245, 2018.

[13] C. M. Stewart, J. G. Reyes, and V. M. Garcia, "Comparison of fracture test standards for a super pave dense-graded hot mix asphalt," *Engineering Fracture Mechanics*, vol. 169, pp. 262–275, 2019.