Computer simulation of electron-positron pair production by channeling radiation in amorphous converter

S V Abdrashtov1,2, O V Bogdanov1,2, S B Dabagov3,4,5, Yu L Pivovarov1 and T A Tukhfatullin1

1 National Research Tomsk Polytechnic University, Lenin Ave. 30, 634050, Tomsk, Russia
2 National Research Tomsk State University, Lenin Ave. 36, 634050, Tomsk, Russia
3 INFN – Laboratori Nazionali di Frascati, Via E. Fermi 40, I-00044 Frascati (RM), Italy
4 RAS PN Lebedev Physical Institute, Lenin Ave. 53, 119991, Moscow, Russia
5 NRNU MEPhI, Kashirskoe highway 31, 115409, Moscow, Russia

E-mail: abdsv@tpu.ru

Abstract. We consider the radiator-converter approach at 200 MeV channeled electrons (the SPARC_LAB LNF facility energies) for the case of using W crystalline radiator and W amorphous converter. A comparison of the positron production by the axial channeling radiation and the bremsstrahlung is performed. The positron stopping in the convertor is studied by means of computer simulations. It is shown that for the maximum yield of positrons the thickness of the W amorphous converter should be taken 0.35 cm in the case of using the axial channeling radiation resulting to total yield of positrons $5 \times 10^{-3} \text{e}^+\text{e}^–/\text{e}$ and 0.71 cm in the case of using the bremsstrahlung resulting to total yield of positrons $3.3 \times 10^{-3} \text{e}^+\text{e}^–/\text{e}$.

1. Introduction

The problem of the positron beam generation remains of interest during last decade, in connection with the physics of slow positrons [1], relativistic positronium atom beams [2–4], modern research of electron-positron plasma [5] and with the search for the effective positron source for the electron–positron colliders [6–9]. The positrons are usually produced via conversion of photons with an energy greater than 1 MeV into $\text{e}^–\text{e}^+$ pair in the field of a nucleus. Several schemes are suggested for the intense positron beam generation. Basically, the initial high energy electron beam is used for the photon beam generation in several different ways: bremsstrahlung (BS) [10], channeling radiation (CR) [11–12] or coherent bremsstrahlung (CB) [10, 13–14], the Compton scattering [15], and even undulator radiation [16]. A new technique involving the high-energy laser to irradiate solid gold and platinum targets [17] seems to be very promising for the neutral electron-positron plasma production but poorly applicable as a positron source for colliders. A comparison of these schemes is given in details in [18]. Most of all of these schemes are used as the source of the photons a multi-GeV electron beam: 1.2 GeV at the Institute for Nuclear Study, Tokyo, Japan [11, 13]; 3 and 8 GeV at KEK, Tsukuba, Japan [14] and electron beams on the SPS CERN transfer lines, Geneva, Switzerland [10, 15]; 46.6 GeV at the SLAC, USA [16].
However, the features of the positron production by sub-GeV electron beam remain not described in detail. One of the important advantage of sub-GeV electron beam for the positron production is the avoiding the thermal degradation of the crystal wherein the CR photons are generated. The comparison of the 1 + 3 MeV positron yield from a thin amorphous W converter of 0.1 mm thickness produced by BS, by <100> axial and (110) planar CR in a 10 µm W crystal for the positron energy range of was carried out recently in [18]. Obviously, the positron energy spectrum after the W converter depends not only on incident photon spectrum, but also on positron energy loss in a radiator on the way to leave it. Therefore, in continuation of [18], here we perform a computer simulation of the positrons stopping in an amorphous W converter for the cases when one uses the <100> axial CR and BS from 200 MeV electrons. The principal scheme of hybrid positron source is shown in figure 1.

Figure 1. The scheme of hybrid positron source using CR from primary electron beam.

Figure 2. (a) CR intensity spectrum from 200 MeV electrons <100> axial channeling in W; (b) BS intensity spectrum from 200 MeV electrons in amorphous W.

2. Bremsstrahlung and channeling radiation spectra
In our simulations, the thickness of a W crystal (radiator) was 10 µm, that is less than the dechanneling length for 200 MeV electrons [19]. The general properties of CR are well described in [20–21]. The realistic simulations of CR spectra can be performed using different models. For example, it can be done in the frame of binary collision model [22]. The faster way to simulate the CR intensity spectra (energy radiated during penetration through a crystal per unit crystal length) in the case of axial CR (figure 2a) from 200 MeV electrons in W is to apply the BCM-1.0 code [23]. This code was recently applied to simulate the orientation dependence of the CR total yield [18, 24]. The BS spectrum in an amorphous W (figure 2b) was calculated according to the Schiff formulae [25].

For the SPARC_LAB primary 200 MeV electron beam the brilliant peak of axial CR is located near 6 MeV, thus allowing creation of positrons with maximal kinetic energy up to 5 MeV. The total yield of BS is twice greater than that of axial CR [24], but the axial CR spectrum is almost 20 times narrower than the BS one and the maximum value of it is almost 10 times greater than the maximum for BS spectrum (figure 2).

3. Electron-positron pair production in a thick converter
For calculation of the e^-e^+ pair production by a photon in an atomic field we shall use the Bethe-Heitler formula [26–28].

The spectrum of positrons generated by CR from electrons in thin converter can be determined in the following way:
\[\frac{dN_p}{dE_p} = n \cdot L_c \int \frac{1}{E_\gamma} \frac{dW}{dE_\gamma} \cdot L \cdot \frac{d\sigma(Z, E_p, E_\gamma)}{dE_p} \, dE_\gamma, \]

where \(n \) is the number of atoms per volume unit of W convertor, \(L_c \) is the convertor thickness, \(Z \) is the atomic number of the converter material, \(E_p \) is the total energy of positron, \(E_\gamma \) is the energy of the photon, \(dW/dE_\gamma \, dL \) is the photon intensity spectra, \(L = 10 \, \mu m \) – the thickness of the radiator and \(d\sigma(Z, E_p, E_\gamma)/dE_p \) – the Bethe-Heitler \(e^-e^+ \) pair production cross-section by a photon [29].

The yield of positrons from conversion of CR or BS into \(e^-e^+ \) pair in thin convertor of thickness \(L_c \) is determined by the expression:

\[N_p = n \cdot L_c \int \frac{1}{E_\gamma} \frac{dW}{dE_\gamma} \cdot L \cdot \frac{d\sigma(Z, E_p, E_\gamma)}{dE_p} \, dE_\gamma = \int \frac{dN_p}{dE_p} \, dE_p. \]

Computer simulations shows that the total yield of positrons (2) produced in a thin 0.1 mm W convertor by axial CR from 200 MeV electrons in a 10 µm W crystal is about 3.5 \(10^{-4} \) \(e^+/e^- \) and 1.6 \(10^{-4} \) \(e^+/e^- \) in the case of BS. The more detail on results of simulation of photoproduction of positrons in a thin W amorphous convertor by CR and BS are presented in in [18].

Let divide a thick W convertor into \(N \) thin layers of thickness 0.1 mm. The \(e^-e^+ \) pair production by the radiation in the thin layer of the converter numbered \(i \) is calculated according to (1) neglecting to the radiation attenuation and positron energy losses in the one layer under consideration. The attenuation of the radiation passed through convertor from the first layer to the layer \(i-1 \) is described in terms of linear attenuation coefficient. The main contributions to radiation attenuation are coherent and incoherent scattering, pair production and photoelectric absorption and defined using XCOM: Photon Cross Sections Database [30]. The positrons energy losses in the converter from the \(i+1 \) layer to the \(N^{th} \) layer are described in terms of continuous slowing down approximation (CSDA). For the positron energies under consideration, CSDA ranges of the positrons in a matter practically coincide with one for the electrons [31]. CSDA ranges for the electrons are calculated using the CASINO code [32].

Our computer simulation carried out for the \(N=100 \) W layers shows (figure 3) that the total yield of positrons reaches a maximum value about 5.0 \(10^{-3} \) \(e^+/e^- \) at the thickness of convertor equal to 0.35 cm in the case of photoproduction by axial CR from 200 MeV electrons in W crystal, and 3.3 \(10^{-3} \) \(e^+/e^- \) at 0.71 cm in the case of using BS.

![Figure 3. Total yield of positrons produced by the radiation from 200 MeV electrons in W as the function of the converter thickness: (a) axial CR; (b) BS](image1)

![Figure 4. The energy spectra of positrons, produced by the radiation from 200 MeV electrons in W: (a, b) axial CR; (c, d) BS. Solid lines correspond to converter thickness 0.35 cm; dashed – 0.71 cm.](image2)
The energy spectrum of positrons produced by the axial CR from 200 MeV electrons in W is narrower than that produced by the BS (figure 4) for all thicknesses of converter. Moreover, in the case of axial CR it is possible to produce up to 5 time greater amount of low energy positrons than using the BS (figure 4a and 4d). These characteristics determine the benefits of the axial CR compared to BS.

4. Conclusions

Our previous studies [18] on hybrid positron source using channeling radiation and a thin W amorphous convertor are extended here to the case of more thick radiators. Two stages of simulations have been used: the first one is to calculate CR spectrum from initial 200 MeV electron beam in a 10 µm W radiator. The second stage is to take into account the created positrons energy loss in a downstream amorphous W convertor, in order to determine the final energy spectrum of positrons leaving a convertor.

The main new result is, that suggested hybrid scheme in the case of 0.35 cm amorphous W converter lead to the maximum total yield of positrons produced by axial CR from 200 MeV electrons in W crystal about $5.0 \times 10^{33} \text{e}^+ / \text{e}^-$, and $2.8 \times 10^{33} \text{e}^+ / \text{e}^-$ in the case of using BS. The converter of greater thickness equals 0.71 cm allows to maximum total yield of positrons $3.3 \times 10^{33} \text{e}^+ / \text{e}^-$ in the case BS and $4.1 \times 10^{33} \text{e}^+ / \text{e}^-$ in the case of CR.

That means, for the SPARC_LAB electron beam parameters [33] and suggested hybrid scheme, in the case of 200 MeV electrons one can expect the maximum positron yield of about $2.3 \times 10^9 \times 10^3 \text{e}^+ / \text{s}$ in the case of BS (0.71 cm W convertor) and about $3.5 \times 10^6 \times 10^9 \text{e}^+ / \text{s}$ in the case of <100> CR (0.35 cm W convertor).

These numbers characterizing the total yield of positrons at SPARC_LAB electron beam can be increased using CR in a thicker radiator. In this case the influence of dechanneling on CR should be taken into account [34] as well as the contribution of coherent and incoherent bremsstrahlung [35] at channeling conditions.

Acknowledgements

The work was supported by the National Research Tomsk Polytechnic University (Excellence Program NR TPU), by the grant from the President of the Russian Federation Number МК-5202.2015.2, by the Ministry of Education and Science of the Russian Federation (Contract number 1.676.2014/K, program “Nauka”) by The Tomsk State University Academic D.I. Mendeleev Fund Program in 2015-2016. The work was supported by Russian Fund for Basic Research according, project No. 16-32-00464 м_a.

The authors are grateful to Prof. X. Artru for fruitful discussion.

References

[1] Saitoh H, Stanja J, Stenson E V, Hergenhahn U, Niemann H, Sunn Pedersen T, Stoneking M R, Piochacz C and Hugenschmidt C 2015 New J. Phys 17 103038
[2] Meshkov I N 1997 Phys. Part. Nucl. 28 2 198
[3] Kunashenko Yu P 2005 Nucl. Instr. and Meth. B 229 2 219
[4] Kunashenko Yu P and Pivovarov Yu L 2014 J. of Phys.: Conf. Ser. 517 012007
[5] Zank G P and Greaves R G 1995 Phys. Rev. E 51 6079
[6] Heuer R-D 2002 Int. J. Mod. Phys. A 17 3469
[7] Biagini M E, Alesini D, Boni R et al 2010 The SuperB project: accelerator status and R&D Proc. 2nd International Particle Accelerator Conference: IPAC’11 (San Sebastian, Spain, 4–9 September 2011) pp. 3684-3686
[8] Rinolfi L, Chehab R, Dadoun O, Kamitani T, Strakhovenko V and Variola A 2013 Nucl. Instr. and Meth. B 309 50
[9] Artru X, Chaikovska I, Chehab R et al 2015 Nucl. Instr. Meth. B 355 60
[10] Chehab R, Cizeron R, Sylvia C et al 2002 Phys. Lett. B 525 41
[11] Yoshida K, Goto K, Isshiki T et al 1998 Phys. Rev. Lett. 80 7 1437
[12] Dolgikh V A, Kunashenko Yu P and Pivovarov Yu L 2003 Nucl. Instr. Meth. B 201 253
[13] Kalinin B N, Naumenko G A, Potylitsin A P et al 1998 Nucl. Instr. and Meth. B 145 209
[14] Inoue M, Takenaka S, Yoshida K et al 2001 Nucl. Instr. and Meth. B 173 104
[15] Artru X, Chehab R, Chevallier M, Strakhovenko V M, Variola A and Vivoli A 2008 Nucl. Instr. Meth. B 266 3868
[16] Alexander G, Barley J, Batygin Y et al 2008 Phys. Rev. Lett. 100 210801
[17] Liang E, Clarke T, Henderson A et al 2015 Scientific Reports 5 13968
[18] Abdashitov S V, Bogdanov O V, Dabagov S B, Pivovarov Yu L and Tukhfatullin T A 2015 Nucl. Instr. Meth. B 355 65
[19] Backe H, Kunz P, Laulh W et al 2008 Nucl. Instr. Meth. B 266 3835
[20] Baier V N, Katkov V M and Strakhovenko V M 1998 Electromagnetic Processes at High Energy in Oriented Single Crystals (Singapore: World Scientific) p 554
[21] Dabagov S B and Zhevago N K 2008 Riv. Nuovo Cimento 31 491
[22] Vyatkin E G, Pivovarov Yu L and Vorobiev S A 1987 Nucl. Phys. B 284 509
[23] Bogdanov O V, Fiks E I, Korotchenko K B, Pivovarov Yu L and Tukhfatullin T A 2010 J. of Phys.: Conf. Ser. 236 012029
[24] Abdashitov S V, Bogdanov O V, Pivovarov Yu L and Tukhfatullin T A 2014 Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques 8 3 494
[25] Koch H W and Motz J W 1959 Rev. Mod. Phys. 31 920
[26] Akhiezer A I and Berestetsky V B 1965 Quantum Electrodynamics (New York: Interscience Publishers)
[27] Kalinovskii A N, Mokhov N V and Nikitin Yu P 1989 Passage of high-energy particles through matter (New York: American Institute of Physics)
[28] Heitler W 1957 The Quantum Theory of Radiation (London: Oxford University Press)
[29] Dabagov S B, Abdashitov S V, Bogdanov O V, Pivovarov Yu L and Tukhfatullin T A 2016 Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques 10 1 254
[30] Berger M J, Hubbell J H, Seltzer S M et al 2010 XCOM: Photon Cross Section Database (version 1.5) National Institute of Standards and Technology, Gaithersburg, MD.
[31] Salvat F, Fernandez-Varea J M, Sempau J 2011 Penelope-2011: A Code System for Monte Carlo Simulation of Electron and Photon Transport Nuclear Energy Agency workshop proc. (Barcelona, Spain, 4–7 July 2011) (Paris, OECD NEA)
[32] Drouin D, Couture A R, Joly D, Tastet X, Aimez V and Gauvin R 2007 Scanning 29 3 92
[33] Ferrario M, Alesini D, Anania M et al 2013 Nucl. Instr. Meth. B 309 183
[34] Bogdanov O V and Dabagov S B 2012 J. of Phys.: Conf. Ser. 357 012029
[35] Bazylev V A and Zhevago N K 1987 Radiation by Fast Particles in Matter and in External Fields (in Russian) (Moscow: Nauka)