The effective mass and the g-factor of the strongly-correlated 2-D electron fluid. Evidence for a coupled-valley state in the Si system.

M.W.C. Dharmar-Wardana(∗)

Institute of Microstructural Sciences, National Research Council of Canada, Ottawa, Canada. K1A 0R6

PACS. 05.30.Fk – First pacs description.
PACS. 71.27.+a – Second pacs description.
PACS. 71.45.Gm – Third pacs description.

Abstract. – The effective mass m^*, and the Landé g-factor of the uniform 2-D electron system (2DES) are calculated as a function of the spin polarization ζ, and the density parameter r_s, using a non-perturbative analytic approach. Our theory is in good accord with the susceptibility data for the simple 2DES, and in excellent agreement with the two-valley Si-2DES data of Shashkin et al. While g^* is enhanced in GaAs, m^* is enhanced in Si. The two-valley susceptibility is treated within a coupled-mode (coupled-valley) approach. The coupled-valley model is confirmed by comparison with the Quantum Monte Carlo results for a 4-component 2DES.

The 2-D electron fluid (2DES) exhibits a wealth of intriguing physics, straddling a rich phase diagram [1,2]. The phase diagram contains spin-polarized states at sufficiently large r_s, say $\sim 20 - 27$. Here $r_s = (\pi n)^{-1/2}$ is the electron-disk radius [3,4] at the density n, in atomic units. It is also equal to the value of the coupling constant $\Gamma = (\text{potential energy})/(\text{kinetic energy})$. The intermediate regime $r_s \sim 5 - 20$ also hosts many ill-understood phenomena including the metal-insulator transition (MIT) [5]. Anomalous values (e.g., see [6]), of g^* and m^* have been found. Some experiments suggest that an enhancement of g^* is responsible for the strong enhancement of $m^* g^*$, while results [7] on Si metal-oxide field effect transistors (MOSFETs) suggest that it is m^*, and not g^* which is enhanced. In this study we show that, for ideally thin 2-D layers, g^* is enhanced in GaAs-like systems, while m^* is enhanced in Si-like multi-valley systems. The existence of a coupled-valley state follows naturally from the physics of the Si system, and here we present a model leading to excellent quantitative agreement with experiment, and with Quantum Monte Carlo (QMC) simulations of a 4-component 2DES [8].

Fermi liquid-type theories [9] are valid for $r_s < 1$. Such perturbative methods have been applied, invoking impurities [10], or charge and spin-density wave effects [11]. On the other hand, QMC calculations of m^* involve the excited states of the 2DES and are less reliable than for the ground state. QMC results up to $r_s = 5$ have been reported [12].

(∗) E-mail: chandre@argos.phy.nrc.ca

© EDP Sciences
We showed recently that the 2-DES, 3-DES, and dense hydrogen can be studied using a mapping to a classical fluid [13–16]. The accuracy of the map was established by comparison with QMC and other independent calculations. Here we use this classical map to evaluate \(m^* \) and \(g^* \) for the low-density 2-DES. The method is best understood within a density-functional picture.

The density-functional perspective. The Hohenberg-Kohn-Mermin theorem asserts that the Helmholtz free energy \(F \) is a minimum at the true density [17]. If \(n(r) \) is the true density, it obeys the variational equation \(\delta F[n(r)]/\delta n(r) = 0 \). If the origin of coordinates is on an electron, then if \(n(r) \) is the density as seen from this electron, it is a pair-density such that \(n(r) = n g(r) \). Here \(g(r) \) is the electron-pair distribution function (PDF). The variational condition gives the Kohn-Sham (KS) equation as usual. Then \(n(r) \) is obtained via a sum over the KS orbital-densities \(|\psi_i|^2 \) weighted by the Fermi factors \(f_i \). If the electrons formed a classical system, the variational equation becomes the Boltzmann form for the density:

\[
n(r) = ne^{-\beta(V_{\text{coul}}(r)+V_p(r)+V_c(r))}.
\]

(1)

\(V_{\text{coul}}(r) \) is the Coulomb interaction between the electron at the origin and the electron located at \(r \). Similarly, \(V_p(r) \) is the Poisson potential at \(r \), and \(V_c(r) \) is a correlation potential. For a classical system the \(V_{xc}(r) \) of standard KS theory is replaced by just a correlation potential \(V_c(r) \). In effect, Eq. (1) evaluates the \(g(r) \) of the classical fluid. However, the \(g(r) \) of a classical fluid is accurately given by the hyper-netted chain (HNC) inclusive of a bridge function [18]. Thus, the extended HNC equation is a classical KS equation where \(V_c(r) \) is the sum of HNC+bridge diagrams. The construction of the Bridge diagrams for the 2DES is given in refs. [15, 20].

The classical map has no exchange, and fails as \(T \to 0 \). We rectify these lacunae as follows. In a system without Coulomb interactions, \(g(r) \) should reduce to \(g^0(r) \) which is known analytically (at \(T = 0 \)) or numerically. The first step of the mapping is to introduce a potential \(\phi_{ij}^0(r) \) (where \(i, j \) are spin labels) such that \(\phi_{ij}^0(r) \) generates \(g^0_{ij}(r) \) when used in the HNC equation for ideal electrons [19]. This leads to an exact treatment of exchange.

Electrons at \(T = 0 \) have kinetic energy. Hence the classical map of the quantum fluid at \(T = 0 \) would be at some “quantum temperature” \(T_q \). This is determined by requiring the correlation energy \(\epsilon_c \) of the classical fluid at \(T_q \) be equal to the \(\epsilon_c \) of the quantum fluid at \(T = 0 \). This may be regarded as a “calibration” of the classical fluid to recover the quantum exchange-correlation energy in the \(r_s \) range of interest. Here we use the \(\epsilon_c(r_s) \) given by QMC (Tanatar-Ceperley results for the fully spin-polarized 2DES for \(r_s \) up tp 30 were used in [15]). Once \(T_q \), which maps the \(T = 0 \) quantum fluid to a classical fluid is known, finite-\(T \) fluids are calculated from classical fluids at the temperature \(T_{eq} = (T^2 + T_q^2)^{1/2} \), as justified in ref. [14]. We have shown [13, 15] that the classical PDFs are in very close agreement with the quantum fluid PDFs obtained via QMC. The success of the method (refs. [13–16]) for 2-D and 3-D electrons, hydrogen fluids, and for 4-component 2-D electron fluids as judged by comparison with QMC data establishes it to be a well controlled, highly reliable method. The PDFs are easily used in a coupling-constant integration for the exchange-correlation free energies \(F_{xc} \). Our finite-\(T \) method accurately recovers the low-\(T \) logarithmic terms in \(F_c \) which cancel with corresponding terms in \(F_x \). This method, based on a classical mapping of the quantum calculation to an HNC calculation is called CHNC [1, 13–15].

Evaluation of \(m^* \) and \(g^* \). The evaluation of the susceptibility enhancement \(m^* g^* \) uses the \(T = 0 \) results for the exchange-correlation energy \(\epsilon_{xc}(r_s, \zeta) \). This is expressed in terms of \(\epsilon_{xc}(r_s, 0) \) and \(r_{xc}(r_s, 1) \), and a polarization factor \(P(r_s, \zeta) \) given in Eq. (6) of Ref. [15]. Using Hartree units, the ratio of the static spin susceptibility to the ideal (Pauli) spin susceptibility

\[
\frac{\chi_{spin}}{\chi_{spin, ideal}} = \frac{m^* g^*}{m^* g^*_{ideal}}.
\]
The effective mass and the g-factor

\[
\frac{K^0}{K} = (m^* g^*)^{-1} = 1 + r_s^2 \partial^2 \epsilon_{xc} / \partial \zeta^2.
\]

(2)

The specific heats are obtained as the second-T derivatives of the interacting and ideal Helmholtz $F(r_s, T)$. Here T is the physical temperature and not T_{cf}. The latter is used only in the classical map to obtain the PDFs. $F_x(r_s, T)$ has a logarithmic term of the form $T^2 \log(T)$ which is cancelled by a similar term in $F_c(r_s, T)$. That is,

\[
F_x = A_x + B_xt^2 \log(t) - C_xt^2, \quad t = T/E_F
\]

(4)

\[
F_c = A_c + B_ct^2 \log(t) - C_xt^2, \quad B_c = -B_x.
\]

(5)

This cancellation holds to 85-95\% in our numerical CHNC results, for the range $r_s = 5 - 30$, $0 < t < 0.25$. Thus, at $r_s = 15$ and 25, (B_x, B_c) are (-0.0258, 0.0228), and (-0.0155, 0.0142). If Hubbard-type finite-T RPA were used in the self-energy, the cancellation is quite poor, even at low-r_s. These logarithmic terms and the m^* have also been studied by Geldart et al., using CHNC [21]. Multi-valley systems- Shashkin et al. [7], also [23], have studied clean low-density 2-valley 2DES in Si-MOSFETs. The two valleys are assumed degenerate [24]. It is found [7] that the m^* is strongly enhanced, while g^* shows little change. The enhanced m^* is independent of ζ. These results, “contrary to normal expectations”, are reproduced by our coupled-mode theory of two valleys.
Two equivalent valleys and two spins imply 10 different PDFs, \(g_{ij}^{uv} \), where \(u, v \) are valley indices. Such a calculation for each \(r_s, \zeta, T \) and many values of the coupling constant is laborious. A simpler procedure using just three PDFs is possible. Even if \(\zeta \neq 0 \), each valley has a density \(n/2 \). Thus the 2-valley system may be made up from the known properties of the one-valley (two-spin) 2DESs coupled together by their Coulomb interaction. The individual 1-valley correlation free energies \(F_c^u, F_c^v \) are known from QMC and CHNC results. The inter-valley term for a system with a total density \(n \), and valley densities \(n/2 \) is not known. Here we present a simple approximation validated by calculating the 2-valley compressibility in the same way and comparing with the QMC data of Conti et al [8]. There is no exchange interaction between up-spin and down-spin electrons in the one-valley system, and the spin densities are \(n/2 \) at \(\zeta = 0 \). Hence, since \(F_c^u(n/2), F_c^v(n/2), \) and \(F_c(n, \zeta = 0, \{g_{12}\}) \) for the one-valley system are known, we build up the 2-valley system within the assumption that \(F_c(n, \zeta = 0) \) can be used for the inter-valley contribution to the \(F_c \) of the 4-component (i.e., 2-valley) system. In a full 4-component CHNC calculation, the inter-valley interaction is switched on via a coupling constant integration. This effect can be recovered within linear response by developing the coupled-mode 2-valley response functions. An analogous coupled-mode problem arises in electron-hole systems (see Vashishta et al [22]).

The total (spin or charge) density-fluctuation spectrum of the electrons in a given (single) valley \(v \) is described by the response functions \(\chi_v = \chi_v^0/D_v \), where \(\chi_v^0 \) is the 2-D Lindhard function weighted appropriately with the square of the Bohr magneton \(\mu_B \) or unity, and \(D_v \) is a corresponding denominator for each case. The Pauli susceptibility \(\chi_P \) is the long-wavelength limit \(\mu_B^2 \chi_v^0(k = 0) \). Let us consider a denominator of a response function (which may be the charge response \(\chi \), the proper polarization function \(\Pi \), or the spin susceptibility \(\chi_s \), depending on how the local-field factor \(G \) is specified). The denominator \(D_v = 1 - v_{\text{con}}(1 - G_v)\chi_v^0 \) and defines \(G_v \), the local-field factor (LFF, see [26]). We are only concerned with the static \(k \to 0 \) limit. Then \(G_v \) for \(\Pi \) are related to \(K^0/K \), while the \(G_v \) for \(\chi_s \) is given by \(\chi_P/\chi_s \), as in Eq. [2] and depends on the correlation free energy \(F_c \) of the one-valley 2DES. When two such 2DESs, described by \(\chi_v \) and \(\chi_u \) interact via the inter-valley term, coupled modes are formed. These modes are described by the zeros of a new denominator of the response function of the total 2-valley system. This coupled-mode form is [22]:

\[
\chi_{cm} = \frac{\chi_0 + \chi_v^0 + v_{\text{con}}^2 \chi_u \chi_v^0 (\Sigma G_{uv})}{D_{cm}} \quad (6)
\]

\[
\Sigma G_{uv} = G_a + G_v - G_{uv} - G_{vu} \quad (7)
\]

\[
D_{cm} = D_u D_v - v_{\text{con}}^2 \chi_u \chi_v (1 - G_{uv})(1 - G_{vu}) \quad (8)
\]

Here \(G_{uv} \) is an LFF arising from the inter-valley term \(F_{uv} \) already discussed, and modeled by \(F_{12}(n, \zeta = 0) \) at \(k = 0 \). Hence we express the susceptibility enhancement \(\chi_s/\chi_P \) as \(\chi_{cm}/\chi_P \), and this is evaluated from the \(G_a, G_v \) and \(G_{uv} \). Equation [2] determines \(G_a = G_v \), where the correlation part involves the second derivative \((r_s^2 d^2 F_c^v/d\xi^2) \). Similarly the cross term \(G_{uv} \) involves \(r_s^2 d^2 F_{12}^v(n, \zeta = 0)/d\xi^2 \). The 4-component QMC results of Ref. [8] for \(F_s(r_s, \zeta = 0, T = 0) \) enable us to calculate the compressibility ratio \(K^0/K \) of the 2-valley system directly. The coupled-mode theory, applied to the proper polarization function \(\Pi \) gives another evaluation \(K^0/K \). The agreement between the two methods is shown in Fig. [1]. A similar comparison for \(\chi_P/\chi_s \) is not possible as the QMC results are available only at \(\zeta = 0 \). However, the agreement between the two estimates of \(K^0/K \) validates our coupled-mode evaluation of 2-valley properties from the 1-valley energies. Thus the 2-valley results are constructed from the 1-valley CHNC energies (which agree closely with QMC data) which include the usual bridge contributions [15].

Results – In Fig. [2] we show \(\chi_s/\chi_P = m^* g^* \) for a single-valley system, as a function of the
density \(n \), and as a function of \(r_s \) (see [3]) at \(T = 0 \) for \(\zeta = 0 \). Our results, the experimental data of Zhu et al. [6], and QMC data, extracted from Fig. 2 of ref. [2] are displayed. The high density regime [27] is in agreement with standard theories and is not displayed.

For the Zhu et al. data we use their fitted form \(m^* g^* = (2.73 + 3.9 n \zeta) n^{-0.4} \) where the density \(n \) is in units of \(10^{10} \) cm\(^{-2} \). The strong agreement between CHNC and the Zhu data is perhaps fortuitous since the results are quite sensitivity to the \(d^2/d\zeta^2 \) calculation to the energy differences \(\Delta E = E_c(\zeta = 1) - E_c(\zeta = 0) \) and the form of the polarization factor \(P(r_s, \zeta) \). The CHNC is calibrated to the Tenatar-Ceperley QMC which differs somewhat from the Attaccalite data. We have also plotted two CHNC curves where (see Eq [3]) the term \(r_s^2 \partial^2 \epsilon_{xx}/\partial \zeta^2 \) has been modified by \(\pm 2\% \). Clearly, errors in converting to \(r_s \), modification of exchange-correlation gradients by well-width effects and the presence of impurities etc., can produce such a change. The bottom panel (Fig. 2) shows the comparison against \(r_s \).

Zhu et al. report a \(\zeta \) dependence, but now they consider that the finiteness of the 2-D layer and orbital effects cannot be ignored in analysing field-dependent data [28]. As pointed out via the \(\pm 2\% \) plots in Fig 2 the sensitivity of \(\chi_P/\chi_s \) to small errors in the xc-energy gradient is also important. (Discussion of these and other data for \(m^* \) and \(g^* \), of Zhu’s thesis [6] will await their publication).

In our results, \(\chi_s/\chi_P \) is less sensitive to \(\zeta \) at high density, and very sensitive to \(\zeta \) at low density, approaching the \textit{para–ferro} transition. In fact, the second derivative in Eq.2 diverges at \(\zeta = 1 \).

A very different experimental picture is found in Si-2DESs [7]. The CHNC results for the coupled 2-valley 2DES are shown in Fig. 3. The top panel compares the \(m^* g^* = \chi_{cm}/\chi_P \) obtained from experiment and the coupled-mode analysis (the LFFS used are for the spin-spin response). The inset shows the shift of the simple uncoupled-valley curve to higher densities when the valley coupling is introduced. The conversion between density and \(r_s \) is discussed in ref. [3].

The middle panel (fig. 3) shows the \(m^* \) calculated from the finite-\(T \) analysis, with the sharp rise occurring at \(r_s \sim 5.4 \), i.e., density \(n_{ev} = 1 \times 10^{11} \)/cm\(^2 \). The inset shows the lack of \(\zeta \) dependence in \(m^* \) for three densities. This is because the physics is dominated by singlet interactions, as in the ambi-spin phase reported earlier [1]. The lower panel of Fig. 3 shows the flat \(g^* \) of the coupled-valley fluid, while the inset shows the usual increase of \(g^* \) in the uncoupled system as the density is reduced.

\textit{Conclusion–} We have presented results for the effective mass \(m^* \), and the Landé \(g^* \) factor of 2-D electron fluids, using an analytic method. Our results suggest that exchange effects dominate as \(r_s \) increases in 1-valley 2D system, enhancing \(g^* \) when the one-valley spin-response diverges. Correlation effects outweigh exchange in 2-valley systems where \(m^* \) is strongly enhanced and only weakly dependent on \(\zeta \). The tendency to form singlets already noted in the single 2DES [25] becomes stronger in the 2-valley 2DES where a coupled-valley state is formed. Our theoretical results depend only on the \(\epsilon_{xx}(r_s, \zeta, T) \) used in calculating \(\zeta \) and \(T \) derivatives, and invoke no fit parameters specific to this problem. However, the inter-valley energy \(F_{iv} \) was approximated via the \(F_{12}(\zeta = 0) \) of the one-valley inter-spin energy. As already noted, \(\chi/\chi_0 \) is quite sensitive to the evaluation of \(d^2/d\zeta^2 \). However, the agreement of the present model with experiment may prove useful in understanding the experimental results.

We thank Peter Coleridge, Wally Geldart, François Perrot, Sasha Shashkin, Horst Stormer and Jun Zhu for their comments and correspondence.
Fig. 2 – The spin-susceptibility enhancement $\chi_s/\chi_P = m^* g^*$ in the 2DES. Top panel: comparison of experiment [6], QMC [2], and CHNC. Curves marked $\pm 2\%$ are CHNC predictions if the exchange-correlation contribution $r_s^2 \partial^2 \varepsilon_{xc}/\partial \zeta^2$ is modified by $\pm 2\%$. Bottom panel: CHNC results for $m^* g^*$ for 3 spin-polarization ζ, and the experimental $\zeta=0$ data, plotted against r_s.

REFERENCES

[1] Dharma-wardana M. W. C. et al., Phys. Rev. Lett., 90 (2003) 136601
[2] Attaccalite C. et al., Phys. Rev. Lett., 88 (2002) 256601
[3] Ando T. et al., Rev. Mod. Phys., 54 (1982) 437
(Conversion of n to r_s: GaAs-2DES, as in Zhu et al. [6], Si-2DES, 2-valleys, Ando et al. provide two eqns. Our first-principles model [Phys. Rev. B, 65, 165339 (2002)] of Si/SiO$_2$ shows that the 37% lattice mismatch between Si and SiO$_2$ creates an amorphous Si layer between the crystalline c-Si and the suboxide layers. Thus the first formula of Ando et al. holds. See Ref. [4].)
[4] Dharma-wardana M. W. C. et al., cond-mat/0402253,
[5] Kravchenko S. V. and Sarachik M. P., Rep. Prog.Phys., 67 (2004) 1.
[6] Zhu J. et al., Phys. Rev. Lett., 90 (2003) 56805 Zhu J., Ph. D thesis (Columbia Univ.) 2003
[7] Shashkin A. A. et al., Phys. Rev. Lett., 91 (2003) 46403
[8] Conti S. and Senatore G., Europhys. Lett., 67 (2003) 46403
[9] Santoro G. E. et al., Phys. Rev. B, 37 (1988) 4813
[10] Morawetz K., cond-mat/0210168, Asgari R. et al., cond-mat/0401289,
[11] Galitski V. M. et al., cond-mat/0308203,
[12] Kwon Y. et al., Phys. Rev. B, 50 (1994) 1684
[13] Dharma-wardana M. W. C. and Perrot F., Phys. Rev. Lett., 84 (2000) 959
[14] Perrot F. et al., Phys. Rev. B, 62 (2000) 16536
Fig. 3 – Comparison of experiment [7] and theory for the 2-valley 2DES in Si-MOSFETs. The top panel shows $m^* g^*$, while the inset shows the shift of theoretical $m^* g^*$ curve to higher densities due to mode coupling. The middle panel shows m^* which rises steeply at the onset of the spin-singlet coupled-valley state at $n_{cv} = 1 \times 10^{11}/\text{cm}^2$. The inset shows the insensitivity of m^* to the spin-polarization for three densities. The bottom panel compares the experimental g^* with theory.