Supplementary Information

AmPEP: Sequence-based prediction of antimicrobial peptides using distribution patterns of amino acid properties and random forest

Pratiti Bhadra, Jielu Yan, Jinyan Li, Simon Fong, and Shirley W. I. Siu*

Department of Computer and Information Science, University of Macau
Avenida da Universidade, Taipa, Macau, China

*Corresponding author: shirleysiu@umac.mo

Last update: 14 Dec 2017
Supplementary Table S1. Pearson correlation coefficients (PCC) of AMP/non-AMP distributions using \(M_{model_{train}} \). A descriptor is named with its physiochemical property, class, and distribution (“first residue” is coded as 001, “25% residues” as 025, “50% residues” as 050, “75% residues” as 075, “last residue” as 100). Descriptors with PCC < 0.5 are shown with boldface; those with PCC < 0.5 also in the two other datasets (\(C_{\text{train}} \), \(C_{\text{test}} \)) are marked with asterisks.

Descriptor	PCC	Descriptor	PCC	Descriptor	PCC
Charge_C1_001	0.690	Polarizability_C3_025	0.751	NormalizedVDWV_C2_075	0.632
Charge_C2_001	**0.063**	SecondaryStr_C1_025	0.797	NormalizedVDWV_C3_075	0.675
Charge_C3_001	**0.252**	SecondaryStr_C2_025	0.711	Polarity_C1_075	0.730
Hydrophobicity_C1_001	0.747	SecondaryStr_C3_025	0.571	Polarity_C2_075*	**0.311**
Hydrophobicity_C2_001	0.549	SolventAccessibility_C1_025	0.643	Polarity_C3_075	0.544
Hydrophobicity_C3_001*	**0.128**	SolventAccessibility_C2_025	0.729	Polarity_C1_075	0.525
NormalizedVDWV_C1_001	0.554	SolventAccessibility_C3_025	0.669	Polarity_C2_075	0.801
NormalizedVDWV_C2_001	0.625	Charge_C1_050	0.597	Polarity_C3_075	0.675
NormalizedVDWV_C3_001*	0.301	**Charge_C2_050**	**0.288**	SecondaryStr_C1_075	0.747
Polarity_C1_001	**0.130**	Charge_C3_050	**0.268**	SecondaryStr_C2_075	0.807
Polarity_C2_001	0.512	Hydrophobicity_C1_050	0.679	SecondaryStr_C3_075	0.627
Polarity_C3_001	0.689	Hydrophobicity_C2_050	0.719	SolventAccessibility_C1_075	0.727
Polarizability_C1_001	0.584	Hydrophobicity_C3_050	0.683	SolventAccessibility_C2_075	0.609
Polarizability_C2_001	0.614	NormalizedVDWV_C1_050	0.628	SolventAccessibility_C3_075	0.613
Polarizability_C3_001	**0.301**	NormalizedVDWV_C2_050	0.627	Charge_C1_100	0.571
SecondaryStr_C1_001	**0.346**	NormalizedVDWV_C3_050	0.672	**Charge_C2_100**	**0.484**
SecondaryStr_C2_001	0.657	Polarity_C1_050	0.710	**Charge_C3_100**	**0.184**
SecondaryStr_C3_001	0.768	**Polarity_C2_050**	**0.357**	Hydrophobicity_C1_100*	**0.464**
SolventAccessibility_C1_001	0.432	Polarity_C3_050	0.648	Hydrophobicity_C2_100	0.559
SolventAccessibility_C2_001	0.747	Polarizability_C1_050	0.636	Hydrophobicity_C3_100	0.652
SolventAccessibility_C3_001	**0.296**	Polarizability_C2_050	0.684	NormalizedVDWV_C1_100	0.529
Charge_C1_025	0.588	Polarizability_C3_050	0.672	NormalizedVDWV_C2_100	0.558
Charge_C2_025	0.661	SecondaryStr_C1_050	0.720	NormalizedVDWV_C3_100	0.567
Charge_C3_025	**0.237**	SecondaryStr_C2_050	0.739	Polarity_C1_100	0.645
Hydrophobicity_C1_025	0.729	SecondaryStr_C3_050	0.640	Polarity_C2_100	0.521
Feature	Value	Feature	Value	Feature	Value
------------------------------	---------	------------------------------	---------	------------------------------	---------
Hydrophobicity_C2_025	0.782	SolventAccessibility_C1_050	0.432	Polarity_C3_100	0.570
Hydrophobicity_C3_025	0.640	SolventAccessibility_C2_050	0.679	Polarity_C1_100	0.503
NormalizedVDWV_C1_025	0.703	SolventAccessibility_C3_050	0.629	Polarity_C2_100	0.565
NormalizedVDWV_C2_025	0.617	Charge_C1_075	0.473	Polarity_C3_100	0.567
NormalizedVDWV_C3_025	0.751	Charge_C2_075	0.782	SecondaryStr_C1_100*	0.420
Polarity_C1_025	0.636	Charge_C3_075	0.231	SecondaryStr_C2_100	0.723
Polarity_C2_025*	0.315	Hydrophobicity_C1_075	0.609	SecondaryStr_C3_100	0.618
Polarity_C3_025	0.657	Hydrophobicity_C2_075	0.696	SolventAccessibility_C1_100	0.546
Polarizability_C1_025	0.705	Hydrophobicity_C3_075	0.727	SolventAccessibility_C2_100*	0.464
Polarizability_C2_025	0.731	NormalizedVDWV_C1_075	0.638	SolventAccessibility_C3_100	0.639
Supplementary Table S2. Datasets generated from $M_{\text{model_train}}$ for P:N ratio tests of AMP prediction. Size of the positive dataset is 3268.

P:N ratio	Size of one non-AMP subset	Total number of non-AMP subsets
1:1	3268	51
1:1.5	4902	34
1:2	6536	26
1:2.5	8170	20
1:3	9804	17
1:3.5	11438	15
1:4	13072	13
1:4.5	14706	11
1:5	16340	10
1:5.5	17974	9
1:6	19608	9
1:6.5	21242	8
1:7	22876	7
1:7.5	24510	7
1:8	26144	6
1:8.5	27778	6
1:9	29412	6
1:9.5	31046	5
1:10	32680	5
Supplementary Table S3. Performance of RF classifiers using different P:N ratios in 10-fold cross validation. Values shown are averages and standard deviations (in brackets) over all corresponding subsets. The optimal model based on C-measure is ratio 1:3.

P:N ratio	Sn	Sp	Acc	MCC	AUC-ROC	AUC-PR	Kappa	C-measure
1:1	0.978	0.945	0.962	0.924	0.988	0.698	0.923	0.588
	(0.002)	(0.004)	(0.002)	(0.004)	(0.001)	(0.024)	(0.005)	
1:1.5	0.972	0.952	0.960	0.917	0.989	0.755	0.917	0.628
	(0.002)	(0.003)	(0.002)	(0.004)	(0.001)	(0.017)	(0.004)	
1:2	0.965	0.957	0.960	0.912	0.989	0.791	0.911	0.650
	(0.003)	(0.002)	(0.002)	(0.004)	(0.001)	(0.014)	(0.005)	
1:2.5	0.958	0.961	0.961	0.906	0.989	0.814	0.905	0.660
	(0.003)	(0.002)	(0.002)	(0.004)	(0.001)	(0.015)	(0.004)	
1:3	0.950	0.965	0.962	0.900	0.989	0.830	0.899	0.665
	(0.003)	(0.002)	(0.002)	(0.004)	(0.000)	(0.009)	(0.004)	
1:3.5	0.943	0.968	0.962	0.893	0.989	0.840	0.893	0.663
	(0.004)	(0.001)	(0.002)	(0.005)	(0.001)	(0.010)	(0.005)	
1:4	0.936	0.970	0.963	0.888	0.989	0.849	0.888	0.663
	(0.004)	(0.002)	(0.002)	(0.005)	(0.001)	(0.007)	(0.005)	
1:4.5	0.929	0.973	0.965	0.884	0.989	0.857	0.884	0.662
	(0.004)	(0.001)	(0.002)	(0.005)	(0.000)	(0.007)	(0.005)	
1:5	0.921	0.974	0.965	0.878	0.989	0.858	0.877	0.653
	(0.004)	(0.001)	(0.001)	(0.003)	(0.001)	(0.004)	(0.003)	
1:5.5	0.915	0.975	0.966	0.873	0.989	0.862	0.873	0.649
	(0.006)	(0.001)	(0.001)	(0.004)	(0.000)	(0.006)	(0.004)	
1:6	0.908	0.977	0.967	0.868	0.989	0.862	0.867	0.642
	(0.005)	(0.001)	(0.001)	(0.004)	(0.001)	(0.007)	(0.004)	
1:6.5	0.902	0.978	0.968	0.863	0.989	0.864	0.863	0.637
	(0.006)	(0.001)	(0.001)	(0.006)	(0.001)	(0.005)	(0.006)	
1:7	0.894	0.979	0.968	0.858	0.989	0.864	0.858	0.629
	(0.004)	(0.001)	(0.001)	(0.004)	(0.001)	(0.005)	(0.004)	
1:7.5	0.889	0.980	0.969	0.854	0.989	0.864	0.854	0.623
	(0.007)	(0.001)	(0.001)	(0.007)	(0.001)	(0.007)	(0.006)	
1:8	0.882	0.981	0.970	0.850	0.989	0.863	0.850	0.616
	(0.009)	(0.001)	(0.001)	(0.008)	(0.001)	(0.004)	(0.008)	
1:8.5	0.875	0.982	0.971	0.846	0.989	0.859	0.846	0.608
	(0.009)	(0.001)	(0.001)	(0.007)	(0.000)	(0.005)	(0.007)	
1:9	0.869	0.982	0.971	0.841	0.989	0.858	0.841	0.601
	(0.007)	(0.000)	(0.001)	(0.006)	(0.000)	(0.006)	(0.006)	
1:9.5	0.861	0.983	0.972	0.837	0.989	0.857	0.836	0.593
	(0.005)	(0.001)	(0.001)	(0.006)	(0.000)	(0.002)	(0.006)	
1:10	0.859	0.984	0.972	0.835	0.989	0.857	0.835	0.590
	(0.006)	(0.001)	(0.001)	(0.005)	(0.001)	(0.006)	(0.005)	
Supplementary Table S4. Comparison of RF and SVM classifiers using D_f features and AMP/non-AMP data ratio of 1:3 in 10-fold cross-validation. Values shown are averages and standard deviations (in brackets) over all corresponding subsets.

Method	Sn	Sp	Acc	MCC	AUC-ROC	AUC-PR	Kappa	CMeasure
RF	0.950(0.003)	0.965(0.002)	0.962(0.002)	0.900(0.004)	0.989(0.000)	0.830(0.009)	0.889(0.004)	0.665(0.006)
SVM	0.532(0.042)	0.949(0.006)	0.844(0.012)	0.552(0.038)	0.813(0.030)	0.681(0.034)	1.0(0.000)	0.305(0.047)
Supplementary Table S5. A comparison of RF classifiers using different descriptors by 10-fold cross-validation with the AMP data ratio of 1:1. Values shown are averages and standard deviations (in brackets) over 10 times of 10-fold cross validation. The best two results in each performance measure are highlighted.

Feature set {#}	Sn	Sp	Acc	MCC	AUC-ROC	AUC-PR	Kappa	C-measure
AmPEP [105]	0.978	0.945	0.962	0.924	0.988	0.698	0.923	0.588
AAC [20]	0.948	0.946	0.947	0.894	0.985	0.77	0.894	0.606
PAAC [24]	0.948	0.945	0.947	0.893	0.984	0.822	0.893	0.645
K-mer [400]	0.939	0.944	0.941	0.883	0.983	0.876	0.883	0.671
Auto Covariance (AC) {6}	0.761	0.844	0.802	0.606	0.870	0.814	0.604	0.259
Cross Covariance (CC) {12}	0.802	0.85	0.826	0.653	0.897	0.851	0.652	0.325
Auto-Cross Covariance (ACC) {18}	0.83	0.863	0.846	0.693	0.914	0.863	0.693	0.379
Parallel Correlation Pseudo Amino Acid Composition	0.948	0.945	0.947	0.893	0.984	0.806	0.893	0.633
(PC-PseAAC) {22}								
General Parallel Correlation Pseudo Amino Acid Composition	0.946	0.942	0.944	0.888	0.984	0.823	0.888	0.639
(PC-PseAAC-General) {22}								
Parallel Series Correlation Pseudo Amino Acid Composition	0.946	0.943	0.944	0.889	0.983	0.822	0.889	0.639
(SC-PseAAC-General) {26}								

AAC: Amino Acid Composition, PAAC: Pseudo Amino Acid Composition
AAC and PseAAC were generated using propy 1.0 package (default parameter of propy is used).
Other descriptors, K-mer, AC, CC, ACC, PC-PseAAC, SC-PseAAC, PC-PseAAC-General, SC-PseAAC-General were generated by Pse-in-One-1.0.4 using default parameters.
Supplementary Figure S1. Comparison of the AMP and non-AMP statistical distributions of 105 descriptors.
Supplementary Figure S2. Comparison of the average descriptor value of “first residue” and “100% residues” computed from the AMP sequences of three datasets (M_{model_train}, C_{test} and C_{train}). Standard deviations are shown as error bars.