Optimizing Joint Probabilistic Caching and Channel Access for Clustered D2D Networks

Ramy Amer, Student Member, IEEE, M. Majid Butt, Senior, IEEE, and Nicola Marchetti, Senior Member, IEEE

Abstract—Caching at mobile devices and leveraging device-to-device (D2D) communication are two promising approaches to support massive content delivery over wireless networks. Analysis of such D2D caching networks based on a physical interference model is usually carried out by assuming uniformly distributed devices. However, this approach does not capture the notion of device clustering. In this regard, this paper proposes a joint communication and caching optimization framework for clustered D2D networks. Devices are spatially distributed into disjoint clusters and are assumed to have a surplus memory that is utilized to proactively cache files, following a random probabilistic caching scheme. The cache offloading gain is maximized by jointly optimizing channel access and caching scheme. A closed-form caching solution is obtained and bisection search method is adopted to heuristically obtain the optimal channel access probability. Results show significant improvement in the offloading gain reaching up to 10% compared to the Zipf caching baseline.

Index Terms—device-to-device (D2D) communication, caching, offloading gain, channel access.

I. INTRODUCTION

Caching at mobile devices significantly improves system performance by facilitating D2D communications, which enhances the spectrum efficiency and alleviates the heavy burden on backhaul links [1]. There are two main approaches for content placement in the literature, deterministic and probabilistic. For deterministic placement, files are cached and optimized for specific networks in a deterministic manner [1]–[3]. However, in practice, the wireless channels and the geographic distribution of devices are time-variant. This triggers the optimal content placement strategy to be frequently updated, which makes the content placement quite complex. To cope with this problem, probabilistic content placement is proposed whereby each device randomly caches a subset of the content with a certain caching probability in stochastic networks [4]. In this paper, we focus on the probabilistic content placement problem.

Modeling of wireless caching networks also follows two main directions in the current state-of-art. The first line of work focuses on the fundamental scaling results by assuming a simple protocol channel model [1]–[3], known as the protocol model. This model assumes that two devices can always communicate if they are within a certain distance. The second line of work, which is similar to the one adopted in this paper, considers a more realistic model for the underlying physical layer [5]. This is commonly defined as the physical interference model.

The analysis of wireless caching networks that underlies a physical interference model, is commonly conducted by means of stochastic point processes. For instance, modeling device locations as a Poisson point process (PPP) is a widely adopted approach in the wireless caching area [3], [5]. However, while the PPP model is tractable, a realistic model for D2D caching networks needs to capture the notion of clustering. In particular, in clustered D2D networks, each device has multiple proximate devices, where any of them can act as a serving device. Such deployments can be characterized by cluster processes [7].

The performance of clustered D2D caching networks is studied in [8] and [9]. For instance, the authors in [8] discussed different strategies of content placement in a Poisson cluster process (PCP) deployment. Moreover, the authors in [9] proposed cooperation among the D2D transmitters and probabilistic caching strategies to save the energy cost of content providers, where the location of these providers is modeled by a Gauss-Poisson process. However, while the works in [8], [9] studied clustered D2D networks from different perspectives, the joint optimization of caching and communication for clustered D2D networks has not been addressed yet in the literature.

Compared with this prior art [5]–[9], in this paper we study the content placement and delivery for a network wherein cache-enabled devices are spatially distributed into disjoint clusters. We conduct a performance analysis and joint optimization of channel access and probabilistic content placement aiming to maximize the cache offloading gain. We characterize the optimal content placement as a function of the system parameters, and propose a heuristic approach to obtain the optimal channel access probability. Our results reveal that the optimal caching scheme heavily depends on the channel access probability and the geometry of the network. Overall, joint optimization of content placement and communication, e.g., channel access, is shown to be vital to enhance the performance of wireless caching networks.

II. SYSTEM MODEL

A. System Setup

We model the location of mobile devices with a Thomas cluster process (TCP). The TCP is composed of the parent points, which are drawn from a PPP Φ_p with density λ_p, and the daughter points that are drawn from a Gaussian PPP around each parent point $\bar{\Phi}$. In particular, the daughter points are normally scattered with variance $\sigma^2 \in \mathbb{R}$ around each parent point. The parent points and offspring are referred to as cluster centers and cluster members, respectively.

By the TCP definition, the number of devices per cluster is a Poisson random variable (RV) with mean $\bar{\Phi}$. Therefore, the density function of a cluster member location relative to its cluster center is

$$f_y(y) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{||y||^2}{2\sigma^2}\right), \quad y \in \mathbb{R}^2$$

where $||.||$ is the Euclidean norm. The intensity function of a cluster is given by $\lambda_c(y) = \bar{\Phi} \exp\left(-\frac{||y||^2}{2\sigma^2}\right)$, and therefore, the intensity of the entire process is given by $\lambda = \bar{\Phi} \lambda_p$.

We assume that the D2D communication is operating as out-of-band D2D under flat Rayleigh fading channels. D2D communication is enabled within each cluster to deliver popular content. It is assumed that the devices adopt a slotted-ALOHA medium access protocol, where each transmitter during each time slot, independently and randomly accesses the channel with the same probability q. One can alternatively assume that each device makes a coin flip at each time about whether or not it accesses a shared-channel. This allows us to define a Bernoulli process N_q with the probability that a device...
located at y accesses a channel being $P(N_y) = q$. The key advantage of adopting slotted-ALOHA is that it is a simple yet fundamental medium access control (MAC) protocol, where there is no need for a central controller to schedule the users’ transmissions. Moreover, despite the vast amount of existing studies on MAC protocols, only variations of ALOHA and CSMA are still used in the majority of technologies being adopted for the Internet of Things [10]. According to this access model, multiple active D2D links might coexist within a cluster. Therefore, q is a design parameter that directly controls intra- as well as inter-cluster interference, as described later.

If a requesting device caches the desired content, the device directly retrieves the content. However, if the content is not locally cached, it can be downloaded from a randomly selected neighboring device that caches the file within the same cluster, henceforth called catering device. This catering device is, in turn, admitted to access the channel according to the proposed slotted-ALOHA protocol. Finally, the device attaches to the nearest base station (BS) as a last resort to download the content, in the case it is not cached within the device cluster. Since there are memory and battery consumption costs borne by a catering device, the geographically closest device may not want to participate in the content caching and/or delivery. Hence, randomizing the catering device reflects the possibility of being served by a distant device that is willing to participate in the content delivery, while not necessarily being the nearest one. Note that this assumption is commonly adopted in the literature [8] and [9].

B. Content Popularity and Caching

We assume that each device has a surplus memory of size M designated for caching files. The total number of files is $N_f > M$, and the set (library) of content indices is denoted as $F = \{1, 2, \ldots , N_f\}$. These files represent the content catalog that all devices in a cluster may request, which are indexed in a descending order of popularity. The probability that the i-th file is requested follows a Zipf’s distribution given by,

$$p_i = \frac{i^{-\beta}}{\sum_{k=1}^{N_f} k^{-\beta}},$$

where β is a parameter that reflects how skewed the popularity distribution is. For example, if $\beta = 0$, the popularity of the files has a uniform distribution. Increasing β increases the disparity among the files’ popularity such that lower indexed files have higher popularity. By definition, $\sum_{i=1}^{N_f} p_i = 1$. We use the Zipf’s distribution to model the popularity of files per cluster [11–16].

We adopt a random content placement where each device independently and probabilistically selects a file to cache according to the function $b = \{b_1, b_2, \ldots , b_{N_f}\}$, where b_i is the probability that a device caches the i-th file, $0 \leq b_i \leq 1$ for all $i \in \{1, \ldots , N_f\}$. To avoid duplicate caching of the same content within the memory of a device, we follow a probabilistic caching approach with $\sum_{i=1}^{N_f} b_i = M$.

Next, we proceed with the rate coverage analysis to obtain the offloading gain, which is a key performance metric for D2D caching networks [12]. Particularly, the offloading gain is defined as the probability of obtaining a requested file from the local cluster, either via self-cache or from a neighboring device in the same cluster, with a received signal-to-interference ratio (SIR) higher than a required threshold θ.

III. RATE COVERAGE ANALYSIS

We conduct the next analysis for a cluster whose center is assumed at $x_0 \in \Phi_p$, referred to as representative cluster. The device requesting a content in this cluster, henceforth called typical device, is located at the origin. We denote the location of the catering device by y_0 relative to x_0, where $x_0, y_0 \in \mathbb{R}^2$. The distance between the typical and catering devices is denoted as $r = ||x_0 + y_0||$, which is a realization of a RV R whose distribution is described later. Having explained the channel access and the random selection of catering devices, the offloading gain can be expressed as

$$P_a(q, b) = \sum_{i=1}^{N_f} p_i b_i + p_i (1 - b_i) (1 - e^{-\frac{r}{\theta}}) \times \int_{\theta}^{\infty} f_R(r) P(SIR_r > \theta) \, dr,$$

where SIR_r is the received SIR at the typical device when downloading a content from a catering device r apart from the origin, and Γ represents the rate coverage probability. The first term in (3) is the probability of requesting a locally cached file (self-cache). The second term is the probability that a requested file i is cached in at least one cluster member and being downloadable with an SIR greater than θ, given that it was not self-cached. More precisely, since the number of devices per cluster has a Poisson distribution, the probability that there are k devices per cluster is equal to $\frac{e^{-\lambda} \lambda^k}{k!}$. Accordingly, the probability that there are k devices caching content i is $\frac{e^{-\lambda} \lambda^k}{k!}$. Hence, the probability that at least one device caches content i is $1 - e^{-\lambda}$.

For the serving distance distribution $f_R(r)$, since both the typical device and catering device have their locations drawn from a normal distribution with variance σ^2, then by definition, the serving distance has a Rayleigh distribution of scale parameter $\sqrt{2}\sigma$, i.e., $f_R(r) = \frac{\sqrt{2}\sigma}{\pi} r e^{-\frac{r^2}{2\sigma^2}}$. It is worth noting that the serving distance is independent of the caching probability b_i. To clarify, from the thinning theorem [7], the set of devices caching content i in a given cluster forms a Gaussian PPP Φ_{ci}, whose intensity is $\lambda_{ci} = b_i \lambda(y)$. The probability distribution function (PDF) of the distance between a randomly selected caching device from Φ_{ci} and the typical device is $f_R(r)$, which is again independent of b_i.

The received power at the typical device from a catering device located at y_0 relative to the cluster center is given by

$$P = P_d g_0 ||x_0 + y_0||^{-\alpha} = P_d g_0 h^{-\alpha}$$

where P_d denotes the D2D transmission power, $g_0 \sim \exp(1)$ is the complex Gaussian fading channel coefficient, and $\alpha > 2$ is the path loss exponent. Under this setup, the typical device sees two types of interference, namely, the intra- and inter-cluster interference. We first describe the inter-cluster interference, then the intra-cluster interference is characterized. The set of active devices in any remote cluster is denoted as B^i, where q refers to the access probability. Similarly, the set of active devices in the local cluster is denoted as A^i. The received interference at the typical device from simultaneously active D2D transmitters within the remote clusters is

$$I_{\Phi_p} = \sum_{x \in \Phi_p} \sum_{y \in B^i} P_d g_{xy} ||x + y||^{-\alpha} = \sum_{x \in \Phi_p} \sum_{y \in B^i} P_d g_{xy} h^{-\alpha},$$

where $\Phi_p = \Phi_p \setminus x_0$ for ease of notation, y is the marginal distance between a potential interfering device and its cluster center at $x \in \Phi_p$, $u = ||x + y||$ is a realization of a RV U that models the inter-cluster interfering distance, $g_{xy} \sim \exp(1)$, and $g_u = g_{yx}$. The intra-cluster interference is then given by

$$I_{\Phi_c} = \sum_{y \in A^i} P_d g_{xy} ||x_0 + y||^{-\alpha} = \sum_{y \in A^i} P_d g_{yh} h^{-\alpha},$$

where y is the marginal distance between the intra-cluster interfering devices and the cluster center at $x_0 \in \Phi_p$, $h = ||x_0 + y||$ is a
realization of a RV H, which models the intra-cluster interfering distance, $g_{n_{x_{i}}n_{y}} \sim \exp(1)$, and $g_{n_{x_{i}}} \sim \exp(1)$. From the thinning theorem, the set of active transmitters based on the slotted-ALOHA medium access forms a Gaussian PPP Φ_{cq} whose intensity is given by

$$\lambda_{cq} = q\lambda_{c}(y) = q\pi f_{V}(y) = \frac{q\pi}{2\sigma^{2}} \exp\left(-\frac{y}{\sigma^{2}}\right), \quad y \in \mathbb{R}^{2}$$

Assuming that the thermal noise is neglected as compared to the aggregate interference, the received SIR at the typical device can be written as

$$\text{SIR}_{|r} = 1\{N_{r} = 1\} \frac{P_{d} q \rho_{r} - \alpha}{I_{q_{r}} + I_{q_{c}}} = 1\{N_{r} = 1\} \frac{P_{d} q \rho_{r} - \alpha}{L_{0}^{\Phi_{q_{r}}} + L_{0}^{\Phi_{c}}}$$

(5)

where $1\{\}$ is the indicator function, and for ease of exposition, $N_{r} = N_{0}$ is a Bernoulli RV that takes the value one with probability q. Thus, the event $\{N_{r} = 1\}$ captures the incident when the serving device is admitted to access the channel. Then, the probability that the received SIR is higher than the required threshold ϑ is derived as follows:

$$\mathbb{P} = \mathbb{P}(\text{SIR}_{|r} > \vartheta) = \mathbb{P}(1\{N_{r} = 1\} \frac{P_{d} q \rho_{r} - \alpha}{I_{q_{r}} + I_{q_{c}}} > \vartheta)$$

where a follows from the assumption of a Bernoulli’s RV with mean q. Rearranging the right-hand side, we get

$$\mathbb{P} = q\mathbb{E}_{I_{q_{r}}(0), I_{q_{c}}(0)} \exp\left(-\frac{\vartheta I_{q_{r}}}{P_{d} q \rho_{r} - \alpha} \right)$$

(6)

$$\mathbb{P} = qL_{I_{q_{r}}(0), I_{q_{c}}(0)}$$

(7)

where b follows from the assumption $g_{0} \sim CN(0,1)$, and c follows from the independence of the intra- and inter-cluster interference and calculating the Laplace transform of them, with $s = \frac{\vartheta}{P_{d} q \rho_{r} - \alpha}$. The classical tradeoff between frequency reuse and higher interference power is represented in \mathbb{P}. In other words, increasing the access probability q allows more opportunities to access the channel, but this channel access would then be accompanied with higher interference power.

Next, we first derive the Laplace transform of interference to obtain the rate coverage probability \mathbb{P}. Then, we formulate the offloading gain maximization problem.

Lemma 1. Laplace transform of the inter-cluster interference $I_{q_{r}}$ is given by

$$L_{I_{q_{r}}}(s) = \exp\left(-2\pi \lambda_{p} \int_{v=0}^{\infty} \left(1 - e^{-\vartheta \pi \nu(s,v)}\right) v \, dv\right),$$

(8)

where $s = \frac{\vartheta}{P_{d} q \rho_{r} - \alpha}$. $\varphi(s,v) = \int_{0}^{s} \frac{\vartheta}{\pi \nu(s,v)} f_{U}(u|v) \, du$, and $f_{U}(u|v) = \text{Rice}(u|v,\sigma)$ represents Rice’s PDF of parameter σ, and $v = \|x\|$.

Proof. Please see the Appendix.

Lemma 2. Laplace transform of the intra-cluster aggregate interference $I_{q_{c}}$ is approximated as

$$L_{I_{q_{c}}}(s) \approx \exp\left(-q\pi \int_{h=0}^{\infty} \frac{s}{h^{2} + \sigma^{2}} f_{H}(h) \, dh\right),$$

(9)

where $f_{H}(h) = \text{Rayleigh}(h,\sqrt{\pi}\sigma)$ represents Rayleigh’s PDF with scale parameter $\sqrt{\pi}\sigma$.

The proof of Lemma 2 proceeds in a similar way to the proof of Lemma 1 and the approximation follows from neglecting the correlation among intra-cluster serving distances, i.e., the common part x_{0} in $\|x_{0} + y\|$. The proof is omitted due to limited space.

To validate the approximation in Lemma 2, in Fig. 1, we plot the rate coverage probability \mathbb{P}, computed from (3), against the displacement standard deviation σ. Fig. 1 verifies that the adopted approximation is accurate. It is intuitive to see that the \mathbb{P} decreases as both σ and λ_{cq} increase. This is attributed to the fact that the desired signal level decreases as σ decreases, meanwhile, the interference power increases with λ_{cq} and σ. From (3), (6), and (7), we get

$$\mathbb{P} = \sum_{i=0}^{N_{i}} p_{i} b_{i} + p_{i} (1 - b_{i}) (1 - e^{-(1 - b_{i})}) \times$$

$$\int_{r=0}^{\infty} \frac{r}{2\sigma^{2}} e^{-\frac{r^{2}}{2\sigma^{2}}} p L_{I_{q_{r}}}(s) L_{I_{q_{c}}}(s) \, dr,$$

(10)

Having characterized the offloading gain, next, we formulate the joint channel access and caching optimization problem.

IV. Maximizing Offloading Gain

The offloading gain maximization problem is formulated as

P1:

$$\max_{q, b} \mathbb{P}_{o}(q, b)$$

(11)

s.t.

$$\sum_{i=1}^{N_{i}} b_{i} = M,$$

(12)

$$b_{i} \in [0, 1],$$

(13)

$$q \in [0, 1],$$

(14)

where (12) is the device cache size constraint. Since the offloading gain depends on the caching function b and the access probability q, and since q exists as a complicated exponential term in \mathbb{P} (see (7), (8), and (9)), it is difficult to analytically characterize the objective function, e.g., show concavity or find a tractable expression for the optimal access probability. In order to tackle this, we propose to find the optimal access probability q^\ast that maximizes \mathbb{P} via the bisection search method in its feasible range $q \in [0, 1]$. Then, the obtained q^\ast is used to solve for the caching probability b^\ast in the optimization problem below.

P2:

$$\max_{b} \mathbb{P}_{o}(q^\ast, b)$$

(15)

s.t. (12), (13)

Lemma 3. For fixed q^\ast, $\mathbb{P}_{o}(q^\ast, b)$ is a concave function w.r.t. b and the optimal caching probability b^\ast that maximizes the offloading gain is given by

$$b^\ast = \begin{cases}
1 & , v^\ast < p_{i} - p_{i} (1 - e^{-\vartheta}) \mathbb{P} \\
0 & , v^\ast > p_{i} + \vartheta \mathbb{P}, \\
\psi(v^\ast) & , \text{otherwise}
\end{cases}$$

(16)
where $\psi(v^*)$ is the solution of $v^* = p_i + p_i(\pi(b^*_i) e^{-\pi(b^*_i)} - (1 - e^{-\pi(b^*_i)})) \Upsilon$, that satisfies $\sum_{i=1}^{N_f} b^*_i = M$.

Proof. It can be easily verified that $\frac{\partial^2 P_o}{\partial b^*_i}$ is always negative, and $\frac{\partial^2 P_o}{\partial b^*_i \partial b^*_j} = 0$ for all $i \neq j$. Hence, the Hessian matrix $H_{i,j}$ of $P_o(q^*, b)$ w.r.t. b is negative semidefinite, and $P_o(q^*, b)$ is a concave function of b. Also, the constraints are linear, which implies that the necessary and sufficient conditions for optimality exist. The dual Lagrangian function and the Karush-Kuhn-Tucker (KKT) conditions can be employed to solve $P2$, with the details omitted due to the limited space.

Clearly, the optimal caching solution b^* depends on the scheduling of devices through channel access probability q^* from Υ, while q^* is independent of b^*. [17] shows that a PPP network exhibits the same property, i.e., the caching scheme is scheduling-dependent. To gain some insights, it is useful to consider a simple case when only one D2D link per cluster is allowed. In this case, the rate coverage probability of the proposed clustered model with one active D2D link within a cluster will be [18] Lemma 2:

$$\Upsilon = \frac{1}{(4\pi^2 \pi \lambda_p (\vartheta^2 + \sqrt{1 + 1 - \frac{1}{\vartheta^2}})}.$$ (16)

Substituting in (10) for Υ, we get the offloading gain as

$$P_o(b) = \sum_{i=1}^{N_f} p_i b_i + \frac{p_i(1 - b_i)(1 - e^{-b_i \pi})}{4\pi^2 \pi \lambda_p (\vartheta^2 + \sqrt{1 + 1 - \frac{1}{\vartheta^2}})}.$$ (17)

Remark 1. From (17), it is clear that the offloading gain increases as σ and λ_p decrease. Particularly, the offloading gain is inversely proportional to the density of clusters λ_p and the variance of the displacement σ^2. This is because smaller σ results in higher levels of the desired signal, while lower λ_p leads to smaller encountered interference at the typical device.

V. NUMERICAL RESULTS

We first validate the developed mathematical model via Monte Carlo simulations. Then we benchmark the proposed caching scheme against conventional caching schemes. Unless otherwise stated, the network parameters are selected as shown in Table I.

![Fig. 2. The rate coverage probability Υ versus the access probability q.](image)

![Fig. 3. The offloading gain versus the access probability q.](image)

![Fig. 4. Histogram of the optimal caching probability b^*.](image)

In Fig. 2 we plot the rate coverage probability Υ against the channel access probability q. The theoretical and simulated results are plotted together, and they are consistent. Clearly, there is an optimal q^*; before it Υ tends to increase as the probability of accessing the channel increases, and beyond it, Υ tends to decrease due to the effect of aggressive interference. It is intuitive to observe that the optimal access probability q^*, which maximizes Υ, decreases as ϑ increases. This reflects the fact the system becomes more sensitive to the effect of interference when a higher SIR threshold is required.

Fig. 3 manifests the effect of the access probability q on the offloading gain. The offloading gain is plotted against q for different caching schemes, namely, the proposed probabilistic caching (PC), Zipf caching (Zipf), and uniform random caching (RC). Fig. 3 is plotted for an SIR threshold $\vartheta = 0 \text{dB}$, hence, the optimal access probability q^* is near one from Fig. 2. Clearly, the offloading gain for the different caching schemes improves as q approaches its optimal value, which reveals the crucial impact of the device scheduling on the content placement and accordingly, on the offloading gain. Moreover, the proposed PC is shown to attain the best performance as compared to other benchmark schemes.

To show the effect of q on the caching probability, in Fig. 4 we plot the histogram of the optimal caching probability at different q values. Specifically, $q = q^*$ in Fig. 4(a) and $q < q^*$ in Fig. 4(b). It is clear from the histograms that the optimal caching probability b^* tends to be more skewed when $q < q^*$, i.e., when Υ decreases. This shows that file sharing is more difficult when q is not optimized. Broadly speaking, for $q < q^*$, the system is too conservative, while for $q > q^*$, the outage probability is high due to the aggressive interference. In such regimes, each device tends to cache the most popular files leading to fewer opportunities of content transfer.

Fig. 5 illustrates the prominent effect of the content popularity on the offloading gain, and compares the achievable gain of the above mentioned caching schemes. Clearly, the offloading gain of the proposed PC attains the best performance as compared to other schemes. Particularly, 10% improvement in the offloading gain is observed compared to the Zipf caching when $\beta = 1$. Moreover, we note that all caching schemes encompass the same offloading gain when $\beta = 0$ owing to the uniformity of content popularity.

To show the effect of network geometry, in Fig. 6 we plot the closed-form offloading gain in (17) against σ at different λ_p. Fig. 6
This result is also aligned with the outcome of Fig. 1 and shows that the offloading gain monotonically decreases with both σ and λ_p. This is because content sharing between devices turns out to be less successful when the distance between devices is large, i.e., larger σ. This result is also aligned with the outcome of Fig. 1 which showed that the rate coverage probability T decreases as σ or λ_p increase. Analogously, file sharing among the cluster devices is accompanied with higher interference when λ_p and σ are higher. Accordingly, this expected degradation results in less successful content delivery via D2D communication.

VI. CONCLUSION

In this paper, we have proposed a joint communication and caching optimization framework for clustered D2D networks. In particular, we have conducted joint optimization of channel access probability and content placement in order to maximize the offloading gain. We have characterized the optimal content caching scheme as a function of the system parameters, namely, density of clusters, average number of devices per cluster, caching scheme, and access probabilities. A>bisection search method is also proposed to calculate the optimal channel access probability. We have demonstrated that deviating from the optimal access probability makes file sharing more difficult, i.e., the system is too conservative for small access probabilities, while the interference is too aggressive for larger access probabilities. Results showed up to 10% enhancement in offloading gain for the proposed approach compared to the Zipf caching technique.

APPENDIX

Laplace transform of the inter-cluster aggregate interference I_{Φ_p} can be evaluated as

\[
\begin{align*}
\mathcal{L}_{I_{\Phi_p}}(s) &= E[e^{-s \sum_{y \in \Phi_{cq}} \sum_{x \in \Phi_p} \frac{1}{1 + s|x+y|^{-\alpha}}}] \\
&= \mathcal{E}_{\Phi_p} \left[\prod_{y \in \Phi_{cq}} \frac{1}{1 + s|x+y|^{-\alpha}} \right] \\
&= \mathcal{E}_{\Phi_p} \left[\prod_{y \in \Phi_{cq}} \frac{1}{1 + s|x+y|^{-\alpha}} \right] \\
&= \mathcal{E}_{\Phi_p} \left[\prod_{y \in \Phi_{cq}} \frac{1}{1 + s|x+y|^{-\alpha}} \right].
\end{align*}
\]

Creating communication protocols for secure content delivery for networks of UAVs using, e.g., blockchain technology, can be a potential subject for future investigation.

REFERENCES

[1] K. Shanmugam et al., “Femtocaching: Wireless content delivery through distributed caching helpers,” IEEE Transactions on Information Theory, vol. 59, no. 12, pp. 8402–8413, 2013.
[2] N. Golrezaei et al., “Base-station assisted device-to-device communications for high-throughput wireless video networks,” IEEE Transactions on Wireless Communications, vol. 13, no. 7, pp. 3665–3676, 2014.
[3] R. Amer, M. M. Butt, M. Bennis, and N. Marchetti, “Inter-cluster cooperation for wireless D2D caching networks,” IEEE Transactions on Wireless Communications, vol. 17, no. 9, pp. 6108–6121, September 2018.
[4] Z. Chen, N. Pappas, and M. Kountouris, “Probabilistic caching in wireless D2D networks: Cache hit optimal versus throughput optimal,” IEEE Communications Letters, vol. 21, no. 3, pp. 584–587, March 2017.
[5] S. Andreev et al., “Analyzing assisted offloading of cellular user sessions onto D2D links in unlicensed bands,” IEEE Journal on Selected Areas in Communications, vol. 33, no. 1, pp. 67–80, 2015.
[6] R. Amer, W. Saad, H. ElSawy, M. Butt, and N. Marchetti, “Caching to the sky: Performance analysis of cache-assisted CoMP for cellular-connected UAVs,” in Proc. of the IEEE Wireless Communications and Networking Conference (WCNC), Marrakech, Morocco, April. 2019.
[7] M. Haenggi, Stochastic geometry for wireless networks. Cambridge University Press, 2012.
[8] M. Afshang, H. S. Dhillon, and P. H. J. Chong, “Modeling and performance analysis of clustered device-to-device networks,” IEEE Transactions on Wireless Communications, vol. 15, no. 7, pp. 4957–4972, July 2016.
[9] N. Deng and M. Haenggi, “The benefits of hybrid caching in gaus’s poisson D2D networks,” IEEE Journal on Selected Areas in Communications, vol. 36, no. 6, pp. 1217–1230, June 2018.
[10] A. Rachedi, M. H. Rehmani, S. Cherkaoui, and J. J. P. C. Rodrigues, “The plethora of research in internet of things (IoT),” IEEE Access, vol. 4, pp. 9575–9579, 2016.
[11] R. Amer, M. M. Butt, M. Bennis, and N. Marchetti, “Delay analysis for wireless D2D caching with inter-cluster cooperation,” in IEEE Global Communications Conference (GLOBECOM), Singapore, Dec. 2017.
[12] R. Amer, H. ElSawy, J. Kábiňa, M. M. Butt, and N. Marchetti, “Cooperative transmission and probabilistic caching for clustered D2D networks,” in IEEE Wireless Communications and Networking Conference (WCNC), April 2019, pp. 1–6.
[13] R. Amer, H. Elsawy, M. M. Butt, E. A. Jorswieck, M. Bennis, and N. Marchetti, “Optimizing joint probabilistic caching and communication for clustered D2D networks,” arXiv preprint arXiv:1810.05510, 2018.

[14] R. Amer, H. Elsawy, J. Kibilda, M. M. Butt, and N. Marchetti, “Performance analysis and optimization of cache-assisted CoMP for clustered D2D networks,” submitted to IEEE Transactions on Mobile Computing, 2019.

[15] R. Amer, M. M. Butt, and N. Marchetti, “Caching at the edge in low latency wireless networks,” Wireless Automation as an Enabler for the Next Industrial Revolution, pp. 209–240, 2020.

[16] C. Chaccour, R. Amer, B. Zhou, and W. Saad, “On the reliability of wireless virtual reality at terahertz (THz) frequencies,” in 10th IFIP International Conference on New Technologies, Spain, June. 2019.

[17] B. Chen, C. Yang, and Z. Xiong, “Optimal caching and scheduling for cache-enabled D2D communications,” IEEE Communications Letters, vol. 21, no. 5, pp. 1155–1158, May 2017.

[18] R. Amer, M. M. Butt, H. Elsawy, M. Bennis, J. Kibilda, and N. Marchetti, “On minimizing energy consumption for D2D clustered caching networks,” in IEEE Global Communications Conference (GLOBECOM), December 2018, pp. 1–6.

[19] W. Al Amiri, M. Baza, M. Mahmoud, W. Alasmary, and K. Akkaya, “Privacy-preserving smart parking system using blockchain and private information retrieval,” Proc. of the IEEE International Conference on Smart Applications, Communications and Networking (SmartNets 2019), 2020.

[20] M. Baza, M. Mahmoud, G. Srivastava, W. Alasmary, and M. Younis, “A light blockchain-powered privacy-preserving organization scheme for ride sharing services,” Proc. of the IEEE 91th Vehicular Technology Conference (VTC-Spring), Antwerp, Belgium, May 2020.

[21] M. Baza, A. Salazar, M. Mahmoud, M. Abdallah, and K. Akkaya, “On sharing models instead of the data for smart health applications,” Proc. of IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT’20), Doha, Qatar, 2020.

[22] M. Baza et al., “Blockchain-based firmware update scheme tailored for autonomous vehicles,” Proc. of the IEEE Wireless Communications and Networking Conference (WCNC), Marrakech, Morocco, April 2019.

[23] W. Al Amiri, M. Baza, M. Mahmoud, W. Alasmary, and K. Akkaya, “Towards smart parking system using blockchain technology,” Proc. of 17th IEEE Annual Consumer Communications & Networking Conference (CCNC), Las vegas, USA, 2020.

[24] M. Baza, N. Lasla, M. Mahmoud, G. Srivastava, and M. Abdallah, “B-ride: Ride sharing with privacy-preservation, trust and fair payment atop public blockchain,” IEEE Transactions on Network Science and Engineering, 2019.

[25] M. Baza et al., “Detecting sybil attacks using proofs of work and location in vanets,” arXiv preprint arXiv:1904.05845, 2019.

[26] M. Baza, J. Baxter, N. Lasla, M. Mahmoud, M. Abdallah, and M. Younis, “Incentivized and secure blockchain-based firmware update and dissemination for autonomous vehicles,” in Transportation and Power Grid in Smart Cities: Communication Networks and Services. CRC press, 2020.

[27] M. Baza et al., “Privacy-preserving and collusion-resistant charging coordination schemes for smart grid,” arXiv preprint arXiv:1905.04666, 2019.

[28] M. Baza, M. Nabil, M. Ismail, M. Mahmoud, E. Serpedin, and M. Rahman, “Blockchain-based privacy-preserving charging coordination mechanism for energy storage units,” arXiv preprint arXiv:1811.02001, 2019.

[29] M. Baza et al., “An efficient distributed approach for key management in microgrids,” Proc. of the Computer Engineering Conference (ICENCO), Egypt, pp. 19–24. 2015.

[30] A. Shafee and M. Baza, “Mimic learning to generate a shareable network intrusion detection model,” Proc. of the IEEE Consumer Communications & Networking Conference Las Vegas, USA, 2020.

[31] M. Baza et al., “Blockchain-based charging coordination mechanism for smart grid energy storage units,” Proc. Of IEEE International Conference on Blockchain, Atlanta, USA, July 2019.

[32] R. Amer, W. Saad, and N. Marchetti, “Towards a connected sky: Performance of beamforming with down-tilted antennas for ground and UAV user co-existence,” IEEE Communications Letters, pp. 1–1, 2019.

[33] R. Amer, W. Saad, B. Galkin, and N. Marchetti, “Performance analysis of mobile cellular-connected drones under practical antenna configurations,” in in Proc. of IEEE International Conference on Communications (ICC), Dublin, June. 2020.

[34] R. Amer, W. Saad, and N. Marchetti, “Mobility in the sky: Performance and mobility analysis for cellular-connected UAVs,” IEEE Transactions on Communications, pp. 1–1, 2020.