Characterization of genes expressed in *Casuarina equisetifolia* in response to elicitation by cell wall components of *Trichosporium vesiculosum*

By Modhumita Ghosh Dasgupta\(^1\),*), Radha Veluthakkal\(^1\) and Karpara Raja Sundari B.\(^1\)

(Received 15th November 2012)

Abstract

Casuarina equisetifolia has the widest distribution of all *Casuarina* species and is a nitrogen-fixing tree plant-ed in tropical/subtropical littoral zones of Asia, the Pacific and Africa for coastal reclamation, charcoal making, pulp and timber. *Trichosporium vesiculosum*, the causal agent of blister bark disease, is a serious pathogen of *C. equisetifolia*. The present study was undertaken to understand the molecular mechanisms involved during pathogen cell wall elicitation in this hardy tree species. Transcript profiling during elicitation induced by cell wall components of *T. vesiculosum* revealed expression of resistance genes; cytochrome oxidase; trans membrane proteins; genes involved in programmed cell death like 26S proteasome and ubiquitin activating enzyme; early nodulin gene, wound inducible metallocarboxypeptidase inhibitor, glucanase, metal binding protein and signal recognition particle. The fold expression of selected transcripts including glucanase, 26 S proteasome, signal recognition particle, cytochrome oxidase and the metal binding protein using RT-qPCR revealed 12-59 fold increase in expression after 48 hours of elicitor treatment. The expression of these transcripts during abiotic stresses like heat, mechanical wounding, salt (NaCl) and drought (PEG) was also analyzed. Glucanase was up-regulated significantly during heat stress and water stress while proteasome was up-regulated 1-4 fold during NaCl, PEG and wounding stress. The novel transcript CeHMA was up-regulated under all the stress conditions.

This is the first report on molecular defense in *C. equisetifolia* and has provided a pool of candidate genes for detailed molecular dissection to further broaden the knowledge on the response of woody perennials during pathogen cell wall elicitation.

Key words: Abiotic stress; elicitor treatment; transcript profiling; tree defense.

Introduction

The genus *Casuarina* is a member of the Casuari-naceae family which is phylogenetically distinct, with no close relatives and hence assigned to an order of its own, the Casuarinales (Beadle, 1981). *C. equisetifolia*, a major species under this family is a nitrogen-fixing multipurpose tree used for landscaping, timber, medicine, dye, pulp, tannin, wood fuel production, soil stabilization, reforestation of marginal ecosystems, amenity planting and land fertilization (Pan et al., 1996). One of the major disease reported in *C. equisetifolia* is the blister bark or wilt disease caused by the hyphomycete fungus *Trichosporium vesiculosum* (synonym Subramanianospora vesiculosula) (Titze and Van der Penne, 1983; Mohanan and Sharma, 1993). The disease is characterized by foliage yellowing, rapid wilting followed by desiccation, browning and dieback of trees either singly or in groups. The disease incidence ranges from 40 percent in India in pockets (Sharma, 1995) to 90 percent in Binh Thuan provenance in Vietnam (Sharma, 1994) and has been reported from India, China, Vietnam, Thailand, Mauritius and Sri Lanka (Mohanan and Sharma, 1993; Pongpanich et al., 1996; Chonglu, 2000). It is reported mostly from regions were the species has been introduced. Until recently, *T. vesiculosum* was not categorized based on the mechanism of infection, however the mode of infection indicates that the pathogen behaves as an obligate biotroph with limited host range (as the pathogen is reported to infect only *Casuarina* sp.) and requires living cells to complete its life cycle (Veluthakkal and Ghosh Dasgupta, 2012).

Research on management of this disease has been limited to assessment of provenances for tolerant phenotypes, etiology and epidemiological studies (Narayan et al., 1996; Karthikeyan et al., 2011). Plant – microbe interactions are among the most dynamic and complex biological phenomena as they involve host contact with multiple microbes including pathogens, myriad of symptoms and interaction with unlimited number of pathogen molecules at every perceivable cellular levels (Schneider and Collmer, 2010). Fungal plant pathogens are classified into two major groups (biotrophs and necrotrophs) based on their mode of infection. Hemibiotrophy has been defined by Perfect and Green (2001) including pathogens with initial period of biotrophy followed by necrotrophic phase. Molecular signaling to different classes of pathogens has been widely studied and involves three major pathways, the salicylic acid (SA) dependent pathway predominant in biotrophs and the jasmonic acid (JA) and ethylene (ET) dependent pathways operative during necrotrophy and herbivory (Thomma et al., 2001; Kessler and Baldwin, 2002; Glazebrook, 2005). However, extensive cross-talk between the signaling pathways involving antagonistic and synergistic interactions has been reported (Norman-Setterblad et al., 2000; De Vos et al., 2005). The defense mechanisms triggered by both pathways are usually overlapping but the outcome (resistance or susceptibility) depends on the nutritional preference of the invading pathogen (Friesen et al., 2008; Wolfert et al., 2002).

\(^1\) Division of Plant Biotechnology, Institute of Forest Genetics and Tree Breeding, P.B. No. 1061, R.S. Puram P.O., Coimbatore – 641002, India. Tel No.: +91 422 2484123, Fax No.: +91 422 2430549.

\(^*\) Author for Correspondence: Modhumita Ghosh Dasgupta.

E-Mail: ghoshm@ifre.org; modhumita@gmail.com

Silvae Genetica 62, 4–5 (2013) 161
The SA-dependent pathways operative during biotrophic interactions is widely documented during host-pathogen interaction. The initial response to pathogen invasion occur rapidly resulting in local gene activation causing hypersensitive reaction (HR) and cell death (SOMMISCH and HALLEBROCK, 1998). Subsequently, signal transduction cascades through altered cytoplasmic Ca²⁺ levels, reactive oxygen species, nitric oxide and post-translationally regulated mitogen-activated protein kinase results in transcriptional activation of genes involved in systemic acquired resistance (SAR) (ZHANG and KLESSIG, 2001; MUR et al., 2006; FRAIRE-VELAZQUEZ et al., 2011). SAR is characterized by the expression of pathogenesis-related (PR) proteins and induction of the phenyl propanoid pathway. This results in an extensive reprogramming from primary to secondary pathways with down-regulation of non-essential cellular activities (SOMMISCH and HALLEBROCK, 1998).

Recent studies have revealed that the physiological and biochemical responses of trees in response to invading pathogens are homologous to the herbaceous crops, but variations are likely to occur at gene regulation and signaling pathways (VELUTHAKAL and GHOSH-DASGUPTA, 2010). Studies on molecular responses of trees to compatible/incompatible pathogens are reported from *Pinus* spp. (ADOMAS et al., 2007; MORSÉ et al., 2004; RICHARDSON et al., 2010), *Castanea* spp. (BARAKAT et al., 2009), *Populus trichocarpa* (DUPLESSIS et al., 2009; HACQUARD et al., 2011), Douglas-fir (STURROCK et al., 2007), *Fagus sylvatica* (SCHLINK, 2009; 2010; VALCU et al., 2009), *Eucalyptus* spp. (LAFON et al., 2007; HYUNG et al., 2009) and Norway Spruce (HAGADON et al., 2004). However, there has been no systematic study in the family casuarinaceae on the molecular aspects of disease resistance. The only study on the molecular interaction is from *C. glauca*, phylogenetically close taxa to *C. equisetifolia*, during symbiotic association with *Frankia* (HOCHER et al., 2006; FRANCHE et al., 2011). Thus, the molecular event during host-pathogen interaction has not been addressed in this genus. Hence, the present study was taken up to understand the defense response during *C. equisetifolia* when challenged with the cell wall elicitors derived from its pathogen, *T. vesiculosum*.

Materials and Methods

Fungal strain and elicitor preparation

Fungal isolate of *Trichosporium vesiculosum* was obtained from the culture collection of the Division of Plant Protection, Institute of Forest Genetics and Tree Breeding, Coimbatore, India and maintained on potato dextrose agar medium. Hyphal mass was grown in potato-dextrose broth for 30 days. The mycelial mat was harvested, rinsed with sterile water several times and re-suspended in sterile water and homogenized. The slurry was filtered and the residue was extracted thrice with water followed by chloroform: methanol (1:1) and finally with acetone. The preparation was air dried and considered as mycelial wall. The extract was suspended (1gm in 10ml) in water and autoclaved twice. The autoclaved suspension was clarified by centrifugation and used as elicitor. One ml of elicitor was used for further studies.

Plant material and Stress treatments

Single tree cuttings were collected from Casuarina equisetifolia subsp. equisetifolia (CSIRO seed lot number 19129 from Lake/sibur Bako, Malaysia) maintained by the Institute of Forest Genetics and Tree Breeding, Coimbatore at Panampally Research Station, Kerala, India. The cuttings were rooted and maintained in the vegetative propagation complex for bioassay studies. One month old rooted cuttings were used for further studies.

Elicitor treatment was given to rooted cuttings based on the protocol described by MOHAN and MANOKARAN (2001) where in one month old rooted cuttings were subjected to the cell wall elicitor treatment till 48 hours and observations were made for appearance of wilting symptoms in the needles, characteristic of blister bark disease. Needle tissues from each replication were harvested after 24h and 48h post treatment. A water control was also maintained for analysis.

Besides fungal elicitor, the temporal expression of selected transcripts were evaluated in response to vari-

Table S1. – Primers used for transcript profiling.

Primer	Primer Sequence
P1	5’TTATACCTCAATGATGCTGAATGATAGTGGAAAC’
P2	5’TTATACCTCAATGATGCTGAATGATAGTGGAAAC’
P3	5’TTATACCTCAATGATGCTGAATGATAGTGGAAAC’
P4	5’TTATACCTCAATGATGCTGAATGATAGTGGAAAC’
P5	5’TTATACCTCAATGATGCTGAATGATAGTGGAAAC’
P6	5’TTATACCTCAATGATGCTGAATGATAGTGGAAAC’
P7	5’TTATACCTCAATGATGCTGAATGATAGTGGAAAC’
P8	5’TTATACCTCAATGATGCTGAATGATAGTGGAAAC’
P9	5’TTATACCTCAATGATGCTGAATGATAGTGGAAAC’
T1	5’CATTATGCTGAGTGATAGTATAGTGGAAAC’
T2	5’CATTATGCTGAGTGATAGTATAGTGGAAAC’
T3	5’CATTATGCTGAGTGATAGTATAGTGGAAAC’
T4	5’CATTATGCTGAGTGATAGTATAGTGGAAAC’
T5	5’CATTATGCTGAGTGATAGTATAGTGGAAAC’
T6	5’CATTATGCTGAGTGATAGTATAGTGGAAAC’
T7	5’CATTATGCTGAGTGATAGTATAGTGGAAAC’
T8	5’CATTATGCTGAGTGATAGTATAGTGGAAAC’
T9	5’CATTATGCTGAGTGATAGTATAGTGGAAAC’
ous other environmental stimuli including mechanical wounding, salinity stress, osmotic stress and heat stress for 24h. Needles were cut into small pieces with sterile razor blade and were kept in water for 24h for inducing transcript expression during mechanical wounding while salinity stress was imposed by transferring the rooted cuttings to Hoagland solution containing 1.5 M NaCl. Osmotic stress was given by incubating the cuttings in solution of 40% (w/v) polyethylene glycol (PEG) 6000, while heat stress was given by incubating the rooted cuttings at 50°C for 24 h. The control rooted cuttings were maintained in Hoagland solution at room temperature and sampled at the same time as the stressed plants. The needles were harvested at indicated time intervals, frozen directly in liquid nitrogen and used for RNA isolation.

Transcript profiling during pathogen elicitation

Total RNA was isolated from the water treated (control) and elicitor treated needle tissues using an in-house protocol (patent pending). Subsequently, total RNA was treated with RNase free DNase I (Fermentas, USA) according to the manufacturer’s protocol and first strand cDNA was synthesized from both control and elicitor treated RNA using cDNA synthesis kit (Fermentas, USA). The cDNA pools were amplified using nine arbitrary primers and nine Oligo d(T) primers provided in the Delta Differential display kit (Clontech Laboratories Inc., Palo Alto, CA) individually and in pair – wise combination (Table S1). Further, gene specific primers (both degenerate and non degenerate) were designed and synthesized for chitinases, thauatin-like proteins, polygalacturonase inhibiting protein (PGIP), defensins and β-1,3-glucanases. They were also amplified in the cDNA pools and amplicons were resolved on a 4% denaturing PAGE and stained with silver nitrate (Bassam et al., 1991). A 50bp DNA ladder (Fermentas, Hanover, MD, USA) was used to determine the size of the amplicons. Differentially expressed fragments were re-amplified and cloned in pDrive vector (Qiagen, Hilden, Germany) following the manufacturer’s procedure and sequenced using automated ABI PRISM 3100 Genetic Analyzer (Applied Biosystems, Foster City, CA).

Sequence assembly and analysis

The sequences were edited and their similarity to existing sequences was analyzed by BLASTn and

Genes Targeted	Primer Code	Primer Sequence
26S Proteasome (CeProt)	QPROTFP	GAAAGAGACATCCGTTTGAACCTT
	QPROTRP	TGAACCTTGCGTATCCCTTGAGTA
Novel Transcript with	QIMAFP	AGAAAGCTGCAGGAAATCTGGAAG
metal binding domain	QHMARP	CAATCTCTTCAGGCCCTCCTGTC
(CeHMA)		
Signal Recognition	QSRPFP	TGAGATGAGGATCCCATACGAAA
Particle (CeSRP)	QSRPRP	TGCAAGTGCCTTTACCTACCC
Nodulin (CeNod)	QNODFP	CCGGATGCTATGTCGACGACG
	QNODRP	GCCCTTAATGGCAGTGCAATACT
Cytochrome Oxidase	QCOXFP	GTAATTGAGGATGCGATTACAAATG
(CeCox)	QCOXRP	ATCCAGGGAAGATGGAATATAAC
Glucanase (CeGlu)	QGIUFP	ATTCATCTGCACAGTTTCCCTTCC
	QGIURP	ACTTGAAATGGACCTTTTGGATGGAG
Resistant gene (CeR)	QCERRP	CCATACCAACCATCCACACAC
Ubiquitin (Internal	QCERRP	CACTGACTCTCCAGCTCCAC
reference) (CeU)	UBIIPR	GAAAAACATACCACTTTGGAGGTTG
	UBIIRP	GATTCCTTTTGGAGTTGTATGCC
BLASTx (www.ncbi.nlm.nih.gov/blast/Blast.cgi) against the GenBank non-redundant database for nucleotide and translated sequences.

RT-qPCR analysis of gene transcripts during stress conditions

Total RNA was isolated from 1g of control and treated needles after 24h and 48h as described earlier. The quality of RNA was checked on a 1% agarose gel and concentration was determined spectrophotometrically. mRNA was isolated from ten microgram of both control and treated total RNA and first strand cDNA was synthesized using first strand cDNA synthesis kit (Fermentas, Hanover, MD, USA) following the manufacturers’ protocol. The cDNA pools were quantified using Picodrop spectrophotometer (Picodrop Limited, Saffron Walden, UK) and 100ng of each cDNA sample was used for RT-qPCR amplification.

Primer pairs for RT-qPCR assays were designed from the transcript sequence using PRIMER3 program (ROZEN and SKALETSKY, 2000). Primers targeting ubiquitin was used as internal reference for RT-qPCR analysis based on earlier reports from its closely related taxa, C. glauca (LAPLAZE et al., 2000; HOCHER et al., 2006; SANTOS et al., 2010) (Table 1). All primer pairs were amplified prior to RT-qPCR and validated in 1% agarose gel.

RT-qPCR was carried out in Applied Biosystems ABI 7700 sequence detection system using the SYBR green chemistry. The PCR efficiency was optimized for annealing temperature, cDNA concentration and primer concentration. Melting curve analyses were performed after the 40 cycles of RT-qPCR program by a constant increase in temperature between 60 and 95°C. RT-qPCR was performed in a final volume of 10 µL containing 5 µL of 2X SYBR Green Jumpstart Taq Ready Mix (Sigma Aldrich, USA), 500 nM each of forward and reverse primers and 100 ng of cDNA template. After an initial activation step of the DNA polymerase at 95°C for 10 min, samples were subjected to 40 cycles of amplification (denature at 95°C for 15 s, annealing and extension together at 58°C for 1 min). Quantification of the target gene expression was done with comparative CT method (LIVAK and SCHMITTGEN, 2001). The relative expression level of the gene of interest was computed with respect to ubiquitin to account for any variance in the amount of input cDNA. Average CT values from triplicate PCRs were normalized to average CT values for ubiquitin from the same cDNA preparations.

Statistical analysis

The fold expression of transcripts under different stress conditions were statistically analyzed using the T-Test using SPSS software (version 20.0) and difference between treatments were considered statistically significant when P<0.05.

Results

Transcript profiling during pathogen cell wall elicitation

Expression profiling of the elicitor treated cDNA and untreated cDNA was conducted using eighty one arbitrary/anchored primer pairs and nine gene specific primer pairs (Figure 1). Most of the gene specific primers did not amplify except for chitinase and glucanase specific primer pairs. Approximately, 125 amplicons which differentially expressed in the elicitor treated sample were re-amplified, cloned and sequenced. The sequences were trimmed and those below 100bp were not considered for further analysis. Fifty two sequences were submitted to the GenBank (Accession number GR228669 to GR228718; GR312926 and GR312925). Sequences which showed significant similarity to known genes included disease resistance (CeR) genes involved in HR; genes involved in aerobic metabolism like cytochrome oxidase (CeCox); trans membrane proteins; genes involved in programmed cell death like 26S proteasome (CeProt) and ubiquitin activating enzyme; symbiosis related early nodulin gene (CeNod); transcripts involved in signal transduction like protein kinase; wound inducible metallocarboxy peptidase inhibitor and PR genes like class I chitinase (CeChi1) and glucanase (CeGlu). Two transcription factor includ-
ing class III homeodomain leucine zipper TF and CCR-1 NOT were documented in the study. A novel transcript showing similarity to metal ion binding protein (CeHMA) was also expressed during elicitation. The study also revealed the expression of transcript showing significant similarity to signal recognition particle (CeSRP), a ribonucleoprotein involved in protein targeting (Table 2).

Table 2. Identification of pathogen elicitor-responsive transcripts from *Cassuarina equisetifolia*.

SI No.	Clone ID	GenBank Accession No.	Primer Pairs	Amplicon Size (in bp)	Host database match (Species and E-value)	Annotation
1	CED1	GR228969	5-CATACGCGAGCTGAACTTTTTTTAC-3'	414	NA	Hypothetical protein
2	CED2	GR228970	5-ATTACCCCTACATTAAGCAGGTG-3'	233	NA	No significant hit
3	CED3	GR228971	5-ATTACCCCTACATTAAGCAGGTG-3'	313	S. cerevisiae (E-value 2e-05)	Mammalian K
4	CED4	GR228972	5-ATTACCCCTACATTAAGCAGGTG-3'	275	NA	Hypothetical protein
5	CED5	GR228973	5-ATTACCCCTACATTAAGCAGGTG-3'	220	Arabidopsis thaliana (E-value 2e-05)	kinase family protein
6	CED6	GR228974	5-ATTACCCCTACATTAAGCAGGTG-3'	205	NA	No significant hit
7	CED7	GR228975	5-ATTACCCCTACATTAAGCAGGTG-3'	222	Arabidopsis thaliana (E-value 3e-05)	kinase family protein
8	CED8	GR228976	5-ATTACCCCTACATTAAGCAGGTG-3'	131	Medicago truncatula (E-value 6e-15)	ADP-ribosylation factor
9	CED9	GR228977	5-ATTACCCCTACATTAAGCAGGTG-3'	205	NA	No significant hit
10	CED10	GR228978	5-ATTACCCCTACATTAAGCAGGTG-3'	460	NA	No significant hit
11	CED11	GR228979	5-ATTACCCCTACATTAAGCAGGTG-3'	480	Vitis vinifera (E-value 1e-11)	Putative disease resistance protein RGA4-like
12	CED12	GR228980	5-ATTACCCCTACATTAAGCAGGTG-3'	187	NA	Predicted protein
13	CED13	GR228981	5-ATTACCCCTACATTAAGCAGGTG-3'	508	Micrococcus sp. (E-value 0.08)	Ribose-5-phosphate reductoisomerase
14	CED14	GR228982	5-ATTACCCCTACATTAAGCAGGTG-3'	509	Gherin max (E-value 3e-07)	Ribose-5-phosphate reductoisomerase large subunit
15	CED15	GR228983	5-ATTACCCCTACATTAAGCAGGTG-3'	269	Bacillus subtilis (E-value 3e-06)	Predicted: CCR1-1 NTR transcription complex subunit 1-like
16	CED16	GR228984	5-ATTACCCCTACATTAAGCAGGTG-3'	311	NA	No significant hit
17	CED17	GR228985	5-ATTACCCCTACATTAAGCAGGTG-3'	777	Vitis vinifera (E-value 0.06)	UDP-glucosyltransferase 75D1-like
18	CED18	GR228986	5-ATTACCCCTACATTAAGCAGGTG-3'	387	NA	No significant hit
19	CED19	GR228987	5-ATTACCCCTACATTAAGCAGGTG-3'	776	Vitis vinifera (E-value 0.06)	UDP-glucosyltransferase 75D1-like
20	CED20	GR228988	5-ATTACCCCTACATTAAGCAGGTG-3'	215	Vitis vinifera (E-value 8e-11)	Early nodulin-93
21	CED21	GR228989	5-ATTACCCCTACATTAAGCAGGTG-3'	276	Arabidopsis thaliana (E-value 0.06)	Putative kinase inhibitor
22	CED22	GR228990	5-ATTACCCCTACATTAAGCAGGTG-3'	342	Zea mays (E-value 0.05)	Cytokinin e biosynthesis
23	CED23	GR228991	5-ATTACCCCTACATTAAGCAGGTG-3'	245	NA	Hypothetical protein
24	CED24	GR228992	5-ATTACCCCTACATTAAGCAGGTG-3'	366	NA	Hypothetical protein
SI No.	Clone ID	GeneBank Accession No.	Primer Pairs	Amplicon Size (in bp)	Best database match (Species and P-value)	Annotation
--------	----------	------------------------	-------------	-----------------------	--	------------
25	CEUSPS5	GR228693	5'-TGGAGATGAGTGGATCCTATCCCGAAAG-3' 5'-TGGAGATGAGTGGATCCTATCCCGAAAG-3'	632	Glycine max (1e-87)	signal recognition particle 54 kDa protein-like
26	CEUSPS8.8	GR228694	5'-GCGCAGCTCCGAGAGTGGC-3' 5'-ATATGATATATGCTGCGACGTCG-3'	297	NA	Hypothetical protein
27	CEUSPS6	GR228695	5'-GACGAGTGGGAGGAGGAAAG-3' 5'-CCGCTGCCAATACGACACCAAC-3'	274	Ricinus communis (1e-43)	pensil, passive
28	CEUSPS7	GR228696	5'-ACATTGATTACCACATACACACAC-3' 5'-ACATTGATTACCACATACACACAC-3'	260	Vitis vinifera (2e-18)	multiple C2 and transmembrane domain-containing protein 2
29	CEUSPS8	GR228697	5'-IGAAGCTTGGGAGGAGGAAAG-3' 5'-IGAAGCTTGGGAGGAGGAAAG-3'	232	Vitis vinifera (3e-14)	Early modulin-93
30	CEUSPS9	GR228698	5'-GATCGCGCGGAGGAGGAAAG-3' 5'-GATCGCGCGGAGGAGGAAAG-3'	516	Abelia chinensis (3e-87)	Cytochrome c oxidase subunit I
31	CEUSPSPLU	GR228699	5'-GCCGCGCGGAGGAGGAAAG-3' 5'-GCCGCGCGGAGGAGGAAAG-3'	123	Solanum tuberosum (2e-06)	Metalloprotease inhibitor
32	CEUSPS212	GR228700	5'-GCGACCTCTTTGACCGAAGAGTAG-3' 5'-GCGACCTCTTTGACCGAAGAGTAG-3'	360	Medicago truncatula (3e-05)	Pentatricopeptide repeat-containing protein
33	CEUSPS16b	GR228701	5'-AGGATGACATGGAAGGAGTGGGAGGAAAG-3' 5'-AGGATGACATGGAAGGAGTGGGAGGAAAG-3'	439	Oryza sativa (2e-05)	Regulatory protein-like protein
34	CEUSPS3.2	GR228702	5'-GATCGCGCGGAGGAGGAAAG-3' 5'-GATCGCGCGGAGGAGGAAAG-3'	444	Vitis vinifera (1e-05)	Proteinase inhibitor
35	CEUSPS3a	GR228703	5'-GCGCAGCTCCGAGAGTGGC-3' 5'-GCGCAGCTCCGAGAGTGGC-3'	454	NA	Hypothetical protein
36	CEUSPS3b	GR228704	5'-GATCGCGCGGAGGAGGAAAG-3' 5'-GATCGCGCGGAGGAGGAAAG-3'	533	Medicago truncatula (2e-06)	Lipoxygenase activating enzyme F1
37	CEUSPS3c	GR228705	5'-GCGCAGCTCCGAGAGTGGC-3' 5'-GCGCAGCTCCGAGAGTGGC-3'	469	Micromonas pusilla (3e-06)	Oxidase protein
38	CEUSPS5-6	GR228706	5'-TGGAGATGAGTGGATCCTATCCCGAAAG-3' 5'-TGGAGATGAGTGGATCCTATCCCGAAAG-3'	270	NA	Hypothetical protein
39	CEUSPS5-7	GR228707	5'-GATCGCGCGGAGGAGGAAAG-3' 5'-GATCGCGCGGAGGAGGAAAG-3'	348	Arabidopsis thaliana (2e-05)	Cystein-rich repeat secretory protein 48
40	CERACEAR	GR228708	5'-GATCGCGCGGAGGAGGAAAG-3' 5'-GATCGCGCGGAGGAGGAAAG-3'	532	Ricinus communis (1e-24)	Metal ion binding protein, putative
41	CERAC14	GR228709	5'-GCGCAGCTCCGAGAGTGGC-3' 5'-GCGCAGCTCCGAGAGTGGC-3'	472	Medicago truncatula (9e-08)	Lipoxygenase translation inhibitor factor 3 subunit F
42	CERACE10	GR228710	5'-GATCGCGCGGAGGAGGAAAG-3' 5'-GATCGCGCGGAGGAGGAAAG-3'	342	NA	Hypothetical protein
43	CERACE2	GR228711	5'-GATCGCGCGGAGGAGGAAAG-3' 5'-GATCGCGCGGAGGAGGAAAG-3'	356	Oryza sativa (3e-53)	RPS26 protein regulatory subunit 7
44	CERACE3	GR228712	5'-GATCGCGCGGAGGAGGAAAG-3' 5'-GATCGCGCGGAGGAGGAAAG-3'	392	Casuarina glauca (3e-10)	Casuarina glauca
45	CERACE4	GR228713	5'-GATCGCGCGGAGGAGGAAAG-3' 5'-GATCGCGCGGAGGAGGAAAG-3'	402	Physcomitrella patens (9e-05)	Class III homedomain-leucine zipper
46	CERACE5	GR228714	5'-GATCGCGCGGAGGAGGAAAG-3' 5'-GATCGCGCGGAGGAGGAAAG-3'	327	Papillara nicholasyi (4e-05)	6-cis-bis-3 resistance protein
47	CERACE6	GR228715	5'-GATCGCGCGGAGGAGGAAAG-3' 5'-GATCGCGCGGAGGAGGAAAG-3'	133	Vesicular arbuscular (2e-05)	RNA polymerase beta subunit
48	CERACE7	GR228716	5'-GATCGCGCGGAGGAGGAAAG-3' 5'-GATCGCGCGGAGGAGGAAAG-3'	418	Glycine max (3e-08)	Biotin carboxyl carrier protein subunit precursor
49	CERACE8	GR228717	5'-GATCGCGCGGAGGAGGAAAG-3' 5'-GATCGCGCGGAGGAGGAAAG-3'	480	Glycine max (4e-59)	BPS ribosomal proteins L23A-38c
50	CERACE9	GR228718	5'-GATCGCGCGGAGGAGGAAAG-3' 5'-GATCGCGCGGAGGAGGAAAG-3'	514	NA	Hypothetical protein
51	CEUSPSPLU	GR312925	5'-GATCGCGCGGAGGAGGAAAG-3' 5'-GATCGCGCGGAGGAGGAAAG-3'	294	Carassius auratus (2e-58)	Carassius auratus
52	CEUSPSki	GR312926	5'-GATCGCGCGGAGGAGGAAAG-3' 5'-GATCGCGCGGAGGAGGAAAG-3'	439	Carassius auratus (1e-88)	Class I chitinase
amplicons produced a single fragment of the expected size, with no visible primer-dimer products. The expression of CeChi1 under pathogen elicitation and abiotic stress conditions have been reported elsewhere (VELUTHAKKAL and GHOSH DASGUPTA, 2012).

All the five transcripts showed up-regulation subsequent to elicitation, with CeGlu showing the maximum expression of 18 fold and 59 fold increase after 24 hrs and 48 hrs respectively. Similar expression pattern was observed for CeProt (24 fold and 34 fold), CeSRP (13 fold and 36 fold), CeCox (4 fold and 13 fold) and CeHMA (20 fold and 23 fold) during elicitation (Figure 2). The expression patterns of most of the transcripts were statistically significant with p value < 0.05.

RT-qPCR analysis of gene transcripts during abiotic stress conditions

The expression of the five transcripts during abiotic conditions including NaCl, PEG, heat and mechanical wounding was also studied. The glucanase transcript was up-regulated significantly during wounding (18 fold) and moderately during heat stress (2 fold), while the novel transcript CeHMA was up-regulated in all the stress conditions. CeCox and CeSRP showed not signifi-
cant variation in expression under any stress conditions, while the transcript showing similarity to proteasome (CeProt) was up-regulated 1-4 fold during NaCl, PEG and wounding stress with no significant change in expression upon heat stress (Figure 3).

Discussion
Distinct defense-related responses observed following elicitor treatment in C. equisetifolia

The present study in C. equisetifolia identified the expression of defense-related genes involved in HR (R gene, 26S proteasome, and ubiquitin activating enzyme); signatures of SAR (chitinase and glucanase); defense genes like metallocarboxy peptidase inhibitor; protein kinases involved in signal transduction during pathogen defense and aerobic respiration related cytochrome oxidase which are typical response against biotrophic pathogens. Further, the induction of a class I chitinase (CeChi1) in C. equisetifolia in response to SA and Trichosporium elicitation supports the hypothesis that Trichosporium vesculosum is a probable biotrophic pathogen eliciting SA-mediated defense responses (Veluthakkal and Ghosh Dasgupta, 2012).

Similar studies in tree-pathosystem have also revealed the up-regulation of 26S proteasome subunit, polyubiquitin and metallothionin-like protein in Pinus sylvestris infected with the root pathogen Heterobasidion annosum. However, the study revealed the down-regulation of protein kinase and resistance gene during the infection (Adomas et al., 2007). In chestnut-Cryphonectria parasitica interaction, the expression of kinases and CCR4-NOT transcription factor was reported by Barakat et al. (2009). In another study conducted on hybrid poplar (Populus trichocarpa × P. deltoides) infected with the rust fungus Melampsora medusa, transcripts including ADP-ribosylation factor 1 (ARF1), glucanase, 40S ribosomal protein, heavy metal transport/detoxification protein, 26S proteasome and Polyubiquitin were up-regulated after nine days post inoculation (Miranda et al., 2007). In Populus nigra × P. maximowiczii, the leucine rich repeat family protein and glucanase were up-regulated during interaction with two biotrophic pathogens Melampsora larici-populina and M. medusae f. sp. deltoidae (Azaiez et al., 2009). Interaction of Fagus sylvatica – Phytophthora citriocola resulted in over expression of two distinct defense-related genes viz., glucanase and protein kinase (Schlink, 2009; Valcu et al., 2009).

Beta-1,3 glucanase classified under PR-2 play a direct role in fungal defense by hydrolyzing fungal cell walls and an indirect role by generating oligosaccharide elicitors (Klarzynski et al., 2000). The expression profile of CeGlu during elicitation was characteristic of PR proteins with distinct up-regulation (18 fold and 59 fold) suggestive of systemic defense reaction. The up-regulation of the transcript during mechanical wounding to a highly significant 18 fold is in agreement with studies in Ziziphus jujube (Tian et al., 2007) and Castanea sativa (Schaflerleitner and Wilhelm, 2001). This suggests that casuarina glucanase can directly act on opportunistic pathogens invading though the wounds and mount a defense response either by directly hydrolyzing the pathogen cell wall or indirectly by releasing oligosaccharide elicitors which in turn would induce a cascade of defense reactions (Cheong et al., 2000).

In the recent years the critical role of protein degradation by Ubiquitin-26S proteasome (UPS) pathway has been recognized as a critical regulator in plant defense response (Delaure et al., 2008; Diele et al., 2010; Fajerszowska-Mukhtar and Dong, 2009). Detailed studies on the specific role of proteasome and ubiquitin complex during pathogen interaction was reported from crops like barley (Azevedo et al., 2002); Nicotiana benthamiana (Pearl et al., 2002); Medicago sativa (Wrzaczek et al., 2007); Arabidopsis thaliana (Boyse et al., 1998; Austin et al., 2002) and potato (Bhaskar et al., 2008). In trees, the expression of proteasome during pathogen interaction has been reported but their level of expression was not validated. The present study confirmed the role of protein degradation by proteasome unit in casuarina where in 24 fold and 34 fold increase in expression was observed in 24 hrs and 48 hrs post elicitation. The involvement of the UPS in regulation during abiotic stress conditions is well documented in crop plants and mutations in the regulatory particle subunit of 26S proteasome are reported to reduce the rate of ubiquitin-mediated proteolysis, thus altering the stress response in plants (Smalle et al., 2003; Smalle and Vierstra, 2004; Kurepa et al., 2008). Several abiotic stresses like heat and oxidative stress inhibit 26S proteasome activity due to increase in substrate load of mis-folded proteins (Kurepa et al., 2009), while the process of ubiquitination is rapidly induced during desiccation, cold and mechanical wounding (Cho et al., 2006; 2008). Contrarily, in the present study 24 hrs of abiotic stress induction revealed up-regulation of proteasome expression with maximum of 4 fold during mechanical wounding. This variance could be due to high abiotic stress tolerance exhibited by casuarina with efficient protein degradation mechanism against stress conditions. This is the first comprehensive report on expression of proteasome during abiotic stress tolerance from tree species.

The expression of metal detoxifying proteins including metallothionins during biotic stress in trees has been reported in Pinus sylvestris (Adomas et al., 2007) and hybrid poplar (Rinaldi et al., 2007). In Casuarina equisetifolia, the novel CeHMA was up-regulated to the level of 20 and 23 fold post elicitation for 24 hrs and 48 hrs respectively. The role of metallothionin during infection is its involvement in regulating available metal ions, which subsequently affect the intracellular active oxygen species (AOS) produced in stressed plants and also as scavengers of AOS during oxidative burst (Chubatsu and Meneghini, 1993; Choi et al., 1996). Metal detoxifying gene up-regulated during pathogenesis was reported from Nicotiana glutinosa during TMV infection (Choi et al., 1996); Arabidopsis (Butt et al., 1998) and Abutilon theophrasti (Dauch and Jafari-Hare, 2006). In plants, these genes are also known to confer abiotic stress tolerance by detoxifying AOS. They also expressed during PEG induced osmotic stress (Singh et al., 2011). Salt and drought stress are reported to induce expression of...
metal binding/metallothionin like proteins in barley (Ozturk et al., 2002), rice (Yang et al., 2009), maize (Andjelkovic and Thompson, 2006), Mesembryanthemum crystallinum (Kore-Eda et al., 2004) and Tamarix hispida (Li et al., 2009). The CeHMA identified in the present study was up-regulated under all the stress treatments confirming the significant role of AOS scav-enging during both biotic and abiotic stress conditions.

The CCR4-NOT complex is involved in the control of diverse aspects of transcription and mRNA metabolism, including mRNA deadenylation and its subsequent degradation (Denis and Chen, 2003; Collart et al., 2004). A/CaF1a and A/CaF1b which encodes CAF1 prote-in, a subunit of the CCR4-NOT were identified as JA induced in Arabidopsis and was also induced by mechanical wounding and pathogen infection (Liang et al., 2009). The deadenylation of mRNA during stress response has been reported and its role in defense response was studied in tomato (Sabowar et al., 2007) and cocoa (Lopes et al., 2010). In C. equisetifolia, a transcript (accession number GR228683) with significant similarity to CCR4-NOT was identified from elicitor induced needle tissues. Further, the present study also identified the expression of homeodomain leucine zipper class III transcription factor in elicitor treated tissues (accession number GR228713). Homeobox proteins are ubiquitous in higher organisms and represent master control switches involved in developmental processes and cellular adaptation to changes in the environment. Functional characterization of some members of the homeobox family supports a role as key regulators of hormone signaling (Himmelbach et al., 2002), adaptive responses to environmental cues (Steindler et al., 1999; Zhu et al., 2004), and pathogen-derived signaling processes (Mayda et al., 1999). In Arabidopsis, a mutant opc3 (for overexpressor of cationic peroxidase 3) with impaired homedomain TF activity showed increased resistance to necrotrophic pathogens (Coego et al., 2005). A similar report from transgenic tomato lines revealed that the HD Zip TF was involved in cellular protection by limiting PCD in infected plants (Mayda et al., 1999).

In plants, mitochondria are a major site for AOS production and the generation of AOS by the respiratory chain is a physiological and continuous process (Tiwari et al., 2002). Abiotic stress is also demonstrated to significantly shift the cytochrome pathway to alternate respiratory pathway with the induction of alternate oxidase to scavenge the AOS (Lambers et al., 2005; Ribas-Carbo et al., 2005). Salinity induced CAM transition resulted in increased COX activity in Mesembryanthemum crystallinum, which was suggested as an efficient energy conserving strategy in the halophyte (Niewiadomska et al., 2004). However, the study in casuarina revealed no marked change in the CeCox expression in response to any of the abiotic stresses posed on the needle tissues. However, pathogen elicitation up-regulated the transcript expression by 4 fold and 13 fold subsequent to 24 hr and 48 hr post treatment. There are limited reports on the expression pattern of Cox during pathogen infection. An earlier study in sweet potato showed an increase in cytochrome oxidase activi-ty during wounding and infection by Ceatocystis fimbriata (Asahii et al., 1965). Recently, up-regulation of COX from tomato infected with tomato bushy top virus was reported. The differential expression of the transcript was demonstrated where in higher levels of expression was observed in resistant cultivars in comparison to the susceptible cultivar (Hafez and Moustafa, 2011). Increased level of expression of CeCox in casuarina may be indicative of a basic tolerant nature of the species to pathogenic microbes. The limited disease incidences of the species under natural habitat would suggest a highly proficient innate immune system of the species.

Up-regulation of unique transcripts during defense reaction

Signal recognition particle (SRP) is ubiquitous and abundant small cytoplasmic ribonucleoprotein particle (RNP) involved in targeting the translation of specific pre-secretory proteins to the endoplasmic reticulum. They play a critical role in the sorting of nascent secretory and membrane proteins. In E. coli they are reported to maintain protein homeostasis and general fitness of the cell (Wickstrom et al., 2011). SRPs are also associated with degradation of mis-targeted cytoplasmic membrane proteins. SRP mediated degradation of secretory proteins like amylase and defense-related proteins like endochitinase and proteases were demonstrated in barley (Brodl and Ho, 1991) and heat shock inhibited the release of SRP from ER in aleurone layers of barley (Chu et al., 1997). Direct evidence on role of SRP during pathogen defense is not reported to our knowledge. However, the present work revealed a distinct up-regulation 13 and 36 fold post 24 hrs and 48 hrs elicitation. Abiotic stresses did not show any significant change in expression. The probable up-regulation of the SRPs during elicitation could be associated with degradation of secretary proteins during localized apoptosis associated with HR.

In the present study, the molecular response of C. equisetifolia to cell wall elicitors derived from Trichosporium has provided an insight into the molecular mechanisms involved in host immunity in this tropical tree species. The induction of transcripts involved in HR, SAR and signal transduction highlights that the basic response to pathogen infection in trees could be similar to their annual counterparts. However, the significantly high level of induction of transcripts like proteasome, glucanase, cytochrome oxidase and metal binding proteins support a highly plastic immune system evolved to reduce the tissue damage by delimiting the pathogen movement. Further, the expression of SRP during pathogen elicitation adds a new realm to host-pathogen interaction, indicating the probable role of protein targeting and their subsequent degradation during immune responses.

Acknowledgements

The authors acknowledge Dr. R. Viswanathan, Principal Scientist and Head (Plant Protection), Sugarcane Breeding Institute, Coimbatore, India for providing facilities to conduct RT-qPCR and Dr. V. Mohan, Scien-
tist, Division of Forest Protection, Institute of Forest Genetics and Tree Breeding, Coimbatore, India for providing the fungal strain. The authors thank the Department of Biotechnology, Ministry of Science and Technology Government of India, for the financial support.

Reference
ADOMAS, A., G. HELLER, G. LI, A. OLSON, T. M. CHU, J. OSBORNE, D. CRAIG, L. VAN ZYL, R. WOLFGINGER, R. SEDEROFF, R. A. DEAN, J. STENLID, R. FINLAY and F. O. ASIEGBU (2007): Transcript profiling of a confier pathosystem: response of Pinus sylvestris root tissues to pathogen (Heterobasidion annosum) invasion. Tree Physiol 27: 1441–1458.

ANDJELKOVIC, V. and R. THOMPSON (2006): Changes in gene expression in maize kernel in response to water and salt stress. Plant Cell Rep 25: 71–79.

ASAHI, T., Y. HONDA and I. URITANI (1965): Increase of glucanase gene that is regulated both developmentally and in response to wounding or infection with Ceratocystis fimbriata. Plant Physiol 41: 1179–1184.

AUSTIN, M., P. MUSKETT, K. KAHN, B. FEYS, J. JONES and J. PARKER (2002): Regulatory role of SGT1 in early gene-mediated plant defences. Science 295: 2077–2080.

AZAIEZ, A., B. BOYLE, V. LEVEE and A. SEGUN (2009): Transcriptome profiling in hybrid poplar following interactions with Melampsora rust fungi. Mol Plant Micr Interact 22: 190–200.

Aomezdo, C., A. SADANANDOM, K. KITAGAWA, A. REILANDENHOUNEN, K. SHIRASU and P. SCHULZE-LEFFERT (2002): The RAR1 Interactor SGT1, an Essential Component of R Gene-Triggered Disease Resistance. Science 295: 2073–2076.

BARAKAT, A., D. S. DILORETO, Y. ZHANG, C. SMITH, K. BAIER, W. A. POWELL, N. WHEELER, R. SEDEROFF and J. E. CARLSON (2009): Comparison of the transcriptomes of American chestnut (Castanea dentata) and Chinese chestnut (Castanea mollissima) in response to the chestnut blight infection. BMC Plant Biology 9: 51.

BASSAM, B. J., G. C. ANGELLES and P. M. GRESHOFF (1991): Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem 196: 80–83.

BEADLE, N. C. W (1981): The vegetation of Australia. Cambridge University Press, Cambridge.

BOYES, D. C., J. NAM and J. L. DANGL (1998): The Arabidopsis thaliana RPM1 disease resistance gene product is a peripheral plasma membrane protein that is degraded coincident with the hypersensitive response. Proc Natl Acad Sci USA 95: 15849–15854.

BRODL, M. R. and T. H. D. HO (1991): Heat shock causes selective destabilization of secretory protein mRNAs in barley aleurone cells. Plant Physiol 96: 1048–1052.

BUYT, A., C. MOUSLEY, K. MORRIS, J. BEYNON, C. CAN, E. HOLUB, J. T. GREENBERG and V. BUCHANANWOLLASTON (1998): Differential expression of a senescence-enhanced metallothionein gene in Arabidopsis in response to isolates of Peronospora parasitica and Pseudomonas syringae. Plant J 16: 209–221.

CHEONG, Y. H., C. Y. KIM, H. J. CHUN, B. C. MOON, H. C. Park, J. K. KIM, S. LEE, C. HAN, S. Y. LEE and M. J. CHO (2000): Molecular cloning of a soybean class III beta-1,3-glucanase gene that is regulated both developmentally and in response to pathogen infection. Plant Sci 154: 71–81.

CHEON, S. K., H. S. CHUNG, M. Y. RYU, M. J. PARK, M. M. LEE and Y. Y. BAIK et al. (2006): Heterologous expression and molecular and cellular characterization of CaPUB1 encoding a hot pepper U-Box E3 ubiquitin ligase homolog. Plant Physiol 142: 1664–1682.

CHO, S. K., M. Y. RYU, C. SONG, J. M. KWAK and W. T. KIM (2008): Arabidopsis PUB22 and PUB23 are homologous U-Box E3 ubiquitin ligases that play combinatorial roles in response to drought stress. Plant Cell 20: 1899–914.

CHOI, D., H. M. KIM, H. K. YUN, J. A. PARK, W. T. KIM and S. H. BOK (1996): Molecular Cloning of a metallothionein-like gene from Nicotiana glutinosa L. and its induction by wounding and tobacco mosaic virus infection. Plant Physiol 112: 353–359.

CHONG, Z. (2000): A new record on Casuarina blister bark disease in Southern China. Nitrogen fixing tree news 3: 6–7.

CHU, B., M. R. BRODL and F. C. BELANGER (1997): Heat shock inhibits release of the signal recognition particle from the endoplasmic reticulum in barley aleurone layers. J Biol Chem 272: 7306–7313.

CHUATBUSI, L. S. and R. MENEGHINI (1993): Metallothionein protects DNA from oxidative damage. Biochem J 291: 193–198.

COEGO, A., V. RAMIREZ, M. J. GIL, V. FLORS, B. MAUCHMANN and P. VERA (2005): An Arabidopsis Homeodomain Transcription Factor, OVEREXPRESSOR OF CATIONIC PEROXIDASE 3, Mediates Resistance to Infection by Necrotrophic Pathogens. The Plant Cell 17: 2123–2137.

COLLART, M. A. and H. T. TIMMERS (2004): The eukaryotic CCR-NOT complex: a regulatory platform integrating mRNA metabolism with cellular signaling pathways? Proc Nucleic Acid Res Mol Biol 77: 289–322.

DAUCH, A. L. and S. H. JARAB-BAIRE (2006): Metallothionein and bZIP transcription factor genes from Velvetleaf and their differential expression following Colletotrichum coccodes infection. Phytopathology 96: 1116–1123.

DELAURE S. L., W. VAN HEMELRICK, M. F. C. DE BOLLE, P. A. CAMMUC and B. M. A. CONINCK (2008): Building up plant defenses by breaking down proteins. Plant Science 174: 375–385.

DENIS, C. L. and J. CHEN (2003): The CCR4-NOT complex plays diverse roles in mRNA metabolism. Proc Nucleic Acid Res Mol Biol 73: 221–250.

DE VOS, M., V. R. VAN OOSTEN, R. M. VAN POECKE, J. A. VAN PELT, M. J. POZO, M. J. MUELLER, A. J. BUCHVALA, J. P. METRAUX, L. C. VAN LOON, M. DICKIE and C. M. PIETERSE (2005): Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Mol Plant Microbe Interact 18: 923–937.

DEELEN, A. S., S. BADAOU, T. CANDRESSE and S. G. RETANA (2010): The ubiquitin/26S proteasome system in plant–pathogen interactions: a never-ending hide-and-seek game. Molecular Plant Pathology 11: 293–308.

DUPLESSIS, S., M. IAN, FRANCIS and S. ARMAND (2009): Poplar and pathogen interactions: insights from Populus genome-wide analyses of resistance and defense gene families and gene expression profiling. Critical Reviews in Plant Sciences 28: 309–334.

FAIRE-VELAQUEZ, S., R. RODRIGUEZ-GUERRA and L. SANCHEZ-CALDERON (2011): Abiotic and Biotic Stress Response Crosslink in Plants, pp 3–26. In: Abiotic Stress Response in Plants – Physiological, Biochemical and Genetic Perspectives, edited by A. Shanker and B. VENKATESWARLU. InTech.
Ozturk, Z. N., V. Talame, M. Deyhолос, C. B. Michalows-ki, D. W. Galbraith, N. Gozukirirnizi, R. Tuberosa and H. J. Bohnert (2002): Monitoring large-scale changes in transcript abundance in drought- and salt-stressed barley. Plant Molecular Biology 48: 551–573.

Pajerskwa-Mukhtar, K. and X. Dong (2009): A kiss of death- proteome-mediated membrane fusion and programmed cell death in plant defense against bacterial infection. Genes Dev 23: 2449–2454.

Pan, Y., Y. Li and T.Y. Tan (1996): Casuarina provenance test. For Res 9: 138–145.

Peart, J. R., R. Lu, A. Sadanandom, I. Malcit, P. Moffett, D. C. Brice, L. Schauzer, D. A. W. Jaggard, S. Xiao, M. J. Coleman, M. Dow, J. D. G. Jones, K. Shirasu and D. C. Balcombe (2002): Ubiquitin ligase-associated protein SGT1 is required for host and non host disease resistance in plants. Proc Natl Acad Sci 99: 10865–10869.

Perfect, E. S. and J. R. Green (2001): Infection structures of biotrophic and hemibiotrophic fungal plant pathogens. Mol Plant Pathol 2: 101–108.

Pongpanich, K., V. Luangviriyasaeng and M. J. Dudzinski (1996): Diseases in international provenance trials of Casuarina equisetifolia in Thailand, pp. 86-92 in Proceedings 3rd International Casuarina workshop on recent Casuarina research, Da Nang, Vietnam.

Ribas-Carbo, M., N. L. Taylor, L. Giles, S. Busquets, P. M. Finnegan, D. A. Day, H. Lambers, H. Medrano, J. A. Berry and J. Fle Xas (2005): Effects of water stress on respiration in soybean leaves. Plant Physiol 139: 466–473.

Richardson, B. A., A. A. K. Ekramoddoullah, J. J. Liu, M. S. Kim and N. B. Kloppe nstein (2010): Current and future molecular approaches to investigate the white pine blister rust pathosystem. For Path 40: 314–331.

Rinaldi, C., A. Kohler, P. Frey, F. Duchaussoy, N. Ningre, A. Couloux, P. Wincker, D. Le Thiec, S. Fluch, F. Martin and S. Duplessis (2007): Transcript profiling of Poplar leaves upon infection with compatible and incompatible strains of the foliar rust Melamps- dor larici-populina. Plant Physiol 144: 347–366.

Rozén, S. and H. J. Skaletsky (2000): Primer3 on the WWW for general users and for biologist programmers, pp. 365–386. In: Bioinformatics Methods and Protocols: Methods in Molecular Biology, edited by S. Krawetz and S. Misener, Humana Press, Totowa, NJ.

Santos, P., A. Fortunato, I. Graca, S. M. Martins, M. M. Gouveia, F. Auguy, D. Bogusz, C. P. P. Ricardo, K. Paskowski and A. Ribeiro (2010): Characterization of four defense-related genes up-regulated in root nodules of Casuarina glauca. Symbiosis 50: 27–35.

Sarwar, S., H. W. Ho, H. S. Cho, K. H. Baek, E. S. Seong, Y. H. Joung, G. J. Choi, S. Lee and D. Choi (2007): Capsicum annuum CCR4-associated factor CaCAF1 is necessary for plant development and defence response. Plant J 51: 792–802.

Schaflteiner, R. and E. Wilhelm (2001): Assessment of stress gene expression in chestnut (Castanea sativa Mill.) upon pathogen infection (C. parasitica [Murr.] Barr) and woundning. For Snow Landsc Res 76: 409–414.

Schlink, K. (2009): Identification and characterization of differentially expressed genes from Fagus sylvatica roots after infection with Phytophthora citricola. Plant Cell Rep 28: 873–882.

Schlink, K. (2010): Down-regulation of defense genes and resource allocation into infected roots as factors for compatibility between Fagus sylvatica and Phytophthora citricola. Functional and Integrative Genomics 10: 53–64.

Schneider, D. J. and A. Collmer (2010): Studying plant-pathogen interactions in the genomics era: beyond molecular Koch’s postulates to systems biology. Annu Rev Phytopathol 48: 457–479.

Sharma, J. K. (1994): Pathological investigations in forest nurseries and plantations in Vietnam. Consultant's report. UNDP/FAO Project Vie92/022, Hanoi, Vietnam.

Sharma, J. K. (1995): Current pathogen-host stress condi-tions in Asian tropical forests. 20 IUFRIO World Con-gress, Tampere, Finland.

Sinha, R. K., S. Anandhan, S. Singh, V. Y. Patade, Z. Ahmed and V. Pandi (2011): Metallothionein-like gene from Cicer microphyllum is regulated by multiple abiotic stresses. Proteoplasma 248: 839–847.

Smalle, J., J. Kurepa, P. Yang, T. J. Emborg, E. Babychuk, S. Kushnir and R. D. Vierstra (2003): The pleiotropic role of the 26S proteasome subunit RPN10 in Arabidopsis growth and development supports a sub-state-specific function in abscisic acid signaling. The Plant Cell 15: 965–980.

Smalle, J. and R. D. Vierstra (2004): The Ubiquitin 26S proteasome proteolytic pathway. Annu Rev Plant Biol 55: 555–590.

Somssich, I. E. and K. Hahlbrock (1998): Pathogen defence in plants—a paradigm of biological complexity. Trends Plant Sci 3: 86–90.

Steindler, C., A. Matteucci, G. Sessa, T. Weimar, M. Oghi shi, T. Aoyama, G. Morelli and I. Rüberti (1999): Shade avoidance responses are mediated by the ATHB-2 HD-Zip protein, a negative regulator of gene expression. Development 126: 4235–4245.

Sturrock, R. N., M. A. Islam and A. K. M. Ekramoddoul-lah (2007): Host-Pathogen interactions in douglas-fir seedlings infected by Phellinus sulphurascens. Phytopathology 97: 1406–1414.

Thomma, B. P. H. J., I. A. M. A. Penninckx, W. F. Broekaert and B. P. A. Cammue (2001): The complexity of disease signaling in Arabidopsis. Curr Opin Immunol 13: 63–68.

Tan, S. P., H. J. Yoo, X. Deng, X. B. Xu, G. Z. Qin and Z. L. Chan (2007): Characterization and Expression of β-1,3-glucanase genes in Jujube fruit induced by the microbial biocontrol agent Cryptococcus laurentii. Phytopathology 97: 260–268.

Titze, J. F. and E. Van der Pennen (1983): Provisory list of diseases of Casuarina species, pp. 17–21. In: Casuaria-na ecology, management and utilization, Proceedings of a workshop, edited by S. J. Midgley, R. D. Turnbull and R. D. Johnston, CSIRO, Canberra, Australia.

Tiwari, B. S., B. Belenghi and A. Levine (2002): Oxida-tive stress increased respiration and generation of reactive oxygen species, resulting in ATP depletion, opening of mitochondrial permeability transition, and programmed cell death. Plant Physiol 128: 1271–1281.

Valcu, C. M., M. Junqueira, A. Shevchenko and K. Schlink (2009): Comparative proteomic analysis of responses to pathogen infection and wounding in Fagus sylvatica. Journal of Proteome Research 8: 4077–4091.

Veluthakal, R. and M. Ghosh Das Gupta (2010): Pathogenesis-related genes and proteins in forest tree species. Trees – Structure and Function 24: 993–1006.
Genetic analysis and clonal stability of two yellow cypress clonal populations in British Columbia

By B. S. Baltunis\(^1\), J. H. Russell\(^2\), A. Van Niejenhuis\(^3\), J. Barker\(^4\) and Y. A. El-Kassaby\(^5\)

(Received 19\(^{th}\) November 2012)

Abstract

Genetic analysis of height and form at age 12 years of 697 yellow cypress (Callitropsis nootkatensis [D. Don] Oerst.) clones tested across seven sites in coastal British Columbia (BC) were explored in populations: Population 1 – No Pedigree and Population 2 – Reconstructed Pedigree. Genetic variances were statistically significant but generally higher \(\hat{\sigma}_g^2\) was observed for Population 2. Height and form were under low to moderate genetic control as indicated by clonal repeatability and estimates were relatively similar between populations. For example, average \(H^2\) in Population 2 was 0.31 for height (range: 0.18–0.45) and 0.22 for form (range: 0.06–0.32). While average \(H^2\) in Population 1 was 0.25 for height (range: 0.19–0.35) and 0.18 for form (range: 0.09–0.27). The reconstructed pedigree in Population 2 allowed partitioning the genetic variance (\(\hat{\sigma}_g^2\)) into component parts of additive (\(\hat{\sigma}_a^2\)), specific combining ability (\(\hat{\sigma}_s^2\)), and clone (\(\hat{\sigma}_c^2\)); however, general lack of structure within the population resulted in variance components to be estimated with little precision for additive and specific combining ability. The majority of genetic variation was associated with clone for both traits. For example, \(\hat{\sigma}_c^2\) accounted for 57.6\% and 62.5\% of the total genetic variance for height and form, respectively. Growth and form responses of clones across test environments were relatively stable and overall type-B genetic correlations were in excess of 0.8 for both traits implying clones selected for production populations should respond favorably across the seed planning zone for yellow cypress in coastal BC.

Key words: Yellow cypress, clones, genetic testing, genotype x environment, clonal repeatability.

Introduction

Long-term tree improvement programs aim to increase the population mean breeding value of a few key traits through breeding and selection of superior genotypes. These programs are based on classical recurrent selection for general combining and focus on exploiting the additive portion of the genetic variance. In British Columbia (BC), Canada, tree breeding programs strive to improve economic and adaptive traits (e.g., disease resistance, growth rate, and wood quality) while maintaining acceptable levels of genetic variability (Yanchuck, 2001).

Yellow cypress (Callitropsis nootkatensis [D. Don] Oerst.) is an ecologically and commercially important coastal conifer inhabiting sea level to montane coastal forests of the Pacific Northwest from Alaska to northern Washington, with more southerly populations occupying disjunct and higher elevation sites, and several outliers in the interior rainforests (Burns and Honkala, 1990). Yellow cypress has a commercial rotation length of 60 years and its wood has excellent characteristics for milling and is suitable for: furniture, molding, paneling, silviculture.