Recent achievements obtained by chloroplast transformation

Muhamed Adem1,2*, Dereje Beyene1 and Tileye Feyissa1,3

Abstract
Chloroplasts play a great role for sustained wellbeing of life on the planet. They have the power and raw materials that can be used as sophisticated biological factories. They are rich in energy as they have lots of pigment-protein complexes capable of collecting sunlight, in sugar produced by photosynthesis and in minerals imported from the plant cell. Chloroplast genome transformation offers multiple advantages over nuclear genome which among others, include: integration of the transgene via homologous recombination that enables to eliminate gene silencing and position effect, higher level of transgene expression resulting into higher accumulations of foreign proteins, and significant reduction in environmental dispersion of the transgene due to maternal inheritance which helps to minimize the major critic of plant genetic engineering. Chloroplast genetic engineering has made fruit full progresses in the development of plants resistance to various stresses, phytoremediation of toxic metals, and production of vaccine antigens, biopharmaceuticals, biofuels, biomaterials and industrial enzymes. Although successful results have been achieved, there are still difficulties impeding full potential exploitation and expansion of chloroplast transformation technology to economical plants. These include, lack of species specific regulatory sequences, problem of selection and shoot regeneration, and massive expression of foreign genes resulting in phenotypic alterations of transplastomic plants. The aim of this review is to critically recapitulate the latest development of chloroplast transformation with special focus on the different traits of economic interest.

Keywords: Chloroplast transformation, Novel traits, Homologous recombination, Transgene, Regulatory sequences

Background
World population is expected to rise to 9.2 billion in 2050. In order to feed the rising population food production has to grow in parallel. The problem is that arable land is exploited to its potential (High Level Expert Forum, FAO, October 2009; http://www.fao.org). Advancement in agricultural biotechnology particularly plant genetic engineering is believed to boost crop productivity. Due to enormous rewards crucial traits have been engineered via chloroplast genome instead of nuclear genome. It is amazing that more than 120 genes from various sources have been well integrated and expressed via the chloroplast genome for various applications. Aims of these applications include, developing crops with high levels of resistance to insects, bacterial, fungal and viral diseases, different types of herbicides, drought, salt and cold tolerance, cytoplasmic male sterility, metabolic engineering, phytoremediation of toxic metals and production of many vaccine antigens, biopharmaceuticals, industrial enzymes and biofuels [1–5].

Chloroplasts originated from endosymbiosis around 1.5 billion years ago, when a cyanobacterial cell was engulfed by heterotrophic eukaryote [6, 15]. Chloroplast organelle of plants and algal cells evolved from photosynthetic bacteria living inside the primitive ancestors of plant cells [7, 8]. Chloroplast gene products are not only homologus to the present-day cyanobacteria but the arrangement and expression of genes also reflect the prokaryotic ancestry of chloroplasts. They possess multiple copies of a small circular genome with 100–250 genes and their genome size varies between species, ranging from 107 kb (Cathaya argyrophylla) to 218 kb (Pelargonium) and maternally inherited in angiosperm plants [5].
There is a strong belief that the action of gene transfer and genome streamlining resulted into a drastic shrinkage of the genome of cyanobacterial endosymbiont where thousands of genes disappeared and were either transferred to nucleus or lost. Consequently, modern-day chloroplast genomes of photosynthetic eukaryotes are much reduced [9, 10].

The high ploidy number of the plastid genome and compartmentalization of proteins allow high levels of foreign protein expression from 5 to 40% total soluble protein [11] and up to 70% total soluble protein in Tobacco [2, 3, 12]. Moreover, nuclear encoded proteins are also accumulated at high level inside the chloroplast, although the ploidy level is not as high as chloroplast encoded proteins. That is why recent advancement in plant biotechnology has proved the use of chloroplasts as excellent ideal host for conferring agronomic traits and production of biopharmaceuticals, biomaterials and industrial enzymes [13]. Chloroplast genetic engineering has enormous advantages over nuclear transformation as well explained in Table 1 [1, 5, 14–25].

Chloroplast transformation

Multistep processes are involved to achieve chloroplast transformation. Species specific or heterologous chloroplast transformation vectors are developed in a manner that flanks the foreign genes and insert them through homologous recombination at predetermined and precise location in the plastome [26]. When the foreign DNA is delivered into plasmids, initially only a few copies of the plastome are transformed resulting in heteroplasmic state. Then, through sub-culturing the bombarded explants in vitro under selection all copies of the plastome contains the transgene leading to the state of homoplasmy, where all the plastomes of the chloroplasts present in the cell are transformed (Fig. 1). Generally, three key conditions have to be full-filled to achieve plastid transformation: (1) a robust method of DNA delivery into the chloroplast, (2) the presence of active homologous recombination machinery in the plastid, and (3) the availability of highly efficient selection and regeneration protocols for transplastomic cells [11, 27].

Transformation is highly efficient when there is complete homology of plastid DNA flanking sequences. For successful transformation, it is critical to identify promoters, 5′-UTRs, 3′-UTRs and insertion sites as indicated in Table 2. Complete chloroplast genome sequences are essential for integration of the transgene at optimal site via homologous recombination and to identify endogenous regulatory sequences for optimal transgene expression [28, 29].

Plastid transformation was first achieved in unicellular algae called *Chlamydomonas reinhardtii* [30]. Tobacco was the first higher plant in which chloroplast transformation was successfully performed [31, 32]. Similarly, a protocol for plastid transformation of an elite rapeseed cultivar (*Brassica napus* L.) has been developed [33].

Traits of interest for chloroplast transformation

Conferring agronomic traits

Researchers have successfully engineered different genes on chloroplasts to confer agronomic traits of interest. For instance simultaneous expression of protease inhibitors and chitinase have been employed to develop multiple biotic and abiotic stresses resistant plants, particularly tobacco [34]. Economical agronomic traits, such as herbicide resistance, insect resistance and tolerance to drought and salt, have already been engineered via the plastid genome [35]. The dominant trait that attracted the most attention for plastid transformation has been herbicide tolerance [11, 36–38]. The production of plants resistant to high level of glyphosate was achieved through biolistic transformation of plastids by introduction of a mutated herbicide-tolerant gene coding for EPSP synthase [11] (Table 3).

Table 1 Comparative advantages of chloroplast genome over nuclear genome
Chloroplast transformation
Reduced of gene dispersal in the environment due to maternal inheritance
Multiple copy (high ploidy) of plastids results higher expression and accumulation of foreign proteins
Efficient multiple gene expression in single transformation event
Single promoter for expression of multi-subunit complex protein from polycistronic mRNAs
Simultaneous expression of several genes as it contains prokaryotic gene expression system
Homologous recombination avoids position effects and gene silencing
Production of vaccine antigens and biopharmaceuticals

It is believed that more than 90% of the global population cannot afford insulin, a drug needed to treat the global diabetes epidemic [5]. The high cost of protein drugs is due to their production in prohibitively expensive fermentation systems, prohibitively expensive purification from host proteins, the need for refrigerated storage and transport, and the short shelf-life of the final product [66, 67]. Protein drugs made by plant chloroplasts overcome most of these challenges as they do not require such expensive production process and can be stored without losing efficacy [68, 69] As listed in Table 4 numerous vaccine antigens and biopharmaceuticals have been engineered via chloroplast genome of higher plants.

Among plant plastids, tobacco plastid has been engineered to express the E7 HPV type 16 protein, which is an attractive candidate for anticancer vaccine development [83]. The main factor why plant plastids are chosen

![Diagram](image-url)
as better bioreactors is due to the ability of plants to correctly carry out post-translation modifications such as phosphorylation, amidation, proper folding, formation of disulfide bonds and the assembly of complex multi-subunit proteins. Microorganisms are also used for large-scale industrial applications of recombinant protein production, but cannot carry out post-translational modifications [35]. The hyper-expression of vaccine antigens or therapeutic proteins in transgenic chloroplasts (leaves) or chromoplasts (fruits/roots) and antibiotic-free selection systems available in plastid transformation systems became successful in the oral delivery of vaccine antigens against cholera, tetanus, anthrax, plague, and canine parvovirus [17, 28, 69, 84]. Although higher level protein production is vital of chloroplast, too much expression of foreign proteins in chloroplasts is causing toxicity on host plant. Temporary immersion bioreactors (TIBs) using Alka Burst technology has produced leafy biomass that expressed OspA at levels of up to 7.6% total soluble protein to give a maximum yield of OspA (about 108 mg/L). These results show that TIBs offer an alternative method for the production of transplastomic biomass proteins, which are non-toxic for plants and particularly useful when absolute gene dispersion control is required [85]. From a single plant Chlamydomonas reinhardtii various recombinant therapeutic proteins have been produced (Table 5).

Phytoremediation
It is strongly believed that phytoremediation is a safe and cost-effective system for cleaning up contaminated environments using plants. Organomercurial compounds are the most toxic forms of mercury and chloroplast genome is a primary target of mercury damage in plants. It is, thus, an ideal site to engineer resistance and detoxification of organomercurials and metallic mercury [93]. Chloroplast genetic engineering of plants for synthesis of metal chelators has improved the capability of plants for metal uptake [94, 95].

Two bacterial genes encoding two enzymes, mercuric ion reductase (merA) and organomercurial lyase (merB), were expressed as an operon in transgenic tobacco chloroplasts. This demonstrated accumulates of mercury in roots to levels surpassing the concentration in soil, up to 200 μg/g, without any detrimental effect and could accumulate 100-fold more mercury in leaves than untransformed plants [96]. Phytoremediation of toxic mercury was achieved by engineering of tobacco chloroplast with metallothionein enzyme [53].

Table 2 Commonly used promoters, un-translated regions and insertion sites for chloroplast transformation as avowed in [25, 117]

Promoter	5’-UTRs	3’-UTRs	Popular insertion sites
PpsbA	Gagg	rbcL	rbcl-accD
Pma	TЈG10	rps16	Tm1-tmA
Prbcl	rbcl	petD	rp132-tmc
psbA	atpB	psbA	petA-psbJ
atpl	psbA	cry2a	3’ps12/7-tmV

Promoter of industrial enzymes and biomaterials
Chloroplast genome has been successfully engineered to produce important enzymes and biomaterials. Despite the diversion of major metabolic intermediate, metabolic engineering using chloroplast genomes produced the highest level of the poly (p-hydroxybenzoic acid (pHBA) polymer (25% dry weight) in normal healthy plants [97]. Optimized genetic construct for plastid transformation of tobacco (Nicotiana tabacum) for the production of the renewable biodegradable plastic poly hydroxy butyrate (PHB) was designed using an operon extension strategy [98]. Lots of efforts have been made to produce PHB in different systems, but to date, the highest levels of PHB have been achieved in plastids. This was due to the high flux of the PHB pathway substrate acetyl-CoA through this organelle during fatty acid biosynthesis [99, 100]. Typical examples of biomaterials and enzymes that have been engineered via chloroplastgenome of Tobacco are mentioned in (Table 6).

Production of biofuels
The most important and first requirement for lingo-cellulosic biofuels production is to develop an efficient enzyme production system for economical and rapid biomass depolymerization. High levels of expression and compartmentalization of toxic proteins within chloroplasts enables to protect transgenic plants from pleiotropic effects, making chloroplast an ideal bioreactor for industrial enzyme production [25]. Although it was possible to have single biofuels enzymes expressed whole biomass hydrolysis was not effective because of the requirement of more number of enzymes [94, 95]. The development of chloroplast derived cocktails of enzymes for production of fermentable sugars from different ligno-cellulosic biomass become major fresh breakthrough in biofuels.
Site of integration	Regulatory sequences	Transgene/s	Efficiency of expression	Enhanced traits	References
rbcL/accD	Prrn/rbcL 3'	panD	>4-fold β-alanine	Tolerance to high-temperature stress	[39]
trnI/trnA	Prrn/ggagg/psbA	tps l	>169-fold transcript	Drought tolerance: growth in 6% polyethylene glycol and rehydration after 24 days of drought	[40]
rbcL/rbcL	psbA/psbA/3’rbl	Hppd	5% TSP	Resistance to herbicide	[41]
trnI/trnA	Prrn/T7 10/rps16	Badh	93–101 μM g⁻¹ FW	Salt tolerance: carrot plants survived up to 400 mM NaCl	[42]
trnF/trnG	atpl/rps16	Lycopene β-cyclase	0.28 mg g⁻¹ DW	Herbicide resistance and triggers conversion of lycopene	[43]
rbcL/accD	Prrn/ggagg/psbA	EPSPS/aroA	NR	Resistance to glyphosate (>5 mM)	[32]
prs14/trnG	Prrn/T7 g10/TrbcL	HTP, TCY, TMT	NR	Cold-stress tolerance and increase in vitamin E in fruit	[44]
tmV/rps7/12	Prrn/Tmps16	EPSPS	>10% TSP	Resistance to the herbicide glyphosate	[45]
tmV/rps12/7	Prrn/TrbcL	b-bar1	>7% TSP	Resistance to the herbicide phosphinothricin	[46]
trnI/trnA	Prrn/psbA/psbA	phaA	14.71 β-ketothiolase mg⁻¹ FW	Engineered cytoplasmic male sterility	[47]
trnI/trnA	Prrn/T7 g 10/TpsbA	γ-TMT	>7.7% TSP	Increased salt tolerance and enhanced accumulation of α-tocopherol in seeds	[48]
trnI/trnA	T7g10 or psbA	RbcS	>150-fold RbcS transcript	Restoration of RuBisCO activity in rbcS mutants	[49]
rbcL/accD	Prrn/ggagg/psbA	cry2Aa2	2–3% of TSP	Resistance to Heliothis virescens, Helicoverpa zea, and Spodoptera exigua	[50]
trnV/3’ps12	prrn T7/G10/rps12	Ttx f, Ttx m	NR	Starch synthesis	[51]
trnI/trnA	5’psbA/3’psbA	ubiC	25% DW	250-fold higher pHBA polymer accumulation than nuclear transgenic lines	[52]
rbcL/accD	PpsbA/Trsp16	TC, γ-TMT	3 nmol h⁻¹ mg⁻¹ FW	Vitamin E accumulation in tobacco and lettuce	[53]
trnV/orf708	psbA/psbA/psbA	BicA	~0.1% TSP	CO₂ capture within leaf chloroplasts	[54]
trnV/rps12/7	Prrn/rbcL/rps16	cry1A(c)	3–5% of TSP	Resistance to larvae of Heliothis virescens, Helicoverpa zea, and Spodoptera exigua	[55]
rbcL/accD	Prrn/Tmps16	CtnZ, CtnW	NR	Accumulation of astaxanthin fatty acid esters in lettuce	[56]
trnV/rps12/7	Prrn/T7gene10/rbcL	cry1Ab	NR	Resistance to caterpillar of Anticarsia gemmatalis	[57]
trnI/trnA	Prrn/Tmps16	MSI-99	89.75 μg g⁻¹ FW	Resistance against rice blast fungus	[30]
trnI/trnA	Prrn/psbA	sporamin1, CeCPI2, and chitinase2	0.85–1% TSP	Resistance against Spodoptera litura and Spodoptera exigua leaf spot, as well as soft rot diseases	[58]
trnI/trnA	Prrn/ggagg/psbA	Bt cry2Aa2 operon	45.3% TSP	100% mortality of cotton bollworm, beet armyworm, cuboidal Bt crystals formation	[59]
Different enzymes from bacteria or fungi, namely β-1,4-endoglucanase, Beta glucosidase, Swollenin, esterase, cutinase, endoglucanases, exoglucanase, pectate lyases, xylanase, lipase, acetyl, Acetyl xylan esterase and xylan were expressed in tobacco chloroplasts for production of fermentable sugars [107–111].

Endoglucanase Ce19A, β-glucosidase Bg11C, Exoglucanase Ce16B and xyloglucanase Xeg74 from Trichoderma fusca were highly active and hydrolyzed their synthetic test substrates in a dose dependent manner. The cocktail of these enzymes triggered efficient sugar release from straw [107]. Treatment of cotton fiber with chloroplast derived cutinase showed enlarged segments and the intertwined inner fibers were irreversibly unwound due to expansion activity of cutinase. Chloroplast derived cutinase showed esterase and lipase activity [110]. B-1,4-endoglucanase from Pyroccocus horikoshii which drives EPGh from chloroplast was able to recover from Table 3 continued

Site of integration	Regulatory sequences	Transgene/s	Efficiency of expression	Enhanced traits	References
trnI/trnA Prrn/ggagg/psbA	msi-99	21–43% TSP	Resistance to in planta challenge of Aspergillus flavus, Fusarium moniliforme, Vorticillium dahliae, and Colletotrichum destructivum	[60]	
trnI/trnA Prrn/ggagg/rbcL	Bt cry9Aa2	~10% of TSP	Resistance to Phthorimaea operculella	[61]	
trnI/trnA Prrn/psbA/psbA	Cpo	NR	Resistance to fungal pathogens in vitro (Fusarium verticillioides, and Vorticillium dahliae) and in planta (Alternaria alternata)	[62]	
trnI/trnA 3′psbA/3′psbA	PeIB1, PeID2	~2.42 units mg⁻¹ FW	Resistance against Erwinia soft rot	[63]	
trnI/trnA 3′psbA/3′	RC1011, PG12	17–38% TSP	Resistance to Erwinia soft rot and tobacco mosaic virus	[64]	
trnI/trnA 5′psbA/3′psbA	Pta	7.1–9.2% TSP	Broad-spectrum resistance against viral/bacterial/phloem-feeding insects	[51]	
trnI/trnA 5′psbA/3′psbA	Bgl-1	>160-fold enzyme	Resistance against whitefly and aphid	[65]	

Table 4 Vaccine antigens and biopharmaceuticals engineered via chloroplast genome of higher plants

Traits	Gene	Expression	Host plant	References
HIV/AIDS	gp120, gp41	16 μg g⁻¹ FW	Tobacco	[70]
Human papilloma virus	GUS-E7	3–4% TSB	Tobacco	[71]
Polio virus	CTB-VP1	4–5% TSP	Tobacco	[72]
Tuberculosis antigens	CTB-SAT6CTB-Mtb72F, CTB-ESAT6	7.5% TSP, 0.75% TSP	Tobacco, Lettuce	[73]
Bacterial	Pa	2.5–4% TSP	Tobacco	[74]
Dengue virus	EDIII	0.8–1.6 TSP	Tobacco	[75]
Bacterial phage lytic ‘protein	plyGSB	>70% TSP	Tobacco	[76]
Pompe disease	CTB-GAA	0.1–0.2 TLP	Tobacco	[77]
Thioredoxin 1	hTx1	15 TSP	Lettuce	[78]
Insulin liken growth factors	IGF-1n	32% TSP	Tobacco	[79]
Endolysin Cpl-1	Cpl-1	10% TSP	Tobacco	[80]
Interferon-α2b(IFN-α2b)	IFN-α2b	21% TSP	Tobacco	[81]
Basic fibroblast growth factor (bFGF)	bFGF	0.1% TSP	Tobacco	[82]
dry leaves and digested carboxymethyl cellulose (CMC) substrate [56]. β-Mannanase enzyme from *Trichoderma reesei* showed sixfold to sevenfold higher enzyme activity than *E. coli*. β-Mannanase enzyme cocktail with chloroplast derived mannanse yielded 20% more glucose equivalents from pinewood than the cocktail without mannanase [111]. Catalytic activity of chloroplast produced *Xylanase* was detected with birch wood xylan as substrate [112]. Chloroplast enzymes (Endoglucanase, *Swollenin*, Acetyl xylan esterase, *Xylanase* enzymes originated from *T. reesei*, Endoglucanase exoglucanase from *C. thermocellum*, Lipase from *M. tuberculosis*, *Cutinase* and *Pectate lyase A* from *F. solani*) showed wider pH and higher temperature stability than enzymes expressed in *E. coli*. Chloroplast derived crude extract enzyme cocktails yielded more than 36-fold glucose from citrus peel, filter paper or pine wood than commercial cocktails [113].

Table 5 Recombinant therapeutic proteins produced in the chloroplast of *Chlamydomonas reinhardtii*

Therapeutic protein	Expression	References
αCD22HCH23PE40, dimeric version of αCD22PE40	0.2–0.3% TSP	[86]
Human glutamic acid decarboxylase (hGAD65)	0.25–0.3% TSP	[87]
Escherichia coli phytase gene (appA)	Not detected	[88]
CtxB-Pf25; *Plasmodium falciparum* surface protein 25 fused to the β-subunit of the choleratoxin from *Vibrio cholera*	0.09% TSP	[89]
Mammary associated serum amyloid (M-SSA)	3–5% TSP	[90]
αCD22CH23Gel; dimeric version of αCD22Gel	0.1–0.2% TSP	[91]
Infectious burial disease virus (IBDV-VP2)	0.8–4% TCP	[92]

Table 6 Biomaterials and enzymes engineered via chloroplast genome of Tobacco

Enzymes/biomaterials	Gene	Yield	References
β-glucosidase	Bgl1	20 mg g\(^{-1}\) TSP	[101]
Elastin-derived polymer	Eg121	Not detected	[102]
Fibronectin extradomain A	EDA	2% TCP	[68]
Xylanase	xynA	6% TSP	[101]
Xyn	35% TSP	[103]	
Endo-glucanase	celB	60–70% TSP	[103]
Superoxide dismutase	Cu/ZnSOD	9% TSP	[97]
Polyhydroxybutyrate	phb operon	18.8% TSP	[104]
p-Hydroxybenzoic acid	ubIC	13–18% TSP	[97]
Cellulases	bg11C, cel6B, cel9A, xeg74	5–40% TSP	[105]
CellA, CelB	22–23 mg g\(^{-1}\) TSP	[106]	

Conclusion and prospects

Chloroplast genome has become the target of many plant genetic transformation efforts due to its enormous advantages over nuclear genome of the plant. The nuclear transgenic approach is incapable to develop products when higher-level transgene expression and multigene engineering is a requirement. Chloroplast transformation is expected to offer unique advantages in the advancement of different biotechnological applications; including, phytoremediation, production of industrial enzymes, biofuels, biomaterials, molecular farming for the production of antibiotics, vaccines, biopharmaceuticals and confering agronomic traits. Chloroplast transformation has been achieved only to tobacco, lettuce, Arabidopsis, tomato, carrot, oilseed rape, potato, cabbage, cotton, petunia, soybean, sugarcane, sugar beet, rice, eggplant, cauliflower and poplar [114].

Although successful progresses have been made, full potential exploitation of chloroplast technology requires addressing critical challenges. These include: recalcitrant nature of cereal species to existing regeneration protocols is daunting so developing efficient shoot regeneration system is very critical [115], optimizing the level of expression as massive expression of foreign proteins is resulting in phenotypic alterations of transplastomic plants [116], lack of appropriate tissue specific regulatory sequences [117, 118], problem of gene expression in non-green plastids [119], unintended homologous recombination that hinder efficient recovery of transplastomic transformants containing the desired transgene [120], degradation of foreign proteins is a limiting factor for accumulation of foreign proteins in transgenic chloroplasts [50, 121, 122] low frequency transgene dispersion might occur due to occasionally parental/biparental transmission of plastids and via transgene transfer to nuclear genome [115]. To ease public concern and increase public acceptance production of marker free transplastomic plants is also very important. As chloroplast genome is capable of expressing more than 120 foreign genes originated from different organisms (bacteria, animals, viruses, fungi and
humans), addressing the above barriers will make chloroplast genome very attractive site for various biotechnological applications with incredible impact on human life.

Abbreviations
UTR: un-translated region; TLP: total leaf protein; TSP: total soluble protein; TCP: total cell protein.

Authors’ contributions
MA has prepared the manuscript and DB, TF read and approved the review for publication. All authors read and approved the final manuscript.

Author details
1 Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia. 2 Department of Forestry, School of Agriculture and Natural Resources, Madawalabu University, P.O. Box 247, Bale Robe, Oromiya, Ethiopia. 3 Institute of Biotechnology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia.

Acknowledgements
Not applicable.

Competing interests
The authors declare that they have no any competing interests.

Consent for publication
The authors declare that they have no any competing interests.

References
1. Bock R. Plastid biotechnology: prospects for herbicide and insect resistance, metabolic engineering, and molecular farming. Curr Opin Biotechnol. 2007;18:100–6. doi:10.1016/j.copbio.2006.12.007.
2. Daniell H, Singh ND, Mason H, Streatfield SJ. Plant-made vaccine antigens and biopharmaceuticals. Trends Plant Sci. 2009;14:669–79. doi:10.1016/j.tplants.2009.09.009.
3. Bock R, Warzecha H. Solar-powered factories for new vaccines. Trends Biotechnol. 2003;21(1):20–8.
4. Maliga P. Progress towards commercialization of plastid transformation technology. Trends Biotechnol. 2003;21(1):20–8.
5. Maliga P. Plastid transformation in higher plants. Ann Rev Plant Biol. 2004;55:289–313. doi:10.1146/annurev.arplant.55.031903.141633.
6. Daniell H, Chebolu S, Kumar S, Singleton M, Falconer R. Chloroplast-derived vaccine antigens and other therapeutic proteins. Vaccine. 2005;23:1779–83. doi:10.1016/j.vaccine.2004.11.004.
7. Ruhlman T, Sb Lee, Jansen RK, Hostetter JB, Tallon LJ, Town CD, et al. Complete plastid genome sequence of Daucus carota: implications for biotechnology and phylogeny of angiosperms. BMC Genom. 2006;7:222. doi:10.1186/1471-2164-7-222.
8. Moeller L, Wang K. Engineering with precision: tools for the new generation of transgenic crops. Bioscienc. 2008;58:391–401. doi:10.1544/BSB.2008.0580506.
9. Harusuma T, Miyazawa S, Yoshimura S, Shinzaki Y, Tomizawa K, Shindo K, et al. Biosynthesis of astaxanthin in tobacco leaves by transplastomic engineering. Plant J. 2008;55:857–68. doi:10.1111/j.1365-313X.2008.03559.x.
10. Cardi T, Lenzi P, Maliga P. Plastochloroplasts as expression platform for plant-produced vaccines. Expert Rev Vaccines. 2010;9:893–911. doi:10.1586/erv.10.78.
11. Meyers B, Zaltsman A, Lackroth B, Kozlovsky SV, Krichevsky A. Nuclear and plastid genetic engineering of plants: comparison of opportunities and future challenges. Biotechnol Adv. 2010;6:747–56. doi:10.1016/j.biotechadv.2010.05.022.
12. Obermeier OE, Popoola JO, Leelavathi S, Reddy VS. Advances in plastid transformation and plastid genetic engineering of plants: comparison of opportunities and future trends. Mol Plant Breed. 2012;3(8):91–102. doi:10.5376/mbp.2012.03.0009.
13. Doetsch NA, Favreau MR, Kusicoulo N, Thompson MD, Hallick RB. Chloroplast transformation in Euglena gracilis: splicing of a group II intron transcribed from a transgenic psbK operon. Curr Genet. 2011;59:49–60.
14. Grechschik DJ, Daniell H. Chloroplast genetic engineering: recent advances and future perspectives. Curr Opin Biotechnol. 2011;24:83–107.
15. Ruhlman T, Verma D, Samson N, Daniell H. The role of heterologous chloroplast sequence elements in transgene integration and expression. Plant Physiol. 2010;152:2088–104. doi:10.1104/pp.109.152017.
16. Boynton JE, Gillham NW, Harris EH, Hosler JP, Johnson AM, Jones AR, et al. Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Sciences. 1998;240:1534–8.
17. Swab Z, Hajdukevicz P, Maliga P. Stable transformation of plastids in higher plants. Proc Natl Acad Sci. 1990;87:8526–30.
18. Jabeen R, Khan MS, Zafar Y, Anjum T. Codon optimization of cryA(b) gene for higher expression in plant organelles. Mol Biol Rep. 2010;37:1011–7. doi:10.1007/s11033-009-0980-2.
19. Cheng L, Li HP, Qu B, Huang T, Tu JX, Fu TD, et al. Chloroplast transformation of rapeseed (Brassica napus L.) by particle bombardment
of cotyledons. Plant Cell Rep. 2010;29:371−8. doi:10.1007/s00299-010-0828-6.

34. Chen PJ, Senthilkumar R, Jane WN, He Y, Tian Z, Yeh KH. Transplastomic Nicotiana benthamiana plants expressing multiple defence genes encoding precursor inhibitors and chitinase display broad-spectrum resistance against insects, pathogens and abiotic stresses. Plant Biotechnol. J. 2014;12:503−15. doi:10.1111/pbi.12157.

35. Jana R. Potential of chloroplast genome in plant breeding. Czech J Genet Plant Breed. 2010;46(3):103−13.

36. Kang TJ, Loc NH, Jang MO, Jang YS, Kim YS, Seo JE, et al. Expression of the B subunit of E. coli heat-labile enterotoxin in the chloroplasts of plants and its characterization. Transgenic Res. 2013;12:683−91.

37. Daniell H, Datta R, Varma S, Gray S, Lee SB. Containment of herbicide resistance through genetic engineering of the chloroplast genome. Nat Biotechnol. 1998;16:345−8. doi:10.1038/nbt0498-345.

38. Haghani K, Salmanian AH, Ranjbar B, Zakikhan K, Khajeh K. Comparative studies of wild type E. coli S-enzyme in tobacco plants. Nicotiana benthamiana plants expressing multiple defence genes. Journal of Plant Patents. 2009;106:6579−84. doi:10.1073/pnas.0813146106.

39. Fouad WM, Altpeter F. Transplastomic expression of bacterial l-asparagine synthetase with three lysosomally insensitive mutated forms, activity, stability and structural characterization. Biochim Biophys Acta. 2008;1784:1167−75. doi:10.1016/j.bbapap.2007.07.021.

40. Fouad WM, Altpeter F. Transplastomic expression of bacterial l-asparaginase enhances photosynthesis and biomass production in response to high temperature stress. Transgenic Res. 2009;18:707−18. doi:10.1007/s11248-009-9526-z.

41. Oey M, Lohse M, Scharff LB, Keikemeyer B, Bock R. Plastid production of protein antibiotics against pneumonia via a new strategy for high level expression of antimicrobial proteins. Nat Protoc. 2010;5:6579−84. doi:10.1038/nprot.2008146106.

42. Dufourmantel N, Dubald M, Matringe M, Canard H, Garcon F, Job C, et al. Generation and characterization of soybean and marker-free tobacco plastid transformants over-expressing a bacterial 4-hydroxyphenylpyruvate dioxygenase which provides strong herbicide tolerance. Plant Biotechnol. J. 2007;5:118−33. doi:10.1111/j.1467-7652.2006.00226.x.

43. De Cosa B, Moar W, Lee SB, Miller M, Daniell H. Over expression of the Bt cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nat Biotechnol. 2001;19:71−4. doi:10.1038/sj.nbt.935359.

44. DeGray M, Rajasekaran K, Smith F, Sanford J, Daniell H. Expression of an antimicrobial peptide via the chloroplast genome to control phytopathogenic bacteria and fungi. Plant Physiol. 2001;127:852−62.

45. Chakrabarti SK, Lutz KA, Lertwiriyawong B, Svat Z, Maliga P. Expression of the cry2Aa2 B.t. gene in tobacco chloroplasts confers resistance to potato tuber moth. Transgenic Res. 2006;15:481−8. doi:10.1007/s11248-006-0018-7.

46. Ruhlman TA, Rajasekaran K, Cary JW. Expression of chloroperoxidase from Pseudomonas pyrocinia in tobacco plastids for fungal resistance. Plant Sci. 2014;228:98−106. doi:10.1016/j.plantsci.2014.02.008.

47. Verma D, Kanagaraj A, Jin SX, Singh ND, Kolattukudy PE, Daniell H. Chloroplast-derived enzyme cocktails hydrolyse ligninocellulosic biomass and release fermentable sugars. Plant Biotechnol J. 2010;8:332−50. doi:10.1111/j.1467-7652.2009.00486.x.

48. Lee SB, Li B, Jin S, Daniell H. Expression and characterization of antimicrobial peptides Rretrocyclin-101 and Protegrin-1 in chloroplasts to control viral and bacterial infections. Plant Biotechnol J. 2011;9:100−15. doi:10.1111/j.1467-7652.2010.00538.x.

49. Jin S, Zhang X, Daniell H. Pinella ternata agglutinin expression in chloroplasts confers broad spectrum resistance against aphid, whitefly, Lepidopteran insects, bacterial and viral pathogens. Plant Biotechnol J. 2012;10:313−27. doi:10.1111/j.1467-7652.2011.00663.x.

50. Grabowsk i H, Cockburn L, Long G. The market for follow-on biologics: how will it evolve? Health Aff. 2006;25:1291−301.

51. Spok A, Karner S, Stein AJ, Rodriguez-C E, Perez LA. Plant molecular farming: opportunities and challenges. JRC Scientific and Technical Reports. 2008.

52. Farran I, McCarthy S, Río M-F, Mansilla C, Lasarte J. Mingo-CM. The vaccine adjuvant extra domain A from fibronectin retains its proinflammatory properties when expressed in tobacco chloroplasts. Planta. 2010;231:977−90. doi:10.1007/s00425-010-1176-z.

53. Holtz BR, Berquist BR, Bennett LD, Kommineni VJ, Munigunti RK, White EL. Commercial-scale biotherapeutics manufacturing facility for plant made pharmaceuticals. Plant Biotechnol J. 2015;13:1180−90. doi:10.1111/pbi.12469.

54. Rosales-Mendoza S, Soria-Guerra RE, Moreno-Fierros L, Alpuche-Sells AG, Martinez-Gonzalez I, Korban SS. Expression of an immunogenic Fv-V fusion protein in lettuce as a plant-based vaccine against plague. Planta. 2010;232:409−16. doi:10.1007/s00425-010-1176-z.
70. Morgenfeld M, Lentz E, Segretin ME, Alfano EF, Bravo-Almonacid F. Translational fusion and redirection to thylakoid lumen as strategies to enhance accumulation of human papilloma virus E7 antigen in tobacco chloroplasts. Mol Biotechnol. 2014;56:1021–31.

71. Chan H-T, Xiao Y, Weldon WC, Oberste SM, Chumakov K, Daniell H. Cold chain and virus free chloroplast-made booster vaccine to confer immunity against different polo virus serotypes. Plant Biotechnol J. 2016. doi:10.1111/pbb.12575.

72. Lakshmi PS, Venma D, Yang X, Lloyd B, Daniell H. Low cost tuberculosis vaccine antigens in capsules: expression in chloroplasts, bio-encapsulation, stability and functional evaluation in vitro. PLoS ONE. 2013;8:e54708. doi:10.1371/journal.pone.0054708.

73. Gorantala J, Grover S, Rahi A, Chaudhary P, Rajwanshi R, Sarin NB, et al. Generation of protective immune response against anthrax by oral immunization with protective antigen plant-based vaccine. J Biotechnol. 2014;176:1–10. doi:10.1016/j.jbiotec.2014.01.033.

74. Göttschamel J, Lüssl A, Ruf S, Wang Y, Skaugen M, Bock R, et al. Production of dengue virus envelope protein domain III-based antigens in tobacco chloroplasts using inducible and constitutive expression systems. Plant Mol Biol. 2016;91:497–512. doi:10.1007/s11103-016-0484-5.

75. Oey M, Lohse M, Kreikemeyer B, Boch R, et al. Exclusion of chloroplast protein synthesis capacity by massive expression of a highly stable protein antibiotic. Plant J. 2009;57:436–45. doi:10.1111/j.1365-313X.2009.03702.x.

76. Su J, Sherman A, Doerfler PA, Byrne BJ, Herzog RW, Daniell H. Oral delivery of Acid Alpha Glucosidase epitopes expressed in plant chloroplasts suppresses antibody formation in treatment of Pompe mice. Plant Biotechnol J. 2015;13:1023–32. doi:10.1111/pbi.12413.

77. Lim S, Ashida H, Watanabe R, Inai K, Kim Y-S, Mukougawa K, et al. Production of biologically active human thioredoxin 1 protein in lettuce chloroplasts. Plant Mol Biol. 2011;76:335–44. doi:10.1007/s11103-011-9745-5.

78. Ruiz O. Optimization of codon composition and regulatory elements for expression of the human IGF-1 in transgenic chloroplasts. MS thesis, University of Florida. 2002.

79. Oey M, Lohse M, Scharff LB, Kreikemeyer B, Boch R. Plastid production of protein antibiotics against pneumonia via a new strategy for high-level expression of antimicrobial proteins. Proc Natl Acad Sci USA. 2009;106:6575–84.

80. Arlen PA, Falconer R, Cherukumilli S, Cole A, Cole AM, Oishi KK, et al. Field production and functional evaluation of chloroplast derived interferon-α2b. Plant Biotechnol J. 2007;5:511–25. doi:10.1111/j.1365-313X.2008.00399.x.

81. Wang YP, Wei ZY, Zhong XF, Lin CJ, Cai YH, Ma J, et al. Stable expression of basic fibroblast growth factor in chloroplasts of tobacco. Int J Mol Sci. 2011;12:3847–69. doi:10.3390/ijms12033-0384.

82. Manuell AL, Beligni MV, Elder JH, Siefker DT, Tran M, Weber A, et al. Robust expression of a bioactive mammalian protein in Chlamydomonas chloroplasts. Plant Biotechnol J. 2007;5:402–12. doi:10.1111/j.1467-7652.2007.00249.x.

83. Tran M, Henry RE, Siefker D, Van C, Newkirik G, Kim J, et al. Production of anti-cancer immunotoxins in algae: ribosome inactivating proteins as fusion partners. Biotechnol Bioeng. 2013;110:2826–35. doi:10.1002/bit.24966.

84. Surzycki R, Greenham K, Kitayama K, Dibal F, Wagner R, Rochaix JD, et al. Factors effecting expression of vaccines in microalgae: Biologicals. 2009;37:133–8. doi:10.1016/j.biologicals.2009.02.005.

85. Kupper H, Kepper F, Spiller M. Environmental relevance of heavy metal substituted chlorophylls using the example of water plants. J Exp Bot. 1996;47:59–66.

86. Arlen PA, Falconer R, Cherukumilli S, Cole A, Cole AM, Oishi KK, et al. Plastid-derived interferon-α2b. Plant Biotechnol J. 2007;5:511–25. doi:10.1111/j.1365-313X.2008.00399.x.

87. Beilen JB, Poirier Y. Production of renewable polymers from crop plants. Plant J. 2008;54:664–701. doi:10.1111/j.1365-313X.2008.03431.x.

88. Gregory JA, Topol AB, Doerner DZ, Mayfield S. Alga-produced cholera toxin-Pfs25 fusion proteins as oral vaccines. Appl Environ Microbiol. 2013;79:3917–25. doi:10.1128/AEM.00714-13.

89. Manueli AL, Beligni MV, Elder JH, Siefker DT, Tran M, Weber A, et al. Robust expression of a bioactive mammalian protein in Chlamydomonas chloroplasts. Plant Biotechnol J. 2007;5:402–12. doi:10.1111/j.1467-7652.2007.00249.x.

90. Tran M, Henry RE, Siefker D, Van C, Newkirik G, Kim J, et al. Production of anti-cancer immunotoxins in algae: ribosome inactivating proteins as fusion partners. Biotechnol Bioeng. 2013;110:2826–35. doi:10.1002/bit.24966.

91. Beilen JB, Poirier Y. Production of renewable polymers from crop plants. Plant J. 2008;54:664–701. doi:10.1111/j.1365-313X.2008.03431.x.

92. Kupper H, Kepper F, Spiller M. Environmental relevance of heavy metal substituted chlorophylls using the example of water plants. J Exp Bot. 1996;47:59–66.

93. Smits E, Pilin M. Phytoremediation of metals using transgenic plants. Crit Rev Plant Sci. 2002;21:439–56.

94. Clemens S, Palmgren MG, Kramer U. A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci. 2002;7:309–14.

95. Hussein H, Ruis ON, Terry N, Daniell H. Phytoremediation of mercury and organomercurials in chloroplast transgenic plants: enhance root uptake, translocation to shoots and volatilization. Environ Sci Technol. 2007;41:8439–46.

96. Occhialini A, Lin MT, Andralojc PJ, Hanson MR, Parry MAJ. Transgenic tobacco plants with improved cyanobacterial Rubisco expression but no extra assembly factors grow at near wild-type rates if provided with elevated CO₂. Plant J. 2016;85:148–60. doi:10.1111/pj.13098.

97. Bohmert-Tataré K, Mäcayo, S, Daughtey S, Peoples OP, Snell KD. High levels of bioplastic are produced in fertile transplastomic tobacco plants engineered with a synthetic operon for the production of polyhydroxybutyrate. Plant Physiol. 2011;155:1690–708. doi:10.1104/pp.110.169581.

98. Beilen JB, Poirier Y. Production of renewable polymers from crop plants. Plant J. 2008;54:664–701. doi:10.1111/j.1365-313X.2008.03431.x.
in transplastomic plants enables complete hydrolysis of methylglucu-
ronoxylan to fermentable sugars for biofuel production. Plant Mol Biol.
2011;76:357–69.

109. Xue XY, Mao Y-B, Tao X-Y, Huang Y-P, Chen X-Y. New approaches to
agricultural insect pest control based on RNA interference. Adv Insect
Physiol. 2012;42:73–117.

110. Nakahira Y, Ishikawa K, Tanaka K, Tozawa Y, Shiina T. Overproduction of
hyperthermostable beta-1,4-endoglucanase from the archaeon Pyro-
coccus hongkongii by tobacco chloroplast engineering. Biosci Biotechnol
Biochem. 2013;77:2140–3.

111. Pantaleoni L, Longoni P, Ferrari L, Baldisserotto C, Leelavathi S, Reddy
VS, Pancaldi S, et al. Chloroplast molecular farming: efficient production
of a thermostable xylanase by Nicotiana tabacum plants and long-term
conservation of the recombinant enzyme. Protoplasma. 2014;251:639–
48. doi:10.1007/s00709-013-0564-1.

112. Yu LX, Gray BN, Rutzke CJ, Walker LP, Wilson DB, Hanson MR. Expression
of thermostable microbial cellulases in the chloroplasts of
nicotine-free tobacco. J Biotechnol. 2007;131:362–9. doi:10.1016/j.
jbitec.2007.09.013.

113. Ahmad N, Michoux F, Lössl AG, Nixon PJ. Challenges and perspectives in
commercializing plastid transformation technology. J Exp Bot. 2016;
67(21):5945–60. doi:10.1093/jxb/erv360.

114. Ahmadvabadi M, Ruf S, Bock R. A leaf-based regeneration and transfor-
mation system for maize (Zea mays L.). Transgenic Res. 2007;16:437–48.
doi:10.1007/s11248-006-9046-y.

115. Ahmad N, Michoux F, Nixon PJ. Investigating the production of foreign
membrane proteins in tobacco chloroplasts: expression of an algal
plastid terminal oxidase. PLoS ONE. 2012;7:417–22. doi:10.1371/journal.
pone.0041722.

116. Kahlau S, Bock R. Plastid transcriptomics and proteomics of tomato
fruit development and chloroplast-to-chromoplast differentiation:
chloroplast gene expression largely serves the production of a single
protein. Plant Cell. 2008;20:856–74. doi:10.1105/tpc.107.055202.

117. Valkov T, Scotti N, Kahlau S, MacLean D, Grillo S, Gray JC, et al. Genome-
wide analysis of plastid gene expression in potato leaf chloroplasts and
tuber amyloplasts: transcriptional and posttranscriptional control. Plant
Physiol. 2009;150:2030–44. doi:10.1104/pp.109.140483.

118. Zhang J, Ruf S, Hasse C, Childs L, Scharrf LB, Bock R. Identification of
cis-elements conferring high levels of gene expression in non-green
plastids. Plant J. 2012;72:115–28. doi:10.1111/j.1365-313X.2012.05065.x.

119. Iamtham S, Day A. Removal of antibiotic resistance genes from
transgenic tobacco plastids. Nat Biotechnol. 2000;18:1172–6.
doi:10.1038/81161.

120. Zhou F, Badillo-Corona JA, Karcher D, Gonzalez-Rabade N, Piepenburg
K, Borchers AMI, et al. High-level expression of human immunodefi-
ciency virus antigens from the tobacco and tomato plastid genomes.
Plant Biotechnol J. 2008;6:897–913.

121. Apel W, Schulze WX, Bock R. Identification of protein stabil-
ity determinants in chloroplasts. Plant J. 2010;63:636–30.
doi:10.1111/j.1365-313X.2010.04268.x.

122. Sheppard AE, Madesis P, Lloyd AH, Day A, Ayliffe MA, Timmis JN. Intro-
ducing an RNA editing requirement into a plastid-localised transgene
reduces but does not eliminate functional gene transfer to the nucleus.
Plant Mol Biol. 2011;76:299–309.

Submit your next manuscript to BioMed Central and we will help you at every step:

- We accept pre-submission inquiries
- Our selector tool helps you to find the most relevant journal
- We provide round the clock customer support
- Convenient online submission
- Thorough peer review
- Inclusion in PubMed and all major indexing services
- Maximum visibility for your research

Submit your manuscript at www.biomedcentral.com/submit