RESEARCH ARTICLE

Pose-invariant matching for non-rigid 3D models using Isomap

Hairong Jin1*, Haichao Huang2, Zhiqiang Wang2, Yuqing Xie2, Xinyue Zhou3, Liming Huang4, Zhouzhenyan Hong2

1 Polytechnic Institute, Zhejiang University, Ningbo, Zhejiang, China, 2 State Grid Zhejiang Electric Power Corporation Information & Telecommunication Branch, Hangzhou, Zhejiang, China, 3 State Grid Hangzhou Power Supply Company, Hangzhou, Zhejiang, China, 4 Zhejiang Huayun information technology co., ltd, Hangzhou, Zhejiang, China

* 21960541@zju.edu.cn

Abstract

The wide usage of 3D mesh models greatly increases the importance of an effective matching algorithm for them. In this paper, we propose a novel 3D model matching algorithm. Firstly, vertices on the input 3D mesh models are mapped to 1D space by employing Isomap. A pose-invariant feature set is then constructed from the vertices in 1D space. Finally, the similarity between any two 3D models can be computed by comparing their feature sets. Experimental results show that the algorithm is not only invariant to translation, rotation, scaling, but also invariant to different poses of 3D models. Additionally, the algorithm is robust to noise.

Introduction

With the explosion of 3D models and the expansion of 3D model databases, 3D model database management and 3D model matching and retrieval [1, 2] become more and more significant. An efficient algorithm is significant for solving problems in various areas [3–5]. Efficient and accurate retrieval of 3D models has become a research hotspot for many years. 3D model retrieval, given a retrieval object, to find the matching 3D models in the 3D model database. Some 3D model retrieval algorithms use images to query 3D models from the database [6]. Others use 3D models as the retrieval object to match 3D models from the database by calculating the similarity between the two models [1]. Tangelder et al. [7] survey several content-based 3D model retrieval algorithms based on surface models and volume models and introduce the requirement of evaluation of content-based 3D model retrieval algorithms. For the feature-based method, it is crucial whether the descriptors have the invariance of the poses, rotation, and scale of the 3D model, directly affecting the accuracy of 3D model retrieval.

Recent advances in 3D model retrieval, deep learning algorithms are used to match 3D models in databases [8]. Deep learning algorithms rely on tremendous training data to obtain good performance. However, acquiring high-quality 3D models is difficult, which demands high costs. The absence of 3D model training data will lead to the decline in the accuracy of 3D model matching.
In this paper, we propose a novel 3D model matching algorithm for non-rigid models. As described in Fig 1, a new 3D model retrieval approach can be constructed based on the algorithm. The algorithm maps all vertices on 3D mesh models to 1-dimensional linear space with Isomap first. Secondly, we construct pose-invariant feature sets with coordinate vectors of vertices in 1-dimensional space. At last, we compute the similarity measure between two 3D models by comparing the two pose-invariant feature sets. Benefit from the little computation required for executing Isomap, the algorithm behaves very efficiently.

Our method is evaluated on a 35 3D model dataset. The 35 3D models are from the SHREC 2011 non-rigid 3D shape dataset [9]. The experimental results show that the algorithm is not only invariant to translation, rotation, and scaling, but also invariant to different poses. Additionally, it is robust against geometrical noise. We also compare the performance of our method and the other six methods through precision vs. recall curves. The comparison experimental results show that our method can achieve better performance than other methods, including D2 [10], Adaptive Shape Feature [11], LightField Descriptor [12], Spherical Harmonic Representation [13]. Furthermore, our method performs better than Pointnet [14] and Pointnet++ [15] with the absence of training data.

Our contributions are two-fold:

- Our method measures similarity between two 3D models with pose-invariant feature sets. Then we can obtain high performance in 3D model retrieval without training data through this method.
- Pose-invariant feature sets invariant to translation, rotation, scaling, poses, and geometrical noise of 3D models. Thus, our method is applicable for non-rigid 3D models especially.

The remainder of the paper is organized as follows. At first, we discuss the related work of 3D model retrieval. Then, we introduce Isomap briefly. In the algorithm is described in detail. After that, we show some experimental results of the algorithm and comparisons with other 3D model retrieval algorithms. Finally, we conclude this paper and point out further work.

Related work

In this section, we introduce various algorithms and technologies related to 3D model retrieval. At first, we introduce some methods for 3D model matching. Secondly, we review
some deep learning algorithms for 3D model retrieval. Eventually, we discuss the shortcomings of existing methods.

With the wide usage of 3D models in the industry, searching similar models in 3D model databases accurately and quickly becomes a more and more important problem. Recently, it has attracted many researchers to discover an efficient way for content-based 3D model retrieval. Yang [16] defines that a basic content-based 3D model retrieval system should contain several parts, including feature extraction, similarity search, and the query interface. In the retrieval phase, the matching of two 3D models is achieved by comparing the feature descriptors. Therefore, finding appropriate feature descriptors and metrics to measure the similarities between any two different 3D models is the key to the 3D model retrieval. The feature descriptor of a 3D model can be represented by using a shape distribution [10], spherical harmonics [13], light field [12], or spectral approaches [17]. Bespalov et al. use hierarchy scale-space representations [18] as feature descriptors to compare models. Ip and Regli [19] combine a curvature-based shape descriptor with support vector machines (SVM) to compare different models. Hou et al. [20] use shape information to cluster the semantics of parts by SVMs to learn 3D shapes for a system to recognize 3D models. A recent survey about relevant methods is given in Reference [21].

For the past few years, feature descriptors are also found with lower-dimensional attributes by using dimension reduction approaches, such as Principal Component Analysis (PCA) [22]. Although PCA keeps most of the information on 3D models, it fails to maintain their non-linear structures. Isometric feature mapping (Isomap) [23] is a dimension reduction approach that can successfully discover the non-linear structure.

In recent years, deep learning [24] has been widely applied to various fields and achieved outstanding results. Many researchers have applied deep learning to 3D model retrieval and proposed many 3D model retrieval algorithms based on deep learning. Qi [14, 15] proposed PointNet and its improved version, PointNet++, which can be applied to 3D points cloud models classification and segmentation. This method can learn the features of the points cloud data directly and then realize the classification and segmentation of the 3D points cloud models. 3D model retrieval based on multiple view images [25] has been widely researched recently. Su [26] trained the convolutional neural network with images of different perspectives of 3D models and proposed the multi-view convolutional neural network (MVCNN). This method integrates multi-view features to realize 3D model recognition. Asko [27] proposed RotationNet based on the convolutional neural network. In this method, the multi-view images of 3D models are used as the inputs of the convolutional neural network. The labels of the viewpoints are used as the latent variables to learn in an unsupervised way on the basis of MVCNN to realize the classification and pose estimation of 3D models. Compared with MVCNN, this method only needs a part of multi-view images for inference. Nie [28] proposed a novel multi-branch graph convolution network (M-GCN) to realize the 3D model retrieval based on 2D images. Liu [29] proposed a cross-domain 3D model retrieval method based on visual domain adaptation. Su [30] decomposed the multi-view graph-based similarity measures into multiple single-view graph-based similarity measures and proposed a hierarchical graph structure learning method (HGS) to address 3D model retrieval.

However, the 3D model retrieval algorithms based on deep learning learn features of data directly, which has certain randomness and unreliability. Moreover, supervised learning algorithms with high accuracy in deep learning often need a large amount of data as training samples. Furthermore, Most traditional approaches are focused on measuring rigid models and failed to identify non-rigid models well. For non-rigid models, an ideal shape matching algorithm should be not only invariant to basic geometry transformations, including translation, rotation, and scaling, but also invariant to different poses. That means two models which are
different in the pose but represent the same object should be recognized as similar models. Additionally, it would be better if the algorithm is robust enough against noise data.

Isomap

Dimension reduction methods can be applied to 3D models to find the feature from lower dimension attributes while keeping most of the information of 3D models. There are many methods to reduce the dimensionality of 3D models, such as Principal component analysis (PCA), Multidimensional scaling (MDS), Isomap, etc. Both PCA and MDS are easier to implement, efficiently computable, and guaranteed to find the linear structure of the input data points. In fact, they all try to find a low-dimensional embedding of the data points. However, there are also significant differences between PCA and MDS. The most important one is that PCA tries to keep the variance of the data points, while MDS tries to preserve the Euclidean distance of the data points. The common drawback of PCA and MDS is that they cannot find the non-linear structure of the data points. For data points on a manifold, both methods fail to detect the true degrees of freedom of them. Isomap [23], as a non-linear dimensionality reduction method, improves the traditional MDS and is proved to be more suitable to deal with data points sampled from a manifold. Given a data point set, the main goal of Isomap is to reduce the dimensionality of the input data points. Meanwhile, it tries to make the Euclidean distances between vertices in low-dimensional space equal to the geodesic distances in high-dimensional space. Isomap not only keeps the salient parts of 3D models, but also preserves the geometrical structure of them. The main steps of Isomap include measuring the geodesic distances between all pairs of points on the manifold M, which those data points resided on, and then using MDS to find a low-dimensional embedding that keeps the geodesic distances instead of Euclidean distances. Let D_M be the matrix of geodesic distances $\{d_M(i, j)\}$, where $d_M(i, j)$ is the geodesic distance between any pair of data points v_i and v_j on M, the goal of Isomap is to find data points y_i and y_j in low dimensional space Y, such that the points in Y globally minimize a cost function

$$E = \|\tau(D_M) - \tau(D_Y)\|,$$

where D_M denotes the matrix of Euclidean distances $\{d_M(i, j) = \|y_i - y_j\|\}$ and τ is an operator converting distances to inner products that can be used to uniquely characterize the geometry of the data. The minimum of the Eq (1) can be achieved by setting the coordinates y_i to the top d eigenvectors of the matrix $\tau(D_M)$, where d is the dimensionality of the space Y. More details can be found in Reference [23].

Algorithm

Preprocessing input models to the same vertices count

In this section, we will briefly describe our 3D model matching algorithm. Let M_1 and M_2 be any two 3D models. The goal of our algorithm is to fast compute the similarity between them. Fig 2 shows an overview of the algorithm. It consists of 5 steps. The first step is to preprocess 3D models M_1 and M_2 to contain the same vertices count. The second one is to find the matrices of geodesic distances $D_{M_1} = \{d_{M_1}(i, j)\}$ and $D_{M_2} = \{d_{M_2}(i, j)\}$ for M_1 and M_2, where $d_{M_1}(i, j)$ and $d_{M_2}(i, j)$ denote the geodesic distances between any two different vertices V_i and V_j on the models respectively. In the third step, classical MDS is applied to M_1 and M_2 respectively to find embeddings of the vertices in a 1-dimensional Euclidean space Y that best preserves the geodesic distances D_{M_1} and D_{M_2}. That is, each vertex V_i is mapped to a scalar value y_i. And then, two feature sets $\{z_{1,i}\}$ and $\{z_{2,i}\}$ are obtained for M_1 and M_2 respectively by processing these scalar values in the fourth step. The final step is to measure the similarity between M_1 and M_2 by comparing feature sets $\{z_{1,i}\}$ and $\{z_{2,i}\}$.
The first step of our algorithm is to preprocess 3D models M_1 and M_2 to make them contain the same count vertices. Assuming that M_1 and M_2 contain m_1 and m_2 vertices count respectively, then we simplify the models M_1 and M_2, such that they contain m vertices, where m is number given by the user and $m \leq \min\{m_1, m_2\}$ (In this paper, m is set to be 500 because the vertices counts of the models used to test our algorithm are all more than 500). There are many mesh model simplification algorithms, such as QEM [31], etc. Due to its’ high fidelity maintenance and high performance compared with other mesh model simplification algorithms, we adopt the QEM algorithm to simplify input models here.

Geodesic distances matrix construction

Computing the exact geodesic distance between two different vertices V_i and V_j is a time-consuming task in computer graphics. The classical algorithm [32] proposed by Chen and Han has $O(n^2 \log(n))$ worst-case time complexity. Recently, Xing and Wang [33] proposed a new algorithm that improved it in performance, and the computing time is greatly reduced in many examples. Our algorithm employs Xing and Wang’s algorithm to construct geodesic distances matrix $D_{M_1} = \{d_{M_1}(i,j)\}$ and $D_{M_2} = \{d_{M_2}(i,j)\}$, where $d_{M_1}(i,j)$ and $d_{M_2}(i,j)$ denotes the geodesic distance between any two different vertices V_i and V_j on models respectively.

Finding an embedding of all vertices in 1-dimensional Euclidean space

For Isomap can be regarded as a geodesic version of MDS (Multidimensional Scaling), the next step of Isomap is applying MDS to the input data after obtaining geodesic distances. MDS is one of the commonly used methods to reduce the given data points’ dimensionality. The goal is to find a low-dimensional embedding that preserves the interpoint distances. Given a vertex set $\{V_i\}$ in 3D space and a distance matrix $D_M = \{d_M(i,j)\}$, MDS tries to find a mapping R, which maps every 3D vertices V_i to the corresponding 1D scalar values y_i, such that the cost function $E = \sum_{i,j}(d_M(i,j) - \tau(i,j))^2$, where $\tau(i,j)$ denotes the Euclidean distance between y_i and y_j in 1D space. Our algorithm uses MDS to map all vertices on models M_1 and M_2 to 1D Euclidean space Y respectively.

Obtaining pose-invariant feature sets

Let $\{y_{1,i}\}$ and $\{y_{2,i}\}$ denote the 1D scalar values obtained by applying Isomap to model M_1 and M_2 respectively in the previous step, the following transforms are then performed on them to obtain the feature sets which are used to measure the similarity between models.
1. The set \{y_{1,i}\} and \{y_{2,i}\} are sorted in ascending order such that \(y_{1,1} \leq y_{1,2} \leq \ldots \leq y_{1,n}\) and \(y_{2,1} \leq y_{2,2} \leq \ldots \leq y_{2,n}\).

2. Let \(y_{0,1}^{1} = y_{1,1} - \frac{1}{n} \sum_{j=1}^{n} y_{1,j}\) and \(y_{0,1}^{2} = y_{2,1} - \frac{1}{n} \sum_{j=1}^{n} y_{2,j}\), \(i = 1, \ldots, n\). The purpose of this transform is to make \(\{y_{1,i}\}\) and \(\{y_{2,i}\}\) translation-invariant to input models.

3. Let \(z_{1,i} = \frac{y_{1,i}}{\max(y_{1,j})}\) and \(z_{2,i} = \frac{y_{2,i}}{\max(y_{2,j})}\) make sets \{\(z_{1,i}\)\} and \{\(z_{2,i}\)\} invariant to different scaling of input models.

We use the sets \{\(z_{1,i}\)\} and \{\(z_{2,i}\)\} as our pose-invariant feature sets of models \(M_{1}\) and \(M_{2}\) to measure the similarity between them. Benefiting from using geodesic distances, our feature sets are invariant to different poses of 3D models. Fig 3 shows the pose-invariant feature sets for three horse models with different poses. The three models all contain 500 vertices. From Fig 3, we can see that their feature sets are almost equal, although their poses are different.

Measure similarities of mesh models using pose-invariant feature sets

For two different models \(M_{1}\) and \(M_{2}\), whose feature sets \{\(z_{1,i}\)\} and \{\(z_{2,i}\)\} \((i = 1, \ldots, n)\) are obtained respectively in previous steps, we define the similarity measure \(d\) as follows:

\[
d = \min \left\{ \frac{1}{n} \sum_{i=1}^{n} (z_{1,i} - z_{2,i})^2, \frac{1}{n} \sum_{i=1}^{n} (z_{1,i} + z_{2,n+1-i})^2 \right\},
\]

(2)
where the purpose of the second item $\frac{1}{n} \sum_{i=1}^{n} (z_{1,i} + z_{2,n+1-i})^2$ in the definition (2) is to make d invariant to reflection.

Before the model retrieval process start, all models to be retrieved are stored in the database and indexed by their feature sets off-line. When a query model is inputted by the user, the feature set of it is computed on-line and a searching process is carried out by comparing feature sets to find similar models of the query model in the database.

Experimental results and analyzation

An ideal model matching algorithm for non-rigid models should be invariant to pose, scaling, and sampling as well as to rotation and translation. Meanwhile, that will be much better if it is robust to noise. In other words, the similarity measure d between any two models with different poses, scaling, or sampling density but representing the same object should be less than models representing different objects when measured with the algorithm.

To verify that our algorithm is effective to measure the similarity between models, a model dataset (the testing dataset) is prepared to test the algorithm. The dataset contains 35 mesh models, as shown in Fig 4. All models in the dataset can be classified into 3 categories according to their contents. The first category is 10 models representing different poses of a horse. The second one is another 10 models representing different poses of a flamingo. The last one is a more complicated category which contains 15 human models with different sampling, scaling, or noise levels. Here, a bigger level number after "sampling", "scaling", or "noise" means the model has a higher sampling density, a bigger scaling rate, or more noises.

Pose invariance testing

To test whether our algorithm is invariant against different poses, 5 models (horse-pose-1, horse-pose-3, flam-pose-2, flam-pose-4, and flam-pose-5) are selected from the testing dataset as query models, and the left 30 models are used as models to retrieve. The retrieval results obtained by using our algorithm are shown in Table 1.

As described in Table 1, the models in the first column are query models selected from our model dataset. The top 5 most similar models (with least d) retrieved by our algorithm are listed in the remaining columns, and the corresponding similarity measures d are listed below the retrieved models. From Table 1, we can see that the models representing the same object with the query models are firstly retrieved with our algorithm, although their poses are different. By using geodesic distance instead of Euclidean distance, our similarity measures d between models representing different poses of the same objects are very small. And the similarity measures d between models representing different objects are much bigger. Therefore, we can demonstrate that our algorithm is pose-invariant through Table 1.

Scaling invariance testing

To verify whether our algorithm is scaling-invariant, 3 models (human-scale-1, human-scale-3, human-scale-5) with different scaling are selected from the testing dataset as query dataset and another 22 models (including human-scale-2, human-scale-4, human-noise-2, human-noise-4, human-sampling-1, human-sampling-2, human-sampling-3, human-sampling-4, human-sampling-5, human-noise-1, human-noise-2, human-noise-3, human-noise-4, human-noise-5, 10 flamingo models and 10 horse models) are selected as models to retrieve. The retrieval results obtained by using our algorithm are shown in Table 2. From Table 2, we can see that our algorithm firstly retrieves human models with different scales. Moreover, the
similarity measures \(d \) between models representing different scalings of the same objects are much smaller than other variants. Therefore, it means that our algorithm is scaling-invariant.

Therefore, it means that our algorithm is scaling-invariant.

Sampling invariance testing

To test whether our metric is sampling-invariant, 2 models (human-sampling-1, human-sampling-3) are used as query models. The remaining models in the testing dataset are used as models to be retrieved. Table 3 shows the query results of sampling invariance testing. From Table 3, we can see that although the human-sampling-2 model and human-sampling-4 model
are not firstly retrieved, they still occur in the top 5 retrieved models. Note the other models in the top 5 retrieved models are all human models, which are scaled or noise-added rather than horse models or flamingo models. Therefore, we think that sampling only slightly affects the query results, and our algorithm is sampling-invariant.

Table 1. The query results of pose invariance testing.

Query models	Top 5 retrieved models	1st	2nd	3rd	4th	5th
		0.0273	0.0315	0.0345	0.0534	0.0729
		0.0254	0.0311	0.0339	0.0365	0.0466
		0.0934	0.1077	0.1574	0.2257	0.8237
		0.0282	0.0681	0.0881	0.3492	0.9414

Table 2. The query results of scaling invariance testing.

Query models	Top 5 retrieved models	1st	2nd	3rd	4th	5th
		0.0064	0.0129	0.0149	0.0150	0.0195
		0.0050	0.0054	0.0068	0.0121	0.0269
		0.0045	0.0048	0.0053	0.0096	0.0349
Robustness testing

To test whether our algorithm is robust to noises added to models, 3 models (human-noise-1, human-noise-3, human-noise-5) are used as query models and the remaining models in the testing dataset are used as models to retrieve. Table 4 shows the query results of robustness testing. From the table, we can see that although the query models are added with some noises, the top 5 retrieved models are still human models. Therefore, our algorithm is robust to noise.

Through these experimental results, we can demonstrate that although 3D models representing the same object have different poses, scales, samples, or be added noises, our measures d between 3D models representing the same objects are much smaller than those between 3D models representing the different objects.

Comparison with other 3D model retrieval methods

To compare the effectiveness of our method with other 3D model retrieval methods, experiments have been conducted on the testing dataset. Four other algorithms, including D2 [10], Adaptive Shape Feature [11], LightField Descriptor [12], Spherical Harmonic Representation [13], are implemented to compare the retrieval results. The performance is measured by recall

Query models	Top 5 retrieved models	1st	2nd	3rd	4th	5th	
		human-noise-1	human-noise-3	human-noise-5	human-noise-1	human-noise-3	human-noise-5
		human-noise-1	human-noise-3	human-noise-5	human-noise-1	human-noise-3	human-noise-5
		0.0094	0.0121	0.0141	0.0184	0.0222	
		0.0042	0.0071	0.0075	0.0084	0.0251	
and precision. The recall value Re and the precision value Pr are defined as follows,

$$Re = \frac{N}{T}, \quad Pr = \frac{N}{K},$$

where N is the number of relevant models retrieved, T is the total number of relevant models in the dataset, and K is the total number of retrieved models. The experimental results are presented in Fig 5. The area under the precision and recall curve (AUC) is a measurement showing how good the retrieval method is. The higher the AUC is, the greater the method can achieve. The results show that our method performs better than the other methods for our testing dataset.

In addition, to compare the effectiveness of our method with the supervised learning algorithms, including PointNet and PointNet++, we evaluated the performance of PointNet and PointNet++ by using the same testing dataset. We used 60 3D models (20 flamingo models, 20 horse models, 20 man models) as the training dataset for PointNet and PointNet++ neural networks. Fig 6 shows the experimental results of PointNet, PointNet++, and our method. The results demonstrate that the testing results of PointNet and PointNet++ are slightly better than our method when the training dataset contains enough 3D models.

However, as shown in Fig 7, our method obtains better performance than PointNet and PointNet++ if only a small number of 3D models (10 flamingo models, 10 horse models, 10 man models) are provided in the training dataset. In other words, our method is more applicable in the absence of training data.

Discussion and conclusions

In this paper, we present an effective algorithm for content-based 3D mesh model matching. By adopting Isomap, a pose-invariant feature set is constructed for each model. Then the similarities between models are measured by comparing their feature sets. Experimental results show that the algorithm is invariant to poses, scaling, rotation, and sampling. And also, it is robust to noise data. Additionally, tests show that our algorithm performs better than several
referenced 3D model matching methods on our testing dataset. In future work, we plan to extend the algorithm to deal with 3D models contain multiple connected components.

Supporting information

S1 Data.

(RAR)
Author Contributions

Conceptualization: Hairong Jin.

Data curation: Hairong Jin, Haichao Huang, Zhiqiang Wang, Zhouzhenyan Hong.

Formal analysis: Hairong Jin, Haichao Huang, Zhiqiang Wang, Xinyue Zhou, Zhouzhenyan Hong.

Funding acquisition: Hairong Jin, Haichao Huang.

Investigation: Hairong Jin, Haichao Huang, Yuqing Xie, Liming Huang.

Methodology: Hairong Jin, Haichao Huang, Yuqing Xie, Liming Huang.

Project administration: Hairong Jin, Haichao Huang, Zhiqiang Wang.

Resources: Hairong Jin, Yuqing Xie, Xinyue Zhou, Liming Huang, Zhouzhenyan Hong.

Software: Hairong Jin, Zhiqiang Wang, Yuqing Xie, Xinyue Zhou, Liming Huang.

Supervision: Hairong Jin, Zhiqiang Wang, Yuqing Xie.

Validation: Hairong Jin, Zhiqiang Wang, Yuqing Xie, Xinyue Zhou, Zhouzhenyan Hong.

Visualization: Hairong Jin, Xinyue Zhou, Liming Huang, Zhouzhenyan Hong.

Writing – original draft: Hairong Jin.

Writing – review & editing: Hairong Jin.

References

1. Xie J, Dai G, Fang Y. Deep multimetric learning for shape-based 3D model retrieval. IEEE Transactions on Multimedia. 2017; 19(11): 2463–2474. https://doi.org/10.1109/TMM.2017.2698200

2. Chen J Y, Lin C H, Hsu P C, et al. Point cloud encoding for 3D building model retrieval. IEEE transactions on multimedia. 2013; 16(2): 337–345. https://doi.org/10.1109/TMM.2013.2286580

3. Abbas S, Jall Z, Javed A R, et al. BCD-WERT: a novel approach for breast cancer detection using whale optimization based efficient features and extremely randomized tree algorithm. PeerJ Computer Science. 2021; 7:e390. https://doi.org/10.7717/peerj-cs.390 PMID: 33817036

4. Javed A R, Sarwar M U, Khan S, et al. Analyzing the effectiveness and contribution of each axis of tri-axial accelerometer sensor for accurate activity recognition. Sensors. 2020; 20(8): 2216. https://doi.org/10.3390/s20082216 PMID: 32295298

5. Rajput D S, Basha S M, Xin Q, et al. Providing diagnosis on diabetes using cloud computing environment to the people living in rural areas of India. Journal of Ambient Intelligence and Humanized Computing. 2021; 1–12.

6. Nie W, Jia W, Li W, et al. 3D Pose Estimation Based on Reinforce Learning for 2D Image-based 3D Model Retrieval. IEEE Transactions on Multimedia. 2020.

7. Tangelder J W H, Veltkamp R C. A survey of content based 3D shape retrieval methods. Multimedia tools and applications. 2008; 39(3): 441–471. https://doi.org/10.1007/s11042-007-0181-0

8. Nie W, Cao Q, Liu A, et al. Convolutional deep learning for 3D object retrieval. Multimedia Systems. 2017; 23(3): 325–332. https://doi.org/10.1007/s00530-015-0485-2

9. Ohbuchi R, Porikli F, Reuter M, et al. SHREC’11 Track: Shape Retrieval on Non-rigid 3D Watertight Meshes. Proceedings of the Eurographics/ACM SIGGRAPH Symposium on 3D Object Retrieval. 2011

10. Osada R, Funkhouser T, Chazelle B, et al. Shape distributions. ACM Transactions on Graphics (TOG). 2002; 21(4): 807–832. https://doi.org/10.1145/571647.571648

11. Pu Y, Du W, Huang C, et al. Invariant feature extraction for 3D model retrieval: An adaptive approach using Euclidean and topological metrics. Computers & Mathematics with Applications. 2012; 64(5): 1217–1225. https://doi.org/10.1016/j.camwa.2012.03.065

12. Chen D, Tian X, Shen Y, et al. On Visual Similarity Based 3D Model Retrieval. Computer Graphics Forum. 2003; 22(3): 223–232. https://doi.org/10.1111/1467-8659.00669
13. Kazhdan M, Funkhouser T, Rusinkiewicz S. Rotation invariant spherical harmonic representation of 3d shape descriptors. Symposium on geometry processing. 2003; 6: 156–164.

14. Qi C R, Su H, Mo K, et al. Pointnet: Deep learning on point sets for 3d classification and segmentation. Proceedings of the IEEE conference on computer vision and pattern recognition. 2017; 652–660.

15. Qi C R, Yi L, Su H, et al. Pointnet++: Deep hierarchical feature learning on point sets in a metric space. arXiv preprint arXiv. 2017; 1706.02413.

16. Yang Y, Lin H, Zhang Y. Content-based 3-D model retrieval: A survey. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews). 2007; 37(6): 1081–1098. https://doi.org/10.1109/TSMCC.2007.905756

17. Jain V, Zhang H. A spectral approach to shape-based retrieval of articulated 3D models. Computer-Aided Design. 2007; 39(5): 398–407. https://doi.org/10.1016/j.cad.2007.02.009

18. Bespalov D and, Shokoufandeh A, Regli W C, et al. Scale-space representation and classification of 3d models. J. Comput. Inf. Sci. Eng.; 2003; 3(4): 315–324. https://doi.org/10.1115/1.1633576

19. Ip C Y, Regli W C. 3D object classifier for discriminating manufacturing processes. Computers & Graphics. 2006; 30(6): 903–916. https://doi.org/10.1016/j.cag.2006.08.013

20. Hou S, Lou K, Ramani K. SVM-based semantic clustering and retrieval of a 3D model database. Computer-Aided Design and Applications. 2005; 2(1-4): 155–164. https://doi.org/10.1080/16864360.2005.10738363

21. Zou K, Zhang Q. Research progresses and trends of content based 3d model retrieval. 2018 Chinese Control And Decision Conference (CCDC). IEEE. 2018; 3346–3351.

22. Zhu KP, Wong YS, Lu Wen Feng, and Loh Han Tong. 3d cad model matching from 2d local invariant features. Computers in industry. 2006; 61(5):432–439,. https://doi.org/10.1016/j.compind.2009.11.001

23. Tenenbaum Joshua B, De Silva Vin, and Langford John C. A global geometric framework for nonlinear dimensionality reduction. science. 2000; 290(5500):2319–2323. https://doi.org/10.1126/science.290.5500.2319

24. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015; 521(7553):436–444. https://doi.org/10.1038/nature14539 PMID: 26017442

25. Gao Z, Li Y, Wan S. Exploring deep learning for view-based 3D model retrieval. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM). 2020; 16(1): 1–21. https://doi.org/10.1145/3377876

26. Su H, Maji S, Kalogerakis E, et al. Multi-view convolutional neural networks for 3d shape recognition. Proceedings of the IEEE international conference on computer vision. 2015; 945–953.

27. Kanazaki A, Matsushita Y, Nishida Y. RotationNet: Joint object categorization and pose estimation using multiviews from unsupervised viewpoints. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018; 5010–5019.

28. Nie W, Ren M, Liu A, et al. M-GCN: Multi-branch graph convolution network for 2D image-based on 3D model retrieval. IEEE Transactions on Multimedia. 2020.

29. Liu A, Xiang S, Li W, et al. Cross-domain 3D model retrieval via visual domain adaptation. International Joint Conference on Artificial Intelligence. 2018; 828–834.

30. Su Y, Li W, Liu A, et al. Hierarchical Graph Structure Learning for Multi-View 3D Model Retrieval. IJCAI. 2018; 913–919.

31. Garland Michael and Heckbert Paul S. Surface simplification using quadric error metrics. Proceedings of the 24th annual conference on Computer graphics and interactive techniques. 1997; 209–216.

32. Chen Jindong and Han Yjie. Shortest paths on a polyhedron. Proceedings of the sixth annual symposium on Computational geometry. 1990; 360–369.

33. Xin S Q, Wang G J. Improving chen and han’s algorithm on the discrete geodesic problem. ACM Transactions on Graphics (TOG). 2008; 28(4):1–8. https://doi.org/10.1145/1559755.1559761