Application of moringa leaf extract improves growth and yield of Tomato (*Solanum lycopersicum*) and Indian Spinach (*Basella alba*)

Tahsina Sharmin Hoque1, Md. Anwarul Abedin1, Mohammad Golam Kibria1, Israt Jahan1 & Mohammad Anwar Hossain2*

1Department of Soil Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
2Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh

*Email: anwargpb@bau.edu.bd

Abstract

Moringa (*Moringa oleifera* L.) leaf extract is a natural plant growth stimulant that is well-known for its ability to improve plant growth and development. A field study was conducted to evaluate the influence of MLE (Moringa Leaf Extract) on the growth, yield and nutritional improvement in two vegetable crops [Tomato (*Solanum lycopersicum*) and Indian Spinach (*Basella alba*)]. The extract was applied at two weeks interval with different frequencies. The crops were fertilized with chemical fertilizers and MLE application was done as per treatment @ 25 ml/plant. For each of the crops, this bio-stimulant had a significant boosting effect on growth, yield and nutrient uptake whereas the maximum frequency in the application i.e. T4 (foliar application of MLE at 2 weeks after transplanting and application at every 2 weeks thereafter) showed the highest influence. Indian Spinach responded proportionally more to foliar-applied MLE in terms of plant growth and nutrient uptake compared to tomato. The effect of MLE on the yield parameters was more pronounced in tomato that showed a 25% (averaged across all the growth parameters) increase over control, but Indian Spinach showed ~20% increase in yield parameters compared to control. Therefore, applying MLE to the foliage may assist in increasing the yield by improving plant growth across the different vegetable species (e.g., Tomato and Indian Spinach).

Keywords

bio-stimulant, MLE, nutrient uptake, growth and yield

Introduction

Modern agricultural production aims to provide sustainable management practices that are eco-friendly and low cost. In recent years, the natural plant growth enhancer is the main focus of study for many researchers around the globe (1). Moringa (*Moringa oleifera* L.) leaves are used as green manure and as a potential natural growth stimulant (2). The extract prepared from fresh moringa leaves is a unique source of vitamins, hormones, antioxidants, osmoprotectants, carotenoids, polyphenols, phenolic acids, flavonoids, alkaloids, glucosinolates, isothiocyanates, tannins, saponins and secondary metabolites (3-5). The presence of a significant quantity of phytohormones such as cytokinin, gibberellin, indole-3-acetic acid, zeatin, mineral nutrient elements, vitamins such as ascorbic acid, carotenoid, anti-oxidants such as flavonoid and phytochemicals like phenolics, glucosin-
Materials and Methods

Experimental location and soil condition

The research work was conducted during the Rabi season at the field of the Department of Soil Science, Bangladesh Agricultural University (24°75’ N, 90°50’ E). The well-drained medium high land (18 m above sea level) falls within the Sonatala series with non-calcareous floodplain soil (AEZ 9: Old Brahmaputra Floodplain). The physico-chemical properties of the selected soil samples have been presented in Table 1.

Plant materials, experimental design and approach

In this study, Tomato (*Solanum lycopersicum* cv. Roma VF) and Indian Spinach (*Basella alba* cv. Red Malabar) were used as test crops. Twenty five days-old seedlings were transplanted in the experimental plots maintaining line to line distance 60 cm and plant to plant distance 50 cm. Both of the crops were grown in the experimental plots with the same treatments and the treatments were replicated three times in a randomized complete block design (RCBD). The four treatments [T₃ (application of MLE to the foliage at 2 and 4 weeks after seedling transplanting) and T₄ (applying foliar MLE at 2 weeks after seedling transplanting and continued to apply at every 2 weeks thereafter)] were used for each of the test crops. The total number of plots (2.5 x 2 m²) was 12 for each crop (4 treatments x 3 replications), thus 24 plots (separated by 0.5 m spacing) were used for growing two vegetable crops. Each plot was amended with the recommended dose of chemical fertilizers (18) to supply nutrients to soil during land preparation. The recommended doses of phosphorus (P), potassium (K), sulphur (S), zinc (Zn) and boron (B) were 45, 40, 14, 1.5 and 1 kg/ha, respectively for tomato but 20, 22, 5, 1.5 and 1 kg/ha, respectively for Indian Spinach. Urea was applied in three equal splits to supply nitrogen (N) at 120 and 105 kg/ha for tomato and Indian Spinach, respectively. The first split was applied with the basal dose whereas the 2nd and 3rd splits of urea were applied at 30 and 45 days after transplanting. Various intercultural operations such as weeding, fencing, gap filling and pesticide application were performed as and when required.

Collection, preparation and foliar application of MLE

Fresh and young moringa leaves (30–40 days old) were collected from mature plants. Approximately, 10 g leaves...
were washed properly and transferred into a mortar with a little amount of distilled water (1 ml/10 g moringa leaves) to grind using pestle. The leaf extract was collected by pressing with hand and filtered through a Whatman filter paper (No 2). The collected extract was mixed with distilled water (extract: water = 1:0.32) (v/v) and kept in a plastic bottle for applying to the foliage (8). The prepared leaf extract was used for foliar application to plants and the unused MLE was stored at 0°C temperature in a refrigerator for further use. The MLE was applied to the foliage (at 25 ml/plant) for each crop as per treatment using a hand sprayer (during late afternoon) until the plants were completely wet. For control plots, each plant was amended with 25 ml of distilled water (without MLE). Each plot was watered and monitored daily to avoid drought and waterlogging stress. Each crop was harvested at its maturity following by recording different growth and yield parameters.

Nutrient analysis of plants

The fruits and leaves of tomato and the leaves and stems of Indian Spinach were considered for chemical analysis. The samples were dried at 65°C for 48 hrs in an oven, weighed and ground for preparing a homogenous mixture (by passing through a 20-mesh sieve). The prepared samples were analyzed for N, P, K and S concentration following standard methods to calculate the total nutrient uptake by plants (19, 20).

Statistical analysis

The data were subjected to one-way analysis of variance (ANOVA) for each crop followed by Duncan’s Multiple Range Test (DMRT) to identify significant (5% level of probability) differences among the treatments using the MSTATC-computer package program (21, 22).

Results

Effect of MLE on Tomato

Application of MLE to the foliage exhibited a significant increase in plant growth parameters of tomato compared to control plants irrespective of the number of applications, except for number of branches per plant and root dry weight (Table 2). The highest values of the growth parameters such as plant height (114.3 cm), number of branches plant\(^{-1}\) (10.3), number of leaves plant\(^{-1}\) (46.7), shoot dry weight (18.2 g), root dry weight (21 g) and rooting depth (35.7 cm) were found in MLE treated plants at 2 weeks and after every two weeks thereafter compared to the other treatments. Applying MLE at every 2 weeks' interval significantly increased plant growth by at least ~15% compared to the plants treated with no foliar MLE (Fig. 1). All the yield parameters also exhibited a significant increase in response to foliar application of MLE, except largest fruit length (Table 3). Similar to the growth parameters, the maximum values of yield components viz. number of flowers plant\(^{-1}\) (57.7), number of fruits plant\(^{-1}\) (50.8), largest fruit weight (62.7 g), largest fruit length (5.9 cm) and fruit yield (39 t ha\(^{-1}\)) were observed in the plants treated with MLE at every 2 weeks’ interval. Applying MLE to the foliage at 2 weeks and after every two weeks thereafter significantly increased the yield parameters of tomato by at least ~19% compared to control (Fig. 2).

Spraying of MLE caused a significant increase in nutrient uptake by plants compared to control irrespective of the number of applications, except S uptake in tomato fruits (Table 4). The highest nutrient uptakes by fruit (546.3 kg N ha\(^{-1}\), 13.9 kg P ha\(^{-1}\), 149.3 kg K ha\(^{-1}\) and 6.8 kg S ha\(^{-1}\)) and by leaf (700.1 kg N ha\(^{-1}\), 119 kg P ha\(^{-1}\), 161.1 kg K ha\(^{-1}\) and 28.1 kg S ha\(^{-1}\)) were observed by foliar application of MLE at every 2 weeks’ interval. Among the macronutrients, N and P uptake were increased by ~45% (averages across leaf and fruit) and K and S uptake were increased by at least ~37% in MLE treated plants at 2 weeks and after every two weeks thereafter compared to the plants treated with no foliar MLE (Fig. 3).

Effect of MLE on Indian Spinach

Foliar use of MLE showed a significant positive effect on the growth parameters of Indian Spinach irrespective of the number of applications compared to when no MLE was applied. The increase in plant growth parameters of tomato compared to control plants irrespective of the number of applications, except for number of branches per plant and root dry weight (Table 2). The highest values of the growth parameters such as plant height (114.3 cm), number of branches plant\(^{-1}\) (10.3), number of leaves plant\(^{-1}\) (46.7), shoot dry weight (18.2 g), root dry weight (21 g) and rooting depth (35.7 cm) were found in MLE treated plants at 2 weeks and after every two weeks thereafter compared to the other treatments. Applying MLE at every 2 weeks' interval significantly increased plant growth by at least ~15% compared to the plants treated with no foliar MLE (Fig. 1). All the yield parameters also exhibited a significant increase in response to foliar application of MLE, except largest fruit length (Table 3). Similar to the growth parameters, the maximum values of yield components viz. number of flowers plant\(^{-1}\) (57.7), number of fruits plant\(^{-1}\) (50.8), largest fruit weight (62.7 g), largest fruit length (5.9 cm) and fruit yield (39 t ha\(^{-1}\)) were observed in the plants treated with MLE at every 2 weeks’ interval. Applying MLE to the foliage at 2 weeks and after every two weeks thereafter significantly increased the yield parameters of tomato by at least ~19% compared to control (Fig. 2).

Spraying of MLE caused a significant increase in nutrient uptake by plants compared to control irrespective of the number of applications, except S uptake in tomato fruits (Table 4). The highest nutrient uptakes by fruit (546.3 kg N ha\(^{-1}\), 13.9 kg P ha\(^{-1}\), 149.3 kg K ha\(^{-1}\) and 6.8 kg S ha\(^{-1}\)) and by leaf (700.1 kg N ha\(^{-1}\), 119 kg P ha\(^{-1}\), 161.1 kg K ha\(^{-1}\) and 28.1 kg S ha\(^{-1}\)) were observed by foliar application of MLE at every 2 weeks’ interval. Among the macronutrients, N and P uptake were increased by ~45% (averages across leaf and fruit) and K and S uptake were increased by at least ~37% in MLE treated plants at 2 weeks and after every two weeks thereafter compared to the plants treated with no foliar MLE (Fig. 3).

Table 2. Effect of foliar application of MLE on growth parameters of Tomato and Indian Spinach

Treatments	Plant height (cm)	Number of branches plant\(^{-1}\)	Number of leaves plant\(^{-1}\)	Shoot dry weight (g plant\(^{-1}\))	Root dry weight (g plant\(^{-1}\))	Rooting depth (cm)
\(T_1\)	99.8 c	8.1	37.3 c	14.8 b	17.4	30.7 c
\(T_2\)	107.3 b	8.8	40.7 bc	15.7 b	19.2	31.6 bc
\(T_3\)	110.8 a	9.5	43 ab	17.1 b	19.9	33.7 ab
\(T_4\)	114.3 a	10.3	46.7 a	18.2 a	21.0	35.7 ab
SE (±)	1.1	1.3 (ns)	1.2	1.2	1.1 (ns)	0.8

Treatments	Plant height (cm)	Number of branches plant\(^{-1}\)	Number of leaves plant\(^{-1}\)	Leaf length (cm)	Stem length (cm)	Rooting depth (cm)
\(T_1\)	53.7 d	4.3	39.3 b	12.3 b	28.3 b	25.3 b
\(T_2\)	58.3 c	4.7	42.3 ab	13.4 ab	30.3 ab	28 ab
\(T_3\)	64 b	5.0	44 a	15.2 ab	33.7 a	30.3 ab
\(T_4\)	71 a	5.5	49.3 a	17 a	38 a	33.3 a
SE (±)	1.1	0.6 (ns)	2.1	1.3	1.6	2.1

Figures in a column having common letter(s) or without letters do not differ significantly at 5% level of significance according to DMRT. Values are means ± SE of three replicates. ns = Not significant; SE = Standard error of means; \(T_1\) = Control; \(T_2\) = MLE applied at 2 weeks after transplanting; \(T_3\) = MLE applied at 2 weeks and 4 weeks after transplanting; \(T_4\) = MLE applied at 2 weeks after transplanting and after every two weeks thereafter
plied (control), except for number of branches per plant
(Table 2). The maximum plant height (71 cm), number of
branches plant\(^{-1}\) (5.5), number of leaves plant\(^{-1}\) (49.3), leaf
length (17 cm), stem length (38 cm) and rooting depth (33.3
cm) were noted in treatment \(T_4\) that received MLE at 2
weeks and after every two weeks thereafter. Application of
MLE at 2 weeks after transplanting \((T_2)\) increased (7-10.5%)
all the growth parameters compared to control \((T_1)\). However,
the percent increase over control was significantly
higher when MLE was applied twice \((T_3)\). Repetitive
application of MLE to foliage \((T_3)\) showed ~30% increase in plant
height, stem length, leaf length and rooting depth and
~25% increase in number of leaves and branches per plant
compared to control \((T_1)\). The yield parameters and yield
of Indian Spinach were also significantly influenced by MLE
application as shown in Table 3 and the highest leaf weight

```
Fig. 1. Percentage increase in growth parameters of Tomato and Indian Spinach over control as affected by the application of MLE. The effect of foliar application of MLE was significant at \(P \leq 0.05\). Values are means ± SE of three replicates. \(T_1\) = MLE applied at 2 weeks after transplanting; \(T_2\) = MLE applied at 2 weeks and 4 weeks after transplanting; \(T_3\) = MLE applied at 2 weeks after transplanting and after every two weeks thereafter.

Table 3. Effect of foliar application of MLE on yield parameters of Tomato and Indian Spinach

| Treatments | Tomato | Indian Spinach | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|
|             | Number of flowers plant\(^{-1}\) | Number of fruits plant\(^{-1}\) | Largest fruit weight (g) | Largest fruit length (cm) | Fruit yield (t ha\(^{-1}\)) | Leaf weight (g plant\(^{-1}\)) | Leaf yield (t ha\(^{-1}\)) | Stem weight (g plant\(^{-1}\)) | Stem yield (t ha\(^{-1}\)) |
| \(T_1\)     | 46.3c  | 39.3 c         | 53.9 c          | 4.9 | 33.3 b | 128.7 c | 6.4 c | 171 c | 8.8b |
| \(T_2\)     | 52 b   | 46 b           | 56.9 b          | 5.2 | 34.6 b | 136.7 bc| 6.8 b | 185.3 b | 8.9 b |
| \(T_3\)     | 54.7 ab| 48 ab          | 60.9 a          | 5.8 | 36.4 ab| 147 ab  | 7.3 ab| 198.3 a | 9.9ab|
| \(T_4\)     | 57.7 a | 50.8 a         | 62.7 a          | 5.9 | 39 a   | 154.7 a | 7.7 a | 209.2 a | 10.4a |
| SE (±)      | 1.1    | 0.8            | 0.9             | 0.7 (ns) | 1.3 | 3.6 | 0.7 | 3.3 | 1.5 |
```

Figures in a column having common letter(s) or without letters do not differ significantly at 5% level of significance according to DMRT. Values are means ± SE of three replicates. \(ns\) = Not significant; \(SE\) = Standard error of means; \(T_1\) = Control; \(T_2\) = MLE applied at 2 weeks after transplanting; \(T_3\) = MLE applied at 2 weeks and 4 weeks after transplanting; \(T_4\) = MLE applied at 2 weeks after transplanting and after every two weeks thereafter.

```
Fig. 2. Percentage increase in yield parameters and yield of Tomato and Indian Spinach over control as affected by the application of MLE. The effect of foliar application of MLE was significant at \(P \leq 0.05\). Values are means ± SE of three replicates. \(T_2\) = MLE applied at 2 weeks after transplanting; \(T_3\) = MLE applied at 2 weeks and 4 weeks after transplanting; \(T_4\) = MLE applied at 2 weeks after transplanting and after every two weeks thereafter.
```
(154.7 g plant\(^{-1}\)), leaf yield (7.7 t ha\(^{-1}\)), stem weight (209.2 g plant\(^{-1}\)) and stem yield (10.4 t ha\(^{-1}\)) were recorded with maximum MLE application (T\(_4\)). The leaf yield as well as stem yield also exhibited the highest percent increase (20%) over control when MLE was applied to the foliage at 2 weeks and after every two weeks thereafter (Fig. 2).

Uptakes of nutrients viz. N, P, K and S by Indian Spinach were significantly increased by foliar application of MLE compared to control (0 foliar MLE), except for S uptake by plant (Table 4). Applying MLE to the foliage at 2 weeks and after every two weeks thereafter (T\(_4\)) exhibited the highest nutrient uptakes by stem (324.4 kg N ha\(^{-1}\), 30 kg P ha\(^{-1}\), 77.9 kg K ha\(^{-1}\) and 22.4 kg S ha\(^{-1}\)) and by leaf (267.2 kg N ha\(^{-1}\), 37.4 kg P ha\(^{-1}\), 131.2 kg K ha\(^{-1}\) and 20.3 kg S ha\(^{-1}\)) compared to no foliar MLE (Table 4). The uptakes of N and K were increased by ~50%, whereas P and S uptakes were improved by at least 42% when MLE was applied at 2 weeks’ interval (T\(_4\)) over control (Fig. 3).

Discussion

Plant growth and yield were likely to increase by applying MLE to the foliage. In this study, foliar application of MLE contributed to increase the growth and yield of tomato and Indian Spinach compared to when no MLE was applied to the foliage (Table 2 and 3; Fig. 1 and 2). The observed in-
crease in plant growth in response to foliar MLE application is consistent with those reported from other and/or similar crop species (5, 6). The enhanced plant growth following MLE application has also been reported in previous studies mentioning that MLE acts as a biostimulator for enhancing the mineral nutrient use efficiency and promotes plant growth (2, 25). This might have occurred due to having a cytokinin hormone (zeatin) in the extract, which acts as a stimulator for plant growth and productivity (23-25). It has been argued that an external supply of MLE to the foliage increases plant growth, which contributes to the increased yield of different plants (1, 24). These findings suggest that foliar application of MLE enhances crop yield by increasing growth parameters. Our results suggest that providing an external supply of MLE to the foliage could be one of the best possible ways for enhancing vegetable crop production. It has already been reported that applying MLE to the foliage significantly increased the growth and yield of different vegetables and legume crops compared to control (1, 26, 27).

Given the positive response, it is essential to find the time and frequency of MLE applications to the foliage to get maximum return in terms of growth and yield. Results from the present study demonstrated that application of MLE at every 2 weeks' interval increased plant growth (Table 2) and yield (Table 3) of all the plant species. In contrast, foliar application of MLE at 2 weeks (T2) and twice application at 2 and 4 weeks (T4) didn't increase plant growth and yield to the same extent as applying MLE at every 2 weeks' interval. However, detailed characterization of the optimum rate of MLE application to the foliage to get maximum economic return deserves further investigation. Applying MLE to the foliage at every 2 weeks' interval enhanced plant growth by ~25% (averaged across all the plant growth parameters), which is critical for increasing crop yield. The increase in plant growth following foliar MLE application varied among the crop species. For example, the positive effect of MLE on plant growth was more pronounced in Indian Spinach compared to tomato (Table 2; Fig. 1). A possible explanation of the more pronounced effect on leafy vegetables could be due to the contribution in producing the greatest number of leaves, thus it leads to increased yield of Indian Spinach. Although the response to foliar-applied MLE was proportionately more in Indian Spinach, tomato also exhibited a significant increase in plant yield contributing parameters compared to Indian Spinach.

In the present study, the external supply of MLE to the foliage significantly increased nutrient uptake by all the plants compared to no MLE application to the foliage (Table 4; Fig. 3). It can be explained from previous research findings, those suggested that MLE is one of the best sources for supplying nutrient elements for stimulating plant growth and productivity (29, 30). It has already been reported that application of MLE to the foliage contributed to enhance the nutrient uptake of a number of plant species (1, 2, 23, 28). The increased nutrient uptake in response to foliar-applied moringa leaf extract has also been reported in some metatherian plant species (31), cabbage (1), and pea (28). Thus, MLE acts as a bio-stimulator for increasing nutrient uptake, which leads to improved plant growth and productivity (1). Therefore, we suggest applying MLE to the foliage to increase the uptake of essential elements and increase the nutritional value of plant products.

Conclusion
We conclude that applying MLE to the foliage (at 25 ml/plant) facilitated the growth and yield of both Tomato and Indian Spinach. The effect of MLE was more pronounced in Indian Spinach in terms of growth parameters compared to tomato. Moreover, the application of MLE enhanced the nutrient uptake by plants, which finally contribute to increase the yield components. As foliar application of MLE improved the performance of tomato and Indian Spinach simultaneously, farmers and agronomists could apply MLE to the foliage to improve plant growth and yield for a sustainable agricultural production system. Determining the potential of MLE as a biostimulant for vegetable production is critical to improve their nutritional quality. The correct amount and proper time for MLE application is crucial to get the maximum benefits from its application to crops. In this research, we highlighted the possible rate and frequencies of MLE application on tomato and Indian Spinach which will help maintain balanced use of MLE as a foliar spray to enhance production and quality of these two vegetable crops. This study showed the nutritional improvement in different plant organs due to MLE application in these vegetables which was not previously reported. Further research should focus on assessing the effectiveness of foliar-applied MLE for mitigation of different abiotic stress on plants, such as drought, salinity, acidity etc.

Acknowledgements
This study was funded by the Ministry of Science and Technology, Government of the People’s Republic of Bangladesh.

Authors contributions
Conceptualization: TSH and MAA; Methodology and Supervision: TSH and MAA; Investigation: TSH, MAA and IJ; Data analysis: IJ and MGK; Writing—original draft preparation: TSH, MGK and IJ; Writing—review and editing: MAH.

Compliance with ethical standards
Conflict of interest: The authors do not have any conflict of interests to declare.
Ethical issues: None.

References
1. Hoque TS, Rana MS, Jahan SA, Jahan I, Abedin MA. Moringa leaf extract as a bio-stimulant on growth, yield and nutritional improvement in cabbage. Asian J Med and Biol Res. 2020;6:196-203.
Venudevan B, Srimathi P, Natarajan N, Vijayakumar RR. Influence of seed fortification treatment with leaf extract on seedling production in bael tree (Aegle marmelos L.). Int J Agric Sci. 2016;12:210-14. https://doi.org/10.15740/HAS/IJAS12.2/210-214

17. Damiloa AM, Temitope MFO. Assessment of Moringa oleifera as bio-pesticide against Podagrica spp on the growth and yield of okra (Abelmoschus esculentus L. Moench). J Hortic. 2020;7:263. https://doi.org/10.35248/2376-0354.20.7.263

18. Fertilizer Recommendation Guide-2012. Bangladesh Agricultural Research Council, Dhaka, Bangladesh. 2012.

19. Nelson DW, Sommers LW. Determination of total nitrogen in plant material. Agron J. 1973;65:109-12. https://doi.org/10.2134/agronj1973.000219620065000010033x

20. Piper CS. Soil and plant analysis: a laboratory manual of methods for the examination of soils and the determination of the inorganic constituents of plants. Hans Publishers, Bombay, India. 1966.

21. Gomez KA, Gomez AA. Statistical Procedures for Agricultural Research. John Wiley & Sons, New York.1984.

22. Russel DF. MSTAT-C package programme. Crop and Soil Science, Department, Michigan State University, USA.1986.

23. Emongor V. Effects of moringa (Moringa oleifera) leaf extract on growth, yield and yield components of snap beans (Phaseolus vulgaris). Br J Appl Sci Technol. 2015;6:114-22. https://doi.org/10.9734/BJAST/2015/14795

24. Anwar F, Latif S, Ashraf M, Gilani AH. Moringa oleifera: A food plant with multiple medicinal uses. Phytother Res. 2007;21:17-25. https://doi.org/10.1002/ptr.2023

25. Abdalla MM. The potential of Moringa oleifera extract as a bio-stimulant in enhancing the growth, biochemical and hormonal contents in rocket (Eruca vesicaria subsp. sativa) plants. Int J Plant Physiol Biochem. 2013;5:42-49. https://doi.org/10.5897/IJPBP2012.026

26. Makkar HPS, Francis G, Becker K. Bioactivity of phytochemicals in some lesser-known plants and their effects and potential applications in livestock and aquaculture production systems. Anim Feed Sci Technol. 2007;1:1371-91. https://doi.org/10.1017/S1751731107000298

27. Mvumi C, Tagwira F, Chiteka AZ. Effect of moringa extracts on growth and yield of maize and common beans. Greener J Agric Sci. 2013;3:55-62. https://doi.org/10.15580/GJAS.2013.1.111512264

28. Merwad ARMA. Using Moringa oleifera extract as bio-stimulant enhancing the growth, yield and nutrients accumulation of pea plants. J Plant Nutr. 2017;41:425-31. https://doi.org/10.1080/01904167.2017.1384012

29. Busani M, Patrick JM, Arnold H,Voster M. Nutritional characteri- zation of moringa (Moringa oleifera Lam.) leaves. Afr J Biotechnol. 2011;10:12925-33. https://doi.org/10.5897/AJB10.1599

30. Yameogo CW, Bengaly MD, Savadogo A, Nikilema PA, Traore SA. Determination of chemical composition and nutritional values of Moringa oleifera leaves. Pak J Nutr. 2011;10:264-68. https://doi.org/10.3923/pjn.2011.264.268

31. Nasir M, Khan AS, Basra SA, Malik AU. Foliar application of moringa leaf extract, potassium and zinc influence yield and fruit quality of ‘Kinnow’ mandarin. Sci Hortic. 2016;210:227-35. https://doi.org/10.1016/j.scienta.2016.07.032

55