ADDITIVE ρ-FUNCTIONAL EQUATIONS IN BANACH SPACES

IN WHAN JUNa, JEONG PIL SEOb AND SUNGJIN LEEc.*

Abstract. In this paper, we solve the additive ρ-functional equations
\begin{equation}
 f(x + y + z) - f(x) - f(y) - f(z) = \rho \left(2f \left(\frac{x + y + z}{2} \right) - f(x) - f(y) - f(z) \right),
\end{equation}
where ρ is a fixed number with $\rho \neq 1$, and
\begin{equation}
 f(x + y + z) - f(x) - f(y) - f(z) = \rho \left(2f \left(\frac{x + y}{2} + z \right) - f(x) - f(y) - 2f(z) \right),
\end{equation}
where ρ is a fixed number with $\rho \neq 1$.

Using the direct method, we prove the Hyers-Ulam stability of the additive ρ-functional equations (0.1) and (0.2) in Banach spaces.

1. Introduction

The stability problem of functional equations originated from a question of Ulam [5] concerning the stability of group homomorphisms.

The functional equation $f(x + y) = f(x) + f(y)$ is called the Cauchy equation. In particular, every solution of the Cauchy equation is said to be an additive mapping. Hyers [3] gave a first affirmative partial answer to the question of Ulam for Banach spaces. Hyers’ Theorem was generalized by Aoki [1] for additive mappings and by Rassias [4] for linear mappings by considering an unbounded Cauchy difference. A generalization of the Rassias theorem was obtained by Găvruta [2] by replacing the unbounded Cauchy difference by a general control function in the spirit of Rassias’ approach.

In Section 2, we solve the additive functional equation (0.1) and prove the Hyers-Ulam stability of the additive functional equation (0.1) in Banach spaces.

Received by the editors October 01, 2015. Accepted October 12, 2015.
2010 Mathematics Subject Classification. Primary 39B62, 39B52.
Key words and phrases. Hyers-Ulam stability, additive ρ-functional equation, Banach space.
*Corresponding author.
In Section 3, we solve the additive functional equation (0.2) and prove the Hyers-Ulam stability of the additive functional equation (0.2) in Banach spaces. Throughout this paper, assume that X is a normed space and that Y is a Banach space.

2. Additive ρ-functional Equation (0.1)

Let ρ be a number with $\rho \neq 1, 2$.

We solve and investigate the additive ρ-functional equation (0.1) in normed spaces.

Lemma 2.1. If a mapping $f : X \rightarrow Y$ satisfies

$$f(x + y + z) - f(x) - f(y) - f(z) = \rho \left(2f \left(\frac{x+y+z}{2} \right) - f(x) - f(y) - f(z) \right)$$

(2.1)

for all $x, y, z \in X$, then $f : X \rightarrow Y$ is additive.

Proof. Assume that $f : X \rightarrow Y$ satisfies (2.1).

Letting $x = y = z = 0$ in (2.1), we get $-2f(0) = -\rho f(0)$. So $f(0) = 0$.

Letting $y = x$ and $z = 0$ in (2.1), we get $f(2x) - 2f(x) = 0$ and so $f(2x) = 2f(x)$ for all $x \in X$. Thus

(2.2) $$f \left(\frac{x}{2} \right) = \frac{1}{2} f(x)$$

for all $x \in X$.

It follows from (2.1) and (2.2) that

$$f(x + y + z) - f(x) - f(y) - f(z) = \rho \left(2f \left(\frac{x+y+z}{2} \right) - f(x) - f(y) - f(z) \right) = \rho (f(x + y + z) - f(x) - f(y) - f(z))$$

and so $f(x + y + z) = f(x) + f(y) + f(z)$ for all $x, y, z \in X$. Since $f(0) = 0$,

$$f(x + y) = f(x) + f(y)$$

for all $x, y \in X$.

We prove the Hyers-Ulam stability of the additive ρ-functional equation (2.1) in Banach spaces.
Theorem 2.2. Let \(\varphi : X^3 \to [0, \infty) \) be a function and let \(f : X \to Y \) be a mapping satisfying \(f(0) = 0 \) and

\[\Psi(x, y, z) := \sum_{j=1}^{\infty} 2^j \varphi \left(\frac{x}{2^j}, \frac{y}{2^j}, \frac{z}{2^j} \right) < \infty, \]

for all \(x, y, z \in X \). Then there exists a unique additive mapping \(A : X \to Y \) such that

\[\|f(x) - A(x)\| \leq \frac{1}{2} \Psi(x, x, 0) \]

for all \(x \in X \).

Proof. Letting \(y = x \) and \(z = 0 \) in (2.4), we get

\[\|f(2x) - 2f(x)\| \leq \varphi(x, x, 0) \]

for all \(x \in X \). So

\[\|f(x) - 2f \left(\frac{x}{2} \right) \| \leq \varphi \left(\frac{x}{2}, \frac{y}{2}, 0 \right) \]

for all \(x \in X \). Hence

\[\left\| 2^j f \left(\frac{x}{2^j} \right) - 2^m f \left(\frac{x}{2^m} \right) \right\| \leq \sum_{j=l}^{m-1} \left\| 2^j f \left(\frac{x}{2^j} \right) - 2^{j+1} f \left(\frac{x}{2^{j+1}} \right) \right\| \]

\[\leq \sum_{j=l}^{m-1} 2^j \varphi \left(\frac{x}{2^{j+1}}, \frac{x}{2^{j+1}}, 0 \right) \]

for all nonnegative integers \(m \) and \(l \) with \(m > l \) and all \(x \in X \). It follows from (2.7) that the sequence \(\{2^k f \left(\frac{x}{2^k} \right) \} \) is Cauchy for all \(x \in X \). Since \(Y \) is a Banach space, the sequence \(\{2^k f \left(\frac{x}{2^k} \right) \} \) converges. So one can define the mapping \(A : X \to Y \) by

\[A(x) := \lim_{k \to \infty} 2^k f \left(\frac{x}{2^k} \right) \]

for all \(x \in X \). Moreover, letting \(l = 0 \) and passing the limit \(m \to \infty \) in (2.7), we get (2.5).
Now, let $T : X \to Y$ be another additive mapping satisfying (2.5). Then we have
\[
\|A(x) - T(x)\| = \left\|2^q A\left(\frac{x}{2^q}\right) - 2^q T\left(\frac{x}{2^q}\right)\right\|
\leq \left\|2^q A\left(\frac{x}{2^q}\right) - 2^q f\left(\frac{x}{2^q}\right)\right\| + \left\|2^q T\left(\frac{x}{2^q}\right) - 2^q f\left(\frac{x}{2^q}\right)\right\|
\leq 2^q \Psi\left(\frac{x}{2^q}, \frac{x}{2^q}, 0\right),
\]
which tends to zero as $q \to \infty$ for all $x \in X$. So we can conclude that $A(x) = T(x)$ for all $x \in X$. This proves the uniqueness of A.

It follows from (2.3) and (2.4) that
\[
\left\|A(x + y + z) - A(x) - A(y) - A(z) - \rho\left(2A\left(\frac{x+y+z}{2}\right) - A(x) - A(y) - A(z)\right)\right\|
\leq \lim_{n \to \infty} 2^n \left\|f\left(\frac{x+y+z}{2^n}\right) - f\left(\frac{x}{2^n}\right) - f\left(\frac{y}{2^n}\right) - f\left(\frac{z}{2^n}\right) + \rho\left(2f\left(\frac{x+y+z}{2^{n+1}}\right) - f\left(\frac{x}{2^n}\right) - f\left(\frac{y}{2^n}\right) - f\left(\frac{z}{2^n}\right)\right)\right\|
\leq \lim_{n \to \infty} 2^n \phi\left(\frac{x}{2^n}, \frac{y}{2^n}, 0\right) = 0
\]
for all $x, y, z \in X$. So
\[
A(x + y) - A(x) - A(y) - A(z) = \rho\left(2A\left(\frac{x+y+z}{2}\right) - A(x) - A(y) - A(z)\right)
\]
for all $x, y, z \in X$. By Lemma 2.1, the mapping $A : X \to Y$ is additive.

Corollary 2.3. Let $r > 1$ and θ be nonnegative real numbers, and let $f : X \to Y$ be a mapping satisfying $f(0) = 0$ and
\[
\left\|f(x+y+z) - f(x) - f(y) - f(z) - \rho\left(2f\left(\frac{x+y+z}{2}\right) - f(x) - f(y) - f(z)\right)\right\| \leq \theta(\|x\|^r + \|y\|^r + \|z\|^r)
\]
for all $x, y, z \in X$. Then there exists a unique additive mapping $A : X \to Y$ such that
\[
\|f(x) - A(x)\| \leq \frac{2\theta}{2^r - 2}\|x\|^r
\]
for all $x \in X$.

Proof. Letting $\phi(x, y, z) := \theta(\|x\|^r + \|y\|^r + \|z\|^r)$ in Theorem 2.2, we get the desired result. \[\square\]
Theorem 2.4. Let \(\varphi : X^3 \to [0, \infty) \) be a function and let \(f : X \to Y \) be a mapping satisfying \(f(0) = 0 \), (2.4) and

\[
\Psi(x, y, z) := \sum_{j=0}^{\infty} \frac{1}{2^j} \varphi(2^j x, 2^j y, 2^j z) < \infty
\]

for all \(x, y, z \in X \). Then there exists a unique additive mapping \(A : X \to Y \) such that

\[
\|f(x) - A(x)\| \leq \frac{1}{2} \Psi(x, x, 0) \tag{2.9}
\]

for all \(x \in X \).

Proof. It follows from (2.6) that

\[
\left\| f(x) - \frac{1}{2} f(2x) \right\| \leq \frac{1}{2} \varphi(x, x, 0)
\]

for all \(x \in X \). Hence

\[
\left\| \frac{1}{2^n} f(2^n x) - \frac{1}{2^m} f(2^m x) \right\| \leq \sum_{j=l}^{m-1} \left\| \frac{1}{2^j} f(2^j x) - \frac{1}{2^{j+1}} f(2^{j+1} x) \right\|
\]

\[
\leq \sum_{j=l}^{m-1} \frac{1}{2^j} \varphi(2^j x, 2^j x, 0) \tag{2.10}
\]

for all nonnegative integers \(m \) and \(l \) with \(m > l \) and all \(x \in X \). It follows from (2.10) that the sequence \(\{ \frac{1}{2^n} f(2^n x) \} \) is a Cauchy sequence for all \(x \in X \). Since \(Y \) is complete, the sequence \(\{ \frac{1}{2^n} f(2^n x) \} \) converges. So one can define the mapping \(A : X \to Y \) by

\[
A(x) := \lim_{n \to \infty} \frac{1}{2^n} f(2^n x)
\]

for all \(x \in X \). Moreover, letting \(l = 0 \) and passing the limit \(m \to \infty \) in (2.10), we get (2.9).

The rest of the proof is similar to the proof of Theorem 2.2. \(\square \)

Corollary 2.5. Let \(r < 1 \) and \(\theta \) be nonnegative real numbers, and let \(f : X \to Y \) be a mapping satisfying \(f(0) = 0 \) and (2.8). Then there exists a unique additive mapping \(A : X \to Y \) such that

\[
\|f(x) - A(x)\| \leq \frac{2\theta}{2 - 2^r} \|x\|^r
\]

for all \(x \in X \).

Proof. Letting \(\varphi(x, y, z) := \theta(\|x\|^r + \|y\|^r + \|z\|^r) \) in Theorem 2.4, we get the desired result. \(\square \)
3. ADDITIVE ρ-FUNCTIONAL EQUATION (0.2)

Let ρ be a number with $\rho \neq 1$.
We solve and investigate the additive ρ-functional equation (0.2) in normed spaces.

Lemma 3.1. If a mapping $f : X \to Y$ satisfies

$$f(x + y + z) - f(x) - f(y) - f(z) = \rho \left(2f \left(\frac{x + y}{2} + z \right) - f(x) - f(y) - 2f(z) \right)$$

(3.1)

for all $x, y, z \in X$, then $f : X \to Y$ is additive.

Proof. Assume that $f : X \to Y$ satisfies (3.1).
Letting $x = y = z = 0$ in (2.1), we get $-2f(0) = -2\rho f(0)$. So $f(0) = 0$.
Letting $y = x$ and $z = 0$ in (2.1), we get $f(2x) - 2f(x) = 0$ and so $f(2x) = 2f(x)$
for all $x \in X$. Thus

$$f \left(\frac{x}{2} \right) = \frac{1}{2} f(x)$$

(3.2)

for all $x \in X$.

It follows from (3.1) and (3.2) that

$$f(x + y) - f(x) - f(y) = \rho \left(2f \left(\frac{x + y}{2} \right) - f(x) - f(y) \right)$$

$$= \rho (f(x + y) - f(x) - f(y))$$

and so $f(x + y) = f(x) + f(y)$ for all $x, y \in X$. \[\Box\]

We prove the Hyers-Ulam stability of the additive ρ-functional equation (3.1) in Banach spaces.

Theorem 3.2. Let $\varphi : X^3 \to [0, \infty)$ be a function and let $f : X \to Y$ be a mapping satisfying $f(0) = 0$ and

$$\Psi(x, y, z) := \sum_{j=1}^{\infty} 2^j \varphi \left(\frac{x}{2^j}, \frac{y}{2^j}, \frac{z}{2^j} \right) < \infty,$$

$$\left\| f(x + y + z) - f(x) - f(y) - f(z) - \rho \left(2f \left(\frac{x + y}{2} + z \right) - f(x) - f(y) - 2f(z) \right) \right\| \leq \varphi(x, y, z)$$

(3.3)
for all \(x, y, z \in X \). Then there exists a unique additive mapping \(A : X \to Y \) such that

\[
\|f(x) - A(x)\| \leq \frac{1}{2} \Psi(x, x, 0)
\]

for all \(x \in X \).

Proof. Letting \(y = x \) and \(z = 0 \) in (3.3), we get

\[
\|f(2x) - 2f(x)\| \leq \varphi(x, x, 0)
\]

for all \(x \in X \).

The rest of the proof is similar to the proof of Theorem 2.2. □

Corollary 3.3. Let \(r > 1 \) and \(\theta \) be nonnegative real numbers, and let \(f : X \to Y \) be a mapping satisfying \(f(0) = 0 \) and

\[
\|f(x + y + z) - f(x) - f(y) - f(z) - \rho \left(2f\left(\frac{x + y}{2} + z\right) - f(x) - f(y) - 2f(z) \right) \| \leq \theta(\|x\|^r + \|y\|^r + \|z\|^r)
\]

for all \(x, y, z \in X \). Then there exists a unique additive mapping \(A : X \to Y \) such that

\[
\|f(x) - A(x)\| \leq \frac{2\theta}{2^r - 2} \|x\|^r
\]

for all \(x \in X \).

Proof. Letting \(\varphi(x, y, z) := \theta(\|x\|^r + \|y\|^r + \|z\|^r) \) in Theorem 3.2, we get the desired result. □

Theorem 3.4. Let \(\varphi : X^3 \to [0, \infty) \) be a function and let \(f : X \to Y \) be a mapping satisfying \(f(0) = 0 \), (3.3) and

\[
\Psi(x, y, z) := \sum_{j=0}^{\infty} \frac{1}{2^j} \varphi(2^j x, 2^j y, 2^j z) < \infty
\]

for all \(x, y, z \in X \). Then there exists a unique additive mapping \(A : X \to Y \) such that

\[
\|f(x) - A(x)\| \leq \frac{1}{2} \Psi(x, x, 0)
\]

for all \(x \in X \).
Proof. It follows from (3.4) that
\[\left\| f(x) - \frac{1}{2} f(2x) \right\| \leq \frac{1}{2} \varphi(x, x, 0) \]
for all \(x \in X \).

The rest of the proof is similar to the proofs of Theorems 2.2 and 2.4. \(\square \)

Corollary 3.5. Let \(r < 1 \) and \(\theta \) be nonnegative real numbers, and let \(f : X \to Y \) be a mapping satisfying \(f(0) = 0 \) and (3.5). Then there exists a unique additive mapping \(A : X \to Y \) such that
\[\| f(x) - A(x) \| \leq \frac{2\theta}{2 - 2r} \| x \|^r \]
for all \(x \in X \).

Proof. Letting \(\varphi(x, y, z) := \theta(|x|^r + |y|^r + |z|^r) \) in Theorem 3.4, we get the desired result. \(\square \)

REFERENCES

1. T. Aoki: On the stability of the linear transformation in Banach spaces. *J. Math. Soc. Japan* 2 (1950), 64-66.
2. P. Gavruta: A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. *J. Math. Anal. Appl.* 184 (1994), 431-43.
3. D.H. Hyers: On the stability of the linear functional equation. *Proc. Natl. Acad. Sci. U.S.A.* 27 (1941), 222-224.
4. Th.M. Rassias: On the stability of the linear mapping in Banach spaces. *Proc. Amer. Math. Soc.* 72 (1978), 297-300.
5. S.M. Ulam: *A Collection of the Mathematical Problems*. Interscience Publ. New York, 1960.

\(^a\)Department of Mathematics, Hanyang University, Seoul 04763, Korea
Email address: zhanggua@naver.com

\(^b\)Ohsang High School, Gumi 730-842, Kyongsangbuk-Do, Korea
Email address: sjp4829@hanmail.net

\(^c\)Department of Mathematics, Daejin University, Kyeonggi 11159, Korea
Email address: hyper@daejin.ac.kr