The entropy cones of W_N states

Howard J. Schnitzer

Martín Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA

E-mail: schnitzr@brandeis.edu

ABSTRACT: The quantum entropy cones (QEC) for W_N states of qubits are computed. These cones emerge as symmetrized quantum entropy cones (SQEC) for arbitrary N, with the number of parties $\leq N$, and party N the purifier. A directed graph model is presented which describes the SQEC for W_N states.

Monogamous mutual information (MMI) is violated for all $N > 3$.
1 Introduction

There is considerable interest in describing entropy cones in different contexts by a variety of methods. Among these are contraction maps, [1] graph and hypergraph models, [2–4] and link models [5]. One result of these strategies are entropy inequalities to be satisfied by holographic theories. The holographic entropy cones (HEC) have the feature that monogamous mutual information (MMI) [6] is satisfied. In this regard it should be emphasized that graph or hypergraph states are distinct from graph or hypergraph models. Graph and hypergraph models imply graph and hypergraph states, but not conversely, which implies that hypergraph models cones are a subset of stabilizer cones. However, there exist hypergraph states for which there is no hypergraph model.

In a series of papers Qu, et. al. [7–9] analyze graph states, hypergraph states ,and stabilizer states. A brief summary of their conclusion:

1. If the rank g of a hypergraph is $g > 2$, the hypergraph state $|g\rangle$ is not a stabilizer state.

2. Any stabilizer states is locally equivalent (LU) to a graph states (for $N \leq 7$ parties). Thus graph states are a subclass of stabilizer states.

3. Under LU, hypergraph states of 3 qubits split into 6 classes; one of which is not equivalent to any graph state.

4. Under SLOCC, hypergraph states of 3 qubits partition into 5 classes which cannot be converted in W-states, and one which has the same entanglement properties of a W-state.
5. A W-state of N-qubits is not locally maximally entangled (LME).

6. No hypergraph state of $N = 3$ qubits can be converted to a W-state of 3 qubits by SLOCC. For a $N \geq 4$ and SLOCC, this is an open question.

7. No hypergraph state of N-qubits can be converted to a W-state under LU.

8. As a consequence of the above, one concludes that W_N states are not stabilizer states.

For large N, knowledge of quantum entropy cones is largely incomplete and deserves further study [10, 11]. It is in this context we study the entropy cone for W_N states of N-qubits for any N. We find that all entropies are symmetrized entropies, and that therefore the resulting entropy cones are all symmetrized quantum entropy cones (SQEC). A star graph model is presented which reproduces the SQEC. An interesting feature of the model is that one leg of the star graph has negative capacity\(^1\).

2 Entropy cones for W_N states

The W_N states for N-qubits are

$$W_N = \frac{1}{\sqrt{N}} \left[|00\cdots01\rangle + |00\cdots10\rangle + \cdots + |100\cdots0\rangle \right]$$

(2.1)

Explicit calculations give the entropies for the number of parties $\leq N$, with party N the purifier. These are

\[
\begin{align*}
S_A &= -\frac{1}{N} \ln \left(\frac{1}{N} \right) - \frac{(N - 1)}{N} \ln \left(\frac{N - 1}{N} \right) \\
S_{AB} &= -\frac{2}{N} \ln \left(\frac{2}{N} \right) - \frac{(N - 2)}{N} \ln \left(\frac{N - 2}{N} \right) \\
S_{ABC} &= -\frac{3}{N} \ln \left(\frac{3}{N} \right) - \frac{(N - 3)}{N} \ln \left(\frac{N - 3}{N} \right) \\
S_{ABCD} &= -\frac{4}{N} \ln \left(\frac{4}{N} \right) - \frac{(N - 4)}{N} \ln \left(\frac{N - 4}{N} \right)
\end{align*}
\]

(2.2)

etc. The entropies which emerge from the explicit computations are automatically symmetrized, i.e. independent of specific choices for A, B, C, \cdots, etc. No explicit averaging is required. The relevant entropy cone is the symmetrized quantum entropy cone (SQEC) [12, 13].

\(^1\)Jonathan Harper alerted us to the possible relevance of negative capacities.
Define

\[I_3(A : B : C) = [S_A + S_B + S_C] - [S_{AB} + S_{BC} + S_{AC}] + S_{ABC} \]
\[= 3[S_A - S_{AB}] + S_{ABC} \] (2.3)

using the symmetrized properties of (2.2). One requires \(I_3 \leq 0 \) for the monogamy of mutual information (MMI) to be satisfied for a restriction to the holographic entropy cone (HEC) to leading order in the gravitational coupling \([6, 14]\). \(I_3 = 0 \) for \(N = 3 \), but \(I_3 > 0 \) for \(N \geq 4 \) \(W_N \) states so that these are not suitable for holographic applications to leading order in the gravitational coupling.

Explicit examples of the entropy vectors for \(W_N \) with the obvious symmetries of (SQEC) understood are

\[N = 3 : \quad S_A = S_{AB} \]
\[= \left[\ln 3 - \frac{2}{3} \ln 2 \right] \] \hspace{1cm} \hspace{1cm} (2.4)
\[S_{ABC} = 0 \]

\[N = 4 : \quad S_A = S_{ABC} \]
\[= \left[\ln 4 - \frac{3}{4} \ln 3 \right] \] \hspace{1cm} \hspace{1cm} (2.5)
\[S_{AB} = \ln 2 \]
\[S_{ABCD} = 0 \]

\[N = 5 : \quad S_A = S_{ABCD} \]
\[= \left[\ln 5 - \frac{4}{5} \ln 4 \right] \]
\[S_{AB} = S_{ABC} \]
\[= \left[\ln 5 - \frac{3}{5} \ln 3 - \frac{2}{5} \ln 2 \right] \] \hspace{1cm} \hspace{1cm} (2.6)
\[S_{ABCDE} = 0 \]
\[N = 6 : \quad S_A = S_{ABCDE} \]
\[= \left[\ln 6 - \frac{5}{6} \ln 5 \right] \]
\[S_{AB} = S_{ABCD} \]
\[= \left[\ln 3 - \frac{2}{3} \ln 2 \right] \quad (2.7) \]
\[S_{ABC} = \ln 2 \]
\[S_{ABCDEF} = 0. \]

It is instructive to see examples of the entropy vectors for \(W_N \) written explicitly, to emphasize that they are already symmetrized.

\[N = 3 : \quad \vec{S} = \{(1, 1, 1); (1, 1, 1)\} \left[\ln 3 - \frac{2}{3} \ln 2 \right] \quad (2.8) \]
\[S_{ABC} = 0 \]
\[N = 4 : \quad \vec{S} = \{(1, 1, 1) \left[\ln 4 - \frac{3}{4} \ln 3 \right]; (1, 1, 1, 1, 1) \ln 2; (1, 1, 1, 1) \left[\ln 4 - \frac{3}{4} \ln 3 \right]\} \]
\[S_{ABCD} = 0, \quad (2.9) \]

etc.

From (2.2) one has
\[\tilde{S}_l = \frac{l}{N} \ln \left(\frac{N}{l} \right) + \frac{(N - l)}{N} \ln \left(\frac{N}{N - l} \right) \quad (2.10) \]
so that
\[\tilde{S}_l = \tilde{S}_{N-l} \quad (2.11) \]
with \(l = 1 \) to \(N - 1 \), and
\[\tilde{S}_{N/2} = \ln 2 \quad (2.12) \]
for \(N \) even. While for \(N \) odd,
\[\tilde{S}_{N+1/2} = \tilde{S}_{N+1} \]
\[= \frac{N + 1}{2N} \ln \left(\frac{2N}{N + 1} \right) + \frac{N - 1}{2N} \ln \left(\frac{2N}{N - 1} \right) \quad (2.13) \]
That is (2.12) and (2.13) satisfy

\[\tilde{S}_{[\frac{N}{2}+1]} = \tilde{S}_{[\frac{N}{2}]} \]

(2.14)

where \(\lceil \frac{N}{2} \rceil = \frac{N}{2} \) or \(\frac{N+1}{2} \), whichever is integer. All entropies are therefore averaged or symmetrized entropies as discussed in [12, 13], so that they all belong to the symmetrized quantum entropy cones (SQEC). Since \(I_3 > 0 \) for \(N \geq 4 \), the entropies of \(W_N \) do not satisfy the inequalities of the symmetrized holographic entropy cones (SHEC), which implies that SQEC \(\supset \) SHEC for \(W_N \) states.

The SQEC is simplicial [13]. For each \(N \), the facets of the SQEC satisfy the inequalities for \(l \) parties [13, 15],

\[-\tilde{S}_{l-1} + 2\tilde{S}_l - \tilde{S}_{l+1} \geq 0 \]

(2.15)

with

\[\tilde{S}_O = 0, \]

(2.16)

for

\[1 \leq l \leq \left\lfloor \frac{N}{2} \right\rfloor. \]

(2.17)

The extreme rays of the SQEC are those described in [13]. Thus the entropy cone of \(W_N \) provide an explicit realization of a SQEC.

3 A graph model

Graph models constructed for holographic entropy cones have been in the context of undirected graphs with positive weights [1, 2, 4, 5]. However, in the application to the entropy cones of \(W_N \) states we propose a model with directed star graphs with \(l-1 \) legs of weight one, and one leg with weight \(w < 0 \), as made explicit in what follows.

Consider a star graph with \(l \) legs, with \(l-1 \) legs weight one, and one leg with weight \(w \). Every entropy \(S_I \) is given by the min-cut prescription [13]

\[S_I = \min\{|I|, l - |I| + w\} \]

(3.1)

Identify \(S_I = S_l \). Then the symmetrized entropy vectors are [13]

\[\tilde{S}_l = \left(\begin{array}{c} N \\ l \end{array} \right)^{-1} \left[\left(\begin{array}{c} N-1 \\ l \end{array} \right) S_l + \left(\begin{array}{c} N-1 \\ N-l \end{array} \right) S_{N-l} \right] \]

\[= \frac{1}{N} \left[(N-l) \min\{l, N-1-l+w\} + l \min\{N-l, w+l-1\} \right]. \]

(3.2)
Equation (3.2) describes two separate star graphs, with two different weights w. For the second term in (3.2)

$$(S_l)_1 = \frac{l}{N} \min[N - l, w_1 + l - 1],$$

with the choice

$$\min \left[(N - l), \ln \left(\frac{N}{l}\right)\right] = \ln \left(\frac{N}{l}\right).$$

That is

$$(w_1)_l = -(l - 1) + \ln \left(\frac{N}{l}\right) < 0 \text{ for } l > 1.$$ \hfill (3.5)

So that (3.4) is satisfied for

$$l = 1 \text{ to } \frac{N}{2} \text{ } N \text{ even}$$

$$= 1 \text{ to } \left[\frac{N}{2}\right] \text{ } N \text{ odd.}$$

Thus, the second term in (3.2) gives

$$(S_l)_1 = \left(\frac{l}{N}\right) \ln \left(\frac{l}{N}\right).$$

Note that this coincides with the first term in (2.10).

Similarly, for the first term in (3.2) consider

$$\min[l, N - 1 - l - w_2],$$

with the choice

$$(w_2)_l = l - (N - 1) + \ln \left(\frac{N}{N - l}\right) < 0.$$ \hfill (3.9)

From (3.5) and (3.9),

$$(w_1)_{N-l} = (w_2)_l,$$

so that

$$(S_l)_2 = \left(\frac{N - l}{N}\right) \ln \left(\frac{N - l}{N}\right).$$

Putting this together with (3.2), one obtains that the star-graph model, with one leg with negative weights $(w_1)_l$ and $(w_2)_l$ respectively.

Assembling all the pieces from (3.2), (3.7), and (3.11) one finds that \tilde{S}_l constructed from the graph model coincides with (2.10). The novel feature of the model is that one leg of the star graph has negative capacity. This can be understood in terms of directed graphs, where negative flows are permitted.
4 Concluding remarks

The main result of this paper is that the quantum entropy cone of W_N states can be computed explicitly, and that these emerge a priori symmetrized, providing the entropies for the symmetrized quantum entropy cone (SQEC). A graph model captures these results.

Rota [14] shows that holographic systems require MMI for the validity of semi-classical geometry\(^2\), which rules out W_N for $N > 3$. Akers and Rath [16] argue that to leading order, holograph needs tri-partite entanglement. Since $I_3 = 0$ for W_3, this presents one possibility. However Akers, et. al. [17] indicate that the HEC inequalities may no longer be satisfied once general quantum corrections to holography are considered. It might be fruitful to consider W_N states. However, if bulk entropies obey MMI, that implies the boundary entropies also obey MMI [17], which may limit the application of W_N states.

Acknowledgments

We thank C. Akers for a correspondence, as well as Jonathan Harper and Matt Headrick for insightful comments.

We also thank Jonathan Harper and Isaac Cohen-Abbo for their aid in preparing the manuscript.

References

[1] N. Bao, S. Nezami, H. Ooguri, B. Stoica, J. Sully and M. Walter, The holographic entropy cone, [1505.07839].

[2] N. Bao, N. Cheng, S. Hernández-Cuenca and V.P. Su, The quantum entropy cone of hypergraphs, [2002.05317].

[3] M. Walter and F. Witteveen, Hypergraph min-cuts from quantum entropies, [2002.12397].

[4] N. Bao, N. Cheng, S. Hernández-Cuenca and V.P. Su, A gap between the hypergraph and stabilizer entropy cones, [2006.16292].

[5] N. Bao, N. Cheng, S. Hernández-Cuenca and V.P. Su, Topological link models of multipartite entanglement, [2109.01150].

[6] P. Hayden, M. Headrick and A. Maloney, Holographic mutual information is monogamous, [1107.2940].

\(^2\)Matt Headrick also has made this point [6]. [private communication]
[7] R. Qu, Z.-S. Li, J. Wang and Y.-R. Bao, *Multipartite entanglement and hypergraph states of three qubits*, [1301.3576].

[8] R. Qu, Y.-P. Ma, B. Wang and Y.-R. Bao, *Relationship among locally maximally entanglable states, W states and hypergraph states under local unitary transformations*, [1304.6275].

[9] R. Qu, J. Wang, Z.-s. Li and Y.-r. Bao, *Encoding hypergraphs into quantum states*, *Phys. Rev. A* 87 (2013) 022311.

[10] N. Linden, F. Matúš, M.B. Ruskai and A. Winter, *The quantum entropy cone of stabiliser states*, [1302.5453].

[11] N. Pippenger, *The inequalities of quantum information theory*, *IEEE Trans. Inf. Theory* 49 (2003) 773.

[12] B. Czech and S. Shuai, *Holographic cone of average entropies*, [2112.00763].

[13] M. Fadel and S. Hernández-Cuenca, *The symmetrized holographic entropy cone*, [2112.03862].

[14] M. Rota, *Tripartite information of highly entangled states*, [1512.03751].

[15] D. Avis and S. Hernández-Cuenca, *On the foundations and extremal structure of the holographic entropy cone*, [2102.07535].

[16] C. Akers and P. Rath, *Entanglement wedge cross sections require tripartite entanglement*, [1911.07852].

[17] C. Akers, S. Hernández-Cuenca and P. Rath, *Quantum extremal surfaces and the holographic entropy cone*, [2108.07280].