An Investigation into the use of Images as Password Cues

Tony McBryan
School of Computing Science
University of Glasgow

Karen Renaud*
School of Computing Science
University of Glasgow

J. Paul Siebert
School of Computing Science
University of Glasgow

karen.renaud@glasgow.ac.uk

ABSTRACT

Computer users are generally authenticated by means of a password. Unfortunately passwords are often forgotten and replacement is expensive and inconvenient. Some people write their passwords down but these records can easily be lost or stolen. The option we explore is to find a way to cue passwords securely. The specific cueing technique we report on in this paper employs images as cues. The idea is to elicit textual descriptions of the images, which can then be used as passwords.

We have defined a set of metrics for the kind of image that could function effectively as a password cue. We identified five candidate image types and ran an experiment to identify the image class with the best performance in terms of the defined metrics.

The first experiment identified inkblot-type images as being superior. We tested this image, called a cueblot, in a real-life environment. We allowed users to tailor their cueblots until they felt they could describe it, and they then entered a description of the cueblot as their password. The cueblot was displayed at each subsequent authentication attempt to “cue” the password. Unfortunately, we found that users did not exploit the cueing potential of the cueblot, and while there were a few differences between textual descriptions of cueblots and non-cued passwords, they were not compelling.

Hence our attempts to alleviate the difficulties people experience with passwords, by giving them access to a tailored cue, did not have the desired effect. We have to conclude that the password mechanism might well be unable to benefit from bolstering activities such as this one.

1. INTRODUCTION

Computer users of the 21st century cannot escape the need to authenticate themselves. This is mostly achieved by means of a secret password. Since people use a multitude of systems, people have to remember passwords for each of these. Since human memory is fallible, the direct consequence of this is that people forget their passwords, and need to have reminders or replacements.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
Copyright 200X ACM X-XXXX-XX-X/XX/XX ...$5.00.

*Corresponding Author

In this paper we address the issue of password cueing. This term may seem to be an oxymoron since passwords are a security tool, intended to protect some data or service, and need to remain secret at all times. Cues, if at all clear and helpful, would tear a large hole in the security ostensibly maintained by the password.

We do, however, believe that cues could be provided in the form of an abstract image so that the cue itself is so obscure and vague that it acts as a cue only to the legitimate owner of the password. The cue acts only as a cue and not as a hint which could lead a potential imposter to the password. Obviously the kind of image used is critical, and we have therefore conducted an experiment to test different kinds of images to determine which is the most viable. We then used the resulting images in a real-life setting in order to determine their efficacy and usefulness to the end-user.

In Section 2 secret-based authentication is reviewed. In Section 3 we provide a brief overview of the literature related to forgetting and cueing. In Section 4 we motivate the use of images as cues and explore the kinds of images that could be used in terms of memorability and diversity of text associations. Section 4.3 provides a synopsis of the previous sections and formulates the research question. Section 5 gives information about the methodology followed in order to find the best cueing image. Section 6 presents the results of the experiment and Section 7 presents the results and identifies the best image type. Section 8 reports on the experiment that tested the use of the best image type as a cue during authentication. Section 9 concludes.

2. AUTHENTICATION

In order to grant access to a restricted digital space, we use a two phase protocol: identification followed by authentication. Users are identified by means of a text string — either an email address or a special user name — and then authenticated to verify the identity. During authentication the user’s identity can be verified by means of a shared secret, called a key, or by means of a biometric which measures the user’s physiology or behaviour and matches it to a previously recorded template. Since biometric measuring devices are more expensive than keyboards most authentication these days is done by means of a shared secret password.

There is nothing inherently wrong with this — but in the face of fallible human memory and insecure communication channels it tends to fail. The undeniable fact is that people often forget their keys and these have to be replaced [1]. Unfortunately, there are some problems with current replacement practices:

1. The replacement process weakens the mechanism because a replacement key has to be delivered in some way and this delivery can be intercepted by an intruder who then proceeds to impersonate the legitimate user. If challenge questions are used the mechanism is weakened unacceptably, as we shall discuss in the following section.
2. The replacement has to be funded and the cost is anything but negligible. Gartner [1] claims that a single replacement costs between $15 and $30. They estimate that each employee will call about 5 times a year (since they have passwords for multiple systems). A cheap alternative is simply to send people their passwords by email, but since email is seldom encrypted, this option can only be used for insecure systems, and only where people haven’t forgotten their email password.

What we need to do, therefore, is to devise a way to help users to remember their passwords. The traditional way is by means of a physical record but this is extremely insecure and should be discouraged.

Since forgetting is the “fly in the ointment”, the next section takes a closer look at this human propensity.

3. FORGETTING

Humans learn in two ways — explicitly and implicitly. Implicitly learnt skills seldom decay but explicitly learnt knowledge, the category passwords belong to, is extremely prone to decay. Unfortunately humans do forget their passwords, and the forgetting is seldom deliberate. Ebbinghaus [2] proposed a forgetting curve which predicts that most forgetting occurs early on in the process and then slows down later on. Thus details may be forgotten within minutes if no serious attempt is made to encode the information in more than a cursory fashion.

Consider, now, how most passwords are chosen. Someone visits a website and is asked to provide a password, which is to be used at future visits for authentication purposes. The person’s goal is to peruse the website, or purchase some items, or perhaps something else — but whatever it is, the definition of the password is probably extraneous to the person’s immediate goals and purposes. If the person has had experiences of forgotten passwords in the past, a well-worn password that is used for this kind of eventuality might be provided. If there is a concern about security and the user is wary of using a previously-used password, she/he may provide a unique password and write it down. If, however, no record is made, the password is likely to be forgotten, especially if the site is used infrequently. Since people tend to rely on their memory to retain passwords [3], this is the most likely scenario.

Schacter [4] calls this forgetting the sin of transience. Researchers and practitioners have tried to come up with ways of improving memory. Schacter cites a number of memory improvement programs and health cures and concludes that none are miracle cures. One thing that does assist effective retrieval of remembered facts is the effectiveness of the encoding process. Schacter cites research into a mechanism called elaborative encoding where the person spends some time encoding the information using visual imagery, mnemonics or elaborative questions. These are indeed effective but, of course, require extra effort and are unlikely to be used in an uncontrolled password defining setting. Experience shows that password users seldom take this trouble [5].

Another way of improving retrieval is by the provision of cues. Nyberg et al. [6] argues that retrieval of information activates the same brain regions as those activated when the information was encoded. They experimented with word-sound encoding and found that provision of the sounds assisted word retrieval. Moscovitch and Craik [7] found that cueing was beneficial at deeper levels of encoding. The following section considers cueing mechanisms with emphasis on their use in an authentication context.

3.1 Cueing Mechanisms

A cue can be defined as:

a. A reminder or prompting, or
b. A hint or suggestion.

A cue heard by someone other than the person for whom it is intended, therefore, could produce the same association or act as the same reminder as it was intended to elicit in the target person — especially if the cue is effective. In an authentication setting such a universal cue is useless since it undermines the security of the authentication key. Thus a cue used in an authentication setting needs to be deliberately obtuse. It should make sense only to the legitimate user, and not to anyone else.

One of the most common mechanisms, used by a variety of websites, is that of challenge questions. On the face of it this is a viable mechanism for proving identity when passwords are forgotten. A closer look at challenge questions reveals many flaws. One has two choices in posing questions — either the user chooses his or her own questions at enrollment, and provides the answers, or the system has a set of questions, and the user is allowed to choose one, and provide the answer. Both options have problems:

- If the user has to generate the question he or she is equally likely to forget the question as the password. In this case the cue question places an extra demand on the user’s memory and is equally vulnerable to decay. One also has to put software in place to ensure that users specify reasonable and well-formed questions and do not simply enter their own password as the question, for example.

- If the system has a set group of questions these need to be applicable to a wide range of users. Thus the site owners resort to setting widely applicable questions based on, for example, the name of the person’s first school, first pet or mother’s maiden name. The fatal flaw with these questions is that a relatively superficial knowledge of the legitimate user is required in order to know the answers to these questions, and the challenge questions thus offer an intruder a convenient and insecure way into the system. Even if the answer to the chosen question is not easily determined using research, the fact that most sites revert to the same set of questions reduces the “secrecy” of the answer. The more sites holding the answers the less secret they are.

Other sites prefer not to make use of challenge questions and revert to emailing forgotten passwords to users. This is also an insecure practice because email is seldom encrypted and is easily intercepted by a hacker. The use of one-time passwords, which require changing as soon as the person logs in, is somewhat more secure, but only if it is indeed the legitimate user who is trying to gain access. If an intruder is requesting the password reminder, and watching for the email, the legitimate user will probably be completely unaware of the intrusion into his account until the negative effects of the intrusion manifest themselves.

Since email reminders and challenge questions are insecure and ineffective we should attempt to find some other mechanism of reminding users of their forgotten passwords. One way of doing this is by providing the user with a cue, as has been done by Hertzum [7]. He proposes that users specify particular password characters which will be displayed at password entry in order to jog their memory. This idea was tested with 14 users and it was found that it did help them to remember their passwords. Hertzum notes, however, that the defined passwords were often weak and predictable and argues that some kind of cueing mechanism is required in order to support the use of longer and stronger passwords.
The possibility we have explored is the use of images as cues. There is strong evidence that pictures are more memorable than words. This commonly known picture superiority effect claims that images are stored with names, or labels, associated with them [8], which enhances memorability. The idea for our research is that the user is given a personal image at enrollment and that the password would essentially be the image description or name. The user can then request the image to display as a password reminder should she/he forget the password. A purely representational image will not work in this secure context because what one really needs is an image that elicits a different textual association from different users so that intruders cannot confidently guess textual associations within the three strikes allowed before a lockout.

Stubblefield and Simon [9] experimented with using inkblots to assist users to form a semantic association with the textual password, which could be used as a reminder mechanism as required. They displayed 10 inkblots in a particular sequence. For each blot the user was required to enter two characters — the starting and ending character of their inkblot description. They had some success in trials of this mechanism, achieving an entropy of 4.09 bits per character. However, the cognitive load imposed on the user is significant. They do not merely provide a textual description; they have to parse it in their minds to extract the required starting and ending character, and then type that in. Stubblefield and Simon do not give demographic information about their experimental subjects but one can envisage this cognitive load being untenable for any but the most mentally agile of users.

There is evidence, however, that passwords based on associative memory are more memorable but harder for people to guess [10]. In addition to Stubblefield and Simon’s proposal outlined above, associative passwords have been trialled for sound clips [11] and for other words [12][10]. Sound associations were not particularly successful they tested the association between sound and an image. The system was evaluated by a group of students in a lab, which made the sound problematical. In the end the students simply memorised the pictures and did not use the sound to cue the pictures. Word association works well, but is very time consuming, both at enrolment and authentication.

Our hypothesis is that we could make use of images as direct cues, without the intermediate processing required by Stubblefield and Simon. We therefore need to determine what kind of image could support this cueing activity in an authentication setting. We need to find out what characteristics this image would have to exhibit to facilitate superior recall in the authentication context. The image descriptions would also have to be more durable than random textual passwords in order to improve the current situation.

Von Ahn and Dabbish [13] did research which relied on similar skills, but for a different purpose. They constructed a game, which required people to label images, all the while attempting to guess at the labels other game players have used to describe the image. Since their main purpose is to find commonly used descriptive labels for images, the research is different from ours. Our main purpose is to identify an image type which will elicit very different descriptions from different people.

We conducted a series of experiments in order empirically to verify the use of images in this context. Before discussing our experiments, we need first to discuss different image types and the effects of human vision on the image choice.

4. HUMAN VISION

One of the most vital of the human senses is vision. When an object is seen, the viewer will compare that object to an internal “database” of objects within his or her mind, and use past experience to match that object with the object being seen in order to identify it. Thus visual perception interacts with perceptual processes but also with memory, reasoning and communication [14].

This research considers the use of images as cues. In order to act as a cue in an authentication environment, the image must have the following characteristics:

1. Ambiguity — The image cue should mean different things to different people. Thus a straightforward representational image is unsuitable if the users share a common language since the description of the image is likely to be similar. Hence we need some kind of ambiguous image to act as a cue. An ambiguous image is interpreted differently by different people, according to the individual’s particular perceptual processes and past experiences of the world.

Hence if we can identify this kind of image, a specific user’s cue will not necessarily be useful to an intruder.

2. Efficacy — Human memory for pictures and their textual description needs to be superior to word memory so that the cueing mechanism is meaningful and excites a durable association. Furthermore, the textual description needs to be strong enough to act as a password.

The following two sections address these concepts in greater detail.

4.1 Ambiguity

A group of psychologists called the Gestalt psychologists have formulated a set of laws of organisation that help us understand the perceptual filling-in process. The laws relate to [15]: Closure, Good Continuation, Proximity, Similarity, Relative Size, Surround- edness, Orientation and Symmetry and Common Fate. To achieve ambiguity in the authentication context we need to find images that are sufficiently vague in terms of the Gestalt laws so that they will lead to multiple interpretations.

There is a category of images called “Ambiguous Images”. Bruce and Green [15] give some examples of pictures that depict different things depending on foreground/background ambiguity. They point out that humans see either the one or the other, but not both at the same time. These pictures have deliberately been made ambiguous and do not serve our purposes very well since they usually have only two possible interpretations. The first question we need to ask, in choosing images for this research, is how humans make sense of images that are not obviously representations of a particular object.

We therefore need a way to describe different candidate image types so that we can arrive at a particular description of an efficacious image type that can act as a cue. Alario and Ferrand [16] have classified a number of images and propose the following norms to describe them:

- **Name agreement** — the degree to which the people agree on the name of the picture;
- **Image agreement** — the degree to which the person’s mental image matches the picture;
- **Familiarity** — the familiarity of the concept being depicted;
- **Visual complexity** — measuring the number of lines and details in the picture;
- **Image variability** — indication of whether the name of an object invokes many or few images for the object.
accompanied by periority effect has been that we can rely on the previously-mentioned picture su-
We now present a summary of the literature in each of these areas.

In addition to abstract images, we decided to include a special image type ie. human faces, in our experiment. The face is a special image as far as humans are concerned. Each face has the same configuration and elements and yet humans are able to identify thousands of faces without any difficulty. There is disagreement amongst researchers about whether faces are processed as a unit or in terms of component features [17]. Smith and Nielsen [18] argue for a two-phase recognition process — a holistic processing phase followed by a process which does a feature by feature comparison. Dodson et al. [19] found that when people were required to come up with a description of facial features it impaired their ability to recognise the face at a later time. It seems reasonable to conclude that forcing people to describe individual components or features of faces is detrimental to the memory encoding process. On the other hand, Bower and Carlin [20] found that if people were asked to attribute intelligence to different faces, they remembered the face better later on. This is perhaps because the process of attributing semantic codes to the faces requires additional processing and this helps to encode the face in the person’s memory whereas the previous study considered features in isolation and “whole face” encoding was not encouraged or facilitated. We have included faces in our study to see whether the textual descriptions people ascribe to faces meet our requirements.

4.2 Efficacy

In order to determine viability of a particular image class as a cueing mechanism, we need a way to judge the efficacy of textual descriptions of members of the different image classes. This efficacy encompasses more than one aspect:

1. Descriptiveness — Humans should have the ability to describe the pictures in a textual format — this is termed picture naming.

2. Strength — The text association, in order to qualify as a strong password, needs to have either length or complexity, which make it harder to break.

3. Memorability & Durability — Human memory for pictures needs to be superior to word memory so that the cueing mechanism is meaningful. However, even more importantly, the text association should be durable in the sense that users are able to reproduce it perfectly after a time lapse.

We now present a summary of the literature in each of these areas.

4.2.1 Descriptiveness

Humans communicate by naming objects, a skill that is as effortless as it is essential to speech. The central premise of this research has been that we can rely on the previously-mentioned particular superiority effect accompanied by reliably retained textual descriptions. Levelt et al. [21] present a processing model of the picture naming task, which includes the following steps:

1. Recognition of the visual object.

2. The person now searches through his or her internal memory structures to find a match for the object.

3. During the following stage a selection is made from the internal structures.

4. Next there must be another matching process — where the internal structure is matched to a word representation.

5. Now, what Levelt calls syllabic gestural scores are derived. This converts the chosen word’s phonological shape into syllables that can be articulated.

6. Articulation can only occur once all the previous stages have completed.

7. Self-monitoring. Speakers can determine, during this stage, whether there has been an error, and self-repair.

The textual description attribution process requires the user to enter the description via the keyboard, so that the last two stages of the picture naming process given above will be replaced by processes attuned to writing and not to speaking. The self-monitoring stage is inappropriate in this setting since passwords are not echoed to the user due to security constraints. Bonin et al. [22] state that researchers are not agreed as to whether the phonological stage is involved in the production of writing (23 24) or whether the orthographical codes can be accessed directly (25 26) (both sets of researchers referenced by Bonin et al.). Bonin’s research has confirmed that speaking and writing share processing levels but that each also has a relative degree of autonomy.

For the purposes of this discussion we can probably ignore these differences between spoken and written picture naming. What is important, in the context of cueing by means of abstract image, is that the above process will be augmented since the abstract image is more expressive than a representative image, and does not have a simple label, but requires the person to use specific perceptual and cognitive processes in order to interpret, identify and verbalise what he or she sees in the image and to produce a textual description. For example, consider the process involved in assigning a name to one of the most famous images: inkblots. Rapaport [27], referring to the Rorschach inkblot verbalisation process, argues that such a process is an “association process initiated by the inkblots as stimuli” (g91). The results of the association process need to be converted to language, and this process is highly dependent on individual factors [28]. Hence even if two people perceive a particular image as belonging to the same semantic class they are likely to verbalise it in slightly different ways. We hope that these individual differences will lead to syntactically different picture descriptions and therefore distinctly different passwords.

4.2.2 Strength

In order to use an image as a cue, we need to consider the security aspects of the image. Passwords are generally broken in one of two ways if there is no cue: brute strength or dictionary attack. The former simply works its way through all possible permutations until it finds a match. The latter exploits the fact that most people will use a recognisable word in their own language and works its way through dictionaries until a match is found. The latter approach is by far the most popular because passwords can often be broken within a matter of minutes using this technique whereas brute force
is extremely time consuming. For example, in 2006 some hackers managed to get hold of a number of MySpace passwords. Security expert Bruce Schneier [29] analysed the passwords and found that the top three most used passwords were password1, abc123 and myspace1.

Hence, to make it harder for a dictionary attack to succeed we need to make the password less susceptible to this kind of attack. There are two ways of doing this — either by making the password longer by using more than one word or by making it more complex by including numeric and other special characters.

The latter approach has severe memorability limitations and the technique of replacing of vowels with numbers, such as using a 3 instead of an e, is so well known by attackers as to be almost useless. Recent studies have found that it is easier for observers to gain knowledge of this kind of password because it is harder to type in than if the user is typing in a familiar word [30]. Making the password longer, then, appears to be the most beneficial approach.

Since we’re asking people to describe non-representational images, we would expect to see longer passwords, which will contribute towards strength. Furthermore, there is evidence that previously seen pictures are named faster than new pictures [31]. Hence by timing responses a system may be able to infer that a possible intrusion attempt is underway. Since abstract images may well initiate the same semantic association in the legitimate user and the intruder, but a slightly different syntactical conversion is produced, the best way to prevent an intruder from trying different possible descriptions until he or she succeeds is by judicious use of the “three tries lockout” policy.

4.2.3 Memorability & Durability

The picture superiority effect states that humans remember pictures better and for longer than words. Psychologists have demonstrated this with a number of experiments [32] [33] [34]. Research on advertising has shown that recall of pictures is high even after as little as a 10 or 30 second exposure. Singh et al. [35] found that after 6 weeks people retained almost half the products and a third of the claims after only two 30 second exposures. To explain this effect Paivio proposes a dual coding theory. This theory proposes that humans remember both a visual and verbal code for images, and that this eases retrieval since there are two pathways available and each provides a pathway to the other. Nelson [36] suggests that pictures are described in a richer more detailed fashion in memory and it is this that leads to superior retention. Whatever the reason, there is a solid body of evidence that humans remember both a visual and verbal code for images, and that this eases retrieval since there are two pathways available and each provides a pathway to the other.

Recall requires the person to re-generate the name of a previously-seen picture. There is some evidence, however, that people recall picture names for a long time. Cave [37] found that a single exposure to a picture could be detected even after 48 weeks by examining naming response times at subsequent exposure to the image. An interesting effect was observed by MacLeod [38], who studied the re-learning effect. He tested the memory of pictures in terms of recall (where subjects had to recall the name of the picture) and in terms of recognition (where subjects had to identify the previously-seen picture). He determined that there is a savings effect for pictures when a recall acquisition process was used, but not when a recognition acquisition process was used. The savings effect is an effect whereby people are unaware that the knowledge is available to them until they try to relearn something. The vastly shortened acquisition time is a result of the previous learning.

This research does not rely on recognition, but rather on recall, and the savings effect should therefore be active. The use of images in this study requires the user to study the image and to describe it — a fairly cognitively intensive process. Our expectation is that the details will be recalled even after a time lapse.

4.3 Summary

We have enumerated two characteristics images need to exhibit in order to use them for cueing: ambiguity and efficacy. In order to satisfy the first requirement we tested a number of abstract image classes, classes of images that elicit no immediate association with any real life object, and the face class, which has proven memorability. We tested a number of images from each of these image classes in order to determine efficacy of the class, by analysing and testing the following:

1. Descriptiveness — to what extent is it possible for people to assign a name to the image? This will, to some extent, be assisted by the adherence of the abstract image to the Gestalt laws. In terms of Alario and Ferrand’s norms, we need high visual complexity.

2. Strength — measured in terms of strength of the description, the character distribution of the responses, and the entropy of the description. We also need to test for low name agreement and high image variability, which tests whether different people provide the same names for the image or whether descriptions differ.

3. Memorability & Durability — How durable are the image text associations? In order to determine this we will conduct an experiment to test the memorability of image descriptions. Memorability is directly related to high image agreement — a stronger single mental image will lead to higher likelihood of the user remembering the image description than many mental images for the same abstract image.

We investigated this by means of an experiment which compared the different abstract image types in terms of convergence of image descriptions (to measure descriptiveness and strength). The experiment is described in the following section. We tested the durability of the textual descriptions of the best performing image in a further experiment, which is described in Section 5.

5. TESTING DIFFERENT IMAGE TYPES

The most suitable images for testing, which meet the requirements laid down in Section 4, are those that exhibit the required level of vagueness in terms of the Gestalt laws [39] discussed in Section 1 on the one hand. We will also be using faces because of their proven memorability.

As explained in Section 4.3, we require images that have low name agreement, high image agreement, are visually complex and those for which it is possible to come up with a memorable textual description. Our Images are shown in Appendix A. The relationship between the image classes and the Gestalt laws is shown in Table 4.

- Faces — Humans are famously good at remembering faces. The reasons for this are debated by learned researchers. Some believe that the human brain has a special ability to recognise faces [40] but others believe that it is a skill we are good at because we spend a great deal of our lives doing it [41]. Whatever the reason, the fact remains that humans are good
at recognising previously-seen faces. Whereas memorability is clearly not an issue, durability might well be. Chance and Goldstein [42] conducted an experiment to determine whether previously assigned verbal labels would be recalled after a time lapse. They found performance in recalling verbal labels to be weak and unreliable with only 35% of verbal labels being recalled correctly. However, despite this we included faces to see whether our experience replicates theirs.

- **Fractals** — Singh [43] quotes Works as saying that fractals are appealing to humans due to their innate aestheticism. This makes the fractal a good candidate for our research but their suitability for cueing remains to be seen.

- **Inkblots** — Stubblefield and Simon [9] used inkblots, and gained good preliminary results. The most famous user of inkblots was Rorschach [44]. He thought that the responses to his inkblots could be used to assess personality. This particular test is no longer given much credibility [45] but the technique for eliciting variable responses could work very well in our context.

- **Snowflakes** — Snowflakes were used by Goldstein and Chance [46] as part of a larger experiment measuring recognition ability but no work has been performed to study users’ descriptions of these images.

- **Textures** — The Texture image type was chosen because of their intrinsic variety. Textures can have smooth or rough, coarse or fine as well as having regular or irregular patterns.

We obtained our experimental images from multiple sources. Our human faces were chosen from the Essex Face Database [47] to obtain an equal balance of gender in good lighting conditions on plain backgrounds. A commercial toolset [48] was used to generate the fractal images. Inkblots were generated using a custom parameterised script we developed to control the distribution of blots within the image. Snowflakes were generated using a free Snowflake generator tool [49]. Textures were chosen from the CuReT [50] texture database to comprise of both artificial and natural objects with varying degrees of lighting conditions and smoothness of the texture. Generated images were chosen by varying parameters which resulted in images which were distinctly different in appearance.

We developed a web-based application to present participants with the images shown in Appendix A so that they could provide a textual association for each. We allowed users the option of not submitting an association for a particular image if they found it difficult to form an association. We collected all associations and performed an analysis, which is reported in the following Section.

6. RESULTS

We first consider the response rate for images in terms of the number of responses gathered for particular images. The user could choose not to provide an association for an image and this act of not responding to an image was taken as an indication that the user found the image too difficult to generate a textual association for. As such, this serves as an implicit subjective measure related to the ease of forming an association from a particular image or image class. In this section we refer to image n where n is the image presented in Appendix A.

6.1 Descriptiveness

We wanted to determine the likelihood of participants assigning a textual description to each image type in order to measure the ease of descriptiveness of the image type. Each of the 49 users in this experiment were presented with 30 images, 6 of each image class, and prompted to enter a description. We gathered 1355 non-null responses (Faces: 278, Fractals: 272, Inkblots: 270, Snowflakes: 257, Textures: 278). The textual descriptions assigned to image 14 give a good example of the range of responses we obtained: bufferoad, demented frog, mangled butterfly and angry clown, among others.

We found that there was a statistical difference in the number of responses we received from users based on the image class, F(1.83, 535.4) = 15.53, p < 0.05. The snowflake class had a significantly lower rate of responses when compared to all other image classes while the face and texture classes had higher response rates. When we compared the response rates of individual images we found that there were no statistical differences within the image classes for any particular images within their class, p > 0.05. This indicates that faces and textures are the easiest image classes for users to form associations with and that snowflakes are the most difficult. In the following analyses we removed all null responses and considered only responses collected as a result of successful picture naming.

6.2 Strength

If we want to use the image descriptions as cues, we have to deal with the possibility of a guess being made as to the image description generated by the legitimate user. A long description, therefore, will not necessarily act as a strong password; one needs to consider the entropy of the description and the variability of the responses.

This section therefore considers the responses in terms of strength from length (response length), image variability (character distribution and informational entropy) and name agreement (predictability).

6.2.1 Response Length

The next measure that we consider is the average length of the textual response obtained from an image measured in characters, in order to determine the strength of the description if it were used as a password. However, as we will show, since this does not take into account the character set or probability distribution of the character set it cannot be used to independently measure the security of a password or textual association. It is, nonetheless, a useful simple indicator of security. The results of this analysis are presented in Figure 1 and can be summarised as Faces (M=16.6, SE=0.83), Fractals (M=18.3, SE=1.1), Inkblots (M=18.3, SE=1.0), Snowflakes (M=15.3, SE=0.7) and Textures (M=12.1, SE=0.5)

![Figure 1: Response Length By Image Class](image_url)
significantly affected by the image class, F(3.6, 1000.5)=12.414, p < 0.05. The length of the response is significantly shorter for textures than for all other image classes. Furthermore, we found that an extremely simple snowflake with few “rays” had significantly lower response character length (M=13.02, SE=1.83) than a comparable snowflake with many rays (M=19.1, SE=1.93) indicating that overly simple images may result in simple responses, F=(4.16,99.96)=2.85, p < 0.05. This shows that the type of image shown to the user is important as different image classes can encourage users to provide the longer responses which are generally desired for stronger passwords.

6.2.2 Image Variability

Character Distribution

The character distribution of the response is a security indicator since it gives an idea of how predictable the responses are and how easily an image description could be guessed. When we considered the character distribution of the responses we discovered that they closely parallel that of English. This is unsurprising as all the participants were English speakers and since all responses would be in English, the responses would appear to inherit the character distribution frequencies.

Informational Entropy

The informational entropy of responses gives us an indication of the image variability of the image. The entropy of the information in a signal, as defined by Shannon[51], specifies how much uncertainty or “randomness” exists within the signal. Specifically

\[H(X) = - \sum_{i=1}^{n} p(X_i) \log_2 p(X_i) \]

where \(H(X) \) is the entropy of the signal X in bits, \(X_i \) is a token in the alphabet of X represented by 1..n and \(p(X_i) \) is the probability function representing the probability that the token will appear in the signal. The probability function used in this case is a simple weight based on the character frequencies within the textual association. As entropy within the signal increases it becomes less predictable and, as such, the more difficult it becomes to guess the content. Here we represent the entropy of a textual response by the average number of bits required to encode each character using an encoded string. For comparison; a standard ASCII keyboard has 95 printable characters (including the space character), this results in an upper bound on textual entropy of 6.57 bits per character. The lower bound for entropy is clearly 0 bits per character for a string composed entirely of a single character; since the next character in the string is always predictable. This entropic view of textual passwords essentially measures the extent of the usage of the available character set.

The results of entropic analysis of the responses are summarised as follows; Faces (M=3.1,SE=0.01), Fractals (M=3.1,SE=0.02), Inkblots (M=3.1,SE=0.02), Snowflakes (M=3,SE=0.01) and Textures (M=2.9,SE=0.01).

Image Type	Closure	Continuity	Proximity	Similarity	Symmetry
Faces	√	√		√	
Fractals	√	√		√	
Inkblot	√	√	√	√	√
Snowflakes	√	√	√	√	√
Textures	√	√	√	√	√

Table 1: Image Classes & the Gestalt Laws

From the results presented in Figure 2 we can see that the texture image class is the only class with a significant difference in the number of bits per character, F=(4.1108)=5.49, p < 0.05. We observed that the snowflake with the highest number of rays had a significantly higher number of bits per character (Image 22: M = 3.28, SE = 0.04) than three other snowflakes (Image 20: M = 2.93, SE = 0.002),(Image 21: M = 2.89, SE = 0.05),(Image 24: M=2.93, SE=0.05), F(4.11,197.285)=4.083, p < 0.05. There were significant effects between individual images within the textures class which were caused by a single image, of a leaf (image 28), which had a significantly lower number of bits per character (M = 2.62, SE = 0.07). There were two textures with high amounts of repetition which had higher than average bits per character for the textures image class (Image 29: M=3.00, SE=0.06),(Image 30: M=3.08, SE=0.04), F(3.753,180.12)=5.508, p < 0.05. The number of bits per character is essentially the same for most image classes (except textures) and the length of the response is the largest contributor to the number of bits per response (ie. total entropy) and therefore the overall security of a particular textual association.

6.2.3 Name Agreement

We can measure name agreement using the Smith-Waterman[52] algorithm to measure local optimal alignments between strings. These alignments correspond to local similarities between strings and are a useful measure in our case to locate instances where the strings have similar sections — thus measuring the similarity between two strings. A heuristic approach was used to determine a normalised score for each class of images normalised by response length.

The analysis shows that the Smith-Waterman score is significantly affected by the image class, F(1.79,496)=1487, p < 0.05. The results show that inkblots have the lowest average Smith-Waterman score (least similarity) followed by fractals, snowflakes, faces and finally textures.
Analysis of the Smith-Waterman scores for individual images reveals that within the faces class any images with distinctive features (such as images 1 and 4) score higher (more similar) Smith-Waterman scores as these features are more readily commented upon within the user’s response, \(F(1.905,91.45)=36.567, p < 0.05\).

Two highly symmetrical fractals (images 7 and 11) had significantly higher Smith-Waterman scores than the other fractals, \(F(1.725,85.62)=23.66, p < 0.05\). There was a third symmetrical image within the fractal class (image 12) that did not score similarly so the reasons for these particularly high scores is unknown. There was a significant decrease in Smith-Waterman scores for the inkblots with high density distributions of blots (images 13, 14 and 17) as compared to the more evenly distributed inkblots (images 13, 14 and 17), \(F(1.74,83.52)=42.196, p < 0.05\). The snowflakes class exhibited significant differences in the Smith-Waterman scores, \(F(1.53,73.565)=66.757, p < 0.05\). The two least complex snowflakes (images 19 and 21) had significantly higher (more similar) scores than all other snowflakes followed by the two most complex images (images 20 and 24). Interestingly the lowest Smith-Waterman scores were for images 22 and 23 which were generated using either the maximum number of rays or the maximum complexity but not both. The images within the texture class were also found to have significantly higher Smith-Waterman scores for easily identifiable textures (images 28 and 29), \(F(1.268,60.878)=193.984, p < 0.05\).

In conclusion, the inkblot images scored best in terms of having a low name agreement, followed by snowflakes while textures had the highest level of name agreement.

7. DISCUSSION

When we examine the results from the previous section we discover that the Inkblot and Fractal classes are particularly good performers for all metrics while Texture and Snowflake classes perform poorly (except for name agreement for the latter).

The bits per character for each image class was essentially the same — indicating that response length was the primary factor when determining the security of the image description. Hence for the majority of our experiments there was no appreciable difference between individual images within the image classes, whereas there were many differences across class boundaries.

One explanation for the above findings is that the normal function of the visual system is to detect strong perceptual signals, i.e. “recognise things” within retinal images comprising potentially ambiguous combinations of visual elements set against, or even partially obscured by, background clutter “distractors”. The Gestalt laws indicate grouping mechanisms that have evolved to facilitate visual interpretation under the above conditions and thereby improve the perceptual signal-to-noise, i.e. receiver operating characteristic, for visual recognition. By constructing images that potentially contain ambiguity in the arrangement of their visual elements, we would appear to be able to elicit ambiguity in their perceptual interpretation.

Therefore, by reducing the signal-to-noise ratio in perceptual grouping space we can potentially increase the range of interpretations, and perhaps also their uniqueness as near random groupings become associated in the mind of the perceiver, to contribute to the security (unpredictability) of the elicited textual responses. The reverse of the above argument is also true; images containing distinctive features that rise above the perceptual signal-to-noise, limit the potential for ambiguity and thereby multiple interpretations, as exhibited by the texture images containing highly distinctive elements.

On the one hand it would appear that we should generate a combinatorial explosion of potentially valid interpretations of the atomic visual elements presented in each cue image. The most straightforward approach to achieving such a combinatorial power set would appear to be, on first sight, to construct the cue images from a wide variety of very small visual features, thereby maximising their potential combinations. However, following this approach would lead to fine texture-like fields being generated and we observed that the text produced in response to texture fields is not as rich and unique as that produced by inkblots or fractals. A potential explanation is that texture fields are being interpreted as global homogeneous visual percepts, e.g. classic texture fields might elicit descriptions such as sand, water, pebbles etc, comprising simple unitary concepts.

This observation of the effect of increasing visual complexity beyond a certain threshold has been reported by Granovskaya et al. [53]. Images beyond a threshold level of complexity appear to be interpreted and memorised in terms of the statistical distribution of atomic shapes from which they are constructed. Krienovich and Longpré [54] have suggested that limited mental memory capacity is responsible for this barrier to memorising highly complex images accurately and have formalised this notion in terms of a modified version of Kolmogorov complexity.

By generating visual elements over a range of spatial scales, we are less likely to generate a homogeneous texture-like image field and correspondingly more likely to elicit local interpretations that contribute to a global percept representing a compound object or scene with multiple elements, to elicit the richest responses. Hence we should maximise use of our limited mental capacity for visual complexity by generating cue images containing structure and structural relations between elements, as opposed to low-level disorder.

Fractals, by definition, are constructed from visual elements spanning a range of spatial scales and the inkblot generation mechanism likewise produces and combines atomic visual elements, i.e. blots of varying sizes. Therefore these mechanisms would appear to be well suited to generating image fields that contain perceptually significant local structure. While the snowflake images also contain structures over a range of spatial scales, their regularity and symmetric configurations would appear to reduce their scope for multiple competing interpretations.

The experiments in Section 5 indicate that the elicited responses are sufficiently secure to provide a viable cueing mechanism. Given the above evidence it would appear that at least inkblots and fractals have the potential to serve as password cues. Our last metric for cue image efficacy is durability. To test durability and hence overall efficacy in an authentication context, we used inkblots as cues in a longitudinal experiment. The following section reports on our findings about the viability of inkblot-like image cues, which we have called cueblots, in eliciting strong passwords.

8. CUEBLOT AUTHENTICATION

In order to test the efficacy of cueblots we developed a website for an elective module within our undergraduate computing science course. The website gave students access to lecture notes, their grades and various other resources. A total of 53 undergraduate students used the website. Users were randomly assigned to the password or cueblot conditions. The cueblot-assisted authentication process had the following phases:

1. **Registration:** users were given a username and registration code, by email, to facilitate the registration process. When they entered the key, the system either allowed them to choose a password (for the password condition), or displayed a cue...
blot, and allowed the user to customise and tailor the cueblot, as illustrated in Figure 3 to their satisfaction. The user was then instructed to give a cueblot description as a password. The cueblots were comprised of 5 elements: (i) a randomly selected seed, (ii) the maximum diameter of blots on the canvas, (iii) the number of blots on the canvas, (iv) the distance between blots and (v) the number of colours in the cueblot. When the user is happy with their choice of cueblot the system simply saves these 5 parameters which can be used during authentication to regenerate the cueblot. The users were permitted to tailor the cueblot so as to ensure that they were not presented with an cueblot that they found it impossible to create a textual association for. If they were presented with a cueblot they considered to be obscure, they could either request a brand new one or tailor that one until they felt they were able to create an association.

2. Authentication: The users entered a user name and were the directed to the authentication page. In the case of password users a simple password text entry area was supplied. In the case of cueblot users “their” cueblot was displayed and the user could re-enter the original cueblot description.

3. Replacement: users could request a re-registration from the website administrator by email if the password had been forgotten.

The experiment ran for 9 weeks and all accesses were logged to facilitate analysis. The results are presented in the following section.

8.1 Results

Of the users who had agreed to their login behaviour being monitored, a total of 53 actually used the site. Of these, 24 were allocated to the password condition and 29 to the cueblot condition. One user from the password condition needed a password reset during the course of the experiment and both the original and replacement passwords are included in our analysis; no users in the cueblot condition requested a replacement password.

We encountered six instances of people who deviated from the instructions provided for their condition. Two password users used the registration code as their password, probably because they had an email record of this code, and this made things easier for them if they forgot their password. Four people chose to ignore their cueblot, declining the offered cue and instead providing a password or pass-phrase of their own choosing. Since this type of behaviour is entirely possible in real life deployments, we retained these passwords/descriptions throughout our analysis. Examples of passwords given by cueblot users are: scarypumpkin, bunnysplat, blob, somethin and mask.

Authentication mechanisms, whether they make use of cues or not, must try to maximise both security and ease of use. The next two sections will consider our findings related to cueblot-assisted authentication in terms of these perspectives.

8.2 Security

When discussing the security of an authentication scheme based on textual input the first measure considered is typically the length of the password and its character complexity. That is to say; longer passwords with larger choices of available characters (i.e. lowercase and uppercase letters, numbers and special characters instead of just lowercase letters) will result in much more secure passwords.

Password Length

When we consider the length of the response for each condition we find, surprisingly, that there is no significant difference between passwords (M: 7.52, SE: 0.332) and cueblots (M: 8.31, SE: 0.632), \(p > 0.05 \). Similarly when we evaluate the mean number of bits required per character for passwords (M: 2.49, SE: 0.09) and cueblot descriptions (M: 2.64, SE: 0.11) we find that this, too, is not significant, \(p > 0.05 \).

Password Guessability

The length and number of bits per character, however, do not tell the full story. We also have to consider how similar descriptions are to each other and to what extent they have similar substrings.

We used the Smith-Waterman algorithm [52], which is designed to do local sequence alignment. This allows us to measure the longest common sequences between strings (i.e. common uses of words such as “the”), in this case a higher score indicates a longer sequence and thus a lower score is desirable. We found that cueblots (M: 0.08, SE: 0.005) had a significantly higher Smith-Waterman score than passwords (M: 0.05, SE: 0.006), \(t(48.85) = -4.088, p < 0.05 \), which indicates that users often include a larger subset of common words within their cueblot descriptions than with traditional passwords.

In the next section we will analyse the users’ performance at using cueblot-assisted authentication in the context of time and effort required as well as login success rates.

8.3 Ease of Use

In this section we focus on the results gathered from our experiment which give us an indication of the user’s experience of using the cueblot system as compared to the traditional password system.

Registration

Users were sent a registration code by email, which allowed them to access the site. Although it is often glossed over, the registration process can play a vital role in forming the user’s initial perspective of the system. In our experimental system the password condition was a simple password entry prompt in the traditional style (users were asked to enter the password twice to confirm its correctness). By comparison, since we had elected to allow users to design their own cueblots we implemented a cueblot designer as part of the registration process. We found that this resulted in users spending considerable time designing their cueblot, inflating the registration time (seconds) for the cueblot condition (M: 256.03, SE: 71.364) so that it was much more time-consuming than password registration time (M: 44.88, SE: 8.68), \(t(52) = -2.729, p < 0.05 \). This can be viewed as a positive or negative effect depending on the reader’s point of view. It clearly makes the registration more interactive, which is a good thing and is likely to lead to more memorable passwords, but it does significantly increase registration time.

Authentication

We continue our discussion of time by considering the mean time (seconds) required to login for successful sessions. This measurement was taken from user name entry until the login session was completed and may also include more than one login attempt if they were unsuccessful at first. We found that there was a significant difference between cueblots (M: 13.08, SE:0.532) and passwords (M: 11.15, SE:0.469), \(t(774) = -2.724, p < 0.05 \). This value includes any additional time it would have taken for the user’s browser to download and display the image representing the inkblot (generally less than 3KB in PNG format).

During the course of the experiment there were a total of 388 login sessions for cueblots and 412 login sessions for passwords. Of these there were a significantly lower number of sessions with a login failure for the cueblot condition (23) than for the password condition (44), \(p < 0.05 \). This puts the mean number of failed
However, when we look at the failed sessions in more detail we discover that within a login attempt session the average number of attempts at getting the password correct per session is somewhat different. We found that there was an average of 1.18 attempts (SE: 0.118) per session for a password while cueblots required an average of 1.96 attempts (SE: 0.493). Our results indicate that there was borderline significance ($t(65) = -1.985$, $p = 0.051$) which may warrant further investigation. Thus cueblot users are more likely to get it right first time but may make more attempts to login if they fail the first time.

We also considered the number of sessions which were regarded as “total failures” i.e. sessions within which there was a failed login attempt (or a sequence of failed login attempts) but no eventual success indicating that the user gave up. We found that there was no significant difference in this respect (3 failed cueblot sessions, 2 failed password sessions, $p > 0.05$).

8.4 Are Cueblots Efficacious Password Cues?

Efficacy metrics, as outlined in Section 4.3, are descriptiveness, strength and durability. In terms of descriptiveness and strength, these results appear to conflict with the results of our previous experiment. The length of response decreased significantly once users were asked to perform this task within a live authentication system, and this impacts the strength of the password. Furthermore, provided textual descriptions were shorter and less descriptive, and, indeed, some appeared to have nothing to do with the provided cue, so the cueblot fails the descriptiveness test as well. This result strengthens findings by Brostoff et al. [55] during evaluation of the Passface authentication mechanism where usage of an authentication system in real life differed significantly from lab-based experimentation.

In our experiment it seems that when the user knows that the cueblot description is going to be used frequently as a password, he or she provides a much shorter description than would be provided if the description was only going to be provided once or twice in a lab-based experiment. This is perfectly reasonable, because users emphasise convenience over security. Hence the length of response and bits per char are basically the same as passwords. This is rather disappointing since we had hoped that the presence of the cueblot would allay users’ fears of forgetting their passwords and therefore encourage them to choose longer (and stronger) passwords.

When we first began our research into this area we believed that users would embrace the ability to create longer passwords if they were provided with a way to help them remember the password more easily. Unfortunately this does not appear to be the case, confirming the findings of Dhamija and Perrig [56] that people are only willing to expend the minimum effort in managing their passwords. Our results indicate that the descriptions offered by users are of comparable length and complexity to traditional passwords but with the problem that they will tend to include common stop-words in their description which weakens the password.

The general trend of using sub-optimal passwords accords well with Payne’s [57] findings about how people conduct an implicit cost-benefit analysis when making decisions and choices. Users of passwords are clearly trading off the extra effort involved in typing in long and complicated passwords as against the risk of having
an intruder break into their account. The risk is obviously not high enough for them to put the extra effort in, to use longer and stronger passwords.

9. CONCLUSION

We investigated the hypothesis that passwords could be cued by using suitably chosen images. In Section 6 we found that textual descriptions elicited by some of the images types did indeed show some potential. In particular, we found that inkblot-type abstract images elicited the longest and strongest textual descriptions. We therefore decided to conduct a further experiment in order to test the durability of these inkblot-type images.

However, in our final experiment, we found that the presence of the cueblot did not have a positive effect on the users. It did not appear to encourage them to strengthen their passwords and they did not exploit the true potential of their cueblot in coming up with a textual description thereof, probably because users anticipate the extra effort involved in continuously entering the long description at each authentication attempt with little enthusiasm.

We have to conclude that, whereas the cueblots were theoretically viable in terms of cueing passwords, the end-user’s desire for convenience and speed of access led them not to exploit the potential for cueing provided by the cueblot. Perhaps the only conclusion is that the combination of convenience-seeking users and passwords is doomed to failure. If this is the case then any auxiliary efforts to strengthen the mechanism, such as the one explored in this paper, are futile.

However, there is another context within which cueblots could well be efficacious. For example, cueblots could be used instead of the security questions that are currently used when users forget their passwords. Their descriptions are held only by the system itself, and therefore could not be discovered by judicious use of the person’s social networking page or personal website [58]. Further experiments will focus on the use of cueblots in other contexts, since we believe that they do offer much potential due to their superior descriptiveness and strength.

APPENDIX

A. IMAGES

A.1 Faces

The face images used in this study were collected from the Essex University Computer Vision Facial Databases [47] “face94” and “face95” and were chosen to represent an equal mix of male and female faces with a range of physical features. Only images that were clearly visible with similar scale and without distracting backgrounds were considered.

A.2 Fractal

The Fractals were generated using a commercial program Ultra Fractal [48]. Variations within the image class were obtained by changing the algorithm used to generate the fractal in addition to varying the viewing position and colouring algorithms.

A.3 Inkblots

The inkblots were generated by a custom PHP script. The inkblots were built by dropping “blots” onto a canvas and ensuring the next blot landed within a fixed area of the previous blot. The canvas was then mirrored to create the final inkblot. The images were varied by changing the values of variables which control the number of blots, blot diameter, colour and distance between the blots.
A.4 Snowflakes

The Snowflake images were generated using A.I. Studio Snowflake Generator[49] and variations within the images were achieved primarily by varying the number and complexity of the rays along with scaling and position details.

A.5 Textures

The Texture images were obtained from the CUReT[50] texture database and were chosen to represent a range of different textures including both man-made and natural textures.

B. REFERENCES

[1] R. J. Witty, K. Brittain, Automated password reset can cut IT service desk costs, Gartner Report (2004).
[2] H. Ebbinghaus, Über das Gedächtnis, Untersuchungen zue experimentellen Psychologie, Wissenschaftliche Buchgesellschaft, 1992, reprint from 1885.
[3] S. Gaw, E. W. Felten, Password management strategies for online accounts, in: SOUPS '06: Proceedings of the second symposium on Usable privacy and security, ACM Press, New York, NY, USA, 2006, pp. 44–55.
[4] D. L. Schacter, The Seven Sins of Memory. How the Mind Forgets and Remembers, Houghton Mifflin Company, 2001.
[5] L. Nyberg, R. Habib, A. R. McIntosh, E. Tulving, Reactivation of encoding-related brain activity during memory retrieval, PNAS 97 (20) (2000) 11120–11124.
[6] M. Moscovitch, F. I. M. Craik, Depth of processing, retrieval cues and uniqueness of encoding as factors in recall, Journal of Learning and Verbal Behavior 15 (4) (1976) 447–458.
[7] M. Hertzum, Minimal-feedback hints for remembering passwords, Interactions (2006) 38–40.
[8] A. Paivio, Mental representations: A dual coding approach, Oxford University Press, Oxford, UK, 1986.
[9] A. Stubblefield, D. Simon, Inkblot authentication, Tech. Rep. MSR-TR-2004-85, Microsoft Research (August 2004).
[10] J. Podd, J. Bunnell, R. Henderson, Cost-effective computer security: Cognitive and associative passwords, in: OZCHI '96: Proceedings of the 6th Australian Conference on Computer-Human Interaction (OZCHI '96), IEEE Computer Society, Washington, DC, USA, 1996, p. 304.
[11] J. Liddell, K. V. Renaud, A. De Angeli, Authenticating users using a combination of sound and images, in: HCI 2003, Bath, UK, 2003, short Paper.
[12] S. L. Smith, Authenticating users by word association, in: G. Papp, R. Posch (Eds.), Proceedings of the Human Factors Society 31st Annual Meeting, Wien, 1987, pp. 135–138.
[13] L. von Ahn, L. Dubisch, Labeling images with a computer game, in: CHI '04: Proceedings of the SIGCHI conference on Human factors in computing systems, ACM Press, New York, NY, USA, 2004, pp. 319–326.
[14] P. Jacob, M. Jeannerod, Ways of Seeing. The scope and limits of visual cognition, Oxford University Press, Oxford, UK, 2003.
[56] R. Dhamija, A. Perrig, Déjà vu: A user study using images for authentication, in: Proceedings of USENIX Security Symposium, Denver, Colorado, 2000, pp. 45–58.

[57] J. W. Payne, Contingent decision behavior, Psychological Bulletin 92 (2) (1982) 382–402.

[58] A. Rabkin, Personal knowledge questions for fallback authentication: Security questions in the era of facebook, in: Symposium on Usable Privacy and Security. SOUPS 2008, Pittsburgh, USA, 2008, pp. 13–23.