ON METRIC CONNECTIONS WITH TORSION ON THE COTANGENT BUNDLE WITH MODIFIED RIEMANNIAN EXTENSION

LOKMAN BILEN AND AYDIN GEZER

Abstract. Let \(M \) be an \(n \)-dimensional differentiable manifold equipped with a torsion-free linear connection \(\nabla \) and \(T^* M \) its cotangent bundle. The present paper aims to study a metric connection \(\overset{\sim}{\nabla} \) with nonvanishing torsion on \(T^* M \) with modified Riemannian extension \(g_{\nabla,c} \). First, we give a characterization of fibre-preserving projective vector fields on \((T^* M, g_{\nabla,c}) \) with respect to the metric connection \(\overset{\sim}{\nabla} \). Secondly, we study conditions for \((T^* M, g_{\nabla,c}) \) to be semi-symmetric, Ricci semi-symmetric, \(\tilde{Z} \) semi-symmetric or locally conharmonically flat with respect to the metric connection \(\overset{\sim}{\nabla} \). Finally, we present some results concerning the Schouten-Van Kampen connection associated to the Levi-Civita connection \(\nabla \) of the modified Riemannian extension \(g_{\nabla,c} \).

Mathematics subject classification 2010. 53C07, 53C35, 53A45.
Key words and phrases. Cotangent bundle, fibre-preserving projective vector field, metric connection, Riemannian extension, semi-symmetry.

1. Introduction

Let \((M, \nabla) \) be an \(n \)-dimensional differentiable manifold equipped with a torsion-free linear connection \(\nabla \). Denote by \(T^* M \) the cotangent bundle of \(M \) and let \(\pi \) be the natural projection \(T^* M \to M \). The vertical distribution \(V \) on \(T^* M \) (\(V \) is the kernel of the submersion \(T^* M \to M \)), which is the integrable distribution. If \(M \) is a paracompact manifold there exists a \(\mathcal{C}^\infty \)-distribution \(H \) on \(T^* M \) which is supplementary to the vertical distribution \(V \), such as the Whitney sum \(TT^* M = HT^* M \oplus VT^* M \) holds.

For the torsion-free linear connection \(\nabla \) on \(M \), the cotangent bundle of \(M \), \(T^* M \), can be endowed with a pseudo-Riemannian metric \(g_{\nabla} \) of neutral signature, called the Riemannian extension of \(\nabla \), given by

\[
\begin{align*}
\mathcal{G}_{\nabla}(H X, H Y) &= 0 \\
\mathcal{G}_{\nabla}(H X, V \omega) &= \mathcal{G}_{\nabla}(V \omega, H X) = \omega(X) \\
\mathcal{G}_{\nabla}(V \omega, V \theta) &= 0
\end{align*}
\]

where \(H X \) and \(H Y \) denote the horizontal lifts of the vector fields \(X \) and \(Y \), and \(V \omega \) and \(V \theta \) denote the vertical lifts of the covectors (1-forms) \(\omega \) and \(\theta \). Thus, the Riemannian extension of \((M, \nabla) \) is a pseudo-Riemannian manifold \((T^* M, g_{\nabla}) \). Riemannian extensions were first defined and studied by Patterson and Walker \[16\] and then investigated in Afifi \[2\]. Moreover, Riemannian extensions were also considered in Garcia-Rio et al. \[7\] in relation to Osserman manifolds (see also Derdzinski \[3\]). For further references relation to Riemannian extensions, see \[1\] \[6\] \[10\] \[15\] \[21\] \[22\] \[23\]. Classical Riemannian extensions have been generalized in...
several ways, see, as an example [13]. In [3, 4], the authors introduced another generalization which is called modified Riemannian extension. For a symmetric (0, 2)-tensor field c on (M, ∇), this metric is given by $\mathcal{g}_{\nabla, c} = \mathcal{g}_{\nabla} + \pi^* c$, that is,

\[
\begin{align*}
\mathcal{g}_{\nabla, c}(H^X, H^Y) &= c(X, Y) \\
\mathcal{g}_{\nabla, c}(H^X, V^\omega) &= \mathcal{g}_{\nabla, c}(V^\omega, H^X) = \omega(X) \\
\mathcal{g}_{\nabla, c}(V^\omega, V^\theta) &= 0.
\end{align*}
\]

In this paper, we consider a metric connection $\bar{\nabla}$ with nonvanishing torsion on the cotangent bundle T^*M with modified Riemannian extension $\mathcal{g}_{\nabla, c}$. First, we give a necessary and sufficient condition for a vector field on $(T^*M, \mathcal{g}_{\nabla, c})$ to be fibre-preserving projective vector field on T^*M with respect to the metric connection $\bar{\nabla}$. This condition is represented by a set of relations involving certain tensor fields on M. Secondly, we investigate the conditions for the cotangent bundle $(T^*M, \mathcal{g}_{\nabla, c})$ to be semi-symmetric, Ricci semi-symmetric, \tilde{Z} semi-symmetric and locally conharmonically flat with respect to the metric connection $\bar{\nabla}$. Finally, we show that the Schouten-Van Kampen connection associated to the Levi-Civita connection ∇ of the modified Riemannian extension $\mathcal{g}_{\nabla, c}$ is equal to the horizontal lift H^X of the torsion-free linear connection ∇ to T^*M and present a result concerning the curvature tensor of the Schouten-Van Kampen connection.

The manifolds, tensor fields and geometric objects we consider in this paper are assumed to be differentiable of class C^∞. Einstein’s summation convention is used, the range of the indices $h, i, j, k, l, m, r, \ldots, n$, being always $\{1, \ldots, n\}$.

2. Preliminaries

We refer to [24] for further details concerning the material of this section. Let M be an n-dimensional differentiable manifold with a torsion-free linear connection ∇ and denote by $\pi : T^*M \to M$ its cotangent bundle with fibres the cotangent spaces to M. Then T^*M is a $2n$-dimensional smooth manifold and some local charts induced naturally from local charts on M, may be used. Namely, a system of local coordinates $\left(U, x^i \right)$, $i = 1, \ldots, n$ on M induces on T^*M a system of local coordinates $\left(\pi^{-1}(U), x^i, x^\tau = p_i \right)$, $\bar{i} = n + i = n + 1, \ldots, 2n$, where $x^\tau = p_i$ is the components of covectors p in each cotangent space T^*_xM, $x \in U$ with respect to the natural coframe $\{dx^i\}$.

Let $X = X^i \frac{\partial}{\partial x^i}$ and $\omega = \omega_i dx^i$ be the local expressions in U of a vector field X and a covector field ω on M, respectively. Then the vertical lift V^ω of ω, the horizontal lift H^X of X are given, with respect to the induced coordinates, by

\[V^\omega = \omega_i \partial_\tau, \]

and

\[H^X = X^i \partial_i + p_h \Gamma^h_{ij} X^j \partial_\tau \]

where $\partial_i = \frac{\partial}{\partial x^i}$, $\partial_\tau = \frac{\partial}{\partial \tau}$ and Γ^h_{ij} are the coefficients of ∇ on M.

Next, we can introduce a frame field on each induced coordinate neighborhood $\pi^{-1}(U)$ of T^*M. It is called the adapted frame and consists of the following $2n$
linearly independent vector fields $\{E_\beta\} = \{E_j, E_\beta\}$:

$$
\begin{align*}
E_j &= \partial_j + p_a \Gamma^a_{hj} \partial_h \\
E_\beta &= \partial_\beta.
\end{align*}
$$

The indices $\alpha, \beta, \gamma, ... = 1, ..., 2n$ indicate the indices with respect to the adapted frame. The Lie brackets of the adapted frame of T^*M satisfy the following identities:

$$
\begin{align*}
[E_i, E_j] &= p_s R_{ijl}^s E_l, \\
[E_i, E_\beta] &= -\Gamma_{il}^j E_l, \\
[E_\beta, E_\gamma] &= 0,
\end{align*}
$$

where R_{ijl}^s denote the coefficients of the curvature tensor R of ∇ on M.

With respect to the adapted frame $\{E_\beta\}$, the vector fields $V\omega$ and HX on T^*M has the components

$$
V\omega = \begin{pmatrix} 0 \\ \omega_j \end{pmatrix} \quad \text{and} \quad ^HX = \begin{pmatrix} X^j \\ 0 \end{pmatrix}.
$$

3. The metric connection with nonvanishing torsion on the cotangent bundle with respect to modified Riemannian extension

Let us consider T^*M equipped with the modified Riemannian extension \bar{g}_∇, c for a given torsion-free connection ∇ on M. In adapted frame $\{E_\beta\}$, the modified Riemannian extension $(\bar{g}_\nabla, c)_{\beta\gamma}$ and its inverse $(\bar{g}_\nabla, c)_{\beta^\gamma}$ have in the following forms:

$$
(\bar{g}_\nabla, c)_{\beta\gamma} = \begin{pmatrix} c_{ij} & \delta_i^j \\ \delta_j^i & 0 \end{pmatrix},
$$

$$
(\bar{g}_\nabla, c)^{\beta\gamma} = \begin{pmatrix} 0 & \delta_j^i \\ \delta_i^j & -c_{ij} \end{pmatrix}
$$

where c_{ij} are the components of the symmetric $(0, 2)$--tensor field c on (M, ∇).

For the Levi-Civita connection ∇ of the modified Riemannian extension \bar{g}_∇, c, we get:

Proposition 1. Let ∇ be a torsion-free linear connection on M and T^*M be the cotangent bundle with the modified Riemannian extension \bar{g}_∇, c over (M, ∇). The Levi-Civita connection ∇ of $(T^*M, \bar{g}_\nabla, c)$ is given by

$$
\begin{align*}
\nabla_{E_j} E_{\beta} &= 0, \\
\nabla_{E_\beta} E_j &= 0, \\
\nabla_{E_j} E_{\beta} &= -\Gamma_{h}^{ij} E_h, \\
\nabla_{E_\beta} E_\gamma &= \Gamma_{ij}^{\beta \gamma} E_i + \{p_s R_{hji}^s + \frac{1}{2}(\nabla_i c_{jh} + \nabla_j c_{ih} - \nabla_h c_{ij})\} E_h,
\end{align*}
$$

with respect to the adapted frame $\{E_\beta\}$, where $\Gamma_{ij}^{\beta \gamma}$ and R_{hji}^s respectively denote components of ∇ and its curvature tensor field R on M (see, [8]).
If there is a Riemannian metric g on M such that $\nabla g = 0$, then the connection ∇ is a metric connection, otherwise it is non-metric. It is well known that a linear connection is symmetric and metric if and only if it is the Levi-Civita connection. The Levi-Civita connection ∇ of the modified Riemannian extension $\mathcal{F}_{\nabla,c}$ on T^*M is the unique connection which satisfies $\nabla_{\alpha}(\mathcal{F}_{\nabla,c})_{\beta\gamma} = 0$ and has a zero torsion. Now we are interested in a metric connection $\tilde{\nabla}$ of the modified Riemannian extension $\mathcal{F}_{\nabla,c}$ whose torsion tensor $\tilde{T}_{\alpha\beta}$ is skew-symmetric in the indices γ and β. Metric connection with nonvanishing torsion on Riemannian manifolds were introduced by Hayden [9]. We denote components of the metric connection $\tilde{\nabla}$ by $\tilde{\Gamma}^\gamma_{\alpha\beta}$. The metric connection $\tilde{\nabla}$ satisfies

$$\tilde{\nabla}_{\alpha}(\mathcal{F}_{\nabla,c})_{\beta\gamma} = 0$$

and

$$\tilde{\Gamma}^\gamma_{\alpha\beta} - \tilde{\Gamma}^\gamma_{\beta\alpha} = \tilde{T}^\gamma_{\alpha\beta}.$$

When the above equation is solved with respect to $\tilde{\Gamma}^\gamma_{\alpha\beta}$, one finds the following solution [9]

$$\tilde{\Gamma}^\gamma_{\alpha\beta} = \Gamma^\gamma_{\alpha\beta} + \tilde{U}^\gamma_{\alpha\beta},$$

where $\Gamma^\gamma_{\alpha\beta}$ is the components of the Levi-Civita connection ∇ of the modified Riemannian extension $\mathcal{F}_{\nabla,c}$,

$$\tilde{U}^\gamma_{\alpha\beta} = \frac{1}{2}(\tilde{T}^\gamma_{\alpha\beta} + \tilde{T}^\gamma_{\beta\alpha} + \tilde{T}^\gamma_{\gamma\beta\alpha}).$$

If we choose the torsion tensor \tilde{T} as

$$\begin{cases} \tilde{T}^\gamma_{ij} = -p_s R^s_{ijr}, \\ \text{otherwise} = 0, \end{cases}$$

with the help of (3.6), from (3.5), we find non-zero component of $\tilde{U}^\gamma_{\alpha\beta}$ as follows:

$$\tilde{U}^\gamma_{ij} = p_s R^s_{jhi}.$$

with respect to the adapted frame. In view of (3.6) and (3.4), we have the following proposition.

Proposition 2. Let ∇ be a torsion-free linear connection on M and T^*M be the cotangent bundle with the modified Riemann extension $\mathcal{F}_{\nabla,c}$ over (M, ∇). The metric connection $\tilde{\nabla}$ on T^*M with respect to the modified Riemannian extension $\mathcal{F}_{\nabla,c}$ satisfies

$$\begin{cases} \tilde{\nabla}_{E_x} E_x = 0, & \tilde{\nabla}_{E_x} E_j = 0, \\ \tilde{\nabla}_{E_y} E_x = -\Gamma^h_{ij} E^s, \\ \tilde{\nabla}_{E_x} E_j = \Gamma^h_{ij} E_h + \frac{1}{2}(\nabla_{E_{jhi}} + \nabla_{E_{jhi}} - \nabla_{E_{ijh}}) E^s, \end{cases}$$

with respect to the adapted frame $\{E_\beta\}$.

The horizontal lift $H\nabla$ of the torsion-free linear connection ∇ on M to T^*M is characterized the following conditions:

$$\begin{cases} H\nabla_{E_{\omega}} V \theta = 0, & H\nabla_{E_{\omega}} H Y = 0 \\ H\nabla_{E_{X}} V \theta = V(\nabla_{E_{X}} \theta), & H\nabla_{E_{X}} H Y = H(\nabla_{E_{X}} Y) \end{cases}$$
for all vector fields X, Y and covector fields ω, θ on M ([24], p. 287). In the adapted frame, the followings satisfy (see, also [1])

$$
\begin{align*}
H^i \nabla_E T^i_j &= 0, \quad H^i \nabla_{E_i} E_j = 0, \\
H^i \nabla E_i, E_j = -\Gamma^i_{h j} E_h, \quad H^i \nabla E_i, E_j = \Gamma^h_{i j} E_h.
\end{align*}
$$

From these formulas, we can readily deduce:

Proposition 3. Let ∇ be a torsion-free linear connection on M and T^*M be the cotangent bundle with the modified Riemann extension $\mathfrak{g}_{\nabla, c}$ over (M, ∇). The metric connection $\tilde{\nabla}$ on T^*M of the modified Riemannian extension $\tilde{\mathfrak{g}}_{\nabla, c}$ coincides with the horizontal lift $H^i \nabla$ of the torsion-free linear connection ∇ on M if and only if the components c_{ij} of c satisfy the condition

$$
\nabla_i c_{jh} + \nabla_j c_{ih} - \nabla_h c_{ij} = 0.
$$

3.1. **Projective vector fields on the cotangent bundle with respect to the metric connection $\tilde{\nabla}$.** Given a linear connection ∇ on a manifold M, a vector field V is said to be a projective vector field if there exists a 1-form θ such that

$$(L_V \nabla)(X, Y) = \theta(X)Y + \theta(Y)X$$

for any pair of vector fields X and Y on M. In particular, if $\theta = 0$, V is an affine Killing vector field.

Let \tilde{V} be a vector field on T^*M and (v^h, v^ℓ) its the components with respect to the adapted frame $\{E_\beta\}$. The components v^h and v^ℓ are said to be the horizontal components and vertical components of \tilde{V}, respectively. As is known, a vector field is called a fibre-preserving vector field if and only if its horizontal components depend only on the variables (x^h). Hence, one can easily say that every fibre-preserving vector field \tilde{V} on T^*M induces a vector field V with components (v^h) on the base manifold M.

By straightforward calculations, we have the following.

Lemma 1. Let \tilde{V} be a fibre-preserving vector field on T^*M with components (v^h, v^ℓ). The Lie derivatives of the adapted frame satisfy

$$
\begin{align*}
i) L_{\tilde{V}} E_i &= -(E_i v^k) E_k - \left(v^\alpha p_\alpha R_{\tau ak} \right) E_k, \\
ii) L_{\tilde{V}} E^*_i &= -(v^\alpha \Gamma^i_{ak} + E_k v^\ell) E^*_i,
\end{align*}
$$

where $L_{\tilde{V}}$ denotes the Lie derivation with respect to \tilde{V}.

The general forms of fibre-preserving projective vector fields on T^*M with respect to the metric connection $\tilde{\nabla}$ are given by:

Theorem 1. Let ∇ be a torsion-free linear connection on M and T^*M be the cotangent bundle with the modified Riemannian extension $\mathfrak{g}_{\nabla, c}$ over (M, ∇). Then a vector field \tilde{V} is a fibre-preserving projective vector field with associated 1-form $\tilde{\theta}$ on T^*M with respect to the metric connection $\tilde{\nabla}$ if and only if the vector field \tilde{V} is defined by

$$(3.8) \quad \tilde{X} = H V + V B + \gamma A,$$

where the vector field $V = (v^h)$, the covector field $B = (B_h)$, the $(1, 1)$-tensor field $A = (A^h_i)$ and the associated 1-form $\tilde{\theta}$ satisfy
\((i) \quad \bar{\theta} = \theta_i dx^i, \)

\((ii) \quad \nabla_j A_k^i = \theta_j \delta_k^i - v^a R_{jak}^i, \)

\((iii) \quad L_V \Gamma^h_{ij} = \theta_i \delta^h_j + \theta_j \delta^h_i, \)

\((iv) \quad \nabla_j \nabla_j B_i + R_{ij}^a B_a + \frac{1}{2} v^a \nabla_a M_{ij} + \frac{1}{2} (\nabla_j v^a) M_{ial} + \frac{1}{2} (\nabla_j v^a) M_{ial} \)

\[+ \frac{1}{2} (\nabla_i v^a) M_{ajl} - A_j^a M_{ija} = 0 \] (\(M_{ija} := \nabla_i c_{jl} + \nabla_j c_{il} - \nabla_{ijl} \))

\((v) \quad \nabla_i \nabla_j A_k^a + R_{ij}^a A_a^k - R_{ajl}^s A_l^a + v^a \nabla_i R_{jal}^s + (\nabla_i v^a) R_{jal}^s = 0. \)

Proof. A fibre-preserving vector field \(\bar{V} = v^h E_k + v^a E^i_a \) on \(T^* M \) is a fibre-preserving projective vector field if and only if there exist a 1-form \(\theta \) with components \((\bar{\theta}_i, \bar{\theta}_j)\) on \(T^* M \) such that

\[
(L_{\bar{V}} \nabla)(\tilde{Y}, \bar{Z}) = L_{\bar{V}}(\nabla_\tilde{Y} \bar{Z}) - \nabla_{(L_{\bar{V}} \bar{Y})} \bar{Z} = \tilde{\theta}(\bar{Y}) \bar{Z} + \bar{\theta}(\bar{Z}) \tilde{Y}
\]

for any vector fields \(\tilde{Y} \) and \(\bar{Z} \) on \(T^* M \).

Putting \(\tilde{Y} = E_{i}, \bar{Z} = E_{j} \) in (3.9), we get

\[
E_{i} \left(E_{j} v^k \right) E_{k} = \theta_{i} E_{j} + \theta_{j} E_{i}.
\]

Putting \(\tilde{Y} = E_{i}, \bar{Z} = E_{j} \) in (3.9), we find

\[
\theta_{i} = 0
\]

and

\[
v^a R_{jai} + E_{i} \left(E_{j} v^k \right) - (E_{j} v^a) \Gamma_{jai}^a = \theta_{j} \delta_{i}^k.
\]

In view of (3.11), (3.10) reduces to

\[
E_{i} \left(E_{j} v^k \right) E_{k} = 0
\]

from which it follows that

\[
v^k = p_{a} A_{k}^a + B_{k}
\]

where \(A_{k}^a \) and \(B_{k} \) are certain functions which depend only on the variables \((x^h)\).

The coordinate transformation rule implies that \(A \) is a \((1,1)\)–tensor field with components \((A_{j}^a)\) and \(B \) is a covector field with components \((B_{k})\). Hence, the fibre-preserving projective vector field \(\bar{V} \) on \(T^* M \) can be written in the form:

\[
\bar{V} = v^k E_k + v^a E^i_a = v^k E_k + \{p_{a} A_{k}^a + B_{k}\} E^a_k
\]

where \(\gamma \) is an operator applied to the \((1,1)\)–tensor field \(A \) and expressed locally \(\gamma A = (p_{a} A_{k}^a) E^a_k \) (for details related to the operator \(\gamma \), see [24], p.12 – 13).

Substitution (3.13) into (3.12) gives

\[
v^a R_{jai} + \nabla_j A_{k}^i = \theta_{j} \delta_{k}^i.
\]

Contracting \(i \) and \(k \) in (3.14), we have

\[
\theta_{j} = \frac{1}{n} \nabla_j A_{k}^k.
\]

Finally, putting \(Y = E_{i}, Z = E_{j} \) in (3.9), we obtain

\[
L_V \Gamma_{ij}^h = \theta_{i} \delta_{j}^h + \theta_{j} \delta_{i}^h.
\]
The curvature tensor \tilde{R} of the metric connection $\tilde{\nabla}$ on T^*M is obtained from the formula

$$\tilde{R}(E_\alpha, E_\beta)E_\gamma = \tilde{\nabla}_{E_\alpha} \tilde{\nabla}_{E_\beta} E_\gamma - \tilde{\nabla}_{E_\beta} \tilde{\nabla}_{E_\alpha} E_\gamma - \tilde{\nabla}_{[E_\alpha, E_\beta]} E_\gamma$$

with respect to the adapted frame. For the curvature tensor \tilde{R} of the metric connection $\tilde{\nabla}$, with the help of (2.1) and (3.7), we have:
Proposition 4. Let ∇ be a torsion-free linear connection on M and T^*M be the cotangent bundle with the modified Riemann extension $\mathcal{F}_{\nabla,c}$ over (M, ∇). The curvature tensor \tilde{R} of the metric connection $\tilde{\nabla}$ on T^*M satisfies the following conditions:

$$
\tilde{R}(E_i, E_j)E_k = R_{ijk}^h E_h \\
+ \frac{1}{2} \{ \nabla_i (\nabla_k c_{jh} - \nabla_h c_{jk}) - \nabla_j (\nabla_k c_{ih} - \nabla_h c_{ik}) \\
- R_{ijk}^m c_{mnh} - R_{ijh}^m c_{km} \} E_{\pi} \\
\tilde{R}(E_i, E_j)E_{\pi} = R_{jih}^k E_k, \\
\tilde{R}(E_i, E_j)E_k = 0, \tilde{R}(E_i, E_j)E_{\pi} = 0, \tilde{R}(E_i, E_j)E_{\pi} = 0
$$

with respect to the adapted frame $\{E_{\beta}\}$.

Let \tilde{X} and \tilde{Y} be vector fields of T^*M. The curvature operator $\tilde{R}(\tilde{X}, \tilde{Y})$ is a differential operator on T^*M. Similarly, for vector fields X and Y of M, $R(X, Y)$ is a differential operator on M. Now, we operate the curvature operator $\tilde{R}(\tilde{X}, \tilde{Y})$ to the curvature tensor \tilde{R}. That is, for all \tilde{Z}, \tilde{W} and \tilde{U}, we consider the condition $(\tilde{R}(\tilde{X}, \tilde{Y})\tilde{R})(\tilde{Z}, \tilde{W})\tilde{U} = 0$. In the case, we shall call the cotangent bundle T^*M as semi-symmetric with respect to the metric connection $\tilde{\nabla}$.

In the adapted frame $\{E_{\beta}\}$, the tensor $(\tilde{R}(\tilde{X}, \tilde{Y})\tilde{R})(\tilde{Z}, \tilde{W})\tilde{U}$ is locally expressed as follows:

$$
((\tilde{R}(\tilde{X}, \tilde{Y})\tilde{R})(\tilde{Z}, \tilde{W})\tilde{U})_{\alpha\beta\gamma\theta\sigma}^\varepsilon \\
= \tilde{R}_{\alpha\beta\tau} \tilde{R}_{\gamma\theta\varepsilon} - \tilde{R}_{\alpha\beta\varepsilon} \tilde{R}_{\gamma\theta\tau} - \tilde{R}_{\alpha\beta\theta} \tilde{R}_{\gamma\tau\varepsilon} - \tilde{R}_{\alpha\beta\varepsilon} \tilde{R}_{\gamma\theta\tau}.
$$

Similarly, in local coordinates,

$$
((R(X, Y)R)(Z, W)U)_{ijklm}^n = R_{ijp}^n R_{klm}^p - R_{ijp}^n R_{klm}^p - R_{ijp}^n R_{klm}^p - R_{ijm}^p R_{klp}^n.
$$

Theorem 2. Let ∇ be a torsion-free linear connection on M and T^*M be the cotangent bundle with the modified Riemann extension $\mathcal{F}_{\nabla,c}$ over (M, ∇). Under the assumption that $\nabla_i (\nabla_k c_{jh} - \nabla_h c_{jk}) - \nabla_j (\nabla_k c_{ih} - \nabla_h c_{ik}) - R_{ijk}^m c_{mnh} - R_{ijh}^m c_{km} = 0$, where R is the curvature tensor of ∇, the cotangent bundle T^*M is semi-symmetric with respect to the metric connection $\tilde{\nabla}$ if and only if the base manifold M is semi-symmetric with respect to ∇.

Proof. We consider the conditions $(\tilde{R}(\tilde{X}, \tilde{Y})\tilde{R})(\tilde{Z}, \tilde{W})\tilde{U} = 0$ for all vector fields $\tilde{X}, \tilde{Y}, \tilde{Z}, \tilde{W}$ and \tilde{U} on T^*M.

For all cases $\alpha = (i, l), \beta = (j, m), \gamma = (k, \pi), \theta = (l, \pi), \sigma = (m, \pi)$ and $\varepsilon = (h, \pi)$ in (3.10), the non-zero components of the tensor $((\tilde{R}(\tilde{X}, \tilde{Y})\tilde{R})(\tilde{Z}, \tilde{W})\tilde{U})_{\alpha\beta\gamma\theta\sigma}^\varepsilon$ are
as follows:

\begin{equation}
(3.16) \quad \left((\tilde{R}(\tilde{X}, \tilde{Y})\tilde{R})(\tilde{Z}, \tilde{W})\tilde{U}\right)_{ijklm}^h
= \tilde{R}_{ijp}^p \tilde{R}_{klm}^p + \tilde{R}_{ijp}^p \tilde{R}_{klm}^h - \tilde{R}_{ijk}^p \tilde{R}_{pklm}^h - \tilde{R}_{ijkl}^p \tilde{R}_{plm}^h - \tilde{R}_{ijkl}^p \tilde{R}_{pklm}^h
- \tilde{R}_{ijkl}^p \tilde{R}_{klm}^p - \tilde{R}_{ijkm}^p \tilde{R}_{klp}^h - \tilde{R}_{ijkl}^p \tilde{R}_{klp}^h
= ((R(X, Y)R)(Z, W)U)_{ijklm}^h.
\end{equation}

ii) \quad \left((\tilde{R}(\tilde{X}, \tilde{Y})\tilde{R})(\tilde{Z}, \tilde{W})\tilde{U}\right)_{ijklm}^h

iii) \quad ((\tilde{R}(\tilde{X}, \tilde{Y})\tilde{R})(\tilde{Z}, \tilde{W})\tilde{U})_{ijklm}^h

If we assume that

\[
\tilde{R}_{ijk}^h = \nabla_i(\nabla_k c_{jh} - \nabla_h c_{jk}) - \nabla_j(\nabla_k c_{ih} - \nabla_h c_{ik}) - R_{ijk}^m c_{mh} - R_{ijh}^m c_{km} = 0,
\]

then it follows from (3.16) that \((\tilde{R}(\tilde{X}, \tilde{Y})\tilde{R})(\tilde{Z}, \tilde{W})\tilde{U} = 0\) if and only if \((R(X, Y)R)(Z, W)U = 0\). This completes the proof. \(\square\)

Denote by \(\tilde{R}_{\alpha\beta} = \tilde{R}_{\alpha\beta}^\sigma\) the contracted curvature tensor (Ricci tensor) of the metric connection \(\tilde{\nabla}\). The only non-zero component of \(\tilde{R}_{\alpha\beta}\) is as follows: \(\tilde{R}_{ij} = \tilde{R}_{ij}\), where \(\tilde{R}_{ij}\) denote the components of the Ricci tensor of \(\nabla\) on \(M\). Now we prove the following theorem.

Theorem 3. Let \(\nabla\) be a torsion-free linear connection on \(M\) and \(T^*M\) be the cotangent bundle with the modified Riemannian extension \(\nabla_{\gamma,c}\) over \((M, \nabla)\). The cotangent bundle \(T^*M\) is Ricci semi-symmetric with respect to the metric connection \(\nabla\) if and only if the base manifold \(M\) is Ricci semi-symmetric with respect to \(\nabla\).

Proof. The tensor \((\tilde{R}(\tilde{X}, \tilde{Y})\tilde{Ric})(\tilde{Z}, \tilde{W})\) has the components

\begin{equation}
((\tilde{R}(\tilde{X}, \tilde{Y})\tilde{Ric})(\tilde{Z}, \tilde{W}))_{\alpha\beta\gamma\theta} = \tilde{R}_{\alpha\beta\gamma}^\varepsilon \tilde{R}_{\varepsilon\theta} + \tilde{R}_{\alpha\beta\theta}^\varepsilon \tilde{R}_{\varepsilon\gamma}
\end{equation}

with respect to the adapted frame \(\{E_j\}\).

Choosing \(\alpha = i, \beta = j, \gamma = k, \theta = l\) in (3.10), we find

\[
((\tilde{R}(\tilde{X}, \tilde{Y})\tilde{Ric})(\tilde{Z}, \tilde{W}))_{ijkl} = \tilde{R}_{ijk}^p \tilde{R}_{pl} + \tilde{R}_{ijl}^p \tilde{R}_{kp}
= \tilde{R}_{ijp}^k \tilde{R}_{pl} + \tilde{R}_{ijp}^k \tilde{R}_{klp}
= ((R(X, Y)Ric)(Z, W))_{ijkl},
\]

all the others being zero. This finishes the proof. \(\square\)
For the scalar curvature \bar{r} of the metric connection ∇ with respect to \bar{g}, we find

$$\bar{r} = \bar{R}_{\alpha\beta}(\bar{g})_{\alpha\beta} = 0.$$

Thus we have the following theorem.

Theorem 4. Let ∇ be a torsion-free linear connection on M and $T^* M$ be the cotangent bundle with the modified Riemannian extension $\bar{g}_{\nabla, c}$ over (M, ∇). The scalar curvature of the cotangent bundle $T^* M$ with the metric connection ∇ with respect to $\bar{g}_{\nabla, c}$ vanishes.

Next, we shall apply the differential operator $R(\vec{X}, \vec{Y})$ to the torsion tensor \bar{T} of the metric connection ∇.

Theorem 5. Let ∇ be a torsion-free linear connection on M and $T^* M$ be the cotangent bundle with the modified Riemannian extension $\bar{g}_{\nabla, c}$ over (M, ∇). Then $R(\vec{X}, \vec{Y}) \bar{T} = 0$ for all vector fields \vec{X} and \vec{Y} on $T^* M$, where \bar{T} is the torsion tensor of the metric connection ∇ if and only if the base manifold M is semi-symmetric with respect to ∇.

Proof. The differential operator $R(\vec{X}, \vec{Y})$ applied the torsion tensor \bar{T} of the metric connection ∇ is in the form:

$$((R(\vec{X}, \vec{Y}) \bar{T})(\vec{Z}, \vec{W}))_{\alpha\beta\gamma\theta} = R_{\alpha\beta\tau}^{\varepsilon} \bar{T}_{\gamma\theta}^{\tau} - R_{\alpha\beta\gamma}^{\varepsilon} \bar{T}_{\tau\theta}^{\varepsilon} - R_{\alpha\beta\gamma}^{\varepsilon} \bar{T}_{\tau\gamma}^{\varepsilon}$$

with respect to the adapted frame $\{E_{\alpha}\}$. It follows immediately that

$$
\begin{cases}
((R(\vec{X}, \vec{Y}) \bar{T})(\vec{Z}, \vec{W}))_{ijkl} = \bar{R}_{ijkl}^{m} \bar{T}_{mkl} + \bar{R}_{ijkl}^{n} \bar{T}_{mnl}
- \bar{R}_{ijkm}^{m} \bar{T}_{mnl} - \bar{R}_{ijkl}^{m} \bar{T}_{km} - \bar{R}_{ijkl}^{n} \bar{T}_{klm}
= p_s(R_{ijkm}^{n} \bar{T}_{klm} + R_{ijkl}^{m} \bar{T}_{km} + R_{ijkm}^{n} \bar{T}_{klm})
= -p_s((R(X,Y)R)(Z,W)U)_{ijkl}
\end{cases}
$$

which finishes the proof. \qed

On an n-dimensional Riemannian manifold (M, g), it was defined a generalized $(0, 2)$-symmetric Z tensor given by \bar{Z}

$$Z(X,Y) = \text{Ric}(X,Y) + \phi g(X,Y)$$

for all vector fields X and Y on M, where ϕ is an arbitrary scalar function. Analogous to this definition, it may be locally define generalized Z tensor on $(T^* M, \bar{g}_{\nabla, c})$ with respect to the metric connection ∇ as follows:

$$\bar{Z}_{\alpha\beta} = R_{\alpha\beta} + \phi(\bar{g})_{\alpha\beta}. $$

Putting the values of $\bar{R}_{\alpha\beta}$ and $\bar{g}_{\nabla, c}$ in the above equation, we have the non-zero components

$$(3.18)\
\begin{align*}
\bar{Z}_{ij} &= R_{ij} + \phi c_{ij}, \\
\bar{Z}_{\tau j} &= \phi \delta_{\tau j}^i, \\
\bar{Z}_{\tau} &= \phi \delta_{\tau j}^j.
\end{align*}$$

We can state the following theorem.
Theorem 6. Let ∇ be a torsion-free linear connection on M and T^*M be the cotangent bundle with the modified Riemannian extension $\tilde{\nabla}_{\nabla,c}$ over (M, ∇). The cotangent bundle T^*M is \tilde{Z} semi-symmetric with respect to the metric connection $\tilde{\nabla}$ if and only if the base manifold M is Ricci semi-symmetric with respect to the metric ∇.

Proof. The tensor $(\tilde{R}(\tilde{X}, \tilde{Y}), \tilde{Z})(\tilde{Z}, \tilde{W})$ has the components

$$((\tilde{R}(\tilde{X}, \tilde{Y}), \tilde{Z})(\tilde{Z}, \tilde{W}))_{\alpha\beta\gamma\theta} = \tilde{R}_{\alpha\beta\gamma}Z_{\varepsilon\theta} + \tilde{R}_{\alpha\beta\delta}Z_{\gamma\varepsilon}$$

with respect to the adapted frame $\{E_\beta\}$.

By choosing $\alpha = (i, \tilde{i})$, $\beta = (j, \tilde{j})$, $\gamma = (k, \tilde{k})$ and $\theta = (l, \tilde{l})$ in (3.19), in view of (3.18) we find the only non-zero component

$$((\tilde{R}(\tilde{X}, \tilde{Y}), \tilde{Z})(\tilde{Z}, \tilde{W}))_{ijkl} = \tilde{R}_{ijl}hZ_{hl} + \tilde{R}_{ijl}h\pi_{\tilde{k}l} + \tilde{R}_{ijl}h\tilde{Z}_{\tilde{k}l}$$

$$= R_{ijl}h(R_{hl} + \phi_{hl}) + \frac{1}{2}\{\nabla_i(\nabla_kc_{jh} - \nabla_hc_{jk})$$

$$- \nabla_j(\nabla_kc_{ih} - \nabla_hc_{ik}) - R_{ijl}^{m}c_{mh} - R_{ijh}^{m}c_{km}\}\pi_{\tilde{k}l}$$

$$+ R_{ijl}h(R_{kh} + \phi_{kh}) + \frac{1}{2}\{\nabla_i(\nabla_c_{jh} - \nabla_hc_{ji})$$

$$- \nabla_j(\nabla_i_{ch} - \nabla_hc_{il}) - R_{ijh}^{m}c_{m_{kh}} - R_{ijh}^{m}c_{m_{kh}}\}\pi_{\tilde{k}l}$$

$$= R_{ijl}hR_{hl} + R_{ijl}hR_{kh}$$

$$= (R(X, Y)R_{ic})_{ijkl},$$

from which the proof follows. \hfill \Box

3.3. Conharmonic Curvature tensor on the cotangent bundle with respect to the metric connection ∇. We recall that the conharmonic curvature tensor V on an n–dimensional Riemannian manifold (M, g) is defined as a $(4, 0)$–tensor by the formula

$$V_{ijkl} = R_{ijkl} - \frac{1}{n - 2}[R_{jikl} - R_{iklj} - R_{ijlk} + R_{iljk}],$$

where R_{ijkl} and R_{ij} are respectively the components of the Riemannian curvature tensor and the Ricci tensor. The conharmonic curvature tensor was first introduced by Ishii (see, [12]). A Riemannian manifold whose conharmonic curvature tensor vanishes is called conharmonically flat.

Analogous to the conharmonic curvature tensor with respect to a Levi–Civita connection ∇, it may be given the conharmonic curvature tensor \tilde{V} on T^*M with respect to the metric connection $\tilde{\nabla}$ as follows:

$$\tilde{V}_{\alpha\beta\gamma\varepsilon} = \tilde{R}_{\alpha\beta\gamma}Z_{\varepsilon\gamma} - \frac{1}{2(n - 1)} \left[R_{\beta\gamma}(\tilde{g}_{\nabla,c})_{\alpha\varepsilon} - \tilde{R}_{\alpha\gamma}(\tilde{g}_{\nabla,c})_{\beta\varepsilon} - \tilde{R}_{\beta\varepsilon}(\tilde{g}_{\nabla,c})_{\alpha\gamma} + \tilde{R}_{\alpha\varepsilon}(\tilde{g}_{\nabla,c})_{\beta\gamma}\right].$$

Next we prove the following theorem:

Theorem 7. Let ∇ be a torsion-free linear connection on M and T^*M be the cotangent bundle with the modified Riemannian extension $\tilde{g}_{\nabla,c}$ over (M, ∇). The cotangent bundle T^*M is locally conharmonically flat with respect to the metric
connection \(\tilde{\nabla} \) if and only if the base manifold \(M \) is Ricci flat with respect to \(\nabla \) and the components \(c_{ij} \) of \(c \) satisfy the condition

\[
\nabla_i(\nabla_k c_{jh} - \nabla_h c_{jk}) - \nabla_j(\nabla_k c_{ih} - \nabla_h c_{ik}) + R_{ijk}^m c_{mh} - R_{ijh}^m c_{km} = 0,
\]

where \(R_{ijk}^m \) denote the components of the curvature tensor \(R \) of \(\nabla \).

Proof. If the components of the curvature tensor \(\tilde{R} \) of the metric connection \(\tilde{\nabla} \) on \(T^*M \) satisfy the following equations:

\[
(3.20a) \quad \tilde{R}_{\alpha\beta\gamma\varepsilon} = \frac{1}{2(n-1)} \left[\tilde{R}_{\beta\gamma}(\nabla_{\varepsilon},c)_{\alpha\varepsilon} - \tilde{R}_{\alpha\gamma}(\nabla_{\varepsilon},c)_{\beta\varepsilon} - \tilde{R}_{\beta\varepsilon}(\nabla_{\alpha},c)_{\beta\gamma} + \tilde{R}_{\alpha\varepsilon}(\nabla_{\gamma},c)_{\beta\gamma} \right],
\]

then \(T^*M \) is said to be locally conharmonically flat with respect to the metric connection \(\tilde{\nabla} \).

On lowering the upper index in the proposition 4, we obtain the components of the \((0,4)\)-curvature tensor of the metric connection \(\tilde{\nabla} \) as follows:

\[
\left\{ \begin{array}{c}
\tilde{R}_{ijkl} = +\frac{1}{2} \left(\nabla_i(\nabla_k c_{jl} - \nabla_l c_{jk}) - \nabla_j(\nabla_k c_{il} - \nabla_l c_{ik}) \right. \\
R_{ijkl}^m c_{ml} - R_{ijl}^m c_{km}
\end{array} \right.
\]

Putting the values of \(\tilde{R}_{\alpha\beta\gamma\varepsilon}, \tilde{R}_{\alpha\beta} \) and \((\nabla_{\varepsilon},c)_{\beta\varepsilon} \) respectively in (3.20a), we have

\[
(3.21) \quad \nabla_i(\nabla_k c_{jl} - \nabla_l c_{jk}) - \nabla_j(\nabla_k c_{il} - \nabla_l c_{ik}) + R_{ijk}^m c_{ml} - R_{ijl}^m c_{km}
= \frac{1}{2(n-1)}(R_{jk} c_{il} - R_{ik} c_{jl} - R_{jl} c_{ik} + R_{il} c_{jk})
\]

\[
(3.22) \quad R_{ijk}^l = \frac{1}{2(n-1)}(R_{jk}^l d_{ij}^l - R_{ik}^l d_{ij}^l) \\
-R_{ijl}^k = \frac{1}{2(n-1)}(R_{il}^k d_{jk}^k - R_{jl}^k d_{jk}^k)
\]

Contraction \(i \) and \(l \) in (3.22) gives

\[
R_{ijk}^l = \frac{1}{2(n-1)}(R_{jk}^l d_{ij}^l - R_{ik}^l d_{ij}^l) \\
R_{jk} = \frac{1}{2(n-1)}(nR_{jk} - R_{jk}) \\
R_{jk} = \frac{1}{2(n-1)}R_{jk}(n-1) \\
R_{jk} = 0,
\]

that is, the torsion-free linear connection \(\nabla \) is Ricci flat. In the case, from (3.21), it follows that

\[
\nabla_i(\nabla_k c_{jl} - \nabla_l c_{jk}) - \nabla_j(\nabla_k c_{il} - \nabla_l c_{ik}) + R_{ijk}^m c_{ml} - R_{ijl}^m c_{km} = 0.
\]

\(\square \)
4. The Schouten-van Kampen connection associated to the Levi-Civita connection of the modified Riemannian extension

The Schouten-Van Kampen connection has been introduced in [17] for a study of non-holonomic manifolds. The Schouten-Van Kampen connection associated to the Levi-Civita connection of the modified Riemannian extension ∇ and adapted to the pair of distributions (H, V) are defined by

\[\nabla_X Y = H(\nabla_X H Y) + V(\nabla_X V Y) \]

for all vector fields X and Y, where V and H are the projection morphism of TT^*M on VT^*M and HT^*M respectively. The formula (4.1) for ∇^* has been first given by Ianus (see, [11]). By using (4.1) and (3.3), the Schouten-Van Kampen connection associated to the Levi-Civita connection ∇ of the modified Riemannian extension $\nabla_{\mathcal{V},c}$ are locally given by the following formulas:

\[
\begin{align*}
\nabla_{E_i} E_j &= 0, \\
\nabla_{E_i} E_j &= -\Gamma^h_{ij} E_h, \\
\nabla_{E_i} E_j &= \Gamma^h_{ij} E_h,
\end{align*}
\]

which are the components of the horizontal lift $^H \nabla$ of the torsion-free linear connection ∇. Hence we get:

Proposition 5. Let ∇ be a torsion-free linear connection on M and T^*M be the cotangent bundle with the modified Riemannian extension $\nabla_{\mathcal{V},c}$ over (M, ∇). The Schouten-Van Kampen connection ∇^* associated to the Levi-Civita connection ∇ of the modified Riemannian extension $\nabla_{\mathcal{V},c}$ and the horizontal lift $^H \nabla$ of the torsion-free linear connection ∇ to T^*M coincide to each other.

In view of Proposition 3, Proposition 5, Theorem 2 and its proof, it immediately follows the final result.

Theorem 8. Let ∇ be a torsion-free linear connection on M and T^*M be the cotangent bundle with the modified Riemannian extension $\nabla_{\mathcal{V},c}$ over (M, ∇). The cotangent bundle T^*M is semi-symmetric with respect to the Schouten-Van Kampen connection ∇^* associated to the Levi-Civita connection ∇ of the modified Riemannian extension $\nabla_{\mathcal{V},c}$ if and only if the base manifold M is semi-symmetric with respect to ∇.

References

[1] S. Aslanci, R. Cakan, *On a cotangent bundle with deformed Riemannian extension*. Mediterr. J. Math. 11 (2014), no. 4, 1251–1260.

[2] Z. Afifi, *Riemann extensions of affine connected spaces*. Quart. J. Math., Oxford Ser. (2) 5(1954), 312–320.

[3] E. Calvino-Louzao, E. García-Río, P. Gilkey and A. Vazquez-Lorenzo, *The geometry of modified Riemannian extensions*. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 465(2009), no. 2107, 2023–2040.

[4] E. Calvino-Louzao, E. García-Río and R. Vázquez-Lorenzo, *Riemann extensions of torsion-free connections with degenerate Ricci tensor*. Can. J. Math. 62(2010), no. 5, 1037–1057.

[5] A. Derdzinski, *Connections with skew-symmetric Ricci tensor on surfaces*. Results Math. 52(2008), no. 3-4, 223–245.

[6] V. Dryuma, *The Riemann extensions in theory of differential equations and their applications*. Mat.Fiz. Anal. Geom. 10(2003), no. 3, 307–325.

[7] E. García-Río, D. N. Kupeli, M. E. Vazquez-Abal, and R. Vázquez-Lorenzo, *Affine Osserman connections and their Riemann extensions*. Differential Geom. Appl. 11(1999), no. 2, 145–153.
[8] A. Gezer, L. Bilen, and A. Cakmak, *Properties of modified Riemannian extensions*. Zh. Mat. Fiz. Anal. Geom. 11 (2015), no. 2, 159-173.

[9] H. A. Hayden, *Sub-spaces of a space with torsion*. Proc. London Math. Soc. S2-34 (1932), 27-50.

[10] T. Iitaka, K. Honda, *On Riemann extension*. Tensor (N.S.) 60 (1998), no. 2, 208–212.

[11] S. Ianus, *Some almost product structures on manifolds with linear connection*. Kodai Math. Sem. Rep. 23(1971), 305–310.

[12] Y. Ishii, *On conharmonic transformations*. Tensor 7 (1957), no. 2, 73–80.

[13] O. Kowalski and M. Sekizawa, *On natural Riemann extensions*. Publ. Math. Debrecen 78(2011), no. 3-4, 709–721.

[14] C. A. Mantica and L. G. Molinari, *Weakly Z symmetric manifolds*. Acta Math. Hungar. 135 (2012), no.1–2, 80–96.

[15] K. P. Mok, *Metrics and connections on the cotangent bundle*. Kodai Math. Sem. Rep. 28 (1976/77), no. 2-3, 226–238.

[16] E. M. Patterson and A. G. Walker, *Riemann extensions*. Quart. J. Math. Oxford Ser. (2) 3(1952), 19–28.

[17] J. A. Schouten and E. R. van Kampen, *Zur Einbettungs- und Krummungstheorie nichtholonomer Gebilde*. Math. Ann. 103(1)(1930), 752–783.

[18] N. S. Sinjukov, *Geodesic mappings of Riemannian spaces* (Russian). Publishing House “Nauka”, Moscow, 1979.

[19] Z. I. Szabo, *Structure theorems on Riemannian spaces satisfying $R(X, Y) . R = 0$. I. The local version*, J. Differential Geom. 17 (1982), 531–582.

[20] Z. I. Szabo, *Structure theorems on Riemannian spaces satisfying $R(X, Y) . R = 0$. II. Global version*, Geom. Dedicata 19 (1985), 65-108.

[21] M. Toomanian, *Riemann extensions and complete lifts of s-spaces*. Ph. D. Thesis, The university, Southampton, 1975.

[22] L. Vanhecke and T. J. Willmore, *Riemann extensions of D’Atri spaces*. Tensor (N.S.) 38(1982), 154–158.

[23] T. J. Willmore, *Riemann extensions and affine differential geometry*. Results Math. 13(1988), no. 3-4, 403–408.

[24] K. Yano, S. Ishihara, *Tangent and Cotangent Bundles*. Marcel Dekker, Inc., New York 1973.