Clinical and Translational Research

Effect of prior malignancy on the prognosis of gastric cancer and somatic mutation

Xin Yin, Xing-Kang He, Ling-Yun Wu, Sen-Xiang Yan

ORCID number: Xin Yin 0000-0002-4177-3048; Xing-Kang He 0000-0002-1586-2266; Ling-Yun Wu 0000-0001-7753-6143; Sen-Xiang Yan 0000-0001-6902-0892.

Author contributions: Yin X, Yan SX, and He XK conceived and designed the study, conducted data extraction statistical analyses, interpreted the study results, and wrote the first draft of the manuscript; Wu LY extracted and analyzed the data, and interpreted the study results; All authors edited and critically revised the final version of the manuscript.

Institutional review board statement: The data that support the findings of this study are publicly available. The current study does not require approval from an ethics committee.

Conflict-of-interest statement: The authors declare that they have no competing interests.

Data sharing statement: The data that support the findings of this study are publicly available.

Country/Territory of origin: China
Specialty type: Medicine, research and experimental
Provenance and peer review: Original Article

Abstract

BACKGROUND
Cancer survivors have a higher risk of developing secondary cancer, with previous studies showing heterogeneous effects of prior cancer on cancer survivors.

AIM
To describe the features and clinical significance of a prior malignancy in patients with gastric cancer (GC).

METHODS
We identified eligible patients from the Surveillance, Epidemiology, and End Results (SEER) database, and compared the clinical features of GC patients with/without prior cancer. Kaplan-Meier curves and Cox analyses were used to assess the prognostic impact of prior cancer on overall survival (OS) and cancer-specific survival (CSS) outcomes. We also validated our results in The Cancer Genome Atlas (TCGA) cohort and compared mutation patterns.

RESULTS
In the SEER dataset, of the 35492 patients newly diagnosed with GC between 2004 and 2011, 4,001 (11.3%) had at least one prior cancer, including 576 (1.62%) patients with multiple cancers. Patients with a prior cancer history tended to be elderly, with a more localized stage and less positive lymph nodes. The prostate (32%) was the most common initial cancer site. The median interval from initial cancer diagnosis to secondary GC was 68 mo. By using multivariable Cox analyses, we found that a prior cancer history was not significantly associated with OS (hazard ratio [HR]: 1.01, 95% confidence interval [CI]: 0.97–1.05).
INTRODUCTION

With the successful eradication of *Helicobacter pylori* and healthier lifestyles, gastric cancer (GC) incidence and mortality have steadily declined in the United States[1,2]. In recent decades, thanks to active cancer screening and effective therapies, many cancer survivors now enjoy relatively longer lives. Although risk factors for primary GC incidence and prognosis are well documented[2,3], little is known about secondary GC occurrence in cancer survivors.

With the increasing aging populations, it is anticipated that the prevalence of secondary cancer in cancer survivors will increase[4]. A recent study revealed that approximately 17.8% of elderly (≥65 years) and 7.3% of young adults (<65 years) with newly diagnosed GC have a prior cancer history[5].

Due to inadequate selection criteria, patients with prior cancers are routinely excluded from oncology clinical trials[5,6]; thus, a substantial number of patients may have lost access to cutting-edge therapies and care. The impact of prior cancer on a current malignancy is often inconsistent and varies by cancer type (e.g., pancreatic, prostate, esophageal, Non-Hodgkin’s lymphoma, gastrointestinal, and lung cancers)[7-16]. To the best of our knowledge, there is a dearth of data on the characteristics and survival outcomes of GC patients with prior cancer. Similarly, there is a lack of real-world evidence to address these issues.

In this study, we characterized GC patients with a prior cancer history and estimated survival outcomes from real-world data. Understanding the prognostic impact of prior cancer on GC patients may have significant implications for improved therapeutic strategies and surveillance.

MATERIALS AND METHODS

Data sources and populations

We identified eligible patients with newly diagnosed and histopathologically proven GC between 2004 and 2011 in 18 Surveillance, Epidemiology, and End Results (SEER) registries (https://seer.cancer.gov/), which covered approximately 30% of the United States population[17]. We included patients aged ≥18 with active follow-up to the end of 2014. Tumor 83 site codes (C16.0, C16.1, C16.2, C16.3, C16.4, C16.5, C16.6, C16.8, and...
C16.9) were used for GC identification according to the International Classification of Diseases for Oncology 3rd edition. A sequence number was used to identify the number of multiple primaries. A sequence number = 0 indicated that an individual had only one primary cancer, and a larger number indicated more than one primary cancer. To reduce the possibility of misclassifying synchronous metastases, a latency period of at least 6 mo was required from initial prior cancer diagnosis to secondary GC. For initial prior cancer, we excluded cases termed as GC. We categorized prior malignancies of interest including prostate, gastrointestinal, hematologic, breast, genitourinary, and lung cancers.

The following information was collected from the SEER database: age, sex, race, marital status, tumor sites for the prior malignancy and GC, lymph nodes examined, positive lymph nodes, SEER stage, GC grade, and current and prior cancer therapies. To validate the impact of prior cancer on GC patient survival, we used The Cancer Genome Atlas (TCGA) database as an external validation source. Primary gastric adenocarcinoma in TCGA with or without prior malignancy was included. Clinicopathological and genomic data were also queried in TCGA database.

Statistical analyses
Baseline characteristics from GC patients with or without prior cancer were summarized and investigated using the χ^2 test. For patients with prior cancer, site distribution, stages, and main therapies were classified. To investigate the impact of a prior cancer, we calculated overall GC survival and cancer-specific 3-year survival rates with and without prior cancer, stratified by age. Kaplan-Meier curves were constructed for patients with and without prior cancer, and survival differences were examined using the log-rank test. Furthermore, to validate our results, we adopted a multivariate Cox proportional hazards model to estimate hazard ratios (HRs). Using the maftools package in R, the frequency and visualization of gene mutations in TCGA was performed. Differentially expressed genes (DEGs) in TCGA samples, with and without prior malignancy, were analyzed using the Limma package. DEGs were considered genes where fold change > 2 and $P < 0.05$. All P values were two-sided and statistical significance was accepted at $P < 0.05$. All statistical analyses were performed using STATA version 13.0 (StataCorp, College Station, TX, United States) and R software version 3.40 (www.r-project.org).

RESULTS

Demographic and clinicopathological characteristics
In the SEER dataset, from 2004 to 2011, 35492 patients were identified with newly diagnosed GC, of which, 4,001 (11.27%) had one or more prior malignancy, including 576 (1.62%) patients with multiple malignancies. Baseline patient demographic and clinicopathological characteristics are described in Table 1. When compared with patients with primary GC only, those with a history of prior cancer were more likely to be elderly, male, white, and married. The proportion of cancers arising at cardia and fundus sites, with negative lymph nodes, at a localized stage, and with well/moderate differentiation, were higher in patients with prior cancer. In terms of GC therapeutic options, no significant differences were observed in the percentage of surgeries. In patients without prior cancer, radiotherapy and chemotherapy were more common. From TCGA dataset, 13 patients had one or more prior malignancy and 376 patients had no prior malignancy.

Regarding initial cancer sites, the prostate (32%) was the most common site, followed by gastrointestinal tract (17%), genitourinary (15%), breast (14%), others (10%), hematological system (7%), and the lung (5%) (Figure 1A). Unsurprisingly, the majority of prior cancers were either at localized (37%) or localized/regional stages (28%), with only 5% at distant stages (Figure 1B). Regarding therapeutic options for initial cancers, surgery was the most common modality, with most cases receiving multiple therapies (Figure 1C). The median time of initial malignancy to the time of subsequent GC diagnosis varied across initial cancer sites (from 50-78 mo, average = 68 mo; Supplementary Table 1). For breast and genitourinary cancer survivors, this interval exceeded 68 mo, whereas it was only 50 mo for lung cancer survivors.

Effects of prior cancer on GC patient survival in the SEER dataset
Among the primary GC patients in the SEER dataset, 25,592 (81%) died and 22,223 (87%) GC-related deaths were recorded during follow-up. In GC patients with prior cancer, 3407 (85.28%) died, including 544 initial cancer-related deaths and 2,353 GC-
Table 1 Baseline characteristics of patients diagnosed with gastric cancer (n = 35,492) by prior cancer status

Characteristics	No previous cancer, n = 31491 (88.73%)	With prior cancer, n = 4001 (11.27%)	P value
Age (yr)			< 0.001
< 65	13160 (41.79%)	714 (17.85%)	
≥ 65	18331 (58.21%)	3287 (82.15%)	
Sex			< 0.001
Male	19479 (61.86%)	2777 (69.41%)	
Female	12012 (38.14%)	1224 (30.59%)	
Race			< 0.001
White	22087 (70.14%)	2926 (73.13%)	
Black	4090 (12.99%)	555 (13.87%)	
AI/AN	285 (0.91%)	16 (0.4%)	
AP	4898 (15.55%)	504 (12.6%)	
Unknown	131 (0.42%)	0 (0%)	
Marital status			< 0.001
Married	17571 (55.80%)	2366 (59.14%)	
Unmarried	12473 (39.61%)	1416 (35.39%)	
Unknown	1447 (4.59%)	219 (5.47%)	
Site			
Cardia and Fundus	10537 (33.46%)	1486 (37.14%)	
Body of stomach	6340 (20.13%)	844 (21.09%)	
Antrum and Pylorus	7570 (23.40%)	862 (21.54%)	
Stomach, NOS	7244 (23.00%)	809 (20.22%)	
Lymph nodes examined	16884 (53.62%)	2287 (57.16%)	< 0.001
No examined	7020 (22.29%)	909 (22.72%)	
1-15	6338 (20.13%)	686 (17.15%)	
≥ 16	1249 (3.97%)	119 (2.97%)	
Positive lymph nodes	4914 (36.79%)	693 (43.45%)	< 0.001
0	2599 (19.46%)	327 (20.50%)	
1-2	2399 (17.96%)	276 (17.30%)	
3-6	2355 (17.63%)	207 (12.98%)	
≥ 16	1066 (7.98%)	89 (5.58%)	
Unknown	25 (0.19%)	3 (0.19%)	
SEER stage			< 0.001
Localized	7209 (22.89%)	1190 (29.74%)	
Regional	8978 (28.51%)	1051 (26.27%)	
Distant	12615 (40.06%)	1242 (31.04%)	
Unstaged	2689 (8.54%)	518 (12.95%)	
Grade			< 0.001
G1	1087 (3.45%)	181 (4.52%)	
G2	7012 (22.27%)	1027 (25.67%)	
Yin X et al. Effect of prior malignancy

G3	18112	(57.51%)	2108	(52.69%)
G4	567	(1.80%)	68	(1.70%)
Unknown	4713	(14.97%)	617	(15.42%)
Surgery	0.088			
No	16692	(53.01%)	2194	(54.84%)
Yes	14630	(46.46%)	1785	(44.61%)
Unknown	169	(0.54%)	22	(0.55%)
Radiation	< 0.001			
None	23413	(74.35%)	3098	(77.43%)
Radiation	7789	(24.73%)	866	(21.64%)
Unknown	289	(0.92%)	37	(0.92%)
Chemotherapy	< 0.001			
No/Known	17189	(54.58%)	2569	(64.21%)
Chemotherapy	14302	(45.42%)	1432	(35.79%)

AI/AN: American Indian/Alaska Native; AP: Asian or Pacific Islander; G1: Well-differentiated; G2: Moderately differentiated; G3: Poorly differentiated; G4: Undifferentiated.

Figure 1 Distribution of initial site (A), stage (B) and therapeutic options (C) of prior cancers in gastric cancer patients with a history of cancer. The all-cause and GC-specific 3-year survival rates of primary GC patients were 26.42% (95% confidence interval [CI]: 25.90%–26.94%) and 30.91% (95% CI: 30.34%–31.47%), respectively, while for patients with a history of prior cancer, theses rates were 25.20% (95% CI: 23.80%–26.63%) and 38.03 (95% CI: 36.27%–39.79%), respectively (Table 2, Supplementary Table 3). Thus, it appeared that patients with prior cancer had a higher GC-related survival rate. Considering age may have had a role, we calculated the survival rates stratified by age. In either young or elderly patients, a higher GC-specific survival rate was observed in those with prior cancer. In terms of different initial cancer sites, lung cancer survivors had lower all-cause and cancer-specific survival (CSS) rates than those with other initial cancer sites. From Kaplan-Meier curves, patients with prior cancer had a significantly worse overall-survival (OS) and better GC-specific survival rate (log-rank tests both $P < 0.05$) (Figure 2). We also constructed multivariable Cox regression models to confirm the effects of prior cancer on survival outcomes. A related deaths (Supplementary Table 2).
Table 2 Overall 3-year survival rate of gastric patients stratified by age

Prior initial cancer site	All-cause survival (95%CI)	Overall	Age < 65 yr (%)	Age ≥ 65 yr (%)
No prior cancer	26.42 (25.90, 26.94)	28.95 (28.14, 29.77)	24.49 (23.82, 25.16)	
With prior cancer	25.20 (23.80, 26.63)	30.12 (26.68, 33.62)	24.08 (22.55, 25.65)	
Prostate	24.79 (21.39, 28.32)	25.33 (16.23, 31.21)	25.16 (21.35, 29.14)	
Gastrointestinal	26.47 (23.96, 29.04)	31.13 (22.60, 40.03)	26.00 (23.38, 28.68)	
Hematologic	28.06 (22.75, 33.58)	42.17 (31.11, 52.80)	22.16 (16.49, 28.38)	
Breast	26.80 (22.96, 30.78)	33.27 (25.47, 41.25)	24.36 (20.04, 28.92)	
Genitourinary	23.64 (20.14, 27.30)	34.29 (25.39, 43.35)	21.06 (17.36, 25.02)	
Lung	19.32 (13.87, 25.45)	12.50 (3.95, 26.23)	20.83 (14.64, 27.79)	
Other	22.90 (18.79, 27.26)	24.61 (16.44, 33.66)	22.33 (17.66, 27.35)	

Figure 2 Kaplan–Meier survival curves of gastric cancer patients with and without a history of prior cancer. A: All-cause survival; B: Gastric cancer-specific cancer survival.

Effects of prior cancer on GC patient survival in TCGA

We observed that 329 patients (329/376, 87.5%) without prior cancer had molecular alterations; the top mutated genes were titin (TTN), tumor protein 53 (TP53), mucin 16 (MUC16), AT-rich interactive domain-containing protein 1A, and lipoprotein receptor-related protein 1B (LRP1B) (Figure 3A). Ten patients (10/13, 76.92%) with prior cancer had molecular alterations; the top mutation genes were MUC16, TP53, TTN, contactin associated protein 2, and LRP1B (Figure 3B). We observed no significant differences in
Table 3 Multivariable Cox regression analysis of survival in patients with gastric cancer

Characteristics	All-cause adjusted HR (95% CI)	P value	Cancer-specific adjusted HR (95% CI)	P value
Age (yr; ≤ 65 vs > 65)				
≥ 65	1.32 (1.28, 1.35)	< 0.001	1.25 (1.22, 1.29)	< 0.001
Sex (♂ vs ♀)				
Female	0.93 (0.91, 0.96)	< 0.001	0.95 (0.92, 0.98)	< 0.001
Race (White vs other)				
Black	1.09 (1.05, 1.13)	< 0.001	1.07 (1.03, 1.12)	< 0.001
AL/AN	1.14 (1.01, 1.29)	0.033	1.16 (1.02, 1.32)	0.023
AP	0.79 (0.76, 0.82)	< 0.001	0.79 (0.76, 0.82)	< 0.001
Marital status (Married vs Unmarried)				
Unmarried	1.14 (1.12, 1.17)	< 0.001	1.11 (1.08, 1.14)	< 0.001
Gastric cancer site (Cardia and Fundus vs others)				
Body of stomach	0.96 (0.92, 0.99)	0.013	0.93 (0.90, 0.97)	< 0.001
Antrum and Pylorus	0.99 (0.96, 1.03)	0.727	0.97 (0.93, 1.01)	0.114
Lymph nodes examined (≥ 16 vs ≤ 15)				
1-15	0.73 (0.69, 0.77)	< 0.001	0.72 (0.68, 0.77)	< 0.001
≥ 16	0.65 (0.61, 0.68)	< 0.001	0.66 (0.62, 0.71)	< 0.001
Prior history of cancer (None vs Yes)				
Yes	1.01 (0.97, 1.05)	0.644	0.82 (0.78, 0.85)	< 0.001
SEER stage (Localized vs Regional)				
Regional	2.34 (2.26, 2.44)	< 0.001	2.83 (2.70, 2.96)	< 0.001
Distant	3.43 (3.31, 3.57)	< 0.001	4.35 (4.16, 4.54)	< 0.001
Grade (G1 vs Others)				
G2	1.19 (1.10, 1.28)	< 0.001	1.27 (1.16, 1.38)	< 0.001
G3	1.56 (1.45, 1.67)	< 0.001	1.75 (1.61, 1.91)	< 0.001
G4	1.60 (1.43, 1.79)	< 0.001	1.85 (1.63, 2.09)	< 0.001
Surgery (None vs Yes)				
Yes	0.45 (0.43, 0.48)	< 0.001	0.44 (0.42, 0.47)	< 0.001
Radiation (None vs Yes)				
Yes	0.92 (0.89, 0.95)	0.007	0.92 (0.89, 0.96)	< 0.001
Chemotherapy (None vs Yes)				
Chemotherapy	0.52 (0.51, 0.54)	< 0.001	0.53 (0.51, 0.55)	< 0.001

1 Adjusted for age, race, sex, marital status, grade, stage, size, radiation, surgery, chemotherapy. AL/AN: American Indian/Alaska Native; AP: Asian or Pacific Islander; CI: Confidence interval; G1: Well-differentiated; G2: Moderately differentiated; G3: Poorly differentiated; G4: Undifferentiated; HR: Hazard ratio.

Somatic mutations between GC patients with or without prior cancer (Figure 3C). Distinct to the SEER dataset, TCGA appeared to show a survival benefit toward patients with prior cancer. Due to insufficient sample numbers, we observed no significant OS between GC patients with or without prior cancer (Figure 3D). Also, we identified 42 DEGs between cancer groups, with 15 upregulated and 27 downregulated genes identified in the prior cancer group. Additionally, we constructed a volcano map (Figure 3E) to show the distribution of these 42 DEGs.
Table 4 Multivariable Cox regression analysis of survival in gastric cancer patients stratified by age, stage, and timing of prior cancer (prior cancer vs < none)

Characteristics	All-cause survival (CI)	P value	Gastric cancer-specific survival (CI)	P value
Age (yr)				
< 65	1.08 (1.00, 1.18)	0.064	0.77 (0.69, 0.85)	< 0.001
≥ 65	1.00 (0.96, 1.04)	0.843	0.83 (0.79, 0.87)	< 0.001
Stage				
Localized	1.10 (1.02, 1.19)	0.012	0.82 (0.74, 0.91)	< 0.001
Regional	0.99 (0.92, 1.06)	0.777	0.84 (0.78, 0.92)	< 0.001
Distant	0.92 (0.87, 0.98)	0.014	0.79 (0.73, 0.85)	< 0.001
Timing of prior cancer				
< 5	1.03 (0.98, 1.09)	0.275	0.77 (0.72, 0.82)	< 0.001
5-10	0.98 (0.92, 1.04)	0.525	0.84 (0.78, 0.90)	< 0.001
≥ 10	1.01 (0.94, 1.08)	0.811	0.88 (0.81, 0.95)	0.001

Adjusted for age, race, sex, marital status, grade, stage, size, radiation, surgery, chemotherapy. AHR: Adjusted hazard ratio; CI: Confidence interval.

DISCUSSION

Cancer survivors are at higher risk of developing secondary malignancies\[18,19\]. With increasing numbers of cancer survivors having complicated dual or even multiple malignancies, the prognostic impact of previous cancer on cancer survival remains controversial. A pan-cancer study investigated the distinct effects of prior cancer across 20 cancer types\[20\]. For colorectal, sarcoma, melanoma, breast, cervical, endometrial, prostate, urothelial, orbital, and thyroid cancers, a prior cancer history contributed to a poor OS, while nasopharynx, gastrointestinal tract, lung, ovary, and brain cancer patients, with prior cancer, had a similar OS to patients without prior cancer\[20\]. In our population-based study, more than 10% of patients with newly diagnosed GC had a prior cancer history, similar to that reported by Murphy et al\[5\]. Newly diagnosed GC patients with prior cancer were older, suggesting that age is an independent risk factor for secondary malignancies\[21\]. The proportion of localized stages and negative lymph nodes were higher in patients with a prior cancer history, suggesting that cancer survivors may receive more active surveillance and that their cancer may be incidentally diagnosed at earlier stages\[22,23\]. Unsurprisingly, prostate cancer was the most common prior tumor type, suggesting an indolent clinical course. Similar results were identified for lung cancer patients\[24\]. The interval between initial malignancy and GC suggested the GC risk increased after five years of prior cancer diagnoses.

In oncology clinical trials, a substantial proportion of cancer survivors are excluded due to stringent eligibility criteria, and the assumption that these patients have inferior survival\[6,24-27\]. A previous study reported that the heterogeneous impact of a prior cancer history should be reconsidered according to the specific cancer type\[20\]. Thus, it is inappropriate to assume a prior cancer is a risk factor for mortality in a newly diagnosed cancer. In our study, using the SEER database, GC patients with a prior cancer history had similar 3-year survival rates compared to those without a prior cancer history. Despite a survival benefit trend, these data were not significant for patients with prior cancer.

A similar result was identified and validated in TCGA cohort, and suggested that a prior cancer history did not adversely affect the overall prognosis in GC patients. Regarding CSS, patients with prior cancer had superior GC-specific survival after particular variables were adjusted. It is unclear why a prior cancer history could improve GC-specific survival. Cancer survivors may undergo active cancer surveillance, thereby having an early cancer stage and improved survival, which may cause length bias and lead-time bias\[28-30\]. As gene mutations underlie most cancers, we hypothesized that patients with prior cancers harbored more molecular mutations, however, no significant mutation counts were associated with prior cancer status in the TCGA cohort.
Figure 3 Effect of prior cancer on the survival of patients with gastric cancer in The Cancer Genome Atlas. A: Oncoplot of the top frequently mutated genes in patients without prior cancer; B: Oncoplot of the top frequently mutated
Yin X et al. Effect of prior malignancy

genes in patients without prior cancer patients with prior cancer; C: Distribution of somatic mutation counts between patients with and without prior cancer; D: Kaplan–Meier survival curves of overall survival in patients with and without prior cancer; E: Volcano plot of differentially expressed genes between patients with and without prior cancer.

In our study, we could not avoid bias as the percentage of early stage GC was more frequent in patients with prior cancer. However, we did not believe this bias was responsible for GC-specific survival advantages because a prior cancer was also associated with better GC-specific survival in the localized stages (HR = 0.82, 95%CI: 0.74–0.91). We speculated that higher competing mortality risks (either due to prior cancer or other factors) in patients with prior cancer may have accounted for GC-specific survival benefits[31]. Further studies are required to address these observations.

In subgroup analyses, age did not affect the impact of a prior cancer diagnosis. A prior cancer had no significant influence on OS, but improved CSS in GC patients. We also noted that the prognostic impact of a prior cancer was independent of the time of previous cancer diagnosis, suggesting that GC patients with a prior cancer diagnosis could be considered for trial enrollment regardless of the time.

We observed that the impact of a prior cancer history on survival was varied across different cancer types. In 2009, Pulte et al[10] reported that non-Hodgkin’s lymphoma patients with prior malignancies had worse prognoses than those without prior cancer. Youn et al[32] subsequently showed a reduced survival time for Hodgkin’s lymphoma survivors with secondary gastrointestinal cancer. In contrast, opposite trends were identified in other studies: Smyth et al[11] showed that gastrointestinal cancer patients with/without prior cancer had comparable OS and gastrointestinal cancer-specific survival times. Also, in early or advanced lung cancer stages, no differences in OS were noted between patients with and without prior cancer[24,33]. Pruitt et al[24] demonstrated improved lung CSS outcomes in patients with prior cancer. For stage IV esophageal cancer, a prior malignancy had no impact on OS[9]. A recent study explored the prognostic effect landscape across 20 prior cancer types[20]. However, this study primarily focused on pan-cancer and did not characterize specific clinical features and the specific impact of GC with a prior cancer history. Thus, our study filled this knowledge gap.

Our study had several limitations. The SEER database did not provide detailed chemotherapy and radiation information, and the efficacy and tolerability of prior therapies were unclear. Other covariates, such as Helicobacter pylori infection status, genetic information, and comorbidities were unavailable. Also, we could not completely exclude the possibility of GC metastatic misclassifications from earlier tumors. Finally, our findings were based on the SEER database and TCGA cohorts, thereby limiting overall generalizability to other populations. Further studies or independent cohorts are required to validate our findings and conclusions.
CONCLUSION

In the SEER database, 11.3% of newly diagnosed GC patients had a prior cancer history, with GC occurring within 6 years after prior cancer diagnosis. GC patients with a prior cancer history had a non-inferior OS, and the CSS was slightly improved. We suggest that in future clinical trials, broader inclusion criteria for GC patients with previous cancer should be considered in order to obtain the best inclusion rate and generalizable results.

ARTICLE HIGHLIGHTS

Research background
Cancer survivors had a higher risk of developing secondary cancer, and previous studies have indicated the heterogeneous effects of prior cancer on cancer survivors.

Research motivation
To evaluate prior malignancy on patients with gastric cancer (GC).

Research objectives
To describe the features and clinical significance of a prior malignancy on patients with GC.

Research methods
We identified eligible cases from the Surveillance, Epidemiology, and End Results (SEER) database and compared clinical features of GC patients with/without prior cancer. We adopted Kaplan-Meier curves and Cox analyses to assess the prognostic impact of a prior cancer on the overall survival (OS) and GC-specific survival outcomes. We also validated these results in The Cancer Genome Atlas (TCGA) cohort and compared mutation patterns.

Research results
In the SEER dataset, 35,492 patients newly diagnosed with GC during 2004-2011, 4,001 (11.3%) cases had at least one prior cancer, including 576 (1.62%) cases with multiple prior cancers. Patients with a history of prior cancer tended to be elderly, with a more localized stage and less positive lymph nodes. Prostate (32%) was the most common initial cancer site. The median interval from the initial diagnosis of malignancy to secondary gastric cancer was 68 mo. A history of prior cancer was not significantly associated with overall (hazard ratio:1.01, 95% confidence interval: 0.97-1.05) survival in multivariable Cox analyses.

Research conclusions
The prognosis for GC patients with a diagnosis of prior cancer was not inferior to primary GC patients.

Research perspectives
The prognosis for GC patients with a diagnosis of prior cancer was not inferior to primary GC patients. Our results suggest that a wide range of conclusions should be considered in the clinical trials of GC patients with a previous cancer to obtain the best inclusion rate and generalizable results.

REFERENCES

1 Jim MA, Pinheiro PS, Carreira H, Espey DK, Wiggins CL, Weir HK. Stomach cancer survival in the United States by race and stage (2001-2009): Findings from the CONCORD-2 study. Cancer 2017; 123 Suppl 24: 4994-5013 [PMID: 29205310 DOI: 10.1002/cncr.30881]
2 Karimi P, Islami F, Anandasabapathy S, Freedman ND, Kamangar F. Gastric cancer: descriptive epidemiology, risk factors, screening, and prevention. Cancer Epidemiol Biomarkers Prev 2014; 23: 700-713 [PMID: 24618998 DOI: 10.1158/1055-9965.EPI-13-1057]
3 Sitarz R, Skierucha M, Mielko J, Offerhaus GJA, Maciejewski R, Polkowski WP. Gastric cancer: epidemiology, prevention, classification, and treatment. Cancer Manag Res 2018; 10: 239-248 [PMID: 29445300 DOI: 10.2147/CMAR.S149619]
Yin X et al. Effect of prior malignancy

4 Morrell S, Young J, Roder D. The burden of cancer on primary and secondary health care services before and after cancer diagnosis in New South Wales, Australia. *BMC Health Serv Res* 2019; 19: 431 [PMID: 31248405] DOI: 10.1186/s12913-019-4280-1

5 Murphy CC, Gerber DE, Pruitt SL. Prevalence of Prior Cancer Among Persons Newly Diagnosed With Cancer: An Initial Report From the Surveillance, Epidemiology, and End Results Program. *JAMA Oncol* 2018; 4: 832-836 DOI: 10.1001/jamaoncol.2017.3605

6 Kim ES, Bernstein D, Hilsenbeck SG, Chung CH, Dicker AP, Ersek JL, Stein S, Khuri FR, Burgess E, Hunt K, Ivy P, Bruinooge SS, Metropolis N, Schilsky RL. Modernizing Eligibility Criteria for Molecularly Driven Trials. *J Clin Oncol* 2015; 33: 2815-2820 [PMID: 26195710] DOI: 10.1200/JCO.2015.62.1854

7 He X, Li Y, Su T, Lai S, Wu W, Chen L, Si J, Sun L. The impact of a history of cancer on pancreatic ductal adenocarcinoma survival. *United European Gastroenterol J* 2018; 6: 888-894 [PMID: 30023666] DOI: 10.1177/2054443118795505

8 Abhyankar N, HoskinsKF, Aberr MR, Calip GS. Descriptive characteristics of prostate cancer in patients with a history of primary male breast cancer - a SEER analysis. *BMC Cancer* 2017; 17: 65 [PMID: 28946846] DOI: 10.1186/s12885-017-3640-7

9 Saad AM, Al-Husseini MJ, Elgebaly A, Aboshady OA, Salahia S, Abdel-Rahman O. Impact of prior malignancy on outcomes of stage IV esophageal carcinoma: SEER based study. *Expert Rev Gastroenterol Hepatol* 2018; 12: 417-423 [PMID: 29316808] DOI: 10.1080/17474124.2018.1426458

10 Palte D, Gondos A, Brenner H. Long-term survival of patients diagnosed with non-Hodgkin lymphoma after a previous malignancy. *Leuk Lymphoma* 2009; 50: 179-186 [PMID: 19197735] DOI: 10.1080/10428190802645061

11 Smyth EC, Tarazona N, Peckitt C, Armstrong E, Mansukhani S, Cunningham D, Chau I. Exclusion of Gastrointestinal Cancer Patients With Prior Cancer From Clinical Trials: Is This Justified? *Clin Colorectal Cancer* 2016; 15: e53-e59 [PMID: 26747392] DOI: 10.1016/j.clcc.2015.11.003

12 Dinh KT, Mahal BA, Ziehr DR, Muralidhar V, Chen YW, Viswanathan VB, Nezolosky MD, Beard CJ, Choueiri TK, Martin NE, Orio PF, Sweeney CJ, Trinh QD, Nguyen PL. Risk of prostate cancer mortality in men with a history of prior cancer. *BJU Int* 2016; 117: E20-E28 [PMID: 25845283] DOI: 10.1111/bju.13144

13 Pandurangan RK, Dumont AG, Araujo DM, Ludwig JA, Ravi V, Patel S, Garber J, Benjamin RS, Srom SS, Trent JC. Survival of patients with multiple primary malignancies: a study of 783 patients with gastrointestinal stromal tumor. *Ann Oncol* 2010; 21: 2107-2111 [PMID: 20348145] DOI: 10.1093/annonc/mdq078

14 Hattori A, Suzuki K, Aokage K, Mimae T, Nagai K, Tsuboi M, Okada M. Prognosis of lung cancer patients with a past history of colorectal cancer. *Jpn J Clin Oncol* 2014; 44: 1088-1095 [PMID: 25156681] DOI: 10.1093/jco/hyu122

15 Liu J, Zhou H, Zhang Y, Fang W, Yang Y, Hong S, Chen G, Zhao S, Chen X, Zhang Z, Xian W, Shen J, Huang Y, Zhao H, Zhang L. Impact of prior cancer history on the overall survival of younger patients with lung cancer. *ESMO Open* 2020; 5 [PMID: 32054633] DOI: 10.1136/esmoopen-2019-000609

16 He C, Zhang Y, Cai Z, Lin X. Effect of prior cancer on survival outcomes for patients with pancreatic adenocarcinoma: a propensity score analysis. *BMC Cancer* 2019; 19: 509 [PMID: 31142278] DOI: 10.1186/s12885-019-5744-8

17 Surveillance E, and End Results (SEER) Program (www.seer.cancer.gov). SEER*Stat Database: Incidence-SEER 18 Regs excluding AK Research Data, Nov 2016 Sub (2000-2014) - Linked To County Attributes - Total U.S., 1969-2015 Counties, National Cancer Institute, DCCPS, Surveillance Research Program, 2018

18 Donin N, Filson C, Drakaki A, Tan HJ, Castillo A, Kwan L, Litwin M, Champine K. Risk of second primary malignancies among cancer survivors in the United States, 1992 through 2008. *Cancer* 2016; 122: 3075-3086 [PMID: 27377470] DOI: 10.1002/cncr.30164

19 Hayat MJ, Howlader N, Reichman ME, Edwards BK. Cancer statistics, trends, and multiple primary cancer analyses from the Surveillance, Epidemiology, and End Results (SEER) Program. *Oncologist* 2007; 12: 20-37 DOI: 10.1634/theoncologist.12-1-20

20 Zhou H, Huang Y, Quo Z, Zhao H, Fang W, Yang Y, Zhao Y, Hou X, Mo Y, Hong S, Zhou T, Zhang Y, Zhang L. Impact of prior cancer history on the overall survival of patients newly diagnosed with cancer: A pan-cancer analysis of the SEER database. *Int J Cancer* 2018; 143: 1569-1577 [PMID: 29667174] DOI: 10.1002/ijc.31543

21 Rowland JH, Bellizzi KM. Cancer survivorship issues: life after treatment and implications for an aging population. *J Clin Oncol* 2014; 32: 2662-2668 [PMID: 25071099] DOI: 10.1200/JCO.2014.55.8361

22 Corkum M, Hayden JA, Kephart G, Urquhart R, Schlievert C, Porter G. Screening for new primary cancers in cancer survivors compared to non-cancer controls: a systematic review and meta-analysis. *J Cancer Surviv* 2013; 7: 455-463 [PMID: 23645522] DOI: 10.1007/s11764-013-0278-6

23 Miller KD, Nogueira L, Mariotto AB, Rowland JH, Yabroff KR, Alfano CM, Jemal A, Kramer JL, Siegel RL. Cancer treatment and survivorship statistics, 2019. *CA Cancer J Clin* 2019; 69: 363-385 [PMID: 31184787] DOI: 10.3322/caac.21565

24 Pruitt SL, Laccetti AL, Xuan L, Halm EA, Gerber DE. Revisiting a longstanding clinical trial exclusion criterion: impact of prior cancer in early-stage lung cancer. *Br J Cancer* 2017; 116: 717-725 [PMID: 28196065] DOI: 10.1038/bjc.2017.27
25. Jin S, Pazdur R, Sridhara R. Re-Evaluating Eligibility Criteria for Oncology Clinical Trials: Analysis of Investigational New Drug Applications in 2015. *J Clin Oncol* 2017; 35: 3745-3752 [PMID: 28988168 DOI: 10.1200/JCO.2017.73.4186]

26. Gerber DE, Laccetti AL, Xuan L, Halm EA, Pruitt SL. Impact of prior cancer on eligibility for lung cancer clinical trials. *J Natl Cancer Inst* 2014; 106 [PMID: 25253615 DOI: 10.1093/jnci/dja302]

27. Sorbye H, Pfeiffer P, Cavalli-Björkman N, Qvortrup C, Holsen MH, Wentzel-Larsen T, Glimelius B. Clinical trial enrollment, patient characteristics, and survival differences in prospectively registered metastatic colorectal cancer patients. *Cancer* 2009; 115: 4679-4687 [PMID: 19562777 DOI: 10.1002/cncr.24527]

28. Duffy SW, Nagtegaal ID, Wallis M, Cafferty FH, Houssami N, Warwick J, Allgood PC, Kearins O, Tappenden N, O'Sullivan E, Lawrence G. Correcting for lead time and length bias in estimating the effect of screen detection on cancer survival. *Am J Epidemiol* 2008; 168: 98-104 [PMID: 18504245 DOI: 10.1093/aje/kwn120]

29. Sankila R, Hakulinen T. Survival of patients with colorectal carcinoma: effect of prior breast cancer. *J Natl Cancer Inst* 1998; 90: 63-65 [PMID: 9428785 DOI: 10.1093/jnci/90.1.63]

30. Shen M, Boffetta P, Olsen JH, Andersen A, Hemminki K, Pakkala E, Tracey E, Brewster DH, McBride ML, Pompe-Kirn V, Kliwer EV, Tonita JM, Chia KS, Martos C, Jonasson JG, Colin D, Scélo G, Brennan P. A pooled analysis of second primary pancreatic cancer. *Am J Epidemiol* 2006; 163: 502-511 [PMID: 16421239 DOI: 10.1093/aje/kwj075]

31. Al-Husseini MJ, Saad AM, Mohamed HH, Alkhayat MA, Sonbol MB, Abdel-Rahman O. Impact of prior malignancies on outcome of colorectal cancer; revisiting clinical trial eligibility criteria. *BMC Cancer* 2019; 19: 863 [PMID: 31470823 DOI: 10.1186/s12885-019-6074-6]

32. Youn P, Li H, Milano MT, Stovall M, Constine LS, Travis LB. Long-term survival among Hodgkin's lymphoma patients with gastrointestinal cancer: a population-based study. *Ann Oncol* 2013; 24: 202-208 [PMID: 22855552 DOI: 10.1093/annonc/mds215]

33. Laccetti AL, Pruitt SL, Xuan L, Halm EA, Gerber DE. Effect of prior cancer on outcomes in advanced lung cancer: implications for clinical trial eligibility and accrual. *J Natl Cancer Inst* 2015; 107 [PMID: 25667420 DOI: 10.1093/jnci/djv002]
