Fungi in the Antarctic Cryosphere: Using DNA Metabarcoding to Reveal Fungal Diversity in Glacial Ice from the Antarctic Peninsula Region

Graciéle Cunha Alves de Menezes1 · Paulo E. A. S. Câmara2 · Otávio Henrique Bezerra Pinto3 · Peter Convey4,5 · Micheline Carvalho-Silva2 · Jefferson Cardia Simões6 · Carlos Augusto Rosa1 · Luiz Henrique Rosa1

Received: 6 April 2021 / Accepted: 9 June 2021 / Published online: 6 July 2021 © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
We assessed fungal diversity present in glacial ice from the Antarctic Peninsula using DNA metabarcoding through high-throughput sequencing (HTS). We detected a total of 353,879 fungal DNA reads, representing 94 genera and 184 taxa, in glacial ice fragments obtained from seven sites in the north-west Antarctic Peninsula and South Shetland Islands. The phylum Ascomycota dominated the sequence diversity, followed by Basidiomycota and Mortierellomycota. Penicillium sp., Cladosporium sp., Penicillium atrovenetum, Epicoccum nigrum, Pseudogymnoascus sp. 1, Pseudogymnoascus sp. 2, Phaeosphaeriaceae sp. and Xylaria grammica were the most dominant taxa, respectively. However, the majority of the fungal diversity comprised taxa of rare and intermediate relative abundance, predominately known mesophilic fungi. High indices of diversity and richness were calculated, along with moderate index of dominance, which varied among the different sampling sites. Only 26 (14%) of the total fungal taxa detected were present at all sampling sites. The identified diversity was dominated by saprophytic taxa, followed by known plant and animal pathogens and a low number of symbiotic fungi. Our data suggest that Antarctic glacial ice may represent a hotspot of previously unreported fungal diversity; however, further studies are required to integrate HTS and culture approaches to confirm viability of the taxa detected.

Keywords Africa · Ecology · Environmental DNA · Extremophiles

Introduction
Despite its generally extreme conditions, Antarctica hosts diverse environments dominated by microorganisms, which are present in the most extreme environments of the continent [1–3]. Antarctica’s continental ice sheets contain the largest volume of glacial ice, inherently characterized by unfavorable conditions to life, including low temperatures, low water activity, low nutrient availability, and, in their surface layers, exposure to high levels of solar radiation [4, 5]. Glacial ice is formed through the precipitation, accumulation, compaction and recrystallization of snow. Fungi are among the microorganisms reported from components of the Antarctic cryosphere such as soils, snow, rocks, and associated with plants and animals [6]. However, despite their recognized importance for ecosystem functioning in Antarctica and elsewhere, few studies have attempted to recover and identify fungal species from glacial ice and, until now, few species, mainly representing the phyla Ascomycota,
Basidiomycota and Mortierellomycota, have been characterized from this environment [7–12].

Glacial ice can contain spores and mycelial fragments of fungi deposited from the air column, both on contemporary and palaeo timescales [5, 12–14]. Sonjak et al. [15] suggested that viable fungal cells obtained from Arctic and Antarctic glacial ice may range in age from 10,000 to 140,000 years, which represent aeolian transport of propagules of both local and distant origin. In addition, Rosa et al. [16] studied air samples in the Antarctic Peninsula region and showed the presence of fungi in the airspora, supporting the possibility of dispersal over different geographic scales around Antarctica. To date, very few studies have addressed fungal diversity present in Antarctic glacial ice, with those available being based on cultivation techniques [5]. Furthermore, fungal diversity present in Antarctic glacial ice has not been assessed using cutting edge modern DNA metabarcoding techniques. In the current study, we assessed the fungal diversity, richness, abundance and distribution in glacial ice sampled in the different Antarctic sites using DNA metabarcoding through high-throughput sequencing (HTS).

Methods

Ice Sampling

Three “bergy bits” (glacial ice fragments) each of approximately 20 kg mass were collected adjacent to the ice fronts of seven marine-terminating glaciers in the South Shetland Islands and the north-west Antarctica Peninsula during the austral summer season in December 2015 and December 2016 (Fig. 1). Each was collected using sterile suits and gloves to minimize contamination risk. In the microbiology laboratory on board the Brazilian polar research vessel *Admiral Maximiano*, each sample was broken into smaller pieces, and surface decontamination carried out using 5% sodium hypochlorite (10 s), sterilized distilled water (10 s) and exposure to ultraviolet radiation (10 min) [12, 17]. The samples were melted and a total of 12–15 L of the resulting water filtered through 47 mm diameter (Millipore) membranes (three membranes per sampling site, each using 4–5 L) until each membrane became saturated. Membranes were then stored at -20 °C until DNA extraction in the laboratory of Polar Microbiology and Tropical Connections of Universidade Federal of Minas Gerais, Brazil. Physicochemical parameters (conductivity, resistivity, total dissolved solids, oxidation–reduction potential, pH, salinity) of the melted samples from each site were measured using a Hanna multiparameter probe HI 9828 (Hanna Instruments, USA). A map showing the sample collection locations was generated using QGIS software (version 3.14.15; https://www.QGIS.org) and the SCAR Antarctic Digital Database (ADD version 7.0; http://www.add.scar.org).

DNA Extraction, Data Analyses, and Fungal Identification

The three membranes resulting from filtering the melted ice from each sampling site were processed together in order to increase DNA yield due the low microbial biomass usually
present in the glacial ice of Antarctica [12]. Total DNA was extracted using 0.5 mL extraction buffer [sodium dodecyl sulfate (SDS) 10%], left at 55 °C for 18 h, followed by 165 µL NaCl (5 M) and 165 µL octyltrimethylammonium bromide (CTAB, 10%), then 600 µL chloroform was added and the mixture centrifuged (Eppendorf/Germany) at 13,000 rpm for 10 min. The supernatant was cleaned using the QIAGEN DNeasy PowerClean cleanup Kit. Extracted DNA was used as a template for generating PCR-amplicons. The internal transcribed spacer 2 region (ITS2) of the nuclear ribosomal DNA was used as a DNA barcode for molecular species identification [18, 19]. PCR-amplicons were generated using the universal primers ITS3 and ITS4 [20] and were sequenced at Macrogen Inc. (South Korea) on an Illumina MiSeq sequencer, using the MiSeq Reagent Kit v3 (600-cycle) following the manufacturer’s protocol.

Raw fastq files were filtered using BBMap version 38.34 (BBMap – Bushnell B. – sourceforge.net/projects/bbmap/) to remove Illumina adapters, known Illumina artifacts, and the PhiX Control v3 Library. Quality read filtering was carried out using Sickle version 1.33 -q 30 -l 50 [21], to trim 3’ or 5’ ends with low Phred quality score, and sequences shorter than 50 bp were also discarded. The remaining sequences were imported to QIIME2 version 2019.10 (https://qiime2.org/) for bioinformatics analyses [22]. The qiime2-dada2 plugin is a complete pipeline that was used for filtering, dereplication, turn paired-end fastq files into merged, and removal of chimeras [23]. Taxonomic assignments were determined for amplicon sequence variants (ASVs = taxa) using the qiime2-feature-classifier [24] classify-sklearn against the UNITE fungal ITS database version 8.2 [25] and trained with Naive Bayes classifier and a confidence threshold of 98.5%. Fungal classification followed Kirk et al. [26], Tedersoo et al. [27], MycoBank (http://www.mycobank.org), and the Index Fungorum (http://www.indexfungorum.org).

Diversity, Distribution, and Ecological Analysis

To quantify species diversity, richness, and dominance, we used the following indices: (i) Fisher’s α, (ii) Margalef’s, and (iii) Simpson’s to assess alpha diversity. In addition, the Sorensen and Bray–Curtis similarity indices were used to assess beta diversity among the fungal assemblages. The relative abundance of the ASVs was used to quantify the fungal taxa present in the glacial ice sampled as described by Rosa et al. [28]. Fungal ASVs with relative abundance > 10% were considered dominant, ASVs with relative abundance of 1–10% intermediate, and ASVs with < 1% minor (rare) components of the fungal community. All of the results were obtained with 95% confidence, and bootstrap values were calculated from 1000 iterations. Taxon accumulation curves were obtained using the Mao Tao index. All diversity index calculations and t tests were performed using PAST, version 1.90 [29]. To prepare Krona charts, QIIME2 taxonomy classifications and the table of taxa abundance were converted to tsv and biom format, respectively. The table of fungal abundance was converted to tsv by using biom convert and combined with taxonomy classification with a custom script krona_qiime.py (https://github.com/lokeshbio/Amplicon_course/blob/master/krona_qiime.py). The Krona Tools (v. 2.7.1) [30] program, ktImportText.pl, was used to provide interactive visualization of identified fungi species. Heat map comparison of fungal phyla data between Antarctic islands and Antarctic Peninsula sites was performed with the “heatmap” using the R-package (https://www.R-project.org/). Venn analysis to compare the fungal diversity obtained from the different sampling locations was carried out using the program available at http://bioinformatics.psb.ugent.be/webtools/Venn/. The functional assignments of fungal ASVs at species and generic levels were assessed using FunGuild [31].

Results

Fungal Taxonomy

We detected a total of 353,879 fungal DNA reads, representing 94 genera and 184 distinct taxa in glacial ice obtained from the seven sampling locations in the South Shetland Islands and north-west Antarctic Peninsula (Suppl. Table 1). The phylum Ascomycota was dominant in all fungal assemblages, followed by Basidiomycota and Mortierellomycota. A single Mucoromycota taxon (Rhizopus arrhizus) was detected at low abundance (Fig. 2). Penicillium sp., Cladosporium sp., Penicillium atrovenetum, Epicoccum nigrum, Pseudogymnoascus sp. 1, Pseudogymnoascus sp. 2, Phaeosphaeriaeae sp. and Xylaria grammica (Ascomycota) were the most dominant taxa (all with > 10% of DNA reads), in rank order. A further 30 taxa were detected at intermediate abundance (< 1% DNA reads). The majority of the fungal ASVs detected (146 taxa; 79.3%) were classified as rare. Thirty-seven taxa could only be assigned to higher taxonomic levels (phylum, class, order, family).

Diversity, Distribution, and Ecology

Mao Tao’s rarefaction curves approached a plateau for all sampling locations, indicating that the DNA reads obtained gave a good representation of the fungal sequence diversity present at each (Suppl. Figure 1). Alpha diversity indices across the sampled locations indicated generally high diversity (Fisher α) and richness (Margalef) and moderate dominance (Simpson) indices (Table 1), varying between the different sites. The sequence diversity detected in the
Leonardo-Blanchard region (Antarctic Peninsula) was most diverse and rich, and included a wider range of dominant taxa, followed by those of Greenwich Island, when compared with the other sampling locations. The sequence diversity detected in the Sikorsky region (Antarctic Peninsula) displayed the lowest diversity indices. The Leonardo/Blanchard (Antarctic Peninsula) location had the lowest values of conductivity and salinity.

The beta diversity of the fungal assemblages varied across the different sampling locations (Fig. 3). The presence-absence-based Sorensen index showed that the most similar fungal assemblages were found at Greenwich Island, Traub.

Fig. 2 Krona charts of fungal diversity across all sampling sites. (A) King George Island, Ajax-Stenhouse, (B) Greenwich Island, Fuerza Aérea, (C) Antarctic Peninsula, Sikorsky, (D) Antarctic Peninsula, Leonardo-Blanchard, (E) Arctowski Peninsula, Rozier-Woodbury, (F) Livingston Island, Huron, and (G) Greenwich Island, Traub.
Island, Traub and Livingston Island, Huron, followed by Antarctic Peninsula, Leonardo-Blanchard and King George Island, Ajax-Stenhouse. However, the abundance-related Bray–Curtis index indicated that the fungal assemblages from Greenwich Island, Fuerza Aérea and Antarctic Peninsula, Sikorsky showed the highest similarity. In addition, a heat map was used to show the fungal phyla abundance between the glacial ice samples obtained in the Antarctic Island and Antarctic Peninsula sites (Suppl. Figure 2).

The physicochemical properties of all the ice samples were generally similar, except for those from Antarctic Peninsula, Leonard-Blanchard and Antarctic Peninsula, Sikorsky, which displayed the extreme values of conductivity and
total dissolved solids (Table 1; Fig. 4). The fungal assemblage detected in the ice sampled in the Antarctic Peninsula, Leonard-Blanchard site, which had the lowest physicochemical parameters, included the lowest number of DNA reads and the highest number of ASVs, and had the highest diversity (Fisher α) and richness (Margalef) indices. In contrast, the fungal assemblage detected in the ice from Antarctic Peninsula, Sikorsky displayed the lowest values of the same diversity parameters. PCA analysis indicated that the conductivity, total dissolved solids, oxidation–reduction potential, pH, and salinity showed negative correlation with the number of taxa, Fisher α, Margalef, and Simpson indices. Twenty-six of the 186 fungal taxa detected were present at all sampling locations (Suppl. Table 2), while 82 taxa were detected at only a single location. However, when the fungal communities detected in the glacial ice samples from the South Shetland Islands and Antarctic Peninsula were compared, 91 (48%) were shared, including the dominant taxa *Penicillium* sp., *Cladosporium* sp., *Penicillium atrovenetum*, *Epicoccum nigrum*, and *Pseudogymnoascus* sp. (Suppl. Figure 3). Ecological functional assignments of the taxa detected at generic level are given in Suppl. Table 3. Taxa of 94 genera

Table 1 Physicochemical parameters of melted glacial ice and diversity indices of fungal assemblages at the different sampling locations in the north-west Antarctic Peninsula and South Shetland Islands

Parameters/diversity indices/density	Sampling locations						
	KG-ASH	GI-FA	GI-T	AP-S	AP-LB	AP-RW	LI-H
Conductivity (µS cm⁻¹)	25	23.5	21	50	6	23	18
Resistivity (MΩ cm⁻¹)	0.04	0.06	0.04	0.08	0.16	0.06	0.10
Total dissolved solids (ppm)	12	11.5	11	25.5	3	11.5	9
Oxidation–reduction potential (mV)	520.1	540.7	750.4	509.5	188.8	540.7	494.7
pH	6.51	6.7	6.7	7.4	6.5	6.65	6.9
Salinity (ppt)	0.01	0.01	0.02	0.02	0.0	0.01	0
Total number of reads	47,622	47,560	44,715	48,164	34,608	37,665	37,665
Fisher’s α	9.64	10.45	6.96	6.01	11.91	9.46	7.51
Margalef	7.52	8.08	5.60	4.92	8.99	7.51	5.98
Simpson	0.84	0.84	0.73	0.80	0.85	0.78	0.78

KG-ASH, King George Island, Ajax-Stenhouse Glacier; **GI-FA**, Greenwich Island, Fuerza Aérea; **GI-T**, Greenwich Island, Traub; **AP-S**, Antarctic Peninsula, Sikorsky; **AP-LB**, Antarctic Peninsula, Leonardo-Blanchard; **AP-RW**, Arctowski Peninsula, Rozier-Woodbury; **LI–H**, Livingston Island, Huron.
were detected, with the most common group being saprophytic fungi, followed by plant and animal pathogens and a small number of symbiotic fungi.

Discussion

Fungal Taxonomy

Glacial ice is considered an extreme and ultra-oligotrophic environment and one of the most challenging natural environments for life globally [2]. Representatives of bacteria, archaea, and fungi have been detected in glacial ice from different cold regions of the planet [15, 32]. However, among the microorganisms present in the glacial ice, fungi remain poorly known and few taxa have been reported to date [6, 14] in studies based on traditional culturing methods.

Many factors, such as extraction, PCR, and primer bias, can influence the outcomes of metabarcoding studies and the numbers of reads obtained [33], thus leading to misinterpretation of absolute abundance [34]. However, Giner et al. [35] concluded that such biases did not affect the proportionality between reads and cell abundance, implying that more reads are linked with higher abundance [36, 37].

Our data revealed the presence of rich and diverse fungal sequence diversity in glacial ice collected from the seven different sampling locations. The total sequence diversity was dominated by a relatively small number of taxa of the genera *Penicillium, Cladosporium, Epicoccum, Pseudogymnoascus* and *Xylaria*, all members of the Ascomycota. However, the majority of the diversity identified comprised intermediate and rare members of the phyla *Basidiomycota, Mortierellomycota* and *Mucoromycota*.

The genera *Cladosporium* and *Penicillium* include well-known cosmopolitan species often detected in the airspora. In Antarctica, different species of *Cladosporium* have been detected in association with plants and soil [3]. Species of *Penicillium* are widespread across Antarctica and have been reported in studies of multiple terrestrial substrates including soils [38–40], permafrost [41, 42], associated with marine macroalgae [43], invertebrates [44], sediments [45, 46] and seawater [47]. *Penicillium atrovenetum* was detected as the dominant fungal sequence present in the gypsum encrustations and carbonate veins of rocks in a polar desert region of continental Antarctica [48]. Members of *Pseudogymnoascus* occur widely in cold polar, alpine and temperate environments [49–52]. In Antarctica, they have been reported from soils [49, 53, 54], associated with plants [55–57] and marine macroalgae [58], in freshwater lakes [45] and associated...
with lichens [59]. *Cladosporium, Penicillium* and *Pseudogymnoascus* sequences were detected as dominant fungal sequences present in air and snow samples from the South Shetland Islands [16, 28, 60]. The dominance of sequences in these genera in the glacial ice examined here is consistent with these fungi being abundant in the air, being deposited (possibly facilitated by snow precipitation) on the glacier surface, and progressively incorporated in the glacial ice as it becomes compacted over time. It is important, however, to note that metabarcoding methodologies detect the presence of DNA sequences, with identification still limited by the available sequence databases, and do not provide any confirmation of viability. Therefore, further specific studies are necessary to determine whether the fungal taxa detected are present in a viable form.

Members of the genus *Epicoccum* are commonly present in air, soil, decaying vegetation and as endophytes in living plant tissues, with some also being documented producers of bioactive compounds [61]. In Antarctica, species of *Epicoccum* have been documented in aerobiological studies on Signy Island in the South Orkney Islands [62] and associated with Antarctic marine sponges [63]. The DNA of *Epicoccum nigrum* was also recently detected in rock surface gypsum encrustations and carbonate veins in the Ellsworth Mountains [48].

The genus *Xylaria* contains between 570 and 670 recognized species [64], but may include many more yet to be described [65]. Species of *Xylaria* are important saprophytic fungi found on decomposing wood in temperate and tropical ecosystems [66] and also as plant endophytes [67]. Additionally, members of the genus are among the most prolific secondary metabolite producers [64]. In Antarctica, *Xylaria* has been reported from soil exposed by glacial retreat on King George Island [68].

Diversity, Distribution, and Ecology

Aside from the eight *Ascomycota* taxa classified as dominant in the current study, the majority of taxa were of rare or intermediate abundance, and were mostly known as mesophilic fungi. de Menezes et al. [12] reported culturable fungal diversity from the same glacial ice samples as examined here. They documented the presence of 27 taxa belonging to 14 genera. The number of taxa detected and diversity ecological indices calculated using the metabarcoding approach in the current study were approximately seven times greater than those reported by de Menezes et al. [12] (Table 2). The use of metabarcoding revealed sequence diversity potentially representing a much richer and more diverse fungal community than previously appreciated, including 184 taxa belonging to the 98 genera, among which were fungi not previously reported from Antarctica. The fact that 37 taxa could only be assigned at higher taxonomic levels (phylum, class, order, family) reinforces the evidence that Antarctic environments are likely to host new and/or previously unreported fungal diversity.

Sorensen and Bray–Curtis similarity indices indicated that the beta diversity of the fungal assemblages varied across the different sampling sites, which may be related with ice physicochemical properties. The fungal assemblage detected in the ice sampled in the Antarctic Peninsula, Sikorsky location formed an isolated group based on the fungal taxon present, as well as having the highest values of conductivity and total dissolved solids and the lowest number of ASVs, Fisher’s α (diversity) and Margalef index values (richness). However, when the Bray–Curtis index was compared with the physicochemical parameters and alpha diversity indices no other correlations were detected. Our alpha and beta diversity data differed from those reported by de Menezes et al. [12] in their study of culturable fungal diversity from the same glacial ice samples as examined here. The PCA analysis reported by de Menezes et al. [12] showed a positive correlation between pH and the diversity indices only at two sampling sites, differing from the current analyses, which identified a positive correlation between the lowest values of the physicochemical parameters and the highest diversity values.

Sampling location	Number of taxa/ASVs	Fisher α	Margalef	Simpson				
	TCM	HTS	TCM	HTS	TCM	HTS		
King George Island, Ajax-Stenhouse	4	82	1.12	9.64	0.82	7.52	0.61	0.84
Arctowski Peninsula, Rozier-Woodbury	1	87	-	9.46	-	7.51	-	0.78
Livingston Island, Huron	8	64	12.98	7.51	3.36	5.98	0.82	0.78
Greenwich Island, Traub	1	61	-	6.96	-	5.60	-	0.73
Greenwich Island, Fuerza Aerea	5	88	2.52	10.45	1.51	8.08	0.73	0.84
Antarctic Peninsula, Sikorsky	6	54	1.78	6.01	1.28	4.92	0.33	0.80
Antarctic Peninsula, Leonardo-Blanchard	3	95	0.95	11.91	0.65	8.99	0.55	0.85

Traditional culturing methods [12]; bDNA metabarcoding (current study)
Among the dominant fungi detected in the glacial ice were the genera \textit{Penicillium}, \textit{Cladosporium} and \textit{Pseudogymnoascus}, which have been reported from various different habitats and environments in Antarctica and represent cold-adapted and cosmopolitan fungi \cite{3,5}. Glacial ice originates from snow precipitation, followed by compaction over several years and can represent a cryptic microhabitat for fungi directly related to the atmosphere thousands of years ago that are trapped in the ice matrix \cite{14}. In this context, \textit{Cladosporium}, \textit{Epicoccum} and \textit{Penicillium} are known cosmopolitan genera with high dispersal capabilities and are commonly present in tropical, temperate and polar environments \cite{28}. Their spores and/or mycelial fragments may be constantly deposited by precipitation over many years and, consequently, trapped and preserved in this glacial ice of Antarctica. In contrast, we also detected the DNA of \textit{Pseudogymnoascus} taxa, which represent psychrotolerant fungi widely reported from different Antarctic and other cold habitats \cite{28}. Finally, the majority of fungi detected as dominant, intermediate and minor components in the glacial ice samples include those known as saprophytic, mutualistic, parasitic and opportunistic taxa \cite{31}.

\section*{Conclusions}

Our data suggest that Antarctic glacial ice may host a hotspot of as yet unreported fungal diversity. Use of a DNA metabarcoding approach revealed the presence of high fungal sequence diversity including a small number of dominant fungi with capabilities for aerial dispersal and a high number of taxa of rare or intermediate abundance. The sequence diversity detected was dominated by saprophytic taxa, followed by known plant and animal pathogens and a small number of symbiotic fungi. The potentially high fungal diversity detected here in glacial ice samples emphasizes the need for further studies characterizing fungal communities of this extreme ecosystem using a combination of culturing and metabarcoding approaches.

\section*{Supplementary Information}

The online version contains supplementary material available at https://doi.org/10.1007/s00248-021-01792-x.

\section*{Acknowledgements}

We are grateful for the generous support of MSc. Rodrigo Paidano Alves in preparation of Fig. 1. We also thank congresswoman Jô Moraes and the Biological Sciences Institute of the University of Brasilia.

\section*{Author Contribution}

GCAM, LHR, JCS, and PEASC conceived the study. GCAM and LHR performed fungal DNA extraction from ice. GCAM, LHR, PEASC, OHBZ, PC, MCS, JCS, and CAR analyzed the results and wrote the manuscript. All authors read and approved the final manuscript.

\section*{Funding}

We acknowledge financial support from PROANTAR CNPq (442258/2018–6), INCT Criosfera, FAPEMIG, CAPES, and FNDCT. GCA de Menezes’ scholarship was supported by CNPq (151195/2019–6). P. Convey is supported by NERC core funding to the British Antarctic Survey’s “Biodiversity, Evolution and Adaptation” Team.

\section*{Data Availability}

All raw sequences have been deposited in the NCBI database under the codes SRX9966699, SRX9966700, SRX9966701, SRX9966702, SRX9966703, SRX9966704, SRX9966705, and SRX9966706.

\section*{Declarations}

\section*{Ethics Approval}

The collections and studies performed in Antarctic Peninsula were authorized by the Secretariat of the Antarctic Treaty and by PROANTAR.

\section*{Conflict of Interest}

The authors declare no competing interests.

\section*{References}

1. Convey P (2017) Antarctic ecosystems. In: Reference module in life sciences. Elsevier, pp 179–188. https://doi.org/10.1016/B978-0-12-809633-8.02182-8
2. Perini L, Gostintca C, Gunde-Cimerman N (2019) Fungal and bacterial diversity of Svalbard subglacial ice. Sci Rep 9:20230
3. Rosa LH, Zani CL, Cantrell CL, Duke SO, Van Dijck P, Desideri A, Rosa CA (2019) Fungi in Antarctica: diversity, ecology, effects of climate change, and bioprospection for bioactive compounds. In: Rosa LH (ed) Fungi in Antarctica: diversity, ecology and biotechnological applications, 1st edn. Springer, Switzerland, pp 1–17. https://doi.org/10.1007/978-3-030-18367-7_1
4. Anesio AM, Laybourn-Parry J (2012) Glaciers and ice sheets as a biome. Trends Ecol Evol 27:219–225
5. de Menezes GCA, Porto BA, Simões JC, Rosa CA, Rosa LH (2019) Fungi in snow and glacial ice of Antarctica. In: Rosa LH (ed) Fungi in Antarctica: diversity, ecology and biotechnological applications, 1st edn. Springer, Switzerland, Cham, pp 127–146
6. Margesin R, Collins T (2019) Microbial ecology of the cryosphere (glacial and permafrost habitats): current knowledge. Appl Microbiol Biotechnol 103:2537–2549
7. Jacobs PH, Taylor HC, Shafer JC (1964) Studies of fungi at Amundsen-Scott IGY South Pole Base (1957). Arch Dermatol 89:117–123
8. Abyzov SS, Hoover RB, Imura S, Mitskevich IN et al (2004) Use of different methods for discovery of ice-entrapped microorganisms in ancient layers of the Antarctic glacier. Adv Space Res 33:1222–1230
9. D’Elia T, Veerapaneni R, Theriaisnathan V, Rogers SO (2009) Isolation of fungi from Lake Vostok accretion ice. Mycologia 101:751–763
10. Knowlton C, Veerapaneni R, D’Elia T, Rogers SO (2013) Microbial analyses of ancient ice core sections from Greenland and Antarctica. Biology 2:206–232
11. Sanyal A, Antony R, Samui G, Thamban M (2018) Microbial communities and their potential for degradation of dissolved organic carbon in cryoconite hole environments of Himalaya and Antarctica. Microbiol Res 208:32–42
12. de Menezes GCA, Porto BA, Amorim SS (2020) Fungi in glacial ice of Antarctica: diversity, distribution and bioprospecting of bioactive compounds. Extremophiles 24:367–376
13. Abyzov SS (1993) Microorganisms in the Antarctic ice. In: Friedman EI (ed) Antarctic microbiology. Wiley, New York, pp 265–295

14. Gunde-Cimerman N, Sonjak S, Zalar P (2003) Extremophilic fungi in arctic ice: a relationship between adaptation to low temperature and water activity. Phys Chem Earth, Parts A/B/C 28:1273–1278

15. Sonjak S, Frisvad JC, Gunde-Cimerman N (2006) Penicillium mycobiota in Arctic subglacial ice. Microb Ecol 52:207–216

16. Rosa LH, Pinto OHB, Sánt-Temkiv T (2020) DNA metabarcoding of fungal diversity in air and snow of Livingston Island, South Shetland Islands. Antarctica Sci Rep 10:21793

17. Rogers SO, Therasisathan V, Ma LJ (2004) Comparisons of protocols for decontamination of environmental ice samples for biological and molecular examinations. Appl Environ Microbiol 70:2540–2544

18. Chen S, Yao H, Han J et al (2010) Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS ONE 5:e6813. https://doi.org/10.1371/journal.pone.0008613

19. Richardson RT, Lin CH, Sponsler DB (2015) Application of ITS2 metabarcoding to determine the provenance of pollen collected by honey bees in an agroecosystem. Appl Plant Sci 3:1400066

20. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR Protocols: a guide to methods and applications, 1st edn. Academic Press, New York, pp 315–322

21. Joshi NA, Fass JN (2011) Sickle: a sliding-window, adaptive, quality-based trimming tool for FastQ files (version 1.33) [software]. https://github.com/najoshi/sickle. Accessed 10 Aug 2020

22. Bolyen E, Rideout JR, Dillon MR et al (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857. https://doi.org/10.1038/s41587-019-0209-9

23. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583. https://doi.org/10.1038/nmeth.3869

24. Bokulich NA, Kaehler BD, Rideout JR et al (2018) Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6:90. https://doi.org/10.1186/s40164-018-0470-z

25. Abarenkov K, Zirk A, Pümann T, Pihinen R, Ivanov F, Nilsson RH, Köjalg U (2020) UNITE QHIME release for eukaryotes. Version 04.02.2020. UNITE Community. https://doi.org/10.15156/BIO/786386

26. Kirk PM, Cannon PF, Minter DW et al (2011) Dictionary of the fungi. CAB International, Wallingford

27. Tedersoo L, Sánchez-Ramírez S, Köjalg U et al (2018) High-level classification of the fungi and a tool for evolutionary ecological analyses. Fungal Divers 90:135–159. https://doi.org/10.1007/s13225-018-0401-0

28. Rosa LH, Pinto OHB, Convey P et al (2020) DNA metabarcoding to assess the diversity of airborne fungi present in air over Kelm Peninsula, King George Island, Antarctica. Microb Ecol. https://doi.org/10.1007/s00248-020-01627-1

29. Hammer Ø, Harper D, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Paleontol Electron 4:1–9

30. Ondov BD, Bergman NH, Phillippy AM (2011) Interactive metagenomic visualization in a Web browser. BMC Bioinformatics 12:385. https://doi.org/10.1186/1471-2105-12-385

31. Nguyen NH, Song Z, Bates ST et al (2016) FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol 20:241–248. https://doi.org/10.1016/j.funeco.2015.06.006

32. Duo Saito RA, Connell L, Rodriguez R, Redman R, Libkind D, de Garcia V (2018) Metabarcodeing analysis of the fungal biodiversity associated with Castaño Overa Glacier – Mount Tronador, Patagonia, Argentina. Fungal Ecol 36:8–16

33. Medinger R, Nolte V, Pandey RV et al (2010) Diversity in a hidden world: potential and limitation of next-generation sequencing for surveys of molecular diversity of eukaryotic microorganisms. Mol Ecol 19:32–40. https://doi.org/10.1111/j.1365-294X.2009.04478.x

34. Weber AA, Pawlikoski J (2013) Can abundance of protists be inferred from sequence data: a case study of Foraminifera. PLoS ONE 8:e65739. https://doi.org/10.1371/journal.pone.0065739

35. Giner CR, Fors I, Romac S, Logares RC, Massana R (2016) Environmental sequencing provides reasonable estimates of the relative abundance of specific picoeukaryotes. Appl Environ Microbiol 82:4757–4766. https://doi.org/10.1128/AEM.00560-16

36. Deiner K, Bik HM, Mächler E et al (2017) Environmental DNA metabarcoding: transforming how we survey animal and plant communities. Mol Ecol 21:5872–5895. https://doi.org/10.1111/mec.14350

37. Hering D, Borja A, Jones JJ et al (2018) Implementation options for DNA-based identification into ecological status assessment under the European Water Framework Directive. Water Res 138:192–205. https://doi.org/10.1016/j.watres.2018.03.003

38. McAree CF, Hocking AD, Seppelt RD (1999) Penicillium species from terrestrial habitats in the Windmill Islands, East Antarctica, including a new species, Penicillium antarcticum. Polar Biol 21:97–111

39. Godinho VM, Gonçalves VN, Santiago IF et al (2015) Diversity and bioprospection of fungal community present in oligotrophic soil of continental Antarctica. Extremophiles 19:585–596. https://doi.org/10.1007/s00792-015-0741-6

40. Gomes EC, Godinho VM, Silva DA (2018) Cultivable fungi present in Antarctic soils: taxonomy, phylogeny, diversity, and bioprospecting of antiparasitic and herbicidal metabolites. Extremophiles 22:381–393

41. Zucconi L, Selbmann L, Buzzi P (2012) Searching for eukaryotic life preserved in Antarctic permafrost. Polar Biol 35:749–757

42. da Silva TH, Silva DAS, de Oliveira FS (2020) Diversity, distribution, and ecology of viable fungi in permafrost and active layer of Maritime Antarctica. Extremophiles 24:565–576

43. Godinho VM, Furbino LE, Santiago IF et al (2013) Diversity and bioprospecting of fungal communities associated with endemic and cold-adapted macroalgae in Antarctica. ISME J 7:1434–1451

44. Godinho VM, de Paula MTR, Silva DAS et al (2019) Diversity and distribution of hidden cultivable fungi associated with marine animals of Antarctica. Fungal Biol 123:507–516

45. Gonçalves VN, Vaz AB, Rosa CA, Rosa LH (2012) Diversity and distribution of fungal communities in lakes of Antarctica. FEMS Microbiol Ecol 82:419–471

46. Ogaki MB, Teixeira DR, Vieira R (2020) Diversity and bioprospecting of cultivable fungal assemblages in sediments of lakes in the Antarctic Peninsula. Fungal Biol 124:601–611

47. Gonçalves VN, Vitorelli GA, de Menezes GC (2017) Taxonomy, phylogeny and ecology of cultivable fungi present in seawater gradients across the Northern Antarctic Peninsula. Extremophiles 21:1005–1015

48. de Menezes GCA, Câmara PEAS, Pinto OHB (2021) Fungal diversity present on rocks from a polar desert in continental Antarctica assessed using DNA metabarcoding. Extremophiles 25:193–202

49. Mercantini R, Marsella R, Cervellati MC (1989) Keratinophilic fungi isolated from Antarctic soil. Mycopathologia 106:47–52
50. Lorch JM, Lindner DL, Gargas A et al (2013) A culture-based survey of fungi in soil from bat hibernacula in the eastern United States and its implications for detection of Geomyces destructans, the causal agent of bat white-nose syndrome. Mycologia 105:237–252
51. Minnis AM, Lindner DL (2013) Phylogenetic evaluation of Geomyces and allies reveals no close relatives of Pseudogymnoascus destructans, comb. nov., in bat hibernacula of eastern North America. Fungal Biol 117:638–649
52. Ali SH, Alias SA, Siang HY et al (2014) Studies on diversity of soil microfungi in the Hornsund area, Spitsbergen. Polar Res 35:203–224
53. Arenz BE, Blanchette RA (2011) Distribution and abundance of soil fungi in Antarctica at sites on the Peninsula, Ross Sea Region and McMurdo Dry Valleys. Soil Biol Biochem 43:308–315. https://doi.org/10.1016/j.soilbio.2010.10.016
54. Krishnan A, Alias SA, Wong CMVL et al (2011) Extracellular hydrolase enzyme production by soil fungi from King George Island, Antarctica. Polar Biol 34:1535–1542
55. Tosi S, Casado B, Gerdol R, Careta G (2002) Fungi isolated from Antarctic mosses. Polar Biol 25:262–268
56. Rosa LH, Almeida Vieira MDL, Santiago IF, Rosa CA (2010) Endophytic fungi community associated with the dicotyledonous plant Colobanthus quitensis (Kunth) Bartl. (Caryophyllaceae) in Antarctica. FEMS Microbiol Ecol 73:178–189
57. Carvalho CR, Ferreira MC, Gonçalves VN et al (2020) Fungi associated with the biosphere of the bipolar mosses Polytrichastrum alpinum and Polytrichum juniperinum in Antarctica. Polar Biol 43:545–553. https://doi.org/10.1007/s00300-020-02658-7
58. Loque CP, Medeiros AO, Pellizzari FM et al (2010) Fungal community associated with marine macroalgae from Antarctica. Polar Biol 33:641–648
59. Santiago IF, Soares MA, Rosa CA, Rosa LH (2015) Lichensphere: a protected natural microhabitat of the non-lichenised fungal communities living in extreme environments of Antarctica. Extreme 19:1087–1097
60. Rosa LH, da Silva TH, Ogaki MB et al (2020) DNA metabarcoding high-throughput sequencing uncovers cryptic fungal diversity in soils of protected and non-protected areas on Deception Island. Antarctica Sci Rep 10:21986. https://doi.org/10.1038/s41598-020-78934-7
61. Braga RM, Padilla G, Aratijo WL (2018) The biotechnological potential of Epicoccum spp.: diversity of secondary metabolites. Crit Rev Microbiol 44:759–778
62. Marshall WA (1997) Seasonality in Antarctic airborne fungal spores. Appl Environ Microbiol 63:2240–2245
63. Henríquez M, Vergara K, Norambuena J (2014) Diversity of cultivable fungi associated with Antarctic marine sponges and screening for their antimicrobial, antitumoral and antioxidant potential. World J Microbiol Biotechnol 30:65–76
64. Becker K, Stadler M (2020) Recent progress in biodiversity research on the Xylariales and their secondary metabolism. J Antibiot 74:1–23
65. Daranagama DA, Hyde KD, Sir EB et al (2018) Towards a natural classification and backbone tree for Graphostromataceae, Hypoxylaceae, Lopadostomataceae and Xylariaceae. Fungal Divers 88:1–165
66. Rogers JD (2000) Thoughts and musings on tropical Xylariaceae. Mycol Res 104:1412–1420
67. Davis EC, Franklin JB, Shaw AJ et al (2003) Endophytic Xylaria (Xylariaceae) among liverworts and angiosperms: phylogenetics, distribution, and symbiosis. Am J Bot 90:1661–1667
68. Santos JAD, Meyer E, Sette LD (2020) Fungal community in Antarctic soil along the retreating Collins Glacier (Fildes Peninsula, King George Island). Microorganisms 8:1145