Effective reinforcement learning based local search for the maximum \(k \)-plex problem

Yan Jina, John H. Drakeb, Una Benlicc, Kun Hea

aSchool of Computer Science, Huazhong University of Science & Technology, Wuhan, China
bOperational Research Group, Queen Mary University of London, London, United Kingdom
cSATALIA, 40 High Street, Islington High Street, London, United Kingdom

Abstract

The maximum \(k \)-plex problem is a computationally complex problem, which emerged from graph-theoretic social network studies. This paper presents an effective hybrid local search for solving the maximum \(k \)-plex problem that combines the recently proposed breakout local search algorithm with a reinforcement learning strategy. The proposed approach includes distinguishing features such as: a unified neighborhood search based on the swapping operator, a distance-and-quality reward for actions and a new parameter control mechanism based on reinforcement learning. Extensive experiments for the maximum \(k \)-plex problem (\(k = 2, 3, 4, 5 \)) on 80 benchmark instances from the second DIMACS Challenge demonstrate that the proposed approach can match the best-known results from the literature in all but four problem instances. In addition, the proposed algorithm is able to find 32 new best solutions.

Keywords: Heuristic, Local search, Reinforcement Learning, NP-hard, \(k \)-plex

1 Introduction

Let \(G = (V, E) \) be a simple undirected graph, where \(V = \{v_1, \ldots, v_n\} \) is the set of vertices and \(E \subset V \times V \) is the set of edges. A \(k \)-plex for a given positive integer \(k \) is a subset \(S \) of \(V \) such that each vertex of \(S \) is adjacent to at least \(|S| - k \) vertices in the subgraph \(G[S] = (S, E \cap S \times S) \) induced by \(S \). Formally, let \(N(v) \) be the set of adjacent vertices \(v_i \) of \(v \) (i.e., \(\{v_i, v\} \in E \)), the maximum \(k \)-plex problem with any fixed \(k \geq 1 \) (\(k \in \mathbb{Z}^+ \)) aims to find a

Email address: jinyan@mail.hust.edu.cn (Yan Jin).
\(k \)-plex \(S \) of maximum cardinality, such that \(\forall v \in S, |N(v) \cap S| \geq |S| - k \). The \(k \)-plex problem first arose in the context of graph theoretic social network [22] and has become popular in several other contexts [6, 7, 9]. The \(k \)-plex problem with any fixed positive integer \(k \) is an NP-complete problem [2], it reduces to the well-known maximum clique problem (MC) when \(k = 1 \), one of Karp’s 21 NP-complete problems [15]. The \(k \)-plex problem has a number of applications in information retrieval, code theory, signal transmission, social networks, classification theory amongst others [8, 16, 20, 26].

Due in part to the wide variety of real-world applications, increased research effort is being devoted to solving this problem. Over the past few years, several exact algorithms have been proposed for finding the maximum \(k \)-plex of a given graph [2, 17, 19, 24, 26]. These methods can find optimal solutions for graphs with around a thousand vertices in a reasonable amount of computing time (within 3 hours). However, they often fail to solve larger instances of the problem. On the other hand, several heuristic approaches have also been presented, which are able to find high-quality solutions for larger problem instances [10, 18, 28]. Two of these approaches [10, 18] are based on the general GRASP framework [21], whilst the other [28] uses the tabu search metaheuristic.

One notices that, compared to the research effort on the MC problem, studies for the maximum \(k \)-plex problem are more recent and less abundant. In this work, we are interested in approximately solving the representative large scale \(k \)-plex instances by presenting an effective heuristic approach. Moreover, the reinforcement learning techniques are shown to be able to improve the performance of local search algorithms [5, 27], hereby, we are also interested in investigating the reinforcement learning based local search for solving the maximum \(k \)-plex problem. We apply the recent breakout local search and the reinforcement learning together to explore the search space (denoted as BLS-RLE). It uses descent search to discover local optima before applying sophisticated diversification strategies to move to unexplored regions of the search space. BLS-RLE integrates several distinguishing features to ensure that the search process is effective. Firstly, a reinforcement learning technique is applied to adaptively and interdependently control three parameters deciding the type of perturbation to be applied and the magnitude of that perturbation. Secondly, the search is driven by a unified \((q,1)\)-swap \((q \in Z)\) operator, used to explore the constrained neighborhoods of the problem. Finally, a distance-and-quality reward is used to maintain a high-quality set of parameters based on previous experience.

We evaluate BLS-RLE for the \(k \)-plex problem (with \(k = 2, 3, 4, 5 \)) on a set of 80 large and dense graphs from the second DIMACS Challenge benchmark. Comparisons are performed to a number of state-of-the-art methods from the literature, and the computational results show that BLS-RLE is able to
achieve the best-known results for all the instances tested except 4 cases. In particular, BLS-RLE finds 11 new best solutions for $k = 2$, 7 for $k = 3$, 7 for $k = 4$ and 7 for $k = 5$ respectively.

The rest of the paper is organized as follows. Section 2 presents the proposed reinforcement learning based local search algorithm for solving the maximum k-plex problem. Section 3 shows the computational results of BLS-RLE for the k-plex problem with $k = 2, 3, 4, 5$ and comparisons with the state-of-the-art algorithms in the literature. Before concluding, Section 5 investigates and analyzes the influence of reinforcement learning for the local search algorithm.

2 The reinforcement learning based local search algorithm

The proposed reinforcement learning based local search algorithm (BLS-RLE) follows the recent general learning based local search framework, which was first introduced by [5] and applied to the Vertex Separator Problem. BLS-RLE combines an intensification stage that applies descent local search, with a distinctive diversification stage that adaptively selects between two or more perturbation operators with a particular perturbation magnitude. The type of perturbation operator (denoted as e), the number of perturbation moves (the depth of perturbation, denoted as l) and the degree of random perturbation (denoted as b) are three important self-adaptive parameters that control the degree of diversification during perturbation. The combination of these three parameters by determining the values of l, e and b independently may not constitute the most suitable degree of diversification required at one stage of the search. And [12] highlights the automated configuration and parameter tuning techniques are very important for effectively solving difficult computational problems. Hence, unlike the parameter tuning techniques introduced in [12], BLS-RLE uses a parameter control mechanism based on reinforcement learning [1] to adaptively and interdependently determine the value of parameters.

2.1 General procedure

The overall BLS-RLE algorithm is summarized in Algorithm 1. Following the Prelearning phase, the first step of each iteration of BLS-RLE consists of selecting an action (parameter triple (l, e, b)) according to the Softmax action-selection rule [23] (line 4). Although we use Softmax, any action selection model could be used as an alternative. The diversification procedure is then applied to the current local optimum S using (l, e, b) (line 5), followed by the Intensification (descent local search) to improve the quality of the perturbed
solution S' (line 6). Furthermore, a global variable S^* is used to record the best k-plex solution discovered during the search (lines 7-9). Finally, BLS-RLE applies the \texttt{DetermineParameterTripleReward} procedure to determine the reward r for the selected action (parameter triple) with regard to S by considering both the quality and the diversity criterion (line 10). Finally, the action value corresponding to (l, e, b) is updated with r (line 11).

\begin{algorithm}[H]
\caption{General procedure of BLS-RLE for the maximum k-plex problem}
\begin{algorithmic}[1]
\REQUIRE A graph $G = (V, E)$, an integer k
\ENSURE The largest k-plex S^* found

1: $(P_{\text{learn}}, S) \leftarrow \text{Prelearning}(); /* P_{\text{learn}}$ is a set of parameter triples $\{(l_0, e_0, b_0), (l_1, e_1, b_1), \ldots\}$, S is a feasible k-plex */
2: $\text{Max} \leftarrow |S|$;
3: $\text{Iter} \leftarrow 0$;
4: \REPEAT
5: \STATE $(l, e, b) \leftarrow \text{SelectParameterTriple}();$
6: \STATE $S' \leftarrow \text{Diversification}(l, e, b, S);$\newline $S \leftarrow \text{Intensification}(S');$
7: \IF{$|S| > |S^*|$} \STATE $S^* \leftarrow S;$ \STATE $\text{Max} \leftarrow |S^*|;$\ENDIF
8: \STATE $r \leftarrow \text{DetermineParameterTripleReward}(S);$\newline $\text{ApplyReward}(r);$\newline \IF{$\text{Iter} > \epsilon$} \STATE $\text{UpdateParameterTriple}();$\ENDIF
9: \STATE $\text{Iter} \leftarrow \text{Iter} + 1;$
10: \UNTIL a stop criterion is met
11: \RETURN the best found S^*;
\end{algorithmic}
\end{algorithm}

A parameter triple (l, e, b) determines the perturbation type, perturbation magnitude and degree for diversification, where l represents the number of perturbation moves, e represents the probability of selecting one type of perturbation operator over another and b represents the degree of random perturbation to adjust the strength of random perturbation. The set P_{all} contains all possible parameter triples, i.e., $P_{\text{all}} = \{(l_0, e_0, b_0), \ldots, (l_m, e_m, b_m)\}$ where m is the total number of triples to be generated. Here we use one of two types of perturbation operator, directed or random. A novel method for generating parameter triples is proposed, with the number of perturbation moves $\text{lin}\{l_i\}$ takes the following piecewise function (Eq. (1)). The linear nature of the first component reflects a more fine-grained approach to diversification, using a larger number of values when the perturbation level is low. As the perturbation level increases, the number of potential values for l will decrease, with the
values that they take increasing exponentially. This provides a greater level of
diversification within a smaller number of potential l values at the higher end.

$$l_i = \begin{cases}
 i + 2 & 0 \leq i < 30 \\
 2^{i-25} & 30 \leq i < 33
\end{cases} \quad (1)$$

This method for defining the set of potential l values and subsequently triples in P_{all} is in contrast to previous work [5], where a linear relationship between consecutive l values is maintained throughout the range. As for the parameters e and b, the value of e ranges from 95 to 100, and b ranges 70 to 90 respectively.

The algorithm uses a one-time $Prelearning$ procedure to evaluate the degree of diversification introduced by each parameter triple $(l, e, b) \in P_{all}$ that can be applied throughout the search process. For this purpose, the degree of diversification refers to the ability of the search to discover new local optima. To limit the number of possible actions and to reduce the time required to learn, BLS-RLE maintains a small subset $P_{learn} \subset P_{all}$ of κ parameter triple, representing potential actions that can be performed at that time. P_{learn} is periodically updated (every ϵ iterations) with a new parameter triple from $P_{all} \setminus P_{learn}$ based on the action values learned during the Prelearning procedure.

2.2 Prelearning procedure

Iterated Local Search is used to assess the diversification capability of each parameter triple (l, e, b), based on how frequently a new local optimum is found. The number of times a previously encountered local optima is visited by each triple is recorded, with the value for each triple initially set to 0. The detailed procedure is as follows:

1. A perturbation operator is selected and applied, based on the parameter e. The perturbation operator makes l moves, with a hash table used to record recently visited local optima as historical information.
2. Following this, descent local search attempts to improve the solution, returning the local optimum.
3. Finally, a check is performed to see if the local optimum has already been encountered. If so, the count of revisited local optima for the corresponding triple is increased by 1.
4. Repeat steps 1 to 3 until each parameter triple (l, e, b) has been used.

This process is repeated α times, where α is chosen to provide enough samples from which a ranking of triples can be derived. Once completed, the parameter triples in P_{all} are sorted in ascending order of the number of times they
revisited previously encountered local optima, with the n best-ranked triples kept in a set P_{learn}. Note that here n is experimentally set to 2375, and that this ranking will also be used for the reward and value function.

2.3 Intensification of search

The intensification stage of BLS-RLE aims to find better solutions by descent local search. For this purpose, BLS-RLE employs the (0,1)-swap move operator to try to improve a solution. Recall that $N(v)$ is the set of adjacent vertices of v, let $V\setminus S$ be the complementary set of S and $N(S)$ be the set of vertices in $V\setminus S$ that are adjacent to at least one vertex in S, i.e., $N(S) = \cup_{v \in S} N(v) \setminus S$. For a vertex v in S, if $|N(v) \cap S| = |S| - k$, then v is called a critical vertex. The set NS_0, shown in Eq. (2), consists of all vertices in $N(S)$ that are connected to at least $|S| - k + 1$ vertices in S and are also connected to all of the critical vertices C [24][25]. Descent local search includes a new vertex from NS_0 to increase the cardinality of the current S, while maintaining the feasibility of the k-plex. When NS_0 is empty, the intensification stage is complete and the local optimum found is returned.

$$NS_0 = \{v \in N(S) : |N(v) \cap S| \geq |S| - k + 1, C \setminus N(v) = \emptyset\} \quad (2)$$

2.4 Perturbation operators

In order to escape from local optima, directed or random perturbations are used to guide the search towards unexplored regions. Directed perturbation aims to minimize the degradation of the k-plex cardinality, while random perturbation aims to move the search away from the current location. The choice of operator is based on the probability e of using a directed perturbation operator, with random perturbation applied otherwise (with the corresponding probability $1 - e$). If the random perturbation is chosen, the value of parameter b controls the strength of random perturbation (the random perturbation is compared to a random start when $b \approx 0$). The number of perturbation moves is defined as l, with l, e and b controlled interdependently by the reinforcement learning strategy.

The proposed approach uses a unified $(q,1)$-swap ($q = 0,1,2,\ldots$) move to explore the search space. Four sets NS_i ($i = 0,1,2,3$) are involved in this procedure as given below, NS_0 is already presented above. The NS_1 set consists of vertices v that are adjacent to at least $|S| - k$ vertices in S, where u is the unique critical vertex not adjacent to v, as shown in Eq. (3). NS_2 consists of vertices v that are adjacent to exactly $|S| - k$ vertices in S. These $|S| - k$ vertices should include all of the critical vertices, as shown in
A corresponding exchanged vertex u is randomly selected from $S\setminus N(v)$. The vertex from $N_1 \cup N_2$ could be employed for the (1,1)-swap move operator, such that the search is guided to a new region while leaving the quality of solution unchanged. The $NS_{>2}$ consists of the vertex v, such that v is in the set of $V \setminus S$ and v is not included in the sets NS_0, NS_1 and NS_2. A corresponding exchanged vertex u is selected from S that will cause the k-plex to be infeasible after including v. The vertex from NS_3 could be used for the $(q,1)$-swap ($q \geq 2$) move in order to discover new and promising regions of the search space.

\begin{align*}
NS_1 &= \{ v \in N(S) : |N(v) \cap S| \geq |S| - k, |C \setminus N(v)| = 1 \} \\
NS_2 &= \{ v \in N(S) : |N(v) \cap S| = |S| - k, C \setminus N(v) = \emptyset \} \\
NS_3 &= \{ v \in V \setminus (S \cup NS_0 \cup NS_1 \cup NS_2) \}
\end{align*}

Directed perturbation applies a move from $NS_0 \cup NS_1 \cup NS_2 \cup NS_3$, favoring moves that minimize the degradation of the cardinality of the current k-plex. Random perturbation applies a random move from $NS_0 \cup NS_3$. Each move is only accepted when the quality is not worse than a given threshold, determined by the value of parameter b. A tabu list is used to prevent the search returning to previously visited locations. More precisely, each time a vertex is removed from the k-plex when employing the $(q,1)$-swap ($q \geq 2$), this vertex is prevented from moving back to S for the next tt_1 iterations (tt_1 is called tabu tenure and $tt_1 = 7$). On the other hand, each time a vertex is removed from the k-plex when employing the (1,1)-swap, the tabu tenure is set to $tt_2 = 7 + \text{random}(|NS_1 \cup NS_2|)$ where $\text{random}(|NS_1 \cup NS_2|)$ is a random integer from 1 to $|NS_1 \cup NS_2|$.

2.5 Reward and value functions

After a locally optimal solution S is returned by descent local search, we apply a distance-and-quality reward for each parameter triple (action). This reward considers both the quality of solution and the degree to which new areas of the search space are explored. The distance-and-quality reward r_i is given in Eq. (6) \[23\]. The core motivation behind this strategy is to give the highest reward when new local optima are discovered with the minimum amount of diversification introduced. Recall that the parameter triples in P_{all} are sorted in increasing order in the Prelearning phase, the distance is determined by $\kappa - i$ where i is the index i of the parameter triple $(l, e, b)_i$ when S is not stored in the hash table. The quality is evaluated by $(1 - \frac{|S| - |S^*|}{|S^*|})^2 \times 10$ where $|S|$ is the cardinality of the current k-plex S and S^* is the best solution found so far during the search.
\[r_i = \begin{cases}
0, & \text{If } S \text{ is already in the hash table} \\
\delta_1 \times (\kappa - i) + \delta_2 \times (1 - \frac{|S| - |S^*|}{|S|}^2) \times 10, & \text{Otherwise}
\end{cases} \]
(6)

As soon as the reward \(r_i \) for the parameter triple \((l, e, b)_i\) is computed, the \textit{ApplyReward} procedure is used to update the credit attributed to the action \((l, e, b)_i\) and accordingly compute the action value \(\omega_i \). The values of \(\omega_i \) are initialized to 1, and the 100 latest rewards ascribed to \((l, e, b)_i\) are used to estimate the credit that quantifies the performance of a particular action in a given period. According to this performance summary, the action value is updated.

2.6 Update of the parameter triple learning list

In order to prevent the search process from premature convergence, the parameter triple learning list should be updated periodically. Afterwards, the Softmax action-selection model \[23\] is used to select an action for the next iteration of the search.

The Softmax-based approach applies the Gibbs or Boltzmann distributions to assign a probability to each action in \(P_{\text{learn}} \). The updating rule for the triple learning list first selects the worst parameter triple \(a_w \in P_{\text{learn}} \), which has the lowest probability of selection. Then, the updating rule determines one promising parameter triple in \(P_{\text{all}} \setminus P_{\text{learn}} \). According to the probabilities of actions in \(P_{\text{learn}} \), we estimate the probability of each action in \(P_{\text{all}} \setminus P_{\text{learn}} \) by a linear correspondence. For example, given 12 actions in \(P_{\text{all}} \), 4 actions are selected from \(P_{\text{learn}} \) and the probability of these 4 actions are known. We use a line to connect two adjacent actions whose probabilities are known, as shown in Figure 1. For action \(a_0 \in P_{\text{all}} \setminus P_{\text{learn}} \), the estimated probability of \(a_0 \) is obtained by the probability of the first action \(a'_0 \) in \(P_{\text{learn}} \) divided by the index of action \(a'_0 \) in \(P_{\text{all}} \). Similarly, the estimated probability of \(a_{11} \in P_{\text{all}} \setminus P_{\text{learn}} \) is obtained by the probability of the last action \(a'_3 \) in \(P_{\text{learn}} \) divided by the difference between 11 and the index of action \(a'_3 \) in \(P_{\text{all}} \). Finally, we estimate the probability of all vertices in \(P_{\text{all}} \setminus P_{\text{learn}} \) and select a vertex with a high probability to replace the worst action \(a_w \) in \(P_{\text{learn}} \). After the parameter triple learning list is updated, the actions in \(P_{\text{learn}} \) are re-sorted, the action values are reset to 1, and the next round of search is triggered.
3 Experimental Set-up

In order to evaluate the performance of BLS-RLE, we conduct experiments on 80 benchmark instances\(^1\) from the Second DIMACS Implementation Challenge \(^2\). These instances were first established for the maximum clique (MC) problem and are frequently used for evaluating MC algorithms. As previously mentioned, the maximum \(k\)-plex problem can be reduced to the MC, hence these instances are also quite popular and challenging for evaluating solution methods to this problem.

The BLS-RLE algorithm is implemented in C++ and complied using g++ with the ‘-O3’ option under GNU/Linux running on an Intel Xeon E5440 processor (2.83GHz and 4GB RAM). When the DIMACS machine benchmarks\(^2\) are run on our machine, the run time required is 0.44, 2.63 and 9.85 seconds for graphs r300.5, r400.5 and r500.5 respectively. Each instance is run 20 times independently. The algorithm stops when a fixed cutoff time (180 seconds) is met. This experimental protocol is also used by a state-of-the-art heuristic in the literature \(^2\). BLS-RLE uses the self-adaptive parameters given in Table \(^1\) all computational results were obtained with the same parameters. The adopted parameter settings are inspired by a previous method from the literature \(^5\), where a parameter sensitivity analysis during the search guidance was provided.

In addition to BLS-RLE we also provide the results of BLS-RND, a variant of BLS where the values of the two parameters, \(l\), \(e\) and \(b\) are determined randomly. \(^1\) highlighted the importance of comparing adaptive parameter control mechanisms with random sampling of the parameter space. When introducing a dynamic parameter control strategy, rather than using static parameter values, it is not clear whether it is the adaptive strategy or simply that the value of parameter is changing dynamically over time that is having an effect on performance.

\(^1\) https://turing.cs.hbg.psu.edu/txn131/clique.html
\(^2\) ftp://dimacs.rutgers.edu/pub/dsj/clique/
To assess the performance of BLS-RLE, we compare it with some state-of-the-art algorithms from the literature [2,17,19,24,28]. The experimental platform of [2] was performed on Dell Precision PWS690 machine with a 2.66GHz Xeon Processor, 3 GB RAM and 120 GB HDD. The experimental platform of [17,19] was performed on a 2.2 GHz Dual-Core AMD Opteron Processor with 3GB memory, a AMD Athlon 64 3700+ machine with 2.2 GHz and 3GB memory respectively. The experimental platform of [24] was run on an Intel CoreTM 2 Quad 3 GHZ Processor with 4GB RAM, a 2.5 GHZ Intel Core i5-3210M processor with 4GB memory respectively. The experimental platform of [28] was run on an AMD Opteron 4184 with 2.8 GHZ Processor with 2GB RAM. Table 2, 9, 10 and 11 compare BLS-RLE to several recent best-performing algorithms and the heuristic method proposed in [28] (FD-TS) for $k = 2, 3, 4, 5$, covering the best known results for all of the instances tested.

BEV lists the best known results obtained by the four reference exact algorithms of [2,17,19,24]. Each of these exact algorithms terminates after a maximum of 3 hours run time (except the algorithm in [17] which terminates after 1 hour). We acknowledge that the experimental platforms used by these methods vary, however the large difference in running times means that the impact of differing CPU speeds on results is nominal. As such we have chosen to extract the computational results of the exact algorithms from the corresponding papers directly. FD-TS gives the results of the heuristic method presented in [28], which uses the same termination criteria as our method, stopping after 180 seconds. For FD-TS and BLS-RLE, the best result and average results that are achieved over 20 runs are given. The time column provides the average time in seconds required to find the best solution by those runs that obtained the best result.

From this table, we observe that the reference exact algorithms are able to solve a subset of the 80 instances to optimality, however these consist mainly of
Instance	BEV	FD+TS	BLS-RLE	
	Max (Avg.)	Time(s)	Max (Avg.)	Time(s)
brock200	125	0.15	26	0.04
brock200	125	0.01	13	0.01
brock200	125	0.02	17	0.02
brock200	125	0.06	20	0.03
brock400	125	0.42	30	0.16
brock400	125	0.51	30	0.11
brock400	125	0.35	30	0.20
brock400	125	33 (31.2)	37	23.83
brock800	125	0.15	26	0.26
brock800	125	0.01	13	0.02
brock800	125	0.02	17	0.03
brock800	125	12.68	25	2.82
brock800	125	26 (25.55)	26 (25.9)	51.07
C1000.9	125	39.65	82 (81.75)	51.66
C125.9	125	0.00	43	0.01
C2000.5	125	27.96	30 (19.05)	15.00
C250.9	125	8.43	55	12.96
C4000.5	125	39.23	21 (20.15)	11.86
C500.9	125	10.67	69	2.78
c-fat200	125	0.00	12	0.01
c-fat200	125	0.01	24	0.02
c-fat200	125	0.01	58	0.01
c-fat500	125	0.08	126 (124.95)	0.02
c-fat500	125	14	14 (12.4)	0.01
c-fat500	125	0.00	26	0.01
c-fat500	125	0.02	64	0.01
DSJC1000	125	26.61	18	13.37
DSJC500	125	0.29	16	0.18
gen200	125	53	53	0.38
gen200	125	57	57	0.04
gen400	125	68 (67.7)	65.21	40.14
gen400	125	74 (71.6)	74 (72.75)	44.32
gen400	125	80 (78.05)	80 (79.1)	35.22
hamming10-2	125	512	512	8.97
hamming10-4	125	41	48	1.53
hamming6-2	125	32	32	0.01
hamming6-4	125	6	6	0.01
hamming8-2	125	128	128	0.02
hamming8-4	125	16	16	0.03
johnson16-2-4	125	21	21	0.02
johnson32-2-4	125	14	14	0.02
johnson8-2-4	125	5	5	0.00
johnson8-4-4	125	14	14	0.02
keller4	125	15	15	0.01
keller5	125	31	31	0.10
keller6	125	63	63	3.19
MANNa27	125	236 (235.9)	126.4	0.13
MANNa45	125	662 (661.4)	5.46	6.61
MANNa81	125	2162 (2113.9)	139.35	12.33
MANNa9	125	26	26	0.01
p-hat1000	125	0.28	13	0.08
p-hat1000	125	0.43	56	0.32
p-hat1000	125	0.33	82	0.17
p-hat1500	125	1.46	14	0.33
p-hat2000	125	1.75	80	0.95
p-hat2000	125	0.61	114	0.16
p-hat300	125	0.00	10	0.02
p-hat300	125	0.01	30	0.03
p-hat300	125	0.07	44	0.05
p-hat500	125	0.06	12	0.03
p-hat500	125	0.02	42	0.02
p-hat500	125	0.18	62	0.06
p-hat700	125	0.06	13	0.07
p-hat700	125	0.06	52	0.03
p-hat700	125	0.54	76	0.14
san1000	125	9.39	18 (16.75)	50.68
san2000	125	31	31	0.05
san2000	125	26	26	0.10
san2000	125	90	90	0.01
san2000	125	71	71 (69.35)	2.03
san2000	125	54 (53.95)	72.31	7.16
san400	125	15	15 (14.9)	9.08
san400	125	41	42 (41.55)	10.27
san400	125	32	33 (32.45)	36.39
san400	125	27 (26.3)	28 (27.75)	66.10
san400	125	102	103 (102.6)	39.24
san2000	125	22	22	0.04
san2000	125	51	51	0.17
san2000	125	61	51	0.03
san2000	125	15	15	0.03
san2000	125	26	1.03	0.34
Table 3
Comparisons of BLS-RLE for the \(k \)-plex when \(k = 2 \)

Benchmark set	BEV	FD-TS	BLS-RLE		
	#max	#max	#avg.	#max	#avg.
brock (12 instances)	3	12	10	11	10
C (7 instances)	0	3	3	7	3
c-fat (7 instances)	7	7	7	7	0
DSJC (2 instances)	0	2	2	2	2
gen (5 instances)	0	3	2	5	3
hamming (6 instances)	5	6	6	6	6
johnson (4 instances)	3	4	4	4	4
keller (3 instances)	1	3	3	3	3
MANN (4 instances)	3	4	1	4	4
phat (15 instances)	4	15	15	15	15
san (11 instances)	1	6	4	11	4
sanr (4 instances)	0	4	4	4	4

Table 4
Comparisons of BLS-RLE for the \(k \)-plex when \(k = 3 \)

Benchmark set	BEV	FD-TS	BLS-RLE		
	#Max	#Max	#Avg.	#Max	#Avg.
brock (12 instances)	1	11	9	12	9
C (7 instances)	0	3	2	7	3
c-fat (7 instances)	7	7	7	7	0
DSJC (2 instances)	0	2	2	2	2
gen (5 instances)	0	5	4	5	2
hamming (6 instances)	5	6	6	6	6
johnson (4 instances)	3	4	4	4	4
keller (3 instances)	1	2	2	3	3
MANN (4 instances)	3	4	3	4	4
phat (15 instances)	2	15	15	15	15
san (11 instances)	1	10	8	11	2
sanr (4 instances)	0	4	4	4	4

Table 5
Comparisons of BLS-RLE for the \(k \)-plex when \(k = 4 \)

Benchmark set	BEV	FD-TS	BLS-RLE		
	#Max	#Max	#Avg.	#Max	#Avg.
brock (12 instances)	0	11	8	12	9
C (7 instances)	0	2	2	7	2
c-fat (7 instances)	7	7	7	7	0
DSJC (2 instances)	0	2	1	2	1
gen (5 instances)	0	5	5	5	2
hamming (6 instances)	3	6	5	5	4
johnson (4 instances)	3	4	4	4	4
keller (3 instances)	0	2	1	3	1
MANN (4 instances)	3	4	3	4	4
phat (15 instances)	1	15	14	15	15
san (11 instances)	1	11	9	11	2
sanr (4 instances)	0	4	4	4	4

small instances. In general, both the reference heuristic FD-TS and BLS-RLE can obtain good results for these instances in a short period of time. In most cases, the average performance matches the best performance, achieving the same results over all 20 runs. New best known solutions are found for eleven
Table 6
Comparisons of BLS-RLE for the k-plex when $k=5$

Benchmark set	BEV	FD-TS	BLS-RLE		
	#Max	#Max	#Avg.	#Max	#Avg.
brock (12 instances)	0	12	8	12	11
C (7 instances)	0	3	2	7	3
c-fat (7 instances)	7	7	7	7	1
DSJC (2 instances)	0	2	1	2	1
gen (5 instances)	0	5	5	5	2
hamming (6 instances)	2	6	4	6	4
johnson (4 instances)	1	4	4	4	4
keller (3 instances)	0	3	2	3	1
MANN (4 instances)	2	3	3	4	4
phat (15 instances)	0	13	12	15	12
san (11 instances)	1	11	10	10	6
sanr (4 instances)	0	4	4	4	4

Table 7
New best results for DIMACS instances by BLS-RLE

$k = 2$	Instance	Max$_{pre}$	Max
	C1000.9	81	82
	C2000.5	19	20
	C2000.9	90	93
	C4000.5	20	21
	gen400.p0.9.65	73	74
	gen400.p0.9.75	79	80
	san1000	17	18
	san400.0.7.1	41	42
	san400.0.7.2	32	33
	san400.0.7.3	27	28
	san400.0.9.1	102	103

$k = 3$	Instance	Max$_{pre}$	Max
	brock800	30	
	C1000.9	95	96
	C2000.5	22	23
	C2000.9	105	109
	C4000.5	23	24
	keller6	90	93
	san400.0.7.3	38	39

$k = 4$	Instance	Max$_{pre}$	Max
brock800.4	33	34	
C1000.9	107	109	
C2000.5	25	26	
C2000.9	118	123	
C4000.5	26	27	
C500.9	92	93	
keller6	107	112	

$k = 5$	Instance	Max$_{pre}$	Max
C1000.9	119	122	
C2000.9	132	137	
C2000.9	105	104	
C4000.5	29	30	
C500.9	103	104	
p_hat1500-3	164	165	
p_hat500-3	89	90	

Interestingly all of these instances are in the minority, where the average performance and best performance differ. It may be the case that these instances are intrinsically more difficult than some of the others in the set, indeed the average time to find a best solution is also generally longer for these cases.

Table 4, 5 and 6 summarize the computational results of BLS-RLE for the k-plex when $k = 3$, 4, and 5 respectively. Each cell in this column represents the number of instances in that subset where the best known value was found. Here, the Avg. represents the average result over the number of runs by the reference algorithm. For BLS-RLE, results are highlighted in bold in the case
that BLS-RLE outperforms FD-TS, no highlighting is applied when the results are the same, and results are italic when FD-TS outperforms BLS-RLE.

Over all 80 DIMACS instances, the BLS-RLE algorithm can match the best-known results for the k-plex when $k = 2, 3, 4, 5$ in all but four cases. In particular, BLS-RLE improves the best known results for 32 instances, finding eleven new best solutions for $k = 2$ (in bold in Table 2) and seven new best solutions for $k = 3, 4, 5$. This comparison shows that BLS-RLE offers highly competitive performance for these problem instances. Table 7 provides the specific results for the 32 instances where a new best solution has been found.

5 Analysis on the reinforcement learning

Table 8 provides a direct comparison between BLS-RLE and BLS-RND (where l, e and b are selected randomly at each step, but share the same range with BLS-RLE), over all 80 benchmark instances. The number of instances in each benchmark set is provided in parenthesis. Despite its simplicity, determining the perturbation operator and perturbation magnitude is clearly an effective strategy in this problem domain, often matching or beating BLS-RLE in terms of both maximum and average results obtained. This performance is not necessarily linked to k, with both methods seemingly scaling in a similar manner as the value of k increases. Nevertheless, BLS-RLE performs better than BLS-RND on the hard instances, i.e, BLS-RLE can find the new results 34, 26 for brock800-4 and C2000.5 while BLS-RND can only achieve the best-known results 33 and 25 when $k = 4$.

6 Conclusion

The BLS-RLE method presented in this paper is the first study for the maximum k-plex problem focusing on a cooperative approach between a local search procedure and a reinforcement learning strategy. BLS-RLE alternates between an intensification stage with descent local search and a diversification stage with directed or random perturbations. A reinforcement learning mechanism is employed to interdependently control three parameters, the probability e of using a particular type of perturbation operator, the degree of random perturbation b and the number of perturbation moves l used in order to escape local optima traps. A novel strategy for enumerating possible values for l and a new parameter control for generating the triples (l, e, b) have been proposed, differing from the existing approaches in the literature.
Experimental evaluations over 80 benchmark instances for \(k = 2, 3, 4, 5 \) showed that the proposed BLS-RLE algorithm is highly competitive in comparison with state-of-the-art exact and heuristic algorithms for the maximum \(k \)-plex problem. In particular, BLS-RLE can improve the best known results for 32 instances. Although BLS-RLE has shown to be competitive when compared to existing approaches, random sampling of parameters has also shown promising performance (BLS-RND), with the added benefit of reducing the number of design choices that are required and reducing the burden of parameter tuning. Our current work in this area is focused on using different action selection models, comparing the ability of different approaches to learn good parameter triples. In future we will examine other automated parameter tuning methods, such as irace [11], to manage the parameter combinations that are considered during the search process.
References

[1] P. Auer, N. Cesa-Bianchi, P. Fischer. Finite-time analysis of the multiarmed bandit problem. *Machine learning*, 47(2-3):235–256, 2002.

[2] B. Balasundaram, S. Butenko, I.V. Hicks. Clique relaxations in social network analysis: The maximum k-plex problem. *Operations Research*, 59(1):133–142, 2011.

[3] U. Benlic, J.K. Hao. Breakout local search for maximum clique problems. *Computers & Operations Research*, 40(1):192–206, 2013.

[4] U. Benlic, J.K. Hao. Breakout local search for the max-cut problem. *Engineering Applications of Artificial Intelligence*, 26(3):1162–1173, 2013.

[5] U. Benlic, M.G. Epitropakis, E.K. Burke. A hybrid breakout local search and reinforcement learning approach to the vertex separator problem. *European Journal of Operational Research*, 261(3):803–818, 2017.

[6] N. Berry, T. Ko, T. Moy, J. Smrcka, J. Turnley, B. Wu. Emergent clique formation in terrorist recruitment. In *The AAAI-04 Workshop on Agent Organizations: Theory and Practice*, 2004.

[7] V. Boginski, S. Butenko, O. Shirokikh, S. Trukhanov, J.G. Lafuente. A network-based data mining approach to portfolio selection via weighted clique relaxations. *Annals of Operations Research*, 216(1):23–34, 2014.

[8] N. Du, B. Wu, X. Pei, B. Wang, L. Xu. Community detection in large-scale social networks. In *Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 workshop on Web mining and social network analysis*, pages 16–25. ACM, 2007.

[9] D. Gibson, R. Kumar, A. Tomkins. Discovering large dense subgraphs in massive graphs. In *Proceedings of the 31st international conference on Very large data bases*, pages 721–732. VLDB Endowment, 2005.

[10] K.R. Gujjula, K.A. Seshadri Nathan, A. Meisami. A hybrid metaheuristic for the maximum k-Plex problem. *Examining Robustness and Vulnerability of Networked Systems*, pages 83–92, 2014.

[11] M. López-Ibáñez, J. Dubois-Lacoste, L.P. Cáceres, M. Birattari, T. Stützle. The irace package: Iterated racing for automatic algorithm configuration. *Operations Research Perspectives*, 3: 43-58, 2016.

[12] H.H. Holger. Automated Algorithm Configuration and Parameter Tuning. *Autonomous Search*. Springer Berlin Heidelberg, pages 37–71, 2011.

[13] D.S. Johnson, M.A. Trick. *Cliques, coloring, and satisfiability; second DIMACS implementation challenge, October 11-13, 1993*, volume 26. American Mathematical Soc., 1996.

[14] G. Karafotias, M. Hoogendoorn, A.E. Eiben. Why parameter control mechanisms should be benchmarked against random variation. In *Evolutionary Computation (CEC), 2013 IEEE Congress on*, pages 349–355. IEEE, 2013.
7 Appendix
Table 9: Comparisons of BLS-RLE for the k-plex when k=3

Instance	BRV	FD-TS	BLS-RLE		
		Max(Avg.)	Max(Avg.)		
		time(s)	time(s)		
brock200_1	24	0.05	30		
brock200_2	16	0.27	16		
brock200_3	19	0.11	14		
brock200_4	20	0.02	10		
brock400_1	23	7.24	36		
brock400_2	27	15.37	36		
brock400_3	27	6.59	36		
brock400_4	27	4.60	36		
brock800_1	-	12.35	30(29.05)		
brock800_2	-	31.20	30(29.95)		
brock800_3	-	11.71	30(29.95)		
brock800_4	-	14.35	29		
C1000.9	-	58.59	96(95.55)		
C125.9	-	1.89	51(100.45)		
C2000.9	150(103.40)	69.41	109(107.3)		
C250.9	-	22(21.90)	23(22.05)		
C300.9	-	84(83.5)	86(84.2)		
C350.9	-	101(100.45)	103(101.3)		
C400.9	-	87(86.2)	88(87.3)		
C500.9	-	40(39.70)	42(41.5)		
C600.9	-	114(113.5)	116(115.1)		
C600.9	-	114(113.5)	116(115.1)		
DSJC1000	-	21.25	21.18		
DSJC500	-	26.62	26.62		
gen200	p0.9	66	66		
gen400	p0.9	64	64		
gen1000	p0.9	20	20		
johnson16-2-4	-	16	16		
johnson32-2-4	-	32	32		
johnson8-4-4	-	18	18		
keller4	-	21	21		
keller5	-	45	45		
keller6	-	90(87.80)	93(88.3)		
MANN-a27	351	0.41	351		
MANN-a45	990	7.40	990		
MANN-a81	3240(3125.35)	138.36	3240		
p_hat1000-1	-	15	15		
p_hat1000-2	-	67	67		
p_hat1000-3	-	98	98		
p_hat1500-1	-	17	17		
p_hat1500-2	-	93	93		
p_hat1500-3	-	133	133		
p_hat300-1	12	12	12		
p_hat300-2	30	30	30		
p_hat300-3	43	52	52		
p_hat500-1	14	14	14		
p_hat500-2	-	50	50		
p_hat700-1	13	15	15		
p_hat700-2	50	62	62		
p_hat700-3	73	89	89		
san1000	-	6.73	6.73		
san200_0.7_1	-	46(45.70)	46(45.7)		
san200_0.7_2	36	0.21	37		
san200_0.9_1	125	0.02	125(122.3)		
san200_0.9_2	-	105	105(102)		
san200_0.9_3	-	73	73(69.5)		
san400_0.5_1	-	22	22(20.75)		
san400_0.7_1	-	61	61(60.9)		
san400_0.9_1	-	47(46.10)	47(46.8)		
san400_0.7_3	-	38	38(37.35)		
san400_0.9_1	-	150	150		
san400_0.7_1	-	61	61		
san400_0.5_1	-	18	18		
san400_0.7_1	-	30	30		
Table 10	Comparisons of BLS-RLE for the \(k \)-plex when \(k=4 \)				
----------	---				
Instance	**BKV**	**FD-TS**	**BLS-RLE**		
	Max(Avg.)	**time(s)**	**Max(Avg.)**	**time(s)**	
brock200-1	27	35	3.59	35	0.3945
brock200-2	17	18	0.06	18	0.061
brock200-3	19	23	0.03	23	0.027
brock400-1	21	26	0.03	26	0.0215
brock400-2	23	41	41.37	41	5.678
brock400-3	29	33	33.51	33	2.835
brock800-1	30	41	5.90	41	0.376
brock800-2	34(33.20)	24.43	34	30.1935	
brock800-3	34(33.15)	26.40	34(33.75)	47.185	
brock800-4	34(33.9)	28.46	34(33.9)	47.9195	
C1000.9	107(106.00)	48.91	109(108.75)	41.6625	
C250.9	58	58	0.07	58	0.022
brock2000-1	-	24.43	24.43	12.0	
brock2000-2	-	26.40	26.40	1.2835	
brock2000-3	-	28.46	28.46	0.376	
brock2000-4	-	30(29.5)	30(29.5)	0.4995	
brock4000-1	-	41.37	41.37	5.678	
brock4000-2	-	41.35	41.35	1.2835	
brock4000-3	-	41.35	41.35	0.376	
brock4000-4	-	41(40.75)	41(40.75)	0.4995	
C1000.9	107(106.00)	48.91	109(108.75)	41.6625	
C250.9	58	58	0.07	58	0.022
brock2000-1	-	24.43	24.43	12.0	
brock2000-2	-	26.40	26.40	1.2835	
brock2000-3	-	28.46	28.46	0.376	
brock2000-4	-	30(29.5)	30(29.5)	0.4995	
brock4000-1	-	41.37	41.37	5.678	
brock4000-2	-	41.35	41.35	1.2835	
brock4000-3	-	41.35	41.35	0.376	
brock4000-4	-	41(40.75)	41(40.75)	0.4995	
C1000.9	107(106.00)	48.91	109(108.75)	41.6625	
C250.9	58	58	0.07	58	0.022
brock2000-1	-	24.43	24.43	12.0	
brock2000-2	-	26.40	26.40	1.2835	
brock2000-3	-	28.46	28.46	0.376	
brock2000-4	-	30(29.5)	30(29.5)	0.4995	
Table 11
Comparisons of BLS-RLE for the k-plex when $k=5$

Instance	BKV	FD-TS	BLS-RLE		
		Max(Avg.) time(s)	Max(Avg.) time(s)		
brock200_1	27	39	2.36	39	0.966
brock200_2	17	20	0.04	20	0.022
brock200_3	19	26	0.09	26	0.0535
brock200_4	21	30	0.20	30	0.0565
brock400_1	23	46(45.50)	36.57	46	3.885
brock400_2	29	34	2.14	34	0.245
brock400_3	-	46(45.90)	55.95	46	3.172
brock400_4	30	36	25.67	36	0.0565
brock800_1	-	37	27.12	37	0.7105
brock800_2	-	38(37.30)	36.78	38(37.75)	62.65
brock800_3	-	37	33.58	37	4.0245
brock800_4	-	37	33.58	37	4.0245
C1000.9	-	119(118.15)	60.39	122(121)	53.142
C125.9	-	65	0.38	65	0.02
C2000.5	-	28(27.15)	11.72	28	33.96
C2000.9	-	132(129.65)	76.66	137(135.35)	67.061
C250.9	-	84	0.37	84	0.02
C4000.5	-	29(28.20)	26.93	30(29.05)	6.135
C5000.9	-	103(102.25)	36.65	104(103.1)	11.4765
c-fat200-1	14	14	0.00	14	0.0145
c-fat200-2	24	24	0.01	24(22.1)	0.0155
c-fat200-5	58	58	0.00	58(56.95)	0.0175
c-fat400-1	124	124	0.16	124(124.9)	0.026
c-fat400-2	15	15	0.00	15(14.35)	0.0105
c-fat400-5	26	26	0.00	26(25.3)	0.016
c-fat500-1	64	64	0.04	64(62.7)	0.0145
c-fat500-5	-	27(26.25)	32.14	27(26.85)	36.39
DSJC1000	-	127	6.78	127	14.765
DSJC500	-	24	1.07	24	0.4795
gen200_0.9	44	84	0.05	84	0.0355
gen400_0.9	55	80	0.19	80	0.0815
hamming10-2	512	513(512.15)	16.82	513(512.1)	1.8635
hamming8-2	128	128	0.00	128	0.023
johnson16-2-4	-	48	0.09	48	0.021
johnson8-2-4	-	24	0.00	24	0.016
johnson8-3-4	-	12	0.00	12	0.009
johnson8-4-4	-	24	0.00	24	0.01
keller4	-	61	5.04	61(60.55)	10.423
MANN	-	125(123.20)	73.91	125(124.05)	58.103
MANN_9	351	351	0.45	351	0.0675
MANN_9	990	990	7.44	990	2.507
MANN_80	3135(2660.75)	190.01	2000	73.26	
MANN_90	44	45	0.00	45	0.0005
p_hat1000-1	-	20	7.17	20(19.5)	0.0625
p_hat1000-2	-	84	1.30	84	0.13
p_hat1000-3	-	122	29.84	122	0.536
p_hat1500-1	-	21	1.43	21	0.6005
p_hat1500-2	-	179	5.04	179	1.563
p_hat1500-3	-	164	48.76	165(164.9)	47.2155
p_hat2000-1	14	16	0.02	16	0.0195
p_hat2000-2	35	46	0.03	46	0.0205
p_hat3000-1	43	65	0.11	65	0.0285
p_hat5000-1	14	18	0.15	18	0.076
p_hat5000-2	62	62	0.25	62	0.049
p_hat5000-3	-	89	1.73	90(89.95)	35.301
p_hat7000-1	13	19	2.00	19	14.035
p_hat7000-2	50	79	9.42	79	0.7935
p_hat7000-3	73	109	1.35	109	0.112
san100	-	41	6.39	41(39.15)	0.0415
san200_0.7	48	60	0.02	60	0.011
san200_0.9	125	125	0.03	125	0.0275
san200_0.5	105	105	0.03	105(104.5)	0.0255
san200_0.3	100	100	0.03	100	0.019
san400_0.5	-	36(35.70)	55.40	35(35.75)	0.016
san400_0.7	-	100	0.06	100	0.0325
san400_0.9	-	76	10.34	76(75.25)	6.834
san400_0.5	-	61	0.29	61(57.65)	14.6585
san400_0.9	-	200	0.15	200	0.059
sanr200_0.7	-	33	0.05	33	0.028
sanr200_0.9	-	77	5.74	77	0.408
sanr400_0.5	-	24	1.63	24	0.1875
sanr400_0.7	-	39	31.01	39	2.3455