OBJECTIVE: Our hospital is a national reference center for ECMO support therapy as for lung transplantation, it is the only center that has an active program, so understanding the epidemiology of AKI associated with ECMO in our population is important, in addition to representing a part of the experience in Latin America.

METHOD: Retrospective and descriptive studies were included all patients 18 years or older connected to ECMO with a diagnosis of severe pneumonia for COVID-19 from June 2020 to August 2021. Data were collected in Excel and using the ECMO Team platform data that is shared in the ELSO. Descriptive data analysis was performed with SPSS V23 and Excel.

RESULTS: A total of 48 patients were connected to ECMO for COVID-19 severe pneumonia in our center, of which 39 were men. Average age 49 years (min 21 year, max 68 year), average weight 93 kg (min 55 kg, max 125 kg) 25 patients (52%) with AKI, 22 (45%) required KRT and 100% CKRT. Of them, 10 patients (20%) have kidney recovery function, all of them get out form ECMO. From all, 45% patients died, these 45% were still in ECMO. In most of the cases, the AKI cause is multifactorial, but the most common cause identified was sepsis, the second nephrotoxicity (antibiotics like vancomycin and colistin) and the third hemolysis (an ECMO membrane complication). About the indication of star KRT: 50% fluid overload, 30% acidosis and uremia and 20% anuria. A total of 100% of patients were in ECMO-VV at time CKRT started, all were connected in parallel in ECMO in post-blood pump and return pre-blood pump, with no coagulation problems as long as they have the ECMO anticoagulation, 93% patients with heparin and 7% with argatroban for HIT suspicious. As data to highlight from our population, there is the first bilateral lung transplant secondary to COVID-19 in Latin America and the longest air transfer in ECMO in the world.

CONCLUSION: In our center, the AKI, KRT and mortality in patients with ECMO are much like other centers reported. In COVID-19, there is not yet very clear evidence and more studies should be done. This is the first study in Mexico about ECMO, AKI and COVID-19.

MO320 RISK FACTORS AND OUTCOMES RELATED TO ACUTE KIDNEY INJURY AMONG ENHANCED RECOVERY AFTER SURGERY (ERAS) COLORECTAL SURGERY

Adriana Fernandes1, Daniel Ribeiro2, Sofia Carvalho2, Mário Raimundo1 and Edgar Almeida1

1Nephrology, Hospital Beatriz Ângelo, Loures, Portugal and 2Anesthesiology, Hospital Beatriz Ângelo, Loures, Portugal

BACKGROUND AND AIMS: Enhanced recovery after surgery (ERAS) protocol is an evidence-based programme that englobe more restrictive fluid therapy to maintain euvolemia and the use of multimodal analgesia, which includes non-steroidal anti-inflammatory drugs (NSAIDs). Consequently, it’s pertinent to assess the risk and potential consequences of acute kidney injury (AKI) in the short and medium term.

METHOD: A descriptive and single-center retrospective study, which included 428 patients that were submitted to colon-rectal surgery according to ERAS protocol between November 2016 and May 2020. AKI was defined according to KDIGO criteria.

RESULTS: Data were collected from 428 patients. AKI occurred in 25.2% of patients (108), mostly KDIGO I (63.9%) and 6.5% required haemodialysis. The median time of follow-up was 25.6 months (IQ 15–63–38.8). Patient-related variables that positively influenced AKI were ASA Class III/IV [F (1, 426) = 23.2; P < .001], diabetes [F (1, 426) = 9.96; P = .002], severe heart disease [F (1, 426) = 7.12; P = .008], CKD [F (1, 425) = 11.58; P < .001], obesity [F (1, 423) = 14.21; P < .001] and use of ACE inhibitors/ARBs [F (1, 425) = 17.4; P < .001]. Preoperative and surgery-related variables that influenced AKI were preoperative haemoglobin [F (85, 334) = 1.36; P = .030], open approach [F (1, 424) = 21.5; P < .001], NSAIDs [F (1–426) = 5.77; P = .017], iodinated intravenous contrast exposure [F (1, 424) = 26.8; P < .001], postoperative support aminergic [F (1, 424) = 18.9; P < .001], surgery complications [F (1, 426) = 36.5; P < .001] and blood transfusion [F (1, 426) = 10.15; P = 0.002]. AKI group had a superior length of stay (9 versus 6 days; P < .001), ICU admission (31.5% versus 8.8%; P < .001), readmission at 30 days (12% versus 5.6%; P = .027) and mortality (23.1% versus 6.6%; P < .001). Kaplan–Meier analysis showed that the AKI group was associated with lower survival (log-rank test = 26.601; P < .001). We also found that the AKI group was associated with a greater reduction in GFR after 2 years (3.3 mL/min/1.73 m² versus 1.8 mL/min/1.73 m²; P = .009).

CONCLUSION: AKI was frequent among ERAS patients and was associated with worst outcomes—higher costs (since it was associated to longer hospitalization, higher readmission at 30 days and ICU admission), higher risk of reduction in GFR in the first 2 years and higher mortality.

MO321 THE CRITICAL ROLE OF CYTOKINE DYSREGULATION IN ACUTE KIDNEY INJURY DEVELOPMENT IN PATIENTS WITH COVID-19

Andresa N. Moreno-Amaral1, Sara Soares Tozoni1, Marina de Castro Deus1, Ana Carolina Gadotti1, Ana Clara Florido1, Gabriela Bohnen1, Julia Bacarin Monte Alegre1, Erika Sousa Dias1 and Thyago Proença de Moraes2

1Anemia and Immunology Research Laboratory (LabAIRe), Pontifícia Universidade Católica do Paraná, Curitiba, Brazil and 2Pontifícia Universidade Católica do Paraná, Curitiba, Brazil

BACKGROUND AND AIMS: One of the complications described in critically ill patients in intensive care units with severe COVID-19 was acute kidney injury (AKI). The pathophysiology of AKI in patients with COVID-19 is multifactorial. In addition to the direct virulence of SARS-CoV-2 in renal cells, the tissue inflammation and local immune cell infiltration, cytokine storm, secondary infections and nephrotoxicity associated drugs may contribute to AKI [1]. Mounting evidence throughout the pandemic suggests that patients with severe COVID-19 may have a cytokine storm syndrome, one of the possible causes of AKI in these patients [2]. The present prospective cohort study analysed the correlation between circulating cytokine profile and estimated glomerular filtration rate (eGFR) in patients with COVID-19.

METHOD: After signing the informed consent, patients positive for SARS-CoV-2 infection (n = 74) had blood samples (n = 139) collected at hospital admission until the day of the outcome. ELISA measured the cytokines IL-10, IL-4, IL-6, TNF-α and IFN-γ, and the eGFR was calculated by the CKD-EPI Cystatin C equation.
BACKGROUND AND AIMS: Acute kidney injury (AKI) is commonly associated with an adverse outcome in hospitalised patients. Frailty and comorbidity are risk factors for acute kidney injury. The aim of this study was to assess the strength of association between frailty and comorbidity as modifiers for duration of hospitalisation (LOS) as an outcome among inpatients with acute kidney injury in our institution.

METHOD: A retrospective observational study as part of a service assessment of adult inpatients, in a 1-month period, during the pre-pandemic phase was conducted to evaluate for changes needed to existing care pathways in our institution. AKI was identified with the help of the national algorithm endorsed by NHS England, which is incorporated in hospital reporting systems. Clinical frailty and comorbidity were estimated using the Rockwood Clinical Frailty Scale (CFS) and the Charlson comorbidity index (CCI). Pairwise correlations between LOS, CFS and CCI were estimated and tested for statistical significance using Bonferroni-adjusted significance levels. Ordinary least-squares linear regression was used to assess the prediction of LOS using CFS and CCI in separate models.

RESULTS: In 148 patients in our cohort, the mean age was 76.4 [95% confidence interval (95% CI) 74.1–78.8] years. Of these, 54% were male, 24.3% were diabetic, 29.7% had at least one criterion for prior vascular disease and 16.2% had a history of cancer. A total of 22.3% had a prior history of chronic kidney disease. In terms of severity at presentation, 66.7% had stage 1 AKI, 18.9% had stage 2, and 13.5% had stage 3 AKI.

The mean CCI was 5.4 (95% CI 5.06–5.81) and the mean RFI was 4.6 (95% CI 4.3–5.0). 50% were both at least moderately frail (CFS ≥ 5) and had a CCI of >5. The mean duration of hospitalisation was 8.7 days. Spearman’s correlation coefficient constant for CFS with LOS was 0.23 and was 0.11 with CCI, with only the correlation between LOS and CFS being statistically significant at the 5% level after Bonferroni correction. As expected, there was a statistically significant correlation between CCI and CFS (0.49). Beta coefficients for ordinary least-squares linear regression individual models with LOS as the outcome variable were 0.69 (95% CI 0.18–1.19; P = 0.007) for CFS and 0.27 (95% CI –0.16 to 0.70; P = 0.22) for CCI.

CONCLUSION: Compared with patient comorbidity, clinical frailty has a stronger and statistically significant association with the duration of hospitalisation among hospitalised adults with AKI. This study quantifies the magnitude of factors over and above those resulting from patient comorbidity that are contributory to frailty in adult inpatients with AKI. Further studies are required to improve understanding of how clinical frailty affects duration of hospitalisation in patients with AKI, to help inform future care pathways and improve duration of hospitalisation as a clinical outcome.