Some properties of Kaehler submanifolds with recurrent tensor fields

Irina I. Bodrenko

Abstract

The properties of Kaehler submanifolds with recurrent the second fundamental form in spaces of constant holomorphic sectional curvature are being studied in this article.

Introduction

Let M^{2m+2l} be a Kaehler manifold of complex dimension $m+l$ ($m \geq 1, l \geq 1$) with almost complex structure J and a Riemannian metric \tilde{g}, ∇ be the Riemannian connection coordinated with \tilde{g}, \tilde{R} be the Riemannian curvature tensor of manifold M^{2m+2l}. Let F^{2m} be a Kaehler submanifold of complex dimension m in M^{2m+2l} with induced Riemannian metric g. The restriction J to F^{2m} defines induced almost complex structure on F^{2m}, which we will denote by the same symbol J. Let ∇ be the Riemannian connection coordinated with g, D be the normal connection, b be the second fundamental form, R^\perp be the tensor of normal curvature of submanifold F^{2m}, $\nabla = \nabla \oplus D$ be the connection of van der Waerden — Bortolotti. b is called parallel if $\nabla b \equiv 0$. A tensor of normal curvature R^\perp is called parallel if $\nabla R^\perp \equiv 0$.

According to the definition of recurrent tensor field (see [1], note 8), nonzero form $b \neq 0$ is called recurrent if there exists 1-form μ on F^{2m} such that $\nabla b = \mu \otimes b$.

Theorem 1. Let F^{2m} be a Kaehler submanifold of complex dimension m in a Kaehler manifold $M^{2m+2l}(c)$ of complex dimension $m+l$ and constant holomorphic sectional curvature c. If F^{2m} has recurrent the second fundamental form b then the tensor of normal curvature $R^\perp \neq 0$ is parallel.

It is known (see [1], note 8, theorem 3), that for a Riemannian manifold M with recurrent tensor of Riemannian curvature \tilde{R} and irreducible narrowed linear group of holonomy, it is necessary that the tensor of Riemannian curvature \tilde{R} be parallel (i.e. $\nabla \tilde{R} \equiv 0$) with the condition $\dim M \geq 3$. A Riemannian manifold M is called locally symmetric if $\nabla \tilde{R} \equiv 0$.

Theorem 2. Let F^{2m} be a Kaehler submanifold of complex dimension m in a Kaehler manifold $M^{2m+2l}(c)$ of complex dimension $m+l$ and constant holomorphic sectional curvature c. If F^{2m} has recurrent the second fundamental form b then F^{2m} is locally symmetric submanifold.

©Irina I. Bodrenko, associate professor, Department of Mathematics, Volgograd State University, University Prospekt 100, Volgograd, 400062, RUSSIA.
E.-mail: bodrenko@mail.ru http://www.bodrenko.com http://www.bodrenko.org
1 Main notations and formulas.

Let M^{n+p} be $(n+p)$-dimensional $(n \geq 2, p \geq 2)$ smooth Riemannian manifold, \tilde{g} be a Riemannian metric on M^{n+p}, ∇ be the Riemannian connection coordinated with \tilde{g}, F^n be n-dimensional smooth submanifold in M^{n+p}, g be the induced Riemannian metric on F^n, ∇ be the Riemannian connection on F^n coordinated with g, TF^n and $T^\perp F^n$ be tangent and normal bundles on F^n, respectively, R and R_i be the tensors of Riemannian and Ricci curvature of connection ∇, respectively, b be the second fundamental form F^n, D be the normal connection, R^\perp be the tensor of normal curvature, ∇ be the connection of Van der Waerden -- Bortolotti.

The formulas of Gauss and Weingarten have, respectively, the following form [2] :

$$\nabla_X Y = \nabla_X Y + b(X, Y),$$

for any vector fields X, Y, tangent to F^n, and vector field ξ normal to F^n.

The equations of Gauss, Peterson -- Codacci and Ricci have, respectively, the following form [2] :

$$\check{R}(X, Y, Z, W) = R(X, Y, Z, W) + \tilde{g}(b(X, Z), b(Y, W)) - \tilde{g}(b(X, W), b(Y, Z)),$$

$$\check{R}(X, Y) = (\nabla_X b)(Y, Z) - (\nabla_Y b)(X, Z),$$

for any vector fields X, Y, Z, W, tangent to F^n, and vector fields ξ, η, normal to F^n.

For any vector field ξ normal to F^n, we denote as A_ξ the second fundamental tensor relatively to ξ. For A_ξ the relation holds

$$\check{g}(b(X, Y), \xi) = \check{g}(A_\xi X, Y),$$

for any vector fields X, Y, tangent to F^n.

A normal vector field ξ is called nondegenerate if $\det A_\xi \neq 0$.

Covariant derivatives ∇b, $(\nabla A)_\xi$ and ∇R^\perp, are defined by the following equalities, respectively ([2]):

$$(\nabla_X b)(Y, Z) = D_X (b(Y, Z)) - b(\nabla_X Y, Z) - b(Y, \nabla_X Z),$$

$$(\nabla_X A)_\xi Y = \nabla_X (A_\xi Y) - A_\xi (\nabla_X Y) - A_{D_X \xi} Y,$$

$$(\nabla_X R^\perp)(Y, Z) = D_X (R^\perp(Y, Z) \xi) - R^\perp(\nabla_X Y, Z) \xi - R^\perp(Y, \nabla_X Z) \xi - R^\perp(Y, Z) D_X \xi,$$

for any vector fields X, Y, Z, tangent to F^n, and vector field ξ normal to F^n.

Let indices, in this article, take the following values: $i, j, k, s, t = 1, \ldots, n$, $\alpha, \beta, \gamma = 1, \ldots, p$. We will use the Einstein rule.

Let x be an arbitrary point F^n, $T_x F^n$ and $T_x^\perp F^n$ be the tangent and normal spaces F^n at point x, respectively, $U(x)$ be some neighborhood of point x, (u^1, \ldots, u^n) be local
Some properties of Kaehler submanifolds with recurrent tensor fields.

coordinates on F^n in $U(x)$, $\{\partial/\partial u^i\}$ be a local basis in TF^n, $\{n_{\alpha i}\}$ be a field of bases of normal vectors in $T^\bot F^n$ in $U(x)$. We may always choose the basis $\{n_{\alpha i}\}$ orthonormalized and assume that $\tilde{g}(n_{\alpha i}, n_{\beta j}) = \delta_{\alpha\beta}$, where $\delta_{\alpha\beta}$ is the Kronecker symbol. We introduce the following designations:

$$g_{ij} = g \left(\frac{\partial}{\partial u^i}, \frac{\partial}{\partial u^j} \right), \quad b_{ij} = b \left(\frac{\partial}{\partial u^i}, \frac{\partial}{\partial u^j} \right) = b_{ij}^\alpha n_{\alpha i}, \quad \Gamma_{ij,k} = g \left(\nabla_{\alpha a^\alpha} \frac{\partial}{\partial u^i}, \frac{\partial}{\partial u^j} \right),$$

$$\Gamma_{ij}^k = g^k l \Gamma_{ij,l}, \quad \nabla_i b_{jk}^\alpha = \frac{\partial b_{jk}^\alpha}{\partial u^i} - \Gamma_{ij}^t b_{tk}^\alpha - \Gamma_{ik}^t b_{jt}^\alpha, \quad \Gamma_{ij}^k = g \left(n_{\alpha i}, \nabla_{\alpha a^\alpha} n_{\beta j} \right),$$

$$\Gamma_{ij}^k = \delta_{ij} \Gamma_{ij}^k, \quad \Gamma_{ij}^k = \delta_{\alpha\beta} \Gamma_{ij}^k, \quad \Gamma_{ij}^k + \Gamma_{ji}^k = 0, \quad \nabla_i b_{jk}^\alpha = (\nabla_i b_{jk}^\alpha + \Gamma_{ij}^k b_{jk}^\alpha),$$

$$\nabla_i a_{ij}^k = \partial_\alpha^k a_{ij}^\alpha - \Gamma_{ij}^l a_{ij}^\alpha + \Gamma_{\alpha ij}^l a_{ij}^\alpha, \quad a_{ij}^k = \frac{\partial}{\partial u^i} A_{n_{\alpha i}} \left(\frac{\partial}{\partial u^j} \right),$$

$$\nabla_i a_{ij}^k = \nabla_i a_{ij}^k - \frac{1}{2} \Gamma_{\alpha ij}^k a_{ij}^\alpha, \quad \nabla_i a_{ij}^k \left(\frac{\partial}{\partial u^j} \right) = \nabla_i a_{ij}^k \left(\frac{\partial}{\partial u^j} \right),$$

where $\|g^{ij}\|$ and $\|\delta^{\alpha\beta}\|$ are inverse matrixes to $\|g_{ij}\|$ and $\|\delta_{\alpha\beta}\|$, respectively.

We assume that a Riemannian manifold M^{n+p} is almost Hermitian manifold with almost complex structure J (see [3], chapter 6, section 6.1). Then M^{n+p} has even dimension: $n + p = 2(m + l)$, where a number $m + l$ is called complex dimension of M^{n+p}; the Riemannian metric \tilde{g} is almost Hermitian, i.e. for any vector fields \tilde{X}, \tilde{Y}, tangent to M^{n+p}, the following condition holds:

$$\tilde{g}(J\tilde{X}, \tilde{J}\tilde{Y}) = \tilde{g}(\tilde{X}, \tilde{Y}). \quad (1.10)$$

Almost Hermitian manifold M^{n+p} is called Kaehler manifold ([3]) if almost complex structure J is parallel, i.e. for any vector fields \tilde{X}, \tilde{Y}, tangent to M^{n+p}, the following condition holds:

$$\nabla_i \tilde{J}\tilde{Y} = \tilde{J}\nabla_i \tilde{X}. \quad (1.11)$$

A submanifold F^n of a Kaehler manifold M^{n+p} is called Kaehler submanifold if for any vector field $X \in TF^n$, vector field $JX \in TF^n$. F^n is Kaehler manifold relative to induced almost complex structure J and induced almost Hermitian metric g (see [3], chapter 6, par. 6.7). Kaehler submanifold F^n in Kaehler manifold M^{n+p}, has even dimension $n = 2m$ and codimension $p = 2l$. Number m is called complex dimension, and number l is called complex codimension of Kaehler submanifold F^n.

We denote by $M^{2m+2l}(c)$, a Kaehler manifold of complex dimension $m + l$ of constant holomorphic sectional curvature c. The tensor of Riemannian curvature \tilde{R} of space $M^{2m+2l}(c)$ complies with the formula [1]:

$$\tilde{R}(\tilde{X}, \tilde{Y})\tilde{Z} = \frac{c}{4} \left(\tilde{g}(\tilde{Z}, \tilde{Y})\tilde{X} - \tilde{g}(\tilde{X}, \tilde{Z})\tilde{Y} + \tilde{g}(J\tilde{Y}, \tilde{Z})J\tilde{X} - \tilde{g}(J\tilde{X}, \tilde{Z})J\tilde{Y} + 2\tilde{g}(\tilde{X}, J\tilde{Y})J\tilde{Z} \right), \quad (1.12)$$

for any vector fields $\tilde{X}, \tilde{Y}, \tilde{Z}$, tangent to $M^{2m+2l}(c)$.

3
2 The properties of covariant derivative ∇.

Lemma 1. Let F^n be a submanifold in a Riemannian manifold M^{n+p}. Then the following equality holds:

$$g((\nabla Z A)\xi X, Y) = g((\nabla Z b)(X, Y), \xi) \quad \forall X, Y, Z \in TF^n, \quad \forall \xi \in T^\perp F^n. \quad (2.1)$$

Proof. We will find the expressions of the left and the right parts of the equality (2.1), in local coordinates. We assume

$$Z = Z^i \frac{\partial}{\partial u^i}, \quad X = X^j \frac{\partial}{\partial u^j}, \quad Y = Y^k \frac{\partial}{\partial u^k}, \quad \xi = \xi^\alpha n_\alpha. \quad (2.2)$$

We have:

$$g((\nabla Z A)\xi X, Y) = Z^i X^j Y^k \xi^\alpha g_{sk} \nabla_i a^s_{\alpha |j} = Z^i X^j Y^k \left(\xi^\alpha g_{sk} \nabla_i a^s_{\alpha |j} - \xi^\alpha g_{sk} \Gamma^{\perp}_{\alpha |i} a^s_{\beta |j} \right) =$$

$$= Z^i X^j Y^k \left(\xi^\alpha \nabla_i (g_{sk} A^s_{\alpha |j}) - \xi^\alpha \Gamma^{\perp}_{\alpha |i} (g_{sk} A^s_{\beta |j}) \right) = Z^i X^j Y^k \left(\xi^\alpha \nabla_i b_{\alpha |j} - \xi^\alpha \Gamma^{\perp}_{\alpha |i} b_{\beta |j} \right) =$$

$$= Z^i X^j Y^k \left(\xi^\alpha \delta_{\alpha \beta} \nabla_i b^\beta_{\gamma |j} - \xi^\alpha \Gamma^{\perp}_{\gamma |i} b^\gamma_{\beta |j} \right) =$$

$$= Z^i X^j Y^k \left(\xi^\alpha \delta_{\alpha \beta} \nabla_i b^\beta_{\gamma |j} - \xi^\alpha \Gamma^{\perp}_{\gamma |i} b^\gamma_{\beta |j} \right) =$$

Lemma is proved.

Lemma 2. Let F^{2m} be a Kähler submanifold in a Kähler manifold M^{2m+2}. Then for any $X \in TF^{2m}$ and for any $\xi \in T^\perp F^{2m}$ the following equality holds:

$$\left(\nabla X A \right)_{\partial \xi} = J \left(\nabla X A \right)_{\xi} \quad (2.3)$$

Proof. From (1.1), because of (1.11), we obtain the following equalities (see, for example, [3], chapter 6, section 6.1, lemma 6.26):

$$\nabla X JY = J \nabla X Y, \quad Jb(X, Y) = b(X, JY), \quad \forall X, Y \in TF^{2m}. \quad (2.4)$$

From (1.2) we have:

$$\nabla X J \xi = -A_{J \xi} X + D_X J \xi, \quad J \nabla X \xi = J(-A_{\xi} X + D_X \xi).$$
Some properties of Kaehler submanifolds with recurrent tensor fields.

Hence, because of (1.11), we obtain:

\[-A_{J\xi}X + D_X J\xi = J(-A_{\xi}X + D_X \xi).\]

Therefore,

\[-A_{J\xi}X + JA_{\xi}X = JD_X \xi - D_X J\xi.\]

Since F^{2m} is a Kaehler submanifold, then, from here, we have

\[A_{J\xi}X = JA_{\xi}X, \quad D_X (J\xi) = JD_X \xi, \quad \forall X, Y \in TF^{2m}. \quad (2.5)\]

From (1.7) we have

\[(\nabla_X A)_{J\xi}Y = \nabla_X (A_{J\xi}Y) - A_{J\xi}(\nabla_X Y) - A_{D_X (J\xi)}Y.\]

Hence, using (2.4) and (2.5), we have:

\[(\nabla_X A)_{J\xi}Y = \nabla_X J(A_{\xi}Y) - JA_{\xi}(\nabla_X Y) - A_{D_X (J\xi)}Y =

= J\nabla_X (A_{\xi}Y) - JA_{\xi}(\nabla_X Y) - JA_{D_X (J\xi)}Y = J(\nabla_X A)_{J\xi}Y.\]

Lemma is proved.

Lemma 3. Let F^{2m} be a Kaehler submanifold in a Kaehler manifold $M^{2m+2}(c)$ of constant holomorphic sectional curvature c. Then for any $X, Y, Z \in TF^{2m}$ and for any $\xi \in T^\perp F^{2m}$ the following equalities hold:

\[(\nabla_{JZ} b)(X, Y) = J \left((\nabla_Z b)(X, Y) \right), \quad (2.6)\]

\[(\nabla_{JZ} A)_{J\xi} = -J(\nabla_Z A)_{J\xi}, \quad (2.7)\]

\[JA_{\xi} = -A_{\xi} J, \quad (2.8)\]

\[J(\nabla_Z A)_{J\xi} = -(\nabla_Z A)_{J\xi} J. \quad (2.9)\]

Proof. 1. Because of (1.12), the equation (1.4) takes the following form:

\[(\nabla_X b)(Y, Z) = (\nabla_Y b)(X, Z), \quad \forall X, Y, Z \in TF^{2m}. \quad (2.10)\]

Using (2.10), from (1.7) we obtain:

\[(\nabla_{JZ} b)(X, Y) = (\nabla_X b)(JZ, Y) = D_X (b(JZ, Y)) - b(\nabla_X (JZ), Y) - b(JZ, \nabla_X Y).\]

Hence, using (2.4) and (2.5), we have:

\[(\nabla_{JZ} b)(X, Y) = D_X (b(JZ, Y)) - b(J\nabla_X Z, Y) - b(JZ, \nabla_X Y) =

= J(D_X (b(Z, Y))) - J(b(\nabla_X Z, Y)) - J(b(Z, \nabla_X Y)) =

= J(D_X (b(Z, Y))) - J(b(\nabla_X Z, Y)) - J(b(Z, \nabla_X Y)) =

5
The equality (2.6) is proved.

2. Using (2.6), from (2.1) we obtain:

\[\tilde{g}(\tilde{\nabla}JZA)_\xi X, Y = \tilde{g}(\tilde{\nabla}b)(X, Y, \xi) = \tilde{g}(J((\tilde{\nabla}b)(X, Y)), \xi). \]

Hence, because of (1.10) and equality \(J^2 = -I \), we have:

\[\tilde{g}(\tilde{\nabla}JZA)_\xi X, Y = -\tilde{g}(\tilde{\nabla}b)(X, Y, J\xi) = -\tilde{g}(((\tilde{\nabla}ZA)_\xi X, Y) = -\tilde{g}(J((\tilde{\nabla}ZA)_\xi X), Y). \]

From here we get (2.7).

3. From (1.6), using (2.4), we obtain:

\[\tilde{g}(J\xi X, Y) = -\tilde{g}(A_\xi X, JY) = -\tilde{g}(b(X, JY), \xi) = -\tilde{g}(b(JX, Y), \xi) = -\tilde{g}(A_\xi JX, Y). \]

Thus,

\[\tilde{g}(J\xi X, Y) = -\tilde{g}(A_\xi JX, Y) \quad \forall X, Y \in TF^{2m}, \quad \forall \xi \in T^\perp F^{2m}. \]

The derived equality is equivalent to (2.8).

4. From (1.8), using (2.4) and (2.8), for any \(X, Y \in TF^{2m} \) and for any \(\xi \in T^\perp F^{2m} \), we have:

\[J\left((\nabla_X A)_\xi Y\right) = J(\nabla_X (A_\xi Y) - A_\xi (\nabla_X Y) - A_{D_\xi X} Y) = \]

\[= \nabla_X J(A_\xi Y) + A_\xi J(\nabla_X Y) + A_{D_\xi X} (JY) = \]

\[= -\nabla_X (A_\xi JY) + A_\xi (\nabla_X JY) + A_{D_\xi X} (JY) = -\tilde{\nabla}X (A_\xi JY). \]

Thus,

\[J\left((\nabla_X A)_\xi Y\right) = -\tilde{\nabla}X (A_\xi JY), \quad \forall X, Y \in TF^{2m}, \quad \forall \xi \in T^\perp F^{2m}. \]

The obtained equality is equivalent to (2.9). Lemma is proved.

Lemma 4. Let \(F^{2m} \) be a Kaehler submanifold in a Kaehler manifold \(M^{2m+2l} \). Then the following equality holds

\[\nabla_Z (\tilde{g}(X, JY) J\xi) = 0 \quad \forall X, Y, Z \in TF^{2m}, \quad \forall \xi \in T^\perp F^{2m}. \quad (2.11) \]

Proof. By the definition of covariant derivative \(\nabla \), we have:

\[\nabla_Z (\tilde{g}(X, JY) J\xi) = \]

\[= D_Z (\tilde{g}(X, JY) J\xi) - \tilde{g}(\nabla_Z X, JY) J\xi - \tilde{g}(X, \nabla_Z (JY)) J\xi - \tilde{g}(X, JY) D_Z (J\xi). \]

We transform the right part of the last equality, writing it in local coordinates and using the designations (2.2):

\[\left(\frac{\partial (g_{kl} X^k (JY)^l (J\xi)^r)}{\partial u^i} + \Gamma^r_{\alpha i} g_{kl} X^k (JY)^l (J\xi)^\alpha \right) Z^i n_r = \]
Some properties of Kaehler submanifolds with recurrent tensor fields.

\[-g_{kl} \left(\frac{\partial X^k}{\partial u^i} + \Gamma^k_{im} X^m \right) (JY)^l (J\xi)^r Z^i n_\tau - g_{lk} \left(\frac{\partial (JY)^l}{\partial u^i} + \Gamma^l_{im} (JY)^m \right) X^k (J\xi)^r Z^i n_\tau -
\]

\[-g_{kl} X^k (JY)^l \left(\frac{\partial (J\xi)^r}{\partial u^i} + \Gamma^r_{\sigma i} (J\xi)^\sigma \right) Z^i n_\tau =
\]

\[= \left(\frac{\partial g_{kl}}{\partial u^i} X^k (JY)^l (J\xi)^r - g_{lk} \Gamma^k_{im} X^m (JY)^l (J\xi)^r - g_{lk} \Gamma^l_{im} X^k (JY)^m (J\xi)^r \right) Z^i n_\tau =
\]

\[= \left(\frac{\partial g_{kl}}{\partial u^i} - g_{ml} \Gamma^m_{ik} - g_{mk} \Gamma^m_{il} \right) X^k (JY)^l (J\xi)^r Z^i n_\tau = 0.
\]

Lemma is proved.

Lemma 5. Let F^{2m} be a Kaehler submanifold in a Kaehler manifold $M^{2m+2l}(c)$ of constant holomorphic sectional curvature c. Then the following equality holds

\[R^\perp(X, Y)\xi = \frac{c}{2} \tilde{g}(X, JY) J\xi + b(X, A_\xi Y) - b(Y, A_\xi X),
\]

\[\forall X, Y \in TF^{2m}, \quad \forall \xi \in T^\perp F^{2m}.
\] \tag{2.12}

Proof. Because of (1.12), we have:

\[\tilde{R}(X, Y, \xi, \eta) = \tilde{g}(\tilde{R}(X, Y)\xi, \eta) = \frac{c}{2} \tilde{g}(X, JY) \tilde{g}(J\xi, \eta).
\]

Then the equation (1.5) takes the form:

\[R^\perp(X, Y, \xi, \eta) = \frac{c}{2} \tilde{g}(X, JY) \tilde{g}(J\xi, \eta) + \tilde{g}([A_\xi, A_\eta]X, Y).
\]

We transform the second term in the right part of the obtained equality, using self-adjointness of operator A_ξ:

\[\tilde{g}([A_\xi, A_\eta]X, Y) = \tilde{g}((A_\xi A_\eta - A_\eta A_\xi)X, Y) = \tilde{g}(A_\xi (A_\eta X), Y) - \tilde{g}(A_\eta (A_\xi X), Y) =
\]

\[= \tilde{g}(A_\eta X, A_\xi Y) - \tilde{g}(A_\xi X, A_\eta Y) = \tilde{g}(b(A_\xi Y, X), \eta) - \tilde{g}(b(A_\xi X, Y), \eta).
\]

Then for any $\eta \in T^\perp F^{2m}$ we have:

\[R^\perp(X, Y, \xi, \eta) \equiv \tilde{g}(R^\perp(X, Y)\xi, \eta) =
\]

\[= \tilde{g}(\frac{c}{2} \tilde{g}(X, JY) J\xi, \eta) + \tilde{g}(b(A_\xi Y, X), \eta) - \tilde{g}(b(A_\xi X, Y), \eta).
\]

From here we obtain the equality (2.12). Lemma is proved.
Lemma 6. Let F^{2m} be a Kaehler submanifold in a Kaehler manifold M^{2m+2l} of constant holomorphic sectional curvature c. Then the following equality holds

$$(\nabla_Z R^\perp)(X, Y)\xi =$$

$$= (\nabla_Zb)(X, A_\xi Y) + b(X, (\nabla_Z A)\xi Y) - (\nabla_Zb)(Y, A_\xi X) - b(Y, (\nabla_Z A)\xi X),$$

$$\forall X, Y, Z \in TF^{2m}, \quad \forall \xi \in T^\perp F^{2m}. \quad (2.13)$$

Proof. From formula (1.9), using (2.12), we obtain:

$$(\nabla_Z R^\perp)(X, Y)\xi = D_Z\left(\frac{c}{2}\tilde{g}(X, JY)J\xi + b(X, A_\xi Y) - b(Y, A_\xi X)\right) -$$

$$- \left(\frac{c}{2}\tilde{g}(\nabla_Z X, JY)J\xi + b(\nabla_Z X, A_\xi Y) - b(\nabla_Z Y, A_\xi X)\right) -$$

$$- \left(\frac{c}{2}\tilde{g}(X, J(\nabla_Z Y))J\xi + b(X, A_\xi (\nabla_Z Y)) - b(\nabla_Z Y, A_\xi X)\right) -$$

$$- \left(\frac{c}{2}\tilde{g}(X, JY)J(D_Z\xi) + b(X, A_{D_\xi \xi} X) - b(Y, A_{D_\xi \xi} X)\right) =$$

$$= \frac{c}{2}\left(D_Z(\tilde{g}(X, JY)J\xi) - \tilde{g}(\nabla_Z X, JY)J\xi - \tilde{g}(X, J(\nabla_Z Y))J\xi - \tilde{g}(X, JY)J(D_Z\xi) +$$

$$+ D_Z(b(X, A_\xi Y)) - D_Z(b(Y, A_\xi X)) - b(\nabla_Z X, A_\xi Y) + b(Y, A_\xi (\nabla_Z X)) -$$

$$- b(X, A_\xi (\nabla_Z Y)) + b(\nabla_Z Y, A_\xi X) - b(X, A_{D_\xi \xi} X) + b(Y, A_{D_\xi \xi} X).$$

Hence, using (2.3) and (2.4), we have

$$(\nabla_Z R^\perp)(X, Y)\xi =$$

$$= \frac{c}{2}\tilde{g}(X, JY)J\xi + D_Z(b(X, A_\xi Y)) - D_Z(b(Y, A_\xi X)) - b(\nabla_Z X, A_\xi Y) +$$

$$+ b(Y, A_\xi (\nabla_Z X)) - b(X, A_\xi (\nabla_Z Y)) + b(\nabla_Z Y, A_\xi X) - b(X, A_{D_\xi \xi} Y) + b(Y, A_{D_\xi \xi} X).$$

Therefore, because of (2.11), we obtain:

$$(\nabla_Z R^\perp)(X, Y)\xi = \left(D_Z(b(X, A_\xi Y)) - b(\nabla_Z X, A_\xi Y) - b(X, A_\xi (\nabla_Z Y)) - b(X, A_{D_\xi \xi} Y)\right) -$$

$$- \left(D_Z(b(Y, A_\xi X)) - b(\nabla_Z Y, A_\xi X) - b(Y, A_\xi (\nabla_Z X)) - b(Y, A_{D_\xi \xi} X)\right).$$

Hence, using (1.7), we obtain:

$$(\nabla_Z R^\perp)(X, Y)\xi = \left((\nabla_Z b)(X, A_\xi Y) + b(X, \nabla_Z (A_\xi Y)) - b(X, A_\xi (\nabla_Z Y)) - b(X, A_{D_\xi \xi} Y)\right) -$$
Some properties of Kaehler submanifolds with recurrent tensor fields.

\[-\left(\nabla_Z b)(Y, A_\xi X) + b(Y, \nabla_Z (A_\xi X)) - b(Y, A_\xi (\nabla_Z X)) - b(Y, A_DZ_\xi X)\right].\]

Now, using (1.8), we obtain:

\[(\nabla_Z R^\perp)(X, Y)\xi = \]

\[= \left(\nabla_Z b)(X, A_\xi Y) + b(X, (\nabla_Z A)\xi Y)\right) - \left(\nabla_Z b)(Y, A_\xi X) + b(Y, (\nabla_Z A)\xi X)\right).\]

Lemma is proved.

Lemma 7. Let \(F^{2m}\) be a Kaehler submanifold in a Kaehler manifold \(M^{2m+2l}(c)\) of constant holomorphic sectional curvature \(c\). Then the following equality holds

\[(\nabla_Z R^\perp)(X, Y, \xi, \eta) = \tilde{g}([\nabla_Z A]_\xi, X, Y, \tilde{g}([A_\xi, (\nabla_Z A)]_\eta, X, Y), \forall X, Y, Z \in TF^{2m}, \forall \xi, \eta \in T^\perp F^{2m}. \quad (2.14)\]

Proof. Because of (2.13), we have:

\[(\nabla_Z R^\perp)(X, Y, \xi, \eta) \equiv \tilde{g}\left(\left(\nabla_Z R^\perp\right)(X, Y)\xi, \eta\right) = \tilde{g}\left(\left(\nabla_Z b\right)(X, A_\xi Y), \eta\right) - \]

\[\tilde{g}\left(\left(\nabla_Z b\right)(Y, A_\xi X), \eta\right) + \tilde{g}\left(b(X, (\nabla_Z A)_\xi Y), \eta\right) - \tilde{g}\left(b(Y, (\nabla_Z A)_\xi X), \eta\right).\]

In the derived equality, we transform the first and the second terms using (2.1), the third and the fourth using (1.6):

\[(\nabla_Z R^\perp)(X, Y, \xi, \eta) = \tilde{g}\left((\nabla_Z A)_\eta X, A_\xi Y\right) - \tilde{g}\left((\nabla_Z A)_\eta Y, A_\xi X\right) + \]

\[+ \tilde{g}\left(A_\eta X, (\nabla_Z A)_\xi Y\right) - \tilde{g}\left(A_\eta Y, (\nabla_Z A)_\xi X\right).\]

Hence, because of self-adjointness of operators \(A_\xi\) and \((\nabla A)_\xi\), we obtain:

\[(\nabla_Z R^\perp)(X, Y, \xi, \eta) = \tilde{g}\left(A_\xi (\nabla_Z A)_\eta X, Y\right) - \tilde{g}\left(Y, (\nabla_Z A)_\eta A_\xi X\right) + \]

\[+ \tilde{g}\left((\nabla_Z A)_\xi A_\eta X, Y\right) - \tilde{g}\left(Y, A_\eta (\nabla_Z A)_\xi X\right) = \]

\[= \tilde{g}\left([A_\xi, (\nabla_Z A)_\eta]X, Y\right) + \tilde{g}\left(([\nabla_Z A]_\xi, A_\eta]X, Y\right).\]

Lemma is proved.

Lemma 8. Let \(F^{2m}\) be a Kaehler submanifold in a Kaehler manifold \(M^{2m+2l}(c)\) of constant holomorphic sectional curvature \(c\). Then the following equality holds

\[(\nabla_{JZ} R^\perp)(X, Y, J\xi, \eta) = (\nabla_Z R^\perp)(X, Y, J\xi, \eta) - 2\tilde{g}([\nabla_Z A]_J\xi, A_\eta]X, Y), \forall X, Y, Z \in TF^{2m}, \forall \xi, \eta \in T^\perp F^{2m}. \quad (2.15)\]
Proof. From (2.14) we obtain:

\[
(\nabla_{JZ} R^\perp)(X, Y, \xi, \eta) = \tilde{g}([([\nabla_J Z A]_\xi, A_\eta]X, Y) + \tilde{g}([A_\xi, (\nabla_J Z A)_\eta]X, Y).
\]

Hence, using (2.7), we have:

\[
(\nabla_{JZ} R^\perp)(X, Y, \xi, \eta) = \tilde{g}([J(\nabla_J Z A)_\xi, A_\eta]X, Y) + \tilde{g}([J A_\xi, (\nabla_J Z A)_\eta]X, Y).
\]

In the derived equality, we transform the second term using (2.8) and (2.9):

\[
[\nabla_J Z A]_{\xi}J(A_\eta)\xi = A_\xi J(\nabla_J Z A)_\eta A_\xi = -J A_\xi (\nabla_J Z A)_\eta + J(\nabla_J Z A)_\eta A_\xi.
\]

Therefore,

\[
(\nabla_{JZ} R^\perp)(X, Y, \xi, \eta) = -\tilde{g}([J(\nabla_J Z A)_\xi, A_\eta]X, Y) + \tilde{g}([J A_\xi, (\nabla_J Z A)_\eta]X, Y).
\]

Hence, because of (2.3) and (2.5), and using (2.14), we obtain:

\[
(\nabla_{JZ} R^\perp)(X, Y, \xi, \eta) = \tilde{g}([J(A_\xi), (\nabla_J Z A)_\eta]X, Y) = (\nabla_J R^\perp)(X, Y, J_\xi, \eta) - 2\tilde{g}([[\nabla_J Z A]_\xi, A_\eta]X, Y).
\]

Lemma is proved.

3 Proofs of theorems 1, 2.

Proof theorem 1. Let for some 1-form \(\mu \) on \(F^{2m} \), the following condition holds

\[
(\nabla_X b)(Y, Z) = \mu(X)b(Y, Z) \quad \forall X, Y, Z \in TF^{2m}.
\]

Then for any vector field \(\xi \in T^\perp F^{2m} \), we have:

\[
\tilde{g}((\nabla_X b)(Y, Z), \xi) = \tilde{g}(\mu(X)b(Y, Z), \xi).
\]

Hence, using (2.1) and (1.6), we obtain:

\[
\tilde{g}((\nabla_X A)_\xi Y, Z) = \tilde{g}(\mu(X)A_\xi Y, Z) \quad \forall X, Y, Z \in TF^{2m}, \quad \forall \xi \in T^\perp F^{2m}.
\]

Thus, the condition (3.1) is equivalent to the condition

\[
(\nabla_X A)_\xi = \mu(X)A_\xi, \quad \forall X \in TF^{2m}, \quad \forall \xi \in T^\perp F^{2m}. \tag{3.2}
\]

From (3.2) we obtain the equality:

\[
(\nabla_{JX} A)_\xi = \mu(JX)A_\xi \quad \forall X \in TF^{2m}, \quad \forall \xi \in T^\perp F^{2m}. \tag{3.3}
\]
Some properties of Kaehler submanifolds with recurrent tensor fields.

On the other hand, from (3.2), because of (2.7), we have:

\[
(\nabla_{JX}A)_\xi = -J(\mu(X)A_\xi), \quad \forall X \in TF^{2m}, \quad \forall \xi \in T^\perp F^{2m}.
\] (3.4)

From (3.3) and (3.4), we obtain:

\[
\mu(JX)A_\xi = -J(\mu(X)A_\xi), \quad \forall X \in TF^{2m}, \quad \forall \xi \in T^\perp F^{2m}.
\]

Hence, for any \(Y \in TF^{2m}\), we have:

\[
\mu(JX)A_\xi Y = -\mu(X)J(A_\xi Y), \quad \forall X \in TF^{2m}, \quad \forall \xi \in T^\perp F^{2m}.
\] (3.5)

Using (3.5), we obtain:

\[
\mu(JX)\tilde{g}(A_\xi Y, A_\xi Y) = -\mu(X)\tilde{g}(J(A_\xi Y), A_\xi Y) = 0,
\]

\[
\forall X, Y \in TF^{2m}, \quad \forall \xi \in T^\perp F^{2m}.
\] (3.6)

Since \(b \neq 0\) then there exists nondegenerate vector field \(\xi \in T^\perp F^{2m}\), and from (3.6) we come to the equality:

\[
\mu(X) = 0 \quad \forall X \in TF^{2m}.
\]

Then 1-form \(\mu \equiv 0\) and, therefore,

\[
(\nabla_X A)_\xi = 0, \quad \forall X \in TF^{2m}, \quad \forall \xi \in T^\perp F^{2m}.
\] (3.7)

Hence, because of (2.14), we obtain the conclusion of the theorem.

Proof of theorem 2.

Form (1.3) we obtain:

\[
\nabla_W R(X, Y, Z, V) = \tilde{g}(\nabla_W b)(X, V), b(Y, Z)) + \tilde{g}(b(X, V), (\nabla_W b)(Y, Z)) -
\]

\[-\tilde{g}((\nabla_W b)(X, Z), b(Y, V)) - \tilde{g}(b(X, Z), (\nabla_W b)(Y, V)) \quad \forall X, Y, Z, V, W \in TF^{2m}.
\]

Therefore, because of (3.7), \(\nabla R \equiv 0\). Theorem is proved.

References

[1] Kobayashi S., Nomizu K. Foundations of differential geometry. Vol. 2. M.: Nauka. 1981.
[2] Chen B.-Y. Geometry of submanifolds. N.-Y.: M. Dekker. 1973.
[3] Gray A. Tubes. M.: Mir. 1993.