ROTATIONAL SURFACES IN ISOTROPIC SPACES SATISFYING WEINGARTEN CONDITIONS

Alper Osman Öğrenmiş
Department of Mathematics, Faculty of Science
Firat University, Elazig, 23119, Turkey
aogrenmis@firat.edu.tr

Abstract. In this paper, we study the rotational surfaces in the isotropic 3-space \(\mathbb{I}^3 \) satisfying Weingarten conditions in terms of the relative curvature \(K \) (analogue of the Gaussian curvature) and the isotropic mean curvature \(H \). In particular, we classify such surfaces of linear Weingarten type in \(\mathbb{I}^3 \).

Keywords: Isotropic space; rotational surface; Weingarten surface.
Math. Subject Classification 2010: 53A35, 53A40, 53B25.

1 Introduction

The work of surfaces with special properties in the isotropic 3-space \(\mathbb{I}^3 \) has important applications in several applied sciences, e.g., computer science, Image Processing, architectural design and microeconomics, see [3, 4, 6, 8], [29]-[31].

Differential geometry of isotropic spaces have been introduced by K. Strubecker [37], H. Sachs [32]-[34], D. Palman [27] and others.
I. Kamenarovic ([17, 18]), B. Pavkovic ([28]), Z. M. Sipus ([35]) and M.E. Aydin ([1, 2]) have studied some classes of surfaces in \(\mathbb{I}^3 \).

On the other hand, let \(M \) be a regular surface of a Euclidean 3-space \(\mathbb{R}^3 \). For general references on the geometry of surfaces see [12] [15].

Denote \(\nabla \) the Levi-Civita connection of \(\mathbb{R}^3 \) and \(N \) the normal vector field to \(M \). Then the operator given by

\[
S(v) = -\nabla_v N,
\]

is called the shape operator, where \(v \) is a tangent vector field to \(M \). It measures how \(M \) bends in different directions. The eigenvalues of \(S \) are called the principal curvatures denoted by \(\kappa_1 \) and \(\kappa_2 \).

The arithmetic mean of the principal curvatures are called the mean curvature, \(H = \frac{1}{2}(\kappa_1 + \kappa_2) \). The Gaussian curvature is defined by \(K = \kappa_1 \kappa_2 \).

A surface \(M \) in \(\mathbb{R}^3 \) is called a Weingarten surface (W-surface) if it satisfies the following non-trivial functional relation

\[
\phi(\kappa_1, \kappa_2) = 0
\]

for a smooth function \(\phi \) of two variables. The above relation implies the following

\[
\delta(K, H) = 0,
\]
which is the equivalent to the vanishing of the corresponding Jacobian determin-
ant, i.e.
\[\frac{\partial (K,H)}{\partial (u,v)} = 0 \] for a coordinate pair \((u,v)\) on \(\mathcal{M}\).

If \(\mathcal{M}\) fulfills the following condition
\[c_1 H + c_2 K = c_3, \quad c_i \in \mathbb{R}, \quad (c_1, c_2, c_3) \neq (0, 0, 0), \quad i = 1, 2, 3, \]
then it is called a linear Weingarten surface (LW-surface). In the particular case \(c_1 = 0\) (resp. \(c_2 = 0\)), the LW-surfaces are indeed the surfaces with constant Gaussian curvature (resp. mean curvature). These phenomenal surfaces have been studied by many geometers in various ambient spaces, see [14, 20, 22-24, 26, 38].

The motivation of the present paper is to study Weingarten surfaces, in particular Weingarten rotational surfaces, in the isotropic 3-space \(I^3\) which is one the Cayley–Klein spaces.

Most recently, M.E. Aydin ([2]) classified the helicoidal surfaces in \(I^3\), which are natural generalization of the rotational surfaces, with constant curvature and analyzed some special curves on such surfaces.

In the present paper, we provide that the rotational surfaces in \(I^3\) are evidently Weingarten ones. Then we classified LW-rotational surfaces in \(I^3\) satisfying the following relation
\[K = m_0 H + n_0, \quad m_0, n_0 \in \mathbb{R}, \]
in which \(K\) is the relative curvature and \(H\) isotropic mean curvature.

2 Preliminaries

The isotropic 3-space \(I^3\) is obtained from the 3-dimensional projective space \(P(\mathbb{R}^3)\) with the absolute figure which is an ordered triple \((p, l_1, l_2)\), where \(p\) is a plane in \(P(\mathbb{R}^3)\) and \(l_1, l_2\) are two complex-conjugate straight lines in \(p\) (see [35]). The homogeneous coordinates in \(P(\mathbb{R}^3)\) are introduced in such a way that the absolute plane \(p\) is given by \(x_0 = 0\) and the absolute lines \(l_1, l_2\) by \(x_0 = x_1 + ix_2 = 0, \quad x_0 = x_1 - ix_2 = 0\). The intersection point \(P(0 : 0 : 1)\) of these two lines is called the absolute point. The group of motions of \(I^3\) is a six-parameter group given in the normal form (in affine coordinates) \(x = \frac{x_1}{x_0}, \quad y = \frac{y_1}{x_0}, \quad z = \frac{z_1}{x_0}\) by
\[
(x,y,z) \mapsto (x',y',z') : \begin{cases} x' = c_1 + x \cos c_2 - y \sin c_2, \\ y' = c_3 + x \sin c_2 + y \cos c_2, \\ z' = c_4 + c_5 x + c_6 y + z, \end{cases}
\]
for \(c_1, ..., c_6 \in \mathbb{R}\).

Such affine transformations are called isotropic congruence transformations or \(i\)-motions.

Consider the points \(p_1 = (x_1, x_2, x_3)\) and \(p_2 = (y_1, y_2, y_3)\). The isotropic distance, so-called \(i\)-distance of two points \(p_1\) and \(p_2\) is defined by
\[\|p_1 - p_2\|_i = \left((y_1 - x_1)^2 + (y_2 - x_2)^2 \right)^{\frac{1}{2}}. \]
The i-metric is degenerate along the lines in z–direction, and such lines are called **isotropic** lines.

Planes, circles and spheres. There are two types of planes in \mathbb{I}^3 ([29]-[31]).

(1) **Non-isotropic planes** are planes non-parallel to the z–direction. In these planes we basically have an Euclidean metric: This is not the one we are used to, since we have to make the usual Euclidean measurements in the top view. An *i-circle (of elliptic type)* in a non-isotropic plane p is an ellipse, whose top view is an Euclidean circle. Such an i-circle with center $c_0 \in p$ and radius r is the set of all points $x \in p$ with $\|x - c_0\|_i = r$.

(2) **Isotropic planes** are planes parallel to the z–axis. There, \mathbb{I}^3 induces an isotropic metric. An *i-circle (of parabolic type)* is a parabola with z–parallel axis and thus it lies in an isotropic plane.

An i-circle of parabolic type is not the iso-distance set of a fixed point, but it may be seen as a curve with constant isotropic curvature: A curve α in an isotropic plane P (without loss of generality we set $P : y = 0$) which does not possess isotropic tangents can be written as graph $z = f(x)$. Then, the *i-curvature* of α at $x = s_0$ is given by the second derivative $\kappa_i(s_0) = f''(s_0)$. For an i-circle of parabolic type f is quadratic and thus κ_i is constant.

There are also two types of isotropic spheres. An *i-sphere of the cylindrical type* is the set of all points $x \in \mathbb{I}^3$ with $\|x - c_0\|_i = r$. Speaking in an Euclidean way, such a sphere is a right circular cylinder with z–parallel rulings; its top view is the Euclidean circle with center c_0 and radius r. The more interesting and important type of spheres are the *i-spheres of parabolic type*,

$$z = \frac{A}{2} (x^2 + y^2) + Bx + Cy + D, \quad A \neq 0.$$

From an Euclidean perspective, they are paraboloids of revolution with z–parallel axis. The intersections of these i-spheres with planes p are i-circles. If p is non-isotropic, then the intersection is an i-circle of elliptic type. If p is isotropic, the intersection curve is an i-circle of parabolic type.

Curvature theory of surfaces. A surface \mathcal{M} immersed in \mathbb{I}^3 is called **admissible** if it has no isotropic tangent planes. We restrict our framework to admissible regular surfaces. For such a surface \mathcal{M}, the coefficients E, F, G of its first fundamental form are calculated with respect to the induced metric.

The normal field of \mathcal{M} is always the isotropic vector. The coefficients L, M, N of the second fundamental form of \mathcal{M} are calculated with respect to the normal field of \mathcal{M} (for details, see [33], p. 155).

The relative curvature (so called isotropic Gaussian curvature) and **isotropic mean curvature** are defined by

$$K = \frac{LM - N^2}{EG - F^2}, \quad H = \frac{EN - 2FM + GL}{2EG - F^2}. \quad (2.2)$$
3 LW-rotational surfaces in I^3

Let us consider the i-motions given by (2.1), then the Euclidean rotations in the isotropic space I^3 is given by in affine coordinates

$$
\begin{align*}
 x' &= c_1 + x \cos c_2 - y \sin c_2, \\
 y' &= c_3 + x \sin c_2 + y \cos c_2, \\
 z' &= z,
\end{align*}
$$

where $c_i \in \mathbb{R}$.

Definition 3.1. Let α be a curve lying in the isotropic xz–plane given by $c(u) = (u, 0, g(u))$ where $g \in C^2$, $\frac{dg}{du} \neq 0$. By rotating the curve c around z–axis, we obtain that the rotational surface in I^3 is of the form

$$
X(u, v) = (u \cos v, u \sin v, g(u)).
$$

(3.1)

Similarly when the profile curve α lies in the isotropic yz–plane, then the rotational surface in I^3 is given by

$$
X(u, v) = (-u \sin v, u \cos v, g(u)).
$$

(3.2)

Remark 3.1. The rotational surfaces given by (3.1) and (3.2) are locally isometric and thus we only consider the ones of the form (3.1).

Let \mathcal{M} be the rotational surface given by (3.1) in I^3. Then the nonzero components of first fundamental form of \mathcal{M} are calculated by induced metric from I^3 as follows

$$
E = 1, \quad G = u^2.
$$

(3.3)

The nonzero components of second fundamental form of \mathcal{M} are

$$
L = g'', \quad N = ug',
$$

(3.4)

where $g' = \frac{dg}{du}$ and $g'' = \frac{d^2g}{du^2}$. From (2.2), (3.3) and (3.4), we get

$$
K = \frac{1}{u}g'g'', \quad H = \frac{1}{u}g' + g'',
$$

(3.5)

which yields that the curvatures K and H depend only on the variable u, namely $|\frac{\partial (K, H)}{\partial (u, v)}| = 0$. In the sequel, we have the following result.

Theorem 3.1. Rotational surfaces in I^3 are Weingarten surfaces.

We are also able to investigate the LW-rotational surfaces in I^3 with the relation

$$
K = m_0H + n_0, \quad m_0, n_0 \in \mathbb{R}.
$$

(3.6)
If \(m_0 = 0 \) in (3.6), then those reduce to ones with constant relative curvature. Thus we aim to obtain the LW-rotational surfaces in \(\mathbb{I}^3 \) with \(m_0 \neq 0 \).

The following result classifies the LW-rotational surfaces satisfying (3.6).

Theorem 3.2. Let \(M \) be a LW-rotational surface in \(\mathbb{I}^3 \). Then one of the following holds

(i) \(M \) is of the form

\[
\begin{align*}
X(u, v) &= (u \cos v, u \sin v, g(u)), \\
g(u) &= \frac{m_0}{2} u^2 + \frac{u}{2} \sqrt{c_1 + m_0^2 u^2} \pm c_2 \ln \left| \frac{m_0 u + \sqrt{c_1 + m_0^2 u^2}}{m_0 u + \sqrt{c_1 + m_0^2 u^2}} \right|, \\
c_1, c_2 &\in \mathbb{R} \setminus \{0\};
\end{align*}
\]

(ii) \(M \) is an elliptic paraboloid from the Euclidean perspective, i.e.

\[
\begin{align*}
X(u, v) &= (u \cos v, u \sin v, g(u)), \\
g(u) &= \frac{m_0}{2} u^2 + c_3, \quad c_3 \in \mathbb{R};
\end{align*}
\]

(iii) \(M \) is given by

\[
\begin{align*}
X(u, v) &= (u \cos v, u \sin v, g(u)), \\
g(u) &= \frac{m_0}{2} u^2 \pm \frac{u}{2} \sqrt{c_1 + (m_0^2 + n_0) u^2} \pm \\
&\pm \frac{c_1}{m_0^2 + n_0} \ln \left| \frac{2 \left((m_0^2 + n_0) u + \sqrt{m_0^2 + n_0} \sqrt{c_1 + (m_0^2 + n_0) u^2} \right)}{m_0 u + \sqrt{c_1 + m_0^2 u^2}} \right|, \\
c_1 &\in \mathbb{R}, \quad c_1 < 0.
\end{align*}
\]

Proof. Assume \(M \) is a LW-rotational surface in \(\mathbb{I}^3 \) having the relation (3.6). Then, from (3.5), it follows

\[
\frac{1}{u} g' g'' = m_0 \frac{g' + g''}{u} + n_0. \tag{3.7}
\]

We have two cases:

Case a. \(n_0 = 0 \). Hence we can rewrite (3.7) as

\[
g'' (g' - m_0 u) - m_0 g' = 0. \tag{3.8}
\]

If \(g' = m_0 u \) in (3.8), then \(g' \) and \(m_0 \) vanish which is not possible. Then we have

\[
g'' - \frac{m_0 g'}{g' - m_0 u} = 0. \tag{3.9}
\]

By solving (3.9), we obtain

\[
g(u) = \frac{m_0}{2} u^2 + \frac{u}{2} \sqrt{c_2 c_1 + m_0^2 u^2} \pm \frac{c_2}{m_0} \ln \left| \frac{2 m_0 u + \sqrt{c_2 c_1 + m_0^2 u^2}}{m_0 u + \sqrt{c_2 c_1 + m_0^2 u^2}} \right|, \\
c_1 &\in \mathbb{R}, \quad c_1 < 0.
\]
Case b. \(n_0 \neq 0 \). Then we have from (3.7)
\[
g'' (g' - m_0 u) - m_0 g' = n_0 u. \tag{3.10}
\]
When \(g' = m_0 u \), then \(g(u) = \frac{m_0}{2} u^2 + c_2, c_2 \in \mathbb{R} \) and \(n_0 = -m_0^2 \). This implies
the statement (ii) of the theorem.
Otherwise, we conclude from (3.10) that
\[
g'' - \frac{m_0 g'}{g' - m_0 u} = \frac{n_0 u}{g' - m_0 u}. \tag{3.11}
\]
After solving (3.11), we derive
\[
g(u) = \frac{m_0}{2} u^2 \pm \frac{\sqrt{2e c_3 + (m_0^2 + n_0) u^2}}{m_0^2 + n_0} \ln \left| 2 \left(\frac{m_0^2 + n_0}{m_0^2 + n_0} u + \sqrt{m_0^2 + n_0 \sqrt{-e^{2c_3} + (m_0^2 + n_0) u^2}} \right) \right|,
\]
c_3 \in \mathbb{R}. Therefore the proof is completed.

Example 3.1. Consider the elliptic paraboloid in \(\mathbb{R}^3 \) from the Euclidean perspective given by
\[
X(u, v) = (u \cos v, u \sin v, 0.25 u^2), \quad (u, v) \in [0, 2\pi].
\]
Then \(K = 0.25, H = 1, m_0 = 0.5 \) and \(n_0 = -0.25 \). We plot it as in Fig. 1.

Fig 1. LW-rotational surface with \(m_0 = 0.5, n_0 = -0.25 \)

4 Rotational surfaces in \(\mathbb{R}^3 \) with \(H/K = const. \)

The authors in [7] introduced a new kind of curvature for the hypersurfaces of Euclidean \(n \)-spaces, called by amalgamatic curvature and explored its geometric meaning by proving an inequality related to the absolute mean curvature of the hypersurface. In the particular case \(n = 3 \), the amalgamatic curvature is indeed the harmonic ratio of the principal curvatures of any given surface, i.e., the ratio of the Gaussian curvature and the mean curvature.

By considering this argument, we can consider the rotational surfaces in \(\mathbb{R}^3 \) satisfying \(H/K = const. \) Thus the statement (i) of Theorem 3.2 is indeed a classification of the rotational surfaces in \(\mathbb{R}^3 \) satisfying \(H/K = const. \)
Therefore, we have the following trivial result.

Corollary 4.1. Let \mathcal{M} be a LW-rotational surface in \mathbb{I}^3 satisfying $H/K = \frac{1}{m_0}$, $m_0 \in \mathbb{R} \setminus \{0\}$. Then it is of the form

$$
\begin{align*}
X(u, v) &= (u \cos v, u \sin v, g(u)), \\
g(u) &= \frac{u_0^2}{2} u^2 \pm \frac{u}{2} \sqrt{c_1 + m_0^2 u^2} \pm c_2 \ln \left| 2m_0 \left(m_0 u + \sqrt{c_1 + m_0^2 u^2} \right) \right|, \quad (4.1)
c_1, c_2 \in \mathbb{R} \setminus \{0\};
\end{align*}
$$

Example 4.1. Take $\lambda_0 = 0.5$ and $c_1 = \ln 2$ in (4.1). Then we obtain a rotational surface in \mathbb{I}^3 with $H/K = 1$ given by

$$
X(u, v) = \left(u \cos v, u \sin v, u^2 + u \sqrt{1 + u^2} + \ln \left| 2 \left(u + \sqrt{1 + u^2} \right) \right| \right),
$$

where $u \in [0, 2\pi]$, $v \in [0, \pi/2]$. Then it can be plotted as in Fig. 2.

Fig 2. Rotational surface with $H/K = 1$

References

[1] M.E. Aydin, A generalization of translation surfaces with constant curvature in the isotropic space, J. Geom., 2015, DOI 10.1007/s00022-015-0292-0.

[2] M.E. Aydin, Classification results on surfaces in the isotropic 3-space, arXiv:1601.03190v1 [math.DG], 2016.

[3] M.E. Aydin and A. Mihai, Classification of quasi-sum production functions with Allen determinants, Filomat 29(6) (2015), 1351–1359.

[4] M.E. Aydin and A. Mihai, Translation hypersurfaces and Tzitzeica translation hypersurfaces of the Euclidean space, Proc. Ro. Acad. Series A 16(4) (2015), 477-483.
[5] C. Baikoussis and T. Koufogioros, Helicoidal surface with prescribed mean or Gauss curvature, J. Geom. 63 (1998), 25–29.

[6] B. Y. Chen, S. Decu and L. Verstraelen, Notes on isotropic geometry of production models, Kragujevac J. Math. 37(2) (2013), 217–220.

[7] C. T. R. Conley, R. Etnyre, B. Gardener, L. H. Odom and B. D. Suceava, New curvature inequalities for hypersurfaces in the Euclidean ambient space, Taiwanese J. Math. 17(3) (2013), 885–895.

[8] S. Decu, L. Verstraelen, A note on the isotropical geometry of production surfaces, Kragujevac J. Math. 38(1) (2014), 23–33.

[9] G. Delaunay, Sur la surface de revolution dont la courbure moyenne est constante, J. Math. Pures Appl. Series 6(1) (1841), 309-320.

[10] F. Dillen and W. Kuhnel, Ruled Weingarten surfaces in Minkowski 3-space, Manuscripta Math., 98 (1999), 307-320.

[11] M.P. Do Carmo and M. Dajczer, Helicoidal surfaces with constant mean curvature, Tohoku Math. J. 34 (1982), 425-435.

[12] M.P. Do Carmo, Differential geometry of curves and surfaces, Prentice Hall: Englewood Cliffs, NJ, 1976.

[13] Z. Erjavec, B. Divjak and D. Horvat, The general solutions of Frenet’s system in the equiform geometry of the Galilean, pseudo-Galilean, simple isotropic and double isotropic space, Int. Math. Forum 6(17) (2011), 837-856.

[14] J. A. Galvez, A. Martinez and F. Milan, Linear Weingarten surfaces in R^3, Monatsh. Math., 138 (2003), 133-144.

[15] A. Gray, Modern differential geometry of curves and surfaces with mathematica. CRC Press LLC, 1998.

[16] Z.H. Hou and F. Ji, Helicoidal surfaces with $H^2 = K$ in Minkowski 3-space, J. Math. Anal. Appl. 325 (2007), 101–113.

[17] I. Kamenarovic, On line complexes in the isotropic space $I_3^{(1)}$, Glasnik Matematicki 17(37) (1982), 321-329.

[18] I. Kamenarovic, Associated curves on ruled surfaces in the isotropic space $I_3^{(1)}$, Glasnik Matematicki 29(49) (1994), 363-370.

[19] K. Kenmotsu, Surfaces of revolution with prescribed mean curvature, Tohoku Math. J. 32 (1980), 147-153.

[20] M. H Kim and D. W. Yoon, Weingarten quadric surfaces in a Euclidean 3-space, Turk. J. Math. 35 (2011), 479-485.
[21] J. J. Koenderink and A. van Doorn, *Image processing done right*, Lecture Notes in Computer Science **2350** (2002), 158–172.

[22] W. Kuhnel, *Ruled W-surfaces*, Arch. Math. **62** (1994), 475-480.

[23] C.W. Lee, *Linear Weingarten rotational surfaces in pseudo-Galilean 3-space*, Int. J. Math. Anal. **9(50)** (2015), 2469 - 2483.

[24] H. Liu and G. Liu, *Weingarten rotation surfaces in 3-dimensional de Sitter space*, J. Geom. **79** (2004), 156 – 168.

[25] R. Lopez and E. Demir, *Helicoidal surfaces in Minkowski space with constant mean curvature and constant Gauss curvature*, Cent. Eur. J. Math. **12(9)** (2014), 1349-1361.

[26] R. Lopez, *Rotational linear Weingarten surfaces of hyperbolic type*, Israel J. Math. **167** (2008), 283–301.

[27] D. Palman, *Spharische quartiken auf dem torus im einfach isotropen raum*, Glasnik Matematicki **14(34)** (1979), 345-357.

[28] B. Pavkovic, *An interpretation of the relative curvatures for surfaces in the isotropic space*, Glasnik Matematicki **15(35)** (1980), 149-152.

[29] H. Pottmann and K. Opitz, *Curvature analysis and visualization for functions defined on Euclidean spaces or surfaces*, Comput. Aided Geom. Design **11** (1994), 655–674.

[30] H. Pottmann and Y. Liu, *Discrete surfaces of isotropic geometry with applications in architecture*, In: Martin, R., Sabin, M., Winkler, J. (eds.) The Mathematics of Surfaces, pp. 341–363. Lecture Notes in Computer Science 4647. Springer (2007).

[31] H. Pottmann, P. Grohs and N.J. Mitra, *Laguerre minimal surfaces, isotropic geometry and linear elasticity*, Adv. Comput. Math. **31** (2009), 391–419.

[32] H. Sachs, Ebene Isotrope Geometrie, Vieweg-Verlag, Braunschweig, Wiesbaden, 1990.

[33] H. Sachs, Isotrope Geometrie des Raumes, Vieweg Verlag, Braunschweig, 1990.

[34] H. Sachs, *Zur Geometrie der Hyperspharen in n-dimensionalen einfach isotropen Raum*, Jour. f. d. reine u. angew. Math. **298** (1978), 199-217.

[35] Z. M. Sipus, *Translation surfaces of constant curvatures in a simply isotropic space*, Period. Math. Hung. **68** (2014), 160–175

[36] Z. M. Sipus and B. Divjak, *Curves in n-dimensional k-isotropic space*, Glasnik Matematicki **33(53)** (1998), 267-286.
[37] K. Strubecker, *Differentialgeometrie des isotropen Raumes III*, Flachentheorie, Math. Zeitsch. 48 (1942), 369-427.

[38] D. W. Yoon, Y. Tuncer and M. K. Karacan, *Non-degenerate quadric surfaces of Weingarten type*, Annales Polonici Math. 107 (2013), 59-69.
