Switching plasmonic resonance in multi-gap infrared metasurface absorber using vanadium dioxide patches

Ayman Negm, Mohamed Bakr, Matiar Howlader and Shirook Ali

1 Department of Electrical and Computer Engineering, McMaster University, Hamilton, Canada
2 School of Mechanical and Electrical Engineering Technology, Sheridan College, Brampton, Canada

E-mail: mbakr@mcmaster.ca

Received 26 September 2020, revised 14 April 2021
Accepted for publication 26 April 2021
Published 28 May 2021

Abstract
Reconfigurable metasurface absorbers enable collecting or emitting radiation within selected frequency bands. It is thus necessary to decipher such behavior for many applications, including plasmonic energy harvesting, radiative cooling and thermal emitters. In this article, we propose a compact reconfigurable vanadium dioxide (VO₂)-based metasurface absorber/emitter to demonstrate switching between dual and single-band absorption modes in the mid-infrared regime. The unit cell of the design employs a four-split gold circular ring resonator with gaps filled with VO₂ patches. The phase-transition property of VO₂ between semiconductor and metallic states is used to control the mode of operation of the metasurface absorber. When VO₂ is in the semiconductor state, a dual-band absorption at 6 µm and 10.6 µm is obtained. When it attains a metallic state, the metasurface exhibits a single-band absorption at 8.25 µm. To achieve the maximum absorption efficiency in both single and dual-band modes, adaptive wind-driven optimization was employed as a global optimization technique. The proposed absorber provides polarization-independent behavior for both Transverse Electric and Transverse Magnetic polarizations. Moreover, the proposed design shows above 80% absorptance for incidence angle up to 45° for the dual-band mode, and up to 35° for the single-band mode. When operating the absorber as a tunable emitter, a switching of 79% in emissivity is achieved at 8.25 µm. These favorable findings may facilitate the development of important devices for temperature regulation, smart windows, and thermal imaging.

Keywords: metasurface absorber, vanadium dioxide, phase transition, field confinement, optimization

(Some figures may appear in color only in the online journal)

1. Introduction
Two-dimensional metamaterials are arrays of subwavelength geometries with extraordinary electromagnetic properties that cannot be found in natural materials [1]. These materials are attractive for infrared applications within the atmospheric windows (3–5 µm, 8–14 µm), such as radiative cooling [2], temperature regulation [3], and selective absorption [4]. Metasurfaces promise an alternative to complex optical structures. For example, the inclusion of optimized metasurface absorbers in thermal imaging systems can avoid the use of complex filters and polarizers [5]. The interest in using metasurfaces as electromagnetic absorbers surged following the realization of the first perfect metasurface absorber by Landy et al [6].
Resonant metasurfaces are characterized by very narrowband operation corresponding to the specific geometry of the metasurface. To increase the utility of metasurfaces for wider bandwidths, designing metasurfaces with tunable bandwidth is thus a favorable feature. Active tuning is an effective technique to achieve higher bandwidth [7], provide switching capability [8], and achieve impedance matching conditions [9]. For the GHz range, PIN diodes provide effective switching performance [10, 11]. In the THz range, materials with switchable properties are more suitable as they provide a faster response. Examples include photoconductive materials [12, 13], liquid crystals [14], MEMS [15], and graphene [16].

In the infrared regime, phase transition materials (PTMs) that operate in either a metallic or a semiconductor state are used to tune the response of the metasurface absorber by applying external stimulus such as an electric field [17], current [18], or temperature [19]. Examples of widely used PTMs are vanadium dioxide (VO$_2$) and germanium antimony telluride [3]. VO$_2$ changes from a semiconductor to a metallic phase around a temperature of 67 °C [20]. The employment of VO$_2$ to obtain a tunable absorber was demonstrated for the GHz [21] and THz [22] regimes. Examples include a thin film of VO$_2$ [23] to switch a gold-based absorber between transparency and opacity in the range between 0.2 and 2 THz by heating the VO$_2$ film up to 375 K. Another design was introduced for the same operating range in [24] that provides an ON/OFF ratio of 45 by applying bias voltage to gold electrodes. For these ranges, a simple conductivity variable is used to model the effect of phase transition. This modeling is not adequate to model the phase transition behavior in the infrared regime, and so frequency-dependent complex permittivity models should be employed [25].

In the mid-infrared range, using VO$_2$ as a spacer between a gold antenna and a back reflector was demonstrated in [26]. Results show 3.5% tuning of the resonance frequency and 30% modulation depth around 25.5 THz. A subwavelength thin layer of VO$_2$ deposited over a sapphire substrate achieved a modulation between 0.25% and 80% reflectance using a heating stage between 297 K and 360 K [27]. In [28], a defect engineering was employed to construct a checker-board pattern of VO$_2$. Near zero reflection was achieved at 11.3 µm. The inclusion of VO$_2$ within the gaps of a plasmonic metasurface absorber is an effective way to control the resonance behavior. Examples include placing VO$_2$ patches in the feed gap of gold bowtie nanoantennas [29], and placing VO$_2$ strips in the central gap of aluminum-based absorbers [30]. The results show that the resonance behavior can be modified by changing the current paths within the structure due to the phase transition. In addition, the inclusion of VO$_2$ patches can be used to design multifunctional structures. For example, the phase transition of VO$_2$ was used in [31] to switch the metasurface between perfect absorber operation and operating as a polarization converter. Another example can be found in [32] where VO$_2$ patches are used to switch a metasurface structure between broadband near-perfect absorption and broadband transparency. A dual-to-single band absorber was demonstrated in [2] where VO$_2$ thin film is used to switch the dual absorbance within the atmospheric windows to single absorbance within a non-atmospheric window.

In this work, we propose a compact switchable, polarization-insensitive mid-infrared metasurface absorber that operates in single or dual-band modes by employing the phase-transition property of VO$_2$. The design achieves dual-band absorption at room temperature using a single patterned resonator structured by combining a circular resonator with an inner crossing instead of using two separate resonators for the two bands, thus making the fabrication process easier. In addition, when the absorber operates in dual mode, the absorbed field is highly confined within the VO$_2$ patches embedded in the gaps of a gold resonator. This provides hot spots for energy collection that can be useful for numerous applications such as energy harvesting, sensing, optical trapping, and photocatalysis [33]. Moreover, according to Kirchhoff’s law of thermal radiation, the emissivity of a structure can be deduced from its absorptivity. The proposed structure can thus be operated as a tunable thermal emitter. Our proposed structure achieves switching similar to that reported in [2] using an eight times smaller unit cell; due to the utilization of plasmonic high field enhancement within gaps in addition to interaction between neighboring cells.

2. Structure of absorber

We introduce a single-structured gold resonator that combines the circular ring proposed in [34] with the inner crossing proposed in [35] to support dual-band absorption without using multiple resonators. This simplifies not only the structure but also reduces the fabrication steps [36]. The proposed gold resonator includes symmetrically-placed gaps to provide regions for electric field confinement, which can be useful for applications such as energy harvesting [37] and biosensing [35]. Adding VO$_2$ patches within these gaps provides a mean to change this dual-band behavior into a single-band model by simply changing the operating temperature of the structure. Figure 1 shows the geometry of the unit cell of the proposed metasurface absorber consisting of a top gold resonator of thickness t_m embedded with VO$_2$ patches, a dielectric spacer of thickness t_s and a thick bottom gold film. The gold resonator is patterned in the form of a circular ring of radius r and width w_1, combined with an inner cross of width w_2. The circular ring has four gaps each of width g. These gaps are filled with VO$_2$ patches. The periodicity of the unit cell is P along the two dimensions of the metasurface plane. Inclusion of VO$_2$ within the gaps of a plasmonic metasurface absorber is an effective way to control the resonance. The fabrication scheme reported in [29] can be followed to implement our proposed absorber; the deposition of thick gold back reflector followed by deposition of substrate (e.g. barium fluoride) is straightforward. For the resonator, the pattern of VO$_2$ patches can be defined using a lithography technique, followed by sputtering from a VO$_2$ source, then etching. The gold resonator can then be overlaid over the VO$_2$ pattern using lithography, followed by thermal deposition and lift-off. A practical way...
to activate phase transition in VO$_2$ patches is to mount the structure on a temperature controlling stage as illustrated elsewhere [28].

In the infrared range, gold is modeled as a lossy metal with complex dielectric permittivity. This permittivity attains different values based on the operating frequency. In our work, we used the frequency-dependent permittivity model introduced in [38]. The dielectric spacer is modeled as lossless material whose refractive index has very small variation over the considered infrared range such as barium fluoride and calcium fluoride. When the operating temperature goes above the phase transition temperature of VO$_2$, its electrical permittivity profile changes to a metallic behavior. This change in the material properties shifts the resonance frequencies and the absorption profile, thus achieving the sought tunable response. Two permittivity profiles are used to model the electrical permittivity of VO$_2$ at 30 °C and 90 °C, obtained from [25].

3. Simulation and optimization

To investigate the absorption behavior of the proposed structure, we employ the finite element modeling (FEM) method implemented in COMSOL MultiPhysics software$^{(39)}$. A normally incident wave impinging upon the structure in the Z-direction. The electric field is polarized in the X-direction and the magnetic field in the Y-direction. The absorption can be calculated as:

$$A = 1 - R - T,$$

where $R = |S_{11}|^2$ and $T = |S_{21}|^2$ are the reflectance and transmittance of the structure, respectively. Since the bottom gold layer blocks the transmission, T can be ignored in the calculation of A. The structure of the plasmonic absorber with no VO$_2$ included in the design provides dual-band absorption resonating at 5.32 μm and 10.4 μm as illustrated in [37]. After placing VO$_2$ patches within the gaps, the resonant wavelengths shifts to 6.2 μm and 10.7 μm when the patches are in the semiconductor state with absorptance values of 84.7% and 83.35%, respectively. The single-band absorption resonates at 7.9 μm when the patches are in the metallic state with an absorptance of 96.5% (see figure 2(a)).

As high absorptance at 10.6 μm is of special interest since it encompasses the ambient infrared radiation from Earth’s surface [37]. We thus targeted placing one of the resonant wavelengths of the dual-band mode at this wavelength. In addition, we explored the effect of changing the metasurface parameters to improve the absorptance behavior. To achieve these objectives, we performed an optimization step starting with the parameter values of the geometry without VO$_2$ patches reported in [37] (see the first row in table 1).

![Figure 1. Geometry of the proposed switchable absorber.](image1)

![Figure 2. Simulated absorptance spectra for (a) the non-optimized structure after placing the VO$_2$ patches, and (b) the optimized absorber including VO$_2$ patches, when the operating temperature is lower (blue) and higher (red) than T_c.](image2)

To find the optimal values of the absorber parameters, adaptive wind-driven optimization (AWDO) is employed as a global optimization technique with automated selection of algorithm parameters [40]. AWDO is an iterative evolutionary population-based algorithm that is inspired by the motion of air parcels under the influence of natural forces. The candidate that attains the highest air pressure in this population is considered as the global optimum. The two main equations of the algorithm are the velocity update and position update equations [40]:

$$\begin{align*}
\vec{u}_{\text{new}} &= (1 - \alpha)\vec{u}_{\text{cur}} - g\vec{x}_{\text{cur}} + \frac{i - 1}{i} \gamma_T(\vec{x}_{\max} - \vec{x}_{\text{cur}}) \\
&+ \frac{c \cdot \vec{u}_{\text{cur}}}{i} \frac{\text{other - dim}}{i},
\end{align*}$$

(2)

$$\begin{align*}
\vec{x}_{\text{new}} &= \vec{x}_{\text{cur}} + \vec{u}_{\text{new}} \Delta t,
\end{align*}$$

(3)

P	r	w_1	w_2	g	
Non-optimized geometry (nm)	2860	1100	140	415	70
Optimized geometry (nm)	2780	1120	140	420	100

Table 1. The optimization variables for the proposed metasurface absorber.

$\alpha, \gamma, \Delta t$: Parameters of the algorithm.

\vec{u}, \vec{x}: Velocity and position vectors.

Δt: Time step starting with the parameter values of the geometry without VO$_2$ patches reported in [37].
where \(\mathbf{u}_{\text{cur}}, \mathbf{u}_{\text{new}} \) are the current and updated velocity vectors.

The vectors \(\mathbf{x}_{\text{cur}}, \mathbf{x}_{\text{new}} \) are the current and updated position vectors, \(\alpha \) is the friction coefficient, \(g \) is the gravitational constant, and \(\gamma \) is the universal gas constant. \(T \) is the temperature, \(\mathbf{x}_{\text{max}} \) is the solution candidate with the highest pressure, \(c \) is the earth rotational constant, \(i \) is the rank of the current parcel among all the solution candidates, and \(\mathbf{u}_{\text{cur}} \) is the velocity component of one of the other dimensions. The algorithm parameters \(\alpha, g, \gamma T, \) and \(c \) are automatically tuned throughout the iterative process using a covariance matrix adaptive evolutionary strategy [41]. In our study, the position vector includes five dimensions \(\mathbf{x} \in \mathbb{R}^5 \) corresponding to the five optimization variables shown in table 1. The thickness of the substrate and the gold resonator are fixed at 280 nm and 50 nm, respectively. The objective function for optimization is defined as \[42\]:

\[
F = - \min \{ 0.9, A_{\text{semi}} \left(6 \, \mu m \right) \} - \min \{ 0.9, A_{\text{semi}} \left(10.6 \, \mu m \right) \} - \min \{ 0.9, A_{\text{met}} \left(8.25 \, \mu m \right) \},
\]

where \(A_{\text{semi}} \) and \(A_{\text{met}} \) are the absorptance values at the semiconductor and metallic phases of VO\(_2\), respectively. This formulation maximizes the peak absorptance at all resonating wavelengths while maintaining a balanced performance at the three peaks by accepting 90% absorptance. After 50 iterations, the final parameter values are obtained (see the second row of table 1).

4. Results and discussion

The optimal parameter values obtained are used to run full-wave FEM simulation of the absorber. Figure 2(b) shows the simulated absorption spectra for the proposed absorber at different operating temperatures. At room temperature, which is lower than the phase transition temperature of VO\(_2\), the structure behaves as a dual-band absorber with the absorptance of 88.5% and 92.85% at 6 \(\mu \)m and 10.6 \(\mu \)m, respectively. The electric field is confined in the dielectric VO\(_2\) gaps. When the operating temperature goes above the phase transition temperature of VO\(_2\), its electrical permittivity profile changes to a metallic behavior. In this case, the structure behaves as a non-gaped resonator with a single resonance at 8.25 \(\mu \)m and absorptance of 89.64%. This means that a dynamic switching between single and dual-band absorption modes can be achieved by applying different operating temperature without modifying the absorber’s geometry. Moreover, the results in this case show that the optimization step has aligned the maximum absorptance of the hot state with the minimum absorptance of the cold state, achieving a difference in emissivity of 79%, which is favorable for tunable thermal emitter applications. By comparing the variables values of table 1 before and after the optimization step, it is observed that the main parameters that affect the optimization process are the metasurface periodicity \(P \) and the gap width \(g \). \(P \) affects the response by changing the spacing between the patterns of the metasurface, thus defining the amount of interaction between neighboring elements. \(g \) controls the capacitive effect and the accumulation of charges, which defines the level of field confinement within the patches. The other parameters \(r, w_1, \) and \(w_2 \) control the lengths of current paths within the structure and so can finely tune the response.

To better understand the physical mechanism of the switchable absorber, we plot the distribution of the electric field in the horizontal plane cutting the middle of the metallic resonator at the resonant wavelengths, as shown in figure 3. We observe high field confinement within the VO\(_2\) patches at 6.0 \(\mu \)m and 10.6 \(\mu \)m when the VO\(_2\) is operating as a semiconductor. This indicates that the proposed absorber efficiently collects the absorbed field at the resonant wavelengths.

When the operating temperature goes above the phase transition of VO\(_2\), the patches attain metallic properties, so the field confinement becomes weaker at 6 \(\mu \)m and 10.6 \(\mu \)m (see figure 4). The patches in this state form new current paths where the whole structure resonates solely at 8.25 \(\mu \)m. It is worth mentioning that the field concentration at this new wavelength is highest around the ring of the resonator instead of within gaps, which highlights the role of mutual coupling between neighboring cells of the metasurface as shown in figure 4(b). Shifting the resonating wavelength to the middle point between the two wavelengths of the dual-band mode helps in blocking the radiation in the highly transparent ambient range and so prevents the overheating of the structure at high temperature.

In practice, we are interested in harvesting the field incident upon the structure from multiple angles. To quantify the oblique incidence response, we studied the performance of the designed absorber at different incident angles. Figure 5 shows the absorptance versus the angle of incidence between 0° and 70° with a step of 10°. For the low temperature case, the absorber maintains a strong absorption of more than 80% at 6 \(\mu \)m for incidence angles up to 50°. For the resonance at 10.6 \(\mu \)m, more than 80% absorptance is maintained up to around 45°. For the high temperature case, the absorber
provides more than 80% absorptance for incidence angles up to 35°. Since the absorbed field is not confined within the VO$_2$ patches at high temperature, the absorption is spread over a larger bandwidth.

Another spectral feature that can be observed in figure 5 is the appearance of an additional peak close to the main resonance peak at 6 µm. A similar feature was reported in previous work involving a dual-band terahertz metasurface absorber [43], and an isotropic split-ring resonator with gaps [44]. The emergence of this feature can be explained using the effective medium approximation of the resonator as demonstrated in [44], where for oblique incidence, the wave vector component parallel to the resonator surface is non-vanishing, and so impedance matching can be satisfied when the effective magnetic permeability is equal to zero. Such condition takes place at non-zero angles of incidence for wavelengths around 6 µm. To elaborate more on the properties of this additional peak, figure 6 shows a vertical cross-section cut along the VO$_2$ gaps of the metasurface structure with the magnetic field distribution plotted when the angle of incidence is 60°. At 5.9 µm, the magnetic field is concentrated around the gaps. This concentration decreases as the wavelength increases till around 6.3 µm, after which the magnetic field accumulates close to the intersection between the circular resonator and the cross-connector, which corresponds to the additional peak observed in figure 5.

Finally, we tested the robustness of our proposed absorber against variations in the optical properties of VO$_2$. A recent study was carried out in [45] to test the effect of variations of optical properties of VO$_2$ on the phase transition process. The results of the study showed that in the range between 2 and 11 µm, the variations of the optical properties of VO$_2$ induced by different deposition techniques and different substrates are minor as compared to the change of properties induced by the phase transition process due to the low optical loss of VO$_2$ within this range at its cold state. We verified this finding by employing models of VO$_2$ extracted by other researchers from experimental measurements [45–47], as shown in figure 7. It is observed that the model employed in [46] shows an almost constant refractive index in the amorphous state, which is based on extrapolation of data extracted in the near-infrared

Figure 5. The absorptance profile at different angles of incidence at (a) 30° C and (b) 90° C.

Figure 6. The magnetic field distribution at low temperature over the vertical plane cut through the VO$_2$ gaps for oblique incidence angle 60° at (a) 5.9 µm, (b) 6.3 µm, and (c) 6.7 µm.

Figure 7. The complex refractive indices (n, k) of VO$_2$ used to verify the robustness of the proposed metasurface structure against model variations.
Table 2. The values of resonant wavelengths and the corresponding absorptance using different refractive index models for VO2.

Model	[25]	[45]	[46]	[47]
Resonant wavelengths (µm)	5.96	5.9	5.8	5.75
	8.25	8.1	8.2	8
	10.6	11	10.6	10.5
Absorptance at cold state (%)	88.51	94.41	92.37	91.23
	10.2	12.04	10.88	10.723
	92.85	84.85	93.35	92
Absorptance at hot state (%)	39.26	24.4	20.48	24.42
	89.54	99.84	99.83	99.47
	23.84	11.54	13.72	19.36

range. The authors of [46] verified the validation of this model using measurements of a Fourier transform infrared spectrometer. Data extrapolation was also adopted in [48] and the results also showed good agreement with measured data. We applied these models on our proposed absorber and recalculated the resonant wavelengths and the corresponding values of absorptance. Table 2 shows our calculations for the resonant wavelengths and the corresponding absorptance values using these models.

We observe only slight variation in the values of the resonant wavelengths, with high quality switching performance for all models. These results verify that the proposed absorber is robust against variations of optical properties of VO2.

5. Conclusion

We demonstrated a temperature-controlled metamaterial absorber whose tunability is based on the incorporation of VO2 patches within the gaps of gold split-ring resonator. The proposed absorber provides the dual absorption using a single resonator formed by combining a circular ring and an inner crossing instead of using a separate resonator for each band. The electrical permittivity of VO2 can be adjusted by changing the operating temperature, resulting in switching the absorption mode between single and double. The numerical results show that the resonance wavelengths change from dual mode at 6 µm and 10.6 µm to single mode at 8.25 µm when the operating temperature varies from 30°C to 90°C. A suggested extension to this work would be to shift the left resonance at 6 µm to a frequency within the atmospheric window between 3 µm and 5 µm. Another improvement is to modify the design to be easier in fabrication due to the challenge of aligning the VO2 patches inside the gaps of the gold resonator. The proposed absorber can be employed in reconfigurable nanophotonic applications such as tunable filters, modulators, and smart windows.

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).

Acknowledgment

The authors would like to acknowledge the support from the Natural Science and Engineering Research Council of Canada (NSERC) through the grant RGPIN-2016-05451.

ORCID IDs

Ayman Negm https://orcid.org/0000-0003-3123-8962
Mohamed Bakr https://orcid.org/0000-0002-3749-2657

References

[1] Huang S, Xie Z, Chen W, Lei J, Wang F, Liu K and Li L 2018 Metasurface with multi-sized structure for multi-band coherent perfect absorption Opt. Express 26 7066–78
[2] Sun R, Zhou P, Ai W, Liu Y, Li Y, Jiang R, Li W, Weng X, Bi L and Deng L 2019 Broadband switching of mid-infrared atmospheric windows by VO2-based thermal emitter Opt. Express 27 11537–46
[3] Wu S-R, Lai K-L and Wang C-M 2018 Passive temperature control based on a phase change metasurface Sci. Rep. 8 1–6
[4] Li Z, Stan L, Czaplewski D A, Yang X and Gao J 2018 Wavelength-selective mid-infrared metamaterial absorbers with multiple tungsten cross resonators Opt. Express 26 5616–31
[5] Ogawa S and Kimata M 2017 Wavelength-or polarization-selective thermal infrared detectors for multi-color or polarimetric imaging using plasmonics and metamaterials Materials 10 493
[6] Landy N I, Sajuyigbe S, Mock J J, Smith D R and Padilla W J 2008 Perfect metamaterial absorber Phys. Rev. Lett. 100 207402
[7] Mou N, Liu X, Wei T, Dong H, He Q, Zhou L, Zhang Y, Zhang L and Sun S 2020 Large-scale, low-cost, broadband and tunable perfect optical absorber based on phase-change material Nanoscale 12 5374–9
[8] Mirshafieyean S S and Gregory D A 2018 Electrically tunable perfect light absorbers as color filters and modulators Sci. Rep. 8 2635
[9] Zhang Y, Miao L, Guo S, Huang Z, Cao Z, He Y, Wei J, Li C and Jiang J 2019 A broadband tunable frequency selective surface absorber for oblique incidence applications J. Phys. Appl. Phys. 53 055105
[10] Jeong H and Lim S 2018 Broadband frequency-reconfigurable metamaterial absorber using switchable ground plane Sci. Rep. 8 1–9
[11] Yoo M and Lim S 2014 Active metasurface for controlling reflection and absorption properties Appl. Phys. Express 7 112004
[12] Cong L, Srivastava Y K, Zhang H, Zhang X, Han J and Singh R 2018 All-optical active THz metasurfaces for ultrafast polarization switching and dynamic beam splitting Light Sci. Appl. 7 1–9
[13] Yuan S, Yang R, Xu J, Wang J and Tian J 2019 Photoexcited switchable single-/dual-band terahertz metamaterial absorber Mater. Res. Express 6 075807
[14] Shen Z, Zhou S, Ge S, Duan W, Chen P, Wang L, Hu W and Lu Y 2018 Liquid-crystal-integrated metadevice: towards active multifunctional terahertz wave manipulations Opt. Lett. 43 4695–8
[15] Liu M et al 2017 Ultrathin tunable terahertz absorber based on MEMS-driven metamaterial Microsyst. Nanoeng. 3 1–6

https://orcid.org/0000-0003-3123-8962
https://orcid.org/0000-0002-3749-2657
[16] Zhao Y T, Wu B, Huang B J and Cheng Q 2017 Switchable broadband terahertz absorber/reflecter enabled by hybrid graphene-gold metasurface Opt. Express 25 7161–9
[17] Wu B, Zimmers A, Aubin H, Ghosh R, Liu Y and Lopez R 2011 Electric-field-driven phase transition in vanadium dioxide Phys. Rev. B 84 241410
[18] Zhang S, Kats M A, Cui Y, Zhou Y, Yao Y, Ramanathan S and Capasso F 2014 Current-modulated optical properties of vanadium dioxide thin films in the phase transition region Appl. Phys. Lett. 105 211104
[19] Kats M A, Blanchard R, Genevet P, Yang Z, Qazilbash M M, Basov D, Ramanathan S and Capasso F 2013 Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material Opt. Lett. 38 368–70
[20] Shao Z, Cao X, Luo H and Jin P 2018 Recent progress in the phase-transition mechanism and modulation of vanadium dioxide materials NPG Asia Mater. 10 581–605
[21] Yahiaoui R and Ouslimani H H 2017 Broadband polarization-independent wide-angle and reconfigurable phase transition hybrid metamaterial absorber J. Appl. Phys. 122 093104
[22] Li X, Tang S, Ding F, Zhong S, Yang Y, Jiang T and Zhou J 2019 Switchable multifunctional terahertz metasurfaces employing vanadium dioxide Sci. Rep. 9 1–13
[23] Seo M et al 2010 Active terahertz nanoantennas based on VO2 phase transition Nano Lett. 10 2064–8
[24] Shin J-H, Park K H and Ryu H-C 2016 Electrically controllable terahertz square-loop metamaterial based on VO2 thin film Nanotechnology 27 195202
[25] Wang H, Yang Y and Wang L 2014 Wavelength-tunable infrared metamaterial by tailoring magnetic resonance condition with VO2 phase transition J. Appl. Phys. 116 123503
[26] Li H, Peng H, Ji C, Lu L, Li Z, Wang J, Wu Z, Jiang Y, Xu Y, Jiang T and Liu Z 2018 Electrically tunable mid-infrared antennas based on VO2 J. Mod. Opt. 65 1809–16
[27] Kats M A, Sharma D, Lin J, Genevet P, Blanchard R, Yang Z, Qazilbash M M, Basov D N, Ramanathan S and Capaso F 2012 Ultra-thin perfect absorber employing a tunable phase change material Appl. Phys. Lett. 101 221101
[28] Rensberg J et al 2016 Active optical metasurfaces based on defect-engineered phase-transition materials Nano Lett. 16 1050–5
[29] Zhu Z, Evans P G, Haglund R F and Valentine J G 2017 Dynamically reconfigurable metadevice employing nanostructured phase-change materials Nano Lett. 17 4881–5
[30] Li Q, Luo Y, Liu S, Li X, Wang S and Chen T 2020 Switching of plasmonic resonances in multi-gap resonators at terahertz frequencies Mater. Res. Express 7 055801
[31] He H, Shang X, Shang X, Xu L, Zhao J, Cai W, Wang J, Zhao C and Wang L 2020 Thermally switchable bifunctional plasmonic metasurface for perfect absorption and polarization conversion based on VO2 Opt. Express 28 4563–70
[32] Wang D, Wang D, Sun S, Sun S, Feng Z, Feng Z, Tan W and Tan W 2020 Enabling switchable and multifunctional terahertz metasurfaces with phase-change material Opt. Mater. Express 10 2054–65
[33] Lee Y U, Wisna G B M, Hsu S-W, Zhao J, Lei M, Li S, Tso A R and Liu Z 2020 Imaging of nanoscale light confinement in plasmonic nanoantennas by Brownian optical microscopy ACS Nano 14 7666–72
[34] Yu P, Wu J, Ashalley E, Govorov A and Wang Z 2016 Dual-band absorber for multispectral plasmon-enhanced infrared photodetection J. Phys. Appl. Phys. 49 365101
[35] Chaurasiya D, Ghosh S and Srivastava K V 2014 Dual band polarization-insensitive wide angle metamaterial absorber for radar application 2014 44th European Microwave Conf. (IEEE) pp 885–8
[36] Wang B-X, He Y, Lou P, Huang W-Q and Pi F 2020 Penta-band terahertz light absorber using five localized resonance responses of three patterned resonators Results Phys. 16 p 102930
[37] Negm A, Bakr M, Howlader M and Ali S 2019 A dual band plasmonic metasurface absorber for energy harvesting applications 2019 Int. Applied Computational Electromagnetics Soc. Symp. (ACES) pp 1–2
[38] Rakic A D, Djurišić A B, Elazer J M and Majewski M L 1998 Optical properties of metallic films for vertical-cavity optoelectronic devices Appl. Opt. 37 5271–83
[39] Multiphysics C 2017 v. 5.3 (Stockholm, Sweden: COMSOL AB) (available at: www.comsol.com)
[40] Nagar J, Campbell S D, Werner D H, Bayraktar Z and Komurcu M 2018 The adaptive wind driven optimization and its application in electromagnetics 2018 International Applied Computational Electromagnetics Society Symposium (ACES) (IEEE) pp 1–2
[41] Gregory M D, Bayraktar Z and Werner D H 2011 Fast optimization of electromagnetic design problems using the covariance matrix adaptation evolutionary strategy IEEE Trans. Antennas Propag. 59 1275–85
[42] Ghaderi B, Nayyeri V, Soleimani M and Ramahi O M 2018 Pixelated metasurface for dual-band and multi-polarization electromagnetic energy harvesting Sci. Rep. 8 13227
[43] He X-J, Wang Y, Jiang J and Wu Q 2011 Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle Prog. Electromagn. Res. 115 381–97
[44] Koschny T, Zhang L and Soukoulis C M 2005 Isotropic three-dimensional left-handed metamaterials Phys. Rev. B 71 121103
[45] Wan C et al 2019 On the optical properties of thin-film vanadium dioxide from the visible to the far infrared Ann. Phys. 531 1900188
[46] Yang L, Zhou P, Huang T, Zhen G, Zhang L, Bi L, Weng X, Xie J and Deng L 2017 Broadband thermal tunable infrared absorber based on the coupling between standing wave and magnetic resonance Opt. Mater. Express 7 2767–76
[47] Ashok P, Chaubey Y S and Verma A 2020 High infrared reflectance modulation in VO2 films synthesized on glass and ITO coated glass substrates using atmospheric oxidation of vanadium Opt. Mater. 110 110438
[48] Dicken M J, Aydin K, Pryce I M, Sweatlock L A, Boyd E M, Walavalkar S, Ma J and Atwater H A 2009 Frequency tunable near-infrared metamaterials based on VO2 phase transition Opt. Express 17 18330–9