ISOLATED EIGENVALUES, POLES AND COMPACT PERTURBATIONS OF BANACH SPACE OPERATORS

BHAGWATI PRASHAD DUGGAL

Abstract. Given a Banach space operator $A$, the isolated eigenvalues $E(A)$ and the poles $\Pi(A)$ (resp., eigenvalues $E^a(A)$ which are isolated points of the approximate point spectrum and the left poles $\Pi^a(A)$) of the spectrum of $A$ satisfy $\Pi(A) \subseteq E(A)$ (resp., $\Pi^a(A) \subseteq E^a(A)$), and the reverse inclusion holds if and only if $E(A)$ (resp., $E^a(A)$) has empty intersection with the B-Weyl spectrum (resp., upper B-Weyl spectrum) of $A$. Evidently $\Pi(A) \subseteq E^a(A)$, but no such inclusion exists for $E(A)$ and $\Pi^a(A)$. The study of identities $E(A) = \Pi^a(A)$ and $E^a(A) = \Pi(A)$, and their stability under perturbation by commuting Riesz operators, has been of some interest in the recent past. This paper studies the stability of these identities under perturbation by (non-commuting) compact operators. Examples of analytic Toeplitz operators and operators satisfying the abstract shift condition are considered.

Mathematics subject classification (2010): 47A10, 47A55, 47A53, 47B40.

Keywords and phrases: Banach space operator, isolated eigenvalues, left poles, poles, compact perturbations, SVEP, Fredholm operator, Toeplitz operator, abstract shift condition.

REFERENCES

[1] P. Aiena, Fredholm and Local Spectral Theory with Applications to Multipliers, Kluwer, 2004.
[2] P. Aiena, J. Guillen and P. Pena, Property $(R)$ for bounded linear operators, Mediterr. J. Mat. 8(2011), 491–508.
[3] P. Aiena, E. Aponte, J. Guillen and P. Pena, Property $(R)$ under perturbations, Mediterr. J. Math. 10(2013), 367–382.
[4] P. Aiena, J. Guillen and P. Pena, Property $(gR)$ and perturbations, Acta Sci. Math.(Szeged) 78(2012), 569–588.
[5] B. P. Duggal, Dragan S. Djordjević, Robin E. Harte and Snežana C. Živković-Zlatanović, Polynomially meromorphic operators, Math. Proc. Royal Irish Acad. 116A(2016), 83–98.
[6] B. P. Duggal and I. H. Kim, Generalized Browder, Weyl spectra and the polaroid property under compact perturbations, J. Korean Math. Soc. 54(2017), 281–302.
[7] B. P. Duggal, Polaroid operators and generalized Browder-Weyl theorems, Math. Proc. Royal Irish Acad. 108A(2008), 149–163.
[8] B. P. Duggal, Spectral picture, perturbed Browder and Weyl theorems, and their variations, Functional Analysis, Approximation and Computation 9(1)(2017), 1–23.
[9] B. P. Duggal, Perturbed Browder, Weyl theorems and their variations: Equivalences, Functional Analysis, Approximation and Computation 9(2)(2017), 37–62.
[10] P. R. Halmos, A Hilbert Space Problem Book, 2nd edition, Springer 1982.
[11] D. A. Herrero, T. J. Taylor and Z. Y. Wang, Variation of the point spectrum under compact perturbations, Topics in Operator Theory: Operator Theory Advances and Application, Birkhäuser, Basel Volume 32(1988), 113–158.
[12] H. G. Heuser, Functional Analysis, John Wiley and Sons (1982).
[13] You Qing Ji, Quasitrangular + small compact = strongly irreducible, Trans. Amer. Math. Soc. 351(1999), 4657–4673.
[14] K. B. Laursen and M. M. Neumann, *Introduction to Local Spectral Theory*, Clarendon Press, Oxford, 2000.
[15] C. G. Li and T. T. Zhou, *Polaroid type operators and compact perturbations*, Studia Math. 221(2014), 175–192.
[16] V. Müller, *Spectral Theory of Linear Operators and Spectral Systems in Banach Algebras, 2nd edition*, Birkhauser, Basel 2007.
[17] M. H. Rashid, *Properties (S) and (gS) for bounded linear operators*, Filomat 28(2014), 1641–1652.
[18] Junli Shen and Alatancang Chen, *A new variation on Weyl type theorems and perturbations*, Filomat 28(2114), 1899–1906.
[19] Angus E. Taylor and David C. Lay, *Introduction to Functional Analysis*, John Wiley and Sons (1980).
[20] H. Zariouh, *Preservation results for new spectral properties*, Extracta Math. 30(2015), 191–205.
[21] Sen Zhu and Chun Guang Li, *SVEP and compact perturbations*, J. Math. Anal. Appl., 380(2011), 69–75.