INTRODUCTION

Chronic musculoskeletal pain is defined as pain that lasts for three to six months or beyond the time of normal healing [1]. Musculoskeletal disorders are the most common source of chronic musculoskeletal pain, and their increasing prevalence has led to a need for effective non-surgical solutions, such as physical therapy, pharmacologic treatment, and injection-based treatment [2]. Injection therapies can be introduced when pain or functional limitations are significant despite oral medication or exercise [3]. Corticosteroid injections are the most common regi-
men for musculoskeletal disorders; they provide short-term symptomatic improvement, but aggravate cartilage damage, thus increasing the risk of tissue atrophy [4]. Therefore, physicians have become interested in alternative injectants, such as prolotherapy or platelet-rich plasma (PRP) [5].

Prolotherapy is a nonsurgical regenerative injection technique that administers small amounts of an irritant solution to the degenerated tendon insertions (entheses), joints, ligaments, and adjacent joint spaces over a series of several treatment sessions [6–8]. The mechanism of action behind prolotherapy is not completely understood, but the current theory is that the injected proliferate causes a healing process that is similar to the body’s natural healing process, whereby a local inflammatory cascade is initiated, which triggers the release of growth factors and collagen deposition [2]. To date, many studies which support the benefits of the use of prolotherapy in patients with chronic musculoskeletal pain have been reported [9,10]. However, few meta-analyses have analyzed the effect of prolotherapy in patients with chronic musculoskeletal pain. Therefore, we designed a meta-analysis to evaluate the effect of prolotherapy in the treatment of chronic musculoskeletal pain and compare the effect of prolotherapy with other treatments.

MATERIALS AND METHODS

Study design

This meta-analysis was performed according to the recommendations of the PRISMA and Cochrane Collaboration. The protocol was registered with PROSPERO (no. CRD42019130609).

Information sources and search strategy

Two reviewers (WL, YL) systematically searched electronic databases such as Medline, Embase, and the Cochrane Library (CENTRAL) with no limitations on the year of publication. Additionally, KoreaMed (https://koreamed.org) and KMbase (http://kmbase.medric.or.kr) were used to search for manually relevant domestic articles. Broad search terms such as “prolotherapy”, “chronic osteoarthritis”, and “randomized controlled trials”, were included to achieve higher sensitivity, and Medical Subject Heading (MeSH) terms were used. The languages of the articles were limited to Korean and English. The last search was conducted on March 10, 2019.

We did not search grey literature, despite its important contribution to a systematic review, because we wanted to present an effective basis for treatment to clinicians with as little bias as possible, based on the results of RCTs.

Study selection and eligibility criteria

All relevant studies were independently screened by two reviewers (WL and YL). Selection of relevant articles was done primarily at the title and abstract level, then after at the full-text level. Studies for the final assessment were selected based on the agreement of the two reviewers. Any disagreement was resolved by discussion with a third reviewer (SL).

Studies were included in the meta-analysis if they satisfied the following criteria: (1) patients with chronic musculoskeletal pain lasting for more than 3 months; (2) prolotherapy using dextrose for any joints, tendon, and/or ligaments; (3) results of the non-prolotherapy group were reported; and (4) the post-injection pain score was reported as the primary outcome.

Studies were excluded for the following reasons: (1) use of prolotherapy solutions containing anything other than glucose (polidocanol, manganese, zinc, human growth hormone, phenol-glucose-glycerine, pumice, ozone, glycerin, phenol, PRP, bone marrow, lipoaspirate, stem cells, or sodium morrhuate); (2) injection into the epidural space; (3) did not report appropriate outcomes or outcome measurements as mentioned; (4) non-randomized controlled trials; (5) non-human studies; (6) articles not in English or Korean.

Risk of bias in individual studies

Two independent authors (WL and YL) reviewed the articles to assess the risk of bias (ROB) using the ROB tool provided in the Review Manager software version 5.3 (The Cochrane Collaboration, UK) based on Cochrane’s assessment of the risk of bias [11]. If necessary, a third reviewer (SL) was included in the discussion to sort out the disagreements. The following eight domains were used to assess the risk of bias in each trial: random sequence generation (selection bias), allocation concealment (selection bias), blinding of participants and personnel (performance bias), blinding of outcome assessment (detection bias), in-
complete outcome data (attrition bias), selective reporting (reporting bias), and other bias. The methodology for each trial was graded as "high", "low", or "unclear" to reflect a high risk of bias, low risk of bias, or uncertainty of bias, respectively. The agreement between the two independent reviewers for the level of risk of bias regarding the eight domains was assessed using Cohen’s kappa. Kappa values were interpreted as follows: 1) less than 0: less than chance agreement, 2) 0.01 to 0.20: slight agreement, 3) 0.21 to 0.40: fair agreement, 4) 0.41 to 0.60: moderate agreement, 5) 0.61 to 0.80: substantial agreement, and 6) 0.8 to 0.99: almost perfect agreement.

Data collection process and extracted items

Two authors (WL and YL) extracted data from the original articles, and another author (SL) independently confirmed all of the extracted data. The general characteristics (i.e., the study design, publication year, and name of the first author), intervention types and methods, and outcomes were extracted for each study based on the inclusion criteria. Each method of the intervention, such as the prolotherapy regimen, interval, and duration, was extracted. The measured outcomes included the number of patients analyzed in each group, tools for pain assessment, and pain scores.

The main outcome was determined by the severity of the pain, derived from the results of the pain scale. The first priority of pain measurement extraction was the pain score for 6 months to 1 year. To assess the effectiveness of dextrose prolotherapy, we used the standardized mean difference of pain scores between the prolotherapy group and other comparator groups using exercise, saline, PRP, and steroid injection.

Subgroup analysis

We grouped the analyses of VAS for pain into less than three months, three to six months, and more than six months while registering our review in PROSPERO. However, we were unable to classify the subgroups as originally planned because not all the individual studies followed the patients and reported the resulting variables on these criteria. Using the common denominator of the results of the individual studies, we were able to synthesize results that could be divided into three subgroups: baseline to 1 month, 1 month to 3 months, and 6 months to 1 year.

Statistical analysis

Continuous data (e.g., post-injection pain scores) were pooled as standardized mean differences (SMDs) because different outcome measurement scaling was expected across trials. We also calculated the 95% confidence intervals (CIs) for all estimates. A random-effect model was used to pool the study results, taking into account possible variations in effect sizes across trials. The heterogeneity statistic Cochrane Q and its corresponding degrees of freedom (df) and P value, as well as Higgins’ I² as a measure of heterogeneity were calculated. P values < 0.05 were considered to be representative of statistically significant heterogeneity, and I² values > 50% were considered to represent significant heterogeneity. Post-hoc subgroup analyses were performed where possible for each outcome to explore heterogeneity based on the different sites of injection. Chi-squared tests for heterogeneity were performed to identify differences between subgroups. Publication bias was not evaluated because only a few (< 10) studies were included in this meta-analysis. We conducted a sensitivity analysis to evaluate the influence of each study on the long-term (six months to one year) therapeutic effect of prolotherapy compared with saline by excluding one trial at a time from the pooled effects. All analyses were performed using R 3.51 (R Foundation for Statistical Computing, Austria) and Review Manager (RevMan, version 5.3, The Cochrane Collaboration).

RESULTS

Study selection and characteristics

We retrieved 680 articles after the initial database search: Medline (n = 250), EMBASE (n = 64), CENTRAL (n = 168), and Korean databases (n = 198).

After excluding 567 duplicate articles, primary selection was performed on 131 articles. First, we excluded 66 unrelated articles based on titles and abstracts. Second, we excluded 27 articles that only included abstracts. Thereafter, full-text reviews were conducted for 38 articles. Of these 38 full-text articles, 28 were excluded for the following reasons: not controlled with placebo or other treatment (n = 14), patients’ pain period not clearly described or less than three months (n = 9), duplication (n = 4), and articles not in English or Korean (n = 1). The reasons for exclusion of these papers are given in detail in Table 1. Finally, ROB
Title	Author	Reason for exclusion	Journal/Source
Hypertonic dextrose injection (prolotherapy) for knee osteoarthritis: long term outcomes (2015)	Rabago D	Not RCT	Complementary Therapies in Medicine
The efficacy of prolotherapy for lateral epicondylisis: a pilot study (2008)	Scarpone M	Use of prolotherapy solutions containing anything other than glucose	Clinical Journal of Sport Medicine
The effects of prolotherapy in patients with subacromial impingement syndrome (2013)	Hannan EA	Not RCT	Arthritis and Rheumatism
The effects of injecting intra-articular platelet-rich plasma or prolotherapy on pain score and function in knee osteoarthritis (2018)	Rahimzadeh P	Uncertain pain period	Clinical Interventions in Aging
A randomized controlled trial of intra-articular prolotherapy versus steroid injection for sacroiliac joint pain (2010)	Kim WM	Insufficient pain period	Journal of Alternative and Complementary Medicine (New York, NY)
Qualitative assessment of patients receiving prolotherapy for knee osteoarthritis in a multmethod study (2016)	Rabago D	No controlled group	Journal of Alternative and Complementary Medicine (New York, NY)
Effect of rehabilitation and prolotherapy on pain and functional performance in patients with chronic patellar tendinopathy (2017)	Cho SI	No evidence of randomized controlled trial	Gazzetta Medica Italiana Archivio per LE Scienze Mediche
Prolotherapy injections and eccentric loading exercises for painful Achilles tendinosis: a randomised trial (2011)	Yelland MJ	Insufficient pain period	British Journal of Sports Medicine
Prolotherapy injections for chronic low back pain: results of a pilot comparative study (2009)	Yelland M	Uncertain randomization	Australas Musculoskelet Med
Evaluation of the efficacy of different concentrations of dextrose prolotherapy in temporomandibular joint hypermobility treatment (2018)	Mustafa R	Uncertain pain period	Journal of Craniofacial Surgery
Prolotherapy versus corticosteroid injections and phonophoresis for the treatment of plantar fascitis: a randomized controlled trial(2015)	Demir G	No evidence of masking	Arthritis and Rheumatology
Prolotherapy versus corticosteroid injections for the treatment of lateral epicondylisis: a randomized controlled trial (2011)	Carayannopoulos A	Use of prolotherapy solutions containing anything other than glucose	PM & R: the Journal of Injury, Function, and Rehabilitation
Intra-articular hyaluronic acid injections vs. dextrose prolotherapy in the treatment of osteoarthritic knee pain (2012)	Hashemi SM	Turkish text	Tehran University Medical Journal
The effects of prolotherapy with hypertonic dextrose versus prolozone (intra-articular ozone) in patients with knee osteoarthritis (2015)	Hashemi M	Use of prolotherapy solutions containing anything other than glucose	Anesthesiology and Pain Medicine
Prolotherapy injections, saline injections, and exercises for chronic low back pain: a randomized trial (2003)	Yelland MJ	Duplicated study	Spine
Dextrose prolotherapy for knee osteoarthritis: results of a randomized controlled trial (2011)	Rabago DP	Duplicated study	Osteoarthritis and Cartilage
Is dextrose prolotherapy superior to placebo for the treatment of temporomandibular joint hypermobility? A randomized clinical trial (2016)	Cömert Kılıç S	Uncertain pain period	International Journal of Oral and Maxillofacial Surgery
Benefit of dextrose prolotherapy on painful rotator cuff tendinopathy cases receiving physical therapy: a randomized controlled trial (2015)	Bertrand H	Duplicated study	Pain Research and Management
The efficacy of dextrose prolotherapy for temporomandibular joint hypermobility: a preliminary prospective, randomized, double-blind, placebo-controlled clinical trial (2011)	Refai H	Uncertain pain period	Journal of Oral and Maxillofacial Surgery
Efficacy of intra-articular hypertonic dextrose prolotherapy versus normal saline for knee osteoarthritids: a protocol for a triple-blinded randomized controlled trial (2018)	Sit R WS	Duplicated study	BMC Complementary and Alternative Medicine
Table 1. Continued

Title	Author	Reason for exclusion	Journal/Source
Hypertonic dextrose and morrhuate sodium injections (prolotherapy) for lateral epicondylitis (tennis elbow): results of a single-blind, pilot-level, randomized controlled trial (2013)	Rabago D	Use of prolotherapy solutions containing anything other than glucose	American Journal of Physical Medicine & Rehabilitation
Investigation the efficacy of intra-articular prolotherapy with erythropoietin and dextrose and intra-articular pulsed radiofrequency on pain level reduction and range of motion improvement in primary osteoarthritis of knee (2014)	Rahimzadeh P	Uncertain pain period	Journal of Research in Medical Sciences
Short term analgesic effects of 5% dextrose epidural injections for chronic low back pain: a randomized controlled trial (2017)	Maniquis-Smigel L	Epidural injection	Anesthesiology and Pain Medicine
Change of site of intra-articular injection of hypertonic dextrose resulted in different effects of treatment (2018)	Fouda AA	Uncertain pain period	British Journal of Oral and Maxillofacial Surgery
Periarticular dextrose prolotherapy instead of intra-articular injection for pain and functional improvement in knee osteoarthritis (2017)	Rezasoltani Z	No controlled group	Journal of Pain Research
Prolotherapy: an effective therapy for Tietze syndrome (2017)	Senturk E	No randomized controlled trial	Pain Medicine (United States)
Effect of regenerative injection therapy on function and pain in patients with knee osteoarthritis: a randomized crossover study (2012)	Dumais R	Crossover study	

RCT: Randomized Controlled Trial.

Quality assessment of the included studies (risk of bias within studies)

ROB evaluation revealed an overall low risk for selection bias and reporting bias, while almost half of the studies showed a high risk of performance bias because they did not blind the physicians. The injection side was different in three studies, which was one of the main reasons for the high risk of performance bias. The dextrose concentration ranged from 5% to 25%, concentration, volume of dextrose solution, interval between injection sessions were different between studies.

The dextrose prolotherapy injection sites, including large joints such as the knee and small joints such as finger joints and carpometacarpal joints were investigated. The comparator groups were saline injection, exercise, steroid injection, PRP injection, and extracorporeal shock wave therapy. The severity of pain was assessed using the Visual Analog Scale (VAS), the Western Ontario and McMaster Universities Osteoarthritis Index, the Kneefunction Score, and Foot Function Index. The injection interval ranged from weeks to months. All studies were randomized controlled trials. Various injection techniques were used, such as manual injection, and extracorporeal shock wave therapy. The severity of pain was assessed using the Visual Analog Scale (VAS).
Records identified through database searching
- Medline (n = 250)
- EMBASE (n = 64)
- CENTRAL (n = 168)

Records identified through other sources
- Korea DB (n = 198)

Records after duplicates removed (n = 567)

Records screened (n = 131)

Records excluded (n = 66)

Records 2nd screened (n = 65)

Abstract only (n = 27)

Full-text articles assessed for eligibility (n = 38)

Full-text articles excluded, with reasons (n = 28)
- Not controlled with placebo or other treatment (n = 14)
- Insufficient or not described pain period (n = 9)
- Not in Korean or English (n = 1)
- Duplicated study (n = 4)

Studies included in quantitative synthesis (n = 10)

Studies included in quantitative synthesis (meta-analysis) (n = 10)

Fig. 1. PRISMA flow diagram. Flow diagram of search strategy and study selection. DB: database.

The kappa value between the two reviewers for the 10 selected articles was 0.81.

Effectiveness of prolotherapy compared with other therapies

Prolotherapy with dextrose compared to saline
The effectiveness of prolotherapy compared to saline was reported in five studies [15,16,18–20] (n = 246; prolotherapy group = 126, normal saline group = 120), which suggested that prolotherapy with dextrose significantly reduced the pain score from 6 months to 1 year (SMD, −0.44; 95% CI [−0.76 to −0.11]; P = 0.008; I² = 36%; Fig. 4A). However, there was no difference between the effects of both therapies during the other periods analyzed (SMD, −0.07; 95% CI [−0.37 to 0.23]; P = 0.66; I² = 0% at 1 month to 3 months). Sensitivity analysis using a single study removal method did not significantly change the pooled results. The therapeutic effect of prolotherapy was 33% lower (SMD, −0.29; 95% CI [−0.57 to −0.01]; P = 0.040) than the pooled estimate effect size (SMD, −0.44; 95% CI [−0.91 to −0.13]; P = 0.009) after omitting one trial [16].

Prolotherapy with dextrose compared to exercise
Two studies [15,18] (n = 128; prolotherapy group = 63, exercise group = 65) provided data on pain scores comparing prolotherapy and exercise. Compared to exercise, dextrose therapy significantly reduced the pain score from 1 month to 3 months (SMD, −0.44; 95% CI [−0.84 to −0.04]; P = 0.11; I² = 55%) and 6 months to 1 year (SMD, −0.42; 95% CI [−0.77 to −0.07]; P = 0.02; I² = 0%; Fig. 4B). However, there was no difference in the effects of both therapies during the baseline to 1-month-period (SMD, −0.42; 95% CI [−1.14 to 0.30]; P = 0.02; I² = 83%).

Prolotherapy with dextrose compared to PRP
Two studies [12,17] (n = 99; prolotherapy group = 51, PRP group = 48) reported data on pain scores comparing prolotherapy and PRP. Prolotherapy with dextrose had a therapeutic effect corresponding to that of PRP, and there was no significant difference from 1 month to 3 months (SMD, 0.05; 95% CI [−0.34 to 0.45]; P = 0.96; I² = 0%) and 6 months to 1 year (SMD 0.19; 95% CI [−0.20 to 0.59]; P = 0.34; I² = 0%; Fig. 4C).

Prolotherapy with dextrose compared to a steroid
Two studies [12,21] (n = 135; prolotherapy group = 68, steroid group = 67) suggested that prolotherapy with dextrose had a therapeutic effect comparable to that of steroids from 1 month to 3 months (SMD, 0.22; 95% CI [−1.27 to 1.70]; P < 0.001; I² = 94%) and 6 months to 1 year (SMD 0.45; 95% CI [0.57 to 1.47]; P = 0.39; I² = 88%; Fig. 4D).

DISCUSSION

Previous studies have reported that prolotherapy is effective for treating musculoskeletal pain. However, their analyses included a small number of studies, which was not thought to be enough to compare prolotherapy with common regimens such as corticosteroids or PRP [2,22].

Our principal findings revealed that prolotherapy with dextrose has a clear and positive effect on chronic musculoskeletal pain ranging from 6 months to 1 year. In comparison with saline injection or exercise, treatment with pro-
Study	Disease	Intervention (number of patients)	Average age (yr)	Outcome measure (s)	Follow-up timing	Total number of prolotherapy injection & interval	Prolotherapy regimen	Prolotherapy volume per dose	Prolotherapy injection technique
Rabago et al., 2013	Knee OA	Dextrose (30), Saline (29), Exercise (31)	56.8 ± 7.9	WOMAC, KPS	Baseline, 5, 9, 12, 24, 52 weeks	3 (1, 5, 9 weeks, 3 basic doses but additional injections were allowed at 13, 17 weeks)	Intra-articular 25% dextrose 10 ml: 5 ml 50% dextrose + 5 ml 1% lidocaine	6 ml	6.0 ml was injected using an inferomedial approach
		Dextrose 56.8 ± 6.7, Exercise 56.4 ± 7.9					Extra-articular 15% dextrose 22.5 ml: 6.75 ml 50% dextrose + 4.5 ml 1% lidocaine + 11.25 ml saline	1 per 0.5 ml, up to 22.5 ml	Palpation at major tender tendon and ligament insertions through up to 15 skin punctures using a peppering technique, placing a possible total 22.5 ml of solution
Bertrand et al., 2016	Rotator cuff tendinopathy	Enthesis dextrose (27), Enthesis saline (27), Superficial saline (27)	53.8 ± 13.5	VAS, USPRS, Satisfaction measure (0-10 scale)	For VAS at baseline, 3, 9 months, For USPRS & Satisfaction measure at baseline, 9 months	3 (0, 1, 2 months)	25% dextrose/0.1% lidocaine/saline	1 to 3 ml at primary injection site 0.5 ml at adjacent to primary injection area at 1 cm intervals	The supraspinatus, infraspinatus, and teres minor insertions, insertions on the coracoid process, were injected with the shoulder in neutral rotation. The biceps long head, subscapularis insertion, and inferior glenohumeral ligament were injected with the shoulder in various degrees of external rotation and abduction/adduction. Origins of the teres minor, teres major, and the posterior inferior glenohumeral ligament were injected posteriorly

(Continued to the next page)
Study	Disease	Intervention (number of patients)	Average age (yr)	Outcome measure(s)	Follow-up timing	Total number of prolotherapy injection & interval	Prolotherapy regimen	Prolotherapy volume per dose	Prolotherapy injection technique
Seven et al., 2017 [13]	Rotator cuff tendinopathy	Dextrose (60) Exercise (60)	50.19 ± 12.13	VAS	Baseline, 3, 6, 12 weeks, and final follow up examination minimum of 1 year	3.6 ml 25% dextrose + 0.4 ml lidocaine	4 ml to the sub-acromial bursa	Shoulder in postero-lateral aspect of the acromion using 27 G needle	
		Exercise 46.31 ± 10.6		SPADI		Maximum 6 rounds of injections			Should in neutral rotation using 27 G needle
		Shoulder range of motion		WORC					
		Dextrose 50.9 ± 11.2							
Ersen et al., 2017 [14]	Chronic plantar fascitis	Dextrose (26) Stretching exercise (24)	45.1 ± 6.7	VAS	Baseline, 21, 42, 90, 360 days	3.6 ml 15% dextrose + 0.4 ml lidocaine	4 ml	Up to five different points, medial side of the heel and advanced under continuous ultrasound guidance into the proximal plantar fascia	
		Exercise 46.3 ± 7.5		FAOS					Should in external rotation and abduction/adduction using 27 G needle
				FFI					
Yelland et al., 2004 [19]	Chronic low back pain	Dextrose + Exercise (28)	51.5 ± 10.6	VAS	Baseline, 2.5, 4, 6, 12, 24 months Primary outcome at 12 month Secondary outcome at 24 month	20% glucose + 0.2% lidocaine	3 ml at each site and a maximum of 10 sites	Injection site was tenderness in ligaments and broad tendinous attachments of lumbar sacral spine and pelvic girdle	
		Dextrose + normal activity (26)		Disability scores (Roland-Morris)					
		Saline + exercise (27)		VAS, disability scores (Roland-Morris)					
		Saline + normal activity (29)		50.0 ± 9.8					
				50.9 ± 11.2					
Table 2. Continued

Study	Disease	Intervention (number of patients)	Average age (yr)	Outcome measure(s)	Follow-up timing	Total number of prolotherapy injection & interval	Prolotherapy regimen	Prolotherapy volume per dose	Prolotherapy injection technique
Kim and Lee, 2014 [17]	Chronic plantar fasciitis	Dextrose (11) PRP (10)	Dextrose 37.8	FFI	Baseline, 2, 10, 28 weeks	2 (interval 2 weeks)	20% dextrose 1.5 ml + 0.5% lidocaine 0.5 ml	2 ml	Under US guidance, abnormal hypoechoic areas in the thickened proximal plantar fascia were targeted and the needle was inserted through the medial heel along the long-axis view (in-plane technique) toward the target area. Then, 2 ml of dextrose solution was injected using a peppering technique, which involved a single skin portal followed by 5 penetration of the fascia.
Reeves and Hassanein, 2000 [20]	Knee OA	Total 111 knees in 68 patients. Dextrose Bacteriostatic water	N/A	VAS (at rest, with walking, with stair use)	Baseline, 6, 12 months	3 (every 2 months, and additional injections were allowed for dextrose group at 6, 8, 10 months)	10% dextrose + 0.75% lidocaine 9 ml	9 ml	Using 27 G needle via an inferomedial approach, tibiotalar injection.
Reeves and Hassanein, 2000 [19]	OA in thumb and finger	Dextrose (11) Bacteriostatic water (14)	Dextrose 64.5 ± 9.2	Control 63.9 ± 9.4	Baseline, 6 months	3 (every 2 months)	10% dextrose + 0.075% xylocaine in bacteriostatic water 0.5 ml at each site	0.5 ml at each site	Using 27 G needle, All symptomatic DIP, PIP, thumb CMC joints were injected at the joint line laterally and medially until firm resistance was felt.
Uğurlar et al., 2018 [12]	Chronic plantar fasciitis	ESWT (39) Dextrose (40) PRP(39) Steroid(40)	ESWT 39.2 Dextrose 37.5 PRP 38.4 Corticosteroid 40,1	VAS (at the first step in the morning)	Baseline, 1, 3, 6, 12, 24, 36 months	3 (every 1 week)	1 ml bupivacaine 5 N/A mg/ml + 5% dextrose 3 ml + 0.9% normal saline 6 ml bupivacaine 5 mg/ml	1 ml bupivacaine 5 N/A mg/ml + 5% dextrose 3 ml + 0.9% normal saline 6 ml bupivacaine 5 mg/ml	Under US guidance, injection was done into the site of maximal tenderness.
Table 2. Continued

Study	Disease	Interventions	Average age (yr)	Outcome measure(s)	Follow-up timing	Total number of prolotherapy injection & interval	Prolotherapy regimen	Prolotherapy volume per dose	Prolotherapy injection technique
Jahangiri et al., 2014 [21]	OA in the first carpometacarpal	Dextrose (30) Corticosteroid (30)	Dextrose 63.9 ± 9.4 Corticosteroid 63.3 ± 10.1	VAS (pain intensity), pain on joint movement, Hand function (self-administered questionnaire), HAQ-DI about eating, gripping, dressing, Strength (later al pinch grip)	Baseline, 1, 2, 6 months	3 (every 1 months)	20% dextrose 0.5 ml + 5% lidocaine 0.5 ml	1 ml	A 25 G needle was inserted toward the ulnar side of the extensor pollicis brevis and just proximal to the base of the first metacarpal in the snuffbox

Values are presented as mean ± SD. OA: osteoarthritis, PRP: platelet-rich plasma, N/A: not available, ESWT: extracorporeal shock wave therapy, WOMAC: Western Ontario McMaster Universities Osteoarthritis Index, KPS: knee pain scale, VAS: Visual Analog Scale, USPRS: ultrasound shoulder pathology rating scale, SPADI: shoulder pain and disability, WORC: Western Ontario Rotator Cuff, FAOS: Foot and Ankle Outcome Score, FFI: foot function index, PIP: proximal interphalangeal joints, DIP: distal interphalangeal joints, HAQ-DI: Health Assessment Questionnaire Disability Index, CMC: carpometacarpal.
their physiological size [33]. Further concentration of platelets occurs with subsequent centrifuge cycles [34]. As such, several steps are needed to prepare PRP, whereas the preparation of the prolotherapy is simple. And PRP involves an invasive procedure (i.e., blood drawing) and lacks an optimized standardized protocol. In this regard, prolotherapy can provide more convenience to both patients and treatment providers.

Of the ten papers included in the study, nine papers showed generally positive results of achieving pain relief and patient satisfaction regardless of the injection site. Yelland et al. [18] reported that prolotherapy was not more effective than injections of normal saline for low back pain. Nevertheless, participants exhibited marked and sustained improvements in their pain and disability, even with saline injections. They assumed that these therapeutic effects could be achieved by other factors such as patients were enrolled in a trial during severe pain and then spontaneously recovered naturally, or by the therapeutic effect by direct needling of entheses, or the placebo effect by clinical visits.

In the case of using physiotherapy as a control group [13,14], the positive result from the comparison with prolotherapy was within expectations because injection carries a strong placebo effect, which usually leads to a superior response to the noninvasive treatment.

The present study mainly analyzed the pain measurement outcomes, and functional improvement measurements were not considered. Among the RCTs, investigations of functional improvements were conducted in eight studies. Six studies reported that the prolotherapy group

Fig. 2. Risk of bias graph. Risk of bias summary: review authors’ judgements about each risk of bias item for each included study.

Fig. 3. Risk of bias summary. Risk of bias graph: review authors’ judgements about each risk of bias item presented as percentages across all included studies.

Prolotherapy showed a moderately superior therapeutic effect. In particular, prolotherapy was found to be more effective than exercise from one month after treatment. It was also found to have a similar effect to steroids or PRP one month
had a significant improvement in function compared to the control group [13,15,17,19–21]. One study showed functional improvement at 90 days after treatment, but after 360 days, both the prolotherapy and control groups showed similar results [14]. In one study, no significant improvement was noted in any of the groups at the end of the follow-up period [12]. However, unlike other studies which used a dextrose concentration of 10% or higher, this study only used a 5% concentration. When used clinically, dextrose concentrations higher than 10% are partly affected by inflammatory mechanisms, while concentrations less than 10% are considered noninflammatory [35,36]. Considering this, it is possible that a low concentration of dextrose could have affected the therapeutic effect. Although the degree of pain reduction and functional improvement is not completely consistent, there seems to be a correlation

A. Dextrose vs. Saline on VAS for Pain Composite 6 months–1 year (SMD)

Study or Subgroup	Experimental Mean	SD	Total	Control Mean	SD	Total	Weight	Std. Mean Difference IV, Random, 95% CI
Bertrand et al., 2016 [16]	4.4	0.6	27	5.1	0.7	19	19	-1.07 [1.70, -0.44]
Rabago et al., 2013 [15]	1.76	2.55	37	2.76	2.59	38	26.7%	-0.39 [-0.84, 0.07]
Reeves and Hassanein, 2000 [19]	5.12	3.94	25	5.7	4.4	25	21.4%	-0.14 [-0.69, 0.42]
Reeves and Hassanein, 2000 [20]	5.12	2.86	11	7.26	3.64	14	12.5%	-0.62 [-1.43, 0.18]
Yeall et al., 2004 [16]	7.05	1.832	26	7.34	1.96	24	21.3%	-0.16 [-0.71, 0.40]
Total (95% CI)	**126**		**120 100.0%**	**120**		**100.0%**	**-0.44 [-0.76, -0.11]**	

Heterogeneity: Tau^2 = 0.05, Chi^2 = 6.21, df = 4 (P = 0.18), I^2 = 36%
Test for overall effect: Z = 2.64 (P = 0.008)

B. Dextrose vs. Exercise on VAS for Pain Composite 6 months–1 year (SMD)

Study or Subgroup	Experimental Mean	SD	Total	Control Mean	SD	Total	Weight	Std. Mean Difference IV, Random, 95% CI
Rabago et al., 2013 [15]	1.76	2.55	37	2.59	2.59	38	57.9%	-0.55 [-0.91, -0.09]
Yeall et al., 2004 [16]	7.05	1.832	26	7.15	1.975	27	42.1%	-0.25 [-0.79, 0.29]
Total (95% CI)	**63**		**65 100.0%**	**65**		**100.0%**	**-0.42 [-0.77, -0.07]**	

Heterogeneity: Tau^2 = 0.00, Chi^2 = 0.67, df = 1 (P = 0.41), I^2 = 0%
Test for overall effect: Z = 2.35 (P = 0.02)

C. Dextrose vs. Platelet-rich plasma on VAS for Pain Composite 6 months–1 year (SMD)

Study or Subgroup	Experimental Mean	SD	Total	Control Mean	SD	Total	Weight	Std. Mean Difference IV, Random, 95% CI
Kim and Lee, 2014 [17]	4.11	2.14	11	3.37	2.34	9	19.9%	0.32 [0.57, 1.21]
Uğurlar et al., 2018 [12]	6.5	6.4	40	5.6	4.4	39	90.1%	0.16 [0.26, 0.60]
Total (95% CI)	**51**		**48 100.0%**	**48**		**100.0%**	**0.19 [-0.20, 0.59]**	

Heterogeneity: Tau^2 = 0.00, Chi^2 = 0.09, df = 1 (P = 0.76), I^2 = 0%
Test for overall effect: Z = 0.96 (P = 0.34)

D. Dextrose vs. Steroid on VAS for Pain Composite 6 months–1 year (SMD)

Study or Subgroup	Experimental Mean	SD	Total	Control Mean	SD	Total	Weight	Std. Mean Difference IV, Random, 95% CI
Jahangiri et al., 2014 [21]	3.8	1.6	28	2.1	1.8	27	48.5%	0.99 [0.42, 1.55]
Uğurlar et al., 2018 [12]	6.5	6.4	40	6.8	4.4	40	51.5%	-0.05 [-0.49, 0.30]
Total (95% CI)	**68**		**67 100.0%**	**67**		**100.0%**	**0.45 [-0.57, 1.47]**	

Heterogeneity: Tau^2 = 0.47, Chi^2 = 8.17, df = 1 (P = 0.004), I^2 = 88%
Test for overall effect: Z = 0.67 (P = 0.39)

Fig. 4. Forest Plot; (A) saline (B) exercise (C) PRP (D) steroid. Forest plot diagram showing comparisons of VAS for Pain Composite between dextrose prolotherapy and the reference treatments 6 months–1 year. (A) Dextrose vs. Saline on VAS for pain composite 6 months–1 year. (B) Dextrose vs. Exercise on VAS for pain composite 6 months–1 year. (C) Dextrose vs. PRP on VAS for pain composite 6 months–1 year. (D) Dextrose vs. Steroid on VAS for pain composite 6 months–1 year. PRP: platelet-rich plasma, VAS: Visual Analog Scale, Std. Mean difference: standardized mean difference, IV: weighted mean difference, CI: confidence interval, SD: standard deviation.
between the two in the studies that were included in this meta-analysis.

Although there were several positive aspects of our study, there are some limitations. First, despite recent studies being added, the number of trials eligible for inclusion in the meta-analysis was limited. Since the results regarding prolotherapy corresponding to the effects of corticosteroids and PRP were derived by analyzing only two studies, additional studies are needed. Second, there is heterogeneity in the pooled analyses; this is likely attributable to multiple factors, including differences in patient characteristics, control treatment, study design, injection protocol methods, dextrose concentrations, follow-up duration, and outcome assessment methods. A limited number of studies and heterogeneity have inhibited more detailed meta-analyses of subgroups. Third, due to a lack of a uniform longer-term follow-up duration across the studies, pooling of results could only be done with data collected between 6 months and one year of follow-up. Considering that prolotherapy is hypothesized to work by healing and regeneration over several months, reported results of effects may underestimate long-term benefits. Therefore, further studies (including cohort studies) are needed to evaluate the long-term effects. Fourth, since prolotherapy has been shown to have comparable effects to steroid injection and PRP, further studies should be conducted regarding cost effectiveness. Jahangiri et al. [21] compared prolotherapy and corticosteroids and mentioned that there was no significant difference in cost. In previous study, prolotherapy was more effective [14], and has a better cost advantage compared to PRP [37].

In the future, subgroup analysis should be performed to identify patients who respond most favorably to prolotherapy. There are several ways in which treatment strategies can vary; for example, dextrose concentrations/volumes may differ, the interval and total duration of treatment may differ, and the site of injection (intra- or extra-articular areas) may differ. Since there are no clear criteria or standard treatment, this should be discussed in the future. Reducing pain, improving functionality, and increasing patient satisfaction provide a solid foundation for further research in attempt of treatment standardization.

In conclusion, dextrose-based prolotherapy has been shown to have a positive and significantly beneficial effect for patients with chronic musculoskeletal pain, ranging from 6 months to 1 year. There is evidence that dextrose-based prolotherapy has a better therapeutic effect than exercise, and that it has a similar effect compared to PRP and steroid injection. Adequately powered, longer-term trials with uniform endpoints are needed to better elucidate the efficacy of prolotherapy.

ACKNOWLEDGEMENTS

Special thanks to Jiyeon Ju, and Joonho Cho in contribution to writing this article.

This work was supported by grant from Inje University, 2019.

CONFLICTS OF INTEREST

No potential conflict of interest relevant to this article was reported.

AUTHOR CONTRIBUTIONS

Conceptualization: Geonhyeong Bae, Yunhee Lim. Data curation: Geonhyeong Bae, Sangseok Lee, Woo Yong Lee, Yunhee Lim. Formal analysis: Geonhyeong Bae, Yunhee Lim. Funding acquisition: Yunhee Lim. Writing - original draft: Geonhyeong Bae, Yunhee Lim. Writing - review & editing: Suyeon Kim, Sangseok Lee, Woo Yong Lee, Yunhee Lim. Supervision: Yunhee Lim.

ORCID

Geonhyeong Bae, https://orcid.org/0000-0002-8527-0004
Suyeon Kim, https://orcid.org/0000-0002-6167-4952
Sangseok Lee, https://orcid.org/0000-0001-7023-3668
Woo Yong Lee, https://orcid.org/0000-0002-1632-1314
Yunhee Lim, https://orcid.org/0000-0003-2399-4768

REFERENCES

1. Institute of Medicine of the National Academies. Relieving pain in America: a blueprint for transforming prevention, care, education, and research. Washington, D.C., National Academies Press. 2011. p. 382.
2. Hung CY, Hsiao MY, Chang KV, Han DS, Wang TG. Comparative effectiveness of dextrose prolotherapy versus control injections and exercise in the management of osteoarthritis pain: a systematic review and meta-analysis. J Pain Res 2016; 9: 847-57.
3. Ayhan E, Kesmezacar H, Akgun I. Intraarticular injections (cor-
ticosteroid, hyaluronic acid, platelet rich plasma) for the knee osteoarthritis. World J Orthop 2014; 5: 351-61.
4. Bellamy N, Campbell J, Robinson V, Gee T, Bourne R, Wells G. Intraarticular corticosteroid for treatment of osteoarthritis of the knee. Cochrane Database Syst Rev 2006; (2): CD005328.
5. Auferio D, Vincent H, Sampson S, Bodor M. Regenerative injection treatment in the spine: review and case series with platelet rich plasma. J Stem Cells Res Rep 2015; 2: 1019.
6. Linetsky FS, Manchikanti L. Regenerative injection therapy for axial pain. Tech Reg Anesth Pain Manag 2005; 9: 40-9.
7. Adams E. Bibliography: prolotherapy for musculoskeletal pain. Boston, Veterans. 2008.
8. Goswami A. Prolotherapy. J Pain Palliat Care Pharmacother 2012; 26: 376-8.
9. Nair LS. Prolotherapy for tissue repair. Transl Res 2011; 158: 129-31.
10. Rabago D, Best TM, Beamsley M, Patterson J. A systematic review of prolotherapy for chronic musculoskeletal pain. Clin J Sport Med 2005; 15: 376-80.
11. Higgins JP, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, et al.; Cochrane Bias Methods Group; Cochrane Statistical Methods Group. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011; 343: d5928.
12. Uğurlar M, Sönmез MM, Uğurlar OY, Adıyeye L, Yildirim H, Eren OT. Effectiveness of four different treatment modalities in the treatment of chronic plantar fasciitis during a 36-month follow-up period: a randomized controlled trial. J Foot Ankle Surg 2018; 57: 913-8.
13. Seven MM, Ersen O, Akpancar S, Ozkan H, Turkkan S, Yildiz Y, et al. Effectiveness of prolotherapy in the treatment of chronic rotator cuff lesions. Orthop Traumatol Surg Res 2017; 103: 427-33.
14. Ersen Ö, Koca K, Akpancar S, Seven MM, Akyildiz E, Yildiz Y, et al. A randomized-controlled trial of prolotherapy injections in the treatment of plantar fasciitis. Turk J Phys Med Rehabil 2017; 64: 59-65.
15. Rabago D, Patterson JJ, Munday M, Kijowski R, Grettie J, Segal NA, et al. Dextrose prolotherapy for knee osteoarthritis: a randomized controlled trial. Ann Fam Med 2013; 11: 229-37.
16. Bertrand H, Reeves KD, Bennett CJ, Bicknell S, Cheng AL. Dextrose prolotherapy versus control injections in painful rotator cuff tendinopathy. Arch Phys Med Rehabil 2016; 97: 17-25.
17. Kim E, Lee JH. Autologous platelet-rich plasma versus dextrose prolotherapy for the treatment of chronic recalcitrant plantar fasciitis. PM R 2014; 6: 152-8.
18. Yelland MJ, Glasziou PP, Bogduk N, Schluter PJ, McKernon M. Prolotherapy injections, saline injections, and exercises for chronic low-back pain: a randomized trial. Spine (Phila Pa 1976) 2004; 29: 9-16.
19. Reeves KD, Hassanein K. Randomized, prospective, placebo-controlled double-blind study of dextrose prolotherapy for osteoarthritic thumb and finger (DIP,PIP, and trapeziometacarpal) joints: evidence of clinical efficacy. J Altern Complement Med 2000; 6: 311-20.
20. Reeves KD, Hassanein K. Randomized prospective double-blind placebo-controlled study of dextrose prolotherapy for knee osteoarthritis with or without ACL laxity. Altern Ther Health Med 2000; 6: 68-74, 77-80.
21. Jahangiri A, Moghaddam FR, Najaﬁ S. Hypertonic dextrose versus corticosteroid local injection for the treatment of osteoarthritis in the first carpometacarpal joint: a double-blind randomized clinical trial. J Orthop Sci 2014; 19: 737-43.
22. Sit RW, Chung VC, Reeves KD, Rabago D, Chan KK, Chan DC, et al. Hypertonic dextrose injections (prolotherapy) in the treatment of symptomatic knee osteoarthritis: a systematic review and meta-analysis. Sci Rep 2016; 6: 25247.
23. Paavola M, Kannus P, Järvinen TA, Järvinen TL, Józsa L, Järvinen M. Treatment of tendon disorders. Is there a role for corticosteroid injection? Foot Ankle Clin 2002; 7: 501-13.
24. Dean BJ, Lostis E, Oakley T, Rombach I, Morrey ME, Carr AJ. The risks and benefits of glucocorticoid treatment for tendinopathy: a systematic review of the effects of local glucocorticoid on tendon. Semin Arthritis Rheum 2014; 43: 570-6.
25. Templar H, Gehwolf R, Lehner C, Wagner A, Mtsariashvili M, Bauer HC, et al. Effects of crystalline glucocorticoid triamcinolone acetonide on cultured human supraspinatus tendon cells. Acta Orthop 2009; 80: 357-62.
26. Stannard JP, Bucknell AL. Rupture of the triceps tendon associated with steroid injections. Am J Sports Med 1993; 21: 482-5.
27. Scarpone M, Rabago DP, Zgierska A, Arborgast G, Snell E. The efficacy of prolotherapy for lateral epicondylitis: a pilot study. Clin J Sport Med 2008; 18: 248-54.
28. Okuda Y, Adrogué HJ, Nakajima T, Mizutani M, Asano M, Tachi Y, et al. Increased production of PDGF by angiotensin and high glucose in human vascular endothelium. Life Sci 1996; 59: 1455-61.
29. Oh JH, Ha H, Yu MR, Lee HB. Sequential effects of high glucose concentration induces the overexpression of transforming growth factor-beta-1 and fibronectin synthesis. Kidney Int 1998; 54: 1872-8.
30. Di Paolo S, Gesualdo L, Ranieri E, Grandalìano G, Schena FP. High glucose concentration induces the overexpression of transforming growth factor-beta through the activation of a platelet-derived growth factor loop in human mesangial cells. Am J Pathol 1996; 149: 2095-106.
Dextrose prolotherapy and chronic pain

31. Kampa RJ, Connell DA. Treatment of tendinopathy: is there a role for autologous whole blood and platelet rich plasma injection? Int J Clin Pract 2010; 64: 1813-23.

32. Sampson S, Gerhardt M, Mandelbaum B. Platelet rich plasma injection grafts for musculoskeletal injuries: a review. Curr Rev Musculoskelet Med 2008; 1: 165-74.

33. Foster TE, Puskas BL, Mandelbaum BR, Gerhardt MB, Rodeo SA. Platelet-rich plasma: from basic science to clinical applications. Am J Sports Med 2009; 37: 2259-72.

34. de Mos M, van der Windt AE, Jahr H, van Schie HT, Weinans H, Verhaar JA, et al. Can platelet-rich plasma enhance tendon repair? A cell culture study. Am J Sports Med 2008; 36: 1171-8.

35. Jensen KT, Rabago DP, Best TM, Patterson JJ, Vanderby R Jr. Early inflammatory response of knee ligaments to prolotherapy in a rat model. J Orthop Res 2008; 26: 816-23.

36. Jensen KT, Rabago DP, Best TM, Patterson JJ, Vanderby R Jr. Response of knee ligaments to prolotherapy in a rat injury model. Am J Sports Med 2008; 36: 1347-57.

37. Mei-Dan O, Mann G, Maffulli N. Platelet-rich plasma: any substance into it? Br J Sports Med 2010; 44: 618-9.