Mechanisms of B-cell oncogenesis induced by Epstein-Barr virus

Abhik Saha¹,* and Erle S. Robertson²,*

¹Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata-700073, West Bengal, INDIA; Tel: +91-9874924838

²Department of Otorhinolaryngology-Head and Neck Surgery, and the Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA-19104, USA, Tel.: +1-215-746-0114

* To whom correspondence should be addressed.

Email: abhik.dbs@presiuniv.ac.in; erle@upenn.edu
Abstract

Epstein-Barr virus (EBV) is a ubiquitous gammaherpesvirus, which asymptotically infects majority of the world population. In immune-compromised conditions, EBV can trigger human cancers of epithelial and lymphoid origin. The oncogenic potential of EBV is demonstrated by in-vitro infection and transformation of quiescent B-cells into lymphoblastoid cell lines (LCLs). These cell lines, along with primary infection using genetically engineered viral particles coupled with recent technological advancements have elucidated the underlying mechanisms of EBV-induced B-cell lymphomagenesis.
Introduction

Epstein-Barr virus (EBV), also known as human herpes virus 4 (HHV4), is highly immunogenic with >95% of the world population found to be seropositive (82). Primary infection occurs in oropharyngeal epithelial cells; however, EBV predominantly infects B-lymphocytes. Within the immune-competent host, virus persists in naïve memory B-cells in a non-pathogenic state for the lifetime of the host. Intermittently, these virus infected memory B-cells differentiate into plasma cells ensuing in lytic-cycle activation promoting infection of other resting B-lymphocytes (29). In the immunocompromised host like post-operative organ-transplant and HIV-infected patients, EBV-infection demonstrated a strong association with several B-cell lymphomas (9). In addition, the list includes, endemic/sporadic Burkitt’s lymphoma (eBL/sBL), diffuse large B-cell lymphoma (DLBCL), classical Hodgkin lymphoma (cHL), primary central nervous system lymphoma (PCNSL), primary effusion lymphoma (PEL) and plasmablastic lymphoma (92, 97). These lymphomas exhibit a distinct expression pattern of latent genes. For example, EBV associated post-transplant lymphoproliferative disorder (PTLD), PCNSL and a fraction of DLBCL typically express a full repertoire of latent genes encoding six nuclear (EBNA1, -2, -3A, -3B, -3C, and -LP) and three membrane (LMP1, -2A, and -2B) proteins along with several untranslated RNAs, recognized as latency-III program (44). HL and BL are characterized by a more restricted pattern of latent gene expression. While HL is associated with EBNA1, LMP1 and LMP2 expressions (latency-II), BL predominantly expresses EBNA1 (latency-I) (23, 40). Both the coding and non-coding viral transcripts with varying potency, simultaneously affect multiple signaling cascades accompanied with genetic/epigenetic alterations leading to various EBV-driven B-cell lymphomas. The latency patterns of EBV gene expression in different B-cell lymphomas are summarized in Table-1.

Studies indicate that EBV also affects the lymphoma microenvironment, in which the latent oncoproteins manipulate cell machineries favoring the lymphoma cells for an immune escape and proliferation (86, 106). The interaction between EBV-infected lymphoid cells and the tumor microenvironment offers promising therapeutic targets.
The transforming ability of EBV was discovered soon after its discovery from BL patient’s samples (107). The process of transformation of primary B-cells \textit{in-vitro} has been used to establish EBV transformed lymphoblastoid cell lines (LCLs) over many decades for genetic studies. These LCLs contain donor specific genetic alterations. The viral gene expression pattern in LCLs is similar to that of B-lymphoblasts isolated from patients having PTLDs, PCNSLs and a fraction of DLBCLs (44, 82). Therefore, LCLs are being used as a surrogate \textit{in-vitro} model for studying the EBV-induced B-cell transformation process and subsequent lymphoma development. Since culturing cells in laboratory conditions for long time may introduce further genomic instability, LCLs at early passage would be a better choice for functional validation and follow-up investigation into clinical samples.

Recombinant EBV Bacmids

Using a Bacterial Artificial Chromosome (BAC) system, the whole viral genome can be easily propagated in Escherichia coli (27, 42). Additionally, any desired mutations can be introduced into a specific viral gene locus. A number of labs across the globe utilized this strategy delineating the precise function of a particular viral gene in B-cell transformation, or maintenance of outgrowth of transformed B-cell blasts. While, in most cases, the B95.8 EBV-strain was utilized for the generation of BAC clones, there are examples where researchers used EBV-DNA from a BL-line AKATA (42). The EBV-BAC clones, typically maintained in an epithelial cell background (HEK293/T) under antibiotic selection, are induced by either over-expressing an immediate early viral-protein, BZLF1 (78) or treating cells with chemical inducers - a protein kinase C inhibitor, tetradecanoyl phorbol acetate (TPA), plus a HDAC inhibitor, sodium butyrate (25, 100). Occasionally, an immunosuppressive drug (FK506) is also used to facilitate the infection (33).

In our system, a GFP-cassette was introduced to examine viral-infection and to sort infected cells from uninfected populations (27). In other systems several B-cell antigens are used to validate viral infection and the subsequent B-cell immortalization. These markers include surface antigen B-cell activation markers CD23, CD40, CD44 or the intracellular B-cell proliferation marker Ki-67 (27).
CD40 plays an important role during B-cell activation by providing survival signals through its interaction with the CD40 ligand (CD154) expressed on the surface of activated T-cells (36).

Interestingly, LMP1 functionally mimics CD40 receptor-mediated signaling pathways and profoundly contributes to the formation of B-cell blasts (61). The early events of EBV-infection in primary B-lymphocytes provide a model for B-cell activation and downstream signaling processes as well as the specific contributions of individual viral genes during B-cell transformation.

B-cell transformation

EBV-mediated B-cell transformation is associated with global alteration of both viral and cell gene expressions (30, 81). During initial infection of primary B-cells, almost all the genes including lytic and latent are expressed. While the DNA within the viral particle is unmethylated, in latently infected B-cells progressive methylation of the viral-DNA regulates promoter usage and transcriptional repression (3). In cell, the viral-DNA is associated with nucleosomes, collectively contributing to the restricted viral gene expression (2), while, during initial phase of infection the entire viral-DNA is accessible to the cellular transcription machinery and thus, many viral genes are simultaneously expressed (104). Importantly, during latent infection EBV undergoes intermittent lytic replication ensuring newer infection of the surrounding B-cells. Additionally, lytic antigens are also closely associated with B-cell transformation (45) and accordingly removal of important lytic genes significantly affect B-cell transformation (2, 32, 46, 102).

Besides differential viral gene expression pattern, cellular gene expressions along with global epigenetic landscape are also largely affected (30, 81). For example, a drastic reduction of heterochromatin marks associated with transcriptional activation was observed during the initial phase of infection in quiescent B-lymphocytes (30). In contrast, EBV-infection leads to a global increase in promoter methylation of tumor suppressor genes (TSGs), leading to aberrant proliferation and transformation of the infected B-cells (81).
EBV transforming antigens

Using various genetically engineered EBV and in-vitro infection models, five viral latent antigens - EBNA2, EBNALP, EBNA3A, EBNA3C and LMP1 are shown to be essential for efficient B-cell transformation (44, 82, 107). Other latent antigens and several non-coding RNAs also influence B-cell transformation and subsequent maintenance of B-cells outgrowth. Below we will discuss how modern genetic engineering strategies and in-vitro infection, or transformed LCL-model progressively revealed the importance of viral transcripts in B-cell transformation, and subsequent development of B-cell lymphoma. Table-2 and Fig-1 elucidate the major mechanisms associated with EBV-latent transcripts.

EBNA1 – Since EBNA1 is essential for DNA replication and maintenance of the viral latent genome, its expression expectedly has been demonstrated in all forms of latency programs (107). EBNA1 binding to viral episomal origin of replication (OriP) recruits numerous cellular proteins including DNA replication machinery ensuring appropriate duplication of viral genome during each cell-cycle. While, in latency-III, EBNA1 expression is maintained by the Cp-promoter, in latency-I, its expression is regulated by the Qp-promoter (93). EBNA1 can coordinate the switch between different latency programs through promoter selection coupled with extensive epigenetic regulation (22). A genome wide ChIP-seq analysis demonstrated that a chromosome insulator protein CTCF is involved in regulating EBNA1 mediated promoter switch and silencing of the Qp promoter in latency-III associated B-cells (93).

Moreover, EBNA1 can induce transcription of various cellular genes (8, 26), and contribute to the altered regulation of telomeres on cell chromosomes (41). The Glycine–Alanine repeat region of EBNA1 responsible for resistance to proteasome mediated degradation plays an important role in regulation of MHC class-II presentation to cytotoxic T-lymphocytes (CTLs) (55, 70). This repetitive region also causes an indirect activation of c-Myc expression by PI3-kinase (PI3K)-signaling pathway (24). EBNA1 binding with ubiquitin-specific protease USP7 influences p53 and Mdm2 expression. This results in regulation of anti-apoptotic activity, possibly through promoting Survivin expression...
Despite these critical activities, using recombinant virus, EBNA1 was shown to be not essential for in-vitro B-cell transformation. However, EBNA1 expression enhanced the capability of the virus to drive B-cell transformation and the severity of associated lymphomas (34).

EBNA2 and EBNALP – EBNA2 along with EBNALP are the first latent genes expressed after B-cell infection (44). EBNA2 represents the major viral transcription factor responsible for activating the expression of the entire repertoire of latent transcripts together with several host genes through employing cell transcription factors - RBP-Jκ and EBF1 (57). EBNALP simultaneously assists EBNA2 mediated transcriptional activity through blocking the NCoR and RBP-Jκ occupancy at the genome (76, 112). However, genome wide ChIP-sequencing analyses in LCLs demonstrated that only one third of the EBNALP-sites are co-localized with EBNA2-sites, indicating the complicated nature of B-cell transformation induced by EBV-infection (76, 112). EBNA2, most prominently contributes to the B-cell proliferation through transcriptional activation of approximately 300 cell genes such as MYC and RUNX3 transcription (105, 110). Importantly, this transcriptional activation is regulated through super-enhancers, characterized by dense clusters of several transcription factors coupled with enhanced signals for H3K27ac histone activation mark (113). In contrast, EBNALP sites were occupied by RNA polymerase II, histone acetylase (HAT) p300, transcription factors such as SP1, PAX5, BATF, IRF4, PU.1, CTCF, RBPJ, NF-κB along with several histone activation marks including H3K4me3, H3K27ac, H2Az and H3K9ac [(64), and reviewed in (44)].

EBNA3 family proteins – The EBNA3 family of proteins consisting of EBNA3A, -3B and -3C, are transcription factors that precisely regulate host gene transcription and B-cell proliferation particularly in immunosuppressive setting [reviewed in (1, 6)]. It is believed that EBNA3 gene family begun from cyclic duplications of an ancestral gene. Initial studies revealed that EBNA3A and EBNA3C, but not EBNA3B cooperate with oncogenic Ha-Ras for transformation and immortalization of rat embryonic fibroblasts (31, 71). Later, genetic studies revealed that EBNA3A and EBNA3C are necessary for B-cell transformation, whereas EBNA3B is dispensable (10, 96). An added complication to this idea came from a more recent finding that EBNA3B functions rather as a tumor suppressor in...
a humanized-mouse model NOD/SCID/γc-/- through assisting T-cell surveillance (101). In fact, tumors induced by EBNA3B knockout virus demonstrated a lack of T-cell infiltrate and related activation of the chemokine CXCL10 (101). In contrast, EBNA3A and EBNA3C cooperatively act as predominant viral oncoproteins through regulating cellular gene transcription. Although functionally diverse, EBNA3-proteins share significant sequence similarity (~30% at the N-terminal domain) and selection of cellular binding partners (6). Despite the sequence similarity, EBNA3C depletion can only be rescued by EBNA3C itself to maintain LCLs outgrowth (63). This phenomenon is also true for EBNA3A (63).

Initial experiments described that EBNA3 proteins negatively regulate EBNA2 mediated gene transcription through interaction with RBP-Jκ (99). Later, EBNA3A and EBNA3C were shown to interact with a long list of cellular proteins, and transcription factors involved in regulating multiple cell-signaling pathways. Additionally, although the functional relevance is still not clear in terms of B-cell lymphomagenesis, EBNA3C can form a complex with both EBNA3A and EBNA3B (72). The interacting partners for EBNA3C include transcription factors, chromatin modulators - both histone deacetylase and histone acetylase enzymes, cell-cycle proteins involving G1-S and G2-M transitions, metastasis suppressor, post-translational modifiers, E3-ubiquitin ligase, ubiquitin specific proteases, unfolded protein response (UPR) regulator, cell tumor suppressors and oncoproteins [(74, 75), also reviewed in (1, 6, 83)]. Similar to EBNA3C, EBNA3A also interacts with numerous cellular proteins, such as transcription insulators, cell-cycle regulators, members of the ubiquitin protease complex, chaperones and a number of proteins with unknown functions connecting to EBV-induced B-cell lymphomagenesis [reviewed in (1, 6)]. These viral proteins do not have specific binding sequence similarities but regions associated with them are found to be occasionally functionally overlapping, indicating that both EBNA3A and EBNA3C employ complex oncogenic mechanisms have collaborative activities. Importantly, we and others using various genetically engineered BACmids expressing EBNA3C mutants, as well as trans-complementation assays validated the in-vitro biochemical studies and demonstrated the importance of these binding regions during initial infection or maintenance of LCLs outgrowth (31, 45). For example, earlier EBNA3C was shown to
form a complex with Chk2 and thereby manipulates the G2/M phase of the cell-cycle (12). Later, using a conditional knockout virus, EBNA3C was shown to block ATM/Chk2-dependent DNA damage response during the initial phase of viral infection in B-lymphocytes (67). Utilizing a similar strategy, both EBNA3A and EBNA3C were shown to concomitantly repress pro-apoptotic BIM (BCL2L11) and senescence inducing p16\(^{INK4A}\) and p14\(^{ARF}\) (CDKN2A) by recruiting extensive epigenetic modifications (38, 63, 72, 105).

EBNA3A and EBNA3C block B-cell differentiation to a plasma cell phenotype through transcriptional activation of the cyclin-dependent kinase inhibitor p18\(^{INK4c}\) and the master transcriptional regulator of plasma cell differentiation BLIMP-1 (91). This helps to establish a long-term latency and subsequent lymphoma development. Although EBNA3A and EBNA3C share similar oncogenic properties, genome wide ChIP-sequencing analyses in LCLs revealed limited co-localization with a number of cellular transcription factors (38, 87). Most significantly these two viral proteins regulate transcription of many important cellular genes through recruitment of IRF4/BATF complex (38, 87). In response to metabolic stress, EBNA3C but not EBNA3A, activates autophagosome formation through transcriptional induction of several autophagy regulators including ATG3, ATG5 and ATG7 (5). Moreover, similar to EBNA2 and EBNALP, EBNA3C among EBNA3-proteins acts as a potent regulator of viral gene transcription (28, 68, 111). EBNA3C mediated co-activation of EBNA2 requires PU.1 site, but not RBPJ\(\kappa\) binding sites, in the LMP1 promoter (111).

Overall, the EBNA3-proteins directly influence B-cell transformation and B-cell lymphoma development through targeting key cell signaling cascades including cell-cycle, apoptosis, and autophagy. This involves direct protein-protein interaction, recruitment of chromatin remodeling factors (HATs, HDACs, histone modification enzymes), translational control (miRNAs) and the protein degradation machinery (chaperones, protease and ubiquitin ligases) (1, 6). Over the last decade, employment of various technological developments including genetically modified EBV either knockout for each EBNA3 proteins or conditionally expressed, global transcriptomic and ChIP-seq
analyses successfully demonstrated the importance of these proteins and offer potential therapeutic
expansion against multiple B-cell lymphomas where EBNA3 proteins were expressed.

Latent membrane proteins – The transcripts of latent membrane proteins – LMP1, LMP2A
and LMP2B are generated from a common viral locus with convergent and overlapping primary
transcripts (50). LMP1 represents one of the major EBV-encoded oncoproteins mimicking CD40
receptor signaling pathway (108). It is essential for EBV-induced B-cell transformation through
activation of multiple cellular pathways such as the NF-κB, JNK and p38 cascades (17, 18, 51, 95).
Using LCLs generated with either wild-type or CTCF binding domain knockout virus, it was
demonstrated that CTCF plays an important role in regulating transcription of LMPs from OriP region
and maintenance of episome copy number during EBV latency (11). Unlike the nuclear antigens,
LMPs particularly regulate the host immune response and thereby contributes to activation and
proliferation of the infected B-cells leading to B-cell lymphomas in absence of immune surveillance
(108). Using LMP1 knockout virus infection in humanized mice model, it has been clearly shown that
activated T-cells can substitute the requirement of LMP1 expression in EBV-induced B-cell
lymphomas by providing a source of CD40-signaling. However, compared to the LMP1 knockout
virus, the wild-type virus can drive the formation of B-cell lymphomas more efficiently in this model
(61, 108). LMP1 expression level varies in different EBV-associated B-cell lymphomas. For example,
many EBV-induced AIDS related lymphomas is associated with low LMP1 expression (53, 61),
portrayed as a strategy for immune escape from activated CTLs as LCLs with the highest level of
LMP1 expression was demonstrated to enhance MHC class-I expression and subsequent killing by
CTLs (108). Besides CD40 signaling, LMP1 also regulates cellular apoptosis through activation of the
NF-κB pathway by elevating anti-apoptotic Bcl2 expression (95, 109). Importantly, unlike the tumor
necrosis factor receptor (TNFR), LMP1-mediated NF-κB activation is largely mediated via IRAK1 and
TRAF6; IRAK1 is essential for both p38 activation and p65/RelA phosphorylation (59, 65, 66). LMP1
also modulates autophagy and UPR network affecting its own expression (35, 52, 53). Interestingly,
LMP1-induced pro-apoptotic polycomb complex protein Bmi-1, is further recruited by EBNA3C for
transcriptional repression of other genes (15, 40). Moreover, LMP1 expression is also controlled by EBNA3C in an EBNA2/RBP-Jκ dependent manner (111).

LMP2B is a truncated isoform of LMP2A. While, both LMP2A and LMP2B contain 12 transmembrane domains, LMP2B lacks the N-terminal cytoplasmic signaling domain (56). Although in B-lymphocytes, LMP2A is tyrosine phosphorylated by the Src family kinase (such as Lyn, Syk), in epithelial cells it is mediated by the C-terminal Src kinase, which is triggered by epithelial cell adhesion to extracellular matrix proteins (88). Through this domain, LMP2A acts as a functional homolog of B-cell receptor (BCR) and thereby promoting B-cell survival (103). The importance of this cytoplasmic domain was demonstrated by using an activation motif LMP2A mutant or the Syk inhibitor or Syk-specific small interfering RNA (23). LMP2A is absolutely necessary for growth transformation of germinal center derived B-cells, which are BCR negative (62). Unlike LMP1, LMP2A does not cause any adverse effect on B-cell maturation through activation of immune surveillance (98). LMP2B negatively regulates LMP2A functions (80) and switches latent to lytic activation through depletion of LMP2A-mediated BCR cross-linking and restoration of Ca\(^{2+}\) mobilization (79).

Interestingly, although none of these LMPs are essential to induce B-cell lymphomas in a humanized mouse model, absence of LMPs caused a significant decline in the propensity of lymphoma development, indicating a plausible role in the initial phase of tumor growth (60). Interestingly, LMP2A can rescue LMP1 induced damage in the germinal center, promote cell-cycle progression through accelerating c-Myc activity and p27\(^{kip1}\) degradation (20, 62, 98).

Noncoding viral transcripts – In addition to nuclear and membrane associated proteins, EBV also expresses a variety of noncoding RNAs (ncRNAs) upon infecting B-cells, namely the EBV encoded nonpolyadenylated RNAs (EBER1 and EBER2) and numerous miRNAs [reviewed in (90)]. Although most of these ncRNAs are not essential for B-cell transformation, they help with immune evasion and are abundantly expressed in the different types of latency programs, providing tools for viral detection in numerous EBV-associated malignancies. Overall, a somewhat contradictory role for EBERs in EBV-mediated B-cell transformation has been established (47). For example, expression of
EBERs increase colony formation, induce growth of B-cells and block PKR-dependent eIF2α phosphorylation, resulting in blockage of eIF2α-mediated inhibition of protein synthesis and resistance to IFNα-induced apoptosis (84). EBERs also interact with several important cellular partners. For example, EBER1 interaction with ribosomal protein L22 regulates protein translation, EBER-mediated gene expression and PKR-dependent apoptosis (16, 21). Interaction of EBERs with RIG-I, AU-rich element binding factor 1 and pattern-recognition receptors activates the host innate immune responses (84, 94). In addition, EBER2 specifically recruits PAX5 to regulate LMP2A expression which was also confirmed using an EBER2 mutant virus that showed lower LMP2A expression (54). Additional studies suggested that EBER1 and several viral miRNAs are exported from the infected cell in exosomes with functions related to activities in the surrounding cells (73).

Although EBV miRNAs are abundantly expressed in infected B-lymphocytes, sometimes as high as cell miRNAs, their precise role in B-cell transformation is not clear. Three BHRF1 and about forty BART region miRNAs are expressed from different regions of the viral episome [reviewed in (90)]. While BART miRNAs are expressed in nearly all EBV associated B-cell lymphomas, BHRF1-encoded miRNA expressions are relatively restricted to different latency programs (37, 77). Expectedly, these viral miRNAs regulate expression of a number of cellular genes. Although expendable, B-cells infected with recombinant virus lacking viral miRNAs of the BHRF1 cluster resulted in a drastic reduction in their efficiency to support B-cell survival, proliferation and transformation (19). Moreover, during early phase of infection viral miRNA expression levels are significantly higher compared to transformed LCLs (39). In addition to their central role in immune evasion during early phase of viral infection of the nascent B-cells, many important cellular targets have been identified for BART and BHRF1 miRNAs particularly influencing apoptosis and B-cell proliferation (19). For example, while BHRF1 miRNAs are required for proficient B-cell transformation through targeting multiple tumor suppressor proteins such as PTEN and p27KIP1; BART miRNAs block expression of many tumor suppressor genes, including, DICE1, PUMA, PTEN, and BCL2L11 to promote epithelial cell survival (4, 7, 43, 48).
Future Perspective

The ease of attaining EBV transformed LCLs from practically any genetic background has led these cells to be used as a powerful tool for numerous investigations as discussed above. Additionally, studies with LCLs have generated huge public resources on a genome-wide scale highlighting critical regulation by multiple cell and viral transcription factors coupled with epigenetic alterations. Studies revealed critical contribution of each viral oncoprotein and described the intricate nature of B-cell transformation and subsequent B-cell lymphoma development. Importantly, these LCLs are also being used as a preclinical model system for pharmacogenomic studies envisaging drug response due to genetic predispositions along with epigenetic variations. Although LCLs are helpful for primary evaluation of a drug response and identification of biomarkers [reviewed in (69)], experiments on human cancer cell line model such as NCI-60 panel (the National Institute of Health, USA) (89) and humanized mouse model (103) systems coupled with information from various omics datasets are also essential for subsequent validation prior to clinical trials. A number of LCL collections from diverse genetic backgrounds are now available for pharmacogenomics studies. Particularly, LCLs from National Institute of General Medical Science (NIGMS) and National Human Genome Research Institute (NHGRI) including the LCLs used for the ‘HapMap Project’ (14) have been extensively used. LCLs along with Next-generation sequencing information from the ENCODE, and the 1000 Genomes Project (13) have also been submitted into the NHGRI collection. ‘Biobanking’ (49) is another strategy to maintain large LCL collections from population based cohorts. In the coming years, LCLs would serve an important model system providing the foundation of ‘personalized medicine’ (Fig. 2).

EBV was discovered more than 50 years ago and still remains the most frequent persistent asymptomatic virus infection in humans suffering from several B-cell malignancies, particularly in an immune-compromised scenario. Nonetheless, great progress has been made in understanding the underlying oncogenic mechanisms by which EBV contributes to the development of different B-cell lymphomas. The comprehensive understanding of EBV biology gathered particularly in the last
decade will certainly allow us to improve many aspects of clinical care regarding patients suffering from EBV-associated B-cell lymphomas. There are great opportunities to offer early diagnosis of different EBV-associated lymphomas differentially expressed viral latent antigens, immunotherapy to specifically target EBV-infected B-lymphocytes, and chemotherapy targeting potential cell pathways as above-discussed.
Acknowledgements

This review was supported by Wellcome Trust/DBT India Alliance Intermediate Fellowship research grant (IA/I/14/2/501537) to AS and public health funds from the National Institutes Health (P01CA174439, R01177423, R01171979, P30DK050306, P30CA016520, and US4CA190158) to ESR. ESR is also supported by the Avon foundation for women and is a scholar of the Leukemia and Lymphoma society of America. We apologize to colleagues whose research could not be cited due to space limitations. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.
Fig. 1. Salient features of EBV latent transcripts during B-cell transformation followed by B-cell lymphoma development. After initial infection of oropharyngeal epithelial cells, EBV primarily infects the naïve B-lymphocytes. Subsequently the infected B-cells are growth transformed, expressing a subset of viral genes – 6 nuclear antigens (EBNAs), 3 membrane proteins (LMPs) and several non-coding RNAs (EBERs and BARTs). EBNA1 binds to the episome origin of replication to allow viral genome replication. EBNA2 transcriptionally activates a number of viral (red) and cellular (black) genes through recruiting cell transcription factors (TFs) like RBP-Jκ and induces cell growth. EBNALP promotes EBNA2 mediated gene transcription. EBNA3 proteins (EBNA3A, EBNA3B and EBNA3C) modulate viral gene and Notch signaling by blocking EBNA2 association with RBP-Jκ. Both EBNA3A and EBNA3C recruit several epigenetic modifications (such as polycomb repressor complex PRC2) to transcriptionally repress BIM, BLIMP-1 and p15, p16 and p18 expressions and inhibit B-cell to plasma cell differentiation. Through epigenetic control EBNA3C transactivates ATG3, ATG5 and ATG7 expressions and thereby promoting autophagosome formation. EBNA3A and EBNA3C enhance miR221/222 transcription, which in turn block p27 and p57 translations. EBNA3C employs several mechanisms to block p53 mediated apoptotic activities. For example, EBNA3C recruits Mdm2 E3 ligase activity and stabilizes Gemin3 to enhance p53 degradation, and competes with ING4 and ING5 binding to block p53-dependent apoptosis. EBNA3C enhances Pim-1 mediated p21 phosphorylation and degradation. Both EBNA3A and EBNA3C interact with Chk2 and facilitate G2-M transition. In response to DNA damage signals, EBNA3C enhances E2F1 degradation thereby blocking E2F1 mediated apoptosis. EBNA3C binds to E2F6 to block E2F1 mediated transcription. EBNA3C forms complexes and enhances the kinase activities of CyclinD1/CDK6, CyclinD2/CDK6 and CyclinA/CDK2 and augments pRb phosphorylation. EBNA3C recruits IRF4 to block Bcl6 expression and enhances IRF8 degradation. EBNA3C increases ubiquitin-proteasomal mediated degradation of hyperphosphorylated pRb, p27 and Bcl6, which facilitates G1-S transition of cell-cycle. LMP1 mimics CD40 signaling, prevents apoptosis by upregulating bcl-2 and A20. LMP1, through interacting with
tumor necrosis factor receptors (TNFR)-associated factors (TRAFs) and TNFR-associated death domain protein (TRADD), constitutively induces NF-κB signaling pathway. LMP1 also activates JAK/STAT, ERK MAPK, IRF and Wnt signaling pathways. LMP2A blocks B-cell receptor (BCR) signaling, while LMP2B regulates LMP2A functions. EBV noncoding RNAs, EBERs (EBER1 and EBER2) regulate innate immune response and block apoptosis. EBER2 recruits PAX5 to the terminal repeat (TR) region of nascent viral transcript, which helps for viral lytic replication. BARTs mediate evasion of T- and NK-cells during infection of B-cells in peripheral blood lymphocytes.

Fig. 2. Systematic strategy for studying EBV-induced B-cell transformation and lymphomagenesis. Burkitt’s lymphoma (BL) cell line Akata or marmoset cell line B95.8 are used to generate virus particles and subsequent infection to nascent B-lymphocytes in the absence or presence of a immunosuppressive drug FK506. Addition of FK506 facilitates the transformation process though inhibiting T-cell mediated immune-surveillance. Alternatively, the whole virus genome is cloned into Bacmid and maintained in epithelial cells (HEK293 or HEK293T). In order to pinpoint the function of viral latent genes and respective domains, genetically engineered BACmids are used to transform naïve B-cells. B-cells infected with wild-type virus are eventually growth transformed expressing latency III program with a full panel of viral latent transcripts, resembling EBV associated lymphomas in HIV-infected population. Several biochemical assays and high-throughput strategies are employed to delineate the underlying mechanism of B-cell transformation and subsequent B-cell lymphoma development. Additionally, these LCLs are used to study EBV-induced B-cell lymphomagenesis in humanized mouse model. Since the LCLs possess donor specific genetic variations, they can provide an ideal *in-vitro* model to study pharmacogenomics leading to futuristic ‘personalized medicine’.
References

1. Allday, M. J., Q. Bazot, and R. E. White. 2015. The EBNA3 Family: Two Oncoproteins and a Tumour Suppressor that Are Central to the Biology of EBV in B Cells. Curr Top Microbiol Immunol 391:61-117.

2. Arvey, A., I. Tempera, K. Tsai, H. S. Chen, N. Tikhmyanova, M. Klichinsky, C. Leslie, and P. M. Lieberman. 2012. An atlas of the Epstein-Barr virus transcriptome and epigenome reveals host-virus regulatory interactions. Cell Host Microbe 12:233-45.

3. Bergbauer, M., M. Kalla, A. Schmeinck, C. Gobel, U. Rothbauer, S. Eck, A. Benet-Pages, T. M. Strom, and W. Hammerschmidt. 2010. CpG-methylation regulates a class of Epstein-Barr virus promoters. PLoS Pathog 6:e1001114.

4. Bernhardt, K., J. Haar, M. H. Tsai, R. Poirey, R. Feederle, and H. J. Delecluse. 2016. A Viral microRNA Cluster Regulates the Expression of PTEN, p27 and of a bcl-2 Homolog. PLoS Pathog 12:e1005405.

5. Bhattacharjee, S., P. Bose, K. Patel, S. G. Roy, C. Gain, H. Gowda, E. S. Robertson, and A. Saha. 2018. Transcriptional and epigenetic modulation of autophagy promotes EBV oncprotein EBNA3C induced B-cell survival. Cell Death Dis 9:605.

6. Bhattacharjee, S., S. Ghosh Roy, P. Bose, and A. Saha. 2016. Role of EBNA-3 Family Proteins in EBV Associated B-cell Lymphomagenesis. Front Microbiol 7:457.

7. Cai, L. M., X. M. Lyu, W. R. Luo, X. F. Cui, Y. F. Ye, C. C. Yuan, Q. X. Peng, D. H. Wu, T. F. Liu, E. Wang, F. M. Marincola, K. T. Yao, W. Y. Fang, H. B. Cai, and X. Li. 2015. EBV-miR-BART7-3p promotes the EMT and metastasis of nasopharyngeal carcinoma cells by suppressing the tumor suppressor PTEN. Oncogene 34:2156-66.

8. Canaan, A., I. Haviv, A. E. Urban, V. P. Schulz, S. Hartman, Z. Zhang, D. Palejev, A. B. Deisseroth, J. Lacy, M. Snyder, M. Gerstein, and S. M. Weissman. 2009. EBNA1 regulates cellular gene expression by binding cellular promoters. Proc Natl Acad Sci U S A 106:22421-6.

9. Carbone, A., C. C. Volpi, A. V. Gualeni, and A. Glioghi. 2017. Epstein-Barr virus associated lymphomas in people with HIV. Curr Opin HIV AIDS 12:39-46.

10. Chen, A., M. Divisconte, X. Jiang, C. Quink, and F. Wang. 2005. Epstein-Barr virus with the latent infection nuclear antigen 3B completely deleted is still competent for B-cell growth transformation in vitro. J Virol 79:4506-9.

11. Chen, H. S., K. A. Martin, F. Lu, L. N. Lupey, J. M. Mueller, P. M. Lieberman, and I. Tempera. 2014. Epigenetic deregulation of the LMP1/LMP2 locus of Epstein-Barr virus by mutation of a single CTCF-cohesin binding site. J Virol 88:1703-13.

12. Choudhuri, T., S. C. Verma, K. Lan, M. Murakami, and E. S. Robertson. 2007. The ATM/ATR signaling effector Chk2 is targeted by Epstein-Barr virus nuclear antigen 3C to release the G2/M cell cycle block. J Virol 81:6718-30.

13. Consortium, T. E. P. 2012. An integrated encyclopedia of DNA elements in the human genome. Nature 489:57-74.

14. Consortium, T. I. H. 2003. The International HapMap Project. Nature 426:789-96.

15. Dutton, A., C. B. Woodman, M. B. Chukwuma, J. I. Last, W. Wei, M. Vockerodt, K. R. Baumforth, J. R. Flavell, M. Rowe, A. M. Taylor, L. S. Young, and P. G. Murray. 2007. Bmi-1 is induced by the Epstein-Barr virus oncogene LMP1 and regulates the expression of viral target genes in Hodgkin lymphoma cells. Blood 109:2597-603.

16. Elia, A., J. Vyas, K. G. Laing, and M. J. Clemens. 2004. Ribosomal protein L22 inhibits regulation of cellular activities by the Epstein-Barr virus small RNA EBER-1. Eur J Biochem 271:1895-905.

17. Eliopoulos, A. G., N. J. Gallagher, S. M. Blake, C. W. Dawson, and L. S. Young. 1999. Activation of the p38 mitogen-activated protein kinase pathway by Epstein-Barr virus-encoded latent membrane protein 1 coregulates interleukin-6 and interleukin-8 production. J Biol Chem 274:16085-96.
18. Eliopoulos, A. G., and L. S. Young. 1998. Activation of the cJun N-terminal kinase (JNK) pathway by the Epstein-Barr virus-encoded latent membrane protein 1 (LMP1). Oncogene 16:1731-42.

19. Feederle, R., J. Haar, K. Bernhardt, S. D. Linnstaedt, H. Bannert, H. Lips, B. R. Cullen, and H. J. Delecluse. 2011. The members of an Epstein-Barr virus microRNA cluster cooperate to transform B lymphocytes. J Virol 85:9801-10.

20. Fish, K., J. Chen, and R. Longnecker. 2014. Epstein-Barr virus latent membrane protein 2A enhances MYC-driven cell cycle progression in a mouse model of B lymphoma. Blood 123:530-40.

21. Fok, V., R. M. Mitton-Fry, A. Grech, and J. A. Steitz. 2006. Multiple domains of EBER 1, an Epstein-Barr virus noncoding RNA, recruit human ribosomal protein L22. RNA 12:872-82.

22. Frappier, L. 2012. Contributions of Epstein-Barr nuclear antigen 1 (EBNA1) to cell immortalization and survival. Viruses 4:1537-47.

23. Fukuda, M., and Y. Kawaguchi. 2014. Role of the immunoreceptor tyrosine-based activation motif of latent membrane protein 2A (LMP2A) in Epstein-Barr virus LMP2A-induced cell transformation. J Virol 88:5189-94.

24. Gnanasundram, S. V., S. Pyndiah, C. Daskalogianni, K. Armfield, K. Nylander, J. B. Wilson, and R. Fahraeus. 2011. The members of an Epstein-Barr virus noncoding RNA, recruit human ribosomal protein L22. RNA 12:872-82.

25. Gradoville, L., D. Kwa, A. El-Guindy, and G. Miller. 2002. Protein kinase C-independent activation of the Epstein-Barr virus lytic cycle. J Virol 76:5612-26.

26. Gruhne, B., R. Sompallae, D. Marescotti, S. A. Kamranvar, S. Gastaldello, and M. G. Masucci. 2009. The Epstein-Barr virus nuclear antigen-1 promotes genomic instability via induction of reactive oxygen species. Proc Natl Acad Sci U S A 106:2313-8.

27. Halder, S., M. Murakami, S. C. Verma, P. Kumar, F. Yi, and E. S. Robertson. 2009. Early events associated with infection of Epstein-Barr virus infection of primary B-cells. PLoS One 4:7214.

28. Harada, S., and E. Kieff. 1997. Epstein-Barr virus nuclear protein LP stimulates EBNA-2 acidic domain-mediated transcriptional activation. J Virol 71:6611-8.

29. Hatton, O. L., A. Harris-Arnold, S. Schaffert, S. M. Krans, and O. M. Martinez. 2014. The interplay between Epstein-Barr virus and B lymphocytes: implications for infection, immunity, and disease. Immunol Res 58:268-76.

30. Hernandez, H., A. B. Islam, J. Rodriguez-UBreva, I. Forné, L. Ciudad, A. Imhof, C. Shannon-Lowe, and E. Ballestar. 2014. Epstein-Barr virus-mediated transformation of B cells induces global chromatin changes independent to the acquisition of proliferation. Nucleic Acids Res 42:249-63.

31. Hickabottom, M., G. A. Parker, P. Freemont, T. Crook, and M. J. Allday. 2002. Two nonconsensus sites in the Epstein-Barr virus oncoprotein EBNA3A cooperate to bind the co-repressor carboxyl-terminal-binding protein (CtBP). J Biol Chem 277:47197-204.

32. Hong, G. K., M. L. Gulley, W. H. Feng, H. J. Delecluse, E. Holley-Guthrie, and S. C. Kenney. 2005. Epstein-Barr virus lytic infection contributes to lymphoproliferative disease in a SCID mouse model. J Virol 79:13993-4003.

33. Hui-Yuen, J., S. McAllister, S. Koganti, E. Hill, and S. Bhaduri-McIntosh. 2011. Establishment of Epstein-Barr virus growth-transformed lymphoblastoid cell lines. J Vis Exp.

34. Humme, S., G. Reisbach, R. Feederle, H. J. Delecluse, K. Bousset, W. Hammerschmidt, and A. Schepers. 2003. The EBV nuclear antigen 1 (EBNA1) enhances B cell immortalization several thousandfold. Proc Natl Acad Sci U S A 100:10989-94.

35. Hurwitz, S. N., M. R. Cheeraethodi, D. Nkosi, S. B. York, and D. G. Meckes, Jr. 2018. Tetraspanin CD63 Bridges Autophagic and Endosomal Processes To Regulate Exosomal Secretion and Intracellular Signaling of Epstein-Barr Virus LMP1. J Virol 92.
36. Imadome, K., M. Shirakata, N. Shimizu, S. Nonoyama, and Y. Yamanashi. 2003. CD40 ligand is a critical effector of Epstein-Barr virus in host cell survival and transformation. Proc Natl Acad Sci U S A 100:7836-40.

37. Imig, J., N. Motsch, J. Y. Zhu, S. Barth, M. Okoniewski, T. Reineke, M. Tinguely, A. Faggioni, P. Trivedi, G. Meister, C. Renner, and F. A. Grasser. 2011. microRNA profiling in Epstein-Barr virus-associated B-cell lymphoma. Nucleic Acids Res 39:1880-93.

38. Jiang, S., B. Willoz, H. Zhou, A. M. Holthaus, A. Wang, T. T. Shi, S. Maruo, P. V. Kharchenko, E. C. Johannsen, E. Kieff, and B. Zhao. 2014. Epstein-Barr virus nuclear antigen 3C binds to BATF/IRF4 or SPI1/IRF4 composite sites and recruits Sin3A to repress CDKN2A. Proc Natl Acad Sci U S A 111:421-6.

39. Jochum, S., R. Ruis, A. Moosmann, W. Hammerschmidt, and R. Zeidler. 2012. RNAs in Epstein-Barr virions control early steps of infection. Proc Natl Acad Sci U S A 109:E1396-404.

40. Kalchschmidt, J. S., A. C. Gillman, K. Paschos, Q. Bazot, B. Kempkes, and M. J. Allday. 2016. EBNA3C Directs Recruitment of RBPJ (CBF1) to Chromatin during the Process of Gene Repression in EBV Infected B Cells. PLoS Pathog 12:e1005383.

41. Kamranvar, S. A., X. Chen, and M. G. Masucci. 2013. Telomere dysfunction and activation of alternative lengthening of telomeres in B-lymphocytes infected by Epstein-Barr virus. Oncogene 32:5522-30.

42. Kanda, T., M. Yajima, N. Ahsan, M. Tanaka, and K. Takada. 2004. Production of high-titer Epstein-Barr virus recombinants derived from Akata cells by using a bacterial artificial chromosome system. J Virol 78:7004-15.

43. Kang, D., R. L. Skalsky, and B. R. Cullen. 2015. EBV BART MicroRNAs Target Multiple Pro-apoptotic Cellular Genes to Promote Epithelial Cell Survival. PLoS Pathog 11:e1004979.

44. Kang, M. S., and E. Kieff. 2015. Epstein-Barr virus latent genes. Exp Mol Med 47:e131.

45. Katsumura, K. R., S. Maruo, and K. Takada. 2012. EBV lytic infection enhances transformation of B-lymphocytes infected with EBV in the presence of T-lymphocytes. J Med Virol 84:504-10.

46. Katsumura, K. R., S. Maruo, Y. Wu, T. Kanda, and K. Takada. 2009. Quantitative evaluation of the role of Epstein-Barr virus immediate-early protein BZLF1 in B-cell transformation. J Gen Virol 90:2331-41.

47. Komano, J., S. Maruo, K. Kurozumi, T. Oda, and K. Takada. 1999. Oncogenic role of Epstein-Barr virus-encoded RNAs in Burkitt’s lymphoma cell line Akata. J Virol 73:9827-31.

48. Kuzembayeva, M., M. Hayes, and B. Sugden. 2014. Multiple functions are mediated by the miRNAs of Epstein-Barr virus. Curr Opin Virol 7:61-5.

49. Larsson, A. 2017. The Need for Research Infrastructures: A Narrative Review of Large-Scale Research Infrastructures in Biobanking. Biopreserv Biobank.

50. Laux, G., A. Economou, and P. J. Farrell. 1989. The terminal protein gene 2 of Epstein-Barr virus is transcribed from a bidirectional latent promoter region. J Gen Virol 70 (Pt 11):3079-84.

51. Lavorgna, A., and E. W. Harhaj. 2012. EBV LMP1: New and shared pathways to NF-kappaB activation. Proc Natl Acad Sci U S A 109:2188-9.

52. Lee, D. Y., and B. Sugden. 2008. The latent membrane protein 1 oncogene modifies B-cell physiology by regulating autophagy. Oncogene 27:2833-42.

53. Lee, D. Y., and B. Sugden. 2008. The LMP1 oncogene of EBV activates PERK and the unfolded protein response to drive its own synthesis. Blood 111:2280-9.

54. Lee, N., W. N. Moss, T. A. Yario, and J. A. Steitz. 2015. EBV noncoding RNA binds nascent RNA to drive host PAX5 to viral DNA. Cell 160:607-618.

55. Levitskaya, J., A. Sharipo, A. Leonchiks, A. Ciechanover, and M. G. Masucci. 1997. Inhibition of ubiquitin/proteasome-dependent protein degradation by the Gly-Ala repeat domain of the Epstein-Barr virus nuclear antigen 1. Proc Natl Acad Sci U S A 94:12616-21.
Longnecker, R., and E. Kieff. 1990. A second Epstein-Barr virus membrane protein (LMP2) is expressed in latent infection and colocalizes with LMP1. J Virol 64:2319-26.

Lu, F., H. S. Chen, A. V. Kossenkov, K. DeWisepeleare, K. J. Won, and P. M. Lieberman. 2016. EBN2A Drives Formation of New Chromosome Binding Sites and Target Genes for B-Cell Master Regulatory Transcription Factors RBP-jkappa and EBFI. PLoS Pathog 12:e1005339.

Lu, J., M. Murakami, S. C. Verma, Q. Cai, S. Haldar, R. Kaul, M. A. Wasik, J. Middeldorp, and E. S. Robertson. 2011. Epstein-Barr Virus nuclear antigen 1 (EBNA1) confers resistance to apoptosis in EBV-positive B-lymphoma cells through up-regulation of survivin. Virology 410:64-75.

Luftig, M., E. Prinarakis, T. Yasui, T. Tsichritzis, E. Cahir-McFarland, J. Inoue, H. Nakano, T. W. Mak, W. C. Yeh, X. Li, S. Akira, N. Suzuki, S. Suzuki, G. Mosialos, and E. Kieff. 2003. Epstein-Barr virus latent membrane protein 1 activation of NF-kappaB through IRAK1 and TRAF6. Proc Natl Acad Sci U S A 100:15595-600.

Ma, S. D., M. H. Tsai, J. C. Romero-Masters, E. A. Ranheim, J. A. Bristol, H. J. Delecluse, and S. C. Kenney. 2017. Latent Membrane Protein 1 (LMP1) and LMP2A Collaborate To Promote Epstein-Barr Virus-Induced B Cell Lymphomas in a Cord-Blood-Humanized Mouse Model but Are Not Essential. J Virol 91.

Ma, S. D., X. Xu, J. Plowshay, E. A. Ranheim, W. J. Burlingham, J. L. Jensen, F. Asimakopoulos, W. Tang, M. L. Gulley, E. Cesarmann, J. E. Gumperz, and S. C. Kenney. 2014. LMP1-deficient Epstein-Barr virus mutant requires T cells for lymphomagenesis. J Clin Invest 125:304-15.

Mancao, C., M. Altmann, B. Jungnickel, and W. Hammerschmidt. 2005. Rescue of “crippled” germinal center B cells from apoptosis by Epstein-Barr virus. Blood 106:4339-44.

Maruo, S., B. Zhao, E. Johanssen, E. Kieff, J. Zou, and K. Takada. 2011. Epstein-Barr virus nuclear antigens 3C and 3A maintain lymphoblastoid cell growth by repressing p16INK4A and p14ARF expression. Proc Natl Acad Sci U S A 108:1919-24.

Merkenschlager, M., and D. T. Odom. 2013. CTCF and cohesin: linking gene regulatory elements with their targets. Cell 152:1285-97.

Miller, W. E., G. Mosialos, E. Kieff, and N. Raab-Traub. 1997. Epstein-Barr virus LMP1 induction of the epidermal growth factor receptor is mediated through a TRAF signaling pathway distinct from NF-kappaB activation. J Virol 71:586-94.

Mosialos, G., M. Birkenbach, R. Yalamanchili, T. VanArsdale, C. Ware, and E. Kieff. 1995. The Epstein-Barr virus transforming protein LMP1 engages signaling proteins for the tumor necrosis factor receptor family. Cell 80:389-99.

Nikitin, P. A., C. M. Yan, E. Forte, A. Bocedi, J. P. Tourigny, E. Forte, A. Bocedi, J. P. Tourigny, H. S. Chen, A. V. Kossenkov, K. DeWisepeleare, K. J. Won, and P. M. Lieberman. 2016. EBN2A Drives Formation of New Chromosome Binding Sites and Target Genes for B-Cell Master Regulatory Transcription Factors RBP-jkappa and EBFI. PLoS Pathog 12:e1005339.

Nitsche, F., A. Bell, and A. Rickinson. 1997. Epstein-Barr virus leader protein enhances EBNA-2-mediated transactivation of latent membrane protein 1 expression: a role for the W1W2 repeat domain. J Virol 71:6619-28.

Niu, N., and L. Wang. 2015. In vitro human cell line models to predict clinical response to anticancer drugs. Pharmacogenomics 16:273-85.

Paludan, C., D. Schmid, M. Landthaler, M. Vockerodt, D. Kube, T. Tuschi, and C. Munz. 2005. Endogenous MHC class II processing of a viral nuclear antigen after autophagy. Science 307:593-6.

Parker, G. A., T. Crook, M. Bain, E. A. Sara, P. J. Farrell, and M. J. Allday. 1996. Epstein-Barr virus nuclear antigen (EBNA)3C is an immortalizing oncoprotein with similar properties to adenovirus E1A and papillomavirus E7. Oncogene 13:2541-9.
Paschos, K., G. A. Parker, E. Watanatasup, R. E. White, and M. J. Allday. 2012. BIM promoter directly targeted by EBNA3C in polycomb-mediated repression by EBV. Nucleic Acids Res 40:7233-46.

Peetel, D. M., K. Cosmopoulos, D. A. Thorley-Lawson, M. A. van Eijnndhoven, E. S. Hopmans, J. L. Lindenber, T. D. de Gruijl, T. Wurdingher, and J. M. Middeldorp. 2010. Functional delivery of viral miRNAs via exosomes. Proc Natl Acad Sci U S A 107:6328-33.

Pei, Y., S. Banerjee, H. C. Jha, Z. Sun, and E. S. Robertson. 2017. An essential EBV latent antigen 3C binds Bcl6 for targeted degradation and cell proliferation. PLoS Pathog 13:e1006500.

Pei, Y., S. Banerjee, Z. Sun, H. C. Jha, A. Saha, and E. S. Robertson. 2016. EBV Nuclear Antigen 3C Mediates Regulation of E2F6 to Inhibit E2F1 Transcription and Promote Cell Proliferation. PLoS Pathog 12:e1005844.

Portal, D., H. Zhou, B. Zhao, P. V. Kharchenko, E. Lowry, L. Wong, J. Quackenbush, D. Holloway, S. Jiang, Y. Lu, and E. Kieff. 2013. Epstein-Barr virus nuclear antigen leader protein localizes to promoters and enhancers with cell transcription factors and EBNA2. Proc Natl Acad Sci U S A 110:18537-42.

Pratt, Z. L., M. Kuzembayeva, S. Sengupta, and B. Sugden. 2009. The microRNAs of Epstein-Barr Virus are expressed at dramatically differing levels among cell lines. Virology 386:387-97.

Ragoczy, T., L. Heston, and G. Miller. 1998. The Epstein-Barr virus Rta protein activates lytic cycle genes and can disrupt latency in B lymphocytes. J Virol 72:7978-84.

Rechsteiner, M. P., C. Berger, L. Zauner, J. A. Sigrist, M. Weber, R. Longnecker, M. Bernasconi, and D. Nadal. 2008. Latent membrane protein 2B regulates susceptibility to induction of lytic Epstein-Barr virus infection. J Virol 82:1739-47.

Rovedo, M., and R. Longnecker. 2007. Epstein-Barr virus latent membrane protein 2B (LMP2B) modulates LMP2A activity. J Virol 81:84-94.

Saha, A., H. C. Jha, S. K. Upadhyay, and E. S. Robertson. 2015. Epigenetic silencing of tumor suppressor genes during in vitro Epstein-Barr virus infection. Proc Natl Acad Sci U S A 112:E5199-207.

Saha, A., and E. S. Robertson. 2011. Epstein-Barr virus-associated B-cell lymphomas: pathogenesis and clinical outcomes. Clin Cancer Res 17:3056-63.

Saha, A., and E. S. Robertson. 2013. Impact of EBV essential nuclear protein EBNA-3C on B-cell proliferation and apoptosis. Future Microbiol 8:323-32.

Samanta, M., D. Iwakiri, T. Kanda, T. Imaizumi, and K. Takada. 2006. EB virus-encoded RNAs are recognized by RIG-I and activate signaling to induce type I IFN. EMBO J 25:4207-14.

Saridakis, V., Y. Sheng, F. Sarkari, M. N. Holowaty, T. Nguyen, R. G. Zhang, J. Liao, W. Lee, A. M. Edwards, C. H. Arrowsmith, and L. Frappier. 2005. Structure of the p53 binding domain of HAUSP/USP7 bound to Epstein-Barr virus nuclear antigen 1 implications for EBV-mediated immortalization. Mol Cell 18:25-36.

Satoh, T., R. Wada, N. Yajima, T. Imaizumi, and S. Yagihashi. 2014. Tumor microenvironment and RIG-I signaling molecules in Epstein Barr virus-positive and -negative classical Hodgkin lymphoma of the elderly. J Clin Exp Hematop 54:75-84.

Schmidt, S. C., S. Jiang, H. Zhou, B. Willox, A. M. Holthaus, P. V. Kharchenko, E. C. Johannsen, E. Kieff, and B. Zhao. 2015. Epstein-Barr virus nuclear antigen 3A partially coincides with EBNA3C genome-wide and is tethered to DNA through BATF complexes. Proc Natl Acad Sci U S A 112:554-9.

Scholle, F., R. Longnecker, and N. Raab-Traub. 1999. Epithelial cell adhesion to extracellular matrix proteins induces tyrosine phosphorylation of the Epstein-Barr virus latent membrane protein 2a for C-terminal Src kinase. J Virol 73:4767-75.

Shoemaker, R. H. 2006. The NCI60 human tumour cell line anticancer drug screen. Nat Rev Cancer 6:813-23.
Skalsky, R. L., and B. R. Cullen. 2015. EBV Noncoding RNAs. Curr Top Microbiol Immunol 391:181-217.

Styles, C. T., Q. Bazot, G. A. Parker, R. E. White, K. Paschos, and M. J. Allday. 2017. EBV epigenetically suppresses the B cell-to-plasma cell differentiation pathway while establishing long-term latency. PLoS Biol 15:e2001992.

Taylor, G. S., H. M. Long, J. M. Brooks, A. B. Rickinson, and A. D. Hislop. 2015. The immunology of Epstein-Barr virus-induced disease. Annu Rev Immunol 33:787-821.

Tempera, I., A. Wiedmer, J. Dheekollu, and P. M. Lieberman. 2010. CTCF prevents the epigenetic drift of EBV latency promoter Qp. PLoS Pathog 6:e1001048.

Thompson, M. R., J. J. Kaminski, E. A. Kurt-Jones, and K. A. Fitzgerald. 2011. Pattern recognition receptors and the innate immune response to viral infection. Viruses 3:920-40.

Thornburg, N. J., W. Kulwicht, R. H. Edwards, K. H. Shair, K. M. Bendt, and N. Raab-Traub. 2006. LMP1 signaling and activation of NF-kappaB in LMP1 transgenic mice. Oncogene 25:288-97.

Tomkinson, B., E. Robertson, and E. Kieff. 1993. Epstein-Barr virus nuclear proteins EBNA-3A and EBNA-3C are essential for B-lymphocyte growth transformation. J Virol 67:2014-25.

Utsuki, S., H. Oka, Y. Miyajima, C. Kijima, Y. Yasui, and K. Fuji. 2011. Epstein-Barr virus (EBV)-associated primary central nervous system lymphoma: is incidence of EBV expression associated with median survival time? Brain Tumor Pathol 28:145-9.

Vraoz, A. C., M. Chauchard, N. Raab-Traub, and R. Longnecker. 2012. Epstein-Barr virus LMP2A reduces hyperactivation induced by LMP1 to restore normal B cell phenotype in transgenic mice. PLoS Pathog 8:e1002662.

Walter, L., M. Perricaudet, A. Sergeant, and E. Manet. 1996. Epstein-Barr virus EBNA3A and EBNA3C proteins both repress RBP-J kappa-EBNA2-activated transcription by inhibiting the binding of RBP-J kappa to DNA. J Virol 70:5909-15.

Westphal, E. M., W. Blackstock, W. Feng, B. Israel, and S. C. Kenney. 2000. Activation of lytic Epstein-Barr virus (EBV) infection by radiation and sodium butyrate in vitro and in vivo: a potential method for treating EBV-positive malignancies. Cancer Res 60:5781-8.

White, R. E., P. C. Ramer, K. N. Naresh, S. Meixlsperger, L. Pinaud, C. Rooney, B. Savoldo, R. Coutinho, C. Bodor, J. Gribben, H. A. Ibrahim, M. Bower, J. P. Nourse, M. K. Gandhi, J. Middeldorp, F. Z. Cader, P. Murray, C. Munz, and M. J. Allday. 2012. EBNA3B-deficient EBV promotes B cell lymphomagenesis in humanized mice and is found in human tumors. J Clin Invest 122:1487-502.

Whitehurst, C. B., G. Li, S. A. Montgomery, N. D. Montgomery, L. Su, and J. S. Pagano. 2015. Knockout of Epstein-Barr virus BPLF1 retards B-cell transformation and lymphoma formation in humanized mice. MBio 6:e01574-15.

Wirtz, T., T. Weber, S. Kracker, T. Sommermann, K. Rajewsky, and T. Yasuda. 2016. Mouse model for acute Epstein-Barr virus infection. Proc Natl Acad Sci U S A 113:13821-13826.

Woellmer, A., and W. Hammerschmidt. 2013. Epstein-Barr virus and host cell methylation: regulation of latency, replication and virus reactivation. Curr Opin Virol 3:260-5.

Wood, C. D., H. Veenstra, S. Khasnis, A. Gunnell, H. M. Webb, C. Shannon-Lowe, S. Andrews, C. S. Osborne, and M. J. West. 2016. MYC activation and BCL2L11 silencing by a tumour virus through the large-scale reconfiguration of enhancer-promoter hubs. Elife 5.

Wu, R., A. Sattarzadeh, B. Rutgers, A. Diepstra, A. van den Berg, and L. Visser. 2016. The microenvironment of classical Hodgkin lymphoma: heterogeneity by Epstein-Barr virus presence and location within the tumor. Blood Cancer J 6:e417.

Young, L. S., and A. B. Rickinson. 2004. Epstein-Barr virus: 40 years on. Nat Rev Cancer 4:757-68.

Zhang, B., S. Kracker, T. Yasuda, S. Casola, M. Vanneman, C. Homig-Holzel, Z. Wang, E. Derudder, S. Li, T. Chakraborty, S. E. Cotter, S. Koyama, T. Currie, G. J. Freeman, J. L. Kutok,
S. J. Rodig, G. Dranoff, and K. Rajewsky. 2012. Immune surveillance and therapy of lymphomas driven by Epstein-Barr virus protein LMP1 in a mouse model. Cell 148:739-51.

Zhao, B., L. A. Barrera, I. Ersing, B. Willox, S. C. Schmidt, H. Greenfeld, H. Zhou, S. B. Mollo, T. T. Shi, K. Takasaki, S. Jiang, E. Cahir-McFarland, M. Kellis, M. L. Bulyk, E. Kieff, and B. E. Gewurz. 2014. The NF-kappaB genomic landscape in lymphoblastoid B cells. Cell Rep 8:1595-606.

Zhao, B., S. Maruo, A. Cooper, R. C. M, E. Johannsen, E. Kieff, and E. Cahir-McFarland. 2006. RNAs induced by Epstein-Barr virus nuclear antigen 2 in lymphoblastoid cell lines. Proc Natl Acad Sci U S A 103:1900-5.

Zhao, B., and C. E. Sample. 2000. Epstein-barr virus nuclear antigen 3C activates the latent membrane protein 1 promoter in the presence of Epstein-Barr virus nuclear antigen 2 through sequences encompassing an spi-1/Spi-B binding site. J Virol 74:5151-60.

Zhao, B., J. Zou, H. Wang, E. Johannsen, C. W. Peng, J. Quackenbush, J. C. Mar, C. C. Morton, M. L. Freedman, S. C. Blacklow, J. C. Aster, B. E. Bernstein, and E. Kieff. 2011. Epstein-Barr virus exploits intrinsic B-lymphocyte transcription programs to achieve immortal cell growth. Proc Natl Acad Sci U S A 108:14902-7.

Zhou, H., S. C. Schmidt, S. Jiang, B. Willox, K. Bernhardt, J. Liang, E. C. Johannsen, P. Kharchenko, B. E. Gewurz, E. Kieff, and B. Zhao. 2015. Epstein-Barr virus oncoprotein super-enhancers control B cell growth. Cell Host Microbe 17:205-16.
Table 1: EBV associated B-cell lymphomas and gene expression patterns

Lymphomas	Latent gene expression	Latency program
Post-transplant B-lymphoproliferative disorder	EBNA1, EBNA2, EBNA3A, EBNA3B, EBNA3C, EBNALP, LMP1, LMP2A, LMP2B, EBER1, EBER2, miRNAs - BHRF1 and BARTs	III
HIV linked B-lymphoproliferative disorder	EBNA1, EBNA2, EBNA3A, EBNA3B, EBNA3C, EBNALP, LMP1, LMP2A, LMP2B, EBER1, EBER2, miRNAs - BHRF1 and BARTs	III
Primary central nervous system lymphoma	EBNA1, EBNA2, EBNA3A, EBNA3B, EBNA3C, EBNALP, LMP1, LMP2A, LMP2B, EBER1, EBER2, miRNAs - BHRF1 and BARTs	III
Endemic Burkitt’s lymphoma (eBL)	EBNA1, EBER1, EBER2, and BART miRNAs	I
Sporadic Burkitt’s lymphoma (sBL)		
HIV linked Burkitt’s lymphoma		
Classical Hodgkin’s lymphoma (cHL)	EBNA1, LMP1, LMP2A, EBER1, EBER2, and BART miRNAs	II
HIV linked Hodgkin’s lymphoma		
Diffuse large B cell lymphoma (DLBCL), NOS (not otherwise specified)	EBNA1, LMP1, LMP2A, EBER1, EBER2, and BART miRNAs or all transcripts	II or III
Diffuse large B cell lymphoma (DLBCL), PAL (pyothorax-associated lymphoma)	EBNA1, EBNA2, EBNA3A, EBNA3B, EBNA3C, EBNALP, LMP1, LMP2A, LMP2B, EBER1, EBER2, miRNAs - BHRF1 and BARTs	III
Diffuse large B cell lymphoma (DLBCL), HIV linked	EBNA1, EBER1, EBER2, and BART miRNAs or EBNA1, LMP1, LMP2A, EBER1, EBER2, and BART miRNAs or all transcripts	I or II or III
Primary effusion lymphoma (PEL)	EBNA1, EBER1, EBER2, and BART miRNAs	I
Plasmablastic lymphoma	EBNA1, EBER1, EBER2, and BART miRNAs	I
Table 2: Impact of EBV latent antigens on B-cell transformation and subsequent lymphoma development

EBV latent proteins	Function related to B-cell lymphomagenesis
EBNA1	Regulates viral DNA replication and transcription of a number of viral and cellular genes; facilitates p53 degradation and thereby promotes overall oncogenesis.
EBNA2	One of the key viral transcription factors. In association with EBNALP, EBNA2 regulates transcription of several viral and cellular gene expressions; essential for B-cell transformation.
EBNALP	Transcriptional co-activator of EBNA2 mediated transcription of both viral and cellular genes; bypasses cell innate immune response; essential for B-cell transformation.
EBNA3A	Along with EBNA3C, repress BIM and p14, p15, p16 and p18 gene transcription through epigenetic regulation; inhibits B-cell to plasma cell differentiation; essential for B-cell transformation.
EBNA3B	Viral encoded tumor suppressor protein.
EBNA3C	Along with EBNA3A, repress BIM and p14, p15, p16 and p18 gene transcription through epigenetic regulation; facilitates G1-S and G2M transition of cell-cycle; hijacks ubiquitin-proteasomal pathway; inhibits p53, E3F1 and Bim mediated apoptosis; activates autophagy; essential for B-cell transformation.
LMP1	Functionally mimics CD40 signaling pathway; one of the major transcriptional regulator, constitutively activates NF-kB, JAK/STAT, ERK MAPK, IRF and Wnt signaling pathways; stimulates bcl-2 and a20 expression to block apoptosis; essential for B-cell transformation.
LMP2A	Functionally mimics BCR signaling pathway; blocks apoptosis; EBV latency regulation
LMP2B	Regulates LMP2A functions.
EBERs	Most abundant non-coding viral RNAs present in all form of latency programs; affect innate immune response and gene expressions; blocks PKR dependent apoptosis.
miRNAs	Transcribed from BART and BHRF1 loci; maintains latently infected B-cells through blocking cellular apoptosis.
