Draft genome sequences of ‘Candidatus Chloroploca asiatica’ and ‘Candidatus Viridilinea mediisalina’, candidate representatives of the Chloroflexales order: phylogenetic and taxonomic implications

Denis S. Grouzdev¹, Maria S. Rysina¹,³, Irina A. Bryantseva², Vladimir M. Gorlenko² and Vasil A. Gaisin¹*

Abstract
‘Candidatus Chloroploca asiatica’ B7–9 and ‘Candidatus Viridilinea mediisalina’ Kir15-3F are mesophilic filamentous anoxygenic phototrophic bacteria from alkaline aquatic environments. Both bacteria became available in the last few years and only in stable enrichment culture. In this study, we report the draft genomic sequences of ‘Ca. Chloroploca asiatica’ B7–9 and ‘Ca. Viridilinea mediisalina’ Kir15-3F, which were assembled from metagenomes of their cultures with a fold coverage 86.3x and 163.8x, respectively. The B7–9 (5.8 Mb) and the Kir15-3F (5.6 Mb) draft genome harbors 4818 and 4595 predicted protein-coding genes, respectively. In this article, we analyzed the phylogeny of representatives of the Chloroflexineae suborder in view of the appearance of new genomic data. These data were used for the revision of earlier published group-specific conserved signature indels and for searching for novel signatures for taxons in the Chloroflexineae suborder.

Keywords: Chloroflexi, Chloroflexales, Chloroploca asiatica, Viridilinea mediisalina, Anoxygenic phototrophic bacteria

Introduction
It is difficult to study the mesophilic representatives of filamentous anoxygenic phototrophic (FAP) bacteria (bacteriochlorophyll-based phototrophic Chloroflexota), as maintaining mesophiles in axenic culture and isolating them are challenging. In fact, over the course of four decades of study on FAP bacteria, stable axenic culture of only Oscillochloris trichoides DG-6 has been described [1]. Therefore, a description of the mesophiles in enrichment cultures are common in studies [2–6]. However, the approach based on studying the enrichment cultures limits research in frame of morphological observations and rough ecophysiological characterization. Nonetheless, enrichment culture allows for genome sequencing of a target bacterium with high efficiency. Recently, a new mesophilic FAP representative was described in stable highly enriched cultures [5]. Here, we report the results of a genomic study of ‘Candidatus Chloroploca asiatica’ B7–9 and a new bacterium, ‘Candidatus Viridilinea mediisalina’ Kir15-3F. A partial description of the latter one has been published for the first time. We have assembled high-quality draft genomes of both FAP bacteria. The extended examination into the genomic data was focused on the phylogeny of the Chloroflexineae suborder and its taxonomic implications. The new genomic data will help to extend our knowledge about the phylogenetic and functional diversity of FAB bacteria, which is highly limited to date.

Organism information
Classification and features
A description of the bacterium ‘Ca. Chloroploca asiatica’ was published in 2014 [5]. A partial description of bacterium the ‘Ca. Viridilinea mediisalina’ was published in this article. Both bacteria are FAP Chloroflexota bacteria isolated from alkaline environments in Eastern Siberia.
The B7–9 was isolated from the Doroninskoe soda lake [5], and the Kir15-3F was isolated from the Kiran soda lake. The bacteria were described in stable enrichment cultures. A summary of the key features of ‘Ca. Chloroploca asiatica’ and ‘Ca. Viridilinea mediasalina’ is provided in Tables 1 and 2, respectively. Both bacteria have a multicellular filamentous morphology. However, ‘Ca. Chloroploca asiatica’ forms short filaments (Fig. 1a) whereas ‘Ca. Viridilinea mediasalina’ forms long typical Oscillochloris-like filaments (Fig. 1b). The common morphological properties of both bacteria are: a monoderm-type cell envelope, gas vesicles, chlorosomes,

Table 1 Classification and general characteristics of ‘Ca. Chloroploca asiatica’ B7–9 [25]

MIGS ID	Property	Term	Evidence code
	classification	Domain: Bacteria	TAS [26]
		Phylum: Chloroflexa	TAS [27–29]
		class: Chloroflexia	TAS [14, 30]
		Order: Chloroflexales	TAS [14, 30]
		Family: incertae sedis	IDA
		Genus: ‘Ca. Chloroploca’	TAS [5]
		Species: ‘Ca. Chloroploca asiatica’	TAS [5]
	strains	Strain B7–9	TAS [5]
	Gram stain	Negative	TAS [5]
	Cell shape	Filaments	TAS [5]
	Motility	Motile	TAS [5]
	Sporulation	Not reported	NAS
	Temperature range	Not determined	TAS [5]
	Optimum temperature	25–32 °C	TAS [5]
	pH range; Optimum	Not determined; 8.0	TAS [5]
	Carbon source	Not determined	TAS [5]
	Habitat	Soda lakes	TAS [5]
	Salinity	Halotolerant	IDA
	Oxygen requirement	Anaerobic	IDA
	Biotic relationship	Free-living	IDA
	Pathogenicity	Non-pathogen	NAS
	Geographic location	Russia/East Siberia	IDA
	Sample collection	September 2015	IDA
	Latitude	50.332958	IDA
	Longitude	106.851128	IDA
	Altitude	Not determined	IDA

Table 2 Classification and general characteristics of ‘Ca. Viridilinea mediasalina’ Kir15-3F [25]

MIGS ID	Property	Term	Evidence code
	classification	Domain: Bacteria	TAS [26]
		Phylum: Chloroflexa	TAS [27–29]
		class: Chloroflexia	IDA
		Order: Chloroflexales	IDA
		Family: incertae sedis	IDA
		Genus: ‘Ca. Viridilinea’	IDA
		Species: ‘Ca. Viridilinea mediasalina’	IDA
	strains	Strain Kir15-3F	IDA
	Gram stain	Not determined	IDA
	Cell shape	Filaments	IDA
	Motility	Motile	IDA
	Sporulation	Not reported	NAS
	Temperature range	Not determined	NAS
	Optimum temperature	Not determined	NAS
	pH range; Optimum	Not determined; 8.0	NAS
	Carbon source	Not determined	NAS
	Habitat	Soda lakes	NAS
	Salinity	Halotolerant	NAS
	Oxygen requirement	Anaerobic	NAS
	Biotic relationship	Free-living	NAS
	Pathogenicity	Non-pathogen	NAS
	Geographic location	Russia/East Siberia	NAS
	Sample collection	September 2015	NAS
	Latitude	50.332958	NAS
	Longitude	106.851128	NAS

*Evidence codes - IDA: Inferred from Direct Assay; TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are from the Gene Ontology project [31, 32].

polyphosphate-like inclusions and motility (presumably gliding). Both bacteria are supposedly obligate anaerobic anoxygenic phototrophs because they do not grow in the upper part of the agar column and in the dark. Moreover, both bacteria are mesophiles and exhibit the best growth under alkaline conditions.

Phylogenetic analysis based on the concatenated amino acid sequences of the core proteins revealed that ‘Ca. Chloroploca asiatica’ B7–9 and ‘Ca. Viridilinea mediasalina’ Kir15-3F are closest relatives to each other (Fig. 2). The closest taxonomically defined representative for the clade of both bacteria is the mesophilic bacterium O. trichoides DG-6. However, the closest relative is ‘Ca. Chloranaerofilum corporosum,’ whose population has
been detected in the Mushroom hot spring [7]. All four bacteria were assigned to the *Chloroflexales* order, which encompasses all representatives of the FAP bacteria. However, the complete taxonomic position of *Ca. Chloroploca asiatica* and *Ca. Viridilinea mediisalina* as well as *Ca. Chloranaerofilum corporosum* remains unclear.

Chemotaxonomic data

Bacteriochlorophyll *c* is the main phototrophic pigment of both *Ca. Chloroploca asiatica* and *Ca. Viridilinea mediisalina,* and bacteriochlorophyll *a* is found in trace amounts [5].

Genome sequencing information

Genome project history

The study of *Candidatus Chloroploca asiatica* B7–9 and *Candidatus Viridilinea mediisalina* Kir15-3F was conducted as part of the collaborative project of the Laboratory of Molecular Diagnostics and Laboratory of Ecology and Geochemical Activity of Microorganisms at the Research Center for Biotechnology RAS (Moscow, Russian Federation). Attempts to isolate the axenic culture of both bacteria have not been successful. Therefore, to further study these bacteria, a strategy based on metagenomic sequencing of their highly enriched culture...
was used. We assembled a high-quality draft genome sequence of the target bacteria with a fold coverage of more than 86.3×. The draft genome sequences have been deposited in GenBank under the accession numbers LYXE00000000.1 and NQWI00000000.1 for B7–9 and Kir15-3F, respectively. The main project information is summarized in Table 3.

Growth conditions and genomic DNA preparation
‘Ca. Chloroploca asiatica’ B7–9 was grown in an agar medium described previously [5] in glass tubes at 27 °C in the light (3100 lx). The bacterium forms spherical colonies, which were used for isolation of the total genomic DNA. In the first step, the colonies were collected from the agar into a 2.0-ml screw-cap microcentrifuge tube containing 375 μl of TE buffer (containing 10 mM Tris and 1 mM EDTA) and 1-mm glass beads to make a total volume of about 500 μl. The microcentrifuge tube was treated using a Mini-Beadbeater (Biospec) until two to three cells were observed to have formed filaments under the microscope. The 475 μl suspension was transferred to a 1.5-ml microcentrifuge tube, to which 25 μl of 100 mM Dithiothreitol was added, mixed and incubated for 100 min at 65 °C. Following this, add 100 μl of 10% Sodium dodecyl sulfate and 5 μl Proteinase K (20 mg/mL). were added, mixed in, and incubated for 60 min at 37 °C. Next, 160 μl of Cetrimonium bromide (CTAB) solution (containing 5% CTAB and 0.35 M NaCl) was added, mixed, and incubated for 10 min at 65 °C. The solution was allowed to cool down to room temperature, after which 700 μl of chloroform was mixed in carefully and the solution was spun for 10 min in a microcentrifuge. The upper phase was transferred to a fresh microcentrifuge tube and the interface was left behind. These procedures were repeated with chloroform, and then the upper phase was transferred to a fresh tube. Isopropanol (0.6 vol.) was added to precipitate the DNA. The precipitated DNA was washed with 70% ethanol, briefly dried, and redissolved in MQ water.

‘Ca. Viridilinea mediisalina’ Kir15-3F was grown on agar that covered the bottom of a 50-ml vial filled with liquid medium consisting of the following mix (per litre): KH₂PO₄ (0.20 g), NH₄Cl (0.20 g), MgCl₂·6H₂O (0.20 g), KCl (0.30 g), NaCl (25.0 g), Na₂S₂O₃ (0.30 g), Na₂SO₄ (0.30 g), CaCl₂·2H₂O (0.05 g), NaHCO₃ (0.60 g), Na₂S·9H₂O (0.70 g), soytone (0.05 g), yeast extract (0.05 g), sodium acetate (0.10 g), trace element solution (1 mL) and Pfennig’s vitamin solution (1 mL). The final pH was adjusted to 9.0. The vial was incubated at 38 °C in the light (3800 lx). ‘Ca. Viridilinea mediisalina’ Kir15-3F was isolated from the biofilm at the bottom. The biofilm was collected for isolation of the genomic DNA, following the same protocol as described above for ‘Ca. Chloroploca asiatica’ B7–9.

Genome sequencing and assembly
The same method was used for sequencing of the total DNA from the cultures of both bacteria. The sequencing was performed at “I gene” LLC, Moscow, Russian Federation. A sequence library was constructed with the NEBNext DNA library prep reagent set for Illumina according to the manufacturer’s protocol. The 4,000,203 and 4,793,690 paired-end 150-bp reads were generated using Illumina Hiseq 2500 platforms for metagenomic sequences of the B7–9 and Kir15-3F culture, respectively. Raw sequences were assembled with SPAdes version 3.11.1 [8] and binning using MetaWatt version 3.5.3 [9]. The Chloroflexota genomes were uploaded to

Table 3	Project information		
MIGS ID	Property	‘Ca. Chloroploca asiatica’ B7–9	‘Ca. Viridilinea mediisalina’ Kir15-3F
MIGS 31	Finishing quality	Improved high-quality draft	Improved high-quality draft
MIGS-28	Libraries used	Illumina Standard shotgun library	Illumina Standard shotgun library
MIGS 29	Sequencing platforms	Illumina Hiseq 2500	Illumina Hiseq 2500
MIGS 31.2	Fold coverage	86.3x	163.8x
MIGS 30	Assemblers	SPAdes v. 3.11.1	SPAdes v. 3.11.1
MIGS 32	Gene calling method	RAST, PGAP	RAST, PGAP
Locus Tag	A9QQ2	CJ255	
Genbank ID	LYXE00000000.1	NQWI00000000.1	
GenBank Date of Release	12-OCT-2017	12-OCT-2017	
GOLD ID	Gp0236327	Gp0236326	
BIOPROJECT	PRJNA323704	PRJNA398606	
MIGS 13	Source Material Identifier	B7–9	Kir15-3F
Project relevance	Evolution of FAP bacteria	Evolution of FAP bacteria	
RAST [10] for overall characterization and were assessed for completeness and contamination using CheckM [11]. Finally, they were assembled into 166 and 291 contigs for ‘Ca. Chloroploca asiatica’ B7–9 (coverage, 86.3×) and ‘Ca. Viridilinea mediisalina’ Kir15-3F (coverage, 163.8×) bacterium, respectively.

Genome annotation
The assembled draft genomic sequences of ‘Ca. Chloroploca asiatica’ B7–9 and ‘Ca. Viridilinea mediisalina’ Kir15-3F were submitted to the NCBI Prokaryotic Genome Annotation Pipeline for annotation [12].

Genome properties
The properties of both genomes are summarized in Table 4. The assignment of genes to COG functional categories is presented in Table 5. The properties and statistics of both genomes are summarized in Table 4. The assignment of genes to COG functional categories is presented in Table 5.

Table 4 Genome statistics

Attribute	‘Ca. Chloroploca asiatica’ B7–9	‘Ca. Chloroploca asiatica’ B7–9	‘Ca. Viridilinea mediisalina’ Kir15-3F	‘Ca. Viridilinea mediisalina’ Kir15-3F
Genome size (bp)	5,817,919	100.00	5,888,620	100.00
DNA coding (bp)	5,229,318	89.88	4,851,981	86.82
DNA G + C (bp)	3,421,494	58.81	3,241,714	58.01
DNA scaffolds	166	100.00	291	100.00
Total genes	4878	100.00	4657	100.00
Protein coding genes	4818	98.77	4595	98.67
RNA genes	60	1.23	62	1.33
Pseudo genes	–	–	–	–
Genes in internal clusters	1117	22.90	1081	23.21
Genes with function prediction	3518	72.12	3234	69.44
Genes assigned to COGs	2634	54.00	2356	50.59
Genes with Pfam domains	3550	72.78	3264	70.09
Genes with signal peptides	171	3.51	139	2.98
Genes with transmembrane helices	1371	28.11	1127	24.20
CRISPR repeats	95	445	–	–

Insights from the genome sequence
The draft genomes reported here and the recently published partial genomic sequence of ‘Ca. Chloranaerofilum corpororum’ [13] provide a detailed picture of the evolutionary relationships among chlorosome-containing representatives. Recently, it was proposed that the Chloroflexineae order be divided into two suborders: Roseiflexineae and Chloroflexineae. It was proposed that the first one encompasses chlorosome-lacking Roseiflexus spp., whereas the other one encompasses all the chlorosome-containing representatives of the order [14]. This suggestion based on the obvious morphophysiological differences is strongly supported by the results of genomic analysis [15]. However, the taxonomic hierarchy within Chloroflexineae is not so clear, and this is why it was a subject of the current analysis.

Group-specific conserved signature indels
In the first step, we analyzed the previously proposed specific conserved signature indels (CSIs) [14]. Analysis revealed that ‘Ca. Chloroploca asiatica’ B7–9, ‘Ca. Viridilinea mediisalina’ Kir15-3F and ‘Candidatus Chloranaerofilum corpororum’ have Chloroflexineae-specific insertions in a Phage SPO1 DNA pol-like protein, nucleoside diphosphate kinase, translation initiation factor-2, threonine synthase, ArsA and the acetolactate synthase large subunit, which have been reported previously [14]. Thus, this finding confirms that the bacteria belong to the Chloroflexineae suborder. However, the new chlorosome-containing FAP bacteria do not have specific inserts in the protein sequences of a nucleotide sugar dehydrogenase (Additional file 1: Figure S1a). Moreover, the new representatives have specific insertion in the magnesium-protoporphyrin IX monomethyl ester cyclase proteins (Additional file 1: Figure S1b) that were earlier proposed to be Chloroflexus-specific CSIs [14]. Thus, the new genomic data indicate that the CSIs based on the nucleotide sugar dehydrogenase and magnesium-protoporphyrin IX monomethyl ester cyclase proteins must be eliminated from the taxonomic description.

In the second step, we identified new specific CSIs for the studied bacteria ‘Ca. Chloroploca asiatica’ B7–9, ‘Ca. Viridilinea mediisalina’ Kir15-3F and ‘Candidatus Chloranaerofilum corpororum’: specifically, CSIs for phosphoglycerate kinase, heat-inducible transcription repressor, and UMP kinase were identified (Additional file 1: Figure S2a-c). Moreover, some of the new CSIs were found to be common to both the new bacteria and O. trichoides DG-6: these were threonine synthase and glutamate 5-kinase (Additional file 1: Figure S3a and b). The new CSIs are shown in Table 6.

Phylogeny of the Chloroflexineae suborder
The concatenated core protein tree has strong bootstrap support for the observed branching (Fig. 2), with the chlorosome-containing FAP bacteria represented as a
Strains of the *Chloroflexus* genus form a clade that is clearly separated from the other representatives of the suborder (Fig. 2). This branching has congruence with the morphological and ecophysiological uniformity of *Chloroflexus* strains, which are thermophilic photoheterotrophs capable of respiration in the dark [16–18]. Genomes of the *Chloroflexus* strains contain genes of the autotrophic 3-hydroxypropionate CO₂ fixation cycle (3-OHP cycle), the activity of which was demonstrated in the OK-70-fl strain [19]. At the moment, only thermophilic *Chloroflexus* species form the *Chloroflexaceae* family. A mesophilic *Chloroflexus*-like bacterium, called *Cfl. aurantiacus* var. *mesophilus*, was identified based on its morphological properties [20]. However, since 16S rRNA gene sequence and other sequencing data are absent, it is highly likely that this bacterium does not belong to the 16S rRNA *Chloroflexus* clade.

The next two clades were formed by genera represented by a single species. The first clade, which is comprised of the halophilic bacterium *Ca. Chlororhithrix halophila*, forms a deeply branched lineage within the chlorosome-containing group in accordance with the protein phylogenetic tree (Fig. 2). It was speculated earlier that significant deep branching of a protein tree can be the result of adaptation to halophilic conditions [15]. This led to the preferential use of the 16S phylogeny, but this created contradictions in the protein tree. This explains the difficulty with using the CSI approach for this bacterium. However, *Ca. Chlororhithrix halophila* clearly formed an external deeply branched lineage in the current core protein tree (Fig. 2). Moreover, this bacterium has a 14–18% dissimilarity, which represents the greatest distance from other representatives of the *Chloroflexiniae* suborder according to a comparison of the 16S rRNA sequences. The bacterium *Ca. Chlororhithrix halophila* shows preference for halophilic conditions, which is a unique characteristic among the described FAP bacteria [3]. The halophilic preference, combined with the results of phylogenetic analysis and cell ultrastructure, indicate that the *Chloroflexiniae* suborder encompasses the *Chloroflexus* strains, *Ca. Chloranaerofilum corporosum,* ‘*Ca. Chlororhithrix halophila,* O. trichoides,* Ca. Chloroploca asiatica’ and *Ca. Viridilinea mediisalina* i.e., all the chlorosome-containing FAP bacteria. Bacteria from the *Roseiflexiniae* suborder show ancestral relations to the representatives listed above [15]. The tree depicts three main clades within the *Chloroflexiniae* suborder: the clade of closely related *Chloroflexus* species, the ‘*Ca. Chlororhithrix halophila*’ clade and the clade containing the deeply branched lineages ‘*Ca. Chloranaerofilum corporosum,* O. trichoides,* Ca. Chloroploca asiatica’ and ‘*Ca. Viridilinea mediisalina*’.

Code	‘Ca. Chloroploca asiatica’ B7–9	‘Ca. Viridilinea mediisalina’ Kir15–3F	Description	
J	178	6.05	178	6.79
A	–	–	–	–
K	163	5.54	144	5.49
L	105	3.57	110	4.19
B	2	0.07	1	0.04
D	43	1.46	36	1.37
V	74	2.52	81	3.09
T	215	7.31	248	9.45
M	225	7.65	207	7.89
N	24	0.82	24	0.91
U	29	0.99	32	1.22
O	140	4.76	136	5.18
C	193	6.56	154	5.87
G	198	6.73	135	5.03
E	254	8.64	202	7.70
F	83	2.82	69	2.63
H	191	6.50	163	6.21
I	128	4.35	104	3.96
P	250	8.64	202	7.70
Q	61	2.07	39	1.49
R	307	10.44	280	10.67
S	127	4.32	110	4.19
–	2244	46.00	2301	49.41

The total is based on the total number of protein coding genes in the genome.
The third clade was formed by *O. trichoides* and the recently described bacteria *Ca. Chloranaerofilum corporosum*, *Ca. Chloroploca asiatica* and *Ca. Viridilinea mediisalina*. The bacterium *O. trichoides* DG-6 is a type genus and species for Oscillochloridaceae family [21]. Main specific features of the *O. trichoides* strains are mesophilic lifestyle, the presence of gas vesicles, autotrophic Calvin cycle CO₂ fixation (the 3-OHP cycle is absent), and of nitrogen fixation. It was proposed that Chloronema species belonged to the Oscillochloridaceae family [14], but physiological and sequence data for this species belonged to the Chloronema; *O. trichoides* has some common features with the Chloroflexineae and *Chloranaerofilum* fungorum, such as their mesophilic features, the presence of gas vesicles, motility, and inability for growth in aerobic conditions and in the dark [1, 5]. However, the closest relative to both new bacteria is the probably thermophilic bacterium *Ca. Chloranaerofilum corporosum* (Fig. 2). The delineation of the subclades *Chloroploca*+*Viridilinea* and *Ca. Chloranaerofilum corporosum*’ from *O. trichoides* is supported by the CSIs identified (Additional file 1; Figure S2a-c). Additionally, the three recently described bacteria have 3-OHP cycle genes and lack Calvin cycle genes.

The deep divergence between the subclades *O. trichoides* and *Chloroploca*+*Viridilinea* was supported by the results of an analysis of the average amino acid identity and percentage of conserved proteins. AAI was calculated using a web-based tool [22], and PCOP was calculated using a script described previously with some modifications [23]. The modified script was published at figshare.com [24]. The results for *Ca. Chloranaerofilum corporosum* should be considered carefully because of the low completeness of the genome (64%) [7], which could lead to misinterpretation, particularly with regard to PCOP. The AAI values for *Ca. Chloranaerofilum corporosum* could be overestimated due to the presence of ambiguous amino acids. The 2999 “X” residues were found in a set of all proteins from the genome. Therefore, we will further focus on AAI and PCOP in the comparison of the subclades *O. trichoides* and *Chloroploca*+*Viridilinea*.

On the one hand, the highest AAI value, about 67, was found for *Ca. Chloroploca asiatica*; *Ca. Viridilinea mediisalina* and *Ca. Chloranaerofilum corporosum* (Fig. 3). On the other hand, the values between the subclades *O. trichoides* and *Chloroploca*+*Viridilinea* were about 63, which is close to the interfamil values for the Chloroflexaceae and Oscillochloridaceae families (61.6–62.5). Moreover, the PCOP values were close to those between the subclades *O. trichoides* and *Chloroploca*+*Viridilinea* (57.9–58.0) and between the clades of the Chloroflexaceae and Oscillochloridaceae families (60.0–63.1). These results provide evidence that the listed subclades have significant phylogenetic divergence which corresponds to family-level difference within Chloroflexineae suborder.

The low genomic completeness of the bacterium *Ca. Chloranaerofilum corporosum* limited the pan-genomic comparison and search for CSIs. Nonetheless, it is clear

Table 6 CSIs that are specific for *O. trichoides*, *Ca. Chloranaerofilum corporosum*, *O. trichoides*, *Ca. Chloroploca asiatica* and *Ca. Viridilinea mediisalina*

Protein name	GI number	Indel size	Indel position	
Phosphoglycerate kinase	WP_044200294.1	1 aa	Ins	54–55
Heat-inducible transcription repressor HrcA	WP_006560707.1	1 aa	Ins	131–132
UMP kinase	WP_006562130.1	1 aa	Del	23
Threonine synthase	WP_006561465.1	1 aa	Del	304
Glutamate 5-kinase	WP_044201831.1	2 aa	Ins	65–66

Fig. 3 Results of the analysis of average amino acid identity (AAI) and percentage of conserved proteins (PCOP)
that this bacterium is the closest relative to the subclade ‘Chloroplaca + Viridilinea’, based on the results of the phylogenetic analysis and the common CSIs identified (Fig. 2, Additional file 1: Figure S2a-c). The phylogenetic distance is significant according to both the core protein tree and 16S rRNA phylogeny. Importantly, ‘Ca. Chloronaerofilum corporosum’ has distinctive ecophysiological and morphological features. The bacterium forms a native population within the 52.5 °C temperature zone of the Mushroom hot spring [13]. Additionally, gas vesicles were not shown. However, the features were described using environmental observations, and therefore, experimental verification is required. At the moment it is difficult to make an exact taxonomic proposal: Does ‘Chloroplaca + Viridilinea’ represent a new family within the Chloroflexineae suborder or not?

Conclusions

Comparative analysis of the new genome of recently described chlorosome-containing FAP bacteria exhibits a trend towards the segregation of new families within the Chloroflexineae suborder. If representatives of the Chloroflexaceae family show phylogenetic uniformity, other bacteria from the Chloroflexineae suborder significantly diverge from each other. The observed ‘phylogenetic jumps’ among lineages within the Chloroflexineae suborder could reflect high underestimation of the genomic diversity of FAP bacteria.

Additional file

Additional file 1: Figure S1. Previously reported CSIs: nucleotide sugar dehydrogenase (a) and magnesium-protoporphyrin IX monomethyl ester cyclase (AcfF) proteins (b). Figure S2. CSIs which specific for ‘Ca. Chloroplaca asiciatica’ B7–9. ‘Ca. Viridilinea medio salina’ Kir15-3F and ‘Candidatus Chloranaerofilum corporosum’ phosphoglycerate kinase (a), heat-inducible transcription repressor (b), UMP kinase (c). Figure S3. CSIs which specific for ‘Ca. Chloroplaca asiciatica’ B7–9. ‘Ca. Viridilinea medio salina’ Kir15-3F, ‘Candidatus Chloranaerofilum corporosum’ and O. trichoides DG-6 threonine synthase (a) and glutamate 5-kinase (b). (PDF 1652 kb)

Abbreviation

FAP: filamentous anoxygenic phototrophic

Acknowledgements

We are grateful to Yulia Ahtintelina and Alexander Mazur, ‘1 gene’ LLC, Moscow, Russian Federation, for their assistance with genome sequencing.

Funding

This study was supported by the Russian Foundation for Basic Research (research projects № 16-34-60071 and 16-34-00835).

Authors’ contributions

DSG analyzed the genomes and CSIs. MSR worked on sequence assembling and binning. IAB cultivated the bacterium ‘Ca. Chloroplaca asiatica’. VMG supervised and coordinated the entire project. GVA wrote the manuscript, isolated bacterial DNA and cultured the bacterium ‘Ca. Viridilinea medio salina’. DSG, VMG and GVA discussed the results and implications reported here. All authors commented on the manuscript before submission. All authors have read and approved the final manuscript.

Authors’ information

You can address your queries about the technical details of the sequencing and analysis of genomic sequences to Denis Grouzdev (denisgrouzdev@gmail.com).

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details

1 Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation. 2 Vilnius University, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation. 3 Moscow Institute of Physics and Technology, Moscow, Russian Federation.

Received: 6 December 2017 Accepted: 28 September 2018

Published online: 11 October 2018

References

1. Keppen OI, Paulina OL, Kondratieva EN. Oscillochloris trichoides neotype strain DG-6. Photosynth Res. 1994;41:29–33.
2. Gich F, Airs RL, Danielsen M, Keeby BJ, Abella CA, García-Gil J, et al. Characterization of the chlorosome antenna of the filamentous anoxygenic phototrophic bacterium Chloronema sp. strain UdG9001. Arch. Microbiol. 2003;180:417–26.
3. Klappenbach JA, Pierson BK. Phylogenetic and physiological characterization of a filamentous anoxygenic photoautotrophic bacterium ‘Candidatus Chlorothrix halophila’ gen. Nov., sp. nov., recovered from hypersaline microbial mats. Arch. Microbiol. 2004;181:17–25.
4. Barriès L, Gich F, Martínez-Medina M, Miller M, Abella CA, Borengo CM. New phylotypes of mesophilic filamentous anoxygenic phototrophic bacteria enriched from sulfide-containing environments. Environ Microbiol Rep. 2009;1:86–93.
5. Gorlenko VM, Bryantseva IA, Kalashnikov AM, Gaisin VA, Sukhacheva MV, Grouzdev DS, et al. ‘Candidatus Chloroplaca asiatica’ gen. Nov., sp. nov., a new mesophilic filamentous anoxygenic phototrophic bacterium. Microbiology. 2014;163:838–48.
6. Pierson BK, Valdez D, Larsen M, Morgan E, Mack EE. Chloroflexus-like organisms from marine and hypersaline environments: distribution and diversity. Photosynth Res. 1994;41:35–52.
7. Thiel V, Hugler M, Ward DM, Bryant DA. The dark side of the mushroom spring microbial mat: life in the shadow of chlorophototrophs. II Metabolic functions of abundant community members predicted from metagenomics analyses. Front Microbiol. 2017;8:943.
8. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.
9. Strous M, Kraft B, Bisdorf R, Tegetmeyer HE. The binning of metagenomic contigs for microbial physiology of mixed cultures. Front Microbiol. 2012;3:1–11.
10. Aziz RK, Bartels D, Best AA, DeLong M, Disz T, Edwards RA, et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics. 2008;9:75.
11. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.
12. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 2016;44:6614–24.
13. Tank M, Thiel V, Ward DM, Bryant DA. A Panoply of phototrophs: an overview of the thermophilic Chlorophototrophs of the microbial Mats of alkaline siliceous Hot Springs in Yellowstone National Park, WY, USA. In: Hallenbeck P, editor. Modern topics in the phototrophic prokaryotes. Cham: Springer; 2017. p. 87–137.
14. Gupta RS, Chander P, George S. Phylogenetic framework and molecular signatures for the class Chloroflexi and its different clades; proposal for division of the class Chloroflexi. Nov. in the suborder Chloroflexineae
subord. Nov., consisting of the emended family Oscillochloridaceae and the family Chloroflexaceae fam. Nov., and the suborder Roseiflexineae subord. Nov., containing the family Roseiflexaceae fam. Nov. Antonie Van Leeuwenhoek. 2013;103:99–119.

15. Grouzdev DS, Kuznetsov BB, Keppen OI, Krasilnikova EN, Lebedeva NV, Ivanovsky RN. Reconstruction of bacteriochlorophyll biosynthesis pathways in the filamentous anoxygenic phototrophic bacterium Oscillochloris trichoides DG-6 and evolution of anoxygenic phototrophs of the order Chloroflexales. Microbiology. 2014;161:120–30.

16. Pierson BK, Castenholz RW. A phototrophic gliding filamentous bacterium of hot springs, Chloroflexus aurantiacus, gen. And sp. nov. Arch. Microbiol. 1974;1005–24.

17. Hanada S, Hiraiishi A, Shimada K, Matsuru K. Chloroflexus aggregans sp. nov., a filamentous phototrophic bacterium which forms dense cell aggregates by active gliding movement. Int. J Syst Bacteriol. 1995;45:676–81.

18. Gaisin VA, Kukashnikov AM, Grouzdev DS, Sukhacheva MV, Kuznetsov BB, Gorlenko VM. Chloroflexus islandicus sp. nov., a thermophilic filamentous anoxygenic phototrophic bacterium from geyser Strokkur (Iceland). Int J Syst Evol Microbiol. 2017;67:1381–6.

19. Zarzycki J, Brecht V, Müller M, Fuchs G. Identifying the missing steps of the autotrophic 3-hydroxypropionate CO₂ fixation cycle in Chloroflexus aurantiacus. Proc Natl Acad Sci U S A. 2009;106:21317–22.

20. Gorlenko VM. Characteristics of filamentous phototrophic bacteria from freshwater lakes. Mikrobiologiya. 1975;44:756–8.

21. Keppen OI, Tourova TP, Kuznetsov BB, Ivanovsky RN, Gorlenko VM. Proposal of Oscillochloridaceae fam. nov. on the basis of a phylogenetic analysis of the filamentous anoxygenic phototrophic bacteria, and emended description of Oscillochloris and Oscillochloris trichoides in comparison with further new isolates. Int J Syst Evol Microbiol. 2000;50:1529–37.

22. Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. Peer J Prepr. 2016. https://doi.org/10.7287/peerj.preprints.1900v1.

23. Harris HMB, Bourin MJ, Claesson MJ, O'Toole PW. Phylogenomics and comparative genomics of Lactobacillus salivarius, a mammalian gut commensal. Microb Genomics. 2017. https://doi.org/10.1099/mgen.0.000115.

24. Pantulik K, Grouzdev D. POPC-matrix calculation for a number of genomes. Figshear. 2017. https://doi.org/10.6084/m9.figshare.4577953.v1.

25. Field D, Garrity G, Gray T, Morrison N, Selengut J, Sterk P, et al. The minimum information about a genome sequence (MIGS) specification. Nat. Biotechnol. 2008;26:541–7.

26. Woese CR, Oren A, Garrity GM, Rainey FA, Rosselló-Móra R, Schink B, et al. Proposal to include the rank of phylum in the international code of nomenclature of prokaryotes. Int J Syst Evol Microbiol. 2018;68:967–9.

27. Validation List No. 85: Validation of publication of new names and new combinations previously effectively published outside the ISEM. Int J Syst Evol Microbiol. 2002;52:4576–90.

28. Oren A, Da Costa MS, Garrity GM, Rainey FA, Rosselló-Móra R, Schink B, et al. Proposal to include the rank of phylum in the international code of nomenclature of prokaryotes. Int J Syst Evol Microbiol. 2015;65:4284–7.

29. Whitman WB, Oren A, Chusovchina M, da Costa MS, Garrity GM, Rainey FA, et al. Proposal of the suffix -ota to denote phyla. Addendum to ‘proposal to include the rank of phylum in the international code of nomenclature of prokaryotes’. Int J Syst Evol Microbiol. 2018;68:967–9.

30. Oren A, Garrity GM. List of new names and new combinations previously effectively but not validly published. Int J Syst Evol Microbiol. 2013;63:1577–80.

31. Consortium TGO. Gene ontology: tool for the unification of biology. Nat Genet. 2000;25:25–9.

32. Carbon S, Dietze H, Lewis SE, Mungall CJ, Munoz-Torres MC, Basu S, et al. Expansion of the gene ontology knowledgebase and resources: the gene ontology consortium. Nucleic Acids Res. 2017;45:D331–8.