Spin-orbit induced mixed-spin ground state in RNiO$_3$ perovskites probed by XAS: new insight into the metal to insulator transition

C. Piamonteze,1,2 F. M. F. de Groot,3 H. C. N. Tolentino,1 A. Y. Ramos,1,4 N. E. Massa,5 J. A. Alonso,6 and M. J. Martínez-Lope6

1Laboratário Nacional Luz Síncrotron, Caixa Postal 6192, 13084-971, Campinas/SP, Brazil
2IFGW/UNICAMP, 13083-970, Campinas/SP, Brazil
3Department of Inorganic Chemistry and Catalysis, Utrecht University, Sorbonnelaan 16, 3584 CA, Utrecht, The Netherlands
4LMCP - CNRS, Université de Paris 6, Paris, France
5Laboratorio Nacional de Investigación y Servicios en Espectroscopía Óptica, Centro CEQUINOR, UNLP, 1900 La Plata, Argentina
6Instituto de Ciencia de Materiales de Madrid, C.S.I.C, Cantoblanco, E-28049 Madrid, Spain

(Dated: 2nd October 2018)

We report on a Ni L$_{2,3}$ edges x-ray absorption spectroscopy (XAS) study in RNiO$_3$ perovskites. These compounds exhibit a metal to insulator (MI) transition as temperature decreases. The L$_3$ edge presents a clear splitting in the insulating state, associated to a less hybridized ground state. Using charge transfer multiplet calculations, we establish the importance of the crystal field and 3d spin-orbit coupling to create a mixed-spin ground state. We explain the MI transition in RNiO$_3$ perovskites in terms of modifications in the Ni$^{3+}$ crystal field splitting that induces a spin transition from an essentially low-spin (LS) to a mixed-spin state.

PACS numbers: 61.10.Ht, 71.30.+h, 75.10.Dg, 75.25.+z

Keywords: x-ray absorption spectroscopy, XAS, metal-insulator transition, charge transfer multiplet theory

Rare-earth nickel perovskites (RNiO$_3$, R=rare earth) present a sharp well-defined metal to insulator (MI) transition as temperature decreases. The transition temperature, T_{MI}, increases with reducing the R ion size, which determines the degree of distortion of the structure. It was proposed that the gap opening would be due to a smaller Ni-O-Ni superexchange angle leading to a reduction of the bandwidth. However, non-negligible electron-phonon interactions and a shift in T_{MI} with oxygen isotope substitution evidenced the importance of modifications in Ni-O interatomic distances, suggesting a phonon assisted mechanism for conduction. As temperature decreases, these nickelates undergo a magnetic transition to an unusual antiferromagnetic order. The magnetic arrangement for the lighter R compounds (R=Pr, Nd, Sm, Eu) was refined with a single Ni moment (0.9μ_B) and required non-equivalent couplings among Ni ions to stabilize the structure. This is a quite unusual situation in an orthorhombic crystallographic structure whose Ni sites are all equivalent. For the heavier R compounds, Alonso et al. established a monoclinic distortion in the crystallographic structure leading to two different Ni sites with longer and shorter Ni-O distances alternating along the three axes. The antiferromagnetic structure was explained by a charge ordering defined among the different Ni sites, each one with different magnetic moments (1.4 and 0.7μ_B for YNiO$_3$). More recently, some evidences that the low temperature distortion is shared by all members of the RNiO$_3$ family were reported. Concerning the Ni local structure, our recent EXAFS results demonstrated the existence of two different Ni sites in all RNiO$_3$ compounds, regardless their long-range crystallographic structure.

From spectroscopic data together with configuration interaction calculations, Mizokawa et al. established for PrNiO$_3$ at room temperature a metallic ground state composed of 34%$3d^7+56%3d^8L+10%3d^9L^2$, where L stands for a ligand hole. Owing to the high degree of hybridization in the ground state, with hole-transfer from Ni$^{3+}$ to O$^{2-}$ orbitals, these compounds have been classified as self-doped Mott insulators. Such a mixed metallic ground state, mostly $3d^9L$, is compatible with a Ni$^{3+}$ low-spin configuration, because the amount of charge transfer for parallel spin almost equals that for antiparallel spin. However, the spectral shape in RNiO$_3$ compounds is very sensitive to the transition from metallic to insulating states and a complete description of the spin degree of freedom remains to be given. As in recent outcomes on Co$^{3+}$ oxides, where unconventional spin states exist due to the competition between crystal field splitting and effective 3d exchange interaction, assignments made so far about Ni$^{3+}$ in RNiO$_3$ compounds have to be reexamined.

We report here Ni L-edge absorption measurements, which probes directly the available Ni$^{3+}$ states, together with charge transfer multiplet calculations. We establish the importance of the crystal field and 3d spin-orbit coupling to create a mixed-spin ground state. We explain the MI transition in RNiO$_3$ perovskites in terms of modifications in the Ni$^{3+}$ crystal field splitting that localizes the electronic states and induces a spin transition from an essentially low-spin (LS) to a mixed-spin state, with a quite large contribution from a high-spin (HS) state.

Soft x-ray absorption measurements at the Ni L$_{2,3}$ edges were carried out at the SGM beamline of LNLS, Brazil, using a spherical grating monochromator with an
energy resolution of 0.8eV at 845eV. Data were collected at 300K and 96K using a liquid nitrogen cold finger. The bulk polycrystalline RNiO$_3$ (R=Pr, Nd, Eu, Y and Lu) samples were obtained by a wet-chemistry technique, as described elsewhere. The experimental spectra measured at 300K for LuNiO$_3$, YNiO$_3$, PrNiO$_3$ and PrNiO$_3$ are shown in figure 1. The MI transition for these compounds takes place at 599K, 582K, 200K and 130K, respectively. At 300K, NdNiO$_3$ and PrNiO$_3$ are at the metallic state whereas the other compounds are at the insulating state. For the insulators, a clear splitting is observed at the L$_3$ edge (\sim854eV), while for the metals this splitting is absent. Differences among spectra measured in the different electronic states are also noticeable at the L$_2$ edge (\sim872eV). PrNiO$_3$ and NdNiO$_3$ compounds spectra measured at 96K, when both are insulators, are analogous to those of R=Eu, Y and Lu at 300K, as shown by the splitting at the L$_3$ edge for the PrNiO$_3$ compound (inset fig.1). Such modifications in the experimental spectra, unambiguously associated to the MI transition, demonstrate that important changes take place at the Ni local electronic structure. As the spectral shape depends mostly if the compound is metal or insulator, we conclude that the short range scale electronic structure of all compounds shares a common basis.

To identify the electronic interactions accounting for the experimental data, charge transfer (configuration interaction) multiplet (CTM) calculations were carried out. The calculations take into account interactions between three configurations, 3d7, 3d8L and 3d9L2, in D_{4h} symmetry. A series of calculations varying the crystal field splitting parameter $10D_q$, keeping $D_e = 0.1eV$, $D_l = 0.2eV$ fixed, is presented in figure 2. The configuration interaction parameters are $\Delta = 0.5eV$, $U_{dd} - U_{pd} = -1eV$ and the transfer integrals $T(B_1) = T(A_1) = 2T(B_2) = 2T(E) = 2eV$. The calculations matching the best with the experimental spectra for the metallic compounds are those with $10D_q = 2.2eV$. The Ni$^{3+}$ metallic ground state turns out to be composed of 49%3d7+47%3d9L2+4%3d8L2. The relative proportions for the three configurations are in reasonable agreement with those found by Mizokawa et al. for metallic PrNiO$_3$. The slight difference can be partially ascribed to the way the ligand hole is treated in the codes. For the insulating compounds, a very good agreement with experiments is achieved by decreasing $10D_q$ down to 2.0 or 1.9eV. Such a decrease in $10D_q$ leads to a less hybridized ground state composed of 61%3d7+37%3d9L2+2%3d8L2.

Figure 3a shows the simulated spectrum for $10D_q = 1.9eV$ taking into account the l · s coupling, as in fig.2, while figure 3b shows the calculation without l · s coupling. The effect on the spectral shape is remarkable. The ground state without l · s coupling is a HS state, schematically represented in figure 3a. Figure 3c shows a calculation without l · s coupling, but when the initial state of the transition is the first excited state, which is a LS state, schematically represented in figure 3b. The energy difference between these two states is found to be $\sim 0.1eV$. Since the l · s coupling is of the same order, the insulating ground state turns out to be a mixing of LS and HS states. In addition, the calculation of the metallic state (fig.2a) is quite similar to that shown in fig.3, indicating that the LS state gives the main contribution to the metallic ground state. We conclude that the ground state composition is very sensitive to the spin-orbit (l · s) coupling and that modifications in the crystal field splitting ($10D_q$) change the relative contribution of both states to the mixed ground state.

The ground state (GS) can be decomposed into different symmetries that are mixed up by the l · s coupling:
\[\Psi_{GS} = \sum_{i;k+l+m+n=3} \alpha_i \left| a_{i1}^k b_{i1}^l c_{i1}^{m+n} \right> \\
+ \sum_{j;k'+l'+m'+n'=2} \alpha_j \left| a_{i1}^{k'} b_{i1}^{l'} c_{i1}^{m'+n'} \right \rangle \\
+ \sum_{p;k''+l''+m''+n''=1} \alpha_p \left| a_{i1}^{k''} b_{i1}^{l''} c_{i1}^{m''+n''} \right \rangle \]

In this expression, \(k + l + m + n, k' + l' + m' + n' \) and \(k'' + l'' + m'' + n'' \) are the number of \(d \) holes in \(3d^7, 3d^8L \) and \(3d^9L^2 \) configurations, respectively. The \(\alpha_i, \alpha_j, \) and \(\alpha_p \) values can be obtained as described by Wasinger et al.\(^{22}\). The contributions of these different symmetries to the ground state and to spin (\(S_z \)) and orbital angular (\(L_z \)) moments as function of \(10D_q \) are shown in figure 3. The labels in figure 3 refer to the distribution of the \(d \) holes among \(B_1, A_1, B_2 \), and \(E \) orbitals. At the metallic state, with \(10D_q = 2.2eV \), the ground state is composed of \(\sim 38\% \) \(B_1B_1A_1 \) (LS) and a small amount (\(\sim 8\% \)) of \(B_1A_1E \) (HS), the rest being charge transfer configurations. This leads to a net spin moment \(S_z \sim 0.5 \), in accordance with previous results that found a LS state for the metallic PrNiO\(_3 \). Despite of this strongly hybridized ground state, the expected value for \(S_z \) is close to the Ni\(^{3+} \) LS ionic value. The reason is essentially due to the charge transfer configurations. The amount of charge transfer with spin up (\(S_z = 1 \) from \(B_1A_1L \)) is compensated by that of spin down (\(S_z = 0 \) from \(B_1B_1L \)). The ground state transition takes place at \(10D_q = 2.1eV \), where we obtain the same contributions for HS and LS states, that is, the ground state is made of \(\sim 25\% B_1A_1E \) and of \(\sim 25\% B_1B_1A_1 \). The spin moment assumes an intermediate value \(S_z \sim 0.7 \). At the insulating state, with \(10D_q = 2.0eV \), the ground state is composed of \(\sim 46\% B_1A_1E \) (HS) and a small amount (\(\sim 9\% \)) of \(B_1B_1A_1 \) (LS), the complement coming from charge transfer configurations. This leads to a net spin moment \(S_z \sim 1.0 \). The mixed-spin state arises because these compounds are between the strong and weak field limit and also due to the strong hybridization that mixes the Ni\(3d \) and O2p orbitals. In case there would be no charge transfer at all, the high-spin to low-spin transition would take place over a crystal field range of less than 0.1 eV. So, it is due to the strong covalence that there is a gradual change from high-spin to low-spin ground state.

For the \(B_1B_1A_1 \) (LS) state, the electron coming from the O2p ligand band occupies the \(B_1 \) orbital, even though it has a higher energy than \(A_1 \), owing to the gain in exchange energy. So, \(B_1A_1L \) is the most important charge transfer configuration at the metallic state. On the other hand, for the \(B_1A_1E \) (HS) state, the ligand electron must occupy an orbital already filled and there is no gain in exchange energy. In this case, the ligand electron occupies the \(A_1 \) orbital, which is lower in energy than \(B_1 \) and has a transfer integral twice larger than for the \(E \) orbital. Moreover, the \(B_1B_1A_1 \) (LS) state has all its three holes in orbitals that have strong mixing with the O2p ligand band (\(A_1 \) and \(B_1 \) come from the e\(_g \) orbital in O\(_h \) symmetry), whereas the \(B_1A_1E \) (HS) state has a more localized hole in an \(E \) orbital that has less efficient overlap with the O2p ligand band. So, the increase of the HS component in the ground state and the decrease of the hybridization for smaller \(10D_q \) are related to each other.

The physical reason for a smaller \(10D_q \) at the insulat-
ing state originates in the coexistence of two nonequivalent Ni sites and overall increase of the average Ni-O bonding in all RNiO$_3$ compounds.2,8,9 Nonequivalent Ni sites coexist even at the metallic state11,12 and are compatible with a segregation into two phases, where a more localized electron phase is embedded in a conducting background.12 The MI transition takes place with the increase of the less hybridized phase related to the other. Alonso\textit{ et al.} found for the heavier RNiO$_3$ compounds, by refining neutron diffraction data in the monoclinic symmetry, an antiferromagnetic structure compatible with two nonequivalent moments. The smaller and larger Ni sites display magnetic moments of 0.7 and $1.4 \mu_B$, respectively. The values that we predict here for S_z are larger because the spin moment of the 3d elements retain most of their isolated ion properties in x-ray absorption spectroscopy. Owing to the short time scale in XAS essentially all electrons appear localized. Delocalized electrons should reduce these values in the solid. The same argument holds for the angular moment of the same argument holds for the angular moment of the same argument holds for the angular moment of the same argument holds for the angular moment of the angular moment of the L$_z$, which is normally quenched in these compounds. Even if somewhat overestimated, our predictions show that an important parameter controlling the properties of these compounds is the small splitting in distances, which leads to a different crystal field in each site. For the lighter RNiO$_3$ powder compounds, the long range structure has always been refined using a single Ni site and for that reason no such different spin values have been found. Recently, a monoclinic distortion was observed in thin films of NiNiO$_2$, questioning the orthorhombic symmetry obtained previously by neutrons. Our results show that the lighter and heavier RNiO$_3$ compounds are very similar from the point of view of the local electronic structure. Experimental spectra look very similar and depend only if the compound is insulator or metal. So, we believe that the same physics observed in the heavier RNiO$_3$ compounds may be involved in the lighter ones.

In conclusion, we presented experimental evidences of significant changes in the local electronic structure around Ni$^{3+}$ in RNiO$_3$ compounds. With the support of charge transfer multiplet calculations, we showed that, concomitantly with the metal to insulator transition, a decrease of the crystal field splitting leads to a ground state transition from an essentially LS to a mixed-spin ground state. The mixed-spin ground state is possible because the energy separation between HS and LS states is of the same order of the spin-orbit coupling. The smaller hybridization, intrinsic to the HS state, gives an explanation to the more localized character at the insulating regime. The existence of a mixed-spin state, involving both LS and HS states and also charge transfer configurations, shed new light in the understanding of the unusual antiferromagnetic order observed below T_N, which is still an open question.

Work partially supported by LNLS/ABTLuS. CP thanks FAPESP for the PhD grant. AYR thanks CNPq for the visiting scientist grant.

1. P. Lacorre, J. B. Torrance, J. Pannetier, A. I. Nazzal, P. W. Wang, and T. C. Huang, J. Solid State Chem. \textbf{91}, 225 (1991).
2. J. L. García-Muñoz, J. Rodríguez-Carvajal, P. Lacorre, and J. B. Torrance, Phys. Rev. B \textbf{46}, 4414 (1992).
3. J. B. Torrance, P. Lacorre, A. I. Nazzal, E. J. Ansald, and C. Niedermayer, Phys. Rev. B \textbf{45}, 8209 (1992).
4. N. E. Massa, J. A. Alonso, M. J. Martínez-Lope, and I. Rasines, Phys. Rev. B \textbf{56}, 986 (1997).
5. M. Medarde, P. Lacorre, K. Conder, F. Fauth, and A. Purcher, Phys. Rev. Lett. \textbf{80}, 2397 (1998).
6. J. L. García-Muñoz, J. Rodríguez-Carvajal, and P. Lacorre, Phys. Rev. B \textbf{50}, 978 (1994).
7. J. Rodríguez-Carvajal, S. Rosenkranz, M. Medarde, P. Lacorre, M. T. Fernández-Díaz, F. Fauth, and V. Trounov, Phys. Rev. B \textbf{57}, 456 (1998).
8. J. A. Alonso, J. L. García-Muñoz, M. T. Fernández-Díaz, M. A. G. Aranda, M. J. Martínez-Lope, and M. T. Casais, Phys. Rev. Lett. \textbf{82}, 3871 (1999).
9. J. A. Alonso, M. J. Martínez-Lope, M. T. Casais, J. L. García-Muñoz, and M. T. Fernández-Díaz, Phys. Rev. B \textbf{61}, 1756 (2000).
10. F. de la Cruz, C. Piamonteze, N. E. Massa, H. Salva, J. A. Alonso, M. J. Martínez-Lope, and M. T. Casais, Phys. Rev. B \textbf{66}, 153104 (2002).
11. C. Piamonteze, H. C. Tolentino, A. Y. Ramos, N. E. Massa, J. A. Alonso, M. J. Martínez-Lope, and M. T. Casais, phys.-ica Scripta, in press.
12. C. Piamonteze, H. C. Tolentino, A. Y. Ramos, N. E. Massa, J. A. Alonso, M. J. Martínez-Lope, and M. T. Casais, accepted to Phys. Rev. B
13. T. Mizokawa, A. Fujimori, T. Arima, Y. Tokura, N. Mori, and J. Akimitsu, Phys. Rev. B \textbf{52}, 13865 (1995).
14. T. Mizokawa, D. I. Khomskii, and G. A. Sawatzky, Phys. Rev. B \textbf{61}, 11263 (2000).
15. C. Piamonteze, H. C. Tolentino, F. C. Vicentin, A. Y. Ramos, N. E. Massa, J. A. Alonso, M. J. Martínez-Lope, and M. T. Casais, Surf. Rev. Lett. \textbf{9}, 1121 (2002).
16. Z. Hu et al., Phys. Rev. Lett. \textbf{92}, 207402 (2004).
17. I. A. Nekrasov et al., Phys. Rev. B \textbf{68}, 235113 (2003).
18. J. A. Alonso, M. J. Martínez-Lope, and I. Rasines, J. Solid State Chem. \textbf{120}, 170 (1995).
19. F. M. F. de Groot, J. Electron Spectrosc. Relat. Phenom. \textbf{67}, 529 (1994).
20. F. M. F. de Groot, Coor. Chem. Rev. (2004).
21. The multiplet program used considers the ligand hole as having d symmetry, whereas, cluster programs take into account the real p-ligand states.
22. E. C. Wasinger, F. M. F. de Groot, B. Hedman, K. O. Hodgson, and E. I. Solomon, J. Am. Chem. Soc. \textbf{125}, 12894 (2003).
23. J.-S. Zhou, J. B. Goodenough, B. Dabrowski, P. W. Kla- mut, and Z. Bukowski, Phys. Rev. B \textbf{61}, 4401 (2000).
24. U. Staub, G. I. Meijer, F. Fauth, R. Allemspach, J. G. Bednorz, J. Karpinski, and S. M. Kazadov, Phys. Rev. Lett. \textbf{88}, 126402 (2002).