Constraining the Age of a Magnetar Possibly Associated with FRB 121102

Xiao-Feng Cao1, Yun-Wei Yu2,3, and Zi-Gao Dai4,5

1 School of Physics and Electronics Information, Hubei University of Education, Wuhan 430205, China
2 Institute of Astrophysics, Central China Normal University, Wuhan 430079, China; yuyw@mail.ccnu.edu.cn
3 Key Laboratory of Quark and Lepton Physics (Central China Normal University), Ministry of Education, Wuhan 430079, China
4 School of Astronomy and Space Science, Nanjing University, Nanjing 210093, China
5 Key Laboratory of Modern Astronomy and Astrophysics (Nanjing University), Ministry of Education, Nanjing, China

Received 2017 January 23; revised 2017 March 30; accepted 2017 April 2; published 2017 April 13

Abstract

The similarity of the host galaxy of FRB 121102 with those of long gamma-ray bursts and Type I superluminous supernovae suggests that this fast radio burst (FRB) could be associated with a young magnetar. By assuming the FRB emission is produced within the magnetosphere, we derive a lower limit on the age of the magnetar, after which GHz emission is able to escape freely from the dense relativistic wind of the magnetar. Another lower limit is obtained by requiring the dispersion measure contributed by the electron/positron pair wind to be consistent with the observations of the host galaxy. Furthermore, we also derive some upper limits on the magnetar age with discussions on possible energy sources of the FRB emission and the recently discovered persistent radio counterpart. As a result, some constraints on model parameters are addressed by reconciling the lower limits with the upper possible limits that are derived with an assumption of the rotational energy source.

Key words: radio continuum: general – stars: magnetars – stars: neutron

1. Introduction

Fast radio bursts (FRBs) are mysterious radio transients that have been observed to have typical durations of a few milliseconds and fluxes of up to a few tens of Jansky at ~1 GHz (Lorimer et al. 2007; Thornton et al. 2013; Burke-Spolaor & Bannister 2014; Spitler et al. 2014; Ravi et al. 2015; Champion et al. 2016). Although their physical origin is unknown, FRBs are widely believed to come from cosmological distances in view of their anomalously high dispersion measures (DMs; ~300–1600 pc cm\(^{-3}\)) that are difficult to account for with Galactic high-latitude objects. Thus, the peak radio luminosity and total energy release of FRBs are estimated to be \(\sim 10^{42}–10^{43}\) erg s\(^{-1}\) and \(\sim 10^{39}–10^{40}\) erg, respectively (e.g., Bera et al. 2016; Cao et al. 2017).

According to the millisecond timescale and high energy release, on one hand, catastrophic collapses/mergers of compact star systems are often proposed to be responsible for FRBs, including collapses of supramassive neutron stars to black holes at several thousand to millions of years old (Falcke & Rezzolla 2014) or at birth (Zhang 2014), inspiral or mergers of double neutron stars (Totani 2013; Wang et al. 2016), mergers of binary white dwarfs (Kashiyama et al. 2013), mergers of charged black holes (Zhang 2016), and collisions of asteroids/comets with neutron stars (Geng & Huang 2015). On the other hand, in light of the coherent emission property, FRBs are often connected with some energetic activities of pulsars (more specifically, magnetars), such as giant flares of soft gamma-ray repeaters (Popov & Postnov 2010), synchrotron maser emission from relativistic, magnetized shocks due to magnetar flares (Lyubarsky 2014), supergiant pulses from pulsars (Cordes & Wasserman 2016), encounters of pulsars and asteroid belts (Dai et al. 2016), accretion onto a neutron star from its magnetized white dwarf companion (Gu et al. 2016), and pulsars suddenly “combed” by a nearby strong plasma stream (Zhang 2017). In addition, some exotic models have also been proposed, such as oscillations of superconducting cosmic string loops (Cai et al. 2012; Yu et al. 2014).

More observational constraints are undoubtedly necessary for distinguishing between these models. An important clue has been provided by the discovery of a repeated FRB in the Arecibo Pulsar ALFA Survey on 2012 November 2 (Spitler et al. 2014), which was surprisingly detected again on 2015 May 17 and June 2 (Scholz et al. 2016; Spitler et al. 2016). These long time gaps (both 572 and 23 days) make the catastrophic models difficult to save. More excitingly, unambiguous multi-wavelength counterparts of FRB 121102 have been recently captured and identified by Chatterjee et al. (2017), Marcote et al. (2017), and Tendulkar et al. (2017), including a persistent radio source and a low-metallicity, star-forming dwarf galaxy. The detection of the host galaxy helped to determine the redshift of FRB 121102 to \(z = 0.19273(8)\), which corresponds to a luminosity distance of 972 Mpc and undoubtedly confirms the cosmological origin of the FRB (i.e., only FRB 121102 has been confirmed, not FRBs in general).

The host galaxy of FRB 121102 was found to share many common properties with those of long gamma-ray bursts (GRBs) and Type I superluminous supernovae (SLSNe). Therefore, the possibility that FRB 121102 is associated with a young magnetar is enhanced significantly, since both GRBs and SLSNe are widely considered to be powered by a newly born rapidly rotating magnetar (Usov 1992; Dai & Lu 1998a, 1998b; Zhang & Mészáros 2001; Woosley 2010; Kasen & Bildsten 2010). Such a magnetar is possibly embedded within a young supernova remnant, which can trap radio emission at early times and result in a significant contribution to DM (Kulkarni et al. 2015; Murase et al. 2016; Piro 2016). Following this idea, the age of the magnetar of FRB 121102 was constrained to be about a few decades by Kasen & Bildsten (2017) and Metzger et al. (2017). Nevertheless, such a supernova remnant is not indispensable, even for the explanation of the observed persistent radio emission (Dai et al. 2017).

In any case, before the FRB emission encounters the supernova ejecta, it probably has to first penetrate a dense
relativistic wind from the magnetar, if the emission is produced within the stellar magnetosphere. As first suggested by Yu (2014), this pulsar wind, which consists of an extremely great number of electrons and positrons, can cause a more serious radio trapping and a more significant DM contribution than the supernova ejecta, in particular, by considering the relativistic boosting effect. In this Letter, therefore, we derive a more stringent constraint on the age of the magnetar of FRB 121102 by constraining the electron/positron loading of the magnetar wind to be consistent with the implications from the host galaxy observations.

2. Lower Limits on Spin Periods and Magnetar Ages

By considering a magnetar of an angular frequency, \(\Omega \), a surface polar strength of magnetic field, \(B_p \), and a radius, \(R = 10^6 \) cm, the electron–positron distribution of the magnetar magnetosphere can be described as usual by the Goldreich & Julian (GJ) particle density \(n_{\text{GJ}}(r) \approx \left(\Omega B_p / 2 \pi c e \right) (r/R)^{-3} \) (Goldreich & Julian 1969), the angle dependence of which is ignored for a simple order-of-magnitude analysis. Beyond the light cylindrical radius \(n_c = c / \Omega \), the corotation of the magnetosphere can no longer be held. The magnetocentrifugal force exerting on the plasma and especially the subsequent magnetic reconnections will launch a relativistic wind. The particle number flux of the wind can be expressed as \(N_w \approx 4 \pi R^2 n_{\text{GJ}}(n_c) c \), where \(P = 2 \pi / \Omega \) is the spin period. The \(e^\pm \) multiplicity parameter, \(\mu_{\pm} \), represents a ratio of the wind flux to the GJ flux because a great number of electrons and positrons could be generated spontaneously as the wind propagation and energy dissipation. Then, the density of the wind at radius \(r \) can be expressed as

\[
n_w(r) \approx \frac{N_w}{4 \pi r^2 c} = \mu_{\pm} n_{\text{GJ}}(r_l) \left(\frac{r}{r_l} \right)^{-2}.
\]

On one hand, with the above density, the plasma frequency of the magnetar wind at different radii can be calculated by

\[
\nu_p(r) = \frac{\Gamma}{1 + z} \left[\frac{e^2}{2 \pi m_e} \mu_{\pm} n_{\text{GJ}}(r_l) \right]^{1/2} \left(\frac{r}{r_l} \right)^{-1}.
\]

for \(r > n_c \), where \(\Gamma \) is the Lorentz factor of the wind at the radius. Following Drenkhahn (2002), a reference dynamical result can be adopted as \(\Gamma = \Gamma_1 (r/n_c)^{1/3} \), and then we have

\[
\nu_p(r) = \frac{\mu_{\pm}^{1/2} \Gamma_1^{1/2}}{1 + z} \left[\frac{e^2}{2 \pi m_e} n_{\text{GJ}}(r_l) \right]^{1/2} \left(\frac{r}{r_l} \right)^{-5/6}.
\]

The initial velocity of the wind can be set to the Alfvén velocity at the light cylinder as \(\Gamma_1 \sim \sqrt{\sigma_L} \), where \(\sigma_L \) represents the initial ratio between Poynting flux to matter energy flux. Since the total energy flux carried by the magnetar wind is completely provided by the magnetic spin-down of the magnetar, i.e., \((\sigma_L + 1) \Gamma_1 L_{\text{ms}} c^2 = L_{\text{sd}} \), the Lorentz factor at the light cylinder can be determined by \(\Gamma_1 \sim (L_{\text{sd}} / N_w m_e c^2)^{1/3} \). By taking the spin-down luminosity as usual as \(L_{\text{sd}} = B_p^2 R^4 \Omega^4 / (6 c^3) \), the maximum value of plasma frequencies of the magnetar wind can be written as

\[
\nu_p(r_l) = 1.5 \times 10^4 \mu_{\pm}^{1/3} B_p^{2/3} P_{-3}^{-7/3} \text{ GHz},
\]

outside of the light cylinder. Hereafter, the conventional notation \(Q = Q / 10^5 \) is adopted in cgs units. In order to guarantee that GHz radio emission can freely penetrate the wind, the above plasma frequency should not be higher than the radio frequency, and thus we can obtain the spin period as

\[
P > 61 \mu_{\pm}^{1/7} B_{p,14}^{2/7} P_{-3}^{7/3} \text{ ms}.
\]

This lower limit is much longer than the initial spin period of a few milliseconds that can be inferred from SLSN or GRB observations (Yu et al. 2017). Therefore, the corresponding age of the magnetar can be constrained to

\[
t_{\text{age}} > 24 \mu_{\pm}^{2/7} B_{p,14}^{10/7} \text{ years},
\]

which is calculated with the expression of spin-down timescale as \(t_{\text{sd}} = 3 I c^3 / (B_p^2 R^6 \Omega^2) \), where \(I = 10^{45} \) g cm\(^2\) is the moment of the inertial of the magnetar. Correspondingly, the age constraint due to the radio trapping of supernova ejecta can be derived from Equation (9) of Metzger et al. (2017)

\[
t_{\text{age}} > 0.7 f_{\text{ion}}^{1/3} \left(\frac{M_{\text{ej}}}{10 M_\odot} \right)^{1/3} \nu_{3,5}^{-1/3} \text{ years},
\]

where \(f_{\text{ion}}, M_{\text{ej}}, \) and \(\nu_{3,5} \) are the ionization fraction, the mass, and the velocity of the ejecta. Obviously, the constraint presented in Equation (7) can be ignored safely in comparison with the more stringent constraint given by the wind plasma frequency as shown in Equation (6).

On the other hand, by taking the relativistic boosting effect into account, the DM contributed by the magnetar wind can be calculated by (Yu 2014)

\[
\text{DM}_{w} = \frac{1}{1 + z} \int_{r_l}^{r} 2 \Gamma (r) \cdot n_w(r) dr
\]

\[
= \frac{3 \Gamma_1 \mu_{\pm} n_{\text{GJ}}(r_l) r_l}{(1 + z)}
\]

\[
= 1.5 \times 10^4 \mu_{\pm}^{2/3} B_{p,14}^{1/3} P_{-3}^{-11/3} \text{ pc cm}^{-3}.
\]

For an upper limit value of \(\text{DM}_{w,\text{up}} \), the spin period of the magnetar can be constrained to

\[
P > 90 \mu_{\pm}^{2/11} B_{p,14}^{4/11} \text{ DM}_{w,\text{up}}^{-3/11} \text{ ms},
\]

which corresponds to an age of

\[
t_{\text{age}} > 53 \mu_{\pm}^{1/11} B_{p,14}^{-14/11} \text{ DM}_{w,\text{up}}^{-6/11} \text{ years}.
\]

For a comparison, the age constraint from the DM constraint on the supernova ejecta can be written as follows:

\[
t_{\text{age}} > 215 f_{\text{ion}}^{1/2} \left(\frac{M_{\text{ej}}}{10 M_\odot} \right)^{1/2} \nu_{3,5}^{-1/2} \text{ DM}_{\text{ej,up}}^{-1/2} \text{ years},
\]

where \(\text{DM}_{\text{ej,up}} \) is the upper limit on the DM of the ejecta. This expression is derived from Equation (12) of Metzger et al. (2017), which was however not addressed there because they did not separate the DM of the FRB source from that of the host galaxy. By comparing Equation (10) with (11), the age constraint given by the magnetar wind can be more stringent than the supernova ejecta constraint as long as \(\mu_{\pm}^{4/11} B_{p,14}^{14/11} > 5 \).
3. Discussions on FRB 121102

For FRB 121102, its total DM was measured to be $\text{DM}_{\text{total}} = 558 \text{ pc cm}^{-3}$ (Spitler et al. 2016; Chatterjee et al. 2017), which is contributed jointly by the Milky Way and its halo, the intergalactic medium, the host galaxy, and the FRB source itself. As analyzed by Tendulkar et al. (2017), the sum of the last two contributions can be constrained to $55 \lesssim (\text{DM}_{\text{host}} + \text{DM}_{\text{rec}}) \lesssim 225 \text{ pc cm}^{-3}$. Moreover, according to Equation (6) of Tendulkar et al. (2017), the value of DM_{host} is probably not much lower than $\sim 100 \text{ pc cm}^{-3}$, if FRB 121102 does not offset very much from its host galaxy. Therefore, the DM contribution leaving to the FRB source including the magnetar wind and the supernova remnant is very limited, which is consistent with the small fluctuation of the DM of FRB 121102 during the past few years (Spitler et al. 2016). For a putative DM upper limit of $\text{DM}_{\text{rec,up}} = 1 \text{ pc cm}^{-3}$ and three typical magnetic fields, the different lower limits on the magnetar age are presented in Figure 1, as functions of the uncertain e^\pm multiplicity. According to observations of pulsar wind nebulae, μ_\pm is usually considered to be very high, since a great number of electrons and positrons are needed to produce the observed wind emission and to determine a typical Lorentz factor of $\sim 10^4-10^5$ of the wind (e.g., Yu et al. 2014).

As a general result, the lower limit on the magnetar age can be found to be, at least, about a few hundred to thousands of years. Then, a question could arise: whether or not the rotational energy of the magnetar can power the FRB emission and also the persistent radio counterpart. First of all, according to some observations of Galactic pulsars, it has been suggested that FRBs could be analogous to giant pulsars that are powered by the spin-down of a magnetar. In this case, however, the magnetar age of FRB 121102 would be constrained to be $t_{\text{age}} < 9(L_{\text{FRB}}/10^{41}\text{ erg s}^{-1})^{-1}B_{14.5}^{-1}\text{ years}$ (Metzger et al. 2017), which is probably in conflict with the lower limits given above. Moreover, observationally, giant pulses from the Crab pulsar statistically only have an energy release of $\Delta E \sim 10^{28}\text{ erg}$ per giant pulse (Majid et al. 2011), which indicates a ratio of this energy to the total stellar rotational energy as $\Delta E/E_{\text{rot}} < 5 \times 10^{-22}$. If the same emission mechanism is assumed for FRB 121102, then an absolutely impossible rotational energy of $\sim 10^{50}\text{ erg}$ would be required to explain the isotropic-equivalent FRB energy of $\Delta E \sim E_{\text{iso}} = 2 \times 10^{39}\text{ erg}$. This difficulty was also recently pointed out by Lyutikov (2017).

As an alternative scenario, we propose here that the energy release of an FRB is connected with a glitch-like process, although the physics of this process is completely unknown. By denoting the sudden change of spin frequency by $\Delta \Omega$, the energy release can be calculated by

$$\Delta E = \frac{1}{2}I\Omega^2 - \frac{1}{2}I(\Omega - \Delta\Omega)^2 \approx I\Omega\Delta\Omega.$$ \hspace{1cm} (12)

Observations of Galactic pulsars usually found $\Delta\Omega/\Omega \sim 10^{-9}-10^{-6}$ for their glitches, and the current maximum value can be as large as 10^{-5} (Yuan et al. 2010; Manchester & Hobbs 2011). Therefore, for a released energy of $\sim 2 \times 10^{39}\text{ erg}$, the total rotational energy of the magnetar can be constrained to be $E_{\text{rot}} \gtrsim (10^{5}-10^{6})E_{\text{iso}}$, where the symbol \gtrsim is used because of the repeatability of FRB 121102. As a result, the spin period and age of the magnetar can be derived to be $P \ll (0.1-10)\text{ s}$ and $t_{\text{age}} \ll (67-6.7 \times 10^5)B_{14.5}^{-2}\text{ years}$. Such upper limits on the magnetar age can, in principle, be consistent with the obtained lower limits, if FRBs can indeed be associated with the most giant glitches.

In any case, besides the rotational energy, some other energy sources could still be available to power FRBs. The most popular choice would be the magnetic energy within a magnetar, which is of the order of $E_{\text{m}} \sim 3 \times 10^{49}B_{14.5}^2\text{ erg}$ for an internal magnetic field strength of $B_{14.5} \sim 10^{16}\text{ G}$. However, the disadvantage of this model is that no bright radio pulse was detected from the giant flare of SGR 1806-20 (Tendulkar et al. 2017). As another possible solution, Dai et al. (2016) proposed that the FRB energy could be provided by the gravitational energy of an asteroid as it is captured by and collides with the magnetar. Such a process can repeat naturally if an asteroid belt is around the magnetar. In any case, both of the above alternative scenarios can survive from the constraints on the magnetar age, with at least a few hundred to thousands of years.

For the steady radio emission associated with FRB 121102, it is currently considered to be produced by synchrotron emission of pulsar wind nebulae (Dai et al. 2017; Kashiyama & Murase 2017; Metzger et al. 2017). By considering that the luminosity of the wind emission is ultimately determined by the spin-down luminosity of the magnetar, it is convenient to simply require the spin-down luminosity to be higher than the luminosity of the steady radio emission, i.e., $L_{\text{sd}} > L_{\text{radio}} = 3 \times 10^{38}\text{ erg s}^{-1}$. This gives very stringent constraints of

$$P < 134B_{14.5}^{1/2}\text{ ms}$$ \hspace{1cm} (13)
...age < 116B\textsubscript{p,14}^{-1} \text{years.} \quad (14)

In any case, if this steady radio emission is not powered by the spin-down of magnetar, the above constraints can be removed, but then some alternative scenarios should be suggested. By comparing Equation (14) with (10) and (11), some relationships between the model parameters can be derived as

\[B_{p,14} > 0.06\mu_{\pm}^{1/3}DM_{e,up}^{-2} \quad (15) \]

and

\[B_{p,14} < 0.5DM_{e,up}^{1/2} \quad (16) \]

in order to make the lower and upper limits of the magnetar age consistent with each other. As shown, relatively low magnetic fields are favored, which indicates FRBs more probably associated with SLSNe than long GRBs (Yu et al. 2017). The coexistence of Equations (15) and (16) can further give

\[\mu_{\pm} < 5.5DM_{e,up}^{2/3}DM_{e,up}^{1/8} \quad (17) \]

The value of \(\mu_{\pm} \) at radii much farther away from the light cylinder can, in principle, be inferred from the emission property of the wind. So far, no hard X-ray/soft gamma-ray counterparts have been detected within \(\sim 10^5 \) of FRB 121102’s position (Scholz et al. 2016; see Petroff et al. 2015 for other FRBs), which could be a natural result of the small value of \(\mu_{\pm} \). However, as suggested by Kashiyama & Murase (2017), Metzger et al. (2017), and Dai et al. (2017), different from the typical Crab-like nebulae, the wind emission of FRB 121102 could actually be mainly in the radio band as the persistent radio counterpart. In this case, the value of \(\mu_{\pm} \) at emitting radii is required to be very high (see Dai et al. 2017 for an estimate of the number of emitting electrons/positrons), which is much higher than that presented in Equation (17) for the light cylinder radius. It is therefore indicated that the lepton load of magnetar wind could significantly evolve at large radii.

4. Summary

The recent discovery of the host galaxy of FRB 121102 implies a possible connection between FRBs and long GRBs/SLSNe. Combined with the repeatability of FRB 121102, it was suggested that this FRB could be associated with a young magnetar and originate from some activities of the magnetar. In order to test this possibility, we investigated the important influences on FRB emission from the wind of magnetar, if the FRB emission is produced in the inner magnetosphere. Specifically, by evaluating the radio trapping and the DM contribution by wind electrons/positrons, we derived some lower limits on the spin periods and ages of magnetars visible as FRBs and applied these results to the case of FRB 121102. Meanwhile, some possible upper limits are also discussed by considering that FRB 121102 and moreover its persistent radio emission could be powered by the rotational energy of magnetar. By reconciling the lower and upper limits, some constraints on the model parameters were revealed. For example, for a putative DM\textsubscript{pc,up} \approx 5 \text{ pc cm}^{-3}, \mu_{\pm} \approx 100, and a relatively low magnetic field of \(B_p \sim 10^{14} \text{ G} \), all of the limits on the age can reach a consensus at the age of about \(\sim 100 \) years. According to the most allowable values of magnetic field strengths, FRBs are suggested to be more likely associated with SLSNe than long GRBs.

We thank Kohta Murase and Bing Zhang for their comments and X. Zhou for her discussions on pulsar glitches. This work was supported by the National Basic Research Program (“973” Program) of China (grant No. 2014CB845800) and the National Natural Science Foundation of China (grant Nos. 11473008 and 11573014). X.F.C. was supported by the National Natural Science Foundation of China (grant Nos. 11303010 and 11673008).

References

Bera, A., Bhattacharyya, S., Bharadwaj, S., Bhat, N. D. R., & Chengalur, J. N. 2016, MNRAS, 457, 2530
Burke-Spolaor, S., & Bannister, K. W. 2014, ApJ, 792, 19
Cai, Y.-F., Sabanecil, E., & Vachaspati, T. 2012, PhRvD, 85, 023530
Cao, X. F., Xiao, M., & Xiao, F. 2017, RA, 17, 14
Champion, D. J., Petroff, E., Kramer, M., et al. 2016, MNRAS, 460, L30
Chatterjee, S., Law, C. J., Wharton, R. S., et al. 2017, Nat, 541, 58
Cordes, J. M., & Wasserman, I. 2016, MNRAS, 457, 232
Dai, Z. G., & Lu, T. 1998a, PhRvL, 81, 4301
Dai, Z. G., & Lu, T. 1998b, A&A, 333, L87
Dai, Z. G., Wang, J. S., Wu, X. F., & Huang, Y. F. 2016, ApJL, 829, 27
Dai, Z. G., Wang, J. S., & Yu, Y. W. 2017, ApJL, 838, L7
Drenkahn, G. 2002, A&A, 378, 114
Falcke, H., & Rezzolla, L. 2014, A&A, 562, A137
Geng, J. J., & Huang, Y. F. 2015, ApJ, 809, 24
Goldreich, P., & Julian, W. H. 1969, ApJ, 157, 869
Gu, W.-M., Dong, Y.-Z., Liu, T., Ma, R., & Wang, J. 2016, ApJL, 823, L28
Kasen, D., & Bildsten, L. 2010, ApJ, 719, 245
Kashiya, K., Ioka, K., & Mészáros, P. 2013, ApJL, 776, L39
Kashiya, K., & Murase, K. 2017, ApJL, 839, L3
Kulkarni, S. R., Ofek, E. O., &Neill, J. D. 2015, arXiv:1511.09137
Lorimer, D. R., Bailes, M., McLaughlin, M. A., Narkevic, D. J., & Crawford, F. 2007, Sci, 318, 777
Lyubarsky, Y. 2014, MNRAS, 442, L9
Lyutikov, M. 2017, ApJL, 838, L13
Majid, W. A., Naudet, C. J., Lowe, S. T., & Kuiper, T. B. H. 2011, ApJ, 741, 53
Manchester, R. N., & Hobbs, G. 2011, ApJL, 736, L31
Marcote, B., Faragi, Z., Hessels, J. W. T., et al. 2017, ApJL, 834, L8
Metzger, B. D., Berger, E., & Margalit, B. 2017, ApJ, in press (arXiv:1701.02570)
Murase, K., Kashiyama, K., & Mészáros, P. 2016, MNRAS, 461, 1498
Petroff, E., Bailes, M., Barr, E. D., et al. 2015, MNRAS, 447, 246
Piro, A. L. 2016, ApJL, 824, L32
Popov, S. B., & Postnov, K. A. 2010, in Evolution of Cosmic Objects Through Their Physical Activity, Proceedings of the Conference dedicated to Viktor Ambartsumian’s 100th Anniversary, ed. H. A. Harutyunian, A. M. Mickaelian, & Y. Terzian (Yerevan: NAS RA), 129
Ravi, V., Shannon, R. M., & Jameson, A. 2015, ApJL, 799, L5
Scholz, P., Spliter, L. G., Hessels, J. W. T., et al. 2016, ApJ, 833, 177
Spitler, L. G., Cordes, J. M., Hessels, J. W. T., et al. 2014, ApJ, 790, 101
Spitler, L. G., Scholz, P., Hessels, J. W. T., et al. 2016, Nat, 531, 202
Tendulkar, S. P., Bassa, C. G., Cordes, J. M., et al. 2017, ApJL, 834, L7
Thornton, D., Stappers, B., Bailes, M., et al. 2013, Sci, 341, 53
Totani, T. 2013, PASJ, 65, L12
Usosin, V. V. 1992, Nat, 357, 472
Wang, J.-S., Yang, Y.-P., Wu, X.-F., Dai, Z.-G., & Wang, F.-Y. 2016, ApJL, 822, L7
Woosley, S. E. 2010, ApJL, 719, L204
Yu, Y.-W. 2014, ApJ, 796, 93
Yu, Y.-W., Cheng, K.-S., Shiu, G., & Tye, H. 2014, ICAP, 11, 040
Yu, Y.-W., Zhu, J.-P., Li, S.-Z., Lu, H.-J., & Zou, Y.-C. 2017, ApJ, in press (arXiv:1704.01682)
Yu, Y.-W., Manchester, R. N., Wang, N., et al. 2010, ApJL, 719, L111
Zhang, B. 2014, ApJL, 780, L21
Zhang, B. 2016, ApJL, 827, L31
Zhang, B. 2017, ApJL, 836, L32
Zhang, B., & Mészáros, P. 2001, ApJL, 552, L35