Advantage of pars plana vitrectomy combined with penetrating keratoplasty and transscleral-sutured intraocular lens implantation in complex eyes: a case series

Takahiko Hayashi (✉ takamed@gmail.com)
Yokohama Minami Kyosai Hospital
https://orcid.org/0000-0001-8704-680X

Yasutsugu Ida
Yokohama Minami Kyosai Hospital

Toshiki Shimizu
Yokohama Shiritsu Daigaku

Tsubasa Kuroki
Yokohama Minami Kyosai Hospital

Yuji Kobashigawa
Yokohama Minami Kyosai Hospital

Yasuhiro Iijima
Sofukai Oppama Ekimae Eyeclinic

Kentaro Yuda
Kikuna Yuda Eye Clinic

Research article

Keywords: penetrating keratoplasty, pars plana vitrectomy, intraocular lens implantation, transscleral-sutured intraocular lens

DOI: https://doi.org/10.21203/rs.3.rs-37812/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background The aim of this study was to evaluate the clinical outcomes of pars plana vitrectomy (PPV) combined with penetrating keratoplasty (PKP) and transscleral-sutured intraocular lens (IOL) implantation (IOL-suture) in complex eyes. Methods In this prospective, consecutive interventional case series, patients who underwent PKP combined with PPV and IOL implantation from July 2014 to Mar 2017 at Yokohama Minami Kyosai Hospital were enrolled. The postoperative best corrected visual acuity (BCVA) (converted to logarithm of the minimal angle of resolution [logMAR] units), intraocular pressure (IOP, mmHg), endothelial cell density (ECD, cells/mm2), graft survival, complications, astigmatism, and spherical equivalent (dioptres [D]) were evaluated. Results This study included 11 eyes of 11 patients (three females and eight males; mean age, 61.8 ± 13.9 years) with an injury (n = 6) or bullous keratopathy (n = 5). The BCVA significantly improved from 1.50 ± 0.66 logMAR preoperatively to 0.78 ± 0.59 logMAR (p < 0.001) postoperatively. The baseline ECD significantly decreased from 2396 ± 238 cells/mm2 preoperatively to 1132 ± 323 cells/mm2 (p < 0.001) postoperatively. Despite two rejection episodes, graft survival rates were 100%. The mean follow-up period was 38.0 ± 20.5 months. Two patients required combined glaucoma surgery, and three patients underwent subsequent glaucoma surgery. Postoperative astigmatism and the spherical equivalent were 3.9 ± 3.2 D and 0.29 ± 2.18 D, respectively. Conclusion The combination of PKP, PPV, and IOL-suture implantation could be a safe and effective approach for eyes requiring anterior segment surgery; however, these eyes are associated with a higher incidence of glaucoma surgery.

Background

Corneal transplantation has been the most common type of organ transplantation over the last century.[1, 2] Despite the increasing number of lamellar surgeries such as deep anterior lamellar keratoplasty (DALK), endothelial keratoplasty (EK), Descemet's stripping automated endothelial keratoplasty (DSAEK), and Descemet's membrane endothelial keratoplasty, approximately half of all keratoplasties performed are penetrating keratoplasties (PKPs).[3, 4]

There are negatives to PKP, such as suture-related problems (higher astigmatism or infection), transplant rejection, glaucoma (steroid-dependent), and rupture due to injury.[3] Despite these problems,[5–7] PKP could drastically improve the sight of patients with severe corneal disease or damage.[8]

Simple stromal opacity and corneal oedema caused by endothelial dysfunction could be treated with DALK and EK, respectively.[9, 10] However, most cases that require PKP are complex, and patients can have a history of corneal injury or infection. These cases may require multiple procedures such as a vitrectomy for vitreous problems including vitreous prolapse, vitreous haemorrhage, or retinal detachment; iris reconstruction for an iris defect or angle closure; intraocular lens (IOL) implantation for aphakia; or glaucoma surgery for progressive glaucoma.[8, 11–16] In these situations, simultaneous surgeries could be beneficial to the patient. For example, a full vitrectomy could prevent retinal detachment, and iris reconstruction and IOL implantation could be performed for visual recovery. In cases
of extremely high intraocular pressure (IOP) that are resistant to drug therapy, a combined glaucoma surgery might be essential to prevent the progression of glaucoma.\[17–22\]

Herein, this case series investigates the surgical technique and clinical course of PKP combined with pars plana vitrectomy (PPV) and transscleral-sutured intraocular lens implantation (IOL-suture). To the best of our knowledge, this is the first report to assess if there is an advantage to performing simultaneous complex ocular surgeries.

Methods

Study Design

This prospective study was approved by the institutional Review Board (approval no. YKH_26_05_12) and adhered to the tenets of the Declaration of Helsinki. The study procedures followed all institutional guidelines, and all patients provided informed consent. Patients requiring PKP combined with PPV and IOL sutures from July 2014 to Mar 2017 were enrolled.

Surgical Technique

All surgeries were performed under general anaesthesia. All of the surgical steps are shown in Fig. 1. The surgical design was determined prior to the surgical steps. Firstly, two scleral tunnels were created after resecting the conjunctiva. A scleral ring for combined surgery (Nishida scleral ring, Inami, Tokyo, Japan) was sutured to the sclera with 6 – 0 silk (Mani, Tochigi, Japan), and 10 – 0 polypropylene sutures were fixed to the loop of the IOL (CZ70BD®, Alcon, Fort Worth, TX) on both sides. PPV was performed using a 25-gauge (Constellation; Alcon, Fort Worth, TX) and a wide-viewing system (Resight 500; Carl Zeiss Meditec, Jena, Germany). Even in the patients that required a vitrectomy, the residual vitreous was checked, and removed completely. The host cornea was cut using a trephine (Katena, Denville, USA) at 7.5 mm. The donor graft was prepared using a donor punch (Katena, Denville, USA) at either 7.75 mm or 8.0 mm. Using the open-sky PPV technique, the 10 – 0 polypropylene needles pierced the scleral flap 2.0 mm from the limbus. The donor graft was sutured using 10 – 0 nylon (Mani, Tochigi, Japan). The appropriate amount of cohesive ophthalmic viscosurgical devices (OPELEAD® HV [0.85] 1%) was used during the procedure.

Postoperative Care

Postoperatively medications included 1.5% levofloxacin (Cravit), 0.1% betamethasone sodium phosphate (Sanbetasone; Santen), and 2% rebamipide ophthalmic solution (Mucosta; Otsuka, Japan, Tokyo), starting at 4 times per day for 3 months and tapered thereafter. If necessary, glaucoma agents were applied.

Patients and Examinations
Besides the standard examination using slit-lamp microscopy, the following main outcomes were evaluated both preoperatively and postoperatively in all eyes: best spectacle-corrected visual acuity (BCVA) converted to logarithm of the minimal angle of resolution (logMAR) units, intraocular pressure (IOP, mmHg), and endothelial cell density (ECD, cells/mm²). Graft survival, complications, astigmatism, and the spherical equivalent were also evaluated (measured in dioptres [D]). The main outcome results for all the included cases are shown in Table 1.
Case	OD/OS	Aetiology	Type of surgery	Previous surgeries	Additional surgery	Pre VA	Post VA
1	OD	Bullous keratopathy	PKP + re-PPV +IOL-suture + GDD	Trabeculectomy (failed), PEA + PPV + Silicon oil	No	CF	20/2000
2	OD	Ocular trauma	PKP + re-PPV +IOL-suture	PEA + PPV	GDD	20/29	20/23
3	OS	Ocular trauma (perforation)	PKP + re-PPV +IOL-suture	PEA + PPV + Corneal suture	No		20/2000
4	OS	Ocular trauma (perforation)	PKP + re-PPV +IOL-suture	PEA + Corneal suture	No		20/2000
5	OS	Bullous keratopathy	PKP + re-PPV +IOL-suture + GDD	PEA + PPV + Silicon oil, Silicon oil removal	No		20/2000
6	OS	Bullous keratopathy	PKP + re-PPV +IOL-suture	ECCE, PKP (twice)	No		20/2000

All patients underwent pars plana vitrectomy with penetrating keratoplasty and transscleral-sutured intraocular lens implantation.

OD, right eye; OS, left eye; Pre, preoperative; VA, best corrected visual acuity; Post, postoperative; PKP, penetrating keratoplasty; PPV, pars plana vitrectomy; IOL-suture, transscleral-sutured posterior chamber intraocular lens implantation; GDD, glaucoma drainage device; PEA, phacoemulsification and aspiration; ECCE, extracapsular cataract extraction; CF, counting fingers.
Case	OD/OS	Aetiology	Type of surgery	Previous surgeries	Additional surgery	Pre VA	Post VA
7	OS	Ocular trauma	PKP + PPV	PKP	Trabecectomy	20/400	20/100
			+IOL-suture				
8	OS	Bullous keratopathy	PKP + re-PPV	PEA + PPV + Corneal suture, PKP	GDD	20/2000	20/50
			+IOL-suture				
9	OD	Bullous keratopathy	PKP + PPV	PKP + ECCE	No	20/600	20/130
			+IOL-suture				
10	OS	Ocular trauma	PKP + PPV	PEA + PPV	No	20/2000	20/50
			+IOL-suture	+Silicon oil injection			
				+Corneal suture, Silicon oil removal			
11	OS	Ocular trauma	PKP + PPV	PEA + Corneal suture	No	20/600	20/130
			+IOL-suture				

All patients underwent pars plana vitrectomy with penetrating keratoplasty and transscleral-sutured intraocular lens implantation.

OD, right eye; OS, left eye; Pre, preoperative; VA, best corrected visual acuity; Post, postoperative; PKP, penetrating keratoplasty; PPV, pars plana vitrectomy; IOL-suture, transscleral-sutured posterior chamber intraocular lens implantation; GDD, glaucoma drainage device; PEA, phacoemulsification and aspiration; ECCE, extracapsular cataract extraction; CF, counting fingers.

Statistical Analyses

Statistical analyses were performed using JMP Pro software version 14.0.0 (SAS Institute, Cary, NC, USA). Statistical significance was defined as p < 0.05. All average values are described as mean ± standard deviation. For the statistical analyses, BCVA was converted to logMAR units. Regarding poor visual acuity, the logMAR values were translated to light perception, logMAR = 2.8; perception of hand motions,
logMAR = 2.3; and counting fingers, logMAR = 2.0 [23]. The Mann-Whitney U test was used to compare the preoperative and postoperative outcomes (BCVA, IOP, astigmatism).

Results

Patient Characteristics

Three female and eight male patients, with an average age of 61.8 ± 13.9 years, took part in this study. The corneal aetiology was either injury (n = 6) or bullous keratopathy (n = 5). The average follow-up period was 38.0 ± 20.5 months (Table 1).

Clinical Course (Visual Recovery and Endothelial Cell Density)

The BCVA (converted to logMAR units) significantly improved from 1.50 ± 0.66 logMAR preoperatively to 0.78 ± 0.59 logMAR (p < 0.001) postoperatively. The baseline ECD significantly decreased from 2396 ± 238 cells/mm² preoperatively, to 1132 ± 323 cells/mm² (p < 0.001) postoperatively. Figure 1 shows the graft survival for this case series. Postoperative astigmatism and the spherical equivalent were 3.9 ± 3.2 D and 0.29 ± 2.18 D, respectively.

Complications

The baseline IOP was 15.8 ± 12.9 mmHg preoperatively. Five cases required glaucoma surgery either simultaneously or postoperatively. Two patients had an IOP over 40 mmHg and required combined glaucoma surgery. Three patients had an increased IOP that was resistant to anti-glaucomatous agents, and underwent subsequent glaucoma surgery (two patients had pars plana glaucoma drainage devices implanted, and one had filtrating surgery). The postoperative IOP was stable (12.7 ± 3.6 mmHg). One patient developed an epiretinal membrane and required membrane removal. Two eyes showed reversible graft rejection, and there was no graft failure.

Discussion

The current study shows the advantage of a pars plana approach such as PPV combined with PKP. All procedures were performed without complications. Under a wide-viewing system, PPV could be completed without the use of an artificial cornea. Any residual vitreous following PPV could be removed with the shaving technique. Without treatment these patients with complex needs may have gone blind, but following the combined surgery, the visual function of the patients significantly improved, and the mid-term survival rates were excellent. There were no cases of retinal detachment following surgery. Despite the improvement in corneal transparency and visual recovery, the requirement for additional glaucoma surgeries was relatively high. Patients may have a better quality of life if IOL implantation and PKP are performed simultaneously.
There are three suggestions regarding the importance and the efficacy of the posterior approach during PKP: First, the prevention of retinal detachment (including proliferative vitreous retinopathy) is very important. An iris defect, or aphakia with vitreous prolapse, often accompanies complex cases following an injury that requires iris repair and IOL scleral fixation (or suture) combined with PKP. It seems appropriate for anterior segment surgeons to perform PPV due to the increased risk of retinal detachment following an incomplete vitrectomy such as anterior vitrectomy in posterior capsule rupture, or IOL suture. If there is a complication in the posterior segment during PPV, such as a retinal break, it can be rapidly responded to.

Second, the posterior approach in simple cases could be performed without difficulty. Since our case series did not include severe corneal opacity, all procedures could be performed with a wide-viewing system (without any artificial comeas such as Eckardt temporary keratoprosthesis). The use of PPV with a temporary keratoprosthesis has been reported. Yokogawa et al. published a report on the combined treatment of PKP, or DSAEK using an artificial cornea.[8, 15, 16] In our experience, we had no trouble performing a simple PPV including the creation of a posterior vitreous detachment, and shaving of the peripheral vitreous body.

Third, the technical difficulty of PKP in the post-vitrectomized eye could be reduced. During surgery, a globe rupture could be easily repaired using a posterior infusion. In cases of globe rupture, the shape of the eye can be repaired, and a suture placed once the situation is stable. The suture procedure would be easier without a posterior infusion.

The results of this study show that the combined procedure of PKP, PPV, and IOL-suture could be a safe and effective approach for patients requiring anterior segment surgery. Despite the increasing number of scleral fixations,[24] in the present study the preferred method was an IOL-suture.

There were limitations to this study, such as the relatively small number of participants, differing aetiologies, and different treatment protocols. Despite the success of the procedure,[5] cases required glaucoma surgery. Two cases required an Ahmed valve, one needed a Baerveldt implant, and one case needed filtrating surgery (trabeculectomy) after PKP. One case was treated with a simultaneous glaucoma implant, (Baerveldt) PKP, PPV, and IOL-suture surgery. According to past reports, the combined surgery of PKP and Ahmed valve implantation had a negative impact on the graft survival. However, in the present study, the glaucoma shunt tubes were placed into the pars plana, because tube implantation to the pars plana has been shown to result in better corneal graft survival rates and reduce complications compared with implantation into the anterior chamber.[25–29] Since the type of glaucoma surgery was selected according to either the patient’s condition or the glaucoma surgeon’s preference, only one case was treated by trabeculectomy. In the future, long-term studies regarding the correlation between glaucoma surgery and keratoplasty will be necessary for further development.

Conclusion
In conclusion, the current study advocates the importance and efficacy of the posterior approach combined with PKP for anterior segment surgeons.

List Of Abbreviations

PPV, pars plana vitrectomy; PKP, penetrating keratoplasty; IOL, intraocular lens; IOL-suture, transscleral-sutured intraocular lens implantation; DALK, deep anterior lamellar keratoplasty; EK, endothelial keratoplasty; DSAEK, Descemet's stripping automated endothelial keratoplasty DSAEK; BCVA, best corrected visual acuity; logMAR, logarithm of the minimum angle of resolution; ECD, endothelial cell density; IOP, intraocular pressure

Declarations

Ethics approval and consent to participate;

This prospective study was approved by the institutional Review Board (approval no. YKH_26_05_12) of Yokohama Minami Kyosai Hospital and adhered to the tenets of the Declaration of Helsinki. The study procedures followed all institutional guidelines, and all patients provided written informed consent for participation.

Consent for publication; *Not applicable.*

Data availability; The datasets used and/or analysed during the current study available from the corresponding author on reasonable request.

Funding; This research did not receive any specific grants from funding agencies in the public, commercial, or not-for-profit sectors.

Competing interests; The authors declare that they have no competing interests.

Authors' contributions;

T.H.: writing, review and editing; Y.Y.: review and editing, investigation; T.S.: data curation, and editing; T.K., Y.K., and Y.I.: investigation; K.Y.: project administration, supervision, and validation; All authors critically checked the manuscript and approved the submission.

Acknowledgements

The authors thank Dr. Y Ando for critical comments concerning this study.

References
1. Zirm EK. Eine erfolgreiche totale keratoplastik (A successful total keratoplasty). Arch Fr Ophthalmol. 1906;64:580-83.

2. Coster DJ, Williams KA. The impact of corneal allograft rejection on the long-term outcome of corneal transplantation. Am J Ophthalmol. 2005;140:1112-22. doi:10.1016/j.ajo.2005.07.024

3. Hos D, Matthaei M, Bock F, Maruyama K, Notara M, Clahsen T, et al. Immune reactions after modern lamellar (DALK, DSAEK, DMEK) versus conventional penetrating corneal transplantation. Prog Retin Eye Res. 2019;100768. doi:10.1016/j.preteyeres.2019.07.001

4. Flockerzi E, Maier P, Böhringer D, Reinshagen H, Kruse F, Cursiefen C, et al. Trends in corneal transplantation from 2001 to 2016 in Germany: a report of the DOG-section cornea and its keratoplasty registry. Am J Ophthalmol. 2018;188:91-8. doi:10.1016/j.ajo.2018.01.018

5. Stechschulte SU, Azar DT. Complications after penetrating keratoplasty. Int Ophthalmol Clin. 2000;40:27-43. doi:10.1097/00004397-200040010-00005

6. Ohguro N, Matsuda M, Shimomura Y, Inoue Y, Tano Y. Effects of penetrating keratoplasty rejection on the endothelium of the donor cornea and the recipient peripheral cornea. Am J Ophthalmol. 2000;129:468-71. doi:10.1016/s0002-9394(99)00389-x

7. Thompson RW Jr, Price MO, Bowers PJ, Price Jr FW. Long-term graft survival after penetrating keratoplasty. Ophthalmology. 2003;110:1396-402. doi:1016/S0161-6420(03)00463-9

8. Yokogawa H, Kobayashi A, Okuda T, Mori N, Masaki T, Sugiyama K. Combined keratoplasty, pars plana vitrectomy, and flanged intrascleral intraocular lens fixation to restore vision in complex eyes with coexisting anterior and posterior segment problems. Cornea. 2018;37 Suppl 1:S78-85. doi:10.1097/ICO.0000000000001716

9. Reinhart WJ, Musch DC, Jacobs DS, Lee WB, Kaufman SC, Shtein RM. Deep anterior lamellar keratoplasty as an alternative to penetrating keratoplasty a report by the American academy of ophthalmology. Ophthalmology. 2011;118:209-18. doi:10.1016/j.ophtha.2010.11.002

10. Ple-Plakon PA, Shtein RM. Trends in corneal transplantation: indications and techniques. Curr Opin Ophthalmol. 2014;25:300-5. doi:10.1097/ICU.0000000000000080

11. Weisbrod DJ, Sit M, Naor J, Slomovic AR. Outcomes of repeat penetrating keratoplasty and risk factors for graft failure. Cornea. 2003;22:429-34. doi:10.1097/00003226-200307000-00008

12. Arundhati A, Jun BZ, Janardhan P, Tan DTH. Iris reconstruction in penetrating keratoplasty–surgical techniques and a case-control study to evaluate effect on graft survival. Am J Ophthalmol. 2008;145:203-9. doi:10.1016/j.ajo.2007.10.006

13. Karadag R, Bayramlar H, Azari AA, Rapuano CJ. Trocar-assisted, sutureless, scleral-fixated intraocular lens implantation combined with penetrating keratoplasty. Cornea. 2016;35:1261-5. doi:10.1097/ICO.0000000000000944

14. Li J, Dong XG. Black diaphragm intraocular lens implantation and penetrating keratoplasty in aphakic eyes with traumatic aniridia. Int J Ophthalmol. 2013;6:183-6. doi:10.3980/j.issn.2222-3959.2013.02.15
15. Chen HJ, Wang CG, Dou HL, Feng XF, Feng K, Hu YT, et al. Anatomical outcome of vitreoretinal surgery using temporary keratoprosthesis and replacement of the trephined corneal button for severe open globe injuries: one-year result. J Ophthalmol. 2014;794039. doi:10.1155/2014/794039

16. Khouri AS, Vaccaro A, Zarbin MA, Chu DS. Clinical results with the use of a temporary keratoprosthesis in combined penetrating keratoplasty and vitreoretinal surgery. Eur J Ophthalmol. 2010;20:885-91. doi:10.1177/112067211002000512

17. Elhoﬁ A, Helaly HA. Graft survival after penetrating keratoplasty in cases of trabeculectomy versus Ahmed valve implant. J Ophthalmol. 2018;13:9034964. doi:10.1155/2018/9034964

18. Akdemir MO, Acar BT, Kokturk F, Acar S. Clinical outcomes of trabeculectomy Ahmed glaucoma valve implantation in patients with penetrating keratoplasty. Int Ophthalmol. 2016;36:541-6. doi:10.1007/s10792-015-0160-9

19. Lee JY, Sung KR, Tchah HW, Yoon YH, Kim JG, Kim MJ, et al. Clinical outcomes after combined Ahmed glaucoma valve implantation and penetrating keratoplasty or pars plana vitrectomy. Korean J Ophthalmol. 2012;26:432-7. doi:10.3341/kjo.2012.26.6.432

20. Tai MC, Chen YH, Cheng JH, Liang CM, Chen JT, Chen CL, et al. Early Ahmed glaucoma valve implantation after penetrating keratoplasty leads to better outcomes in an Asian population with preexisting glaucoma. PLoS One. 2012;7:e37867. doi:10.1371/journal.pone.0037867

21. Al-Torbak AA. Outcome of combined Ahmed glaucoma valve implant and penetrating keratoplasty in refractory congenital glaucoma with corneal opacity. Cornea. 2004;23:554-9. doi:10.1097/01.ico.0000122704.49054.95

22. Al-Torbak A. Graft survival and glaucoma outcome after simultaneous penetrating keratoplasty and Ahmed glaucoma valve implant. Cornea. 2003;22:194-7. doi:10.1097/00003226-200304000-00002

23. Lange C, Feltgen N, Junker B, Schulze-Bonsel K, Bach M. Resolving the clinical acuity categories “hand motion” and “counting ﬁngers” using the Freiburg Visual Acuity Test (FrACT). Graefes Arch Clin Exp Ophthalmol. 2009;247:137-42. doi:10.1007/s00417-008-0926-0

24. Yamane S, Sato S, Maruyama-Inoue M, Kadonosono K. Flanged intrascleral intraocular lens ﬁxation with double-needle technique. Ophthalmology. 2017;124:1136-42. doi:10.1016/j.ophtha.2017.03.036

25. Parihar JK, Jain VK, Kaushik J, Mishra A. Pars plana-modiﬁed versus conventional Ahmed glaucoma valve in patients undergoing penetrating keratoplasty: a prospective comparative randomized study. Curr Eye Res. 2017;42:436-42. doi:10.1080/02713683.2016.1185130

26. Ritterband DC, Shapiro D, Trubnik V, Marmor M, Meskin S, Seedor J, et al. Penetrating keratoplasty with pars plana glaucoma drainage devices. Cornea. 2007;26:1060-6. doi:10.1097/ICO.0b013e3181342835

27. Alvaro Grande LS, Mannis MJ, Brandt JD, Lee WB, Schwab IR, Lim MC. The long-term results of keratoplasty in eyes with a glaucoma drainage device. Am J Ophthalmol. 2004;138:200-5. doi:10.1016/j.aoj.2004.02.058

28. Arroyave CP, Scott IU, Fantes FE, Feuer WJ, Murray TG. Corneal graft survival and intraocular pressure control after penetrating keratoplasty and glaucoma drainage device implantation.
Figures

Figure 1

![Figure 1](image1)

Figure 2

Design of combined penetrating keratoplasty (PKP), pars plana vitrectomy (PPV), and intraocular lens (IOL)-suture surgery (A) The surgical design should be determined prior to surgery including where to place the scleral ring and whether to create two scleral flaps or three-ports. After determination of the surgical design, two scleral pockets for the intraocular lens (IOL) suturing are created at the surgeons’ preference. (B) A scleral ring (Nishida ring, Inami) is sutured to the sclera with 6-0 silk. (C) Two 10-0 polypropylene sutures (PC-9) are fixated to the top of the IOL loop (CZ, Alcon) before the next procedure. (D) Three-ports are created using a 25-gauge trocar (Alcon), and the infusion canula was set. (E) Using the wide-viewing system, core vitrectomy and peripheral vitrectomy is performed. (F), (G) Using a trephine and Katzin Scissors, the host cornea is removed. (H) In the open-sky technique (partial dissection), the IOL is sutured to the two scleral flaps 1.5 mm from the limbus. (I) The IOL is placed at the back of the iris and is centred. (J) The donor graft is sutured using 10-0 nylon.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- BMC234coveringletter.doc