Efficient integration of transgenes into a defined locus in human embryonic stem cells

Sakurai, Kenji

Sakurai, Kenji. Efficient integration of transgenes into a defined locus in human embryonic stem cells. 京都大学, 2012, 博士(医学)

2012-03-26

http://hdl.handle.net/2433/157427

Kyoto University Research Information Repository
京都大学
博士(医学)
氏名
桜井 健二

論文題目
Efficient integration of transgenes into a defined locus in human embryonic stem cells
(ヒトES細胞の特定遺伝子座への効率的な遺伝子導入)

論文内容の要旨

ヒトES細胞は、自己複製機能と多分化機能を持ち、薬剤スクリーニングや再生医療の材料として期待されている。ヒトES細胞への遺伝子導入は、ヒトES細胞を目的に応じて改変するために重要な技術である。ランダムインテグレーションは最も築き石的な一般的な遺伝子導入方法だが、ヒトES細胞にランダムインテグレーションで遺伝子導入しても、サイレンシングを起こして目的とする遺伝子がうまく機能しない場合が多い。また、導入した遺伝子が挿入されるゲノムの部位によっては、その部位の本来の機能が制限されたり、逆に活性が上昇したりするなどの、意図しない影響が出る可能性がある。

本学位論文では、ヒトES細胞において常に転写が活性化されており、かつXX染色体型では片側のアルプチン破壊されても表現型に異常が生じないと考えられるハイポキサンチンホスホリボシルトランスフェラーゼ1 (HPRT)遺伝子座にドッキングサイトを導入し、簡便かつ高効率にHPRT遺伝子座に遺伝子を導入する方法について報告している。

まず、女性に由来するヒトES細胞株KhES-1のHPRT遺伝子座にLoxP-ネオマイシン耐性遺伝子-LoxP-開始メチオニンを欠くハイグロマイシン耐性遺伝子で構成されるドッキングサイトを導入した。G418耐性クローン中におけるターゲティングされていたクローンの割合は、約1.4%であった。一連の処置を施した後も、このES細胞は未分化マーカーの発現を維持していた。

次に、ドッキングサイトを保持するES細胞に対して、遺伝子置換を行なった。遺伝子置換には、HPRT遺伝子座上のドッキングサイトに、Cre／LoxPの組換えを介して目的遺伝子を挿入することを指す。最初に、EF1αプロモーター-Kozak配列-ATGコード-LoxPベクターを構築した。ドッキングサイトを保持するES細胞に対して、pInsertベクターによるCre発現ベクターを共に遺伝子導入すれば、Cre／LoxPの組換えにより、一部の細胞はネオマイシン耐性遺伝子が脱損するのに加え、pInsertベクターがドッキングサイトに挿入される。そして、ドッキングサイトを正しくpInsertベクターが挿入された細胞のみがハイグロマイシン耐性を獲得する。即ち、遺伝子導入後にハイグロマイシンで選択することで、pInsertベクターがドッキングサイトに正しく挿入された細胞が取得できる。pInsertベクターに好ましい遺伝子を導入しても、その遺伝子はHPRT遺伝子座に挿入され、サイレンシングの影響を受けないと期待される。

pInsertにCAG-EGFPを搭載したpInsert-Tif-CAG-EGFPを用いて遺伝子置換を行なったところ、ハイグロマイシン耐性クローンが出現し、調べた全てのクローンが予想通りEGFPを発現していた。また、胚細胞を形成させ、神経に分化させることにより、EGFPの発現は維持されていた。更に、誘導型遺伝子発現システムであるTet-Onシステムに必要なrTαとTREの2つのカセットをpInsertベクターに搭載したpInsert-CTORを構築し、TRE下流にEGFPを配置したpInsert-CTOR-EGFPを遺伝子置換した。この方法で得られたハイグロマイシン耐性クローンはドキシサイクリン密度依存的なEGFPの発現誘導機能を持ち、三胚葉への分化機能も保持していた。

このように、遺伝子置換を用いることで、サイレンシングを起こさず導入遺伝子を安定的に発現するヒトES細胞の作製が可能になった。

(論文審査の結果の要旨)

ヒト胎児幹(ES)細胞を遺伝子改変し、安定して導入遺伝子を発現させることは、医学や創薬研究に貢献する基礎となる。本研究で申請者は、ハウスキーピング遺伝子HPRTの遺伝子座に任意の遺伝子を挿入し、安定的にその遺伝子が発現するクローンを高効率に取得する方法を確立した。

相同組換えにより、LoxP-Neo’-LoxP-Hygro(開始コードン欠損)からなるドッキングサイトがHPRT遺伝子座に挿入されたヒトES細胞のクローンが作出された。このクローンのドッキングサイトに対し、EF1αプロモーター-開始コードン-LoxPベクターを含むpInsertベクターとCre発現ベクターを共導入することで、hygromycin選択により、ドッキングサイト特異的な組換え体を効率的に取得する方法が見出された。EGFP発現カセットがHPRT遺伝子座に挿入されたクローンは全てがEGFPを発現し、神経細胞に分化させた後も発現は維持されていた。また、Tet-Onシステムに必要な2つの遺伝子カセットをHPRT遺伝子座に挿入した場合は、doxycyclineの濃度依存的な目的遺伝子の発現増強が観察された。

以上の研究は、組換え遺伝子の安定に発現機能の解析に貢献するのみならず、ヒトES細胞を用いた細胞分化研究や新薬開発に貢献する手法を提供し、医学に寄与するところが多い。

したがって、本論文は博士(医学)の学位論文として価値があるものと認める。

なお、学位授与申請者は、平成23年12月28日実施の論文審査とその関連した試験を受けて、合格と認められたものである。