Adaptive Changes in Hemoglobin Function in High-Altitude Tibetan Canids Were Derived via Gene Conversion and Introgression

Anthony V. Signore, 1 Ying-Zhong Yang, 2 Quan-Yu Yang, 2 Ga Qin, 2 Hideaki Moriyama, 1 Ri-Li Ge, *, 2 and Jay F. Storz *, 1
1 School of Biological Sciences, University of Nebraska, Lincoln, NE
2 Research Center for High Altitude Medicine, Qinghai University, Xining, China
* Corresponding authors: E-mails: jstorz2@unl.edu; geriligao@hotmail.com.
Associate editor: Claus Wilke
Sequence data generated in this study are deposited at GenBank accession numbers MK720822–MK720826

Abstract

A key question in evolutionary biology concerns the relative importance of different sources of adaptive genetic variation, such as de novo mutations, standing variation, and introgressive hybridization. A corollary question concerns how allelic variants derived from these different sources may influence the molecular basis of phenotypic adaptation. Here, we use a protein-engineering approach to examine the phenotypic effect of putatively adaptive hemoglobin (Hb) mutations in the high-altitude Tibetan wolf that were selectively introgressed into the Tibetan mastiff, a high-altitude dog breed that is renowned for its hypoxia tolerance. Experiments revealed that the introgressed coding variants confer an increased Hb–O2 affinity in conjunction with an enhanced Bohr effect. We also document that affinity-enhancing mutations in the β-globin gene of Tibetan wolf were originally derived via interparalog gene conversion from a tandemly linked β-globin pseudogene. Thus, affinity-enhancing mutations were introduced into the β-globin gene of Tibetan wolf via one form of intragenomic lateral transfer (ectopic gene conversion) and were subsequently introduced into the Tibetan mastiff genome via a second form of lateral transfer (introgression). Site-directed mutagenesis experiments revealed that the increased Hb–O2 affinity requires a specific two-site combination of amino acid replacements, suggesting that the molecular underpinnings of Hb adaptation in Tibetan mastiff (involving mutations that arose in a nonexpressed gene and which originally fixed in Tibetan wolf) may be qualitatively distinct from functionally similar changes in protein function that could have evolved via sequential fixation of de novo mutations during the breed’s relatively short duration of residency at high altitude.

Key words: introgression, hemoglobin, hypoxia, high-altitude, Tibetan mastiff, Tibetan wolf.

Introduction

A key question in evolutionary biology concerns the relative importance of different sources of adaptive genetic variation in natural populations. In addition to new mutations and standing variation, recent studies of natural animal populations have revealed numerous cases in which putative adaptations are attributable to allelic variants that were introduced via introgressive hybridization (Song et al. 2011; Heliconius Genome Consortium 2012; Pardo-Diaz et al. 2012; Hedrick 2013; Huerta-Sánchez et al. 2014; Natarajan, Projecto-Garcia, et al. 2015; Racimo et al. 2015; Enciso-Romero et al. 2017; Miao et al. 2017; vonHoldt et al. 2017; Jones et al. 2018).

In contrast to de novo mutations and low-frequency variants at mutation-drift equilibrium, alleles derived from other species have already been pretested by selection, albeit on a different genetic background. For this reason, selectively introgressed alleles may be especially likely to comprise coadapted combinations of mutations (Hedrick 2013).

In cases where a given species has colonized a new environment, adaptation to newly encountered challenges may be facilitated and expedited by introgressive hybridization with a closely related resident species that has already evolved refined solutions to those same challenges. In this way, the recipient species capitalizes on adaptive solutions that evolved over a longer period of time in the donor species. Just such a scenario has been described in the case of the Tibetan mastiff, an ancient and phenotypically distinct dog breed that was originally bred as a flock guardian at high altitudes in the Himalayas and Tibetan Plateau (Messerschmidt 1983; Li et al. 2008). Tibetan mastiffs do extraordinarily well at high altitude compared with other dog breeds, and their exceptional hypoxia tolerance appears to stem in part from a legacy of introgressive hybridization with the Tibetan wolf (Canis lupus laniger) (Miao et al. 2017; vonHoldt et al. 2017), a high-altitude subspecies of the gray wolf that can be found at elevations > 5,000-m above sea level (Sharma et al. 2004). Population genomic studies of both Tibetan mastiff and Tibetan wolf have identified specific genes that exhibit evidence of positive selection, and therefore represent candidate loci for high-altitude adaptation.

© The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com.

Mol. Biol. Evol. 36(10):2227–2237 doi:10.1093/molbev/msz097 Advance Access publication July 30, 2019 2227
(Wang et al. 2013; Gou et al. 2014; Zhang et al. 2014; Fan et al. 2016). In Tibetan mastiffs, one of the strongest signatures of positive selection is observed for the chromosomal region spanning the β-globin gene cluster (Wang et al. 2013; Gou et al. 2014; Fan et al. 2016), a compact set of tandemly duplicated genes that encode the β-type subunits of hemoglobin (Hb), the red blood cell protein responsible for circulatory O₂ transport.

Vertebrate Hb is a heterotetramer that consists of two α-chain and two β-chain subunits (α₂β₂). Genetically based changes in the oxygenation properties of Hb are known to play a key role in hypoxia adaptation of mammals and other vertebrates (Weber 2007; Storz, Scott, et al. 2010; Storz 2016, 2019). Under severe hypoxia, an increased Hb–O₂ affinity can improve tissue O₂ delivery if the benefit of safeguarding arterial O₂ saturation more than offsets the cost associated with a diminished diffusion gradient for O₂ unloading in the systemic circulation (Bencowitz et al. 1982; Willford et al. 1982; Storz 2016).

The adult Hb of Tibetan mastiffs is distinguished from that of all other domestic dog breeds by a pair of amino acid replacements at adjacent residue positions in the β-chain subunit (Gou et al. 2014). Due to evidence for a recent selective sweep in the chromosomal region spanning the adult-expressed β-globin gene, Gou et al. (2014) suggested that one or both of the mastiff-specific substitutions are responsible for an adaptive increase in Hb–O₂ affinity. Subsequent genomic analyses revealed that both amino acid replacements—along with the entire β-globin gene cluster—were introgressed from the Tibetan wolf (Miao et al. 2017). Thus, the adult Hbs of Tibetan mastiff and Tibetan wolf are distinguished from those of all other dogs and wolves by the same pair of β-chain amino acid replacements.

The evidence for positive selection on the wolf-derived β-globin variants in Tibetan mastiff suggests that the introgression contributed to hypoxia adaptation at high altitude. However, like most purported examples of adaptive introgression, the phenotypic effects of the introgressed variants have not been experimentally tested (Racimo et al. 2015; Suarez-Gonzalez et al. 2018).

Results and Discussion

Structural Variation

All canids share the same complement of adult Hb genes, including a tandemly linked pair of nearly identical α-type globin genes on Chromosome 6 and a set of triplicated β-type genes on Chromosome 21: δ-globin (HBD), βδ-globin (HBB/D), and β-globin (HBB). The HBB/D gene is a chimeric fusion gene that originated via unequal crossing-over between the tandemly linked HBD and HBB genes (Gaudry et al. 2014) (fig. 1A). The recombination event that produced the chimeric HBB/D fusion gene occurred in the stem lineage of carnivores and is therefore shared by all extant species in the group (Gaudry et al. 2014). The nonchimeric HBB gene at the 3' end of the cluster is orthologous to the adult β-globin gene of humans and other mammals (Hoffmann et al. 2008; Opazo et al. 2008a, 2008b, 2009; Janecka et al. 2015). However, in canids and other caniform carnivores (bears, pinnipeds, and members of the superfamily Musteloidae), HBB is a nonexpressed pseudogene (hereafter referred to as HBBps; fig. 1A) (Gaudry et al. 2014; Zaldívar-López et al. 2017). We generated sequence data which revealed that orthologs of the adult-expressed α- and β-type globin genes are almost completely invariant at the amino acid level in all domestic dogs and wolves. The only exceptions are the adult-expressed HBB/D genes of Tibetan mastiffs and Tibetan wolves, which are distinguished from those of all other dogs and wolves by two missense substitutions at adjacent sites: G13S and L14M (fig. 1B). In principle, the sharing of the derived Ser-β13 and Met-β14 amino acid states between Tibetan mastiffs and Tibetan wolves could be attributable to the parallel fixation of de novo mutations that arose independently in both lineages or the parallel fixation of pre-existing variants that were inherited from the common ancestor of wolves and domestic dogs. However, genomic analyses clearly demonstrate that HBB/D and the rest of the β-globin gene cluster of Tibetan mastiffs was derived via introgression from the Tibetan wolf (Miao et al. 2017).

Intriguingly, the derived amino acid states in HBB/D that are shared between Tibetan mastiff and Tibetan wolf are present in the tandemly linked HBBps pseudogene of all canids (fig. 1B). This suggests the hypothesis that the pair of missense substitutions in the HBB/D gene were originally derived via gene conversion from the paralogous HBBps pseudogene of Tibetan wolf. To test this hypothesis, we used bioinformatics methods to unravel the history of interparalog gene conversion across the canine β-globin gene cluster. In the β-globin gene clusters of Tibetan mastiff and Tibetan wolf, our results revealed that a recent HBBps → HBB/D conversion event has overwritten the entire 5' end of the HBB/D coding sequence, extending from 65-bp upstream of the start codon to the middle of the first intron (fig. 1C and supplementary table S1, Supplementary Material online). Thus, the HBBps-derived conversion tract spans all of HBB/D exon 1, which includes the two missense mutations responsible for G13S and S14M.

The conversion event that introduced the two missense mutations into the adult-expressed HBB/D gene occurred initially in the Tibetan wolf lineage (fig. 2). Thus, Ser-β13 and Met-β14 were introduced into the HBB/D gene of Tibetan wolf via one form of intragenomic lateral transfer (ectopic gene conversion from a paralogous pseudogene) and were subsequently introduced into the Tibetan mastiff genome via a second form of lateral transfer (introgression). In both Tibetan wolf and Tibetan mastiff, the paired variants were eventually fixed (and, at least in Tibetan mastiff, population genomic data suggest that the variants were fixed via positive directional selection) (Wang et al. 2013; Gou et al. 2014). However, the variants did not arise as de novo point mutations in the HBB/D genes of either the wolf or mastiff. Ancestral state reconstructions suggest that the canid-specific G13S and L14M substitutions in the HBBps gene occurred after the gene had become transcriptionally inactivated (fig. 3). The joint fixation of the Ser-13 and Met-14 variants in both Tibetan wolf and in Tibetan mastiff, in
combination with the strong signatures of positive selection in Tibetan mastiff (Wang et al. 2013; Gou et al. 2014; Fan et al. 2016), suggests the hypothesis that the amino acid replacements are responsible for an adaptive increase in Hb–O₂ affinity. To test this hypothesis, we first characterized the oxygenation properties of native canid Hbs to measure the net effect of the two substitutions, and we then conducted site-directed mutagenesis experiments involving recombinantly expressed Hbs to measure their independent and joint effects.

Functional Properties of Dog and Wolf Hbs

To test the net effects of the β-chain amino acid substitutions G13S and L14M, we measured the oxygenation properties of purified native Hbs from Tibetan wolf, Tibetan mastiff, and multiple breeds of domestic dog (which have Hbs that are structurally identical to that of gray wolf). In the absence of allosteric effectors (stripped), domestic dog Hb has an O₂ affinity (measured as \(P_{50}^{\text{strip}} \), the \(P_{O2} \) at which Hb is 50% saturated) of 8.96 ± 1.06 Torr. Under the same experimental conditions, O₂ affinities of Tibetan wolf and Tibetan mastiff Hbs are significantly higher (i.e., \(P_{50}^{\text{strip}} \)'s are lower: 5.16 ± 1.05 and 4.72 ± 1.15 Torr, respectively) (fig. 4A and supplementary table S2, Supplementary Material online). These results indicate that the increased Hb–O₂ affinity of Tibetan wolf and Tibetan mastiff is attributable to an increase in intrinsic O₂ affinity, not to a suppression of sensitivity to allosteric cofactors.

In the presence of \(\text{Cl}^- \) ions and the organic phosphate 2,3-diphosphoglycerate (DPG), the two most important allosteric cofactors in mammalian red cells (fig. 4A and supplementary table S2, Supplementary Material online). These results indicate that the increased Hb–O₂ affinity of Tibetan wolf and Tibetan mastiff is attributable to an increase in intrinsic O₂ affinity, not to a suppression of sensitivity to allosteric cofactors.

In the presence of both \(\text{Cl}^- \) and DPG, domestic dog Hb has a significantly lower Bohr effect (i.e., a lower sensitivity to pH) than Tibetan mastiff (ANCOVA, \(F[1, 2] = 4107, P = 0.0002 \)) and the Tibetan wolf (ANCOVA, \(F[1, 2] = 2646, P = 0.0004 \); fig. 4B and supplementary table S2, Supplementary Material online). The Bohr effect describes the reduction in Hb–O₂ affinity caused by a decline in pH, which allows more complete O₂ unloading to acidic tissues during exercise (Bohr et al. 1904). Since an increased Hb–O₂ affinity can inhibit O₂ unloading in the systemic circulation, the enhanced pH sensitivity of Tibetan canid Hbs should mitigate this potentially negative effect on tissue oxygenation by increasing O₂ unloading to metabolizing cells.

Structural Modeling

To investigate the structural mechanism responsible for the increased Hb–O₂ affinity conferred by the G13S and L14M...
substitutions, we conducted a molecular modeling analysis using the crystal structure of domestic dog Hb (Bhatt et al. 2011). According to model predictions, the substitution L14M adds flexibility to the A-helix, due to the smaller side chain volume of Met relative to Leu (16.25 Å³ vs. 21.40 Å³). The added flexibility afforded by the L14M substitution creates a new hydrogen bond between Lys-17 and Glu-121 (supplementary fig. S1A, Supplementary Material online). However, this bond is eliminated by the G13S substitution, as reorientation of the A-helix allows Ser-13 to form a hydrogen bond with the main chain oxygen of Ser-9 (fig. 5A and supplementary fig. S1B, Supplementary Material online). The resultant reorientation of the A-helix allows the formation of a new hydrogen bond between Trp-15 in the A-helix and Ser-72 in the E-helix. This interhelical contact is not present in the normal Hb of domestic dog as Ser-72 is stabilized by an intra-helical hydrogen bond with Asn-69 (fig. 5B). In the four individual subunits of the Hb tetramer, the heme group is held in place by a coordination bond between the iron atom and the imidazole side chain of the “proximal histidine” (α87, β92) in the F-helix. On the opposite side of the heme plane, the iron–O₂ bond is stabilized by a hydrogen bond with the imidazole side chain of the “distal histidine” (α58, β63) in the E-helix. In the deoxygenated state, the ferrous heme iron, Fe(II), is situated outside the heme plane, away from the imidazole side chain of the distal histidine (Perutz 1970). Upon transition to the oxygenated state, movement of the E- and F-helices shifts Fe(II) into the heme plane, thereby facilitating O₂ binding. Consequently, substitutions that reorient the E- or F-helices may alter heme reactivity by shifting the distance of Fe(II) from the heme plane. Although G13S alone is sufficient to create the hydrogen bond between Trp-15 and Ser-72, L14M is required to produce the necessary reorientation of the E-helix, which is predicted to tighten up the connection between the A-, E-, and F-helices and shift Fe(II) closer to heme plane. Thus, the model-based prediction is that both G13S and L14M are required to produce the observed increase in O₂ affinity, and that either mutation by itself would be insufficient.

The Hb tetramer undergoes an oxygenation-linked transition in quaternary structure, from the deoxy (tense- or T-state) to the oxy state (relaxed- or R-state). During this transition the α₁β₁ and α₂β₂ dimers slide and rotate in relation to one another, resulting in the breakage and formation of numerous intra- and inter-subunit bonds (Perutz 1970). The change in enthalpy caused by the breakage/formation of

Fig. 2. History of gene conversion between the HBBps pseudogene and the tandemly linked HBB/D gene in Tibetan wolves, and subsequent introgression of the converted HBB/D allele into Tibetan mastiffs. Hash marks denote the paired amino acid replacements, G13S and L14M, which occurred in the dog/wolf ancestor. Image “Tibetan wolf in Changthang” by Stanzin Namgail is licensed under CC BY-SA 4.0 and image “Gray Wolf Standing in the Snow” by Eric Kilby is licensed under CC BY-SA 2.0.
these bonds ($\Delta H_{T \rightarrow R}$), combined with the change in enthalpy caused by the oxygenation-linked dissociation of allosterically bound cofactors, contributes to the overall enthalpy of Hb oxygenation (ΔH_{oxygen}; Atha and Ackers 1974; Weber and Campbell 2011). Thus, amino acid substitutions that affect the T \rightarrow R transition are expected to change $\Delta H_{T \rightarrow R}$. As the G13S and L14M substitutions in Tibetan canid Hbs tighten up the connection between the A-, E-, and F-helices, inducing a coordinated shift in quaternary structure that moves the Fe(II) closer to heme plane, the T-state is shifted towards a more R-like conformation. This is predicted to alter $\Delta H_{T \rightarrow R}$ of the protein in addition to increasing Hb–O$_2$ affinity.

Functional Testing of Putatively Adaptive Mutations

To test predictions of our modeling analysis, we synthesized and experimentally tested four recombinant Hb (rHb) mutants representing each possible two-site combination of ancestral/derived amino acid states at β13–14 in the products of HBB/D and HBB. Consistent with model-based predictions, experimental measurements on the rHb mutants revealed that G13S and L14M only produce a significant increase in Hb–O$_2$ affinity in combination (fig. 6A). Our model predicts that the joint effect of G13S and L14M (also revealed in the comparison between the native Hbs of domestic dog/gray wolf vs. Tibetan mastiff/Tibetan wolf) reduce the overall movement of the E-helix during the transition between deoxy- and oxygenated states, thereby altering $\Delta H_{T \rightarrow R}$. To test this, we measured O$_2$ equilibrium curves on domestic dog and Tibetan canid rHbs at two separate temperatures, 25°C and 37°C, to quantify the enthalpy and entropy of oxygenation (ΔH and ΔS, respectively). We then calculated the Gibbs free energy of oxygenation (ΔG) according to the relation $\Delta G = \Delta H - T \Delta S$. The
the van’t Hoff plot, respectively; fig. 6)

The higher the O$_2$ affinity. (P$_{50}$ plot of log-P$_{50}$ versus pH in the presence and absence of anionic effectors.

cofactors (Cl$^-$ ions and DPG). (A) P$_{50}$ values (±SE), the P_{50} at 50% saturation, at 37 °C, pH 7.4. The lower the P$_{50}$, the higher the O$_2$ affinity. (B) Bohr effect of canid Hbs, as indicated by a plot of log-P$_{50}$ versus pH in the presence and absence of anionic cofactors (filled and open symbols, respectively). Bohr coefficients (ϕ) are shown in the absence/presence of anionic effectors.

Hbs of Tibetan mastiff and Tibetan wolf exhibit lower values of both ΔH and ΔS (estimated as the slope and Y-intercept of the van’t Hoff plot, respectively; fig. 6B and supplementary table S3, Supplementary Material online). The negative slopes displayed in figure 6B reflect the endothermic nature of heme deoxygenation (Roughton et al. 1936; Atha and Ackers 1974), which dictates a negative relationship between Hb–O$_2$ affinity and temperature (Weber and Campbell 2011). As predicted by our modeling results, the difference in enthalpy of oxygenation between the alternative rHb mutants (ΔΔH) indicates that the 13Ser-14Met genotype (characteristic of Tibetan canids) has a (numerically) lower ΔH relative to the 13Gly-14Leu genotype (characteristic of domestic dogs and gray wolves), in both the presence and absence of allosteric effectors. As differential binding of allosteric effectors can alter the overall ΔH (Weber and Campbell 2011), the observed difference in ΔH between the rHb mutants in the absence of allosteric effectors (fig. 6B and supplementary table S3, Supplementary Material online) suggests this difference is due to changes in ΔH$^{T-R}$.

Adaptive Significance of Causative Amino Acid Substitutions

Numerous statistical approaches have been developed to detect introgression using genomic polymorphism data, and such analyses can be integrated with population genetic tests for evidence of positive selection or associations with phenotype (Racimo et al. 2015). However, conclusive evidence that introgressed alleles have contributed to adaptive phenotypic evolution in the recipient species requires experimental measurements of phenotypic effects. Specifically, experimental evidence is required to document that the introgressed allele increases fitness on the genetic background of the recipient species, or that it contributes to a change in phenotype in the direction that is predicted to be adaptive (Natarajan, Projecto-Garcia, et al. 2015; Suarez-Gonzalez et al. 2018). Our experimental results demonstrate that the derived amino acid changes in Tibetan mastiff and Tibetan wolf reduce Hb P$_{50}$ (i.e., increase Hb–O$_2$ affinity) by ~50%, relative to the wildtype dog Hb. This change in Hb–O$_2$ affinity is in the direction that is expected to enhance arterial O$_2$ saturation under hypoxic conditions and is therefore consistent with population genetic evidence for positive selection in relation to altitude (Wang et al. 2013; Gou et al. 2014; Fan et al. 2016).

In addition to the genomic evidence for adaptive introgression in Tibetan mastiffs (Miao et al. 2017), our results indicate that the causative G13S and L14M mutations in the donor species, Tibetan wolf, initially arose and were fixed in a nonexpressed pseudogene (HBBps). Missense mutations introduced by gene conversion from paralogous pseudogenes have been documented to have seemingly neutral or deleterious phenotypic effects in other species (Storz, Runck, et al. 2010; Casola et al. 2012; Natarajan, Hoffmann, et al. 2015). The Hb mutations in Tibetan wolf Hb appear to represent a rare case in which such mutations have been favored by selection and have contributed to an adaptive change in phenotype.

The evidence for positive selection on the introgressed missense mutations in Tibetan mastiff (Wang et al. 2013; Gou et al. 2014; Fan et al. 2016) suggests that they conferred an adaptive benefit in the high-altitude environment shared by both Tibetan mastiff (a recent arrival) and Tibetan wolf (the long-term resident). The βG13S and βL14M mutations in HBBps must have been neutral when they first occurred in the common ancestor of canids because all available evidence indicates that this gene was a nonexpressed pseudogene, as it is not transcribed in any extant caniform carnivores (fig. 3) (Gaudry et al. 2014; Zaldivar-López et al. 2017). This represents a possible example of the Dykhuizen–Hartl effect (Kimura 1983) whereby an initially neutral mutation later becomes beneficial upon a change in the external environment and/or genetic background. In the case of the Tibetan wolf, the β13/14 mutations could have experienced two separate changes in fitness effects. With regard to changes in genetic background, the initially neutral β13/14 mutations...
were transferred from the \textit{HBBps} pseudogene to the \textit{HBB/D} gene due to gene conversion, so the latent phenotypic effects of the mutations were suddenly manifest in the context of Hb–O$_2$ transport. With regard to changes in the external environment, there are good reasons to expect that mutations that alter Hb–O$_2$ affinity would have different physiological effects at low- and high-altitude because differences in the partial pressure of O$_2$ (P$_{O2}$) of inspired air require Hb to load and unload O$_2$ at different blood P$_{O2}$’s. Under normoxic conditions at sea level, an increased Hb–O$_2$ affinity can be deleterious because it reduces the O$_2$ diffusion gradient between capillary blood and the cells of metabolizing tissues, thereby compromising tissue oxygenation. However, under severe environmental hypoxia, an increased Hb–O$_2$ affinity can help safeguard arterial O$_2$ saturation at low P$_{O2}$, thereby minimizing the reduction in O$_2$ offloading by Hb for a given arterio-venous difference in P$_{O2}$ (Turek, Kreuzer, and Ringnalda 1978; Turek, Kreuzer, Turek-Maischeider, et al. 1978; Bencowitz et al. 1982; Willford et al. 1982; Storz, Scott, et al. 2010; Storz 2016, 2019). Thus, an affinity-enhancing mutation that is deleterious at low altitude could have beneficial effects on tissue O$_2$ delivery at extremely high altitudes, a trade-off that has been documented in other mammals (Eaton et al. 1974; Turek, Kreuzer, and Ringnalda 1978; Turek, Kreuzer, Turek-Maischeider, et al. 1978; Chappell and Snyder 1984). Due to elevational differences in optimal blood P$_{50}$, affinity-altering Hb mutations can be expected to have different selection coefficients in highland dogs and wolves than in their lowland conspecifics.

Compared with de novo mutations and segregating allelic variants that contribute to adaptive phenotypic change, introgressed alleles that were previously fixed in a different species have been pretested by selection. For this reason, it has been suggested that selectively introgressed alleles may be especially likely to combine multiple mutations (e.g., epistatic modifiers) that interact to fine-tune a selected phenotypic effect and/or mitigate deleterious pleiotropic effects (Hedrick 2013). This conjecture has not been previously tested because it requires experimental measurements of the phenotypic effects of individual mutations. The epistatic interaction...
that we observed between the two β-globin mutations in Tibetan wolf and Tibetan mastiff indicates that neither mutation alone would have conferred an adaptive advantage at high altitude, as the increased Hb–O2 affinity required both changes in tandem. This suggests that the molecular underpinnings of the putative Hb adaptation in Tibetan mastiff (involving mutations that arose in a nonexpressed gene and which originally fixed in Tibetan wolf) may be qualitatively distinct from functionally similar changes in protein function that could have evolved via the sequential fixation of de novo mutations during the breed’s relatively short duration of residency at high altitude.

Materials and Methods
Genomic Data Collection
The β-globin gene cluster of the domestic dog was mined from genome build CanFam3.1 (chr21: 28,060,000–28,239,000). The annotated domestic dog β-globin gene cluster was used as a reference sequence for the assembly of Tibetan mastiff and gray wolf β-globin clusters using previously published SRA files (Tibetan mastiff: SRX445517, SRX445523, and SRX445529; gray wolf: SRX655650, SRX3424047, and SRX3424050). Reads were mapped to the reference sequence using Geneious 7.1.9 (Biomatters) under high stringency (maximum 5% mismatches and gaps allowed). Single nucleotide polymorphism tables built previously for the Tibetan wolf (Zhang et al. 2014) were used to verify single nucleotide polymorphisms in the coding sequences of β-type globin genes.

Tests of Gene Conversion
Discrete genomic regions containing adult-type β-globin genes (HBD, HBB/D, and HBBps; from the 5’ mRNA cap to the 3’ poly-A signal) were aligned using MUSCLE (Edgar 2004) and tests of gene conversion were performed using GENECONV (Sawyer 1989) under default parameters.

Ancestral State Reconstruction
Ancestral amino acid states were estimated from an alignment of HBB orthologs from 34 mammalian species (supplementary table S4, Supplementary Material online). Using an input phylogeny based on results of previous studies (Koepfli et al. 2008; Li et al. 2008; Meredith et al. 2011; Fan et al. 2016), reconstructed sequences were estimated using baseml, as implemented in the software package PAML 4.7 (Yang 2007). Reconstructed sequences were estimated under the GTR + G substitution model, which was determined by MODELTEST (Posada and Crandall 1998) to provide the best fit to the data. The same phylogeny, along with experimental measures of Hb isoform expression (supplementary table S5, Supplementary Material online), was also used to estimate ancestral HBB expression using the Phytools package in R (Revell 2012).

Sample Isolation and cDNA Sequencing
We collected blood from Tibetan wolves at an altitude of 4,300 m in the KeKe XiLi area of the Qinghai-Tibetan Plateau, and from Tibetan mastiffs and domestic dogs at an altitude of 2,300 m in Xining, China. Animals were handled and blood samples were collected in accordance with regulations of the Animal Experimental and Medical Ethics Committee of the Qinghai University Medical College, Qinghai University. RNA was extracted from ~200 µl of flash frozen whole blood from domestic dogs (n = 2), Tibetan mastiffs (n = 3), and Tibetan wolves (n = 2) using an RNeasy Universal Plus Mini Kit (Qiagen). cDNA was
synthesized from freshly prepared RNA using Superscript IV Reverse transcriptase (Invitrogen). Gene specific primers were used to amplify the α- and β-type globin transcripts. Polymerase chain reactions were conducted using 1 μl of cDNA template in 0.2-ml tubes containing 25 μl of reaction mixture (0.5 μl of each dNTP [2.5 mM], 2.5 μl of 10× Reaction Buffer [Invitrogen], 0.75 μl of 50-mM MgCl₂, 1.25 μl of each primer [10 pmol/μl], 1 μl of Taq polymerase [Invitrogen], and 16.75 μl of ddH₂O), using an Eppendorf Mastercycler Gradient thermocycler. Following a 5-min denaturation period at 94 °C, the desired products were amplified using cycling profile of 94 °C for 30 s, 48–53 °C for 30 s, and 72 °C for 60 s for 30 cycles followed by a final extension period of 5 min at 72 °C. Amplified products were run on a 1.5% agarose gel where bands of the correct size were excised and purified using Zymoclean Gel DNA recovery columns (Zymo Research) and sequenced by Sanger sequencing with gene specific primers.

Functional Analyses of Hbs

Blood samples (~200 μl) were added to a 5× volume of ice cold water and incubated on ice for 30 min to lyse the red blood cells. Samples were centrifuged at 20,000 × g for 10 min to remove cell debris. Buffer was added to the supernatants to a final concentration of 0.01-M HEPES/0.2-M NaCl and concentrated using Amicon Ultra-4 Centrifugal Filter Units (Millipore). O₂-equilibrium curves for Hb solutions (0.1 mM Hb in 0.1-M HEPES/0.05-M ethylenediaminetetraacetic acid buffer) were measured at 37 °C using a Blood Oxygen Binding System (Loligo Systems). O₂-equilibrium curves were measured in the absence (stripped) and presence of chloride ions (0.1-M KCl) and organic phosphates (0.2-mM DPG). Each Hb solution was sequentially equilibrated with three to five different oxygen tensions (P₅₀) at saturation levels between 30% and 70% while the absorbance was continually monitored at 430 nm (deoxy peak) and 421 nm (oxy/deoxy isosbestic point). Hill plots (log[fractional saturation/(1 – fractional saturation)] vs. log[P₅₀]) constructed from these measurements were used to determine the P₅₀ at half saturation (P₅₀) and the cooperativity coefficient (nₛₒ) from the χ intercept and slope of these plots, respectively. P₅₀ values were measured at three different pH levels, where the pH of working solutions were adjusted with NaOH to as near 7.2, 7.4, or 7.6 as possible, then precisely measured with a pH-1 Micro pH meter and a needle-type pH microsensor (PreSens Precision Sensing GmbH). Individual measurements were pooled according to species/breed and a linear regression was fit to plots of log[P₅₀] versus pH. The resulting equation was used to estimate P₅₀ values at pH 7.40 (±SE). O₂-equilibrium curves were measured for rHbs as described above, but at both 37 and 25 °C. Van’t Hoff plots were created from these measurements (log[P₅₀] vs. 1/temperature) and a linear regression was fit to each plot. The Gibbs free energy of oxygenation (ΔG) was calculated from these regressions according to the relation ΔG = ΔH – TΔS, where ΔH (enthalpy of oxygenation) is derived from the slope of the regression, multiplied by –R (the universal gas constant), and ΔS (entropy of oxygenation) is derived from the Y-intercept, multiplied by R.

Structural Modeling

Modeling of canid Hbs was performed using Modeller 9.19 (Webb and Sali 2014). Oxy and deoxy structures of human Hb (PDB ID, 1hho and 2hhb, respectively) were used as templates. The root-mean-square deviations between the template and model for domestic dog and Tibetan wolf Hbs were 0.12 and 0.15 Å in both oxy and deoxy formats. Graphics were prepared using the PyMOL Molecular Graphics System, Version v1.7.6.3 (Schrödinger, LLC, New York City, NY). Hydrogen bonds and subunit contacts were estimated using Hydrogen Bond Calculation at Center for Informational Biology, Ochanomizu University, Japan (http://cib.cf.ocho.ac.jp/bitool/HBOND/; last accessed April 26, 2019) and by “Proteins, interfaces, structures and assemblies” service PISA at the European Bioinformatics Institute. (http://www.ebi.ac.uk/pdbe/prot_int/pistart.html; last accessed April 26, 2019), respectively.

Vector Construction and Site-Directed Mutagenesis

The canid globin sequences were synthesized by Invitrogen GeneArt Gene Synthesis (Carlsbad, CA) after optimizing the nucleotide sequences in accordance with Escherichia coli codon preferences. The synthesized globin gene cassette was cloned into a custom pGM vector system along with the methionine aminopeptidase (MAP) gene, as described previously (Natarajan et al. 2011, 2013). We engineered each of the β-chain codon substitutions by whole plasmid amplification using mutagenic primers and Phusion High-Fidelity DNA Polymerase (New England BioLabs, Ipswitch, MA), phosphorylation with T4 Polynucleotide Kinase (New England BioLabs, Ipswith, MA), and circularization with an NEB Quick Ligation Kit (New England BioLabs). Each engineered codon change was verified by DNA sequencing.

Expression and Purification of rHbs

rHb expression was carried out in the Escherichia coli JM109 (DE3) strain as described previously (Natarajan et al. 2011, 2013). Bacterial cell lysates were then loaded onto a HiTrap Q HP anion exchange column (GE Healthcare) equilibrated with 20-mM Tris/0.5-mM ethylenediaminetetraacetic acid (pH 8.3) and eluted with a linear gradient of 0–0.25-M NaCl. Hb-containing fractions were then loaded on to a SP HP cation exchange column (GE Healthcare) and eluted with a linear pH gradient (pH 6.8–8.4). Eluted Hb fractions were concentrated using Amicon Ultra-4 Centrifugal Filter Units (Millipore) and oxygenation properties were measured as described above.

Supplementary Material

Supplementary data are available at Molecular Biology and Evolution online.
Acknowledgments

We thank K. Campbell, J. Hite, S. Mohammadi, O. Matoo, C. Natarajan, and two anonymous reviewers for constructive comments on the manuscript and M. Tift for technical assistance. This work was supported by grants from the National Institutes of Health (Grant No. HL087216 to J.F.S.), the National Science Foundation (Grant Nos. MCB-1517636 and RII Track-2 FEC-1736249 to J.F.S.), the National Basic Research Program of China (Grant No. 2012CB518200 to R.-L.G.), the Program of International S&T Cooperation of China (Grant No. 052012GR0195 to R.-L.G.), and the National Natural Science Foundation of China (Grant No. 31571231 to R.-L.G.).

References

Atha DH, Ackers GK. 1974. Calorimetric determination of the heat of oxygenation of human hemoglobin as a function of pH and the extent of reaction. Biochemistry 13(11):2376–2382.

Bencowitz HZ, Wagner PD, West JB. 1982. Effect of change in P_50 on exercise tolerance at high altitude: a theoretical study. J Appl Physiol Respir Environ Exerc Physiol. 53(6):1487–1495.

Bhatt VS, Zaldívar-López S, Harris DR, Couto CG, Wang PG, Palmer AF. 2011. Structure of greyhound hemoglobin: origin of high oxygen affinity. Acta Crystallogr D Biol Crystallogr. 67(Pt 5):395–402.

Bohr C, Hasselbalch K, Krogh A. 1904. Uber einen in biologischer Beziehung wichtigen Einfluss, den die Kohlensäurespannung des Blutes auf dessen Sauerstoffbindung übt. Acta Physiol. 16:402–412.

Casola C, Zekonyte U, Phillips AD, Cooper DN, Hahn MW. 2012. Interlocus gene conversion events introduce deleterious mutations into at least 1% of human genes associated with inherited disease. Genome Res. 22(3):429–435.

Chappell MA, Snyder LR. 1984. Biochemical and physiological correlates of deer mouse alpha-chain hemoglobin polymorphisms. Proc Natl Acad Sci U S A. 81(17):5484–5488.

Eaton JW, Skelton TD, Berger E. 1974. Survival at extreme altitude: protective effect of increased hemoglobin-oxygen affinity. Science 183(4126):743–744.

Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32(5):1792–1797.

Enciso-Romero J, Pardo-Diaz C, Martin SH, Arias CF, Linares M, McMillan WO, Jiggins CD, Salzlar C. 2017. Evolution of novel mimicry rings facilitated by adaptive introgression in tropical butterflies. Mol Ecol. 26(19):5160–5172.

Fan Z, Silva P, Groneu I, Wang S, Armerico AS, Schweizer RM, Ramirez MC, Pollinger J, Galaverni M, Ortega-Del Vecchio D, et al. 2016. Worldwide patterns of genomic variation and admixture in gray wolves. Genome Res. 26(2):163–173.

Gaudry MJ, Storz JF, Butts GT, Campbell KL, Hoffmann FG. 2014. Repeated evolution of chimeric fusion genes in the beta-globin gene family of laurasiatherian mammals. Genome Biol Evol. 6(5):1219–1234.

Gou X, Wang Z, Li N, Qiu F, Xu Z, Yan D, Yang S, Jia J, Kong X, Wei Z, et al. 2014. Whole-genome sequencing of six dog breeds from continuous altitudes reveals adaptation to high-altitude hypoxia. Genome Res. 24(8):1308–1315.

Hedrick PW. 2013. Adaptive introgression in animals: examples and comparison to new mutation and standing variation as sources of adaptive variation. Mol Ecol. 22(18):4606–4618.

Heliconius Genome Consortium. 2012. Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature 487:94–98.

Hoffmann FG, Opazo JC, Storz JF. 2008. New genes originated via multiple recombinational pathways in the beta-globin gene family of rodents. Mol Biol Evol. 25(12):2589–2600.

Huerta-Sánchez E, Jin X, Asan, Bianza Z, Peter BM, Vinckenbosch N, Liang Y, Yi X, He M, Somel M, et al. 2014. Altitude adaptation in Tibetans caused by introgression of Denisensovian-like DNA. Nature 512:194–197.

Jancek J, Nielsen SS, Andersen SD, Hoffmann FG, Weber RE, Anderson T, Storz JF, Fago A. 2015. Genetically based low oxygen affinities of feld hemoglobins: lack of biochemical adaptation to high-altitude hypoxia in the snow leopard. J Exp Biol. 218(15):2402–2409.

Jones MR, Mills LS, Alves PC, Callahan CM, Alves JM, Lafferty DJR, Jiggins FM, Jensen JD, Melo-Ferreira J, Good JM. 2018. Adaptive introgression underlies polymorphic seasonal camouflage in snowshoe hares. Science 360(6395):1355–1358.

Kimura M. 1983. The neutral theory of molecular evolution. Cambridge, UK:Cambridge University Press.

Koepfli KP, Deere KA, Slater GJ, Begg C, Begg K, Grassman L, Lucherini M, Veron G, Wayne RK. 2008. Multigene phylogeny of the Mustelidae: resolving relationships, tempo and biogeographic history of a mammalian adaptive radiation. BMC Biol. 6:10.

Li Q, Liu Z, Li Y, Zhao X, Dong L, Pan Z, Sun Y, Li N, Xu Y, Xie Z. 2008. Origin and phylogenetic analysis of Tibetan Mastiff based on the mitochondrial DNA sequence. J Genet Genomics. 35:335–340.

Meredith RW, Janecka JE, Cathey J, Ryder OA, Fisher CA, Teeling EC, Goodbly A, Eizirik E, Simao TLL, Stadler T, et al. 2011. Impacts of the Cretaceous terrestrial revolution and KPg extinction on mammal diversification. Science 334(6055):521–524.

Messerschmidt DMR. 1983. The Tibetan Mastiff: canine sentinels of the range. Rangelands 5:172–174.

Miao B, Wang Z, Li Y. 2017. Genomic analysis reveals hypoxia adaptation in the Tibetan mastiff by introgression of the gray wolf from the Tibetan plateau. Mol Biol Evol. 34:734–743.

Natarajan C, Hoffmann FG, Lanier HC, Wolf CJ, Cheviron ZA, Spangler ML, Weber RE, Fago A, Storz JF. 2015. Intraspecific polymorphism, interspecific divergence, and the origins of function-altering mutations in deer mouse hemoglobin. Mol Biol Evol. 32(4):978–997.

Natarajan C, Inoguchi N, Weber RE, Fago A, Moriyama H, Storz JF. 2013. Epistasis among adaptive mutations in deer mouse hemoglobin. Science 340(6138):1324–1327.

Natarajan C, Jiang X, Fago A, Weber RE, Moriyama H, Storz JF. 2011. Expression and purification of recombinant hemoglobin in Escherichia coli. PLoS One 6(5):e20176.

Natarajan C, Proyecto-Garcia J, Moriyama H, Weber RE, Muñoz-Fuentes V, Green AJ, Kopuchian C, Tubaro PL, Alza L, Bulgarella M, et al. 2015. Convergent evolution of hemoglobin function in high-altitude Andean waterfowl involves limited parallelism at the molecular sequence level. PLoS Genet. 11(12):e1005681.

Opazo JC, Hoffmann FG, Storz JF. 2008a. Differential loss of embryonic globin genes during the radiation of placental mammals. Proc Natl Acad Sci U S A. 105(35):12950–12955.

Opazo JC, Hoffmann FG, Storz JF. 2008b. Genomic evidence for independent origins of β-like globin genes in monotremes and therian mammals. Proc Natl Acad Sci U S A. 105(5):1590–1595.

Opazo JC, Sloan AM, Campbell KL, Storz JF. 2009. Origin and ascendency of a chimeric fusion gene: the $\beta\alpha$-globin gene of paenungulate mammals. Mol Biol Evol. 26(7):1469–1478.

Pardo-Diaz C, Salazar C, Baxter SW, Merot C, Figueiredo-Ready W, Joron M, McMillan WO, Jiggins CD. 2012. Adaptive introgression across species boundaries in Heliconius butterflies. PLoS Genet. 8(6):e1002752.

Perutz MF. 1970. Stereochemistry of cooperative effects in haemoglobin. Nature 228(5273):726–739.

Posada D, Crandall KA. 1998. MODELTEST: testing the model of DNA substitution. Bioinformatics 14(9):817–818.

Racimo F, Sankaran S, Nielsen R, Huerta-Sánchez E. 2015. Evidence for archaic adaptive introgression in humans. Nat Rev Genet. 16:359–371.

Revell LJ. 2012. phytools: an R package for phylogenetic comparative biology (and other things). Met Ecol Evol. 3(2):217–223.

Roughton FJ, Adair GS, Barcroft J, Goldschmidt G, Herkel W, Hill RM, Keys AB, Ray GB. 1936. The thermochemistry of the oxygen-
Haemoglobin reaction: comparison of the heat as measured directly on purified haemoglobin with that calculated indirectly by the Van’t Hoff Isochore. *Biochem J.* 30(11):2117–2133.

Sawyer S. 1989. Statistical tests for detecting gene conversion. *Mol Biol Evol.* 6(5):526–538.

Sharma DK, Maldonado JE, Jhala YV, Fleischer RC. 2004. Ancient wolf lineages in India. *Proc Biol Sci.* 271(Suppl 3):S1–S4.

Song Y, Endepols S, Klemann N, Richter D, Matuschka F-R, Shih C-H, Nachman MW, Kohn MH. 2011. Adaptive introgression of anticoagulant rodent poison resistance by hybridization between old world mice. *Curr Biol.* 21(15):1296–1301.

Storz JF. 2016. Hemoglobin-oxygen affinity in high-altitude vertebrates: is there evidence for an adaptive trend? *J Exp Biol.* 219(20):3190–3203.

Storz JF. 2019. Hemoglobin: insights into protein structure, function, and evolution. Oxford, UK: Oxford University Press.

Storz JF, Runck AM, Moriyama H, Weber RE, Fago A. 2010. Genetic differences in hemoglobin function between highland and lowland deer mice. *J Exp Biol.* 213(15):2565–2574.

Storz JF, Scott GR, Cheviron ZA. 2010. Phenotypic plasticity and genetic adaptation to high-altitude hypoxia in vertebrates. *J Exp Biol.* 213(24):4125–4136.

Suarez-Gonzalez A, Lexer C, Cronk QCB. 2018. Adaptive introgression: a plant perspective. *Biol Lett.* 14. 20170688.

Turek Z, Kreuzer F, Ringnalds BE. 1978. Blood O₂ content, cardiac output, and flow to organs at several levels of oxygenation in rats with a left-shifted blood oxygen dissociation curve. *Pflugers Arch.* 376(3):201–207.

vonHoldt B, Fan Z, Ortega-Del Vecchyo D, Wayne RK. 2017. EPAS1 variants in high altitude Tibetan wolves were selectively introgressed into highland dogs. *Peer J.* 5:e3522.

Wang G-D, Zhai W, Yang H-C, Fan R-X, Cao X, Zhong L, Wang L, Liu F, Wu H, Cheng L-G, et al. 2013. The genomics of selection in dogs and the parallel evolution between dogs and humans. *Nat Commun.* 4:11860.

Webb B, Sali A. 2014. Comparative protein structure modeling using MODELLER. *Curr Protoc Bioinformatics.* 47(1):5.6.1–6.32.

Weber RE. 2007. High-altitude adaptations in vertebrate hemoglobins. *Respir Physiol Neurobiol.* 158(2-3):132–142.

Weber RE, Campbell KL. 2011. Temperature dependence of haemoglobin-oxygen affinity in heterothermic vertebrates: mechanisms and biological significance. *Acta Phys.* 202(3):549–562.

Willford DC, Hill EP, Moores WY. 1982. Theoretical analysis of optimal P⁵₀. *J Appl Physiol Respir Environ Exerc Physiol.* 52(4):1043–1048.

Yang Z. 2007. PAML 4: Phylogenetic Analysis by Maximum Likelihood. *Mol Biol Evol.* 24(8):1586–1591.

Zaldívar-López S, Rowell JL, Fiala EM, Zapata I, Couto CG, Alvarez CE. 2017. Comparative genomics of canine hemoglobin genes reveals primacy of beta subunit delta in adult carnivores. *BMC Genomics.* 18(1):141.

Zhang W, Fan Z, Han E, Hou R, Zhang L, Galaverni M, Huang J, Liu H, Silva P, Li P, et al. 2014. Hypoxia adaptations in the grey wolf (*Canis lupus chanco*) from Qinghai-Tibet Plateau. *PLoS Genet.* 10(7):e1004566.