The effect of financial crises on deforestation: a global and regional panel data analysis

Antonarakis, Alexander S, Pacca, Lucia and Antoniades, Andreas (2022) The effect of financial crises on deforestation: a global and regional panel data analysis. Sustainability Science. ISSN 1862-4065

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/104242/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.
THE EFFECT OF FINANCIAL CRISSES ON DEFORESTATION: A GLOBAL AND REGIONAL
Panel Data Analysis

Alexander S. Antonarakis1*, Lucia Pacca2, Andreas Antoniades1

1School of Global Studies, University of Sussex, BN1 9QJ, UK
2Center for Vulnerable Populations, University of California, San Francisco, USA
* Corresponding author

Abstract: Managing our transition to sustainability requires a solid understanding of how conditions of financial crisis affect our natural environment. Yet there has been little focus on the nature of the relationship between financial crises and environmental sustainability, especially in relation to forests and deforestation.

Addressing this gap, this study comes to provide novel evidence on the impact of financial crises on deforestation. A panel data approach is used looking at Global Forest Watch deforestation data from >150 countries in >100 crises in the 21st Century. This includes an analysis of crises effects on principle drivers of deforestation; timber and agricultural commodities – palm oil, soybean, coffee, cattle and cocoa. At a global level, financial crises are associated with a reduction in deforestation rates (-36 p.p) and deforestation drivers; roundwood (-6.7 p.p.), cattle (-2.3 p.p.) and cocoa production (-8.3 p.p.). Regionally, deforestation rates in Asia, Africa and Europe decreased by -83, -43, and 22 p.p respectively. Drivers behind these effects may be different, from palm oil (-1.3 p.p.) and cocoa (-10.5 p.p.) reductions in Africa, to a combination of timber (-9.5 p.p) and palm oil in Asia. Moreover, financial crises have a larger effect on deforestation in low-income, than upper middle- and high-income countries (-51 vs -39 and -18 p.p. respectively). Using another main dataset on yearly forest cover – the ESA-Climate Change Initiative – a picture arises showing financial crises leading to small global decreases in forest cover (-0.1 p.p.) with a small agricultural cover increase (0.1 p.p). Our findings point to financial crises as important moments for global deforestation dynamics. Yet, to consolidate these benefits on decreasing deforestation, governments need to enhance their sustainable forest management during crisis periods rather than let it slip down national agendas. Finally, to achieve the SDGs related to forests, better global forest cover data is needed, with better forest loss/gain data, disturbance history, and understanding of mosaicked landscape dynamics within a satellite pixel.

1. Introduction

Financial crises have been recognized by the UN as a real threat to the global development agenda (UNCTAD 2015; WESS 2017). Forty percent of low-income countries were facing significant challenges in servicing their debt already before the Covid-19 pandemic crisis (IMF 2018). The unprecedented pandemic impact has seen sharp falls in livelihoods and GDP globally. Advanced economies are projected to return to their pre-pandemic output level in 2024; emerging and developing economies (excluding China) are projected to still be 5.5% below their pre-pandemic GDP level in 2024, while the output of low-income economies is projected to continue declining at least up to 2024 (IMF, 2021). The effects of financial crises are often severe and widespread and go well beyond the economic performance of countries (Antoniades et al 2020; Antoniades et al. 2022). Given the linkages between the economy and the environment (Shafik and Bandyopadhyay 1992; Lambin and Meyfroidt 2011; Cuaresma et al. 2017), it follows that a shock in the former should affect the latter. Economic globalization has seen nations expanding their agricultural land and output at the expense of natural and forested landscapes (Ramanukty et al 2008; Lambin and Meyfroidt 2011). Global trade is an important component of this, redistributing environmental impacts associated with natural resources, carbon emissions, and agricultural commodities, sometimes from higher to lower income countries (Srinivasan et al. 2008). Yet, the impacts or shocks of financial crises on the environment have not

1
been well defined. For example, Bowen and Stern (2010) make the case that a demand-induced economic downturn could provide a great opportunity to step up public spending on environmental policies, yet recent evidence has shown that environmental protection may actually be weakened during a financial crisis (Lekakis and Kousis 2013; Gaveau et al., 2009; Botetzagias et al. 2018). Additionally, evidence on measuring financial crisis impacts on the environment and environmental protection has so far been neglected (Burns and Tobin 2016; Botetzagias et al. 2018; for a recent literature review see Antoniades and Antonarakis 2022).

In a previous study, Pacca et al. (2020) which investigated the effects of financial crisis on air pollutant emissions, found significant global decreases in CO₂, SO₂ and NOₓ by 2.6, 1.8, and 1.7 p.p. respectively.

In this paper, we focus on the relationship between financial crises and deforestation. Deforestation is of principal concern globally with explicit SDG targets (SDG 15.2) pushing for the halt to deforestation, and initiatives such as the UN Strategic Plan for Forests 2017-2030, the UN program for Reducing Emissions from Deforestation and forest Degradation, the Zero-Deforestation Commitments for producers and traders (Humphreys et al. 2019), the New York Declaration on Forests, the UN Decade 2021-2030 on Ecosystem Restoration all calling a halt to deforestation and degradation. There are many drivers of deforestation linked to national economic development. Agricultural expansion is the principal driver of deforestation accounting for 80% of forested land cover change (FAO 2016a), with large-scale commercial agriculture accounting for more than half of this in developing countries (Hosonuma et al. 2012). These commodities include soybean and cattle-ranching in South America, oil palm plantations in South-East Asia, as well as cocoa, banana and coffee amongst others. The top three commodities alone – soybean, beef, oil palm (Pendrill et al. 2019) – are globally worth over 110 billion USD exports annually (FAO 2016b). In fact, commodity-driven agriculture is the largest driver of deforestation in tropical South America and South-East Asia, whereas shifting agriculture is the main driver of forest loss in Africa with large minority contributions in South America and South-East Asia (Curtis et al. 2018). Urban expansion, infrastructure and mining are also large contributors to deforestation in tropical and subtropical countries (DeFries et al. 2010; Hosonuma et al. 2012).

Beyond the tropics and subtropics, forestry, in managed forests or plantation, and wildfires with no subsequent human conversion to crops, are the main drivers of forest loss (although wood products are also a significant driver of tropical forest loss). Forestry is the principal cause of forest loss in Europe and North America, with large forestry sectors existing in Russia, East Asia, Australia, and southern South America (Curtis et al. 2018). Wildfires are dominant in Russia, Canada and Australia. The global forest product industry accounts for 250 billion USD exports annually (FAO 2018a), but illegal timber can account for over 70% of the income of countries’ timber exports (World Bank 2012).

Considering financial crises, existing studies have found different and often contradictory channels underlying the relationship between crises, and forest loss and deforestation. For example, financial crises resulted in intensification of forest protection initiatives in the Brazilian Amazon, promoted by NGOs, during the crises years 1998-2000, as well as cutting resources to environmentally damaging activities such as roadbuilding (Kasa & Naess, 2005). On the contrary, cut in resources in forest management and conservation has been blamed for an increase in deforestation as a result of financial crises in South East Asia (Dauvergne 1999; Siddiqi 2000; Pagiola 2001) and Greece (Lekakis and Kousis 2013). The reduction in government expenditures in forest protection was manifested in some cases as a shrinking of forest rangers or law enforcement to protect forests, e.g. Gaveau et al. (2009) found that the 1997-1998 crisis brought about an 18-fold increase in deforestation in Sumatra attributed mainly to a weakening of law enforcement. The current pandemic is also seeing increased logging activity attributed to reduced enforcement (Fair, 2020).
Agriculture is often seen by governments as a way to drag countries out of financial crises through a decrease in unemployment, higher social and political stability, and more export opportunities (Sunderlin, 1998). Indeed, Dauvergne (1999) found that agriculture was expanded in East-Asia during the 1997-1998 crisis as a way to drag countries out of the crisis and compensate for households' shortfall in income. Crises can also induce a change in prices of agricultural goods, which encourages production of some to be expanded and other to be decreased. For example, the price of palm oil increased subsequent to the 1997 East-Asian crisis and 2008/2009 Global financial crisis resulting in an expansion of cultivated areas of palm in Indonesia (Pagiola 2001; Maxton-Lee 2018). Shifting agricultural practices may also impact on forests. For example, following the global financial crisis in late 2008, staff working for logging companies in Cameroon were made redundant, resulting in an increase in poaching and slash and burn agriculture (Sayer et al. 2012). These increases in demand for agricultural land may result in urban-to-rural and rural-to-rural migration towards natural land and forest frontiers (Pagiola 2001; Carr et al. 2009), although other studies have noted a rural-to-urban migration due to a decline in mining, volatile food prices and timber activities (UNECA 2009, Tieguhong et al. 2009).

Timber, as a major trade commodity, for export and fuelwood, is also affected during economic crises (Nilsson 2009; Presas 2009; FAO 2020) for instance, via crashes in the property market and downturns in the construction industry (Busch & Ferretti-Gallon 2017). Notably, timber production and trade suffered during the 2008/09 global recession (Nilsson 2009; Eurostat 2019). Decreases in national and international timber demand during a crisis can result in lower production (Dauvergne 1999; Elliott 2011). According to Dauvergne (1999), this decrease in logging activities did not necessarily produce great environmental benefits. Indeed, countries in South-East Asia moved into more profitable and equally environmentally harmful activities, such as rubber plantations and palm oil. Similar channels have been also identified by Elliott (2011) who found that although demand for timber in Indonesia contracted during the crisis leading to a reduction in forest exploitation, this outcome was compensated by an intensification of illegal timber activities. Illegal collection of forest products to generate income (Gross et al. 2020) and energy (Pagiola 2001; Lekakis & Kouasis 2013) can be triggered by a collapse in the economy or an increase in fuel prices. Some of the channels identified relating financial crisis and forest loss are shown in Table 1.

Decrease in Deforestation	Increase in Deforestation
Intensification of forest protection initiatives, promoted by NGOs, during the crises year (Kasa & Naess, 2005)	Increased collection of forest products to generate energy (Pagiola, 2001; Lekakis and Kouasis, 2013)
Cut in resources allocated to environmentally damaging activities, such as large infrastructure projects (e.g. road-building, mines, hydroelectric dams) (Kasa & Naess, 2005; Pagiola, 2001; Laurance et al. 2015)	Cut in resources for forest management and conservation (Siddiq, 2000; Kasa & Naess, 2005; Pagiola, 2011; Fair 2020), including capacity to deal with fires (Lekakis & Kouasis, 2013)
Decrease in national and international timber demand, resulting in lower production (Dauvergne, 1999; Elliott, 2011; FAO, 2020)	Increase in agricultural activities compensating for households' shortfall in income (Dauvergne, 1999; Pagiola, 2001)
Rural-to-urban migration due to declines in timber demand, redundancies in mining and volatile food prices, resulting in less pressure on natural land (UNEC 2009; Tieguhong et al. 2009)	Increase in prices of some commodities during the crisis years, with resulting expansion of cultivated area (e.g. palm oil in Indonesia after 1997) (Pagiola, 2001)
Commodity price fluctuations, especially in the form of price decreases (e.g. palm oil and timber) (Pagiola 2001; Maxton-Lee 2018; Sulaksono & Widjanarko 2009)	Weakening of law enforcement to protect forests during the crisis years (Gaveau et al., 2009; Pagiola, 2001), with resulting intensification in illegal forest activities (Elliott, 2011; Lekakis & Kouasis, 2013; Gross et al. 2020)
Return, urban-to-rural, migration of workers who lose their jobs; and rural-to-rural migration towards forest frontiers (Pagiola, 2001; Carr 2009)	
The contradiction in these studies looking at the impact of financial crises on deforestation lies largely in that they are country-level case studies or regional assessments of deforestation. Each country may have different drivers of forest loss which may become exacerbated or differently affected during times of economic downturn. For instance, agricultural expansion during crises is given as a reason for increases in deforestation in Indonesia (Dauvergne, 1999; Pagiola, 2001), while decline in timber demand can result in lower production in Indonesia (Dauvergne 1999; Elliott 2011); or intensification in forest protection was promoted in the Brazilian Amazon (Kasa & Naess, 2005), but conservation and forest management was cut in Southeast Asia (Siddiqi, 2000; Kasa & Naess, 2005; Pagiola, 2011). Furthermore, in many of the case studies, assessments of the effect of financial crises on deforestation were not derived from statistical relationships.

This study seeks new evidence on the impact of financial crises on deforestation, advancing the current knowledge in four ways. First, we examine the relationship between financial crises and deforestation across countries in the global context moving beyond single country evaluations. This empirical analysis is based on yearly deforestation data from the Global Forest Watch (GFW) from 2001 to 2017 in more than 150 countries for over 100 crises events, drawing generalized global evidence of financial crisis effects on changes to forested land. We also examine heterogeneity in these effects across continental and national income groupings. Second, we investigate the financial crisis effect on two proximate drivers of global forest loss: agriculture commodity and forestry products. Agriculture is subdivided into agricultural land cover change, and production of palm oil, soybean, coffee, cattle, and cocoa. Palm oil, soy and beef alone can contribute 76% of deforestation associated with agriculture (Brack et al. 2016), and in some cases cattle, wood products, soybean, and palm oil together can contribute to more than a third of tropical deforestation (Persson et al., 2014). Third, we compare the two available yearly datasets of global deforestation and forest cover: the GFW and the European Space Agency Climate Change Initiative (ESA CCI). The ESA CCI estimates yearly forest cover changes from 1992 to 2015. This comparison will provide insight into financial crisis effects on these two key datasets, and the nature and quality of data available to help us meet the SDG goals related to forests.

2. Method

2.1 Data Sources

Data on financial crises come from Laeven and Valencia (2018), consisting of all years all countries are experiencing a crisis. The database includes three different types of crisis: systemic banking crises, sovereign debt crises and currency crises occurring between 1970 and 2017. Banking crises are defined if two conditions are met: signs of financial distress in the banking system, and significant banking policy interventions. Currency crises are defined as a nominal depreciation of the country’s currency vis-à-vis the U.S. dollar of at least 30%, that is also at least 10 percentage points higher than the rate of depreciation in the year before. As for sovereign debt crises, these include episodes of sovereign debt default or restructuring. These three different types of crises are combined into one variable in this analysis with 103 crises over 165 countries (listed in Appendix A1) in the 21st Century (concurrent with GFW data), and 239 crises between 1992-2017 (concurrent with ESA-CCI forest cover data).

Data on yearly deforestation is taken from the Global Forest Watch on forests with >30% canopy cover (Hansen et al. 2013; GFW 2014). These public maps measure near-real time (yearly) deforestation in hectares, derived from Landsat satellite observations. Data are available from 2001 onwards and over 165 countries, with raw data at a resolution of 30m. Data on forest gain, available once from 2001-2012 were not used. In our analysis, we also use forest coverage from the European Space Agency Climate Change Initiative (Defourny et al 2017). These data measure forest covered area in hectares and are available yearly from 1992
to 2015. In addition to the longer time availability, this database provides a net forest cover change, accounting for not only forest losses, but also forest gains through, for example, reforestation initiatives or plantation growth. Therefore, it offers supplementary information with respect to the GFW data. Raw ESA CCI data from 1992 are provided at 300 m resolution for a number of land cover types over the globe, and have been determined using satellites AVHRR, MERIS, SPOT-vegetation and PROBA-V. All forested land cover types from the ESA-CCI (Defourny et al 2017) were combined into one forested class – merging classes 50-90 and 160, 170 with small contributions from other classes (see FAOSTAT 2017).

Agricultural land from 1992-2015 was also taken from the ESA CCI, merging classes 10-40, including rainfed, irrigated and mosaicked cropland (see FAOSTAT 2017). Data on yearly roundwood production in millions m3 per year are taken from the FAO (2018) for 209 countries and dependencies and are available from 1961-2017. Roundwood production encompasses both industrial roundwood and wood fuel. Production of agricultural commodities common in tropical countries of palm oil, soybean, cattle, coffee and cocoa in tonnes per year, are available from FAOSTAT from 1992-2017 for 194 countries. Regarding the control variables, agricultural employment, trade openness and urban population come from the World Bank’s World Development Indicators, while data on total primary energy use are taken from the Energy Information Administration (EIA). Table 2 shows all the dependent and independent variables used in this study1.

Table 2 – Variables used in this study

Dependent Variables	Units	Sample Length	Number of countries	Source
Deforestation	1000 Ha	2001-2017	173	GFW
Forest Cover	1000 Ha	1992-2015	211	ESA CCI
Roundwood Production	Millions m3	1961-2017	209	FAO
Agricultural Production (palm	Tonnage,	1992-2017	194	FAOSTAT
oil, soybean, coffee, cattle,				
and cocoa)				
Agricultural Cover	1000 Ha	1992-2015	211	ESA CCI

Independent & Control Variables	Dummy var.	Sample Length	Number of countries	Source
Financial Crisis	1970-2017	165	Laeven and Valencia (2018)	
Urban Population	% of total	1960-2017	213	World Bank
Energy per capita	Btu per cap	1980-2017	215	EIA
Trade Openess	% of GDP	1990-2017	199	World Bank
Agricultural Employment	% of total	1991-2017	186	World Bank

2.2 Econometric Specification

To assess the impact of crises on the environmental variables of deforestation, forest cover change, roundwood production, agricultural commodity production and agricultural cover change, we estimate the following empirical specification for Ordinary Least Squares (OLS) and Fixed Effects (F.E.):

$$y_{it} = \alpha_i + y_{it-1} + crisis_{it} + X_{it} + c_i + \varepsilon_{it}$$

(1)

Where y_t is our dependent variable, and for each separate model represents deforestation, forest cover change, roundwood production, agricultural commodity production or agricultural cover change, in country i and year t. $Crisis$ is the financial crisis dummy variable, equal to one in years when country i is experiencing a crisis, and equal to zero in all the other years, and is a combination of all types of crises defined in Laeven and Valencia (2018). X is a vector of control variables given in Table 2, and α is the constant term. c_i are

1 Unit root test results are presented in Table A2 in the Appendix.
unobserved time-invariant country effects, for example geographic, historical and institutional conditions. Finally, e_{it} is the error term.

In this study we also use the Generalized Method of Moments (GMM) model:

$$y_{it} = \alpha_{it} + Y_{it-1} + crisis_{it} + X_{it} + \epsilon_{it}$$ (2)

The use of the GMM is theorized by the dynamic panel data methodology developed by Arellano and Bond (1991). In particular, we adopt this approach to overcome the dynamic panel bias created by the inclusion of

the lagged dependent variable (Y_{it-1}), which might generate autocorrelation between the predictor

variables and the error term. The reason why we employ the GMM in addition to regular panel OLS and F.E. estimations is that they might lead to biased and inconsistent estimates as they do not control for this bias.

The GMM estimator, suited for “small T, large N” panels, manages the endogeneity issue by instrumenting

the lagged dependent variable and/or any other endogenous variables with the previous (second and

further) lags, which are thought to be uncorrelated with the fixed effects (Roodman, 2009). Furthermore, the

GMM approach removes time-constant unobserved variables (γ) which may correlate with the dependent

or control variables by implementing a first difference transformation (Arellano and Bond 1991; Arellano

2003).

All dependent and independent variables in the above equations (1 & 2) are included as growth rate terms

rather than level terms. Using growth rates allows for comparison and statistical inference of differently sized

entities. Our dependent and independent variables considerably vary in size and unit of measurement (see

Table 2), which would make it difficult to interpret beta coefficients if they were included in level.

Regarding control variables, we include the percentage of urban population over the total population, the

level of trade openness, per capita energy consumption and the level of agricultural employment. These

selected control variables are similar to recent econometric single country and panel data analyses predicting
deforestation (Tsurimi & Managi 2014; Ahmed et al. 2015; Maji 2017; Nathaniel & Bekun 2020), and are

related to the determinants of forest loss. Growth in urban population could influence deforestation in

several ways. On one side, the proximity of forested areas to large cities and the density of urban areas have

been linked to higher deforestation (see, for example, Nelson and Hellerstein 1997; Cropper et al. 2001;

DeFries et al. 2010). This mostly happens through the intensification of road building and construction, and

the transition from subsistence agriculture to market-oriented agriculture to accommodate the needs of the

growing population. On the other hand, increases in rural settlements may also be linked to pressures on

forest ecosystems (Assunção & Rocha 2016).

Concerning trade openness, it can be related to increased exports of timber and agricultural commodities

putting pressure on forests but can also allow imports which can reduce the incentive to deforest (MeyFroidt

et al. 2010; Faria & Almeida et al. 2016). Specifically, forests in more developed countries may benefit from

trade openness at the expense of lesser developed countries where more environmentally damaging

commodity production occurs (Tsurimi & Managi 2014). Energy consumption from environmentally

damaging sources, can have a negative impact on forests (Bawa & Dayanandan 1997; Ahmed et al. 2015).

Renewable energy, on the contrary, has been shown to reduce pressure on forests (Ponce et al. 2021),

although even green technology for renewables and sustainable infrastructure can put forests at risk from

mining (Bradley 2020). Finally, agricultural employment consisting of agriculture, hunting, forestry and fishing

activities, is linked to the development of the agricultural sector, and can be considered a proxy for the
development stage of a country (FAO 2018b). Forest conversion to agriculture is more dominant among the mechanized and market dominated farmers rather than poorer subsistence farmers (Lambin & Meyfroidt 2011; Olanipekun et al. 2019).

3 Results

3.1 Financial Crisis on Deforestation from Global Forest Watch

Table 3 presents results on the effect of crises on forest loss, using deforestation from Global Forest Watch as the dependent variable. In column 1, an OLS specification is reported, where the only predictor variable is the financial crisis dummy. In column 2, we add the lagged dependent variable. All five models in Table 3, including the two first models without control variables, are included to demonstrate the robustness of our results (sign and magnitude of effect). The coefficient on the financial crisis indicator for column 1 and 2 is negative and statistically significant and shows an average 42-45 percentage points decrease in deforestation in years when countries experience a crisis as compared to years when no crisis happens. When including our control variables (column 3), the coefficient on the financial crisis dummy slightly decreases, and becomes equal to -0.34 (34 percentage points decrease in deforestation). However, its sign and significance does not change. The magnitude of our main coefficient of interest is confirmed by the F.E. and GMM specifications (columns 4 and 5), providing robustness of our results. The GMM results show that financial crises result in 36 percentage points decrease in deforestation using all countries in the period 2001-2017. These results are not affected by outliers, where the 5th and 95th percentiles of countries by forest cover were removed resulting in changes in decrease in deforestation rates by 6-7 percentage points, less than standard errors reported below in Table 3, and still highly significant. Regarding the covariates, decreases in urban population and per capita energy growth and increases in trade growth are associated with decreases in deforestation. However, when using the GMM model, only the coefficient on urban population maintains its significance. The relationship between the 2008-09 Global Financial Crisis and global deforestation was also examined finding highly significant results of a deforestation decrease by 16-20 percentage points (see Table A3).

Table 3 – Effect of Financial Crises on Deforestation: Global data

Dependent Variable: Deforestation Growth	(1) OLS	(2) OLS	(3) OLS	(4) Fixed Effects	(5) GMM
Financial Crisis	-0.424***	-0.451***	-0.344***	-0.391***	-0.362***
	(0.144)	(0.154)	(0.070)	(0.097)	(0.078)
Deforestation Growth (t-1)	-	-0.173***	-0.131***	-0.260***	-0.168***
		(0.060)	(0.024)	(0.037)	(0.041)
Urban Pop. (%) Growth	-	-	-7.051**	-15.874	-7.290*
			(3.557)	(22.448)	(3.852)
Per Capita Energy Growth	-	-	-0.001***	-0.000***	-0.010
			(0.000)	(0.000)	(0.012)
Trade Growth	-	-	0.007***	0.008***	0.005
			(0.001)	(0.001)	(0.004)
Agri. Employment Growth	-	-	0.155	0.052	0.136
			(0.276)	(0.282)	(0.302)
Constant	0.538***	0.627***	0.456***	0.572***	0.477***
	(0.127)	(0.151)	(0.070)	(0.171)	(0.086)
N	2306	2141	1859	1859	1859

Notes: Significance levels: * p<0.10, ** p<0.05, *** p<0.010. Standard Errors are included in parentheses.
In Tables 4 and 5, our global data is split into subsamples. Table 4 analyzes the relationship between financial crises and deforestation for 4 different continents: Africa, America, Asia and Europe. Results from both OLS and GMM specifications show that financial crises are associated with a decrease in deforestation in Africa, Asia and Europe, but have no effect on deforestation in America. Moreover, the magnitude of coefficients varies between continents. The effect is smallest in Europe, with a coefficient equal to -0.22 to -0.28, and biggest in Asia, with a coefficient equal to -0.75 to -0.83. Note that the OLS and GMM specifications give similar coefficients in terms of sign and magnitude.

Table 4 – Effect of Financial Crises on Deforestation: Continents subsamples

Dependent Variable: Deforestation Growth	(1) OLS Specification	(2) Africa	(3) America	(4) Asia	(5) Europe	(6) Africa	(7) America	(8) Asia	(9) Europe
Deforestation Growth	-0.123***	-0.286***	-0.104***	-0.198***	-0.124**	-0.269**	-0.195***	-0.117***	
Financial Crisis	-0.472***	-0.092	-0.754**	-0.280***	-0.427***	-0.045	-0.825**	-0.224***	
Urban Pop. (%) Growth	-18.737*	-8.322	-8.260	1.369	-19.842*	-4.987	-7.273	-0.258	
Per Capita Energy Growth	0.456**	0.831	-0.225	1.035	0.499**	-0.289	0.686*	1.326	
Trade Growth	-0.001	0.113	0.011***	1.044	-0.088	-0.068	0.012***	0.920	
Agri. Employment Growth	-2.474	-0.818	-0.044	0.871	-3.516	-0.608	-0.066	0.686	
Constant	0.711***	0.228***	0.416**	0.444***	0.696***	0.139***	0.415**	0.340***	
N	530	337	420	477	530	337	420	477	

Notes: Significance levels: * p<0.10, ** p<0.05, *** p<0.01. Standard Errors are included in parentheses. Fixed Effects results are available upon request.

Table 5 splits the sample into income groups, following the World Bank Atlas Method classification. Results from both OLS and GMM specifications are reported, with very similar coefficients between the two specifications. The negative effect of financial crises on deforestation is confirmed for all income groups, except for lower-middle-income countries, whose coefficient is not statistically significant. The magnitude of the reduction in deforestation is inversely related to income: 18 percentage points decrease for high-income countries, 39 percentage points decrease for upper-middle-income countries and 51 percentage points decrease for low-income countries. Resulting global and regional effects of financial crises on deforestation are graphically presented and summarized in Figure 1.

2 We also ran separate regressions for North and South America, finding that the effect is null for both areas. Results are available from the authors upon request.
Table 5 – Effect of Financial Crises on Deforestation: Income-Groups subsamples

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Dependent Variable:	0.439	0.455	0.524	0.560	0.359	0.535	0.504	0.504
	0.084	0.150	0.214	0.150	0.081	0.151	0.225	0.150
	(0.008)	(0.150)	(0.214)	(0.150)	(0.081)	(0.151)	(0.225)	(0.150)
Financial Crisis	-0.274	-0.469	-0.253	-0.524	-0.182	-0.389	-0.237	-0.510
	(0.082)	(0.188)	(0.158)	(0.189)	(0.086)	(0.148)	(0.176)	(0.213)
Urban Pop. (%) Growth	-27.600	-10.957	-13.247	-7.069	-15.774	-4.555	-15.306	-7.021
	(15.118)	(7.875)	(11.978)	(6.122)	(10.269)	(7.011)	(11.389)	(5.163)
Per Capita Energy Growth	-0.554	0.533	1.102	-0.001	-1.042	0.424	0.785	-0.001
	(0.559)	(0.142)	(0.752)	(0.000)	(0.835)	(0.049)	(0.699)	(0.001)
Trade Growth	1.946	2.252	0.005	-0.325	1.486	1.130	0.008	-0.354
	(0.647)	(1.301)	(0.001)	(0.200)	(0.584)	(0.870)	(0.002)	(0.288)
Agri. Employment Growth	-0.062	2.237	0.178	-2.919	0.043	2.105	0.157	-2.618
	(0.069)	(1.290)	(1.427)	(3.196)	(0.107)	(1.332)	(1.910)	(3.470)
Constant	0.439	0.455	0.524	0.560	0.359	0.535	0.504	0.504
	(0.084)	(0.150)	(0.214)	(0.150)	(0.081)	(0.151)	(0.225)	(0.150)
N	516	544	475	324	516	544	475	324

Notes: Significance levels: * p<0.10, ** p<0.05, *** p<0.010. Standard Errors are included in parentheses. Fixed Effects results are available upon request.

3.2 Financial Crises effect on Roundwood and Agricultural Commodity Production

Changes in agriculture and timber production have been identified as proximate drivers of deforestation, and important channels linked to the relationship between financial crisis and forest loss (see Table 1). Therefore,
we test equation (1&2) on roundwood and agricultural production, using data from the FAO, and on agricultural land, using data from the ESA-CCI. Results on roundwood production are shown in Table 6, where OLS, Fixed Effects and GMM specifications are reported. Column 1 includes the crisis variable as the only predictor, column 2 adds the lagged dependent variable, and columns 3-5 include covariates. Results show that financial crises lead to a decrease in roundwood production globally, ranging between -3.4 and -6.7 percentage points (no significance for the Fixed Effect model (column 4)). However, significant results are only at the 10% level, and turn insignificant, in most cases, when splitting the sample into income groups and continents sub-samples.

Table 6 – Effect of Financial Crises on Roundwood Production

Dependent Variable: Roundwood Growth	(1) OLS	(2) OLS	(3) OLS	(4) Fixed Effects	(5) GMM
Financial Crisis	-0.034*	-0.034*	-0.064*	-0.051	-0.067*
	(0.019)	(0.019)	(0.038)	(0.035)	(0.040)
Roundwood Growth -1	- -0.002	-0.002***	-0.057***	-0.030***	
	- (0.002)	(0.001)	(0.006)	(0.003)	
Urban Pop. (%) Growth	- -3.214	(2.238)	(0.958)	(2.154)	
Per Capita Energy Growth	- 0.106	0.109	0.084		
	- (0.154)	(0.150)	(0.137)		
Trade Growth	- 0.000***	0.000***	0.000**		
	- (0.000)	(0.000)	(0.000)		
Agricultural Employment Growth	- -0.155	-0.128	-0.153		
	- (0.201)	(0.179)	(0.202)		
Constant	0.050***	0.050***	0.101*	0.078***	0.103**
	(0.019)	(0.019)	(0.051)	(0.006)	(0.052)
N	7067	7038	3505	3505	3505

Notes: Significance levels: * p<0.10, ** p<0.05, *** p<0.010. Standard Errors are included in parentheses.

Financial crises effects on agricultural production have been calculated based on 5 commodities prevalent in tropical countries – cattle, cocoa, palm oil, coffee, and soybean. Results on two of these commodities, cattle and cocoa production, are given below in Tables 7 and 8 respectively, reporting OLS, Fixed Effects, and GMM specifications. Results for soybean, palm oil and coffee are not significant at global level so are not presented in tabular format. Global results show that financial crises are associated with a strongly significant decrease in cattle production globally, ranging between -1.9 and -2.3 percentage points (except for the insignificant Fixed Effect model). Furthermore, financial crises affect cocoa production using the GMM specification only (Table 8), with a decrease in cocoa production by 8.3 percentage points with a 5% significance. Income group and continent level results on roundwood production and agricultural commodities are presented in Figure 2. In most cases, when splitting the sample into income groups and continents sub-samples results become insignificant. Notable exceptions are low and upper-mid income groups for roundwood (Fig 2a), Africa,

3 Results are available from the authors upon request
4 Results are available from the authors upon request
America and lower mid-income groups for cocoa production (Fig 2c), Asia and Africa for palm oil production (Fig 2d), and Africa and low-income groups for soybean production (Fig 2e).

Table 7 – Effect of Financial Crises on Cattle Production

Dependent Variable: Roundwood Growth	(1)	(2)	(3)	(4)	(5)
	OLS	OLS	OLS	Fixed Effects	GMM
Financial Crisis	-0.019***	-0.019***	-0.020***	-0.012	-0.023***
	(0.006)	(0.007)	(0.008)	(0.007)	(0.008)
Cattle Production Growth_{t-1}	-	-0.063**	-0.063	-0.138***	-0.164**
		(0.027)	(0.038)	(0.037)	(0.076)
Urban Pop. (%)	-	0.788***	0.538	0.789***	
Growth					
Per Capita Energy Growth	-	0.002	0.003	0.003	
Trade Growth	-	0.000***	0.000***	0.000***	
Agricultural Employment Growth	-	-0.011	-0.000	-0.014	
Constant	0.020***	0.020***	0.016***	0.018***	0.018***
	(0.003)	(0.003)	(0.004)	(0.005)	(0.005)
N	3968	3801	3366	3366	3366

Notes: Significance levels: * p<0.10, ** p<0.05, *** p<0.010. Standard Errors are included in parentheses.

Table 8 – Effect of Financial Crises on Cocoa Production

Dependent Variable: Roundwood Growth	(1)	(2)	(3)	(4)	(5)
	OLS	OLS	OLS	Fixed Effects	GMM
Financial Crisis	-0.042	-0.047	-0.057	-0.018	-0.083**
	(0.041)	(0.044)	(0.036)	(0.035)	(0.035)
Cocoa Production Growth_{t-1}	-	-0.062	-0.060***	-0.101***	-0.490***
		(0.048)	(0.019)	(0.021)	(0.067)
Urban Pop. (%)	-	-	-0.279	-5.911	1.997
Growth			(1.482)	(4.140)	(2.217)
Per Capita Energy Growth	-	-	-0.045***	-0.039***	-0.060
Trade Growth	-	-	-0.011	-0.029	-0.034
			(0.071)	(0.079)	(0.058)
Agricultural Employment Growth	-	-	0.371*	0.192	0.320
			(0.198)	(0.203)	(0.226)
Constant	0.085***	0.094***	0.104***	0.154***	0.073*
	(0.027)	(0.029)	(0.038)	(0.040)	(0.039)
N	1212	1161	998	998	998

Notes: Significance levels: * p<0.10, ** p<0.05, *** p<0.010. Standard Errors are included in parentheses.
Table 9 shows results from land occupied by agriculture. Coefficients obtained by using the OLS specification (columns 1-3) show that crises, on average, are associated with a small positive and significant effect on agricultural coverage. The magnitude of coefficients ranges between 0.001 and 0.002. The coefficient turns insignificant when the Fixed Effects and GMM model are employed. When the sample is split by continents and income groups the results turn insignificant\(^5\).

\(^5\) Results are available from the authors upon request.
Table 9 – Effect of financial crises on Agricultural Coverage

Dependent Variable: Agricultural Coverage	(1) OLS	(2) OLS	(3) OLS	(4) Fixed Effects	(5) GMM
Financial Crisis	0.002**	0.002*	0.001*	0.001	0.001
Agricultural Coverage Growth_t-1	-0.250***	0.248***	0.087**	0.346***	
Urban Pop. (%)					
Growth					
Trade Growth					
Constant	0.001***	0.001	0.001	0.001	0.000

Notes: Significance levels: * p<0.10, ** p<0.05, *** p<0.010. Standard Errors are included in parentheses.

3.3 Financial Crisis effect on ESA-CCI Forest Cover

In Table 10, we show results coming from the estimation of equation (1&2) using forest coverage from ESA-CCI as the dependent variable, as an alternative to Global Forest Watch. The ESA-CCI measures annual change in forest coverage and is available for a longer period of time with respect to GFW deforestation, from 1992 to 2017. Similar to Table 3, Table 10 presents results from the OLS, Fixed Effects and GMM specification.

Coefficients are, for all specifications except Fixed Effects, negative and statistically significant at the 5% or 1% level, with a magnitude that ranges between 0.001 and 0.002, or 0.1-0.2 percentage points. This indicates that financial crises from 1992-2015 are associated with a decrease in forest cover. These results are not in accordance with the ones obtained by using Global Forest Watch data, indicating a decrease in deforestation (Table 3; Figure 1). In the Appendix, we show results obtained by splitting our sample into continents (Table A4) and income groups (Table A5). However, coefficients are insignificant for most of the subsamples.

Table 10 – Effect of Financial Crises on Forest Coverage using ESA-CCI data (Global sample)

Dependent Variable: Forest Coverage	(1) OLS	(2) OLS	(3) OLS	(4) Fixed Effects	(5) GMM
Financial Crisis	-0.002***	-0.002**	-0.002**	-0.001	-0.001**
Forest Coverage Growth_t-1		0.333***	0.330***	0.182***	0.533***
Urban Pop. (%)					
Per Capita					
Energy Growth					
Trade Growth					
Agricultural Employment Growth					
Constant	0.000	0.000	0.001	0.002**	0.000

Notes: Significance levels: * p<0.10, ** p<0.05, *** p<0.010. Standard Errors are included in parentheses.
4 Discussion

This analysis moves beyond country-specific, case-study and qualitative assessments of the effect of financial crises on deforestation and forest cover and is the first to look at the global and regional context of deforestation during financial crisis years, using a panel data approach. This approach also looks at effect of financial crises on two dominant drivers of deforestation agricultural commodities and forestry products. From our analysis, financial crises point towards a beneficial effect on reducing deforestation rates for countries in years of crisis. Specifically, financial crises are associated with a global decrease in deforestation rates, with reductions of 36 p.p. (Table 3: GMM specification & Figure 1). Separating the analysis into continents (Table 4; Figure 1) showed that financial crises have the largest effect in decreasing deforestation rates in Asia and Africa (-83 and -43 p.p.), with a smaller effect in Europe (-22 p.p.) and no effect in the Americas. Moreover, separating the analysis into income groups (Table 5; Figure 1), our results show that financial crises have a larger effect on decreasing deforestation rates in low-income countries, than upper middle-income and high-income countries (-51 vs -39 and -18 p.p. respectively). Further investigation into two important channels linked to forest loss, points to a negative effect of financial crisis on roundwood production (-6.7 p.p.), and a negative effect on cattle and cocoa production (-2.3 and -8.3 p.p. respectively), albeit at varying significance levels.

These outcomes on deforestation support evidence from case studies on decreases in deforestation, agricultural and timber production during a crisis (Dauvergne 1999; Elliott 2011). Financial crises can lead to decreased timber trade related to decreases in infrastructure (Laurance et al. 2015) and construction (Nilsson 2009; Eurostat 2019; FAO 2020). Financial crises can also lead to a decrease in food prices, and to scarcer capital, trade and investment for farming and livestock (von Braun, 2008; Lin & Martin 2010). This is coupled with the decrease in consumption of meat and sugary products during recessions (Jenks et al. 2021). Other reasons such as migration away from natural land or mining reductions may also play a part in reducing deforestation rates (Carr et al. 2009; UNECA 2009, Tieguhong et al. 2009). Forest protection during financial crisis may also take place (e.g. Kasa & Naess, 2005), with some evidence that demand for Verified Carbon Standards remain strong during financial crises. For instance, there were increases in the volume of voluntary carbon offsets during the global financial crisis by 220% from 2007 to 2008 (Ecosystem Marketplace, 2020) dominated by REDD projects (Reduced Emissions from Deforestation and Degradation), with recent pandemic increases of 160% between 2020 and 2021 (Donofrio et al. 2021). REDD projects were prevalent in Latin America and Africa in the years following the global financial crisis (Peters-Stanley et al. 2013).

Using another main yearly dataset on forest cover – the ESA-CCI – we find an overall less significant picture than when using GFW data, where financial crises are associated with a global decrease in forest cover of -0.1 p.p. (Table 10), an effect driven by Asia (Table A4), and a small positive effect on agricultural land coverage (0.1 p.p.). This outcome on forest and agricultural cover changes from the ESA-CCI provide week support on financial crises increasing forest loss and agricultural land cover (e.g. Pagiola 2001). It is worth noting that the difference in results using these two datasets (GFW and ESA-CCI) can replicate the broader contradiction regarding reporting to the SDG goals related to forest protection and restoration (Pearce et al. 2018).

4.1 Continental Groupings and Deforestation Drivers

Financial crises are associated with the largest decreases in deforestation rates in Asia (-83 p.p.; Table 4; Figure 1). Asia is a significant producer of soybean, cocoa, and cattle, and is the biggest producer of palm oil globally. According to Curtis et al (2018), the largest contributions to deforestation across the continent are commodity driven agriculture and forestry. Although no significance was found for other agricultural
commodities, rates in palm oil production increased during financial crises by 4.8-12.7 p.p. (Figure 2), and there is a highly significant positive correlation between deforestation and trade in Table 4. This may indicate that during financial crises, palm oil production and exports increased as a way of strengthening foreign reserves, improving balance of payment imbalances, and overall addressing the crises’ affects. This is in line with evidence from the East Asian crisis were the price of palm oil increased resulting in an expansion of palm production (Pagiola, 2001). Yet, deforestation rates decreased during financial crises from 2001-2017. A reason for this may be that oil palm may be intensifying in some areas (e.g. in Malaya: see Varkkey et al. 2018), or oil palm expansion may be happening into non-forested land such as former rubber plantations in Thailand (Saswattecha et al 2016). Another reason may be that Asian roundwood production, where Asian forestry exports are 2nd only to Europe, has strongly decreased during financial crises (-9.5 p.p.; see Figure 2a). Elliot (2011) found that demand for timber in Indonesia contracted during the crisis, leading to a reduction in forest exploitation. Chinese exports to the EU also decreased during the global financial crisis (Eurostat 2019).

Yet, it is important to note that GFW may not be able to pick up all spatial changes to the timber industry during a financial crisis. This is because 1) satellites may not detect small-scale degradation or selective logging events; 2) satellites usually include plantations in forest cover products with varying timber felling strategies; 3) logging practices vary in sustainability throughout the world; and 4) forests are dynamic and could involve a mix of management activities. In many lower income countries, wood consumption consists primarily of domestic fuelwood (Mills Busa 2013), meaning that much of wood consumption changes in lower income countries during financial crises will not necessarily be detected by the FAO timber statistics, or the GFW. Illegal logging on the other hand, which in some cases can account for the majority of timber production for both internal and external use, could be detected by the GFW.

Financial crises result in large decreases in deforestation rates in Africa as well (-43 p.p.; Table 4; Figure 1). Africa has been dominated by shifting agriculture, of small and medium-scale farmers, as the primary driver of deforestation (Hosonuma et al. 2012; Rudel 2013; Curtis et al 2018), but there is growing land converted for commodity agriculture, mainly through cocoa in western Africa and oil palm (Ordway et al 2017). Consequently, our results in Figure 2 show that financial crises in Africa result in decreased cocoa and palm oil production by 10.5 and 1.3 p.p. respectively. Soybean production in Figure 2e also shows a decrease of 8.7 p.p. Although African soybean production is only <1% of the global supply, it is growing rapidly in terms of yield and land area coverage (Cornelius et al 2019). The picture with shifting agriculture and financial crises is not clear. Redundancies in other employment sectors and lower capital and technology investment in agriculture can lead to increases in deforestation (Von Braun 2008; Sayer et al 2012). Others state that small-scale farmers in lower income countries are less affected by crises and could be used as a safety-net for food price volatility (De Janvry and Sadoulet 2011). Furthermore, Table 4 shows that urbanization is negatively correlated to deforestation. This may be a result of increased rural-urban migration during financial crises, perhaps due to a decline in timber demand, redundancies in mining (UNECA 2009; Tieguhong et al. 2009), and volatile food prices, all resulting in less pressure on natural land.

Financial crises result in decreasing deforestation rates in Europe (-22 p.p.; Table 4; Figure 1), where the principal driver of deforestation in Europe is forestry (Curtis et al. 2018). Forestry in Europe is largely legal with almost 2 million km² of forests under forest certification schemes. The 2008 financial crisis in Europe led to the levels of both coniferous and deciduous production falling for a number of years, as well as decreased timber imports from tropical countries (Eurostat 2019). This may be the reason for resulting decreases in European deforestation rates, although continental groupings did not show significant effects of financial crisis on roundwood production (Figure 2a).
Although South America has the largest proportion of agricultural commodity driven deforestation according to Curtis et al. (2018), there was no significant decrease in deforestation during financial crises (Table 4; Figure 1), despite a significant decrease in cocoa production and no effect on cattle and soybean production (see Figure 2c). A reason for this lack in effect on soybean and cattle production may be that South American countries have learned to buffer national and global financial crises through selling to strong foreign markets, e.g. beef and soybean to the Chinese market (Fearnside et al 2013; Ferchen et al. 2013). Concerning cocoa, much of its production in Central and South America is grown in the forest understory (Somarriba et al. 2013), and/or in Brazilian ‘cabrucas’ or thinned out native-forests agroforestry (Faria et al. 2006), meaning that any change in its production may not directly threaten forests. Over the current pandemic crisis, tropical forests in South America have seen increases in deforestation, where 2020 Brazilian deforestation is the highest since 2008 representing an increase of 47% and 9.5% compared to 2018 and 2019 respectively (Junior et al. 2021). Yet, although there have been reports of increased illegal activity in protected areas and urban to rural migration, the World Resources Institute has stated that these increasing do not reveal systematic shifts in forest loss trends that can be clearly link to the pandemic (Weisse & Goldman 2021).

4.2 Income Groupings

Lastly, our results show that from the impact of financial crises on deforestation is contingent on income levels, i.e. during financial crises deforestation rates drop more in lower-income than upper middle-income and high-income countries (-51 vs -39 and -18 p.p. respectively [Table 5]). Some of these results may be due to lowering demand for the main drivers of deforestation, where high-income countries are largely dominated by forestry, low-income countries are dominated by shifting agriculture, whereas upper-middle-income countries see mixed drivers including forestry, commodity and shifting agriculture, mining, etc. Some of these decreases may be explained by timber and agricultural commodity reductions (Figure 2). Lower-income countries see a significant decline in soybean production (Figure 2e), although many of these countries are in Africa. Low-income countries also see a small increase in roundwood production (1 p.p. at 10% significance), although this may be an effect of low-income African nations timber trade with Asian economies (e.g. IIED 2015). Upper middle-income countries see a large decrease in roundwood production at 20 p.p. (although only at 10% significance), and this includes dominant timber producing countries in East Asia, Southern Africa, and South America.

Furthermore, results from Figure 1 and Table 5 indicate a larger environmental sensitivity to economic shocks for lower income countries, demonstrated by the larger beneficial effect of financial crisis on deforestation rates in lower income countries. This may link to the evidence that lower income groups have higher deforestation rates than higher income groups (Cropper & Griffiths 1994; Cuaresma et al. 2017), implying that any positive or negative economic change will affect lower income deforestation rates more. Note that our econometric models used in this study seek to establish the contribution of financial crisis on deforestation, but we note that the over-extraction of environmental resources and loss of forests may contribute to rather than be a consequence of financial crises (e.g. see Harvey, 2011; The Guardian, 2020) and economic hardship (Srinivasan et al. 2008).

4.3 Comparing GFW and ESA-CCI: Data for the Sustainable Development Goals

Evidence on deforestation changes during financial crises is mixed when considering both GFW and ESA-CCI datasets; GFW points towards a decrease in deforestation rates in years of crisis with high significance (Table 3 & Figure 1), while the ESA-CCI provides weaker support of financial crises increasing forest loss and agricultural land (Table 10 & 9). The reasons for this discrepancy could be several. First, the GFW measures...
yearly deforestation and ESA-CCI measures net forest cover changes, meaning the GFW does not consider forest growth due to reforestation policies, plantation expansion, or natural regeneration of forest. Second, the platforms and spatial resolution of the satellites used are different. GFW uses 30m Landsat to derive forest loss with canopy cover > 30%. ESA-CCI is provided at 300m derived from AVHRR, MERIC, SPOT, and PROBA-V, but with different contributions over the 23 year product period, and forest cover from >15%, to 40% to > 40% tree cover (FAOSTAT 2017; Defourny et al 2017). This means that at coarser spatial resolutions, many pixels will be a mosaic of cropland/grassland and tree cover, although forest loss and reforestation can originate within these landscapes. Third, a possible explanation for our results is that financial crises may generate two different effects: on one side, a decrease in deforestation due to lower pressure on forests and on economic activities related to them; on the other side, a slowdown in natural regeneration and reforestation projects due to cuts in environmental protection funds (see Table 1).

As stated by UN heads in 2018, ‘stopping deforestation and restoring damaged forests could provide up to 30 percent of the climate solution’ (da Silva et al. 2018). Yet, to achieve the SDGs on forests and carbon (SDG15 and 13), providing more complete global datasets on forests should become an urgent global priority. The current data on yearly deforestation and forest cover come from the GFW and ESA-CCI, with the FAO providing 5-year forest cover. Results from this study, and from others (e.g. see Pearce 2018) show that we rely on satellites for our yearly measurements on forest changes, but they are generally incomparable and can provide evidence which can be contradictory. For example, the GFW provides data on deforestation in areas where forests are not permanently lost (e.g. wildfires in Russia and North America), and include plantations and oil palm changes as deforestation, while the ESA-CCI determines many classes of forested and agricultural land, but also classifies mixed land cover types. Also recent evidence has shown that considering just the year 2000 baseline forest cover dataset from the GFW was more reliable than the ESA CCI for measuring SDG 15.1.1 over China and India (see Meeuvisen 2020). Considering all of these issues, it is clear that global policy-making initiatives should be focused on producing a consistent, reliable, and freely available dataset informing the SDGs and able to discern a) yearly deforestation and afforestation/reforestation at high spatial resolution globally; b) forested disturbance and forest use history; and c) forest changes in mosaicked landscapes of mixing forests, cropland, grasses and other land cover types.

5 Conclusion

This study has provided new evidence on the impact of financial crises on deforestation. The analysis used Global Forest Watch data from >150 countries and >100 crises in the 21st Century, and also looked at financial crises on two drivers of deforestation; roundwood and agricultural commodities from the FAO.

Globally, financial crises point towards a beneficial effect on reducing deforestation rates for countries in years of crisis, with reductions of 36 p.p. Financial crises are also associated with a small negative effect on principle drivers of deforestation; roundwood (-6.7 p.p.), cattle (-2.3 p.p.) and cocoa production (-8.3 p.p.), supporting country-level literature on decreases in deforestation and timber production during a crisis (Dauvergne 1999; Elliott 2011), but not evidence of compensating the beneficial effects of economic recession by increasing agricultural production (Pagiola 2001).

Financial crises have the largest effect in decreasing deforestation rates in Asia and Africa (-83 and -43 p.p.), with a smaller effect in Europe (-22 p.p.) and no effect in the Americas. Drivers behind these effects may be
different, from forestry reductions in Europe, to palm oil (-1.3 p.p.), cocoa (-10.5 p.p.), and soybean (-8.7 p.p.) reductions in Africa, to a combination of timber (-9.5 p.p) and commodity agriculture changes (e.g. palm oil) in Asia. Moreover, financial crises have a larger effect on decreasing deforestation rates in low-income countries, than upper middle-income and high-income countries (-51 vs -39 and -18 p.p. respectively), indicating a larger environmental sensitivity to economic shocks for lower income countries.

Using the yearly and global ESA-CCI forest cover dataset, we find that financial crises lead to a global decrease in forest cover of -0.1 p.p., which points to financial crises increasing forest loss and agricultural land cover (e.g. Pagiola 2001). These opposite results between the GFW and ESA-CCI present a big challenge and constraint in studying forests and understanding their relationship with economic slowdowns. To achieve the SDG goals related to forests, we urgently need better global forest cover data with better forest loss/gain data, disturbance history, and understanding of mosaicked landscape dynamics within a satellite pixel. Furthermore, future research into determining the causality between deforestation during financial crises and social, economic, and environmental variables will provide insight into global and regional-level drivers of environmental change. Determining causality using methods like Granger causality (e.g. Zambrano-Monserrate et al. 2018; Nathaniel & Bekun 2020), may also begin to provide a causal link between environmental degradation and financial crises (see Harvey, 2011; The Guardian, 2020). National and sub-national impacts of financial crises on deforestation may also prove important as the impacts of economic shocks are not felt equally by all regions within a country (OECD 2020).

Forests constitute critical transition zones for generating synergies that can help us meet the SDGs and transition to sustainability (see Alcamo et al. 2020), especially in a period of heightened global economic vulnerabilities (Antoniades & Griffith-Jones 2018). Our results suggest that reductions in deforestation rates during periods of financial crises could be taken as an opportunity by governments to enhance their sustainable management of forested landscapes during a period of commodity production downturn (Burns et al. 2019). Otherwise, the beneficial effects of financial crises on forests may be lost quickly once a crisis finishes, where environmental policy ambitions and activism may wane and slip down national agendas. Maintaining the climate and sustainable development agenda is critical in the beginning of the 2020s with less than 10 years left to achieve the Sustainable Development Goals. With the Coronavirus pandemic we have seen again that a reduction in economic activity can be temporarily beneficial for certain environment criteria such as air pollution and greenhouse gas emissions (Antonarakis 2020). Yet, the UN has stated that the pandemic has potentially reversed progress with land degradation continuing, massive numbers of species risking extinction and unsustainable production and consumption (UN 2020). Furthermore, COVID19 recovery packages are pledging around 20% to green recovery, but only 0.4% ($56.3 billion) on natural capital and ecosystem protection (O’Callaghan 2020; Antoniades et al. 2022).

Sustainable Development initiatives such as Zero-Deforestation Commitments from producers and traders (Humphreys et al. 2019) and the New York Declaration on Forests have advocated for the decoupling of forest loss and commodity production, with varying degrees of success (Haupt et al. 2017; Lambin et al. 2018). Decoupling food production (SDG2) and forest ecosystems and management (SDG15 and 12) with the help of zero deforestation commitments across NGOs, private sector, international organizations, and grass roots organization (SDG17) is necessary in achieving synergies across the Sustainable Development Goals so as to reach a sustainable global socio-environmental path.
Acknowledgements

This study is funded by the Sussex Sustainability Research Fund. We are grateful to Patrick Schröder, Joseph Alcamo, Caroline Grundy and our colleagues at the Sussex Sustainability Research Programme for comments in earlier versions of this paper.

References

Ahmed, K., Shahbaz, M., Qasim, A. and Long, W., (2015). The linkages between deforestation, energy and growth for environmental degradation in Pakistan. *Ecological Indicators, 49*, 95-103.

Alcamo, J., Thompson, J., Alexander, A. et al. (2020), Analysing interactions among the sustainable development goals: findings and emerging issues from local and global studies. *Sustain Sci 15*, 1561–1572.

Antoniades, A.S., (2020). Environment and poverty during the Coronavirus crisis: a lesson for global collaboration. [WWW Document]. SSRP Forum Pandemic Sustain. URL https://www.sussex.ac.uk/ssrp/resources/forum/alexander-antonarakis?fbclid=IwAR0xTgEbFdxAote5EGy_fcnMxae5QGuJ3P0I5mokPj6Z9U1u47IUE_E.

Antoniades A, Griffith‐Jones S. (2018). Global debt dynamics: The elephant in the room. *World Econ. 41: 3256–3268.*

Antoniades, A. and Antonarakis, A.S. (2022) ‘Financial Crises, Environment and Transition’ in: A. Antoniades, A. Antonarakis, I. Kempf (eds.), Financial Crises, Poverty and Environmental Sustainability: Challenges in the Context of the SDGs and Covid-19 Recovery, Sustainable Development Goals Series, Springer Nature, 2022.

Antoniades, A. et al (2022) ‘The Crises – Poverty – Sustainability Nexus in the context of the Sustainable Development Goals and Covid-19’ in: A. Antoniades, A. Antonarakis, I. Kempf (eds.), Financial Crises, Poverty and Environmental Sustainability: Challenges in the Context of the SDGs and Covid-19 Recovery, Sustainable Development Goals Series, Springer Nature, 2022.

Antoniades A, Griffith‐Jones S. (2018). Global debt dynamics: The elephant in the room. *World Econ. 41: 3256–3268.*

Antoniades, A. and Widiarto, I. & Antonarakis, A.S. (2020). Financial crises and the attainment of the SDGs: an adjusted multidimensional poverty approach. *Sustain Sci 15*, 1683–1698.

Arellano, M., & Bond, S. (1991). Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. *The Review of Economic Studies, 58*(2), 277-297.

Arellano, M., (2003). *Panel Data Econometrics*. Oxford university press.

Assunção, J. and Rocha, R., (2016). Rural settlements and deforestation in the Amazon. *Climate Policy Initiative Working Paper*. December 2016.

Bawa, K.S. and Dayanandan, S., (1997). Socioeconomic factors and tropical deforestation. *Nature, 86*(6625), 562-563.

Botetzagias, I., Tsagkari, M. and Malesios, C., (2018). Is the ‘Troika’ Bad for the Environment? An Analysis of EU Countries' Environmental Performance in Times of Economic Downturn and Austerity Memoranda. *Ecological Economics, 150*, 34-51.
Bowen, A., & Stern, N. (2010). Environmental policy and the economic downturn. *Oxford Review of Economic Policy*, 26(2), 137-163.

Brack, D., Glover, A. and Wellesley, L., (2016). Agricultural Commodity Supply Chains: Trade, Consumption and Deforestation. Chatham House.

Bradley, S. (2020). Mining’s Impacts on Forests Aligning Policy and Finance for Climate and Biodiversity Goals, *Chatham House Research Paper*, Available online (https://www.chathamhouse.org/2020/10/minings-impacts-forests-aligning-policy-and-finance-climate-and-biodiversity-goals/1). Accessed 20/10/2021.

Burns, C. and Tobin, P., (2016). The impact of the economic crisis on European Union environmental policy. *JCMS: Journal of Common Market Studies*, 54(6), 1485-1494.

Burns, C., Eckersley, P., Tobin, P. (2019). EU environmental policy in times of crisis. *Journal of European Public Policy*, 1-19.

Busch, J., & Ferretti-Gallon, K. (2017). What drives deforestation and what stops it? A meta-analysis. *Review of Environmental Economics and Policy*, 11(1), 3-23.

Carr, D. (2009), Rural migration: The driving force behind tropical deforestation on the settlement frontier. *Prog Hum Geogr.*, 33(3): 355–378.

Cornelius, M. & P. Goldsmith, (2019) The State of Soybean in Africa: Soybean Yield in Africa. *farmdoc daily* (9):221, Department of Agricultural and Consumer Economics, University of Illinois at Urbana-Champaign, November 22, 2019.

Cropper, M., C. Griffiths, and M. Mani. (1997). Roads, Population Pressures, and Deforestation in Thailand, 1976-89. Policy Research Working Paper No.1726. Washington: World Bank.

Cropper, M. and Griffiths, C., (1994). The interaction of population growth and environmental quality. *The American Economic Review*, 84(2), 250-254.

Cuaresma, J.C., Danylo, O., Fritz, S., McCallum, I., Obersteiner, M., See, L. and Walsh, B., 2017. Economic development and forest cover: evidence from satellite data. *Scientific reports*, 7, p.40678.

Curtis, P.G., Slay, C.M., Harris, N.L., Tyukavina, A. and Hansen, M.C., (2018). Classifying drivers of global forest loss. *Science*, 361(6407), 1108-1111.

da Silva, J. G., Steiner, A., Solheim, E. (2018). *Forests: A natural solution to climate change, crucial for a sustainable future*. UN-REDD Programme, 3 Oct 2018. Available online (https://www.un-redd.org/single-post/2018/10/03/Forests-A-natural-solution-to-climate-change-crucial-for-a-sustainable-future).

Dauvergne, P., (1999). The environmental implications of Asia’s 1997 financial crisis. *IDS Bulletin* 30, 31-42.

Defourny, P., S. Bontemps, C. Lamarche, C. Brockmann, M. Boettcher, J. Wevers, and G. Kirches. (2017). *Land Cover CCI: Product User Guide Version 2.0*. Available at http://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-PUG-v2.5.pdf.
DeFries, R.S., Rudel, T., Uriarte, M. and Hansen, M., (2010). Deforestation driven by urban population growth and agricultural trade in the twenty-first century. *Nature Geoscience*, 3(3), 178.

De Janvry, A. and Sadoulet, E., (2011). Subsistence farming as a safety net for food-price shocks. *Development in Practice*, 21(4-5), 472-480.

Donofrio, S., Maguire, P., Myers, K., Daley, C., and Lin, K. (2021). *Ecosystem Marketplace’s State of the Voluntary Carbon Markets 2021, Installment1: Market in Motion*, Accessed online (4th October 2021), https://www.forest-trends.org/publications/state-of-the-voluntary-carbon-markets-2021/.

Ecosystem Marketplace, (2020). *Voluntary Carbon and the Post-Pandemic Recovery*. State of Voluntary Carbon Markets Report, Special Climate Week NYC.

Elliott, L. (2011). Shades of green in East Asia: the impact of financial crises on the environment. *Contemporary Politics*, 17(2), 167-183.

Eurostat (2019). *Wood products - production and Trained*. Eurostat-Statistics Explained. Accessed online (https://ec.europa.eu/eurostat/statistics-explained/pdfscache/52477.pdf).

Fair, J., (2020). *COVID-19 lockdown precipitates deforestation Across Asia and South America*. Mongabay Series: Global Forests, Mekong Illegal Logging. Available online (https://news.mongabay.com/2020/07/covid-19-lockdown-precipitates-deforestation-across-asia-and-south-america/). Accessed on 7th Oct 2021.

Faria, D., Laps, R.R., Baumgarten, J. and Cetra, M., (2006). Bat and bird assemblages from forests and shade cacao plantations in two contrasting landscapes in the Atlantic Forest of southern Bahia, Brazil. *Biodiversity & Conservation*, 15(2), 587-612.

Faria, W.R. and Almeida, A.N., (2016). Relationship between openness to trade and deforestation: Empirical evidence from the Brazilian Amazon. *Ecological Economics*, 121, 85-97.

FAO (2016a). *State of the World’s Forests 2016. Forests and agriculture: land-use challenges and opportunities*. Rome.

FAO. (2016b). FAOSTAT statistical database. [Rome] :Food and Agriculture Organization of the United Nations.

FAO (2018a). Forest Products. FAO Statistics Yearbook, ISSN 1020-458X. Rome.

FAO (2018b), Agricultural trade and employment: links, evidence and policy implications. *FAO Trade and Policy Briefs*, No. 32. Available Online (https://www.fao.org/policy-support/tools-and-publications/resources-details/en/c/1151680/). Accessed 20/10/2021.

FAOSTAT (2017). README Methodological Note for the Land Cover Domain. FAOSTAT Metadata file. Accessed online (http://www.fao.org/faostat/en/#data/LC/metadata)

FAO (2020). *Impacts of COVID-19 On Wood Value Chains and Forest Sector Response: Results from a Global Survey 2020*. Rome: Food and Agricultural Organization.
Fearnside, P.M., Figueiredo, A.M. and Bonjour, S.C., (2013). Amazonian forest loss and the long reach of China’s influence. *Environment, Development and Sustainability*, 15(2), pp.325-338.

Ferchen, M., García-Herrero, A. and Nigrinis, M., (2013). "Evaluating Latin America Commodity Dependence on China," Working Papers 1305, BBVA Bank, Economic Research Department.

Gaveau, D., Linkie, M., Suyadi, P. & Leader-Williams, L. N. (2009). Three decades of deforestation in southwest Sumatra: effects of coffee prices, law enforcement and rural poverty, *Biological Conservation*, vol. 142, no. 3, 597–605.

Global Forest Watch (2014). World Resources Institute. www.globalforestwatch.org. Gross, A., Shipani, A., Palma, S. and Finlay, S., (2020). *Global deforestation accelerates during pandemic*. Financial Times, August 9 2020. Available online (https://www.ft.com/content/b72e3969-522c-4e83-b431-c0b498754b2d). Accessed Oct 7th 2021.

Guardian (2020). *US wildfires could spark financial crisis, advisory panel finds*. The Guardian 10 September. Available at: https://www.theguardian.com/world/2020/sep/10/us-wildfires-financial-crisis-markets-cftc-report, Accessed date: 18 January 2021.

Hansen, M. C., P. V. Potapov, R. Moore, M. Hancher, A. Turubanova, A. Tyukavina, D. Thau, S. V. Stehman, S. J. Goetz, T. R. Loveland, A. Kommareddy, A. Egorov, L. Chini, C. O. Justice, and J. R. G. Townshend. (2013). High-Resolution Global Maps of 21st-Century Forest Cover Change. *Science* 342: 850–53.

Harvey, F., (2011). *EU warns wasting environmental resources could spark new recession*. The Guardian 29 December. Available at: https://www.theguardian.com/world/2011/dec/29/eu-environmental-resources-new-recession, Accessed date: 19 July 2019.

Haupt, F., Streck, C., Bakhtary, H., Behm, K., Kroeger, A., Schulte, I., (2017). Zero-Deforestation Commodity Supply Chains by 2020: Are We on Track. Background Paper Prepared for the Prince of Wales’ International Sustainability Unit.

Hosonuma, N., Herold, M., De Sy, V., De Fries, R.S., Brockhaus, M., Verchot, L., Angelsen, A. and Romijn, E., (2012). An assessment of deforestation and forest degradation drivers in developing countries. *Environmental Research Letters*, 7(4), p.044009.

Humphreys, D., Singer, B., McGinley, K., Smith, R., Budds, J., Gabay, M., Bhagwat, S., de Jong, W., Newing, H., Cross, C. and Satyal, P., (2019). *SDG 17: Partnerships for the Goals—Focus on Forest Finance and Partnerships*. *Sustainable Development Goals*, Cambridge University Press, 541-576.

International Institute of Economics and Development (IIED), (2015). *The dragon and the giraffe: China in the African forests*. IIED Briefing.

IMF (2018). Global Financial Stability Report. A Decade after the Global Financial Crisis: Are We Safer? Washington, DC, October.

IMF (2021). *World Economic Outlook: Recovery during a Pandemic—Health Concerns, Supply Disruptions, Price Pressures*. Washington DC, October.

Jenkins, R.H., Vamos, E.P., Taylor-Robinson, D., Millett, C. and Laverty, A.A., (2021). Impacts of the 2008 Great Recession on dietary intake: a systematic review and meta-analysis. *International Journal of Behavioral Nutrition and Physical Activity*, 18(1), 1-20.
Junior, C.H.S., Pessôa, A.C., Carvalho, N.S., Reis, J.B., Anderson, L.O. and Aragão, L.E., (2021). The Brazilian Amazon deforestation rate in 2020 is the greatest of the decade. *Nature Ecology & Evolution, 5*(2), 144-145.

Kasa, S. and Naess, L.O., (2005). Financial Crisis and State–NGO Relations: The Case of Brazilian Amazonia, 1998–2000. *Society and Natural Resources, 18*(9), 791-804.

Laeven, M. L., & Valencia, M. F. (2018). *Systemic banking crises revisited*. International Monetary Fund.

Lambin, E.F. and Meyfroidt, P., (2011). Global land use change, economic globalization, and the looming land scarcity. *Proceedings of the National Academy of Sciences, 108*(9), 3465-3472.

Lambin, E.F., Gibbs, H.K., Heilmayr, R., Carlson, K.M., Fleck, L.C., Garrett, R.D., de Waroux, Y.L.P., McDermott, C.L., McLaughlin, D., Newton, P., Nolte, C., (2018). The role of supply-chain initiatives in reducing deforestation. *Nature Climate Change, 8*(2), 109-116.

Laurance, William F., Anna Peletier-Jellem, Bart Geenen, Harko Koster, Pita Verweij, Pitou Van Dijck, Thomas E. Lovejoy, Judith Schleicher, Marijke Van Kuijk, (2015). Reducing the global environmental impacts of rapid infrastructure expansion, *Current Biology, 25* (7), 259-262.

Lekakis, J.N., Kousis, M., 2013. Economic crisis, troika and the environment in Greece. *South Eur. Soc. Politics 18* (3), 305–331.

Lin, J.Y. and Martin, W., (2010). The financial crisis and its impacts on global agriculture. *Agricultural Economics, 41*, 133-144.

Maji, I.K., (2017). The link between trade openness and deforestation for environmental quality in Nigeria. *Geojournal, 82*(1), 131-138.

Maxton-Lee, B., 2018. Material realities: Why Indonesian deforestation persists and conservation fails. *Journal of Contemporary Asia, 48*(3), 419-444.

Meyfroidt, P., Rudel, T.K., Lambin, E.F., 2010. Forest transitions, trade, and the global displacement of land use. *Proc. Natl. Acad. Sci. 107*, 20917–20922.

Mills Busa, J.H., (2013). Deforestation beyond borders: Addressing the disparity between production and consumption of global resources. *Conservation Letters, 6*(3), 192-199.

Nathaniel, S.P. and Bekun, F.V., (2020). Environmental management amidst energy use, urbanization, trade openness, and deforestation: The Nigerian experience. *Journal of Public Affairs, 20*(2), e2037.

Nelson, G. C., & Hellerstein, D. (1997). Do roads cause deforestation? Using satellite images in econometric analysis of land use. *American Journal of Agricultural Economics, 79*(1), 80-88.

Nilsson S (2009). Economic Crisis and the Global Forest Sector. *IIASA Interim Report*. IIASA, Laxenburg, Austria: IR-09-012.

O’Callaghan, B., Yau, N., Murdock, E., Tritsch, D., Janz, A., Blackwood, A., Purroy Sanchez, L., Sadler, A., Wen, E., Kope, H., Flodell, H., Tillman-Morris, L., Ostrovsky, N., Kitsberg, A., Lee, T., Hristov, D., Didarali, Z., Chowdhry, K., Karlbik, M., Shewry, A., Bialek, F., Wang, M., Rosenbaum, N., Gupta, S., Hazell, T., Angell, Z., and Hepburn, C. (2020). *Global Recovery Observatory*. Oxford University Economic Recovery Project. Available online: [https://recovery.smithschool.ox.ac.uk/tracking. Accessed May 15th 2021.](https://recovery.smithschool.ox.ac.uk/tracking)
OECD (2020). The territorial impact of COVID-19: Managing the crisis across levels of government. OECD Policy Responses to Coronavirus (COVID-19). Available online (https://www.oecd.org/coronavirus/policy-responses/the-territorial-impact-of-covid-19-managing-the-crisis-across-levels-of-government-d3e314e1/). Accessed (08/10/2021).

Olanipekun, I.O., Olasehinde-Williams, G.O. and Alao, R.O., (2019). Agriculture and environmental degradation in Africa: The role of income. Science of the Total Environment, 692, 60-67.

Ordway, E.M., Asner, G.P. and Lambin, E.F., (2017). Deforestation risk due to commodity crop expansion in sub-Saharan Africa. Environmental Research Letters, 12(4), p.044015.

Pacca, L., Antonarakis, A., Schröder, P. and Antoniades, A., (2020). The effect of financial crises on air pollutant emissions: An assessment of the short vs. medium-term effects. Science of The Total Environment, 698, p.133614.

Pagiola, S., 2001. Deforestation and Land Use Changes Induced by the East Asian Economic Crisis, 1st ed. World Bank, Washington, D.C.

Persson, M., Henders, S., Kastner, T., (2014). Trading forests: Quantifying the contribution of global commodity markets to emissions from tropical deforestation. Center for Global Development Working Paper.

Peters-Stanley, M., Gonzalez, G., Yin, D., Goldstein, A. and Hamrick, K., (2013). Covering new ground: State of the forest carbon markets 2013. Forest Trends’ Ecosystem Marketplace, Washington DC, 80.

Ponce, P., Rio-Rama, D., de la Cruz, M., Álvarez-García, J. and Oliveira, C., (2021). Forest Conservation and Renewable Energy Consumption: An ARDL Approach. Forests, 12(2), 255.

Presas, T., (2009). Financial meltdown and the future of the forest products industry. Unasylva (English ed.), 60 (233), 11-12.

Ramankutty, N., Evan, A.T., Monfreda, C. and Foley, J.A., (2008). Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Global biogeochemical cycles, 22(1).

Rudel, T.K., 2013. The national determinants of deforestation in sub-Saharan Africa. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1625), p.20120405.

Saswattecha, K., Hein, L., Kroeze, C. and Jawjit, W., (2016). Effects of oil palm expansion through direct and indirect land use change in Tapi river basin, Thailand. International Journal of Biodiversity Science, Ecosystem Services & Management, 12(4), 291-313.
Sayer, J.A., Endamana, D., Ruiz-Perez, M., Boedhihartono, A.K., Nzooh, Z., Eyebe, A., Awono, A. and Usongo, L., (2012). Global financial crisis impacts forest conservation in Cameroon. *International Forestry Review*, 14(1), pp.90-98.

Shafik, N. and Bandyopadhyay, S., 1992. *Economic growth and environmental quality: time-series and cross-country evidence* (Vol. 904). World Bank Publications.

Siddiqi, T.A., (2000). The Asian financial crisis — is it good for the global environment? *Global Environmental Change*, 10 (1), 1–7.

Srinivasan, U.T., Carey, S.P., Hallstein, E., Higgins, P.A., Kerr, A.C., Koteen, L.E., Smith, A.B., Watson, R., Harte, J. and Norgaard, R.B., (2008). The debt of nations and the distribution of ecological impacts from human activities. *Proceedings of the National Academy of Sciences*, 105(5), 1768-1773.

Somarriba, E., Cerda, R., Orozco, L., Cifuentes, M., Dávila, H., Espin, T., Mavisoy, H., Ávila, G., Alvarado, E., Poveda, V. and Astorga, C., (2013). Carbon stocks and cocoa yields in agroforestry systems of Central America. *Agriculture, ecosystems & environment*, 173, 46-57.

Sulaksono, B. and Widjanarko, H., (2009). *Monitoring the Socioeconomic Impact of the 2008/2009 Global Financial Crisis in Indonesia-Impact on the Livelihoods of the Oil Palm Plantation Community in Riau*. SMERU Research Institute.

Summers, L.H. (2016). 'The Age of Secular Stagnation: What It Is and What to Do About It', *Foreign Affairs*, March/April 2016 [Online]. Available at https://www.foreignaffairs.com/articles/united-states/2016-02-15/age-secular-stagnation.

Sunderlin, W. D. (1999). Between danger and opportunity: Indonesia and forests in an era of economic crisis and political change. *Society & Natural Resources*, 12(6), 559-570.

Tieguhong, J.C., Ndoye, O., Vantomme, P., Grouwels, S., Zwollinski, J. and Masuch, J., (2009). Coping with crisis in Central Africa: enhanced role for non-wood forest products. *Unasylva*, 60(3), 49-54.

Tsurumi, T. and Managi, S., (2014). The effect of trade openness on deforestation: empirical analysis for 142 countries. *Environmental Economics and Policy Studies*, 16(4), 305-324.

UN (2020). *UN report finds COVID-19 is reversing decades of progress in poverty, healthcare and education*, July 07 2020. Accessed Online (https://www.un.org/development/desa/en/news/sustainable/sustainable-development-goals-report-2020.html). Accessed January 20th 2021.

UNCTAD, (2015). *Emerging debt crises pose a threat to the new global development agenda, follow-up to UN resolution needed*. United Nations Conference on Trade and Development. Oct 5, 2015.

UNECFA (2009). *Impact of the Global Financial Crisis and Recession on the SADC Mining Sector*, United Nations Economic Commission For Africa, Accessed Online (https://www.uneca.org/publications/impact-global-financial-crisis-and-recession-sadc-mining-sector).

Varkkey, H., Tyson, A., Choiruzzad, S.A.B., (2018). Palm oil intensification and expansion in Indonesia and Malaysia: Environmental and socio-political factors influencing policy. *Forest Policy & Economics*, 92, 148-159.

Von Braun, J., (2008). *Food and financial crises: Implications for agriculture and the poor* (Vol. 20). Intl Food Policy Res Inst.
Weisse, M., Goldman, E., (2021). Forest Pulse: The Latest on the World’s Forests. World Resources Institute. Available at https://research.wri.org/gfr/forest-pulse?utm_medium=media&utm_source=article&utm_campaign=globalforestreview. (Accessed October 4th 2021).

WESS, (2017). Chapter 5: A new context for the 2030 Agenda for Sustainable Development. In World Economic and Social Survey 2017, UN Department of Economic and Social Affairs. 13 July 2017.

World Bank. (2012). Justice for Forests: Improving criminal justice efforts to combat illegal logging. World Bank, Washington, DC.

Zambrano-Monserrate, M.A., Carvajal-Lara, C., Urgilés-Sanchez, R. and Ruano, M.A., (2018). Deforestation as an indicator of environmental degradation: Analysis of five European countries. Ecological Indicators, 90, 1-8.

Appendix

Appendix A1: List of countries included in our analysis

Albania	Comoros	Haiti	Mauritius	Slovak Republic
Algeria	Congo, D.R.	Honduras	Mexico	Slovenia
Angola	Congo, R.	Hungary	Moldova	South Africa
Argentina	Costa Rica	Iceland	Mongolia	South Sudan
Armenia	Côte d’Ivoire	India	Morocco	Spain
Australia	Croatia	Indonesia	Mozambique	Sri Lanka
Austria	Cyprus	Iran, I.R. of	Myanmar	St. Kitts & Nevis
Azerbaijan	Czech Republic	Ireland	Namibia	Sudan
Bangladesh	Denmark	Israel	Nepal	Suriname
Barbados	Djibouti	Italy	Netherlands	Swaziland
Belarus	Dominica	Jamaica	New Caledonia	Sweden
Belgium	Dominican Rep.	Japan	New Zealand	Switzerland
Belize	Ecuador	Jordan	Nicaragua	Syria
Benin	Egypt	Kazakhstan	Niger	Tajikistan
Bhutan	El Salvador	Kenya	Nigeria	Tanzania
Bolivia	Equatorial Guinea	Korea	Norway	Thailand
Bosnia Herz.	Eritrea	Kuwait	Pakistan	Togo
Botswana	Estonia	Kyrgyz Republic	Panama	Trinidad&Tobago
Brazil	Ethiopia	Laos	Papua New Guinea	Tunisia
Brunei	Fiji	Latvia	Paraguay	Turkey
Bulgaria	Finland	Lebanon	Peru	Turkmenistan
Burkina Faso	France	Lesotho	Philippines	Uganda
Burundi	Gabon	Liberia	Poland	Ukraine
Cambodia	Gambia, The	Libya	Portugal	United Kingdom
Cameroon	Georgia	Lithuania	Romania	United States
Canada	Germany	Luxembourg	Russia	Uruguay
Cape Verde	Ghana	North Macedonia	Rwanda	Uzbekistan
Central African R.	Greece	Madagascar	São Tomé & Principe	Venezuela
Table A2. Unit Root Test based on augmented Dickey-Fuller tests, 1 lag

Dependent Variables	P statistic	p-value
Forestloss	571.36	0.0000
Tree coverage area from CCI	442.79	0.0002
Roundwood	278.70	0.9876
Cattle Production	664.50	0.0000
Agricultural land from CCI	503.82	0.0000
Cocoa Production	754.35	0.0000

Table A3 – Effect of Global Financial Crisis of 2008 on Deforestation

Dependent Variable: Deforestation Growth	(1) OLS	(2) OLS	(3) Fixed Effects	(4) GMM
Global Financial Crisis 2008	-0.434***	-0.202***	-0.164*	-0.193***
	(0.138)	(0.070)	(0.094)	(0.068)
Deforestation Growth _[(t-1)]	-0.128***	-0.258***	-0.154***	
	(0.024)	(0.037)	(0.042)	
Urban Pop. (%) Growth	-6.256*	-16.242	-6.263*	
	(3.457)	(22.558)	(3.654)	
Per Capita Energy Growth	-0.001***	-0.000***	-0.009	
	(0.000)	(0.000)	(0.012)	
Trade Growth	0.004***	0.005***	0.002	
	(0.001)	(0.001)	(0.004)	
Agri. Employment Growth	0.148	0.042	0.137	
	(0.272)	(0.280)	(0.299)	
Constant	0.539***	0.440***	0.558***	0.453***
	(0.127)	(0.068)	(0.168)	(0.082)

N 2306 1859 1859 1859

Notes: Significance levels: * p<0.10, ** p<0.05, *** p<0.010. Standard Errors are included in parentheses. Although these results cover all countries globally, the “Global Financial Crisis 2008” dummy variable is equal to one only for those that experienced the Global Financial Crisis in 2008 as reported in Laeven and Valencia (2018). The variable stays equal to one for the whole duration of the crisis, corresponding to the period 2008-2012 for most countries.
Table A4: Effect of Financial Crises on Forest Coverage using ESA-CCI: Continents subsamples

Dependent Variable: Forest Coverage Growth	(1) OLS Specification	(2) GMM Specification						
Forest Coverage Growth_{1}	Africa	America	Asia	Europe	Africa	America	Asia	Europe
	0.278***	0.335**	0.364***	0.427***	0.417***	0.448	0.529***	0.478***
	(0.085)	(0.146)	(0.098)	(0.060)	(0.075)	(0.371)	(0.042)	(0.089)
Financial Crisis	-0.003	-0.002	-0.002*	-0.000	-0.003	-0.002	-0.002*	-0.000
	(0.003)	(0.002)	(0.001)	(0.000)	(0.002)	(0.001)	(0.001)	(0.000)
Urban Pop. (%) Growth	0.037	0.037	0.085*	0.062	-0.044	0.033	-0.063*	0.055
	(0.080)	(0.047)	(0.048)	(0.051)	(0.050)	(0.038)	(0.037)	(0.046)
Per Capita Energy Growth	-0.000	-0.002	-0.003	-0.001	-0.000	-0.003	0.000	0.000
	(0.000)	(0.002)	(0.004)	(0.003)	(0.000)	(0.003)	(0.005)	(0.003)
Trade Growth	-0.000	0.003	0.000	-0.002	0.001	0.002	0.000***	-0.005**
	(0.005)	(0.002)	(0.000)	(0.002)	(0.008)	(0.003)	(0.000)	(0.002)
Agricultural Employment Growth	0.000	-0.003	0.001***	0.000	0.001	-0.003	0.001*	-0.001
	(0.005)	(0.006)	(0.000)	(0.002)	(0.005)	(0.005)	(0.000)	(0.003)
Constant	0.001	-0.001	0.001	-0.000	0.000	-0.001	0.001	-0.000
	(0.001)	(0.001)	(0.000)	(0.000)	(0.001)	(0.001)	(0.001)	(0.000)
N	919	571	850	805	919	571	850	805

Notes: Significance levels: * p<0.10, ** p<0.05, *** p<0.010. Standard Errors are included in parentheses.

Table A5: Effect of Financial Crises on Forest Coverage using ESA-CCI: Income-group subsamples

Dependent Variable: Forest Coverage Growth	(1) GMM Specification	(2) GMM Specification	(3) GMM Specification	(4) GMM Specification
	High Income	Upper Middle Income	Lower Middle Income	Low Income
Forest Coverage Growth_{1}	0.547***	0.256	0.631***	0.427***
	(0.159)	(0.166)	(0.110)	(0.072)
Financial Crisis	-0.000	-0.000	-0.001	-0.002
	(0.000)	(0.001)	(0.001)	(0.002)
Urban Pop. (%) Growth	0.042	0.007	0.002	-0.060*
	(0.069)	(0.050)	(0.022)	(0.033)
Per Capita Energy Growth	-0.001	0.000	-0.001	-0.001
	(0.003)	(0.000)	(0.003)	(0.004)
Trade Growth	-0.003	0.000***	-0.000	0.003
	(0.005)	(0.000)	(0.000)	(0.009)
Agri. Employment Growth	0.000	-0.002	-0.009	-0.008
	(0.001)	(0.002)	(0.007)	(0.013)
Constant	0.000	0.000	-0.000	0.001*
	(0.000)	(0.001)	(0.000)	(0.001)
N	1037	972	793	594

Notes: Significance levels: * p<0.10, ** p<0.05, *** p<0.010. Standard Errors are included in parentheses.