A NOTE ON A THEOREM OF HEATH-BROWN AND SKOROBOGATOV

MIKE SWARBRICK JONES

Abstract. We generalise a result of Heath-Brown and Skorobogatov [5] to show that a certain class of varieties over a number field \(k \) satisfies Weak Approximation and the Hasse Principle, provided there is no Brauer-Manin obstruction.

Mathematics Subject Classification (2000). 14G05 (11D57, 11G25, 11P55, 14F22, 14G25).

1. Introduction

Let \(k \) be a number field with \([k : \mathbb{Q}] = m \), and ring of integers \(\mathfrak{o} \). Let \(K \) be a finite extension of \(k \) with \([K : k] = n \), and let \(\tau_1, \ldots, \tau_n \) be a \(k \)-basis of \(K \). For \(x \in k^n \), we let \(N(x) = N_{K/k}(x^{(1)}\tau_1 + \cdots + x^{(n)}\tau_n) \) be a norm form of \(K/k \). The subject of this note is the affine variety \(X \), defined by the Diophantine equation

\[
P(t) = N(x),
\]

where \(P(t) \) is a polynomial with coefficients in \(k \). Let \(\overline{k} \) be an algebraic closure of \(k \). If \(P(t) \) has exactly two solutions in \(k \), and no other roots in \(\overline{k} \), then we can immediately change variables to obtain the equation

\[
t^{a_0}(1 - t)^{a_1} = \alpha N(x), \tag{1.1}
\]

where \(\alpha \in k^* \) and \(a_0, a_1 \) are positive integers. The culmination of [3] and [5] is the following theorem, under the additional assumption that \(k = \mathbb{Q} \):

Theorem 1. The Brauer-Manin obstruction is the only obstruction to the Hasse Principle and Weak Approximation on any smooth projective model of the open subset of the variety (1.1), given by \(P(t) \neq 0 \).

There was only a modest link missing to show this theorem for general \(k \), which is straightforward by present standards, and is our aim here. The key step of [3] and [5] is a descent argument, which reduces the problem to showing the validity of the Hasse principle and weak approximation on the smooth affine quasi-projective variety \(Y \subset \mathbb{P}^{2n} \) defined by
for given \(a, b \in \mathfrak{o} \). In [5] this was achieved by finding an asymptotic lower bound for the number of suitably constrained integer solutions to (1.2) in a large box. The principle tool was the Hardy-Littlewood circle method for \(k = \mathbb{Q} \). We shall use a more general version of the circle method here to handle arbitrary number fields.

In [3], the Brauer group of the variety \(X \) was calculated for some special cases, to identify some situations where the Brauer–Manin obstruction is empty. For example if \(a_0 \) and \(a_1 \) are coprime, and \(K/k \) does not contain any non trivial cyclic extension of \(k \), then \(\text{Br}(k) = \text{Br}(X) \), and so the Hasse principle and weak approximation both hold. On the other hand, it is known that there can be obstructions to weak approximation if \(K \) is a cyclic extension of \(k \). For an example due to Coray, see [4, §9].

Acknowledgements:
I'd like to thank my supervisor Tim Browning for improving the quality of the paper substantially. Also thanks to Tony Várilly-Alvarado for showing interest in the problem.

2. Notation

Let \(\mathfrak{o} \) be the ring of integers of \(k \). Without loss of generality, suppose that \(\tau_1, \ldots, \tau_n \) is a \(\mathfrak{o} \)-basis of \(K \). Let \(\mathfrak{n} \) be an integral ideal of \(\mathfrak{o} \), with \(\mathbb{Z} \)-basis \(\omega_1, \ldots, \omega_m \). Let \(\sigma_1, \ldots, \sigma_{n_1} \) be the distinct real embeddings of \(k \), and let \(\sigma_{n_1+1}, \ldots, \sigma_{n_1+n_2} \) be the distinct complex embeddings, such that \(\sigma_{n_1+i} \) is conjugate to \(\sigma_{n_1+n_2+i} \). Put \(k_i \) to be the completion of \(k \) with respect to the embedding \(\sigma_i \), for \(i = 1, \ldots, n_1 + n_2 \).

Define \(V \) to be the commutative \(\mathbb{R} \)-algebra \(\bigoplus_{i=1}^{n_1+n_2} k_i \cong k \otimes \mathbb{Q} \mathbb{R} \). For an element \(x \in V \), we write \(\pi_i(x) \) for its projection onto the \(i \)th summand, \((so x = \bigoplus \pi_i(x)) \). There is a canonical embedding of \(k \) into \(V \) given by \(\alpha \to \bigoplus \sigma_i(\alpha) \). We identify \(k \) with its image in \(V \). Under this image, \(\mathfrak{n} \) forms a lattice in \(V \), and \(\omega_1, \ldots, \omega_n \) form a real basis for \(V \). We define trace and norm maps on \(V \) as

\[
\text{Tr}(\alpha) = \sum_{i=1}^{n_1} \pi_i(\alpha) + 2 \sum_{i=n_1+1}^{n_1+n_2} \mathfrak{R}(\pi_i(\alpha)),
\]

\[
\text{Nm}(\alpha) = \prod_{i=1}^{n_1} \pi_i(\alpha) \prod_{i=n_1+1}^{n_1+n_2} |\pi_i(\alpha)|^2,
\]
respectively. We also define a distance function $|\cdot|$ on V,

$$|x| = |x_1\omega_1 + \cdots + x_m\omega_m| = \max_i |x_i|.$$

This extends to V^s, for $s \in \mathbb{N}$: if $x = (x^{(1)}, \ldots, x^{(s)}) \in V^s$, then

$$|x| = \max_j |x^{(j)}|.$$

We note that there will be some constant c, dependent only on k and our choice of basis $\omega_1, \ldots, \omega_m$, such that

$$|\pi_i(x)| \leq c|x| \quad (2.1)$$

for all $x \in V$ and $1 \leq i \leq m$ (since each π_i is linear, this is clear). Also for any $v, w \in V$, we have

$$|vw| \ll |v||w|, \quad \text{Nm}(v) \ll |v|^m \quad \text{and} \quad |v^{-1}| \ll \frac{|v|^{m-1}}{\text{Nm}(v)} \quad (2.2)$$

For any point $v \in V^s$, let $B(v)$ be the box

$$B(v) = \{ x \in V^s : |x - v| < \rho \}, \quad (2.3)$$

where ρ is a fixed real number $0 < \rho < 1$. For a set $A \subset V^s$, and positive real number P, we define PA to be the set $\{ x \in V^s : P^{-1}x \in A \}$.

3. Statement of the Main Lemma

Consider the smooth quasi-projective variety Y' given by the equation (1.2) together with the inequalities $x \neq 0$, $y \neq 0$, $z \neq 0$, $N(x) \neq 0$, $N(y) \neq 0$. It is sufficient to prove weak approximation on Y', since weak approximation is a birational invariant on smooth varieties.

We assume equation (1.2) has a solution in k_{ν} for all places ν of k. Suppose we are given a finite set of places S and a set of local solutions $(x_{\nu}, y_{\nu}, z_{\nu}) \in Y'(k)$ for each $\nu \in S$. For any fixed $\eta > 0$, our task is to find a k-point $(x, y, z) \in Y'(k)$ such that

$$|x^{(i)} - x^{(i)}_{\nu}|_\nu < \eta, \quad |y^{(i)} - y^{(i)}_{\nu}|_\nu < \eta, \quad |z - z_{\nu}|_\nu < \eta$$

for all $1 \leq i \leq n$, and $\nu \in S$, where $| \cdot |_\nu$ denotes the valuation on k_{ν}. Without loss of generality, we can assume that S contains all the infinite places.

For the finite places, we note that by the Chinese Remainder Theorem, finding a rational point which is p-adically close to some set of p-adic points, is equivalent to finding an integral point which is restricted to some congruence class modulo some integral ideal. In our case, we shall let the ideal be n as in the notation section. So we
are given \((x_n, y_n, z_n) \in \mathfrak{a}^{2n+1}\) which is a non-singular solution of (1.2) modulo \(n\).

Our task is now to find a solution \((x, y, z) \in \mathfrak{a}^{2n+1}\) with

\[
|x^{(i)} - Px^{(i)}|_\nu < P\eta, \quad |y^{(i)} - Py^{(i)}|_\nu < P\eta, \quad |z - Pz|_\nu < P\eta
\]

for each infinite place \(\nu\), and

\[
x^{(i)} \equiv x_n^{(i)}, \quad y^{(i)} \equiv y_n^{(i)}, \quad z \equiv z_n \mod n.
\]

Our main lemma is then the following:

Lemma 2. Suppose that for each prime \(p\) there is a non-singular solution to (1.2) satisfying (3.2) in \(p\)-adic integers. Then (1.2) has a solution in \(\mathfrak{a}^{2n+1}\) satisfying (3.1) and (3.2), provided \(P\) is sufficiently large.

This will be enough to prove weak approximation on the variety \(Y\), and will thus establish Theorem 1 for general \(k\).

4. The Circle Method

We set

\[
S_1(\alpha) = \sum_x e(\text{Tr}(aaN(x))),
\]

\[
S_2(\alpha) = \sum_y e(\text{Tr}(abN(y))),
\]

\[
S_3(\alpha) = \sum_z e(\text{Tr}(az^n)),
\]

with all sums running over modulo classes defined by (3.2), and inside the dilated boxes \(P\mathfrak{B}_1 \subset V^n, P\mathfrak{B}_2 \subset V^n, P\mathfrak{B}_3 \subset V\) respectively, where

\[
\mathfrak{B}_1 = \mathfrak{B} \left(\bigoplus_{i=1}^{n_1+n_2} x_{\nu_i} \right), \quad \mathfrak{B}_2 = \mathfrak{B} \left(\bigoplus_{i=1}^{n_1+n_2} y_{\nu_i} \right), \quad \mathfrak{B}_3 = \mathfrak{B} \left(\bigoplus_{i=1}^{n_1+n_2} z_{\nu_i} \right),
\]

\(\nu_i\) being the place corresponding to the embedding \(\sigma_i\).

Also, we let \(\mathfrak{B}' \subset V^{2n+1}\) be the product \(\mathfrak{B}' = \mathfrak{B}_1 \times \mathfrak{B}_2 \times \mathfrak{B}_3\). From the observation that the constant \(c\) in (2.1) exists, we see that to satisfy (3.1), it will be sufficient that \((x, y, z) \in P\mathfrak{B}'\), where \(\rho = \rho(\eta)\) has been chosen appropriately small in the definition (2.3). Furthermore, by choosing \(\rho\) sufficiently small, we can guarantee that \((x, y, z) \in Y'(K)\).

We define \(\mathcal{I}\) as:

\[
\mathcal{I} := \{\alpha = \alpha_1\omega_1 + \cdots + \alpha_m\omega_m \in V : 0 \leq \alpha_i \leq 1\}.
\]
Let $\mathcal{N}(P)$ be the number of points $(x, y, z) \in \mathfrak{o}^{2n+1} \cap P\mathfrak{B}'$ which are a solution to (1.2), and such that the conditions (3.2) are satisfied. We have

$$\mathcal{N}(P) = \int_I S_1(\alpha)S_2(\alpha)S_3(-\alpha)\,d\alpha.$$

For any $\gamma \in k$, define the denominator ideal of γ as

$$a_\gamma = \{ \kappa \in o : \kappa \gamma \in n \}.$$

We also set

$$M_\gamma(\theta) = \{ x \in I : |x - \gamma| \leq P^{-n+m(n-1)\theta} \},$$

for some $\theta > 0$ to be fixed later, and define a special subset of I,

$$M = M(\theta) = \bigcup_{\gamma \in k} \mathcal{M}_\gamma,$$

which we shall call the ‘major arcs’. We define the ‘minor arcs’ as the compliment of the major arcs, $M(\theta) = I \setminus M(\theta)$.

Finally we shall state once and for all that implied constants in any \ll, \gg, or $O(\cdot)$ quantifiers, are dependent only on k, K, n with fixed choice of basis, and \mathfrak{B}.

4.1. The Minor Arcs.

First we shall get suitable estimates for $S_1(\alpha)$, and $S_2(\alpha)$. Note that N is a norm form on K/\mathbb{Q} with \mathbb{Z}-basis $\{ \omega_i\tau_j \}$. So the argument of [2, Lemma 1] holds here (in fact we have extra restrictions on our variables but this does not affect the argument). This results in the estimate

$$\int_I |S_j(\alpha)|^2\,d\alpha \ll P^{mn+\varepsilon}$$

for $j = 1, 2$, and any $\varepsilon > 0$.

Now we want to get a bound on $|S_3(\alpha)|$ for α on the minor arcs.

Lemma 3. Let $\varepsilon > 0$ and suppose $0 < \Delta < 1$. Either:

(i) $|S_3(\alpha)| \ll P^{m-\Delta/2n-1+\varepsilon}$, or

(ii) there exists $0 \neq \mu \in n, \lambda \in n$ such that

$$|\mu| \ll P^{(n-1)\Delta} \text{ and } |\mu \alpha - \lambda| < P^{-n+(n-1)\Delta}.$$

Proof. Consider the sum

$$S'_3(\alpha) = \sum_z e(\text{Tr}(\alpha(z + z_n)^n)).$$
where z now runs over the set $\mathbb{n} \cap P\mathbb{B}_3$. By comparing the domains of summation, we see that

\[S_3(\alpha) = S'_3(\alpha) + O(P^{m-1}), \]

and thus if assumption (i) fails, then it also fails with $S_3(\alpha)$ replaced by $S'_3(\alpha)$. Put $f(z) = \sum_{i=1}^n \text{Tr}(\omega_i(z + z_n)^n)\omega_i$. Then f is of the type defined by [1, Eq 2.6]. Furthermore, in the notation of [1],

\[S'_3(\alpha) = \sum_{z \in P\mathbb{B}_3} e[\alpha \cdot f(z)], \]

so our result is given by [1, Lemma 3]. Note that this lemma was for exponential sums over \mathfrak{o} rather than general \mathfrak{n}, but it is trivial to generalise to this setting. □

Under the assumption that α satisfies (ii), we have (using (2.2))

\[
\left| \alpha - \frac{\lambda}{\mu} \right| \ll |\mu|^{-1}||\mu\alpha - \lambda| \\
\ll |\mu|^{m-1}P^{-n+(n-1)\Delta} \\
\ll P^{-n+m(n-1)\Delta}.
\]

If we put $\gamma = \frac{\lambda}{\mu}$, we see that $\langle \mu \rangle \subset a_\gamma$, and so

\[\text{Nm}(a_\gamma) \leq \text{Nm}(\langle \mu \rangle) \ll P^{m(n-1)\Delta}. \]

Hence $\alpha \in M(\Delta)$. So we deduce

\[|S_3(\alpha)| \ll P^{m-\Delta/2^{n-1}+\varepsilon}, \quad (4.2) \]

for all $\alpha \in \mathfrak{m}(\Delta)$.

Combining this with (4.1) and using Cauchy’s inequality we obtain:

Lemma 4.

\[\int_{\mathfrak{m}(\Delta)} S_1(\alpha)S_2(\alpha)S_3(-\alpha)d\alpha \ll P^{(n+1)m-\delta} \]

for some $\delta = \delta(\Delta) > 0$.

4.2. **The Major Arcs.** For $k = (k^{(1)}, \ldots, k^{(2n+1)}) \in \mathbb{n}^{2n+1}$, we define the function

\[
F(k^{(1)}, \ldots, k^{(2n+1)}) = aN(k^{(1)} + x^{(1)}_n, \ldots, k^{(n)} + x^{(n)}_n) \\
+ bN(k^{(n+1)} + y^{(1)}_n, \ldots, k^{(2n)} + y^{(n)}_n) - (k^{(2n+1)} + z_n)^n.
\]

Note that the assumption of Lemma 2 is equivalent to the assumption that $F(k) = 0$ has a non-singular solution in \mathbb{n}_p for every prime p.
Put
\[S_\gamma = \text{Nm}(a_\gamma)^{-2n+1} \sum_{k \mod na_\gamma} e(\text{Tr}(\gamma F(k))), \]
the sum being over \(k \in n^{2n+1} \). We then define
\[\mathcal{S}(\Delta) = \sum'_{\text{Nm}(a_\gamma) \leq P^\Delta} S_\gamma, \]
where the dash indicates that only one \(\gamma \) should be taken from each equivalence class modulo \(n \). We call this the singular series. Finally, put
\[I(\Delta) = \int_{|\beta| < P^\Delta} \int_{\mathbb{B}'(\Delta)} e(\text{Tr}(\beta F(k))) d\beta d\kappa. \]
This is the singular integral.

Lemma 5. For \(\Delta \) sufficiently small,
\[\int_{\mathfrak{M}(\Delta)} S_1(\alpha)S_2(\alpha)S_3(-\alpha) d\alpha = \mathcal{S}(\Delta)I(\Delta) P^{(n+1)m} + O(P^{(n+1)m-\delta}), \]
for some \(\delta = \delta(\Delta) > 0 \).

Proof. This follows from [6, Lemma 7]. \[\square\]

Combining this lemma with Lemma 4, we see
\[\mathcal{N}(P) = \int_{\mathfrak{M}(\Delta)} S(\alpha) d\alpha + \int_{\mathfrak{m}(\Delta)} S(\alpha) d\alpha \]
\[= \mathcal{S}(\Delta)I(\Delta) P^{(n+1)m} + O(P^{(n+1)m-\delta}). \]
So all that remains to show is that under the assumption of Lemma 2 \(\mathcal{S}(\Delta) \) and \(I(\Delta) \) have strictly positive limits as \(P \to \infty \).

Lemma 6. For our box \(\mathfrak{B}' \) chosen as before, \(I(\Delta) \to I_0 \), a constant as \(P \to \infty \). Furthermore \(I_0 > 0 \).

Proof. We define the polynomial
\[F^*(x) = F(x_1^{(1)} \omega_1 + \cdots + x_m^{(1)} \omega_m, \ldots, x_1^{(s)} \omega_1 + \cdots + x_m^{(s)} \omega_m), \]
considered as a real polynomial in the \(sm \) variables \(\{x_1^{(1)}, \ldots, x_m^{(s)}\} \). In the definition of \(I \), we can just as easily think of the inner integral being over \(\mathbb{R}^{mn} \) with \(F \) replaced by \(F^* \), and the outer integral as being over the real variables \(\beta_1, \ldots, \beta_m \), where \(\beta = \beta_1 \omega_1 + \cdots + \beta_m \omega_m \). Then this lemma is routine, and indeed an argument analogous to the one used in [5] can be used. The key point is that the box is centred at a nonsingular point in \(V^n \) (note that a non-singular solution to \(F \) in \(V^n \) corresponds to a non-singular solution to \(F^* \) in \(\mathbb{R}^{mn} \)). \[\square\]
Lemma 7. We have

(i) \(\mathcal{S}(\infty) \) exists,
(ii) \(\mathcal{S}(\Delta) - \mathcal{S}(\infty) \ll P^{-\zeta}, \) for some positive \(\zeta = \zeta(\Delta), \) and
(iii) \(\mathcal{S}(\infty) > 0. \)

We follow the arguments of [5]. Consider the sum

\[T_1(\gamma) = \sum_{k_1 \mod a_\gamma} e(\text{Tr}(\gamma F_1(k_1))), \]

where \(F_1(k_1) = aN(k_1 + x_{n}^{(1)}, \ldots, k_n + x_{n}^{(n)}). \) Define \(T_2 \) analogously, and set

\[T_3(\gamma) = \sum_{k \mod a_\gamma} e(\text{Tr}(\gamma(k + z_n)^n)). \]

Then clearly \(S_\gamma = Nm(a_\gamma)^{-2n+1}T_1(\gamma)T_2(\gamma)T_3(\gamma). \) We will consider the dyadic range:

\[\mathcal{S}_R = \sum'_{R/2 < Nm(a_\gamma) \leq R} Nm(a_\gamma)^{-2n+1}T_1(\gamma)T_2(\gamma)T_3(\gamma). \]

If we repeat the argument of Lemmas 5 and 6 with \(|S_1(\alpha)|^2 \) in place of \(S_1(\alpha)S_2(\alpha)S_3(-\alpha), \) we find that

\[\sum'_{Nm(a_\gamma) \leq P^\Delta} \int_{\mathfrak{M}_{\gamma}(P^\Delta)} |S_1(\alpha)|^2 d\alpha = \Sigma_1 J_1 + O(P^{mn-\delta}), \]

for some \(\delta = \delta(\Delta) > 0, \) and where

\[\Sigma_1 = \sum'_{Nm(a_\gamma) \leq P^\Delta} Nm(a_\gamma)^{-2n}|T_1(\gamma)|^2, \]

and

\[J_1 \sim CP^{mn} \]

for some positive constant \(C. \) But

\[\sum'_{Nm(a_\gamma) \leq P^\Delta} \int_{\mathfrak{M}_{\gamma}(P^\Delta)} |S_1(\alpha)|^2 d\alpha \leq \int_{I} |S_1(\alpha)|^2 d\alpha \ll P^{mn+\varepsilon} \]

by (4.1). Note that the estimate holds for any \(P \geq 1, \) and \(\varepsilon > 0. \) So if we choose \(P \) such that \(P^\Delta = R, \) and put \(\varpi = \varepsilon/\Delta, \) we see that

\[\sum'_{Nm(a_\gamma) \leq R} Nm(a_\gamma)^{-2n}|T_1(\gamma)|^2 \ll R^{\varpi}, \]

for any \(R \geq 1, \) and \(\varpi > 0. \) Similarly we have
\[\sum_{Nm(a,\gamma) \leq R} Nm(a,\gamma)^{-2n} |T_2(\gamma)|^2 \ll R^\omega, \]

and so

\[\sum_{R/2 < Nm(a,\gamma) \leq R} Nm(a,\gamma)^{-2n} |T_1(\gamma)T_2(\gamma)| \ll R^\omega \quad (4.3) \]

by Cauchy’s inequality.

Now we bound \(T_3(\gamma) \). Let \(N = Nm(a,\gamma) \), and note that

\[|N^{-1}T_3(\gamma)| = |N^{-m} \sum_{z \mod (N)} e(\text{Tr}(\gamma(z + z_n)^n))| \]

\[= |N^{-m} \sum_{z \in \mathfrak{z} \cap N}\mathfrak{z} e(\text{Tr}(\gamma(z + z_n)^n)), \]

where \(\mathfrak{z} = \{ x \in V : 0 \leq x_i < 1 \ \forall \ i \} \). So now we can use Lemma 3, replacing \(S_3 \) with the exponential sum on the last line, taking \(P = N \), and \(\Delta < 1/m(n-1) \). If alternative (i), holds we have

\[|N^{-1}T_3(\gamma)| \ll N^{-m}N^{m-\Delta/2n-1+\delta} = N^{-\Delta/2n-1+\delta} \quad (4.4) \]

for any \(\delta > 0 \). On the other hand, alternative (ii) implies the existence of some \(\mu, \lambda \in \mathfrak{n} \) where

\[0 < |\mu| \ll N^{(n-1)\Delta}, \]

and

\[|\mu\gamma - \lambda| \ll N^{-(n+1)\Delta}. \]

Note that \(\mathfrak{a}_\gamma(\mu\gamma - \lambda) \subseteq \mathfrak{n} \), so that if \(\mu\gamma - \lambda = \sum \theta_i\omega_i \),

then \(\theta_iN \in \mathbb{Z} \) for all \(i \). But \(|\theta_iN| < N^{(n-1)(\Delta-1)} < 1 \), and so \(\theta_i = 0 \) for all \(i \). It follows that \(\mu \in \mathfrak{a}_\gamma \), so that \(N|Nm(\mu)\). But

\[Nm(\mu) \ll |\mu|^m \ll N^{m(n-1)\Delta} \ll N^{1-\varepsilon}, \]

for some positive \(\varepsilon \), and since \(Nm(\mu) \neq 0 \), this is a contradiction if \(N \) is large enough. Therefore (4.4) holds, and combining this with (4.3), we arrive at the estimate

\[\mathcal{S}_R \ll R^{\omega-\Delta/2n-1+\delta}. \]

Since \(\omega, \delta \) were arbitrary, (i) and (ii) of our lemma follow immediately. The proof of (iii) is routine. For any prime ideal \(\mathfrak{p} \), we define

\[\mu(\mathfrak{p}) = \sum_{j=1}^\infty \sum_{a,\gamma=\mathfrak{p}j} S_\gamma, \]
and then
\[S(\infty) = \prod_p \mu(p). \]

Standard arguments show that the assumption that \(F \) has a non-singular solution in each \(n_p \) implies that each \(\mu(p) > 0 \), and that the product is strictly positive. This completes the proof.

References

[1] Birch, B. J. Waring’s problem in algebraic number fields. Proc. Cambridge Philos. Soc. 57 (1961) 449–459.
[2] Birch, B. J.; Davenport, H.; Lewis, D. J. The addition of norm forms. Mathematika 9 (1962) 75–82.
[3] Colliot-Thélène, J.-L.; Harari, D.; Skorobogatov, A. Valeurs d’un polynôme une variable représentées par une norme. Number theory and algebraic geometry, 69–89, London Math. Soc. Lecture Note Ser. 303, Cambridge Univ. Press, Cambridge, (2003).
[4] Colliot-Thélène, J.-L.; Salberger, P. Arithmetic on some singular cubic hypersurfaces. Proc. London Math. Soc. (3) 58 (1989), no. 3, 519-549.
[5] Heath-Brown, D. R.; Skorobogatov, A. Rational solutions of certain equations involving norms. Acta Math. 189, no. 2 (2002), 161–177.
[6] C. M Skinner Forms over number fields and weak approximation. Compositio Mathematica 106 (1997), 11–29.

School of Mathematics, Bristol University, Bristol, BS8 1TW
E-mail address: mike.swarbrickjones@bristol.ac.uk