Conclusion. Mean PrEP adherence at a safety net PrEP program in Atlanta was high and PrEP discontinuation rates were comparable to other PrEP clinics nationwide. We found no association with individual factors previously linked to lower adherence, including Black race, younger age, and insurance status. Program-related factors that may have impacted these findings need to be investigated. Other future areas of research include strategies to optimize engagement in care in younger patients.

Disclosures. Bradley L. Smith, Pharm.D., AAHIVP, Gilead Sciences, Inc (Advisor or Review Panel member)

Abstracts • OFID 2021:8 (Suppl 1) • S37

Table 2. PrEP Adherence and Discontinuation at the GHS PrEP Program from 2018 to 2020 (N=154)

Adherence on PrEP (mean, SD)	n (%)
High adherence	119 (77.3)
Low adherence	35 (22.7)
Active in program	83 (53.8)
Discontinued PrEP	
Permanently discontinued	71 (46.1)
Re-engaged in program	62 (87.3)
Months in program (mean, SD)	9.8 (6.4)
Positive STI	33 (21.4)
Seroconversion	1 (0.6)

Table 4. Multivariate analysis of individual factors associated with PrEP discontinuation and low adherence

PrEP Discontinuation (n=71)	P-value
Age at referral	0.0061
Race	0.1569
Gender	0.3599
Insurance	0.7741
PrEP indication	0.9314
Low adherence (n=35)	
Age at referral	0.5072
Race	0.5601
Gender	0.9988
Insurance	0.3999
PrEP indication	0.4263

Table 2. Age-adjusted YPLL per 1,000 person-years

Race/ethnicity and sex group	aYPLL per 1,000 yrs (95%CI)
Non-Hispanic White males	308.6 [308.0-309.2]
Non-Hispanic White females	411.5 [405.6-417.4]
Non-Hispanic Black males	470.7 [468.5-472.9]
Non-Hispanic Black females	592.5 [588.4-596.6]

Table 2. Multivariable linear regression for YPLL

Variable	Adjusted β coefficient [95% CI]	P-value
HIV risk factors		
MSM (reference)	1.0	
Heterosexual females	5.58 [4.08, 6.59]	<0.001
Heterosexual males	0.49 [0.04, 1.61]	0.390
Other/IDU males	1.26 [0.34, 2.37]	0.260
Other/IDU females	1.07 [0.72, 1.63]	<0.001
Race/ethnicity		
NH White race (reference)	1.0	
NH Black	0.77 [0.90, 1.51]	0.042
Other	1.01 [0.40, 2.81]	0.274
Age at HIV infection (per year)	0.66 [0.09, 0.63]	<0.001
CD4 cell count at clinic entry (per cells/μl)	-0.004 [-0.003, 0.001]	0.572
Log10 HIV RNA at clinic entry	1.04 [0.07, 1.21]	<0.001
Hepatitis C virus coloinfection	-1.96 [2.83, 1.09]	0.061
Year of clinic entry (per year)	0.22 [0.14, 0.30]	<0.001

Conclusion. Despite marked improvement over time, sex disparities in mortality as well as sex and race disparities in YPLL remained among PWH in care in this cohort. YPLL is a useful measure for examining persistent gaps in longevity and premature mortality among PWH.

Disclosures. Peter F. Rebeiro, PhD, MHS, Gilead (Other Financial or Material Support, Single Honorarium for an Expert Panel)

53. Sex and Race Disparities in Premature Mortality among People with HIV: A 21-Year Observational Cohort Study

Background. Since the availability of antiretroviral therapy, mortality rates among people with HIV (PWH) have decreased; however, this trend may fail to quantify premature deaths among PWH. We assessed trends and disparities in all-cause and premature mortality by sex, HIV risk factor, and race, among PWH receiving care at the Vanderbilt Comprehensive Care Clinic from January 1998 – December 2018.

Methods. We examined mortality trends across calendar eras using person-time from clinic entry to date of death or December 31, 2018. We compared mortality rates by demographic and clinical factors and calculated adjusted incidence rate ratios (AIRR) and 95% confidence intervals (CI) using multivariable Poisson regression. For individuals who died, years of potential life lost (YPLL) were obtained from the expected years of life remaining by referencing US sex-specific period life tables at age and year of death; age-adjusted YPLL (aYPLL) rates were calculated. We examined patient factors associated with YPLL using multivariable linear regression.

Results. Among the 6,531 individuals (51% non-Hispanic [NH] White race, 40% NH Black race, 21% female) included, 956 (14.6%) died. Mortality rates dramatically decreased during the study period (Figure). After adjusting for calendar era, age, injection drug use, hepatitis C virus (HCV), year of HIV diagnosis, history of AIDS-defining illness, CD4 cell count, and HIV RNA at clinic entry, only female sex (AIRR=1.32, 95% CI: 1.13–1.55 vs. males) but not NH Black race (AIRR=1.02, 95% CI: 0.88–1.17 vs. NH White race) was associated with increased mortality. In contrast, aYPLL per 1,000-person years was significantly higher for both female and NH Black PWH (Table 1). In adjusted models including CD4 cell count, HIV RNA, HCV, and year of clinic entry, higher YPLL remained associated with NH Black race, female sex regardless of HIV risk factor, and younger age at HIV diagnosis (Table 2).

54. Self-Perception of Risk for HIV Acquisition and Calculated Risk for HIV Acquisition Among Active Duty Air Force Members with Newly Diagnosed HIV Infection

Background. Since the availability of antiretroviral therapy, mortality rates among people with HIV (PWH) have decreased; however, this trend may fail to quantify premature deaths among PWH. We assessed trends and disparities in all-cause and premature mortality by sex, HIV risk factor, and race, among PWH receiving care at the Vanderbilt Comprehensive Care Clinic from January 1998 – December 2018. We compared mortality rates by demographic and clinical factors and calculated adjusted incidence rate ratios (AIRR) and 95% confidence intervals (CI) using multivariable Poisson regression. For individuals who died, years of potential life lost (YPLL) were obtained from the expected years of life remaining by referencing US sex-specific period life tables at age and year of death; age-adjusted YPLL (aYPLL) rates were calculated. We examined patient factors associated with YPLL using multivariable linear regression.

Results. Among the 6,531 individuals (51% non-Hispanic [NH] White race, 40% NH Black race, 21% female) included, 956 (14.6%) died. Mortality rates dramatically decreased during the study period (Figure). After adjusting for calendar era, age, injection drug use, hepatitis C virus (HCV), year of HIV diagnosis, history of AIDS-defining illness, CD4 cell count, and HIV RNA at clinic entry, only female sex (AIRR=1.32, 95% CI: 1.13–1.55 vs. males) but not NH Black race (AIRR=1.02, 95% CI: 0.88–1.17 vs. NH White race) was associated with increased mortality. In contrast, aYPLL per 1,000-person years was significantly higher for both female and NH Black PWH (Table 1). In adjusted models including CD4 cell count, HIV RNA, HCV, and year of clinic entry, higher YPLL remained associated with NH Black race, female sex regardless of HIV risk factor, and younger age at HIV diagnosis (Table 2).

Conclusion. Despite marked improvement over time, sex disparities in mortality as well as sex and race disparities in YPLL remained among PWH in care in this cohort. YPLL is a useful measure for examining persistent gaps in longevity and premature mortality among PWH.

Disclosures. Peter F. Rebeiro, PhD, MHS, Gilead (Other Financial or Material Support, Single Honorarium for an Expert Panel)
patients (29%) were married or partnered compared to High SPR patients (14%; p=0.04). There was no difference in self-reported condom use (≥50% of the time) between Low (63%) and High (72%) SPR groups (p=0.28). Documented history of sexually transmitted infections was similarly high in both groups (≥70%; p=0.85). Previous HIV pre-exposure prophylaxis (PrEP) use was uncommon in both groups (≥70% of the time) between Low (63%) and High (72%) SPR patients (p=0.28) and documented history of sexually transmitted infections was similarly high in both groups (≥70%; p=0.85). There was no difference in self-reported condom use (≥50% of the time) between Low (63%) and High (72%) SPR patients (p=0.28) and documented history of sexually transmitted infections was similarly high in both groups (≥70%; p=0.85).

Conclusion. USAF members with incident HIV infection more commonly identified with low SPR despite similar risk behaviors and CRs as high SPR patients. The development of patient education programs and promotion of HIV prevention services including PrEP are needed to reduce incident HIV cases in the USAF. Validated HIV risk calculators like the DHRS may also assist medical providers in identifying candidates for HIV prevention services.

Disclosures. All Authors: No reported disclosures

55. Infective Endocarditis After Surgical or Transcatheter Aortic Valve Replacement

Aikaterini Papamanoli, MD1; Brandon Muncan, BA1; Poja Parikh, MD, MPH1; Hal A. Skopicki, MD1, PhD1; Andreas Kalogeropoulos, MD, MPH, PhD2; Stony Brook University Hospital, Stony Brook, New York

Session: O-12. Endocarditis

Background. Infective endocarditis (IE) can complicate both surgical aortic valve replacement (SAVR) and transcatheter aortic valve implantation (TAVI) with significant morbidity and mortality despite differing pathogenesis. In the presence of limited data from direct comparison studies and recent expansion of TAVI to younger and lower-risk patients, we compared the incidence and timing of IE in TAVI versus SAVR.

Methods. Using data from the TriNetX electronic health records network, we identified (1) a cohort of patients who underwent TAVI between January 2016 and December 2020 (CPT procedure code 1021150) and (2) a propensity-score-matched cohort of patients who underwent SAVR (CPT procedure codes 1035167 or 1029693), without any associated transcatheter procedure. We examined the incidence of IE (captured with ICD-10 codes I33, I38, or I39) over a 5-year follow-up period and matched the cohorts for demographic data and clinically relevant background history. We used Kaplan-Meier estimates and Cox proportional hazards models to compare incidence between matched cohorts.

Results. We identified 6,302 patients with TAVI and 6,302 matched patients with SAVR. The baseline characteristics of the cohorts were well balanced, Table 1. All standardized mean differences were < 0.05, indicating adequate matching between cohorts. The Kaplan-Meier mortality at 5 years was 38.0% in the TAVI vs. 22.0% in the SAVR cohort (log-rank P < 0.001). There were 290 cases with IE in the TAVI and 604 cases in the SAVR cohort. The corresponding 5-year event rates were 10.0% vs. 16.9% (log-rank P < 0.001), respectively, Figure 1. The risk ratio of TAVI vs. SAVR related IE over the entire 5-year period was 0.48 (95%CI 0.42 — 0.55; P < 0.001). However, the relative risk for IE was non-proportional between groups over the 5-year period, with an early pronounced incidence among SAVR relative to TAVI patients and gradual convergence of the hazard rates over time, Figure 2.

Table 1: Baseline Patient Characteristics of Patients of Transcatheter Aortic Valve Implantation (TAVI) vs. Surgical Aortic Valve Replacement (SAVR) After Matching

Characteristic	TAVI (N=6,302)	SAVR (N=6,302)	SMD
Demographics			
Age (mean ± SD), years	74.3 ± 9.3	74.3 ± 9.6	0.0005
Male, N (%)	4055 (64.3)	4055 (64.3)	0.0005
Race/Ethnicity, N (%)			
White	5061 (80.0)	5061 (80.0)	0.0005
Not Hispanic or Latino	5061 (80.0)	5061 (80.0)	0.0005
Black or African American	322 (5.0)	322 (5.0)	0.0007
Past Medical History, N (%)			
Hypertension	4440 (70.5)	4440 (70.5)	0.0007
Diabetes melitus	1363 (30.6)	1363 (30.6)	0.0008
Dyslipidemia	3710 (68.9)	3710 (68.9)	0.0015
Obesity	1482 (23.5)	1482 (23.5)	0.0015
Ischemic heart disease	4243 (67.3)	4243 (67.4)	0.0010
Heart failure	2299 (38.5)	2299 (38.5)	0.0017
Congestive cardiomyopathy	1000 (19.9)	1000 (19.9)	0.0009
Atrial fibrillation and flutter	1800 (29.2)	1800 (29.2)	0.0007
Nonischemic mitral valve disease	1622 (25.7)	1622 (25.7)	0.0002
Rheumatic heart disease	1552 (24.8)	1552 (24.8)	0.0059
Acute and chronic kidney disease	1500 (24.0)	1500 (24.0)	0.0085
Chronic lower respiratory disease	1544 (24.5)	1544 (24.5)	0.0074
Intestinal lung disease	552 (8.8)	552 (8.8)	0.0016
Pulmonary hypertension and pulmonary embolism	1158 (18.1)	1158 (19.2)	0.0241
Congestive heart disease	516 (14.1)	516 (15.6)	0.0030
Atherosclerosis and aortic disease	2326 (36.9)	2326 (36.8)	0.0252
Venous thrombosis	669 (10.9)	669 (11.0)	0.0005
Liver disease	596 (9.0)	596 (9.0)	0.0002
Neurology	1645 (26.1)	1645 (26.1)	0.0091
Previous cardiac surgery	309 (5.9)	309 (5.9)	0.0000
Pacemaker	314 (5.0)	314 (5.0)	0.0073
Implantable cardioverter defibrillator	118 (1.9)	118 (1.9)	0.0005
Previous history of endocarditis	114 (1.8)	114 (1.8)	0.0018

Table 2: Denver HIV Risk Scores of Active Duty Air Force Members with Incident HIV Infection

HIV Risk Score	Low Self Perceived Risk	High Self Perceived Risk	P value
Age <50	0	12 (14)	B (12)
Age ≥50	4	24 (27)	B (27)
CD4 <350	10	31 (36)	B (36)
CD4 ≥350	15	12 (15)	B (15)
Gender			
Male	21	76 (97)	69 (89)
Female	7	2 (3)	2 (3)
Race/Ethnicity*			
Black	9	38 (41)	30 (37)
Other	13	11 (17)	12 (18)
Other	9	0 (12)	12 (18)
Other	36	46 (51)	39 (45)
Sexual Practices			
Sex with Male	22	64 (79)	56 (68)
Vaginal Intercourse	10	31 (37)	21 (25)
Receptive Anal Intercourse	5	61 (71)	56 (68)
Other Risk Factors			
Past HIV Testing*			
History of anemia	0	4 (5)	10 (13)
smoker	0	0 (0)	0 (0)
Hypertension	0	0 (0)	0 (0)
Hypothyroidism	0	0 (0)	0 (0)
AIDS	0	0 (0)	0 (0)
Other	0	0 (0)	0 (0)
Genetics	0	0 (0)	0 (0)

Figure 1. Cumulative 5-Year Incidence (Kaplan-Meier Estimates) of Infective Endocarditis Among Matched Transcatheter Aortic Valve Implantation (TAVI) vs. Surgical Aortic Valve Replacement (SAVR) Recipients

Figure 2. Cumulative 5-Year Incidence (Kaplan-Meier Estimates) of Infective Endocarditis Among Matched Transcatheter Aortic Valve Implantation (TAVI) vs. Surgical Aortic Valve Replacement (SAVR) Recipients