Idempotent Completion of n-Angulated Categories

Zengqiang Lin

Received: 27 June 2020 / Accepted: 5 April 2021 / Published online: 13 April 2021
© The Author(s), under exclusive licence to Springer Nature B.V. 2021

Abstract
Let C be an n-angulated category. We prove that its idempotent completion \tilde{C} admits a unique n-angulated structure such that the canonical functor $\iota: C \to \tilde{C}$ is n-angulated. Moreover, the functor ι induces an equivalence $\text{Hom}_{n\text{-ang}}(\tilde{C}, D) \cong \text{Hom}_{n\text{-ang}}(C, D)$ for any idempotent complete n-angulated category D, where $\text{Hom}_{n\text{-ang}}$ denotes the category of n-angulated functors.

Keywords n-Angulated category · Idempotent completion · Mapping cone

Mathematics Subject Classification 18E30

1 Introduction
Let n be an integer greater than or equal to three. In 2013, Geiss, Keller and Oppermann introduced n-angulated categories to axiomatize certain $(n-2)$-cluster tilting subcategories of triangulated categories. By definition, an n-angulated category is an additive category C equipped with an automorphism Σ of C and a class Θ of n-Σ-sequences that satisfy four axioms (see Definition 2.4). When $n = 3$, an n-angulated category is nothing but a triangulated category. Theorem 1 in [5] provides a standard construction of n-angulated categories. Other examples of n-angulated categories can be found in [2,6].

Our goal is to construct more examples of n-angulated categories. Balmer and Schlichting proved that when $n = 3$, the idempotent completion of a triangulated category admits a natural triangulated structure [[1], Theorem 1.5]. We want to extend the construction in [[1], Theorem 1.5] from 3 to n. We will show that the idempotent completion of an n-angulated category

Communicated by Bernhard Keller.

This work was supported in part by the National Natural Science Foundation of China under Grant 11871259, Program for Innovative Research Team in Science and Technology in Fujian Province University, and Quanzhou High-Level Talents Support Plan under Grant 2017ZT012.

Zengqiang Lin
lzq134@163.com

1 Fujian Province University Key Laboratory of Computational Science, School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
admits a unique n-angulated structure such that the inclusion is an n-angulated functor, which satisfies a universal property (see Theorem 3.1).

We remark that two properties used in the proof of [1], Theorem 1.5 fail in n-angulated categories when n > 3. First, an endomorphism (p, q, r) of a triangle \(X_\bullet \) satisfying \(p^2 = p \) and \(q^2 = q \) can be lifted to an endomorphism (p, q, s) of \(X_\bullet \) such that \(s^2 = s \). Second, each morphism fits into a triangle uniquely up to isomorphism.

The paper is organized as follows. In Sect. 2 we first recall some facts on idempotent completion of an additive category. We then define \(n \)-angulated categories and prove some properties on \(n \)-\(\Sigma \)-sequences. In Sect. 3 we state and prove our main theorem.

2 Definitions and Preliminaries

In this section, we first recall the construction of idempotent completion of an additive category and some related facts from [1,4]. We then define \(n \)-angulated categories and prove several properties on \(n \)-\(\Sigma \)-sequences, which will be used in the proof of Theorem 3.1.

2.1 Idempotent Completion of Additive Categories

An additive category \(\mathcal{C} \) is said to be idempotent complete if for each object \(A \) in \(\mathcal{C} \) and for each idempotent \(e \) : \(A \to A \), we have \(A = \text{Im}(e) \oplus \text{Ker}(e) \).

Let \(\mathcal{C} \) be an additive category. The idempotent completion of \(\mathcal{C} \) is a category \(\widetilde{\mathcal{C}} \) defined as follows. Objects of \(\widetilde{\mathcal{C}} \) are pairs (\(A, e \)), where \(A \) is an object in \(\mathcal{C} \) and \(e : A \to A \) is an idempotent. A morphism in \(\widetilde{\mathcal{C}} \) from (\(A, e \)) to (\(B, f \)) is in the form of \(fpe : A \to B \) for some morphism \(p : A \to B \) in \(\mathcal{C} \).

Assume that \(\mathcal{C}, \mathcal{D} \) and \(\mathcal{E} \) are additive categories. An additive functor \(F : \mathcal{C} \to \mathcal{D} \) yields an additive functor \(\widetilde{F} : \widetilde{\mathcal{C}} \to \widetilde{\mathcal{D}} \), by setting \(\widetilde{F}(A, e) = (FA, Fe) \) and \(\widetilde{F}(fpe) = F(f)F(p)F(e) \). Suppose \(G : \mathcal{D} \to \mathcal{E} \) is another additive functor, then we have \(G\widetilde{F} = \widetilde{G}F \).

Given two additive functors \(F, H : \mathcal{C} \to \mathcal{D} \), a natural transformation \(\alpha : F \to H \) yields a unique natural transformation \(\widetilde{\alpha} : \widetilde{F} \to \widetilde{H} \) with \(\widetilde{\alpha}(A, e) = H(e)\alpha_A F(e) \).

The assignment \(A \mapsto (A, 1) \) defines a functor \(\iota : \mathcal{C} \to \widetilde{\mathcal{C}} \). We have \(\iota F = \widetilde{F} \iota \), that is, the following diagram

\[
\begin{array}{ccc}
\mathcal{C} & \xrightarrow{F} & \mathcal{D} \\
\downarrow{\iota} & & \downarrow{\iota} \\
\widetilde{\mathcal{C}} & \xrightarrow{\widetilde{F}} & \widetilde{\mathcal{D}}
\end{array}
\]

commutes. The following is well-known.

Proposition 2.1 ([1], Proposition 1.3) The category \(\widetilde{\mathcal{C}} \) is an idempotent complete additive category and the functor \(\iota : \mathcal{C} \to \widetilde{\mathcal{C}} \) is additive and fully faithful. Moreover, the functor \(\iota \) induces an equivalence \(\text{Hom}_{\text{add}}(\widetilde{\mathcal{C}}, \mathcal{D}) \cong \text{Hom}_{\text{add}}(\mathcal{C}, \mathcal{D}) \) for any idempotent complete additive category \(\mathcal{D} \), where \(\text{Hom}_{\text{add}} \) denotes the category of additive functors.

Remark 2.2 Since the functor \(\iota : \mathcal{C} \to \widetilde{\mathcal{C}} \) is fully faithful, we view \(\mathcal{C} \) as a full subcategory of \(\widetilde{\mathcal{C}} \). Thus for each object \(X \in \mathcal{C} \), there exists an object \(X' \in \widetilde{\mathcal{C}} \) such that \(X \oplus X' \in \mathcal{C} \). In fact, if \(X = (A, e) \), then we can take \(X' = (A, 1 - e) \).
2.2 n-Angulated Categories

Assume that n is an integer greater than or equal to three. We recall the definition of n-angulated categories from [5]. Let C be an additive category equipped with an automorphism $\Sigma : C \to C$. An n-Σ-sequence in C is a sequence of morphisms

$$X_\bullet = (X_1 \xrightarrow{f_1} X_2 \xrightarrow{f_2} X_3 \xrightarrow{f_3} \ldots \xrightarrow{f_{n-1}} X_n \xrightarrow{f_n} \Sigma X_1).$$

Its left rotation is the n-Σ-sequence

$$X_\bullet[1] = (X_2 \xrightarrow{f_2} X_3 \xrightarrow{f_3} X_4 \xrightarrow{f_4} \ldots \xrightarrow{f_{n-1}} X_n \xrightarrow{f_n} \Sigma X_1 \xrightarrow{(-1)^n \Sigma f_1} \Sigma X_2).$$

An n-Σ-sequence X_\bullet is exact if the induced sequence

$$\cdots \to \text{Hom}_C(-, X_1) \to \text{Hom}_C(-, X_2) \to \cdots \to \text{Hom}_C(-, X_n) \to \text{Hom}_C(-, \Sigma X_1) \to \cdots$$

is exact. A morphism of n-Σ-sequences is a sequence of morphisms $\varphi_\bullet = (\varphi_1, \varphi_2, \ldots, \varphi_n)$ such that the following diagram

$$
\begin{array}{cccccccccc}
X_1 & \xrightarrow{f_1} & X_2 & \xrightarrow{f_2} & X_3 & \xrightarrow{f_3} & \ldots & \xrightarrow{f_{n-1}} & X_n & \xrightarrow{f_n} & \Sigma X_1 \\
\downarrow \varphi_1 & & \downarrow \varphi_2 & & \downarrow \varphi_3 & & \cdots & & \downarrow \varphi_n & & \downarrow \Sigma \varphi_1 \\
Y_1 & \xrightarrow{g_1} & Y_2 & \xrightarrow{g_2} & Y_3 & \xrightarrow{g_3} & \cdots & \xrightarrow{g_{n-1}} & Y_n & \xrightarrow{g_n} & \Sigma Y_1
\end{array}
$$

commutes, where each row is an n-Σ-sequence. In this situation we say φ_\bullet is a weak isomorphism if for some $1 \leq i \leq n$ both φ_i and φ_{i+1} (with $\varphi_{n+1} = \Sigma \varphi_1$) are isomorphisms. In particular, φ_\bullet is an isomorphism if $\varphi_1, \varphi_2, \ldots, \varphi_n$ are all isomorphisms.

Definition 2.3 ([5]) Let C be an additive category, Σ an automorphism of C and Θ a collection of n-Σ-sequences. We call (C, Σ, Θ) a pre-n-angulated category and call the elements of Θ n-angles if Θ satisfies the following three axioms:

(N1) (a) Θ is closed under isomorphisms, direct sums and direct summands.
(b) For each object $X \in C$, the trivial sequence

$$X_1 \xrightarrow{1} X \xrightarrow{1} 0 \xrightarrow{\cdots} 0 \xrightarrow{1} \Sigma X$$

belongs to Θ.
(c) For each morphism $f_1 : X_1 \to X_2$ in C, there exists an n-Σ-sequence in Θ whose first morphism is f_1.

(N2) An n-Σ-sequence belongs to Θ if and only if its left rotation belongs to Θ.

(N3) Each commutative diagram

$$
\begin{array}{cccccccccc}
X_1 & \xrightarrow{f_1} & X_2 & \xrightarrow{f_2} & X_3 & \xrightarrow{f_3} & \ldots & \xrightarrow{f_{n-1}} & X_n & \xrightarrow{f_n} & \Sigma X_1 \\
\downarrow \varphi_1 & & \downarrow \varphi_2 & & \downarrow \varphi_3 & & \cdots & & \downarrow \varphi_n & & \downarrow \Sigma \varphi_1 \\
Y_1 & \xrightarrow{g_1} & Y_2 & \xrightarrow{g_2} & Y_3 & \xrightarrow{g_3} & \cdots & \xrightarrow{g_{n-1}} & Y_n & \xrightarrow{g_n} & \Sigma Y_1
\end{array}
$$

with rows in Θ can be completed to a morphism of n-Σ-sequences.
Furthermore, if Θ satisfies the following axiom, then (C, Σ, Θ) is called an n-angulated category:

(N4) The morphisms $\varphi_3, \varphi_4, \ldots, \varphi_n$ in (N3) can be chosen such that the mapping cone

$$C(\varphi_*) = (X_2 \oplus Y_1 \xrightarrow{(-f_2 0 \varphi_2 g_1)} X_3 \oplus Y_2 \xrightarrow{(-f_3 0 \varphi_3 g_2)} \cdots \xrightarrow{(-f_n 0 \varphi_n g_{n-1})} \Sigma X_1 \oplus Y_n \xrightarrow{(-\Sigma f_1 0 \Sigma \varphi_1 g_n)} \Sigma X_2 \oplus \Sigma Y_1)$$

belongs to Θ.

Let (C, Σ, Θ) and (C', Σ', Θ') be two n-angulated categories. An additive functor $F : C \to C'$ is said to be n-angulated (see [3]) if there exists a natural isomorphism $\alpha : F \Sigma \to \Sigma' F$ and F preserves n-angles, that is, if

$$X_1 \xrightarrow{f_1} X_2 \xrightarrow{f_2} \cdots \xrightarrow{f_{n-1}} X_n \xrightarrow{f_n} \Sigma X_1$$

is an n-angle in Θ, then

$$FX_1 \xrightarrow{Ff_1} FX_2 \xrightarrow{Ff_2} \cdots \xrightarrow{Ff_{n-1}} FX_n \xrightarrow{\alpha X_1 Ff_n} \Sigma' FX_1$$

is an n-angle in Θ'.

2.3 Some Properties on n-Σ-Sequences

Let C be an additive category, Σ an automorphism of C and Θ a class of n-Σ-sequences.

Lemma 2.4 Assume that Θ satisfies (N1)(b), (N2), (N3), and the following n-Σ-sequence

$$X_1 \xrightarrow{f_1} X_2 \xrightarrow{f_2} X_3 \xrightarrow{f_3} \cdots \xrightarrow{f_{n-1}} X_n \xrightarrow{f_n} \Sigma X_1$$

belongs to Θ. Then the following hold.

1. $f_2 f_1 = 0$.
2. If $gf_1 = 0$ for a morphism $g : X_2 \to Y$, then there exists a morphism $h : X_3 \to Y$ such that $g = hf_2$.

Proof (1) By (N1)(b), (N2) and (N3), the following diagram

$$\begin{array}{c}
X_2 \xrightarrow{f_2} X_3 \xrightarrow{f_3} X_4 \xrightarrow{f_4} \cdots \xrightarrow{f_n} \Sigma X_1 \xrightarrow{(-1)^n \Sigma f_1} \Sigma X_2 \\
\downarrow f_2 \quad \quad \downarrow f_3 \quad \quad \downarrow f_4 \quad \quad \downarrow f_n \\
X_3 \xrightarrow{1} X_3 \xrightarrow{0} \cdots \xrightarrow{0} \Sigma X_3
\end{array}$$

can be completed to a morphism of n-Σ-sequences. It follows that $f_2 f_1 = 0$.

(2) Since $gf_1 = 0$, the following diagram

$$\begin{array}{c}
X_1 \xrightarrow{f_1} X_2 \xrightarrow{f_2} X_3 \xrightarrow{f_3} \cdots \xrightarrow{f_{n-1}} X_n \xrightarrow{f_n} \Sigma X_1 \\
\downarrow g \quad \quad \downarrow g \quad \quad \downarrow g \\
0 \xrightarrow{1} Y \xrightarrow{1} Y \cdots \xrightarrow{1} 0
\end{array}$$

can be completed to a morphism of n-Σ-sequences by (N1)(b), (N2) and (N3). Thus there exists a morphism $h : X_3 \to Y$ such that $g = hf_2$. \qed
Lemma 2.5 Assume that C is idempotent complete, Θ satisfies (N1)(b), (N2), (N3), and

$$X_\bullet = (X_1 \xrightarrow{(f_1)} X_2 \oplus Y_2 \xrightarrow{(f_2, g_2)} X_3 \xrightarrow{f_3} \cdots \xrightarrow{f_{n-1}} X_n \xrightarrow{f_n} \Sigma X_1) \in \Theta.$$

(1) If $g_1 = 0$, then g_2 is a section and $X_\bullet \cong X'_\bullet \oplus Y'_\bullet$, where

$$X'_\bullet = (X_1 \xrightarrow{f_1} X_2 \xrightarrow{f_2} X'_3 \xrightarrow{f_3} \cdots \xrightarrow{f_{n-1}} X_n \xrightarrow{f_n} \Sigma X_1)$$

and

$$Y'_\bullet = (0 \to Y_2 \xrightarrow{1} Y_2 \to 0 \to \cdots \to 0 \to 0).$$

(2) If $g_2 = 0$, then g_1 is a retraction and $X_\bullet \cong X''_\bullet \oplus Y''_\bullet$, where

$$X''_\bullet = (X'_1 \xrightarrow{f_{11}} X_2 \xrightarrow{f_5} X_3 \xrightarrow{f_3} \cdots \xrightarrow{f_{n-1}} X_n \xrightarrow{f_n} \Sigma X'_1)$$

and

$$Y''_\bullet = (Y_2 \xrightarrow{1} Y_2 \to 0 \to \cdots \to 0 \to \Sigma Y_2).$$

Proof We only prove (1), as (2) can be proved similarly. Since (0 1) $(\begin{pmatrix} f_1 \\ g_1 \end{pmatrix}) = g_1 = 0$, there exists a morphism $g_2 : X_3 \to Y_2$ such that $(0 1) = g_2(f_2 g_2)$ by Lemma 2.4 (2). Thus g_2 is a section. Since $(g_2 g_2)^2 = g_2 g_2$ and C is idempotent complete, we can write $X_3 = X'_3 \oplus X''_3$ and

$$X_\bullet = (X_1 \xrightarrow{(f_1)} X_2 \oplus Y_2 \xrightarrow{(f_2, g_2)} X'_3 \oplus X''_3 \xrightarrow{(f_{31}, f_{32})} X_4 \xrightarrow{f_4} \cdots \xrightarrow{f_{n-1}} X_n \xrightarrow{f_n} \Sigma X_1)$$

where g_2 is an isomorphism. It follows that $f_{32} = 0$ and $f_{22} f_1 = 0$ by Lemma 2.4 (1) and (N2). Since $(f_{22} 0) (\begin{pmatrix} f_1 \\ 0 \end{pmatrix}) = 0$, there exists a morphism $(a b) : X'_3 \oplus X''_3 \to X''_3$ such that $(f_{22} 0) = (a b) (\begin{pmatrix} f_{21} \\ f_{22} g_{22} \end{pmatrix})$ by Lemma 2.4 (2). Thus $b = 0$ and $f_{22} = a f_{21}$. So we have the following commutative diagram

which shows that $X_\bullet \cong X'_\bullet \oplus Y'_\bullet$.

From now on to the end of this section, we assume that (C, Σ, Θ) is a pre-n-angulated category.

Lemma 2.6 Let the following

$$X_\bullet \quad X_1 \xrightarrow{f_1} X_2 \xrightarrow{f_2} X_3 \xrightarrow{f_3} \cdots \xrightarrow{f_{n-1}} X_n \xrightarrow{f_n} \Sigma X_1$$

$$Y_\bullet \quad Y_1 \xrightarrow{g_1} Y_2 \xrightarrow{g_2} Y_3 \xrightarrow{g_3} \cdots \xrightarrow{g_{n-1}} Y_n \xrightarrow{g_n} \Sigma Y_1$$

$$Z_\bullet \quad Z_1 \xrightarrow{h_1} Z_2 \xrightarrow{h_2} Z_3 \xrightarrow{h_3} \cdots \xrightarrow{h_{n-1}} Z_n \xrightarrow{h_n} \Sigma Z_1$$

where

$$\begin{align*}
\varphi_1 &= \varphi_1 \\
\varphi_2 &= \varphi_2 \\
\varphi_3 &= \varphi_3 \\
\varphi_n &= \varphi_n \\
\Sigma \varphi_1 &= \Sigma \varphi_1 \\
\psi_1 &= \psi_1 \\
\psi_2 &= \psi_2 \\
\psi_3 &= \psi_3 \\
\psi_n &= \psi_n \\
\Sigma \psi_1 &= \Sigma \psi_1
\end{align*}$$

Θ Springer
be a commutative diagram with rows in Θ. If φ_\bullet is a weak isomorphism, then the mapping cone $C(\psi_\bullet \varphi_\bullet) \in \Theta$ if and only if the mapping cone $C(\psi_\bullet) \in \Theta$. Furthermore, if φ_\bullet is an isomorphism, then $C(\psi_\bullet \varphi_\bullet)$ is isomorphic to $C(\psi_\bullet)$.

Proof Since φ_\bullet is a weak isomorphism, the following commutative diagram

\[
\begin{array}{cccccccc}
X_2 \oplus Z_1 & \xrightarrow{(f_2, 0)} & X_3 \oplus Z_2 & \xrightarrow{(f_3, 0)} & \cdots & X_n \oplus Z_n & \xrightarrow{(f_n, 0)} & \Sigma X_2 \oplus \Sigma Z_1 \\
-\psi_2 h_1 & & -\psi_3 h_2 & & \cdots & -\psi_n h_{n-1} & & -\psi_n h_n \\
Y_2 \oplus Z_1 & \xrightarrow{(g_2, 0)} & Y_3 \oplus Z_2 & \xrightarrow{(g_3, 0)} & \cdots & Y_n \oplus Z_n & \xrightarrow{(g_n, 0)} & \Sigma Y_2 \oplus \Sigma Z_1
\end{array}
\]

implies that $C(\psi_\bullet \varphi_\bullet)$ is weakly isomorphic to $C(\psi_\bullet)$. Both $C(\psi_\bullet \varphi_\bullet)$ and $C(\psi_\bullet)$ are exact since the n-angles X_\bullet, Y_\bullet and Z_\bullet are exact. By $[5]$, Lemma 2.4, $C(\psi_\bullet \varphi_\bullet)$ is an n-angle if and only if so is $C(\psi_\bullet)$. The last assertion follows from the above commutative diagram. □

The following Lemma is a generalization of $[1]$, Lemma 1.16.

Lemma 2.7 Let

\[
\tilde{X}_\bullet = (X_1 \oplus Y_1 \xrightarrow{f_1} X_2 \oplus Y_2 \xrightarrow{f_2} \cdots \xrightarrow{f_n} X_n \oplus Y_n \xrightarrow{f_n} \Sigma X_1 \oplus \Sigma Y_1)
\]

be an n-angle in C. If

\[
X_\bullet = (X_1 \xrightarrow{f_1} X_2 \xrightarrow{f_2} \cdots \xrightarrow{f_n} X_n \xrightarrow{f_n} \Sigma X_1)
\]

or

\[
Y_\bullet = (Y_1 \xrightarrow{g_1} Y_2 \xrightarrow{g_2} \cdots \xrightarrow{g_n} Y_n \xrightarrow{g_n} \Sigma Y_1)
\]

is a contractible n-angle, then \tilde{X}_\bullet is isomorphic to the direct sum of X_\bullet with Y_\bullet.

Proof Without loss of generality, we assume that X_\bullet is a contractible n-angle. By definition there exist morphisms $h_i : X_{i+1} \rightarrow X_i$ for $1 \leq i \leq n - 1$ and $h_n : \Sigma X_1 \rightarrow X_n$ such that $1_{X_1} = h_1 f_1 + \Sigma^{-1} (f_n h_n)$ and $1_{X_j} = h_j f_j + f_{j-1} h_{j-1}$ for $2 \leq j \leq n$. Lemma 2.4 (1) and (N2) implies that $\psi_{i+1} f_i + g_{i+1} \psi_i = 0$ for $1 \leq i \leq n - 1$ and $\Sigma \psi_1 : f_n + g_1 : \psi_n = 0$. We have the following commutative diagram.

\[
\begin{array}{cccccccc}
X_1 \oplus Y_1 & \xrightarrow{(f_1, 0)} & X_2 \oplus Y_2 & \xrightarrow{(f_2, 0)} & \cdots & X_n \oplus Y_n & \xrightarrow{(f_n, 0)} & \Sigma X_1 \oplus \Sigma Y_1 \\
\Sigma^{-1} (\psi_n h_n) & & \Sigma^{-1} (\psi_1 h_1) & & \cdots & \Sigma^{-1} (\psi_{n-1} h_{n-1}) & & \Sigma^{-1} (\psi_n h_n) \\
X_1 \oplus Y_1 & \xrightarrow{(f_1, 0)} & X_2 \oplus Y_2 & \xrightarrow{(f_2, 0)} & \cdots & X_n \oplus Y_n & \xrightarrow{(f_n, 0)} & \Sigma X_1 \oplus \Sigma Y_1
\end{array}
\]

So $\tilde{X}_\bullet \cong X_\bullet \oplus Y_\bullet$. □

Lemma 2.8 Let $\varphi_\bullet = \begin{pmatrix} \alpha_\bullet & \beta_\bullet \\ \gamma_\bullet & \delta_\bullet \end{pmatrix} : X_\bullet \oplus X'_\bullet \rightarrow Y_\bullet \oplus Y'_\bullet$ be a morphism of n-angles, where X'_\bullet and Y'_\bullet are contractible, then the following holds:

\[
C(\varphi_\bullet) \cong C(\alpha_\bullet) \oplus X'_\bullet [1] \oplus Y'_\bullet.
\]
Note that we have two canonical inclusions morphism such that

\[p \] and two canonical projections

\[\text{such that} \]

\[\text{Let} \ C \] is n-angulated.

(3) The functor \(\tilde{\Sigma} \) of \(\tilde{n} \)-sequences in \(\tilde{\Sigma} \) induces an equivalence \(\text{Hom}_n(X_1, X_2) \sim \text{Hom}_n(X_2, X_1) \) for any idempotent complete n-angulated category \(D \), where \(\text{Hom}_n \) denotes the category of n-angulated functors.

Proof (1) We show that \(\tilde{\Theta} \) satisfies the axioms of n-angulated categories. Note that \(\tilde{\Theta} \) satisfies (N1)(a) and (N2) by definition.

(N1)(b) Let \(X \) be an object in \(\tilde{C} \). There exists an object \(X' \in \tilde{C} \) such that \(X \oplus X' \in C \). The trivial n-angle \((X \oplus X') \rightarrow 0 \rightarrow \cdot \cdot \cdot \rightarrow 0 \rightarrow \Sigma(X \oplus X') \in \Theta \) implies that \((X \rightarrow X \rightarrow \cdot \cdot \cdot \rightarrow X' \rightarrow 0) \rightarrow \Sigma(X) \in \Theta \).

(N3) Given a commutative diagram

\[
\begin{array}{ccccccc}
X_1 & \xrightarrow{f_1} & X_2 & \xrightarrow{f_2} & \cdots & \xrightarrow{f_{n-1}} & X_n & \xrightarrow{f_n} & \widetilde{\Sigma}X_1 \\
\downarrow{\varphi_1} & & \downarrow{\varphi_2} & & & & \downarrow{\varphi_n} & \\
Y_1 & \xrightarrow{g_1} & Y_2 & \xrightarrow{g_2} & \cdots & \xrightarrow{g_{n-1}} & Y_n & \xrightarrow{g_n} & \widetilde{\Sigma}Y_1 \\
\end{array}
\] (3.1)

with rows in \(\tilde{\Theta} \), there exist two objects \(X'_1 \) and \(Y'_1 \) such that \(X_1 \oplus X'_1, Y_1 \oplus Y'_1 \in \Theta \). Note that we have two canonical inclusions

\[i_* : X_1 \rightarrow X_1 \oplus X'_1, j_* : Y_1 \rightarrow Y_1 \oplus Y'_1 \]

and two canonical projections

\[p_* : X_1 \oplus X'_1 \rightarrow X_1, q_* : Y_1 \oplus Y'_1 \rightarrow Y_1 \]

such that \(p_* i_* = 1 \) and \(q_* j_* = 1 \). By (N3), the pair \((j_1 \varphi_1 p_1, j_2 \varphi_2 p_2)\) can be completed to a morphism \(\tilde{\varphi}_* : X_1 \oplus X'_1 \rightarrow Y_1 \oplus Y'_1 \) of n-angles. So \(q_* i_* : X_1 \rightarrow Y_1 \) is a morphism of \(n \)-\(\Sigma \)-sequences extending \((\varphi_1, \varphi_2) \).

(N1)(c) For each morphism \(f_1 : X_1 \rightarrow X_2 \) in \(\tilde{C} \), we choose two objects \(X'_1, X'_2 \in \tilde{C} \) such that \((f_1 0 0) : X_1 \oplus X'_1 \rightarrow X_2 \oplus X'_2 \) is a morphism in \(\tilde{C} \). Assume that

\[
\tilde{X}_2 = (X_1 \oplus X'_1) \xrightarrow{(f_1 0 0)} X_2 \oplus X'_2 \xrightarrow{f_2} X_3 \xrightarrow{f_3} \cdots \xrightarrow{f_{n-1}} X_n \rightarrow \Sigma(X_1 \oplus X'_1))
\]
is an n-angle in Θ by (N1)(c). Since \tilde{C} is idempotent complete and $\tilde{X}_\bullet \in \tilde{\Theta}$, it follows from Lemma 2.5 that $\tilde{X}_\bullet \cong \tilde{X}_\bullet \oplus X_\bullet'$, where

$$\tilde{X}_\bullet = (X_1 \xrightarrow{f_1} X_2 \xrightarrow{f_2} X_3 \xrightarrow{f_3} X_4 \xrightarrow{f_4} \cdots \xrightarrow{f_{n-2}} X_{n-1} \xrightarrow{f_{n-1}} X_n \xrightarrow{f_n} \Sigma X_1)$$

and

$$X_\bullet' = (X_1' \xrightarrow{0} X_2' \xrightarrow{1} X_2' \xrightarrow{0} 0 \rightarrow \cdots \rightarrow 0 \rightarrow \Sigma X_1' \xrightarrow{1} \Sigma X_1').$$

So \tilde{X}_\bullet belongs to $\tilde{\Theta}$ and the first morphism is f_1. Therefore, $(\tilde{C}, \tilde{\Sigma}, \tilde{\Theta})$ is a pre-n-angulated category.

(N4) Consider the commutative diagram (3.1) with rows in $\tilde{\Theta}$. For $i = 1, 2$, we choose X_i', $Y_i' \in \tilde{C}$ such that $(f_i \ 0 \ 0) : X_1 \oplus X_1' \rightarrow X_2 \oplus X_2'$ and $(g_i \ 0 \ 0) : Y_1 \oplus Y_1' \rightarrow Y_2 \oplus Y_2'$ are morphisms in \tilde{C}. By the proof of (N1)(c), we assume that \tilde{X}_\bullet and \tilde{Y}_\bullet are n-angles in $\tilde{\Theta}$ such that the first morphisms are f_1 and g_1 respectively, moreover, $\tilde{X}_\bullet \oplus X_\bullet'$ and $\tilde{Y}_\bullet \oplus Y_\bullet'$ are n-angles in $\tilde{\Theta}$, where

$$X_\bullet' = (X_1' \xrightarrow{0} X_2' \xrightarrow{1} X_2' \xrightarrow{0} 0 \rightarrow \cdots \rightarrow 0 \rightarrow \Sigma X_1' \xrightarrow{1} \Sigma X_1')$$

and

$$Y_\bullet' = (Y_1' \xrightarrow{0} Y_2' \xrightarrow{1} Y_2' \xrightarrow{0} 0 \rightarrow \cdots \rightarrow 0 \rightarrow \Sigma Y_1' \xrightarrow{1} \Sigma Y_1').$$

By (N4), the pair $(f_i \ 0 \ 0), (g_i \ 0 \ 0)$ can be extended to a morphism of n-angles

$$\tilde{\varphi}_\bullet = (\tilde{\varphi}_\bullet \ \alpha_\bullet \ \beta_\bullet \ \gamma_\bullet) : \tilde{X}_\bullet \oplus X_\bullet' \rightarrow \tilde{Y}_\bullet \oplus Y_\bullet',$n

in $\tilde{\Theta}$ such that the mapping cone $C(\tilde{\varphi}_\bullet) \in \tilde{\Theta}$. By Lemma 2.8, we have $C(\tilde{\varphi}_\bullet) \cong C(\varphi_\bullet) \oplus X_\bullet'[1] \oplus Y_\bullet'\oplus Y_\bullet'$. We obtain $C(\varphi_\bullet) \in \tilde{\Theta}$ by definition.

By (N3), we have two weak isomorphisms $\phi_\bullet : \tilde{X}_\bullet \rightarrow \tilde{X}_\bullet$ and $\psi_\bullet : \tilde{Y}_\bullet \rightarrow Y_\bullet$, where $\phi_i = 1$ and $\psi_i = 1$ for $i = 1, 2$. Note that $\varphi_\bullet = \psi_\bullet \tilde{\varphi}_\bullet \phi_\bullet : \tilde{X}_\bullet \rightarrow Y_\bullet$ is a morphism of n-angles extending (φ_1, φ_2), moreover, the mapping cone $C(\varphi_\bullet) \in \tilde{\Theta}$ by Lemma 2.6 and its dual. Thus (N4) holds. Consequently, $(\tilde{C}, \tilde{\Sigma}, \tilde{\Theta})$ is an n-angulated category.

(2) Note that the functor $i : C \rightarrow \tilde{C}$ is n-angulated. Suppose that $\tilde{\Theta}'$ is another n-angulation of $(\tilde{C}, \tilde{\Sigma})$ such that the functor i is n-angulated. Since $\tilde{\Theta}'$ is closed under direct summands, we have $\tilde{\Theta} \subseteq \tilde{\Theta}'$. Now by [[5], Proposition 2.5 (c)], $\tilde{\Theta} = \tilde{\Theta}'$. This proves the uniqueness of the n-angulated structure.

(3) For an idempotent complete n-angulated category \mathcal{D}, the equivalence

$$\text{Hom}_{n\text{-ang}}(\tilde{C}, \mathcal{D}) \cong \text{Hom}_{n\text{-ang}}(C, \mathcal{D})$$

follows from Proposition 2.1 and the fact that an additive functor $F : \tilde{C} \rightarrow \mathcal{D}$ is n-angulated if and only if $Fi : C \rightarrow \mathcal{D}$ is n-angulated.

\square

Acknowledgements Some part of the work was done when the author visited University of Stuttgart. The author would like to thank Professor Steffen Koenig for his warm hospitality and helpful discussions and remarks. He would also like to thank the anonymous referee and Xiuping Su for valuable comments to improve this paper.
References

1. Balmer, P., Schlichting, M.: Idempotent completion of triangulated categories. J. Algebra 236(2), 819–834 (2001)
2. Bergh, P.A., Jasso, G., Thaule, M.: Higher n-angulations from local rings. J. Lond. Math. Soc. 93(1), 123–142 (2016)
3. Bergh, P.A., Thaule, M.: The Grothendieck group of an n-angulated category. J. Pure Appl. Algebra 218(2), 354–366 (2014)
4. Bühler, T.: Exact categories. Exp. Math. 28(1), 1–69 (2010)
5. Geiss, C., Keller, B., Oppermann, S.: n-Angulated categories. J. Reine Angew. Math. 675, 101–120 (2013)
6. Lin, Z.: A general construction of n-angulated categories by periodic injective resolutions. J. Pure Appl. Algebras 223, 3129–3149 (2019)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.