Methylene Blue Adsorption from aqueous solution by low cost vine-wood biomass.

Rachida Souidi¹, Yasmina Khane², Lahcen Belarbi ¹, Smain Bousalem¹

¹Laboratoire de chimie appliquée, ACTR Univ Ain Temouchent/ DGRCT, Bp 284, Ain Temouchent 46000, Algerie
²Université de Ghardaïa, BP 455, Ghardaïa, Algerie

Keywords: Vine wood, adsorption, methylene blue

Abstract

In this work, the sawdust of vine wood (VW) was treated with sulfuric acid and used to adsorb methylene blue (MB) from aqueous solutions via a batch adsorption process. The characteristics of the adsorbent were determined by various analytical techniques such as Fourier-transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM) and Brunauer–Emmett–Teller (BET) N₂ adsorption–desorption isotherms. The effects of various experimental parameters including sulfuric acid concentration, particle size of the adsorbent, pH of the solution, contact time, initial concentration, adsorbent dosage and temperature on adsorption of MB by activating sawdust were systematically investigated. The experimental results showed that the adsorption efficiency was increased with contact time and adsorbent dosage. The maximum removal efficiency was found after 180 min of solid/liquid contact with adsorbent doses of 1 g/l for sawdust. The isotherm and kinetic experimental data for MB adsorption on VW sawdust were best-fitted by Langmuir models and Pseudo-second-order, respectively.

The calculated values of the entropy (ΔS°), enthalpy (ΔH°) and Gibbs energy (ΔG°) indicated that the adsorption process was exothermic in nature. These results suggest that the activated sawdust can be employed as a low-cost and environmentally friendly adsorbent for the treatment of wastewaters containing dyes.
1 Introduction

Wastewater pollution by toxic dyes is an emerging concern because of potential health impacts. They are mainly discharged into the environment through various industrial activities like textile, printing, leather, paper-making, plastics etc. Their complex aromatic molecular structure makes them stable and more difficult to be removed from the effluents. Therefore, it is necessary to remove dye from wastewater before releasing them into the environment.

Methylene blue (MB) is a cationic dye used in different industries, especially in the textile and dyeing industries (Kumar et al. 2004). However, the existence of MB in the environment can cause eye and skin irritation, dyspnea, gastritis and mental confusion. Therefore, the removal of MB from polluted water is an important concern in wastewater treatment.

To date, different approaches have been applied to the removal of organic dyes from industrial wastewater, including degradation method, membrane separation method, precipitation method, biosorption, Fenton-biological treatment, and coagulation–flocculation method (Darvishmanesh et al. 2017; Konicki et al. 2017). However, most of these methods are expensive to operate and may even cause other contamination. Compared with other methods, adsorption process is widely used because of its high efficiency and low-cost. Extensive research in recent years involving extraction of dyes from effluent by adsorption has been devoted on the development of low cost adsorbent materials with high selectivity and greater adsorption capacity (Choy et al. 1999; Kanna et Sundaram. 2002). Various bioadsorbent have been reported, such as eucalyptus bark, rice husks, sawdust, and cellulose have drawn considerable attention.

Vine wood, which is composed of natural polymers such as lignin, cellulose, hemicellulose, and other extractives, is available in large quantities and is formed as waste product.
Herein, vine wood is used as raw material to prepare activated sawdust adsorbent, and the obtained material was used for the adsorption of cationic MB from aqueous solutions. The effects of adsorbent dosage, pH, contact time and initial dyes concentration (MB) were studied. Moreover, the adsorption was analyzed using isotherms, kinetic models, thermodynamics and adsorption mechanism. The results show that modified vine wood is an effective adsorbent for removal of cationic dyes from aqueous solutions.

2 Experimental

2.1 Materials

All chemicals used were analytical reagents grade and prepared in distilled water. Vine wood samples (VW) were received from a local company. The methylene blue was chosen in this study because of its known strong adsorption onto solids. A solution of 10^{-5} mol L$^{-1}$ methylene blue [3, 7-bis (dimethylamino) phenothiazin-5-iium ion] was prepared in distilled water as the stock solution (Fig. 1). Methylene blue (MW =319.85 g mol$^{-1}$ termed as MB) shows an intense absorption peak in the visible region at 664.5 nm (Fig. 2). This wavelength corresponds to the maximum absorption peak of the methylene blue monomer. The pH adjustments were carried out using dilute NaOH and HCl solutions.

Fig. 1 Chemical structure of methylene blue.

Fig. 2 Maximum absorbance wavelength λ_{max} (nm) of methylene blue.

A single beam Perkin-Elmer UV–Vis spectrophotometer with a 1 cm cell was used for measuring all of absorption data. A pH meter (JENWAY 3505) with a combined double junction glass electrode was used for pH measurements.

2.2 Determination of methylene blue concentration
Concentrations of methylene blue (MB) in the supernatant solutions were estimated by measuring absorbance at maximum wavelengths of the dye (λ_{max}=664.5nm) using the calibration curve shown in Fig. 3. The calibration curve of absorbance against MB concentration was obtained by using standard MB solutions at pH 6.9 (initial pH). The calibration curve shows that Beer's law ($A= \varepsilon bc$) is obeyed in concentration range (2×10^{-6} - 10×10^{-6} mol L$^{-1}$).

Fig. 3 Calibration curve of absorbance against concentration of methylene blue.

2.3 Preparation of vine wood biosorbent.

Vine wood samples were collected from the Ain Témouchent region (western Algeria). They were then cleaned and dried at a temperature of 105 °C for 24 h. Samples were ground and sieved to particle sizes of 80 μm to 1mm. Then, they were refluxed in sulfuric acid solution of wt 10% at 100°C for 2 h to open VW surface pores. The biosorbent was washed several times with double-distilled water and dried for 24 hours after filtering.

Fig. 4 Schematic illustration of the preparation procedure for vine wood sawdust waste by H$_2$SO$_4$.

2.4 Adsorption experiments

Factors affecting the adsorption process, which include the initial concentration of the MB dye, solution pH, vine wood dosage, particle size, chaker speed and temperature, were examined in a batch system.

50 to 300 mg of adsorbents, taken separately, were shaken in 100 ml aqueous solution of MB dye of varying concentration (10×10^{-6}-30×10^{-6} mol L$^{-1}$) at different temperatures ((20, 30, 40, and 50°C) for defined time periods. The effect of the pH on the MB removal was studied
over a pH range from 2.5 to 11. The pH of the solution has been controlled by adding 1 N of
HC l and 1 N of NaOH. The effects s of the VW particle size on the removal of dyes was
(80/125, 125/250 and 500/1000 µm) and shaker speed (100, 500 and 1000 rpm). The filtrates
were centrifuged and analyzed for the residual (unadsorbed) concentration of methylene blue,
spectrophotometrically at 664.5 nm wavelength. All experiments were carried out in
triple with respect to each condition and mean values are used for further calculations. The
following equations were used to calculate the amount of adsorbed methylene blue at
equilibrium, \(Q_e \) (mmol/g) and the percentage of sorption (\(R \% \)), respectively:

\[
Q_e = \frac{C_0 - C_e}{m} \times V
\]

\[
R\% = \frac{C_0 - C_e}{C_0} \times 100
\]

Where \(C_0 \) is the initial dye concentration (mol/L); \(C_e \) is the equilibrium dye concentration; \(m \)
is the mass of the prepared adsorbent (g); \(V \) is the volume of the MB dye solution (L).

2.5 Biosorbent characterization

The biosorbent was characterised by Fourier Transform Infra-Red Spectroscopy (FTIR),
Scanning Electron Microscope with Energy Dispersive Spectroscopy (SEM-EDX) and
Brunauer-Emmett-Teller (BET) analysis. Fourier Transform Infrared Spectroscopy (FTIR,
"CARY 600") was used to analysed functional groups of VW before and after activation.
Scanning Electron Microscopy Energy-Dispersive X-ray (SEM-EDX, Coxem-30) was used to
analyse the surface morphological of VW before and after activations. Brunauer-Emmett-
Teller (BET) was used to measure the surface area and total pore volume. The pore size
distribution of the sorbent was calculated based on differential pore volume of Barrett-Joyner-
Halenda (BJH) adsorption-desorption and the nitrogen adsorption-desorption isotherm values
were determined using an ASAP 2010-Micromeretics apparatus at 77 K. The XRD pattern of
the VW adsorbent was analyzed by X-ray diffractometer model Philips; PW 1710 with Cu kα radiation, and pH was measured using a pH Meter (JENWAY 3505). The biosorbent was characterized by measuring the point of zero charge (pH pzc) by using the solid addition method.

3 Results and discussion

3.1 Biosorbent characterization

3.1.1 Fourier Transform Infrared Spectroscopy.

FT-IR analyses were carried out to identify the associated functional groups. The spectra were recorded in the range of 4000-500 cm\(^{-1}\) and are presented in Figure 5. The FTIR spectra of the raw and activated VW showed the presence of OH, aliphatic CH, carbonyl (C=O), and aromatic ring C=C functional groups by their characteristic stretching vibrations at 3280, 2919, 1730, and 1600 cm\(^{-1}\), respectively. A peak between 3337 and 3331 cm\(^{-1}\) assigned to the O−H stretching vibrations in alcohol, phenol, and carboxylic acid. The bands at 1160 cm\(^{-1}\) (SO\(_3\) - stretching) and 1350 cm\(^{-1}\) (O=S=O stretching in SO\(_3\)H). For the activated VW sample in the FT-IR spectrum indicates the successful activation of VW waste.

Fig. 5 FTIR spectra of the vine wood sawdust before and after chemical activation.

3.1.2 SEM /EDS Characterization

Scanning Electron Microscopy (SEM) coupled with energy-dispersive X-ray spectroscopy(EDX) was used to assess the morphological feature and surface characteristic of VW before and after activation. Fig. 6(a) showed the SEM image in 1500x magnification for VW before sulfonation. It was characterized by the highly anisotropic character, commonly presented in the form the fibers are essentially due to spatial orientations of the natural
constituents of wood. Fig. 6(b) illustrates the SEM image of the sulfonated VW sample with well-developed pores and micro sized particles formed after the sulfonation process. The surface of the particles was rough, which could be due to the extensive sulfonation. Similar observations were made by other researchers for biosorbents from Pinus sylvestris (Benyoucef et al. 2015). EDS analysis of activated VW (Fig. 7(b)) showed that the activated VW sawdust contained higher contents of oxygen, which caused by oxidation process, which might be to form the oxygen-containing functional groups on VW surface. It is also observed that the reduction of contents of carbon, which is due to the degradation of hemicelluloses, lignin and the elimination of extracts, following the modification chemical of cellulosic material. This result was in good agreement with XRD.

Fig. 6 SEM Micrographs of vine wood sawdust (a) before and (b) after chemical activation.

Fig. 7 EDX image of vine wood sawdust: (a) before and (b) after chemical activation.

3.1.3 X-Ray diffraction (XRD) analysis

X-ray diffraction of untreated and treated sawdust of vine wood was performed as shown in Figure 8. Data were taken for from 2θ angles ranging from 10 to 80 degrees. It is found that the diffraction patterns of the VW untreated have low crystallinity (amorphous). The amorphous characteristic of raw VW is due to the high lignin content (amorphous compound) in its structure (Rosa et al. 2010). Significant 2θ angle peaks at 18° and 22° are observed in XRD patterns of the treated sawdust, which are associated with the crystalline cellulose structure. This is due to the partial reduction of hemicelluloses and lignin during the chemical treatment. This observation was also reported by (Alemdar and Sain (2008); Shahabi et al. 2015).
3.1.4 Characterization of the porous texture

The pore size distribution and surface area of both activated VW and unactivated VW were calculated by N₂ sorption isotherm study at 77K (BET method) (Brunauer et al. 1938) and are presented in Figures 9 &10. For VW, the isotherms are mainly typed II (Fig. 9(a) & (b)) related to mesoporous solids. Figure 10 (a) & (b) confirms the mesoporosity of unactivate VW and activate VW, since most of the pores have the average diameter greater than 20 Å and less than 500 Å according to IUPAC classification. The BET surface area of unactivated VW and activated VW were found to be 0.5873 m²g⁻¹ and 1.6319 m²g⁻¹ respectively. The larger surface area of activated VW was attributed to the dispersion of H₂SO₄ into the pores through dissociation, thereby enhancing the pore density on its surface. The greater surface area of activated VW (Table 1) made it suitable and a favorable bio-adsorbent for the MB dye adsorption.

Table 1 Nitrogen sorption results of unactivated and activated vine wood sawdust.

Samples	BET method		BJH method		
	S_BET	V_TOTAL	S_Meso	V_meso	d_Meso
	(m²·g⁻¹)	(cm³·g⁻¹)	(m²·g⁻¹)	(cm³·g⁻¹)	(Å)
Unactivated vine sawdust	0.5873	0.00019	0.2911	0.00179	246.935
Activated vine sawdust	1.6319	0.00061	1.3176	0.00771	234.057

Fig. 9 Nitrogen adsorption-desorption isotherms at 77 K of (a) unactivated; (b) activated VW.

Fig. 10 BJH Pores size distribution plot of (a) unactivated; (b) activated VW.

3.1.5 Determination of point of zero charge (pH pzc)
The pH \(\text{pH}_{\text{PZC}} \) value is the point at which the surfaces of vine wood sawdust do not contribute to the pH of the solution (Giraldo and Moreno-Piraján 2008). When \(\text{pH} < \text{pH}_{\text{PZC}} \), the sawdust surface is positively charged and thus favoring the adsorption of anionic species and negatively charged at \(\text{pH} > \text{pH}_{\text{PZC}} \), which will be effective for the adsorption of cationic species (Rodriguez-Reinoso 1998). The determination of the \(\text{pH}_{\text{PZC}} \) of the sawdust of vine wood was carried out by a solid addition method of Crini and Badot (2007). 0.15 g of VWS was added to 50 ml of 0.01 M NaCl solution. The initial pH of the solutions was adjusted in the range of 1.67 to 11.2 by adding 0.1 M HCl or NaOH. The suspensions were stirred for a period of 48 h. The final pH of the solutions were measured and plotted versus the initial pH. The point of intersection of this curve with the pH initial = pH final linear plot yielded the point of zero charge (\(\text{pH}_{\text{PZC}} \)). Figure.11 shows that the \(\text{pH}_{\text{PZC}} \) of the sawdust of vine wood activated was found to be around 4.5. This value indicates the acid character of the vine wood sawdust, which was expected due to the chemical activation with sulphuric acid. Then, according to the results, the sawdust of vine wood will favor the removing of methylene Blue dye at \(\text{pH} > \text{pH}_{\text{PZC}} \).

Fig. 11 The point of zero charge (\(\text{pH}_{\text{PZC}} \)) of VWS.

3.2 Effect of particle size

The effects of adsorbent particle size on the adsorption kinetics of activated VW in aqueous solution are depicted in Figure 12. It is noted that the dye adsorption capacity of the activated VW was decreased with increase in particle size. This is because bigger particle sizes have a small surface area and by consequence less active site are available for the biosorption process. However, these particles of fine sizes can cause clogging problems in the percolation systems, or may be difficult to recover (solid / liquid separation) (Fiset et al. 2001) for this reason we have chosen particles of medium size: \(d = 125/250 \) µm. Similar results were observed by (Barka et al. 2013; Gouamid et al. 2013).
3.3 Effect of adsorbent dosage

The effect of adsorbent dosage on the removal of MB is shown in Figure 13. The VW dosage varied from 50 to 300 mg with 10^{-5} mol/L initial concentration of MB. The results show an increase in the adsorption efficiency of the VW sawdust with an increase in dosage. This is obviously due to an increase in the adsorbent’s active sites. A maximum adsorption percentage removal of 99.85% was achieved with 0.1 g of the sawdust. Further, escalation in the VW sawdust dosage (from 200 to 300 mg) did not change the percent removal significantly and remained nearly constant (99.5%). This is due to the saturation of adsorption sites of the VW surface. It resulted in particular interactions of dye molecules on adsorption sites, which diminished the surface area of the adsorbent. It was also found that the decrease of the amount of adsorbed dye from 19.225×10^{-3} mmolg$^{-1}$ to 3.317×10^{-3} mmolg$^{-1}$ with an increasing adsorbent dosage from 50 to 300 mg was attributed to the adsorption competition among adsorbent and the split in the concentration gradient (Kumar et al. 2010). Therefore, 100 mg was selected as the optimum dosage to study the effect of other parameters on the adsorption. A Similar results were reported and announced by other researchers (Gupta et al. 2005; Conrad et al. 2017).

3.4 Effect of Contact Time

The effect of contact time of 0.1 g VW sawdust to remove the MB dye in particle size 125/250 µm with agitation speed 500 rpm, 100 ml, and 10^{-5} to 3010^{-6} mol L$^{-1}$ dye solution was studied from 1 – 210 min. Fig. 14 showed that the adsorption was quick during the initial 30 min and steadily reached equilibrium in 50-120 min. The maximum amount of dye adsorbed was found to be $9.88.10^{-3}$ - $29.95.10^{-3}$ mmol/g (98.88% - 99.83% removal efficiency) at 180 min, beyond which saturation was seen suggesting the adsorption-
desorption equilibrium. Furthermore the adsorption of MB became difficult due to the repulsion of solutes between solid (saturation of the active sites) and bulk phase (Malik 2003).

Fig. 14 Effect of contact time on the adsorption of the BM onto VWS with various concentrations.

3.5 Effect of the initial concentration of dye BM

To observe the effect of the MB dye concentration in the adsorption process, the solution of MB dye with different initial concentrations (10^{-5} M to 3 \times 10^{-5} M) was prepared and treated with a 100 mg dosage for 180 min with 500 rpm agitation speed. **Fig. 15** indicated that increasing the initial concentration of MB dye could be an increased biosorption capacity of VW sawdust to MB dye without reaching the equilibrium point. which indicates that with the increase in the initial concentration of the MB, the driving force became stronger and the interaction between dye and adsorbent was enhanced (Tan et al. 2008). The sawdust of vine wood can be used as an efficient adsorbent for the removal of methylene blue at a wide concentration range. The same results were announced by (Merzoug et al. 2016; Fayoud et al. 2015).

Fig. 15 Effect of initial dye concentration on the adsorption of MB onto VWS.

3.6 Effect of solution pH

The effect of the solution pH was examined in the range of pH 2.5 to 11 at a fixed adsorbent dosage of 100 mg, and 10^{-5} mol/L of MB concentration. As clearly indicated in Figure 16, as the solution pH increases, the dye adsorption increases due to the increasing electrostatic force of attraction between positive charged adsorbate and negatively charge adsorbent surface (pH > pH pzc) in alkaline condition due to the ionization of VW. While in acidic pH, the adsorbent surface is positively charged (pH < pH pzc), the dye adsorption is lower, this is mainly due to the presence of higher concentration of H^+ ions on the VW sawdust
surface hindered the adsorption of cationic MB dye. Nevertheless, it was also observed that
the despite surface of activated VWS being positive, the adsorption of MB remains high
(84.50 to 89.15%), when pH was within the range of 2.5 to 4, suggesting that not only
electrostatic mechanism but rather also by chemical reaction between the adsorbent and dye
molecules. Therefore, the normal pH of MB solution was selected to be the best for further
studies. This is in concord with the results of (Han X et al. 2011).

Fig. 16 Effect of the pH on the adsorption of MB onto VWS.

3.7 Effect of Temperature

The temperature-dependent adsorptions were performed using 0.1g of the adsorbent in 100
mL of the MB solution (10⁻⁵ mol/l) at 20, 30, 40 and 50°C (Fig. 17). It was found that with
rising the temperature, the percent removal decreased (from 99.85% to 97.71%). This may be
due to the decreased surface activity, suggesting that adsorption between MB and VWS was
an exothermic process. This phenomenon is in agreement with the Arrhenius rule. Similar
types of results for the MB adsorption have been reported by several researchers (Sen et al.
2011; Boumchita et al. 2016; Sakr et al. 2015).

Fig. 17 Effect of the temperature on the adsorption of MB onto VWS.

3.8 Effect of shaker speed

The shaker speed is also a very significant factor to interfere the adsorption efficiency. Its
effect on the removal rate of dye by disrupting the film resistance surrounding the adsorbent
particles (Al-Chouti et al. 2009). The effect of shaker speed was studied at different speed
from 100 to 1000 rpm and fixing the all experimental parameters. Fig. 18 shows that the
removal efficiency increases from 98.40% to 99.64% as the shaker speed is increased from
100 to 1000 rpm. As the speed increased, the time required to achieve equilibrium was
reduced, so the available biomass surface area increases due to the deficiency of aggregation
of the biosorbent that finally leads to rapid adsorption of MB) Maurya et al. 2014).
Effect of shaker speed on the adsorption of MB onto VWS.

3.9 Kinetic study of adsorption of the BM on the sawdust of vine wood.

The kinetics modelling was conducted using 100 mL of $10^{-5} - 3.10^{-5}$ mol L$^{-1}$ of dye solution with an initial pH (pH= 6.9), then contacted with 100 mg VW sawdust and shell agitated at 500 rpm for 180 min. This kinetics were analyzed by kinetic rate equations, ie pseudo-first order, pseudo-second order, and intra-particle diffusion models. The model parameters of all the three models were estimated by plotting graphs Ln(Qe-Qt) versus t, t/Qt versus t and Qt versus t$^{0.5}$, for pseudo-first order, pseudo-second order, and intra-particle respectively, and fitted linearly. The results of linear fitting experimental data of the different models are presented in Figs. 19, 20, 21, 22.

3.9.1 Pseudo-first-order kinetic model (Lagregren model)

The adsorption kinetics data were evaluated using Lagregren's pseudo-first order (Lagregren 1898), it is the first speed equation established to describe the adsorption kinetics in a system (solid-liquid). This model is introduced by the following relation:

$$\frac{dQ}{dt} = K_1(Q_0 - Q_t)$$ \hspace{1cm} (3)

The integration form of the equation (3) applying the initial conditions t = 0 to t = t and Q = 0 to Q = Q$_t$ becomes:

$$Ln (Q_e - Q_t) = Ln Q_e - K_1 t$$ \hspace{1cm} (4)

Where Q$_e$ and Q$_t$ are the amount of dye adsorbed at equilibrium and at contact time t, respectively (mmo l/g); t is the time of contact (min); K$_1$ is the equilibrium rate constant of pseudo-first-order kinetics (min$^{-1}$). The values of K$_1$ and Q$_e$ were obtained from the slope and intercept respectively of plots of Ln (Q$_e$ – Q$_t$) versus t (Fig. 19). Values of K$_1$, Q$_e$ (experimental and calculated) and correlation coefficient (R^2) subsequently given in Table 2.

Fig. 19 Pseudo-first-order kinetics plots for the adsorption of the MB on VWS.
According to the plots \(\text{Ln} (Q_e - Q_t) \) vs t, as shown in Fig. 19, the obtained graph are not linear, the calculated capacities of adsorption \(Q_{e \text{ cal}} \) did not agree with experimental \(Q_e \) values, which indicates that the adsorption of MB onto VWS did not follow pseudo-first-order equation. This was comparable with results reported by other researchers (Fayoud et al. 2015; Ncibi et al. 2007).

3.9.2 Pseudo-second-order kinetic model (Blanchard model)

The experimental results of the adsorption kinetics obtained for various initial concentrations are expressed by using Blanchard’s pseudo-second-order model equation (Ho and Mckay 2000):

\[
\frac{dQ}{dt} = K_2 (Q_e - Q_t)^2
\]

(5)

Integrating the equation (5) and applying the boundary conditions \(t=0 \) to \(t=t \) and \(Q = 0 \) to \(Q = Q_t \), we get the equation of the linearized form which is shown as follows:

\[
\frac{t}{Q_t} = \frac{1}{K_2 Q_e^2} + \frac{1}{Q_e} t
\]

(6)

Where \(K_2 \) is the second order rate constant (g. mmol\(^{-1}\). min\(^{-1}\)). The values of \(Q_e \) and \(K_2 \) have been calculated from the slope and intercept of the linear graph of a plot of \(t/qt \) versus \(t \), as shows in Fig. 20 and summarized in Table 2. The constant \(k_2 \) is used to calculate the initial sorption rate \(h \), at \(t \rightarrow 0 \), as follows:

\[
h = K_2 Q_e^2
\]

(7)

The verification of the models proposed to describe the adsorption kinetics and adsorption isotherms is based on the correlation coefficients \((R^2) \) and “average relative error, ARE” was calculated from eq. (8) (Banerjee et al. 2017):

\[
\text{ARE\%} = \frac{100}{n} \sum_{i=1}^{n} \left| \frac{Q_{e \text{ exp}} - Q_{e \text{ cal}}}{Q_{e \text{ exp}}} \right|
\]

(8)

With, \(Q_{e \text{ exp}} \) is the experimental value of the amount adsorbed at equilibrium, \(Q_{e \text{ cal}} \) is the theoretical value calculated by the model of the amount adsorbed at equilibrium and \(n \) is the
number of the experimental data.

Lower value of ARE indicates good fit between experimental and calculated data.

Fig. 20 Pseudo-second-order kinetics plots for the adsorption of the MB on VWS.

The fit of the experimental data to a pseudo-second-order kinetic model at different initial concentration present in Fig.20 shows a linear relationship with, intercept very close to zero with the excellent high correlation coefficient values (between 0.9996 and 0.9999). From the table 2, the theoretical values calculated by pseudo-second-order model (Q_{eq}) are very close to that of experimental values (Q_{eq}). These results indicate that the adsorption of MB onto vine wood sawdust obey the pseudo-second-order kinetics model. We also notice from the Table 2, that the values of the second order rate constant (K_2) decrease with the increase in the initial concentration of BM and the initial rate of adsorption (h) increase with increasing the initial MB concentration, which would be expected due to the increase in driving force at higher concentration. Similar results were found for the adsorption of MB on various adsorbents by (Abdallah et al. 2016; Belaid et Kacha. 2011; B.H. Hameed et al. 2008).

3.9.3 *intra-particle diffusion model (IPD)*

The application of the equation (9) of the intra-particle diffusion model proposed by Weber and Morris (1963) to the experimental data was applied to examine the adsorption mechanism of the adsorption system. The linear form of the intraparticle equation is shown as follows:

$$Q_t = K_i t^{1/2} + C$$ \hspace{1cm} (9)

Where K_i is the intra-particle diffusion rate constant (mmol. g$^{-1}$.min$^{-1/2}$); C is the constant that gives an idea about the thickness of the boundary layer (mmol/g) and Q_t is the amount of dye adsorbed at time t (mmol/g).

The slope of the graph Q_t versus $t^{1/2}$ makes it possible to evaluate the intra-particle diffusion rate constant (K_i) and correlation coefficient (R^2) indicate the fitness of this model. The
values of intercept inform about the thickness of the boundary layer (C). If the plots of Q_t versus $t^{1/2}$ yield straight lines do not passing through the origin, then the adsorption process is not the only limiting mechanism of the adsorption kinetics and this is confirm the imply of some other mechanisms (Weber and Morris 1963). The obtained results, for the various initial concentrations are represented in Fig. 21 & 22 and are summarized in Table 2.

Fig. 21 Intra-particle diffusion kinetics plots for the adsorption of the MB on VWS

Fig. 22 Linear representation of the right sections of the intra-particle diffusion model for the adsorption of the MB on VWS.

According to the Fig. 21, the intra-particle diffusion are equipped with successive three linearity’s, indicating that three steps in the adsorption process of MB. The first sharp section is related to the adsorption on the external surface of the sawdust of vine wood with a very high speed of adsorption. The second region is a stage of diffusion of the molecules of MB through the pores of the adsorbent, it is the longest stage. The parameters K_i and C is given on the basis data corresponding to this stage and finally the third horizontal linear stage is attributed to the gradual adsorption stage, where’s the equilibrium is reached and intra-particle diffusion is rate controlled when the molecules of dye occupy all the active sites of the adsorbent. From the Fig. 22 and the Table 2, the R^2 values of this diffusion model were closer to 1 (0.94.95-0.9954) and the linear lines of the second stage at each concentration did not pass through the origin. These indicate that the intra-particle kinetics of diffusion into the pores is implied in the mechanism of adsorption process but is not the only rate controlling step. The increases in the initial concentration of the MB entrain an increase in the constant C which is proportional to the thickness of the boundary layer.

Table 2 Kinetic models parameters for the adsorption of MB onto VWS at different initial MB concentrations.
3.10 Adsorption Isotherms of MB Adsorption of VW Adsorbent

The adsorption process was fitted using the Langmuir (eq 11), Freundlich (eq 14), and Temkin (eq 16) models for the different initial dye concentration from 10^{-5} mol/L to 30.10^{-6} mol/L after 180 min in the presence of 100 mg of VWS at room temperature.

3.10.1 Langmuir Adsorption Isotherm

It is the model more used. Langmuir supposes that adsorption is done into monolayer surface, identical and well defined of adsorption sites, also without interaction among of the adsorbed dye molecules, the non-linear form of Langmuir equation is illustrated by the following equation (Langmuir 1918):
\[\frac{Q_e}{Q_{max}} = \frac{K_L}{1 + K_L C_e} \]

Where:

- \(Q_e \): equilibrium concentration of solution dyes (mol/L);
- \(Q_{max} \): the amount of dye adsorbed (mmol/g);
- \(Q_m \): theoretical maximum adsorption capacity (mmol/g);
- \(K_L \): the equilibrium constant (L/mg).

However, the Langmuir equation is represented by five linear expressions which use different equations for calculating the constant \(K_L \) and \(Q_m \).

The linear form of this model is given by the following equation:

\[\frac{1}{C_e} = K_L \frac{1}{Q_m} \frac{1}{Q_e} - K_L \]

Where \(C_e \) is the equilibrium concentration of solution dyes (mol/L), \(Q_e \) is the amount of dye adsorbed at equilibrium (mmol/g), \(Q_m \) is the maximum adsorption capacity (mmol/g), \(K_L \) is the Langmuir equilibrium constant related to the affinity of the binding sites or the free energy of adsorption (L/mol).

The values of the constant \(Q_m \) and \(K_L \) can be determined from the intercept and the slope of the linear plot of \(1/C_e \) versus \(1/Q_e \) (Fig. 23) and are presented in Table 3.

The essential characteristics of the Langmuir isotherm were expressed in terms of dimensionless constant separation factor \(R_L \) of Hall (without dimension) is given by the following equation (Hall et al. 1966).

\[R_L = \frac{1}{1 + K_L C_0} \]

Where \(C_0 \) is the initial concentration of dye (mol/L), \(K_L \) is the Langmuir constant (L/mol).

The parameter \(R_L \) indicates the type of the isotherm and whether it is favorable (0 < \(R_L < 1 \)), unfavorable (\(R_L > 1 \)), linear (\(R_L =1 \)), Irreversible (\(R_L = 0 \)).

3.10.2 Freundlich Adsorption Isotherm
Freundlich adsorption isotherm supposes that adsorption occurs on a heterogeneous surface by multilayer adsorption with interactions between the adsorbed molecules and the heat of adsorption decreases exponentially with the rate of surface saturation of the solid. Freundlich model is an empirical equation as follows (Freundlich 1906):

\[Q_e = K_F C_e^{1/n} \]

(13)

The linear form of this model is given by the following equation:

\[\ln Q_e = \ln K_F + \frac{1}{n} \ln C_e \]

(14)

Where \(K_F \) is Freundlich equilibrium constant related to the adsorption capacity of adsorbent (mmol/g(L/mol)^{1/n}), \(n \) is the adsorption intensity of adsorbent, \(C_e \) is the equilibrium concentration of solution dyes (mol/L), \(Q_e \) is the amount of dye adsorbed (mmol/g).

From the slope and intercept obtained by plotting \(\ln (Q_e) \) versus \(\ln (C_e) \) (Fig. 24), the values of \(n \) and \(K_F \) were calculated. The Freundlich parameter \(1/n \) relates to the surface heterogeneity gives us the intensity of adsorption and the shape of the isotherm.

When \(0 < 1/n < 1 \), the adsorption is favorable; \(1/n =1 \), the adsorption is homogeneous and there is no interaction among the adsorbed species; \(1/n > 1 \), the adsorption is unfavorable. (Rauf et al. 2008)

When \(1 / n =1 \) the isotherm is linear type C; \(1 / n> 1 \) the isotherm is S-type convex; \(1 / n <1 \) the isotherm is type L concave; \(1 / n << 1 \) the isotherm is type H.

3.10.3 Temkin Adsorption Isotherm

The Temkin isotherm model rest on the assumption that, during adsorption in gas phase, the heat of adsorption of all molecules in the layer decrease linearly with the increase surface coverage due to the account the effects of indirect adsorbate / adsorbate interactions (Ringot et al. 2007).

The isotherm of Temkin is represented by the following relation (Temkin and Pyzhev 1940):
\[
\frac{Q_e}{Q_{\text{max}}} = \frac{RT}{\Delta Q} \ln (K_T \times C_e)
\]
(15)

The linearized form of the equation is given as:

\[
Q_e = B_T \ln K_T + B_T \ln C_e
\]
(16)

With:

\[
B_T = \frac{RT}{b_T}
\]
(17)

Where \(B_T\) is the Temkin Constant related to the heat of adsorption (J/mol), \(T\) is the absolute Temperature (K), \(R\) is the universal gas constant (8.314 J/mol \(\cdot\) K\(^{-1}\)), \(K_T\) is the empirical Temkin isotherm constant (L/mg\(^{-1}\)) related to the equilibrium binding constant, \(\Delta Q\) is the variation of energy of adsorption (J/mol). Both \(B_T\) and \(K_T\) can be calculated from the slope and intercepts of the plot of \(Q_e\) versus \(\ln (C_e)\) (Fig. 25) and are presented in Table 3.

Table 3 Langmuir, Freundlich and Temkin isotherms parameters for adsorption of MB onto VWS.

Adsorption isotherms and its constants	Parameter values
Langmuir adsorption isotherm constants	
\(Q_m\) (mmol/g)	0.4579
\(K_L\) (L/mol)	8.44E+04
\(R_L\)	0.542–0.283
\(R^2\)	0.9846
ARE\%	5.44
Freundlich adsorption isotherm constants	
\(K_F\) (mmol/g(L/mol)^{1/n})	3.037
\(n\)	1.020
\(1/n\)	0.984
\(R^2\)	0.9496
ARE%	5.66
---	---
Temkin adsorption isotherm constants	
K_T (L/mol)	1.064
B_T (J/mol)	0.2571
R^2	0.8495
ARE%	121.8

Fig. 23 The linear plot of Langmuir isotherm (Version 1 and 5) for adsorption of MB onto VWS.

Fig. 24 The linear plot of the Freundlich isotherm for adsorption of MB onto VWS.

Fig. 25 The linear plot of the Temkin isotherm for adsorption of MB onto VWS.

By comparing the results of fitting experimental data, the Langmuir isotherm showed the best fit confirmed by giving the highest correlation coefficient adsorption of MB value closer to unity ($R^2 = 0.9846$) and lower value of average relative error, suggesting that a mainly monolayer adsorption behavior on the prepared biosorbent. It is obvious from Table 3 and Fig. 26 that the R_L values are greater than 0 and less than 1 and decreased with the increasing initial concentration; therefore, the adsorption process of the MB onto the sawdust of vine wood is favorable. The Freundlich model showed that the value of n was greater than 1 which represents favorable adsorption of both dyes at experimental condition and $1/n$ less than 1 indicated that the adsorption of MB onto VW follows the L-type Langmuir isotherm.

The maximum monolayer adsorption capacity of MB on vine wood sawdust 0.4579 mmol/g (correspond 146.46 mg/g) has been compared with other adsorbents reported in the literature which is listed in Table 4.

Fig. 26 Plot of separation factor R_L of Langmuir model against initial MB concentration on VWS.

Table 4 Comparison of maximum adsorption capacities of various adsorbents for removal of MB dye.
Adsorbent	Maximum adsorption capacity, Q_m (mg/g)	Reference
Posidonia oceanica (L.) fibres	5.56	Ncibi et al. 2006
Datte Stones	6.7010	Khelifi et al. 2016
Palm Kernel Shell	16.20	Benjamen Niran et al. 2018
Andrographis paniculata Leaves	16,6666	Nirmala et al. 2016
Jack Fruit Leaf	20.41	Banerjee S et al. 2017
Cane Bark Powder	23.49	Enenebeaku C K et al. 2016
Tea Residue	41,841	Truong et al. 2019
Activated Carbon Coated With Fe$_2$O$_3$	50.51	Imam and Abdullahi 2017
Pine apple peel powder	78.125	Lutpi et al. 2011
Pine Apple Stem	109.89	Sen et al. 2011
Pine Cone Biomass	119.05	Hameed et al. 2009
meranti sawdust	120.48	Ahmada et al. 2009
vine-wood Sawdust	**146.46**	**This study**
Eucalyptus Sheathiana Biomass	204.08	Afrozea et al. 2015
lotus leaf	241.4	Xiuli Han et al. 2018
Banana Peel	256,666	Kayaalp et al. 2017
Sawdust biochar	333,333	Ghani et al. 2013

3.11 Thermodynamic analysis

To explore the thermodynamic characteristics of the VW sawdust adsorbent, the adsorption process was examined at different temperatures (293, 303, 313, and 323 K) (Fig. 27). The thermodynamic parameters such as free energy change (ΔG^0), enthalpy change (ΔH^0), entropy change (ΔS^0), etc. for adsorption were calculated via the Gibbs free energy and the Van't Hoff equation (Eqs. 19 & 20).

The change in free energy is related to the equilibrium constant by the following relationship:

\[
\Delta G^0 = -RT \ln K_d
\] \hspace{1cm} (18)

According to the Gibbs’ free energy equation:

\[
\Delta G^0 = \Delta H^0 - T \times \Delta S^0
\] \hspace{1cm} (19)
Combining equation 18 and 19, we get:

\[\ln K_d = \frac{\Delta S^0}{R} - \frac{\Delta H^0}{RT} \]

where \(T \) is the absolute temperature (Kelvin), \(R \) is universal gas constant (8.314 Jmol\(^{-1}\) K\(^{-1}\)), \(K_d \) is the distribution coefficient for adsorption. The \(\Delta H^0 \) and \(\Delta S^0 \) values obtained from the slope and intercept of Van’t Hoff plots are given in Table 5.

![Vant Hoff plot for adsorption of MB on VWS.](image)

In Table 5, the negative value of enthalpy \(\Delta H^0 \) shows that the adsorption of MB dye to VW sawdust is exothermic in nature, while the positive value of \(\Delta S^0 \) indicated that the randomness at the solid/solution interface decreased during the adsorption process. In general, the change of standard free energy for physisorption is in a range of \(-20 \) to \(0 \) kJmol\(^{-1}\), and the chemisorption varies between \(-80 \) and \(-400 \) kJmol\(^{-1}\) (Vimonses et al. 2009). The negative \(\Delta G^0 \) values from \(-9.77 \) to \(-7.77 \) kJ mol\(^{-1}\) at the temperature range studied indicated the spontaneity and feasibility of the adsorption process and physical nature of the adsorption. The increase in \(\Delta G^0 \) with increase in temperature indicates high efficient adsorption at lower temperature. A similar observation has been reported by (Boumchita et al. 2016; Fayoud et al. 2015).

Table 5 Thermodynamic parameters for adsorption of MB dye at different temperatures

Temperature (K)	\(K_d \) (L/g)	\(\Delta G^0 \) (KJ. mol\(^{-1}\))	\(\Delta H^0 \) (KJ. mol\(^{-1}\))	\(\Delta S^0 \) (KJ. mol\(^{-1}\).K\(^{-1}\))	\(R^2 \)
293	135.635	-9.769			
303	33.333	-9.104	-29.325	-0.0665	0.994
313	25.882	-8.439			
323	19.080	-7.774			

4 Conclusions

This work demonstrated the successful preparation of a low-cost biomass adsorbent based on vine wood sawdust with sulfuric acid treatment for methylene blue dye removal. The
optimum adsorption condition was achieved by analyzing the influencing parameters such as adsorbent dose, initial dye concentration, pH, temperature, contact time, agitation speed and particle size. The maximum adsorption of MB was found at the normal pH of the MB solution, temperature 20°C, and after 3 h of equilibration time. The kinetic experimental data conformed to the pseudo-second-order model, with a high correlation coefficient of 0.999. The adsorption of MB followed the Langmuir isotherm model with maximum adsorption performance of 0.4579 mmol/g (146.46 mg g⁻¹). This study provided a practical method for preparing an economical, efficient bioadsorbent from a wide variety of biomass.

Declarations

- Ethics approval and consent to participate
 Not applicable

- Consent for publication
 Not applicable

- Availability of data and materials
 Not applicable

- Competing interests
 We have no competing interests

- Funding
 Not applicable

- Authors' contributions
 Rachida Souidi: analysis, interpretation of data and a major contributor in writing the manuscript.
 Yasmina Khane: interpretation of data and help for writing the manuscript.
 Lahcen Belarbi: have drafted the work
 Smain Bousalem: revised the work
All authors read and approved the final manuscript

- **Acknowledgements**

Not applicable

References

Abdallah M, Hijazi A, Hamich M, Alameh M, Toufaily J, Rammal H (2016) Etude de l’adsorption du Bleu de Méthylène sur un biomatériau à base de l’eucalyptus selon la taille des particules (Treatment of industrial wastewater using a natural and biodegradable adsorbent based on Eucalyptus). *J. Mater. Environ. Sci* 7 (11): 4036-4048.

Ahmada A, Rafatullahb M, Sulaimanb O, Ibrahima MH, Hashimb R (2009) Scavenging behaviour of meranti sawdust in the removal of methylene blue from aqueous solution.

Journal of Hazardous Materials 170: 357–365

Afrozea S, Sena T K, Anga M & Nishiokab H (2015) Adsorption of methylene blue dye from aqueous solution by novel biomass Eucalyptus sheathiana bark: equilibrium, kinetics, thermodynamics and mechanism. *Desalination and Water Treatment* 19:705–710.

Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues – Wheat straw and soy hulls. *Bioresource Technology* 99(6): 1664–1671.

Al-Ghouti MA, Khraisheh MAM, Ahmad MNM, Allen S (2009) Adsorption behaviour of methylene blue onto Jordanian diatomite: A kinetic study. *J Hazard Mater* 165: 589–598.

Banerjee S, Debsarkar A, Datta S (2017) Adsorption of Methylene blue and Malachite Green in Aqueous Solution using Jack Fruit Leaf Ash as Low Cost Adsorbent. *International Journal of Environment, Agriculture and Biotechnology (IJEAB)* 2(03): 2456-1878

Barka N, Ouaouit K, Abdennouri M, Makhfouk M (2013) Dried Prickly Pear Cactus (Opuntia Ficus Indica) Cladodes as a Low-Cost and Eco-Friendly Biosorbent for Dyes Removal from Aqueous Solutions. *J Taiwan Inst Chem Eng* 44: 52-60.

doi:10.1016/j.jtice.2012.09.007
Benjamen N, Salaudeen A O and Utam J U (2018) Isotherm Studies of Adsorption of Methylene Blue by Palm Kernel Shell Oladokun. *Asian Journal of Applied Chemistry* Research 1(1): 1-9: 41300.

Benyoucef S, Harrache D j (2015) Caractérisation de la microstructure de sciure de bois de pin sylvestre Pinus sylvestris (Microstructure characterization of scots pine Pinus sylvestris sawdust) . *J Mater Environ Sci* 6 (3) :765-772.

Boumchita S, Lahrichi A, Benjelloun Y, Lairini S, Nenov V, Zerrouq F (2016) Elimination d’un colorant cationique dans une solution aqueuse par un déchet alimentaire : Epluchure de pomme de terre (Removal of cationic dye from aqueous solution by a food waste : Potato peel) *J. Mater. Environ. Sci.* 7 (1) 73-84.

Brunauer S, Emmett PH, Teller E (1938) Adsorption of Gases in Multimolecular Layers. *Journal of the American Chemical Society* 60 (2): 309-319.

Choy K K H, McKay G, Porter J (1999) F Sorption of acid dyes from effluents using activated carbon. *J Resour Consent Recyc* 2757-71.

Crini G, Badot PM (2007) Traitement et épuration des eaux industrielles polluées. Presses Universitaires de Franche Comté. Besançon. France. 352.

Darvishmanesh S, Pethica B A, Sundaresan S (2017) Forward osmosis using draw solutions manifesting liquid-liquid phase Separation. *Desalination* 421, 23–31.

Djamel Belaid K, Kacha S (2011) Etude cinétique et thermodynamique de l’adsorption d’un colorant basique sur la sciure de bois. *Revue des Sciences de l’Eau* 24 (2): 131-144.

Enenebeaku C K, Okorocha N J, Enenebeaku U E, Onyeachu B I (2016) Adsorption of Methylene Blue Dye onto Bush Cane Bark Powder. *International Letters of Chemistry, Physics and Astronomy* 76:12-26.

Fayoud N, Alami Younssi S, Tahiri S, Albizane A (2015) Etude cinétique et thermodynamique de l’adsorption de bleu de méthylène sur les cendres de bois (Kinetic and
thermodynamic study of the adsorption of methylene blue on wood ashes). J Mater Environ. Sci 6 (11):3295-3306.

Fiset J F, Blais J F, Ben cheick R, Dayal Tyagi R (2001) Revue sur l’enlèvement des métaux des effluents par adsorption sur la sciure et les écorces de bois. Revue des sciences de l’eau. 13 (3) 323-347.

Freundlich HMF (1906) Over the adsorption in solution. Industrial Engineering Chemistry Fundamental 57 385-470.

Ghani W A W A K, Mohd A, Mahmoud D K, Rebitanim N Z, Sanyang L, Zainudin R B (2013) Adsorption of methylene bleu on sawdust-derived biochar and its adsorption isotherms. Journal of Purity, Utility Reaction and Environment 2 (2): 34-50

Giraldo-Gutiérrez L and Moreno-Piraján JC (2008) Pb²⁺ adsorption from aqueous solutions on activated carbons obtained from lignocellulosic residues. Brazilian Journal of Chemical Engineering, 25(1), 143-151.

Gouamid M, Ouahrani MR, Bensaci MB (2013) Adsorption equilibrium, kinetics and thermodynamics of methylene blue from aqueous solutions using date palm leaves. Energy Procedia 36 898–907.

Gupta V K, Mittal A, Gajbe V (2005) Adsorption and desorption studies of water soluble dye quinoline yellow using waste materiels. J Colloid Interf Sci 284(1): 89-98.

Hall K R, Eagleton L C, Acrivos A, Vermeulen T (1966) Pore and soliddiffusion kinetics in fixed-bed adsorption under constant-pattern conditions. Industrial and Engineering Chemistry Fundamentals 5 (2): 212-223.

Hameed B H, Mahmoud D K, Ahmad A L (2008) Equilibrium modeling and kinetic studies on the adsorption of basic dye by a low –cost adsorbent: Coconut (Cocos nucifera) bunch waste. J Hazard Mater 158 65-72.

Hameed BH, Krishni RR, Sata SA (2009) A novel agricultural waste adsorbent for the
removal of cationic dye from aqueous solutions. *Journal of Hazardous Materials* 162(1):305–311.

Han X, Wang W, Xiaojian Ma (2011) Adsorption characteristics of methylene blue onto low cost biomass material lotus leaf. *Chemical Engineering Journal* 171, 1–8.

Ho YS, McKay G (2000) the kinetics of sorption of divalent metal ions onto sphagnum moss peat. *Water research* 34(3): 735–742.

Kanna N, Sundaram MM (2002) Adsorption of congo red on various activated carbons. *Water Air Soil Pollut* 138 289-305.

Kayaalp H, Savcı S, Coşkun R, Mutlu Y (2017) Adsorption of Methylene Blue From Aqueous Solution with Vermicompost Produced Using Banana Peel. *International Journal Of Modern Engineering Research (IJMER)* 7 (7).

Khelifi O, Mehrez EHRE I, Ben salah W, Ben salah F, Younsi M, Nacef M, Affoune A M (2016) Etude de l’adsorption du bleu de methylène (BM) a partir des solution aqueuses sur un biosorbant prepare from Algerian datte stones. *Larhyss Journal* 28135-148

Konicki W, Aleksandrzak M, Mijowska E (2017) Equilibrium, kinetic and thermodynamic studies on adsorption of cationic dyes from aqueous solutions using graphene oxide. *Chem Eng Res Des* 123, 35–49.

Kumar K V, Ramamurthi V, Sivanesan S (2004) Modeling the mechanism involved during the sorption of methylene blue onto fly ash. *J Coll Int Sci* 284:14-21.

Kumar P S, Ramalingam S, Senthamarai C, Niranjanaa M, Vijayalakshmi P, Sivanesan S (2010) Adsorption of dye from aqueous solution by cashew nut shell: studies on equilibrium isotherm, kinetics and thermodynamics of interactions. *Desalination* 261 52–60.

Lagergren S (1898) Zur theoret der sogenannten adsorption geloster stoffe (About the theory of so-called adsorption of soluble substances), Kungliga SvenskaVetenskapsakademiens.

Landingar 24 (4) 1–39.
Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum.

Journal of the American Chemical Soc. 40 1361-1403.

Lutpi N A, Shian W Y, Kamarudzaman A N (2011) Removal of methylene blue using pineapple peel powder as adsorbent. Proceedings of the 3rd CUTSE International Conference. Miri Sarawak. Malaysia.

Malik PK (2003) Use of activated carbons prepared from sawdust and rice-husk for adsorption of acid dyes: a case study of acid yellow 36. Dyes and Pigments 56 239-249.

Maurya R, Ghosh T, Paliwal C, Shrivastav A, Chokshi K, Pancha I, et al. (2014) Biosorption of Methylene Blue by De-Oiled Algal Biomass: Equilibrium, Kinetics and Artificial Neural Network Modelling. PLoS ONE 9(10): e109545.

Nait merzoug A, Benjaballah A, Guellati O (2016) Preparation et caracterisation d’un charbon actif a base d’un déchet agricole. Third International Conference on Energy, Materials, Applied Energetics and Pollution ICEMAEP2016, Costantine, Algeria.

Ncibi MC, Mahjoub B, Seffen M (2007) Kinetic and equilibrium studies of methylene blue biosorption by Posidonia oceanica (L.) fibres. J. Hazard Mater 139 280–285.

Nirmala S, Pasupathy A, Raja M (2016) Removal of Methylene Blue Dye from Aqueous Solution by Adsorption Using Low Cost Adsorbent Obtained from Andrographispaniculata Leaves. International Journal of Scientific and Research Publications 6(10):422 .2250-3153.

Rauf MA, Bukallah SB, Hamour FA, Nasir AS (2008) Adsorption of dyes from aqueous solutions onto sand and their kinetic behavior. Chem. Eng. J 137 238–243.

Ringot B, Lerzy K, Chaplain J, Bonhoure P, Auclair E, and Larondelle Y (2007) In vitro biosorption of ochratoxin A on the yeast industry by-products: comparison of isotherm models. Bioresource Technology 98 (9): 1812–1821.

Rodriguez-Reinoso F (1998). The role of carbon materials in heterogeneous catalysis. Carbon
Rosa MF, Medeiros E S, Malmonge J A, Grégorski K S, Wood D F, Mattoso L H C, Glenn G (2010) Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior. *Carbohydrate Polymers* 81: 83-92.

Sakr F, Sennaoui A, Elouardi M, Tamimi M, Assabbane A (2015) Etude de l’adsorption du Bleu de Méthylène sur un biomatériau à base de Cactus (Adsorption study of Methylene Blue on biomaterial using cactus) *J. Mater. Environ. Sci* 6 (2) 397-406.

Sen TK, Afroze S & Ang H M (2011) Equilibrium, Kinetics and Mechanism of Removal of Methylene Blue from Aqueous Solution by Adsorption onto Pine Cone Biomass of Pinus radiate. *Water Air Soil Pollut* 218:499–515.

Shahabi-Ghahafarrokhi I, Khodaiyan F, Mousavi M et al. (2015) Preparation and characterization of nanocellulose from beer industrial residues using acid hydrolysis/ultrasound. *Fibers Polym* 16: 529–536.

Tan IAW, Ahmad AL, Hameed BH (2008) Adsorption of basic dye on high-surface area activated carbon prepared from coconut husk: equilibrium, kinetic and thermodynamic studies. *J. Hazard. Mater* 154 337–346.

Temkin MJ, Pyzhev V (1940) Recent modifications to Langmuir isotherms. *Acta Physiochim URSS* 12 217–222.

Truong T T C, VO N T T, Nguyen K D and Bui H M (2019) Preparation of cellulose-based hydrogel driven from tea residue for the adsorption of methylene blue. *Cellulose Chemistry and Technology* 53 573.

Tushar Kanti Sen, Sharmeen Afroze, H. M. Ang (2011) Equilibrium, Kinetics and Mechanism of Removal of Methylene Blue from Aqueous Solution by Adsorption onto Pine Cone Biomass of Pinus radiate. *Water Air Soil Pollut* 218:499–515.

Vimonses V, Lei S, Jin B, Chow C W K and Saint C (2009) Kinetic study and equilibrium
isotherm analysis of Congo red adsorption by clay materials. *Chemical Engineering Journal* 678 148, 354–364.

Weber JR WJ, Morris JC (1963) Kinetics of adsorption on carbon from solution, *Journal of the Sanitary Engineering Division. Proceedings of the American Society of Civil Engineers*. 89 31-59.

Xiuli H, Wei W, Xiaojian M (2011) Adsorption characteristics of methylene blue onto low cost biomass material lotus leaf. *Chemical Engineering Journal* 171 1–8.

Xiuli H, Wei W, Xiaojian M (2018) Adsorption characteristics of methylene blue onto low cost biomass material lotus leaf. *International Journal of Engineering & Technology* 7 (4): 3007-3013.

Figures captions

![Fig. 1](image-url)
Fig. 2

Absorbance vs. Wavelength (nm)

Fig. 3

Absorbance vs. Concentration of MB (mol/L)

Y = 0.0618x
R^2 = 0.9996
Fig. 9
Fig. 10

Fig. 11
Fig. 12

Fig. 13
Fig. 14

Fig. 15
Fig. 16

Fig. 17
Fig. 18

Fig. 19
Fig. 20
Fig. 22

Fig. 23
Fig. 26

Fig. 27