Approximate Controllability for Navier–Stokes Equations in 3D Rectangles Under Lions Boundary Conditions

Duy Phan¹ · Sérgio S. Rodrigues²

Abstract The 3D Navier–Stokes system, under Lions boundary conditions, is proven to be approximately controllable provided a suitable saturating set does exist. An explicit saturating set for 3D rectangles is given.

Keywords Navier–Stokes equations · Approximate controllability · Saturating set

Mathematics Subject Classification (2010) 93B05 · 35Q30 · 93C20

1 Introduction

We consider the incompressible 3D Navier–Stokes system in \((0, T) \times \Omega\), under Lions boundary conditions,

\[
\begin{align*}
\partial_t u + (u \cdot \nabla) u &- \nu \Delta u + \nabla p + h = \eta, \\
\text{div } u &= 0, \\
\left. \begin{pmatrix} u \cdot n \\ \text{curl } u - ((\text{curl } u) \cdot n) n \end{pmatrix} \right|_{\partial \Omega} &= \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \\
(1.1a) \\
\begin{pmatrix} u(0, x) = u_0(x), \end{pmatrix} \\
(1.1b)
\end{align*}
\]

where \(\Omega \subset \mathbb{R}^3\) is a rectangle \(\Omega = (0, L_1) \times (0, L_2) \times (0, L_3)\), whose boundary is denoted by \(\partial \Omega\). As usual \(u = (u_1, u_2, u_3)\) and \(p\), defined for \((t, x_1, x_2, x_3) \in (0, T) \times \Omega\), with \(T > 0\), are respectively the unknown velocity field and pressure of the fluid, \(\nu > 0\) is the viscosity,
the operators ∇ and Δ are respectively the well known gradient and Laplacian in the space variables $(x_1, x_2, x_3) \in \Omega$, $\langle u \cdot \nabla \rangle v := (u \cdot \nabla v_1, u \cdot \nabla v_2, u \cdot \nabla v_3)$, $\text{div} \, u := \sum_{i=1}^{3} \partial_{x_i} u_i$, \(\text{curl} \, u := (\partial_{x_2} u_3 - \partial_{x_3} u_2, \partial_{x_3} u_1 - \partial_{x_1} u_3, \partial_{x_1} u_2 - \partial_{x_2} u_1)\), the vector \mathbf{n} stands for the outward unit normal vector to $\partial \Omega$, and h is a fixed function. Finally, η is a control at our disposal.

Lions boundary conditions (cf. [15, Section 6.9]) are a particular case of Navier boundary conditions. For works and motivations concerning Lions and Navier boundary conditions (in both 2D and 3D cases) we refer to [7, 12, 13, 21, 34, 35] and references therein.

1.1 The Evolutionary System

We can rewrite system (1.1) as an evolutionary system

$$\dot{u} + Au + B(u, u) + h = \eta, \quad u(0) = u_0, \quad (1.2)$$

in the subspace $H := \{ u \in L^2(\Omega, \mathbb{R}^3) | \text{div} \, u = 0 \text{ and } (u \cdot \mathbf{n})|_{\partial \Omega} = 0 \}$ of divergence free vector fields which are tangent to the boundary. We may suppose that h and η take their values in H (otherwise we just take their orthogonal projections onto H). We consider H, endowed with the norm inherited from $L^2(\Omega, \mathbb{R}^3)$, as a pivot space, that is, $H = H'$. Further we set the spaces

$$V := \{ u \in H^1(\Omega, \mathbb{R}^3) | u \in H \},$$

$$D(A) := \{ u \in H^2(\Omega, \mathbb{R}^3) | u \in H, \quad \text{curl} \, u - ((\text{curl} \, u) \cdot \mathbf{n})n|_{\partial \Omega} = 0 \}.$$

Above, for $u, v, w \in V$,

$$A : V \rightarrow V', \quad \langle Au, v \rangle_{V', V} := v(\text{curl} \, u, \text{curl} \, v)_{L^2(\Omega, \mathbb{R}^3)}, \quad (1.3)$$

$$B : V \times V \rightarrow V', \quad \langle B(u, v), w \rangle_{V', V} := -\int_{\Omega} ((\langle u \cdot \nabla \rangle w) \cdot v) \, d\Omega. \quad (1.4)$$

It turns out that $D(A) = \{ u \in H | Au \in H \}$ is the domain of A. We will refer to A as the Stokes operator, under Lions boundary conditions. Further, we have the continuous, dense, and compact inclusions $D(A) \xrightarrow{dc} V \xrightarrow{dc} H$.

Denoting by Π the orthogonal projection in $L^2(\Omega, \mathbb{R}^3)$ onto H, for $u, v \in D(A)$ we may write $Au \Pi(v \Delta u)$, and $B(u, v) := \Pi(\langle u \cdot \nabla \rangle v)$.

Further A maps V onto V', and the operator $A^{-1} \in \mathcal{L}(H)$ is compact. The eigenvalues of A, repeated accordingly with their multiplicity, form an increasing sequence $(\lambda_k)_{k \in \mathbb{N}_0}$,

$$0 < \lambda_1 \leq \lambda_2 \leq \lambda_3 \leq \lambda_4 \leq \ldots,$$

with λ_k going to $+\infty$ with k.

Remark 1.1 It is clear that the Stokes operator (1.3) is well defined, mapping V into V'. We also see that the bilinear operator (1.4) maps $V \times V$ into V', due to the estimate

$$\langle B(u, v), w \rangle_{V', V} \leq C_1 |u|_{L^6(\Omega, \mathbb{R}^3)} |\nabla w|_{L^2(\Omega, \mathbb{R}^3)} |v|_{L^3(\Omega, \mathbb{R}^3)}$$

$$\leq C_2 |u|_{H^1(\Omega, \mathbb{R}^3)} |w|_{H^1(\Omega, \mathbb{R}^3)} |v|_{H^1(\Omega, \mathbb{R}^3)}.$$

For further estimations on the bilinear operator we refer to [33, Section 2.3].
1.2 Saturating Sets and Approximate Controllability

In the pioneering work [3], the authors introduced a method which led to the controllability of finite-dimensional Galerkin approximations of the 2D and 3D Navier–Stokes system, and to the approximate controllability of the 2D Navier–Stokes system, by means of low modes/degenerate forcing.

Hereafter $U \subseteq H$ will stand for a linear subspace of H, and we denote

$$B(a, b) := B(a, b) + B(b, a), \quad \text{for} \quad (a, b) \in U \times U.$$

At this point we only suppose that the sum $B(a, b) + B(b, a)$ is well defined, which is the case if $U = V$, for example. See Remark 1.1.

Definition 1.1 Let $C = \{W_k | k \in \{1, 2, \ldots, M\}\}$ and let E be a finite-dimensional space so that $C \subset E \subset U$. The finite-dimensional subspace $\mathcal{F}_L(E) \subset U$ is given by

$$\mathcal{F}_L(E) := E + \text{span}(B(a, b) | a \in C, b \in E, (B(a, a), B(b, b)) \in H \times H) \cap U.$$

Definition 1.2 A given finite subset $C = \{W_k | k \in \{1, 2, \ldots, M\}\} \subset U$ is said (L, U)-saturating if for the following sequence of subspaces $\mathcal{G}^j \subset U$, defined recursively by

$$\mathcal{G}^0 := \text{span}C, \quad \mathcal{G}^{j+1} := \mathcal{F}_L(\mathcal{G}^j),$$

we have that the union $\bigcup_{j \in \mathbb{N}} \mathcal{G}^j$ is dense in H.

In [4, Section 4] an explicit saturating set with 4 elements is presented for the 2D Navier–Stokes system under periodic boundary conditions.

Remark 1.2 In order to deal with different types of boundary conditions and domains the definitions of saturating set has been slightly changed/relaxed in several works. The definition of saturating set in [4, Section 4] is slightly different from Definition 1.2. But, we can prove (cf. [25, Section 6.1]) that the saturating set presented in [4] is also $(L, D(A))$-saturating (cf. [25, Definition 2.2.1]).

We would like to refer also to the works [9, 11, 26], where the notion of saturating set was used to derive ergodicity for the Navier–Stokes system under degenerate stochastic forcing (compare the sequence of subsets \mathcal{Z}_n in [11, Section 4] with the sequence of subsets \mathcal{K}_n in [3, Section 8]).

In the pioneering work [3], the set U in Eq. 1.2 is taken to be $D(A)$, the same is done in [4, 22, 23]. Later, in [20, 24, 25], U is taken as V in order to deal either with Navier-type boundary conditions or with internal controls supported in a small subset.

The above works are mainly concerned with the 2D Navier–Stokes equations and 1D Burgers equations, where we have the existence and uniqueness of the weak solutions for suitable data. The uniqueness of the solutions for 3D Navier–Stokes Eq. 1.2 is known only for more regular solutions (e.g., for so called strong solutions), whose existence is only known to hold in a small enough time interval $(0, T_*)$ (whose length T_* depends on the initial data $(u_0, h - \eta)$). Therefore, in the 3D case, we have to deal with the additional difficulties related to the fact that the well-posedness of the Cauchy problem is an open problem, only partially solved.
In [28], the method introduced in [3] is developed to the case where the well-posedness of the Cauchy problem is not known. We start with the following definitions (cf. [28, Section 2.1]. See also [14, Section 4.1]).

Definition 1.3 Given a finite dimensional space $E \subset U$, let us denote by $F = \mathcal{F}_B(E)$ the largest linear subspace $F \subset U$ so that any $\eta_1 \in F$ can be written as

$$\eta_1 = \eta - \sum_{j=1}^{k} B(\xi^j, \zeta^j),$$

with $k \in \mathbb{N}_0$ and $(\eta, \xi^1, \ldots, \xi^k) \in E^{1+k}$.

Definition 1.4 A given finite subset $C = \{ W_k | k \in \{1, 2, \ldots, M\} \} \subset U$ is said (B, U)-saturating if for the following sequence of subspaces of $E_j \subset U$, defined recursively by

$$E_0 := \text{span}C, \quad E_{j+1} := \mathcal{F}_B(E_j),$$

we have that the union $\bigcup_{j \in \mathbb{N}} E_j$ is dense in H.

Though, in [28] the author focuses on no-slip boundary conditions, $u|_{\partial \Omega} = 0$, the results also hold for other boundary conditions. This is also mentioned in [28, Section 2.3. Remark 2.7] where the author considers the case of periodic boundary conditions, and presents an explicit $(B, D(A))$-saturating set C (for the case of $(1, 1, 1)$-periodic vectors) whose 64 elements are eigenfunctions of the Stokes operator (i.e., the Laplacian). For a general period $q = (q_1, q_2, q_3) \in (\mathbb{R}_0)^3$ the existence of a saturating set is also proven in [28, Section 2.3, Theorem 2.5], though the form of the saturating set is less explicit.

Following the proof of the Main Theorem 2.2 in [28], we can see that the result holds for a generic setting where we have the subspaces

$$D(A) \hookrightarrow d,cV = D(A^\frac{1}{2}) \hookrightarrow d,cH = H',$$

$$V \subset H \bigcap H^1(\Omega, \mathbb{R}^3), \quad D(A) \subset H \bigcap H^2(\Omega, \mathbb{R}^3),$$

with $D(A) = \{ u \in H | Au \in H \}$ being the domain of the Stokes operator A (which depends on the boundary conditions), and where the scalar products

$$\langle Au, v \rangle_{V', V} \quad \text{and} \quad \langle Au, Av \rangle_H$$

induce norms in V and $D(A)$, respectively, which are equivalent to the those inherited from $H^1(\Omega, \mathbb{R}^3)$ and $H^2(\Omega, \mathbb{R}^3)$, respectively.

Remark 1.3 The notation $S \hookrightarrow R$ above means that the inclusion $S \subseteq R$ is continuous. The letter “d” (resp. “c”) means that, in addition, the inclusion is also dense (resp. compact).

Remark 1.4 In the periodic case mentioned above, usually we take a smaller subspace $H_{\text{per}} \subset H$ in order to factor out the kernel of A (as an operator in H), and guarantee that $(u, v) \mapsto \langle Au, v \rangle_{V'_\text{per}, V'_\text{per}}$ defines a scalar product in $V_{\text{per}} := V \bigcap H_{\text{per}}$. Notice that, for a non-zero constant vector field u, and under periodic boundary conditions, we will have $Au = -v \Delta u = 0$ and thus $\langle Au, u \rangle_{V', V} = 0$. Hence, $\langle Au, v \rangle_{V', V}$ does not define a scalar product in $V = H \bigcap H^1(\Omega, \mathbb{R}^3)$.

\(\copyright \) Springer
In particular, the results in [28] hold true for Lions boundary conditions, and we can conclude that approximate controllability for 3D Navier–Stokes equation follows from the existence of a \((B, D(A))\)-saturating set.

In this paper, we prove that approximate controllability also follows from the existence of a \((L, D(A))\)-saturating set. Namely, we will prove the following.

Main Theorem Let \((u_0, \hat{u}) \in V \times V\), \(\varepsilon > 0\), and \(T > 0\). If \(C\) is a \((L, D(A))\)-saturating set, then we can find a control \(\eta \in L^\infty((0, T), G^1)\) so that the solution of system (1.2) satisfies
\[
|u(T) - \hat{u}|_V < \varepsilon.
\]

Further, for any given length triplet \(L = (L_1, L_2, L_3)\), we present an explicit \((L, D(A))\)-saturating set \(C\) for the 3D rectangle \(\Omega = (0, L_1) \times (0, L_2) \times (0, L_3)\). The elements of \(C\) are 81 eigenfunctions of the Stokes operator, under Lions boundary conditions (cf. Theorem 3.1 hereafter). Though it is not our goal here to find a saturating set with the minimum number of elements as possible, we must say that for some \(L\) (maybe, even for all \(L\)), it may exist a saturating set with less elements. In any case, we underline that the existence of a \((L, D(A))\)-saturating set \(C\) is independent of the viscosity coefficient \(\nu\). In particular, the linear space \(G^1\), where the control \(\eta\) takes its values in, does not change with \(\nu\).

Finally, we recall that in [23, 24], an explicit saturating set was found for a 2D rectangle \(\Omega = (0, L_1) \times (0, L_2)\) with 8 elements. In [20] a saturating set with 24 elements is presented for the 2D Navier–Stokes system in a Cylinder under Lions boundary conditions i.e., in a channel with Lions boundary conditions in the bounded direction and with periodicity assumption in the unbounded direction). In [14, Section 6], a saturating set with 4 elements is presented for the 2D Navier–Stokes under periodic boundary conditions with a general period \(L = (L_1, L_2)\).

Remark 1.5 The subscript “\(L\)” in Definition 1.2 underlines the fact that the linearization \(B\) of \(B\) is used in the recursion step, while the subscript “\(B\)” in Definition 1.4 underlines the fact that the bilinear operator \(B\) is used in the recursion step.

1.3 Motivation and Further References

An advantage for considering \((L, D(A))\)-saturating sets is that the construction of \(F_L(E)\) is easier than the construction of \(F_B(E)\). This is important, when we need to dwell with explicit computations as in the case when we look for explicit saturating sets. Often, the existence of saturating sets is proven by showing that a given explicit set is saturating, which involves essentially explicit computations (Theorem 2.5 in [28] is an exception, but the proof is still strongly based on explicit computations).

For further results concerning the controllability and approximate controllability of Navier–Stokes (and also other) systems by a control with low finite-dimensional range (independent of the viscosity coefficient) in several domains (including the 2D Sphere and Hemisphere) we refer the reader to [2, 4, 5, 16–18, 27, 29–31]. We also mention Problem VII raised by A. Agrachev in [1] where the author inquires about the achievable controllability properties for controls taking values in a saturating set whose elements are localized/supported in a small subset \(\omega \subset \Omega\). The existence of such saturating sets is an open question (except for 1D Burgers in [20]). The controllability properties implied by such saturating set is an open question. There are some negative results, as for example in the case we consider the 1D Burgers equations in \(\Omega = (0, 1)\) and take controls in \(L^2(\omega, \mathbb{R})\), \(w \subset \Omega\), the approximate controllability fails to hold. Instead, to drive the system from one
state \(u_0 = u(0) \) at time \(t = 0 \) to another one \(u_T = u(T) \) at time \(t = T \), we may need \(T \) to be big enough. Though we do not consider localized controls here, we refer the reader to the related results in [8, 10, 32] and references therein.

The rest of the paper is organized as follows. In Section 2, we prove that the existence of a \((L, D(A))\)-saturating set implies the approximate controllability of the Navier–Stokes system. In Section 3, we present a \((L, D(A))\)-saturating set for a general 3D rectangle \(\Omega = (0, L_1) \times (0, L_2) \times (0, L_3) \).

2 Approximate Controllability

As we said above, in [28] it is proven that the existence of a \((B, D(A))\)-saturating set implies the approximate controllability of the 3D Navier–Stokes system, at time \(T > 0 \). Here we prove that we can conclude the same controllability property from the existence of a \((L, D(A))\)-saturating set. Hereafter \(u_0 \in V, h \in L^2_{\text{loc}}(\mathbb{R}_0, H) \), and \(E \subset D(A) \) is a finite-dimensional subspace. Let us consider the system

\[
\dot{u} + Au + B(u, u) + h = \eta, \quad u(0) = u_0,
\]

where the control \(\eta \) takes its values in \(E \).

For simplicity we will denote \(I_T := (0, T) \) and \(\overline{I_T} := [0, T] \), \(T > 0 \).

Definition 2.1
Let \(T \) be a positive constant. System (2.1) is \((G^1, E)\)-approximately controllable in time \(T \) if for any \(\varepsilon > 0 \) and any \((u_0, \hat{u}) \in V \times V \), there exist a control function \(\eta = \xi_0 + \xi_1 \), with \(\xi_0 \in L^\infty(I_T, G^1) \) and \(\xi_1 \in L^\infty(I_T, E) \), and a corresponding solution \(u \in C(\overline{I_T}, V) \cap L^2(I_T, D(A)) \) such that \(|u(T) - \hat{u}|_V < \varepsilon \).

Recall the sequence in Definition 1.2. In this section we prove the following (cf. Main Theorem in Section 1.2).

Theorem 2.1
If \(\mathcal{C} \) is a \((L, D(A))\)-saturating set, then for any positive \(T > 0 \) the system (2.1) is \((G^1, \{0\})\)-approximately controllable in time \(T \).

The proof is given hereafter, before we prove the following auxiliary result.

Lemma 2.1
Let \(T > 0 \). Then system (2.1) is is \((G^1, E)\)-approximately controllable in time \(T \) if it is \((G^1, \mathcal{F}_L(E))\)-approximately controllably in time \(T \).

Proof Let us fix \(\varepsilon > 0 \) and \((u_0, \hat{u}) \in V \times V \). If system (2.1) is \((G^1, \mathcal{F}_L(E))\)-approximately controllable in time \(T \), then there are \(\xi_0 \in L^\infty(I_T, G^1) \) and \(\xi_1 \in L^\infty(I_T, \mathcal{F}_L(E)) \) such that the corresponding solution for

\[
\dot{u} + Au + B(u, u) + h = \xi_0 + \xi_1, \quad u(0) = u_0,
\]

satisfies

\[
|u(T) - \hat{u}|_V \leq \varepsilon/4.
\]

We may write the function \(\xi_1 \) as

\[
\xi_1 = \eta + \sum_{i=1}^k B(a_i, b_i)
\]
for suitable $k \in \mathbb{N}_0$, $\eta \in L^\infty(I_T, E)$, and suitable pairs $(a_i, b_i) \in L^\infty(I_T, C \times E)$. Now, for any $\rho > 0$, we rewrite

$$\xi_1 = \eta + \sum_{i=1}^{k} \left(-B(\rho a_i - \rho^{-1} b_i, \rho a_i - \rho^{-1} b_i) + \rho^2 B(a_i, a_i) + \rho^{-2} B(b_i, b_i) \right)$$

$$= \rho^2 \eta_a + \eta_\rho + \rho^{-2} \eta_b$$

(2.4a)

with

$$\eta_a := \sum_{i=1}^{k} B(a_i, a_i), \quad \eta_b := \sum_{i=1}^{k} B(b_i, b_i).$$

(2.4b)

$$\eta_\rho := \eta - \sum_{i=1}^{k} B(\rho a_i - \rho^{-1} b_i, \rho a_i - \rho^{-1} b_i).$$

(2.4c)

Now, we rewrite (2.2) as

$$\dot{u} + Au + B(u, u) + h = \xi_0 + \rho^2 \eta_a + \eta_\rho + \rho^{-2} \eta_b, \quad u(0) = u_0.$$

(2.5)

Since Eq. 2.5 coincides with Eq. 2.2, the solution u of Eq. 2.5 is independent of ρ. Let us now consider the solution of the system

$$\dot{w}_\rho + Aw_\rho + B(w_\rho, w_\rho) + h = \xi_0 + \rho^2 \eta_a + \eta_\rho,$$

(2.6)

$$w_\rho(0) = u_0,$$

The solution u is known (by Theorem’s assumption) to exist for $t \in I_T$. We show now that the solution w_ρ also exists for time $t \in I_T$, provided ρ is big enough. Indeed, the difference $z = u - w_\rho$ solves

$$\dot{z} + Az + B(z, z) + B(u, z) = \rho^{-2} \eta_b, \quad z(0) = 0,$$

(2.7)

and we also know that $u \in C(I_T, V) \subseteq L^4(I_T, H^1(\Omega, \mathbb{R}^3))$ and $\rho^{-2} \eta_b \in L^\infty(I_T, H) \subseteq L^2(I_T, H)$. Further, we know that $\dot{z} = 0$ solves system (2.7) with $\eta_b = 0$, for time $t \in I_T$. Therefore, from [28, Remark 1.9], we can conclude that there exists a unique solution for system (2.7), for time $t \in I_T$, provided $|\rho^{-2} \eta_b - 0|_{L^2(I_T, H)}$ is small enough. That is, provided ρ is big enough. Furthermore, we have that

$$|u - w_\rho|_{C(I_T, V) \cap L^2(I_T, D(A))} = |z|_{C(I_T, V) \cap L^2(I_T, D(A))} \leq C \rho^{-2} |\eta_b|_{L^2(I_T, H)}$$

for a suitable constant C depending only on $|u|$. See again [28, Remark 1.9]. In particular, for big enough $\rho > 0$, we will have

$$|w_\rho(T) - u(T)|_V \leq \epsilon/4.$$

(2.8)

Observe that η_ρ in Eq. 2.4 is in $E - \text{conv}\{B(e, e) | e \in E\}$, where $\text{conv} S$ stands for the convex cone generated by the subset S, that is,

$$\text{conv} S := \left\{ \sum_{i=1}^{k} \alpha_i s_i | k \in \mathbb{N}, \alpha_i > 0, s_i \in S \right\}.$$

Hence, by Proposition 3.2 in [28], there is $(\tilde{\eta}, \tilde{\zeta}) \in (L^\infty(I_T, E))^2$ so that the corresponding solution for

$$\dot{y}_\rho + A(y_\rho + \tilde{\zeta}) + B(y_\rho + \tilde{\zeta}, y_\rho + \tilde{\zeta}) + h = \xi_0 + \rho^2 \eta_a + \tilde{\eta}, \quad y_\rho(0) = u_0,$$

(2.9)

satisfies

$$|w_\rho - y_\rho|_{C(I_T, V)} \leq \epsilon/4.$$

(2.10)
Remark 2.1 Actually, in [28, Proposition 3.2], it is assumed that $\eta_\rho \in F_B(E)$, but following the proof in [28, Section 3.3], we can see that the proof is brought to the “imitation” (in short time intervals) of a constant control $\eta_\rho \in E - \text{conv}\{B(e,e)| e \in E\}$ (see also [28, Section 4.2, proof of Lemma 3.3]).

Now from [28, Proposition 3.1] it follows that there exists a control $\hat{\eta} \in L_\infty(I_T, E)$ such that the solution of the system

\[\dot{\hat{y}}_\rho + A\hat{y}_\rho + B(\hat{y}_\rho, \hat{y}_\rho) + h = \xi_0 + \rho^2 \eta_a + \hat{\eta}, \quad \hat{w}_\rho(0) = u_0, \]

satisfies

\[|\hat{y}_\rho(T) - y_\rho(T)|_V \leq \varepsilon/4. \]

Finally, we observe that $\xi_0 + \rho^2 \eta_a \in L_\infty(I_T, G^1)$ and $\hat{\eta} \in L_\infty(I_T, E)$, and

\[|\hat{y}_\rho(T) - \hat{u}|_V \leq \varepsilon, \]

which can be concluded from Eqs. 2.3, 2.8, 2.10, and 2.12. \qed

2.1 Proof of Theorem 2.1.

Proceeding as in [28, Section 2.2] we can prove that system (2.1) is (G^1, G^{j+1})-approximately controllable in time T, provided $j \in \mathbb{N}$ is big enough.

Since $G^{j+1} = F_L(G^j)$, by Lemma 2.1, taking $E = G^j$, it follows that system (2.1) is (G^1, G^j)-approximately controllable in time T.

Recursively, by repeating the argument, we can conclude that system (2.1) is (G^1, G^1)-approximately controllable in time T.

Remark 2.2 Notice that we could use Lemma 2.1 again at the end of the proof of Theorem 2.1, to conclude that system (2.1) is (G^1, G^{0})-approximately controllable in time T. But, this does not improve the result because $L_\infty(I_T, G^1) + L_\infty(I_T, G^1) = L_\infty(I_T, G^1) + L_\infty(I_T, G^0) = L_\infty(I_T, G^1)$. Recall Definition 1.2.

3 The Saturating Set

Here we present a $(L, D(A))$-saturating set which consists of a finite number of suitable eigenfunctions of the Stokes operator A in the 3D rectangle

\[\Omega = (0, L_1) \times (0, L_2) \times (0, L_3) \]

under Lions boundary conditions, see Eq. 1.3, where $L_1, L_2,$ and L_3 are positive real numbers. We follow the arguments in [19, Section 3.5], where the case $L_1 = L_2 = L_3 = \pi$ is considered. Notice that the vector length $L = (L_1, L_2, L_3)$ plays a role in the explicit computations, and different vector lengths may require slightly different arguments. Recall for example the case of a 2D rectangle $(0, L_1) \times (0, L_2)$ considered in [25, Section 6.3] where the case of a square $L_1 = L_2$ needs a particular consideration (see also [23]). Recall also the case of the periodic boundary conditions considered in [28, Section 2.3] where in the case $L_1 = L_2 = L_3$ it is possible to give an explicit form for the $(B, D(A))$-saturating set (cf. [28, Remark 2.7], see also [16, Section 4]).
Approximate Controllability for Navier–Stokes Equations...

For a given \(k \in \mathbb{N}^3 \), let \(\#_0(k) \) stand for the number of vanishing components of \(k \). A complete system of eigenfunctions \(\{Y_j(k),k\} \), satisfying the Lions boundary conditions, is given by

\[
Y_j(k),k := \begin{pmatrix}
 w_1^{j(k),k} \sin \left(\frac{k_1\pi x_1}{L_1} \right) \\
 w_2^{j(k),k} \cos \left(\frac{k_1\pi x_1}{L_1} \right) \\
 w_3^{j(k),k} \cos \left(\frac{k_1\pi x_1}{L_1} \right)
\end{pmatrix} \cos \left(\frac{k_2\pi x_2}{L_2} \right) \cos \left(\frac{k_3\pi x_3}{L_3} \right), \quad \#_0(k) \leq 1, \tag{3.1a}
\]

with

\[
\{ w^{j(k),k} | j(k) \in \{1, 2 - \#_0(k)\} \} \subset \{k\}^{1\{L\}}_0 \setminus \{(0, 0, 0)\} \tag{3.1b}
\]

a linearly independent family, where

\[
[k]^{1\{L\}}_0 := \{ z \in \mathbb{R}^3 | (z, k)[L] = 0, \text{ and } z_i = 0 \text{ if } k_i = 0 \}, \tag{3.1c}
\]

\[
(z, k)[L] := \frac{z_1 k_1}{L_1} + \frac{z_2 k_2}{L_2} + \frac{z_3 k_3}{L_3}. \tag{3.1d}
\]

Notice that \(2 - \#_0(k) \) is the dimension of the subspace \([k]^{1\{L\}}_0 \) and that the linear independence of the family \(\{w^{j(k),k} | j(k) \in \{1, 2 - \#_0(k)\}\} \), for each \(k \), implies that the family in Eq. 3.1a is also linearly independent. The completeness of the system in Eq. 3.1a is shown in [21, Section 6.6].

Example 1 The eigenspace associated with the frequency vector \(k = (2, 4, 0) \), is the one spanned by the single eigenfunction \(Y^{1,k} \), where we can choose \(w^{1,k} = (-4L_1, 2L_2, 0) \in [k]^{1\{L\}}_0 \). The eigenspace associated with the frequency vector \(k = (2, 4, 5) \in \mathbb{N}^3_0 \), is the one spanned by the two eigenfunctions \(Y^{1,k} \) and \(Y^{2,k} \), where we can choose \(\{w^{1,k}, w^{2,k}\} \) linearly independent in \([k]^{1\{L\}}_0 = \text{span}\{(-4L_1, 2L_2, 0), (-5L_1, 0, 2L_3)\} \).

Now we are able to present the saturating set in the following Theorem 3.1, whose proof is given in Section 3.4. Before, we need to derive some tools used in the proof.

Theorem 3.1 The set \(\mathcal{C} := \left\{ Y_j(n),n | n \in \mathbb{N}^3, \quad 0 \leq n_i \leq 3, \quad \#_0(n) \leq 1, \quad j(n) \in \{1, 2 - \#_0(n)\} \right\} \) is \((L, D(A))-saturating.\)

3.1 The expression for \((Y^k \cdot \nabla) Y^m + (Y^m \cdot \nabla) Y^k\)

We will present the expression for the coordinates of \((Y^{j(k),k} \cdot \nabla) Y^{j(m),m} + (Y^{j(m),m} \cdot \nabla) Y^{j(k),k}\) for given eigenfunctions as in Eq. 3.1a. In order to shorten the following expressions and simplify the writing, we will write

\[
Y^k = Y^{j(k),k}, \quad Y^m = Y^{j(m),m}, \quad w^k = w^{j(k),k}, \quad \text{and} \quad w^m = w^{j(m),m},
\]
by omitting the indexes \(j(k), j(m) \). We will also denote

\[
C_i(k_i) := \cos \left(\frac{k_i \pi x_i}{L_i} \right) \quad \text{and} \quad S_i(k_i) := \sin \left(\frac{k_i \pi x_i}{L_i} \right), \quad i \in \{1, 2, 3\}.
\]

Using these notations, we find

\[
(\mathbf{y}^k \cdot \nabla) \mathbf{y}^m = \begin{pmatrix}
\mathbf{y}^k \cdot \mathbf{u}_1^m \\
\mathbf{y}^k \cdot \mathbf{u}_2^m \\
\mathbf{y}^k \cdot \mathbf{u}_3^m
\end{pmatrix}
\begin{pmatrix}
\frac{m_1 \pi}{L_1} C_1(m_1) C_2(m_2) C_3(m_3) \\
-\frac{m_2 \pi}{L_2} S_1(m_1) S_2(m_2) C_3(m_3) \\
-\frac{m_3 \pi}{L_3} S_1(m_1) C_2(m_2) S_3(m_3)
\end{pmatrix}.
\]

(3.2)

To compute the coordinates of \((\mathbf{y}^k \cdot \nabla) \mathbf{y}^m + (\mathbf{y}^m \cdot \nabla) \mathbf{y}^k\), it is useful to define

\[
\beta^{\#1 \#2 \#3}_{w^k, m} := \frac{\pi}{8} \left(\star_1 \left(\frac{w^k_{1,m_1}}{L_1} \right) \star_2 \left(\frac{w^k_{2,m_2}}{L_2} \right) \star_3 \left(\frac{w^k_{3,m_3}}{L_3} \right) \right), \quad \text{for} \quad \{\star_1, \star_2, \star_3\} \in \{+, -, \}^3.
\]

(3.3)

Example 2 As an illustration, we have

\[
\beta^{+++}_{w^k, m} = \frac{\pi}{8} \left(\frac{w^k_{1,m_1}}{L_1} + \frac{w^k_{2,m_2}}{L_2} + \frac{w^k_{3,m_3}}{L_3} \right), \quad \text{and} \quad \beta^{--+}_{w^k, k} = \frac{\pi}{8} \left(-\frac{w^{m_1}_{k_1}}{L_1} + \frac{w^{m_2}_{k_2}}{L_2} - \frac{w^{m_3}_{k_3}}{L_3} \right).
\]

From straightforward computations, we can find the following expressions for the coordinates of \((\mathbf{y}^k \cdot \nabla) \mathbf{y}^m + (\mathbf{y}^m \cdot \nabla) \mathbf{y}^k\),

\[
\begin{align*}
(\mathbf{y}^k \cdot \nabla) \mathbf{y}^m + & (\mathbf{y}^m \cdot \nabla) \mathbf{y}^k)_{1} \\
= & \left(w^{m}_{1} \beta^{+++}_{w^k, m} + w^{k}_{1} \beta^{+++}_{w^k, k} \right) S_1(k_1 + m_1) C_2(k_2 + m_2) C_3(k_3 + m_3) \\
& + \left(w^{m}_{1} \beta^{+++}_{w^k, m} - w^{k}_{1} \beta^{+++}_{w^k, k} \right) S_1(k_1 - m_1) C_2(k_2 - m_2) C_3(k_3 - m_3) \\
& + \left(w^{m}_{1} \beta^{+++}_{w^k, m} + w^{k}_{1} \beta^{+++}_{w^k, k} \right) S_1(k_1 + m_1) C_2(k_2 + m_2) C_3(k_3 - m_3) \\
& + \left(w^{m}_{1} \beta^{+++}_{w^k, m} - w^{k}_{1} \beta^{+++}_{w^k, k} \right) S_1(k_1 - m_1) C_2(k_2 - m_2) C_3(k_3 + m_3) \\
& + \left(w^{m}_{1} \beta^{+++}_{w^k, m} + w^{k}_{1} \beta^{+++}_{w^k, k} \right) S_1(k_1 + m_1) C_2(k_2 - m_2) C_3(k_3 + m_3) \\
& + \left(w^{m}_{1} \beta^{+++}_{w^k, m} - w^{k}_{1} \beta^{+++}_{w^k, k} \right) S_1(k_1 - m_1) C_2(k_2 + m_2) C_3(k_3 - m_3) \\
& + \left(w^{m}_{1} \beta^{+++}_{w^k, m} + w^{k}_{1} \beta^{+++}_{w^k, k} \right) S_1(k_1 + m_1) C_2(k_2 + m_2) C_3(k_3 - m_3) \\
& + \left(w^{m}_{1} \beta^{+++}_{w^k, m} - w^{k}_{1} \beta^{+++}_{w^k, k} \right) S_1(k_1 - m_1) C_2(k_2 - m_2) C_3(k_3 + m_3).
\end{align*}
\]
\[
\left((y^k \cdot \nabla) Y^m + (Y^m \cdot \nabla) Y^k \right)_2
\]
\[= + \left(w_2 \beta_{+3,2}^{+3,2} + w_2 \beta_{-3,2}^{+3,2} \right) C_1(k_1 + m_1) S_2(k_2 + m_2) C_3(k_3 + m_3)
+ \left(w_2 \beta_{-3,2}^{+3,2} - w_2 \beta_{-3,2}^{+3,2} \right) C_1(k_1 - m_1) S_2(k_2 - m_2) C_3(k_3 - m_3)
+ \left(w_2 \beta_{+3,2}^{+3,2} + w_2 \beta_{+3,2}^{+3,2} \right) C_1(k_1 + m_1) S_2(k_2 + m_2) C_3(k_3 - m_3)
+ \left(w_2 \beta_{-3,2}^{+3,2} - w_2 \beta_{-3,2}^{+3,2} \right) C_1(k_1 - m_1) S_2(k_2 - m_2) C_3(k_3 + m_3)
\]
\[\text{(3.4b)}
\]

\[
\left((y^k \cdot \nabla) Y^m + (Y^m \cdot \nabla) Y^k \right)_3
\]
\[= + \left(w_3 \beta_{+3,3}^{+3,3} + w_3 \beta_{-3,3}^{+3,3} \right) C_1(k_1 + m_1) C_2(k_2 + m_2) S_3(k_3 + m_3)
+ \left(w_3 \beta_{+3,3}^{+3,3} - w_3 \beta_{-3,3}^{+3,3} \right) C_1(k_1 - m_1) C_2(k_2 - m_2) S_3(k_3 - m_3)
+ \left(w_3 \beta_{+3,3}^{+3,3} + w_3 \beta_{+3,3}^{+3,3} \right) C_1(k_1 + m_1) C_2(k_2 + m_2) S_3(k_3 - m_3)
+ \left(w_3 \beta_{+3,3}^{+3,3} - w_3 \beta_{-3,3}^{+3,3} \right) C_1(k_1 - m_1) C_2(k_2 - m_2) S_3(k_3 + m_3)
\]
\[\text{(3.4c)}
\]

Accordingly to Definition 1.2, we would need to compute the orthogonal projection \(B(Y^k, Y^m) = \Pi \left((y^k \cdot \nabla) Y^m + (Y^m \cdot \nabla) Y^k \right) \), onto \(H \). However, we will manage to use only the coordinates in Eq. 3.4 instead of the explicit expression for \(B(Y^k, Y^m) \) (cf. Section 3.3). The expression for \(B(Y^k, Y^m) \) can be more cumbersome than the expressions in Eq. 3.4. For the case \(L = (L_1, L_2, L_3) = (\pi, \pi, \pi) \), the explicit expression for \(B(Y^k, Y^m) \) can be found in [19, Section 3.5.1].

3.2 A Difference Between 2D and 3D Cases

For the case of 2D Navier–Stokes equation on a rectangle under Lions boundary conditions, treated in [23], it holds that \(B(W^n, W^n) = 0 \) for an eigenfunction \(W^n \) of the corresponding 2D Stokes operator (cf. [25, Section 4.5]). This can be seen from the fact that vectors fields in \(u \in H \) can be identified with a so-called stream function \(\phi_u \), as \(u = \nabla^\perp \phi_u \), and from the vorticity relations

\[
\nabla^\perp \cdot u = -\Delta \phi_u,
\]
\[
\nabla^\perp \cdot B(u, u) = -u \cdot \nabla (\nabla^\perp \cdot u) = \nabla \phi_u \cdot \nabla^\perp (\nabla^\perp \cdot u) = -\nabla \phi_u \cdot \Delta u,
\]
which imply
\[\nabla \cdot B(W^n, W^n) = \lambda_n \nabla \phi_W \cdot W^n = \lambda_n \nabla \phi_W \cdot \nabla \phi_W = 0, \]

where \(\lambda_n \) is the eigenvalue associated to \(W^n, \Pi(-\Delta)W_n = \lambda_n W_n \).

From Theorem 3.2 below, in the case of the 3D rectangle, the identity \(B(Y^k, Y^k) = 0 \) does not hold for all eigenfunctions \(Y^k \) (cf. the case of the 1D Burgers equation studied in [20]).

Theorem 3.2 For an eigenfunction \(Y^k = Y^{j(k),k} \) as in Eq. 3.1, we have
\[
B(Y^k, Y^k) \neq 0, \quad \text{if} \quad \#_0(k) = 0,
\]
\[
B(Y^k, Y^k) = 0, \quad \text{if} \quad \#_0(k) = 1.
\]

Proof In the case \(\#_0(k) = 0 \), since \(0 = (w^k, k)_{[L]} = \frac{w^k_{k1}}{L_1} + \frac{w^k_{k2}}{L_2} + \frac{w^k_{k3}}{L_3} \), from Eq. 3.4 with \(m = k \), we can rewrite the first coordinate as
\[
\left((Y^k \cdot \nabla) Y^k \right)_1 = -\frac{\pi}{4} w^k_1 \frac{w^k_{k3}}{L_3} S_1(2k_1) C_2(2k_2) - \frac{\pi}{4} w^k_1 \frac{w^k_{k2}}{L_2} \frac{S_1(2k_1) C_3(2k_3)}{L_1} + \frac{\pi}{4} w^k_1 \frac{w^k_{k1}}{L_1} S_1(2k_1).
\]

Proceeding analogously for the other two coordinates, we obtain
\[
\left((Y^k \cdot \nabla) Y^k \right)_2 = -\frac{\pi}{2} \left(\begin{array}{c}
\frac{w^k_1}{L_1} \sin \left(\frac{2k_1 \pi x_1}{L_1} \right) \\
\frac{w^k_2}{L_2} \sin \left(\frac{2k_2 \pi x_2}{L_2} \right) \\
\frac{w^k_3}{L_3} \sin \left(\frac{2k_3 \pi x_3}{L_3} \right)
\end{array} \right) \left(\begin{array}{c}
\frac{w^k_{k1}}{L_1} \cos^2 \left(\frac{k_1 \pi x_1}{L_1} \right) + \frac{w^k_{k2}}{L_2} \cos^2 \left(\frac{k_2 \pi x_2}{L_2} \right) + \frac{w^k_{k3}}{L_3} \cos^2 \left(\frac{k_3 \pi x_3}{L_3} \right)
\end{array} \right).
\]

Assuming that \(B(Y^k, Y^k) = \Pi ((Y^k \cdot \nabla) Y^k) = 0 \), there would exist a function \(g \) such that \((Y^k \cdot \nabla) Y^k = \nabla g \) because \(H^\perp = \{ \nabla g \mid g \in H^1(\Omega, \mathbb{R}) \} \) (cf. [33, Section 2.5]), which implies that \(\text{curl} ((Y^k \cdot \nabla) Y^k) = \text{curl} (\nabla g) = 0 \). That is,
\[
0 = \text{curl} ((Y^k \cdot \nabla) Y^k) = \frac{\pi^2}{2} \left(\begin{array}{c}
\frac{w^k_{k1}}{L_1} \sin \left(\frac{2k_1 \pi x_1}{L_1} \right) \sin \left(\frac{2k_3 \pi x_3}{L_3} \right) - \frac{w^k_{k3}}{L_3}
\frac{w^k_{k2}}{L_2} \sin \left(\frac{2k_2 \pi x_2}{L_2} \right) \sin \left(\frac{2k_1 \pi x_1}{L_1} \right) - \frac{w^k_{k1}}{L_1}
\frac{w^k_{k3}}{L_3} \sin \left(\frac{2k_3 \pi x_3}{L_3} \right) \sin \left(\frac{2k_2 \pi x_2}{L_2} \right) - \frac{w^k_{k2}}{L_2}
\end{array} \right).
\]
We will prove that this equality cannot hold if \(\#_0(k) = 0 \). We start by proving that, in this case, no component of \(w^k \) is vanishing. Indeed, if for example \(w^k_1 = 0 \), we would have \(\frac{w^k_1}{L_2} = -\frac{w^k_3}{L_3} \). Then, Eq. 3.6 would give us
\[
0 = \begin{pmatrix}
0 \\
-\frac{w^k_2}{L_2} \frac{w^k_1}{L_1} \sin \left(\frac{2k_1 \pi x_1}{L_1} \right) \sin \left(\frac{2k_2 \pi x_2}{L_2} \right)
\end{pmatrix}
= \frac{w^k_4}{L_3} \frac{k_1}{L_1} \sin \left(\frac{2k_1 \pi x_1}{L_1} \right) \begin{pmatrix}
0 \\
\frac{w^k_3}{L_3} \sin \left(\frac{2k_2 \pi x_2}{L_2} \right)
\end{pmatrix}.
\]

Since \(k \in \mathbb{N}_0^3 \), it follows that necessarily \((w^k_4)^2 + (w^k_2)^2 + (w^k_3)^2 = 0 \), which in turn leads us to \(w^k = (0, 0, 0) \), which contradicts the fact that, by the definition (cf. Eq. 3.1), \(w^k \neq (0, 0, 0) \). Thus \(w^k_1 \neq 0 \). A similar argument leads us to \(w^k_2 \neq 0 \) and \(w^k_3 \neq 0 \).

Now, since all components of \(w^k \) are different from 0, from Eq. 3.6, we have
\[
\frac{w^k_1}{L_2} \frac{k_2}{L_3} - \frac{w^k_2}{L_3} \frac{k_1}{L_1} = \frac{w^k_2}{L_2} \frac{k_1}{L_1} = \frac{w^k_3}{L_3} = 0,
\]
that is \(k^L \times w^k = 0 \), with \(k^L := (k_1/L_1, k_2/L_2, k_3/L_3) \). Furthermore, we find \(w^k \cdot k^L = (w^k, k)_{[L]} = 0 \) and, from the triple vector product relation
\[
k^L \times (k^L \times w^k) = (k^L \cdot w^k)k^L - (k^L \cdot k^L) w^k,
\]
(cf. [6, Section 2.35]), it follows that \(0 = 0 - (k^L \cdot k^L) w^k = -|k^L|^2 w^k \) which leads to the contradiction \(w^k = 0 \). We can conclude that \(B(Y^k, Y^k) \neq 0 \) for all \(k \in \mathbb{N}_0^3 \).

In the case \(\#_0(k) = 1 \), for example if \(k_3 = 0 \), then \(w^k_3 = 0 \) and from Eq. 3.5 we obtain
\[
(Y^k \cdot \nabla) Y^k = -\frac{\pi}{2} \begin{pmatrix}
w^k_1 \sin \left(\frac{2k_1 \pi x_1}{L_1} \right) \\
w^k_2 \sin \left(\frac{2k_2 \pi x_2}{L_2} \right) \\
0
\end{pmatrix} = \nabla g,
\]
with \(g = \frac{w^k_1}{4} \begin{pmatrix}
k_2 L_1 \cos \left(\frac{2k_1 \pi x_1}{L_1} \right) + k_1 L_2 \cos \left(\frac{2k_2 \pi x_2}{L_2} \right)
\end{pmatrix} \). Thus \(B(Y^k, Y^k) = 0 \), if \(k_3 = 0 \).

A similar argument gives us that \(B(Y^k, Y^m) = 0 \) if \(k_i = 0 \), for \(i \in \{1, 2\} \). □

3.3 Avoiding the Computation of \(B(Y^k, Y^m) \)

We present an auxiliary result which will allow us to work with the coordinates in Eq. 3.4, avoiding to derive (and avoiding the need to work with) the explicit expression for the projection \(B(Y^k, Y^m) = \Pi \left((Y^k \cdot \nabla) Y^m + (Y^m \cdot \nabla) Y^k \right) \) (cf. Definition 1.2). With \(k \in \mathbb{N}_0^3 \), let us define the functions
\[
\psi_{1}^k = \psi_{1}^k(x) = \sin \left(\frac{k_1 \pi x_1}{L_1} \right) \cos \left(\frac{k_2 \pi x_2}{L_2} \right) \cos \left(\frac{k_3 \pi x_3}{L_3} \right),
\]
\[
\psi_{2}^k = \psi_{2}^k(x) = \cos \left(\frac{k_1 \pi x_1}{L_1} \right) \sin \left(\frac{k_2 \pi x_2}{L_2} \right) \cos \left(\frac{k_3 \pi x_3}{L_3} \right),
\]
\[
\psi_{3}^k = \psi_{3}^k(x) = \cos \left(\frac{k_1 \pi x_1}{L_1} \right) \cos \left(\frac{k_2 \pi x_2}{L_2} \right) \sin \left(\frac{k_3 \pi x_3}{L_3} \right).
\]
Lemma 3.1 Let us be given \((Y_k)\) We observe that for the eigenfunctions \(\psi_k\) we fix a basis \(\{w_1, w_2, w_3\}\) where \(\langle \psi_k, \psi_m \rangle = 0\) for any \(k, m \in \mathbb{N}^3\) and it follows that
\[
\langle \psi_k, \psi_m \rangle = 0 \quad \text{for all} \quad k, m \in \mathbb{N}^3,
\]
and the vector functions
\[
Y_z^k = \begin{pmatrix}
 z_1

 z_2

 z_3
\end{pmatrix}, \quad k \in \mathbb{N}^3, \quad z \in \mathbb{R}^3.
\] (3.7)

We observe that for the eigenfunctions \(Y^k = Y^{j(k),k}\) in Eq. 3.1a, we have
\[
Y^{j(k),k} = Y^k_{w_{j(k)},k} \quad \text{with} \quad k \in \mathbb{N}^3, \quad \#_0(k) \leq 1, \quad j(k) \in \{1, 2 − \#_0(k)\}.
\]
Observe also that if \(m \neq k\) then \((Y^k_z, Y^m_w)_{L^2((0,L_1), \Omega)} = 0\) for all \(z, w \in \mathbb{R}^3\), because we have \((\psi^k_i, \psi^m_i)_{L^2((0,L_i), \Omega)} = 0\), for all \(i \in \{1, 2, 3\}\). From Eq. 3.4, we observe that
\[
(Y^k \cdot \nabla) Y^m + (Y^m \cdot \nabla) Y^k = \sum_{n=(k(\ast \ast \ast)m)^+} \alpha_{j(n),n} \psi^m_{\alpha(n),n},
\] (3.8)
where
\[
(k(\ast \ast \ast)m)^+ := (|k_1 \ast m_1|, |k_2 \ast m_2|, |k_3 \ast m_3|),
\] (3.9)
and for suitable vectors \(z^n = (z^n_1, z^n_2, z^n_3) \in \mathbb{R}^3\) (depending on the parameters \(k, m, w^m\) and \(w^k\)). Thus, the projection
\[
\mathcal{B}(Y^m, Y^k) = \sum_{n=(k(\ast \ast \ast)m)^+} \alpha_{j(n),n} \psi^m_{\alpha(n),n}
\]
satisfies, for any \(n\),
\[
\sum_{j(n) \in \{1, 2 − \#_0(n)\}} \alpha_{j(n),n} \psi^m_{\alpha(n),n} = \prod Y^m_{z^n} = \prod \begin{pmatrix}
 z^n_1

 z^n_2

 z^n_3
\end{pmatrix}.
\]

Lemma 3.1 Let us be given \(\alpha, \gamma \in \mathbb{R}^3\) and \(k \in \mathbb{N}^3\). Then the family \(\{\alpha, \gamma, k\}\) is linearly independent if, and only if, the family \(\{\prod \mathcal{Y}^k_{\alpha}, \prod \mathcal{Y}^k_{\gamma}\}\) is linearly independent. In either case
\[
\text{span}\{\prod \mathcal{Y}^k_{\alpha}, \prod \mathcal{Y}^k_{\gamma}\} = \text{span} Y^{(1,2),k}.
\]

Proof Let us fix a basis \(\{w^{1,k}, w^{2,k}\}\) for \(\{k\}^\perp_0 = \{k\}^\perp\). Given \(\alpha, \gamma \in \mathbb{R}^3\), since \(\{w^{1,k}, w^{2,k}, k\}\) is a basis in \(\mathbb{R}^3\), we can write (in a unique way)
\[
\alpha = \alpha^{1,k} w^{1,k} + \alpha^{2,k} w^{2,k} + \alpha_0 k,
\]
\[
\gamma = \gamma^{1,k} w^{1,k} + \gamma^{2,k} w^{2,k} + \gamma_0 k,
\] (3.10)
and it follows that
\[
\mathcal{Y}^k_{\alpha} = \alpha^{1,k} Y^{1,k} + \alpha^{2,k} Y^{2,k} + \alpha_0 \mathcal{Y}^k,
\]
\[
\mathcal{Y}^k_{\gamma} = \gamma^{1,k} Y^{1,k} + \gamma^{2,k} Y^{2,k} + \gamma_0 \mathcal{Y}^k.
\]
Since \(\mathcal{Y}^k = \nabla(- \cos(k_1 \pi x_1/L_1) \cos(k_2 \pi x_2/L_2) \cos(k_3 \pi x_3/L_3))\), we obtain
\[
\prod \mathcal{Y}^k_{\alpha} = \alpha^{1,k} Y^{1,k} + \alpha^{2,k} Y^{2,k},
\]
\[
\prod \mathcal{Y}^k_{\gamma} = \gamma^{1,k} Y^{1,k} + \gamma^{2,k} Y^{2,k}.
\] (3.11)
Now, it is clear that \(\text{span}(\Pi y^k_\alpha, \Pi y^k_\gamma) = \text{span}Y^{(1,2), k} \) if, and only if, the family \(\{\Pi y^k_\alpha, \Pi y^k_\gamma\} \) is linearly independent. Recall that \(\{Y^{1,k}, Y^{2,k}\} \) is linearly independent by definition.

Observe that given \((r, s) \in \mathbb{R}^2\) such that \(r \Pi y^k_\alpha + s \Pi y^k_\gamma = 0 \), we have (using Eq. 3.11) that \((r \alpha^{1,k} + s \gamma^{1,k})Y^{1,k} + (r \alpha^{2,k} + s \gamma^{2,k})Y^{2,k} = 0\) and, since \(\{Y^{1,k}, Y^{2,k}\} \) is linearly independent, we find that \(\begin{pmatrix} \alpha^{1,k} \\ \gamma^{1,k} \end{pmatrix} \begin{pmatrix} r \\ s \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \). Therefore

\[
\{\Pi y^k_\alpha, \Pi y^k_\gamma\} \text{ is linearly independent } \iff \det \begin{pmatrix} \alpha^{1,k} & \alpha^{2,k} \\ \gamma^{1,k} & \gamma^{2,k} \end{pmatrix} \neq 0. \quad (3.12)
\]

Since \(\{w^{1,k}, w^{2,k}, k\} \) is linearly independent, a similar argument (using the equations in Eq. 3.10, together with \(k = 0w^{1,k} + 0w^{2,k} + 1k \)) leads us to

\[
\{\alpha, \gamma, k\} \text{ is linearly independent } \iff \det \begin{pmatrix} \alpha^{1,k} & \alpha^{2,k} & \alpha_0 \\ \gamma^{1,k} & \gamma^{2,k} & \gamma_0 \\ 0 & 0 & 1 \end{pmatrix} \neq 0. \quad (3.13)
\]

The Lemma follows from Eqs. 3.12 and 3.13. \(\Box \)

3.4 Proof of Theorem 3.1

Introducing the family of sets

\[
S^q := \left\{ n \in \mathbb{N}^3 | 0 \leq n_i \leq q, \#_0(n) \leq 1 \right\}, \quad q \in \mathbb{N}, \ q \geq 3, \quad (3.14)
\]

and recalling the sequence in Definition 1.2, we can see that Theorem 3.1 is a corollary of the following inclusions

\[
C^3 \subseteq G^0, \quad \text{and} \quad C^q \subseteq G^{q-1}, \quad \text{for all} \quad q \in \mathbb{N}, \ q \geq 3, \quad (3.15)
\]

which we will prove by induction.

Base step. By definition, \(C = C^3 \) and \(\text{span}C = G^0 \subseteq G^2 \). Therefore

Inclusions (3.15) hold for \(q = 3 \). \(\quad (3.16) \)

Induction step. The induction hypothesis is

\[
C^3 \subseteq G^0 \text{ and the inclusion } C^q \subseteq G^{q-1} \text{ holds true for a given } q \in \mathbb{N}, \ q \geq 3.
\]

(\text{IH.L-re.eq.3.17})

We want to prove that \(C^{q+1} \subseteq G^q \).

Notice that

\[
C^{q+1} = \left\{ Y^{1,n} | n \in S^{q+1}, \#_0(n) = 1 \right\} \bigcup \left\{ Y^{1,n}, Y^{2,n} | n \in S^{q+1}, \#_0(n) = 0 \right\}.
\]

We will consider the cases \(\#_0(n) = 1 \) and \(\#_0(n) = 0 \) separately.

- **The case** \(n \in C^{q+1} \) and \(\#_0(n) = 1 \). Suppose that \(k \in \mathbb{N}^3, \#_0(k) = 1, \) and \(k_3 = 0 \).

We can see that, up to a constant \(C \neq 0, Y^k = C \begin{pmatrix} W_k \\ 0 \end{pmatrix} \), where for simplicity we denoted \(Y^k = Y^{1,k} \) and \(W_k := \begin{pmatrix} -k_3 \pi & S_1(k_1)C_2(k_2) \\ k_3 \pi & S_2(k_2) \end{pmatrix} \), with \(\vec{k} := (k_1, k_2) \). Notice
that $W_\mathcal{K}$ is an eigenfunction of the Stokes operator in the 2D rectangle $R = (0, L_1) \times (0, L_2)$, as observed in [23, Section 2.2]. Now let also $m \in \mathbb{N}^3$, $\#_0(m) = 1$, and $m_3 = 0$. Then, we can see that

\[
(Y^k \cdot \nabla) Y^m + (Y^m \cdot \nabla) Y^k = \begin{pmatrix}
(W_\mathcal{K} \cdot \nabla_2) W_m + (W_m \cdot \nabla_2) W_\mathcal{K} \\
0
\end{pmatrix}
\]

(3.18a)

where ∇_2 is the gradient on the rectangle R, that is, on the variables (x_1, x_2).

Now, on one hand we can write

\[
(Y^k \cdot \nabla) Y^m + (Y^m \cdot \nabla) Y^k = \mathcal{B}(Y^k, Y^m) + \nabla q
\]

(3.18b)

where $\mathcal{B}(Y^k, Y^m) \in H$ and $q \in H^1(\Omega, \mathbb{R}^3)$. On the other hand we can write

\[
(W_\mathcal{K} \cdot \nabla_2) W_m + (W_m \cdot \nabla_2) W_\mathcal{K} = \mathcal{B}_2(W_\mathcal{K}, W_m) + \nabla p
\]

(3.18c)

where $\mathcal{B}_2(Y^k, Y^m) = \{ u \in L^2(\mathbb{R}, \mathbb{R}^2) | \partial_{x_1} u_1 + \partial_{x_2} u_2 = 0 \text{ and } u \cdot (n_1, n_2) = 0 \}$ and $p \in H^1(\mathbb{R}, \mathbb{R}^2)$. Therefore, from Eq. 3.18 it follows that necessarily

\[
\mathcal{B}(Y^k, Y^m) = \begin{pmatrix}
\mathcal{B}_2(W_\mathcal{K}, W_m) \\
0
\end{pmatrix}
\]

and

\[
\nabla q = \begin{pmatrix}
\nabla_2 p \\
0
\end{pmatrix}
\]

Notice that given $x \in \partial \Omega$, the normal n_x, to Ω at x, satisfies $n_x = (n_{x,1}, n_{x,2}, n_{x,3}) = (n_{x,1}, n_{x,2}, 0)$ if $x := (x_1, x_2, x_3) \in \partial R \times (0, L_3)$, and $n_x = (0, 0, \pm 1)$ if $x \in R \times \{0, L_3\}$. Notice also that $\partial R \times \{0, L_3\}$ is dense in $\partial \Omega$. From the results in [25, Section 6.3] (see also [23, Section 7.1], for $(B, D(A))$-saturating sets) we know that if for all $q \geq 3$ and $n \in S^{q+2}$, with $n_3 = 0$ and $(n_1, n_2) \neq (q + 2, q + 2)$, we have that $W_\pi \in G^{q+2-3+1}$, then for all $n \in S^{q+1}$, with $n_3 = 0$, we have that $W_\pi \in G^q$. Repeating the argument for the cases $n_1 = 0$ and $n_2 = 0$, we arrive at

\[
\text{span}\{Y^n | n \in S^{q+1}, \#_0(n) = 1\} \subseteq G^q.
\]

• The case $n \in C^{q+1}$ and $\#_0(n) = 0$. In this case $n \in \mathbb{N}^3$. We start by defining, again for $q \geq 3$ and for some given m, m_1, and m_2 in $\{1, 2, 3\}$, the index sets

\[
\mathcal{R}_m^n := \{ n \in S^q | n_m = q \text{ and } 1 \leq n_i \leq q - 1 \text{ for } i \neq m \},
\]

\[
\mathcal{L}_{m_1, m_2}^q := \{ n \in S^q | \begin{array}{l}
 n_{m_1} = q = n_{m_2},
 m_1 \neq m_2,
 1 \leq n_i \leq q - 1, \text{ and } i \neq \{m_1, m_2\}
\end{array} \}.
\]

We also define the set of eigenfunctions

\[
C_0^q := \{ Y^{1,n}, Y^{2,n} | n \in S^q, \#_0(n) = 0 \}.
\]

Notice that

\[
\{ n \in S^{q+1} | \#_0(n) = 0 \} = \{ n \in S^q | \#_0(n) = 0 \} \bigcup \left(\mathcal{R}_{1,2}^{q+1} \bigcup \mathcal{R}_{2,3}^{q+1} \bigcup \mathcal{R}_{3,1}^{q+1} \right)
\]

\[
\bigcup \left(\mathcal{L}_{1,2}^{q+1} \bigcup \mathcal{L}_{2,3}^{q+1} \bigcup \mathcal{L}_{3,1}^{q+1} \right) \bigcup \{ (q + 1, q + 1, q + 1) \}. \tag{3.21}
\]

It remains to prove that $C_0^{q+1} \subseteq G^q$, which is a corollary of the following Lemmas 3.2, 3.3, and 3.4 which we will prove in the following Sections (3.4.1), (3.4.2), and (3.4.3).

Lemma 3.2 $Y^{(j,n),n} \in G^q$ for all $n \in \bigcup_{i=1}^3 \mathcal{R}_i^{q+1}$.
Lemma 3.3 $Y^{j(n), n} \in G^q$ for all $n \in L^{q+1}_{1,2} \cup L^{q+1}_{2,3} \cup L^{q+1}_{3,1}$.

Lemma 3.4 $Y^{(1,2), (q+1, q+1, q+1)} \subset G^q$.

Indeed, observe that from Eq. 3.19 and Lemmas 3.2, 3.3, and 3.4, it follows that

$$Y^{j(n), n} \in G^q \text{ for all } n \in S^{q+1}.$$

(3.22)

which implies that $C^{q+1} \subset G^q$. Thus, we have just proven that Eq. IH.R-eq.3.17 implies that $C^{q+1} \subset G^{(q+1)-1}$. Then by induction, using Eq. 3.16, it follows that Eq. 3.15 holds true, which implies the statement of Theorem 3.1.

3.4.1 Proof of Lemma 3.2

We proceed into 2 main steps:

- Step 1: Generating $Y^{j(n), n}$ with $n \in \{(1, l, q + 1), (l, 1, q + 1) | 0 < l \leq q\}$.
- Step 2: Generating $Y^{j(n), n}$ with $n \in \{(n_1, n_2, q + 1) | 2 \leq n_1 \leq q \text{ and } 2 \leq n_2 \leq q\}$.
- Step 1: Generating the family $Y^{j(n), n}$ with $n = (1, l, q + 1)$ or $n = (l, 1, q + 1)$. We start with $n = (1, l, q + 1)$ and proceed by induction on l.

Base step. We will prove that

$$Y^{(1,2), (1,1,q+1)} \subset G^q.$$ (3.23)

To generate $n = (1, 1, q + 1)$ we choose

$$k = (1, 0, q), \quad m = (0, 1, 1),$$

$$w^k = (L_1q, 0, -L_3), \quad w^m = (0, L_2, -L_3).$$

From Eq. 3.4, this choice gives us

$$(Y^k \cdot \nabla)Y^m + (Y^m \cdot \nabla)Y^k = Y^{(1,1,q+1)} + Y^{(1,1,q-1)},$$

for suitable $z_{a1}, z_{a2} \in \mathbb{R}^3$. Note that, from the induction hypothesis in assumption (IH.R-eq.3.17), we have $Y^{(1,2), (1,1,q-1)} := \{Y^{1,(1,q-1)}, Y^{2,(1,q-1)}\} \subset G^{q-1} \subset G^q$, which implies that $\bigcap Y^{(1,1,q-1)} \in G^q$. Hence, we can conclude that $\bigcap Y^{(1,1,q+1)} \in G^q$.

Next, we can compute the vector z_{a1} as follows: from

$$\beta^{*_{12}}_{w^k, m} = -\frac{\pi}{8}, \quad \beta^{*_{12}}_{w^m, k} = \frac{\pi}{8}, \quad \beta^{*_{12}}_{w^m, k} = \frac{\pi}{8}, \quad \beta^{*_{12}}_{w^m, k} = \frac{\pi}{8},$$

with $(*_{1}, *_{2}) \in \{+, -, 0\}$, we obtain the coordinates for z_{a1} as follows:

$$(z_{a1})_1 = 0 + L_1q \left(\beta^{*_{12}}_{w^m, k} - \beta^{*_{12}}_{w^m, k} + \beta^{*_{12}}_{w^m, k} - \beta^{*_{12}}_{w^m, k} \right),$$

$$(z_{a1})_2 = L_2 \left(\beta^{*_{12}}_{w^k, m} + \beta^{*_{12}}_{w^k, m} \cdot \frac{\pi}{8} - \beta^{*_{12}}_{w^k, m} \cdot \frac{\pi}{8} \right) + 0,$$

$$(z_{a1})_3 = -L_3 \left(\beta^{*_{12}}_{w^k, m} + \beta^{*_{12}}_{w^k, m} - \beta^{*_{12}}_{w^k, m} - \beta^{*_{12}}_{w^k, m} \right) - L_3 \left(\beta^{*_{12}}_{w^m, k} + \beta^{*_{12}}_{w^m, k} - \beta^{*_{12}}_{w^m, k} - \beta^{*_{12}}_{w^m, k} \right),$$
from which we obtain

\[z_{\alpha 1} = \frac{\pi}{2} \begin{pmatrix} -L_1q^2 \\ L_2 \\ L_3(q + 1) \end{pmatrix}. \] \hspace{2cm} (3.24)

Remark 3.1 The factors \(\text{sign}(0-1) = \text{sign}(k_2-m_2) \) appearing in Eq. 3.24 are due to the fact that the vector functions \(Y^n_z \) in Eq. 3.7 are defined for nonnegative frequencies \(n \in \mathbb{N}^3 \), and in Eq. 3.4 the frequencies may be negative. To guarantee nonnegative frequencies, we can just rewrite (3.4) by replacing each \(S_i(k_i - m_i) \) by its equivalent \(\text{sign}(k_i - m_i)S_i(|k_i - m_i|) \).

Also, recall that \(C_i(k_i - m_i) = C_i(k_i - m_i) \).

Next, we choose

\[k = (1, 0, q - 1), \quad m = (0, 1, 2), \]

\[w^k = (L_1(q - 1), 0, -L_3), \quad w^m = (0, 2L_2, -L_3), \]

which gives us

\[\left(Y^k \cdot \nabla \right) Y^m + \left(Y^m \cdot \nabla \right) Y^k = Y^{{(1, 1, q+1)}}_{z_1} + Y^{{(1, 1, q-2)}}_{z_2}, \]

for suitable \(z_{y_1}, z_{y_2} \in \mathbb{R}^3 \). Again from assumption (IH.R-eq.3.17) we have \(Y^{(1,2),(1,1,q-2)} \subseteq G_{q-1} \), and we can conclude that \(\Pi Y^{{(1,1,q+1)}}_{z_1} \subseteq G_q \). From Eq. 3.4 we find

\[z_{y_1} = \frac{\pi}{2} \begin{pmatrix} -L_1(q - 1)^2 \\ -4L_2 \\ L_3(q + 1) \end{pmatrix}. \]

In order to use Lemma 3.1, we observe that the family \(\{z_{y_1}, z_{y_1}, (1, 1, q+1)\} \) is linearly independent, which follows from

\[\det(n z_{\alpha 1} z_{\gamma 1}) = \pi^2 \det\begin{pmatrix} 1 & -L_1q^2 & -L_1(q - 1)^2 \\ 1 & -L_2 & -4L_2 \\ q + 1 & L_3(q + 1) & L_3(q + 1) \end{pmatrix} \]

\[= \pi^2 (q + 1) \left(L_1(L_2 + L_3)(2q - 1) + 3L_1L_2q^2 + 3L_2L_3 \right) > 0. \]

Therefore, Lemma 3.1 gives us

\[Y^{(1,2),(1,1,q+1)} \subseteq G_q. \] \hspace{2cm} (3.25)

Induction step. Now let us assume that

\[Y^{(1,2),(1,l-2,q+1)} \subseteq G_q \quad \text{for a given } l, \quad 2 \leq l \leq q. \] \hspace{2cm} (IH.R1-eq.3.26)

Notice that Eqs. 3.19 and 3.25 give us

\[Y^{(1,2),(1,l,q+1)} \subseteq G_q, \quad \text{for all } l \in \{0, 1\}. \] \hspace{2cm} (3.7)

In order to generate \(Y^{(1,2),(1,l,q+1)} \) we choose

\[k = (1, l - 1, q), \quad m = (0, 1, 1), \]

\[w^k = (0, L_2q, L_3(1-l)), \quad w^m = (0, L_2, -L_3). \]
This choice gives us
\[\left(Y^k \cdot \nabla \right) Y^m + \left(Y^m \cdot \nabla \right) Y^k = Y_z^{(1,l,q+1)} + Y_z^{(1,l,q-1)} + Y_z^{(1,l-2,q+1)} + Y_z^{(1,l-2,q-1)}. \]

From assumption (IH.R eq.3.17) we have that both \(Y_j^{(1,l,q-1)},(1,l,q-1) \) and \(Y_j^{(1,l-2,q-1),(1,l-2,q-1)} \) belong to \(\mathcal{G}^q \) and, from assumption (IH.R1 eq.3.26), we have \(Y_j^{(1,l-2,q+1),(1,l-2,q+1)} \in \mathcal{G}^q \). We can conclude that \(\Pi Y_z^{(1,l,q+1)} \in \mathcal{G}^q \).

To compute \(z_{a^1} \) we use
\[\beta_{w^k,m} = \beta_{w^k,m} = \frac{\pi}{8} (q - l + 1) \quad \text{and} \quad \beta_{w^m,k}^+ = \beta_{w^m,k}^- = \frac{\pi}{8} (l - q - 1), \]
and obtain
\[z_{a^1} = \begin{pmatrix} 0 \\ L_2 \left(\beta_{w^k,m}^+ + \beta_{w^m,k}^- \right) + L_2 q \left(\beta_{w^m,k}^+ + \beta_{w^m,k}^- \right) \\ -L_3 \left(\beta_{w^k,m}^+ + \beta_{w^m,k}^- \right) + L_3 (1-l) \left(\beta_{w^m,k}^+ + \beta_{w^m,k}^- \right) \end{pmatrix} = \frac{\pi}{4} \begin{pmatrix} 0 \\ L_2 (q - l + 1) (1 - q) \\ L_3 (q - l + 1) (l - 2) \end{pmatrix}. \]

Next, we choose the same frequencies \((k, m)\) with different \((w^k, w^m)\):
\[k = (1, l - 1, q), \quad m = (0, 1, 1), \]
\[w^k = (L_1 q, 0, -L_3), \quad w^m = (0, L_2, -L_3). \]

Proceeding as above, we obtain that \(\Pi Y_z^{(1,l,q+1)} \in \mathcal{G}^q \) and, from
\[\beta_{w^k,m}^+ = \beta_{w^k,m}^- = -\frac{\pi}{8} \quad \text{and} \quad \beta_{w^m,k}^+ = \beta_{w^m,k}^- = \frac{\pi}{8} (l - q - 1), \]
we find
\[z_{y^1} = \frac{\pi}{4} \begin{pmatrix} -L_1 q (q - l + 1) \\ -L_2 \\ L_3 (q - l + 2) \end{pmatrix}. \]

Then, from
\[\frac{16}{\pi^3} \det(n z_{a^1} z_{y^1}) = \det \begin{pmatrix} 1 & 0 & -L_1 q (q - l + 1) \\ l & L_2 (q - l + 1) (1 - q) & -L_2 \\ q + 1 & L_3 (q - l + 1) (l - 2) & L_3 (q - l + 2) \end{pmatrix} = \det \begin{pmatrix} L_2 (q - l + 1) (l - q) & -L_2 \\ L_3 (q - l + 1) (l - 2) & L_3 (q - l + 2) \\ -L_1 q (q - l + 1) \end{pmatrix} = -L_2 L_3 q (q + l)^2 - L_1 q (q - l + 1)^2 (L_3 l^2 - 2L_3 l L_2 q^2 - L_2) = -q (q - l + 1)^2 \left[L_2 L_3 + L_1 L_3 (l - 2) + L_1 L_2 (q^2 - 1) \right] < 0. \]
since $2 \leq l \leq q$, using Lemma 3.1, we can conclude that $Y^{[1,2],(1,l,q+1)} \in G^q$. Note that we have just proven that assumption (IH.R1-eq.3.26) leads us to $Y^{[1,2],(1,l,q+1)} \in G^q$. Then by induction, using Eq. 3.7, we can conclude that

$$\left\{ Y^{[1,2],(1,l,q+1)} \mid 0 < l \leq q \right\} \subseteq G^q,$$ \hspace{1cm} (3.28a)

and by a similar argument we can derive that

$$\left\{ Y^{[1,2],(l,1,q+1)} \mid 0 < l \leq q \right\} \subseteq G^q.$$ \hspace{1cm} (3.28b)

- Step 2: Generating the family $Y^{j(n),n}$ with $n = (n_1, n_2, q + 1)$ where $2 \leq n_1 \leq q$ and $2 \leq n_2 \leq q$.

Again, we proceed by induction on the pair (n_1, n_2), under the lexicographical order defined as

$$(n_1, n_2) < (m_1, m_2) \text{ if either } n_1 < m_1, \text{ or } n_1 = m_1 \text{ and } n_2 < m_2,$$

in the set $N_q := \{(\kappa_1, \kappa_2) \in [0, 1, 2, \ldots, q]^2 \setminus \{0, 0\}\}$.

Base step. From Eqs. 3.19, 3.27, and 3.28, we know that

$$Y^{j(n),n} \in G^q, \text{ for all } n = (n_1, n_2, q + 1), \text{ with } \left\{ (n_1, n_2) \in N_q, \hspace{1cm} (0, 0) < (n_1, n_2) < (2, 2) \right\}.$$ \hspace{1cm} (3.29)

Induction step. Now we assume that

$$Y^{j(\kappa),\kappa} \in G^q, \text{ for all } \kappa \in N_q,$$

with

$$(0, 0) < (\kappa_1, \kappa_2) < (n_1, n_2) \leq (q, q), \hspace{1cm} (2, 2) \leq (n_1, n_2), \hspace{1cm} \kappa_3 = q + 1.$$ \hspace{1cm} (IH.R1-eq.3.30)

We want to prove that $Y^{j(n),n} \in G^q$, with $n = (n_1, n_2, q + 1)$.

By choosing

$$k = (n_1 - 1, n_2 - 1, q), \hspace{1cm} m = (1, 1, 1),$$

$$w^k = (0, L_2 q, L_3 (1 - n_2)), \hspace{1cm} w^m = (0, L_2, -L_3),$$

we find

$$Y^{k \cdot \nabla} Y^m + (Y^m \cdot \nabla) Y^{k} = Y_{z_{\alpha}}^{(n_1, n_2, q+1)} + \sum_{i=2}^{8} Y_{z_{\alpha}}^{k^i},$$

with

$$\{k^i \mid 2 \leq i \leq 8\} = \{(n_1 - 2, n_2 - 2, q - 1)\}$$

$$\bigcup \{(n_1, n_2 - 2, q - 1), (n_1 - 2, n_2, q - 1), (n_1, n_2, q - 1)\}$$

$$\bigcup \{(n_1 - 2, n_2 - 2, q + 1), (n_1, n_2 - 2, q + 1), (n_1 - 2, n_2, q + 1)\}.$$ \hspace{1cm} (IH.R-eq.3.17)

From assumption (IH.R-eq.3.17), we find that $\Pi_{z_{\alpha}}^{k^i} \in G^{q - 1}$, for all $k^i \in \{(n_1 - 2, n_2 - 2, q - 1), (n_1 - 2, n_2, q - 1), (n_1, n_2, q - 1)\}$ and from the assumption (IH.R1-eq.3.30) we obtain that $\Pi_{z_{\alpha}}^{k^i} \in G^q$, for $k^i \in \{(n_1 - 2, n_2 - 2, q + 1), (n_1 - 2, n_2, q + 1)\}$.

Now, if $(n_1, n_2) > (2, 2)$, then again by assumptions (IH.R-eq.3.17) and (IH.R1-eq.3.30) we find that $\Pi_{z_{\alpha}}^{k^i} \in G^q$, with $k^i \in \{(n_1 - 2, n_2 - 2, q - 1), (n_1 - 2, n_2, q - 1)\}$.
2, n_2 - 2, q - 1))}. On the other hand, if (n_1, n_2) = (2, 2), then \(\Pi \mathcal{Y}_{\zeta_1}^{k_i} = 0 \in \mathcal{G}^q \), with \(\kappa_i \in \{(n_1 - 2, n_2 - 2, q - 1), (n_1 - 2, n_2 - 2, q + 1)\} \).

Thus, we can conclude that \(\Pi \mathcal{Y}_{\zeta_1}^{(n_1, n_2, q + 1)} \in \mathcal{G}^q \). Now, from
\[
\beta_{w^{k,m}}^{+++} = \frac{\pi}{8} (q - n_2 + 1) \quad \text{and} \quad \beta_{w^{m,k}}^{+++} = \frac{\pi}{8} (n_2 - q - 1),
\]
we obtain
\[
z_{\zeta_1} = \frac{\pi}{8} \begin{pmatrix} 0 \\ L_2(q - n_2 + 1)(1 - q) \\ L_3(q - n_2 + 1)(2 - n_2) \end{pmatrix}.
\]
Analogously with the choice
\[
k = (n_1 - 1, n_2 - 1, q), \quad m = (1, 1, 1),
\]
\[
u^k = (L_1 q, 0, L_3(1 - n_1)), \quad \nu^m = (0, L_2, -L_3),
\]
we can conclude that \(\Pi \mathcal{Y}_{\zeta_1}^{(n_1, n_2, q + 1)} \in \mathcal{G}^q \) and, from
\[
\beta_{w^{k,m}}^{+++} = \frac{\pi}{8} (q - n_1 + 1) \quad \text{and} \quad \beta_{w^{m,k}}^{+++} = \frac{\pi}{8} (n_2 - q - 1),
\]
we obtain
\[
z_{\gamma_1} = \frac{\pi}{8} \begin{pmatrix} -L_1 q(q - n_2 + 1) \\ L_2(q - n_1 + 1) \\ L_3(1 - n_1)(q - n_2 + 1) + L_3(q - n_1 + 1) \end{pmatrix}.
\]
The family \([n, z_{\zeta_1}, z_{\gamma_1}]\) is linearly independent, because since \(q - n_2 + 1 > 0 \), we may write
\[
det \begin{pmatrix} n & z_{\zeta_1} & z_{\gamma_1} \end{pmatrix} = (q - n_2 + 1) \det \begin{pmatrix} n & z_{\zeta_1} \\ q - n_2 + 1 & z_{\gamma_1} \end{pmatrix}
\]
and we have
\[
det \begin{pmatrix} n & z_{\zeta_1} \\ q - n_2 + 1 & z_{\gamma_1} \end{pmatrix} = n_1 \det \begin{pmatrix} L_2(1 - q) & L_2(q - n_1 + 1) \\ L_3(n_2 - 2) & L_3(n_1 - 1)(q - n_2 + 1) - L_3(q - n_1 + 1) \end{pmatrix}
\]
\[
-L_1 q(q - n_2 + 1) \det \begin{pmatrix} n_2 \\ q + 1 & L_2(1 - q) \\ L_3(n_2 - 2) \end{pmatrix}
\]
\[
= -q(q - n_2 + 1) \left(L_2 L_3 n_1(n_2 - 1) + L_1 L_3 n_2(n_2 - 2) + L_1 L_2 q^2 - 1 \right) < 0,
\]
since \(2 \leq n_1 \leq q \) and \(2 \leq n_2 \leq q \). Thus, from Lemma 3.1 we have that \(Y^{(1, 2), (n_1, n_2, q + 1)} \subset \mathcal{G}^q \). We have just proved that assumption (III.R1-eq.3.30) implies that
\[
Y^{(1, 2), (n_1, n_2, q + 1)} \in \mathcal{G}^q.
\]
Therefore, using Eq. 3.29, by induction it follows that \(Y^{(1, 2), n} \in \mathcal{G}^q \) with \(n = (n_1, n_2, q + 1) \) and \((n_1, n_2) \in N_q \), which implies that \(Y^{(1, 2), n} \in \mathcal{G}^q \) for all \(n \in R_3^{q+1} \). An analogous argument leads us to
\[
Y^{(1, 2), n} \in \mathcal{G}^q, \quad \text{for all } n \in R_1^{q+1} \cup R_2^{q+1} \cup R_3^{q+1}, \quad (3.31)
\]
which ends the proof of Lemma 3.2.
3.4.2 Proof of Lemma 3.3

We prove that $Y^{(n),n} \in G^q$ for $n = (l, q + 1, q + 1) \in L_{2,3}^{q+1}$, $1 \leq l \leq q$. We choose
\[
k = (l, q - 1, q), \quad m = (0, 2, 1),
\]
\[
w^k = (0, L_2 q, L_3 (1 - q)), \quad w^m = (0, L_2, -2L_3),
\]
which leads us to
\[
\left(y^k \cdot \nabla \right) y^m + \left(y^m \cdot \nabla \right) y^k = \mathcal{Y}_{z_{a_1}}^{(l, q+1, q+1)} + \mathcal{Y}_{z_{a_2}}^{(l, q-2, q+1)} + \mathcal{Y}_{z_{a_3}}^{(l, q+1, q-1)} + \mathcal{Y}_{z_{a_4}}^{(l, q-2, q-1)}.
\]

By the induction hypothesis (IH.3), we have $\Pi \mathcal{Y}_{z_{a_i}}^{(l, q-2, q-1)} \in G^q$. From Eq. 3.31, since $\{(l, q - 2, q + 1), (l, q + 1, q - 1)\} \subset R_3^{q+1} \cup R_2^{q+1}$, we also have $\Pi \mathcal{Y}_{z_{a_1}}^{(l, q-2, q+1)} + \Pi \mathcal{Y}_{z_{a_2}}^{(l, q+1, q-1)} \in G^q$. Therefore, we obtain that $\Pi \mathcal{Y}_{z_{a_1}}^{(l, q+1, q+1)} \in G^q$. Now, from
\[
\beta_{w^k, m}^{++} = \beta_{w^k, m}^{-+} = \pi \left(q + 1 \right) / 8 \quad \text{and} \quad \beta_{w^m, k}^{++} = \beta_{w^m, k}^{-+} = -\pi \left(q + 1 \right) / 8,
\]
we obtain
\[
z_{a_1} = \begin{pmatrix}
L_2 \left(\beta_{w^k, m}^{++} + \beta_{w^k, m}^{-+} \right) + L_2 q \left(\beta_{w^m, k}^{++} + \beta_{w^m, k}^{-+} \right) \\
-2L_3 \left(\beta_{w^k, m}^{++} + \beta_{w^k, m}^{-+} \right) + L_3 (1 - q) \left(\beta_{w^m, k}^{++} + \beta_{w^m, k}^{-+} \right)
\end{pmatrix} = \frac{\pi}{4} \begin{pmatrix}
0 \\
L_2 (1 - q^2) \\
L_3 (q + 1) (q - 2)
\end{pmatrix}.
\]

Analogously, the choice
\[
k = (l, q - 1, q), \quad m = (0, 2, 1),
\]
\[
w^k = (L_1 q, 0, -L_3 l), \quad w^m = (0, L_2, -2L_3),
\]
allows us to conclude that $\Pi \mathcal{Y}_{z_{a_1}}^{(l, q+1, q+1)} \in G^q$ where, from
\[
\beta_{w^k, m}^{++} = \beta_{w^k, m}^{-+} = -\pi l / 8 \quad \text{and} \quad \beta_{w^m, k}^{++} = \beta_{w^m, k}^{-+} = -\pi \left(q + 1 \right) / 8,
\]
we have
\[
z_{a_1} = \frac{\pi}{4} \begin{pmatrix}
-L_1 q (q + 1) \\
-L_2 l \\
L_3 l (q + 3)
\end{pmatrix}.
\]

Now, from Lemma 3.1 and
\[
\det \begin{pmatrix}n & z_{a_1} & z_{a_1} \end{pmatrix} = \det \begin{pmatrix}l & 0 & -L_1 q (q + 1) \\
q + 1 & L_2 (1 - q^2) & -L_2 l \\
q + 1 & L_3 (q + 1) (q - 2) & L_3 (q + 3)
\end{pmatrix} = -q (q + 1)^2 \left(L_2 L_3 l^2 + L_1 L_3 (q + 1) (q - 2) + L_1 L_2 q^2 (q - 1) \right) < 0,
\]
because $l \geq 1$ and $q \geq 3$, it follows that $Y^{(1,2),(l, q+1, q+1)} \in G^q$, for $1 \leq l \leq q$. A similar argument gives us
\[
Y^{(1,2),n} \in G^q, \quad \text{for all} \quad n \in L_{1,2}^{q+1} \bigcup L_{2,3}^{q+1} \bigcup L_{3,1}^{q+1}, \quad (3.32)
\]
which ends the proof of Lemma 3.3.

3.4.3 Proof of Lemma 3.4.

Firstly, we choose

\[k = (q, q - 1, q), \quad m = (1, 2, 1), \]
\[w^k = (0, L_2q, L_3(q - 1)), \quad w^m = (0, L_2, -2L_3), \]

which give us

\[
\left(Y^k \cdot \nabla \right) Y^m + (Y^m \cdot \nabla) Y^k = \mathcal{Y}_{z_{\alpha_1}}^{(q + 1, q - 1, q + 1)} + \sum_{i=2}^{8} \mathcal{Y}_{\kappa_i}^{(q + 1, q - 1, q + 1)},
\]

where

\[
\{\kappa_i | i \in \{2, \cdots, 8\}\} = \{(q + 1, q + 1, q - 1), (q - 1, q + 1, q + 1)\}
\]
\[
\bigcup \{(q - 1, q - 2, q + 1), (q - 1, q + 1, q - 1), (q + 1, q - 2, q - 1)\}
\]
\[
\bigcup \{(q - 1, q - 2, q + 1), (q - 1, q - 2, q - 1)\}.
\]

Since

\[
\{\kappa_i | i \in \{2, \cdots, 8\}\} \subseteq (R^q_{1,1} \bigcup R^q_{2,2} \bigcup R^q_{3,3}) \bigcup (L^q_{1,1} \bigcup L^q_{2,2} \bigcup L^q_{3,3}) \bigcup S^q,
\]

from Eqs. IH.R-eq.3.17, 3.31, and 3.32, we can derive that \(\Pi_{\mathcal{Y}_{z_{\alpha_1}}^{(q + 1, q, q + 1)}} \in \mathcal{G}^q. \)

Now, from the identities

\[
\beta_{u^k, m}^{++} = \frac{\pi}{8}(q + 1) \quad \text{and} \quad \beta_{u^m, k}^{++} = -\frac{\pi}{8}(q + 1),
\]

we obtain

\[
z_{\alpha_1} = \left(\begin{array}{c} 0 \\ L_2.\beta_{u^k, m}^{++} + L_2q.\beta_{u^m, k}^{++} \\ -2L_3.\beta_{u^k, m}^{++} + L_3(1 - q).\beta_{u^m, k}^{++} \end{array} \right) = \frac{\pi}{8} \left(\begin{array}{c} 0 \\ L_2(1 - q^2) \\ L_3(q + 1)(q - 2) \end{array} \right).
\]

Next, by choosing

\[k = (q, q - 1, q), \quad m = (1, 2, 1), \]
\[w^k = (L_1(1 - q), L_2q, 0), \quad w^m = (0, L_2, -2L_3), \]

and proceeding as above, we can conclude that \(\Pi_{\mathcal{Y}_{z_{\gamma_1}}^{(q + 1, q, q + 1)}} \in \mathcal{G}^q, \) with

\[
z_{\gamma_1} = \left(\begin{array}{c} 0.\beta_{u^k, m}^{++} + L_1(1 - q)\beta_{u^m, k}^{++} \\ L_2.\beta_{u^k, m}^{++} + L_2q.\beta_{u^m, k}^{++} \\ -2L_3.\beta_{u^k, m}^{++} + 0.\beta_{u^m, k}^{++} \end{array} \right) = \frac{\pi}{8} \left(\begin{array}{c} L_1(q^2 - 1) \\ L_2(1 - q^2) \\ -2L_3(q + 1) \end{array} \right).
\]
With \(n = (q + 1, q + 1, q + 1) \), using again Lemma 3.1 and
\[
det(n z_{\alpha^1, z_{\gamma^1}}) = \frac{\pi^2}{64} (q + 1)^3 \begin{vmatrix}
1 & 0 & L_1(q - 1) \\
1 & L_2(1 - q) & L_2(1 - q) \\
1 & L_3(q - 2) & -2L_3
\end{vmatrix}
\]
\[
= \frac{\pi^2}{64} (q + 1)^3 \left[L_2 L_3 \begin{vmatrix}
1 - q & 1 - q \\
q - 2 & -2
\end{vmatrix} + L_1(q - 1) \begin{vmatrix}
1 & L_2(1 - q) \\
1 & L_3(q - 2)
\end{vmatrix}\right]
\]
\[
= \frac{\pi^2}{64} (q + 1)^3 (q - 1) [(L_1 L_2 + L_2 L_3)(q - 1) + L_1 L_3(q - 2)] > 0,
\]
because \(q \geq 3 \), we obtain
\[
Y^{\{1,2\},(q+1,q+1,q+1)} \subset G^q,
\]
which ends the proof of Lemma 3.4.

4 Final Remarks

We proved the approximate controllability of the Navier–Stokes system in a 3D rectangle by degenerate (low modes) forcing, under Lions boundary conditions. We used the analogous 2D result, derived in [25] (see also [23] for \((B, D(A))\)-saturating sets). In [20] the case of a 2D cylinder is considered, thus we may wonder whether we can also derive the approximate controllability for the case of a 3D cylinder. This case can be seen as the case where the fluid is contained in a long (infinite) 3D channel with Lions boundary conditions, and with the periodicity assumption on the long (infinite) direction, thus it is a case of interest for applications. First computations show that the existence of a \((L, D(A))\)-saturating set in this case is plausible, but the computations details are still to be checked. Since those computations will be long, and since this manuscript is already long, we will investigate the case of a 3D cylinder in a future work.

We underline that the presented saturating set is (by definition) independent of the viscosity coefficient \(\nu \). That is, approximate controllability holds by means of controls taking values in \(G^1 = \text{span}(\mathcal{C}) + \text{span}\mathcal{B}(\mathcal{C}, \text{span}\mathcal{C}) = \text{span}(\mathcal{C} \cup \mathcal{B}(\mathcal{C}, \mathcal{C})) \), for any \(\nu > 0 \). It is plausible that a \((L, D(A))\)-saturating set with less elements does exist, but it is not our goal here to minimize the number of elements of \(\mathcal{C} \).

We have used the result in [28] where it is proven that under Dirichlet boundary conditions the existence of a \((B, D(A))\)-saturating set implies the approximate controllability of Navier–Stokes system by degenerate forcing. We can conclude from our results that the same controllability result follows from the existence of a \((L, D(A))\)-saturating set. However, up to our knowledge, neither the existence of a \((B, D(A))\)-saturating set nor that of a \((L, D(A))\)-saturating set is known under Dirichlet boundary conditions. That is, essentially the approximate controllability of the Navier–Stokes system is still an open problem under Dirichlet boundary conditions. Therefore, it is of interest to find a saturating set for such classical boundary conditions, because they are the most realistic in many situations.

Up to now, the known examples of saturating sets consist of eigenfunctions of the Stokes operator. For applications, it would be interesting to consider more realistic functions as actuators as locally supported functions, recall [1, Problem VII] (cf. [20, Section V]). Furthermore, the explicit expressions for the Stokes operator may be not available as it is the case (up to our best knowledge) for Dirichlet boundary conditions.
Acknowledgements The authors acknowledge partial support from the Austrian Science Fund (FWF): P 26034-N25. D. Phan also acknowledges partial support from the foundation of Tampere University of Technology, and thanks RICAM-OAW, Linz, where most of the work has been done, for the provided support and hospitality. The authors are also grateful to the anonymous referee for their constructive comments and suggestions, which have helped the authors to improve the exposition and the presentation of the results in the paper.

References

1. Agrachev AA. Some open problems. arXiv:1304.2590v2 [math.OC]. 2013.
2. Agrachev AA, Kuksin S, Sarychev AV, Shirikyan A. On finite-dimensional projections of distributions for solutions of randomly forced 2D Navier–Stokes equations. Ann Inst H Poincaré, Probab Statist. 2007;43(4):399–415. https://doi.org/10.1016/j.anihpb.2006.06.001.
3. Agrachev AA, Sarychev AV. Navier–Stokes equations controllability by means of low modes forcing. J Math Fluid Mech. 2005;7(1):108–152. https://doi.org/10.1007/s00021-004-0110-1.
4. Agrachev AA, Sarychev AV. Controllability of 2D Euler and Navier–Stokes equations by degenerate forcing. Commun Math Phys. 2006;265(3):673–697. https://doi.org/10.1007/s00220-006-0002-8.
5. Agrachev AA, Sarychev AV. Solid controllability in fluid dynamics. In: Instability in Models Connected with Fluid Flow I of International Mathematical Series volume 6 (ch. 1), pp. 1–35. Berlin: Springer; 2008. https://doi.org/10.1007/978-0-387-75217-4_1.
6. Aris R. Vectors, Tensors, and the Basic Equations of Fluid Mechanics. New York: Dover; 1989. Reprint of the Prentice-Hall 1962 edition http://store.doverpublications.com/0486661105.html.
7. Chemetov NV, Cipriano F, Gavrilyuk S. Shallow water model for lakes with friction and penetration. Math Meth Appl Sci. 2010;33(6):687–703. https://doi.org/10.1002/mma.1185.
8. Diaz J. Obstruction and some approximate controllability results for the Burgers equation and related problems. 174:63–76. 1996.
9. Weinan E, Mattingly JC. Ergodicity for the Navier–Stokes equation with degenerate random forcing: Finite dimensional approximation. Comm Pure Appl Math. 2001;54(11):1386–1402. https://doi.org/10.1002/cpa.10007.
10. Fernández-Cara E, Guerrero S. Null controllability of the Burgers system with distributed controls. Systems Control Lett. 2007;56(5):366–372. https://doi.org/10.1016/j.sysconle.2006.10.022.
11. Hairer M, Mattingly JC. Ergodicity of the 2D, Navier–Stokes equations with degenerate stochastic forcing. Ann Math. 2006;164(3):993–1032. https://doi.org/10.4007/annals.2006.164.993.
12. Ilyin AA, Titi ES. Sharp estimates for the number of degrees of freedom for the damped-driven 2D, Navier–Stokes equations. J Nonlinear Sci. 2006;16(3):233–253. https://doi.org/10.1007/s00332-005-0720-7.
13. Kelliher JP. NAviser–Stokes equations with Navier boundary conditions for a bounded domain in the plane. SIAM J Math Anal. 2006;38(1):210–232. https://doi.org/10.1137/040612336.
14. Kuksin S, Nersesyan V, Shirikyan A. Exponential mixing for a class of dissipative PDEs with bounded degenerate noise arXiv:1802.03250v2 [math.AP]. 2018.
15. Lions J-L. Quelques méthodes de résolution des problèmes aux Limites Non linéaires. Paris: Dunod et Gauthier–Villars; 1969.
16. Nersesyan V. Approximate controllability of Lagrangian trajectories of the 3D Navier–Stokes system by a finite-dimensional force. Nonlinearity. 2015;28(3):825–848. https://doi.org/10.1088/0951-7715/28/3/825.
17. Nersisyan H. Controllability of 3D incompressible Euler equations by a finite-dimensional external force. ESAIM Control Optim Calc Var. 2010;16(3):677–694. https://doi.org/10.1051/cocv/2009017.
18. Nersisyan H. Controllability of the 3D compressible Euler system. Comm Partial Differential Equations. 2011;36(9):1544–1564. https://doi.org/10.1080/03605302.2011.596605.
19. Phan D. Stabilization to Trajectories and Approximate Controllability for the Equations of Fluid Mechanics PhD Thesis. Austria: J. Kepler Universität Linz; 2016. http://epub.jku.at/obvulihs/content/titleinfo/1592928.
20. Phan D, Rodrigues SS. Approximate controllability for equations of fluid mechanics with a few body controls. In: Proceedings of the European Control Conference (ECC), Linz, Austria, pp 2682–2687. 2015. https://doi.org/10.1109/ECC.2015.7330943.
21. Phan D, Rodrigues SS. Gevrey regularity for Navier–Stokes equations under Lions boundary conditions. J Funct Anal. 2017;272(7):2865–2898. https://doi.org/10.1016/j.jfa.2017.01.014.
22. Rodrigues SS. Controllability issues for the Navier–Stokes equation on a Rectangle. In: Proceedings 44th IEEE CDC-ECC’05, Seville, Spain, pp 2083–2085. 2005. https://doi.org/10.1109/CDC.2005.1582468.

23. Rodrigues SS. Navier–Stokes equation on the Rectangle: Controllability by means of low modes forcing. J Dyn Control Syst. 2006;12(4):517–562. https://doi.org/10.1007/s10883-006-0004-z.

24. Rodrigues SS. Controllability of nonlinear pdes on compact Riemannian manifolds. In: Proceedings WMCTF’07, Lisbon, Portugal, pp 462–493. 2007. http://people.ricam.oeaw.ac.at/s.rodrigues/.

25. Rodrigues SS. Methods of Geometric Control Theory in Problems of Mathematical Physics. PhD Thesis. Portugal: Universidade de Aveiro; 2008. http://hdl.handle.net/10773/2931.

26. Romito M. Ergodicity of the finite dimensional approximation of the 3D Navier–Stokes equations forced by a degenerate noise. J Stat Phys. 2004;114(1/2):155–177. https://doi.org/10.1023/B:JOSS.0000003108.92097.5c.

27. Sarychev A. Controllability of the cubic Schrödinger equation via a low-dimensional source term. Math Control Relat Fields. 2012;2(3):247–270. https://doi.org/10.3934/mcrf.2012.2.247.

28. Shirikyan A. Approximate controllability of three-dimensional Navier–Stokes equations. Comm Math Phys. 2006;266(1):123–151. https://doi.org/10.1007/s00220-006-0007-3.

29. Shirikyan A. Controllability of nonlinear PDEs: Agrachev–Sarychev approach. journées Équations aux dérivées Partielles Évian, 4 juin–8 juin Exposé. 2007;IV:1–11. https://eudml.org/doc/10631.

30. Shirikyan A. Exact controllability in projections for three-dimensional Navier–Stokes equations. Ann Inst H Poincaré, Anal Non Linéaire. 2007;24(4):521–537. https://doi.org/10.1016/j.anihpc.2006.04.002.

31. Shirikyan A. Euler equations are not exactly controllable by a finite-dimensional external force. Physica D. 2008;237(10–11):1317–1323. https://doi.org/10.1016/j.physd.2008.03.021.

32. Shirikyan A. Global exponential stabilisation for the burgers equation with localised control. J Éc polytech Math. 2017;4:613–632. https://doi.org/10.5802/jep.53.

33. Temam R. Navier–Stokes Equations and Nonlinear Functional Analysis. Number 66 in CBMS-NSF Regional Conf. Ser. Appl. Math., 2nd edn. Philadelphia: SIAM; 1995. https://doi.org/10.1137/1.9781611970050.

34. Xiao Y, Xin Z. On the vanishing viscosity limit for the 3D Navier–Stokes equations with a slip boundary condition. Comm Pure Appl Math. 2007;60(7):1027–1055. https://doi.org/10.1002/cpa.20187.

35. Xiao Y, Xin Z. On the inviscid limit of the 3D Navier–Stokes equations with generalized Navier-slip boundary conditions. Commun Math Stat. 2013;1(3):259–279. https://doi.org/10.1007/s40304-013-0014-6.