A Summary of Phenotypes Observed in the In Vivo Rodent Alpha-Synuclein Preformed Fibril Model

Nicole K. Polinski*

The Michael J. Fox Foundation for Parkinson’s Research, New York, NY, USA

Accepted 9 August 2021
Pre-press 2 September 2021

Abstract. The use of wildtype recombinant alpha-synuclein preformed fibrils (aSyn PFFs) to induce endogenous alpha-synuclein to form pathological phosphorylation and trigger neurodegeneration is a popular model for studying Parkinson’s disease (PD) biology and testing therapeutic strategies. The strengths of this model lie in its ability to recapitulate the phosphorylation/aggregation of aSyn and nigrostriatal degeneration seen in PD, as well as its suitability for studying the progressive nature of PD and the spread of aSyn pathology. Although the model is commonly used and has been adopted by many labs, variability in observed phenotypes exists. Here we provide summaries of the study design and reported phenotypes from published reports characterizing the aSyn PFF in vivo model in rodents following injection into the brain, gut, muscle, vein, peritoneum, and eye. These summaries are designed to facilitate an introduction to the use of aSyn PFFs to generate a rodent model of PD—highlighting phenotypes observed in papers that set out to thoroughly characterize the model. This information will hopefully improve the understanding of this model and clarify when the aSyn PFF model may be an appropriate choice for one’s research.

Keywords: Alpha-synuclein, Parkinson disease, preformed fibril, model

INTRODUCTION

Parkinson’s disease (PD) is a neurodegenerative disorder affecting approximately 1% of the population over the age of 60. Characterized by motor disturbances as well as non-motor symptoms, the pathology of PD involves deposits of aggregated, phosphorylated alpha-synuclein (aSyn) protein in affected tissues and brain structures and degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Given that PD is a human-specific condition, various models have been developed to enable research and therapeutic development for this disease. Common models include injection of neurotoxins to trigger degeneration of the dopaminergic neurons of the SNpc, transgenic rodent models carrying PD-related genetic mutations, and induction of aSyn pathology through viral vector-mediated overexpression of aSyn, among others [1–3]. All models present with advantages and disadvantages, so selection of the model should be based on the desired pathology for the intended research question.

In the last 10 years, a model has arisen that capitalizes on the observations made by Braak and colleagues that aSyn pathology progressively accumulates in different brain regions following a spatiotemporal pattern that suggests spreading [4–7]. This model, dubbed the aSyn preformed fibril (PFF) model, uses injection of recombinant aSyn protein that has been stimulated to form aggregates and son-
icated to produce short fibrils [8–10]. These aSyn PFFs cause templating of endogenous aSyn into pathological species characterized by phosphorylation at S129 (pS129 aSyn), beta-sheet formation, and aggregation, followed by increases in autophagy and neuronal dysfunction [11]. The flexibility of this model allows injection of different forms of aSyn PFFs (e.g., mouse vs. human aSyn, mutated aSyn), unilateral or bilateral injection, targeting of different brain regions and administration through different peripheral routes to model distinct aspects of the disease. This flexibility is a strength of the model but also serves as a weakness, as the distinct protocols lead to different pathologies which has hampered cross-study comparisons. To better understand the various study designs employed for the aSyn PFF model and the resulting pathologies, a survey of the literature was performed and is summarized within this manuscript.

GUIDE TO READING AND INTERPRETING THE TABLES

As hundreds of studies using the aSyn PFF model have been published, Tables 1–9 herein contain information specifically from publications that sought to phenotype the effects of injection of recombinant wildtype aSyn PFFs into rodents to develop a PD model. As a result, the tables are not comprehensive in nature but do contain reports from a variety of studies across laboratories.

Studies focusing on the uptake of aSyn following injection have been excluded as the study is not designed to thoroughly assess resulting pathology. Studies using the aSyn PFF model to test the effect of an intervention have been excluded as the focus is on the therapeutic intervention tested rather than the characterization of the pathological process and timelines. Studies injecting aSyn PFFs to model another disease (e.g., Multiple System Atrophy) were excluded to focus specifically on PD. Studies injecting aSyn PFFs into non-human primates or using aSyn PFFs in cell culture were excluded for the sake of focus. Studies injecting rodent/patient brain-derived material were excluded due to concerns that the injectate is not homogenous and the concentration of aSyn and other protein components cannot be known or compared across studies. Although a number of studies have been published analyzing the differences in pathogenicity of fibrils of different conformations [12–18], different aSyn truncations [23–25], and different aSyn post-translational modifications [26], these were excluded from the summary tables as the objective of these experiments is to compare pathogenicity relative to wildtype aSyn PFFs and therefore the nuanced information requires a different venue.

Tables 1–9 are organized by categories such as: injected species (mouse vs. rat), route of administration of aSyn PFFs, and species of aSyn PFF (human vs. mouse). To understand the variation in observed phenotypes within the model, readers should compare only within categories rather than across categories. Please note that there may be differences in study design within categories (e.g., unilateral vs. bilateral injection, wildtype vs. transgenic rodent) that should be taken into account when drawing conclusions on timelines and robustness of phenotypes.

Papers included within the tables are organized chronologically, with high-level information on study design, outcome measures, and notes that may provide additional context for the reader. Information on study design includes the rodent strain used, the injectate, the dose of aSyn PFFs with information on whether this dose was administered bilaterally or unilaterally (for bilateral injections, the total dose noted was for each hemisphere), and the days post-injection (DPI) at which time the model was analyzed. Reported phenotypes are separated by category to facilitate comparisons of common readouts across studies. The time post-injection at which the phenotype was observed is included, with a “+” indicating the phenotype was also observed at the later time-points. If later timepoints were analyzed within the study but the “+” sign is absent, this indicates that either the phenotype was not analyzed at the later timepoints or was analyzed but not observed. If a phenotype was observed in a particular structure, the structure is included in parentheses. Readouts that were not included in the study are denoted as “N/A”.

Please note, to fully understand all reported or absent phenotypes in the models, a separate literature review is required.

SUMMARY OF PHENOTYPES REPORTED IN THE ASYN PFF MODEL

The earliest aSyn PFF model studies were performed by injecting aSyn PFFs into the mouse striatum. Table 1 provides a summary of studies that used unilateral or bilateral intrastriatral injection of
Table 1
Injection of mouse aSyn PFFs into the wildtype mouse striatum

Paper	Unilateral Mouse aSyn PFFs	Bilateral Mouse aSyn PFFs								
			Sorrentino 2017	Stoyka 2020	Ding 2021					
Rodent Strain										
	aSyn, alpha-synuclein; PFFs, preformed fibrils; TH, tyrosine hydroxylase; DA, dopamine; N/A, not analyzed; SNpc, substantia nigra pars compacta; STR, striatum; AMY, amygdala; ROS, reactive oxygen species.									
Luk 2012	Masuda-Suzukake 2014	Luk 2016	Fares 2016	Henderson 2019	Izco 2020	Burtsher 2020	Kim 2020			
[27]	[28]	[19]	[29]	[30]	[31]	[32]	[33]			
Rodent Strain	C57Bl/6C3H	C57Bl/6J	C57Bl/6C3H	C57Bl/6C3H	C57Bl/6J	C57Bl/6C3H	C57Bl/6J	C57Bl/6J		
Injectate	Mouse aSyn									
Total Dose	5 ug (Unilateral)	10 ug (Unilateral)	5 ug (Unilateral)							
DPI	30, 90, 180	30, 90, 180	14, 30, 90, 180	30, 30, 90, 180	15, 30, 90, 180	30, 60, 180	30	Mouse aSyn		
							Mouse aSyn			
Total Dose	5 ug (Unilateral)	10 ug (Unilateral)	5 ug (Unilateral)							
DPI	30, 90, 180	30, 90, 180	14, 30, 90, 180	30, 30, 90, 180	15, 30, 90, 180	30, 60, 180	30	Mouse aSyn		
							Mouse aSyn			
p562 aSyn	30+	30	14+	30	30+	15+	30+	30		
Strial TH Loss / DA Deficits	90+	N/A	N/A	N/A	90	N/A	N/A			
SNpc TH+ Cell Loss	90+	N/A	180	N/A	90+	Absent	N/A	N/A		
Behavioral Deficits	Motor - 180	Motor - 90	Cogntive - Absent	Motor - 180	Motor - 90	Motor - 90	N/A	N/A		
Immune Response	N/A									
Other	N/A	Aggregated aSyn - 90	Tau Pathology - 30	Aggregated aSyn - 90	Ubiquitinated	Inclusions - 30	N/A	N/A		
	N/A									
								Pathology absent with injection of human aSyn PFFs		
Note	CD1 and B6SJL rodent strains also assessed	Injected human aSyn PFFs and saw little pathology	Analyzes spread patterns and regional vulnerabilities	Pathology worse when meningeal lymphatic drainage blocked	N/A	N/A	N/A	N/A		

aSyn, alpha-synuclein; PFFs, preformed fibrils; TH, tyrosine hydroxylase; DA, dopamine; N/A, not analyzed; SNpc, substantia nigra pars compacta; STR, striatum; AMY, amygdala; ROS, reactive oxygen species.
Table 2
Unilateral injection of human aSyn PFFs into the wildtype mouse striatum

Paper	Luk 2016 [19]	Fares 2016 [29]	Milanese 2018 [37]
Rodent Strain	C57B16/C3H	C57B16/C3H	C57B16/6
Injectate	Human aSyn	Human aSyn	Human aSyn
Total Dose	5 ug (Unilateral)	5 ug (Unilateral)	5 ug (Unilateral)
DPI	14, 30, 90, 180	30	120
pS129 aSyn	30+	30	120
Striatal TH Loss / DA Deficits	N/A	N/A	120
SNpc TH+ Cell Loss	Absent	N/A	120
Behavioral Deficits	Absent	N/A	N/A
Immune Response	N/A	N/A	N/A
Other	Aggregated aSyn - 90	N/A	DNA Damage (SN) - 120

Note: Also tested chimeric human-mouse aSyn PFFs. Homology to mouse aSyn increased pathology. Injected mouse aSyn PFFs. Pathology with mouse aSyn PFFs greater than human aSyn PFFs.

Table 3
Unilateral and bilateral injection of aSyn PFFs into transgenic mouse striatum

Paper	Luk 2012 [23]	Sorrentino 2017 [34]	Earls 2020 [38]	Blumenstock 2017 [39]	Hendersin 2019 [40]	Bieri 2019 [40]	Migdalaska-Richards 2020 [41]		
Rodent Strain	M38 AS3T Hu aSyn	M20 WT Hu aSyn	M38 AS3T Hu aSyn	Thy-1 eGFP	BAC LRRK2 G0195S	BAC LRRK2 G0195S	GBA L444P KI		
Injectate	Human aSyn	Human aSyn	Mouse aSyn						
Total Dose	5 ug (Unilateral)	4 ug (Unilateral)	4 ug (Unilateral)	5 ug (Unilateral)	25 ug (Unilateral)	5 ug (Unilateral)	5 ug (Unilateral)		
DPI	90	120	120	70	30, 60, 90, 150, 270	30, 90, 180	30, 90, 180	120	
pS129 aSyn	90	120	120	70	30+	30+	120		
Striatal TH Loss / DA Deficits	N/A	N/A	N/A	Absent	N/A	N/A	N/A		
SNpc DA Cell Loss	N/A	N/A	N/A	Absent	N/A	N/A	90+	180	N/A
Behavioral Deficits	N/A	N/A	N/A	Motor - 70	N/A	Motor - 90+	Motor - 180	N/A	
Immune Response	N/A	Microglia Activation - 120	Microglia Activation - 120	Microglia Activation - 150 (variable)	N/A	Microglia Activation - 180	N/A		
Other	N/A	N/A	N/A	Aggregated aSyn - 70	N/A	N/A	N/A		

Note: Also injected truncated AA1-120 human aSyn PFFs. Tested different injection coordinates. NK cell depletion worsened pathology. Pathology in LRRK2 G0195S mouse worse than WT. Pathology in LRRK2 G0195S mouse worse than WT. Pathology in GBA L444P mouse worse than WT.

aSyn, alpha-synuclein; PFFs, preformed fibrils; Hu, human; TH, tyrosine hydroxylase; DA, dopamine; N/A, not analyzed; SNpc, substantia nigra pars compacta; CPu, caudate putamen; CTX, cortex.
Table 4

Unilateral and bilateral injection of αSyn PFFs into the wildtype and transgenic mouse olfactory bulb or sublaterodorsal tegmental nucleus

Paper	Olfactory Bulb	Sublaterodorsal Tegmental Nucleus [SLD]
Rodent Strain		
C57Bl/6	C57Bl/6	BAC Hu AS3 αSyn Mouse
Mouse αSyn	Human αSyn	Mouse αSyn
4 ug (Unilateral)	4 ug (Unilateral)	2.5 ug (Bilateral)
DPI	30, 90, 180, 360	60, 180, 210, 240, 300
αSyn, αSyn	αSyn	Mouse αSyn
30+	300	
Cell Loss	Absent (OB)	Absent (OB)
Behavioral	Anxiety - 30	Motor - 150
Immune	Microglia	Microglia
Response	Microglia	Microglia
Other	Aggregated αSyn 30	Aggregated αSyn 60
Note	Mouse αSyn PFFs induced more pathology	Pooled injected & unexpected hemisphere and all brain structures

Table 5

Unilateral or bilateral injection of αSyn PFFs into the wildtype or transgenic mouse hippocampus, cortex, or substantia nigra

Paper	Hippocampus	Cortex	Substantia Nigra
Rodent Strain			
M20 WT Hu αSyn	C57Bl6/C3H	C57Bl6/C3H	C57Bl6/C3H
Injection			
Human αSyn	Mouse αSyn	Mouse αSyn	Mouse αSyn
4 ug (Bilateral)	5 ug (Unilateral)	10 ug (Unilateral)	
DPI	60, 120	90, 30	30, 90, 180, 450
αSyn, αSyn	αSyn	αSyn	αSyn
60+	45+	90	30
Cell Loss	Absent (HC)	N/A	N/A
Behavioral	N/A	N/A	N/A
Immune	N/A	N/A	N/A
Other	N/A	N/A	N/A
Note			

Others have chosen to inject non-striatal brain regions to model prodromal or non-motor features of PD in mice. Table 4 provides a summary of studies injecting αSyn PFFs into the olfactory bulb (OB) or sublaterodorsal tegmental nucleus (SLD) to model PD in mice.
A visual representation of timelines of phenotypes reported in common iterations of the aSyn PFF model is provided in Fig. 1. Replicated phenotypes that have been reported in more than one study are provided along the timeline of the model. Phenotypes that were only investigated in one study are also included but denoted as “underexplored phenotypes”. An inset containing phenotypes that were reported as absent is also included.

DISCUSSION

For all studies, one of the earliest phenotypes reported is the presence of pS129 aSyn within brain regions innervating the injected structure. As the model progresses, the density of pS129 aSyn pathology and gut-to-brain transmissibility of aSyn pathology. Importantly, the phenotypes observed in this model are not always reproducible and their presence/absence varies between studies (Fig. 1). This can be noted...
Table 7
Injection of aSyn PFFs into the wildtype or transgenic rodent gut

Paper	Uemura 2018 [61]	Kim 2019 [62]	Uemura 2020 [63]	Challis 2020 [64]	Wang 2020 [65]	Holmqvist 2014 [66]	Manfredsson 2018 [67]	Van Den Berge 2019 [68]	Van Den Berge 2021 [69]
Rodent Strain	C57Bl/J	C57Bl/J	C57Bl/N (2 month)	C57Bl/N (10 month)	M83 A53T Hu aSyn	Sprague Dawley	Sprague Dawley	Sprague Dawley	Fischer 344
Injectate	Mouse aSyn	Mouse aSyn	Mouse aSyn	Mouse aSyn	Human aSyn	Human aSyn	Mouse aSyn	Human aSyn	Mouse aSyn
Injection Site	Gastric Wall (unclear location)	Stomach & Duodenum (gastric wall)	Pylorus & Duodenum (gastric wall)	Duodenum (gastric wall)	Duodenum (gastric wall)	Stellate ganglia, Celiac ganglia	Stomach & Duodenum (gastric wall)	Descending Colon (gastric wall)	Pylorus & Duodenum (gastric wall)
Total Dose	40ug (over 8 sites)	25ug (over 2 sites)	48ug (over 8 sites)	6ug (over 2 sites)	6ug (over 2 sites)	11ug (over 4 sites)	15ug (over 5 sites)	60ug (over 6 sites)	18ug (over 6 sites)
DPI	23, 45, 180	30, 90, 210, 300	30, 60, 120, 180, 240	7, 21, 60, 120	7, 21, 60, 120	30, 60, 120	150, 180, 210	0.5, 1, 2, 3, 6	30, 180, 360
Peripheral Spinal Cord pS129 aSyn	45+ (DMV) 160 (MG)	30+ (DMV)	30, 60 (DMV, MG) Absent in duodenum and SC	60 (MG) Absent (DMV)	120 (DMV)	30+ (SC) 60+ (GI, skin, heart, sweat gland)	2+ (vagal nerve) 6 (DMV)	30+ (MG) 30 (DMV)	Absent
CNS PpS129 aSyn	Absent	30+ (Brainstem) 90+ (Midbrain) 210+ (Forebrain)	120 (Brainstem) Absent in Midbrain and Forebrain	Absent (Midbrain) Absent (Midbrain)	120 (Midbrain)	30+ (Brainstem, Midbrain)	Absent		
Cell Loss	N/A	SNpc DA - 210+	N/A	Absent (MG) Absent (SN)	N/A	Absent	Absent	Absent	N/A
Behavioral Deficits	N/A	Motor - 210+ Cognitive - 210+ Psychiatric - 210+ Offactory - 300	N/A	Motor - 60, 90 GI - 60+ Motor - 120 GI - 120	GI - 90 Offactory - 90+ Orthostatic hypotension - 90+ Hypoaldosteronism - 90+	N/A	N/A	N/A	N/A
Other	Nitrotyrosine aSyn (DMV) - 45	GI inflammation - 7+	Nitrated aSyn (DMV, MG) - 30, 60 Ubiquitin and p62 (DMV, MG) - 30, 60	Striatal DA deficits - Absent	Striatal DA deficits - 120	N/A	N/A	N/A	N/A
Note	Vagotomy	No brain pathology	Patent pathology in DMV	AAV-PHP.S GCase overexpression	Reduced pathology	aSyn pathology was equal in PPF & monomer groups	Rats also injected with human S129a aSyn PFFs; pathology worse with age. Pathology with mouse PFFs greater than human PFFs.	N/A	N/A

aSyn, alpha-synuclein; PFFs, preformed fibrils; Hu, human; DMV, dorsal motor nucleus of the vagus; MG, myenteric ganglia; SC, spinal cord; GI, gastrointestinal system; CNS, central nervous system; SNpc, substantia nigra pars compacta; DA, dopamine; KO, knockout.
Table 8
Unilateral or bilateral injection of aSyn PFFs into the transgenic mouse muscle

Paper	Intramuscular						
Rodent Strain	Mouse	Mouse	Mouse	Mouse	Mouse	Mouse	Mouse
	M83 A53T Hu aSyn Mouse	M83 A53T Hu aSyn Mouse	M83 A53T Hu aSyn Mouse	GFP-tagged A53T SNCAl KI Mouse	M83 A53T Hu aSyn Mouse	M83 A53T Hu aSyn Mouse	
Injectate	Human aSyn	Mouse aSyn					
Total Dose	10 ug (Bilateral)	20 ug (Bilateral)	10 ug (Bilateral)	10 ug (Unilateral)	10 ug (Bilateral)	20 ug (Bilateral)	
DPI	126-160	134	30, 60, 90	120, 240	30, 90, 117	45	

Table 9
Injection of aSyn PFFs into the wildtype or transgenic rodent peritoneum, vein, nerve, or eye

Paper	Intraperitoneal	Intravenous	Nerve	Intravitreal
Rodent Strain	Mouse aSyn	Mouse aSyn	Mouse aSyn	Mouse aSyn
	M83 A53T Hu aSyn Mouse	M83 A53T Hu aSyn Mouse	Sprague Dawley Rats	M83 A53T Hu aSyn Mouse
Injectate	Mouse aSyn	Mouse aSyn	Human aSyn	Mouse aSyn
Total Dose	50 ug	50 ug	20 ug	4 ug
DPI	180	350	120	30

when analyzing the phenotypes listed in Tables 1–9 when comparing studies of similar designs with regard to injection site, unilateral vs bilateral injection, wildtype vs transgenic rodent, etc.

An example of this can be found in motor deficits observed following intrastriatal injection. Despite using the same dose of aSyn PFFs, some report motor deficits following unilateral intrastriatal injection of mouse aSyn PFFs as early as 90 DPI [28, 30, 31] while others do not observe motor impairments until 180 DPI [19, 27] (Table 1). Others still do not observe motor impairments even at 180 days...
Fig. 1. Visual representation of the various phenotypes reported in common iterations of the alpha-synuclein preformed fibril (aSyn PFF) model. Replicated phenotypes (reported in > 1 study) and underexplored phenotypes (observed in only 1 study) are mapped across the timeline of the model. Phenotypes that were investigated but found to be absent are also included in an inset to the right of the table. Italicized phenotypes are those that vary across studies by either their presence/absence (denoted by superscript A) or timing of appearance (denoted with superscript T). For all italicized phenotypes, the most common time at which the phenotype is observed is reported.

following bilateral injection [35]. Some of these differences may be attributed to the behavioral assays employed. For instance, Henderson et al. (2019) used two behavioral tests in the same cohort—grip strength and rotarod—and demonstrated differences in grip strength upon aSyn PFF treatment but no effect of aSyn PFF treatment on rotarod performance [30]. These differences in detecting an effect of aSyn PFF treatment on motor function or non-motor function could be due to the physiology probed within these assays, the sensitivity of the tests, or confounds that may impact the readouts [77].

Another phenotype that greatly varies between studies is pS129 aSyn pathology in the brain following injection of aSyn PFFs to the gut (Table 7). Roughly half of the studies observe pS129 aSyn pathology spread to the midbrain/forebrain [62, 64, 65, 68] whereas the other half observe pathology in the periphery/brainstem that never progresses to the midbrain/forebrain [61, 63, 64, 66, 68]. As mentioned in a recent review by Bindas et al. (2021), the reason for this is unclear but could relate to gastrointestinal conditions, amount of pathology generated, site of pathology, and type of pathology induced by the aSyn PFFs [78].

When attempting to understand the variability within the aSyn PFF model, it is important to understand the various factors that can influence the pathogenicity of the aSyn PFFs. Some factors may be obvious and easily accounted for, such as dose or days post-injection. Other factors are not so clear. The source and method of preparing the aSyn PFFs can greatly influence their pathogenicity. Multiple studies have noted that endotoxin may impact the aSyn
REFERENCES

CONFLICT OF INTEREST

ACKNOWLEDGMENTS

The author would like to sincerely thank Dr. Shalini Padmanabhan at The Michael J. Fox Foundation for Parkinson’s Research for her review and comments on this manuscript. The author also would like to thank the Parkinson’s disease community of patients and their loved ones for their unending support of the mission of The Michael J. Fox Foundation.

CONFLICT OF INTEREST

The author has no conflicts of interest to report.

REFERENCES

[1] Airavaara M, Parkkinnen I, Konovalova J, Albert K, Chmielarz P, Domanskiy A (2020) Back and to the future: From neurotoxin-induced to human Parkinson’s disease models. Curr Protoc Neurosci 91, e88.
[2] Jagmag SA, Tripathi N, Shukla SD, Maiti S, Khurana S (2016) Evaluation of models of Parkinson’s disease. Front Neurosci 9, 503.
[3] Konnova EA, Swanberg M (2018) Chapter 5: Animal models of Parkinson’s disease. Parkinson’s disease: Pathogenesis and clinical aspects. Codon Publications.
[4] Braak H, Braak E (2000) Pathoanatomy of Parkinson’s disease. J Neurol 247(Suppl 2), I3-10.
[5] Braak H, Del Tredici K, Bratzke H, Hann-Clement J, Sandmann-Keil D, Rub U (2002) Staging of the intracerebral inclusion body pathology associated with idiopathic Parkinson’s disease (preclinical and clinical stages). J Neurol 249(Supp 3), III/I-III/5.
[6] Braak, H, Del Tredici J, Rub U, de Vos RAI, Jansen Steur ENH, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24, 197-211.
[7] Braak, H, de Vos RAI, Bohl J, Del Tredici K (2006) Gastric alpha-synuclein-immunoreactive inclusions in Meissner’s and Auerbach’s plexuses in cases staged for Parkinson’s disease-related brain pathology. Neurosci Lett 396, 67-72.
[8] Polinski NK, Volpicelli-Daley LA, Sortwell CE, Luk KC, Cremade N, Gottler LM, Froula J, Duffy MF, Lee VMY, Martinez TN, Dave KD (2018) Best practices for generating and using alpha-synuclein preformed fibrils to model Parkinson’s disease in rodents. J Parkinsonism Dis 8, 303-322.
[9] Patterson, JR, Polinski NK, Duffy MF, Kemp CI, Luk KC, Volpicelli-Daley LA, Kanaan NM, Sortwell CE (2019) Generation of alpha-synuclein preformed fibrils from monomers. J Vis Exp, doi: 10.3791/59758.
[10] Zhang B, Kehm V, Gathagan R, Leight SN, Trojanowski JQ, Lee VMY, Luk KC (2019). Stereotaxic targeting of alpha-synuclein pathology in mouse brain using preformed fibrils. Methods Mol Biol 1948, 45-57.
[11] Luk KC, Lee VMY (2014) Modeling Lewy pathology propagation in Parkinson’s disease. Parkinsonism RelatDisord 20 (Suppl 1(0 1)), S85-87.
[12] Guo JL, Covell DJ, Daniels JP, Iba M, Stieber A, Zhang B, Riddle DM, Kwong LK, Xu Y, Trojanowski JQ, Lee VMY (2013) Distinct alpha-synuclein strains differentially promote tau inclusions in neurons. Cell 154, 103-117.
[13] Peelaerts W, Bousset L, Van der Perren A, Moskaluk A, Pulizzi R, Giugliano M, Van den Haute C, Melki R, Baekelandt V (2015) Alpha-synuclein strains cause distinct synucleinopathies after local and systemic administration. Nature 522, 340-344.
[14] Kim C, Ly G, Lee JS, Jung BC, Masuda-Suzukake M, Hong CS, Valera E, Lee HJ, Paik SR, Hasegawa M, Masliah E, Eliezer D, Lee SJ (2016) Exposure to bacterial endotoxin generates a distinct strain of alpha-synuclein fibril. J Biol Chem 291, 18675-18688.
[15] Abdelmotilib H, Maltbie T, Delic V, Liu Z, Hu X, Fraser KB, Moehle MS, Styoy L, Anabtawi N, Kendelchitchikova V, Volpicelli-Daley LA, West A (2018) Alpha-synuclein fibril-induced inclusion spread in rats and mice correlates with dopaminergic neurodegeneration. Neurobiol Dis 105, 84-98.
[16] Froula JM, Castellana-Cruz M, Anabtawi NM, Camino JD, Chen SW, Thrasher DR, Freire J, Yazdi AA, Fleming S, Dobson CM, Kumita JR, Cremade N, Volpicelli-Daley LA (2019) Defining alpha-synuclein species responsible for Parkinson’s disease phenotypes in mice. J Biol Chem 294, 10392-10406.
[17] Rey NL, Bousset L, George S, Madaj Z, Meyerdirk L, Schulz E, Steiner JA, Melki R, Brundin P (2019) Alpha-synuclein conformational strains spread, seed, and target neuronal cells differentially after injection into the olfactory bulb. Acta NeuropatholCommun 7, 221.
[19] Luk KC, Covell DJ, Kehm VM, Zhang B, Song Y, Byrne MD, Pitkin RM, Decker SC, Trojanowski JQ, Lee VMY (2016) Molecular and biological compatibility with host alpha-synuclein influences fibril pathogenicity. Cell Rep 16, 3373-3387.

[20] Rutherford NJ, Dhillon JKS, Riffe CJ, Howard JK, Brooks M, Giasson BI (2017) Comparison of the in vivo induction and transmission of alpha-synuclein pathology by mutant alpha-synuclein fibril seeds in transgenic mice. Hum Mol Genet 26, 4906-4915.

[21] Guan Y, Zhao X, Liu F, Yan S, Wang Y, Du C, Cui X, Li R, Zhang CX (2020) Pathogenic mutations differentially regulate cell-to-cell transmission of alpha-synuclein. Front Cell Neurosci 14, 159.

[22] Hayakawa H, Nakatani R, Ikenaka K, Aguirre C, Choong J, Tsuda H, Nagano S, Koike M, Ikeuchi T, Hasegawa M, Papa SM, Nagai Y, Mochizuki H, Baba K (2020) Structurally distinct alpha-synuclein fibrils induce robust parkinsonian pathology. Mov Disord 35, 256-267.

[23] Luk KC, Kehm VM, Zhang B, O’Brien P, Trojanowski JQ, Lee VMY (2012) Intracerebral inoculation of pathological alpha-synuclein initiates a rapidly progressive neurodegenerative alpha-synucleinopathy in mice. J Exp Med 209, 975-986.

[24] Sacino AN, Brooks M, Thomas MS, McKinney AB, Lee S, Regenhardt RW, McGarvey NH, Ayers JJ, Notterpek L, Borchelt DR, Golde TE, Giasson BI (2014) Intramuscular injection of alpha-synuclein induces CNS alpha-synuclein pathology and a rapid-onset motor phenotype in transgenic mice. Proc Natl Acad Sci USA 111, 10732-10737.

[25] Terada M, Suzuki G, Nonaka T, Kametani F, Tamaoka A, Hasegawa M (2018) The effect of truncation on prion-like properties of alpha-synuclein. J Biol Chem 293, 13910-13920.

[26] Karampetso M, Ardha MT, Semitekolou M, Polissidis A, Samiotaki M, Kalomoiri M, Majbour N, Xanthou G, El-Agnaf OMA, Vekrellis K (2017) Phosphorylated exogenous alpha-synuclein fibrils exacerbate pathology and induce neuronal dysfunction in mice. Sci Rep 7, 16533.

[27] Luk KC, Kehm V, Carroll J, Zhang B, O’Brien P, Trojanowski JQ, Lee VMY (2012) Pathological alpha-synuclein transmission initiates Parkinson-like neurodegeneration in non-transgenic mice. Science 338, 949-953.

[28] Masuda-Suzukake M, Nonaka T, Hosokawa M, Kudo M, Shimozawa A, Akiyama H, Hasegawa M (2014) Pathological alpha-synuclein propagates through neural networks. Acta Neuropathol Commun 2, 88.

[29] Fares MB, Maco B, Oueslati A, Rockenstein E, Ninkina N, Buchman VL, Masiyah E, Lashuel HA (2016) Induction of de novo alpha-synuclein fibrillization in a neuronal model for Parkinson’s disease. Proc Natl Acad Sci USA 113, E912-921.

[30] Henderson MX, Cornblath EJ, Darwish A, Zhang B, Brown H, Gathagan RJ, Sandler RM, Bassett DS, Trojanowski JQ, Lee VMY (2019) Spread of alpha-synuclein pathology through the brain connectome is modulated by selective vulnerability and predicted by network analysis. Nat Neurosci 22, 1248-1257.

[31] Izco M, Blesa J, Verona G, Cooper JM, Alvarez-Erviti L (2021) Gliol activation precedes alpha-synuclein pathology in a mouse model of Parkinson’s disease. Neurosci Res 170, 330-340.

[32] Burtscher J, Copin JC, Sandi C, Lashuel HA (2020) Pronounced alpha-synuclein pathology in a seeding-based mouse model is not sufficient to induce mitochondrial reprogramming deficits in the striatum and amygdala. eNeuro 7, ENEURO.0110-20.2020.

[33] Kim YE, Lai TT, Kim YJ, Jeon B (2020) Preferential microglial activation associated with pathological alpha synuclein transmission. J Clin Neurosci 81, 469-476.

[34] Sorrentino ZA, Brooks MMT, Hudson 3rd V, Rutherford NJ, Golde TE, Giasson BI, Chakrabarty P (2017) Intratraumatic injection of alpha-synuclein can lead to widespread synucleinopathy independent of neuroanatomical connectivity. Mol Neurodegener 12, 40.

[35] Stoyka LE, Arrant AE, Thrasher DR, Russell DL, Freire J, Mahoney CL, Narayanan A, Dib AG, Standaert DG, Volpicelli-Daley LA (2020) Behavioral defects associated with amygdala and cortical dysfunction in mice with seeded alpha-synuclein inclusions. Neurobiol Dis 134, 104708.

[36] Deng XB, Wang XX, Xia DH, Liu H, Tian HY, Fu Y, Chen YK, Qin C, Wang QJ, Xiang Z, Zhang ZX, Cao QC, Wang W, Li JY, Wu E, Tang BS, Ma MM, Teng JF, Wang XJ (2021) Impaired meningeal lymphatic drainage in patients with idiopathic Parkinson’s disease. Nat Med 27, 411-418.

[37] Milanese C, Cerri S, Ulusoy A, Gornati SV, Plat A, Gabriels S, Blandini F, Di Monte DA, Joecjmakers JH, Mastroberardino PG (2018) Activation of the DNA damage response in vivo in synucleinopathy models of Parkinson’s disease. Cell Death Dis 9, 818.

[38] Earls RH, Menees KB, Chung J, Gutekunst CA, Lee HJ, Hazim MG, Rada B, Wood LB, Lee JK (2020) NK cells clear alpha-synuclein and the depletion of NK cells exacerbates synucleinopathy in a mouse model of alpha-synucleinopathy. Proc Natl Acad Sci USA 117, 1762-1771.

[39] Blumenstock S, Rodrigues EF, Peters F, Biazquez-Llorca L, Schmidt F, Giese A, Herm J (2017) Seeding and transgenic overexpression of alpha-synuclein triggers dendritic spine pathology in the neocortex. EMBO Mol Med 9, 716-731.

[40] Bieri G, Brahic M, Bousset L, Coulhouls J, Kramer NJ, Ma R, Nakayama L, Monbureau M, Defensor E, Schule B, Shamloo M, Melki R, Gitler AD (2019) LRRK2 modifies alpha-synuclein and spread in mouse models and human neurons. Acta Neuropathol 137, 961-980.

[41] Migdaliska-Richards A, Wegrzynowicz M, Harrison IF, George S, Steiner JA, Madaj Z, Luk KC, Trojanowski JQ, Lee VMY (2018) Widespread transneuronal propagation of alpha-synuclein deposition in the olfactory bulb mimics prodromal Parkinson’s disease. J Exp Med 213, 1759-1778.

[42] Rey NL, Steiner JA, Maroof N, Luk KC, Madaj Z, Trojanowski JQ, Lee VMY, Brundin P (2016) Widespread transneuronal propagation of alpha-synuclein deposition in the olfactory bulb mimics prodromal Parkinson’s disease. J Exp Med 213, 1759-1778.

[43] Rey NL, Steiner JA, Madaj Z, Luk KC, Trojanowski JQ, Lee VMY, Brundin P (2018) Spread of aggregates after olfactory bulb injection of alpha-synuclein fibrils is associated with early neuronal loss and is reduced long term. Acta Neuropathol 135, 65-83.

[44] Graham SF, Rey NL, Urgur Z, Yilmaz A, Sherman E, Maddens M, Bahado-Singh RO, Becker K, Schulz E, Meyerlíndik R, Steiner JA, Ma J, Brundin P (2018) Metabolomic profiling of bile acids in an experimental model of prodromal Parkinson’s disease. Metabolites 8, 71.

[45] Kulkarni AS, del Mar Cortijo M, Roberts ER, Suggs TL, Stover HB, Pena-Bravo JI, Steiner JA, Luk KC, Brundin P, Wesson DW (2020) Perturbation of in vivo neural activity following alpha-synuclein seeding in the olfactory bulb. J Parkinsons Dis 10, 1411-1427.
Uemura N, Ueda J, Yoshihara T, Ikumo M, Uemura MT, Yamakado H, Asano M, Trojanowski JQ, Takahashi R (2021) Alpha-synuclein spread from olfactory bulb causes hyposmia, anxiety, and memory loss in BAC-SNCA mice. *Mov Disord*. doi: 10.1002/mds.28512

Shen Y, Yu WB, Shen B, Dong H, Zhao J, Tang YL, Fan Y, Yang YF, Sun YM, Luo SS, Chen C, Liu FT, Wu J, Xiao BG, Yu H, Koprich JB, Huang ZL, Wang J (2020) Propagated alpha-synucleinopathy recapitulates REM sleep behavior disorder followed by parkinsonin phenotypes in mice. *Brain* 143, 3374-3392.

Luna E, Decker SC, Riddle DM, Caputo A, Zhang B, Cole T, Caswell C, Xie SX, Lee VMY, Luk KC (2018) Differential alpha-synuclein expression contributes to selective vulnerability of hippocampal neuron subpopulations to fibril-induced toxicity. *Acta Neuropathol* 135, 855-875.

Nouraei N, Mason DM, Miner KM, Carcella MA, Bhatia TN, Damm BK, Soni D, Johnson DA, Luk KC, Leak RK (2018) Critical appraisal of pathology transmission in the alpha-synuclein fibril model of Lewy body disorders. *Exp Neurol* 299(Pt A), 172-196.

Caputo A, Liang Y, Raabe TD, Lo A, Horvath M, Zhang B, Brown JH, Stieber A, Luk KC (2020) SNCA-GFP knock-in mice reflect patterns of endogenous expression and pathological seeding. *eNeuro* 7, ENEURO.0007-20.2020.

Osterberg VR, Spinelli KJ, Weston LJ, Luk KC, Woltjer RL, Unni VK (2015) Progressive aggregation of alpha-synuclein and selective degeneration of Lewy inclusion-bearing neurons in a mouse model of parkinsonism. *Cell Rep* 10, 1252-1260.

Schaser AJ, Stackhouse TL, Weston LJ, Kerstein PC, Osterberg VR, Lopez CS, Dickson DW, Luk KC, Meshul CK, Woltjer RL, Unni VK (2020) Trans-synaptic and retrograde axonal spread of Lewy pathology following preformed fibril injection in an *in vivo* A53T alpha-synuclein mouse model of synucleinopathy. *Acta Neuropathol Commun* 8, 150.

Masuda-Suzukake M, Nonaka T, Hosokawa M, Oikawa T, Arai T, Akiyama H, Mann DMA, Hasegawa M (2013) Prion-like spreading of pathological alpha-synuclein in brain. *Brain* 136, 1128-1138.

Paumier KL, Luk KC, Manfredsson FP, Kanaan NM, Lipton JW, Collier TJ, Steece-Collier K, Kemp CJ, Celano S, Schulz E, Sandoval IM, Fleming S, Dirr E, Polinsky NK, Trojanowski JQ, Lee VMY, Sortwell CE (2015) Intrastriatal injection of preformed mouse alpha-synuclein fibrils into rats triggers alpha-synuclein pathology and bilateral nigrostriatal degeneration. *Neurobiol Dis* 82, 185-199.

Duffy MF, Collier TJ, Patterson JR, Kemp CJ, Luk KC, Tansey MG, Paumier KL, Kanaan NM, Fischer DL, Polinsky NK, Barth OL, Howe JW, Vaikath NN, Majbour NK, El-Agnaf OMA, Sortwell CE (2018) Lewy body-like alpha-synuclein inclusions trigger reactive microgliosis prior to nigral degeneration. *J Neuroinflammation* 15, 129.

Patterson JR, Duffy MF, Kemp CJ, Howe JW, Collier TJ, Stoll AC, Miller KM, Patel P, Levine N, Moore DJ, Luk KC, Fleming SM, Kanaan NM, Paumier KL, El-Agnaf OMA, Sortwell CE (2019) Time course and magnitude of alpha-synuclein inclusion formation and nigrostriatal degeneration in the rat model of synucleinopathy triggered by intrastriatal alpha-synuclein preformed fibrils. *Neurobiol Dis* 130, 104525.

Thomsen MB, Ferreira SA, Schacht AC, Jacobsen J, Simonen M, Betzer C, Jensen PH, Brooks DJ, Landau AM, Romero-Ramos M (2021) PET imaging reveals early and progressive dopaminergic deficits after intra-striatal injection of preformed alpha-synuclein fibrils in rats. *Neurobiol Dis* 149, 105229.
peripheral injection of alpha-synuclein fibrils. *J Virol* 91, e02095-16.

[71] Sorrentino ZA., Xia Y, Funk C, Riffe CI, Rutherford NJ, Diaz CC, Sacino AN, Price ND, Golde TE, Giasson BI, Chakrabarty P (2018) Motor neuron loss and neuroinflammation in a model of alpha-synuclein-induced neurodegeneration. *Neurobiol Dis* 120, 98-106.

[72] Chu WT, DeSimone JC, Riffe CJ, Liu H, Chakrabarty P, Giasson BI, Vedam-Mai V, Vaillancourt DE (2020) Alpha-synuclein induces progressive changes in brain microstructure and sensory-evoked brain function that precedes locomotor decline. *J Neurosci* 40, 6649-6659.

[73] Ferreira N, Goncalves NP, Jan A, Moller Jensen N, van der Laan A, Mohseni S, Vaegter CB, Jensen PH (2021) Trans-synaptic spreading of alpha-synuclein pathology through sensory afferents leads to sensory nerve degeneration and neuropathic pain. *Acta Neuropathol Commun* 9, 31.

[74] Kuan WL, Stott K, He X, Wood TC, Yang S, Kwok JCF, Hall K, Zhao Y, Tietz O, Aigbirhio FI, Vernon AC, Barker RA (2021) Systemic alpha-synuclein injection triggers selective neuronal pathology as seen in patients with Parkinson’s disease. *Mol Physiol* 26, 556-567.

[75] Ayers JI, Riffe CI, Sorrentino ZA, Diamond J, Fagerli E, Brooks M, Galaleldeen A, Hart PJ, Giasson BI (2018) Localized induction of wild-type and mutant alpha-synuclein aggregation reveals propagation along neuroanatomical tracts. *J Virol* 92, e00586-18.

[76] Veys L, Van Houcke J, Aerts J, Van Pottelberge S, Mahieu M, Coens A, Melki R, Moechars D, De Muynck L, De Groef L (2021) Absence of uptake and prion-like spreading of alpha-synuclein and tau after intravitreal injection of preformed fibrils. *Front Aging Neurosci* 12, 614587.

[77] Brooks SP, Dunnett SB (2009) Tests to assess motor phenotype in mice: a user’s guide. *Nat Rev Neurosci* 10, 519-529.

[78] Bindas AJ, Kulkarni S, Koppes RA, Koppes AN (2021) Parkinson’s disease and the gut: models of an emerging relationship. *Acta Biomater*, doi: 10.1016/j.actbio.2021.03.071

[79] Urbaschek B, Urbaschek R (1979) The inflammatory response to endotoxin. *BiblAnat* 17, 74-104.