ON THE ANALYTICITY OF THE GROUP ACTION ON THE LUBIN-TATE SPACE

CHI YU LO

ABSTRACT. In this paper we study the analyticity of the group action of the automorphism group \(G \) of a formal module \(\hat{F} \) of height 2 (defined over \(\mathbb{F}_q \)) on the Lubin-Tate deformation space \(X \) of \(\hat{F} \). It is shown that a wide open congruence group of level zero attached to a non-split torus acts analytically on a particular disc in \(X \) on which the period morphism is not injective. For certain other discs with larger radii (defined in terms of quasi-canonical liftings) we find wide open rigid analytic groups which act analytically on these discs.

CONTENTS

1. Introduction 1
2. Analyticity of the non-split torus on the first critical disc 4
 2.1. The power series describing the group action 4
 2.2. The coefficients as rational functions on the torus 8
 2.3. The function \(R \) 10
 2.4. Estimates for the norms of the coefficients 13
 2.5. Radius of convergence for the group action on \(\Delta_0 \) 18
3. Analyticity on critical discs of larger radius 19
 3.1. Estimates for the action of the Lie algebra 20
 3.2. Groups acting analytically on larger critical discs 23
4. References 24

1. Introduction

The deformation space. Let \(K \) be a finite extension of \(\mathbb{Q}_p \) with ring of integers \(\mathfrak{o} = \mathfrak{o}_K \), uniformizer \(\pi \), and residue field \(\mathbb{F}_q \). Denote by \(\hat{F} \) a formal \(\mathfrak{o}_K \)-module of \(K \)-height 2 over \(\mathbb{F}_p \). It is well known that \(G = \text{Aut}_A(\hat{F}) \) is isomorphic to the group of units \(\mathfrak{o}_D^* \) of the maximal compact subring \(\mathfrak{o}_D \) of a quaternion division algebra \(D \) with center \(K \), cf. [1, 1.7]. Therefore, \(G \) carries the structure of a locally \(K \)-analytic group. The deformation space \(\mathfrak{X} \) of \(\hat{F} \) is (non-canonically) isomorphic to \(\text{Spf}(\hat{\mathfrak{o}}^{nr}[u]) \), where \(\hat{\mathfrak{o}}^{nr} \) is the completion of the maximal unramified extension of \(\mathfrak{o}_K \) and the group \(G \) acts naturally on \(\mathfrak{X} \) by automorphisms of this formal scheme. In particular, \(G \) acts on the associated
rigid-analytic space \(X = \mathcal{X}^{\text{rig}} \) which we identify (using the chosen coordinate \(u \)) with the wide open unit disc \(\{ u \mid |u| < 1 \} \).

Motivation: locally analytic representations. The motivation for this paper comes from the theory of locally analytic representations of \(p \)-adic groups. Suppose \(\mathcal{V} \) is a \(G \)-equivariant vector bundle on \(X \). The space of global sections \(H^0(X, \mathcal{V}) \) is then a nuclear Fréchet space, and its topological dual space \(H^0(X, \mathcal{V})'_b \), equipped with the strong topology, is a compact inductive limit of Banach spaces. This space carries a \(G \)-action, and the question arises if this representation is locally analytic, and what other properties it may have.

For instance, when \(\mathcal{V} = \mathcal{O}_X \) is the structure sheaf, then the Gross-Hopkins period morphism

\[\Phi : X \to (\mathbb{P}^1)^{\text{rig}}, \quad u \mapsto [\phi_0(u) : \phi_1(u)] \]

\(^1\)can be used to show that \(H^0(X, \mathcal{O}_X)'_b \) is indeed a locally analytic representation, cf. section \([3] \). That this action is locally analytic is in fact not very difficult to see in our given situation. However, in order to get a better understanding of \(H^0(X, \mathcal{O}_X)'_b \) as a locally analytic representation, we are interested in the subspaces of vectors which are analytic for certain wide open rigid-analytic groups \(G^o \). In doing so we are following the point of view on locally analytic representations developed by M. Emerton in \([2]\). We are now going to introduce the groups \(G^o \).

The groups \(G^o \). Let \(K_2/K \) be the unramified quadratic extension, and write \(\alpha \mapsto \bar{\alpha} \) be the non-trivial Galois automorphism of \(K_2 \) over \(K \). Then we can represent \(D \) as a \(K \)-subalgebra of \(M_2(K_2) \) as follows:

\[D = \left\{ \begin{pmatrix} \alpha & \pi \bar{\beta} \\ \beta & \bar{\alpha} \end{pmatrix} \mid \alpha, \beta \in K_2 \right\} . \]

We let \(\mathbb{G} \) be the algebraic group scheme over \(\text{Spec}(\mathfrak{o}_K) \) defined by \(\mathfrak{o}_D^* \), i.e., for every unital commutative \(\mathfrak{o}_K \)-algebra \(R \) one has

\[\mathbb{G}(R) = (\mathfrak{o}_D \otimes_{\mathfrak{o}_K} R)^* . \]

Let \(\zeta \in K_2^* \) be such that \(\bar{\zeta} = -\zeta \), so that \(\zeta^2 \) is in \(\mathfrak{o}_K^* \). Let \(a_1, a_2, b_1, b_2 \) be indeterminates and put \(\Delta = a_1^2 - \zeta^2 a_2^2 - \pi(b_1^2 - \zeta^2 b_2^2) \). Then

\[\mathbb{G} = \text{Spec} \left(\mathfrak{o}_K[a_1, a_2, b_1, b_2][\Delta] \right) , \]

\(^1\)That \(H^0(X, \mathcal{O}_X)'_b \) is a locally analytic \(G \)-representation has been shown for more general deformation spaces \(X \) of \(p \)-divisible formal groups and their automorphism groups \(G \) by J. Kohlhaase, cf. \([5]\).
where the co-multiplication is given by

\[
\begin{align*}
 a_1 & \mapsto a_1 a'_1 + \zeta^2 a_2 a'_2 + \varpi b_1 b'_1 - \zeta^2 \varpi b_2 b'_2, \\
 a_2 & \mapsto a_2 a'_1 + a_1 a'_2 + \varpi b_1 b'_2 - \varpi b_2 b'_1, \\
 b_1 & \mapsto a_1 b'_1 - \zeta^2 a_2 b'_2 + b_1 a'_1 + \zeta^2 b_2 a'_2, \\
 b_2 & \mapsto a_1 b'_2 - a_2 b'_1 + b_1 a'_2 + b_2 a'_1.
\end{align*}
\]

Let \(G_K \) be the base change from \(o_K \) to \(K \), and let \(G^\text{rig}_K \) be the associated rigid-analytic group. Its group of \(K \)-valued points is equal to \(D^* \). For an integer \(s \geq 0 \) there is a “wide open” rigid analytic group \(G^o \subset G^\text{rig}_K \) whose group of \(\mathbb{C}_p \)-valued points is given by

\[
\{(a_1, a_2, b_1, b_2) \in G^\text{rig}_K(\mathbb{C}_p) \mid |a_1 - 1| < |\pi|^s, |a_2| < |\pi|^s, |b_1| < |\pi|^{s - \frac{1}{q+1}}, |b_2| < |\pi|^{s - \frac{1}{q+1}}\}.
\]

Critical radii and critical discs. In [3] the homogeneous coordinates on \(\mathbb{P}^1 \) are chosen in such a way that the moduli of quasi-canonical lifts which carry an action of an open subgroup of \(o^*_K \) are mapped to the points \([1 : 0]\) and \([0 : 1]\), which are the fixed points of the non-split torus

\[
o^*_K \simeq \left\{ \begin{pmatrix} \alpha & 0 \\ 0 & \overline{\alpha} \end{pmatrix} \mid \alpha \in o^*_K \right\} \subset o^*_D.
\]

With respect to the coordinate \(u \) used in [3], the absolute values of the moduli of these quasi-canonical lifts (which carry an action of an open subgroup of \(o^*_K \)) are given by \(|u| = 0\) and

\[
|u| = |\pi|^{\frac{1}{(q+1)q^s}}, \quad s = 0, 1, \ldots.
\]

For \(s \in \mathbb{Z}_{\geq 0} \) we call \(r_s = |\pi|^{\frac{1}{(q+1)q^s}} \) a **critical radius** and consider the affinoid subdomain

\[
\Delta_s = \left\{ u \in X \mid |u| \leq |\pi|^{\frac{1}{(q+1)q^s}} \right\} \subset X,
\]

which we call a **critical disc.** It is easy to see that the action of \(G = o^*_D \) on \(X \) stabilizes any of the discs \(\Delta_s \). Our investigations seem to indicate that the action of \(G \) on \(\Delta_s \) extends to a rigid-analytic action of \(G^o \) on \(\Delta_s \). While, at the moment, we fall short of proving this, we have obtained some partial results in this direction.

The results of this paper. Let
\[\mathbb{T} = \text{Spec} \left(\mathfrak{o}[a_1, a_2] \left[\frac{1}{a_1^2 - \zeta^2 a_2^2} \right] \right) \subset \mathbb{G} \]

be the subgroup scheme which corresponds to the unramified torus \(\mathfrak{o}^*_K \subset \mathfrak{o}^*_D \). In section 2, we will show that the action of \(\mathfrak{o}^*_K \) on \(\Delta_0 \) extends to an analytic action of the rigid-analytic subgroup

\[
\mathbb{T}^o_0 = \left\{ (a_1, a_2, b_1, b_2) \in \mathbb{G}^{\text{rig}}_K \mid |a_1 - 1| < 1, |a_2| < 1, b_1 = b_2 = 0 \right\}
\]

(1.1.2)

on \(\Delta_0 \), cf. theorem 2.5.1 (2). We prove this by explicitly analyzing the group action of \(\mathfrak{o}^*_K \). For \(g = \begin{pmatrix} \alpha & 0 \\ 0 & \bar{\alpha} \end{pmatrix} \), with \(\alpha \in \mathfrak{o}^*_K \), we write

\[g.u = \sum_{n=0}^{\infty} a_n(g)u^n. \]

In section 2.1 we show that each function \(a_n(g) \) is a polynomial in \(E = \frac{\alpha}{\bar{\alpha}} \), and that \(a_n \) vanishes identically if \(n \) is not of the form \(1 + k(q + 1) \) for \(k \in \mathbb{Z}_{\geq 0} \). Put \(b_k(E) = a_{1+k(q+1)}(E) \). Then, in section 2.2, we show that \(b_k(E) = \frac{1}{q^k} EQ_k(E^{q+1}) \), where \(Q_k(x) \) is a polynomial with coefficients in \(\mathfrak{o}_K \), and \(\deg(Q_k) \leq k \). The key problem is then to estimate \(|Q_k(x)| \) when \(|x - 1| \leq r \) for \(r < 1 \). This requires some fairly delicate arguments which are quite elaborate.

In section 3 we analyze the group action via the derived action of its Lie algebra. In this section we assume eventually that \(K = \mathbb{Q}_p \). For every disc \(\Delta_s \) we show that a certain rigid-analytic subgroup \(\mathbb{H}^o_s \) of \(\mathbb{G}^{\text{rig}}_K \) acts analytically on \(\Delta_s \), cf. theorem 3.2.1 for details. However, \(\mathbb{H}^o_s \) is always strictly contained in the analytic group \(\mathbb{G}^o_s \) defined above.

2. Analyticity of the non-split torus on the first critical disc

2.1. The power series describing the group action.

2.1.1. According to [3 §25], the period map \(\Phi(u) = [\phi_0(u) : \phi_1(u)] \) from the deformation space \(X = \{ u : |u| < 1 \} \) to the rigid-analytic projective space \((\mathbb{P}^1)^{\text{rig}} \) can be described by power series

\[\phi_0(u) = \sum_{n=0}^{\infty} c_n u^n, \quad \phi_1(u) = \sum_{n=1}^{\infty} d_n u^n, \]

whose coefficients are given as follows
\[
c_n = \begin{cases}
1 & \text{if } n = 0 \\
\pi^{-k-1} \frac{q^{2a_0} + q^{2a_1+1} + \cdots + q^{2a_k+k}}{2} & \text{if } n \text{ is of the form } q^{2a_0} + q^{2a_1+1} + \cdots + q^{2a_k+k} \\
0 & \text{otherwise}
\end{cases}
\]

and
\[
d_n = \begin{cases}
\pi^{-k} & \text{if } n \text{ is of the form } q^{2a_0} + q^{2a_1+1} + \cdots + q^{2a_k+k} \\
0 & \text{otherwise}
\end{cases}
\]

In particular, \(c_n = 0\) if \(q + 1 \nmid n\) and \(d_n = 0\) if \(q + 1 \nmid n - 1\).

The group \(G\) acts on \(\mathbb{P}^1\) by linear transformations. If \(g = \begin{pmatrix} \alpha & \pi \bar{\beta} \\ \beta & \bar{\alpha} \end{pmatrix} \in G\) and \([x_0 : x_1] \in \mathbb{P}^1\), then
\[
g \cdot [x_0 : x_1] = [\alpha x_0 + \beta x_1 : \pi \bar{\beta} x_0 + \bar{\alpha} x_1],
\]
where \(\Phi\) is the period map. Since \(\Phi\) is \(G\)-equivariant, we have
\[
\left[\phi_0(g \cdot u), \phi_1(g \cdot u) \right] = g \cdot [\phi_0(u), \phi_1(u)] = [\alpha \phi_0(u), \bar{\alpha} \bar{\phi}_1(u)].
\]

And hence
\[E \phi_1(u) \phi_0(g \cdot u) = \phi_0(u) \phi_1(g \cdot u) \]

where \(E := \frac{\hat{\alpha}}{\alpha} \). By comparing the coefficients of \(u^n \) in the above equation, we get

\[
(2.1.3) \quad E \sum_{l \leq n} d_l c_m \prod_{k} a_{r_k}^{r_k} = \sum_{m \leq n} c_m d_l \sum_{k} \prod_{k} a_{r_k}^{r_k}.
\]

By induction, we can see that the function \(a_n \) is actually a function of \(E \). So instead of writing \(a_n(g) \), we write \(a_n(E) \) from now on. When \(n = 0 \), equation (2.1.3) becomes

\[
0 = \phi_1(a_0).
\]

Hence \(a_0(E) = 0 \), since \(|a_0(E)| \leq |\pi| \) and \(\phi_1 \) is injective on \(\{ u : |u| \leq |\pi|^{1/q+1} \} \).

When \(n = 1 \), the equation (2.1.3) becomes

\[
Ed_1 c_0 = c_0 d_1 a_1,
\]

hence \(a_1(E) = E \). For \(2 \leq n \leq q \), we have

\[
0 = c_0 d_1 a_n,
\]

and thus \(a_n(E) = 0 \).

Lemma 2.1.4. If \(q + 1 \nmid n - 1 \), then \(a_n(E) = 0 \).

Proof. We will prove by induction. Suppose \(a_n(E) = 0 \) for \(n \leq N - 1 \) and \(q + 1 \nmid n - 1 \). Want to check the case \(n = N \).

If \(q + 1 \mid N - 1 \), then we have nothing to show. Now we assume \(q + 1 \nmid N - 1 \). By the induction hypotheses, left hand side of equation (2.1.3) becomes

\[
E \sum_{l \leq N} d_l c_m \sum_{\text{r}+k(q+1)=m \atop \text{r}+(1+k(q+1))=N-l} \prod_{k} a_{1+k(q+1)}^{r_1+k(q+1)} = E \sum_{l \leq N} d_l c_m \sum_{\text{r}+k(q+1)=m \atop \text{r}+(1+k(q+1))=N-l} \prod_{k} a_{1+k(q+1)}^{r_1+k(q+1)}.
\]

Since \(q + 1 \mid m + l - 1 \) if \(c_m d_l \) does not vanish, left hand side become zero as \(\frac{N-m-l}{q+1} \) is not an integer. Similarly, the right hand side becomes

\[
c_0 d_1 a_N.
\]

Hence \(a_N(E) = 0 \) follows. \(\square \)
We remark that J. Kohlhaase has computed the functions $b_n(E) := a_{1+n(q+1)}(E)$ and rewrite equation 2.1.3 as

$$b_n = E \sum_{l \leq n} d_l c_m \sum_{r_k = m}^{0} \prod_{k} b_{k}^{r_k} = \sum_{m \leq n} c_{m} d_{l} \sum_{k}^{\nu} \prod_{k} b_{k}^{r_k}$$

or

$$(2.1.5) \quad b_n = E \sum_{l \leq n} d_l c_m \sum_{r_k = m}^{0} \prod_{k} b_{k}^{r_k} - \sum_{m \leq n} c_{m} d_{l} \sum_{k}^{\nu} \prod_{k} b_{k}^{r_k}$$

Let us consider the first few terms when $n \leq 4$:

$$b_1(E) = \frac{1}{\pi} E \left(\frac{q + 1}{0} \right) b_0^{q+1} - \frac{1}{\pi} b_0 = \frac{1}{\pi} E \left(E^{q+1} - 1 \right) ,$$

$$b_2(E) = \frac{1}{\pi} E \left(\frac{q + 1}{1} \right) b_0^{q} b_1 - \frac{1}{\pi} b_1 = \frac{1}{\pi^2} \left(q + 1 \right) (E^{q+1} - 1)^2 + \frac{1}{\pi^2} q (E^{q+1} - 1) ,$$

$$b_3(E) = \frac{1}{\pi^3} \left(q + 1 \right) (3q + 2) E(E^{q+1} - 1)^3 + \frac{1}{\pi^3} \frac{5q(q + 1)}{2} E(E^{q+1} - 1)^2$$

$$+ \frac{1}{\pi^3} q^2 E(E^{q+1} - 1) ,$$

$$b_4(E) = \frac{1}{\pi^4} \left(q + 1 \right) (2q + 1)(4q + 3) E(E^{q+1} - 1)^4 + \frac{1}{\pi^4} \frac{q(q + 1)(37q + 26)}{6} E(E^{q+1} - 1)^3$$

$$+ \frac{1}{\pi^4} \frac{9q^2(q + 1)}{2} E(E^{q+1} - 1)^2 + \frac{1}{\pi^4} q^3 E(E^{q+1} - 1) .$$

We remark that J. Kohlhaase has computed the functions b_n for $n = 0, 1, 2$, cf. [4] Thm. 1.19] (what is denoted by α_1 in loc. cit. coincides with what is here denoted by E).
2.2. The coefficients as rational functions on the torus. Here we will present some results about the terms b_k or $a_{1+k(q+1)}$ as functions of $E = \frac{\alpha}{\beta}$.

Lemma 2.2.1.
(1) $b_k(E)$ is of the form $\pi^{-k}E Q_k(E^{q+1})$ where $Q_k \in \mathfrak{o}_K[x]$.

(2) With Q_k as in (1) we have $\deg_x(Q_k) \leq k$.

(3) With Q_k as in (1) we have $Q_k(0) \equiv (-1)^k \mod \pi$.

(4) $|b_k| = |\pi^{-k}|$ where the supremum norm is taken over $|E| \leq 1$.

Proof. Part (4) follows from part (1) and part (3).

We are now going to prove (1), (2) and (3) at the same time by induction on k. It is clear that b_0 and b_1 satisfy the statements.

Suppose the statements are true for $k \leq N - 1$, where $N \geq 2$. Then equation 2.1.5 can be rewritten as

\[b_N = C_1 + C_2 + C_3 + C_4, \]

where

\[C_1 = -\pi^{-1}b_{N-1}, \]

\[C_2 = Ed_1c_{q+1} \sum_{\substack{|r| = q+1 \backslash r_k \geq q, \exists k \geq 0 \sum kr_k = N-1}} \left(\frac{q+1}{r} \right) \frac{b_r}{r}, \]

\[C_3 = Ed_1c_{q+1} \sum_{\substack{|r| = q+1 \backslash r_k \leq q-1, \forall k \geq 0 \sum kr_k = N-1}} \left(\frac{q+1}{r} \right) \frac{b_r}{r}, \]

\[C_4 = E \sum_{m \geq 1, q+2 < m+l} d_m c_l \sum_{\substack{|r| = m \backslash kr_k = N-\frac{m+l-1}{q+1}}} \left(\frac{m}{r} \right) \frac{b_r}{r} - \sum_{q+2 < m+l} d_m c_l \sum_{\substack{|r| = l \backslash kr_k = N-\frac{m+l-1}{q+1}}} \left(\frac{l}{r} \right) \frac{b_r}{r}. \]

In the above expression, r denotes the multi-index (r_0, r_1, r_2, \ldots) and $|r|$ denotes $\sum r_k$. If $n = |r|$, $\binom{n}{l}$ denotes $\frac{n!}{l!(n-l)!}$. Finally, b_r^- denotes $\prod b_{r,k}^-$. Part (1) and part (2) follows from directly from the induction hypothesis.

To prove part (3), multiply b_N by π^N and modulo π. In particular, $\pi^N C_3 \equiv 0$ as $\frac{m+l-1}{q+1} + \nu(c_m d_l) > 0$ if $m + l > q + 2$. Hence $\pi^N \frac{b_N}{E} \equiv -\pi^{N-1} \frac{b_{N-1}}{E} + \pi^N C_4 \mod \pi$. Put $E = 0$ and the result follows. \[\square \]
The goal of this section is to find estimates for \(b_n \) when \(|E - 1| < 1\). To obtain these estimates we need to describe \(b_{n,k} \) more precisely. We will use the recursive formula \(2.1.5\) to define polynomials \(b_{n,k}(E) \) which are of the form \(\pi^{-k}E Q_{n,k}(E^{q+1}) \) with \(Q_{n,k}(x) \in \mathfrak{o}_K[x] \) for \(0 \leq k \leq n \) such that \(b_n = \sum b_{n,k} \) and with good control on the order of \((x - 1)\) in \(Q_{n,k} \). In particular, \(\pi^{-n}Q_n = \sum \pi^{-k}Q_{n,k} \) and \(||b_{n,k}|| \leq |\pi|^{-k} \).

First of all, \(b_{0,0}(E) := b_0(E) = E \). Suppose we have already defined \(b_{n,k} \) for \(0 \leq k \leq n < N \). Then \(2.2.2\) suggests the following definition for \(s < N \):

\[
(2.2.2) \quad b_{N,s} = \sum_{m+l>1 \atop m<l} c_m d_l \left(E - E^{q \left\lfloor \log_q(l) \right\rfloor} \right) \sum_{|r,i|=m} \left(\frac{m}{r,i} b_{r,i} \right) + \sum_{m+l>1 \atop m<l} c_m d_l E^{q \left\lfloor \log_q(l) \right\rfloor} \sum_{|r,i|=m} \left(\frac{m + q \left\lfloor \log_q(l) \right\rfloor}{r,i} b_{r,i} \right) - \sum_{m+l>1 \atop m<l} c_m d_l \sum_{|r,i|=l, r_0,0 < q \left\lfloor \log_q(l) \right\rfloor, p \left(\frac{l}{r,i} \right)} \left(\frac{l}{r,i} b_{r,i} \right) - \sum_{m+l>1 \atop m<l} c_m d_l \sum_{|r,i|=l, r_0,0 < q \left\lfloor \log_q(l) \right\rfloor, p \left(\frac{l}{r,i} \right)} \left(\frac{l}{r,i} b_{r,i} \right) + \sum_{m+l>1 \atop l < m} \left(\pi^1 + q \left\lfloor \log_q(m) \right\rfloor \right) \sum_{|r,i|=l} \left(\frac{l}{r,i} b_{r,i} \right) - \sum_{m+l>1 \atop l < m} \left(\pi^1 + q \left\lfloor \log_q(m) \right\rfloor \right) \sum_{|r,i|=l} \left(\frac{l}{r,i} b_{r,i} \right) + \sum_{m+l>1 \atop m<l} c_m d_l E^{q \left\lfloor \log_q(m) \right\rfloor} \sum_{|r,i|=l} \left(\frac{l + q \left\lfloor \log_q(m) \right\rfloor}{r,i} b_{r,i} \right) - \sum_{m+l>1 \atop l < m} c_m d_l E^{q \left\lfloor \log_q(m) \right\rfloor} \sum_{|r,i|=l} \left(\frac{l + q \left\lfloor \log_q(m) \right\rfloor}{r,i} b_{r,i} \right).
\]
2.3. The function \(R \). To express the sought-for estimates of the functions \(b_{n,k} \), we need to define some auxiliary functions and study their basic properties.

Definition 2.3.1.

(1) For \(r \geq 0 \), define \(T_r \) by the
\[T_r = 1 + q + q^2 + \cdots + q^r. \]

(2) Suppose \(n > 0 \) is an integer such that \(T_r \leq n < T_{r+1} \). For, \(l \in \mathbb{Z}_{\geq 0} \), define \(n_l \) backward inductively by

\[
n_l = \begin{cases}
0, & \text{if } l \geq r + 1 \\
\left\lfloor \frac{n-n_{r-1}T_{r-1}-\cdots-n_{l+1}T_{l+1}}{T_l} \right\rfloor, & \text{if } 0 \leq l \leq r.
\end{cases}
\]

Define a mapping \(\sigma : \mathbb{Z} \to \bigoplus_{\mathbb{Z}_{\geq 0}} \mathbb{Z}_{\geq 0} \) by

\[
\sigma(n) = \begin{cases}
\{ n_l \}_{l \in \mathbb{Z}_{\geq 0}}, & \text{if } n \geq 0 \\
\{ 0 \}_{l \in \mathbb{Z}_{\geq 0}}, & \text{if } n < 0.
\end{cases}
\]

(3) Define functions \(R', P : \bigoplus_{\mathbb{Z}_{\geq 0}} \mathbb{Z}_{\geq 0} \to \mathbb{Z}_{\geq 0} \) by

\[
R'(\{ n_l \}_{l \in \mathbb{Z}_{\geq 0}}) = \sum_l n_l q^l
\]

and

\[
P(\{ n_l \}_{l \in \mathbb{Z}_{\geq 0}}) = \sum_l n_l T_l.
\]

(4) Finally, define \(R \) by

\[
R(n) := R'(\sigma(n)).
\]

Remark 2.3.2.

(1) In the above definition, the sequences \(\{ n_l \} \) for some non-negative integer \(n \) is characterized by:

- \(n_l \leq q \) for all \(l \)
- \(n_l = q \) for at most one \(l \). If there exist such \(l \), \(n_k = 0 \) for all \(k < l \).

This is because \(qT_{r+1} = T_{r+1} \) and \((q-1)T_r + (q-1)T_{r-1} + \cdots + (q-1)T_{s+1} + qT_s = T_{r+1} - (r - s + 1) < T_{r+1} \) if \(r \geq s \).

(2) \(P \) is the left inverse of \(\sigma|_{\mathbb{Z}_{\geq 0}} \).

(3) We can give \(\bigoplus_{\mathbb{Z}_{\geq 0}} \mathbb{Z}_{\geq 0} \) a lexicographical order: \(\{ n_l \} > \{ m_l \} \) if there exists \(N \geq 0 \) s.t. \(n_N > m_N \) and \(n_l = m_l \) for all \(l > N \). Moreover, if \(\{ n_l \} = \sigma(n) \), then \(\{ n_l \} \geq \{ m_l \} \) for all \(\{ m_l \} \) s.t. \(P(m_l) = n \).
Here are some basic properties of the map R.

Lemma 2.3.3.

1. $R(n)$ is non-decreasing and $R(n+1) - R(n) \leq 1$.
2. $R(i+j) \leq R(i) + R(j)$.
3. If $n > 0$, then $qR(n) \geq R(qn+1)$.
4. $R(n) \geq \frac{2n-1}{q}n$ and the equality only holds at $n = 0$.

Proof. Fix $n \in \mathbb{Z}_{\geq 0}$, Set $\{n_t\} = \sigma(n)$. Suppose $\{N_t\} \in \oplus_{\mathbb{Z}\geq 0} \mathbb{Z}_{\geq 0}$ s.t. $P(\{N_t\})$ also equals to n.

Claim: $R'(\{N_t\}) \geq R'(\{n_t\}) = R(n)$. Equivalently, R' attains minimum at the biggest element $\{n_t\}$ among $\{N_t\}$ with $P(\{N_t\}) = n$.

Proof of the claim. Suppose $n < T_{r+1}$. Then for all $\{N_t\}$ with $P(\{N_t\}) = n$, $N_t = 0$ for all $l \geq r+1$.

Case 1) $\exists l \geq 0$ s.t. $N_t \geq q$. Choose i_0 be the largest such index.

Case 1A) $\exists l < i_0$ s.t. $N_t \neq 0$. Choose j_0 be the smallest such index. Define \tilde{N}_t by

$$
\tilde{N}_t = \begin{cases}
N_t, & \text{if } l \neq i_0 + 1, i_0, j_0 - 1 \\
N_{i_0 + 1}, & \text{if } l = i_0 + 1 \\
N_{i_0} - q, & \text{if } l = i_0 \\
N_{j_0} - 1, & \text{if } l = j_0 \\
q, & \text{if } l = j_0 - 1 \geq 0
\end{cases}
$$

Then $P(\{\tilde{N}_t\}) = n$ and $\{\tilde{N}_t\} \succ \{N_t\}$ in lexicographical order. Also, $R'(\{\tilde{N}_t\}) = R'(\{N_t\})$ if $j_0 \geq 1$ and $R'(\{\tilde{N}_t\}) = R'(\{N_t\}) - 1$ if $j_0 = 0$.

Case 1B) $N_t = 0$ for all $l < i_0$ and $N_{i_0} \geq q + 1$. Define \tilde{N}_t by

$$
\tilde{N}_t = \begin{cases}
N_t, & \text{if } l \neq i_0 + 1, i_0, i_0 - 1 \\
N_{i_0 + 1}, & \text{if } l = i_0 + 1 \\
N_{i_0} - q - 1, & \text{if } l = i_0 \\
q, & \text{if } l = i_0 - 1 \geq 0
\end{cases}
$$

Again, $P(\{\tilde{N}_t\}) = n$ and $\{\tilde{N}_t\} \succ \{N_t\}$. In this situation, we have $R'(\{\tilde{N}_t\}) = R'(\{N_t\})$ if $i_0 \geq 1$ and $R'(\{\tilde{N}_t\}) = R'(\{N_t\}) - 1$ if $i_0 = 0$.

Case 1C) $N_t = 0$ for all $l < i_0$ and $N_{i_0} = q$. Then $\{\tilde{N}_t\} = \{n_t\}$ by the remark [2.3.2].

Case 2) $N_t \leq p - 1$ for all l. Then $\{\tilde{N}_t\} = \{n_t\}$ as in Case 1C.
The conclusion we can draw here is that we can increase the lexicographical order of \(\{ N_l \} \) successively while the \(R' \) value does not increase at the same time until we get \(\{ n_l \} \). Hence the claim follows.

We will first focus on \(n, i, j \geq 0 \). Now for part (2) of the Lemma, we define \(\{ i_l \} := \sigma(i) \) and \(\{ j_l \} := \sigma(j) \). Define \(N_l := i_l + j_l \) for all \(l \). Observe that \(P(\{ N_l \}) = i + j \), so \(R(i) + R(j) = R'(\{ N_l \}) \geq R(i + j) \).

For part (1) of the lemma, define \(N_l \) by:

\[
N_l = \begin{cases}
 n_l, & \text{if } l > 0 \\
 n_0 + 1, & \text{if } l = 0
\end{cases}
\]

where \(\{ n_l \} = \sigma(n) \). In particular, \(P(\{ N_l \}) = n + 1 \). Hence,

\[
R(n) + 1 = R'(\{ N_l \}) \geq R(n + 1) .
\]

Since \(\{ n_l \} = \sigma \), so either \(n_l \leq q - 1 \) for all \(l \), or \(n_l \leq q - 1 \) except \(n_i = q \) for some \(i \geq 0 \) and \(n_l = 0 \) for all \(l < i \). (Case 1C and 2 in the proof of previous claim.) In the first case, \(\{ N_l \} \) is in Case 1C or 2, hence \(\{ N_l \} = \sigma(n + 1) \) and \(R(n + 1) = R(n) + 1 \). In the second case, \(\{ N_l \} \) is in Case 1A or 1B and it is not hard to see \(R'(\{ N_l \}) = R(n + 1) + 1 \) and hence \(R(n + 1) = R(n) \) in this case. In particular, \(R(n + 1) \geq R(n) \) in all cases.

For part (3), define \(N_l \) by

\[
N_l = \begin{cases}
 qn_l, & \text{if } l > 0 \\
 qn_0 + 1, & \text{if } l = 0
\end{cases}
\]

where \(\{ n_l \} = \sigma(n) \). In particular, \(P(\{ N_l \}) = qn + 1 \) and \(R'(\{ N_l \}) = qR(n + 1) + 1 \). Since \(n > 0 \), \(\{ n_l \} \neq 0 \) and \(\{ N_l \} \) is in Case 1A or 1B. Hence \(qR(n) + 1 = R'(\{ N_l \}) > R(qn + 1) \) and thus, \(qR(n) \geq R(qn + 1) \).

It is clear that when \(n < 0 \), \(R(n) = 0 \leq R(n + 1) \leq 1 \). So part 1 follows. If \(i \geq 0 > j \), then \(i + j < i \) and hence \(R(i + j) \leq R(i) = R(i) + R(j) \). Similarly for \(i, j < 0 \). Hence part 2 follows.

For part (4), Observe that \(T_l(q - 1) = q \cdot q^l - 1 \) for all \(l > 0 \) and hence \((q - 1) \sum n_l T_l < q \sum n_l q^l \) unless \(\{ n_l \} = \{ 0 \} \) in which the equality holds. Therefore \(R(n) \geq \frac{q - 1}{q}n \) when \(n \geq 0 \). And it is also clear that the strict inequality holds for \(n < 0 \).

2.4. Estimates for the norms of the coefficients. We start by estimating the order of vanishing of the polynomial \(Q_{n,n} \) at \(x = 1 \).
Proposition 2.4.1. \(\text{ord}_{x-1}(Q_{n,n}) \geq R(n) \). Furthermore, the equality holds when \(n = T_l \) for some \(l \geq 0 \). In particular, \(Q_n(x) \equiv (x - 1)^{R(n)}h(x) \mod \pi \) for some \(h \in \mathbb{Z}[[x]] \).

Proof. We will use induction on \(n \). When \(s = n > 0 \), equation (2.2.2) becomes

\[
\frac{E^{q+1} - 1}{\pi} b_{n-1,n-1} + \pi^{-1} E \sum_{|r,i|=q+1 \atop r_k,i \geq q, \exists k \text{ with } k > 0} (q+1) b_i r_i \sum_{|r,i|=q+1 \atop r_k,i \geq q, \exists k \text{ with } k > 0} (q+1) b_i r_i
\]

as \(i \leq k \) and \(\nu(c_m) + \nu(d_l) \geq -\frac{m+l-1}{q+1} \) for \(m + l > q + 2 \).

Here \(\text{ord}_{q^{q+1}} \frac{E^{q+1} - 1}{\pi} b_{n-1,n-1} \geq 1 + R(n - 1) \geq R(n) \) by induction.

Also, \(\text{ord}_{q^{q+1}} \frac{E^{q+1} - 1}{\pi} b_{n-1,n-1} \geq 1 + R(n - 1) \geq R(n) \) by lemma (2.3.3) as \(r_k,i \geq q \) for some \(k > 0 \).

Therefore, we get \(\text{ord}_{x-1}(Q_{n,n}) \geq R(n) \).

\[b_{r_0,0} = b_0 = E \text{ and } b_{T_l,1} = b_1 = E \frac{E^{q+1} - 1}{\pi}, \text{ so } b_{T_l} = R(T_l) \text{ for } l = 0, 1. \]

And we proceed with induction.

Suppose now \(n = T_{l+1} \) with \(l > 0 \), then

\[
\frac{E^{q+1} - 1}{\pi} b_{n-1,n-1} + \pi^{-1} E b_{T_l,1} b_0 + \pi^{-1} E \sum_{|r,i|=q+1 \atop r_k,i \geq q, \exists k \text{ with } k \neq 0, T_l} (q+1) b_i r_i
\]

Here \(\text{ord}_{q^{q+1}} \frac{E^{q+1} - 1}{\pi} b_{n-1,n-1} \geq 1 + R(n - 1) = 1 + R(n) \) by induction as \(R(n - 1) = R(qT_l) = q^{l+1} = R(T_{l+1}) = R(n) \).

Also, for some \(k \neq 0, T_l \) and \(r_{k,k} > q \), \(\text{ord}_{q^{q+1}} \frac{E^{q+1} - 1}{\pi} b_{n-1,n-1} \geq \sum_k r_{k,k} R(k) > R(\sum k r_{k,k}) = R(qT_l) = R(T_{l+1}) \) because of the following:

It is clear that \(\sum r_{k,k} \sigma(k) < \sigma(qT_l) =: \{ n_r \}_{r \geq 0} \) and \(n_r = 0 \) for all \(r \geq n_l = q \). Then there finite many steps as in the proof of Lemma (2.3.3) \(\sum r_{k,k} \sigma(k) < \{ N_r^1 \} < \{ N_r^2 \} < \cdots < \{ N_r^k \} < \sigma(qT_l) \) with non-increasing \(R' \) values. Since \(n_r = 0 \) for \(r \neq l \), we see that \(N_0^1 \) can only be 1, and so \(R'(\{ N_r^k \}) = 1 + R(qT_l) \).

Finally, \(\text{ord}_{q^{q+1}} b_{T_l,1} b_0 = q R(T_l) = R(T_{l+1}) \) and hence \(\text{ord}_{q^{q+1}} b_{T_{l+1},T_{l+1}} = R(T_{l+1}) \). \(\square \)

Remark 2.4.2. The above proposition show that the lower bound \(R(n) \) is actually sharp for infinitely many \(n \).
Now we consider the vanishing order of $Q_{n,s}$ at $x = 1$.

Proposition 2.4.3.

1. $\text{ord}_{x-1} Q_{n,s} \geq R \left(s - 2 \left\lfloor \frac{n-s}{q-1} \right\rfloor \right)$ for all $0 \leq s \leq n$.

2. When $s = 2 \left\lfloor \frac{n-s}{q-1} \right\rfloor$ and $n > 0$, $\text{ord}_{x-1} Q_{n,s} \geq 1$.

Proof. We will prove (1) and (2) by induction on n.

First look at the case $1 \leq n \leq q - 2$. By definition,

$$b_{1,1} = \frac{E^{q+1} - 1}{\pi} E$$

and $b_{1,0} = 0$. For $2 \leq n \leq q - 2$ and $0 < s \leq n$,

$$b_{n,s} = \frac{E^{q+1} - 1}{\pi} b_{n-1,s-1} + \frac{q}{\pi} E^{q+1} b_{n-1,s} + \pi^{-1} E \sum_{|r,i| = q-1, \forall (k,i)} \left(q + 1 \right) b_{r,i} r^{*i}.$$

And $b_{n,0} = 0$ for $2 \leq n \leq q - 2$. Notice that $0 = 2 \left\lfloor \frac{n-0}{q-1} \right\rfloor$ iff $0 \leq n \leq q - 2$.

By induction, we can show $\text{ord}_{x-1} Q_{n,s} \geq s$ when $0 \leq s \leq n \leq q - 2$.

Now suppose the statement for $0 \leq s \leq n < N$ where $N \geq q - 1$.

We will check each term of $b_{N,s}$ in equation 2.2.2

For terms $(E^{1+q^{\left\lfloor \log_q (m) \right\rfloor}} - 1) \left(\frac{l}{r,i} \right) b_{r,i} r^{*i}$ with $l < m$, $|r,i| = l$, $\sum k,i r_{k,i} = N - \frac{m+l-1}{q+1}$ and $\sum k,i i r_{k,i} = s + \nu(c_m d_i)$,

$$\text{ord}_{E^{q+1} - 1} \geq 1 + \sum r_{k,i} R \left(i - 2 \left\lfloor \frac{k-i}{q-1} \right\rfloor \right)$$

$$\geq 1 + R \left(\sum i r_{k,i} - 2 \sum r_{k,i} \left\lfloor \frac{k-i}{q-1} \right\rfloor \right)$$

$$\geq 1 + R \left(s + \nu(c_m d_i) - 2 \left[\frac{N - \frac{m+l-1}{q+1} - s - \nu(c_m d_i)}{q-1} \right] \right).$$

Observe that if $m + l > q + 2$,

$$s + \nu(c_m d_i) - 2 \left[\frac{N - \frac{m+l-1}{q+1} - s - \nu(c_m d_i)}{q-1} \right] \geq s - 2 \left\lfloor \frac{N-s}{q-1} \right\rfloor.$$
To show this, we can separate into two cases: $q+2 < m+l < q^3+2$ and $m+l \geq q^3+2$. For the first case, the only non zero $d_i c_m$ is at $m+l = q^2$, q^2+q+1, q^2+2q+2. And the inequality can be check directly. For the second case, notice that $-\lfloor \log_q (m+l) \rfloor \leq \nu(c_m d_l) \leq 0$ and hence $\frac{m+l-1}{q+1} \geq (q-1)q^{\lfloor \log_q (m+l) \rfloor} - (\nu(c_m d_l))$ and $2q^{\lfloor \log_q (m+l) \rfloor} - \nu(c_m d_l) > 0$. So we actually have $s + \nu(c_m d_l) - 2 \left\lfloor \frac{N-m+l-1}{q+1} - s - \nu(c_m d_l) \right\rfloor > s - 2 \left\lfloor \frac{N-s}{q+1} \right\rfloor$ in the second case.

Hence,

$$\text{ord}_{x-1} \geq \begin{cases} 1 + R \left(s - 1 - 2 \left\lfloor \frac{N-s}{q-1} \right\rfloor \right), & \text{if } m+l = q+2 \\ 1 + R \left(s - 2 \left\lfloor \frac{N-s}{q-1} \right\rfloor \right), & \text{if } m+l > q+2 \end{cases}$$

which is at least $R \left(s - 2 \left\lfloor \frac{N-s}{q-1} \right\rfloor \right)$. And for any N and s, it is at least 1.

Similarly for the respective term when $m < l$.

For terms $(\frac{l}{r,i})b_i l i^\nu$ with $l < m$, $|r, i| = l$ or m, $\sum k, i k r_k, i = N - \frac{m+l-1}{q+1}$ and $\sum k, i i r_k, i = s + \nu(c_m d_l) + 1$,

$$\text{ord}_{E_{q+1-1}} \geq R \left(s + \nu(c_m d_l) + 1 - 2 \left\lfloor \frac{N-m+l-1}{q+1} - s - \nu(c_m d_l) - 1 \right\rfloor \right)$$

$$\geq \begin{cases} R \left(s - 2 \left\lfloor \frac{N-s}{q-1} \right\rfloor \right), & \text{if } m+l = q+2 \\ R \left(s + 1 - 2 \left\lfloor \frac{N-s}{q-1} \right\rfloor \right), & \text{if } m+l > q+2 \end{cases}$$

$$\geq R \left(s - 2 \left\lfloor \frac{N-s}{q-1} \right\rfloor \right).$$

Suppose $s - 2 \left\lfloor \frac{N-s}{q-1} \right\rfloor = 0$ and $s \geq 2$, then there must exist $k \geq i$ with $k > 0$ s.t. $r_{k, i} > 0$ and $i - 2 \left\lfloor \frac{k-i}{q-1} \right\rfloor \geq 0$. Otherwise, we have all k, i with $r_{k, i} > 0$, $i + 1 - 2 \left\lfloor \frac{k-i}{q-1} \right\rfloor \leq 0$ or $k = 0 = s$. If $m+l < q^2$, then $s + \nu(c_m d_l) + 1 > 0$ and so $r_{0,0} < l$. Therefore,

$$0 > \sum r_{k, i} \left(i - 2 \left\lfloor \frac{k-i}{q-1} \right\rfloor \right) \geq s + \nu(c_m d_l) + 1 - 2 \left\lfloor \frac{N-m+l-1}{q+1} - s - \nu(c_m d_l) - 1 \right\rfloor$$

$$\geq s - 2 \left\lfloor \frac{N-s}{q-1} \right\rfloor \geq 0$$
and leads to a contraction. If $m + l \geq q^3$, then

$$0 \geq \sum r_{k,i} \left(i - 2 \left\lfloor \frac{k - i}{q - 1} \right\rfloor \right) \geq s + \nu(c_md_l) + 1 - 2 \left\lfloor \frac{N - m + l - 1}{q+1} - s - \nu(c_md_l) - 1 \right\rfloor$$

$$> s - 2 \left\lfloor \frac{N - s}{q - 1} \right\rfloor \geq 0$$

and again leads to contradiction. So $E^{q+1} - 1$ divides some $b_{k,i}$ with $r_{k,i} > 0$ and thus divides b_{i^r,i^i}.

For terms $(\frac{l}{r,i}) b_{k,i^r,i^i}$ with $m < l$, $|r,i| = l$, $r_{0,0,0} < q^{\lfloor \log_q(l) \rfloor}$, $p \nmid (\frac{l}{r,i})$, $\sum_k r_{k,i} = N - \frac{m + l - 1}{q+1}$ and $\sum_k i r_{k,i} = s + \nu(c_md_l)$. In particular, there exists $(k_0,i_0) \neq (0,0)$ s.t. $r_{k_0,i_0} \geq q^{\lfloor \log_q(l) \rfloor}$.

Case 1) $i_0 - 2 \left\lfloor \frac{k_0 - i_0}{q - 1} \right\rfloor > 0$. Then

$$\text{ord}_{E^{q+1} - 1} \geq \sum r_{k,i} R \left(i - 2 \left\lfloor \frac{k - i}{q - 1} \right\rfloor \right)$$

$$\geq R \left(1 + \sum i r_{k,i} - 2 \sum r_{k,i} \left\lfloor \frac{k - i}{q - 1} \right\rfloor \right)$$

$$\geq R \left(1 + s + \nu(c_md_l) - 2 \left\lfloor \frac{N - \frac{m + l - 1}{q+1} - s - \nu(c_md_l)}{q - 1} \right\rfloor \right)$$

$$\geq \begin{cases} R \left(s - 2 \left\lfloor \frac{N - s}{q - 1} \right\rfloor \right), & \text{if } m + l = q + 2 \\ R \left(1 + s - 2 \left\lfloor \frac{N - s}{q - 1} \right\rfloor \right), & \text{if } m + l > q + 2 \end{cases}$$

And b_{k_0,i_0} is divisible by $E^{q+1} - 1$ implies the same holds for b_{i^r,i^i}.

Case 2) $i_0 - 2 \left\lfloor \frac{k_0 - i_0}{q - 1} \right\rfloor = 0$. Then b_{k_0,i_0} is divisible by $E^{q+1} - 1$ and so is b_{i^r,i^i}.
ord_{E^{q+1}-1} \geq r_{k_0,i_0} + \sum r_{k,i} R \left(i - 2 \left\lfloor \frac{k - i}{q - 1} \right\rfloor \right)
\geq R \left(r_{k_0,i_0} + s + \nu(c_md_l) - 2 \left\lfloor \frac{N - m + l - 1}{q + 1} - s - \nu(c_md_l) \right\rfloor \right)
\geq \left\{ \begin{array}{ll}
r_{k_0,i_0} - 1 + s - 2 \left\lfloor \frac{N - s}{q - 1} \right\rfloor, & \text{if } m + l = q + 2 \\
r_{k_0,i_0} + s - 2 \left\lfloor \frac{N - s}{q - 1} \right\rfloor, & \text{if } m + l > q + 2 .
\end{array} \right.

Case 3) \ i_o - 2 \left\lfloor \frac{k_0 - i_o}{q - 1} \right\rfloor \leq -1. \text{ Then }
\sum_{(k,i) \neq (k_0,i_0)} r_{k,i}(i - 2 \left\lfloor \frac{k - i}{q - 1} \right\rfloor) \geq r_{k_0,i_0} + \sum r_{k,i}(i - 2 \left\lfloor \frac{k - i}{q - 1} \right\rfloor)
\geq r_{k_0,i_0} + s + \nu(c_md_l) - 2 \left\lfloor \frac{N - m + l - 1}{q + 1} - s - \nu(c_md_l) \right\rfloor
\geq \left\{ \begin{array}{ll}
r_{k_0,i_0} - 1 + s - 2 \left\lfloor \frac{N - s}{q - 1} \right\rfloor, & \text{if } m + l = q + 2 \\
r_{k_0,i_0} + s - 2 \left\lfloor \frac{N - s}{q - 1} \right\rfloor, & \text{if } m + l > q + 2 .
\end{array} \right.

So
ord_{E^{q+1}-1} \geq \sum_{(k,i) \neq (k_0,i_0)} r_{k,i} R \left(i - 2 \left\lfloor \frac{k - i}{q - 1} \right\rfloor \right)
\geq R \left(s - 2 \left\lfloor \frac{N - s}{q - 1} \right\rfloor \right).

Suppose s - 2 \left\lfloor \frac{N - s}{q - 1} \right\rfloor = 0, \text{ then } \sum_{(k,i) \neq (k_0,i_0)} r_{k,i}(i - 2 \left\lfloor \frac{k - i}{q - 1} \right\rfloor) > 0. \text{ Hence there is } k \geq i
\text{ with } r_{k,i} > 0 \text{ and } i - 2 \left\lfloor \frac{k - i}{q - 1} \right\rfloor > 0. \text{ Hence } E^{q+1}\mid b_i \bar{\alpha}_i.

The argument is similar for the respective terms with l < m. This completes the proof of
the proposition. \qed

2.5. Radius of convergence for the group action on }\Delta_0. \text{ As a consequence of 2.4.3
we obtain the following

Theorem 2.5.1. \quad (1) Suppose } \left| x - 1 \right| \leq \left| \pi \right|. \text{ Then } \left| \pi^{-n}Q_n \right| \leq \left| \pi \right|^{\frac{2}{n}}. \text{ Hence } \left| \alpha - 1 \right| \leq \left| \pi \right| \text{ implies that } \left| b_n\left(\frac{\alpha}{n} \right) \right| \leq \left| \pi \right|^{\frac{2}{n}}.
(2) Suppose \(|\pi|^\frac{r}{s+1} \leq r < 1\) and \(|x - 1| \leq r\). Then \(|Q_n(x)| \leq r^{\frac{n(q-1)}{q}}\). In particular, the action of

\[
\left\{ \begin{pmatrix} \alpha & 0 \\ 0 & \frac{1}{\alpha} \end{pmatrix} \right| \alpha \in \mathcal{K}_2 \right\} \subset \mathcal{O}_D^* = G
\]

on \(\Delta_0 = \{|u| \leq |\pi|\}\) extends to a rigid-analytic action of the rigid-analytic group \(T\), cf. 1.1.2, on \(\Delta_0\).

Proof. Write \(\pi^{-n}Q_n = \sum \pi^{-s}Q_{n,s} = \pi^{-n} \sum \pi^{n-s}Q_{n,s}\).

(1) Suppose \(|x - 1| \leq |\pi|\), then

\[
|\pi^{n-s}Q_{n,s}(x)| \leq |\pi|^{(n-s)+R(s-2\left\lfloor \frac{n-s}{q-1} \right\rfloor)} \\
\leq |\pi|^{(n-s)+\frac{2-1}{q}(s-2\frac{n-s}{q-1})} \\
= |\pi|^{\frac{(q-2)n+2s}{q}} \\
\leq |\pi|^{\frac{n}{q}}.
\]

Hence \(|\pi^{-n}Q_n| \leq |\pi|^{\frac{n}{q}}\).

(2) Suppose \(|x - 1| \leq r\) where \(|\pi|^\frac{s}{s+1} \leq r < 1\). Then

\[
|\pi^{n-s}Q_{n,s}(x)| \leq r^{\frac{q+1}{q}(n-s)+R(s-2\left\lfloor \frac{n-s}{q-1} \right\rfloor)} \\
\leq r^{\frac{q+1}{q}(n-s)+\frac{2-1}{q}(s-2\frac{n-s}{q-1})} \\
= r^{\frac{(q-1)n}{q}}.
\]

In particular, when \(|\alpha - 1| \leq r\) and \(|u| \leq |\pi|\frac{s}{s+1}\),

\[
|b_n(\alpha)u^{1+n(q+1)}| \leq r^{\frac{q-1}{q}|\pi|} \to 0
\]
as \(n \to \infty\). \(\square\)

3. Analyticity on critical discs of larger radius

In this section, put \(r_s = |\pi|^{\frac{1}{s+q^2}}\) for \(s \in \mathbb{Z}_{\geq 0}\), which we sometimes call a critical radius. The function \(\phi_1\) vanishes at \(u = 0\), and all its other zeros are located on the annuli

\[
\mathcal{A}_s = \{u \in X \mid |u| = r_s\},
\]

where \(\mathbb{Z}_{\geq 0}\) is the set of non-negative integers.
for odd $s = 1, 3, 5, \ldots$, and $\phi_1(u)$ has precisely $(1 + q)q^s$ zeros on A_s for odd s. The zeros of $\phi_0(u)$ are located on the annuli A_s for even $s = 0, 2, 4, \ldots$, and $\phi_0(u)$ has precisely $(1 + q)q^s$ zeros on A_s for even s. Let

$$\Delta_s = \{ u \in X \mid |u| \leq r_s \} ,$$

be the disc of critical radius r_s centered at zero.

3.1. Estimates for the action of the Lie algebra.

Lemma 3.1.1.

1. Let $s \geq 0$ be even. Then

$$||\phi_0||_{\Delta_s} = |\pi|^{-\frac{s}{2} + \frac{q^s - 1}{(q^2 - 1)q^s}} , \quad ||\phi_1||_{\Delta_s} = |\pi|^{-\frac{s}{2} + \frac{q^{s+1} - 1}{(q^2 - 1)q^s}} .$$

2. Let $s \geq 1$ be odd. Then

$$||\phi_0||_{\Delta_s} = |\pi|^{-\frac{s}{2} + \frac{q^s - 1}{(q^2 - 1)q^s}} , \quad ||\phi_1||_{\Delta_s} = |\pi|^{-\frac{s}{2} + \frac{q^{s+1} - 1}{(q^2 - 1)q^s}} .$$

3. For all $s \geq 0$ one has

$$||\phi_0\phi_1||_{\Delta_s} = |\pi|^{-\frac{s}{2} + \frac{q^s - 1}{(q^2 - 1)q^s}} .$$

Proof. (1) It is not hard to check that $\pi^{-\frac{s}{2}}u^{1+q+q^2+\cdots+q^s-1}$ and $\pi^{-\frac{s+1}{2}}u^{1+q+q^2+\cdots+q^{s+1}}$ are the dominating terms of ϕ_0 when $|u| = r_s$ for $s > 0$. 1 and $\pi^{-1}u^{1+q}$ are the dominating terms of ϕ_0 when $s = 0$. Therefore,

$$||\phi_0||_{\Delta_s} = |\pi|^{-\frac{s}{2} + \frac{q^s - 1}{(q^2 - 1)q^s}} = |\pi|^{-\frac{s}{2} + \frac{q^s - 1}{(q^2 - 1)q^s}} .$$

Similarly, $\pi^{-\frac{s}{2}}u^{1+q+q^2+\cdots+q^s}$ is the dominating term of ϕ_1. Hence

$$||\phi_1||_{\Delta_s} = |\pi|^{-\frac{s}{2} + \frac{q^s - 1}{(q^2 - 1)q^s}} = |\pi|^{-\frac{s}{2} + \frac{q^s - 1}{(q^2 - 1)q^s}} .$$

The treatment for part (2) is the same and part (3) follows from (1), (2). \qed

3.1.2. The action of the Lie algebra. Let $\zeta \in \mathfrak{o}_{K_2}^*$ be such that $\bar{\zeta} = -\zeta$. Let G be the group scheme over $\mathfrak{o} = \mathfrak{o}_K$ whose \mathfrak{o}-valued points are \mathfrak{o}_D^*, cf. section 1. Denote by g the relative Lie algebra of G over \mathfrak{o}. Consider the following \mathfrak{o}-basis of g:

$$\mathfrak{r}_1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} , \quad \mathfrak{r}_2 = \begin{pmatrix} \zeta & 0 \\ 0 & -\zeta \end{pmatrix} , \quad \mathfrak{v}_1 = \begin{pmatrix} 0 & \pi \\ 1 & 0 \end{pmatrix} , \quad \mathfrak{v}_2 = \begin{pmatrix} 0 & -\pi \zeta \\ \zeta & 0 \end{pmatrix} .$$

We note that
We write elements of \mathbb{P}^1 as $[x_0 : x_1]$ and put $w = \frac{x_1}{x_0}$. Elements \mathfrak{z} in the Lie algebra \mathfrak{g} act on rational functions $f = f(w)$ on \mathbb{P}^1 as follows:

$$(\mathfrak{z}.f)(w) = \frac{d}{dt}f(e^{t\mathfrak{z}}w)\big|_{t=0}.$$

Note that

$$\exp(t\mathfrak{z}_1) = \begin{pmatrix} \cosh(t\sqrt{\pi}) & \sqrt{\pi}\sinh(t\sqrt{\pi}) \\ \sinh(t\sqrt{\pi})/\sqrt{\pi} & \cosh(t\sqrt{\pi}) \end{pmatrix},$$

and

$$\exp(t\mathfrak{z}_2) = \begin{pmatrix} \cos(t\zeta\sqrt{\pi}) & -\sqrt{\pi}\sin(t\zeta\sqrt{\pi}) \\ \sin(t\zeta\sqrt{\pi})/\sqrt{\pi} & \cos(t\zeta\sqrt{\pi}) \end{pmatrix}.$$

According to the formula 2.1.2 for the group action we compute

$$(\mathfrak{x}_2.f)(w) = \left. \frac{d}{dt}f(e^{-2\zeta\sqrt{\pi}}w) \right|_{t=0} = -2\zeta w f'(w),$$

$$(\mathfrak{y}_1.f)(w) = \left. \frac{d}{dt}f \left(\frac{\cosh(t\sqrt{\pi})w + \sqrt{\pi}\sinh(t\sqrt{\pi})}{\sinh(t\sqrt{\pi})/\sqrt{\pi}w + \cosh(t\sqrt{\pi})} \right) \right|_{t=0} = \left. \frac{\sinh(t\sqrt{\pi})\sqrt{\pi}w + \pi\cosh(t\sqrt{\pi}) - w(\cosh(t\sqrt{\pi})w + \sqrt{\pi}\sinh(t\sqrt{\pi}))}{(\sinh(t\sqrt{\pi})/\sqrt{\pi}w + \cosh(t\sqrt{\pi}))^2} \right|_{t=0} \cdot f'(w) = (\pi - w^2)f'(w),$$

$$(\mathfrak{y}_2.f)(w) = \left. \frac{d}{dt}f \left(\frac{\cos(t\zeta\sqrt{\pi})w - \zeta\pi\cos(t\zeta\sqrt{\pi}) - \pi\zeta(\cos(t\sqrt{\pi})w + \zeta\sqrt{\pi}\sin(t\sqrt{\pi}))}{(\sin(t\sqrt{\pi})/\sqrt{\pi}w + \cos(t\sqrt{\pi}))^2} \right) \right|_{t=0} = -\zeta(\pi + w^2)f'(w).$$

Therefore, under the map from \mathfrak{g}_0 to the ring of differential operators on P we have

$$(3.1.3) \quad \mathfrak{x}_2 \mapsto -2\zeta w \partial_w, \quad \mathfrak{y}_1 \mapsto (\pi - w^2)\partial_w, \quad \mathfrak{y}_2 \mapsto -\zeta(\pi + w^2)\partial_w.$$

Setting $w = \frac{\phi_1(u)}{\phi_0(u)}$, we find
\[dw = \frac{\phi_1'\phi_0 - \phi_1\phi_0'}{\phi_0^2} du = \frac{\varepsilon}{\phi_0^2} du , \]

where \(\varepsilon = \phi_1'\phi_0 - \phi_1\phi_0' \). As \(\partial_w \) is dual to \(dw \) we get thus

\[1 = \langle \partial_w, dw \rangle = \frac{\varepsilon}{\phi_0^2} \langle \partial_w, du \rangle \]

and hence \(\partial_w = \frac{\phi_0^2}{\varepsilon} \partial_u \). From (3.1.3) we then deduce (3.1.4)

\[\eta_2 \mapsto -2\zeta \frac{\phi_0\phi_1}{\varepsilon} \pi - \frac{1}{(q+1)q^s} \partial_u , \]

\[\eta_1 \mapsto \frac{\pi\phi_0^2 - \phi_1^2}{\varepsilon} \pi - \frac{1}{(q+1)q^s} \partial_u , \]

\[\eta_2 \mapsto -\zeta \frac{\phi_0^2 + \phi_1^2}{\varepsilon} \pi - \frac{1}{(q+1)q^s} \partial_u . \]

Let now \(\pi^{-\frac{1}{(q+1)q^s}} \) be any element of absolute value equal to \(|\pi|^{-\frac{1}{(q+1)q^s}} \), and put \(u_s = \pi^{-\frac{1}{(q+1)q^s}} u \), which is a coordinate function on \(\Delta_s \) with supremum norm 1. Then \(\partial_u = \pi^{-\frac{1}{(q+1)q^s}} \partial_{u_s} \) and the formulas in (3.1.4) become (3.1.5)

\[\eta_2 \mapsto -2\zeta \frac{\phi_0\phi_1}{\varepsilon} \pi - \frac{1}{(q+1)q^s} \partial_{u_s} , \]

\[\eta_1 \mapsto \frac{\pi\phi_0^2 - \phi_1^2}{\varepsilon} \pi - \frac{1}{(q+1)q^s} \partial_{u_s} , \]

\[\eta_2 \mapsto -\zeta \frac{\phi_0^2 + \phi_1^2}{\varepsilon} \pi - \frac{1}{(q+1)q^s} \partial_{u_s} . \]

Proposition 3.1.6.

(1) Let \(s \geq 0 \) be even. Then

\[\| \pi^{s+1} \phi_0^2 \pi - \frac{1}{(q+1)q^s} \|_{\Delta_s} = \| \pi \|^{1 + \frac{2s+1}{(q^2-1)q^s} - \frac{1}{(q+1)q^s}} = \| \pi \|^{1 + \frac{2}{q^2-1} - \frac{1}{(q+1)q^s}} = \| \pi \|^{\frac{2s+1}{q^2-1} - \frac{1}{(q+1)q^s}} , \]

and

\[\| \pi^s \phi_1^2 \pi - \frac{1}{(q+1)q^s} \|_{\Delta_s} = \| \pi \|^{\frac{2s+1}{(q^2-1)q^s} - \frac{1}{(q+1)q^s}} = \| \pi \|^{\frac{2s+1}{q^2-1} - \frac{1}{(q+1)q^s}} . \]

In particular, when \(s = 0 \):

\[\| \pi^1 \phi_0^2 \pi - \frac{1}{(q+1)q^s} \|_{\Delta_0} = \| \pi \|_{\frac{q}{q^2+1}} , \quad \| \pi^1 \phi_1^2 \pi - \frac{1}{(q+1)q^s} \|_{\Delta_0} = \| \pi \|_{\frac{1}{q^2+1}} . \]

(2) Let \(s \geq 1 \) be odd. Then

\[\| \pi^{s+1} \phi_0^2 \pi - \frac{1}{(q+1)q^s} \|_{\Delta_s} = \| \pi \|^{\frac{2s+1}{(q^2-1)q^s} - \frac{1}{(q+1)q^s}} = \| \pi \|^{\frac{2s+1}{q^2-1} - \frac{1}{(q+1)q^s}} , \]
and
\[
|| \pi^s \phi_1 \pi^{-1} ||_{\Delta_s} = |\pi|^{1 + \frac{2q^s - 2}{(q^s - 1)p^r} - \frac{1}{(q+1)p^r}} = |\pi|^{1 - \frac{2}{q^s - 1} - \frac{1}{q+1}} = |\pi|^{\frac{q^s + 1}{q^s - 1} - \frac{1}{q+1}}.
\]

(3) For all \(s \geq 0 \) one has
\[
|| \pi^s \phi_0 \phi_1 \pi^{-1} ||_{\Delta_s} = |\pi|^{\frac{1}{q-1} - \frac{2}{q^s - 1} - \frac{1}{q+1}p^r} = |\pi|^{\frac{1}{q-1} - \frac{1}{q+1}}.
\]

3.2. Groups acting analytically on larger critical discs. As an immediate consequence of the previous proposition we obtain the following result.

Theorem 3.2.1. Let \(K = \mathbb{Q}_p \) (hence \(q = p \) and \(\pi = p \)), \(K_s = \mathbb{Q}_p(p^{\frac{1}{(p-1)p^r}}) \), and put
\[
\mathfrak{h}_s = \mathfrak{o} \cdot p^s \mathfrak{r}_1 \oplus \mathfrak{o} \cdot p^{s+ \frac{1}{p^r - 1} + \frac{1}{p^r}} \mathfrak{r}_2 \oplus \mathfrak{o} \cdot p^{s+\frac{1}{p^r - 1} + \frac{1}{p^r}} \mathfrak{y}_1 \oplus \mathfrak{o} \cdot p^{s+\frac{1}{p^r - 1} + \frac{1}{p^r}} \mathfrak{y}_2.
\]
This is a Lie algebra over the ring of integers \(\mathfrak{o}_{K_s} \) in \(K_s \). There is a group scheme \(\mathbb{H}_s \) over \(\mathfrak{o}_{K_s} \) with Lie algebra \(\mathfrak{h}_s \). Denote by \(\mathbb{H}_s^0 \) the completion of this group scheme along the unit section, and let \(\mathbb{H}_s^0 \) be the associated rigid-analytic group. Then \(\mathbb{H}_s^0 \) acts analytically on \(\Delta_s \).

Remark 3.2.2. Suppose \(K = \mathbb{Q}_p \) and consider the case \(s = 0 \). Then theorem (2.5.1) implies that, in the formula for \(\mathfrak{h}_0 \) above, we can replace \(\mathfrak{o} \cdot p^{\frac{1}{p^r - 1}} \mathfrak{r}_2 \) by \(\mathfrak{o} \cdot \mathfrak{r}_2 \). Hence, for \(s = 0 \), we can replace the Lie algebra \(\mathfrak{h}_0 \) in the theorem above by
\[
\mathfrak{h}_0' = \mathfrak{o} \cdot \mathfrak{r}_1 \oplus \mathfrak{o} \cdot \mathfrak{r}_2 \oplus \mathfrak{o} \cdot p^{-\frac{1}{p^r - 1} + \frac{1}{p^r}} \mathfrak{y}_1 \oplus \mathfrak{o} \cdot p^{-\frac{1}{p^r - 1} + \frac{1}{p^r}} \mathfrak{y}_2.
\]

3.2.3. Let \(s \geq 0 \). Suppose \(u_0 \in \Delta_s \) and let \(B^-(u_0, r) \) be the largest wide open disc such that \(\Phi \) is injective on \(B^-(u_0, r) \). In [6] we call \(B^-(u_0, r) \) a disc of injectivity around \(u_0 \), and we have shown that \(r = |\pi u_0^2|^{\frac{1}{q-1}} \). In [6, sec. 3] we describe the image of \(B^-(u_0, r_0) \) under \(\Phi \) which is again a wide open disc and whose radius we determine.

Suppose \(g = \left(\begin{array}{c} \alpha \\ \beta \\ \bar{\alpha} \end{array} \right) \in G \). Then \(g \cdot \Phi(u_0) \in \Phi(B^-(u_0, r_0)) \) for all \(u_0 \in \Delta_s \) if and only if \(|\alpha - \bar{\alpha}| < |\pi|^s \) and \(|\beta| < |\pi|^s - \frac{1}{p^r} \). Therefore, we would expect that we could actually replace the Lie algebra \(\mathfrak{h}_s \) in theorem by the larger Lie algebra
\[
\mathfrak{g}_s = \mathfrak{o} \cdot p^s \mathfrak{r}_1 \oplus \mathfrak{o} \cdot p^s \mathfrak{r}_2 \oplus \mathfrak{o} \cdot p^{s+\frac{1}{p^r + 1}} \mathfrak{y}_1 \oplus \mathfrak{o} \cdot p^{s+\frac{1}{p^r + 1}} \mathfrak{y}_2
\]
which differs from \(\mathfrak{h}_s \) by the factor \(p^{\frac{1}{(p-1)p^r}} \) in front of the generators \(\mathfrak{r}_2, \mathfrak{y}_1, \) and \(\mathfrak{y}_2 \).
REFERENCES

[1] V. G. Drinfeld. Elliptic modules. Mat. Sb. (N.S.), 94(136):594–627, 656, 1974.
[2] M. Emerton. Locally analytic vectors in representations of locally p-adic analytic groups. Preprint. To appear in: Memoirs of the AMS.
[3] M. J. Hopkins and B. H. Gross. Equivariant vector bundles on the Lubin-Tate moduli space. In Topology and representation theory (Evanston, IL, 1992), volume 158 of Contemp. Math., pages 23–88. Amer. Math. Soc., Providence, RI, 1994.
[4] J. Kohlhaase. On the Iwasawa theory of the Lubin-Tate moduli space. Compos. Math., 149(5):793–839, 2013.
[5] J. Kohlhaase. Iwasawa Modules Arising from Deformation Spaces of p-Divisible Formal Group Laws. Iwasawa Theory 2012. Contributions in Mathematical and Computational Sciences, 7:291–316, 2014.
[6] C. Y. Lo. Domains of Injectivity for the Gross-Hopkins Period Map. Preprint. http://arxiv.org/abs/1312.0034.

INDIANA UNIVERSITY, DEPARTMENT OF MATHEMATICS, RAWLES HALL, BLOOMINGTON, IN 47405, U.S.A.
E-mail address: loch@indiana.edu