Mass hierarchy and flavour mixing from discrete symmetries

YIN LIN(1)

(1) Università di Padova, INFN Sezione di Padova

Summary. — We consider a class of discrete flavour symmetries for leptons based on the group S_3 and A_4 with an hybrid breaking pattern. The aim is to construct models in which the same flavon fields producing the mixing pattern are also responsible for the mass hierarchy.

PACS 14.60.Pq – Neutrino mass and mixing.
PACS 11.30.Hv – Flavour symmetries.

1. – Introduction

Nowadays continuous improvement on the knowledge of neutrino oscillation parameters makes desirable a neutrino model building going beyond the mere fitting procedure. The present data [1], at 1σ:

\begin{equation}
\theta_{12} = (34.5 \pm 1.4)^\circ, \quad \theta_{23} = (42.3^{+5.1}_{-3.3})^\circ, \quad \theta_{13} = (0.0^{+7.9}_{-0.0})^\circ,
\end{equation}

are fully compatible with the so-called Tri-Bimaximal (TB) mixing pattern which corresponds to a maximal θ_{23}, an zero θ_{13} and a “magic” value of solar angle: $\sin^2 \theta_{12} = 1/3$.

It is well known that the lepton mixing angles can be understood by a mechanism of vacuum misalignment in flavour space occurring in theories with non-abelian flavour symmetries [2]. Also the charged lepton mass hierarchy can be achieved via spontaneous breaking of the flavour symmetry. However, in most cases, a separate component of the flavour group is exploited to this purpose. Quite frequently the flavour group is of the type $D \times U(1)_{FN}$ where D is a discrete component that controls the mixing angles and $U(1)_{FN}$ is an abelian continuous symmetry that describes the mass hierarchy.

In the present talk, we will consider a class of flavour symmetries in which the same flavon fields producing the mixing pattern are also responsible for the mass hierarchy employing an hybrid breaking pattern [4]. The idea is to selectively couple charged leptons and neutrinos to two different sets of flavons, Φ_e and Φ_ν, respectively. The VEV of Φ_ν breaks G down to a residual symmetry in the neutrino sector preferably containing the $\nu_\mu - \nu_\tau$ exchange symmetry as indicated by the oscillation data. While, the VEV of Φ_e would break G down to a different subgroup, maximally breaking the previous $\nu_\mu - \nu_\tau$ symmetry, guaranteeing a hierarchical and quasi diagonal matrix m_l.
2. Neutrino $\nu_\mu - \nu_\tau$ symmetry, charged lepton hierarchy and S_3

In this section we will focus on the approximately vanishing values of θ_{13} and $\theta_{23} - \pi/4$. Given an arbitrary choice of charged lepton mass matrix m_l and effective neutrino mass matrix m_ν, any change of basis in the generation space modifies the form of m_l and m_ν, but does not change the physics. We can exploit this freedom to render diagonal the charged lepton mass matrix m_l:

$$m'_l = \text{diag}(m_e, m_\mu, m_\tau), \quad m'_\nu = U_{PMNS}^\dagger \text{diag}(m_1, m_2, m_3) U_{PMNS}^T.$$

In this basis, called flavour basis, the effective neutrino mass matrix is completely determined by the measurable quantities m_i and U_{PMNS}. In the limit where both θ_{13} and $\theta_{23} - \pi/4$ vanish, it is easy to verify that m'_ν exhibits an exact $\nu_\mu - \nu_\tau$ exchange symmetry. However, since ν_μ and ν_τ are members of the electroweak doublets, a naive extension of such a symmetry to include the charged leptons μ, τ might be in contrast with the large mass hierarchy $m_\mu \ll m_\tau$. This problem is completely solved in the first paper of [4] by using an hybrid symmetry pattern based on the flavour symmetry S_3.

S_3 is group of permutations of three distinct objects and is the smallest non-abelian symmetry group. The six elements of the S_3 group can be generated by S and T with the following unitary representations (Rep):

$$S = \begin{pmatrix} 1 & S = 1 & T = 1 \\ 1' & S = -1 & T = 1 \end{pmatrix}, \quad 2 \quad S = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad T = \begin{pmatrix} \omega & 0 \\ 0 & \omega^2 \end{pmatrix}.$$

S in the two-dimensional Rep corresponds to an interchange symmetry of the two components of a S_3 doublet. The tensor products involving pseudo-singlets are given by $1' \times 1' = 1$ and $1' \times 2 = 2$. While the product of two doublets is given by $2 \times 2 = 2 + 1 + 1'$. Given two doublets $\psi = (\psi_1, \psi_2)$ and $\varphi = (\varphi_1, \varphi_2)$, it is easy to see that

$$\psi_1 \varphi_2 + \psi_2 \varphi_1 \in 1, \quad \psi_1 \varphi_2 - \psi_2 \varphi_1 \in 1', \quad \begin{pmatrix} \psi_2 \varphi_2 \\ \psi_1 \varphi_1 \end{pmatrix} \in 2.$$

The previous notion on the S_3 group is sufficient to construct a simple model for leptons. The left-handed doublets transform as $(1 + 2)$ of S_3 and we will call $l_e = (\nu_\mu, e)$ the invariant singlet and $D_l = (l_\mu, l_\tau)$ the S_3 doublet. The right-handed charged leptons e^c, μ^c, τ^c are all in the non-trivial singlet representation $1'$. The S_3 flavour symmetry is spontaneously broken at a scale \sim VEV $\ll \Lambda$, Λ being the cutoff scale, by two doublets φ_e, φ_ν and a singlet ξ which are all gauge singlets. The flavon fields will develop VEVs of the type

$$\langle \varphi_e \rangle \propto (1, 0), \quad \langle \varphi_\nu \rangle = (1, 1), \quad \langle \xi \rangle \neq 0.$$

It is possible to impose an extra abelian symmetry Z_3 in such a way that φ_ν and ξ couple only to the neutrino sector and φ_e to the charged lepton sector. Since $\langle \varphi_\nu \rangle$ is preserved by S, we immediately conclude that in the neutrino sector S_3 is broken down to a Z_2 subgroup. Being D_l doublet of S_3, this residual Z_2 parity will exactly lead to the $\nu_\mu - \nu_\tau$ exchange symmetry. Concerning the charged lepton sector, the VEV of φ_e breaks the parity symmetry generated by S in a maximal way, since

$$\langle \varphi_e \rangle^T S \langle \varphi_e \rangle = 0.$$
The singlets e^c, μ^c and τ^c should couple to $(D_l \phi_e)^\dagger$, $(D_l \phi_\mu)^\dagger$ and $l_i (\phi_e \phi_e \phi_e)$ at the leading orders. From the S_3 multiplication rules given in [4] we see that the last combinations select respectively e, μ and τ after the electroweak and flavour symmetry breaking. As a consequence m_τ, m_μ, m_e get their first non-vanishing contribution at the order $\langle \phi_e \rangle / \Lambda$, $(\langle \phi_e \rangle / \Lambda)^2$, $(\langle \phi_e \rangle / \Lambda)^3$, respectively. Then we obtain the correct charged lepton hierarchy assuming $\langle \phi_T \rangle / \Lambda \sim \lambda_e^2$, being λ_e the Cabibbo angle.

3. – TB mixing and charged lepton hierarchy from A_4

In this section we extend the previous construction to describe the TB mixing pattern by an hybrid symmetry breaking of A_4 [3], improving some aspects of the original proposal of [3]. The generators of A_4, S and T, have the following Reps:

$$\begin{align*}
1 & \quad S = 1 \quad T = 1 \\
1' & \quad S = 1 \quad T = \omega^2 \\
1'' & \quad S = 1 \quad T = \omega
\end{align*}$$

From [2], one can generally show that the most general mass matrix in the flavour basis leading to TB mixing obeys the “magic” symmetry $G_S \simeq Z_2$ generated by S in addition to the $\nu_\mu - \nu_\tau$ exchange symmetry analyzed in the previous section.

We assign the lepton doublets l_i ($i = e, \mu, \tau$) to the triplet A_4 representation and the lepton singlets $e^c, \mu^c, \tau^c \sim 1$. The symmetry breaking sector consists of the scalar fields (ϕ_T, ϕ_S, ξ), transforming as $(3, 3, 1)$ of A_4. Under certain conditions, the minimization of the scalar potential naturally leads to the following VEV alignment:

$$\langle \phi_T \rangle \propto (0, 1, 0), \quad \langle \phi_S \rangle \propto (1, 1, 1), \quad \langle \xi \rangle \neq 0.$$

In the neutrino sector A_4 is broken by (ϕ_S, ξ) down to G_S. The absence of the scalar singlets $1'$ and $1''$ in the neutrino sector implies that, in addition to G_S, the resultant neutrino mass matrix is also automatically symmetric under the exchange of the second and third generations. Then the residual symmetry in the neutrino sector is enhanced and imposes U_{PMNS} to be of the TB form independently from the mass eigenvalues. In the charged lepton sector, the VEV of ϕ_T breaks the $\nu_\mu - \nu_\tau$ exchange symmetry in a maximal way similar to the case of S_3. The masses m_e, m_μ, m_τ arise at the order $\langle \phi_T \rangle / \Lambda$, $(\langle \phi_T \rangle / \Lambda)^2$ and $(\langle \phi_T \rangle / \Lambda)^3$ respectively leading to a hierarchical mass spectrum.

* * *

I wish to thank the organizers of IFAE 2008 and F. Feruglio for collaborations.

REFERENCES

[1] Strumia A. and Vissani F., [arXiv:hep-ph/0606054]; Fogli L, et al, Nucl. Phys. Proc. Suppl., 168 (2007) 341; Gonzalez-Garcia C. and Maltoni M., [arXiv:0704.1800] [hep-ph]; Schwetz T., [arXiv:0710.5027] [hep-ph].

[2] For a review, see, for instance, Altarelli G, [arXiv:0711.0161] [hep-ph].

[3] Froggatt C. D. and Nielsen H. B., Nucl. Phys. B, 147 (1979) 277.

[4] Feruglio F. and Lin Y., Nucl. Phys. B, 800 (2008) 77; Lin Y., [arXiv:0804.2867] [hep-ph].
[5] Altarelli G. and Feruglio F., *Nucl. Phys. B*, **720** (2005) 64; *Nucl. Phys. B*, **741** (2006) 215; Altarelli G., Feruglio F. and Lin Y., *Nucl. Phys. B*, **775** (2007) 31; Feruglio F., Hagedorn C., Lin Y. and Merlo L., *Nucl. Phys. B*, **775** (2007) 120.