First Italian outbreak of VIM-producing *Serratia marcescens* in an adult polyvalent intensive care unit, August-October 2018: A case report and literature review

Maria Rosaria Iovene, Vincenzo Pota, Massimiliano Galdiero, Giusy Corvino, Federica Maria Di Lella, Debora Stelitano, Maria Beatrice Passavanti, Maria Caterina Pace, Aniello Alfieri, Sveva Di Franco, Caterina Aurilio, Pasquale Sansone, Vettakkara Kandy Muhammed Niyas, Marco Fiore

Abstract

BACKGROUND

Carbapenem-resistant *Enterobacteriaceae* has become a significant public health concern as hospital outbreaks are now being frequently reported and these organisms are becoming difficult to treat with the available antibiotics.

CASE SUMMARY

An outbreak of VIM-producing *Serratia marcescens* occurred over a period of 11 wk (August, 1 to October, 18) in patients admitted to the adult polyvalent intensive care unit of the University of Campania “Luigi Vanvitelli” located in Naples. Four episodes occurred in three patients (two patients infected, and one patient colonized). All the strains revealed the production of VIM.

CONCLUSION

After three decades of carbapenem antibiotics use, the emergence of carbapenem-resistance in *Enterobacteriaceae* has become a significant concern and a stricter control to preserve its clinical application is mandatory. This is, to our knowledge, the first outbreak of VIM-producing *Serratia marcescens* in Europe. Surveillance policies must be implemented to avoid future outbreaks.
Iovene MR et al. ICU’s outbreak of S. marcescens

along with the related clinical details and images. All clinical data contained in this case report can be made available, in an absolutely anonymized form, upon request to marco.fiore@unicampania.it.

Conflict-of-interest statement: All authors declare no conflict of interest.

CARE Checklist (2016) statement: The guidelines of the “CARE Checklist – 2016: Information for writing a case report” have been adopted.

Open-Access: This article is an open-access article which was selected by an in house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BYNC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is noncommercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Invited manuscript

Received: March 8, 2019
Peer-review started: March 11, 2019
First decision: April 18, 2019
Revised: May 15, 2019
Accepted: July 27, 2019
Article in press: July 27, 2019
Published online: November 6, 2019

P-Reviewer: Zhang ZH
S-Editor: Wang JL
L-Editor: A
E-Editor: Xing YX

Key words: Serratia marcescens; Carbapenamase; VIM; Intensive care unit; Outbreak; Case report

Core Tip: An outbreak of VIM-producing Serratia marcescens occurred in patients admitted to the adult polyvalent intensive care unit of the University of Campania “Luigi Vanvitelli” located in Naples. All the strains revealed the production of VIM. After three decades of carbapenem antibiotics use, the emergence of carbapenem-resistant Enterobacteriaceae has become a significant concern and is mandatory a stricter control to preserve its clinical application. This is, to our knowledge, the first outbreak of VIM-producing Serratia marcescens occurred in a European hospital.

Citation: Iovene MR, Pota V, Galdiero M, Corvino G, Di Lella FM, Stelitano D, Passavanti MB, Pace MC, Alfieri A, Di Franco S, Aurilio C, Sansone P, Niyas VKM, Fiore M. First Italian outbreak of VIM-producing Serratia marcescens in an adult polyvalent intensive care unit, August-October 2018: A case report and literature review. World J Clin Cases 2019; 7(21): 3535-3548
URL: https://www.wjgnet.com/2307-8960/full/v7/i21/3535.htm
DOI: https://dx.doi.org/10.12998/wjcc.v7.i21.3535

INTRODUCTION

Carbapenem-resistant Enterobacteriaceae (CRE) has become a significant public health concern as hospital outbreaks are now being frequently reported and these organisms are becoming difficult to treat with the available antibiotics. Early recognition through molecular characterization, epidemiologic studies, and surveillance is essential to prevent hospital outbreaks of these organisms\(^\text{[1]}\). Serratia marcescens (S. marcescens), an aerobic Gram-negative pathogen belonging to the family of Enterobacteriaceae, is known to cause hospital-acquired infections, commonly in an outbreak setting. Carbapenem resistance in S. marcescens may be chromosomal (SME), or plasmid (KPC, Oxa-48, IMP, NDM and VIM) mediated. Carbapenem resistance in is an ominous event as this pathogen is intrinsically resistant to polymyxins\(^\text{[3]}\). S. marcescens outbreaks in intensive care units (ICUs) are associated with considerable mortality rates, ranging from 14% to 60%\(^\text{[3,4]}\). Previous S. marcescens outbreaks in Italy has been mostly reported in neonatal ICUs (NICUs)\(^\text{[3,4]}\). The present study aimed to describe the first Italian nosocomial outbreak of VIM-producing S. marcescens occurred in our adult polyvalent ICU located in Campania region, Southern Italy.

CASE PRESENTATION

Chief complaints and history of illness

The index case of the outbreak of three patients infected and/or colonized by VIM-producing S. marcescens was a 49-year-old man with a history of schizophrenia admitted with a diagnosis of descending necrotizing mediastinitis whose CRE screening at admission was negative.

The second patient was a 69-year-old woman with a history of recurrent episodes of urinary tract infection (UTI) admitted from the community with UTI and septic shock (SS).

The third patient was a 67-year-old woman with various underlying diseases (Paranoid personality disorder, diabetes mellitus, ulcerative colitis, hypothyroidism and hypertrophic cardiomyopathy) who was admitted to our ICU for a hypovolemic haemorrhagic shock.

Examinations

For every patient admitted to our six-bed adult polyvalent ICU, a rectal swab (RS) was obtained (CRE screening) using a Copan Amies sterile transport swab (Copan Diagnostics, Murrieta, CA). The RS was streaked onto Mac Conkey Agar (Biomerieux, Marcy l’Etoule, France) with a 10 μg meropenem disk. Mac Conkey agar plates were incubated aerobically at 37°C overnight. Antibiotic susceptibility was determined...
using the disk diffusion method. Suspicious colonies growing into the meropenem disk-halo were picked up and identified using MALDI-TOF MS (Matrix-Assisted Laser Desorption/Ionization Time of Flight mass spectroscopy).

Carbapenem resistance were identified in accordance with the European Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines using updated EUCAST breakpoint tables (EUCAST clinical breakpoint valid from 15/05/2018) (Table 1).

Molecular analysis to identify carbapenemase genes was performed using the Xpert Carba-R Cartridge (GeneXpert®; Cepheid, Sunnyvale, CA).

The Xpert Carba-R Assay, conducted on the GeneXpert® device, is an automated qualitative real-time polymerase chain reaction based test that detects specific gene associated with carbapenem resistance (blaKPC, blaNDM, blaVIM, blaOXA-48 and blalMP-1).

FINAL DIAGNOSIS

After 65 d of the first patient hospitalization, a blood culture grew VIM-producing S. marcescens. Three days after the diagnosis of bacteraemia his RS was positive for the same organism. The same patient developed a new episode of bacteraemia during further ICU stay.

The second patient, eleven days after admission in ICU, developed lower respiratory tract infection (LRTI) with bronchial culture positive for VIM-producing S. marcescens. Her RS also tested positive for S. marcescens on the same day.

VIM-producing S. marcescens was isolated in the third patient from tracheal aspirate after seven days and from urine after eleven days of hospitalization. In both cases, the isolated was considered as a contaminant. During the ICU admission she developed an acute respiratory distress syndrome due to Enterococcus faecium.

TREATMENT

The first episode of VIM-producing S. marcescens bacteraemia was treated with ceftazidime-avibactam (CZA) plus gentamicin for 14-d. The second episode was initially treated with amikacin (AMK) and Fosfomycin. Fosfomycin was later substituted with meropenem due to hypernatremia. The total duration of the antibiotic treatment in this episode was 47 d.

The second patient was treated by the ward of origin with piperacillin-tazobactam (TZP) in association with AMK; initially (September, 12) we treated the SS with ceftolozane-tazobactam (C/T) and metronidazole; ceftaroline, not active against VIM-producing S. marcescens, was added later (September, 24), as her condition deteriorated, for a suspected methicillin-resistant Staphylococcus aureus infection[10]. The duration of total antibiotic therapy was 14 d.

The third patient was initially empirically treated with tigecycline and TZP; subsequently, due to the worsening of clinical conditions, antibiotic therapy was modified with the introduction of CZA, AMK, Colistin and ampicillin-sulbactam. VIM-producing S. marcescens, considered as a contaminant, in the third patient was not treated.

OUTCOME AND FOLLOW-UP

Both episodes of bacteraemia of the first patient resulted in a favourable outcome: The patient was transferred to a rehabilitation unit at the end of the ICU stay.

The second and the third patient died. Unfortunately for the third patient the microbiological result, with the isolation of the Enterococcus faecium, arrived posthumously.

The main clinical and epidemiological characteristics of the patients are reported in Table 2.

DISCUSSION

S. marcescens is an essential cause of hospital-acquired infections. Although most infections have been linked to hospital outbreaks, occasional infections can occur outside the outbreak settings also. The first hospital outbreak was reported in San Francisco in 1950 where 11 patients developed UTI by S. marcescens, one of them
Table 1 Antibiotic susceptibilities, in accordance with the European Committee on Antimicrobial Susceptibility Testing of VIM-producing Serratia marcescens isolates with the date and first site of identification

MIC (μg/mL)	Date	Site
AMK ≤ 4	Aug, 1	Blood
AMC > 32/2	Aug, 17	Blood
AMP > 8	Sep, 20	RS
FEP > 8	Sep, 24	RT
CTX > 4		
CAZ > 8		
CIP 1		
CST > 4		
ETP > 1		
OFO ≤ 32		
GEN > 4		
IPM > 8		
LVX 2		
MEM > 8		
PIP > 16		
TZP > 16/4		
TGC > 2		
TOB > 4		
SXT > 4/76		

AMC: Amoxicillin-clavulanic acid; AMK: Amikacin; AMP: Ampicillin; CAZ: Ceftazidime; CIP: Ciprofloxacin; CST: Colistin; CTX: Cefotaxime; ETP: Ertapenem; FEP: Cefepime; OFO: Fosfomycin; GEN: Gentamicin; IPM: Imipenem; LVX: Levofloxacin; MEM: Meropenem; PIP: Piperacillin; RS: Rectal swab; RT: Respiratory tract; SXT: Trimethoprim-sulfamethoxazole; TGC: Tigecycline; TOB: Tobramycin; TZP: Piperacillin-tazobactam.

Antibiotic resistance has been a worrisome issue to physicians treating infections caused by S. marcescens. This organism is intrinsically resistant to a large number of antibiotics including ampicillin, amoxicillin, amoxicillin-clavulanate, ampicillin-sulbactam, narrow-spectrum cephalosporins, cefuroxime, nitrofurantoin, macrolides and polymixin[13]. It also carries a chromosomal AmpC beta-lactamase which when overexpressed can render all beta-lactams except carbapenems ineffective[14]. They also can produce plasmid-mediated extended spectrum beta-lactamase (ESBL) and carbapenemases. Carbapenemases in S. marcescens can be chromosomal (SME) or plasmid-mediated (KPC, OXA-48, IMP, VIM, and NDM). Quinolone resistance can arise due to alterations in gyrA, outer membrane proteins, and expression of efflux pumps[15].

Carbapenem resistance can be devastating in case of Serratia infections considering its intrinsic resistance to polymyxins. Many outbreaks of KPC2 producing Serratia marcescens have been reported[16,17]. Plasmid-mediated Metallo-β-lactamases (IMP, VIM, and NDM-1) which inactivate carbapenems can be produced by some Serratia strains[18].

Nosocomial outbreaks of VIM-producing S. marcescens have been reported infrequently in literature, most of them are from NICUs[19,20]. Nosocomial outbreaks of VIM-producing pathogens have been reported in multiple major Gram-negative bacteria, making VIM-producing bacteria a severe public health concern. The first VIM-producing Gram-negative pathogen and the most frequently reported in the literature is Pseudomonas aeruginosa, followed by Klebsiella pneumonia and Acinetobacter baumannii (Table 3). In our study, VIM-producing S. marcescens was isolated in a University Hospital ICU. This is in line with previous reports in the literature because most cases of VIM-producing Gram-negative pathogens have been isolated in ICUs of tertiary care teaching hospitals (Table 3). Unlike what has been reported in the last ten years in our Country, where the S. marcescens outbreaks have mostly taken place in complicated by endocarditis[21]. Many hospital outbreaks have been reported after that[22]. It has been associated with various infections including UTI, bloodstream infection, pneumonia, skin and soft tissue infections, meningitis and ocular infections.
Table 2 Clinical and epidemiological data of patients

Patient	Admission from	Age(yr)	Sex	Underlying disease(s)	Previous AT	Admission diagnosis	Date of admission	Stool screening	1° site of identification
1	Community	49	M	SC	No	DNM	May, 28	Yes	Blood
1	ICU	49	M	SC	Yes	DNM	May, 28	Yes	Blood
2	Community	69	F	rUTI	Yes	SS	Sep, 9	Yes	RS
3	Internal ward	67	F	PPD, DM, UC, SHT, HCM	Yes	HS	Sep, 17	Yes	RT

NicUs (Table 4) this first Italian outbreak of VIM-producing *Serratia marcescens* occurred in an adult ICU. Fatality rate in our outbreak was 50% (2 of 4 episodes), similar to the first nosocomial outbreak of VIM-producing *S. marcescens* happened in Argentina, which however occurred in NICU setting[19]. The high mortality is probably due to the inappropriate use of antibiotics for the treatment of severe infections in ICU patients[20]. In Figure 1 are represented the mechanisms of action of antibiotics used in our patients with VIM-producing *S. marcescens* infection. Given that no effective treatment is known, isolated reports describe successful therapy combining CZA and Aztreonam. The rationale of this antibiotic association is that Aztreonam remains intact in the presence of carbapenemases but hydrolyzed by ESBLs and CZA neutralizes the ESBLs and AmpC beta-lactamases[21]. In our study CZA was never co-administered with aztreonam, though there was clinical success in one of two patients who were given CZA in combination with other antibiotics (Table 2).

CONCLUSION

We report the first European outbreak of VIM-producing *Serratia marcescens* in adult polyvalent ICUs. Two patients developed an infection (bacteremia and LRTI) while one had colonization. No effective therapy is available for the treatment of VIM-producing *S. marcescens*. Methods to detect expression of carbapenem resistance should be widely available in all health care units to prevent the spread of multi-drug organisms and to limit horizontal transfer of the genes associated with drug resistance. Such active surveillance methods will help in averting future outbreaks.
Table 3 Previous reported hospital outbreaks around the world of VIM-producing Gram-negative pathogens

Year	City, Country, time span	Pathogen	Type of Hospital	Setting	VIM cases	Comments
2000	Verona, Italy; February 1997 - February 1998	*Pseudomonas aeruginosa*	University Hospital	ICU patients	83	All patients from ICU
2000	Thessaloniki, Greece; 1996-1998	*Pseudomonas aeruginosa*	University Hospital	ICU patients	211	More than one sample for patient;
2001	Southern Taiwan; January 1999 - December 2000	*Klebsiella pneumoniae*	University Medical Center	ICU and Other Wards	5	Multidrug-resistant *Klebsiella pneumoniae*
2004	Heraklion, Greece; Summer 2001	*Escherichia coli*	University Hospital	ICU patients	4	All patients from ICU
2004	Cali, Colombia; February 1999 - July 2003	*Pseudomonas aeruginosa*	Tertiary Care Medical Center	ICU patients	66	All patients from ICU
2005	Larissa and Thessaloniki, Greece; December 2004 - March 2005	*Klebsiella pneumoniae*	University Hospital	ICU and Other Wards	27	Outbreaks in distinct regions due to a single *Klebsiella pneumoniae* clone
2005	Calgary, Canada; May 2002 - April 2004	*Pseudomonas aeruginosa*	1 pediatric and 3 large adult hospitals	ICU and Other Wards	228	Population-based epidemiological study of infections
2005	USA; May 2013	*Pseudomonas aeruginosa*	Public Teaching Hospital	ICU and Other Wards	17	First outbreak of carbapenemase in USA
2005	Porto Alegre, southern Brazil; January - October 2004	*Pseudomonas aeruginosa*	Tertiary-care Teaching Hospital	ICU and Other Wards	135	Outbreak of carbapenem-resistant
2006	Athens, Greece; March 2002-October 2002	*Acinetobacter baumannii*	Tertiary Care Hospital	ICU and Other Wards	15	Outbreak of multiple clones of imipenem-resistant
2006	Paris, France; 2003-2004	*Klebsiella pneumoniae*	Teaching Hospital	ICU and Other Wards	8	Recovered from clinical specimens or rectal swabs - Surgical ward or ICU patients
2006	Trieste, Italy; 1996-1997 / 2000-2002	*Pseudomonas aeruginosa*	University Hospital	ICU and Other Wards	91	Nosocomial setting of high-level endemicity
2006	Hungary; October 2003-November 2005	*Pseudomonas aeruginosa*	seven hospitals in Hungary	ICU and Other Wards	19	Molecular epidemiology of VIM-4 *Pseudomonas* sp.
2007	Madrid, Spain; March 2005 - September 2006	Enterobacteriaceae	University Hospital	ICU and Other Wards	25	(52% of patients were in ICU)
2007	Warsaw, Poland ; September 2003 - May/2004/July 2005-1	*Pseudomonas aeruginosa*	Tertiary Care Hospital	ICU and Other Wards	41	Outbreak of *Pseudomonas aeruginosa* infections
2007	Athens, Greece; 14 September -3 October 2005	*Pseudomonas aeruginosa*	University Hospital	ICU and Other Wards	5	Ventilator-Associated Pneumonia (VAP)
2008	Serres, Greece; April 2005 - March 2007	*Acinetobacter baumannii*	General Hospital	ICU patients	31	All patients from ICU
2008	Piraeus, Greece; 2005-2006	*Acinetobacter baumannii*	General Hospital	ICU and Other Wards	6	4 ICU patients
2008	Genoa, Italy; September 2004 - March 2005	*Klebsiella pneumoniae*	Tertiary Care Hospital	ICU and Other Wards	9	Bloodstream infections
2008	Athens, Greece; February 2004 - March 2008	*Klebsiella pneumoniae*	three hospitals in Athens	ICU and Other Wards	67	77% ICU patients
2008	Thessaloniki, Greece; November 2006 - April 2007	*Klebsiella pneumoniae*	Tertiary Care Hospital	Wards	9	Patients hospitalized in different medical and surgical wards
Year	Location	Organism	Setting	Number	Description	
-------	-----------------------------	-------------------	----------------------------------	--------	--	
2008	Nantes, France; April 1996 - July 2004	*Pseudomonas aeruginosa*	University Hospital ICU and Other Wards	59	Mostly urinary tract infections and pneumonia	
2008	UK; November 2003- November 2007	*Pseudomonas aeruginosa*	12 UK Hospital ICU patients	32	15 cases from same hospital	
2009	Greece, February 2008 - December 2008	*Klebsiella pneumoniae*	21 Greek hospitals ICU patients	52	All patients from ICU	
2009	Thessaloniki, Greece; November 2004 - December 2005	*Pseudomonas aeruginosa*	University Hospital ICU patients	29	All patients from ICU	
2010	Zonguldak, Turkey; 2003-2006	*Acinetobacter baumannii*	University Hospital ICU and Other Wards	116	Tracheal aspirates (32%), wound swabs (22%), blood (14%), bronchoalveolar specimens (11%) and urine, sterile fluids, catheter tips, abscess and sputum (each < 5%).	
2010	Texas, USA; February-June 2006/March-June 2009	*Enterobacter cloacae*	Children’s Hospital Children ICU and Other Wards	3	Fecal colonization	
2010	France; 2003-2004	*Klebsiella pneumoniae*	care centre for abdominal surgery ICU and Other Wards	8	Rectal swab, urine culture, blood culture, tracheal aspirates	
2010	Athens, Greece; February - December 2009	*Klebsiella pneumoniae*	University Hospital ICU and Other Wards	42	Hospital-acquired infections	
2010	Wuerzburg, Germany; November - December 2007	*Pseudomonas aeruginosa*	retrograde urography associated infection ICU and Other Wards	11	Strains from urine or urological infection	
2010	Kobe, Japan; September 2007-July 2008	*Pseudomonas aeruginosa*	Medical Center General Hospital ICU patients	35	All patients from ICU	
2011	Athens, Greece; March 2004 - November 2005	*Enterobacteriaceae*	University Hospital ICU patients	23	All patients from ICU	
2011	Kasserine Tunisia; 2009 - June 2010	*Escherichia coli*	University Hospital ICU patients	2	Rectal swab	
2011	Essen, Germany; July 2010 - January 2011	*Klebsiella pneumoniae*	University Hospital ICU and Other Wards	7	Perianal or rectal swabs	
2011	Tunis, Tunisia; January - November 2008	*Pseudomonas aeruginosa*	University Hospital ICU and Other Wards	16	All patients of the kidney transplantation unit; 20 strains from urine, 3 from cutaneous pus, and 1 from blood	
2011	Murcia, Spain; 11-25 May 2009	*Pseudomonas aeruginosa*	Tertiary Care Hospital ICU and Other Wards	6	4 ICU patients; strains from blood and sputum	
2011	Central Japan; January 2006 - June 2009	*Pseudomonas aeruginosa*	University Hospital ICU and Other Wards	51	Mainly detected by urine culture in the first half, whereas isolation from respiratory tract samples became dominant in the latter half of the outbreak	
Year	Location	Pathogen	Setting	Sample Size	Source	
------	----------	----------	---------	-------------	--------	
2011	Rooderdom, Netherlands; January 2008 - November 2009	*Pseudomonas aeruginosa*	University Hospital ICU and Other Wards	35	161 carbapenemase-producing: 74 (70%) were isolated from respiratory tract specimens, 6 (6%) from urine, 5 (5%) from blood, 8 (8%) from soft tissue or bone, 7 (7%) from intra-abdominal specimens and 6 (6%) from various other specimens.	
2012	Chosun, Korea; January 2004 - December 2009	*Acinetobacter baumannii*	University Hospital ICU patients	77	All patients from ICU	
2012	Madrid, Spain; January 2009 - December 2009	*Klebsiella pneumoniae*	University Hospital ICU patients	28	Fatality rate was 13/28 (46%)	
2012	UK; 2005 - 2011	*Pseudomonas aeruginosa*	Tertiary Care and University Hospitals ICU and Other Wards	89	Fatality rate was 34/89 (38.2%)	
2012	Cape Town, South Africa; January 2010 - April 2011	*Pseudomonas aeruginosa*	University Hospital ICU patients	15	10 strains from blood, 2 from stool, 1 from bile, 1 from urine and 1 from a catheter tip	
2013	Bologna, Italy; 1-15 June 2012	*Citrobacter freundii*	University Hospital ICU patients	8	Rectal swab	
2013	Abidjan, Ivory Coast; February 2009 - November 2011	*Pseudomonas aeruginosa*	University Hospital ICU patients	12	All patients from ICU	
2013	Thessalina, Larissa, Greece; 2010-2012	*Pseudomonas aeruginosa*	University Hospital ICU and Other Wards	49	All patients from ICU	
2013	Taiwan; 2003-2007	*Pseudomonas aeruginosa*	Regional Hospital ICU and Other Wards	50	8 ICU patients	
2013	Buenos Aires, Argentina; July-September 2011	*Serratia marcescens*	Tertiary Care Neonatal University Hospital	3	Rectal swab; fatality rate was 1/2 (50%) and one lost at follow-up	
2014	Split, Croatia; June - August 2012	*Enterobacter cloacae*	University Hospital ICU patients	6	Strains from lower respiratory tract, blood, abdominal cavity and rectum; fatality rate was 4/6 (66.6%)	
2014	Greece; 2003-2007	*Klebsiella pneumoniae*	Tertiary Care and University Hospitals ICU patients	21	All patients from ICU	
2014	Rome, Italy; 2011-2012	*Pseudomonas aeruginosa*	Tertiary Care Paediatric Hospital Children with onco-haematological diseases;	27	12 cases of bacteraemia, 6 other infections and 9 colonized; mortality rate was 67%	
2014	Leiden, Netherlands; 2004- January 2012	*Pseudomonas aeruginosa*	University Hospital ICU patients	20	All patients from ICU	
2014	China; December 2006 - July 2008	*Pseudomonas aeruginosa*	Tertiary Care Hospitals ICU patients	1	All patients from ICU	
2015	Madrid, Spain; January 2009 - February 2014	*Klebsiella pneumoniae*	University Hospital ICU and Other Wards	37	OXA-48 ST11 clone	
2015	Athens, Greece; September-November 2011	*Providencia stuartii*	Tertiary Care Hospital ICU patients	10/5	Strains from blood/urine; fatality rate was 7/15 (46.6%)	
2015	Rotterdam, Netherlands; January - April 2012	*Pseudomonas aeruginosa*	University Hospital ICU and Other Wards	30	9 ICU patients; patients undergone ERCP using a specific duodenoscope (TJF-Q180V)	
2015 UK, 2003 – 2012[85] Pseudomonas aeruginosa 89 Tertiary Care Hospitals ICU and Other Wards 267 Strains from urine (24%), respiratory (18%), wounds (17%) and blood (13%)

2016 Patras, Greece, January 2005 December 2014[86] Klebsiella pneumoniae University Hospital ICU and Other Wards 45 1668 carbapenemase-producing isolates

2016 Athens, Greece; December 2012 - March 2013[87] Proteus stuartii Tertiary Care Hospital ICU patients 6 Fatality rate was 3/6 (50%)

2016 China; August 2011- July 2012[88] Pseudomonas aeruginosa 27 Tertiary Care Hospitals ICU and Other Wards 49/44/42 Strains from pus/blood/urine

2016 Norway; 2007- 2014[89] Enterobacteriaceae University Hospital ICU and Other Wards 14 Klebsiella pneumoniae (n = 10) and E. coli (n = 4)

2017 Jalisco, Mexico; September 2014 - July 2013[90] Enterobacteriaceae Hospital Civil ICU and Other Wards 3 Klebsiella pneumoniae (n=2), C. freundii (n = 1)

2017 Madrid, Spain - February 2014[91] Klebsiella oxytoca Children hospital NICU 8 8 VIM-KeS/4 also had VIM-Serratia/3 patients VIM - Enterobacteriaceae. NICU, In neonates with any symptom of infection, urine, blood, broncho-alveolar lavages and other samples based on the most likely focus of infection

2017 UK; 2005-2011[92] Pseudomonas aeruginosa Two University Hospitals in London and South Coast ICU and Other Wards 85 31 ICU patients; fatality rate was 34/85 (40%)

2018 Thessaloniki, Greece; January 2013 - January 2015[93] Klebsiella pneumoniae University Hospital ICU and Other Wards 25 Strain producing both KPC-2 and VIM-1 carbapenemases

2018 Cairo, Egypt, March 2015 August 2015[94] Serratia marcescens University Teaching Hospital NICU 15 Isolates obtained from blood stream infections

ICU: Intensive care unit; NICU: Neonatal ICU. UK: United Kingdom; USA: United States of America.

Table 4 Previous hospital outbreaks of Serratia marcescens in Italy

Year	City	Setting	Number of cases (infection and/or colonization)	Comments
1984	Naples[22]	NICU and Nursery	88	Outbreak linked to contaminated mucus aspiration apparatus and other contaminated instruments. Case fatality rate: 19%
1988	Genoa[23]	Adult ICU and surgical ward	11	Ventilators for assisted breathing became contaminated from index patient.
1994	Varese[24]	Adult ICU	43	Strains from the ICU outbreak were multidrug resistance. 23 isolates from 18 other patients from other wards showed wide range of antibiotic susceptibility
Table 1: Outbreaks of S. marcescens

Year	Location	Setting	Cases	Notes
2001	Naples	NICU	14	56 cases of colonization by S. marcescens over a 15-month period. Fourteen of the 56 colonized infants developed clinical infections, 50% of which were major (sepsis, meningitis, or pneumonia).
2003	Naples	Adult ICU	13	Strain was multidrug resistant, inducible AmpC beta-lactamase producing. There were three cases of sepsis, nine pneumonia and one surgical wound infection. Mortality was 84.6%.
2005	Modena	NICU	15	Simultaneous outbreak of *Serratia marcescens* and *Klebsiella pneumonia* (11 cases). One preterm baby died in which both organisms were involved.
2007	Pavial	NICU	21	Occurred in two separate outbreaks in 10 mo interval.
2009	Verona	NICU	16	6 patients developed clinical diseases which included bacteremia, UTI, conjunctivitis and umbilical wound infection.
2011	Pescara	NICU	6	5 cases were linked to an index case hospitalised for S. marcescens sepsis. Mortality was 40%.
2013	Modena	NICU	127	Reported two long term outbreaks occurred over a period of 10 years. 43 developed infection and 3 died.
2015	Florence	NICU	14	In the surveillance post outbreak, 18 out of 65 patients tested positive for S. marcescens.

ICU: Intensive care unit; NICU: Neonatal ICU.

Figure 1 Mechanism of antibiotics used in our patients with VIM-producing *Serratia marcescens*. DNA: Deoxyribonucleic acid; PBPs: Penicillin-binding proteins; UDP-MurA: Uridine diphosphate-N-acetylglucosamine enolpyruvyl transferase.
REFERENCES

1. Logan IK, Weinstein RA. The Epidemiology of Carbapenem-Resistant Enterobacteriaceae: The Impact and Evolution of a Global Menace. J Infect Dis 2017; 215: S28-S36 [PMID: 28375512 DOI: 10.1093/inf- dis/jwv262]

2. Samonis G, Korbita IP, Maraki S, Michailidou I, Vardakas KZ, Kofferidis D, Dimopoulou D, Gikogkotzou VK, Falagas ME. Trends of isolation of intrinsically resistant to colistin Enterobacteriaceae and association with colistin use in a tertiary hospital. Eur J Clin Microbiol Infect Dis 2014; 33: 1505-1510 [PMID: 24798249 DOI: 10.1007/s10096-014-2097-8]

3. Milisavljevic V, Wu F, Larson E, Rubenstein D, Ross B, Drusin LM, Della-Latta P, Saiman L. Molecular epidemiology of Serratia marcescens outbreaks in two neonatal intensive care units. Infect Control Hosp Epidemiol 2004; 25: 719-721 [PMID: 15484794 DOI: 10.1086/302466]

4. Arslan U, Ermanyi I, Kirdar S, Yulkeskayya S, Cimen O, Tuncer I, Bozdogan B. Serratia marcescens sepsis outbreak in a neonatal intensive care unit. Pediatr Int 2010; 52: 208-212 [PMID: 19664012 DOI: 10.1111/j.1442-200X.2009.02934.x]

5. Montagnani C, Cocchi P, Lega L, Campana S, Biermann KP, Braggion C, Picelli P, Chiappini E, de Martino M, Galli L. Serratia marcescens outbreak in a neonatal intensive care unit: crucial role of implementing hand hygiene among external consultants. BMC Infect Dis 2015; 15: 11 [PMID: 25582674 DOI: 10.1186/s12879-014-0714-6]

6. Casolari C, Pecorari M, Della Casa E, Cattani S, Venturelli C, Fabio G, Tagliazucchi S, Serpini GF, Migaldi M, Marchegiano P, Rumpianesi F, Ferrari F. Serratia marcescens in a neonatal intensive care unit: two long-term multicentre outbreaks in a 10-year observational study. New Microbiol 2013; 36: 373-383 [PMID: 24177299]

7. Polilli E, Parietti G, Fazzi P, D’Antonio D, Palmieri D, D’Incecco C, Mangifesta A, Garofalo G, Del Duca L, D’Amario C, Scimia M, Cortesi V, Fortunato V. Rapidly controlled outbreak of Serratia marcescens infection/colonisation in a neonatal intensive care unit. Pescara General Hospital, Pescara, Italy, April 2011. Euro Surveill 2011; 16: 19892 [PMID: 21699768]

8. Dessi A, Puddu M, Testa M, Marcellis MA, Pinti MC, Fanos V. Serratia marcescens infections and outbreaks in neonatal intensive care units. J Chemother 2009; 21: 493-499 [PMID: 19930330 DOI: 10.1179/joc.2009.21.5.493]

9. Perotti G, Bernardo ME, Spalla M, Matti C, Stronati M, Pagani L. Rapid control of two outbreaks of Serratia marcescens in a Northern Italian neonatal intensive care unit. J Chemother 2009; 19: Suppl 2: 56-60 [PMID: 18073184]

10. Fiore M, Taconne FS, Leone S. Choosing the appropriate pharmacotherapy for multidrug-resistant Gram positive infections. Expert Opin Pharmacother 2018; 19: 1517-1521 [PMID: 30126302 DOI: 10.1080/14656566.2018.1523848]

11. Wheat RP, Zuckerman A, Rantz LA. Infection due to chromobacteria; report of 11 cases. AMA Arch Intern Med 1951; 88: 461-466 [PMID: 14867953]

12. Mahlen SD. Serratia infections: from military experiments to current practice. Clin Microbiol Rev 2011; 24: 755-791 [PMID: 21976608 DOI: 10.1128/CMR.00017-11]

13. Stock I, Grueger T, Wiedemann B. Natural antibiotic susceptibility of strains of Serratia marcescens and the S. liquefaciens complex: S. liquefaciens sensu stricto, S. proteamaculans and S. grimesii. Int J Antimicrob Agents 2003; 22: 35-47 [PMID: 12842326]

14. Jacoby GA. AmpC beta-lactamases. Clin Microbiol Rev 2009; 22: 161-182, Table of Contents [PMID: 19156439]

15. Tsakris A, Voulgaris S, Poulou A, Kroumou M, Pouranis S, Ranelou K, Kosmopoulou O, Petropoulos D. In vivo acquisition of a plasmid-mediated bla(KPC-2) gene among clonal isolates of Serratia marcescens. J Clin Microbiol 2010; 48: 2546-2549 [PMID: 20463153 DOI: 10.1128/JCM.00264-10]

16. Cai JC, Zhou HW, Zhang R, Chen GX. Emergence of Serratia marcescens, Klebsiella pneumoniae, and Escherichia coli isolates possessing the plasmid-mediated carbapenem-hydrolyzing beta-lactamase KPC-2 in intensive care units of a Chinese hospital. Antimicrob Agents Chemother 2008; 52: 2014-2018 [PMID: 18332176 DOI: 10.1128/AAC.01539-07]

17. Kazmierczak KM, Rabine S, Hackel M, McLaughlin RE, Biedenbach DJ, Bouchillon SK, Sahm DF, Bradford PA. Multiyear, Multinational Survey of the Incidence and Geographic Distribution of Metallo-beta-Lactamase-Producing Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrob Agents Chemother 2015; 60: 1067-1078 [PMID: 26643349 DOI: 10.1128/AAC.02379-15]

18. Ghaith DM, Zafer MM, Ismael DK, Al-Agamy MH, Bohol MFF, Al-Qahtani AM, ElNagdy SM, Mostafa IY. First reported nosocomial outbreak of Serratia marcescens harboring bla IMP-4 and bla VIM-2 in a neonatal intensive care unit in Cairo, Egypt. Infect Drug Resist 2018; 11: 2211-2217 [PMID: 30519059 DOI: 10.2147/IDR.S174869]

19. Nastro M, Monge R, ZingrafI J, Vulet LG, Boutureira M, Famiglietti A, Rodriguez CH. First nosocomial outbreak of VIM-16-producing Serratia marcescens in Argentina. Clin Microbiol Infect 2013; 19: 617-619 [PMID: 22862380 DOI: 10.1111/j.1469-0691.2012.03978.x]

20. Leone S, Cascella M, Pezone I, Fiore M. New antibiotics for the treatment of serious infections in intensive care unit patients. Curr Med Res Opin 2019, 35: 1331-1334 [PMID: 30760041 DOI: 10.1080/03007995.2019.1583025]

21. Gilbert DN, Chambers HF, Eliopoulos GM, Saag MS, Pavia AT, editors. Sanford guide to antimicrobial therapy. 48th edition. Sperryville: Antimicrobial Therapy, Inc., 2018.

22. Montanaro D, Grasso GM, Annino I, De Ruggiero N, Scarcella A, Schioppa F. Epidemiological and bacteriological investigation of Serratia marcescens epidemic in a nursery and in a neonatal intensive care unit. J Hyg (Lond) 1984; 83: 67-78 [PMID: 6379044]

23. Azzone A, Botta GA, Gesu GP, Schito G. Evaluation of a computer-assisted method of analysing SDS-PAGE protein profiles in tracing a hospital outbreak of Serratia marcescens. J Infect 1988; 17: 35-42 [PMID: 3060541]

24. Pagani I, Luzzaro F, Ronza P, Rossi A, Michelel P, Porta F, Romero E. Outbreak of extended-spectrum beta-lactamase-producing Serratia marcescens in an intensive care unit. FEMS Immunol Med Microbiol 1994; 10: 39-46 [PMID: 7874077 DOI: 10.1111/j.1574-695X.1994.tb00009.x]

25. Villari P, Crisponio M, Salvadori A, Scarcella A, Molecular epidemiology of an outbreak of Serratia marcescens in a neonatal intensive care unit. Infect Control Hosp Epidemiol 2001; 22: 630-634 [PMID: 11776349 DOI: 10.1080/18921451.2015.1136614]

26. Bagattini M, Crisponio M, Gentile F, Barretta E, Schiavone D, Bocca MC, Triassi M, Zarrilli R. A
nosocomial outbreak of Serratia marcescens producing inducible Amp C-type beta-lactamase enzyme and carrying antimicrobial resistance genes within a class 1 integron. J Hosp Infect 2004; 56: 29-36 [PMID: 14706268]

27 Casolari C, Pecorari M, Fabio G, Cattani S, Venturelli C, Piccinini L, Tamussia MG, Gennai W, Sabbatini AM, Leporati G, Marchegiano P, Rumpianesi F, Ferrari F. A simultaneous outbreak of Serratia marcescens and Klebsiella pneumoniae in a neonatal intensive care unit. J Hosp Infect 2005; 61: 312-320 [PMID: 16198443 DOI: 10.1016/j.jhin.2005.03.005]

28 Liguozzi M, Fontana R, Aldegheri M, Scaglì G, Lo Cascio G. Comparative evaluation of an automated repetitive-sequence-based PCR instrument versus pulsed-field gel electrophoresis in the setting of a Serratia marcescens nosocomial infection outbreak. J Clin Microbiol 2010; 48: 1690-1695 [PMID: 20237095 DOI: 10.1128/JCM.01528-09]

29 Cornaglia G, Mazzarolo A, Larretti L, Rossolini GM, Fontana R. Hospital outbreak of carbapenem-resistant Pseudomonas aeruginosa producing VIM-1, a novel transferable metallo-beta-lactamase. Clin Infect Dis 2000; 31: 1119-1125 [PMID: 11073738 DOI: 10.1086/371744]

30 Tsakris A, Pourmarou S, Woodford N, Palepaou MF, Babini GS, Doubayou J, Livermore DM. Outbreak of infections caused by Pseudomonas aeruginosa producing VIM-1 carbapenemase in Greece. J Clin Microbiol 2000; 38: 1290-1292 [PMID: 10969047]

31 Yan JJ, Ko WC, Tsai SH, Wu HM, Wu JF. Outbreak of infection with multidrug-resistant Klebsiella pneumoniae carrying bla(MP-8) in a university medical center in Taiwan. J Clin Microbiol 2001; 39: 4433-4439 [PMID: 11724857 DOI: 10.1128/JCM.39.12.4433-4439.2001]

32 Scoulica EV, Neoaniki I, Gioukas AI, Tseltis YJ. Spread of bla(VIM-1)-producing E. coli in a university hospital in Greece. Genetic analysis of the integron carrying the bla(VIM-1) metallo-beta-lactamase gene. Diagn Microbiol Infect Dis 2004; 48: 167-172 [PMID: 15023424 DOI: 10.1016/j.diagmicrobio.2003.09.012]

33 Crespo MP, Woodford N, Sinclair A, Kaufmann ME, Turton J, Glover J, Velez JD, Castañeda CR, Recalde M, Livermore DM. Outbreak of carbapenem-resistant Pseudomonas aeruginosa producing VIM-8, a novel metallo-beta-lactamase, in a tertiary care center in Cali, Colombia. J Clin Microbiol 2004; 42: 5094-5101 [PMID: 15529701 DOI: 10.1128/JCM.42.11.5094-5101.2004]

34 Ikonomidou A, Tokatlidou D, Kristo I, Sofianou D, Tsakris A, Mantzana P, Pourmarou S, Maniatis AN. Outbreaks in distinct regions due to a single Klebsiella pneumoniae clone carrying a bla VIM-1 metallo-[beta]-lactamase gene. J Clin Microbiol 2005; 43: 5344-5347 [PMID: 16208014 DOI: 10.1128/JCM.43.12.5344-5347.2005]

35 Laupland KB, Parkins MD, Church DL, Gregson DB, Louie TJ, Conly MJ, Elsayed S, Pitout JD. Population-based epidemiological study of infections caused by carbapenem-resistant Pseudomonas aeruginosa in the Calgary Health Region: importance of metallo-beta-lactamase (MBL)-producing strains. J Infect Dis 2005; 192: 1606-1612 [PMID: 16206075 DOI: 10.1086/444469]

36 Lolans K, Queenan AM, Bush K, Saudh A, Quinn JP. First nosocomial outbreak of Pseudomonas aeruginosa producing an integron-borne metallo-beta-lactamase (VIM-2) in the United States. Antimicrob Agents Chemother 2005; 49: 3538-3540 [PMID: 16048978 DOI: 10.1128/AAC.49.8.3538-3540.2005]

37 Zavascki AP, Gaspareto PB, Martins AF, Gonçalves AL, Barth AL. Outbreak of carbapenem-resistant Pseudomonas aeruginosa producing SPM-1 metallo-[beta]-lactamase in a teaching hospital in southern Brazil. J Antimicrob Chemother 2005; 56: 1148-1151 [PMID: 16292824 DOI: 10.1093/jac/dki290]

38 Pournaras SA, Markogiannakis A, Ikonomidou A, Konstandoulaki L, Benthimou K, Maniatis AN, Legakis NJ, Tsakris A. Outbreak of multiple clones of imipenem-resistant Acinetobacter baumannii isolates expressing OXA-58 carbapenemase in an intensive care unit. J Antimicrob Chemother 2006; 57: 557-561 [PMID: 16431827 DOI: 10.1093/jac/dkl005]

39 Kassis-Chikhan MA, Drez D, Gautier V, Burghoffer B, Saliba F, Mathieu D, Samuel D, Castaing D, Petit JC, Dussaix E, Arlet G. First outbreak of multidrug-resistant Klebsiella pneumoniae carrying bla(VIM-1) and blaSHV-5 in a French university hospital. J Antimicrob Chemother 2006; 57: 142-145 [PMID: 16284103]

40 Lagatolla C, Edalucci E, Dolanzi L, Riccio ML, De Luca F, Medessi E, Rossolini GM, Tonin EA. Molecular evolution of metallo-beta-lactamase-producing Pseudomonas aeruginosa in a nosocomial setting of high-level endemicity. J Clin Microbiol 2006; 44: 2348-2353 [PMID: 16825348 DOI: 10.1128/JCM.00528-06]

41 Libisich B, Mrazovcik M, Gacs M, Minárovits J, Ternák G, Kenéz E, Kustos I, Rókus I, Righi M, Széles K, Balogh B. Molecular epidemiology of VIM-4 metallo-beta-lactamase-producing Pseudomonas sp. isolates in Hungary. Antimicrob Agents Chemother 2006; 50: 4220-4223 [PMID: 17000739 DOI: 10.1128/AAC.00300-06]

42 Tato M, Coque TM, Ruiz-Garbajosa P, Pintado V, Cobo J, Sader HS, Jones RN, Baquero F, Cantón R. Complex clonal and plasmid epidemiology in the first outbreak of Enterobacteriaceae infection involving VIM-1 metallo-beta-lactamase in Spain: toward endemicity? Clin Infect Dis 2007; 45: 1171-1178 [PMID: 17918078 DOI: 10.1086/522288]

43 Empel J, Filzczak K, Mrówka A, Hryniewicz W, Livermore DM, Gniadkowski M. Outbreak of Pseudomonas aeruginosa infections with PER-1 extended-spectrum beta-lactamase in Warsaw, Poland: further evidence for an international clonal complex. J Clin Microbiol 2007; 45: 2829-2834 [PMID: 17634312 DOI: 10.1128/JCM.00997-07]

44 Mentzelopoulos SD, Pratikaki M, Platsouka E, Kranitiati H, Zervakis D, Koutsoukou A, Nanas S, Mentzelopoulos SD. A simultaneous outbreak of Serratia marcescens producing inducible Amp C-type beta-lactamase enzyme and carbapenemase in a neonatal intensive care unit. J Hosp Infect 2004; 56: 29-36 [PMID: 15023424 DOI: 10.1016/j.diagmicrobiol.2003.09.012]

45 Tsakris A, Ikonomidou A, Poulou A, Spanakis N, Vrizas D, Diomidous M, Pournaras S, Markou F. Clusters of imipenem-resistant Acinetobacter baumannii clones producing different carbapenemases in an intensive care unit. J Clin Microbiol 2008; 46: 588-594 [PMID: 18397334 DOI: 10.1128/JCM.00314-07]

46 Lelli A, Trouvelis LS, Giannelli D, Tzepeli E, Miragia V. Outbreak of Acinetobacter baumannii with chromosomally encoded VIM-1 undetectable by imipenem-EDTA synergy tests. Antimicrob Agents Chemother 2008; 52: 1894-1896 [PMID: 18285473 DOI: 10.1128/AAC.01414-07]

47 Cagnacci S, Guadal L, Roveta S, Mannelli S, Biongianni I, Docquier JD, Dodi F, Centanoar M, Debilla E, Marchese A, Rossolini GM. Bloodstream infections caused by multidrug-resistant Klebsiella pneumoniae producing the carbapenem-hydrolysing VIM-1 metallo-beta-lactamase: first Italian outbreak. J Antimicrob Agents Chemother 2008; 52: 1924-1929 [PMID: 18397334 DOI: 10.1128/AAC.00997-07].
WJCC | https://www.wjgnet.com 3547

November 6, 2019 | Volume 7 | Issue 21

Iovone MR et al. ICU’s outbreak of S. marcescens

Chemother 2008; 61: 296-300 [PMID: 18065411 DOI: 10.1093/jac/dkm471] 48 Psychogios MJ, Tissios PT, Avlamis A, Stefanou I, Kosmidis C, Platsouka E, Panira O, Xanthaki A, Toutouza M, Daikos GL, Tsouvelakis LS. Ongoing epidemic of blaVIM-1-positive Klebsiella pneumoniae in Athens, Greece: a prospective survey. J Antimicrob Chemother 2008; 61: 59-63 [PMID: 17999975 DOI: 10.1093/jac/dkm443]

Ttokatlidou D, Tsitividou M, Pournaras S, Ikonomidou A, Tsakris A, Sofianou D. Outbreak caused by a multidrug-resistant Klebsiella pneumoniae clone carrying blaVIM-12 in a university hospital. J Clin Microbiol 2008; 46: 1005-1008 [PMID: 18199706 DOI: 10.1128/JCM.01573-07]

Corvec S, Poirel L, Espaze E, Giraudieu C, Drugen G, Nordmann P. Long-term evolution of a nosocomial outbreak of Pseudomonas aeruginosa producing VIM-2 metallo-enzyme. J Hosp Infect 2008; 68: 73-82 [PMID: 18079018 DOI: 10.1016/j.jhin.2007.10.016]

Woodford N, Zhang J, Kaufmann ME, Yarde S, Tomas M, Falis C, Wardhan MS, Dawson S, Cotterill SL, Livermore DM. Detection of Pseudomonas aeruginosa isolates producing VEB-type extended-spectrum beta-lactamases in the United Kingdom. J Antimicrob Chemother 2008; 62: 1265-1268 [PMID: 18819973 DOI: 10.1093/jac/dkn400]

Giakoupi P, Maletzou H, Polemis M, Pappa O, Saroglou G, VATopoulo A; Greek System for the Surveillance of Antimicrobial Resistance. KPC-2-producing Klebsiella pneumoniae infections in Greek hospitals are mainly due to a hyperendemic clone. Euro Surveill 2009; 14: 19218 [PMID: 19480890]

Siarkou VI, Vitti D, Protonotarios E, Ikonomidou A, Sofianou D. Molecular epidemiology of outbreak-related pseudomonas aeruginosa strains carrying the novel variant blaVIM-17 metallo-beta-lactamase gene. Antimicrob Agents Chemother 2009; 53: 1325-1330 [PMID: 19164147 DOI: 10.1128/AAC.01230-09]

Kalah C, Mozgi M, Comert F, Aktas E, Celebi G, Ozturk N, Rijnsburger MC, Savelkoul PH. Characterisation of carbapenem-resistant Acinetobacter baumannii outbreak strains producing OXA-58 in Turkey. Int J Antimicrob Agents 2010; 36: 114-118 [PMID: 20510587 DOI: 10.1016/j.ijantimicag.2010.03.017]

Oteo J, Hernández-Almaraz JL, Gil-Antón J, Vindel A, Fernández S, Bautista V, Campos J. Outbreak of vim-1-carbapenemase-producing Enterobacter cloaeae in a pediatric intensive care unit. Pediatr Infect Dis J 2010; 29: 1144-1146 [PMID: 20668438 DOI: 10.1097/INF.0b013e3181ee2a2d]

Kassis-Chikhane N, Saliba F, Carbone A, Neville S, Decre D, Sengelin C, Guerin C, Gastiardu N, Lavigne-Kriaa A, Bouteiller A, Arlet G, Samuel D, Castaing D, Dussaux E, Jarlier V. Extended measures for preventing an outbreak of VIM-1 producing imipenem-resistant Klebsiella pneumoniae in a liver transplant centre in France. 2004: Euro Surveill 2005; 10: E041111.1.

Zieoga A, Mirigou V, Tzelipe E, Douzinias E, Tsakris M, Legakis NJ, Daikos GL, Tsouvelakis LS. The ongoing challenge of acquired carbapenemases: a hospital outbreak of Klebsiella pneumoniae simultaneously producing VIM-1 and KPC-2. Int J Antimicrob Agents 2010; 36: 190-191 [PMID: 20755588 DOI: 10.1016/j.ijantimicag.2010.04.002]

ELias J, Schoen C, Heinze G, Valenzia G, Gerharz E, Gerharz H, Vogel U. Nosocomial outbreak of VIM-2 metallo-beta-lactamase-producing Pseudomonas aeruginosa associated with retrograde urogynec. Clin Microbiol Infect 2010; 16: 1494-1500 [PMID: 20041895 DOI: 10.1111/j.1469-0691.2009.03146.x]

Miki K, Takegawa H, Etoki M, Hayashi M, Haruta T, Yamane K, Arakawa Y. First outbreak report of VIM-1 metallo-beta-lactamase-producing Pseudomonas aeruginosa in Japan. Kansenshogaku Zasshi 2010; 84: 721-726 [PMID: 2126234]

Koratzanis E, Souli M, Galani I, Chryssouli Z, Armaganelly H. Epidemiology and molecular characterisation of metallo-beta-lactamase-producing Enterobacteriaceae in a university hospital Intensive Care Unit in Greece. Int J Antimicrob Agents 2011; 38: 390-397 [PMID: 21873034 DOI: 10.1016/j.ijantimicag.2011.06.014]

Chousani C, Marrakhi R, Ferchichi L, El Sabbiy A, Walsh TR. VIM and IMP metallo-beta-lactamases and other extended-spectrum beta-lactamases in Escherichia coli and Klebsiella pneumoniae from environmental samples in a Tunisian hospital. APMS 2011; 119: 725-732 [PMID: 21917010 DOI: 10.1111/j.1600-0463.2011.02793.x]

Steinemann M, Kaase M, Gutekann M, Popp W, Steimmann E, Damman M, Paul A, Saner F, Buer J, Rath P. Outbreak due to a Klebsiella pneumoniae strain harbouring KPC-2 and VIM-1 in a German university hospital, July 2010 to January 2011. Euro Surveill 2011; 16: 19944 [PMID: 21871227]

Hamman M, Boutiba-Ben Boubaker I, Ghiozi R, Saidani M, Amine S, Ben Redjeb S. Nosocomial outbreak of imipenem-resistant Pseudomonas aeruginosa producing VIM-2 metallo-beta-lactamase in a kidney transplantation unit. Diagn Pathol 2011; 6: 106 [PMID: 22035284 DOI: 10.1186/1746-1566-10-106]

Jimeno A, Alcalde MM, Blázquez A. [Epidemic outbreak of Pseudomonas aeruginosa carbapenem-resistant producing metallo-beta-lactamase]. Rev Clin Exp 2011; 211: 187-191 [PMID: 21429485 DOI: 10.1016/j.cec.2010.12.006]

Tsutsui S, Suzuki S, Yamane K, Matsui M, Konda T, Marui F, Takahashi K, Arakawa Y. Genotypes and infection sites in an outbreak of multidrug-resistant Pseudomonas aeruginosa. J Hosp Infect 2011; 78: 317-322 [PMID: 21689862 DOI: 10.1016/j.jhin.2011.04.013]

Van der Bijj AK, Van Mansfeld R, Peirano G, Goeessens WH, Severin JA, Pitou JJL, Willems R, Van Westremen M. First outbreak of VIM-2 metallo-beta-lactamase-producing Pseudomonas aeruginosa in the Netherlands: microbiology, epidemiology and clinical outcomes. Int J Antimicrob Agents 2011; 37: 513-518 [PMID: 21497065 DOI: 10.1016/j.ijantimicag.2011.02.010]

Chaulagai BP, Jang SJ, Ahn GY, Ryu SY, Kim DM, Park G, Kim WY, Shin JH, Kook JK, Kang SG, Moon DS, Park YJ. Molecular epidemiology of an outbreak of imipenem-resistant Acinetobacter baumannii carrying the ISAba1-bla(oxa-51-like) gene in a Korean hospital. Jpn J Infect Dis 2012; 65: 152-166 [PMID: 22446125]

Sánchez-Romero I, Asensio A, Oteo J, Muñoz-Algarra M, Isidoro B, Vindel A, Alvarez-Avello J, Balandín-Moreno B, Cuevas O, Fernández-Romero S, Azahedo L, Sáez D, Campos J. Nosocomial outbreak of VIM-1-producing Klebsiella pneumoniae isolates of multilocus sequence type 15: molecular basis, clinical risk factors, and outcome. Antimicrob Agents Chemoter 2012; 56: 420-427 [PMID: 22005997 DOI: 10.1128/AAC.05036-11]

Breathnach AS, Cabbon MD, Karunaharan RN, Pope CF, Planché TD. Multidrug-resistant Pseudomonas aeruginosa outbreaks in two hospitals: association with contaminated hospital waste-water systems. J Hosp Infect 2012; 82: 19-24 [PMID: 22641682 DOI: 10.1016/j.jhin.2012.06.007]

Jacobson RK, Minenza N, Nicol M, Harnford C. VIM-2 metallo-beta-lactamase-producing Pseudomonas
Iovene MR et al. ICU’s outbreak of *S. marcescens*...
