An ALE meta-analytic comparison of verbal working memory tasks

Timothy J. Wanger
University of Georgia

Keywords: fMRI, meta-analysis, 2-back, 3-back, PASAT
ABSTRACT

Background: The n-back and Paced Auditory Serial Addition Test (PASAT) are commonly used verbal working memory tasks that have partially overlapping uses in clinical and experimental psychology. We performed three activation likelihood estimation (ALE) meta-analyses, comparing two load levels of the n-back task (2-back, 3-back) to the PASAT and to each other. These analyses shed light on the recruitment of verbal working memory regions, as well as overall involvement of cognitive and emotional brain regions in these tasks.

Methods: ALE meta-analysis was performed on published studies that 1) used healthy adults, 2) had >5 subjects, 3) used whole-brain fMRI neuroimaging and 4) reported coordinates for the 2-back, 3-back, or PASAT.

Results and Implications: The results from analyses of 68 verbal working memory studies revealed higher overall likelihood of activation the frontal eye fields in the 3-back. The PASAT exhibited higher overall activation in the bilateral supplementary motor areas (SMA), left supramarginal gyrus, and left superior parietal lobule. Furthermore, the 3-back exhibited higher activation in the right SMA, and anterior mid-cingulate cortex versus the 2-back, and the PASAT exhibited higher activation in a cluster near the right premotor area versus the 2-back. A laterality effect was observed in the dorsolateral prefrontal cortex between the PASAT (left) and 3-back(right). These data suggest greater activation of regions traditionally associated with the phonological loop during the PASAT, compared to the 2- and 3-back tasks. Furthermore, individual ALE analyses suggest involvement of emotional processing and salience network regions (insula, cingulate) in addition to the well-established verbal working memory regions.
An ALE meta-analytic comparison of verbal working memory tasks (Broca's region, bilateral SMA, premotor, posterior parietal cortices) in all 3 tasks. Lateralized activation in dorsolateral prefrontal cortex contributes to a growing literature of hemispheric effects in this particular region.

Limitations: The methodological shortfalls of ALE meta-analyses lead to an unavoidable degree of spatial uncertainty for the results. Power could be improved in future iterations with the proliferation of more studies using these tasks. However, these findings are in close agreement with prior work (Owen 2005), inspiring a reasonable degree of confidence.

Conclusions: These meta-analyses provide the first glimpse into the regions activated by the PASAT, which has not been meta-analytically reviewed prior to this study. Further, these data illustrate the sensitivity of ALE meta-analysis to identify differences in activation across verbal working memory studies that may be associated with specific cognitive and emotional aspects of these tasks. Further parametric work examining these tasks is necessary to determine more precisely the causes of the activation patterns revealed here.
1. Introduction

Verbal working memory (VWM) is broadly defined as the set of cognitive processes responsible for manipulating and storing recently perceived phonological or acoustic information in short term memory. This information can be used immediately to inform an appropriate action or be transferred to long term memory (Baddeley 2003). In the most prominent model of working memory, VWM is characterized as a “phonological loop”, a brain system subordinate to a central executive network (Baddeley 1974). The phonological loop is composed of two functional systems, a phonological store and articulatory rehearsal network. These components are thought to form a metaphorical 'blackboard of the mind,' which couples auditory perception with cognitive processing and action (Baddeley 2003, Buchsbaum 2008). Many tasks have been designed to test features and limitations of verbal working memory in different ways, and the emergence of neuroimaging techniques has quickly identified the basic neural correlates of VWM. However, more parametric work is needed to understand the intricate differences between VWM tasks.

Two prominent tasks used to study VWM are the n-back and Paced Auditory Serial Addition Test (PASAT). These tasks have been used to assess VWM function in clinical and healthy populations. Each task requires that participants hold multiple phonological chunks of information in working memory, manipulate the information, and relay an answer to the experimenter (Gronwall 1974, Tombaugh 2006). The tasks differ in four key respects: 1) The n-back uses a sequence of letters, while the PASAT uses a sequence of numbers. 2) The n-back presents information visually, while the PASAT predominantly presents information auditorily. 3)
The manipulation is different between the two tasks. In the n-back, participants must remember if the current letter is the same as the letter 'n'-times back. In contrast, participants must add the two most recent numbers during the PASAT. 4) Participants respond via keypress for the n-back and respond auditorily for the PASAT. Moreover, the n-back is designed to have different levels of difficulty (i.e. 2-back, 3-back), where the PASAT is not. These task differences span multiple dimensions and as a result may engage cognitive, motor, and affective brain regions in varying degrees.

Both tasks have been used to identify association to VWM deficiencies in specific brain disorders. The PASAT is commonly used as a neuropsychiatric assessment tool, where poor performance is an indicator of Multiple Sclerosis (MS; Gontkovsky 2006, Rosti 2007) and the duration of persistence is related to functional brain connectivity, abstinence, and cessation in substance users (Brown 2002, Daughters 2005, Daughters 2017). Similarly, poor n-back performance is seen in MS patients and traumatic brain injury (TBI; Parmenter 2006, Perlstein 2004, McAllister 2001), and is linked to altered brain activation in MS patients and smokers (Sweet 2004, Sweet 2006, Sweet 2010). These tasks are thought to measure the psychological construct of processing speed (Parmenter 2006, Redick 2013), which may be worse due to axonal injury in MS and TBI (Rao 1986, Rao 2000).

However, participants report that the PASAT is more stressful than the n-back (Parmenter 2006), and it has been used to induce negative affective states (Deary 1994, Holdwick 1999). In smokers, rather than a brain processing speed deficiency, poor performance is thought to be related to cognitive and emotional ability to tolerate distress (Leyro 2010,
In fact, a strongly supported theory of nicotine dependence suggests that the inability to tolerate the cognitive and emotional distress associated with withdrawal is a key factor in relapses (Brown 2005). While the 2-back is also reportedly stressful, it is not as stressful as the PASAT (Parmenter 2006) and does not induce negative affect as measured by the Positive and Negative Affect Schedule (PANAS; Watson 1988, Scott 2015). This affective response has the potential to confound the results of the verbal working memory task - being distressed has been shown to reduce behavioral performance on working memory tasks (Schoofs 2008). Thus, it is important from an experimental validity standpoint to examine the cognitive and affective influences present in these tasks.

Previous meta-analyses have reported significant effects of task design, cognitive load, and stimulus modality on brain activity between the n-back and other working memory tasks (Owen 2005, Rottschy 2012), but no existing meta-analyses have examined the PASAT. It is unclear which emotion-related brain regions might be active during the PASAT, or how the PASAT compares to the n-back in terms of cognitive load. The functional correlates of working memory have been studied during various cognitive load levels of the n-back (1-back, 2-back, 3-back). Some have reported an inverted U-shaped curve of activity in left dorsolateral prefrontal cortex with increasing load (DLPFC; Callicott 1999), while others have reported a linear increase in bilateral DLPFC activity with load (Pochon 2002, Yun 2010). While the parameters of the PASAT are most similar to a 2-back, it is unclear whether brain activity during the PASAT would be more similar to the 2-back, or 3-back. Importantly, performance on the n-back gets progressively worse with increases in difficulty (Callicott 1999, Jaeggi 2010). Several theories
regarding performance have suggested that error processing and conflict monitoring activate part of the anterior cingulate, a core region of the emotional processing and salience networks (Botvinick 2001, Holroyd 2002, Etkin 2011).

Another previously mentioned cognitive component of the PASAT that is absent in the n-back is mathematical manipulation, which engages both cognitive and affective resources. Many studies have used mental arithmetic tasks such as the “Montreal imaging stress task” and “Trier social stress task” as a means of inducing stress. Arithmetic tasks have been linked to functional activation in the angular gyrus (Dedovic 2005, Pruessner 2008), in addition to the broad fronto-parietal working memory network. This is the case in studies using the PASAT, which find robust activation of the angular gyrus (Audoin 2005, Lockwood 2004), but not meta-analytic studies of the n-back (Owen 2005, Rottschy 2012). The precise nature of how mathematical manipulations activate affective regions is not well understood.

Several emotion-related regions have been linked to working memory tasks, but more research is needed to fully understand neural mechanisms involved. For instance, a majority of the studies using the PASAT identify activation in the anterior cingulate, but there is uncertainty as to whether this is reflective of task difficulty, cognitive conflict, inhibition of a prepotent response, or other function (Audoin 2005, Mainero 2004, Smith & Jonides 1997). The anterior insula, which is known to be recruited during emotional perception and while performing emotionally demanding cognitive tasks (Bush 2000), is reliably activated during the n-back. However, the activation of this region is inconsistent for the PASAT (Rottschy 2012, Owen 2005, Audoin 2005, Cardinal 2008, Archbold 2009). Additionally, the amygdala is active during
emotional processing (LeDoux 2003) and is thought to be a target for emotional regulation during cognitive tasks (Goldin 2008, Davidson 2000). Specifically, the amygdala has reciprocal projections with a network of frontal regions including the dorsomedial prefrontal cortex, ventromedial prefrontal cortex, cingulate, and orbitofrontal cortex (Banks 2007). The amygdala shows a reduction in activity during high-load instances of the n-back (Pochon 2002, Yun 2010), but there are few reports of amygdala activation during the PASAT. It is possible that amygdala activity is attenuated as a result of prefrontal regulation (Banks 2007), but perhaps this regulation is not as successful as during the n-back, since the PASAT reportedly induces a negative mood. In order to compare the relative cognitive and affective regional activation between the n-back and PASAT, we performed Activation Likelihood Estimation (ALE) meta-analyses. In order to test the effect of increasing cognitive load, we contrasted two versions of the n-back (the 2-back and 3-back) with the PASAT and with each other.

Prior functional neuroimaging studies have generated a strong foundational understanding of VWM and its components, which provided us with basic expectations for what we would see in individual task ALEs. For instance, the phonological store is putatively localized in the posterior parietal cortex (Paulesu 1993, Awh 1996, Smith 1998, Buchsbaum 2008). Several Brodmann’s areas (BA) in this region have been linked to distinct VWM functions. The superior parietal lobule (BA 7; Becker 1999, Awh 1996) is thought to be involved in visual attention for tasks that have rapidly changing visual elements, while the supramarginal gyrus is more closely related to phonological processing (BA 40; Paulesu 1993). VWM tasks also activate a network of frontal regions that includes the supplementary motor area (SMA), Broca’s regions,
An ALE meta-analytic comparison of verbal working memory tasks

prefrontal, premotor, cingulate, as well as the cerebellum (Cohen 1997, Callicott 1999, Sweet 2004, Sweet 2006). The cerebellar, premotor, SMA, and Broca's regions are thought to mediate auditory rehearsal and speech (Awh 1996, Smith & Jonides 1997), forming the aforementioned articulatory rehearsal network. Additionally, regions of the prefrontal cortex are well known for their involvement in executive functions, such as attention and manipulation of information (Baddeley 2003, D'esposito 1995). Together, these regions form a core network for the n-back identified by a prior meta-analyses (Owen 2005).

Our a-priori hypotheses were that we would see common activation in core verbal working memory regions for each of the three tasks. This includes the supplementary motor area, Broca's regions, bilateral prefrontal, bilateral premotor, bilateral cingulate, and bilateral parietal cortices. For the PASAT, we predicted task-specific regional activation in the angular gyrus, amygdala, and anterior cingulate cortex. When comparing the 3-back to the 2-back, we hypothesized that there would be elevated activation in some regions of the fronto-parietal working memory network. From prior literature, we expected to see elevated dorsolateral prefrontal cortex activation and decreased amygdala activation due to higher cognitive load (Smith & Jonides 1997, Calicott 1999, Yun 2010). When comparing the PASAT to the 2- and 3-back, we expected to see greater angular gyrus activation (Audoin 2005, Lockwood 2004). Furthermore, we hypothesized that there may be greater activation of emotion-related regions in the PASAT > 2-back contrast, relative to the PASAT > 3-back contrast, due to the elevated difficulty and related stress of the performing the 3-back.

2. Methods
An ALE meta-analytic comparison of verbal working memory tasks

2.1. Protocol

The guidelines outlined by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement (Moher 2009) were followed for this meta-analytic review. A PRISMA summary of article identification and screening for this study can be found in Supplementary Figure A. Analysis of coordinate data was performed using GingerALE v2.3.6, using the instructions available in the program’s manual, which is readily available at the program’s website (http://brainmap.org).

2.2. Search Strategy

Articles were identified in November 2017 by entering the following search strings into PubMed’s database search engine:

“((((((n-back[All Fields] OR 2-back[All Fields]) OR 3-back[All Fields]) OR 4-back[All Fields]) AND (“magnetic resonance imaging”[MeSH Terms] OR (“magnetic”[All Fields] AND “resonance”[All Fields] AND ”imaging”[All Fields]) OR ”magnetic resonance imaging”[All Fields] OR ”fmri”[All Fields] OR ”neuroimaging”[All Fields] OR ”activation”[All Fields]) AND (Journal Article[ptyp] AND ”humans”[MeSH Terms] AND English[lang] AND ”adult”[MeSH Terms]))))

“((((((PASAT[All Fields] OR mPASAT[All Fields] OR mPVSAT[All Fields] OR ”PVSAT”[All Fields] OR ”paced auditory serial addition task”[All Fields] OR ”paced visual serial addition task”[All Fields]) OR ”paced auditory serial addition test”[All Fields] OR ”paced visual serial addition test”[All Fields] AND (“magnetic resonance imaging”[MeSH Terms] OR (“magnetic”[All Fields] AND ”resonance”[All Fields] AND ”imaging”[All Fields]) OR ”magnetic resonance imaging”[All Fields] OR ”fmri”[All Fields] OR ”neuroimaging”[All Fields] OR ”activation”[All Fields] OR ”magnetic resonance imaging”[All Fields] OR ”fmri”[All Fields] OR ”neuroimaging”[All Fields] OR ”activation”[All Fields] OR ”magnetic resonance imaging”[All Fields] OR ”fmri”[All Fields] OR ”neuroimaging”[All Fields] OR ”activation”[All Fields])) OR ”paced auditory serial addition task”[All Fields] OR ”paced visual serial addition task”[All Fields]) OR ”paced auditory serial addition test”[All Fields] OR ”paced visual serial addition test”[All Fields] AND (“magnetic resonance imaging”[MeSH Terms] OR (“magnetic”[All Fields] AND ”resonance”[All Fields] AND ”imaging”[All Fields]) OR ”magnetic resonance imaging”[All Fields] OR ”fmri”[All Fields] OR ”neuroimaging”[All Fields] OR ”activation”[All Fields]))

“((((((n-back[All Fields] OR 2-back[All Fields]) OR 3-back[All Fields]) OR 4-back[All Fields]) AND (“magnetic resonance imaging”[MeSH Terms] OR (“magnetic”[All Fields] AND “resonance”[All Fields] AND ”imaging”[All Fields]) OR ”magnetic resonance imaging”[All Fields] OR ”fmri”[All Fields] OR ”neuroimaging”[All Fields] OR ”activation”[All Fields]) AND (Journal Article[ptyp] AND ”humans”[MeSH Terms] AND English[lang] AND ”adult”[MeSH Terms]))))

“((((((PASAT[All Fields] OR mPASAT[All Fields] OR mPVSAT[All Fields] OR ”PVSAT”[All Fields] OR ”paced auditory serial addition task”[All Fields] OR ”paced visual serial addition task”[All Fields]) OR ”paced auditory serial addition test”[All Fields] OR ”paced visual serial addition test”[All Fields] AND (“magnetic resonance imaging”[MeSH Terms] OR (“magnetic”[All Fields] AND ”resonance”[All Fields] AND ”imaging”[All Fields]) OR ”magnetic resonance imaging”[All Fields] OR ”fmri”[All Fields] OR ”neuroimaging”[All Fields] OR ”activation”[All Fields])) OR ”paced auditory serial addition task”[All Fields] OR ”paced visual serial addition task”[All Fields]) OR ”paced auditory serial addition test”[All Fields] OR ”paced visual serial addition test”[All Fields] AND (“magnetic resonance imaging”[MeSH Terms] OR (“magnetic”[All Fields] AND ”resonance”[All Fields] AND ”imaging”[All Fields]) OR ”magnetic resonance imaging”[All Fields] OR ”fmri”[All Fields] OR ”neuroimaging”[All Fields] OR ”activation”[All Fields]))

“((((((n-back[All Fields] OR 2-back[All Fields]) OR 3-back[All Fields]) OR 4-back[All Fields]) AND (“magnetic resonance imaging”[MeSH Terms] OR (“magnetic”[All Fields] AND “resonance”[All Fields] AND ”imaging”[All Fields]) OR ”magnetic resonance imaging”[All Fields] OR ”fmri”[All Fields] OR ”neuroimaging”[All Fields] OR ”activation”[All Fields]) AND (Journal Article[ptyp] AND ”humans”[MeSH Terms] AND English[lang] AND ”adult”[MeSH Terms]))))
An ALE meta-analytic comparison of verbal working memory tasks

Fields]) AND (Journal Article[ptyp] AND "humans"[MeSH Terms] AND English[lang] AND "adult"[MeSH Terms]))))))

Articles were screened to determine if they met eligibility criteria (Section 2.3) and the reference sections for viable studies were reviewed to identify additional candidate studies.

2.3. Eligibility criteria

Published journal articles were included if they met the following criteria: 1) participants were healthy adults with an average age between 18 and 65. 2) there were at least 5 subjects included in the analysis. 3) the article was available in English. 4) whole-brain functional magnetic resonance imaging was used. 5) the article contains activation foci coordinates listed in Talairach or MNI space. Studies of clinical populations and of gene polymorphisms within healthy subjects were excluded. However, clinical studies using healthy adults as a control sample were included if coordinates were listed separately for the control group.

2.4. Baseline contrast exclusion criteria

Several types of control tasks are used for PASAT and n-back contrasts. The most frequently used control task for the n-back is the 0-back, where participants are asked to assess whether the presented letter is a pre-specified letter (e.g. Is it an ‘X’), indicating yes or no via keypress. For the PASAT, participants are most commonly asked to repeat the letter that is presented to them. Studies using the 2-back were excluded if their control tasks were drastically different from the norm, or if the tasks were being performed under additional external demands or conditions. These exclusion criteria were relaxed for the 3-back and PASAT studies, due to the relative scarcity of studies available for these tasks. While this is not optimal, some
heterogeneity is expected in task design to begin with, and this choice was motivated by recent work recommending at least 17 studies for enough power to detect small effects (Eickhoff 2016). The 3-back meta-analysis includes two studies using the 1-back as a contrast, which were included for these reasons. While this control task is more demanding than the 0-back, it is considered to be very easy. Performance on the 1-back is nearly as high as the 0-back (~99%), and substantially higher than the 2- or 3-back (Callicott 1999, Jaeggi 2010).

2.5. ALE meta-analysis process

Activation likelihood estimation (ALE; Turkeltaub 2002) is a meta-analytic technique that is used to combine and compare results from many studies. This method generates an approximate representation of the results of prior work by utilizing reported coordinates of activation, modeling each foci as spherical Gaussian probability density functions with a full-width half-maximum = 10mm. When foci from a single study are combined, these data form a map where the score for each voxel represents its relative likelihood of activation. Combining the ALE maps from many studies that use the same task generates a map revealing which regions are most consistently activated across the set of studies. This technique can be applied to aggregate data for different tasks or experimental variables, allowing the meta-analytic comparison of factors that were not the primary focus of the prior studies (Swick 2011, Redick 2013). For instance, a meta-analysis of 24 working memory studies using variants of the n-back found differential brain activation when subjects monitor the stimuli's location versus its identity, and when the stimuli itself is verbal or non-verbal (Owen 2005).
In order to determine statistical significance for ALE maps, permutation testing is used (Laird 2005). This generates a null distribution of scores for each voxel, which the experimentally generated ALE score is compared against. To address the problem of multiple comparisons, a cluster-based permutation method is used (Eickhoff 2012). For individual task ALEs, a relatively strict cluster-level family-wise error threshold of 0.05 was used for cluster formation. We then permuted these data 500 times, and used an uncorrected \(P < 0.001 \) for statistical inference. These specifications are thought to produce fewer spurious clusters than using a false-discovery-rate correction or uncorrected \(p \)-value (Eickhoff 2016). For contrast analyses, our data was permuted 10000 times, using a minimum cluster size of 200mm\(^3\). Maps of differential activation between tasks were thresholded by an uncorrected \(P < 0.01 \) for statistical inference.

Additionally, regions whose total cluster volume is less than or equal to 40 mm\(^3\) are not discussed in the results section. This cutoff represents 20% of the 200mm\(^3\) minimum cluster-size threshold used for statistical analysis and was chosen to exclude small portions of clusters that extend into nearby anatomically-defined regions. A full listing of regions comprising each activated cluster and extrema is provided in Supplementary Materials, as generated by the GingerALE program. Too few studies reported deactivation coordinates for each task, making meta-analyses of deactivated regions infeasible. Therefore, all meta-analyses presented herein refer to differences in activated regions.

3. Results

3.1. Article Inclusion
These meta-analyses included thirty-four 2-back studies (414 foci), seventeen 3-back studies (206 foci), and seventeen PASAT studies (321 foci). Information about each study included can be found in Table 1. All subjects included in these meta-analyses were healthy adults, between the age of 18 and 65. The total subjects included was 1,372 (2-back: $n = 885$, 3-back: $n = 266$, PASAT: $n = 221$). The ratio of men to women was larger in the 2-back (491:369) meta-analysis, but nearly equal for the 3-back (116:115) and PASAT (102:104) meta-analyses.

The average ages for each group were compared using a one-way ANOVA and found to be non-significant at the $p<.05$ level [$F(2,62) = 2.92$, $p = 0.061$]. Task performance was also compared using a one-way ANOVA, finding a difference in means [$F(2,58) = 4.15$, $p = 0.021$]. A post-hoc Tukey HSD test revealed that the 3-back had worse performance than the 2-back ($p = 0.018$). Removing the handful of PASAT studies that used simplified designs (which led to 95-100% performance rate) did not change the results of these statistical tests. Study demographics and performance is reported in Supplementary Table 1.

3.2. Task-specific ALEs

ALE meta-analysis of the 2-back revealed increased likelihood of activation in bilateral superior frontal gyri, frontal poles, medial frontal gyri, middle frontal gyri, precentral gyri, inferior frontal gyri (including Broca's area), mid-cingulate cortex, claustrum, insulae, inferior parietal lobules, superior parietal lobules, supramarginal gyri, angular gyri, and precunei.

The 3-back had increased likelihood of activation in the bilateral superior frontal gyri, frontal poles, medial frontal gyri, middle frontal gyri, mid-cingulate cortex, inferior parietal lobules, and superior parietal lobules. Lateralized activation was found in the right inferior
frontal gyrus, right claustrum, right insula, left angular gyrus, and left precuneus.

The PASAT had increased likelihood of activation in the bilateral superior frontal gyri, medial frontal gyri, precentral gyri, inferior frontal gyri (including Broca’s area), superior parietal lobules, and precunei. Lateralized activation was found in the left middle frontal gyrus, right mid-cingulate gyrus, left inferior parietal lobule, left angular gyrus, and left supramarginal gyrus.

ALE activation maps for these tasks are presented in Figure 1. Clusters identified by contrast analyses are described below, from the largest cluster to the smallest cluster within each section. Brodmann areas, cortical anatomy as defined by GingerALE’s output, and relevant nomenclature are identified for each cluster. Cluster volume, center of mass coordinates, and regional information is summarized in Table 1 and depicted in Figure 2.

3.3. 2back > 3back, 2back > PASAT

No significant clusters of activation were identified for the 2-back > 3-back contrast, or 2-back > PASAT contrast.

3.4. 3-back > 2-back

The 3-back exhibited increased activation relative to the 2-back in one cluster that includes the right medial frontal gyrus (BA6), right superior frontal gyrus (BA8), and bilateral mid-cingulate gyrus (BA32).

3.5. 3-back > PASAT

The 3-back exhibited increased activation relative to the PASAT in two clusters, including the right middle frontal gyrus (BA9), and right superior frontal gyrus (BA8).

3.6. PASAT > 2-back
The PASAT exhibited increased activation relative to the 2-back in four clusters. The first cluster includes the bilateral medial frontal gyrus (BA6), and superior frontal gyri (BA6). The second cluster includes the right precentral gyrus (BA6) and right inferior frontal gyrus (BA9). A third cluster was found in the left inferior parietal lobule (BA40), and the fourth was found in the left superior parietal lobule (BA7).

3.7. PASAT > 3-back

The PASAT exhibited increased activation relative to the 3-back in four clusters. The first cluster includes the bilateral medial frontal gyrus (BA6) and left superior frontal gyri (BA6). The second cluster was found in the left middle frontal gyrus (BA46/BA9). The third cluster included the left inferior parietal lobule (BA40), and left supramarginal gyrus (BA40), and the fourth cluster was found in the left superior parietal lobule (BA7).

4. Discussion

4.1. Task-specific ALE maps

The ALE meta-analyses for the 2-back, 3-back, and PASAT demonstrate a greater likelihood of activation in brain regions commonly associated with working memory tasks as we hypothesized (Figure 1). The activation of bilateral SMA, premotor, frontal, and parietal cortices during the 2-back closely resemble a prior meta-analytic study of working memory (Owen 2005). These findings illustrate the replicability of past ALE meta-analyses using current specifications. Despite significant differences in ALE protocol, study inclusion/exclusion criteria, and having only one study common between the analyses, the similarity of these findings indicate consistent activation of the VWM network. The broad pattern of activation appears to...
be similar for the three tasks, with only a handful of clusters proving to be significantly different between them.

An additional noteworthy finding from each individual ALE is the degree of involvement of emotion-related regions, such as the insula and cingulate cortex. The high likelihood of activation of these regions in each task indicates that perhaps emotional salience is not entirely separated from the cognitive processes during working memory tasks. Our hypothesis regarding reduced amygdala activation was unable to be tested, since we were unable to perform analyses on deactivated regions. Furthermore, our hypotheses about the PASAT exhibiting elevated activity in the angular gyrus was not supported, since all three tasks displayed activity in the angular gyrus.

4.2. 3-back > 2-back contrast

The 3-back had a higher likelihood of activating the right supplementary motor area, right frontal eye field, and bilateral mid-cingulate cortex. The supplementary motor area is functionally heterogeneous, being active in motor, sensory and working memory tasks (Chung 2005). These regions are thought to maintain visuospatial attention during working memory tasks (Owen 2005). Specifically, the frontal eye fields and supplementary motor area work in tandem to hold information 'on-line' and prepare for a motor response (D'Esposito 1998). We interpret this finding as reflective of the greater attention to, and maintenance of information required by the 3-back. This is consistent with previous work showing that the supplementary motor area has increasing activation as a result of load (Smith & Jonides 1997).
Many studies have sought to understand the function of sub-regions of the cingulate cortex (Vogt 2003, Vogt 2004, Etkin 2006, Etkin 2011). The anterior mid-cingulate cortex (aMCC) – often called the rostral cingulate cortex or rostral cingulate zone, has been linked to internally selected actions (Mueller 2007), and the cognitive control responsible for monitoring of response conflict (Barch 2001). Activity in this region is seen during three forms of response conflict: when participants commit errors, when they actively inhibit a prepotent response, and when they choose among a set of equally permissible responses (Botnivick 2001). The set of studies used here had worse behavioral performance on the 3-back, which is potentially responsible for the effect in the aMCC according to the response conflict model.

Early models of the aMCC propose a dichotomy where the dorsal/caudal cingulate is involved in cognitive functions, and the ventral/rostral cingulate is involved in affective processing (Stevens 2011). However, others have suggested that anterior and subgenual cingulate involved in the perception and production of emotion, and experiences of intense negative affect. One model proposes that the anterior and medial cingulate are involved in the appraisal and expression of negative emotion, while the ventral prefrontal regions are involved in regulation of negative affect (Etkins 2011). In our view, this model is not supported by these data, since the PASAT is thought to induce greater negative affect and did not appear to have significantly higher cingulate activity than either the 2-back or 3-back.

4.3. 3-back > PASAT contrast

Similar to the 3-back > 2-back contrast (Section 4.2), the 3-back has a higher likelihood of activation in the right frontal eye fields (FEF) when compared to the PASAT. This suggests a
greater involvement of visual attention during the 3-back. These results are unlikely to be the result of a simple difference in the mode of stimulus presentation. Visual presentation of VWM stimuli was uniform for all 2-back and 3-back studies included here, while the PASAT sample contained both auditory and visual presentation. If the mode of presentation was driving this effect, we would expect to see greater ALE scores for the 2-back’s FEF, compared to the PASAT (which we did not). Prior work investigating stimulus modality effects did not find divergent activation in the FEF. The authors did find an effect in the left posterior parietal cortex during visual VWM presentation and left DLPFC during auditory VWM presentation (Crottaz-Herbette 2003).

The DLPFC is consistently activated by verbal working memory tasks (Curtis 2003, Sweet 2006). Anterior portions of the DLPFC, located on the middle frontal gyrus, are thought to play a more abstract role in planning, monitoring, and manipulation of working memory information while posterior DLPFC is thought to rapidly adapt to incoming stimuli (Hampshire 2009). For the cluster we identified here, activation in the right anterior DLPFC indicates higher level executive functions are required for the 3-back, compared to the PASAT. With respect to lateralization of activity to the right hemisphere, proponents of the HERA model (Nyberg 1996, Habib 2003) would suggest that this corresponds to episodic memory retrieval, while left lateralized activity occurs during semantic retrieval and episodic memory encoding (discussed in Section 4.5). The cluster identified here may be indicative of a cognitive strategy for the 3-back that utilizes visual episodic memory encoding and retrieval. Importantly, lateralized anterior DLPFC activation was
not seen in comparisons to the 2-back, thus this effect is not presumed to be an effect of working memory load.

4.4. PASAT > 2-back contrast

The next two contrast analyses indicate that core regions of verbal working memory are more consistently activated during the PASAT when compared to the 2/3-back tasks. Three clusters representing the bilateral SMA, left superior lobule, and left supramarginal gyrus were found in the comparison of the PASAT vs the 2/3-back, and discussion of these clusters applies to both contrasts. Differences were found in the likelihood of activation of prefrontal and inferior frontal regions, which will be discussed independently.

The higher likelihood of activation in bilateral SMA in the PASAT seems to conflict with the results from Section 4.2, where elevated SMA activity was seen in the 3-back versus 2-back. However, close examination of these clusters indicates that the cluster referred to here is more posterior than the cluster from Section 4.2. Prior work has suggested that rostral SMA is more involved in word generation and working memory tasks, while the caudal aspect is more related to motor and sensory tasks (Chun 2005). Our results appear to conflict with these findings, and more research into this effect is warranted.

Higher likelihood of activation in left parietal regions supports the view that the PASAT engages verbal working memory networks to a greater degree than the n-back. The left superior parietal lobule is known to be active during encoding and rehearsal during verbal working memory (Veltman 2002, Paulesu 1993, Awh 1996, Smith 1998, Buchsbaum 2008). The left inferior parietal lobule is composed of the supramarginal gyrus (BA40) and the angular gyrus
An ALE meta-analytic comparison of verbal working memory tasks

(BA39), which are important regions for phonological processing, and mapping sounds onto meaning (Seghier 2013, Burton 2005). The cluster seen here is fully located within the left supramarginal gyrus (BA40), which is thought to be a subsystem for the storage of phonological working memory (Becker 1999, Baldo 2006). Our a-priori hypothesis predicted a higher likelihood of activation in the angular gyrus for the PASAT, which is commonly associated with mental arithmetic and calculation tasks (Zago 2002). However, these results indicate that the verbal working memory storage demands are particularly stronger in the PASAT, compared to the 2- and 3-back.

Lastly, the posterior region of the DLPFC, located in the right inferior frontal gyrus (BA9) is thought to be part of a ventral circuit active in attentional orienting, which responds to items that are relevant for immediate behavior (Corbetta & Schulman 2002, Hampshire 2009). This cluster includes both the right inferior frontal gyrus, as well as the somatotopically mapped right premotor cortex (precentral gyrus), which is active during speech production (Pulvermüller 2006). The inferior frontal gyrus is thought to be involved in phonological processing, as part of the articulatory rehearsal network (Burton 2001). While these findings do not highlight Broca's area as being more active during the PASAT, we interpret them as indicating a more active maintenance of phonological representations, which is consistent with the extant literature (Paulesu 1993).

4.5. PASAT > 3-back contrast
To reiterate, the higher likelihood of activation in the bilateral SMA, left superior parietal lobule, and left supramarginal gyrus suggest that the PASAT is more consistently activating core verbal working memory regions compared to the n-back task.

However, this meta-analysis identified lateralized activation in the left anterior DLPFC. This may be indicative of a different cognitive strategy for performing the PASAT, than the 3-back (see Section 4.3.). Lateralized activation in left DLPFC is thought to be related to semantic memory retrieval, or episodic memory encoding according to the HERA model (Nyberg 1996, Habib 2003). The PASAT requires participants to respond with declarative information (the sum of two previous numbers), which may explain the higher likelihood of activation in this region. Further work is needed to conclusively determine the causes of the DLPFC asymmetry observed here.

4.6. Strengths and Limitations

An advantage this study has over prior work is the proliferation of functional imaging n-back and PASAT studies in the last decade, which allow for more focused meta-analyses. Owen (2005) examined patterns of activation in the n-back, but included both PET and fMRI data in their analyses, as well as a wide variety of n-back difficulty levels, stimuli, and control tasks for fMRI contrasts. On a similar note, Rottschy (2012) examined working memory using a heterogeneous sample of tasks, conditions, and contrasts. While these studies were aimed at broad conceptual differences among working memory paradigms in the literature, our study was more restrictive in its inclusion criteria to focus on specific tasks.
One limitation noted by Shackman (2011), is that individual differences in macroscopic anatomy, of the cingulate particularly, make it difficult to draw conclusions about the region’s functional organization. This limitation may be mitigated by modeling regional activity around a center-of-mass coordinate (i.e. ALE) but serves as a reminder that the spatial resolution in ALE analyses is limited by input data, parameters, thresholds, and other factors. The reporting of peak, rather than center-of-mass, coordinates in fMRI experiments also represents a methodological limitation of ALE. This is further compounded by the tendency to report only one peak, or a small number of peaks for extremely large clusters of activation. To some extent this limitation is inherent to ALE methodology, but could be mitigated by further developing standardized rules for reporting fMRI contrast data.

There are two additional limitations of these meta-analyses that may have impacted results. First, sample size for the 2-back was twice as great as the 3-back and PASAT. This is partially controlled for in the individual ALEs through the use of cluster-level family-wise error, however it still may have an impact on the relative power for identifying clusters. Second, there are more men included in the studies of the 2-back, with an even split for the 3-back and PASAT. Although unlikely, it is possible that this sex imbalance may have impacted the results to some extent.

4.7. Conclusions and Future Directions

These meta-analyses include the first ever ALE meta-analyses of PASAT, indicating that it may engage core verbal working memory networks to a greater degree than the n-back, while the 3-back appears to engage more spatial attention. Individual ALE analyses suggest
An ALE meta-analytic comparison of verbal working memory tasks

involvement of emotional processing and salience network regions (insula, cingulate) in addition to the well-established verbal working memory regions (Broca's region, bilateral SMA, premotor, posterior parietal cortices) in all 3 tasks. Further, these data illustrate the sensitivity of ALE meta-analysis to discern differences in activation across verbal working memory studies that may be associated with specific cognitive and emotional aspects of these tasks. Further work could identify the extent to which emotion-related regions are activated during these tasks and what factors influence this activity. Further parametric work examining these tasks is necessary to determine more precisely the causes of the activation patterns revealed here.

Funding
This study received no external funding. Data were collected from web-accessible journal articles.
Abbreviations used in this manuscript:

Terminology:
VWM = Verbal Working Memory
PASAT = Paced Auditory Serial Addition Test
ALE = Activation Likelihood Estimation
MS = Multiple Sclerosis
TBI = Traumatic Brain Injury
PANAS = Positive and Negative Affect Schedule
PRISMA = Preferred Reporting Items for Systematic Reviews and Meta-Analyses

Brain Regions:
BA = Brodmann's Area
SMA = supplementary motor area
DLPFC = dorsolateral prefrontal cortex
aMCC = anterior mid-cingulate cortex
FEF = frontal eye fields
medFG = medial frontal gyrus
SFG = superior frontal gyrus
MFG = middle frontal gyrus
IFG = inferior frontal gyrus
An ALE meta-analytic comparison of verbal working memory tasks

References

Archbold, K. H., Borghesani, P. R., Mahurin, R. K., Kapur, V. K., & Landis, C. A. (2009). Neural activation patterns during working memory tasks and OSA disease severity: preliminary findings. J Clin Sleep Med, 5(1), 21-27.

Audoin B., Ibarrola D., Duong M. A., Pelletier J., Confort-Gouny S., Malikova I., ... & Ranjeva J. P (2005). Functional MRI study of PASAT in normal subjects. Magnetic Resonance Materials in Physics, Biology and Medicine, 18(2), 96-102.

Baddeley, A. D., & Hitch, G. (1974). Working memory. Psychology of learning and motivation, 8, 47-89.

Baddeley, A. (2003). Working memory: looking back and looking forward. Nature reviews neuroscience, 4(10), 829-839.

Banks, S. J., Eddy, K. T., Angstadt, M., Nathan, P. J., & Phan, K. L. (2007). Amygdala–frontal connectivity during emotion regulation. Social cognitive and affective neuroscience, 2(4), 303-312.

Brown, R. A., Lejuez, C. W., Kahler, C. W., & Strong, D. R. (2002). Distress tolerance and duration of past smoking cessation attempts. Journal of abnormal psychology, 111(1), 180.

Brown RA, Lejuez CW, Kahler CW, Strong DR, Zvolensky MJ. Distress tolerance and early smoking lapse. Clin Psychol Rev. 2005 Sep;25(6):713-33.

Bush, G., Luu, P., & Posner, M. I. (2000). Cognitive and emotional influences in anterior cingulate cortex. Trends in cognitive sciences, 4(6), 215-222.

Cardinal K. S., Wilson S. M., Giesser B. S., Drain A. E., & Sicotte N. L. (2008). A longitudinal fMRI study of the paced auditory serial addition task. Multiple Sclerosis Journal, 14(4), 465-471.

Davidson, R. J., Putnam, K. M., & Larson, C. L. (2000). Dysfunction in the neural circuitry of emotion regulation--a possible prelude to violence. science, 289(5479), 591-594.

Daughters, S. B., Lejuez, C. W., Kahler, C. W., Strong, D. R., & Brown, R. A. (2005). Psychological distress tolerance and duration of most recent abstinence attempt among residential treatment-seeking substance abusers. Psychology of Addictive Behaviors, 19, 208–211.

Daughters S. B., Ross T. J., Bell R. P., Yi J. Y., Ryan J., & Stein E. A. (2017). Distress tolerance among substance users is associated with functional connectivity between prefrontal regions during a distress tolerance task. Addiction biology, 22(5), 1378-1390.

Eickhoff , S.B., Bzdok, D., Laird, A.R., Kurth, F., Fox, P.T., 2012. Activation likelihood estimation meta-analysis revisited. NeuroImage 59, 2349 – 2361.

Eickhoff , S.B., Laird, A.R., Grefkes, C., Wang, L.E., Zilles, K., Fox, P.T., 2009. Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertainty. Human. Brain Mapp. 30, 2907 –2926.

Goldin, P. R., McRae, K., Ramel, W., & Gross, J. J. (2008). The neural bases of emotion regulation: reappraisal and suppression of negative emotion. Biological psychiatry, 63(6), 577-586.
An ALE meta-analytic comparison of verbal working memory tasks

Gronwall, D., & Wrightson, P. (1974). Delayed recovery of intellectual function after minor head injury. *The Lancet, 304*(7881), 605-609.

Jaeggi, S. M., Buschkuehl, M., Perrig, W. J., & Meier, B. (2010). The concurrent validity of the N-back task as a working memory measure. *Memory, 18*(4), 394-412.

Laird, A.R., Fox, P.M., Price, C.J., Glahn, D.C., Uecker, A.M., Lancaster, J.L., Turkeltaub, P.E., Kochunov, P., Fox, P.T., 2005. ALE meta-analysis: controlling the false discovery rate and performing statistical contrasts. Human Brain Mapp. 25, 155 – 164.

LeDoux, J. (2003). The emotional brain, fear, and the amygdala. *Cellular and molecular neurobiology, 23*(4), 727-738.

Leyro T. M., Zvolensky M. J., & Bernstein A. (2010). Distress tolerance and psychopathological symptoms and disorders: a review of the empirical literature among adults. *Psychological bulletin, 136*(4), 576.

Mainero, C., Caramia, F., Pozzilli, C., Pisani, A., Pestalozza, I., Borriello, G., ... & Pantano, P. (2004). fMRI evidence of brain reorganization during attention and memory tasks in multiple sclerosis. *Neuroimage, 21*(3), 858-867.

Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & Prisma Group. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *PLoS med, 6*(7), e1000097.

Owen, A. M., McMillian, K. M., Laird, A. R., & Bullmore, E. (2005). N-back working memory paradigm: A meta-analysis of normative functional neuroimaging studies. *Human brain mapping, 25*(1), 46-59.

Parmenter, B. A., Shucard, J. L., Benedict, R. H., & Shucard, D. W. (2006). Working memory deficits in multiple sclerosis: Comparison between the n-back task and the Paced Auditory Serial Addition Test. *Journal of the International Neuropsychological Society, 12*(05), 677-687.

Phan, K. L., Wager, T., Taylor, S. F., & Liberzon, I. (2002). Functional neuroanatomy of emotion: a meta-analysis of emotion activation studies in PET and fMRI. *Neuroimage, 16*(2), 331-348.

Rao, S. M. (1986). Neuropsychology of multiple sclerosis: a critical review. *Journal of Clinical and experimental Neuropsychology, 8*(5), 503-542.

Rao, V., & Lyketsos, C. (2000). Neuropsychiatric sequelae of traumatic brain injury. *Psychosomatics, 41*(2), 95-103.

Rottschgy, C., Langner, R., Dogan, I., Reetz, K., Laird, A. R., Schulz, J. B., ... & Eickhoff, S. B. (2012). Modelling neural correlates of working memory: a coordinate-based meta-analysis. *Neuroimage, 60*(1), 830-846.

Sweet, L. H., Rao, S. M., Primeau, M., Mayer, A. R., & Cohen, R. A. (2004). Functional magnetic resonance imaging of working memory among multiple sclerosis patients. *Journal of Neuroimaging, 14*(2), 150-157.

Tombaugh, T. N. (2006). A comprehensive review of the paced auditory serial addition test (PASAT). *Archives of clinical neuropsychology, 21*(1), 53-76.

Turkeltaub, P.E., Eden, G.F., Jones, K.M., Zeffiro, T.A., 2002. Meta-analysis of the functional neuroanatomy of single-word reading: method and validation. *Neurolmage 16*, 765–780.
An ALE meta-analytic comparison of verbal working memory tasks

Watson D., Clark L. A., & Tellegen A. 1988. Development and validation of brief measures of positive and negative affect: The PANAS scale. Journal of Personality and Social Psychology, 54: 1063-1070.

Zvolensky M. J., Bernstein A., & Vujanovic A. A. (Eds.). (2011). Distress tolerance: Theory, research, and clinical applications. Guilford Press.

Stevens, F. L., Hurley, R. A., & Taber, K. H. (2011). Anterior cingulate cortex: unique role in cognition and emotion. The Journal of neuropsychiatry and clinical neurosciences, 23(2), 121-125.

Paulesu, E., Frith, C. D., & Frackowiak, R. S. (1993). The neural correlates of the verbal component of working memory. Nature, 362(6418), 342.

Awh, E., Jonides, J., Smith, E. E., Schumacher, E. H., Koeppe, R. A., & Katz, S. (1996). Dissociation of storage and rehearsal in verbal working memory: Evidence from positron emission tomography. Psychological Science, 7(1), 25-31.

Vogt, B. A., Berger, G. R., & Derbyshire, S. W. (2003). Structural and functional dichotomy of human midcingulate cortex. European Journal of Neuroscience, 18(11), 3134-3144.

Cohen, J. D., Perlstein, W. M., Braver, T. S., Nystrom, L. E., Noll, D. C., Jonides, J., & Smith, E. E. (1997). Temporal dynamics of brain activation during a working memory task. Nature, 386 (6625), 604.

Etkin, A., Egner, T., Peraza, D. M., Kandel, E. R., & Hirsch, J. (2006). Resolving emotional conflict: a role for the rostral anterior cingulate cortex in modulating activity in the amygdala. Neuron, 51(6), 871-882.

Etkin, A., Egner, T., & Kalisch, R. (2011). Emotional processing in anterior cingulate and medial prefrontal cortex. Trends in cognitive sciences, 15(2), 85-93.

Schoofs, D., Preuß, D., & Wolf, O. T. (2008). Psychosocial stress induces working memory impairments in an n-back paradigm. Psychoneuroendocrinology, 33(5), 643-653.

Veltman, D. J., Rombouts, S. A., & Dolan, R. J. (2003). Maintenance versus manipulation in verbal working memory revisited: an fMRI study. Neuroimage, 18(2), 247-256.

Crottaz-Herbette, S., Anagnoson, R. T., & Menon, V. (2004). Modality effects in verbal working memory: differential prefrontal and parietal responses to auditory and visual stimuli. Neuroimage, 21(1), 340-351.

Barch, D. M., Braver, T. S., Akbudak, E., Conturo, T., Ollinger, J., & Snyder, A. (2001). Anterior cingulate cortex and response conflict: effects of response modality and processing domain. Cerebral cortex, 11(9), 837-848.

Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological review, 108(3), 624.

Hampshire, A., Thompson, R., Duncan, J., & Owen, A. M. (2009). Selective tuning of the right inferior frontal gyrus during target detection. Cognitive, Affective, & Behavioral Neuroscience, 9(1), 103-112.

Habib, R., Nyberg, L., & Tulving, E. (2003). Hemispheric asymmetries of memory: the HERA model revisited. Trends in cognitive sciences, 7(6), 241-245.

MacDonald, A. W., Cohen, J. D., Stenger, V. A., & Carter, C. S. (2000). Dissociating the role of the dorsolateral
An ALE meta-analytic comparison of verbal working memory tasks

prefrontal and anterior cingulate cortex in cognitive control. Science, 288(5472), 1835-1838.

Nyberg, L., Cabeza, R., & Tulving, E. (1996). PET studies of encoding and retrieval: The HERA model. Psychonomic Bulletin & Review, 3(2), 135-148.

Callicott, J. H., Mattay, V. S., Bertolino, A., Finn, K., Coppola, R., Frank, J. A., ... & Weinberger, D. R. (1999). Physiological characteristics of capacity constraints in working memory as revealed by functional MRI. Cerebral cortex, 9(1), 20-26.

Jonides, J., Schumacher, E. H., Smith, E. E., Lauber, E. J., Awh, E., Minoshima, S., & Koepp, R. A. (1997). Verbal working memory load affects regional brain activation as measured by PET. Journal of cognitive neuroscience, 9(4), 462-475.

Smith, E. E., Jonides, J., Marshuetz, C., & Koepp, R. A. (1998). Components of verbal working memory: evidence from neuroimaging. Proceedings of the National Academy of Sciences, 95(3), 876-882.

Baldo, J. V., & Dronkers, N. F. (2006). The role of inferior parietal and inferior frontal cortex in working memory. Neuropsychology, 20(5), 529.

Becker, J. T., MacAndrew, D. K., & Fiez, J. A. (1999). A comment on the functional localization of the phonological storage subsystem of working memory. Brain and cognition, 41(1), 27-38.

Zago, L., & Tzourio-Mazoyer, N. (2002). Distinguishing visuospatial working memory and complex mental calculation areas within the parietal lobes. Neuroscience letters, 331(1), 45-49.

Chung, G. H., Han, Y. M., Jeong, S. H., & Jack, C. R. (2005). Functional heterogeneity of the supplementary motor area. American Journal of Neuroradiology, 26(7), 1819-1823.

Buchsbaum, B. R., & D'Esposito, M. (2008). The search for the phonological store: from loop to convolution. Journal of Cognitive Neuroscience, 20(5), 762-778.

d'Esposito, M., Aguirre, G. K., Zarahn, E., Ballard, D., Shin, R. K., & Lease, J. (1998). Functional MRI studies of spatial and nonspatial working memory. Cognitive Brain Research, 7(1), 1-13.

Eickhoff, S. B., Nichols, T. E., Laird, A. R., Hoffstaedter, F., Amunts, K., Fox, P. T., ... & Eickhoff, C. R. (2016). Behavior, sensitivity, and power of activation likelihood estimation characterized by massive empirical simulation. Neuroimage, 137, 70-85.

Holdwick Jr, D. J., & Wingenfeld, S. A. (1999). The subjective experience of PASAT testing: Does the PASAT induce negative mood?. Archives of Clinical Neuropsychology, 14(3), 273-284.

Scott, J. P., DiLillo, D., Maldonado, R. C., & Watkins, L. E. (2015). Negative urgency and emotion regulation strategy use: Associations with displaced aggression. Aggressive behavior, 41(5), 502-512.

Dedovic, K., Renwick, R., Mahani, N. K., Engert, V., Lupien, S. J., & Pruessner, J. C. (2005). The Montreal Imaging Stress Task: using functional imaging to investigate the effects of perceiving and processing psychosocial stress in the human brain. Journal of Psychiatry and Neuroscience, 30(5), 319.

Pruessner, J. C., Dedovic, K., Khalili-Mahani, N., Engert, V., Pruessner, M., Buss, C., ... & Lupien, S. (2008). Deactivation of the limbic system during acute psychosocial stress: evidence from positron emission
An ALE meta-analytic comparison of verbal working memory tasks

Lockwood, A. H., Linn, R. T., Szymanski, H., Coad, M. L., & Wack, D. S. (2004). Mapping the neural systems that mediate the Paced Auditory Serial Addition Task (PASAT). Journal of the International Neuropsychological Society, 10(1), 26-34.

Pochon, J. B., Levy, R., Fossati, P., Lehericy, S., Poline, J. B., Pillon, B., ... & Dubois, B. (2002). The neural system that bridges reward and cognition in humans: an fMRI study. Proceedings of the National Academy of Sciences, 99(8), 5669-5674.

Yun, R. J., Krystal, J. H., & Mathalon, D. H. (2010). Working memory overload: fronto-limbic interactions and effects on subsequent working memory function. Brain imaging and behavior, 4(1), 96-108.

Redick, T. S., & Lindsey, D. R. (2013). Complex span and n-back measures of working memory: a meta-analysis. Psychonomic bulletin & review, 20(6), 1102-1113.

Sweet, L. H., Vanderhill, S. D., Jerskey, B. A., Gordon, N. M., Paul, R. H., & Cohen, R. A. (2010). Subvocal articulatory rehearsal during verbal working memory in multiple sclerosis. Neurocase, 16(5), 418-425.

Sweet, L. H., Rao, S. M., Primeau, M., Durgerian, S., & Cohen, R. A. (2006). Functional magnetic resonance imaging response to increased verbal working memory demands among patients with multiple sclerosis. Human brain mapping, 27(1), 28-36.

Gontkovsky, S. T., & Beatty, W. W. (2006). Practical methods for the clinical assessment of information processing speed. International Journal of Neuroscience, 116(11), 1317-1325.

Rosti, E., Hämäläinen, P., Koivisto, K., & Hokkanen, L. (2007). PASAT in detecting cognitive impairment in relapsing-remitting MS. Applied neuropsychology, 14(2), 101-112.

Perlstein, W. M., Cole, M. A., Demery, J. A., Seignourel, P. J., Dixit, N. K., Larson, M. J., & Briggs, R. W. (2004). Parametric manipulation of working memory load in traumatic brain injury: behavioral and neural correlates. Journal of the International Neuropsychological Society, 10(5), 724-741.

D'esposito, Mark, et al. "The neural basis of the central executive system of working memory." Nature 378.6554 (1995): 279.

McAllister, T. W., Sparling, M. B., Flashman, L. A., Guerin, S. J., Mamourian, A. C., & Saykin, A. J. (2001). Differential working memory load effects after mild traumatic brain injury. Neuroimage, 14(5), 1004-1012.

Deary, I. J., Ebmeier, K. P., MacLeod, K. M., Dougall, N., Hepburn, D. A., Frier, B. M., & Goodwin, G. M. (1994). PASAT performance and the pattern of uptake of 99mTc-exametazime in brain estimated with single photon emission tomography. Biological Psychology, 38(1), 1-18.

Swick, D., Ashley, V., & Turken, U. (2011). Are the neural correlates of stopping and not going identical? Quantitative meta-analysis of two response inhibition tasks. Neuroimage, 56(3), 1655-1665.

Mueller, V. A., Brass, M., Waszak, F., & Prinz, W. (2007). The role of the preSMA and the rostral cingulate zone in internally selected actions. Neuroimage, 37(4), 1354-1361.

Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature
An ALE meta-analytic comparison of verbal working memory tasks

reviews neuroscience, 3(3), 201.

Shackman, A. J., Salomons, T. V., Slagter, H. A., Fox, A. S., Winter, J. J., & Davidson, R. J. (2011). The integration of negative affect, pain and cognitive control in the cingulate cortex. Nature Reviews Neuroscience, 12(3), 154.

Barch, D. M., & Csernansky, J. G. (2007). Abnormal parietal cortex activation during working memory in schizophrenia: verbal phonological coding disturbances versus domain-general executive dysfunction. American Journal of Psychiatry, 164(7), 1090-1098.

Bartova, L., Meyer, B. M., Diers, K., Rabl, U., Scharinger, C., Popovic, A., ... & Mandorfer, D. (2015). Reduced default mode network suppression during a working memory task in remitted major depression. Journal of psychiatric research, 64, 9-18.

Bertolino, A., Taurisano, P., Pisciotta, N. M., Blasi, G., Fazio, L., Romano, R., ... & Caforio, G. (2010). Genetically determined measures of striatal D2 signaling predict prefrontal activity during working memory performance. PLoS one, 5(2), e9348.

Bleich-Cohen, M., Hendler, T., Weizman, R., Faragian, S., Weizman, A., & Poyurovsky, M. (2014). Working memory dysfunction in schizophrenia patients with obsessive-compulsive symptoms: an fMRI study. European Psychiatry, 29(3), 160-166.

Carlson, S., Martinkauppi, S., Rämä, P., Salli, E., Korvenoja, A., & Aronen, H. J. (1998). Distribution of cortical activation during visuospatial n-back tasks as revealed by functional magnetic resonance imaging. Cerebral cortex (New York, NY: 1991), 8(8), 743-752.

Cerasa, A., Gioia, M. C., Fera, F., Passamonti, L., Liguori, M., Lanza, P., ... & Quattrone, A. (2008). Ventrolateral prefrontal activity during working memory is modulated by MAO A genetic variation. Brain Research, 1201, 114-121.

Chang, Y., Lee, J. J., Seo, J. H., Song, H. J., Kim, J. H., Bae, S. J., ... & Kim, S. H. (2010). Altered working memory process in the manganese-exposed brain. Neuroimage, 53(4), 1279-1285.

Cousijn, H., Rijpkema, M., Qin, S., van Wingen, G. A., & Fernández, G. (2012). Phasic deactivation of the medial temporal lobe enables working memory processing under stress. Neuroimage, 59(2), 1161-1167.

Deckersbach, T., Rauch, S. L., Buhlmann, U., Ostacher, M. J., Beucke, J. C., Nierenberg, A. A., ... & Dougherty, D. D. (2008). An fMRI investigation of working memory and sadness in females with bipolar disorder: a brief report. Bipolar disorders, 10(8), 928-942.

Dong, S., Wang, C., Xie, Y., Hu, Y., Weng, J., & Chen, F. (2016). The impact of abacus training on working memory and underlying neural correlates in young adults. Neuroscience, 332, 181-190.

Drobyshewsky, A., Baumann, S. B., & Schneider, W. (2006). A rapid fMRI task battery for mapping of visual, motor, cognitive, and emotional function. Neuroimage, 31(2), 732-744.

Duggirala, S. X., Saharan, S., Raghunathan, P., & Mandal, P. K. (2016). Stimulus-dependent modulation of working memory for identity monitoring: A functional MRI study. Brain and cognition, 102, 55-64.

Fernández-Corcuera, P., Salvador, R., Monté, G. C., Sarró, S. S., Goikolea, J. M., Amann, B., ... & Maristany, T. (2013).
Bipolar depressed patients show both failure to activate and failure to de-activate during performance of a working memory task. Journal of Affective Disorders, 148(2), 170-178.

Garrett, A., Kelly, R., Gomez, R., Keller, J., Schatzberg, A. F., & Reiss, A. L. (2011). Aberrant brain activation during a working memory task in psychotic major depression. American Journal of Psychiatry, 168(2), 173-182.

Gillis, M. M., Garcia, S., & Hampstead, B. M. (2016). Working memory contributes to the encoding of object location associations: support for a 3-part model of object location memory. Behavioural brain research, 311, 192-200.

Habel, U., Koch, K., Pauly, K., Kellermann, T., Reske, M., Backes, V., ... & Shah, N. J. (2007). The influence of olfactory-induced negative emotion on verbal working memory: individual differences in neurobehavioral findings. Brain research, 1152, 158-170.

Harding, I. H., Harrison, B. J., Breakspear, M., Pantelis, C., & Yücel, M. (2014). Cortical representations of cognitive control and working memory are dependent yet non-interacting. Cerebral Cortex, 26(2), 557-565.

Honey, G. D., Bullmore, E. T., & Sharma, T. (2002). De-coupling of cognitive performance and cerebral functional response during working memory in schizophrenia. Schizophrenia research, 53(1), 45-56.

Johannsen, L., Li, K. Z., Chechlacz, M., Bibi, A., Kourtzi, Z., & Wing, A. M. (2013). Functional neuroimaging of the interference between working memory and the control of periodic ankle movement timing. Neuropsychologia, 51(11), 2142-2153.

Kasahara, M., Menon, D. K., Salmond, C. H., Outtrim, J. G., Tavares, J. V. T., Carpenter, T. A., ... & Stamatakis, E. A. (2011). Traumatic brain injury alters the functional brain network mediating working memory. Brain Injury, 25(12), 1170-1187.

Ko, C. H., Yen, J. Y., Yen, C. F., Chen, C. S., Lin, W. C., Wang, P. W., & Liu, G. C. (2013). Brain activation deficit in increased-load working memory tasks among adults with ADHD using fMRI. European archives of psychiatry and clinical neuroscience, 263(7), 561-573.

Koppelstaetter, F., Poeppel, T. D., Siedentopf, C. M., Ischebeck, A., Verius, M., Haala, I., ... & Lorenz, I. H. (2008). Does caffeine modulate verbal working memory processes? An fMRI study. Neuroimage, 39(1), 492-499.

Matsuo, K., Glahn, D. C., Peluso, M. A. M., Hatch, J. P., Monkul, E. S., Najt, P., ... & Fox, P. T. (2007). Prefrontal hyperactivation during working memory task in untreated individuals with major depressive disorder. Molecular psychiatry, 12(2), 158.

Meisenzahl, E. M., Scheuerecker, J., Zipse, M., Ufer, S., Wiesmann, M., Frodl, T., ... & Spellmann, I. (2006). Effects of treatment with the atypical neuroleptic quetiapine on working memory function: a functional MRI follow-up investigation. European archives of psychiatry and clinical neuroscience, 256(8), 522-531.

Migo, E. M., Mitterschiffthaler, M., O’Daly, O., Dawson, G. R., Dourish, C. T., Craig, K. J., ... & Kopelman, M. D. (2015). Alterations in working memory networks in amnestic mild cognitive impairment. Aging, Neuropsychology, and Cognition, 22(1), 106-127.

Oflaz, S., Akyuz, F., Hamamci, A., Firat, Z., Keskindilç, C., Kilickesmez, O., & Cihangiroglu, M. (2014). Working memory dysfunction in delusional disorders: An fMRI investigation. Journal of psychiatric research, 56, 43-49.
An ALE meta-analytic comparison of verbal working memory tasks

PARK, M. S., Sohn, S., PARK, J. E., KIM, S. H., Yu, I. K., & SOHN, J. H. (2011). Brain functions associated with verbal working memory tasks among young males with alcohol use disorders. Scandinavian journal of Psychology, 52(1), 1-7.

Pomarol-Clotet, E., Salvador, R., Sarro, S., Gomar, J., Vila, F., Martinez, A., ... & Cebamanos, J. M. (2008). Failure to deactivate in the prefrontal cortex in schizophrenia: dysfunction of the default mode network?. Psychological medicine, 38(8), 1185-1193.

Quidé, Y., Morris, R. W., Shepherd, A. M., Rowland, J. E., & Green, M. J. (2013). Task-related fronto-striatal functional connectivity during working memory performance in schizophrenia. Schizophrenia research, 150(2), 468-475.

Rodríguez-Cano, E., Sarró, S., Monté, G. C., Maristany, T., Salvador, R., McKenna, P. J., & Pomarol-Clotet, E. (2014). Evidence for structural and functional abnormality in the subgenual anterior cingulate cortex in major depressive disorder. Psychological medicine, 44(15), 3263-3273.

Rämä, P., Martinkauppi, S., Linnankoski, I., Koivisto, J., Aronen, H. J., & Carlson, S. (2001). Working memory of identification of emotional vocal expressions: an fMRI study. Neuroimage, 13(6), 1090-1101.

Schmidt, H., Jogia, J., Fast, K., Christodoulou, T., Haldane, M., Kumari, V., & Frangou, S. (2009). No gender differences in brain activation during the N-back task: An fMRI study in healthy individuals. Human brain mapping, 30(11), 3609-3615.

Seo, J., Kim, S. H., Kim, Y. T., Song, H. J., Lee, J. J., Kim, S. H., ... & Lee, S. J. (2012). Working memory impairment in fibromyalgia patients associated with altered frontoparietal memory network. PloS one, 7(6), e37808.

Stoodley, C. J., Valera, E. M., & Schmahmann, J. D. (2010). An fMRI study of intra-individual functional topography in the human cerebellum. Behavioural neurology, 23(1-2), 65-79.

Strettont, J., Winston, G., Sidhu, M., Centeno, M., Vollmar, C., Bonelli, S., ... & Thompson, P. J. (2012). Neural correlates of working memory in temporal lobe epilepsy—an fMRI study. Neuroimage, 60(3), 1696-1703.

Valera, E. M., Faraone, S. V., Biederman, J., Poldrack, R. A., & Seidman, L. J. (2005). Functional neuroanatomy of working memory in adults with attention-deficit/hyperactivity disorder. Biological psychiatry, 57(5), 439-447.

Vogel, T., Smieskova, R., Schmidt, A., Walter, A., Harrisberger, F., Eckert, A., ... & Borgwardt, S. (2016). Increased superior frontal gyrus activation during working memory processing in psychosis: Significant relation to cumulative antipsychotic medication and to negative symptoms. Schizophrenia research, 175(1), 20-26.

Walitt, B., Čeko, M., Khatiwada, M., Gracely, J. L., Rayhan, R., VanMeter, J. W., & Gracely, R. H. (2016). Characterizing
“fibrofog”: Subjective appraisal, objective performance, and task-related brain activity during a working memory task. NeuroImage: Clinical, 11, 173-180.

Gundersen, H., Specht, K., Gruner, R., Ersland, L., & Hugdahl, K. (2008). Separating the effects of alcohol and expectancy on brain activation: an fMRI working memory study. Neuroimage, 42(4), 1587-1596.

Honey, G. D., Fu, C. H. Y., Kim, J., Brammer, M. J., Croudace, T. J., Suckling, J., … & Bullmore, E. T. (2002). Effects of verbal working memory load on corticocortical connectivity modeled by path analysis of functional magnetic resonance imaging data. Neuroimage, 17(2), 573-582.

Mizuno, K., Tanaka, M., Ishii, A., Tanabe, H. C., Onoe, H., Sadato, N., & Watanabe, Y. (2008). The neural basis of academic achievement motivation. NeuroImage, 42(1), 369-378.

Ravizza, S. M., Delgado, M. R., Chein, J. M., Becker, J. T., & Fiez, J. A. (2004). Functional dissociations within the inferior parietal cortex in verbal working memory. Neuroimage, 22(2), 562-573.

Belayachi, S., Majerus, S., Gendolla, G., Salmon, E., Peters, F., & Van der Linden, M. (2015). Are the carrot and the stick the two sides of same coin? A neural examination of approach/avoidance motivation during cognitive performance. Behavioural brain research, 293, 217-226.

Cader, S., Cifelli, A., Abu-Omar, Y., Palace, J., & Matthews, P. M. (2005). Reduced brain functional reserve and altered functional connectivity in patients with multiple sclerosis. Brain, 129(2), 527-537.

Drapier, D., Surguladze, S., Marshall, N., Schulze, K., Fern, A., Hall, M. H., … & McDonald, C. (2008). Genetic liability for bipolar disorder is characterized by excess frontal activation in response to a working memory task. Biological psychiatry, 64(6), 513-520.

Elbin, R. J., Covassin, T., Hakun, J., Kontos, A. P., Berger, K., Pfeiffer, K., & Ravizza, S. (2012). Do brain activation changes persist in athletes with a history of multiple concussions who are asymptomatic?. Brain injury, 26(10), 1217-1225.

Gaudeau-Bosma, C., Moulier, V., Allard, A. C., Sidhoumi, D., Bouaziz, N., Braha, S., … & Januel, D. (2013). Effect of two weeks of rTMS on brain activity in healthy subjects during an n-back task: a randomized double blind study. Brain Stimulation: Basic, Translational, and Clinical Research in Neuromodulation, 6(4), 569-575.

Haller, S., Bartsch, A. J., Radue, E. W., Klarhöfer, M., Seifritz, E., & Scheffler, K. (2005). Effect of fMRI acoustic noise on non-auditory working memory task: comparison between continuous and pulsed sound emitting EPI. Magnetic Resonance Materials in Physics, Biology and Medicine, 18(5), 263-271.

Landré, L., Destrieux, C., Andersson, F., Barantin, L., Quidé, Y., Tapia, G., … & El-Hage, W. (2012). Working memory processing of traumatic material in women with posttraumatic stress disorder. Journal of psychiatry & neuroscience: JPN, 37(2), 87.

Martinkauppi, S., Rämä, P., Aronen, H. J., Korvenoja, A., & Carlson, S. (2000). Working memory of auditory localization. Cerebral Cortex, 10(9), 889-898.

Surguladze, S. A., Chu, E. M., Evans, A., Anilkumar, A. P., Patel, M. X., Timehin, C., & David, A. S. (2007). The effect of long-acting risperidone on working memory in schizophrenia: a functional magnetic resonance imaging study. Journal of clinical psychopharmacology, 27(6), 560-570.
Thaler, A., Helmich, R. C., Or-Borichev, A., Nuenen, B. F., Shapira-Lichter, I., Gurevich, T., ... & Giladi, N. (2016). Intact working memory in non-manifesting LRRK2 carriers—an fMRI study. European Journal of Neuroscience, 43(1), 106-112.

Van Ruitenbeek, P., & Mehta, M. A. (2013). Potential enhancing effects of histamine H1 agonism/H3 antagonism on working memory assessed by performance and bold response in healthy volunteers. British journal of pharmacology, 170(1), 144.

Koric, L., Volle, E., Seassau, M., Bernard, F. A., Mancini, J., Dubois, B., ... & Levy, R. (2012). How cognitive performance-induced stress can influence right VLPFC activation: an fMRI study in healthy subjects and in patients with social phobia. Human brain mapping, 33(8), 1973-1986.

Audoin, B., Van Au Duong, M., Ranjeva, J. P., Ibarrola, D., Malikova, I., Confort-Gouny, S., ... & Cozzone, P. J. (2005). Magnetic resonance study of the influence of tissue damage and cortical reorganization on PASAT performance at the earliest stage of multiple sclerosis. Human brain mapping, 24(3), 216-228.

Audoin, B., Ibarrola, D., Ranjeva, J. P., Confort-Gouny, S., Malikova, I., Ali-Chérif, A., ... & Cozzone, P. (2003). Compensatory cortical activation observed by fMRI during a cognitive task at the earliest stage of multiple sclerosis. Human brain mapping, 20(2), 51-58.

Bonzano, L., Pardini, M., Mancardi, G. L., Pizzorno, M., & Roccagagliata, L. (2009). Structural connectivity influences brain activation during PVSAT in multiple sclerosis. Neuroimage, 44(1), 9-15.

Cardinal, K. S., Wilson, S. M., Giesser, B. S., Drain, A. E., & Sicotte, N. L. (2008). A longitudinal fMRI study of the paced auditory serial addition task. Multiple Sclerosis Journal, 14(4), 465-471.

Christodoulou, C., DeLuca, J., Ricker, J. H., Madigan, N. K., Bly, B. M., Lange, G., ... & Ni, A. (2001). Functional magnetic resonance imaging of working memory impairment after traumatic brain injury. Journal of Neurology, Neurosurgery & Psychiatry, 71(2), 161-168.

Forn, C., Rocca, M. A., Valsasina, P., Boscá, I., Casanova, B., Sanjuan, A., ... & Filippi, M. (2012). Functional magnetic resonance imaging correlates of cognitive performance in patients with a clinically isolated syndrome suggestive of multiple sclerosis at presentation: an activation and connectivity study. Multiple Sclerosis Journal, 18(2), 153-163.

Forn, C., Belenguer, A., Belloch, V., Sanjuan, A., Parcet, M. A., & Avila, C. (2011). Anatomical and functional differences between the paced auditory serial addition test and the symbol digit modalities test. Journal of clinical and experimental neuropsychology, 33(1), 42-50.

Forn, C., Ventura-Campos, N., Belenguer, A., Belloch, V., Parcet, M. A., & Avila, C. (2008). A comparison of brain activation patterns during covert and overt paced auditory serial addition test tasks. Human brain mapping, 29(6), 644-650.

Forn, C., Barros-Loscertales, A., Escudero, J., Belloch, V., Campos, S., Parcet, M. A., & Avila, C. (2006). Cortical reorganization during PASAT task in MS patients with preserved working memory functions. Neuroimage, 31(2), 686-691.

Hayter, A. L., Langdon, D. W., & Ramnani, N. (2007). Cerebellar contributions to working memory. Neuroimage, 36(3), 943-954.
Hou, J., Lin, Y., Zhang, W., Song, L., Wu, W., Wang, J., ... & Li, H. (2013). Abnormalities of frontal-parietal resting-state functional connectivity are related to disease activity in patients with systemic lupus erythematosus. PloS one, 8(9), e74530.

Lazeron, R. H., Rombouts, S. A., de Sonneville, L., Barkhof, F., & Scheltens, P. (2003). A paced visual serial addition test for fMRI. Journal of the neurological sciences, 213(1), 29-34.

Mainero, C., Caramia, F., Pozzilli, C., Pisani, A., Pestalozza, I., Borriello, G., ... & Pantano, P. (2004). fMRI evidence of brain reorganization during attention and memory tasks in multiple sclerosis. Neuroimage, 21(3), 858-867.

Maruishi, M., Miyatani, M., Nakao, T., & Muranaka, H. (2007). Compensatory cortical activation during performance of an attention task by patients with diffuse axonal injury: a functional magnetic resonance imaging study. Journal of Neurology, Neurosurgery & Psychiatry, 78(2), 168-173.

Tüdös, Z., Hok, P., Hrdina, L., & Hluštík, P. (2014). Modality effects in paced serial addition task: Differential responses to auditory and visual stimuli. Neuroscience, 272, 10-20.

Curtis, C. E., & D'Esposito, M. (2003). Persistent activity in the prefrontal cortex during working memory. Trends in cognitive sciences, 7(9), 415-423.

Seghier, M. L. (2013). The angular gyrus: multiple functions and multiple subdivisions. The Neuroscientist, 19(1), 43-61.

Pulvermüller, F., Huss, M., Kherif, F., del Prado Martin, F. M., Hauk, O., & Shtyrov, Y. (2006). Motor cortex maps articulatory features of speech sounds. Proceedings of the National Academy of Sciences, 103(20), 7865-7870.

Burton, M. W. (2001). The role of inferior frontal cortex in phonological processing. Cognitive Science, 25(5), 695-709.

Burton, M. W., LoCasto, P. C., Krebs-Noble, D., & Gullapalli, R. P. (2005). A systematic investigation of the functional neuroanatomy of auditory and visual phonological processing. Neuroimage, 26(3), 647-661.
Table 1 (continued on next page). Studies included in each meta-analysis. HC = healthy controls, TAL = Talairach coordinates, MNI = Montreal Neurological Institute coordinates.

2-back

Author	Year	N	Group	Task	Stimulus	Contrast	Space
Barch	2007	120	HC	2-back	words	2-back – encoding	TAL
Bartova	2015	42	HC	2-back	numbers	2-back – 0-back	TAL
Bertolino	2010	28	HC	2-back	numbers	2-back – 0-back	TAL
Bleich-Cohen	2016	20	HC	2-back	numbers	2-back – 0-back	TAL
Carlson	1998	7	HC	2-back	shapes	2-back – 0-back	TAL
Cerasa	2008	30	HC	2-back	shapes	2-back – 0-back	TAL
Chang	2010	21	HC	2-back	letters	2-back – rest	TAL
Cousijn	2010	41	HC	2-back	numbers	2-back – 0-back	MNI
Deckersbach	2008	17	HC	2-back	letters	2-back – fixation	MNI
Drobyshevsky	2006	31	HC	2-back	letters	2-back – 0-back	TAL
Duggirala	2016	50	HC	2-back	words	2-back – 0-back	MNI
Fernández-Corcuera	2013	41	HC	2-back	letters	2-back – baseline	MNI
Garrett	2011	19	HC	2-back	letters	2-back – 0-back	MNI
Gillis	2016	15	HC	2-back	letters	2-back – 0-back	TAL
Habel	2007	21	HC	2-back	letters	2-back – 0-back	MNI
Harding	2016	25	HC	2-back	numbers	2-back – 0-back	MNI
Honey	2002	20	HC	2-back	letters	2-back – 0-back	TAL
Johannsen	2013	12	HC	2-back	letters	2-back – 0-back	MNI
Ko	2013	20	HC	2-back	letters	2-back – 0-back	TAL
Koppelstaetter	2008	15	HC	2-back	letters	2-back – 0-back	TAL
Matsuo	2007	15	HC	2-back	numbers	2-back – 0-back	TAL
Meisenzahl	2006	12	HC	2-back	letters	2-back – 0-back	TAL
Migo	2015	11	HC	2-back	letters	2-back – 0-back	MNI
Oflaz	2014	9	HC	2-back	letters	2-back – 0-back	MNI
Park	2011	10	HC	2-back	letters	2-back – 0-back	MNI
Quidé	2013	28	HC	2-back	letters	2-back – 0-back	MNI
Rodríguez-Cano	2014	52	HC	2-back	letters	2-back – 0-back	MNI
Scheuerecker	2008	23	HC	2-back	letters	2-back – 0-back	MNI
Seo	2014	34	HC	2-back	letters	2-back – 0-back	MNI
Seo	2012	22	HC	2-back	letters	2-back – 0-back	MNI
Stretton	2012	15	HC	2-back	shapes	2-back – 0-back	MNI
Walitt	2016	13	HC	2-back	letters	2-back – 0-back	MNI
Schmidt	2009	25	HC	2-back	letters	2-back – 0-back	TAL
Schmidt	2009	21	HC	2-back	letters	2-back – 0-back	TAL
3-back

Author	Year	N	Group	Task	Stimulus	Contrast	Space
D’Esposito	1998	24	HC	3-back	letters	3-back – 0back	TAL
Honey	2002	10	HC	3-back	letters	3-back – 0back	TAL
Mizuno	2008	14	HC	3-back	numbers	3-back – 0back	TAL
Ravizza (1.5T-scan)	2004	10	HC	3-back	letters	3-back – 0back	TAL
Ravizza (3T-scan)	2004	11	HC	3-back	letters	3-back – 0back	TAL
Belayachi	2015	18	HC	3-back	letters	3-back – 0back	TAL
Drapier	2008	20	HC	3-back	letters	3-back – 0back	TAL
Elbin	2012	14	HC	3-back	letters	3-back – 0back	MNI
Gaudeau-Bosma	2013	19	HC	3-back	letters	3-back – 0back	MNI
Haller	2005	16	HC	3-back	letters	3-back – 0back	TAL
Landré	2012	16	HC	3-back	letters	3-back – control	MNI
Surguladze	2007	8	HC	3-back	letters	3-back – 0back	TAL
van Ruitenbeek	2013	16	HC	3-back	letters	3-back – 0back	TAL
Gunderson	2008	13	HC	3-back	letters	3-back – fixation	TAL
Cader	2006	16	HC	3-back	letters	3-back – 1back	MNI
Martinkauppi	2000	10	HC	3-back	letters	3-back – 1back	TAL
Thaler	2016	39	HC	3-back	letters	3-back – 0back	TAL

PASAT

Author	Year	N	Group	Task	Stimulus	Contrast	Space
Audoin	2005	10	HC	PASAT	auditory	PASAT – control task	TAL
Audoin	2005	18	HC	PASAT	auditory	PASAT – control task	TAL
Audoin	2003	10	HC	PASAT	auditory	PASAT – control task	TAL
Bonzano	2009	18	HC	PVSAT	visual	PVSAT – control task	TAL
Cardinal	2008	10	HC	PASAT	auditory	PASAT – control task	TAL
Christodoulou	2001	7	HC	modified PASAT	auditory	mPASAT – imagination	TAL
Forn	2012	15	HC	PASAT	auditory	PASAT – control task	MNI
Forn	2011	17	HC	PASAT	auditory	PASAT – control task	TAL
Forn	2008	13	HC	covert PASAT	auditory	cPASAT – control task	TAL
Forn	2006	10	HC	covert PASAT	auditory	cPASAT – control task	TAL
Hayter	2007	15	HC	PASAT	auditory	PASAT – control task	TAL
Koric	2012	15	HC	PASAT	auditory	PASAT – control task	TAL
Lazeron	2003	9	HC	PVSAT	visual	cPVSAT – number recall	TAL
Mainiero	2004	22	HC	modified PASAT	auditory	PASAT – recall task	TAL
Maruiishi	2007	12	HC	PVSAT	visual	PVSAT – control task	MNI
Tudos	2014	20	HC	PASAT+PVSAT	conjunction	PASAT/PVSAT – control task	MNI
Table 2. ALE Clusters identified for task contrasts

Clusters	Volume (mm³)	X	Y	Z
3-back > 2-back				
1 L/R Cingulate, R medFG, R SFG	1488	5	20.1	42.8
3-back > PASAT				
1 R MFG	232	35.7	28.2	30.6
2 R SFG	200	5.4	20.3	50.7
PASAT > 2-back				
1 L/R medFG, L/R SFG	664	-1.8	1.6	60.6
2 R Precentral Gyrus, R IFG	488	50.1	4.1	28.6
3 L Supramarginal Gyrus	256	-36.4	-43.7	44.9
4 L Superior Parietal Lobule	240	-31.6	-55.5	52.6
PASAT > 3-back				
1 L/R medFG, L SFG	912	-4.3	0.5	59.7
2 L MFG	392	-43.4	30.6	23
3 L Supramarginal Gyrus	320	-35.7	-44.1	37.8
4 L Superior Parietal Lobule	208	-28.4	-57.5	49.6
Table 3. Identified local maxima within ALE clusters

Clusters	X	Y	Z	
3-back > 2-back	1 R SFG	6	25	42
	R Cingulate	4	18	48
	R Cingulate	4	21	34
3-back > PASAT	1 R MFG	34	28	30
	R MFG	42	24	32
3-back > PASAT	2 R SFG	4	22	50
PASAT > 2-back	1 L medFG	-4	4	62
	R Precentral Gyrus	51	3	29
	L Inferior Parietal Lobule	-34	-46	48
	L Inferior Parietal Lobule	-38	-40	42
	L Precuneus	-28	-54	50
	L Superior Parietal Lobule	-32	-52	52
PASAT > 3-back	1 L medFG	-6	2	62
	L medFG	-10	0	58
	L medFG	-10	8	52
2 L MFG	-44	30	20	
3 L Inferior Parietal Lobule	-34	-44	38	
4 L Precuneus	-26	-58	50	
Figure 1. Meta-analytic activation maps for the 2-back (top), 3-back (middle), and PASAT (bottom). Regions that meet the cluster-level family-wise error threshold (< 0.05) are depicted in red. Talairach z-coordinates are listed for each axial slice.
Figure 2. Sagittal, coronal, and axial view of each cluster identified by meta-analytic comparison of the 2-back, 3-back, and PASAT. Center-of-mass coordinates in Talairach space are listed for each cluster.
Supplementary Figures

Supplementary Figure A. Description of screening process used for selection of studies (PRISMA).
An ALE meta-analytic comparison of verbal working memory tasks

Supplementary Table 1. (continued on next page) Demographics information and task performance for the 2-back, 3-back, and PASAT. NR denotes information that was not reported in the paper.

Author	Year	N	N (men)	N (women)	Average Age	Response modality	Task performance (%correct)
Barch	2007	120	50	70	27.2	Right hand	95
Bartova	2015	42	17	25	25.3	Right hand	81
Bertolino	2010	28	NR	NR	23.5	NR	NR
Blech-Cohen	2016	20	12	8	26.4	Right hand	99.38
Carlson	1998	7	4	3	21.1	Right hand	96.6
Cerasa	2008	30	30	0	30.5	Right hand	77.75
Chang	2010	21	21	0	49.7	Right hand	70.1
Cousins	2010	41	41	0	26.5	Right hand	85
Deckersbach	2008	17	0	17	25.6	Right hand	94.43
Drobyshevsky	2006	31	16	15	40.9	Right hand	90.4
Duggirala	2016	50	28	22	23.62	Right hand	79.77
Fernández-Corcuera	2013	41	27	17	40.27	Right hand	NR
Garrett	2011	19	13	6	34.85	Right hand	99.77
Gillis	2016	15	15	0	25.13	Right hand	95.83
Habel	2007	21	21	0	30.77	Right hand	94
Harding	2016	25	14	11	25.5	Right hand	94.9
Honey	2002	20	20	0	39.3	Right hand	81.92
Johannsen	2013	12	4	8	26.1	Right hand	73.8
Ko	2013	20	20	0	26.3	Right hand	84.05
Koppelstaetter	2008	15	15	0	36	Right hand	95.24
Matsuo	2007	15	6	9	37.7	Dominant hand	71.5
Meisenzahl	2006	12	11	1	33.58	Right hand	97.57
Migo	2015	11	7	4	70.27	NR	99
Oflaz	2014	9	7	2	44.6	Right hand	82.75
Park	2011	10	10	0	23.7	Right hand	NR
Quidé	2013	28	14	14	32.96	NR	75
Rodríguez-Cano	2014	52	20	32	46.25	Right hand	NR
Scheuerecker	2008	23	19	4	32.6	Right hand	99
Seo	2014	34	0	34	59.3	Right hand	77.2
Seo	2012	22	0	22	38.27	Right hand	95.56
Stretton	2012	15	4	11	27	Dominant hand	68.1
Walitt	2016	13	0	13	44.2	Right hand	64.7
Schmidt	2009	25	25	0	34.36	Right hand	83.2
Schmidt	2009	21	0	21	33.13	Right hand	93.95

2-back
3-back

Author	Year	N	N (men)	N (women)	Average Age	Response modality	Task performance (% correct)
D’Esposito	1998	16	10	6	23.8	Right hand	87.6
Honey	2002	10	7	3	25.7	Right hand	80
Mizuno	2008	14	7	7	22.4	Right hand	80.87
Ravizza (1.5T-scan)	2004	10	NR	NR	27.5	Right hand	92
Ravizza (3T-scan)	2004	11	NR	NR	27.5	Right hand	92
Belayachi	2015	18	8	10	23.5	Right hand	65
Drapier	2008	20	10	10	41.9	NR	79.46
Elbin	2012	14	NR	NR	16	Dominant hand	NR
Gaudea-Bosma	2013	19	11	8	31.6	Right hand	78.7
Haller	2005	16	8	8	25.2	Right hand	83.6
Landré	2012	16	0	16	24.8	Right hand	76.66
Surguladze	2007	8	4	4	32.8	NR	69.33
van Ruitenbeek	2013	16	8	8	24.5	Right hand	69.09
Gunderson	2008	13	13	0	28	Right hand	84
Cader	2006	16	6	10	39	Right hand	72
Martinkauppi	2000	10	5	5	25	Right hand	76
Thaler	2016	39	19	20	46.33	NR	59

PASAT

Author	Year	N	N (men)	N (women)	Average Age	Response modality	Task performance (% correct)
Audoin	2005	18	5	13	25.3	Vocal	81.2
Audoin	2003	10	8	2	26.1	Vocal	78
Bonzano	2009	18	9	9	32.5	Vocal	90.58
Cardinal	2008	10	3	7	34.4	Vocal	95*
Christodoulou	2001	7	4	3	29.71	Right hand	94.05**
Forn	2012	15	NR	NR	32.3	Vocal	87.5
Forn	2011	17	7	10	32.76	Vocal	78.25
Forn	2008	13	8	5	21.9	Vocal	87.37
Forn	2006	10	5	5	32.73	Silent repetition	65.6
Hayter	2007	15	6	9	23.5	Vocal	82
Koric	2012	15	6	9	34.7	Vocal	84.62
Lazeron	2003	9	6	3	24	Mental summation	NR
Mainero	2004	22	11	11	NR	Right hand	78.8**
Maruishi	2007	12	11	1	26.4	Right hand	100**
Tudos	2014	20	10	10	23	Right hand	95.9**

* : Performance out of scanner, after practice.
** : Task asks subjects to determine if two prior numbers sum to a specific number (i.e.10,8).