A Case Report of a Malignant Fibrous Histiocytoma in a T-cell Receptor β Chain and p53 Double-knockout Mouse

Minoru Ando1, Shoichi Kado1, Tomo Suzuki1, Ryota Yamamoto1, Yuriko Nagata1, Chie Hata1, Kazumi Uchida1, and Kimiyuki Kaneko1

1Yakult Central Institute for Microbiological Research, 1796 Yaho, Kunitachi-shi, Tokyo 186-8650, Japan

Abstract: A subcutaneous tumor was found in the right abdomen of a 16-week-old male TCRβ and p53 double-knockout mouse. The tumor had indistinct borders with the surrounding tissue. The cut surface after formalin fixation was pale yellowish white, partially dark red and partly white. Histologically, the tumor was composed of three distinct regions. The first region showed pleomorphic cells arranged in sheets. The second region showed spindle cells arranged in interlacing fascicles. The final region contained a mixture of the above mentioned two types of cells. Furthermore, a small amount of collagen fibers, round cells, multinucleated giant cells, and cells with eosinophilic granules were observed between these tumor cells. Immunohistochemical examination and electron microscopy identified that the pleomorphic cells and spindle cells were histiocytes and fibroblasts, respectively, and that the round cells were undifferentiated mesenchymal cells. Based on these findings, the tumor was diagnosed as a malignant fibrous histiocytoma. (DOI: 10.1293/ jtp.24.251–255; J Toxicol Pathol 2011; 24: 251–255)

Key words: malignant fibrous histiocytoma, mouse, TCRβ and p53 double-knockout mouse, spontaneous
The tumor mass was fixed in 10% phosphate-buffered formalin and embedded in paraffin. Paraffin sections were stained with hematoxylin-eosin, Masson’s trichrome and periodic acid Schiff. Immunohistochemical staining with anti-vimentin mouse monoclonal antibody (DakoCytomation, Tokyo, Japan), anti-factor VIII related antigen rabbit polyclonal antibody (DakoCytomation), anti-S100a protein rabbit polyclonal antibody (DakoCytomation), anti-F4/80 rat monoclonal antibody (Abcam, Tokyo, Japan), anti-alpha smooth muscle actin rabbit monoclonal antibody (Abcam), anti-mouse CD31 rat monoclonal antibody (Abcam), anti-desmin rabbit polyclonal antibody (Lab Vision, Fremont, CA, USA), anti-myoglobin rabbit monoclonal antibody (Epitomics, Burlingame, CA, USA) and anti-Ki-67 rabbit monoclonal antibody (Thermo, Fremont, CA, USA) was performed by the streptavidin-biotin complex method.

For electron microscopic examination, pieces of the 10% formalin-fixed tumor mass were first immersed in phosphate-buffered 2.5% glutaraldehyde and then in phosphate-buffered 1% osmium tetroxide for 2 h. After dehydration through a graded ethanol series, the tissue samples were embedded in Epon812 resin. Ultrathin sections were prepared and stained with uranyl acetate and lead citrate and then observed under a transmission electron microscope (JEM-1200EX; JEOL, Tokyo, Japan).

At necropsy, a 25 × 25 × 13-mm tumor mass was found in the subcutaneous tissue in the right abdomen. Ulceration and hemorrhage were observed on the surface of the tumor mass, and the tumor margin was not clearly visible macroscopically. The cut surface of the formalin-fixed tumor mass was yellowish-white, partly dark red and partly white.

Histological examination showed that the tumor occupied the subcutaneous dermis and that there were many foci of necrosis and hemorrhages in the tumor mass. In addition, ulceration was seen in some parts of the epidermis. The tumor was composed of three distinct regions. The first region showed pleomorphic cells arranged in sheets. The second region showed spindle cells arranged in interlacing fascicles. The final region contained a mixture of the above mentioned two types of cells. The tumor mass also contained heman-giopericytoma-like structures (Fig. 1A, B, C), and disseminated collagen fibers, round cells, multinucleated giant cells and other neoplastic cells containing various numbers of cytoplasmic eosinophilic granules. The pleomorphic cells had an abundant eosinophilic cytoplasm and an atypical nucleus with a prominent nucleolus, and some cells showed phagocytosis of cellular debris. The pleomorphic cells showed the same staining as the spindle cells, and the multinucleated giant cells showed the same staining as the pleomorphic cells. The cells with eosinophilic granules were positive for vimentin alone and negative to all other antibodies.

Electron microscopy showed that the pleomorphic cells had phagosomes and lysosomes containing cellular debris (Fig. 3A), a well-developed rough endoplasmic reticulum (r-ER) and Golgi apparatus in the cytoplasm. Abundant free ribosomes and r-ER were observed in the cytoplasm of the spindle cells, and the lumen of some r-ERs was expanded. These cells had an oval nucleus and a distinct nucleolus and the nuclear membrane was deeply stained. Furthermore, fibril formation was also seen in the extracellular spaces (Fig. 3B). The round cells had a high N/C ratio and contained abundant free ribosomes, a few mitochondria and undeveloped r-ERs in the small cytoplasm (Fig. 3C). In the cytoplasm of the cells with eosinophilic granules, several osmiophilic globules were surrounded by a limiting membrane with a diameter of 1 to 1.5 μm, and some of the osmiophilic globules contained glycogen granule-like substances and granules measuring approximately several hundred nm (Fig. 3D).

The tumor mainly consisted of three types of cells, including pleomorphic cells, spindle cells and round cells. Based on the findings of phagocytosis of cellular debris, positive immunohistochemical staining for F4/80 and vimentin and ultrastructural evidence of phagosomes and lysosomes containing cellular debris in the cytoplasm, the pleomorphic cells were suggested to be histiocytes. On the other hand, the spindle cells demonstrated fasciculation, collagen fibers were seen on Masson’s trichrome staining and there was ultrastructural evidence of fibril formation. Furthermore, the cells were positive for vimentin on immunohistochemical staining. The above-mentioned findings suggested that the spindle cells might be fibroblasts. It was considered that the round cells scattered in the tumor might be undifferentiated mesenchymal cells because of their positive reaction to vimentin on immunohistochemical staining and no ultrastructural evidence of differentiation to other mesenchymal cells. Thus, the tumor mass in this case consisted of pleomorphic histiocytes, cells undergoing differentiation to fibroblasts and undifferentiated mesenchymal cells, and the tumor was therefore diagnosed as a MFH.

In this case, some tumor cells contained PAS-positive eosinophilic granules that were found to be osmiophilic globules surrounded by a limiting membrane with a diameter of 1 to 1.5 μm on electron microscopy. Some of the globules contained glycogen granule-like substances and granules measuring approximately several hundred nanometers. Cells with these features are called eosinophilic globule (EG) cells, which were reported in a previous study in 18% (27 of 150) of ICR mice with MFH-like sarcoma).

The present study could not clarify the causes and signifi-
The present case did not show proliferation of collagen fibers with typical storiform patterns, which is one of the distinctive features of MFH, but showed a lot of undifferentiated mesenchymal cells, which suggested that it was a relatively poorly differentiated MFH. The incidence of undifferentiated sarcoma in p53 knockout mice was reported to be 14% (8 of 56 mice) by Okada et al., 10% (3 of 30 mice) by Harvey et al. and 5% (3 of 60 mice) by Donehower et al. However, there are no reports of undifferentiated sarcoma in TCRβ knockout mice. Therefore, the relatively poorly differentiated histology of this case might be attributable to a p53 gene defect.

This case developed MFH at 16 weeks of age, which was a relatively young age. Previous studies reported that...
the age of onset of spontaneous MFH in nontransgenic mice including A/J mice and ICR mice was 1 year old or older\(^2,3\).

Spontaneous MFH has been reported in genetically modified animals including p53 knockout mice and p53 and transporter for antigen presentation-1 double-knockout mice, but the reports did not give the age of onset\(^17,18\). The life span of p53 knockout mice is approximately 6 months, which suggests that the age of onset of MFH in the above-mentioned genetically modified mice may be less than 6 months old. In addition, various types of sarcoma including malignant lymphoma develop in younger p53 knockout mice under 6 months old\(^15–18\). The above-mentioned findings suggested that the relatively younger age of onset, 16 weeks, might be attributable to a p53 gene defect.

Many studies have been conducted using various genetically modified mice including p53 gene knockout mice to elucidate the mechanism of pathogenesis and to establish preventive methods. This case indicated that genetically modified mice develop tumors at an early age and that the histological features are different from those previously reported for nontransgenic mice. Accordingly, this case should be taken into consideration when tumors of such genetically modified mice are diagnosed.

References

1. Ernst H, Long PH, Wadsworth PF, Leininger JR, Reiland S, and Konishi Y. Soft tissue and skeletal muscle. In: International Classification of Rodent Tumors the Mouse. U Mohr, P Greaves, N Ito, CC Capen, JF Hardisty, PH Long, DL Dungworth, Y Hayashi and G Krinke (eds). Springer, Berlin. 361–388. 2001.
2. Watanabe I, Kurosawa N, and Nishihira T. Establishment and characterization of a murine cell-line derived from malignant fibrous histiocytoma of A/Jackson mouse. Tohoku J. Exp. Med. 184: 173–187. 1998. [Medline] [CrossRef]
3. Takahashi K, Maita K, and Shirasu Y. Eosinophililic globule cells in mouse MFH-like sarcomas Light and electron microscopic studies. Virchows archiv B Cell Pathol. 59: 367–376. 1990. [CrossRef]
4. Kado S, Uchida K, Funabashi H, Iwata S, Nagata Y, Ando M, Onoue M, Matsuoka Y, Ohwaki M, and Morotomi M. Intestinal microflora are necessary for development of spontaneous adenocarcinoma of the large intestine in T-cell receptor β chain and p53 double-knockout mice. Cancer Res. 61: 2395–2398. 2001. [Medline]
5. Funabashi H, Uchida K, Kado S, Matsuoka Y, and Ohwaki M. Establishment of a Tcrb and Trp53 genes deficient mouse strain as an animal model for spontaneous colorectal cancer. Exp Anim. 50: 41–47. 2001. [Medline] [CrossRef]
6. Mombaerts P, Clarke AR, Rudnicki MA, Iacomini J, Itohara S, Lafaille JJ, Wang L, Ichikawa Y, Jaenisch R, Hooper...
ML, and Tonegawa S. Mutations in T-cell antigen receptor genes α and β block thymocyte development at different stages. Nature. 360: 225–231. 1992. [Medline] [CrossRef]

7. Mombaerts P, Arnoldi J, Russ F, Tonegawa S, and Kaufmann SH. Different roles of αβ and γδ T cells in immunity against an intracellular bacterial pathogen. Nature. 365: 53–56. 1993. [Medline] [CrossRef]

8. Mombaerts P, Mizoguchi E, Ljunggren H-G, Iacomini J, Ishikawa H, Wang L, Grusby MJ, Glimcher LH, Winn HJ, Bhan AK, and Tonegawa S. Peripheral lymphoid development and function in TCR mutant mice. Int. Immunol. 6: 1061–1070. 1994. [Medline] [CrossRef]

9. Roberts S, Smith AL, West AB, Wen L, Findly RC, Owen MJ, and Hayday AC. T-Cell αβ+ and γδ+ deficient mice display abnormal but distinct phenotypes toward a natural, widespread infection of the intestinal epithelium. Proc. Natl. Acad. Sci. USA. 93: 11774–11779. 1996. [Medline] [CrossRef]

10. Mombaerts P, Mizoguchi E, Grusby MJ, Glimcher LH, Bhan AK, and Tonegawa S. Spontaneous development of inflammatory bowel disease in T cell receptor mutant mice. Cell. 75: 274–282. 1993. [Medline] [CrossRef]

11. Malkin D, Li FP, Strong LC, Fraumeni JF Jr, Nelson CE, Kim DH, Kassel J, Gryka MA, Bischoff FZ, Tainsky MA, and Friend SH. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science. 250: 1233–1238. 1990. [Medline] [CrossRef]

12. Greenblatt MS, Bennnett WP, Hollstein M, and Harris CC. Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res. 54: 4855–4878. 1994. [Medline]

13. Levine AJ. p53, the cellular gatekeeper for growth and division. Cell. 88: 323–331. 1997. [Medline] [CrossRef]

14. Vogelstein B, and Kinzler KW. p53 function and dysfunction. Cell. 70: 523–526. 1992. [Medline] [CrossRef]

15. Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA Jr, Butel JS, and Bradley A. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature. 356: 215–221. 1992. [Medline] [CrossRef]

16. Harvey M, McArthur MJ, Montgomery CA Jr, Butel JS, Bradley A, and Donehower LA. Spontaneous and carcinogen-induced tumorigenesis in p53-deficient mice. Nature Genetics. 5: 225–229. 1993. [Medline] [CrossRef]

17. Okada M, Kimura H, Yoshijima K, Koike T, Imaeda T, Tanikawa Y, Shinoda A, and Nishio T. Spontaneous tumors in p53-deficient mice. J Toxicol Pathol. 10: 239–242. 1997.

18. Johnsen AK, France J, Nagy N, Askew D, Abdul-Karim FW, Gerson SL, Sy MS, and Harding CV. Systemic deficits in transporter for antigen presentation (TAP)-1 or proteasome subunit LMP2 have little or no effect on tumor incidence. Int J Cancer. 91: 366–372. 2001. [Medline] [CrossRef]