New Precise Measurement of the Pion Weak Form Factors in $\pi^+ \to e^+\nu\gamma$ Decay

M. Bychkov,1 D. Počanić,1 B. A. VanDevender,1 V. A. Baranov,2 W. Bertl,3 Yu. M. Bybritsky,2 E. Frlež,1 V. A. Kalinnikov,2 N. V. Khomutov,2 A. S. Korenchenko,2 S. M. Korenchenko,2 M. Korolija,4 T. Kozlowski,5 N. P. Kravchuk,2 N. A. Kuchinsky,2 W. Li,1 D. Mehterovici,4 D. Mzhavia,2,6 S. Ritt,3 P. Robmann,7 O. A. Rondon-Aramayo,1 A. M. Rozhdestvensky,2 T. Sakhelashvili,3 S. Schen,7 U. Straumann,7 I. Supek,4 Z. Tsamalaidze,2,6 A. van der Schaaf,7 E. P. Velicheva,2 V. P. Volnykh,2 Y. Wang,1 and H.-P. Wirtz3

1Department of Physics, University of Virginia, Charlottesville, VA 22904-4714, USA
2Joint Institute for Nuclear Research, RU-141980 Dubna, Russia
3Paul Scherrer Institut, Villigen PSI, CH-5232, Switzerland
4Institut “Rudjer Bošković,” HR-10000 Zagreb, Croatia
5Institutu Problemu Jądrowych im. Andrzeja Sołtana, PL-05-400 Świerk, Poland
6Institute for High Energy Physics, Tbilisi State University, GUS-380086 Tbilisi, Georgia
7Physik-Institut, Universität Zürich, CH-8057 Zürich, Switzerland

We have measured the $\pi^+ \to e^+\nu\gamma$ branching ratio over a wide region of phase space, based on a total of 65,460 events acquired using the PIBETA detector. Minimum-γ^2 fits to the measured (E_{ν}, E_{γ}) energy distributions result in the weak form factor value of $F_A = 0.0119(1)$ with a fixed value of $F_V = 0.0259$. An unconstrained fit yields $F_V = 0.0258(17)$ and $F_A = 0.0117(17)$. In addition, we have measured $\alpha = 0.10(6)$ for the dependence of F_V on q^2, the $e^+\nu$ pair invariant mass squared, parametrized as $F_V(q^2) = F_V(0)(1 + a \cdot q^2)$. The branching ratio for the kinematic region $E_{\gamma} > 10$ MeV and $\theta_{e\nu} > 40^\circ$ is measured to be $B^{\exp} = 73.86(54) \times 10^{-5}$. Earlier deviations we reported in the high-E_{γ}/low-E_{ν} kinematic region are resolved, and we find full compatibility with CVC and standard $V-A$ calculations without a tensor term. We also derive new values for the pion polarizability, $\alpha_E = 2.78(10) \times 10^{-4}$ fm3, and neutral pion lifetime, $\tau_{\pi^0} = (8.5 \pm 1.1) \times 10^{-17}$ s.

PACS numbers: 14.40.Aq, 13.20.Cz, 11.30.Rd

Radiative pion decay $\pi^+ \to e^+\nu\gamma$ (also denoted $\pi_{e\gamma}$), where γ is a real photon, offers the best means to study pion form factors at zero momentum transfer. Pion form factors provide critical input to low-energy effective theories of the strong interaction, such as chiral perturbation theory (ChPT). Previous experimental studies of the $\pi_{e\gamma}$ decay were constrained by relatively low event statistics and limited kinematic coverage, leaving room for speculative interpretations including an anomalously large tensor interaction term. In this Letter we report precise new results of a combined analysis of data recorded with the PIBETA detector, removing the limitations and ambiguities found in previous work.

In the standard description, the $\pi_{e\gamma}$ decay amplitude consists of the inner bremsstrahlung (IB), structure-dependent (SD), and interference terms. The SD terms are parametrized by vector (F_V) and axial vector (F_A) form factors (see Ref. [2] for a review). The conserved vector current (CVC) hypothesis relates F_V to the π^0 lifetime [3] [4] [5], yielding $F_V = 0.0259(9)$ [6]. ChPT calculations [7] [8] [9] [10] give a value for F_A in the range 0.010–0.012.

Due to the above noted limitations, authors of previous experimental studies fixed F_V at the CVC-predicted value and evaluated F_A with resulting relative uncertainties ranging from $\pm 12\%$ to $\pm 56\%$ [11] [12] [13] [14] [15] [16]. None of these measurements was sensitive to the form factor dependence on the $e^+\nu$ pair invariant mass. Because of inconsistencies in the available data, a relatively large non-$\pm(V-A)$ tensor contribution to the SD terms was considered (see Ref. [17] and references therein). Our first measurement [18] reported a significant improvement in the accuracy of F_A, but also noted a substantial deficit of observed events in the high-E_{γ}/low-E_{ν} kinematic region, still leaving room for non-$\pm(V-A)$ admixtures.

We performed measurements at the $\pi E1$ beam line at the Paul Scherrer Institute (PSI), Switzerland, using a stopped π^+ beam and the PIBETA large-acceptance CsI calorimeter with central tracking [1]. A total of over 2.0×10^{13} π^+'s stopped in the active target during the two measuring periods were used in the analysis. The first data set (1999–2001) was collected during the high-E_{γ}/low-E_{ν} kinematic region, and directions of the positron and photon, thus over-

radiating pion decay $\pi^+ \to e^+\nu$ (also denoted $\pi_{e\gamma}$), where γ is a real photon, offers the best means to study pion form factors at zero momentum transfer. Pion form factors provide critical input to low-energy effective theories of the strong interaction, such as chiral perturbation theory (ChPT). Previous experimental studies of the $\pi_{e\gamma}$ decay were constrained by relatively low event statistics and limited kinematic coverage, leaving room for speculative interpretations including an anomalously large tensor interaction term. In this Letter we report precise new results of a combined analysis of data recorded with the PIBETA detector [1], removing the limitations and ambiguities found in previous work.

In the standard description, the $\pi_{e\gamma}$ decay amplitude consists of the inner bremsstrahlung (IB), structure-dependent (SD), and interference terms. The SD terms are parametrized by vector (F_V) and axial vector (F_A) form factors (see Ref. [2] for a review). The conserved vector current (CVC) hypothesis relates F_V to the π^0 lifetime [3] [4] [5], yielding $F_V = 0.0259(9)$ [6]. ChPT calculations [7] [8] [9] [10] give a value for F_A in the range 0.010–0.012.

Due to the above noted limitations, authors of previous experimental studies fixed F_V at the CVC-predicted value and evaluated F_A with resulting relative uncertainties ranging from $\pm 12\%$ to $\pm 56\%$ [11] [12] [13] [14] [15] [16]. None of these measurements was sensitive to the form factor dependence on the $e^+\nu$ pair invariant mass. Because of inconsistencies in the available data, a relatively large non-$\pm(V-A)$ tensor contribution to the SD terms was considered (see Ref. [17] and references therein). Our first measurement [18] reported a significant improvement in the accuracy of F_A, but also noted a substantial deficit of observed events in the high-E_{γ}/low-E_{ν} kinematic region, still leaving room for non-$\pm(V-A)$ admixtures.

We performed measurements at the $\pi E1$ beam line at the Paul Scherrer Institute (PSI), Switzerland, using a stopped π^+ beam and the PIBETA large-acceptance CsI calorimeter with central tracking [1]. A total of over 2.0×10^{13} π^+'s stopped in the active target during the two measuring periods were used in the analysis. The first data set (1999–2001) was collected during the high-E_{γ}/low-E_{ν} kinematic region, and directions of the positron and photon, thus over-
energy spectrum ending at \(\sim 52.8 \text{ MeV} \). In the 99-01 data set the 1HT trigger was prescaled 16- or 8-fold. Our \(\pi_{e2\gamma} \) data set covers three non-overlapping kinematic regions given in Tab. 4, region I data were acquired with the 2HT trigger, while the 1HT trigger mapped out regions II and III. In all three regions the \(\pi_{e2\gamma} \) decay is strongly dominated by the SD+ term proportional to \((F_V + F_A)^2\) \cite{2}. Candidate \(\pi_{e2\gamma} \) events exhibit one neutral shower in the calorimeter coincident in time with a positron track.

For the events with more than one available combination, i.e., more than one neutral shower or positron track, the pair most nearly coincident in time was chosen. Events incompatible with the \(\pi_{e2\gamma} \) kinematics were rejected in the final data sample.

Due to the nature of the detector resolution function, the experimental kinematic region contains a fraction of events shifted from a broader kinematic range. We therefore used the reconstructed events in regions I, II, and III to evaluate the branching ratios \(B_{\pi e2\gamma}^{\exp} \), for the larger regions A, B, and C, respectively, and O, the combination of all three regions, by means of Monte Carlo (MC) extrapolation. On the other hand, we calculated the theoretical branching fractions \(B_{\pi e2\gamma} \) for the same regions numerically using only the input parameters \((F_V, F_A, a)\), as described below, and the standard description of the decay, including radioactive corrections \cite{2}. Accidental background was dominated by positrons from \(\pi_{e2} \) and \(\pi_{\mu\gamma} \) decays accompanied by an unrelated neutral shower. It was corrected for by subtracting histograms of observables projected using the out-of-time cut \(\Delta t_{\text{cut}} : (5 \text{ ns} < |t_{e^+} - t_\gamma| < 10 \text{ ns}) \) from the in-time histograms projected via the cut \(\Delta t_{\text{in}} : (|t_{e^+} - t_\gamma| \leq 5 \text{ ns}) \). The 2004 data sample with lower stopped beam intensity provided an improvement of the signal to accidental background ratios from 1.7:1 to 10:1 in region II and 4.4:1 to 30:1 in region III.

Non-accidental background sources were predominately \(\pi_\beta \) events for which one \(\pi^0 \) decay photon converts in the target, producing a charged track in the detector. Having measured the net yield of the \(\pi_\beta \) decay events in our detector, we have used a MC simulation to calculate the fraction of \(\pi_\beta \) decay events misidentified as \(\pi_{e2\gamma} \). This class of background events contributes \(\sim 6.0\% \) of the signal in the kinematic region I and negligible amounts in regions II and III. The \(\pi_\beta \) contamination was subtracted in the calculation of \(\pi_{e2\gamma} \) yields.

In order to evaluate the branching ratio of the \(\pi_{e2\gamma} \) decay in any given kinematic region, for normalization we used the \(\pi_{e2} \) events, recorded in parallel via the one-arm HT calorimeter trigger. This procedure assures the cancellation of the imprecisely known total number of stopped \(\pi^+ \)'s, and \(\epsilon_{\text{trac}} \), the combined tracking efficiency of \(\pi^+ \)'s. No statistically significant \(e^\pm \) energy dependence was observed for \(\epsilon_{\text{trac}} \) \cite{22}. Thus, the experimental branching ratio for the \(\pi^+ \rightarrow e^\pm \nu_\gamma \) decay can be calculated from the expression

\[
B_{\pi e2\gamma}^{\exp} = \frac{N_{\pi e2\gamma}}{N_{\pi e2} p_{\pi e2}} \frac{A_{\pi e2}}{A_{\pi e2\gamma}},
\]

where \(N_{\pi e2\gamma} \) is the number of the detected \(\pi_{e2\gamma} \) (\(\pi_{e2} \) events), \(A_{\pi e2\gamma} (A_{\pi e2}) \) is the experimental acceptance for the given decay type incorporating the appropriate cuts, and \(B_{\pi e2} = 1.2352(1) \times 10^{-4} \) is the theoretical \(\pi_{e2} \) branching ratio \cite{23} \cite{24}. The factor \(p_{\pi e2} \) denotes the prescaling of the one-arm HT trigger; it applied to the 1999–2001 data set only.

The experimental acceptances were calculated in a \textsc{geant3} based MC program \cite{25}. This simulation incorporates a precise description of the \textsc{pibeta} detector geometry as well as the electronics response of the experimental setup. Figure 1 demonstrates the match between the MC simulation and the background-subtracted data in regions I, II and III. The number \(N_{\pi e2} \) was extracted from an independent fit of the time distribution of the \(\pi_{e2} \) event candidates. Upon imposing appropriate kinematic cuts and performing the background subtraction procedure we have reconstructed 35,948 \(\pm 194 \) (0.54\%) events in region I, 16,246 \(\pm 331 \) (2.0\%) events in region II and 13,263 \(\pm 161 \) (1.2\%) events in region III, where numbers in parentheses are fractional statistical uncertainties obtained after accidental background subtraction. The 2004 data account for only 8\% of the total for region I, and about 43\% in regions II and III. However, because of higher accidental background subtraction, the 2004 events in II and III are statistically more significant than the 1999–2001 events. More 1999–2001 events are included here than in the analysis reported in Ref. [18] thanks to a broadening of the acceptance cuts made possible by refinements in the treatment of the positron energy deposited in the target. The acceptance cuts were adjusted so as to achieve minimal overall statistical uncertainty after background subtraction. The dominant sources of the systematic uncertainties are region dependent and are summarized in Table III. Total statistical and systematic uncertainties for each region are summed in quadrature; they are given in Table III.

In order to extract the values of \(F_V, F_A \), and \(a \), and calculate the values of the branching ratios, we minimized the \(\chi^2 \) sum of differences between the experimen-
branching ratios are proportional to $B_{\pi\gamma2}$, therefore our χ^2 sum assures that the values of the extracted parameters are independent of the value of $B_{\pi\gamma2}$.

For comparison with previous work, and to illustrate the sensitivity of our data, we performed a fit with fixed values of $F_{V} = 0.0259$ [6], $a = 0.041$ [29], yielding $F_A = (119 \pm 1) \times 10^{-4}$ for the free parameter, with $\chi^2/n.d.f. = 0.96$. This result represents a sixteenfold improvement in precision over the pre-PIBETA world average [27]. Table [III] and Fig. [I] show the excellent agreement between the measured integral and differential branching ratios, and those calculated for the best-fit parameter values, reflecting the exceptionally good description of our data by CVC and standard $V-A$ theory in all regions of phase space. The previously reported anomalous shortage of events in region B [18] is thus resolved. In this work the calorimeter energy calibration (CEC) for γ-induced showers was uncoupled from that of the $e^+\nu$-induced showers, resulting in a ~2% difference. The clean 2004 data set revealed this discrepancy for the first time in the 1HT π_β decay event sample. Due to the limited statistical significance of such events in the 1999–2001 set, it was not feasible to evaluate a separate γ CEC in our original analysis. Because of the extreme sensitivity of region II to the γ energy scale, the effect was significant only in this region. More details can be found in Ref. [28] and in a forthcoming publication.

Because of the strong dominance by the SD$^+$ term, our data are most sensitive to the combination $F_A + F_V$. This sensitivity is illustrated in Fig. [2] produced by a two-parameter (F_A, F_V) fit. The best-fit value of F_A has an empirical linear dependence on the value of F_V parametrized as

$$F_A = (-1.0286 \cdot F_V + 0.03853) \pm 0.00014. \quad (2)$$

This expression will remain applicable as the CVC-predicted value of F_V changes thanks to future improved measurements of τ_{π_0}, the neutral pion lifetime [29].

We also examined the question of non-($V-A$) contributions to the $\pi_{e2\gamma}$ decay by introducing tensor coupling following the prescription of Ref. [17]. The optimal fit yields a single tensor form factor, $F_T = (-0.6 \pm 2.8) \times$

Source of uncertainty	Region I (%)	Region II (%)	Region III (%)
MC of trigger threshold	0.57	0.37	1.22
Calorimeter energy calibration	0.45	0.38	0.60
Corr. to π_{e2} acceptance	0.20	0.20	0.20
Num. of π_{e2} events	0.13	0.13	0.13
All other sources combined	0.19	0.02	0.05
Total	0.79	0.58	1.38

TABLE III: Best-fit $\pi_{e2\gamma}$ branching ratios obtained with $F_V = 0.0259$ (fixed), $a = 0.041$ (fixed) and $F_A = 0.0119(1)$ (fit). Experimental uncertainties in parentheses reflect both the statistical and systematic uncertainties, given above. Theoretical uncertainties are dominated by the fit uncertainty in F_A.

Region	$B_{\exp} \times 10^8$	$B_{\text{the}} \times 10^8$	B_{\exp}/B_{the}
A	2.614(21)	2.599(11)	1.006(9)
B	14.46(22)	14.45(2)	1.001(15)
C	37.69(46)	37.49(3)	1.005(12)
O	73.86(54)	74.11(3)	0.997(7)
FIG. 2: Contour plot of loci of constant χ^2 for the minimum value χ^0 plus 1, 2, and 4 units, respectively, in the F_A-F_V parameter plane, keeping the parameter $a = 0.041$. The range of the CVC prediction, $F_V = 0.0259(9)$ is indicated.

10^{-4}, or $-5.2 \times 10^{-4} < F_T < 4.0 \times 10^{-4}$ with 90% confidence. Our limits on F_T are in excellent agreement with Refs. [20, 60], but are two orders of magnitude more constraining than the results reported by the ISTRA group [16, 31].

Finally, in an unconstrained $V-A$ fit we released all three parameters F_A, F_V, and a simultaneously, and obtained $F_A = 0.0117(17)$, $F_V = 0.0258(17)$ and $a = 0.10(6)$. These results are nearly identical to those of the two-parameter (F_A, F_V) fit presented in Fig. 2 and Eq. [2].

In summary, our results: (i) are in excellent agreement with the CVC hypothesis prediction for F_V, (ii) represent a fourteenfold improvement in the precision of F_V and a similar improvement in F_A, and (iii) provide the first ever measurement of the charged pion form factor slope parameter a, also found to be consistent with CVC. The PEN experiment [32], currently under way at PSI, will add substantially to our $\pi\gamma\gamma$ data set. Our best-fit value of F_A agrees well with ChPT calculations, tending to the top of the reported range [7,8,9]. However, a more precise measurement of $\tau_{\pi 0}$ is needed in order that the sensitivity of our data, expressed in Eq. [2], be put to full use in determining F_A. We use our form factor results to evaluate the pion polarizability and the ChPT parameter sum $L_6^a + L_1^{10}$ as follows: using the one-parameter fit we obtain $\alpha_E = -\beta_M = 2.78(2)\exp(10)_{F_V} \times 10^{-4}$ fm3, and $L_6^a + L_1^{10} = 0.00145(1)\exp(5)_{F_V}$, where the first uncertainty comes from the fit and the second from the current CVC-derived value of F_V. Alternatively, we get $\alpha_E = 2.7 \times 10^{-4}$ fm3 and $L_6^a + L_1^{10} = 0.0014(3)$ based on our unconstrained fit of F_A and F_V. In addition, we use the latter fit result and CVC to make an independent determination of the neutral pion lifetime: $\tau_{\pi 0} = (8.5 \pm 1.1) \times 10^{-17}$ s.

We thank Z. Hochman for critical help in preparing and carrying out the measurements, M. V. Chizhov for valuable discussions and theoretical guidance, and J. Portoles and V. Mateu for their timely calculation of the charged pion form factor slope. The PIBETA experiment has been supported by the U.S. National Science Foundation, U.S. Department of Energy, the Paul Scherrer Institute, and the Russian Foundation for Basic Research.

* Corresponding author: mab3ed@virginia.edu
† Corresponding author: pocanic@virginia.edu.

[1] E. Frlež et al., Nucl. Inst. & Meth. in Phys. Res. A 526, 300 (2004).
[2] D. A. Bryman et al., Phys. Rep. 88, 151 (1982).
[3] V. G. Vaks and B. L. Ioffe, Nuovo Cim. 10, 342 (1958).
[4] S. S. Gershtein and I. B. Zel’dovich, Zh. Eksp. Teor. Fiz. 29, 698 (1955), [Soviet Phys.-JETP 2, 576 (1956)].
[5] R. P. Feynman and M. Gell-Mann, Phys. Rev. 109, 193 (1958).
[6] C. Amsler et al., Phys. Lett. B667, 1 (2008).
[7] B. R. Holstein, Phys. Rev. D 33, 3316 (1986).
[8] J. Bijnens and P. Talavera, Nucl. Phys. B 489, 387 (1997).
[9] C. Q. Geng et al., Nucl. Phys. B 648, 281 (2004).
[10] H. Pichl and R. Unterdorfer, Eur. Phys. J. C 55, 273 (2008).
[11] P. Depommier et al., Phys. Lett. 7, 285 (1963).
[12] A. Stetz et al., Nucl. Phys. B 138, 285 (1978).
[13] A. Bay et al., Phys. Lett. B 174, 445 (1986).
[14] L. E. Piilonen et al., Phys. Rev. Lett. 57, 1402 (1986).
[15] C. A. Dominguez and J. Soile, Phys. Lett. B 208, 131 (1988).
[16] V. N. Bolotov et al., Phys. Lett. B 243, 308 (1990).
[17] M. V. Chizhov, Phys. Part. Nucl. Lett. 2, 193 (2005).
[18] E. Frlež et al., Phys. Rev. Lett. 93, 181804 (2004).
[19] D. Počančić et al., Phys. Rev. Lett. 93, 181803 (2004).
[20] http://pibeta.phys.virginia.edu/.
[21] Y. M. Bystritsky, E. A. Kuraev, and E. P. Velicheva, Phys. Rev. D 69, 114004 (2004).
[22] B. A. VanDevender, Ph.D. thesis, University of Virginia (2005) p. 35.
[23] W. J. Marciano and A. Sirlin, Phys. Rev. Lett. 71, 3629 (1993).
[24] V. Cirigliano and I. Rosell, Phys. Rev. Lett. 99, 231801 (2007).
[25] R. Brun et al., GEANT 3.21, CERN, Geneva (1994).
[26] J. Portoles and V. Mateu, Eur. Phys.J. C52, 325 (2007).
[27] S. Edelmann et al., Phys. Lett. B 502, 1 (2004).
[28] M. Bychkov, Ph.D. thesis, University of Virginia (2005).
[29] Primex collaboration, http://www.jlab.org/primex/.
[30] M. B. Voloshin, Phys. Lett. B 283, 120 (1992).
[31] A. A. Poblaguev, Phys. Rev. D 68, 054020 (2003).
[32] http://pen.phys.virginia.edu/.