A FINITE ELEMENT METHOD FOR ELLIPTIC PROBLEMS WITH OBSERVATIONAL BOUNDARY DATA

ZHIMING CHEN, RUI TUO, AND WENLONG ZHANG

ABSTRACT. In this paper we propose a finite element method for solving elliptic equations with the observational Dirichlet boundary data which may subject to random noises. The method is based on the weak formulation of Lagrangian multiplier. We show the convergence of the random finite element error in expectation and, when the noise is sub-Gaussian, in the Orlicz ψ_2-norm which implies the probability that the finite element error estimates are violated decays exponentially. Numerical examples are included.

1. INTRODUCTION

In many scientific and engineering applications involving partial differential equations, the input data such as sources or boundary conditions are usually given through the measurements which may subject to random noises. Let $\Omega \subset \mathbb{R}^2$ be a bounded domain with smooth boundary Γ. In this paper we consider the problem to find $u \in H^1(\Omega)$ such that

$$\begin{align*} -\Delta u &= f \quad \text{in } \Omega, \\
 u &= g_0 \quad \text{on } \Gamma.
\end{align*}$$

Here $f \in L^2(\Omega)$ is given but the boundary condition $g_0 \in H^2(\Gamma)$ is generally unknown. We assume we know the measurements $g_i = g_0(x_i) + e_i$, $i = 1, 2, \ldots, n$, where $T = \{x_i : 1 \leq i \leq n\}$ is the set of the measurement locations on the boundary Γ and e_i, $i = 1, 2, \ldots, n$, are independent identically distributed random variables over some probability space $(\mathcal{X}, \mathcal{F}, \mathbb{P})$ satisfying $E[e_i] = 0$ and $E[e_i^2] = \sigma > 0$. In this paper \mathbb{P} denotes the probability measure and $E[X]$ denotes the expectation of the random variable X. We remark that for simplicity we only consider the problem of observational Dirichlet boundary data in this paper and the problem with observational sources f or other type of boundary conditions can be studied by the same method.

A different perspective of solving partial differential equations with uncertain input data due to incomplete knowledge or inherent variability in the system has drawn considerable interests in recent years (see e.g. [3, 9, 12, 18] and the references therein). The goal of those studies is to learn about the uncertainties in system outputs of interest, given information about the uncertainties in the system inputs which are modeled as random field. This goal usually leads to the mathematical problem of breaking the curse of dimensionality for solving partial differential equations having large number of parameters.

Date: October 10, 2018.
2000 Mathematics Subject Classification. 65N30, 65N15.
This work was supported in part by the National Center for Mathematics and Interdisciplinary Sciences, CAS and China NSF under the grant 11021101 and 11321061.
The classical problem to find a smooth function from the knowledge of its observation at scattered locations subject to random noises is well studied in the literature \[2,10,16,6]\]. One popular model to tackle this classical problem is to use the thin plate spline model \[10,20\], which can be efficiently solved by using finite element methods \[1,16,6\]. The scattered data in our problem (1.1) are defined on the boundary of the domain and a straightforward application of the method developed in \[10,20,11,16,6\] would lead to solve a fourth order elliptic equation on the boundary which would be much more expansive than the method proposed in this paper.

Our method is based on the following weak formulation of Lagrangian multiplier for (1.1) in \[2\]: Find \((u, \lambda) \in H^1(\Omega) \times H^{-1/2}(\Gamma)\) such that

\begin{align}
(\nabla u, \nabla v) + \langle \lambda, v \rangle &= (f, v), \quad \forall v \in H^1(\Omega), \\
\langle \mu, u \rangle &= \langle \mu, g \rangle, \quad \forall \mu \in H^{1/2}(\Gamma),
\end{align}

where \(\langle \cdot , \cdot \rangle\) is the duality pairing between \(H^1(\Omega)\) and \(H^1(\Omega)'\) which is an extension of the inner product of \(L^2(\Omega)\) and \(\langle \cdot , \cdot \rangle\) is the duality pairing between \(H^{1/2}(\Gamma)\) and \(H^{-1/2}(\Gamma)\) which is an extension of the inner product of \(L^2(\Gamma)\). Let \(\Omega_h\) be a polygonal domain which approximates the domain \(\Omega\). Let \(V_h \subset H^1(\Omega_h)\) and \(Q_h \subset L^2(\Gamma)\) be the finite element spaces for approximating the field variable and the Lagrangian multiplier. Our finite element method is defined as follows: Find \((u_h, \lambda_h) \in V_h \times Q_h\) such that

\begin{align}
(\nabla u_h, \nabla v_h)_{\Omega_h} + \langle \lambda_h, v_h \rangle_n &= (I_h f, v_h)_{\Omega_h}, \quad \forall v_h \in V_h, \\
\langle \mu_h, u_h \rangle_n &= \langle \mu_h, g \rangle_n, \quad \forall \mu_h \in Q_h,
\end{align}

where \(\langle \cdot , \cdot \rangle_{\Omega_h}\) is the inner product of \(L^2(\Omega_h)\), \(\langle \cdot , \cdot \rangle_n\) is some quadrature rule for approximating \(\langle \cdot , \cdot \rangle\), and \(I_h\) is some finite element interpolation operator (we refer to section 2 for the precise definitions). We remark that while the method of Lagrangian multiplier is one of the standard ways in enforcing Dirichlet boundary condition on smooth domains, it is essential here for solving the problem with Dirichlet observational boundary data even when the domain \(\Omega\) is a polygon. One can also combine the techniques developed in this paper with other weak formulations in \[17\] to deal with the observational Dirichlet boundary condition.

Our analysis in section 3 shows that

\begin{align}
\mathbb{E} \left[\| u - u_h \circ \Phi_h^{-1} \|_{L^2(\Omega)} \right] \leq C h^2 \ln h \| \Delta(u, f, g_0) \| + C | \ln h | (\sigma n^{-1/2}),
\end{align}

where \(\Delta(u, f, g_0) = \| u \|_{H^2(\Omega)} + \| f \|_{H^2(\Omega)} + \| g_0 \|_{H^2(\Gamma)}\) and \(\Phi_h : \Omega_h \rightarrow \Omega\) is the Lenoir homeomorphism defined in section 3. This error estimate suggests that in order to achieve the optimal convergence, one should take the number of sampling points satisfying \(\sigma n^{-1/2} \leq C h^2\) to compute the solution over a finite element mesh of the mesh size \(h\). For problems having Neumann or Robin boundary conditions, the same method of the analysis in this paper yields this relation should be changed to \(\sigma n^{-1/2} \leq C h\). This suggests the importance of appropriate balance between the number of measurements and the finite element mesh sizes for solving PDEs with random observational data.

If the random variables \(\epsilon_i, 1 \leq i \leq n,\) are also sub-Gaussian, we prove by resorting to the theory of empirical processes that for any \(z > 0\),

\[\mathbb{P} \left(\| u - u_h \circ \Phi_h^{-1} \|_{L^2(\Omega)} \geq \left[h^2 | \ln h | \| \Delta(u, f, g_0) \| + | \ln h | (\sigma n^{-1/2}) \right] z \right) \leq 2e^{-Cz^2}. \]
This implies that the probability of the random error \(\|u - u_h\|_{L^2(\Omega)}\) violating the error estimate in \([1, 4]\) decays exponentially.

The layout of the paper is as follows. In section 2 we introduce our finite element formulation and derive an error estimate based on the Babuška-Brezzi theory. In section 3 we study the random finite element error in terms of the expectation. In section 4 we show the stochastic convergence of our method when the random noise is sub-Gaussian. In section 5 we report some numerical examples to confirm our theoretical analysis.

2. The finite element method

We start by introducing the finite element meshes. Let \(\mathcal{M}_h\) be a mesh over \(\Omega\) consisting of curved triangles. We assume each element \(K \in \mathcal{M}_h\) has at most one curved edge and the edge of the element \(K\) is curved only when its two vertices all lie on the boundary \(\Gamma\). For any \(K \in \mathcal{M}_h\), we denote \(\hat{K}\) the straight triangle which has the same vertices as \(K\). We set \(\Omega_h = \bigcup_{K \in \mathcal{M}_h} \hat{K}\) and assume the mesh \(\mathcal{M}_h = \{\hat{K} : K \in \mathcal{M}_h\}\) over \(\Omega_h\) is shape regular and quasi-uniform:

\[
(2.1) \quad h_{\hat{K}} \leq C \rho_{\hat{K}}, \quad \forall K \in \mathcal{M}_h, \quad h_{\hat{K}} \leq C h_{\hat{K}'} , \quad \forall K, K' \in \mathcal{M}_h,
\]

where \(h_{\hat{K}}\) and \(\rho_{\hat{K}}\) are the diameter of \(\hat{K}\) and the diameter of the biggest circle inscribed in \(\hat{K}\). The finite element space for the field variable is then defined as

\[
V_h = \{v_h \in C(\Omega_h) : v_h|_{\hat{K}} \in P_1(\hat{K}), \forall \hat{K} \in \mathcal{M}_h\},
\]

where \(P_1(\hat{K})\) is the set of the linear polynomials on \(\hat{K}\). As usual, we denote \(h = \max_{\hat{K} \in \mathcal{M}_h} h_{\hat{K}}\).

Let \(\mathcal{E}_h = \{K \cap \Gamma : K \in \mathcal{M}_h\}\) be the mesh of \(\Gamma\) which is induced from \(\mathcal{M}_h\). We assume that each element \(E \in \mathcal{E}_h\) is the image of the reference element \(\hat{E} = [0, 1]\) under a smooth mapping \(F_E\). Since the boundary \(\Gamma\) is smooth, the argument in \([7, \text{Theorem 4.3.3}]\) implies that if the diameter of the element \(h_E\) is sufficiently small,

\[
(2.2) \quad \|\hat{D} F_E\|_{L^\infty(\hat{E})} \leq C h_{\hat{E}}, \quad \|D_T F_E^{-1}\|_{L^\infty(\hat{E})} \leq C h_{\hat{E}}^{-1}, \quad \forall E \in \mathcal{E}_h,
\]

where \(\hat{D}\) is the derivative in \(\hat{E}\) and \(D_T\) is the tangential derivative on \(\Gamma\). It is then obvious that there are constants \(C_1, C_2\) independent of the mesh \(\mathcal{M}_h\) such that \(C_1 h \leq h_E \leq C_2 h, \quad \forall E \in \mathcal{E}_h\). We use the following finite element space for the Lagrangian multiplier \([17]\):

\[
(2.3) \quad Q_h = \{\mu_h \in C(\Gamma) : \mu_h|_E = \hat{\mu}_h \circ F_E^{-1}, \text{ for some } \hat{\mu}_h \in P_1(\hat{E}), \forall E \in \mathcal{E}_h\},
\]

where \(P_1(\hat{E})\) is the set of linear polynomials over \(\hat{E}\).

We assume that the measurement locations \(T\) are uniformly distributed over \(\Gamma\) in the sense that \([20]\) there exists a constant \(B > 0\) such that \(\frac{s_{\max}}{s_{\min}} \leq B\), where

\[
s_{\max} = \sup_{x \in \Gamma} \inf_{1 \leq i \leq n} s(x, x_i), \quad s_{\min} = \inf_{1 \leq i \neq j \leq n} s(x_i, x_j),
\]

where \(s(x, y)\) is the arc length between \(x, y \in \Gamma\). It is easy to see that there exist constants \(B_1, B_2\) such that \(B_1 n^{-1} \leq s_{\max} \leq B s_{\min} \leq B_2 n^{-1}\).

We introduce the empirical inner product between the data and any function \(v \in C(\Gamma)\) as \(\langle g, v \rangle_n = \sum_{i=1}^n \alpha_i g_i v(x_i)\). We also write \(\langle u, v \rangle_n = \sum_{i=1}^n \alpha_i u(x_i) v(x_i)\) for any \(u, v \in C(\Gamma)\) and the empirical norm \(\|u\|_n = (\sum_{i=1}^n \alpha_i u(x_i)^2)^{1/2}\) for any \(u \in C(\Gamma)\). We remark that the empirical norm is in fact a semi-norm on \(C(\Gamma)\).
The weights α_j, $i = 1, 2 \cdots, n$, are chosen such that $\langle u, v \rangle_n$ is a good quadrature formula for the inner product $\langle u, v \rangle$ that we describe now.

Let $\mathbb{T}_E = \mathbb{T} \cap E$ be the measurement points in $E \in \mathcal{E}_h$. Since the measurement locations are uniformly distributed, $n_E = \# \mathbb{T}_E \sim nh_E$. We further assume $t_{j,E} = F^{-1}_E(x_j), j = 1, 2, \cdots, n_E$, are ordered as $0 = t_{0,E} < t_{1,E} < \cdots < t_{n_E,E} \leq t_{n_E+1,E} = 1$. We remark that the vertices of the element E need not be at the measurement locations. Denote $\Delta t_{j,E} = t_{j,E} - t_{j-1,E}, j = 1, 2, \cdots, n_E + 1$. We define the following quadrature formula

$$Q_{t,E}(w) = \sum_{j=1}^{n_E} \omega_{j,E} w(t_{j,E}), \quad \forall w \in C(\hat{E}),$$

where $\omega_{1,E} = \Delta t_{1,E} + \frac{1}{2} \Delta t_{2,E}, \omega_{j,E} = \frac{1}{2} (\Delta t_{j,E} + \Delta t_{j+1,E}), j = 2, \cdots, n_E - 1, \omega_{n_E,E} = \frac{1}{2} \Delta t_{n_E,E} + \Delta t_{n_E+1,E}$.

Lemma 2.1. There exists a constant C independent of \mathbb{T}_E such that

$$\left| \int_0^1 w(t) dt - Q_{t,E}(w) \right| \leq C \int_0^1 |w''(t)| dt + \frac{1}{2} \Delta t_{1,E} \int_{t_0,E}^{t_{1,E}} |w'(t)| dt + \frac{1}{2} \Delta t_{n_E+1,E} \int_{t_{n_E,E}}^{t_{n_E+1,E}} |w'(t)| dt, \quad \forall w \in W^{2,1}(\hat{E}) .$$

Proof. We introduce the standard piecewise trapezoid quadrature rule

$$\hat{Q}_{t,E}(w) = \frac{1}{2} \sum_{j=1}^{n_E+1} \Delta t_{j,E} \left(w(t_{j,E}) + w(t_{j-1,E}) \right),$$

which is exact for linear functions. By the Bramble-Hilbert lemma we know that there exists a constant C such that

$$\left| \int_0^1 w(t) dt - \hat{Q}_{t,E}(w) \right| \leq C \int_0^1 |w''(t)| dt, \quad \forall w \in W^{2,1}(\hat{E}).$$

Now the lemma follows since

$$Q_{t,E}(w) - \hat{Q}_{t,E}(w) = \left(\frac{1}{2} \Delta t_{1,E} \left(w(t_{1,E}) - w(t_{0,E}) \right) + \frac{1}{2} \Delta t_{n_E+1,E} \left(w(t_{n_E,E}) - w(t_{n_E+1,E}) \right) \right).$$

This completes the proof. \(\square\)

Now for any $v \in C(\Gamma)$ we can define the following quadrature rule which defines the weights $\alpha_j, j = 1, 2, \cdots, n$, in the empirical inner product,

$$\int_{\Gamma} v ds = \sum_{E \in \mathbb{E}_h} \int_0^1 v(F_E(t)) |F'_E(t)| dt$$

$$\approx \sum_{E \in \mathbb{E}_h} \sum_{j=1}^{n_E} \omega_{j,E} |F'_E(t_{j,E})| v(x_j)$$

$$= \sum_{j=1}^{n} \alpha_j v(x_j), \quad \alpha_j = \sum_{E \in \mathbb{E}_h, x_j \in \mathbb{T}_E} \omega_{j,E} |F'_E(t_{j,E})|.$$
\(\omega_{j,E} \sim 1/n_E \sim 1/(nh_E)\). This implies by (2.2) there exist constants \(B_3, B_4\) such that

\[
B_3 n^{-1} \leq \alpha_j \leq B_4 n^{-1}, \quad j = 1, 2, \ldots, n.
\]

Let \(y_j, j = 1, 2, \ldots, J,\) be the nodes of the mesh \(\mathcal{M}_h\) on \(\Gamma\). For any \(v_h \in V_h\), we define \(\Pi_h v_h \in Q_h\) such that \(\Pi_h v_h(y_j) = v_h(y_j), j = 1, 2, \ldots, J\). For any \(E \in \mathcal{E}_h\), let \(\tilde{E}\) be the segment connecting two vertices of \(E\) and denote \(F_E : \tilde{E} \to E\) the affine mapping from the reference element \(\tilde{E}\) to \(E\). Then \((\Pi_h v_h)(F_E(t)) = v_h(F_E(t)), \forall t \in \tilde{E}\).

Now we are in the position to define the finite element solution for the problem (1.2)-(1.3). Given \(f \in H^2(\Omega)\) and the observation \(g_i\) at \(x_i\) of the boundary value \(g_0(x_i), i = 1, 2, \ldots, n\), find \((u_h, \lambda_h) \in V_h \times Q_h\) such that

\[
|\langle \nabla u_h, \nabla v_h \rangle_\Omega + \langle \lambda_h, \Pi_h v_h \rangle_n | = |\langle I_h f, v_h \rangle_\Omega|, \forall v_h \in V_h, \tag{2.9}
\]

\[
\langle \mu_h, \Pi_h u_h \rangle_n = \langle \mu_h, g \rangle_n, \forall \mu_h \in Q_h, \tag{2.10}
\]

where \((\cdot, \cdot)_\Omega\) is the inner product of \(L^2(\Omega_h)\) and \(I_h : C(\bar{\Omega}) \to V_h\) is the standard Lagrange interpolation operator. The interpolation operator \(I_h\) can be replaced by the Clément interpolant \([8]\) if the source \(f\) is less regular. We remark that the computation in (2.9)-(2.10) does not involve any geometric representation of the boundary \(\Gamma\) due to the introduction of the quadrature.

Following [15, 17] we introduce the following mesh-dependent Sobolev norms

\[
\|v\|_{1/2,h}^2 = \sum_{E \in \mathcal{E}_h} h_E^{-1} \|v\|_{L^2(E)}^2, \quad \|v\|_{1/2,h}^{-1} = \sum_{E \in \mathcal{E}_h} h_E \|v\|_{L^2(E)}^{-1}, \forall v \in L^2(\Gamma).
\]

We use the following norms for functions \(v_h \in V_h, \mu_h \in Q_h\)

\[
\|v_h\|_{V_h} = \left(\|\nabla v_h\|_{L^2(\Omega_h)}^2 + \|\Pi_h v_h\|_{L^2(E)}^2\right)^{1/2}, \quad \|\mu_h\|_{Q_h} = \|\mu_h\|_{-1/2,h}.
\]

We consider now the well-posedness of the discrete problem (2.9)-(2.10) in the framework of Babuška-Brezzi theory. We start from the following simple lemma.

Lemma 2.2. There exists a constant \(C\) such that

\[
|\langle 1, v \rangle - \langle 1, v \rangle_n| \leq C \sum_{E \in \mathcal{E}_h} \int_0^1 \left(h_E \hat{v}_E' - h_E^2 \hat{v}_E' + h_E^3 \hat{v}_E\right) dt, \forall v \in W^{2,1}(\Gamma),
\]

where \(\hat{v}_E(t) = v|_{E}(F_E(t))\) for any \(E \in \mathcal{E}_h\).

Proof. We first note that since \(\Gamma\) is smooth, we have \(|F''_E(t)| \leq C h_E^2, |F'''_E(t)| \leq C h_E^3\) for any \(E \in \mathcal{E}_h\). Since

\[
|\langle 1, v \rangle - \langle 1, v \rangle_n| \leq \sum_{E \in \mathcal{E}_h} \left|\int_E v ds - Q_T(E, \hat{v}_E(t)|_{F_E(t)})\right|,
\]

the lemma follows easily from Lemma 2.1 by taking \(w = \hat{v}_E(t)|_{F_E(t)}\) in each element \(E \in \mathcal{E}_h\). We omit the details. \(\square\)

Lemma 2.3. Let \(K_h = \{v_h \in V_h : \langle \Pi_h v_h, \mu_h \rangle_n = 0, \forall \mu_h \in Q_h\}\). There exists a constant \(\alpha > 0\) independent of \(h, n\) such that

\[
(\nabla v_h, \nabla v_h)_{\Omega_h} \geq \alpha \|v_h\|_{V_h}^2, \forall v_h \in K_h.
\]
This shows the right inequality. Next by definition we have $E\langle 2.11 \rangle$

Thus
$$
|\langle \tilde{v}_h, \tilde{v}_h \rangle - \langle \tilde{v}_h, \tilde{v}_h \rangle_n| \leq C \|\nabla v_h\|^2_{L^2(\Omega_h)} + C h^{1/2} \|\nabla v_h\|_{L^2(\Omega_h)} \|\tilde{v}_h\|_{L^2(\Gamma)}.
$$

This shows $\|\nabla v_h\|^2_{L^2(\Omega_h)} \geq C \|\tilde{v}_h\|^2_{1/2,h}$ and completes the proof.

Lemma 2.4. There exists constants $C_1, C_2 > 0, h_0 > 0$ independent of h, n such that for $h \leq h_0$,

$$
C_1 \|\mu_h\|_{L^2(\Gamma)} \leq \|\mu_h\|_n \leq C_2 \|\mu_h\|_{L^2(\Gamma)}, \quad \forall \mu_h \in Q_h.
$$

Proof. Since $\hat{\mu}_h(t) = \mu_h(F_E(t))$ is linear in \hat{E} for any $E \in \mathcal{E}_h$, we use Lemma 2.2 for $v = \hat{\mu}_h$ to obtain

$$
|\langle \mu_h, \mu_h \rangle - \langle \mu_h, \mu_h \rangle_n| \leq C \sum_{E \in \mathcal{E}_h} \int_E h_E |\hat{\mu}_h|^2 dt \leq C \|\mu_h\|^2_{L^2(\Gamma)}.
$$

This shows the right inequality. Next by definition we have

$$
\langle \mu_h, \mu_h \rangle_n = \sum_{E \in \mathcal{E}_h} Q_{T_E}(\hat{\mu}_h^2|F'_E|).
$$

From (2.5) and (2.2) we know that for any $E \in \mathcal{E}_h$,

$$
Q_{T_E}(\hat{\mu}_h^2|F'_E|) = \frac{1}{2} \sum_{j=0}^{N_E} \int_{t_j}^{t_{j+1}} (\hat{\mu}_h(t_j)^2 + \hat{\mu}_h(t_{j+1})^2) dt \geq Ch_E \sum_{j=0}^{N_E} \int_{t_j}^{t_{j+1}} |\hat{\mu}_h(t)|^2 dt,
$$

where in the last inequality we have used the fact that $\hat{\mu}_h$ is linear in \hat{E} and the Jensen inequality for convex functions. Thus $|Q_{T_E}(\hat{\mu}_h^2|F'_E|)| \geq C \|\mu_h\|^2_{L^2(\Gamma)}$, $\forall E \in \mathcal{E}_h$. On the other hand, by (2.6) we have

$$
|Q_{T_E}(\hat{\mu}_h^2|F'_E|) - \hat{Q}_{T_E}(\hat{\mu}_h^2|F'_E|)| \leq Ch_E \|\mu_h\|^2_{L^2(\Gamma)}.
$$

Therefore, by (2.11), $\|\mu_h\|_n \geq C \|\mu_h\|_{L^2(\Gamma)}$ for sufficiently small h. This completes the proof.

We have the following inf-sup condition for the empirical inner product.

Lemma 2.5. There exists a constant $h_0, \beta > 0$ independent of h, n such that for $h \leq h_0$,

$$
\sup_{v_h \in V_h \setminus \{0\}} \frac{\langle \Pi_h v_h, \mu_h \rangle_n}{\|v_h\|_{V_h}} \geq \beta \|\mu_h\|_{Q_h}, \quad \forall \mu_h \in Q_h.
$$
Proof. The proof follows an idea in [14] where the inf-sup condition for the bilinear form \(\langle \psi_h, \mu_h \rangle \) is proved. Let \(y_j, j = 1, 2, \cdots, J \), be the nodes of the mesh \(\mathcal{M}_h \) on \(\Gamma \) and denote \(\psi_j, j = 1, 2, \cdots, J \), the corresponding nodal basis function of \(V_h \).

For any \(\mu_h \in Q_h \), we define \(v_h(x) = \sum_{j=1}^{J} \mu_h(y_j) \psi_j(x) \in V_h \). It is easy to check that

\[
\|v_h\|^2_{V_h} \leq C \sum_{j=1}^{J} |\mu_h(y_j)|^2 \leq C h^{-1} \|\mu_h\|^2_{L^2(\Gamma)}.
\]

From the definition of \(\Pi_h v_h \in Q_h \) we know that \(\Pi_h v_h = \mu_h \) on \(\Gamma \). Thus by Lemma 2.4

\[
\langle \Pi_h v_h, \mu_h \rangle_n = \|\mu_h\|^2 \geq C \|\mu_h\|^2_{L^2(\Gamma)}.
\]

This completes the proof by using (2.12). □

By Lemma 2.4 we know that for any \(v_h \in V_h, \mu_h \in Q_h \)

\[
|\langle \Pi_h v_h, \mu_h \rangle_n | \leq C \|\Pi_h v_h\|_{L^2(\Gamma)} \|\mu_h\|_{L^2(\Gamma)} \leq C \|v_h\|_{V_h} \|\mu_h\|_{Q_h}.
\]

Now by the standard Babuška-Brezzi theory (cf., e.g., [3] Proposition 5.5.4) we obtain the following theorem.

Theorem 2.6. There exists a constant \(h_0 > 0 \) independent of \(h, n \) such that for any \(h \leq h_0 \), the discrete problem (2.9)–(2.10) has a unique solution \((u_h, \lambda_h) \in V_h \times Q_h \). Moreover, for any \((u_I, \lambda_I) \in V_h \times Q_h \), we have

\[
\|u_h - u_I\|_{V_h} + \|\lambda_h - \lambda_I\|_{Q_h} \leq C \sum_{i=1}^{3} M_i h,
\]

where the errors \(M_{1h}, M_{2h}, M_{3h} \) are defined by

\[
M_{1h} = \sup_{v_h \in V_h \setminus \{0\}} \frac{|\langle \nabla u_I, \nabla v_h \rangle_{\Omega_h} + \langle \lambda_I, \Pi_h v_h \rangle_n - \langle I_h f, v_h \rangle_{\Omega_h}|}{\|v_h\|_{V_h}}, \\
M_{2h} = \sup_{\mu_h \in Q_h \setminus \{0\}} \frac{|\langle \mu_h, \Pi_h u_I - g_0 \rangle_n|}{\|\mu_h\|_{Q_h}}, \\
M_{3h} = \sup_{\mu_h \in Q_h \setminus \{0\}} \frac{|\langle \mu_h, e \rangle_n|}{\|\mu_h\|_{Q_h}}.
\]

3. Convergence of the finite element method

We will use the Lenoir homeomorphism \(\Phi_h : \Omega_h \to \Omega \) [3]. The mapping \(\Phi_h \) is defined elementwise: for any \(K \in \mathcal{M}_h \), \(\Phi_h|_K = \Psi_K \) is a \(C^2 \)-diffeomorphism from \(\tilde{K} \) to \(K \). If no edge of \(K \) belongs to \(\partial \Omega_h \), \(\Psi_K = I \), the identity. If one edge \(\tilde{E} \) of \(\tilde{K} \) lies on \(\partial \Omega_h \) which corresponds to the curved edge \(E \) of \(K \in \mathcal{M}_h \), \(\Psi_K \) maps \(\tilde{E} \) onto \(E \) and \(\Psi_K = I \), the identity, alongs the other two edges of \(\tilde{K} \). We need the following properties of \(\Psi_K \) from [3] in the following lemma.

Lemma 3.1. The following assertions are valid for any \(\tilde{K} \in \tilde{\mathcal{M}}_h \) and \(K \in \mathcal{M}_h \).

1° The mapping \(\Psi_K : \tilde{K} \to K \) satisfies the following estimates

\[
\|D^s(\Psi_K - I)\|_{L^\infty(\tilde{K})} \leq C h^{2-s}, \quad \forall s \leq 2, \quad \sup_{x \in \tilde{K}} |J(\Psi_K)(x) - 1| \leq C h,
\]

where \(J(\Psi_K) \) denotes the modulus of the Jacobi determinant of \(\Psi_K \).

2° The mapping \(\Psi_K^{-1} : K \to \tilde{K} \) satisfies

\[
\|D^s(\Psi_K^{-1} - I)\|_{L^\infty(K)} \leq C h^{2-s}, \quad \forall s \leq 2, \quad \sup_{x \in \tilde{K}} |J(\Psi_K^{-1})(x) - 1| \leq C h.
\]
Let $r_h : L^2(\Omega_h) \to V_h$ be the Clément interpolant \cite{Clement} which enjoys the following properties

\begin{equation}
|v - r_h v|_{H^1(K)} \leq C h^{m-j} |v|_{H^m(\Delta_K)}, \quad \forall K \in \hat{M}_h, 0 \leq j \leq m, m = 1, 2,
\end{equation}

\begin{equation}
|v - r_h v|_{H^1(\Omega)} \leq C h^{m-j-1/2} |v|_{H^m(\Delta_\Omega)}, \quad \forall v \in \hat{H}_h, 0 \leq j < m, m = 1, 2,
\end{equation}

where \hat{M}_h is the set of all sides of the mesh \hat{M}_h, and for any set $A \subset \Omega_h$, Δ_A is the union of the elements surrounding A. We remark that (3.1) is proved in \cite{Clement} and (3.2) is the consequence of (3.1) and the following scaled trace inequality

\begin{equation}
|v|_{L^2(\omega)} \leq C h^{-1/2} |v|_{L^2(\Delta_\omega)} + C h^{1/2} \|\nabla v\|_{L^2(\Delta_\omega)}, \quad \forall v \in H^1(\Omega).
\end{equation}

We will assume in this section the solution $u \in H^2(\Omega)$ and thus $\lambda \in H^{1/2}(\Gamma)$. By the trace theorem, there exists a function $\tilde{\lambda} \in H^1(\Omega)$ such that $\tilde{\lambda} = \lambda$ on Γ and $\|\tilde{\lambda}\|_{H^1(\Omega)} \leq C |\lambda|_{H^{1/2}(\Gamma)}$. Now we define the following interpolation operator $R_h : L^2(\Omega) \to L^2(\Omega)$

\[R_h v = [r_h(v \circ \Phi_h)] \circ \Phi_h^{-1}, \quad \forall v \in L^2(\Omega). \]

We notice that similar interpolation functions are used in \cite{Clement} where the Clément interpolation operator is replaced by the Lagrangian interpolation operator. The following theorem can be easily proved by using Lemma 3.1 and (3.1-3.2).

Lemma 3.2. For any $v \in H^2(\Omega)$, we have $\|v - R_h v\|_{H^1(\Omega)} \leq C h^{m-j} |v|_{H^m(\Omega)}$, $\|v - R_h v\|_{H^1(\Gamma)} \leq C h^{m-j-1/2} |v|_{H^m(\Omega)}$, $0 \leq j \leq m-1, m = 1, 2$.

For any $v_h \in V_h$, we denote $\tilde{v}_h = v_h \circ \Phi_h^{-1}$ which is a function defined in Ω. Let $\Omega^* = \cup_{K \in M_h^*} K$, where M_h^* is the set of all elements having one curved edge. Obviously, $|\Omega^*| \leq Ch$. By definition $\Phi_h = \Phi_K$ is identity for $K \in M_h \setminus M_h^*$, it is easy to check by using Lemma 3.1 that (cf. \cite{Clement} Lemma 8) for any $v_h, w_h \in V_h$,

\begin{equation}
|\nabla v_h, \nabla w_h|_{\Omega_h} - |\nabla \tilde{v}_h, \nabla \tilde{w}_h| \leq Ch \|v_h\|_{H^1(\Omega)} \|w_h\|_{H^1(\Omega)}.
\end{equation}

Now by the Poincaré inequality, it is easy to see that $\|v\|_{L^2(\Omega)} \leq C \|\nabla v\|_{L^2(\Omega)} + C \|v\|_{1/2, \Omega}, \forall v \in H^1(\Omega)$. Thus by (3.3)

\[\|\tilde{v}_h\|_{H^1(\Omega)} \leq \|\nabla \tilde{v}_h\|_{L^2(\Omega)} + C \|\tilde{v}_h\|_{1/2, \Omega} \leq C \|v_h\|_{V_h} + Ch^{1/2} \|\tilde{v}_h\|_{H^1(\Omega)}, \]

which implies, for sufficiently small h,

\begin{equation}
\|\tilde{v}_h\|_{H^1(\Omega)} \leq C \|v_h\|_{V_h}, \quad \forall v_h \in V_h.
\end{equation}

Lemma 3.3. Let $(u, \lambda) \in H^2(\Omega) \times H^{1/2}(\Gamma)$ be the solution of (1.2). We have

\[\|u - u_h \circ \Phi_h^{-1}\|_{H^1(\Omega)} + \|\lambda - \lambda_h\|_{1/2, \Omega} \leq Ch \|u\|_{H^2(\Omega)} + \sum_{i=1}^{3} M_{ih}, \]

where $M_{ih}, i = 1, 2, 3$, are defined in Theorem 2.6 with $u_I = r_h(u \circ \Phi_h) \in V_h$ and $\lambda_I = R_h \lambda \in Q_h$.

Proof. We first observe that by Lemma 3.2

\[\|\lambda - \lambda_I\|_{L^2(\Gamma)} \leq Ch^{1/2} \|\lambda\|_{H^1(\Omega)} \leq Ch^{1/2} \|\lambda\|_{H^{1/2}(\Gamma)} \leq Ch^{1/2} \|u\|_{H^2(\Omega)}. \]
Notice that \(\tilde{u}_h = R_h u \), we obtain by Lemma 3.2, 3.4, and Theorem 2.6 that
\[
\| u - u_h \circ \Phi_h^{-1} \|_{H^1(\Omega)} + \| \lambda - \lambda_h \|_{-1/2,h} \\
\leq \| u - R_h u \|_{H^1(\Omega)} + \| \lambda - R_h \lambda \|_{-1/2,h} + C(\| u_h - u_f \|_{V_h} + \| \lambda_h - \lambda_f \|_{Q_h}) \\
\leq Ch\| u \|_{H^2(\Omega)} + C \sum_{i=1}^3 M_{ih}.
\]
This completes the proof. \(\square \)

Lemma 3.4. We have \(M_{ih} \leq Ch |\ln h|^{1/2}(\| u \|_{H^2(\Omega)} + \| f \|_{H^2(\Omega)}) \).

Proof. We first note that by (1.2) we have
\[
(\nabla u, \nabla \tilde{v}_h) + \langle \lambda, \tilde{v}_h \rangle = (f, \tilde{v}_h), \forall v_h \in V_h.
\]
Now since \(\Pi_h v_h = \tilde{v}_h \) on \(\Gamma \), for any \(v_h \in V_h \), we have
\[
|\langle \nabla u_I, \nabla \tilde{v}_h \rangle_{\Omega_h} + \langle \lambda_I, \Pi_h v_h \rangle_{\Omega_h} - (I_h f, v_h)_{\Omega_h}| \\
\leq |\langle f, \tilde{v}_h \rangle - (I_h f, v_h)_{\Omega_h}| + |\langle \nabla u_I, \nabla \tilde{v}_h \rangle_{\Omega_h} - (\nabla u, \nabla \tilde{v}_h)\rangle + |\langle \lambda, \tilde{v}_h \rangle - \langle \lambda_I, \tilde{v}_h \rangle_{\Omega_h}|.
\]
Since \(\Phi_h = \Psi_K \) is identity for \(K \in M_h \setminus M_h^* \), we have
\[
(f, \tilde{v}_h) - (I_h f, v_h)_{\Omega_h} = \sum_{K \in M_h^*} \int_K ((f \circ \Psi_K)v_h J(\Psi_K) - I_h (f \circ \Psi_K)v_h) dx,
\]
which implies by using Lemma 3.1 that
\[
|\langle f, \tilde{v}_h \rangle - (I_h f, v_h)_{\Omega_h}| \\
\leq Ch \| f \|_{L^2(\Omega')} \| \tilde{v}_h \|_{L^2(\Omega')} + Ch^2 \| f \|_{H^2(\Omega)} \| v_h \|_{L^2(\Omega)}.
\]
Obviously, \(\| f \|_{L^2(\Omega')} \leq Ch^{1/2} \| f \|_{L^2(\Omega)} \leq C h^{1/2} \| f \|_{H^2(\Omega)}. \) Moreover, by the well-known embedding theorem \(\ref{emb} \)
\[
\| v \|_{L^p(\Omega)} \leq C p^{1/2} \| v \|_{H^1(\Omega)}, \forall v \in H^1(\Omega), \forall p > 2,
\]
we have
\[
\| v \|_{L^2(\Omega')} \leq C |\Omega^*|^{\frac{1}{2} - \frac{p}{p - 2}} \| v \|_{H^1(\Omega)} \leq Ch^{\frac{1}{2} - \frac{p}{p - 2}} \| v \|_{H^1(\Omega)}.
\]
By taking \(p = \ln(h^{-1}) \) we obtain then
\[
(3.5) \quad \| v \|_{L^2(\Omega')} \leq Ch^{1/2} |\ln h|^{1/2} \| v \|_{H^1(\Omega)}, \forall v \in H^1(\Omega).
\]
This implies
\[
(3.6) \quad |\langle f, \tilde{v}_h \rangle - (I_h f, v_h)_{\Omega_h}| \leq Ch^2 |\ln h|^{1/2} \| f \|_{H^2(\Omega)} \| v_h \|_{V_h}.
\]
By Lemma 3.2, 3.3 and 3.4 we have
\[
(3.7) \quad |\langle \nabla u_I, \nabla \tilde{v}_h \rangle_{\Omega_h} - (\nabla u, \nabla \tilde{v}_h)| \\
\leq |\langle \nabla u_I, \nabla \tilde{v}_h \rangle_{\Omega_h} - (\nabla \tilde{u}_I, \nabla \tilde{v}_h)| + |\nabla (u - \tilde{u}) \nabla \tilde{v}_h)| \\
\leq Ch \| u \|_{H^2(\Omega)} \| v_h \|_{V_h}.
\]
By using Lemma 2.2 one can prove
\[
(3.8) \quad |\langle \tilde{v}_h, w_h \rangle_n - \langle \tilde{v}_h, w_h \rangle_n| \leq Ch \| v_h \|_{H^1(\Omega_h)} \| w_h \|_{H^1(\Omega_h)}, \forall v_h, w_h \in V_h.
\]
Thus
\[
|\langle \lambda_I, \tilde{v}_h \rangle_n - \langle \lambda_I, \tilde{v}_h \rangle_n| \leq Ch \| r_h (\lambda \circ \Phi_h) \|_{H^2(\Omega_h)} \| v_h \|_{H^1(\Omega_h)}
\]
\[
\leq Ch \| u \|_{H^2(\Omega)} \| v_h \|_{V_h},
\]
which implies by using Lemma 3.2 that
\begin{equation}
|\langle \lambda, \hat{v}_h \rangle - \langle \lambda, \hat{v}_h \rangle_n | \leq C h |u|_{H^2(\Omega)} |v_h|_{V_h}.
\end{equation}

The estimate for M_{1h} now follows from (3.6), (3.7) and (3.9).

\begin{lemma}
We have $M_{2h} \leq C h |u|_{H^2(\Omega)}$.
\end{lemma}

\begin{proof}
We first observe that the argument in the proof of Lemma 2.1 implies
by Lemmas 3.3-3.5 we are left to estimate
\begin{equation}
\left| \int_0^1 w(t) dt - Q_{TE}(w) \right| \leq C |u'|_{L^2(\bar{E})}, \quad \forall w \in H^1(\bar{E}).
\end{equation}

For any $v \in H^1(\Gamma)$, by taking $w(t) = \hat{v}_E(t)|F_E(t)|$ in each element $E \in \mathcal{E}_h$, where $\hat{v}_E(t) = v|_{F_E(t)}$, we know that
\begin{equation}
|\langle 1, v \rangle - \langle 1, v \rangle_n | \leq C \sum_{E \in \mathcal{E}_h} (h_E \hat{v}_E'_{L^2(\bar{E})} + h_E^2 \hat{v}_E_{L^2(\bar{E})}).
\end{equation}

We use the above inequality for $v = \mu_h \varphi$, where $\varphi = u - \bar{u}_I$ in Γ, to obtain
\begin{equation}
|\langle \mu_h, \varphi \rangle - \langle \mu_h, \varphi \rangle_n | \leq C \sum_{E \in \mathcal{E}_h} \| \hat{\mu}_h \|_{L^2(\bar{E})} (h_E \hat{\varphi}_E'_{L^2(\bar{E})} + h_E^2 \hat{\varphi}_E_{L^2(\bar{E})}),
\end{equation}
where we have used the fact $\| \hat{\mu}_h \|_{W^{1,\infty}(\bar{E})} \leq C \| \hat{\mu}_h \|_{L^2(\bar{E})}$ since $\hat{\mu}_h \in P_1(\bar{E})$. This implies by using Lemma 3.2 again
\begin{equation}
|\langle \mu_h, u - \bar{u}_I \rangle - \langle \mu_h, u - \bar{u}_I \rangle_n | \leq C \| \mu_h \|_{L^2(\Gamma)} (\| u - R_h u \|_{L^2(\Gamma)} + h |u - R_h u|_{H^1(\Gamma)})
\end{equation}
\begin{equation}
\leq C h^{3/2} |u|_{H^2(\Omega)} \| \mu_h \|_{L^2(\Gamma)}.
\end{equation}

This completes the proof.
\end{proof}

The following theorem shows the convergence of the finite element solution in the sense of expectation.

\begin{theorem}
We have
\begin{equation}
\mathbb{E} \left[\| u - u_h \circ \Phi_h^{-1} \|_{H^1(\Omega)} + h^{1/2} \| \lambda - \lambda_h \|_{L^2(\Gamma)} \right] \leq C h |\ln h|^{1/2} (\| u \|_{H^2(\Omega)} + \| f \|_{H^2(\Omega)}) + C h^{-1} (\sigma n^{-1/2}).
\end{equation}
\end{theorem}

\begin{proof}
By Lemmas 3.3-3.5 we are left to estimate $\mathbb{E}[M_{3h}]$. We first observe that
\begin{equation}
\mathbb{E} \left[\sup_{\mu_h \in Q_h \setminus \{0\}} |\langle \mu_h, e \rangle_n |^2 \right] \leq C h^{-1} \mathbb{E} \left[\sup_{\mu_h \in Q_h \setminus \{0\}} \frac{|\langle \mu_h, e \rangle_n |^2}{\| \mu_h \|_{L^2(\Gamma)}^2} \right].
\end{equation}

Let N_h be the dimension of Q_h and $\{ \psi_i \}_{j=1}^{N_h}$ be the orthonormal basis of Q_h in the $L^2(\Gamma)$ inner product. Then for any $\mu_h = \sum_{j=1}^{N_h} (\mu_h, \psi_j) \psi_j$, by Cauchy-Schwarz inequality and (2.8)
\begin{equation}
|\langle \mu_h, e \rangle_n |^2 \leq C \frac{\mu_h}{n^2} \| \mu_h \|_{L^2(\Gamma)}^2 \sum_{j=1}^{N_h} \sum_{j=1}^{N_h} c_i \psi_j(x_i)^2.
\end{equation}

Since $c_i, i = 1, 2, \cdots , n$, are independent and identically random variables, we have
\begin{equation}
\mathbb{E} \left[\sup_{\mu_h \in Q_h \setminus \{0\}} |\langle \mu_h, e \rangle_n |^2 \right] \leq C \sigma^2 n^{-2} \sum_{j=1}^{N_h} \sum_{j=1}^{N_h} \psi_j(x_i)^2.
\end{equation}

Since the number of measurement points in E, $\# \mathcal{T}_E \leq Ch_E$ and $N_h \leq Ch^{-1}$, we obtain by using the inverse estimate that

$$
\sum_{j=1}^{N_h} \sum_{i=1}^{n} \psi_j(x_i)^2 \leq Cn h \sum_{j=1}^{N_h} \sum_{E \in \mathcal{E}_h} \|\psi_j\|^2_{L^\infty(E)} \leq CN_h n \leq Cnh^{-1}.
$$

Therefore

$$
\mathcal{E} \left[\sup_{\mu_h \in Q_h \setminus \{0\}} \frac{|\langle e, \mu_h \rangle_n|}{\|\mu_h\|_{L^2(\Gamma)}} \right] \leq Ch^{-1}(\sigma^2 n^{-1}).
$$

This, together with (3.10), yields

$$
\mathcal{E} \left[\sup_{\mu_h \in Q_h \setminus \{0\}} \frac{|\langle e, \mu_h \rangle_n|}{\|\mu_h\|_{L^2(\Gamma)}} \right] \leq Ch^{-2}(\sigma^2 n^{-1}).
$$

This completes the proof. \hfill \Box

The following lemma will be useful in deriving the improved estimate for $\|u - u_h \circ \Phi_h^{-1}\|_{L^2(\Omega)}$.

Lemma 3.7. We have

$$
\mathcal{E} \left[\sup_{\mu_h \in Q_h \setminus \{0\}} \frac{|\langle e, \mu_h \rangle_n|}{\|\mu_h\|_{H^{1/2}(\Gamma)}} \right] \leq C|\ln h|(\sigma n^{-1/2}).
$$

Proof. Let $h_0 = h \leq 1$ and $h_i = h^{(p+1-i)/(p+1)}$ for $1 \leq i \leq p$, where $p \geq 1$ is an integer to be determined later. Obviously $h_i \leq h_{i+1}$, $0 \leq i \leq p$. Let \mathcal{E}_h, be a uniform mesh over the boundary Γ and Q_h, the finite element space defined in (2.3) over the mesh Q_h. Let $\{y_k^h\}_{k=1}^{N_h}$ be the nodes of the mesh \mathcal{E}_h, $i = 0, \ldots, p$. We introduce the following Clément-type interpolation operator $\pi_h : L^1(\Gamma) \to Q_h$, such that for any $v \in L^1(\Gamma)$,

$$(\pi_h v)(y_k^h) = \frac{1}{|S(y_k^h)|} \int_{S(y_k^h)} v(x)ds(x), \quad 1 \leq k \leq N_h,$$

where $S(y_k^h)$ is the union of the two elements sharing the common node y_k^h. It is easy to show by scaling argument that

$$
\|v - \pi_h v\|_{L^2(\Gamma)} \leq h^n_m \|v\|_{H^m(\Gamma)}, \quad \forall v \in H^1(\Gamma), m = 0, 1.
$$

Thus by the theory of real interpolation of Sobolev spaces, e.g., [3] Proposition 12.1.5],

$$
\|v - \pi_h v\|_{L^2(\Gamma)} \leq C h_i^{1/2} \|v\|_{H^{1/2}(\Gamma)}, \quad \forall v \in H^{1/2}(\Gamma).
$$

Now we introduce the telescope sum

$$
\mu_h = \sum_{i=0}^{p-1} (\mu_{h_i} - \mu_{h_{i+1}}) + \mu_p, \quad \forall \mu_h \in Q_h = Q_{h_0},
$$

where $\mu_{h_i} = \pi_{h_i} \mu_h \in Q_{h_i}$, $0 \leq i \leq p + 1$. By (3.12),

$$
\|\mu_h - \mu_{h_{i+1}}\|_{L^2(\Gamma)} \leq C h_i^{1/2} \|\mu_h\|_{H^{1/2}(\Gamma)}.
$$
Then the same argument in proving (3.11) implies
\[
\mathbb{E} \left[\sup_{\mu_h \in \mathcal{Q}_h\setminus\{0\}} \frac{|\langle \epsilon, \mu_h \rangle_n|}{\|\mu_h\|_{H^{1/2}(\Gamma)}} \right] \leq C h^{1/2} h^{-1/2}(\sigma n^{-1/2}),
\]
\[
\mathbb{E} \left[\sup_{\mu_h \in \mathcal{Q}_h\setminus\{0\}} \frac{|\langle \epsilon, \mu_{h,p} \rangle_n|}{\|\mu_h\|_{H^{1/2}(\Gamma)}} \right] \leq C h^{-1/2}(\sigma n^{-1/2}).
\]
By (3.13) we then obtain
\[
\mathbb{E} \left[\sup_{\mu_h \in \mathcal{Q}_h\setminus\{0\}} \frac{|\langle \epsilon, \mu_h \rangle_n|}{\|\mu_h\|_{H^{1/2}(\Gamma)}} \right] \leq C (p + 1) h^{-\frac{1}{2}}(\sigma n^{-1/2}).
\]
This completes the proof by taking the integer \(p \) such that \(p < |\ln h| \leq p + 1 \).

Theorem 3.8. We have
\[
\mathbb{E} \left[\| u - u_h \circ \Phi_h^{-1} \|_{L^2(\Omega)} \right] \leq C h^2 |\ln h| (\| u \|_{H^2(\Omega)} + \| f \|_{H^2(\Omega)} + \| g_0 \|_{H^2(\Gamma)} + C |\ln h| (\sigma n^{-1/2}).
\]

Proof. Let \((w, p) \in H^1(\Omega) \times H^{-1/2}(\Gamma)\) be the solution of the following problem
\[
\begin{align*}
(\nabla w, \nabla v) + (p, v) &= (u - \bar{u}_h, v), \quad \forall v \in H^1(\Omega), \\
\langle \mu, w \rangle &= 0, \quad \forall \mu \in H^{-1/2}(\Gamma).
\end{align*}
\]
By the regularity theory of elliptic equations, \((w, p) \in H^2(\Omega) \times H^1(\Omega)\) and satisfies
\[
\| w \|_{H^2(\Omega)} + \| p \|_{H^1(\Omega)} \leq C \| u - \bar{u}_h \|_{L^2(\Omega)}.
\]
Let \(w_I = I_h(w \circ \Phi_h) \in V_h \) be the Lagrange interpolation of \(w \in H^2(\Omega) \) and \(p_I = r_h(p \circ \Phi_h) \in V_h \) be the Clement interpolation of \(p \in H^1(\Omega) \). By (3.16) we know that \(w = 0 \) on \(\Gamma \) and consequently, \(w_I = 0 \) on \(\Gamma_h \), \(w_I = w_I \circ \Phi_h^{-1} = 0 \) on \(\Gamma \).

Now by using (3.2)-(3.3), (2.9)-(2.10) we obtain
\[
\| u - \bar{u}_h \|_{L^2(\Omega)}^2 = (\nabla (w - w_I), \nabla (u - \bar{u}_h)) + (p - \bar{p}_I, u - \bar{u}_h)
+ [(f, \bar{w}_I) - (I_h f, \bar{w}_I)_{\Omega_h}] + [\nabla w_I \cdot \nabla u_h n - (\nabla w_I, \nabla \bar{u}_h)]
+ [\bar{p}_I u - \bar{u}_h] - (\bar{p}_I, u - \bar{u}_h)_n - (\bar{p}_I, e)_n
:= l + \cdots + VI.
\]
By Lemma 3.1 and (3.17) we have
\[
|l| + |l| \leq Ch \| u - \bar{u}_h \|_{H^1(\Omega)} \| u - \bar{u}_h \|_{L^2(\Omega)}.
\]
By (3.6) and (3.17)
\[
|l| \leq C h^2 \| u - \bar{u}_h \|_{H^1(\Omega)} \| u - \bar{u}_h \|_{L^2(\Omega)}.
\]
Since \(\Phi_h |_K = I \) for \(K \in M_h \setminus M_h^* \), by (3.3), Lemma 3.1 and (3.17) we have
\[
|IV| \leq Ch \| \bar{w}_I \|_{H^1(\Gamma)} \| \bar{u}_h \|_{H^1(\Gamma)}.
\]
Now by using (3.5), Lemma 3.1 and (3.17) we have
\[
\| \bar{u}_h \|_{H^1(\Gamma)} \leq \| u - \bar{u}_h \|_{H^1(\Omega)} + C h^{1/2} \| u \|_{H^2(\Omega)}
+ \| \bar{w}_I \|_{H^1(\Gamma)} \leq \| u - \bar{u}_h \|_{L^2(\Omega)} + C h^{1/2} \| u \|_{H^2(\Omega)}.
\]
This implies
\begin{equation}
|V| \leq C \left[\frac{1}{h}||u - \bar{u}_h||_{H^1(\Omega)} + h^2 \ln h ||u||_{H^2(\Omega)} \right] ||u - \bar{u}||_{L^2(\Omega)}.
\end{equation}

To estimate the term \(V \) we first use the triangle inequality
\[|V| \leq |\langle \bar{\eta}_I, u - \bar{u}_I \rangle| + |\langle \bar{\eta}_I, u_I - \bar{u}_h \rangle|.
\]

By using Lemma 2.2 for \(v = \bar{\eta}_I(u - \bar{u}_I) \) one obtains easily
\[|\langle \bar{\eta}_I, u_I - \bar{u}_h \rangle| \leq C h^2 \|g_0\|_{H^2(\Gamma)} \|\bar{\eta}_I\|_{L^2(\Gamma)}.
\]

Thus
\begin{equation}
|V| \leq C h^2\left(\frac{1}{h}||u - \bar{u}_h||_{H^1(\Omega)} + ||u||_{H^2(\Omega)} + \|g_0\|_{H^2(\Gamma)} \right) ||u - \bar{u}_h||_{L^2(\Omega)}.
\end{equation}

By inserting (3.19)-(3.22) into (3.18) we obtain finally
\begin{equation}
\|u - \bar{u}_h\|_{L^2(\Omega)} \leq C h^2 \ln h \left[||u||_{H^2(\Omega)} + ||f||_{H^2(\Omega)} + \|g_0\|_{H^2(\Gamma)} \right]
+ C h \|u - \bar{u}_h\|_{H^1(\Omega)} + \sup_{\mu_h \in Q_h \setminus \{0\}} \frac{|\langle e, \mu_h \rangle_n|}{\|\mu_h\|_{H^{1/2}(\Gamma)}}.
\end{equation}

The lemma now follows from Theorem 3.6 and Lemma 3.7.

4. Sub-Gaussian random errors

In this section, we will study the convergence of our finite element method when the random errors added to the boundary data are sub-Gaussian. We will use the theory of empirical processes [20, 21].

Definition 4.1. A random variable \(X \) is called sub-Gaussian with parameter \(\sigma \) if
\[\mathbb{E}[e^{\lambda (X - \mathbb{E}[X])}] \leq e^{\sigma^2 \lambda^2 / 2}, \quad \forall \lambda \in \mathbb{R}.
\]

The following definition on the Orlicz \(\psi_2 \)-norm will be used in our analysis.

Definition 4.2. Let \(\psi_2 = e^{x^2} - 1 \) and \(X \) be a random variable. The \(\psi_2 \) norm of \(X \) is defined as
\[\|X\|_{\psi_2} = \inf \left\{ C > 0 : \mathbb{E} \left[\psi_2 \left(\frac{|X|}{C} \right) \right] \leq 1 \right\}.
\]

It is known that [21, Lemma 2.2.1] if \(\|X\|_{\psi_2} \leq K \), then
\begin{equation}
P(|X| > z) \leq 2 \exp \left(-\frac{z^2}{K^2} \right), \quad \forall z > 0.
\end{equation}

Inversely, if
\begin{equation}
P(|X| > z) \leq C \exp \left(-\frac{z^2}{K^2} \right), \quad \forall z > 0,
\end{equation}
then \(\|X\|_{\psi_2} \leq \sqrt{1+C K} \).
Thus with the parameter σ, we are left to estimate $\|T\|_2$.

By Lemmas 3.3-3.5 we are left to estimate $\|X_t - X_s\|_{\psi_2}$, $\forall s, t \in T$. A set is called an ε-separated if the distance of any two points in the set is strictly greater than ε. The packing number $D(\varepsilon, T, d)$ is the maximum number of ε-separated points in T. It is easy to check that [21, P.98]

$$(4.3) \quad N(\varepsilon, T, d) \leq D(\varepsilon, T, d) \leq N(\frac{\varepsilon}{2}, T, d).$$

The following maximum inequality can be found in [21, Section 2.2.1].

Lemma 4.4. If $\{X_t : t \in T\}$ is a separable sub-Gaussian process with respect to the semi-metric d, then

$$\|\sup_{s, t \in T} |X_t - X_s|\|_{\psi_2} \leq K \int_0^{\text{diam} T} \sqrt{D(\varepsilon, T, d)} \, d\varepsilon.$$

Here $K > 0$ is some constant.

The following lemma provides the estimate of the covering number for finite dimensional subsets [11, Corollary 2.6].

Lemma 4.5. Let G be a finite dimensional subspace of $L^2(D)$ of dimension $N > 0$ and $G_R = \{f \in G : \|f\|_{L^2(D)} \leq R\}$. Then

$$N(\varepsilon, G_R, \|\cdot\|_{L^2(D)}) \leq (1 + 4R/\varepsilon)^N, \quad \forall \varepsilon > 0.$$

Theorem 4.6. We have

$$\|\|u - u_h \circ \Phi_h^{-1}\|_{H^1(D)}\|_{\psi_2} + h^{1/2}\|\lambda - \lambda_h\|_{L^2(\Gamma)}\|_{\psi_2} \leq C h \ln h^{1/2}(\|u\|_{H^2(D)} + \|f\|_{H^2(D)}) + Ch^{-1}(\sigma h^{-1/2}).$$

*Proof. By Lemmas 3.3-3.5 we are left to estimate $\|M_{3h}\|_{\psi_2}$. Let $F_h = \{\mu_h \in Q_h : \|\mu_h\|_{L^2(\Gamma)} \leq 1\}$, then

$$(4.4) \quad \|M_{3h}\|_{\psi_2} \leq h^{-1/2} \| \sup_{\mu_h \in F_h} (|\mu_h, e|)_n \|_{\psi_2}.$$

For any $\mu_h \in F_h$, denote by $E_n(\mu_h) = (\mu_h, e)_n$. Then $E_n(\mu_h) - E_n(\mu'_h) = \sum_{i=1}^n c_i e_i$, where $c_i = \alpha_i(\mu_h - \mu'_h)(x_i)$, $i = 1, 2, \cdots, n$. For any $\lambda > 0$, since $\alpha_i \leq B_4 n^{-1}$ by [2.8],

$$\mathbb{E} \left[e^{\lambda \sum_{i=1}^n c_i e_i} \right] \leq e^{\lambda^2 \sigma^2 \sum_{i=1}^n c_i^2} \leq e^{\frac{1}{2} B_4 \lambda^2 \sigma^2 - n^{-1} \|\mu_h - \mu'_h\|_n^2} = e^{\frac{1}{2} \sigma_1^2 \lambda^2},$$

where $\sigma_1 = B_4 \sigma n^{-1/2}||\mu_h - \mu'_h||_n$. Thus $E_n(\mu_h) - E_n(\mu'_h)$ is a sub-Gaussian process with the parameter σ_1. This implies by (4.1) that

$$\mathbb{P}(E_n(\mu_h - \mu'_h) > z) \leq 2e^{-z^2/2\sigma_1^2}, \quad \forall z > 0.$$

Thus $E_n(\mu_h)$ is a sub-Gaussian random process with respect to the semi-distance $d(\mu_h, \mu'_h) = \|\mu_h - \mu'_h\|_n^*$, where $\|\mu_h\|_n^* = B_4 \sigma n^{-1/2}||\mu_h||_n$.
By Lemma 2.4 we know that the diameter of \(F_h \) in terms of the semi-distance \(d \) is bounded by \(2C_2B_4(\sigma n^{-1}) \). By maximal inequality in Lemma 4.4 and (4.3) we have

\[
\sup_{\mu_h \in F_h} \| (\mu_h, \epsilon) \|_\psi \leq K \int_0^{2C_2B_4\sigma n^{-1/2}} \sqrt{\log N(\frac{\epsilon}{2}, F_h, \| \cdot \|_n)} \, d\epsilon
\]

\[
= K \int_0^{2C_2B_4\sigma n^{-1/2}} \sqrt{\log N(\frac{\epsilon}{2B_4\sigma n^{-1/2}}, F_h, \| \cdot \|_n)} \, d\epsilon.
\]

By Lemma 2.4 and Lemma 4.5 we know that for any \(\delta > 0 \),

\[
N(\delta, F_h, \| \cdot \|_n) \leq N(C_1^{-1}\delta, F_h, \| \cdot \|_{L^2(\Gamma)}) \leq (1 + 4C_1/\delta)^{N_h},
\]

where \(N_h \) is the dimension of \(Q_h \) which is bounded by \(Ch^{-1} \). Therefore,

\[
\sup_{\mu_h \in F_h} \| (\mu_h, \epsilon) \|_\psi \leq Ch^{-1/2} \int_0^{2C_2B_4\sigma n^{-1/2}} \sqrt{\log (1 + \frac{C\sigma n^{-1/2}}{\epsilon})} \, d\epsilon
\]

\[(4.5)\]

This shows \(\| M_{3h} \|_\psi \leq Ch^{-1}(\sigma n^{-1/2}) \) by (4.4).

By (4.2), Theorem 4.6 implies that the probability of the \(H^1 \)-finite element error violating the convergence order \(\| u - u_{h0} \|_{L^2(\Omega)} \) decays exponentially.

Theorem 4.7. We have

\[
\| u - u_{h0} \|_{L^2(\Omega)} \leq Ch^2|\ln h|\| f \|_{H^2(\Omega)} + \| g \|_{H^2(\Gamma)} + C|\ln h|\| \sigma n^{-1/2} \|.
\]

Proof. Let \(G_h = \{ \mu_h \in Q_h : \| \mu_h \|_{H^{1/2}(\Gamma)} \leq 1 \} \). By (3.23) we are left to show

\[
\sup_{\mu_h \in G_h} \| (\mu_h, \epsilon) \|_\psi \leq C|\ln h|\| \sigma n^{-1/2} \|.
\]

(4.6)

We again use the telescope sum in (3.13) and obtain

\[
\sup_{\mu_h \in G_h} \| (\mu_h, \epsilon) \|_\psi \leq \sum_{i=0}^{p-1} \sup_{\mu_{h_i} \in G_{h_i}} \| (\mu_{h_i} - \mu_{h_{i+1}}, \epsilon) \|_\psi + \sup_{\mu_{h_p} \in G_{h_p}} \| (\mu_{h_p}, \epsilon) \|_\psi.
\]

(4.7)

By the same argument in proving (4.5) and using (3.14) we have

\[
\sup_{\mu_{h_i} \in G_{h_i}} \| (\mu_{h_i} - \mu_{h_{i+1}}, \epsilon) \|_\psi \leq Ch_{i+1}^{1/2}(h_{i+1}^{-1/2} + h_{i+1})^{1/2}(\sigma n^{-1/2}),
\]

\[
\sup_{\mu_{h_p} \in G_{h_p}} \| (\mu_{h_p}, \epsilon) \|_\psi \leq Ch_p^{-1/2}(\sigma n^{-1/2}).
\]

(4.8)

Inserting the estimates to (4.7) shows (4.6) by taking \(p \) such that \(|\ln h| < p \leq |\ln h| + 1 \).

By (4.2), Theorem 4.7 implies that the probability of the \(L^2 \)-finite element error violating the convergence order \(\| u \|_{H^2(\Omega)} + \| f \|_{H^2(\Omega)} + \| g \|_{H^2(\Gamma)} + |\ln h|\| \sigma n^{-1/2} \| \) decays exponentially.
5. Numerical examples

In this section, we show several numerical experiments to verify the theoretical analysis in this paper. The analyses in section 3 and section 4 suggest that the optimal convergence rate can be achieved by taking $n = O(h^{-4})$. For the examples below, we take the exact solution $u_0 = \sin(5x + 1)\sin(5y + 1)$.

Example 5.1. We take $\Omega = (0, 1) \times (0, 1)$. We construct the finite element mesh by first dividing the domain into $h^{-1} \times h^{-1}$ uniform rectangles and then connecting the lower left and upper right angle. We set $\{x_i\}_{i=1}^n$ being uniformly distributed on Γ, and e_i, $i = 1, 2, \ldots, n$, being independent normal random variables with variance $\sigma = 2$. We take different $n = h^{-i}$, $i = 1, 2, 3, 4$. Figure 5.1 shows the convergence rate of the error in the H^1 and L^2 norm for each choice of n. Table 5.1 show the convergence rate α in the H^1 norm and the convergence rate β in the L^2 norm.

We observe the numerical results confirm our theoretical analysis. The optimal convergence rate is achieved when choosing $n = h^{-4}$ while the other choices do not achieve optimal convergence. For example, when $n = h^{-2}$, the L^2 error is approximately $O(h^1)$ and no convergence for the H^1 error.

Example 5.2. We take Ω be a unit circle. The mesh is depicted in Figure 5.2. We set $\{x_i\}_{i=1}^n$ being uniformly distributed on Γ, and let $e_i = \eta_i + \alpha_i$, $i = 1, 2, \ldots, n$, where η_i and α_i are independent normal random variables with variance $\sigma_1 = 1$ and $\sigma_2 = 10e_i$, $i = 1, 2, \ldots, n$. We take different $n = h^{-i}$, $i = 1, 2, 3, 4$. Figure 5.3 shows the convergence rate of the error in the H^1 and L^2 norm for each choice of n. Table 5.2 show the convergence rate α in the H^1 norm and the convergence rate β in the L^2 norm. Here again we observe the numerical results confirm our theoretical analysis.

References

[1] R. Arcangéli, R. Manzanilla, and J.J. Torrens, Approximation spline de surfaces de type explicite comportant des failles, Math. Model. Numer. Anal. 31 (1997), 649-676.
Table 5.1.
The convergence rate α in the H^1 norm and β in the L^2 norm on the unit square.

n	h	H^1 error	α	L^2 error	β
$n = h^{-1}$	0.1000	8.8686	0.3978	0.1394	-0.5043
	0.0125	24.3951	0.4866	0.1974	-0.6107
$n = h^{-2}$	0.1000	2.8101	0.1348	0.1974	-1.0037
	0.0125	2.7125	-0.0170	0.0167	-0.0170
$n = h^{-3}$	0.1000	0.9637	0.0537	0.0017	-1.6649
	0.0125	0.3094	-0.5464	0.0017	-1.6649
$n = h^{-4}$	0.1000	0.6325	0.0380	6.3816e-4	-1.9656
	0.0125	0.0838	-0.9721	6.3816e-4	-1.9656

Figure 5.2. The uniform mesh for the unit circle with mesh size $h = 0.1$.

Figure 5.3. The log-log plot of the convergence rate on the unit circle.

[2] I. Babuška, *The finite element method with Lagrangian multipliers*, Numer. Math. 20 (1973), 179-192.

[3] I. Babuška, R. Tempone, and G.E. Zouraris, *Galerkin finite element approximations of Stochastic elliptic partial differential equations*, SIAM J. Numer. Anal. 42 (2004), 800-825.

[4] D. Boffi, F. Brezzi, and M. Fortin, *Mixed Finite Element Methods and Applications*, Springer-Verlag, Berlin, 2013.
Table 5.2. The convergence rate α in the H^1 norm and β in the L^2 norm on the unit circle.

n	h	H^1 error	α	L^2 error	β
$n = h^{-1}$	0.1000	46.5037	2.5872		
	0.0125	127.832	0.9527	-0.4804	
$n = h^{-2}$	0.1000	13.1775	0.8668		
	0.0125	16.1040	0.1133	-0.9787	
$n = h^{-3}$	0.1000	5.4157	0.2924		
	0.0125	1.7581	-0.5410	0.0113	-1.5665
$n = h^{-4}$	0.1000	2.0009	0.0980		
	0.0125	0.2527	-0.9950	0.0016	-1.9790

[5] S.C. Brenner and L.R. Scott, *The Mathematical Theory of Finite Element Methods*, Springer-Verlag, New York, 1994.
[6] Z. Chen, R. Tuo, and W. Zhang, *Stochastic convergence of a nonconforming finite element method for the thin plate spline smoother for observational data*, [arXiv:1701.08626](https://arxiv.org/abs/1701.08626).
[7] P.G. Ciarlet, *The Finite Element Method for Elliptic Problems*, North-Holland, Amsterdam, 1978.
[8] P. Clément, *Approximation by finite element functions using local regularization*, RAIRO Anal. Numer. 9 (1975), 77–84.
[9] A. Cohen and R. DeVore, *Approximation of high-dimensional parametric PDEs*, Acta Numerica 24 (2015), 1-159.
[10] J. Duchon, *Splines minimizing rotation-invariant semi-norms in Sobolev spaces*, in Constructive Theory of Functions of Several Variables, Lecture Notes in Mathematics 571, 1977, 85-100.
[11] S.A. van de Geer, *Empirical process in M-estimation*, Cambridge University Press, Cambridge, 2000.
[12] M.D. Gunzburger, C.G. Webster, and G. Zhang, *Stochastic finite element methods for partial differential equations with random input data*, Acta Numerica 23 (2014), 521-650.
[13] M. Lenoir, *Optimal isoparametric finite elements and error estimates for domains involving curved boundaries*, SIAM J. Numer. Anal. 23 (1986), 562-580.
[14] J. Pitkäranta, *Boundary subspaces for the finite element method with Lagrange multipliers*, Numer. Math. 33 (1979), 272-289.
[15] J. Pitkäranta, *Local stability conditions for the Babuška method of Lagrange multiplier*, Math. Comp. 35 (1980), 1113-1129.
[16] S. Roberts, M. Hegland, and I. Altas, *Approximation of a thin plate spline smoother using continuous piecewise polynomial functions*, SIAM J. Numer. Anal. 41 (2003), 208-234.
[17] R. Stenberg, *On some techniques for approximating boundary conditions in the finite element method*, J. Comp. Appl. Math. 63 (1995), 139-148.
[18] T. Tang and T. Zhou, *Recent developments in high order numerical methods for uncertainty quantification*, Sci. Sin. China 45 (2015), 891-928. (in Chinese)
[19] X. Ren and J. Wei, *On a two-dimensional elliptic problem with large exponent in nonlinearity*, Trans. Amer. Math. Soc. 343 (1994), 749-763.
[20] F.I. Utreras, *Convergence rates for multivariate smoothing spline functions*, J. Approx. Theory 52 (1988), 1-27.
[21] A.W. van der Vaart and J.A. Wellner, *Weak Convergence and Empirical Processes: with Applications to Statistics*, Springer, New York, 1996.
[22] G. Wahba, *Spline Models for Observational Data*, SIAM, Philadelphia, 1990.
LSEC, Institute of Computational Mathematics, Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing 100190, China and School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

E-mail address: zmchen@lsec.cc.ac.cn

Institute of Systems Science, Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing 100190, China

E-mail address: tuorui@amss.ac.cn

School of Mathematical Science, University of Chinese Academy of Sciences, Beijing 100190, China.

E-mail address: zhangwl@lsec.cc.ac.cn