Ambiguity Resolution for Machine Translation of Telegraphic Messages

Young-Suk Lee
Lincoln Laboratory
MIT
Lexington, MA 02173
USA
ysl@ssl.ll.mit.edu

Clifford Weinstein
Lincoln Laboratory
MIT
Lexington, MA 02173
USA
cjw@ssl.ll.mit.edu

Stephanie Seneff
SLS, LCS
MIT
Cambridge, MA 02139
USA
seneff@lcs.mit.edu

Dinesh Tummala
Lincoln Laboratory
MIT
Lexington, MA 02173
USA
tummala@ssl.ll.mit.edu

Abstract

Telegraphic messages with numerous instances of omission pose a new challenge to parsing in that a sentence with omission causes a higher degree of ambiguity than a sentence without omission. Misparsing induced by omissions has a far-reaching consequence in machine translation. Namely, a misparse of the input often leads to a translation into the target language which has incoherent meaning in the given context. This is more frequently the case if the structures of the source and target languages are quite different, as in English and Korean. Thus, the question of how we parse telegraphic messages accurately and efficiently becomes a critical issue in machine translation. In this paper we describe a technical solution for the issue, and present the performance evaluation of a machine translation system on telegraphic messages before and after adopting the proposed solution. The solution lies in a grammar design in which lexicalized grammar rules defined in terms of semantic categories and syntactic rules defined in terms of part-of-speech are utilized together. The proposed grammar achieves a higher parsing coverage without increasing the amount of ambiguity/misparsing compared with a purely lexicalized semantic grammar, and achieves a lower degree of ambiguity/misparses without decreasing the parsing coverage when compared with a purely syntactic grammar.

1 Introduction

Achieving the goal of producing high quality machine translation output is hindered by lexical and syntactic ambiguity of the input sentences. Lexical ambiguity may be greatly reduced by limiting the domain to be translated. However, the same is not generally true for syntactic ambiguity. In particular, telegraphic messages, such as military operations reports, pose a new challenge to parsing in that frequently occurring ellipses in the corpus induce a higher degree of syntactic ambiguity than for text written in "grammatical" English. Misparsing triggered by the ambiguity of the input sentence often leads to a mistranslation in a machine translation system, as in (1), where the input becomes how to parse telegraphic messages accurately and efficiently to produce high quality translation output.

In general the syntactic ambiguity of an input text may be greatly reduced by introducing semantic categories in the grammar to capture the re-occurrence restrictions of the input string. In addition, ambiguity introduced by omission can be reduced by lexicalizing grammar rules to delimit the lexical items which typically occur in phrases with omission in the given domain. A drawback of this approach, however, is that the grammar coverage is quite low. On the other hand, grammar coverage may be maximized when we rely on syntactic rules defined in terms of part-of-speech at the cost of a high degree of ambiguity. Thus, the goal of maximizing the parsing coverage while minimizing the ambiguity may be achieved by adequately combining lexicalized rules with semantic categories, and non-lexicalized rules with syntactic categories. The question is how much semantic and syntactic information is necessary to achieve such a goal.

In this paper we propose that an adequate amount of lexical information to reduce the ambiguity in general originates from verbs, which provide information on subcategorization, and prepositions, which are critical for PP-attachment ambiguity resolution. For the given domain, lexicalizing domain-specific expressions which typically occur in phrases with omission is adequate for ambiguity resolution. Our experimental results show that the mix of syntactic and semantic grammars and proposed here has advantages over either a syntactic grammar or a lexicalized semantic grammar. Compared with a syntactic grammar, the proposed grammar achieves a much lower degree of ambiguity without decreasing the grammar coverage. Compared with a lexicalized semantic grammar, the proposed grammar achieves a higher rate of parsing coverage without increasing the ambiguity. Furthermore, the generality introduced by the syntactic rules facilitates the porting of the system to other domains as well as enabling the system to handle unknown words efficiently.

This paper is organized as follows. In section 2 we discuss the motivation for lexicalizing grammar rules with semantic categories in the context of translating telegraphic messages, and its drawbacks with respect to parsing coverage. In section 3 we propose a grammar writing technique which minimizes the ambiguity of the input and maximizes the parsing coverage. In section 4 we give our experimental results of the technique on the basis of two sets of unseen test data. In section 5 we discuss system engineering issues to accommodate the proposed technique, i.e., integration of part-of-speech tagger and the adaptation of the understanding system. Finally section 6 provides a summary of the paper.

2 Translation of Telegraphic Messages

Telegraphic messages contain many instances of phrases with omission, cf. (Grishman, 1989), as in (1). This introduces a greater degree of syntactic ambiguities than for texts without any omitted element, thereby posing a new challenge to parsing.

(1) TU-95 destroyed 220 nm. (= An aircraft TU-95 was destroyed at 220 nautical miles)

Syntactic ambiguity and the resultant misparse induced by such an omission often leads to a mistranslation in a machine translation system, such as the one described in (Weinstein et al., 1996), which is depicted in Figure 1.

The system depicted in Figure 1 has a language understanding module TINA, (Seneff, 1992), and a language generation module...
To accommodate sentences like (5)a-b, the grammar needs to allow all instances of noun phrases (NP hereafter) to be ambiguous between an NP and a prepositional phrase (PP hereafter) where the preposition is omitted. Allowing an input where the copula verb be is omitted in the grammar causes the past tense form of a verb to be interpreted either as the main verb with the appropriate form of be omitted, as in (6)a, or as a reduced relative clause modifying the preceding noun, as in (6)b.

(6) Aircraft launched at 1300 z ...
 a. Aircraft were launched at 1300 z ...
 b. Aircraft which were launched at 1300 z ...

Such instances of ambiguity are usually resolved on the basis of the semantic information. However, relying on a semantic module for ambiguity resolution implies that the parser needs to produce all possible parses of the input text and carry them along, thereby requiring a more complex understanding process.

One way of reducing the ambiguity at an early stage of processing without relying on a semantic module is to incorporate domain/semantic knowledge into the grammar as follows:

- Lexicalize grammar rules to delimit the lexical items which typically occur in phrases with omission;
- Introduce semantic categories to capture the co-occurrence restrictions of lexical items.

Some example grammar rules instantiating these ideas are given in (7).

(7) a. .locative_PP [at in near on ...] NP [af] np_distance
deadless_PP [af] np_bearing
b. .temporal_PP [during after prior.to ...] NP time_expression
c. numeric nautical_mile [af] numeric gmt
d. numeric yard

(7)a states that a locative prepositional phrase consists of a subset of prepositions and a noun phrase. In addition, there is a subcategory headless_PP which consists of a subset of noun phrases which typically occur in a locative prepositional phrase with the preposition omitted. The head nouns which typically occur in prepositional phrases with the preposition omission are "nautical miles" and "yard". The rest of the rules can be read in a similar manner. And it is clear how such lexicalized rules with the semantic categories reduce the syntactic ambiguity of the input text.

2.2 Drawbacks

Whereas the language processing is very efficient when a system relies on a lexicalized semantic grammar, there are some drawbacks as well.

- Since the grammar is domain and word specific, it is not easily ported to new constructions and new domains.
- Since the vocabulary items are entered in the grammar as part of lexicalized grammar rules, if an input sentence contains words unknown to the grammar, parsing fails.

These drawbacks are reflected in the performance evaluation of our machine translation system. After the system was developed on all the training data of the MUC-II corpus (640 sentences, 12 words/sentence average), the system was evaluated on the held-out test set of 111 sentences (hereafter TEST set). The results are shown in Table 1. The system was also evaluated on the data which were collected from an in-house experiment. For this experiment, the subjects were asked to study a number of MUC-II sentences, and create about 20 MUC-II-like sentences.
In this section, we discuss typical misparses for the syntactic grammar on experiments in the MUC-II corpus. We then illustrate how these misparses are corrected by lexicalizing the grammar rules for verbs, prepositions, and some domain-specific phrases.

3.1 Typical Misparses Caused by Syntactic Grammar

The misparses we find in the MUC-II corpus, when tested on a syntactic grammar, are largely due to the three factors specified in (9).

Table 1: TEST Data Evaluation Results on the Lexicalized Semantic Grammar

Total No. of sentences	111
No. of sentences with no unknown words	66/111 (59.5%)
No. of parsed sentences	23/66 (34.8%)
No. of misparsed sentences	2/29 (8.7%)

Table 2: TEST' Data Evaluation Results on the Lexicalized Semantic Grammar

Total No. of sentences	281
No. of sentences with no unknown words	239/281 (85.1%)
No. of parsed sentences	103/239 (43.1%)
No. of misparsed sentences	15/103 (14.6%)

Table 3: TEST Data Evaluation Results on the Syntactic Grammar

Total No. of sentences	23
No. of parsed sentences	84/111 (75.7%)
No. of misparsed sentences	24/84 (29%)

Table 4: TEST Data Evaluation Results on the Mixed Grammar

Total No. of sentences	23
No. of parsed sentences	86/111 (77.7%)
No. of misparsed sentences	9/86 (10%)

In terms of parsing coverage, the two grammars perform equally well (around 76%). In terms of misparse rate, however, the grammar which utilizes only syntactic categories shows a much higher
Figure 2: Mispars due to incorrect verb subcategorization

Figure 3: Mispars due to PP-attachment ambiguity
Figure 4: Misparse due to Omission of Preposition

Figure 5: Parse Tree with Correct Verb Subcategorization
Figure 6: Parse Tree with Correct PP-attachment

Figure 7: Corrected Parse Tree
rate of misparse (i.e. 29%) than the grammar which utilizes both syntactic and semantic categories (i.e. 10%). Comparing the evaluation results on the mixed grammar with those on the lexicalized semantic grammar discussed in Section 2, the parsing coverage of the mixed grammar is much higher (77%) than that of the semantic grammar (39.5%). In terms of misparse rate, both grammars perform equally well, i.e. around 9%.6

4.2 Experimental Results on Data Set TEST’

Tagger	Before Training	After Training
Tagging Accuracy		
Before Training	1249/1287 (97%)	1263/1287 (98%)
After Training I	1249/1287 (97%)	1263/1287 (98%)

Table 7: Tagger Evaluation on Data Set TEST

5 System Engineering

An input to the parser driven by a grammar which utilizes both syntactic and lexicalized semantic rules consists of words (to be covered by lexicalized semantic rules) and part-of-speech (to be covered by syntactic rules). To accommodate the part-of-speech input to the parser, the input sentence has to be part-of-speech tagged before parsing. To produce an adequate translation output from the input containing parts-of-speech, there has to be a mechanism by which parts-of-speech are used for parsing purposes, and the corresponding lexical items are used for the semantic frame representation.

5.1 Integration of Rule-Based Part-of-Speech Tagger

To accommodate the part-of-speech input to the parser, we have integrated the rule-based part-of-speech tagger, (Brill, 1992), (Brill, 1995), as a preprocessor to the language understanding system TINA, as in Figure 8. An advantage of integrating a part-of-speech tagger over a lexicon containing part-of-speech information is that only the former can tag words which are new to the system, and provides a way of handling unknown words.

While most stochastic taggers require a large amount of training data to achieve high rates of tagging accuracy, the rule-based tagger achieves performance comparable to or higher than that of stochastic taggers, even with a training corpus of a modest size. Given that the size of our training corpus is fairly small (total 7716 words), a transformation-based tagger is well suited to our needs.

The transformation-based part-of-speech tagger operates in two stages. Each word in the tagged training corpus has an entry in the lexicon consisting of a partially ordered list of tags, indicating the most likely tag for that word, and all other tags seen with that word (in no particular order). Every word is first assigned its most likely tag in isolation. Unknown words are first assumed to be nouns, and then cues based upon prefixes, suffixes, infixes, and adjacent word co-occurrences are used to upgrade the most likely tag. Secondly, after the most likely tag for each word is assigned, contextual transformations are used to improve the accuracy.

We have evaluated the tagger performance on the TEST Data both before and after on the MUC-II corpus. The results are given in Table 7. Tagging statistics 'before training' are based on the lexicon and rules acquired from the BROWN CORPUS and the WALL STREET JOURNAL CORPUS. Tagging statistics 'after training' are divided into two categories, both of which are based on the rules acquired from training data sets of the MUC-II corpus. The only difference between the two is that in one case (After Training I) we use a lexicon acquired from the MUC-II corpus, and in the other case (After Training II) we use a lexicon acquired from a combination of the BROWN CORPUS, the WALL STREET JOURNAL CORPUS, and the MUC-II database.

Table 7: Tagger Evaluation on Data Set TEST

5.2 Adaptation of the Understanding System

The understanding system depicted in Figure 1 derives the semantic frame representation directly from the parse tree. The terminal symbols (i.e. words in general) in the parse tree are represented as vocabulary items in the semantic frame. Once we allow the parser to take part-of-speech as the input, the parts-of-speech (rather than actual words) will appear as the terminal symbols in the parse tree, and hence as the vocabulary items in the semantic frame representation. We adapted the system so that the part-of-speech tags are used for parsing, but are replaced with the original words in the final semantic frame. Generation can then proceed as usual. Figures 9 and (11) illustrate the parse tree and semantic frame produced by the adapted system for the input sentence 0819 z unknown contacts replied incorrectly.
Figure 9: Parse Tree Based on the Mix of Word and Part-of-Speech Sequence

\[(11)\]

\{c statement
 \{time_expression
 \{topic \{q gmt \:name "z" \}
 \{topic \{q nn_head \:name "contact" \}
 \{subject 1
 \{pred \{p reply_v \:mode "past" \}
 \{adverb \{p incorrectly \} \}
 \}
 \}
\}

6 Summary

In this paper we have proposed a technique which maximizes the parsing coverage and minimizes the misparse rate for machine translation of telegraphic messages. The key to the technique is to adequately mix semantic and syntactic rules in the grammar. We have given experimental results of the proposed grammar, and compared them with the experimental results of a syntactic grammar and a semantic grammar with respect to parsing coverage and misparse rate, which are summarized in Table 8 and Table 9. We have also discussed the system adaptation to accommodate the proposed technique.

Grammar Type	Parsing Rate	Misparse Rate
Semantic Grammar	34.8%	8.7%
Syntactic Grammar	75.7%	29%
Mixed Grammar	77%	10%

Table 8: TEST Data Evaluation Results on the Three Types of Grammar

Grammar Type	Parsing Rate	Misparse Rate
Semantic Grammar	43.1%	14.6%
Syntactic Grammar	76.5%	28%
Mixed Grammar	82%	10%

Table 9: TEST* Data Evaluation Results on the Three Types of Grammar

References

Eric Brill. 1992. A Simple Rule-Based Part of Speech Tagger. Proceedings of the Third Conference on Applied Natural Language Processing, ACLA, Trento, Italy.

Eric Brill. 1995. Transformation-Based Error-Driven Learning and Natural Language Processing: A Case Study in Part-of-Speech Tagging. Computational Linguistics, 21-4, pages 543-565.

Eric Brill and Philip Resnik. 1993 A Rule-Based Approach to Prepositional Phrase Attachment Disambiguation. Technical report, Department of Computer and Information Science, University of Pennsylvania.

James Glass, Joseph Polifroni and Stephanie Seneff. 1994. Multilingual Language Generation Across Multiple Domains. Presented at the 1994 International Conference on Spoken Language Processing, Yokohama, Japan.

Ralph Grishman. 1989. Analyzing Telegraphic Messages. Proceedings of Speech and Natural Language Workshop, DARPA.

Stephanie Seneff. 1992. TINA: A Natural Language System for Spoken Language Applications. Computational Linguistics, 18:1, pages 61-88.

Beth M. Sundheim. Navy Tactical Incident Reporting in a Highly Constrained Sublanguage: Examples and Analysis. Technical Document 1477, Naval Ocean Systems Center, San Diego.

Clifford Weinstein, Dinesh Tummala, Young-Suk Lee, Stephanie Seneff. 1996. Automatic English-to-Korean Text Translation of Telegraphic Messages in a Limited Domain. To be presented at the International Conference on Computational Linguistics '96.