Identification and validation of reference genes for gene expression analysis in *Aphidius gifuensis* (Hymenoptera: Aphidiidae)

Xue-Ke Gao, Shuai Zhang, Jun-Yu Luo, Chun-Yi Wang, Li-Min Lü, Li-Juan Zhang, Xiang-Zhen Zhu, Li Wang, Jin-Jie Cui*

State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China

* aycuijinjie@163.com

Abstract

Reference genes have been utilized in estimating gene expression levels using quantitative reverse transcriptase-quantitative polymerase chain reaction (qRT-PCR) analysis. *Aphidius gifuensis* Ashmaed is one of the most widely used biological control agents for aphids. The biological properties of this species have been studied in detail, and current investigations are focused on elucidating the regulatory mechanisms in its host. However, the appropriate reference genes for target gene expression studies have not been identified. In this study, the expression profiles of 12 candidate reference genes were evaluated under different experimental conditions (development stage, sex, tissue type, diet) by using dedicated algorithms, including geNorm, Normfinder, BestKeeper, and ΔCt. In addition, RefFinder was used to rank the overall stability of the candidate genes. Finally, we recommend three optimal reference genes for the normalization of qRT-PCR data in the presence of specific variables, which include ACTB, RPL13, and PPI for different developmental stages; RPS18, ACTB, and RPL13 for sexes; RPL13, PRII3, and RPS18 in different tissue types; and RPL13, RPL27, and ACTB in diverse diets. The present study has identified optimal reference genes that could be used in estimating the expression levels of specific genes under these conditions following the Minimum Information for publication of Quantitative real-time PCR Experiments (MIQE) guidelines, which would facilitate in advancements in functional genomics research on *A. gifuensis*.

Introduction

Real-time quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) is the most sensitive and accurate method for determining mRNA expression levels of target genes under different experimental conditions and is commonly used to confirm the expression of relevant genes in high-throughput sequencing[1–3]. To accurately estimate gene expression levels, internal reference genes are used to normalize quantitative fluorescence data on the target gene. Most internal reference genes must maintain a high degree of uniform expression at
different developmental stages, environments, or experimental conditions [4]. Housekeeping genes are commonly used as internal controls because of their relatively stable expression regardless of changes in the environment, physiological conditions, and cell type, and their levels directly represent the number of cells or genomes present in the sample [5, 6].

Screening for internal reference genes has been extensively performed in various insect species and their natural enemies. *Acyrthosiphon pisum, Lipaphis erysimi, Spodoptera litura, Bemisia tabaci,* and *Coleomegilla maculate* are some of the commonly used internal reference genes for insects [5, 7–10]. However, numerous studies have shown that the expression levels of these housekeeping genes significantly vary under certain conditions and are thus not suitable as internal reference genes [11, 12]. Although qRT-PCR can be used as a rapid and reliable method for detecting and quantifying gene expression in different biological processes, some internal reference genes exhibit considerable differences in expression among various treatment settings [11]. Therefore, the evaluation of housekeeping genes under different experimental conditions and the selection of the appropriate gene for normalization of expression is critical.

A. gifuensis is the most abundant aphid parasitoid in the open cotton field. However, to control *A. gifuensis*, it is necessary to establish a standardized qRT-PCR procedure [13] that follows the Minimum Information for publication of Quantitative real-time PCR Experiments (MIQE) guidelines for *A. gifuensis*. The objective of the present study was to identify and validate the most suitable reference gene(s) for gene expression profiling in *A. gifuensis*, particularly those that are stably expressed under different treatments. The following 12 housekeeping genes were selected as candidate reference genes: dimethyladenosine transferase (*DIMT*), *ACTB*, 60S ribosomal protein L3 (*RPL13*), peptidylprolyl isomerase (*PPI*), *TUB*, *RPL18*, 18SrRNA, *AK*, *EF1A*, *TBP*, RNA polymerase II (*PRII*), and ribosomal protein L27 (*RPL27*).

Specifically, we evaluated the stability of the above candidate reference genes under different experimental conditions, including different developmental stages, sex, tissue types, and diet treatment. The expression stability of these genes was evaluated using five statistical algorithms, geNorm [14], NormFinder [15], BestKeeper [16], deltaCt method [17], and RefFinder [18]. To the best of our knowledge, this is the first report on the comprehensive evaluation of reference genes in *A. gifuensis*. This report thus recommends different reference genes based on each experimental condition.

Materials and methods

Insect materials

A. gifuensis was collected from the Institute of Cotton Research (IRC) of CAAS (Anyang, Henan, China). The adults were reared in the laboratory on cotton-melon aphids; rearing conditions were 24 ± 1°C, a 14:10 h light/dark (L:D) photoperiod, and 75 ± 5% relative humidity (RH). Different developmental stages, two sexes, different tissues in both adult males and females, and different diets were tested in various *A. gifuensis* samples to evaluate the stability of the candidate genes. The developmental stages included three-day-old larvae (collected at the third day after parasitized cotton aphids and dissected under a microscope), pupae, and adults (including both females and males). For sex, 30 adult females and males were collected, respectively. The tissue types included the head, thorax, and abdomen, which were dissected from various *A. gifuensis* adult males and females, and detected respectively. For diet, adults were maintained on pure water and honey, respectively, and then harvested at different time points, namely, 1 d, 2 d, 3 d, and 4 d. All collected samples were preserved in 1.5-mL centrifuge tubes, flash frozen in liquid nitrogen, and then stored at -80°C until RNA extraction. Each treatment was repeated three times independently.
Total RNA extraction and cDNA synthesis

Total RNA was extracted from *A. gifuensis* using the SV Total RNA Isolation System (Promega, USA). RNA concentration was assessed by measuring ultraviolet absorbance at wavelengths of 260 nm (A260) and 280 nm (A280) using a Nanodrop2000C spectrophotometer (Thermo, USA). The A260/A280 ratio was maintained within the range of 1.80–2.00 to ensure mRNA integrity. The concentration of total RNA was normalized to 500 ng/μL. First-strand cDNA was synthesized using the PrimeScript RT Master Mix (Takara, Japan). The synthesized cDNA samples were stored at -20°C for later RT-qPCR analysis.

Identification of reference genes in *A. gifuensis*

Candidate reference genes segments were identified from the *A. gifuensis* RNA-seq transcriptome dataset that was constructed by our laboratory. Primers were designed using Premier 5.0 (S1 Table) (Premier, USA) and used for cloning cDNA sequences that encoded the open reading frames of the reference genes. The conditions for PCR amplification were as follows: 35 cycles of 98°C for 10 s, 55°C for 15 s, and 72°C for 30 s. The PCR products were cloned into a T blunt simple vector (TransGen Biotech, Beijing, China) and then sequenced. Accession numbers were obtained upon submission to NCBI. A total of 12 candidate reference genes were selected as internal controls for qRT-PCR.

Candidate reference genes and primer design

Upon confirmation of the sequences of each of the 12 candidate reference genes, primers for the subsequent RT-qPCR analyses were then designed by using the Beacon Designer 7 software (Table 1). qRT-PCR was performed using Mastercycle ep realplex (Eppendorf) following the manufacturer’s instructions. Each 20-μL reaction in every well consisted of the following: 1 μL of cDNA, 0.8 μL of each the forward and reverse primers (10 μM), 10 μL of 2× SYBR Green Premix (Promega, USA), and 7.4 μL of ddH2O. RT-qPCR reactions were conducted at the following conditions: 95°C for 2 min, followed by 40 cycles of 95°C for 15 s and 60°C for 60 s. Every template was amplified in triplicate. To verify the specificity of the gene amplifications melting curve analysis was performed. The relative standard curves of the transcripts were generated using a five-fold serial dilution of the cDNA. The corresponding qRT-PCR efficiencies (E) were calculated according to the following formula: \[E = (10^{[-1/slope]} - 1) \times 100. \]

Data mining and statistical analysis

In order to select the most stable reference gene for RT-qPCR in *A. gifuensis*, four Microsoft Excel software Add-Ins: geNorm, NormFinder, BestKeeper, ΔCt method, and one web statistical tool, RefFinder, were used for analysis of expression profiles of 12 candidate genes using various experimental conditions. GeNorm uses the gene-stability measure M to calculate mean pairwise variations between an individual gene and the remaining candidate genes, the value of which is inversely proportional to its stability, the recommended M value is M < 0.5 for homogeneous samples, and for heterogeneous samples is M < 1. Pairwise variation (Vn/n +1) is generally used for the accurate normalization of geNorm to determine the optimal number of internal reference genes. A Vn/n+1 < 0.15 indicates that the additional reference gene will not significantly increase the standardization. The first V-value, 0.15, was after V2/3, indicates that the two reference genes are sufficient to be normalized. NormFinder uses a model-based approach to assess the overall variations in the expression of the candidate reference genes, and a more stable expression of the candidate gene shows a lower stability value. The standard deviation (SD) of the geometric mean of the Ct values of the candidate reference
genes were used by BestKeeper, and the lower the index scores, the more stable the reference genes. The delta Ct method calculates the relative expression levels of the gene pairs between one and the other, and the candidate reference genes with smaller SD values are more stable. Finally, RefFinder, a web-based analysis tool, was used to compare and rank the candidate genes, which provides an overall ranking of the stability of the candidate genes.

Validation of the selected reference genes

To assess the effects of various treatments on the gene expression profile of the samples, the relative expression profile of OR49b (odorant receptor 49b) and GIR-NMDA2B (glutamate receptor ionotopic, NMDA 2B) were evaluated at three life stages (larva, pupa, and adult). The primers used to identify and amplify OR49b and GIR-NMDA2B were listed in S2 Table. The expression of OR49b and GIR-NMDA2B were normalized with the two most stable reference genes (ACTB, RPL13) and the most unstable gene (RPL29). The 2-ΔΔCt method was used to calculate the relative quantification of OR49b and GIR-NMDA2B expression [19].

Results

PCR amplification and expression profiling of candidate reference genes in A. gifuensis

Twelve candidate reference genes were initially studied by reverse transcription polymerase chain reaction (RT-PCR). All amplicons were sequenced and identical to their corresponding transcripts, and all gene candidates were detected on a 2% agarose gel as a single amplicon with the desired size.
The amplification efficiency (E) values of all candidate reference genes ranged from 88.96% to 96.20%, and the correlation coefficient (R2) values ranging from 0.971 to 0.995 (Table 1 and S1 Fig), based on five-fold serial dilution of the pooled cDNA and the generated standard curve of each gene.

The levels of mRNA and the variable expression of the candidate reference genes were described using their mean values. In qRT-PCR, a variable Ct value for all the reference genes across the four treatments and the overall of all treatments indicated that their gene-expression levels were affected under different conditions (Fig 1). The expression of TBP, 18SrRNA, and RPL29 substantially varied in different development stages and sexes, whereas DIMT, ACTB, and RPL13 and ACTB, RPL13, and RPS18 showed the least variable expression profiles in different development stages and sexes, respectively. Additionally, almost half of the genes showed significant changes in expression levels in different tissues, whereas ACTB, RPII3, and AK showed a narrow range of variable Ct values. Furthermore, except for RPS18 and TBP that displayed highest variations in Ct values, the range of expression values of the other candidate reference genes were very narrow. Regardless of treatments, RPL13 performed the highest, the average Ct value was 20 in A. gifuensis.

Expressions stability and ranking of the candidate reference genes

The candidate reference genes were ranked by employing four statistical algorithms under four different conditions. Developmental stages included 3-day-old larvae, pupae, and adult females and males. For sex, adult females and males were assessed. For tissues, the head, thorax, and abdomen were dissected from A. gifuensis. For diet, H2O and honey were given to adult males and females.

Fig 1. Expression profiles of the 12 candidate reference genes in all four experiments.

https://doi.org/10.1371/journal.pone.0188477.g001
Considering the data obtained from various treatment conditions, all the reference genes showed significant variations in their expression levels across various treatment conditions. Developmental stage analyses identified RPL13 and RPII3 as the most stable reference genes, whereas RPS18 and TBP were the most unstable reference genes, respectively (Fig 2A). For sex, RPS18 and ACTB were co-ranked as the most stable reference genes (Fig 2B). For different tissues, the geNorm demonstrated that the expression of RPS18 and RPL29 were the most stable, whereas RPL27 was the most unstable (Fig 2C). The experiment using diverse diets indicated that RPL13 and PRL27 were the most stably expressed reference genes, followed by DIMT and ACTB (Fig 2D). The overall order based on geNorm from the most stable to the least stable reference genes were shown in Table 2. To determine the minimum number of genes required for normalization, we used geNorm to calculate the V-value. Our study showed that all the pairwise variation V2/3 values were < 0.15 across different conditions. Based on the same principle, in all treatments, two reference genes are needed for the reliable normalization with the first V-value < 0.15 appearing at V2/3 in A. gifuensis samples (Fig 3).

geNorm. Considering the data obtained from various treatment conditions, all the reference genes showed significant variations in their expression levels across various treatment conditions. Developmental stage analyses identified RPL13 and RPII3 as the most stable reference genes, whereas RPS18 and TBP were the most unstable reference genes, respectively (Fig 2A). For sex, RPS18 and ACTB were co-ranked as the most stable reference genes (Fig 2B). For different tissues, the geNorm demonstrated that the expression of RPS18 and RPL29 were the most stable, whereas RPL27 was the most unstable (Fig 2C). The experiment using diverse diets indicated that RPL13 and PRL27 were the most stably expressed reference genes, followed by DIMT and ACTB (Fig 2D). The overall order based on geNorm from the most stable to the least stable reference genes were shown in Table 2. To determine the minimum number of genes required for normalization, we used geNorm to calculate the V-value. Our study showed that all the pairwise variation V2/3 values were < 0.15 across different conditions. Based on the same principle, in all treatments, two reference genes are needed for the reliable normalization with the first V-value < 0.15 appearing at V2/3 in A. gifuensis samples (Fig 3).

BestKeeper. Based on the SD of the Ct values in BestKeeper analysis, 18SrRNA was identified as the most stably expressed gene, and RPL29 was the least stably expressed gene in different developmental stages. For sex, 18SrRNA was considered the most stable gene, whereas TBP showed the highest SD. ATCB was the most stable genes in different tissues and diet samples under the algorithmic principle by BestKeeper, whereas RPL27 and RPS18 were the least stable
Table 2. Stability of reference gene expression under four experimental conditions.

Experimentconditions	Reference gene	geNorm Stability	geNorm Rank	NormFider Stability	NormFider Rank	BestKeeper Stability	BestKeeper Rank	ΔCt Stability	ΔCt Rank
Developmental stage	DIMT	0.365	3	0.96	7	0.611	1	1.21	7
	AK	0.706	5	0.58	3	0.912	7	1.096	5
	PPI	0.323	2	0.542	2	0.741	4	1.007	2
	RPII3	0.257	1	0.723	6	0.621	2	1.077	4
	TBP	1.07	9	1.167	10	1.685	11	1.413	10
	ACTB	0.583	4	0.345	1	1.105	8	1.001	1
	18SrRNA	1.248	11	1.567	12	1.269	9	1.775	12
	RPS18	0.991	8	1.094	9	1.561	10	1.386	8
	RPL13	0.257	1	0.665	5	0.694	3	1.033	3
	RPL27	0.859	7	1.072	8	0.82	6	1.375	9
	RPL29	1.143	10	1.238	11	1.707	12	1.502	11
	EF1A	0.772	6	0.621	4	0.764	5	1.12	6
Sex	DIMT	1.136	10	1.474	11	2.238	11	1.57	11
	AK	0.369	3	0.428	4	0.622	4	0.96	4
	PPI	0.4	4	0.255	2	0.96	8	0.95	3
	RPII3	0.865	8	0.569	5	1.502	9	1.1	6
	TBP	1.224	11	1.587	12	2.327	12	1.66	12
	ACTB	0.286	1	0.349	3	0.708	6	0.94	2
	18SrRNA	0.662	6	1.36	9	0.289	1	1.51	9
	RPS18	0.286	1	0.148	1	0.822	7	0.89	1
	RPL13	0.34	2	0.588	6	0.542	2	1	5
	RPL27	0.769	7	1.371	10	0.623	5	1.54	10
	L29	1.007	9	1.165	8	1.923	10	1.4	8
	EF1A	0.52	5	0.795	7	0.62	3	1.16	7
Tissue	DIMT	1.032	5	0.721	3	1.299	5	1.502	3
	AK	1.369	8	1.253	8	0.689	2	1.803	8
	PPI	0.985	4	0.824	4	1.543	7	1.535	4
	RPII3	1.157	6	0.616	2	0.709	3	1.48	2
	TBP	0.588	2	1.17	7	1.586	8	1.712	7
	ACTB	1.286	7	1.105	6	0.438	1	1.683	6
	18SrRNA	1.428	9	1.321	9	1.151	4	1.838	10
	RPS18	0.416	1	1.082	5	1.809	10	1.625	5
	RPL13	0.851	3	0.37	1	1.416	6	1.372	1
	RPL27	1.821	11	2.556	12	1.978	12	2.738	12
	L29	0.416	1	1.37	10	1.953	11	1.804	9
	EF1A	1.632	10	2.529	11	1.757	9	2.735	11
Diet	DIMT	0.221	2	0.219	3	0.479	5	0.653	3
	AK	0.35	4	0.334	4	0.554	7	0.706	5
	PPI	0.41	5	0.499	7	0.518	6	0.785	7
	RPII3	0.519	7	0.46	6	0.725	8	0.771	6
	TBP	0.746	10	1.303	11	1.168	11	1.398	11
	ACTB	0.27	3	0.353	5	0.399	1	0.698	4
	18SrRNA	0.858	11	1.326	12	1.201	12	1.418	12
	RPS18	0.619	9	0.772	10	0.861	10	0.968	10
	RPL13	0.143	1	0.071	1	0.444	3	0.61	1
	RPL27	0.143	1	0.083	2	0.422	2	0.61	2
	L29	0.557	8	0.51	8	0.8	9	0.817	8
	EF1A	0.464	6	0.631	9	0.466	4	0.86	9

https://doi.org/10.1371/journal.pone.0188477.t002
genes in different tissues and diet samples, respectively. The overall order of the most stable reference genes based on BestKeeper is shown in Table 2.

NormFinder. In our study, NormFinder analysis indicated that ACTB was the most stable gene in different development stages. For sex, RPS18 showed the highest expression stability, which was similar to the result of geNorm. Among different tissues and diet, the most stable gene was RPL13; however, in geNorm, RPS18 and RPL29 were the most stable reference genes in different tissues, whereas these were identified as unstable in NormFinder. Based on the results of NormFinder analysis the overall order of the most stable to the most unstable reference gene is shown in Table 2.

DeltaCt method. Table 2 shows that under the inversely proportional (average SD) ΔCt method, ACTB was the most stably expressed reference gene in different development stages, whereas in terms of different sexes, RPS18 was identified as most stably expressed gene. RPL13 was the most stable gene for both different tissues and diet experiments. Based on the results of the ΔCt method, the overall order from the most to least stable expressed reference genes is shown in Table 2.

Comprehensive ranking of reference genes

The overall ranking of 12 candidate reference genes under the four treatments was generated, based on the geometric mean (GM) of the rankings obtained from four complementary statistical methods. The following reference genes are ranked in descending order of expression
Validation of the recommended reference genes

Analysis of the consolidated data indicated that ACTB and RPL13 were the most stably expressed gene at different developmental stages, whereas RPL29 showed the lowest stability in expression. To examine the validity either as single or in combination of the selected reference genes, the applicability of these reference genes in normalization was tested. Odorant receptor (OR49b) and GIR-NMDA2B were investigated under different developmental stages. In the case of different developmental stages, either ACTB and RPL13 or their combination as normalizer showed more consistent qRT-PCR data compared to that using RPL29 in normalization (Fig 5). Furthermore, the expression profiles of OR49b and GIR-NMDA2B clearly exhibited differences when RPL29 was used in the normalization.

Discussion

QRT-PCR has become an important tool for gene expression analysis based on its high accuracy, specificity, sensitivity, and repeatability, [20–23]. However, variations in qRT-PCR data may be unavoidable during PCR analysis [6, 7], and this may be due to differences in specific conditions. Therefore, normalization using reference genes has been adapted into qRT-PCR
assays to offset confounding variations among extensive experimental datasets [8, 9, 24, 25]. An ideal reference gene should be stably expressed in all test samples [26]. Unfortunately, qRT-PCR analysis is largely influenced by the choice of reference genes, and in response to different experimental conditions, the expression of commonly used reference genes may significantly change [14, 27, 28]. Thus, candidate reference genes should be validated under different conditions before utilized in actual research studies. A growing number of reference genes has been assessed for application to qRT-PCR analyses [5, 8, 10, 29–32]. However, no related studies involving reference genes in *A. gifuensis* have been conducted to date. The present study performed a comprehensive evaluation of 12 commonly used reference genes using geNorm, NormFinder, BestKeeper, ΔCt method, and RefFinder at different developmental stages, sexes, tissue types, and diets.

Unlike previous studies [32, 33], the present study detected significant differences in candidate gene expression levels under specific conditions and based on four independent statistical analyses, which is similar to the results of previous investigations [27, 34, 35]. For example, in terms of developmental stage, *RPL13* and *ACTB* were co-ranked by geNorm as the most stably expressed reference genes, whereas BestKeeper identified *DIMT*, and NormFinder and ΔCt method indicated *ACTB*. In terms of different tissues, the four analytical approaches generated similar results, wherein *18SrRNA* and *RPL29* were the most stably expressed genes by geNorm, BestKeeper identified *ACTB*, and NormFinder and ΔCt method identified *RPL13*. In addition, *RPS18* and *RPL13* were identified as the optimal reference genes by geNorm, and NormFinder and ΔCt identified the same gene for sexes and diets, respectively, whereas *DIMT* and *ATCB* were the more stably expressed genes based on BestKeeper. BestKeeper has been shown to exhibit the highest number of discrepancies [36]. Based on our findings, we conclude that RefFinder generated the most reliable results because it combined the four algorithms. Therefore, the optimal reference genes for the four common variables in *A. gifuensis* were as follows: *ACTB*, *RPL13*, and *PPI* for developmental stage, *RPS18*, *ACTB*, and *RPL13* for sex, *RPL13*, *PRII3*, and *18SrRNA* for tissue type, and *RPL13*, *RPL27*, and *ACTB* for diet.

The most commonly used internal reference genes include actin, tubulin, and 18S ribosomal RNA (rRNA), which are integral components of cells and are thus essential for the maintenance of physiological activities [4, 23, 37–39]. The transcript levels of these reference genes are generally less susceptible to the external environment than other genes [40].

![Fig 5. Validation of the recommended reference genes.](https://doi.org/10.1371/journal.pone.0188477.g005)
However, certain limitations such as batch to batch variations in output and variable reverse transcription and PCR efficiencies may influence threshold (Ct) values, which are the main data collected during normalization [16, 41, 42]. Collectively, the results of our study have validated the findings of earlier reports that no single reference gene is stably expressed in all treatments [8, 27, 30, 43]. The novel reference gene, \(DIMT \), which encodes a dimethyladenosine transferase that, specifically dimethylates two adjacent adenosines and is situated within a conserved hairpin loop near the 3’-end of the 18S rRNA of the 40S ribosomal subunit[44], is differentially expressed among different developmental stages and sexes. The present study has also determined that \(RPII3 \) should be excluded as a stably expressed reference gene, similar to the findings of a previous study involving Raphanus sativus L.[45]. \(ACTB \) is constitutively expressed and is a widely used reference gene for insects [27, 46–49]; however, the use of actin genes has recently been challenged [11]. The results of the present study also show that \(ACTB \) is stably expressed during different developmental stages and sexes. Ribosomal proteins are involved in translation and protein synthesis. In the present study, geNorm analysis identified \(RPL13 \) as the most stably expressed candidate reference gene in different tissue types and diets, whereas \(RPS18 \) was the most stably expressed gene for different sexes, and \(RPL29 \) in different tissue types. Similar to previous studies, the findings of our study indicate that ribosomal proteins are the best reference genes for investigating expression profiles in insects [37, 50]. However, \(RPL27 \) exhibited relatively unstable expression in our study. Furthermore, \(TUB, EF1A, TBP, \) and \(AK \), which have been previously reported to be the most stably expressed genes [27, 37, 51], showed relatively unstable in expression using each variable. These results further suggest that the most suitable reference genes do not necessarily meet the requirement that these are expressed at constant levels under different conditions in various species [5, 6, 52]. Therefore, it is a highly recommended that a customized reference gene be selected for specific experimental conditions.

ORs are key components of insect olfaction. Odorant-binding proteins (OBPs) are transported through the infectious lymphids, filling the cavity around the dendrites and activating ORs, which in turn transform external chemical signals into signaling currents. Ionotropic glutamate receptor, which are key players in synaptic plasticity, mediate the transmission of excitatory synapses[53]. The validation of reference genes was confirmed by assessing the expression profile of \(OR49b \) and \(GIR-NMDA2B \). The results showed that transcript abundance is strongly influenced by \(A. gifuensis \) development. The expression after normalization by \(RPL29 \) differed from that of \(ACTB \) or \(RPL13 \). Thus, the normalized results based on \(RPL29 \) cannot reliably reflect the expression level of target genes in \(A. gifuensis \).

In conclusion, functional genomics and gene expression remain essential research topics relating to \(A. gifuensis \). In this study, five algorithms (geNorm, NormFinder, BestKeeper, \(\Delta \)Ct method, and RefFinder) were used to evaluate the expression profiles of 12 candidate reference genes of \(A. gifuensis \) across four variable (developmental stage, sex, tissue type, and diet). We have identified the appropriate genes that can be used in the normalization of the qRT-PCR data under each variable. Furthermore, we suggest two reference genes that can be used not only to normalize expression data but also for more conservative estimates of target gene expression levels in \(A. gifuensis \). Our findings may serve as a foundation for future genetics and functional genomics research on this particular insect species.

Supporting information

S1 Fig. Analysis showing amplification efficiency of the qRT-PCR primers. (TIF)
S1 Table. Primers used in amplifying 11 reference genes in *A. gifuensis*.

(DOCX)

S2 Table. Primers used in amplifying and quantifying OR49b in *A. gifuensis*.

(DOCX)

Acknowledgments

We thank Xiao-Li Zhang (Institute of Cotton Research, Chinese Academy of Agricultural Sciences) for helping in sample collection.

Author Contributions

Conceptualization: Shuai Zhang, Jin-Jie Cui.

Data curation: Xue-Ke Gao, Shuai Zhang, Jin-Jie Cui.

Formal analysis: Xue-Ke Gao, Shuai Zhang, Jin-Jie Cui.

Funding acquisition: Shuai Zhang, Jin-Jie Cui.

Methodology: Xue-Ke Gao, Shuai Zhang, Jin-Jie Cui.

Resources: Shuai Zhang, Jin-Jie Cui.

Validation: Xue-Ke Gao, Shuai Zhang, Jun-Yu Luo, Li-Min Lü, Jin-Jie Cui.

Writing – original draft: Xue-Ke Gao, Jin-Jie Cui.

Writing – review & editing: Xue-Ke Gao, Shuai Zhang, Jun-Yu Luo, Chun-Yi Wang, Li-Min Lü, Li-Juan Zhang, Xiang-Zhen Zhu, Li Wang, Jin-Jie Cui.

References

1. Bustin SA, Benes V, Nolan T, Pfaffl MW. Quantitative real-time RT-PCR—a perspective. Journal of Molecular Endocrinology. 2005; 34(3):597. https://doi.org/10.1677/jme.1.01755 PMID: 15956331

2. Kubista M, Andrade JM, Bengtsson M, Forootan A, Jonák J, Lind K, et al. The real-time polymerase chain reaction. Molecular Aspects of Medicine. 2006; 27(2–3):95–125. https://doi.org/10.1016/j.mam.2005.12.007 PMID: 16460794

3. Vanguilder HD, Vrana KE, Freeman WM. Twenty-five years of quantitative PCR for gene expression analysis. Biotechniques. 2008; 44(5):619–26. https://doi.org/10.2144/000112776 PMID: 18474036

4. Radonić A, Thulke S, Mackay IM, Landt O, Siegert W, Nitsche A. Guideline to reference gene selection for quantitative real-time PCR. Biochemical & Biophysical Research Communications. 2004; 313 (4):856–62.

5. Li R, Xie W, Wang S, Wu Q, Yang N, Yang X, et al. Reference gene selection for qRT-PCR analysis in the sweetpotato whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae). Plos One. 2013; 8(1):e53006. https://doi.org/10.1371/journal.pone.0053006 PMID: 23308130

6. Zhu X, Yuan M, Shakeel M, Zhang Y, Wang S, Wang X, et al. Selection and Evaluation of Reference Genes for Expression Analysis Using qRT-PCR in the Beet Armyworm Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae). Plos One. 2014; 9(1):e84730. https://doi.org/10.1371/journal.pone.0084730 PMID: 24454743

7. Yang C, Pan H, Liu Y, Zhou X. Selection of reference genes for expression analysis using quantitative real-time PCR in the pea aphid, Acyrthosiphon pisum (Hemiptera, Aphididae). Plos One. 2014; 9 (11):e104543-e. https://doi.org/10.1371/journal.pone.0104545 PMID: 25242574

8. Fu W, Xie W, Zhang Z, Wang S, Wu Q, Liu Y, et al. Exploring Valid Reference Genes for Quantitative Real-time PCR Analysis in Plutella xylostella (Lepidoptera: Plutellidae). International Journal of Biological Sciences. 2013; 9(8):792–802. https://doi.org/10.7150/ijbs.5862 PMID: 23983612

9. Yang C, Pan H, Liu Y, Zhou X. Stably Expressed Housekeeping Genes across Developmental Stages in the Two-Spotted Spider Mite, Tetranychus urticae. Plos One. 2015; 10(3):e0120833. https://doi.org/10.1371/journal.pone.0120833 PMID: 25922495
Validation of reference genes in *Aphidius gifuensis* (Hymenoptera: Aphididae)

10. Koramutla MK, Aminedi R, Bhattacharya R. Comprehensive evaluation of candidate reference genes for qRT-PCR studies of gene expression in mustard aphid, Lipaphis erysimi (Kalt). Scientific Reports. 2016; 6:25883. https://doi.org/10.1038/srep25883 PMID: 27165720

11. Selvey S, Thompson E, Matthaei K, Lea R, Irving M, Griffiths L. Beta-actin—an unsuitable internal control for RT-PCR. Molecular & Cellular Probes. 2001; 15(5):307–11.

12. Provenzano M, Mocellin S. Complementary techniques: validation of gene expression data by quantitative real-time PCR. Advances in Experimental Medicine & Biology. 2007; 593:66.

13. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clinical Chemistry. 2009; 55(4):611–22. https://doi.org/10.1373/clinchem.2008.112797 PMID: 19246619

14. Vandesompele J, Preter KD, Pattyn F, Poppe B, Roy NV, Paepke AD, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology. 2002; 3(7).

15. Andersen CL, Jensen JL, Ørtoft TF. Normalization of Real-Time Quantitative Reverse Transcription-PCR Data: A Model-Based Variance Estimation Approach to Identify Genes Suited for Normalization, Applied to Bladder and Colon Cancer Data Sets. 2004; 64(15):5245–50.

16. Pfaffl MW, Tichopad A, Prgemet C, Neuvians TP. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations. Biotechnology Letters. 2004; 26(6):509–15. PMID: 15127793

17. Silver N, Best S, Jiang J, Thein SL. Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Molecular Biology. 2006; 7(1):33.

18. Xie F, Xiao P, Chen D, Xu L, Zhang B. miRDeep Finder: a miRNA analysis tool for deep sequencing of plant small RNAs. Plant Molecular Biology. 2012; 80(1):75–84.

19. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001; 25(4):402–8. https://doi.org/10.1006/meth.2001.1262 PMID: 11846609

20. Willems E, Mateizel I, Kemp C, Cauffman G, Sermon K, Leyns L. Selection of reference genes in mouse embryos and in differentiating human and mouse ES cells. International Journal of Developmental Biology. 2006; 50(7):627–35. https://doi.org/10.1387/ijdb.052130ew PMID: 16892176

21. Hoogewijs D, Houthoff K, Matthijssens F, Vandesompele J, Vanfleteren JR. Selection and validation of a set of reliable reference genes for quantitative sod gene expression analysis in C. elegans. BMC Molecular Biology. 2008; 9(1):9.

22. Langnaese K, John R, Schweizer H, Ebmeyer U, Keilhoff G. Selection of reference genes for quantitative real-time PCR in a rat asphyxial cardiac arrest model. BMC Molecular Biology. 2008; 9(1):53.

23. Tatsumi K, Ohashi K, Taminishi S, Okano T, Yoshioka A, Shima M. Reference gene selection for real-time RT-PCR in regenerating mouse livers. Biochemical & Biophysical Research Communications. 2008; 374(1):106–10.

24. Dheilly NM, Maure F, Ravallec M, Galignier R, Duoyon J, Duval D, et al. Who is the puppet master? Replication of a parasitic wasp-associated virus correlates with host behaviour manipulation. Proceedings of the Royal Society B Biological Sciences. 2015; 282(1803):20142773. https://doi.org/10.1098/rspb.2014.2773 PMID: 25673681

25. Pan H, Yang X, Siegfried BD, Zhou X. A Comprehensive Selection of Reference Genes for RT-qPCR Analysis in a Predatory Lady Beetle, Hippodamia convergens (Coleoptera: Coccinellidae). Plos One. 2015; 10(4):e0125866. https://doi.org/10.1371/journal.pone.0125866 PMID: 25915640

26. Teng X, Zhang Z, He G, Yang L, Li F. Validation of Reference Genes for Quantitative Expression Analysis by Real-Time RT-PCR in Four Lepidopteran Insects. Journal of Insect Science. 2015; 15(60):1–17.

27. Ponton F, Chapuis MP, Pernice M, Sword GA, Simpson SJ. Evaluation of potential reference genes for reverse transcription-qPCR studies of physiological responses in Dro sophila melanogaster. Journal of Insect Physiology. 2011; 57(6):840–50. https://doi.org/10.1016/j.jinsphys.2011.03.014 PMID: 21435341

28. Shen GM. Evaluation of endogenous references for gene expression profiling in different tissues of the oriental fruit fly Bactrocera dorsalis (Diptera: Tephritidae). BMC Molecular Biology. 2010; 11(1):76.

29. Shi XQ, Guo WC, Wan PJ, Zhou LT, Ren XL, Ahmat T, et al. Validation of reference genes for expression analysis by quantitative real-time PCR in Leptinotarsa decemlineata (Say). BMC Research Notes. 2013; 6(1):93.

30. Yuan M, Lu Y, Zhu X, Hu W, Shakeel M, Zhan S, et al. Selection and Evaluation of Potential Reference Genes for Gene Expression Analysis in the Brown Plant hopper, Nilaparvata lugens (Hemiptera: Delphacidae) Using Reverse-Transcription Quantitative PCR. Plos One. 2014; 9(1):e86503. https://doi.org/10.1371/journal.pone.0086503 PMID: 24466124
31. Sinha DK, Smith CM. Selection of reference genes for expression analysis in Diuraphis noxia (Hemiptera: Aphididae) fed on resistant and susceptible wheat plants. Scientific Reports. 2014; 4(3):5059.

32. Zhang QL, Zhu QH, Liao X, Wang XQ, Chen T, Xu HT, et al. Selection of reliable reference genes for normalization of quantitative RT-PCR from different developmental stages and tissues in amphioxus. Scientific Reports. 2016; 6:37549. https://doi.org/10.1038/srep37549 PMID: 27869224

33. Zhai Y, Lin Q, Zhou X, Zhang X, Liu T, Yu Y. Identification and validation of reference genes for quantitative real-time PCR in Drosophila suzukii (Diptera: Drosophilidae). Plos One. 2014; 9(9):e106800. https://doi.org/10.1371/journal.pone.0106800 PMID: 25198611

34. Mafra V, Kubo KS, Alvesferreira M, Ribeiroalves M, Stuart RM, Boava LP, et al. Reference Genes for Accurate Transcript Normalization in Citrus Genotypes under Different Experimental Conditions. Plos One. 2012; 7(2):e31263. https://doi.org/10.1371/journal.pone.0031263 PMID: 22347455

35. Guo JL, Ling H, Wu QB, Xu LP, Que YX. The choice of reference genes for assessing gene expression in sugarcane under salinity and drought stresses. Scientific Reports. 2014; 4:7042. https://doi.org/10.1038/srep07042 PMID: 25391499

36. Petriccione M, Mastrobouoni F, Zampella L, Scotrichini M. Reference gene selection for normalization of RT-qPCR gene expression data from Actinidia delicosa leaves infected with Pseudomonas syringae pv. actinidiae. Scientific Reports. 2015; 5(16961).

37. Mamidala Praveen, Rajarapu SP, Jones SC, Mittapalli Omprakash. Identification and Validation of Reference Genes for Quantitative Real-Time PCR in Citrus Lycopersicum. Journal of Medical Entomology. 2011; 48(4):947–51. PMID: 21845960

38. Lu Y, Jiao Z, Wu K. Early season host plants of Apollygus lucorum (Heteroptera: Miridae) in northern China. J Econ Entomol. 2012; 105(5):1603. PMID: 23156156

39. Scharlaken Bieden DC, Goossens Karen, Brunain Marleen, Peelman Luc J., Jacobs Frans J.. Refer- ence Gene Selection for Gene Expression Studies Using Quantitative Real-Time PCR: The Head of the Honeybee, Apis mellifera, After a Bacterial Challenge. 2008; 8(33):1–10.

40. TD S, Zakrajsek BA. Effect of experimental treatment on housekeeping gene expression: validation by real-time, quantitative RT-PCR. Journal of Biochemical & Biophysical Methods. 2000; 46(1–2):69–81.

41. Thellin O, Zorzi W, Lakaye B, De BB, Courmans B, Hennen G, et al. Housekeeping genes as internal standards: use and limits. Journal of Biotechnology. 1999; 75(2–3):291–5. PMID: 10617337

42. Tunbridge EM, Eastwood SL, Harrison PJ. Changed relative to what? Housekeeping genes and normalization strategies in human brain gene expression studies. Biological Psychiatry. 2011; 69(2):173. https://doi.org/10.1016/j.biopsych.2010.05.023 PMID: 20673871

43. Svingen T, Jørgensen A, Rapert DA. Validation of endogenous normalization genes for expression analyses in adult human testis and germ cell neoplasms. Molecular Human Reproduction. 2014; 20 (8):709–18. https://doi.org/10.1093/molehr/gau030 PMID: 24743772

44. Sánchez M, Revuelta JL, Del RF, Gwilliam R, Skelton J, Churcher C, et al. Analysis of 41 kb of the DNA sequence from the right arm of chromosome II of Schizosaccharomyces pombe. Yeast. 2001; 18 (12):1111–6. https://doi.org/10.1002/yea.760 PMID: 11536333

45. Xu Y, Zhu X, Gong Y, Xu L, Wang Y, Liu L. Evaluation of reference genes for gene expression studies in radish (Raphanus sativus L.) using quantitative real-time PCR. Biochemical & Biophysical Research Communications. 2012; 424(3):398–403.

46. Paim RM, Pereira MH, Di PR, Rodrigues JO, Guaneri AA, Gontijo NF, et al. Validation of reference genes for expression analysis in the salivary gland and the intestine of Rhodnius prolixus (Hemiptera, Reduviidae) under different experimental conditions by quantitative real-time PCR. 2012; 5(1):128.

47. Maronich GA, Sagadín M, Mongelli VC, Truol GA, Vas MD. Reference gene selection for gene expression studies using RT-qPCR in virus-infected plant hoppers. Virology Journal. 2011; 8(1):1–8.

48. Van Hiel MB, Van WP, Temmerman L, Van SS, Vuerinckx K, Huybrechts R, et al. Identification and validation of housekeeping genes in brains of the desert locust Schistocerca gregaria under different developmental conditions. BMC Molecular Biology. 2009; 10(1):56.

49. Boer MED, Boer TED, Marijën J, Timmermans MJ, Nota B, Straalen NMV, et al. Reference genes for QRT-PCR tested under various stress conditions in Folsomia candida and Orche sella cincta (Insecta, Collembola). BMC Molecular Biology. 2009; 10(1):1–11.

50. Lord JC, Hartzer K, Tougtes M, Oppert B. Evaluation of quantitative PCR reference genes for gene expression studies in Tribolium castaneum after fungal challenge. Journal of Microbiological Methods. 2010; 80(2):219–21. https://doi.org/10.1016/j.mimet.2009.12.007 PMID: 20026205

51. Bansal R, Mian MA, Mittapalli O, Michel AP. Characterization of a Chitin Synthase Encoding Gene and Effect of Diflubenzuron in Soybean Aphid, Aphis glycines. International Journal of Biological Sciences. 2012; 8(10):1323–34. https://doi.org/10.7150/ijbs.4189 PMID: 23139631
52. Ferguson BS, Nam H, Hopkins RG, Morrison RF. Impact of Reference Gene Selection for Target Gene Normalization on Experimental Outcome Using Real-Time qRT-PCR in Adipocytes. Plos One. 2012; 5 (12):e15208.

53. Leal WS. Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes. Annual Review of Entomology. 2013; 58(1):373.