On the convergence of finite difference scheme for a Schrödinger type equation

Nigar Yıldırım Aksoy
Kafkas University, Faculty of Arts and Sciences, Department of Mathematics, Kars, Turkey.

Received: 18 February 2022, Accepted: 26 September 2022
Published online: 5 November 2022.

Abstract: In the present paper, an initial boundary value problem for the linear Schrödinger equation including the momentum operator is introduced. This problem is discretized by the finite difference method and a difference scheme is presented. Moreover, an estimate for the solution of the proposed scheme is obtained. Finally, with the help of the estimate, it is proved that the proposed scheme is unconditionally stable and convergent.

Keywords: Schrödinger type equation, Finite difference method, Stability, Convergence.

1 Introduction

The general form of a Schrödinger type equation (StE) is as follows:

\[\varepsilon u_t + F_2(\varsigma, t; u) u_{\varsigma\varsigma} + F_1(\varsigma, t; u) u_{\varsigma} + F_0(\varsigma, t; u) u = 0, \]

(1)

where \(\varepsilon = \text{const.} \), \(u(\varsigma, t) \) is the wave’s complex amplitude; \(u_t = \frac{\partial u}{\partial t}, \quad u_{\varsigma} = \frac{\partial u}{\partial \varsigma}, \quad u_{\varsigma\varsigma} = \frac{\partial^2 u}{\partial \varsigma^2} \). Equation (1) describes the slow variation of the function \(u(\varsigma, t) \) in a medium with quadratic dispersion [1]. The diversified versions of equation (1) and its applications have been studied widely in many fields such as hydrodynamics, water waves, optical fiber setting, photonics, nonlinear transmission lines, Bose-Einstein condensates, plasma physics [2]. In equation (1), the variables \(\varsigma \) and \(t \) have different meanings according to the context of its application areas. Here, \(\varsigma \) and \(t \) denote the space and time variables, respectively.

In the present paper, we study an initial boundary value problem (IBVP) for a particular case of equation (1), which is a linear Schrödinger equation including a momentum operator, in the form

\[i\frac{\partial u}{\partial t} + p_0 \frac{\partial^2 u}{\partial \varsigma^2} + ip_1 \frac{\partial u}{\partial \varsigma} - \rho(\varsigma) u + q(t) u = \rho(\varsigma, t), \quad (\varsigma, t) \in \Omega, \]

(2)

\[u(\varsigma, 0) = \eta(\varsigma), \quad \varsigma \in I, \]

(3)

\[u(0, t) = u(l, t) = 0, \quad t \in Q, \]

(4)
where \(i = \sqrt{-1}, I = (0, 1), Q = (0, T), \Omega = I \times Q, p_0, p_1 > 0 \) are real numbers; \(p(\xi) \) and \(q(t) \) are real valued functions such that
\[
0 < p(\xi) \leq \mu_0 \text{ almost everywhere (a.e.) in } I, \quad \mu_0 = \text{const.} > 0,
\]
\[
q \in L_2(Q), \quad |q(t)| \leq b_0, \quad \left| \frac{dq(t)}{dt} \right| \leq b_1 \text{ a.e. in } Q.
\]

In this section, we present some notations and give some lemmas and theorems used in the paper. Let \(I = (0, 1) \), \(Q = (0, T) \), \(\Omega = I \times Q \), \(p_0, p_1 > 0 \) are real numbers; \(p(\xi) \) and \(q(t) \) are real valued functions such that
\[
0 < p(\xi) \leq \mu_0 \text{ almost everywhere (a.e.) in } I, \quad \mu_0 = \text{const.} > 0,
\]
\[
q \in L_2(Q), \quad |q(t)| \leq b_0, \quad \left| \frac{dq(t)}{dt} \right| \leq b_1 \text{ a.e. in } Q.
\]

In this work, we examine the solution of problem (2)-(4) with the help of the finite difference method. For this, firstly, we constitute a difference scheme for IBVP (2)-(4). Later, we obtain an estimate for the solution of difference scheme. Finally, by using the estimate obtained we show that the scheme is unconditionally stable and is convergent. According to characteristics of the coefficients \(F \alpha, \alpha = 0, 1, 2 \) in (1), we obtain the varied forms of linear and nonlinear Schrödinger equations from equation (1). The solutions by finite difference method of IBVPs for linear Schrödinger equations from equation (1) in case of \(F_0(\xi, t; u) = F_0(\xi, t) \) are previously analyzed in the works \([4,5,6,7]\). In these papers, the coefficient \(F_1 \) is usually zero. But, in \([6]\), there is a nonzero real valued function. Also, when \(F_2(\xi, t; u) = \text{const.}, F_3(\xi, t; u) = 0, F_0(\xi, t; u) = F_0(\xi, t, u) \) in (1), we obtain the nonlinear Schrödinger equations such that the solutions of such equations by the finite difference method are studied in \([7,8,9,10,11,12,13,14]\). The stability, error and convergence of the method have been demonstrated in most of these papers.

As different from previous studies, in this paper, we work out an IBVP in the form (2)-(4) for linear Schrödinger equation including a momentum operator with coefficients \(\varepsilon = i, F_2(\xi, t; u) = p_0, F_1(\xi, t; u) = ip_1, F_0(\xi, t; u) = -p(\xi) + q(t) \), which is more comprehensive and current than the problems studied before.

Based on results in \([15]\), we write the next theorem for problem (2)-(4). It is easily proved by the Galerkin’s method.

Theorem 1. Assume that (5) and (6) are satisfied and \(\eta \in H^2_0(I), \rho \in H^{0,1}(\Omega) \). Then, there exists a unique solution \(u \in B_0 \equiv C^0(Q_T, H^2_0(I)) \cap C^1(Q_T, L^2(I)) \) of problem (2)-(4) for any \(t \in Q_T = [0, T] \) and the following estimate holds
\[
\|u(\cdot, t)\|^2_{H^2_0(I)} + \left\| \frac{\partial u}{\partial x}(\cdot, t) \right\|^2_{L^2(I)} \leq c_0 \left(\|\eta\|^2_{H^2_0(I)} + \|\rho\|^2_{H^{0,1}(\Omega)} \right),
\]
where \(c_0 > 0 \) is a constant independent of \(\eta, \rho, t \).

2 Notations, some useful lemmas and difference scheme

In this section, we present some notations and give some lemmas and theorems used in the paper. Let \(I \) be discretized using by grid points \(\xi_j = jh - \frac{h}{2}, j = 1, 2, ..., A - 1, \xi_0 = 0, \xi_{A - 1} + 1 = h = \frac{1}{\tau} \) and let \(Q_T \) be divided by \(t_k = k\tau, k = 0, 1, ..., B \) with \(\tau = \frac{T}{B} \), where \(A, B \) are any positive integers. Let \(u_{jk}, j = 0, 1, ..., A, k = 0, 1, ..., B \) be the numerical approximation of \(u(\xi, t) \) at the point \((\xi, t) \). Also, we define the finite difference operators...
With these designations, we write the finite difference scheme of problem (2)-(4) for \(j = 1, 2, \ldots, A - 1, k = 1, 2, \ldots, B \) as

\[
\begin{align*}
 iD_\tau^j u_{jk} + p_0D_\tau^j u_{jk} + ip_1D^j z u_{jk} - p_j u_{jk} + q_k u_{jk} &= \rho_{jk}, \\
 u_{j0} &= \eta_j, & j = 0, 1, \ldots, A, \\
 u_{0k} &= u_{Ak} = 0, & k = 1, 2, \ldots, B,
\end{align*}
\]

(8) (9) (10)

where the functions \(p_j, \ q_k, \ \rho_{jk} \) and \(\eta_j \) for \(j = 1, 2, \ldots, A - 1, k = 1, 2, \ldots, B \) are Steklov averages of the functions \(\rho(\xi), \ q(t), \ \rho(\xi,t) \) and \(\eta(\xi) \) respectively, defined by

\[
\begin{align*}
 p_j &= \frac{1}{h} \int_{\xi_j^{-h/2}}^{\xi_j^{+h/2}} p(\xi) d\xi, \\
 q_k &= \frac{1}{\tau} \int_{t_{k-1}}^{t_k} q(t) dt, \\
 \rho_{jk} &= \frac{1}{\tau h} \int_{t_{k-1}}^{t_k} \int_{\xi_j^{-h/2}}^{\xi_j^{+h/2}} \rho(\xi,t) d\xi dt, \\
 \eta_j &= \frac{1}{h} \int_{\xi_j^{-h/2}}^{\xi_j^{+h/2}} \eta(\xi) d\xi, & \eta_0 = \eta_A = 0
\end{align*}
\]

[16]. Also, from conditions (5) and (6), the inequalities

\[
\begin{align*}
 0 &\leq p_j \leq \mu_0, & j = 1, 2, \ldots, A - 1, \\
 |q_k| &\leq b_0, & k = 1, 2, \ldots, B, \\
 |D_\tau^- q_k| &\leq b_1, & k = 2, \ldots, B,
\end{align*}
\]

(11) (12)

are written.

We need the following lemmas and theorem.
Lemma 1. (Discrete Gronwall’s Inequality [17]): Assume that the nonnegative grid functions \(v(s), y(s), s = 1, 2, ..., S, S\tau = T \) satisfy the inequality

\[
v(s) \leq y(s) + \tau \sum_{r=1}^{s} B_r v(r),
\]

where \(B_r \) \((r = 1, 2, ..., S)\) are nonnegative constant. Then, for any \(0 \leq s \leq S \), there is

\[
v(s) \leq y(s) \exp \left(\tau \sum_{r=1}^{s} B_r \right).
\]

Lemma 2. (Summation by Parts Formula): For any two grid functions \(v, w \in \{ v : v = \{v_0, v_1, v_2, ..., v_{A-1}, v_A \}, \ v_0 = v_A = 0 \} \), we have

\[
h \sum_{j=1}^{A-1} (D^v_j v_j) w_j = -h \sum_{j=1}^{A} (D^-_j v_j) (D^-_j w_j).
\]

Lemma 3. (\(-\text{Cauchy's inequality}[18]\)): For any \(\epsilon > 0 \) and arbitrary \(a \) and \(b \), the inequality

\[
ab \leq \frac{\epsilon}{2} a^2 + \frac{1}{2} b^2
\]

is valid.

Theorem 2. (Fubini's Theorem [19]): Let the function \(f(\xi, y) \) be integrable over \(\Omega_{p+q} = \Omega_p \times \Omega_q \). Then, \(f(\xi, y) \) is integrable with respect to \(y \in \Omega_p \) for almost all \(\xi \in \Omega_q \), is integrable with respect to \(\xi \in \Omega_q \) for almost all \(y \in \Omega_p \), the functions \(\int f(\xi, y) dy \) and \(\int f(\xi, y) d\xi \) are integrable with respect to \(\xi \in \Omega_q \) and \(y \in \Omega_p \), respectively, and

\[
\int_{\Omega_{p+q}} f d\xi dy = \int_{\Omega_q} \int_{\Omega_p} f d\xi dy = \int_{\Omega_p} \int_{\Omega_q} f d\xi dy,
\]

where \(\Omega_p \) is a \(p \)-dimensional bounded region in variables \(y = (y_1, y_2, ..., y_p), \Omega_q \) is a \(q \)-dimensional bounded region in variables \(\xi = (\xi_1, \xi_2, ..., \xi_q) \).

3 The stability of scheme (8)-(10)

We firstly get an estimate for the solution of difference scheme (8)-(10). By this estimate, we provide the proof of unconditional stability of the difference scheme.

Theorem 3. Assume that (5) and (6) are satisfied and \(\eta \in H^2_0(I), \rho \in H^{0,1}(\Omega) \). Then, the solution \(u_{jm} \) of difference scheme (8)-(10) for any \(m \in \{1, 2, ..., B\} \) satisfies the estimate

\[
h \sum_{j=1}^{A-1} |u_{jm}|^2 + 2h \sum_{k=1}^{m} \sum_{j=1}^{A-1}|u_{jk} - u_{jk-1}|^2 + 2p_1 \tau \sum_{k=1}^{m} |u_{A-k} - 1|^2
\]

\[
+ 2p_1 \tau \sum_{k=1}^{m} \sum_{j=1}^{A-1} |u_{jk} - u_{j-k-1}|^2 \leq c_1 \left(h \sum_{j=1}^{A-1} |\eta_j|^2 + \tau h \sum_{k=1}^{R} \sum_{j=1}^{A-1} |\rho_{jk}|^2 \right).
\]
Proof. It is clear that for any scheme function ξ_{jk} such that $\xi_{jk} = \xi_{kk} = 0$ for $k = 1, 2, \ldots, B$, scheme (8)-(10) is equivalent to the summation identity

$$ih \sum_{j=1}^{A-1} D_t u_{jk} \bar{\xi}_{jk} + p_0 h \sum_{j=1}^{A-1} D_x^2 u_{jk} \bar{\xi}_{jk} + ip_1 h \sum_{j=1}^{A-1} D_x u_{jk} \bar{\xi}_{jk} - h \sum_{j=1}^{A-1} p_j u_{jk} \bar{\xi}_{jk} + h \sum_{j=1}^{A-1} q_k u_{jk} \bar{\xi}_{jk} = h \sum_{j=1}^{A-1} \rho_{jk} \bar{\xi}_{jk}, \quad (14)$$

where $\bar{\xi}_{jk}$ is the complex conjugate of ξ_{jk}. Substituting $\tau \bar{\xi}_{jk}$ for $\bar{\xi}_{jk}$ in (14) and applying the formula of summation by parts, we get

$$ih \tau \sum_{j=1}^{A-1} D_t u_{jk} \tau u_{jk} - p_0 h \tau \sum_{j=1}^{A-1} D_x^2 u_{jk} \tau u_{jk}^2 + ip_1 h \tau \sum_{j=1}^{A-1} D_x u_{jk} \tau u_{jk}^2 - h \tau \sum_{j=1}^{A-1} p_j \tau u_{jk}^2 + h \tau \sum_{j=1}^{A-1} q_k \tau u_{jk}^2 = h \tau \sum_{j=1}^{A-1} \rho_{jk} \tau u_{jk}. \quad (15)$$

By subtracting its complex conjugate from (15) and using the relations

$$\tau (D_t u_{jk} \tau u_{jk} + D_x^2 \tau u_{jk} \tau u_{jk}) = |u_{jk}|^2 - |u_{jk-1}|^2 + |u_{jk} - u_{jk-1}|^2, \quad (16)$$
$$h \left(D_x^2 u_{jk} \tau u_{jk} + D_x \tau u_{jk} \tau u_{jk}\right) = |u_{jk}|^2 - |u_{jk-1}|^2 + |u_{jk} - u_{jk-1}|^2, \quad (17)$$

we have

$$h \sum_{j=1}^{A-1} \left(|u_{jk}|^2 - |u_{jk-1}|^2 + |u_{jk} - u_{jk-1}|^2\right) + p_1 \tau \sum_{j=1}^{A-1} \left(|u_{jk}|^2 - |u_{jk-1}|^2 + |u_{jk} - u_{jk-1}|^2\right) = 2h \tau \sum_{j=1}^{A-1} \text{Im} (\rho_{jk} \tau u_{jk}), \quad (18)$$

for $k = 1, 2, \ldots, B$. If we sum all equalities in (18) in k from 1 to $m \leq B$ and consider

$$\sum_{k=1}^{m} \sum_{j=1}^{A-1} \left(|u_{jk}|^2 - |u_{jk-1}|^2\right) = \sum_{j=1}^{A-1} \left(|u_{jm}|^2 - |u_{jm}|^2\right) = \sum_{j=1}^{A-1} |u_{jm}|^2 - \sum_{j=1}^{A-1} |\eta_j|^2, \quad (19)$$
$$\sum_{k=1}^{m} \sum_{j=1}^{A-1} \left(|u_{jk}|^2 - |u_{jk-1}|^2\right) = \sum_{k=1}^{m} \left(|u_{A-k}|^2 - |u_{0k}|^2\right) = \sum_{k=1}^{m} |u_{A-k}|^2 \quad (20)$$

with (9) and (10), we obtain from (18) the inequality

$$h \sum_{j=1}^{A-1} |u_{jm}|^2 + h \sum_{k=1}^{m} \sum_{j=1}^{A-1} |u_{jk} - u_{jk-1}|^2 + p_1 \tau \sum_{k=1}^{m} \sum_{j=1}^{A-1} |u_{A-k}|^2$$

$$\leq 2h \tau \sum_{k=1}^{m} \sum_{j=1}^{A-1} |\rho_{jk}| |u_{jk}| + h \tau \sum_{k=1}^{m} \sum_{j=1}^{A-1} |\rho_{jk}| |u_{jk}| + h \tau \sum_{k=1}^{m} \sum_{j=1}^{A-1} |u_{jk}|^2 \quad (21)$$

By ε – Cauchy’s and Young’s inequalities it is written that

$$2h \tau \sum_{k=1}^{m} \sum_{j=1}^{A-1} |\rho_{jk}| |u_{jk}| = 2h \tau \sum_{j=1}^{A-1} |\rho_{jm}| |u_{jm}| + 2h \tau \sum_{k=1}^{m-1} \sum_{j=1}^{A-1} |\rho_{jk}| |u_{jk}|$$

$$\leq \varepsilon \tau \sum_{j=1}^{A-1} |\rho_{jm}|^2 + h \tau \sum_{j=1}^{A-1} |u_{jm}|^2 + h \tau \sum_{k=1}^{m-1} \sum_{j=1}^{A-1} |\rho_{jk}|^2 + h \tau \sum_{k=1}^{m-1} \sum_{j=1}^{A-1} |u_{jk}|^2$$

$$\leq 2 \tau \sum_{j=1}^{A-1} |\rho_{jm}|^2 + \frac{h}{2} \sum_{j=1}^{A-1} |u_{jm}|^2 + h \tau \sum_{k=1}^{m-1} \sum_{j=1}^{A-1} |\rho_{jk}|^2 + h \tau \sum_{k=1}^{m-1} \sum_{j=1}^{A-1} |u_{jk}|^2$$
with \(\varepsilon = 2\tau \) and \(\tau \leq T \). Thus,
\[
\begin{aligned}
&h \sum_{j=1}^{A-1} |u_{jm}|^2 + 2h \sum_{k=1}^{m} \sum_{j=1}^{A-1} |u_{jk} - u_{jk-1}|^2 + 2p_1 \tau \sum_{k=1}^{m} |u_{A-1k}|^2 + 2p_1 \tau \sum_{j=1}^{A-1} \sum_{k=1}^{m} |u_{jk} - u_{j-1k}|^2 \\
\leq 4Th \tau \sum_{k=1}^{B} \sum_{j=1}^{A-1} |\rho_{jk}|^2 + 2h \tau \sum_{k=1}^{m} \sum_{j=1}^{A-1} |u_{jk}|^2 + 2h \sum_{j=1}^{A-1} |\eta_j|^2
\end{aligned}
\tag{22}
\]
for any \(m \in \{1, 2, ..., B\} \) is obtained from (21). From the non-negativeness of all terms in the left-hand side of (22), it is written that
\[
\begin{aligned}
&h \sum_{j=1}^{A-1} |u_{jm}|^2 \leq 4T h \tau \sum_{k=1}^{B} \sum_{j=1}^{A-1} |\rho_{jk}|^2 + 2h \tau \sum_{k=1}^{m} \sum_{j=1}^{A-1} |u_{jk}|^2 + 2h \sum_{j=1}^{A-1} |\eta_j|^2.
\end{aligned}
\tag{23}
\]
Applying the discrete Gronwall's inequality to (23), we achieve
\[
\begin{aligned}
&h \sum_{j=1}^{A-1} |u_{jm}|^2 \leq c_2 \left(h \sum_{j=1}^{A-1} |\eta_j|^2 + \tau h \sum_{k=1}^{B} \sum_{j=1}^{A-1} |\rho_{jk}|^2 \right) \text{ for any } m \in \{1, 2, ..., B\}.
\end{aligned}
\tag{24}
\]
If we use inequality (24) in (22), we get for any \(m \in \{1, 2, ..., B\} \),
\[
\begin{aligned}
&h \sum_{j=1}^{A-1} |u_{jm}|^2 + 2h \sum_{k=1}^{m} \sum_{j=1}^{A-1} |u_{jk} - u_{jk-1}|^2 + 2p_1 \tau \sum_{k=1}^{m} |u_{A-1k}|^2 + 2p_1 \tau \sum_{j=1}^{A-1} \sum_{k=1}^{m} |u_{jk} - u_{j-1k}|^2 \\
\leq c_3 \left(h \sum_{j=1}^{A-1} |\eta_j|^2 + \tau h \sum_{k=1}^{B} \sum_{j=1}^{A-1} |\rho_{jk}|^2 \right)
\end{aligned}
\tag{25}
\]
which completes the proof.

Theorem 4. Suppose \(u_{jk}^1, u_{jk}^2 \) are solutions of difference scheme (8)-(10) with initial values \(\eta_1, \eta_2^j \) and right sides \(\rho_{jk}^1, \rho_{jk}^2 \), respectively. Assume that the conditions of theorem 3 are fulfilled. Let \(\Phi_{jk} = u_{jk}^1 - u_{jk}^2 \). Then, for any \(m \in \{1, 2, ..., B\} \) and \(h, \tau > 0 \),
\[
\begin{aligned}
h \sum_{j=1}^{A-1} |\Phi_{jm}|^2 \leq c_4 \left(h \sum_{j=1}^{A-1} |\eta_1 - \eta_2^j|^2 + \tau h \sum_{k=1}^{B-1} \sum_{j=1}^{A-1} |\rho_{jk}^1 - \rho_{jk}^2|^2 \right).
\end{aligned}
\]
Hence, difference scheme (8)-(10) is unconditionally stable.

Proof. It is clear that for \(j = 1, 2, ..., A-1, k = 1, 2, ..., B \), \(\Phi_{jk} \) is the solution of scheme
\[
\begin{aligned}
i D_t \Phi_{jk} + p_0 D_x^2 \Phi_{jk} + i p_1 D_x \Phi_{jk} - p_j \Phi_{jk} + q_k \Phi_{jk} = \rho_{jk}^1 - \rho_{jk}^2, \\
\Phi_{j0} = \eta_1^j - \eta_2^j, \quad j = 0, 1, ..., A, \\
\Phi_{jk} = 0, \quad k = 1, 2, ..., B.
\end{aligned}
\tag{26-28}
\]
which is equivalent to summation identity
\[
\begin{aligned}
h \sum_{j=1}^{A-1} D_t \Phi_{jk} \Phi_{jk} + p_0 h \sum_{j=1}^{A-1} D_x^2 \Phi_{jk} \Phi_{jk} + i p_1 h \sum_{j=1}^{A-1} D_x \Phi_{jk} \Phi_{jk} \\
- h \sum_{j=1}^{A-1} p_j \Phi_{jk} \Phi_{jk} + h \sum_{j=1}^{A-1} q_k \Phi_{jk} \Phi_{jk} = h \sum_{j=1}^{A-1} (\rho_{jk}^1 - \rho_{jk}^2) \Phi_{jk}
\end{aligned}
\tag{29}
\]
for any scheme function κ_k such that $\kappa_{0k} = \kappa_{Ak} = 0$ for $k = 1, 2, ... B$. If we substitute $\tau \Phi_{jk}$ for κ_{jk} in (29) and apply the formula of summation by parts, we get

$$ih\tau \sum_{j=1}^{A-1} D_{-1}^j \Phi_{jk} \Phi_{jk} - p_0 h \tau \sum_{j=1}^{A-1} D_{-1}^j \Phi_{jk} + i p_1 h \tau \sum_{j=1}^{A-1} D_{-1}^j \Phi_{jk} - h \tau \sum_{j=1}^{A-1} p_j |\Phi_{jk}|^2$$

$$+ h \tau \sum_{j=1}^{A-1} q_k |\Phi_{jk}|^2 = h \tau \sum_{j=1}^{A-1} \left(p_j^1 - p_j^2\right) \Phi_{jk}.$$

If we continue the process similarly to the proof of Theorem 3, we obtain

$$h \sum_{j=1}^{A-1} \Phi_{jm}^2 + 2 h \sum_{k=1}^{m} \sum_{j=1}^{A-1} |\Phi_{jk} - \Phi_{jk-1}|^2 + 2 p_1 h \tau \sum_{k=1}^{m} \Phi_{A-1k}^2 + 2 p_1 \tau \sum_{k=1}^{m} \sum_{j=1}^{A-1} |\Phi_{jk} - \Phi_{jk-1}|^2$$

$$\leq 4T h \tau \sum_{k=1}^{B} \sum_{j=1}^{A-1} |\rho_j^1 - \rho_j^2|^2 + 2 h \tau \sum_{k=1}^{m} \sum_{j=1}^{A-1} |\Phi_{jk}|^2 + h \sum_{j=1}^{A-1} |\eta_j^1 - \eta_j^2|^2.$$

Since all terms in the left-hand side of (30) are non-negative, the inequality

$$h \sum_{j=1}^{A-1} \Phi_{jm}^2 \leq 4T h \tau \sum_{k=1}^{B} \sum_{j=1}^{A-1} |\rho_j^1 - \rho_j^2|^2 + 2 h \tau \sum_{k=1}^{m} \sum_{j=1}^{A-1} |\Phi_{jk}|^2 + h \sum_{j=1}^{A-1} |\eta_j^1 - \eta_j^2|^2.$$

(31)

is written. If we apply discrete Gronwall’s Inequality to (31), we obtain

$$h \sum_{j=1}^{A-1} \Phi_{jm}^2 \leq c_5 \left(h \tau \sum_{k=1}^{B} \sum_{j=1}^{A-1} |\rho_j^1 - \rho_j^2|^2 + h \sum_{j=1}^{A-1} |\eta_j^1 - \eta_j^2|^2\right) \text{ for any } m \in \{1, 2, ..., B\}$$

which completes the proof.

4 The convergence of scheme (8)-(10)

In this section, we prove that the solution u_{jk} of scheme (8)-(10) is convergent to the exact solution U_{jk} of $u(\zeta, t)$, which U_{jk} is defined by

$$U_{jk} = \frac{1}{th} \int_{a-\frac{1}{2} \zeta_j^1}^{b+\frac{1}{2} \zeta_j^2} \int u(\zeta, t) \, d\zeta \, dt, \quad j = 1, 2, ..., A - 1, \quad k = 1, 2, ..., B,$$

(32)

$$U_{j0} = \eta_j, \quad j = 0, 1, ..., A, \quad U_{0k} = U_{Ak} = 0, \quad k = 1, 2, ..., B.$$

(33)

For this, let’s show the error of scheme (8)-(10) by $e_{jk} = u_{jk} - U_{jk}$ at (ζ_j, t_k). It is clear that e_{jk} satisfies the following system:

$$i D_{-1}^j e_{jk} + p_0 D_{-1}^2 e_{jk} + i p_1 D_{-1}^2 e_{jk} - p_j e_{jk} + q_k e_{jk} = I_{jk}, \quad j = 1, 2, ..., A - 1, \quad k = 1, 2, ..., B,$$

(34)

$$e_{j0} = 0, \quad j = 0, 1, ..., A, \quad e_{0k} = e_{Ak} = 0, \quad k = 1, 2, ..., B,$$

(35)

where

$$I_{jk} = \frac{1}{th} \int_{a-\frac{1}{2} \zeta_j^1}^{b+\frac{1}{2} \zeta_j^2} \left(i \frac{\partial u}{\partial t} + p_0 \frac{\partial^2 u}{\partial \zeta^2} + i p_1 \frac{\partial u}{\partial \zeta} - p(\zeta) u + q(t) u\right) \, d\zeta \, dt.$$

(36)

$$-i D_{-1}^j U_{jk} - p_0 D_{-1}^2 U_{jk} - i p_1 D_{-1}^2 U_{jk} + p_j U_{jk} - q_k U_{jk}.$$
Theorem 5. Presume that the conditions of Theorem (1) are fulfilled. Then, the error e_{jk} of scheme (8)-(10) satisfies:

$$h \sum_{j=1}^{A-1} |e_{jm}|^2 \leq c_{12} \left(w_0^2 + w_1^0 + w_1^1 + \tau^2 + h^2 \right)$$

for any $m \in \{1, 2, ..., B\}$,

where $w_0^2 \rightarrow 0$, $w_0^1 \rightarrow 0$, $w_1^1 \rightarrow 0$ as $\tau, h \rightarrow 0$. Hence, the solution u_{jk} of scheme (8)-(10) converges to the solution U_{jk} of problem (2)-(4).

Proof. System (34)-(35) is equivalent to the summation identity

$$h \sum_{j=1}^{A-1} \left(D_x e_{jk} \mathbf{\bar{\vartheta}}_{jk} + p_0 h \sum_{j=1}^{A-1} D_x^2 e_{jk} \mathbf{\bar{\vartheta}}_{jk} + i p_1 h \sum_{j=1}^{A-1} D_x e_{jk} \mathbf{\bar{\vartheta}}_{jk} \right)$$

$\rightarrow h \sum_{j=1}^{A-1} \left(p_j e_{jk} \mathbf{\bar{\vartheta}}_{jk} + h \sum_{j=1}^{A-1} q_k e_{jk} \mathbf{\bar{\vartheta}}_{jk} = h \sum_{j=1}^{A-1} I_{jk} \mathbf{\bar{\vartheta}}_{jk}, \quad k = 1, 2, ... B \right)$

for any grid function ϑ_{jk} such that $\vartheta_{0k} = \vartheta_{jk} = 0$ for $k = 1, 2, ..., B$, where $\mathbf{\bar{\vartheta}}_{jk}$ is the complex conjugate of ϑ_{jk}. With the help of the formula of summation by parts for $\mathbf{\bar{\vartheta}}_{jk} = \tau \vartheta_{jk}$ in (37), we get

$$h \tau \sum_{j=1}^{A-1} \left(\left| e_{jk} \right|^2 - \left| e_{jk-1} \right|^2 + \left| e_{jk} - e_{j-k-1} \right|^2 \right) + p_1 \tau \sum_{j=1}^{A-1} \left(\left| e_{jk} \right|^2 - \left| e_{j-1k} \right|^2 + \left| e_{jk} - e_{j-1k} \right|^2 \right) = 2h \tau \sum_{j=1}^{A-1} \left| I_{jk} \right| \left| e_{jk} \right|$$

Let’s sum all equalities in (39) in k from 1 to $m \leq B$ and use equalities (19) and (20) for e_{jk} with (35). Thus, we have

$$h \sum_{j=1}^{A-1} |e_{jm}|^2 + h \sum_{k=1}^{m} |e_{jk} - e_{j-k-1}|^2 + p_1 \tau \sum_{k=1}^{m} |e_{A-k} - e_{j-1k}|^2 + p_1 \tau \sum_{j=1}^{A-1} |e_{jk} - e_{j-1k}|^2 \leq 2h \tau \sum_{k=1}^{m} \sum_{j=1}^{A-1} |I_{jk}| \left| e_{jk} \right|$$

which is equivalent to

$$h \sum_{j=1}^{A-1} |e_{jm}|^2 + h \sum_{k=1}^{m} |e_{jk} - e_{j-k-1}|^2 + p_1 \tau \sum_{k=1}^{m} |e_{A-k} - e_{j-1k}|^2 + p_1 \tau \sum_{j=1}^{A-1} |e_{jk} - e_{j-1k}|^2 \leq 2h \tau \sum_{k=1}^{m} \sum_{j=1}^{A-1} |I_{jk}| \left| e_{jm} \right| + 2h \tau \sum_{k=1}^{m} \sum_{j=1}^{A-1} |I_{jm}| \left| e_{jm} \right|.$$
noting that $\tau \leq T$ by $\epsilon = 2\tau$. In (41), by discrete Gronwall’s inequality, we obtain
\[
\frac{h}{2} \sum_{j=1}^{A-1} \left| e_{jm} \right|^2 \leq c_2 h T \sum_{k=1}^{B} \sum_{j=1}^{A-1} \left| I_{jk} \right|^2 \text{ for any } m \in \{1, 2, ...B\}.
\] (42)

Let’s denote the grid function I_{jk} as follows
\[
I_{jk} = I_{jk}^1 + I_{jk}^2 + I_{jk}^3 + I_{jk}^4 + I_{jk}^5 \text{ for } j = 1, 2, ..., A - 1, k = 1, 2, ...B,
\]
where
\[
I_{jk}^1 = \frac{1}{h \tau} \int_{t_{k-1} \theta}^{t_k \theta} \int_{\psi_{j-1 \theta}}^{\psi_j \theta} i \frac{\partial u}{\partial t} d\xi dt - iD_U U_{jk},
\] (43)
\[
I_{jk}^2 = \frac{1}{h \tau} \int_{t_{k-1} \theta}^{t_k \theta} \int_{\psi_{j-1 \theta}}^{\psi_j \theta} p_0 \frac{\partial^2 u}{\partial \psi^2} d\xi dt - p_0 D_U^2 U_{jk},
\] (44)
\[
I_{jk}^3 = \frac{1}{h \tau} \int_{t_{k-1} \theta}^{t_k \theta} \int_{\psi_{j-1 \theta}}^{\psi_j \theta} ip_1 \frac{\partial u}{\partial \psi} d\xi dt - i p_1 D_U^2 U_{jk},
\] (45)
\[
I_{jk}^4 = \frac{1}{h \tau} \int_{t_{k-1} \theta}^{t_k \theta} \int_{\psi_{j-1 \theta}}^{\psi_j \theta} -p(\xi) U(\xi, t) d\xi dt + p_1 U_{jk},
\] (46)
\[
I_{jk}^5 = \frac{1}{h \tau} \int_{t_{k-1} \theta}^{t_k \theta} \int_{\psi_{j-1 \theta}}^{\psi_j \theta} q(t) U(\xi, t) d\xi dt - q_1 U_{jk}.
\] (47)

From (32) and (43) for $j = 1, 2, ..., A - 1, k = 2, 3, ...B$, it is written that
\[
I_{jk}^1 = \frac{1}{h \tau} \int_{t_{k-1} \theta}^{t_k \theta} \int_{\psi_{j-1 \theta}}^{\psi_j \theta} \left(\frac{\partial u(\xi, t) \psi_{j+1 \theta} - \partial u(\xi, t \psi_{j+1 \theta})}{\partial t} \right) d\theta d\xi dt
\]
\[
= \frac{i}{h \tau} \int_{t_{k-1} \theta}^{t_k \theta} \int_{\psi_{j-1 \theta}}^{\psi_j \theta} \left(\frac{\partial u(\xi, t) \psi_{j+1 \theta} - \partial u(\xi, t \psi_{j+1 \theta})}{\partial t} \right) d\theta d\xi dt
\]
which implies that
\[
|I_{jk}^1| \leq \frac{1}{h \tau} \int_{t_{k-1} \theta}^{t_k \theta} \int_{\psi_{j-1 \theta}}^{\psi_j \theta} \left(\frac{\partial u(\xi, t \psi_{j+1 \theta})}{\partial t} - \frac{\partial u(\xi, t \psi_{j+1 \theta})}{\partial t} \right) d\theta d\xi dt.
\] (48)

In (48), using Fubini’s Theorem and Cauchy-Schwarz inequality, we achieve
\[
\frac{h \tau}{B} \sum_{k=2}^{B-1} \sum_{j=1}^{A-1} |I_{jk}^1|^2 \leq \frac{1}{\tau} \int_{-\tau}^{0} \left[\int_{\xi}^{\tau} \left(\frac{\partial u(\xi, t \psi_{j+1 \theta})}{\partial t} - \frac{\partial u(\xi, t \psi_{j+1 \theta})}{\partial t} \right) d\xi dt \right] d\theta.
\] (49)
As known, any function belonging to $L_2(\Omega)$ is continuous in the norm of $L_2(\Omega)$. So since $\partial u/\partial t \in L_2(\Omega)$, for a given $\varepsilon > 0$, a number $\sigma > 0$ can be found such that
\[
\left(\int_\Omega \left| \frac{\partial u(\zeta, t) - \partial u(\zeta, t + \theta)}{\partial t} - \frac{\partial u(\zeta, t + \theta)}{\partial t} \right|^2 d\zeta dt \right)^{1/2} < \varepsilon
\]
for all $|\theta| \leq \tau < \sigma$ [19]. Therefore, we write
\[
\tau h \sum_{k=2}^{B} \sum_{j=1}^{A-1} |I_{jk}|^2 \leq w_t^0,
\]
where
\[
w_t^0 = \frac{1}{\tau} \int_0^\tau \left(\int_\Omega \left| \frac{\partial u(\zeta, t) - \partial u(\zeta, t + \theta)}{\partial t} - \frac{\partial u(\zeta, t + \theta)}{\partial t} \right|^2 d\zeta dt \right) d\theta, \quad w_t^0 > 0
\]
and w_t^0 converges to zero since $\theta \to 0$ as $\tau \to 0$. Similarly, from (32) and (43) for $k = 1$, we have
\[
\tau h \sum_{j=1}^{B} \sum_{j=1}^{A-1} |I_{jk}|^2 \leq 4 \int_0^\tau \left| \frac{\partial u(\zeta, t)}{\partial t} \right|^2_{L_2(\Omega)} dt \leq c_7 \tau
\]
by (7). Combining the last inequality with (50), we obtain
\[
\tau h \sum_{k=1}^{B} \sum_{j=1}^{A-1} |I_{jk}|^2 \leq c_8 \tau + w_t^0.
\]
From (32) and (44) for $j = 2, 3, \ldots, A - 2$, $k = 1, 2, \ldots, B$, it is written that
\[
I_{jk}^2 = \frac{1}{h^2 \tau} \int \int_{a-1}^{a} \int \int_{b-1}^{b} p_0 \frac{\partial^2 u(\zeta, t)}{\partial \zeta^2} d\zeta dt - p_0 \left[U_{j+1} - 2U_{jk} + U_{j-1} \right]
\]
\[
= \frac{p_0}{h^2 \tau} \int \int_{a-1}^{a} \int \int_{b-1}^{b} \frac{\partial^2 u(\zeta, t)}{\partial \zeta^2} d\phi d\zeta d\zeta dt - \frac{p_0}{h^2 \tau} \int \int_{a-1}^{a} \int \int_{b-1}^{b} \left(\frac{\partial^2 u(\zeta, t)}{\partial \zeta^2} \frac{\partial^2 u(\zeta + \zeta + \phi, t)}{\partial \zeta^2} \right) d\phi d\zeta d\zeta dt
\]
which implies that
\[
|I_{jk}| \leq \frac{p_0}{h^2 \tau} \int \int_{a-1}^{a} \int \int_{b-1}^{b} \left| \frac{\partial^2 u(\zeta, t)}{\partial \zeta^2} - \frac{\partial^2 u(\zeta + \zeta + \phi, t)}{\partial \zeta^2} \right| d\phi d\zeta d\zeta dt.
\]
In above inequality, by using Fubini’s Theorem and Cauchy-Schwarz inequality, we get
\[
\frac{\tau h}{\sqrt{2}} \sum_{k=1}^{B} \sum_{j=1}^{A-2} \left| f_{jk}^2 \right|^2 \leq \frac{2p_0}{h^2} \int_{0}^{h} \left(\int_{\Omega} \left| \frac{\partial^2 u(\xi, t)}{\partial \xi^2} - \frac{\partial^2 u(\xi + \xi_1, t)}{\partial \xi^2} \right|^2 d\xi dt \right) d\phi d\xi
\]
\[
+ \frac{2p_0}{h^2} \int_{0}^{h} \left(\int_{\Omega} \left| \frac{\partial^2 u(\xi + \xi_1, t)}{\partial \xi^2} - \frac{\partial^2 u(\xi + \xi_1 + \phi, t)}{\partial \xi^2} \right|^2 d\xi dt \right) d\phi d\xi.
\]
Since \(\frac{\partial^2 u}{\partial \xi^2} \in L_2(\Omega) \), for a given \(\varepsilon > 0 \), a number \(\sigma > 0 \) can be found such that
\[
\left(\int_{\Omega} \left| \frac{\partial^2 u(\xi, t)}{\partial \xi^2} - \frac{\partial^2 u(\xi + \xi_1, t)}{\partial \xi^2} \right|^2 d\xi dt \right)^{1/2} \leq \frac{\varepsilon}{2}
\]
\[
\left(\int_{\Omega} \left| \frac{\partial^2 u(\xi + \xi_1, t)}{\partial \xi^2} - \frac{\partial^2 u(\xi + \xi_1 + \phi, t)}{\partial \xi^2} \right|^2 d\xi dt \right)^{1/2} \leq \frac{\varepsilon}{2}
\]
for \(|\xi| \leq h < \sigma \) and \(|\phi| \leq h < \sigma \) [19]. Since \(\xi \rightarrow 0 \) and \(\phi \rightarrow 0 \) as \(h \rightarrow 0 \), it is clear that
\[
\int_{\Omega} \left| \frac{\partial^2 u(\xi, t)}{\partial \xi^2} - \frac{\partial^2 u(\xi + \xi_1, t)}{\partial \xi^2} \right|^2 d\xi dt \rightarrow 0 \text{ and } \int_{\Omega} \left| \frac{\partial^2 u(\xi + \xi_1, t)}{\partial \xi^2} - \frac{\partial^2 u(\xi + \xi_1 + \phi, t)}{\partial \xi^2} \right|^2 d\xi dt \rightarrow 0.
\]
Thus, we can write
\[
\frac{\tau h}{\sqrt{2}} \sum_{k=1}^{B} \sum_{j=1}^{A-2} \left| f_{jk}^2 \right|^2 \leq w_h^0,
\]
(52)
where
\[
w_h^0 = \frac{2p_0}{h^2} \int_{0}^{h} \left(\int_{\Omega} \left| \frac{\partial^2 u(\xi, t)}{\partial \xi^2} - \frac{\partial^2 u(\xi + \xi_1, t)}{\partial \xi^2} \right|^2 d\xi dt \right) d\phi d\xi
\]
\[
+ \frac{2p_0}{h^2} \int_{0}^{h} \left(\int_{\Omega} \left| \frac{\partial^2 u(\xi + \xi_1, t)}{\partial \xi^2} - \frac{\partial^2 u(\xi + \xi_1 + \phi, t)}{\partial \xi^2} \right|^2 d\xi dt \right) d\phi d\xi.
\]
So we say \(w_h^0 \) converges to zero as \(h \rightarrow 0 \). From (32) and (44) for \(j = 1 \) and \(j = A - 1 \), we get
\[
\left| f_{1k}^2 \right| \leq \frac{3p_0}{h^2} \int_{0}^{h} \int_{\Omega} \left| \frac{\partial^2 u(\xi, t)}{\partial \xi^2} \right|^2 d\xi dt \text{ for } k = 1, 2, \ldots B,
\]
\[
\left| f_{A-1k}^2 \right| \leq \frac{3p_0}{h^2} \int_{0}^{h} \int_{\Omega} \left| \frac{\partial^2 u(\xi, t)}{\partial \xi^2} \right|^2 d\xi dt \text{ for } k = 1, 2, \ldots B
\]
which is equivalent to
\[
\frac{\tau h}{\sqrt{2}} \sum_{k=1}^{B} \left| f_{1k}^2 \right|^2 + \frac{\tau h}{\sqrt{2}} \sum_{k=1}^{B} \left| f_{A-1k}^2 \right|^2 \leq 9p_0 \left(\int_{0}^{h} \left\| \frac{\partial^2 u(\xi, t)}{\partial \xi^2} \right\|^2_{L_2(0, T)} d\xi + \int_{h}^{1} \left\| \frac{\partial^2 u(\xi, t)}{\partial \xi^2} \right\|^2_{L_2(0, T)} d\xi \right).
\]
(53)
From (53), we can easily say that the term $h \tau \sum_{k=1}^{B} |I_{1k}^3|^2 + h \tau \sum_{k=1}^{B} |I_{2k}^3|^2$ converges to zero as $h \to 0$. Combining (53) with (52), we obtain

$$\tau h \sum_{k=1}^{B} \sum_{j=1}^{A-1} |I_{jk}^3|^2 \leq w_h^3.$$ \hspace{1cm} (54)

By formulas (32) and (45) for $j = 2, 3, ..., A-2$, $k = 1, 2, ..., B$, we write

$$I_{jk}^3 = \frac{1}{h \tau} \int_{h^{-1} \xi_j - \frac{k}{2}}^{h^{-1} \xi_j + \frac{k}{2}} \int_{-h}^{h} \left(\frac{\partial u}{\partial \zeta} \right)_t \frac{\partial u}{\partial \zeta} d\zeta dt - i \frac{1}{h \tau} \int_{h^{-1} \xi_j - \frac{k}{2}}^{h^{-1} \xi_j + \frac{k}{2}} \int_{-h}^{h} \left(\frac{\partial u}{\partial \zeta} \right)_t \frac{\partial u}{\partial \zeta} d\zeta dt$$

which implies that

$$|I_{jk}^3| \leq \frac{p_1}{h \tau} \int_{-h}^{h} \int_{h^{-1} \xi_j - \frac{k}{2}}^{h^{-1} \xi_j + \frac{k}{2}} \left| \frac{\partial u(\zeta, t)}{\partial \zeta} - \frac{\partial u(\zeta + \frac{\zeta}{2}, t)}{\partial \zeta} \right|^2 d\zeta dt.$$ \hspace{1cm} (55)

From (55), by means of Fubini’s theorem and Cauchy-Schwarz inequality, we get

$$h \tau \sum_{k=1}^{B} \sum_{j=1}^{A-2} |I_{jk}^3|^2 \leq \frac{p_1^2}{h \tau} \int_{-h}^{h} \left(\int_{h^{-1} \xi_j - \frac{k}{2}}^{h^{-1} \xi_j + \frac{k}{2}} \left| \frac{\partial u(\zeta, t)}{\partial \zeta} - \frac{\partial u(\zeta + \frac{\zeta}{2}, t)}{\partial \zeta} \right|^2 d\zeta \right)^{1/2} dt < \epsilon$$

for $|\zeta| \leq h < \sigma$. Since $\zeta \to 0$ as $h \to 0$, we can write

$$h \tau \sum_{k=1}^{B} \sum_{j=1}^{A-2} |I_{jk}^3|^2 \leq w_h^3,$$ \hspace{1cm} (56)

where

$$w_h = \frac{p_1^2}{h \tau} \int_{-h}^{h} \left(\int_{h^{-1} \xi_j - \frac{k}{2}}^{h^{-1} \xi_j + \frac{k}{2}} \left| \frac{\partial u(\zeta, t)}{\partial \zeta} - \frac{\partial u(\zeta + \frac{\zeta}{2}, t)}{\partial \zeta} \right|^2 d\zeta \right)^{1/2} dt d\zeta$$

and w_h^3 converges to zero as $h \to 0$. Similarly, from (32) and (45) for $j = 1$ and $j = A-1$, we get

$$\tau h \sum_{k=1}^{B} |I_{1k}^3|^2 \leq 4p_1 \int_{0}^{T} \left(\int_{0}^{h} \left| \frac{\partial u(\zeta, t)}{\partial \zeta} \right|^2 dt \right) d\zeta = 4p_1 \int_{0}^{h} \left\| \frac{\partial u(\zeta, t)}{\partial \zeta} \right\|^2_{L_2(0,T)} d\zeta,$$

$$\tau h \sum_{k=1}^{B} |I_{A-1k}^3|^2 \leq 4p_1 \int_{l-h}^{l} \left(\int_{l-h}^{l} \left| \frac{\partial u(\zeta, t)}{\partial \zeta} \right|^2 dt \right) d\zeta = 4p_1 \int_{l-h}^{l} \left\| \frac{\partial u(\zeta, t)}{\partial \zeta} \right\|^2_{L_2(0,T)} d\zeta,$$

which implies that

$$\tau h \sum_{k=1}^{B} |I_{1k}^3|^2 + \tau h \sum_{k=1}^{B} |I_{A-1k}^3|^2 \leq 4p_1 \int_{0}^{T} \left(\int_{0}^{h} \left| \frac{\partial u(\zeta, t)}{\partial \zeta} \right|^2 dt \right) d\zeta + \int_{l-h}^{l} \left\| \frac{\partial u(\zeta, t)}{\partial \zeta} \right\|^2_{L_2(0,T)} d\zeta.$$ \hspace{1cm} (57)
In (57), since \(h \tau \sum_{k=1}^{B} |I_{jk}^k|^2 + h \tau \sum_{k=1}^{B} |I_{jk}^{k-1}|^2 \rightarrow 0 \) as \(h \rightarrow 0 \), combining (56) with (57), we can write

\[
\tau h \sum_{k=1}^{B} \sum_{j=1}^{A-1} |f_{jk}^1|^2 \leq w_h^3.
\] (58)

From (32) and (46) for \(j = 1, 2, ..., A - 1, k = 1, 2, ..., B \), it is written that

\[
r_{jk}^1 = \frac{1}{\tau h} U_{jk} \int_{\Delta_j} \int \left(p_j - p(\xi) \right) d\zeta dt + \frac{1}{\tau h} \int_{\Delta_j} \int p(\xi) (U_{jk} - u(\xi, t)) d\zeta dt = \frac{1}{\tau h} \int_{\Delta_j} \int p(\xi) (U_{jk} - u(\xi, t)) d\zeta dt
\]

\[
which implies that
\[
|r_{jk}^1| \leq \frac{\mu_0}{\tau h} \int_{\Delta_j} \int |U_{jk} - u(\xi, t)| d\zeta dt
\] (59)

by condition (5). Since

\[
U_{jk} - u(\xi, t) = \frac{1}{\tau h} \int_{\Delta_j} \int \frac{du(\rho, \eta)}{\partial \eta} d\eta d\theta + \frac{1}{\tau h} \int_{\Delta_j} \int \frac{du(\gamma, t)}{\partial \gamma} d\gamma d\theta,
\]

it is obtained that

\[
|r_{jk}^1| \leq \frac{\mu_0}{\tau h} \int_{\Delta_j} \int \frac{du(\xi, \Theta)}{\partial \Theta} d\phi d\zeta dt + \frac{\mu_0}{\tau h} \int_{\Delta_j} \int \frac{du(\xi, \Theta)}{\partial \Theta} d\phi d\zeta dt + \frac{\mu_0}{\tau h} \int_{\Delta_j} \int \frac{du(\xi, \Theta)}{\partial \Theta} d\phi d\zeta dt + \frac{\mu_0}{\tau h} \int_{\Delta_j} \int \frac{du(\xi, \Theta)}{\partial \Theta} d\phi d\zeta dt + \frac{\mu_0}{\tau h} \int_{\Delta_j} \int \frac{du(\xi, \Theta)}{\partial \Theta} d\phi d\zeta dt + \frac{\mu_0}{\tau h} \int_{\Delta_j} \int \frac{du(\xi, \Theta)}{\partial \Theta} d\phi d\zeta dt
\] (60)

In (60), by Cauchy-Schwarz and Young’s inequalities, we get

\[
|r_{jk}^1|^2 \leq \frac{2\mu_0^2 h}{\tau} \left(\int_{\Delta_j} \int \frac{du(\xi, t)}{\partial t} d\zeta dt \right)^2 + \frac{2\mu_0^2 h}{\tau} \left(\int_{\Delta_j} \int \frac{du(\xi, t)}{\partial \xi} d\zeta dt \right)^2
\]

which implies that

\[
\tau h \sum_{k=1}^{B} \sum_{j=1}^{A-1} |r_{jk}^1|^2 \leq 2\mu_0^2 \tau^2 \left\| \frac{du}{\partial t} \right\|_{L_2(\Omega)}^2 + 2\mu_0^2 h^2 \left\| \frac{du}{\partial \xi} \right\|_{L_2(\Omega)}^2 \leq c_9 (\tau^2 + h^2)
\] (61)

by the estimate (7).

Similarly to the computations obtaining inequality (61), from (32) and (47) for \(j = 1, 2, ..., A - 1, k = 1, 2, ..., B \), we
obtain
\[
\tau h \sum_{k=1}^{B} \sum_{j=1}^{A-1} |I_{jk}|^2 \leq 2h_0^2 \tau^2 \left\| \frac{\partial u}{\partial t} \right\|_{L^2(\Omega)} + 2h_0^2 h^2 \left\| \frac{\partial u}{\partial \xi} \right\|_{L^2(\Omega)} \leq c_{10} \left(\tau^2 + h^2 \right)
\] (62)
by the estimate (7).

Thus, from (51), (54), (58), (61) and (62), we have
\[
\tau h \sum_{k=1}^{B} \sum_{j=1}^{A-1} |I_{jk}|^2 \leq w_0^0 + w_0^1 + w_1 + c_{11} \left(\tau^2 + h^2 \right).
\] (63)

Inserting (63) into (42), we achieve
\[
h \sum_{j=1}^{A-1} \left| e_{jm} \right|^2 \leq c_{12} \left(w_0^0 + w_0^1 + w_1 + \tau^2 + h^2 \right)
\] for any \(\{ m \in 1, 2, \ldots, B \} \).

This completes the proof.

5 Conclusion

In the present paper, a finite difference scheme for Schrödinger type equation including the momentum operator has been constructed. Unconditional stability and convergence of the proposed scheme have been proved. Here, it is worth mentioning that the considered equation in discretized problem contains a momentum operator. Such problems focussing on the solution of Schrödinger type equations including momentum operators by finite difference method have been very slightly studied in literature. Hence, our paper is more comprehensive and current than previous works.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors have contributed to all parts of the article. All authors read and approved the final manuscript.

References

[1] Zhuravlev, V. M., Models of nonlinear wave processes that allow for soliton solutions, JETP, 83 (6) (1996), 1235-1245.
[2] Liu, W.-M. and Kengne, E., Schrödinger equations in nonlinear Systems, Springer Nature Singapore Pte Ltd., Singapore, 2019.
[3] Adams, R. A., Sobolev spaces, Academic Press, New York, 1975.
[4] Becerril, R., Guzman, F. S., Rendon-Romero, A. and Valdez-Alvarado, S., Solving the time-dependent Schrödinger equation using finite difference methods, Revista Mexicana de Fisica E, 54 (2) (2008), 120-132.
[5] Chan, T. F., Lee, D. and Shen, L., Stable explicit schemes for equations of the Schrödinger type, SIAM Journal on Numerical Analysis, 23 (2) (1986), 274-281.
[6] Dai, W., An unconditionally stable three-level explicit difference scheme for the Schrödinger equation with a variable coefficient, SIAM Journal on Numerical Analysis, 29 (1) (1992), 174-181.
[7] Iskenderov, A. D., Yagubov, G. Y. and Musayeva, M. A., Identification of Quantum potentials, Casioolu, Baku, Azerbaijan, 2012.
[8] Cavalcanti, M. M., Corrêa, W. J., Sepúlveda, C. M. A. and Asem, R. V., Finite difference scheme for a high order nonlinear Schrödinger equation with localized damping, Studia Universitatis Babeș-Bolyai Mathematica, 64 (2) (2019), 161-172.
[9] Hu, H. and Hu, H., Maximum norm error estimates of fourth-order compact difference scheme for the nonlinear Schrödinger equation involving a quintic term, Journal of inequalities and applications, 2018:180 (2018).
[10] Iskenderov, A. D. and Yagubov, G. Y., Optimal control problem with unbounded potential for multidimensional, nonlinear and nonstationary Schrödinger equation, Proceedings of the Lankaran State University, Natural Sciences Series (2007), 3-56.
[11] Ivanauskas, F. and Radziunas, M., On convergence and stability of the explicit difference method for solution of nonlinear Schrödinger equations, SIAM Journal on Numerical Analysis, 36 (5) (1999), 1466-1481.
[12] Potapov, M. M. and Razgulin, A. V., Difference methods in problems of the optimal control problems of the steady selfaction of light beams, USSR Comput. Math. and Math. Phys., 30 (4) (1990), 134-142.
[13] Wang, B. and Liang, D., The finite difference scheme for nonlinear Schrödinger equations on unbounded domain by artificial boundary conditions, Applied Numerical Mathematics, 128 (2018), 183-204.
[14] Xie, S. S., Li G. X. and Yi, S., Compact finite difference schemes with high accuracy for one-dimensional nonlinear Schrödinger equation, Computer Methods in Applied Mechanics and Engineering, 198 (2009), 1052-1060.
[15] Yakub, G., Ibrahimov, N. S. and Zengin, M., Optimal control problem for the stationary quasi-optics equation with a special gradient term, Advanced Mathematical Models & Applications, 6 (3) (2021), 252-265.
[16] Chagas, C. Q., Diehl, N. M. L. and Guidolin, P. L., Some properties for the Steklov averages, (2017). Available at arXiv:1707.06368.
[17] Chen, J. and Zhang, L. M., Numerical approximation of solution for the coupled nonlinear Schrödinger equations, Acta Mathematicae Applicatae Sinica, English Series, 33 (2) (2017), 435-450.
[18] Ladyzhenskaya, O. A., Solonnikov, V. A. and Ural’tseva, N. N., Linear and Quasilinear Equations of Parabolic Type, Amer. Math. Soc. (English transl.), Providence, R.I.,1968.
[19] Mikhailov, V. P., Partial Differential Equations (English Translation), Mir Publishers, Moscow, 1978.