Anatomia prawidłowa i ultrasonograficzna wybranych nerwów obwodowych.
Część I: Sonohistologia oraz ogólne zasady badania
na przykładzie nerwu pośrodkowego

Normal and sonographic anatomy of selected peripheral nerves.
Part I: Sonohistology and general principles
of examination, following the example
of the median nerve

Berta Kowalska¹, Iwona Sudol-Szopinska²

1 Indywidualna Specjalistyczna Praktyka Lekarska Berta Kowalska, Kraków, Polska
2 Zakład Radiologii, Instytut Reumatologii, Warszawa, Polska
Adres do korespondencji: Berta Kowalska, ul. Słomczyńskiego 12/8, 31-234 Kraków,
e-mail: berta.kowalska@gmail.com, tel.: 605 890 350

Streszczenie

Ultrasonografia jest uznaną metodą obrazowania nerwów obwodowych, stanowiącą uzupełnienie badania klinicznego, elektromiografii oraz badania metodą rezonansu magnetycznego. Pozwala na rozpoznanie neuropatii na tle zespołów uciskowych, zmian pourazowych nerwów, zmian nowotworowych i zapalnych nerwów oraz na ocenę po-wikłań pooperacyjnych. W niektórych sytuacjach staje się metodą wykorzystywaną w anestezjologii celem prowadzenia znieczulenń regionalnych. Prowadzone badania ultrasonograficzne mają nieinwazyjny charakter, jest dobrze tolerowana przez pacjentów i jest niedroga w porównaniu z innymi metodami diagnostycznymi. W artykułach przedstawiono budowę histologiczną nerwów obwodowych w korelacji z obrazem ultrasonograficznym oraz technikę badania na przykładzie nerwu pośrodkowego, załączając szereg schematów i zdjęć ultrasonograficznych. Opisano sposób interpretacji kształtu, echogeniczności, grubości, unaczynienia nerwu, a także jego stosunku do otaczających tkank. Wyjaśniono „technikę windy”, polegającą na odnalezieniu nerwu w charakterystycznym punkcie anatomicznym i śledzeniu go w kierunku obwodowym bądź dogłowowym. Zwrócono uwagę na niekwestionowane zalety badania ultrasonograficznego, takie jak niezależność od czasu, dynamiczność i możliwość jednoczesowej konfrontacji dolegliwości pacjenta z obrazem ultrasonograficznym. Przedstawiono szczegółową anatomic znaną prawidłowo i ultrasonograficzną nerwu pośrodkowego. Opisano przebieg nerwu, jego podziały i charakterystyczne punkty referencyjne, ułatwiające jego odnalezienie i identyfikację, a następnie śledzenie wspomnianą „techniką windy”. Artykuł otwiera cykl prac dotyczących anatomii, techniki badania oraz patologii nerwów obwodowych.
Abstract

Ultrasonography is an established method for imaging peripheral nerves. It serves to supplement the physical examination, electromyography, and magnetic resonance imaging. It enables the identification of post-traumatic changes of nerves, neuropathies secondary to compression syndromes, inflammatory or neoplastic nerve lesions as well as the evaluation of postoperative complications. In certain situations, this technique is the imaging method of choice. It is increasingly used in anesthesiology for regional anesthesia. As in the case of other ultrasound imaging studies, the examination of peripheral nerves is non-invasive, well-tolerated by patients, and relatively inexpensive. This article presents the histological structure of peripheral nerves and their appearance in ultrasonography. It also presents the examination technique, following the example of the median nerve, and includes a series of diagrams and ultrasound images. The interpretation of the shape, echogenicity, thickness and vascularity of nerves is described, as well as their relation to the surrounding tissues. The “elevator technique”, which consists of locating a set nerve at a characteristic anatomic point, and following it proximally or distally, has been explained. The undisputed benefits of the ultrasound examination have been presented, including its advantages over other diagnostic methods. These advantages include the dynamic component of the ultrasound examination and the possibility of correlating the patient’s symptoms with the ultrasound images. As an example, the proper anatomy and the ultrasonographic appearance of the median nerve were described. This nerve’s course is presented, its divisions, and characteristic reference points, so as to facilitate its location and identification, and enable subsequent use of the aforementioned “elevator technique”. This article opens a series of publications concerning anatomy, technique of examination and pathologies of peripheral nerves.

Abbreviations:

- FDP – flexor digitorum profundus
- FDS – flexor digitorum superficialis
- FPL – flexor pollicis longus
- PL – palmaris longus
- MRI – magnetic resonance imaging
- USG – ultrasonography

Introduction

Ultrasonography (USG) is a valuable method for imaging peripheral nerves, complementing routinely-performed diagnostic studies, including the physical examination, electromyography and magnetic resonance imaging. In certain situations, USG becomes the imaging method of choice; these include evaluating nerves of small diameter (less than 1 mm) such as cutaneous nerves, or in cases of diffuse neuropathies, when unlike MRI, ultrasonography allows for the assessment of even very long nerve trunks and their branches. As in other types of USG studies, the USG diagnostics of peripheral nerves is non-invasive, well-tolerated by patients, and is relatively inexpensive. However, this diagnostic technique requires substantial experience and a thorough knowledge of the nerves’ topographic anatomy. It consists of both the static and dynamic evaluation of nerves, the latter during passive or active movements of the extremities; both components are important in the context of diagnosing musculoskeletal disease with USG.

Key words

- median nerve, ultrasonography, peripheral nerves, proper anatomy, ultrasonographic anatomy

Wstęp

Ultrasonografia (USG) jest cenną metodą obrazowania nerwów obwodowych, stanowiącą uzupełnienie rutynowo wykonywanych badań diagnostycznych, tj. badania klinicznego, elektromiografii (EMG) oraz badania rezonansem magnetycznym (MR). W niektórych sytuacjach staje się metodą z wyboru, np. w diagnostyce nerwów o małej średnicy, poniżej 1 mm, bądź w sytuacjach rozległych neuropatii, gdzie w przeciwieństwie do badania MR pozwala na ocenę nawet bardzo długich pni nerwowych i ich gałęzi. Podobnie jak w przypadku innych rodzajów badań ultrasonograficznych, diagnostyka nerwów obwodowych jest nieinwazyjna, dobrze tolerowana przez pacjentów i względnie tania. Obejmuje ocenę zarówno statyczną, jak i dynamiczną, co jest szczególnie ważne w kontekście diagnostyki chorób układu mięśniowo-szkieletowego. Wymaga jednak dużego doświadczenia oraz doskonałej znajomości anatomii topograficznej nerwów.

Najczęściej stosowane skróty:

- FDP – flexor digitorum profundus – zginacz palców głęboki
- FDS – flexor digitorum superficialis – zginacz palców powierzchowny
- FPL – flexor pollicis longus – zginacz kciuka długi
- PL – palmaris longus – mięsień dłoniowy długi
Pierwsze doniesienia na temat zastosowania ultrasonografii do oceny nerwów obwodowych pojawiły się w 1992 roku i dotyczyły zespołu cieśni kanalu nadgarstka\(^2,3\). Przelom nastąpił w ciągu kilku ostatnich lat, wraz z wprowadzeniem nowoczesnych głowic o wysokich częstotliwościach, które umożliwiły zobrazowanie bardzo drobnych nerwów i ich gałęzi\(^1,4–6\).

Technika badania ultrasonograficznego nerwów obwodowych

Do diagnostyki nerwów obwodowych wykorzystuje się głowice liniowe o częstotliwościach powyżej 12–14 MHz i rozdzielczości poniżej 0,3 mm (ryc. 1). W przypadku pacjentów otyłych oraz w badaniu nerwów zlokalizowanych głęboko można posłużyć się głowicą konweksową, zapewniającą głębszą penetrację ultradźwięków\(^6,7\). Poprawa zasięgu obrazowania wiąże się jednak z pogorszeniem rozdzielczości i tym samym jakości obrazu.

Podczas badania nerwów położonych powierzchownie na poziomie nadgarstka czy stopy pomocne są przystawki dystansujące, wykonane z żelowego agaru (ryc. 2). Wpływa na poprawę obrazu badanych nerwów dzięki niwelowaniu odstawania głowicy od nierówności kostnych oraz uzyskaniu obrazu nerwu na poziomie ogniska fali ultradźwiękowej.

Technique for ultrasonographic imaging of peripheral nerves

For the imaging of peripheral nerves, a linear probe with a frequency greater than 12-14 MHz and a resolution less than 0.3 mm is used (fig. 1). In the case of obese patients or the evaluation of deeply located nerves, a convex probe may be used, thus ensuring a deeper penetration of the ultrasound waves\(^6,7\). Although the improved range of the imaging signal corresponds to a poorer image resolution, the image quality is still sufficient for the precise monitoring of nerve injection in regional anesthesia.

When studying very superficial nerves, distancing add-ons, made of gelous agar, are helpful (fig. 2). Such equipment improves the imaging of set nerves both by improving or eliminating the poor contact between the probe and uneven bony surfaces, as well as by imaging the nerve at the level of the ultrasound wave focus. In particular, such adjuncts are useful in the evaluation of fine nerves of the wrist.
Normal and sonographic anatomy of selected peripheral nerves.
Part I: Sonohistology and general principles of examination, following the example of the median nerve

Obraz ultrasonograficzny nerwów obwodowych (sonohistologia)

Podstawową jednostką nerwu obwodowego stanowi neuron, czyli włókno nerwowe otoczone śródnierwiem (endoneurium). Jest ono zbyt cienkie, aby odbić wiązkę ultradźwięków, stąd nie jest widoczne w badaniu USG. Obrazowane są dopiero grupy włókien nerwowych tworzące pęczki nerwowe, otoczone onerwiem (perineurium). Perineurium zawiera włókna kolagenowe, fibroblasty, naczynia krwionośne i limfatyczne i tworzy warstwę dostatecznej grubości dla odbicia ultradźwięków. Posiada właściwości mechaniczne, zabezpieczające nerw przed rozciąganiem i rozerwaniem\(^{[4,6-8]}\). Pęczki nerwowe tworzą pierścień nerwu obwodowego, otoczony wyraźnie widoczną w USG, hiperechogeniczną warstwą nanerwia (epineurium)\(^{[4,6,7]}\).

Ryc. 3 A. Przekrój podłużny nerwu pośrodkowego w połowie długości przedramienia (nerw zaznaczono strzałkami). B. Przekrój poprzeczny nerwu pośrodkowego na tej samej wysokości – tzw. obraz „plasta miodu”

Fig. 3 A. Longitudinal view of the median nerve midway in the forearm (nerve indicated by arrows). B. Transverse section of the median nerve at the same level, known as the “honeycomb” view

Ryc. 4. Cień akustyczny obojczyka z leżącym w dnie pęczkiem naczyńowo-nerwowym (strzałki)

Fig. 4. Acoustic shadow of the clavicle with a neurovascular bundle laying behind (arrow)

Ryc. 5. Przemieszczanie głowicy w kierunku dystalnym (kolejno A–C) w osi kończyny „techniką windy” wzdłuż przebiegu nerwu pośrodkowego

Fig. 5 A–C. Successive images of moving the probe (in the axis of the limb) using the “elevator technique” along the course of the median nerve
Nerwy należy oceniać na przekroju podłużnym i poprzecznym. Na przekroju podłużnym nerw obwodowy widoczny jest w postaci kilku równoległych, hiperechogenicznych linii, odpowiadających nerwom, zawartym pomiędzy dwiema wyraźniejszymi, także hiperechogenicznymi, warstwami nanerwia. Przypomina to obraz kabla elektrycznego (ryc. 3 A). Na przekroju poprzecznym obraz nerwu jest kojarzony z plastrem miodu, w którym wyróżnia się drobne, okrągłe i hipoechogeniczne obszary, odpowiadające pęczkom nerwowym, z hiperechogenicznymi obwódkami onerwia (ryc. 3 B).

Przyłożenie poprzeczne jest zdecydowanie częściej wykorzystywane w praktyce klinicznej, gdyż pozwala ocenić nerw na bardzo długim odcinku, tzw. „techniką windy” (patrz dalej). Przykładem są nerwy kończyny górnej, które można obrazować od wysokości korzenia spodu barkowego do poziomu nerwu właściwego palca, a jedynym niedostępny w badaniu USG odcinkiem jest krótki fragment przebiegający pod obojczykiem, przesłaniającym obraz tkanek miękkich (ryc. 4).

„Technika windy” polega na odnalezieniu nerwu w charakterystycznym punkcie anatomicznym i siedzeniu go w kierunku obwodowym bądź dogłowowym (ryc. 5 A–C).

Ocenie podlega kształt, echogeniczność, grubość nerwu, unaczynienie, a także jego stosunek do otaczających tkanki. W przypadku stwierdzenia niewidzialności na przekroju poprzecznym nerw należy ocenić także w płaszczyźnie podłużnej, aczkolwiek uzyskanie dobrego obrazu, zwłaszcza przy nielinio wym przebiegu, bywa trudne i ogranicza się do krótkich segmentów. W rezultacie nerw oceniany jest zawsze z przyłożenia poprzecznego, a jedynie na wybranych odcinkach także w przekrojach podłużnych.

Obraz ultrasonograficzny nerwów zmienia się w kierunku obwodowym z bardziej hips- na hiperechogeniczny, co wynika ze zwiększającej się ilości tkanki łącznej pomiędzy pęczkami nerwowymi. Przyjęło się uważać, że nerwy nie podlegają zjawisku anirottropii (zmianie echogeniczności związanej ze zmianą kąta padania wązki ultradźwiękowej). Jednak obserwuje się je w przypadku nerwów o dużych przekrojach. Także kształt nerwu bywa różny i osobniczo zmieniony: okrągły, owalny, trójkątny lub nieregularny i może ulegać zmianie pod wpływem ucisku głowicą lub przy ruchu sąsiadującego aktonu mięśniowego. Co więcej, nerw może zmieniać kształt na swoim przebiegu, np. z trójkątnego na okrągły. Należy również pamiętać o odmianach anatomicznych nerwów.

Ultrasonographic picture of the peripheral nerves (sonohistography)

The basic unit of the peripheral nerve – the neuron – composed of a nerve fiber surrounded by the endoneurium, is too thin to reflect an ultrasound beam, and thus is not visible in USG imaging. Only groups of nerve fibers which form nerve bundles surrounded by the perineurium may be pictured with this technique. The perineurium contains collagen fibers, fibroblasts, blood and lymphatic vessels, and thus forms a layer sufficiently thick to reflect ultrasound waves. This structure possesses mechanical properties which protect the nerve from stretching and tearing.

Nerve bundles combine to form the trunk of a peripheral nerve, which is surrounded by the epineurium, seen clearly in USG as a hyperechogenic layer.

Nerves may be assessed in the transverse or longitudinal sections. In the longitudinal view, the peripheral nerve is seen as several parallel hyperechogenic lines – representing the perineurium – between two more prominent and also hyperechogenic layers of the epineurium. This image resembles that of an electric cable (fig. 3 A). Whereas in the transverse section, the nerve resembles a honeycomb, within which are visible tiny round and hypoechogenic areas representing the nerve bundles with hyperechogenic rims of the epineurium (fig. 3 B).

The transverse image is much more frequently used in clinical practice, as it allows for the nerve to be examined by the so-called “elevator technique” (explained later) along a very long segment. As an example, nerve bundles in the upper limb may be visualized from the level of the brachial plexus root to that of the proper palmar digital nerves. The only short fragment inaccessible to the USG study is that passing below the clavicle, as this bone obscures the image of the underlying soft tissues (fig. 4).

The aforementioned “elevator technique” consists of finding the set nerve at a characteristic anatomic point and “tracking it” either proximally or distally (figs. 5 A–C). In this way it is possible to assess the nerve’s shape, echogenicity, thickness, its relation to the surrounding tissues, the surface area of the nerve and its vasculature. If an abnormality is seen in the transverse view, the nerve should be examined in the longitudinal view, although it may be difficult to obtain a good image, particularly of nerves with a nonlinear course, and thus this view may be limited to short segments. Hence peripheral nerves are always evaluated in the transverse view while the longitudinal view is only used in certain fragments.
Normal and sonographic anatomy of selected peripheral nerves.
Part I: Sonohistology and general principles of examination, following the example of the median nerve

Ryc. 6. Nerw pośrodkowy dwudzielny (strzałki) w kanale nadgarstka

Fig. 6. A bifid median nerve (arrow) in the carpal tunnel

Ryc. 7. Obraz porównawczy prawidłowego mięśnia podgrzebieniowego (strona lewa) oraz mięśnia nadgrzebieniowego z cechami neurogennego zaniku (strona prawa) u pacjenta z przewlekłym uciskiem na nerw nadłopatowy (gwiazdka – mięsień podgrzebieniowy, strzałki – grzbietowa powierzchnia łopatki)

Fig. 7. Comparative images of the normal infraspinatus muscle (left) and the same muscle with signs of neurogenic atrophy (right) in a patient with chronic compression of the suprascapular nerve (infraspinatus muscle – asterisk, the dorsal surface of the scapula – arrows)

Ryc. 8. A. Schemat przebiegu nerwu pośrodkowego. B. Przyłożenie głowicy poprzeczne do długiej osi ramienia, w środkowej części dołu łokciowego. C. Nerw (strzałka) pod brzuskiem mięśnia dwugłowego ramienia (trójkąt), przyśrodkowo od tętnicy ramiennej (gwiazdka)

Fig. 8 A. Diagram of the course of the median nerve. B. Application of the probe perpendicular to the long axis of the forearm, in the median aspect of the cubital fossa. C. The median nerve (arrow) below the belly of the biceps femoris muscle (triangles), medial to the brachial artery (asterisk)
wów, w tym o nerwach dwudzielnych, a nawet trójdzielnych (ryc. 6).[4]

Drobne i głęboko położone nerwy nie zawsze są dobrze widoczne. W celu ich złokalizowania wykorzystuje się charakterystyczne, referencyjne struktury anatomiczne, którymi najczęściej są towarzyszące nerwom naczynia, widoczne w opcji dopplerowskiej[5–7].

Nerwy ruchowe i czuciowo-ruchowe można oceniać pośrednio, analizując obraz USG zaopatrywanych przez nie brzuśców mięśni szkieletowych. Poprzez porównanie ze stroną przeciwną, w przypadku przekleń odnawienia, można wykazać cechy zaniku mięśnia, tj. zmniejszenie jego objętości oraz tłuszczową przekształcenie, manifestującą się podwysięszeniem echogenicznoci[4]. Przykładem jest uszkodzenie nerwu nadłopatkowego, w efekcie czego dochodzi do zmian wstecznich zanikowych mięśni podbrzeżniowego (ryc. 7), czy użarz nerwu piersiowego długiego, gdzie poprzez ocenę poszczególnych zębów mięśnia zębatego przedniego można dokładnie określić poziom uszkodzenia tego nerwu[4]. Niestety, pośredni sposób diagnozowania neuropatii jest zawodny u osób starszych, u których obserwuje się postępujące uogólnione zmiany zaniwane mięśni.

Niekwestionowaną zaletą badania USG jest możliwość konfrontacji obrazu USG z dolegliwościami pacjenta, poprzez określenie, czy miejsce uwidocznionej patologii odpowiada lokalizacji bólu bądź czy jest ono punktem jego wyjścia lub promieniowania (np. w nerwiakach)[4,12]. Kolejnym elementem badania, wyróżniającym USG na tle innych technik obrazowania, jest ocena dynamiczna nerwów, pozwalająca na rozpoznanie szeregu patologii, co będzie tematem następnych publikacji dotyczących nerwów obwodowych.

Anatomia prawidłowa i ultrasonograficzna nerwów obwodowych na przykładzie nerw pośrodkowego (nervus medianus)

Nerw pośrodkowy powstaje z połączenia pęczka bocznego i przyśrodkowego splotu barkowego na przedniej powierzchni tętnicy pachowej, na wysokości dolnego brzegu brzuśca mięśnia piersiowego mniejszego (ryc. 8 A). Na poziomie ramienia biegnie w brzuszczy przyśrodkowej mięśni dwugłowego, początkowo bocznie, potem do prolu, a dystalnie przyśrodkowo od tętnicy ramiennej (ryc. 8 B, C). Na poziomie stawu łokciowego krzyżuje od tyłu, wraz z tętnicą, rozcięgno mięśni dwugłowego

The ultrasonographic picture of nerves changes from hypo- to hyperechogenic as they are followed more peripherally; this fact is due to an increasing amount of connective tissue between the nerve bundles. It has been assumed that nerves are not anisotropic. However, the property of anisotropy is seen in cases of nerves with large cross-sections[4,6,7,9]. The shape of a nerve may also be different and vary between individuals: round, oval, triangular, or irregularly shaped, which may change further under compression by the probe or with the movement of a neighboring muscle. Moreover, a nerve may change its shape along its course, for example from a triangular to a round cross-section[4,6,7]. Anatomic variants of nerves should also be remembered, including bifid or even trifid variants of the median nerve (fig. 6)[4].

For localizing fine and deeply-seated nerves, characteristic anatomic reference points are used. These are often large vessels accompanying the nerves, which may be seen via Doppler imaging[5–7].

Motor and motor-sensory nerves may be evaluated indirectly by analyzing the skeletal muscles which they innervate. In case of chronic denervation, by comparing the image to the contralateral side, muscular atrophy may be evident as a decrease of the muscle’s volume and fatty infiltration, which increases its echogenicity[4]. Examples include injury of the suprascapular nerve which is manifested by degenerative changes of the subscapularis muscle (fig. 7), or trauma to the long thoracic nerve (which is rarely visualized through USG in healthy persons), which may be seen in the anterior dentate muscle – by assessing the state of dents of the anterior dentate muscle it is possible to determine the level of the injury to the nerve[4]. Unfortunately, an indirect method of diagnosing neuropathies is unreliable in the elderly population, in whom there is a progressive generalized atrophy of muscles, impeding the localization or the reliable assessment of the peripheral nerves.

An indisputable benefit of the USG examination is the possibility of confronting the USG image with the patients’ symptoms, by checking if the place of the visualized pathology is compatible to the location of pain, is it located at the point of entry or radiation (which occurs with neuromas)[4,12]. Another advantage of USG study over other imaging techniques is dynamic examination of peripheral nerves enabling diagnostics of a number of pathologies, what will be the subject of the following publications.
Normal and sonographic anatomy of selected peripheral nerves.
Part I: Sonohistology and general principles of examination, following the example of the median nerve

Ryc. 9 A. Przyłożenie głowicy wzdłuż długiej osi bliższej części przedramienia. B. Przekrój podłużny nerwu pośrodkowego (strzałki) biegnącego do tyłu głowy ramiennej mięśnia nacwrotnego obłego (gwiazdki)

Fig. 9 A. Application of the probe parallel to the long axis of the proximal forearm. B. The longitudinal cross-section of the median nerve (arrows) coursing posterior to the humeral head of the pronator teres muscle (asterisk)

Ryc. 10 A. Przyłożenie głowicy poprzeczne na poziomie dalszej nasady przedramienia i podłużne po stronie promieniowej przedramienia. B. Przekrój poprzeczny nerwu pośrodkowego (strzałka), w dzie widoczny mięsień nacwrotny czworoboczny (trójkąty) i kość pro-
mieniowa (gwiazdka). C. Przekrój podłużny nerwu (strzałki) pomiędzy brzusami FDS i FDP

Fig. 10 A. Transverse application of the probe at the distal end of the forearm and longitudinal placement at the radial aspect of the forearm. B. Transverse cross-section of the median nerve (arrow), with the pronator quadratus muscle (triangle) and the radius (asterisk) seen in the background. C. Longitudinal section of the median nerve (arrow) between the FDS and FDP muscle bellies
Proper anatomy and ultrasonography of peripheral nerves – example of the median nerve

The median nerve forms on the anterior surface of the axillary artery from branches of the lateral and medial cords of the brachial plexus, at the pectoralis minor’s inferior border (fig. 8 A). In the arm, the nerve runs in the medial bicipital groove of the biceps brachii muscle, initially lateral to, then anterior and distally medial to the brachial artery (figs. 8 B, C). In the cubital fossa, along with the brachial artery, the median nerve crosses deep to the bicipital aponeurosis to enter the forearm between the humeral and ulnar heads of the pronator teres muscle (figs. 9 A, B).

At this level, the nerve gives off the anterior interosseous nerve, and then descends in the fascial plane between the FDS and FDP (figs. 10 A–C).

It passes the wrist through the carpal tunnel, before dividing into terminal branches (figs. 11 A–C). These are the three common palmar digital branches (digits 1–3) running deep to the superficial palmar arterial arch along the flexor tendons. At the level of the metacarpophalangeal joint, these divide into seven

i przechodzi na poziom przedramienia pomiędzy głowami łokciową i ramieniem mięśnia nawrotnego oblego (ryc. 9 A, B). Na tej wysokości oddaje nerw międzykośćny przedni (nervus interosseus anterior), a następnie biegnie w warstwie pomiędzy płaskimi brzuściami zginaczy powierzchownego i głębokiego palców, osiągając kanał nadgarstka (ryc. 10 A–C).

Dystalnie od więzadła poprzecznego dzieli się na gałęzie końcowe (ryc. 11 A–C), którymi są trzy nerwy dłoniowe wspólne palców I–III (nervi digitales palmares communes), biegnące grzbietowo od powierzchownego łuku tętniczego, wzdłuż ścięgien zginaczy. Na poziomie stawów śródręczno-paliczkowych dzielą się na gałęzie końcowe, jakimi jest siedem nerwów dłoniowych właściwych palców (nervi digitales palmares proprii), kierujących się ku opuszkom palców po stronie promieniowej i łokciowej paliczków podstawnego oraz środkowego, dłoniowo od jednoimiennej tętniczki właściwej dłoniowej palca.

Należy zaznaczyć, że gałęzie do mięśni klębu kciuka biegną osobno bądź razem z nerwem dłoniowym
Nerw międzykostny przedni bezpośrednio po odejściu od pnia nerwu pośrodkowego biegnie w kierunku dłonią mięǳykościową, po której powierzchni przebiega bocznie w stosunku do tętnicy międzykościowej przedniej. Przykryty jest przez mięśnie FPL oraz brzusień mięśni FDP. W dolnej części przedramienia przykrywa go mięśnie nawrotnej czworobocznej. W celu identyfikacji tego małego nerwu posługujemy się opcją dopplerowską obrazującą przebieg towarzyszącej mięśnią FDS i FDP. Na ramieniu nerw przebiega w dół pośrodkowej, gdzie w transverznym widoku pomiędzy śmięgnami FCR i PL, a następnie przebiega powięź, zazwyczaj nieco powyżej troczka zginaczy. Sposobem na zlokalizowanie tej małe gałęzi jest śledzenie przebiegu nerwu pośrodkowego na przekrojach poprzecznych i poszukiwanie odchodzącego od niego drobnego nerwu.

Badanie ultrasonograficzne nerwu pośrodkowego jest proste i umożliwia ocenę nerwu na całej długości. Na ramieniu nerw przebiega w bezpośrednim sąsiedztwie tętnicy ramiennej, łatwo identyfikowanej w opcjach dopplerowskich. Na poziomie przedramienia jest doskonale widoczny pomiędzy płaskimi brzusiami FDS i FDP. Najwygodniej jednak rozpocząć jego ocenę na poziomie kanału nadgarstka, gdzie na przekroju poprzecznym jest widoczny jako owalna struktura przylegająca do troczka zginaczy, słabo poddająca się zjawisku anizotropii. Głowicę należy przyłożyć poprzecznie i przesuwać w osi kończyny nieco łokciowo w stosunku do linii środkowej, po powierzchni dłoniowej przedramienia\(^{(4-7,11-17)}\).

Nerw pośrodkowy oddaje jeszcze jedną ważną gałąź, widoczną w badaniu ultrasonograficznym, tj. gałąź dłoniowa (\textit{ramus palmaris nervi mediani}). Poziom odejścia tego nerwu jest zmienny, niemniej w badaniu USG należy go poszukiwać w dolnej 1/3 przedramienia. Przechodzi między śmięgnami FCR i PL, a następnie przebiega powięź, zazwyczaj nieco powyżej troczka zginaczy. Sposobem na zlokalizowanie tej małej gałęzi jest śledzenie przebiegu nerwu pośrodkowego na przekrojach poprzecznych i poszukiwanie odchodzącego od niego drobnego nerwu.

de proper palmar digital nerves, which run toward the fingertips along the radial and ulnar aspects of the proximal and middle phalanges, superficially to the proper palmar digital arteries.

It should be mentioned that branches to the thenar muscles run separately or with the common palmar digital nerves, and along the FPL tendon sheath\(^{(8,10,13-16)}\).

The \textit{anterior interosseous nerve}, directly after branching off the median nerve trunk, runs towards the interosseous membrane, lateral to the anterior interosseous artery. It is covered by the FPL muscle and the belly of the FDP muscle. In the distal part of the forearm, it is covered by the pronator quadratus muscle. To identify this fine nerve, we can use the Doppler option to image the artery which accompanies it.

The median nerve gives off one more important branch which may be visualized in the ultrasonographic study, this is the \textit{palmar branch of the median nerve}. Its branching point is variable, but with the USG probe it may be sought in the distal third of the forearm. It passes between the FCR and PL tendons, then pierces the fascia usually slightly proximal to the flexor retinaculum. To locate this small branch, it is necessary to track the median nerve’s course in transverse views and search for its branches.

The USG study of the median nerve is easy and allows for an assessment of its entire course. In the arm, the nerve courses along the brachial artery, easily identified with the Doppler option. In the forearm, it is very well seen between the flat bellies of the FDS and FDP muscles. It is best though to begin an examination of the median nerve at the carpal tunnel, where in the transverse view it appears as an oval structure adherent to the flexor retinaculum, and manifests minor anisotropy. The probe should be applied transversely and moved along the limb’s axis, slightly medial to the midline and along the anterior surface of the forearm\(^{(4-7,11-17)}\).
Piśmiennictwo/References

1. Martinoli C: Imaging of the peripheral nerves. Semin Musculoskelet Radiol 2010; 14: 461–462.
2. Buchberger W, Judmaier W, Birbamer G, Hasenöhrl K, Schmidauer C: The role of sonography and MR tomography in the diagnosis and therapeutic control of the carpal tunnel syndrome. AJR Am J Roentgenol 1999; 159: 793–798.
3. Silvestri E, Martinoli C, Derchi LE, Bertolotto M, Chiarandona M, Rosenberg I: Echotexture of peripheral nerves: correlation between US and histologic findings and criteria to differentiate tendons. Radiology 1995; 197: 291–296.
4. Bianchi S, Martinoli C: Ultrasonography in the diagnosis of peripheral nerve lesions: role of high-resolution US. Radiographics 2003; 23: 15.
5. Horsley V, Martinoli C, De Clerck P, Decat J: Ultrasonography in the diagnosis and treatment of peripheral nerve lesions: role of high-resolution US. Radiographics 2003; 23: 15.

Uwaga! Członkowie PTU otrzymują rocznie 4 numery kwartalnika w ramach opłaconej składki członkowskiej. Zachęcamy do regulowania składek w wysokości 220 zł za 2012 rok (konto bankowe PTU: BANK BGŻ S.A. 10 2030 0045 1110 0000 0003 1450) – więcej informacji na stronie www.usgptu.waw.pl.

Zasady prenumeraty kwartalnika „Journal of Ultrasonography”

Prenumeratę „Journal of Ultrasonography” można rozpocząć od dowolnego numeru pisma. Prenumerujący otrzyma zamówione numery kwartalnika pocztą na podany adres. Pojedynczy egzemplarz kwartalnika kosztuje 30 zł. Przy zamówieniu rocznej prenumeraty (4 kolejne numery) koszt całorocznej prenumeraty wynosi 120 zł. Koszt całorocznej prenumeraty zagranicznej wynosi 50 dolarów. Istnieje możliwość zamówienia numerów archiwalnych (do wyczerpania nakładu). Cena numeru archiwalnego – 30 zł. Zamówienie może złożyć:
• Wypełniając załączone do czasopisma blankiet i dokonując wpłaty w banku lub na poczcie.
• Dokonując przelewu z własnego konta bankowego (ROR) – wpłaty należy kierować na konto: Medical Communications Sp. z o.o. ul. Powsińska 34, 02-903 Warszawa Deutsche Bank PBC S.A. 42 1910 1048 2215 9954 5473 0001
• Prosimy o podanie dokładnych danych imiennych i adresowych.
• Drogi mailową: irena.pachecka@medical.pl
• Telefonicznie lub faksem: tel.: 22 651 97 83, faks: 22 842 53 63.
• Wypełniając formularz prenumeraty zamieszczony na stronie www.jultrason.pl. Zamawiający, który chcą otrzymać fakturę VAT, proszeni są o kontakt z redakcją.

Rules of subscription to the quarterly “Journal of Ultrasonography”

Subscription may begin at any time. Subscribers will receive ordered volumes of the journal to the address provided. A single volume of the quarterly costs 30 PLN. The cost of annual subscription (4 consecutive volumes) is 120 PLN. The cost of annual subscription for foreign subscribers is 50 USD. Archival volumes may be ordered at a price of 30 PLN per volume until the stock lasts.

Orders may be placed:
• By filling-in attached (in quarterly) form and making a payment by bank or post-office. Please provide a precise address and nominative data.
• By making a money transfer from own bank account – payments should be made payable to: Medical Communications Sp. z o.o. ul. Powsińska 34, 02-903 Warszawa Deutsche Bank PBC S.A. 42 1910 1048 2215 9954 5473 0001
• Please provide a precise address and nominative data.
• By e-mail: irena.pachecka@medical.pl.
• By phone or by fax: phone: +48 22 651 97 83, fax: +48 22 842 53 63.
• Filling-in a subscription form, which may be found on the page www.jultrason.pl.

Attention! PTU members receive annually 4 issues of the quarterly in the scope of paid membership fee. We strongly recommend regular paying of fees (220 zł/2012 – BANK BGŻ S.A. 10 2030 0045 1110 0000 0003 1450). More details on our web site www.usgptu.waw.pl.