Some spectral properties of chain graphs

EBRAHIM GHORBANI

Department of Mathematics, K.N. Toosi University of Technology,
P. O. Box 16315-1618, Tehran, Iran
School of Mathematics, Institute for Research in Fundamental Sciences (IPM),
P.O. Box 19395-5746, Tehran, Iran

e_ghorbani@ipm.ir

March 13, 2017

Abstract

A graph is called a chain graph if it is bipartite and the neighborhoods of the vertices in each color class form a chain with respect to inclusion. Alazemi, Andelić and Simić conjectured that no chain graph shares a non-zero (adjacency) eigenvalue with its vertex-deleted subgraphs. We disprove this conjecture. However, we show that the assertion holds for subgraphs obtained by deleting vertices of maximum degrees in either of color classes. We also give a simple proof for the fact that chain graphs have no eigenvalue in the interval (0, 1/2).

Keywords: Chain graph, Adjacency Matrix, Eigenvalue, Downer vertex

AMS Mathematics Subject Classification (2010): 05C50

1 Introduction

A graph is called a chain graph (or double nested graph [3]) if it is bipartite and the neighborhoods of the vertices in each color class form a chain with respect to inclusion. Chain graphs appear in different contexts and so several characterizations of them can be found in the literature. Here we mention a few: a graph G is a chain graph if and only if it satisfies one of the following properties:

- every vertex v_i of G can be assigned a real number a_i for which there exists a positive real
number R such that $|a_i| < R$ for all i and two vertices v_i, v_j are adjacent if and only if $|a_i - a_j| \geq R$ (due to this property chain graphs are also called difference graphs) [8];

- G is a bipartite graph and every induced subgraph with no isolated vertices has a dominating vertex on each color class, that is, a vertex adjacent to all the vertices of the other color class [8];

- G is $(2K_2, C_5, C_3)$-free;

- G is $2K_2$-free and bipartite;

- G is P_5-free and bipartite.

Note that the last three characterizations follow easily from the second one.

In terms of graph eigenvalues, (connected) chain graphs have a remarkable feature. They are characterized as graphs whose largest eigenvalue is maximum among the connected bipartite graphs with the same number of vertices and edges ([3, 4]). Another family with similar properties as chain graphs are threshold graphs which are the graphs such that the neighborhoods of their vertices form a single chain with respect to inclusion. They have the largest maximum eigenvalue among the graphs with prescribed number of vertices and edges (see [7, Remarks 8.1.9]). In fact, any threshold graph can be obtained from a chain graph G by replacing one color class of G by a clique, and all other edges unchanged. For more information see [5, 9].

Alazemi, Andelić and Simić [1] conjectured that no chain graph shares a non-zero (adjacency) eigenvalue with its vertex-deleted subgraphs. We disprove this conjecture. However, we show that the assertion holds for subgraphs obtained by deleting vertices of maximum degrees in either of color classes. They [1] also proved that chain graphs have no eigenvalue in the interval $(0, 1/2)$. We give a simple proof for this result.

2 Preliminaries

The graphs we consider are all simple and undirected. For a graph G, we denote by $V(G)$ the vertex set of G. For two vertices u, v, by $u \sim v$ we mean that u and v are adjacent. If $V(G) = \{v_1, \ldots, v_n\}$, then the adjacency matrix of G is an $n \times n$ matrix $A(G)$ whose (i, j)-entry is 1 if $v_i \sim v_j$ and 0 otherwise. By eigenvalues of G we mean those of $A(G)$. The multiplicity of an eigenvalue λ of G is denoted by $\text{mult}(\lambda, G)$. For a vertex v of G, let $N(v)$ denote the neighborhood of v, i.e. the set of all vertices of G adjacent to v. Two vertices u and v of G are called duplicate if $N(u) = N(v)$. For $v \in V(G)$, we use the notation $G - v$ to mean the subgraph of G induced by $V(G) \setminus \{v\}$.

Remark 1. (Structure of chain graphs) As it was observed in [3], the color classes of any chain graph G can be partitioned into k non-empty cells U_1, \ldots, U_k and V_1, \ldots, V_k such that

$$N(u) = V_1 \cup \cdots \cup V_{k-i+1} \text{ for any } u \in U_i, \ 1 \leq i \leq k.$$
Remark 2. (Sum rule) Let x be an eigenvector for eigenvalue λ of a graph G. Then the entries of x satisfy the following equalities:

$$\lambda x(v) = \sum_{u: u \sim v} x(u), \text{ for all } v \in V(G).$$

(1)

From this it is seen that if $\lambda \neq 0$ and $N(v) = N(v')$, then $x(v) = x(v')$. In particular if G is a chain graph, in the notations of Remark 1, x is constant on each U_i and on each V_i for $i = 1, \ldots, k$.

We will make use of the interlacing property of graph eigenvalues which we recall below (see [6, Theorem 2.5.1]).

Lemma 3. Let G be a graph of order n, H be an induced subgraph of G of order m, $\lambda_1 \geq \cdots \geq \lambda_n$ and $\mu_1 \geq \cdots \geq \mu_m$ be the eigenvalues of G and H, respectively. Then

$$\lambda_i \geq \mu_i \geq \lambda_{n-m+i} \text{ for } i = 1, \ldots, m.$$

In particular, if $m = n - 1$, then

$$\lambda_1 \geq \mu_1 \geq \lambda_2 \geq \mu_2 \geq \cdots \geq \lambda_{n-1} \geq \mu_{n-1} \geq \lambda_n.$$

From the case of equality in interlacing (see [6, Theorem 2.5.1]) the following can be deduced.

Lemma 4. If in Lemma 3 we have $\lambda_i = \mu_i$ or $\mu_i = \lambda_{n-m+i}$ for some $1 \leq i \leq m$, then $A(H)$ has an eigenvector x for μ_i, such that $\begin{pmatrix} 0 \\ x \end{pmatrix}$, with the 0 vector corresponding to $V(G) \setminus V(H)$, is an eigenvector of $A(G)$ for the eigenvalue μ_i.

3 Eigenvectors and downer vertices

For a graph G and an eigenvalue λ of G, a vertex v is called downer if $\text{mult}(\lambda, G - v) = \text{mult}(\lambda, G) - 1$. In [2] it was shown that all the non-zero eigenvalues of chain graphs are simple (this also readily follows from (the proof of) Theorem 7 below). As the subgraphs of any chain graph are also chain graphs, if λ is an eigenvalue of a chain graph G, then removal of any vertex from G does not increase the multiplicity of λ, i.e. $\text{mult}(\lambda, G - v) \leq \text{mult}(\lambda, G - v) = 1$. A question raises on the precise value of $\text{mult}(\lambda, G - v)$: is it always 0? This was actually conjectured in [1].

Conjecture 5. ([1]) In any chain graph, every vertex is downer with respect to every non-zero eigenvalue.
The conjecture is equivalent to say that for any chain graph G and any $v \in V(G)$, $G - v$ shares no non-zero eigenvalue with G.

We disprove Conjecture 5 in this section. Indeed, Theorems 8 and 9 below show that there are infinitely many counterexamples for this conjecture. In spite of that, a weak version of the conjecture is true: in Theorem 7 it will be shown that for non-zero eigenvalues the vertices with maximum degrees in each color class of a chain graph are downer.

Remark 6. For a vertex v being downer or not depends on the component corresponding to v in the eigenvectors of λ. Let W be the eigenspace corresponding to λ. If for all $x \in W$, we have $x(v) = 0$, then v cannot be a downer vertex as for any $x \in W$, the vector x' obtained by eliminating the the component corresponding to v, is an eigenvector of λ for $G - v$, so we have

$$\text{mult}(\lambda, G - v) \geq \dim \{x': x \in W\} = \dim W = \text{mult}(\lambda, G).$$

From this and Lemma 4 it follows that, in the case that $\text{mult}(G, \lambda) = 1$, there exists an eigenvector x for λ with $x(v) = 0$ if and only if v is not a downer vertex for λ.

Theorem 7. Let G be a chain graph. Then the vertices having maximum degrees in each color class of G are downer for any non-zero eigenvalue.

Proof. In the notations of Remark 1, the vertices in U_1 and V_1 have the maximum degree in color classes of G. We show that the vertices of U_1 and V_1 are downer with respect to any non-zero eigenvalue λ of G. We may assume that G has no isolated vertices. Let $u_1 \in U_1$, so $N(u_1) = V_1 \cup \cdots \cup V_k$. Let x be any eigenvector for λ. We claim that $x(u_1) \neq 0$, from which the result follows. For a contradiction, assume that $x(u_1) = 0$. So, x is zero on the whole U_1. For any $v \in V_k$, $N(v) = U_1$, so by the sum rule, $x(v) = 0$. Hence for any $u_2 \in U_2$,

$$0 = \lambda x(u_1) = \sum_{v \in N(u_1)} x(v) = \sum_{v \in V_1 \cup \cdots \cup V_k} x(v) = \sum_{v \in V_1 \cup \cdots \cup V_{k-1}} x(v) = \sum_{v \in N(u_2)} x(v) = \lambda x(u_2).$$

It follows that x is zero on U_2 as well. For any $v \in V_{k-1}$, $N(v) = U_1 \cup U_2$, so again by the sum rule, $x(v) = 0$. Hence for any $u_3 \in U_3$,

$$0 = \lambda x(u_1) = \sum_{v \in V_1 \cup \cdots \cup V_k} x(v) = \sum_{v \in V_1 \cup \cdots \cup V_{k-2}} x(v) = \sum_{v \in N(u_3)} x(v) = \lambda x(u_3).$$

It follows that x is zero on U_3, too. Continuing this argument, it follows that $x = 0$, a contradiction. \[\square\]

A chain graph for which $|U_1| = \cdots = |U_k| = |V_1| = \cdots = |V_k| = 1$ is called a *half graph*, where we denote it by $H(k)$. As we will see in what follows, specific half graphs provide counterexamples to Conjecture 5. Let

$$(a_1, \ldots, a_6) := (1, 0, -1, -1, 0, 1).$$
Let

\[x := (x_1, \ldots, x_k) \] where \(x_i = a_s \) if \(i \equiv s \pmod{6} \).

In the next theorem, we show that the vector \((x x)\) (each \(x\) corresponds to a color class) is an eigenvector of a non-zero eigenvalue of \(H(k)\) for some \(k\). In view of Remark 6, this disproves Conjecture 5.

Theorem 8. In any half graph \(H(k)\), the vector \((x x)\) is an eigenvector for eigenvalue 1 if \(k \equiv 1 \pmod{6}\) and it is an eigenvector for eigenvalue \(-1\) if \(k \equiv 4 \pmod{6}\).

Proof. From Table 1, we observe that for \(1 \leq s \leq 6\),

\[
\sum_{i=1}^{5-s} a_i = -a_s \quad \text{and} \quad \sum_{i=1}^{2-s} a_i = a_s,
\]

where we consider \(5-s\) and \(2-s\) modulo 6 as elements of \(\{1, \ldots, 6\}\).

\(s\)	\(a_s\)	\(5-s\)	\(\sum_{i=1}^{5-s} a_i\)	\(2-s\)	\(\sum_{i=1}^{2-s} a_i\)
1	1	4	-1	1	1
2	0	3	0	6	0
3	-1	2	1	5	-1
4	-1	1	1	4	-1
5	0	6	0	3	0
6	1	5	-1	2	1

Table 1: The values of \(\sum_{i=1}^{5-s} a_i\) and \(\sum_{i=1}^{2-s} a_i\).

Note that, since \(\sum_{i=1}^{6} a_i = 0\), if \(1 \leq \ell \leq k\), \(1 \leq s \leq 6\) and \(\ell \equiv s \pmod{6}\), then

\[
\sum_{i=1}^{\ell} x_i = \sum_{i=1}^{s} a_i.
\]

Let \(\{u_1, \ldots, u_k\}\) and \(\{v_1, \ldots, v_k\}\) be the color classes of \(H(k)\). Let \(k = 6t + 4\). We show that \((x x)\) satisfies the sum rule with \(\lambda = -1\). By the symmetry, we only need to show this for \(u_i\)'s.

Let \(i = 6t' + s\) for some \(1 \leq s \leq 6\). Then \(n - i + 1 = 6(t - t') + 5 - s\).

\[
\sum_{j: v_j \sim u_i} x_j = \sum_{j=1}^{n-i+1} x_j = \sum_{j=1}^{5-s} a_j = -a_s = -x_i.
\]

Now, let \(k = 6t + 1\). We show that in this case \((x x)\) satisfies the sum rule with \(\lambda = 1\). Let \(i = 6t' + s\) for some \(1 \leq s \leq 6\). Then \(n - i + 1 = 6(t - t') + 2 - s\).

\[
\sum_{j: v_j \sim u_i} x_j = \sum_{j=1}^{n-i+1} x_j = \sum_{j=1}^{2-s} a_j = a_s = x_i.
\]

\[\Box\]
Now we give another class of counterexamples to Conjecture 5. For this, let
\[\omega^2 + \omega - 1 = 0, \]
and
\[(b_1, \ldots, b_{10}) := (\omega, -1, 0, 1, -\omega, -\omega, 1, 0, -1, \omega).\]
Let
\[x := (x_1, \ldots, x_k) \text{ where } x_i = b_s \text{ if } i \equiv s \pmod{10}. \]

Theorem 9. In any half graph \(H(k) \), the vector \((x \ x)\) is an eigenvector for eigenvalue \(\omega \) if \(k \equiv 7 \pmod{10} \) and it is an eigenvector for eigenvalue \(-\omega \) if \(k \equiv 2 \pmod{10} \).

Proof. From Table 2, we observe that for \(1 \leq s \leq 10 \),
\[\sum_{i=1}^{8-s} b_i = \omega b_s \text{ and } \sum_{i=1}^{3-s} b_i = -\omega b_s, \]
where we consider \(8 - s \) and \(3 - s \) modulo 10 as elements of \(\{1, \ldots, 10\} \).

\(s \)	\(b_s \)	\(8 - s \)	\(\sum_{i=1}^{8-s} b_i \)	\(3 - s \)	\(\sum_{i=1}^{3-s} b_i \)
1	\(\omega \)	7	1 - \(\omega \)	2	\(\omega - 1 \)
2	-1	6	-\(\omega \)	1	\(\omega \)
3	0	5	0	10	0
4	1	4	\(\omega \)	9	-\(\omega \)
5	-\(\omega \)	3	\(\omega - 1 \)	8	1 - \(\omega \)
6	-\(\omega \)	2	\(\omega - 1 \)	7	1 - \(\omega \)
7	1	1	\(\omega \)	6	-\(\omega \)
8	0	10	0	5	0
9	-1	9	-\(\omega \)	4	\(\omega \)
10	\(\omega \)	8	1 - \(\omega \)	3	\(\omega - 1 \)

Table 2: The values of \(\sum_{i=1}^{8-s} b_i \) and \(\sum_{i=1}^{3-s} b_i \)

Note that, since \(\sum_{i=1}^{10} b_i = 0 \), if \(1 \leq \ell \leq k, 1 \leq s \leq 10 \) and \(\ell \equiv s \pmod{10} \), then
\[\sum_{i=1}^{\ell} x_i = \sum_{i=1}^{s} b_i. \]
Let \(k = 10t + 7 \). We show that \((x \ x)\) satisfies the sum rule with \(\lambda = \omega \). Let \(i = 10t' + s \) for some \(1 \leq s \leq 10 \). Then \(n - i + 1 = 10(t - t') + 8 - s \).
\[\sum_{j: v_j \sim u_i} x_j = \sum_{j=0}^{n-i+1} x_j = \sum_{j=1}^{8-s} b_j = \omega b_s = \omega x_i. \]
Now, let $k = 10t+2$. Assume that $i = 10t' + s$ for some $1 \leq s \leq 10$. Then $n - i + 1 = 6(t-t') + 3 - s$.

$$\sum_{j : v_j \sim u_i} x_j = \sum_{j=1}^{n-i+1} x_j = \sum_{j=1}^{3-s} b_j = -\omega b_s = -\omega x_i.$$

It follows that in this case (x, x) satisfies the sum rule with $\lambda = -\omega$. \square

Remark 10. (i) Given (x, x) as eigenvector of $H(k)$ for $\lambda \in \{\pm 1, \pm \omega\}$, then $(x, -x)$ is an eigenvector of $H(k)$ for $-\lambda$. This gives more eigenvalues of $H(k)$ with eigenvectors containing zero components. (ii) Let x be an eigenvector for eigenvalue λ of a graph G with $x(v) = 0$ for some vertex v. If we add a new vertex u duplicate to v and add a zero component to x corresponding to u, then the new vector is an eigenvector of H for eigenvalue λ. So, we can extend any graph presented in Theorems 8 or 9 to construct infinitely many more counterexamples for Conjecture 5.

4 An eigenvalue-free interval

In [1], it was proved that chain graphs have no eigenvalues in the interval $(0, 1/2)$ (and hence no eigenvalue in the interval $(-1/2, 0)$, as the eigenvalues of bipartite graphs are symmetric with respect to zero). Here we give a simple proof for this result.

Theorem 11. ([1]) Chain graphs have no eigenvalue in the interval $(0, 1/2)$.

Proof. The proof goes by induction on the number of vertices. The assertion holds for bipartite graphs with at most 4 vertices (see [6, p. 17]). It suffices to consider connected graphs. So let G be a connected chain graph with at least 5 vertices.

First assume that G has a pair of duplicates u, v and $H = G - v$. Let $\lambda_1 \geq \cdots \geq \lambda_\ell$ and $\mu_1 \geq \cdots \geq \mu_{\ell-1}$ be the eigenvalues of G and H, respectively. Also suppose that $\mu_t > \mu_{t+1} = \cdots = \mu_{t+j} = 0 > \mu_{t+j+1}$ (with possibly $j = 0$). By the induction hypothesis, $\mu_t > 1/2$ (the equality is impossible). By interlacing, we have $\lambda_{t+1} \geq 0 = \lambda_{t+2} = \cdots = \lambda_{t+j} = 0 \geq \lambda_{t+j+1} \geq \mu_{t+j+1}$. Note that $\text{mult}(0, G) = \text{mult}(0, H) + 1 = j + 1$. This is possible only if both λ_{t+1} and λ_{t+j+1} are zero. On the other hand, again by interlacing, $\lambda_t \geq \mu_t > 1/2$. Hence G has no eigenvalue in $(0, 1/2)$.

Now, suppose that G has no pair of duplicates. It follows that G is a half graph and $$A(G) = \begin{pmatrix} O & C \\ C^\top & O \end{pmatrix},$$ with $C + C^\top = J_n + I_n$ where J_n is the all 1’s $n \times n$ matrix. We have that

$$(2C - I)(2C - I)^\top = 4CC^\top - 2C - 2C^\top + I = 4CC^\top - I - 2J.$$
This means that $4CC^\top - I = (2C - I)(2C - I)^\top + 2J$ is positive semidefinite and so the eigenvalues of CC^\top are not smaller than $1/4$. It turns out that G has no eigenvalue in the interval $(-1/2, 1/2)$. This completes the proof.

\[
\square
\]

Acknowledgments

The research of the author was in part supported by a grant from IPM.

References

[1] A. Alazemi, M. Andelić, and S.K. Simić, Eigenvalue location for chain graphs, *Linear Algebra Appl.* **505** (2016), 194–210.

[2] M. Andelić, E. Andrade, D.M. Cardoso, C.M. da Fonseca, S.K. Simić, and D.V. Tošić, Some new considerations about double nested graphs, *Linear Algebra Appl.* **483** (2015), 323–341.

[3] F.K. Bell, D. Cvetković, P. Rowlinson, and S.K. Simić, Graphs for which the least eigenvalue is minimal, II, *Linear Algebra Appl.* **429** (2008), 2168–2179.

[4] A. Bhattacharya, S. Friedland, and U.N. Peled, On the first eigenvalue of bipartite graphs, *Electron. J. Combin.* **15** (2008), #R144.

[5] A. Brandstädt, V.B. Le, and J.P. Spinrad, *Graph Classes: A Survey*, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1999.

[6] A.E. Brouwer and W.H. Haemers, *Spectra of Graphs*, Springer, New York, 2012.

[7] D. Cvetković, P. Rowlinson, and S. Simić, *An Introduction to the Theory of Graph Spectra*, London Mathematical Society Student Texts, 75, Cambridge University Press, Cambridge, 2010.

[8] P.L. Hammer, U.N. Peled, and X. Sun, Difference graphs, *Discrete Appl. Math.* **28** (1990), 35–44.

[9] N.V.R. Mahadev and U.N. Peled, *Threshold Graphs and Related Topics*, Annals of Discrete Mathematics, NorthHolland Publishing Co., Amsterdam, 1995.