Supplementary Material

Structural Basis of Inhibition of Human Insulin-Regulated Aminopeptidase (IRAP) by benzopyran-based inhibitors

Sudarsana Reddy Vanga¹, Johan Åqvist¹, Anders Hallberg³, Hugo Gutiérrez-de-Terán¹,²*

¹Department of Cell and Molecular Biology, BMC, Box 596 and ²Science for Life laboratory, Uppsala University, SE-751 24, Uppsala, Sweden
³Department of Pharmaceutical Chemistry, BMC, Uppsala University, SE-751 23, Uppsala, Sweden

1 Supplementary Figures and Tables

Table S1 - RMSD of the ligands along the MD trajectory of the protein-ligand complex used for LIE calculations. Ligands with Kᵢ > 100 µM (i.e. non-binders) are highlighted in italics and denoted with a star. It can be appreciated the higher RMSD values, indicating instability of the binding mode proposed which resulted in lost interactions with the Zn²⁺ coordination cluster

Compound	RMSD of ligand (in Å) +/- SEM
IRAP-wildtype	
6	2.23 ± 0.71
7	1.99 ± 0.63
8	2.46 ± 0.78
9	2.46 ± 0.82
I - IRAP	
6	1.74 ± 0.55
7	2.10 ± 0.66
8	1.50 ± 0.47
9	1.70 ± 0.54
V - IRAP	
6	2.51 ± 0.79
7	2.35 ± 0.74
8	2.62 ± 0.83
9	2.29 ± 0.72
HFI-Series	
15a	4.68 ± 1.48
15b	3.90 ± 1.23
15c	4.69 ± 1.48
-----	-------
15d	3.75 ± 1.19
15e	4.36 ± 1.38
15f	3.90 ± 1.23
15g	4.40 ± 1.39
16a	3.98 ± 1.26
16b	4.25 ± 1.34
16c	2.15 ± 0.68
16d	2.40 ± 0.76
16e	2.61 ± 0.83
16f	1.97 ± 0.62
16g	1.91 ± 0.60
16h	2.60 ± 0.82
16i*	3.50 ± 1.11
16j*	3.38 ± 1.07
16k*	3.46 ± 1.09
16l	2.65 ± 0.84
16m	2.32 ± 0.73
16n	2.59 ± 0.82
16o	2.26 ± 0.71
16p*	5.45 ± 1.72
16q	2.33 ± 0.74
16r	1.91 ± 0.60
17a	2.44 ± 0.77
17b	2.04 ± 0.65
17c	1.84 ± 0.58
17d	2.61 ± 0.83
17e	1.91 ± 0.60
17g	1.94 ± 0.61
18d	2.32 ± 0.73
18f	2.01 ± 0.64
18g	2.02 ± 0.64
18h*	5.29 ± 1.67