A catalogue of putative cis-regulatory interactions between long non-coding RNAs and proximal coding genes based on correlative analysis across diverse human tumors

Swaraj Basu§*, Erik Larsson§*

§Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden.

*Corresponding authors
Running title: Putative cis-regulation by lncRNAs

Keywords: cancer, RNAseq, lncRNA, transcriptome, correlation

Corresponding authors: Swaraj Basu and Erik Larsson Lekholm

Department: Institute of Biomedicine, Department of Medical Biochemistry and Cell Biology

Visiting address: Medicinaregatan 9A

Postal address: P.O. Box 440, SE-405 30 Göteborg

Phone: +46 31 786 6942 Mobile: + 46 736 735735

Fax: + 46 31 41 61 08

E-mail: swaraj.basu@gu.se or erik.larsson@gu.se
Abstract

Antisense transcripts and other long non-coding RNAs are pervasive in mammalian cells, and some of these molecules have been proposed to regulate proximal protein-coding genes in \textit{cis}. For example, non-coding transcription can contribute to inactivation of tumor suppressor genes in cancer, and antisense transcripts have been implicated in the epigenetic inactivation of imprinted genes. However, our knowledge is still limited and more such regulatory interactions likely await discovery. Here, we make use of available gene expression data from a large compendium of human tumors to generate hypotheses regarding non-coding-to-coding \textit{cis}-regulatory relationships with emphasis on negative associations, as these are less likely to arise for reasons other than \textit{cis}-regulation. We document a large number of possible regulatory interactions, including 193 coding/non-coding pairs that show expression patterns compatible with negative \textit{cis}-regulation. Importantly, by this approach we capture several known cases, and many of the involved coding genes have known roles in cancer. Our study provides a large catalogue of putative non-coding/coding \textit{cis}-regulatory pairs that may serve as a basis for further experimental validation and characterization.

Introduction

Long non-coding RNAs (lncRNAs) are implicated in vital cellular processes like chromatin modification, regulation of transcription and molecular scaffolding (Quinn and Chang, 2016). Several lncRNAs are reported to act in a \textit{cis}-regulatory fashion, modulating the transcription of nearby genes using diverse mechanisms, as shown for lncRNAs like \textit{MALAT1} (Zhang et al., 2012), \textit{HOTTIP} (Burgess, 2011), and \textit{ANRIL} (Yap et al., 2010). Non-coding RNAs overlapping coding genes in the antisense orientation can also regulate their coding partners, often in an inhibitory fashion, as proposed for the tumor suppressor \textit{P15} and its antisense RNA \textit{P15AS} in mouse (Yu et al., 2008). Similarly, allele-specific repression of several imprinted genes has been shown to
involve non-coding RNA transcription, including the IncRNA \textit{UBE3A-ATS} in humans, proposed to cause repression of the antisense overlapping coding gene \textit{UBE3A} through transcriptional collision (Meng et al., 2012), and \textit{KCNQ1OT1}, which is involved in epigenetic silencing of its antisense partner \textit{KCNQ1} and multiple other coding genes in \textit{cis} \textit{KCNQ1OT1} (Du et al., 2004). These examples, and a relatively limited number of other well-characterized cases, are likely to only represent a small subset all \textit{cis}-regulatory interactions involving non-coding RNAs and proximal coding genes.

An appealing idea is to make use of the abundance of expression data available in the public domain to make predictions about IncRNA \textit{cis}-regulatory interactions. A recent report based on several hundred tumor samples showed widespread transcription of antisense IncRNAs, which were mostly positively correlated with their proximal coding partners, and identified potential antisense molecules that may be involved in the regulation of oncogenes and tumor suppressors (Balbin et al., 2015). Likewise, earlier reports have also described a general trend of positive expression correlation for coding/IncRNAs proximal pairs across diverse samples, in particular for antisense overlapping transcripts (Derrien et al., 2012). In general, these positive associations are likely to reflect shared chromatin domains or transcriptional ripple effects rather than a direct regulatory interaction (Le Dily et al., 2014), and the same trend is indeed observed also for closely spaced protein-coding genes (Ghanbarian and Hurst, 2015), thereby making it difficult to discern signal from noise. Negative correlations, in contrast, are not as easily explained by such trivial effects. One may therefore argue that it may be more viable to search for inhibitory \textit{cis}-regulatory interactions, as described for some antisense transcripts, with the help of correlative gene expression analyses.

Here, we aimed to generate a catalogue of putative \textit{cis}-regulatory interactions between IncRNAs and nearby protein-coding genes, based on an analysis of transcriptome sequencing data from over 9000 tumor samples across 32 cancer types from The Cancer Genome Atlas consortium. By quantifying the expression of \textasciitilde20,000 coding genes and \textasciitilde13,000 IncRNAs we were able to identify
a subset of lncRNAs that may potentially act as repressors of proximal coding genes in one of more cancer types, as indicated by patterns of negative expression correlation across tumor samples. These results constitute a powerful resource that may serve as a starting point for experimental studies in search of biologically active non-coding genes, which may in the extension serve as biomarkers or therapeutic targets in cancer.

Materials and methods

The raw sequencing data download and analysis was performed as described in a previous study (Ashouri et al., 2016). In brief, raw sequencing reads were downloaded from https://cghub.ucsc.edu/ using the gene torrent client (https://annaisystems.zendesk.com) for 10422 samples falling under 33 cancer types. The reads were mapped on the human genome (hg19) using the hisat aligner v0.1.6-beta (Kim et al., 2015) where parameters were chosen to ensure filtering of mixed and discordant reads along with better accuracy of alignment at splice sites (--no-mixed --no-discordant --no-unal –known-splicesite-infile. The gene quantification step was performed by HTSeq v0.6.0 (Anders et al., 2015) ignoring reads overlapping multiple genomic features (-m intersection-strict). The gene wise raw read counts obtained from HTSeq (GENCODE v19 annotation) for primary tumor samples (9153 samples from 32 cancer types) were further normalized by library size to obtain expression metric as counts per million using the edgeR package v3.6.8 in the R statistical environment (Robinson et al., 2010). For each cancer type, genes showing an expression of at least 1 cpm in 3 or more samples were retained for downstream analyses. The data.table package in R was used extensively to handle large expression matrices (https://CRAN.R-project.org/package=data.table).

The BEDTools software suite v2.25 (Quinlan and Hall, 2010) was used to identify lncRNA classes based on their position with respect to their proximal coding genes. In brief, windowBed binary was used to define a flanking region of 25 kb, 50 kb and 100 kb for each coding gene and identify the lncRNAs and other coding genes falling within the specified boundary. Further intersectBed and closestBed binary were used to identify all lncRNAs transcribed in sense within 5 kb distance of a
coding gene. These lncRNAs were marked as potential alternative polyadenylation events and not considered for the downstream analysis. The rest, based on the distance threshold were placed in coding/coding or coding/lncRNAs pairs at 25 kb, 50 kb and 100 kb. Finally using the shuffleBed (-chrom) utility coding genes and lncRNA genomic coordinates were shuffled and then windowBed was used to identify coding/lncRNA pairs falling within 25 kb, 50 kb and 100 kb distance of each other to generate a randomized dataset. Correlation of expression was measured between the identified coding/lncRNA and coding/coding pairs along with the shuffled pairs using spearman correlation coefficient (ρ) across all samples for each given cancer type. Correlations are deemed to be significant if the corrected P (Benjamini & Hochberg) was < 1e-5. Since several cancer types contain a large number of samples we refrained from filtering the results on the estimated spearman correlation coefficient while keeping a stringent P cut-off. Gene expression is also dependent on somatic mutations and copy number variations in cancer genomes, thus avoiding a threshold for ρ allowed us to consider gene pairs with a lower expression correlation which may have biological significance.

The mean cpm of each gene across all samples in a given cancer type was used to estimate the Tau expression specificity score as described in a recent review (Kryuchkova-Mostacci and Robinson-Rechavi, 2016). The sequence conservation for coding genes was measured by averaging the phastcons score over all exons of each coding genes using the bigWigAverageOverBed binary from UCSC utilities and the groupBy binary from BEDTools. The phastcons 100way conservation data in bigwig format was downloaded from the UCSC database (http://hgdownload.cse.ucsc.edu/goldenpath/hg19/phastCons100way/hg19.100way.phastCons.bw). A similar approach was used to measure the sequence conservation of lncRNAs except lncRNA exonic regions which overlap with coding exons were removed using the substractBed utility from BEDTools. The methylation data across 32 cancer types (Human Methylation 450 platform) was downloaded from TCGA data portal with the bioconductor package TCGAbiolinks (Colaprico et al., 2015). The methylation probes were associated with gene transcription start site (TSS) or body
using an annotation file provided by Illumina (ftp://webdata2:webdata2@ussd-ftp.illumina.com/downloads/ProductFiles/HumanMethylation450/HumanMethylation450_15017482_v1-2.csv). If multiple probes matched a given TSS, the probe with the maximum value was considered to be representative of the TSS. Spearman correlation coefficient was estimated between the methylation beta values at coding gene TSS and IncRNA gene expression for matched samples within each cancer type. A corrected P cut-off of 0.05 was used to select significant correlations.

Data Availability

All supplementary data and figures are uploaded in GSA Figshare. The authors affirm that all data necessary for confirming the conclusions of the article are present within the article, figures, and tables.

Results and Discussion

Quantification of IncRNAs and coding genes across thousands of tumors

Raw RNA sequencing data from 9,193 primary tumor samples across 32 cancer types were downloaded and mapped to the human genome to quantify 60,296 coding and non-coding gene features in the GENCODE (v19) annotation (*Supplementary figure 1a*). Since IncRNAs are significantly enriched for repeats like transposable elements (Kelley and Rinn, 2012) we excluded multi-mapping reads and discordant read pairs to reduce erroneous quantification. As an added measure we omitted mapped reads overlapping multiple genomic features (both coding and IncRNA exons) prior to the quantification of genomic features (*Supplementary figure 1b*). These stringent filtering measures reduce the probability of detecting false positive correlations between coding genes and IncRNAs. Additionally we filtered out IncRNAs that were possible alternative polyadenylation events of coding genes (Hoque et al., 2013) (*Figure 1a*, see Material and methods).

General patterns of correlation between coding genes and proximal IncRNAs

Genes that reside in the same genomic neighborhood often tend to be co-expressed, and this effect has been shown to be pronounced within a distance threshold of 100 kb in the human genome.
Taking these previous reports into account, firstly we calculated the spearman correlation coefficient (ρ) between coding genes and all lncRNAs overlapping completely or partially with a window extending +/- 100 kb from the boundaries of each coding gene. As expected, the ρ distribution for proximal coding/lncRNA pairs was skewed towards positive (Supplementary Figure 2) as compared against random coding/lncRNA pairs (Supplementary Figure 3), in all cancer types analyzed. We also observed that the fraction of lncRNAs whose expression significantly correlates (+/- ρ) with their neighboring coding genes ($P < 1e^{-5}$) was higher than the random expectation (Supplementary figure 4 a, b; Fishers exact test, $P < 0.01$). These results are consistent with earlier reports, and are likely to largely reflect shared transcriptional programs of co-localized genes residing in common topological domains (Le Dily et al., 2014), rather than positive regulation of coding genes by lncRNAs in cis.

To normalize for the effect of coordinated gene expression within genomic blocks, we next compared the expression of each coding gene against neighboring lncRNAs at different distance thresholds (100 kb, 50 kb and 25 kb), considering each cancer type independently. Here, 64%, 57% and 50% of the total lncRNA set had a coding gene within 100 kb, 50 kb and 25 kb, respectively. As a control, the same analysis was also done while instead comparing against neighboring coding genes within the same distance thresholds. Finally, we compared the fraction lncRNAs/coding pairs showing significant correlation (positive or negative ρ, $P < 1e^{-5}$) to the control (coding/coding) pairs. This revealed that the lncRNAs/coding pairs were enriched in terms of significant correlations compared to coding/coding pairs at shorter (<25 kb) genomic distances (Figure 1b-d). Expectedly, the vast majority of lncRNA/coding correlations were positive, with a higher fraction of positive correlations found at shorter distances (84.9% at 25 kb compared to 79.6% at 100 kb; Supplementary Figure 5). LncRNAs thus tend to be associated at the gene expression level with their proximal coding genes, to a larger extent than similar proximal coding/coding pairs. While this could in part be an outcome of cis-regulatory functions, in most cases it is more likely a reflection
of lncRNAs relying to a larger extent on the transcription of their neighboring coding genes for their activation, due to the absence of an independent transcriptional module.

Expected positive and negative correlations for several known cis acting lncRNAs

When compared against a database of experimentally validated lncRNAs (Quek et al., 2015) we found that the results of the correlation analysis supported several established regulatory interactions ([Supplementary table 1](#)). The lncRNA *HOTTIP* showed strong positive correlation with *HOXA* genes, consistent with its described role in activating *HOX* cluster genes (Wang et al., 2011) ([Figure 1e](#)). However, it must again be noted that such positive correlations provide limited evidence for regulatory interactions. As an example, while the lncRNA *IGF2AS* showed strong positive correlation with its host coding gene *IGF2* gene across several cancer types ([Figure 1e](#)), it has previously been shown to be due to both the genes falling under a shared open chromatin domain (Mutskov and Felsenfeld, 2009).

Further, focusing on our primary aim, we also observed that the lncRNA *MALAT1* showed significant negative correlation with *SCYL1* in a large number of cancer types, consistent with a previously reported negative *cis*-regulatory effect on this gene (Zhang et al., 2012) ([Figure 1e](#)). Similarly, *KCNQ1OT1* showed significant negative correlation with *KCNQ1* in several cancers, supporting its previously reported role in repressing *KCNQ1* (Du et al., 2004) ([Figure 1e](#)). We here posit that, unlike positive correlation, such cases of negative correlation between a coding/lncRNA pair are more likely to be informative of putative *cis*-regulatory interactions.

Detailed investigation of negatively correlated lncRNAs/coding pairs

We found in total 193 pairs of lncRNAs and coding genes (involving 178 unique lncRNAs and 188 unique coding genes) that showed negative expression correlation in the majority of cancers and that reached significance (*P* < 1e-5) in at least one cancer type. Here onwards we refer to these pairs as the lncRNAs/coding negatively correlated (LCN) set ([Supplementary table 2](#)). We similarly defined a coding/coding negatively correlated set (CCN, 1412 pairs) using the same criteria, as well analogous positively correlated sets (LCP, 4094 pairs; CCP, 23,824 pairs).
To characterize the coding genes in the LCN set, we tested for enrichment of several different gene categories. Notably, we found that known cancer driver genes from the cancer gene census (Futreal et al., 2004) were overrepresented in the LNC set compared to the other ones (fisher test $P < 0.01$, Figure 2a), while no enrichment was seen in this set for imprinted genes, chromatin modifiers or transcription factors (Figure 2b,c,d). 14 of these coding/LncRNA pairs in the LCN set, where the coding gene is reported to play a role in cancer are listed in Table 1. The cancer gene census enrichment suggests that cancer driver genes may be under the control of cis-regulatory LncRNAs to a larger extent than other genes, and the list of such LncRNAs/coding pairs thus constitutes a resource for selecting candidate LncRNAs with a functional role in cancer for experimental evaluation.

Further characterization of LncRNAs in negatively correlated LncRNAs/coding pairs

We added further value to our predictions by considering metrics that may be indicative of gene function in the case of LncRNAs, like expression specificity, sequence conservation, nuclear localization, and association of LncRNA expression with methylation at coding gene promoters. A core tenet of LncRNA biology is their highly tissue specific expression pattern in comparison to coding genes (Cabili et al., 2011; Derrien et al., 2012), where a recent report has identified several tissue-specific LncRNAs that are also expressed precisely in certain cancer types (Iyer et al., 2015). Thus we investigated the cancer type specificity of all LncRNAs and coding genes using the Tau specificity score, which ranges from 0 and 1 where 0 implies ubiquitous expression while 1 indicates a highly restricted expression pattern across a given set of samples (Yanai et al., 2005). We found that LncRNAs tend to be expressed in a significantly more cancer type-specific manner compared to coding genes (Student’s t-test, $P < 2.2e-16$; Figure 3a). However, interestingly LncRNAs in the LCN set showed significantly lower specificity compared to the LCP set (Student’s t-test, $P = 3.6e-11$) and all LncRNAs (Student’s t-test, $P = 1.6e-15$). Presumably, being negative correlated with a coding gene implies a more complex, coding-like, expression pattern across
Further, we characterized the LCN set in terms of evolutionary sequence conservation. Although IncRNAs generally show a low level of conservation, highly conserved blocks are reported within well-characterized IncRNAs like XIST, and these blocks sometimes coincide with functionally important sequence elements (Brown et al., 1992; Fang et al., 2015; Holding, 2001). Here we compared the level of sequence conservation in the candidate IncRNAs, since this metric may indicate a possible functional significance. Only conservation in exonic regions not overlapping coding exons was considered. Although LCN IncRNAs showed higher conservation on average, the difference was not statistically significant (Figure 3b, Student’s t-test \(P = 0.7 \)). None the less, it is worth noting that we find isolated instances of high sequence conservation (average phastcons 100-way score > 0.5) for IncRNAs lying proximal to coding genes like STAG2, KMT2E, ZNF720, ERBB2IP, FBXL18, involved in chromosomal segregation, cell cycle progression, transcription regulation, cellular adhesion and apoptosis.

A prerequisite for cis-regulatory function is nuclear localization. Hence we used the Cytoplasmic/Nuclear Relative Concentration Index (RCI), available from the LncAtlas database (Mas-Ponte et al., 2017), to investigate the predicted subcellular localization of IncRNAs in the LCN set across 15 human cell lines (Supplementary table 3). Interestingly, the RCI distribution was shifted toward nuclear localization in most cell lines (median below zero in 12/15 cases), and in comparison with all IncRNAs, RCI values were significantly lower in 12/15 cases (\(P < 0.05 \), Student’s t-test; Supplementary Figure 6). RCI values were also lower compared to LCP IncRNAs in most cell lines (13/15 with 4/15 being significant at the \(P < 0.05 \) level; Supplementary Figure 6). The LCN set thus shows a preference for nuclear localization, compatible with putative cis-regulatory roles.

Finally, we proceeded to investigate the relationship between IncRNA expression and methylation levels at coding transcriptional start sites (TSS). A classical mechanism of gene repression in cis by long non-coding RNAs is through methylation of the genomic neighborhood, and examples include
KCNQ1OT1 and AIR (Mancini-DiNardo et al., 2006; Sleutels et al., 2002). We checked the LCN dataset for potential candidates that may involve this mechanism, by comparing expression of the IncRNAs with the methylation levels at the transcription start site (TSS) of their coding counterparts in individual cancer types, arguing that a positive correlation between these variables might be indicative of repression through methylation (Supplementary table 4). Notably, a positive correlation \(r > 0 \) between these variables was observed for 54% of the LCN set (97 unique IncRNAs and 93 unique coding genes), including the well-characterized KCNQ1OT1. An interesting case to highlight is the Myosin light chain kinase (MYLK) gene and its antisense lncRNA MYLK-AS1, where the coding/lncRNA pair show coupled association of expression and methylation in 19/32 cancer types (Figure 3c), with the strongest trend in sarcoma (Figure 3d; coding/lncRNA expression \(\rho = -0.41, P = 1.31\text{e-11} \); coding methylation/lncRNA expression \(\rho = 0.30, P = 6.40\text{e-6} \)). MYLK is a well-known muscle differentiation marker gene that is associated with specific subtypes of sarcoma (Baird et al., 2005) and leiomyosarcoma (Beck et al., 2009). Although more work would be needed to establish MYLK-AS1 as an inducer of promoter methylation and negative regulator of MYLK, these observations exemplify how our correlative analysis can provide starting points for future experimental studies.

Concluding remarks

Long non-coding RNAs can induce or repress the expression of neighboring coding genes through diverse mechanisms, including direct binding to DNA or RNA or by acting as scaffolds or tethers for chromatin modifiers. Although IncRNAs like MALAT1 and lincRNA-p21 are implicated in various cancers, we currently do not possess an in depth understanding of the role of IncRNAs in cancer initiation and development. A primary reason for this lies in the fact that even though well above 10,000 IncRNAs are reported to be present in the human genome (Derrien et al., 2012), less than 100 are functionally well characterized.

Lately, the availability of large-scale genomics data pertaining to cancer genomes has provided us with immense resources for identification of novel IncRNAs with putative roles in cancer. Here we
have analyzed an unprecedented number of transcriptomes, sourced from over 9000 primary tumor samples spread across 32 cancer types, to determine correlative relationships between lncRNAs and protein-coding neighbors, with the aim of identifying lncRNAs with potential *cis*-regulatory functions that may be relevant in cancer. We suggest that negative correlations between coding genes and their proximal lncRNAs may less likely arise due to trivial mechanisms such as shared active chromatin domains, and propose a set of 193 lncRNAs that are potential negative *cis*-regulators of nearby coding genes. Several of the identified lncRNAs lie proximal to coding genes implicated in the development of one or more cancer types. These results must be seen as predictions that can form the basis of further experimental investigations, and it should be noted that negative correlations might also arise for other reasons. For example, a recent study described two cases of inversely expressed lncRNAs/coding pairs that were independently regulated (Goyal et al., 2017). Notably, information on expression specificity, sequence conservation and relationships between lncRNA expression and coding promoter methylation brings additional value to our compendium, which may aid in the discovery of novel *cis*-regulatory molecules with potential roles as therapeutic targets or biomarkers in cancer.
References

Anders, S., Pyl, P.T., and Huber, W. (2015). HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169.

Ashouri, A., Sayin, V.I., Eynden, J.V. den, Singh, S.X., Papagiannakopoulos, T., and Larsson, E. (2016). Pan-cancer transcriptomic analysis associates long non-coding RNAs with key mutational driver events. Nat. Commun. 7, 13197.

Baird, K., Davis, S., Antonescu, C.R., Harper, U.L., Walker, R.L., Chen, Y., Glatfelter, A.A., Duray, P.H., and Meltzer, P.S. (2005). Gene Expression Profiling of Human Sarcomas: Insights into Sarcoma Biology. Cancer Res. 65, 9226–9235.

Balbin, O.A., Malik, R., Dhanasekaran, S.M., Prensner, J.R., Cao, X., Wu, Y.-M., Robinson, D., Wang, R., Chen, G., Beer, D.G., et al. (2015). The landscape of antisense gene expression in human cancers. Genome Res.

Beck, A.H., Lee, C.-H., Witten, D.M., Gleason, B.C., Edris, B., Espinosa, I., Zhu, S., Li, R., Montgomery, K.D., Marinelli, R.J., et al. (2009). Discovery of molecular subtypes in leiomyosarcoma through integrative molecular profiling. Oncogene 29, 845–854.

Brown, C.J., Hendrich, B.D., Rupert, J.L., Lafrenière, R.G., Xing, Y., Lawrence, J., and Willard, H.F. (1992). The human XIST gene: analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus. Cell 71, 527–542.

Burgess, D.J. (2011). Non-coding RNA: HOTTIP goes the distance. Nat. Rev. Genet. 12, 300.

Cabili, M.N., Trapnell, C., Goff, L., Koziol, M., Tazon-Vega, B., Regev, A., and Rinn, J.L. (2011). Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev. 25, 1915–1927.

Colaprico, A., Silva, T.C., Olsen, C., Garofano, L., Cava, C., Garolini, D., Sabedot, T.S., Malta, T.M., Pagnotta, S.M., Castiglioni, I., et al. (2015). TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res. gkv1507.

Derrien, T., Johnson, R., Bussotti, G., Tanzer, A., Djebali, S., Tilgner, H., Guernec, G., Martin, D.,
Merkel, A., Knowles, D.G., et al. (2012). The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression. Genome Res. 22, 1775–1789.

Du, M., Zhou, W., Beatty, L.G., Weksberg, R., and Sadowski, P.D. (2004). The KCNQ1OT1 promoter, a key regulator of genomic imprinting in human chromosome 11p15.5. Genomics 84, 288–300.

Fang, R., Moss, W.N., Rutenberg-Schoenberg, M., and Simon, M.D. (2015). Probing Xist RNA Structure in Cells Using Targeted Structure-Seq. PLOS Genet. 11, e1005668.

Futreal, P.A., Coin, L., Marshall, M., Down, T., Hubbard, T., Wooster, R., Rahman, N., and Stratton, M.R. (2004). A census of human cancer genes. Nat. Rev. Cancer 4, 177–183.

Ghanbarian, A.T., and Hurst, L.D. (2015). Neighboring Genes Show Correlated Evolution in Gene Expression. Mol. Biol. Evol. 32, 1748–1766.

Goyal, A., Fiškin, E., Gutschner, T., Polycarpou-Schwarz, M., Groß, M., Neugebauer, J., Gandhi, M., Caudron-Herger, M., Benes, V., and Diederichs, S. (2017). A cautionary tale of sense-antisense gene pairs: independent regulation despite inverse correlation of expression. Nucleic Acids Res. 45, 12496–12508.

Holding, C. (2001). Xist comparative genomics. Genome Biol. 2, reports0021.

Hoque, M., Ji, Z., Zheng, D., Luo, W., Li, W., You, B., Park, J.Y., Yehia, G., and Tian, B. (2013). Analysis of alternative cleavage and polyadenylation by 3’ region extraction and deep sequencing. Nat. Methods 10, 133–139.

Iyer, M.K., Niknafs, Y.S., Malik, R., Singhal, U., Sahu, A., Hosono, Y., Barrette, T.R., Prensner, J.R., Evans, J.R., Zhao, S., et al. (2015). The landscape of long noncoding RNAs in the human transcriptome. Nat. Genet. 47, 199–208.

Kelley, D.R., and Rinn, J.L. (2012). Transposable elements reveal a stem cell specific class of long noncoding RNAs. Genome Biol. 13, R107.

Kim, D., Langmead, B., and Salzberg, S.L. (2015). HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360.
Kryuchkova-Mostacci, N., and Robinson-Rechavi, M. (2016). A benchmark of gene expression tissue-specificity metrics. Brief. Bioinform. bbw008.

Le Dily, F., Baù, D., Pohl, A., Vicent, G.P., Serra, F., Soronellas, D., Castellano, G., Wright, R.H.G., Ballare, C., Filion, G., et al. (2014). Distinct structural transitions of chromatin topological domains correlate with coordinated hormone-induced gene regulation. Genes Dev. 28, 2151–2162.

Mancini-DiNardo, D., Steele, S.J.S., Levorse, J.M., Ingram, R.S., and Tilghman, S.M. (2006). Elongation of the Kcnq1ot1 transcript is required for genomic imprinting of neighboring genes. Genes Dev. 20, 1268–1282.

Mas-Ponte, D., Carlevaro-Fita, J., Palumbo, E., Hermoso Pulido, T., Guigo, R., and Johnson, R. (2017). LncATLAS database for subcellular localization of long noncoding RNAs. RNA N. Y. N 23, 1080–1087.

Meng, L., Person, R.E., and Beaudet, A.L. (2012). Ube3a-ATS is an atypical RNA polymerase II transcript that represses the paternal expression of Ube3a. Hum. Mol. Genet. 21, 3001–3012.

Mutskov, V., and Felsenfeld, G. (2009). The human insulin gene is part of a large open chromatin domain specific for human islets. Proc. Natl. Acad. Sci. U. S. A. 106, 17419–17424.

Quek, X.C., Thomson, D.W., Maag, J.L.V., Bartonicek, N., Signal, B., Clark, M.B., Gloss, B.S., and Dinger, M.E. (2015). IncRNAdb v2.0: expanding the reference database for functional long noncoding RNAs. Nucleic Acids Res. 43, D168–D173.

Quinlan, A.R., and Hall, I.M. (2010). BEDTools: a flexible suite of utilities for comparing genomic features. Bioinforma. Oxf. Engl. 26, 841–842.

Quinn, J.J., and Chang, H.Y. (2016). Unique features of long non-coding RNA biogenesis and function. Nat. Rev. Genet. 17, 47–62.

Robinson, M.D., McCarthy, D.J., and Smyth, G.K. (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinforma. Oxf. Engl. 26, 139–140.

Sleutels, F., Zwart, R., and Barlow, D.P. (2002). The non-coding Air RNA is required for silencing
autosomal imprinted genes. Nature 415, 810–813.

Thygesen, H.H., and Zwinderman, A.H. (2005). Modelling the correlation between the activities of adjacent genes in drosophila. BMC Bioinformatics 6, 10.

Wang, K.C., Yang, Y.W., Liu, B., Sanyal, A., Corces-Zimmerman, R., Chen, Y., Lajoie, B.R., Protacio, A., Flynn, R.A., Gupta, R.A., et al. (2011). A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 472, 120–124.

Yanai, I., Benjamin, H., Shmoish, M., Chalifa-Caspi, V., Shklar, M., Ophir, R., Bar-Even, A., Horn-Saban, S., Safran, M., Domany, E., et al. (2005). Genome-wide midrange transcription profiles reveal expression level relationships in human tissue specification. Bioinformatics 21, 650–659.

Yap, K.L., Li, S., Muñoz-Cabello, A.M., Raguz, S., Zeng, L., Mujtaba, S., Gil, J., Walsh, M.J., and Zhou, M.-M. (2010). Molecular Interplay of the Noncoding RNA ANRIL and Methylated Histone H3 Lysine 27 by Polycomb CBX7 in Transcriptional Silencing of INK4a. Mol. Cell 38, 662–674.

Yu, W., Gius, D., Onyango, P., Muldoon-Jacobs, K., Karp, J., Feinberg, A.P., and Cui, H. (2008). Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA. Nature 451, 202–206.

Zhang, B., Arun, G., Mao, Y.S., Lazar, Z., Hung, G., Bhattacharjee, G., Xiao, X., Booth, C.J., Wu, J., Zhang, C., et al. (2012). The IncRNA Malat1 is dispensable for mouse development but its transcription plays a cis-regulatory role in the adult. Cell Rep. 2, 111–123.
Figure and Table legends

Coding	Class	LncRNA	+ρ	-ρ	TauC	TauL	PhastconC	PhastconL
BLM	TSG	CTD-	1	2	0.68	0.70	0.49	0.02
							3094K11.1	
COL1A1	Oncogene	RP11-	0	1	0.86	0.97	0.51	0.05
							893F2.13	
DICER1	TSG	DICER1-AS1	0	3	0.42	0.65	0.65	0.07
FBXO11	-	AC079807.2	1	5	0.45	0.76	0.61	0.33
KMT2A	Oncogene	RP11-770J1.3	0	3	0.52	0.82	0.68	0.04
LCP1	-	CPB2-AS1	0	1	0.91	0.94	0.43	0.03
NF1	-	RP11-848P1.5	0	2	0.53	0.86	0.49	0.23
NR4A3	-	RP11-60I3.5	0	2	0.84	0.66	0.78	0.07
RHOH	-	RP11-395I6.3	2	5	0.95	0.80	0.15	0.09
SDHC	-	RP11-122G18.8	0	4	0.37	0.84	0.40	0.06
SET	-	HMGA1P4	0	1	0.47	0.99	0.60	0.13
gene1	gene2	d (Kb)	dp	dN	r1	r2	r3	r4
-------	---------	--------	----	----	----	----	----	----
STAG2	RP1-315G1.3	0	2	0.41	0.90	0.89	0.55	
STIL	RP1-18D14.7	0	1	0.63	0.96	0.42	0.11	
TOP1	RP1-1J6.2	0	2	0.47	0.93	0.93	0.09	

Table 1. Coding genes from the cancer gene census that show negative correlation of expression with a proximal lncRNA in majority of cancer types, with the correlation being significant ($P < 1e^{-5}$) in at least one cancer. ρ^+ and ρ^- indicates the number of cancer types that show significant positive or negative correlation, respectively, at the $P < 1e^{-5}$ level. Tau_C and Tau_L give the Tau expression specificity score while PhastconC and PhastconL indicates the phastCons 100-way sequence conservation score for the coding gene and the lncRNA.

Figure 1. General statistics of coding/coding and lncRNAs/coding correlations at several genomic distance thresholds along with specific examples. A) Classification of lncRNAs based on their orientation with respect to a flanking coding gene. LncRNAs marked in red might be potential alternative polyadenylation events of coding genes and are hence removed from downstream analyses. B-D) Enrichment of lncRNAs for significant correlations with proximal coding genes at different genomic distance thresholds: B) 100 Kb C) 50 Kb D) 25 Kb. Cancer types where the fraction of lncRNA-coding proximal pairs that show significant correlation is significantly enriched compared to control sets of coding-coding pairs are indicated by larger dots (Fisher’s exact test, $P < 0.01$). E) Examples of known lncRNAs-coding regulatory interactions that are also confirmed by the correlative analysis. Each box represents the estimated spearman correlation coefficient between the coding gene and the lncRNAs in a given cancer type. The colors correspond to the values depicted in the scale. Crosses indicate correlations significant at $P < 1e^{-5}$.
Figure 2. Enrichment of gene classes within specific subset of coding/lncRNA and coding/coding pairs showing positive or negative correlation in majority of cancer types A) Cancer Gene Census genes B) Imprinted genes C) Genes involved in chromatin assembly D) Transcription factors. LCN stands for lncRNA/coding negatively correlated, LCP is lncRNA/coding positively correlated set, CCN is coding/coding negatively correlated set and CCP is coding/coding positively correlated set.

Figure 3. Expression specificity, sequence conservation and association of lncRNA expression and coding TSS methylation. A) Cancer type expression specificity distribution is able to demarcate lncRNAs negatively correlated with their proximal coding genes. B) A small subset of lncRNAs that shows negative correlation with their proximal coding genes show elevated levels of sequence conservation, indicative of a potential functional importance. C) Comparison of MYLK-AS1 expression against MYLK gene expression and MYLK TSS methylation across multiple cancer types. Cancer types where the expression correlation and expression/methylation correlation are both significant are marked in bold. D) The relationship between MYLK expression, MYLK-AS expression and MYLK promoter methylation across 259 sarcoma samples. Log(cpm) represents gene expression while log(β) is for coding TSS methylation beta values. LncRNA (+ρ with proximal coding) is the LCP dataset and LncRNA (-ρ with proximal coding) is the LCP dataset.

Supplementary figure 1. General statistics and pipeline. A) Number of primary tumor samples for which raw sequencing data was downloaded, processed and analyzed. B) Pipeline for mapping and quantification of sequencing reads on the human genome.

Supplementary figure 2. Distribution of spearman correlation coefficients comparing the expression of lncRNAs and proximal coding genes (100 Kb windows) across tumor samples in 32 cancer types.
Supplementary figure 3. Distribution of spearman correlation coefficients comparing the expression of lncRNAs and proximal coding genes (100 Kb windows) across tumor samples in 32 cancer types where coding and lncRNA genomic coordinates are shuffled.

Supplementary figure 4. Expression correlation enrichment and distribution at a stringent P cut-off. A) Enrichment of significant correlations ($P < 1e-5$) in between lncRNAs and neighbor coding genes (100 Kb) compared to random lncRNA-coding pairs. B) Distribution of spearman correlation coefficients for coding genes and their proximal lncRNAs and proximal coding genes (100 Kb, ρ, $P < 1e-5$).

Supplementary figure 5. Percentage of coding/lncRNA pairs showing positive and negative correlation at different distance threshold across multiple cancer types. A) 25 Kb B) 50 Kb C) 100 Kb D) mean percentage of positive and negative correlations across all cancers at 25, 50 and 100 Kb.

Supplementary figure 6. Cytoplasmic/Nucleus Relative Concentration Index distribution in coding/lncRNA pairs showing negative (LCN) and positive (LCP) correlation compared against all lncRNAs. Grey asterisk marks a significant difference in distribution between LCN and all lncRNA while red asterisk marks the same between LCN and LCP (Student’s t-test, $P < 0.05$).

Supplementary table 1. (Supplementary_table-1.xls) Association of characterized long non-coding RNAs from lncRNAdb with neighbouring coding genes, captured by expression correlation analysis across multiple cancer types.

Supplementary table 2. (Supplementary_table-2.xls) 193 pairs of lncRNAs and coding genes
(involving 178 unique lncRNAs and 188 unique coding genes) showing negative expression correlation in the majority of cancers with significant correlation ($P < 1e-5$) in at least one cancer type.

Supplementary table 3. (Supplementary_table-3.xls) Predicted subcellular localization of lncRNAs which show negative expression correlation in the majority of cancers with significant correlation ($P < 1e-5$) in at least one cancer type.

Supplementary table 4. (Supplementary_table-4.xls) LncRNAs which are significantly negatively correlated with a coding gene at the expression level while the lncRNA expression correlates positively with the methylation levels at the transcription start site (TSS) of their coding counterparts.
Coding LncRNA

Identify lncRNA classes based on their orientation with closest coding gene

Omit lncRNAs which are potential alternative transcripts of coding genes

Cancer Type	ACC	BLCA	BRCA	CESC	CHOL	COAD	DLBC	ESCA	GBM	HNSC	KICH	KIR	KIRP	LGG	LIHC	LUAD	LUSC	MESO	OV	PAAD	PCPG	PRAD	READ	SARC	SKCM	STAD	TGCT	THCA	THYM	UCEC	UCS	UVM					
% coding or IncRNA (pval<1e-5, 50 Kb)																																					
% coding or IncRNA (pval<1e-5, 25 Kb)																																					
A) Percentage of coding genes
B) Percentage of imprinted genes
C) Percentage of chromatin assembly
D) Percentage of transcription factors
A

B

C

D

A. Tau expression specificity density

B. Conservation (100way phastCons) density

C. MYLK-AS1 > MYLK

D. MYLK, MYLK-AS1 log expression vs log methylation