Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Post-traumatic stress in healthcare workers during the COVID-19 pandemic: A systematic review and meta-analysis

Sanketh Andhavarapu a, Isha Yardi a, Vera Bzhilyanskaya b, Tucker Lurie a, Mujtaba Bhinder a, Priya Patel a, Ali Pourmand b, Quincy K Tran a, d, *

a The Research Associate Program, Department of Emergency Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
b Department of Emergency Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
c Department of Emergency Medicine, University of Maryland School of Medicine, 22 South Greene Street, Suite T3N45, Baltimore, MD 21043, United States
d Program in Trauma, The R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD, United States

ARTICLE INFO

Keywords:
SARS-CoV-2
COVID-19
Pandemic
Healthcare workers
Post-stress distress
Mental health

ABSTRACT

The SARS-CoV-2 (COVID-19) pandemic has increased healthcare worker (HCW) susceptibility to mental illness. We conducted a meta-analysis to investigate the prevalence and possible factors associated with post-traumatic stress disorder (PTSD) symptoms among HCW during the COVID-19 pandemic. We searched PubMed, SCOPUS and EMBASE databases up to May 4th, 2022. We performed random effects meta-analysis and moderator analyses for the prevalence of PTSD-relevant symptoms and severe PTSD symptoms. We identified 1276 studies, reviewed 209 full-text articles, and included 119 studies (117,143 participants) with a total of 121 data points in our final analysis. 34 studies (24,541 participants) reported prevalence of severe PTSD symptoms. Approximately 25.2% of participants were physicians, 42.8% nurses, 12.4% allied health professionals, 8.9% auxiliary health professionals, and 10.8% ‘other’. The pooled prevalence of PTSD symptoms among HCWs was 34% (95% CI, 0.30–0.39, I² >90%), and 14% for severe PTSD (95% CI, 0.11 - 0.17, I² >90%). The introduction of COVID vaccines was associated with a sharp decline in the prevalence of PTSD, and new virus variants were associated with small increases in PTSD rates. It is important that policies work towards allocating adequate resources towards protecting the well-being of healthcare workers to minimize adverse consequences of PTSD.

1. Introduction

On March 11, 2020, the World Health Organization (WHO) declared COVID-19 as a pandemic (Cucinotta and Vanelli, 2020). As of September 2nd, 2022, there have been over 601 million reported cases and 6.4 million deaths due to the SARS-CoV2 coronavirus ("WHO Coronavirus Disease (COVID-19) Dashboard," 2020). This unprecedented high exposure and risk of illness and death pose a long-term mental health burden for the public (Dutheil et al., 2021), and increase the demand for healthcare workers (HCW).

HCWs are facing a variety of unusual challenges. Frontline healthcare workers are dealing with infected patients, putting themselves at an increased risk of being infected, and in turn, putting their loved ones at risk too. Other challenges include shortages of personal protective equipment (PPE), changes in work hours, changing hospital practices, increased workload, uncertainty in managing a novel disease, and public un-cooperation to public health safety guidelines (Lai et al., 2020; Mehta et al., 2021). The culmination of these factors increases HCW susceptibility to psychological and mental illnesses including, but not limited to, burnout (Antonio A. Lasalvia et al., 2021), anxiety (Sahebi et al., 2021), depression (Sahebi et al., 2021), insomnia (Pappa et al., 2020), and post-traumatic stress disorder (PTSD) (d’Ettorre et al., 2021).

PTSD is defined by the Diagnostic and Statistical Manual of Mental Disorders (DSM–5–TR) as exposure to a traumatic event, accompanied by symptoms in four categories: intrusion, avoidance, negative changes in cognitions and mood, and changes in arousal and reactivity (American Psychiatric Association, 2022). Previous research demonstrates that prior infectious outbreaks such as the severe acute respiratory syndrome (SARS), 2009 novel influenza A (H1N1), and Middle East respiratory syndrome (MERS) increase the prevalence of PTSD in the HCW population (Preti et al., 2020). Recent systematic reviews also highlight increased rates of HCW PTSD during the COVID-19 pandemic (Benfante et al., 2020; Preti et al., 2020; Tran et al., 2020).
et al., 2020; d’Ettorre et al., 2021; Marvaldi et al., 2021; Preti et al., 2020; Sanghera et al., 2020). However, these studies only include studies from earlier stages of the pandemic, limiting the generalizability of the findings.

In this study, we performed a systematic review and meta-analysis of studies to assess current COVID-19 literature using validated survey tools to report the prevalence of PTSD symptoms and severe PTSD symptoms among healthcare workers. We selected studies using validated survey tools because validated survey tools have been used to report rates of PTSD symptoms among various populations. They also provide a specific list of symptoms with certain sensitivity and specificity for PTSD so that participants can easily follow. Furthermore, validated tools provide standardized scores, such as cut-off values for mild, moderate, and severe symptoms, allowing for comparison between studies using the same tools. We planned to include a larger pool of studies so that we would be able to perform several subgroup analyses to better understand which populations are more vulnerable and the global effects of this disease on healthcare workers. Including a larger pool of studies also allows us to report a more up-to-date prevalence due to more published research in later stages of the pandemic.

2. Methods

2.1. Search strategy and selection criteria

We conducted the study in accordance with the 2020 Preferred Reporting Items for Systematic Review and Meta-Analyses statement (PRISMA) (Page et al., 2021). We first performed a literature search of the PubMed, SCOPUS and EMBASE databases for COVID-19 related studies that assessed PTSD symptoms from January 1st, 2020 until May 4th, 2022.

We included prospective (randomized trials, quasi-randomized trials) and observational studies. We included all full-text English language studies focused on assessing PTSD symptoms in HCW using the Impact of Events - Revised Scale (IES-R) or the PTSD Checklist for the 5th Edition of the Diagnostic and Statistical Manual of Mental Disorders (PCL-5) scales during the COVID-19 pandemic. We focused on these two scales because they are the most commonly used during cross-sectional studies and allow for consistency when comparing studies. Healthcare workers included physicians, nurses, allied health professions (non-physician and non-nurse healthcare providers such as physician assistants, pharmacists, laboratory and imaging personnel, rehabilitation professions, medical technologists, occupational and respiratory therapists, and emergency medical technicians), and hospital auxiliary staff (non-healthcare provider staff such as medical students, hospital administrative staff, custodial staff, security, and cafeteria staff). We excluded studies not reporting the prevalence of PTSD symptoms. We excluded all review studies, meta-analyses, case reports, non-English language studies, pediatric studies, letters to editors, unpublished studies, and abstract-only studies. We also excluded studies that used non-validated survey tools such as self-reported qualitative measures, and also excluded studies that did not use the IES-R or PCL-5 to assess PTSD symptoms. We screened the references of included studies for eligible studies, but we did not contact authors for additional details or data. We also scanned the website Retraction Watch website (retractionwatch.com) for potential retracted COVID-related studies that may have been included in our study and we did not find any.

We used Covidence (www.covidence.org; Melbourne, Australia) to manage our search, duplicates, and meta-analysis. Titles and abstracts were screened by two independent investigators. A third investigator adjudicated disagreements among investigators. Two agreements allowed an abstract to move to full text screening. Similarly, full texts required agreement between at least two investigators to move to the data extraction stage. Our protocol was approved by Prospero with the registration ID CRD42022330405 (‘Post-traumatic stress in healthcare workers during the SARS-CoV-2 (COVID-19) pandemic: A systematic review and meta-analysis,” n.d.). The senior investigators (Dr. Pourmand) and the Corresponding authors (Dr. Quincy K Tran) have authored over two dozen systematic reviews and meta-analyses.

2.2. Search terms

The search terms used for our search were: (SARS-COV-2 OR COVID-19) AND (IES-R OR PCL).

2.3. Outcome measures

The primary outcome of interest was the prevalence of clinically relevant PTSD symptoms, which are defined as having mild, moderate or severe symptoms among healthcare workers during the COVID-19 Pandemic. Definitions of having symptoms in each of these categories are based on the validated tools’ cut-off points, and by definition of the authors of the studies. The secondary outcome was the prevalence of severe PTSD symptoms among HCW during the pandemic.

2.4. Quality assessment / heterogeneity

We evaluated study quality with the modified Newcastle Ottawa Scale (modified NOS) (Murad et al., 2018) due to the cross-sectional nature of all included studies. The NOS (Wells et al., 2014) has a maximum of 9 points based on 1) selection of the cohort, 2) comparability of the groups, and 3) quality of outcome. High quality is defined by a score of ≥7, moderate quality a score of 4–6, and low quality ≤3. The modified NOS has a maximum of 5 points for the same 3 domains, and thus studies are only able to achieve moderate quality due to inherent limitations of observational studies. Two independent researchers completed the modified NOS for each eligible study. Discrepancies were adjudicated as a group. Therefore, inter-raters’ agreement, and Kappa score, was not used to assess interrater agreement. We assessed heterogeneity with the I² statistic, which measures the total variance of effect size between studies, not due to chance, from the true effect size. We also measured heterogeneity with the Cochrane’s Q-statistic, which examines the null hypothesis that all studies would have similar effect with the true effect size.

2.5. Data extraction

We extracted the following data from each eligible study: study size, study duration, study setting, study month, percentages of participants (female, physicians, nurses, allied health professionals, auxiliary staff, HCW with COVID-19 patient contact), survey instrument and cut-offs used to assess clinically relevant PTSD symptoms and severity, total prevalence of PTSD symptoms, and prevalence of PTSD by severity of symptoms. We recorded data in a standardized Excel spreadsheet (Microsoft Corp, Redmond, Washington, USA). Two investigators extracted the data independently. We did not calculate interrater agreement and the Kappa score as any disagreements between 2 investigators were adjudicated and the results were reported per the group’s consensus.

2.6. Statistical analysis

We performed random-effects meta-analysis to assess the prevalence of PTSD symptoms among health care workers, as reported by the study authors. We also performed sensitivity analysis, using one-study-removed random-effect meta-analysis of prevalence of PTSD symptoms. The one-study-removed meta-analysis performs a random-effect meta-analysis after systematically removing individual studies one-by-one. This one-study-removed meta-analysis shows if any individual study would heavily affect the overall effect size of the pooled population.

Since we anticipated heterogeneity, we performed subgroup
analyses, using moderator analyses of categorical variables to identify potential sources of heterogeneity, and to compare the prevalence of PTSD symptoms among subgroups. For these subgroup analyses, we used study characteristics such as: regions of the World Health Organization (WHO) of study origin, month of study completion, participant survey setting (inpatient, outpatient, online or mixed settings), and types of survey tool (IES-R or PCL-5). Previous meta-analyses were not able to compare the prevalence of mental health problems due to COVID-19 between different countries due to limited literature, and cited this as a future direction for research once more literature is available because countries are affected differently (Dragioti et al., 2022; Sun et al., 2021). Given our up-to-date search, we anticipated sufficient literature to compare the prevalence between WHO regions to identify potential similarities or differences. We compared prevalence from studies with different months of study completion to contribute to our time-series analysis, which allowed us to draw correlations between changes in prevalence of PTSD symptoms and key events in the pandemic such as the availability of vaccines (Hidaka et al., 2021; Koltai et al., 2022). We compared survey tools because previous studies on the topic found differences between the results from IES-R and PCL-5 (Chen et al., 2022; Qi et al., 2022). Study setting was an important factor to look at because different departments are at varying risks of COVID-19, and hence might be more or less susceptible to PTSD symptoms (Prasad et al., 2021; Qi et al., 2022). We were interested in survey setting because different clinical settings are involved with treating COVID in different ways, and the type of survey tool was important because the IES-R and PCL-5 assess PTSD symptoms differently. Prior to categorizing subgroups, we performed histogram analysis of continuous variables and divided them into subgroups according to their frequency of distributions. A significant difference in prevalence between subgroups was determined with a p-value cutoff of 0.05.

To identify potential patients’ characteristics that may have been associated with the prevalence of PTSD symptoms, we performed exploratory multivariable meta-regression, using continuous variables.
Table 1A
Characteristics of studies included in the meta-analysis.

Author, Country	Month & year of study completion	Length of study, days	Survey tools	Cut-off scores	Survey Settings	Study Quality (NOS)
Abed Alah, Qatar	December 2020	37	IES-R	Clinical concern for PTSD: > 24	online	Medium (5)
		&		Best diagnostic accuracy for PTSD: >33		
		&		Moderate: 33-36		Medium (4)
		&		Severe: >37		
Agberotimi, Nigeria	April 2020	30	IES-R		online	Medium (4)
Ali, Ireland	June 2020	14	IES-R	Clinical concern for PTSD: > 24	online	Medium (5)
		&		Mild: 9-25		Medium (5)
		&		Moderate: 26-43		
		&		Severe: 44-88		
Ali, Kenya	November 2020	90	IES-R	Mild: 9-25	online	Medium (5)
		&		Moderate: 26-43		
		&		Severe: 44-88		
Alonso, Spain	September 2020	124	PCL-5	Current PTSD: ≥7	online	Medium (5)
Alshehri, Saudi Arabia	NR	NR	PCL-5	Diagnosis of PTSD: >31	online	Medium (4)
Annakew, Ethiopia	May 2020	60	IES-R	Mild: 24-32	Medium (5)	
		&		Moderate: 33-36		
		&		Severe: >37		
Ayalew, Ethiopia	October 2020	30	IES-R	Mild: 24-32	Mixed	Medium (5)
		&		Moderate: 33-36		
		&		Severe: >37		
Azoulay, France	December 2020	33	IES-R	PTSD Symptom: ≥ 26	online	Medium (5)
Bassi, Italy	May 2020	18	PCL-5	Provisional PTSD Diagnosis: ≥ 33	Online	Medium (5)
Benzakour, Switzerland	June 2020	83	PCL-5	Diagnosis of PTSD: >33	online	Medium (4)
Bizri, Lebanon	May 2020	60	IES-R	Clinical concern for PTSD: >24	online	Medium (5)
Bonzini, Italy	July 2021	60	IES-R	Moderate diagnosis of PTSD: >33	online	Medium (5)
Bulut, Turkey	NR	NR	IES-R	Mild: 9-25	Online	Medium (5)
		&		Moderate: 26-43		
		&		Severe: 44-88		
Bulut, Turkey	NR	NR	IES-R	Mild: 9-25	Online	Medium (5)
		&		Moderate: 26-43		
		&		Severe: 44-88		
Caliet, France	April 2020	13	IES-R	Moderate and severe symptoms: >33	Inpatient	Medium (5)
		&		Significant PTSD symptoms: >33	NR	Medium (4)
		&		Severe PTSD symptoms: >33	mixed	Medium (5)
Carmassi, Italy	June 2020	60	IES-R	PTSD: >32	NR	Medium (5)
		&		PTSD Diagnosis: >32	NR	Medium (5)
Chang, United States	January 2020	210	PCL-5	PTSD Diagnosis: >31	online	Low (3)
Chen, Singapore	August 2020	60	IES-R	Moderate to Severe PTSD Symptoms: >25	online	Medium (5)
Chatzittofis, Cyprus	May 2020	25	IES-R	Clinically relevant PTSD symptoms: >33	online	Medium (5)
Chaudhary, Pakistan	July 2020	120	IES-R	PTSD: >20	outpatient	Medium (5)
Chen, China	March 2020	57	IES-R	High Risk for PTSD: 20	online	Medium (4)
Cheng, China	February 2020	24	PCL-5	Provisional Diagnosis for PTSD: >33	Online	Medium (5)
Chew, Singapore & India	April 2020	58	IES-R	Mild: 24-32	NR	Medium (4)
		&		Moderate: 33-36		
		&		Severe: >37		
Chowdhary, Bangladesh	December 2020	14	IES-R	Clinical concern for PTSD: >24	online	Medium (5)
		&		Mild: 24-32		
		&		Moderate: 33-36		
		&		Severe: >37		
Civantos, United States	April 2020	12	IES-R	Clinical concern for PTSD: >24	Online	Medium (5)
		&		Mild: 9-25		
		&		Moderate: 26-43		
		&		Severe distress: 44-75		
Civantos, Brazil	May 2020	18	IES-R	Clinical concern: 24-32	Online	Medium (5)
		&		Probable PTSD: 33-36		
		&		Probable PTSD with immune suppression: 37-88		
Cortés-Alvarez, Mexico	June 2020	11	IES-R	Mild: 24-32	online	Medium (4)
			&	Moderate: 33-36		
			&	Severe: >37		
Constantini, Italy	June 2022	7	IES-R	Clinical concern for PTSD: >24	online	Medium (5)
Crowe, Canada	June 2021	61	IES-R	Some PTSD symptoms: 24 - 32	online	Medium (5)
Demartini, Italy	March 2020	7	IES-R	Some PTSD symptoms: 24 - 32	online	Medium (4)

(continued on next page)
Author, Country	Month & year of study completion	Length of study, days	Survey tools	Cut-off scores	Survey Settings	Study Quality (NOS)
Dobson, Australia	May 2020	28	IES-R	Significant PTSD symptoms: < 37	Mixed	Medium (5)
Dykes, United Kingdom	July 2020	21	IES-R	At risk for PTSD: >33		Medium (4)
Ergai, United States	October 2020	136	IES-R	Extreame Distress: >33		Medium (5)
Esseék, France	April 2020	4	IES-R	PTSD: > 26		Medium (5)
Fattori, Italy	December 2020	152	IES-R	PTSD: > 33		Medium (5)
Gilioen, United Kingdom	May 2020	19	IES-R	High PTSD symptoms: > 26		Online (5)
Gorini, Italy	May 2020	30	IES-R	Moderate: 24-32		Online (5)
Guo, China	February 2020	9	IES-R	Significant Mental Stress: > 34		Online (4)
Hajure, Ethiopia	May 2020	15	IES-R	Mild PTSD: 9-25		Mixed (5)
Hassanvandi, Iran	July 2020	61	PCL-5	PTSD > 33		Online (5)
Honarmand, Canada	September 2020	92	IES-R	PTSD is a clinical concern: 24 - 32		Online (4)
Hong, China	March 2020	66	IES-R	PTSD Symptoms: > 20		Online (5)
Huarcaya-Victoria, Peru	May 2020	16	IES-R	Mild: (9-25)		Online (4)
Huarcaya-Victoria, Peru	April 2020	13	IES-R	Moderate: 26-43		Online (4)
Ide, Japan	April 2020	14	IES-R	PTSD Symptoms: > 24		Online (4)
Ifthikar, Saudi Arabia	August 2020	63	IES-R	Clinical Concern for PTSD: 24 - 32		Online (4)
Illias, Greece	June 2020	6	IES-R	PTSD: > 33		Mixed (5)
Jang, Korea	March 2020	14	IES-R	PTSD: > 25		Mixed (5)
Jemal, Ethiopia	July 2020	31	IES-R	Mild: 9-25		Mixed (5)
Ji, China	March 2020	15	IES-R	Moderate: 26-43		Online (5)
Jo, South Korea	May 2020	14	IES-R	High-risk for PTSD: > 25		Inpatient (5)
Johnson, Norway	April 2020	7	PCL-5	Subclinical PTSD: > 22		Online (5)
Juan, China	February 2020	14	IES-R	PTSD Diagnosis: > 31		Inpatient (5)
Kiefer, United States	October 2020	13	IES-R	Clinical concern for PTSD: > 24		Online (5)
Kumar, Pakistan	December 2020	150	IES-R	Diagnoses of PTSD: 33 - 36		Online (4)
Lamiani, Italy	October 2020	91	PCL-5	Mild PTSD: 12 - 30		Online (4)
Lange, France	April 2020	NR	IES-R	Probability of PTSD: ≥ 31		Medium (4)
Lasalvia, Italy	May 2020	16	IES-R	PTSD Symptoms: ≥ 33		Online (5)
Lasalvia, Italy	May 2020	15	IES-R	PTSD Symptoms: ≥ 24		Online (5)
Laurent, Italy	July 2020	34	IES-R	PTSD Symptoms: ≥ 24		Online (5)
León-Rojas, Mexico	July 2020	60	PCL-5	PTSD Symptoms: ≥ 33		Online (5)
Li, China	NR	NR	IES-R	Subclinical PTSD: 0-8		Online (5)
Liu, China	February 2020	6	IES-R	PTSD Symptoms: > 20		Online (5)
Li, China	April 2020	3	IES-R	Clinical Concern for PTSD: > 24		Online (4)
Luceno-Moreno, Spain	April 2020	30	IES-R	Diagnosis of PTSD: > 20		Mixed (5)
Lum, Singapore	September 2020	180	IES-R	At Risk for PTSD: > 24		Mixed (5)
Luo, China	February 2020	14	IES-R	Mild: 9-25		Online (5)
Magalhaes, United States	August 2020	90	IES-R	Moderate: 26-44		Online (5)
ManhThan, Vietnam	April 2020	NR	IES-R	Moderately Severe: > 44		Online (5)
Marco, United States	June 2020	32	PCL-5	Probability of PTSD: > 24		Online (5)
Marco, Italy	September 2020	90	IES-R	Clinical Concern for PTSD: > 24		Mixed (5)
Author, Country	Month & year of study completion	Length of study, days	Survey tools	Cut-off scores	Survey settings	Study Quality (NOS)
----------------	----------------------------------	-----------------------	--------------	---------------	----------------	--------------------
Martin, Spain	NR	180	IES-R	Mild: 9-25	online	Medium (4)
Meena, India	June 2021	120	IES-R	Clinical Relevance for PTSD: >24	mixed	Medium (5)
Mehta, Canada	August 2020	90	IES-R	Clinical Concern for PTSD: >24-32	online	Medium (5)
Mirzaei, Iran	August 2020	90	IES-R	Moderate PTSD: >33	online	Medium (5)
Moderato, Italy	April 2020	14	IES-R	PTSD: >33	online	Medium (4)
Mulatu, Ethiopia	August 2020	30	IES-R	Mild: 9-25	mixed	Medium (5)
Naheed, Pakistan	July 2020	180	IES-R	Mixed: 24-32	mixed	Medium (5)
Meena, India	June 2021	120	IES-R	Mixed: 24-32	online	Medium (5)
Mehta, Canada	August 2020	90	IES-R	Mixed: 24-32	online	Medium (5)
Mirzaei, Iran	August 2020	90	IES-R	Mixed: 24-32	online	Medium (5)
Moderato, Italy	April 2020	14	IES-R	Mixed: 24-32	online	Medium (4)
Mulatu, Ethiopia	August 2020	30	IES-R	Mixed: 24-32	online	Medium (5)
Ouyang, China	June 2020	60	PCL-5	Significant PTSD: >33	mixed	Medium (5)
Ouyang, China	June 2021	365	PCL-5	Significant PTSD: >33	mixed	Medium (5)
Pan, China	September 2020	60	PCL-5	Probable PTSD: >33	online	Medium (5)
Meena, India	June 2021	120	IES-R	Mixed: 24-32	mixed	Medium (5)
Mehta, Canada	August 2020	90	IES-R	Mixed: 24-32	online	Medium (5)
Mirzaei, Iran	August 2020	90	IES-R	Mixed: 24-32	online	Medium (5)
Moderato, Italy	April 2020	14	IES-R	Mixed: 24-32	online	Medium (4)
Mulatu, Ethiopia	August 2020	30	IES-R	Mixed: 24-32	online	Medium (5)
Naheed, Pakistan	July 2020	180	IES-R	Mixed: 24-32	mixed	Medium (5)
Meena, India	June 2021	120	IES-R	Mixed: 24-32	online	Medium (5)
Mehta, Canada	August 2020	90	IES-R	Mixed: 24-32	online	Medium (5)
Mirzaei, Iran	August 2020	90	IES-R	Mixed: 24-32	online	Medium (5)
Moderato, Italy	April 2020	14	IES-R	Mixed: 24-32	online	Medium (4)
Mulatu, Ethiopia	August 2020	30	IES-R	Mixed: 24-32	online	Medium (5)
Ouyang, China	June 2020	60	PCL-5	Significant PTSD: >33	mixed	Medium (5)
Ouyang, China	June 2021	365	PCL-5	Significant PTSD: >33	mixed	Medium (5)
Pan, China	September 2020	60	PCL-5	Probable PTSD: >33	online	Medium (5)
Meena, India	June 2021	120	IES-R	Mixed: 24-32	mixed	Medium (5)
Mehta, Canada	August 2020	90	IES-R	Mixed: 24-32	online	Medium (5)
Mirzaei, Iran	August 2020	90	IES-R	Mixed: 24-32	online	Medium (5)
Moderato, Italy	April 2020	14	IES-R	Mixed: 24-32	online	Medium (4)
Mulatu, Ethiopia	August 2020	30	IES-R	Mixed: 24-32	online	Medium (5)
Naheed, Pakistan	July 2020	180	IES-R	Mixed: 24-32	mixed	Medium (5)
Meena, India	June 2021	120	IES-R	Mixed: 24-32	online	Medium (5)
Mehta, Canada	August 2020	90	IES-R	Mixed: 24-32	online	Medium (5)
Mirzaei, Iran	August 2020	90	IES-R	Mixed: 24-32	online	Medium (5)
Moderato, Italy	April 2020	14	IES-R	Mixed: 24-32	online	Medium (4)
Mulatu, Ethiopia	August 2020	30	IES-R	Mixed: 24-32	online	Medium (5)
3. Results

3.1. Study description

We identified 1276 studies eligible for the title and abstract screening that matched our search criteria (Fig. 1). 209 articles continued to the full text screening stage, of which 119 studies were selected for inclusion in our meta-analysis with a total of 117,143 participants (Table 1A). All 119 studies were cross-sectional observational studies (Agerotim et al., 2020; Ahla et al., 2021; Ali et al., 2020, 2022, 2021; Alonso et al., 2021; Alshehri and Alghamdi, 2021; Asnakew et al., 2021; Ayalew et al., 2022; Azoulay et al., 2021; Bassi et al., 2021; Benakour et al., 2022; Bizri et al., 2022; Bonzini et al., 2022; Bulut et al., 2021; Cailliet et al., 2020; Callandro et al., 2022; Carmassi et al., 2022, 2021a, 2021b; Chang et al., 2022; Chan et al., 2021; Chatzioti et al., 2021; Chaudhary et al., 2021; B. Chen et al., 2022; Cheng et al., 2020; Chen et al., 2021; Chew et al., 2020; Chowdhury et al., 2021; Civanton et al., 2020a, 2020b; Cortés-Álvarez and Vuelvas-Olmos, 2020; Costantini et al., 2022; Crowe et al., 2022; Demartini et al., 2020; Dobson et al., 2021; Dykes et al., 2022; Ergai et al., 2022; Essadet al., 2022; Fattori et al., 2021; Geng et al., 2021; Gilleen et al., 2021; Gorini et al., 2020; Guo et al., 2021; Hajure et al., 2021; Hasanvandi et al., 2022; Honarmand et al., 2022; Hong et al., 2021; Huarcaya-Victoria et al., 2022; J. 2021; Ide et al., 2021; Iftikhar et al., 2021; Ilias et al., 2021; Jang et al., 2021; Jemal et al., 2021; Ji et al., 2021; Johnson et al., 2020; Jo et al., 2020; Juan et al., 2020; Kiefer et al., 2021; Kumar et al., 2021; Lamiani et al., 2021; Lange et al., 2022; Lasalvia et al., 2021; Lasalvia et al., 2022; Lauret et al., 2022; León Rojas et al., 2022; Li et al., 2021, 2020; Liu et al., 2021; Luceno-Moreno et al., 2020; Lum et al., 2021; Luo et al., 2021; Magalhaes et al., 2021; Manh Thanh et al., 2020; Marco et al., 2020; Marcomini et al., 2021; Martin et al., 2021; Meena et al., 2022; Mehta et al., 2022; Mirzaei et al., 2022; Moderato et al., 2021; Mulatu et al., 2021; Naheed et al., 2021; Nguyen et al., 2021; Nguyen et al., 2021; Ouyang et al., 2022; Pan et al., n.d.; Pappa et al., 2021; Prasad et al., 2020; Qiu et al., 2021; Ranieri et al., 2021; Riello et al., 2020; Robles et al., 2021; Rosenthal et al., 2021; Rouse and Regan, 2021; Sachdeva et al., 2021; Sahin et al., 2022; Sarapultseva et al., 2021; Shah et al., 2021; Sobregrau Sangrá et al., 2022; Styra et al., 2021; Tebbe et al., 2022; Topal et al., 2021; Udgrim et al., 2021; Van Wert et al., 2021; Vlah Tomicevic and Lang, 2021; Wadasadawala et al., 2021; Wang et al., 2020; Wanigasooriya et al., 2021; Xie et al., 2021; Yang et al., 2021; Yin et al., 2020; Yitayih et al., 2020; Zakeri et al., 2021, 2020; Zara et al., 2021; Zhang et al., 2021, 2020). Two studies assessed PTSD at two separate times (Ouyang et al., 2022; Qiu et al., 2021), resulting in a total of 121 data points. All studies included the primary outcome of PTSD-relevant symptoms, with 34 studies also including the secondary outcome involving severe symptoms of PTSD. These 34 studies included a total of 24,541 participants who were eligible for our secondary outcome analysis. 83 studies assessed levels of PTSD symptoms in physicians (Table 1B), with 85 studies investigating nurses, 51 studies including allied health workers, 24 studies investigating auxiliary staff, and 8 studies included participants that were not specified into a category of healthcare workers. 29 studies also did not specify any of their participants into a specific category of healthcare workers (i.e. physicians, nurses, auxiliary staff, allied health staff).

Ninety-nine (99) studies used the IES-R scale, while only 22 studies used the PCL-5 scale. All studies reported the country in which the study was conducted, study sample size, and the survey tools. All included studies but 8 reported the date of study compilation, and only 1 study did not report the survey setting. 11 studies did not report the length of the data collection period. Study days ranged from one day of data collection to 365 days of data collection. Survey settings included surveys conducted online, inpatient, outpatient, or a mix of all three. Tables 1A and 1B show this data.

3.2. Study quality

The majority of the cross-sectional observational studies were found to be of medium quality, scoring on the modified Newcastle Ottawa Scale either 4 or 5 points. One study scored a 3 on the modified NOS indicating low quality, while 23 studies scored a 4, indicating medium quality. All other studies scored a 5 on the modified NOS (Table 1A).

3.3. Patient characteristics

A total of 117,143 healthcare workers across 119 studies were...
Author, Country	Study Sample Size, (n)	Symptoms of PTSD, n (%)	Symptoms of PTSD by Severity, n (%)	Female, n (%)	Categories of Participants, n (%)	Contact with COVID-19 Patients n (%)
Abed Alah, Qatar	394	73 (18.5)	Clinical Concern for PTSD: 35 (8.9)	0 (0)	Physician: 101 (25.6)	Nurse: 181 (45.9)
Agherotimi, Nigeria Ali, Ireland	382	201 (52.6)	Diagnosis of PTSD: 38 (9.6)	169 (44.2)	Allied Health: 112 (28.4)	326 (69)
Ali, Kenya	100	34 (34)	Mild: 13 (13.5%) Moderate: 3 (3.1%) Severe: 18 (18.8%)	53 (53)	Physician: 100 (100)	280 (71.1)
Ali, Kenya	171	48 (27.1)	Mild: 19 (11.4%) Moderate: 9 (5.6%) Severe: 20 (12.0%)	120 (70.2)	Nurse: 171 (100)	66 (66)
Alonso, Spain	9138	1946 (22.2)	NR	7372 (80.7)	Physician: 2953 (26.4)	Nurse: 2746 (30.6)
Alshehri, Saudi Arabia	404	60 (14.9)	Physician: 86 (21.3) Nurse: 119 (29.5) Allied health: 111 (27.5) Other: 89 (22)	218 (54)	192 (47.5)	
Anakew, Ethiopia	396	219 (55.1)	Severe: 108 (23.5)	122 (30.8)	Physician: 230 (58.1)	Allied Health: 89 (22.5)
Ayalew, Ethiopia	387	220 (56.8)	Mild: 50 (12.9) Moderate: 28 (7.8) Severe: 142 (36.7)	160 (41.3)	Physician: 88 (22.7)	Nurse: 197 (50.9)
Azoulay, France	845	240 (28.4)	NR	571 (67.5%)	Physician: 272 (32.2)	Nurse: 412 (48.7)
Bassi, Italy	653	260 (39.8)	NR	482 (73.8)	Physician: 189 (28.9)	Nurse: 318 (48.7)
Benzaouar, Switzerland	25	7 (38.9)	NR	14 (77.8)	Physician: 2 (11.1)	Nurse: 9 (50)
Bizri, Lebanon	150	45 (30.0)	NR	84 (56)	Post-graduate trainee/clinical fellow/senior attending physician 94 (62.7)	42 (28)
Bonzini, Italy	990	192 (19.4)	NR	693 (70)	Registered nurse 56 (37.3)	Physician: 233 (23.5)
Bulut, Turkey	348	134 (38.5)	Mild: 109 (31.3) Moderate: 54 (15.5) Severe: 80 (23)	176 (50.6)	Physician: 190 (54.6)	Nurse: 158 (45.4)
Bulut, Turkey	159	87 (45.3%)	NR	0 (0)	Physician: 102 (64.2)	Nurse: 57 (35.8)
Caillet, France	208	52 (25)	NR	156 (75)	Physician: 17 (8)	Nurse: 99 (47.6)
Caliandro, Italy	26	9 (33)	NR	19 (73)	Physician: 3 (11.5)	Nurse: 5 (19.2)
Carmassi, Italy	514	121 (24.5)	NR	292 (56.8)	Physician: 183 (35.6)	Nurse: 251 (48.8)
Carmassi, Italy	265	47 (17.7)	NR	181 (68.3)	Physician: 85 (32.1)	Nurse: 133 (50.2)
Carmassi, Italy	74	23 (31)	NR	47 (63.5)	Physician: 47 (17.7)	Nurse: 56 (75.7)
Chang, United States	31	11 (35)	At risk for PTSD: 2 (6.5) Diagnosis of PTSD: 11 (35)	NR	Physician: 31 (100)	46 (62.2)
Chan, Singapore	789	199 (25.2)	NR	589 (74.7)	Physician: 305 (8.4)	Nurse: 1870 (51.7)

(continued on next page)
Author, Country	Study Sample Size, (n)	Symptoms of PTSD, n (%)	Symptoms of PTSD by Severity, n (%)	Female, n (%)	Categories of Participants, n (%)	Contact with COVID-19 Patients n (%)
Chatzitofs, Cyprus	424	62 (15)	Severe: 8 (1.9)	248 (58)	Allied health: 677 (18.7)	8 (1.9)
					Administrative: 739 (20.4)	
					Physician: 178 (42)	
					Nurse: 103 (24)	
					Allied Health: 75 (18)	
					Other: 68 (16)	
Chaudhary, Pakistan	392	55 (14)	NR	176 (45)	Dentist: 254 (64.8)	
					NR	
					Allied Health: 138 (35.2)	
Chen, China	422	302 (71.6)	NR	103 (48.6)	Physician: 190 (89.6)	
Cheng, China	212	125 (59)	NR		Allied Health: 22 (10.4)	
					Doctor: 41 (6.87)	
					Nurse: 549 (91.96)	
					Other: 7 (1.17)	
Chen, China	597	270 (45.2)	NR	525 (87.94)	Physician: 268 (29.6)	
					Nurse: 355 (39.2)	
					Allied Health: 136 (15)	
					Auxiliary: 147 (16.2)	
Chew, Singapore & India	906	67 (7.4)	Moderate to Severe PTSD: 34 (3.8)	583 (64.3)	Physician: 268 (29.6)	
					Nurse: 355 (39.2)	
					Allied Health: 136 (15)	
					Auxiliary: 147 (16.2)	
Chowdhary, Bangladesh	547	338 (61.9)	Normal 209 (38.2)	361 (66)	Physician: 547 (100)	226 (41.3)
			Mild 113 (20.7)		Nurse: 547 (100)	
			Moderate 49 (9)			
			Severe 176 (32.2)			
Civantos, United States	349	96 (28)	Mild: 14 (32.7)	137 (39.3)	Physician: 349 (100)	
			Moderate: 73 (20.9)		NR	
			Severe: 23 (6.6)			
Civantos, Brazil	163	32 (20)	Clinical concern: 11, (6.7)	42 (25.8)	Physician: 163 (100)	
			Probable PTSD: 8 (4.9)			
			Probable PTSD with immune suppression: 24 (14.7)			
Cortés-Alvarez, Mexico	462	365 (79)	Mild: 149 (32.3)	356 (77.1)	Physician: 462 (100)	348 (75.3)
			Moderate to Severe: 216 (46.7)		Nurse: 462 (100)	
Constantini, Italy	237	8 (8.4)	NR	206 (86.9)	Physician: 237 (100)	46 (21.9)
Crowe, Canada	425	316 (74.4)	NR	384 (92.5)	Nurse: 425 (100)	
Demartini, Italy	123	23 (18.7)	NR	97 (78.9)	Physician: 99 (31)	49 (39.9)
Dobson, Australia	320	246 (77)	Severe: 5 (1.6)	248 (78.5)	Nurse: 84 (26)	121 (38.7)
					Allied Health: 105 (33)	
					Auxiliary: 28 (9)	
Dykes, United Kingdom	131	37 (28.2)	Suggestive of PTSD: 57 (43.5)	97 (74)	Physician: 43 (32.8)	
			PTSD Diagnosis: 37 (28.2)		Nurse: 69 (52.7)	
					Allied Health: 14 (10.7)	
					Auxiliary: 5 (3.8)	
Ergai, United States	388	153 (39.4)	NR	348 (89.7)	Admin 49 (12.6)	
					Ethicists 25 (6.4)	
					Radiology 33 (8.5)	
					RN 212 (54.6)	
					Others (Physician, PA, tech, lab,	
					pharmacy, dietician, PT)	
					68 (17.5)	
Essadek, France	668	246 (36.8)	NR	500 (74.9)	Physician: 164 (29)	237 (35.5)
Fattori, Italy	550	121 (22)	NR	353 (46)	Nurse: 222 (40)	
					Allied Health: 89 (16.2)	
					Auxiliary: 75 (13.6)	
Geng, China	317	34 (10.7)	NR	221 (69.7)	Physician: 140 (44.2)	
					Nurse: 144 (45.4)	
Gilleen, United Kingdom	2773	404 (14.6)	Severe: 426 (15.36)	2365 (85.29)	Physician: 386 (13.9)	1224 (44.1)
					Nurse: 852 (30.7)	
					Allied Health: 772 (27.8)	
					Auxiliary: 245 (8.8)	
					Other: 499 (18)	
					NR: 19 (0.7)	
					Physicains: 177 (27.2)	395 (60.8)
					Nurse: 214 (32.9)	
					Allied Health: 217 (33.4)	
					Auxiliary: 42 (6.5)	
					Physician: 164 (26.9)	610 (100)
					Nurse: 446 (73.1)	

(continued on next page)
Author, Country	Study Sample Size, (n)	Symptoms of PTSD, n (%)	Symptoms of PTSD by Severity, n (%)	Female, n (%)	Categories of Participants, n (%)	Contact with COVID-19 Patients n (%)
Hassanvandi, Iran	180	93 (51.7)	Clinical concern: 424 (50)	129 (71.7)	Physician: 40 (39.2)	122 (67.8)
Honarmand, Canada	849	423 (49.8)	Probable PTSD: 83 (9.8)	NR	Nurse: 54 (52.9)	NR
Honarmand, Canada	102	6 (5.9)	NR	77 (75.5)	Allied Health: 8 (7.8)	93 (91.2)
Huarcaya-Victoria, Peru	1238	NR	Mild: 454 (37)	848 (68.5)	Physician: 1238 (100)	NR
Huarcaya-Victoria, Peru	310	NR	Moderate: 216 (17)	149 (48.1)	Physicis: 310 (100)	196 (63.2)
Ide, Japan	2697	189 (7)	Severe: 9 (2.9)	1995 (74.0)	Physician: 555 (20.6)	328 (12.2)
Ithikar, Saudi Arabia	309	173 (56)	Clinical Concern for PTSD: Mild: 57 (18.4)	225 (72.6)	Physician: 309 (100)	NR
Ilias, Greece	162	162 (35)	Moderate: 48 (11.5)	125 (77)	Physician: 102 (63)	NR
Jang, Korea	99	27 (27.6)	Severe: 20 (4.8)	52 (52.5)	Physician: 71 (71.7)	22 (22.2)
Jemal, Ethiopia	417	NR	Clinical concern: 75 (17.9)	138 (33.1)	Physician: 55 (13.3)	97 (23.3)
Ji, China	723	NR	Probable diagnosis of PTSD: 46 (10.7)	449 (62.1)	Physician: 409 (56.6)	723 (100)
Jo, South Korea	253	54 (21)	Clinical concern for PTSD: 118 (20.6)	210 (83.0)	Physician: 27 (10.7)	NR
Johnson, Norway	1270	207 (11.7)	Moderate - severe: 49 (10.7)	1502 (84.7)	Physician: 178 (10.0)	298 (16.8)
Juan, China	456	197 (43.2)	Subclinical PTSD: 305 (65.4)	322 (70.6)	Physician: 195 (42.8)	20 (21.2)
Kiefer, United States	558	209 (37.5)	PTSD: 207 (11.7)	463 (82.9)	Physician: 486 (87.1)	194 (35.5)
Kumar, Pakistan	420	236 (56.2)	Mild: 148 (32.5)	184 (43.8)	Physician: 420 (100)	NR
Lamiani, Italy	308	152 (40)	Moderate: 48 (16%)	246 (80)	Administrative 48 (16%)	160 (52)
Lange, France	135	23 (17)	Severe PTSD: 23 (10)	78 (59.1)	Physician: 48 (16)	NR
Lasalvia, Italy	215	77 (35.9)	Other: 13 (4%)	109 (50.5)	Nurse: 111 (36)	198 (92.1)
Lasalvia, Italy	2195	1181 (53.8)	Other: 13 (4%)	1647 (75.3)	Nurse: 700 (43.4)	540 (24.6)
Laurent, Italy	2153	443 (20.6)	Other: 13 (4%)	1614 (75)	Nurse: 700 (43.4)	1365 (63.4)
LéonRojas, Mexico	303	59 (19.4)	Other: 13 (4%)	303 (100)	Nurse: 303 (100)	120 (39.6)
Li, China	890	226 (25.4)	Other: 13 (4%)	815 (91.6)	Nurse: 890 (100)	438 (49.2)

(continued on next page)
Table 1B (continued)

Author, Country	Study Sample Size, (n)	Symptoms of PTSD, n (%)	Symptoms of PTSD by Severity, n (%)	Female, n (%)	Categories of Participants, n (%)	Contact with COVID-19 Patients n (%)
Liu, China	1563	821 (52.5)	NR	1293 (82.7)	Physician: 454 (29.0) Nurse: 984 (63.0) Others: 125 (8.0)	689 (44.1)
Li, China	225	71 (31.6)	NR	162 (72)	Physician: 13 (18.3) Nurse: 53 (74.6) Other: 5 (7.0)	NR
Luceno-Moreno, Spain	1422	805 (56.6)	NR	1228 (86.4)	Physician: 143 (10) Nurse: 486 (34.2) Other: 506 (39.4)	1367 (96.1)
Lum, Singapore	257	23 (8.9)	NR	112 (43.6)	Physician: 783 (30.4)	915 (35.5)
Luo, China	2574	1772 (68.8)	Mild: 940 (36.5) Moderate: 593 (23)	2036 (79.1)	Physician: 1300 (100) Nurse: 173 (100) Other: 233 (16.4)	NR
Magalhaes, United States	456	316 (69.3)	Minimal PTSD Symptoms: 141 (37.7) Moderate PTSD Symptoms: 287 (63.2)	92 (92)	Physician: 121 (26.5) Nurse: 117 (25.7) Other: 218 (47.8)	NR
ManhThan, Vietnam	173	21 (12.1)	NR	64 (60.4)	Physician: 1300 (100) Nurse: 173 (100) Other: 233 (16.4)	106 (61)
Marco, United States	1300	290 (22.3)	NR	780 (60)	Physician: 1300 (100) Nurse: 173 (100) Other: 233 (16.4)	NR
Marcomini, Italy	173	69 (39.9)	NR	132 (76.3)	Physician: 812 (39.13) Nurse: 1041 (50.17) Other: 222 (10.7)	1663 (80.4)
Martin, Spain	2089	1260 (50.4)	Mild: 477 (22.9) Moderate: 512 (24.5)	713 (34.2)	Physician: 100 (100) Nurse: 117 (25.7) Other: 218 (47.8)	NR
Meena, India	100	2 (2)	NR	92 (92)	Physician: 39 (39) Other: 16	64 (64)
Mehta, Canada	455	140 (30.8)	Clinical Concern for PTSD: 46 (12.2)	365/455 (80.2)	Physician: 69 (15.2) Nurse: 279 (61.3) Allied Health: 61 (13.4) Auxiliary: 34 (7.47) Other: 8 (1.8)	346 (76)
Mirzaei, Iran	395	342 (86.6)	Moderate PTSD: 28 (7.1) Full PTSD: 314 (79.5)	288 (72.9)	Physician: 658 (76.7) Nurse: 149 (17.4) Other: 49 (5.7)	NR
Moderato, Italy	858	450 (52.5)	NR	724 (84.4)	Physician: 658 (76.7) Nurse: 149 (17.4) Other: 49 (5.7)	858 (100)
Mulatu, Ethiopia	420	243 (57.9)	Mild: 142 (33.8) Moderate: 71 (16.9)	174 (41.4)	Physician: 115 (27.4) Nurse: 237 (56.4)	296 (70.5)
Naheed, Pakistan	398	204 (51.3)	Mild: 62 (15.6) Moderate: 30 (7.5)	224 (56.3)	Physician: 398 (100)	186 (46.7)
Nguyen, Vietnam (a)	761	261 (34.3)	Mild: 113 (14.8) Moderate: 51 (6.7)	443 (58.2)	Physician: 199 (57.0) Nurse: 82 (23.5) Other: 68 (19.5)	211 (27.7)
Nguyen, Vietnam (b)	349	79 (22.6)	Clinical Concern for PTSD: 36 (10.3)	213 (61)	Physician: 199 (57.0) Nurse: 82 (23.5) Other: 68 (19.5)	227 (65)
Ouyang, China	317	31 (10.7)	NR	221 (69.7)	Physician: 140 (44.2) Nurse: 144 (45.4)	NR
Ouyang, China	403	84 (20.8)	NR	269 (66.7)	Physician: 140 (44.2) Nurse: 144 (45.4)	NR
Pan, China	659	90 (13.7)	NR	597 (90.6)	Physician: 55 (8.3) Nurse: 573 (86.9) Auxiliary: 31 (4.7)	659 (100)
Pappa, Greece	464	199 (42.9)	Mild: 52 (12) Moderate: 22 (5.1) Severe: 125 (28.8)	319 (68.8)	Physician: 179 (38.6) Nurse: 200 (43.1) Other: 85 (18.3)	407 (87.7)
Prasad, United States	347	292 (84.1)	Mild: 84 (24.2) Moderate: 128 (36.9)	315 (90.8)	Physician: 248 (71.5) Allied Health: 36 (10.4) Allied Health: 36 (10.4)	NR
Qiu, China	1717	1417 (82.5)	NR	1436 (83.6)	Physician: 325 (18.9) Nurse: 1226 (71.4) Allied Health: 166 (9.7)	1717 (100)
Qiu, China	2214	590 (26.6)	NR	1918 (86.6)	Physician: 420 (19) Nurse: 1751 (79.1) Allied Health: 43 (1.9)	2414 (100)

(continued on next page)
Table 1B (continued)

Author, Country	Study Sample Size, (n)	Symptoms of PTSD, n (%)	Symptoms of PTSD by Severity, n (%)	Female, n (%)	Categories of Participants, n (%)	Contact with COVID-19 Patients n (%)
Ranieri, Italy	69	36 (52.6)	NR	69 (100)	Nurse: 69 (100)	38 (55)
Riello, Italy	1071	902 (84.2)	Normal: 169 (15.8)	916 (85.5)	Technical Staff: 810 (75.6)	343 (32)
Robles, Mexico	5938	1745 (29.4)	Normal: 303 (28.3)	4420 (74.4)	Administrative Staff: 115 (10.8)**	1389 (23.4)
Rosenthal, United States	222	88 (39.6)	NR	204 (92)	Auxiliary: 222 (100)	NR
Rouse, Ireland	92	24 (26)	Normal: 130 (12.1)	89 (97)	Allied Health: 94 (100)	NR
Sachdeva, India	150	95 (63.6)	Normal: 69 (44.3)	54 (36)	Physician: 72 (48)	90 (60)
Sahin, Turkey	939	717 (76.3)	Normal: 69 (44.3)	620 (66)	Physician: 580 (61.8)	569 (60.6)
Sarapulchina, Russia	128	7 (5.5)	Normal: 119 (93)	101 (78.9)	Social work/MHC/case manager: 166	80 (62.5)
Shah, Kenya	433	127 (29.3)	Normal: 283 (69)	253 (58.4)	Physician: 243 (56.1)	298 (68.8)
Sobregrausangra, Spain	184	43 (23.3)	NR	156 (84.8)	Physician: 43 (23.4)	NR
Styra, Canada	3852	2698 (70)	Normal: 659 (19.6)	3245 (84.2)	Physician: 345 (9.4)	2375 (64.6)
Tebbah, France	373	26 (7)	Normal: 1013 (30.2)	306 (82)	Physician: 1256 (34.1)	NR
Topal, Turkey	210	80 (38)	Normal: 530 (15.8)	152 (72)	Physician: 86 (41)	NR
Udgiri, India	80	80 (100)	Normal: 1155 (34.4)	43 (54)	Auxiliary: 80 (100)	45 (56)
VanWert, United States	605	135 (22.3)	Normal: 1155 (34.4)	475 (78.5)	Social work/MHC/case manager: 166	361 (60)
VlahTomicevic, Croatia	534	176 (33)	Normal: 1013 (30.2)	451 (84.5)	Physician: 172 (100)	NR
Wadasadawala, Bangladesh, India, Indonesia and Nepal	758	138 (18.2)	Clinical Concern for PTSD: 71 (13.3)	394 (52)	Physician: 294 (38.8)	NR
Wang, China	1897	186 (9.8)	Normal: 299 (36.8)	565 (82.5)	Physician: 345 (9.4)	NR
Wangasorooiyii, United Kingdom	2638	646 (24.5)	Normal: 299 (36.8)	2097 (79.5)	Physician: 63 (8.3)	NR
Xia, China	1728	676 (39.1)	Normal: 1403 (33.3)	1632 (94.4)	Physician: 86 (10.2)	720 (27.3)
Yang, China	19,379	1008 (5.2)	Normal: 1403 (33.3)	15,509 (80)	Physician: 4492 (23.2)	7799 (40.2)
Yin, China	371	14 (3.8)	Normal: 1403 (33.3)	228 (61.5)	Physician: 8863 (45.7)	371 (100)
Yitayih, Ethiopia	249	195 (78.3)	Normal: 1403 (33.3)	131 (52.6)	Physician: 6024 (31.1)	NR
Zakeri, Iran	185	64 (34.6)	Normal: 1403 (33.3)	143 (77.3)	Physician: 185 (100)	109 (60.2)
Zara, Italy	4550	1674 (36.8)	Normal: 1403 (33.3)	3540 (78)	Physician: 1492 (32.8)	NR
Zhang, China	401	53 (13.2)	Normal: 1403 (33.3)	277 (69.1)	Physician: 1553 (34.1)	NR
Zhu, China	5062	1509 (29.8)	Normal: 1403 (33.3)	4304 (85)	Physician: 536 (11.8)	2000 (39.5)

(continued on next page)
included in our meta-analysis. Of the studies that reported the following data, 87,280 (74.5%) of participants included in our meta-analysis were female. 45,538 (38.9%) participants were in direct occupational contact with COVID-19 patients. Studies focused on the prevalence of PTSD among different types of healthcare professionals including physicians, nurses, allied health professionals, and auxiliary health professionals. Twelve (12) studies did not report the makeup of their study population. Of the included studies that reported study population in more detail, 28,365 (25.2%) were physicians, 48,171 (42.8%) were nurses, 13,903 (12.4%) were allied health professionals, 10,029 (8.9%) were auxiliary health professionals, and 12,103 (10.8%) participants were specified as “other”. (4) studies specified the breakdown of their study population by profession, but used different categories that did not allow us to fully separate the data for our analysis (Collantoni et al., 2021; Ergai et al., 2022; Rijlo et al., 2020; Van Wert et al., 2022). Table 1 summarizes this data.

3.4. Primary outcome

Our primary outcome of interest was defined as the prevalence of PTSD symptoms among healthcare workers and was reported by all 119 studies included in our meta-analysis (Fig. 2A). Approximately 34% of the 117,143 healthcare workers reported by 119 studies displayed PTSD-relevant (Event rate 0.34, 95% CI, 0.30–0.39, $I^2 > 90\%$). The percentage of participants with PTSD-relevant symptoms ranged from 2% to 100%. The Cochrane Q value of 20,390, with 120 degrees of freedom $[D(f)]$, which resulted in a P-value < 0.001. This information caused us to reject the null hypothesis, which stated that the effect size of our studies was similar to the true effect size. Additionally, the I^2 value was greater than 90%, which indicated that 90% of variance between our studies’ effect size and the true effect size was due to sampling errors.

The one-study-removed sensitivity analysis results and forest plot are shown in Fig. 2B. The pooled prevalence of PTSD-relevant symptoms persisted between 34%–35% when the random-effects meta-analysis removed each individual study from the pooled population one by one. These results from the sensitivity analysis suggested that our pooled effect size was not affected by any individual study.

3.5. Secondary outcome

Thirty-four (34) studies with 24,541 patients reported our secondary outcome, which was the prevalence of severe PTSD symptoms amongst HCW as defined by the study authors. These studies showed a range of 1.6% to 36.7% of participants reporting severe PTSD symptoms. Our random-effects meta-analysis showed a prevalence of severe PTSD among healthcare workers during the COVID-19 pandemic as 14% (Event rate 0.14, 95% CI, 0.11 - 0.17, $I^2 > 90\%$). The P-value for the Q statistic was < 0.001, which rejected the null hypothesis that our studies’ effect size was similar to the true effect size. Similarly, the I^2 was greater than 90%, indicating that more than 90% of variance between our studies and the true effect size was due to chance and that there was high heterogeneity present.

Additionally, we performed a moderator analysis for both the primary outcome (Table 2A) and the secondary outcome (Table 2A) by dividing the studies into subgroups, including WHO region (African Region AF; Region of the Americas, AMR; Eastern Mediterranean Region, EMR; European Region, EUR; South East Asian Region, SEAR; Western Pacific Region, WPR;), month of study completion (February 2020, March 2020, April 2020, May 2020, June 2020, July 2020, August 2020, September 2020, October 2020, November 2020, December 2020, 2021, 2022), study setting (inpatient, outpatient, mixed, online), and survey tools (IES-R, PCL, other). The I^2 was > 90% for all of the subgroups in moderator analysis, indicating that >90% of the variability between the true effect size and our studies’ effect size was by sampling errors, and not by chance.

From subgroup comparisons, there was a significant difference in the effect size of PTSD-relevant symptoms from the study belonging to the EUR, SEAR, and WPR of the WHO regions, compared with other WHO regions (Table 2A). Similarly, studies that used PCL-5 as the primary survey tool reported a lower prevalence of PTSD symptoms (22%, $P < 0.005$) than studies that used IES-R (37%, $P < 0.001$).

We performed a multivariable meta-regression using patients’ characteristics as reported by studies’ authors (Table 2B). We used seven variables that were consistently reported by the studies’ authors for our meta-regression, but none of these variables were significantly associated with the prevalence of PTSD-relevant symptoms. In a multivariable meta-regression using the most possible number of studies (23 studies) and number of independent variables (7) (Table 2B), the percentage of physician participants was negatively correlated with the rates of severe PTSD symptoms (correlation coefficient -3.2, 95% CI -5.3 to -1.1, $\because-value = 0.001$). The percentage of auxiliary workers was also negatively correlated with the rates of severe PTSD (correlation coefficient -5.5, 95% CI -8.5 to -2.4, p-value $= 0.001$). Three other variables were not significantly associated with the rate of severe PTSD (Table 2C).

3.6. Time series analysis

Fig. 4A and 4B depict the percentages of participants who reported any PTSD symptoms and severe PTSD symptoms with both the total monthly global cases of COVID-19 and new monthly global cases of COVID-19, respectively. The percentages of participants reporting PTSD-relevant symptoms appeared to parallel the rise of global cases until January 2021. After January 2021, which marks the beginning of COVID-19 vaccines being available, the prevalence of PTSD symptoms sharply declined. The prevalence of PTSD rose again with the introduction of the Delta and Omicron variants, but did not return to the peak rates in August 2020.

4. Discussion

Our meta-analysis indicates that the pooled incidence of PTSD symptoms in the healthcare worker population during COVID-19 is 34% (121 data points), and 14% for severe PTSD symptoms (34 studies). Additionally, we included enough studies to perform moderator analyses for different subgroups including WHO region of study setting and month of study completion.

Trauma, as defined by the DSM-5 criteria, is “actual or threatened...
Fig. 2. A: Forest Plot from random effects meta-analysis of studies reporting any PTSD among health care workers during the Coronavirus Disease 2019 (COVID-19) pandemic.
B. Sensitivity analysis of random effects meta-analysis of studies reporting any PTSD among health care workers during the Coronavirus 2019 pandemic. The sensitivity analysis used a one-study-removed method.
death, serious injury, or sexual violence” (Weathers, 2018). Under this criteria, stress-inducing events that do not involve an immediate threat to life or physical injury are not considered trauma (Nemeroff and Marmar, 2018). However, several previous studies have shown how stressful events that fall outside of this narrow definition of trauma can still induce symptoms of PTSD (Cordova et al., 2017; Galea et al., 2008; Gold et al., 2005). The COVID-19 pandemic also falls out of this definition, but has been suggested to be considered a traumatic stressor for several reasons including the uncertainty of the pandemic’s timeline, fear of future sickness and death events whether it be for themselves or loved ones, media coverage, and more (Bridgland et al., 2021). Although healthcare workers are regularly exposed to death and injury during their typical jobs, the pandemic introduces additional elements of uncertainty, risk to personal safety, seeking co-workers to fall ill, and higher patient volume. Literature has also shown a strong correlation between risk perception and PTSD, including during the pandemic (Geng et al., 2021; Wu et al., 2009; Yin et al., 2021). Nevertheless, it is important to note that broadening the definition of PTSD may have unintended consequences. For example, it has been suggested that broadening the definition of trauma can result in increased vulnerability because it can affect how a person interprets a stressful event (Jones and McNally, n.d.).

The prevalence we reported was higher than those reported in previous meta-analyses assessing the prevalence of PTSD symptoms in healthcare workers during COVID-19 (Civantos et al., 2020b; Falasi et al., 2021; Marvaldi et al., 2021; Salehi et al., 2021; Sanghera et al., 2020; Yuan et al., 2021). Prior reported prevalence typically ranged from 20% to 26.9%. This may be because we included a larger pool of studies, or our meta-analysis included studies over a span of more than two years from the beginning of the pandemic. Prior to our analysis, the

Table:

Study name	Event rate and 95%CI	Relative weight
Ali_b	0.12 (0.08, 0.17)	2.84
Ali_c	0.18 (0.12, 0.27)	2.78
Asnakew	0.27 (0.23, 0.32)	3.11
Ayalew	0.37 (0.32, 0.42)	3.12
Bokk_a	0.23 (0.19, 0.28)	3.08
Chastoitrois	0.02 (0.01, 0.04)	2.50
Chowdhary	0.32 (0.28, 0.36)	3.13
Civantos_a	0.07 (0.04, 0.10)	2.90
Civantos_b	0.15 (0.10, 0.21)	2.88
Dobson	0.02 (0.01, 0.04)	2.21
Gilseem	0.15 (0.14, 0.17)	3.17
Gorini	0.23 (0.20, 0.26)	3.13
Hajure	0.22 (0.16, 0.30)	2.90
Hurcaya-Victoria_a	0.03 (0.02, 0.05)	2.55
Hurcaya-Victoria_b	0.11 (0.09, 0.13)	3.13
Ifthikar	0.29 (0.24, 0.34)	3.09
Jenal	0.05 (0.03, 0.07)	2.86
Jie	0.05 (0.03, 0.07)	2.99
Lamani	0.07 (0.05, 0.11)	2.90
Li_a	0.25 (0.23, 0.28)	3.15
Luo	0.09 (0.08, 0.10)	3.16
Magalhaes	0.06 (0.04, 0.09)	2.95
Martin	0.34 (0.32, 0.36)	3.18
Minitu	0.07 (0.05, 0.10)	2.96
Naheed	0.28 (0.24, 0.33)	3.11
Nguyen_a	0.13 (0.11, 0.15)	3.11
Nguyen_b	0.08 (0.05, 0.11)	2.94
Pappa	0.27 (0.23, 0.31)	3.12
Prasad	0.23 (0.19, 0.28)	3.08
Rello	0.12 (0.10, 0.14)	3.13
Simpatseva	0.02 (0.00, 0.06)	1.51
Shah	0.14 (0.11, 0.17)	3.06
Syya	0.30 (0.29, 0.31)	3.18
Yi say	0.29 (0.24, 0.35)	3.06
All Studies	0.14 (0.11, 0.17)	2.69

Fig. 3: Forest Plot from random effects meta-analysis of studies reporting prevalence of severe PTSD among health care workers during the Coronavirus Disease 2019 (COVID-19) pandemic.
The most comprehensive meta-analysis on the subject only included 20 studies and concluded their search by August 2020 (Yuan et al., 2021). Symptoms of PTSD can typically surface months after the traumatic experience. Therefore, our findings are clinically important because even after COVID-19, healthcare workers will experience high rates of psychological distress. PTSD among healthcare workers is associated with increased medical errors, reduced productivity, compassion fatigue, all of which contributes to lower quality of care (Gates et al., 2011; Karanikola et al., 2015). Prior meta-analyses on the topic also either did not focus exclusively on the COVID-19 pandemic or exclusively on...
healthcare workers, limiting their subgroup analysis specific to PTSD symptoms in healthcare workers during COVID-19. The prevalence we reported was also higher than those reported in meta-analyses of PTSD among healthcare workers during past outbreaks and public health emergencies (Cheng et al., 2020; Fan et al., 2021; Zhou et al., 2021). This may be due to the higher incidence rate of SARS-2-CoV which contributed to insufficient PPE and high patient volume, increased media coverage and misinformation, and fear due to increased risk and uncertainty of infecting others (Billings et al., 2021; Greene et al., 2021; Norful et al., 2021).

A meta-analysis performed by Salehi et al. examined the prevalence of PTSD-relevant symptoms among the general population from all previous coronavirus outbreaks (SARS-CoV, MERS, SARS-CoV-2) between November 01, 2012 until May 18, 2020 (Salehi et al., 2021). This study included 36 studies and reported an overall rate of PTSD for all studies (general population, healthcare workers, patients/survivors, etc.) at 18% (95% CI 0.15–0.20). The prevalence of PTSD symptoms among healthcare workers was 18% (95% CI 13%–24%, $I^2 = 97\%$), whereas the prevalence of PTSD among patients was 29% (95% CI 18%–39%, $I^2 = 96\%$). On the other hand, the rate of the general population was the lowest at 12% (95% CI 8%–16%, $I^2 = 98\%$) during these outbreaks. The rate of PTSD symptoms among healthcare workers from Salehi was lower than ours because the authors only included COVID-19 studies up to May 2020, when the full effect of the COVID-19 pandemic was still unfolding and not totally reported in the literature. Although our studies are not comparable, these results from Salehi et al. provided interesting insights. Healthcare workers are more susceptible to higher rates of PTSD than the general population during previous coronavirus outbreaks. Therefore, a similar trend would be observed during the COVID-19 pandemic.

We noticed a significant difference in the outcome observed between studies that used the IES-R scale and studies that used the PCL-5 scale, with studies using the PCL-5 scale reporting a lower prevalence of PTSD. This suggests that future studies should be standardized to one tool. While both tools are validated, the IES-R is not used to diagnose PTSD under the revised DSM-5 criteria and may not accurately reflect rates of PTSD, while the PCL-5 can provide a provisional diagnosis and is recommended for use by the National Center for PTSD (National Center for PTSD, n.d.; Umberger, 2019). For these reasons, we suggest that future studies only use PCL-5 to assess the prevalence of PTSD among healthcare workers in a more standardized manner. However, a majority of studies used the IES-R. Additionally, despite the use of validated tools, there was some variability in the cut-offs used by authors. This strongly suggests the need for establishing universal cut-offs to standardize data collection and comparisons for prevalence studies.

There were significant differences in prevalence rates between WHO regions. While further research is needed to explain this finding, we hypothesize that this might be due to differences in staff-case ratio,
Our findings demonstrate the need for interventions and policies that lower the risk of PTSD among healthcare workers. It is important that health policy focuses on ensuring the availability and accessibility of PPE (Carmassi et al., 2020; Kisely et al., 2020). Hospitals should also ensure that counseling and peer support are widely available with low barriers of access, and that interventions take a trauma-informed approach to ensure that unwanted triggers are not activated (d’Etortre et al., 2021). Regular screening for PTSD among healthcare workers can identify those at-risk and affected, ensuring timely and targeted interventions. Our time-series analysis showed that the introduction of COVID-19 vaccines was correlated with a decrease in the prevalence of PTSD, hence a protective factor. The mental health effects of the COVID-19 pandemic among HCWs will remain long-after the pandemic ends in the forms of PTSD. Researchers should continue assessing the prevalence of PTSD as the pandemic evolves and well beyond the pandemic as well to better understand vaccine rollout and other factors affect the prevalence.

4.1. Limitations

Our study has several limitations which present future directions for studies. Although we utilized very broad search terms that returned a large eligible number of studies, due to the explosive number of publications during the COVID-19 pandemic and because we did not search other databases such as Google Scholar, our search might have missed other articles. All included studies had a moderate or high risk of bias due to their cross-sectional survey format. Additionally, we excluded all studies that used non-validated surveys to measure PTSD symptoms. This may affect the pooled prevalence we found in our analysis. Despite several subgroup analyses to identify potential sources of heterogeneity, there was high heterogeneity among the studies we included in our meta-analysis, which may affect the generalizability of the finding. Despite the use of validated tools, there was still variability in author’s definitions of cut-offs. We also included different categories of healthcare workers from a variety of clinical settings, different time periods of the pandemic, different practice settings, and different levels of experience. This was expected because COVID-19 was a global pandemic that affected several countries at various degrees.

We cannot know with certainty that the PTSD symptoms were or were not driven by other mood disorders because we did not control for other mood disorders. Approximately half of people with PTSD are also affected by major depressive disorder (MDD), and it has been suggested that this is a reflection of overlapping symptoms. It is also important to note that studies conducted on the topic prior to the pandemic also found the presence of PTSD symptoms among healthcare workers (DeLucia et al., 2019; Joseph, 2021). Future research should seek to determine what proportion of the prevalence of PTSD symptoms during COVID-19 pandemic is due to the pandemic, and how much is...
pre-existing, perhaps by using methods such as difference-in-difference analysis.

Conclusion

Our systematic review and meta-analysis suggested a high prevalence of PTSD symptoms among healthcare workers during the COVID-19 pandemic among studies using validated survey tools. It is important that policies work towards allocating adequate attention and resources towards protecting the well-being of healthcare workers to minimize the adverse consequences of PTSD, and in turn, ensure higher quality of care for patients.

Author statements

No ethical approval was needed because only data from previous published studies in which informed consent was obtained by primary investigators was retrieved and analyzed.

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

CRediT authorship contribution statement

Sanketh Andhavarapu: Conceptualization, Methodology, Validation, Project administration, Investigation, Writing – original draft, Writing – review & editing. Isaha Yardi: Investigation, Writing – original draft, Writing – review & editing. Tucker Lurie: Investigation, Writing – original draft, Writing – review & editing. Ali Pourmand: Writing – review & editing. Ali Poudran: Writing – review & editing. Francesco Zannini: Conceptualization, Methodology, Validation, Project administration, Formal analysis, Resources, Supervision, Writing – review & editing.

Declaration of Competing Interest

The authors declare no competing interests.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.psychres.2022.114890.

References

Aegerteroi, S.F., Akinos, O.S., Ogunranyo, R., Olasein, A.O., 2020. Interactions between the online version, at doi:10.1016/j.psychres.2022.114890.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.psychres.2022.114890.

Pre-existing, perhaps by using methods such as difference-in-difference analysis.

Conclusion

Our systematic review and meta-analysis suggested a high prevalence of PTSD symptoms among healthcare workers during the COVID-19 pandemic among studies using validated survey tools. It is important that policies work towards allocating adequate attention and resources towards protecting the well-being of healthcare workers to minimize the adverse consequences of PTSD, and in turn, ensure higher quality of care for patients.

Author statements

No ethical approval was needed because only data from previous published studies in which informed consent was obtained by primary investigators was retrieved and analyzed.

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

CRediT authorship contribution statement

Sanketh Andhavarapu: Conceptualization, Methodology, Validation, Project administration, Investigation, Writing – original draft, Writing – review & editing. Isaha Yardi: Investigation, Writing – original draft, Writing – review & editing. Tucker Lurie: Investigation, Writing – original draft, Writing – review & editing. Ali Pourmand: Writing – review & editing. Ali Poudran: Writing – review & editing. Francesco Zannini: Conceptualization, Methodology, Validation, Project administration, Formal analysis, Resources, Supervision, Writing – review & editing.

Declaration of Competing Interest

The authors declare no competing interests.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.psychres.2022.114890.

References

Aegerteroi, S.F., Akinos, O.S., Ogunranyo, R., Olasein, A.O., 2020. Interactions between the online version, at doi:10.1016/j.psychres.2022.114890.
workers and their impact on their willingness to work during this pandemic. Archives of Psychiatry Research. https://doi.org/10.4276/2021.37.02.06.

Chen, Y., Xu, X., Zhai, J., Xu, Q., Wang, F., Jia, J., Sang, W., Chen, Z.-T., 2022a. The psychological impact of COVID-19 outbreak on medical staff and the general public. Curr. Psychol. 41, 5631–5639.

Cheng, P., Xu, J.-L., Zheng, W.-H., Ng, R.M.K., Zhang, L., Li, L.-J., Li, W.-H., 2020. Psychometric properties of the posttraumatic stress disorder checklist for DSM-5 (PCL-5) in Chinese healthcare workers during the outbreak of corona virus disease 2019. J. Affect. Disord. 277, 368–374.

Chen, J., Zhang, S.X., Yin, A., Ying, Y., 2022a. Mental health symptoms during the COVID-19 pandemic in developing countries: a systematic review and meta-analysis. J. Glob. Health 12, 05011.

Chen, L., Lin, D., Feng, H., 2021. An investigation of mental health status among medical staff performing COVID-19 outbreaks: a cross-sectional study. Med. Sci. Monit. 27, e294254.

Chew, N.W.S., Lee, G.K.H., Tan, B.Y.Q., Jing, M., Goh, Y., Ngiam, N.J.H., Yeo, L.L.L., Ahmad, M., Ahmad Khan, F., Napoleon Shanmugam, G., Sharma, A.K., Komlakumar, R.N., Menenaski, P.V., Shah, K., Patel, B., Chen, B.P.L., Sunny, S., Chandra, B., Ong, J.J.Y., Paliwal, P.R., Wong, L.Y.H., Sagayanathan, R., Chen, J.T., Ying Ng, A.Y., Teoh, H.L., Tsigouvelis, G., Ho, C.S., Ho, R.C., Sharma, V.K., 2020. A multinational, multicentre study on the psychological outcomes and associated physical symptoms amongst healthcare workers during COVID-19 outbreak. Brain Behav. Immun. 88, 559–565.

Chowdhury, S.R., Sunna, T.C., Das, D.C., Kabir, H., Hossain, A., Mahmud, S., Ahmed, S., 2021. Mental health symptoms among the nurses of Bangladesh during the COVID-19 pandemic. Middle East Curr. Psychiatry. https://doi.org/10.1186/s43021-021-00103-x.

Civattoni, A.M., Bertelli, A., Gonçalves, A., Getzen, E., Chang, C., Long, Q., Civantos, A.M., Bertelli, A., Gonçalves, A., Getzen, E., Chang, C., Long, Q., 2021. An investigation of mental health status among medical staff performing COVID-19 outbreaks: a cross-sectional study. PLoS ONE 16, e0253046.

Chen, J., Zhang, S.X., Yin, A., Ying, Y., 2022b. Mental health symptoms during the COVID-19 pandemic in developing countries: a systematic review and meta-analysis. J. Glob. Health 12, 05011.

Cheng, P., Xu, J.-L., Zheng, W.-H., Ng, R.M.K., Zhang, L., Li, L.-J., Li, W.-H., 2020. Psychometric properties of the posttraumatic stress disorder checklist for DSM-5 (PCL-5) in Chinese healthcare workers during the outbreak of corona virus disease 2019. J. Affect. Disord. 277, 368–374.

Chen, J., Zhang, S.X., Yin, A., Ying, Y., 2022b. Mental health symptoms during the COVID-19 pandemic in developing countries: a systematic review and meta-analysis. J. Glob. Health 12, 05011.

Cheng, P., Xu, J.-L., Zheng, W.-H., Ng, R.M.K., Zhang, L., Li, L.-J., Li, W.-H., 2020. Psychometric properties of the posttraumatic stress disorder checklist for DSM-5 (PCL-5) in Chinese healthcare workers during the outbreak of corona virus disease 2019. J. Affect. Disord. 277, 368–374.

Chen, J., Zhang, S.X., Yin, A., Yánez, J.A., 2022b. Mental health symptoms during the COVID-19 pandemic in developing countries: a systematic review and meta-analysis. J. Glob. Health 12, 05011.

Chen, L., Lin, D., Feng, H., 2021. An investigation of mental health status among medical staff performing COVID-19 outbreaks: a cross-sectional study. Med. Sci. Monit. 27, e294254.

Chew, N.W.S., Lee, G.K.H., Tan, B.Y.Q., Jing, M., Goh, Y., Ngiam, N.J.H., Yeo, L.L.L., Ahmad, M., Ahmad Khan, F., Napoleon Shanmugam, G., Sharma, A.K., Komlakumar, R.N., Menenaski, P.V., Shah, K., Patel, B., Chen, B.P.L., Sunny, S., Chandra, B., Ong, J.J.Y., Paliwal, P.R., Wong, L.Y.H., Sagayanathan, R., Chen, J.T., Ying Ng, A.Y., Teoh, H.L., Tsigouvelis, G., Ho, C.S., Ho, R.C., Sharma, V.K., 2020. A multinational, multicentre study on the psychological outcomes and associated physical symptoms amongst healthcare workers during COVID-19 outbreak. Brain Behav. Immun. 88, 559–565.

Chowdhury, S.R., Sunna, T.C., Das, D.C., Kabir, H., Hossain, A., Mahmud, S., Ahmed, S., 2021. Mental health symptoms among the nurses of Bangladesh during the COVID-19 pandemic. Middle East Curr. Psychiatry. https://doi.org/10.1186/s43021-021-00103-x.

Civattoni, A.M., Bertelli, A., Gonçalves, A., Getzen, E., Chang, C., Long, Q., Rajasekaran, K., 2020a. Mental health among head and neck surgeons in Brazil during the COVID-19 epidemic: a national study. Oral Oncol. 114, 104394.

Civattoni, A.M., Byrnes, Y., Chang, C., Prasad, A., Chorath, K., Poonia, S.K., Jenks, C.M., Cheng, P., Xu, L.-Z., Zheng, W.-H., Ng, R.M.K., Zhang, L., Li, L.-J., Li, W.-H., 2020. Psychometric properties of the posttraumatic stress disorder checklist for DSM-5 (PCL-5) in Chinese healthcare workers during the outbreak of corona virus disease 2019. J. Affect. Disord. 277, 368–374.

Chen, Z.-T., 2022a. The psychological impact of COVID-19 outbreak on medical staff following COVID-19 outbreaks: a cross-sectional study. Med. Sci. Monit. 27, e294254.

Chen, B., Li, Q.-X., Zhang, H., Zhu, J.-Y., Yang, X., Wu, Y.-H., Xiong, J., Li, F., Wang, H., Chen, Z.-T., 2022a. The psychological impact of COVID-19 outbreak on medical staff and the general public. Curr. Psychol. 41, 5631–5639.

Cheng, P., Xu, J.-L., Zheng, W.-H., Ng, R.M.K., Zhang, L., Li, L.-J., Li, W.-H., 2020. Psychometric properties of the posttraumatic stress disorder checklist for DSM-5 (PCL-5) in Chinese healthcare workers during the outbreak of corona virus disease 2019. J. Affect. Disord. 277, 368–374.

Chen, J., Zhang, S.X., Yin, A., Ying, Y., 2022b. Mental health symptoms during the COVID-19 pandemic in developing countries: a systematic review and meta-analysis. J. Glob. Health 12, 05011.

Cheng, P., Xu, J.-L., Zheng, W.-H., Ng, R.M.K., Zhang, L., Li, L.-J., Li, W.-H., 2020. Psychometric properties of the posttraumatic stress disorder checklist for DSM-5 (PCL-5) in Chinese healthcare workers during the outbreak of corona virus disease 2019. J. Affect. Disord. 277, 368–374.

Chen, J., Zhang, S.X., Yin, A., Yánez, J.A., 2022b. Mental health symptoms during the COVID-19 pandemic in developing countries: a systematic review and meta-analysis. J. Glob. Health 12, 05011.
Joseph, K., 2021. COVID-19: pandemic increases PTSD, suicidal ideation in health care workers [WWW Document]. https://www.psychiatryadvisor.com/home/conference-highlights/apa-2021/health-care-workers-report-increased-rates-of-depression-anxiety-and-stress-during-the-covid-19-pandemic/. (accessed 10.1.22).

Joseph, K., 2021. COVID-19: pandemic increases PTSD, suicidal ideation in health care workers [WWW Document]. https://www.psychiatryadvisor.com/home/conference-highlights/apa-2021/health-care-workers-report-increased-rates-of-depression-anxiety-and-stress-during-the-covid-19-pandemic/. (accessed 10.1.22).

Johnson, S.U., Ebrahimi, O.V., Hoffart, A., 2020. PTSD symptoms among health workers and public service providers during the COVID-19 outbreak. PLoS ONE 15, e0241032.

Jones, P.J., McNally, R.J., 2022. Does broadening one measure of PTSD improve prediction in longitudinal samples? A test of the Four Factor Model of PTSD. Psychiatry Res. 317 (2022) 114890. 21.

Kang, L., Zheng, H., Liu, Z., Zhang, B., 2021. Gender differences in mental health prevalence and risk factors of PTSD symptoms among medical assistance workers exposed to the epidemic in China during COVID-19 pandemic. Front. Psychol. https://doi.org/10.3389/fpsyg.2021.763869.

Johnson, S.U., Ebrahimi, O.V., Hoffart, A., 2020. PTSD symptoms among health workers and public service providers during the COVID-19 outbreak. PLoS ONE 15, e0241032.

Jones, P.J., McNally, R.J., 2022. Does broadening one measure of PTSD improve prediction in longitudinal samples? A test of the Four Factor Model of PTSD. Psychiatry Res. 317 (2022) 114890. 21.

Kang, L., Yao, L., Huang, M., Wang, H., Wang, G., Liu, Z., Hu, S., 2020. Factors associated with mental health outcomes among health care workers exposed to coronavirus disease 2019. JAMA Netw Open. 3, e203976.

Lamiani, G., Borgiti, L., Poli, S., Razzini, K., Colosio, C., Vegni, E., 2021. Hospital employees’ well-being six months after the COVID-19 outbreak: results from a psychological screening program in Italy. Int. J. Environ. Res. Public Health 18. https://doi.org/10.3390/ijerph18115649.

Lange, M., Licci, J., Bouloard, M., Garon, L., Richard, E., Le Bas, J., Salmon, R., Steinhorn, R., Le Bas, F., Humblet, X., 2022. COVID-19 vaccination and mental health: a difference-in-difference analysis of the understanding America study. Am. J. Prev. Med. 62, 679–687.

Luo, D., Liu, Q., Chen, Q., Huang, R., Chen, P., Yang, R.X., Liu, Z., 2021. Mental health status of the general public, frontline, and non-frontline healthcare providers in the early stage of COVID-19. Front. Psychiatry 12, 553021.

Lum, A., Goh, Y.-L., Wong, K.S., Seah, J., Teo, G., Ng, J.Q., Abdin, E., Hendricks, M.M., Tham, J., Nau, W., Fung, D., 2021. Impact of COVID-19 on the mental health of Singaporean GPs in a cross-sectional study. BGP Open S. https://doi.org/10.3390/bgpopen20210072.

Luo, D., Liu, Q., Chen, Q., Huang, R., Chen, P., Yang, R.X., Liu, Z., 2021. Mental health status of the general public, frontline, and non-frontline healthcare providers in the early stage of COVID-19. Front. Psychiatry 12, 553021.

Maghaeles, E., Stoner, A., Palmer, J., Schranze, R., Grandy, S., Amin, S., Cheng, N., 2021. An assessment of mental health outcomes during the COVID-19 pandemic in Belgium. Front. Psychiatry 12, 687.

Manh Than, H., Minh Nong, V., Trung Nguyen, C., Phu Dong, K., Ngo, H.T., Thu Doan, T., Do, N., Huyen Thi Nguyen, T., Van Do, T., Xuan Dao, C., Quang Nguyen, T., Ngoc Pham, T., Duy Do, C., 2020. Mental health and health-related quality of life outcomes among frontline health workers during the peak of COVID-19 outbreak in Vietnam: a cross-sectional study. Risk Manag. Healthc. Policy. 13, 2927–2936.

Marcomini, I., Agus, C., Milani, L., Sogliarini, R., Bona, A., Castagna, M., 2021. COVID-19 and post-traumatic stress disorder in nurses: a descriptive cross-sectional study in a COVID hospital. Med. Lav. 112, 241.

Martín, J., Piadera, Á., Villanueva, A., Quintana, J.M., 2021. Evaluation of the mental health of healthcare professionals in the COVID-19 era. What mental health conditions are our health care workers facing in the new wave of coronavirus? Int. J. Clin. Pract. 75, e16607.

Marvaldi, M., Mallet, J., Dubbert, C., Moro, M.R., Guessous, S.B., 2021. Anxiety, depression, trauma-related, and sleep disorders among healthcare workers during the COVID-19 pandemic: a systematic review and meta-analysis. Neurosci. Biobehav. Rev. 126, 252–264.

Meena, J., Dhiman, S., Sharma, R., Kumar, K., Singhal, S., Kulshreshtha, V., Vatsa, R., Perumal, V., 2022. The impact of the COVID-19 pandemic on the psychological well-being of healthcare workers in India: a meta-analysis and a questionnaire study at an Apex Institute. Cureus 14, e24040.

Mehta, S., Maschado, F., Kizwiera, A., Papazian, L., Moss, M., Azoulay, E., Herridge, M., 2021. COVID-19: a heavy toll on health-care workers. Lancet Respir. Med. 9, 687–698.

Mehta, S., Yarnell, C., Shah, S., Dodek, P., Parsons-Leigh, J., Maudner, K., Raytiew, J., Eta-Ndu, C., Priestap, F., LeBlanc, D., Chen, J., Horanard, K., Canadian Critical Care Trials Group, 2022. The impact of the COVID-19 pandemic on intensive care unit nurses: a systematic review and meta-analysis. Neurosci. Biobehav. Rev. 126, 252–264.

Miraize, A., Molaei, B., Habibi-Sola, A., 2022. Post-traumatic stress disorder and its related factors in nurses caring for COVID-19 patients. Iran. J. Nurs. Midwifery Res. 26, 106–116.

Moderato, L., Lazzaroni, D., Oppo, A., Dell’Orco, F., Moderato, P., Presti, G., 2021. Acute stress response profiles in health workers facing SARS-CoV-2. Front. Psychol. 12, 660156.

Mulatu, H.A., Tesfaye, M., Woldeyes, E., Bayisa, T., Fisseha, K., Kassu, R.A., 2021. The prevalence of common mental disorders among healthcare professionals during the COVID-19 pandemic in a tertiary Hospital in Addis Ababa. Ethiopia. J. Affect. Disord. Reports. https://doi.org/10.31234/osf.io/jh1xk. 2021.0072.46.

Muralidhar, M., Sultan, S., Hadi, S., Suryanarayana, N., Mathur, M., 2021. Methodological quality and synthesis of case series and case reports. BMJ Evid.-Based Med. https://doi.org/10.1136/bmjebm-2021-110853.

Nahedad, A., Ahmed, A., Choudhary, Z.I., Fatima, S., Naseem, S., Ghais, M., 2021. COVID-19: a pandemic psychological impact on healthcare workers and public service providers during the COVID-19 pandemic. Front. Psychol. 12, 652337.

Norful, A.A., Rosenfeld, A., Schroeder, K., Travers, J.L., Aliyu, S., 2021. Primary drivers of the COVID-19 pandemic and the mediating role of risk perception: a one-year follow-up study. Psychosocial impacts of COVID-19 on healthcare workers during the nationwide partial lockdown in Vietnam in April 2020. Front. Psychiatry 12, 562337.

Page, M.J., McKenzie, J.E., Boussuy, M.P., Boutron, I., Hoffmann, T.C., Mulrow, C.D., Schulz, K.F., Tetzlaff, J., Altman, D.G., Moher, D., Lohr, K.H., Moher, D., 2012. The PRISMA statement for reporting systematic reviews. Rev. Esp. Cardiol. 74, 790–857.

Page, M.J., McKenzie, J.E., Boussuy, M.P., Boutron, I., Hoffmann, T.C., Mulrow, C.D., Schulz, K.F., Tetzlaff, J., Altman, D.G., Moher, D., Lohr, K.H., Moher, D., 2012. The PRISMA statement for reporting systematic reviews. Rev. Esp. Cardiol. 74, 790–857.

Page, M.J., McKenzie, J.E., Boussuy, M.P., Boutron, I., Hoffmann, T.C., Mulrow, C.D., Schulz, K.F., Tetzlaff, J., Altman, D.G., Moher, D., Lohr, K.H., Moher, D., 2012. The PRISMA statement for reporting systematic reviews. Rev. Esp. Cardiol. 74, 790–857.

Page, M.J., McKenzie, J.E., Boussuy, M.P., Boutron, I., Hoffmann, T.C., Mulrow, C.D., Schulz, K.F., Tetzlaff, J., Altman, D.G., Moher, D., Lohr, K.H., Moher, D., 2012. The PRISMA statement for reporting systematic reviews. Rev. Esp. Cardiol. 74, 790–857.
healthcare workers exposed to COVID-19 in Wuhan, China: a cross-sectional survey. https://doi.org/10.21037/trs-21-385

Pappa, S., Athanasiou, N., Patziris, S., Sakkas, E., Barmapasrouz, Z., Tsirlida, S., Adrakats, A., Patakia, A., Migidis, I., Gida, S., Katsaounou, P., 2021. From recession to depression? Prevalence and correlates of depression, anxiety, traumatic stress and burnout in healthcare workers during the COVID-19 pandemic in a multicentre study: a cross-sectional study. Int. J. Environ. Res. Public Health 18. https://doi.org/10.3390/ijerph18052390

Pappa, S., Nelva, T., Giannakas, T., Giannakoulis, V.G., Papoutsi, E., Katsaounou, P., 2020. Prevalence of depression, anxiety, and insomnia among healthcare workers during the COVID-19 pandemic in Greece: a multicenter study. SSBN electronic journal. https://doi.org/10.2139/ssbn.journal.3594632

Prasad, A., Civanost, A.M., Byrnes, Y., Chorath, K., Poonia, S., Chang, C., Graboyes, E.M., Bu, A.M., Thakker, H., Deng, J., Seth, R., Tripathi, S., Wong, A., Leitman, B.M., Shah, J., Stubbs, V., Long, Q., Choby, G., Rassled, C.H., Thaler, E.R., Rajadasaran, K., 2020. Snapshot impact of COVID-19 on mental wellness in nonphysician otolaryngology health care workers: a national study. OTO Open 4, 100880.

Prasad, K., Mcloughlin, C., Stillman, M., Poplau, S., Goelz, E., Taylor, N., Sankivel, N., Brown, R., Linzer, M., Cappellucci, K., Barbouchre, M., Sinsky, C.A., 2021. Prevalence and correlates of stress and burnout among U.S. healthcare workers during the COVID-19 pandemic: a national cross-sectional survey study. eClinicalMedicine 35, 100879.

Preti, E., Di Mattei, V., Perego, G., Ferrari, F., Mazzetti, M., Taranto, P., Di Pierro, R., Preti, E., Di Mattei, V., Ferrari, F., Mazzetti, M., Taranto, P., Di Pierro, R., Prasad, A., Civantos, A.M., Byrnes, Y., Chorath, K., Poonia, S., Chang, C., Graboyes, E.M., Bu, A.M., Thakker, H., Deng, J., Seth, R., Tripathi, S., Wong, A., Leitman, B.M., Shah, J., Stubbs, V., Long, Q., Choby, G., Rassled, C.H., Thaler, E.R., Rajadasaran, K., 2020. Snapshot impact of COVID-19 on mental wellness in nonphysician otolaryngology health care workers: a national study. OTO Open 4, 100880.

Qi, G., Yuan, P., Qi, M., Hu, X., Shi, S., Shi, X., 2022. Influencing factors of high PTSD symptomatology and anxiety among residential nursing and care home nurses in Italian healthcare system: cross-sectional study. Front. Psychol. 12, 684222.

Ranieri, J., Guerra, F., Perilli, E., Passafiume, D., Maccaroni, D., Ferri, C., Di Giacomio, D., 2021. Delineation of COVID-19 pandemic and psychological response of nurses in Italian healthcare system: cross-sectional study. Front. Psychol. 12, 70103.

Rao, J., Veer, D., Liedtke, A., Wisniewski, K., Sawhney, S., Leow, J., Grapes, J., 2021. The psychological impact of COVID-19 on the mental health of healthcare workers in China: a cross-sectional study. J. Affect. Disord. 282, 527–531.

Rasool, S., Andhavarapu et al. COVID-19 pandemic: an umbrella review of meta-analyses. Prog. Brain Res. 265, 201–216.

Rauscher, H., Schumacher, K., Schmitz, L., Glaeske, G., Kästle, M., 2021. The psychological impact of SARS-CoV-2 pandemic. A cross-sectional study. Compr. Psychiatry 112, 152278.

Ramesh, S., Natarajan, S., Anyah, V., Mengistie, E., Mekonen, S., Zeynudin, A., Ambelu, A., 2020. Mental health of healthcare workers during the COVID-19 pandemic: a systematic review and meta-analysis. SSRN https://doi.org/10.2139/ssrn.3594632.

Ramesh, S., Natarajan, S., Anyah, V., Mengistie, E., Mekonen, S., Zeynudin, A., Ambelu, A., 2020. Mental health of healthcare workers during the COVID-19 pandemic: a systematic review and meta-analysis. SSRN https://doi.org/10.2139/ssrn.3594632.

Regan, J., 2021. Surviving COVID-19: the mental health impact on healthcare professionals. Nursing Standard 35, 508413.

Reis, L., Aguiar, L., Alvarenga, M., Casais, C., Mendonça, R., 2021. Psychological and physical impact of the COVID-19 pandemic on healthcare professionals: a systematic review and meta-analysis. J. Affect. Disord. 282, 527–531.

Ribeiro, H., 2021. A survey of mental health in graduate nursing students during the COVID-19 pandemic. Nurse Educ. 46, 215–219.

Rojas, F., 2020. The impact of SARS-CoV-2 on the mental health of healthcare workers in a rural area in Kenya. BMJ Open 11, e050316.

Rous, R., Regan, J., 2021. The impact of COVID-19 pandemic on the mental health of healthcare workers in a setting—a systematic review. J. Occup. Health. https://doi.org/10.1007/s11895-021-01907-8.

Salehi, M., Amanat, M., Mohammadi, M., Salmanian, M., Rezaei, N., Saghaei, A., Gara, S., 2021. The prevalence of post-traumatic stress disorder related symptoms in Gaveshan mental healthcare: a systematic-review and meta-analysis. J. Affect. Disord. 282, 527–538.

Sanghera, J., Pattani, N., Hashmi, Y., Varley, K.F., Cheruvu, M.S., Bradley, A., Burke, J., 2020. Mental health assessment of Spanish healthcare workers during the SARS-CoV-2 pandemic. A cross-sectional study. Compr. Psychiatry 112, 152278.
COVID-19 outbreak: a study raises concern for non-medical staff in low-risk areas. Front. Psychiatry 12, 696200.
Zhou, Y., Sun, Z., Wang, Y., Xing, C., Sun, L., Shang, Z., Liu, W., 2021. The prevalence of PTSS under the influence of public health emergencies in last two decades: a systematic review and meta-analysis. Clin. Psychol. Rev. 83, 101938.

Zhu, Z., Xu, S., Wang, H., Liu, Z., Wu, J., Li, G., Miao, J., Zhang, C., Yang, Y., Sun, W., Zhu, S., Fan, Y., Chen, Y., Hu, J., Liu, J., Wang, W., 2020. COVID-19 in Wuhan: sociodemographic characteristics and hospital support measures associated with the immediate psychological impact on healthcare workers. eClinicalMedicine 24, 100443.