Fractional Quantum Hall Effects in Graphene and Its Bilayer

Naokazu Shibata and Kentaro Nomura

Department of Physics, Tohoku University, Aoba, Aoba-ku, Sendai, 980-8578, Japan

(Dated: June 5, 2009)

PACS numbers: 73.43.Lp,73.50.Fq,72.10.-d

I. INTRODUCTION

A recent experimental realization of single-layer graphene (SLG) sheets has made it possible to confirm a number of theoretical predictions of intriguing electric properties of massless Dirac fermion systems, including unconventional quantum Hall effects (QHE) with the half-integer Hall conductivity, \(\sigma_{xy} = (n + \frac{1}{2}) \frac{4e^2}{h} \), (1)

at \(\nu = \pm2, \pm6, \pm10, \ldots \), where a factor of 4 is the Landau level (LL) degeneracy, resulting from spin and valley symmetry in graphene. \(\nu = \frac{2\pi e^2}{\hbar B} \rho \) is the filling factor, \(\ell_B = \sqrt{\hbar/eB} \) is the magnetic length, \(\rho \) is the carrier density measured from the charge neutral Dirac point.

As many phenomenological insights were found in the quantum Hall regime of SLG, bilayer graphene (BLG) potentially exhibits rich physics. Experiments showed that the Hall conductivity of unbiased graphene bilayer in strong magnetic fields is given by

\[\sigma_{xy} = n \frac{4e^2}{h} \]

with \(|n| \geq 1 \). The absence of \(\sigma_{xy} = 0 \) plateau and the double height jump of the Hall conductivity between \(\nu = -4 \) and 4 indicate eight-fold degeneracy at the neutrality point.

These quantization rules of the Hall conductivity for SLG and BLG originate with the characteristic energy spectrum in a magnetic field. The low-energy band structure in SLG consists of Dirac cones located at the inequivalent Brillouin zone corners K and K’. Using the magnetic ladder operator \(a \equiv (\pi_x - i\pi_y)\ell_B/\sqrt{2\hbar} \), where \(\pi = p - eA \) is the kinetic momentum, the single-particle Hamiltonian for the K-valley of the SLG is written as

\[\mathcal{H}_K^{(SLG)} = \frac{\sqrt{2}\hbar v_F}{\ell_B} \begin{pmatrix} 0 & a \\ a^\dagger & 0 \end{pmatrix} \]

and \(\mathcal{H}_K^{(SLG)} \) is the transpose of \(\mathcal{H}_K^{(SLG)} \). Where \(v_F \) is the Fermi velocity of SLG, \(2 \times 2 \) matrices act in the sublattice degrees of freedom in graphene. The eigenenergy of eq. (3) is given by

\[\epsilon_n = \pm \hbar v_F \sqrt{n} / \ell_B. \]

The eigenvector is \(|0\rangle_{K}^{(SLG)} = (0, 0)^t \) for \(n = 0 \), and \(|n, \pm\rangle_K^{(SLG)} = (|n-1\rangle, \pm|n\rangle)^t / \sqrt{2} \) for \(n > 1 \). Here \(|n\rangle \) is the eigenvector of the number operator \(N \equiv a^\dagger a \) with an eigenvalue \(n \).

In contrast to SLG, BLG has an ordinary parabolic spectrum in the vicinity of the neutrality point. In a magnetic field, the effective Hamiltonian for BLG is written in the form:

\[\mathcal{H}_K^{(BLG)} = \hbar \omega_c \begin{pmatrix} 0 & a^2 \\ (a^\dagger)^2 & 0 \end{pmatrix} \]

and its eigenenergy is

\[E_n = \pm \hbar \omega_c \sqrt{n(n-1)}. \]

Here \(\omega_c = eB/m \) with \(m \) being the effective mass of BLG. The eigenvector of eq. (5) is \(|0, 0\rangle_{K}^{(BLG)} = (0, 0)^t \), \(|0, 1\rangle_{K}^{(BLG)} = (0, 1)^t / \sqrt{2} \) for the zero energy level, and \(|n, \pm\rangle_K^{(BLG)} = (|n-1\rangle, \pm|n\rangle)^t / \sqrt{2} \) for \(n > 2 \).

Recent experimental studies on SLG in a sufficiently strong magnetic field revealed new quantum Hall states at \(\nu = 0, \pm 1, \pm 4 \) where the electron-electron interaction may play a crucial role. Here relevant energy scales in graphene in a magnetic field are

(i) LL separation around the neutrality point, \(\sqrt{2} \hbar v_F / \ell_B \approx 400 \sqrt{B/T}|K| \) for SLG, while \(\sqrt{2} \hbar \omega_c \approx 30 \times (B/T)|K| \) for BLG.
(ii) Zeeman coupling, $\Delta_z = g_\mu B |B| \approx 1.5 \times (B[T])[K]$, and

(iii) The Coulomb energy, $e^2/\ell B \approx 100\sqrt{B[T][K]}$.

The activation energy measurements at these additional QHE states in SLG have shown that at $\nu = \pm 4$ the gap has linear B dependence and reasonably corresponds to Δ_z, indicating Zeeman spin splitting. At $\nu = \pm 1$, on the other hand, the gap is approximately scaled by \sqrt{B}, that indicates the gap originates from the Coulomb interaction. The latter behavior is consistent with the quantum Hall ferromagnetism (QHF) in which valley degrees of freedom, referred as pseudospins, spontaneously split via the exchange energy at all integer fillings. Based on the above scenario, it has been anticipated that interactions will drive quantum Hall effects also in BLG, at the octet’s seven intermediate integer filling factors when magnetic field is strong enough or disorder is weak enough.

In this work, we focus on the many-body states in nonzero LLs of SLG and BLG. We introduce the effective filling factors of the topmost partially filled nth LL,

$$\nu_n^{(SLG)} = \nu - 4(n - 1/2)$$ \hspace{1cm} (7)

for SLG and

$$\nu_n^{(BLG)} = \nu - 4(n - 1)$$ \hspace{1cm} (8)

for BLG. Here $\nu_n \leq 4$, and $n \geq 2$ for BLG.

The ground state at $\nu_n = 1$ is fully spin and valley polarized, and the wave function can be represented by

$$|\Psi_{\nu_n=1}^\tau\rangle = \prod_m e^{i\phi_{m,\tau}}|0\rangle,$$ \hspace{1cm} (9)

where we assign the valley K and $K' \equiv \pm 1$ in graphene as z-component of pseudospin $\tau = K$ or K'.

We omit real spins, which are assumed to be fully polarized by the strong Zeeman splitting. Excitations from the symmetry broken states are described by (pseudo)spin wave and (pseudo)spin textures called skyrmions or other types, depending on the LL index n.

In the previous work, we have studied the fractional quantum Hall ferromagnetic states in SLG at $\nu_n = 1$ and $1/3$. As a consequence of the relativistic nature of electrons in SLG, the effective electron-electron interactions in $n \neq 0$ LLs differ from that in conventional two-dimensional systems, while the $n = 0$ LL is equivalent. We have neglected the spin degrees of freedom of electrons by assuming strong Zeeman coupling, although valley degrees of freedom have been taken into account since there is no external symmetry breaking field. We have shown that the ground states at $\nu_n = 1$ and $1/3$ in $n = 0$ and 1 LLs of SLG are fully valley polarized, while elementary charge excitations consist of pseudospin-singlet, namely valley-skyrmions.

In this paper we extend the quantum Hall ferromagnetism to BLG and numerically show that the ground states at $\nu_n = 1$ and $1/3$ in the $n = 2$ LL of BLG are fully valley polarized. In contrast to the fact that elementary charge excited states are pseudospin-singlet at $\nu_2 = 1$, those at $\nu_2 = 1/3$ of BLG are pseudospin polarized. Namely, the Laughlin type quasiparticle (quasihole) excitations dominate over skyrmion type. As a consequence, the charge gap at $\nu_2 = 1/3$ in BLG is almost twice larger than that at $\nu_2 = 1/3$ in SLG. Therefore clean BLG samples are better candidates to observe fractional QHE than SLG. We also study $\nu_n = 2/3$ and $2/5$ states in SLG and BLG. We claim that the ground at $\nu_n = 2/3$ and $2/5$ states are pseudospin singlet in the $n = 0$ LL of SLG, while fully pseudospin polarized in the $n = 1$ LL of SLG and the $n = 2$ LL of BLG. These results are summarized in Table I.

II. MODEL AND METHOD

We start with the projected Coulomb interaction Hamiltonian onto a certain LL, and study charge and valley excitations, where we treat the valley degrees of freedom K and K' in the language of the pseudospin, while real spin degrees of freedom are supposed to be frozen by the Zeeman splitting. The LL mixing is also neglected in the following. We calculate the exact wave function of the ground state and low energy excited states in SLG and BLG, basing on the density matrix renormalization group (DMRG) method and examine the existence of the skyrmion excitations in valley degrees of freedom not only at integer fillings $\nu_n = 1$ but also at fractional fillings $\nu_n = 1/3, 2/5$ and $2/3$ for the LL indices $n = 0, 1$ and 2. Charge gaps at these fractions are extrapolated to the thermodynamic limit. For our purpose the DMRG method is quite useful, since it needs to treat a large number of basis of the many-body Hilbert space when the pseudospin degrees of freedom are introduced in the fractional QHE systems. Taking account of valley degrees of freedom, we apply the DMRG method on torus and spherical geometries.

The projected Hamiltonian onto the nth LL is written as

$$H = \frac{1}{L^2} \sum_{i<j} \sum_q V(q) e^{-q^2/2} [F_n(q)]^2 e^{i\mathbf{q} \cdot (\mathbf{R}_i - \mathbf{R}_j)},$$ \hspace{1cm} (10)

where \mathbf{R}_i is the guiding center coordinate of the ith particle. The relativistic form factor in the nth LL of SLG is written as

$$F_0^{(SLG)}(q) = L_0 \left(q^2 / 2 \right)$$ \hspace{1cm} (11)

and

$$F_{n \geq 1}^{(SLG)}(q) = (1/2) \left[L_{|n|} \left(q^2 / 2 \right) + L_{|n|-1} \left(q^2 / 2 \right) \right].$$ \hspace{1cm} (12)

For the $(n \geq 2)$th LL in BLG,

$$F_{n \geq 2}^{(BLG)}(q) = (1/2) \left[L_{|n|} \left(q^2 / 2 \right) + L_{|n|-2} \left(q^2 / 2 \right) \right].$$ \hspace{1cm} (13)
Here $L_n(x)$ are the Laguerre polynomials. In the spherical geometry, it is convenient to write the Hamiltonian as

$$H^{(n)} = \sum_{i<j} \sum_m V^{(n)}_m P_{ij}[m],$$

(14)

where $P_{ij}[m]$ projects onto states in which particles i and j have relative angular momentum hn, and $V^{(n)}_m$ is their interaction energy in the nth LL. Using above form factors, the pseudopotentials 25,26 are given by

$$V^{(n)}_m = \int_0^\infty dq \frac{d}{2\pi} V(q)e^{-q^2[F_n(q)]^2}L_m(q^2).$$

(15)

The corresponding integrals for electrons on the surface of a sphere which are used in the present work are described in refs. 29,30,31. Note that our Hamiltonian eqs. 10 and 14 have SU(2) symmetry in the valley degrees of freedom. A symmetry breaking correction to eqs. 10 and 14 which stems from the lattice structure of SLG 25,26 and BLG is of order a/ℓ_B (a being a lattice spacing) in units of $e^2/\epsilon\ell_B$ and neglected in the following.

We calculate the ground state wave function using the DMRG method 25,26 which is a real space renormalization group method combined with the exact diagonalization method. The DMRG method provides low-energy eigenvalues and corresponding eigenvectors of the Hamiltonian within a restricted number of basis states. The accuracy of the results is systematically controlled by the truncation error, which is smaller than 10^{-4} in the present calculation. We investigate systems of various sizes with up to 40 electrons in the unit cell keeping 1400 basis in each block 25,26.

The sphere geometry is useful to extrapolate energy gaps to the thermodynamic limit. In the sphere geometry, the pseudospin (valley) polarized ground state at $\nu_n = 1/q$ (q being an odd integer), the Laughlin state 25 realizes when the total flux N_ϕ is given by 25

$$N_\phi(\nu_n,N_e) = \nu_n^{-1}(N_e - 1),$$

(16)

where N_e is the number of electrons in the system. Elementary charged excitations from this pseudospin polarized ground state correspond to the ground state configurations of the system with additional/missing flux ± 1. At $\nu_n = 1/q$, we study two types of excitations: Laughlin’s quasiholes (quasiparticles) 25 and skyrmion quasiholes (quasiparticles) 20,21,22,23,24. Laughlin’s quasiholes (quasiparticles) correspond to pseudospin polarized excitations with ± 1 flux, whose creation energy is given by

$$\Delta^\pm_c = E(N_\phi \pm 1, P = 1) - E(N_\phi, P = 1),$$

(17)

where \pm represents quasiholes and quasiparticles, respectively, and P is the polarization ratio of the pseudospin, i.e. $P = (N_K - N_{K'})/(N_K + N_{K'})$ with $N_K(\ N_{K'})$ being the number of electrons in $K\ (K')$ valley.

The cross section on the vertical axis represent results obtained by Hartree-Fock calculations 25.

Skyrmion quasiholes (quasiparticles) correspond to pseudospin singlet excitations, and their creation energy is given by

$$\Delta^\pm_x = E(N_\phi \pm 1, P = 0) - E(N_\phi, P = 1),$$

(18)

which could be smaller than $\Delta^\pm_c\ ^{20,21,22,23,24}$.

The activation energy, referred as the gap in the following, is given as a sum of these quasihole and quasiparticle energies, $\Delta_e = \Delta^+_c + \Delta^-_x$ for pseudospin polarized (Laughlin-like) excitations, and $\Delta_e = \Delta^+_c + \Delta^-_x$ for pseudospin unpolarized (skyrmion-like) excitations.

At $\nu_n = 2/5$ and $2/3$, the pseudospin-polarized ground state and unpolarized ground state compete each other. Unfavorably, in the spherical geometry, these ground states realize at different configurations (the number of electrons and the total flux). Precisely, the pseudospin-polarized $\nu_n = 2/5$ state with N_e electrons occurs when the total flux N_ϕ is given by $N_\phi = (5/2)N_e - 3$. On the other hand, the pseudospin-singlet (unpolarized) state is realized at $N_\phi = (5/2)N_e - 3$. Since the finite size effects are different between these different configurations, it is difficult to study the pseudospin-polarizability in the ground state in the sphere geometry. To avoid this difficulty, we utilize the torus geometry in which two ground states with $P = 0$ and $P = 1$ are realized in the same configuration: $N_\phi = (5/2)N_e$. We use the sphere geometry to extrapolate the energy gaps to the thermodynamic limit. The $\nu_n = 2/3$ states are studied as well in the following section. The elementally charge excitations at $\nu_n = 2/3$ are obtained by adding or removing single electron in the system with ± 1 flux.

FIG. 1: The lowest charge excitation gaps in SLG and BLG at $\nu_n = 1$ in the $n = 0,1$ and 2 LLs in the spherical geometry. Closed circles represent the pseudospin unpolarized $P = 0$ (skyrmion) excitation gaps and open circles represent nearly pseudospin-polarized $P = 1 - 2/N_e$ excitation gaps. The crosses on the vertical axis represent results obtained by Hartree-Fock calculations 25.

20,21,22,23,24
ergy of skyrmion-like pseudospin unpolarized state.

of the effective exchange interaction, which increases en-

with the expectation that the unpolarized excitations are

N

lowest charge excited state when the number of electrons

small systems. We find the first order transition in the

P

transition

show instability of the unpolarized

and 2 LLs of SLG, and 0.48 in the

e
value of the pseudospin unpolarized excitation gaps ∆

FIG. 2: Expectation values, ⟨c_c m K† ν_1⟩, in the lowest pseudospin (valley) unpolarized excited state with extra one flux at (a) υ_2 = 1 in BLG and at (b) υ_1 = 2/5 in SLG.

FIG. 3: The pseudospin (valley) polarized excitation gap ∆c and the pseudospin (valley) unpolarized (skyrmion) excitation gap ∆s at υ_n = 1/3 in SLG (ν = 0 and 1 LLs) and in BLG (n = 2 LL).

III. RESULTS

A. υ_n = 1 and 1/3 states

At υ_n = 1 integer fillings, the pseudospins of valley
degrees of freedom in SLG and BLG are completely po-
larized by the exchange Coulomb interaction. This is es-
sentially the same as the case of usual quantum Hall sys-
tems with spin degrees of freedom. The fully pseudospin
polarized P = 1 quasiparticle excitations from the above
ground state need energy to the next higher LL, and such
excitations have large gap compared with the unpolarized
P = 0 or partially polarized 0 < P < 1 excitations in the
same LL. We therefore calculate the unpolarized and par-
tially polarized excitations by the DMRG method, and
study the pseudospin polarization of the lowest charge
excitation and the gap in the thermodynamic limit.

The pseudospin polarization and the energy of the low-
est charge excitation are shown in Fig. 1 for various sizes
of system in spherical geometry. This figure shows that
the pseudospin unpolarized (P = 0) state is the lowest
excited state when the system size is large enough in SLG
(n = 0, 1, and 2) and BLG (n = 2). The extrapolated
value of the pseudospin unpolarized excitation gaps Δ_s
in units of e^2/ℏνB are 0.63, 0.28 and 0.42 in the n = 0, 1
and 2 LLs of SLG, and 0.48 in the n = 2 LL of BLG.

In the n = 2 LL, the lowest quasiparticle excitation in
small systems (N_e ≤ 20) has large pseudospin polariza-
tion P = 1 − 2/N_e both for SLG and BLG. These results
show instability of the unpolarized P = 0 excitations in
small systems. We find the first order transition in the
lowest charge excited state when the number of electrons
N_e exceeds 18 in SLG and 24 in BLG. This is consistent
with the expectation that the unpolarized excitations are
unstable in higher LLs because of the long-range nature
of the effective exchange interaction, which increases en-
ergy of skyrmion-like pseudospin unpolarized state.

To study the pseudospin structure in the unpolarized
excited states, we compare our numerical results with
the Hartree-Fock (HF) trial states of skyrmions. The HF
trial state of quasihole skyrmions at υ_n = 1 is written in
the form

|Ψ_{sk}⟩ = \prod_{m=-N_\phi/2}^{N_\phi/2} [α_m c_{m\tau K}' + β_m c_{m+1\tau K}]|0⟩, \quad (19)

where ⟨c_{m\tau K}' c_{m\tau K}⟩ = |α_m|^2 and ⟨c_{m\tau K}' c_{m\tau K}⟩ = |β_m|^2.

we have calculated the expectation values ⟨c_{m\tau K}' c_{m\tau K}⟩ from
the wave function obtained in the present DMRG study.
The results for υ_2 = 1 in BLG indicate they are approx-
imately given by ⟨c_{m\tau K}' c_{m\tau K}⟩ = 1/2 m/N_ϕ for τ = K
and τ = K', respectively as shown in Fig. 2 (a). Similar
results are also obtained for υ_n = 1 and 1/3 in the n = 0
and 1 LLs of SLG, that shows the pseudospin unpolarized
elementally charge excitations in BLG at υ_2 = 1 are pseudospin (valley) skyrmions.

The elementally charge excitation gaps at fractional
fillings υ_n = 1/3 are shown in Fig.3. The pseudospin
(valley) polarized P = 1 excitation gap Δ_c for n = 0
SLG is 0.101 in units of e^2/ℏνB in the thermodynamic
limit, which is in a good agreement with the previous
work. In the n = 1 LL of SLG, Δ_c is 0.115, which
is larger than 0.101 in the n = 0 LL of SLG. In BLG,
Δ_c = 0.103 in the n = 2 LL, which is also slightly larger
than that in the n = 0 LL of SLG. This enhancement
of the Δ_c in higher LLs is consistent with the increase
of the difference of Haldane’s pseudopotentials between
m = 1 and 3; V_{m=1} - V_{m=3} is 0.168 in units of e^2/ℏνB for
BLG in the n = 2 LL and 0.198 for SLG in the n = 1
LL, while it is 0.166 for SLG in the n = 0 LL.

As seen in conventional 2DEGs, ν = 1/3 (valley or
spin) unpolarized excited states can be lower in energy
than the polarized excited states. Indeed, as shown in Fig. 3, the unpolarized excitation gap Δ_e in SLG is 0.05 in the $n = 0$ LL and 0.03 in the $n = 1$ LL, which are much smaller than the polarized excitation gap Δ_p in the $n = 0$ and 1 LLs, respectively. In the case of BLG, however, we find that valley unpolarized excited states have higher energy than polarized excited states. Consequently, the activation energy at $\nu = 1/3$ in BLG is 2-3 times larger than that in SLG, that indicates an advantage for the observation of fractional QHE in BLG.

B. $\nu_n = 2/5$ and $\nu_n = 2/3$ states

According to the composite fermion theory, $\nu = n/(1 + 2m)$ fractional quantum Hall states are mapped onto the $\nu_{\text{eff}} = m$ integer quantum Hall states. In contrast to the case of $\nu = 1/3$, where the ground state is mapped onto the $n = 1$ pseudospin polarized integer quantum Hall state, $\nu = 2/5$ fractional quantum Hall state is mapped onto the $n = 2$ integer quantum Hall state, where the lowest LL is doubly occupied by pseudospin-up and pseudospin-down electrons. We therefore expect pseudospin unpolarized ground state at $\nu_n = 2/5$. Here we calculate the ground state pseudospin polarization of SLG and BLG at $\nu_n = 2/5$ to see whether this naive expectation is correct even in graphene.

The pseudospin-polarization in the ground state is studied by calculating the polarization energy $E_{P=1} - E_{P=0}$ which is the energy difference between the polarized $P = 1$ state and the unpolarized $P = 0$ state. This energy difference is plotted in Fig. 4 for the $n = 0$ and 1 LLs in SLG as a function of N_e. This figure clearly shows that the ground state pseudospin at $\nu_n = 2/5$ in the $n = 0$ LL of SLG is unpolarized, because $E_{P=1} - E_{P=0}$ increases with the increase in the number of electrons N_e. This is consistent with the prediction of the composite fermion theory. On the other hand, in the $n = 1$ LL of SLG, $E_{P=1} - E_{P=0}$ decreases with the increase in N_e. This behavior suggests the polarized ground state.

To confirm the polarized ground state at $\nu_n = 2/5$ in the $n = 1$ LL of SLG, we slightly change the Haldane’s pseudo potential V_2, which acts only for electron pairs whose relative angular momentum m is 2. Since antisymmetrized wave function of polarized pseudospin state does not contain electron pairs with $m = 2$, only the energy of pseudospin polarized state is independent of V_2. We therefore systematically control the energy difference between $E_{P=1}$ and $E_{P=0}$ by changing V_2. The V_2-dependence of $E_{P=1} - E_{P=0}$ is shown in the inset of Fig.4 as a function of $\delta V_2 = V_2 - V_2^{\text{SLG}(n=1)}$ where $V_2^{\text{SLG}(n=1)}$ corresponds to the original V_2 in the $n = 1$ LL of SLG. This V_2-dependence shows systematic change in the size dependence of $E_{P=1} - E_{P=0}$ at $\delta V_2 = -0.002$. Since δV_2 is negative at the transition, where $E_{P=1} - E_{P=0} = 0$ in the thermodynamic limit, the pseudospins in the ground state at $\nu_n = 2/5$ are fully polarized in large systems. Similar analysis on the size dependence of the polarization energy also shows that the pseudospins in the ground state of $n = 2$ LL of BLG are fully polarized at $\nu_n = 2/5$.

The elemental charge excitation energies at $\nu_n = 2/5$ are presented in Fig. 5. In the case of $n = 0$ LL of SLG, the pseudospin (valley) polarized excitation gap Δ_c is calculated supposing pseudospins in the ground state are fully polarized, although they are unpolarized in the true ground state. The extrapolated value of Δ_c in the $n = 0$ LL of SLG is then 0.05 $e^2/(\epsilon_1 B)$ in a good agreement with the previous work. In the $n = 1$ LL of SLG, the

![Figure 4](image1.png)

FIG. 4: Size dependence of the energy difference between the fully pseudospin polarized $P = 1$ state $E_{P=1}$ and the unpolarized $P = 0$ states $E_{P=0}$ at $\nu_n = 2/5$ in SLG in a torus geometry. Inset shows size dependence and δV_2 dependence of $E_{P=1} - E_{P=0}$ at $\nu_n = 2/5$ in SLG with $n = 1$.

![Figure 5](image2.png)

FIG. 5: The pseudospin (valley) polarized excitation gap Δ_c and the pseudospin (valley) unpolarized excitation gap Δ_s at $\nu_n = 2/5$ in $n = 0$ and 1 LLs of SLG and in the $n = 2$ LL of BLG.
pseudospins in the ground state are fully polarized and Δ_s is 0.059. In BLG, $\Delta_c = 0.052$, which is also slightly larger than Δ_s in the $n = 0$ LL of SLG. The largest Δ_c at $\nu_n = 2/5$ is obtained in the $n = 1$ LL of SLG. This feature is the same as the case of $\nu_n = 1/3$ shown in Fig. 3.

The pseudospin (valley) unpolarized excitation gap Δ_s at $\nu_n = 2/5$ are also shown in Fig. 5. The Δ_s from the unpolarized ground state in the $n = 0$ LL of SLG is 0.04 $e^2/(\ell_B)$, and the Δ_s from the polarized ground state in the $n = 1$ LL of SLG is 0.035 $e^2/(\ell_B)$. These Δ_s are smaller than Δ_c similarly to the case of $\nu_n = 1/3$. In the $n = 2$ LL of BLG, Δ_s is larger than Δ_c. The lowest gap in BLG is then given by Δ_c, which is 0.052 $e^2/(\ell_B)$.

In the $n = 1$ LL of SLG, the ground state is pseudospin polarized while the lowest charge excited state is pseudospin unpolarized. The pseudospin structure in the unpolarized excited states at $\nu_1 = 2/5$ is shown in Fig. 2 (b), which indicates elementally charge excitations are characterized by valley skyrmions. The two-particle correlation functions $g_{\tau\tau'}(r)$ in the unpolarized quasihole state has peak structure around the origin while the correlation function between the electrons in different valleys $g_{KK'}(r)$ has the maximum at the opposite side on the sphere. These results indicate the elementally charge excitations at $\nu_n = 2/5$ in the $n = 1$ LL of SLG are valley-pseudospin textures similar to skyrmion excitations in the quantum Hall ferromagnetic states at $\nu_n = 1$ and $\nu_n = 1/3$, although their origin and detailed properties are not obvious.

We finally study the valley-polarization in the ground state and the elementally excitations at $\nu_n = 2/3$. Similarly to the case of the $\nu_n = 2/5$ fractional quantum Hall state, the $\nu_n = 2/3$ fractional quantum Hall state is mapped onto $n = 2$ integer quantum Hall state within a mean-field analysis of the composite fermion theory. Thus the pseudospin unpolarized ground state is expected. Indeed, the ground state at $\nu_n = 2/3$ in the $n = 0$ LL of SLG is pseudospin unpolarized. However, in the $n = 1$ LL of SLG and the $n = 2$ LL of BLG, the size dependence of the polarization energy shows the pseudospins are fully polarized in the ground state.

The charge excitation energies from the ground states at $\nu_n = 2/3$ are presented in Fig. 7. The polarized excitation gap Δ_c in the $n = 0$ LL of SLG is calculated from the energy difference between the fully polarized ground state and the fully polarized charge excited state, although the true ground state is the unpolarized state. The extrapolated value of Δ_c in the thermodynamic limit is then $0.101 e^2/(\ell_B)$ in the $n = 0$ LL of SLG, which is the same as Δ_c at $\nu = 1/3$ because of the particle-hole symmetry of the single component quantum Hall system. In the $n = 1$ LL of SLG, the pseudospins in the ground state are polarized and Δ_c is 0.115 in the thermodynamic limit. In BLG, $\Delta_c = 0.103$, which is also the same as Δ_c at $\nu_n = 1/3$.

The valley unpolarized excitation gap Δ_s from the unpolarized true ground state in the $n = 0$ LL of SLG is 0.08 $e^2/(\ell_B)$. Similarly to the case of $\nu = 1/3$, Δ_s is smaller than Δ_c. In the $n = 1$ LL of SLG, we find Δ_s is 0.10 in the thermodynamic limit, which is also smaller than Δ_c. The valley unpolarized elementally charge excitations at $\nu_n = 2/3$ in the $n = 1$ LL of SLG are not skyrmion-like pseudospin-textured state, in contrast to the case of $\nu = 2/5$ in the $n = 1$ LL of SLG as shown in Fig. 6, where short-range correlation $g_{KK'}$ for $\nu_n = 2/3$.

![FIG. 6: (Color online) Two-particle correlation functions $g_{\tau\tau'}$ of quasihole skyrmion state at $\nu_n = 2/5$ and quasiparticle state at $\nu_n = 2/3$ in the $n = 1$ LL of SLG. r is in units of ℓ_B.](image1.png)

![FIG. 7: The pseudospin (valley) polarized excitation gap Δ_c and the pseudospin (valley) unpolarized excitation gap Δ_s at $\nu_n = 2/3$ in $n = 0$ and 1 LLs of SLG.](image2.png)
TABLE I: The pseudospin (valley) polarization in the ground state and the lowest charge excited state, and the unpolarized excitation gap Δ_s and the polarized excitation gap Δ_c, extrapolated to the thermodynamic limit at the effective filling ν_n in the nth LL of single-layer graphene (SLG) and bilayer graphene (BLG).

ν_n	LL	ground state excited state	Δ_s	Δ_c
1	SLG	0 polarized skyrmion	0.63	
1	SLG	1 polarized skyrmion	0.28	
1	SLG	2 polarized skyrmion	0.42	
1	BLG	2 polarized skyrmion	0.48	
1/3	SLG	0 polarized skyrmion	0.05	0.101
1/3	SLG	1 polarized skyrmion	0.03	0.115
1/3	BLG	2 polarized skyrmion	0.103	
2/5	SLG	0 unpolarized unpolarized	0.04 (0.050)	
2/5	SLG	1 polarized skyrmion	0.035	0.058
2/5	BLG	2 polarized skyrmion	0.052	
2/3	SLG	0 unpolarized unpolarized	0.08 (0.101)	
2/3	SLG	1 polarized skyrmion	0.10	0.115
2/3	BLG	2 polarized skyrmion	0.103	

IV. DISCUSSION

Our DMRG calculation confirms various types of quantum Hall states in graphene at $\nu_n = 1, 1/3, 2/5$ and $2/3$ in the $n = 0$ and 1 LLs of SLG and in the $n = 2$ LL of BLG. These results are summarized in Table I, where the pseudospin polarizations for the ground state and the lowest charge excited state are listed with the elementally charge excitation energies Δ_b and Δ_a. The elementally charge excitations are obtained by increasing or decreasing the flux quantum number N_ϕ by 1 for $\nu = 1$ and $1/3, 2/5, 2/3$, and by increasing or decreasing the flux quantum number with adding or removing single electron in the system for $\nu = 2/3$. We have studied both (a) pseudospin polarized excitations (Laughlin’s quasiholes and quasiparticles) and (b) pseudospin unpolarized excitations (quasiholes skyrmions and quasiparticle skyrmions at $\nu_n = 1$ and $1/3$ in the $n = 0$ and 1 LLs of SLG, and at $\nu_n = 1$ in the $n = 2$ LL of BLG).

The activation energies obtained in finite systems are extrapolated to the thermodynamic limit, which give theoretical predictions for future experimental studies of the fractional quantum Hall states in graphene. Our results show that the gaps ($\Delta_s \simeq 0.1e^2/\ell_B^2$) at $1/3$ and $2/3$ effective fillings in the excited LL in bilayer graphene are larger than those in conventional quantum well and single layer graphene. Therefore bilayer graphene is a good candidate for future experimental observation of the fractional quantum Hall effects.

Acknowledgment

The present work is supported by Grand-in-Aid No. 18684012 from MEXT Japan.

1. A. K. Geim and K. S. Novoselov: Nature Mater. 6 (2007) 183.
2. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim: Rev. Mod. Phys. 81 (2009) 109.
3. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov: Nature 438 (2005) 197.
4. Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim: Nature 438 (2005) 201.
5. Y. Zheng and T. Ando: Phys. Rev. B 65 (2002) 245420.
6. Y. Zhang, Z. Jiang, J. P. Small, M. S. Purewal, Y.-W. Tan, M. Fazlollahi, J. D. Chudow, J. A. Jaszczak, H. L. Stormer, and P. Kim: Phys. Rev. Lett. 96 (2006) 136806; Z. Jiang, Y. Zhang, H. L. Stormer, and P. Kim: Phys. Rev. Lett. 99 (2008) 106802.
7. K. Nomura and A.H. MacDonald: Phys. Rev. Lett. 96 (2006) 256602.
8. K. Yang, S. Das Sarma, and A. H. MacDonald: Phys. Rev. B 74 (2006) 075423.
9. J. Alicea and M.P.A. Fisher: Phys. Rev. B 74 (2006) 075422.
10. M. O. Goerbig, R. Moessner, and B. Doucet: Phys. Rev. B 74 (2006) 161407(R).
11. D. Abanin, P. A. Lee, and L. S. Levitov: Phys. Rev. Lett. 98 (2007) 156801; D. A. Abanin, K. S. Novoselov, U. Zeitler, P. A. Lee, A. K. Geim, and L. S. Levitov: Phys. Rev. Lett. 98 (2007) 196806.
12. T. Chakraborty and P. Pietilainen: Europhys. Lett. 80 (2007) 37007.
13. L. Sheng, D.N. Sheng, F.D.M. Haldane, and L. Balents: Phys. Rev. Lett. 99 (2007) 196802.
14. V. M. Apalkov and T. Chakraborty: Phys. Rev. Lett. 97 (2006) 126801.
15. N. Shibata and K. Nomura: Phys. Rev. B 77 (2008) 235426.
16. K. S. Novoselov, E. McCann, S. V. Morozov, V. I. Fal’ko, M. I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, and A. K. Geim: Nat. Phys. 2 (2006) 177.
17. E. McCann and V. I. Fal’ko: Phys. Rev. Lett. 96 (2006) 086805.
18. S. M. Girvin and A. H. MacDonald: in Perspectives in Quantum Hall Effects ed. S. Das Sarma and A. Pinczuk (John Wiley and Sons, New York 1997).
19. Y. Barlas, R. Cote, K. Nomura, and A. H. MacDonald: Phys. Rev. Lett. 101 (2008) 097601; K. Shizuya: Phys. Rev. B 79 (2009) 165402; D. A. Abanin, S. A. Parameswaran, and S. L. Sondhi: [arXiv:0904.0040]
20. S. L. Sondhi, A. Karlhede, S. Kivelson and E.H. Rezayi: Phys. Rev. B 43 (1991) 5944.
D. Yoshioka: J. Phys. Soc. Jpn. **67** (1998) 3356.
25 S.R. White: Phys. Rev. Lett. **69** (1992) 2863; S.R. White: Phys. Rev. B **48** (1993) 10345.
26 N. Shibata: J. Phys. A **36** (2003) R381.
27 N. Shibata and D. Yoshioka: Phys. Rev. Lett. **86** (2001) 5755; N. Shibata and D. Yoshioka: J. Phys. Soc. Jpn. **75** (2006) 043712; N. Shibata and K. Nomura: J. Phys. Soc. Jpn. **76** (2007) 103711.
28 *The Quantum Hall Effect* ed. R. E. Prange and S. M. Girvin (Springer Verlag, New York 1987).
29 F. D. M. Haldane: Phys. Rev. Lett. **51** (1983) 605; F. D. M. Haldane and E. H. Rezayi: Phys. Rev. Lett. **54** (1985) 237.
30 R. H. Morf, N. d’Ambrumenil, and S. Das Sarma: Phys. Rev. B **66** (2002) 075408.
31 G. Fano, F. Ortolani, and E. Colombo: Phys. Rev. B **34** (1986) 2670.
32 A.E. Feiguin, E. Rezayi, C. Nayak, and S. Das Sarma: Phys. Rev. Lett. **100** (2008) 166803.
33 J. K. Jain: Phys. Rev. Lett. **63** (1989) 199.
34 Δ_c for $\nu_n = 2/5$ and $2/3$ in the $n = 0$ LL of SLG is the gap from the lowest polarized state.