ON SEQUENCES WITHOUT GEOMETRIC PROGRESSIONS

MELVYN B. NATHANSON AND KEVIN O’BRYANT

Abstract. An improved upper bound is obtained for the density of sequences of positive integers that contain no \(k \)-term geometric progression.

1. A problem of Rankin

Let \(k \geq 3 \) be an integer. Let \(r \neq 0, \pm 1 \) be a real number. A geometric progression of length \(k \) with common ratio \(r \) is a sequence \((a_0, a_1, a_2, \ldots, a_{k-1})\) of nonzero real numbers such that

\[
r = \frac{a_i}{a_{i-1}}
\]

for \(1, 2, \ldots, k - 1 \). For example, \((3/4, 3/2, 3, 6)\) and \((8, 12, 18, 27)\) are geometric progressions of length 4 with common ratios 2 and 3/2, respectively. A \(k \)-geometric progression is a geometric progression of length \(k \) with common ratio \(r \) for some \(r \).

If the sequence \((a_0, a_1, a_2, \ldots, a_{k-1})\) is a \(k \)-geometric progression, then \(a_i \neq a_j \) for \(0 \leq i < j \leq k - 1 \).

A finite or infinite set of real numbers is \(k \)-geometric progression free if the set does not contain numbers \(a_0, a_1, \ldots, a_{k-1} \) such that the sequence \((a_0, a_1, \ldots, a_{k-1})\) is a \(k \)-geometric progression. Rankin \cite{3} introduced \(k \)-geometric progression free sets, and proved that there exist infinite \(k \)-geometric progression free sets with positive asymptotic density. For example, the set \(Q \) of square-free positive integers, with asymptotic density \(\frac{\pi^2}{6} \), contains no \(k \)-term geometric progression for \(k \geq 3 \).

Let \(A \) be a set of positive integers that contains no \(k \)-term geometric progression. Brown and Gordon \cite{2} proved that the upper asymptotic density of \(A \), denoted \(d_U(A) \), has the following upper bound:

\[
d_U(A) \leq 1 - \frac{1}{2^k} - \frac{2}{5} \left(\frac{1}{5^{k-1}} - \frac{1}{6^{k-1}} \right).
\]

Riddell \cite{4} and Beiglböck, Bergelson, Hindman, and Strauss \cite{1} proved that

\[
d_U(A) \leq 1 - \frac{1}{2^k}.
\]

The purpose of this note is to improve these results.

Date: May 7, 2014.

2010 Mathematics Subject Classification. 11B05 11B25, 11B75, 11B83, 05D10.

Key words and phrases. Geometric progression-free sequences, Ramsey theory.

\footnote{1}{If \(A(n) \) denotes the number of positive integers \(a \in A \) with \(a \leq n \), then the upper asymptotic density of \(A \) is \(d_U(A) = \limsup_{n \to \infty} A(n)/n \), and the asymptotic density of \(A \) is \(d(A) = \lim_{n \to \infty} A(n)/n \), if this limit exists.}

\footnote{2}{Brown and Gordon claimed a slightly stronger result, but their proof contains an (easily corrected) error.}
2. An upper bound for sets with no \(k \)-term geometric progression

Theorem 1. For integers \(k \geq 3 \) and \(n \geq 2^{k-1} \), let \(\text{GP}_k(n) \) denote the set of subsets of \(\{1, 2, \ldots, n\} \) that contain no \(k \)-term geometric progression. If \(A \in \text{GP}_k(n) \), then

\[
|A| \leq n - \left(\frac{1}{2k-1} + \frac{2}{5} \left(\frac{1}{5^{k-1}} - \frac{1}{6^{k-1}} \right) + \frac{4}{15} \left(\frac{1}{7^{k-1}} - \frac{1}{10^{k-1}} \right) \right) n + O\left(\frac{\log n}{k} \right).
\]

Proof. Let

\[
L = \left\lceil \frac{\log 2n}{k \log 2} \right\rceil.
\]

For \(1 \leq \ell \leq L \) we have \(2^{\ell k-1} \leq n \). Let \(a \) be an odd positive integer such that \(a \leq \frac{n}{2^{\ell k-1}} \).

The sequence

\[
(2^{(\ell-1)k}a, 2^{(\ell-1)k+1}a, 2^{(\ell-1)k+2}a, \ldots, 2^{\ell k-1}a)
\]

is a geometric progression of length \(k \) with common ratio 2. If \(A \in \text{GP}_k(n) \), then \(A \) does not contain this geometric progression, and so at least one element in the set

\[
X_\ell(a) = \{2^{(\ell-1)k}a, 2^{(\ell-1)k+1}a, 2^{(\ell-1)k+2}a, \ldots, 2^{\ell k-1}a\}
\]

is not an element of \(A \). Because every nonzero integer has a unique representation as the product of an odd integer and a power of 2, it follows that, for integers \(\ell = 1, \ldots, L \) and odd positive integers \(a \leq 2^{1-\ell}n \), the sets \(X_\ell(a) \) are pairwise disjoint subsets of \(\{1, 2, \ldots, n\} \).

For every real number \(t \geq 1 \), the number of odd positive integers not exceeding \(t \) is strictly greater than \((t - 1)/2\). It follows that the cardinality of the set \(\{1, 2, \ldots, n\} \setminus A \) is strictly greater than

\[
\sum_{\ell=1}^{L} \frac{1}{2} \left(\frac{n}{2^{\ell k-1}} - 1 \right) = \frac{1}{2} \sum_{\ell=1}^{L} \left(\frac{n}{2^{\ell k}} - \frac{1}{2} \right) = n \sum_{\ell=1}^{L} \frac{1}{2^{\ell k}} + O\left(\frac{\log n}{k} \right) = \frac{n}{2^{k-1}} + O\left(\frac{\log n}{k} \right).
\]

Note that if \(r \) is an odd integer and \(r \in X_\ell(a) \), then \(\ell = 1 \) and \(r = a \).

Let \(b \) be an odd integer such that

\[
\frac{n}{6^{k-1}} < b \leq \frac{n}{5^{k-1}}
\]

and \(b \) is not divisible by 5, that is,

\[
b \equiv 1, 3, 7, \text{ or } 9 \pmod{10}.
\]

We consider the following geometric progression of length \(k \) with ratio 5/3:

\[
(3^{k-1}b, 3^{k-1}5b, \ldots, 3^{k-1-i}5^ib, \ldots, 5^{k-1}b).
\]

Every integer in this progression is odd, and

\[
\frac{n}{2^{k-1}} < 3^{k-1}b < \cdots < 5^{k-1}b \leq n.
\]
Let
\[Y(b) = \{3^{k-1}b, 3^{k-2}5b, \ldots, 3^{k-1-i}5^ib, \ldots, 5^{k-1}b\}. \]
It follows that \(X_\ell(a) \cap Y(b) = \emptyset \) for all \(\ell, a, \) and \(b. \) If the integers \(b \) and \(b' \) satisfy (1) and (2) with \(b < b' \) and if \(Y(b) \cap Y(b') \neq \emptyset, \) then there exist integers \(i, j \in \{0, 1, 2, \ldots, k - 1\} \) such that
\[3^{k-1-i}5^ib = 3^{k-1-j}5^jb' \]
or, equivalently,
\[5^i b = 3^j b'. \]
The inequality \(b < b' \) implies that \(0 \leq j < i \leq k - 1 \) and so \(b' \equiv 0 \pmod{5}, \) which contradicts (2). Therefore, the sets \(Y(b) \) are pairwise disjoint. The number of integers \(b \) satisfying inequality (1) and congruence (2) is
\[\frac{2}{5} \left(\frac{1}{5^{k-1}} - \frac{1}{6^{k-1}} \right) n + O(1). \]

Let \(c \) be an odd integer such that
\[\frac{n}{10^{k-1}} < c < \frac{n}{7^{k-1}} \]
and \(c \) is not divisible by 3 or 5, that is,
\[c \equiv 1, 7, 11, 13, 17, 19, 23, \) or \(29 \pmod{30}. \]
We consider the following geometric progression of length \(k \) with ratio \(7/5: \)
\[(5^{k-1}c, 5^{k-2}7c, \ldots, 5^{k-1-i}7^ic, \ldots, 7^{k-1}c). \]
Every integer in this progression is odd, and
\[\frac{n}{2^{k-1}} < 5^{k-1}c < \cdots < 7^{k-1}c \leq n. \]
Let
\[Z(c) = \{5^{k-1}c, 5^{k-2}7c, \ldots, 5^{k-1-i}7^ic, \ldots, 7^{k-1}c\}. \]
It follows that \(X_\ell(a) \cap Z(c) = \emptyset \) for all \(\ell, a, \) and \(c. \) If \(c \) and \(c' \) satisfy (3) and (4) with \(c < c' \) and if \(Z(c) \cap Z(c') \neq \emptyset, \) then there exist integers \(i, j \in \{0, 1, 2, \ldots, k - 1\} \) such that
\[5^{k-1-i}7^ic = 5^{k-1-j}7^jc' \]
or, equivalently,
\[7^{i-j}c = 5^{i-j}c'. \]
The inequality \(c < c' \) implies that \(0 \leq j < i \leq k - 1 \) and so \(c \equiv 0 \pmod{5}, \) which contradicts (4). Therefore, the sets \(Z(c) \) are pairwise disjoint.

If \(b \) and \(c \) satisfy inequalities (1) and (3), respectively, then \(c < b. \) If \(Y(b) \cap Z(c) \neq \emptyset, \) then there exist integers \(i, j \in \{0, 1, \ldots, k - 1\} \) such that
\[5^{k-1-i}7^ic = 5^{k-1-j}3^jb \]
or, equivalently,
\[5^i7^ic = 5^j3^jb. \]
Because \(bc \neq 0 \pmod{5}, \) it follows that \(i = j \) and so
\[7^ic = 3^jb. \]
Because $c < b$, we must have $i \geq 1$ and so $c \equiv 0 \pmod{3}$, which contradicts congruence (4). Therefore, $Y(b) \cap Z(c) = \emptyset$ and the sets $X_\ell(a)$, $Y(b)$, and $Z(c)$ are pairwise disjoint. The number of integers c satisfying inequality (3) and congruence (4) is

$$\frac{4}{15} \left(\frac{1}{7^{k-1}} - \frac{1}{10^{k-1}} \right) n + O(1).$$

Because A contains no k-term geometric progression, at least one element from each of the sets $X_\ell(a)$, $Y(b)$, and $Z(c)$ is not in A. This completes the proof. □

Corollary 1. If A_k is a set of positive integers that contains no k-term geometric progression, then

$$d_U(A_k) \leq 1 - \frac{1}{2^k - 1} - \frac{2}{5} \left(\frac{1}{5^{k-1}} - \frac{1}{6^{k-1}} \right) - \frac{4}{15} \left(\frac{1}{7^{k-1}} - \frac{1}{10^{k-1}} \right).$$

Here is a table of upper bounds for $d_U(A)$ for various values of k:

k	3	4	5	6	7	10	17
$d_U(A_k)$	0.84948	0.93147	0.96733	0.98404	0.99211	0.99902	0.99999

3. Open problems

For every integer $k \geq 3$, let GP_{F_k} denote the set of sets of positive integers that contain no k-term geometric progression. It would interesting to determine precisely

$$\sup \left\{ d_U(A) : A \in GP_{F_k} \right\}$$

and

$$\sup \left\{ d(A) : A \text{ has asymptotic density and } A \in GP_{F_k} \right\}.$$

In the special case $k = 3$, Riddell [4, p. 145] claimed that if $A \in GP_{F_3}$, then $d_U(A) < 0.8339$, but wrote, "The details are too lengthy to be included here."

An infinite sequence $A = (a_i)_{i=1}^\infty$ of positive integers is *syndetic* if it is strictly increasing with bounded gaps. Equivalently, A is syndetic if there is a number c such that $1 \leq a_{i+1} - a_i \leq c$ for all positive integers i. Beiglböck, Bergelson, Hindman, and Strauss [1] asked if every syndetic sequence must contain arbitrarily long finite geometric progressions.

References

[1] M. Beiglböck, V. Bergelson, N. Hindman, and D. Strauss, *Multiplicative structures in additively large sets*, J. Combin. Theory Ser. A 113 (2006), no. 7, 1219–1242.

[2] B. E. Brown and D. M. Gordon, *On sequences without geometric progressions*, Math. Comp. 65 (1996), no. 216, 1749–1754.

[3] R. A. Rankin, *Sets of integers containing not more than a given number of terms in arithmetical progression*, Proc. Roy. Soc. Edinburgh Sect. A 65 (1960/1961), 332–344 (1960/61).

[4] J. Riddell, *Sets of integers containing no n terms in geometric progression*, Glasgow Math. J. 10 (1969), 137–146.

Department of Mathematics, Lehman College (CUNY), Bronx, NY 10468
E-mail address: melvyn.nathanson@lehman.cuny.edu

Department of Mathematics, College of Staten Island (CUNY), Staten Island, NY 10314
E-mail address: obryant@mail.csi.cuny.edu