Model-Independent Femtoscopic Lévy Imaging for Elastic Proton-Proton Scattering

T. Csörgőa,b,c,*, R. Pasechnikd,e,f,**, and A. Sterc,***

aCERN, Geneva 23, CH-1211 Switzerland
bEKE KRC, Gyöngyös, H-3200 Hungary
cWigner FK, Budapest, P.O. Box 49, H-1525 Hungary
dDepartment of Astronomy and Theoretical Physics, Lund University, Lund, SE-223 62 Sweden
eNuclear Physics Institute ASCR, Řež, 25068 Czech Republic
fDepartamento de Física, CFM, Universidade Federal de Santa Catarina, C.P. 476, Florianópolis, SC, CEP 88.040-900 Brazil

*e-mail: tcsorgo@cern.ch
**e-mail: Roman.Pasechnik@thep.lu.se
***e-mail: Ster.Andras@wigner.mta.hu

Received September 20, 2019; revised October 28, 2019; accepted November 10, 2019

Abstract—A model independent Lévy expansion method is introduced to describe nearly Lévy shaped squared moduli of Fourier transforms. We apply this method to precisely characterize the most recent elastic scattering data of proton-proton collisions at \(\sqrt{s} = 13 \text{ TeV} \). The results reveal a substructure of protons, which is found to be significantly larger and darker in high energy proton-proton collisions at the TeV scale, as compared to a rather faint and apparently overlooked substructure, that we also identify in elastic proton-proton scattering at the ISR energy range of \(\sqrt{s} = 23–62 \text{ GeV} \).

DOI: 10.1134/S1063779620030107

INTRODUCTION

Lévy stable distributions are ubiquitous in Nature. They correspond to the applicability of generalized central limit theorems, when the final distribution is a convolution of several apparently random elementary processes [1, 2]. In high energy particle physics, squared modulus of a Fourier-transformed source distribution may have an approximately Lévy (or, stretched exponential) shape for example in the analysis of the two-particle Bose–Einstein correlation functions [3], as well as in the case of the differential cross-section of elastic scattering at low four-momentum transfers [4].

Recently, the TOTEM collaboration presented the data on elastic proton-proton scattering [5] at the Large Hadron Collider (LHC) energy of \(\sqrt{s} = 13 \text{ TeV} \), the currently largest collision energy ever achieved in a laboratory experiment. The precision and the range of this data set provides a challenge for a statistically acceptable, quantitative description, which is a precondition for a reliable imaging process that aims to determine also the statistical significance of the analysis results.

Here we present a precise imaging of this TOTEM data set with the help of a novel and model-independent Lévy expansion method, that has its roots in precision analysis of Bose–Einstein correlation functions in high energy particle and heavy-ion physics [6–8]. The results reveal not only the structure (the impact parameter dependent shadow or inelastic profile function) of the protons on the femtometer scale, but for the first time the shadow profiles of a substructure inside the protons is also reconstructed and its energy evolution is investigated from the top TeV LHC collision energy of \(\sqrt{s} = 13 \text{ TeV} \) down to the lowest ISR energy of 23.5 GeV.

FORMALISM

The differential cross-section of elastic scattering is proportional to the modulus square of the elastic scattering amplitude. The TOTEM Collaboration established [5, 9], that this differential cross-section deviates significantly from a simple exponential shape, \(d\sigma/dt = A \exp(-B|t|) \) at low values of the four-momentum transfer \(t = (p_i - p_f)^2 \). We introduce the exponent \(\alpha \) to characterize this deviation by a single parameter, so we assume that to leading order, \(d\sigma/dt = A \exp[-(R^2|t|)^{\alpha}] \). This form is frequently called as the Fourier-transform of a symmetric Lévy-stable source distribution, sometimes also called as a stretched exponential distribution. We have recently shown that this approximation with fixed \(\alpha = 0.9 \)
gives a statistically acceptable description of proton-proton elastic scattering at low-t from $\sqrt{s} = 23.5$ GeV to 13 TeV [4].

At larger absolute values of the four-momentum transfer t, an interference or dip-bump structure is also apparent in these differential cross-sections, that indicates a rather significant deviation from the symmetric Lévy source distributions and from the approximate applicability of generalized central limit theorems.

To quantify the deviations from a symmetric Lévy source distribution, let us utilize an orthonormal series expansion, with complex coefficients c_{j}, where the Lévy polynomials are introduced with the help of a Gram–Schmidt orthonormalization as follows [4]:

$$
\frac{d\sigma}{dt} = Aw(\alpha) + \sum_{j=1}^{\infty} c_{j} l_{j}(z(\alpha))^{2},
$$

(1)

$$
w(z|\alpha) = e^{-z^\alpha}, \quad z = |R^2| \geq 0,
$$

where $c_{j} = a_{j} + ib_{j}$, $w(z|\alpha)$ stands for the Lévy stable weight function, R is the Lévy scale parameter and $l_{j}(z|\alpha)$ stands for the normalized Lévy polynomial of order j.

The αth moment of $w(z|\alpha)$, μ_{α}^n is written in terms of the Euler’s gamma function as

$$
\mu_{\alpha}^n = \int_{0}^{\infty} dz z^n e^{-z^\alpha} = \frac{\Gamma(n + 1)}{\alpha^n}, \quad \Gamma(x) = \int_{0}^{\infty} dz z^{x-1} e^{-z}.
$$

(2)

The non-trivial Gram-determinants $D_{j} \equiv D_{j}(\alpha)$ (with $D_{0}(\alpha) = 1$) are

$$
D_{1}(\alpha) = \mu_{0}^\alpha, \quad D_{2}(\alpha) = \det \begin{pmatrix} \mu_{0}^\alpha & \mu_{1}^\alpha \\ \mu_{1}^\alpha & \mu_{2}^\alpha \end{pmatrix},
$$

$$
D_{3}(\alpha) = \det \begin{pmatrix} \mu_{0}^\alpha & \mu_{1}^\alpha & \mu_{2}^\alpha \\ \mu_{1}^\alpha & \mu_{2}^\alpha & \mu_{3}^\alpha \\ \mu_{2}^\alpha & \mu_{3}^\alpha & \mu_{4}^\alpha \end{pmatrix}, \ldots \text{etc.}
$$

(3)

The normalized Lévy polynomials $l_{j}(z|\alpha)$ are introduced in terms of the Gram-determinants and the unnormalized Lévy polynomials [4] as follows:

$$
l_{j}(z|\alpha) = D_{j}^{1/2} D_{j-2}^{-1/2} L_{j}(z|\alpha), \quad \text{for } j \geq 0.
$$

(4)

In this equation the unnormalized Lévy polynomials are denoted as $L_{j}(z|\alpha)$ (with $L_{0}(z|\alpha) = 1$). These polynomials were introduced in [8] and are defined as follows:

$$
L_{1}(z|\alpha) = \det \begin{pmatrix} \mu_{0}^\alpha & \mu_{1}^\alpha \\ 1 & z \end{pmatrix},
$$

$$
L_{2}(z|\alpha) = \det \begin{pmatrix} \mu_{0}^\alpha & \mu_{1}^\alpha & \mu_{2}^\alpha \\ \mu_{1}^\alpha & \mu_{2}^\alpha & \mu_{3}^\alpha \\ 1 & z & z^2 \end{pmatrix}, \ldots \text{etc.}
$$

(5)

Observables

The elastic differential cross-section is related to the modulus squared Fourier transformed elastic amplitude $T_{el}(\Delta)$ as

$$
\frac{d\sigma}{dt} = \frac{1}{4\pi} |T_{el}(\Delta)|^2, \quad \Delta = \sqrt{t}.
$$

(6)

We may assume, that the elastic scattering amplitude is predominantly imaginary at high energies. In this case, the zeroth order normalization coefficient can be absorbed to the overall normalization coefficient A, and the following Lévy expansion is obtained for the complex-valued elastic scattering amplitude $T_{el}(\Delta)$:

$$
T_{el}(\Delta) = i\sqrt{4\pi A e^{\frac{\Delta^2}{2}} \left(1 + \sum_{k=1}^{\infty} c_{k} l_{k}(z(\alpha)) \right)}.
$$

(7)

The total and elastic cross-sections are given as

$$
\sigma_{\text{tot}} = 2\text{Im} T_{el}(0) = 2\sqrt{4\pi A \left(1 + \sum_{k=1}^{\infty} a_{k}(0) \vert \alpha \vert \right)},
$$

$$
\sigma_{el} = \int_{0}^{\infty} dt \frac{d\sigma}{dt} = \frac{A}{R^2} \Gamma\left(\frac{1}{\alpha} \right) + \sum_{k=1}^{\infty} (a_{k}^2 + b_{k}^2).
$$

(8)

Imaging

On the Femtometer Scale

The angular distribution of elastic scattering provides pictures of the elastically scattered particles in impact parameter or b space. For spin independent processes,

$$
t_{el}(b) = \frac{1}{2\pi} \int J_{0}(\Delta b) T_{el}(\Delta) \Delta d\Delta,
$$

(10)

is the impact parameter dependent elastic scattering amplitude, where $\Delta = \frac{\Delta_{b}}{R}$, $b = \frac{|b|}{R}$ and $J_{0}(x)$ is the zeroth-order Bessel function of the first kind. This $t_{el}(b)$ can also be represented in an eikonal form as

$$
t_{el}(b) = i \left(1 - e^{-Q(b)} \right), \quad P(b) = 1 - e^{-Q(b)^2},
$$

(11)

where $Q(b)$ is the so-called opacity function (known also as the eikonal), which is in general complex, and the proton image is given by the shadow (or inelasticity) profile function $P(b)$. This way, the rather fundamental results of multiple diffraction theory [10] when powered with the help of the newly found Lévy expansion of the elastic scattering amplitude, together make it possible now to perform a high precision optical imaging of elastic hadron-hadron scattering and obtain pictures of the (sub)structure(s) of the protons on the femtometer scale.

Results

The model-independent Lévy expansion method is shown to describe the recently presented TOTEM data [5] of elastic proton-proton scattering at $\sqrt{s} = 13$ TeV in Fig. 1 (left panel). These data span 10 orders
of magnitude on the vertical scale, indicate a nearly exponential cone region at low values of the four-momentum transfer t, that is followed by a dip and bump structure and a secondary tail. The Lévy expansion represents these data in an acceptable manner. As far as we know, the precision of this data set is unprecedented in the field of elastic proton-proton collisions, with parameters of Tables 1 and 2.

Each of the differential cross sections, summarized in Fig. 1 (right panel), lack secondary dip and bump structure. As far as we know, the significance of this observation was noted first in [11]. As we detailed in [4], the data at $-t$ larger than the dip and bump region are described in a statistically acceptable manner with a zeroth order Lévy fit, corresponding to $d\sigma/dt = A \exp(-(|t|/R)^\alpha)$, with $\alpha = 0.9$ fixed value. This value of α indicates a small but systematic deviation from the exponential shape. The results, summarized in Fig. 1 (right panel), reveal another striking and unexpected detail: at the ISR energy range of $23.5 \leq \sqrt{s} \leq 62.5$ GeV the fits with the zeroth order Lévy expansion yield nearly parallel lines, indicating that neither the Lévy exponent α nor the Lévy scale R of this tail region evolve significantly with changing the collision energy in this lower energy range.

A corresponding substructure is reconstructed inside the proton with the help of Eq. (11), as indicated in the left panel of Fig. 2. At ISR energies, this substructure is very faint, with maximum value of $P(b = 0)$ of about 0.05. Apparently, there are no statis-
nificantly significant differences among the faint shadows of these proton substructures in this ISR energy region of $\sqrt{s} = 23.5$ to 62.5 GeV. A significantly different, larger and darker substructure is however found in elastic proton-proton collisions at 7 TeV. Increasing the center of mass energy from 7 to 13 TeV, the same kind of larger and darker substructure is observed again, with a size that does not grow significantly from 7 to 13 TeV, but has a significantly darker shadow, as shown in the left panel of Fig. 2. The zeroth order Lévy fit parameters that characterize the secondary cone region and the corresponding substructures at various collision energies are summarized in Tables 1 and 2. The calculated contributions of these substructures to the total and to the elastic cross-section, σ_{sub}^{tot} and σ_{el}^{sub} are also shown, as obtained from Eqs. (8) and (9) with $(a, b) = (0, 0)$.

The right panel of Fig. 2 indicates the shadow profiles of the protons at $\sqrt{s} = 13, 7$ TeV and 62 GeV, and compares them with the shadow profiles of the substructures of the protons at the same energies. The shadow profiles of these substructures are significantly smaller and fainter than the shadow of the protons at each considered energy. With increasing collision energy, the size and the darkness of the proton increase. In the LHC energy range, a nearly constant maximally dark region develops in the central region of the proton shadow, that grows with increasing energy. This structure is qualitatively different from the nearly Gaussian proton structure apparent in the collisions at lower energies. Surprisingly, a substructure is also resolved in the ISR energy range: it is found to be rather faint and its size is a constant within the errors of resolution. At LHC energies, the imaged substructure is significantly larger and darker as compared to that at ISR energies.

SUMMARY

To summarise, we have imaged the overall space-time structure of elastic proton-proton collisions at the largest currently available collision energy of $\sqrt{s} = 13$ TeV and CERN LHC, using the recent TOTEM data [5]. Uniting Glauber’s multiple diffraction theory with the new orthonormal Lévy series expansion of the elastic scattering amplitude, we have achieved an unprecedented precision in describing the differential cross section of elastic proton-proton scattering, over 10 orders of magnitude. Surprisingly, we have identified and quantified a substructure of the protons, that contributes to the total cross-section with about 0.3 mb in the energy range of $\sqrt{s} = 13$ TeV and about 5.2 and 8.9 mb at $\sqrt{s} = 7$ and 13 TeV LHC energies.

The imaging method presented here can only report on the observation of these substructures but, being model independent, it cannot be overused to determine the detailed physical meaning of the observed signatures. Nevertheless, let us mention that these are strikingly similar in magnitude to the size of the dressed quarks and diquarks that have been determined from a model dependent analysis of proton-proton elastic scattering at the ISR and LHC energies [12–16]. The similarity of the model independent Lévy imaging results to the results of this Bialas–Bzdak quark-diquark picture of elastic proton-proton scattering may also provide a quantitative support to the quark-diquark picture of baryons, that were recently obtained by Brodsky and collaborators using AdS/QCD strong coupling calculations [17].

Table 1. Substructure parameters from Lévy fits, $d\sigma/dt = A \exp\left(-\frac{\| R \|^2}{\alpha}\right)$ at various ISR collision energies, for $\alpha = 0.9$

\sqrt{s}, GeV	23.5	30.7	44.7	52.8	62.5
A, mb GeV2	0.003 ± 0.001	0.006 ± 0.001	0.004 ± 0.001	0.005 ± 0.001	0.004 ± 0.001
R, fm	0.30 ± 0.01	0.32 ± 0.01	0.31 ± 0.01	0.32 ± 0.01	0.31 ± 0.01
χ^2/NDF	22.7/21	16.3/21	19/21	13.9/21	12.2/21
CL, %	36	75	59	87	94
σ_{sub}^{tot}, mb	0.24 ± 0.03	0.35 ± 0.03	0.28 ± 0.02	0.32 ± 0.01	0.30 ± 0.03
σ_{el}^{sub}, mb	1.3 ± 0.3	2.4 ± 0.4	1.7 ± 0.2	2.1 ± 0.2	1.9 ± 0.3

Table 2. Substructure parameters from Lévy fits, $d\sigma/dt = A \exp\left(-\frac{\| R \|^2}{\alpha}\right)$ at LHC collision energies, for $\alpha = 0.9$

\sqrt{s}, TeV	7	13
A, mb GeV2	1.4 ± 0.4	4.0 ± 0.3
R, fm	0.49 ± 0.01	0.51 ± 0.01
χ^2/NDF	4.9/10	16.9/8
CL, %	90	3
σ_{sub}^{tot}, mb	5.2 ± 0.7	8.9 ± 0.30
σ_{el}^{sub}, mb	0.24 ± 0.06	0.63 ± 0.04
with this QCD based interpretation, they are open for other possible quantitative models and descriptions to explain the origin of the observed signatures.

ACKNOWLEDGMENTS

T. Cs. thanks to R.J. Glauber for inspiring discussions and for proposing a series expansion to describe elastic scattering. We acknowledge inspiring discussions with S. Giani, W. Guryn, G. Gustafson, L. Lönnblad, K. Österberg and M. Šumbera and thank the TOTEM Collaboration for making their preliminary data set available for us.

FUNDING

R. P. is partially supported by the Swedish Research Council grants nos. 621-2013-4287 and 2016-05996, by an ERC H2020 grant no. 668679, as well as by the Ministry of Education, Youth and Sports of the Czech Republic project LT17018. T. Cs. and A. S. were partially supported by the NKIFH grants nos. FK-123842 and FK-123959, and by the EFOP 3.6.1-16-2016-00001 grant (Hungary) and the NKM-92/2017 projects of the Hungarian and the Ukrainian Academy of Sciences. Our collaboration was supported by THOR, the EU COST Action CA15213.

REFERENCES

1. V. Uchaikin and V. Zolotarev, Chance and Stability, Stable Distributions and Their Applications (VSP Science, 1999).
2. C. Tsallis, S. V. F. Levy, A. M. C. Souza, and R. Maynard, “Statistical-mechanical foundation of the ubiquity of Levy distributions in nature,” Phys. Rev. Lett. 75, 3589–3593 (1995).
3. T. Csörögő, S. Hegyi, and W. A. Zajc, “Bose–Einstein correlations for Levy stable source distributions,” Eur. Phys. J. C 36, 67–78 (2004); arXiv:nucl-th/0310042.
4. T. Csörögő, R. Pasechnik, and A. Ster, “Odderon and proton substructure from a model-independent Lévy imaging of elastic pp and p¯¯p collisions,” Eur. Phys. J. C 79, 62 (2019); arXiv:1807.02897.
5. G. Antchev et al. [TOTEM Collab.], Elastic differential cross-section measurement at $\sqrt{s} = 13$ TeV by TOTEM (2018); arXiv:1812.08283.
6. T. Csörögő and S. Hegyi, “Model independent shape analysis of correlations in one-dimension, two-dimen-
sions or three-dimensions,” Phys. Lett. B 489, 15–23 (2000); arXiv:hep-ph/9912220.
7. M. B. De Kock, H. C. Eggers, and T. Csörögő, “From chi-squared to Bayesian model comparison and Levy expansions of Bose-Einstein correlations in e^+e^- reactions,” PoSW PCF2011, 033 (2011); arXiv:1206.1680 [nucl-th].
8. T. Novák, T. Csörögő, H. C. Eggers, and M. de Kock, “Model independent analysis of nearly Lévy correlations,” Acta Phys. Polon. Supp. 9, 289 (2016); arXiv:1604.05513.
9. G. Antchev et al. [TOTEM Collab.], “Evidence for non-exponential elastic proton-proton differential cross-section at low $|t|$ and $\sqrt{s} = 8$ TeV by TOTEM,” Nucl. Phys. B 899, 527–546 (2015); arXiv:1503.08111.
10. R. J. Glauber and J. Velasco, “Multiple diffraction Theory of $p\bar{p}$ scattering at 546 GeV,” Phys. Lett. B 147, 380–384 (1984).
11. I. M. Dremin, “Several effects unexplained by QCD,” Universe 4 (5), 65 (2018).
12. A. Bialas and A. Bzdak, “Constituent quark and di-
quark properties from small angle proton-proton elastic scattering at high energies,” Acta Phys. Pol. B 38, 159–
168 (2007); arXiv:hep-ph/0612038.
13. F. Nemes and T. Csörögő, “Detailed analysis of $p + p$ elastic scattering data in the quark-diquark model of Bialas and Bzdak from $\sqrt{s} = 23.5$ GeV to 7 TeV,” Int. J. Mod. Phys. A 27, 1250175 (2012); arXiv:1204.5617 [hep-ph].
14. T. Csörögő, R. J. Glauber, and F. Nemes, “Elastic proton-proton scattering from ISR to LHC energies, fo-
cusing on the dip region,” in Proc. Int. Workshop on Low X Physics (Israel, 2013) (Eilat, May 30-June 4, 2013); arXiv:1311.2308 [hep-ph].
15. T. Csörögő and F. Nemes, “Elastic scattering of protons from $\sqrt{s} = 23.5$ GeV to 7 TeV from a generalized Bialas-
Bzdak model,” Int. J. Mod. Phys. A 29, 1450019 (2014); arXiv:1306.4217 [hep-ph].
16. F. Nemes, T. Csörögő, and M. Csanád, “Excitation function of elastic pp scattering from a unitarily extend-
ed Bialas–Bzdak model,” Int. J. Mod. Phys. A 30, 1550076 (2015); arXiv:1505.01415.
17. S. J. Brodsky, “Color confinement, hadron dynamics, and hadron spectroscopy from light-front holography and superconformal algebra,” Adv. High Energy Phys. 2018, 7236382 (2018); arXiv:1709.01191.