Living Organ Donor Perspectives and Sources of Hesitancy about COVID-19 Vaccines

Meera N. Harhay,1,2,3 Ann C. Klassen,4 Hasan Zaidi,1 Michael Mittelman,5 Rebecca Bertha,5 Roslyn B. Mannon,6 and Krista L. Lentine7

Abstract

Background: Living organ donation declined substantially in the United States during the COVID-19 pandemic due to concerns about donor and transplant candidate safety. COVID-19 vaccines might increase confidence in the safety of living organ donation during the pandemic. We assessed informational preferences and perspectives about COVID-19 vaccines among US living organ donors and prospective donors.

Methods: We conducted a national survey study of organ donors and prospective donors on social media platforms between December 28, 2020 and February 23, 2021. Survey items included multiple choice, visual analogue scale, and open-ended responses. Using multivariable logistic regression, we examined associations between information preferences, history of COVID-19 infection, influenza vaccination history, and COVID-19 vaccine acceptance, and performed a thematic analysis of open-ended responses.

Results: Among 342 respondents from 47 US states and the District of Columbia, 35% were between 51 and 70 years old, 90% were non-Hispanic White, 87% were women, 82% were living donors (94% kidney), and 18% were in evaluation to donate (75% kidney). The majority planned to, or had, received a COVID-19 vaccination (77%), whereas 11% did not plan to receive a vaccine, and 12% were unsure. Adjusting for demographics and donor characteristics, respondents who receive yearly influenza vaccinations had higher COVID-19 vaccine acceptance than those who do not (adjusted odds ratio [aOR], 5.06; 95% CI, 2.68 to 9.53). Compared with respondents who prioritized medical information sources (e.g., personal physicians and transplant providers), those who prioritized news and social media had lower COVID-19 vaccine acceptance (aOR, 0.34; 95% CI, 0.15 to 0.73). Low perceived personal benefit from vaccination and uncertainty about long-term safety were common themes among those declining COVID-19 vaccines.

Conclusions: Donor information-source preferences were strongly associated with the likelihood of accepting a COVID-19 vaccine. Vaccine guidance for organ donors who are unsure about COVID-19 vaccines could incorporate messaging about safety and benefits of vaccination for healthy people.

KIDNEY360 2: 1132–1140, 2021. doi: https://doi.org/10.34067/KID.0002112021

Introduction

Living organ donors provide an essential service in the face of the severe shortage of organs available for transplantation (1). Essentially, donors are healthy adults who choose to undergo elective surgery, for no personal medical benefits, to provide another person

Key Points

- Compared with other sources of information, donors who prefer medical and public health information sources are more likely to accept a vaccine for coronavirus disease 2019 (COVID-19).
- Donors who rely on medical and public health information are likely to accept a COVID-19 vaccine, regardless of their flu vaccine history.
- Donors not accepting of a COVID-19 vaccine are likely to question the long-term safety and benefits of vaccination for healthy people.

Background: Living organ donation declined substantially in the United States during the COVID-19 pandemic due to concerns about donor and transplant candidate safety. COVID-19 vaccines might increase confidence in the safety of living organ donation during the pandemic. We assessed informational preferences and perspectives about COVID-19 vaccines among US living organ donors and prospective donors.

Methods: We conducted a national survey study of organ donors and prospective donors on social media platforms between December 28, 2020 and February 23, 2021. Survey items included multiple choice, visual analogue scale, and open-ended responses. Using multivariable logistic regression, we examined associations between information preferences, history of COVID-19 infection, influenza vaccination history, and COVID-19 vaccine acceptance, and performed a thematic analysis of open-ended responses.

Results: Among 342 respondents from 47 US states and the District of Columbia, 35% were between 51 and 70 years old, 90% were non-Hispanic White, 87% were women, 82% were living donors (94% kidney), and 18% were in evaluation to donate (75% kidney). The majority planned to, or had, received a COVID-19 vaccination (77%), whereas 11% did not plan to receive a vaccine, and 12% were unsure. Adjusting for demographics and donor characteristics, respondents who receive yearly influenza vaccinations had higher COVID-19 vaccine acceptance than those who do not (adjusted odds ratio [aOR], 5.06; 95% CI, 2.68 to 9.53). Compared with respondents who prioritized medical information sources (e.g., personal physicians and transplant providers), those who prioritized news and social media had lower COVID-19 vaccine acceptance (aOR, 0.34; 95% CI, 0.15 to 0.73). Low perceived personal benefit from vaccination and uncertainty about long-term safety were common themes among those declining COVID-19 vaccines.

Conclusions: Donor information-source preferences were strongly associated with the likelihood of accepting a COVID-19 vaccine. Vaccine guidance for organ donors who are unsure about COVID-19 vaccines could incorporate messaging about safety and benefits of vaccination for healthy people.

KIDNEY360 2: 1132–1140, 2021. doi: https://doi.org/10.34067/KID.0002112021

Introduction

Living organ donors provide an essential service in the face of the severe shortage of organs available for transplantation (1). Essentially, donors are healthy adults who choose to undergo elective surgery, for no personal medical benefits, to provide another person
with a life-saving organ transplant (2). In recent years, living donors have accounted for a substantial number of all kidney and liver transplants performed in the United States (38% of all US kidney transplants and 5% of all US liver transplants in 2019) (3). However, at the onset of the coronavirus disease 2019 (COVID-19) pandemic, the majority of US transplant programs ceased performing living donor surgeries, and studies have cited both patient and provider concerns about the risks of COVID-19 transmission before and after living donation (4–6). Although many programs resumed living donor surgeries as the pandemic progressed, there were 22% fewer living kidney and liver donations in 2020 compared with 2019 (3).

The United States issued the first emergency-use authorization for a vaccine to prevent COVID-19 on December 11, 2020, ushering in a new phase of the pandemic response that is focused on vaccine production, distribution, and uptake. The availability of COVID-19 vaccines is also likely to alter care paradigms in solid organ transplantation. Experts have advocated for candidates and recipients of solid organ transplants to be among those who are prioritized to receive COVID-19 vaccines, given the higher risks associated with an immunosuppressed status (7–9). In contrast, living organ donors, who are selected for donation because of their lack of high-risk health conditions (10), are not likely to be prioritized under the current vaccine distribution recommendations (11). However, there are several potential benefits to promoting COVID-19 vaccination for living organ donors, both before and after donation. First, COVID-19 vaccines might mitigate prospective donor concerns about the risks of donation (5), a key driver of the decline in donor evaluation volume during the pandemic (4). Vaccinating donors could reduce the likelihood of COVID-19 infections before and after surgery (12,13), and could potentially prevent the transmission of COVID-19 from donors to transplant recipients who might be close contacts or live in shared households with their donors. However, evidence suggests that uncertainty about the COVID-19 vaccines is common in the United States (14), underscoring the need for providers to better understand vaccine-related informational needs and sources of COVID-19 vaccine hesitancy in key populations when determining vaccination protocols and patient education strategies.

The goal of this national study was to assess the perspectives of living organ donors (kidney and liver donors), and those in the evaluation process to donate, on the acceptability of COVID-19 vaccines and the most important components of their vaccine-related decision making. We also examined donor attitudes about potential transplant program requirements to be vaccinated. Finally, we explored whether donors’ preferred information sources about COVID-19 vaccines, personal history of COVID-19 infection, and acceptance of yearly influenza vaccines were associated with their decision making about accepting a COVID-19 vaccine.

Materials and Methods

Study Design

We conducted a national, online survey of living organ donors and those who are preparing for donation during the COVID-19 pandemic. The survey was designed by clinicians involved in living donor care with the feedback of a survey design expert, living organ donor, and kidney transplant recipient. Content was selected to capture the key features of vaccine hesitancy (i.e., “the 3 Cs”: high complacency, low confidence, and low convenience) (15). We used a concurrent mixed-methods approach to interpret both structured and open-ended data (16). The protocol was approved by the Drexel University Institutional Review Board (number 2004007760). The requirement for written informed consent was waived due to the anonymous survey design. The clinical and research activities being reported are consistent with the Declaration of Helsinki and the Principles of the Declaration of Istanbul as outlined in the Declaration of Istanbul on Organ Trafficking and Transplant Tourism.

Study Population

The survey link and introduction were displayed on multiple social media platforms (e.g., Facebook, Twitter) of transplant and donor advocates and organizations. Respondents were included in the analysis if they confirmed they were a living donor, or in workup to donate, and indicated a US state of residence.

Survey Conduct

The survey was available from December 28, 2020 to February 23, 2021. The online survey was hosted by REDCap at Drexel University. Respondents did not receive compensation for their participation.

Survey Domains and Format

The 21-item survey included questions on plans to accept or decline COVID-19 vaccination, sources of information about COVID-19 vaccines, priorities for decision making about COVID-19 vaccines, and attitudes about potential transplant program requirements for COVID-19 vaccination. Question formats included multiple choice and 100-point visual analogue scales (17), with zero indicating strong disagreement and 100 indicating strong agreement to statements about COVID-19 vaccines. Respondents were asked to answer a question about whether they plan to receive a COVID-19 vaccine (with the choices “yes,” “no,” “unsure,” and “already received it”). Respondents were also asked to respond to open-ended questions about their decision-making process for accepting or declining a COVID-19 vaccine.

Statistical Analyses

We first tested associations between uptake of COVID-19 vaccines and other response items using chi-squared tests or Kruskal–Wallis tests, as appropriate. Next, we fit a logistic regression model for the outcome of donor acceptance of COVID-19 vaccines (i.e., answered “yes” or “already received it” to the question of whether they plan to receive the vaccine), adjusted for respondent demographics (age category, sex, race/ethnicity, educational attainment), donor organ type (kidney or liver), prior or prospective donor status, and relationship to the transplant recipient (family member or not); this represented model A. Then, in the fully adjusted model (model B), we adjusted for all
covariates in model A and respondent preferred information source about COVID-19 vaccines (categorized as medical sources [personal physicians, transplant programs, medical journals], public health officials, nonmedical sources [news media, websites, social media, discussions with friends and family, political leaders], and other [knowledge of personal risk factors, information source not specified]), personal history of COVID-19 infection (yes/no), and history of yearly influenza vaccination (yes/no).

We a priori tested for interactions of COVID-19 vaccine uptake with preferred vaccine information source and history of yearly flu vaccination. We evaluated interaction terms in a separate model that was adjusted for all other covariates. We considered interaction terms to be significant at a prespecified P value threshold of ≤ 0.10 using Wald tests. To aid in the interpretation of findings, we used marginal standardization (using the “margins” package in Stata; StataCorp, College Station, TX [18]) to estimate predicted vaccine uptake probabilities by information source and influenza vaccine acceptance categories, adjusted for the cohort averages of other covariates. All covariates had $<2\%$ missing data; data were analyzed as complete case analyses.

Three authors reviewed the open-ended comments and sorted content by respondent characteristics to identify global themes and contrasting patterns. We purposively selected exemplar quotes to provide more in-depth insight to our quantitative findings and respondent perspectives.

Table 1. Study respondent characteristics

Characteristic	Overall (N=342)	Will Not Receive Vaccine/Unsure (N=80)	Have Received or Will Accept Vaccine (N=262)
Age			
18–30 years	28 (8)	8 (10)	20 (8)
31–50 years	184 (54)	49 (61)	135 (52)
51–70 years	121 (35)	23 (29)	98 (37)
≥ 71 years	5 (2)	0 (0)	5 (2)
Missing	4 (1)	0 (0)	4 (2)
Race/ethnicity			
Non-Hispanic White	308 (90)	70 (88)	238 (91)
Non-Hispanic Black	4 (1)	2 (3)	2 (0.8)
Non-Hispanic Asian	3 (0.9)	0 (0)	3 (1)
Hispanic	19 (6)	6 (8)	13 (5)
Other race/ethnicity	6 (2)	2 (3)	4 (2)
Missing	2 (0.6)	0 (0)	2 (0.8)
Female sex	298 (87)	71 (89)	227 (87)
Educational attainment			
Completed high school or GED	20 (6)	4 (5)	16 (6)
Attended or graduated from college	191 (56)	54 (68)	137 (52)
Beyond college	130 (38)	22 (28)	108 (41)
Missing	1 (0.3)	0 (0)	1 (0.4)
Donor organ type			
Donated/will donate a liver lobe	33 (10)	10 (13)	23 (9)
Donated/will donate a kidney	309 (90)	70 (88)	239 (91)
Donation status			
Living organ donor	281 (82)	62 (78)	219 (84)
In donor evaluation process	61 (18)	18 (23)	43 (16)
Timing of living donation (among donors)			
Within the past year	84 (25)	26 (33)	58 (22)
>1 year and ≤ 5 years ago	122 (36)	26 (33)	96 (37)
>5 years ago	75 (22)	10 (13)	65 (25)
Recipient/intended recipient relationship			
Nonfamily member	202 (59)	48 (60)	154 (59)
Family member	140 (41)	32 (40)	108 (41)
Personal history of COVID-19 infection	33 (10)	9 (11)	24 (9)
Knows someone with history of COVID-19	320 (94)	73 (91)	247 (94)
Preferred vaccine information source			
Medical (physicians, transplant programs, medical journals)	112 (33)	19 (24)	93 (36)
Nonmedical (news, social media, other nonmedical)	73 (21)	25 (31)	48 (18)
Public health officials	91 (27)	3 (4)	88 (34)
Other/personal knowledge of risks	66 (19)	33 (41)	33 (13)
Receives yearly influenza vaccine	252 (74)	37 (46)	215 (82)

GED, General Educational Development; COVID-19, coronavirus disease 2019.
Table 2. Illustrative quotes from prior and prospective living organ donors, contrasting different perspectives and concerns during the COVID-19 pandemic

Themes	Perspectives from Donors Planning to Receive the COVID-19 Vaccine	Perspectives from Donors Not Planning to Receive or Are Unsure about COVID-19 Vaccines
Confidence	“I trust the science in which it was built.”	“Just worried about any extra auto immune responses from the vaccine.”
	“I was worried about safety at first with it being so new. But I have medical people and a microbiologist in my family who said the data seems good. So far 4 of my family members have received the vaccine.”	“How will it affect my remaining kidney long term?”
	“Politicization of the federal government gives me pause about how well the vaccines have been vetted.”	“Do not trust, less than a year to create vaccine and all others take years. No thank you.”
	“Concern and worries over the vaccine have kept me awake at night, but the risks of the virus hurting my one kidney catapulted me into getting the vaccine as soon as I could.”	“I only have 1 kidney left. I can’t play around with my health, especially drug and vaccine safety. One wrong step could land me into kidney failure. A new vaccine needs to be proven safe for people in my situation.”
Convenience	“Frustrating how long it is taking to get the vaccine out to those who want it!”	“Not taking or having my children take a vaccine that they whipped up in less than a year!”
	“I want to guarantee that the second dose is available to me when I’m supposed to get it before I take the first dose.”	“I will safely social distance and wear a mask. I will not take unnecessary risks or allow people that do in my bubble. However I would prefer to get the vaccine last. I don’t want to damage my lone kidney in any way and I have reacted poorly to many drugs.”
	“Feds should distribute masks and vaccines in mass quantities no matter the cost.”	“The disease survival rate higher than [vaccine] efficiency rate.”
	“Information about Covid vaccine availability is a complete mess. There’s nowhere I can obtain information/schedule vaccinations for people I know who have underlying health conditions. Even the major hospital where I donated doesn’t know when vaccines will be available for the general public.”	“I am uninsured. Cost and availability are the issue.”
Complacency	“The virus is more terrifying than the vaccine was what convinced me.”	“I am a healthy 45 year old who donated [recently]... I don’t get flu shots either. My husband and I choose not to.”
	“My husband is my recipient, so I’m primarily doing it for him, but also for me”.	“I had Covid and I was fine. I had the flu in the past and I was fine. I rarely get sick so I don’t feel the need for the vaccine right now. My mind could change later.”
	“I am afraid of COVID. I know how deadly it is.”	“I am for freedom of choice when it comes to vaccinations.”
	“As a donor, I don’t want to risk injuring my remaining kidney if I get COVID”	“I don’t take the flu vaccine and would rather know more about long term impact of the new vaccine if I can.”
	“I see my sister and recipient frequently and want to protect her.”	“I have had COVID and I believe my body can give me better immunity and or anti-bodies than a quickly manufactured vaccine.”
	“I have had COVID and I don’t want it again.”	“I’ve already had COVID, I also have food allergies, including eggs, so I’m nervous to get the vaccine.”
	“As many of my decisions in life, I think about how I can be an example for others that contributes to the overall community.”	“We need better education of real statistics with layman’s explanations of current data. For example what were all the pre-existing health/lifestyle history of all COVID patients?”
	“I am scheduled to donate my kidney in three weeks but I am considering putting the donation on hold until I receive the vaccine. The hospital and program I am going through said that I do not need it before the surgery because donating a kidney does not put you at an increased level of catching COVID. I’m not sure I believe this since, the operation is voluntary and I will be exposing myself further by spending that time in the hospital and traveling across the country.”	“I will not be taking the vaccine and will rely on
Results
After 8 weeks, 372 individuals had responded to the survey. Respondents were excluded if they did not indicate whether they were past or prospective donors (n=13), lived outside the United States (n=13), or did not indicate what organ they donated/planned to donate (n=4), yielding a final sample of 342 surveys for the analyses. When asked about their intention to receive a COVID-19 vaccine, 62% of respondents reported that they planned to receive the vaccine, and 15% had already received it, as compared with those who were not accepting the vaccine or were unsure, the themes included (1) concerns about vaccine safety, particularly among people with a solitary kidney, and about long-term health effects from vaccination; (2) the perspective that COVID-19 was not a serious threat; and (3) that previous infection with COVID-19 was more protective than COVID-19 vaccines. Compared with those accepting COVID-19 vaccines, those who were not accepting the vaccine or were unsure were less likely to agree with statements that COVID-19 vaccines are safe, effective, or should be required for transplant candidates and donors (Figure 1). Those not planning to be vaccinated, and those who were unsure, were more likely to strongly agree that their vaccination decision was made on the basis of side effects and long-term effects of vaccines. Agreement about the importance of convenience in decision making about COVID-19 vaccines was similar between those who did and did not plan on accepting a COVID-19 vaccine.

Associations between Sources of Information, Personal Experience with COVID-19, and Influenza Vaccination History and COVID-19 Acceptance
There were no statistically significant associations between COVID-19 acceptance and respondent demographics, donor status, and organ type (model A, Table 3). In the fully adjusted model (model B, Table 3), those with a history of receiving yearly influenza vaccinations had higher odds of COVID-19 vaccine acceptance than those who do not receive yearly influenza vaccinations (adjusted odds ratio [aOR], 5.06; 95% CI, 2.68 to 9.53). Furthermore, compared with respondents who preferred medical information sources (physicians, transplant programs, or medical journals) about COVID-19 vaccines, those who relied on public health officials for information had higher odds of

Table 2. (Continued)
Themes
“Unfortunately, our family got COVID last month. Although I had a mild case, my neurological symptoms have been concerning and ongoing, I never want to have to go through that again and I would never want to transmit covid to someone else.”

COVID-19, coronavirus disease 2019.

about decision making. Analyses were performed using Matlab R2020a (Mathworks) and Stata SE version 14 (Stata-Corp LP, College Station, TX).

COVID-19 Vaccines: Confidence, Complacency, and Convenience
In free-text responses, among donors accepting the vaccine, we identified the following themes: (1) risks of COVID-19 infection outweigh concerns about long-term safety of the COVID-19 vaccines, (2) a desire to protect organ recipients and other high-risk contacts from COVID-19 with vaccination, and (3) motivation for kidney donors to avoid COVID-19 infection due to concerns about the potential effects on their remaining kidney (Table 2). Among those who were not planning to be vaccinated, or were unsure about vaccination, the themes included (1) concerns about vaccine safety, particularly among people with a solitary kidney, and about long-term health effects from vaccination; (2) the perspective that COVID-19 was not a serious threat; and (3) that previous infection with COVID-19 was more protective than COVID-19 vaccines.
COVID-19 vaccine acceptance (aOR, 5.72; 95% CI, 1.56 to 21.01), whereas those who preferred nonmedical sources, including news and social media, had lower COVID-19 vaccine acceptance (aOR, 0.34; 95% CI, 0.15 to 0.73). Having a personal history of COVID-19 infection and having a family member as a transplant recipient or intended recipient were not independently associated with the likelihood of COVID-19 vaccine acceptance. Influenza vaccination history did not modify the associations between information sources and COVID-19 vaccine acceptance (P=0.63). Respondents who did and did not receive yearly influenza vaccines were most likely to accept COVID-19 vaccines if they reported prioritizing public health officials for information about the vaccines (Table 4).

Discussion

In this national survey study of living organ donors and those in the evaluation process to become organ donors, the majority of respondents reported that they are planning to accept COVID-19 vaccination. Compared with those accepting a COVID-19 vaccine, those who did not plan to be immunized or were unsure had similar demographics and were not more likely to be donors to family members or have a personal history of COVID-19 infection. However, those who were unsure, or not planning to receive the vaccine, were less likely than other respondents to rely on public health officials for vaccine information and receive yearly influenza vaccines. Those not planning to be vaccinated emphasized concerns about the lack of long-term safety data on COVID-19 vaccines, expressed uncertainties on the risks of vaccines for people with solitary kidneys, and questioned the need to receive a vaccine if their personal risk of severe COVID-19 was low. Several respondents not planning to be vaccinated reported having previously experienced mild infections with COVID-19 and expressed confidence in their healthy status. These findings can help providers to frame discussions with donors and prospective donors about COVID-19 vaccines and the potential benefits of vaccination among those with previous COVID-19 infection and few or no comorbidities. The results of our study underscore the need to evaluate sources of vaccine hesitancy and confidence among people with few or no known risk factors for severe COVID-19. Vaccine hesitancy is commonly conceptualized as “a delay in acceptance or refusal of vaccination,” driven by the “3 Cs” (i.e., high complacency, low confidence, and low convenience) (15). In the United States, vaccine hesitancy and other healthcare barriers likely explain why, despite the considerable healthcare costs, morbidity, and mortality.
attributable to influenza (19), <50% of the adult US population receives yearly influenza vaccinations (20). Using qualitative and quantitative methods, researchers from the Kaiser Family Foundation estimate that 13% of US adults refuse to receive a COVID-19 vaccine (14). Interestingly, a similar proportion of respondents in our study report that they do not plan to receive a COVID-19 vaccine, although acceptance of yearly influenza vaccines was higher in our

Table 3. Adjusted associations between donor characteristics and planned COVID-19 vaccine uptake

Covariates	Model A (n=337)	Model B (n=337)
Age		
≤50 years	Reference	Reference
>50 years	1.63 (0.91 to 2.89)	1.53 (0.77 to 3.02)
Race/ethnicity		
Other	Reference	Reference
Non-Hispanic White	1.19 (0.51 to 2.77)	0.75 (0.28 to 2.02)
Sex		
Male	Reference	Reference
Female	0.76 (0.33 to 1.76)	0.47 (0.18 to 1.21)
Educational attainment		
Completed HS/GED	Reference	Reference
Some college or graduated	0.74 (0.23 to 2.40)	0.82 (0.22 to 3.02)
More than college	1.58 (0.46 to 5.44)	1.29 (0.33 to 5.06)
Prior/prospective donor status		
Living organ donor	Reference	Reference
Prospective donor	0.67 (0.34 to 1.32)	0.62 (0.28 to 1.41)
Organ for donation		
Kidney	Reference	Reference
Liver	1.37 (0.57 to 3.28)	1.19 (0.42 to 3.39)
Relation to recipient		
Nonfamily member	Reference	Reference
Family member	1.14 (0.65 to 1.99)	1.28 (0.66 to 2.49)
Personal history of COVID-19		
No	Reference	Reference
Yes	0.79 (0.65 to 1.99)	0.67 (0.24 to 1.91)
Receives yearly influenza vaccine	Reference	Reference
No	Reference	
Yes		5.06 (2.68 to 9.53)
Preferred sources of information	Reference	Reference
Medical sourcesb	Reference	Reference
Nonmedical sourcesc	0.34 (0.15 to 0.73)	5.72 (1.56 to 21.01)
Public health officials		
Personal beliefs/other	0.19 (0.09 to 0.42)	

COVID-19, coronavirus disease 2019; aOR, adjusted odds ratio; HS, high school; GED, General Educational Development.

*P<0.001.

*bIncludes personal physicians, transplant program guidance, and medical journals.

*cIncludes news media, social media, and conversations with family and friends.

*P<0.01.

Table 4. Adjusted predicted probabilities of COVID-19 vaccine uptake by yearly influenza vaccination history and information source

Sources of Information	Does Not Receive Yearly Influenza Vaccine	Receives Yearly Influenza Vaccine
Medical sources	57 (38 to 76)	91 (86 to 97)
Nonmedical sources	44 (23 to 65)	72 (59 to 85)
Public health officials	94 (83 to 100)	97 (93 to 100)
Other/own knowledge	27 (8 to 46)	63 (48 to 78)

Estimates derived from logistic regression model and marginal standardization, adjusted for the cohort averages of other covariates. COVID-19, coronavirus disease 2019.
cohort than in the overall US population. These differences point to distinct sources of hesitancy about COVID-19 vaccines among living organ donors that should be further explored. Aspects related to convenience of obtaining the COVID-19 vaccination were likely less salient for our respondents, because the question was framed around their plans “when it [the vaccine] becomes available.” At this time, before widespread distribution, factors related to the convenience of the vaccine were not rated to be as important for decision making as concerns from living donors and prospective donors about the lack of long-term data about COVID-19 vaccines. Strategies to specifically address these concerns could increase confidence in the vaccines and vaccine uptake among healthy individuals, such as living organ donors, a necessary step to achieving population-level immunity and limiting the emergence of more harmful COVID-19 variants.

People who are accepted to become living donors are likely to be counseled that, because they are healthy enough to donate, they have a low risk of experiencing severe adverse health outcomes from donation (21). Indeed, donors are likely to be healthier than age-matched individuals in the general population. However, our study suggests that confidence in their own health status might lead some living organ donors to fail to obtain COVID-19 vaccination. Specifically, donors and prospective donors in our study who did not plan to receive the COVID-19 vaccine, or were unsure, were less likely than others to agree that COVID-19 vaccines are needed or should be required, and many cited their lack of risk factors or history of mild COVID-19 infection as justifications to decline the vaccine. Even donors accepting the vaccine prioritized the protection it could offer to at-risk contacts, although some donors expressed concerns about personal risks from COVID-19 infection, and several kidney donors voiced a desire for to be vaccinated as a way to protect their remaining kidney. These findings suggest that discussions with vaccine-hesitant donors should reinforce public health guidance on the potential benefits of vaccination over natural immunity, which apply for those with and without preexisting health conditions (22).

Our study demonstrated there was a strong and independent association between informational sources about COVID-19 vaccines and planned vaccine uptake. Interestingly, compared with donors who prioritized medical sources of information, including physician and transplant program guidance, donors who prioritized public health officials for information were much more likely to plan to receive a COVID-19 vaccine. In contrast, donors who relied on nonmedical sources of information, or considered their own risk factors as most important for decision making, were the least likely to plan to receive a COVID-19 vaccine. Importantly, we found the association between informational sources and vaccine uptake among healthy individuals, such as living organ donors, a necessary step to achieving population-level immunity and limiting the emergence of more harmful COVID-19 variants.

Disclosures
R. Bertha reports having other interests in/relationships with the American Living Organ Donor Fund (ALODF). M. N. Harhay reports receiving research funding from NIDDK grant R01DK124388 and an honorarium from Relypsy. A. C. Klassen reports receiving honoraria from consultant work with Merck, Sharpe, and Dome (a manufacturer of a COVID-19 vaccine), regarding social determinants that may influence vaccine-related attitudes and behaviors in populations. K. L. Lentine reports having consultancy agreements with CareDx Inc., and serving on a speakers bureau for Sanofi. R. B. Mannon reports serving the American Society of Nephrology (ASN) as chair of the ASN Policy and Advocacy Committee, is member and chair of data and safety monitoring boards for National Institutes of Health/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), is cochair of the Scientific Registry of Transplant Recipients Review Committee, and is chair of Women in Transplantation initiative of The Transplantation Society. M. Mittelman reports serving as board chairman and founder of ALODF, on the patient advisory council for ESRD Network 4, as a board member and interim secretary for the Light Collective, as a member of the National Kidney Foundation Kidney Advocacy Committee, as a volunteer for NephCure Kidney International, as a member of the Organ Procurement and Transplantation Network Operations Oversight Committee, as a Patient-Centered Outcomes Research Institute Ambassador, as an advisor to the board of directors for The BMJ, and as a member of the United Network for Organ Sharing Information Technology Advisory Committee; and receiving honoraria from a Congressionally Directed Medical Research Program, CSL Behring, Pfizer, and Takeda. The remaining author has nothing to disclose.

Funding
M. N. Harhay received research funding from NIDDK grant K23DK105207. K. L. Lentine received research funding related to living donation from the NIDDK grant R01DK120551, and was
also supported by the Mid-America Transplant/Jane A. Beckman Endowed Chair in Transplantation.

Acknowledgments

We would like to thank the following individuals for their assistance in disseminating the survey: Heather Hunt (JD), Erin Kahle (MPA), David White, Dr. Patrick Gee (PhD), Curtis Warfield, Kevin Fowler, Nichole Jefferson, Nielte Gedney, and Nicole Wells (MA).

The authors also wish to acknowledge the following organizations for supporting the dissemination of this survey: ALODF, the American Association for Kidney Patients, Home Dialyzors United, and the Global Liver Institute.

The funding sources had no involvement in the study design or interpretation.

Author Contributions

R. Bertha was responsible for data curation; R. Bertha, M. N. Harhay, A. C. Klassen, K. L. Lentine, and R. B. Mannon were responsible for methodology; R. Bertha, M. N. Harhay, A. C. Klassen, K. L. Lentine, R. B. Mannon, and M. Mittelman conceptualized the study; R. Bertha, R. B. Mannon, and H. Zaidi were responsible for visualization; M. N. Harhay was responsible for project administration; M. N. Harhay, A. C. Klassen, and K. L. Lentine provided supervision; M. N. Harhay, A. C. Klassen, K. L. Lentine, R. B. Mannon, and H. Zaidi were responsible for formal analysis; M. N. Harhay, A. C. Klassen, K. L. Lentine, M. Mittelman, and H. Zaidi were responsible for investigation; A. C. Klassen and M. Mittelman were responsible for resources; and all authors wrote the original draft and reviewed and edited the manuscript.

References

1. Health Resources & Services Administration: The living donation process. Available at: https://www.organdonor.gov/about/process/living-donation.html. Accessed March 1, 2021
2. Lentine KL, Patel A: Risks and outcomes of living donation. Adv Chronic Kidney Dis 19: 220–228, 2012 https://doi.org/10.1053/j.ackd.2011.09.005
3. Organ Procurement and Transplantation Network: National data. Available at: https://optn.transplant.hrsa.gov/data/view-data-reports/national-data/. Accessed March 1, 2021
4. Lentine KL, Vest LS, Schnitzler MA, Mannon RB, Kumar V, Doshi MD, Cooper M, Mandelbrot DA, Harhay MN, Josephson MA, Caliskan Y, Sharfuddin A, Kasikse BL, Axelrod DA: Survey of US living kidney donation and transplantation practices in the COVID-19 era. Kidney Int Rep 5: 1894–1905, 2020 https://doi.org/10.1016/j.ekir.2020.08.017
5. Zaidi H, Klassen AC, Fleetwood J, Lentine KL, Reese PP, Mittelman M, Bertha R, Harhay MN: Living organ donor health care priorities during the COVID-19 pandemic. Kidney Int Rep 6: 1151–1155, 2021 https://doi.org/10.1016/j.ekir.2021.01.031
6. Boyarsky BJ, Po-Yu Chiang T, Werbel WA, Durand CM, Avery RK, Getsin SN, Jackson KR, Kernodle AB, Van Pilsum Rasmussen SE, Massie AB, Segev DL, Garonzik-Wang JM: Early impact of COVID-19 on transplant center practices and policies in the United States. Am J Transplant 20: 1809–1818, 2020 https://doi.org/10.1111/ajt.15915
7. American Society of Transplantation: COVID-19 vaccine FAQ sheet. 2020. Available at: https://www.mayast/sites/default/files/2020%2012%2008%20COVID19%20VACCINE%20FAQS_FINAL.pdf. Accessed February 24, 2021
8. American Association for the Study of Liver Diseases: AASLD Expert Panel Consensus Statement: Vaccines to prevent COVID-19 infection in patients with liver disease, 2021. Available at: https://www.aasl.org/sites/default/files/2021-02/AASLD-COVID19-VaccineDocument-February2021-FINAL.pdf. Accessed February 25, 2021
9. American Society of Nephrology: American Society of Nephrology statement requesting prioritization of dialysis patients and frontline dialysis staff for COVID-19 vaccination, 2021. Available at: https://www.asn-online.org/policy/webdocs/ASN_Vaccine_Statement.pdf. Accessed February 26, 2021
10. Centers for Disease Control and Prevention: People with certain medical conditions. Available at: https://www.cdc.gov/coronavirus/2019-ncov/need-extra-precautions/people-with-medical-conditions.html. Accessed February 21, 2021
11. Centers for Disease Control and Prevention: CDC’s COVID-19 vaccine rollout recommendations. Available at: https://www.cdc.gov/coronavirus/2019-ncov/vaccines/recommendations.html. Accessed February 24, 2021
12. American Society of Transplant Surgeons (ASTS): ASTS guidance on transplant capacity and testing in the COVID-19 era. Arlington, VA, ASTS, 2020
13. American Society of Transplantation: Recommendations and guidance for organ donor testing. Mount Laurel, NJ, American Society of Transplantation, 2020
14. The Henry J. Kaiser Family Foundation: KFF COVID-19 vaccine monitor dashboard. Available at: https://www.kff.org/COVID-19-vaccine-monitor/. Accessed February 16, 2021
15. MacDonald NE; SAGE Working Group on Vaccine Hesitancy: Vaccine hesitancy: Definition, scope and determinants. Vaccine 33: 4161–4164, 2015 https://doi.org/10.1016/j.vaccine.2015.04.036
16. Klassen AC, Creswell J, Piano Clark VL, Smith KC, Meissner H: Best practices in mixed methods for quality of life research. Qual Life Res 21: 377–380, 2012 https://doi.org/10.1007/s10963-011-9832-2
17. McCormack HM, Horne DJ, Sheather S: Clinical applications of visual analogue scales: A critical review. Psychol Med 18: 1007–1019, 1988 https://doi.org/10.1017/S0033291700009934
18. Muller Cj, Maclehoese RF: Estimating predicted probabilities from logistic regression: different methods correspond to different target populations. Int J Epidemiol 43: 962–970, 2014 https://doi.org/10.1093/ije/dyu029
19. Centers for Disease Control and Prevention: Disease burden of influenza, 2020. Available at: https://www.cdc.gov/flu/about/burden/index.html. Accessed February 24, 2021
20. Williams WW, Lu PJ, O’Halloran A, Kim DK, Grohskopf LA, Pilishvili T, Skoff TH, Nelson NP, Harpaz R, Markowitz LE, Rodriguez-Lainz A, Fiebelkorn AP: Surveillance of vaccination coverage among adult populations - United States, 2015. MMWR Surveill Summ 66: 1–28, 2017 https://doi.org/10.15585/mmwr.ss6611a1
21. Lentine KL, Lam NN, Segev DL: Risks of living kidney donation: Current state of knowledge on outcomes important to donors. Clin J Am Soc Nephrol 14: 597–608, 2019 https://doi.org/10.2215/CJN.11220918
22. Centers for Disease Control and Prevention: Benefits of getting a COVID-19 vaccine. Available at: https://www.cdc.gov/coronavirus/2019-ncov/vaccines/vaccine-benefits.html. Accessed February 26, 2021
23. US Department of Health and Human Services: Organ Procurement and Transplantation Network data. Available at: https://optn.transplant.hrsa.gov/data/. Accessed November 2, 2020

Received: March 26, 2021
Accepted: April 22, 2021

See related editorial, “Living Organ Donor Hesitancy about COVID-19 Vaccines: A New Kind of “Source Control Issue”,” on pages 1076–1077.