Identification of Effective Anticancer G-Quadruplex-Targeting Chemotypes through the Exploration of a High Diversity Library of Natural Compounds

Mattia Mori 1,*, Chiara Platella 2, Francesca Ghirga 3, Pasquale Zizza 4, Luca Pompili 4, Simona Marzano 5, Bruno Pagano 5, Deborah Quaglio 3, Valeria Vergine 3, Silvia Cammarone 3, Bruno Botta 3, Annamaria Biroccio 4, Daniela Montesarchio 2

1 Department of Biotechnology, Chemistry and Pharmacy, University of Siena
2 Department of Chemical Sciences, University of Naples Federico II
3 Department of Chemistry and Technology of Drugs, Sapienza University of Rome
4 Oncogenomic and Epigenetic Unit, IRCCS—Regina Elena National Cancer Institute
5 Department of Pharmacy, University of Naples Federico II.

* Corresponding author: mattia.mori@unisi.it
Identification of Effective Anticancer G-Quadruplex-Targeting Chemotypes through the Exploration of a High Diversity Library of Natural Compounds
Abstract: In the quest for selective G-quadruplex (G4)-targeting chemotypes, natural compounds have been thus far poorly explored, though representing appealing candidates due to the high structural diversity of their scaffolds. In this regard, a unique high diversity in-house library composed of ca. one thousand individual natural products was investigated. The combination of molecular docking-based virtual screening and the G4-CPG experimental screening assay proved to be useful to quickly and effectively identify—out of many natural compounds—five hit binders of telomeric and oncogenic G4s, i.e., Bulbocapnine, Chelidonine, Ibogaine, Rotenone and Vomicine. Biophysical studies unambiguously demonstrated the selective interaction of these compounds with G4s compared to duplex DNA. The rationale behind the G4 selective recognition was suggested by molecular dynamics simulations. Indeed, the selected ligands proved to specifically interact with G4 structures due to peculiar interaction patterns, while they were unable to firmly bind to a DNA duplex. From biological assays, Chelidonine and Rotenone emerged as the most active compounds of the series against cancer cells, also showing good selectivity over normal cells. Notably, the anticancer activity correlated well with the ability of the two compounds to target telomeric G4s.

Keywords: cancer; G-quadruplex; molecular dynamics; natural compounds.
Introduction – structural features of G4s

G-quadruplexes (G4s) are non-canonical four-stranded structural motifs of nucleic acids formed by guanine-rich sequences.

The relative orientation of strands originates different topologies. Loops geometry contribute to shape the 3D architecture of G4s.

https://doi.org/10.1007/978-3-319-21756-7_7
Introduction – structural features of G4s

Loops length, geometry, and composition have a strong influence on the overall G4 structure.

K\(^+\) and Na\(^+\) bind in a different way to G-tetrads, providing different stabilizing effects on the G4s.

https://doi.org/10.1007/978-3-319-21756-7_7
Introduction – G4s as drug targets

WHERE: G4s form in specific sequences of both DNA and RNA with functional significance, such as telomeres, oncogene-promoter regions, and 5’- and 3’-untranslated region (UTR) of mRNA.

WHAT: G4s are involved in key genome functions, such as transcription, replication, genome stability, and epigenetic regulation.

WHY: Several evidences link G4s to disease onset and progression, and they are considered as profitable targets mainly for the therapy of cancer and infectious diseases.

HOW: Small molecule binders of G4s might be valuable leads for further development.

Quarfloxin (CX-3543) first-in class G4 binder in Phase II against various solid tumors → discontinued due to off-target effects.

Novel and selective G-quadruplex (G4)-binding chemotypes are highly needed to advance anticancer therapies based on targeting G4s.
Introduction – our multidisciplinary approach

Virtual screening

In-house library

Biophysical assays

In vitro tests

Pharmaceutics 2021, 13, 1611
Results and discussion – *in-house* natural products library

Natural compounds have been poorly studied as G4 ligands compared to synthetic compounds. *In-house* library of around 1,000 natural products and their derivatives from plants collected in biodiversity-rich countries.

84% of the library <5 HBD
<10 HBA
MW < 500

HIGHLY SUITABLE FOR EARLY-STAGE DRUG DISCOVERY PROJECTS

Min 118.2
Max 982.1
Average 353.5

MW < 500
84% of the library

Org. Chem. Front. 2021, 8, 996–1025
Results and discussion – virtual screening

telomeric and oncogenic G4 models (c-myc and tel_{26}) as targets

c-myc promoter
PDB: 1XAV (NMR)

telomere (tel_{26})
PDB: 2JPZ (NMR)

Groove and loop binders are expected to be more selective than compounds that stack on top of the guanine quartets

The 7th International Electronic Conference on Medicinal Chemistry
01–30 November 2021 | ONLINE
Results and discussion – virtual screening

Score → G4s/duplex selectivity in silico → visual inspection → **28 compounds for testing**

- **13 Alkaloids**
- **6 Anthranoids**
- **3 Steroids**
- **1 Cyanogenic glycoside**
- **2 Rotenoids**
- **1 Polyphenol**
- **1 Diels-Alder type adduct**
- **1 Dibenzofuran derivative**

Pharmaceutics 2021, 13, 1611
Results and discussion – G4-CPG assay

1) Controlled Pore Glass-based oligonucleotide affinity support (G4-CPG) assay, an affinity chromatography-based method for the screening of putatively selective G4 ligands (c-myc, tel26, duplex) → 5 compounds
Results and discussion – Circular Dichroism

2) CD titration up to 1:10 molar ratio, to confirm binding in solution and to estimate binding parameters.
Results and discussion – MD simulations

Docking complexes were relaxed through 500 ns of MD simulations in explicit solvent

A – Bulbocapnine
B – Chelidonine
C – Ibogaine
D – Rotenone
E – Vomicine

c-myc
tel_{26}
Results and discussion – MD simulations

CHELIDONINE/tel$_{26}$

ROTENONE/tel$_{26}$
Results and discussion – Biological activity evaluation

Bulbocapnine, Ibogaine and Vomicine are almost ineffective in BJ-EHLT transformed fibroblasts. Chelidonine and Rotenone produce a dose-dependent effect on cell viability (IC_{50} of 0.64 µM and 0.15 µM, respectively) with modest impact on non-transformed fibroblasts BJ-hTERT (SELECTIVITY).
Results and discussion – Biological activity evaluation

The effect of the G4 ligands on cell viability could be due to the capability of these compounds to induce selective DNA damage in transformed cells.

Fluorescent signal due to phosphorylated histone H2Aχ (YH2Aχ), a typical hallmark of DNA double-strand breaks.

DNA damage was telomere-located.
Conclusions

✓ By combining virtual and experimental screening of an in-house natural products library, Bulbocapnine, Chelidonine, Ibogaine, Rotenone and Vomicine were found to interact with G4s, also selectively stabilizing the G4 vs. duplex structures.

✓ Chelidonine has the highest stabilizing effects and affinity on G4 over duplex structures; MD simulations suggest a stable binding in the G4 groove of both c-myc and tel26.

✓ Rotenone has the weakest affinity for G4s, also binding the unspecific duplex.

✓ Both compounds exhibit a potent anticancer activity at sub-μM concentrations, mediated by their capability to bind and stabilize telomeric G4 structures.

Profitable starting points for further lead optimization studies... ongoing...
Acknowledgments

IG2020 project n. 25046
IG2018 project n. 21579