Laparoscopy for Secondary Sclerosing Encapsulating Peritonitis – A Case Report

Shankarraman Debashri1, Alexander Naveen2

1Junior Resident, Department of General Surgery, Sri Ramachandra Institute of Higher Education and Research, Chennai – 600116, India; 2Professor, Department of General Surgery, Sri Ramachandra Institute of Higher Education and Research, Chennai – 600116, India.

ABSTRACT

Introduction: Abdominal cocoon is a rare condition in which the abdominal viscera may be partially or completely enclosed within a thick fibro-collagenous membrane. This can be a rare cause of bowel obstruction presenting as a surgical emergency.

Case Report: Here, we report a case of a 38-year-old man who presented with acute intestinal obstruction and underwent an emergency diagnostic laparoscopy during which the cause of obstruction was confirmed as an abdominal cocoon. An adhesiolysis with the release of obstructive fibrous bands was done and deemed as adequate management.

Discussion: It is predominant in women living in tropical regions. It can be either primary (idiopathic) or secondary to peritoneal injury due to infective, malignant aetiology or pharmacological irritants. Although it is usually diagnosed intra-operatively, computed tomography can rarely identify the presence of a thin capsule enclosing dilated bowel loops.

Conclusion: A thorough knowledge of secondary causative factors of sclerosing encapsulating peritonitis and its management is of prime importance. It is usually associated with a good prognosis.

Key Words: Laparoscopy, Sclerosing encapsulating peritonitis, Abdominal cocoon, Adhesiolysis, Bowel obstruction, Surgical emergency

INTRODUCTION

Dynamic bowel obstruction is one of the most frequently encountered surgical emergencies. Intra-abdominal adhesions account for 60% of these cases. Previous abdominal surgery causes secondary inflammatory and fibrotic changes in the peritoneum producing adhesions. However, previous surgery leading to the formation of a dense peritoneal membrane forming a cocoon is infrequent. Abdominal cocoon syndrome, also known as sclerosing encapsulating peritonitis, is thought to be a form of peritonitis leading to the formation of a dense membrane surrounding the intra-abdominal organs. The membrane formation is more commonly seen secondary to peritoneal insult than primarily or idiopathic. The documented evidence of abdominal surgical or medical procedures producing a cocoon is limited to peritoneal dialysis, peritoneovenous shunts for refractory ascites, ventriculoperitoneal shunts, intra-peritoneal chemotherapy, trauma-related and liver transplantation. In our case, a history of previous transverse rectus abdominus muscle flap surgery appears to be the inciting factor for a possible secondary abdominal cocoon. After an extensive review of literature, we have been unable to identify case reports of abdominal cocoon following abdominal wall surgeries. Although previous abdominal surgery raises the suspicion of adhesions causing acute intestinal obstruction, it very rarely presents as an abdominal cocoon. The ease of laparoscopy permits the management to be maintained as minimally invasive as possible, limiting further peritoneal damage.

CASE REPORT

A 38-year-old man presented with complaints of abdominal pain for 1 day which was diffusely present, colicky in nature, non-radiating. It was associated with 2 episodes of bilious vomiting on the same day. There was no history of constipation or abdominal distension. The patient had previously
undergone a right-sided transverse rectus abdominus muscle flap surgery for a traumatic leg injury 20 years ago. He had no known co-morbidities and no significant family history. Clinically, he was hemodynamically stable. Per abdominally, guarding and rigidity were noted with diffuse abdominal tenderness. The absence of bowel sounds was noted. On per rectal examination, stools were present. A clinical diagnosis of acute intestinal obstruction possibly due to post-operative adhesions was made.

Investigations
Routine laboratory blood investigations done were within normal limits. A plain abdominal radiograph revealed multiple air-fluid levels.

Contrast-enhanced computed tomography of the abdomen showed mildly dilated distal jejunal and proximal ileal loops with a zone of transition was seen in the mid ileal loops in the right lumbar region. Clumping of the small bowel loops and close opposition to the anterior abdominal wall in the right lumbar region suggestive of adhesions between the bowel loops and the anterior abdominal wall.

Differential diagnosis
A working diagnosis of mechanical bowel obstruction secondary to possible post-operative adhesions was made and the patient was worked up for the same. Abdominal cocoon was not suspected pre-operatively due to its rarity, the absence of a mass palpable per abdomen and the lack of suggestive radiological features. Peritoneal encapsulation, a differential diagnosis closely related to abdominal cocoon, is thought to be a developmental anomaly and is usually an incidental finding.

Treatment
A nasogastric tube was inserted to decompress the bowel. The abdominal girth was monitored to watch for distension. The patient underwent an emergency diagnostic laparoscopy during which the cause of obstruction and the diagnosis was confirmed to be an abdominal cocoon. The surgical approach included a palmer’s point camera port with 2 left lower abdominal working ports. Intra-operatively, a dense membrane covering the bowel loops and extensive extensive inter-loop adhesions was noted. The adhesions were released and part of the sac encompassing the obstructive segment of mid-ileum was excised and sent for histopathological examination. Progressive peristaltic movement of the bowel loops was noted once the constricting adhesions were released which concluded the procedure.

Post-operatively, the patient was managed with analgesics, intravenous antibiotics and nutritional support. Nil by mouth with nasogastric drainage status was maintained until post-operative day 2. Passage of flatus was used as the confirmatory sign for initiating oral feeds. Thereafter, he was started on sips of liquids and progressed to soft solids. The surgical site was inspected on post-operative day 3 and was found to be healthy. Adequate limb mobilisation and spirometry was ensured as part of routine post-operative care. The patient was discharged on post-operative day 3. Suture removal from port sites was done on post-operative day 10. The histopathological examination of the peritoneal membrane revealed fibro collagenous tissue with chronic inflammation with no evidence of granulomas/malignancy. The patient was followed up until 1-month post-procedure.

DISCUSSION
Abdominal cocoon or Encapsulating peritoneal sclerosis has been observed as early as 1907, first described by Owtschinnikow as peritonitis chronica fibrosa incapsulata. In 1921, Winnen reported the first case of SEP, terming it *Zuckergussdarm*, literally translated as ‘icing gut’, in reference to the whitish appearance of intestinal surface. It was later in 1978 that Foo et al. coined the term of Abdominal cocoon after observing an unusual cause of intestinal obstruction in 8 adolescent girls – hypothesized to be due to retrograde menstruation or subclinical viral peritonitis. Deeb et al. coined the term “sclerosing encapsulating peritonitis” for the same. It can be primarily idiopathic or more commonly secondary to conditions such as tuberculosis, sarcoidosis, systemic lupus erythematosus, use of abdominal washout agents such as povidone iodine or practolol.

Irrespective of the cause, the pathogenesis is thought to be a subclinical peritonitis resulting in fibro-inflammatory changes in the peritoneum with membrane damage. Histologically, inflammatory infiltrate and submesothelial thickening, collagen deposition, and activation and proliferation of peritoneal fibroblasts is seen. Mesothelial irritation produces serositis which may be due to a single insult or multiple, recurrent episodes. The ultimate insult is mesothelial loss which predisposes the peritoneum to fibroneogenesis. The resulting characteristic feature is conversion of the peritoneum into a thickened, dense fibro-collagenous membrane adherent to the small bowel loops.

Anatomically, Primary SEP can be classified into 3 types. Type I is partial encasement of the intestine; Type II is when the entire intestine is encompassed within the membrane. Type III involves additional encasing of the stomach, liver, appendix, *caecum*, ascending colon and ovaries. This may or may not result in a mechanical bowel obstruction if compression or inter-loop adhesions of the contents occur within the membrane. Most patients present with recurrent episodes of sub-acute intestinal obstruction which may resolve with conservative management and hence, it can go undiagnosed. It is only in cases of acute obstruction
that visualisation of the abdominal contents during laparoscopy or laparotomy that the diagnosis is made.

Imaging can rarely provide clues to arrive at a preoperative diagnosis. Abdominal radiograph depicts multiple air-fluid levels. Ultrasound of the abdomen can reveal clumped, dilated bowel loops; presence of free fluid; membranous covering of bowel loops. A classical picture of clumped bowel loops resembling a "concertina" or "accordion" with a mesenteric attachment giving rise to "cauliflower sign" has been described on ultrasound imaging.\(^{16,17}\) Contrast-enhanced computed tomography findings can reveal peritoneal abnormalities such as thickening, sclerosis, bowel encapsulation and visceral and parietal calcifications.\(^{18,19}\) The small bowel changes include narrowing of lumen with dilated proximal loops, mural thickening and fibrosis, inter-loop adhesions.\(^{17,20,21}\)

Acute intestinal obstruction mandates surgical intervention. Adhesiolysis with sac excision is the procedure of choice. Open abdominal surgery with laparotomy is usually preferred. However, if there is adequate expertise with laparoscopy, it can be used as an alternative with the advantages of minimal invasiveness, lesser peritoneal insult, faster postoperative recovery and better wound healing. Extensive adhesiolysis can lead to post-operative acute small bowel obstruction. Hence, gentle tissue handling while dissecting and releasing fibrous bands is advised. These outcomes can be achieved with laparoscopy as long as the surgeon is well experienced. In our case, laparoscopy proved to be both the diagnostically and therapeutic procedure. The long-term outcome is usually favourable.\(^{22,23}\)

CONCLUSIONS

- Dynamic intestinal obstruction due to secondary postsurgical abdominal cocoon is extremely rare. A high index of suspicion is necessary.
- Surgical intervention with sac excision and adhesiolysis at the earliest is essential for acute intestinal obstruction.
- Thorough knowledge of secondary causative factors and their management for sclerosing encapsulating peritonitis is of prime importance to maximise surgical outcome and patient recovery.

ACKNOWLEDGEMENT

Authors acknowledge the immense help received from the scholars whose articles are cited and included in references of this manuscript. The authors are also grateful to authors/editors/publishers of all those articles, journals and books from where the literature for this article has been reviewed and discussed.

Department of General Surgery, SRIHER, Porur, Chennai

Source of Funding: Nil

Conflict of Interest: Nil

Authors’ Contribution: NA was the primary surgeon and contributed to editing the manuscript. DS drafted the manuscript and was the primary assistant in the surgery.

REFERENCES

1. Tannoury JN, Aboud BN. Idiopathic sclerosing encapsulating peritonitis: Abdominal cocoon. World J Gastroenterol WJG. 2012 May 7;18(17):1999–2004.
2. Afentopoulos IE, Passadakis P, Oreopoulos DG, Bargman J. Sclerosing peritonitis in continuous ambulatory peritoneal dialysis patients: one center’s experience and review of the literature. Adv Ren Replace Ther. 1998 Jul;5(3):157–67.
3. Liberale G, Sugarbaker PH. Sclerosing encapsulating peritonitis as a potential complication of cytoreductive surgery and HIPEC: Clinical features and results of treatment in 4 patients. Surg Oncol. 2018 Dec;27(4):657–62.
4. Kaur S, Doley RP, Chabbhra M, Kapoor R, Wig J. Post trauma abdominal cocoon. Int J Surg Case Rep. 2014 Dec 11;7:64–5.
5. Machado NO. Sclerosing Encapsulating Peritonitis. Sultan Qaboos Univ Med J. 2016 May;16(2):e142–51.
6. Tannoury JN, Aboud BN. Idiopathic sclerosing encapsulating peritonitis: Abdominal cocoon. World J Gastroenterol WJG. 2012 May 7;18(17):1999–2004.
7. Foo KT, Ng KC, Rauff A, Foong WC, Sinniah R. Unusual small intestinal obstruction in adolescent girls: The abdominal cocoon. BJJS Br J Surg. 1978;65(6):427–30.
8. Deeb LS, Mourad FH, El-Zein YR, Ulthman SM. Abdominal cocoon in a man: preoperative diagnosis and literature review. J Clin Gastroenterol. 1998 Mar;26(2):148–50.
9. Kaushik R, Punia R, Mohan H, Attri AK. Tuberculous abdominal cocoon – a report of 6 cases and review of the Literature. World J Emerg Surg. 2006 Jun 27;1:18.
10. Machado NO. Sclerosing Encapsulating Peritonitis. Sultan Qaboos Univ Med J. 2016 May;16(2):e142–51.
11. Keating JP, Neill M, Hill GL. Sclerosing encapsulating peritonitis after intraperitoneal use of povidone iodine. Aust NZ J Surg. 1997 Oct;67(10):742–4.
12. Cook AJ, Foy P. Sclerosing peritonitis and practolol therapy. Ann R Coll Surg Engl. 1976 Nov;58(6):473–5.
13. Brown P, Baddeley H, Read AE, Davies JD, McGarry J. Sclerosing peritonitis, an unusual reaction to a beta-adrenergic-blocking drug (practolol). Lancet Lond Engl. 1974 Dec 21;2(7895):1477–81.
14. Hoff CM. Experimental animal models of encapsulating peritoneal sclerosis. Perit Dial Int J Int Soc Perit Dial Fund. 2005 Apr;25 Suppl 4:S57-66.
15. Dobbie JW. Pathogenesis of peritoneal fibrosis syndromes (sclerosing peritonitis) in peritoneal dialysis. Perit Dial Int J Int Soc Perit Dial. 1992;12(1):14–27.
16. Hur J, Kim KW, Park M-S, Yu J-S. Abdominal cocoon: preoperative diagnostic clues from radiologic imaging with pathologic correlation. AJR Am J Roentgenol. 2004 Mar;182(3):639–41.
17. Ti JP, Al-Aradi A, Conlon PJ, Lee MJ, Morrin MM. Imaging features of encapsulating peritoneal sclerosis in continuous ambulatory peritoneal dialysis patients. AJR Am J Roentgenol. 2010 Jul;195(1):W50-54.
18. Rigby RJ, Hawley CM. Sclerosing peritonitis: the experience in Australia. Nephrol Dial Transplant. 1998 Jan 1;13(1):154–9.
19. Kawaguchi Y, Kawanishi H, Mujais S, Topley N, Oreopoulos DG. Encapsulating peritoneal sclerosis: definition, etiology, diagnosis, and treatment. International Society for Peritoneal Dialysis Ad Hoc Committee on Ultrafiltration Management in Peritoneal Dialysis. Perit Dial Int J Int Soc Perit Dial. 2000;20 Suppl 4:S43-55.
20. George C, Al-Zwae K, Nair S, Cast JEI. Computed tomography appearances of sclerosing encapsulating peritonitis. Clin Radiol. 2007 Aug;62(8):732–7.
21. Hs M, A K, V S, Ss R. Abdominal cocoon: An enigmatic entity. Trop Gastroenterol. 2017 Jun 5;37(3):156–67.
22. Ertem M, Ozben V, Gok H, Aksu E. An unusual case in surgical emergency: Abdominal cocoon and its laparoscopic management. J Minimal Access Surg. 2011;7(3):184–6.
23. Makam R, Chamany T, Ramesh S, Potluri VK, Varadaraju PJ, Kasabe P. Laparoscopic management of abdominal cocoon. J Minimal Access Surg. 2008;4(1):15–7.