Clique minors in double-critical graphs

Martin Rolek* and Zi-Xia Song†
Department of Mathematics
University of Central Florida
Orlando, FL 32816
September 25, 2018

Abstract

A connected t-chromatic graph G is double-critical if $G - \{u, v\}$ is $(t - 2)$-colorable for each edge $uv \in E(G)$. A long-standing conjecture of Erdős and Lovász that the complete graphs are the only double-critical t-chromatic graphs remains open for all $t \geq 6$. Given the difficulty in settling Erdős and Lovász’s conjecture and motivated by the well-known Hadwiger’s conjecture, Kawarabayashi, Pedersen and Toft proposed a weaker conjecture that every double-critical t-chromatic graph contains a K_t minor and verified their conjecture for $t \leq 7$. Albar and Gonçalves recently proved that every double-critical 8-chromatic graph contains a K_8 minor, and their proof is computer-assisted. In this paper we prove that every double-critical t-chromatic graph contains a K_t minor for all $t \leq 9$. Our proof for $t \leq 8$ is shorter and computer-free.

1 Introduction

All graphs in this paper are finite and simple. For a graph G we use $|G|$, $e(G)$, $\delta(G)$ to denote the number of vertices, number of edges and minimum degree of G, respectively. The degree of a vertex v in a graph is denoted by $d_G(v)$ or simply $d(v)$. For a subset S of $V(G)$, the subgraph induced by S is denoted by $G[S]$ and $G - S = G[V(G) \setminus S]$. If G is a graph and K is a subgraph of G, then by $N(K)$ we denote the set of vertices of $V(G) \setminus V(K)$ that are adjacent to a vertex of K. If $V(K) = \{x\}$, then we use $N(x)$ to denote $N(K)$. By abusing notation we will also denote by $N(x)$ the graph induced by the set $N(x)$. We define $N[x] = N(x) \cup \{x\}$, and similarly will use the same symbol for the graph induced by that set. If u, v are distinct nonadjacent vertices of a graph G, then by $G + uv$ we denote the graph obtained from G by adding an edge with ends u and v. If u, v are adjacent or equal, then we define $G + uv$ to be G.

A graph H is a minor of a graph G if H can be obtained from a subgraph of G by contracting edges. We write $G \geq H$ if H is a minor of G. In those circumstances we also say that G has an H minor. A connected graph G is called double-critical if for any edge $uv \in E(G)$, we have $\chi(G - \{u, v\}) = \chi(G) - 2$. The following long-standing Double-Critical Graph Conjecture is due to Erdős and Lovász.

*Current address: Department of Mathematics, College of William and Mary. E-mail address: msrolek@wm.edu.
†Corresponding author. E-mail address: Zixia.Song@ucf.edu.
Conjecture 1.1 Double-Critical Graph Conjecture (Erdős and Lovász [3]) For every integer $t \geq 1$, the only double-critical t-chromatic graph is K_t.

Conjecture 1.1 is a special case of the so-called Erdős-Lovász Tihany Conjecture [3]. It is trivially true for $t \leq 3$ and reasonably easy for $t = 4$. Mozhan [8] and Stiebitz [10] independently proved Conjecture 1.1 for $t = 5$.

Theorem 1.2 (Mozhan [8]; Stiebitz [10]) The only double-critical 5-chromatic graph is K_5.

Conjecture 1.1 remains open for all $t \geq 6$. Given the difficulty in settling Conjecture 1.1 and motivated by the well-known Hadwiger’s conjecture [4], Kawarabayashi, Pedersen and Toft proposed a weaker conjecture.

Conjecture 1.3 (Kawarabayashi, Pedersen and Toft [6]) For every integer $t \geq 1$, every double-critical t-chromatic graph contains a K_t minor.

Conjecture 1.3 is a weaker version of Hadwiger’s conjecture [4], which states that for every integer $t \geq 1$, every t-chromatic graph contains a K_t minor. Conjecture 1.3 is true for $t \leq 5$ by Theorem 1.2. In the same paper [6], Kawarabayashi, Pedersen and Toft verified their conjecture for $t \in \{6, 7\}$.

Theorem 1.4 (Kawarabayashi, Pedersen and Toft [6]) For every integer $t \leq 7$, every double-critical t-chromatic graph contains a K_t minor.

Recently, Albar and Gonçalves [1] announced a proof for the case $t = 8$.

Theorem 1.5 (Albar and Gonçalves [1]) Every double-critical 8-chromatic graph has a K_8 minor.

Our main result is the following next step.

Theorem 1.6 For integers k, t with $1 \leq k \leq 9$ and $t \geq k$, every double-critical t-chromatic graph contains a K_k minor.

We actually prove a much stronger result, the following.

Theorem 1.7 For $k \in \{6, 7, 8, 9\}$, let G be a $(k - 3)$-connected graph with $k + 1 \leq \delta(G) \leq 2k - 5$. If every edge of G is contained in at least $k - 2$ triangles and for any minimal separating set S of G and any $x \in S$, $G[S \backslash \{x\}]$ is not a clique, then $G \geq K_k$.

Theorem 1.6 follows directly from Proposition 2.1 (see below) and Theorem 1.7. Our proof of Theorem 1.7 closely follows the proof of the extremal function for K_9 minors by Song and Thomas [9] (see Theorem 1.10 below). Note that the proof of Theorem 1.4 for $k = 7$ is about ten pages long and the proof of Theorem 1.5 is computer-assisted. Our proof of Theorem 1.6 is much shorter and computer-free for $k \leq 8$. For $k = 9$, our proof is computer-assisted as it applies a computer-assisted lemma from [9] (see Lemma 1.13 below). Note that a computer-assisted proof of
Theorem 1.7 for all \(k \leq 8 \) (and hence computer-assisted proofs of Theorem 1.4 and Theorem 1.5) follows directly from Theorem 1.7 for \(k = 9 \). (To see that, let \(G \) and \(k \leq 8 \) be as in Theorem 1.7 and let \(H \) be obtained from \(G \) by adding \(9 - k \) vertices, each adjacent to every other vertex of the graph. Then \(H \) is 6-connected and satisfies all the other conditions as stated in Theorem 1.7. Thus \(H \geq K_9 \) and so \(G \geq K_k \).) Conjecture 1.3 remains open for all \(t \geq 10 \). It seems hard to generalize Theorem 1.6.

We need some known results to prove our main results. Before doing so, we need to define \((H, k)\)-cockade. For a graph \(H \) and an integer \(k \), let us define an \((H, k)\)-cockade recursively as follows. Any graph isomorphic to \(H \) is an \((H, k)\)-cockade. Now let \(G_1, G_2 \) be \((H, k)\)-cockades and let \(G \) be obtained from the disjoint union of \(G_1 \) and \(G_2 \) by identifying a clique of size \(k \) in \(G_1 \) with a clique of the same size in \(G_2 \). Then the graph \(G \) is also an \((H, k)\)-cockade, and every \((H, k)\)-cockade can be constructed this way. We are now ready to state some known results. The following theorem is a result of Dirac [2] for \(p \leq 5 \) and Mader [7] for \(p \in \{6, 7\} \).

Theorem 1.8 (Dirac [2]; Mader [7]) For every integer \(p \in \{1, 2, \ldots, 7\} \), a graph on \(n \geq p \) vertices and at least \((p - 2)n - \binom{p-1}{2} + 1\) edges has a \(K_p \) minor.

Jørgensen [5] and later Song and Thomas [9] generalized Theorem 1.8 to \(p = 8 \) and \(p = 9 \), respectively, as follows.

Theorem 1.9 (Jørgensen [5]) Every graph on \(n \geq 8 \) vertices with at least \(6n - 20 \) edges either contains a \(K_8 \)-minor or is isomorphic to a \((K_2,2,2,2,2)\)-cockade.

Theorem 1.10 (Song and Thomas [9]) Every graph on \(n \geq 9 \) vertices with at least \(7n - 27 \) edges either contains a \(K_9 \)-minor, or is isomorphic to \(K_{2,2,2,3,3} \), or is isomorphic to a \((K_1,2,2,2,2,2,6)\)-cockade.

In our proof of Theorem 1.7, we need to examine graphs \(G \) such that \(k + 1 \leq |G| \leq 2k - 5 \), \(\delta(G) \geq k - 2 \) and \(G \not\geq K_k \cup K_1 \). We shall use the following results. Lemma 1.11 is a result of Jørgensen [5].

Lemma 1.11 (Jørgensen [5]) Let \(G \) be a graph with \(n \leq 11 \) vertices and \(\delta(G) \geq 6 \) such that for every vertex \(x \) in \(G \), \(G - x \) is not contractible to \(K_6 \). Then \(G \) is one of the graphs \(K_{2,2,2,2,2}, K_{3,3,3} \) or the complement of the Petersen graph.

Lemma 1.11 implies Lemma 1.12 below. To see that, let \(G \) be a graph satisfying the conditions given in Lemma 1.12. By applying Lemma 1.11 to the graph obtained from \(G \) by adding \(6 - t \) vertices, each adjacent to every other vertex of the graph, we see that \(G \geq K_t \cup K_1 \).

Lemma 1.12 For \(t \in \{1, 2, 3, 4, 5\} \), let \(G \) be a graph with \(n \leq 2t - 1 \) vertices and \(\delta(G) \geq t \). Then \(G \geq K_t \cup K_1 \).
Lemma 1.13 is a result of Song and Thomas [9]. Note that the proof of Lemma 1.13 is computer-assisted.

Lemma 1.13 (Song and Thomas [9]) Let G be a graph with $|G| \in \{9, 10, 11, 12, 13\}$ such that $\delta(G) \geq 7$. Then either $G \geq K_7 \cup K_1$, or G satisfies the following

(A) either G is isomorphic to $K_{1,2,2,2,2}$, or G has four distinct vertices a_1, b_1, a_2, b_2 such that $a_1a_2, b_1b_2 \notin E(G)$ and for $i = 1, 2$ the vertex a_i is adjacent to b_i, the vertices a_i, b_i have at most four common neighbors, and $G + a_1a_2 + b_1b_2 \geq K_8$,

(B) for any two sets $A, B \subseteq V(G)$ of cardinality at least five such that neither is complete and $A \cup B$

includes all vertices of G of degree at most $|G| - 2$, either

(B1) there exist $a \in A$ and $b \in B$ such that $G' \geq K_8$, where G' is obtained from G by adding all edges aa' and bb' for $a' \in A - \{a\}$ and $b' \in B - \{b\}$, or

(B2) there exist $a \in A - B$ and $b \in B - A$ such that $ab \in E(G)$ and the vertices a and b have at most five common neighbors in G, or

(B3) one of A and B contains the other and $G + ab \geq K_7 \cup K_1$ for all distinct nonadjacent vertices $a, b \in A \cap B$.

2 Basic properties of non-complete double-critical graphs

We begin with basic properties of non-complete double-critical k-chromatic graphs established in [6]. We only list those that will be used in our proofs.

Proposition 2.1 (Kawarabayashi, Pedersen and Toft [6]) If G is a non-complete double-critical k-chromatic graph, then the following hold:

(a) $\delta(G) \geq k + 1$.

(b) Every edge $xy \in E(G)$ belongs to at least $k - 2$ triangles.

(c) G is 6-connected and no minimal separating set of G can be partitioned into two sets A and B such that $G[A]$ and $G[B]$ are edge-empty and complete, respectively.

Two proper vertex-colorings c_1 and c_2 of a graph G are equivalent if, for all $x, y \in V(G)$, $c_1(x) = c_1(y)$ iff $c_2(x) = c_2(y)$. Two vertex-colorings c_1 and c_2 of a graph G are equivalent on a set $A \subseteq V(G)$ if the restrictions $c_1|_A$ and $c_2|_A$ to A are equivalent on the subgraph $G[A]$. Let S be a separating set of G, and let G_1, G_2 be connected subgraphs of G such that $G_1 \cup G_2 = G$ and $G_1 \cap G_2 = G[S]$. If c_1 is a k-coloring of G_1 and c_2 is a k-coloring of G_2 such that c_1 and c_2 are equivalent on S, then it is clear that c_1 and c_2 can be combined to a k-coloring of G by a suitable permutation of the color classes of, say c_1. The main technique in the proof of Proposition 2.1 involves reassigning and permuting the colors on a separating set S of a non-complete double-critical k-chromatic graph G so that c_1 and c_2 are equivalent on S to obtain a contradiction, where
c₁ is a \((k - 1)\)-coloring of \(G₁\) and \(c₂\) is a \((k - 1)\)-coloring of \(G₂\). It seems hard to use this idea to prove that every non-complete double-critical \(k\)-chromatic graph is \(7\)-connected, but we can use it to say a bit more about minimal separating sets of size \(6\) in non-complete double-critical graphs.

Lemma 2.2 Suppose \(G\) is a non-complete double-critical \(k\)-chromatic graph. If \(S\) is a minimal separating set of \(G\) with \(|S| = 6\), then either \(G[S] \subseteq K₃,₃\) or \(G[S] \subseteq K₂,₂,₂\).

Proof. By Proposition 2.1(c), \(G\) is \(6\)-connected. Let \(S = \{v₁, \ldots, v₆\} \subseteq V(G)\) be a minimal separating set of \(G\) such that neither \(G[S] \subseteq K₃,₃\) nor \(G[S] \subseteq K₂,₂,₂\). Let \(G₁\) and \(G₂\) be subgraphs of \(G\) such that \(G₁ \cup G₂ = G\), \(G₁ \cap G₂ = S\), and there are no edges from \(G₁ - S\) to \(G₂ - S\). Since \(k \geq 6\) by Theorem 1.2, we have \(\delta(G) \geq 7\) by Proposition 2.1(a). In particular, since \(|S| = 6\), there must exist at least one edge \(yᵢzᵢ\) in \(G₁ - S\) for \(i \in \{1, 2\}\). It follows then that \(G₁\) is \((k - 2)\)-colorable since it is a subgraph of \(G - \{y₃₋₁, z₃₋₁\}\). Let \(c₁, c₂\) be \((k - 2)\)-colorings of \(G₁\) and \(G₂\), respectively. For \(i = 1, 2\), define \(|c_i(A)|\) to be the number of distinct colors assigned to the vertices of \(A\) by \(c_i\) for any \(A \subseteq S\). Clearly \(c₁\) and \(c₂\) are not equivalent on \(S\), otherwise \(c₁\) and \(c₂\), after a suitable permutation of the colors of \(c₂\), can be combined to a \((k - 2)\)-coloring of \(G\), a contradiction. By Proposition 2.1(c), \(α(G[S]) \leq 4\) and so neither \(c₁\) nor \(c₂\) applies the same color to more than four vertices of \(S\). Utilizing a new color, say \(β\), we next redefine the colorings \(c₁\) and \(c₂\) so that \(c₁\) and \(c₂\) are \((k - 1)\)-colorings of \(G₁\) and \(G₂\), respectively, and are equivalent on \(S\). This yields a contradiction, as \(c₁\) and \(c₂\), after a suitable permutation of the colors of \(c₂\), can be combined to a \((k - 1)\)-coloring of \(G\).

Suppose that one of the colorings \(c₁\) and \(c₂\), say \(c₁\), assigns the same color to four vertices of \(S\), say \(c₁(v₃) = c₁(v₄) = c₁(v₅) = c₁(v₆)\). Then \(\{v₃, v₄, v₅, v₆\}\) is an independent set in \(G\). By Proposition 2.1(c), we must have \(v₁v₂ \notin E(G)\). But then \(G[S] \subseteq K₂,₂,₂\), a contradiction. Thus neither \(c₁\) nor \(c₂\) assigns the same color to four distinct vertices of \(S\).

Next suppose that one of the colorings \(c₁\) and \(c₂\), say \(c₁\), assigns the same color to three vertices of \(S\), say \(c₁(v₄) = c₁(v₅) = c₁(v₆)\). Then \(\{v₄, v₅, v₆\}\) is an independent set in \(G\). Since \(G[S] \not\subseteq K₃,₃\), we have \(|c₂(\{v₁, v₂, v₃\})| \geq 2\). If \(|c₂(\{v₁, v₂, v₃\})| = 2\), we may assume that \(c₂(v₂) = c₂(v₃)\). Then \(\{v₂, v₃\}\) is an independent set. Then redefining \(c₂(v₄) = c₂(v₅) = c₂(v₆) = β\) and \(c₁(v₂) = c₁(v₃) = β\) will make \(c₁\) and \(c₂\) equivalent on \(S\), a contradiction. Thus \(|c₂(\{v₁, v₂, v₃\})| = 3\) and so \(c₂\) assigns distinct colors to each of \(v₁, v₂, v₃\). We redefine \(c₂(v₄) = c₂(v₅) = c₂(v₆) = β\). Clearly \(c₁\) and \(c₂\) are equivalent on \(S\) if \(c₁\) assigns distinct colors to each of \(v₁, v₂, v₃\). Thus \(|c₁(\{v₁, v₂, v₃\})| \leq 2\). Since \(G[S] \not\subseteq K₃,₃\), we have \(|c₁(\{v₁, v₂, v₃\})| = 2\). We may assume that \(c₁(v₂) = c₁(v₃)\). Now redefining \(c₁(v₃) = β\) yields that \(c₁\) and \(c₂\) are equivalent on \(S\). This proves that neither \(c₁\) nor \(c₂\) assigns the same color to three distinct vertices of \(S\). Thus \(6 \geq |c₁(S)| \geq 3\) \((i = 1, 2)\). Since \(G[S] \not\subseteq K₂,₂,₂\), we have \(|c₁(S)| \geq 4\) \((i = 1, 2)\). We may assume that \(|c₁(S)| \geq |c₂(S)|\). Then \(|c₂(S)| \leq 5\), for otherwise \(c₁\) and \(c₂\) are equivalent on \(S\). Thus \(5 \geq |c₂(S)| \geq 4\).
Suppose that $|c_2(S)| = 5$. Then $|c_1(S)| = 5$ or $|c_1(S)| = 6$. We can make c_1 and c_2 equivalent on S by assigning color β to one of the two vertices that are colored the same color by c_1 (if $|c_1(S)| = 5$) and c_2. Thus $|c_2(S)| = 4$. Since neither c_1 nor c_2 assigns the same color to more than two distinct vertices of S, we may assume that $c_2(v_3) = c_2(v_4)$ and $c_2(v_5) = c_2(v_6)$. Then $v_3v_4 \notin E(G)$ and $v_5v_6 \notin E(G)$. Since $G[S] \not\subseteq K_{2,2}$, we have $v_1v_2 \in E(G)$. Thus $c_1(v_1) \neq c_1(v_2)$. We may assume that $c_1(v_3) \neq c_1(v_4)$ as c_1 and c_2 are not equivalent on S. If $|c_1(S)| = 6$, then redefining $c_1(v_3) = c_1(v_6) = \beta$ and $c_2(v_3) = \beta$ will make c_1 and c_2 equivalent. If $|c_1(S)| = 5$, then at least one of v_3, v_4, v_5, v_6 shares a color with another vertex of S, say $c_1(v_6) = c_1(v_i)$ for some $i \in \{1, \ldots, 5\}$. Then redefining $c_1(v_5) = c_1(v_6) = \beta$ and $c_2(v_3) = \beta$ will again make c_1 and c_2 equivalent. Thus $|c_1(S)| = 4$. Suppose that one of v_1 or v_2 shares a color with another vertex of S. Since $v_1v_2 \in E(G)$, we may assume by symmetry that $c_1(v_1) = c_1(v_3)$. If $c_1(v_5)$ and $c_1(v_6)$ are the two colors each assigned to only a single vertex of S by c_1, then we also have $c_1(v_2) = c_2(v_4)$. Now redefining $c_1(v_3) = c_1(v_4) = \beta$ and $c_2(v_5) = \beta$ will make c_1 and c_2 equivalent. Hence one of the colors $c_1(v_5)$ and $c_1(v_6)$ is assigned to two vertices of S, say $c_1(v_6) = c_1(v_i)$ for some $i \in \{2, 4, 5\}$. If $i = 2$ then redefine $c_1(v_5) = c_1(v_6) = \beta$ and $c_2(v_1) = c_2(v_3) = \beta$, if $i = 4$ then redefine $c_1(v_3) = c_1(v_4) = \beta$ and $c_2(v_5) = \beta$, and if $i = 5$ then redefine $c_1(v_3) = \beta$ and $c_2(v_3) = \beta$, and in each case c_1 is equivalent to c_2. Therefore $c_1(v_1)$ and $c_1(v_2)$ are the two colors assigned to only a single vertex of S by c_1. Since c_1 and c_2 are not equivalent, we must have, say $c_1(v_3) = c_1(v_5)$ and $c_1(v_4) = c_1(v_6)$. Now redefining $c_1(v_5) = c_1(v_6) = \beta$ and $c_2(v_3) = \beta$ will make c_1 and c_2 equivalent.

3 Proofs of Theorem [1.7] and Theorem [1.6]

In this section we first prove Theorem [1.7].

Proof. Let G be a graph as in the statement with n vertices. By assumption, we have

1. $k + 1 \leq \delta(G) \leq 2k - 5$ and $\delta(N(x)) \geq k - 2$ for any x in G; and

2. G is $(k - 3)$-connected and for any minimal separating set S of G and any $x \in S$, $G[S \setminus \{x\}]$ is not a complete subgraph.

We first show that the statement is true for $k = 6$. Then G is 3-connected with $\delta(G) = 7$. The statement is trivially true if G is complete, so we may assume G is not complete. Let $x \in V(G)$ be a vertex of degree 7. By (1), $\delta(N(x)) \geq 4$, and so $e(N(x)) \geq 14$. If $e(N(x)) \geq 16$, then by Theorem [1.8] $N(x) \geq K_5$ and so $G \geq N[x] \geq K_6$. If $e(N(x)) = 15$, then let K be a component of $G - N[x]$ with $|N(K)|$ minimum. By (2), $|N(K)| \geq 3$ and $N(K)$ is not complete. Let $y, z \in N(K)$ be non-adjacent in $N(x)$ and let P be a (y, z)-path with interior vertices in K. We see that $G \geq K_6$ by contracting all but one of the edges of P. So we may assume that $e(N(x)) = 14$, and so $N(x)$ is 4-regular and $\overline{N(x)}$ is 2-regular. Thus $\overline{N(x)}$ is then either isomorphic to C_7 or to $C_4 \cup C_3$, and
in both cases it is easy to see that $N(x) \geq K_5$ and thus $G \geq K_6$, as desired. Hence we may assume $7 \leq k \leq 9$.

Suppose for a contradiction that $G \not\geq K_k$. We next prove the following.

(3) Let $x \in V(G)$ be such that $k + 1 \leq d(x) \leq 2k - 5$. Then there is no component K of $G - N[x]$ such that $N(K') \cap M \subseteq N(K)$ for every component K' of $G - N[x]$, where M is the set of vertices of $N(x)$ not adjacent to all other vertices of $N(x)$.

Proof. Suppose such a component K exists. Among all vertices x with $k + 1 \leq d(x) \leq 2k - 5$ for which such a component exists, choose x to be of minimal degree, and among all such components K of $G - N[x]$, choose K such that $|N(K)|$ is minimum. We first prove that $M \subseteq N(K)$. Suppose for a contradiction that $M - N(K) \neq \emptyset$, and let $y \in M \setminus N(K)$ be such that $d(y)$ is minimum. Clearly, $d(y) < d(x)$. Let J be the component of $G - N[y]$ containing K. Since $d(y) < d(x)$ the choice of x implies that $N(x) \setminus N[y] \subseteq V(J)$. Let $H = N(x) \setminus (N[y] \cup N(K))$. We have $d_G(z) \geq d_G(y)$ for all $z \in V(H)$ by the choice of y. Let $t = |V(H)|$. Then $t \geq 2$, for otherwise the vertex y and component H contradict the choice of x. On the other hand $t \leq d(x) - d(y) \leq (2k - 5) - (k + 1) = k - 6 \leq 3$ and so $k \geq 8$. Notice that $t = 2$ when $k = 8$. From (1) applied to y we deduce that $N(y) \cap N(x)$ has minimum degree at least $k - 3$. Let L be the subgraph of G induced by $(N[y] \cap N(x)) \cup V(H)$. Then the edge-set of L consists of edges of $N(x) \cap N(y)$, edges incident with y, and edges incident with $V(H)$. Clearly, $e(L - V(H), H) = \sum_{z \in V(H)} (d(z) - 1) - 2e(H) \geq t(d(y) - 1) - 2e(H)$. Thus

\[
e(L) \geq \frac{(k - 3)(d(y) - 1)}{2} + d(y) - 1 + e(L - V(H), H) + e(H) \\
\geq \frac{(k - 3)(d(y) - 1)}{2} + d(y) - 1 + t(d(y) - 1) - e(H) \\
\geq \frac{(k - 3)(d(y) - 1)}{2} + d(y) - 1 + t(d(y) - 1) - \frac{1}{2}t(t - 1) \\
\geq \left\{ \begin{array}{ll}
5(d(y) + 2) + \frac{d(y)}{2} - \frac{33}{2} & \quad \text{if } k = 8 \\
6(d(y) + t) + (t - 2)d(y) - 4 - 7t - \frac{1}{2}t(t - 1) & \quad \text{if } k = 9 \\
(k - 3)|V(L)| - \left(\frac{k - 2}{2} \right) + 1, & \quad \text{if } k = 8
\end{array} \right.
\]

because $d(y) \geq k + 1$ and $2 \leq t \leq k - 6$. If $k = 9$, since $12 \leq |V(L)| \leq 13$ the graph L is not a $(K_{2,2,2,2,2,5})$-cockade. By Theorem 1.8 and Theorem 1.9 $N(x) \geq L \geq K_{k-1}$. Thus $G \geq N[x] \geq K_k$, a contradiction. This proves that $M \subseteq N(K)$.

If $N(x) \geq K_{k-2} \cup K_1$, then $N(x)$ has a vertex y such that $N(x) - y \geq K_{k-2}$. If $y \notin M$, then $N(x) \geq K_{k-1}$. Otherwise, by contracting the connected set $V(K) \cup \{y\}$ we can contract K_{k-1} onto $N(x)$. Thus in either case $G \geq K_{k}$, a contradiction. Thus $N(x) \not\geq K_{k-2} \cup K_1$. If $k \leq 8$, by Lemma 1.11 and Lemma 1.12 we have $k = 8$ and $N(x)$ is either $K_{3,3,3}$ or \overline{P}, where \overline{P} is the complement of the Petersen graph. If $N(x) = \overline{P}$, it can be easily checked that $\overline{P} + yz \geq K_7$ for any $yz \in E(P)$. By (2), $|N(K)| \geq 5$ and $N(K)$ is not complete. Let $y, z \in N(K)$ be non-adjacent in $N(x)$ and let Q be a (y, z)-path with interior vertices in K. We see that $G \geq K_8$ by contracting
all but one of the edges of \(Q \), a contradiction. Thus \(N(x) = K_{3,3,3} \), and so \(M = N(x) \). Let \(\{a_1, a_2, a_3\} \) and \(\{b_1, b_2, b_3\} \) be the vertex sets of two disjoint triangles of \(\overline{N(x)} \). Suppose \(G - N[x] \) is 2-connected or has at most two vertices. By Proposition 2.1, the vertices \(a_i, b_i \) (\(i=1,2 \)) have at least two common neighbors in \(G - N[x] \). Let \(u_1, u_2 \) (resp. \(w_1, w_2 \)) be two distinct common neighbors of \(a_1 \) and \(b_1 \) (resp. \(a_2 \) and \(b_2 \)) in \(G - N[x] \). By Menger's Theorem, \(G - N[x] \) contains two disjoint paths from \(\{u_1, u_2\} \) to \(\{w_1, w_2\} \) and so \(G \geq N[x] + a_1a_2 + b_1b_2 \geq K_8 \), a contradiction. Thus \(G - N[x] \) has at least three vertices and is not 2-connected. If \(G - N[x] \) is disconnected, let \(H_1 = K \) and \(H_2 \) be another connected component of \(G - N[x] \). If \(G - N[x] \) has a cut-vertex, say \(w \), let \(H_1 \) be a connected component of \(G - N[x] - w \) and let \(H_2 = G - N[x] - V(H_1) \). In either case, \(H_1 \) and \(H_2 \) are disjoint connected subgraphs of \(G - N[x] \) such that \(M \subseteq N(H_1) \cup N(H_2) \) (because we have shown that \(M \subseteq N(K) \)). Thus \(N(H_1) \cup N(H_2) = N(x) \) because \(M = N(x) \). By (2), \(N(H_1) \) is not complete and \(|N(H_i)| \geq 4 \) since \(k = 8 \). Thus each of \(N(H_1) \) and \(N(H_2) \) must contain at least one edge of \(\overline{N(x)} \). Since \(N(x) = K_{3,3,3} \) and \(N(H_1) \cup N(H_2) = N(x) \), we may thus assume that \(a_1a_2 \in N(H_1) \) and \(b_1b_2 \in N(H_2) \). By contracting \(H_1 \) onto \(a_1 \) and \(H_2 \) onto \(b_1 \) we see that \(G \geq N[x] + a_1a_2 + b_1b_2 \geq K_8 \), a contradiction. This proves that \(k = 9 \) and so by Lemma 1.13 we may assume that \(N(x) \) satisfies properties (A) and (B).

Since \(d(x) \geq 10 \), \(N(x) \neq K_{1,2,2,2,2} \). If \(G - N[x] \) is 2-connected or has at most two vertices, then by property (A) and (2), the set \(N(x) \) has four distinct vertices \(a_1, b_1, a_2, b_2 \) such that \(a_1a_2, b_1b_2 \notin E(G) \), \(N(x) + a_1a_2 + b_1b_2 \geq K_8 \) and for \(i = 1, 2 \) the vertex \(a_i \) is adjacent to \(b_i \) and the vertices \(a_i, b_i \) have at least two common neighbors in \(G - N[x] \). Let \(u_1, u_2 \) (resp. \(w_1, w_2 \)) be two distinct common neighbors of \(a_1 \) and \(b_1 \) (resp. \(a_2 \) and \(b_2 \)) in \(G - N[x] \). By Menger’s Theorem, \(G - N[x] \) contains two disjoint paths from \(\{u_1, u_2\} \) to \(\{w_1, w_2\} \) and so \(G \geq N[x] + a_1a_2 + b_1b_2 \geq K_9 \), a contradiction. Thus \(G - N[x] \) has at least three vertices and is not 2-connected. If \(G - N[x] \) is disconnected, let \(H_1 = K \) and \(H_2 \) be another connected component of \(G - N[x] \). If \(G - N[x] \) has a cut-vertex, say \(w \), let \(H_1 \) be a connected component of \(G - N[x] - w \) and let \(H_2 = G - N[x] - V(H_1) \). In either case, \(H_1 \) and \(H_2 \) are disjoint connected subgraphs of \(G - N[x] \) such that \(M \subseteq N(H_1) \cup N(H_2) \) (because we have shown that \(M \subseteq N(K) \)). For \(i = 1, 2 \) let \(A_i = N(H_i) \cap N(x) \). By (2), \(A_i \) is not complete and \(|A_i| \geq 5 \) for \(i = 1, 2 \). By property (B), \(A_1 \) and \(A_2 \) satisfy properties (B1), (B2) or (B3).

Suppose first that \(A_1 \) and \(A_2 \) satisfy property (B1). Then there exist \(a_i \in A_i \) such that \(N(x) + \{a_1a : a \in A_1 \setminus \{a_1\}\} + \{a_2a : a \in A_2 \setminus \{a_2\}\} \geq K_8 \). By contracting the connected sets \(V(H_1) \cup \{a_1\} \) and \(V(H_2) \cup \{a_2\} \) to single vertices, we see that \(G \geq K_9 \), a contradiction. Suppose next that \(A_1 \) and \(A_2 \) satisfy property (B2). Then there exist \(a_1 \in A_1 \setminus A_2 \) and \(a_2 \in A_2 \setminus A_1 \) such that \(a_1a_2 \in E(G) \) and the vertices \(a_1 \) and \(a_2 \) have at most five common neighbors in \(N(x) \). Thus \(a_1, a_2 \in M \) by (1), and by another application of (1) there exists a common neighbor \(u \in V(G) \setminus N[x] \) of \(a_1 \) and \(a_2 \). But \(a_1 \notin A_2 \) and \(a_2 \notin A_1 \), and hence \(u \notin V(H_1) \cup V(H_2) \). Thus \(G - N[x] \) is disconnected and \(H_1 = K \). But then \(a_2 \in M \subseteq N(K) = N(H_1) \), a contradiction. Thus we may assume that \(A_1 \) and \(A_2 \) satisfy (B3), and hence \(A_i \subseteq A_{3-i} \) for some \(i \in \{1, 2\} \). As \(M \subseteq A_1 \cup A_2 \), we have \(M \subseteq N(H_{3-i}) \). Since \(A_i \) is not complete, let \(a, b \in A_i \) be distinct and not adjacent. By property
(B3), \(N(x) + ab \geq K_7 \cup K_1 \). Let \(P \) be an \((a,b)\)-path with interior in \(H_i \). By contracting all but one of the edges of the path \(P \) and by contracting \(H_{3-i} \) similarly as above, we see that \(G \geq K_9 \), a contradiction.

(4) \(G - N[x] \) is disconnected for every vertex \(x \in V(G) \) of degree at most \(2k - 5 \).

Proof. If \(G - N[x] \) is not null, then it is disconnected by (3). Thus we may assume that \(x \) is adjacent to every other vertex of \(G \). Let \(H = G - x \). Then \(|H| = d(x) \) and \(\delta(H) \geq k \). Thus \(e(H) \geq k \frac{d(x)}{2} > (k - 3) d(x) - (\frac{k-2}{2}) + 1 \) because \(d(x) \leq 2k - 5 \). By Theorem 1.8 and Theorem 1.9, \(G - x \) has a \(K_{k-1} \) minor and so the graph \(G \) has a \(K_k \) minor, a contradiction.

(5) Let \(x \in V(G) \) be such that \(k + 1 \leq d(x) \leq 2k - 5 \). Then there is no component \(K \) of \(G - N[x] \) such that \(d_G(y) \geq 2k - 4 \) for every vertex \(y \in V(K) \).

Proof. Assume that such a component \(K \) exists. Let \(G_1 = G - V(K) \) and \(G_2 = G[V(K) \cup N(K)] \). Let \(d_1 \) be the maximum number of edges that can be added to \(G_2 \) by contracting edges of \(G \) with at least one end in \(G_1 \). More precisely, let \(d_1 \) be the largest integer so that \(G_1 \) contains disjoint sets of vertices \(V_1, V_2, \ldots, V_p \) so that \(G_1[V_j] \) is connected, \(|N(K) \cap V_j| = 1 \) for \(1 \leq j \leq p = |N(K)| \), and so that the graph obtained from \(G_1 \) by contracting \(V_1, V_2, \ldots, V_p \) and deleting \(V(G) \setminus (\bigcup_j V_j) \) has \(e(N(K)) + d_1 \) edges. Let \(G_2' \) be a graph with \(V(G_2') = V(G_2) \) and \(e(G_2') = e(G_2) + d_1 \) edges obtained from \(G \) by contracting edges in \(G_1 \). By (1), \(|G_2'| \geq k + 2 \). If \(e(G_2') \geq (k-2)|G_2'| - (\frac{k-1}{2}) + 2 \), then by Theorem 1.8 and Theorem 1.9, \(G \geq G_2' \geq K_k \), a contradiction. Thus

\[
e(G_2) = e(G_2') - d_1 \leq (k-2)|G_2| - \left(\frac{k-1}{2}\right) + 1 - d_1 = (k-2)|N(K)| + (k-2)|K| - \left(\frac{k-1}{2}\right) + 1 - d_1.
\]

By contracting the edge \(xz \), where \(z \in N(K) \) has minimum degree \(d \) in \(N(K) \), we see that \(d_1 \geq |N(K)| - d - 1 \) and hence

\[
e(G_2) \leq (k-3)|N(K)| + (k-2)|K| - \left(\frac{k-1}{2}\right) + 2 + d. \quad (a)
\]

Let \(t = e_G(N(K), K) \). We have \(e(G_2) = e(K) + t + e(N(K)) \) and

\[2e(K) \geq (2k - 4)|K| - t, \quad (b)\]

and hence

\[
e(G_2) \geq (k-2)|K| + t/2 + d|N(K)|/2. \quad (c)
\]

Since \(N(x) \) has minimum degree at least \(k - 2 \), it follows that the subgraph \(N(K) \) of \(N(x) \) has minimum degree at least \((k-2) - (d(x) - |N(K)|)) \). Thus \(d \geq (k-2) - (d(x) - |N(K)|) \geq |N(K)| - k + 3 \). From (a) and (c) we get

\[-t/2 \geq -(k-3)|N(K)| + d(|N(K)| - 2)/2 + \left(\frac{k-1}{2}\right) - 2 \geq \begin{cases} -8 & \text{if } k = 7 \\ -14 & \text{if } k = 8 \\ -18 & \text{if } k = 9 \end{cases} \quad (d)\]

9
where the second inequality becomes \(\frac{t}{2} \leq 11 \) when \(|N(K)| = 2k - 6 \) and \(k = 7, 8 \), and the second inequality holds with equality only when \(|N(K)| = 10 \) and \(k = 9 \). Since \(G \) is not contractible to \(K_k \), we deduce from (b) and Theorem 1.8 Theorem 1.9 and Theorem 1.10 that \(|K| < 8 \). The inequalities \(e(K) \geq 5|K| - 8 \) when \(k = 7 \), \(e(K) \geq 6|K| - 14 \) when \(k = 8 \), and \(e(K) \geq 7|K| - 18 \) when \(k = 9 \) imply \(|K| \leq 3 \). But every vertex of \(K \) has degree at least \(2k - 4 \) and \(N(K) \) is a proper subgraph of \(N(x) \), and hence \(|K| = 3 \), \(|N(K)| = 2k - 6 \) and \(\frac{t}{2} = 3(k - 3) \geq 12 \) when \(k = 7, 8 \), and (d) holds with equality for \(|N(K)| = 12 \) when \(k = 9 \), contrary to our earlier observation of (d) that \(\frac{t}{2} \leq 11 \) when \(|N(K)| = 2k - 6 \) and \(k = 7, 8 \), and (d) holds with equality only when \(|N(K)| = 10 \) and \(k = 9 \).

By (1) there is a vertex \(x \) of degree \(k + 1, k + 2, \ldots, \) or \(2k - 5 \) in \(G \). Choose such a vertex \(x \) so that \(G - N[x] \) has a component \(K \) of minimum order. Then choose a vertex \(y \in V(K) \) of least degree in \(G \). Thus \(k + 1 \leq d_G(y) \leq 2k - 5 \) by (1) and (5). Let \(L \) be the component of \(G - N[y] \) containing \(x \). We claim that \(N(L) \) contains all vertices of \(N(y) \) that are not adjacent to all other vertices of \(N(y) \). Indeed, let \(z \in N(y) \) be not adjacent to some vertex of \(N(y) \setminus \{z\} \). We may assume that \(z \notin N(x) \), for otherwise \(z \in N(L) \). Thus \(z \in V(K) \), and hence \(d_G(z) \geq d_G(y) \) by the choice of \(y \). Thus \(z \) has a neighbor \(z' \in N[x] \cup V(K) \setminus N[y] \). Then \(z' \in V(L) \), for otherwise the component of \(G - N[y] \) containing \(z' \) would be a proper subgraph of \(K \). Thus \(z \in N(L) \). This proves our claim that \(N(L) \) contains all vertices \(z \) as above, contrary to (3). This contradiction completes the proof of Theorem 1.7.

We are now ready to prove Theorem 1.6.

Proof. Let \(G \) be a double-critical \(t \)-chromatic graph with \(t \geq k \). The assertion is trivially true if \(G \) is complete. By Theorem 1.2 we may assume that \(t \geq 6 \). By Proposition 2.1(a), \(\delta(G) \geq k + 1 \). By Theorem 1.8 Theorem 1.9 and Theorem 1.10 we have \(\delta(G) \leq 2k - 5 \). By Proposition 2.1(b), every edge of \(G \) is contained in at least \(k - 2 \) triangles. By Proposition 2.1(c), \(G \) is 6-connected and no minimal separating set of \(G \) can be partitioned into a clique and an independent set. By Theorem 1.7 \(G \geq K_k \), as desired.

Acknowledgement

The authors would like to thank the anonymous referees for many helpful comments.

References

[1] B. Albar and D. Gonçalves, On triangles in \(K_r \)-minor free graphs, arXiv:1304.5468.
[2] G. A. Dirac, Homomorphism theorems for graphs, Math. Ann. 153 (1964) 69–80.
[3] P. Erdős, Problem 2. In *Theory of Graphs (Proc. Colloq., Tihany, 1966)*, page 361. Academic Press, New York, 1968.
[4] H. Hadwiger, Über eine Klassifikation der Streckenkomplexe, Vierteljschr. Naturforsch. Ges Zürich 88 (1943) 133–142.

[5] L.K. Jørgensen, Contractions to K_8, J. Graph Theory 18 (1994) 431–448.

[6] K. Kawarabayashi, A. S. Pedersen, and B. Toft, Double-critical graphs and complete minors, Electron. J. Combin., 17 (2010), #R87.

[7] W. Mader, Homomorphiesätze für Graphen, Math. Ann. 178 (1968) 154–168.

[8] N. N. Mozhan, On doubly critical graphs with the chromatic number five, Metody Diskretn. Anal., 46 (1987) 50–59.

[9] Z-X. Song and R. Thomas, The extremal function for K_9 minors, J. Combin. Theory, Ser. B 96 (2006) 240–252.

[10] M. Stiebitz, K_5 is the only double-critical 5-chromatic graph. Discrete Math. 64 (1987) 91–93.