Total syntheses of oxygenated brazanquinones via regioselective homologous anionic Fries rearrangement of benzylic O-carbamates

Glaucia Barbosa Candido Alves Slana, Mariângela Soares de Azevedo, Rosângela Sabattini Capella Lopes, Cláudio Cerqueira Lopes* and Jari Nobrega Cardoso

Address: Instituto de Química, Universidade Federal do Rio de Janeiro, CT, Bl A/508, 21949-900 Rio de Janeiro – RJ, Brazil
Email: Glaucia Barbosa Candido Alves Slana - glaucia@gmx.net; Mariângela Soares de Azevedo - mari@unir.br; Rosângela Sabattini Capella Lopes - ieg0222@acd.ufrj; Cláudio Cerqueira Lopes* - ieg0222@acd.ufrj; Jari Nobrega Cardoso - jari@iq.ufrj.br
* Corresponding author

Abstract
Using new variations of anionic aromatic chemistry, the total synthesis of oxygenated brazanquinones (1a-1c), derived from β-brasan, a natural product isolated from Caesalpinia echinata, via carbamates 2a-2c is described.

Introduction
The search for new synthetic routes for the total synthesis of biologically active natural products has been growing in recent years, often stimulated by the lack of synthetic drugs for the cure of diseases.

In various biological tests, several natural and synthetic brazanquinones have shown high biological activity. Cheng [1,2] in his work, evaluated (in vitro) a series of brazanquinones and their inhibitory activity against a series of cancer cell lines. Their activity has been attributed to their structure, in which the two ring systems are coplanar, and has attracted considerable attention as interesting synthetic targets. [3-11] However, the routes described in the literature do not offer the possibility of facile syntheses of other oxygenated analogues.

In this present work, the versatility of a new variation of anionic aromatic chemistry developed in our research group [12] will be applied in the context of rapid and efficient construction of these bioactive compounds for future biological evaluation.

The emerging carbanionic aromatic chemistry (anionic ortho-Fries, [13] homologous anionic Fries, [14] remote anionic Fries rearrangements [15] and carbamoyl Baker-Venkataraman reaction [16]) originating from the Directed ortho Metalation (DoM) strategy, [17] offer a mild and regioselective complement to classical Friedel-Crafts approaches for the rational construction of polysubstituted aromatics, biaryls, and several classes of heterocycles (Figure 1).

In 1993, Gawley showed that O-benzylcarbamates in the presence of directed metalation groups (DMGs) undergo competitive anionic [1,2] and [1,4] Wittig – carbamoyl rearrangements (paths a and b) [18,19] orientated by the groups R and DMGs (Figure 1).
Conceptual combination of path b and the well-established tandem DoM route to anthraquinones and heteroanthraquinones [20] led to the conjecture that, barring the competitive [1,2]-Wittig rearrangement, and one-pot route, 3 → 4 → 1, may be established in a direct manner without resort to DoM-derived benzamide intermediate, thereby establishing new carbonyl dianion equivalency 4 (see Scheme 1).

We now report the versatility of this strategy, in the context of rapid and efficient construction of new oxygenated brazanquinones (1a-1c) derived from β-brasan, a natural product isolated from *Caesalpina echinata* (Scheme 2).

Results and discussion

The synthesis of brazanquinones (1a-1c) is summarized in Scheme 2. According to our recent report, [12] the benzoylbenzofurans 5a-5d, were prepared in one-pot reaction from α-bromoacetophenone 6 and ortho-hydroxybenzaldehydes 7a-7d in excellent yields (90–96%). Reduction of benzoylbenzofurans 5a-5d in the presence of NaBH₄ yielded the secondary alcohols 8a-8d, which upon treatment with N,N-diethylcarbamoyl chloride, and sodium hydride afforded the carbamates 2a-2d (Scheme 2).

The carbamates 2a-2c were cyclized in the presence of excess sec-BuLi in THF at -78°C to afford the desired brazanquinones 1a-1c in reasonable yields (54%–57%) (Scheme 2).

The mechanism suggested by us and shown in scheme 1, involves first the preparation of aryllithium intermediates 3 from the carbamates 2a-2b by the reversible metathesis reaction known [21-23] as the lithium-halogen exchange which has been widely employed for replacement of a bromine or iodine atom in a substrate by lithium. The intermediate 3 then undergoes an intramolecular anionic Fries rearrangement to intermediate 4, that was isolated in our previous results. [12]

Snieckus reported the remote metalation and cyclization of diethyl N-methyl-O-tolylantranilamide to N-methyl dibenzazepinone [24-26] developing a new regiospecific construction of condensed aromatics. We found this route very attractive and envisaged that by *in situ* treatment of intermediate 4 with the third equivalent of sec-BuLi, the cyclization to the desired quinone 1a-d would be obtained.
Scheme 2: Total syntheses of brazanquinones (1 a-c).

Scheme 3: Total syntheses of phthalide (9).

One unexpected result was the formation of the phthalide 9 when the dimethoxy carbamate 2d was treated with excess sec-BuLi under the same reaction conditions as 2a-2c. Presumably, the presence of 4-OMe inhibits the cyclization by shielding the remote position (Scheme 3).

Conclusion
An efficient synthesis of brazanquinones (1a-c) using new variations of anionic aromatic chemistry was described. This methodology could be expanded in the future for the construction of new molecules with similar structures.

Additional information
See Additional file 1 for experimental data

Acknowledgements
We thank FAPERJ and FUJB for financial support. CNPq, CAPES are acknowledged for scholarships to Glaucia B. C. A. Slana and Mariangela S. Azevedo.

References
1. Cheng CC, Dong Q, Liu D-F, Luo Y-L, Liu LF, Chen A-Y, Yu C, Savaraj N, Chou T-C: J Med Chem Soc 1993, 36:4108.
2. Crawford PW, Carlos E, Ellegood JC, Cheng CC, Dong Q, Lu LF, Luof YL: Electrochimica Acta 1996, 41:2399.
3. Stadlbauer W, Kappe Th: Z Naturforsch 1975, 30b:139.
4. El-Wareth A, Sarhan AO, El-Dean AM, Abdel-Monem M: Monatsh Chem 1998, 129:205.
5. Martínez E, Martínez L, Estévez JC, Estévez RJ, Castedo L: J Med Chem Soc 1978, 21:291.
6. Bentley KW, Robinson R: J Chem Soc 1950:1353.
7. Yoshida K, Adachi T, Oga N, Kubo Y: Chem Lett 1990:2049.
8. Simonitsch E, Eisenhuth W, Stamm OAE, Schmid H: Helv Chim Acta 1960, 43:58.
9. Chatterjea JN: Experimentio 1953, 9:7.
10. Jha OP: J Ind Chem Soc 1973, 44:740.
11. Chatterjea JN, Jha OP: J Ind Chem Soc 1970, 47:6.
12. Azevedo MS, Lopes CC, Lopes RSC, Alves GBC: Synthesis 2004, 8:1272-1268.
13. Sibi MP, Snieckus V: J Org Chem 1983, 48:1935.
14. Kalinin AV, Miah MAJ, Chatterpadhyay S, Tsukazaki M, Wicki M: Synlett 1997, 7:839.
15. Wang W, Snieckus V: J Org Chem 1992, 57:424.
16. Kalinin AV, da Silva AJM, Lopes CC, Lopes RSC, Snieckus V: Tetrahedron Lett 1998, 39:4995.
17. Snieckus V: Chem Rev 1990, 90:897.
18. Zhang P, Gawley RE: J Org Chem 1993, 58:3223.
19. Superchi S, Sotomayor N, Maio G, Joseph B, Campbell MG, Snieckus V: Tetrahedron Lett 1996, 37:60.
20. Watanabe M, Snieckus V: J Am Chem Soc 1980, 102:1457. for a tandem DoM route to anthraquinones and heteroanthraquinones based on initial benzamide-aromatic aldehyde condensation
21. Wittig G, Pockels D, Droge H: Chem Ber 1938, 71:1903.
22. Gilman H, Jacoby AL: J Org Chem 1938, 3:108.
23. Gilman H, Langham W, Jacoby AL: J Am Chem Soc 1939, 61:106.
24. Fu JM, Zhao BP, Sharp MJ, Snieckus V: J Org Chem 1991, 56:1683.
25. Wang W, Snieckus V: J Org Chem 1992, 57:424.
26. Wang X, Snieckus V: Tetrahedron Lett 1991, 32:4879.
27. Still WC, Michael K, Abhiji M: J Org Chem 1978, 4:2923.
28. Watson SC, Eastman JF: J Organomet Chem 1967, 9:165.