Objective: The present study was aimed to screen silver nanoparticles (AgNPs) using different plant extracts and also to study their antimicrobial property against different human pathogens.

Methods: Nine different plants, namely Parthenium hispidum, Vinga rose, Catheranthus roseus, Phyllanthus amarus, Azadirachta indica, Jatropha curcas, Tectona grandis, Ocimum sanctum, and Peltophorum pterocarpum were screened for the synthesis of AgNPs. The AgNPs were synthesized using leaf extracts and was well characterized using a UV-Visible spectrophotometer, transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) and zeta potential measurement. The AgNPs was tested for their antibacterial and antifungal efficacy using agar well diffusion method.

Results: Among the nine different plant extracts screened, AgNPs synthesized using Peltophorum pterocarpum leaf extract showed good stability even after one month with maximum absorption spectra of 425 nm. The synthesized AgNPs was found to be spherical in shape with an average size ranging from 20 to 60 nm. The EDX spectrum reveals the presence of silver peaks and the XRD spectrum confirms the crystalline nature of AgNPs. A Maximum zone of inhibition of 18.04±0.74 was found when the synthesized AgNPs was tested against B. subtilis, and 12.3±0.31 against A. niger when the concentration was AgNPs was maintained at 100 µg/ml.

Conclusion: The results of the present study conclude that the AgNPs synthesized using Peltophorum pterocarpum leaf extracts is found to be stable and possesses broad-spectrum antibacterial activity against different tested pathogens.

Keywords: Antibacterial, Antifungal, Plant extracts, Silver nanoparticles

INTRODUCTION

The field nanoscience deals with the study of fabricating nanostructures between the diameters of 1 to 100 nm which can be used in different areas of science including medicine, biology, materials science, and chemistry etc. Recently, the field of nanotechnology has started emerging one of the most promising areas of science with diverse potential applications. Among the different nanostructures, the application of metal nanoparticles, especially silver and silver associated nanostructures has created a major impact in the field of biomedicine. The silver nanoparticles (AgNPs) are found to be very attractive due to its antimicrobial, angiogenic and anticancer properties [1, 2]. Due to a wide range of biological applications of AgNPs, there is huge interest in developing a novel protocol using various biological sources to synthesize nanoparticles with different size and shapes [3]. Traditionally nanoparticles were synthesized using the physical and chemical process where it included the utilization of various chemicals which could be hazardous to both biological systems and environment [4]. Comparing with the existing physical and chemical methods, the biologically mediated nanoparticles synthesis process was found to be less toxic, safe and eco-friendly [5].

The utilization of plant and plant-based components for the treatment and prevention of various health-related complications have been in practice for many decades. Several bioactive components were used for the treatments which found to be similar to various chemical compounds [6, 7]. In the plant-mediated synthesis of metal nanoparticles, various active molecules of plants such as flavonoids, terpenoids, amines, tannins, ketone, and proteins were used as reducing and capping agents [8, 9]. Several researchers have studied the green biosynthesis of AgNPs using different plants, including Pulicaria glutinosa [10], Plumbago zeylanica [11], Albizia adenanthofolia [12], Achillea biebersteinii [13], Oreganian vulgar [13], Anonna squamosa [14] and Erythrina Indica [15].

Recently, the development of drug-resistant pathogens has created a major impact globally, and demands for the production of novel compounds with potent antimicrobial property have been increased [16]. Currently, the AgNPs have been thoroughly investigated extensively for its antimicrobial potential due to its strong bactericidal and inhibitory properties against several pathogenic strains [17-19]. Silver in the form of AgNPs tends to have increased antimicrobial property. In this view, the present study hypothesized that AgNPs may cause cell lysis by interacting with a thiol group, thus inactivating enzymes [20, 21].

Globally, the development of multidrug-resistant pathogens has created a serious issue which has profound impact on public health. This is mainly due to the extreme and improper use of antibiotics, thus, leads to the development of antibiotic-resistant genes which may transfer from between the bacteria in higher level organisms. The metallic nanoparticles such as AgNPs can be replaced in future as an alternate substitute due to its broad-spectrum antimicrobial property. In this view, the present study aims to explore the different plants for the synthesis of AgNPs using plant extracts as reducing agent and to study the efficacy of synthesized silver nanoparticles as a potent source of the antimicrobial agent against several bacterial pathogens.

MATERIALS AND METHODS

Preparation of the plant extract

The mature leaves of the following plants Parthenium hispidum, Vinga rose, Catheranthus roseus, Phyllanthus amarus, Azadirachta indica, Jatropha curcas, Tectona grandis, Ocimum sanctum, and Peltophorum pterocarpum were locally collected from the Centre for advanced studies in Botany, University of Madras, Chennai (Latitude 13.010 ° and Longitude 80.239 °). Identification of plant materials was done at the Centre for Advanced studies in Botany and voucher specimens of all plants where serially numbered as given: Parthenium hispidum (KA1), Vinga rose (KA2), Catheranthus
Characterization of synthesized AgNPs

UV–Visible spectroscopy

The AgNPs synthesized using Peltophorum pterocarpum leaf extracts were characterized using the UV–Visible spectrophotometer. The freshly synthesized AgNPs using plant extracts were analyzed for their maximum absorption spectra using UV–Visible spectrophotometer (U 2900, Hitachi) in the range of 300 to 700 nm [22].

Stability studies of AgNPs

The AgNPs synthesized using Peltophorum pterocarpum was investigated for their stability by analyzing the UV-Vis spectra, precipitation and agglomeration property. The synthesized AgNPs was regularly monitored for the maximum absorption spectra from 0 h to 1 mo using UV-Vis spectrophotometer and in addition, was also monitored for precipitation and agglomeration of AgNPs.

X-ray diffraction (XRD)

The AgNPs synthesized was subjected to XRD studies in order to study the crystalline nature of AgNPs. For this analysis, the AgNPs was dried; coated on XRD grid and the XRD spectrum was recorded at a voltage of 40 kV with Cu-Kα radiations using Philips X-ray diffractometer [23].

Fourier transform infrared (FTIR) spectroscopy

The FTIR study was performed to determine the different functional groups associated with the synthesized AgNPs. For FTIR measurement, the phytoogenic AgNPs was dried and mixed with potassium bromide to form a pellet. The pellet was then analyzed for FTIR spectra in the range of 4000 to 400 cm⁻¹ using FTIR spectroscopy.

Transmission electron microscopy (TEM)

The TEM analysis was performed to determine the size of the synthesized AgNPs. The AgNPs synthesized using plant extract was diluted with sterile distilled water; applied to carbon-coated copper TEM grids and allowed to dry under room temperature [24]. The grids were then analyzed using a TEM microscope (FEI Tecnai) at 100 kV coupled with energy dispersive X-ray spectroscopy (EDX) and also selected area electron diffraction (SAED).

Antibacterial property of AgNPs

Four different bacterial strains, namely two Gram-positive bacteria, Staphylococcus aureus (MTCC-96), Bacillus subtilis (MTCC-441) and two Gram-negative bacteria such as Escherichia coli (MTCC-443), Pseudomonas aeruginosa (MTCC-1688), were procured from the Institute of Microbial Technology, Chandigarh, India and were used for antibacterial efficacy of synthesized AgNPs.

The antibacterial activity of phytoogenic AgNPs was evaluated using a modified agar well diffusion method. Briefly, under aseptic conditions, sterile Mueller hinton agar (MHA) was prepared in sterile Petri plates. Plates were loaded with varying concentrations of synthesized AgNPs (25, 50, 75, 100/µl) and positive control, gentamicin (10 µg/ml). Petri plates were incubated at 37 °C for 24 h. The plates were then incubated, the diameter of the inhibition zone was measured for each test strain and was recorded.

RESULTS AND DISCUSSION

Screening of plant extracts for AgNPs synthesis

In the present study, the leaf extracts of different plants were screened for the synthesis of AgNPs. To one ml of different leaf extracts, 9.0 ml of 1 mmol silver nitrate was mixed separately, and the tubes were incubated in dark conditions at room temperature for 24 h. The solution containing plant extracts and silver nitrate was monitored for colour change, precipitation and agglomeration of nanoparticles [22]. During the preliminary investigation, among the different plant extracts tested, the AgNPs synthesized using Peltophorum pterocarpum leaf extracts showed good stability and hence it was utilized for further studies.

Characterization of synthesized AgNPs

UV–Visible spectroscopy

The AgNPs synthesized using Peltophorum pterocarpum leaf extracts were characterized using the UV–Visible spectrophotometer. The freshly synthesized AgNPs using plant extracts was analyzed for their maximum absorption spectra using UV–Visible spectrophotometer (U 2900, Hitachi) in the range of 300 to 700 nm [22]. Briefly, fungal spores of 1 x 10⁶ spores/ml were inoculated on sterile potato dextrose agar plate using the spread plate technique. Five wells of 4 mm diameter were made using sterile punch borer and varying concentrations of synthesized AgNPs (25, 50, 75, 100/µl) and positive control, amphotericin B (10 µg/ml). The plates were then incubated at 27 °C for 3 to 4 d, and the zone of inhibition was measured.

Statistical analysis

In the present study, the experiments were performed independently for three times. The obtained values were processed and calculated using GraphPad Prism 6.0 (GraphPad Software, Inc.; USA) software.

RESULTS AND DISCUSSION

In the present study, four different plant extracts namely, Parthenium hystidum, Vinga rose, Catheranthus roseus, Phyllanthus amarus, Azadirachta indica, Jatropha curcas, Tectona grandis, Ocimum sanctum, and Peltophorum pterocarpum were tested for the biogenic synthesis of AgNPs. All the five different plant extracts supported the synthesis of AgNPs within 24 h by a visible change in the colouration from pale yellow to brown.

However, AgNPs synthesized using Peltophorum pterocarpum leaves extract showed much more stable when compared with AgNPs synthesized using other plant extracts (fig. 1). Okafor and co-workers investigated the synthesis of AgNPs using reducing agents from aqueous plant extracts from seven different plant leaves [27]. The colour change was due to the presence of various plant components such as alkaloids, saponins, flavonoids, steroids which may play a role as reducing agent. Similar results were observed by various researchers who also synthesized AgNPs using different plant extracts [28-30].

UV–Visible spectrophotometric analysis of AgNPs

The silver ion reduction to a silver atom in the test solution was observed using the UV–Visible spectrophotometer. The change in colour was observed due to the Ag ion leading to the formation of AgNPs. The colour change is primarily due to excitation of surface Plasmon vibrations which is a characteristic observation during the formation of AgNPs. In the present study, maximum absorption peaks were recorded and found to be 425 nm after 24 h, which further confirmed the formation of AgNPs (fig. 2). The synthesized AgNPs absorb radiation strongly at characteristic wavelengths due to its electrons transition. The exact mechanism of metal nanoparticles synthesis is not well understood. However reports suggest that the reduction was due to the role of NADH coenzyme in the medium [31, 32].
Fig. 1: Screening of AgNPs synthesis using different plant extracts

Fig. 2: UV-Visible spectrophotometric analysis of synthesized AgNPs

Fig. 3: Stability studies of synthesized AgNPs
Stability studies of phytosynthesized AgNPs

The *Peltophorum pterocarpum* leaves extract mediated AgNPs was analyzed for their stability studies using UV-Visible spectroscopy. The maximum spectra of synthesized AgNPs were monitored using UV-Visible spectrophotometer from 0 h to 1 mo. Initially, at 4 h, a maximum spectrum was recorded at 380 nm which confirmed the formation of AgNPs, further there is an increase in peak from 380 nm to 420 nm at the end of 12 h. The results reveal the maximum absorption spectra of synthesized AgNPs was found to be 425 nm even after 1 mo, which confirms the potential stability of AgNPs synthesized using *P. pterocarpum* (fig. 3). The above results conclude that the silver nanoparticle activity was started at 8 h and it was ended at 24 h and after that its activity was stable up to a month.

XRD analysis of AgNPs

The XRD spectra of the synthesized AgNPs showed three distinct peaks representing Bragg reflections of 1 1 1, 2 0 0, and 2 2 0 which corresponds to the face-centered cubic (fcc) of the silver confirming the crystalline nature of the photosynthesized AgNPs. The spectral data obtained were well matched with previously reported literature which also shows similar results [33, 34].

FTIR analysis of leaf extract and AgNPs

Results of the FTIR spectrum of both the leaf extract and AgNPs synthesized were shown in fig. 4. The spectrum of *Peltophorum pterocarpum* leaf extracts and synthesized AgNPs shows several absorption peaks at 3250, 1614, 1535, 1333, 963 and 883 cm⁻¹. The intense absorption peaks of 3250 cm⁻¹ represent the hydroxyl groups of plant components such as alcohols and phenolic compounds. An absorption peak of 1614 indicates C=O amide stretch due to the presence of proteins which were similar to the observation reported by Ahmad and co-workers [35]. Less intense peak at 1333 cm⁻¹ denotes the C-N stretching vibrations due to the aromatic amines present in both the spectra of synthesized AgNPs and leaf extracts [2, 36, 37]. The results of both FTIR spectra clearly reveals that the dual role of leaf components which acted as both reducing and capping agents during the synthesis of AgNPs which was observed well in the presence of various corresponding peaks.

TEM analysis of AgNPs

The TEM analysis was used to determine the size and shape of the AgNPs. The TEM results of the present study revealed that the nanoparticles synthesized were of spherical shape with an average size ranging from 20 to 60 nm distributed evenly (fig. 5a) and the inset (fig. 5b) shows SAED pattern. The EDX spectrum also revealed the presence of silver peaks which confirms the synthesis of AgNPs (fig. 6). Gavade and co-workers developed a single step biogenic method for the synthesis of AgNPs using leaf extract of *Ziziphus jujube*. They also measured the size of AgNPs using TEM analysis, averaging about 25 nm [38]. Several researchers also studied the morphology and size of AgNPs synthesized from different plant extracts using TEM analysis also reveals the presence of monodisperse spherical nanoparticles ranging between 20 60 nm [39, 40].
Antibacterial studies of phytosynthesized AgNPs

In the present study, AgNPs synthesized using *Peltophorum pterocarpum* leaves extract was tested for their efficacy against four different bacterial pathogens, namely *Staphylococcus aureus*, *Bacillus subtilis*, *Escherichia coli* and *Pseudomonas aeruginosa* at four different concentrations. Among the tested strains, in general, AgNPs shows good inhibition activity against Gram-negative bacteria compared to Gram-positive bacteria. Maximum inhibition activity was found when AgNPs (100 µg/ml) was treated against *P. aeruginosa* which recorded a zone of inhibition of 16 mm (table 1). This followed by AgNPs treated *B. subtilis* showed a zone of inhibition of 18 mm when tested at 100 µg/ml (fig. 7). This present study also shows that the antibacterial activity was concentration dependent as the concentration of AgNPs increases the antibacterial activity. Standard positive control was tested for antibacterial activity against all the tested strains.

Test bacterial pathogens	Zone of inhibition (mm)*	AgNPs 25 µg/ml	AgNPs 50 µg/ml	AgNPs 75 µg/ml	AgNPs 100 µg/ml	Gentamicin 10 µg/ml
Staphylococcus aureus		12.12±0.14	12.07±0.52	14.07±0.22	15.18±0.43	18.07±0.24
Bacillus subtilis		14.59±0.23	15.67±0.75	16.04±0.38	18.04±0.74	20.04±0.40
Escherichia coli		8.16±0.37	8.35±0.98	10.25±0.55	12.08±1.09	15.51±0.59
Pseudomonas aeruginosa		12.15±0.52	12.80±1.21	14.25±0.73	16.49±1.47	14.27±0.78

*All the experiments were repeated independently three times. Values were represented as an average means±standard deviation.
Antifungal studies of phytosynthesized AgNPs

The antifungal activity of AgNPs against A. niger was studied using the agar well diffusion method. The maximum zone of inhibition (12 mm) was found when AgNPs was tested with 100 µg/ml of concentration against A. niger. The positive control amphotericin B was tested against A. niger, and the zone of inhibition was found to be 18 mm (fig. 8). The mechanism of antifungal action of AgNPs was still not clear. Similar studies were performed by Bahrami-Teimoori and their co-workers (2017) who have reported the antifungal property of AgNPs against Macrophomina phaseolina, Fusarium oxysporum and Alternaria alternate [47]. Similar studies were also reported by earlier researchers who investigated the antifungal activity against human fungal pathogens [23, 48].

CONCLUSION

In the present study, five different plants were studied for the synthesis of AgNPs. Among the five plants, the AgNPs synthesized using Peltophorum pterocarpum leaves extract shows good stability, which was further characterized and tested for their antimicrobial property. The synthesized AgNPs was found to be spherical and had potent antimicrobial activity against both bacterial and fungal pathogens. The synthesized AgNPs showed a broad spectrum of antibacterial activity against both the Gram-positive and Gram-negative bacteria. Maximum activity AgNPs was found against P. aeruginosa followed by B. subtilis. The AgNPs also showed potent activity against filamentous fungi, A. niger which clearly confirms that the synthesized AgNPs could be a potent antimicrobial agent. However, a further detailed study is required to reveal the exact mechanism and role of AgNPs against the human pathogens.

ACKNOWLEDGMENT

The authors need to the Director, CAS in Botany, University of Madras, Chennai, for providing the laboratory facilities. We thank NCNST, University of Madras, for providing characterization studies.

AUTHORS CONTRIBUTIONS

All the authors have contributed equally

CONFLICTS OF INTERESTS

Authors declare no conflicts of interest

REFERENCES

1. Baharara J, Namvar F, Ramezani T, Mousavi M, Mohamad R. Silver nanoparticles biosynthesized using Achillea biebersteinii flower extract: apoptosis induction in MCF-7 cells via caspase activation and regulation of Bax and Bel-2 gene expression. Molecules 2015;20:2693-706.
2. Salehi S, Shandiz SA, Ghanbar F, Darvish MR, Ardestani MS, Mirzaie A, et al. Phytosynthesis of silver nanoparticles using Artemisia marshalliana sprengel aerial part extract and assessment of their antioxidant, anticancer, and antibacterial properties. Int J Nanomed 2016;11:1835-46.
3. Sharma VK, Yngard RA, Lin Y. Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 2009;145:83-96.
4. Xu ZP, Zeng QH, Lu GQ, Yu AB. Inorganic nanoparticles as carriers for efficient cellular delivery. Chem Eng Sci 2006;61:1027-40.
5. Anbarasu A, Karnan P, Deepa N, Usha R. Carica papaya mediated green synthesized silver nanoparticles. Int J Curr Pharm Res 2018;10:15-20.
6. Grover A, Yadav S, Vats V. Medicinal plants of India with anti-diabetic potential. J Ethnopharmacol 2002;81:91-100.
7. Ayyanar BM, Ignacimuthu S. Ethnobotanical survey of medicinal plants commonly used by Kani tribals in Tirunelveli hills of Western Ghats. India. J Ethnopharmacol 2011;134:851-64.
8. Sahadevan R. Green synthesis and characterization of the silver nanoparticle using leaf extract of Capparis zeylanica. Asian J Pharm Clin Res 2014;7:44-8.
9. Lotha R, Sivasubramanian A, Muthuraman MS. Silver nanoparticles from medicinally important Euphorbia cyathophora extract: biosynthesis, characterization, and anticancer activity. Asian J Pharm Clin Res 2018;11:154-6.
10. Khan M, Khan ST, Khan M. Antibacterial properties of silver nanoparticles synthesized using Pulicaria glutinosa plant extract as a green bioreduction. Int J Nanomed 2014;9:3551-65.
11. Sahunke GR, Ghosh S, Kumar RJS. Rapid, efficient synthesis and characterization of silver, gold, and bimetallic nanoparticles from the medicinal plant Plumbago zeylanica and their application in biofilm control. Int J Nanomed 2014;9:2635-53.
12. Govender R, Phulukdaree A, Gengam RM, Anand K, Chaturong AA. Silver nanoparticles of Albizia adiantifolia: the induction of apoptosis in human lung carcinoma cell line. J Nanobiotechnol 2013;11:15.
13. Sanikar R, Karthik A, Prabu A, Kartith S, Shivashankari KS, Ravikumar V. Origanum vulgare mediated biosynthesis of silver nanoparticles for its antibacterial and anticancer activity. Colloids Surf B 2013;108:80-4.
14. Vivek R, Thangam R, Muthuchelian K, Gunasekaran P, Kaveri K, Kamnan S. Green biosynthesis of silver nanoparticles from Annona squamosa leaf extract and its in vitro cytotoxic effect on MCF-7 cells. Process Biochem 2012;47:2405-10.
15. Kalainila P, Subha V, Ernest Ravindran RS, Sahadevan R. Synthesis and characterization of silver nanoparticles from Erythrina indica. Asian J Pharm Clin Res 2014;7:39-43.
16. Kapil A. The challenge of antibiotic resistance: need to contemplate. Indian J Med Res 2005;121:83-91.
17. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ. The bactericidal effect of silver nanoparticles synthesized using Capparis zeylanica and their cytotoxic effect on MCF-7 cells. Process Biochem 2012;47:2405-10.
18. Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 2009;27:76-83.
19. Ankone A, Sundaramma N. Biological synthesis of silver nanoparticles by using the stem of Shorea tumbuggaia Roxb. and its antimicrobial efficacy. Asian J Pharm Clin Res 2011;4:137-41.
20. Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, et al. Antimicrobial effects of silver nanoparticles. Nanomed Nanotechnol 2007;3:95-101.
21. Chen X, Schuesener HJ. Nanosilver: a nanoproduct in medical application. Toxicol Appl Pharmacol Lett 2008;17:61-12.

22. Balashanmugam P, Balakumaran MD, Murugan R, Dhanapal K, Kalaielvan PT. Phytogenic synthesis of silver nanoparticles, optimization, and evaluation of in vitro antifungal activity against human and plant pathogens. Microbiol Res 2016;192:56-64.

23. Singh K, Panghal M, Kadyan S, Chaudhary U, Yadav JP. Green silver nanoparticles of *Phyllanthus amarus* as an antibacterial agent against multi-drug resistant clinical isolates of *Pseudomonas aeruginosa*. J Nanobiotechnol 2014;12:40.

24. Skałdanowski M, Golinska P, Rudnicka K, Dalh H, Rai M. Evaluation of cytotoxicity, immune compatibility and antibacterial activity of biogenic silver nanoparticles. Med Microbiol Immunol 2016;205:603-13.

25. Saravanavan M, Venku AK, Barik SK. Rapid biosynthesis of silver nanoparticles from *Bacillus megaterium* (NCIM 2326) and their antibacterial activity on multi-drug resistant clinical pathogens. Colloids Surf B 2011;88:325-31.

26. Rana IS, Rana AS, Rajak RC. Evaluation of antifungal activity in the essential oil of the *Szzygium aromaticum* (L.) by extraction, purification, and analysis of its main component eugenol. Braz J Microbio 2011;42:1269-77.

27. Okafor F, Janen A, Kukhtareva T, Edwards V, Curley M. Green synthesis of silver nanoparticles, their characterization, application, and antibacterial activity. Int J Environ Res Public Health 2013;10:5221-38.

28. Kumar R, Ghoshal G, Jain A, Goyal M. Rapid green synthesis of silver nanoparticles (AgNPs) using (*Punica granatum*) plants extract: exploring its antimicrobial and catalytic activities. J Nanomol Nanotechnol 2017;8:1-8.

29. Niraimathi KL, Sudha V, Lavanya R, Brindha P. Biosynthesis of silver nanoparticles using *Alternanthera sessilis* (Linn.) extract and their antimicrobial, antioxidant activities. Colloids Surf B 2013;102:288-91.

30. Oluwaniyi AO, Adegoke HI, Adesuji ET, Alabi AB, Bodepe SO. Biosynthesis of silver nanoparticles using aqueous leaf extract of *Thevetia peruviana* Juss. and it’s antimicrobial activities. Appl Nanosci 2015;6:903-12.

31. Labrenz M, Druschel GK, Thomsen-Ebert T, Gilbert B, Welch SA, Kemner KM, et al. Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. Science 2000; 290:1744-7.

32. Roh Y, Lauf RJ, McMillan AD, Zheng C, Raw J, Bai J, et al. Microbial synthesis and the characterization of metal-substituted magnetites. Solid State Commun 2001;118:529-34.

33. Premasudha P, Venkataramana M, Abirami M, Vanathi P, Krishna K, Rajendran R. Biological synthesis and characterization of silver nanoparticles using *Eclipta alba* leaf extract and evaluation of its cytotoxic and antimicrobial potential. Bull Mater Sci 2015;38:965-73.

34. Shankar SS, Ahmad A, Sastry M. Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol Prog 2003; 19:1627-31.

35. Ahmad N, Bhattacharya S, Ali SS, Dutta R. Phytofabrication of bio-induced silver nanoparticles for biomedical applications. Int J Nanomed 2015;10:7019-30.

36. Abraham M, Alama M, El-Haas H, Jaboult AF, Leon AD. Analysis of the structure and vibrational spectra of glucose and fructose. Ecleta Quim 2006;31:1-5.

37. Veerasamy R, Xin T, Gunasagar S, Xiang TF, Yang EC, Jeyakumar N. Biosynthesis of silver nanoparticles using mango leaf extract and evaluation of their antimicrobial activities. J Saudi Chem Soc 2011;15:113-20.

38. Gavade NL, Kadam AN, Suwarkar MB, Ghodake VP, Garadkar KM. Biogenic synthesis of multi-applicative silver nanoparticles by using Ziziphus jujuba leaf extract. Spectrochim Acta A 2015;136:953-60.

39. Edison TJL, Sethuraman MG. Instant green synthesis of silver nanoparticles using *Terminalia chebula* fruit extract and evaluation of their catalytic activity on the reduction of methylene blue. Pro Biochem 2012;47:1351-7.

40. Zargar M, Shameli K, Najafi GR, Farahani F. Plant-mediated green biosynthesis of silver nanoparticles using *Vitis negundo* L. extract. J Ind Eng Chem 2014;20:4169-75.

41. Vanaja M, Annadurai G. *Coleus aromaticus* leaf extract mediated synthesis of silver nanoparticles and its bacterial activity. Appl Nanosci 2013;3:217-23.

42. Lara HH, Garza Trevino EN, Istepan Turrent L, Singh DK. Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. J Nanobiotechnol 2011;9:30.

43. Kim SH, Lee HS, Ryu DS, Choi SJ, Lee DS. Antibacterial activity of silver-nanoparticles against *Staphylococcus aureus* and *Escherichia coli*. Korean J Microbiol Biotechnol 2011;39:77-85.

44. Sondi I, Salopek Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. J Colloid Interface Sci 2004;275:177-82.

45. Renugadevi K, Aswini RV. Microwave irradiation assisted synthesis of the silver nanoparticle using *Andrographis indica* leaf extract as a reducing agent and *in vitro* evaluation of its antibacterial and anticancer activity. Int J Nanomat Bio 2012:5:2-10.

46. Sadhasivam S, Shanmugam P, Yun K. Biosynthesis of silver nanoparticles by *Streptomyces hygroscopicus* and antimicrobial activity against medically important pathogenic microorganisms. Colloids Surf B 2013;98:358-62.

47. Bahrami Teimoori B, Nilkaram Y, Hojatianfar M, Aklaghlig M, Ghorbani R, Pourianfar HR. Characterisation and antifungal activity of silver nanoparticles biologically synthesised by *Amaranthus retroflexus* leaf extract. J Exp Nanosci 2017;12:129-39.

48. Krishnaraj C, Ramachandran R, Mohan K, Kalaielvan PT. Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochim Acta A Mol Biomol Spectrosc 2012;93:95-9.