Spacetime Discontinuous Galerkin FEM: Spectral Response

R Abedi\(^1\), O Omidi\(^1\), P L Clarke\(^1\)

\(^1\) Department of Mechanical, Aerospace & Biomedical Engineering, University of Tennessee Space Institute, 411 B.H Goethert, Tullahoma, TN, 37388, USA
E-mail: rabedi@utsi.edu, oomidi@utsi.edu, pclarke1@utsi.edu

Abstract. Materials in nature demonstrate certain spectral shapes in terms of their material properties. Since successful experimental demonstrations in 2000, metamaterials have provided a means to engineer materials with desired spectral shapes for their material properties. Computational tools are employed in two different aspects for metamaterial modeling: 1. Microscale unit cell analysis to derive and possibly optimize material's spectral response; 2. macroscale to analyze their interaction with conventional material. We compare two different approaches of Time-Domain (TD) and Frequency Domain (FD) methods for metamaterial applications. Finally, we discuss advantages of the TD method of Spacetime Discontinuous Galerkin finite element method (FEM) for spectral analysis of metamaterials.

1. Introduction
Since about a decade ago researchers have been able to design materials with particular repeating microstructure that demonstrate desirable spectral properties. Some notable advancements in electromagnets include materials with negative permittivity \(^1\), permeability \(^2\), or both \(^3\). Some of their applications are in electromagnetic and acoustic cloaking \(^4\), perfect absorbers \(^5,6\) sub diffraction imaging \(^7\), and memory metamaterials \(^8\). In this paper, we discuss some approaches and challenges in numerical spectral analysis of metamaterials.

2. Numerical methods for spectral analysis and computation of metamaterials
Figure 1 shows the micro to macro transition of metamaterial properties and the use of computational tools. In Fig.1(a) we observe an electromagnetic metamaterial formed by an array of Split Ring Resonators (SRRs). The feature size and spacing of microstructures must be much smaller than wavelengths of interest. Computational tools are employed in two scales. At microscale, computational tools analyze a unit cell, cf. 1(b), with periodic boundary to obtain spectral properties of metamaterial. As shown in Fig.1(c) such forward analysis tools can be combined with an optimization scheme to enhance metamaterial properties. Once a metamaterial with desired spectral is designed, its interaction at macroscale with other material can still be model with computational tools as shown in Fig.1(d).

3. Computational challenges for metamaterials
In electromagnetics, acoustics, and electrodynamics most solvers are designed for conventional materials and are not suited for metamaterial applications. In Fig. 2 shows resonance phenomena and operation mechanism for metamaterials, for a Split Hollow Sphere (SHS) and
Figure 1. Computational tools for analysis of metamaterials: (a) A sample array of microstructures, SRRs, in metamaterials; (b) A unit cell computational domain to determine spectral properties of a SRR; (c) Topology optimization of microstructure to minimize effective dielectric permeability; (d) Backward wave propagation in metamaterial region (enclosed in a rectangle) using a time domain finite element method.

Spectral lines and material response are obtained differently in Time Domain (TD) and Frequency Domain (FD) methods. FD analyze the problem in FD for various frequencies while in TD a Fourier transform of the response is employed. While FD may be more appropriate for small computational domains [9], TD has the following advantages: 1) Material nonlinearities, as
commonly encountered in metamaterials, are more naturally handled in TD; 2) Instead of several FD analyses, Fourier transformation to only one broad-band signal is sufficient in TD [13]; 3) Unlike the global spatial coupling in FD methods, in some TD methods the problem is local and solution scales linearly versus number of unknowns/elements; 4) Quasi-static FD analysis of stable state is not be sufficient when the early unsteady relaxation process is important [12].

5. Spacetime Discontinuous Galerkin (SDG) Finite Element Method

As mentioned, many TD approaches such as Discontinuous Galerkin (DG) methods [9] have a linear solution scaling versus number of elements, a major advantage over FD methods. However, there are still two concerns with TD methods. First, in linear scaling an explicit time integration method is needed. However, as shown in Fig. 6(a) for multiscale domains which are common in these applications, small elements severely limit the performance of these methods. While IMEX methods and subcycling in figs. 6(b-c) alleviate the problem, explicit time marching methods still perform poorly for multiscale domains. Second, frequency-dependent material properties induce a convolution term in TD. For example, \[\int_{-\infty}^{\infty} \rho_0(x, t - t_0) \frac{\partial}{\partial t'} dt' + \nabla p = 0 \] is the acoustic equation for frequency dependent density. The convolution term poses severe difficulties in TD.

Two approaches are used to eliminate the convolution term. First as in [14] by Auxiliary Differential Equations (ADE) additional fields are added to the system. Second, we maintain micro and macro fields in the formulation as opposed to homogenization to frequency-dependent metamaterials. For example in [15] convolution term is eliminated by preserving both microscale
Figure 6. Multiscale domains, limitations (a) & remedies (b–c) for explicit Time Domain analyses: a) Smallest elements limit global time step; (b) Using Implicit time integration for small elements and explicit elsewhere (c) Time steps are adjusted based on element size.

Finally, the SDG method not only gracefully addresses the multiscale domain problem but also has several other advantages. In the SDG method, finiteness of the wave speed for hyperbolic problems, use of unstructured causal meshes, an use of discontinuous basis functions (a DG method) yields a local solution scheme [16,17]. For example in figure 5, when the two inflows of element A are solved, it can be solved locally. The solution starts from any of the elements labeled 1 and continues to completion. Element B in Fig. 5 shows how element size and polynomial order can suddenly change. Some of distinct advantages of SDG over other TD methods are: 1) Linear cost vs. number of elements; 2) Excellent resolution of high gradient fields and discontinuities; 3) Arbitrary element size h and polynomial order p (element B); 4) Arbitrary high order in time as spacetime is directly interpolated instead of a separate finite difference integration in time (cf. element B); 5) Excellent for multiscale domains: local time step not affected by smallest size (cf. element B). While items 1-2 are common for DG methods, 3-5 are particular advantages of SDG over other DG methods.

References
[1] Schurig D et al. 2006 Appl. Phys. Lett. 314 977
[2] Shelby RA et al. 2001 Science 292 77
[3] Smith DR et al. 2000 Phys. Rev. Lett. 84 4184
[4] Schuring D et al. 2006 Appl. Phys. Lett. 88 1
[5] Landy NI et al. 2008 Phys. Rev. Lett. 100 207402
[6] Tao H et al. 2008 Phys. Rev. B, Condens. Matter Mater. Phys. 78 241103
[7] Fang N et al. 2005 Science 308 534
[8] Driscoll T et al. 2009 Science 325 1518
[9] Busch K et al. J 2011 Laser Photonics Rev. 5 773
[10] Otomori M et al. 2012 Comput Method Appl M 237-240 192
[11] Huang Y et al. 2013 SIAM J Sci Comput 35 B248
[12] Ding C et al. 2010 J Appl Phys 108 074911
[13] Stannigel K et al. 2009 Opt Express 17 14934
[14] Rodriguez-Esquerre VF et al. 2005 Microw Opt Techn Let 44 13
[15] Huang HH and Sun CT 2012 Mech Mater 46 1
[16] Abedi R et al. 2006 Comput. Methods in Appl. Mech. Eng. 195 3247