Spatial Distribution of Polyphenolic Compounds in Corn Grains (Zea mays L. var. Pioneer) Studied by Laser Confocal Microscopy and High-Resolution Mass Spectrometry

Mayya Razgonova 1,2,*, Yulia Zinchenko 2, Konstantin Pikula 3,4, Lyudmila Tekutyeva 1, Oksana Son 1, Alexander Zakharenko 5,6, Tatiana Kalenik 1 and Kirill Golokhvast 3,5,7

1 Institute of Life Science and Biomedicine, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia; lat7777@mail.ru (L.T.); oksana_son@bk.ru (O.S.); kalenik.tk@dvfu.ru (T.K.)
2 N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B. Morskaya 42-44, 190000 Saint Petersburg, Russia; yu-zinch@yandex.ru
3 Polytechnical Institute, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia; pikula ks@dvfu.ru (K.P.); golokhvast@sfsca.ru (K.G.)
4 Federal Research Center the Yakut Scientific Center of the Siberian Branch of the Russian Academy of Sciences, 2, Petrovskogo Str., 677000 Yakutsk, Russia
5 Siberian Federal Scientific Centre of Agrobiotechnology, Centralnaya, Presidium, 633501 Krasnoyarsk, Russia; rarfl@yandex.ru
6 Laboratory of Supercritical Fluid Research and Application in Agrobiotechnology, The National Research Tomsk State University, 36, Lenin Avenue, 634050 Tomsk, Russia
7 Pacific Geographical Institute, Far Eastern Branch of the Russian Academy of Sciences, Radio 7, 690041 Vladivostok, Russia
* Correspondence: razgonova.mp@dvfu.ru

Abstract: Desirable changes in the biochemical composition of food plants is a key outcome of breeding strategies. The subsequent localization of nutritional phytochemicals in plant tissues gives important information regarding the extent of their synthesis across a tissue. We performed a detailed metabolomic analysis of phytochemical substances of grains from Zea mays L. (var. Pioneer) by tandem mass spectrometry and localization by confocal microscopy. We found that anthocyanins are located mainly in the aleurone layer of the grain. High-performance liquid chromatography in combination with ion trap tandem mass spectrometry revealed the presence of 56 compounds, including 30 polyphenols. This method allows for effective and rapid analysis of anthocyanins by plotting their distribution in seeds and grains of different plants. This approach will permit a more efficient screening of phenotypic varieties during food plant breeding.

Keywords: confocal microscopy; HPLC–MS/MS; tandem mass spectrometry; polyphenolic compounds

1. Introduction

The consumption of corn for 2018–2019 reached 315 million tons in the USA, 276 million tons in China, 63 million tons in the European Union, and 66 million tons in Brazil. In maize breeding, the discovery of genes responsible for the formation of corn endosperm accelerated research on the modeling of nutritional and taste properties of the corn.

The biochemical composition of corn grains, including protein, fatty acid, saccharide, and phenolic content, significantly affect the nutritional quality and taste of corn. The content of essential amino acids, such as valine, isoleucine, leucine, lysine, methionine, threonine, tryptophan, phenylalanine, histidine, and arginine is one of the major factors that determine the nutritional value of corn [1].

Corn grains have the highest polyphenol content (6056.9 mg/kg dry weight or 15.55 µmol/g) among other grains and represent significant interest for phytochemical and metabolomic study [2,3]. Phenolic compounds can have radical scavenging, chelating and...
Polyphenols can prevent oxidative stress caused by metabolic imbalances between the production and scavenging of free radicals [4]. Phenolic compounds can control oxidative stress by neutralizing or reducing the formation of reactive oxygen species (ROS) or restoration of redox homeostasis by strengthening the endogenous defense system or capturing the ROS [5]. The ability of polyphenolic groups to scavenge free radicals is associated with their aromatic rings and a highly conjugated system with many hydroxyl groups. The spatial position and the number of hydroxyl groups are important reference points for the antioxidative activity of phenolic compounds [6].

Fatty acids affect the palatability and especially the odor of foods. In higher plants, the proportion of essential fatty acids in the composition of vegetable fats is very high (up to 90%). It is mainly composed of palmitic, oleic, and linoleic acids. Analysis of the fatty acid composition of corn grains showed the presence of palmitic acid, linoleic acid, vaccenic acid, oleic acid, stearic acid, and eicosanoic acid.

Monosaccharides are derivatives of polyhydric alcohols and serve as a source for the synthesis of disaccharides (sucrose, maltose, lactose), oligosaccharides, and polysaccharides (cellulose and starch). Many of them have a sweet taste, but there are gradations from tasteless to bitter substances that affect the taste qualities of grains, including corn.

Flavonoids act as exogenous antioxidants and are directly oxidized by radicals with the formation of less reactive species through the following mechanisms: inhibition of xanthine oxidase activity, modulation of channel pathways, and inhibition of nitric oxide synthase activity [7]. The antioxidant potential of flavonoids is associated with the location and the total number of OH groups, or rather, with their molecular structure [8]. The use of flavonoids in biological systems holds great promise for bone tissue engineering. Quercetin, an antioxidant flavonoid, when present in the bloodstream, improves vascular health and reduces the risk of cardiovascular disease in its conjugated form. Quercetin and its derivatives prevent blood clotting or thrombosis and prevent the likelihood of stroke [9].

The structure of corn grain is presented in Figure 1 [10].

![Figure 1. Structure of the grain of dent corn (with the symbolic designation of parts of the grain) (modified from [10]).](image)

Previous research organized phenolic compounds according to the degree of antioxidative activity: simple phenolic acids < hydroxycinnamic acids < flavonols < flavan-3-ols < dimers of procyanidins [6]. It is known that the antioxidant activity of phenolic acids increases with an increase in the distance separating the carbonyl group and the aromatic
ring, and hydroxycinnamic acid derivatives have stronger antioxidant activity than benzoic acid derivatives [11]. The 7,8-double bond of hydroxycinnamic acids also enhances their antioxidant potential, compared with hydroxybenzoic acids.

High-performance liquid chromatography (HPLC) was predominantly used to identify carotenoids [12-14] and polyphenols [15,16] in corn grains. A review by Ranilla (2020) summarized the application of metabolomics for the characterization of metabolites in corn grains and emphasized the importance of phenotype–genotype studies aimed to explore corn genetic diversity [17]. The application of electrospray ionization mass spectrometry (ESI–MS) in combination with HPLC is a cost-effective and statistically robust method for high-throughput phenotypic characterization of corn [18]. The HPLC–ESI–MS/MS analytical configuration is widely used for the characterization of phenolic bioactive compounds in worldwide corn biodiversity. Montilla et al. (2011) characterized 10 corn landraces based on the content of phenolic fractions [19]. Das and Singh (2016) characterized four corn hybrids based on the content of phenolic acids, anthocyanins, and flavonols [20].

Another important problem is the study of spatial distribution and composition of phytochemicals in corn grains. Microscopic images are widely used as important sources of information on morphometric characteristics of cells and the architecture of plant tissue [21]. Confocal laser scanning microscopy was previously used to localize the phenolic compounds in different plants [22]. Morphological and biochemical changes in roots of corn *Zea mays* L. were previously studied by confocal microscopy [23,24]. To the best of the authors’ knowledge, no published studies report an application of confocal microscopy for the identification of phytochemicals in the grains of corn *Zea mays* L.

Considering the qualitative data of phytochemical composition obtained by HPLC–MS and literature information regarding the optical properties of identified chemicals, the combination of HPLC data with fluorescence microscopy is a good opportunity to explore the localization of phenolic compounds in plants. The combination of these methods is important for breeding since it allows us to assess whether the genes involved in the synthesis of these substances are expressed only in certain tissues (e.g., the aleurone layer, the germ layer, the vitreous endosperm) or in all grain glutes uniformly. In addition, this approach makes it possible to estimate the number and size of storing organelles (granules, chloroplasts, vesicles), since selection is important in both increasing their number and increasing their size. Thus, the combination of these methods allows us to obtain more complex information about the studied plants.

In this study, we used combined mass spectrometry and confocal laser microscopy to determine the structural properties and phytochemical composition of corn grains. In our case, the combination of HPLC–MS and fluorescence microscopy allowed us to demonstrate the localization of polyphenolic compounds in the grains of corn *Zea mays* L. However, the interpretation of the results of this study requires taking into account the limitations of the study design. The application of combined HPLC and fluorescent microscopy includes the possibility of spatial localization of different groups of plant chemicals in general but not the individual compounds.

2. Results

2.1. Tandem Mass Spectrometry

The extracts of corn grains were analyzed using liquid chromatography–electrospray ionization mass spectrometry (LC–ESI MS) to explore the diversity of available phytochemicals. The structural identification of each compound was carried out based on their accurate mass and MS/MS fragmentation using LC–ESI MS. In total, 56 compounds were successfully identified and characterized by comparing fragmentation patterns with those available in the literature. The results of a preliminary study showed the presence of 56 compounds corresponding to the genus Zea, some of which were identified for the first time in *Zea mays* L. The identified compounds, with molecular formulas m/z calculated and observed MS/MS data, and their comparative profile for corn grains are summarized.
in Table A1. The chromatograms of total compounds in the grain extract in positive and negative ionization modes are presented in Figure 2.

![Figure 2](image-url) The total compounds chromatogram of *Zea mays* L. (var. Pioneer) extract.

In the present study, 30 polyphenol compounds were identified and characterized. In addition, 26 compounds of other classes were identified, including identified for the first time in corn grains oxylipins 13-trihydroxy-octadecenoic acid and 9,12,13-Trihydroxy-trans-10-octadecenoic acid.

Figures 3 and 4 show examples of the decoding spectra (collision-induced dissociation (CID) spectrum) of the ion chromatogram obtained using tandem mass spectrometry. The [M–H]− ion produced three fragment ions at m/z 171, m/z 211, and m/z 293 (Figure 3). The fragment ion at m/z 171 yields a daughter ion at m/z 153. This compound was identified in the bibliography as 13-trihydroxy-octadecenoic acid (THODE) in extracts from *Bituminaria* [25], *Broccoli* [26], *Sasa veitchii* [27].

![Figure 3](image-url) Mass spectrum of 13-trihydroxy-octadecenoic acid (THODE) from the extract of corn grains, m/z 329.20.

The mass spectrum in the positive ion mode of pelargonidin-3-0-glucoside from extracts of corn grains is shown in Figure 4. The [M + H]+ ion produced three fragment ions at m/z 271, m/z 415, and m/z 186 (Figure 4). The fragment ion at m/z 271 yields two daughter ions at m/z 253 and m/z 121. The fragment ion at m/z 253 yields one daughter ion at m/z 235. To our knowledge, pelargonidin-3-0-glucoside was reported in *Triticum aestivum* L. [28,29], strawberry [30].
2.2. Confocal Microscopy

Confocal microscopy, coupled with Airyscan technology, demonstrated blue (Figures 5b, 6b and 7b) and red fluorescence (Figures 5c, 6c and 7c) in the longitudinal and transverse sections, and in the aleurone layer of the grain, respectively.

According to the literature data, strong blue fluorescence of plant grains under UV excitation could be explained by the presence of phenolic compounds such as hydroxycinnamic [31] or ferulic acid [32], and lignin [33]. The endosperm reveals very low blue autofluorescence (Figures 6 and 7) due to the very low amount of phenolic substances in the endosperm cells of seeds and grains [34]. It was reported that the pericarp of *Zea mays* had a total phenolic content 30–34 fold higher than endosperm [35]. Our results demonstrated that the aleurone cells (Figures 5b, 6b and 7b) and embryo (Figure 7b) were enriched with blue autofluorescence substances. At the same time, it is known that no lignin is present in aleurone [36], but hydroxycinnamic, ferulic, and coumaric acids were reported in aleurone cells of cereals [37,38]. Therefore, the observed blue fluorescence might be caused by hydroxycinnamic, ferulic, and coumaric acids. The main blue fluorescent compound in the pericarp is lignin, which is a heterogeneous mixture of randomly polymerized phenolic monolignols [39].

The emission in the red spectrum mainly occurs due to the presence of various polyphenolic compounds, including anthocyanins and anthocyanidins [40].
Figure 5. Cont.
Figure 5. The longitudinal section of the grain (grain margin in the embryo area), 63× magnification: (a) multispectral image, excitation 405 nm with the emission in 400–470 nm (blue), excitation 488 nm with the emission in 620–700 nm (red); (b) hydroxycinnamic and ferulic acids, and lignin content in the corn grain indicated in blue spectra; (c) anthocyanin content in the grain indicated in red spectra; p, pericarp; al, aleurone.

Figure 6. Cont.
Figure 6. The transverse section of the grain, a border between endosperm (left) and embryo (right), 20× magnification: (a) multispectral image, excitation 405 nm with the emission in 400–470 nm (blue), excitation 488 nm with the emission in 620–700 nm (red); (b) hydroxycinnamic and ferulic acids, and lignin content in the corn grain indicated in blue spectra; (c) anthocyanin content in the grain indicated in red spectra; p, pericarp; al, aleurone; en, endosperm; em, embryo.
Figure 7. Cont.
3. Discussion

It is known that polyphenols have strong antioxidation, anticancer, anti-infection, and other valuable activities [41]. The knowledge of polyphenol distribution in plants will benefit the development of the methods of their direct extraction and further application in the food, pharmaceutical, and cosmetic industries.

Another important problem is the influence of environmental conditions on the polyphenol composition of the plants. The significant genotypic effects and interactions of the genotype with the environment suggest that breeding methodology will require careful site selection and accounting for changes in genotype rank with changes in cultivation sites.

The important characteristics such as grain color, protein, and polyphenol distribution represent significant interest for breeding. In the grain images, the fluorescence signal under UV excitation (405 nm) comes from ferulic acid [42] and lignin [33]. It should be noted that lignin is absent in aleurone, while coumaric and diferulic acids are present in the walls of aleurone cells. These acids can contribute to the autofluorescence of these cell walls [43,44].

Autofluorescence in the aleurone cell walls was not uniform, which is consistent with the studies presented below. Saadi et al. (1998) showed that autofluorescence was more intense in the anticline than in the periclinal cell walls of the corn grains [45]. Moreover, studies have shown that the content of ferulic acid in the anticlinal cell wall of the corn was twice as high as in the periclinal cell wall [46]. However, research by Phillippe et al. [34] argues that anticlinal and periclinal cell walls contain equal amounts of feruloylated arabininoxylan. Therefore, it seems that autofluorescence in the walls of anticlinal aleurone cells can additionally be caused by other substances, for example, coumaric and diferulic acids, which were found in aleurone cells [37].
Our study showed the metabolic profile of the corn *Zea mays* L. (var. *Pioneer*) represented as 56 compounds including 2 compounds identified in corn grains for the first time—namely, oxylipins 13-trihydroxy-octadecenoic acid and 9,12,13-trihydroxy-trans-10-octadecenoic acid. Laser microscopy showed the presence of polyphenolic compounds and, in particular, hydroxycinnamic and ferulic acids, and anthocyanins, in the tissues of corn grain.

The method used in this study is effective for rapid analysis of the distribution of polyphenolic compounds in seeds and grains of different plants. This approach allows the study of plant morphology and the characterization of relevant bioactive phytochemicals using an inexpensive and fast methodology. The characterization of novel corn hybrid genotypes harvested from different geographical areas is a strategic problem and addressing this problem would allow sustainable development of local agriculture.

4. Materials and Methods

4.1. Materials and Chemicals

As an object of research, we used corn grains *Zea mays* L., variety *Pioneer* P1467. The sample was harvested in 2020 in urban-type settlement Kirovsky (Primorsky Krai, Russian Far East) and obtained from a local farmer.

HPLC-grade acetonitrile was purchased from Fisher Scientific (Southborough, UK), MS-grade formic acid was from Sigma-Aldrich (Steinheim, Germany). Ultra-pure water was prepared from SIEMENS ULTRA clear (SIEMENS Water Technologies, Munich, Germany), and all other chemicals were analytical grade.

4.2. Fractional Maceration

Fractional maceration technique was applied to obtain highly concentrated extracts [47]. From 500 g of the sample, 4 g of corn seeds was randomly selected for maceration. The total amount of the extractant (ethyl alcohol of reagent grade) was divided into 3 parts, and the grains were consistently infused with the first, second, and third parts. The solid–solvent ratio was 1:20. The infusion of each part of the extractant lasted 7 days at room temperature.

4.3. Liquid Chromatography

HPLC was performed using Shimadzu LC-20 Prominence HPLC (Shimadzu, Kyoto, Japan) equipped with a UV sensor and C18 silica reverse phase column (4.6 × 150 mm, particle size: 2.7 µm) to perform the separation of multicomponent mixtures. The gradient elution program with two mobile phases (A, deionized water; B, acetonitrile with formic acid 0.1% v/v) was as follows: 0–2 min, 0% B; 2–50 min, 0–100% B; control washing 50–60 min 100% B. The entire HPLC analysis was performed with a UV–vis detector SPD-20A (Shimadzu, Kyoto, Japan) at a wavelength of 230 nm for identification of catechin, epicatechin, quercetin, and other compounds [48]; the temperature was 50 °C, and the total flow rate 0.25 mL min⁻¹. The injection volume was 10 µL. Additionally, liquid chromatography was combined with a mass spectrometric ion trap to identify compounds.

4.4. Mass Spectrometry

MS analysis was performed on an ion trap amaZon SL (Bruker Daltoniks, Bremen, Germany) equipped with an ESI source in negative ion mode. The optimized parameters were obtained as follows: ionization source temperature: 70 °C, gas flow: 9 L/min, nebulizer gas (atomizer): 7.3 psi, capillary voltage: 4500 V, endplate bend voltage: 1500 V, fragmentary: 280 V, collision energy: 60 eV. An ion trap was used in the scan range m/z 100–1,700 for MS and MS/MS. All experiments were repeated three times. A four-stage ion separation mode (MS/MS mode) was implemented.

4.5. Optical Microscopy

Before the microscopic examination, a longitudinal and transverse dissection of corn grains was performed with MS-2 sled microtome (Tochmedpribor, Ukraine). The obtained
sliced corn grains were placed on microscopic cover glass through immersion oil to reduce light refraction by air gaps.

The autofluorescence parameters of a slice of corn grain were determined using an inverted confocal microscope (confocal laser scanning microscopy—CLSM, LSM 800, Carl Zeiss Microscopy GmbH, Berlin, Germany). The autofluorescence spectrum was chosen using lambda scan mode of the confocal microscope, which allows to determine the emission maximum in a specific sample and obtain spectral acquisition. The specimen was excited by each laser separately and two main peaks of autofluorescence were revealed: excitation by a UV laser, 405 nm (solid state, diode, 5mW) with the emission maxima in the ranges 400–470 nm (blue); excitation by a blue laser, 488 nm (solid state, diode, 10 mW) with the emission maximum in 620–700 nm (red). The used power and detector gain for blue and red channels were 5% and 750 V, and 7% and 850 V, respectively.

The images were obtained using objectives Plan-Apochromat 20×/0.8 M27 and Plan-Apochromat 63×/1.40 Oil DIC M27 with 20× and 63× magnification, correspondingly. The zoom factor was 0.5. Airyscan at the SR mode was used to increase resolution. The software ZEN 2.1 (Carl Zeiss Microscopy GmbH, Berlin, Germany) was used for image acquisition.

5. Conclusions
We determined the qualitative characteristics of secondary metabolites in the tissues of corn Zea mays L. (var. Pioneer). In total, 56 compounds were identified, including 2 compounds identified in corn grains for the first time—namely, oxylipins 13-trihydroxy-octadecenoic acid and 9,12,13-trihydroxy-trans-10-octadecenoic acid.

The combination of these data with fluorescence microscopy data revealed the most probable localization of phenolic and polyphenolic compounds. In addition, confocal microscopy allowed us to assess the localization of hydroxycinnamic and ferulic acids in aleurone cells and embryos and anthocyanin content in pericarp and aleurone cells. The combination of these methods is important for breeding since it allows us to assess whether the genes involved in the synthesis of these substances are expressed only in certain tissues (the aleurone layer, the germ layer, the vitreous endosperm) or in all grain glutes uniformly. In addition, this approach makes it possible to estimate the number and size of storing organelles (granules, chloroplasts, vesicles), since selection is important both in the area of increasing their number and increasing their size. Thus, the combination of these methods allows us to obtain more complete information about the variables under study. In addition, it shows that confocal microscopy can be used to obtain preliminary information during volumetric screenings of varietal samples, which will allow selecting target groups for more detailed analysis much faster and without the use of expensive reagents.

Author Contributions: Conceptualization, M.R.; methodology, M.R. and A.Z.; investigation, M.R., Y.Z. and K.P.; resources, L.T., O.S. and T.K.; writing—original draft preparation, M.R.; supervision, K.G.; project administration, L.T. and T.K.; funding acquisition, L.T. All authors have read and agreed to the published version of the manuscript.

Funding: This research was carried out with financial support of the Ministry of Education and Science of the Russian Federation within the framework of the implementation of a complex project for the creation of high-tech production provided by the Decree of the Russian Federation Government dated 9 April 2010 № 218. The project is entitled “Development of industrial technology and organization in the Far Eastern Federal District of the high-tech production of feed Vitamin A of increased stability and bioavailability”, agreement № 075-11-2021-065, 25 June 2021.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in the current study are available in the article.

Conflicts of Interest: The authors declare no conflict of interest.
Appendix A

Table A1. The list of compounds identified in ethanolic extracts of *Zea mays* L. (var. Pioneer) grains.

No.	Class	Compound	Molecular Formula	Calculated Mass	Molecular Ion [M-H]	Molecular Ion [M+H]+	Fragmentation Ion MS2	Fragmentation Ion MS3	Fragmentation Ion MS4	References
1	Phenolic acid	Caffeic acid ([2E]-3-(3,4-Dihydroxyphenyl)acrylic acid)	C_{9}H_{8}O_{4}	180.1574	181	135	119			Dracocephalum palmatum [49]; Eucalyptus [50]; Triticum [51]; Salvia miltiorrhiza [52]
2	Phenolic acid	Hydroxy methoxy dimethylbenzoic acid	C_{10}H_{12}O_{5}	196.1999	197	177; 153	125			F. herrerae; F. glaucescens [53]
3	Phenolic acid	Hydroxyferulic acid	C_{10}H_{10}O_{5}	210.1834	211	193; 125				Andean blueberry [54]
4	Stilbene	Resveratrol (trans-Resveratrol; 3',5'-Di-3,4-Dihydroxybenzylbenzene; Stilbene)	C_{14}H_{16}O_{5}	228.2433	229	209	163	146	A. cordifolia; F. glaucescens; F. herrerae [53]; Radix polygoni multiflori [55]	
5	Dihydroxybenzoic acid	3,4-Diacetoxybenzoic acid	C_{10}H_{11}O_{6}	238.1935	237					Potato leaves [56]; Triticum aestivum L. [57]; Cassia grandis [58]; Cassia abbreviata [59,60]; A. cordifolia; F. glaucescens; F. herrerae [53]
6	Flavan-3-ol	Epiafzelechin (epi)Afzelechin	C_{15}H_{14}O_{5}	274.2687	275	245; 176	175			Potato leaves [56]; Cassia grandis [58]; Cassia abbreviata [59,60]; A. cordifolia; F. glaucescens; F. herrerae [53]; Andean blueberry [54]; Potato leaves [56]; Potato [64]; Triticum [51]; millet grains [65]; Solanaceae [66]; Vigna edulis [53]; Vigna ingalcilata [66]; Radix polygoni multiflori [55]; Senna sanguinea [69]; Camellia kucha [71]; C. edulis [53]; Caffeol [55]; Radix polygoni multiflori [55]; Andean blueberry [54]; Potato leaves [56]; Strawberry [71]
7	Flavonol	Kaempferol [3,5,7-Trihydroxy-2-(4-hydroxyphenyl)-4H-chromen-4-one]	C_{15}H_{16}O_{6}	286.2363	285	185; 117; 257	117			Andean blueberry [54]; Potato leaves [56]; Potato [64]; Triticum [51]; millet grains [65]; Solanaceae [66]; Vigna edulis [53]; Vigna ingalcilata [66]; Radix polygoni multiflori [55]; Senna sanguinea [69]; Camellia kucha [71]; C. edulis [53]; Caffeol [55]; Radix polygoni multiflori [55]; Camellia kucha [70]; Potato leaves [56]; Strawberry [71]
8	Flavan-3-ol	Catechin [D-Catechol]	C_{15}H_{12}O_{6}	290.2681	291	261; 189	173; 242	191; 143		Potato leaves [56]; Triticum [51]; millet grains [65]; Solanaceae [66]; V. edulis [53]; Vigna ingalcilata [66]; Radix polygoni multiflori [55]; Senna sanguinea [69]; Camellia kucha [71]; C. edulis [53]; Caffeol [55]; Radix polygoni multiflori [55]; Camellia kucha [70]; Potato leaves [56]; Strawberry [71]
9	Flavan-3-ol	(epi)catechin	C_{15}H_{12}O_{6}	290.2681	291	261; 173	243; 173			C. edulis [53]; Radix polygoni multiflori [55]; Camellia kucha [70]; Potato leaves [56]; Strawberry [71]
10	Hydroxycinnamic acid	Caffeoylmalic acid	C_{15}H_{12}O_{6}	296.2296	295	277; 171	233; 113			Potato leaves [56]; Strawberry [71]
No.	Class	Compound	Molecular Formula	Calculated Mass	Molecular Ion [M – H]^−	Molecular Ion [M+H]^+	Fragmentation Ion MS2	Fragmentation Ion MS3	Fragmentation Ion MS4	References
-----	--------------	---	-------------------	-----------------	--------------------------	-----------------------	-----------------------	-----------------------	-----------------------	---
11	Flavonol	Quercetin	C_{15}H_{10}O_{7}	302.2357	303	275, 245, 203; 175	175			*Rhus coriaria* [61]; *Potato leaves* [50]; *Vigna sinensis* [72]; *Impatiens glandulifera* Royke [73]; *Eucalyptus* [55]; *Triticum* [51]; *millet grains* [65]; *Tomato* [74]; *Bougainvillea* [75]
12	Flavan-3-ol	Galloactechin [+/− (−) Galloactechin]	C_{15}H_{18}O_{7}	306.2675	307	277, 207	207; 159			*millet grains* [65]; *Solanaceae* [66]; *Licania ridigera* [76]; *G. linguiforme* [53]; *Senna singueana* [69]; *Vaccinium myrtillus* [77]
13	Flavonol	Myricetin	C_{15}H_{10}O_{8}	318.2351	319	291, 219, 174	259; 191	243; 161		*Dracocephalum palatum* [49]; *Potato* [63,64]; *Perilla frutescens* [78]; *Tomato* [74]; *Mentha* [79]; *Salvia miltiorrhiza* [52]; *Rubus occidentalis* [80]; *Sanguisorba officinalis* [81]; *Radix polygoni multiflori* [55]
14	Flavone	Cirsiliol	C_{17}H_{14}O_{7}	330.2889	329	229, 171, 293	211, 155	183		*Ocimum* [82]
15	Flavone	5,7-Dimetoxy-3,3′,4′-trihydroxyflavone	C_{17}H_{14}O_{7}	330.2889	331	315, 270	313	265, 257		*Oxalis corniculata* [63]
16	Flavone	Luteolin 7,3′-disulphate	C_{17}H_{16}O_{5}S	446.3627	447	287	152			*Zostera marina* [84]
17	Flavone	Apigenin 7-sulfate	C_{15}H_{12}O_{5}S	350.3001	351	337, 308	308; 291			*G. linguiforme* [53]; *sulphates* [61]
18	Lignan	Matairesinol [−]-Matairesinol; Artigenin	C_{19}H_{20}O_{8}	358.3851	359	324, 289, 127	144	127		*Panicum graminum* [86]; *Wheat* [87]; *Lignans* [88]
19	Hydroxysceinic acid derivative	C_{16}H_{19}O_{5}Na	377.2985	377	341, 215	179; 113				*Bougainvillea* [75]
20	Gallate ester, derivative of epiafzelechin	Epiafzelechin 3-O-gallate	C_{20}H_{20}O_{8}	426.3729	427	301, 171, 382	171			*Camellia kucha* [70]; *Triticum durum* [89]; *Beer* [67]
21	Flavone	Apigenin-C′-hexoside	C_{21}H_{20}O_{10}	432.3775	433	418, 314, 265, 219, 135	257, 169			*Triticum aestivum* [28,29]; *strawberry* [50]
22	Anthocyanin	Pelargonidin-3-O-glucoside (callistephin)	C_{21}H_{22}O_{10}	433.3854	433	271, 185	253, 121	235		*Triticum* [29,51]; *acerola* [90]; *rice* [91]; *Vigna sinensis* [72]; *Rapseed petals* [92]
23	Anthocyanin	Cyanidin-3-O-glucoside [Cyanidin 3-O-beta-D-Glucoside; Kuromarin]	C_{21}H_{22}O_{11}+	449.3848	447	285	199			*Triticum* [29,51]; *acerola* [90]; *rice* [91]; *Vigna sinensis* [72]; *Rapseed petals* [92]
Table A1. Cont.

| No. | Class | Compound | Molecular Formula | Calculated Mass | Molecular Ion [M−H] | Molecular Ion [M+H]+ | Fragmentation Ion MS2 | Fragmentation Ion MS3 | Fragmentation Ion MS4 | References |
|-----|-------|----------|------------------|-----------------|---------------------|----------------------|----------------------|----------------------|----------------------|
| 24 | Flavone | Luteolin-7-O-beta-glucuronide | C_{21}H_{20}O_{12} | 462.3604 | 463 | 447, 395, 359, 285; 199, 149 | 287, 199 |
| 25 | Flavonol | Kaempferol-3-O-glucuronide | C_{21}H_{20}O_{12} | 462.3604 | 463 | 287, 198 | 269, 198 |
| 26 | Anthocyanidin | Delphinidin malonyl hexoside | C_{24}H_{24}O_{13} | 551.4304 | 594.5181 | 578, 536, 509, 425 | 294 |
| 27 | Flavone | Chrysoeriol C-hexoside-C-pentoside | C_{27}H_{36}O_{17} | 595 | 595 | 582, 472, 425, 199, 192, 149 | 287, 199 |
| 28 | Flavonol | Quercetin 3,4′-di-O-beta-glucopyranoside | C_{27}H_{36}O_{17} | 668.5966 | 832.7577 | 721, 693, 609, 575, 537, 506 | 174 |
| 29 | Flavone | Tricin trimethyl ether 7-O-hexosyl-hexoside | C_{30}H_{36}O_{17} | 669 | 669 | 345, 387, 283 | Triticum aestivum L. [97] |
| 30 | Flavan-3-ol | (Epi)isetinidol-(epi)catechin-(epi)fisetinidol | C_{45}H_{36}O_{16} | 832.7577 | 832.7577 | 721, 693, 609, 575, 537, 506 | 174 |
| 31 | Amino acid | L-Lysine | C_{6}H_{14}N_{2}O_{2} | 146.1876 | 147 | 119 | Lonicera japonica [62] |
| 32 | Amino acid | L-threanine | C_{7}H_{14}N_{2}O_{3} | 174.1977 | 175 | 159 | Camellia kucha [70] |
| 33 | Amino acid | L-Tryptophan [Tryptophan; (S)-Tryptophan] | C_{11}H_{13}N_{2}O_{2} | 204.2252 | 205 | 161, 159, 143 | Passiflora incarnata [99]; Vigna unguiculata [100]; Camellia kucha [70] |
| 34 | Omega-5 fatty acid | Myristoleic acid [Cis-9-Tetradecanoic acid] | C_{14}H_{26}O_{2} | 226.3550 | 227 | 209, 168, 127 | F. glaucescens [53] |
| 35 | Monobasic saturated carboxylic acid | Myristic acid [Tetradecanoic acid; N-Tetradecanoic acid] | C_{14}H_{26}O_{2} | 228.3709 | 229 | 142, 205, 114 | Rhododendron adamsii [101] |
| 36 | Medium-chain fatty acid | Hydroxy dodecanoic acid | C_{12}H_{22}O_{3} | 246.3001 | 247 | 228, 203, 174 | F. glaucescens [53] |
| 37 | Ribonucleoside composite of aderine (purine) | Adenosine | C_{10}H_{13}N_{5}O_{4} | 267.2413 | 268 | 136 | Lonicera japonica [62] |
| 38 | Omega-3 fatty acid; octadecatetraenoic acid | Stearidonic acid [6,9,12,15-Octadecatetraenoic acid; Moroctic acid] | C_{24}H_{36}O_{2} | 276.4137 | 277 | 259, 177, 177 | Salviae Miltiorrhizae [102]; G. linguaforme [53]; Rhus coriaria [61] |
| 39 | Omega-3 fatty acid | Linolenic acid [Alpha-Linolenic acid; Linolenate] | C_{20}H_{30}O_{2} | 278.4296 | 279 | 243, 173, 173 | Salviae Miltiorrhizae [102]; Pinus silvestris [103] |
| 40 | Diterpenoid | Isocryptotanshinone II | C_{21}H_{20}O_{12} | 296.3603 | 297 | 279, 197, 173 | Salviae Miltiorrhizae [102] |
No.	Class	Compound	Molecular Formula	Calculated Mass	Molecular Ion [M−H]	Molecular Ion [M+H]+	Fragmentation Ion MS2	Fragmentation Ion MS3	Fragmentation Ion MS4	References
41	Alpha-omega dicarboxylic acid	Octadecanedicarboxylic acid [1,16-Hexadecanedicarboxylic acid]	C₁₈H₃₄O₄	314.4602	313	295; 183	293; 179	275; 177	F. glaucescens [53]	
42	Unsaturated essential fatty acid	Oxo-eicosatetraenoic acid	C₂₀H₃₀O₃	318.4504	319	301	186		F. potsii [53]	
43	Oxylipin 13′-Trihydroxy-Octadecenoic acid [THODE]	C₂₀H₃₀O₄	330.4596	329	171; 211; 293	153			Bituminaria [29]; Broccoli [26]; Sasa veitchii [27]	
44	Oxylipin 9,12,13′-Trihydroxy-trans-10-octadecenoic acid	C₁₈H₃₄O₅	330.4596	329	171; 229	127			Potato leaves [56]	
45	Unsaturated essential fatty acid	Eicosatetraenoic acid	C₂₀H₃₀O₄	334.4498	335	321; 124	291		G. linguiforme [53]	
46	Isoquinoline alkaloid	Berberine [Berberin; Umbelletine; Berbericine]	C₂₀H₁₈N₄O₄	336.3612	337	321; 225	291	291	Tinospora cordifolia [104,105]	
47	Pentacyclic diterpenoid	Gibberellic acid	C₁₉H₂₂O₆	346.3744	347	345; 259	329; 173	289	Trícicum aestivum [106]	
48	Berberine alkaloid	Palmatine [Berbericine; Burasaine]	C₂₁H₂₂N₄O₄	352.4037	353	337; 163	308	293	Ocotea [107,108]	
49	Androgen, anabolic steroid	Vebonol	C₂₀H₁₈O₄	452.6686	453	435; 336; 209	336; 226	209	Rhus coriaria [61]; Hylosereus polyrhizus [109]	
50	Triterpenoid	Oleanoic acid	C₂₄H₃₀O₃	456.7003	457	411; 249; 183	227; 169		Pear [110]; Ocimum [82]	
51	Triterpenoid	Maslinic acid	C₂₅H₃₀O₄	472.6997	473	425; 319; 201	291		Peer [110]; Foliium Eriobotryae [111]; Malus domestica [112]	
52	Thromboxane receptor antagonist	Vapiprost	C₂₆H₂₆N₄O₄	477.6350	478	460; 337; 263; 155	263; 155	245; 189; 111	Rhus coriaria [61]; Hylosereus polyrhizus [109]	
53	Indole-sesquiterpene alkaloid	Sespendole	C₂₁H₂₄N₄O₄	519.7147	520	518	184	184; 125	Rhus coriaria [61]; Hylosereus polyrhizus [109]	
54	2-arylbenzofuran flavonoid	Lithospermic acid A	C₂₇H₂₄O₁₂	538.4564	539	521; 409; 340; 241	395; 252; 167		Mentha [79,93,94]; Salvia multivirgata [52]	
55	Carotenoid (all-E)-lutein 3′-O-myristate	C₄₀H₅₀O₅	550.8562	551	533; 505; 469; 429; 373; 345	453; 410			Caroteneside [113]	
56	Triterpenoid	3-O-glucuronide-29-hydroxyoleanolic acid	C₃₈H₅₀O₁₁	648.7808	649	473; 367; 291; 229	456; 385; 269	406; 305; 262; 187	Bougainvillea [75]	
54. Aita, S.E.; Capriotti, A.L.; Cavaliere, C.; Cerrato, A.; Giannelli Moneta, B.; Montone, C.M.; Piovesana, S.; Lagana, A. Andean Blueberry of the Genus Distertia: A High-Resolution Mass Spectrometric Approach for the Comprehensive Characterization of Phenolic Compounds. Separations 2021, 8, 58. [CrossRef]

55. Zhu, Z.-W.; Li, J.; Gao, X.-M.; Amponsem, E.; Kang, L.-Y.; Hu, L.-M.; Zhang, B.-L.; Chang, Y.-X. Simultaneous determination of stilbenes, phenolic acids, flavonoids and anthraquinones in Radix polygoni multiflori by LC-MS/MS. J. Pharm. Biomed. Anal. 2012, 62, 162–166. [CrossRef]

56. Rodríguez-Pérez, C.; Gómez-Caravaca, A.M.; Guerra-Hernández, E.; Cerretani, L.; García-Villanova, B.; Verardo, V. Comprehensive metabolite profiling of Solanum tuberosum L.(potato) leaves by HPLC-ESI-QTOF-MS. Food Res. Int. 2018, 112, 390–399. [CrossRef] [PubMed]

57. Thomford, N.E.; Dzobo, K.; Chopera, D.; Wonkam, A.; Maroyi, A.; Blackhurst, D.; Dandara, C. In vitro reversible and time-dependent CYP450 inhibition profiles of medicinal herbal plant extracts Newbouldia laevis and Cassia abbreviata: Implications for herb-drug interactions. Molecules 2016, 21, 891. [CrossRef] [PubMed]

58. Fuentes, J.A.M.; López-Salas, L.; Borrás-Linares, I.; Navarro-Alarcón, M.; Segura-Carretero, A.; Lozano-Sánchez, J. Development of an innovative pressurized liquid extraction procedure by response surface methodology to recover bioactive compounds from carac Tree Seeds. Foods 2021, 10, 398. [CrossRef]

59. Sobeh, M.; Mahmoud, M.F.; Abdelatifah, M.A.; Cheng, H.; El-Shazly, A.M.; Wink, M. A proanthocyanidin-rich extract from Cassia abbreviata exhibits antioxidant and hepatoprotective activities in vivo. J. Ethnopharmacol. 2018, 213, 38–47. [CrossRef] [PubMed]

60. Thomford, N.E.; Dzobo, K.; Choepa, D.; Wonkam, A.; Maroyi, A.; Blackhurst, D.; Dandara, C. In vitro reversible and time-dependent CYP450 inhibition profiles of medicinal herbal plant extracts Newbouldia laevis and Cassia abbreviata: Implications for herb-drug interactions. Molecules 2016, 21, 891. [CrossRef] [PubMed]

61. Abu-Reidah, I.M.; Ali-Shtayeh, M.S.; Jamous, R.M.; Arrózal–Rodríguez, C.; García, G.; Gilead, J.; Linares, I.; Navarro-Alarcón, M.; Segura-Carretero, A.; Lozano-Sánchez, J. Development of an innovative pressurized liquid extraction procedure by response surface methodology to recover bioactive compounds from carac Tree Seeds. Foods 2021, 10, 398. [CrossRef] [PubMed]

62. Cai, Z.; Wang, C.; Zou, L.; Liu, X.; Chen, J.; Tan, M.; Mei, Y.; Wei, L. Comparison of multiple bioactive constituents in the flower and the caulis of Licania rigida based on UFLC-QTRAP-MS/MS combined with multivariate statistical analysis. Molecules 2019, 24, 1936. [CrossRef] [PubMed]

63. Oertel, A.; Matros, A.; Hartmann, A.; Arapitsas, P.; Dehmer, K.J.; Martens, S.; Mock, H.-P. Metabolite profiling of red and blue potatoes revealed cultivar and tissue specific patterns for anthocyanins and other polyphenols. Planta 2017, 246, 281–297. [CrossRef]

64. Deützer, H.; Guignard, C.; Hoffmann, L.; Evers, D. Polyphenol and glycoalkaloid contents in potato cultivars grown in Luxembour. Food Chem. 2012, 135, 2814–2824. [CrossRef]

65. Chandrasekara, A.; Shahidi, F. Determination of antioxidant activity in free and hydrolyzed fractions of millet grains and characterization of their phenolic profiles by HPLC-DAD-ESI-MSn. J. Funct. Foods 2011, 3, 144–158. [CrossRef]

66. Yusif, M.; Sultana, B.; Anwar, F. LC–ESI–MS/MS based characterization of phenolic components in fruits of two species of Solanaceae. J. Food Sci. Technol. 2018, 55, 2370–2376. [CrossRef] [PubMed]

67. Quifer-Rada, P.; Vallverdú-Queralt, A.; Martínez-Huelamo, M.; Chiva-Blanch, G.; Jáuregui, O.; Estruch, R.; Lamuela-Raventós, R. A comprehensive characterization of berberine hydrolysates by high resolution mass spectrometry (LC–ESI-LTQ-Orbitrap-MS). Food Chem. 2015, 169, 336–343. [CrossRef]

68. Ojwang, L.O.; Yang, L.; Dykes, L.; Awika, J. Proanthocyanidin profile of cowpea (Vigna unguiculata) reveals catechin-0-glucoside as the dominant compound. Food Chem. 2013, 139, 35–43. [CrossRef]

69. Sobeh, M.; Mahmoud, M.F.; Hasan, R.A.; Cheng, H.; El-Shazly, A.M.; Wink, M. Senna singueana: Antioxidant, hepatoprotective, antiapoptotic properties and phytochemical profiling of a methanol bark extract. Molecules 2017, 22, 1502. [CrossRef]

70. Qin, D.; Wang, Q.; Li, H.; Jiang, X.; Fang, K.; Wang, Q.; Li, B.; Pan, C.; Wu, H. Identification of key metabolites based on non-targeted metabolomics and chemometrics analyses provides insights into bitterness in Kucha [Camellia kucha (Chang et Wang) Chang]. Food Res. Int. 2020, 138, 109789. [CrossRef] [PubMed]

71. Spinoła, V.; Pinto, J.; Castilho, P.C. Identification and quantification of phenolic compounds of selected fruits from Madeira Island by HPLC-DAD–ESI-MSn and screening for their antioxidant activity. Food Chem. 2015, 173, 14–30. [CrossRef]

72. Chang, Q.; Wong, Y.-S. Identification of flavonoids in Hawkmeaitou beans (Vigna sinensis) by high-performance liquid chromatography – electrospray mass spectrometry (LC-ESI/MS). J. Agric. Food Chem. 2004, 52, 6694–6699. [CrossRef]

73. Vieira, M.N.; Winterhalter, P.; Jerz, G. Flavonoids from the flowers of Impatiens glandulifera Royle isolated by high performance counter-current chromatography. Phytochem. Anal. 2016, 27, 116–125. [CrossRef]

74. Vallverdú-Queralt, A.; Jáuregui, O.; Medina-Remón, A.; Lamuela-Raventós, R.M. Evaluation of a method to characterize the phenolic profile of organic and conventional tomatoes. J. Agric. Food Chem. 2012, 60, 3373–3380. [CrossRef]

75. El-sayed, M.; Abbas, F.A.; Refaat, S.; El-Shafea, A.M.; Fikry, E. UPLC-ESI-MS/MS Profile of The Ethyl Acetate Fraction of Aerial Parts of Bougainvillea’scarlett O’Hara’Cultivated in Egypt. Egypt. J. Chem. 2021, 64, 6–7.

76. De Freitas, M.A.; Silva Alves, A.L.; Andrade, J.C.; Leite-Andrade, M.C.; Lucas dos Santos, A.T.; Felix de Oliveira, T.; dos Santos, F.d.A.G.; Silva Buonafina, M.D.; Melo Coutinho, H.D.; Alencar de Menezes, I.R. Evaluation of the antifungal activity of the Licaria rigida leaf ethanolic extract against biofilms formed by Candida sp. isolates in acrylic resin discs. Antibiotics 2019, 8, 250. [CrossRef] [PubMed]

77. Bujor, O.-C. Extraction, Identification and Antioxidant Activity of the Phenolic Secondary Metabolites Isolated from the Leaves, Stems and Fruits of Two Shrubs of the Ericaceae Family; Université d’Avignon: Avignon, France, 2016.
78. Zhou, X.-J.; Yan, L.-L.; Yin, P.-P.; Shi, L.-L.; Zhang, J.-H.; Liu, Y.-J.; Ma, C. Structural characterisation and antioxidant activity evaluation of phenolic compounds from cold-pressed *Perilla frutescens* var. arguta seed flour. *Food Chem.* 2014, 164, 150–157. [CrossRef] [PubMed]

79. Chen, X.; Zhang, S.; Xuan, Z.; Ge, D.; Chen, X.; Zhang, J.; Wang, Q.; Wu, Y.; Liu, B. The phenolic fraction of Mentha Haplocalyx and its constituent linear ameliorate inflammatory response through inactivation of NF-kB and MAPKs in lipopolysaccharide-induced RAW264.7 cells. *Plants* 2017, 7, 2011. [CrossRef] [PubMed]

80. Paudel, L.; Wyzgoski, F.J.; Scheeren, J.C.; Chanon, A.M.; Reese, R.N.; Smiljanic, D.; Wiesendotter, C.; Blakeslee, J.J.; Riedl, K.M.; Rinaldi, P.L. Nonanthocyanin secondary metabolites of black raspberry (*Rubus occidentalis* L.) fruits: Identification by HPLC-DAD, NMR, HPLC-ESI-MS, and ESI-MS/MS analyses. *J. Agric. Food Chem.* 2013, 61, 12032–12043. [CrossRef]

81. Kim, S.; Oh, S.; Noh, H.B.; Ji, S.; Lee, S.H.; Koo, J.M.; Choi, C.W.; Jhun, H.P. In vitro antioxidant and anti-Propionibacterium acnes activities of cold water, hot water, and methanol extracts, and their respective ethyl acetate fractions, from *Sanguisorba officinalis* L. Roots. *Molecules* 2018, 23, 3001. [CrossRef]

82. Panigrahi, D.; Rabindranath, A.; Prasad, R.K.; Kaushal, N.; Bhattacharya, P.; Chakraborty, S.; Roy, B.; Pradhan, S.; Das, S.; Mondal, T. Efficacy of *Solanum nigrum* L. flower extract on reducing skin irritation due to *Pseudomonas aeruginosa* infection. *Plants* 2020, 9, e2001555. [CrossRef] [PubMed]

83. Prasad Pandey, B.; Prakash Pradhan, S.; Adhikari, K. LC-ESI-QTOF-MS for the Profiling of the Metabolites and in Vitro Enzyme Inhibition Activity of *Bryophyllum pinnatum* and *Oxalis corniculata* Collected from Ramechhap District of Nepal. *Chem. Biodivers.* 2020, 17, e2000155. [CrossRef]

84. Enerstvedt, K.H.; Jordheim, M.; Andersen, Ø.M. Isolation and identification of flavonoids found in *Zostera marina* collected in Norwegian coastal waters. *Am. J. Plant Sci.* 2016, 7, 1163–1172. [CrossRef]

85. Teles, Y.C.; Horta, C.C.R.; Agra, M.D.F.; Siheri, W.; Boyd, M.; Igoli, J.O.; Gray, A.I.; De Souza, M.D.F.V. New sulphated flavonoids from *Wissadula periplocifolia* (L.) C. Presl (Malvaceae). *Molecules* 2015, 20, 20161–20172. [CrossRef]

86. Bonzanini, F.; Bruni, R.; Palla, G.; Serlataite, N.; Caligiani, A. Identification and distribution of lignans in *Punica granatum* L. fruit endocarp, pulp, seeds, wood knots and commercial juices by GC–MS. *Food Chem.* 2019, 117, 745–749. [CrossRef]

87. Cukelj, N.; Jakasa, I.; Sarajlija, H.; Novotni, D.; Curcic, D. Identification and quantification of lignans in wheat bran by gas chromatography-electron capture detection. *Talanta* 2011, 84, 127–132. [CrossRef] [PubMed]

88. Eklund, P.C.; Backman, M.J.; Kronberg, L.A.; Smeds, A.I.; Sjöholm, R.E. Identification of lignans by liquid chromatography-electrospray ionization ion-trap mass spectrometry. *J. Mass Spectrom.* 2008, 43, 97–107. [CrossRef]

89. Cavaliere, C.; Foglia, P.; Pastorini, E.; Samperi, R.; Laganà, A. Identification and mass spectrometric characterization of glycosylated flavonoids in *Triticum durum* plants by high-performance liquid chromatography with tandem mass spectrometry. *Rapid Commun. Mass Spectrom.* Int. J. Devoted Rapid Dissem. Minute Res. Mass Spectrom. 2005, 19, 3143–3158. [CrossRef] [PubMed]

90. De Rosso, V.V.; Hillebrand, S.; Montilla, E.C.; Bobbio, F.O.; Winterhalter, P.; Mercadante, A.Z. Determination of anthocyanins from acerola (*Malpighia emarginata* DC.) and *açai* (*Euterpe oleracea* Mart.) by HPLC–PDA–MS/MS. *J. Food Compos. Anal.* 2008, 21, 291–299. [CrossRef]

91. Chen, W.; Gong, L.; Guo, Z.; Wang, W.; Zhang, H.; Liu, X.; Yu, S.; Xiong, L.; Luo, J. A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: Application in the study of rice metabolomics. *Mol. Plant* 2013, 6, 1769–1780. [CrossRef]

92. Yin, N.-W.; Wang, S.-X.; Jia, L.-D.; Zhu, M.-C.; Yang, J.; Zhou, B.-J.; Yin, J.-M.; Lu, K.; Wang, R.; Li, J.-N. Identification and characterization of major constituents in different-colored rapeseed petals by UPLC–HESI-MS/MS. *J. Agric. Food Chem.* 2019, 67, 11053–11065. [CrossRef]

93. Xu, L.-L.; Xu, J.-F.; Zhong, K.-R.; Shang, Z.-P.; Wang, F.; Wang, R.-F.; Zhang, L.; Zhang, J.-Y.; Liu, B. Analysis of non-volatile chemical constituents of Menthae Haplocalycis herba by ultra-high performance liquid chromatography-high resolution mass spectrometry. *Molecules* 2017, 22, 1756. [CrossRef]

94. Bodalska, A.; Kowalczyk, A.; Włodarczyk, M.; Fekka, I. Analysis of Polyphenolic Composition of a Herbal Medicinal Product—Peppermint Tincture. *Molecules* 2020, 25, 69. [CrossRef]

95. Shi, F.; Pan, H.; Lu, Y.; Ding, L. An HPLC–MS/MS method for the simultaneous determination of luteolin and its major metabolites in rat plasma and its application to a toxicity study. *J. Sep. Sci. 2018, 41, 3830–3839. [CrossRef]

96. Geng, P.; Sun, J.; Zhang, M.; Li, X.; Harnly, J.M.; Chen, P. Comprehensive characterization of C-glycosyl flavones in wheat (*Triticum aestivum* L.) germ using UPLC-PDA-ESI/HRMSn and mass defect filtering. *J. Mass Spectrom.* 2016, 51, 914–930. [CrossRef] [PubMed]

97. Wozniakowska, A.; Perkowski, J.; Góral, T.; Stobiecki, M. Structural characterization of flavonoid glycosides from leaves of wheat (*Triticum aestivum* L.) using LC/MS/MS profiling of the target compounds. *J. Mass Spectrom.* 2013, 48, 329–339. [CrossRef] [PubMed]

98. Mateos-Martín, M.L.; Fuguet, E.; Jiménez-Ardon, A.; Herrero-Uribe, L.; Tamayo-Castillo, G.; Torres, J.L. Identification of polyphenols from antiviral Chamaecrista nictitans nictitans extract using high-resolution LC–ESI–MS/MS. *Anal. Bioanal. Chem.* 2014, 406, 5501–5506. [CrossRef] [PubMed]

99. Ozarowski, M.; Piasecka, A.; Paszel-Jaworska, A.; Chaves, D.S.d.A.; Romaníu, A.; Rybczynska, M.; Gryszczyńska, A.; Sawickowska, A.; Kachlicki, P.; Mikolajczak, P.L. Comparison of bioactive compounds content in leaf extracts of *Passiflora incarnata*, *P. caerulea* and *P. alata* and in vitro cytotoxic potential on leukemia cell lines. *Rev. Bras. Farmacogn.* 2018, 28, 179–191. [CrossRef] [PubMed]
100. Perchuk, I.; Shelenga, T.; Gurkina, M.; Miroshnichenko, E.; Burlyaeva, M. Composition of Primary and Secondary Metabolite Compounds in Seeds and Pods of Asparagus Bean (Vigna unguiculata (L.) Walp.) from China. *Molecules* 2020, 25, 3778. [CrossRef]

101. Rogachev, A.; Fomenko, V.; Sal’nikova, O.; Pokrovskii, L.; Salakhutdinov, N. Comparative analysis of essential oil compositions from leaves and stems of *Rhododendron adamsii*, *R. aureum*, and *R. dauricum*. *Chem. Nat. Compd.* 2006, 42, 426–430. [CrossRef]

102. Yang, S.; Wu, X.; Rui, W.; Guo, J.; Feng, Y. UPLC/Q-TOF-MS analysis for identification of hydrophilic phenolics and lipophilic diterpenoids from Radix Salviae Miltiorrhizae. *Acta Chromatogr.* 2015, 27, 711–728. [CrossRef]

103. Ekeberg, D.; Flæte, P.-O.; Eikenes, M.; Fongen, M.; Naess-Andresen, C.F. Qualitative and quantitative determination of extractives in heartwood of Scots pine (*Pinus sylvestris* L.) by gas chromatography. *J. Chromatogr. A* 2006, 1109, 267–272. [CrossRef]

104. Mittal, J.; Sharma, M.M. Enhanced production of berberine in *In vitro* regenerated cell of *Tinospora cordifolia* and its analysis through LCMS QToF. *3 Biotech* 2017, 7, 25. [CrossRef]

105. Yan, X.; Zhao, Y.; Zhang, Y.; Qu, H. Monoclonal antibodies and immunoassay for medical plant-derived natural products: A review. *Molecules* 2017, 22, 355. [CrossRef]

106. Hou, S.; Zhu, J.; Ding, M.; Lv, G. Simultaneous determination of gibberellic acid, indole-3-acetic acid and abscisic acid in wheat extracts by solid-phase extraction and liquid chromatography–electrospray tandem mass spectrometry. *Talanta* 2008, 76, 796–802. [CrossRef] [PubMed]

107. Cassiano, D.S.A.; Reis, I.M.A.; de Oliveira Estrela, I.; de Freitas, H.F.; da Rocha Pita, S.S.; David, J.M.; Branco, A. Acetylcholinesterase inhibitory activities and bioguided fractionation of the *Ocotea percoriacea* extracts: HPLC-DAD-MS/MS characterization and molecular modeling of their alkaloids in the active fraction. *Comput. Biol. Chem.* 2019, 83, 107129. [CrossRef] [PubMed]

108. Yang, L.; Meng, X.; Yu, X.; Kuang, H. Simultaneous determination of anemoside B4, phellodendrine, berberine, palmatine, obakunone, esculin, esculetin in rat plasma by UPLC–ESI–MS/MS and its application to a comparative pharmacokinetic study in normal and ulcerative colitis rats. *J. Pharm. Biomed. Anal.* 2017, 134, 43–52. [CrossRef] [PubMed]

109. Wu, Y.; Xu, J.; He, Y.; Shi, M.; Han, X.; Li, W.; Zhang, X.; Wen, X. Metabolic profiling of pitaya (*Hylocereus polyrhizus*) during fruit development and maturation. *Molecules* 2019, 24, 1114. [CrossRef] [PubMed]

110. Sun, L.; Tao, S.; Zhang, S. Characterization and quantification of polyphenols and triterpenoids in thinned young fruits of ten pear varieties by UPLC-Q TRAP-MS/MS. *Molecules* 2019, 24, 159. [CrossRef]

111. Li, Z.H.; Zhu, H.; Cai, X.P.; He, D.D.; Hua, J.L.; Ju, J.M.; Lv, H.; Ma, L.; Li, W.L. Simultaneous determination of five triterpene acids in rat plasma by liquid chromatography–mass spectrometry and its application in pharmacokinetic study after oral administration of Folium Eriobotryae effective fraction. *Biomed. Chromatogr.* 2015, 29, 1791–1797. [CrossRef]

112. Sut, S.; Zengin, G.; Maggi, F.; Malagoli, M.; Dall’Acqua, S. Triterpene acid and phenolics from ancient apples of Friuli Venezia Giulia as nutraceutical ingredients: LC-MS study and in vitro activities. *Molecules* 2019, 24, 1109. [CrossRef]

113. Mercadante, A.Z.; Rodrigues, D.B.; Petry, F.C.; Mariutti, L.R.B. Carotenoid esters in foods-A review and practical directions on analysis and occurrence. *Food Res. Int.* 2017, 99, 830–850. [CrossRef]