Clinical utility of Cerebrospinal Fluid Biomarkers for the Diagnosis of Alzheimer's Disease in Korea

Jongmin Lee
Samsung Medical Center

Hyemin Jang
Samsung Medical Center

Sung Hoon Kang
Samsung Medical Center

Jaeho Kim
Samsung Medical Center

Ji-Sun Kim
Samsung Medical Center

Jun Pyo Kim
Samsung Medical Center

Hee Jin Kim
Samsung Medical Center

Sang Won Seo
Samsung Medical Center

Duk L. Na (dukna@naver.com)
Samsung Medical Center

Research

Keywords: Alzheimer disease, Cerebrospinal fluid, amyloid, tau, positron emission tomography, biomarkers, classification

DOI: https://doi.org/10.21203/rs.3.rs-25971/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background

Cerebrospinal fluid (CSF) biomarkers are increasingly used in clinical practice for the diagnosis of Alzheimer's disease (AD). We aimed to 1) determine cutoff values of CSF biomarkers for AD, 2) investigate their clinical utility by estimating a concordance with amyloid positron emission tomography (PET), and 3) apply AT (amyloid/tau) classification based on CSF results.

Methods

We performed CSF analysis in 51 normal controls (NC), 23 amnestic mild cognitive impairment (aMCI) and 65 AD dementia (ADD) patients at the Samsung Medical Center in Korea. We tried to develop cutoff of CSF biomarkers for differentiating ADD from NC using receiver operating characteristic analysis. We also investigated a concordance between CSF and amyloid PET results and applied AT classification scheme based on CSF biomarker abnormalities to characterize our participants.

Results

CSF A\(_\beta\)\(_{42}\), total tau (t-tau) and phosphorylated tau (p-tau) significantly differ across the three groups. The area under curve for the differentiation between NC and ADD was highest in t-tau/A\(_\beta\)\(_{42}\)(0.994) followed by p-tau/A\(_\beta\)\(_{42}\)(0.963), A\(_\beta\)\(_{42}\)(0.960) and t-tau (0.918). The concordance rate between CSF A\(_\beta\)\(_{42}\) and amyloid PET results was 92%. Finally, AT classification based on CSF biomarker abnormalities led to a majority of NC categorized into A-T-(72%), aMCI as A + T-(52%)/A + T+(30%), and AD as A + T+(56%)/A + T-(41%).

Conclusion

CSF biomarkers had high sensitivity and specificity in differentiating ADD from NC and were as accurate as amyloid PET. The AT group distribution was comparable to those of previous studies, which may serve to predict the prognosis more accurately than amyloid PET alone in the future.

Introduction

Alzheimer's disease (AD), which is characterized by pathological hallmarks of \(\beta\)-amyloid (A\(\beta\)) and neurofibrillary tau tangles, is a continuum disorder largely with three different clinical stages: normal cognition (NC, or preclinical), mild cognitive impairment (MCI, or prodromal), and dementia[1–3]. Since previous diagnostic criteria for AD were based mainly on clinical manifestations rather than on biomarkers, early diagnosis for preclinical or prodromal AD was difficult. However, advances in AD biomarker development using positron emission tomography (PET) or cerebrospinal fluid (CSF) have
enabled in vivo identification of pathologies, and therefore early diagnosis of patients even in the preclinical or prodromal stages has become possible. More recent research criteria for AD proposed by the National Institute on Aging and Alzheimer's Association (NIA-AA) task force incorporated both Aβ phenotyping and clinical status to characterize patients.[3–5] Further, a new research framework using a multiple-biomarker-based definition of AD in living patients was recently proposed[6, 7]; it included biomarkers for Aβ (A), pathologic tau (T), and neurodegenerative/neuronal injury (N), called the AT(N) system[4].

Individuals with preclinical AD or prodromal AD show changes in CSF amyloid. Specifically, a decreased level of β-amyloid 1–42 (Aβ42) and increased level of total tau (t-tau) and phosphorylated tau (p-tau) in CSF are useful for the early diagnosis of AD. CSF biomarkers may have several advantages over amyloid PET. First, CSF tests are less expensive and more accessible and have no radiation exposure issue compared to amyloid PET. Second, prior studies showed that changes in CSF Aβ42 precede amyloid PET uptakes[8, 9], suggesting that CSF biomarkers may be more sensitive in identifying individuals with preclinical AD. Third, the most noteworthy benefit of CSF biomarkers is that CSF gives more information about AD-related pathologies than does amyloid PET. That is, CSF biomarkers provide not only amyloid status (disease marker) but also information on the tau pathology biomarker (phosphorylated tau) and neurodegenerative marker (total tau) as well. Finally, as novel biomarkers such as neurofilament or neurogranin are being developed[10–13], one lumbar puncture can provide a variety of information encompassing AD pathology or other neurodegeneration in the future.

One issue with CSF biomarkers, however, is that there exists variability in cutoff values between laboratories. We need development of laboratory-specific cutoff values to enable application of these values in clinical judgement. In line with this need, a recent study using multicenter CSF data from Korea reported new cutoff levels of CSF AD biomarkers and compared them with those from Western studies[14]. However, this study included participants based on clinical diagnosis only; investigating the concordance between CSF and PET positivity or accuracy of CSF biomarkers for detecting amyloid pathology was unavailable. Besides, the cutoff values developed in this study were intended to differentiate ADD from other neurodegenerative disorder. Considering that other neurodegenerative disorders may have concomitant amyloid pathology, developed cutoff values might not be pathology specific.

Therefore, in this study, we first tried to investigate CSF biomarkers across three different cognitive groups (NC, MCI, and AD dementia [ADD]) in a single large center in Korea, in order to establish cutoff values of CSF biomarkers that could differentiate ADD from NC. Second, we investigated the concordance of CSF biomarkers and amyloid PET results to confirm the reliability of CSF biomarkers. Finally, we attempted to apply the AT biomarker classification system to our patients based on CSF biomarker cutoffs derived from our study, which would have clinical implications, in that both amyloid and tau information rather than amyloid alone can provide more accurate prediction of patients’ prognoses.
Materials And Methods

Study participants

In this study, we included a total of 400 participants who had undergone CSF analysis at the Samsung Medical Center, Seoul, Korea, from February 2011 to July 2019. Participants received a detailed dementia evaluation, including clinical history, neurologic examination, neuropsychological tests, blood tests to exclude secondary causes of dementia, brain magnetic resonance imaging (MRI), and amyloid PET and APOE genotyping. Out of the initial 400 participants, we included only individuals with NC, amnestic MCI (aMCI), or ADD; we excluded 224 patients with other diagnoses, such as normal pressure hydrocephalus (NPH), subcortical vascular cognitive impairment (SVCI, cognitive impairment associated with severe deep white matter hyperintensities [WMH], which was defined as a deep WMH lesion ≥ 25 mm and periventricular WMH lesion ≥ 10 mm), neurodegenerative disorders with parkinsonism, traumatic brain injury, frontotemporal dementias, brain tumor, neurosyphilis, CO poisoning, epilepsy, autoimmune encephalitis, or Creutzfeldt-Jakob disease. When ADD, aMCI, or NC participants showed a gait disturbance and an Evan's ratio over 3.0 on MRI, they were referred to as ADD, aMCI, or NC with “combined hydrocephalus” and excluded from this study (n = 37).

ADD was clinically diagnosed when patients met the diagnostic criteria for probable ADD according to NIA-AA criteria, with cognitive impairment, such as memory loss, word-finding difficulties, or visual/spatial problems significant enough to impair a person's ability to function independently[15]. AMCI was diagnosed according to Peterson's MCI criteria[16], which was characterized by memory complaints usually corroborated by an informant, objective memory impairment for age, essentially preserved general cognitive function, and largely intact functional activities. We recruited NC participants from our memory or headache clinic or orthopedic surgery department, where they received spinal anesthesia. All the NC individuals met the following criteria: no history of neurological or psychiatric disorders, normal cognitive function, normal activities of daily living with or without subjective memory complaints, and normal CSF cell count.

We obtained written informed consent for obtaining CSF data from each patient, and this study was approved by the Institutional Review Board at the Samsung Medical Center.

CSF collection and AD biomarker analysis

For most participants, CSF samples were collected from a lumbar puncture done in the L3-4 or L4-5 intervertebral spaces using a 20 or 22G needle[17]. Fasting was not required. A subset of 28 AD and 12 aMCI patients had Ommaya reservoir insertion for a clinical trial of intraventricular stem-cell injection, ‘Safety and Exploratory Efficacy Study of NEUROSTEM® Versus Placebo in Patients with Alzheimer's Disease[18]’, and the CSF obtained from the Ommaya reservoir before stem-cell injection was used for the current study. All CSF samples were collected into 15-ml polypropylene tubes at the time of the tap and were then sent to Samsung Medical Center laboratory within 30 minutes after collection. After samples were centrifuged at 2000 g for 10 minutes within 4 hours after collection, aliquots (1 ml) prepared from
these samples at room temperature were immediately stored in bar-code-labeled polypropylene vials at −70 °C. In our laboratory, we run assays for CSF biomarkers once CSF samples are collected from 30 to 40 patients, using INNOTEST enzyme-linked immunosorbent assay (ELISA) kits (Fujirebio Europe N.V.). The CSF biomarkers included levels of Aβ42 (Amyloid-β (1–42)), t-tau, and p-tau (181 phosphorylated tau).

Aβ PET acquisition and definition of Aβ positivity

A total of 90 patients underwent Aβ PET (PiB, \(n = 5 \); florbetaben, \(n = 80 \); flutemtamol, \(n = 5 \)). For 11C-PiB PET, a 30-minute emission static PET scan was done 60 minutes after bolus injection of a mean dose of 420 MBq 11C-PiB into an antecubital vein. For 18F-florbetaben PET, a 20-minute emission PET scan in dynamic mode (consisting of 4 × 5 min frames) was done 90 minutes after bolus injection of a mean dose of 381 MBq 18F-florbetaben into an antecubital vein. For flutemtamol PET, a 20-minute emission static PET scan in dynamic mode (consisting of 4 × 5 min frames) was done 90 minutes after bolus injection of a mean dose of 185 MBq flutemtamol into an antecubital vein.

We defined Aβ PET positivity (PET+) for the three different types of PET images as follows: (1) Global PiB SUVR (assessed from the volume-weighted average SUVR of 28 bilateral cerebral cortical VOIs) of greater than 1.5 as described in our previous study[19], (2) visual rating score on florbetaben PET of 2 or 3 on the brain Aβ plaque load scoring system[20], (3) positive visual interpretation of 18F-flutemtamol PET in any one of the five brain regions (frontal, parietal, posterior cingulate and precuneus, striatum, and lateral temporal lobes) in either hemisphere[21].

Statistical analyses

We used ANOVA (Analysis of Variance) to compare clinical characteristics between NC, aMCI and ADD, and ANCOVA (Analysis of Covariates) to compare CSF biomarker levels with adjustment of age. We used paired \(t \)-tests to compare CSF biomarker levels between each two groups.

We did receiver operating characteristic (ROC) analyses to establish the cutoffs for each CSF biomarker (Aβ42, t-tau, p-tau) and ratio (t-tau/ Aβ42, p-tau/ Aβ42) that best differentiated clinical ADD from NC. The cutoffs for biomarkers were defined as values that give the maximum Youden index (sensitivity + specificity − 1). We then calculated the sensitivity and specificity for each cutoff value.

We defined CSF biomarker levels as abnormal (CSF+) when CSF Aβ4 was lower than cutoff values. Therefore, the concordance rate of amyloid PET and CSF biomarker results was calculated as the number of CSF+/PET+ plus CSF-/PET- cases over the total number of participants in the analysis. All statistical tests were conducted using the SPSS version 22 (SPSS, Inc., Chicago, IL).

Results

Demographics and Clinical characteristics of study participants
Table 1 shows the clinical characteristics and CSF biomarker levels of the study participants. The mean age ($p = 0.205$) and education year ($p = 0.881$) were not significantly different across groups. The proportion of female was different across groups ($p = 0.025$), being highest at 82% in NC, followed by 61% in aMCI and 60% in ADD. The frequency of APOE4 carriers was higher in aMCI (15/22, 67%) and ADD (52/92, 55%) than in NC (1/6, 16%), although the difference was not statistically significant ($p = 0.096$). The frequency of amyloid PET positivity was different across groups ($p < 0.001$) with 78% in aMCI and 94% in ADD, and two NC participants who underwent amyloid PET tested negative.

Table 1
Demographics and clinical characteristics of the study participants ($N = 139$)

Clinical characteristics	NC (n = 51)	aMCI (n = 23)	ADD (n = 65)	P value
Age, years	64.1 ± 11.0	67.5 ± 8.1	63.3 ± 9.3	0.205
Female sex, N (%)	42 (82%)	14 (61%)	39 (60%)	0.025
Education, years	11.8 ± 4.4	12.4 ± 4.3	11.9 ± 4.1	0.881
APOE4 carriers, % (N)	16 (1/6)	67 (14/21)	55 (33/60)	0.096
Amyloid PET positivity, % (N)	0 (0/2)	78 (18/23)*	94 (61/65)*	< 0.001

CSF biomarkers

Aβ42, pg/ml	1033.5 ± 330.5	468.5 ± 299.7*	372.2 ± 169.1*	< 0.001
T-tau, pg/ml	185.3 ± 96.1	400.5 ± 175.4*	560.4 ± 309.0**	< 0.001
P-tau, pg/ml	50.3 ± 17.4	57.5 ± 23.3	70.4 ± 34.7*	0.001
T-tau/Aβ42	0.195 ± 0.141	1.230 ± 0.840*	1.668 ± 0.896**	< 0.001
P-tau/Aβ42	0.051 ± 0.026	0.155 ± 0.078*	0.201 ± 0.090**	< 0.001

Values are represented as mean ± SD or number (%)

*p < 0.05 compared to NC, †p < 0.05 compared to aMCI

Abbreviations: NC, normal control; aMCI, amnestic mild cognitive impairment; ADD, Alzheimer’s disease dementia; APOE4, apolipoprotein E4; PET, positron emission tomography; CSF, cerebrospinal fluid; Aβ42, beta amyloid 1–42; T-tau, total tau; P-tau, phosphorylated tau

Levels of CSF biomarkers in different cognitive groups

CSF biomarkers levels ($Aβ42$ (pg/ml), t-tau (pg/ml), p-tau (pg/ml), t-tau/ Aβ42, p-tau/ Aβ42) in the three diagnostic groups are shown in Table 1 and Fig. 1. CSF Aβ42 levels were 1033.5 ± 330.5, 400.5 ± 175.4, and 372.2 ± 169.1 pg/ml in NC, aMCI, and ADD, respectively (ANCOVA, $p < 0.001$). CSF t-tau levels were
185.3 ± 96.1, 391.0 ± 177.9, and 507.0 ± 348.5 (ANCOVA, p < 0.001), and CSF p-tau levels were 50.3 ± 17.4, 57.1 ± 22.8, and 65.0 ± 39.9 in NC, aMCI, and ADD (ANCOVA, p = 0.001), respectively. CSF t-tau/ Aβ42 ratios were 1.668 ± 0.896, 1.230 ± 0.840, and 0.195 ± 0.141 (ANCOVA, p < 0.001), and CSF t-tau/ Aβ42 ratios were 0.201 ± 0.090, 0.155 ± 0.078, and 0.051 ± 0.026 in NC, aMCI, and ADD (ANCOVA, p < 0.001). All biomarkers were significantly different between the three groups, even after controlling for age. Post hoc analysis of paired t-tests showed that Aβ42 was different between NC vs. aMCI (p < 0.001) and NC vs. ADD (p < 0.001) groups, but it was not significantly different between ADD and aMCI (p = 0.391). However, t-tau, t-tau/ Aβ42, and p-tau/ Aβ42 showed differences between NC vs. aMCI, NC vs. ADD, and aMCI vs. ADD, whereas p-tau differed only between NC and ADD (p = 0.001).

Cutoff values of CSF AD biomarkers

Table 2 shows the ROC curve-derived cutoff values of the CSF biomarkers that best distinguished ADD from NC. T-tau/ Aβ42 showed the highest AUC (0.994) followed by p-tau/ Aβ42 (0.963), Aβ42 (0.960), and t-tau (0.918). In contrast, p-tau alone showed a low AUC of 0.684 (Fig. 2). The cutoff values were 667.91 pg/ml (Sensitivity [Sn] 88%, Specificity [Sp] 97%) for Aβ42, 355.27 pg/ml (Sn 73%, Sp 96%) for t-tau, 61.82 pg/ml (Sn 59%, Sp 82%) for p-tau, 0.641 (Sn 97%, Sp 98%) for t-tau/ Aβ42, and 0.103 (Sn 92%, Sp 94%) for p-tau/ Aβ42

CSF biomarker	Cutoff	AUC	Sensitivity, %	Specificity, %
Aβ42, pg/ml	667.9	0.960	88	97
T-tau, pg/ml	355.3	0.918	73	96
P-tau, pg/ml	61.8	0.684	59	82
T-tau/Aβ42	0.641	0.994	97	98
P-tau/Aβ42	0.103	0.963	92	94

Abbreviations: NC, normal control; ADD, Alzheimer’s disease dementia; CSF, cerebrospinal fluid; AUC, area under curve; Aβ42, beta amyloid 1–42; T-tau, total tau; P-tau, phosphorylated tau

Concordance of CSF Aβ biomarker and amyloid PET

We further investigated the concordance of amyloid PET results and CSF Aβ biomarker cutoff-based results. Among 90 participants who underwent amyloid PET, the number of CSF + PET + and CSF-PET-cases were 77 and 6, which results in a 92% (83/90) concordance rate. Among the seven discordant cases for PET and CSF Aβ42, two were PET+/CSF- and five were PET-/CSF+. The clinical characteristics and CSF biomarker levels of the discordant cases are described in Table 3. Two PET+/CSF- cases were aMCI and ADD who showed CSF Aβ42 levels of 777.9 and 794.6, which are slightly higher than our cutoff values. Among the five PET-/CSF + cases, two aMCI patients showed equivocal results on amyloid PET,
and two were diagnosed as ADD when CSF tests were done, but turned out to have behavior variant frontotemporal dementia (bvFTD) when followed up. Another PET-/CSF + patient was diagnosed as ADD at first, but was found to have chronic subdural hemorrhage (SDH).
Table 3
PET-CSF discordant cases

Case	Patient characteristics	CSF biomarkers (cutoff values)	
		Aβ42 (667.9) t-tau (355.3) p-tau (61.8) t-tau/Aβ42 (0.641) p-tau/Aβ42 (0.103)	
PET + CSF-			
M/79 aMCI		777.9 305.7 63.9 0.393 0.082	
F/84 ADD		794.6 713.7 89.9 0.898 0.113	
PET- CSF+			
M/77 aMCI, with equivocal PET positivity	446.4 612.8 100.6 1.373 0.225		
F/63 aMCI with equivocal PET positivity	548.4 391.3 57.9 0.714 0.106		
F/69	Clinically diagnosed as AD due to prominent memory impairment, but final diagnosis was bvFTD when followed up	274.1 628.3 97.8 2.293 0.335	

Abbreviations: aMCI, amnestic mild cognitive impairment; ADD, Alzheimer's disease dementia; APOE4, apolipoprotein E4 gene; PET, positron emission tomography; CSF, cerebrospinal fluid; Aβ42, beta amyloid 1–42; T-tau, total tau; P-tau, phosphorylated tau; bvFTD, behavioral variant frontotemporal dementia; SDH, subdural hemorrhage
	Clinical diagnosis	337.0	408.4	61.1	1.212	0.181
F/55	Clinically diagnosed as AD with equivocal PET positivity. However, final diagnosis was bvFTD with flortaucipir (tau) PET finding demonstrating increased uptakes in both frontotemporal areas.					
M/82	Clinically diagnosed as AD but found to have minimal amount of chronic SDH.					

Abbreviations: aMCI, amnestic mild cognitive impairment; ADD, Alzheimer’s disease dementia; APOE4, apolipoprotein E4 gene; PET, positron emission tomography; CSF, cerebrospinal fluid; Aβ42, beta amyloid 1–42; T-tau, total tau; P-tau, phosphorylated tau; bvFTD, behavioral variant frontotemporal dementia; SDH, subdural hemorrhage

AT biomarker classification using CSF AD biomarker cutoff

We used cutoffs of CSF Aβ42 (= 667.9) and p-tau levels (= 61.82) to define abnormal Aβ (A+) and abnormal tau (T+) to apply AT biomarker classification in our study subjects. As shown in Fig. 3, a majority of NC was categorized into A-T- (72%), followed by A-T+ (16%). A+ T- occupied 52% of aMCI, followed by A+ T+ (30%), and most ADD patients were categorized into A+ T+ (56%) and A+ T- (41%).

Discussion

In this study, we recruited 139 participants and compared CSF biomarker levels across three groups with different cognition levels (NC, MCI, and ADD), and we developed CSF biomarker cutoffs to differentiate
ADD from NC. We also tried to investigate the reliability and clinical utility of CSF biomarkers by investigating concordance rates between amyloid PET and CSF results. Our major findings were as follows. First, CSF biomarkers were significantly different between NC, MCI and ADD groups. Second, the cutoff values we obtained were accurate in differentiating ADD from NC and were highly concordant with amyloid PET results. Third, whereas amyloid PET can only categorize patients into amyloid negative versus positive groups, CSF biomarkers can further categorize patients according to their amyloid and tau status. Taken together, we consider that CSF biomarkers are useful in clinical and research field.

The first major finding of our study was that CSF biomarkers were significantly different between the three diagnostic groups. CSF Aβ42 level was different between NC and aMCI or ADD. However, it was not different between aMCI and ADD, which may be in line with the fact that CSF Aβ42 levels change before neurodegeneration and cognitive impairment occurs, as has been explained by the sigmoid-shaped trajectory of CSF Aβ42 levels[8]. Unlike CSF Aβ42, CSF t-tau, t-tau/Aβ42, and p-tau/Aβ42 ratios were significantly different between aMCI and ADD. These findings are also consistent with previous notions that CSF t-tau is a well-known marker for neurodegeneration[6]. Therefore, we considered that a combination of tau and amyloid markers (such as the ratio of CSF t-tau/Aβ42 or CSF p-tau/Aβ42) could represent disease progression better than could an amyloid marker alone.

The second major finding of our study was that we were able to obtain cutoff values that showed high accuracy (represented as AUC) in differentiating clinical ADD from NC. Specifically, the AUC from t-tau/Aβ42 was highest (0.994), followed by those from p-tau/Aβ42 (0.963) and Aβ42 (0.960). This high accuracy may be explained by the fact that we took extra caution when selecting patients by excluding patients with possible NPH and patients with severe WMH (patients with SVCI). In fact, recent studies showed that CSF Aβ42 levels can be decreased in pure NPH.[22–24]

T-tau also showed a satisfactory AUC of 0.918, although that was not the case with p-tau. This finding was unexpected, because CSF p-tau has been considered to be more closely related to neurofibrillary tangles pathologies than is CSF t-tau[25–27]. However, CSF p-tau levels might change even in ADD according to the speed of progression[28]. That is, CSF p-tau may not clearly correlate with disease progression, differently from tau PET imaging showing accumulating tau pathology. Further studies to investigate longitudinal CSF p-tau change in AD are required. Alternatively, the NC group in our study might have included preclinical participants who had neurofibrillary tangles (restricted to Braak stage I/II or even involving III/IV stage regions), although they did not complain of any cognitive symptoms.

The third major finding was that, when we compared the results of CSF Aβ42 with those of amyloid PET, the concordance rate was as high as 92%. When we looked at discordant cases, CSF Aβ42 levels of two PET + CSF- patients were 777.9 and 794.6, which were slightly higher than the cutoff values. Therefore, a combination with the tau biomarker could be more accurate than is CSF Aβ42 alone for diagnosis of ADD. There were also five PET-CSF + cases, among which two were aMCI cases as expected, because CSF biomarker changes occur prior to amyloid uptake on PET. One interesting case was an 82-year-old man who was diagnosed with ADD but had a markedly high t-tau level of 1529.2, but a low p-tau of 24.1.
When we reviewed his case later because of the exceptionally high t-tau levels, we found a minimal amount of chronic SDH on his CT image conducted before CSF tapping. Therefore, we need to reconsider a diagnosis in cases where t-tau levels are higher than the p-tau levels.

Nevertheless, a high concordance between amyloid PET and CSF results has a clinical implication, in that CSF biomarkers can be an alternative to amyloid PET in clinical practice, since CSF biomarkers are even less expensive and more accessible than an amyloid PET scan in most clinical settings. Most importantly, CSF study makes it possible to detect various neurodegenerative biomarkers simultaneously once CSF is sampled. As in our study, information on amyloid and tau can be obtained from one sample of CSF, unlike a PET scan, which should be done separately to detect two different biomarkers. In addition, new CSF biomarkers, such as neurofilament or neurogranin, are increasingly considered as promising biomarkers, which suggests that the potential of new CSF biomarkers for a variety of neurodegenerative diseases may increase.

Finally, when we used our CSF cutoff values to apply AT biomarker classification to study participants, most of the NC were A-T- whereas most of the AD were A+T+, as expected. Interestingly, in the MCI group, the majority of patients was classified into A+T- (52%), followed by A+T+ (30%). The percentages of these groups are largely comparable to those from a previous study[29]. Another feature that our study and a previous study had in common was that there was an A-T+ and A-T- population in the MCI group, recapitulating the heterogeneity of MCI patients. In the era of molecular targeting treatment, delineating biomarker profiles in MCI patients may help clinicians to select the potential candidates by predicting different prognoses.

Limitations

There are limitations in our study. First, most of the NC did not undergo amyloid PET scans. Second, we had 40 participants who had CSF taken from the Omaya reservoir, but others had it taken by lumbar puncture, which disturbs the homogeneity of a single-center study. Third, one ADD patient was proven to have SDH before CSF drainage, which could disturb CSF results that were shown as a PET-CSF discordant case. Despite these limitations, considering that every center and country needs their own cutoff values, we hope that the cutoff values derived from a single center of a large memory clinic may be useful in research and clinical fields.

Conclusions

CSF biomarkers had high sensitivity and specificity in differentiating ADD from NC and were as accurate as amyloid PET. We could obtain the cutoff values of CSF biomarkers (667.91 pg/ml [Aβ42], 355.27 pg/ml for [t-tau], and 61.82 pg/ [p-tau]) based on comprehensive and detailed clinical and imaging data from a single center, minimizing biases with homogeneous study protocols. In addition, CSF biomarkers can further categorize patients according to their amyloid (A) and tau (T) status, and this
AT classification scheme could help clinicians to predict the prognosis more accurately than amyloid PET alone.

Abbreviations

CSF, cerebrospinal fluid; NC, normal control; ADD, Alzheimer’s disease dementia; aMCI, mild cognitive impairment; AUC, area under curve; Aβ42, beta amyloid 1-42; T-tau, total tau; P-tau, phosphorylated tau; PET, positron emission tomography; MRI, magnetic resonance imaging; WMH, white matter hyperintensities

Declarations

Ethics approval and consent to participate

The institutional review boards of all participating institutions approved the procedures for this study. Written informed consent was obtained from all participants or surrogates.

Consent for publication

Not applicable.

Availability of data and material

The data are publically available and provided upon request.

Competing interests

The authors declare that they have no competing interests.

Funding

DLN receives funding from Korean Health Technology R&D Project, Ministry of Health & Welfare, Republic of Korea (HI14C2746 and HI19C1132)

Authors' contributions

JL, HJ: design of the study, acquisition and analysis of the data, drafting the manuscript

SHK, JSK, JK, JPK: design of the study, analysis of the data

SWS, HJK interpretation of the data, revising the manuscript

DLN: design of the study, acquisition and analysis of the data, interpretation of the data, revising the manuscript, study supervision
Acknowledgements

DLN receives funding from Korean Health Technology R&D Project, Ministry of Health & Welfare, Republic of Korea (HI14C2746 and HI19C1132)

References

1. Dubois B, Feldman HH, Jacova C, Hampel H, Molinuevo JL, Blennow K, et al. Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol. 2014;13:614–29.

2. McKhann G, Knopman D, Chertkow H, Hyman B, Jack C Jr, Kawas C. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the NIAAA Association workgroups on diagnostic guidelines for AD. Alzheimers Dement. 2011;7:263–9.

3. Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s dementia. 2011;7:270–9.

4. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. 2011;7:263–9.

5. Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM, et al. Toward dening the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s dementia. 2011;7:280–92.

6. Jack CR, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA-AA Research Framework: Toward a biological denition of Alzheimer’s disease. Alzheimer’s Dement. 2018;14:535–62.

7. Jack CR, Bennett DA, Blennow K, Carrillo MC, Feldman HH, Frisoni GB, et al. A/T/N: An unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology. 2016;87:539–47.

8. Jack CR, Knopman DS, Jagust WJ, Petersen RC, Weiner MW, Aisen PS, et al. Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 2013;12:207–16.

9. Bateman RJ, Xiong C, Benzinger TL, Fagan AM, Goate A, Fox NC, et al. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med. 2012;367:795–804.

10. 10.

11. Olsson B, Lautner R, Andreasson U, Öhrfelt A, Portelius E, Bjerke M, et al. CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: a systematic review and meta-analysis. The Lancet Neurology. 2016;15:673 – 84.

12. Portelius E, Zetterberg H, Skillbäck T, Törnqvist U, Andreasson U, Trojanowski JQ, et al. Cerebrospinal fluid neurogranin: relation to cognition and neurodegeneration in Alzheimer’s disease.
13. Mattsson N, Insel PS, Palmqvist S, Portelius E, Zetterberg H, Weiner M, et al. Cerebrospinal fluid tau, neurogranin, and neurofilament light in Alzheimer's disease. EMBO molecular medicine. 2016;8:1184-96.

14. Park SA, Chae WS, Kim HJ, Shin HS, Kim S, Im JY, et al. Cerebrospinal Fluid Biomarkers for the Diagnosis of Alzheimer Disease in South Korea. Alzheimer Dis Assoc Disord. 2017;31:13 – 8.

15. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR, Jr., Kawas CH, et al. The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011;7:263-9.

16. Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol. 1999;56:303-8.

17. Park SA, Kang JH, Kang ES, Ki CS, Roh JH, Youn YC, et al. A consensus in Korea regarding a protocol to reduce preanalytical sources of variability in the measurement of the cerebrospinal fluid biomarkers of Alzheimer's disease. J Clin Neurol. 2015;11:132 – 41.

18. Kim HJ, Seo SW, Chang JW, Lee JI, Kim CH, Chin J, et al. Stereotactic brain injection of human umbilical cord blood mesenchymal stem cells in patients with Alzheimer's disease dementia: a phase 1 clinical trial. Alzheimer's & Dementia: Translational Research & Clinical Interventions. 2015;1:95–102.

19. Lee JH, Kim SH, Kim GH, Seo SW, Park HK, Oh SJ, et al. Identification of pure subcortical vascular dementia using 11C-Pittsburgh compound B. Neurology. 2011;77:18–25.

20. Barthel H, Luthardt J, Becker G, Patt M, Hammerstein E, Hartwig K, et al. Individualized quantification of brain beta-amyloid burden: results of a proof of mechanism phase 0 florbetaben PET trial in patients with Alzheimer's disease and healthy controls. Eur J Nucl Med Mol Imaging. 2011;38:1702-14.

21. Kim SE, Woo S, Kim SW, Chin J, Kim HJ, Lee BI, et al. A Nomogram for Predicting Amyloid PET Positivity in Amnestic Mild Cognitive Impairment. J Alzheimers Dis. 2018;66:681 – 91.

22. Kim HJ, Lim TS, Lee SM, Kim TS, Kim Y, An YS, et al. Cerebrospinal Fluid Levels of beta-Amyloid 40 and beta-Amyloid 42 are Proportionately Decreased in Amyloid Positron-Emission Tomography Negative Idiopathic Normal-Pressure Hydrocephalus Patients. J Clin Neurol. 2019;15:353-9.

23. Jeppsson A, Holtta M, Zetterberg H, Blennow K, Wikkelso C, Tullberg M. Amyloid mis-metabolism in idiopathic normal pressure hydrocephalus. Fluids Barriers CNS. 2016;13:13.

24. Graff-Radford NR. Alzheimer CSF biomarkers may be misleading in normal-pressure hydrocephalus. Neurology. 2014;83:1573-5.

25. Blennow K, Hampel H, Weiner M, Zetterberg H. Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nature Reviews Neurology. 2010;6:131.

26. Buerger K, Ewers M, Pirtila T, Zinkowski R, Alafuzoff I, Teipel SJ, et al. CSF phosphorylated tau protein correlates with neocortical neurofibrillary pathology in Alzheimer's disease. Brain.
2006;129:3035-41.

27. Clark CM, Xie S, Chittams J, Ewbank D, Peskind E, Galasko D, et al. Cerebrospinal fluid tau and beta-amyloid: how well do these biomarkers reflect autopsy-confirmed dementia diagnoses? Arch Neurol. 2003;60:1696 – 702.

28. Wahlund L-O, Blennow K. Cerebrospinal fluid biomarkers for disease stage and intensity in cognitively impaired patients. Neuroscience letters. 2003;339:99–102.

29. Altomare D, de Wilde A, Ossenkoppele R, Pelkmans W, Bouwman F, Groot C, et al. Applying the ATN scheme in a memory clinic population. The ABIDE project. 2019;93:e1635-e46.

Figures

Figure 1

Comparison of CSF biomarkers between stages of AD. Abbreviations: CSF, cerebrospinal fluid; AD, Alzheimer's disease; aMCI, amnestic mild cognitive impairment; NC, normal controls; Aβ42, beta amyloid 1-42; T-tau, total tau; P-tau, phosphorylated tau
Figure 2

ROC curves of CSF biomarkers for discrimination between NC and ADD abbreviations: ROC, receiver operating characteristic; CSF, cerebrospinal fluid; NC, normal control; ADD, Alzheimer's disease dementia; Aβ42, beta amyloid 1-42; T-tau, total tau; P-tau, phosphorylated tau
Figure 3

Application of AT system using CSF biomarkers with CSF cutoff values. Abbreviations: AT, amyloid-tau; CSF, cerebrospinal fluid; NC, normal controls; aMCI, amnestic mild cognitive impairment; AD, Alzheimer's disease dementia