THE MULTIPARTITE RAMSEY NUMBER
FOR THE 3-PATH OF LENGTH THREE

TOMASZ LUCZAK AND JOANNA POLCYN

Abstract. We study the Ramsey number for the 3-path of length three and n colors and show that $R(P^3_3; n) \leq \lambda_0 n + 7\sqrt{n}$, for some explicit constant $\lambda_0 = 1.97466\ldots$.

1. Introduction

Let P^3_3 be the 3-uniform hypergraph with the set of vertices $\{a, b, c, d, e, f, g\}$ and the set of edges $\{(a, b, c), (c, d, e), (e, f, g)\}$. The Ramsey number $R(P^3_3; n)$ is the smallest integer N such that any coloring of the edges of the complete 3-uniform hypergraph K^3_N on N vertices with n colors leads to a monochromatic copy of P^3_3. It is easy to see that $R(P^3_3; n) \geq n + 6$ (see [2, 4]) and it is believed that this lower bound is sharp, i.e. that $R(P^3_3; n) = n + 6$. However, so far this conjecture has been confirmed only for $n \leq 10$ (see [4, 6, 9, 10]). On the other hand, from the fact that for $N \geq 8$ each P^3_3-free 3-uniform hypergraph H on N vertices satisfies

\begin{equation}
|H| \leq \binom{N-1}{2},
\end{equation}

(see [1] and [4]), it follows that

$R(n; P^3_3) \leq 3n$.

In [7] the authors of this note improved the above upper bound to

\begin{equation}
R(n; P^3_3) \leq 2n + \sqrt{18n + 1} + 2.
\end{equation}

Our argument relied on the fact that for 2-graphs the analogous multicolored Ramsey number for a ‘usual’ 2-path of length three is know to be $2n + O(1)$, where the small hidden constant $O(1)$ depends only on divisibility of n by 3 (see [3]). Thus, it seemed the method we used

2010 Mathematics Subject Classification. Primary: 05D10, secondary: 05C38, 05C55, 05C65.

Key words and phrases. Ramsey number, hypergraphs, paths.

The first author partially supported by NCN grant 2012/06/A/ST1/00261.
The main result of this note is to match our previous approach with later results from [8] and get the following estimate for $R(P_3^3; n)$.

Theorem 1. Let

$$f(\gamma) = (\gamma^3 - 3\gamma^2 + 6\gamma - 6)^2 - 72\gamma(2 - \gamma)(\gamma - 1)^2.$$

and let $\lambda_0 = 1.97466\ldots$ be the solution to the equation $f(\gamma) = 0$, such that $f(\gamma) > 0$ whenever $\gamma \in (\lambda_0, 2)$. Then

$$R(P_3^3; n) \leq \lambda_0 n + 7\sqrt{n}.$$

2. Proof of Theorem 1

Our argument is based on the following decomposition lemma proved in [8]. Before we state it we need some definitions. We call a 3-graph H quasi-bipartite if one can partition its set of vertices into three sets: $X = \{x_1, x_2, \ldots, x_s\}$, $Y = \{y_1, y_2, \ldots, y_s\}$, and $Z = \{z_1, z_2, \ldots, z_t\}$ in such a way that all the edges of H can be written as $\{x_i, y_i, z_j\}$ for some $i = 1, 2, \ldots, s$, and $j = 1, 2, \ldots, t$. By a star with center v we mean any 3-graph in which each edge contains v. Then the following holds.

Lemma 2. For any P_3^3-free 3-graph H there exists a partition of its set of vertices $V = V_R \cup V_T \cup V_S$, such that subhypergraphs of H defined as $H_R = \{h \in H : h \cap V_R \neq \emptyset\}$, $H_T = H[V_T]$ and $H_S = H \setminus (H_R \cap H_T) = \{h \in H[V \setminus V_R] : h \cap V_S \neq \emptyset\}$ satisfy the following three conditions:

(i) $|H_R| \leq 6|V_R|$,
(ii) H_T is quasi-bipartite and $|H_T| \leq |V_T|^2/8$,
(iii) H_S is a family of disjoint stars such that centers of these stars are in V_T whereas all other vertices are in V_S, and $|H_S| \leq \binom{|V_S|}{2}$.

The following lemma is a direct consequence of the above result.

Lemma 3. Let H be a P_3^3-free 3-graph H on $N \geq 95$ such that for some s, $(N + 3)/2 \leq s \leq N - 46$, we have

$$|H| \geq \binom{s - 1}{2} + \binom{N - s}{2},$$

and let $H = H_R \cup H_T \cup H_S$ be a decomposition of H as described in Lemma 2. Then H_S contains a star on at least s vertices.
The Multipartite Ramsey Number for the 3-Path

Proof. Let \(V = V_R \cup V_T \cup V_S \) be a partition of the set of vertices \(H \) given by Lemma 2. Note that \(|V_S| \geq s - 1 \), since otherwise

\[
|H| \leq 6|V_R| + \frac{|V_T|^2}{8} + \left(\frac{|V_S|}{2} \right)^2 \leq \left(\frac{|V_S|}{2} \right)^2 + \left(\frac{N - |V_S|}{2} \right)^2
\]

\[
\leq \left(\frac{s - 2}{2} \right)^2 + \left(\frac{N - s + 2}{2} \right)^2 < \left(\frac{s - 1}{2} \right)^2 + \left(\frac{N - s}{2} \right)^2.
\]

Recall that \(H_S \) is a collection of disjoint stars. Suppose that the largest of these stars consists of at most \(s - 1 > N/2 \) vertices. Then one can easily verify that the number of edges in \(H_S \) is maximised if \(H_S \) consists of two stars on \(s - 1 \) and \(|V_S| - (s - 1) + 2 \) vertices respectively. Consequently

\[
|H| \leq 6|V_R| + \frac{|V_T|^2}{8} + \left(\frac{s - 2}{2} \right) + \left(\frac{|V_S| - s + 2}{2} \right)
\]

\[
\leq \left(\frac{s - 2}{2} \right) + \left(\frac{N - s + 1}{2} \right) < \left(\frac{s - 1}{2} \right) + \left(\frac{N - s}{2} \right),
\]

again contradicting the fact that \(|H| \geq \left(\frac{s - 1}{2} \right) + \left(\frac{N - s}{2} \right) \). Thus, \(H_S \) contains a star on at least \(s \) vertices. \(\square \)

Proof of Theorem 1. We show that if for given integers \(N \) and \(n \) one can find a coloring of edges of \(K_3^N \) by \(n \) colors without monochromatic copies of \(P_3 \), then \(\gamma = (N - 7\sqrt{n})/n < \lambda_0 \) where \(\lambda_0 \) is defined in Theorem 1. Some parts of our argument are quite technical and, since we aim to prove the statement for every \(n \), we start with few remarks which makes our future computations a bit easier.

Note that since \(\lambda_0 > 1.97 \), we may assume that \(\gamma > 1.9 \). Moreover, due to (2), it is enough to consider \(\gamma < 2 \). Finally, since \(R(n; P_3^3) \leq 3n \) we can restrict to the case \(n \geq 41 \) (and hence \(N > 122 \)) because otherwise \(3n < 1.9n + 7\sqrt{n} \).

Thus, for \(n \geq 41 \) and \(1.9 < \gamma < 2 \), let us consider a coloring of edges of \(K_3^N \), \(N = \gamma n + 7\sqrt{n} \), by \(n \) colors without monochromatic copies of \(P_3^3 \), and let \(H_i \) denote the \(P_3^3 \)-free hypergraph generated by the \(i \)-th color.

We say that the \(i \)-th color is rich if

\[
|H_i| \geq \left(\frac{n + 6\sqrt{n} - 1}{2} \right) + \left(\frac{N - n - 6\sqrt{n}}{2} \right).
\]

Claim 4. At least \(\beta n \) colors are rich, where

\[
\beta = \frac{\gamma^3 - 3\gamma^2 + 6\gamma - 6}{6(\gamma - 1)}.
\]
Proof. Due to technical calculations it will be convenient to show the statement by contradiction. Denote the number of rich colors by \(\beta n \) and assume that
\[
\beta < \frac{\gamma^3 - 3\gamma^2 + 6\gamma - 6}{6(\gamma - 1)} < \frac{1}{3}
\]
Since by (1), for each \(i \in [n] \) we have \(|H_i| \leq \binom{N-1}{2}\),
\[
\binom{N}{3} < \beta n \binom{N-1}{2} + n(1-\beta) \left(\frac{n+6\sqrt{n}-1}{2} + \frac{N-n-6\sqrt{n}}{2} \right).
\]
Now substituting \(N = \gamma n + 7\sqrt{n} \) and putting all leading terms on the left hand side of the equation we arrive at
\[
[(\gamma^3 - 3\gamma^2 + 6\gamma - 6) - \beta(6\gamma - 6)]n^3 < [\beta(36\gamma - 30) - (21\gamma^2 - 6\gamma - 30)]n^{5/2}
+ [(\beta(42 - 6\gamma) - (150\gamma - 3\gamma^2 - 105)]n^2
- [6\beta + 400 - 42\gamma]n^{3/2} - [2\gamma - 153]n - 14\sqrt{n}.
\]
But for \(1.9 < \gamma < 2 \) and \(0 \leq \beta < 1/3 \) the right hand side of the above equation is smaller than \(-19n^{5/2} - 157n^2 - 316n^{3/2} + 150n - 14\sqrt{n}\) which, in turn, is negative for all natural \(n \). Consequently,
\[
[(\gamma^3 - 3\gamma^2 + 6\gamma - 6) - \beta(6\gamma - 6)]n^3 < 0,
\]
and thus
\[
\beta > \frac{\gamma^3 - 3\gamma^2 + 6\gamma - 6}{6(\gamma - 1)},
\]
contradicting (4). \(\square \)

Recall that each \(H_i \) is \(P_3 \)-free and so one can apply to it Lemma 2 to get a decomposition of \(H_i \) into three graphs, \(H_R^i \cup H_T^i \cup H_S^i \). For all \(i \in [n] \) let us ‘uncolor’ all the triples in \(H_R^i \) and mark them ‘blank’, and set \(\hat{H}_i = H_T^i \cup H_S^i \). Let \(G_i \) be the graph whose edges are pairs which belong to at least two hyperedges of \(\hat{H}_i \) and fewer than \(6\sqrt{n} \) blank triples. Note that, because of the structure of \(\hat{H}_i \), \(G_i \) is a forest consisting of stars.

We say that an edge of \(G_i \) is private if it is not an edge of any other graph \(G_j \), \(j \neq i \), and public otherwise. By \(e_i \) and \(e'_i \) we denote the number of private and public edges of \(G_i \), respectively. The weight \(w(G_i) \) of \(G_i \) is defined as
\[
w(G_i) = e_i + e'_i/2.
\]
Since \(G_i \) is a forest we have also
\[
w(G_i) \leq e_i + e'_i < N.
\]
Note that at most
\[
\frac{3 \sum_{i=1}^{n} |H_R^i|}{6 \sqrt{n}} \leq \frac{3 \sum_{i=1}^{n} 6N}{6 \sqrt{n}} = 3 \sqrt{n}N = 3 \sqrt{n}(\gamma n + 7 \sqrt{n}) < 6n^{3/2} + 21n
\]
pairs of K_N^2 belong to at least $6 \sqrt{n}$ blank triples. Since by the pigeonhole principle all pairs which are contained in fewer than $6 \sqrt{n}$ blank triples are edges of at least one G_i, we have
\[
(6) \quad \binom{N}{2} - 6n^{3/2} - 21n \leq \sum_{i \in [n]} w(G_i).
\]

Let us make the following easy yet crucial observation.

Claim 5. If a color i is rich, then G_i contains more than $2w(G_i) - N$ private edges. All of them form a star.

Proof. Since G_i is a forest we have $e_i + e'_i < N$. Thus,
\[
w(G_i) = e_i + e'_i/2 < e_i + N/2 - e_i/2 = (e_i + N)/2,
\]
and so G_i contains more than $2w(G_i) - N$ private edges. Note also that, by Lemma 3, H_S^i contains the unique largest star F on at least $n + 6 \sqrt{n}$ vertices. Let us denote the center of this star by w. Then each edge of G_i which does not contain w is clearly contained in fewer than $N - n - 6 \sqrt{n}$ hyperedges of \hat{H}_i and so belongs to at least n triples of $\bigcup_{j \neq i} \hat{H}_j$. Thus, by the pigeonhole principle, each such edge must be public. Consequently, all private edges must contain w and form in G_i a large star. \qed

Let I denote the set of all rich colors. As an immediate corollary of Claim 5 we get the following inequality
\[
\sum_{i \in I} (2w(G_i) - N) < \sum_{i \in I} e_i \leq \binom{|I|}{2} + |I|(N - |I|))
\]
which leads to
\[
\sum_{i \in I} w(G_i) \leq N|I| - |I|^2/4 - |I|/4.
\]
Thus, using (5) and (6) we get
\[
\binom{N}{2} - 6n^{3/2} - 21n \leq \sum_{i \in \mathbb{N}} w(G_i) = \sum_{i \in I} w(G_i) + \sum_{i \notin I} w(G_i) \\
< N|I| - |I|^2/4 - |I|/4 + \sum_{i \notin I} N \\
= N|I| - |I|^2/4 - |I|/4 + (n - |I|)N \\
\leq nN - |I|^2/4.
\]
Hence, using the estimate for the size of I given by Claim 4 we arrive at
\[
\left(\frac{\gamma^3 - 3\gamma^2 + 6\gamma - 6}{6(\gamma - 1)}\right)^2 \frac{n^2}{2} \leq \frac{|I|^2}{2} < 2nN - 2\binom{N}{2} + 12n^{3/2} + 42n.
\]
Now substituting $N = \gamma n + 7\sqrt{n}$ and putting all leading terms on the left hand side of the inequality results in the following formula
\[
\left(\frac{\gamma^3 - 3\gamma^2 + 6\gamma - 6}{72(\gamma - 1)^2} - \gamma(2 - \gamma)\right) n^2 < (26 - 14\gamma)n^{3/2} + (\gamma - 7)n + 7\sqrt{n}.
\]
But for $1.9 < \gamma < 2$ and $n \geq 2$ we have
\[
(26 - 14\gamma)n^{3/2} + (\gamma - 7)n + 7\sqrt{n} < 0,
\]
and so
\[
\left(\frac{\gamma^3 - 3\gamma^2 + 6\gamma - 6}{72(\gamma - 1)^2} - \gamma(2 - \gamma)\right) n^2 < 0.
\]
Consequently,
\[
(\gamma^3 - 3\gamma^2 + 6\gamma - 6)^2 < 72\gamma(2 - \gamma)(\gamma - 1)^2,
\]
which implies that γ is smaller than λ_0 defined in Theorem 1.

References

[1] Z. Füredi, T. Jiang, R. Seiver, Exact solution of the hypergraph Turán problem for k-uniform linear paths, Combinatorica 34(3) (2014) 299–322.
[2] A. Gyárfás, G. Raeisi, The Ramsey number of loose triangles and quadrangles in hypergraphs, Electron. J. Combin. 19(2) (2012), #R30.
[3] R.W. Irving, Generalised Ramsey numbers for small graphs, Discrete Math. 9 (1974) 251–264.
[4] E. Jackowska, The 3-color Ramsey number for a 3-uniform loose path of length 3, Australas. J. Combin. 63(2) (2015) 314–320.
[5] E. Jackowska, J. Polcyn, A. Ruciński, Turán numbers for 3-uniform linear paths of length 3, Electron. J. Combin. 23(2) (2016), #P2.30.
[6] E. Jackowska, J. Polcyn, A. Ruciński, Multicolor Ramsey numbers and restricted Turán numbers for the loose 3-uniform path of length three, arXiv:1506.03759v1.
[7] T. Łuczak, J. Polcyn, *On the multicolor Ramsey number for 3-paths of length three*, Electron. J. Combin. 24(1) (2017), #P1.27.

[8] T. Łuczak, J. Polcyn, *Paths in hypergraphs: a rescaling phenomenon*, arXiv:1706.08465.

[9] J. Polcyn, *One more Turán number and Ramsey number for the loose 3-uniform path of length three*, Discuss. Math. Graph Theory 37 (2017) 443–464.

[10] J. Polcyn, A. Ruciński, *Refined Turán numbers and Ramsey numbers for the loose 3-uniform path of length three*, Discrete Math. 340 (2017) 107–118.

ADAM MICKIEWICZ UNIVERSITY, FACULTY OF MATHEMATICS AND COMPUTER SCIENCE, UMULTOWSKA 87, 61-614 POZNAŃ, POLAND

E-mail address: tomasz@amu.edu.pl

ADAM MICKIEWICZ UNIVERSITY, FACULTY OF MATHEMATICS AND COMPUTER SCIENCE, UMULTOWSKA 87, 61-614 POZNAŃ, POLAND

E-mail address: joaska@amu.edu.pl