On the class of chiral symmetry representations with scalar and pseudoscalar fields

Peter Minkowski
Institute for Theoretical Physics
University of Bern
CH - 3012 Bern, Switzerland
E-mail: mink@itp.unibe.ch

Abstract
In the following few pages an account is given of a theme, which I began in 1966 and continued to the present.
1 \[\Sigma = \frac{1}{\sqrt{2}} \left(\sigma - i \pi \right) \] scalar - pseudoscalar fields and the class of their chiral symmetry representations

Let's denote by \(t, s, n \ldots \) quark flavor indices with
\[t, s, n \ldots = 1, \ldots, N \equiv N_{fl} \] (1)
and by \(\bar{\lambda}^a \) the \(N^2 \) hermitian \(U_N \) matrices with the normalization
\[\bar{\lambda}^a = \left(\bar{\lambda}^a \right)_{ts} ; \quad \text{tr} \bar{\lambda}^a \bar{\lambda}^b = \delta_{ab} \]
\[a = 0, 1, \ldots, N^2 - 1 ; \quad \bar{\lambda}^0 = \sqrt{N}^{-1/2} \left(\mathbf{1} \right)_{N \times N} \] (2)

In order to maintain clear quark field association we choose the convention and restriction projecting out color and spin degrees of freedom from the complete set of \(\bar{q} q \) bilinears
\[\Sigma_{s i} \sim \bar{q}_i \frac{1}{2} \left(1 + \gamma_5 R \right) q^c_s \]
\[\gamma_5 R = \frac{1}{2} \gamma_0 \gamma_1 \gamma_2 \gamma_3 ; \quad c, \bar{c} = 1, 2, 3 \text{ color} \] (3)

The logical structure of \(\Sigma \) - variables is different, when used to derive the dynamics of quarks, i.e. QCD, or before this, when used in their own right as by M. Gell-Mann and M. Lévy [1], or else associating chiral symmetry with superconductivity as by Y. Nambu and G. Jona-Lasinio [2].

Here the chiral \(U N_{fl} R \times U N_{fl} L \) transformations correspond to
\[UN_{fl} R : \frac{1}{2} \left(1 + \gamma_5 R \right) q^c_s \rightarrow V_{ss'} \frac{1}{2} \left(1 + \gamma_5 R \right) q^c_{s'} \]
\[UN_{fl} L : \frac{1}{2} \left(1 - \gamma_5 R \right) q^c_s \rightarrow W_{ss'} \frac{1}{2} \left(1 - \gamma_5 R \right) q^c_{s'} \]
\[\downarrow \]
\[\Sigma \rightarrow V \Sigma W^{-1} \] (4)

The construction in eq. (4) can be interpreted as group-complexification, discussed below. The \(\Sigma \)-variables arise as classical field configurations, Legendre transforms of the QCD generating functional driven by general \(x \)-dependent complex color neutral mass terms.
The latter represent external sources with $UN_{fl \ R} \times UN_{fl \ L}$ substitutions aligned with the Σ-variables

$$- \mathcal{L}_m = m \ i_s (x) \ \{ \ \bar{q} \ \frac{i}{2} (1 - \gamma_5 \ R) \ q \ \} + h.c.$$

$$\propto \ tr (m \ \Sigma^\dagger + \Sigma \ m^\dagger)$$

$$m \rightarrow V \ m \ W^{-1} \quad \Sigma \rightarrow V \ \Sigma \ W^{-1}$$

The so defined (classical) target space variables form

- upon the exclusion of values for which $\text{Det} \ \Sigma = 0$

the group

$$GL (N , C) = \{ \ \Sigma \ | \ \text{Det} \ \Sigma \neq 0 \}$$

the general linear group over the complex numbers in N dimensional target-space.

We proceed to define the hermitian chiral currents generating $UN_{fl \ R} \times UN_{fl \ L}$ (global) pertaining to Σ

$$j^a_{\mu \ R} = tr \ \Sigma^\dagger \left(\frac{1}{2} \lambda^a \ i \ \overd \mu \right) \ \Sigma \ \sim \ \bar{q} \ \gamma_\mu \ \frac{1}{2} \lambda^a P_R \ q$$

$$j^a_{\mu \ L} = tr \ \Sigma^\dagger \ i \ \overd \mu \ \Sigma \ (- \frac{1}{2} \lambda^a) \ \sim \ \bar{q} \ \gamma_\mu \ \frac{1}{2} \lambda^a P_L \ q$$

$$A \ \overd \mu \ B = A \ \partial_\mu B - (\partial_\mu \ A) \ B ; \ P_R (L) = \frac{1}{2} \ (1 \pm \gamma_5 \ R)$$

We avoid here to couple external sources to all other $\bar{q} q$ bilinears except the scalar - pseudoscalar ones as specified in eq. 5 for two reasons

1) – to retain a minimum set of external sources capable to reproduce spontaneous chiral symmetry breaking alone as a restricted but fully dynamical spontaneous phenomenon.

2) – in order to avoid a nonabelian anomaly structure. The latter would force either the consideration of leptons in addition to quarks, or the inclusion of nonabelian Wess-Zumino terms obtained from connections formed from the Σ fields.3
For completeness we display the equal time current algebra relations inherited from $\mathbf{\overline{q}} q$

\[
\left[j^a_R \left(t , \vec{x} \right) , j^b_R \left(t , \vec{y} \right) \right] = i f_{a b n} j^n_R \left(t , \vec{x} \right) \delta^3 \left(\vec{x} - \vec{y} \right) \\
\left[j^a_L \left(t , \vec{x} \right) , j^b_L \left(t , \vec{y} \right) \right] = i f_{a b n} j^n_L \left(t , \vec{x} \right) \delta^3 \left(\vec{x} - \vec{y} \right) \\
\left[j^a_R \left(t , \vec{x} \right) , j^b_L \left(t , \vec{y} \right) \right] = 0 \\
\left[\frac{1}{2} \lambda^a , \frac{1}{2} \lambda^b \right] = i f_{a b n} \frac{1}{2} \lambda^n
\]

The $GL \left(N , C \right)$ group structure defined in eq. $[4]$ enables bilateral multiplication of the Σ, $Det \Sigma \neq 0$ elements, of which the left- and right-chiral currents defined in eq. $[7]$ are naturally associated with the Lie-algebra of $UN_{fl R} \times UN_{fl L}$ through the exponential mapping with subgroups of $GL \left(N , C \right)_R \times GL \left(N , C \right)_L$. These (sub)groups act by multiplication of the base-group-manifold by respective multiplication from the left $\leftrightarrow G_R$ and from the right $\leftrightarrow G_L$. The reverse association – here – is accidental

\[
GL \left(N , C \right)_{R \left(L \right)} \rightarrow G_{R \left(L \right)} = G \\
\Sigma \in G ; \ g \in G_R ; \ h \in G_L : \\
G_R \bullet G \leftrightarrow \Sigma \rightarrow g \Sigma \\
G_L \bullet G \leftrightarrow \Sigma \rightarrow \Sigma h^{-1} \\
G_R \otimes G_L \bullet G \leftrightarrow \Sigma \rightarrow g \Sigma h^{-1} \\
\Sigma = \Sigma \left(x \right) ; \ g , h : x\text{-independent or 'rigid'}
\]

The exponential mapping and compactification(s) of $G \left(\Sigma \right)$

The condition $Det \Sigma \neq 0$ in the restriction to $GL \left(N , C \right)$ (eq. $[8]$) is very special and surprising in conjunction with the field variable definition.

In fact such a condition is completely untenable and shall be discussed below. This was a stumbling block for a while.
This condition is equivalent to the relation with the Lie algebra of $GL(N, C)$ through the exponential mapping and its inverse (log):

\[\Sigma = \exp b = b^a \lambda^a = \frac{1}{2} \lambda^0 = (2N)^{-1/2} \left(\begin{array}{cc} \cdot & \cdot \\
\cdot & \cdot \end{array} \right)_{N \times N} \]

\[\det \Sigma = \exp \left(\text{tr} \ b \right) = \exp \beta = \sqrt{2N} b^0 \]

\[\det \Sigma = 0 \leftrightarrow \Re \beta = -\infty ; \beta \sim \beta + 2\pi i \nu ; \nu \in \mathbb{Z} \quad (10) \]

Of course eliminating – from general dynamical Σ-variables – the subset with $\det \Sigma = 0$ affects only the non-solvable (and non-semi-simple\(^2\)) part of the associated group, whence the former are interpreted as a manifold, which simply is not a group. It may thus appear that the restriction in order to enforce a group structure is characterized by the notion of ‘group-Plague’, infecting the general structure at hand.

This said we continue to treat Σ-variables as if they were identifiable with $GL(N, C)$.

The next reductive step is to consider the solvable (simple) subgroup

\[SL(N, C) \subset GL(N, C) \subset \left\{ \Sigma \right\} \]

\[SL(N, C) = \left\{ \hat{\Sigma} \mid \det \hat{\Sigma} = 1 \right\} \quad (11) \]

\[\hat{\Sigma} \sim \Sigma / (\det \Sigma)^{1/N} \quad \text{allowing all} \ N \ \text{roots} \]

The advantage of the above reduction to $SL(N, C)$ is that it allows the exponential mapping to an irreducible (simple) Lie-algebra, refining eq. 10

\[\hat{\Sigma} = \exp \hat{b} = \hat{b}^a \lambda^a ; a = 1, 2, \ldots, N^2 - 1 \]

\[\hat{b}^0 = 0 ; \text{tr} \lambda^a = 0 \quad (12) \]

i.e. eliminating the unit matrix $\propto \lambda^0$ from the latter.

\(^2\) The words testify to the fight for definite mathematical notions.
1.1 Relaxing the condition $\text{Det} \Sigma \neq 0$ and the unique association

\[
\Sigma \xrightarrow{\text{Det} \Sigma \neq 0} GL(N,C)
\]

We transform Σ_{si} as defined or better associated in eq. 3 by means of the N^2 hermitian matrices $\overline{\lambda}^a$ in eq. [2].

\[
\Sigma_{si} = \Sigma^a \left(\overline{\lambda}^a \right)_{si}
\]

\[
\Sigma^a = \text{tr} \overline{\lambda}^a \Sigma ; \ a = 0, 1, \ldots, N^2 - 1
\]

The complex (field valued) quantities Σ^a are components of a complex N^2-dimensional space C_{N^2} and in one to one correspondence with the matrix elements Σ_{si}

\[
C_{N^2} = \left\{ \left(\Sigma^0, \Sigma^1, \ldots, \Sigma^{N^2-1} \right) \right\}
\]

This serves to become aware of the second algebraic relation (\oplus), beyond (\otimes), i.e. to add matrices and not to just multiply them.

The \oplus operation is also encountered upon 'shifting' general (pseudo)scalar fields relative to a spontaneous vacuum expected value. This is relevant here for spontaneous breaking of chiral symmetry.

It arises independently for the SU_2 L-doublet scalar (Higgs) fields.

Hence the idea that the combination of \oplus and \otimes -- which form the full motion group (of matrices) -- are related to 'fields' (Körper' in german). Thus we are led to consider quaternion- and octonion-algebras in the next sections.

1.2 Octonions (or Cayleigh numbers) as pairs of quaternions

Let

\[
q = q^0 i_0 + q^a i_a ; \ a = 1, 2, 3 ; \ (q^0, \overline{q}) \in R_4
\]

\[
i_0 = 1 ; \ i_a i_b = -\delta_{ab} i_0 + \varepsilon_{a b n} i_n \quad \text{for } a, b, n = 1, 2, 3
\]

\[
\overline{q} = q^0 i_0 - q^a i_a
\]

denote a quaternion over the real numbers.

Then a single octonion is represented (modulo external automorphisms 3)

3 Elements of a $N \times N$-matrix can equivalently be arranged along a line.

4 These automorphisms form the exceptional group G_2.

5
by a pair of quaternions \((p, q)\) with the nonassociative multiplication rule

\[
o = (p, q) = p^0 j_0 + p^a j_a + q^0 j_4 + q^a j_4 + a
\]

\[
o^\alpha = (p^\alpha, q^\alpha) ; \alpha = 1, 2, \ldots
\]

\[
o^1 \odot o^2 = (p^1 p^2 - q^2 q^1, q^2 p^1 + q^1 p^2)
\]

\[
\overline{o} = (\overline{p}, - q)
\]

\[
\to \text{for } o^2 = \overline{o}^1 ; \quad o^2 = (\overline{p}^1, - q^1)
\]

\[
o^1 \odot (o^2 = \overline{o}^1) = \left(p^1 \overline{p}^1 + \overline{q}^1 q^1, - q^1 p^1 + q^1 \overline{p}^1\right)
\]

\[
= \left\{ |p^1|^2 + |q^1|^2 \right\} j_0 + 0
\]

\[
j_0 = \mathbb{I}, j_1, j_7 ; \quad j_{1,2,3} \simeq i_{1,2,3}
\]

In eq. (16) we used the involutory properties

\[
\overline{q} = q ; \quad \overline{o} = o
\]

It follows that unitary quaternions \((q \overline{q} = q^2 = \mathbb{I})\) are equivalent to \(S_3 \simeq SU2 \subset \mathbb{C}^4\), whereas unitary octonions \((o \overline{o} = o^2 = \mathbb{I})\) are equivalent to \(S_7 \subset \mathbb{R}^8\).

This leads together with the complex numbers to the algebraic association of \(N = 1\) and \(N = 2 - \Sigma\) variables to the three inequivalent ‘field’-algebras

\[
\begin{align*}
1 & : N = 1 \leftrightarrow \mathbb{C} \simeq \mathbb{R}^2 \supset S_1 \\
2 & : N = 2 \leftrightarrow \mathbb{Q} \simeq \mathbb{R}^4 \supset S_3 \\
3 & : N = 2 \leftrightarrow \mathbb{O} \simeq \mathbb{R}^8 \supset S_7
\end{align*}
\]

(18)

The group structures of cases 1 - 3 in eq. (18) correspond to

\[
\begin{align*}
1 & : S_1 \simeq U1 \leftrightarrow U1_R \otimes U1_L \\
2 & : S_3 \simeq SU2 \leftrightarrow SU2_R \otimes SU2_L \\
3 & : S_7 \leftrightarrow U2_L \otimes U2_R
\end{align*}
\]

(19)

While the model introduced by M. Gell-Mann and M. Lévy \([1]\) corresponds to case 2 (eq. (18), (19)), it is case 3 (also for \(N = 2\)) which is different and the only one extendable to \(N > 2\).

This shall be illustrated for \(N = 3\) and from there back to case 3 with \(N = 2\) in the next section.
1.3 \[\Sigma = \frac{1}{\sqrt{2}} (\sigma - i\pi) \] for \(N = N_{fl} = 3 \) \((m_u \sim m_d \sim m_s)\)

For \(N = 3 \) the \(\Sigma \) - variables describe a \(U3_{fl} \) - nonet of *scalars and pseudoscalars* (one each). I shall use the notation \(\Sigma \rightarrow \pi, K, \eta, \eta' \) labelled by the names of pseudoscalars, yet denoting associated pairs

\[
\Sigma = \left(\begin{array}{ccc}
\Sigma_{11} & \Sigma_{\pi} - \Sigma_{K^{-}} \\
\Sigma_{\pi} + \Sigma_{22} & \Sigma_{K_{0}} \\
\Sigma_{K} + \Sigma_{\bar{K}_{0}} & \Sigma_{33}
\end{array} \right)
\]

(20)

\[
\Sigma_{11} = \frac{1}{\sqrt{3}} \Sigma_{\eta}, + \frac{1}{\sqrt{2}} \Sigma_{\pi_{0}} + \frac{1}{\sqrt{6}} \Sigma_{\eta}
\]

\[
\Sigma_{22} = \frac{1}{\sqrt{3}} \Sigma_{\eta}, - \frac{1}{\sqrt{2}} \Sigma_{\pi_{0}} + \frac{1}{\sqrt{6}} \Sigma_{\eta}
\]

\[
\Sigma_{33} = \frac{1}{\sqrt{3}} \Sigma_{\eta}, - \frac{2}{\sqrt{6}} \Sigma_{\eta}
\]

In the chiral limit \(m_{u,d,s} \rightarrow 0 \) – 8 pseudoscalar Goldstone modes become massless : \(\pi, (3) ; K, \bar{K}, (4) ; \eta, (1) \), whereas \(\eta' \) and all 9 scalars remain massive.

\(\pi_{0} \leftrightarrow \eta \leftrightarrow \eta' \) – mixing – eventually different for scalars relative to pseudoscalars – is not discussed here [4].

Projecting back on case 3 and \(N = 2 \) in the limit \(m_s \rightarrow \infty \) an \(SU2_{fl} \) – singlet pair – denoted \(\Sigma_{\eta_{(2)}} \) – forms as (singlet) combinations of \(\Sigma_{\eta}, \Sigma_{\eta'} \), and a corresponding isotriplet pair \(\Sigma_{\pi} \rightarrow \bar{\Sigma}_{\pi} \).

Instead of the \(2 \times 2 \) matrix form pertinent to case 3 and \(N = 2 \) we can equivalently display the double quaternion basis from the octonion structure (eq. 16)

\[
p \leftrightarrow \left(\sigma_{\eta_{(2)}}, \pi \right) \rightarrow [1]
\]

\[
q \leftrightarrow \left(\eta_{(2)}, \tilde{\sigma}_{\pi} \right)
\]

(21)
2 From $\langle \Sigma \rangle$ as spontaneous real parameter to f_π

As shown in section 1, the Σ - variables are chosen such , that the spontaneous breaking of just chiral symmetry can be explicitly realized . For N equal (positive) quark masses it folows

$$\langle \Sigma \rangle = S \gamma_{N \times N}$$

$$S = \frac{1}{\sqrt{2N}} \langle \sigma^0 \rangle ; \quad \Sigma = \frac{1}{\sqrt{2}} (\sigma - i \pi)_{N \times N}$$

$$j^a_{\mu R} = i S \text{tr} \frac{1}{2} \lambda^a \partial_\mu (\Sigma - \Sigma^\dagger) + \cdots$$

$$= S \partial_\mu \pi^a + \cdots$$

$$\Sigma - \Sigma^\dagger = -i \pi^b \lambda^b$$

$$\langle \Omega | j^a_{\mu R} | \pi^b , p \rangle = i \frac{1}{2} f_\pi p_\mu \delta^{ab} \text{ for } a,b > 0$$

$$-S = \frac{1}{2} f_\pi \leftrightarrow -\langle \sigma^0 \rangle = \left(\frac{N}{2} \right)^{1/2} f_\pi ; \quad f_\pi \sim 92.4 \text{ MeV for } \vec{\pi}$$

(22)

Acknowledgement

The present account was the subject of a lunch-seminar, 16. April 2008 in Bern. The discussions especially with Uwe-Jens Wiese, Émilie Passemar and Heinrich Leutwyler are gratefully acknowledged .

8
References

[1] M. Gell-Mann and M. Lévy, 'The axial vector current in beta decay', Nuovo Cim. 16 (1960) 705.

[2] Y. Nambu, 'Axial vector current conservation in weak interactions', Phys. Rev. Lett. 4 (1960), 380,
Y. Nambu and G. Jona-Lasinio, 'Dynamical model of elementary particles based on an analogy with superconductivity. 1', Phys.Rev.122 (1961) 345.

[3] J. Wess and B. Zumino, 'Consequences of anomalous Ward identities', Phys. Lett. B 37 (1971) 75,
E. Witten, 'Global aspects of current algebra' and 'Current Algebra, Baryons, and Quark Confinement', Nucl. Phys. B 223 (1983) 422 and 433,
O. Bär, M. Imboden and U.-J. Wiese, 'Pions versus magnons: from QCD to antiferromagnets and quantum Hall ferromagnets', Nucl. Phys. B (2004) 347.

[4] P. Minkowski and W. Ochs, 'Identification of the glueballs and the scalar meson nonet of lowest mass', Eur.Phys.J.C9 (1999) 283, hep-ph/9811518.