Enumeration and identification of dust fungal elements from the weather inversion phenomenon in Isfahan, Iran

Parvin Dehghan, Mahboobeh Kharazi, Hossien Rafiei, Mojtaba Akbari, Gholam Reza Paria

Department of Medical Mycology and Parasitology, Faculty of Medicine, Isfahan University of Medical Sciences, Department of Epidemiology, School of Medicine, Shiraz University of Medical Sciences, Air Pollution Section, Isfahan Health Center, Isfahan, University of Medical Sciences, Isfahan, Iran

INTRODUCTION

Today, air pollution is one of the major health problems in big cities. In addition to the air pollution derived from the dust storms of deserts, a number of big cities in Iran, like Tehran and Isfahan are confronted with the weather inversion phenomenon in cold seasons. Dust-borne microorganisms, such as fungi are the major pathogens or allergens for humans, animals and plants; for which the air is the natural medium of their dispersal.[1,2]
The number of fungi typically found in 1 g of top soil is approximately 10^6. However the concentration of spores and their diversity in soil or outdoor airborne are not completely known and is depended on the amount of humidity, temperature and the composition of nutritional elements and bioenvironmental factors.\[3\]

Once the pollutants are released into the atmosphere they are moved by wind, rain or snow, pushing the particles back down to the earth, which they contaminate the air and the surface water.

There are the air quality indexes and pollution standard indexes (PSI) which are concerned in human health by environment protection agency.\[4,5\]

Dust-borne microorganisms, in particular, can directly affect the human health through pathogenesis, or through the exposure of sensitive individuals to cellular components.\[6\]

The harmful effects of air pollution on the cardiovascular system and also respiratory and allergic diseases are well-documented.\[7\]

The air particulate matter (PM) with the biological origin includes viable cells such as pollen of plants, bacteria, fungal spores and dead microorganisms as well as the other non-viable materials such as plant, animal and fungal fragments, allergenic compounds, mycotoxins and endotoxins.\[8-10\]

The climate change such as inversion phenomenon can have a strong impact on the concentration and composition of airborne spores, which in turn may influence the effects of fungi on plants, animals and human health, the biosphere, and climate and result in negative effects. The study by Womiloju et al., reported that the material of fungi contributed 4-11% of the mass of fine (PM2.5, aerodynamic diameter ≤ 2.5 μm) and Bauer et al., found that fungal spores accounted for up to 21% of PM10 (≤ 10 μm) mass.\[11,12\]

On December 2010 in Isfahan, the air quality descriptor was very unhealthy during some days and the government recommended people with respiratory heart disease, the elderly and children should avoid outdoor activity as well as everyone should avoid prolonged exertion.

An analysis of data was carried out by Mann-Whitney test calculating by SPSS 20. Data reported as mean \pm standard deviation or median interquartile range.

The pollution weather row data were provided by Environmental Protection Agency in four stations of Isfahan during 21 days. The analysis of the data to PM2.5, PM10 and PSI were done by environmental health center of Isfahan.

RESULTS

The results showed from a total of 103 dust samples, 7.25 g of dust were gathered. The real mean of total culture-able fungi in 1 g of sedimentation dust were about 44800 colonies of hyaline, pheohyphomycete molds and also yeasts in 5 times experiment.
The results showed more than half of viable fungi (62.8%) could grow in 1 g of dust on Scc medium were the genera of *Aspergillus*, *Penicillium* and *Cladosporium* with 28.8%, 23.4% and 10.6 respectively. The dominant genus could grow on Sc medium were the genera of *Aspergillus*, *Cladosporium* and *Penicillium* with 23.7%, 21.1% and 14.5% respectively. Among the *Aspergillus* species, *Aspergillus flavus* were dominant on Sc (43.7%) and Scc (44.8%) culture media [Table 1 and Figure 1].

As it has shown in Table 1, the mean of colonies number of *Cladosporium*, *Alternaria*, yeasts and unknown species are different on Sc and Scc culture media and their P value indexes significantly indicate the differences of the number of colonies on both culture media [Table 1].

Table 1: Mean of fungal colonies by culture media (Sc and Scc)

Name of fungus	Culture media	Mean	Standard deviation	P value
Aspergillus sp. (total)	Sc	10621	2948.953	0.614
	Scc	9370	4446.029	
A. flavus	Sc	4644	1695.275	0.841
	Scc	4200	4466.020	
A. niger	Sc	2552	2552.443	0.426
	Scc	2477	2477.249	
Penicillium sp.	Sc	6502	1365.097	0.430
	Scc	7633	2721.606	
Cladosporium sp.	Sc	9490	2529.935	0.002
	Scc	3271	1733.742	
Rhizopus sp.	Sc	2262	1630.299	0.079
	Scc	606	856.601	
Alternaria sp.	Sc	1656	873.160	0.009
	Scc	283	180.674	
Yeast	Sc	2261	1573.112	0.032
	Scc	407	319.390	
Chatumium sp.	Sc	40	90.337	1.000
	Scc	40	90.337	
Acremonium sp.	Sc	0.00	0.000	0.207
	Scc	162	263.376	
Scopulariopsis sp.	Sc	40	90.337	0.347
	Scc	0.00	0.000	
Epicoccum sp.	Sc	81	110.640	0.545
	Scc	40	90.337	
Drechslera sp.	Sc	0.00	0.000	0.347
	Scc	40	90.337	
Stemphyllum sp.	Sc	0.00	0.000	0.347
	Scc	81	180.674	
Unknown	Sc	283	338.011	0.025
	Scc	1050	522.323	
Mycelium sterile	Sc	848.00	1896.186	0.394
	Scc	1896.186	180.674	
Phoma sp.	Sc	81	180.674	0.667
	Scc	40	90.337	

Sc: Sabouraud dextrose agar with chloramphenicol, Scc: Sabouraud dextrose agar with chloramphenicol and cycloheximide. P values calculated by Mann-Whitney test. *A. flavus*: *Aspergillus flavus*, *A. niger*: *Aspergillus niger*.
The mean of PSI, the amount of 24 h PM2.5 and PM10 in μg/m³ during 21 days (from 22 of November to 12 of December in 2010) is outlined in Table 2.

DISCUSSION

In air pollution, PMs can stay in the air for minutes, hours and weeks and can travel many hundred miles.[14] Urban areas have higher PM10 concentrations than rural areas; the coarse size fraction (PM10-2.5) has been identified as the cause of these differences.[9]

Spores of fungi enhance survival during transport and prolonged environmental stress such as ultra violet exposure stress and desiccation.[15,16]

As several allergens and pathogens are frequently found in both fine and coarse particle samples (e.g. Cladosporium sp., Alternaria sp., Penicillium sp., Aspergillus sp.) so, the exposure to fungal spores can cause a wide spectrum of allergenic reactions such as asthma, hypersensitivity of pneumonitis and so on.[2]

In susceptible or immune-compromised individuals some severe diseases such as allergic and invasive aspergillosis, fungal sinusitis and invasive fungal infections may be also found.[17-19]

Fungal spores are typically 2-10 μm in size. Species the genera of Aspergillus, Cladosporium, Alternaria and Penicillium are more often involved in allergenic fungal disease.[6]

It has shown in Figure 1 that, the dominant genus could grow on Scc medium was Aspergillus with 28.8%. The results show that more than half of viable fungi on Scc (62.8%) are present in dust from the inversion phenomenon are the genera of Aspergillus, Cladosporium and Penicillium [Figure 1].

Penicillium and Aspergillus spp. are both well-known soil fungi and are commonly considered indoor fungi in aerobiology, although they are also prevalent in outdoor air environment.[20]

The smaller spore types of fungi like Aspergillus and Penicillium may reach the alveoli, whereas the larger spore types, may deposit to a greater extent in the lower and upper airways rather than in the alveoli.[21] A. flavus spores are larger than the spores of A. fumigatus and tend to infect paranasal sinuses.[19,22] The results showed, among the Aspergillus species, A. flavus were dominant on Sc (43.7%) and Scc (44.8%) culture media [Table 1].

It is believed in conventional culture-based method, however, only 1% ~17% of environmental microorganisms is cultivable on any given medium but non-cultivable cells, dead ones, or cell debris are not detected by cultivation at all. Fungal fragments like cell walls or cytoplasmatic material are easily suspended and inhaled as fine air particulate matter.[6,23-25]

Our results showed there were 44,800 viable particles of fungi in 1 g of dust due to inversion weather phenomenon under our laboratory condition. You can suppose the amount of travelling organisms such as fungi in the dust storm events which are not also rare in Iran, when many tones of dust are transferred from deserts of neighbor desert countries. These arid regions could be an important source for the long-range transport of viable microorganisms to our country.

In a study in Qatar, Alternaria and Cladosporium, were the most common genera in air (40.1% and 21%, of the total) whereas they accounted for only 4.06% and 2.8% of the total soil fungi in that country.[26]

Second predominance genus mold at the present investigation was Cladosporium (21.1%) on Sc medium which is in agreement the results of Al-Subai. This mold can also interact with airborne pollen and increasing allergic problems.[27]

A. flavus has been reported to be the etiologic agent of rhinosinusitis, in healthy and immunocompromised individuals in Iran.[19] In the present study, the results showed a predominance growth of A. flavus and Aspergillus niger colonies on both culture media. Similarly, the study of fungus allergens inside and outside the residences of atopic and control children, showed that, A. flavus and A. niger were predominant species in Aspergillus composition.[20]

Fungi are found in almost every environment.[24] During weather pollution, dust was settled not only, everywhere in outdoors area such as streets, farms, soils, waters, vegetables, plants and fruits surfaces but also on the floors, tables and mirrors, dishes of food and everywhere in indoor environments.

Although the concentration of cultivable fungi is low in our samples, allergic reactions can be participated by dead fungal material as well. In vitro studies have shown that submicron particles of several fungal species are aerosolized in much higher concentrations (300-500 times) than spores.[6]

CONCLUSIONS
This study shows the significant concentrations of viable colony-forming fungi which we are faced with or inhale at polluted days from inversion phenomenon in big cities. Air pollution conditions, which are not rare in Isfahan and Tehran, cause many health problems particularly for children and elderly population. Every breath in polluted air causes to inhale many spores. The actual abundance of particles and components are, however, still poorly understood and quantified. Especially, the information about the dead and non-cultivable fungi of dust is extremely inadequate due to the lack of some sampling equipment in our laboratory condition. To gain the accurate and adequate information further studies are necessary to identify all species of fungal elements in dust. It is therefore important to investigate and evaluate the type and population of microorganisms for the management of hygienic and control of fungal disease in the future.

ACKNOWLEDGMENTS

The authors would like to acknowledge Isfahan University of Medical Sciences for its financial support to carry out the current research. The authors declare that there are no conflicts of interest.

REFERENCES

1. Eduard W. Fungal spores: A critical review of the toxicological and epidemiological evidence as a basis for occupational exposure limit setting. Crit Rev Toxicol 2009;39:799-864.
2. Bush RK, Portnoy JM, Saxon A, Terr AI, Wood RA. The medical effects of mold exposure. J Allergy Clin Immunol 2006;117:326-33.
3. Ayerst G. The effects of moisture and temperature on growth and spore germination in some fungi. J Stored Prod Res 1969;5:127-41.
4. Agency UEP. Air Quality Criteria for Particulate Matter. National Center for Environmental Assessment-RTP Office U.S. Environmental Protection Agency Research Triangle Park, NC.; 2004.
5. Pope CA 3rd. Epidemiology of fine particulate air pollution and human health: Biologic mechanisms and who's at risk? Environ Health Perspect 2000;108 Suppl 4:713-23.
6. Green BJ, Tovey ER, Sercombe JK, Blachere FM, Beezhold DH, Schmechel D. Airborne fungal fragments and allergenicity. Med Mycol 2006;44 Suppl 1:S245-55.
7. Brook RD, Franklin B, Cascio W, Hong Y, Howard G, Lipsett M, et al. Air pollution and cardiovascular disease: A statement for healthcare professionals from the expert panel on population and prevention science of the American Heart Association. Circulation 2004;109:2655-71.
8. Ho HM, Rao CY, Hsu HH, Chiu YH, Liu CM, Chao H. Characteristics and determinants of ambient fungal spores in Hualien, Taiwan. Atmos Environ 2005;39:5839-50.
9. Monn C. Exposure assessment of air pollutants: A review on spatial heterogeneity and indoor/outdoor/personal exposure to suspended particulate matter, nitrogen dioxide and ozone. Atmos Environ 2001;35:1-32.
10. Pöschl U. Atmospheric aerosols: Composition, transformation, climate and health effects. Angew Chem Int Ed Engl 2005;44:7520-40.
11. Womilolu TO, Miller JD, Mayer PM, Brook JR. Methods to determine the biological composition of particulate matter collected from outdoor air. Atmos Environ 2003;37:4335-44.
12. Bauer H, Schueller E, Weinke G, Berger A, Hitzenberger R, Marr IL, et al. Significant contributions of fungal spores to the organic carbon and to the aerosol mass balance of the urban atmospheric aerosol. Atmos Environ 2008;42:5542-9.
13. Samson RA, Hoekstra ES, Frisvad JC. Introduction to Food and Airborne Fungi: Central Bureau Voor Schimmelcultures (CBS) Utrecht, The Netherlands.; 2004.
14. Griffin DW. Atmospheric movement of microorganisms in clouds of desert dust and implications for human health. Clin Microbiol Rev 2007;20:459-77.
15. Ruisi S, Barreca D, Seibmann L, Zuconi L, Onofri S. Fungi in Antarctica. Rev Environ Sci Biotechnol 2007;6:127-41.
16. Prospero JM, Blakes E, Mathison G, Naidu R. Interhemispheric transport of viable fungi and bacteria from Africa to the Caribbean with soil dust. Aerobiologia 2005;21:1-19.
17. Ascioglu S, Rex JH, de Pauw B, Bennett JE, Bille J, Crook J, et al. Defining opportunistic invasive fungal infections in immunocompromised patients with cancer and hematopoietic stem cell transplants: An international consensus. Clin Infect Dis 2002;34:7-14.
18. Denning DW. Invasive aspergillosis in immunocompromised patients. Curr Opin Infect Dis 1994;7:456.
19. Dehghan P, Zaini F, Rezaei S, Jebali A, Kordbacheh P, Mahmoudi M. Detection of afla gene and toxigenicity of Aspergillus flavus group isolated from patients with fungal sinusitis. Iran J Public Health 2008;37:134-141.
20. Li CS, Hsu LY, Chou CC, Hsieh KH. Fungus allergens inside and outside the residences of atopic and control children. Arch Environ Health 1995;50:38-43.
21. Kurup VP, Shen HD, Banerjee B. Respiratory fungal allergy. Microbes Infect 2000;2:1101-10.
22. Howard DH. Pathogenic Fungi in Humans and Animals. USA,Florida, CRC Press, 2003.
23. Gilson M, Rutherford S, Simpson R, Mitchell C, Yago A. Microscopic and submicron components of atmospheric particulate matter during high asthma periods in Brisbane, Queensland, Australia. Atmos Environ 1995;29:549-62.
24. Bridge P, Spooner B. Soil fungi: Diversity and detection. Plant Soil 2001;232:147-54.
25. Fröhlich-Nowoisky J, Pickersgill DA, Després VR, Pöschl U. High diversity of fungi in air particulate matter. Proc Natl Acad Sci U S A

Source of Support: Nil, Conflict of Interest: None declared.