HISFCOS: Half-Inverted Stage Block for Efficient Object Detection Based on Deep Learning

Beomyeon Hwang 1, Sanghun Lee 2,* and Seunghyun Lee 2

1 Department of Plasma Bio Display, Kwangwoon University, Seoul 01897, Korea; clown1320@kw.ac.kr
2 Ingenium College of Liberal Arts, Kwangwoon University, Seoul 01897, Korea; shlee@kw.ac.kr
* Correspondence: leesh58@kw.ac.kr; Tel.: +82-2-940-5287

Abstract: Recent advances in object detection play a key role in various industrial applications. However, a fully convolutional one-stage detector (FCOS), a conventional object detection method, has low detection accuracy given the calculation cost. Thus, in this study, we propose a half-inverted stage FCOS (HISFCOS) with improved detection accuracy at a computational cost comparable to FCOS based on the proposed half inverted stage (HIS) block. First, FCOS has low detection accuracy owing to low-level information loss. Therefore, an HIS block that minimizes feature loss by extracting spatial and channel information in parallel is proposed. Second, detection accuracy was improved by reconstructing the feature pyramid on the basis of the proposed block and improving the low-level information. Lastly, the improved detection head structure reduced the computational cost and amount compared to the conventional method. Through experiments, the proposed method defined the optimal HISFCOS parameters and evaluated several datasets for fair comparison. The HISFCOS was trained and evaluated using the PASCAL VOC and MSCOCO2017 datasets. Additionally, the average precision (AP) was used as an evaluation index to quantitatively evaluate detection performance. As a result of the experiment, the parameters were increased by 0.5 M compared to the conventional method, but the detection accuracy was improved by 3.0 AP and 1.5 AP in the PASCAL VOC and MSCOCO datasets, respectively. In addition, an ablation study was conducted, and the results for the proposed block and detection head were analyzed.

Keywords: FCOS; HIS block; object detection; CNN; deep learning; feature pyramid

1. Introduction

Recently, computer vision has been studied in related applications, such as object detection [1,2], semantic segmentation [3,4], and super resolution [5], because of the development of convolutional neural networks (CNNs). Object detection is a fundamental task in computer vision that classifies the categories of objects after a regression process to determine the location of an object. It is a core technology in autonomous driving [6], monitoring systems [7], and face recognition [8].

Deep-learning-based object detection methods are classified into one- and two-stage methods. It is divided into anchor-based and anchor-free methods according to the method for defining the anchor in detail. The two-stage method uses a region proposal network (RPN) to find regions where objects are most likely to be present. On the basis of the selected region, classification is performed after localization. Representative methods include region-based convolutional neural networks (R-CNNs) [9–11]. Unlike the two-stage method, the one-stage method simultaneously handles both localization and classification. Compared to the two-stage method, there is a trade-off between detection accuracy and detection speed. The one-stage method has the advantage of detection speed. Representative methods include the single shot multibox detector (SSD) [12] and you only look once (YOLO) [13,14]. Additionally, the one-stage method improves detection accuracy by extending the depth.
of the model to improve low accuracy and the feature pyramid [15] structure, which uses feature maps of different scales.

Object detection researchers are studying anchors that affect detection performance. An anchor-free method for predicting the class of an object and learning its location, similar to a fully convolutional network (FCN) [16], was studied rather than defining an anchor as in a conventional detector. The fully convolutional one-stage detector (FCOS) [17] is an example of a representative method.

In this paper, we propose HISFCOS with improved detection accuracy while retaining FCOS network complexity. In the conducted work, the accuracy of the proposed network was improved using three main modules (half-inverted stage (HIS) block, HIS feature pyramid, and lightweight detection head). First, the HIS block improved detection accuracy by minimizing feature loss through parallel operation for the proposed spatial and channel information. Second, low-level feature information loss caused by the conventional method was minimized by reconstructing the feature pyramid on the basis of the proposed block. Lastly, the amount of computation was minimized while maintaining accuracy by improving the conventional detection head structure. The proposed method showed high detection accuracy in experiments with similar computational costs comparable to the FCOS. Through an ablation study, we analyzed the contribution of the detection head structure and the HIS block in HISFCOS.

The main contributions of this work are as follows:
- We propose an HIS block that reduces loss of spatial and channel information.
- We improved detection accuracy by reconstructing the feature pyramid on the basis of the proposed block and improving the low-level information.
- We propose a lightweight detection head that reduces the amount of computation by improving the structure of the conventional detection head.

2. Related Works
2.1. Fully Convolutional One-Stage Detector

The FCOS is an anchor-free, one-stage detector network with a feature pyramid structure that uses ResNet [18] as its backbone network. Figure 1 shows the FCOS structure. This method was proposed to address the drawbacks of the conventional anchor-based method. The anchor-based method affected the detection performance according to the box design, such as the size, aspect ratio, and number of predefined anchors. Additionally, many bounding boxes are created to achieve high recall. A recall is the ratio of object detection when object detection is more important than precision. However, class-imbalance problems arise because many bounding boxes are assigned to the negative samples. Therefore, FCOS predicts the class of an object in pixel units, such as an FCN, without using an anchor. When the predicted sample is positive, a detector of the anchor-free method, which detects objects without using an anchor, is proposed using distance vector regression with the predicted box based on the center of the object. Additionally, a feature pyramid structure was used to improve the low correct recall problem caused by not using an anchor. Lastly, a centerness loss function was proposed to solve the problem of detection accuracy being reduced as a low-level bounding box with a low score moved away from the center. The centerness loss function improves detection accuracy by removing the low-level bounding box in a manner that gives weights when the distance from the center is considered in relation to the center distance of the object.
Figure 1. Structure of FCOS. It uses ResNet-50 as the backbone and is a simple object detector using a feature pyramid structure for multiscale detection.

2.2. Depthwise Convolution

Depthwise convolution (Dwconv), unlike standard convolution, can extract the spatial information of each channel without being affected by all channels of the input image. In other words, calculations for each channel are performed in the spatial direction without the involvement of other channels. Thus, each kernel has a parameter for a single channel. Consequently, only spatial information unique to each channel can be learned, which is the same as in the special case where the number of groups in the group convolution equals the number of channels. On the basis of this structure, MobileNet [19,20] was proposed for limited environments such as embedded devices using depthwise separable convolution [21], which combines Dwconv and 1×1 convolution to exponentially reduce the amount of computation and enable real-time operation. Figure 2 shows example of depthwise convolution with kernel $= 3$, input tensor size $8 \times 8 (C \times H \times W)$. The symbols C, H, W and \odot are the channel height, width and matrix product.

Figure 2. Depthwise convolution diagram. Convolution kernel separated for each channel, a 2D kernel of 3×3 is attached to each separated matrix of size $3 \times 8 \times 8$, each convolution operation is performed, and then only channel wise spatial information is learned through recombination.

2.3. Channel Attention

Channel attention (CA) [22] is a technique that emphasizes a specific channel using the correlation between channels in the feature map. This process is illustrated in Figure 3.
First, the input feature map contains a vector representing each channel as a vector of the same size as the channel size of the feature map through global average pooling (GAP). The vector is compressed into a vector with meaningful information using a fully connected (FC) layer. Nonlinearity is added to the compressed vector using a rectified linear unit (ReLU) activation function. The vector is compressed, and nonlinearity is added via the second FC layer. A compressed vector is generated using the sigmoid activation function to enhance the vector of the channel size with a value between zero and one. The emphasized vector is refined using the input feature map and element multiplication operation to refine the unnecessary feature map in each channel and generate the emphasized feature for the object in the channel. The channel attention is expressed using Equation (1):

\[
CA = (\sigma_2(FC_2(\sigma_1(FC_1(GAP(F_{Input})))))) \cdot F_{Input}
\]

where \(F_{Input}\), \(\sigma_1\), \(\sigma_2\), and \(GAP\) are input feature map, ReLU, sigmoid, and global average pooling, respectively.

3. Proposed Method

This section describes the proposed method. HISFCOS consists of a backbone network, HIS feature pyramid, and a lightweight detection head.

Figure 4 shows the proposed HISFCOS architecture. First, ResNet-50, the same as the conventional FCOS, was used as the backbone network. The feature map extracted from the backbone network was used as an input for the reconstructed feature pyramid on the basis of the HIS block that minimizes feature loss. In addition, a bottom–up path was added to the feature pyramid of the top–down path to improve the lack of low-level information in the conventional network. As a result, feature information is improved by combining the high-level feature map and the low-level information. Lastly, unlike the conventional detection head composed of standard convolution, an inverted residual block structure is applied to reduce the amount of computation. The proposed method detects large and small objects for each scale using five heads that had passed through a feature pyramid. Details are covered in Sections 3.1–3.3.
Figure 4. Proposed method architecture. We reduced feature loss by rebuilding the feature pyramid on the basis of the proposed block. In addition, the increase in computational cost is minimized through the proposed detection head. Normalization and activation layers are omitted for simplicity.

3.1. Pyramid with Half-Inverted Stage Block

3.1.1. Half-Inverted Stage Block

Feature information in the FCOS feature pyramid is lost in the deep layer. Therefore, we propose an HIS block that reduces feature loss by simultaneously calculating spatial and channel information. Figure 5 shows the structure of the HIS block.

Figure 5. Structure of rebellion stage block. HIS block computes spatial and channel information in parallel to reduce loss of feature, where GAP, BN, ReLU, and SiLU represent the global mean pooling, batch normalization, modified linear unit, and sigmoid linear unit activation functions, respectively.

The structure of the proposed HIS block is as follows. First, if a large channel is used, unnecessary features and computations are increased. Therefore, the input feature map is compressed to \(\frac{1}{2} \) channel size using a \(1 \times 1 \) convolution. Subsequently, to minimize the loss of spatial and channel information, the optimized operation for each operation was used in parallel. Dwconv, which extracts spatial information through spatial operations in channel units, and CA, which emphasizes important features such as objects in the channel space, are used. (Channel attention replaces the FC layer with a \(1 \times 1 \) convolution to prevent an increase in the amount of computation). To refine the feature information extracted by a parallel operation, it is first combined with a concatenation operation. Feature loss generated during the compression process was minimized by combining the compressed and refined features with the size of the first input channel \(\frac{1}{2} \). Lastly, to improve the spatial information required for object detection, spatial information was improved using a
dilated convolution with a wide receptive field and a computational cost comparable to the standard convolution. Equations (2) and (3) represent the spatial and channel feature combinations and refinement process with the HIS block, respectively.

\[M_{\text{Feature connection}}(x) = \text{Conv}_{5 \times 3}(\text{concat}[\text{Dwconv}(x); \text{CA}(x)]) \]
\[M_{\text{HIS}}(x) = \text{Dilated}_{5 \times 3}^{r=2}(\text{concat}[M_{\text{Feature connection}}(\text{Conv}_{1 \times 1}(x)); \text{Conv}_{1 \times 1}(x)]) \]

where each symbol is \(\text{Dilated}_{5 \times 3}^{r=2} \), and \(\text{concat} \) represent a dilated convolution and concatenation operation with a kernel size of 3 and dilated ratio of 2, respectively.

3.1.2. HIS Feature Pyramid

FCOS is composed of a feature pyramid with a top–down path structure. Some deep layers do not combine with low-level features to recover the loss after upsampling, resulting in feature loss. Therefore, feature loss was prevented by rebuilding the feature pyramid using the proposed HIS block. First, by incorporating a bottom–up path into the conventional top–down path structure, low-level feature loss caused by the model depth is minimized by combining low-level information such as contours and edges with high-level information such as texture and shape in each feature map. Second, because there is no process in the conventional method for restoring information loss in some features of the feature pyramid, there may be a part-false-positive problem of detecting multiple objects owing to feature loss when extracting a large object. Therefore, by combining the features of the backbone network, the loss of features is minimized, allowing for the part-false-positive problem to be solved when large objects are detected.

3.2. Lightweight Detection Head

A conventional detection head has a structure in which each classification and regression branch repeat \(3 \times 3 \) standard convolution four times for feature refinement. The conventional structure improves accuracy in a detector with a shallow structure [17,23]. However, a detection head with a structure that repeats the standard convolution reduces detection accuracy compared with the high computational cost. Therefore, the proposed structure is applied to a conventional detection head using an inverted residual block [24] structure to lower the high computational cost. The computational cost of an ablation study was compared with that of a conventional detection head. Figure 6 shows the structures of the conventional and proposed detection heads.

First, the proposed detection head extends the channel using \(1 \times 1 \) convolution. Spatial information was extracted from the extended feature map using \(3 \times 3 \) Dwconv. The extracted spatial information was compressed using \(1 \times 1 \) convolution. By combining the extracted spatial information with the channel axis, features could be extracted at a lower computational cost compared with standard convolution. This structure is an inverted residual block. Features were then refined using \(3 \times 3 \) standard convolution. By replacing it with this structure, efficient detection was possible at a lower computational cost than that of the conventional method.
Figure 6. Detection head architecture: (a) Conventional decoupled head. It introduces repeated 3×3 convolutions to extract the feature for each task. (b) Proposed detection head. It used an inverted residual block, it was possible to extract features for each task with fewer operations and parameters shared than those of the conventional method.

3.3. Loss Function

The classification loss and bounding box regression loss functions are used as loss functions in the proposed method, in the same manner as the FCOS. We used focal loss [23] as the classification loss function. The cross-entropy loss function compares the proposed method with the ground truth, and outputs an error. However, when the standard cross-entropy loss function is used, the sample, which is easily detected, dominates the overall loss function. In object detection, most samples have a larger ratio of background samples to foreground samples, which causes class-imbalance problems. The use of such unbalanced samples for training is inefficient. Therefore, focal loss, which improved the standard cross-entropy loss function, was used as the classification loss function. The cross-entropy and focal loss functions are expressed using Equations (4) and (5), respectively:

\[
\text{CrossEntropy}(p, y) = \begin{cases} -\log(p), & \text{if } y = 1 \\ -\log(1 - p), & \text{otherwise} \end{cases} \tag{4}
\]

where p and y are the output values of ground truth and model, respectively.

\[
p_t = \begin{cases} p, & \text{if } y = 1 \\ 1 - p, & \text{otherwise} \end{cases}
\]

\[
\text{FocalLoss}(p, y) = -\alpha(1 - p_t)^\gamma \cdot \log(p_t), \tag{5}
\]

Focal loss becomes smaller than conventional cross-entropy loss when p_t approaches one. Conversely, as p_t approaches zero, loss increases. Here, α, γ are hyperparameters that control the contribution to the loss function. When $\gamma = 0$, it is the same as the conventional cross-entropy loss function. We use α, γ, which had the same value as FCOS $\alpha = 2, \gamma = 0.25$.
GIoU \((B, B^{gt}) = 1 - IoU + \frac{|C - B \cup B^{gt}|}{|C|}, \) \((6) \)

For the bounding box regression loss function, generalized intersection over union (GIoU) [25] was used as a regression loss function on the basis of the intersection of union (IoU) [26]. Equation (6) represents GIoU, where each symbol \(B, B^{gt}, \) and \(C \) represents the predicted bounding box, ground truth, and the small size area covering the predicted bounding box and ground truth, respectively.

The centerness loss function [17], which assigns weight to the bounding box with a low score away from the center, is a loss function that determines whether an object exists in the center. Therefore, binary cross-entropy (BCE) loss, a special form of cross-entropy, is used as a function to compare the two cases. Equation (7) is a centerness loss function expressed as follows:

\[
\text{CenternessLoss}(Y, \hat{Y}) = -(Y \log \hat{Y} + (1 - Y) \log (1 - \hat{Y})),
\] \((7) \)

where \(Y \) and \(\hat{Y} \) are output values of ground truth and model, respectively.

The total loss function consists of classification loss, regression loss, and centerness loss functions. Total loss is expressed using Equation (8) as follows:

\[
\text{Loss}_{\text{Total}} = \text{FocalLoss} + \text{GIoULoss} + \text{CenternessLoss}.
\] \((8) \)

4. Experiment Results and Discussion

4.1. Implementation Details

In this experiment, the public datasets PASCAL VOC [27] and MS COCO2017 [28] were used for HISFCOS performance validation and evaluation. The backbone network was pretrained on the Imagenet-1K dataset before experimentation. The hyperparameters used in the experiment were as follows: stochastic gradient descent (SGD) as used was the optimizer, momentum was set at 0.9, and weight decay was set at \(5 \times 10^{-3} \). For each dataset, batches were trained using 32 and 10 epochs, and 50 and 30 epochs were used. Additionally, for the input resolution, PASCAL VOC was used in the same manner as \(512 \times 512 \) and the MS COCO dataset was used in the same manner as the conventional FCOS. An initial learning rate of \(1 \times 10^{-2} \) was used, and in the case of the PASCAL VOC dataset, the learning rate decreased by 0.1 for each 2 and 2.1 K, and in the case of the MS COCO, the learning rate decreased by 0.1 at 60 and 90 K. The data augmentation technique was as follows: random crops are randomly cropped according to the resolution of the input image. The color jitter randomly changes the brightness, saturation, and hue of the input image. Finally, a random rotation changed the height and width of the input image at random. The hardware and framework used in the experiment are listed in Table 1. The code is available at https://github.com/hby1320/pytorch_object_detection (accessed on 15 March 2022).

Items	Descriptions
CPU	AMD Ryzen 3700X
GPU	NVIDIA RTX 3090 24 GB
RAM	64 GB
OS	Ubuntu 21.04
Framework	Pytorch 1.10

Table 1. Hardware and software environment.

In this study, detection accuracy was evaluated using the average precision (AP) [29], which is a dataset evaluation metric used in the field of object detection. The AP was calculated by averaging the maximal precision of the recall value on the precision–recall (PR) curve. Precision and recall were obtained using Equations (9) and (10), respectively, as follows:
Precision = \frac{TP}{TP + FP}, \quad (9)

Recall = \frac{TP}{TP + FN}, \quad (10)

When calculating AP, if there is only one classification class, it is defined as Equation (11).

\[AP = \frac{1}{11} \sum_{r \in 0.0, \ldots, 1.0} \rho_{interp}(r), \quad (11) \]

Recall levels 0.0, \ldots, 1.0 calculated the AP of each class as the mean of the maximal precision value for 11 levels. It is necessary to calculate the mean value for the AP because the classification task in the public dataset has more than each class. Equation (12) defined the average of AP for all classes.

\[mAP = \frac{1}{N} \sum_{i=1}^{N} AP_i, \quad (12) \]

where TP, FP, FN, r, \rho_{interp}, N, and AP_i denote the true positive, false positive, false negative, recall, precision value of each recall, total number of classes, and AP value of i_{th} class, respectively.

4.2. Comparison of Other Networks

4.2.1. Dataset

In this study, training and tests were conducted using object detection datasets PASCAL VOC (07+12) and MSCOCO 2017. PASCAL VOC was trained and evaluated. When classified into a total of 20 classification categories, it was divided into 8324 train datasets, 11,227 validation datasets, and 4952 test datasets were used. In this study, evaluation and resection studies were conducted using 4952 tests and datasets after learning using the training and evaluation dataset. In addition, MSCOCO dataset has a total of 80 classification categories and consisted of 118,287 train datasets, 5000 validation datasets, and 4952 evaluation datasets. In this study, it was used for comparison with the conventional network and other networks.

4.2.2. PASCAL VOC

We compared other networks with HISFCOS using the PASCAL VOC dataset, which is widely used in object detection. At this time, a fair comparison was carried out using input resolution of 512 \times 512, which is frequently used in the one-stage detector in the PASCAL VOC dataset.

Table 2 shows the results of comparing the detection accuracy (mAP) and number of parameters with those of other networks in the PASCAL VOC 2007 test dataset. The proposed method has parameters similar to those of the conventional method, and detection accuracy was improved by approximately 3.0%. Additionally, compared with R-FCN, which is a two-stage detector more specialized in detection accuracy than in speed, detection accuracy of approximately 0.9% was achieved. This demonstrates the usefulness of the proposed HIS block and lightweight detection head.

Figure 7a shows that FCOS is difficult to detect overlapping objects due to spatial and low-level feature information loss during feature extraction. In addition, the bottle class at the bottom of Figure 7 is difficult to detect when there is a feature loss. The proposed method uses HIS blocks to reduce spatial and channel loss. In addition, by reconstructing the feature pyramid structure, low-level information was improved to improve the detection performance of difficult-to-detect overlapping objects. In Figure 7b, compared to the conventional method, the proposed method showed improved detection results for objects that are difficult to detect such as overlapping objects.
Table 2. Comparison of other networks with PASCALVOC 07 test dataset.

Networks	Backbone	Input Resolution	Params (M)	mAP (%)
Two-stage				
Fast R-CNN [9]	VGG-16	600 × 1000	-	70.0
Faster R-CNN [10]	VGG-16	600 × 1000	134.7	73.2
OHEM [30]	VGG-16	600 × 1000	-	74.6
R-FCN [31]	ResNet-101	600 × 1000	50.9	80.5
CoupleNet [32]	ResNet-101	600 × 1000	-	82.7
One-stage				
SSD300 [12]	VGG-16	300 × 300	26.3	74.1
SSD512 [12]	VGG-16	512 × 512	29.4	76.0
YOLOv2 [14]	DarkNet-19	544 × 544	51.0	78.6
YOLOv3+mixip [33]	DarkNet-53	416 × 416	65.2	83.6
FCOS	ResNet-50	512 × 512	32.1	78.4
HISFCOS (our)	ResNet-50	512 × 512	32.6	81.4

Figure 7. Comparison of detection results of the PASCAL VOC 2007 test dataset. (a) FCOS and (b) proposed HISFCOS method can effectively detect overlapping objects.

4.2.3. MSCOCO

Unlike the PASCAL VOC dataset, the MSCOCO dataset was evaluated using the average of values between 50% and 95% as the IoU threshold. Table 3 shows a comparison of detection performance between the MSCOCO 2017 minival dataset method and other object detection methods. HISFCOS was tested with the same input resolution of 800 × 1333 pixels as the FCOS. The proposed method achieved a detection accuracy of approximately 38.9% using ResNet-50 as the backbone network in the MSCOCO dataset. Compared with FCOS, detection accuracy was improved by approximately 1.5%. Additionally, compared with the two-stage method, the proposed method showed similar detection accuracy. Compared with MaskR-CNN, which is a two-stage method, the proposed method has approximately four times fewer parameters and 0.5% higher detection accuracy. Figure 8 shows the detection results compared with the conventional method for the MSCOCO dataset.
Table 3. Comparison of other networks using the MSCOCO 2017 minival dataset.

Networks	Backbone	Input Resolution	Params (M)	AP (%)	AP50 (%)	AP75 (%)
Two-stage						
CoupleNet [32]	ResNet-101	800 × 1024	-	34.4	54.8	37.2
FasterR-CNN [34]	ResNet-50	800 × 1024	39.8	36.7	57.3	39.3
MaskR-CNN + GRoIE [35]	ResNet-50	800 × 1333	-	38.4	59.9	41.7
One-stage						
YOLOv3 [36]	DarkNet-53	608 × 608	65.2	33.0	57.9	34.4
RetinaNet + Foveabox [37]	ResNet-50	800 × 1333	-	36.4	56.2	38.7
FSAF [38]	ResNet-50	800 × 1333	-	37.2	57.2	39.4
HISFCOS (our)	ResNet-50	512 × 512	32.6	34.0	51.8	36.1
HISFCOS (our)	ResNet-50	800 × 1333	32.6	38.9	57.4	41.9

Figure 8a shows the top of the image, where false detection for the knife class was confirmed. Owing to the loss of low-level information in the conventional method, similar feature information was misidentified when detecting an object, and a knife class that did not exist in the input image was erroneously detected. Additionally, the lower image in Figure 8a was a part-false-positive problem for a training class with a large aspect ratio. In the conventional method, some object information was lost during the upsample process in the feature pyramid, resulting in the incorrect detection of a large object. However, because the proposed method minimized the loss of features, it was possible to accurately detect it without false detection, as shown in Figure 8b.

Figure 8. Comparison of detection results of MSCOCO 2017 minival dataset. (a) FCOS and (b) HISFCOS. As in the image below, the proposed method could effectively detect large objects.

4.3. Ablation Study

4.3.1. Evaluation HISblock Analysis

First, to validate the effectiveness of the proposed method, an experiment was conducted using the PASCAL VOC 2007 test dataset. Table 4 shows the detection accuracy between each class of HISFCOS and FCOS in the PASCAL VOC 07 test dataset. The proposed method improved detection accuracy for all objects compared with the conventional method. Detection accuracy was improved by minimizing the feature loss by reconstructing the feature pyramid structure on the basis of the proposed HIS block. Additionally,
the detection performance for the table, bottle, plant, and chair classes was significantly improved, which are difficult to detect because they overlap with other objects in the conventional method. Furthermore, in the case of objects with a large aspect ratio, such as trains and sofas, the conventional method has the problem of part-false-positive sample detection. However, HISFCOS minimizes the loss in each feature map through feature pyramid reconstruction based on the HIS block. The improvement in detection accuracy for previously difficult-to-detect objects was confirmed by resection studies.

Table 4. Ablation study for HISFCOS analysis on PASCAL VOC 2007 test dataset.

Method	Params (M)	GFLOPS (G)	mAP (%)
FCOS	32.1	103.1	78.4
Detection head (Conv × 4)	35.9	117.6	80.7
Detection head (Conv × 2)	33.5	92.0	81.0
Detection head (Proposed)	32.6	82.0	81.4

Table 5. Ablation study for detection head analysis on the PASCAL VOC 2007 test dataset.

Method	Params (M)	GFLOPS (G)	mAP (%)
Detection head (Conv × 4)	35.9	117.6	80.7
Detection head (Conv × 2)	33.5	92.0	81.0
Detection head (Proposed)	32.6	82.0	81.4

5. Conclusions

In this study, we proposed HISFCOS, an efficient object detection network that achieves high accuracy while maintaining a computational cost comparable to that of FCOS. First, the proposed method had high prediction accuracy. On the basis of the HIS block, feature loss that occurs during feature extraction was reduced, and spatial information was improved. By rebuilding the feature pyramid on the basis of the proposed block, detection accuracy was improved by minimizing feature loss in the FCOS and improving the low-level information required for each feature map. Second, by improving the structure of the detection head, the calculation cost was maintained while accuracy was improved.
By applying the inverted bottleneck structure to the section where the internal convolution of the conventional detection head structure was repeated, accuracy was improved while maintaining comparable computational cost to that of the conventional method. The proposed method showed high detection accuracy with similar computational cost compared with the conventional detection results because of experiments on the PASCAL VOC and MSCOCO2017 datasets. In the future, we plan to conduct weight reduction research that can be applied to any industrial application field.

Author Contributions: Conceptualization, B.H. and S.L. (Sanghun Lee); data curation, B.H.; formal analysis, B.H. and S.L. (Seunghyun Lee); investigation, B.H.; methodology, B.H. and S.L. (Sanghun Lee); project administration, S.L. (Sanghun Lee); software, B.H. and S.L. (Seunghyun Lee); supervision, S.L. (Sanghun Lee) and S.L. (Seunghyun Lee); validation, B.H. and S.L. (Sanghun Lee); visualization, B.H.; writing—original draft preparation, B.H.; writing—review and editing, S.L. (Sanghun Lee) and S.L. (Seunghyun Lee) All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data presented in this study are openly available online: http://host.robots.ox.ac.uk/pascal/VOC/voc2007/index.html, http://host.robots.ox.ac.uk/pascal/VOC/voc2012/index.html (accessed on 26 May 2020), reference number [27], and https://cocodataset.org/#home (accessed on 26 May 2020), reference number [28].

Acknowledgments: The present research was conducted through a research grant of Kwangwoon University in 2022.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

- HISFCOC: Half-inverted stage fully convolutional one-stage detector
- FCOS: Fully convolutional one-stage detector
- FCN: Fully convolutional network
- Bn: Batch normalization
- GAP: Global average pooling
- ReLU: Rectified linear unit
- IoU: Intersection of union
- AP: Average precision
- mAP: mean average precision

References
1. Park, C.; Lee, S.; Han, H. Efficient Shot Detector: Lightweight Network Based on Deep Learning Using Feature Pyramid. *Appl. Sci.* **2021**, *11*, 8692. [CrossRef]
2. Shin, S.; Han, H.; Lee, S. Improved YOLOv3 with duplex FPN for object detection based on deep learning. *Int. J. Electr. Eng. Educ.* **2021**, *9218137*. [CrossRef] [PubMed]
3. Wang, Y.; Huang, J.; Wang, Y.; Feng, S.; Peng, T.; Yang, H.; Zou, J. A CNN-Based Adaptive Surface Monitoring System for Fused Deposition Modeling. *IEEE/ASME Trans. Mechatronics* **2020**, *25*, 2287–2296. [CrossRef]
12. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single shot multibox detector. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [CrossRef]

13. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [CrossRef]

14. Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6517–6525. [CrossRef]

15. Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature Pyramid Networks for Object Detection. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 936–944. [CrossRef]

16. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [CrossRef]

17. Tian, Z.; Shen, C.; Chen, H.; He, T. FCOS: Fully Convolutional One-Stage Object Detection. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2019; pp. 2999–3007. [CrossRef]

18. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [CrossRef]

19. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861.

20. Howard, A.; Sandler, M.; Chen, B.; Wang, W.; Chen, L.C.; Tan, M.; Chu, G.; Vasudevan, V.; Zhu, Y.; Pang, R.; et al. Searching for MobileNetV3. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November 2019; pp. 1314–1324. [CrossRef]

21. Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1800–1807. [CrossRef]

22. Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141.

23. Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal Loss for Dense Object Detection. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2999–3007. [CrossRef]

24. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4510–4520.

25. Rezatofighi, H.; Tsoi, N.; Gwak, J.; Sadeghian, A.; Reid, I.; Savarese, S. Generalized Intersection Over Union: A Metric and a Loss for Bounding Box Regression. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 658–666. [CrossRef]

26. Zhou, D.; Fang, J.; Song, X.; Guan, C.; Yin, J.; Dai, Y.; Yang, R. Iou loss for 2d/3d object detection. In Proceedings of the 2019 International Conference on 3D Vision (3DV), Quebec City, QC, Canada, 16–19 September 2019; pp. 85–94. [CrossRef]

27. Everingham, M.; Van Gool, L.; Williams, C.K.; Winn, J.; Zisserman, A. The pascal visual object classes (voc) challenge. Int. J. Comput. Vis. 2010, 88, 303–338. [CrossRef]

28. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco: Common objects in context. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; pp. 740–755. [CrossRef]

29. Henderson, P.; Ferrari, V. End-to-end training of object class detectors for mean average precision. In Proceedings of the Asian Conference on Computer Vision, Taipei, Taiwan, 20–24 November 2016; pp. 198–213. [CrossRef]

30. Shrivastava, A.; Gupta, A.; Girshick, R. Training Region-Based Object Detectors with Online Hard Example Mining. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 761–769. [CrossRef]

31. Dai, J.; Li, Y.; He, K.; Sun, J. R-fcn: Object detection via region-based fully convolutional networks. Adv. Neural Inf. Process. Syst. 2016, 29, 379–387.

32. Zhu, Y.; Zhao, C.; Wang, J.; Zhao, X.; Wu, Y.; Lu, H. CoupleNet: Coupling Global Structure with Local Parts for Object Detection. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 4146–4154. [CrossRef]
33. Zhang, Z.; He, T.; Zhang, H.; Zhang, Z.; Xie, J.; Li, M. Bag of freebies for training object detection neural networks. *arXiv* 2019, arXiv:1902.04103.

34. Wang, J.; Sun, K.; Cheng, T.; Jiang, B.; Deng, C.; Zhao, Y.; Liu, D.; Mu, Y.; Tan, M.; Wang, X.; et al. Deep High-Resolution Representation Learning for Visual Recognition. *IEEE Trans. Pattern Anal. Mach. Intell.* 2021, 43, 3349–3364. [CrossRef] [PubMed]

35. Rossi, L.; Karimi, A.; Prati, A. A Novel Region of Interest Extraction Layer for Instance Segmentation In Proceedings of the 2020 25th International Conference on Pattern Recognition (ICPR), Milan, Italy, 10–15 January 2021; pp. 2203–2209. [CrossRef]

36. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. *arXiv* 2018, arXiv:1804.02767.

37. Kong, T.; Sun, F.; Liu, H.; Jiang, Y.; Li, L.; Shi, J. FoveaBox: Beyond Anchor-Based Object Detection. *IEEE Trans. Image Process.* 2020, 29, 7389–7398. [CrossRef]

38. Zhu, C.; He, Y.; Savvides, M. Feature Selective Anchor-Free Module for Single-Shot Object Detection. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 840–849. [CrossRef]