Efeito do óleo de copaíba na mucosa intestinal de ratos submetidos ao choque hipovolêmico

Effect of copaiba oil in intestinal mucosa of rats submitted to hypovolemic shock

Renan Kleber Costa TEIXEIRA1, Felipe Lobato da Silva COSTA1, Faustino Chaves CALVO1, Deivid Ramos dos SANTOS1, Edson Yuzuru YASOJIMA1, Marcus Vinicius Henriques BRITO1

Como citar este artigo: Teixeira RKC, Costa FLS, Calvo FC, Santos DR, Yasojima EY, Brito MVH. Efeito do óleo de copaíba na mucosa intestinal de ratos submetidos ao choque hipovolêmico. ABCD Arq Bras Cir Dig. 2019;32(3):e1451. DOI: /10.1590/0102-672020190001e1451

ABSTRACT - Background: Hypovolemic shock is a common disease in polytrauma patients and may develop ischemia in various organs, increasing morbidity and mortality. The bowel is usually most affected by this condition. Aim: To evaluate the effects of copaiba oil on the intestinal mucosa’s injury of rats submitted to hypovolemic shock. Method: Fifteen rats were divided into three groups: sham - simulated surgery; ischemia - animals submitted to hypovolemic shock; and copaiba - animals submitted to hypovolemic shock previously treated with copaiba oil. Mean blood pressure, arterial blood gas after shock induction, degree of intestinal lesion and villus length were evaluated. Result: The sham presented the lowest values of lactate and PaCO2, and the highest values of mean arterial pressure, pH and bicarbonate in relation to the other groups. The degree of mesenteric lesion was zero in the sham group; 3.0±1.00 in the ischemia group; and 3.00±0.71 in the copaiba group. There was a significant difference between the sham and the other groups (p<0.05); however, there not significant difference between groups Ischemia and copaiba.

Conclusion: Administration of copaiba oil did not reduce the intestinal mucosa lesion of rats after hypovolemic shock.

INTRODUÇÃO

O trauma corresponde a uma das principais causas de morte no mundo, principalmente em adultos jovens12. Diversos são os mecanismos que levam as disfunções orgânicas graves16, sendo o choque hipovolêmico um dos mais comuns. Ele acarreta isquemia de diversos órgãos, principalmente rins e território esplânchônico1,15.

O intestino delgado é muito sensível à isquemia por sua elevada atividade metabólica16, acarretando em piora da cicatrização após a confecção de anastomoses5,7, aumento de fistulas, e dificuldade na absorção adequada dos nutrientes, causando desnaturação, anemia e diarreia. Ele é uma das principais fontes de bactérias causadoras de sepse, que acontece com a quebra da barreira intestinal permitindo ampla translocação bacteriana17.

Diversas alternativas foram avaliadas visando diminuir a lesão por isquemia na mucosa intestinal. Para tanto, foram utilizadas soluções salinas hipertônicas19,20, hidrocortisona21 durante a ressuscitação volêmica; medicações como pentoxifilina18 e N-acetil-cisteína1; probióticos22; e terapia nutricional enteral23. Porém, esses métodos apresentam efeitos duvidosos ou pouco benéficos.

O óleo de copaíba é originado da seiva das árvores de copaifera (família Fabaceae) e apresenta ações comprovadas24,25 como anti-inflamatório, cicatrizante e antioxidante.
Este óleo foi testado em colite induzida por ácido acético em ratos e apresentou efeito positivo como anti-inflamatório. Além disso, em um estudo avaliando os efeitos dele em sepsis abdominal por ligadura e punção cecal, houve aumento da sobrevida global com menor grau de lesão pulmonar e menores níveis de estresse oxidativo.

Assim, este estudo pretende investigar os efeitos do óleo de copaíba na mucosa intestinal de ratos submetidos ao choque hipovolêmico.

MÉTODOS

Este trabalho foi aprovado pelo Comitê de Ética e Pesquisa no Uso de Animais da Universidade do Estado do Pará (protocolo 11/11). Foram utilizados 15 ratos (Rattus norvegicus) Wistar machos, pesando entre 200-250 g oriundos do biotério do Laboratório de Cirurgia Experimental da Universidade do Estado do Pará. Os animais foram mantidos em ambiente apropriado com temperatura e umidade controladas e ciclo claro e escuro de 12/12 h com água e ração foram ofertadas ad libitum.

Os animais foram aleatoriamente divididos em três grupos (n=5): sham (GS), operação simulada em todas as etapas cirúrgicas sem a realização do choque hipovolêmico; isquemia (GI), animais submetidos ao choque hipovolêmico; e copaíba (GC), animais submetidos ao choque hipovolêmico previamente tratados com óleo de copaíba.

Os animais do GC receberam óleo de copaíba (Copaifera officinalis) por gavagem na dose de 0,63 ml/kg uma vez ao dia durante sete dias antes da indução do choque hipovolêmico. A análise espectrofotométrica do óleo está descrita na Tabela 1. Os animais do GS e GI receberam soro fisiológico 0,9% nas mesmas proporções do óleo de copaíba.

TABELA 1 – Composição do óleo de copaíba (Copaifera officinalis) utilizado

Constituintes	%
Limonene	0,24
α-copaen	0,10
7-epi-sesquihujene	0,25
cyperene	0,42
cis-α-bergamotene	0,15
β-caryophyllene	10,00
trans-α-bergamotene	18,32
epi-β-santalene	0,05
α-humulene	3,02
α-copaene	0,24
α-zingiberene	0,21
β-bisabolene	52,03
(Z)-α-bisabolene	2,90
β-sesquiphelandrene	2,31
mw=204	3,98
(E)-y-bisabolene	0,20
caryophyllene alcohol	0,05
caryophyllene oxide	0,33
β-atlanol	0,12
epi-β-bisabolol	0,21
epi-α-bisabolol	0,53

Todos os procedimentos cirúrgicos foram realizados sob anestesia (quetamina - 70 mg/kg mais xilasina - 10 mg/kg, inaltraperitonealmente). Confirmado o plano anestésico, foi realizado uma cervicotomia mediana e dissecação da região direita até identificação e isolamento da artéria carótida comum direita sob magnificação de sistema de videomicrocirurgia. Fora realizada a cateterização da artéria com um jelco 24º G, previamente heparinizado; em seguida foi drenado 30% da volemia do animal (baseado na fórmula: volume total (ml)=peso do animal (gramas)x0,06)** com auxílio de seringa de vidro durante 10 min, induzindo assim o choque hipovolêmico. Terminado a coleta de sangue, foi mantido o jelco heparinizado para posterior coleta de sangue.

Os animais foram mantidos em ambiente aquecido a 36º C e ressuscitados volemicamente com soro fisiológico 0,9% na dose de 10 ml/kg por via subcutânea. Cinquenta minutos após a indução do choque foi mensurada a pressão arterial média e coletado 0,1 ml de sangue para realização de gasometria arterial através do jelco fixo na artéria carótida comum direita. Após a coleta foi realizada ligadura nos dois cotos da artéria com seda 4-0 e a pele foi suturada com náilon 5-0.

Após esse procedimento, os animais foram acompanhados por 72 h. Ao final desse período, foi realizada a eutanásia por meio da injeção intraperitoneal de xilazina em alta dose.

Fora coletado um segmento de 2 cm do íleo, distando 3 cm do ceco. Este segmento foi lavado em água corrente para retirar de fezes e fixado em formol tamponado e submetido a processo histopatológico de rotina e corado com H&E. Foi avaliado o grau de lesão baseado na escala de Chiu et al e as medições do comprimento das vilosidades foram feitas medindo dez vilosidades bem orientadas (cortadas ao longo de seu comprimento) em cada um dos animais.

Análise estatística

Para a análise estatística foram utilizados os seguintes testes e meios: software BioEstat® 5.3 para a realização das análises estatísticas; ANOVA para comparar o comprimento das vilosidades e parâmetros gasométricos; Kruskal-Wallis para comparar os resultados histopatológico. Fora adotado nível de significância de 5% para rejeitar a hipótese nula.

RESULTADOS

Durante o procedimento e seguimento pós-operatório não houve necessidade de realizar manobras de ressuscitação nem houve mortes de animais. A pressão arterial média dos animais do GS foi de 75,00±1,20 mmHg, no GI de 42,20±2,68 mmHg e no GC de 42,60±1,67 mmHg. Houve diferença significativa entre o GS em relação aos grupos GI e GC (p<0,01).

Em relação a análise gasométrica (Tabela 2), o GS apresentou os menores valores de lactato e PaCO₂ e os maiores de pH e bicarbonato em relação aos grupos GI e GC (p<0,05). Não houve diferença significativa entre os grupos GI e GC.

TABELA 2 - Média e desvio-padrão dos parâmetros gasométricos de acordo com os grupos

Parâmetro	Sham**	Isquemia	Copaiba
pH	7,39±0,02	7,08±0,06	7,11±0,04
PaCO₂	54,00±3,80	65,20±3,70	63,60±4,77
HCO₂	25,80±1,48	16,40±3,57	16,20±2,28
Lactato	1,42±0,44	7,20±1,64	7,60±0,54

O escoré médio de lesão intestinal é demonstrado na Tabela 3. O GS mostrou mucosa normal, e houve diferença significativa entre este grupo em relação aos animais submetidos ao choque hipovolêmico; entre grupos GI e GC não houve diferença significativa (p>0,05). Em relação ao comprimento dos vilos (Tabela 2), houve diferença entre o grupo sham e os demais (p<0,05); entretanto, não houve diferença entre os grupos GI e GC (p>0,05).

TABELA 3 - Média e desvio-padrão da pontuação da lesão intestinal e tamanho dos vilos de acordo com os grupos

Parâmetro	Sham**	Isquemia	Copaiba
Lesão intestinal	0,00±0,00	3,00±1,00	3,00±0,71
Tamanho dos vilos	173,60±8,42	142,77±8,33	143,01±9,37

*p<0,05 sham vs. outros grupos (Kruskal-Wallis); **p<0,05 sham vs. outros grupos (ANOVA)
A administração do óleo de copaíba não reduziu a lesão da mucosa intestinal de ratos submetidos ao choque hipovolêmico.

REFERÊNCIAS

1. Azeredo MA, Azeredo LA, Eleutherio E, Schanhaider A. Propofol and n-acetylcysteine attenuate oxidative stress induced by intestinal ischemia/reperfusion in rats. Protein carbonyl content measured by immunoblotting. Acta Cir Bras. 2008; 23(5): 425-8. Doi: 10.1590/s0102-67202008000500006.

2. Barros RV, Brito MV, Leal RA, Teixeira PK, Sábia MF, Yamaki VN, Lemos MV. A Low-Cost, High-Definition Video System for Microsurgical Hindlimb Replantation in Rats. Reconstr Microsurg. 2017 Mar; 33(3): 158-62. Doi:10.1055/s-0037-1593767.

3. Bordoni PHC, Santos DMMD, Teixeira JS, Marinho M, Feneval G, Oliveira-Junior S. Effect of atenolol pre-treatment in heart damage in a model of intestinal ischemia-reperfusion. Acta Cir Bras. 2017 Nov; 30(11): 946-72. Doi:10.1590/s0102-67202017110000008.

4. Paiva LA, Gurgel LA, Campos AR, Silveira ER, Rao VS. Protective effect of Copaifera langsdorffii oleoresin against acetic acid-induced colitis in rats. J Ethnopharmacol. 2004 Jul; 95(3): 397-404. Doi:10.1016/j.jep.2004.05.011.

5. Brito MVH, Yasojima EV, Machado AD, Silva-Teixeira R, Yamaki VN. Copaíba oil effect on urea and creatinine serum levels in rats submitted to kidney ischemia and reperfusion syndrome. Acta Cir Bras. 2005 May; 20(3): 243-6. PMID: 16033184.

6. Brito MVH, Moreira RJ, Tavares MLC, Carballo MCS, Camerio TX, dos Santos AAS. Copaíba oil effect on urea and creatinine serum levels in rats submitted to kidney ischemia and reperfusion syndrome. Acta Cir Bras. 2005 Jan; 20(1): 93-9. PMID: 15810470.

7. Cho CT, Scott HJ, Gurd FN. Intestinal mucosal lesion in low-flow states. II. The protective effect of intraluminal glycine as energy substrate. Arch Surg. 1970; 100(3): 397-408.

8. Comelli Júnior E, Skinnová J, Sigwalt MF, Branco AB, Luz SR, Bauhe C. Rupture point analysis of intestinal anastomotic healing in rats under the action of pure Copaíba (Copaifera langsdorffii) oil. Acta Cir Bras. 2020 Aug; 25(4): 362-7. PMID: 20676496.

9. de Araújo Júnior FA, Braz MN, da Rocha Neto OG, Costa FD, Brito MV. Copaíba oil effect on aminotransferases of rats with hepatic ischemia and reperfusion with and without ischemic preconditioning. Acta Cir Bras. 2005 Jan; 20(1): 93-9. PMID: 15810470.

10. de Lima Silva J, Guimarães SR, da Silveira ER, de Vasconcelos PR, Lima GG, Torres SM, de Vasconcelos RC. Effects of Copaifera langsdorffii Desf. on ischemia-reperfusion of randomized skin flaps in rats. Aesthetic Plast Surg. 2009 Jan; 33(1): 104-9. Doi:10.1007/s00266-008-9263-2.

11. Furtado RA, Bernades CT, da Silva MN, Zacchial FF, Facciohi LH, Bastos JK. Antiecleromatogenic Evaluation of Copaifera langsdorffii Leaves Hydroethanolic Extract and Its Major Compounds. Biomed Res Int. 2015; 2015: 913152. Doi:10.1155/2015/913152.

12. GBD 2017 Causes of Death Collaborators. Global, regional, and national age-specific mortality for 282 causes of death in 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018; Nov 29;201(15):1739-88. Doi:10.1016/s0140-6736(18)32203-7.

13. Gonzalez EA, Kozar RA, Sulibb JW, Weisbrodt MW, Mercier DW, Moore FA. Conventional dose hypertonic saline provides optimal gut protection and limits remote organ injury after gut ischemia reperfusion. J Trauma. 2006 Jul; 61(1): 66-73. Doi:10.1097/01.ta.0000224190.65542.e2.

14. GrossoVBB, Weisbrodt MW, Moore FA, Moody F. Ischemia/reperfusion-induced disruption of rat small intestine transit is reversed by total enteral nutrition. Nutrition. 2001 Nov;17(11):939-43. PMID: 11744345.

15. Haines RW, Lin SP, Hewson R, Kiwanji J, Torhorst JB. Critical bleeding and plasma volumes of the adult germfree rat. World J Emerg Surg. 2017 Sep;12:44. Doi: 10.1186/s13017-017-0155-0.

16. Lopes LN, Santos FA, Oliveira LC, Percário S, Barros CA, Brito MV. Copaíba oil effect on induced fecal peritonitis in rats. Acta Cir Bras. 2015 Aug; 30(8): 568-73. Doi:10.1590/s0102-67202015000800008.

17. Marques GMN, Rasslan R, Belon AR, Carvalho JG, Felice Neto R, Rasslan S, Utjumya EM, Montero-ESF. Pentoxyfylline associated with hypertonic saline solutions attenuates gut protection and apoptosis after intestinal ischemia/reperfusion in rats. Acta Cir Bras. 2014Nov;29(11):735-40. Doi:10.1590/s0102-68202014001000007.

18. OkadaM, FalciOJR, FerezD, MartinsJS, EnantiP, RodriguesSM, Caracci-Neto A, Marinho M, Feneval G, Oliveira-Junior S. Effect of atenolol pre-treatment in heart damage in a model of intestinal ischemia-reperfusion. Acta Cir Bras. 2017 Nov; 32(11): 946-72. Doi:10.1590/s0102-67202017110000008.

19. Paiva LA, Gurgel LA, Campos AR, Silveira ER, Rao VS. Attenuation of ischemia/reperfusion-induced intestinal injury by oleo-resin from Copaifera langsdorffii in rats. Life Sci. 2004 Sep; 75(16): 1979-87. Doi:10.1016/j.lfs.2004.05.011.

20. Paiva LA, Gurgel LA, De Sousa ET, Silveira ER, Silva RM, Santos FA, Rao VS. Protective effect of Copaifera langsdorffii oleoresin against acetic acid-induced colitis in rats. J Ethnopharmacol. 2004 Jul; 95(3): 397-404. Doi:10.1016/j.jep.2004.03.028.

21. Salim SY, Young PR, Lukowski CM, Madsen KL, Bis B, Churchill TA, Khadaroo RG. VGL3: probiotic/probiotic protection against acetaminophen-induced liver ischemia/reperfusion injury. Benef Microbes. 2013 Dec; 4(4): 357-365. Doi: 10.3922/2013bm.00026.

22. Tavares MLC, Monteiro AM, Feijó DH, Mainardi CR, Ribeiro Junior RFG, Dias DV, Brito MVH. Hydrocortisone in low doses has a protective effect on hemorrhagic shock in rats. Primi. 2017 Jan; 1(1): e008. Doi:10.4322/primi.2017.00008.

23. Teixeira FB, de Brito Silva R, Lameira AO, Webber LP, D’Almeida Couto RS, Martins MD, Lima RR. Copaíba oil-resin (Copaifera reticulata Ducke) modulates the inflammation in a model of injury to rats’ tongues. BMC Complement Altern Med. 2017 Jun; 17(1): 313. Doi:10.1186/s12906-017-1820-2.

24. Antunes VR, Webber LP, Ortolz LC, Rados PV, Meurer L, Lameira OA, Lima RR, Martins MD. Effects of Copaíba Oil Topical Administration on Oral Wound Healing. Phytotser Res. 2008 Aug; 37(8):1283-1288. Doi:10.1002/phs.5845.

25. Yale CE, Torhorst JB. Critical bleeding and plasma volumes of the adult germfree rat. Lab Anim Science. 1972; 22:497-502.

26. Yasojima EV, Teixeira RKC, Housat AP, Costa FLS, Silveira EL, Brito MVH, Lopes Filho GJ. Effect of copaíba oil on correction of abdominal wall defect treated with the use of polypropylene/polyglycolic mesh. Acta Cir Bras. 2013 Feb; 28(2): 131-5. Doi:10.1590/s0102-68202013000200008.

DISCUSSÃO

A administração do óleo de copaíba não reduziu a lesão da mucosa intestinal de ratos submetidos ao choque hipovolêmico.

ORCID

Renan Kleberger Costa Teixeira: 0000-0002-0579-297X