DISCRETE SUBSETS OF TOTALLY IMAGINARY QUARTIC
ALGEBRAIC INTEGERS IN THE COMPLEX PLANE

WENHAN WANG

ABSTRACT. Algebraic integers in totally imaginary quartic number fields are
not discrete in the complex plane under a fixed embedding, which makes it
impossible to visualize all integers in the plane, unlike the quadratic imaginary
algebraic integers. In this note we consider a naturally occurring discrete
subset of the algebraic integers with similar properties as lattices. For the fifth
cyclotomic field, we investigate those integers with absolute values under a
fixed embedding in a given bound. We show that such integers form a discrete
set in the complex plane. It is observed that this subset has quasi-periodic
appearance. In particular, we also show that the distance between a fixed
point to the most adjacent point in this subset takes only two possible values.

1. INTRODUCTION

Let \(K \) be a totally imaginary quartic number field, and denote by \(\mathcal{O}_K \) its ring
of integers. \(K \) has a unique maximal real subfield \(K_0 = K \cap \mathbb{R} \). Let \(\sigma \) denote
the non-trivial automorphism of \(K_0 \), then \(\sigma \) can be extended to two embeddings
of \(K \hookrightarrow \mathbb{C} \). By abuse of notation we denote a fixed one of the embeddings by \(\sigma \)
and the other embedding is then the complex conjugate of \(\sigma \). For \(z \in \mathcal{O}_K \subseteq \mathbb{C} \), we
denote \(\sigma(z) = z^\sigma \) the image under the embedding \(\sigma \).

Let \(\mathcal{B} \) be a bounded subset of \(\mathbb{C} \) containing 0 as an interior point. Consider the
set

\[S_\mathcal{B} := \{ z \in \mathcal{O}_K | z^\sigma \in \mathcal{B} \} \]

We claim that the set \(S_\mathcal{B} \) is a discrete subset of \(\mathbb{C} \).

Proposition 1.1. Suppose \(z_1, z_2 \in S_\mathcal{B} \), then \(|z_1 - z_2| \leq \frac{1}{2 \text{diam}(\mathcal{B})} \).

Proof. Since \(z_1, z_2 \in S_\mathcal{B} \), we have

\[N_{K/\mathbb{Q}}(z_1 - z_2) = |z_1 - z_2|^2 |z_1^\sigma - z_2^\sigma|^2 \leq 4 \text{diam}(\mathcal{B})^2 \cdot |z_1 - z_2|^2. \]

On the other hand, as \(z_1 \) and \(z_2 \) are algebraic integers, we have \(N_{K/\mathbb{Q}}(z_1 - z_2) \geq 1 \).
Hence we obtain

\[|z_1 - z_2| \geq \frac{1}{2 \text{diam}(\mathcal{B})}. \]

\[\square \]

2. A DISCRETE SUBSET OF INTEGERS IN \(\mathbb{Q}(\zeta_5) \)

Consider the fifth cyclotomic field \(K = \mathbb{Q}(\zeta_5) \) and its ring of integers \(\mathcal{O}_K \). Fix
the embedding \(\sigma \) of \(K \) that sends \(\zeta_5 = \exp(2\pi i/5) \) to \(\zeta_2^2 \). Let \(\mathcal{B} \) be the unit circle
in \(\mathbb{C} \), and consider the discrete subset \(S = S_\mathcal{B} \). We claim that \(S \) has the five-fold
symmetry.

Date: May 5, 2014.
Lemma 2.1. If \(z \in S \), then \(\zeta z \in S \).

Proof. It suffices to observe that \(|\zeta| = 1 \) and hence \(|\zeta z| = |z| \) for \(\zeta \) any root of unity.

Note that \(S \) is a subset of \(\mathcal{O}_K \), and \(S \) is in fact not a lattice in \(\mathbb{C} \). However, \(S \) shares the following similar property as lattices in \(\mathbb{C} \). The following figure depicts a portion of the set \(S \subseteq \mathbb{C} \) near the origin. The points surrounded by small circles are 0 and the fifth roots of unity.

For a fixed point \(z \) in a given lattice \(\Lambda \in \mathbb{C} \), the minimum distance from \(z \) to another point \(z' \in \Lambda \) is always a constant. Namely, if \(\Lambda = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2 \), then \(\min_{z' \in \Lambda \setminus \{0\}} |z' - z| = \min_{z' \in \Lambda \setminus \{0\}} |z'| \). For the set \(S \), we have the following theorem.

Theorem 2.2. \(\min_{z' \in S \setminus \{z\}} |z' - z| \in \{\sqrt{\frac{5}{2}} - 1, 1\} \).

To prove the above theorem, we need the following lemmas.

Lemma 2.3. Suppose \(z_1, z_2 \in S \). If \(|z_1 - z_2| < \frac{\sqrt{5}}{2} \), then \(z_1 - z_2 \) is a unit.

Proof. Suppose to the contrary that \(z_1 - z_2 \) is not a unit, then \(N(z_1 - z_2) > 1 \). Since \(\mathcal{O}_K \) is a PID, and both 2 and 3 are inert primes in \(K \), we deduce that \(N(z_1 - z_2) \geq 5 \). Hence \(|z_1 - z_2| \cdot |z_1^* - z_2^*| \geq \sqrt{5} \). As \(|z_1^* - z_2^*| \leq 2 \), we have \(|z_1 - z_2| \geq \frac{\sqrt{5}}{2} \). This contradicts with our assumption.

Proposition 2.4. Suppose \(z_1, z_2 \in S \). Then \(|z_1 - z_2| \geq \frac{\sqrt{5} - 1}{2} \).
Proof. With no loss of generality we assume $|z_1 - z_2| < \sqrt{5} - 1$. Then from the above lemma we know that $z_1 - z_2$ is a unit in K. Hence $|z_1 - z_2| = (\sqrt{5} - 1)^j$ for some $j \geq 0$. We need to show that $j \leq 1$.

Suppose to the contrary that $j \geq 2$, then $|z_1^\sigma - z_2^\sigma| \geq \frac{3 + \sqrt{5}}{2}$. This gives rise to a contradiction as $|z_1^\sigma - z_2^\sigma| \leq 2$. □

Proposition 2.5. $\min_{z' \in S - \{z\}} |z - z'| \leq 1$.

Proof. It suffices to show that at least one of $z + e^{\pi ij/5}$ is in S for $0 \leq j \leq 9$. Note that by definition of S this is equivalent to $|z^\sigma + \sigma(e^{\pi ij/5})| \leq 1$. Note that the inequality holds for $z = 0$ and all $0 \leq j \leq 9$. Now assume that $z \neq 0$. Then we may choose j' such that the argument of z^σ and $e^{\pi ij'/5}$ differs by no greater than $\pi/10$. Thus

\[
|z^\sigma - \sigma(e^{\pi ij'/5})|^2 = |z^\sigma|^2 + 1 - 2Rez^\sigma e^{-\pi ij'/5}
\leq |z^\sigma|^2 + 1 - 2|z^\sigma| \cos(\pi/10)
= (|z^\sigma| - \cos(\pi/10))^2 + \sin^2(\pi/10)
\leq \cos^2(\pi/10) + \sin^2(\pi/10) = 1.
\]

□

Proof of Theorem 2.2. From Proposition 2.5 we know that the minimum distance is always less than or equal to 1. From Proposition 2.4 it follows that the minimum distance is greater than $\sqrt{5} - 1$. By Lemma 2.3, the minimum distance is a real unit of K in the interval $[\sqrt{5} - 1, 1]$. Thus it takes values only in $\left\{\frac{\sqrt{5} - 1}{2}, 1\right\}$. □

E-mail address: wangwh@math.washington.edu

Department of Mathematics, Box 354350, University of Washington, Seattle, WA 98195-4350