Draft Genome Sequence of *Halomonas titanicae* Strain TAT1, a Hydrocarbon-Oxidizing Halophilic Bacterium Isolated from a Petroleum Reservoir in Russia

Denis S. Grouzdev, Diyana S. Sokolova, Andrey B. Poltaraus, Tamara N. Nazina

SciBear LLC, Tallinn, Estonia
Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russian Federation
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation

ABSTRACT The draft genome sequence of a moderately halophilic bacterium, *Halomonas titanicae* strain TAT1, isolated from production water of the Rosashkinskoe oilfield (Russia) is presented. The genome is annotated for elucidation of the metabolic pathways involved in hydrocarbon degradation and nitrate reduction in petroleum-contaminated hypersaline environments.

Aerobic halophilic oil-oxidizing bacteria are promising for application in biotechnologies for enhanced oil recovery and for bioremediation of oil-contaminated hypersaline soil and marine environments (1, 2). *Halomonas titanicae* strain TAT1 (VKM B-3500D) was isolated from highly mineralized production water of the Rosashkinskoe oilfield (Russia) (54°28’41”N, 52°06’27”E) (3). The strain TAT1 was capable of growth under high salinity (optimum, 5 to 10% NaCl [wt/vol]) both aerobically on mineral medium with crude oil (with biosurfactant production) and anaerobically on complex media with sugars and proteinaceous substrates, reducing nitrate to dinitrogen (4). The goal of the present work was to sequence the TAT1 genome in order to obtain more insight into specific traits related to hydrocarbon oxidation and nitrate reduction at high salinity.

The strain was grown aerobically at 25 to 30°C in LB medium with 5% NaCl (wt/vol), and cells were harvested after 7 days of cultivation. DNA was purified from the cell biomass using the cetyltrimethylammonium bromide (CTAB) method (5). DNA libraries were prepared with the NEBNext DNA library prep reagent kit for Illumina (New England Biolabs). Next-generation shotgun sequencing of genomic DNA was carried out using the HiSeq 2500 platform (Illumina, Inc., USA) with 150-bp paired-end reads. Raw sequence reads were quality-checked with FastQC v. 11.7 (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/), and low-quality reads were trimmed using Trimmomatic v. 0.36 (6) with the default settings for paired-end reads. Subsequently, the quality-filtered reads were de novo assembled with SPAdes v. 3.13.0 using the default settings (7). The estimated completeness and contamination evaluated using CheckM v. 1.0.18 were 100.0% and 0.9%, respectively (8). The taxonomic position of the assembled genome was determined using GTDB-Tk v. 1.0.2 (9). Average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) of genomes were determined using FastANI v. 1.3 (10) and the Genome-to-Genome Distance Calculator (GGDC) v. 2.1 (11), respectively. Identification of protein-coding sequences and primary annotation were performed using the NCBI Prokaryotic Genome Annotation Pipeline (PGAP) (12).

The final assembled 5,303,463-bp-long TAT1 genome sequence comprised 51 scaffolds, with an N₅₀ value of 381,158 bp, G+C content of 54.6%, and coverage of 285×. The genome sequence contained 4,910 genes, 4,757 of which were protein-coding genes, and 67 coded RNAs. The ANI and dDDH values with the closely related genome

Citation Grouzdev DS, Sokolova DS, Poltaraus AB, Nazina TN. 2020. Draft genome sequence of *Halomonas titanicae* strain TAT1, a hydrocarbon-oxidizing halophilic bacterium isolated from a petroleum reservoir in Russia. Microbiol Resour Announc 9:e01255-20. https://doi.org/10.1128/MRA.01255-20.

Editor Julia A. Maresca, University of Delaware

Copyright © 2020 Grouzdev et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

Address correspondence to Tamara N. Nazina, nazina@inmi.ru.

Received 3 November 2020
Accepted 3 November 2020
Published 25 November 2020
of Halomonas titanicae BH1T were 99.8% and 99.2%, respectively, which supported the identification of the strain as a member of this species (13). The TAT1 genome harbors large numbers of genes coding for the degradation of benzoate, biphenyl, gentisate, and N-heterocyclic aromatic compounds, assimilatory sulfate reduction, dissimilatory nitrate reduction, and denitrification. This information will be useful for revealing the mechanism of hydrocarbon degradation mediated by H. titanicae TAT1 and its potential for bioremediation of petroleum- or nitrate-contaminated hypersaline environments.

Data availability. This whole-genome shotgun project has been deposited in DDBJ/ENA/GenBank under the BioProject accession number PRJNA637646. The raw reads were deposited in the Sequence Read Archive (SRA) under accession number SRR11977805. The genomic version described in this paper is version JABWTB01000000.

ACKNOWLEDGMENT

Work on genome sequencing was supported by the Russian Science Foundation (RSF) through grant 16-14-00028. The funder had no role in the study design, data collection and interpretation, or the decision to submit the work for publication.

REFERENCES

1. Fathepure BZ. 2014. Recent studies in microbial degradation of petroleum hydrocarbons in hypersaline environments. Front Microbiol 5:173. https://doi.org/10.3389/fmicb.2014.00173.

2. Mnif S, Chamkha M, Sayadi S. 2009. Isolation and characterization of Halomonas sp. strain C2SS100, a hydrocarbon-degrading bacterium under hypersaline conditions. J Appl Microbiol 107:785–794. https://doi.org/10.1111/j.1365-2672.2009.04251.x.

3. Nazina TN, Shestakova NM, Pavlova NK, Tatarkin YV, Ivolov VS, Khismetdinov MR, Sokolova DSh, Babich TL, Tourouva TP, Poltaraua AB, Belyaev SS, Ivanov MV. 2013. Functional and phylogenetic microbial diversity in formation waters of a low-temperature carbonate petroleum reservoir. Int Biodeterior Biodegradation 81:71–81. https://doi.org/10.1016/j.ibiod.2012.07.008.

4. Semenova EM, Ershov AP, Sokolova DSh, Tourouva TP, Nazina TN. 2020. Diversity and biotechnological potential of nitrate-reducing bacteria from heavy-oil reservoirs (Russia). Microbiology 89:685–696.

5. Wilson K. 2001. Preparation of genomic DNA from bacteria. Curr Protoc Mol Biol Chapter 2:Unit 2.4. https://doi.org/10.1002/0471142727.mb0204s56.

6. Bolger AM, Lohse M, Usadel B. 2014. Trimmmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170.

7. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Solntsev D, Syomin D, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:453–477. https://doi.org/10.1089/cmb.2012.0021.

8. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. 2015. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25:1043–1055. https://doi.org/10.1101/gr.186072.114.

9. Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. 2019. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36:1925–1927. https://doi.org/10.1093/bioinformatics/btz848.

10. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. 2018. High throughput ANI analysis of 90K prokaryotic genomes reveals clearer species boundaries. Nat Commun 9:5114. https://doi.org/10.1038/s41467-018-07641-9.

11. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. 2013. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14:60. https://doi.org/10.1186/1471-2105-14-60.

12. Tatusova T, DiCuccio M, Badrettin A, Chetverin V, Ciufo S, Li W. 2013. Prokaryotic genome annotation pipeline. The NCBI handbook, 2nd ed. National Center for Biotechnology Information, Bethesda, MD. http://www.ncbi.nlm.nih.gov/books/NBK174280.

13. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, da Costa MS, Rooney AP, Yi H, Xu XW, De Meyer S, Trujillo ME. 2018. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 68:461–466. https://doi.org/10.1099/ijsem.0.002516.