Development of Probability Concept for Thermal Fatigue Life Cycle Prediction

Nirajkumar Mehta, Shail Shah, Dipesh Shukla, Aditya Maheshwari, Prasun Chakrabarti

Abstract: Furnaces are most commonly used for melting of Ferrous Metals and its alloy materials. Induction furnaces use Electrical Power so that they are more advantageous as no fuel is required. It is a very critical problem to find life span of Induction Melting Furnace Wall under thermal load variation. The life cycle of induction furnace refractory wall is a variable as minor variation is always present due to effect of skill of workers and many other factors. The life cycle of furnace wall will vary minor with some miscellaneous factors and cannot be justified as a single value always. The probability concept is utilized here in the forecast of life cycle calculation to justify the miscellaneous factors affected for the damage of the induction furnace refractory wall. The probability concept initially defines a minimum life of induction furnace wall for a certain case then it is assumed to vary with different probability as given below. So, all the cases of induction furnace wall are having minimum life always but some cases of induction furnace wall are having much longer life. It is due to effect from many miscellaneous factors like skills of workers, efficiency of workers, raw material quality used for construction of wall, tools applied for ramming of it, raw material employed for melting, etc.

Keywords: Induction Furnace, Heat Transfer, Probability Concept, Life Cycle Prediction

I. INTRODUCTION

The furnace is an equipment used for melting. It is combustion type and electric type. In combustion type furnace generally used as fuel is oil and coal. Then electric type furnace called as induction furnace. These are generally used in automobile and melting scrap industries. If we want to solving problem of simple heat transfer involving simple geometries with simple boundary condition. It is solved by analytical method but, when it wills complex boundary condition than we cannot solved analytically. There are several ways of obtains the numerical formulation of heat transfer problem such as finite difference method, finite element method, boundary element method.

II. LITERATURE SURVEY

The study on the distribution rule of temperature and thermal stress distribution and on the fatigue life comparison process for the refractory wall is not going to lay foundation for the improvement acquaintance of on the thermal fatigue of this form of elements underneath thermal shock circumstances of low cycle and excessive phase transition stresses but in addition presents amazing management for thermal fatigue failure.

A whole literature assessment on computational investigation on one of a kind of variety of furnaces is completed to be trained study trends. An overview is done on applications of distinct numerical approaches in heat transfer with its applications. Thermal fatigue evaluation of induction melting furnace wall is done for silica ramming mass.

An evaluation is accomplished for study on induction heating. A evaluate is finished for metal forming analysis utilizing exceptional numerical approaches. Transient heat transfer analysis of induction furnace is done through utilizing finite detail evaluation. Thermal fatigue evaluation of induction furnace wall is finished for alumina ramming mass. Thermal evaluation of scorched wall condenser is done for home refrigerator using numerical process for temperature distribution. Optimization of wall thickness for minimal heat loss for induction furnace wall via finite detail evaluation. An assessment is finished on numerical evaluation of furnace. Thermal fatigue analysis of induction furnace refractory wall is finished for zirconia. Comparison of finite difference system and finite detail procedure is finished for 2 D transient heat switch predicament. Thermal fatigue analysis of induction furnace wall is completed for magnesia ramming mass.

III. EXPERIMENTAL INVESTIGATION

Initially, experimental work is done at Jyoti CNC Limited and rate of change of temperature with respect to time is measured. They are having temperature sensors in the form of thermo-couples by which we can measure the temperature after different time intervals. We had found temperature variation for different time periods like 10 minutes, 20 minutes, 30 minutes, 40 minutes, 50 minutes, 60 minutes, 70 minutes, 80 minutes etc. The temperature readings for different time periods can be measured by temperature sensors shown in Figure 1. The computer program results for temperature distribution and experimental conditions are completely matching with minor variations. The average life of induction furnace refractory wall is 220-250 hours which is matching with our answer from computer program which utilize data of stresses and S-log N curves. The answer is 220-250 thermal fatigue stress cycles. So, our value of temperature distribution and maximum stress is correct.

The same kind of experimental work is carried out at Gujarat Casting Pvt. Ltd. Sapor for magnesia ramming mass and temperature distribution is validated from experimental work. The temperature sensor at Gujarat Casting is same as shown in Figure 1. The average life of refractory wall is 350-390 cycles which is matching with program stresses results and S-Log N curves predictions. The answer is also in the range of 350-390 thermal stress cycles.
The same kind of experimental work is carried out at Echajay Steel, Rajkot for alumina ramming mass and temperature distribution is validated from experimental work. The temperature sensor at Echajay Steel is same as shown in Figure 1. The average life of refractory wall is 340-370 hours which is matching with program stresses results and S-Log N curves predictions. The answer is in the range of 340-370 thermal stress cycles.

It can be observed that thermal stresses are created inside furnace refractory wall from Figure 2. Because of high temperature and temperature variation due to pouring, thermal stress variation is created and reduces life of refractory wall of induction melting furnace. Comparison between maximum temperature as per algorithm and as per experiment for silica ramming mass, alumina ramming mass and magnesia ramming mass are indicated in Table1. From experimental work, it is validated that the values of temperatures and stresses found out by developed algorithm and results found out from computer program using S-log N curves for all materials are predicting life approximately accurate. It is validated from experimental work that the methodology used in this research work for prediction of low cycle thermal fatigue life is correct. This experimental work is done in the industries with the help of skilled workers available for taking reading of maximum temperature after different time interval.

Table-II Comparison between Maximum Temperature as per Algorithm and as per Experiment

Sr. No.	1	2	3	4	5	6	7	8	9
Time (Minutes)	0	10	20	30	40	50	60	70	80
Maximum Temperature as per Experiment (Kelvin) for Magnesia Ramming Mass	307	1180	1517	1658	1712	1728	1724	1725	1640
Maximum Temperature as per Algorithm (Kelvin) for Magnesia Ramming Mass	300	1173.674	1512.87255	1650.08264	1708.423	1724.053	1724.053	1724.053	1643.5325
Maximum Temperature as per Experiment (Kelvin) for Alumina Ramming Mass	305	1192	1565	1734	1798	1819	1825	1823	1740
Maximum Temperature as per Algorithm (Kelvin) for Alumina Ramming Mass	300	1196.530	1570.99658	1731.08618	1801.591	1820.728	1820.728	1820.728	1746.4940

Fig. 1 Measurement of temperature using thermocouple
(Source: Field Observation)

Fig. 2 Melting of scrap material in induction furnace
(Source: Self Observation)
Maximum Temperature as per Experiment (Kelvin) for Silica Ramming Mass	303	1161	1480	1590	1640	1651	1652	1650	1575
Maximum Temperature as per Algorithm (Kelvin) for Silica Ramming Mass	300	1166.422	1478.91259	1594.28686	1638.307617	1649.007568	1649.007568	1649.007568	1577.902588

Table-II Life cycles with different probability

Sr. No.	Probability (%)	Number of days working for Zirconia	Number of working cycles for Zirconia	Number of days working for Magnesia Ramming Mass	Number of working cycles for Magnesia Ramming Mass	Number of days working for Alumina Ramming Mass	Number of working cycles for Alumina Ramming Mass	Number of days working for Silica Ramming Mass	Number of working cycles for Silica Ramming Mass
1	100	126.4	1138	39.8	358	38.6	347	25.9	233
2	90	129	1161	40.6	365	40.1	354	26.4	238
3	80	131.5	1184	41.4	372	40.9	361	26.9	242
4	70	134	1206	42.2	379	41.6	368	27.4	247
5	60	136.6	1229	43	387	42.4	375	28	252
6	50	139.1	1252	43.8	394	43.2	382	28.5	256
7	40	141.6	1275	44	401	44.7	389	29	261
8	30	144.1	1297	45.3	408	45.5	396	30	266
9	20	146.7	1320	46.1	415	44.7	403	30.5	270
10	10	149.2		46.9	422				

IV. PROBABILITY CONCEPT DEVELOPMENT

We consider minimum life cycle is the life cycle calculated by developed algorithm and computer program. It is denoted as L_{min}. Miscellaneous Factor is required to be found from various experimental data available from industries. Minimum life means the life span of furnace wall which is having 100 percentage probability in all possible cases. Here, it is assumed that Miscellaneous Factor is 5. Miscellaneous Factor can be assumed by comparison of probability results with experimental data available. Miscellaneous Factor can be in the range of 3 to 9 for various components under thermal fatigue conditions. It is required to use following equation to find life cycle of furnace wall with different probability. Using following equation, it is possible to predict No. of working cycles of induction melting furnace wall. Here it is also assumed that at least 9 cycles can be operated during a working day. With this assumption, it is possible to predict the life span in terms of Number of working days.

$$N = \frac{L_{min} \times (100 - \text{Probability})}{100 \times \text{Miscellaneous Factor}}$$

In the current chapter, experimental results for life cycle predictions with different probability are given in Table 2 for silica ramming mass, alumina ramming mass, magnesia ramming mass and zirconia. Table 2 includes number of working days as well as number of working cycles for all different refractory materials. The temperature at different time interval is compared with the numerical results found by the help of computer program which is validation of it. There are many miscellaneous factors affecting the life cycle of induction furnace wall like skills of workers, efficiency of workers, raw material quality used for construction of wall, tools applied for ramming of it, raw material employed for melting, etc.
To justify the effect of these miscellaneous factors, probability concept is developed. For example, Figure 2 indicates size of raw material used for melting which is one of the miscellaneous factors which affect the life cycle. Probability concept gives life cycle with different probability as per the effect of miscellaneous factors. The implementation of collective explicit finite difference method and stress life method is very complex. The computer program needs various input parameters and it gives output for that particular material only. To simplify the low cycle thermal fatigue life prediction methodology, an empirical correlation can be developed which can directly utilize the values of material properties and geometrical parameters for prediction of life cycle. Empirical correlation has been developed for the prediction of thermal fatigue life cycle of induction melting furnace wall which in covered in Chapter.

V. CONCLUSION

The same analysis is completed for four diverse refractory materials silica ramming mass, alumina ramming mass, magnesia ramming mass and zirconia. A probability concept is essential to justify the prediction of life cycle with numerous miscellaneous factors effected for the failure of the induction furnace wall. Probability concept is originally able to define a minimum life concept for furnace wall for a specific case then it is assumed to be variable with different probability depending upon several factors. All the situations with any set of variables of furnace wall must have minimum life but under some situations it may happen that furnace wall are having much longer life. It is due to some miscellaneous factors like skill of workers, effectiveness of workers, raw material quality used for construction of wall, tools applied for ramming of it, raw material operated for melting, etc. out by developed algorithm and results found out from computer program using S-log N curves for all materials are predicting life approximately accurate. It is validated from experimental work that the methodology used in this research work for prediction of low cycle thermal fatigue life is correct. This experimental work is done in the industries with the help of skilled workers available for taking reading of maximum temperature after different time interval.

REFERENCES

1. Nirajkumar Mehta, (May 2012), Review on Computational Investigation on Different Kinds of Furnaces, International Conference on Emerging Technologies and Applications in Engineering, Technology and Sciences, Volume 3, pp 1 – 7.
2. N C Mehta, Vipul B Gondaliya, Jayesh V Gundanaya, (February 2013), Applications of Different Numerical Methods in Heat Transfer - A Review, International Journal of Emerging Technology and Advanced Engineering, Volume 3, Issue 2, pp 363 – 368.
3. N C Mehta, Viral V Shiyani, Jemish R Nasit, (May 2013), Metal Forming Analysis, International Journal of Emerging Technology and Advanced Engineering, Volume 3, Issue 5, pp 190 - 196.
4. Vipul Gondaliya, Mehul Pujara, Nirajkumar Mehta, (August 2013), Transient Heat Transfer Analysis of Induction Furnace by Using Finite Element Analysis, International Journal of Applied Research, Volume 3, Issue 8, pp 231 – 234.
5. N C Mehta, Vasim G Machhar, Ravi K Popat, (October 2013), Thermal Fatigue Analysis of Induction Furnace Wall for Alumina ramming mass, International Journal of Science and Engineering Applications, Volume 2, Issue 10, pp 186 – 190, DOI: 10.7753/IJSEA0210.1002.
6. N C Mehta, Akash D Rajyani, Vikas R Gondalia, (February 2013), Thermal Fatigue Analysis of Induction Melting Furnace Wall for Silica ramming mass, International Journal of Emerging Technology and Advanced Engineering, Volume 3, Issue 2, pp 357 – 362.
7. Vimal R Nakum, Kevin M Vyas, Niraj C Mehta, (April 2013), Research on Induction Heating - A Review, International Journal of Science and Engineering Applications, Volume 2, Issue 6, pp 141 – 144, DOI: 10.7753/IJSEA0206.1005.
8. Nirajkumar C Mehta, Dinesh D Shukla, Ravi K Popat, (December 2014), Optimization of Wall Thickness for Minimum Heat Loss for Induction Furnace by FEA, Indian Foundry Journal, Volume 60, No. 12, pp 19-25.
9. Nirajkumar C Mehta, Dr. Dinesh D Shukla, Vishvash B Rajyaguru, (April 2015), Numerical Analysis of Furnace: Review, National Conference on Recent Research and Development in Core Disciplines of Engineering, Vadodara, Volume: 2, pp 1 – 7.
10. Nirajkumar C Mehta, Dr. Dinesh D Shukla, Vishvash B Rajyaguru, (April 2015), Thermal Fatigue Analysis of Induction Furnace Wall for Zirconia, National Conference on Recent Research and Development in Core Disciplines of Engineering, Vadodara, Volume: 2, pp 1 – 6.
11. Nirajkumar C Mehta, Dr. Dinesh D Shukla, (June 2015), Thermal Fatigue Analysis of Induction Furnace Wall for Magnesia Ramming Mass, ASME 2015 Applied Mechanics and Materials Conference, Atlanta, Georgia, USA, Volume: 8, Issue: 2, pp 1 – 6.
12. Nirajkumar C Mehta, Dr. Dinesh D Shukla, Pragnesh D Kandoliya, (December 2016), Advanced Mathematical Modeling of Heat Transfer in Induction Furnace Wall of Zirconia, International Journal of Engineering Research and Technology, Volume 5, Issue 10, pp 176 – 181, DOI: 10.17577/IJEERTVSIS120128.
13. Nirajkumar C Mehta, Dr. Dinesh D Shukla, Pragnesh D Kandoliya, (December 2016), Advanced Heat Transfer Analysis of Alumina Based Refractory Wall of Induction Furnace, National Conference on Emerging Trends in Engineering, Volume 1, pp 1 – 6.
14. Nirajkumar C Mehta, Dr. Dinesh D Shukla, Stress analysis of induction furnace wall for magnesia ramming mass, Journal of Metallurgy and Materials Science, Volume: 59, Issue: 2, pp 85-110, Print ISSN: 0972-4257, Online ISSN: 0974-1267, November 2017.
15. Nirajkumar C Mehta, Dr. Dinesh D Shukla, Comparison of Life Cycle for Various Refractory Materials of Induction Melting Furnace Wall under Thermal Fatigue Loading Conditions”, International Journal of Advance Engineering and Research Development, e-ISSN (O): 2348-4470, p-ISSN (P): 2348-6406, Volume 5, Issue 01, January 2018.
16. Rahul Waghela, Shreyas Parmar, Susmit Vasava, Dr. Nirajkumar C Mehta, “Review of Refractory Materials for Innovative Investigation and Testing”, International Journal of Advance Engineering and Research Development, e-ISSN (O): 2348-4470, p-ISSN (P): 2348-6406, Volume 5, Issue 03, March -2018.