RESOLUTIONS OVER KOSZUL ALGEBRAS

EDWARD L. GREEN, GREGORY HARTMAN, EDUARDO N. MARCOS, AND ØYVIND SOLBERG

Abstract. In this paper we show that if \(\Lambda = \prod_{i \geq 0} \Lambda_i \) is a Koszul algebra with \(\Lambda_0 \) isomorphic to a product of copies of a field, then the minimal projective resolution of \(\Lambda_0 \) as a right \(\Lambda \)-module provides all the information necessary to construct both a minimal projective resolution of \(\Lambda_0 \) as a left \(\Lambda \)-module and a minimal projective resolution of \(\Lambda \) as a right module over the enveloping algebra of \(\Lambda \). The main tool for this is showing that there is a comultiplicative structure on a minimal projective resolution of \(\Lambda_0 \) as a right \(\Lambda \)-module.

Introduction and preliminaries

Let \(\Lambda = \prod_{i \geq 0} \Lambda_i \) be a Koszul algebra over a field \(k \) with \(\Lambda_0 \) a product of copies of \(k \), where we recall the definition of Koszul later in this section. Denote by \((L, e)\) a minimal (graded) projective resolution of \(\Lambda_0 \) as a right \(\Lambda \)-module. We show that \((L, e)\) contains all the information needed to construct a minimal projective resolution of \(\Lambda \) as a right \(\Lambda^e \)-module, where \(\Lambda^e = \Lambda^\text{op} \otimes_k \Lambda \). The resolution \((L, e)\) is shown to have a “comultiplicative structure”. This structure is used to prove that one can obtain a minimal projective resolution of \(\Lambda_0 \) over \(\Lambda \) as a left \(\Lambda \)-module from the knowledge of \((L, e)\). We apply these results to prove an unpublished result of E. L. Green and D. Zacharia that \(\Lambda \) is a Koszul algebra if and only if \(\Lambda \) is a linear module as a right module over \(\Lambda^e \). In [2], the comultiplicative structure is applied to give the multiplicative structure of the Hochschild cohomology ring of a Koszul algebra and also the structure constants for a basis for the Koszul dual.

The rest of the section is devoted to recalling definitions, results, and terminology relevant to this paper. Let \(\Lambda = \prod_{i \geq 0} \Lambda_i \) be a graded algebra over a field \(k \). Assume that (i) \(\Lambda_0 \) is a product of copies of \(k \), that (ii) each \(\Lambda_i \) is finite dimensional over \(k \), and that (iii) \(\Lambda \) as an algebra is generated in degrees 0 and 1. Such an algebra \(\Lambda \) is isomorphic to a quotient of the path algebra \(kQ/I \), where \(kQ \) is isomorphic to the tensor algebra \(T_{\Lambda_0}(\Lambda_1) = \prod_{i \geq 0} \Lambda_1 \otimes_{\Lambda_0} \cdots \otimes_{\Lambda_0} \Lambda_1 \). Conversely, if \(Q \) is a quiver and \(I \) is an ideal generated by length homogeneous elements in \(kQ \), then \(\Lambda = kQ/I \) is a graded algebra over \(k \) satisfying the conditions above. Throughout this paper \(\Lambda \) denotes a graded algebra having properties (i)–(iii).

Let \(r = \prod_{i \geq 1} \Lambda_i \), which is the graded Jacobson radical of \(\Lambda \). If \((P, d)\):

\[
\cdots \rightarrow P^2 \xrightarrow{d^2} P^1 \xrightarrow{d^1} P^0 \xrightarrow{d^0} M \rightarrow 0
\]

Date: October 29, 2018.

The three first authors received financial support from a joint project of CNPq-NSF. The last author thanks the Fapesp-Brasil for financial support for a scientific visit to Brasil where this work was done. Finally the third author thanks CNPq for a research grant.
is a graded projective resolution of a graded \(\Lambda \)-module \(M \), then it is \textit{minimal} if \(\text{Im} d^n \subseteq t^{P^n-1} \) for \(n \geq 1 \). It is well known that graded modules over graded algebras have minimal graded projective resolutions. We say that a graded projective resolution

\[\cdots \rightarrow P^2 \xrightarrow{d^2} P^1 \xrightarrow{d^1} P^0 \xrightarrow{d^0} M \rightarrow 0 \]

is \textit{linear}, and \(M \) is a \textit{linear module} if, for \(n \geq 0 \), the graded module \(P^n \) is generated in degree \(n \). Note that a linear resolution is a minimal projective resolution. A graded algebra \(\Lambda \) is a \textit{Koszul algebra} if \(\Lambda_0 \) is a linear module; that is, \(\Lambda_0 \) has a linear (graded) projective resolution \((\mathbb{L}, e)\):

\[\cdots \rightarrow L^2 \xrightarrow{e^2} L^1 \xrightarrow{e^1} L^0 \xrightarrow{e^0} \Lambda_0 \rightarrow 0 \]

as a right \(\Lambda \)-module.

Before giving the precise results, we introduce notation and recall results from [5] which are used throughout the paper. For ease of notation, let \(R = kQ \), let \(\mathcal{B} \) be the set of all paths in the quiver \(Q \), and denote by \(B_t \) all the paths of length \(t \).

There exist integers \(\{t_n\}_{n \geq 0} \) and elements \(\{f^n_i\}_{i=0}^{t_n} \) in \(R \) such that a minimal right projective resolution \((\mathbb{L}, e)\) of \(\Lambda_0 \) can be given in terms of a filtration of right ideals

\[\cdots \subseteq \Pi_{i=0}^{t_n} f^n_i R \subseteq \Pi_{i=0}^{t_n-1} f^{n-1}_i R \subseteq \cdots \subseteq \Pi_{i=0}^{t_1} f^1_i R \subseteq \Pi_{i=0}^{t_0} f^0_i R = R \]

in \(R \). Then \(L^n = \Pi_{i=0}^{t_n} f^n_i R / \Pi_{i=0}^{t_n} f^n_i R \) and the differential \(e \) is induced by the inclusion \(\Pi_{i=0}^{t_n} f^n_i R \subseteq \Pi_{i=0}^{t_n-1} f^{n-1}_i R \). This inclusion gives elements \(h_{j_i}^{n,1,n} \) in \(R \) such that

\[f^n_i = \sum_{j=0}^{t_n-1} f^{n-1}_j h_{j_i}^{n,1,n} \]

for all \(i = 0, 1, \ldots, t_n \) and all \(n \geq 1 \), so that

\[e^n f^n_i (\underline{t}_i^n) = (h_{0_i}^{n-1,n}, h_{1_i}^{n-1,n}, \ldots, h_{t_n-1,i}^{n-1,n}) \]

for all \(n \geq 1 \), where \(\underline{t}_i^n \) denotes the natural residue class of \(\ast \) modulo \(I \). It is shown in [5] that the \(f^n_i \)'s can be chosen so that \((\mathbb{L}, e)\) is a minimal resolution of \(\Lambda_0 \) over \(\Lambda \). We point out that an algorithmic construction of the elements \(f^n_i \)'s can be found in [4].

An important property of the elements \(\{f^n_i\}_{i=0}^{t_n} \) is that there exist elements \(f^{n+1}_j \) in \(\Pi_{i=0}^{t_n-1} f^n_i R \) such that

\[(\Pi_{i=0}^{t_n} f^n_i R) \cap (\Pi_{i=0}^{t_n-1} f^{n-1}_i R) = (\Pi_{i=0}^{t_n+1} f^{n+1}_i R) \cap (\Pi_{j=0}^{t_n} f^{n+1}_j R). \]

Recall that an element \(x \) in \(R \) is called \textit{uniform} if \(x \) is non-zero and there exist vertices \(u \) and \(v \) in \(Q \) such that \(x = uv \). If \(x \) is a uniform element with \(x = uv \), then we write \(\mathfrak{a}(x) = u \) and \(\mathfrak{t}(x) = v \). The elements \(f^n_i \) can all be chosen uniform for \(i = 0, 1, \ldots, t_n \) and all \(n \geq 0 \), and we assume that they are.

Note that \(t_0 + 1 \) is the number of non-isomorphic graded simple right \(\Lambda \)-modules, and that \(\{f^0_i\}_{i=0}^{t_0} \) is the set of vertices of \(Q \). Moreover, \(t_1 + 1 \) is the number of arrows of \(Q \) and \(\{f^1_i\}_{i=0}^{t_1} \) is chosen to be the set of arrows of \(Q \). The set \(\{f^2_i\}_{i=0}^{t_2} \) is a set of uniform length homogeneous minimal generators for \(I \).

In case \(\Lambda \) is a Koszul algebra, we have the following additional property of the elements \(f^n_i \) in \(R \); namely each \(f^n_i \) is a linear combination of paths in \(B_n \) for
i = 0, 1, \ldots, t_n and the length of each path occurring in f_{ni}^n is at least $n + 1$. By length considerations, $h_{ji}^{n-1,n}$ are all linear combinations of elements in B_i.

In section 1 we prove that the elements \{f_{ni}^n\}_{i=0, n \geq 0} have the following “comultiplicative structure”, which is used in [2] to give the multiplicative structure of the Hochschild cohomology ring of a Koszul algebra and the structure constants for the basis associated to the elements \{f_{ni}^n\} for the Koszul dual.

Theorem. Let $\Lambda = kQ/I$ be a Koszul algebra. Then for each r, with $0 \leq r \leq n$, and i, with $0 \leq i \leq t_n$, there exist elements $c_{pq}(n, i, r)$ in k such that

$$f_{ni}^n = \sum_{p=0}^{t_r} \sum_{q=0}^{t_{n-r}} c_{pq}(n, i, r)f_p^nf_{n-r}^q$$

for all $n \geq 1$, all i in \{0, 1, \ldots, t_n\} and all r in \{0, 1, \ldots, n\}.

Viewing Λ_0 as a left module over Λ, it also has a minimal graded projective resolution given by \{g_{ni}^n\}_{i=0}^{s_n}$, where g_{ni}^ns are the left analogue of the right f_{ni}^ns in R. The above result is used to prove that one can choose the elements g_{ni}^ns to be the same as the elements f_{ni}^ns and then the formula $f_{ni}^n = \sum_{p=0}^{t_i} c_{pq}(n, i, 1)f_p^nf_{n-1}^q$ gives the differential in the projective resolution of Λ_0 as a left Λ-module. Thus the knowledge of the minimal projective resolution (L, e) via the elements f_{ni}^n contains all the information needed to construct a minimal projective resolution of Λ_0 as a left Λ-module.

In the final section of the paper, the elements f_{ni}^ns are shown to provide all the information needed to construct a minimal projective resolution of Λ as a right Λ^e-module. In particular, we prove the following.

Theorem. Let $\Lambda = kQ/I$ be a Koszul algebra, and let $\{f_{ni}^n\}_{i=0}^{t_n}$ be defined as above for Λ_0 as a right Λ-module. A minimal projective resolution (P, δ) of Λ over Λ^e is given by

$$P^n = \bigoplus_{i=0}^{t_n} \Lambda \circ \circ_{k} t(f_{ni}^n)$$

for $n \geq 0$, where j-th component of the differential $\delta^n: P^n \to P^{n-1}$ applied to the i-th generator $\circ \circ_{k} t(f_{ni}^n)$ is given by

$$\sum_{p=0}^{t_i} c_{pq}(n, i, 1)f_p^nf_{n-1}^q \circ \circ_{k} t(f_{ni}^n) + (-1)^{n-1}\sum_{q=0}^{t_{n-1}} c_{pq}(n, i, n-1)f_q^nf_{n-1}^q$$

for $j = 0, 1, \ldots, t_{n-1}$ and $n \geq 1$, and $\delta^n: \bigoplus_{i=0}^{t_n} \Lambda e_i \circ \circ_{k} e_i \Lambda \to \Lambda$ is the multiplication map.

As mentioned earlier, the final result of the paper is that Λ is a Koszul algebra if and only if Λ is a linear module as a right Λ^e-module.

1. A resolution with comultiplicative structure

In this section Theorem 1.1 provides a comultiplicative structure to a minimal projective resolution of Λ_0 as a right Λ-module. This result is then applied to show that the knowledge of a minimal projective resolution of Λ_0 as a right Λ-module is sufficient to construct a minimal projective resolution of Λ_0 as a left Λ-module.

Let $\Lambda = kQ/I$ be a graded algebra over a field k. Let $\{t_n\}_{n \geq 0}$ and $\{f_{ni}^n\}_{i=0, n \geq 0}$ be as in the introduction. We say that $\{f_{ni}^n\}_{i=0, n \geq 0}$ defines a minimal resolution if the resolution described in the introduction is minimal.
The next result shows that the elements \(\{f^n_i\} \) have a comultiplicative structure for a Koszul algebra.

Theorem 1.1. Let \(\Lambda = kQ/I \) be a Koszul algebra, and assume that \(\{f^n_i\}_{i=0}^t \) defines a minimal resolution of \(\Lambda_n \) as a right \(\Lambda \)-module. Then for each \(r \), with \(0 \leq r \leq n \), and \(i \), with \(0 \leq i \leq t_n \), there exist elements \(c_{pq}(n,i,r) \) in \(k \) such that

\[
f^n_i = \sum_{p=0}^{t_r} \sum_{q=0}^{t_{n-r}} c_{pq}(n,i,r) f^n_p f^{n-r}_q.
\]

Proof. For any \(n \), and \(r \) equal to 0 or \(n \), the result follows from \(f^n_i = f^n_i \frac{t_i f^n_i}{t_i} = f^n_i f^n_i f^n_i \) for \(i = 0, 1, \ldots, t_n \). Also, this proves the result in the case \(n \) is equal to 1.

Next we discuss the case \(n = 2 \). As we have remarked, each \(f^2_1 = \sum_{j=0}^{t_1} f^1_j h_{j_1}^{1,2} \). Since \(\Lambda \) is Koszul, each \(f^2_2 \) is a linear combination of paths in \(B_2 \), and hence \(h_1^{n,n} \) is a linear combination of elements in \(B_1 \). This gives the result for \(n = 2 \).

Now we proceed by induction on \(n \) and assume that the result is true for \(l < n \) and \(n \geq 3 \). We have that \(f^n_i = \sum_{j=0}^{t_{n-1}} f^n_j h_{j_1}^{n-1,n} \). As in our discussion for \(n = 2 \), we see that \(h_{j_1}^{n-1,n} \) is a linear combination of elements in \(B_1 \). There exist elements \(c_{ijs} \) in \(k \) such that

\[
f^n_i = \sum_{j=0}^{t_{n-1}} \sum_{s=0}^{t_1} c_{ijs} h^n_i f^n_j f^n_s.
\]

By induction, there exist elements \(c'_{juv} \) in \(k \) such that

\[
f^n_{j} = \sum_{s=0}^{t_{n-r-1}} \sum_{v=0}^{t_{n-r-1}} c'_{juv} f^n_j f^n_{s-1} f^n_{t-1}
\]

for any \(r \), with \(0 \leq r \leq n - 1 \). Hence

\[
f^n_i = \sum_{j=0}^{t_{n-1}} \sum_{s=0}^{t_{n-1}} \sum_{u=0}^{t_{n-1}} \sum_{v=0}^{t_{n-1}} c_{ijs} c'_{juv} f^n_j f^n_{s-1} f^n_{t-1} f^n_i
\]

for any \(r \), with \(0 \leq r \leq n - 1 \). The term after \(f^n_i \) is

\[
A = \sum_{j=0}^{t_{n-1}} \sum_{s=0}^{t_{n-1}} \sum_{u=0}^{t_{n-1}} \sum_{v=0}^{t_{n-1}} c_{ijs} c'_{juv} f^n_j f^n_{s-1} f^n_{t-1} f^n_i.
\]

Theory tells us that

\[
f^n_i = \sum_{w=0}^{t_{n-2}} f^n_{w-2} z_w,
\]

where \(z_w \) is in \(I \). Again by length considerations each \(z_w \) is a linear combination of \(f^2_i \). Hence, there exist elements \(c''_{iwx} \) in \(k \) such that

\[
f^n_i = \sum_{w=0}^{t_{n-2}} \sum_{x=0}^{t_{n-2}} c''_{iwx} f^n_{w-2} f^n_{x-2} f^n_i.
\]

By induction each \(f^n_{w-2} \) is a linear combination of \(f^n_{w} f^n_{x-2} f^n_{w} \). We obtain

\[
f^n_i = \sum_{w=0}^{t_{n-2}} \sum_{x=0}^{t_{n-2}} \sum_{y=0}^{t_{n-2}} c'''_{iwx} c''_{wxy} f^n_{w-2} f^n_{x-2} f^n_{w}.
\]
for some \(c''_{wuy} \) in \(k \). So the term after \(f^n_u \) in this expression is

\[
B = \sum_w \sum_x \sum_u c''_{wux} f^{n-r-2}_x.
\]

Since \(\sum u f^n_u R \) is a direct sum, we see that formulas (1) and (2) are equal. The equation (1) implies that \(A \) is in \(\Pi_{i=0}^{n-r-1} f^n_{r-1} R \), and the equation (2) implies that \(A \) is in \(\Pi_{i=0}^{n-r-2} f^n_{r-2} I \). It follows that \(A \) is contained in \((\Pi_{i=0}^{n-r} f^n_{r-T} R) \Pi (\Pi_{i=0}^{n-r} f^n_{r-T} R)^{\prime} \). By length arguments we infer that \(A \) is in \(\Pi_{i=0}^{n-r} f^n_{r-T} R \) and that \(A \) is a \(k \)-linear combination of the \(f^n_{r-T} s \). Hence we conclude that \(f^n_i \) is a \(k \)-linear combination of \(f^n_x f^n_{r-T} \), and this completes the proof of the result. \(\square \)

Since the maps in the minimal projective resolution of \(\Lambda_0 \) as a right \(\Lambda \)-module are given by the \(h^{n-1}_{ji} \), we explicitly point out the following relationship.

Corollary 1.2. Keeping the notation of Theorem 1.1, we have

\[
h^{n-1}_{ji} = \sum_{i=0}^{t_1} f^1_{ij} c_{ji}(n, i, n-1)
\]

for \(n \geq 1 \), and \(i \) and \(j \), with \(0 \leq i \leq t_n \), and \(0 \leq j \leq t_{n-1} \).

Before applying Theorem 1.1 we need the following lemma, where \(J \) denotes the ideal generated by the arrows in \(Q \).

Lemma 1.3. Let \(\{x_i\}_{i \in I} \) be a set of elements in the linear span of \(B_s \). Suppose that \(\{x_i\}_{i \in I} \) is linearly independent viewed as vectors over \(k \). Then \(\sum_{i \in I} R x_i \) and \(\sum_{i \in I} x_i R \) are direct sums.

Proof. Suppose that \(\sum_i \sum_{j \in I} c_{ij} q_{ij} x_j = 0 \) in \(R \) for some elements \(c_{ij} \) in \(k \) and some paths \(q_{ij} \) in \(R \). Since all the paths occurring in any \(x_i \) have the same length, we can assume without loss of generality that the paths \(q_{ij} \) all have the same length, say \(t \). Since \(J^t = \Pi_{i \in I} q R_i \), fixing \(q \) in \(B_t \), it follows that \(\sum_i q_{ij} = 0 \), which implies that \(\sum_i q_{ij} = c_{ij} x_j = 0 \). By assumption, we have that \(c_{ij} = 0 \) for all \(q_{ij} = q \). Hence we infer that \(\sum_{i \in I} R x_i \) is a direct sum. Similarly, \(\sum_{i \in I} x_i R \) is a direct sum. \(\square \)

We now show that the \(\{f^n_i\} \) obtained from a right minimal projective resolution of \(\Lambda_0 \) and the \(\{g^n_i\} \) obtained from a left minimal projective resolution of \(\Lambda_0 \) can be chosen to be the same.

Proposition 1.4. Let \(\Lambda = k Q / I \) be a Koszul algebra. Let \(\{f^n_i\}_{i=0}^{t_n} \) and \(\{g^n_i\}_{i=0}^{s_n} \) define a minimal resolution of \(\Lambda_0 \) as a right \(\Lambda \)-module and as a left \(\Lambda \)-module, respectively. Then \(s_n = t_n \) for all \(n \geq 0 \) and the set \(\{g^n_i\}_{i=0}^{t_n} \) can be chosen to be equal to the set \(\{f^n_i\}_{i=0}^{s_n} \) for all \(n \geq 0 \).

Proof. For \(n \) equal to 0, 1, or 2 the result is clear. Let \(n \geq 3 \). We proceed by induction on \(n \) and assume that the result is true for all \(i < n \). By Theorem 1.1, for each \(i \) with \(0 \leq i \leq t_n \) the equalities

\[
f^n_i = \sum_{p,q} c_{pq} f^1_p f^{n-1}_q = \sum_{p',q'} c_{p',q'} f^2_{p'} f^{n-2}_q
\]

hold for some \(c_{pq} \) and \(c_{p',q'} \) in \(k \). Hence \(f^n_i \) is in \((\Pi_{q} R f^{n-1}_q) \cap (\Pi_{r} R f^{n-2}_r) \), which, by induction, is equal to \((\Pi_{q=0}^s R g^n_q) \Pi (\Pi_{r=0}^s R g^n_q) \). Since \(\sum f^n_i R \) is direct, the set
\{f_i^n\} is linearly independent as vectors over \(k\), and therefore the sum \(\sum Rf_i^n\) is direct by Lemma 1.3. By length considerations, \(\{f_i^n\}_{i=0}^{t_n}\) is contained in the \(k\)-linear span of \(\{g_p^n\}_{p=0}^{s_n}\). Therefore \(t_n \leq s_n\). By switching the roles of \(\{f_i^n\}\) and \(\{g_p^n\}\) and using the argument above, we conclude that \(\{g_p^n\}_{p=0}^{s_n}\) is linearly independent and each \(g_p^n\) is in \(k\)-linear span of \(\{f_i^n\}_{i=0}^{t_n}\). Hence \(s_n = t_n\). By Lemma 1.3 it follows that \(\Pi_{i=0}^{t_n} Rf_i^n = \Pi_{i=0}^{s_n} Rg_i^n\). This shows that we can choose the set \(\{g_p^n\}_{p=0}^{s_n}\) equal to \(\{f_i^n\}_{i=0}^{t_n}\).

Proposition 1.4 implies that, given a minimal projective resolution of \(\Lambda_0\) as a right \(\Lambda\)-module in the form of \(\{f_i^n\}\), we have all the information to construct a minimal projective resolution of \(\Lambda_0\) as a left \(\Lambda\)-module. More precisely, take the \(\{f_i^n\}\) as the \(\{g_p^n\}\), and the maps in the left resolution are given by \(g_p^n \mapsto \sum_{t=0}^{s_n-1} c_{pq}(n, i, 1)g_q^{i}g_q^{-1}\).

2. A Minimal Projective Bimodule Resolution of \(\Lambda\)

In this section we turn our attention to the construction of a minimal projective \(\Lambda^e\)-resolution of \(\Lambda\). This construction uses the comultiplicative structure of the minimal projective resolution of \(\Lambda_0\) as a right \(\Lambda\)-module found in Theorem 1.1. This is applied to show an unpublished result of E. L. Green and D. Zacharia that \(\Lambda\) is a Koszul algebra if and only if \(\Lambda\) is a (right) linear module over \(\Lambda^e\).

The following result also shows that the knowledge of the \(\{f_i^n\}\) from a minimal projective resolution of \(\Lambda_0\) as a right \(\Lambda\)-module is sufficient to explicitly give the projective modules and the differentials in a minimal projective resolution of \(\Lambda\) as a right \(\Lambda^e\)-module. The structure of the projective modules in a minimal projective resolution of \(\Lambda\) as right \(\Lambda^e\)-module was first given in [6]. Recall that the notation \(\overline{\cdot}\) denotes the natural residue class of \(\ast \mod \ I\). Let \(\{c_{pq}(n, i, r)\}\) be as in Theorem 1.1.

Theorem 2.1. Let \(\Lambda = kQ/I\) be a Koszul algebra, and let \(\{f_i^n\}_{i=0}^{t_n}\) define a minimal resolution of \(\Lambda_0\) as a right \(\Lambda\)-module. A minimal projective resolution \((P, \delta)\) of \(\Lambda\) over \(\Lambda^e\) is given by

\[
P^n = \Pi_{i=0}^{t_n} \Lambda_0 (f_i^n) \otimes_k \mathfrak{l}(f_i^n) \Lambda
\]

for \(n \geq 0\), where the \(j\)-th component of the differential \(\delta^n: P^n \to P^{n-1}\) applied to the \(i\)-th generator \(\mathfrak{o}(f_i^n) \otimes (f_i^n)\) is given by

\[
\sum_{p=0}^{t_i} c_{pj}(n, i, 1)f_j^{p-1}\mathfrak{o}(f_j^{p-1}) \otimes (f_j^{p-1}) + (-1)^n \sum_{q=0}^{t_k} c_{pq}(n, i, n-1)\mathfrak{o}(f_q^{n-1}) \otimes (f_q^{n-1}) f_q^n
\]

for \(j = 0, 1, \ldots, t_n-1\) and \(n \geq 1\), and \(\delta^0: \Pi_{i=0}^{t_0} \Lambda e_i \otimes_k e_i \Lambda \to \Lambda\) is the multiplication map.

In particular, \(\Lambda\) is a linear module over \(\Lambda^e\).

Proof. Direct computations show that \((\delta)^2 = 0\), so that \((P, \delta)\) is a linear complex. In addition, note that \((\Lambda_0 \otimes \Lambda \mathfrak{F}, 1_{\Lambda_0} \otimes \delta)\) is a minimal resolution of \(\Lambda_0\) as a right \(\Lambda\)-module.

In our setting, we have that \(\Lambda^e/\text{rad}\Lambda^e \simeq \text{Hom}_k(\Lambda_0, \Lambda_0)\). Let \((\mathfrak{F}, d)\) be a minimal projective resolution of \(\Lambda\) as a right \(\Lambda^e\)-module. Then by [3, Chap. IX, Proposition
4.3] we have that
\[\text{Hom}_{\Lambda^c/\text{rad } \Lambda^c} (F^n / F^n \text{ rad } \Lambda^c, \Lambda^c / \text{ rad } \Lambda^c) \cong \text{Ext}_{\Lambda^c}^n (\Lambda, \Lambda^c / \text{ rad } \Lambda^c) \]
\[\cong \text{Ext}_{\Lambda}^n (\Lambda_0, \Lambda_0) \]
\[\cong \text{Hom}_{\Lambda_0} (\Pi_{i=0}^n f_i^n R / \Pi_{i=0}^n f_i^n J, \Lambda_0) \]
for all \(n \geq 0 \). In particular, \(P^n \cong F^n \) as \(\Lambda^c \)-modules for all \(n \geq 0 \), and hence \(P^n / P^n \text{ rad } \Lambda^c \cong F^n / F^n \text{ rad } \Lambda^c \) as \(\Lambda^c / \text{ rad } \Lambda^c \)-modules for all \(n \geq 0 \). Note that these need not be isomorphic as graded modules, but, we in fact show that this is the case.

Since \((P, \delta)\) is a complex, we obtain the following commutative diagram

\[
\begin{array}{ccccccccc}
\cdots & \rightarrow & P^2 & \delta^2 & P^1 & \delta^1 & P^0 & \delta^0 & \Lambda & \rightarrow & 0 \\
\downarrow \alpha^2 & & \downarrow \alpha^1 & & \downarrow \alpha^0 & & \downarrow \alpha^0 & & \downarrow \Lambda & & 0 \\
\cdots & \rightarrow & F^2 & \delta^2 & F^1 & \delta^1 & F^0 & \delta^0 & \Lambda & \rightarrow & 0 \\
\end{array}
\]

Clearly \(\alpha^0 : P^0 \rightarrow F^0 \) is an isomorphism, and we get an isomorphism \(\alpha^0 |_{\text{Ker } \delta^0} : \text{Ker } \delta^0 \rightarrow \text{Ker } \delta^0 \). Hence \(\text{Ker } \delta^0 / \text{Ker } \delta^0 \text{ rad } \Lambda^c \cong F^1 / F^1 \text{ rad } \Lambda^c \). Since \(\text{Im } \delta^1 \) is contained in \(\text{Ker } \delta^0 \), this induces a map \(\beta^1 : P^1 \rightarrow \text{Ker } \delta^0 / \text{Ker } \delta^0 \text{ rad } \Lambda^c \). If \(\beta^1 \) is an isomorphism, then \(\alpha^1 \) is an isomorphism and we have exactness at \(P^0 \). Suppose that \(\beta^1 \) is not an isomorphism. Since \(P^1 \) is generated in degree 1, there is some projective summand of \(P^1 \) which is mapped to zero by \(\delta^1 \). Using the observation that \((\Lambda_0 \otimes_\Lambda F, 1_{\Lambda_0} \otimes \delta)\) is a minimal resolution of \(\Lambda_0 \) as a right \(\Lambda \)-module, we obtain a contradiction. Hence \(\beta^1 \) is an isomorphism.

Since \(\alpha^1 \) is an isomorphism, we can use the above argument replacing \(\alpha^0 \) by \(\alpha^1 \) to show that \(\alpha^2 \) is an isomorphism and exactness at \(P^1 \). By induction we infer that \((P, \delta)\) is exact. Since the terms \(\overline{f}_q \otimes (f_{j}^{n-1}) \otimes t(f_{j}^{n-1}) \) and \(\alpha(f_{j}^{n-1}) \otimes t(f_{j}^{n-1}) \overline{f}_q \) are elements of degree one in \(\Lambda^c \), we conclude that \((P, \delta)\) is a minimal linear projective resolution of \(\Lambda \) over \(\Lambda^c \). This also implies that \(\Lambda \) is a linear module over \(\Lambda^c \). The proof is now complete.

As a consequence we obtain the next corollary which was first proved by E. L. Green and D. Zacharia.

Corollary 2.2. Let \(\Lambda = kQ/I \) be a graded algebra. Then \(\Lambda \) is a Koszul algebra if and only if \(\Lambda \) as a (right) \(\Lambda^c \)-module is a linear module.

Proof. Suppose that \(\Lambda \) is a Koszul algebra. Then Theorem 2.1 implies that \(\Lambda \) has a linear projective \(\Lambda^c \)-resolution, and hence \(\Lambda \) is a linear module over \(\Lambda^c \).

Suppose that \(\Lambda \) is a linear module over \(\Lambda^c \) as a right module. Let \((P, \delta)\) be a linear projective resolution of \(\Lambda \) as a right \(\Lambda^c \)-module. Tensoring \(P \) with \(\Lambda_0 \), we obtain \(\Lambda_0 \otimes_\Lambda P \). But \(\Lambda_0 \otimes_\Lambda P \) is a linear projective resolution of \(\Lambda_0 \) as a right \(\Lambda \)-module. Hence \(\Lambda \) is a Koszul algebra, and we are done. □

References

[1] Buchweitz, R.-O., Green, E. L., Madsen, D., Solberg, Ø., *Finite Hochschild cohomology without finite global dimension*, preprint.

[2] Buchweitz, R.-O., Green, E. L., Snashall, N., Solberg, Ø., *Multiplicative structures for Koszul algebras*, preprint.

[3] Cartan, H., Eilenberg, S., *Homology algebra*, Princeton University Press, Princeton Mathematical series, 33 (1956).
[4] Green, E. L., Solberg, Ø., *An algorithmic resolution construction*, preprint.
[5] Green, E. L., Solberg, Ø., Zacharia, D., *Minimal projective resolutions*, Trans. Amer. Math. Soc., 353 (2001), 2915–2939.
[6] Happel, D., *Hochschild cohomology of finite-dimensional algebras*, Séminaire d’Algèbre Paul Dubreil et Marie-Paul Malliavin, 39ème Année (Paris, 1987/1988), 108–126, Lecture Notes in Math., 1404, Springer, Berlin, 1989.

Edward L. Green, Department of Mathematics, Virginia Tech, Blacksburg, VA 24061, USA
E-mail address: green@math.vt.edu

Gregory Hartman, Department of Mathematics, The University of Arizona, 617 N. Santa Rita Ave., P.O. Box 210089, Tucson, AZ 85721-0089, USA
E-mail address: hartman@math.arizona.edu

Eduardo N. Marcos, Instituto de Matemática e Estatística, Universidade São Paulo (IME-USP), Rua do Matão, 1010 - Cidade Universitária, CEP 05508-090, São Paulo - SP - Brazil
E-mail address: emarcos@ime.usp.br

Øyvind Solberg, Institutt for matematiske fag, NTNU, N–7491 Trondheim, Norway
E-mail address: oyvinso@math.ntnu.no