CASE REPORT

Report of two Syrian siblings with Mulibrey nanism

Tareq Al Saadi1,*, Mahmoud Alkhatib1, Tarek Turk1, Khaled Turkmani1, Fatima Abbas1, and Lina Khouri2

1Faculty of Medicine, University of Damascus, Damascus, Syrian Arab Republic, and 2Department of Pediatrics, Faculty of Medicine, University of Damascus, Damascus, Syrian Arab Republic

*Correspondence address. Faculty of Medicine, University of Damascus, Mazzeh Street, Damascus, Syrian Arab Republic. Tel: +963999567195; Fax: +963118821438; E-mail: tareq145@gmail.com

Abstract

Mulibrey (MUscle–LIver–BRain–EYe) nanism is a rare autosomal recessive disease characterized by growth failure, dysmorphic features and a wide range of abnormalities affecting multiple organ systems. This report is the first to present two cases of Mulibrey nanism affecting two siblings from Syria. Mulibrey nanism can be suspected clinically due to the distinctive features of the patients. The aim of this report is to document the presence of Mulibrey nanism in Syria and to familiarize physicians in and out of Syria with this rare disease and encourage them to develop high clinical suspicion if faced with patients with similar presentations.

INTRODUCTION

Mulibrey (MUscle–LIver–BRain–EYe) nanism is a rare autosomal recessive disease caused by mutations in the TRIM37 gene, which codes for a peroxisomal protein of unknown function [1]. Associated signs and symptoms classically include growth retardation accompanied by multiple organ abnormalities [1]. Although sporadic cases have been reported in many countries, this disorder is most prevalent in Finland with the highest number of reported cases in the world [1]. Here, we present the first known cases of Mulibrey nanism in Syria. Documentation of rare cases will familiarize physicians with these diseases and help them recognize undiagnosed cases.

CASE REPORT

The two affected siblings were born to a 35-year-old father and a 32-year-old mother who are relatives and are in their usual state of health. The family consists of three children: two females and one male. Two of these children were diagnosed with Mulibrey nanism; the third sibling was completely healthy by the time of evaluation.

The first patient, a 10-year-old female, was a product of full-term pregnancy. By 1 year of age, she was referred to the endocrinology clinic at the Children’s University Hospital of Damascus to be evaluated for growth failure.

Physical examination at the present time revealed short stature, high-pitched voice and characteristic craniofacial features including triangular face, broad forehead, broad nasal root and bilateral medial pseudo-strabismus caused by bilateral epicanthal folds. Other findings included abdominal distention with mild hepatosplenomegaly, pallor, swollen lymph nodes in the neck, dilated veins on the chest wall, periorbital edema and minimal pitting edema in the lower limbs, clubbed fingers and scoliosis. The patient had normal psychomotor development.

Abdominal echography confirmed the hepatosplenomegaly and revealed moderate-volume ascites, a hepatic cyst and dilated intrahepatic bile ducts. Liver biopsy revealed focal interstitial fibrosis.

Endocrine evaluation of the patient revealed growth hormone (GH) deficiency and delayed bone age. Estimated bone age was ~6.5 years by the time of evaluation.

Received: August 8, 2015. Revised: October 8, 2015. Accepted: November 3, 2015

© The Author 2015. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
Echocardiogram findings included the following: dilated left atrium, mitral regurgitation, tricuspid regurgitation, atrial septal defect with left to right shunt and dilatation of inferior vena cava and suprahepatic veins. The ejection fraction was within the normal range (68%). Our echocardiographic findings were compatible with restrictive left ventricular filling physiology typical of Mulibrey heart disease [2]. Constrictive pericarditis, which is part of the Mulibrey heart disease, was not discerned.

X-ray images revealed normal long and pelvic bones (Fig. 1) and a characteristic J-shaped sella turcica (Fig. 2).

Urinary system abnormalities included bilateral vesicoureteral reflux that was more prominent in the right side, hydronephrosis of both kidneys and signs of chronic renal disease in the right kidney, such as poor corticomedullary differentiation and cortical atrophy that were confirmed by renal scintigraphy (Fig. 3). Intravenous pyelogram (IVP) revealed right ureteropelvic junction obstruction and subsequent hydronephrosis (Fig. 4). The patient underwent ureteropelvic anastomosis and Anderson–Hynes pyeloplasty; the surgeon reported an abnormal blood vessel crossing over the right ureter, compressing it and causing the ureteropelvic junction obstruction. Three months after the surgery, reevaluation by renal scintigraphy revealed no improvement in the function of the right kidney.

Abnormal tests included elevated levels of urea, creatinine, phosphate, triglycerides, cholesterol, thyroid-stimulation hormone (TSH), parathyroid hormone (PTH), alanine transaminase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase.
In addition, decreased levels of calcium, copper, iron and luteinizing hormone (LH) were detected.

The second patient, a 7-year-old male, also was a product of full-term pregnancy with no complications at birth. The patient had short stature and high-pitched voice with the same characteristic craniofacial features as his sibling. Psychomotor development was normal. The patient had a history of mild epistaxis over the past 2 years.

Physical examination revealed pallor, mildly clubbed fingers, small-sized testicles, diffused red papules on the right leg and abdominal distention with hepatosplenomegaly. Liver biopsy revealed normal liver parenchyma. Further investigations revealed hepatosplenomegaly with a hepatic cyst and a cortical cyst in the right kidney.

Endocrine evaluation was identical to that of the first patient, with an estimated bone age of 5.5 years. Findings of the
therapy, and diuretics were used to manage the ascites.

Minor signs and suggested clinical diagnostic criteria (Table 1) [1], and described the clinical features of 85 affected Finnish patients.

The patient did not have a J-shaped sella turcica. However, diated foramen magnum and signs of sphenoid sinusitis were ob-
served. He had elongated prothrombin time (PT) and elevated levels of AST, α1-antitrypsin (A1AT), adrenocorticotropic hor-
mine (ACTH) and follicle-stimulation hormone (FSH).

For the diagnosis, three major signs with one minor sign are required, or two major signs with three minor signs [1]. SDS, standard deviation scores.


discussion

Most cases of Mulibrey nanism are distributed in Finland with an incidence rate of 1/37000 [3]; hence, there are physicians familiar with the disease. However, low incidence in other countries makes it challenging to recognize and diagnose Mulibrey nanism.

Unlike what the name implies, signs and symptoms of Mulibre nanism are not limited to those four organs. Karlber et al. described the clinical features of 85 affected Finnish patients and suggested clinical diagnostic criteria (Table 1) [1], and many other studies reported diverse clinical presentations. Genetic analysis for our patients could not be performed due to lack of proper laboratory services in Syria, and the diagnoses were made based on the phenotype of the patients meeting enough clinical diagnostic criteria.

Chronic kidney disease in the first patient was the most dan-
gerous complication. It was caused by chronic hydronephrosis due to an abnormal vessel compressing and obstructing the right ureteropelvic junction. Although surgical management was performed, the affected kidney failed to recover. Late diagnosis and decreased health-care quality may have contributed to that unfortunate consequence. Urinary tract anomalies are common congenital malformations. Chronic kidney disease has not been reported in the context of Mulibrey nanism before. The complication was not likely caused by the mutated gene but appears secondary to the compression of an abnormal vessel. Vascular anomalies are in itself often encountered in Mulibrey nanism [4].

Classically, cardiac involvement is the most feared complica-
tion due to its effect on life expectancy [2]. Our patients had no signs of thickened pericardium but presented echocardiographic evidence of diastolic dysfunction and valvular insufficiency, as well as hepatosplenomegaly and ascites, all signs of myocardial restriction in Mulibrey heart disease. Repeated cardiac examina-
tions are recommended in order to detect constrictive pericarditis and restrictive cardiomyopathy. Screening for certain types of tumors, such as Wilms’ tumor and benign tumors of the liver, is also important due to their large association with this syndrome [4].

For the diagnosis, three major signs with one minor sign are required, or two major signs with three minor signs [1]. SDS, standard deviation scores.

For the diagnosis, three major signs with one minor sign are required, or two major signs with three minor signs [1]. SDS, standard deviation scores.

CONFLICT OF INTEREST STATEMENT

None declared.

REFERENCES

1. Karlberg N, Jalanko H, Perheentupa J, Lipsanen-Nyman M. Mulibrey nanism: clinical features and diagnostic criteria. J Med Genet 2004;41:92–98.

2. Lipsanen-Nyman M, Perheentupa J, Rapola J, Sovijarvi A, Kupari M. Mulibrey heart disease: clinical manifestations, long-term course, and results of pericardectomy in a series of 49 patients born before 1985. Circulation 2003;107:2810–2815.

3. Norio R. The Finnish Disease Heritage III: the individual diseases. Hum Genet 2003;112:470–526.

4. Karlberg N, Karlberg S, Karikoski R, Mikkola S, Lipsanen-Nyman M, Jalanko H. High frequency of tumours in Mulibrey nanism. J Pathol 2009;218:163–171.