The effect of graded activity and pain education (GAPE) - an early post-surgical rehabilitation programme after lumbar spinal fusion: study protocol for a randomized controlled trial

Heidi Tegner (✉ heidi.tegner@regionh.dk)
Rigshospitalet Glostrup https://orcid.org/0000-0003-3408-353X

Bente Appel Esbensen
Department for Rheumatology and Spine Diseases, Rigshospitalet Glostrup

Marius Henriksen
The Parker Institute, Copenhagen University Hospital Bispebjerg/Frederiksberg

Rachid Bech-Azeddine
Centre for Rheumatology and Spine Diseases, Rigshospitalet Glostrup

Mari Lundberg
Department of Health and Rehabilitation, University of Gothenburg

Louise Nielsen
Department of Occupational Therapy and physiotherapy, Rigshospitalet Glostrup

Nanna Rolving
DEFACTUM; Corporate Quality, Central Denmark Region

Study protocol

Keywords: Low back pain, surgery, rehabilitation, behaviour

Posted Date: September 2nd, 2020

DOI: https://doi.org/10.21203/rs.3.rs-19706/v2

License: ☝️ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

Version of Record: A version of this preprint was published on September 15th, 2020. See the published version at https://doi.org/10.1186/s13063-020-04719-y.
Abstract

Background

Patients with chronic low back pain undergoing lumbar spinal fusion (LSF) are physically inactive and thereby at risk of poor health. Barriers to being physically active need to be acknowledged in post-surgical rehabilitation. The primary objective of this randomized controlled trial (RCT) is to examine the effect of an early active intervention consisting of graded activity and pain education (GAPE) on sedentary behaviour in a population of patients undergoing LSF. The secondary objectives are to examine the effect of GAPE on, respectively, disability, pain, fear of movement, self-efficacy for exercise and health-related quality of life.

Methods

The study is an RCT planned to include 144 patients undergoing LSF at 1-2 levels for low back pain caused by degeneration of the lumbar spine. The patients will be randomly assigned to receive either usual care or usual care plus GAPE. GAPE consists of nine individual physiotherapist-guided sessions over a 10-week period. The overall purpose is to reduce sedentary behaviour, by educating the patient about pain and, based on a cognitive behavioural perspective, gradually strengthen the patient’s self-efficacy to be physically active and reduce fear of movement. The physiotherapist will plan the intervention in collaboration with the patient. Based on a semi-structured interview and observations of the patient in their home, they will set individually functional goals. The primary outcome will be reduction in sedentary behaviour, measured by an accelerometer at baseline (pre-surgery), and at three and 12 months post-surgery. Secondary outcomes will include disability, pain, fear of movement, self-efficacy for exercise, and quality of life. Secondary outcome data will be collected at baseline (pre-surgery), and at three, six, and 12 months post-surgery.

Discussion

We hypothesize that, compared with the “usual care group”, GAPE will primarily lead to a significantly reduction in sedentary behaviour, and secondarily a reduction in disability, pain intensity, and fear of movement; further, it will increase the patient’s self-efficacy for exercise and quality of life.

Trial registration:

www.clinicaltrials.gov (NCT04103970), 24 September 2019

Background

Over half a billion people worldwide report low back pain (LBP), which is the leading cause of disability at all income levels and age groups (1, 2). For the majority of people LBP has a natural benign course, but for a small percentage it turns into a chronic condition with significant levels of life disruption, healthcare costs, economic losses, and even premature death (1). Lumbar spinal fusion (LSF) is a widely adopted technique...
surgical procedure for the treatment of persistent LBP, with the aim of relieving pain and thereby increase functional ability (3, 4). Over recent decades a substantially increasing number of patients with chronic low back pain (CLBP) undergo LSF in the Western world (4). In the United States, the number of patients undergoing LSF increased by 62% from 2004-2015, and in the United Kingdom by 63% from 2005-2015 (3, 4).

There is growing evidence to suggest that, to increase physical activity and function in this group of patients, post-surgical rehabilitation should start early, and the content of the rehabilitation should be based on a bio-psycho-social approach (5, 15-17). A systematic review by Greenwood et al. found that “complex interventions”, consisting of exercise and cognitive behavioural therapy, offer short-term and long-term functional benefits for patients following LSF (18). Archer et al. confirmed that an early intervention using a cognitive behavioural approach performed by a physiotherapist decreased fear of movement, increased self-efficacy, and improved patient-reported and performance-based outcomes in patients six months after lumbar spine surgery (19). Research in the field of rehabilitation after LSF calls for high quality research, which includes interventions that incorporate the patients’ context, experiences and thoughts to a greater extent in the clinical decision making (18, 19).

In this suggested randomized controlled trial (RCT), we will investigate the effect of a bio-psycho-social approach consisting of graded activity and pain education. In short, we will call it GAPE. We will include the patient’s environment and perspectives in the intervention through home visits, explorative interviews and specific, individual goals set by the patient in collaboration with the physiotherapist.

Graded activity is an exercise paradigm which takes a behavioural perspective using the principles of operant conditioning (20). The purpose of operant conditioning are to modify negative pain behaviours and break the fear avoidance cycle and thereby increase the patient’s physical activity and functioning (21). Several studies have investigated the effect of pain education in patients with CLBP and found it to be efficient in terms of less pain and increased functional level (22, 23). Furthermore, a combination of exercise and pain education for patients with CLBP has showed promising results (24-26). A combination of graded activity and pain education (GAPE) seems to be a suitable supplement to early post-surgical rehabilitation for patients with LSF, given that behavioural, cognitive, physical, and contextual factors will be addressed in one intervention.

Objective and hypothesis

The primary objective of this RCT is to examine the effect of an early active post-surgical intervention consisting of GAPE on sedentary behaviour in a population of patients undergoing LSF. The secondary objectives are to examine the effect of GAPE on disability, pain, fear of movement, self-efficacy for exercise and health-related quality of life.

We hypothesize that, compared to usual care, GAPE will primarily lead to a significant reduction in sedentary behaviour and, secondly, reduced disability, pain intensity, and fear of movement; further, it will
increase the patient’s self-efficacy for exercise and quality of life.

Methods/design

The study is a parallel-group RCT with three, six and 12 months’ follow-up. Patients will be randomized 1-2 days post-surgery (1:1) to either usual care or GAPE in addition to usual care (see section Randomization).

The trial is reported according to the SPIRIT (Standard Protocol Items: Recommendations for Interventionsal Trials) Statement (27) (see Additional file 1 and Figure 1).

Study setting

GAPE will be provided by telephone, in the patient’s home, and in the training facilities of the Department of Occupational Therapy and Physiotherapy, Rigshospitalet, Glostrup. At the hospital, the explorative interview will be carried out when the patient is still hospitalized at the Centre for Rheumatology and Spine Diseases.

Patients

Eligibility criteria:

Patients undergoing LSF at the Centre for Rheumatology and Spine Diseases, Rigshospitalet, Glostrup from 1 October 2019 to 31 January 2021 who fulfill the following criteria:

1. Low back pain \(\geq \) six months
2. \(\geq \) 18 years of age
3. Undergoing an instrumented posterolateral spinal fusion of 1-2 levels, with or without an intervertebral cage placed, performed from anterior approach, posterior approach or from a lateral access, for degeneration of the lumbar spine. Degenerative conditions include disc degeneration, spinal stenosis with spondylolisthesis, and substantial spondylosis with or without spondylolisthesis (28)
4. Read and understand Danish
5. Live no more than 1.5 hours’ travel time by car from Rigshospitalet, Glostrup

Exclusion criteria:

1. Previous LSF
2. One or more of following the conditions: infection, neoplasm, metastasis, metabolic bone disease, fractures, post-traumatic vertebral compression/deformity, other known autoimmune arthropathies
3. Diagnosed with a cognitive disorder (e.g. dementia, developmental disorders or Substance-induced cognitive impairment)

4. Other special conditions where a patient is judged to be unable to participate in the intervention by the surgeon or PI (HT) (fragile due to very high age, extreme poor functional level, psychiatric disease or other serious comorbidities)

Recruitment, screening and enrolment

All spine surgeons at Rigshospitalet Glostrup will recruit patients to the trial. The surgeons will provide verbal and written information to the eligible patient at the preoperative consultation. If the patient accepts, the PI (HT) will contact the patient by telephone to check inclusion and exclusion criteria. If the patient is interested in participating in the trial, s/he will be invited to a meeting at the hospital with an independent assessor. The independent assessor will repeat information, and if the patient agrees to participate, s/he will sign an informed consent form. The independent assessor will hand out the baseline questionnaire and provide the patient with instructions in how to wear the accelerometer used to measure sedentary behaviour (29). The meeting will be scheduled for the same day as the patient attends a pre-surgery back seminar to lessen burden and time spent by the patients.

Intervention

All patients (intervention and control) will receive usual care pre-operatively and postoperatively from the Department of Rheumatology and Spine diseases and Department of Occupational Therapy and Physiotherapy, Rigshospitalet, Glostrup. An overview of the two groups is shown in Figure 2. The description of GAPE and usual care in this protocol follows the TIDieRs checklist (30).

Control group: Usual care

Pre-surgery:

Before surgery (1-2 weeks), the patient is invited to participate in a pre-surgery seminar, where s/he receives information about the time before, during and after the LSF. The information covers anesthesia, surgery, medication, mobilization and how to use various aids. The seminar will be led by a nurse, surgeon, an anesthesiologist, an occupational therapist and a physiotherapist. The aim of the seminar is to gather the interdisciplinary team in one place for the patients and in this way give the best possible information regarding the surgery-procedure and the time just after surgery. The interdisciplinary team is blinded to patient randomization and the content of GAPE.

During hospitalization:
After surgery, the patient will be hospitalized for an average of three-four days. During hospitalization a physiotherapist consults the patient one to three times to provide information and guidance on mobilization and instructions in gradually progressing movement. The patient will have no restrictions on movement after surgery and is instructed by the physiotherapist to gradually return to their normal activity level. The patient will not receive any specific home exercise programme from the physiotherapist.

After discharge:

Following discharge, the patient consults the nurse after 10-12 days at the outpatient clinic to remove stitches, talk about medication, and to answer any questions s/he might have regarding the period post-surgery. This will be repeated six weeks post-surgery.

Three months post-operatively, the patient will participate in a course of physical rehabilitation delivered by physiotherapists in a local community care centre. The post-surgical rehabilitation offered at the community care centres may vary in content and duration, although a typical course of post-surgical rehabilitation will contain an individual session with a physiotherapist followed by group training, in which the focus will be on stability, strength and endurance of the back muscles. The patient will consult the surgeon at three and 12 months post-surgery, to discuss the surgical outcome, undergo a medical examination and an x-ray monitoring.

Intervention: Usual care supplemented by GAPE

Components of GAPE

Graded activity:

Graded activity is a technique based on the theory of operant conditioning, and in the area of pain introduced by the American psychologist Wilbert Fordyce in 1976 (35). The aim of graded activity is to improve the patient's functional ability by positive reinforcement of health behaviours and activity levels (36, 37). By positive reinforcement means reinforcers such as attention, praise, rest from activities and schedules which illustrate occurrence of health behaviour. Graded activity has been tested in physiotherapy settings and has been found effective for the treatment of LBP (21, 38).

In GAPE, the role of the physiotherapist is to capture the patient's thoughts and beliefs about pain and movement and the consequences of pain in the patient's social life. The physiotherapist will capture this by an explorative interview (session 1) and observe the patient's pain and/or health behaviours (sessions 1 and 2). Pain and health behaviours are the patient's movement strategies despite the pain (e.g., duration of movement, way of moving, resting, breathing, grimacing, etc.) (39).
The patient will be asked to set three-five short-term goals for the next 10 weeks in close collaboration with the physiotherapist (session 2) (40). The goals should involve physical activities that are specific, measurable, achievable, realistic, and time-targeted (SMART goals). The goals will be registered on the Patient Specific Function Scale (PSFS) and will be the focal point for the activity/exercise programme which the physiotherapist plans for the patient (41, 42).

The patient's current baseline tolerance level of each activity/exercise in the programme will be tested. Quotas will be set for the activities/exercises, balancing between the baseline tolerance level, the load of activities, and the knowledge provided through the interview and observation of the patient (35, 41). Quotas will be lower than baseline tolerance level, to secure a positive experience of performing the programme, and to give the patient a sense of being in control. In subsequent sessions, quotas are systematically increased.

Pain education:

The patient will have 1 session of pain education in GAPE (session 2) (43). The underlying theoretical model for pain education is the modified fear avoidance model (Fig. 3), as an approach to challenging the patient's maladaptive pain cognition and to modify beliefs about movement despite pain (23, 44). The pain education will target four overall questions:

1. What is pain?
2. Is my pain normal?
3. What can affect my pain?
4. What can I do to relieve my pain?

The pain education will be individually adapted to each patient, so the patient's context and concerns regarding pain and movement are included. The educational material will be in the form of laminated worksheets. The educational material illustrates a simple explanation of the neurophysiology behind pain and suggestions of ways to manage pain in everyday life.

The outlined intervention in GAPE

The outlined intervention will start just before discharge (session 1), and the final session (session 9) will take place 10 weeks postoperatively. The sessions will be held at the hospital, in the patient's home and by telephone. The nine sessions are outlined in additional File 2. Each session will be followed by home exercises matching the patient's goals and quotas. The patient will be responsible for performing the programme until following session is scheduled.

To improve adherence to the intervention, some of the sessions are placed on days where the patient is going to the usual check-up visit with the nurse at the hospital (sessions three and seven). Furthermore, three sessions (sessions four, six and eight) will be of shorter duration and delivered by telephone.
Each intervention session will be registered by the physiotherapist as completed/not completed, to control for compliance to the scheduled intervention sessions.

Physiotherapists’ training to deliver the intervention:

Four physiotherapists from the Department of Occupational and Physiotherapy, Rigshospitalet, Glostrup will perform the intervention (including the PI, i.e. HT). All physiotherapists managing the GAPE intervention have over six years of experience in treating patients with complex LBP based on a cognitive behavioural perspective.

To attain skills in delivering graded activity, the physiotherapists have attended three training sessions with the PI (HT). During the sessions, theory and specific management approaches for graded activity will be discussed and a training manual handed out (39). Each physiotherapist will have observed the PI (HT) perform graded activity during an intervention period of one patient each (sessions 1 to 9). Furthermore, HT will supervise the three physiotherapists throughout the intervention period to ensure that the GAPE manual is followed.

To attain skills in delivering pain education, the physiotherapists will attend a course in pain mechanisms and pain education (“Basic course in Pain Neuroscience”) (43). The physiotherapists will also participate in a 1-day refresher course regarding pain theory and discuss and agree upon the exact pain education to be delivered in the intervention.

To ensure further treatment fidelity, all physiotherapists will be supervised by an experienced psychologist with expertise in the psychological treatment of chronic pain. Each physiotherapist will be supervised by the psychologist during one of their patient interviews (1st session). After two months the psychologist will undertake a group supervision (lasting three hours) again for intervention fidelity.

Criteria for discontinuance

Patients allocated to the intervention group will be discontinued if he/she:

- Withdraws his/her consent
- Is scheduled for re-surgery
- Falls ill during the intervention period in such a way that it is not possible to continue the intervention.

Outcomes and assessment

Data will be collected on four occasions during the trial: at baseline and at three, six, and 12 months post-surgery (see also Additional File 3). Patient-reported outcomes (PROs) will be completed at the hospital at
baseline and at three and 12 months’ follow-up, using an online data capture application (REDCap) (45, 46). At six months’ follow-up the patient will receive an email with a link also via REDCap.

To prevent missing data, non-responders will be contacted by telephone shortly after data collection time-points at three, six, and 12 months’ follow-up, with a maximum of two reminders by email.

Primary outcome measure

The primary outcome is “reduction in sedentary behaviour” and will be measured at three months post-surgery. Sedentary behaviour will also be measured at 12 months’ follow-up as a secondary outcome.

Sedentary behaviour will be defined as: “Any waking behaviour characterized by a sitting or reclining/lying posture” (47). Sedentary behaviour will be assessed objectively as the number of minutes per day the patient is sedentary (lying down and sitting) measured with the SENS motion activity measurement system (29). SENS is a small accelerometer placed within a small plaster to be worn discretely on the patient’s thigh (Figure 4). The SENS motion system is considered a reliable and valid device for measuring sedentary behaviour (48). The patients will wear the accelerometer for seven consecutive days during the week before surgery, and for seven days at three and 12 months post-surgery.

Secondary outcome measures

Disability will be measured using the Oswestry Disability Index (ODI). ODI measures condition-specific disability, and was developed for patients with LBP (49). The Danish version of ODI has shown acceptable responsiveness, reliability, and validity (50, 51). The ODI consists of ten items, covering pain intensity, personal care, lifting, walking, sitting, standing, sleeping, sex life, social life, and travelling. For each item, the patient chooses one of six answers, with 0 representing no difficulty in the activity and 5 representing maximal difficulty (50-52).

Pain in the back and legs is assessed using a visual analogue scale (VAS) with a possible score of 0 (“no pain”) to 100 (“the worst pain imaginable”) (53, 54). The wording in the questionnaire is “Indicate your pain level for the past week by a mark on each line below, as shown in the example. The far-left side of the line corresponds to pain-free and the far-right corresponds to the worst possible pain. By placing a mark on the line you register how your pain has been within the past week”.

Fear of movement will be assessed using the 11-item short version of the Tampa Scale of Kinesiophobia (TSK-11). The TSK-11 has shown satisfactory validity, reliability and responsiveness in a surgical spine population and in patients with chronic pain (9, 55). Respondents are asked to indicate to what extent the items are a true description of the assumed association between movement and (re)injury on a 4-point Likert scale, ranging from strongly disagree to strongly agree.
Health-Related Quality of Life will be assessed using the EuroQol 5 Dimensions three levels (EQ-5D-3L) (56). EQ-5D-3L consists of the following five dimensions: Mobility, self-care, usual activities, pain/discomfort, and anxiety/depression. Each dimension is divided into three levels: no problems, some problems or extreme problems. EQ-5D-3L also includes a 20-cm vertical scale, were the respondent is asked to describe his/her own health with endpoints of ‘best imaginable health state’ set at 100 and ‘worst imaginable health state’ set at 0 (57). The EQ-5D-3L has been validated in Danish, including the development of preference values (58) and Danish population norms (59).

“Self-efficacy for exercise” will be assessed using the questionnaire Self-efficacy for Exercise Scale (SEES). The SEES consists of nine items that measure how confident the patient is in doing exercise under different circumstances. The total range is from 0 to 90 points, where higher scores indicate a higher degree of self-efficacy for exercise. SEES has been found valid and reliable in a Scandinavian population (60).

- Received guidance/training in physical exercise: To control for the received guidance/training in physical exercise during the time after surgery, both groups will be asked if they have received any guidance/training regarding physical activity, from whom, and the content, amount and duration of exercise.

Randomization

Accordingly, one to two days after surgery, the patients will be allocated in a 1:1 ratio to either usual care (control group) or usual care together with GAPE (intervention group), taking into account type of LSF (posterior versus anterior surgery approach) and smoking habits (i.e. block-randomization). A co-investigator (MH) will be in charge of setting up the block-randomization using SAS (SAS Institute Inc., Cary, NC, USA). The PI is blinded to the block-randomization. The results of the randomization will be held in sealed opaque envelopes, until the intervention-physiotherapists (including the PI) have delivered the envelopes to the included patients 1-2 days post-surgery (see Figure 5, Flow diagram).

Allocation and blinding

The patient will receive the allocation number just before discharge, so health professionals administering the usual postoperative care during hospitalization (surgeons, nurses, occupational therapists and physiotherapists) will be blinded to randomization. The group allocation numbers will be delivered in sealed envelopes by HT.

Two blinded assessors (physiotherapists) will collect informed consents and will be responsible for the entire outcome assessment (at baseline pre-surgery and at three, six, and 12 months’ follow-up). These assessors will be trained by HT in requirements of the trial and the standardized measurement procedures, including a manual for the procedures in the trial.
Due to the nature of the intervention, neither the patients, the intervention physiotherapists nor the PI will be blinded to group allocation.

Analyses

Sample size

The power calculation is based on the primary outcome, sedentary behaviour. A mean difference of 60 minutes per day is considered a clinically significant difference, with a standard deviation of 115 (63). A sample size of 59 per group is required to obtain a power of at least 80% to detect the mean difference of 60 minutes. To account for a 20% drop-out, we will include 144 patients in total.

General statistical approach

A detailed statistical analysis plan (SAP) will be produced before enrolment of the last patient.

Assessments of outcomes and construction of confidence intervals (CIs) for continuous measures will be based on an analysis of covariance (ANCOVA; including group as the main factor and baseline measure as covariate).

Superiority will be claimed if the computed 95% CI of the estimated group difference in the time spent in a sedentary position does not include 0 in the intention-to-treat (ITT) population.

All statistical tests will be two-sided and statistical significance will be claimed if the computed p-value is equal to or less than 0.05.

Analysis of population sets:

For the assessment of superiority, we will use the ITT population in the primary analysis, as it is the most conservative approach.

Study population definitions:

ITT population:

This consists of all randomized patients in the groups to which they were randomly assigned, regardless of the treatment they actually receive.

Per-protocol (PP) population:
All patients that adhere to the planned protocol, defined by the following criteria for the two groups:

Intervention-group (GAPE) has:

- a baseline measurement, AND
- at least one post-baseline measurement (three, six or 12 months post-surgery), AND
- attended the first two sessions at the hospital and in the patient’s home, respectively (sessions 1 and 2), AND
- attended at least two of the scheduled graded activity appointments; this does not include telephone sessions (a GAPE intervention attendance record will be used for documentation)

Control group (Usual care) has:

- a baseline measurement, AND
- at least one post-baseline measurement (three, six or 12 months post-surgery), AND
- has not received other kinds of active cognitive behavioural treatment during the first three months post-surgery.

Data management

The blinded assessor will give each participant a trial identification number and all data will be de-identified. The identification list with participant information and trial study number will be kept in REDCap. HT and MH will have access to the final dataset in REDCap. The signed consent will be kept in locked filing cabinets behind double locked doors.

Risks, side effects and inconvenience

Participation in the trial is expected to be associated with a minimal risk of side-effects. The project is planned so that hospital visits should disturb the patients as little as possible. The patients will have to visit Rigshospitalet, Glostrup 1-2 extra times and documented travel expenses will be refunded on request (64).

Former studies of early post-surgical rehabilitation following LSF have not reported any risks or side effects (18). In addition, co-investigator, spine surgeon RBA, has assessed the intervention description for any possible risks regarding the fusion material, and does not consider that the GAPE intervention entails an increased risk of stress on the pedicle screw fixation system. In the event that any patient shows signs of new neurological symptoms, such as paresis, unexpected worsening of preoperative lumbar or radicular pain or sensitivity changes, or unexpected changes in the surgery wound during the intervention period, the physiotherapist will contact the surgeon.
Regarding the SENS accelerometer, this might entail some discomfort, when the accelerometer is removed, similar in magnitude to taking off normal plaster. Furthermore, there is a small risk of allergic reaction to the plaster holding the SENS accelerometer. Patients will receive specific skin care advice if this should happen.

Patients are covered by the “Patient-compensation agreement”, if anything unexpected should happen during the intervention.

Patients included in the project cannot participate in other kinds of research projects with active interventions or receive other kinds of active cognitive behavioural treatment during the first three months post-surgery. This is to ensure that the intervention and the control group are comparable and only differ by the GAPE intervention being evaluated.

Patient involvement in the study

Prior to the development of the GAPE intervention, HT conducted semi-structured informal interviews with five volunteer patients – both immediately after LSF and one month postoperatively. The interviews were performed to include the patients’ perspective of pain, movement and thoughts after LSF, and to incorporate their ideas of an ideal early postoperative intervention.

To ensure that the patient’s perspective remains a vital part of this project, a patient operated in 2015 with LSF, has agreed to participate as a patient research partner (PRP) throughout the entire project period. The PRP has read, commented on and approved the participant information. Furthermore, on several occasions the PRP has commented on drafts of the intervention and the choice of outcomes.

The outlined intervention has also been pilot tested by HT on four patients with LSF.

Dissemination

The outlined project is expected to produce three scientific articles in internationally peer reviewed journals, whether the results be positive, negative or inconclusive. Additionally, results of the project will be communicated in both academic and public fora.

Discussion

Research in the field of post-surgical rehabilitation after LSF calls for further examination of early active approaches, incorporating a truly bio-psycho-social focus (18, 19). This trial is based on the assumption that behavioural, cognitive, and affective factors each contribute to human behaviour and amplify and interact with physical pathology (31). In GAPE, the patient’s home is included as a location for the intervention, the s/he is interviewed and observed, which informs the guideline for the early post-surgical rehabilitation. Previous research in the field of rehabilitation after LSF (18, 19) has not investigated such
an individual approach, and we hypothesize that it will contribute to improved health behaviour and thereby faster functional recovery after LSF.

Graded activity is a technique originally used by psychologists (65) and it can be questioned whether physiotherapists can manage this kind of intervention. In this trial the physiotherapists have experience and competences in communicating about pain and treating patients from a cognitive behavioural perspective, and it is thereby hypothesized that they are capable of performing GAPE. This is supported by a systematic review by Bruner et al. (66) which finds that operant conditioning can be integrated into an ambulant physiotherapy setting. The previously mentioned study by Archer et al. also confirms this by finding positive effects of a cognitive behavioural approach applied by a physiotherapist to patients undergoing LSF (19).

Previous investigations in post-surgical rehabilitation after LSF have mainly used outcomes based on PROMs. Because the purpose of the current intervention is to change the patient’s beliefs about movement despite pain, and thereby reduce pain-induced sedentary behaviour, the performance-based outcome “sedentary behaviour” is considered a relevant primary outcome. Furthermore, accelerometers are recommended over self-reports in terms of measuring sedentary behaviour, because they are not influenced by recall bias, overestimations and social desirability (67, 68). The study will thereby use both performance-based and patient-reported outcomes, and from our perspective this will give a more comprehensive picture of the patient.

A strength and quality of the study lies in its thorough preparation. Previous patients with LSF have been involved in the preparation phase by way of interviews, involvement of a PRP and by way of a pilot test. Furthermore, to consolidate the quality of the outlined intervention throughout the intervention period, the physiotherapists are trained and supervised before and during the intervention period.

In this intervention, we hope to capture the specific preferences for the post-surgical rehabilitation of each patient, and in addition include the patient’s environment. We hope to inspire other clinical settings (hospitals, private clinics and community care centres) to view post-surgical rehabilitation in a broader perspective and discuss how the patient’s own preferences and experiences of pain and movement can be captured and used in a rehabilitation setting, regardless of diagnosis.

Additional Files

File 1: SPIRIT 2013 Checklist: Recommended items to address in a trial protocol and related documents

File 2: The outlined intervention

File 3: Outcomes and assessment period

Declarations
Ethics approval and consent to participate

The study has been approved by the Danish Data Protection Agency (P-2019-129), and the Health Research Ethics Committee for the Capital Region of Denmark (H-19024440). The study will be carried out according to the principles of the Helsinki Declaration. Furthermore, the study is registered at www.clinicaltrials.gov (NCT04103970).

Any modifications to the protocol, which may impact the study or the patient's health or safety, will be agreed upon by the steering committee and approved by the Danish Data Protection Agency, and the Health Research Ethics Committee for the Capital Region of Denmark.

Participation in the study is voluntary. All data and information collected during the trial will be treated confidentially and stored according to the requirements of the Danish Data Protection Agency and good clinical practice. Informed consent will be obtained from all study participants.

Consent for publication

Not applicable.

Availability of data and materials

Not applicable.

Funding and competing interests

The project is funded by the following foundations:

- “The Research Fund of Rigshospitalet, Copenhagen University Hospital”: Salary PhD-student, tuition fee at Copenhagen University, and annual grant
- “Tryg Foundation”: Physiotherapists’ salaries, overheads and publication costs
- “Danish Physiotherapist Union”: Physiotherapists’ salaries
- “The Danish Rheumatism Association”: Car leasing, mileage allowance and SENS accelerometers

The funding sources have no role in the design of this trial and will not have any role during its execution, analyses and interpretation of data, or in the decision to submit results. The project group have no conflict of interest with the foundations.

HT is further supported by the Department of Occupational Therapy and Physiotherapy, Rigshospitalet - Glostrup with the purpose of having access to optimal facilities for the trial and time in the preparation phase for the physiotherapist involved.
Rigshospitalet is trial sponsor of the project. The Department of Occupational Therapy and Physiotherapy, Rigshospitalet - Glostrup is in charge of the daily performance of the project.

Contact information:

Contact name(s): Leading therapist, MPG Therese Vitthøft Dahl or Leading therapist, MMD Lisbeth Wiben Gundersen

Address: Rigshospitalet - Glostrup, HovedOrtoCentret, Department of Occupational Therapy and Physiotherapy, Valdemar Hansens Vej 13, 2600 Glostrup, Denmark

Telephone number: 0045 3863 3092

E-mail addresses: therese.vitthoefft.dahl@regionh.dk or lisbeth.wiben.gundersen@regionh.dk

Authors’ contributions:

HT conceived the trial. BAE, MH, RBA and NR contributed to the study design. MH provided statistical expertise in clinical trial design. HT, ML and NR prepared and designed the intervention. LN secured the perspectives and interest of the patients throughout the intervention description. HT and BAE are grant holders. All authors contributed to the refinement of the study protocol and approved the final manuscript (69).

Acknowledgements

The authors would like to thank Physiotherapist Mette Errebo, Department of Occupational Therapy and Physiotherapy, Rigshospitalet - Glostrup for sharing her knowledge of pain and a bio-psycho-social approach in the development of the intervention.

Abbreviations

Anterior lumbar interbody fusion (ALIF)

Chronic low back pain (CLBP)

Confidence intervals (CIs)

Graded activity and pain education (GAPE)

Heidi Tegner (HT)

Intention-to-treat (ITT)
Lateral lumbar interbody fusion (LLIF)

Low back pain (LBP)

Lumbar spinal fusion (LSF)

Marius Henriksen (MRH)

Oblique Lateral Interbody Fusion (OLIF)

Oswestry Disability Index (ODI)

Patient research partner (PRP)

Patient-reported outcome measures (PROMs)

Principal investigator (PI)

European Quality of life - 5 Dimensions (EQ-5D)

Randomized controlled trial (RCT)

Rachid Bech-Azeddine (RBA)

Self-efficacy for exercise scale (SEES)

Short version of Tampa scale of kinesiophobia (TSK-11)

Standard Protocol Items: Recommendations for Interventional Trials (SPIRIT)

The minimal clinically important difference (MCID)

Transforaminal lumbar interbody fusion (TLIF)

Visual Analogue Scale (VAS)

References

1. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388(10053):1545-602.

2. Hurwitz EL, Randhawa K, Yu H, Cote P, Haldeman S. The Global Spine Care Initiative: a summary of the global burden of low back and neck pain studies. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society. 2018;27(Suppl 6):796-801.
3. Brook MI, Mirza SK, Spina N, Spiker WR, Lawrence B, Brodke DS. Trends in Lumbar Fusion Procedure Rates and Associated Hospital Costs for Degenerative Spinal Diseases in the United States, 2004 to 2015. Spine. 2019;44(5):369-76.

4. Provaggi E, Capelli C, Leong JJH, Kalaskar DM. A UK-based pilot study of current surgical practice and implant preferences in lumbar fusion surgery. Medicine. 2018;97(26):e11169.

5. Lotzke H, Jakobsson M, Gutke A, Hagstromer M, Brisby H, Hagg O, et al. Patients with severe low back pain exhibit a low level of physical activity before lumbar fusion surgery: a cross-sectional study. BMC musculoskeletal disorders. 2018;19(1):365.

6. Jakobsson M, Brisby H, Gutke A, Hagg O, Lotzke H, Smeets R, et al. Prediction of Objectively Measured Physical Activity and Self-Reported Disability Following Lumbar Fusion Surgery. World neurosurgery. 2019;121:e77-e88.

7. Organization WH. Global recommendations on physical activity for health - Global Strategy on Diet, Physical Activity and Health. World Health Organization; 2010.

8. Lundberg M, Larsson M, Ostlund H, Styf J. Kinesiophobia among patients with musculoskeletal pain in primary healthcare. Journal of rehabilitation medicine. 2006;38(1):37-43.

9. Archer KR, Phelps KD, Seebach CL, Song Y, Riley LH, 3rd, Wegener ST. Comparative study of short forms of the Tampa Scale for Kinesiophobia: fear of movement in a surgical spine population. Archives of physical medicine and rehabilitation. 2012;93(8):1460-2.

10. Archer KR, Seebach CL, Mathis SL, Riley LH, 3rd, Wegener ST. Early postoperative fear of movement predicts pain, disability, and physical health six months after spinal surgery for degenerative conditions. The spine journal : official journal of the North American Spine Society. 2014;14(5):759-67.

11. Archer KR, Wegener ST, Seebach C, Song Y, Skolasky RL, Thornton C, et al. The effect of fear of movement beliefs on pain and disability after surgery for lumbar and cervical degenerative conditions. Spine. 2011;36(19):1554-62.

12. Hasenbring MI, Plaas H, Fischbein B, Willburger R. The relationship between activity and pain in patients 6 months after lumbar disc surgery: do pain-related coping modes act as moderator variables? Eur J Pain. 2006;10(8):701-9.

13. Seebach CL, Kirkhart M, Lating JM, Wegener ST, Song Y, Riley LH, 3rd, et al. Examining the role of positive and negative affect in recovery from spine surgery. Pain. 2012;153(3):518-25.

14. Abbott AD, Hedlund R, Tyni-Lenne R. Patients' experience post-lumbar fusion regarding back problems, recovery and expectations in terms of the International Classification of Functioning, Disability and Health. Disabil Rehabil. 2011;33(15-16):1399-408.

15. Abbott AD, Tyni-Lenne R, Hedlund R. Early rehabilitation targeting cognition, behavior, and motor function after lumbar fusion: a randomized controlled trial. Spine. 2010;35(8):848-57.

16. Rolving N, Sogaard R, Nielsen CV, Christensen FB, Bunger C, Oestergaard LG. Preoperative Cognitive-Behavioral Patient Education Versus Standard Care for Lumbar Spinal Fusion Patients: Economic Evaluation Alongside a Randomized Controlled Trial. Spine. 2016;41(1):18-25.
17. Damsgaard JB, Jorgensen LB, Norlyk A, Birkelund R. Spinal fusion surgery: From relief to insecurity. International journal of orthopaedic and trauma nursing. 2017;24:31-9.

18. Greenwood J, McGregor A, Jones F, Mullane J, Hurley M. Rehabilitation Following Lumbar Fusion Surgery: A Systematic Review and Meta-Analysis. Spine. 2016;41(1):E28-36.

19. Archer KR, Devin CJ, Vanston SW, Koyama T, Phillips SE, Mathis SL, et al. Cognitive-Behavioral-Based Physical Therapy for Patients With Chronic Pain Undergoing Lumbar Spine Surgery: A Randomized Controlled Trial. The journal of pain : official journal of the American Pain Society. 2016;17(1):76-89.

20. Sanders SH. Operant Conditioning with Chronic Pain: Back to Basics. In: Turk DC, Gatchel RJ, editors. Psychological Approaches to Pain Management - A Practitioner’s Handbook. 2. ed. New York: The Guilford Press; 2002. p. 128-37.

21. Bunzli S, Gillham D, Esterman A. Physiotherapy-provided operant conditioning in the management of low back pain disability: A systematic review. Physiotherapy research international : the journal for researchers and clinicians in physical therapy. 2011;16(1):4-19.

22. Clarke CL, Ryan CG, Martin DJ. Pain neurophysiology education for the management of individuals with chronic low back pain: A systematic review and meta-analysis. Manual therapy. 2011;16(6):544-9.

23. Tegner H, Frederiksen P, Esbensen BA, Juhl C. Neurophysiological pain-education for patients with chronic low back pain – a systematic review and meta-analysis. Clinical Journal of Pain. 2018.

24. Pires D, Cruz EB, Caeiro C. Aquatic exercise and pain neurophysiology education versus aquatic exercise alone for patients with chronic low back pain: a randomized controlled trial. Clinical rehabilitation. 2015;29(6):538-47.

25. Mallet A, Kregel J, Coppieters I, De Pauw R, Meeus M, Roussel N, et al. Effect of Pain Neuroscience Education Combined With Cognition-Targeted Motor Control Training on Chronic Spinal Pain: A Randomized Clinical Trial. JAMA neurology. 2018;75(7):808-17.

26. Bodes Pardo G, Lluch Girbes E, Roussel NA, Gallego Izquierdo T, Jimenez Penick V, Pecos Martin D. Pain Neurophysiology Education and Therapeutic Exercise for Patients With Chronic Low Back Pain: A Single-Blind Randomized Controlled Trial. Archives of physical medicine and rehabilitation. 2018;99(2):338-47.

27. Chan AW, Tetzlaff JM, Gotzsche PC, Altman DG, Mann H, Berlin JA, et al. SPIRIT 2013 explanation and elaboration: guidance for protocols of clinical trials. BMJ (Clinical research ed). 2013;346:e7586.

28. Ravindra VM, Senglaub SS, Rattani A, Dewan MC, Hartl R, Bisson E, et al. Degenerative Lumbar Spine Disease: Estimating Global Incidence and Worldwide Volume. Global spine journal. 2018;8(8):784-94.

29. SENS Motion [cited 2019. Available from: http://www.sens.dk/en/.

30. Hoffmann TC, Glassziou PP, Boutron I, Milne R, Perera R, Moher D, et al. Better reporting of interventions: template for intervention description and replication (TIDieR) checklist and guide. BMJ (Clinical research ed). 2014;348:g1687.

31. Turk DC. Cognitive-behavioral approach to the treatment of chronic pain patients. Reg Anesth Pain Med. 2003;28(6):573-9.
32. Vlaeyen JW, Kole-Snijders AM, Boeren RG, van Eek H. Fear of movement/(re)injury in chronic low back pain and its relation to behavioral performance. Pain. 1995;62(3):363-72.
33. Woby SR, Urmston M, Watson PJ. Self-efficacy mediates the relation between pain-related fear and outcome in chronic low back pain patients. Eur J Pain. 2007;11(7):711-8.
34. Lundberg M. Kinesiophobia, Various Aspects of Moving with Musculoskeletal Pain: The Sahlgrenska Academy at Göteborg University; 2006.
35. Fordyce WE. Behavioral methods for chronic pain and illness. Saint Louis: The C.V. Mosby Company; 1976. 1-236 p.
36. Leeuw M, Goossens ME, van Breukelen GJ, de Jong JR, Heuts PH, Smeets RJ, et al. Exposure in vivo versus operant graded activity in chronic low back pain patients: results of a randomized controlled trial. Pain. 2008;138(1):192-207.
37. Verbunt JA, Seelen HA, Vlaeyen JW, van de Heijden GJ, Heuts PH, Pons K, et al. Disuse and deconditioning in chronic low back pain: concepts and hypotheses on contributing mechanisms. Eur J Pain. 2003;7(1):9-21.
38. Kernan T, Rainville J. Observed outcomes associated with a quota-based exercise approach on measures of kinesiophobia in patients with chronic low back pain. J Orthop Sports Phys Ther. 2007;37(11):679-87.
39. Fordyce WE. Fordyce’s Behavioral Methods for Chronic Pain and Illness - Republished with Invited Commentaries. Main CJ, Keefe FJ, Jensen MP, Vlaeyen JW, Vowles KE, editors. Philadelphia, United States of America: IASP Press; 2015.
40. Bovend’Eerdt TJ, Botell RE, Wade DT. Writing SMART rehabilitation goals and achieving goal attainment scaling: a practical guide. Clinical rehabilitation. 2009;23(4):352-61.
41. Gatzounis R, Schrooten MG, Crombez G, Vlaeyen JW. Operant learning theory in pain and chronic pain rehabilitation. Curr Pain Headache Rep. 2012;16(2):117-26.
42. Bekkering GE, Hendriks HJM, Koes BW, Oostendorp RAB, Ostelo RWJG, Thomassen JMCT, et al. Dutch Physiotherapy Guidelines for Low Back Pain. Physiotherapy. 2003;89(2):82-96.
43. Staehelin Jensen T, Dahl JB, Arendt-Nielsen L. Pain - Background Evidence Treatment; Smerter - Baggrund Evidens Behandling Copenhagen: FADL; 2013. 419 p.
44. Louw A, Puente-dura EJ, Zimney K, Schmidt S. Know Pain, Know Gain? A Perspective on Pain Neuroscience Education in Physical Therapy. Journal of Orthopaedic & Sports Physical Therapy. 2016;46(3):131-4.
45. Harris PA, Taylor R, Minor BL, Elliott V, Fernandez M, O’Neal L, et al. The REDCap consortium: Building an international community of software platform partners. J Biomed Inform. 2019;95:103208.
46. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)—a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42(2):377-81.
47. Letter to the editor: standardized use of the terms "sedentary" and "sedentary behaviours". Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme. 2012;37(3):540-2.
48. Bartholdy C, Gudbergsen H, Bliddal H, Kjaergaard M, Lykkegaard KL, Henriksen M. Reliability and Construct Validity of the SENS Motion(R) Activity Measurement System as a Tool to Detect Sedentary Behaviour in Patients with Knee Osteoarthritis. Arthritis. 2018;2018:6596278.
49. Fairbank JC, Pynsent PB. The Oswestry Disability Index. Spine. 2000;25(22):2940-52; discussion 52.
50. Lauridsen HH, Hartvigsen J, Manniche C, Korsholm L, Grunnet-Nilsson N. Danish version of the Oswestry Disability Index for patients with low back pain. Part 1: Cross-cultural adaptation, reliability and validity in two different populations. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society. 2006;15(11):1705-16.
51. Lauridsen HH, Hartvigsen J, Manniche C, Korsholm L, Grunnet-Nilsson N. Danish version of the Oswestry disability index for patients with low back pain. Part 2: Sensitivity, specificity and clinically significant improvement in two low back pain populations. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society. 2006;15(11):1717-28.
52. Schwind J, Learman K, O'Halloran B, Showalter C, Cook C. Different minimally important clinical difference (MCID) scores lead to different clinical prediction rules for the Oswestry disability index for the same sample of patients. J Man Manip Ther. 2013;21(2):71-8.
53. Maribo T. Vurdering af Visuel Analog Skala (VAS) [Visual Analouge Scale] til vurdering af smerteintensitet - Niveau 2. København K: Danske Fysioterapeuter; 2005.
54. Carlsson AM. Assessment of chronic pain. I. Aspects of the reliability and validity of the visual analogue scale. Pain. 1983;16(1):87-101.
55. Hapidou EG, O'Brien MA, Pierrynowski MR, de Las Heras E, Patel M, Patla T. Fear and Avoidance of Movement in People with Chronic Pain: Psychometric Properties of the 11-Item Tampa Scale for Kinesiophobia (TSK-11). Physiotherapy Canada Physiotherapie Canada. 2012;64(3):235-41.
56. Brooks R. EuroQol: the current state of play. Health policy (Amsterdam, Netherlands). 1996;37(1):53-72.
57. Rabin R, de Charro F. EQ-5D: a measure of health status from the EuroQol Group. Annals of medicine. 2001;33(5):337-43.
58. Witttrup-Jensen KU, Lauridsen J, Gudex C, Pedersen KM. Generation of a Danish TTO value set for EQ-5D health states. Scandinavian journal of public health. 2009;37(5):459-66.
59. Sorensen J, Davidsen M, Gudex C, Pedersen KM, Bronnum-Hansen H. Danish EQ-5D population norms. Scandinavian journal of public health. 2009;37(5):467-74.
60. Rydwik E, Hovmoller F, Bostrom C. Aspects of reliability and validity of the Swedish version of the Self-Efficacy for Exercise Scale for older people. Physiother Theory Pract. 2014;30(2):131-7.
61. Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. Journal of chronic diseases. 1987;40(5):373-83.

62. Huang YQ, Gou R, Diao YS, Yin QH, Fan WX, Liang YP, et al. Charlson comorbidity index helps predict the risk of mortality for patients with type 2 diabetic nephropathy. Journal of Zhejiang University Science B. 2014;15(1):58-66.

63. Bartholdy C, Christensen R, Kristensen LE, Gudbergsen H, Bliddal H, Overgaard A, et al. Association between weight loss and spontaneous changes in physical inactivity in overweight/obese individuals with knee osteoarthritis: an 8-week prospective cohort study. Arthritis care & research. 2019.

64. Appendix 1 Guidelines for remuneration or other benefits for volunteers (danish); Appendix 1 - Retningslinjer for vederlag eller andre ydelser til frivillige forsøgspersoner: National Videnskabsetisk Komite; 2011 [Available from: http://www.nvk.dk/~/media/NVK/Dokumenter/Appendiks-1.pdf.

65. Main CJ, Foster N, Buchbinder R. How important are back pain beliefs and expectations for satisfactory recovery from back pain? Best practice & research Clinical rheumatology. 2010;24(2):205-17.

66. Brunner E, De Herdt A, Minguet P, Baldew SS, Probst M. Can cognitive behavioural therapy based strategies be integrated into physiotherapy for the prevention of chronic low back pain? A systematic review. Disabil Rehabil. 2013;35(1):1-10.

67. Cerin E, Cain KL, Oyeyemi AL, Owen N, Conway TL, Cochrane T, et al. Correlates of Agreement between Accelerometry and Self-reported Physical Activity. Medicine and science in sports and exercise. 2016;48(6):1075-84.

68. Prince SA, Adamo KB, Hamel ME, Hardt J, Connor Gorber S, Tremblay M. A comparison of direct versus self-report measures for assessing physical activity in adults: a systematic review. The international journal of behavioral nutrition and physical activity. 2008;5:56.

69. University of Copenhagen - Code for Authorship, (2017).

Figures
Study period

Time-point	Enrolment	Allocation	Intervention	Follow up + months
	-t₁	t₀	t₁ t₂ t₃ t₄ t₅ t₆ t₇ t₈ t₉	t₀ +3 t₀ +6 t₀ +12
Enrolment	X			
Patient eligibility	X			
Information by telephone	X			
Informed consent	X			
Allocation	X			
Interventions				
Explorative interview and observation	X	X		
Pain education		X		
Graded activity		X	X X X X X X X X	
Assessments				
Patient characteristics	X			
Primary outcome measures			X X	
Secondary outcome measures			X X X	

Figure 1

SPIRIT diagram for trial stages of enrolment, intervention, and assessment
Figure 2

Overview of the two study groups, intervention-group and control-group

Figure 3

Modified version of the fear avoidance model (33, 34)
Figure 4

SENS - accelerometer
Figure 5
Flow diagram including participant timeline

Supplementary Files
This is a list of supplementary files associated with this preprint. Click to download.

- AdditionalFile2OutlinedIntervGAPE.docx
• Additionalfile1SPIRITFillablechecklist20.12.19.doc
• Additionalfile3Outcomesandassessmentperiod.docx