Lower Critical Field $H_{c1}(T)$ and Pairing Symmetry Based on Eilenberger Theory

Takanobu Akiyama, Masanori Ichioka, and Kazushige Machida

Department of Physics, Okayama University, Okayama 700-8530, Japan

KEYWORDS: Vortex states, Lower critical field, Eilenberger theory, Anisotropic superconductors, d-wave pairing, Chiral p-wave pairing

Vortex physics plays an important role in the study of unconventional superconductors. In this short note, based on Eilenberger theory we study the temperature (T) dependence of lower critical field $H_{c1}(T)$ of vortex states in anisotropic superconductors.

Recent developments of experimental technique make it possible to observe $H_{c1}(T)$ exactly, and discuss it in the relation to the mechanism of unconventional superconductivity, such as in new iron-based superconductors1,2 and URu$_2$Si$_2$. In traditional Ginzburg-Landau (GL) theory, H_{c1} is given by4

$$H_{c1} \propto \lambda(T)^{-2} (\ln \kappa + c_0) \tag{1}$$

with penetration depth λ, GL parameter κ, and a constant c_0. In the London theory $\lambda(T) = \lambda(T = 0) + \delta \lambda(T)$ behaves as $\delta \lambda(T) \propto \exp(-\Lambda/k_{B} T)$ at low T in the s-wave pairing, reflecting superconducting gap Δ. In d-wave pairing with line nodes, $\delta \lambda(T) \propto T$ at low T in the clean limit. These indicate that $H_{c1}(T)$ depends on the pairing symmetry of anisotropic superconductors.

We note that GL theory is a phenomenological theory valid near the transition temperature T_c. Thus it is not clear whether the above-discussion on $H_{c1}(T)$ is quantitatively valid. Therefore, it is expected that $H_{c1}(T)$ is evaluated by Eilenberger theory, which is quantitatively reliable in vortex states even far from T_c. To study contributions by the pairing symmetry, we calculate $H_{c1}(T)$ for s-wave pairing with full gap and $d_{x^2-y^2}$-wave pairing with line nodes, as typical examples, by quantitative Eilenberger theory. The previous work for s-wave pairing was done in a single vortex.5 Our calculation is performed in vortex lattice. We also study $H_{c1}(T)$ for chiral p_{+}-wave pairings, to see dependences on the chirality directions, i.e., parallel or anti-parallel to applied fields.

In this study, for simplicity, we use isotropic cylindrical Fermi surface $k = k_F (\cos \theta, \sin \theta)$ and magnetic fields are applied to the c direction. The quasiclassical Green’s functions $g(\omega, k, r), f(\omega, k, r)$, and $f^\dagger(\omega, k, r)$ are calculated by the Eilenberger equation

$$\{\omega_n + v \cdot (\nabla + iA)\}f = \Delta \phi g,$$
$$\{\omega_n - v \cdot (\nabla - iA)\}f^\dagger = \Delta^* \phi^* g, \tag{2}$$

$g = (1 - ff^\dagger)_{1/2}$ in the vortex lattice state, with the selfconsistent conditions of pair potential

$$\Delta(r) = g_0 N_0 T \sum_{0 < \omega_n \leq \omega_{cut}} \left\langle \phi^* (k) \left(f + f^\dagger \right) \right\rangle_k \tag{3}$$

and the vector potential

$$\nabla \times (\nabla \times A) = -\frac{2T}{\kappa^2} \sum_{0 < \omega_n} \left\{ \nu m g \right\}_k \tag{4}$$

in Eilenberger unit,6,7 with Matsubara frequency ω_n, $(g_0 N_0)^{-1} = \ln T + 2T \sum_{0 < \omega_n \leq \omega_{cut}} \omega_n^{-1}$, where $v = k/k_F$ is the direction of Fermi velocity v_F, r is the center-of-mass coordinate, and $\left\langle \cdots \right\rangle_k$ indicates the Fermi surface average. We use $\omega_{cut} = 20k_BT_c$. The internal field $B(r) = B + \nabla \times a(r)$ is related to the vector potential $A(r) = \frac{1}{2} B \times r + a(r)$ in the symmetric gauge, where $B = (0, 0, B)$ is a uniform flux density. The pairing function is defined as $\phi(k) = 1$ for s-wave pairing, $\phi(k) = \sqrt{2} \cos \theta$ for $d_{x^2-y^2}$-wave pairing. In the chiral p-wave pairing, we consider two-component order parameter $\Delta_+ (r) \phi_+ (k) + \Delta_- (r) \phi_- (k)$ instead of $\Delta (r) \phi(k)$, where $\phi_\pm (k) = e^{\pm i\theta}$.8 In the p_{+}- (p$_-$-) wave pairing, Δ_+ (Δ_-) is main component with singular vortex, and Δ_- (Δ_+) is passive component induced around vortices.

Our calculation is done for $\kappa = 2$ and triangular vortex lattice. We iterate calculations of eqs. (2)-(4) under given B, and obtain selfconsistent vortex solutions for spatial structures of $\Delta(r)$, $A(r)$, and quasiclassical Green’s functions, as done in previous works.7,8 Using the solutions, we calculate the external magnetic field H by

$$H = B + \left\langle (B(r) - B) \right\rangle_r / B \tag{5}$$

$$+ \frac{T}{\kappa^2 B} \sum_{0 < \omega_n} \left\{ \left\langle \frac{1}{2} \text{Re} \left\{ \frac{f^\dagger \Delta + f \Delta^*}{g + 1} \right\} \right\rangle_r \right\}_{k} \text{Re}(g - 1)$$

which is derived by Doria-Gubernatis-Rainer scaling7,9,10 and $\left\langle \cdots \right\rangle_r$ indicates the spatial average. Magnetic fields are in unit of $B_0 = \phi_0/2\pi R_0^2$ with the flux quantum ϕ_0 and $R_0 = h v_F / 2 \pi k_BT_c$.

Figure 1(a) present magnetization curves of B as a function of H at some T for $d_{x^2-y^2}$-wave pairing. There, H_{c1} is defined as onset of B. In Meissner states at $H < H_{c1}$, $B = 0$. In Fig. 1(b), we present $H_{c1}(T)$ as a function of T for some pairing symmetries, and we replot them as $H_{c1}(T)/H_{c1}(T = 0.05T_c)$ in Fig. 1(c) to compare the T-dependence each other.

First, we discuss the differences between the s-wave and the d-wave pairings. H_{c1} in d-wave pairing is smaller than that in s-wave pairing, because the condensation energy of d-wave pairing is weaker due to the line node contributions, compared to that in the full-gap s-wave pairing. H_{c1} is related to the energy for creation of a vortex in Meissner states.4 As for T-dependence, reflecting low energy excitations by line nodes, $H_{c1}(T)$ in d-wave pairing decreases rapidly at low T, compared with s-wave pairing.

To discuss quantitative validity of the relation in eq. (1), in Fig. 1(c) we also present $\lambda^2_{L_{\text{London}}}(T)$ given by

$$\lambda^2_{L_{\text{London}}} \propto T \sum_{\omega_n} \left\langle \frac{\Delta \phi^2 v^2}{(\omega_n^2 + |\Delta \phi|^2)^{3/2}} \right\rangle_k \tag{6}$$

in London theory, where T-dependence of Δ is deter-
an opposite effect to the both contributions inside and outside of vortex cores. Simple in λ energy is weaker than estimate by Eilenberger theory appears smaller than $H_{c1}(T)$ with $\lambda^2(T)$.

Next, we study $H_{c1}(T)$ in chiral p-wave superconductors. $H_{c1}(T)$ in p_{-}-wave pairing is smaller than that in p_{+}-wave pairing. This difference in quantitative estimate is consistent to previous results by phenomenological GL theory.\(^{13,14}\) In chiral p-wave superconductors, opposite chiral component is induced around vortices of main chiral component, and core energy becomes smaller by the induced component. Compared with p_{+}-wave pairing, the induced component is larger in p_{-}-wave pairing, and the core energy is smaller, making H_{c1} smaller. If domains of p_{+}-wave pairing and p_{-}-wave pairing coexist at a zero-field, on increasing fields vortices penetrate at lower H_{c1} only into the p_{-}-wave domain, where chirality is antiparallel to the applied field.\(^{14}\) As for the T-dependence, in Fig. 1(c) we see that normalized H_{c1} both for p_{+}- and p_{-}-wave pairings have similar T-dependence to that in s-wave pairing. This is reasonable, because p_{\pm}-wave pairing with $|\phi_{\pm}| = 1$ has full gap, as in s-wave pairing.

In summary, we quantitatively estimated different T-dependences of H_{c1} between s-wave and d-wave pairings by Eilenberger theory. The T-dependences of $H_{c1}(T)$ show quantitative deviation from $\lambda_{\text{London}}^2(T)$. We also studied differences of $H_{c1}(T)$ between p_{+} and p_{-}-wave pairing in chiral p-wave superconductors. We expect that future experimental studies will confirm the relations of $H_{c1}(T)$ and the pairing symmetry in various anisotropic superconductors.

We would like to thank K.M. Suzuki and K. Inoue for fruitful discussions, and their supports for calculations.

Fig. 1. (Color online) (a) Magnetization curve of B as a function of applied field H at $T/T_c = 0.1, 0.3, 0.5$ and 0.7 for d-wave pairing. (b) T-dependence of $H_{c1}(T)$ for s, d, p_{+} and p_{-}-wave pairings, estimated by Eilenberger theory. (c) $H_{c1}(T)$ in (b) is replotted as normalized $H_{c1}(T)/H_{c1}(T = 0.05T_c)$. We also present normalized $\lambda_{\text{London}}^{-2}(T)$ for s- and d-wave pairings.

determined by gap eq. (3) in uniform states. In the s-wave pairing, as shown in Fig. 1(c), normalized $H_{c1}(T)$ in Eilenberger theory appears smaller than $\lambda_{\text{London}}^{-2}(T)$, and shows decreases even at low T. This indicates that the vortex core energy still has T-dependence at low T, rather than saturation expected by $\lambda_{\text{London}}^{-2}(T)$. This may include the contribution of vortex core shrink on lowering T by Kramer-Pesch effect.\(^{11}\) On the other hand, in the d-wave pairing, $H_{c1}(T)$ in Eilenberger theory is higher than $\lambda_{\text{London}}^{-2}(T)$. Thus, T-dependence of the core energy is weaker than estimate by $\lambda_{\text{London}}^{-2}(T)$. This is an opposite effect to the s-wave pairing case, and indicates that the estimate of core creation energy is not simple in d-wave pairing because we have to consider both contributions inside and outside of vortex cores. The latter is contributions by quasiparticles extending toward node-directions.\(^{12}\) These behaviors of $H_{c1}(T)$ is also confirmed for $\kappa = 6.9$. We expect that the relation in eq. (1) will be examined in experiments, comparing $H_{c1}(T)$ with $\lambda^{-2}(T)$.

1) R. Okazaki, M. Konczykowski, C. J. van der Beek, T. Kato, K. Hashimoto, M. Shimozawa, H. Shishido, M. Yamashita, M. Ishikado, H. Kito, A. Iyo, H. Eisaki, S. Shamoto, T. Shibauchi, and Y. Matsuda: Phys. Rev. B \textbf{79} (2009) 064520.
2) Z. Pribulova, T. Klein, J. Kacmarcik, C. Marcenat, M. Konczykowski, S. L. Budko, M. Tillman, and P. C. Canfield: Phys. Rev. B \textbf{79} (2009) 020508(R).
3) R. Okazaki, M. Shimozawa, H. Shishido, M. Konczykowski, Y. Haga, T. D. Matsuda, E. Yamamoto, Y. Onuki, Y. Yanase, T. Shibauchi, and Y. Matsuda: J. Phys. Soc. Jpn. \textbf{79} (2010) 084705.
4) A. L. Fetter and P. C. Hohenberg: in Superconductivity, ed. R. D. Parks (Dekker, New York, 1969), Chap. 14.
5) L. Kramer and W. Pesch, Solid State Commun. \textbf{12} (1973) 549.
6) U. Klein: J. Low Temp. Phys. \textbf{69} (1987) 1.
7) M. Ichioka and K. Machida: Phys. Rev. B \textbf{76} (2007) 064502.
8) M. Ichioka and K. Machida: Phys. Rev. B \textbf{65} (2002) 224517.
9) K. Watanabe, T. Kita, and M. Arai: Phys. Rev. B \textbf{76} (2007) 064502.
10) M.M. Doria, J.E. Gubernatis, and D. Rainer: Phys. Rev. B \textbf{79} (2009) 064520.
11) L. Kramer and W. Pesch: Z. Phys. \textbf{269} (1974) 59.
12) M. Ichioka, A. Hasegawa, and K. Machida: Phys. Rev. B \textbf{59} (1999) 184; M. Ichioka, A. Hasegawa, and K. Machida: Phys. Rev. B \textbf{59} (1999) 8902.
13) R. Heeb and D.F. Agterberg: Phys. Rev. B \textbf{59} (1999) 7076.
14) M. Ichioka, Y. Matsunaga, and K. Machida: Phys. Rev. B \textbf{71} (2005) 172510.