Risk factors for mortality in hemodialysis patients with COVID-19: a systematic review and meta-analysis

Fengping Wang*a, Guangyu Ao*b, Yushu Wang*c,d*, Fuqiang Liue, Mulong Bao*e, Ming Gao*c, Shulu Zhou*b and Xin Qif

aDepartment of Nephrology, Chengdu Second People’s Hospital, Chengdu, PR China; bDepartment of Nephrology, Chengdu First People’s Hospital, Chengdu, PR China; cDepartment of Cardiology, Chengdu First People’s Hospital, Chengdu, PR China; dChengdu West China Clinical Research Center Co., Ltd, Chengdu, PR China; eDepartment of Intensive Care Unit, Chengdu First People’s Hospital, Chengdu, PR China; fDepartment of Neurology, the Affiliated Hospital of Southwest Jiaotong University & the Third People’s Hospital of Chengdu, Chengdu, PR China

ABSTRACT

Background: New evidence from studies on risk factors for mortality in hemodialysis (HD) patients with COVID-19 became available. We aimed to review the clinical risk factors for fatal outcomes in these patients.

Methods: We performed meta-analysis using the PubMed, EMBASE, and Cochrane databases. A fixed- or random-effects model was used for calculating heterogeneity. We used contour-enhanced funnel plot and Egger’s tests to assess potential publication bias.

Results: Twenty-one studies were included. The proportion of males was lower in the survivor group than in the non-survivor group (OR = 0.75, 95% CI [0.61, 0.94]). The proportion of respiratory diseases was significantly lower in the survivor group than in the non-survivor group (OR = 0.42, 95% CI [0.29, 0.60]). The proportion of patients with fever, cough, and dyspnea was significantly lower in the survivor group (fever: OR = 0.53, 95% CI [0.31, 0.92]; cough: OR = 0.50, 95% CI [0.38, 0.65]; dyspnea: OR = 0.25, 95% CI [0.14, 0.47]) than in the non-survivor group. Compared with the non-survivor group, the survivor group had higher albumin and platelet levels and lower leucocyte counts.

Conclusions: Male patients might have a higher risk of developing severe COVID-19. Comorbidities, such as respiratory diseases could also greatly influence the clinical prognosis of COVID-19. Clinical features, such as fever, dyspnea, cough, and abnormal platelet, leucocyte, and albumin levels, could imply eventual death. Our findings will help clinicians identify markers for the detection of high mortality risk in HD patients at an early stage of COVID-19.

Abbreviations: HD: hemodialysis; COVID-19: coronavirus disease 2019; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; ESRD: end-stage renal disease; QUIP S: Quality In Prognosis Studies; CI: confidence intervals; WMD: weighted mean difference

Introduction

Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has rapidly spread worldwide and has become a global pandemic. As of 19 February 2021, there have been more than 100 million confirmed cases and over 2 million deaths. The common symptoms of COVID-19 include fever, cough, dyspnea, and diarrhea [1]. According to published data, the spectrum of disease is highly variable and can be asymptomatic or progress to fatal multiorgan failure [2]. To date, the mechanisms underlying these differences in disease presentation are not well understood. Multiple international investigators have revealed that patients who are older or have comorbidities, such as diabetes, hypertension, obesity, cardiovascular diseases, and chronic lung disease were not only more susceptible to COVID-19 but also tended to have a higher risk of death due to COVID-19 [3,4]. However, these findings were mainly obtained from studies conducted in the general population. The
impact of COVID-19 specifically on hemodialysis (HD) patients is poorly understood.

Patients on maintenance HD with end-stage renal disease (ESRD) are particularly vulnerable to SARS-CoV-2 infection and have a high mortality rate [5]. First, HD patients with significant comorbidities, such as diabetes, hypertension, and cardiovascular disease and older age, place them at higher risk of developing severe illness. Second, HD patients have abnormal immune system responses due to the uremic state [6], which results in both impaired responses and a pro-inflammatory state. Because of their immunocompromised status, the clinical presentation could be different from that of the general population, which may increase the difficulty of diagnosis and treatment of HD patients. Third, due to the nature of their illness, HD patients must travel from home to the hospital routinely and interact with doctors, nurses, medical workers, and other patients in a shared space for at least 12 h weekly, which may lead to widespread cross-contamination.

Previous data revealed that the estimated mortality rate related to maintenance dialysis in patients with COVID-19 ranged between 6.5 and 52% [5,7–11], which is much higher than that in the general population. To effectively predict the progression of the disease and improve protective and preventive strategies, it is crucial to identify the risk factors for mortality in patients with COVID-19 on maintenance HD. Therefore, we aimed to perform a systematic review and meta-analysis of the clinical presentation, disease course, laboratory, outcomes, and risk factors of survivors and non-survivors among HD COVID-19 patients to help clinical physicians make better decisions.

Materials and methods

Search strategy

We follow the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement to perform the meta-analysis [12]. An electronic search of the PubMed, EMBASE, and Cochrane Library databases was conducted from 1 December 2019 to 29 August 2021, with no language restrictions. OAlster and OpenGrey were searched for gray literature. The following keywords and/or medical subject heading terms were used: (‘novel coronavirus’ or ‘2019-nCoV’ or ‘coronavirus disease 2019’ or ‘SARS-CoV-2’ or ‘COVID-19’) AND (HD OR renal insufficiency OR ESRD OR renal replacement therapy OR dialysis OR HD OR chronic kidney disease (CKD) OR chronic kidney failure OR CKD-G5D OR end-stage kidney disease). Details of the search strategy for each database are provided in Supplementary Material 1. A manual search of possible articles relevant to this topic was conducted. We also communicated with the corresponding authors of the included studies for additional data on items needed in our study to accurately calculate the outcome measures.

Study selection

Two independent investigators (GA and FW) initially screened the titles and abstracts. Full-length articles from the identified studies were retrieved. The inclusion criteria in our meta-analysis were as follows: (1) HD patients with confirmed COVID-19; (2) reported demographics, comorbidities, clinical manifestations, laboratory values, and outcomes of survivors and non-survivors; and (3) risk factors for mortality. Studies were excluded if they were (1) case reports, conference abstracts, editorials, non-clinical studies, and reviews or (2) duplicated publications.

Data extraction and quality assessment

Two investigators (GA and FW) independently extracted data from the studies that fulfilled our inclusion criteria. Discrepancies were resolved by discussion at group conferences. The extracted data were as follows: name of the first author, study period, study design, region, number of participants, outcomes, HD access, and ESRD vintage. The endpoint was all-cause mortality. The quality of studies was assessed using the Newcastle–Ottawa Scale (NOS) by two independent investigators (YW and QX) [13]. Studies that achieved seven or more, four to six, and fewer than four stars on NOS were considered to be of high, medium, and poor quality, respectively [14]. In addition, we used the Quality In Prognosis Studies (QUIPS) tool for the assessment of the risk of bias [15]. The maximum score was nine stars, and scores greater than six were considered to indicate high quality.

Statistical analysis

The collected data from the included studies were analyzed using RevMan version 5.3 (The Nordic Cochrane Centre for The Cochrane Collaboration, Copenhagen, Denmark) and Stata software 15.1 (StataCorp LLC, College Station, TX). Reported odds ratios (ORs) and 95% confidence intervals (CIs) were extracted from the included studies. ORs with 95% CIs were used as summary estimates for dichotomous outcomes. In addition, continuous variables were compared by calculating the
weighted mean difference (WMD) or standardized mean difference, when applicable. Heterogeneity among studies was evaluated using Cochran’s Q test and $I^2$ statistic. $I^2$ statistics were used to assess the magnitude of heterogeneity wherein 25%, 50%, and 75% represented low, moderate, and high degrees of heterogeneity, respectively. The fixed-effect model (Mantel–Haenszel) was used to calculate pooled estimates among studies if $I^2$ was $\leq 50\%$. If $I^2$ was $>50\%$, the random-effects model (DerSimonian and Laird) was preferred [16,17]. A random-effect model was also applied for the meta-analyses that were analyzed in a fixed-effect model in order to verify our results. Sensitivity or subgroup analyses were conducted to assess the heterogeneity. Sensitivity analysis was performed to investigate the stability of the outcome and was performed by sequentially excluding one study at a time. If there were more than 10 studies, publication bias would be assessed [17]. To visually inspect asymmetry due to publication bias, funnel plots and contour-enhanced funnel plots were constructed. Additionally, Begg’s and Egger’s tests were conducted for the quantitative analysis of publication bias, where $p < .05$ was statistically significant. Statistical significance ($p$) was set at $<.05$. This study was registered with PROSPERO (number CRD42021241582).

**Results**

**Identification of relevant studies**

Through a literature search, a total of 3171 potentially eligible studies were identified based on predefined selection criteria. After removal of duplicates, a review of the titles and abstracts of 1839 articles was performed, and 1755 studies were further excluded after screening the titles and abstracts. A total of 84 articles were obtained and read in full. Of these, 63 studies were excluded for reasons detailed in Figure 1. Ultimately, 21 studies [18–38], comprising 2898 HD patients with COVID-19, were included in this meta-analysis. The process of study retrieval is summarized in Figure 1.

**Study characteristics and quality assessment**

Demographic data of the patients in the included trials are presented in Table 1. Among the 21 included
Table 1. Baseline characteristics of included studies.

| Author               | Country         | Research type                      | Period                      | Number of patients | ESRD vintage, years<br><sup>a</sup> | Survival  | Death  | Hemodialysis access                        |
|----------------------|-----------------|------------------------------------|-----------------------------|--------------------|--------------------------------------|------------|--------|-------------------------------------------|
| Stefan et al. [18]   | Romania         | Observational retrospective cohort  | 24 March–22 May 2020        | 37                 | 2.9 (0.4–5.8) [3.6 (1.8–4.8)]        | 18 (60)    | 12 (40) | Arteriovenous fistula 18 (60) 12 (40)     |
| Creput et al. [19]   | France          | Observational retrospective cohort  | 13 March–15 April 2020      | 38                 | 3.2 (0.1–14.2) [4.3 (0.5–17.3)]       | NR NR      | NR NR | Central venous catheter NR NR NR NR NR NR |
| Zou et al. [20]      | China           | Observational retrospective cohort  | 1 January–25 March 2020     | 66                 | 5.0 (3.2, 6.0) [4.5 (2.2, 7.0)]       | 44 (91.6)  | 4 (8.4) | Arteriovenous fistula NR NR NR NR NR NR  |
| Goicoechea et al. [21]| Spain          | Observational retrospective cohort  | 12 March–10 April 2020      | 36                 | NR NR                                | NR NR      | NR NR | Central venous catheter NR NR NR NR NR NR |
| Deshpande et al. [22]| India           | Observational retrospective cohort  | 1 March–25 May 2020         | 75                 | NR NR                                | NR NR      | NR NR | NR |
| Bahat et al. [23]    | Turkey          | Observational retrospective cohort  | 11 March–12 May 2020        | 25                 | NR NR                                | NR NR      | NR NR | NR |
| Mazzoleni et al. [24]| Belgium         | Retrospective cross-sectional cohort | 6 March–4 April 2020       | 40                 | NR NR                                | NR NR      | NR NR | NR |
| Seidel et al. [25]   | Germany         | Observational retrospective cohort  | February–April 2020        | 56                 | NR NR                                | NR NR      | NR NR | NR |
| Min et al. [26]      | China           | Observational retrospective cohort  | Until 28 February 2020      | 74                 | 5.6 (3–7.1) [4.3 (2.4–4.9)]          | 43 (71.0)  | 17 (29.0) | Arteriovenous fistula 43 (71.0) 17 (29.0)  |
| Sipahi et al. [27]   | Turkey          | Observational retrospective cohort  | 3 March–23 April 2020       | 23                 | NR NR                                | NR NR      | NR NR | Central venous catheter NR NR NR NR NR NR |
| Shang et al. [28]    | China           | Observational retrospective cohort  | 3 February–4 April 2020     | 47                 | NR NR                                | NR NR      | NR NR | NR |
| Hendra et al. [29]   | UK              | Observational retrospective cohort  | 15 April–26 May 2020        | 148                | NR NR                                | NR NR      | NR NR | NR |
| Sosa et al. [30]     | Guatemala       | Observational retrospective cohort  | 1 May–31 July 2020          | 319                | NR NR                                | NR NR      | NR NR | NR |
| Islam et al. [31]    | Turkey          | Observational retrospective cohort  | NR                           | 34                 | 4.7 ± 3.6 [9 ± 7.5]                  | NR NR      | NR NR | NR |
| Lugon et al. [32]    | Brazil          | Observational retrospective cohort  | February–December 2020      | 741                | NR NR                                | 469 (77.9) 133 (22.1) | 86 (61.9) 53 (38.1) | Arteriovenous fistula 469 (77.9) 133 (22.1) 86 (61.9) 53 (38.1)  |
| Turgutalp et al. [33]| Turkey          | Observational retrospective cohort  | 17 April–1 June 2020        | 567                | NR NR                                | NR NR      | NR NR | Central venous catheter NR NR NR NR NR NR |
| Ahmed et al. [34]    | United Arab Emirates | Observational retrospective cohort | 1 March–1 July 2020       | 152                | NR NR                                | NR NR      | NR NR | NR |
| Can et al. [35]      | Turkey          | Observational retrospective cohort  | 1 May–31 December 2020      | 35                 | NR NR                                | NR NR      | NR NR | NR |
| Medjeral-Thomas et al. [36]| UK          | Observational retrospective cohort  | March–May 2020              | 106                | NR NR                                | NR NR      | NR NR | NR |
| Prasad et al. [37]   | India           | Observational prospective cohort   | 15 March–31 July 2020       | 263                | NR NR                                | 162 (71.1) 66 (28.9) | 16 (45.7) 19 (54.3) | Arteriovenous fistula 162 (71.1) 66 (28.9) 16 (45.7) 19 (54.3)  |
| Quiroga et al. [38]  | Spain           | Observational prospective cohort   | 15 March–28 April 2020      | 16                 | NR NR                                | 6 (50)     | 6 (50) | Central venous catheter 6 (50) 6 (50)  |

<br><sup>a</sup>Data presented as median (IQR) or mean (SD); NR: not reported
Table 2. Patient characteristics of included studies.

| Author                | Age*          | Male (%) | Diabetes | Hypertension | Cancer | Coronary heart disease | Ischemic cardiopathy | COPD | Chronic lung disease |
|-----------------------|---------------|----------|----------|--------------|--------|------------------------|----------------------|------|----------------------|
| Stefan et al.         | 63 (55–68)    | 69 (55–72) | 16 (53)  | 3 (43)       | 11 (37)| 2 (29)                | 25 (83)              | 5 (71)| 1 (3)                | 1 (14)| 13 (43) | 6 (86) | NR | NR | 1 (3) | 2 (29) | NR | NR |
| Creput et al.         | 65 (31–89)    | 74 (63–85) | 22 (73)  | 8 (100)      | 15 (50)| 2 (25)                | 29 (97)              | 7 (88)| NR                   | NR | NR | 12 (40) | 5 (63)| NR | NR | NR | NR | NR |
| Zou et al.            | 65.5          | 60        | 20 (41.7)| 11 (61.1)    | NR    | NR        | NR        | NR | 2 (4.2)              | 2 (11.1) | 10 (20.8) | 10 (55.6) | NR | NR | 7 (14.6) | 3 (16.7) | NR | NR |
| Goicoechea et al.     | 69 ± 14       | 75 ± 6    | 17 (68)  | 6 (54)       | 17 (68)| 6 (54)                | 25 (100)             | 10 (91)| NR                   | NR | NR | 7 (28) | 1 (9) | NR | NR | 6 (24) | 1 (9) | NR | NR |
| Deshpande et al.      | 53.35 ± 12.56 | 60 ± 11.8 | 37 (56.1)| 6 (66.7)     | 32 (48.5)| 7 (77.8)             | 49 (74.2)            | 6 (66.7)| NR                   | NR | NR | 18 (27.3) | 4 (44.4)| NR | NR | 1 (1.5) | 3 (33.3)| NR | NR |
| Bahat et al.          | 60.8 ± 14.5   | 59.4 ± 21.1| 9 (36)  | 1 (20)       | 15 (75)| 3 (60)                | 15 (75)              | 4 (80) | NR                   | NR | NR | 7 (35) | 2 (40) | NR | NR | 1 (5) | 0 (0)  | NR | NR |
| Mazzoleni et al.      | 71 (63–79)    | 78 (73–82)| 14 (48.3)| 9 (81.8)     | 19 (65.5)| 7 (63.6)             | 26 (89.3)            | 11 (100)| 2 (6.9)              | 1 (9.1)| NR | NR | NR | NR | NR | 9 (31.0)| 7 (63.6)| NR | NR |
| Seidel et al.         | NR            | NR        | 18 (43.9)| 7 (46.7)     | 34 (82.9)| 9 (60.0)             | NR                   | NR | 16 (39.0)            | 5 (33.3) | NR |
| Min et al.            | 63.00         | 63.00     | 25 (41.9)| 9 (61.5)     | NR    | NR        | NR        | NR | NR                   | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR |
| Sipahi et al.         | NR            | NR        | 8 (40)   | 3 (100)      | NR    | NR        | NR        | NR | NR                   | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR |
| Shang et al.          | 57.2 ± 15.0   | 70.6 ± 11.8| 23 (60.5)| 7 (77.8)     | NR    | NR        | NR        | NR | NR                   | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR |
| Hendra et al.         | 61.70 ± 14.6  | 71.69 ± 11.9| 60 (53.6)| 24 (66.7)    | 58 (51.8)| 20 (55.6)            | 91 (81.3)            | 31 (86.1)| NR                   | NR | NR | 25 (22.3) | 18 (50)| NR | NR | 11 (9.8) | 8 (22.2)| NR | NR |
| Sosa et al.           | NR            | NR        | 68 (29.7)| 58 (64.4)    | NR    | NR        | NR        | NR | NR                   | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR |
| Islam et al.          | 59.8 ± 13.2   | 72.8 ± 6.6| 12 (42.9)| 3 (50)       | NR    | NR        | NR        | NR | NR                   | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR |
| Lugon et al.          | 55 ± 16       | 64 ± 15   | 364 (60.9)| 88 (63.3)    | 216 (35.9)| 77 (55.4)            | 498 (82.7)           | 121 (87.1)| 21 (3.5)             | 6 (4.3)| NR | NR | 31 (5.1) | 10 (7.2)| 17 (2.8)| 10 (7.2)| NR | NR | NR |
| Turgutalp et al.      | 63 (52–71)    | 66 (57–74)| 242 (51.1)| 54 (58)     | 218 (46.4)| 43 (47.3)            | 374 (79.1)           | 70 (79.5)| 24 (5.3)             | 6 (6.5)| NR | NR | 180 (42.0) | 42 (49.4)| 56 (12.7)| 21 (23.6)| NR | NR | NR |
| Ahmed et al.          | 51.2 ± 11.3   | 64 ± 3.5  | 112 (81)| 11 (79)     | 75 (54) | 3 (21)                | NR                   | NR | NR                   | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR |
| Can et al.            | NR            | NR        | 9 (37.50)| 6 (54.54)    | 11 (45.83)| 8 (72.72)            | NR                   | NR | NR                   | NR | NR | 11 (45.83)| 5 (45.45)| NR | NR | NR | NR | NR | NR |
| Medjeral-Thomas et al.| 65 (53–72)    | 76 (61–80)| 59 (66)  | 7 (44)       | 48 (53) | 9 (58)                | NR                   | NR | NR                   | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR |
| Prasad et al.         | 50.95 ± 13.45 | 57.00 ± 13.84| 146 (64.0)| 27 (77.1)    | NR    | NR        | NR        | NR | NR                   | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR |
| Quiroga et al.        | 69 ± 17       | 79 ± 4    | 9 (75)   | 4 (100)      | 4 (33) | 3 (75)                | 11 (92)              | 2 (50)| NR                   | NR | NR | 2 (17) | 0 | NR | 1 (8) | 2 (50) | NR | NR |

*aAge data presented as median (IQR) or mean (SD); COPD: chronic obstructive pulmonary disease; NR: not reported*
studies, two studies were prospective in design, while the others were retrospective. Studies sample sizes ranged from 16 to 741 HD patients with COVID-19. The HD vintage of the patients with ESRD was variable, and the type of angioaccess mostly included arteriovenous fistula and central venous catheter. Table 2 shows the characteristics of the survivor and non-survivor groups, including pre-specified risk factors. The clinical outcome was all-cause mortality, and the overall mortality rate was 19.12%. The details of quality assessment using the NOS tool are presented in Table 3. The quality of the included studies was high, with scores ranging from 7 to 8; the average NOS score was 7.6. According to the QUIPS, for the estimation of quality in the included studies, the evaluation results of each item with potential bias are shown as ‘yes’, ‘partly’, ‘no’, or ‘unsure’ in Table 4.

**Demographical characteristics**

The demographic characteristics of the included studies are shown in Figure 2. The results from the 18 included studies (with a total of 2500 patients) showed that the proportion of males was significantly lower in the survivor group than in the non-survivor group (OR = 0.75, 95% CI [0.61, 0.94], p = .01, $I^2 = 0\%$). A random-effects model yielded similar results (Supplemental Figure 1).

The mean age of the patients was 51–71 years in the survivor group across the enrolled studies and 57–79 years in the non-survivor group. Meta-analysis showed that the survivor group was significantly younger than the non-survivor group (WMD = −7.48, 95% CI [−9.99, −4.97], $p < .00001$, $I^2 = 53\%$).

Five studies showed that kidney failure caused by diabetes or hypertension had no significant difference between the mortality and survivor groups (diabetes: OR = 1.09, 95% CI [0.57, 2.06], $p = .80$, $I^2 = 0\%$; hypertension: OR = 0.85, 95% CI [0.45, 1.63], $p = .63$, $I^2 = 27\%$). However, these five studies indicated that the incidence of kidney failure caused by glomerulonephritis was significantly higher in the survivor group than in the non-survivor group (OR = 2.96, 95% CI [1.26, 6.97], $p = .01$, $I^2 = 0\%$). The random-effects model did not alter the overall estimates and yielded results similar to those of the fixed-effect model (Supplemental Figure 1).

**Comorbidities**

The comorbidities of the patients in the included studies are shown in Figure 3. The difference in the prevalence of comorbidities was compared between the
The proportion of cardiovascular and respiratory diseases was significantly lower in the survivor group than in the non-survivor group (cardiovascular disease: OR = 0.73, 95% CI [0.57, 0.93], p = .01, I^2 = 42%; respiratory disease: OR = 0.42, 95% CI [0.29, 0.60], p < .00001, I^2 = 24%). The random-effects model yielded non-significant results for cardiovascular disease but similar results for respiratory disease (Supplemental Figure 1). In addition, meta-analysis showed that the proportion of hypertension, diabetes, and cancer was not significantly different between the survivor and non-survivor groups. The results were used to evaluate publication bias in this meta-analysis. Based on visual inspection of the funnel plot and contour-enhanced funnel plots representing risk factors, such as sex, age, fever, cough, diarrhea, cardiovascular diseases, diabetes, and hypertension, were compared between the survivor and non-survivor groups. The results were used to evaluate publication bias in this meta-analysis. Based on visual inspection of the funnel plot and contour-enhanced funnel plots.

Clinical manifestations

The results of the meta-analysis are presented in Figure 4. Regarding fever, cough, and dyspnea, the proportions were significantly lower in the survivor group (fever: OR = 0.53, 95% CI [0.31, 0.92], p = .02, I^2 = 60%; cough: OR = 0.50, 95% CI [0.38, 0.65], p < .0001, I^2 = 0%; dyspnea: OR = 0.25, 95% CI [0.14, 0.47], p < .0001, I^2 = 61%) than in the non-survivor group. Regarding diarrhea, the proportions were not significantly different between the non-survivor and survivor groups (diarrhea: OR = 0.74, 95% CI [0.49, 1.10], p = .14, I^2 = 2%). The random-effects model yielded significant results for both cough and diarrhea (Supplemental Figure 1).

Laboratory examination

As shown in Figure 5, compared with the non-survivor group, the survivor group had higher albumin levels (WMD = 3.82, 95% CI [1.98, 5.66], p < .0001, I^2 = 55%), lower leucocyte counts (WMD = −1.45, 95% CI [−2.16, −0.75], p < .00001, I^2 = 50%) and higher platelet counts (WMD = 16.06, 95% CI [8.68, 31.26], p = .04, I^2 = 0%). Hemoglobin level and platelet count showed no significant difference between the survivor and non-survivor groups (hemoglobin: WMD = −0.18, 95% CI [−4.72, 2.56], p = .56, I^2 = 38%). The random-effects model yielded similar results (Supplemental Figure 1).

Sensitivity analysis/subgroup analysis and publication bias

Sensitivity analysis was done by excluding one study at a time; subgroup analysis based on countries (European versus Asian countries) and sample size (>100 versus <100 patients) did not significantly alter the overall estimates nor reduce the heterogeneity. A funnel plot and contour-enhanced funnel plot representing risk factors, such as sex, age, fever, cough, diarrhea, cardiovascular diseases, diabetes, and hypertension, were compared between the survivor and non-survivor groups. The results were used to evaluate publication bias in this meta-analysis. Based on visual inspection of the funnel plot and contour-enhanced funnel plots.
Figure 2. Forest plots depict the comparison of demographical characteristics in survivor and non-survivor groups.
alone, there asymmetry was not evident in the analysis of cough as a risk factor, representing a possibility of publication bias. This is further supported by the results of the Begg's test ($p = .246$), although the results of the Egger's test are statistically significant ($p = .025$) (Supplemental Material 2). No publication bias was found in other groups.

**Discussion**

Since the mortality rate in HD patients with COVID-19 was much higher than that in the general population [39–41], the aim of this study was to identify the risk factors for mortality associated with COVID-19 in this population. The results of this meta-analysis showed that males and those of older age might have a higher risk of mortality, and comorbidities, such as cardiovascular and respiratory diseases could also worsen the prognosis of COVID-19 in HD patients. Clinical features, such as fever, dyspnea, and cough, may imply a poor prognosis. Laboratory examinations, such as leucocyte and platelet count and serum albumin level, may be potential predictors of mortality in these patients.

COVID-19-related mortality rate ranges from 1.4 to 8% in the general population. A recently published meta-analysis of 29 international studies demonstrated that the overall mortality rate was 22.4%, and fever was the predominant clinical manifestation in HD patients with COVID-19 [42]. However, their study did not further investigate the risk factors for mortality between surviving and non-surviving HD patients. Most HD patients were old and had multiple comorbidities, such as hypertension, diabetes, and cardiovascular disease. Because of the uremic status, HD patients tend to have a weaker immune system with increased susceptibility to infections [43]. In addition, the HD room where the patients had to visit three times weekly was a crowded and enclosed space, which increased the risk of disease transmission.

CKD is an independent risk factor for COVID-19-associated in-hospital mortality in elderly patients, and acute-on-chronic kidney injury increases the odds of in-hospital mortality in patients with CKD hospitalized with COVID-19 [44]. A study showed that compared with patients without preexisting CKD, dialysis patients had a higher risk for 28-d in-hospital death, whereas patients with non-dialysis-dependent CKD had an intermediate risk [45]. Our data showed that in HD patients, males tend to have higher mortality than females, which might be associated with lifestyle and underlying diseases. As immunity and organ function declines with age, elderly HD patients are more likely to die. These results are similar to those of previous studies in the general population [46]. Interestingly, we found that HD patients with glomerulonephritis as the primary ESRD have a better prognosis than those with diabetes and hypertension. In addition, a previous study reported that other patients with comorbidities could have increased risk of COVID-19-related mortality [47,48]. Our study also indicated that cardiovascular and respiratory diseases were associated with higher risk of COVID-19-related mortality in HD patients.
Patients with cardiovascular or respiratory disease have weakened cardiac or pulmonary function, which makes them more likely to have acute cardiovascular events or develop ARDS; thus, they were considered risk factors for disease progression. However, hypertension and diabetes were shown to be risk factors in the general population and are probably not predictors of mortality in HD patients.
COVID-19 patients with CKD have a high incidence of neutrophilia, poor prognosis, and in-hospital death, with dialysis patients being more vulnerable [49]. The most common clinical symptoms of COVID-19 are fever, cough, dyspnea, and diarrhea, which are the same in HD and non-HD patients [50–53]. A European study

---

**Figure 5.** Forest plots depict the comparison of laboratory examination in survivor and non-survivor groups.
identified that infection-related pulmonary symptoms, such as fever, cough, and dyspnea, were more prevalent in patients with moderate-to-severe COVID-19 [54]. Another study also revealed that fever and cough were risk factors for deterioration in COVID-19 patients [55]. In our meta-analysis, we found that fever, cough, and dyspnea were risk factors for death in HD patients with COVID-19. On one hand, patients with these infection-related respiratory symptoms have poor lung function and low oxygen levels. On the other hand, cough and dyspnea could be the main symptoms of hypervolemia, which is frequently encountered in HD patients. Similar to previous studies in the general population, we also found that higher leucocyte and platelet count, and hypoalbuminemia were associated with higher mortality rate in HD patients [56–60]. Platelet activation plays an important role in inflammation [61]. Studies have shown that a low level of platelets contributed to COVID-19 severity [62,63]. Damaged lung tissues would cause platelet activation and thrombi formation, which lead to the consumption of platelets [64]. When leucocyte count increases, they may be associated with bacterial co-infection that aggravates the disease [65,66]. In HD patients, albumin is an indicator of a patient’s nutritional status and is related to the malnutrition–inflammation complex syndrome, which is also an important risk factor for cardiovascular mortality [67,68].

Our study has several limitations. All of the included studies were retrospective in design. The included observational studies were subject to potential confounders that may weaken or strengthen the overall results. The included studies had a relatively small sample size and short follow-up time compared with the course of the disease. Data on D-dimer, C-reactive protein, procalcitonin, and interleukin 6 levels were insufficient in the included studies and could not be analyzed. Furthermore, most studies did not provide adequate information regarding the adjusted results of risk factors. Our meta-analysis did not obtain information, such as body mass index, drinking history, and smoking history, which are also potential risk factors for disease severity and mortality. Finally, moderate heterogeneity in the range of symptoms and comorbidities across different studies could be due to demographic differences, statistical methods, follow-up duration, and the risk factors analyzed. Subgroup analysis and sensitivity analysis could only explain the source of heterogeneity to a certain extent. We further used the random-effects model for the meta-analyses that were analyzed in a fixed-effect model to strengthen our study and enhance the reproducibility of the results. The conclusions of this meta-analysis still need to be verified by more relevant studies with larger sample sizes, more careful design, and more rigorous implementation. Despite these limitations, our meta-analysis has several advantages. First, to the best of our knowledge, this is the first meta-analysis to identify the clinical risk factors for fatal outcomes in HD patients with COVID-19. In addition, the heterogeneity across the studies was mostly low or moderate, which enhanced the reliability of our results.

In conclusion, male patients might have a higher risk of developing severe COVID-19. Comorbidities, such as respiratory diseases could also greatly influence the clinical prognosis of COVID-19. Clinical features, such as fever, dyspnea, cough, and abnormal platelet, leucocyte, and albumin levels could imply eventual death. Our findings will help clinicians identify markers for the detection of high mortality risk in HD patients at an early stage of COVID-19.

Disclosure statement
The authors report no conflict of interest.

Funding
This work was supported by the Foundation of Science and Technology Department of Sichuan Province under Grant 2019YFS0283.

References
[1] Li LQ, Huang T, Wang YQ, et al. COVID-19 patients’ clinical characteristics, discharge rate, and fatality rate of meta-analysis. J Med Virol. 2020;92(6):577–583.
[2] Wiersinga WJ, Rhodes A, Cheng AC, et al. Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19): a review. JAMA, 2020;324(8):782–793.
[3] Ioannou GN, Locke E, Green P, et al. Risk factors for hospitalization, mechanical ventilation, or death among 10,131 US veterans with SARS-CoV-2 infection. JAMA Netw Open. 2020;3(9):e2022310.
[4] Barek MA, Aziz MA, Islam MS. Impact of age, sex, comorbidities and clinical symptoms on the severity of COVID-19 cases: a meta-analysis with 55 studies and 10014 cases. Heliyon. 2020;6(12):e05684.
[5] Valeri AM, Robbins-Juarez SY, Stevens JS, et al. Presentation and outcomes of patients with ESKD and COVID-19. J Am Soc Nephrol. 2020;31(7):1409–1415.
[6] Betjes MG. Immune cell dysfunction and inflammation in end-stage renal disease. Nat Rev Nephrol. 2013;9(5):255–265.
[7] Ma Y, Diao B, Lv X, et al. Epidemiological, clinical, and immunological features of a cluster of COVID-19-contrasted hemodialysis patients. Kidney Int Rep. 2020;5(8):1333–1341.
[8] Tortonese S, Scriabine I, Anjou L, et al. COVID-19 in patients on maintenance dialysis in the Paris region. Kidney Int Rep. 2020;5(9):1535–1544.

[9] Tomacruz ID, So PN, Pasilan RM, et al. Clinical characteristics and short-term outcomes of chronic dialysis patients admitted for COVID-19 in metro manila, Philippines. Int J Nephrol Renovasc Dis. 2021;14:41–51.

[10] Corbett RW, Blakey S, Nitsch D, West London Renal and Transplant Centre, et al. Epidemiology of COVID-19 in an urban dialysis center. J Am Soc Nephrol. 2020;31(8):1815–1823.

[11] Alberici F, Delbarba E, Manenti C, et al. A report from the Brescia renal COVID task force on the clinical characteristics and short-term outcome of hemodialysis patients with SARS-CoV-2 infection. Kidney Int. 2020;98(1):20–26.

[12] Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. J Clin Epidemiol. 2021;134:178–189.

[13] Wells GA, Shea B, O’Connell D, et al. The Newcastle-Ottawa scale (NOS) for assessing the quality if non-randomized studies in meta-analyses. Ottawa, Canada: Dept of epidemiology and community medicine, University of Ottawa; 2021. Available from: http://www.ohri.ca/programs/clinical_epidemiology/oxford.htm. Accessed on February 1, 2021.

[14] McPheeters ML, Kripalani S, Peterson NB, et al. Closing the quality gap: revisiting the state of the science (vol. 3: quality improvement interventions to address health disparities). Evid Rep Technol Assess. 2012;3(208.3):1–475.

[15] Hayden JA, van der Windt DA, Cartwright JL, et al. Assessing bias in studies of prognostic factors. Ann Intern Med. 2013;158(4):280–286.

[16] DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7(3):177–188.

[17] Higgins JPT, Thomas J, Chandler J, et al. Cochrane handbook for systematic reviews of interventions version 6.2. In: Page MJ, Welch VA, editors. 2021. Cochrane, 2021. Available from www.training.cochrane.org/handbook.

[18] Stefan G, Mehedinti AM, Andreiana I, et al. Clinical features and outcome of maintenance hemodialysis patients with COVID-19 from a tertiary nephrology care center in Romania. Ren Fail. 2021;43(1):49–57.

[19] Creput C, Fumeron C, Toledano D, et al. COVID-19 in patients undergoing hemodialysis: prevalence and asymptomatic screening during a period of high community prevalence in a large Paris center. Kidney Med. 2020;2(6):716–723.e1.

[20] Zou R, Chen F, Chen D, et al. Clinical characteristics and outcome of hemodialysis patients with COVID-19: a large cohort study in a single Chinese center. Ren Fail. 2020;42(1):950–957.

[21] Goicoechea M, Sánchez Cámara LA, Macías N, et al. COVID-19: clinical course and outcomes of 36 hemodialysis patients in Spain. Kidney Int. 2020;98(1):27–34.

[22] Deshpande R, Dash S, Bahadur MM, et al. Study of COVID-19 pandemic in representative dialysis population across Mumbai, India: an observational multicentric analysis. J Assoc Physicians India. 2020;68(10):13–17.

[23] Aydin Bahat K, Parmaksiz E, Sert S. The clinical characteristics and course of COVID-19 in hemodialysis patients. Hemodial Int. 2020;24(4):534–540.

[24] Mazzoleni L, Ghafari C, Mestrez F, et al. COVID-19 outbreak in a hemodialysis center: a retrospective monocentric case series. Can J Kidney Health Dis. 2020;7:2054358120944298.

[25] Seidel M, Hölzer B, Appel H, COVID dialysis working group, et al. Impact of renal disease and comorbidities on mortality in hemodialysis patients with COVID-19: a multicenter experience from Germany. J Nephrol. 2020;33(5):871–874.

[26] Min Y, Cheng L, Tu C, et al. Clinical characteristics of deceased hemodialysis patients affected by COVID-19 [published online ahead of print, 2021 Jan 2]. Int Urol Nephrol. 2021;53(4):797–796.

[27] Sipahi S, Dheir H, ToCoGlu A, et al. Characteristics and mortality determinants of COVID-19 patients undergoing haemodialysis [published online ahead of print, 2020 Sep 20]. Turk J Med Sci. 2021;51(2):421–427. DOI:10.3906/sag.2006-54.

[28] Shan W, Li Y, Li H, et al. Correlation between laboratory parameters on admission and outcome of COVID-19 in maintenance hemodialysis patients. Int Urol Nephrol. 2021;53(1):165–169.

[29] Hendra H, Vajgel G, Antonelou M, et al. Identifying prognostic risk factors for poor outcome following COVID-19 disease among in-Centre haemodialysis patients: role of inflammation and frailty [published online ahead of print, 2021 Jan 30]. J Nephrol. 2021;34(2):315–319.

[30] Sosa R, Garcia P, Cipriano EO, et al. Coronavirus disease 2019 in patients with end-stage kidney disease on hemodialysis in Guatemala [published online ahead of print, 2021 Jan 29]. Kidney Int Rep. 2021;6(4):1110–1117. DOI:10.1016/j.ekir.2021.01.028.

[31] Islam M, Ozturk Y, Koc Y. Clinical outcomes of COVID-19 in hemodialysis patients in the city of zonguldak, Turkey [published online ahead of print, 2021 Jan 15]. Int Urol Nephrol. 2021;53(7):1445–1448.

[32] Lugon JR, Neves PDMM, Pio-Abreu A, the COVID-19 HD-Brazil Investigators, et al. COVID-19 HD-Brazil investigators. Evaluation of Central venous catheter and other risk factors for mortality in chronic hemodialysis patients with COVID-19 in Brazil. Int Urol Nephrol. 2021;1–7. [published online ahead of print].

[33] Turgutalp K, Ozturk S, Arici M, et al. Determinants of mortality in a large group of hemodialysis patients hospitalized for COVID-19. BMC Nephrol. 2021;22(1):29.

[34] Ahmed W, Al Obaidli AAK, Joseph P, et al. Outcomes of patients with end stage kidney disease on dialysis with COVID-19 in Abu Dhabi, United Arab Emirates; from PCR to antibody. BMC Nephrol. 2021;22(1):198.

[35] Can Ö, Bilek G, Sahsan S. Risk factors for infection and mortality among hemodialysis patients during COVID-19 pandemic. Int Urol Nephrol. 2021;1–9. [published online ahead of print].

[36] Medjer-Al Thomas NR, Thomson T, Ashby D, et al. Cohort study of outpatient hemodialysis management
strategies for COVID-19 in North-West London. Kidney Int Rep. 2020;5(11):2055–2065.

[37] Prasad N, Behera MR, Bhatt M, et al. Outcomes of symptomatic coronavirus disease 19 in maintenance hemodialysis patient in India. Semin Dial. 2021;34(5):360–367.

[38] Quiroga B, Muñoz Ramos P, Giorgi M, et al. Dynamic assessment of interleukin-6 during hemodialysis and mortality in coronavirus disease-19. Ther Apher Dial. 2021. [published online ahead of print]. DOI:10.1111/1744-9987.13626.

[39] Grasselli G, Zangrillo A, Zanella A, COVID-19 Lombardy ICU Network, et al. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy region, Italy. JAMA. 2020;323(16):1574–1581.

[40] Yi Y, Lagnoton PNP, Ye S, et al. COVID-19: what has been learned and to be learned about the novel coronavirus disease. Int J Biol Sci. 2020;16(10):1753–1766.

[41] Madjid M, Safavi-Naeini P, Solomon SD, et al. Potential effects of coronaviruses on the cardiovascular system: a review. JAMA Cardiol. 2020; 5(7):831–840.

[42] Chen CY, Shao SC, Chen YT, et al. Incidence and clinical impacts of COVID-19 infection in patients with hemodialysis: systematic review and Meta-analysis of 396,062 hemodialysis patients. Healthcare (Basel). 2021;9(1):47.

[43] Collins AJ, Foley RN, Herzog C, et al. US renal data system 2010 annual data report. Am J Kidney Dis. 2011;57(1):A8–e526.

[44] Akchurin O, Meza K, Biswas S, et al. COVID-19 in patients with CKD in New York city. Kidney360. 2021; 2(1):63–70.

[45] Flythe JE, Assimon MM, Tugman MJ, STOP-COVID Investigators, et al. Characteristics and outcomes of individuals with pre-existing kidney disease and COVID-19 admitted to intensive care units in the United States. Am J Kidney Dis. 2021;77(2):90–99.

[46] Zheng Z, Peng F, Xu B, et al. Risk factors of critical & mortal COVID-19 cases: a systematic literature review and Meta-analysis. J Infect. 2020;81(2):e16–e25.

[47] Wu C, Chen X, Cai Y, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med. 2020;180(7):934–943.

[48] Du RH, Liang LR, Yang CQ, et al. Predictors of mortality for patients with COVID-19 pneumonia caused by SARS-CoV-2: a prospective cohort study. Eur Respir J. 2020;55(5):2000524.

[49] Yang D, Xiao Y, Chen J, et al. COVID-19 and chronic renal disease: clinical characteristics and prognosis. QJM. 2020;113(11):799–805.

[50] Trujillo H, Caravaca-Fontán F, Sevillaño Á, et al. SARS-CoV-2 infection in hospitalized patients with kidney disease. Kidney Int Rep. 2020;5(6):905–909.

[51] Wang R, Liao C, He H, et al. COVID-19 in hemodialysis patients: a report of 5 cases. Am J Kidney Dis. 2020; 76(1):141–143.

[52] Xie X, Zhong Z, Zhao W, et al. Chest CT for typical coronavirus disease 2019 (COVID-19) pneumonia: relationship to negative RT-PCR testing. Radiology. 2020; 296(2):E41–E45.

[53] Zhu J, Ji P, Pang J, et al. Clinical characteristics of 3062 COVID-19 patients: a meta-analysis. J Med Virol. 2020;92(10):1902–1914.

[54] Lechien JR, Chiesa-Estomba CM, Place S, COVID-19 Task Force of YO-IFOS, et al. Clinical and epidemiological characteristics of 1420 European patients with mild-to-moderate coronavirus disease 2019. J Intern Med. 2020;288(3):335–344.

[55] Geng MJ, Wang LP, Ren X, et al. Risk factors for developing severe COVID-19 in China: an analysis of disease surveillance data. Infect Dis Poverty. 2021;10(1):48.

[56] Ruan Q, Yang K, Wang W, et al. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhuan, China. Intensive Care Med. 2020;46(5):846–848.

[57] Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020;8(5):475–481.

[58] Goyal P, Choi JJ, Pinheiro LC, et al. Clinical characteristics of covid-19 in New York city. N Engl J Med. 2020; 382(24):2372–2374.

[59] Tian W, Jiang W, Yao J, et al. Predictors of mortality in hospitalized COVID-19 patients: a systematic review and meta-analysis. J Med Virol. 2020;92(10):1875–1883.

[60] Xie J, Wang Q, Xu Y, et al. Clinical characteristics, laboratory abnormalities and CT findings of COVID-19 patients and risk factors of severe disease: a systematic review and meta-analysis. Ann Palliat Med. 2021; 10(2):1928–1949.

[61] Henne V, Slupsky JR, Gräfe M, et al. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature. 1998;391(6667):591–594.

[62] Fard MB, Fard SB, Ramazi S, et al. Thrombosis in COVID-19 infection: role of platelet activation-mediated immunity. Thromb J. 2021;19(1):59.

[63] Yatim N, Boussier J, Chocron R, et al. Platelet activation in critically ill COVID-19 patients. Ann Intensive Care. 2021;11(1):133.

[64] Liu Y, Sun W, Guo Y, et al. Association between platelet parameters and mortality in coronavirus disease 2019: retrospective cohort study. Platelets. 2020;31(4):490–496.

[65] Liu Y, Du X, Chen J, et al. Neutrophil-to-lymphocyte ratio as an independent risk factor for mortality in hospitalized patients with COVID-19. J Infect. 2020; 81(1):e6–e12.

[66] Yang AP, Liu JP, Tao WQ, et al. The diagnostic and predictive role of NLR, d-NLR and PLR in COVID-19 patients. Int Immunopharmacol. 2020;81(1):106504.

[67] Jagadeswaran D, Indhumathi E, Hemamalini AJ, et al. Inflammation and nutritional status assessment by malnutrition inflammation score and its outcome in pre-dialysis chronic kidney disease patients. Clin Nutr. 2019;38(1):341–347.

[68] Kalantar-Zadeh K, Kopple JD, Block G, et al. A malnutrition-inflammation score is correlated with morbidity and mortality in maintenance hemodialysis patients. Am J Kidney Dis. 2001;38(6):1251–1263.