Introduction: Psychological distress (PD) is a risk indicator for common mental health disorders in a community, and it is widely used in population health and epidemiological studies.1–3 It is defined as a set of painful mental and physical symptoms that are associated with normal fluctuations of mood in most people. In some cases, however, psychological distress may indicate the beginning of major depressive disorder, anxiety disorder, schizophrenia, somatization disorder, or a variety of other clinical conditions. It is assessed by many putative self-report measures of depression and anxiety.4

The prevalence of PD has remained stable in the United States for the last two decades.5–7 Recent studies reported a mean prevalence of serious PD in the range of 2.6% to 3.6%,5–7 whereas the prevalence of moderate PD was reported as 15.1%.6

PD is influenced by a multitude of factors that could act as risk factors for PD8–15 or protective against PD.16–24 The risk factors for PD include chronic health conditions and demographic characteristics such as age, sex, education, income, and race/ethnicity. Understanding the factors associated with PD is crucial for developing effective prevention and intervention strategies.
The protective factors include high education, high income, employment status, high social support, health insurance, and physical activities that are associated with lower PD. Immigration status may also act as a protective factor (healthy immigrant effect), suggesting that first-generation immigrants usually have better physical and mental health than the natives of host countries.

Variations in PD across different racial and ethnic groups are of particular interest because of systematic differences in factors that may protect against PD or increase the risk of PD. Racial minorities experience varying levels of stress exposure, but have abilities and resources to cope with them. For example, racial/ethnic minorities can face additional stressors such as perceived racism, stigmatization, and discrimination that can increase the risk of PD. On the other hand, one’s racial/ethnic identity itself may be used as a coping factor, which in turn may become a protective factor against PD.

While education, income, employment, old age, male sex, and social support are well-documented protective factors across all racial/ethnic groups, chronic diseases and disability explain the differences in the prevalence of PD among racial/ethnic groups. However, the degree of protection and magnitude of risk may vary across racial/ethnic groups. For example, the effect of chronic diseases in developing PD is highest among Native Americans, Blacks, and Hispanics. In comparison, the least impact of chronic diseases is seen among non-Hispanic Whites (NHWs) and Asian Americans. Moreover, studies show that differences in PD persist even after controlling for the risk and protective factors for racial/ethnic groups.

Most studies on PD, by race/ethnicity, focus on NHWs, African Americans, or Hispanics. Even when other racial/ethnic minorities are examined, the studies combine the racial groups. Researchers generally combined all the Asian American ethnicities into one group (e.g., Asian Indian, Chinese, Filipino, Japanese, Korean, Vietnamese), whereas research shows challenges in grouping all the Asian American ethnicities together due to their disparate socioeconomic status. Existing studies have generalized the cultural background of Asian Americans and treated them as one racial group. One recent study examined PD among the racial subgroups of Asian Americans. This study observed that despite some shared cultures, the Asian races are culturally diverse, and PD among these subgroups can be significantly different. However, it only included Chinese, Filipino, Vietnamese, Korean, and Japanese Asian American groups and did not include Asian Indians. Besides, this study included data from only one U.S. state.

Asian Indians compose 19% of the Asian American population in the United States. Asian Indians have characteristics that serve as protective factors against PD. For instance, Asian Indians in the United States have high educational attainment, lower unemployment, lower poverty rate, and higher social support through marriage than the general population. Studies have also shown that Asian Indians retain a strong culture, ethnic identity, and traditional family structure at home while adapting to the U.S. culture and propriety outside the home.

Besides the protective factor, Asian Indians are exposed to multiple risks that could lead to PD. For instance, the Asian Indian population in the United States is younger, reports a high incidence of discrimination, and has a high prevalence of chronic diseases, such as diabetes and coronary heart disease, and perceived discrimination for accessing health care services. Existing literature shows that Asian Indians have several protective and risk factors that could help them cope or develop/exaggerate PD. No study has evaluated PD in Asian Indians in the United States. Thus, the objective of this study is to assess PD in the Asian Indian population and compare it with the NHW population in the United States using nationally representative data.

Methods

Study design

This study used a cross-sectional design using National Health Interview Survey (NHIS) data from 2012 to 2017. The study was performed using NHIS public-use files consisting of deidentified data, hence it does not require ethics committee approval.

Data source

NHIS is an annual cross-sectional survey designed to monitor the health of the civilian noninstitutionalized population of the United States. It is conducted by the National Center for Health Statistics and was initiated in 1957. The NHIS collects data on topics related to demographics, health insurance, health care access, health care utilization, health conditions, and behavioral risk factors.
In this study, we used the core survey—household, family, and sample adult components. The sample design involves multistage clustering, stratification, oversampling of specific groups, and use of survey weights to adjust for nonrespondents.

Study sample
Our study sample consisted of all NHWs and Asian Indian adults (age ≥ 18 years) who responded to the sample adult survey and did not have any missing value on the PD measure, as defined by the six-item Kessler (K6) scale. We pooled NHIS data from 2012 to 2017 to ensure an adequate sample size for the Asian Indian subgroup.

The steps for the study sample selection are described in Appendix Figure A1. The final sample consisted of 126,835 participants (2,218 Asian Indians and 124,617 NHWs).

Measures
Dependent variable: moderate–serious nonspecific PD.

The topic of PD was introduced into the survey in 1997.56 NHIS uses the K6 questions, commonly known as the K6 scale, to identify PD. This scale was developed by Kessler et al. for use in the core survey of the NHIS.56 The scale measures nonspecific PD rather than disorder-specific distress. The K6 scale in the NHIS contains six questions about the participant’s mental state in the last 30 days. These questions asked subjects how often (in the last 30 days) they felt sad, nervous, restless/fidgety, hopeless, everything was an effort, and worthless. These items are rated on a five-point Likert scale from “none of the time” (response = 0) to “all of the time” (response = 4), with the summary score ranging from 0 to 24.

Conventionally, the K6 scale uses the cutpoint score of K6 ≥ 13 to identify serious PD. Prochaska et al. determined and validated the subthreshold cutpoint to distinguish between no or low distress (K6 < 5), moderate distress (5 ≥ K6 < 13), and serious distress (K6 ≥ 13).57 Due to the low prevalence of serious PD, the added moderate threshold in the K6 scale helps to identify participants with significant, but not serious, PD.

In this study, we used the K6 scale score of ≥ 5 as a dependent variable to identify the sampling population with moderate–serious PD. We combined the two cutpoints due to the low prevalence of serious PD, especially considering the smaller sample size of the Asian Indian population in the United States.

Key independent variable: Asian Indians versus NHWs.

Race/ethnicity was used as a key independent variable and classified as NHWs and Asian Indians to assess moderate–serious PD between the two groups. Participants were categorized as NHWs and Asian Indians based on their responses to the NHIS questions on (1) origin (Hispanic, Latino, or Spanish origin) and (2) race.

Individuals who responded no to the first question and selected White for race were categorized as NHWs. Individuals who responded no to the first question and selected Asian American and the subcategory Asian Indian for the second question were categorized as Asian Indians. In this study, we used only the Asian Indian race as a key independent variable as PD in people of other races and ethnicities, including Asian Americans and their subgroups, has been studied.17,20,21,24,58

Other independent variables.

For the other independent variables, we used the individual characteristics that are known to be associated with PD based on published literature.17,59–66 We used biological factors such as age (18–39, 40–49, 50–64, or ≥ 65 years) and sex (male and female). Marital status was used to determine the respondent’s social support. Socioeconomic status was determined using education level, employment status, and income level. For determining access to health care, we used insurance status (insured and not insured).

We also included the number of chronic diseases and conditions as no diseases, one disease, and two or more diseases. We used the race-adjusted body-mass index (BMI) to account for differences in the classification of overweight and obesity in Asian Indians and NHWs, as recommended by the World Health Organization guidelines.67 Physical exercise and activity were recorded as daily, weekly, monthly, or never.

The existing literature shows a bidirectional relationship of PD and behavioral characteristics, such as between smoking and PD62–64 as well as between alcohol use and PD.65,66 We included participants’ smoking status (never, past, or current smoker) and their alcohol use status (never, past, or current alcohol user) to observe the effects of these behaviors on PD. The geographical region (Northeast, Midwest, South, and West) and the NHIS (2012–2017) were used as external factors.

Statistical analyses

Unadjusted differences in moderate–serious PD between NHWs and Asian Indians were examined using the Rao–Scott chi-square test. Multivariable logistic regression was used to examine the association...
between race/ethnicity and moderate–serious PD. In the regression model, independent variables were added in sequential blocks to observe their effect on the dependent variable.

The first model was the unadjusted model with only race/ethnicity as an independent variable. In model 2, we added biological factors, age and sex, to the unadjusted model. In model 3, we added education as it is highly protective against PD. In model 4, we added the rest of the protective factors observed in the literature, which include marital status, socioeconomic status, health insurance, and physical activity. In model 5, we included the risk factors for PD, which included race-adjusted BMI, number of chronic diseases, and participants’ smoking and alcohol use status. In model 6, we added geographical regions and NHIS years.

Parameter estimates from regression were transformed to odds ratios (ORs) and their confidence intervals were determined at 95%. The statistically significant level was set at \(p \leq 0.05 \). All analyses incorporated the strata and weights provided by the NHIS to account for the complex survey design. All analyses were performed using SAS 9.4 (SAS Institute, Inc.).

Results

Sample characteristics

Based on the study criteria, data on 2,218 Asian Indians and 124,617 NHWs were analyzed. About half were women (51.4%) and younger than 50 years (50.1%). The majority were married (63.8%), with more than high school education (66.9%), were employed (60.1%), and had health insurance (91.2%). Nearly one in three (62.5%) reported at least one chronic condition. Appendix Table A1 describes the characteristics of the sample in detail.

Description of characteristics of Asian Indians and NHWs

We found that a high percentage of the Asian Indian population was younger (74.2% participants were < 50 years old) compared with NHWs (49.6% participants were < 50 years old). In comparison with NHWs, Asian Indians reported a higher percentage of marriage (77.1% vs. 63.6%), college education (73.20% vs. 34.5%), employment (68.50% vs. 60%), and income above 400% Federal Poverty Level (FPL) (54.40% vs. 42.9%).

The prevalence of chronic diseases was significantly higher in NHWs compared with Asian Indians as 63.1% NHWs reported one or more chronic diseases, whereas only 38.5% of Asian Indians reported one or more chronic diseases. Similarly, NHWs showed a higher prevalence of current smoking status (17.7% vs. 4.8%) and alcohol use (69.9% vs. 44.1%). A higher percentage of Asian Indians were obese compared with NHWs (48% vs. 28%).

Table 1 describes differences in demographics, lifestyle, socioeconomic status, behavioral characteristics, and health status by race/ethnicity.

Table 2 describes differences in demographics, lifestyle, socioeconomic status, behavioral characteristics, and health status by the prevalence of moderate-serious psychological distress.

Unadjusted and adjusted associations of Asian Indian ethnicity with PD

Based on the K6 scale, 19.7% of the sample reported moderate–serious PD, whereas 3.4% of the sample reported serious PD. The ORs and adjusted odds ratios (AORs) from multivariable logistic regression determining the association of race/ethnicity with moderate–serious PD are shown in Table 3. In the unadjusted model (model 1), Asian Indians were less likely to have moderate–serious PD compared with NHWs (OR = 0.50; 95% CI: 0.42–0.58).

After controlling for biological factors, the adjusted odds ratio of moderate–severe PD in Asian Indians was further reduced (AOR = 0.46; 95% CI: 0.39–0.54). Education was highly protective against PD; when controlling for education in model 3, the difference in the likelihood of moderate–serious PD in Asian Indians reduces, but still remains significantly lower in Asian Indians compared with NHWs (AOR = 0.57; 95% CI: 0.49–0.68).

In model 5, after controlling for all the known risk and protective factors and behavioral characteristics (smoking and alcohol use), moderate–serious PD among Asian Indians remained statistically significantly lower compared with NHWs (AOR = 0.72; 95% CI: 0.61–0.85). In the fully adjusted model 6 (not shown in Table 3), Asian Indians were significantly less likely to have PD than NHWs (AOR = 0.7; 95% CI: 0.59–0.82).

Discussion

In this study, we examined the association of Asian Indian ethnicity with PD by comparing Asian Indians with NHWs. Our study shows that even after controlling for the relevant risk and protective factors related to PD, Asian Indians showed a lower prevalence of the disease than NHWs. In our study, the prevalence of moderate–serious PD was 19.7%, similar to the
Table 1. Description of Sample by Racial/Ethnic Characteristics of Adults (≥18 Years) Using the National Health Interview Survey, 2012–2017

Sample characteristics	NHWs	Asian Indians	
	N (124,617)	N (2,218)	
Moderate–serious PD (K6 ≥ 5)	<0.001	25,827	2,677
Moderate–serious PD	No PD	98,790	1,951
Serious PD (K6 ≥ 13)	No PD	120,064	2,187
Age in years	Women	67,514	1,000
18–39	Men	57,103	48.0
40–49	37,116	2,132	
50–64	34,458	2,088	
≥ 65	35,087	2,275	
Marital status	Married	65,643	1,509
Widowed, separated, or divorced	34,578	160	
Never married	24,165	546	
Education	Less than high school	10,812	93
College	11,954	173	
College	34,627	11.3	
Poverty status	< 100% Federal Poverty Level (FPL)	13,384	247
100 to < 200%	19,619	235	
200 to < 400%	34,177	404	
≥ 400%	47,614	544	
Employment	Employed	70,578	1,544
Unemployed	53,989	673	
Health insurance	Insured	113,558	2,029
Uninsured	10,722	182	
Physical activity/exercise	Daily exercise	8,572	59
Weekly	44,802	950	
Monthly, yearly, or never	67,424	1,089	
Unable to exercise	2,862	5	
Race-adjusted BMI	Underweight and normal weight	44,386	707
Overweight	41,677	466	
Obese	34,932	1,020	
No. of chronic diseases	No	42,419	1,425
One	29,672	460	
Two or more	52,510	333	
Smoking status	Never smoker	67,551	1,915
Past smoker	34,176	172	
Current smoker	22,617	126	
Alcohol use	Never drinker	18,199	1,057
Former drinker	19,942	112	

Table 1. (Continued)

Sample characteristics	NHWs	Asian Indians
	N (124,617)	N (2,218)
Current drinker	85,464	1030
Region	Northeast	22,515
Midwest	33,088	385
South	39,520	727
West	29,494	616
NHIS year	2012	20,767
2013	20,119	394
2014	22,360	389
2015	20,359	394
2016	22,727	341
2017	18,285	296

Based on 124,617 NHWs and 2,218 Asian Indians (age ≥ 18 years); cross-sectional data of NHIS participants (Asian Indians or NHWs), from multiple years (2012 through 2017), who participated in the sample adult core and did not have missing data on the PD scale. Numbers may not add up to the total in each group due to missing data for marital status, education, employment, poverty status, health insurance, physical activity, BMI, smoking status, and alcohol use. BMI, body–mass index; K6, six-item Kessler; FPL, Federal Poverty Level; NHIS, National Health Interview Survey; NHWs, non-Hispanic Whites; PD, psychological distress.

18.2% combined moderate and serious PD reported separately by Mojtabai and Jorm using NHIS data from 2001 to 2012.6

We also found the prevalence of serious PD from 2012 to 2017 at 3.4%, which was similar to that reported by other national studies using NHIS data. For instance, Mojtabai and Jorm and Tomitaka et al. reported serious PD at 3.1% from 2001 to 2012,6,7 and CDC reported serious PD at 2.6% to 3.6% from 1997 to 2017.68

The multivariable logistic regression analysis showed that Asian Indians were less likely to report moderate–serious PD compared with NHWs. The prevalence of moderate–serious PD was 11% in Asian Indians compared with 19.9% in NHWs. As this is the first study to examine PD among Asian Indians in the United States, we do not have any published studies for comparison.

However, our findings of PD in Asian Indians are consistent with those of other Asian racial groups in the United States. For instance, Kim et al.,21 the CDC,68 and Bratter and Eschbach24 reported a lower PD score in Asian Americans than NHWs. The major difference between these studies and our study is that they either incorporated all Asian races/ethnicities in one group or did not include Asian Indians in their studies.

The lower prevalence in Asian Indians could be explained by high socioeconomic status, which acts as
Table 2. Description of Sample by the Prevalence of Moderate–Serious Psychological Distress in Adults (≥18 years) Using the National Health Interview Survey, 2012–2017

Race/ethnicity	Moderate-serious PD	No moderate-serious PD	
	N (26,094) Wt. %	N (100,741) Wt. %	p
Asian Indians	25,827 19.9	98,790 80.1	<0.001
NHWs	267 11.0	1,951 89.0	<0.001
Age in years			
18 to 39	8,722 21.8	29,726 78.2	<0.001
40 to 49	4,242 21.4	14,116 78.6	
50 to 64	7,705 20.2	27,061 79.8	
65	5,425 14.6	29,838 85.4	
Marital status			<0.001
Married	11,250 16.7	55,902 83.3	
Widower, separated, or divorced	8,689 25.7	26,049 74.3	
Never married	6,115 24.3	18,596 75.7	<0.001
Education			<0.001
Less than high school	3,331 29.8	7,574 70.2	
High school	7,134 22.2	24,188 77.8	
Some college	9,147 21.7	31,511 78.3	<0.001
College	6,404 13.8	37,238 86.2	<0.001
Poverty status			<0.001
<100% FPL	5,317 38.4	8,314 61.6	
100 to <200%	6,005 30.4	13,849 69.6	
200 to <400%	6,982 20.6	27,599 79.4	
≥400%	6,360 13.1	42,413 86.9	
Employment			<0.001
Employed	12,420 16.3	59,702 83.7	
Unemployed	13,668 24.8	40,994 75.2	
Health insurance			<0.001
Insured	22,689 18.7	92,898 81.3	
Uninsured	3,340 29.9	7,564 70.1	
Physical activity/exercise			<0.001
Daily exercise	1,584 17.4	7,147 82.6	
Weekly	7,491 15.7	38,261 84.3	
Monthly, yearly, or never	15,664 22.1	52,867 77.9	
Unable to exercise	1,185 43.2	1,682 56.8	
Race-adjusted BMI			<0.001
Underweight and normal	8,815 18.9	36,278 81.1	
Overweight	7,827 17.7	34,316 82.3	
Obese	8,705 23.1	27,247 76.9	
No. of chronic diseases			<0.001
No	6,686 12.1	37,158 87.9	
One	5,849 17.6	24,283 82.4	
Two or more	13,588 25.0	39,285 75.0	
Smoking status			<0.001
Never smoker	6,993 41.9	9,007 58.1	
Past smoker	6,847 24.8	27,501 75.2	
Current smoker	7,631 29.2	15,112 70.8	
Alcohol use			<0.001
Never drinker	3,572 14.2	15,684 85.8	
Former drinker	5,292 18.7	14,762 81.3	
Current drinker	17,030 66.4	69,464 33.6	

Table 2. (Continued)

	Moderate-serious PD	No moderate-serious PD	
	N (26,094) Wt. %	N (100,741) Wt. %	p
Region			
Northeast	4,583 17.8	18,422 82.2	<0.001
Midwest	6,738 20.4	26,735 79.6	
South	8,131 19.1	32,116 80.9	<0.001
West	6,642 21.6	23,468 78.4	
NHIS year			<0.001
2012	3,727 16.6	17,444 83.4	
2013	4,443 20.6	16,070 79.4	
2014	4,466 18.3	18,283 81.7	
2015	4,417 20.5	16,336 79.5	
2016	4,914 20.4	18,154 79.6	
2017	4,127 22.0	14,454 78.0	

Based on 124,617 NHWs and 2,218 Asian Indians (age ≥18 years); NHIS participants (Asian Indians or NHWs), from multiple years (2012 through 2017), who participated in the sample adult core and did not have missing data on the PD scale. Statistically significant differences in characteristics by Asian Indian and NHW status were tested with Rao–Scott chi-square tests. Numbers may not add up to the total in each group due to missing data for marital status, education, employment, poverty status, health insurance, physical activity, BMI, smoking status, and alcohol use. FPL, Federal Poverty Level.

We observed that even after controlling for established protective and risk factors, Asian Indians were less likely to have moderate–severe PD. We speculate that this can be explained by many factors that we did not control for in the study. For instance, Asian Indians have high expectations regarding education and success, collectivism, and a strong cultural continuity in their community.70–73 Asian Indians also preserve a strong ethnic identity and traditional family structure, pay more attention to parenting, and reinforce their high achievements on children.70,71,74–76 Moreover, Asian Indians have a dense social network and derive high social support from their family, relatives, and community.77 These strong cultural/ethnic identity and social support characteristics among
Table 3. Unadjusted and Adjusted Odds Ratios and 95% Confidence Intervals from Multivariable Logistic Regression Determining the Association of Race/Ethnicity with Moderate–Serious Psychological Distress in Adults (≥18 years) Using the National Health Interview Survey, 2012–2017

Model 1: unadjusted Moderate–serious PD	Racial/ethnic categories	UOR	95% CI	Sig
Asian Indians		0.50	0.42–0.58	***
NHWs (reference group)				

Model 2: controlling for sex and age Moderate–serious PD	Racial/ethnic categories	AOR	95% CI	Sig
Asian Indians		0.46	0.39–0.54	***
NHWs (reference group)				

Model 3: controlling for sex, age, and education	Racial/ethnic categories	AOR	95% CI	Sig
Asian Indians		0.57	0.49–0.68	***
NHWs (reference group)				

Model 4: controlling for sex, age, education, marital status, socioeconomic status, health insurance, and physical activity	Racial/ethnic categories	AOR	95% CI	Sig
Asian Indians		0.54	0.46–0.64	***
NHWs (reference group)				

Model 5: controlling for sex, age, education, marital status, socioeconomic status, health insurance, physical activity, race-adjusted BMI, number of chronic diseases, smoking, and alcohol use status	Racial/ethnic categories	AOR	95% CI	Sig
Asian Indians		0.72	0.59–0.82	***
NHWs (reference group)				

Based on 124,617 NHWs and 2,218 Asian Indian adults (age ≥ 18 years); cross-sectional data of NHIS participants (Asian Indians or NHWs), from multiple years (2012 through 2017), who participated in the sample adult core and did not have missing data on the PD scale. Statistically significant differences in characteristics by Asian Indian and NHW status were tested with Rao–Scott chi-square tests. *0.01 ≤ p < 0.05; **0.001 ≤ p < 0.01; and ***p < 0.001.

AOR, adjusted odds ratio; UOR, unadjusted odds ratio; CI, confidence interval.

Our study concludes that Asian Indians are less likely to report PD compared with NHWs. The lower prevalence of distress is attributed to higher socioeconomic status and lower prevalence of chronic diseases. We recommend that mental health practitioners and future researchers should understand the distinctive characteristics and diversity of Asian Americans and other racial minority groups in the United States to better serve these populations.

Conclusions

Our study concludes that Asian Indians are less likely to report PD compared with NHWs. The lower prevalence of distress is attributed to higher socioeconomic status and lower prevalence of chronic diseases. We recommend that mental health practitioners and future researchers should understand the distinctive characteristics and diversity of Asian Americans and other racial minority groups in the United States to better serve these populations.

Authors’ Contributions

Z.A.S. was involved in conceptualization, methodology, statistical analysis, writing—original draft, writing—review, and editing. U.S. was involved in conceptualization, methodology, statistical analysis, writing—review, and editing. Both the authors revised and approved the final article.

Author Disclosure Statement

No competing financial interests exist.
Funding Information
No funding was received for this article.

References

1. Drapeau A, Marchand A, Beaulieu-Prévost D. Epidemiology of psychological distress. In: Mental Illnesses: Understanding, Prediction and Control. Edited by Luciano L’Abate. Norderstedt, Germany: BoD—Books on Demand. London, United Kingdom: IntechOpen, 2012, pp. 105–134.
2. Marchand A, Drapeau A, Beaulieu-Prévost D. Psychological distress in Canada: the role of employment and reasons of non-employment. Int J Soc Psychiatry. 2012;58:596–604.
3. Doherty DT, Moran R, Kartalova-O’Doherty Y. Psychological distress, mental health problems and use of health services in Ireland. Dublin: Health Research Board, HRB Research Series 5, 2008.
4. American Psychology Association. Psychological distress: APA Dictionary of Psychology. 2020. Available at https://dictionary.apa.org/psychological-distress Accessed December 11, 2022.
5. Botello A, Herran M, Salcedo V, et al. Prevalence of latent and overt polyautoimmunity in autoimmune thyroid disease: a systematic review and meta-analysis. Clin Endocrinol (Oxf). 2015;83:375–389.
6. Mojtabal R, Jorm AF. Trends in psychological distress, depressive episodes and mental health treatment-seeking in the United States: 2001–2012. J Affect Disord. 2015;174:556–561.
7. Tomita T, Kawasaki Y, Ide K, et al. Distribution of psychological distress is stable in recent decades and follows an exponential pattern in the US population. Sci Rep. 2019;9:1–10.
8. Gispert R, Rajmil L, Schiaffino A, et al. Sociodemographic and health-related correlates of psychiatric distress in a general population. Soc Psychiatry Psychiatr Epidemiol. 2003;38:677–683.
9. Mandemakers JJ, Monden CWS. Does education buffer the negative influence of disability on psychological distress? Soc Sci Med. 2010;71:288–297.
10. Caron J, Liu A. Factors associated with psychological distress in the Canadian population: a comparison of low-income and non low-income sub-groups. Community Ment Health J. 2011;47:318–330.
11. Myer L, Stein D, Grimsrud A, et al. Social determinants of psychological distress in a nationally-representative sample of South African adults. Soc Sci Med. 2008;66:1828–1840.
12. Phongsavan P, Choy T, Bauman A, et al. Social capital, socio-economic status and psychological distress among Australian adults. Soc Sci Med. 2006;63:2546–2561.
13. Hamer M, Bates CJ, Mishra GD. Depression, physical function, and risk of mortality: national diet and nutrition survey in adults older than 65 years. Am J Geriatr Psychiatry. 2011;19:72–78.
14. González-Castro JL, Uballos S. Determinants of psychological distress among migrants from Ecuador and Romania in a Spanish city. Int J Soc Psychiatry. 2011;57:30–44.
15. Yip Tiffany, Gee Gilbert TD. Racial discrimination and psychological distress: the impact of ethnic identity and age among immigrant and united states-born Asian adults. Dev Psychol. 2008;44:787–800.
16. Nemeroff R, Midlarsky E, Meyer JF. Relationships among social support, perceived control, and psychological distress in late life. Int J Aging Hum Dev. 2010;71:69–82.
17. Tran TV, DeMarco R, Chan K, et al. Race, age and serious psychological distress in the USA. Int J Cult Ment Health. 2015;8:162–175.
18. Weissman J, Russell D, Mann JJ. Sociodemographic characteristics, financial worries and serious psychological distress in US adults. Community Ment Health J. 2012;48:606–613.
19. Walters V, McDonough P, Strohschein L. The influence of work, household structure, and social, personal and material resources on gender differences in health: an analysis of the 1994 Canadian National Population Health Survey. Soc Sci Med. 2002;54:677–692.
20. Huynhjeong P, Eunsuk C, Jennifer AW. Racial/ethnic differences in correlates of psychological distress among five Asian-American subgroups and non-Hispanic Whites. Ethn Health. 2018;25:1072–1088.
21. Kim G, Bryant AN, Parmelee P. Racial/ethnic differences in serious psychological distress among older adults in California. Int J Geriatr Psychiatry. 2012;27:1070–1077.
22. Gadalla TM. Determinants, correlates and mediators of psychological distress: a longitudinal study. Soc Sci Med. 2009;68:2199–2205.
23. Chittleborough CR, Winefeld H, Gill TK, et al. Age differences in associations between psychological distress and chronic conditions. Int J Public Health. 2011;56:71–80.
24. Bratter, J, Eschbach K. Race/ethnic differences in nonspecific psychological distress: evidence from the National Health Interview Survey. Soc Sci Q. 2005;86:620–644.
25. Yoshimura M, Bybee D, Blazevski J. Day-to-day discrimination and health among Asian Indians: a population-based study of Gujarati men and women in Metropolitan Detroit. J Behav Med. 2012;35:471–483.
26. McMorrow S, Gates JA, Long SK, et al. Medicaid expansion increased coverage, improved affordability, and reduced psychological distress for low-income parents. Health Aff. 2017;36:808–818.
27. Olive LS, Telford RM, Byme DG, et al. Psychological distress leads to reduced physical activity and fitness in children: the Australian longitudinal LOOK study. J Behav Med. 2016;39:587–598.
28. Peralta F, Pozo-Cruz J del, Pozo-Cruz B del. Impact of physical activity on psychological distress: a prospective analysis of an Australian national sample. Am J Public Health. 2014;104:e91–e97.
29. Ward BW, Martinez ME. Health insurance status and psychological distress among US adults aged 18–64 years. Stress Health. 2015;31:324–335.
30. Marks AK, Ejesi K, García Coll C. Understanding the U.S. immigrant paradox in childhood and adolescence. Child Dev Perspect. 2014;8:59–64.
31. Markides KS, Rote S. The healthy immigrant effect and aging in the United States and other Western Countries. academic.oup.com. Available at https://academic.oup.com/gerontologist/article-abstract/59/2/205/5151354 Accessed April 28, 2020.
32. Salas-Wright CP, Vaughn MG, Goings TC, et al. Immigrants and mental disorders in the United States: new evidence on the healthy migrant hypothesis. Psychiatry Res. 2018;267:438–445.
33. Kaholokula JK, Antonio MCK, Ing CKT, et al. The effects of perceived racism on psychological distress mediated by venting and disengagement coping in Native Hawaiians. BMC Psychol. 2017;5:2.
34. Mossakowski KN. Coping with perceived discrimination: does ethnic identity protect mental health? J Health Soc Behav. 2003;44:318–331.
35. Park H, Choi E, Park YS, et al. Racial and ethnic differences in mental health among Asian Americans and non-Hispanic Whites: based on California health interview survey. Issues Ment Health Nurs. 2018;39:208–214.
36. Keyes KM, Nicholson R, Kinley J, et al. Age, period, and cohort effects in psychological distress in the United States and Canada. Am J Epidemiol. 2014;179:1216–1227.
37. Watkins DC, Johnson NC. Age and gender differences in psychological distress among African Americans and Whites: findings from the 2016 National Health Interview Survey. Healthcare (Basel). 2018;6:6.
38. Barnes DM, Bates LM. Do racial patterns in psychological distress shed light on the Black-White depression paradox? A systematic review. Soc Psychiatry Psychiatr Epidemiol. 2017;52:913–928.
39. Molina KM, Alcántara C. Household structure, family ties, and psychological distress among U.S.-born and immigrant Latina women. J Fam Psychol. 2013;27:147–158.
40. Recto P, Champion JD. Psychological distress and associated factors among Mexican American Adolescent Females. Hosp Health Care Int 2016; 14:170–176.
41. Patiño A, Yamada A-M, Gilreath TD. Psychological distress behavioral patterns among Latinos: we don’t see ourselves as worthless. Community Ment Health J. 2019;55:232–240.
42. Willis HA, Neblett EW. Racial identity and changes in psychological distress using the multidimensional model of racial identity. Cultur Divers Ethnic Minor Psychol. 2020;26:509–519.
43. Park S, Chen T-A, Neisler J, et al. The buffering effect of social support on the relationship between discrimination and psychological distress among church-going African-American adults. Behav Res Ther. 2019;115:121–128.
44. Holland AT, Palaniappan LP. Problems with the collection and interpretation of Asian-American health data: omission, aggregation, and extrapolation. Ann Epidemiol. 2012;22:392–405.
45. Cho H, Kim J, Velez-Oritz D. Factors associated with mental health service use among Latino and Asian Americans. Community Ment Health J. 2014; 50:960–967.
46. Blank RM, Mesenbourg TL. 2010 Census Summary File 1; 2010 Census of Population and Housing—Technical documentation; U.S. Department of Commerce Economics and Statistics Administration U.S. CENSUS.
BUREAU. 2012. Available at https://www.census.gov/prod/cen2010/doc/sf1.pdf Accessed August 15, 2020.
47. Hoefel EM, Rastogi S, Kim MO, et al. The Asian population: 2010; 2010 census briefs.Washington, DC: US Department of Commerce, Economics and Statistics Administration, US Census Bureau. 2012. Available at https://www.census.gov/prod/cen2010/briefs/c2010br-11.pdf Accessed September 15, 2020.
48. Pew Research Center Social & Demographic. Indians in the U.S. Fact Sheet. 2017. Available at https://www.pewsocialtrends.org/fact-sheet/indians-in-the-u-s/ Accessed November 11, 2020.
49. Dasgupta S Das. Gender roles and cultural continuity in the Asian Indian immigrant community in the U.S. Sex Roles. 1998;38:953–974.
50. Shankar S. Desi Land: Teen Culture, Class, and Success in Silicon Valley. Durham, NC: Duke University Press, 2008.
51. Nadimpalli SB, Dulin-Keita A, Salas C, et al. Associations between discrimination and cardiovascular health among Asian Indians in the United States. J Immigr Minor Health. 2016;18:1284–1291.
52. Misra R, Hunte H. Perceived discrimination and health outcomes among Asian Indians in the United States. BMC Health Serv Res. 2016;16:567.
53. Misra R, Patel T, Kotha P, et al. Prevalence of diabetes, metabolic syndrome, and cardiovascular risk factors in US Asian Indians: results from a population-based study. J Ethn Migr Stud. 2010;24:145–153.
54. Parsons VL, Moriarity C, Jonas K, et al. Design and estimation for the national health interview survey, 2006–2015. Vital Heal Stat 2. 2014:1–53.
55. CDC. NHIS—About the National Health Interview Survey. 2020. Available at https://www.cdc.gov/nhis/about_nhis.htm Accessed April 18, 2020.
56. Kessler RC, Andrews G, Colpe LJ, et al. Short screening scales to monitor population prevalences and trends in non-specific psychological distress. Psychol Med. 2002;32:959–976.
57. Prochaska JJ, Sung H-Y, Max W, et al. Validity study of the K6 scale as a measure of moderate mental distress based on mental health treatment need and utilization. Int J Methods Psychiatr Res. 2012;21:88–97.
58. Paek M-S, Seo S, Choi D. Factors affecting psychological distress among Asian American and non-Hispanic White older adults. Soc Behav Personal Int J. 2019;47:1–16.
59. Ulbrich PM, Warheit GJ, Zimmerman RS. Race, socioeconomic status, and psychological distress: an examination of differential vulnerability. J Health Soc Behav. 1989;30:131–146.
60. Kosidou K, Dalman C, Lundberg M, et al. Socioeconomic status and risk of psychological distress and depression in the Stockholm Public Health Cohort: a population-based study. J Affect Disord. 2011;134:160–167.
61. Lazarinio AI, Hamer M, Stamatakis E, et al. The combined association of psychological distress and socioeconomic status with all-cause mortality: a national cohort study. JAMA Intern Med. 2013;173:22–27.
62. Zvolensky MJ, Jardin C, Wall MM, et al. Psychological distress among smokers in the United States: 2008–2014. Nicotine Tob Res. 2018;20:707–713.
63. Sung H-Y, Prochaska JJ, Ong MK, et al. Cigarette smoking and serious psychological distress: a population-based study of California adults. Nicotine Tob Res. 2011;13:1183–1192.
64. Dube SR, Caraballo RS, Dhillon SS, et al. The relationship between smoking status and serious psychological distress: findings from the 2007 Behavioral Risk Factor Surveillance System. Int J Public Health. 2009;54 Suppl 1:69–74.
65. Woo B, Wang K, Tran T. Racial and ethnic differences in associations between psychological distress and the presence of binge drinking results from the California health interview survey. Addict Behav. 2017;65:1–6.
66. Neff JA. Alcohol consumption and psychological distress among U.S. Anglos, Hispanics and Blacks. Alcohol Alcohol. 1986;21:111–119.
67. National Heart, Lung, and Blood Institute. The Asia-Pacific perspective: redefining obesity and its treatment. Sydney: Health Communications Australia. Available at http://iris.wpro.who.int/int/handle/10665.1/s3379 Accessed July 12, 2021.
68. Center for Health Statistics N. Serious psychological distress in the past 30 days among adults aged 18 and over, by selected characteristics: United States, average annual, selected years 1997–1998 through 2015–2016. 2017. Available at https://www.cdc.gov/nchs/hus/contents2017.htm#046 Accessed April 11, 2020.
69. Zhang Y, Misra R, Sambamoorthi U. Prevalence of multimorbidity among Asian Indian, Chinese, and non-Hispanic White adults in the United States. Int J Environ Res Public Health. 2020;17:3336.
70. Paik SJ, Rahman Z, Kula SM, et al. Diverse Asian American families and communities: culture, structure, and education (part 1: why they differ). School Community J. 2017;27:35–66.
71. Williams JP. Journey to America: South Asian diaspora migration to the United States (1965–2015). In: Indigenous, Aboriginal, Fugitive and Ethnic Groups Around the Globe. Edited by Liat Klain-Gabbay L. London, UK: IntechOpen, 2019, p. 97.
72. Grewal S, Bottorff JL, Hilton BA. The influence of family on immigrant South Asian women’s health. J Fam Nurs. 2005;11:242–263.
73. Sharma RK, Khosla N, Tulsky JA, et al. Traditional expectations versus US realities: first- and second-generation Asian Indian perspectives on end-of-life care. J Gen Intern Med. 2012;27:311–317.
74. Bhattacharya G, Schopper SL, Accelye SL. Preimmigration beliefs of life success, postimmigration experiences, and acculturative stress: South Asian immigrants in the United States. J Immigr Health. 2004;6:83–92.
75. Pew Research Center Social & Demographic. The Rise of Asian Americans. 2012. Available at https://www.pewresearch.org/social-trends/2012/06/19/the-rise-of-asian-americans/ Accessed March 16, 2021.
76. Asher N. Class acts: Indian American high school students negotiate professional and ethnic identities. Urban Educ. 2002;37:267–295.
77. Kandula NR, Cooper AJ, Schneider JA, et al. Personal social networks and organizational affiliation of South Asians in the United States. BMC Public Health. 2018;18:1–12.
78. Frisbie WP, Cho Y, Hummer RA. Immigration and the health of Asian and Pacific Islander adults in the United States. Am J Epidemiol. 2001;153:372–380.
79. Stafford M, Newbold BK, Ross NA. Psychological distress among immigrants and visible minorities in Canada: a contextual analysis. Int J Soc Psychiatry. 2011;57:428–441.
80. Lee S, Juon H-S, Martinez G, et al. Model minority at risk: expressed needs of mental health by Asian American young adults. J Community Health. 2009;34:144–152.
81. Park M, Chesa CA, Rehm RS, et al. Working with culture: culturally appropriate mental health care for Asian Americans. J Adv Nurs. 2011;67:2373–2382.
82. Jimenez DE, Bartels SJ, Cardenas V, et al. Stigmatizing attitudes toward mental illness among racial/ethnic older adults in primary care. Int J Geriatr Psychiatry. 2013;28:1061–1068.
83. Conrad MM, Paccquiao DF. Manifestation, attribution, and coping with depression among Asian Indians from the perspectives of health care practitioners. J Transcult Nurs. 2005;16:32–40.
84. Leung P, Cheung M, Tsui V. Asian Indians and depressive symptoms: reframing mental health help-seeking behavior. Int Soc Work. 2012;55:53–70.
85. Tavkar P, Iyer SN, Hansen DJ. Barriers to mental health services for Asian Americans. J Adv Nurs. 2011;67:2373–2382.
86. Nakamura K, Sambamoorthi U, Siddiqui ZA. (2022) Psychological distress among Asian Indians and non-Hispanic Whites in the United States, Health Equity 6:1, 516–526, DOI: 10.1089/heq.2021.0159.

Cite this article as: Siddiqui ZA, Sambamoorthi U (2022) Psychological distress among Asian Indians and non-Hispanic Whites in the United States, Health Equity 6:1, 516–526, DOI: 10.1089/heq.2021.0159.

Appendix follows —

Abbreviations Used

- **ALM**: average life expectancy
- **AA**: African American
- **AOR**: adjusted odds ratio
- **BMI**: body mass index
- **CI**: confidence interval
- **K6**: six-item Kessler scale
- **CIH**: California Indigenous Health
- **NHIS**: National Health Interview Survey
- **NHWR**: non-Hispanic White
- **OR**: odds ratio
- **PD**: psychological distress
- **UOR**: unadjusted odds ratio

Appendix follows →
Appendix Figure A1. Study sample selection: National Health Interview Survey, 2012–2017. K6, six-item Kessler; NHWs, non-Hispanic Whites.
Appendix Table A1. Description of Sample Characteristics of Non-Hispanic White and Asian Indian Adults (≥ 18 Years) Using the National Health Interview Survey, 2012–2017

Sample characteristics	N = 126,835	Wt. % 100.0
Moderate–serious PD (K6 ≥ 5)		
Moderate–serious PD	26,094	19.7
No PD	100,741	80.3
Serious PD (K6 ≥ 13)		
Serious PD	4,584	3.40
No PD	122,251	96.6
Sex		
Women	68,514	51.4
Men	58,321	48.6
Race/ethnicity		
Non-Hispanic Whites	124,617	98.0
Asian Indians	2,218	2.0
Age in years		
18 to 39	38,448	34.0
40 to 49	18,358	16.1
50 to 64	34,766	27.6
≥ 65	35,263	22.2
Marital status		
Married	67,152	63.8
Widow, separated, or divorced	34,738	17.6
Never married	24,711	18.5
Education		
Less than high school	10,905	8.2
High school	31,322	24.6
Some college	40,658	31.6
College	43,642	33.3
Poverty status		
< 100% FPL	13,631	8.3
100 to < 200%	19,854	13.6
200 to < 400%	34,581	26.8
≥ 400%	48,773	43.1
Employment		
Employed	72,122	60.1
Unemployed	54,662	39.8
Health insurance		
Insured	115,587	91.2
Uninsured	10,904	8.5

(continued)