A note on two linear forms

by Klaus Moshchevitin

1. Diophantine exponents.
Let \(\theta_1, \theta_2 \) be real numbers such that

\[1, \theta_1, \theta_2 \text{ are linearly independent over } \mathbb{Z}. \quad (1) \]

We consider linear form

\[L(x) = x_0 + x_1 \theta_1 + x_2 \theta_2, \quad x = (x_0, x_1, x_2) \in \mathbb{Z}^3. \]

By \(|z| \) we denote the Euclidean length of a vector \(z = (z_0, z_1, z_2) \in \mathbb{R}^3 \). Let

\[\hat{\omega} = \hat{\omega}(\theta_1, \theta_2) = \sup \left\{ \gamma : \limsup_{t \to \infty} \left(t^\gamma \min_{0 < |x| \leq t} |L(x)| \right) < \infty \right\} \quad (2) \]

be the uniform Diophantine exponent for the linear form \(L \).

We consider another linear form \(P(x) \). The main result of the present paper is as follows.

Theorem 1. Suppose that linear forms \(L(x) \) and \(P(x) \) are independent and the exponent \(\hat{\omega} \) for the form \(L \) are defined in (2). Then for the Diophantine exponent

\[\omega_{LP} = \sup \left\{ \gamma : \text{there exist infinitely many } x \in \mathbb{Z}^3 \text{ such that } |L(x)| \leq |P(x)| \cdot |x|^{-\gamma} \right\} \]

we have a lower bound

\[\omega_{LP} \geq \hat{\omega}^2 - \hat{\omega} + 1. \]

Remark. Of course in the definition (2) and in Theorem 1 instead of the Euclidean norm \(|x| \) we may consider the value \(\max_{i=1,2} |x_i| \) as it was done by the most of authors.

Consider a real \(\theta \) which is not a rational number and not a quadratic irrationality. Define

\[\omega_* = \omega_*(\theta) = \sup \{ \gamma : \text{there exist infinitely many algebraic numbers } \xi \text{ of degree } \leq 2 \]

such that \(|\theta - \xi| \leq H(\xi)^{-\gamma} \}

(here \(H(\xi) \) is the maximal value of the absolute values of the coefficients for canonical polynomial to \(\xi \)). Then for linear forms

\[L(x) = x_0 + x_1 \theta + x_2 \theta^2, \quad P(x) = x_1 + 2x_2 \theta \]

one has

\[\omega_* \geq \omega_{LP}. \quad (3) \]

So Theorem 1 immediately leads to the following corollary.

Theorem 2. For a real \(\theta \) which is not a rational number and not a quadratic irrationality one has

\[\omega_* \geq \hat{\omega}^2 - \hat{\omega} + 1 \quad (4) \]

\[^1 \text{Research is supported by RFBR grant No.12-01-00681-a and by the grant of Russian Government, project 11. G34.31.0053.} \]
with $\hat{\omega} = \hat{\omega}(\theta, \theta^2)$.

2. Some history.

In 1967 H. Davenport and W. Schmidt [2] (see also Ch. 8 from Schmidt’s book [11]) proved that for any two independent linear forms L, P there exist infinitely many integer points x such that

$$|L(x)| \leq C|P(x)||x|^{-3},$$

with a positive constant C depending on the coefficients of forms L, P. From this result they deduced that for any real θ which is not a rational number and not a quadratic irrationality the inequality

$$|\theta - \xi| \leq C_1 H(\xi)^{-3}$$

has infinitely many solutions in algebraic ξ of degree ≤ 2.

We see that for any two pairs of forms one has $\omega_{LP} \geq 3$. But from the Minkowski convex body theorem it follows that under the condition (1) one has $\hat{\omega} \geq 2$. Moreover

$$\min_{\hat{\omega} \geq 2} (\hat{\omega}^2 - \hat{\omega} + 1) = 3.$$

So our Theorems 1, 2 may be considered as generalizations of Davenport-Schmidt’s results.

Later Davenport and Schmidt generalized their theorems to the case of several linear forms [3]. In the next paper [4] they showed that the value of the uniform exponent for simultaneous approximations to any point (θ, θ^2) is not greater than $\sqrt{5} - 1$. This together with Jarník’s transference equality (see [5]) leads to the bound $\hat{\omega} \leq 3 + \sqrt{5}$ which holds for all linear forms with coefficients of the form θ, θ^2. So for a linear form with coefficients θ, θ^2 one has

$$2 \leq \hat{\omega} \leq \frac{3 + \sqrt{5}}{2}. \quad (5)$$

D. Roy [9, 10] showed that the set of values $\hat{\omega}$ for linear forms under our consideration form a dense set in the segment [5]. Moreover he constructed a countable set of numbers θ such that

$$\hat{\omega}(\theta, \theta^2) = \frac{3 + \sqrt{5}}{2} \quad \text{and} \quad \omega_*(\theta) = 3 + \sqrt{5}.$$

This shows that our bound (1) from Theorem 2 is optimal in the right endpoint of the segment (5), namely for $\hat{\omega} = \frac{3 + \sqrt{5}}{2}$.

Other results on approximation by algebraic numbers are discussed in W. Schmidt’s book [11], in wonderful book by Y. Bugeaud [1] and in M. Waldschmidt’s survey [12].

Our proof of Theorem 1 generalizes ideas from [2, 3, 4] and uses Jarník’s inequalities [6, 7].

3. Minimal points.

In the sequel we may suppose that $\hat{\omega} > 2$ as the case $\hat{\omega} = 2$ follows from Davenport-Schmidt’s theorem (in this case our Theorem 1 claims that $\omega_{LP} \geq 3$). We take $\alpha < \hat{\omega}$ close to $\hat{\omega}$ so that $\alpha > 2$.

A vector $x = (x_0, x_1, x_2) \in \mathbb{Z}^3 \setminus \{0\}$ is defined to be a minimal point (or best approximation) if

$$\min_{x': 0 < |x'| \leq |x|} |L(x')| = L(x).$$

As $1, \theta_1, \theta_2$ are linearly independent, all the minimal points form a sequence $x_\nu = (x_{0, \nu}, x_{1, \nu}, x_{2, \nu})$, $\nu = 1, 2, 3, \ldots$ such that for $X_\nu = |x_{\nu}|$, $L_\nu = L(x_\nu)$ where one has

$$X_1 < X_2 < \ldots < X_\nu < X_{\nu+1} < \ldots, \quad L_1 > L_2 > \ldots > L_\nu > L_{\nu+1} > \ldots.$$
Here we should note that

\[L_j \leq X_j^{-\alpha} \]

for all \(j \) large enough. Of course each vector \(x_j \) is primitive and each couple \(x_j, x_{j+1} \) form a basis of the two-dimensional lattice \(\mathbb{Z}^2 \cap \text{span} \{ x_j, x_{j+1} \} \).

Let \(F(x) \) be a linear form linearly independent with \(L \) and \(P \). Then

\[\max \{ |L(x)|, |P(x)|, |F(x)| \} \asymp |x|. \]

We also use the notation \(P_\nu = P(x_\nu), F_\nu = F(x_\nu) \). In the sequel we need to consider determinants

\[\Delta_j = \begin{vmatrix} L_{j-1} & P_{j-1} & F_{j-1} \\ L_j & P_j & F_j \\ L_{j+1} & P_{j+1} & F_{j+1} \end{vmatrix} = A \begin{vmatrix} x_{0,j-1} & x_{1,j-1} & x_{2,j-1} \\ x_{0,j} & x_{1,j} & x_{2,j} \\ x_{0,j+1} & x_{1,j+1} & x_{2,j+1} \end{vmatrix}, \]

where \(A \) is a non-zero constant depending on the coefficients of linear forms \(L, P, F \). We take into account \((7), (6) \) and the inequality \(\alpha > 2 \) to see that

\[\Delta_j = L_{j-1}P_jF_{j+1} - L_{j-1}P_{j+1}F_j + O(L_jX_{j+1}^2) = L_{j-1}P_jF_{j+1} - L_{j-1}P_{j+1}F_j + o(1), \quad j \to \infty. \]

The following statement is a variant of Davenport-Schmidt’s lemma. We give it without a proof. It deals with three consecutive minimal points \(x_{j-1}, x_j, x_{j+1} \) lying in a two-dimensional linear subspace, say \(\pi \). We should note that our definition of minimal points differs from those in \([2, 3, 11]\). However the main argument is the same. It is discussed in our survey \([8]\). One may look for the approximation of the one dimensional subspace \(\ell = \pi \cap \{ \mathbf{z} : L(\mathbf{z}) = 0 \} \) by the points of two-dimensional lattice \(\Lambda_j = \langle x_{j-1}, x_j \rangle \) Then the points \(x_{j-1}, x_j, x_{j+1} \in \Lambda_j \) are the consecutive best approximations to \(\ell \) with respect to the induced norm on \(\pi \) (see \([8]\), Section 5.5).

Lemma 1. If for some \(j \) the points \(x_{j-1}, x_j, x_{j+1} \) are linearly dependent then

\[x_{j+1} = tx_j + x_{j-1} \]

for some integer \(t \).

The next statement is known for long time. It comes from Jarník’s papers \([6, 7]\). It was rediscovered by Davenport and Schmidt in \([11]\) and discussed in our survey \([8]\).

Lemma 2. there exist infinitely many indices \(j \) such that the vectors \(x_{j-1}, x_j, x_{j+1} \) are linearly independent.

The following lemma is due to Jarník \([6, 7]\) (see also Section 5.3 from our paper \([8]\)).

Lemma 3. Suppose that \(j \) is large enough and the points \(x_{j-1}, x_j, x_{j+1} \) are linearly independent. Then

\[X_{j+1} \gg X_j^{\alpha - 1} \]

and

\[L_j \ll X_j^{-\alpha(\alpha - 1)} \]

Now we take large \(\nu \) and \(k \geq \nu + 1 \) such that

- vectors \(x_{\nu-1}, x_{\nu}, x_{\nu+1} \) are linearly independent;
- vectors \(x_{k-1}, x_k, x_{k+1} \) are linearly independent;
- vectors \(x_j, \nu \leq j \leq k \) belong to the two-dimensional lattice \(\Lambda_\nu = \mathbb{Z}^2 \cap \text{span} (x_\nu, x_{\nu+1}) \).

From Lemma 1 it follows that for \(j \) from the range \(\nu \leq j \leq k - 1 \) one has

\[L_{j+1} = t_{j+1}L_j + L_{j-1}, \quad P_{j+1} = t_{j+1}P_j + P_{j-1}, \]

and

\[X_{j+1} = t_{j+1}X_j + X_{j-1}, \quad X_{j+1} = t_{j+1}X_j + X_{j-1}, \]
with some integers t_{j+1}, and hence
\[L_{\nu}P_{\nu+1} - L_{\nu+1}P_{\nu} = \pm (L_{k-1}P_{k} + L_{k}P_{k-1}). \] (11)

Lemma 4. Consider positive r under the condition
\[r < \alpha^2 - \alpha + 1 < \hat{\omega}^2 - \hat{\omega} + 1. \] (12)

Suppose that
\[|P_{\nu}| \leq L_{\nu}X_{\nu}^r \] (13)
and ν is large. Then
\[|P_{\nu+1}| \gg X_{\nu}^{\alpha-1}. \] (14)

Proof. For $j = \nu$ consider the second term in the r.h.s of (8). From (6,7,12) and the inequality (9) of Lemma 3 we have
\[|L_{\nu-1}P_{\nu}F_{\nu+1}| \ll |L_{\nu-1}L_{\nu}X_{\nu}^r| X_{\nu+1} \ll X_{\nu}^{r-\alpha}X_{\nu+1}^{1-\alpha} \ll X_{\nu}^{r-\alpha+1} = o(1). \]

As $\Delta_{\nu} \neq 0$ we see that
\[1 \ll |L_{\nu-1}P_{\nu+1}F_{\nu}| \ll L_{\nu-1}|P_{\nu+1}| X_{\nu} \ll X_{\nu}^{1-\alpha}|P_{\nu+1}| \]
(in the last inequalities we use (7) and (6). Everything is proved. \(\square\).

4. **The main estimate.**

The following Lemma presents our main argument.

Lemma 5. Suppose that r satisfies (12). Suppose that (6) holds for all indices j and suppose that for a certain β_0 one has
\[L_{\nu} \gg X_{\nu}^{-\beta_0}. \] (15)

Suppose that simultaneously we have
\[|P_{\nu}| \leq L_{\nu}X_{\nu}^r, \] (16)
\[|P_{k-1}| \leq L_{k-1}X_{k-1}^r, \] (17)
\[|P_{k}| \leq L_{k}X_{k}^r. \] (18)

Then
\[r \geq \alpha^2 + 1 - \frac{\beta_0}{\alpha - 1}. \] (19)
and
\[L_{k} \gg X_{k}^{-\beta'}, \text{ with } \beta' = r - \alpha - 1 + \frac{\beta_0}{\alpha - 1} < \beta_0. \] (20)

First of all we note that
\[L_{\nu+1}|P_{\nu}| \leq L_{\nu}L_{\nu+1}X_{\nu}^r \ll L_{\nu}X_{\nu+2}^{-\alpha}X_{\nu}^r \ll L_{\nu}X_{\nu+1}^{-\alpha}X_{\nu}^r \ll L_{\nu}X_{\nu}^{r-\alpha+1} = o(L_{\nu}X_{\nu}^{\alpha-1}). \]

Here the first inequality comes from (10). The second inequality is (6) with $j = \nu + 1$. The third one is simply $X_{\nu+2} \gg X_{\nu+1}$. The fourth one is (9) of Lemma 3 for $j = \nu$. The last inequality here follows from (12) as $r < \alpha^2 - \alpha + 1 < \alpha^2 - 1$ (because $\alpha > 2$). We see that the conditions of Lemma 4 are satisfies and by Lemma 4 we see that
\[L_{\nu}|P_{\nu+1}| \gg L_{\nu}X_{\nu}^{\alpha-1}. \]
So in the l.h.s. of (11) the first summand is larger than the second. Now from (11) we have
\[L_\nu X_\nu^{\alpha-1} \ll L_{k-1}[P_k] + L_k|P_{k-1}|. \] (21)
We apply (17,18) to see that
\[\max(L_{k-1}|P_k|, L_k|P_{k-1}|) \leq L_{k-1}L_kX_k^r \ll X_k^{r-\alpha}X_{k+1}^{-\alpha} \leq X_k^{r-\alpha^2} \ll X_{\nu+1}^{r-\alpha^2} \ll X_\nu^{(r-\alpha^2)(\alpha-1)}. \] (22)
Here the second inequality comes from (11) for \(j = k - 1 \) and \(j = k \). The third inequality is Lemma 3 with \(j = k \). The fourth one is just \(X_k \geq X_{\nu+1} \). The fifth one is Lemma 3 for \(j = \nu \).
Now from estimates (21,22) and (15) we have
\[X_\nu^{-\beta_0 + \alpha - 1} \ll X_\nu^{(r-\alpha^2)(\alpha-1)}. \]
This gives
\[r \geq \alpha^2 + 1 - \frac{\beta_0}{\alpha - 1}. \]
So (19) is proved.

To get (20) we combine the estimate (21) with the left inequality of (22), the bound (15) for \(j = \nu \) and the bound (1) for \(j = k - 1 \). This gives
\[X_\nu^{\alpha - 1 - \beta_0} \ll L_\nu X_\nu^{\alpha-1} \ll L_{k-1}L_kX_k^r \ll L_kX_k^{r-\alpha}, \]
or
\[L_k \gg X_k^{\alpha-r}X_k^{\alpha-1-\beta_0}. \]
But \(\beta_0 > \alpha(\alpha - 1) \geq (\alpha - 1) \) by inequality (10) of Lemma 3 and \(X_k \geq X_{\nu+1} \) \(\gg X_\nu^{-\alpha} \) by inequality (9) of Lemma 3. So
\[L_k \gg X_k^{\alpha-r + \frac{\alpha-1-\beta_0}{\alpha-1}}, \]
and this is the first inequality form (20).
Moreover as \(\beta_0 > \alpha(\alpha - 1) \), from (12) we deduce \(\beta' < \beta \). Lemma is proved. \(\square \)

5. Proof of Theorem 1.
Suppose that \(r \) satisfies (12). We take infinite sequence indices \(\nu_1 < \nu_2 < ... < \nu_i < ... \) such that
- for every \(i = 1, 2, ... \) vectors \(x_{\nu_i-1}, x_{\nu_i}, x_{\nu_i+1} \) are linearly independent;
- for \(i = 1, 2, ... \) vectors \(x_j, \nu_i \leq j \leq \nu_{i+1} \) belong to the two-dimensional lattice \(\Lambda_{\nu_i} = \mathbb{Z}^2 \cap \text{span}(x_{\nu_i}, x_{\nu_i+1}). \)

Now we suppose that three inequalities (16,17,18) hold for all triples \((\nu, k-1, k) = (\nu_i, \nu_{i+1} - 1, \nu_{i+1}) \) for all \(i \geq 1 \).
Define recursively
\[\beta_{i+1} = r - \alpha - 1 + \frac{\beta_i}{\alpha - 1}. \]
Then
\[\beta_i = \alpha(\alpha - 1) + \frac{\beta_0}{(\alpha - 1)^i} \to \alpha(\alpha - 1), \quad i \to \infty. \]
We apply of Lemma 5 to the first \(w \) triple of indices. Then we get (20) for \(k = \nu_{i+1} \), and in particular for \(k = \nu_w \) with \(\beta_w \) close to \(\alpha(\alpha - 1) \). Now we apply Lemma 5 to \(\nu = \nu_w \). In (15) we have \(\beta_w \) instead of \(\beta \). So (19) gives
\[r \geq \alpha^2 - \alpha + 1 - \frac{\beta_w}{\alpha - 1} \]
We take limit $w \to \infty$ to see that

$$r \geq \alpha^2 - \alpha + 1.$$

This contradicts to \footnote{12}. So there exists $j \in \bigcup_{i=1}^{\infty} \{\nu_i, \nu_{i+1} - 1, \nu_{i+1}\}$ such that $L_j \leq |P_j|X_j^{-r}$. Theorem is proved. □

Acknowledgement. The author is grateful to Igor Rochev for important comments on the proof and for pointing out certain inaccuracies in the manuscript.

References

[1] Y. Bugeaud, Approximation by algebraic numbers, Cambridge University Press, 2004.

[2] H. Davenport, W.M. Schmidt, Approximation to real numbers by quadratic irrationalities, Acta Arithmetica, 13 (1967), 169 - 176.

[3] H. Davenport, W.M. Schmidt, A theorem on linear forms, Acta Arithmetica, 14 (1968), 209 - 223.

[4] H. Davenport, W.M. Schmidt, Approximation to real numbers by algebraic integers, Acta Arithmetica, 15 (1969), 393 - 416.

[5] V. Jarník Zum Khintcineschen "Ubertragungssats", Travaux de l’Institut Mathematique de Tbilissi, 3, 193 - 216 (1938).

[6] V. Jarník, Une remarque sur les approximation diophantiiennes lineaires, Acta Scientarium Mathem. Szeged, 12 (pars B), 82 - 86 (1949).

[7] B. Ярник, К теории однородных линейных диофантовых приближений, Чехословацкий математический журнал, т. 4 (79), 330 - 353 (1954).

[8] N.G. Moshchevitin, Khintchine’s singular Diophantine systems and their applications, Russian Mathematical Surveys, 2010, 65:3, 433–511.

[9] D. Roy, Approximation simultanée d’un nombre et de son carré. C. R. Acad. Sci., Paris 336 (2003) no 1, 1–6.

[10] D. Roy, On Two Exponents of Approximation Related to a Real Number and Its Square, Canad. J. Math. Vol. 59 (1), 2007, 211 - 224.

[11] W.M. Schmidt, Diophantine Approximations, Lect. Not. Math., 785 (1980).

[12] M. Waldschmidt, Recent advances in Diophantine approximation, Number theory, Analysis and Geometry: In memory of Serge Lang, Springer (2012), 659-704; preprint available at arXiv:0908.3973 (2009).