Disappearance of back-to-back high p_T hadron correlations in central Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV

C. Adler, Z. Ahammed, C. Allgower, J. Amonett, B.D. Anderson, M. Anderson, G.S. Averichev, J. Balewski, O. Baramnikova, L.S. Barnby, J. Baudot, S. Bekele, V.V. Belaga, R. Bellwied, J. Berger, B. Bichsel, A. Billmeier, L.C. Bland, C.O. Blyth, B.E. Bonner, A. Boucham, A. Brandin, A. Bravar, R.V. Cadman, H. Caines, M. Calderón de la Barca Sánchez, A. Cardenas, J. Carroll, J. Castillo, M. Castro, D. Cebra, P. Chaloupka, S. Chattopadhyay, Y. Chen, S.P. Chernenko, M. Cherney, A. Chikanian, B. Choi, W. Christie, J.P. Coffin, T.M. Cormier, M.M. Corral, J.G. Cramer, H.J. Crawford, A.A. Derevschikov, L. DiEndo, T. Dietel, J.E. Draper, V.B. Dunin, J.C. Dunlop, V. Eckardt, L.G. Efimov, V. Emelianov, J. Engelge, G. Eppley, B. Erazmus, P. Fachini, V. Faine, J. Faivre, R. Fatemi, K. Filimonov, E. Finch, Y. Fisyak, D. Flierl, K.J. Foley, J. Fr15,22, C.A. Gagliardi, N. Gagunashvili, J. Gans, L. Gaudichet, M. Germain, F. Geurts, V. Ghazikhanian, O. Grachov, V. Grigoriev, M. Guend, E. Gushin, T.J. Hallman, D. Hardtke, J.W. Harris, T.W. Henry, S. Heppelmann, T. Herston, B. Hippolyte, A. Hirsch, E. Hjort, G.W. Hoffmann, M. Horsley, H.Z. Huang, T.J. Humenic, G. Igo, A. Ishihara, Yu.I. Ivanishin, P. Jacobs, W.W. Jacobs, M. Janik, I. Johnson, P.G. Jones, E.G. Judji, M. Kaneta, M. Kaplan, D. Keane, J. Kirilyuk, A. Kisiel, J. Klay, S.R. Klein, A. Klyachko, T. Kollegger, A.S. Konstantinov, M. Kopytine, K. Kotchenia, A.D. Kovalenko, M. Kramer, P. Kravtsov, K. Krueger, C. Kuhn, A.I. Kulikov, G.J. Kunde, C.L. Kunz, R.Kh. Kutuev, A.A. Kuznetsov, L. Lakehal-Ayat, M.A.C. Lamont, J.M. Landgraf, S. Lange, C.P. Lansdell, B. Lasik, F. Laue, J. Lauret, A. Lebedev, R. Lednicki, V.M. Leontiev, M.J. LeVine, Q. Li, S.J. Lindenbaum, M.A. Lisoa, F. Liu, S. Liu, Z. Liu, Q.J. Liu, T. Lubicz, W.J. Llope, G. LoCurto, H. Long, R.S. Longacre, M. Lopez-Noriega, W.A. Love, T. Ludlam, D. Lyn, J. Ma, D. Magestro, R. Majka, S. Margetic, C. Markert, L. Martin, J. Marx, H.S. Matis, Yu.A. Matulenko, T.S. McShane, F. Meissner, Yu. Melnick, A. Meschini, M., M. Miller, Z. Milosevich, N.G. Minea, J. Mitchell, C.F. Moore, V. Morozov, M.M. de Moura, M.G. Munhoz, J.M. Nelson, P. Nevski, V.A. Nikitin, L.V. Nogach, B. Norren, S.B. Nurushev, G. Odyuc, A. Ogawa, V. Okorokov, M. Oldenburg, D. Olson, G. Paige, S.U. Pandey, Y. Panebretsev, S.Y. Panitkin, A.I. Pavlinov, T. Pawlak, V. Perevozchikov, W. Peryt, V.A. Petrov, M. Planinc, J. Pluta, N. Portile, J. Porter, A.M. Poskanzer, E. Potrebenikova, D. Prindle, C. Pruneau, J. Putschke, G. Rai, G. Rakness, O. Ravel, R.L. Ray, S.V. Razin, D.J. Reichhold, J.G. Reid, G. Renault, F. Retiere, A. Ridiger, H.G. Ritter, J.B. Roberts, O.V. Rogachevskiy, J.L. Romero, A. Rose, C. Roy, V. Rykov, I. Sakredja, S. Salur, J. Sandweiss, I. Savin, J. Schambach, R.P. Scharenberg, N. Schmitz, L.S. Schroeder, A. Schüttauf, K. Schweda, J. Seger, D. Seliverstov, P. Seyboth, E. Shahaliev, K.E. Shesternov, S.S. Shimanski, F. Simon, G. Skoro, N. Smirnov, R. Snellings, P. Sorensen, J. Sovinski, H.M. Spink1, B. Srivastava, E.J. Stephenson, R. Stock, A. Stolpovsky, M. Strikhanov, B. Stringfellow, C. Struck, A.A.P. Suade, E. Sugarbaker, C. Suire, M. Śmȩbera, B. Surov, T.J.M. Symons, A. Szanto de Toledo, P. Szarvas, A. Tai, J. Takahashi, A.H. Tang, D. Thein, J.H. Thomas, M. Thompson, V. Tikhomirov, M. Tokarev, M.B. Tonjes, T.A. Trainor, S. Trentalange, R.E. Tribble, V. Trofinov, O. Tsai, T. Ulrich, D.G. Underwood, G. Van Buren, A.M. VanderMolen, I.M. Vasilievski, A.N. Vasiliev, S.E. Vigdor, S.A. Voloshin, F. Wang, H. Ward, J.W. Watson, R., W. Wells, G.D. Westfall, C. Whitten Jr, H. Wieman, R. Willson, S.W. Wissink, R. Witt, J. Wood, N. Xu, Z. Xu, A.E. Yakutin, E. Yamamoto, J. Yang, P. Yeps, V.I. Yurevich, Y.V. Zanevski, I. Zborovskiy, H. Zhang, W.M. Zhang, R. Zoukarneev, A.N. Zubarev (STAR Collaboration)

1Argonne National Laboratory, Argonne, Illinois 60439
2Brookhaven National Laboratory, Upton, New York 11973
3University of Birmingham, Birmingham, United Kingdom
4University of California, Berkeley, California 94720
5University of California, Davis, California 95616
6University of California, Los Angeles, California 90095
7Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
8Creighton University, Omaha, Nebraska 68178
Azimuthal correlations for large transverse momentum charged hadrons have been measured over a wide pseudo-rapidity range and full azimuth in Au+Au and p+p collisions at $\sqrt{s_{NN}} = 200$ GeV. The small-angle correlations observed in p+p collisions and at all centralities of Au+Au collisions are characteristic of hard-scattering processes already observed in elementary collisions. A strong back-to-back correlation exists for p+p and peripheral Au+Au. In contrast, the back-to-back correlations are reduced considerably in the most central Au+Au collisions, indicating substantial interaction as the hard-scattered partons or their fragmentation products traverse the medium.

PACS numbers: 25.75

In collisions of heavy nuclei at high energies, a new state of matter consisting of deconfined quarks and gluons at high density is expected [1]. Large transverse momentum partons in the high-density system result from the initial hard scattering of nucleon constituents. After a hard scattering, the parton fragments to create a high energy cluster (jet) of particles. A high momentum parton traversing a dense colored medium is predicted to experience substantial energy loss [2, 3] and may be absorbed. Measurement of the parton fragmentation products after hard-scattering processes in nuclear collisions may reveal effects due to the interaction of high-momentum partons traversing the medium, thereby measuring the gluon density of the medium [4].

High p_T single particle spectra are well described over a broad range of energies [5] in terms of the hadron’s parton distributions, hard parton scattering treated by perturbative QCD, and subsequent fragmentation of the parton. High p_T jet events have also been studied in proton-nucleus interactions [6]. In the absence of effects of the nuclear medium the rate of hard processes should scale linearly with the number of binary nucleon-nucleon collisions. Recent results from RHIC, however, show a suppression of the single particle inclusive spectra of hadrons for $p_T > 2$ GeV/c in central Au+Au collisions, indicating substantial in-medium interactions [7, 8].

In this Letter, we report measurements of two-hadron angular correlations at large transverse momentum for p+p and Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV. These correlation measurements provide the most direct evidence for production of jets in high energy nucleus-nucleus collisions, and allow for the first time measurements, inaccessible in inclusive spectra, of the fate of back-to-back jets in the dense medium as a function of the size of the overlapping system. The results reveal...
significant interaction of hard-scattered partons (or their fragmentation products) in the medium, with a strong dependence on the geometry and distance of traversal.

The measurements were made using the STAR detector at the Relativistic Heavy-Ion Collider (RHIC) at Brookhaven National Laboratory. The STAR detector is a large acceptance magnetic spectrometer, with a large volume Time Projection Chamber (TPC) inside a 0.5 Tesla solenoidal magnet. The TPC measures the trajectories of charged particles and determines the particle momenta. The TPC has full azimuthal coverage over a pseudo-rapidity range $|\eta| < 1.5$. STAR has excellent position and momentum resolution, and, due to its vertexing capabilities, is able to identify many sources of secondary particles. The p+p analysis uses \approx10 million minimum bias p+p events triggered on the coincidence of signals from scintillator annuli spanning the pseudo-rapidity interval $3.5 \leq |\eta| \leq 5.0$. The Au+Au analysis uses \approx1.7 million minimum bias Au+Au events and \approx1.5 million top 10% central Au+Au events.

Partons fragment into jets of hadrons in a cone around the direction of the original hard-scattered parton. The leading hadron in the jet tends to be most closely aligned with the original parton direction. The large multiplicities in Au+Au collisions make full jet reconstruction impractical. Thus, we utilize two-particle azimuthal correlations of high p_T charged hadrons to identify jets on a statistical basis, with known sources of background correlations subtracted.

Events with at least one large transverse momentum hadron ($4 < p_T^{\text{trig}} < 6$ or $3 < p_T^{\text{trig}} < 4$ GeV/c), defined to be a trigger particle, are used in this analysis. For each of the trigger particles in the event, we increment the number $N(\Delta \phi, \Delta \eta)$ of associated tracks with $2 \text{ GeV/c} < p_T < p_T^{\text{trig}}$ as a function of their azimuthal ($\Delta \phi$) and pseudo-rapidity ($\Delta \eta$) separations from the trigger particle. We then construct an overall azimuthal pair distribution per trigger particle,

$$D(\Delta \phi) \equiv \frac{1}{N_{\text{trigger}}} \int d\Delta \eta N(\Delta \phi, \Delta \eta),$$

(1)

where N_{trigger} is the observed number of tracks satisfying the trigger requirement. The efficiency e for finding the associated particle is evaluated by embedding simulated tracks in real data. In order to have a high and constant tracking efficiency, the tracks are required to have $|\eta| < 0.7$, which translates to a relative pseudo-rapidity acceptance of $|\Delta \eta| < 1.4$. The single track reconstruction efficiency varies from 77% for the most central Au+Au collisions to 90% for the most peripheral Au+Au collisions and p+p collisions.

Identical analysis procedures are applied to the p+p and Au+Au data. Displayed in Figure 1 are the azimuthal distributions for same-sign and opposite-sign charged pairs from the a) p+p data and b) minimum bias Au+Au data for $4 < p_T^{\text{trig}} < 6$ GeV/c. The data are integrated over the relative pseudo-rapidity range $0 < |\Delta \eta| < 1.4$. Clear correlation peaks are observed near $\Delta \phi \sim 0$ and $\Delta \phi \sim \pi$ in the data. The opposite-sign correlations at small relative azimuth are larger than those of the same-sign particle pairs, while the sign has a negligible effect on the back-to-back correlations.

To isolate the jet-like correlations (localized in $\Delta \phi$, $\Delta \eta$) in central Au+Au collisions, the azimuthal distributions are measured for two regions of relative pseudo-rapidity, $|\Delta \eta| < 0.5$ and $0.5 < |\Delta \eta| < 1.4$. The difference between the small and large relative pseudo-rapidity azimuthal distributions is displayed in Figure 1a, along with single Gaussian fits. Near $\Delta \phi = 0$, the azimuthal distributions from Au+Au and p+p have similar shapes. For the opposite-sign azimuthal distributions, the Gaussian widths are $0.17 \pm 0.01 \text{(stat.)} \pm 0.03 \text{(sys.)}$ radians for p+p data, and $0.20 \pm 0.02 \text{(stat.)} \pm 0.03 \text{(sys.)}$ radians for the central Au+Au data. For the same-sign azimuthal distributions, the Gaussian widths are $0.16 \pm 0.02 \text{(stat.)} \pm 0.03 \text{(sys.)}$ radians for p+p data, and $0.15 \pm 0.03 \text{(stat.)} \pm 0.04 \text{(sys.)}$ radians for the central Au+Au data. The systematic errors reflect the spread of values found for different choices of the $\Delta \phi$ bin width. Within the errors, there are no significant differences between the small-angle correlation widths for p+p and central Au+Au collisions.

The ratios of the opposite-sign to same-sign peak areas are $2.7 \pm 0.9 \text{(stat.)} \pm 0.2 \text{(sys.)}$ for p+p and $2.5 \pm 0.6 \text{(stat.)} \pm 0.2 \text{(sys.)}$ for central Au+Au collisions. In jet fragmentation, there are dynamical charge correlations between the leading and next-to-leading charged hadrons that originate from the formation of $q\bar{q}$ pairs along a string between two partons. This results in a preferential ordering into oppositely-charged adjacent particles along a string during fragmentation. The Hijing event generator, which utilizes the Lund string fragmentation scheme, incorporating these concepts, predicts a ratio of 2.6 ± 0.7 for the opposite-sign to same-sign correlation.
strengths. The agreement of this ratio with those measured in the central Au+Au and p+p suggests that the same jet production mechanism is responsible for a majority of the charged hadrons with $p_T > 4$ GeV/c in p+p and central Au+Au collisions.

The decay of resonances would also lead to small-angle azimuthal correlations, but a resonance decay origin is unlikely due to the observed correlation of particles with the same charge sign, the similarity in the measured small-angle azimuthal correlation widths in the Au+Au and p+p interactions, and the strong back-to-back correlations of large p_T particles seen for p+p collisions in Fig. 1b. The latter correlations, indicative of di-jet events [9], are removed from the central Au+Au sample by the subtraction in Fig. 1b. A quantitative analysis of back-to-back jet survival in Au+Au requires the more detailed treatment of background correlations described below.

In addition to correlations due to jets, the two-particle azimuthal distributions in Au+Au exhibit a structure attributable to an anisotropy of single particle production relative to the reaction plane. Previous measurements [17] indicate that, even at large transverse momentum, the particle distributions contain an anisotropy due to elliptic flow that can be characterized by $dN/d(\phi - \Phi_r) \propto 1 + 2v_2 \cos(2\phi - \Phi_r)$, where Φ_r is the reaction plane angle determined by event by event and v_2 is the elliptic flow parameter. This leads to a two particle azimuthal distribution of the form, $dN/d\Delta \phi = B(1 + 2v_2^2 \cos(2\Delta \phi))$. The elliptic flow component of the two-particle azimuthal distribution is measured using several methods [17]. In this paper, v_2 is determined using a reaction-plane method.

A simple reference model can be constructed for the two-particle azimuthal distributions of high p_T particles in Au+Au collisions. A number of independent hard scatterings (each similar to one measured in a triggered p+p event) included in an event with correlations due to elliptic flow can be represented by the azimuthal distribution,

$$D_{\text{model}} = D_{pp} + B(1 + 2v_2^2 \cos(2\Delta \phi)).$$

The elliptic flow parameter (v_2) is measured independently in the same set of events, and is taken to be constant for $p_T > 2$ GeV/c [17]. The parameter B is then determined by fitting the observed D_{AuAu} in the region $0.75 < |\Delta \phi| < 2.24$ radians, which is largely free of jet contributions in the p+p data.

In Figure 2, the azimuthal distributions for $0 < |\Delta \eta| < 1.4$ in Au+Au collisions at various centralities are compared to Equation 2 using the measured p+p data. The centrality selection is constructed by subdividing the Au+Au minimum bias data sample into subsamples with different charged particle multiplicities within $|\eta| < 0.5$. The parameters v_2 and B are determined independently for each centrality bin, and are listed in Table 1. For all centralities, the azimuthal correlation near $\Delta \phi = 0$ is well described by Equation 2. This indicates that the same mechanism (hard parton scattering and fragmentation) is responsible for high transverse momentum particle production in p+p and Au+Au collisions. However, the back-to-back correlations are suppressed in Au+Au collisions compared to the expectation from Equation 2, and the suppression is greater for more central collisions. The most central collisions show no indication of any back-to-back correlations beyond that expected from elliptic flow.

The ratio of the measured Au+Au correlation excess relative to the p+p correlation is:

$$I_{AA}(\Delta \phi_1, \Delta \phi_2) = \frac{\int_{\Delta \phi_1}^{\Delta \phi_2} d(\Delta \phi)[D_{AuAu} - B(1 + 2v_2^2 \cos(2\Delta \phi))]}{\int_{\Delta \phi_1}^{\Delta \phi_2} d(\Delta \phi)D_{pp}}.$$

The ratio can be plotted as a function of the number of participating nucleons (N_{part}), deduced from the centrality bins as described in reference [4]. I_{AA} is measured for both the small-angle ($|\Delta \phi| < 0.75$ radians) and back-to-back ($|\Delta \phi| > 2.24$ radians) regions. The ratio should

Centrality (%)	N_{part}	v_2	B
60-80	20±6	0.24±0.04	0.065±0.003
40-60	61±10	0.22±0.01	0.231±0.003
30-40	114±13	0.21±0.01	0.420±0.005
20-30	165±13	0.19±0.01	0.633±0.005
10-20	232±11	0.15±0.01	0.931±0.006
5-10	298±10	0.10±0.01	1.187±0.008
0-5	352±7	0.07±0.01	1.442±0.003

TABLE I: Centrality, number of participants, v_2 ($2 < p_T < 6$ GeV/c), and normalization constant B. The errors on v_2 and B are statistical only, while the errors on the number of participants are systematic [14].

FIG. 2: Azimuthal distributions (0 < $|\Delta \eta|$ < 1.4, $4 < p_T^{\text{trig}} < 6$ GeV/c) for Au+Au collisions (solid circles) compared to the expected distributions D_{model} from Equation 2 (open circles). Also shown is the elliptic flow contribution for each centrality (solid curve).
The small-angle correlations with increasing centrality are suppressed compared to the expectation from Equation (3) for small-angle (squares, $|\Delta \phi| < 0.75$ radians) and back-to-back (circles, $|\Delta \phi| > 2.24$ radians) azimuthal regions versus number of participating nucleons for trigger particle intervals $4 < p_{T}^{\text{trig}} < 6$ GeV/c (solid) and $3 < p_{T}^{\text{trig}} < 4$ GeV/c (hollow). The horizontal bars indicate the dominant systematic error (highly correlated among points) due to the uncertainty in v_2.

In summary, STAR has measured azimuthal correlations for high p_T charged particles over a large relative pseudo-rapidity range with full azimuthal angle coverage. Comparison of the opposite-sign and same-sign correlation strengths indicates that hard scattering and fragmentation is the predominant source of charged hadrons with $p_T > 4$ GeV/c in central Au+Au collisions. The azimuthal correlations in Au+Au collisions have been treated as the superposition of independently determined elliptic flow and individual hard parton scattering contributions, the latter measured in the STAR p+p data. The most striking feature of the hard-scattering component is an increasing suppression of back-to-back relative to small-angle correlations with increasing centrality. These observations appear consistent with large energy loss in a system that is opaque to the propagation of high-momentum partons or their fragmentation products.

We wish to thank the RHIC Operations Group and the RHIC Computing Facility at Brookhaven National Laboratory, and the National Energy Research Scientific Computing Center at Lawrence Berkeley National Laboratory for their support. This work was supported by the Division of Nuclear Physics and the Division of High Energy Physics of the Office of Science of the U.S. Department of Energy, the United States National Science Founda-
tion, the Bundesministerium fuer Bildung und Forschung of Germany, the Institut National de la Physique Nu-
cleaire et de la Physique des Particules of France, the
United Kingdom Engineering and Physical Sciences Re-
search Council, Fundacao de Amparo a Pesquisa do Es-
tado de Sao Paulo, Brazil, the Russian Ministry of Sci-
ence and Technology and the Ministry of Education of
China and the National Natural Science Foundation of
China.

[1] See for example: J.W. Harris and B. M¨ uller,
Annu. Rev. Nucl. Part. Sci. 46, 71 (1996).
[2] M. Gyulassy and M. Pl¨umer, Phys. Lett. B243, 432
(1990).
[3] X. N. Wang and M. Gyulassy, Phys. Rev. Lett. 68, 1480
(1992).
[4] See for example: R. Baier, D. Schiff, and B. G. Zakharov,
Annu. Rev. Nucl. Part. Sci. 50, 37 (2000).
[5] M. Banner et al., Phys. Lett. B118, 203 (1982).
[6] G. Arnison et al., Phys. Lett. B123, 115 (1983).
[7] F. Abe et al., Phys. Rev. Lett. 62, 613 (1989).
[8] F. Abe et al., Phys. Rev. D41, 1722 (1990).
[9] G. Arnison et al., Phys. Lett. B118, 173 (1982).
[10] F. Abe et al., Phys. Rev. Lett. 65, 968 (1990).
[11] T. Akeesson et al., Phys. Lett. B123, 133 (1983); J.A.
Appel et al., Phys. Lett. B160, 349 (1985); G. Arnison et
al., Phys. Lett. B172, 461 (1986); J.F. Owens, Rev. Mod.
Phys. 59, 465 (1987).
[12] B. Brown et al., Phys. Rev. Lett. 50, 11 (1983); R. Gomez
et al., Phys. Rev. D35, 2736 (1987); H. Miettinen et al.,
Phys. Lett. B207, 222 (1988); R.C. Moore et al., Phys.
Lett. B244, 347 (1990).
[13] K. Adcox et al., Phys. Rev. Lett. 88, 022301 (2002).
[14] C. Adler et al., nucl-ex/0206001.
[15] C. Adler et al., submitted to Nucl. Inst. Meth.
[16] G. Arnison et al., Phys. Lett. B132, 223 (1983).
[17] C. Adler et al., nucl-ex/0206002.
[18] P. Abreu et al., Phys. Lett. B407, 174 (1997).
[19] T. Sj¨ ostrand, P. Edén, C. Friberg, L. L¨ onnblad, G. Miu,
S. Mrenna and E. Norrbin, Comp. Phys. Commun. 135,
238 (2001).
[20] C. Adler et al., Phys. Rev. C66, 034904 (2002).
[21] F. Arleo, Phys. Lett. B532, 231 (2002); E. Wang and
X.N. Wang, Phys. Rev. Lett. 89, 162301 (2002).
[22] L. Apanasevich et al., Phys. Rev. Lett. 81, 2642 (1998).
[23] J.W. Cronin et al., Phys. Rev. D11, 3105 (1975).
[24] M.D. Corcoran et al., Phys. Lett. B259, 209 (1991).
[25] M. Lev and B. Petersson, Z. Phys. C21, 155 (1983).
[26] J.D. Bjorken, Fermilab-Pub-82/59-THY (1982).
[27] E.V. Shuryak, Phys. Rev. C66, 027902 (2002).