We study a radion model for inflation and density perturbation, identifying the scalar field arising from the five-dimensional gravity on $M_4 \times S^1$ with the inflaton. The inflaton potential arising from the 5D graviton and matter one-loop effects is shown to possess the desirable slow-roll property. This radion model contains only a small number of parameters and there is an ample parameter region, which reproduces (without fine-tuning) all precision astrophysical data.

Subject Index B72, E81, E84
The vacuum energy is positive, so-called dark energy (positive cosmological constant) in the inflation period. This means that the space-time is de-Sitter-like. We are not concerned with this issue and deal with loop corrections in 4D Minkowski space-time.

The model and the one-loop effective potential. We consider the 5D gravity theory with matter fermions \(\psi_i \) compactified on a circle \(S^1 \) of circumference \(L \). Here \(i = 1, \ldots, c, c \) being the number of fermions. We denote the 5D coordinate by \(x^M = (x^\mu, y) \), the index \(M \) running from 0 to 3, 5, and the index \(\mu \) from 0 to 3. The action in 5D is given by

\[
S = \int d^5 x \sqrt{g} \left[\frac{1}{16\pi G_5} R_{5} + \bar{\psi}_i \left(i \gamma^A D_A - \mu \right) \psi_i \right],
\]

(1)

where \(R_5 \) is the 5D scalar curvature, \(G_5 \) is the 5D gravitational coupling constant. 5D fermions \(\psi_i \) have the same mass \(\mu \). \(g_{MN} \) contains a scalar field \(\Phi \) after compactification on \(S^1 \). The zero mode of \(\Phi, \Phi^{(0)} = \phi \), is a 4D scalar field called the radion. Note that \(\phi \) is dimensionless because it is part of the metric \(g_{MN} \). We identify the radion \(\phi \) with the inflaton. Thus, we do not introduce extra scalar fields in order to construct the inflation model.

The physical circumference \(L_{\text{phys}} \) of the fifth dimension is given by

\[
L_{\text{phys}} = \int_0^L dx^5 \sqrt{g_{55}} = L \Phi^{1/3},
\]

(3)

where \(L = 2\pi \times (S^1 \text{radius}) \), meaning that \(L_{\text{phys}} \) is determined by \(\langle \phi \rangle \), the VEV of \(\phi \) and the adjustable parameter \(L \). Hence the dynamics of the extra dimension is described by the effective potential \(V(\phi) \) of the radion \(\phi \). We evaluate \(V(\phi) \) to study the behavior of the fifth dimension.

The potential \(V(\phi) \) is generated by the radiative corrections of the 5D graviton and matter one-loop. To this end, we introduce the classical and quantum fields.

\[
g_{\mu\nu} = \delta_{\mu\nu} + h_{\mu\nu}, \quad \phi = \phi_c + \phi_q, \quad A_\mu = 0 + A_\mu,
\]

(4)

where \(\delta_{\mu\nu}, \phi_c \) are the classical fields and \(h_{\mu\nu}, \phi_q, \) and \(A_\mu \) are the quantum fields. The effective potential for the radion \(\phi \) at the one-loop level is obtained in Refs. [7,12].

\[
V(\phi) = V_{\text{grav}}(\phi) + V_{\text{mat}}(\phi)
\]

\[
= -\frac{3\zeta(5)}{64\pi^2} \frac{1}{L^4\phi^2} + c \frac{3}{64\pi^2} \frac{1}{L^4\phi^2} \left[Li_5 \left(e^{-2L\mu\phi^{1/3}} \right) + 2L\mu\phi^{1/3} Li_4 \left(e^{-2L\mu\phi^{1/3}} \right) \right]
\]

\[
+ \frac{4}{3} L^2 \mu^2 \phi^{2/3} Li_3 \left(e^{-2L\mu\phi^{1/3}} \right) + aL\Phi^{-1/3} + b.
\]

(5)

(6)

The first term in the second equality is the contribution from the 5D gravity loop. The second term is that from the matter loop, with \(c \) being the number of fermions. In the third line, \(aL\Phi^{-1/3} \) is the 5D cosmological constant counter term and \(b \) is a constant term that we will explain later. \(Li_n (n \) is an integer) is the polylogarithm function defined by

\[
Li_n(u) = \sum_{k=1}^\infty \frac{u^k}{k^n}.
\]

(7)
It is known that the one-loop effective potential in the pure gravity sector is attractive and that \(V_{\text{grav}}(\phi) \) tends to negative infinity as \(\phi \to 0 \), indicating that the perturbative computation cannot be trusted near \(\phi = 0 \). Rubin and Roth pointed out that the stable minimum of the potential is achieved by introducing matter fermions \([13]\). We compare the attractive potential \(V_{\text{grav}} \) arising from the graviton one-loop with the repulsive potential \(V_{\text{mat}} \) from the matter one-loop in Fig. 1. \(V_{\text{mat}} \) shown in Fig. 1 is the case of two matter fermions \((c = 2)\). The two terms compete with each other. The sum of the two terms gives the potential \(V(\phi) \), which is unbounded or bounded from below depending on the number of fermions \(c \). \(V(\phi) \) at small \(\phi \) can be found by noting \(L \ln(e^{-2L\mu\phi^{1/3}}) \simeq \zeta(n) - 2L\mu\phi^{1/3}\zeta(n-1) \). We have

\[
V(\phi) \simeq -\frac{3\zeta(5)}{64\pi^2} \frac{1}{L^4\phi^2} + c\zeta(5) \frac{1}{64\pi^2} \frac{1}{L^4\phi^2}.
\]

On the other hand, \(V_{\text{grav}}(\phi) \) dominates the potential for large values of \(\phi \),

\[
V(\phi) \simeq -\frac{3\zeta(5)}{64\pi^2} \frac{1}{L^4\phi^2} + aL\phi^{-1/3}.
\]

Hence the potential (6) can acquire a minimum at some finite \(\phi \) (\(\phi = 1 \) in Fig. 1) by choosing \(c \geq 2 \) (two or more fermions).

Radion inflation in five-dimensional gravity with matter. In this section, we investigate the constraints on our inflation model from the observational data and the theoretical consideration. We will see whether our proposal of the inflaton and the radion being the same field has a meaning in comparison with recent astrophysics observation.

Constraints on the inflation model. We recapitulate the conditions that the inflation model should satisfy \([14,15]\).

i) The slow-roll condition

\[
\epsilon \equiv \frac{1}{2} M_P^2 \left(\frac{V'}{V} \right)^2 \ll 1, \quad \eta \equiv M_P^2 \frac{V''}{V} \ll 1, \tag{10}
\]

where \(M_P = 2.44 \times 10^{18} \) GeV is the reduced Plank mass, and \(V' = dV/d\phi \).

ii) The spectral index \(n_s \) is known quite precisely \([15]\).

\[
n_s \equiv 1 - 6\epsilon + 2\eta, \quad 0.948 < n_s < 0.977. \tag{11}
\]
iii) The number of e-foldings N:

$$N = \frac{1}{M_p^2} \left| \int_{\phi_i}^{\phi_e} \left(\frac{V}{V'} \right) d\phi \right| = 50 - 60, \quad (12)$$

where ϕ_i is the value of ϕ at the beginning of the inflation and ϕ_e at its end. For solving the flatness and horizon problems the inflation must last for a sufficiently long time, namely N has to be $50 - 60$.

iv) The curvature perturbation

$$\delta_H = \frac{1}{5\sqrt{6}\pi} \frac{V^{1/2}}{M_p^{1/2}} = 1.91 \times 10^{-5}. \quad (13)$$

v) There is an upper bound for the tensor-to-scalar ratio r from the observations

$$r = 16\epsilon \lesssim 0.24. \quad (14)$$

vi) The vacuum energy is nearly zero, $V_{\text{min}} = 0$. The value of V_{min} corresponds to the cosmological constant and is known to be positive and nearly zero.

We study whether the conditions for inflation summarized above are met for reasonable values of the parameters of our model, L, μ, and c.

Numerical analysis of our radion inflation model. We note that there is only one minimum in $V(\phi), \phi = \phi_c$ (see $V(\phi)$ in Fig. 1). We consider the case in which the radion field ϕ_f is fluctuating around ϕ_c, and set

$$\phi = \phi_c + \frac{\phi_f}{\sqrt{3}M_p}. \quad (15)$$

The physical size of the fifth dimension is $L_{\text{phys}} = \phi_c^{1/3}L$. Note that ϕ_c is dimensionless and ϕ_f has the canonical mass dimension.

We suppose that our model is a low-energy effective theory below the Planck scale. The result that the fifth dimension for our radion-inflaton model is stabilized near the Planck scale (see Fig. 1) implies that the model is a consistent effective theory. In this model, three spatial dimensions expand during the inflation whereas the fifth dimension shrinks to the Planck scale.

We now address ourselves to a more quantitative question in comparison with the constraints explained in the numerical analysis of our radion inflation model section above. The question is whether there are such parameter (L, μ, c) values that the astrophysical data are reproduced. To this end, we fit the data by varying the parameters. The numerical analysis is not as straightforward as it first looks. This is because the potential depends on five parameters even after choosing $c = 2$, $V = V(\phi_f; \phi_c, L, \mu, a, b)$. We have handled this complicated situation by first fixing the minimum of V to eliminate two parameters a and b. We impose two conditions:

$$V(\phi_f; \phi_c = 1, L, \mu, a, b) = 0, \quad V'(\phi_f; \phi_c = 1, L, \mu, a, b) = 0. \quad (16)$$

The first condition means the zero vacuum energy and the second that V has a minimum at $\phi_c = 1$. These two conditions are used to eliminate a and b in favor of L and μ,

$$a = a(L, \mu), \quad b = b(L, \mu). \quad (17)$$

The potential is expressed as $V(\phi_f; L, \mu)$. We then look for values of L and μ for which the conditions i)--v) are obeyed.
Fig. 2. The allowed region of the parameters is shown by a shaded area. We can choose L and the matter mass μ from inside the shaded area, $L = (2.53 - 3.62) \times 10^{-17}$ GeV$^{-1}$ and $\mu = 0.8 - 4.15 \times 10^{16}$ GeV.

Fig. 3. The inflaton potential and the inflation period for typical values of L and μ. The values (18) of L and μ are used.

We first choose the value of L. We envisage a situation in which L is of the order of $1/M_P (= 4.18 \times 10^{-17}$ GeV$^{-1}$). The c, the number of fermions ψ_i, may be chosen as we like. However, a huge number of ψ_i seems unrealistic. Here we tentatively take $c = 2$, the smallest value that is consistent with the stability (bounded from below) of the potential. As for μ, we have a priori little idea about its magnitude.

I) Taking $c = 2$, there remain only two parameters, L and μ. We try to fit all the astrophysical data, i)–v) of the numerical analysis of our radian inflation model section above, allowing both L and μ to vary. We allow L to vary in the range of $O(1) \times 10^{-17}$ GeV$^{-1}$, μ in the range $0.8 - O(1) \times 10^{17}$ GeV, for the reasons mentioned above. It turns out that there are values of L and μ for which the data i)–v) are reproduced precisely. The allowed values of L and μ are correlated. Their region is shown as a shaded area in the parameter space in Fig. 2. We take one point from this region,

$$L = 3.51 \times 10^{-17} \text{ GeV}^{-1}, \quad \mu = 1 \times 10^{15} \text{ GeV}$$

(18)

(the solid circle in Fig. 2), and show how the potential V behaves as a function of ϕ in Fig. 3. In Fig. 3, the region of inflation, $\phi_e \leq \phi \leq \phi_i$, is shown as a shaded area in which $\phi_i = 1.60 \times 10^{19}$ GeV and $\phi_e = 1.76 \times 10^{18}$ GeV.

The inflaton mass is mainly fixed by the circumference L, $m_{\phi}^2 \simeq 1/(M_P^2 L^4)$. For the parameter value of (18), $m_{\phi} = 1.28 \times 10^{14}$ GeV. The tensor-to-scalar ratio, evaluated at $\phi_i = 1.60 \times 10^{19}$ GeV, $r = 1.2 \times 10^{-3}$ is consistent with the observations.

II) If we allow large values of c, there are alternative solutions that reproduce the astrophysical data equally well. These solutions correspond to somewhat smaller values of L and similar values
of \(\mu \). One example is \(c = 51 \) and

\[
L = 1 \times 10^{-16} \text{ GeV}^{-1}, \quad \mu = 1 \times 10^{15} \text{ GeV}.
\]

To conclude, we have found that the radion potential from one-loop corrections in 5D gravity with matter can give rise to inflation in accord with the astrophysical data. Gratifyingly, precise fine-tuning of the parameters is not necessary; there is an ample range of parameters \(L \) and \(\mu \) (the shaded region in Fig. 2) for which desirable inflation should have occurred.

Discussion. We have constructed an inflaton model by identifying the inflaton with the radion in 5D gravity with matter fermions. The model contains two parameters, the \(S^1 \) circumference \(L \) of the fifth dimension and the fermion mass \(\mu \), after choosing the number of fermions \(c \) to be 2. There is an ample region in the parameter space for which the model can reproduce the astrophysical data. In this sense the radion model is free from extreme fine-tuning of the potential parameters, \(L \) and \(\mu \).

We have previously constructed an inflaton model based on 5D gauge theories. The inflaton is identified with the Higgs field, the fifth component of the gauge field. The model can reproduce the astrophysical data without fine-tuning of the parameters of the model. There remains a question about the value of the gauge coupling constant \(g \); the value of \(g \) has to be smaller than realistic values to explain the data.

In higher-dimensional space-time both gauge field and gravity contain scalar fields, Higgs and radion respectively [16]. It is interesting to note that the inflaton potential \(V_{\text{grav}}(\phi) \) arising from one-loop effects in the 5D gravity theory and \(V_{\text{gauge}}(\phi) \) arising from one-loop effects in the 5D gauge theory [3,4] are very different. \(V_{\text{gauge}}(\phi) \) is periodic in \(\phi \) whereas \(V_{\text{gauge}}(\phi) \) is not so, as seen in Fig. 1. This is because \(V_{\text{gauge}}(\phi) \) arises through the Wilson line. Currently we have no means to decide which kind of potential is more suitable as the inflaton potential. The two scalar fields may compete in giving rise to cosmological inflation. It is an interesting question which scalar field plays the dominant role. We are currently studying this question.

Acknowledgements

This work is partially supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Kiban A, 21244036 and Kiban C, 20012487.

References

[1] H. Hatanaka, T. Inami, and C. S. Lim, Mod. Phys. Lett. A 13, 2601 (1998).
[2] I. Antoniadis, Phys. Lett. B 246, 377 (1990).
[3] N. Arkani-Hamed, H. C. Cheng, P. Creminelli, and L. Randall, Phys. Rev. Lett. 90, 221302 (2003).
[4] T. Inami, Y. Koyama, C. S. Lim, and S. Minakami, Prog. Theor. Phys. 122, 543 (2009).
[5] T. Inami, Y. Koyama, C. M. Lin, and S. Minakami, Prog. Theor. Phys. 125, 345 (2011).
[6] K. Hasegawa, C. S. Lim, and N. Maru, Phys. Lett. B 604, 133 (2004).
[7] T. Appelquist and A. Chodos, Phys. Rev. D 28, 772 (1983).
[8] A. Mazumdar, Phys. Lett. B 469, 55 (1999).
[9] A. M. Green and A. Mazumdar, Phys. Rev. D 65, 105022 (2002).
[10] E. W. Kolb, G. Servant, and T. M. P. Tait, J. Cosmol. Astropart. Phys. 0307, 008 (2003).
[11] J. Trudeau and J. M. Cline, J. High Energy Phys. 1202, 081 (2012).
[12] E. Ponton and E. Poppitz, J. High Energy Phys. 0106, 019 (2001).
[13] M. A. Rubin and B. D. Roth, Phys. Lett. B 127, 55 (1983).
[14] D. H. Lyth and A. Riotto, Phys. Rep. 314, 1 (1999).
[15] G. Hinshaw et al. [WMAP Collaboration], Astrophys. J. Suppl. 180, 225 (2009).
[16] M. Fairbairn, L. Lopez Honorez, and M. H. G. Tytgat, Phys. Rev. D 67, 101302 (2003).