Variable Glutamine-Rich Repeats Modulate Transcription Factor Activity
Rita Gemayel, Sreenivas Chavali, Ksenia Pougach, Matthieu Legendre, Bo Zhu, Steven Boeynaems, Elisa van der Zande, Kris Gevaert, Frederic Rousseau, Joost Schymkowitz, M. Madan Babu, and Kevin J. Verstrepen
Figure S1

A

Few million years	Few hundred years	Few weeks	Isogenic cells at an instant
Expression divergence	**Expression variability**	**Mutational variance**	**Expression noise**

- S. cerevisiae (BY4743)
- S. paradoxus (CBS 432)
- S. paradoxus (NRLY-17217)
- S. mikatae (IFO1815)
- S. kudriavzevii (IFO1802)

- BY4716
- RM11-1a

B

Expression divergence	Expression variability	Mutational variance	Expression noise
n=1903 [n=31]	n=1972 [n=21]	n=890 [n=22]	n=163 [n=4]
CLES 45.9%	37.5%	49.3%	NA

Target of NR-TFs with low expression phenotype
Target of Q-rich TFs with low expression phenotype
Figure S2

A

Expression divergence

Expression variability

Mutational variance

Expression noise

CLES

42.4%

Expression divergence

Expression variability

Mutational variance

Expression noise

CLES

44.1%

B
Regulation of cellular protein metabolic process (GO:0032268)
Posttranscriptional regulation of gene expression (GO:0010608)
Intracellular transport (GO:0046907)
Regulation of translation (GO:0006417)
Oxidation reduction (GO:0055114)
Translational elongation (GO:0006414)
Steroid metabolic process (GO:0008202)
Sterol metabolic process (GO:0016125)
Cofactor metabolic process (GO:0051186)

-log P-value

0 0.5 1 1.5 2 2.5 3 3.5

Targets of NR-TFs
Targets of Q-rich TFs

C

Expression divergence

Expression variability

Mutational variance

Expression noise

CLES

42.4%

Expression divergence

Expression variability

Mutational variance

Expression noise

CLES

43.0%

D

Expression divergence

Expression variability

Mutational variance

Expression noise

CLES

44.1%

Expression divergence

Expression variability

Mutational variance

Expression noise

CLES

44.9%
Figure S3

A

\[SW1 ORF\]

\[
\begin{array}{c}
1 & 348 & 372 & 1314 \\
N & Q & C
\end{array}
\]

B

\[SNF5 ORF\]

\[
\begin{array}{c}
1 & 218 & 268 & 905 \\
N & Q & C
\end{array}
\]
Figure S4

A Carbon starvation

RNA-seq	RT-qPCR	MLS1
![Graph](image1)	![Graph](image2)	![Graph](image3)
$R^2 = 0.892$	$R^2 = 0.778$	

RNA-seq	RT-qPCR	HXX1
![Graph](image4)	![Graph](image5)	![Graph](image6)
$R^2 = 0.43$	$R^2 = 0.805$	

FOX2	FLO11	NRG1
![Graph](image7)	![Graph](image8)	![Graph](image9)
$R^2 = 0.772$	$R^2 = 0.744$	$R^2 = 0.869$

CIN5	FLO11
![Graph](image10)	![Graph](image11)
$R^2 = 0.835$	$R^2 = 0.757$

B Glucose rich

RNA-seq	RT-qPCR
![Graph](image12)	![Graph](image13)
$R^2 = 0.743$	$R^2 = 0.805$

CIN5	FLO11
![Graph](image14)	![Graph](image15)
$R^2 = 0.835$	$R^2 = 0.757$

B Glucose-rich medium

Carbon-starved medium	Glucose-rich medium
![Graph](image16)	![Graph](image17)
$R^2 = 0.743$	$R^2 = 0.805$

SSN6 ORF:

- **SSN6 TR2 Number**
 - primers 1
 - primers 2

- **SSN6 ORF**
 - primers 1
 - primers 2

SSN6 TR2 Number	**SSN6 TR2 Number**
0 20 40 60 80 100 120	0 20 40 60 80 100 120
SSN6 ORF N	**SSN6 ORF** C
TR1	**TR2**
Figure S5

A

PHO84

	Glucose	Glycerol
0Q		
51Q (WT)	**+**	**+**

ZEO1

	Glucose	Glycerol
0Q	10	20
51Q (WT)	15	25

B

pho84::YFP fluorescence (a.u.)

10µM Pi 50µM Pi 100µM Pi 250µM Pi 10mM Pi

0Q 51Q
Figure S6

A

MW markers

TR2 number 0 63 105 Controls

TR2 number 0 63 105 Controls

B

TR2-105

Parent 1

TR2-0

Parent 2

Dissected tetrads

Tetrads showing 2:2 segregation of phenotype

31

31

31

31

C

103Q-GFP fluorescence (a.u.)

flo11::CFP fluorescence (a.u.)

replicate 1

replicate 2

replicate 3

replicate 4

pgPD 103Q-GFP

no plasmid

pgPD 103Q-GFP

no plasmid

pgPD 103Q-GFP

no plasmid

pgPD 103Q-GFP

no plasmid
SUPPLEMENTAL INFORMATION

SUPPLEMENTAL DATA

Figure S1: Expression variation of targets of Q-rich TFs across different time-scales is independent of that of the TFs, Related to Figure 1

(A) Expression variation of Q-rich TFs and non-repeat containing TFs are comparable across different time-scales. As the number of TFs were low, we could not compare the expression variation distributions of Q-rich TFs and nonRCP TFs using Wilcoxon rank-sum test. Therefore, we categorized each expression variation measure into low (bottom 33.3%), medium (middle 33.3%) and high (top 33.3%) using tertile-cuts of the distribution of all genes. Subsequently, we counted the number of nonRCP TFs and Q-rich TFs in each category and assessed for differences in their distribution using Fisher’s exact test. Though, predominantly Q-rich TFs tend to show low expression variation, these differences are not statistically significant owing to few datapoints. Therefore, we interpret that Q-rich TFs and non-repeat containing TFs have comparable expression variation across different time-scales.

(B) Distribution of expression divergence, expression variability, mutational variance and expression noise of targets regulated by NR-TFs and Q-rich TFs, which had low expression variation across different time scales (as defined in Figure S1A). The number of targets in each class is provided below each box, and the number of TFs that qualified our criterion are between brackets. Statistical significance was assessed using Wilcoxon rank sum test. The effect sizes are represented by the common language effect size (CLES) statistic.

Figure S2: Expression variation of targets of Q-rich TFs across different time-scales is independent of endogenous and exogenous conditions, Related to Figure 1
Distribution of transcript abundance of targets of NR-TFs and Q-rich TFs in yeast grown in YPD (Holstege et al., 1998). Both classes of targets have comparable expression levels ruling out the possibility of measurement errors influencing our observations. P-values were estimated using Wilcoxon rank sum test.

Gene Ontology biological process enrichment among targets of NR-TFs and Q-rich TFs obtained using DAVID server (Huang da et al., 2009). FDR values are presented as –log P values.

Distribution of stress-responsive targets (Luscombe et al., 2004; Gasch et al., 2000) of NR-TFs and Q-rich TFs for expression variation across different time-scales. Statistical significance was assessed using Wilcoxon rank sum test.

Distribution of nonstress-responsive targets of NR-TFs and Q-rich TFs for expression variation across different time-scales. All targets that were not found to be stress-response genes in Figure S2C were classified as nonstress-response genes. Statistical significance was assessed using Wilcoxon rank sum test. The effect sizes are represented by the common language effect size (CLES) statistic.

Figure S3. The Q-rich repeats in other S. cerevisiae transcriptional regulators show variability between natural strains, Related to Figure 2

Schematic representation of Swi1 (a subunit of the SWI/SNF chromatin remodeling complex) showing the Q-rich repeat region (residues 348 to 372). Amplification of the Q-rich region of SWI1 from various S. cerevisiae isolates.

Schematic representation of Snf5 (another subunit of the SWI/SNF chromatin remodeling complex) showing the Q-rich repeat region (residues 218 to 268). Amplification of the Q-rich region of SNF5 from various S. cerevisiae isolates.
Figure S4. Confirmation of changes in expression of the SSN6 targets by real-time quantitative PCR, Related to Figure 3

(A) Expression profiles for representative genes, identified by RNAseq, were confirmed by real-time quantitative PCR. Log$_2$ expression fold changes relative to the WT (TR2-63) are given. Data points represent mean ± SD; n=2.

(B) The expression of SSN6 in all the TR2 variants was measured by real-time quantitative PCR using primer pairs annealing before the TR2 region (primers 1) and after the TR2 region (primers 2). SSN6 expression was normalized to the ACT1 levels and the Log$_2$ expression fold change relative to the WT (TR2-63) is given. Data points represent mean ± SD; n=2.

Figure S5. Loss of polyQ in the chromatin modifier Snf5 results in loss of transcriptional activity, Related to Figure 4

(A) Expression of PHO84 and ZEO1 was measured in Snf5 polyQ deletion variant (0Q) and in the WT (51Q) by real-time quantitative PCR. Cultures were grown until exponential phase in rich medium containing 2% glucose or 2% glycerol as a carbon source. Expression values were normalized to the expression of the RPS16A gene. Data points represent mean ± SD; n=3. A two-tailed, two sample unequal variance t-test was used to determine P values.

(B) Flow cytometry profiles of pho84::YFP expression in the Snf5 polyQ deletion variant (0Q) (green traces) and in the WT strain (51Q) (blue traces) in SC-glucose medium containing various phosphate concentrations.

Figure S6. Expanded SSN6 repeats are stable over multiple generations, the Ssn6 TR2-105 aggregates are not prions and overexpression of an aggregation-prone polyQ does not recapitulate the observations made with expanded Ssn6, Related to Figure 5
(A) Two biological replicates (starting clones 1-2) and two technical replicates (a–b) of the SSN6 TR2-105 variant were cultured over > 30 generations using 4 intermediate dilutions. Genomic DNA was extracted from all the cultures and the SSN6 TR2 region was amplified by PCR.

(B) The SSN6 TR2-105 variant was crossed with either the TR2-0 variant or the WT (TR2-63) strain. The resulting diploids were allowed to sporulate and 31 tetrads resulting from each cross were dissected to obtain separate spores. This progeny was then spotted on YP-sucrose medium and colonies were scored for their morphology. A Mendelian, 2:2 segregation of the colony morphology phenotype was obtained for all tetrads.

(C) Expression of the N-terminal fragment of human huntingtin containing 103 glutamines controlled by the GPD promoter in WT cells (SSN6 TR2-63) with a flo11::CFP reporter. GFP and CFP fluorescence from 4 independent replicates was measured by flow cytometry. Cells expressing the 103Q-GFP fragment (y-axis) have similar flo11::CFP (x-axis) expression compared to control (no plasmid) cells.
Table S1. Genome-scale analysis of the occurrence of Q-rich repeats in various eukaryotic organisms, Related to Figure 1

Tandem repeats of ≥ 9 units were first extracted from the genomes of *S. cerevisiae*, *D. melanogaster*, *D. rario*, *M. musculus*, and *H. sapiens*. From this list we subsequently extracted Q-rich repeats, defined as repeats with at least 85 % of glutamines in the translated sequence. Systematic gene names are given.

This table provided as a separate Excel file.

Table S2. Functional enrichment of genes containing Q-rich repeats in various eukaryotic organisms, Related to Figure 1

Genes containing Q-rich repeats are enriched for particular biological functions (column B) when compared to all repeat-containing genes in various eukaryotic genomes. The statistical significance value (adjusted P-value) for each enriched category is given in column C.

This table is provided as a separate Excel file.
Table S3. Sequencing of SSN6 tandem repeats in various *Saccharomyces cerevisiae* strains, Related to Figure 2

Q, glutamine; A, alanine

Strain	TR1	TR2				
	Unit number (Q)	Repeat length (bp)	Unit number (QA)	Unit number (Q)	Unit number (Q+A)	Repeat length (bp)
SK1	20	60	22	9	31	159
NCYC110	20	60	22	9	31	159
DBVPG6044	20	60	23	9	32	165
Y12	11	33	25	26	51	228
Y9	11	33	25	26	51	228
L-1374	20	60	36	23	59	285
DBVPG1373	16	48	36	24	60	288
YS2	16	48	36	24	60	288
DBVPG1853	16	48	37	24	61	294
Σ1278b	16	48	32	31	63	285
S288c	16	48	32	31	63	285
UWOPS83-787.3	16	48	34	31	65	297
378804X	16	48	34	32	66	300
UWOPS03-461.4	16	48	34	32	66	300
UWOPS05-227.2	16	48	34	32	66	300
YJM 789	16	48	40	28	68	324
Table S4. Target genes showing significant induction or repression in the SSN6 TR2-0 or TR2-105 variants in carbon starved or glucose-rich medium, Related to Figure 3

The data is represented as Log$_2$ fold change in expression relative to the expression in the WT strain (TR2-63). A cutoff of Log$_2$ fold change ≥ 0.8, FDR-adjusted $P< 0.01$, in at least one growth condition, was used to select the significantly up- or down-regulated genes in these variants.

This table is provided as a separate Excel file.
Table S5. Interactors of Ssn6 identified by LC-MS/MS, Related to Figure 5
These proteins were detected in the pull-downs of every Ssn6 TR2 variant tested (i.e. TR2-0, TR2-55, TR2-63, TR2-90 and TR2-105) by at least two different peptides. In bold are the proteins that show enrichment or depletion relative to the WT (TR2-63) in one or more TR2 variant. Subcellular localization predicted by pSORT.

Gene name	Description	Subcellular localization
1 SSN6	General transcriptional corepressor CYC8	nuclear
2 TUP1	General transcriptional corepressor TUP1	nuclear
3 SSA2	Heat shock protein SSA2	cytosolic
4 SAR1	Component of COPII coat of vesicles	cytosolic
5 PAB1	Polyadenylate-binding protein, cytoplasmic and nuclear	cytosolic/nuclear
6 TEF1	Elongation factor 1-alpha	cytosolic
7 DED1	ATP-dependent RNA helicase DED1	nuclear
8 RPS19A,RPS19B	40S ribosomal protein S19A, S19B	cytosolic
9 RPL2B,RPL2A	40S ribosomal protein S1-A, S1-B	cytosolic
10 RPL3	60S ribosomal protein L3	cytosolic
11 HRP1	Nuclear polyadenylated RNA-binding protein 4	nuclear
12 NPL3	RNA-binding protein, Nucleolar protein 3	cytosolic
13 NOP1	Histone glutamine methyltransferase	cytosolic
14 YDJ1	Yeast dnaJ protein 1	cytosolic
15 ACH1	Acetyl-CoA hydrolase	cytosolic
16 PSP2	Asparagine-rich cytoplasmic protein	cytosolic/nuclear
17 ADE12	Adenylosuccinate synthetase	cytosolic
SUPPLEMENTAL EXPERIMENTAL PROCEDURES

Genome-Scale Analyses

Genomic sequences and gene annotations for *Danio rerio* (assembly Zv9, r73), *Drosophila melanogaster* (r5.53), *Homo sapiens* (GRCh37, r73), *Mus musculus* (GRCm38, r73) and *Saccharomyces cerevisiae* (S288c, r64) were downloaded from the Ensembl database (Flicek et al., 2013). We scanned these genomes with Tandem Repeat Finder (TRF) v4.07b (Benson, 1999) with standard parameters. We then selected repeats overlapping protein-coding regions. Repeats coding for glutamines were flagged as “Q repeats” if glutamines composed at least 50% of the translated sequence. Repeats with at least 85% of glutamines in the translated sequence were annotated as “Q-rich repeats”. Gene ontology enrichment analyses were done using the GoStat tool (Beissbarth and Speed, 2004). For each species, genes were split into 4 categories: all genes, genes with repeats, genes with Q repeats and genes with Q-rich repeats. We searched for enriched Biological Process GO terms with significant corrected P-value (FDR P-value ≤ 0.05) by comparing genes with Q repeats to genes with repeats. The trends were then confirmed by computing the proportion of genes in the other categories for significantly enriched GO terms. Functional annotations for the targets of SSN6 repeat variants were determined using the clustering algorithm of DAVID v6.7 (Huang da et al., 2009) with the default stringency settings.

Construction of the Yeast SSN6 Repeat Variants

To create the SSN6 repeat variants, we first amplified the *Hph* gene, conferring resistance to hygromycin B, using primers 2361-2362 which have 60 bp overhangs that allow homologous recombination of the PCR product downstream of the SSN6 open reading frame in the Sigma1278b strain. We then used the genomic DNA from the resulting strain (RG518, WT
strain), the reverse primer 2362 and a series of forward primers (2363, 2364, 2857 till 2860, 4126, 4127, 4256, 4257, 4258) each designed to produce a PCR product with a different repeat number. These PCR products were used to transform a fresh Sigma1278b strain and transformants were selected for hygromycin B resistance. To generate a Snf5 polyQ deletion variant in the lab S288c strain, we used the same strategy described above and the following primers 2355, 2356, 2357. The repeat regions of the newly created variants were verified by sequencing with primers flanking the repeats. To create YFP tagged versions of the Ssn6 repeat variants we amplified a cassette containing yEVenus-kanR using primers 4037-4038 and plasmid pKT103 (Euroscarf). To create 6xHA-tagged versions of the Ssn6 repeat variants, we amplified a 6xHA-kanR cassette with primers 4491-4492 and plasmid pYM14 (Euroscarf). To make flo11::YFP or CFP promoter fusions we used primers 4356-4357 and plasmid pKT103 (YFP) or pKT102 (CFP), for IMA1-YFP protein fusions we used primers KP6 – KP7 and plasmid pKT103, and for CIN5-mCherry protein fusions we used primers Cin5-yEVL-F and Cin5-yEVL-R and plasmid pSR101. We then transformed the SSN6 repeat variants and selected transformants for the adequate resistance. The pho84::YFP (promoter fusion) strains were generated by inserting a cassette containing the native PHO84 promoter followed by a yEVenus coding sequence at a neutral genomic locus. These cells contain a functional PHO84 copy (in its native locus) to maintain physiological responses to varying Pi levels and prevent constitutive expression of the PHO genes.

Media and Growth Conditions

Unless otherwise stated, strains were grown in liquid YP medium (1% yeast extract, 2% peptone) supplemented with 4% glucose or on YPD (2% glucose) plates. Flo11::YFP reporter strains were grown in YP 4% glucose, IMA1-YFP reporter strains in YP 2% palatinose and CIN5-RFP reporter strains in YP 0.5% glucose. Strains harboring plasmid p416 103Q GPD
(Addgene) were grown in SC-URA medium (for plasmid selection) supplemented with 4% glucose. Snf5 polyQ deletion variant containing *pho84::YFP* reporter was grown in SC 2% glucose medium containing various phosphate concentrations prepared as described (Thomas and O'Shea, 2005). To avoid depletion of extracellular phosphate, the cells were periodically diluted to obtain a density of 5×10^5 cells/ml after 18 hrs of growth. The remaining phosphate in the medium was measured at the end of the experiment and was > 80 % of the initial concentration.

Flow Cytometry

Strains were grown until exponential phase in appropriate medium according to the reporter genes (see above). Analytical flow cytometry was performed using a BD Influx flow cytometer equipped with the appropriate lasers and filters. Before each analysis, we ran stable multicolored fluorescent beads in order to standardize the instrument and allow for correct comparisons between experiments.

Yeast Phenotypic Analyses

We used the Phenotype MicroArray technology (BIOLOG, Inc.) for high throughput screening of growth in various carbon and nitrogen sources following the manufacturer’s instructions. Growth kinetics were extracted from the growth plots using the OmniLog PM software. Growth rate measurements in palatinose were done using the Bioscreen C (Growthcurves USA) as in (New et al., 2014). To evaluate colony morphology, strains were grown overnight in liquid YPD, normalized to the same density and spotted on YP 2% Sucrose plates. After 4 days of growth at 30°C, the plates were photographed at 0.5 X magnification using a Nikon AZ 100M macroscope with a DS-Ri1 camera. To evaluate invasive growth, strains were pre-grown and normalized as previously and spotted on YPD
plates. After 11 days at 30°C, the plates were photographed before and after removal non-invasive cells by washing under running water.

Adhesion to plastic was quantified by staining with crystal violet as described elsewhere (Reynolds and Fink, 2001) and flocculation measured as follows: dense overnight cultures were normalized to OD$_{600} = 10$. Cultures were then left to sediment and at multiple time points 20 µl of culture was taken from a fixed sampling point and OD$_{600}$ measured. Quantification was based on counts of free cells in a flocculating culture over total cell density using the formula: [1- (free cells/total cells)] x 100.

Transcriptome Analysis by RNA-seq and Real-Time Quantitative PCR

RNA sample preparation and sequencing on an Illumina Hiseq2000, which generated single-end 50 bp reads, was carried out at the Genomics Core Facility (EMBL – Heidelberg). To ensure data accuracy for the subsequent analyses, a minimum of 50X coverage was required. Raw reads were filtered using FASTX-Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/index.html) with Q30 cutoff. After removing the low quality reads and adaptors, the RNA-Seq reads were aligned to the *S. cerevisiae* S288C reference genome (version genebank 64) using Tophat 2.0.7 (Trapnell et al., 2009) allowing a maximum of 2 mismatches. If reads mapped to more than one location, only the one with the highest score was kept. After obtaining the reads number for every sample, the edgeR Bioconductor package with the Trimmed Mean of M-values (TMM) normalization method (Robinson and Oshlack, 2010) was used to determine the differentially expressed genes (DEGs). Significantly differentially expressed genes (P value < 0.01 and Log$_2$ fold change > 0.8) in the TR2-0 or the TR2-105 variants were selected (Table S4). To detect meaningful expression trends between all the TR2 variants, we treated the *SSN6* TR2 numbers as a time series and analyzed the autocorrelation of the expression pattern of the above selected genes.
The expression fold change (compared to WT, TR2-63) trajectories of different SSN6 TR2 variants are expected to be autocorrelated, whereas those of false positives should be uncorrelated between two consecutive repeat variants. We rejected DEGs with an autocorrelation coefficient < 0.2. The GENE-E software (http://www.broadinstitute.org/cancer/software/GENE-E/) was used to generate a heat map for the expression fold change of genes fulfilling the above criteria.

For quantitative real-time PCR measurements, complementary DNA was synthesized from 1 µg total RNA using the QuantiTect Reverse Transcription (Qiagen). Real-time quantitative PCR was performed using the StepOnePlus system (Applied Biosystems) and Power SYBR Green PCR master mix (Applied Biosystems). The PCR reaction conditions were as follows: 10 min at 95°C, followed by 40 cycles of 95°C for 15 sec, 60°C for 1 min, and 95°C-60°C (melt curve). Expression values were normalized to the expression of the ACT1 gene (SSN6 targets) or the RPS16A gene (SNF5 targets).

Network Construction and Visualization

Protein-protein interaction networks were extracted from the STRING interaction database (Franceschini et al., 2013), protein-DNA interactions from YEASTRACT (Teixeira et al., 2014) and metabolic networks from the KEGG database (Kanehisa et al., 2014). Network analysis and visualization were performed using Cytoscape (Smoot et al., 2011).

Identification and Quantification of the Ssn6 Interactome

Peptides originating from the ‘in solution’ endoproteinase-LysC digestion of the pull-downs were labelled using N-hydroxysuccinimide esters of different versions of propionic acid: 12C₃-propionate (Light isotope, L) for the WT pull-downs and 13C₃-propionate (Heavy isotope, H) for the TR2 variants, as described (Ghesquiere et al., 2011). Following acidification to pH 3
by adding TFA and a centrifugation step for 5 min at 16,000g to remove insolubilities, equal amounts of WT and TR2 variants samples were mixed. Of these peptide mixtures, 5 µL was analyzed by LC-MS/MS on a Q Exactive mass spectrometer as described (Stes et al., 2014). Subsequent peptide identification and quantification was performed with the MaxQuant software (Cox and Mann, 2008) (version 1.4.0.3) in the Swiss-Prot database with restriction to *Saccharomyces cerevisiae* proteins. Here, acetylation of the protein N-terminus, pyroglutamic acid formation of N-terminal glutamine and methionine oxidation were set as possible modifications. Mass tolerances of peptide precursor ions and fragments ions were set to 4.5 ppm and 20 ppm, respectively. The false discovery rate on peptide-to-spectrum matches was set at 0.01, and a minimum peptide length of 7, the option “matching between all runs” and a minimum of 2 unique or razor peptides for protein identification were used. Peptides from the trypsin in-gel digestion were analyzed by MS/MS on an Orbitrap XL mass spectrometer and identified against the Swiss-Prot *Saccharomyces cerevisiae* proteins.

Fluorescence Imaging

Fluorescence imaging of live cells was carried out using an inverted Nikon Eclipse Ti microscope equipped with a 100x oil-immersion objective, a Lambda XL fluorescent lamp (Sutter Instrument Company), an Andor DL-604M - #VP camera (Andor™ Technology) and MetaMorph software (Molecular Devices) for image acquisition.
Primers used in this study

Primer name	Primer sequence
Primers for SSN6 repeat sequencing	
2332-TRsz-CYC8-F2	TCAATGGTACAACAACAGCATCCTGCCTGCTAA
2333-TRsz-CYC8-R2	TATGGTTGCCCTTGTAGGATTTAATCAAT
2531-TR1sz-CYC8-F1	AGACTAGTACTACAATACAACAGCA
2532-TR1sz-CYC8-R1	GTTTCTGCAAAAAGAAGCAGAAT
Primers for SSN6 repeat variant construction	
2361-dTR-CYC8-HYG-F	AACGAGAAAATGTTGTACATCACAATTTCATTATGTTTGAGATA
2362-dTR-CYC8-HYG-R	TTTGTGATTACAATCCCATATGTCAATTTCCCATTCAGAGGAG
2363-dTR1-CYC8-F	CAAGCTTCGTTCTCAGAGTCAGGGCAGCTCCCATGAGCAGCAAC
2364-dTR2-CYC8-F	GCAATCCTCGTCAAGAAAAGCTGATACTTCATTAGAGAGGAGAAG
2857-dTR5Q-CYC8-F	AAAATAATGGAGCAACAAGCTAGAGCAGCTTCAGAGGAGGAG
2858-dTR10Q-CYC8-F	GGGCTGACAAATGATAATGGAACAAAGCTAGAGCAGCTTCAGAGGAG
2859-TR32Q-CYC8-F	ACAAGCCAAAGCTAGAGCAGCTTCAGAGGAGGAG
2860-TR51Q-CYC8-F	ACAAGCCAAAGCTAGAGCAGCTTCAGAGGAGGAG
4126-TR2-64Q-CYC8-F	ACAAGCCAAAGCTAGAGCAGCTTCAGAGGAGGAG
4127-TR2-48QA-CYC8-F	ACAAGCCAAAGCTAGAGCAGCTTCAGAGGAGGAG
4256-SB-TR2-6QA-CYC8-F	ACAAGCCAAAGCTAGAGCAGCTTCAGAGGAGGAG
4257-SB-TR2-12QA-CYC8-F	ACAAGCCAAAGCTAGAGCAGCTTCAGAGGAGGAG
4258-SB-TR2-24QA-CYC8-F	ACAAGCCAAAGCTAGAGCAGCTTCAGAGGAGGAG

Primers for tagged Ssn6p variant construction

Primer name	Primer sequence
2361-dTR-CYC8-HYG-F	AACGAGAAAATGTTGTACATCACAATTTCATTATGTTTGAGATA
2362-dTR-CYC8-HYG-R	TTTGTGATTACAATCCCATATGTCAATTTCCCATTCAGAGGAG
2363-dTR1-CYC8-F	CAAGCTTCGTTCTCAGAGTCAGGGCAGCTCCCATGAGCAGCAAC
2364-dTR2-CYC8-F	GCAATCCTCGTCAAGAAAAGCTGATACTTCATTAGAGAGGAGAAG
2857-dTR5Q-CYC8-F	AAAATAATGGAGCAACAAGCTAGAGCAGCTTCAGAGGAGGAG
2858-dTR10Q-CYC8-F	GGGCTGACAAATGATAATGGAACAAAGCTAGAGCAGCTTCAGAGGAG
2859-TR32Q-CYC8-F	ACAAGCCAAAGCTAGAGCAGCTTCAGAGGAGGAG
2860-TR51Q-CYC8-F	ACAAGCCAAAGCTAGAGCAGCTTCAGAGGAGGAG
4126-TR2-64Q-CYC8-F	ACAAGCCAAAGCTAGAGCAGCTTCAGAGGAGGAG
4127-TR2-48QA-CYC8-F	ACAAGCCAAAGCTAGAGCAGCTTCAGAGGAGGAG
4256-SB-TR2-6QA-CYC8-F	ACAAGCCAAAGCTAGAGCAGCTTCAGAGGAGGAG
4257-SB-TR2-12QA-CYC8-F	ACAAGCCAAAGCTAGAGCAGCTTCAGAGGAGGAG
4258-SB-TR2-24QA-CYC8-F	ACAAGCCAAAGCTAGAGCAGCTTCAGAGGAGGAG
4037-RG-CYC8-yEVL-F

4038-RG-CYC8-yEVL-R

4491-RG-CYC8-6xHA-F

4492-RG-CYC8-6xHA-R

Primer to create QA to P variants

4553-RG-SSN6-QAtoP-F

Primer to create QA to P variants

2322-TRsz-SNF5-F1

2323-TRsz-SNF5-R1

Primers for SNF5 repeat deletion construction

2355-dTR-SNF5-HYG-F

2356-dTR-SNF5-HYG-R

2357-dTR-SNF5-F

Primer to create target promoter or protein–YFP or RFP fusions

4356-FLO11-yEVL-F

4357-FLO11-yEVL-R

RG-Cin5-yEVL-F

RG-Cin5-yEVL-R

KP6

KP7

3440-PHO84-prom3-F

3441-PHO84pré-yEVL3-R

Primers to delete SSA2

4934-RG-del-SSA2-NAT-F

4935-RG-del-SSA2-NAT-R

Real-time quantitative PCR primers

36-ACT1-RT-F1

37-ACT1-RT-R1

2873-ZEO1-F

2874-ZEO1-R

3314-PHO84-qPCR-F

CAAGATCCACACTGCTGAAAAGAGAA
Primer Set	Gene	Sequence
3315-PHO84-qPCR-R	CCAACCGTTAATTGCCATGT	
3442-RPS16A-qPCR2-F	CGATGAAACATCCAAGAAACGA	
3443-RPS16A-qPCR2-R	GAATCAGCAAATAAAGGTTCTG	
4397-BS-FLO11-Sigma-qPCR-F	CACTTTTGAGTCTATGCCACACAA	
4398-BS-FLO11-Sigma-qPCR-R	CATGCAATTCAGGCAGCAT	
4500-RG-qPCR-ssn6-F1	ATCCCTCCGATGCCACTACA	
4501-RG-qPCR-ssn6-R1	TGCGCAGTATAATCTGTCTAATCA	
4502-RG-qPCR-ssn6-F2	CCCCCACCTTAAATCCAGCAT	
4503-RG-qPCR-ssn6-R2	GATTGCACCTTCATGTATCTTTT	
4815-RG-qPCR-FOX2-F	GGAATGCACAAGCAAGAGCTTAA	
4816-RG-qPCR-FOX2-R	AACGTGGGCAAACATTGGAA	
4817-RG-qPCR-MLS1-F	CGTTGTAAAGGCCTGCTAATCTG	
4818-RG-qPCR-MLS1-R	CCCCTCGGTAGTAATCTCACATT	
4823-RG-qPCR-CIN5-F	AAGAGAGCTGCCAAAATCG	
4824-RG-qPCR-CIN5-R	TTCTCACGACGCTGCTAATCT	
4825-RG-qPCR-NRG1-F	CGCAGCTCCCGAAACTCT	
4826-RG-qPCR-NRG1-R	CGGGGCTTTTCAACGTGTTT	
4827-RG-qPCR-HXK1-F	GACAGTGTCAGCAGCAAG	
4828-RG-qPCR-HXK1-R	ACCGCAGCTGAAACGACATC	
Yeast strains used in this study

Strain name	Genotype	Source
KV447	S288c (Mat a)	Fink lab
KV449	Sigma1278b (Mat a)	Fink lab
RG1	KV447 + HYG downstream SNF5 (51Q, WT strain)	This study
RG518	KV449 + HYG downstream SSN6 (TR1-16, TR2-63 repeats; WT strain)	This study

SNF5 polyQ deletion containing PHO84pr-YFP fusions

Strain name	Genotype	Source
RG22	SNF5 0Q	This study
RG258	RG22 (0Q) YRO2::PHO84pr-yEVenus-KAN	This study
RG256	RG1 (51Q) YRO2::PHO84pr-yEVenus-KAN	This study

SSN6 TR1 variants

Strain name	Genotype	Source
RG480	SSN6 TR1-0	This study
RG476	SSN6 TR1-5	This study
RG478	SSN6 TR1-10	This study
RG516	SSN6 TR1-32	This study
RG479	SSN6 TR1-51	This study

SSN6 TR2 variants

Strain name	Genotype	Source
RG475	SSN6 TR2-0	This study
SB13	SSN6 TR2-14	This study
SB37	SSN6 TR2-20	This study
SB35	SSN6 TR2-27	This study
SB42	SSN6 TR2-31	This study
SB34	SSN6 TR2-33	This study
SB46	SSN6 TR2-53	This study
SB44	SSN6 TR2-55	This study
SB21	SSN6 TR2-90	This study
SB51	SSN6 TR2-105	This study
SB57	SSN6 TR2-105	This study

Tagged SSN6 TR variants (Ssn6-YFP or Ssn6-HA)

Strain name	Genotype	Source
RG697	RG475 (TR2-0) SSN6-yEVenus-KAN	This study
RG666	RG518 (TR2-63) SSN6-yEVenus-KAN	This study
RG668	SB57 (TR2-105) SSN6-yEVenus-KAN	This study
SB198	SB51 (TR2-105) SSN6-yEVenus-KAN	This study
RG870	RG697 (TR2-0) SSA2-mCherry-URA3	This study
RG872	RG666 (TR2-63) SSA2-mCherry-URA3	This study
RG874	RG668 (TR2-105) SSA2-mCherry-URA3	This study
RG888	RG697 (TR2-0) ssa2::NAT	This study
RG890	RG666 (TR2-63) ssa2::NAT	This study
RG892	RG668 (TR2-105) ssa2::NAT	This study
SSN6 TR variants containing FLO11 promoter - YFP fusions	SSN6 TR variants containing IMA1 protein - YFP fusions	SSN6 TR variants containing FLO11 promoter - YFP and CIN5 protein - RFP fusions
---	---	--
SB187 RG480 (TR1-0) flo11::yEVenus-KAN	RG894 SB309 (TR2-0) ssa2::NAT	RG934 SB309 (TR2-0) CIN5-mCherry-URA3
SB650 RG476 (TR1-5) flo11::yEVenus-KAN	RG895 SB309 (TR2-0) ssa2::NAT	RG931 SB205 (TR2-14) CIN5-mCherry-URA3
SB652 RG478 (TR1-10) flo11::yEVenus-KAN	RG897 SB342 (TR2-63) ssa2::NAT	
SB653 RG516 (TR1-32) flo11::yEVenus-KAN	RG898 SB342 (TR2-63) ssa2::NAT	
SB184 SB309 (TR2-0) CIN5-mCherry-URA3	RG899 SB211 (TR1-105) ssa2::NAT	
SB205 SB13 (TR2-14) flo11::yEVenus-KAN	RG900 SB211 (TR1-105) ssa2::NAT	
SB173 SB37 (TR2-20) flo11::yEVenus-KAN	GB832 SB21 (TR2-90) IMA1-yEVenus-KAN	
SB170 SB35 (TR2-27) flo11::yEVenus-KAN	GB836 SB35 (TR2-90) IMA1-yEVenus-KAN	
SB176 SB42 (TR2-31) flo11::yEVenus-KAN	GB856 SB34 (TR2-33) IMA1-yEVenus-KAN	
SB167 SB34 (TR2-33) flo11::yEVenus-KAN	GB848 SB44 (TR2-55) IMA1-yEVenus-KAN	
SB182 SB46 (TR2-53) flo11::yEVenus-KAN	GB888 SB44 (TR2-55) IMA1-yEVenus-KAN	
SB179 SB44 (TR2-55) flo11::yEVenus-KAN	GB858 GB518 (TR2-63) IMA1-yEVenus-KAN	
SB342 GB518 (TR2-63) IMA1-yEVenus-KAN	GB900 SB211 (TR2-90) IMA1-yEVenus-KAN	
GB303 SB21 (TR2-90) flo11::yEVenus-KAN	RG902 GB57 (TR2-105) IMA1-yEVenus-KAN	
GB221 SB51 (TR2-105) flo11::yEVenus-KAN	GB225 SB57 (TR2-105) IMA1-yEVenus-KAN	
RG926 RG475 (TR2-0) IMA1-yEVenus-KAN	GB228 SB35 (TR2-90) IMA1-yEVenus-KAN	
GB834 SB35 (TR2-27) IMA1-yEVenus-KAN	GB228 SB35 (TR2-90) IMA1-yEVenus-KAN	
GB856 SB34 (TR2-33) IMA1-yEVenus-KAN	GB228 SB35 (TR2-90) IMA1-yEVenus-KAN	
GB948 SB44 (TR2-55) IMA1-yEVenus-KAN	GB228 SB35 (TR2-90) IMA1-yEVenus-KAN	
GB828 GB518 (TR2-63) IMA1-yEVenus-KAN	GB228 SB35 (TR2-90) IMA1-yEVenus-KAN	
GB832 SB21 (TR2-90) IMA1-yEVenus-KAN	GB228 SB35 (TR2-90) IMA1-yEVenus-KAN	
GB952 SB57 (TR2-105) IMA1-yEVenus-KAN	GB228 SB35 (TR2-90) IMA1-yEVenus-KAN	
Strain	Description	Source
------------	--	-----------------
RG929	SB170 (TR2-27) CIN5-mCherry-URA3	This study
RG930	SB179 (TR2-55) CIN5-mCherry-URA3	This study
RG935	SB342 (TR2-63) CIN5-mCherry-URA3	This study
RG933	SB303 (TR2-90) CIN5-mCherry-URA3	This study
RG932	SB211 (TR2-105) CIN5-mCherry-URA3	This study
	SSN6 WT overexpressing expanded human Huntington (Ht-103Q)	
RG944	RG518 (TR2-63) flo11::CFP-KAN	This study
RG959	RG944 (TR2-63) pGPD-103Q-GFP-URA3	This study
RG960	RG944 (TR2-63) pGPD-103Q-GFP-URA3	This study
	SSN6 QA to P mutants	
RG735	SSN6 29QA/3P- 30Q/1P	This study
RG736	SSN6 29QA/3P- 30Q	This study
RG738	SSN6 26QA/2P- 31Q	This study
RG740	RG735 flo11::yEVenus-KAN	This study
RG743	RG736 flo11::yEVenus-KAN	This study
RG746	RG738 flo11::yEVenus-KAN	This study
	Diploids resulting from the cross to check SSN6 prionization	
RG690	SSN6 TR2-90/TR2-105	This study
RG691	SSN6 TR2-0/TR2-105	This study
RG692	SSN6 TR2-63/TR2-105	This study
SUPPLEMENTAL REFERENCES

Beissbarth, T., and Speed, T.P. (2004). GOstat: find statistically overrepresented Gene Ontologies within a group of genes. Bioinformatics 20, 1464-1465.

Benson, G. (1999). Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27, 573-580.

Cox, J., and Mann, M. (2008). MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26, 1367-1372.

Flicek, P., Ahmed, I., Amode, M.R., Barrell, D., Beal, K., Brent, S., Carvalho-Silva, D., Clapham, P., Coates, G., Fairley, S., et al. (2013). Ensembl 2013. Nucleic Acids Res 41, D48-55.

Franceschini, A., Szklarczyk, D., Frankild, S., Kuhn, M., Simonovic, M., Roth, A., Lin, J., Minguez, P., Bork, P., von Mering, C., et al. (2013). STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 41, D808-815.

Gasch, A.P., Spellman, P.T., Kao, C.M., Carmel-Harel, O., Eisen, M.B., Storz, G., Botstein, D., and Brown, P.O. (2000). Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11, 4241-4257.

Ghesquiere, B., Jonckheere, V., Colaert, N., Van Durme, J., Timmerman, E., Goethals, M., Schymkowitz, J., Rousseau, F., Vandekerckhove, J., and Gevaert, K. (2011). Redox proteomics of protein-bound methionine oxidation. Mol Cell Proteomics 10, M110 006866.

Holstege, F.C., Jennings, E.G., Wyrick, J.J., Lee, T.I., Hengartner, C.J., Green, M.R., Golub, T.R., Lander, E.S., and Young, R.A. (1998). Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95, 717-728.

Huang da, W., Sherman, B.T., and Lempicki, R.A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4, 44-57.

Kanehisa, M., Goto, S., Sato, Y., Kawashima, M., Furumichi, M., and Tanabe, M. (2014). Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res 42, D199-205.

Luscombe, N.M., Babu, M.M., Yu, H., Snyder, M., Teichmann, S.A., and Gerstein, M. (2004). Genomic analysis of regulatory network dynamics reveals large topological changes. Nature 431, 308-312.

New, A.M., Cerulus, B., Govers, S.K., Perez-Samper, G., Zhu, B., Boogmans, S., Xavier, J.B., and Verstrepen, K.J. (2014). Different levels of catabolite repression optimize growth in stable and variable environments. PLoS Biol 12, e1001764.
Reynolds, T.B., and Fink, G.R. (2001). Bakers' yeast, a model for fungal biofilm formation. Science 291, 878-881.

Robinson, M.D., and Oshlack, A. (2010). A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 11, R25.

Smoot, M.E., Ono, K., Ruscheinski, J., Wang, P.L., and Ideker, T. (2011). Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27, 431-432.

Stes, E., Laga, M., Walton, A., Samyn, N., Timmerman, E., De Smet, I., Goormachtig, S., and Gevaert, K. (2014). A COFRADIC protocol to study protein ubiquitination. J Proteome Res 13, 3107-3113.

Teixeira, M.C., Monteiro, P.T., Guerreiro, J.F., Goncalves, J.P., Mira, N.P., dos Santos, S.C., Cabrito, T.R., Palma, M., Costa, C., Francisco, A.P., et al. (2014). The YEASTRACT database: an upgraded information system for the analysis of gene and genomic transcription regulation in Saccharomyces cerevisiae. Nucleic Acids Res 42, D161-166.

Thomas, M.R., and O'Shea, E.K. (2005). An intracellular phosphate buffer filters transient fluctuations in extracellular phosphate levels. Proc Natl Acad Sci U S A 102, 9565-9570.

Trapnell, C., Pachter, L., and Salzberg, S.L. (2009). TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105-1111.