Research Article

Abdullah F. Al Naim*, Huda AlFannakh, Samia Arafat, and S. S. Ibrahim

Characterization of PVC/MWCNTs Nanocomposite: Solvent Blend

https://doi.org/10.1515/secm-2020-0003
Received Jul 21, 2019; accepted Oct 28, 2019

Abstract: Polyvinyl Vinyl Chloride (PVC) multiwall carbon nanotubes (MWCNTs) nanocomposite flexible films were prepared using the solvent blend technique. Chloroform (CHCl₃) and tetrahydrofuran ((CH₂)₄O) were used as solvents for MWCNTs and PVC, respectively. The effect of the solvents’ blend on electrical, optical and thermal properties of PVC/MWCNTs were investigated. The results of the Raman spectrum showed that all the characteristic bands of PVC polymer have a slight shift due to addition of MWCNTs. Electrical results showed that the nanocomposites samples with chloroform volume ratios of 10% and 25% had nearly the same conductivity. This is attributed to the formation of the MWCNTs network, which assisted in electrical conductivity. The I-V hysteresis curve decreases as the temperature increases and as it approaches the glass transition temperature. The non-isothermal kinetics analysis for PVC and PVC/MWCNTs were investigated by Thermogravimetry Analysis (TGA) using the model-free kinetic method. The non-isothermal measurements were carried out at five heating rates of 5 to 40°C/min. The results show that the main decomposition process has constant apparent activation energies for all samples. The use of the bi-solvent method has improved the dispersion of untreated MWCNTs, and this has been reflected on the stability of both electrical and thermal properties.

Keywords: Multiwall carbon nanotube MWCNTs, PVC, Polymer nanocomposite, solvent blend, Kinetic analysis

1 Introduction

In recent years, carbon nanotubes (CNTs) have received much attention, and they are widely used in potential applications ranging from large-scale structures in automobiles to nanometer scale electronics. Because of their remarkable properties, carbon nanotubes are used in a variety of applications individually or in nanocomposite, such as cement [1], ceramics [2] and polymer composites [3, 4]. Polymer nanocomposites based on CNTs are of great interest in both research and industrial applications. Carbon-based polymers are used in many applications, such as energy storage [5–9], chemical sensors [10–12], electromagnetic interference shielding [13–16] and electronics [17, 18]. The pristine CNTs are present in the form of bundles and ropes due to their geometry and Van der Walls and intertubeforces, which limit its solubility in many common solvents. Therefore, the solubility of the CNTs represents one of the considerable issues in applications. This is because the reproducibility of the material’s properties strongly depends on the degree of the dispersion of filler within the product. Therefore, one of the requests is to produce a stable CNT suspension for long enough to prepare homogeneous film. This also must be verified without affecting the properties of the filler or the host material. However, this problem can be solved with different techniques, such as the chemical functionalization of CNTs [19–21], ultrasonic oscillation [22–24], surfactants [22, 25, 26] and immiscible polymer blends [27–29]. Some other techniques such as non-covalent functionalization can be used to modify carbon nanotubes.

Fangwei Pan et al. have modified PVC/MWCNTs nanocomposite by coating MWCNTs with covalent and non-covalent N-epoxypropyl PPTA (PPTA-ECH) to prepare PPTA-ECH-MWNTs-NH₂-x and PPTA-ECH-MWNTs-x before adding as filler to reinforce PVC nanocomposite films. They found that, for PPTA-ECH-MWNTs-NH₂-x/PVC, mechanical properties were highly modified in comparison to pure PVC. Amir Abdolmaleki et al. [30] have investigated the physicochemical features of PVC/MWCNTs functionalized with riboflavin (RIB). Their results conclude that there is a higher mechanical and thermal behavior for 12wt%
PVC/(RIB) MWCNTs compared to other concentrations of MWCNTs. The modification of the CNTs' dispersion in the PVC matrix using oleic acid and methyl oleate as the dispersing agent has been investigated by Katarzyna et al. [31]. The obtained samples demonstrated higher stability and a lower rate of agglomeration.

Several studies have been conducted to improve the dispersion of fillers through polymers by using a solvent mixture or so-called solvent blends. Li et al. [32] have investigated the effect of a solvent mixture composed of tetrahydrofuran and chloroform on the dispersion of hydroxyapatite filler in Polylactide. They found that the solvent mixture has a significant influence on the degree of dispersion of filler. They attribute these results to the difference in polarity of both solvents. Opoku et al. [33] have studied the effect of non-halogenated binary solvents in various ratios on conjugated polymer pre-aggregation in the solution state, morphology and the microstructure of polymer thin films cast from these solvent blends. High-performance top-gate/bottom-contact organic field effect transistor was demonstrated in this work. Zhao et al. [34] have investigated the effect of bi-solvent, tetrahydrofuran/isopropyl alcohol (THF/IPA) and o-xylene/1-phenylnaphthalene on the power conversion efficiencies (PCEs) of state-of-the-art organic solar cells (OSCs). They found an increase of PCEs to over 13%. Morgan et al. [35] have illustrated the effect of the solvent blend on clay exfoliation in polystyrene (PS) polymer. They observed that both the energy of sonication and solvent blending play important roles in the preparation of PS clay nanocomposites. Sen et al. [36] have used the solvent blending method to prepare MWCNTs/PS nanocomposite film. They examined the interaction between polystyrene and well-dispersed MWCNT using different techniques. The effects of solvent blends on the suspension stability of BaTiO₃ nanoparticles was investigated by Kim [37]. Similar dispersion levels were obtained for BaTiO₃ dispersion stability in both solvent mixtures (toluene/n-butanol and nonazeotropic toluene/ethanol).

In the present study, we prepared Polyvinyl Chloride (PVC) nanocomposite filled with multiwall carbon nanotubes (MWCNT) using two different solvents (Chloroform (CHCl₃) and Tetrahydrofuran (C₄H₈O)) with different volume ratios of solvents, 5%, 10% and 25%, by using the casting technique. The characterization such as surface morphology, Raman spectroscopy and thermal stability and kinetic analysis of the prepared samples was investigated.

2 Model-Free Kinetics Analysis

Some polymer decomposition curves involve several steps, with different decomposition mechanisms and then different activation energies. The apparent activation energy (E) is expected to be a function of both temperature (T) and conversion (α). According to Pilyoyan et al. [38], the kinetic model equation can be expressed as

\[
\frac{da}{dt} = Af(\alpha) \exp \left(-\frac{E}{RT} \right)
\]

Where \(a \) is the conversion, \(A \) is the pre-exponential factor, \(E \) is the activation energy (kJ/mol), \(R \) is the gas constant (kJ mol⁻¹ K⁻¹), \(t \) is the time (min) and \(T \) is the temperature (k). Hence

\[
\ln \left(\frac{da}{dt} \right) = \ln (A) + \ln [f(\alpha)] - \frac{E}{RT}
\]

\[
\frac{d\ln \left(\frac{da}{dt} \right)}{dT^{-1}} = \frac{d\ln (k(T))}{dT^{-1}} + \frac{df(\alpha)}{dT^{-1}} = -\frac{E}{R} \tag{3}
\]

In equation (3), the term \(\frac{df(\alpha)}{dT^{-1}} = 0 \) since \(f(\alpha) \) does not depend on temperature. However, the present investigation does not require any information of the reaction model (model-free approach). The values of \(E \) can be estimated from \(\ln(da/dt) \) vs. \(1/T \) relation.

3 Materials and Experimental Work

3.1 Materials

PVC (average molecular weight 3000) was obtained from Saudi Basic Industries Corporation (SABIC). Multiwall carbon nanotubes (MWCNTs) were purchased from Chengdu Organic Chemicals Co. (China) and used as received without any physical or chemical treatment (diameter > 50 nm, length 10–20 mm, and purity > 95%). Chloroform and Tetrahydrofuran were purchased from Sigma Aldrich.

3.2 Sample Preparation

A fixed mass of MWCNTs and PVC (0.45 wt.% MWCNTs to PVC) were dissolved separately in chloroform and THF solvents, respectively. Both solutions were aggressively mixed by magnetic stirring at room temperature for 24 hours to reach a homogenous solution. Different volume ratios (5%,
Characterization of PVC/MWCNTs Nanocomposite: Solvent Blend

Table 1: Samples code and solvent volumetric ratios used in sample preparation

Sample code	Chloroform (ml)	Tetrahydrofuran (ml)	Vol.% chloroform/THF
S1	1.25	23.75	5
S2	2.50	22.50	10
S3	5.00	20.00	25

10% and 25% of chloroform to THF) were used for the sample preparation (Table 1). The resultant mixtures were ultrasonicated for 20 minutes and then blended again with magnetic stirring at room temperature overnight. The final solution of mixtures was poured in a glass Petri dish (diameter of 5 cm). The solvent was evaporated at fume hood for 48 hours and heated inside an oven at 45°C for 2 hours.

3.3 Optical Characterization

Raman spectroscopy was performed to investigate the interactions' nature between PVC and MWCNTs in the resultant films. The optical properties were determined with UV-vis Shimadzu (METTLER TOLEDO, USA) spectrophotometry.

3.4 Electrical Characterization

Electrical measurements were carried out using the 4200-SCS Semiconductor Characterization System (KEITHLEY Co.) USA. Samples were shaped into square pieces with an area (A) of about 2.0 cm² and a thickness (d) of 0.1 to 0.12 mm and placed between two copper electrodes.

3.5 Thermal Characterization

Decomposition kinetics for PVA and PVC/MWCNTs were carried out non-isothermally by TGA, using TA instrument "TGA Q50". All measurements were carried out with a flow of nitrogen gas (60 mL/min) and sample weight of about 13 mg for each run. Five non-isothermal runs were achieved for each sample at linear heating rates of 5, 10, 20, 30 and 40°C/min.

4 Results and Discussion

4.1 Laser Scanning Microscopy

Laser scanning microscopy (LSM) was used to investigate the rate of agglomeration at the sample surface. It is known that MWCNTs have the ability to float near the surface and form agglomeration due to Van der Wall force and electrostatic force. The LSM pictures for the three samples are represented in Figure 1. The agglomeration rate decreased by increasing the chloroform volume ratios, as shown in Figure 1. It is clear that the adsorption of chloroform by MWCNTs reduced the agglomeration formation, which can be attributed to the difference in the dielectric constant and viscosity level of both solvents.

4.2 Raman Spectroscopy

Normalized Raman spectra of PVC and PVC/MWCNTs nanocomposites were prepared using different solvent ratios (10 and 20% vol.% of chloroform), as shown in Figure 2. The spectra showed the main characteristic band of PVC (listed in Table 2), and two characteristic bands (D band and G band) for MWCNTs are also presented. As mentioned in many references [23], the G band is due to the sp2-bond vibration emitted by the carbon atoms in the
two-dimensional hexagonal network. While D-band, is attributed to the dispersion of hybrid carbon sp3 defects in the hexagonal structure of the MWCNTs wall.

In Figure 2, C-Cl vibration of PVC presented at 694 and 635 nm. Also, Alkyl (CHn) and D band indicated in 1431 and 1330 cm\(^{-1}\), respectively. G band of MWCNTs is located at 1590 cm\(^{-1}\). It can be observed that there is a little shift of PVC characteristic bands which indicating that, there is a week interaction occurred between carbon nanotubes and host polymer chains. This means that the solvent mixture method disperse the carbon nanotubes by isolation and capsulation technique, such as the surfactant, and latterly by chemical functionalization or reaction.

4.3 Electrical Characterization

Figure 3 shows the IV characteristic curves at different temperatures for the pure PVC sample. It is obvious that the current values gradually increase as the temperature increases, while there is no significant increase after the polymer approaches its glass transition temperature (about 85°C) [39]. The maximum current at 100°C is less than 1µA. The characteristic curves for PVC/MWCNTs nanocomposite samples (S2 and S3) at different temperatures (60 and 90°C) are represented in Figure 4. It is clear that both samples S2 and S3 have nearly the same electrical behavior, which indicates that the dispersion of MWCNTs is the same for both samples. Noticeably, the current level for PVC/MWCNTs is higher than that of the pure PVC sample. This is attributed to the uniformly dispersed MWCNTs for both S2 and S3 composite samples. By considering sample S2 as a representative sample for the prepared nanocomposite, one can note that the values of the electric current increase with temperature to more than 10 µA at 100°C (refer to Figure 5).

It is noted that the symmetry in the shape of the I-V curve around the y-axis (zero voltage) increases as the temperature increases for both pure and nanocomposite
samples (as it approaches the glass transition of the samples). Measurements were carried out by applying −200V and voltage increases gradually in steps to reach +200V. The curve asymmetry around y-axis (below Tg) may be attributed to opposite surface charge accumulated near the electrodes. Near Tg, the chain mobility increases due to chains segmental motion, which prevents such surface charge from accumulating.

Figure 6 illustrates the current-voltage cycles at 70°C and 100°C for sample S2. It is clear from the figure that, above the glass transition temperature, the hysteresis area was finished. This was attributed to the increases of chain mobility (previously discussed). The trajectory of electrical hysteresis, shown in Figure 6, takes the form of butterfly wings, and it is a well-known phenomena in many properties [40–43]. This butterfly shape is produced due to the presence of delay or lag between the applied driving parameter and sample response.

The activation energy for the nanocomposite sample was predicted by drawing the relation between ln(I) and 1000/T at a constant voltage value. In the present work, we selected 50V and the Arrhenius relation represented in Figure 7. The calculated activation energy was found to be 0.163eV for the nanocomposite, which is less than the one that corresponds to pure PVC (about 0.4eV).
4.4 Thermal Stability

PVC decomposed through two stages: the first stage, which is the main decomposition stage, is attributed to the dehydrochlorination process. The formation of the conjugated polyene structure followed to dehydrochlorination process and is represented as a shoulder in the first decomposition stage. The second stage is consistent with the thermal cracking of the carbonaceous conjugated polyene. Figure 8 illustrates the first stage of decomposition (TGA and its first derivative DTGA curve) for pure and nanocomposite samples at a heating rate of 10°C/min and under N₂ gas. This stage (first stage) of decomposition occurs in the temperature range between 225°C and 375°C degrees.

Figure 8: a) TGA and b) DTGA curve for PVC and PVC/MWCNTs nanocomposite (S2 and S3)

Figure 9: Variation of conversion (α) with temperature during first decomposition stage for pure PVC and PVC/MWCNTs nanocomposite samples at different heating rates
It is clear that the addition of MWCNTs with this weight ratio (0.45wt%) improves the thermal stability of PVC. The DTGA peak position indicates a shift of about 7 degrees for PVC/MWCNTs composite samples.

In this temperature range (for the main decomposition stage), it was observed that all samples lost approximately 62.5% of their weight. This result shows that the bi-solvent method succeeded in distributing the MWCNTs distinctly with a little interaction with the host polymer. The increase in the thermal stability of the nanocomposite samples at this stage can be attributed to the role of MWCNTs in absorbing HCl and thus contributing to reducing the number of polymer chains that may decomposed by the action of HCl [44]. In addition, the presence of homogenously distributed MWCNTs between the polymer chains acts to isolate these chains, which leads to a delay in PVC decomposition by HCl [44].

4.5 Model-Free Kinetic Analysis

Using equation (2) and neglecting $\ln f(\alpha)$, the relation between $\ln(\alpha/dt)$ versus $1000/T$ can be used to predict both thermal activation energy (E) and the pre-exponent factor (A) under such conditions. This was carried out for the main reaction stage, and by comparing the kinetic parameters, one can investigate the effect of dispersion of MWCNTs on the thermal behavior of the samples. Figure 9 shows the conversion - temperature curves ($\alpha(T)$) for the first decomposition stage of pure and MWCNTs nanocomposite samples at different heating rates, 5, 10, 20, 30 and 40°C/min. $\ln(\alpha/dt)$ data were calculated after converting temperature to time and then numerically differentiating the $\alpha(t)$ curves.

Figure 10 represent the dependence of $\ln(\alpha/dt)$ on $1000/T$ at different heating rates. Assuming that the activation energy of decomposition does not depend heavily on the value of the conversion factor, we can consider the peak points ($\ln(\alpha/dt)_{peak}$ and $1/T_{peak}$) and apply the Arrhenius equation to calculate the apparent activation energy (as represented in Figure 11).

The value of the apparent decomposition activation energy for the pure sample represents the greatest value compared to other nanocomposite samples. Note that there is no significant change in E_a between nanocomposite samples (S2 and S3). The maximum change in activation energy between pure and nanocomposite samples does not exceed 14%. This confirms that the dispersion of MWCNTs was mainly due to the presence of the solvent mixture but not due to interaction between MWCNTs and the host polymer. The dispersion of MWCNTs can be at-
Table 3: Apparent activation energy (Ea), for pure and nanocomposite samples, at different values of conversion (α)

Conversion	S0 (PVC)	S2 (10 vol.% CF)	S3 (25 vol.% CF)
0.2	84	78	89
0.3	82	77	85
0.4	91	73	75
0.5	94	71	72
0.6	99	74	71
0.7	-	79	76
Average	90	75	78

The apparent activation energy (Ea) at specific values of conversion (α) can be calculated from the slope of the linear relation between d(ln(α))/dt vs 1000/T. The predicted values at different values of conversion are represented in Table 3. The values of Ea confirm the above results and pure PVC has the greatest value of Ea, while both nanocomposite samples have nearly the same activation energy.

5 Conclusion

Solvent blends or the solvent mixture technique was used to enhance the dispersion of untreated MWCNTs in PVC host polymer. Tetrahydrofuran and chloroform were used as solvents for PVC and MWCNTs, respectively, in different volume ratios (5%, 10% and 20% of the chloroform solvent volume ratio). Aggregations of MWCNTs were found for the sample prepared with a percentage of 5 vol.% chloroform. The other two samples (10% and 20 vol.% of chloroform) showed a marked improvement in the dispersion state, and this was reflected on both electrical and thermal properties. The results of Raman spectroscopy showed that there was no strong interaction between MWCNTs and PVC, and all the characteristic bands of PVC and MWCNTs were detected. I-V characteristic curves showed an increase in the electrical current of the nanocomposite samples with respect to the pure sample. The formation of MWCNT net-
works represents the main reason for the higher conductivity and lower activation energy of the nanocomposite samples. The values of the activation energies of pure PVC and its MWCNT nanocomposite samples were calculated by using the model-free method. The values of Ea confirm the above results, and pure PVC has the greatest value of Ea, while both nanocomposite samples have nearly the same activation energy. The results showed that the dispersion of the untreated MWCNTs has improved, so this method can be used in the preparation of thin films without any treatment (chemical or physical) to the nature of CNTs.

Acknowledgement: The Authors acknowledge the Deanship of Scientific Research at King Faisal University for their support under grant # (17122004).

References

[1] Shi T, Li Z, Guo J, Gong H, Gu C. Research progress on CNTs/CNFs-modified cement-based composites – A review. Constr Build Mater. 2019;202:290–307.
[2] Dong Y, Ma L, Tang CY, Yang F, Quan X, Jassby D, et al. Stable Superhydrophobic Ceramic-Based Carbon Nanotube Composite Desalination Membranes. Nano Lett. 2018 Sep;18(9):5514–21.
[3] Vázquez-Moreno JM, Sánchez-Hidalgo R, Sanz-Horcajo E, Viña J, Verdejo R, López-Manchado MA. Preparation and Mechanical Properties of Graphene/Carbon Fiber-Reinforced Hierarchical Polymer Composites. Journal of Composites Science. 2019;3(1):30.
[4] Matos MA, Pinho ST, Tagarielli VL. Application of machine learning to predict the multiaxial strain-sensing response of CNT-polymer composites. Carbon. 2019;146:265–75.
[5] Naskar, A.K., Paranthaman, M.P., Boota, M., Gogotsi, Y.: Flexible and conductive waste tire-derived carbon/polymer composite paper as pseudocapacitive electrode. In: Google Patents, (2018)
[6] Kumar S, Nehra M, Kedia D, Dilbaghi N, Tankeshwar K, Kim KH. Carbon nanotubes: A potential material for energy conversion and storage. Pro Energy Combust Sci. 2018;64:219–53.
[7] Sun L, Wang X, Wang Y, Zhang Q. Roles of carbon nanotubes in novel energy storage devices. Carbon. 2017;122:462–74.
[8] Wang L, Liu H, Konik RM, Misewich JA, Wong SS. Carbon nanotube-based heterostructures for solar energy applications. Chem Soc Rev. 2013 Oct;42(20):8134–56.
[9] Hong K, Yuk J, Kim HJ, Lee JY, Kim S, Lee JL, et al. Electrospun polymer electrolyte nanocomposites for solid-state energy storage. Compos, Part B Eng. 2018;152:275–81.
[10] Azis Z, Chang SH. Smart-fabric sensor composed of single-walled carbon nanotubes containing binary polymer composites for health monitoring. Compos Sci Technol. 2018;163:1–9.
[11] Das R, Pattanayak A, Swain SK. Polymer nanocomposites for sensor devices. Polymer-based Nanocomposites for Energy and Environmental Applications. Elsevier; 2018. pp. 205–18.
[12] Wang X, Li Y, Ploniek J, Zhou Z, Weng W, Luo X, et al. Flexible poly (vinylidene fluoride)/carbon nanotube fiber based vapor sensors with high sensitivity, wide detection range, and fast response. Sens Actuators B Chem. 2018;256:896–904.
[13] Nasouri K, Shoushtari AM. Designing, modeling and manufacturing of lightweight carbon nanotubes/polymer composite nanofibers for electromagnetic interference shielding application. Compos Sci Technol. 2017;145:46–54.
[14] Min Z, Yang H, Chen F, Kuang T. Scale-up production of lightweight high-strength polystyrene/carbonaceous filler composite foams with high-performance electromagnetic interference shielding. Mater Lett. 2018;230:157–60.
[15] George G, Simon SM, Prakashan V, Sajna M, Faisal M, Chandran A, et al. Morphological, dielectric, tunable electromagnetic interference shielding and thermal characteristics of multiwalled carbon nanotube incorporated polymer nanocomposites: A facile, environmentally benign and cost effective approach realized via polymer latex/waterborne polymer as matrix. Polym Compos. 2018;39 S2:E1169–83.
[16] Xia Q, Zhang Z, Chu H, Liu Y, Leng J. Research on high electromagnetic interference shielding effectiveness of a foldable buckypaper/polyacrylonitrile composite film via interface reinforcing. Compos, Part A Appl Sci Manuf. 2018;113:132–40.
[17] Liu Y, Yin J, Liu X, Zhao X, Chen M, Li J, et al. Fabrication of polymer composite films with carbon composite nanofibers doped MWNts-OH for multilevel memory device application. Compos, Part B Eng. 2018.
[18] Tzounis L, Hegde M, Liebscher M, Dingemans T, Pötschke P, Paipetis AS, et al. All-aromatic SWCNT-Polyetherimide nanocomposites for thermal energy harvesting applications. Compos Sci Technol. 2018;156:158–65.
[19] Pramanik C, Nepal D, Nathanson M, Gissinger J, Garley A, Berry RJ, et al. Molecular engineering of interphases in polymer/carbon nanotube composites to reach the limits of mechanical performance. Compos Sci Technol. 2018;166:86–94.
[20] Sapolidis A, Sideratou Z, Panagiotaki KN, Sakellis E, Kouvelos EP, Papageorgiou S, et al. Fabrication of Antibacterial Poly (Vinyl Alcohol) Nanocomposite Films Containing Dendritic Polymer Functionalized Multi-Walled Carbon Nanotubes. Frontiers in Materials. 2018;5:11.
[21] Sabet SM, Mahfuz H, Terentis AC, Nezakat M, Hashemi J. Effects of POSS functionalization of carbon nanotubes on microstructure and thermomechanical behavior of carbon nanotube/polymer nanocomposites. J Mater Sci. 2018;53(12):8963–77.
[22] Jiang Y, Song H, Xu R. Research on the dispersion of carbon nanotubes by ultrasonic oscillation, surfactant and centrifugation respectively and fiscal policies for its industrial development. Ultrason Sonochem. 2018;48:30–8.
[23] Mallakpour S, Rashidimoghadam S. Application of ultrasonic irradiation as a benign method for production of glycerol plasticized-starch/ascorbic acid functionalized MWCNTs nanocomposites: investigation of methylene blue adsorption and electrical properties. Ultrason Sonochem. 2018 Jan;40 Pt A:419–32.
[24] Olmo C, Amestoy H, Casas MT, Martínez JC, Franco L, Sarasua JR, et al. Preparation of Nanocomposites of Poly[ε-caprolactone] and Multi-Walled Carbon Nanotubes by Ultrasound Micro-Molding. Influence of Nanotubes on Melting and Crystallization. Polymers (Basel). 2017 Jul;9(8):322.
[25] Li Y, Li R, Fu X, Wang Y, Zhong WH. A bio-surfactant for defect control: multifunctional gelatin coated MWCNTs for conductive epoxy nanocomposites. Compos Sci Technol. 2018;159:216–24.
[26] Yu T, Herrera JE. The Mechanism of Surfactant Assisted Dispersion of Single-Walled Carbon Nanotubes in Polyvinylpyrrolidone.
Solutions. Colloid and Surface Science. 2017;2(3):96.

[27] Taraghi I, Fereidoon A, Paszkiewicz S, Rosianiec Z. Nanocomposites based on polymer blends: enhanced interfacial interactions in polycarbonate/ethylene-propylene copolymer blends with multi-walled carbon nanotubes. Compos Interfaces. 2018;25(3):275–86.

[28] Chen J, Cui X, Zhu Y, Jiang W, Sui K. Design of superior conductive polymer composite with precisely controlling carbon nanotubes at the interface of a co-continuous polymer blend via a balance of π–π interactions and dipole-dipole interactions. Carbon. 2017;114:441–8.

[29] Roman C, García-Morales M, Gupta J, McNally T. On the phase affinity of multi-walled carbon nanotubes in PMMA: LDPE immiscible polymer blends. Polymer (Guildf). 2017;118:1–11.

[30] Abdolmaleki A, Mallakpour S, Azimi F. Microwave and ultrasound-assisted synthesis of poly(vinyl chloride)/riboflavin modified MWCNTs: examination of thermal, mechanical and morphology properties. Ultrason Sonochem. 2018 Mar;41:27–36.

[31] SKÓRCZEWSKA, K., CHMIELEWSKA, D., PISZCZEK, K., TOMASZEWSKA, J.: Obtaining PVC/CNT nanocomposites with the use of dispersing agents. In: Chemic; 2011.

[32] Li Y, Weng WJ, Cheng K, Du PY, Shen G, Han GR, et al. Effect of the Solvents on the Solution Mixture Derived Poly lactide/Hydroxyapatite Composites. In: Key Engineering Materials 2004, pp. 477-480. Trans Tech Publ.

[33] Opoku H, Nkol-Tayson B, Shin ES, Noh YY. Organic field-effect transistors processed by an environmentally friendly non-halogenated solvent blend. J Mater Chem C Mater Opt Electron Devices. 2018;6(3):661–7.

[34] Zhao W, Zhang S, Zhang Y, Li S, Liu X, He C, et al. Environmentally Friendly Solvent-Processed Organic Solar Cells that are Highly Efficient and Adaptable for the Blade-Coating Method. Adv Mater. 2018 Jan;30(4):1704837.

[35] Morgan AB, Harris JD. Exfoliated polystyrene-clay nanocomposites synthesized by solvent blending with sonication. Polymer (Guildf). 2004;45(26):8695–703.

[36] Sen P, Suresh K, Vinoth Kumar R, Kumar M, Pugazhenthi G. A simple solvent blending coupled sonication technique for synthesis of polystyrene (PS)/multi-walled carbon nanotube (MWCNT) nanocomposites: effect of modified MWCNT content. Journal of Science: Advanced Materials and Devices. 2016;1(3):311–23.

[37] Kim DH, Yeo JG, Jung YG, Choi SC, Paik U. Suspension stability and consolidation behavior of ultrafine BaTiO3 particles in non-azeotropic solvent system. Mater Chem Phys. 2003;82(1):181–7.

[38] Piloyan G, Ryabchikov I, Novikova O. Determination of activation energies of chemical reactions by differential thermal analysis. Nature. 1966;212(5067):1229–1229.

[39] Reding FP, Walter ER, Welch FJ. Glass transition and melting point of poly(vinyl chloride). J Polym Sci, Polym Phys Ed. 1962;56(163):225–31.

[40] Kadota Y, Hosaka H, Morita T. Shape memory piezoelectric actuator by control of the imprint electrical field. Ferroelectrics. 2008;368(1):185–93.

[41] Wang G, Li C, Chen Y, Xia Y, Wu D, Xu Q. Reversible voltage dependent transition of abnormal and normal bipolar resistive switching. Sci Rep. 2016 Nov;6(1):36953.

[42] Vallabhapurapu S, Rohom A, Chauve N, Du S, Srinivasan A. Bistable resistive memory behavior in gelatin-CdTe quantum dot composite film. AIP Conference Proceedings. Volume 1. AIP Publishing; 2018. p. 030271.

[43] Trinca L, Galca A, Boni A, Botea M, Pintilie L. Effect of Li doping on the electric and pyroelectric properties of ZnO thin films. Appl Surf Sci. 2018;427:29–37.

[44] Liu J, Chen G, Yang J, Ding L. Thermal stability of poly (vinyl chloride)/layered double hydroxide nanocomposites. J Appl Polym Sci. 2010;116(4):2058–64.