Sundman stability of natural planet satellites

L. G. Lukyanov* and V. S. Uralskaya*

Lomonosov Moscow State University, Sternberg Astronomical Institute, Moscow, Russia

Accepted 2011 December 30. Received 2011 December 26; in original form 2011 July 7

ABSTRACT

The stability of the motion of planet satellites is considered in a model of the general three-body problem (sun–planet–satellite). ‘Sundman surfaces’ are constructed, by means of which the concept of ‘Sundman stability’ is formulated. A comparison of Sundman stability with the results of Golubev’s $c^2 h$ method and with Hill’s classical stability in the restricted three-body problem is performed. The constructed Sundman stability regions in the plane of ‘energy–moment of momentum’ parameters coincides with the analogous regions obtained by Golubev’s method, with the value $(c^2 h)_c$.

Construction of Sundman surfaces in the three-dimensional space of the specially selected coordinates xyR is carried out by means of the exact Sundman inequality in the general three-body problem. Determination of the singular points of surfaces and regions of possible motion and Sundman stability analysis are implemented. It is shown that the singular points of the Sundman surfaces in the coordinate space xyR lie in different planes. The Sundman stability of all known natural satellites of planets is investigated. It is shown that a number of natural satellites that are stable according to Hill and also some satellites that are stable according to Golubev’s method are unstable in the sense of Sundman stability.

Key words: celestial mechanics – planets and satellites: dynamical evolution and stability.

1 INTRODUCTION

The study of the stability of the motion of planet satellites has usually been performed by means of Hill surfaces (Hill 1878) constructed either for a model of the restricted three-body problem (Proskurin 1950) or for the Hill problem (Hagihara 1952). Even since the works of Golubev (1967, 1968), Golubev & Grebenikov (1985), who developed the method sometimes referred to as the $c^2 h$ method for the general three-body problem, the stability analysis of motions has usually been carried out by Golubev’s method. This method is based on the famous Sundman inequality (Sundman 1912).

The search for regions of stable motion in the general three-body problem is divided into two tasks:

(i) determination of stability regions in the plane of two free parameters – the constant of the energy integral and constant of the moment of momentum integral;

(ii) determination of stable regions in the space of the coordinates used.

Actually, Golubev (1967) carried out the complete solution of the first task through the introduction of the ‘index of Hill stability’ $s = c^2 h$, where h is the energy constant and c the moment of momentum constant. Golubev showed that the curve $s = s_c$ is the boundary of the stability region in the plane of $c h$, where the value of s_c is calculated at the Eulerian inner libration point L_2 by use of the known equation of fifth power as some function of the body masses.

The solution of the second problem is considerably more complex, since it requires the construction of Sundman surfaces in the multidimensional space of the coordinates used. For the solution of this problem, Golubev (1968) applied the simplified Sundman inequality, with the aid of which the solution of the problem leads to the construction of Hill curves in the plane of two rectangular coordinates x and y.

Some authors (Marchal & Saari 1975; Zare 1976; Marchal & Bozis 1982; Marchal 1990) have elaborated on Golubev’s results by use of the simplified Sundman inequality.

The construction of regions of possible motion in the space of the selected coordinates by use of the exact Sundman inequality is hindered by the large number of variables. Thus, in relative or Jacobian coordinate systems the number of variables is six: three coordinates for one body and three for the other. Therefore, the construction of the Sundman surfaces can be carried out in the six-dimensional space of these coordinates.

In a large series of works by Szebehely & Zare (1977), Walker, Emslie & Roy (1980), Donnison & Williams (1983), Donnison (2009), Li, Fu & Sun (2010), Donnison (2010) and other authors, the determination of the regions of possible motion is carried out in...
the six-dimensional space of the Keplerian elements \(a_1, a_2, e_1, e_2, i_1 \) and \(i_2 \) or in the four-dimensional space \(a_1, a_2, e_1 \) and \(e_2 \) for the planar problem.

At the same time, the construction of the Sundman surfaces and thus the determination of regions of possible motion and stability regions can be conducted in the space of three variables. This substantially facilitates the readability of results and eases their application. This possibility is explained by the fact that the exact Sundman inequality depends on the coordinates only by means of three quantities: the three mutual distances between the bodies.

The article by Lukyanov & Shirmin (2007) is likely the first work that confirmed this possibility. In this work the mutual distances between the bodies are the rectangular coordinates. The existence of a Hill surfaces analogue for the general three-body problem in the space of the mutual distances is shown here using the exact Sundman inequality. The stability regions are determined in the space of the mutual distances and have the form of an infinite ‘tripod’.

Lukyanov (2011) used another choice of three coordinates. The coordinate system is determined by the accompanying triangle of mutual positions of bodies, namely the origin of the coordinate system coincides with one of the bodies, the axis \(x \) is directed towards the second body and the axis \(y \) is perpendicular to the axis \(x \) and lies in the plane of the triangle. In this coordinate system the position of all bodies is determined by three coordinates \(x, y, R \), where \(x \) and \(y \) are the coordinates of the third body and \(R \) is the distance between the first and second bodies. The system of coordinates \(xyR \) is to a certain degree similar to the rotating coordinate system in the restricted three-body problem following the motion of the basic bodies.

Then, in the space of coordinates \(xyR \) the Sundman surfaces are constructed, the singular points of surfaces (coinciding with the Euler and Lagrange libration points) are located and the regions of possible motion and Sundman stability are determined. The stability region of any body relative to another body in the space \(xyR \) has a form similar to an infinite ‘spindle’. No restriction on the masses of bodies or their mutual positions is assumed in this case.

In the present work, a method of constructing the regions of possible motion (Sundman lobes) in the general three-body problem is presented. Sundman stability analysis of the natural satellites of planets is carried out, using the high-precision ephemerides of the natural satellites of planets MULTI-SAT (Emelyanov & Arlot 2008) available on the websites http://www.sai.msu.ru/neb/nss/index.htm and http://www.imcce.fr/sat.

2 SUNDMAN SURFACES

The regions of possible motion of bodies in the general three-body problem are determined by the Sundman inequality

\[
(U - C) J \geq B,
\]

where the force function \(U \) and barycentric moment of inertia \(J \) are determined by the expressions

\[
U = \frac{G m_1 m_2}{R_{12}} + \frac{G m_2 m_3}{R_{23}} + \frac{G m_3 m_1}{R_{31}},
\]

\[
J = \frac{m_1 m_2 R_{12}^2 + m_2 m_3 R_{23}^2 + m_3 m_1 R_{31}^2}{m},
\]

\[
C = -h \text{ is the analogue of the Jacobi constant, } h \text{ is the energy constant, } B = c^2/2 \text{ is the Sundman constant and } c \text{ is the constant of the integral of area.}
\]

Here \(G \) is the universal gravitational constant, \(m_1, m_2, m_3 \) are the masses of bodies, \(m = m_1 + m_2 + m_3 \) is the total mass of the system and \(R_{12}, R_{23}, R_{31} \) are the mutual distances between the bodies.

Constants \(C \) and \(B \) are determined by the initial conditions in the barycentric coordinate system from the relationships

\[
C = -U = m_1 \frac{V_1^2}{2} - m_2 \frac{V_2^2}{2} - m_3 \frac{V_3^2}{2},
\]

\[
B = \frac{c^2}{2} = \frac{1}{2}(m_1 r_1 \times V_1 + m_2 r_2 \times V_2 + m_3 r_3 \times V_3)^2,
\]

where \(r_i, V_i (i = 1, 2, 3) \) are the barycentric state and speed vectors of the bodies.

The boundary of the region of possible motions can be established if in (1) inequality is replaced with equality:

\[
(U - C) J = B.
\]

This equality determines the equation of the Sundman surface. In the general case, the mutual distances in (5) depend on nine coordinates of three moving bodies, which substantially hampers the construction of Sundman surfaces. The transformation to the relative coordinate system makes it possible to reduce the number of coordinates to six. However, in this case the construction of the Sundman surfaces should be conducted in six-dimensional space. Furthermore, the number of coordinates can be reduced to three if the positions of bodies are determined by the following special coordinates.

The position of the body \(M_2 \) relative to the body \(M_1 \) will be characterized by the abscissa \(R \) on the axis \(M_1 X \). We will define the position of the body \(M_3 \) relative to \(M_1 \) by the rectangular coordinates \(X \) and \(Y \) in the system \(M_1 XY \), which always lies in the plane that passes through all three bodies. The positions of the bodies in the coordinate system \(M_1 XYR \) are defined by three quantities, coordinates \(X, Y \) and \(R \), which allows us to construct the Sundman surfaces in three-dimensional space.

We will use a dimensionless system of coordinates \(M_1 xyR \), making the substitution

\[
X = Rx, \quad Y = Ry.
\]

Then the mutual distances between the bodies can be expressed in terms of three quantities \(x, y, R \). The Sundman-surface equation transforms to the form of functions of three variables:

\[
S(x, y, R) = (U - C) J
\]

\[
= \frac{G}{R} \left(\frac{m_2 m_3}{\sqrt{(x - 1)^2 + y^2}} + \frac{m_3 m_1}{\sqrt{x^2 + y^2}} \right) - C
\]

\[
\times \frac{R^2}{m} \left\{ m_1 m_2 + m_2 m_3 \left[(x - 1)^2 + y^2 \right]
+ m_3 m_1 (x^2 + y^2) \right\}
\]

\[
= \frac{c^2}{2} = B.
\]

Equation (7) allows us to conduct the construction of the Sundman surface in the three-dimensional Cartesian space of variables \(xyR \).
The singular points of the Sundman surfaces are determined from the system of three algebraic equations

\[
\frac{\partial S}{\partial x} = \frac{2R^2(U-C)}{m} [m_2m_3(x_1 - 1) + m_3m_1x] - \frac{GJ}{R} \left[\frac{m_2m_3(x_1 - 1)}{r_{23}^3} + \frac{m_1m_2x}{r_{31}^3} \right] = 0,
\]

\[
\frac{\partial S}{\partial y} = \frac{2R^2(U-C)}{m} (m_2m_3 + m_3m_1) - \frac{GJ}{R} \left[\frac{m_1m_2}{r_{23}^3} + \frac{m_1m_1}{r_{31}^3} \right] = 0,
\]

\[
\frac{\partial S}{\partial R} = J(U - 2C) = 0.
\] (8)

From the third equation of this system, it is possible to determine the mutual distance \(R \) between the bodies \(M_1 \) and \(M_2 \) in the form of a function of unknowns \(x, y \) and constant \(C \):

\[
R = \frac{G}{2C} \left(m_1m_2 + \frac{m_2m_3}{\sqrt{(x-1)^2 + y^2}} + \frac{m_3m_1}{\sqrt{x^2 + y^2}} \right). \] (9)

Substituting this expression for \(R \) into the first two equations of set (8), we obtain a system of two equations with two unknowns \(x \) and \(y \):

\[
\left(m_1m_2 + \frac{m_2m_3}{r_{23}^3} + \frac{m_1m_1}{r_{31}^3} \right) [m_2m_3(x_1 - 1) + m_3m_1x] - \frac{m_3m_1}{r_{31}^3} \left[\frac{m_2m_3(x_1 - 1)}{r_{23}^3} + \frac{m_1m_2x}{r_{31}^3} \right] \times (m_1m_2 + m_2m_3r_{23}^2 + m_3m_1r_{31}^2) = 0,
\]

\[
y \left(m_1m_2 + \frac{m_2m_3}{r_{23}^3} + \frac{m_1m_1}{r_{31}^3} \right) (m_2m_3 + m_3m_1) - \frac{m_3m_1}{r_{31}^3} \times (m_1m_2 + m_2m_3r_{23}^2 + m_3m_1r_{31}^2) = 0. \] (10)

The second equation in set (10) can be satisfied in two ways: by setting \(y = 0 \) or by considering as zero the entire coefficient in the brackets beside \(y \). The first possibility \((y = 0) \) leads to collinear singular points, the second to triangular.

For \(y = 0 \) we obtain from set (10) one equation for the determination of coordinate \(x \) of the collinear singular points:

\[
\varphi(x) = \left(m_1m_2 + \frac{m_2m_3}{\sqrt{(x-1)^2 + y^2}} + \frac{m_1m_1}{\sqrt{x^2 + y^2}} \right) \times [m_2m_3(x_1 - 1) + m_3m_1x] - \left[\frac{m_2m_3}{(x-1)^2 + y^2} + \frac{m_1m_1}{x^2 + y^2} \right] \times [m_1m_2 + m_2m_3(x_1 - 1)^2 + m_3m_1x^2] = 0. \] (11)

The derivative \(\varphi'(x) \) is always positive, and the following limits occur:

\[
\lim_{x \to \pm \infty} \varphi(x) = \mp \infty, \quad \lim_{x \to 0} \varphi(x) = \pm \infty, \quad \lim_{x \to \pm \infty} \varphi(x) = \pm \infty. \] (12)

This proves the existence of three real solutions of the equation \(\varphi(x) = 0 \), which, in their turn, determine three collinear singular points of the family of Sundman surfaces in space \(xyR \):

\[
L_i = \left(x_i, 0, \frac{Gm_im_2}{2C^2} + \frac{Gm_im_3}{2\sqrt{(x_1 - 1)^2 + y^2}} + \frac{Gm_im_1}{2\sqrt{x^2 + y^2}} \right) \] (13)

where the coordinates \(x_i \) are determined by the numerical solution of equation (11).

However, if \(y \neq 0 \), then after simple conversions we obtain two triangular solutions of set (10),

\[
R_{23} = R_{31} = R, \quad L_{4.5} = \left(\frac{1}{2}, \pm \frac{1}{2}, \frac{Gm_im_2 + m_2m_3 + m_3m_1}{2C} \right). \] (15)

The obtained collinear and triangular singular points correspond to the collinear Euler and triangular Lagrange solutions known in the general three-body problem.

Collinear singular points in the space \(xyR \) lie in different planes \(R = R_i, \) i.e. \(R_i \neq R_j \), and for triangular singular points the following equality is fulfilled: \(R_i = R_j \).

Knowing the coordinates of singular points and constant \(C \), from formula (7) the values of Sundman constants \(B_1, B_2, B_3 \) and \(B_{4.5} \) at all singular points \(L_i (i = 1, 2, \ldots, 5) \) are calculated. Constants \(C \) and \(B_i \) are connected by reciprocal proportion:

\[
B_i = \frac{G^2}{4mC} \left[m_1m_2 + m_2m_3 \left(\frac{r_{23}^2}{r_{23}^2} \right) + m_3m_1 \left(\frac{r_{31}^2}{r_{31}^2} \right) \right],
\]

\[
\times \left[m_1m_2 + m_2m_3 \left(\frac{r_{23}^2}{r_{23}^2} \right) + m_3m_1 \left(\frac{r_{31}^2}{r_{31}^2} \right) \right]. \] (16)

where \((r_{23}) \) and \((r_{31}) \) are calculated at the singular point \(L_i \).

The relations (16) have been established by Golubev (1967) in the \(c^2h \) method.

Singular points are points of bifurcation, at which a qualitative change in the shape of the Sundman surface occurs. The curves (16) on plane \(BC \) are the boundaries of topologically different regions of possible motion. The curve \(L_2 \) limits the Sundman-stable region of body \(M_3 \), and this stable region is shaded in Fig. 1.

The general form of the Sundman surfaces for three bodies with mass ratios in proportion 9:3:1 is shown in Fig. 2; a section of the Sundman surfaces at planes \(R = R_i \) and \(y = 0 \) is presented in Fig. 3.

In the general three-body problem, as in the restricted problem, the concept of Hill stability is conserved. However, to distinguish it from the restricted problem, we will call this stability in the general three-body problem Sundman stability.

We will call the motion of body \(M_1 \) in the general three-body problem ‘stable on Sundman’ if there exist regions of possible motion, limited by the appropriate Sundman surfaces, inside which body \(M_1 \) will always (at any instant of time) be located at a finite distance from one of the bodies \(M_i \) or \(M_2 \). In other words, body \(M_1 \) will be an eternal satellite of one of bodies \(M_i \) or \(M_2 \), while bodies \(M_1 \) or \(M_2 \) can be at any distance from each other, including an infinite one.

The criterion of Sundman stability is the inequality

\[
B_i \geq B_2, \quad (17)
\]

where \(B_2 \) is the value of the Sundman constant at the inner Euler libration point \(L_2 \). The fulfillment of this condition guarantees that the body \(M_1 \) can on some ‘spindly’ surfaces (see Figs 2, 3) remain the eternal satellite of body \(M_1 \), or on other ‘spindly’ surfaces remain the satellite of body \(M_2 \), or else lie in a remote open oval
area when the distance between bodies M_1 and M_2 remains finite, not exceeding $G m_1 m_2/C$. This last case can be treated as Sundman stability of the relative motion of bodies M_1 and M_2.

Thus, for (17) any pair of bodies will have Sundman stability if at the initial instant the bodies forming this pair are in one of these regions of stability. The loss of stability (body M_3 leaving the ‘spindly’ area) occurs if the value R is close enough to its value R_5 at the libration point L_5.

3 Sundman Stability of Planet Satellite Motion

Analysis of Sundman stability of the motion of all known natural planet satellites of the Solar system is undertaken with the theory presented here. The ephemerides of all planet satellites are calculated with the most up-to-date theories implemented on the NSDC website, constructed by Emelyanov & Arlo (2008). From these ephemerides, constants C, B and B_2 were calculated in the barycentric coordinate system. Sundman stability was determined from formula (17).

For each satellite the construction of Sundman-surface sections using the coordinate plane xy was also conducted. Sections are given for the Jovian satellites J6 Himalia and J9 Sinope (Fig. 4). Himalia’s coordinate curve is within the Sundman stability region, while Sinope’s curve is outside it. In spite of the location of Sinope’s orbit inside the Sundman lobe, which corresponds to Sundman constant value $B = B_2$, its energy is sufficiently high that it has the potential capability of leaving this lobe (see the dashed curve). However, this does not mean that the satellite will leave the vicinity of the planet in all circumstances. Sundman instability means that the Sundman surfaces are open and allow the satellite to leave the vicinity of planet, they do not tell whether this will occur or not. The same is the case for Hill stability.

Lukyanov (2011) showed the Sundman stability of the Moon’s motion. The Sundman stability results for the satellites of other planets are given in Tables 1–5. The tables also list the results of classical Hill stability. All satellites are listed in the order of increasing semimajor axes of their orbits around the planet. The relative masses of distant planet satellites obtained from satellite photometric observations (Emelyanov & Uralskaya, 2011) are taken from the NSDC website (http://www.sai.msu.ru/neb/nss/index.htm).

The Martian satellites (Phobos and Deimos) show Hill and Sundman stability (Table 1).

The main and the inner satellites of Jupiter show Hill stability and Sundman stability and are not included in the tables. The distant satellites, which have prograde and retrograde orbits, are of special interest. All prograde satellites of Jupiter have Hill and Sundman stability (Table 2). All retrograde satellites with $a > 18.34 \times 10^6$ km are unstable according to Hill and Sundman, independent of their masses. An exception is the satellite S/2003 J12 ($a = 19 \times 10^6$ km, $i = 145.8$, $e = 0.376$) with a relatively small mass, which has Hill stability and Sundman stability.

The situation is different for the satellites of Saturn. The main, inner and distant prograde satellites of Saturn, which belong to the Gallic ($i = 34^\circ$) and Inuit ($i = 45^\circ$) groups, have Hill stability and Sundman stability (Table 3). The retrograde satellites with $a < 18.6 \times 10^6$ km have Hill and Sundman stability, while those with $a > 18.6 \times 10^6$ km have Hill stability but Sundman instability. Furthermore, the satellite S LI Greip with semimajor axis $a = 18.1 \times 10^6$ km is also Sundman-unstable.

The main and inner satellites of Uranus have Hill stability and Sundman stability. The stability results coincide for all distant satellites, except for the most distant satellite U XXIV Ferdinand ($a = 20.9 \times 10^6$ km), which has Sundman instability (Table 4).

Triton and the Neptune inner satellites have Hill and Sundman stability. Two distant Neptune satellites have Sundman instability: N X Psamathe ($a = 46 \times 10^6$ km) and N XIII Neso ($a = 48 \times 10^6$ km). The rest of Neptune’s satellites have Hill stability and Sundman stability (Table 5).

The comparison of the results for Sundman stability and Hill stability shows that Hill stability always follows from Sundman
stability, but the reverse assertion is not correct. It is caused by the fact that, in contrast to Hill’s model, in the Sundman model the satellite masses are not zero but finite. Therefore, each satellite of any planet has an individual value of Sundman constant B_2, while in Hill’s model all satellites of any planet have the same value of the Hill constant C_2.

Comparison of the results obtained with the Golubev c^2h method is carried out in two forms:

Table 1. Martian satellites. Here a is the semimajor axis of the satellite orbit, i is the inclination, e is the eccentricity and m/M_P is the ratio of the satellite mass to the planet mass.

Satellite	a (km)	e	i (deg)	m/M_P 10^{-8}	Stability
M1 Phobos	9380	0.0151	1.1	1.6723	yes
M2 Deimos	23460	0.0002	0.9–2.7	0.2288	yes
Table 2. The irregular Jovian satellites (notation as in Table 1).

Satellite	a (10^6 km)	i (deg)	e	m/M_p 10^{-9}	Stability
	2	3	4		Hill Sundman
XVIII Themisto	7.507	43.08	0.242	3.4889	yes yes
XIII Leda	11.165	27.46	0.164	5.76	yes yes
VI Himalia	11.461	27.50	0.162	22101.8	yes yes
X Lysithea	11.717	28.30	0.112	331.5	yes yes
VII Elara	11.741	26.63	0.217	4578.2	yes yes
XLVI Carpo	16.889	51.4	0.430	0.3394	yes yes
S/2003 J3	18.340	143.7	0.241	0.1263	no no
S/2003 J12	19.002	145.8	0.376	0.0631	yes yes
XXXIV Euporie	19.302	145.8	0.144	0.2447	no no
S/2003 J18	20.700	146.5	0.119	0.2920	no no
XXXV Orthosie	20.721	145.9	0.281	0.3431	no no
XXIX Thymoe	20.940	148.5	0.229	0.6946	no no
S/2003 J16	21.000	148.6	0.270	0.1342	no no
XL Mneme	21.069	148.6	0.227	0.3315	no no
XXII Harpalyke	21.105	148.6	0.226	0.8367	no no
XXX Hermippe	21.131	150.7	0.210	1.4919	no no
XXVII Praxidike	21.147	149.0	0.230	2.8495	no no
XLII Thelxinoe	21.162	151.4	0.221	0.3473	no no
XXIV Iocaste	21.269	149.4	0.216	1.3971	no no
XII Ananke	21.276	148.9	0.244	157.9	no no
S/2003 J15	22.000	140.8	0.110	0.1342	no no
S/2003 J4	23.258	144.9	0.204	0.0947	no no
L Herse	22.000	163.7	0.190	0.2526	no no
S/2003 J9	22.442	164.5	0.269	0.0947	no no
S/2003 J19	22.800	162.9	0.334	0.1263	no no
XLIII Arche	22.931	165.0	0.259	0.2842	no no
XXXVIII Pasithee	23.096	165.1	0.267	0.1658	no no
XIX Chaldene	23.179	165.2	0.251	0.7499	no no
XXXVII Kale	23.217	165.0	0.260	0.2447	no no
XXVI Isophoe	23.217	165.2	0.246	0.6157	no no
XXXI Aitne	23.231	165.1	0.264	0.4026	no no
XXV Erinome	23.279	164.9	0.266	0.3789	no no
XX Taygete	23.360	165.2	0.252	1.1445	no no
XI Carme	23.404	164.9	0.253	694.6	no no
XXIII Kalyke	23.583	165.2	0.245	1.5471	no no
XLVII Eukelade	23.661	165.5	0.272	0.7104	no no
XLIV Kallichore	24.043	165.5	0.264	0.2289	no no
S/2003 J5	24.084	165.0	0.210	0.9788	no no
S/2003 J10	24.250	164.1	0.214	0.3947	no no
XLV Helike	21.263	154.8	0.156	0.7183	no no
XXXII Eurydome	22.865	150.3	0.276	0.4262	no no
XXVIII Autonoe	23.039	152.9	0.334	0.7814	no no
XXXVI Spone	23.487	151.0	0.312	0.2763	no no
VIII Pasiphae	23.624	151.4	0.409	1.5787	no no
XIX Megaleite	23.806	152.8	0.421	2.1312	no no
IX Sinope	23.939	158.1	0.250	394.7	no no
XXXIX Hegemone	23.947	155.2	0.328	0.3394	no no
XLI Aoede	23.981	158.3	0.432	0.6473	no no
S/2003 J23	24.055	149.2	0.309	0.0947	no no
XVII Callirhoe	24.102	147.1	0.283	5.3044	no no
XLVIII Cyllene	24.349	149.3	0.319	0.2368	no no
XLIX Kore	24.543	145.0	0.325	0.3947	no no
S/2003 J2	28.570	151.8	0.380	0.1500	no no

(i) comparison of the stability criteria used;
(ii) comparison of the obtained regions of possible motion.

Analytical forms of the stability criterion in our work, $B \geq B_2$, and in Golubev’s method, $c^2 h \leq (c^2 h)_c$, are the same. However, the calculation of the constants on the left- and right-hand sides of the inequalities is carried out using different formulae. This leads to some differences in the numerical results. Comparison with the results of the work of Walker et al. (1980) for the satellites J1–J13 shows that the Sundman stability or instability of these satellites obtained in our work agrees with the results of Walker et al. (1980) for all satellites, except for four satellites of Jupiter with retrograde motion.
Table 3. The irregular Saturnian satellites (notation as in Table 1).

Satellite	a (106 km)	i (deg)	e	m/M_p 10$^{-11}$	Stability Hill Sundman
XXIV Kiviuq	11.111	45.71	0.334	0.8629	yes yes
XXII Ijiraq	11.124	46.44	0.316	0.3248	yes yes
IX Phoebe	12.944	174.8	0.164	1458.957	yes yes
XX Paaliaq	15.200	176.7	0.218	0.0248	yes yes
XXVII Skathi	15.541	152.6	0.270	0.0588	yes yes
S/2007 S2	15.600	176.7	0.218	0.0248	yes yes
XXVII Bebhionn	17.119	35.01	0.469	0.0261	yes yes
XXVIII Erriapus	17.343	34.62	0.474	0.2294	yes yes
XXIX Siarnaq	17.531	45.56	0.295	0.0430	yes yes
XLVII Skoll	17.665	161.2	0.464	0.0237	yes yes
LII Greip	18.105	172.7	0.374	0.0158	yes no
XLV Kari	22.118	156.3	0.478	0.0409	yes no
XLVI Loge	22.707	177.5	0.451	0.0127	yes no
XLII Fornjot	25.108	170.4	0.215	0.0211	yes no

Table 4. The irregular Uranian satellites (notation as in Table 1).

Satellite	a (106 km)	e	i (deg)	m/M_p 10$^{-9}$	Stability Hill Sundman
XXII Francisco	4.2760	0.1425	147.613	0.0518	yes yes
XVI Caliban	7.1689	0.0823	139.681	8.1305	yes yes
XX Stephano	7.9424	0.1459	141.538	0.3494	yes yes
XXI Trinculo	8.5040	0.2078	166.332	0.0200	yes yes
XVII Sycorax	12.2136	0.5094	152.669	46.6790	yes yes
XXIII Margaret	14.3450	0.7827	50.651	0.0609	yes yes
XVIII Prospero	16.1135	0.3274	146.340	1.1306	yes yes
XIX Ymir	23.040	145.2	0.521	0.0430	yes no
XXIV Ferdinand	20.9010	0.4262	167.278	0.0874	yes no

motion: J VIII, J IX, J XI and J XII. For these satellites we obtained instability, while in the work cited these satellites were indicated as being stable. This is likely to be due to the approximation of the three-body problem by two problems of two bodies and also by the neglect of orbit inclinations.

We conducted the construction of regions of possible motion in the three-dimensional space xyR, while in all works of other authors the value of R is excluded from the examination and the construction of regions of possible motion is conducted in the xy plane. For this reason, in the c^2h method it is not possible to obtain a number of important results. For example, it cannot be shown that the loss of stability (withdrawal of body M_3 from the stability region) can occur only for a certain distance between bodies M_1 and M_2. Generally, Sundman curves in the plane $R = $ constant with a change in R can
differ sharply and qualitatively from Hill’s curves, as shown by Lukyanov (2011).

4 DISCUSSION

The famous Sundman inequality in the general three-body problem takes the form
\[
(U - C)J - B \geq \frac{j^2}{8}.
\]
For the material motions of bodies, i.e. with the fulfilment of conditions \(J^2 \geq 0 \), it determines the regions of possible motion satisfying the inequality
\[
(U - C)J \geq B.
\]

The boundaries of the region of possible motion are determined by the equation
\[
(U - C)J = B,
\]
which we call the equation of the Sundman surface, while the stability in Hill’s sense for the three-body problem is denoted as Sundman stability. By analogy with surfaces of zero speed in the restricted three-body problem, we may call the Sundman surfaces in the general three-body problem the surfaces of zero rate of change of the barycentric moment of inertia of bodies \(J = 0 \).

The determination of Sundman stability and the construction of Sundman curves in the plane of parameters \(C \) and \(B \) (see Fig. 1) has been completely solved by Golubev 1 (1967) in his \(c^2h \) method (in our designations \(c^2 = 2B, h = -C \)). Now this method is called Golubev’s method.

Golubev’s method determines the surfaces but the Sundman curves located in the plane of the triangle formed by the mutual distances between the bodies. The mutual distances between the bodies \(R_{12} \) and \(R_{23} \) are substituted by the relative values \(R_{12}/R \) and \(R_{23}/R \) and the value of \(R = R_{12} \) is generally excluded from examination.

The equation of the ‘current’ Sundman curve in Golubev’s method has the form of a hyperbola \(CB = \text{constant} \). If in this case the constants \(C \) and \(B \) are expressed in terms of any other variables then, in its turn, the task of construction of the Sundman curves in the space of these variables arises. Thus, in the large series of works of Szebehely & Zare (1976), Walker (1983), Donnison (2010) and many other authors, the task of constructing Hill–Sundman curves and determination of stability regions in the general three-body problem is solved by Golubev’s method in the space of six quantities: semimajor axes \(a_1, a_2 \), eccentricities \(e_1, e_2 \) and inclinations \(i_1, i_2 \). For calculation of the constants \(C \) and \(B \), the approximation of the three-body problem by two problems of two bodies is used. This introduces a certain error to the solution of the problem. Additionally, the value of \(R \) remains unknown.

For the representation of Sundman curves on the plane \(xy \), Golubev (1968) considered another method. He used the simplified Sundman inequality instead of the exact inequality (19):
\[
U^2J \geq BC,
\]
which is the consequence of inequality (19) and is obtained after the multiplication of inequality (19) by \(U \), taking into account inequalities \(C > 0 \) and \(U > C \). Inequality (21) does not reflect the entire diversity of the Sundman surfaces.

Like the \(c^2h \) criterion (obtained from the condition of positivity of the discriminant of the quadratic trinomial for \(R \) from the left-hand side of the Sundman inequality), simplified inequality (21) does not contain the mutual distance \(R_{12} = R \). Therefore, by means of inequality (21) it is possible to construct not the surfaces but the Sundman curves in the plane of relative coordinates \(xy \). The construction of these curves was subsequently conducted in the works of Marchal & Saari (1975), Marchal & Bozis (1982) and other authors.

Thus, the task of constructing the Sundman surfaces in the space of the coordinates used remained incomplete before the publications of Lukyanov & Shirmin (2007) and Lukyanov (2011) appeared. Lukyanov & Shirmin (2007) used the mutual distances between the bodies as the coordinates. This made it possible to construct exact Sundman surfaces in the three-dimensional space of mutual distances. Lukyanov (2011) used the more convenient rectangular coordinate system \(xyR \), determined by the accompanying triangle of mutual positions of the three bodies.

In these works the exact Sundman inequality (19) is used and, therefore, the value of \(R \) is not excluded from the examination. In this case no simplifications or assumptions are applied. The construction of the Sundman surfaces is implemented in the three-dimensional space of the coordinates used with the determination of the singular points of surfaces, regions of possible motion and Sundman stability regions.

Regions of possible motion constructed by means of the exact Sundman inequalities differ from the analogous regions defined according to the simplified Sundman inequality, both quantitatively and qualitatively.

The stability regions determined by the simplified Sundman inequality (21) have larger sizes than those calculated by exact inequality (19). Therefore, the stability obtained by means of (21) can turn to instability, when using exact inequality (19).

It is easy to derive by means of exact Sundman surfaces that the loss of Sundman stability for body \(M_1 \) can occur only when a certain distance \(R \) between the bodies \(M_1 \) and \(M_2 \) is reached, so that the ‘passage’ through the neighbourhood of the singular point \(L_2 \) is open. It is caused by the fact that the singular points of the Sundman

\[\begin{array}{|c|c|c|c|c|c|}
\hline
Satellite & a (10^6 km) & e & i (deg) & m/M_p \times 10^{-6} & Stability \\
\hline
II Nereid & 5.5134 & 0.7512 & 7.232 & 301.38 & yes & yes \\
IX Halimede & 15.728 & 0.5711 & 134.101 & 3.0835 & yes & yes \\
XI Sao & 22.422 & 0.2931 & 48.511 & 0.6445 & yes & yes \\
XII Laomedea & 23.571 & 0.4237 & 34.741 & 0.5606 & yes & yes \\
X Psmatthe & 46.695 & 0.4499 & 137.391 & 0.9244 & yes & no \\
XIII Neso & 48.387 & 0.4945 & 132.585 & 1.3423 & yes & no \\
\hline
\end{array}\]

\footnote{In English-language literature, the surname Golubev is frequently written incorrectly.}

© 2012 The Authors, MNRAS 421, 2316–2324
Monthly Notices of the Royal Astronomical Society © 2012 RAS

Table 5. The irregular Neptunian satellites (notation as in Table 1).
surfaces are determined by three coordinates \(L_i(x_i, y_i, R_i)\) and in
the space \(xyR\) they lie, generally speaking, in different planes. This result cannot be established with the aid of inequality (21), since it
does not depend on \(R\).

The construction of exact Sundman surfaces allows us to define the regions of possible motion for any of the three bodies and for
any values of \(C\) and \(B\). Using the Sundman surfaces yields, for example, that with the fulfilment of the stability criterion the body
\(M_3\) (it can be any body) for any time \(−∞ < t < ∞\) will be located at
a finite distance from one of bodies \(M_1\) or \(M_2\) or at a large distance
from these bodies. Qualitatively, the analogous result is known for
Hill surfaces in the restricted three-body problem as well. If body
\(M_3\) is located, for example, in the stability region near \(M_1\), then the
Sundman surfaces admit the possibility of the retreat of body \(M_2\)
to any large distance from the pair \(M_1, M_3\). For Hill surfaces, this
situation is not possible.

By means of Sundman surfaces, it is possible to establish the sta-
bility of only one pair of bodies, and the third body will in this case be unstable in the Sundman sense. Sundman surfaces do not establish the simultaneous stability of three bodies, i.e. the guaranteed
location of all bodies in a certain finite region of space (Lagrange
stability), although these surfaces do not exclude this case. Sund-
man instability does not mean that a body will necessarily leave the
neighbourhood of another body. The Sundman surfaces do not allow us to determine whether this retreat will actually occur. This
result is analogous to that of Hill stability. The determination of
Sundman stability of the planet satellites of the Solar system con-
ducted in this study shows the effectiveness of the use of Sundman
surfaces in coordinate form.

We believe that our results are of particular interest for celestial
mechanics and for astronomy as a whole.

ACKNOWLEDGMENTS
We would like to thank the anonymous referee for his suggestions.

REFERENCES
Donnison J. R., 2009, Planet. Space Sci., 57, 771
Donnison J. R., 2010, Planet. Space Sci., 58, 1169
Donnison J. R., Williams I. P., 1983, Celest. Mech., 31, 123
Emelyanov N. V., Arlot J.-E., 2008, A&A, 487, 759
Emelyanov N. V., Uralskaya V. S., 2011, Solar System Res., 45, 377
Golubev V. G., 1967, Doklady. Akad. Nauk SSSR, 174, 767
Golubev V. G., 1968, Sov. Phys. Dokl., 13, 373
Golubev V. G., Grebenikov E. A., 1985, The three-body problem in Celestial
Mechanics. Moscow University Publisher, Moscow (in Russian)
Hagihara Y., 1952, Proc. Japan Academy, 28, 2
Hill G. W., 1878, Am. J. Math., 1, 5
Li J., Fu Y., Sun Y., 2010, Celest. Mech. Dyn. Astron., 107, 21
Lukyanov L. G., 2011, Astron. Rep., 55, 742
Lukyanov L. G., Shirmin G. I., 2007, Astron. Lett., 33, 550
Marchal C., 1990, The Three-Body Problem. Elsevier Publisher, Amsterdam
Marchal C., Bozis G., 1982, Celest. Mech., 26, 311
Marchal C., Saari D., 1975, Celest. Mech., 12, 115
Proskurin V. F., 1950, Bull. Inst. Mech. Astronomy IV, 7, 60
Sundman K. F., 1912, Acta Math., 36, 195
Szebehely V., Zare K., 1977, A&A, 58, 145
Walker I. W., 1983, Celest. Mech., 29, 215
Walker I. W., Emslie A. G., Roy A. E., 1980, Celest. Mech., 22, 371
Zare K., 1976, Celest. Mech., 14, 73

This paper has been typeset from a \(\TeX/\LaTeX\) file prepared by the author.