Characterization of common bean (*Phaseolus vulgaris* L.) germplasm for morphological and seed nutrient traits from Western Himalayas

Sofora Jan | Irshad Ahmad Rather | Parvaze Ahmad Sofi | Mohd Altaf Wani | Farooq Ahmad Sheikh | Mohammad Ashraf Bhat | Reyazul Rouf Mir

Division of Genetics and Plant Breeding, Faculty of Agriculture (FOA), Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-K), Sopore, India

Correspondence
Reyazul Rouf Mir, Division of Genetics and Plant Breeding, Faculty of Agriculture (FOA), Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-K), Sopore, 193201, India.
Email: imrouf2006@gmail.com; majornmir@skuastkashmir.ac.in

Funding information
Science and Engineering Research Board, DST, Government of India, Grant/Award Number: PDF/2016/001122

Abstract
Common bean (*Phaseolus vulgaris* L.) is considered as one of the principle grain legume crops grown in Western Himalayas of Jammu and Kashmir, India. This region holds great diversity of common bean germplasm. The purpose of present study was to characterize 109 common bean genotypes collected from different hotspots for morphological traits—plant growth (growth habit, growth type, and twinning habit); leaf (color, size, and shape); flower (color, stripping on outer petal); pod (shape in relation to suture, shape of cross-section, shape of distal part, and stringiness), seed (color and shape) traits, and quantitative morphological traits (seed weight, length, and breadth). The preliminary analysis of trait data showed wide variation for different morphological traits. Furthermore, diverse 60 genotypes were selected out of 109 genotypes and were evaluated for seed micronutrients (Fe, Zn, and Cu) and seed macronutrients (K, Ca, P, and Mg). The analysis of seed micronutrient and macronutrient data indicated substantial variation for these minerals in the germplasm. Seed Mg, P, K, and Ca concentrations varied from 1,220.5 to 2,737.5 ppm, 1,980–4,050 ppm, 8,344.5–14,794 ppm, and 300–5,350 ppm, respectively. Similarly, seed micronutrients Fe, Zn, and Cu concentrations ranged from 80.5–180.6 ppm, 14.64–104.08 ppm, and 0.9–13.4 ppm, respectively. The evaluation for seed micronutrient and macronutrient led to the identification of candidate genotypes possessing high seed micronutrient and macronutrient. The candidate genotypes identified during the present study will prove useful in common bean breeding programs as donor genotypes, in development of useful genetic resources and in gene discovery programs through functional genomics and transcriptomics.

Keywords
common bean, macronutrients, micronutrients, morphological traits, phenotypic variation
INTRODUCTION

Common bean (Phaseolus vulgaris L) member of the family Fabaceae (legume or bean family) is a self-pollinated, diploid (2n = 2x = 22) legume crop with moderate genome size of 473 Mb (Priya & Manickavasagan, 2020). Common bean is cultivated throughout the world for its green pods as well as for dry seeds (Adikshita & Kansak, 2017). Based on evidences from archeological as well as morphological traits and phaseolin patterns, allozymes, and molecular markers, common bean has evolved from its closest wild common bean relative (Phaseolus vulgaris var. Mexicanaus) (Brucher, 1988; Gepts & Debouck, 1991; Salinas et al., 1988). Two geographically isolated and genetically recognized wild gene pools (Andean and Mesoamerican) evolved from a common wild ancestral parent about 10,000 years ago, and from these wild gene pools, nearly 8,000 years ago, common bean was independently domesticated in Mexico and South America (Bitocchi et al., 2013), and today the crop is being cultivated as a major food crop in many areas of the America, Europe, Africa, and Asia (Choudhary, Hamid, et al., 2018; Wortmann et al., 2006). Seed storage protein, phaseolin, helps in identifying cultivated and wild common beans. Two major phaseolin types that have been largely found in common bean are “S” and “T” type, with Mesoamerican and Andean genotypes possessing “S” and “T” type phaseolin patterns, respectively (Choudhary, Hamid, et al., 2018; Kami et al., 1995).

In India, common bean is cultivated in the states of Himachal Pradesh, Uttar Pradesh, Jammu and Kashmir, Maharashtra, Karnataka, Kerala, and Tamil Nadu (Kumar et al., 2017). Western Himalayas of Jammu and Kashmir holds great diversity of common bean landraces (Choudhary, Hamid, et al., 2018) and is a niche and cash crop (Sheikh et al., 2017). It is widely cultivated in Budgam, Baramulla, Shopian, Kulgam, Qazigund Rajouri, Poonch, Doda, Kishtwar, Bhaderwah, and Ramban, on an area of about 26.75 thousand hectares with an annual production of 14.2 thousand metric tons (Bhat et al., 2017; Choudhary, Bawa, et al., 2018; Choudhary, Hamid, et al., 2018; Mir et al., 2021).

In Jammu and Kashmir, common bean has gained the impetus because of high taste, texture, flavor, and palatability (Choudhary, Bawa, et al., 2018; Choudhary, Hamid, et al., 2018; Mir et al., 2021).

Because genetic diversity of valuable species is affected by anthropogenic factors, thus there is pressing need for conservation and utilization of local plant resources for breeding plant species (Stoilova et al., 2013). United Nations declared 2010 as “Year of Biodiversity” highlighting the need of conservation and utilization of biological diversity for human development. In common beans, landraces are an important component of plant biodiversity and constitute the foundation of present day crop breeding programs. They have assumed greater significance in view of deterioration of biophysical resource base and looming threats of climate change (Carovic-Stanko et al., 2017).

From the nutraceutical point of view, common beans are unique among plant diets, as they are cheap source of high quality protein (21%–25%) and are aptly designated as “Poor Man’s Meat” (USDA Dietary Guidelines, 2010). Beans are more than a foodstuff as they are rich in many other compounds like vitamins, especially B group vitamins (folates), antioxidants and polyunsaturated fatty acids, minerals like macronutrients, sulfur (S), potassium (K), phosphorus (P), calcium (Ca), magnesium (Mg), and magic wands, micronutrients, iron (Fe), zinc (Zn), copper (Cu), iodine (I), and manganese (Mn) (Akond et al., 2011). These minerals are required for proper functioning of our body systems. Fe and Zn, which are required in miniscule amounts, have been found at higher level in common beans than cereals and can potentially solve hidden hunger related problems faced by people falling at bottom of pyramid of societies economic strata (Blair et al., 2013). Likewise, macronutrients are needed to combat Alzhemier’s disease, Type 2 diseases, cardiovascular diseases, etc. (Hayat et al., 2014).

Earlier studies in common beans collected from different parts of world have reported substantial variation in the germplasm for various minerals (Grele et al., 2017; Ray et al., 2014). However, there are very few reports available from Western Himalayan regions of Jammu and Kashmir where bean germplasm from Jammu and Kashmir has been used in evaluation of seed micronutrients and macronutrients (Mahajan et al., 2015). Therefore, the aim of this study was to evaluate the seed micronutrients (Fe, Zn, and Cu) and seed macronutrients (K, Ca, P, and Mg) in a set of common bean germplasm collected from different hot-spot regions of Jammu and Kashmir harboring great diversity in common bean landraces. To the best of our discernment, we have succeeded in collection of bean landraces from those hot-spot regions, which were mostly unexplored in earlier studies.

MATERIALS AND METHODS

2.1 Germplasm collection

A set of 109 common bean genotypes were used during the present study. Among the 109 genotypes, 87 were collected from different hot spot regions of Jammu and Kashmir, and 15 were exotic genotypes from different countries (Syria, USA, Denmark, Ukraine, Turkey, Norway and Iran). Out of 109 genotypes, 52 genotypes were of Mesoamerican origin, and 57 genotypes were of Andean origin. The local bean landraces were collected from different districts of Kashmir Valley including Kupwara, Baramullah, Anantnag, and Bandipora and different districts of Jammu region including Poonch, Rajori, Kishtiar, Doda, and Badrewah (Figure 1; Table 1).

Because the genotypes/landraces of common bean collected from farmer’s fields were invariably admixtures and heterogeneous, they were purified to ensure uniform seed sets within each accessions and to remove the off types that did not conform to the overall characteristics of that landrace (for details, see Choudhary, Hamid, et al., 2018; Mir et al., 2021).

2.2 Evaluation of germplasm

For the trait characterization, a set of 109 common bean genotypes were evaluated in Augmented Block Design (ABD) at Research Farm
FIGURE 1 Variation in seed testa color in common bean germplasm used during the present study. The figure shows the diverse nature of genotypes being used in the current study. A = French yellow; B = Canadian red; C = cream; D = olivaceous; E = light yellow; F = black eye; G = black; H = brown; I = light gray; J = light brown; K = great northern; L = red

TABLE 1 List of 109 genotypes along with their site of collection and origin used in the present investigation

S. no	Accession number	Site of collection/source	Origin Indigenous/exotic
1	SB101	Cherward Lahroo, Anantnag, India	Indigenous
2	SB103	Akingam, Anantnag, India	Indigenous
3	SB104	Akingam, Anantnag, India	Indigenous
4	SB106	Akingam, Anantnag, India	Indigenous
5	SB107	Akingam, Anantnag, India	Indigenous
6	SB108	Badasgam, Anantnag, India	Indigenous
7	SB11	Watergam, Baramulla, India	Indigenous
8	SB110	Badasgam, Anantnag, India	Indigenous
9	SB111	Badasgam, Anantnag, India	Indigenous
10	SB113	Kokernag, Anantnag, India	Indigenous
11	SB114	Kokernag, Anantnag, India	Indigenous
12	SB115	Kokernag, Anantnag, India	Indigenous
13	SB117	Akingam, Anantnag, India	Indigenous
14	SB118	Larnoo, Anantnag, India	Indigenous
15	SB119	Larnoo, Anantnag, India	Indigenous
16	SB120	Larnoo, Anantnag, India	Indigenous
17	SB121	Larnoo, Anantnag, India	Indigenous
18	SB124	Larnoo, Anantnag, India	Indigenous
19	SB125.2	Larnoo, Anantnag, India	Indigenous
20	SB126	Larnoo, Anantnag, India	Indigenous
21	SB127	Larnoo, Anantnag, India	Indigenous
22	SB129	Kansar, Doda, India	Indigenous
23	SB131	Chilibalera, Badrewah, India	Indigenous
24	SB132	Butla, Badrewah, India	Indigenous

(Continues)
S. no	Accession number	Site of collection/source	Origin Indigenous/exotic
25	SB134	Baderwah, India	Indigenous
26	SB135	Baderwah, India	Indigenous
27	SB136	Sartingil, Baderwah, India	Indigenous
28	SB137	Sartingil, Baderwah, India	Indigenous
29	SB138	Sartingil, Baderwah, India	Indigenous
30	SB139.B	Sartingil, Baderwah, India	Indigenous
31	SB140	Sartingil, Baderwah, India	Indigenous
32	SB141.1	Sartingil, Baderwah, India	Indigenous
33	SB142	Padder, Kashtiwar, India	Indigenous
34	SB143	Padder, Kashtiwar, India	Indigenous
35	SB145	Atholi Padder, Kishtiwar, India	Indigenous
36	SB146	Atholi Padder, Kishtiwar, India	Indigenous
37	SB147	Atholi Padder, Kishtiwar, India	Indigenous
38	SB149	Bandipora, India	Indigenous
39	SB150	Bandipora, India	Indigenous
40	WB-493	Sweden	Exotic
41	SB151	Bandipora, India	Indigenous
42	SB152	Bandipora, India	Indigenous
43	SB153	Bandipora, India	Indigenous
44	SB155.2	Bandipora, India	Indigenous
45	SB156	Bandipora, India	Indigenous
46	SB159	Haspulot Thanamandi, Poonch, India	Indigenous
47	SB162	Watergam, Baramulla, India	Indigenous
48	SB163	Watergam, Baramulla, India	Indigenous
49	SB165	Watergam, Baramulla, India	Indigenous
50	SB167	Watergam, Baramulla, India	Indigenous
51	SB168	Watergam, Baramulla, India	Indigenous
52	SB169	Watergam, Baramulla, India	Indigenous
53	SB17	Not known	Exotic
54	SB170	Pattan, Baramulla, India	Indigenous
55	SB173	Watergam, Baramulla, India	Indigenous
56	SB174.1	Watergam, Baramulla, India	Indigenous
57	SB181	Kupwara, India	Indigenous
58	SB182	Kupwara, India	Indigenous
59	SB183.1	Kupwara, India	Indigenous
60	SB184	Kupwara, India	Indigenous
61	SB185	Kupwara, India	Indigenous
62	SB186	Kupwara, India	Indigenous
63	WB-792	Bandipora, India	Indigenous
64	WB-923	Bandipora, India	Indigenous
65	WB-650	Bandipora, India	Indigenous
66	WB-1009	Baramulla, India	Indigenous
67	WB-1199	Baramulla, India	Indigenous
68	WB-1306	Baramulla, India	Indigenous
69	WB-1187	Baramulla, India	Indigenous
70	WB-1255	Baramulla, India	Indigenous
Experimental field was divided into six blocks. In each block, 17 genotypes and a check variety, Shalimar Rajmash 1 was sown. Each genotype was sown in two rows of 2 m length each, and 40 cm spacing between the rows and 15-cm plant-to-plant spacing was kept for better expression of traits for evaluation. Plots were kept free from weeds, diseases, and insect/pests throughout the growing season.

TABLE 1 (Continued)

S. no	Accession number	Site of collection/source	Origin Indigenous/exotic
71	WB-1151	Baramulla, India	Indigenous
72	WB-832	Baramulla, India	Indigenous
73	WB-1184	Baramulla, India	Indigenous
74	WB-473	Denmark	Exotic
75	WB-416	Iran	Exotic
76	WB-418	Iran	Exotic
77	WB-469	Norway	Exotic
78	WB-603	Not known	Exotic
79	WB-413	Not known	Exotic
80	WB-1131	Pulwama	Exotic
81	WB-947	Turkey	Exotic
82	WB-970	Ukraine	Exotic
83	WB-330	Bandipora, India	Indigenous
84	WB-665	Bandipora, India	Indigenous
85	WB-1186	Baramulla, India	Indigenous
86	R1	Baramulla, India	Indigenous
87	WB-1189	Baramulla, India	Indigenous
88	WB-634	Kupwara, India	Indigenous
89	WB-1300	Not known	Exotic
90	WB-956	Syria	Exotic
91	WB-846	Tailbal	Indigenous
92	WB-934	USA	Exotic
93	SB1	Not known	Exotic
94	SB6	NBPGR Shimla	Indigenous
95	SB7	NBPGR Shimla	Indigenous
96	SB128	Larnoo, Anantnag, India	Indigenous
97	SB127	Larnoo, Anantnag, India	Indigenous
98	SB19	NBPGR Shimla	Indigenous
99	SB22	NBPGR Shimla	Indigenous
100	SB44	Not known	Exotic
101	SB45	Not known	Exotic
102	SB46	Not known	Exotic
103	SB42	Not known	Exotic
104	SB30	NBPGR Shimla	Indigenous
105	SB43	Not known	Exotic
106	SB9	NBPGR Shimla	Indigenous
107	SB49	Not known	Exotic
108	SRI	Local	Indigenous
109	WBRM-101	USA	Exotic
cropping cycle. Standard agronomic practices were followed for normal crop growth. Five plants were selected from each genotype for recording the data.

2.3 | Data collection

Data were recorded for various qualitative and quantitative morphological characteristics/traits like plant growth (growth habit, growth type, and twinning habit); leaf (color, size, and shape); flower (color and stripping on outer petal); pod (shape in relation to suture, shape of cross section, and shape of distal part and stringiness), seed (color and shape) traits, and quantitative morphological traits (seed weight, length, and breadth) from five randomly selected plants from each plot. Observations were recorded as per descriptor PPV and FRA (2007) at proper crop developmental stage.

2.4 | Seed mineral estimation

For evaluation of seed micronutrients and macronutrients, a set of 109 genotypes originally used for morphological characterization were reduced to 60 diverse genotypes. These 60 genotypes have been found diverse in terms of morphological traits and represent all hotspots/collection sites in Jammu and Kashmir. Out of 60 genotypes, 22 genotypes belonged to Mesoamerican gene pool, and 38 genotypes belonged to Andean gene pool. This diverse set of 60 genotypes was evaluated for macronutrients (K, P, Mg, and Ca) and micronutrients (Fe, Zn, and Cu) by di-acid digestion method (Ribeiro et al., 2012) using atomic absorption spectrophotometer (AAS). The protocol briefly involves:

I. Random sample of 10–12 seeds from each genotype was ground to powder using mortar and pestle.

II. Ground sample weighing 0.5 g was digested by 5-ml di-acid mixture (nitric acid: perchloric acid in the ratio of 3:1) on hot plate at 300°C till solution turns clear and colorless.

III. Digestion tubes were allowed to cool down, the peroxide was added to bleach the solution. The solution was again put for digestion on the hot plate, heated till solution appears colorless.

After the solution becomes clear, the final volume was made 50 ml with distilled water and shaken well. This aliquot was taken for estimation of micronutrients (Zn, Fe, and Cu) and macronutrients (K, Mg, P, and Ca) concentrations (ppm) using AAS (Agilent Technologies, 200 series) against standard solutions of known concentrations. Estimation of these minerals was carried out on three separate replications values. Concentrations of Fe, Zn, Cu Mg, K, Ca, and P were converted and expressed in ppm (mg/kg) from the absorbance using Atomic Absorption Spectroscopy.

IV. Data obtained were statistically analyzed using MS Excel 2007 for mean, range, standard error, and coefficient of variance.

2.5 | Phaseolin typing

The genomic DNA isolation was carried out by the method of (Doyle & Doyle, 1990). Analysis of phaseolin diversity at DNA level was done to figure out gene pools in the collected common bean germplasm. Primers for phaseolin gene were selected from (Choudhary, Hamid, et al., 2018; Kami et al., 1995). The primer sequence for the right primer was 5′-AGCATATTCTAGGGCCCTCC-3′, and the primer sequence for the left primer was 5′GCTCAGTTTCAATCTGTTTC-3′. The procedure adopted for the amplification of phaseolin locus, the PCR master mix components, and PCR profile is available elsewhere (see Choudhary, Hamid, et al., 2018; Kami et al., 1995).

TABLE 2 Qualitative trait analysis of 109 common bean landraces studied during the present study

S. no.	Variable	Observation	No. of accessions
1	Anthocyanin coloration	Absent	19
		Present	90
2	Growth type	Erect	37
		Semi erect	24
		Spreading	48
3	Plant growth habit	Indeterminate	73
		Determinate	36
4	Plant twining habit	Vinyl	70
		Non vinyl	39
5	Flower color	Pink	18
		White	44
		Violet	36
		Purple	6
		Yellow	4
		Red	1
6	Outer surface of standard petal	Non stripped	83
		Stripped	26
7	Leaflet size	Small	5
		Medium	41
		Large	63
8	Leaf color	Green	31
		Dark green	78
9	Leaf shape	Cordate	81
		Ovate	28
10	Pod shape of cross section through seed	Ovate	38
		Elliptic	38
		Cordate	27
		Circular	6
11	Pod shape in relation to suture	Concave	102
		Convex	3
		Absent	4
3 | RESULTS

3.1 | Morphological characterization

The evaluation of morphological trait data revealed wide variation for plant, leaf, flower, pod, and seed characteristics (Table 2). Results obtained from evaluation of these traits are presented in the following subheadings:

3.1.1 | Plant growth characteristics

Plant growth traits like growth habit, growth type, and twinning habit of plants were evaluated. Genotypes of spreading, semi-erect, and erect growth type were observed. Spreading growth type was predominant over semi-erect and erect growth types as it was observed in 44.03% genotypes. Vinyl and non-vinyl twining habit was observed, with predominance of vinyl twining habit (64.22%). In the genotypes studied, growth habit was either indeterminate or determinate type; however indeterminate, growth habit was frequent type observed in 66.97% genotypes. Anthocyanin pigmentation on stem was noticed in 82.56% of genotypes, and in 17.43% genotypes, this pigmentation was lacking.

3.1.2 | Flower characteristics

Standard of the flower exhibited a marked variability. Pink, white, red, violet, and yellow colored flowers were found. However, white flower color was most predominant (44.86%). Stripping on outer standard petal was also observed in 23.85% genotypes, and in rest genotypes, it was absent.

3.1.3 | Leaf characteristics

In all 109 genotypes, leaf traits, namely, leaf shape, size, and color, were recorded. Two classes of leaf shape were found (Cordate and ovate). Cordate leaf shape was most predominant and was found in 78.31% genotypes. Three classes of leaf size were observed (large: predominant, medium, and small). Leaf color was, green, and dark green. Dark green leaf color was found to be the predominant as 71.55% genotypes had this leaf color.

3.1.4 | Pod characteristics

Pod color of 109 genotypes was green, pale green, and violet. Green color of pods was seen in 84.40% genotypes. Pod shape in relation to suture was found to be convex, concave and straight. Pods having concave shape in relation to suture were most common (93.75% genotypes). Shape of cross section of pod was seen as cordate, elliptical, and ovate. Cordate and elliptic shapes were most frequent. Shape of distal part of pods was found to be acute, truncate, and acute to truncate. Maximum genotypes (63.30%) had acute to truncate shape. Dry pods of maximum genotypes (55.04%) possessed strings, whereas in rest, it was absent. Also, pigmentation on pods was noticed only in 35.77% genotypes, but in rest of genotypes, it was absent.
3.1.5 Seed characteristics

A set of 109 accessions of common bean was also evaluated for seed shape, color, and size. Seeds of kidney, circular, elliptical, cuboidal, and circular to elliptical shapes were observed. Kidney (26.6%), cuboidal (28.4%), and circular to elliptical shapes (28.4%) were most predominant (Table 2). Variation was also noticed for seed testa color (Figure 1). Red (11.0%), cream (9.17%), cranberry (8.25%), purple (5.5%), black (0.9%), brown (6.42%), pink (0.9%), cannellini (0.9%), navy (0.9%), gray (1.83%), great northern (1.83%), and olivaceous (4.58%) colored seeds were observed. Different shades of red color were observed, namely, red painted lady (1.83%), Canadian red (3.66%), light red (2.75%), and dark red (7.33%). Likewise, painted black (2.75%) and black eye (0.9%) colors were also noticed. Similarly, different shades were seen in brown color and yellow colors (see Table 2 for more details).

The germplasm was also evaluated for three quantitative traits, namely, seed length, breadth, and weight. Good variation was noticed for these traits. In general, seed length ranged from 3 to 22.73 mm with mean value of 14.08 mm with standard error and variance of 2.63 and 18.82, respectively. Seed breadth ranged from 1.33 to 9.96 mm with mean value of 7.76 mm and with standard error and variance of 1.20 and 15.54, respectively. In genotype “SB30,” maximum seed length and breadth were observed. Genotype “WB1009” had minimum seed length and breadth. Seed weight also varied from 14.0 to 63 g with an average of 35.80 g. Genotype “WB413” was found to have maximum seed weight, and genotype “SB132” had minimum seed weight.

3.2 Trait phenotyping for microseed and macroseed minerals

A set of 60 genotypes evaluated for seed micronutrients and macronutrients depicted substantial variation for seed micronutrients (Fe, Zn, and Cu) and macronutrients (Mg, K, Ca, and P) (Table 3).

Sample no	Genotype	Mg	K	Ca	P	Fe	Zn	Cu
1	SB103	2.0125	12.397	4.125	2.490	115.4	38.31	9.4
2	SB118	2.1241	13.654.5	1.995	3.240	122.6	36.13	8.2
3	SB128	1.9657	13.957	1.595	3.060	139.1	35.7	10.1
4	SB49	1.8819	5.000	1.785	3.720	168.8	42.02	6.8
5	SB46	1.2205	8.3445	2.101	2.160	95.7	25.63	10.3
6	SB42	1.8027	13.964	1.2815	2.910	113.5	42.77	7.2
7	SB44	1.8765	12.515.5	2.1385	2.940	145	34.82	10.9
8	SB43	1.7796	13.265	1.741	3.810	115.2	41.21	10.4
9	SB45	2.3638	5.000	2.0605	3.300	149.3	40.97	12.1
10	SB149	2.1524	14.3405	2.0485	3.900	138.1	40.49	9.6
11	SB119	2.6118	14.8565	2.865	3.270	140.2	27.81	9.7
12	SB334	2.0774	14.1415	2.590	3.300	152.2	40.36	7.6
13	SB121	2.0309	12.821	4.300	2.760	124.8	30.85	0.9
14	SB138	1.8727	14.5785	310	3.210	129.9	31.64	8.1
15	SB147	2.0299	12.8145	3.205	2.940	124.5	34.51	10.9
16	SB150	1.6408	5.000	3.050	3.660	171.3	52.44	9.7
17	SB156	2.1534	14.2885	3.465	3.060	159.2	36.45	6.8
18	SB102	1.679	14.794	3.135	3.090	145.9	36.31	8.9
19	SB106	1.7908	5.000	3.650	3.420	180.6	104.08	8.2
20	SB111	2.2129	14.2525	3.140	3.780	136.8	42.22	9.7
21	SB143	2.5817	14.683	2.535	3.450	129.1	41.73	7.9
22	SB140	1.9924	12.337	2.895	2.970	130.1	34.24	8.6
23	SB183.1	2.0181	5.000	2.730	3.090	128.7	27.07	7.9
24	SB186	1.9514	5.000	4.050	2.940	130.3	38.97	9.4
25	SB168	2.2771	13.9145	2.930	3.060	120.4	44.09	9.3
26	SB158	2.4444	5.000	2.675	3.780	146	43.59	8.6
27	SB159	2.489	5.000	4.780	3.930	135.2	22.34	8.9
28	SB163	2.0926	13.632	2.810	3.210	133.4	45.15	7.4
Analysis of data revealed that seed Fe concentration ranged from 80.5 to 180.6 ppm with an average of 127.98 ppm in our collection. Maximum seed Fe concentration (180.6 ppm) was observed in genotype “SB106,” and minimum (80.5 ppm) was observed in genotype “SB42.”

Seed Zn concentration ranged from 14.64 to 104.08 ppm with an average of 36.21 ppm. Maximum seed Zn concentration (104.08 ppm) was found in genotype “SB106,” and minimum (14.64 ppm) was found in genotype “WB330.”

Cu concentration in seeds of 60 genotypes ranged from 0.9 to 13.4 ppm with an average of 8.16 ppm. Evaluation of macronutrients including seed K, Mg, Ca, and P in the current study depicted good variation among 60 genotypes. Seed Mg concentration ranged from 1,220.5 to 2,737.8 ppm with an average of 1,974.2 ppm. Similarly, seed K concentration ranged from 8,344.5 to 14,794 ppm with an average of 13,351.16 ppm. Seed calcium concentration ranged from 300 to 5,350 ppm with an average seed calcium concentration of 2,735.2 ppm. Seed phosphorus concentration ranged from 1,980 to 4,050 ppm with an average concentration of 2,828 ppm.

Coefficient of variation for all these macronutrients varied from 9.4 to 37.7, with an average of 20.46 and that of micronutrients varied from 13.7 to 32.50 with an average of 23.59.

Further analysis of data helped us to select a set of 10 candidate genotypes out of 60 genotypes that possess high and low concentration of each mineral (Table 4). For seed Mg, we selected candidate genotypes for low and high Mg that contains less than 1,600 ppm and more than 2,271 ppm, respectively. Based on estimation of seed phosphorus, a set of 10 candidate genotypes for low and high P were selected that contain less than 2,250 ppm and more than 3,420 ppm.

Sample no	Genotype	Mg	K	Ca	P	Fe	Zn	Cu
29	SB108	2,046.8	13,697.5	2,120	3,120	117.2	21.73	12.2
30	SB139B	2,289	5,000	3,015	4,050	139.2	32.3	8
31	SB153	1,872.4	13,659.5	5,345	2,610	131.1	53.83	9.5
32	SB167	2,542.2	14,029.5	3,570	2,310	121	32.5	7.6
33	WB473	2,046.6	13,834	3,110	2,580	115.9	34.12	6.4
34	WB469	1,822.3	14,185	3,030	2,220	117.7	34.56	7.5
35	WB1255	1,806.3	12,378.5	3,175	2,280	118.5	26.5	5.9
36	WB330	1,687.7	10,984	1,645	2010	80.5	14.64	4
37	WB493	1,486	14,765.5	3,360	2,190	103.8	30.51	7.2
38	WB429	1,733.2	12,337.5	3,185	2,340	110.8	32.78	7.7
39	WB1186	2,737.8	12,856.5	2,195	2,610	126.4	25.34	5.4
40	WB1131	1,545.8	12,073	2,820	2,160	111.5	38.37	6.7
41	WB1184	2,067.9	12,336	3,410	2,370	130.1	40.62	7.1
42	WB832	1,893.5	12,318.5	2,405	2,370	120	36.37	6.8
43	WB665	1,728	12,407.5	3,375	2,430	136	28.06	6.7
44	WB634	2,372.9	12,878.5	2,300	2,400	128	31.81	7.7
45	WB934	1,572	12,657	2,585	2,430	107.6	25.36	7.7
46	WB1199	1,968.7	12,709	1,060	2,430	131.3	28.94	6
47	WB1151	1,776.9	11,916.5	1,870	2,250	127.8	30.14	7.3
48	WB1189	1,970.3	12,437.5	5,350	2,250	124	25.84	6.1
49	WB650	1,823.4	11,065	995	1,980	120.8	27.8	7.1
50	WB846	1,423.9	12,719.5	1,295	2,730	132.8	24.27	9
51	WB418	2,054.3	14,149.5	4,425	2,940	131.3	38.31	9.1
52	WB1187	1,907.6	11,925	2,435	2,160	135.9	36.13	7.6
53	WB792	1,998.4	13,080	1,630	2,400	121.5	35.7	8.8
54	WB413	1,681.2	12,642	2,530	2,460	134	42.02	7.8
55	WB947	1,898.8	13,887.5	1,715	2,760	130.1	25.63	4.9
56	WB956	1,819.2	12,900.5	4,565	2,400	118.2	42.77	13.4
57	WB970	2,161.4	13,328.5	2,845	2,730	123.6	34.82	8
58	WB1009	1,672.1	11945.5	1,865	2,640	110.7	41.21	6.8
59	SR1	1,670.7	12,713	2,920	2,220	105.3	40.97	9.6
60	SB1	2,251.4	12,868	1,985	2,400	95.3	47.13	10
TABLE 4 A set of 10 candidate lines/genotypes containing high and low concentration of micronutrients (Fe, Zn, and Cu) and macronutrients (Mg, K, P, and Ca) used in the current study

Genotype	Mg	Genotype	K	Genotype	Cu	Genotype	Fe	Genotype	Zn	Genotype	Ca	Genotype	P
Low nutrient candidate lines													
SB46	1220.5	SB46	8344.5	SB121	0.9	WB330	80.5	WB330	14.64	SB138	310	WB650	1980
WB846	1423.9	WB330	10,984	WB330	4	SB1	95.3	SB108	21.73	WB650	995	WB330	2010
WB493	1.486	WB650	11,065	WB947	4.9	SB46	95.7	SB159	22.34	WB1199	1,060	SB46	2,160
WB1131	1545.8	WB1151	11916.5	WB1186	5.4	WB493	103.8	WB846	24.27	SB42	1281.5	WB1113	2,160
WB934	1.572	WB1187	11,925	WB1255	5.9	SR1	105.3	WB1186	25.34	WB846	1,295	WB1187	2,160
SB150	1640.8	WB1009	11945.5	WB1199	6	WB934	107.6	WB934	25.36	SB128	1,595	WB493	2,190
SR1	1670.7	WB1131	12,073	WB1189	6.1	WB1009	110.7	SB46	25.63	WB792	1,630	WB469	2,220
WB1009	1672.1	WB832	12318.5	WB473	6.4	WB429	110.8	WB947	25.63	WB330	1,645	SR1	2,220
SB102	1.679	WB1184	12,336	WB1131	6.7	WB1131	111.5	WB1189	25.84	WB947	1,715	WB1151	2,250
WB413	1681.2	SB140	12,337	WB665	6.7	SB42	113.5	WB1255	26.5	SB43	1,741	WB1189	2,250
High nutrient candidate lines													
SB168	2277.1	SB119	14856.5	SB111	9.7	SB119	140.2	SB111	42.22	SB167	3,570	SB106	3,420
SB139B	2.289	SB49	14,857	SB1	10	SB44	145	SB42	42.77	SB106	3,650	SB143	3,450
SB45	2363.8	SB45	14857.3	SB128	10.1	SB102	145.9	WB956	42.77	SB186	4,050	SB150	3,660
WB634	2372.9	SB150	14857.4	SB46	10.3	SB158	146	SB158	43.59	SB103	4,125	SB49	3,720
SB158	2444.4	SB106	14857.5	SB43	10.4	SB106	180.6	SB168	104.08	SB121	4,300	SB111	3,780
SB159	2.489	SB186	14858.2	SB44	10.9	SB134	152.2	SB163	45.15	WB418	4,425	SB158	3,780
SB167	2542.2	SB158	14,859	SB147	10.9	SB156	159.2	SB1	47.13	WB956	4,565	SB43	3,810
SB143	2581.7	SB159	14859.3	SB45	12.1	SB49	168.8	SB150	52.44	SB159	4,780	SB149	3,900
SB119	2611.8	SB139B	14859.5	SB108	12.2	SB150	171.3	SB153	53.83	SB153	5,345	SB159	3,930
WB1186	2737.8	SB183.1	14,878	WB956	13.4	SB45	149.3	SB106	104.08	WB1189	5,350	SB139B	4,050
of P, respectively. Similarly, we selected candidate genotypes for low and high calcium that possess less than 1.741 ppm and more than 3.570 ppm of seed calcium. For another seed macronutrient, K, we delineated candidate genotypes for low K that contain less than 12.337 ppm of K and candidate genotypes for high K that contain more than 14,856 ppm of K.

Based on estimation of seed micronutrients, namely, Fe, Zn, and Cu, a set of 10 genotypes have been selected that contain high Fe (>140.2 ppm), high Zn (>42 ppm), and high Cu (>9.7 ppm), and these genotypes are called as candidate genotypes for high Fe, Zn, and Cu. Similarly, a set of 10 genotypes have been selected that contain low Fe (<113 ppm), low Zn (<26.5 ppm), and low Cu (<6.7 ppm), and these genotypes are called as candidate genotypes for low Fe, Zn, and Cu.

Among these candidate genotypes for high micronutrients and macronutrients, certain genotypes were identified, which can be highly nutritious as they contain more than one mineral at higher concentration. Genotype “SB106” was found to possess K, Ca, P, Fe, and Zn in higher concentration. Genotype “SB45” was declared as a candidate genotype for high Mg, K, P, Fe, Zn, and Cu. Similarly, genotype “SB150” was found to contain high concentration of K, P, Fe, and Zn. Likewise other high nutrient candidate genotypes, namely, SB168 (Mg and Zn); SB139B (K, Mg, and P); SB158 (Mg, K, P, Fe, and Zn); SB159 (Mg, K, and Ca); SB167 and SB 143 (Mg and Ca); SB 119 (Mg, K, and Fe); SB 153 (Ca and Fe); SB 111P (Ca, Mg, and Zn); SB49 (K, P, and Fe); SB49 (P and Zn); SB 43 (P and Cu), and WB 956 (Fe and Zn), were identified during the present study.

It was found that genotype “SB46” contains low concentration seed Mg, K, P, Fe, and Zn. Genotype “WB330” was found to contain low concentration of K, Ca, P, Fe, Zn, and Cu. In genotype “WB113,” low concentration of Mg, K, P, Fe, and Cu was observed. The other low nutrient candidate genotypes like “WB846” low for Mg, Ca, and Zn; WB1009 low for Mg, P, and Fe; WB934 low Mg, Fe, and Zn; WB 650 low for Ca, P, and K; WB1151 and WB 1187 low for K and P; WB1186 and WB1255 low for Zn and Cu; WB947 low for Ca, Zn, and Cu; WB1199 low for Ca and Cu; WB1189 low for P, Zn, and Cu; and SB 42 low for Ca and Fe were identified.

3.3 | Gene pools of common bean germplasm by phaseolin typing

Phaseolin assay discriminated a set of 109 lines in two major gene pools, Mesoamerican and Andean, based on phaseolin type they possess. Two major phaseolins that have been largely found in common bean are “S” type and “T” type; “S” type belongs to genotypes having Mesoamerican origin, whereas “T” type to genotypes of Andean origin. It has been observed that genotypes that possess “T” type phaseolin produced three homoduplex bands whereas “S” type phaseolin produced 2 homoduplex bands on agarose gels. The same PCR product when run on PAGE displayed more complex/multiple banding pattern. The expected product size/band size of 240-300 bp was amplified for all the genotypes evaluated during the present study (Figure 2). These lower size bands are true amplification products, whereas bands larger in size (greater than 300 bp) are not true amplification products and are heteroduplexes resulted from various combinations from lower size bands during annealing and denaturation reactions of PCR (Kami et al., 1995). However, presence of this extra band having high molecular weight in “T” type phaseolin helps in discriminating genotypes of Andean origin from genotypes of Mesoamerican origin which lack this extra high molecular weight bands.

3.4 | Seed characteristics in Mesoamerican versus Andean beans

The set of 109 genotypes used during the present study was subjected to phaseolin typing. The analysis of phaseolin patterns led to the classification of 109 genotypes into Mesoamerican and Andean types. Average seed size and seed weight of Andean common bean genotypes was found more than seed size and seed weight of Mesoamerican genotypes. The average seed length, breadth, and weight of Andean genotypes was 15.3 mm, 8.04 mm, and 39 g, respectively, whereas the average seed length, breadth, and weight in Mesoamerican genotypes was 12.97 mm, 7.8 mm and 32.9 g, respectively. Similarly, the analysis of seed nutrients in these two different gene pools revealed that genotypes belonging to Mesoamerican gene pool possess higher average concentration of seed Mg, K, Ca, P, and Fe, whereas average seed Zn and Cu concentration was found higher in genotypes belonging to Andean gene pool. The average concentration of seed Mg, K, Ca, P, Fe, Zn, and Cu of genotypes of Mesoamerican gene pool was 2.061, 12.289, 2.058.06, 2.930.45, 131.51, 33.70, and 7.85 ppm, respectively. In contrast to Mesoamerican genotypes, the average seed Mg, K, Ca, P, Fe, Zn, and Cu concentrations in genotypes of Andean gene pool was 1.923.83, 1.1630.57, 2.548.38, 2.768.68, 125.9, 37.6, and 8.32 ppm, respectively.
DISCUSSION

4.1 Morphological trait diversity

Common bean is a major legume crop in Western Himalayan region of India. Huge diversity exists for plant type, growth habit, grain morphology, and in agro-ecological adaptation of landraces cultivated in this region (Choudhary, Bawa, et al., 2018; Choudhary, Hamid, et al., 2018; Singh, 2001). Presence and high magnitude of genetic variability in crop germplasm is the basic requirement of utmost importance for launching a crop improvement program (Appalaswamy & Reddy, 2004). Genetic variability of crop plants is maintained and conserved in ex situ manner in gene banks. Characterization of germplasm that is conserved in gene banks for various traits is essential for its practical application and exploitation in various breeding programs (Junqueira et al., 2010). In the present study, an effort was made to collect and characterize the common bean landraces from various hotspots of Jammu and Kashmir possessing high diversity for common bean landraces. Substantial variation was recorded for various morphological traits in the collection of 109 common bean genotypes, and these results are in accordance with earlier published results (Okii et al., 2014; Sofi et al., 2014). The predominance of indeterminate vinyl/climbing types may be due to the fact that common bean is mostly intercropped with maize and seldom grown as monocrop in Western Himalayas. Maize plants provide excellent trellis for the beans of climbing types to grow. Similar results were observed while evaluating 297 genotypes of common bean from Jammu and Kashmir in an earlier study (Sofi et al., 2014). However, determinate growth habit is commonly selected by farmers/breeders as determinate genotypes are mostly insensitive to day length (Kwak et al., 2012). Substantial variation was also noticed for leaf color, size, and shape in our common bean germplasm collection. The variation in leaf morphology may indicate variation in photosynthetic rates among genotypes (White & Montes-r, 2005). In our germplasm, different size and color of pods were found. Size and color of pods are important traits in deciding the marketability of a crop. All the genotypes evaluated had acceptable green pod color and pod size. Furthermore, shape of cross section of pods when looked through seeds was cordate, elliptical, and ovate. Cross section of pods is the characteristic feature of snap beans as they have low fiber, whereas elliptical cross section is associated with dry beans (Wallace et al., 2018). In 55.04% genotypes, dry pods were found, as they possessed strings; when pods were broken at full green mature stage, these strings help pods to resist breakage during transportation. Similar observations were also recorded by Sofi et al. (2011) during characterization of local common bean landraces under agro-climatic conditions of Jammu and Kashmir.

Seed traits like color, size, and shape in common bean show considerable variation and important trait for consumer preference because different people have different preferences for these traits (Beninger & Hosfield, 2003). Substantial variation for seed quantitative traits is comparable with earlier studies (Choudhary, Bawa, et al., 2018; Choudhary, Hamid, et al., 2018; Raffi & Nath, 2004; Sultan et al., 2014).

4.2 Trait phenotyping for seed nutrients

Common bean is an excellent source of micronutrients and macronutrients in addition to carbohydrates, proteins, vitamins, and antioxidants (Guzmán-Maldonado et al., 2000). These minerals in beans are readily available, thus can mitigate deficiencies and other health-related problems associated with their inadequate intake. In the current study, substantial variation for micronutrients and macronutrients was observed in a collection of 60 selected diverse genotypes.

The average values of Fe (127.98 ppm) and Zn (36.21 ppm) indicated less, moderate, and high density Fe and Zn genotypes in our collection. Several reports are already available on evaluation of common bean germplasm for seed Fe and Zn concentrations (Blair et al., 2009; Gouveia et al., 2014; Islam et al., 2002; Paredes et al., 2009; Ribeiro et al., 2013; Silva et al., 2010; Talukder et al., 2010; Tryphone & Nchimbi-Msolla, 2010). However, there is hardly literature available on evaluation of beans for nutrients from north-western Himalayas. The results of these studies indicated availability of huge variability for seed micronutrients in common bean germplasm. In broader term, the range of seed Fe and Zn concentrations observed in the current study were comparable with those in earlier analyses of Fe and Zn in common beans (Di bella et al., 2016; Paredes et al., 2009; Philippe et al., 2020; Ribeiro et al., 2013; Silva et al., 2010). However, it is notable that in previous studies, seed Fe and Zn concentration in a germplasm was found quite low, namely, Zn (17.5–32.3 ppm) and Fe concentration (63.5–86.9 ppm) (Islam et al., 2002). Fe concentration (53–69 ppm) and Zn concentration (25–32 ppm) (Moraghan & Grafton, 2001); Fe concentration (40.0–84.6 ppm) and Zn concentration (17.7–42.4 ppm) (Blair et al., 2009); Fe concentration (8.9–112.9 ppm) and Zn concentration (30.90–64.60 ppm) (Akond et al., 2011). Such differences in seed Fe and Zn concentration between this study and earlier studies are attributed to differences among cultivars/genotypes, inclusion of different number of genotypes, differences in soil types, and environmental conditions. Despite these germplasm evaluations, understanding the genetic control of seed Fe and Zn is essential to improve breeding process for these important nutritional traits. Seed Fe and Zn concentrations are predominantly quantitative/metric traits (Guzmán-Maldonado et al., 2003; Tryphone & Nchimbi-Msolla, 2010), whereas previous studies have shown monogenic inheritance for seed zinc (Cichy et al., 2005; Forster et al., 2002; Gelin et al., 2007).

Availability of substantial variation for seed Fe and Zn in our germplasm suggests that genotypes with high Fe and Zn can be utilized in future biofortification programs, transcriptomics studies, and other genomics studies. As for biofortification programs for higher seed Fe concentrations, genotypes should have seed Fe concentration more than 95 ppm (Ribeiro et al., 2013), and seed Zn concentration should be greater than 31 ppm according to the classification proposed by Tryphone and Nchimbi-Msolla (2010). In the current study, we found genotypes possessing seed Fe concentration>95 ppm and Zn concentration >31 ppm, respectively. Such genotypes are therefore apt for biofortification programs for improving Fe and Zn concentration in commercial cultivars.
Similarly, range of seed Cu concentration observed in the current study is comparable with those found in previous studies (Di Bella et al., 2016; Poersch et al., 2013; Ribeiro et al., 2013; Steckling et al., 2017). There is hardly any report available on evaluation for seed Cu concentrations of bean germplasm from Jammu and Kashmir. Thus, it is imperative to state here that our bean germplasm set with substantial Cu concentration can be potentially used in copper biofortification programs and as a genetic resource in genomics programs. It is desirable to elevate the copper concentration in common bean grains for alleviating copper deficiency, such as hypochromic anemia, neutropenia, and skeletal disorders (Maziero et al., 2016).

Determination of seed macronutrients including seed K, Mg, Ca, and P in our current study revealed good variation for these macronutrients. Similar results have been reported in some earlier studies (Di Bella et al., 2016; Moraghan & Grafton, 2001; Ribeiro et al., 2013). Seed Ca concentration is usually more in seed coat than embryo and is generally 80%–96% (Ribeiro et al., 2012). In earlier breeding programs, biofortification with Ca has been performed successfully, and genotypes with more than Ca 1,400 ppm have been obtained (Ribeiro et al., 2013). It is important to mention here that calcium concentration in some of our genotypes exceeds 1,400 ppm; therefore, these genotypes will serve as donors in future common bean breeding programs and will be useful in future biofortification programs. However, it is advised to include beans in a food along with seed coats to ensure substantial supply of calcium for keeping calcium-related deficiencies at bay. This is because of calcium oxalates present in seed coat restricts movement of calcium to embryo, resulting in its less concentration in embryo (Moraghan et al., 2006). For seed phosphorus concentration, substantial variation was reported in our germplasm. Parallel variation for seed phosphorus was observed common bean germplasm prior to this study (Blair et al., 2009; Ribeiro et al., 2019). The high nutritious candidate genotypes identified in this study can be highly recommended to meet dietary requirements and are appealing target for biofortification programs. These genotypes can also be used for development of Multi-Parent Advanced Generation Inter-cross (MAGIC) population and biparental mapping population and can be used in transcriptomics for accessing differential gene expression level for these nutrients. These genotypes can also be used in transfer of micronutrients and macronutrients into local common cultivars deficient or having less concentration of these nutrients. The low nutrient candidate genotypes can be recommended to persons requiring these nutrients in less amounts/concentration. Also, these low nutrient candidate genotypes are apt for hybridization program aimed for gene/QTL discovery for these nutrients because QTL mapping involves use of contrasting parents for development of mapping populations. Although researchers have been successful in identifying QTLs associated seed minerals in common beans (Beebe et al., 2000; Blair et al., 2009, 2010; Casanas et al., 2013; Cichy et al., 2005; Gelin et al., 2007; Guzmán-Maldonado et al., 2000; Izquierdo et al., 2018) in the world, but to the best of our knowledge, very few studies have been conducted in Jammu and Kashmir for identification of genes for these seed micronutrients and macronutrients (Mahajan et al., 2015).

So the current study shall pave a way for identification of genes associated with the seed minerals in common bean germplasm of Jammu and Kashmir.

4.3 Trait variability in Mesoamerican versus Andean beans

Seed size variability has been documented among the beans of Mesoamerican and Andean gene pools. Genotypes of Mesoamerican origin carrying “S” type phaseolin are smaller in size than the genotypes of Andean origin carrying “T” phaseolin which tended to have large seed. This association between seed size and phaseolin banding pattern of common bean has also been observed in earlier studies where cultivars carrying T phaseolin have larger seeds than cultivars carrying “S” phaseolin (Gepts et al., 1986). Domestication in Middle America would have resulted in small-seeded cultivars with “S” phaseolin patterns, and an independent domestication involving the Andean beans would have led to large-seeded cultivars with a “T” phaseolin type. Presence of both S and T types in local landraces of Jammu and Kashmir suggests that domestication of common bean in this region has been attempted multiple times (Choudhary, Hamid, et al., 2018). Multiple domestications in time and/or space may have been one of the key determinants in structuring the genetic diversity present in common bean. The analysis of data of seed Fe and Zn concentrations revealed substantial variation is present in genotypes of Andean or Mesoamerican origin collected by us from different hotspots of Jammu and Kashmir. Genotypes of Mesoamerican gene pool tend to have higher average seed Fe concentration than those of Andean gene pool. However, this trend was opposite for seed Zn concentration. In contrast to our results, higher seed Fe and Zn concentration was observed in genotypes of Andean gene pool and Mesoamerican gene pools, respectively (Blair et al., 2010; Islam et al., 2002).

5 Conclusion

In the present study, substantial genetic diversity was observed in a set of 109 genotypes for various quantitative and qualitative morphological traits. Conservation of this diversity is recommended for future breeding programs for improving various traits according to the interest of breeder. Substantial variation in germplasm for various micronutrients and macronutrients paves a way for further improvement of this germplasm. Augmentation of diets with genotypes having high concentration of the nutrients can ameliorate various deficiencies related to them. These findings endow some important facts that could be used to develop iron- and zinc-rich common bean varieties to potentially solve “hidden hunger” problem in the globe.

Acknowledgments

The authors are highly thankful to Dean Faculty of Agriculture, SKUAST-K, and Head Division of Genetics and Plant Breeding,
Faculty of Agriculture, SKUAST-K, for providing different facilities during the study. Thanks are also due to Science and Engineering Research Board, DST, Government of India for providing funds to Irshad Ahmad Rather (PDF/2016/001122).

CONFLICT OF INTEREST
The authors declare no conflict of interest.

AUTHORSHIP CONTRIBUTIONS
Reyazul Rouf Mir conceptualized and supervised this research. Sofora Jan conducted the experiments. Irshad Ahmad Rather and Mohd Altaf Wani facilitated collection of germplasm and in mineral estimation experiment. Sofora Jan, Reyazul Rouf Mir, Mohammad Ashraf Bhat, Parvaze Sofi and Farooq Ahmad Sheikh helped in writing and editing of the manuscript. All authors contributed to manuscript revision.

ETHICS STATEMENT
This article does not contain any human and animal subjects for experiments.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author up on request.

ORCID
Reyazul Rouf Mir https://orcid.org/0000-0002-3196-211X

REFERENCES
Adikshita, S., & Kansak, S. (2017). Evaluation of fungicides against angular leaf spot of French bean caused by Phaeoisariopsis griseola. International Journal of Farm Sciences, 6(1), 1–5.

Akond, A. G. M., Heath Crawford, J. B., Talukder, Z. I., & Hessain, K. (2011). Minerals (Zn, Fe, Ca and Mg) and antinutrient (phytic acid) constituents in common bean. American Journal of Food Technology, 6(3), 235–243. https://doi.org/10.3923/ajft.2011.235.243

Appalaswamy, A., & Reddy, G. L. K. (2004). Genetic divergence and heterosis studies of mung bean (Vigna radiata (L.) Wilczek). Legume Research, 21, 115–118.

Beebe, S., Gonzalez, A. V., & Rengifo, J. (2000). Research on trace minerals in the common bean. Food and Nutrition Bulletin, 21(4), 387–391. https://doi.org/10.1177/156482650002100408

Beninger, C. W., & Hosfield, G. L. (2003). Antioxidant activity of extracts, condensed tannin fractions, and pure flavonoids from Phaseolus vulgaris L. seed coat color genotypes. Journal of Agricultural and Food Chemistry, 51(27), 7879–7883. https://doi.org/10.1021/jf0304324

Bhat, T. A., Bhat, N. A., Bhat, H. A., Ahanger, R. A., Wani, S. H., & Dar, S. A. (2017). Status of bacterial blight of common beans (Phaseolus vulgaris L.) in Kashmir. Journal of Pharmacognosy and Phytochemistry, 6(4), 376–379.

Bitocchi, E., Bellucci, E., Giardini, A., Rau, D., Rodriguez, M., Biagetti, E., & Attene, G. (2013). Molecular analysis of the parallel domestication of the common bean (Phaseolus vulgaris) in Mesoamerica and the Andes. New Phytologist, 197, 300–313. https://doi.org/10.1111/j.1469-8137.2012.04377.x

Blair, M. W., Astudillo, C., Grusak, M. A., Graham, R., & Beebe, S. E. (2009). Inheritance of seed iron and zinc concentrations in common bean (Phaseolus vulgaris L.). Molecular Breeding, 23(2), 197–207. https://doi.org/10.1007/s11032-008-9225-z

Blair, M. W., Izquierdo, P., Astudillo, C., & Grusak, M. A. (2013). A legume biofortification quandary: Variability and genetic control of seed coat micronutrient accumulation in common beans. Frontiers in Plant Science, 4, 275.

Blair, M. W., Medina, J. I., Astudillo, C., Rengifo, J., Beebe, S. E., Machado, G., & Graham, R. (2010). QTL for seed iron and zinc concentration and content in a Mesoamerican common bean (Phaseolus vulgaris L.) population. Theoretical and Applied Genetics, 121(6), 1059–1070. https://doi.org/10.1007/s00122-010-1371-0

Brucher, H. (1988). The wild ancestor of Phaseolus vulgaris in South America. In P. Gepts (Ed.), Genetic resources of Phaseolus beans: Current plant science and biotechnology in agriculture (pp. 185–214). Dordrecht: Springer.

Carovic-Stanko, K., Liber, Z., Vidak, M., Baressic, A., Gredusia, M., Lazarevic, B., & Satovicz, I. (2017). Genetic diversity of Croatian common bean landraces. Frontiers in Plant Science, 8, 604. https://doi.org/10.3389/fpls.2017.00604

Casanas, F., Pérez-Vega, E., Almirall, A., Plans, M., Sabaté, J., & Ferreira, J. J. (2013). Mapping of QTL associated with seed chemical content in a RIL population of common bean (Phaseolus vulgaris L.). Euphytica, 192(2), 279–288. https://doi.org/10.1007/s10681-013-0880-8

Choudhary, N., Bawa, V., Paliwal, R., Singh, B., Bhat, M. A., Mir, J. I., & Mir, R. R. (2018). Gene/QTL discovery for anthracnose in common bean (Phaseolus vulgaris L.) from North-western Himalayas. Plos One, 13(2), e0191700.

Choudhary, N., Hamid, A., Singh, B., Khandy, I., Sofi, P. A., Bhat, M. A., & Mir, R. R. (2018). Insight into the origin of common bean (Phaseolus vulgaris L.) grown in the state of Jammu and Kashmir of North-Western Himalayas. Genetic Resources and Crop Evolution, 65, 963–977. https://doi.org/10.1007/s10722-017-0588-z

Cichy, K. A., Forster, S., Grafton, K. F., & Hosfield, G. L. (2005). Inheritance of seed zinc accumulation in navy bean. Crop Science, 45(3), 864–870. https://doi.org/10.2135/cropsci2004.0104

Di Bella, G., Naccari, C., Bua, G. D., Rastrelli, L., Lo Turvo, V., Potorti, A. G., & Dugo, G. (2016). Mineral composition of some varieties of beans from Mediterranean and tropical areas. International Journal of Food Sciences and Nutrition, 67(3), 239–248. https://doi.org/10.3109/0963748X.2016.1153610

Doyle, J. J., & Doyle, J. L. (1990). Isolation of plant DNA from fresh tissue. Focus, 12, 39–40.

Forster, S. M., Moraghan, J. T., & Grafton, K. F. (2002). Inheritance of seed-Zn accumulation in navy bean. Annual Report-Bean Improvement Cooperative, 45, 30–31.

Gelin, J. R., Forster, S., Grafton, K. F., McClean, P. E., & Rojas-Cifuentes, G. A. (2007). Analysis of seed zinc and other minerals in a recombinant inbred population of navy bean (Phaseolus vulgaris L.). Crop Science, 47(4), 1361–1366. https://doi.org/10.2135/cropsci2006.08.0510

Gepts, P., & Debouck, D. (1991). Origin, domestication, and evolution of the common bean (Phaseolus vulgaris L.). Common Beans: Research for Crop Improvement, 7, 53–63.

Gouveia, C. S., Freitas, G., de Brito, J. H., Slaski, J. J., & DeCarvalho, M. A. P. (2014). Nutritional and mineral variability in 52 accessions of common bean varieties (Phaseolus vulgaris L.) from Madeira Island. Agricultural Sciences, 5, 317–329. https://doi.org/10.4236/as.2014.54034

Greia, E. R., Kiczorowska, B., Samolińska, W., Matras, J., Kiczorowski, P., Rybiński, W., & Hanczakowska, E. (2017). Chemical composition of leguminous seeds: Part I—Content of basic nutrients, amino acids, phytochemical compounds, and antioxidant activity. European Food Research and Technology, 243(8), 1385–1395. https://doi.org/10.1007/s00217-017-2849-7
Guzmán-Maldonado, S. H., Acosta-Gallegos, J., & Paredes-López, O. (2000). Protein and mineral content of a novel collection of wild and weedy common bean (Phaseolus vulgaris L). *Journal of the Science of Food and Agriculture*, 80(13), 1874–1881. https://doi.org/10.1002/1097-0010(200010)80:13<1874::AID-JSFA772>3.0.CO;2-X

Guzmán-Maldonado, S. H., Martínez, O., Acosta-Gallegos, J. A., Guevara-Lara, F., & Paredes-López, O. (2003). Putative quantitative trait loci for physical and chemical components of common bean. *Crop Science*, 43(3), 1029–1033. https://doi.org/10.2135/cropsci2003.1029

Hayat, I., Ahmad, A., Masud, T., Ahmed, A., & Bashir, S. (2014). Nutritional and health perspectives of beans (Phaseolus vulgaris L): An overview. *Critical Reviews in Food Science and Nutrition*, 54(5), 580–592. https://doi.org/10.1080/10408398.2011.596639

Islam, F. M. A., Basford, K. E., Jara, C., Redden, R. J., & Beebe, S. (2002). Seed compositional and disease resistance differences among gene pools in cultivated common bean. *Genetic Resources and Crop Evolution*, 49(3), 285–293. https://doi.org/10.1023/A:1015510428026

Izquierdo, P., Astudillo, C., Blair, M. W., Iqbal, A. M., Raatz, B., & Cichy, K. A. (2018). Meta-QTL analysis of seed iron and zinc concentration and content in common bean (Phaseolus vulgaris L.). *Theoretical and Applied Genetics*, 131(8), 1645–1658. https://doi.org/10.1007/s00122-016-3104-8

Junqueira, L. P., Faleiro, F. G., Junqueira, N. T. V., Bellon, G., Lima, C. A. D., & Souza, L. S. D. (2010). Genetic diversity of native pitayas from the cerrado based on RAPD markers. *Revista Brasileira de Fruticultura*, 32(3), 819–824. https://doi.org/10.1590/S0100-204X20100005000104

Kami, J., Velásquez, V. B., Debouch, D. G., & Gepts, P. (1995). Identification of presumed ancestral DNA sequences of phaselins in Phaseolus vulgaris. *Proceedings of the National Academy of Sciences*, 92(4), 1101–1104. https://doi.org/10.1073/pnas.92.4.1101

Kumar, S., Singh, S. P., Bhat, A., & Sharma, M. K. (2017). Economics of rajmash cultivation in eastern Jammu region. *Journal of Food Legumes*, 30(1), 54–56.

Kwak, M., Toro, O., Debouch, D. G., & Gepts, P. (2012). Multiple origins of the determinate growth habit in domesticated common bean (Phaseolus vulgaris). *Annals of Botany*, 110(8), 1573–1580. https://doi.org/10.1093/aob/aocs207

Mahajan, R., Zargar, S. M., Aezum, A. M., Farhat, S., Gani, M., Agrawal, G. K., & Rakwal, R. (2015). Evaluation of iron, zinc, and protein contents of common bean (Phaseolus vulgaris L) genotypes: A collection from Jammu & Kashmir, India. *Legume Genomics and Genetics*, 6, 1–7.

Maziero, S. M., Ribeiro, N. D., & dos Santos Facco, H. (2016). Genetic diversity and mineral composition of common bean (Phaseolus vulgaris L.) germplasm in Uganda. *African Journal of Biotechnology*, 13, 2935–2949.

Moraghan, J. T., Etcheviers, J. D., & Padilla, J. (2006). Contrasting accumulations of calcium and magnesium in seed coats and embryos of common bean and soybean. *Food Chemistry*, 95(4), 554–561. https://doi.org/10.1016/j.foodchem.2004.10.060

Moraghan, J. T., & Grafton, K. (2001). Genetic diversity and mineral composition of common bean seed. *Journal of the Science of Food and Agriculture*, 81(4), 404–408. https://doi.org/10.1002/1097-0010(200103)81:4<404::AID-JSFA822>3.0.CO;2-H

Okii, D., Tukamuhabwa, P., Kami, J., Namayanjia, A., Paparu, P., Ugen, M., & Gepts, P. (2014). The genetic diversity and population structure of common bean (Phaseolus vulgaris L) germplasm in Uganda. *African Journal of Biotechnology*, 13, 2935–2949.

Paredes, M., Becerra, V., & Tay, J. (2009). Inorganic nutritional composition of common bean (Phaseolus vulgaris L) genotypes race Chile. *Chilean Journal of Agricultural Research*, 69(4), 486–495.

Philipo, M., Ndakidemi, P. A., & Mbega, E. R. (2020). Environmental and genotypes influence on seed iron and zinc levels of landraces and improved varieties of common bean (Phaseolus vulgaris L) in Tanzania. *Ecological Genetics and Genomics*, 15, 100056.

Poersch, N. L., Ribeiro, N. D., Rosa, D. P., Maziero, S. M., & Jost, E. (2013). Genetics of the concentration of copper in common bean seeds. *Acta Scientiarum Agronomy*, 35(3), 301–306.

Priya, T. R., & Manickavasagan, A. (2020). Common bean. In A. Manickavasagan & P. Thirunathan (Eds.), *Pulses* (pp. 77–97). Cham: Springer.

Raffi, S. A., & Nath, U. K. (2004). Variability, heritability, genetic advance and relationships of yield and yield contributing characters in dry bean (Phaseolus vulgaris L.). *Journal of Biological Sciences*, 4(2), 157–159.

Ray, H., Bett, K., Ta’ran, B., Vandenberg, A., Thavarajah, D., & Warkentin, T. (2014). Mineral micronutrient content of cultivars of field pea, chickpea, common bean, and lentil grown in Saskatchewan, Canada. *Crop Science*, 54(4), 1698–1708. https://doi.org/10.2135/cropsic2013.08.0568

Ribeiro, N. D., Domingues, L. D. S., Zemolin, A. E. M., & Possobom, M. T. D. F. (2013). Selection of common bean genotypes with high agro-economic performance and high calcium and iron concentrations. *Pesquisa Agropecuária Brasileira*, 48(10), 1368–1375. https://doi.org/10.1590/S0100-204X2013001000008

Ribeiro, N. D., Maziero, S. M., Prigol, M., Nogueira, C. W., Rosa, D. P., & Possobom, M. T. D. F. (2012). Mineral concentrations in the embryo and seed coat of common bean cultivars. *Journal of Food Composition and Analysis*, 26(1–2), 89–95. https://doi.org/10.1016/j.jfca.2012.03.003

Ribeiro, N. D., Steckling, S. D. M., Mezzomo, H. C., & Somavilla, I. P. (2019). Genetic parameters and combined selection for phosphorus, phytate, iron, and zinc in Mesoamerican common bean lineagenotypes. *Ciência e Agrotecnologia*, 43, e027818.

Salinas, A. D., Bonet, A., & Gepts, P. (1988). The wild relative of Phaseolus vulgaris in middle America. In P. Gepts (Ed.), *Genetic Resources of Phaseolus Beans: Current Plant Science and Biotechnology in Agriculture* (pp. 163–184). Dordrecht: Springer.

Sheikh, F. A., Khan, M. N., Sofi, P. A., Dar, Z. A., Sofi, N. R., Bhat, J. A., & Bhat, M. A. (2017). Farmers' preference ranking in bush type of common bean (Phaseolus vulgaris L.) genotypes: A collection from Jammu & Kashmir, India. *Legume Genomics and Genetics*, 11, 1–7.

Stoilova, T., Pereira, G., & Dde Sousa, M. (2013). Morphological characterization of a small common bean (Phaseolus vulgaris L) collection under different environments. *Journal of Central European Agriculture*, 14, 1–11. https://doi.org/10.5513/JCEA01/14.3.1277
Sultan, S. M., Dar, S. A., Dand, S. A., & Sivaraj, N. (2014). Diversity of common bean in Jammu and Kashmir, India: A DIVA geographic information system and cluster analysis. *Journal of Applied and Natural Science, 6*(1), 226–233. https://doi.org/10.31018/jans.v6i1.406

Talukder, Z. I., Anderson, E., Miklas, P. N., Blair, M. W., Osorno, J., Dilawari, M., & Hossain, K. G. (2010). Genetic diversity and selection of genotypes to enhance Zn and Fe content in common bean. *Canadian Journal of Plant Science, 90*(1), 49–60. https://doi.org/10.4141/CJPS09096

Tryphone, G. M., & Nchimbi-Msolla, S. (2010). Diversity of common bean (*Phaseolus vulgaris* L.) genotypes in iron and zinc contents under screen house conditions. *African Journal of Agricultural Research, 5*(8), 738–747.

United States. Dietary Guidelines Advisory Committee. (2010). *Dietary guidelines for Americans*. USA: US Department of Health and Human Services, US Department of Agriculture.

Wallace, L., Arkwazee, H., Vining, K., & Myers, J. R. (2018). Genetic diversity within snap beans and their relation to dry beans. *Genes, 9*(12), 587. https://doi.org/10.3390genes9120587

White, J. W., & Montes-r, C. (2005). Variation in parameters related to leaf thickness in common bean (*Phaseolus vulgaris* L.). *Field Crops Research, 91*(1), 7–21. https://doi.org/10.1016/j.fcr.2004.05.001

Wortmann, C. S., Brink, M., & Belay, G. (2006). *Phaseolus vulgaris* L. (common bean). *Plant Resources of Tropical Africa, 1*, 146–151.

How to cite this article: Jan S, Rather IA, Sofi PA, et al. Characterization of common bean (*Phaseolus vulgaris* L.) germplasm for morphological and seed nutrient traits from Western Himalayas. *Legume Science*. 2021;3:e86. https://doi.org/10.1002/leg3.86