COORDINATE-FREE CLASSIC GEOMETRIES

SASHA ANAN’IN AND CARLOS H. GROSSI

Abstract. This paper is devoted to a coordinate-free approach to several classic geometries such as hyperbolic (real, complex, quaternionic), elliptic (spherical, Fubini-Study), and lorentzian (de Sitter, anti de Sitter) ones. These geometries carry a certain simple structure that is in some sense stronger than the riemannian structure. Their basic geometrical objects have linear nature and provide natural compactifications of classic spaces. The usual riemannian concepts are easily derivable from the strong structure and thus gain their coordinate-free form. Many examples illustrate fruitful features of the approach. The framework introduced here has already been shown to be adequate for solving problems concerning particular classic spaces.

1. Classic geometries: introduction, definition, examples, and motivation

1.1. Introduction. The present paper constitutes an attempt to systematically develop a coordinate-free view on several classic geometries. The approach originates from [AGG] where, in order to simplify formulae, we expressed several complex hyperbolic geometry concepts in an invariant (hence, more convenient) form.

The riemannian structure in many classic geometries (hyperbolic, spherical, Fubini-Study, etc.) turns out to be a shadow of a simpler one. Let us briefly describe this stronger structure. Take a K-vector space V with an hermitian form. The tangent vectors to the grassmannian $Gr_K(r, V)$ at a nondegenerate point p are known to be K-linear maps $p 	o p^\perp$. We believe that a more adequate object should be simply a K-linear map $V \to V$, a footless tangent vector: being composed with the two projectors related to p, i.e., being observed from p, it becomes a usual tangent vector. The product $t_1^*t_2$ (where $t_1, t_2 : V \to V$ are K-linear maps and t_1^* stands for the map adjoint to t_1) is the structure that provides the hermitian (riemannian) metric given by $\langle t_1, t_2 \rangle := tr(t_1^*t_2)$ for t_1, t_2 observed from the same point p. The $(2, 1)$-symmetrization of the triple product $tt_2^*t_1$ provides the curvature tensor $R(t_2, t_1)t$ for t, t_1, t_2 observed from the same point. Taking more observers in the previous examples, we obtain more geometric characteristics. Distance, for instance, appears when one observer sees the mote in the other observer’s eye, i.e., when the projectors related to their points are composed.

The basic objects in a classic geometry are linear in nature. This makes grassmannians (and C-grassmannians; see Subsection 1.7) a place where these objects naturally vary. So, grassmannians should be studied even if one is interested only in geometries embedded into projective spaces. Regarding a classic geometry as a homogeneous space related to the corresponding unitary (or orthogonal) group is deficient: this does not allow to go outside the absolute, which would be useful for the following reasons. The absolute (formed by degenerate points) divides $Gr_K(r, V)$ into riemannian and pseudo-riemannian pieces. Only one of them is traditionally considered as a classic geometry. The grassmannian can be therefore seen as its compactification. The points in each piece are in fact basic geometrical objects (living in the traditional piece) whose type is related to the compactification. Each piece is equipped
with its natural (pseudo-)riemannian geometry. Such geometries fit each other: geometrical objects (geodesics, totally geodesic subspaces, equidistant loci, etc.) pass through the absolute, leaving one piece and entering another. Moreover, this global picture sheds light on the geometry of the absolute. In particular, the general structure described above (the one that provides the hermitian metric at nondegenerate points) is inherited by the absolute. In the case of real hyperbolic space, for instance, this explains the interrelation between the conformal structure on the absolute and the metric structure on the ball.

In classic geometries, the geometrical concepts and objects can be introduced and handled synthetically. This suggests the above modification of the usual riemannian tools and leads to simple linear and hermitian algebra.

Some aspects of the coordinate-free approach can be found in literature, including several examples of how such a framework was successfully used in the solution of problems concerning particular classic spaces. The following is a (very likely incomplete) list of references:

- Concept of a projective model [Kle];
- Coordinate-free description of some particular metrics [Arn1], [BeP];
- Linear approach to elementary geometric objects such as geodesics, totally geodesic spaces, and bisectors [ChG], [Gir], [Hsi1], [Hsi2], [Wil1], [Wil2];
- Linear and hermitian tools in real or complex hyperbolic geometry [Gol], [HSa], [San], [Thu];
- Lorentzian projective compactification of real hyperbolic space [Arn2], [ChK];
- Geometry of spaces of geodesics [AGK], [GeG], [GuK1], [Sal1], [Sal2], [Stu];
- Solution of the Caratheodory conjecture [GuK2];
- Construction of new complex hyperbolic manifolds [AGG];
- Conformal structure on the absolute [AGoG];
- Strong structure on grassmannians [AGoG], [AGr].

In this article, we study projective classic geometries and describe in a coordinate-free way several features of such geometries. In particular, we obtain explicit expressions for the parallel transport along geodesics in terms of the hermitian form (Corollaries 5.7 and 5.9). Applying these expressions to the case of complex hyperbolic geometry, we get a geometrical interpretation of the angle between cotranchal bisectors in H^2_C (Examples 6.1 and 6.3). Other explicit formulae involving geodesics (Subsections 3.2 and 3.4), projective cones (Example 3.6), bisectors (Examples 3.6 and 6.4), the Levi-Civita connection (Proposition 4.4), the curvature tensor (Subsection 4.5), and sectional curvatures (Subsection 4.6) are also provided.

For a similar treatment of grassmannian classic geometries, see [AGoG] and [AGr].

1.2. Definition. Let K denote one of the following fields: \mathbb{R} (real numbers), \mathbb{C} (complex numbers), or \mathbb{H} (quaternions). A classic geometry is a right K-vector space V equipped with an hermitian form $\langle - , - \rangle$. By definition (see, for instance, [Lan]), the form is hermitian if it takes values in K, is biadditive, and satisfies the identities $\langle v_1 k , v_2 \rangle = \overline{k} \langle v_1 , v_2 \rangle$, $\langle v_1 , v_2 k \rangle = \langle v_1 , v_2 \rangle k$, and $\langle v_1 , v_2 \rangle = \overline{\langle v_2 , v_1 \rangle}$ for all $v_1 , v_2 \in V$ and $k \in K$.

Behind this definition there is indeed more geometry than it might appear at the first glance. The tangent space to a point p in the projective space $P_K V$ has a well-known description as the \mathbb{R}-vector space (\mathbb{C}-vector space if $K = \mathbb{C}$)

\begin{equation}
T_p P_K V = \text{Lin}_K (p, V/p)
\end{equation}

of all K-linear transformations from p to V/p. Here and in what follows, we frequently do not distinguish the notation of a point in $P_K V$, of a chosen representative of it in V, and of the corresponding one-dimensional subspace when a concept or expression does not depend on interpretation. For instance, the subspace p^+ of V is well defined for any $p \in P_K V$.

If p is nonisotropic, that is, if $\langle p, p \rangle \neq 0$, then we can naturally identify V/p with p^\perp. In this case, we interpret the tangent space as $T_p\mathbb{P}_K V = \text{Lin}_K(p, p^\perp)$. It inherits the \mathbb{R}-bilinear form

$$
(1.4) \quad (t_1, t_2) := \pm \frac{\text{tr}_K(t_1^* t_2)}{\dim \mathbb{K}},
$$

where $t_1, t_2 : p \to p^\perp$ are tangent vectors, $t_i^* : p^\perp \to p$ stands for the map adjoint to t_1 in the sense of the hermitian form, and $\text{tr}_K(t_1^* t_2)$ denotes the trace of the \mathbb{R}-linear map $t_1^* t_2 : p \to p$. We will refer to this form as the metric of a classic geometry. In the case of $K = \mathbb{C}$, we have the hermitian metric

$$
(1.5) \quad (t_1, t_2) := \pm \text{tr}_C(t_1^* t_2).
$$

It is easy to see that $\text{Re}(t_1, t_2) = (t_1, t_2)$. Obviously, the (hermitian) metric depends smoothly on a nonisotropic p. If the hermitian form on V is nondegenerate, then the metric is nondegenerate. We warn the reader that the case $K = \mathbb{H}$ contains some peculiarities. The tangent space $T_p\mathbb{P}_{\mathbb{H}} V$ is not an \mathbb{H}-vector space and it makes no sense to speak of an hermitian metric on it.

The signature of a point divides $\mathbb{P}_K V$ into three parts: negative points, null points, and positive points, defined respectively as

$$
BV := \{p \in \mathbb{P}_K V \mid \langle p, p \rangle < 0\}, \quad SV := \{p \in \mathbb{P}_K V \mid \langle p, p \rangle = 0\}, \quad EV := \{p \in \mathbb{P}_K V \mid \langle p, p \rangle > 0\}.
$$

1.6. Examples. Take

1. $K = \mathbb{C}$, $\dim \mathbb{C} V = 2$, the form of signature $++$, and the sign $+$ in the definition of the hermitian metric. We obtain the usual 2-dimensional sphere of constant curvature.

2. $K = \mathbb{C}$, $\dim \mathbb{C} V = 2$, the form of signature $+-$, and the sign $-$ in the definition of the hermitian metric. Let $p \in \mathbb{P}_C V$ be nonisotropic. From the orthogonal decomposition $V = p \oplus p^\perp$ it follows that the hermitian metric on $T_p\mathbb{P}_C V$ is positive definite. We get two hyperbolic Poincaré discs $B V$ and $E V$.

3. $K = \mathbb{R}$, $\dim \mathbb{R} V = 3$, the form of signature $++-$, and the sign $-$. We arrive at the hyperbolic Beltrami-Klein disc $B V$.

4. $K = \mathbb{C}$, $\dim \mathbb{C} V = 3$, the form of signature $++-$, and the sign $-$. The open 4-ball $B V$ is the complex hyperbolic plane $\mathbb{H}^2_\mathbb{C}$.

5. $K = \mathbb{H}$, $\dim \mathbb{H} V = 2$, the form of signature $++$, and the sign $+$. We obtain the usual 4-sphere of constant curvature. There is no \mathbb{H}-action on the tangent space $T_p\mathbb{P}_{\mathbb{H}} V$. However, fixing a geodesic in $\mathbb{P}_{\mathbb{H}} V$ leads to a curious action of $S^3 \subset \mathbb{H}$ on the tangent bundle $T\mathbb{P}_{\mathbb{H}} V$ (see Example 3.7). The same is applicable to Example 1.6 (6) that follows.

6. $K = \mathbb{H}$, $\dim \mathbb{H} V = 2$, the form of signature $++-$, and the sign $-$. The open 4-ball $B V$ is the real hyperbolic space $\mathbb{H}^4_\mathbb{R}$ (Example 3.7 shows a geometrical role of the ‘additional’ quaternionic structure).

In a similar way, we can describe many other geometries: elliptic geometries such as spherical and Fubini-Study ones, hyperbolic geometries including those of constant sectional or constant holomorphic curvature, some lorentzian geometries such as de Sitter and anti de Sitter spaces, etc.

The most elementary geometrical objects are the ‘linear’ ones, i.e., those given by the projectivization $\mathbb{P}_K W$ of an \mathbb{R}-vector subspace $W \subset V$. For instance, we can isometrically embed Examples (1) and (2) as projective lines in Example (4) by taking for W an appropriate 2-dimensional \mathbb{C}-vector subspace in V. (The negative part of a projective line of signature $+-$ is commonly known as a complex geodesic in $\mathbb{H}^2_\mathbb{C}$.) Let us look at a take at some less immediate

1.7. Examples. (1) Take $\dim \mathbb{R} W = 2$. Suppose that the hermitian form, being restricted to W, is real and does not vanish. It is easy to see that $W K \simeq W \otimes_{\mathbb{R}} K$. The circle

$$
GW := \mathbb{P}_K W = \mathbb{P}_{\mathbb{H}} W \simeq S^1
$$
is said to be a geodesic. The projective line $\mathbb{P}_R(W \mathbb{K})$ is the projective line of the geodesic. By Corollary 5.5, the introduced circle, out of its isotropic points, is indeed a geodesic with respect to the metric and every geodesic of the metric arises in this way.

(2) Let $\dim_R W = 2$ in Example 1.6 (2). When W is not a \mathbb{C}-vector space (otherwise, $\mathbb{P}_C W$ is simply a point in $\mathbb{P}_C V$), the real part of the hermitian form over W can be nondegenerate indefinite, definite, nonnull degenerate, or null. The circle $\mathbb{P}_C W$ is respectively said to be a hypercycle, metric circle, horocycle, or the absolute. Inside either of the Poincaré discs $E V$ and $B V$, we get the usual hypercycles, metric circles, and horocycles.

(3) We can isometrically embed (here the normalizing factor in (1.4) plays its role) Example 1.6 (3) in Example 1.6 (4) by taking for W a 3-dimensional \mathbb{R}-vector subspace such that the hermitian form, being restricted to W, is real and nondegenerate. We obtain the \mathbb{R}-plane $\mathbb{P}_C W = \mathbb{P}_R W \cong \mathbb{P}_{\mathbb{R}}^2$, a maximal lagrangian submanifold. The \mathbb{R}-planes are important in complex hyperbolic geometry (see, for instance, [Gol] and [AGG]).

(4) In Example 1.6 (4), let $S \subset V$ be an \mathbb{R}-vector subspace, $\dim_{\mathbb{R}} S = 2$. Suppose that the hermitian form is real and nondegenerate over S. It is easy to see that S^{\perp} is a one-dimensional \mathbb{C}-vector space. Taking $W = S + S^{\perp}$, we arrive at the bisector $B := \mathbb{P}_C W$. The geodesic $G S$, the projective line $\mathbb{P}_C (S \mathbb{C})$, and the point $\mathbb{P}_C S^{\perp}$ are respectively the real spine, the complex spine, and the focus of the bisector. This description of a bisector immediately provides (see [AGG, item 4.1.19]) the well-known slice and meridional decompositions of a bisector (see [Gir], [Mos], and [Gol]). If the hermitian form is indefinite over S, then $\mathbb{P}_C \mathbb{W} \cap B V$ is a usual bisector (= a hypersurface equidistant from two points) in \mathbb{H}_C^2. Every bisector in \mathbb{H}_C^2 is describable in this manner.

We would like to illustrate the thesis that the basic linear objects form themselves spaces naturally endowed with a classic geometry structure:

In Example 1.6 (3), the real projective plane $\mathbb{P}_R V$ consists of the usual Beltrami-Klein disc $B V$ equipped with its riemannian metric and of the Möbius band $E V$ endowed with a lorentzian metric. The hermitian form establishes a duality between points and projective lines (= geodesics) in $\mathbb{P}_R V$; the point $p \in \mathbb{P}_R V$ corresponds to the geodesic $\mathbb{P}_R p^\perp$. In view of this duality, the classic lorentzian geometry of the Möbius band $E V$ is nothing but the geometry of geodesics in the Beltrami-Klein disc $B V$ and vice versa. By the same reason, the classic pseudo-riemannian geometry of $E V$ in Example 1.6 (4) is the geometry of complex geodesics in \mathbb{H}_C^2.

In Example 1.7 (2), we will indistinctly refer to hypercycles, metric circles, horocycles, and the absolute as circles. A point W in the grassmannian $Gr_2(2, V)$ of 2-dimensional \mathbb{R}-vector subspaces of V determines in $\mathbb{P}_C V$ a circle if W is not a \mathbb{C}-vector subspace and a point, otherwise. Clearly, $W, W' \in Gr_2(2, V)$ provide the same circle if and only if $W = W' c$ for some $c \in \mathbb{C}^*$. The \mathbb{C}-grassmannian $Gr_{\mathbb{C} \mathbb{R}}(2, V)$ is the quotient of $Gr_2(2, V)$ by this action.

The singular locus of $Gr_{\mathbb{C} \mathbb{R}}(2, V)$ is formed by the complex subspaces of V and, therefore, coincides with $\mathbb{P}_C V$. It is easy to see that $Gr_{\mathbb{C} \mathbb{R}}(2, V)$ is topologically $\mathbb{P}_{\mathbb{R}}^3$ without an open 3-ball. It has $\mathbb{P}_C V$ as its boundary. The absolute, a 2-sphere with a single double point, is formed by the horocycles and divides $Gr_{\mathbb{C} \mathbb{R}}(2, V)$ into two parts.

How can we equip the \mathbb{C}-grassmannian $Gr_{\mathbb{C} \mathbb{R}}(r, V)$ of r-dimensional \mathbb{R}-vector subspaces of V with a classic geometry structure? Let $W \in Gr_{\mathbb{C} \mathbb{R}}(r, V)$ be a nondegenerate point, that is, the real form $(-, -) := \text{Re}(-, -)$ is nondegenerate over W. A tangent vector in $T_W Gr_{\mathbb{C} \mathbb{R}}(r, V)$ is an \mathbb{R}-linear map $t : W \rightarrow W^\perp$ such that $\text{tr}_R(\pi_W it) = 0$, where the orthogonal W^\perp is taken with respect to $(-, -)$ and π_W is the orthogonal projection onto W. The metric is given by $(t_1, t_2) := \text{tr}_R(t_1^* t_2)$, where $t_1^* : W^\perp \rightarrow W$ is the map adjoint to t_1 in the sense of $(-, -)$.
2. Preliminaries

Let \(p \in \mathbb{P}_K V \) be a nonisotropic point. We introduce the following notation of orthogonal decomposition
\[
V = p \oplus p^\perp,
\]
where
\[
\pi'[p]v := p \frac{(p,v)}{(p,p)} \in pK \quad \text{and} \quad \pi[p]v := v - p \frac{(p,v)}{(p,p)} \in p^\perp
\]
do not depend on the choice of a representative of \(p \). Depending on circumstances, we choose the most convenient variant of notation.

The hermitian form over a 2-dimensional \(K \)-vector subspace of \(V \) can be null, definite, nondegenerate indefinite, or nonnull degenerate. The corresponding projective line will be respectively called null, \emph{spherical}, \emph{hyperbolic}, or \emph{euclidean}. We need a very rudimental form of Sylvester's criterion applicable to the case \(K = \mathbb{H} \).

\textbf{2.1. Lemma.} Let \(W \) be a 2-dimensional \(\mathbb{K} \)-vector space equipped with a nonnull hermitian form. The hermitian form is respectively definite, nondegenerate indefinite, or degenerate if and only if \(D(p,q) \neq 0 \), \(D(p,q) < 0 \), or \(D(p,q) = 0 \), where \(D(p,q) := \langle p,p \rangle\langle q,q \rangle - \langle p,q \rangle\langle q,p \rangle \) and \(p,q \) are any two \(\mathbb{K} \)-linearly independent vectors in \(W \). (Obviously, \(D(p,q) = 0 \) if \(p,q \) are \(\mathbb{K} \)-linearly dependent.)

\textbf{Proof.} If one of \(p,q \) is nonisotropic (say, \(p \)) the result follows from \(\pi[p]q \neq 0 \), \(\langle p,\pi[p]q \rangle = 0 \), and
\[
\langle p,p \rangle\langle \pi[p]q,\pi[p]q \rangle = \langle p,p \rangle\langle \pi[p]q,\pi[p]q \rangle = \langle p,p \rangle \left(\langle q,q \rangle - \frac{\langle q,p \rangle\langle p,q \rangle}{\langle p,p \rangle} \right) = D(p,q).
\]
If both \(p,q \) are isotropic, we take a nonisotropic \(u \in W \). We can assume that \(u = pk + q \) for some \(k \in \mathbb{K}^* \). Clearly, \(\pi[u]q \neq 0 \), \(\langle u,\pi[u]q \rangle = 0 \), and \(D(u,q) = \langle u,u \rangle\langle \pi[u]q,\pi[u]q \rangle \). It remains to observe that
\[
D(u,q) = \langle pk + q,pk + q \rangle\langle q,q \rangle - \langle pk + q,q \rangle\langle pk + q \rangle = -\overline{k} \langle p,q \rangle\langle q,p \rangle k = |k|^2 D(p,q) \quad \blacksquare
\]

\textbf{2.2. Remark.} (1) Let \(L \) be a projective line. For every nonisotropic \(p \in L \) there exists a unique \(q \in \mathbb{L} \) orthogonal to \(p \), that is, such that \(\langle p,q \rangle = 0 \).

(2) Isotropic points in a hyperbolic projective line form an \((n-1) \)-sphere, where \(n = \dim_{\mathbb{R}} \mathbb{K} \). An euclidean projective line contains a single isotropic point \(\blacksquare \)

A linear transformation in (1.3) can be regarded as a tangent vector in usual differential terms: Let \(f \) be a \(\mathbb{K} \)-valued smooth function defined in a neighbourhood of \(p \in \mathbb{P}_K V \) and let \(\tilde{f} \) denote its lift to the corresponding neighbourhood of \(pK \setminus \{0\} \) in \(V \). Clearly, \(\tilde{f}(vk) = \tilde{f}(v) \) for all \(k \in \mathbb{K}^* \). Every \(\varphi \in \operatorname{Lin}(p,V) \) defines a tangent vector \(t_{\varphi} \in T_p \mathbb{P}_K V \) given by
\[
t_{\varphi}f := \frac{d}{d\varepsilon}_{|\varepsilon=0} \tilde{f}((1+\varepsilon\varphi)p),
\]
where \(\varepsilon \in \mathbb{R} \). Note that \(t_{\varphi} \) vanishes if and only if \(\varphi p \in pK \). Also, altering \(\varphi \) by adding \(pk \) to \(\varphi p \), where \(k \in \mathbb{K} \), does not change the vector \(t_{\varphi} \in \operatorname{Lin}(p,V/V/p) \).

If \(p \in \mathbb{P}_K V \) is nonisotropic, we have the identification
\[
(2.3) \quad T_p \mathbb{P}_K V = \operatorname{Lin}(p,p^\perp) = p^\perp(p,-).
\]

\textbf{2.4. Remark.} (1) In terms of (2.3), the map adjoint to \(v(p,-) \) is given by \((v(p,-))^* = p(v,-) \), where \(v \in p^\perp \).
(2) Let \(p \in \mathbb{P}_K V \) be nonisotropic and let \(v \in V \). Then the trace of the \(\mathbb{R} \)-linear map \(t := v\langle p, - \rangle \) is given by \(\text{tr} \ t = \dim \mathbb{R} \cdot \text{Re}(p,v) \).

This treatment is useful while performing explicit calculations.

2.5. Definition. Let \(W \subset V \) be an \(\mathbb{R} \)-vector subspace. We call a point \(p \in W \) \textit{projectively smooth} in \(W \) if \(\dim_{\mathbb{R}}(p\mathbb{K} \cap W) = \min_{0 \neq w \in W} \dim_{\mathbb{R}}(w\mathbb{K} \cap W) \).

It is not difficult to see that the projectively smooth points in \(W \) provide an open smooth region in \(\mathbb{P}_K W \). Moreover, we have the following:

2.6. Lemma [AGG, Lemma 4.2.2]. Let \(W \subset V \) be an \(\mathbb{R} \)-vector subspace, let \(p \in W \) be a projectively smooth point in \(W \), and let \(\varphi \in \text{Lin}_K(p, V) \). Then \(t_\varphi \in T_p \mathbb{P}_K W \) if and only if \(\varphi p \in W + p\mathbb{K} \).

The tangent vector to a smooth path can be expressed in terms of the identification \(T_p \mathbb{P}_K V = \text{Lin}_K(p, p^\perp) \).

2.7. Lemma [AGG, Lemma 4.1.4]. Let \(c : [a,b] \to \mathbb{P}_K V \) be a smooth curve and let \(c_0 : [a,b] \to V \) be a smooth lift of \(c \) to \(V \). If \(c(t_0) \) is nonisotropic, then the tangent vector \(\dot{c}(t_0) : c_0(t_0) \to c_0(t_0)^\perp \) is given by \(\dot{c}(t_0) : c_0(t_0) \mapsto \pi[c(t_0)]c_0(t_0) \).

3. Geodesics

Let us remind the definition in Example 1.7 (1). Take a 2-dimensional \(\mathbb{R} \)-vector subspace \(W \subset V \) such that the hermitian form, being restricted to \(W \), is real and does not vanish. It is immediate that \(W\mathbb{K} \simeq W \mathbb{\otimes}_K \mathbb{K} \). Hence, \(\mathbb{P}_W = \mathbb{P}_K W \). The circle \(G W := \mathbb{P}_K W \) is, by definition, a geodesic. (Corollary 5.5 relates this concept to the common one.) The geodesic \(G W \) spans its projective line \(\mathbb{P}_K(W\mathbb{K}) \). A geodesic is called \textit{spherical}, \textit{hyperbolic}, or \textit{euclidean} depending on the nature of its projective line.

3.1. Lemma. (1) Let \(g_1, g_2 \in \mathbb{P}_K V \) be distinct and nonorthogonal. Then there exists a unique geodesic containing \(g_1 \) and \(g_2 \).

(2) Let \(p \in \mathbb{P}_K V \) be nonisotropic and let \(0 \neq t \in T_p \mathbb{P}_K V, \ t : p \to p^\perp \). Then there exists a unique geodesic having \(t \) as its tangent vector at \(p \). This geodesic is given by the subspace \(W = p\mathbb{R} + tp\mathbb{R} \).

Proof. (1) Clearly, \(g_1, g_2 \in G W \) for \(W = g_1\mathbb{R} + g_2(g_2,g_1)\mathbb{R} \). If \(g_1, g_2 \in G W' \), then \(W' = g_2k_2\mathbb{R} + g_1k_1\mathbb{R} \) for some \(k_1, k_2 \in \mathbb{K} \) such that \(\overline{T}_2\langle g_2, g_1 \rangle k_1 = 1 \in \mathbb{R}^* \). Hence, \(W' = g_2k_2\overline{T}_2\langle g_2, g_1 \rangle k_1 \mathbb{R} + g_1k_1\mathbb{R} = Wk_1 \), that is, \(G W' = G W \).

(2) The geodesic \(G W \), where \(W = p\mathbb{R} + tp\mathbb{R} \), does not depend on the choice of \(p \in p\mathbb{K} \). By Lemma 2.6, \(t \) is a tangent vector to \(G W \) at \(p \). Let \(G W' \) be a geodesic with tangent vector \(t \). We can choose \(W' \) so that \(p \in W' \). By Lemma 2.6, \(tp \in W' + p\mathbb{K} \). So, \(tp \in p^\perp \) implies \(tp \in W' \). In other words, \(W' = p\mathbb{R} + tp\mathbb{R} \).

We denote by \(G \{g_1, g_2\} \) the geodesic that contains given distinct nonorthogonal \(g_1, g_2 \in \mathbb{P}_K V \).

Take distinct orthogonal \(g_1, g_2 \in \mathbb{P}_K V \). Assume that the projective line \(L \) spanned by \(g_1, g_2 \) is nonnull. One of \(g_1, g_2 \) is nonisotropic — say, \(g_1 \). Every geodesic in \(L \) passing through \(g_1 \) has the form \(G W \) with \(W = q\mathbb{R} + g_1\mathbb{R}, g_1 \neq q \in L \), and \(\langle q, g_1 \rangle \in \mathbb{R}^* \). So, \(\pi[q]q \in G W \). By Remark 2.2 (1), \(g_2 \) is the only point in \(L \) orthogonal to \(g_1 \). Hence, \(\pi[q]q = g_2 \) in \(\mathbb{P}_K V \). In other words, every geodesic in \(L \) that passes through \(g_1 \) also passes through \(g_2 \). In particular, every geodesic in an euclidean projective line passes through the isotropic point (see Remark 2.2 (2)). In this case, in the affine chart \(\mathbb{K} \) of nonisotropic points of \(L \), the geodesics correspond to the straight lines. This justifies the term ‘euclidean.’ Since the metric is actually null over euclidean lines, perhaps a more appropriate term would be \textit{affine line}.

3.2. Length of noneuclidean geodesics. Take a spherical projective line \(L \), take a point \(q_1 \in L \), and choose the sign + in the definition (1.4) of the metric. Let \(g_1' \in L \) denote the point orthogonal...
to g_1. Fixing representatives $g_1, g'_1 \in V$ such that $\langle g_1, g_1 \rangle = \langle g'_1, g'_1 \rangle = 1$, we parameterize a lift $c_0(t) := g_1 \cos t + g'_1 \sin t$ to V of a segment of geodesic $c = c(t)$ joining g_1 and $g_2 := c(a)$, where $t \in [0, a]$ and $a \in [0, \pi/2]$. Since $\langle c_0(t), c_0(t) \rangle = 0$ and $\langle c_0(t), c_0(t) \rangle = 1$, it follows from Lemma 2.7 that $(\dot{c}(t), \dot{c}(t)) = 1$. Hence, $\ell c = \int_0^a \sqrt{(\dot{c}(t), \dot{c}(t))} = a$. Noting that $ta(g_1, g_2) = \cos^2 a$, where

$$
\ell c = \arccos \sqrt{ta(g_1, g_2)}.
$$

It follows immediately from Lemma 2.1 that, being L spherical, $0 \leq ta(g_1, g_2) \leq 1$. The first equality occurs exactly when g_1, g_2 are orthogonal and the second, exactly when $g_1 = g_2$.

If L is a hyperbolic projective line, similar arguments involving \cosh, \sinh, and the sign — for the metric show that the length of a segment of geodesic c that contains no isotropic points and joins $g_1, g_2 \in L$ is given by

$$
\ell c = \arccosh \sqrt{ta(g_1, g_2)}.
$$

In both cases, the distance is a monotonic function of the tance $ta(g_1, g_2)$ (see also [AGG, Corollary 4.1.18]).

3.4. Equations of a geodesic.

Let the geodesic $G\{g_1, g_2\}$ be noneuclidean and let L denote its projective line. We will show that $x \in L$ belongs to $G\{g_1, g_2\}$ if and only if

$$
b(x, g_1, g_2) := \langle x, g_1 \rangle \langle g_1, g_2 \rangle \langle g_2, x \rangle - \langle x, g_2 \rangle \langle g_2, g_1 \rangle \langle g_1, x \rangle = 0.
$$

The proof is straightforward. The above equation does not depend on the choice of representatives $x, g_1, g_2 \in V$. If $x \in G\{g_1, g_2\}$, then $b(x, g_1, g_2) = 0$ since the hermitian form is real over W and we can assume $x, g_1, g_2 \in W$. Suppose that $b(x, g_1, g_2) = 0$ for some $x \in L$. We can take $g_1, g_2 \in W$ and $x = g_1 k + g_2$ for some $k \in K$. The condition $b(x, g_1, g_2) = 0$ is equivalent to $(\langle g_1, g_2 \rangle \langle g_2, g_1 \rangle - \langle g_1, g_1 \rangle \langle g_2, g_2 \rangle)(k - K) = 0$. Since L is not euclidean, we conclude from Lemma 2.1 that $k \in \mathbb{R}$, that is, $x \in W$.

Let $g \in G\{g_1, g_2\}$ and let $\varphi \in \operatorname{Lin}_K(g, V)$ be such that $t_\varphi \in T_g L$. We will show that $t_\varphi \in T_g G\{g_1, g_2\}$ if and only if

$$
t(\varphi g, g_1, g_2) := \langle \varphi g, g_1 \rangle \langle g_1, g_2 \rangle \langle g_2, g \rangle + \langle g, g_1 \rangle \langle g_1, g_2 \rangle \langle g_2, \varphi g \rangle - \langle \varphi g, g_2 \rangle \langle g_2, g_1 \rangle \langle g_1, g \rangle - \langle g, g_2 \rangle \langle g_2, g_1 \rangle \langle g_1, \varphi g \rangle = 0.
$$

It follows from $b(g, g_1, g_2) = 0$ that

$$
t(\varphi g + gk, g, g_1, g_2) = t(\varphi g, g, g_1, g_2) + k \cdot b(g, g_1, g_2) + b(g, g_1, g_2) \cdot k = t(\varphi g, g, g_1, g_2)
$$

for every $k \in K$. Also, the equation $t(\varphi g, g, g_1, g_2) = 0$ does not depend on the choice of representatives for g, g_1, g_2. We take $g, g_1, g_2 \in W$. If $t_\varphi \in T_g G\{g_1, g_2\}$, then $\varphi g \in W + gK$ by Lemma 2.6. Due to (3.5), we can assume that $\varphi g \in W$. Hence, $t(\varphi g, g, g_1, g_2) = 0$. Conversely, suppose that $t(\varphi g, g, g_1, g_2) = 0$. We can take $g = g_1 r + g_2$ for some $r \in \mathbb{R}$ (interchanging g_1 and g_2 if necessary). Since $t_\varphi \in T_g L$, it follows from Lemma 2.6 that $\varphi(g) = g_1 k_1 + g_2 k_2$ for some $k_1, k_2 \in K$. Due to (3.5), we can assume that $\varphi g = g_1 k$. Now, the condition $t(\varphi g, g, g_1, g_2) = 0$ means that $(\langle g_1, g_2 \rangle \langle g_2, g_1 \rangle - \langle g_1, g_1 \rangle \langle g_2, g_2 \rangle)(k - K) = 0$. By Lemma 2.1, $k \in \mathbb{R}$, that is, $\varphi g \in W$.■
3.6. Example: equations of the cone over a geodesic. We take \(\dim_\mathbb{K} V = 3 \) and a nondegenerate hermitian form \((-,-)\). The hermitian form establishes a correspondence between points and projective lines in \(\mathbb{P}_\mathbb{K} V \): the point \(p \in \mathbb{P}_\mathbb{K} V \) corresponds to the projective line \(\mathbb{P}_\mathbb{K} p^\perp \). We call \(p \) the polar point to \(\mathbb{P}_\mathbb{K} p^\perp \).

Let \(GS \) be a noneuclidean geodesic. Clearly, \(S^\perp \) is a \(\mathbb{K} \)-vector space and \(p := \mathbb{P}_\mathbb{K} S^\perp \) is the (nonisotropic, by Lemma 2.1) polar point to the projective line of \(GS \). Therefore, \(C := \mathbb{P}_\mathbb{K} (S + S^\perp) \) is the projective cone over \(GS \) with vertex \(p \). All elements in \(S + S^\perp \), except those in \(S^\perp \), are projectively smooth (see Definition 2.5).

A point \(x \in \mathbb{P}_\mathbb{K} V \) that is different from \(p \) belongs to \(C \) if and only if \(\pi[p]x \in GS \). Hence, \(x \in C \) means that \(b(\pi[p]x, g_1, g_2) = 0 \) (see Subsection 3.4), where \(g_1, g_2 \in GS \) are distinct nonorthogonal points. This implies that \(C \) is given by the equation

\[
b(x, g_1, g_2) = 0.
\]

Let \(c \in C \) be different from \(p \) and let \(\varphi \in \text{Lin}_\mathbb{K}(c, V) \). Define a linear map \(\psi \in \text{Lin}_\mathbb{K}(g, V) \) by putting \(g := \pi[p]c \) and \(\psi := \pi[p]\varphi \). Fix a representative \(c \in S + S^\perp \). Clearly, \(g \in S \). If \(t_\varphi \in T_cC \), then \(\varphi c \in S + S^\perp + c\mathbb{K} \) by Lemma 2.6. This implies that \(\psi g \in S + g\mathbb{K} \), that is, \(t_\varphi \in T_g GS \). Conversely, if \(t_\varphi \in T_g GS \), then \(\psi g \in S + g\mathbb{K} \subset S + S^\perp + c\mathbb{K} \). Hence, \(\varphi c \in S + S^\perp + c\mathbb{K} \). In other words, \(t_\varphi \in T_c \mathbb{P}_\mathbb{K} V \) is tangent to \(C \) if and only if \(t(\pi[p]\varphi c, g_1, g_2) = 0 \), where \(g_1, g_2 \) are distinct nonorthogonal points in \(GS \). This is equivalent to

\[
t(\varphi c, g_1, g_2) = 0.
\]

In the case of \(\mathbb{K} = \mathbb{C} \), the projective cone \(C \) is nothing but the bisector with the real spine \(GS \) (see Example 1.7 (4) and the references therein). From the equation of the tangent space to a point in a bisector, one derives the expression

\[
n(q, g_1, g_2) = \left(g_1 \frac{\langle g_2, q \rangle}{\langle g_2, g_1 \rangle} - g_2 \frac{\langle g_1, q \rangle}{\langle g_1, g_2 \rangle}\right) i(q, -)
\]

of the normal vector \(n(q, g_1, g_2) \) at \(q \) to the bisector whose real spine is \(Gg_1, g_2 \) (see (2.3) and [AGG, Proposition 4.2.11]). This last expression permits to calculate, in terms of the hermitian form, the oriented angle between two bisectors with a common slice (see [AGG, Lemma 4.3.1] and Example 6.3).

3.7. Example: actions on tangent bundle given by the choice of a geodesic. We consider the case \(\mathbb{K} = \mathbb{H} \). The tangent space to a point in \(\mathbb{P}_\mathbb{H} V \) is not an \(\mathbb{H} \)-vector space. In order to define an action of the sphere \(S^3 \subset \mathbb{H} \) over the tangent bundle \(T \mathbb{P}_\mathbb{H} V \), we assume that \(V \) is an \((\mathbb{H}, \mathbb{H}) \)-bimodule.

Let \(p \in \mathbb{P}_\mathbb{H} V \) and let \(\varphi \in \text{Lin}_\mathbb{H}(p, V) \). Given \(k \in S^3 \subset \mathbb{H} \), we define the linear map \(k\varphi \in \text{Lin}_\mathbb{H}(kp, V) \) by putting \((k\varphi)(kx) := k(\varphi x) \) for all \(x \in p \). In this way, we arrive at the left action \((kp, t_\varphi) \mapsto (kp, tk_{\varphi}) \) of \(S^3 \) over the tangent bundle \(T \mathbb{P}_\mathbb{H} V \) (note that changing \(\varphi p \) by \(\varphi p + pk' \) results in the same \(tk_{\varphi} \)). It is easy to verify that \(tk_{\varphi} \) is also the image of \(t_\varphi \) under the differential \(d(k)_p \), where \(k : \mathbb{P}_\mathbb{H} V \to \mathbb{P}_\mathbb{H} V \) is induced by \(k : v \mapsto kv \).

Suppose that the \((\mathbb{H}, \mathbb{H}) \)-bimodule structure is compatible with the hermitian form, that is, \(\langle v_1, kv_2 \rangle = \langle tv_1, v_2 \rangle \) for all \(v_1, v_2 \in V \) and \(k \in \mathbb{H} \). Then, for a nonisotropic \(p \) and for \(t : p \to p^\perp \), we have \(d(k)_p t = kt : kp \to (kp)^\perp \). Hence, out of isotropic points, \(k \cdot \) is an isometry.

It is well known that every \((\mathbb{H}, \mathbb{H}) \)-bimodule has the form \(V = W \otimes_\mathbb{R} \mathbb{H} \), where \(W := \{v \in V \mid kv = vk\} \) is the centre of the bimodule. The bimodule structure is compatible with \(\langle -,- \rangle \) if and only if the form restricted to \(W \) is real. In other words, the choice of a bimodule structure compatible with the hermitian form is equivalent to the choice of a linear geometrical object \(\mathbb{P}_\mathbb{K} W \) corresponding to a maximal real subspace \(W \) in \(V \).

In the particular case of \(\dim_\mathbb{H} V = 2 \), we get an action of \(S^3 \) over \(\mathbb{P}_\mathbb{H} V \) by isometries that is determined by the choice of an arbitrary geodesic \(G \). This geodesic is the fixed-point set of the action. The orbit of
every other point is a 2-sphere. Thus, we obtain some foliation of $\mathbb{P}_G V \backslash G$ by 2-spheres. The actions over $\mathbb{P}_H V$ for hyperbolic (Example 1.6 (6)) and elliptic (Example 1.6 (5)) geometries produce topologically distinct foliations.

In Section 5, we show that the geodesics introduced in Example 1.7 (1) are indeed geodesics with respect to the metric, out of their isotropic points. Thus, for the classic geometries, we can forget about the variational characterization of geodesics and deal only with the ‘linear’ one, which is much easier.

4. Levi-Civita connection

From now on, we assume the hermitian form $\langle - , - \rangle$ to be nondegenerate. In particular, BV and EV are endowed with pseudo-riemannian metrics.

Also, until the end of the article, we use the following conventions. Let $p \in \mathbb{P}_K V$ be nonisotropic. Extending by zero, we consider any tangent vector $t : p \to p^\perp$ as a linear map $t \in \text{Lin}(V,V)$. So, $T_p \mathbb{P}_K V = \text{Lin}_K(p, p^\perp) \subset \text{Lin}_K(V,V)$. (Obviously, $t = t\pi'[p]$ and $t \pi[p] = \pi'[p] 1 = 0$, and $st = 0$ for all tangent vectors $s, t \in \text{Lin}(V,V)$ at p.) Conversely, given an arbitrary linear map $t \in \text{Lin}(V,V)$, we define the tangent vector

$t_p := \pi[p] t \pi'[p]$

at p.

Let $U \subset V$ be a saturated open set (i.e., $U \mathbb{K}^* \subset U$) without isotropic points. A lifted field over U is a smooth map $X : U \to \text{Lin}_K(V,V)$ such that $X(p) = X(p)$ and $X(pk) = X(p)$ for all $p \in U$ and $k \in \mathbb{K}^*$. In other words, X correctly defines a smooth tangent field over $\mathbb{P}_K U$.

4.1. Definition. Every $t \in \text{Lin}_K(V,V)$ provides the (lifted) field T spread from t : it is given by the rule $T(p) = t_p$ and is defined for all nonisotropic p.

For $t \in \text{Lin}_K(V,V)$, we put

$\nabla_t X(p) := \left(\frac{d}{d\varepsilon} \bigg|_{\varepsilon=0} X((1 + \varepsilon t)p) \right)$

Since $\pi[pk] = \pi[p]$ and $\pi'[pk] = \pi'[p]$ for all $p \in U$ and $k \in \mathbb{K}^*$, the field $p \mapsto \nabla_{Y(p)} X$ is lifted for arbitrary lifted fields X and Y over U. Obviously, ∇ enjoys the properties of an affine connection.

4.2. Lemma. Let $p \in \mathbb{P}_K V$ be nonisotropic and let t be a tangent vector at p. Then

$\frac{d}{d\varepsilon} \bigg|_{\varepsilon=0} \pi'[p + tp\varepsilon] = -\frac{d}{d\varepsilon} \bigg|_{\varepsilon=0} \pi[p + tp\varepsilon] = t + t^*$.

Proof. By definition, $\pi'[p + tp\varepsilon] = (p + tp\varepsilon) \frac{\langle p + tp\varepsilon, - \rangle}{\langle p, p \rangle + \varepsilon^2 \langle tp, tp \rangle}$. Differentiating, we get

$\frac{d}{d\varepsilon} \bigg|_{\varepsilon=0} (p + tp\varepsilon) \frac{\langle p + tp\varepsilon, - \rangle}{\langle p, p \rangle + \varepsilon^2 \langle tp, tp \rangle} = p \frac{\langle tp, - \rangle}{\langle p, p \rangle} + tp \frac{\langle p, - \rangle}{\langle p, p \rangle}$.

The second term equals $t\pi'[p] = t$. Put $\varphi := p \frac{\langle tp, - \rangle}{\langle p, p \rangle}$. Then

$\langle tx, y \rangle = \langle t\pi'[p]x, y \rangle = \langle tp \frac{\langle p, x \rangle}{\langle p, p \rangle}, y \rangle = \frac{\langle x, p \rangle}{\langle p, p \rangle} \langle tp, y \rangle = \langle x, \varphi y \rangle = \langle x, \varphi y \rangle$.

for every \(x, y \in V\). Hence, \(t^* = \varphi\).

4.3. Lemma. Let \(p \in \mathbb{P}_K V\) be nonisotropic. Let \(s\) and \(t\) be tangent vectors at \(p\). Then

\[
\nabla_T S(x) = (s\pi(t)t - t\pi(t)s)_x
\]

for every nonisotropic \(x \in \mathbb{P}_K V\), where the fields \(S\) and \(T\) are respectively spread from \(s\) and \(t\) (see Definition 4.1). In particular, \(\nabla_T S(p) = 0\).

Proof. By Lemma 4.2,

\[
\nabla_T S(x) = \nabla_{t_\varepsilon} S(x) = \left(\frac{d}{d\varepsilon}\bigg|_{\varepsilon=0} S(x + t_\varepsilon x\varepsilon)\right)_x = \left(\frac{d}{d\varepsilon}\bigg|_{\varepsilon=0} \pi(x + t_\varepsilon x\varepsilon) s\pi'(x + t_\varepsilon x\varepsilon)\right)_x = \\
= \left(- (t_\varepsilon + (t_\varepsilon - s\pi'(x) + \pi(x) s(t_\varepsilon + (t_\varepsilon - s\pi'(x))_x = (s\pi(t)t - t\pi(t)s)_x \right)
\]

since \(\pi(x)(t_\varepsilon) = (t_\varepsilon - s\pi'(x) = 0\).

The fact that \(\nabla\) is Levi-Civita for the (hermitian) metric can be easily inferred from the theory of classical groups. Indeed, one needs essentially to show that \(\nabla\) is torsion-free and this holds because there are no 3-tensors which are invariant under the orthogonal, unitary, or symplectic groups; see [Wey] (or [How] for a more modern treatment). However, we found it helpful to present below a straightforward proof of the fact in question as it may illustrate the role of spread fields (see Definition 4.1) and keep the exposition more self-contained.

4.4. Proposition. \(\nabla\) is the Levi-Civita connection for the (hermitian) metric on every component of \(\mathbb{P}_K V \setminus SV\).

Proof. Let \(p \in \mathbb{P}_K V\) be nonisotropic. Let \(S\) and \(T\) be lifted local fields with \(S(p) := s\) and \(T(p) := t\).

In order to show that \(\langle \nabla_S T - \nabla_T S - [S,T]\rangle(p) = 0\), we can assume that the fields \(S\) and \(T\) are respectively spread from \(s\) and \(t\) (see Definition 4.1). It follows from Lemma 4.3 that \(\nabla_S T(p) = \nabla_T S(p) = 0\). The proof of \([S,T](p) = 0\) follows [AGG, Lemma 4.5.4]: Let \(f\) be an smooth function and let \(\hat{f}\) denote its lift to \(V\). By definition, \(T(x)f = \frac{d}{d\varepsilon}\bigg|_{\varepsilon=0} \hat{f}(x + \pi[x]t_\varepsilon)\). Therefore,

\[
S(p)(Tf) = \frac{d}{d\delta}\bigg|_{\delta=0} \left(\frac{d}{d\varepsilon}\bigg|_{\varepsilon=0} \hat{f}(p + sp\delta + \pi[p + sp\delta]t(p + sp\delta)\varepsilon)\right) = \\
= \frac{d}{d\delta}\bigg|_{\delta=0} \left(\frac{d}{d\varepsilon}\bigg|_{\varepsilon=0} \hat{f}(p + sp\delta + \pi[p + sp\delta]tp\varepsilon)\right) = \\
= \frac{d}{d\delta}\bigg|_{\delta=0} \left(\frac{d}{d\varepsilon}\bigg|_{\varepsilon=0} \hat{f}(p + sp\delta + tp\varepsilon - (p + sp\delta)\frac{k_0\varepsilon\delta}{1 + \delta^2(sp,sp)/(p,p))}\right),
\]

where \(k_0 := (sp, tp)/(p,p)\). Since \(\hat{f}(pk) = \hat{f}(p)\) for every \(k \in K^*\), it follows that

\[
\hat{f}(p(1 - k_0\varepsilon\delta) + sp\delta(1 - k_0\varepsilon\delta) + tp\varepsilon) = \hat{f}(p + sp\delta + tp\varepsilon - (p + sp\delta)k_0\varepsilon\delta)\).
\]

Being \(f\) smooth,

\[
S(p)(Tf) = \frac{d}{d\delta}\bigg|_{\delta=0} \left(\frac{d}{d\varepsilon}\bigg|_{\varepsilon=0} \hat{f}(p + sp\delta + tp\varepsilon - (p + sp\delta)k_0\varepsilon\delta)\right) = \\
\]
Hence, $S(p)(Tf) = T(p)(Sf)$, that is, $[S, T](p) = 0$.

In order to verify that $v(S, T)(p) = (\nabla_v S(p), T(p)) + (S(p), \nabla_v T(p))$ for a tangent vector v at p, we put $\varphi_1 := \frac{d}{d\varepsilon}|_{\varepsilon = 0} S(p + v\varepsilon)$ and $\varphi_2 := \frac{d}{d\varepsilon}|_{\varepsilon = 0} T(p + v\varepsilon)$. So,

$$\pm (\nabla_v S(p), T(p)) \dim \mathbb{R} \mathbb{K} = \pm (\pi[p]\varphi_1\pi'[p], T(p)) \dim \mathbb{R} \mathbb{K} = \text{tr}_\mathbb{R} \left((\pi[p]\varphi_1\pi'[p])^* T(p)\right) = \text{tr}_\mathbb{R} (\varphi_1^* T(p)), $$

$$\pm (S(p), \nabla_v T(p)) \dim \mathbb{R} \mathbb{K} = \text{tr}_\mathbb{R} (S^*(p)\varphi_2),$$

and

$$\pm v(S, T)(p) \dim \mathbb{R} \mathbb{K} = \frac{d}{d\varepsilon}|_{\varepsilon = 0} \text{tr}_\mathbb{R} (S^*(p + v\varepsilon)T(p + v\varepsilon)) = \text{tr}_\mathbb{R} (\varphi_1^* T(p)) + \text{tr}_\mathbb{R} (S^*(p)\varphi_2).$$

Similar arguments work for the hermitian case.

4.5. Curvature tensor. Let $p \in \mathbb{P}_K V$ be nonisotropic and let T_1, T_2, S be local lifted fields with $T_1(p) = t_1$ and $S(p) = s$. We wish to express the curvature tensor $R(T_1, T_2)S(p) := (\nabla_{T_2} \nabla_{T_1} S - \nabla_{T_1} \nabla_{T_2} S + \nabla_{[T_1, T_2]} S)(p)$ in terms of the hermitian form. We can assume that the fields T_i and S are respectively spread from t_i and s (see Definition 4.1). By Lemma 4.3,

$$\nabla_{T_1} \nabla_{T_2} S(p) = \left(\frac{d}{d\varepsilon}|_{\varepsilon = 0} \pi[p + t_1\varepsilon] s\pi[p + t_1\varepsilon]t_2 - t_2\pi'[p + t_1\varepsilon]s\pi'[p + t_1\varepsilon]\right)_p. $$

By Lemma 4.2,

$$\left(\frac{d}{d\varepsilon}|_{\varepsilon = 0} \pi[p + t_1\varepsilon] s\pi[p + t_1\varepsilon]t_2\pi'[p + t_1\varepsilon]\right)_p = - (t_1 + t_1^*)s\pi[p]t_2\pi'[p] \pi[p]s(t_1 + t_1^*)t_2\pi'[p] + \pi[p]s\pi[p]t_2(t_1 + t_1^*))_p = - s t_1 t_2^*$$

and

$$\left(\frac{d}{d\varepsilon}|_{\varepsilon = 0} \pi[p + t_1\varepsilon] t_2\pi'[p + t_1\varepsilon]s\pi'[p + t_1\varepsilon]\right)_p = t_2 t_1^*$$

By symmetry, $\nabla_{T_2} \nabla_{T_1} T(p) = - t_2^* t_1 - t_1^* s$. Since $[T_1, T_2](p) = 0$ (see the proof of Proposition 4.4), we arrive at

$$R(t_1, t_2)s = st_1 t_2 + t_2^* t_1^* - st_2^* t_1^* - t_1^* s.$$

4.6. Sectional curvature. Constant curvature classic geometries. Let $p \in \mathbb{P}_K V$ be nonisotropic. Let $W \subset T_p \mathbb{P}_K V$ be a 2-dimensional \mathbb{R}-vector subspace such that the metric, being restricted to W, is nondegenerate. The sectional curvature of W is given by

$$SW := S(t_1, t_2) := \frac{(R(t_1, t_2)t_1)(t_2)}{(t_1)(t_2) - (t_1, t_2)^2}$$

for \mathbb{R}-linearly independent $t_1, t_2 \in W$. We can assume that $t_j = v_j(p, -)$ see (2.3), where $v_j \in p^\perp$ and $\langle v_j, v_j \rangle = \sigma_j \in \{-1, 0, +1\}$ for $j = 1, 2$. In this way, using the same sign \pm as in (1.4) and applying Remark 2.4, we obtain

$$\pm (t_1 t_1^* t_2, t_2) \dim \mathbb{R} \mathbb{K} = \text{tr}_\mathbb{R} (t_2 t_1 t_1^* t_2) = \dim \mathbb{R} \mathbb{K} \cdot \langle p, p \rangle^2 \langle v_1, v_2 \rangle \langle v_2, v_1 \rangle.$$

For $k := \langle v_1, v_2 \rangle$, we have

$$\langle R(t_1, t_2)t_1, t_2 \rangle = \pm \langle p, p \rangle^2 (|k|^2 + \sigma_1 \sigma_2 - 2 \text{Re}(k^2)), \quad \langle t_j, t_j \rangle = \pm \langle p, p \rangle \sigma_j, \quad \langle t_1, t_2 \rangle = \pm \langle p, p \rangle \text{Re} k.$$
Hence,
\[SW = \pm \frac{|k|^2 + \sigma_1\sigma_2 - 2\text{Re}(k^2)}{\sigma_1\sigma_2 - (\text{Re} k)^2} = \pm \left(1 + \frac{3|k - R|^2}{4(\sigma_1\sigma_2 - (\text{Re} k)^2)}\right), \]
where the last equality follows from the identity \(|k|^2 - 2\text{Re}(k^2) = \frac{3}{4}|k - R|^2 - (\text{Re} k)^2\). By Lemma 2.1, \(\sigma_1\sigma_2 \neq (\text{Re} k)^2\) since \((-,-)\) is nondegenerate over \(W\).

Obviously, \(SW = \pm 1\) if \(\mathbb{K} = \mathbb{R}\). If \(\mathbb{K} \neq \mathbb{R}\) and if \(v_1, v_2\) are \(\mathbb{K}\)-linearly dependent, then \(\sigma_1\sigma_2 = |k|^2\) by Lemma 2.1. In this case, \(|k| = \sigma_1\sigma_2 = 1\), and it follows from the identity \(|k|^2 = |k - R|^2/4 + (\text{Re} k)^2\) that \(SW = \pm 4\). Since \(v_1, v_2 \in p^\perp\) are always \(\mathbb{K}\)-linearly independent if \(\dim_\mathbb{K} V = 2\), we arrive at the

\[4.7. \text{Remark.} \text{ In every component of } \mathbb{P}^n_{\mathbb{K}}, \mathbb{P}^1_{\mathbb{C}}, \text{ and } \mathbb{P}^1_{\mathbb{H}}, \text{ the sectional curvature is constant} \]

All the remaining possible values for \(SW\) can be extracted from the above formula. They are displayed in the following table, where \(W = t_1\mathbb{R} + t_2\mathbb{R}, t_j = v_j\langle p, -\rangle\), and \(v_1, v_2 \in p^\perp\) are \(\mathbb{K}\)-linearly independent. The sign \(\pm\) is the same as in (1.4).

Form over \(v_1\mathbb{K} + v_2\mathbb{K}, \mathbb{K} \neq \mathbb{R}\)	Metric over \(W\)	Sectional curvature
Indefinite	Indefinite	\(\pm (-\infty, 1]\)
Definite	Definite	\(\pm [1, 4]\)
Degenerate	Definite	\(\pm 4\)
Indefinite	Definite	\(\pm (4, \infty]\)

5. Parallel transport along geodesics

Let \(p \in \mathbb{P}_\mathbb{K}V\) be nonisotropic, let \(t\) be a tangent vector at \(p\), and let \(T\) be the field spread from \(t\) (see Definition 4.1). The smooth (lifted) field

\[T_n(t)(-) := \frac{T(-)}{t\langle p, -\rangle} \]

is defined out of \(\mathbb{P}_\mathbb{K}p^\perp \cup S V\).

5.1. Lemma. Let \(G\) be a geodesic and let \(t\) be a nonnull tangent vector to \(G\) at a nonisotropic \(p \in G\). Then the field \(T_n(t)\) is nonnull and tangent to \(G\) wherever defined.

Proof. Let \(g \in G\) be nonisotropic and nonorthogonal to \(p\). Clearly, \(\varphi := T_n(t)(g) \neq 0\) since \(\pi[g]\pi'[g] = 0\) would imply \(g \in p^\perp\). By Lemma 3.1 (2), \(G = GW\) with \(W = p\mathbb{R} + tp\mathbb{R}\). We can assume that \(g \in W\). Hence, \(\varphi g \in W\) and \(T_n(t)(g)\) is tangent to \(G\) at \(g\) by Lemma 2.6.

5.2. Lemma. Let \(p, q \in \mathbb{P}_\mathbb{K}V\) be distinct nonorthogonal with \(p\) nonisotropic. Denote by \(G[p, q]\) the oriented\(^1\) segment of the geodesic \(G[p, qt]\) that does not contain the point orthogonal to \(p\). Let \(\varphi : V \to V\) be given by \(\varphi = q\langle p, q\rangle^{-1}\langle p, -\rangle\) (see (2.3)). Then \(\varphi_p\) is tangent to the oriented segment \(G[p, q]\) at \(p\).

Proof. The tangent vector \(\varphi_p\) does not depend on the choice of representatives \(p, q \in V\). We can assume that \(\langle p, p\rangle = \sigma\) and \(\langle p, q\rangle = \sigma a\), where \(\sigma \in \{-1, +1\}\) and \(a > 0\). Clearly, \(\varphi_p : p \mapsto \pi[p]q(1/a)\). The curve \(c_0(t) := p(1 - t) + qt, t \in [0, 1]\), parameterizes a lift of \(G[p, q]\). Indeed, \(\langle p, p(1 - t) + qt\rangle = 0\) means that \((1 - a)t = 1\), which is impossible. By Lemma 2.7, the linear map \(c(0) : p \mapsto \pi[p]q\) is tangent to \(G[p, q]\) at \(p\).

\(^1\text{In the particular case of a spherical } G[p, q], \text{ the segment } G[p, q] \text{ is the shortest one from } p \text{ to } q.\)
5.3. Lemma. Let $p \in \mathbb{P}_k V$ be nonisotropic, let t be a tangent vector at p, and let T be the field spread from t (see Definition 4.1). Then, for every nonisotropic x,

$$T(x)\left(\text{ta}(p, -)\right) = -2\text{ta}(p, x)\operatorname{Re} \frac{\langle tx, x \rangle}{\langle x, x \rangle}.$$

Proof is straightforward:

$$T(x)\left(\text{ta}(p, -)\right) = \frac{d}{d\epsilon}\bigg|_{\epsilon=0} \langle p, x + \pi[x]tx\epsilon, x + \pi[x]tx\epsilon, p \rangle = \frac{\langle p, \pi[x]tx, x, p \rangle + \langle p, x \rangle \langle \pi[x]tx, p \rangle}{\langle p, p \rangle \langle x, x \rangle} = -\frac{\langle p, x \rangle \langle tx, x \rangle - \langle p, x \rangle \langle tx, x \rangle}{\langle p, p \rangle \langle x, x \rangle^2} = -2\text{ta}(p, x)\operatorname{Re} \frac{\langle tx, x \rangle}{\langle x, x \rangle} \blacksquare$$

5.4. Theorem. Let G be a geodesic, let t be a nonnull tangent vector to G at a nonisotropic $p \in G$, and let $h \in T_pL$, where L stands for the projective line of G. Then, for every nonisotropic $g \in G$ not orthogonal to p,

$$\nabla_{\text{ta}(t)(g)} T_h = 0.$$

Proof. Denote by H and T the fields respectively spread from h and t (see Definition 4.1). It suffices to show that $\left(\nabla_{T(g)} H\left(\text{ta}(p, -)\right)\right)g = 0$. By Lemma 3.1 (2), $G = GW$ with $W = p\mathbb{R} + tp\mathbb{R}$. We can take $g \in W$. By Lemmas 4.3 and 5.3,

$$\left(\nabla_{T(g)} H\left(\text{ta}(p, -)\right)\right)g = T(g) \left(\frac{1}{\text{ta}(p, -)}\right) H(g)g + \frac{1}{\text{ta}(p, g)} (\nabla_{T(g)} H)g = \frac{1}{\text{ta}(p, g)} \pi[g] \left(2\frac{(tg, g)}{\langle g, g \rangle} \pi[h]g + h\pi[g]tg - t\pi'[g]hg\right).$$

It follows from Lemma 2.6 that $hp = tpk$ for some $k \in \mathbb{K}$ since both h and t are tangent to L at p. From $hp \perp tp = 0$, we conclude that $hg = tgk$. Finally, from $\pi[g] = 1 - \pi'[g]$, $htg = 0$, $\langle tg, g \rangle \in \mathbb{R}$, and $hg = tgk$, we obtain $h\pi[g]tg = -h\pi'[g]tg = -h\frac{\langle g, tg \rangle}{\langle g, g \rangle}g = -\frac{\langle tg, g \rangle}{\langle g, g \rangle}hg$ and $t\pi'[g]hg = t\pi'[g]tgk = t\frac{\langle g, tg \rangle}{\langle g, g \rangle}k = \frac{\langle tg, g \rangle}{\langle g, g \rangle}hg \blacksquare$

Theorem 5.4, Lemma 5.1, and Lemma 3.1 (2) have the following

5.5. Corollary. Out of isotropic points, a geodesic in the sense of Example 1.7 (1) is a geodesic of the Levi-Civita connection ∇. Every geodesic of this connection appears in this way \blacksquare

Of course, Corollary 5.5 can be readily inferred from the standard characterization of geodesics in symmetric spaces as the trajectory of certain one-parameter subgroups in the isometry group, but we need Theorem 5.4 anyway. For example, the theorem provides a formula for the parallel transport of horizontal vectors along geodesics (see Corollary 5.7).

Let $p \in \mathbb{P}_k V$ be nonisotropic, let t be a tangent vector at p, and let T be the field spread from t (see Definition 4.1). The smooth (lifted) field

$$Ct(t)(-):= \frac{T(-)}{\sqrt{\text{ta}(p, -)}}.$$
is defined at every nonisotropic point in $\mathbb{P}_K^* V \setminus \mathbb{P}_K^* p^\perp$ that belongs to the component of $\mathbb{P}_K^* V \setminus \mathbb{S} V$ containing p.

5.6. Theorem. Let G be a geodesic, let t be a nonnull tangent vector to G at a nonisotropic $p \in G$, and let $v \in (T_p L)^\perp$, where L stands for the projective line of G. Then

$$\nabla_{T_n(t)(g)} C_t(v) = 0$$

for every nonisotropic $g \in G \setminus \mathbb{P}_K^* p^\perp$ that belongs the component of $\mathbb{P}_K^* V \setminus \mathbb{S} V$ containing p.

Proof. Denote by U and T the fields respectively spread from v and t (see Definition 4.1). It suffices to show that $(\nabla_{T_t(g)} U(-) \sqrt{\text{ta}(p, -)}) g = 0$. By Lemma 3.1 (2), $G = G W$ with $W = p \mathbb{R} + t p \mathbb{R}$. We can take $g \in W$. By Lemmas 4.3 and 5.3,

$$\left(\nabla_{T_t(g)} U(-) \sqrt{\text{ta}(p, -)}\right) g = T(g) \left(\frac{1}{\sqrt{\text{ta}(p, -)}}\right) U(g) g + \frac{1}{\sqrt{\text{ta}(p, g)}} \nabla_{T_t(g)} U g = 1 \frac{\pi'[g]}{\langle g, g \rangle} \langle t g, g \rangle v g + \pi[g] t g - t \pi'[g] v g.$$

By Lemma 2.6, $tpk(p, -) \in T_p L$ for all $k \in \mathbb{K}$. Taking $v \in (T_p L)^\perp$ in the form $v = w(p, -)$ with $w \in p^\perp$, we obtain $(p, p) \text{Re}(w, tpk) = 0$. This implies that $w \in (pK + tpK)^\perp$, $v g \in (pK + tpK)^\perp$, and $\pi'[g] v g = 0$. Finally, as in the proof of Theorem 5.4, $\pi'[w] t g = -v g \langle \langle g, g \rangle \rangle$.}

Let L be a noneuclidean projective line and let $p \in L$ be nonisotropic. It easily follows from the identification (2.3) that $T_p \mathbb{P}_K^* V = T_p L \oplus (T_p L)^\perp$. Hence, every tangent vector $t \in T_p \mathbb{P}_K^* V$ decomposes as $t = h + v$, where $h \in T_p L$ and $v \in (T_p L)^\perp$. This decomposition is called horizontal-vertical. Under the assumption that L is spanned by p and q, the horizontal-vertical decomposition is $t = \pi'[w] t + \pi[w] t$, where $w := \pi[p] q$.

5.7. Corollary. Let L be a noneuclidean projective line spanned by distinct, nonisotropic, and nonorthogonal points $p, q \in \mathbb{P}_K^* V$ of the same signature. Let $t = h + v$ be the horizontal-vertical decomposition of $t \in T_p \mathbb{P}_K^* V$ with respect to L. Then the parallel transport of t from p to q along $G[p, q]$ is given by $T_n(h)(q) + C_t(v)(q)$.

The above corollary expresses the parallel transport along geodesics in a component of $\mathbb{P}_K^* V$. However, in particular cases, some parallel transport can be performed even if the nonisotropic and nonorthogonal points p, q lie in different components of $\mathbb{P}_K^* V$ (we just ‘bat an eye’ while passing through $\mathbb{S} V$) : For a horizontal vector h, $T_n(h)(q)$ gives a parallel transport of h along $G[p, q]$. When $K = \mathbb{C}$, for a vertical vector v, $C_t(v)(q)$ gives a parallel transport of v along $G[p, q]$ (we fix the sign of $\sqrt{\text{ta}(p, q)} \in \mathbb{R}$).

It remains to study the parallel transport along euclidean geodesics. Let $p \in \mathbb{P}_K^* V$ be nonisotropic, let s be a tangent vector at p, and let S be the field spread from s (see Definition 4.1). The smooth (lifted) vector field

$$\text{Eu}(s)(x) := \frac{1}{2} (\pi[p] \pi'[x] s)_x + S(x)$$

is defined out of isotropic points. Clearly, $\text{Eu}(s)(p) = S(p) = s$.

5.8. Theorem. Let G be an euclidean geodesic, let t be a nonnull tangent vector to G at a nonisotropic $p \in G$, and let $s \in T_p \mathbb{P}_K^* V$. Then, for every nonisotropic $g \in G$,

$$\nabla_{T_n(t)(g)} \text{Eu}(s) = 0.$$
With the use of vertical parallel transport, we will show that the oriented area of the plane triangle H is given by $\pi[p]t = t$. Hence, $\pi[g]t = st = 0$. Also, $\pi'[g] = \pi[p] \pi'[g] = 0$. Now, using $\pi'[g](t_g)^* = (t_g)^* g = 0$, we obtain

$$2(\nabla_{T(g)} \operatorname{En}(s))g = \pi[g] \left(\frac{d}{dt} \right)_{t=0} \pi[g + t_g g] \pi'[g + t_g g] s \pi'[g + t_g g] g + 2\pi[g] s \pi'[g] g - 2\pi[g] t \pi'[g] g =$$

$$= -\pi[g](t_g + (t_g)^*) \pi[p] \pi'[g] s \pi'[g] g + \pi[g] \pi[p](t_g + (t_g)^*) s \pi'[g] g - 2\pi[g] t \pi'[g] g =$$

$$= \pi[g] \pi'[g](t_g + (t_g)^*) s g - 2\pi[g] t \pi'[g] g$$

by Lemmas 4.2 and 4.3. Since $(\varphi \psi)^* = \psi^* \varphi^*$, $(g, t^* g) = (tg, g) = 0$, $\pi[g] \pi[p] \pi'[g] = \pi[p] g$, and the projections are self-adjoint, we obtain

$$\pi[g] \pi[p](t_g)^* s g = \pi[g] \pi[p] \pi'[g] t^* \pi'[g] s g = \pi[g] \pi[p] \pi'[g] (t^* s g - t^* g s g) =$$

$$= \pi[g] \pi[p] \frac{(g, t^* g) s g}{(g, g)} - g \frac{(g, t^* g) s g}{(g, g)^2} = \pi[p] g \frac{(tg, s q)}{(g, g)}.$$

It follows from $\pi[p] t = \pi[g] t = t$ and $tg \in p^+$ that

$$\pi[g] \pi[p] t_g s g = \pi[g] t \pi'[g] s g = t g \frac{(g, s g)}{(g, g)} = t g \frac{(\pi[p] s g)}{(g, s g)}.$$

It remains to observe that $\pi[p] g$ and tg are \mathbb{R}-proportional.

5.9. Corollary. Let $p, q \in \mathbb{P}_K V$ be distinct and nonisotropic points that span an Euclidean projective line and let $t \in T_p \mathbb{P}_K V$. Then the parallel transport of t from p to q along $G[p, q]$ is given by $\operatorname{Eu}(t)(q)$.

6. Complex hyperbolic examples

The three examples below concern complex hyperbolic geometry. For basic background on the subject, see [Gol] or [AGG, Section 4]. As in Example 1.6 (4), we take $\mathbb{K} = \mathbb{C}$, $\dim_{\mathbb{C}} V = 3$, the form of signature $+ + -$ and the sign $-$ in the definition (1.5) of the hermitian metric. Thus, $B V$ is the complex hyperbolic plane $\mathbb{H}_{\mathbb{C}}^2$.

6.1. Example: area formula. Let $p_1, p_2, p_3 \in B V \cup S V$ be points in a complex geodesic L. With the use of vertical parallel transport, we will show that the oriented area of the plane triangle $\triangle(p_1, p_2, p_3)$ is given by

$$\text{Area}(p_1, p_2, p_3) = -\frac{1}{2} \arg \left(-\langle p_1, p_2 \rangle \langle p_2, p_3 \rangle \langle p_3, p_1 \rangle \right),$$

where \arg varies in $[-\pi, \pi]$.

First, we take $p_j \notin S V$, $j = 1, 2, 3$. We have $L = \mathbb{P}_{C} p^\perp$, where $p \in E V$ is the polar point to L (for the definition of polar point, see the beginning of Example 3.6 or [AGG, Subsection 4.1.6]). By Lemma 2.6, $(T_q L)^\perp = p C \langle q, - \rangle$ for every $q \in L \setminus S V$. Let $v := p_c \langle p_1, - \rangle \in (T_{p_1} L)^\perp$, $c \in \mathbb{C}^*$. Making the parallel transport of v along the segment of geodesic $G[p_1, p_2]$, then along $G[p_2, p_3]$, and finally along $G[p_3, p_1]$, we end up with some $v' \in (T_{p_1} L)^\perp$. By Corollary 5.7,

$$v' = \frac{\pi[p_1] \pi[p_3] \pi[p_2] v' \pi[p_2] \pi[p_3] \pi[p_1]}{\sqrt{ta(p_1, p_2) ta(p_2, p_3) ta(p_3, p_1)}} = \frac{pc \langle p_1, p_2 \rangle \langle p_2, p_3 \rangle \langle p_3, p_1 \rangle \langle p_1, - \rangle}{\langle p_2, p_3 \rangle \langle p_3, p_1 \rangle \langle p_1, - \rangle \sqrt{ta(p_1, p_2) ta(p_2, p_3) ta(p_3, p_1)}}$$
because \(p \in p_j^\perp \). Clearly, \((T_{p_j}, L)\) is a one-dimensional \(\mathbb{C} \)-vector space. The oriented angle \(\angle(v, v') \) from \(v \) to \(v' \), taken in \([-\pi, \pi]\), is an additive measure of a triangle. Hence, it is proportional to the oriented area of \(\Delta(p_1, p_2, p_3) \). In terms of the hermitian metric (1.5),

\[
\angle(v, v') = \arg(v, v') = \arg\left(-\langle p_1, p_2 \rangle\langle p_2, p_3 \rangle\langle p_3, p_1 \rangle\right)
\]
due to \(p \in EV \) and \(p_2, p_3 \in BV \). The formula is extendable to isotropic points. Considering a suitable ideal triangle, we find the factor of proportionality \(-1/2\) in (6.2).

The obtained formula (without orientation taken into account) can be found in [Gol]. Using the horizontal parallel transport instead of the vertical one, we would arrive at the well-known area formula due to Goldman's invariant [Gol].

6.3. Example: some geometry behind the angle between bisectors. Let \(B_1 \) and \(B_2 \) be bisectors in \(\mathbb{H}^\mathbb{C}_2 \) with hyperbolic real spines \(G_1 \) and \(G_2 \). Assume that these bisectors share a common slice \(S \) whose polar point is \(p \in EV \). Let \(v_j \in SV \cap G_j \) denote some vertex of \(B_j \), \(j = 1, 2 \). Then the point \(q_j := \pi[p]v_j \) is the intersection point of the real spine of \(B_j \) with the slice \(S \). Denote by \(G(q_j, v_j) \subset G_j \) the oriented segment of the real spine that starts with \(q_j \) and ends with \(v_j \). Let \(B[q_j, v_j] \subset B_j \) denote the corresponding oriented segment of bisector: \(B[q_j, v_j] \) is oriented with respect to the orientation of \(G(q_j, v_j) \) and to the natural orientation of its slices. Define

\[
\eta := 1 - \frac{\langle v_2, v_1 \rangle\langle p, p \rangle}{\langle v_2, p \rangle\langle p, v_1 \rangle},
\]

In other words, \(\eta = 1 - \frac{1}{\eta(v_1, v_2, p)} \), where \(\eta(v_1, v_2, p) \) is Goldman's invariant [Gol].

Let \(q \in S \). We choose representatives \(p, v_1, v_2 \in V \) such that \(\langle p, p \rangle = \langle p, v_j \rangle = 1 \). Thus,

\[
q_j = v_j - p, \quad \langle q_j, v_j \rangle = -1, \quad \langle q_j, q \rangle = \langle v_j, q \rangle, \quad \langle q_j, q_j \rangle = -1,
\]

\[
\pi[q_j]v_j = p, \quad \langle q_2, q_1 \rangle = \langle v_2, v_1 \rangle - 1 = -u, \quad \ta(q_1, q_2) = |u|^2.
\]

In particular, \(u \neq 0 \). According to [AGG, Proposition 4.2.11 and Lemma 4.2.15],

\[
n(q, q_j, v_j) = \left(q_j \frac{v_j}{q_j, q_j} - v_j \frac{q_j, q_j}{q_j, v_j} \right) i \langle q, - \rangle = p(v, q)i \langle q, - \rangle
\]
is a normal vector to the oriented segment \(B[q_j, v_j] \) at \(q \). Both normal vectors in question belong to the \(\mathbb{C} \)-vector space \((T_q S)^\perp \) and, therefore, the oriented angle \(\angle(q, B[q_1, v_1], B[q_2, v_2]) \) from \(B[q_1, v_1] \) to \(B[q_2, v_2] \) at \(q \) can be calculated as

\[
\angle(q, B[q_1, v_1], B[q_2, v_2]) = \arg \langle n(q, q_1, v_1), n(q, q_2, v_2) \rangle = \arg\left(-\langle q, q \rangle\langle q, v_1 \rangle\langle v_2, q \rangle\right) = \arg \left(-\langle q, q \rangle\langle q, v_1 \rangle\langle v_2, q \rangle\right) = \arg \left(-\langle q, q \rangle\langle q, v_1 \rangle\langle v_2, q \rangle\right) = \arg \left(-\langle q, q \rangle\langle q, v_1 \rangle\langle v_2, q \rangle\right)
\]
since \(-u\langle q_1, q_2 \rangle = |u|^2\). In other words, using the previous example,

\[
\angle(q, B[q_1, v_1], B[q_2, v_2]) = \arg u - 2 \text{Area} \Delta(q, q_1, q_2) \mod 2\pi.
\]

We can see that the angle in question is composed of two parts. The constant angle \(\arg u \) is independent of \(q \in S \) (in [Hsi3], this angle is called prespinal). The nonconstant angle \(-2 \text{Area}(q, q_1, q_2)\)
depends only on the mutual position of \(q, q_1, q_2 \) in \(S \). Let us show that the constant angle is the angle from the real spine \(G(q_1, v_1) \) to the real spine \(G(q_2, v_2) \) measured with the help of parallel transport along the segment of geodesic \(G[q_1, q_2] \).

By Lemma 5.2, \(t_j := \pi[q_j]v_j \langle q_j, v_j \rangle - 1 \langle q_j, - \rangle = -p(q_j, -) \) is tangent to \(G[q_j, v_j] \) at \(q_j \). By Corollary 5.7, the parallel transport of \(t_1 \) along \(G[q_1, q_2] \) is given by

\[
Ct(t_1)(p_2) = \frac{\pi[q_2]t_1 \pi'[q_2]}{\sqrt{\text{ta}(q_1, q_2)}} = -\frac{\pi[q_2]p(q_1, q_2) \langle q_2, - \rangle}{|u| \langle q_2, q_2 \rangle} = -\frac{\pi}{|u|} |u| t_2.
\]

This implies the result, illustrated by the following picture:

It easily follows from Sylvester’s criterion that \(|u| \) completely characterizes the configuration of \(B[q_1, v_1] \) and \(B[q_2, v_2] \) and that every \(u \in \mathbb{C} \) with \(|u| \geq 1 \) is possible. The geometric meaning of \(|u| \) is clear now: \(|u|^2 \) is the distance between the complex spines of the bisectors and \(\arg u \) is the angle between their real spines, in the above sense.

6.4. Example: meridional and parallel transports. Let \(B \) be a bisector in \(\mathbb{P}_C V \) as introduced in Example 1.7 (4), let \(G \) and \(L \) be the real and complex spines of \(B \), and let \(p_1, p_2 \in G \) be distinct, nonisotropic, and nonorthogonal points. Denote by \(S_j \) the slice of \(B \) that contains \(p_j \), \(j = 1, 2 \). Take \(q_1 \in S_1 \) different from the focus \(f \) of \(B \). The slice \(S_2 \) is spanned by \(p_j \) and \(f \). By Lemma 2.6, the complex spine and the slices are orthogonal.

The vector \(v := \pi[p_1]q_1 \langle p_1, q_1 \rangle^{-1} \langle p_1, - \rangle \) is tangent to \(G[p_1, q_1] \subset S_1 \) at \(p_1 \) by Lemma 5.2 and is thus orthogonal to the complex spine of \(B \). Let \(Ct(v)(p_2) \) denote the parallel transport of \(v \) from \(p_1 \) to \(p_2 \) along \(G[p_1, p_2] \) given by Corollary 5.7 and by the considerations right after it. Then there exists a unique \(q_2 \in S_2 \) such that

\[
\pi[p_2]q_2 \langle p_2, q_2 \rangle^{-1} \langle p_2, - \rangle = Ct(v)(p_2).
\]
(This can be seen by considering \(q_2 \) in the form \(q_2 = p_2 + fc, c \in \mathbb{C} \).) We call \(q_2 \) the **meridional transport** of \(q_1 \) from \(p_1 \) to \(p_2 \) along \(G[p_1, p_2] \). In explicit terms,
\[
g_2 = p_2 \langle p_1, q_1 \rangle \sqrt{\text{ta}(p_1, p_2)} + \pi|p_1|q_1 \langle p_1, p_2 \rangle.
\]

The meridional transport identifies almost all slices of the bisector (the only exceptions are the slices tangent to \(S V \), if they exist). Such identification, called the **slice identification**, is an important tool for constructing and characterizing complex hyperbolic manifolds in [AGG].

The meridional and parallel transports are related as follows. As is easy to see, every slice \(S \) of \(B \) has the form \(S = \mathbb{P}_C g^\perp \), where \(g \in G \) is the polar point to \(S \). If \(g \) is nonisotropic, we associate to every nonnull tangent vector \(t \in T_g \mathbb{P}_C V \) the point \(tg \in S \). Denote by \(g_j \in G \) the polar points to \(S_j \). The parallel transport along \(G[g_1, g_2] \) produces the meridional transport of the associated points:

\[
t_1 \sim t_2 \text{ where } t_1 \text{ tangent to } S_1, \quad \text{and } t_2 \text{ tangent to } S_2.
\]

Indeed, \(g_1, g_2 \) are nonorthogonal and nonisotropic. Let \(t_1 \) be a tangent vector at \(g_1 \). By Corollary 5.7, the parallel transport of \(t_1 \) from \(g_1 \) to \(g_2 \) along \(G[g_1, g_2] \) is given by
\[
t_2 := \text{Tu}(h)(g_2) + \text{Ct}(v)(g_2) = \left(\frac{h}{\text{ta}(g_1, g_2)} + \frac{v}{\sqrt{\text{ta}(g_1, g_2)}} \right) g_2,
\]

where \(t_1 = h + v \) is the horizontal-vertical decomposition of \(t_1 \) with respect to \(L \), that is, \(h \in T_{g_1} L \) and \(v \in (T_{g_1} L)^\perp \). We can assume that \(h \neq 0 \) (otherwise, the focus \(f \) is the point associated to both \(t_1 \) and \(t_2 \)). It is easy to see that \(\text{ta}(g_1, g_2) = \text{ta}(p_1, p_2) \). Since \(\pi'[g_1]g_2 \) and \(g_1 \) are \(\mathbb{C}^* \)-proportional, the point in \(S_2 \) associated to \(t_2 \) has the form
\[
t_2g_2 = \frac{\pi[g_2]h_2}{\text{ta}(g_1, g_2)} + \frac{\pi[g_2]v_2}{\sqrt{\text{ta}(g_1, g_2)}} \sim \frac{\pi[g_2]h_1 \langle p_1, p_1 \rangle \langle p_2, p_2 \rangle}{\langle p_2, p_1 \rangle} \text{ta}(p_1, p_2) + v_1 \langle p_1, p_2 \rangle,
\]

where \(\sim \) means \(\mathbb{C}^* \)-proportionality. By Lemma 2.6, \(h_1 \in (p_1 \mathbb{C} + g_1 \mathbb{C}) \cap g_1^\perp = p_1 \mathbb{C} \) because \(h \in T_{g_1} L \).

Also, \(v_1 \in f \mathbb{C} \). From \(t_1 = h + v \) and from the orthogonal decomposition \(p_2 \mathbb{C} + g_2 \mathbb{C} \), it follows now that \(\pi[p_1]t_1g_1 = v_1g_1 \) and \(\pi[g_2]h_1 = \pi'[p_2]h_1 = p_2 \langle p_2, h_1 \rangle \langle p_2, p_2 \rangle \). It remains to observe that \(h_1 \in p_1 \mathbb{C} \) implies that \(\langle p_2, h_1 \rangle = \langle \pi'[p_1]p_2, h_1 \rangle = \frac{\langle p_1, h_1 \rangle \langle p_2, p_1 \rangle}{\langle p_1, p_1 \rangle} \)

Acknowledgement. We are very grateful to the referees for valuable remarks.
References

[AGG] S. Anan’in, C. H. Grossi, N. Gusevskii, Complex hyperbolic structures on disc bundles over surfaces, to appear in Int. Math. Res. Not., see also http://arxiv.org/abs/math/0511741
[AGK] D. V. Alekseevsky, B. Guilfoyle, W. Klingenberg, On the geometry of spaces of oriented geodesics, to appear in Ann. Glob. Anal. Geom., see also http://arxiv.org/abs/0911.2602
[AGoG] S. Anan’in, E. C. B. Gonçalves, C. H. Grossi, Grassmannians and conformal structure on absolutes, preprint http://arxiv.org/abs/0907.4469
[AGr] S. Anan’in, C. H. Grossi, Differential geometry of grassmannians and Plücker map, preprint http://arxiv.org/abs/0907.4470
[Arn1] V. I. Arnold, Mathematical Methods of Classical Mechanics, GTM 60, Springer-Verlag, New York, 1997. xx+509 pp.
[Arn2] V. I. Arnold, Lobachevsky triangle altitudes theorem as the Jacobi identity in the Lie algebra of quadratic forms on symplectic plane, J. Geom. Phys. 53 (2005), no. 4, 421–427
[BeP] R. Benedetti, C. Petronio, Lectures on Hyperbolic Geometry, Universitext, Springer-Verlag, 2008. ix+323 pp.
[GeG] N. Georgiou, B. Guilfoyle, On the space of oriented geodesics of hyperbolic 3-space, Rocky Mountain J. Math. 40 (2010), no. 4, 1183–1219
[ChG] S. S. Chen, L. Greenberg, Hyperbolic Spaces, Contributions to analysis (a collection of papers dedicated to Lipman Bers), Academic Press (1974), 49–87
[ChK] Y. Cho, H. Kim, The analytic continuation of hyperbolic space, preprint http://arxiv.org/abs/math/0612372
[Gir] G. Giraud, Sur certaines fonctions automorphes de deux variables, Ann. Ec. Norm. (3), 38 (1921), 43–164
[Gol] W. M. Goldman, Complex Hyperbolic Geometry, Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1999. xx+316 pp.
[Gro] C. H. Grossi, Elementary tools for classic and complex hyperbolic geometries, PhD thesis, State University of Campinas, 20 September 2006, iii+134 pp.
[GuK1] B. Guilfoyle, W. Klingenberg, An indefinite Kähler metric on the space of oriented lines, J. London Math. Soc. 72 (2005), 497-509
[GuK2] B. Guilfoyle, W. Klingenberg, Proof of the Caratheodory conjecture by mean curvature flow in the space of oriented affine lines, preprint http://arxiv.org/abs/0808.0851
[How] H. Roger, Remarks on classical invariant theory, Trans. Amer. Math. Soc. 313 (1989), no. 2, 539–570
[HSa] J. Hakim, H. Sandler, Application of Bruhat decomposition to complex hyperbolic geometry, J. Geom. Anal. 10 (2000), 435–453
[Hsi1] P. H. Hsieh, Linear submanifolds and bisectors in CHⁿ, Forum. Math. 10 (1998), 413–434
[Hsi2] P. H. Hsieh, Semilinear submanifolds in complex hyperbolic space, Forum. Math. 11 (1999), 673–694
[Hsi3] P. H. Hsieh, Cotranchal bisectors in complex hyperbolic space, Geometriae Dedicata 97 (2003), 93–98
[Kle] F. Klein, Vorlesungen über höhere Geometrie, Grundlehren der mathematischen Wissenschaften 22, Julius Springer, Berlin, 1926. viii+405 pp.
[Lan] S. Lang, Algebra, Advanced Book Program. Addison-Wesley Publishing Company, Inc., California, 1984. xx+714 pp.
[Man] Yu. I. Manin, Gauge Field Theory and Complex Geometry, A Series of Comprehensive Studies in Mathematics 289, Springer-Verlag, 1988. x+297 pp.
[Mos] G. D. Mostow, On a remarkable class of polyhedra in complex hyperbolic space, Pacific J. Math. 86 (1980), 171–276
[Sal1] M. Salvai, *On the geometry of the space of oriented lines in Euclidean space*, Manuscripta Math. **118** (2005), 181–189

[Sal2] M. Salvai, *Geometry of the space of oriented lines in hyperbolic space*, Glasgow Math. J. **49** (2007), 357–366

[San] H. Sandler, *Distance formulas in complex hyperbolic space*, Forum Math. **8** (1996), no. 1, 93–106

[Stu] E. Study, *Von den Bewegungen und Umlegungen I, II*, Math. Ann. **34** (1891), 441–566

[Thu] W. P. Thurston, *Three-Dimensional Geometry and Topology. I*, Princeton Mathematical Series, Princeton University Press, Princeton, 1997. x+311 pp.

[Wey] H. Weyl, *The classical groups*, Princeton Mathematical Series, Princeton University Press, Princeton, 1939. xiv+320 pp.

[Wil1] N. J. Wildberger, *Universal Hyperbolic Geometry I: Trigonometry*, preprint http://arxiv.org/abs/0909.1377

[Wil2] N. J. Wildberger, *Universal Hyperbolic Geometry II: A pictorial overview*, KoG **14** (2010), 1–23, see also http://arxiv.org/abs/1012.0880

Departamento de Matemática, IMECC, Universidade Estadual de Campinas, 13083-970–Campinas–SP, Brasil

E-mail address: Ananin.Sasha@yahoo.com

Max-Planck-Institut für Mathematik, Vivatsgasse 7, 53111 Bonn, Germany

E-mail address: grossi_ferreira@yahoo.com