Inclusive cross section and double-helicity asymmetry for π^0 production at midrapidity in $p+p$ collisions at $\sqrt{s}=510$ GeV

A. Adare, C. Aidala, N.N. Ajitanand, Y. Akiba, R. Akimoto, J. Alexander, M. Alfred, K. Aoki, N. Apadula, Y. Aramaki, H. Asano, E.T. Atomssa, T.C. Awes, B. Azmoun, V. Babintsev, M. Bai, X. Bai, N.S. Bandara, B. Bannier, K.N. Barish, S. Bathe, V. Baublis, C. Baumann, S. Baumgart, A. Bazlevsky, M. Beaumier, S. Beckman, R. Belmont, A. Berdnikov, D. Black, D.S. Blau, J.S. Bok, K. Boyle, M.L. Brooks, J. Brylsawskyj, H. Buesching, V. Bunazhmov, S. Butsyk, S. Campbell, C.-H. Chen, C.Y. Chi, M. Chiu, I.J. Choi, B.J. Choi, S. Choi, P. Christiansen, T. Chую, V. Cianciolo, Z. Citron, B.A. Cole, N. Cronin, N. Crosseette, M. Csanád, T. Csörgő, D. Danley, A. Datta, M.S. Daugherty, G. David, K. DeBlasio, K. Dehmelt, D. Denisov, D. Deshpande, E.J. Desmond, L. Ding, A. Dion, P.B. Diss, J.H. Do, L’Oratorio, O. Drapier, A. Drees, J.M. Durham, A. Durum, T. Engelmore, A. Enokizono, H. En’yo, S. Esumi, K.O. Eyser, B. Fadem, N. Feige, D.E. Fields, M. Finger, F. Finger, Jr., F. Fleuret, S.L. Fokin, J.E. Franz, A. Franz, A.D. Frawley, Y. Fukao, T. Fusayasu, K. Gainey, I. Gal, P. Gallus, A. Garishvili, I. Garishvili, H. Ge, F. Giordano, A. Glenn, X. Gong, M. Goin, Y. Goto, G. Granier de Cassagnac, N. Grau, S.V. Greene, G. Grosse Perdekamp, Y. Gu, Y. Gunji, H. Guragain, T. Hachiya, J.S. Haggerty, K.I. Hahn, H. Hamagaki, H.F. Hamilton, S.Y. Han, J. Hanks, S. Hasegawa, T.O.S. Haseler, K. Hashimoto, R. Hayano, X. He, K.T. Hemmick, T. Hester, J.C. Hill, R.S. Hollis, K. Homma, B. Hong, T. Hoshino, N. Hotvedt, J. Huang, S. Huang, T. Ichihara, Y. Ikeda, K. Imai, Y. Imazu, M. Inaba, A. Iordanova, I. Isenhour, A. Ishihara, L. Ivanishchev, B.V. Jacak, S.J. Jeon, M. Jezghani, Y. Jia, X. Jiang, B.M. Johnson, J. Joo, K.S. Joo, D. Jouanou, R. Joanne, Y. Kamin, S. Kanda, D. Karkalangis, B.H. Kang, J.H. Kang, J.S. Kang, J. Kapustinsky, D. Kawalla, A.V. Kazantsev, J.A. Key, V. Khachatryan, P.K. Khandai, A. Khanzadeev, K. Kihara, K.M. Kim, C. Kim, D.H. Kim, D.J. Kim, E.J. Kim, G.W. Kim, H.J. Kim, M. Kim, Y.-J. Kim, Y.K. Kim, B. Kimelman, E. Kistenev, K. Kitamura, J. Klutsky, D. Kleinjans, P. Kline, T. Koblesky, M. Kofarago, J. Koster, D. Kotchetkov, S. Kotov, F. Krizek, K. Kurita, M. Kurosawa, Y. Kwon, R. Lacey, Y.S. Lai, J.G. Lajoie, T. Lebedev, D.M. Lee, G.H. Lee, J. Lee, K.B. Lee, S.W. Lee, S.H. Lee, M.J. Leitch, M. Leitgab, B. Lewis, X. Li, S.H. Lim, M.X. Liu, D. Lynch, C.F. Maguire, Y.I. Makdisi, M. Makek, H. Manion, V.W. Mampe, E. Mannel, T. Maruyama, M. McCumber, P.L. McGaughy, D. McGlinchey, C. McKinnie, A. Meles, M. Mendoza, B. Meredith, M. Mignerey, A.C. Mignerey, J.A. Miller, M. Milov, D.K. Mishra, J.T. Mitchell, S. Miasawat, S. Mizoue, A.K. Molyan, S. Mophatara, P.P. Montuenga, T. Moon, D.P. Morrison, M. Moskovitz, T.V. Mukhopadhy, T. Murakami, T. Murata, A. Mwai, T. Nagae, S. Nagamia, K. Nagashima, J.L. Nagle, I. Nakagawa, H. Nakagomi, Y. Nakamuki, K.R. Nakano, Y. Nakamuk, Y. Nakamura, T. Nakamura, K. Nakano, C. Nattrass, P.K. Nekratanuk, M. Nihashi, T. Niida, S. Nishimura, R. Nozieres, T. Novák, N. Novitzky, A.S. Nyanin, E.O’Brien, C.A. Ogilvie, H. Oide, K. Okada, J.D. Orjuela Koop, J.D. Osborn, A. Oskarsson, H. Ozaki, K. Ozawa, R. Pak, V. Pantuneau, V. Papavassiliou, I.H. Park, J.S. Park, S.P. Park, S.F. Pate, L. Patel, M. Patel, J.C. Peng, D.V. Perepelitsa, G.D. Perera, D.Yu. Peressounko, J. Perry, R. Petti, F. Pinkenburg, R. Pinson, R.P. Pisani, M.L. Putschke, H. Qu, J. Rak, B.J. Ramson, I. Ravinovich, K.F. Read, D. Reynolds, R. Riabov, Y. Riabov, E. Richardson, T. Rinn, N. Rivelli, D. Roach, S.D. Rolnick, M. Rosati, Z. Rowan, J.G. Rubin, M.S. Ryu, B. Sahlmueller, N. Saito, T. Sakaguchi, H. Sako, C. Samsonov, M. Sarson, V. Satoh, S. Savada, B. Schaefer, B.K. Schmoll, K. Sedgwick, J. Seele, R. Seidl, Y. Sekiguchi, A. Sen, R. Seto, P. Sett, A. Sexton, D. Sharma, A. Shaver, I. Shein, T.A.-A. Shibata, K. Shigaki, M. Shimomura, K. Shoji, P. Shukla, A. Sickles, C.L. Silva, D. Silvermyr, B.K. Singh, C.P. Singh, V. Singh, M. Skolnik, M. Shneecab, M. Snowball, S. Sohine, R.A. Soltz, W.E. Sondheim, S.P. Sorensen, I.V. Sourikova, P.W. Stankus, P. Steinberg, E. Stenlund, M. Stepanov, A. Ster, S.P. Stoll, M.R. Stone, T. Sugitate, A. Sukhov, T. Sumita, J. Sun, J. Sziklai, A. Takahara, A. Taketani, Y. Tanaka, K. Tanida, M.J. Tannenbaum, S. Tarafdar, A. Taranenko, E. Tennant, R. Tienfelt,
PHENIX measurements are presented for the cross section and double-helicity asymmetry \(A_{LL} \) in inclusive \(\pi^0 \) production at midrapidity from \(p + p \) collisions at \(\sqrt{s} = 510 \) GeV from data taken in 2012 and 2013 at the Relativistic Heavy Ion Collider. The next-to-leading-order perturbative-quantum-chromodynamics theory calculation is in excellent agreement with the presented cross section results. The calculation utilized parton-to-pion fragmentation functions from the recent DSS14 global analysis, which prefer a smaller gluon-to-pion fragmentation function. The \(\pi^0 A_{LL} \) results follow an increasingly positive asymmetry trend with \(p_T \) and \(\sqrt{s} \) with respect to the predictions and are in excellent agreement with the latest global analysis results. This analysis incorporated earlier results on \(\pi^0 \) and jet \(A_{LL} \), and suggested a positive contribution of gluon polarization to the spin of the proton \(\Delta G \) for the gluon momentum fraction range \(x > 0.05 \). The data presented here extend to a currently unexplored region, down to \(x \sim 0.01 \), and thus provide additional constraints on the value of \(\Delta G \).

PACS numbers: 13.85.Ni, 13.88.+e, 14.20.Dh, 25.75.Dw

In the late 1980s, the EMC experiment \(^1\) showed that the spins of quarks and anti-quarks might contribute only a fraction of the proton spin (about 1/3 from the recent global analyses of world spin polarized scattering data \(^2\)–\(^6\)). This sparked several decades of world-wide effort to understand the proton spin structure in terms of quark and gluon polarizations and their orbital angular momentum, as evidenced by experimental programs at CERN, SLAC, DESY, JLAB, and BNL.

A key component of the Relativistic Heavy Ion Collider (RHIC) Spin program is the determination of the gluon spin contribution to the spin of the proton. High energy polarized proton collisions provide direct access to the gluon polarization \(\Delta G \) within the proton through several gluon dominated hard scattering processes, such as high \(p_T \) jet and hadron production \(^3\). RHIC results on the double helicity asymmetry \(A_{LL} \) in inclusive \(\pi^0 \) production at \(\sqrt{s} = 62.4 \) and 200 GeV from PHENIX \(^8\)–\(^11\) and jet production at \(\sqrt{s} = 200 \) GeV from STAR \(^12\)–\(^13\) have made a significant contribution to the \(\Delta G \) determination \(^2\)–\(^3\). Inclusion of the recent RHIC results from \(\sqrt{s} = 200 \) GeV data collected in 2009 \(^14\)–\(^15\) in the global next-to-leading-order (NLO) perturbative-quantum-chromodynamics (pQCD) analysis provided evidence for positive gluon polarization within the proton, with the integral of \(\Delta G(x, Q^2 = 10 \text{ GeV}^2) \) in the gluon momentum fraction \(x > 0.05 \) being \(0.20 \pm 0.07 \) at 90% C.L. \(^16\). The RHIC high luminosity data at \(\sqrt{s} = 510 \) GeV allow probing \(\Delta G \) in the overlapping \(x \) range at higher momentum transfer, and extends our understanding of \(\Delta G \) to the unexplored lower \(x \) region.

In this Letter, we present the PHENIX \(\pi^0 A_{LL} \) results at \(\sqrt{s} = 510 \) GeV from the RHIC 2012 and 2013 data sets, with an integrated luminosity of 20 and 108 \(\text{pb}^{-1} \), respectively. We also present and discuss our results on \(\pi^0 \) unpolarized cross section measurements, which serve as an important test for the applicability of the NLO pQCD theory calculations in the accessed kinematic range. The theory is used to connect the measured asymmetries to gluon polarization in the proton \(^2\)–\(^3\)–\(^10\).

The PHENIX experimental setup is described elsewhere \(^17\). In this analysis, \(\pi^0 \)’s were reconstructed via \(\pi^0 \to \gamma \gamma \) decays using a highly-segmented electromagnetic calorimeter (EMCal), covering a pseudorapidity range of \(|\eta| < 0.35 \). The EMCal comprises two calorimeter types, a lead-scintillator (PbSc) sampling calorimeter and a lead-glass (PbGl) Čerenkov calorimeter, with granularity \(\Delta \eta \times \Delta \phi \sim 0.011 \times 0.011 \) and 0.008 \(\times 0.008 \), respectively. Eight EMCal sectors (six PbSc and two PbGl) are located in two nearly back-to-back arms each covering \(\Delta \phi \sim 90^\circ \) in azimuth. The PHENIX EMCal also generates a high \(p_T \) photon (HPP) trigger when the deposited energy in any set of 4 \(\times 4 \) towers exceeds a predefined threshold. Thin multiwire proportional cham-
bers located in front of the EMCal were used as a veto to suppress the charged hadron background in \(\pi^0 \) reconstruction [14]. Beam-beam counters (BBC), positioned at \(\pm 144 \) cm from the nominal interaction point along the beam line and covering \(\eta = \pm 3.0 \)–3.9, defined the minimum-bias (MB) collision trigger and determined the location of the collision vertex. Only events with collision vertices within \(\pm 10 \) cm (\(\pm 30 \) cm) of the nominal interaction point were used in the cross section (asymmetry) analysis. The BBCs were also used to calculate the integrated luminosity of the collected data sample and relative luminosity between colliding bunches with different spin configurations. Zero-degree calorimeters (ZDC), located at \(\pm 18 \) m and covering \(|\eta| > 6 \), were used as another relative luminosity monitor. Equipped with a shower-maximum detector, the ZDC also provided monitoring of the transverse polarization component of colliding bunches in the PHENIX interaction region, utilizing the azimuthal asymmetry in forward neutron production in transversely polarized \(p+p \) collisions [18].

As described in detail in Ref. [8], \(\pi^0 \)’s were reconstructed from two-photon invariant mass distributions. A time of flight cut and shower profile evaluation (energy distribution among EMCal towers) were used for photon identification. A minimal photon energy cut of 0.3 GeV and an energy asymmetry between the two photons \(\alpha = |E_1 - E_2|/(E_1 + E_2) < 0.8 \) were applied. The \(\pi^0 \) peak width in the invariant mass distribution varied between 9 and 12 MeV/\(c^2 \) over the measured \(p_T \) range. The resulting background fraction in the mass window of \(\pm 25 \) MeV/\(c^2 \) around the \(\pi^0 \) peak varied from \(\sim 20\% \) at \(p_T \sim 2 \) GeV/\(c \) to \(< 8\% \) at \(p_T > 5 \) GeV/\(c \). The two decay photons start merging in the PbSc (PbGl) EMCal at \(\pi^0 \) \(p_T > 10 \) GeV/\(c \) (> 15 GeV/\(c \)). A 50% merging probability is reached at \(p_T \sim 17 \) GeV/\(c \) (25 GeV/\(c \)) in the PbSc (PbGl), as shown in Fig. 1. For \(p_T > 24 \) GeV/\(c \), the majority of photon pairs are merged in the PbSc; in this \(p_T \) range, only the PbGl data were used.

The invariant differential cross section for \(\pi^0 \) production is calculated as

\[
E \frac{d^3 \sigma}{dp^3} = \frac{1}{\mathcal{L}} \cdot \frac{1}{2 \pi p_T} \cdot \frac{C \cdot N}{\Delta p_T \Delta y} \tag{1}
\]

where \(N \) is the number of \(\pi^0 \)'s observed in a \(\Delta p_T \) wide bin at \(p_T^* \) defined as the \(p_T \) for which the cross section equals its average over the bin; \(\Delta y \) is the rapidity range; \(C \) includes corrections for trigger efficiency, geometrical acceptance, \(\pi^0 \) reconstruction efficiency, and detector resolution effects; \(\mathcal{L} \) is the integrated luminosity for the analyzed data sample.

Two data samples were used for the \(\pi^0 \) cross section measurements, one collected with a MB trigger and the other with the HPP in coincidence with MB trigger. The MB trigger efficiency was obtained from the data collected with a dedicated HPP trigger operated without coincidence with MB trigger, and found to be 0.91 \(\pm 0.01 \) independent of \(p_T \). It accounts for the fact that only a fraction of inelastic \(p+p \) collisions producing \(\pi^0 \) meson(s) fires the MB trigger. The HPP trigger efficiency vs \(p_T \) was calculated in each arm separately from a set of events triggered by a high energy cluster in the opposite arm. It showed a characteristic threshold behavior with efficiency increasing from \(\sim 1\% \) at \(p_T = 2 \) GeV/\(c \) to 93\% at \(p_T > 8 \) GeV/\(c \). For the cross section calculation, the MB triggered data sample was used at \(p_T < 6 \) GeV/\(c \), and HPP triggered data sample at higher \(p_T \).

The reconstructed \(\pi^0 \) yields in each \(p_T \) bin were corrected for geometrical acceptance, reconstruction efficiencies (e.g. due to the two-photon energy asymmetry cut), and smearing effects (due to the finite detector resolutions). The corrections were calculated with a simulation containing the EMCal geometry, known detector inefficiencies, and photon energy and position smearing based on the known EMCal resolutions.

The major systematic uncertainties in the \(\pi^0 \) cross section measurement are the energy scale (1.2\% uncertainty in the EMCal energy calibration translates to \(\sim 7\% \) in cross section uncertainty), energy nonlinearity (up to 10\% for cross section depending on \(p_T \)), and merging corrections (up to 30\% in the bins with the highest probability for two photons to merge). The large uncertainty at high \(p_T \) reflects the sensitivity of the merging correction to shower-shape fluctuations and background conditions for asymmetric two-photon decays, having higher probability to survive the merging in the EMCal. The other uncertainties, contributing \(< 6\% \) altogether, are related to \(\pi^0 \) yield extraction and background subtraction, trigger efficiencies, geometrical acceptance calculation, smearing corrections, and photon conversion. The uncertainties are assigned separately for the PbSc and the PbGl measurements.

A comparison of the results obtained from the PbSc and the PbGl is a key cross check, because the two calorimeters have a different response to hadrons (hence

![FIG. 1. (color online) The probability for two photons from \(\pi^0 \) decay to be separated by the PHENIX EMCal clustering algorithm vs \(\pi^0 p_T \); obtained from GEANT [12] simulation for the two-photon energy asymmetry cut \(\alpha < 0.8 \).](image-url)
different background contamination in π^0 reconstruction), and considerably different merging corrections versus p_T. The π^0 cross section results from the PbSc and the PbGl were in agreement within uncertainties in the overlapping p_T range. The final spectrum was obtained from the combined PbSc and PbGl results, while for $p_T > 24$ GeV/c the PbGl results were used. The total systematic uncertainties associated with the results vary from 8–10% at $p_T < 14$ GeV/c to ~30% at the highest p_T.

The integrated luminosity \mathcal{L} in Eq. (1) was calculated from the accumulated number of MB triggers in the analyzed data sample normalized by the cross section of the processes firing the MB trigger in $p+p$ collisions. Similar to our previous analyses \cite{10, 20}, the cross section was predetermined in such a way that the colliding bunch pair helicity state alternated every RHIC bunch crossing, spaced 106 ns apart. This suppression was used alternating every RHIC store, typically three-to-four times during the store. To remove possible systematic effects associated with particular bunch(es) in the process of filling, ramping up and storing the beams in RHIC rings, eight bunch spin patterns were used alternating every RHIC trigger rate.

In the 2013 RHIC run, the instantaneous luminosity delivered to PHENIX was so high that up to a third of all bunch crossings had more than one $p+p$ collision. To correct for this multiple-collision effect, we studied the ratio of the π^0 yield to the number of MB triggers (which is proportional to the measured N/\mathcal{L} in Eq. (1)) as a function of instantaneous MB trigger rate.

Figure 2 shows the π^0 cross section versus p_T compared to NLO pQCD calculations performed with MSTW \cite{21} parton distribution functions (PDF) and DSS14 \cite{22} fragmentation functions (FF). Compared to earlier FF analysis \cite{23} the DSS14 recent global fit results preferred a smaller fraction of pions produced from gluon hadronization, driven mainly by the latest data from the Large Hadron Collider. This theoretical calculation is in excellent agreement with the presented data.

In 2012 and 2013, RHIC provided PHENIX with colliding bunches of longitudinally polarized protons at $\sqrt{s} = 510$ GeV. The bunch spin pattern was predefined in such a way that the colliding bunch pair helicity state alternated every bunch crossing, spaced 106 ns apart. This greatly suppressed the possibility of false asymmetries between colliding bunches with different helicity configuration, due to variation in detector performance. To remove possible systematic effects associated with particular bunch(es) in the process of filling, ramping up and storing the beams in RHIC rings, eight bunch spin patterns were used alternating every RHIC store, typically lasting eight hours. Beam polarizations were measured by RHIC polarimeters \cite{24} three-to-four times during the store. For the two RHIC collider rings, labeled “Blue” (B) and “Yellow” (Y), the luminosity-weighted average polarizations in 2012 (2013) were $\langle P_B \rangle = 0.55 \pm 0.02$ (0.55 ± 0.02) and $\langle P_Y \rangle = 0.57 \pm 0.02$ (0.56 ± 0.02). The degree of longitudinal polarization in the PHENIX interaction region was monitored by local polarimeters, based on the ZDC and shower-maximum detectors, which measured the residual transverse polarization of colliding bunches. The longitudinal component P_L/P in both 2012 and 2013 was > 0.998, for both RHIC rings.

The $\pi^0 A_{LL}$ analysis technique is described in detail in Ref. \cite{14}. The A_{LL} for inclusive π^0 production, defined as the difference between cross sections for colliding bunches with the same helicity and opposite helicity, divided by the sum, is experimentally calculated as

$$ A_{LL}^{\pi^0} = \frac{1}{P_B \cdot P_Y} \cdot \frac{N_{++} - R \cdot N_{+-}}{N_{++} + R \cdot N_{+-}}, \quad R = \frac{L_{++}}{L_{+-}}. $$

where N is the number of π^0's from the colliding bunches with the same $(++)$ and opposite $(+-)$ helicities, R is the relative luminosity between bunches with the same and opposite helicities, and P_B and P_Y are the two RHIC beam polarizations.

The π^0 yields were extracted from the HPP triggered sample in which the maximal energy photon of each pair candidate was explicitly required to fire the HPP trigger. This test, along with a time-of-flight cut, suppressed the
possibility of contamination from the neighboring bunch crossings to a negligible level. As in the cross section analysis, the π^0 candidates were counted within a ±25 MeV/c^2 window around the π^0 peak in the two-photon invariant mass distribution. The A_{LL} was then corrected for the background A_{LL} measured in the side bands on either side of the π^0 peak; this background asymmetry was found to be consistent with zero in all p_T bins.

The relative luminosity R was defined from the number of MB triggers in each bunch crossing, and cross checked using the number of collisions firing the ZDCs on both sides of the IR. The pile-up correction due to the high collision rate had a negligible effect on R. The resulting contribution of the relative luminosity uncertainty to A_{LL}^rel for the 2012 (2013) data was $\delta A_{LL}^\text{rel}|_R = 2.0 \times 10^{-4}$ (3.8 $\times 10^{-4}$), affecting all p_T bins in the same way.

A_{LL} was measured for each PHENIX data taking segment (up to 90 minutes long) to minimize the systematic effects from variation in R, beam polarization (decreasing during a store by $\Delta P = 0.005 - 0.010$ per hour), and HPP trigger performance. These asymmetries were averaged separately for the 2012 and 2013 data. Results from 2012 and 2013 were consistent within statistical uncertainties and the final result presented in this Letter is the average of these data sets.

The resulting π^0 A_{LL} systematic uncertainties are (a) a correlated uncertainty from relative luminosity of 3.6×10^{-4}, (b) a correlated uncertainty from polarization measurements of 6.5% (scale uncertainty), and (c) point-to-point uncertainty from background fraction determination under the π^0 peak in the two-photon invariant-mass distribution. The point-to-point uncertainties were found to be smaller than 10% of the statistical uncertainty in all p_T bins. As in the previous PHENIX analysis [14], the contribution of other potential sources of systematic uncertainties was negligible.

Figure 3 shows the $\pi^0 A_{LL}$ asymmetries at $\sqrt{s} = 510$ GeV compared with the DSSV14 calculation [16] based on a global fit of the world helicity asymmetry data. Comparing the data to the DSSV14 curve we obtain $\chi^2/\text{NDF}=8.0/14$, while comparing to the $A_{LL} = 0$ hypothesis we obtain $\chi^2/\text{NDF} = 18.2/14$; the data prefer the DSSV14 curve by a little more than 3 standard deviations.

Figure 4 shows $\pi^0 A_{LL}$ data from PHENIX at both $\sqrt{s} = 200 \text{ GeV}$ [14] and 510 GeV, along with NLO pQCD analyses from three groups [3, 6, 16]. All three analyses predict an increase in $\pi^0 A_{LL}$ at the same x_T due to pQCD evolution, with $x_T = 2p_T/\sqrt{s}$. Our data is consistent with such an increase.

In summary, we have presented the unpolarized cross section and double helicity asymmetry for π^0 production at midrapidity for $p+p$ collisions at $\sqrt{s} = 510 \text{ GeV}$. The NLO pQCD calculation is in excellent agreement with the presented cross section results. The calculation utilized the recent DSS14 set of fragmentation functions,

![Figure 3](image_url)

FIG. 3. (color online) A_{LL} vs p_T for π^0 production at midrapidity in $p+p$ collisions at $\sqrt{s} = 510 \text{ GeV}$. Error bars are combined statistical and point-to-point systematic uncertainties. The $A_{LL} = 0$ (yellow) line is uncertainty from relative luminosity. The theoretical curve with 90% C.L. band (green) is from a DSSV14 calculation [16].

![Figure 4](image_url)

FIG. 4. (color online) A_{LL} vs x_T for π^0 production at midrapidity in $p+p$ collisions at $\sqrt{s} = 200 \text{ GeV}$ (blue) from [14] and 510 GeV (red) from this analysis. Error bars are combined statistical and point-to-point systematic uncertainties. Note that the relative luminosity uncertainties from two data samples are about the same, hence are indistinguishable in the plot in the overlapping x_T range. Theoretical curves are from recent NLO global analyses [3, 6, 16], with the lower curves (blue) for $\sqrt{s} = 200 \text{ GeV}$ and the higher curves (red) for $\sqrt{s} = 510 \text{ GeV}$.

which prefer the reduced fraction of pions produced from gluon hadronization. The $\pi^0 A_{LL}$ results follow a positive asymmetry trend with p_T and \sqrt{s} predicted by NLO pQCD and are in excellent agreement with the latest global fit results, which suggested a nonzero gluon polarization in the proton for the gluon momentum fraction range $x > 0.05$. These global fit results included RHIC $\pi^0 A_{LL}$ data at $\sqrt{s} = 62.4$ GeV and 200 GeV and jet A_{LL} data at $\sqrt{s} = 200$ GeV. The presented data at $\sqrt{s} = 510$ GeV extend the x range probed down to $x \sim 0.01$ and provide an additional constraint on ΔG in this x range [25], which is a crucial step in the nearly two decades of world-wide efforts to understand the contribution of gluon polarization to the spin of the proton. We note the recent $\pi^0 A_{LL}$ results at $\sqrt{s} = 200$ GeV and forward pseudorapidity $0.8 < \eta < 2$ from STAR covering the gluon x range down to $x \sim 0.01$ (although with large uncertainties) [26]. Data collected by PHENIX with forward EMCal at pseudorapidity $3.1 < \eta < 3.9$ and $\sqrt{s} = 510$ GeV will further extend the x range probed down to $x \sim 0.001$.

We thank the staff of the Collider-Accelerator and Physics Departments at Brookhaven National Laboratory and the staff of the other PHENIX participating institutions for their vital contributions. We also thank Marco Stratmann for providing the theoretical calculations and for informative discussions. We acknowledge support from the Office of Nuclear Physics in the Office of Science of the Department of Energy, the National Science Foundation, Abilene Christian University Department of Physics, Osaka Prefecture University, Korea University, and the staff of the other PHENIX participating institutions. We also thank \textit{et al.} [11] A. Adare \textit{et al.} [9] A. Adare \textit{et al.} [8] S. S. Adler \textit{et al.} [7] Richard D. Ball \textit{et al.} [6] E. Leader, A. V. Sidorov, and Dimiter B. Stamenov, “Prospects for spin physics at RHIC,” Ann. Rev. Nucl. Part. Sci. 50, 525 (2000)

[1] J. Ashman \textit{et al.} (European Muon Collaboration), “An Investigation of the Spin Structure of the Proton in Deep Inelastic Scattering of Polarized Muons on Polarized Protons,” Nucl. Phys. B 328, 1 (1989). | [2] D. de Florian, R. Sassot, M. Stratmann, and W. Vogelsang, “Global Analysis of Helicity Parton Densities and Their Uncertainties,” Phys. Rev. Lett. 101, 072001 (2008). | [3] D. de Florian, R. Sassot, M. Stratmann, and W. Vogelsang, “Extraction of Spin-Dependent Parton Densities and Their Uncertainties,” Phys. Rev. D 80, 034030 (2009). | [4] Johannes Blumlein and Helmut Bottcher, “QCD Analysis of Polarized Deep Inelastic Scattering Data,” Nucl. Phys. B 841, 205 (2010). | [5] E. Leader, A. V. Sidorov, and Dimiter B. Stamenov, “Determination of Polarized PDFs from a QCD Analysis of Inclusive and Semi-inclusive Deep Inelastic Scattering Data,” Phys. Rev. D 82, 114018 (2010). | [6] Richard D. Ball \textit{et al.} (NNPDF Collaboration), “Unbiased determination of polarized parton distributions and their uncertainties,” Nucl. Phys. B 874, 36 (2013). | [7] Gerry Bunce, Naohito Saito, Jacques Soffer, and Werner Vogelsang, “Prospects for spin physics at RHIC,” Ann. Rev. Nucl. Part. Sci. 50, 525 (2000). | [8] S. S. Adler \textit{et al.} (PHENIX Collaboration), “Improved measurement of double helicity asymmetry in inclusive midrapidity p\bar{p} production for polarized p+p collisions at $\sqrt{s} = 200$ GeV,” Phys. Rev. D 73, 091102 (2006). | [9] A. Adare \textit{et al.} (PHENIX Collaboration), “Inclusive cross-section and double helicity asymmetry for p\bar{p} production in $p + p$ collisions at $\sqrt{s} = 200$ GeV: Implications for the polarized gluon distribution in the proton,” Phys. Rev. D 76, 051106 (2007). | [10] A. Adare \textit{et al.} (PHENIX Collaboration), “Inclusive cross section and double helicity asymmetry for π^0 production in $p+p$ collisions at $\sqrt{s} = 62.4$ GeV,” Phys. Rev. D 79, 012003 (2009). | [11] A. Adare \textit{et al.} (PHENIX Collaboration), “The Polarized gluon contribution to the proton spin from the double helicity asymmetry in inclusive π^0 production in polarized $p+p$ collisions at $\sqrt{s} = 200$ GeV,” Phys. Rev. Lett. 103, 012003 (2009). | [12] B. I. Abelev \textit{et al.} (STAR Collaboration), “Longitudinal double-spin asymmetry and cross section for inclusive jet production in polarized proton collisions at $\sqrt{s} = 200$ GeV,” Phys. Rev. Lett. 97, 252001 (2006). | [13] B. I. Abelev \textit{et al.} (STAR Collaboration), “Longitudinal double-spin asymmetry for inclusive jet production in $p+p$ collisions at $\sqrt{s} = 200$ GeV,” Phys. Rev. Lett. 100, 232003 (2008). | [14] A. Adare \textit{et al.} (PHENIX Collaboration), “Inclusive...
double-helicity asymmetries in neutral-pion and eta-meson production in $\vec{p} + \vec{p}$ collisions at $\sqrt{s} = 200$ GeV," Phys. Rev. D 90, 012007 (2014)

[15] L. Adamczyk et al. (STAR Collaboration), “Precision Measurement of the Longitudinal Double-spin Asymmetry for Inclusive Jet Production in Polarized Proton Collisions at $\sqrt{s} = 200$ GeV,” Phys. Rev. Lett. 115, 092002 (2015)

[16] D. de Florian, R. Sassot, M. Stratmann, and W. Vogelsang, “Evidence for polarization of gluons in the proton,” Phys. Rev. Lett. 113, 012001 (2014)

[17] K. Adcox et al. (PHENIX Collaboration), “PHENIX detector overview,” Nucl. Instrum. Methods Phys. Res., Sec. A 499, 469 (2003)

[18] A. Adare et al. (PHENIX Collaboration), “Inclusive cross section and single transverse spin asymmetry for very forward neutron production in polarized $p+p$ collisions at $\sqrt{s} = 200$ GeV,” Phys. Rev. D 88, 032006 (2013)

[19] GEANT 3.2.1 Manual, CERN, Geneva (1993).

[20] S. S. Adler et al. (PHENIX Collaboration), “Mid-rapidity neutral pion production in proton proton collisions at $\sqrt{s} = 200$ GeV,” Phys. Rev. Lett. 91, 241803 (2003)

[21] A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt, “Parton distributions for the LHC,” Eur. Phys. J. C 63, 189 (2009)

[22] D. de Florian, R. Sassot, M. Epele, R. J. Hernandez-Pinto, and M. Stratmann, “Parton-to-Pion Fragmentation Reloaded,” Phys. Rev. D 91, 014035 (2015)

[23] D. de Florian, R. Sassot, and M. Stratmann, “Global analysis of fragmentation functions for protons and charged hadrons,” Phys. Rev. D 76, 074033 (2007)

[24] B. Schmidke et al. (RHIC Polarimetry Group), “Run-13 Polarimetry Measurements,” RHIC/CAD Accelerator Physics Note 490 (2013).

[25] R. Sassot (DSSV Group), private communication.

[26] L. Adamczyk et al. (STAR Collaboration), “Neutral pion cross section and spin asymmetries at intermediate pseudorapidity in polarized proton collisions at $\sqrt{s} = 200$ GeV,” Phys. Rev. D 89, 012001 (2014).