Synopsis: Separators for solid polymer fuel cells must have a low contact resistance with the carbon paper and stability in a corrosive environment of sulfuric acid in the cell. The titanium surface is highly resistant to corrosion thanks to a passive film but has high contact resistance.

In this study, titanium carbide or nitride as the electrical conductor was formed on the surface by annealing commercially pure titanium sheet. The contact resistances of these sheets were evaluated before and after a sulfuric acid aqueous solution exposure test, "pH4 at 80°C for 4 days", briefly simulating the operating environment. In addition, the same evaluation test was conducted with a surface with TiC formed by formation of TiC and TiN, TiO2 precipitates. This is probably because TiC and TiN are dissolved by sulfuric acid, generating TiO2.

By contrast, dipping in nitric acid hardly raises the contact resistance from less than 10 even after the exposure test. It is considered from the results of surface analyses that Ti ion generated by partial dissolution of TiC is turned into TiO2 by the oxidizability of nitric acid, changing the surface structure covering TiC. It is considered that the newly formed TiO2 film enhanced stability in a sulfuric acid environment.

Key words: titanium sheet; titanium carbide; titanium nitride; contact resistance; solid polymer fuel cell.
易な硫酸浸漬による一次的な評価でも硫酸水溶液中における安定性が維持できるのか、の観点に着目した。

導電性が高いチタン系導電性物質として炭化物や窒化物（TiC, TiNなど）が知られており、その電気抵抗率は25～52 μΩ・cmと金属チタンとほぼ同等である14,15)。冷間圧延したチタン板を真空雰囲気で焼結することによってTiCが16)、また窒素ガス雰囲気で焼結することによってTiNやTi3N4が板表面に容易に形成することができる17,18)。窒化物形成の効果として10未満の接触抵抗が得られることが報告されている19)。しかし、チタン板の表面に形成されたTiCは、pH3～4の硫酸環境中で溶出して表面の酸化チタン皮膜を成長させ、その結果、干渉色による変色を引き起こす20,21)。つまり、PEFCの使用環境下で、チタンの酸化皮膜が成長して接触抵抗が増大してしまう懸念がある22,23)。

これに対して、キムラら23)は、TiC, TiN, Ti3N4などが形成されていないチタン板を硝酸酸洗した後に酸化性の酸である硝酸の高濃度水溶液に浸漬すること（以降硝酸浸漬処理）によって、硫酸水溶液環境（pH4の硫酸水溶液に60°Cで浸漬）における耐変色性が著しく高まることを報告している。酸化皮膜の成長の程度と対応する変色の指標である色差が従来10を超えていたが、2未満に低下している24)。この機構について、斜射角X線散乱（GIXS: Grazing-incidence-angle X-ray scattering）により酸化皮膜を解析した結果、硝酸浸漬処理により酸化皮膜の厚みが薄くなり、また密度が3.99から4.1(×109 g/cm3)に高まっていくことから、二酸化炭素または酸素欠損のない薄い酸化皮膜が形成されたと考察している。また、硝酸浸漬処理によってチタンの耐局部腐食性が高まることが報告されている25)。これらの点から、チタンの硝酸浸漬処理は、変色つまり酸化皮膜の成長を抑制するための処理方法として注目すべきである。

そこで、本研究では、冷間圧延した純チタン1種板を用い、TiCが形成されるArガス雰囲気中の焼結、あるいはTiNやTi3N4が形成される窒素ガス雰囲気中の焼結を施し、1)これらチタン系導電性物質の生成によってカーボンペーパーとの接触抵抗が低下するかを確認するとともに、2) PEFCの使用環境を想定した簡易な一次評価として硫酸水溶液暴露試験前後の接触抵抗変化と変色挙動との関係を明らかにすることを目的とする。さらに、3) キムラらの硝酸浸漬処理23)をTiCが形成された表面に施した場合の接触抵抗と変色挙動への影響を評価し、その表面構造変化を詳細に調査した結果に基づき、低い接触抵抗つまり導電性を維持しながら酸性環境中でも高い安定性が得られる表面構造を提示することを目的とする。

2. 実験方法

2.1 供試材

Table 1に、評価に用いた種々の供試材の表面構造とその作製履歴を示す。工業用純チタンJIS1種の0.5 mm厚さの板を、セジミア圧延機によって0.15 mm厚さに冷間圧延した後にアルカリ洗浄した冷間圧延まま板を出発材料とした。試料C-ArはArガス雰囲気にて1400°Cで焼結し、表面にTiCを形成した材料である。試料C-N2Aは窒素ガス雰囲気にて800°Cで焼結し、表面にTiNとTi3N4を形成した材料である。また、試料Pは、硝酸酸洗水溶液中で酸洗した後に、純水で洗浄し大気中で自然乾燥させており、無編のチタン板の自然酸化皮膜、つまり一般的な不動態皮膜を表面に形成した材料である。これを基準材として用いた。

さらに、試料C-Arを用いた試験C-Ar-Aおよび試料C-N2Aを用いた試験C-N2A-Aでは、酸洗した後に、硫酸濃度30mass%で温度95°Cの水溶液に試験片を5分間浸漬後、純水に浸漬して洗浄する条件にて実施した。

2.2 接触抵抗の測定方法

Fig.1に、接触抵抗測定方法の概略図を示す。金をめっきした電極とカーボンペーパーの間に試料であるチタン板を挟み、980 kPa (10 kgf/cm²)の圧力で押えた状態で、電流密度1 A/cm²の電流を流し、そのときの電極間の電圧を測定した。その電圧から、予め測定したカーボンペーパーと電極の間の電圧分を差し引く、チタン板とカーボンペーパーとの間の接触抵抗を求めた。後述する硫酸水溶液暴露試験の前後で、接触抵抗を測定した。

Code	Surface structure	Process conditions	
C-Ar	TiC	Cold rolling (0.15 mm in thickness)	Annealing in Ar gas atmosphere at 750°C for 30 s
C-N2A	TiN, Ti2N	Cold rolling (0.15 mm in thickness)	Annealing in N2 gas atmosphere at 800°C for 120 s
P	Natural oxide film	Pickling in HF and HNO3, aqueous solution	
C-ND	Investigated in this study	Cold rolling (0.15 mm in thickness)	Annealing in Ar gas atmosphere at 750°C for 30 s
P-ND	Denser Oxide film	Pickling in HF and HNO3, aqueous solution	Dipping in Nitric acid aqueous solution of 30mass% at 95°C for 5 min

Table 1. Specimen codes, characteristics of surface structure and process conditions of pure titanium sheets used.
2・3 硫酸水溶液曝露試験および色調測定方法

PEFC内の運転環境におけるpHは約3.5～3.8と報告されているとともに、PEFC運転時の回収凝縮水の水質を分析するとpHが5～6で微量の金属性やふっ化物イオンを含むこと29が報告されている。使用環境にて想定されるpHの範囲は広い。また、電圧温度は70～90℃や70～100℃30と、電位はカーソル側で約0.6Vvs.SCE、アノード側で約0.1Vvs.SCE31と報告されている。一方で、セラペータなどのPEFC内部で使用される材料は多くの試験条件にて評価されている3,23,24,27,31、pHは0～4の範囲であり、加えてふっ化物イオンを2～15 ppmを含む条件、さらにはPEFCの運転状況下での電位、カーソル側では酸素、アノード側では水素の影響を考慮した条件が採用されている。そのなかで、Somaら24、pH2.7の硫酸水溶液、ふっ化物イオン濃度約2 ppm、80℃の環境にてカーソル側でチタンを72時間分離した後の表面形態で、TiO₂が析出して形成された皮膜が成長しており、Tiが溶解してTiO₂が析出する機構を示している。この現象と機構は、Kanekoら20,21が示したpH4.5以下の硫酸水溶液環境下でチタンを晒した際に起きるTiO₂が析出した酸化皮膜成長による変色現象と、非常に類似している。このことから、Tiが溶解してTiO₂が析出する酸化皮膜成長とそれによる接触抵抗増加の大きさに関しては、簡単にpHが4.5以下の硫酸水溶液への曝露にて、PEFCの使用条件の一部である硫酸水溶液中の安定性を評価することができると思われる。

本研究では、セラペータ材料の初期検討におけるスクリーニング試験およびpH4.5以下の硫酸水溶液下で起きる変色現象との比較を目的に、Kanekoら20とKimuraら25の変色促進試験に類似したPEFC内の硫酸腐食環境を简易的に模擬した曝露試験方法として、試料を、pH4の硫酸水溶液に80℃で4日間浸漬する硫酸水溶液曝露試験を行った。以降、簡略のため本曝露試験と記す。また、硝酸浸漬処理を施した試料C-NDについては、前記本曝露試験条件であるpH4に対して、pH3やふっ化物イオンを5 ppm含む条件でも、同じ温度と浸漬日数の曝露試験も行った。なお、これらの曝露試験は、実際のPEFCの運転状況とは異なり、水素や酸素を流入しておらず、電位を制御したり電流を強制的に流したりしていない。

また、本曝露試験の前後のチタン板の変色程度を、色差（ΔE*ab）で評価した。色差（ΔE*ab）は以下の方法で測定し、式（1）を用いて定量化した。この色差が大きくほど干渉色が顕著であり酸化皮膜が成長したことを示唆している。色調はJIS Z8729のL*a*b*色系に基づいて表し、ミノルサ社製の色彩差計CR-200bによって標準光源Cを用いて測定した。

$$\Delta E*ab = \sqrt{\left(\Delta L^* \right)^2 + \left(\Delta a^* \right)^2 + \left(\Delta b^* \right)^2} \tag{1}$$

ここで、ΔL*は浸漬前のL*の変化量、Δa*は浸漬前のa*の変化量、Δb*は浸漬前のb*の変化量であり、L*は暗～明、a*は緑～赤、b*は青～黄を示す指標である。

2・4 表面分析方法

本曝露試験前の表面抵抗に顕著な差異が見られたTiCを生成している試料C-Ara（冷間圧延後、Ar雰囲気焼結）と、それを硝酸浸漬処理した試料C-NDについて、以下の表面分析を行った。

本曝露試験前の表面分析について、表面物質の走査型電子顕微鏡（SEM）による観察と、構成物質を同定するための薄膜法X線回折を行った。なお、薄膜法X線回折測定、リガク社製X線回折装置を用いて、CuKα線、管電圧50 kV、管電流200 mA、ドライビングスリット0.2°、入射角1°の条件で実施した。X線の入射深さは、X線の強度から計算すると約0.4 μmと見積もられる。

TiC生成表面を硝酸浸漬処理することによって、本曝露試験後の接触抵抗増大が大幅に低下したことから、硝酸浸漬処理による表面構造の変化を以下的方法で分析した。

試料C-Araと硝酸浸漬処理を施した試料C-NDの初期表面について、OやCの濃度分布を電子プローブ・マイクロアナライザ（EPMA）で、最表面のTi-O、Cの結合状態をX線光電子分光分析（XPS）で測定した。EPMAでは試料表面から深さ0.4 μm程度までの情報が、XPSでは深さ約5 nmまでの最表面の結合状態が分析できる。

EPMAは、日本電子製JXA-8500Fを用いて、加速電圧5 kV、電流50 nA、測定点256点×256点、積算時間90 μsec/点の条件で測定した。XPSは、アルバックファイ製Quanatum-2000を用いて、モノクロメーターで単色化したAlKα線をチタン表面に照射し、表面から放出されるC 1s、O 1s、Ti 2pの光電子を半球型電子分光器で計測した。分析点のサイズは100 μmとし、光電子の取り出し角を45°に設定した。なお、光電子の放出による電荷を補償するため、電子ジェットを照射し、試料表面のチャージアッブを防止した。酸化チタンはイオン照射によって還元されることが
ら、汚染除去のためのイオンスパッタリングは行わなかった。試料表面の汚染Cからの1次ピークを284.6 eVに合わせて光電子スペクトルのエネルギー補正を行った。Ti 2pスペクトルについては、TiOは452.2 eV、TiO₂は456.5 eV、TiO₃は454.2 eV、Tiは453.9 eV、TiCは454.6 eVにそれぞれ対応する位置にピークがある。

2.5 表面直下の断面分析方法

特性に著しい変化があった硝酸浸漬処理した試料C-N2Dについては、表面直下の化合物を同定するため、表面直下の断面を通過電子顕微鏡(TEM)で観察した。TEM観察用の試料は、次の方法で作製した。Gaイオンビームを用いた集束イオンビーム(FIB)法により、表面を含む断面の薄膜試料を厚さ0.1 μmに加工し、TEM観察試料とした。TEM観察には、200 kV電解放射型透過電子顕微鏡を用い、エネルギー分散型X線分析(EDS)分析による定性分析および、電子回折解析による観察視野内の化合物の同定を行った。

また、硝酸浸漬処理による酸化皮膜の変化に確認するため、自然酸化皮膜からなる試料P(硝ふっ酸洗浄)および硝酸処理を施した試料P-N2Dの両者においても、同様に表面直下断面のTEMによる観察を行った。

3. 実験結果

3.1 硫酸水溶液曝露試験前後の接触抵抗と色差

Fig.2に、試料C-ArA、試料C-N2A、比較材である試料Pの本曝露試験前後の接触抵抗を示す。合わせて、図中に変色程度である色差(ΔE*ab)を示す。まず、初期の接触抵抗を比較する。TiC等が表面に形成されていない硝ふった酸洗浄した試料Pの接触抵抗が約60 (mΩ・cm²) と高いのに対して、Tiが生成している試料C-ArAと、TiNとTiNを生成している試料C-N2Aは10 (mΩ・cm²) 未満と近い極めて低い値である。なお、両試料とも薄膜X線回折でTiCとTiN、TiNが形成されていることを確認した。この結果は、本来、チタンの自然酸化皮膜は接触抵抗が高いこと

を示しており、これまでの結果1-4,6,7,10）と一致する。

一方の本曝露試験前の接触抵抗は、いずれも100 (mΩ・

cm²) 以上まで増加しており、これらの色差が14以上と大

きいことに対応している。特に、試料C-ArAと試料C-N2A

は、接触抵抗の増加が著しく、色差が25を超えている。

この色差の増加は、TiCが多く生成している表面ではpH4.5
以下の硫酸水溶液環境で変色する現象16,20,21）から、予測
された通りであった。以上から、チタン系導電性物質であ

るTiCやTiN、TiNの形成によって、初期の接触抵抗を大幅

に低下できるものの、酸性環境である硫酸水溶液中に曝露

すると変色し接触抵抗が著しく増加することがわかった。

Fig.3に、本曝露試験前後の接触抵抗と色差に及ぼす硝

酸浸漬処理の影響を示す。試料C-N2D、試料P-N2D、各々、

試料C-ArA、試料Pに硝酸浸漬処理を施した試料である。硝

酸浸漬処理によって初期の接触抵抗は両試料とも若干の

増加が見られるが、図中に太矢印で示したように、本曝露

試験後の接触抵抗の増加は著しく抑制されていることが明

らかである。それに呼応するように、色差も1と色調はほ

ぼ変化していない。特筆すべきは、硝酸浸漬処理を施した

試料C-N2Dは、本曝露試験の前後ともに10 (mΩ・cm²) 未満

と極めて低い接触抵抗が維持されている点である。

硝酸浸漬処理を施した試料C-N2Dは、pH4の本曝露試

験条件に対して、pH3の場合とpH4でふっ化物イオンを5

ppm含む場合、いずれも色差6-7、接触抵抗19-20 (mΩ・

cm²) と増加が確認されました。但し、この値は、本曝露試

験後のpH4の場合の硝酸浸漬処理前の試料C-ArAや硝ふっ

酸洗浄の試料Pに比べて、依然として小さいままである（Fig.3参照）。

3.2 表面形態の変化

本曝露試験後に、接触抵抗に顕著な差異が見られた後

TiC生成表面を示す試料C-ArA（冷間圧延後、Au蒸着気焼

鉄）と、それを硝酸浸漬処理した試料C-N2Dについて、本曝

Fig. 2. Changes of contact resistance and color difference after the immersion test.

Fig. 3. Changes of contact resistance and color difference after the immersion test. Effect of dipping in HNO₃ solution on those properties.
露試験前後の表面形態のSEM観察結果をFig.4に示す。試料C-ArAの表面形態は本曝露試験の前後において接触抵抗の大幅な増加と大きな色差に対応するようにFig.4の（a）から（b）へと明らかに変化している。本曝露試験により表面に30～40 nm程度の粒状物が析出した形態を呈している。一方、試料C-NDにおいては、本曝露試験前のFig.4の（c）と後の（d）では表面形態の顕著な変化は見られず、接触抵抗および色の変化がきわめて小さいことと対応している。

硝酸浸漬処理が施された試料C-ND（Fig.4（c））では、試料C-ArA（Fig.4（a））と比較すると、30～50 nm程度の凹みがあり、5～7 nm程度の極微細な粒子が析出した様相を呈している。また、硝酸浸漬処理の際に、試料C-ArAの板表面から発泡が生じた。これは、表面で溶解などの何らかの化学反応が起きていることを示唆している。

3・3 表面の化合物および元素分布

Fig.5に、試料C-ArAとそれを硝酸浸漬処理した試料C-NDについて、本曝露試験前後の薄膜X線回折の結果を示す。ここで、X線回折ピークの金属Tiはいずれもhcpからなるα-Tiである。試料C-ArAは、金属Ti以外に強いTiCのピークが検出される。本曝露試験後にはTiO2のピークが検出されるとともに、金属Tiのピーク強度に対してTiCのそれが低下している。すなわち、本曝露試験によって、TiCが減少しTiO2が生成している。それに対して、試料C-NDでは、本曝露試験の前後で変わらず、金属Ti以外に強度は弱いもののTiO2のピークが検出され、明瞭なTiCのピークは見られない。

また、試料C-ArAで見られたTiCのピークは、硝酸浸漬処理後の試料C-NDでは明瞭にはみられず、弱いTiO2のピークが新たに認められた。表面から導電性物質であるTiCがほぼ検出されないものの、試料C-NDの接触抵抗がきわめて低い点は注目すべき結果である。

次に、硝酸浸漬処理前後の試料（a）C-ArAと（b）C-ND

![Fig. 4. SEM micrographs showing titanium sheet surfaces before and after immersion test. The code “C-ND” means the additional nitric acid solution treatment of the specimen “C-ArA” before the immersion test.](image1)

![Fig. 5. X-ray diffraction patterns of titanium sheet surfaces before and after immersion test. The code “C-ND” means the additional nitric acid solution treatment of the specimen “C-ArA” before the immersion test.](image2)
の表面について、C、Oの濃度分布をEPMAにて、また最表面の化合物の結合状態をXPSにて測定した結果を示す。
いずれも本暴露試験前の初期表面を分析した結果である。
Fig.6には、試料(a) C-ArAと(b) C-NDの表面のC、O濃度分布をEPMAで測定した結果を示す。Fig.6 (b)の試料C-NDをみると、C-ArAで高かったC濃度は硝酸浸漬処理後には低下しているが、O濃度は増加している。硝酸浸漬処理により薄膜X線回折におけるTiCのピークがほぼ見られなくなった代わりにTiO_2のピークが新たに出現した結果（Fig.5の(a)から(c)の変化）と対応している。

Fig.7に、試料(a) P、(b) C-ArA、および(c) C-NDの初期表面にて、XPSで測定したTi 2pスペクトルを示す。XPSは
接触抵抗を支配する最表面の深さ約5 nmまでの原子の結
合状態を反映した分析結果である。試料Pは、TiO₂のピー
クのみである。試料C-ArAはTiO₂の他に強いTiCのピー
クが見られる。これは試料C-ArAでは深さ約5 nmまでに
TiO₂とTiCの両者が存在していることを意味している。試
料C-NDは、強いTiO₂のピークの他にTiO₂ (456.5 eV),
TiO (454.2 eV), Ti (453.9 eV)の結合エネルギーの位置に
ブレードのピークが見られる。Fig.8に、試料(a) C-ArA
と(b) C-NDの表面をXPSで測定したC1sスペクトルを示
す。285eV付近にみられる強いピークは污染Cによる。(a)
C-ArAにはTi 2pスペクトルの結果同様にTiCの存在を示
すC1sの強いピークが見られるが、(b) C-NDにはそれに相
当するピークが見られない。

次いで、Fig.9およびFig.10に、本曝露試験前後とも低い
接触抵抗を示した試料C-ND（本曝露試験前）の表面直下
断面のTEM観察結果を示す。硝酸浸漬処理を行うと、上述
したようにTiの酸化物の形成がEPMAやX線回折で認め
られかつTiCのピークは著しく低下したが、Fig.9のTEM
観察結果が示すように、酸化チタン皮膜中および金属Ti側
表面に約10～40 nmのTiCの結晶粒子の存在が認められる。
なお、EDSにてOが強く検出されたことから酸化チタンか
らなる皮膜と判断した。酸化チタンのほとんどのハローパー
ターンを示したことから非晶質を成している。一部に回折
スポットがみられたものの明瞭なスポットパターンが得ら
れてなかった。また、Fig.10に示すようにTiCの粒子の表面側
を酸化チタンが覆うような様相を呈している。母相Ti、TiC
および酸化チタンの界面のTEM像から、これらが密着し
ている様子がうかがえる。

3.4 硝酸浸漬処理前後の酸化皮膜の形態

Fig.11に、自然酸化皮膜である試料Pとそれに硝酸処理
を施した試料P-NDにおける表面直下断面のTEM観察結
果を示す。上段がTEM像、下段が上段中の●印の位置（後
述の酸化皮膜内）における電子回折像である。Fig.11の(a)
と(b) が試料P、(c) と(d) が試料P-NDの結果であり、いずれの試料も本曝露試験前の状態である。TEM像の右上側
の試料表面からコントラストの異なる層状の部位（矢印の
範囲）がEDSにてOが強く検出されたことから酸化チタン
からの皮膜、いわゆる酸化皮膜と判断される。その厚さ
は試料Pで約10 nm、試料P-NDで約5 nmであり、硝酸浸漬
処理を施した記号P-NDの方が薄くなっている。

Fig.11の下段に示した電子回折像にてハローパターンと
回折スポットの両方が見られることから、両試料の酸化皮
膜内には非晶質部と微結晶部が混在していると考えられ
る。しかし、酸化皮膜が薄くまた非晶質が存在しており結
晶性も良くないため、電子線回折像にて物質が同定できる
明瞭なスポットパターンが得られなかった。酸化皮膜内
の電子回折像を比較すると、試料Pよりも試料P-NDの方が
回折スポットは明瞭であることから、若干結晶性は良く
なっている可能性が示唆される。

硝酸浸漬洗浄したチタン板表面の酸化皮膜が膜厚約10
nmで非晶質である点は、Satohらの結果とも一致して

Fig.8. XPS C 1s spectrographs of titanium sheet surfaces of the specimens (a) C-ArA and (c) C-ND before the immersion test.

Fig.9. Cross-sectional TEM images of specimen C-ND showing the existence of TiC before the immersion test.

Fig.10. Cross-sectional TEM images of specimen C-ND showing surface structure with interface between Ti, TiC and Ti oxide before the immersion test.
ている。Kimuraらは放射光を使ったGIXS（grazing-angle x-ray Scattering、微小角入射X線散乱法）による測定の結果、チタンの硝酸酸洗表面の酸化皮膜は、硝酸浸漬処理によって、厚さが約8%減少し、密度が約6%高まるものを報告している。TEM像から得た酸化皮膜厚さは試料Pで約10 nm、それに硝酸浸漬処理を施した試料P-NDで約5 nmと、Kimuraらの酸化皮膜厚さの減少率よりも大きいものの、硝酸浸漬処理を施した方が酸化皮膜の厚さは小さい点は一致している。

4. 考察

4.1 チタン系導電性物質形成の影響

Satohらは、チタンを硝酸酸洗した自然酸化皮膜は、厚さ約10 nmの非晶質構造の不動態皮膜であり、接触抵抗が高いことを報告している。本研究の硝酸酸洗した試料Pは、酸化皮膜から非晶質以外に微結晶が認められたが、同じ酸化皮膜厚さが約10 nmあり接触抵抗が高いなかった。チタンの自然酸化皮膜は水晶的に接触抵抗が高いことがわかる。これに対して、本研究における方法で表面にTiCやTiN、Ti₃Nを生成させた場合には、接触抵抗は著しく小さい。

4.2 硝酸浸漬処理による表面構造変化と接触抵抗への影響

Kimuraらの結果同様に、硝酸酸洗した試料を硝
酸浸漬処理した試料P-Nドンは、試験温度が高い本硫酸曝露試験でもほとんど変化しない結果であり、不動態皮膜の耐性が高まっている。TEMの電子線回折（Fig.11下段）から、硝酸浸漬処理によって酸化皮膜の結晶性が若干良くなっていて点はKlimuraらの密度が高まる点と相関している可能性があり、このような酸化皮膜の劣化が耐変性や耐局部腐食性の改善に寄与していると推測される。一方では、Fig.3に示したように、試料に対して、硝酸浸漬処理を施した試料P-NDの接触抵抗は、高いままでおり、若干増加する傾向が見られたことから、硝酸浸漬処理は自然酸化皮膜の厚さを減少させるものの導電性を高める作用は認められない。Klimuraらも硝酸浸漬処理によって酸化皮膜の密度が高まており、微細な成形は酸素欠損の少ない酸化皮膜が形成されていると考察している。絶縁体であるTiO_2に酸素欠損が導入されたTiO_Nは、n型半導体になり導電性を示すことが知られている。硝酸浸漬処理には酸化皮膜の酸素欠損を少にする作用があるとするならば、この点からも導電性を高める作用はないと推定される。

一方、TiCが形成されている表面に硝酸浸漬処理を施した場合（試料C-ND）、低い接触抵抗を維持していた。Fig.5の薄膜X線回折およびFig.6のC、Oの表面濃度分布の結果から、硝酸浸漬処理によって、TiCが減少してTiO_2が形成されている。この結果から、硝酸浸漬処理によって、式（2）のようにTiCが溶解して生成したTiイオンが、硝酸の強力な酸化力によってTiO_Nなどのチタン酸化物となり、酸化皮膜を形成したと推定される。表面に5〜7 nm程度の微細な粒子が析出した様相を呈していることから、これはTiO_2が表面に析出して形成されたと考える。加えて、硝酸浸漬処理の際に蒸発表面からの発泡現象が見られるように、表面に30〜50 nm程度の凹凸が一層に観察されること、この凹凸サイズがTiCの析出サイズ10〜40 nmと同程度であることから、表面のTiO_2層とTiC層の間は薄く変色しなかったことから、安定性の高い酸化皮膜であると推察される。

Fig.7およびFig.8のXPSの結果から、試料C-NDの表面から約5 nmの深さの領域には、TiCの存在が認められない。一方、Fig.9およびFig.10の断面TEM観察では、TiCが酸化チタンの下部に分布している。この2点から、硝酸浸漬処理した材料の表面構造はFig.12の模式図のように示すことができる。すなわち、TiCは表面には露出しておらず酸化チタンで覆われており、一部のTiCは金属Ti側の表面面にも分布していると推定される。接触抵抗が低いこの硝酸洗浄処理と前処理によりTiCが存在している点である。本曝露試験のような酸性環境下で溶解するTiCを、硝酸浸漬処理によって形成される安定的な酸化チタンで覆うことにより、接触抵抗の安定性をなす耐酸性が高まっていると推察した。

試料C-NDにおいて低い接触抵抗が得られる機構として、a)導電性がある酸化チタンが形成されている、あるいはb)酸化チタン内でトンネル効果が起こっていることが推定できる。以下に、上述の解析結果と導電性を有する表面構造について考察する。Fig.7に示したXPSのプロファイルにおいて、試料C-NDで強いTiO_2のピークの他に、TiO_N、TiO、Tiの結合エネルギーの位置にプロードなピークが見られた。最表面（XPSの検出深さ約5 nm）はTiO_2を主体とする酸化皮膜内にTiO_N、TiO、Tiが分布している構造と考えられる。導電性を有するTiO_N、TiO、Tiが酸化皮膜内の導電パスを形成して、TiCとの導電性を担う機構が考えられる。また、最表面側から酸素を多く含む、TiO_N、TiO、TiO、Tiの順に層を成していると仮定すると、最表面のTiO_Nの厚さは5 nm未満（XPS検出深さ）と極めて薄くなる。一般的には電子伝導体が10 nm程度以下の厚さになるとトンネル効果によって良好な電子伝導が生じ得ること、また、トンネル効果による酸化皮膜の電気抵抗（Ω）は皮膜厚さd（A）とすると10^{-1}\text{Ωcm} と比例することから、TiO_N厚さが5 nm未満であることを考慮すると本試料の導電性にトンネル効果が寄与している可能性は否定できない。酸化皮膜と金属Tiとの間に酸化皮膜中に導電性物質であるTiC粒子が存在している構造であるが、この電気抵抗率は約50 Ωcmと金属Tiと同等であることから、電気抵抗を大幅に低下させる要因とは考えにくい。

最後に、実用価値において想定される、より低いpHとふっ化物イオン濃度が酸化皮膜の耐久性に影響を与える可能性が示唆されており、さらに電位、酸素、水素等の影響についても考慮する必要がある。そのため、今後さらにこれらの影響について検証する必要がある。

5. 結言

冷却圧延した純チタン1種板を用いて酸洗によって表面にTiCが生成した試料およびTiNとTiNを生成した試料を作製し、初期接触抵抗、硫酸水溶液曝露試験後（pH4硫酸水溶液、80℃、4日）の接触抵抗および変色を評価した。さらに、硝酸浸漬処理をTiC生成表面処理として同様の試験を行った。表面へのチタン系導電性物質の生成と硝酸浸漬を検証する必要がある。
チタン板表面へのチタン酸化物、窒化物生成による接触抵抗の低下と硫酸水溶液中における安定性

処理の接触抵抗への効果について、表面構造の観点から解析を行った。結果を以下にまとめる。

(1) チタン系導電性物質であるTiCやTiN、TiとNの表面への生成によって、初期の接触抵抗が10 (mΩ cm²) 未満に低下する。しかし、酸性環境であるpH4の硫酸水溶液中に曝露すると接触抵抗は100 (mΩ cm²) 以上に増加する。接触抵抗が増加した表面には酸化チタンが析出した様相を呈しており、著しく変色する。

(2) 硫酸水溶液中に曝露し接触抵抗が高まった表面は、TiCが減少しTiO₂が生成した。表面のTiCが溶解しTiが加水分解反応によりTiO₂を生成し、表面に析出する機構を推察した。このTiO₂は接触抵抗の増加と変色を引き起こす。

(3) TiCが形成された表面に硝酸浸漬処理を施すことによって、pH4の硫酸水溶液中に曝露した後も接触抵抗はほとんど増加せず10 (mΩ cm²) 未満と低い。色差を1と色調も変化しない。しかし、pH3やふっ化物イオンを5 ppm含む硫酸水溶液曝露の場合には接触抵抗が19～20 (mΩ cm²) に増加するが、他試料に比べてきわめて低くである。硝酸浸漬処理によって表面の安定性すなわち耐硫酸水溶液性が高まった。

(4) 硝酸浸漬処理によって、TiCの一部が溶解し生成したTiイオンの酸化力によって穏密なTiO₂となり、TiCを覆うように形成し、硫酸溶液下での安定性を増したためと推察した。また、安定なチタン酸化皮膜内部に導電性を有するTiO₂、TiO₂、Tiが分散したままでて薄い皮膜構造となっており、これが高い導電性と耐酸性を両立した原因と推察された。

文献

1) 植村高男, 関政, 土井政史, 正木康浩, 工藤幸夫: 固体高分子形燃料電池/水素エネルギー利用による報告会会員稲葉, 新エネルギー・産業技術総合開発機構, 神奈川, (2003), 79.
2) T.Satoh, S.Sakashita, T.Yashiki and M.Fukuda: Kobe Steel Eng. Rep., 55 (2005), 48.
3) T.Satoh and J.Suzuki: Kobe Steel Eng. Rep., 60 (2010), 29.
4) J.Inamura and Y.Tarutani: Nippon Steel & Sumitomo Met. Tech. Rep., 396 (2013), 111 (in Japanese); 106 (2014), 108.
5) M.Ueda, Y.Mori, M.Hashimoto, S.Yamamura, S.Tanase, Y.Aoi, Y.Iwasa and S.Sakai: J. Jpn. Inst. Met., 71 (2007), 545.
6) M.Seido and O.Yoshioka: Titan. Jpn., 52 (2004), 291.
7) M.Washima, M.Seido, K.Nakagawa and H.Numata: Hitachi Cable Tech. Rep., 24-1 (2005), 39.
8) M.Li, S.Luo, C.Zeng, J.Shen, H.Lin and C.Cao: Corros. Sci., 46 (2004), 1369.
9) Y.Wang and D.O.Northwood: J. Power Sources, 165 (2007), 293.
10) H.Wang and J.A. Turner: Int. J. Hydrog. Energy, 36 (2011), 13008.
11) H.Yashiro, Y.Yokosawa, S.Kure, M.Kumagai, S.Myung and Y.Katada: Zairyo-to-Kankyô, 62 (2013), 439.
12) L.Wang and J.Sun: J. Renew. Sustain. Energy, 5 (2013), 021407.
13) Y.Ken, J.Chen, Y.Chen, J.Chen and W.Qiu: J. Nanomater., 2016 (2016), Article ID 4894062.
14) H.Holleck: J. Vac. Sci. Technol. A, 4 (1986), 2661.
15) K.Khoejier, H.Savaloni, E.Shokraii, Z.Dehghani and N.Z.Dehnavi: J. Theor. Appl. Phys., 7 (2013), 37.
16) K.Takahashi, M.Kaneko, T.Hayashi, I.Muto, J.Tamenari and K.Tokuno: Tetsu-to-Haganè, 99 (2004), 278.
17) K.Takahashi, T.Hayashi, J.Tamenari and K.Tokuno: CAMP-ISU, 17 (2004), 1321.
18) K.Takahashi, T.Hayashi and K.Ushioda: Tetsu-to-Haganè, 102 (2016), 209.
19) K.Takahashi and K.Tokuno: CAMP-ISU, 30 (2017), 1075, CD-ROM.
20) M.Kaneko, K.Takahashi, T.Hayashi, I.Muto, K.Tokuno and K.Kimura: Tetsu-to-Haganè, 89 (2003), 833.
21) M.Kaneko, K.Takahashi, T.Hayashi, K.Tokuno and I.Muto: Mater. Jpn., 43 (2004), 61.
22) M.Kaneko, M.Kimura and K.Tokuno: Corros. Sci., 52 (2010), 1889.
23) Y.Wang and D.O.Northwood: Int. J. Electrochem. Sci., 1 (2006), 447.
24) Y.Soma, I.Muto and N.Hara: Mater. Trans., 51 (2010), 939.
25) M.Kimura and M.Kaneko: 18th Int. Corrosion Cong. 2011, Australasian Corrosion Association, Victoria, (2011), 241.
26) M.Kaneko, K.Tokuno and M.Kimura: CAMP-ISU, 30 (2017), 1028, CD-ROM.
27) S.Lee, C.Huang and Y.Chen: J. Mater. Process. Technol., 140 (2003), 688.
28) S.Lee, C.Huang, J.Lai and Y.Chen: J. Power Sources, 131 (2004), 162.
29) 固体高分子形燃料電池システム技術開発事業後評価報告書, 独立行政法人新エネルギー・産業技術総合開発機構 燃料電池・水素技術開発部, 神奈川, (2005), 168.
30) M.A.Laughton: Power Eng. J., 16 (2002), 37.
31) K.Fuji: Dr. Eng. thesis, Yokohama National University, (2015), yun. repo.nii.ac.jp/fuji-keitaro-thesis.pdf, (accessed 2017-11-15).
32) T.Hayakawa, K.Nizuma and Y.Utsushikawa: IEEE Trans. Fundament. Mater., 126 (2006), 385.
33) H.Nozaki and T.Ida: Seisan-konkyô, 16 (1964), 201.
34) Y.Lu, L.Hao, K.Sagara, H.Yoshida and Y.Jin: Mater. Trans., 54 (2013), 1981.
35) R.L.Clarke and S.K.Harnsberger: American Laboratory, 20 (1988), 8.
36) 阿部正記：電子物理概論，培風館，東京，(1990), 123.
37) H.Matsunuma and S.Takahashi: J. Inst. Electron. Commun. Eng. Jpn., 45 (1962), 613.