Aim of the study: In breast cancer, oestrogen receptor (ER), progesterone receptor (PgR), and HER2 (HER2/Neu) expression status are used to classify neoplasms into subtypes: Luminal A, Luminal B, HER2/Neu type, and Basal-like. The aim of the present study was to establish the molecular subtypes of breast cancers and their association with tumour characteristics and reproductive factors in Mexican women.

Material and methods: A total of 1326 biopsies of breast tumour tissues were analysed for ER, PR, and HER2/Neu by immunohistochemistry (IHC). Information regarding age, tumour characteristics, and node involvement profiles were collected.

Results: IHC established that the most common subtype of breast cancer was Luminal A (64.93%), followed by Basal-Like (13.88%), Luminal B (12.52%), and HER2/Neu (8.67%). T2-size tumours (> 2 cm but < 5 cm) were present in 47.59% of all patients. Univariate analysis showed that lymph node positivity ($p = 0.009$), stage ($p = 0.013$), and placement of the tumour ($p = 0.001$) were factors associated with breast cancer subtype.

Conclusions: Our data show that IHC is useful for distinguishing different subtypes of breast cancer and that Luminal A is the most common breast cancer subtype in the Mexican population. All subtypes were associated with unfavourable clinicopathological features, suggesting that late diagnosis is an important contributor to high mortality rates in the Mexican population.

Key words: breast cancer, immunohistochemistry, estrogen receptor, progesterone receptor, HER2.

The association of subtypes of breast cancer with tumour characteristics and reproductive factors in 1326 Mexican women

Gabriel Pérez-Rodríguez1, Catalina Aranda-Moreno1, Ivonne M. Olivares-Corichi2, Jose R. García-Sánchez2

1Hospital General Regional No. 72 IMSS. Estado de México, México
2Escuela Superior de Medicina del Instituto Politécnico Nacional, México

Introduction

Breast cancer (BC) is the main cause of death in women worldwide. In Mexico, BC is the primary cause of deaths related to neoplasia in women [1]. BC represents a group of tumours that display biological behaviour complicated by diverse clinical variability. Histological classification is an important criterion used to determine a prognosis and the most effective treatment for the patient [2–5]. For example, chemotherapy is commonly used for patients with high KI-67 values, while endocrine therapy is used for ER+ tumours, and anti-HER2 (trastuzumab) therapy is used for HER2 (+) tumours [6]. Furthermore, decisions regarding the use of post-operative adjuvant treatment in recurrent cases are generally based on the ER and HER2 status of the primary tumour and the disease-free interval, recurrence site, and the performance status of the patient [7]. Currently, immunohistochemistry (IHC) is used to classify breast cancer based on the presence or absence of expression of oestrogen receptors (ER+ and ER–). Two subtypes of ER+ tumours have been identified: luminal A (ER+ and/or PgR(+/−), Her2−) and luminal B (ER+, PgR(+/−), Her2+), in addition to two subtypes of ER− tumours: HER2/Neu (ER−, PgR−, Her2+), and Basal-like (ER−, PgR−, Her2−). While other classifications based on gene expression profiling have also been used to classify breast cancer, the use of this technology in hospitals is currently limited, and assessments are made difficult by the use of paraffin samples [8–11].

In Mexico, most health centres routinely use these biomarkers (ER, PR, and HER2) and IHC to make clinical determinations. However, there are few reports documenting which breast cancer subtypes are detected by each of these biomarkers [12, 13]. In the present study, we estimated the prevalence of these biomarkers in breast cancer subtypes and identified associations between reproductive factors and risk for particular subtypes of breast cancer.

Material and methods

Study population

Tlanepantla de Baz is located in the north of the state of Mexico; its population is about 664,225 (85% urban and 15% rural). Cancer cases are diagnosed in different hospitals, clinics, and pathology labs throughout of the state of Mexico, and represent only 60% of the population. Regional incidence in 2013 was 8.2 per 100,000 women of 25 years old or more.

Patients

The protocol was approved by the Human Ethics and Research Committee at Hospital Regional No. 72 of the Mexican Institute for Social Security. All patients involved in the study signed an informed consent waiver. The
The association of subtypes of breast cancer with tumour characteristics and reproductive factors in 1326 Mexican women

Statistical analysis
All statistical analyses were performed using SPSS version 22. Pearson’s \(\chi^2 \) test was used to investigate associations between categorical variables. A \(p \)-value of less than 0.05 (\(p < 0.05 \)) was considered statistically significant.

Results

Patients, clinicopathological features, and breast cancer subtypes

The study included 1326 patients diagnosed with breast cancer. The clinicopathological features of patients included in the study are shown in Table 1. Nearly the same percentage of patients were premenopausal as were postmenopausal. Most carcinomas were intermediate stage (70%), high grade (21%), and had a high association with positive nodal status (64%). Approximately 47.59% of tumours were between 2 and 5 cm, and 22.1% were larger (Table 1). Most tumours were ER positive (67.5%), while a smaller percentage were Her2/neu negative (21%). Patients were classified according to assessments of positive immunoreactivity for oestrogen receptor, progesterone receptor, and HER2/Neu. Table 2 shows the age at diagnosis and the classification obtained. The IHC study showed that Luminal A (64.93%) was the most common subtype, followed by Basal-like (13.88%), Luminal B (12.52%), and HER2/Neu (8.67%). The highest percentage of patients were aged 40–69 years (Table 2).

Tumour size in subtypes of breast cancer

With respect to tumour size, T2 was the most prevalent (> 2 cm but < 5 cm), with 47% of all patients scored as T2.

Table 1. Clinicopathologic features of the study population and immunohistochemical staining results

Clinopathologic features	No.	%
Total	1326	100
Age (years), mean ± SD	53 ±11	
Premenopausal	692	52.2
Postmenopausal	634	47.8
Stage		
I	119	9
II	936	70
III	281	21
Nodal status		
negative	477	36
positive	849	64
Tumor size		
T1 (< 2 cm)	402	30.32
T2 (2–5 cm)	631	47.59
T3 (> 5 cm)	293	22.1
ER status		
positive	1013	76.4
negative	313	23.6
PR status		
positive	896	67.5
negative	430	32.5
Her2/neu status		
positive	281	21
negative	1045	79
The Luminal A subtype was observed in the highest percentage of these patients (65%) (Fig. 1).

Interestingly, in the Basal-like and HER2/Neu subtypes (the two subtypes with highest mortality), 7% and 4% of the patients, respectively, had T2 tumours and 3% of the patients in both subtypes had T3 (> 5 cm) tumours (Fig. 1). These data show that in each breast cancer subtype, the majority of patients present unfavourable tumour size characteristics.

Relationship between breast cancer subtype, biological parameters, and reproductive factors

A statistical analysis was performed to explore the relationship between breast cancer subtypes and several factors, including positivity in the axillary lymph node, and the stage, side, and placement of the tumour. As shown in Table 3, χ^2 analysis revealed a significant association between breast cancer subtype and positivity in the lymph nodes, stage, and placement. In this context, luminal A patients displayed the highest axillary lymph node status, but not Basal like, luminal B, and HER2/Neu patients (39.44% vs. 9.5%, 8.8%, 6.18%, respectively). Similar behaviour was observed between these subtypes and stage II (45.78% vs. 9.43%, 9.58%, 5.81%) ($p = 0.009$). These data support the hypothesis that a late detection of this pathology is an important factor that could explain the high mortality in the Mexican population in this disease.

In contrast, there was not a significant association between subtypes and side (Table 3).

Because a large amount of evidence links breast cancer with reproductive factors, different parameters related to these factors were analysed [menopause status, late menopause (age ≥ 54 years), early menarche (age ≤ 11 years), late pregnancy (age ≥ 31 years), and nulligravida]. No significant association was observed between breast cancer subtypes and parameters related to reproductive factors (Table 4). Interestingly, the use of oral contraceptives was the only parameter that showed an association with subtypes of breast cancer (Table 4).

Discussion

BC is a major cause of morbidity and mortality in women worldwide. However, evidence indicates that more of 55% of new cases occur in developing countries [14]. In Mexico,
BC is a public health problem because it is the main cause of death by malignant tumours in women of reproductive age [1]. In this study, we observed that BC was often detected before of 50 years of age, similar to what has been reported by other authors in the Mexican population [15, 16]. This observation confirms that this pathology is detected in Mexican women a decade before the normal age of onset in other countries [17, 18]. This study also shows the importance of using biological markers to classify pathologies and to make decisions when treating patients. In this context, this study shows, using an analysis of ER, PR, and Her-2/Neu immunoreactivity in tumour biopsies, that Luminal A is the most common breast cancer subtype in our study population, followed by Basal-like, Luminal B, and HER2/Neu as the less common. Although these data show that 77.5% of patients (classified as luminal A and B) can be treated with ER inhibitors (tamoxifen) or aromatase inhibitors, the association established between these subtypes of tumours and unfavourable characteristics indicate that the late detection of these pathologies in our population is an important factor that probably reduces the success of treatments for this disease.

Basal-like and HER2/Neu breast cancer subtypes have higher mortality rates than the other subtypes in this study and were associated with unfavourable tumour characteristics, suggesting that the high mortality rate for these tumour types could also be related to late diagnosis.

Several studies have reported that ovarian hormones (oestrogens) and reproductive patterns play an important role in the development of breast cancer [19, 20]. However, our study showed no association between breast cancer subtypes and risk factors that have been described in other populations [21], with the exception of the use of oral contraceptives (Table 4). These findings suggest that the association between menstrual and reproductive factors with the development of breast cancer may differ in our study population and that these risk factors do not contribute to the incidence and mortality rate of this pathology in the study population.

In this study, we used a classification system based on the immunohistochemical detection of biological markers (ER, PR, and HER2/Neu). While the use of these biomarkers plays an important role in diagnostic and clinical practice and the guidance of endocrine therapy, very few studies have been reported in our study population. The tumour classifications identified in this study were comparable to studies performed in other countries [22, 23]. However, our data show that the use of these biomarkers allows a definition of the type of breast cancer, which may be useful

Table 4. Association of hormonal state with breast cancer subtype

	Luminal A Patients	Basal like Patients	Luminal B Patients	HER2/Neu Patients	*p value
Menopause status	861	184	166	115	0.104
pre	433	94	98	67	
post	428	90	68	48	
Late Menopause					0.409
yes	229	38	44	29	
not	632	146	122	86	
Menarche					0.346
yes	135	34	20	15	
not	726	150	146	100	
Late pregnancy					0.319
yes	163	30	22	19	
not	698	154	144	96	
Nulligravida					0.279
yes	97	21	11	15	
not	764	163	155	100	
Oral contraceptive					0.050
yes	144	32	21	9	
not	717	152	145	106	

*p ≤ 0.05 was considered as statistically significant

Fig. 1. Distribution of breast cancer subtypes by tumor size

Table 4. Association of hormonal state with breast cancer subtype

	Luminal A Patients	Basal like Patients	Luminal B Patients	HER2/Neu Patients	*p value
Menopause status	861	184	166	115	0.104
pre	433	94	98	67	
post	428	90	68	48	
Late Menopause					0.409
yes	229	38	44	29	
not	632	146	122	86	
Menarche					0.346
yes	135	34	20	15	
not	726	150	146	100	
Late pregnancy					0.319
yes	163	30	22	19	
not	698	154	144	96	
Nulligravida					0.279
yes	97	21	11	15	
not	764	163	155	100	
Oral contraceptive					0.050*
yes	144	32	21	9	
not	717	152	145	106	

*p ≤ 0.05 was considered as statistically significant

Fig. 1. Distribution of breast cancer subtypes by tumor size
when selecting the best treatment or when establishing which patients have a higher risk of secondary effects from cytotoxic treatments.

In conclusion, this study describes the subtypes of breast cancer most frequently detected in Mexican women and establishes an association in this population between breast cancer and biological parameters and hormonal state. This classification provides a system for defining breast cancer and supports the use of these biomarkers in the determination of diagnosis and prognosis in these patients.

The authors declare no conflict of interest.

References
1. Knaul FM, Lopez Carrillo L, Lazcano Ponce E, Gomez Dantes H, Romieu I, Torres G. Breast cancer: a challenge for society and health systems. Salud Publica Mex 2008; 51 Suppl 2: s138-40.
2. Blows FM, Driver KE, Schmidt MK, et al. Subtyping of breast cancer by immunohistochemistry to investigate a relationship between subtype and short and long term survival: a collaborative analysis of data for 10,159 cases from 12 studies. PLoS Med 2010; 7: e1000279.
3. Cheang MC, Chia SK, Voduc D, et al. Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J Natl Cancer Inst 2009; 101: 736-50.
4. Hugh J, Hanson J, Cheang MC, et al. Breast cancer subtypes and response to docetaxel in node-positive breast cancer: use of an immunohistochemical definition in the BCIRG 001 trial. J Clin Oncol 2009; 27: 1168-76.
5. Nielsen TO, Hsu FD, Jensen K, et al. Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res 2004; 10: 5367-74.
6. Goldhirsch A, Ingle JN, Gelber RD, Coates AS, Thurlimann B, Senn HJ. Thresholds for therapies: highlights of the St Gallen International Expert Consensus on the primary therapy of early breast cancer 2009. Ann Oncol 2009; 20: 1319-29.
7. Hortobagyi GN. Treatment of breast cancer. N Engl J Med 1998; 339: 974-84.
8. Bertucci F, Finetti P, Birnbaum D. Basal breast cancer: a complex and deadly molecular subtype. Curr Mol Med 2012; 12: 96-110.
9. Bertucci F, Finetti P, Cervera N, Maraninchi D, Viens P, Birnbaum O. Gene expression profiling and clinical outcome in breast cancer. Omics 2006; 10: 429-43.
10. Cava C, Bertoli G, Ripamonti M, Mauri G, Zoppis I, Rosa PA, Gilardi MC, Castiglioni I. Integration of mRNA Expression Profile, Copy Number Alterations, and microRNA Expression Levels in Breast Cancer to Improve Grade Definition. PloS One 2014; 9: e97681.
11. Sotiriou C, Piccart MJ. Taking gene-expression profiling to the clinic: when will molecular signatures become relevant to patient care? Nat Rev Cancer 2007; 7: 545-53.
12. Gomez P, Rivadeneira I, Rabago M, Guzman-Patraca C. Estrogen receptors in human breast cancer in Mexican patients. Arch Invest Med (Mex) 1980; 11: 303-13.
13. Martinez ME, Werthheim BC, Natarajan L, et al. Reproductive factors, heterogeneity, and breast tumor subtypes in women of Mexican descent. Cancer Epidemiol Biomarkers Prev 2013; 22: 1853-61.
14. Porter P. “Westernizing” women’s risks? Breast cancer in lower-income countries. N Engl J Med 2008; 358: 213-6.
15. Calderon-Garciduenas AL, Sanabria-Mondragon M, Hernandez-Beltran L, Lopez-Amador N, Cerda-Flores RM. Mammographic breast density patterns in asymptomatic Mexican women. Radiol Res Pract 2012; 2012: 127465.