Genetics of recurrent miscarriage: challenges, current knowledge, future directions

Kristiina Rull1,2, Liina Nagimaja1 and Maris Laan1*

1 Human Molecular Genetics Research Group, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
2 Department of Obstetrics and Gynecology, Women’s Clinic of Tartu University Hospital, Tartu, Estonia

INTRODUCTION

The occurrence of recurrent miscarriage (RM) has been estimated 1–3% of couples attempting to bear children (Berry et al., 1995; Rai and Regan, 2006; Branch et al., 2010). While fetal chromosomal abnormalities are responsible for 70% of sporadic miscarriages (Ogasawara et al., 2000; Philipp et al., 2003; Menasha et al., 2005), they account for considerably smaller fraction of pregnancy losses in RM couples. Today, clinical practice includes testing of several factors potentially increasing the risk of (recurrent) miscarriage, e.g., parental chromosomal anomalies, maternal thrombophilic, anatomic, endocrine, and immunological disorders (Bricker and Farquharson, 2002; Christiansen et al., 2008; Branch et al., 2010; Tang and Quenby, 2010). At least 50% of the RM cases have no deviations in any applied diagnostic test and are considered idiopathic, unexplained origin. In addition to clinical, environmental, and life-style risk factors, there is a growing evidence that RM has also genetic susceptibility. A review of initial observations indicated two to sevenfold increased prevalence of RM among first-degree blood relatives compared to the background population (Christiansen, 1996). Population-based register studies showed that overall frequency of miscarriage among the siblings of idiopathic RM is approximately doubled compared to general population (Nybo Andersen et al., 2000; Kolte et al., 2011). A recent genome-wide linkage scan using sibling pairs with idiopathic RM confirmed heterogeneity of contributing genetic factors (Kolte et al., 2011).

Unexplained RM is a stressful condition for a couple and supportive care is currently the only assistance that can be offered. Still, early recognition of a potential risk to miscarriage and systematic monitoring has beneficial effect in increasing live birth rates in RM couples (Jauniaux et al., 2006; Branch et al., 2010; Tang and Quenby, 2010; Musters et al., 2011). Genetic and genomic studies of RM have three main purposes: (1) identify DNA/RNA-based markers exhibiting direct predictive value to a couple’s risk to experience recurrent pregnancy losses; (2) capture the gene/protein expression profiles, pathways, and networks involved in (un)successful establishment of pregnancy; (3) apply hypothesis-based and hypothesis-free studies to pinpoint loci coding for novel non-invasive biomarkers applicable in clinical conditions for early pregnancy complications.

CHALLENGES IN STUDY DESIGN TO INVESTIGATE GENETICS AND “OMICS” OF RM

The design of genetic/“omics” studies to identify genes and biological mechanisms involved pathogenesis of RM is complex having several contradictory aspects regarding to the definition of phenotype, study objects, and functional effects to address (Figure 1).

DISCREPANCIES IN DEFINITION OF THE RM PHENOTYPE

Recurrent miscarriage is classically defined as the loss of three or more consecutive pregnancies before 20th gestational weeks (Berry et al., 1995; Jauniaux et al., 2006; Branch et al., 2010). Some experts consider two consecutive pregnancy losses sufficient for the diagnosis of RM because the recurrence rate and risk factors are similar to that after three losses (Branch et al., 2010). The faulty recall of the reproductive history, including or excluding the biochemical pregnancies (pregnancies documented only by a positive
FIGURE 1 | Two broad options to investigate the inheritable component of recurrent miscarriage (RM) are family based linkage studies and comparison of unrelated cases and controls. For multifactorial diseases in adulthood, the genetic association studies are superior to linkage analysis in pedigrees in terms of study design and power (Risch and Merikangas, 1996). In case of RM studies, the addressed subjects/biological materials represent genetic material from two generations: mother–father and offspring(s), both providing their own advantages and limitations. The affected processes are located in different compartments (mother–placenta–fetus) and involve aberrations in gene/protein expression influencing both maternal and fetal organisms.

urine or serum hCG test) and center-specific ascertainment biases cause discrepancies in setting the diagnosis of RM (Christiansen et al., 2005).

The couples with RM can be divided into subgroups according to their reproductive history: primary (no successful pregnancies), secondary (series of miscarriages after a live birth) and tertiary (three non-consecutive miscarriages) RM and they should be considered as separate entities representing probably different pathophysiological mechanisms leading to pregnancy loss. Immunological factors have been suggested to play a greater role in secondary RM, especially after the first-born son (Christiansen et al., 2004; Nielsen, 2011). Non-immunological risk factors, e.g., factor V Leiden mutation, tend to be associated mainly with primary RM (Wramsby et al., 2000).

The analysis power of genetics/“omics” research depends on the quality of the clinical history and applied diagnostic tests. Currently, the cases of idiopathic RM have been considered as preferred phenotype for the genetics research. However, the definition of idiopathic RM based on exclusions of known risk RM factors is facilities- and study-dependent. The association and/or causality of an etiologic factor with RM varies from “doubtful” to “definite” complicating the definition of idiopathic RM (Christiansen et al., 2005).

In summary, as RM is characterized by multifactorial etiology and variable penetrance and clinical outcome of recognized risk factors, a consensus in the clinical and research community has to be reached what factors should be tested before defining a particular case as idiopathic addressed via genetic/genomic studies.
OPTIONS FOR DEFINING THE STUDY OBJECTS
One of the most challenging questions in investigating the genetics of RM is defining the study object(s): female patient and/or couple with miscarriages, fetus, or placenta (Figure 1). In genetic/genomic context these options target three different genomes (mother, father, fetus/placenta) and four (epi)genomes (different for placenta and fetus). In addition, as the definition of RM is based on longitudinal data (several independent events), one should remember that each pregnancy and each conceptus is a unique genetic combination with unique epigenetic settings, unique environmental conditions regarding the efficiency of established maternal–fetal interphase, maternal nutrition, and health.

Several genes that regulate implantation, fetal and placental development, and maternal adaptation to pregnancy are synthesized by the fetus or the placenta, e.g., placental hormones as hCG, placental growth hormone and lactogen (Mannik et al., 2010; Nagirnaja et al., 2010; Newbern and Freemark, 2011). In this context, a placental (fetal) genome would represent an ideal RM case for (epi)genetic and genomic studies. However, there are severe limitations—the recruitment of couples/women at the RM event and difficulties in obtaining pure tissue material from the aborted fetus with no contamination with maternal cells. There are some genetic studies focused on RM compared to control placentas (e.g., HLA-C, HLA-G, p53, mtDNA mutations; Table 1) but the sample sizes in these studies never reach required statistical power.

As a solution, an ideal study would attempt a trio-design focusing on both partners of clinically well-described RM couples as well as aborted cases and live born children (as inner control) of the same couple. This would allow to directly address parental- and allele-specific gene expression or epigenetic modifications in placenta. The paternally inherited genetic factors contribute and combine with maternally inherited factors in the placental/fetal (epi)genome (Rull et al., 2008; Faridi and Agrawal, 2011; Ususkula et al., 2011). So far, most studies of couples have been limited to parental karyotyping, and in case of a structural chromosomal abnormalities their effect on couple's offsprings (Stephenson and Sierra, 2006; Franssen et al., 2011).

The identification of a suitable control group for women/couples with RM has its own great challenges. The ideal controls should be exposed to similar number of pregnancies at the same age of partners as the cases, and never experienced miscarriage. In a typical study the controls have been defined as women/couples with proven fertility when having at least one child, with limited information about their full reproductive history during the present or past partnerships. Delaying the childbirth until older reproductive age, the usage of contraceptive methods after birth of the one or two planned children, the change of co-habitant partners are frequent limitations for recruitment of the ideal control group.

CHALLENGES IN LINKING THE GENETIC VARIANTS WITH THE PATHOLOGICAL FUNCTIONAL EFFECT
A successful pregnancy can be achieved only via balanced dialog between mother and the fetus mediated through placenta. The pathologies may locate and influence physiology in different compartments (Figure 1). In maternal side, RM has been associated with genes responsible for impaired endometrial decidualization, apoptosis as well as inflammatory processes (Salker et al., 2010). Multiple (epi)genetic/genomic factors decrease sperm quality causing DNA damage and thus leading to poor fertilization, impaired embryo development and possibly to RM (McLachlan and O’Bryan, 2010; Brahem et al., 2011). The development of placenta and release of placently expressed proteins strongly influence both the fetal and maternal metabolism during the pregnancy (Fowden et al., 2009; Lewis et al., 2012).

GENETIC ASSOCIATION STUDIES OF RM: BIASES, CONTRACTIONS, LIMITATIONS
All conducted genetic association studies targeting RM have been designed as hypothesis-based candidate gene studies. The most frequently addressed genes in the context of RM are associated with the developing immunotolerance and inflammation and also with changes of maternal metabolism and blood coagulation (Table 1). Female partner of RM couple has been the most commonly addressed study subject.

The polymorphisms in almost 90 different genes have been investigated (Table 1). In most studies the association between a polymorphism and RM is negative, has not been replicated in follow-up studies or shows opposite results between studies. Inconsistencies may arise due to (i) differences in study design, definitions of RM and control group; (ii) focus on RM women instead of couples or placenta; (iii) low statistical power due to small sample size; (iv) ethnic difference in risk variants, population-specific low-impact gene variants increasing RM risk in consort; (v) contribution of life-style and environmental factors on the pregnancy course; (vi) secondary pathways affecting protein translation/metabolism leading to discrepancies between genotype and respective protein levels, e.g., Factor XII, Protein Z (Iinuma et al., 2002; Topalidou et al., 2009).

Most popular clinically tested polymorphisms in RM patients are thrombophilia-associated factor V (Leiden factor) mutation, factor II (prothrombin) G20210A mutation and MTHFR C667T variant encoding the methylenetetrahydrofolate reductase enzyme with reduced activity. However, meta-analyses or large studies focusing on these factors in relation to RM risk have controversial results (Table 1). There is also uncertainty about prognostic implications of positive tests as full thrombophilia screen can produce abnormal results in 20% of women with uncomplicated obstetric histories (Branch et al., 2010; Tang and Quenby, 2010).

Another set of thoroughly investigated polymorphisms providing contradictory results in association with RM are in genes involved in inflammation (e.g., IL1B, IL6, IL10, IFNy, TNFα; Table 1). The balance of locally produced pro-inflammatory and anti-inflammatory cytokines was suggested to be critical for successful pregnancy (Choi and Kwak-Kim, 2008). It was proposed that a spectrum of thrombophilic and inflammation related genetic variants rather than single polymorphisms shape the cumulative risk of RM (Rey et al., 2003; Jivraj et al., 2006; Christiansen et al., 2008).

The immunological mechanisms responsible for the development of the tolerance to semi-allogenic fetal “graft” by the maternal immune system has been the third attractive target for genetic studies. Positively, a majority of association studies with...
Table 1 | Genes targeted to genetic association studies in relation to RM risk.

Gene name	Genetic associationa	Main effect of the polymorphismc	Key reference			
INFLAMMATION						
IFNG	Y/N	Y/N	F	Y	Y	Bombell and McGuire (2008), Daher et al. (2003)
IL1B	Y/N	Y/N	F	Y	Y	Bombell and McGuire (2008)
IL1RN	Y/N		F	Y	Y	Choi and Kwak-Kim (2008)
IL1R1	N	F	Y	Y	Traina et al. (2011)	
IL4	N	F	Y	Y	Kamali-Sarvestani et al. (2005), Sajio et al. (2004a)	
IL6	Y/N	Y/N	F	Y	Y	Bombell and McGuire (2008), Daher et al. (2003)
IL10	Y/N	Y/N	F	Y	Y	Bombell and McGuire (2008), Daher et al. (2003)
IL12B	N	F	Y	Y	Ostojic et al. (2007)	
IL18	Y/N		F	Y	Y	Al-Khateeb et al. (2011), Naemi et al. (2006)
TNFa	Y/N	N	F	Y	Y	Bombell and McGuire (2008), Daher et al. (2003)
TNFp	N	F	Y	Y	Kamali-Sarvestani et al. (2005), Prigoshin et al. (2004)	
TNFR1	N	F	Y	Y	Yu et al. (2007)	
THROMBOSIS AND CARDIOVASCULAR SYSTEM						
ACE	Y/N	F	Y	Y	Goodman et al. (2009b), Zhang et al. (2011)	
ACHY	Y	F	Y	Y	Parveen et al. (2009b)	
AGT	N	F	Y	Y	Goodman et al. (2009b), Helfer et al. (2002)	
ANXA5	Y	F	Y	Y	Bogdanova et al. (2007), Miyamura et al. (2011)	
APOB	N	F, C	V	Y	Hohlagschwandner et al. (2003), Yenicesu et al. (2009)	
APOE	Y/N	F	Y	Y	Bianca et al. (2010), Goodman et al. (2009a)	
AT1R	Y/N	F	Y	Y	Buchholz et al. (2004), Fatini et al. (2000)	
EPCR	Y/N	F, C	Y	Y	Dendana et al. (2012), Kaare et al. (2007)	
F2	Y/N	Y/N	F, C	Y	Y	Kovalevsky et al. (2004), Silver et al. (2010), Toth et al. (2008)
F5	Y/N	Y/N	F, C	Y	Y	Dudding and Attia (2004), Kovalevsky et al. (2004), Rey et al. (2003), Rodger et al. (2010), Toth et al. (2008)
FGB	N	F, C	Y	Y	Goodman et al. (2006), Yenicesu et al. (2009)	
F12	N	N	F	Y	Y	Sotiriadis et al. (2007), Walch et al. (2005)
F13A	Y/N	N	F, C	Y	Y	Coulam et al. (2006a), Sotiriadis et al. (2007), Yenicesu et al. (2009)
GPla	Y	F	Y	Y	Gerhardt et al. (2005)	
GPl1a	Y/N	F, C	Y	Y	Ivanov et al. (2010), Piusch et al. (2001), Yenicesu et al. (2009)	
HMOX1	Y	F	Y	Y	Denschlag et al. (2004)	
JAK2	N	F	Y	Y	Dahabreh et al. (2009)	
MTHFD1	N	F	Y	Y	Crisan et al. (2011)	
MTHFR	Y/N	Y/N	F, C	Y	Y	Nelen et al. (2000), Ren and Wang (2006), Toth et al. (2008)
PAI-1	Y/N	N	F	Y	Y	Buchholz et al. (2003), Goodman et al. (2009b), Sotiriadis et al. (2007)
PZ	Y/N	F	Y	Y	Dossenbach-Glaninger et al. (2008), Topalidou et al. (2009)	
SELP	Y	F	Y	Y	Dendana et al. (2011)	
TAFI	Y	F	Y	Y	Masini et al. (2009)	
TGFp1	N	F	Y	Y	Prigoshin et al. (2004), von Linsingen et al. (2005)	
TM	N	C	Y	Y	Kaare et al. (2007)	
TSP	N	F	Y	Y	Kim et al. (2006a)	
VEGF	Y/N	F	Y	Y	Papazoglou et al. (2006), Traina et al. (2011)	
ZPI	Y	F	Y	Y	Alsheikh et al. (2012)	
DETOXIFICATION SYSTEM						
AHR	N	F	Y	Y	Sajio et al. (2004b)	
ARNT	N	F	Y	Y	Sullivan et al. (2006)	
CYP1A1	Y/N	F	Y	Y	Parveen et al. (2010), Sajio et al. (2004b)	
CYP1A2	Y/N	F	Y	Y	Sajio et al. (2004b), Sata et al. (2005)	
Table 1 | Continued

Gene name	Genetic associationa	Main effect of the polymorphismc	Key reference		
	Single study	Meta-	Study casesb	Mother	Fetus/placenta
CYP1B1	N	F	Y	Saijo et al. (2004b)	
CYP2D6	Y/N	F	Y	Parveen et al. (2010), Suryanarayana et al. (2004)	
GSTM1	Y/N	F	Y	Parveen et al. (2010), Sata et al. (2003a)	
GSTP1	Y/N	F	Y	Parveen et al. (2010), Zusterzeel et al. (2000)	
GSTT1	Y/N	F	Y	Parveen et al. (2010), Sata et al. (2003a)	
NAT2	N	F	Y	Hirvonen et al. (1996)	

CHROMOSOMAL SEGREGATION

| SYCP3 | Y/N | F | Y | Bolor et al. (2009), Hanna et al. (2011), Mizutani et al. (2011) |

IMMUNE RESPONSE

CCR5	Y/N	F	Y	Parveen et al. (2009a, 2011b)
CTLA4	Y	F, trio	Y	Tsai et al. (1998), Wang et al. (2005)
CX3CR1	Y	F	Y	Parveen et al. (2011b)
HLA-A, B	Y/N	N, C, trio	Y	Beydoun and Saftias (2005), Christiansen et al. (1999), Kolte et al. (2010)
HLA-C	Y/N	N, F, C, P	Y	Beydoun and Saftias (2005), Faridi and Agrawal (2011), Hibi et al. (2010), Moghrabyp (2010)
HLA-E	Y/N	F, C	Y	Kanai et al. (2001), Mosaad et al., Steffensen et al. (1998)
HLA-G	Y/N	F, C, trio	Y	Aruna et al. (2010), Cecati et al. (2011), Hvid et al. (2004), Kolte et al. (2010), Ober et al. (2003)
HLA-DPB1	Y	C	Y	Takakuwa et al. (1999)
HLA-DOA1, HLA-DOB1	Y/N	F, C, trio	Y	Aruna et al. (2011), Kruse et al. (2004), Stock et al. (1995)
HLA-DR1	Y/N	Y, F, C, trio	Y	Beydoun and Saftias (2005), Christiansen et al. (1999), Kolte et al. (2010), Kruse et al. (2004)
INDO	N	F	Y	Aman et al. (2011)
KIR	Y/N	F, C	Y	Faridi et al. (2009a), Hibi et al. (2008), Witt et al. (2004)
MBL	N	C	Y	Baxter et al. (2001)

HORMONAL REGULATION

AR (and XCI)d	Y/N	Y	F	Y	Karvela et al. (2008b), Su et al. (2011a)
hCG beta (CGBS/β)	Y	C	Y	Rull et al. (2008)	
CYP17A1	Y/N	F	Y	Litridis et al. (2011), Sata et al. (2003b)	
CYP19A1	Y	F	Y	Cupisti et al. (2009), Suryanarayana et al. (2007)	
PROGINS, ESR1/2	Y/N	N, F	Y	Su et al. (2011a), Traina et al. (2011)	

PLACENTAL FUNCTION

ACP1	Y	F	?	?	Gloria-Bottini et al. (1996)
ADA	Y	F	?	?	Nicota et al. (1998)
ADRA2B	N	F	Y	Galazios et al. (2011)	
ANGPT2	N	F	Y	Pietrowski et al. (2011)	
CD14	N	F	Y	Karhukorpi et al. (2003)	
EG-VEGF, PKR1, PKR2	Y	F	Y	Su et al. (2010)	
H19	N	C	Y	Ostojic et al. (2011)	
IGF-2	Y	C	Y	Ostojic et al. (2011)	
KDR	Y	F	Y	Su et al. (2011b)	
MCP	N	F	Y	Heuser et al. (2011)	
MMP9	N	F	Y	Singh et al. (2012)	
NOS3	Y/N	F	Y	Karvela et al. (2008a), Parveen et al. (2011a)	
P53	Y/N	Y, F, C, trio	Y	Coulam et al. (2006b), Kaare et al. (2009a), Pietrowski et al. (2005), Tang et al. (2011)	
PAPP A	Y	F	Y	Suzuki et al. (2006)	
PGM1	Y	C	Y	Bottini et al. (1983), Nicota et al. (1982)	

(Continued)
immune response related genes have been conducted for RM couples (Table 1). Unfortunately, most reports on the studied gene variants in relation to RM are controversial. There are numerous studies on polymorphisms affecting the expression of HLA-G (e.g., 14 bp indel in exon 8 of the 3′ UTR), the most dominant HLA antigen in blastocysts and trophoblastic tissue. Recent analyses have suggested that specific combinations of fetal (paternal) HLA-C and maternal killer immunoglobulin-like receptor (KIR) gene variants correlate with the risk to RM and other pregnancy complications (Hiby et al., 2010; Chazara et al., 2011; Colucci et al., 2011). KIRs regulate activity of uterine NK cells that are implicated in trophoblast invasion.

During the last years the focus has gradually switched from maternal factors to the genes involved in the function of placenta, carrying maternally and paternally originated gene copies (Table 1). The investigators have targeted placenta-specific genes such as hCG beta coding CGB5 and CGB8, as well as loci with wider expression profile but exhibiting a specific role in placental function such as PAPPA, IGF-2, and p53 (Suzuki et al., 2006; Ostojic et al., 2008; Tang et al., 2011). Although initial genetic studies have exhibited positive association between identified novel gene variants and an increased risk to RM, replication studies have to confirm these findings.

Table 1 | Continued

Gene name	Genetic association	Main effect of the polymorphism	Key reference			
	Single study	Meta-analysis	Study cases	Mother	Fetus/placenta	
STAT2	Y	F		y		Finan et al. (2010)
TPH1	N	F		f	y	Unfried et al. (2001)

MITOCHONDRIAL FUNCTION

| Mutational burden | Y/N | F, C, trio | y | Kaare et al. (2009b), Seyedhassani et al. (2010), Vanniarajan et al. (2011) |

ADVANCES AND FUTURE DIRECTIONS IN “OMICS” AND (EPI)GENETICS

Genetic association studies based on pre-selected candidate genes have shown their limitations as RM represents a complex phenotype with no identified major genetic factor(s). In order to achieve the main goal – to identify predictive genetic risk factors and biomarkers for RM, advances are needed in clinic as well as in the research strategies.
RECRUITMENT STRATEGY
Suggested advances in clinic include networking of research
groups aiming to collect large sample-sets targeting RM phenotype
under joint criteria and guidelines. Recruitment of both couples
suffering from RM as well as controls should be encouraged,
along with detailed clinical and reproductive history. Andro-
ologists are to be involved to analyze reproductive parameters
of male partners. Recruitment of duos (mother–placenta/fetus)
or trios (mother–father–placenta/fetus) would provide further
bonus. Studies should be enhanced by collecting the material for
DNA, RNA, and protein studies from the same recruited fam-
ily, e.g., parental blood samples, paternal sperm analysis, maternal
dome-trial tissue, multisite placental tissue sampling. A network
of targeted clinics would facilitate carrying out validation of novel
identified biomarkers by setting up the large multicentre studies.

INTRODUCING “OMICs” INTO RM RESEARCH
With rapidly evolving technological advances in genetics/“omics”
there are multiple appealing perspectives in RM biomolecular
research (Figure 1).

Up to now, no hypothesis-free genome-wide association stud-
ies (GWAS) for identification of common risk variants for RM
have been performed. The main reason is that large number of
uniformly defined RM affected individuals/couples is required to
reach sufficient power in such heterogenous phenotype (Eichler
et al., 2010). Copy number variations (CNVs) involving one or sev-
eral loci are expected to exhibit a stronger effect on the phenotype
compared to SNPs. Comparative genome hybridization-based
microarray analysis of 26 euploid miscarriages picked up 11
unique inherited CNVs, two of them involve genes TIMP2 (86 kb
duplication) and CTNNA3 (72 kb deletion) that are imprinted
and maternally expressed in the placenta (Rajcan-Separovic et al.,
2010). The first results of ongoing study using genome-wide
genotyping data to map common CNVs demonstrated signifi-
cantly more frequent prevalence of a 52.4-kb locus duplication
on chromosome 5 among RM couples in Estonian and Danish
population (Nagirnaja et al., 2011). These pilot studies alert for
further investigations of rare and common CNVs as risk factors
for RM.

Transcriptomics and proteomics based gene expression profil-
ing in tissues responding to ongoing miscarriage event offers an
attractive approach to identify differentially expressed biomark-
ers (Back et al., 2007). A decreased expression level in chori-
villous epithelial cells of RM patients was shown for angiogenesis related loci,
whereas the expression of several apoptosis-related genes was
increased (Choi et al., 2003; Back, 2004). The first whole-genome
gene expression profiling of placental tissue from RM compared
to uncomplicated pregnancies identified and replicated signific-
ant difference expression of TNF-related apoptosis-inducing
ligand (TNFSF10; TRAIL) and S100A8 encoding for inflammatory
marker calprotectin (heterodimer S100A8/A9; Rull et al., 2012).
In comparative proteome study applying 2-DE and MALDI-
TOF/MS analyses of the follicular fluids of RM patients, abnormal
expression of complement component C3c chain E, fibrinogen
γ, antithrombin, angiogensinogen, and hemopexin precursor was
reported (Kim et al., 2006b), and in the blood serum from RM
patients the expression of ITI-H4 was altered (Kim et al., 2011).

INTEGRATING OF GENETICS AND EPIGENETICS
An important factor of placental development and function is
epiphenotype regulation governing the control of gene expression
(Nelissen et al., 2011). Epigenomic marks include CpG methyla-
tion in DNA, histone modifications in chromatins, and non-coding
regulatory RNAs. The specific features in placental epigenome are
(i) active temporal dynamics – changes in epigenetic marks over
course of pregnancy (Novakovic et al., 2011); (ii) complex orga-
nization of the DNA methylome and presence of tissue-specific
differentially methylated regions (Choufani et al., 2011; Chu et al.,
2011); (iii) abundance of parental-specific imprinted genes (Con-
stanceia et al., 2004; Moore and Oakley, 2011); (iv) evidence of
polymorphic methylation or imprinting (Yuen et al., 2009); (v)
placenta-specific microRNAs (miRNAs; Luo et al., 2009; Maccani
and Marsit, 2009; Noguer-Dance et al., 2010); (vi) effect of envi-
ronmental factors, e.g., maternal smoking (Maccani et al., 2010).
Although altered placental epigenetics has been demonstrated in
cases of fetal growth disturbances, preeclampsia, and gestational
diabetes (Nelissen et al., 2011), there is limited information on the
role of aberrant epigenetic profiling in RM. Epigenetic comparison
of different cell types in early pregnancy is technically challenging.
The only systematically addressed topic is skewed X-chromosome
inactivation (XCI; the preferential inactivation of one of two X-
chromosomes in female cells). Initial findings that XCI is increased
in women with RM were promising (Sangha et al., 1999; Lanasa
and Hogge, 2000; Van den Veyver, 2001), but the follow-up studies
have revealed that the skewed XCI is associated rather with mater-
nal age and fetal karyotype than solely with RM (Hogge et al.,
2007; Pasquier et al., 2007; Warburton et al., 2009). Only single
studies are available for gene-specific methylation in RM-related
tissues (placenta, endometrium, maternal blood). For the biallel-
ically expressed hCG beta-subunit coding CGB5, three placentas
(including two RM) were reported with monoallelic expression
of maternal alleles and hemimethylated gene promoters suggesting
the association of methylation allelic polymorphism with preg-
nancy loss (Uuskula et al., 2011). Methyltransferase (G9aMT)
and methylated histone (H3-K9) expressions were significantly lower
in decidual/endometrial tissue of unexplained RM cases compared
to controls (Fatima et al., 2011). As a support to the contribu-
tion of epigenetic regulation of implantation, significantly more
abnormal methylation values for APC and imprinted PEG3 were
reported in chorionic villus samples of abortions/stillbirth than in
other studied genes (Zechnner et al., 2009).

No targeted microRNA expression profiling has been per-
formed for RM-related tissues. Still, there are placenta-specific
miRNAs capable of crossing the placental barrier and detectable
in maternal plasma (Chim et al., 2008; Miura et al., 2010) and an
altered profile of several miRNAs has been shown in pregnancy
complications. Among the RM-associated genes, the expression
of HLA-G was shown to be modulated by a 3’ UTR polymor-
phism exhibiting allele-specific affinity to microRNAs miR-148a,
miR-148b, and miR-152, and consequently differential mRNA
degradation and translation suppression processes (Tan et al.,
2007). A recent study showed association between two SNPs in
pre-miR-125a and increased risk to RM (Hu et al., 2011). As
miRNA expression data has been suggested to harbor potential in
discriminating disease samples with high accuracy (Schole et al.,
REFERENCES
Al-Khatteeb, G. M., Sater, M. S., Finan, R. R., Mustafa, F. E., Al-Busaidi, A. S., Al-Sulaiti, M. A., and Almawi, W. Y. (2011). Analysis of interleukin-18 promoter polymorphisms and changes in interleukin-18 serum levels underscores the involvement of interleukin-18 in recurrent spontaneous miscarriage. Fertil. Steril. 96, 921–926.
Alshheik, F. S., Finan, R. R., Almawi, A. W., Mustafa, F. E., and Almawi, W. Y. (2012). Association of the R67X and W303X nonsense polymorphisms in the protein Z-dependent protease inhibitor gene with idiopathic recurrent miscarriage. Mol. Hum. Reprod. 18, 156–160.
Amani, D., Ravangard, F., Niikawa, N., Yoshioka, K., Karimzadeh, M., Dehaghi, A. S., and Ghaderi, A. (2011). Coding region polymorphisms in the indoleamine 2,3-dioxygenase (IDO) gene and recurrent spontaneous abortion. J. Reprod. Immunol. 88, 42–47.
Aruna, M., Nagaraja, T., Andal Bhaskar, S., Tarakeswari, S., Reddy, A. G., Thangaraj, K., Singh, L., and Reddy, B. M. (2011). Novel alleles of HLA-DQ and -DR loci show association with recurrent miscarriages among South Indian women. Hum. Reprod. 26, 765–774.
Aruna, M., Sudheer, P. S., Andal, S., Tarakeswari, S., Reddy, A. G., Thangaraj, K., Singh, L., and Reddy, B. M. (2010). HLA-G polymorphism patterns show lack of detectable association with recurrent spontaneous abortion. Tissue Antigens 76, 573–578.
Bolor, H., Mori, T., Nishiyama, S., Ito, Y., Hosoba, E., Inagaki, H., Kogo, H., Ohue, T., Tsutsumi, M., Kato, T., Tong, M., Nishizawa, H., Pryor-Indaco, K., Kitaoaka, E., Sawada, T., Nishiyama, Y., Udagawa, Y., and Kuraishi, H. (2009). Mutations of the SYCP3 gene in women with recurrent pregnancy loss. Hum. Mol. Genet. 18, 2473–2477.
Bionca, S., Barrano, B., Cutuli, N., Indaco, L., Caltallotti, A., Milana, G., Barone, C., and Ettorre, G. (2010). No association between apolipoprotein E polymorphisms and recurrent pregnancy loss. Fertil. Steril. 93, 276.
Bogdanova, N., Horst, J., Chystun, M., Croucher, P. J., Nebel, A., Bohring, A., Todorova, A., Schreiber, S., Gerke, V., Krawczak, M., and Markoff, A. (2007). A common haplotype of the annexin A5 (ANXA5) gene promoter is associated with recurrent pregnancy loss. Hum. Mol. Genet. 16, 573–578.
Bolot, M., Mori, T., Nishiyama, S., Ito, Y., Hosoba, E., Inagaki, H., Kogo, H., Ohue, T., Tsutsumi, M., Kato, T., Tong, M., Nishizawa, H., Pryor-Indaco, K., Kitaoaka, E., Sawada, T., Nishiyama, Y., Udagawa, Y., and Kuraishi, H. (2009). Mutations of the SYCP3 gene in women with recurrent pregnancy loss. Hum. Mol. Genet. 18, 2473–2477.
Chazara, O., Xiong, S., and Moffett, A. (2011). Maternal KIR and fetal HLA-C: a fine balance. J. Leukoc. Biol. 90, 703–716.
Chim, S. S., Shing, T. K., Hung, E. C., Leung, T. Y., Lau, T. K., Chiu, R. W., and Lo, Y. M. (2008). Detection and characterization of placental microRNAs in maternal plasma. Clin. Chem. 54, 482–490.
Choi, H. K., Choi, B. C., Lee, S. H., Kim, J. W., Cha, K. Y., and Baek, K. H. (2003). Expression of angiogenesis- and apoptosis-related genes in chorionic villi derived from recurrent pregnancy loss patients. Mol. Reprod. Dev. 66, 24–31.
Choi, Y. K., and Kwak-Kim, J. (2008). Cytokine gene polymorphisms in recurrent spontaneous abortions: a comprehensive review. Am. J. Reprod. Immunol. 60, 91–110.
Choufani, S., Shapiro, J. S., Susiarjo, M., Butler, D. T., Grafodatskaya, D., Lou, Y., Ferreira, J. C., Pinto, D., Scherer, S. W., Shaffer, L. G., Couillin, P., Caniggia, L., Beyene, J., Slim, R., Bartolomei, M. S., and Weksberg, R. (2011). A novel approach identifies new differentially methylated regions (DMRs) associated with imprinted genes. Genome Res. 21, 465–476.
Christiansen, O. B. (1996). A fresh look at the causes and treatments of recurrent miscarriage, especially its immunological aspects. Hum. Reprod. Update 2, 271–293.
Christiansen, O. B., Nybo Andersen, A. M., Bosch, E., Daya, S., Delves, P. J., Hvid, V. T., Kuteh, W. H., Laird, S. M., Li, T. C., and van der Ven, K. (2003). Evidence-based investigations and treatments of recurrent pregnancy loss. Fertil. Steril. 83, 821–839.
Christiansen, O. B., Pedersen, B., Nielsen, H. S., and Nybo Andersen, A. M. (2004). Impact of the sex of first child on the prognosis in secondary recurrent miscarriage. Hum. Reprod. 19, 2946–2951.
Christiansen, O. B., Råsöm, K., Lauritsen, J. G., Grunnet, N., and Jersild, G. (1989). Association of maternal HLA haplotypes with recurrent spontaneous abortions. Tissue Antigens 34, 190–199.
Christiansen, O. B., Ring, M., Rogaard, A., Grunnet, N., and Grunnet, C. (1999). Association between HLA-DR1 and -DR3 antigens and unexplained repeated miscarriage. Hum. Reprod. Update 5, 249–255.
Christiansen, O. B., Steffensen, R., Nielsen, H. S., and Varming, K. (2008). Multifactorial etiology of recurrent miscarriage and its scientific and clinical implications. Gynecol. Obstet. Invest. 66, 257–267.
Chu, T., Handley, D., Bunce, K., Surti, U., Hogge, W. A., and Peters, D. G. (2011). Structural and regulatory characterization of the placental epigene at its maternal interface. PLoS ONE 6, e14723. doi:10.1371/journal.pone.0014723.
Colucci, F., Boulenouar, S., Kieckbusch, J., and Moffett, A. (2011). How does variability of immune system genes affect placenta? Placenta 32, 539–545.

ACKNOWLEDGMENTS
The studies on the genetics of recurrent miscarriages in the laboratory of Maris Laan have been supported by Wellcome Trust International Senior Research Fellowship (070191/Z/03/A) in Biomedical Science in Central Europe, HHMI International Scholarship Grant #55005617, Estonian Science Foundation (grants #7471, #9030), and Estonian Ministry of Education and Science core grants SF0182721s06, SF0180022s12.
constancia, M., Kelsey, G., and Reik, W. (2004). Resourceful imprinting. Nature 432, 53–57.

Coulam, C. B., Jeyendran, R. S., Fischel, L. A., and Roussev, R. (2006a). Multiple thrombophilic gene mutations rather than specific gene mutations are risk factors for recurrent miscarriage. Am. J. Reprod. Immunol. 55, 360–368.

Coulam, C. B., Kay, C., and Jeyendran, R. S. (2006b). Role of 93 codon 72 polymorphism in recurrent pregnancy loss. Reprod. Biomed. Online 12, 378–382.

Crisan, T. O., Trifa, A., Farcas, M., Militaru, M., Netea, M., Popp, I., and Popp, R. (2011). The MTHFD1 c.1958 G → A polymorphism and recurrent spontaneous abortions. J. Matern. Fetal Neonatal Med. 24, 189–192.

Cupisti, S., Fasching, P. A., Ecki, A. B., Strissel, P. L., Loebsch, C. R., Strick, R., Engel, J., Dittrich, R., Beckmann, M. W., and Goeker, T. W. (2009). Polymorphisms in estrogen metabolism and estrogen pathway genes and the risk of miscarriage. Arch. Gynecol. Obstet. 280, 395–400.

Dababneh, I. J., Jones, A. V., Voulgarelis, M., Giannouli, S., Zoi, C., Alafakias-Tzannatos, C., Varla-Leftherioti, M., Moutsopoulos, H. M., Loukopoulos, D., Fotiou, S., Cross, N. C., and Zoi, K. (2009). No evidence for increased prevalence of JAK2 V617F in women with a history of recurrent miscarriage. Br. J. Haematol. 144, 802–803.

Daher, S., Shulzhenko, N., Morgan, A., Mattar, R., Rampim, G. F., Camano, K. (2009). No evidence for increased prevalence of JAK2 V617F in women with recurrent miscarriage. J. Reprod. Immunol. 80, 69–77.

Dendana, M., Hizem, S., Magidkoud, K., Messoroudi, S., Zammitti, W., Notini, C., and Mahjoub, T. (2011). Common polymorphisms in the P-selectin gene in women with recurrent spontaneous abortions. Gene. Available at: http://dx.doi.org/10.1016/j.gene.2011.11.034

Dendana, M., Messaoudi, S., Hizem, S., Jaziri, K. B., Almawi, W. Y., Gris, J. C., and Mahjoub, T. (2012). Endothelial protein C receptor 1651C/G polymorphism and soluble endothelial protein C receptor levels in women with idiopathic recurrent miscarriage. Blood Coagul. Fibrinolysis 23, 30–34.

Denschlag, D., Marculescu, R., Unfried, G., Hefler, L. A., Etxer, M., Hashemi, A., Rien, E. K., Keck, C., Temper, C. B., and Wagner, O. (2004). The size of a microsatellite polymorphism of the haem oxygenase 1 gene is associated with idiopathic recurrent miscarriage. Mol. Hum. Reprod. 10, 211–214.

Doschen-bach-Glaninger, A., van Tros tenburg, M., Helmer, H., Oberkanins, C., and Hopmeier, P. (2008). Association of the protein Z intron F79A gene polymorphism with recurrent pregnancy loss. Fertil. Steril. 90, 1159–1160.

Dudding, T. E., and Atia, J. (2004). The association between adverse pregnancy outcomes and maternal V Leiden genotype: a meta-analysis. Thromb. Haemost. 91, 700–711.

Eichler, E. E., Flint, J., Gibson, G., Kong, A., Leal, S. M., Moore, J. H., and Nadeau, J. H. (2010). Missing heritability and strategies for finding the underlying causes of complex disease. Nat. Rev. Genet. 11, 446–450.

Faridi, R. M., and Agrawal, S. (2011). Polymorphism of the placental membrane integrin alpha2beta1 gene and recurrent pregnancy loss. Am. J. Reprod. Immunol. 61, 124–129.

Gloria-Bottini, F., Nicotra, M., Lucarini, N., Borgiani, P., La Torre, M., Amante, A., Gimelfarb, A., and Bottini, E. (1996). Phosphotyrosine-protein-phosphatases and human reproduction: an association between low molecular weight acid phosphatase (ACP1) and spontaneous abortion. Dis. Markers 12, 261–269.

Goodman, C., Goodman, C. S., Hur, J., Jeyendran, R. S., and Coulam, C. (2009a). The association of Apoprotein E polymorphisms with recurrent pregnancy loss. Am. J. Reprod. Immunol. 61, 34–38.

Goodman, C., Hur, J., Goodman, C. S., Jeyendran, R. S., and Coulam, C. (2009b). Are polymorphisms in the ACE and PAI-1 genes associated with recurrent miscarriage? Am. J. Reprod. Immunol. 62, 365–370.

Goodman, C. S., Coulam, B. C., Jeyendran, R. S., Acosta, V. A., and Roussev, R. (2006). Which thrombophilic gene mutations are risk factors for spontaneous recurrent abortions. Am. J. Hum. Genet. 79, 1141–1148.

Hu, Y., Liu, C. M., Qi, L., He, T. Z., Shi-Guo, L., Hao, C. J., Cui, Y., Zhang, N., Xia, H. F., and Ma, X. (2011). Two common SNPs in miR-125A alter the mature miRNA expression and associate with recurrent pregnancy loss in a Han-Chinese population. PLoS Biol. 8, e110.872.

Hviid, T. V., Hylenius, S., Lindhard, A., and Christiansen, O. B. (2004). Association between human leukocyte antigen-G genotype and success of in vitro fertilization and pregnancy outcome. Tissue Antigens 64, 66–69.

Ilinma, Y., Sugihara-Ogasawara, M., Makino, A., Okaji, Y., Suzumori, N., and Suzumori, K. (2002). Coagulation factor XII activity, but not an associated common genetic polymorphism (46C/T), is linked to
Kaare, M., Gotz, A., Ulander, V. M., Karvela, M., Papadopoulou, S., Tsilivakos, V., Tsilivakos, V., and Lammisou, K. (2008b). Evidence for association of the G1733A polymorphism of the androgen receptor gene with recurrent spontaneous abortions. Fertil. Steril. 90, c9-c12.

Kim, M. S., Gu, B. H., Song, S., Choi, B. C., Cha, D. H., and Baek, K. H. (2011). ITIH4, as a biomarker in the serum of recurrent pregnancy loss (RPL) patients. Mol. Biostat. 7, 1430-1440.

Kim, N. K., Choi, Y. K., Kang, M. S., Choi, D. H., Cha, S. H., An, M. O., Lee, S., Jeung, M., Ko, J. I., and Lee, K. H. (2008a). Involvement of combined methyltetrahydrofolate reductase (MTHFR) and thymidylate synthase enhancer region (TSER) polymorphisms to plasma homocysteine levels in Korean patients with recurrent spontaneous abortion. Thromb. Res. 117, 633-638.

Kim, Y. S., Kim, M. S., Lee, S. H., Choi, B. C., Lim, J. M., Cha, K. Y., and Baek, K. H. (2006b). Proteomic analysis of recurrent spontaneous abortion: identification of an inadequately expressed set of proteins in human follicular fluid. Proteomics 6, 3454-3455.

Koh, Y. M., Nielsen, H. S., Moltke, I., Degn, B., Pedersen, B., Sunde, L., Nielsen, F. C., and Christiansen, O. B. (2011). A genome-wide scan in affected sibling pairs with idiopathic recurrent miscarriage suggests genetic linkage. Mol. Hum. Reprod. 17, 379-385.

Kolke, A. M., Steffensen, R., Nielsen, H. S., Hvid, E. V., and Christiansen, O. B. (2010). Study of the structure and impact of human leukocyte antigen-E gene in the Japanese population with or without recurrent miscarriage. Am. J. Reprod. Immunol. 65, 171-178.

Kanai, T., Fujii, T., Keicho, N., Tokunaga, K., Yamashita, T., Hyodo, H., Miki, A., Unno, N., Kosuma, S., and Taketani, Y. (2001). Polymorphism of human leukocyte antigen-E gene in the Japanese population with or without recurrent miscarriage. Am. J. Reprod. Immunol. 45, 168-173.

Karbukhorji, J., Laitinen, T., and Karhunen, R. (2003). Searching for links between endotoxin exposure and pregnancy loss: CD14 polymorphisms in idiopathic recurrent miscarriage. Am. J. Reprod. Immunol. 50, 346-350.

Karvela, M., Papadopoulou, S., Tsilivakos, V., Konstantakou, E., Hatziaki, A., Florentin-Arar, A., and Lammisou, K. (2008a). Endothelial nitric oxide synthase gene polymorphisms in recurrent spontaneous abortions. Arch. Gynecol. Obstet. 278, 349-352.

Karvela, M., Stefanakis, N., Papadopoulou, S., Tsilivakos, V., Tsilivakos, V., and Lammisou, K. (2008b). Evidence for association of the G1733A polymorphism of the androgen receptor gene with recurrent spontaneous abortions. Fertil. Steril. 90, c9-c12.

Lanasa, M. C., and Hogge, W. A. (2000). X chromosome defects as an etiology of recurrent spontaneous abortion. Semin. Reprod. Med. 18, 97-103.

Lewis, R. M., Cleal, J. K., and Hanson, M. A. (2012). Review: placentia, evolu- tion and lifelong health. Placenta 33, S28-S32.

Lindqvist, I., Kapnoulas, N., Natisvili, T., Afganiertopoulos, K., Peraki, O., Ntositis, P., Kontos, K., and Lamnissou, K. (2011). Genetic variation in the CV317 gene and recurrent spontaneous abortions. Arch. Gynecol. Obstet. 283, 289-293.

Luo, S. S., Ishibashi, O., Ishikawa, G., Ishikawa, T., Katayama, A., Mishima, T., Takizawa, T., Shiigihara, T., Goto, T., Izumi, A., Okhuchi, A., Matsubara, S., and Takeshita, T. (2005). Differences in the expression of secreted placentia-specific microRNAs in maternal circulation via exosomes. Biol. Reprod. 81, 717-729.

Maccani, M. A., Avisar-Whiting, M., Banister, C. E., McGinnigal, B., Padbury, J. F., and Marist, C. J. (2010). Maternal cigarette smoking during pregnancy is associated with down-regulation of mir-16, mir-21, and mir-146a in the placenta. Epigenetics 5, 583-589.

Maccani, M. A., and Marist, C. J. (2009). Epigenetics in the placenta. Am. J. Reprod. Immunol. 62, 78-84.

Mannik, J., Vaas, P., Rull, K., Teesalu, B., and HLA-G-DRB1 haplotypes in recurrent miscarriage. Fertil. Steril. 90, e9-e12.

Menasha, J., Levy, B., Hirschhorn, K., and Christiansen, O. B. (2011). Association between HLA-E and recurrent miscarriage in Egyptian women. Scand. J. Immunol. 74, 205-209.

Musters, A., Taminiau-Bloem, E. F., van den Boogaard, E., van der Veen, F., and Goddijn, M. (2011). Supportive care for women with unexplained recurrent miscarriage: patients’ perspectives. Hum. Reprod. 26, 873-877.

Naeimi, S., Ghiam, A. F., Mojtahedi, Z., Dehghani, A. S., Amani, D., and Ghaderi, A. (2006). Interleukin-18 gene promoter polymorphisms and recurrent spontaneous abortion. Eur. J. Obstet. Gynecol. Reprod. Med. 125, 5-9.

Nagirnaja, L., Kasak, L., Palta, P., Rull, K., Christiansen, O. B., Esko, T., Remm, M., Metspalu, A., and Laan, M. (2011). Role of DNA copy number variations in genetic predisposition to recurrent pregnancy loss. J. Reprod. Immunol. 90, 346-350.

Nagirnaja, L., Rull, K., Usukula, L., Laan, M., and Grigorova, M., and Laan, M. (2010). Genomics and genetics of gonadotropin beta-subunit gene and the risk of recurrent idiopathic spontaneous miscarriage. Eur. Cytokine Netw. 22, 123-126.
genes: unique FSHB and duplicated LHB/CGB loci. Mol. Cell. Endocrinol. 329, 4–16.
Nelen, W. L., Blom, H. J., Steegers, E. A., den Heijer, M., and Ekes, T. K. (2000). Hyperhomocysteinemia and recurrent early pregnancy loss: a meta-analysis. Fertil. Steril. 74, 1196–1199.
Nelissen, E. C., van Montfoort, A. P., Dumoulin, J. C., and Evers, J. L. (2011). Epigenetics and the placenta. Hum. Reprod. Update 17, 397–417.
Newbern, D., and Freemark, M. (2011). Placental hormones and the control of maternal metabolism and fetal growth. Curr. Opin. Endocrinol. Diabetes Obes. 18, 409–416.
Nicotra, M., Lucarini, N., Battista, C., Nielsen, H. S. (2011). Secondary recurrent spontaneous abortion. Am. J. Reprod. Immunol. 60, 111–117.
Ober, C., Aldrich, C. L., Chervoneva, I., Robinson, W. P., and Saffery, R. (2011). Secondary recurrent spontaneous abortion. Am. J. Reprod. Immunol. 39, 266–270.
Nicotra, M., Lucarini, N., Battista, C., Dicsepoli, L., Coghi, I. M., and Bot- tini, E. (1993). Genetic polymorphisms and human reproduction: a study of phosphoglucomutase in spontaneous abortion. Int. J. Fertil. 27, 229–233.
Nielson, H. S. (2011). Secondary recurrent miscarriage and H-Y immunity. Hum. Reprod. Update 17, 558–574.
Noguer-Dance, M., Abu-Amero, S., Al-Khith, M., Lefevre, A., Coullin, P., Moore, G. E., and Cavalle, I. (2010). The primate-specific microRNA gene cluster (C19MC) is impaired in the placenta. Hum. Mol. Genet. 19, 3566–3578.
Novakovic, B., Yuen, R. K., Gordon, L., Penaherrera, M. S., Sharkey, A., Moffett, A., Craig, J. M., Robinson, W. P., and Saffery, R. (2011). Evidence for widespread changes in promoter methylation profile in human placenta in response to increasing gestational age and environmental/stochastic factors. BMC Genomics 12, 529. doi:10.1186/1471-2164-12-529.
Nybo Andersen, L., Wolfarth, J., Christens, P., Olsen, J., and Melbye, M. (2000). Maternal age and fetal loss: population based register linkage study. BMJ 320, 1708–1712.
Ober, C., Aldrich, C. L., Chervoneva, I., Billstrand, C., Rahimov, F., Gray, H. L., and Hyllöp, T. (2003). Variation in the HLA-G promoter region influences miscarriage rates. Am. J. Hum. Genet. 72, 1425–1435.
Ogasawara, M., Aoki, K., Okada, S., and Suzuki, M. (2000). Embryonic karyotype of abortuses in relation to the number of previous miscarriages. Fertil. Steril. 73, 309–304.
Ostojic, S., Perezca, N., Volk, M., Kapovic, M., and Peterlin, B. (2008). Genetic predisposition to idiopathic recurrent spontaneous abortion: contribution of genetic variations in IGF-2 and H19 imprinted genes. Am. J. Reprod. Immunol. 60, 403–408.
Papazoglou, D., Galazios, G., Papazoglou, D., Galazios, G., Papazoglou, D., Galazios, G., Papazoglou, D., Galazios, G., and Keci, C. (2003). Angiopoietin-2 polymorphism in women with idiopathic recurrent miscarriage. Fertil. Steril. 80, 1026–1029.
Pluchsz, R., Buchholz, T., Löhse, P., Rubsam, H., Rogenhofer, N., Has- bargen, U., Hiller, E., and Thaler, C. (2012). Thrombophilic gene mutations and recurrent spontaneous abortion: prothrombin mutation increases the risk in the first trimester. Am. J. Reprod. Immunol. 64, 124–131.
Prigoshin, N., Tambutt, M., Lar- riba, J., Gorgorza, S., and Testa, R. (2004). Cytochrome gene polymorphisms in recurrent pregnancy loss of unknown cause. Am. J. Reprod. Immunol. 52, 36–41.
Rai, R., and Regan, L. (2008). Recurrent miscarriage. Lancet 368, 601–611.
Rajcan-Separovic, E., Diego-Alvarez, D., Robinson, W. P., Tyson, C., Qiao, Y., Harvard, C., Favett, C., Kalousek, D., Phillip, T., Somerville, M. I., and Stephenson, M. D. (2010). Identification of copy number variants in miscarriages from couples with idiopathic recurrent pregnancy loss. Hum. Reprod. 25, 2913–2922.
Ren, A., and Wang, J. (2006). Methylenetetrahydrofolate reductase C677T polymorphism and the risk of unexplained recurrent pregnancy loss: a meta-analysis. Fertil. Steril. 86, 1716–1722.
Rey, E., Kahn, S. R., David, M., and Shrier, I. (2003). Thrombophilic disorders and fetal loss: a meta-analysis. Lancet 361, 901–908.
Risch, N., and Merikangas, K. (1996). The future of genetic studies of com- plex human diseases. Science 273, 1516–1517.
Rodger, M. A., Betancourt, M. T., Clark, R., Lindevist, P. G., Dzon-Townson, D., Sait, J., Seligson, U., Carrier, M., Salomon, O., and Greer, I. A. (2010). The association of factor V Leiden and prothrombin gene mutation and placenta-mediated pregnancy complications: a systematic review and meta-analysis of prospective cohort studies. PLoS Med. 7, e1000292. doi:10.1371/journ al.pmed.1000292.
Rull, K., Fagrnaja, L., Ulander, V. M., Keljo, P., Margus, T., Kaare, M., At- tornomi, K., and Laan, M. (2008). Chorionic gonadotropin beta-gene variants are associated with recurrent miscarriage in two European populations. J. Clin. Endocrinol. Metab. 93, 4697–4706.
Rull, K., Tomberg, K., Kööks, S., Mänd, I., Mõis, M., Smotkina, M., Värv, S., and Laan, M. (2012). TNF-related apoptosis-inducing ligand and TRAIL as a potential biomarker for early pregnancy complications. J. Clin. Endocrinol. Metab. 97, doi:10.1210/jc.2011-3192.
Saijo, Y., Sata, F., Yamada, H., Konodo, T., Kato, E. H., Kataoka, S., Shimada, S., Oki, S., Miwa, K., Minakami, H., and Kishi, R. (2004a). Interleukin-4 gene polymorphism is not involved in the risk of recurrent pregnancy loss. Am. J. Reprod. Immunol. 52, 143–146.
Saijo, Y., Sata, F., Yamada, H., Suzuki, K., Sasaki, S., Kondo, T., Gong, Y. Y., Kato, E. H., Shimada, S., Morikawa, M., Minakami, H., and Kishi, R. (2004b). Ab receptor, CYP1A1, CYP1A2 and CYP1B1 gene polymorphisms are not involved in the risk of recurrent pregnancy loss. Mol. Hum. Reprod. 10, 729–733.
Salker, M., Teldenburg, G., Molokhia, M., Lavery, S., Treu, G., Aojanepong, T., Mardon, H. J., Lokugamage, A. U., Rai, K., Landles, C., Roelen, B. A., Querby, S., Kukik, E. W., Kavelaars, A., Heijnen, C. I., Regan, L., Mackllon, N. S., and Broens, J. I. (2010). Natural selection of human embryos: impaired deciduaIization of endo- metrium disables embryo-maternal interactions and causes recurrent pregnancy loss. PLoS ONE 5, e10287. doi:10.1371/journal.pone.0010287.
Sangha, K. K., Stephenson, M. D., Brown, C. J., and Robinson, W. P. (1999). Extremely skewed X-chromosome inactivation is increased in women with recurrent spontaneous abortion. Am. J. Hum. Genet. 65, 913–917.
Sata, F., Yamada, H., Kondo, T., Gong, Y., Toraki, S., Kobashi, G., Kato, E. H., Fujimoto, S., and Kishi, R. (2003a). Glutathione S-transferase M1 and T1 polymorphisms and the risk of recurrent pregnancy loss. Mol. Hum. Reprod. 9, 165–169.
Sata, F., Yamada, H., Yamada, A., Kato, E. H., Kataoka, S., Saijo, Y., Kondo, T., Tamaki, J., Minakami, H., and Kishi, R. (2003b). A polymorphism in the CYP17 gene relates to the risk of recurrent pregnancy loss. Mol. Hum. Reprod. 9, 725–728.
Sata, F., Yamada, H., Suzuki, K., Saijo, Y., Kato, E. H., Morikawa, M., Minakami, H., and Kashi, R. (2005). Caffeine intake, CYP1A2 polymorphism and the risk of recurrent pregnancy loss. Mol. Hum. Reprod. 11, 357–360.

Scholer, N., Langer, C., and Kuchen-Seyedhassani, S. M., Houshmand, M., Kalantar, S. M., Modabber, G., and Aftatoonian, A. (2010). No mitochondrial DNA deletions but more D-loop point mutations in repeated pregnancy loss. J. Assist. Reprod. Genet. 27, 641–648.

Silver, R. M., Zhao, Y., Sibai, B., Wendel, G. J., Wenstrom, K., Saml, E. A., Carisitis, S. N., Sorokin, Y., Miodovnik, M., O’Sullivan, M. J., Conway, D., and Wapner, R. J. (2010). Prothrombin gene G20210A mutation and obstetric complications. Obstet. Gynecol. 115, 14–20.

Singh, K., Natr, R. R., and Khanna, A. (2012). Functional SNP -1562C/T in the promoter region of MMP9 and recurrent early pregnancy loss. Reprod. Biomed. Online 24, 61–65.

Sotiriadis, A., Makrigiannakis, A., Stefos, T., Parasekevidis, E., and Kalanrtaridou, S. N. (2007). Fibrinolytic defects and recurrent miscarriage: a systematic review and meta-analysis. Obstet. Gynecol. 109, 1146–1155.

Steck, T., van der Ven, K., Kovak, J., Beer, A., and Ober, C. (1995). HLA-DQA1 and HLA-DQB1 haplotypes in aborted fetuses and couples with recurrent spontaneous abortion. J. Reprod. Immunol. 29, 95–104.

Steffensen, R., Christiansen, O. B., Bennett, E. P., and Jersild, C. (1998). HLA-E polymorphism in patients with recurrent spontaneous abortion. Tissue Antigens 52, 569–572.

Stephenson, M. D., and Sierra, S. (2006). Reproductive outcomes in recurrent pregnancy loss associated with a parental carrier of a structural chromosome rearrangement. Hum. Reprod. 21, 1076–1082.

Su, M. T., Lin, S. H., Lee, I. W., Chen, Y. C., Hsu, C. C., Pan, H. A., and Kuo, P. L. (2010). Polymorphisms of endocrine gland-derived vascular endothelial growth factor gene and its receptor genes are associated with recurrent pregnancy loss. Hum. Reprod. 25, 2923–2930.

Sullivan, A. E., Nelson, L., Frias, A. E., Porter, T. F., Branch, D. W., and Silver, R. M. (2006). The aryl hydrocarbon receptor nuclear translocator gene polymorphism in patients with recurrent miscarriage. Am. J. Reprod. Immunol. 55, 51–53.

Suryanarayana, V., Deenadayal, M., and Singh, L. (2004). Association of CYP1A1 gene polymorphism with recurrent pregnancy loss in the South Indian population. Hum. Reprod. Online, 941–947.

Suzuki, K., Sata, F., Yamada, H., Saijo, Y., Tsuruga, N., Minakami, H., and Kashi, R. (2006). Pregnancy-associated plasma protein-A polymorphism and the risk of recurrent pregnancy loss. J. Reprod. Immunol. 70, 99–108.

Takakawa, K., Hataya, I., Arakawa, M., Kikuchi, A., Higashino, M., Yasuda, M., Kikuchi, A., Karrison, T. G., Odem, R. R., Bicahlo, M., Scott, J. R., and Ober, C. (1998). Transmission disequilibrium of maternally-inherited CTLA-4 microsatellite alleles in idiopathic recurrent miscarriage. J. Reprod. Immunol. 40, 147–157.

Unfried, G., Schneeberger, C., Szabo, L., Nagel, E., Huber, J. C., and Tempfer, C. B. (2001). Prothrombin hydroxylase gene polymorphism (A218C) and idiopathic recurrent miscarriage. Obstet. Gynecol. 98, 664–667.

Uusikula, L., Rull, K., Nagirnaja, L., and Laan, M. (2011). Methylated allelic polymorphism (MAP) in choric gonadotropin beta2 (CGB2) and its association with pregnancy success. J. Clin. Endocrinol. Metab. 96, E199–E207.

Van den Veyver, I. B. (2001). Skewed X inactivation in X-linked disorders. Semin. Reprod. Med. 19, 183–93.

Vannijaara, A., Govindaraj, P., Arul, S. J., Aruna, M., Aruna, P., Kumar, A., Jayakar, R. L., Lionel, A. C. G., Gupta, S., Rao, L., Gupta, N. I., Chakravarty, B., Deenadayal, M., Selvaraj, K., Andal, S., Reddy, R. M., Singh, L., and Thangaraj, K. (2011). Mitochondrial DNA variations associated with recurrent pregnancy loss among Indian women. Mitochondrion 11, 450–456.

Wang, X., Lin, Q., Ma, Z., Heng, Y., Zhao, A., Di, W., and Lu, P. (2005). Association of the A/G polymorphism at position 49 in exon 1 of CTLA-4 with the susceptibility to unexplained recurrent spontaneous abortion in the Chinese population. Am. J. Reprod. Immunol. 53, 100–105.

Warburton, D., Kline, J., Kinney, A., Yu, C. Y., Levin, B., and Brown, S. (2009). Skewed X chromosome inactivation and trisomic spontaneous abortion: no association. Am. J. Hum. Genet. 85, 179–193.

Witt, C. S., Goodridge, I., Gerbase-Delima, M. G., Daher, S., and Christiansen, F. T. (2004). Maternal KIR repertoire is not associated with recurrent spontaneous abortion. Hum. Reprod. 19, 2653–2657.

Yenicesu, G. I., Cetin, M., Ozdemir, O., Cetin, A., Ozen, F., Yenicesu, C., Yilidiz, C., and Kokac, N. (2009). A prospective case-control study analyzes 12 thrombophilic gene mutations in Turkish couples with recurrent pregnancy loss. Am. J. Reprod. Immunol. 63, 126–136.

Yi, X. W., Li, X., Ren, Y. H., and Li, X. C. (2007). Tumour necrosis factor-alpha receptor 1 polymorphisms and serum soluble TNFRI in early spontaneous miscarriage. Cell. Biol. Int. 31, 1396–1399.

Yuen, R. K., Avila, L., Penaherrera, M. S., von Dadelszen, P., Lefebvre, L., Kobor, M. S., and Robinson, W. P. (2009). Human placental-specific epipolymorphism and its association with adverse pregnancy outcomes. PLoS ONE 4, e3789. doi:10.1371/journal.pone.0003789

Zechner, U., Plussich, G., Schneider, E., El Hajj, N., Tresch, A., Shufaro, Y., Seidmann, L., Coerdt, W., Muller, A. M., and Haafl, T. (2009). Quantitative methylation analysis of developmentally important genes in human pregnancy losses after ART and spontaneous conception. Mol. Hum. Reprod. 16, 704–713.

Zhang, S., Wang, J., Wang, B., Ping, Y., and Ma, X. (2011). Strong association between angiotensin-1 converting enzyme I/D polymorphism and unexplained recurrent miscarriage of Chinese women – a case-control study. Reprod. Sci. 18, 743–746.

Zusterzels, P. L., Nelen, W. L., Roelofs, H. M., Peters, W. H., Blom, H. J., and Steegers, E. A. (2000). Polymorphisms in biotransformation.

Genetics of recurrent miscarriage

Rull et al.

Frontiers in Genetics | Epigenomics

March 2012 | Volume 3 | Article 34 | 12
enzymes and the risk for recurrent early pregnancy loss. Mol. Hum. Reprod. 6, 474–478.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 29 January 2012; paper pending published: 16 February 2012; accepted: 24 February 2012; published online: 19 March 2012.

Citation: Rull K, Nagirnaia L and Laan M (2012) Genetics of recurrent miscarriage: challenges, current knowledge, future directions. Front. Gene. 3:34. doi: 10.3389/fgene.2012.00034

This article was submitted to Frontiers in Epigenomics, a specialty of Frontiers in Genetics.

Copyright © 2012 Rull, Nagirnaia and Laan. This is an open-access article distributed under the terms of the Creative Commons Attribution Non Commercial License, which permits non-commercial use, distribution, and reproduction in other forums, provided the original authors and source are credited.