Iron-Based Composite Oxide Catalysts Tuned by CTAB Exhibit Superior NH$_3$–SCR Performance

Wenshuo Zhang 1,2, Xiaoyan Shi 1,2, Meng Gao 1,2, Jingjing Liu 1, Zhihui Lv 1,2, Yingjie Wang 3, Yanlong Huo 1,2, Chang Cui 1,2, Yunbo Yu 1,2,3,4,* and Hong He 1,2,4,*

1 State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; wszhang_st@rcees.ac.cn (W.Z.); xyshi@rcees.ac.cn (X.S.); menggao_st@rcees.ac.cn (M.G.); jjlui@rcees.ac.cn (J.L.); zhlv_st@rcees.ac.cn (Z.L.); yllhuo_st@rcees.ac.cn (Y.H.); changcui_st@rcees.ac.cn (C.C.)
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Ganzhou Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China; yjwang@rcees.ac.cn
4 Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
* Correspondence: ybyu@rcees.ac.cn (Y.Y.); honghe@rcees.ac.cn (H.H.)

Abstract: Iron-based oxide catalysts for the NH$_3$–SCR (selective catalytic reduction of NO$_x$ by NH$_3$) reaction have gained attention due to their high catalytic activity and structural adjustability. In this work, iron–niobium, iron–titane and iron–molybdenum composite oxides were synthesized by a co-precipitation method with or without the assistance of hexadecyl trimethyl ammonium bromide (CTAB). The catalysts synthesized with the assistance of CTAB (FeM$_{0.3}$O$_x$-C, M = Nb, Ti, Mo) showed superior SCR performance in an operating temperature range from 150 °C to 400 °C compared to those without CTAB addition (FeM$_{0.3}$O$_x$, M = Nb, Ti, Mo). To reveal such enhancement, the catalysts were characterized by N$_2$-physisorption, XRD (Powder X-ray diffraction), NH$_3$-TPD (temperature-programmed desorption of ammonia), DRIFTS (Diffuse Reflectance Infrared Fourier Transform Spectroscopy), XPS (X-ray Photoelectron Spectroscopy), and H$_2$-TPR (H$_2$-Total Physical Response). It was found that the crystalline phase of Fe$_2$O$_3$ formed was influenced by the presence of CTAB in the preparation process, which favored the formation of crystalline γ-Fe$_2$O$_3$. Owing to the changed structure, the redox-acid properties of FeM$_{0.3}$O$_x$-C catalysts were modified, with higher exposure of acid sites and improved ability of NO oxidation to NO$_2$ at low-temperature, both of which also contributed to the improvement of NO$_x$ conversion. In addition, the weakened redox ability of Fe prevented the over-oxidation of NH$_3$, thus accounting for the greatly improved high-temperature activity as well as N$_2$ selectivity.

Keywords: NH$_3$–SCR; selective catalytic reduction; iron-based catalysts; NO$_x$ abatement

1. Introduction

Selective catalytic reduction of NO$_x$ by NH$_3$ (NH$_3$–SCR) is an effective means of NO$_x$ abatement. Various catalysts have been developed for NH$_3$–SCR, including metal oxide catalysts (VO$_x$-based, CeO$_2$-based, Fe$_2$O$_3$-based, MnO$_x$-based catalysts, etc.) and zeolite catalysts (Cu- and Fe–exchanged zeolite catalysts, etc.) [1,2]. Among them, iron-based oxide catalysts have received much attention due to their high catalytic activity as well as non-toxicity, low cost, and accessibility [1,3,4]. As for NH$_3$–SCR catalysts, both acid sites and redox sites are necessary to guarantee efficient NO$_x$ reduction [1,5]. High dispersion of sites having the same function and close coupling of redox-acid sites are important for the design of catalysts with superior NH$_3$–SCR performance [2]. Taking this principle into account, large numbers of iron-based composite oxide catalysts have been prepared and investigated for NH$_3$–SCR, including Fe–Ti [6–8], Fe–Mo [9–11], Fe–W [12–14], Fe–Nb [15], and so on, in which the Fe component provides redox sites while a second component

Citation: Zhang, W.; Shi, X.; Gao, M.; Liu, J.; Lv, Z.; Wang, Y.; Huo, Y.; Cui, C.; Yu, Y.; He, H. Iron-Based Composite Oxide Catalysts Tuned by CTAB Exhibit Superior NH$_3$–SCR Performance. Catalysts 2021, 11, 224. https://doi.org/10.3390/catal11020224
supplies acid sites. For instance, Liu et al. [6,16] reported a novel iron titanate catalyst with outstanding performance in the medium-temperature range (200–400 °C), in which a specific Fe–O–Ti structure acted as the main active phase. Recently, Qu et al. [11] identified a di-nuclear entity (an isolated Mo ion and one adjacent surface Fe ion) as the active site in a Mo1/Fe2O3 single-atom catalyst, thus giving an explanation for the improved SCR reaction at acid-redox interfaces.

For iron-based oxides, generally, the \(\gamma \)-Fe2O3 crystalline phase shows better activity than \(\alpha \)-Fe2O3 in NH\(_3\)-SCR [7,17,18] and other catalytic reactions, such as CO\(_2\) hydrogenation, photodecomposition of H\(_2\)S, and NO reduction by CO [19–21]. However, the \(\gamma \)-Fe2O3 active phase is thermally unstable and undergoes irreversible transformation to \(\alpha \)-Fe2O3 at elevated temperatures. Such transformation generally occurs between 300 °C and 400 °C [18,22–24], related to several factors, including the particle size, morphology of \(\gamma \)-Fe2O3 and presence of a coating layer or dopants [23,25]. As a result, maintaining the \(\gamma \)-Fe2O3 active phase in iron-based oxide catalysts is of great importance to the durability of catalysts in the NH\(_3\)-SCR reaction. To restrain such phase transformation, previous researchers found it effective to introduce another metal into iron oxides, such as Mn, Ti or W, or to fabricate coating layers [21,22,24,26–28].

Hexadecyl trimethyl ammonium bromide (CTAB) is a kind of amphiphilic organic compound containing both hydrophobic and hydrophilic ends [29], which are often used as template-directing agents that can function as both “structural” and “chemical” promoters. It was reported that CTAB could adjust the crystalline phase of metal oxides [30–32]; for instance, the steric hindrance of CTAB was found to prevent the transition of anatase to rutile for TiO\(_2\) [31]. In this study, Nb, Ti and Mo were chosen to couple with Fe in order to provide sufficient acidity for NH\(_3\)-SCR [9,18,33–36]. During the preparation process of Fe–M (M = Nb, Ti, Mo) catalysts meanwhile, CTAB was added into the precursor solution. With the assistance of CTAB, the obtained FeM\(_{0.3}\)O\(_x\)-C catalysts showed much better SCR performance than unassisted FeM\(_{0.3}\)O\(_x\) catalysts. It was identified that CTAB adjusted the structural properties, contributing to the formation of the \(\gamma \)-Fe2O3 phase. Further investigation revealed that the modified catalysts showed high exposure of acid sites and an enhanced ability for low-temperature NO oxidation, but restrained behavior for NH\(_3\) oxidation at high temperatures, thus contributing to improved NO\(_x\) conversion and N\(_2\) selectivity.

2. Results

2.1. NH\(_3\)-SCR Performance

The NO\(_x\) conversion in the NH\(_3\)-SCR reaction over all the prepared catalysts under the high GHSV (gaseous hourly space velocity) of 500,000 h\(^{-1}\) is shown in Figure 1. At 150 °C, the NO\(_x\) conversion over FeNb\(_{0.3}\)O\(_x\)-C was 9%, which was slightly higher than that of FeNb\(_{0.3}\)O\(_x\) (7%). With the rising temperature, the SCR activity of FeNb\(_{0.3}\)O\(_x\)-C increased significantly, with NO\(_x\) conversion of 73% at 300 °C, which was much higher than the value of 54% for FeNb\(_{0.3}\)O\(_x\). Such an increase in NO\(_x\) conversion was also observed over Fe–Ti and Fe–Mo catalysts, especially at higher temperatures. Meanwhile, FeM\(_{0.3}\)O\(_x\)-C catalysts showed higher N\(_2\) selectivity than FeM\(_{0.3}\)O\(_x\) catalysts, as shown in Figure S1.

2.2. Kinetic Studies

The Arrhenius plots of the reaction rates for the reduction of NO\(_x\) in the range of 200–320 °C are shown in Figure 2. The apparent activation energies (E\(_a\)) were then calculated from the fitted curves and are shown in Table 1. It was noted that the E\(_a\) of FeNb\(_{0.3}\)O\(_x\)-C was 34.5 kJ mol\(^{-1}\), similar to that of FeNb\(_{0.3}\)O\(_x\) (40.0 kJ mol\(^{-1}\)). This was further confirmed by the reaction results of Fe–Ti and Fe–Mo catalysts with similar values of E\(_a\) (shown in Table 1). Figure 2 also shows that the three FeM\(_{0.3}\)O\(_x\)-C catalysts exhibited almost the same reaction rate per square meter of surface area, which is further listed in Table 1 (reaction rate at 260 °C). In agreement with Figure 1, the activities of FeM\(_{0.3}\)O\(_x\)-C
were higher than those of FeM\textsubscript{0.3}O\textsubscript{x}. Among the three FeM\textsubscript{0.3}O\textsubscript{x} samples, interestingly, FeTi\textsubscript{0.3}O\textsubscript{x} and FeMo\textsubscript{0.3}O\textsubscript{x} exhibited similar reaction rates.

Figure 1. NO\textsubscript{x} conversion over all the FeM\textsubscript{0.3}O\textsubscript{x}-C and FeM\textsubscript{0.3}O\textsubscript{x} (M = Nb, Ti, Mo) samples. Reaction conditions: [NO] = [NH\textsubscript{3}] = 500 ppm, [O\textsubscript{2}] = 5 vol %, N\textsubscript{2} balance, GHSV = 500,000 h−1.

Figure 2. Arrhenius plots of the reaction rates over all the FeM\textsubscript{0.3}O\textsubscript{x}-C and FeM\textsubscript{0.3}O\textsubscript{x} (M = Nb, Ti, Mo) samples. Reaction conditions: [NO] = [NH\textsubscript{3}] = 500 ppm, [O\textsubscript{2}] = 5 vol %, N\textsubscript{2} balance, with the NO\textsubscript{x} conversion below 25%.

Table 1. Activation energy and reaction rate at 260 °C of all the FeM\textsubscript{0.3}O\textsubscript{x}-C and FeM\textsubscript{0.3}O\textsubscript{x} (M = Nb, Ti, Mo) samples.

	E\textsubscript{a} (kJ mol−1)	R2	Reaction Rate at 260 °C (mol m−2 s−1)
FeNb\textsubscript{0.3}O\textsubscript{x}-C	34.5	0.991	9.9 × 10−9
FeNb\textsubscript{0.3}O\textsubscript{x}	40.0	0.993	2.9 × 10−9
FeTi\textsubscript{0.3}O\textsubscript{x}-C	28.0	0.993	9.5 × 10−9
FeTi\textsubscript{0.3}O\textsubscript{x}	22.6	0.999	6.1 × 10−9
FeMo\textsubscript{0.3}O\textsubscript{x}-C	26.3	0.993	9.5 × 10−9
FeMo\textsubscript{0.3}O\textsubscript{x}	26.2	0.990	7.1 × 10−9
2.3. Structural Properties

2.3.1. N\textsubscript{2}-Physisorption Analysis

The surface areas and pore volumes of all the samples are summarized and displayed in Table 2. The FeNb\textsubscript{0.3}O\textsubscript{x}-C catalyst showed a smaller surface area than that of FeNb\textsubscript{0.3}O\textsubscript{3} (172 m2 g-1 vs. 210 m2 g-1) while exhibiting a larger average pore size. A decrease in surface area induced by the assistance of CTAB in the preparation process was also observed for Fe–Ti and Fe–Mo, with detailed information shown in Table 2.

Sample	Surface Area (m2 g-1)	Pore Volume (cm3 g-1)
FeNb\textsubscript{0.3}O\textsubscript{x}-C	172	0.25
FeNb\textsubscript{0.3}O\textsubscript{3}	210	0.13
FeTi\textsubscript{0.3}O\textsubscript{x}-C	151	0.21
FeTi\textsubscript{0.3}O\textsubscript{3}	191	0.24
FeMo\textsubscript{0.3}O\textsubscript{x}-C	99	0.15
FeMo\textsubscript{0.3}O\textsubscript{3}	167	0.24

2.3.2. XRD Analysis

The XRD patterns in Figure 3 illustrate the crystalline phases of the synthesized samples. Diffraction peaks associated with γ-Fe\textsubscript{2}O\textsubscript{3} appeared for the FeNb\textsubscript{0.3}O\textsubscript{x}-C catalyst, while no peak due to Nb species was observed. For the FeNb\textsubscript{0.3}O\textsubscript{3} catalyst, no characteristic peaks due to Fe or Nb components were observed, indicating their high dispersion or amorphous state [37]. For FeTi\textsubscript{0.3}O\textsubscript{x}, only peaks attributed to α-Fe\textsubscript{2}O\textsubscript{3} could be observed, while for FeTi\textsubscript{0.3}O\textsubscript{x}-C, besides the peaks of α-Fe\textsubscript{2}O\textsubscript{3} with lower intensity, peaks of γ-Fe\textsubscript{2}O\textsubscript{3} appeared. As for the Fe–Mo catalysts, interestingly, only peaks due to γ-Fe\textsubscript{2}O\textsubscript{3} were observed for the FeMo\textsubscript{0.3}O\textsubscript{x}-C catalyst, whereas all the peaks were assignable to α-Fe\textsubscript{2}O\textsubscript{3} in the case of FeMo\textsubscript{0.3}O\textsubscript{x}. As γ-Fe\textsubscript{2}O\textsubscript{3} and other iron oxides (such as Fe\textsubscript{2}O\textsubscript{4}) show very similar diffraction patterns [38], ⁵⁷Fe Mössbauer spectroscopy measurements were carried out to confirm the crystalline phase of the iron oxides present, with results shown in Figure S2. The data were fitted using Moss Winn with parameters including isomer shift (mm s-1), quadrupole splitting (mm s-1), internal hyperfine field (T), and area listed in Table S1. According to previous research [39–44], the isomer shift values of doublets indicated the signals from Fe3+ for each sample. In other words, no signal of Fe2+ was observed, which ruled out the possibility of Fe\textsubscript{2}O\textsubscript{4} in Fe–M–C catalysts. The values of isomer shift around 0.32 mm s-1 and internal hyperfine field around 49.8 T of sextets confirmed the presence of γ-Fe\textsubscript{2}O\textsubscript{3} in FeNb\textsubscript{0.3}O\textsubscript{x}-C, FeTi\textsubscript{0.3}O\textsubscript{x}-C, and FeMo\textsubscript{0.3}O\textsubscript{x}-C. In addition, the values of isomer shift around 0.38 mm s-1 and internal hyperfine field around 51.2 T of sextets for FeTi\textsubscript{0.3}O\textsubscript{x}-C, FeTi\textsubscript{0.3}O\textsubscript{x}, and FeMo\textsubscript{0.3}O\textsubscript{x} were assigned to α-Fe\textsubscript{2}O\textsubscript{3}. These results were in good agreement with XRD results. Based on the results, the ratio of γ-Fe\textsubscript{2}O\textsubscript{3} and α-Fe\textsubscript{2}O\textsubscript{3} components in FeTi\textsubscript{0.3}O\textsubscript{x}-C was further calculated from the areas in Table S1 with the value of about 3:1 [44].

2.4. Acidity and Redox Ability

2.4.1. Acidic Properties

In the NH\textsubscript{3}–SCR reaction, acid sites on the catalysts are responsible for the adsorption of ammonia and play an important role in NO\textsubscript{x} reduction. To investigate the surface acidity, NH\textsubscript{3}-TPD experiments were carried out, and the amount of NH\textsubscript{3} desorption that occurred was calculated. For all the catalysts, one peak at around 150 °C and another peak around 300 °C were observed, which correspond to weakly adsorbed and strongly adsorbed ammonia species, respectively [45]. To reduce errors in the determination of the NH\textsubscript{3} desorption amount, the NH\textsubscript{3}-TPD experiments were repeated two times (Figure S3a,b), with results shown in Figure S3c and Table 3. The total amount of NH\textsubscript{3} desorbed from FeNb\textsubscript{0.3}O\textsubscript{x}-C was around 260 μmol g-1, less than that for FeNb\textsubscript{0.3}O\textsubscript{3} (around 289 μmol g-1). After normalization by surface area (that is, the NH\textsubscript{3} adsorption amount divided by the surface
To identify the types of acid sites, DRIFT studies of NH₃ adsorption at 150 °C were performed and shown in Figure 4. The bands at 1672 cm⁻¹ and 1430 cm⁻¹ were attributed to NH₄⁺ species adsorbed on Brønsted acid sites, and bands at 1606 cm⁻¹ and 1209 cm⁻¹ were ascribed to NH₃ species adsorbed on Lewis acid sites [46–48]. By comparing the intensity of bands at 1430 cm⁻¹, one can easily observe that more NH₄⁺ species adsorbed on Brønsted acid sites on FeMO₃Ox-C catalysts than on FeMO₃Ox catalysts. In contrast, as indicated by the intensity of the band at 1606 cm⁻¹, the amount of NH₃ species adsorbed on Lewis acid sites on FeMO₃Ox-C catalysts was slightly lower than that for FeMO₃Ox catalysts.

	NH₃ Desorption Amount (µmol g⁻¹)	NH₃ Desorption Amount Normalized by Surface Area (µmol m⁻²)	Percentage of Weak-Adsorbed NH₃ (%)
FeNb₀.₃Oₓ-C	260 ± 7.0	1.5 ± 0.05	75.9 ± 1.3
FeNb₀.₃Oₓ	289 ± 7.6	1.4 ± 0.07	72.8 ± 1.1
FeTi₀.₃Oₓ-C	226 ± 4.7	1.5 ± 0.03	75.9 ± 0.1
FeTi₀.₃Oₓ	246 ± 12.7	1.3 ± 0.08	74.2 ± 1.2
FeMo₀.₃Oₓ-C	145 ± 8.3	1.5 ± 0.12	79.2 ± 1.7
FeMo₀.₃Oₓ	229 ± 15.2	1.4 ± 0.08	77.9 ± 1.2

* with experiments and error bars shown in Figure S3.
2.4.2. XPS Analysis

To explore the electronic states and atomic concentrations of surface atoms, XPS analysis was carried out for all the samples. As shown in Figure 5, the O 1 s spectra could be fitted into two peaks, with the peak at around 530.1 eV corresponding to lattice oxygen (denoted as O_{\beta}) and the peak at around 531.4 eV assignable to surface oxygen (denoted as O_{\alpha}). Compared with FeM_{0.3}O_{x} catalysts, the O_{\beta} species in FeM_{0.3}O_{x}-C catalysts showed higher binding energy. Meanwhile, the ratios of O_{\alpha}/(O_{\alpha} + O_{\beta}), as well as the proportion of O_{\alpha} (that is, the value of O_{\alpha}/(O_{\alpha} + O_{\beta}) plus the value of the O atom ratio on the surface), were calculated. As listed in Table 4, each of the FeM_{0.3}O_{x}-C catalysts showed a higher proportion of O_{\alpha} than the corresponding FeM_{0.3}O_{x} catalysts, indicative of a higher content of surface O species on FeM_{0.3}O_{x}-C.

The XPS Spectra of Nb 3d, Ti 2p, and Mo 3d are shown in Figure S4, showing Nb, Ti, and Mo elements in their highest valence state [49–54]. In addition, it was observed that the acid components (Nb, Ti, and Mo) in the FeM_{0.3}O_{x}-C catalysts showed higher binding energy than those in FeM_{0.3}O_{x} catalysts. The spectra of Fe 2p are shown in Figure S5, with the peaks located around 724.5 eV, 718.9 eV and 710.7 eV, which correspond to Fe 2P_{1/2}, Fe 2P_{3/2} satellite and Fe 2P_{3/2}, respectively, corresponding to Fe^{3+} [45,46]. As shown in Table 4, for a given acid component, the ratio of M/Fe in FeM_{0.3}O_{x}-C catalysts was always higher than that in FeM_{0.3}O_{x} catalysts. This result indicated that a surface enrichment of acid components was induced by CTAB addition during the process of catalyst preparation, which was consistent with the results of NH_{3}-TPD.
Figure 5. XPS spectra of O 1 s over (a) FeNb0.3Ox-C and FeNb0.3Ox; (b) FeTi0.3Ox-C and FeTi0.3Ox; (c) FeMo0.3Ox-C and FeMo0.3Ox.
2.4.3. H2-TPR Analysis

To further investigate the reducibility of the prepared catalysts, H2-TPR experiments were carried out. As shown in Figure 6, the peaks below 450 °C correspond to the reduction of Fe2O3 to FeO4. Further reduction of Fe3O4 to FeO and Fe occurred at higher temperatures (above 450 °C) [13,55,56]. Over the FeNb0.3Ox-C catalyst, it was observed that the peaks due to the reduction of Fe2O3 to Fe4O5 were centered at higher temperatures (348 °C and 413 °C) compared with FeNb0.3Ox (centered at 312 °C and 397 °C). Such weakening of the redox ability of Fe by CTAB addition was also observed during the reduction of Fe3O4 to FeO and Fe. As for FeTi0.3Ox-C and FeMo0.3Ox-C, similarly, the reduction peaks of FeMo0.3Ox, respectively.

Table 4. Surface components of all the FeM0.3Ox-C and FeM0.3Ox (M = Nb, Ti, Mo) samples from XPS results.

Sample	Proportion of O	Oα/(Oα + Oβ)	Proportion of Oα	M/Fe
FeNb0.3Ox-C	49.4%	33.2%	16.4%	0.49
FeNb0.3Ox	48.5%	32.6%	15.8%	0.43
FeTi0.3Ox-C	50.7%	38.7%	19.6%	0.72
FeTi0.3Ox	48.3%	36.4%	17.6%	0.45
FeMo0.3Ox-C	52.5%	33.3%	17.5%	0.97
FeMo0.3Ox	49.6%	35.0%	17.4%	0.55

Figure 6. H2-TPR results of all the FeM0.3Ox-C and FeM0.3Ox (M = Nb, Ti, Mo) samples in a flow of 10 vol % H2/N2 with the heating rate of 10 °C min−1. Before measurement, the sample was pretreated in N2 at 300 °C for 1 h, and purged by N2 for 0.5 h.

2.4.4. Direct Oxidation of NH3 and NO

Direct oxidation reactions of NH3 and NO were also conducted, with results shown in Figures S6 and S7, respectively. At temperatures below 250 °C, the direct oxidation of NH3 hardly occurred over any of the samples, benefiting the NH3-SCR reaction. At temperatures above 250 °C, NH3 conversion increased with rising temperature, during which the FeM0.3Ox-C always exhibited lower activity for NH3 oxidation than FeM0.3Ox (except for FeNb0.3Ox-C at the temperature of 400 °C). This was possibly due to the weakened redox ability induced by CTAB addition. By contrast, the direct oxidation of NO occurred over the whole temperature range, during which the NO conversion increased with rising temperature, reached a maximum value, and then decreased. Interestingly, FeM0.3Ox-C always showed higher activity for NO2 formation (except for FeMo0.3Ox-C at...
temperatures above 250 °C). These results suggested that the intrinsic properties governing the direct oxidation of NO were different from that of NH₃ oxidation. Combined with the results listed in Table 4, it can be deduced that surface oxygen plays a crucial role in NO oxidation to NO₂ over the Fe–M catalysts [6,57,58].

3. Discussion

The SCR performance results (Figure 1 and Figure S1) and kinetic studies (Figure 2) showed that FeM₀₃Oₓ-C catalysts showed higher SCR activity as well as N₂ selectivity than FeM₀₀₃Oₓ catalysts over the whole temperature range. It can be concluded from XRD (Figure 3) and Mössbauer spectra (Figure S2 and Table S1) that the addition of CTAB into solutions of precursors promoted the formation of γ-Fe₂O₃, which was more active in terms of SCR activity than α-Fe₂O₃ (Figure S8). Specifically, combining the XRD results with the kinetic studies, it was clear that samples containing the γ-Fe₂O₃ phase (FeM₀₃Oₓ-C catalysts) showed similar intrinsic activity. Meanwhile, FeTi₀₃Oₓ and FeM₀₀₃Oₓ catalysts with pure α-Fe₂O₃ phase exhibited almost the same reaction rate, which was lower than that of the FeM₀₃Oₓ-C catalysts. This illustrated that the formation of the γ-Fe₂O₃ phase induced by CTAB addition during the catalyst preparation process improved the catalytic activity of FeM₀₃Oₓ. As shown in Figure 3, meanwhile, the Fe phase in FeNb₀₃Oₓ-C and FeM₀₀₃Oₓ-C detected by XRD was 100% γ-Fe₂O₃, while both the γ-Fe₂O₃ and α-Fe₂O₃ phases were observed in FeTi₀₃Oₓ-C. Taking these findings into account, it would be expected that the FeNb₀₃Oₓ-C and FeM₀₀₃Oₓ-C would be more active for NH₃-SCR than FeTi₀₃Oₓ-C. By comparing the results of Figure 1 with those of Figure S8, it can be easily found that, at a given temperature, the activity of the pure γ-Fe₂O₃ sample was much lower than FeNb₀₃Oₓ-C and FeTi₀₃Oₓ-C. These results, in turn, indicate that other factors also have a great influence on the catalytic performance of the Fe–M system.

It is well-accepted that optimizing the acid-redox properties is crucial to designing SCR catalysts with high catalytic performance. In our research, the alteration of the crystalline phase modified both the acidity and reducibility of the Fe–M catalysts, which played a significant role in the improved SCR performance. As for acidity, despite the smaller surface area (Table 2) and lower total desorption amount of NH₃ (Table 3), FeM₀₃Oₓ-C catalysts showed higher exposure of acid sites. This was explained by the increased ratio of M/Fe on FeM₀₃Oₓ-C catalysts revealed by XPS (Table 4), consistent with higher exposure of acid components. The NH₃-TPD results (Figure 4) indicated more weakly adsorbed ammonia on FeM₀₀₃Oₓ-C catalysts. As previous research indicated the weaker stability of NH₄⁺ species adsorbed on Brønsted acid sites compared to NH₃ species adsorbed on Lewis acid sites [59,60], this suggested that more NH₄⁺ species adsorbed on Brønsted acid sites existed on FeM₀₀₃Oₓ-C catalysts. This was further confirmed by the DRIFT results (Figure 5). In conclusion, increased exposure of acid components, especially Brønsted acid sites, was observed over FeM₀₀₃Oₓ-C catalysts, which benefited SCR activity [45,61,62].

For metal oxide NH₃–SCR catalysts, generally, surface oxygen (Oₓ) is important for the oxidation of NO to NO₂, thus promoting the “fast–SCR” reaction at low-temperature [6,57,58]. In addition, the over-oxidation of NH₃ accounted for the decreased NOₓ conversion at high temperatures [1,13,16,63,64]. In our research, on one hand, the increased percentage of surface Oₓ boosted the oxidation of NO to NO₂ (as shown in Table 4 and Figure S7), thus benefiting the activity at low temperatures. On the other hand, the weaker reducibility of Fe species revealed by H₂-TPR (Figure 6) suppressed the over-oxidation of NH₃ over FeTi₀₃Oₓ-C and FeM₀₀₃Oₓ-C catalysts at high temperatures (Figure S6), explaining the improved NOₓ conversion and N₂ selectivity. As a result, the SCR performance of FeM₀₃Oₓ-C catalysts over the whole temperature range was improved. In addition, the shift of binding energy for O 1 s, Nb 3d, Ti 2p, and Mo 3d in XPS results associated with the addition of CTAB was possibly due to deviation of the electron cloud [65–67], which indicated enhanced interaction between Fe and acid components and was related to the observed change in the crystalline phase.
Compared with FeNb0.3Ox-C, FeTi0.3Ox-C exhibited a higher proportion of surface oxygen (Table 4) and a higher ability for NO oxidation to NO2 (Figure S7). As discussed above, the surface oxygen species were active for the oxidation of NO to NO2, thus promoting the “fast-SCR” reaction at low-temperature. With this in mind, it is reasonable that FeTi0.3Ox-C shows similar intrinsic activity to FeNb0.3Ox-C, even though the latter exhibits a 100% γ-Fe2O3 phase. As shown in Table 3, the desorption amount of NH3 over FeMo0.3Ox-C was slightly lower than that of FeTi0.3Ox-C, suggesting that a smaller amount of acid sites was available for NH3–SCR. Compared with FeTi0.3Ox-C, FeMo0.3Ox-C also exhibited a lower proportion of surface oxygen (Table 4), resulting in lower activity for NO oxidation to NO2 (Figure S7), which is not beneficial for the occurrence of fast-SCR. Taking these facts into account, it is reasonable that FeMo0.3Ox-C shows similar intrinsic activity to FeTi0.3Ox-C, even though the former contains 100% γ-Fe2O3.

4. Materials and Methods

4.1. Catalyst Preparation

The CTAB-assisted co-precipitation process was inspired by previous research on FeMnTi catalysts by Wu et al. [68]. Typically, CTAB was first dissolved into deionized water, and then precursors containing Fe(NO3)3·9H2O, C10H2NbO20 (or Ti(SO4)2, and (NH4)2Mo7O24·4H2O) in the required molar ratios were added to the CTAB solution. The molar ratio of M:Fe (M = Nb, Ti and Mo) was set at 3:10. After stirring for 1 h, the solution was heated to 90 °C and kept for 10 h. The obtained precipitates were filtered, washed and dried overnight at 105 °C. Then the samples were calcined at 400 °C for 5 h. The obtained catalysts were labeled as FeMo0.3Ox-C (i.e., FeNb0.3Ox-C, FeTi0.3Ox-C, and FeMo0.3Ox-C, respectively). For comparative purposes, catalysts without CTAB were also prepared in the same way and labeled as FeMx-C. Commercial pure γ-Fe2O3 and pure α-Fe2O3 were also used for comparison. Before NH3-SCR activity tests, all the samples were pressed, crushed, and sieved to 40–60 mesh.

4.2. Activity Test

The NH3–SCR activities were tested in a fixed-bed quartz tube flow reactor with an inner diameter of 4 mm (at GHSV of 500,000 h⁻¹, the mass of each catalyst was around 60 mg). The feed gas consisted of 500 ppm of NO, 500 ppm of NH3, 5 vol % O2, balanced by N2, with a gas flow rate of 500 mL min⁻¹. The concentrations of NH3, NO, NO2, and N2O were continually monitored by FTIR spectrometer (ISA10 Nicolet) (City, State, Abbr(if has), Country)(Thermo, Waltham, MA USA), which was equipped with a multiple path gas cell (2 m).

The NOx conversion and N2 selectivity were calculated as follows [69,70]:

\[
\text{NOx conversion(\%) = } \left(1 - \frac{[\text{NOx}]_{\text{out}}}{[\text{NOx}]_{\text{in}}} \right) \times 100\%
\]

\[
\text{N2 selectivity(\%) = } \left(1 - \frac{2[N2O]_{\text{out}}}{[\text{NOx}]_{\text{in}} - [\text{NOx}]_{\text{out}} + [\text{NH3}]_{\text{in}} - [\text{NH3}]_{\text{out}}} \right) \times 100\%
\]

with \([\text{NOx}] = [\text{NO}] + [\text{NO2}].

4.3. Kinetic Study

The apparent activation energy (Ea) and reaction order for NOx reduction were measured in a fixed-bed quartz tube flow reactor with an inner diameter of 4 mm. In this case, the mass of each catalyst was 20 mg, and the conversion of NOx was controlled below 25%. The feed gas composition was 500 ppm NO, 500 ppm NH3, 5% O2, and N2 balance. The reaction rate of NOx conversion was calculated as follows:

\[
-R_{\text{NOx}} = \frac{F_{\text{NOx}} \times X_{\text{NOx}}}{W \times S}
\]
where F_{NOx} is the molar flow rate of NO_x, X_{NOx} is the conversion of NO_x, W is the weight of the catalyst, and S is the BET (Brunauer–Emmett–Teller) surface area.

4.4. Catalyst Characterization

N$_2$-physisorption analysis was obtained at 77 K using a Quantachrome Autosorb-1C instrument (Anton Paar, Graz, Austria) at liquid nitrogen temperature. The specific surface areas were calculated by the BET equation in the 0.05–0.30 partial pressure range. The pore volumes and average pore diameters were determined by the BJH method from the desorption branches of the isotherms. Prior to each N$_2$-physisorption analysis, the samples were degassed at 300 °C for 3 h. Powder X-ray diffraction (XRD) patterns of the samples were conducted on a Brucker D8 diffractometer (Brucker, Karlsruhe, Germany) with Cu Kα ($\lambda = 0.15406$ nm) radiation. The scan range of 20 range was from 20° to 90° with a step size of 0.02°.

The temperature-programmed desorption of ammonia (NH$_3$-TPD) experiments were carried out on a fixed-bed quartz tube flow reactor with an inner diameter of 4 mm. The concentration of NH$_3$ was continually monitored by an FTIR spectrometer (IS10 Nicolet), which was equipped with a multiple path gas cell (2 m). Prior to each TPD experiment, the 100 mg samples were pretreated in 20% O$_2$/N$_2$ at a flow rate of 300 mL min$^{-1}$ at 350 °C for 0.5 h, and then cooled down to 50 °C and purged by N$_2$ for 0.5 h. The samples were then exposed to a flow of 500 ppm NH$_3$/N$_2$ (500 mL min$^{-1}$) at 50 °C for 0.5 h, followed by N$_2$ purging for 0.5 h. Finally, the temperature was raised to 800 °C in N$_2$ with the rate of 10 °C min$^{-1}$. In situ DRIFTS experiments were performed on an FTIR spectrometer (Nicolet I50) equipped with an MCT/A detector cooled by liquid nitrogen. Each catalyst was pretreated in 20 vol % O$_2$/N$_2$ at 400 °C for 0.5 h and then cooled down to 150 °C. The samples were exposed to a flow of 500 ppm NH$_3$ with N$_2$ balance for 0.5 h and purged by N$_2$ for another 0.5 h. XPS measurements were carried out on an X-ray photoelectron spectrometer (Thermo Fisher Scientific K-Alpha, Thermo, Waltham, MA, USA) with Al Kx radiation (1486.8 eV) at an energy resolution of 0.05 eV (Ag 3d$_{3/2}$). The binding energies of Fe 2p, Nb 3d, Ti 2p, Mo 3d, and O 1s were calibrated using the C 1s peak (BE = 284.8 eV) as standard.

5. Conclusions

In our research, FeM$_{0.3}$O$_x$-C catalysts synthesized with the assistance of CTAB exhibited higher SCR performance compared with FeM$_{0.3}$O$_x$. Characterization revealed that the presence of CTAB in the preparation process of Fe–M (M = Nb, Ti, Mo) composite oxides adjusted the crystalline phase of iron oxides and modified both the reducibility and acidity. The optimized catalysts exposed more surface acid sites, which was beneficial to the SCR activity. In addition, surface oxygen was increased, which benefited the NO oxidation and the “fast SCR” reaction. In addition, the redox ability of Fe was weakened by the addition of CTAB, thus restraining the over-oxidation of NH$_3$ and improved NO$_x$ conversion as well as N$_2$ selectivity at high temperatures. Overall, both the acidity and reducibility were tuned by CTAB addition during the process of catalyst preparation; thus, FeM$_{0.3}$O$_x$-C catalysts achieved higher catalytic performance over the whole temperature range.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-4344/11/2/224/s1, Figure S1: N$_2$ selectivity over all the samples. Reaction conditions: [NO] = [NH$_3$] = 500 ppm, [O$_2$] = 5 vol %, N$_2$ balance, GHSV = 500,000 h$^{-1}$, Figure S2: Mössbauer spectra of all the samples at room temperature, Figure S3. (a) NH$_3$-TPD results of all the FeM$_{0.3}$O$_x$-C and FeM$_{0.3}$O$_x$ (M = Nb, Ti, Mo) samples in a flow of N$_2$ with a heating rate of 10 °C min$^{-1}$. Before measurement,
each sample was pretreated in 20% O₂/N₂ at 350 °C for 0.5 h, then exposed to 500 ppm NH₃/N₂ at 50 °C for 0.5 h, and purged by N₂ for 0.5 h. (b) Repeated NH₃-TPD results and (c) NH₃ desorption amount of all the FeₓMₓO₁₋ₓC and FeₓMₓO₃ (M = Nb, Ti, Mo) samples with error bars, Figure S4: XPS spectra of (a) Nb 3d; (b) Ti 2p; and (c) Mo 3d over FeₓMₓO₁₋ₓC and FeₓMₓO₃ (M = Nb, Ti, Mo) samples, Figure S5: XPS spectra of Fe 2p over FeₓMₓO₁₋ₓC and FeₓMₓO₃ (M = Nb, Ti, Mo) samples, Figure S6: Direct oxidation of NH₃ over all the samples. Reaction conditions: [NH₃] = 500 ppm, [O₂] = 5 vol %, N₂ balance, GHSV = 250,000 h⁻¹, Figure S7: Direct oxidation of NO over all the samples. Reaction conditions: [NO] = 500 ppm, [O₂] = 5 vol %, N₂ balance, GHSV = 250,000 h⁻¹, Figure S8: NOx conversion over pure γ-Fe₂O₃ and pure α-Fe₂O₃. Reaction conditions: [NO] = [NH₃] = 500 ppm, [O₂] = 5 vol %, N₂ balance, GHSV = 500,000 h⁻¹, Table S1: Isomer shift (mm s⁻¹), quadrupole splitting (mm s⁻¹), internal hyperfine field (T), and area of sub-spectra from Mössbauer.

Author Contributions: Conceptualization, W.Z., Y.Y. and H.H.; methodology, X.S. and J.L.; investigation, W.Z., Z.L. and Y.H.; data curation, W.Z., M.G. and C.C.; writing—original draft preparation, W.Z. and Y.W.; writing—review and editing, X.S. and Y.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (grant number 21673277 and 21637005) and the Strategic Priority Research Program of the Chinese Academy of Sciences (grant number XDA23010200).

Data Availability Statement: The data presented in this study are available on request from the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Han, L.; Cai, S.; Gao, M.; Hasegawa, J.Y.; Wang, P.; Zhang, J.; Shi, L.; Zhang, D. Selective catalytic reduction of NOx with NH₃ by using novel catalysts: State of the art and future prospects. *Chem. Rev.* **2019**, *119*, 10916–10976. [CrossRef]
2. Shan, W.; Yu, Y.; Zhang, Y.; He, G.; Peng, Y.; Li, J.; He, H. Theory and practice of metal oxide catalyst design for the selective catalytic reduction of NO with NH₃. *Catal. Today* **2020**, [CrossRef]
3. Granger, P.; Parvulescu, V.I. Catalytic NOx abatement systems for mobile sources: From three-way to lean burn after-treatment technologies. *Chem. Rev.* **2011**, *111*, 3155–3207. [CrossRef]
4. Liu, F.; Yu, Y.; He, H. Environmentally-benign catalysts for the selective catalytic reduction of NOx from diesel engines: Structure-activity relationship and reaction mechanism aspects. *Chem. Rev.* **2014**, *50*, 8445–8463. [CrossRef] [PubMed]
5. Marberger, A.; Ferri, D.; Elsener, M.; Krocher, O. The significance of Lewis acid sites for the selective catalytic reduction of nitric oxide on vanadium-based catalysts. *Angew. Chem. Int. Ed. Engl.* **2016**, *55*, 11989–11994. [CrossRef]
6. Liu, F.; He, H.; Zhang, C.; Feng, Z.; Zheng, L.; Xie, Y.; Hu, T. Selective catalytic reduction of NO with NH₃ over iron titanate catalyst: Catalytic performance and characterization. *Appl. Catal. B Environ.* **2010**, *96*, 408–420. [CrossRef]
7. Yang, S.; Li, J.; Wang, C.; Chen, J.; Ma, L.; Chang, H.; Chen, L.; Peng, Y.; Yan, N. Fe–Ti spinel for the selective catalytic reduction of NO with NH₃: Mechanism and structure–activity relationship. *Appl. Catal. B Environ.* **2012**, *117–118*, 73–80. [CrossRef]
8. Liu, J.; Meeprasert, J.; Namuangruk, S.; Zha, K.; Li, H.; Huang, L.; Maitarad, P.; Shi, L.; Zhang, D. Facet–activity relationship of TiO₂ in Fe₂O₃/TiO₂ nanocatalysts for selective catalytic reduction of NO with NH₃: In situ DRIFTs and DFT studies. *J. Phys. Chem. C.* **2017**, *121*, 4970–4979. [CrossRef]
9. Xin, Y.; Zhang, N.; Li, Q.; Zhang, Z.; Cao, X.; Zheng, L.; Zeng, Y.; Anderson, J.A. Active site identification and modification of electronic states by atomic-scale doping to enhance oxide catalyst innovation. *ACS Catal.* **2018**, *8*, 1399–1404. [CrossRef]
10. Chen, Y.; Li, C.; Chen, J.; Tang, X. Self-prevention of well-defined facet Fe₂O₃/MoO₃ against deposition of ammonium bisulfate in low-temperature NH₃-SCR. *Environ. Sci. Technol.* **2018**, *52*, 11796–11802. [CrossRef]
11. Qu, W.; Liu, X.; Chen, J.; Dong, Y.; Tang, X.; Chen, Y. Single-atom catalysts reveal the dinuclear characteristic of active sites in NO selective reduction with NH₃. *Nat. Commun.* **2020**, *11*, 1532. [CrossRef]
12. Wang, H.; Qu, Z.; Dong, S.; Xie, H.; Tang, C. Superior performance of FeₓWₓO₄ by the selective catalytic reduction of NOx with NH₃: Interaction between Fe and W. *Sci. Technol.* **2016**, *50*, 13511–13519. [CrossRef]
13. Liu, F.; Shan, W.; Lian, Z.; Liu, J.; He, H. The smart surface modification of Fe₂O₃ by WOₓ for significantly promoting the selective catalytic reduction of NOx with NH₃. *Appl. Catal. B Environ.* **2018**, *230*, 165–176. [CrossRef]
14. Xin, Y.; Zhang, N.; Li, Q.; Zhang, Z.; Cao, X.; Zheng, L.; Zeng, Y.; Anderson, J.A. Selective catalytic reduction of NO with NH₃ over short-range ordered W-O-Fe structures with high thermal stability. *Appl. Catal. B Environ.* **2018**, *229*, 81–87. [CrossRef]
15. Zhang, N.; Xin, Y.; Wang, X.; Shao, M.; Li, Q.; Ma, X.; Qi, Y.; Zheng, L.; Zhang, Z. Iron-niobium composite oxides for selective catalytic reduction of NO with NH₃. *Catal. Commun.* **2017**, *97*, 111–115. [CrossRef]
16. Liu, F.; He, H.; Zhang, C. Novel iron titanate catalyst for the selective catalytic reduction of NO with NH₃ in the medium temperature range. *Chem. Commun.* **2008**, *17*, 2043–2045. [CrossRef] [PubMed]
Catalysts 2021, 39. Liu, T.; Guo, L.; Tao, Y.; Wang, Y.B.; Wang, W.D. Synthesis and interfacial structure of nanoparticles

27. Lee, J.; Kwak, S.Y. Mn-doped maghemite (γ-Fe$_3$O$_4$)

31. Wu, S.; Yao, X.; Zhang, L.; Cao, Y.; Zou, W.; Li, L.; Ma, K.; Tang, C.; Gao, F.; Dong, L. Improved low temperature NH$_3$-SCR catalysts over Ce/TiO$_2$ catalysts. J. Catal. Commun. 2003, 125, 11470–11471. [CrossRef]

35. Fudong, L.; Hong, H. Structure-activity relationship of iron titanate catalysts in the selective catalytic reduction of NOx with NH$_3$. Appl. Catal. B Environ. 2014, 180, 390–398. [CrossRef]

37. Xu, H.; Han, X.; Hou, Y.; Gao, F.; Liu, J.; Huang, Z. In situ preparation of mesoporous iron titanate catalysts by a CTAB-assisted process for NO reduction with NH$_3$. J. Energy Inst. 2020. [CrossRef]

40. Guo, L.; Wu, Z.; Liu, T.; Yang, S. The effect of surface modification on the microstructure and properties of γ-Fe$_2$O$_3$ nanoparticles. Physica E 2000, 8, 199–203. [CrossRef]

44. Cheng, C.; Lin, C.; Chiang, R.; Lin, C.; Lyubutin, I.; Alkaev, E.; Lai, H. Synthesis of monodisperse magnetic iron oxide nanoparticles from submicrometer hematite powders. Cryst. Growth Des. 2008, 8, 877–883. [CrossRef]
45. Yu, Y.; Tan, W.; An, D.; Wang, X.; Liu, A.; Zou, W.; Tang, C.; Ge, C.; Tong, Q.; Sun, J.; et al. Insight into the SO\textsubscript{2} resistance mechanism on γ-Fe\textsubscript{2}O\textsubscript{3} catalyst in NH\textsubscript{3}-SCR reaction: A collaborated experimental and DFT study. *Appl. Catal. B Environ.* 2021, 281. [CrossRef]

46. Zhang, J.; Huang, Z.; Du, Y.; Wu, X.; Shen, H.; Jing, G. Atomic-scale insights into the nature of active sites in Fe\textsubscript{2}O\textsubscript{3}-supported submonolayer WO\textsubscript{3} catalysts for selective catalytic reduction of NO with NH\textsubscript{3}. *Chem. Eng. J.* 2020, 381, 122668. [CrossRef]

47. Nguyen, T.P.; Yang, K.H.; Kim, M.H.; Hong, Y.S. Selective catalytic reduction of NO by NH\textsubscript{3} over Fe\textsubscript{2}O\textsubscript{3}-promoted V\textsubscript{2}O\textsubscript{5}/TiO\textsubscript{2} -based catalysts with high Fe\textsubscript{2}O\textsubscript{3}-to-V\textsubscript{2}O\textsubscript{5} ratios. *Catal. Today* 2020. [CrossRef]

48. Zhu, N.; Shan, W.; Lian, Z.; Zhang, Y.; Liu, K.; He, H. A superior Fe-V-Ti catalyst with high activity and SO\textsubscript{2} resistance for the selective catalytic reduction of NO with NH\textsubscript{3}. *J. Hazard. Mater.* 2019, 382, 120970. [CrossRef]

49. Wang, P.; Chen, S.; Gao, S.; Zhang, J.; Wang, H.; Wu, Z. Niobium oxide confined by ceria nanotubes as a novel SCR catalyst with excellent resistance to potassium, phosphorus, and lead. *Appl. Catal. B Environ.* 2018, 231, 299–309. [CrossRef]

50. Liu, Z.; Shan, W.; Zhang, Y.; Wang, M.; He, H. Morphology-dependent catalytic performance of NbO\textsubscript{3}/CeO\textsubscript{2} catalysts for selective catalytic reduction of NOx with NH\textsubscript{3}. *Ind. Eng. Chem. Res.* 2018, 57, 12736–12741. [CrossRef]

51. Liu, F.; Asakura, K.; He, H.; Shan, W.; Shi, X.; Zhang, C. Influence of sulfation on iron titanate catalyst for the selective catalytic reduction of NOx with NH\textsubscript{3}. *Appl. Catal. B Environ.* 2011, 103, 369–377. [CrossRef]

52. Mendiola-Alvarez, S.Y.; Hernández-Ramírez, A.; Guzmán-Mar, J.L.; Maya-Treviño, M.L.; Caballero-Quintero, A.; Hinojosa-Reyes, L. A novel P-doped Fe\textsubscript{2}O\textsubscript{3}-TiO\textsubscript{2} mixed oxide: Synthesis, characterization and photocatalytic activity under visible radiation. *Catal. Today* 2019, 328, 91–98. [CrossRef]

53. Pu, Z.; Liu, Q.; Asiri, A.M.; Luo, Y.; Sun, X.; He, Y. 3D macroporous MoS\textsubscript{2} thin film: In situ hydrothermal preparation and application as a highly active hydrogen evolution electrocatalyst at all pH values. *Electrochim. Acta.* 2015, 168, 133–138. [CrossRef]

54. Hanawa, T.; Hiromoto, S.; Asami, K. Characterization of the surface oxide film of a Co-Cr-Mo alloy after being located in quasi-geological environments using XPS. *Appl. Surf. Sci.* 2001, 183, 68–75. [CrossRef]

55. Zhang, J.; Huang, Z.; Du, Y.; Wu, X.; Shen, H.; Jing, G. Alkali-poisoning-resistant Fe\textsubscript{2}O\textsubscript{3}/MoO\textsubscript{3}/TiO\textsubscript{2} catalyst for the selective reduction of NO by NH\textsubscript{3}. The role of the MoO\textsubscript{3} safety buffer in protecting surface active sites. *Environ. Sci. Technol.* 2020, 54, 595–603. [CrossRef] [PubMed]

56. France, L.J.; Li, W.; Bai, B.; Zhao, S.; Hu, F.; Li, J. Bridging the reaction route of toluene total oxidation and the structure of ordered mesoporous Ce\textsubscript{2}O\textsubscript{3} catalyst. *Appl. Catal. B Environ.* 2015, 149, 224–231. [CrossRef] [PubMed]

57. Zhang, Z.; Li, R.; Wang, M.; Li, Y.; Tong, Y.; Yang, P.; Zhu, Y. Two steps synthesis of CeTiO\textsubscript{x} oxides nanotube catalyst: Enhanced activity, resistance of SO\textsubscript{2} and H\textsubscript{2}O for low temperature NH\textsubscript{3}-SCR of NOx. *Appl. Catal. B Environ.* 2021, 282. [CrossRef]

58. Xu, Q.; Fang, Z.; Chen, Y.; Guo, Y.; Guo, Y.; Wang, L.; Wang, Y.; Zhang, J.; Zhan, W. Titania-samarium-manganese composite oxide for the low-temperature selective catalytic reduction of NO with NH\textsubscript{3}. *Environ. Sci. Technol.* 2020, 54, 2530–2538. [CrossRef] [PubMed]

59. Han, L.; Gao, M.; Feng, C.; Shi, L.; Zhang, D. Fe\textsubscript{2}O\textsubscript{3}-CeO\textsubscript{2}@Al\textsubscript{2}O\textsubscript{3} nanoarrays on Al-mesh as SO\textsubscript{2} -tolerant monolith catalysts for NOx reduction by NH\textsubscript{3}. *Environ. Sci. Technol.* 2019, 53, 5946–5956. [CrossRef]

60. Zhang, X.; Shen, Q.; He, C.; Ma, C.; Cheng, J.; Li, L.; Hao, Z. Investigation of selective catalytic reduction of N\textsubscript{2}O by NH\textsubscript{3} over an Fe–mordenite catalyst: Reaction mechanism and O\textsubscript{2} effect. *ACS Catal.* 2012, 2, 512–520. [CrossRef]

61. Shu, Y.; Sun, H.; Quan, X.; Chen, S. Enhancement of catalytic activity over the iron-modified Ce/TiO\textsubscript{2} catalyst for selective catalytic reduction of NOx with ammonia. *J. Phys. Chem. C.* 2012, 116, 25319–25327. [CrossRef]

62. Zhu, B.; Zi, Z.; Sun, Y.; Fang, Q.; Xu, J.; Song, W.; Yu, H.; Liu, E. Enhancing low-temperature SCR de-NOx and alkali metal poisoning resistance of a 3Mn10Fe/Ni catalyst by adding Co. *Catal. Sci. Technol.* 2019, 9, 3214–3225. [CrossRef]

63. Yang, J.; Ren, S.; Zhou, Y.; Su, Z.; Yao, L.; Cao, J.; Jiang, L.; Hu, G.; Kong, M.; Yang, J.; et al. In situ IR comparative study on N\textsubscript{2}O formation pathways over different valence states manganese oxides catalysts during NH\textsubscript{3}-SCR of NO. *Chem. Eng. J.* 2020, 397, 125446. [CrossRef] [PubMed]

64. Yang, S.; Wang, C.; Li, J.; Yan, N.; Ma, L.; Chang, H. Low temperature selective catalytic reduction of NO with NH\textsubscript{3} over Mn–Fe spinel: Performance, mechanism and kinetic study. *Appl. Catal. B Environ.* 2011, 110, 71–80. [CrossRef]

65. Lv, Y.; Yao, W.; Zong, R.; Zhu, Y. Fabrication of wide-range-visible photocatalyst Bi\textsubscript{2}WO\textsubscript{6}-x nanoplates via surface oxygen vacancies. *Sci. Rep.* 2016, 6, 19347. [CrossRef] [PubMed]

66. Li, K.; Chen, J.; Bai, B.; Zhao, S.; Hu, F.; Li, J. Bridging the reaction route of toluene total oxidation and the structure of ordered mesoporous Co\textsubscript{3}O\textsubscript{4}: Roles of surface sodium and adsorbed oxygen. *Catal. Today* 2017, 297, 173–181. [CrossRef]

67. Xu, L.; Niu, S.; Lu, C.; Zhang, Q.; Li, J. Influence of calcination temperature on Fe\textsubscript{0.8}Mg\textsubscript{0.2}O\textsubscript{2} catalytic performance of FeMnTiO\textsubscript{3} mixed oxides catalyst prepared by a CTAB-assisted process for mid-low temperature NH\textsubscript{3}-SCR. *Appl. Catal. A Gen.* 2015, 505, 235–242. [CrossRef]

68. Marberger, A.; Elsener, M.; Ferri, D.; Sagar, A.; Schermanz, K.; Krocher, O. Generation of NH\textsubscript{3} selective catalytic reduction active catalysts from decomposition of supported Fe\textsubscript{3}O\textsubscript{4}. *ACS Catal.* 2015, 5, 4180–4188. [CrossRef]

69. Xin, Y.; Li, H.; Zhang, N.; Li, Q.; Zhang, Z.; Cao, X.; Hu, P.; Zheng, L.; Anderson, J.A. Molecular-level insight into selective catalytic reduction of NOx with NH\textsubscript{3} to N\textsubscript{2} over a highly efficient bifunctional Va-MnO\textsubscript{x} catalyst at low temperature. *ACS Catal.* 2018, 8, 4937–4949. [CrossRef]