The squeeze casting parametric effect on magnesium metal matrix composite

J Vairamuthu*, Samuel Tilahun2, M D Vijayakumar3, C Ramesh Kannan4, S Manivannan5 and B Stalin6

1 Department of Mechanical Engineering, Sethu Institute of Technology, Pulloor- 626 115, Kariapatti, Tamil Nadu, India.
2 Department of Mechanical Engineering, School of Mechanical and Automotive Engineering, College of Engineering and Technology, Dilla University, Dilla, Ethiopia.
3 Department of Mechanical Engineering, Chennai Institute of Technology, Kundrathur, Chennai-600 069, Tamil Nadu, India.
4 Department of Mechanical Engineering, PET Engineering College, Tirunelveli, Tamil Nadu, India.
5 Department of Mechanical Engineering, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India.
6 Department of Mechanical Engineering, Anna University, Regional Campus Madurai, Madurai-625 019, Tamil Nadu, India.

* Corresponding author: vairamuthu@yahoo.com

Abstract. The reinforced Metal Matrix Composite (MMC) was broadly used in various engineering applications. The light weight and high strength metal matrix components were used in aerospace and automotive applications. The silicon carbide, boron carbide, aluminum oxide and carbon fiber were used as common reinforcement materials. The magnesium and its alloys were recently has a maximum role in MMC due to its high strength and light weight. In addition to the magnesium, the aluminium and copper was included through the reinforcement of boron carbide (B4C). It was formulated through squeeze casting technique. The copper has good electrical conductivity and it has more corrosion resistance. The magnesium metal matrix was fabricated through squeeze casting technique. The Vickers hardness was determined through the different input squeeze casting factors such as pressure, pouring temperature and die temperature. The Response Surface Methodology (RSM) optimization was used to analyze the parametric effects.

Keywords: Magnesium MMC, boron carbide, squeeze casting, Vickers hardness, RSM optimization

1. Introduction
The two processes were involved in squeeze casting such as casting and forging. It was applied in automotive and boat engine components. Due to its favorable substance properties aluminium, silicon, magnesium and copper were used as matrix materials. The squeeze casting process and its parameters, applications, factors affect the quality of the fabricated components were discussed [1]. The applied pressure was used to refine the grain structure of aluminium and its solidification rate was also increased [2-3]. The effect of microstructures and mechanical behaviors were investigated on Al-Cu
alloy under squeeze casting [4]. The parametric effect and optimization were applied in squeeze casting of magnesium MMC [5]. The microstructure and substance behaviors were analyzed in squeeze casted Al–Zn–Mg–Cu [6]. Squeeze casting factors were optimized and influential factor was found on Al-Si alloy [7]. The boron carbide reinforces magnesium MMC fabrication method and its structure was characterized [8]. The die temperature was produced maximum effect on mechanical behavior [9]. The mechanical properties and its applications were reported [10-12]. Many researchers based on the Taguchi approach of SN ratio and variance analysis to evaluate optimum conditions [13-35].

In the present topic was discussed about the squeeze casting parametric effects and optimization of magnesium metal matrix composite.

2. Material fabrication method

The squeeze casting was a suitable fabrication technique for magnesium MMC. It has more advantages such as allowed high volume weight percentage of material, no casting defects, high density components and quality products with better substance properties. It has two die unit namely as upper and lower dies. The lower die has cavity and it has receives the molten metal. The upper die has act as a punch and it has provided the pressure. The magnesium MMC has consists of different alloying elements such as copper, silicon, nickel, iron, zinc, tin and titanium. The boron carbide has added to the alloying elements with 1.5 weight percentages. The squeeze casting was shown in Fig.1. The molten metal was kept under a preheated lower die and then it was covered by upper die. The steam pressure (120 MPa) was applied to the molten metal in between the die units. The purpose of the pressure was used to provide complete solidification of material and maintained uniform rate of heat flow. Finally, the solidified metal piece was removed and it was converted in to desired shape.

3. Experimental result and discussion

The final casting component has fine grains and higher density which was used to increase the substance behaviors. The strength and the micro structure were related to the squeeze casting pressure. The Vickers LV-900 was used to measure the composite hardness. For these experimental works, the different input factors were chosen and it was exposed in Table 1.
Table 1. Squeeze casting experimental results

Std	Run	A: Pressure (MPa)	B: Pouring temperature (°C)	C: Die temperature (°C)	Hardness (HV)
1	14	60	600	200	140
2	12	120	600	200	160
3	10	60	800	200	150
4	11	120	800	200	152
5	1	60	700	150	148
6	4	120	700	150	172
7	15	60	700	250	166
8	7	120	700	250	210
9	3	90	600	150	250
10	17	90	800	150	250
11	9	90	600	250	220
12	13	90	800	250	236
13	8	90	700	200	190
14	5	90	700	200	202
15	6	90	700	200	241
16	2	90	700	200	212
17	16	90	700	200	198

4. Optimization process

The Response Surface Methodology was used to analyze the squeeze casting process parameters and its effects on hardness. The developed model was used to predict the response such as hardness. The different models such as linear, cubic and quadratic types were analyzed and finally it has decided the suitable model for input and output factors. The design of expert 12 version was used to run the squeeze casting experimental results. The quadratic model was selected for the experiment and it was revealed in Table 2.

Table 2. Developed model for response

Source	Sum of Squares	DF	Mean Square	F-value	p-value
Mean and Total	6.317E+05	1	6.317E+05		
Linear and Mean	1321.00	3	440.33	0.2926	0.8301
2FI and Linear	185.00	3	61.67	0.0318	0.9919
Quadratic and 2FI	16608.86	3	5536.29	13.98	0.0024
Cubic and Quadratic	1209.00	3	403.00	1.03	0.4684
Residual	1563.20	4	390.80		
Total	6.526E+05	17	38386.88		

The variance analyze was used to predict the model whether it has significant or not and it was shown in Table 3. At the same time the influential factor of pressure for squeeze casting was attained. It has produced maximum effect on hardness. The combined factors effects were also reported.

Table 3. Variance analysis for squeeze casting

Basis	SS	DF	MS	F-value	P-value	
Model	18114.86	9	2012.76	5.08	0.0217	significant
A-Pressure	1012.50	1	1012.50	2.56	0.1539	
B-Pouring temperature	180.50	1	180.50	0.4558	0.5213	
C-Die temperature	128.00	1	128.00	0.3232	0.5875	
AB	81.00	1	81.00	0.2045	0.6648	
AC	100.00	1	100.00	0.2525	0.6307	
The actual values of the experiments and expected values were also fit on the straight line and it was exposed on Fig. 2. It was shown that only little deviation was maintained between the values.

![Normal Plot of Residuals](image)

Figure 2. Definite and Expected values for squeeze casting

The hardness effect between pouring temperature and pressure was exposed in Fig. 3. The design points were achieved at the pouring temperature of 700ºC and pressure of 90 MPa. The hardness and pressure was directly proportional to the material hardness.
The hardness effect between die temperature and pressure was exposed in Fig. 4. The optimal points were achieved at the die temperature between 190-210ºC and pressure of 90 MPa. The die temperature was also produced the sufficient effect on hardness.

The hardness effect between die temperature and pouring temperature was exposed in Fig. 5. The optimal points were arrived at the die temperature between 190 - 210ºC and pouring temperature of 700ºC. The hardness effect was increased with the raise of pouring temperature.
5. Point prediction and optimal outcome

The optimal squeeze hardness of 162 HV was predicted and it was shown in Table 4. The two side test including confidence level of 95% and population level of 99% was conducted. The standard deviation of 19.9005 was obtained.

Solution of 100	Predicted Mean	Predicted Median	Observed Mean	Std. Dev	SE	95% CI Low	95% CI High	95% TI Low	95% TI High	95% Pop Low	95% Pop High
Hardness	162	162	19.90	17.23	43	37.22	286.7	59	74		

The optimal solutions were found through response surface methodology and it’s was shown in Table 5. The optimal squeeze hardness of 162 HV was gained at pressure of 120 MPa, die temperature of 200ºC and pouring temperature of 800ºC.

6. Conclusions

The following conclusions are drawn from the above experimental study:
The magnesium MMC reinforced with boron carbide was produced with squeeze casting method. The aluminium and copper was the other major elements were accumulated to the Mg MMC. The Vickers hardness was the output factor. The squeeze parameters were optimized through RSM. The optimal squeeze hardness of 162 HV was gained at pressure of 120 MPa, die temperature of 200ºC and pouring temperature of 800ºC. Pressure has produced maximum effect on hardness. Through point prediction the optimal hardness was validated.

7. References
[1] M.R. Ghomashchi, A. Vikhrov, Squeeze Casting : An Overview, Journal of Material Processing Technolog–101, P. 1-9 (2000).
[2] M.Dhanashekar, V.S. SenthilKumar, Squeeze Casting of Aluminium Metal Matrix Composites-An Overview, Procedia Engineering,Volume 97, 2014, Pages 412-420.
[3] A. Maleki, A. Shafyei, B. Niroumand, Effects of squeeze casting parameters on the microstructure of LM13 alloy, Journal of Materials Processing Technology 209, pp3790-3797, 2009.
[4] ZHANG Ming, ZHANG Wei-wen, ZHAO Hai-dong, ZHANG Da-tong, LI Yuan-yuan, Effect of pressure on microstructures and mechanical properties of Al-Cu-based alloy prepared by squeeze casting, Transactions of Non-Ferrous metals society of china 17, pp 496-501, 2007.
[5] M.S. Yong, A.J. Clegg, Process optimization for a squeeze cast magnesium alloy metal matrix composite, Journal of Materials Processing Technology 168, pp 262-269, 2005.
[6] C.H. Fan, Z.H. Chen, W.Q. He, J.H. Chen, D. Chen, Effects of the casting temperature on microstructure and mechanical properties of the squeeze-cast Al–Zn–Mg–Cu alloy, Journal of Alloys and Compounds 504, 2010.
[7] Susanta Gangopadhyay, Optimisation of Casting parameters of Squeeze cast LM-24 Al-Si Alloy, International Journal of Engineering Research & Technology (IJERT),Vol. 3 Issue 3, March – 2014,916-921.
[8] Kevorkijian, V. and Skapin, S. (2009). Fabrication and Characterisation of Mg-B4C Composites. Association of Metallurgical Engineers of Serbia 15. 3-18.
[9] P. Vijian & V. P. Arunachalam, Optimization of squeeze casting process parameters using Taguchi analysis, The International Journal of Advanced Manufacturing Technology volume 33, pages1122–1127(2007).
[10] Vijay Kumar Bommala, Mallarapu GopiKrisha, Ch TirumalaRao, Magnesium matrix composites for biomedical applications: A review, Journal of Magnesium and Alloys,Volume 7, Issue 1, March 2019, Pages 72-79.
[11] Stalin B, Ravichandran M, Mohanavel V, Praveen Raj L 2020 J. Min. Metall. Sect. B. 56(1) 99 https://doi.org/10.2298/JMMB190315047S
[12] Stalin B, Vidhya V S, Ravichandran M, Naresh Kumar A and Sudha G T 2020 Metallofiz. Novoishie Tekhnol. 42(4) 497 https://doi.org/10.15407/mfint.42.04.0497
[13] Sudha G T, Stalin B and Ravichandran M 2019 Mater. Res. Express 6 096520 https://doi.org/10.1088/2053-1591/ab2ce6
[14] Aarravind R, Sankar V, Marichamy S and Stalin B 2020 Abrasive water jet experimentation on zirconium boride and boron carbide reinforced molybdenum metal matrix Mater. Today:. Proc. https://doi.org/10.1016/j.matpr.2020.07.667
[15] Vairamuthu J, Senthil Kumar A, Stalin B and Ravichandran M 2020 Optimization of powder metallurgy parameters of TiC and B4C reinforced aluminium composites by Taguchi method Trans. Can. Soc. Mech. Eng. https://doi.org/10.1139/tcsme-2020-0091
[16] Malini T, Sudha R, Anantha Christu Raj P and Stalin B 2020 The role of RTD and liquid sensors in electric arc furnace for melting of aluminium Mater. Today:. Proc.
Acknowledgments

[17] Rajaparthiban J, Saravanavel S, Ravichandran M, Vijayakumar K and Stalin B 2020 Mater. Today.: Proc. 24 1282 https://doi.org/10.1016/j.matpr.2020.04.443

[18] Stalin B, Sudha G T and Ravichandran M 2020 Mater. Today.: Proc. 22 2622 https://doi.org/10.1016/j.matpr.2020.03.393

[19] Alagarsamy S V, Ravichandran M, Raveendran P and Stalin B 2019 J. Balk. Tribol. Assoc. 25(3) 730

[20] Stalin B, Ramesh Kumar P, Ravichandran M, Siva Kumar M and Meignanamoorthy M 2019 Mater. Res. Express 6 106590 https://doi.org/10.1088/2053-1591/ab3d90

[21] Athijayamani A, Stalin B, Sidhardhan S and Boopathi C 2016 J. Compos. Mater. 50(4) 481 https://doi.org/10.1177/0021998315576555

[22] Stalin B, Ravichandran M, Vadivel K and Vairamuthu J 2020 Mater. Today.: Proc. 21 237 https://doi.org/10.1016/j.matpr.2019.04.226

[23] Saravanan S, Ravichandran M, Stalin B, Saravanavel S, Sukumar S, Optimization of Process Parameters of Electrochemical Machining of TiC-Reinforced AA6063 Composites, In: S. Hiremath, N. Shannumagam, B. Bapu (eds) Advances in Manufacturing Technology, Lecture Notes in Mechanical Engineering, Springer, Singapore, 2019, pp.281-287. https://doi.org/10.1007/978-981-13-6374-0_33

[24] Stalin B, Sudha G T and Ravichandran M 2018 Silicon 10 (6) 2663 https://doi.org/10.1007/s12633-018-9803-6

[25] Marichamy S, Stalin B, Ravichandran M and Sudha G T 2020 Mater. Today.: Proc. 24 1400 https://doi.org/10.1016/j.matpr.2020.04.458

[26] Stalin B and Athijayamani A 2016 Int. J. Mater. Eng. Innov. 7(1) 15 https://doi.org/10.1504/IJMATEI.2016.077312

[27] Stalin B, Ramesh Kumar P, Ravichandran M and Saravanan S 2018 Mater. Res. Express 5(10) 106502 https://doi.org/10.1088/2053-1591/aaa99c

[28] Marichamy S, Saravanan M, Ravichandran M and Stalin B 2017 Int. J. Mech. Mech. Eng. 21(1) 57

[29] Stalin B, Sudha G T, Kailasananthan C and Ravichandran M 2020 Mater. Today Commun. 25 101655 https://doi.org/10.1016/j.mtcomm.2020.101655

[30] Pritima V, Vairamuthu J, Gopi Krishnan P, Marichamy S, Stalin B and Sheeba Rani S 2020 Response analysis on synthesized aluminium-scandium metal matrix composite using unconventional machining processes Mater. Today.: Proc. https://doi.org/10.1016/j.matpr.2020.07.672

[31] Balasubramaniam M, Stalin B, Marichamy S, Anandan K and Ram Subbiah 2020 Assessment of weld joint strengths on dissimilar alloys of Inconel 625 and aluminium 7068 using FSW process Mater. Today.: Proc. https://doi.org/10.1016/j.matpr.2020.08.315

[32] Dhinakaran V, Stalin B, Swapna Sai M, Vairamuthu J, Marichamy S 2020 Recent developments of graphene composites for energy storage devices Mater. Today.: Proc. https://doi.org/10.1016/j.matpr.2020.08.631

[33] Martin Sahayaraj J, Arravind R, Subramanian P, Marichamy S, Stalin B 2020 Artificial neural network based prediction of responses on eglin steel using electrical discharge machining process Mater. Today.: Proc. https://doi.org/10.1016/j.matpr.2020.07.664

[34] Bagavathy S, Ramesh Kumar P, Anantha Christu Raj P, Stalin B 2020 Frequency measurement through electric network analyzer for ultrasonic machining of steel Mater. Today.: Proc. https://doi.org/10.1016/j.matpr.2020.08.629

[35] Anix Joel Singh J, Vishnu Vardhan T, Vairamuthu J, Stalin B, Ram Subbiah 2020 Analyses of particle size and abrasive water jet drilling of synthesized chromel metal matrix Mater. Today.: Proc. https://doi.org/10.1016/j.matpr.2020.08.441
The authors thank the Department of Mechanical Engineering, Sethu Institute of Technology, Kariapatti and Anna University, Regional Campus Madurai, Madurai, Tamil Nadu, India for their continuous encouragement to carry out this research work.