Supplementary Figure 1. The viscosities of three different liquids as a function of temperature measured by the ESL technique.

The fluid flows and shear rates in the liquids were estimated following procedures described in refs. [37,38]. Supplementary Figure 2 shows the results for fluid flows for one such calculation for the Ti_{39.5}Zr_{39.5}Ni_{21} liquid at the nucleation temperature of 990 K, when it was cooled in vacuum with 5.7 V positioner and heater off condition.
Supplementary Figure 2. The fluid flow velocity distribution in a 6.0 mm diameter Ti$_{39.5}$Zr$_{39.5}$Ni$_{21}$ liquid at 990 K when the sample was cooled with a 5.7 V positioner and heater off condition. As is apparent from the color codes and arrow sizes, the flow velocity is maximum along the surface of the sample in a direction about 40° from the equator.

Supplementary References

37. Hyers R. W., Matson D. M., Kelton K. F., and Rogers J. R. “Convection in containerless processing”. *Ann. N. Y. Acad. Sci.* **1027**, 474 (2004).

38. Bracker G. P., Baker E. B., Nawer J., Sellers M. E. Gangopadhyay A. K., Kelton K. F. Xiao X., Lee J., Reinartz M., Burggraaff S., Herlach D. M., Rettenmayr M., Matson D., Hyers R. W. “The effect of flow regimes on the surface oscillations during electromagnetic levitation experiments”. *High Press. High Temp.* **49**, 49 (2020).