CAT(0) SPACES WITH POLYNOMIAL DIVERGENCE OF GEODESICS

Nataša Macura
Department of Mathematics
Trinity University
nmacura@trinity.edu
One Trinity Place
San Antonio TX 78212

Abstract. We construct a family of finite 2-complexes whose universal covers are CAT(0) and have polynomial divergence of desired degree. This answers a question of Gersten, namely whether such CAT(0) complexes exist.

1. Introduction

In [5] Gersten defined divergence of a CAT(0) space, generalizing the classical idea of the divergence of geodesics in manifolds, and showed it to be a quasi-isometry invariant. He constructed a CAT(0) 2-complex with quadratic divergence, therefore showing that the aphorism of Riemannian geometry that geodesics diverge either linearly or exponentially fails for CAT(0) spaces. In later work, Gersten [5], and M. Kapovich and Leeb,[7] showed that the aphorism also fails for 3-manifolds since there exist graph manifolds with quadratic divergence of geodesics. In this paper we exhibit a family of CAT(0) groups $G_d, d \in \mathbb{N}$, such that the divergence of G_d is polynomial of degree d. We construct G_d inductively as an HNN extension of G_{d-1}, starting with $G_1 = \mathbb{Z} \oplus \mathbb{Z}$. Each G_d has a 2-dimensional presentation complex X_d whose universal cover \tilde{X}_d is a CAT(0) cube complex. We prove that the divergence of \tilde{X}_d is polynomial of degree d. The groups described here turn out to be the family of examples W. Dison and T. Riley introduced and named hydra groups in [4]. W. Dison and T. Riley show that hydra groups have finite-rank free subgroups with huge distortion and use this class

Keywords and phrases: divergence, CAT(0) spaces
Mathematics Subject Classification 2010: 20F65, 20F67, 57M20.
of groups to construct elementary examples of groups whose Dehn functions are equally large.

Divergence of geodesics, as well as in its higher dimensional generalizations received renewed interest in recent work of a number of authors. In [1] A. Abrams, N. Brady, P. Dani, M. Duchin and R. Young define higher divergence functions, which measure isoperimetric properties "at infinity", and give a characterization of the divergence of geodesics in RAAGs as well as upper bound for filling loops at infinity in the mapping class group. J. Behrstock and R. Charney ([2]) give a group theoretic characterization of geodesics with super-linear divergence in the Cayley graph of a right-angled Artin group A_{Γ} with connected defining graph Γ and use this to determine when two points in an asymptotic cone of A_{Γ} are separated by a cut-point.

We propose a modified version of Gersten’s question: are there CAT(0) spaces with isolated flats ([6]) and super-linear and sub-exponential divergence of geodesics. Our examples, like those of Gersten and M. Kapovich do not have isolated flats. So the aphorism may yet hold for CAT(0) spaces with isolated flats.

The organization of the paper is as follows. In Section 2 we recall the definitions and results concerning divergence and CAT(0) spaces, that are pertinent to our proofs. When studying the divergence, we use the language and techniques of detour functions developed in [8], since they facilitate simple and intuitive arguments. The equivalence class of detour functions of a proper metric space X is the divergence in Gersten’s sense, and it is a quasi-isometry invariant if X has a weak form of geodesic extension property. In Section 3 we define the complexes X_d, and analyze geometric properties of the complexes X_d and \tilde{X}_d pertinent to proof of the polynomial divergence in Sections 4 and 5.

In Section 4 we show that the detour function of \tilde{X}_d is bounded above by a polynomial of degree d and in Section 5 we show that there are geodesics γ_0 and γ_d in \tilde{X}_d which actually do diverge polynomially with degree d, therefore establishing that the divergence of \tilde{X}_d is polynomial of degree d.

I am grateful to Daniel Allcock for his help with the first version of this paper, and to the anonymous referee for careful reading and helpful suggestions on the exposition of the paper.
2. Detour functions and CAT(0) spaces

2.1. Detour functions and divergence. Detour functions were introduced in [8] in order to classify mapping tori of polynomially growing automorphisms of free groups; they provide a language and techniques to study divergence of geodesics in proper metric spaces, and are invariant under quasi-isometries. We recall the definition and the main results used in this paper, and refer the reader to [8] and [5] for detailed expositions on detour functions and divergence.

Let X be a proper metric space, O a point in X, and $r \geq 0$ a real number. Let $S(O, r)$ and $B(O, r)$, be the sphere and the open ball, of radius r centered at O. We say that a path α in X is an r-detour path if α does not intersect $B(O, r)$. The r-detour distance $\delta_r(P, Q)$, between two points $P, Q \in X \setminus B(O, r)$ is the infimum of the lengths of all r-detour paths α that connect P and Q. In the case P and Q are in different components of $X \setminus B(O, r)$, we define their detour distance to be infinite. Since X is a proper metric space, if the detour distance $\delta_r(P, Q)$ is finite, Arzela-Ascoli Theorem implies the existence of a detour path α such that $|\alpha| = \delta_r(P, Q)$.

We call such α a minimal length or shortest detour path. As indicated above, we suppress the point O from notation if it is understood from the context and, when necessary, we will talk about (O, r)-detour path and (O, r)-detour distance. A detour function roughly speaking, assigns to each positive real number r the maximum of all r'-detour distances between points on the sphere of radius r, where $r' = ar - b$, for $0 \leq a \leq 1$ and $b > 0$.

Definition 2.1. Let (X, d) be a proper metric space. Given a point $O \in X$ let $B_r = B(O; r)$ be the open ball of radius r centered at O and $S_r = S(O; r)$ the sphere of the radius r. A detour function of (X, O) is a pair (ϕ, μ) such that ϕ is a linear function, $\phi(x) = ax - b$, $0 < a, b; a \leq 1$, and $\mu : \mathbb{R}^+ \rightarrow \mathbb{R}^+ \cup \{\infty\}$ is defined in the following way:

$$\mu_O(r) = \max_{P, Q \in S_r} \{\delta_{\phi(r)}(P, Q) : P, Q \in S_r\}.$$

In [8] we introduced a (weak) version of geodesic extension property for a metric space X that implies the existence of a detour function (ϕ, μ), $\phi(x) = ax - b$, such that, if (ψ, μ'), $\psi(x) = cx - d$, is a detour function and $a \leq c, d \geq b$, then (ϕ, μ) and (ψ, μ'), are equivalent in the following sense. We say that $f \preceq g$ if there are constants $A, B, C, D, E > 0$ such that

$$f(x) \leq Ag(Bx + C) + Dx + E$$

for every $x > 0$.

We define two functions \(f, g : \mathbb{R}^+ \rightarrow \mathbb{R}^+ \cup \{\infty\} \), to be equivalent, \(f \sim g \), if \(f \preceq g \) and \(g \preceq f \). This gives equivalence relation capturing the qualitative agreement of growth rates. The square complexes constructed in Section 3 satisfy a strong version of the geodesic extension property, that is that every geodesic can be extended to an infinite geodesic ray, which implies that any two detour functions are equivalent. In particular, the equivalence class of the detour function does not depend on the choice of the base point. In the remainder of the paper, we select \(a = 1 \) and \(b = 0 \), and a point \(O \in X \), and take the detour function of a proper metric space \(X \) to be the function \(\mu_X : \mathbb{R}^+ \rightarrow \mathbb{R}^+ \cup \{\infty\} \) defined by

\[
\mu_X(r) = \max \{ \delta_r(P, Q) : P, Q \in S(O, r) \}.
\]

The equivalence class of the detour function of \(X \) is the divergence in Gersten’s sense (see e.g.\[5\]), and bounding a detour function \(\mu_X \) from above and below by polynomials of degree \(d \) shows that the divergence of geodesics is polynomial of degree \(d \).

2.2. **CAT(0) spaces.** We recall the definition of a CAT(0) space and several properties that such a space enjoys, and refer the reader to [3] for a detailed treatment of the topic.

Let \((X, d)\) be a metric space and let \((E, d_E)\) be the Euclidean plane, where \(d \) and \(d_E \) are the respective metrics. A geodesic triangle \(\Delta = \Delta(P, Q, R) \) in \(X \) consists of three points \(P, Q, R \in X \), its vertices, and a choice of three geodesic segments \(\gamma_{PQ}, \gamma_{QR} \) and \(\gamma_{PR} \) joining the vertices, its sides. If the point \(T \) lies in the union of \(\gamma_{PQ}, \gamma_{QR} \) and \(\gamma_{PR} \), then we write \(T \in \Delta \).

A geodesic triangle \(\Delta_E = \Delta(P_E, Q_E, R_E) \) in \(E \) is called a comparison triangle for the triangle \(\Delta(P, Q, R) \) if \(d(P, Q) = d_E(P_E, Q_E), \ d(P, R) = d_E(P_E, R_E) \) and \(d(Q, R) = d_E(Q_E, R_E) \). A point \(T_E \) on \(\gamma_{P EQ_E} \) is called a comparison point for \(T \) in \(\gamma_{PQ} \) if \(d(P, T) = d_E(P_E, T_E) \). Comparison points for points on \(\gamma_{PR} \) and \(\gamma_{QR} \) are defined in the same way.

Definition 2.2. A metric space \(X \) is a CAT(0) space if it is a geodesic metric space all of whose triangles satisfy the CAT(0) inequality:

Let \(\Delta \) be a geodesic triangle in \(X \) and let \(\Delta_E \) be a comparison triangle in the Euclidean plane \(E \). Then, \(\Delta \) is said to satisfy the CAT(0) inequality if for all \(S, T \in \Delta \) and all comparison points \(S_E, T_E \in \Delta_E \), \(d(S, T) \leq d_E(S_E, T_E) \).
A metric space X is said to be of non-positive curvature if it is locally a CAT(0) space, i.e. for every $x \in X$ there exists $r_x > 0$ such that the ball $B(x, r_x)$ with the induced metric, is a CAT(0) space.

We will use the orthogonal projections onto complete, convex, subsets of CAT(0) spaces, called projections in [3, II.2]. We review selected parts of a proposition [3, II.2, Proposition 2.4], which gives the construction of such a projection $\pi_C : X \rightarrow C$.

Proposition 2.3. Let X be a CAT(0) space, and let C be a convex subset which is complete in the induced metric. Then,

1. for every $x \in X$, there exists a unique point $\pi(x) \in C$ such that $d(x, \pi(x)) = d(x, C) = \inf_{y \in C} d(x, y)$;
2. if x' belongs to the geodesic segment connecting x and $\pi(x)$, then $\pi(x) = \pi(x')$.
3. the map $x \mapsto \pi(x)$ is a retraction from X onto C which does not increase distances.

Throughout the rest of the paper $\pi_C : X \rightarrow C$ will denote the projection onto complete, convex, subset C of X, as described in Proposition 2.3. We will also make use of the property of a CAT(0) space that a local geodesic is a global geodesic. We will use the following property of projections.

Remark 2.4. Let O be a point in a CAT(0) space \tilde{X}, and let O' be the closest point projection of O to geodesic ω. If P and Q are points on ω such that Q is contained in the segment of ω connecting O' and P, then $d(O, Q) \leq d(O, P)$.

We note that the above remark is a consequence of CAT(0) inequality applied to the triangle OOP.

As a matter of general terminology and notation, a “path α” refers to both the path as a continuous function $\alpha : [0, t] \rightarrow \mathbb{R}$ and the image of α in the metric space X, and $|\alpha|$ stands for the length of a path α. We will use $\alpha \ast \beta$ to denote the path which is the concatenation of paths α and β, or $\gamma_1 \gamma_2$ for a geodesic which is a concatenation of geodesics paths γ_1 and γ_2.

3. **Square complexes \tilde{X}_d and their geometric properties**

Let G_1 be the group $\mathbb{Z} \oplus \mathbb{Z}$, generated by a_0 and a_1, and let X_1 be the flat torus obtained by isometric identification of the edges of the Euclidean unit square $C_1 = I \times I$. Orient the horizontal edges of the unit square from
left to right, and the vertical ones with upward positive direction. We call this orientation torus orientation. Denote two opposite directed edges of the square C_1 by a_0 and the other two by a_1. We will use the same notation (a_0, a_1) for the corresponding (directed) loops in X_1. The group G_1 acts properly and cocompactly by isometries on the Euclidean plane \widetilde{X}_1 with the quotient space X_1.

We define the CAT(0) groups $G_d, d \geq 2$, inductively, taking G_d to be the HNN extension of G_{d-1} that amalgamates the infinite cyclic subgroups of G_{d-1} generated by a_{d-1} and a_0 respectively. If we denote the stable letter in this extension by a_d the resulting group G_d has a presentation

\[\{a_0, \ldots, a_d \mid a_0 a_1 = a_1 a_0, a_i^{-1} a_0 a_i = a_{i-1}, \text{for } 2 \leq i \leq d\}. \]

We construct a presentation complex X_d of G_d by a standard topological construction of gluing with a tube, see [3, II.11] on X_{d-1}. Let $C_d = I \times I$ be the Euclidean unit square with the torus orientation. Label two opposite directed edges by a_d and identify them to obtain a cylinder (tube) U_d. The remaining two edges of C_d map to loops in U_d, and we label them a_{d-1} and a_0 respectively. The complex X_d obtained by gluing the cylinder U_d to X_{d-1}, with the identification map the orientation preserving isometry prescribed by the labeling of the edges, is a graph of spaces with one vertex and one edge. The vertex space is X_{d-1} and the edge space S^1. We will call the universal cover \widetilde{X}_d of X_d the d-th square complex. We will refer to d as the height of \widetilde{X}_d.

The resulting complex X_d is a non-positively curved cube complex (see [3, II.11]) and therefore \widetilde{X}_d is a CAT(0) cube complex. We note that it is not difficult to see that the “link condition” ([3, II.5]), is satisfied: for each vertex $P \in X_d$ every injective loop in $\text{Lk}(P, X_d)$ has length at least 2π. The preimage of X_{d-1} in \widetilde{X}_d consists of infinitely many disjoint convex (hence isometrically embedded) copies of \widetilde{X}_{d-1}. We call such a copy of \widetilde{X}_{d-1} a vertex complex in \widetilde{X}_d.

Let $s_d, d \geq 1$ be the line segment in C_d that connects the midpoints of the opposite edges labeled a_d. We also denote by s_d the image of s_d in U_d, as well as its image in X_d after the gluing. Every component H of the preimage of $s_d \subset X_d$ under the covering map is isometric to the real line and separates \widetilde{X}_d. We call H a hyperplane in \widetilde{X}_d (even though it is just a line). Every hyperplane H is geodesic contained in a single component ostar(H) of the preimage of $\text{Int}(U_d)$ under the covering map. Since U_d is a cylinder, the closure star(H) of ostar(H) is isometric to a flat strip. We call ostar(H)
the open star of H. For each edge e labeled \tilde{a}_d in \tilde{X}_d, there is a unique hyperplane H that intersects e, and we say that H corresponds to the edge e.

Let $\phi_0, \phi_{d-1} : S^1 \rightarrow U_d \rightarrow X_d$ be the inclusions of S^1 into X_d that wrap S^1 isometrically once around a_0 and a_{d-1}, respectively. For each hyperplane H there are lifts $\tilde{\phi}_0, \tilde{\phi}_{d-1}$ of ϕ_0, ϕ_{d-1}, such that $\omega_0 = \tilde{\phi}_0(\mathbb{R}) \subset \text{star}(H)$ and $\omega_{d-1} = \tilde{\phi}_{d-1}(\mathbb{R}) \subset \text{star}(H)$. We call the bi-infinite geodesic path ω_0 consisting of copies of \tilde{a}_0 the smooth trace of the hyperplane H. The rugged trace ω_{d-1} is the bi-infinite geodesic path consisting of copies of \tilde{a}_{d-1}.

Let \mathcal{H} be the collection of all hyperplanes in \tilde{X}_d, and let $U = \cup\{\text{ostar}(H_i) : H_i \in \mathcal{H}\}$. Each connected component V of $\tilde{X}_d \setminus U$ is a copy of the universal cover of the square complex X_{d-1}, and we called such V a vertex complex in \tilde{X}_d. Since a vertex complex V_{d-1} in \tilde{X}_d is a copy of a square complex of height $d - 1$, we can talk about hyperplanes and vertex complexes in V_{d-1}. The vertex complexes in this case are isometric copies of \tilde{X}_{d-2}. In the same fashion, for every vertex P in \tilde{X}_d, there is a sequence of sub-complexes $V_i \subset \tilde{X}_d$, $1 \leq i \leq d$, such that $P \in V_1 \subset V_2 \subset \ldots V_i \ldots \subset V_{d-1} \subset \tilde{X}_d$. Each V_i is a copy of an i-th square complex, and we call each such V_i an i-vertex complex, or a vertex complex of height i. A hyperplane H_i in V_i separates V_i, but does not separate V_{i+1}. An edge labeled \tilde{a}_i has the height, denoted by $\text{height}(\tilde{a}_i)$, equal to i.

If $\text{star}(H) \cap V \neq \emptyset$ for a hyperplane $H \subset \tilde{X}_d$ and a $(d-1)$-vertex complex V then, $\text{star}(H) \cap V$ is a geodesic path, the smooth or rugged trace of H. We will call this geodesic edge path the trace of H in V and will say that the hyperplane H and the vertex complex V are adjacent.

A d-segment (or a d-line) is a geodesic segment (line) that is a concatenation of edges labeled \tilde{a}_d. When the orientation is of importance, we will call a finite or infinite oriented segment a ray. We use suffixes to indicate the endpoints of a segment or the initial endpoint of a ray: ω_{PQ} is a segment with initial endpoint P and the terminal endpoint Q, γ_P stands for a geodesic ray issuing at P. We call the orientation of edges in \tilde{X}_d induced by the orientation on X_d the standard edge orientation. If $\gamma_P : [0, r] \rightarrow \tilde{X}_d$ is a geodesic ray in 1-skeleton of \tilde{X}_d, then γ_P induces a γ_P-orientation on each edge it traces, by choosing the positive direction to be the one of increasing values of the parameter $t \in [0, r]$. We say that a geodesic γ_P traces an edge e in a positive direction if the γ_P-direction on e coincides with the standard direction.
Definition 3.1. A geodesic segment u is a positive geodesic segment if it is contained in 1-skeleton of \widetilde{X}_m, and if $u(t)$ traces all the edges in the positive direction.

We conclude our study of basic geometric properties of square complexes with the geodesic extension property. Since it is easily observed that every 1-cell in \widetilde{X}_d is contained in a boundary of at least two 2-cells, \widetilde{X}_d has no free faces, and Proposition 5.10, Chapter II, in [3], implies that \widetilde{X}_d has the geodesic extension property. We formalize the above result in the following proposition.

Proposition 3.2. Every non-constant geodesic γ in \widetilde{X}_d can be extended to an infinite geodesic ray.

4. POLYNOMIAL DIVERGENCE OF GEODESICS

The following theorem is our main result.

Theorem 4.1. The d-th square complex \widetilde{X}_d has degree d polynomial divergence of geodesics.

In this section we show that there is a degree d polynomial q_d such that the detour function of \widetilde{X}_d is bounded above by q_d, and we start by stating and proving a lemma.

Lemma 4.2. Let H be a hyperplane in \widetilde{X}_d, and let ω be a trace of H. Let O, Q be points in \widetilde{X}_d such that $Q \in \text{star}(H)$ and $d(O, Q) = r$. If $\xi \subset \text{star}(H)$ is any bi-infinite geodesic parallel to ω such that $d(O, \xi) \leq r$, then there is a point $P \in \xi \cap S(O, r)$, and an (O, r)-detour path β connecting Q and P such that $|\beta| \leq 2r + 1$.

Proof. Let ζ be the bi-infinite geodesic parallel to ξ through Q and let O' be the projection of the point O to the infinite flat strip U bounded by ξ and ζ. Since the lemma trivially holds when $Q \in \xi$, we can assume that $Q \notin \xi$. This implies that $O' \neq Q$, since otherwise we would have $d(\xi, O) > r$. Let β'_\perp be the geodesic segment in U perpendicular to ξ through the point O', and let U_1 be the component of $U \setminus \beta'_\perp$ that contains Q. We claim that the endpoints of β'_\perp are the projections of O to ζ and ξ. If $O \in U$, then $O' = O$ and the claim follows directly from the definition of β'_\perp. If $O \notin U$, then either $O' \in \zeta$, or $O' \in \xi$. If, say, $O' = O_\zeta \in \zeta$, then $O_\xi = \beta'_\perp \cap \xi$ is the closest point to O on ξ: O_ξ is the point closest to O on ζ, and the distance
between ζ and ξ is equal to the length of β_1'. A similar argument holds if $O' = O_\xi \in \xi$.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{starH.png}
\caption{Illustration of the proof of Lemma 4.2}
\end{figure}

Let β_1' be the geodesic segment in U_1 parallel to β_1' and at the distance r from β_1', and denote by Q_1 and P_1 the intersections of ζ and ξ with β_1' respectively, see Figure 4. Since $d(O, P_1) \geq d(O', P_1) \geq r$, and $d(O, O_\xi) = d(O, \xi) \leq r$, there is a point P in $\xi \cap U_1$ such that $d(O, P) = r$.

To construct the desired detour path β, take β_1 to be the segment of ζ connecting Q and Q_1. The length of β_1 is equal to the distance between points Q and Q_1, which, by construction, is not larger than r. Let β_2 be the segment of ξ connecting P and P_1, and note that the length of β_2 is also less than or equal to r. Remark 2.4 implies that β_1 and β_2 do not intersect $B(O, r)$, and $\beta = \beta_1 \beta_1 \beta_2$ is then a detour path connecting Q and P of length not larger than $2r + 1$. \square

Lemma 4.3. Let $O \in \tilde{X}_d$ and let $P, Q \in S(O, r) \cap E$ be points contained in subcomplex E of \tilde{X}_d which is a copy of \tilde{X}_1. Then there is an (O, r)-detour path α connecting P and Q of length at most $\pi r + 2r$.

Proof. Let O' be the projection of O to E. By the properties of projections, $d(O', P) \leq r$ and $d(O'Q) \leq r$. Let γ_P and γ_Q be geodesics connecting O' and P, Q respectively. By the geodesic extension property we can extend γ_P and γ_Q to infinite geodesic rays γ_P' and γ_Q'. Let P' and Q' be the points of intersection of the sphere $S(O', r)$ and the geodesic rays γ_P', γ_Q' respectively. Let β_P be the segment of γ_P', that connect P and P', and let β_Q be the segments of γ_Q' that connect Q and Q'. Remark 2.4 implies that $d(O, S) \geq r$ for any point S in β_P. Similarly, $d(O, S) \geq r$ for a point $S \in \beta_Q$.

Since E is copy of \tilde{X}_1, it is the Euclidean plane, and P' and Q' lie on the sphere $S(O', r)$, there is an (O', r)-detour path β connecting P' and Q' of length at most πr. We note that, since the properties of projections imply that $d(O', T) \leq d(O,T)$ for any point $T \in \beta$, β is also an (O, r) detour path. The desired (O, r)-detour path that connects P and Q is $\beta_P \beta_Q$. \hfill \Box \\

Proposition 4.4. There is a polynomial q_d, of degree d, such that for any point O in \tilde{X}_d, and any two points P,Q on the sphere $S(O, r) \subset \tilde{X}_d$, there is a path α in $\tilde{X}_d \setminus B(O, r)$ connecting P and Q such that the length of α is at most $q_d(r)$.

Proof. We prove the statement of the proposition by induction. Lemma 4.3 provides the base of induction, with $q_1(r) = (2 + \pi)r$.

Let q_{d-1} be a polynomial of degree $d - 1$ such that for any point $O \in \tilde{X}_{d-1}$, and any two points $P',Q' \in S(O', r) \subset \tilde{X}_{d-1}$ there is a path α' in $\tilde{X}_{d-1} \setminus B(O, r)$ connecting P' and Q' such that the length $|\alpha'| \leq q_{d-1}(r)$. Let $O, P, Q \in \tilde{X}_d$ be as in the statement of the proposition. If P and Q are contained in the same vertex complex V_{d-1}, the claim of the Proposition follows directly from the induction hypothesis, otherwise, let $\mathcal{H} = \{H_1, H_2, \ldots, H_m\}$ be the collection of all hyperplanes in \tilde{X}_d such that each H_i either separates P and Q, or $\{P, Q\} \cap star(H_i) \neq \emptyset$.

Without loss of generality we can assume that either $P \in star(H_1)$, or H_1 is the hyperplane in \mathcal{H} closest to P, and that every hyperplane H_i (for $i = 2, \ldots, m - 1$) separates H_{i-1} and $\{H_{i+1}, H_{i+2}, \ldots, H_m\}$. Since $d(P, Q) \leq 2r$, there are no more than $2r$ hyperplanes separating P and Q and therefore $m \leq 2r + 2$. Let Y_i be the component of $\tilde{X}_d \setminus H_i$ that contains H_{i+1} and let V_i, $i = 1, \ldots, m - 1$, be the (unique) vertex complex contained in Y_i that intersects $star(H_i)$. Note that then V_i also intersects $star(H_{i+1})$: H_{i+1} is contained in Y_i and no hyperplane separates H_i and H_{i+1}. If $P \notin star(H_1)$, let V_0 be the vertex complex containing P. Similarly, if $Q \notin star(H_m)$ let V_m be the vertex complex containing Q. If $P \in star(H_1)$ let $Q_0 = P$. If $P \in V_0$, then $d(O, star(H_1) \cap V_0) \leq r$ and we take Q_0 to be a point in $star(H_1) \cap V_0 \cap S(0, r)$.

If $Q \in star(H_m)$ let $P_m = Q$, otherwise let P_m be a point in $star(H_m) \cap V_m \cap S(0, r)$. By Lemma 4.2 there is a point $Q_{m-1} \in V_{m-1} \cap star(H_m) \cap S(O, r)$ and an (O, r)-detour path β_m connecting Q_{m-1} and P_m such that $|\beta_m| \leq 2r + 1$.

For $1 < i < m - 2$, we let Q_i be a point in $star(H_{i+1}) \cap V_i \cap S(0, r)$ such a point exists since $d(O, star(H_{i+1}) \cap V_i) \leq r$. By Lemma 4.2 for every
1 ≤ i < m, there is a point \(P_i \in V_i \cap \text{star}(H_i) \cap S(O_i, r) \), and an \((O, r)\)-detour path \(\beta_i \) connecting \(Q_{i-1} \) and \(P_i \) such that \(|\beta_i| \leq 2r + 1 \).

The point \(P_i, Q_i \), chosen as above for \(i = 1 \ldots, m - 1 \), are both contained in \(V_i \), and, by the induction hypothesis, for each \(i = 1 \ldots, m - 1 \) there is a detour path \(\alpha_i \) of length at most \(q_{d-1}(r) \) connecting \(P_i \) and \(Q_i \) in the vertex space \(V_i \), and outside the ball \(B(O, r) \).

If \(P \notin \text{star}(H_1) \), let \(\alpha_0 \) be the detour path of length at most \(q_{d-1}(r) \) connecting \(P \) and \(Q_0 \) in the vertex space \(V_0 \). Similarly, if \(Q \notin \text{star}(H_m) \), let \(\alpha_m \) be a detour path of length at most \(q_{d-1}(r) \) connecting \(P_m \) and \(Q \) in the vertex space \(V_m \). In the case \(P \in \text{star}(H_1) \) \((Q \in \text{star}(H_m) \) we will take \(\alpha_0 \) \((\alpha_m)\), to be the empty paths.

Then the path

\[
\alpha = \beta_P \ast \alpha_0 \ast \beta_1 \ast \alpha_1 \ast \beta_2 \ast \ldots \ast \alpha_{m-1} \ast \beta_m \ast \alpha_m \ast \bar{\beta}_Q
\]

is a detour path connecting \(P \) and \(Q \) and \(|\alpha| \leq (2r + 3)q_{d-1}(r) + (2r + 2)(2r + 1) \).

5. **Lower bound on the detour function**

We complete our proof of degree \(d \) polynomial divergence in complexes \(\tilde{X}_d \) by showing that there are two geodesic rays in \(\tilde{X}_d \), emanating from the same point \(O \), that diverge at least polynomially with degree \(d \). The two such infinite rays are \(\gamma_0 \) and \(\gamma_d \) which are the infinite concatenations of edges \(\tilde{a}_0 \) and \(\tilde{a}_d \) respectively. As a matter of convention, we use \(\gamma_d \) and \(\omega_d \) to denote either a segment, a ray, or a line which is a concatenation of edges \(\tilde{a}_d \), and we call them \(d \)-segment, \(d \)-ray and \(d \)-line respectively. We will also

Figure 2. Illustration of the proof of Proposition 4.4
consider a finite oriented segment to be a ray, issuing from the its initial endpoint.

Definition 5.1. We call the pair of geodesic rays γ_0 and γ_d both issuing from a vertex $T \in \tilde{X}_d$ a basic d-corner at T and denote it by $(\gamma_d, \gamma_0)_T$.

Definition 5.2. Let γ and γ' be geodesic rays in \tilde{X}_d. An (r, O)-detour path between geodesic rays γ and γ' is any (r, O)-detour path connecting $P \in \gamma$ and $Q \in \gamma'$, P, Q outside $B(O, r)$.

Theorem 5.3. There is a polynomial p_d of degree d and with a positive leading coefficient, such that the length of any (r, O)-detour path in \tilde{X}_d over a basic d-corner $(\gamma_d, \gamma_0)_O$ is bounded below by $p_d(r)$.

5.1. Intuitive approach. Our general approach is to prove Proposition 5.3 by induction on d. We first discuss the motivation for this approach and explain a technical difficulty that it encounters. We start with the observation that any detour path $\alpha \subseteq \tilde{X}_d$ over a basic d-corner $(\gamma_d, \gamma_0)_O$ has to intersect every hyperplane that γ_d intersects. Let n be the greatest integer less than or equal to r, let j be an integer $j \in \{1, \ldots, n\}$, and let H_j be the hyperplane that intersects γ_d at distance $j - 1/2$ from O. Note that the j-th vertex of γ_d (the vertex at the distance j from O) is contained in both $\text{star}(H_j)$ and $\text{star}(H_{j+1})$. We denote this vertex by T_j. For every $1 \leq j \leq n - 1$, let α_j be a component of $\alpha \setminus (\text{os}_{\text{star}}(H_j) \cup \text{os}_{\text{star}}(H_{j+1}))$ that connects the rugged trace ω_j of H_j and the smooth trace $\gamma_{0,j+1}^1$ of H_{j+1}. The geodesics ω_j, which is a $(d - 1)$-ray, and $\gamma_{0,j+1}^1$ intersect at T_j and form a basic $(d - 1)$-corner at T_j. We note that, since $d(\alpha_j, O) \geq r$ and $d(O, T_j) = j$, the path α_j does not intersect the ball of radius $r - j$ centered at T_j, making α_j into an $(r - j)$-detour over a basic $(d - 1)$-corner. We would like to use the hypothesis of induction and claim that $|\alpha_j| \geq p_{d-1}(r - j)$, but α_j might not be contained in the vertex complex V_{d-1}, (a copy \tilde{X}_{d-1}) that contains T_j. To continue the proof by induction, we would need the hypothesis of the induction to be that the length of an r-detour path over a $(d - 1)$-corner in \tilde{X}_d is bounded below by $p_{d-1}(r)$. This assumption is more general than our original statement, which brings the following additional technical difficulty to the proof. If $\alpha_T \subset \tilde{X}_d$ is a detour path over a $(d - 1)$-corner $(\gamma_{d-1, \gamma_0})_T$, where T is contained in a vertex complex V_{d-1}, and if we do not require that $\alpha_T \subset V_{d-1}$, then α_T does not necessarily intersect the hyperplanes in V_{d-1} that separate its endpoints, making such detour paths unsuitable for
induction process. We tackle this difficulty by reformulating our statement in terms of almost detour paths (to be defined).

The motivation for our approach is to describe a canonical way to modify an r-detour path α_T, as above, to obtain a path α'_T, of length not more than the length of α_T, and such that α'_T intersects all the hyperplanes in V_{d-1} that separate its endpoints. If we can then show that there is a polynomial p'_{d-1} of degree $d-1$ such that the length of α'_T is bounded below by $p'_{d-1}(r)$, then $p'_{d-1}(r)$ would also give a lower bound for the length of α_T. The first natural question to consider is if there is a polynomial p'_{d-1} of degree $d-1$ such the length of the closest point projection of α_T to the vertex complex V_{d-1} is bounded below by $p'_{d-1}(r)$. We note that $\pi_{d-1}(\alpha_T)$ might not be a detour path, and could intersect the ball $B(O, r)$ in a collection of segments that are rugged or smooth sides of hyperplanes in \tilde{X}_d. It turns out that the projections of detour paths are not, in general, long enough, but if we only allow projections in the cases when they are contained in the rugged sides of hyperplanes, we get the desired lower bound. We proceed with this approach since, as we will show, this is sufficient to obtain paths that behave well under induction.

In the following two subsections we introduce the terminology necessary to define almost detour paths, which will be paths that connect two points on the sphere $S(O, r)$, and intersect the ball $B(O, r)$ only in geodesics of a very particular form, we will call such geodesics legal shortcuts. Every detour path is an almost detour path, but we will show that, given a detour path α, we can obtain an almost detour path α', with the same endpoints as α, and of length no longer than the length of α, and which has the following property: if the closest point projection $\pi_k(\alpha'')$ of an arc $\alpha'' \subset \alpha'$ to a vertex complex V_k, $k \geq 1$ and $O \in V_k$, is a k-segment σ_k, then $\pi_k(\alpha'') = \alpha''$. This property is stated and proved in Lemma 5.16, which is the most technical part of this section. Our modified approach will also require us to consider more general corners in addition to the basic ones, and we introduce raised corners in the next subsection.

5.2. Raising rays and lines. We recall that a positive ray is geodesic ray in 1-skeleton of \tilde{X}_m that traces all its edges in a positive direction (3.1).

Definition 5.4. A raising d-ray ζ_d in \tilde{X}_m, $m \geq d$, is a concatenation $\sigma_d u$ of a d-segment σ_d and a positive geodesic segment u, such that, if $0 \leq t_1 \leq t_2$, and if $u(t_1)$, $u(t_2)$ are contained in the interiors of the edges e_1 and e_2 respectively, then $d + 1 \leq \text{height}(e_1) \leq \text{height}(e_2)$.

We call σ_d the d-segment of ζ_d. We allow for σ_d to be a single point, or for u to be an empty path, but not both at the same time. In the case that u is an empty path, σ_d cannot be a single point, and is considered to be a raising d-ray.

Note that a raising d-ray can be either an infinite ray or, a finite segment, in which case we use the term ray to emphasize the importance of the orientation. It follows directly from the definition, and the group presentation, that every raising ray is a local geodesic, and therefore a geodesic.

Definition 5.5. Let ζ_d be a raising d-ray and let γ_0 be a 0-segment, both issuing from a vertex $T \in \tilde{X}_m$, $m \geq d$. We call the pair $(\zeta_d, \gamma_0)_T$ a raised d-corner at T.

Definition 5.6. Let σ_d be a d-segment in \tilde{X}_m, $m \geq d \geq 1$. A geodesic $\bar{u}_1\sigma_du_2$, where u_1 and u_2 are positive (possibly empty) raising $(d + 1)$-rays, (Figure 5.2) is called a raising σ_d-line.

![Figure 3](https://via.placeholder.com/150)

Figure 3. A raising σ_d-line

Remark 5.7. The following observation is a direct consequence of the definition of a raising σ_d-line: if $\bar{u}_1\sigma_du_2$ is a raising σ_d-line and σ' a ray contained in $\bar{u}_1\sigma_du_2$ such that the σ' traces its first edge e in the positive direction, then all the edges in σ' have positive direction and height bigger than or equal to the height of e.
We also note that any subray of a raising σ_d-line issuing from a point P in σ_d is a raising d-ray.

Remark 5.8. Let $V_i \subseteq \tilde{X}_m$ be a vertex complex in \tilde{X}_m, $i \leq m$, let H_i be a hyperplane in V_i, and let ω be a geodesic in 1-skeleton of \tilde{X}_m. If ω intersects $\text{o star}(H_i)$, then the intersection of $\text{star}(H_i)$ and ω is contained in a single edge labeled \tilde{a}_i.

Proof. The only edges contained in the o star(H_i) are edges labeled \tilde{a}_i, and, since $\text{o star}(H_i) \cap \omega \neq \emptyset$, we conclude that there is an edge e labeled \tilde{a}_i, and a point $Q \in \text{Int}(e) \cap \omega$. If there is a point $Q' \in \text{star}(H_i) \cap \omega$ not contained in e, then convexity of $\text{star}(H_i)$ implies that the geodesic connecting Q and Q' is contained in $\text{star}(H_i)$. Moreover, since $\text{star}(H_i)$ embeds isometrically into \tilde{X}_m, such a geodesic would intersect the interior of one of the two cubes adjacent to e, which contradicts the fact that the segment of ω connecting Q and Q' is the unique geodesic that connects these two points, and is contained in the 1-skeleton of \tilde{X}_m.

The above remark implies that, if ω also intersects a component C of $V_i \text{\text{o star}}(H_i)$, then it intersects the trace of H_i adjacent to C in a single point.

Lemma 5.9. Let V_i be an i-vertex complex in \tilde{X}_m, $1 \leq i \leq m$, and let H_i be a hyperplane in V_i with the rugged side σ_{i-1}. If ω is a raising σ_d-line, $1 \leq d \leq i$, such that ω intersects σ_{i-1} at a point P, and such that $\text{ostar}(H_i) \cap \omega \neq \emptyset$, then $\omega \setminus \text{ostar}(H_i)$ has exactly one component ω_P containing P, and ω_P is a positive raising i-ray issuing at P.

If S is any point on σ_{i-1}, and σ the segment of σ_{i-1} connecting S and P then the concatenation $\sigma \omega_P$ is a raising $(i-1)$-ray.

Proof. Since ω is a geodesic contained in 1-skeleton, $\omega \cap \text{star}(H_i)$ is contained in a single edge labeled \tilde{a}_i (Remark 5.8). Let Q be a point in $\text{ostar}(H_i) \cap \omega$, and let ω_Q be the subray of ω, issuing at Q, and that contains P. Since P is contained in the rugged trace σ_{i-1} of H_i, ω_Q traces \tilde{a}_i in the positive direction, and Remark 5.7 implies that it is a positive raising ray. Then $\omega_P = \omega_Q \setminus \text{ostar}(H_i)$ is the component of $\omega \setminus \text{ostar}(H_i)$ containing P, and, since it is a subray of ω_Q, is also a positive raising ray.

The last statement of the lemma follows directly from the definition of a raising ray.
5.3. Legal shortcuts and almost detour paths.

Definition 5.10. A shortcut is a geodesic contained in the open ball \(B(O, r) \subseteq \tilde{X}_m \). If \(\omega \) is a geodesic such that \(S(O, r) \cap \omega \neq \emptyset \) we call a point \(P \in S(O, r) \cap \omega \) an endpoint of the shortcut \(\omega \cap B(O, r) \).

Definition 5.11. Let \(O \) be a point in \(\tilde{X}_m \). A shortcut \(\omega \subseteq \tilde{X}_m \) is \(O \)-legal if it is raising \(\sigma_d \)-line for a \(d \)-segment \(\sigma_d \subseteq V_d \), where \(V_d \subseteq \tilde{X}_m \) is a \(d \)-vertex complex, \(1 \leq d \leq m \), such that \(O \in V_d \).

The following properties of legal shortcuts are direct consequences of the above definition, and we list them to provide the reader with different aspects of legal shortcuts that we use in our proofs.

1. If \(\omega \subseteq \tilde{X}_m \) is an \(O \)-legal shortcut, and if \(V_i \cap \omega \neq \emptyset \) for a vertex complex \(V_i \subseteq \tilde{X}_m \), containing the point \(O \), then \(V_i \cap \omega \) is also an \(O \)-legal shortcut.
2. If \(V_i \cap \omega = \emptyset \) for a vertex complex \(V_i \subseteq \tilde{X}_m \), containing the point \(O \), then all the edges in \(\omega \) have the height greater or equal to \(i + 1 \).
3. If a raising \(\sigma_d \)-line \(\omega \) for a \(d \)-segment \(\sigma_d \subseteq V_d \) is an \(O \)-legal shortcut, and \(O \in V_d \subseteq V_i \) are vertex complexes in \(\tilde{X}_m \) containing \(O \), then \(\omega \cap V_i \setminus V_d \), is either empty, or consist of one or two positive raising \(i \)-rays.

Definition 5.12. A path \(\alpha \subseteq \tilde{X}_m \) is an almost \((r, O)\)-detour path if the intersection \(\alpha \cap B(O, r) \) is a collection of \(O \)-legal shortcuts.

Definition 5.13. An almost \((r, O)\)-detour path \(\alpha \subseteq \tilde{X}_m \) over a raised corner \((\zeta_d, \gamma_0)_T \) is an almost \((r, O)\)-detour path with initial endpoint \(P \in \zeta_d \), \(P \notin B(O, r) \), and such that \(\alpha \) intersects \(\gamma_0 \) at a point \(Q \neq O \).

We also require that, if there is a shortcut \(\omega \subseteq \alpha \) that contains both points \(O \) and \(P \), then \(\omega \) is a raising \(\sigma_d \)-line for a \(d \)-segment \(\sigma_d \) (that is, has no edges of height less than \(d \)).

We call the arc \(\alpha' \) of \(\alpha \) connecting the points \(P \) and \(Q \) a truncated almost detour path.

Note that we allow for \(\alpha \) to contain \(O \), and therefore intersect \(\gamma_0 \) multiple times.

5.4. The main result.

Proposition 5.14. For every \(d \in \mathbb{N} \) there is a polynomial \(p_d \) of degree \(d \), and with a positive leading coefficient, such that for any \(m, i \) such that
m \geq i \geq d$, and any almost (r,O)-detour path α in \tilde{X}_m over a raised i-corner $(\zeta_i,\gamma_0)_O$, the length of the corresponding truncated almost detour path α' is bounded below by $p_d(r)$.

Remark 5.15. Our definition of an almost detour path over a raised corner implies that $p_d(r) \leq p_d(r')$ for $r \leq r'$.

Since a minimal length r-detour path α over a basic d-corner $(\gamma_d,\gamma_0)_O$ is also an almost r-detour path over $(\gamma_d,\gamma_0)_O$, the statement of Theorem 5.3 follows directly from Proposition 5.14. It remains to prove Proposition 5.14.

5.5. Proof of Proposition 5.14

We will prove the proposition by induction on the degree of the polynomial p_d that gives the lower bound on the divergence. We first introduce the necessary terminology, applied throughout the statements and proofs of four lemmas that follow, and conclude the section with the proof of Proposition 5.14.

Let α be a minimal length almost (r,O)-detour path in \tilde{X}_m over a raised i-corner $(\zeta_i,\gamma_0)_O$. For each $k \in \mathbb{N}$, $i \leq k \leq m$, let V_k be the k-vertex complex in \tilde{X}_m containing O. Let $\pi_k : \tilde{X}_m \rightarrow V_k$ be the projection onto V_k. Let $E = \{e_1,\ldots,e_n\}$ be the set of all edges in \tilde{X}_m such that $\zeta_i \cap \text{Int}(e) \neq \emptyset$, and note that $n \geq r$. Since ζ_i is a geodesic, we can assume that the distance $d(O,e_j) = j - 1$ for an edge e_j in E.

Since ζ_i is a raising ray, the height $\text{height}(e_p) \leq \text{height}(e_j)$ for edges e_p,e_j in E such that $p \leq j$, and any edge e_j labeled \tilde{a}_k is contained in V_k. Let H_j be the hyperplane in V_k that corresponds to such an e_j.

Then $e_j = \pi_k(e_j)$ is contained in $\pi_k(\zeta_i)$ and the hyperplane H_j separates O and $\pi_k(P)$, and therefore also Q and $\pi_k(P)$. Since Q and $\pi_k(P)$ are the endpoints of $\pi_k(\alpha)$, H_j intersects $\pi_k(\alpha)$. The following lemma establishes that, if α is a minimal length almost detour path, as assumed, then α intersects each H_j.

We remark that the lemma describes the procedure in which, by replacing arcs of α that do not intersect the hyperplanes by shortcuts, any detour path α, over a raised i-corner, can be modified without increasing length to an almost detour path over a raised i-corner that intersects the appropriate hyperplanes. In particular, all the edges in the newly introduced shortcuts have height bigger than or equal to i, ensuring that no shortcut in the resulting almost detour path that contains both points O and P will contain edges of height strictly less than i. By the same argument, if α is an an
almost detour path over a raised \(i \)-corner, the resulting path is also an almost detour path over a raised \(i \)-corner.

Lemma 5.16. Let \(\alpha \) be a minimal length \((r, O)\)-detour path in \(\overline{X}_m \) over a raised \(i \)-corner \((\gamma_i, \gamma_0)\).

1. If \(\pi_k(\alpha) \cap \text{ostar}(H) \neq \emptyset \) for a hyperplane \(H \) in \(V_k \), then \(\pi_k(\alpha) \cap \text{ostar}(H) \subseteq \alpha \).
2. If \(H \) is a hyperplane in \(V_k \), where \(k \geq i + 1 \), whose rugged side is contained in the vertex space \(V_{k-1} \), and \(Y_O \) the component of \(V_k \setminus \text{ostar}(H) \) such that \(O \in V_{k-1} \subseteq Y_O \), then \(\pi_k(\alpha) \subseteq Y_O \).

Proof. Let \(V_{k-1} \subseteq V_k \) be the \((k-1)\)- and \(k \)-vertex complexes, respectively, that contain the point \(O \), and let \(\pi_k : \overline{X}_m \rightarrow V_k, \pi_{k-1} : \overline{X}_m \rightarrow V_{k-1} \) be the corresponding projections. We note that, since \(\pi_m(\alpha) = \alpha \), Statement 1 is true for \(k = m \), and will first prove that, for any \(k \), Statement 1 implies Statement 2.

If \(H \) is a hyperplane in \(V_k \) whose rugged side \(\sigma_{k-1} \) is contained in the vertex space \(V_{k-1} \), then \(H \) does not separate the endpoints \(\pi_k(P) \) and \(Q \) of \(\pi_k(\alpha) \): by the definition of a raised corner, every hyperplane in \(V_k \), for \(k \geq i + 1 \), that separates \(\pi_k(P) \) and \(Q \) intersects the vertex complex \(V_{k-1} \) in its smooth side. Assume that \(\pi_k(\alpha) \) intersects \(Y_C = V_k \setminus Y_O \), and note that this implies that \(\text{ostar}(H) \cap \pi_k(\alpha) \neq \emptyset \), and Statement 1 of the lemma further implies that \(\text{ostar}(H) \cap \alpha = \text{ostar}(H) \cap \pi_k(\alpha) \neq \emptyset \). Let \(\alpha_A \) be the connected component of \(\alpha \setminus \text{ostar}(H) \) that contains \(P \), and let \(\alpha_B \) be the connected component of \(\alpha \setminus \text{ostar}(H) \) that contains \(Q \). We denote the endpoints of \(\alpha_A \) and \(\alpha_B \) contained in \(\sigma_{k-1} \) by \(A \) and \(B \) respectively. Let \(\alpha' \) be the arc of \(\alpha \) connecting \(A \) and \(B \).

Let \(S \) be either of the points \(A, B \). If \(S \in B(O, r) \), then \(S \) is contained in a legal shortcut \(\omega \) which intersects \(\text{ostar}(H) \cap B(O, r) \). Lemma 5.9 implies that there is a positive raising \(k \)-ray \(u_S \) issuing from \(S \), contained in \(\omega \), and such that \(u_S \) does not intersect \(\text{ostar}(H) \). Since \(u_S \) contains \(S \) and does not intersect \(\text{ostar}(H) \), \(u_S \subseteq \alpha_A \). If \(S \) is not in the open ball \(B(O, r) \), take \(u_S \) to be the trivial path. Let \(u_A \) and \(u_B \) be the two positive raising rays corresponding to the points \(A \) and \(B \) and let \(\sigma \) be the segment of \(\sigma_{k-1} \) connecting \(A \) and \(B \), as in Figure 5.5. The path \(\theta = \overline{\alpha_A} \sigma \overline{u_B} \) is a legal shortcut with initial endpoint in \(\alpha_A \) and terminal endpoint in \(\alpha_B \). The segment \(\sigma \) is the unique geodesic segment connecting \(A \) and \(B \) and if \(\alpha' \neq \sigma \), or, equivalently \(\alpha \cap \text{ostar}(H) \neq \emptyset \), then \(|\alpha'| > |\sigma| \). This would further imply that \(\alpha_A \sigma \alpha_B \) is an almost detour path connecting \(P \) and \(Q \) of length
strictly shorter than the length of α. Since $|\alpha_A \sigma \alpha_B| < |\alpha|$ contradicts our assumption that α is an almost detour path of minimal length, we conclude that $\alpha' = \sigma$ and therefore $\pi_k(\alpha) \subseteq Y_O$ as claimed.

We proceed to prove that, if Statement 2 of the lemma holds for $k, i+1 \leq k \leq m$, then Statement 1 holds for $k - 1$. First note that the projection $\pi_{k-1}(S)$ to V_{k-1} of a point $S \notin V_{k-1}$ is contained in an edge labeled \tilde{a}_{k-1} or \tilde{a}_0. If such $\pi_{k-1}(S)$ is contained in $\text{ostar}(h)$ for a hyperplane h in V_{k-1}, then it is contained in the interior of an edge e labeled \tilde{a}_{k-1}, since edges labeled \tilde{a}_0 do not intersect $\text{ostar}(h)$.

Let S be a point in α such that $\pi_{k-1}(S)$ is contained in the interior of an edge $e \in V_{k-1}$ labeled \tilde{a}_{k-1}. Denote by σ_{k-1} the $(k - 1)$-line that contains e, let H be the hyperplane in V_k such that $\sigma_{k-1} \subset V_{k-1}$ is the rugged side of H, and let $Y_C = V_k \setminus Y_O$, where Y_O is as in Statement 2 of the lemma. We assume $S \neq \pi_{k-1}(S)$, and proceed to show that implies $\pi_k(S) \in Y_C$, creating a contradiction to Statement 2 of the lemma.

Let γ_S be the geodesic that connects S and $\pi_{k-1}(S)$, and let $\tau \subset Y_C$ be the smooth side of H. Since H is the only hyperplane in V_k such that $e \subset \text{star}(H)$, γ_S intersects $\text{ostar}(H)$.

Figure 4. Shortening an almost detour path.
If $S \in \text{ostar}(H)$, then $\pi_k(S) = S \in Y_C$. If $S \notin \text{ostar}(H)$, then γ_S intersects τ. If $S \in V_k$, then $\gamma_S \subset V_k$, and, since γ_S cannot intersect τ twice, $\pi_k(S) = S \in Y_C$.

If $S \notin V_k$, let $L \in \{k, \ldots, m - 1\}$ be such that $S \in V_L$ and $S \notin V_{L-1}$. For $k \leq l < L$, let H_l be the hyperplane in V_{l+1} adjacent to V_l, and let γ^l_D be a geodesic in V_L connecting S and a point D in V_l. Denote by $Y'O$ the component of $V_{l+1}\setminus\text{ostar}(H_l)$ such that $O \in V_l \subset Y'O$, and let $Y'C = V_{l+1}\setminus Y'O$.

Since $S = \pi_L(S) \subset Y'L^{-1}$, Statement 2 implies that V_{L-1} contains the smooth trace τ_{L-1} of H^{L-1}, and we also note that $\pi_{L-1}(S) \in \tau_{L-1}$. Separation properties of hyperplanes in V_L imply that any geodesic γ^L_D intersect τ_{L-1}.

If we assume that $\pi_l(S) \in \tau_l \subset Y'_C$, and that any geodesic γ^l_D intersect $\tau_l \subset \text{star}(H_l)$, Statement 2 implies that V_{l-1} contains the smooth trace τ_{l-1} of H^{l-1}, and separation properties of hyperplanes in V_l imply that any geodesic γ'^{l-1}_D intersect τ_{l-1}. We, deduce, by induction that the V_l contains the smooth trace τ_l of H^l for every $k \leq l < L$, that $\pi_l(S) \in \tau_l(S)$, and also that, for every such l, any γ^l_D intersects τ_l, see Figure 5.5. We turn

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure5}
\caption{Projections onto vertex complexes}
\end{figure}

our attention back to γ_S, concluding, based on the above discussion, that it intersect τ_k, and that τ_k also contains $\pi_k(S)$. Since γ_S cannot intersect
\[\tau \text{ twice } \tau \text{ is contained in the component of } V_k \setminus \text{ostar}(H) \text{ that contains } \tau_k, \]

which is \(Y_C \), and therefore \(\pi_k(S) \in Y_C \).

Since the rugged side of \(H \) is contained in \(V_{k-1} \), this provides the contradiction, which we aimed for, to Statement 2 of the lemma that \(\pi_k(\alpha) \cap Y_C = \emptyset \). We conclude that \(S = \pi_{k-1}(S) \), establishing our claim that \(\pi_{k-1}(\alpha) \cap \text{ostar}(h) \) is contained in \(\alpha \). \(\square \)

We highlight the following straightforward corollary of the second statement of Lemma 5.16.

Corollary 5.17. If \(H \) is a hyperplane in \(V_k \), where \(k \geq i + 1 \), whose rugged side is contained in the vertex space \(V_{k-1} \) then \(\alpha \) does not intersect \(H \).

Lemma 5.18. We may assume that no proper arc of \(\alpha \) is an almost detour path over a raised \(i \)-corner, \(i \geq d \), based at \(O \).

Proof. If there is such a proper arc \(\alpha' \), we can replace \(\alpha \) by \(\alpha' \). Since \(\alpha \) has finite length and \(|\alpha'| < |\alpha| \), this process terminates. \(\square \)

In particular, Lemma 5.18 implies that there are no raising \(i \)-rays, \(i \geq d \), issuing at \(O \) and intersecting \(\alpha \setminus B(O,r) \) at any point other than \(P \). We next show that such an almost detour path does not intersect \(\zeta_i \) at any other points except \(P \) and, possibly, \(O \).

Lemma 5.19. \(\alpha \cap \zeta_i \subset \{O, P\} \).

*Proof. If \(\alpha \) intersects \(\zeta_i \) in a point other then \(\{O, P\} \), then \(\alpha \) contains a shortcut \(\omega \) that intersects \(\zeta_i \) in a point other then \(\{O, P\} \).

We first consider the case that such a shortcut \(\omega \) contains \(O \). Then \(O \) separates \(\omega \) into two components \(\omega_1 \) and \(\omega_2 \). If one of the components, say \(\omega_1 \), contains \(P \) then \(\omega \) is an raising \(i \)-line, and \(\omega_2 \) is a raising \(i \)-ray that intersects \(\alpha \setminus B(O,r) \) at a point other than \(P \). If neither of the rays \(\omega_1, \omega_2 \) contain \(P \), but if one of them, say \(\omega_1 \), intersects \(\zeta_i \) at a point other than \(O \), then \(\omega_1 \) is a raising \(i \)-ray that intersects \(\alpha \setminus B(O,r) \) at a point other than \(P \).

In either case, we have a contradiction with Lemma 5.18.

If \(\omega \) does not contain \(O \), and intersect \(\zeta_i \) at point(s) different then \(P \), let \(Z_0 \neq P \) be the point in \(\omega \cap \zeta_i \) closest to \(O \). \(Z_0 \) separates \(\alpha \) into arcs \(\alpha_P \) and \(\alpha_Q \) containing \(P \) and \(Q \) respectively, and also separates \(\omega \) into two components. We denote the component of \(\omega \setminus \{Z_0\} \) contained in \(\alpha_Q \) by \(\omega_0 \). We consider \(\omega_0 \) as a ray issuing from \(Z_0 \).

Let \(\delta \) be the segment of \(\zeta_i \) connecting \(O \) and \(Z_0 \), and let \(e_j \) be the edge in \(\delta \) such that \(Z_0 \) is an endpoint of \(e_j \). We want to show that the height
of every edge in ω is greater than or equal to the height of e_j. We start by proving that ω does not intersect H_j, the hyperplane that corresponds to the edge e_j. By the definition of the point Z_0 and the segment δ, ω does not intersect e_j at any point other than Z_0. If ω intersects H_j at a point $Z_1 \notin e_j$, then the segment of ω connecting Z_0 and Z_1 would be the geodesic between Z_0 and Z_1 in $\text{star}(H_j)$. Since such a geodesic is not contained in 1-skeleton, it cannot be a part of a shortcut.

Let h_j be the height of the edge e_j, and, consistent with our notation, let V_{h_j} be the h_j-vertex complex containing O. Since ω does not intersect H_j, the closest point projection $\pi_{h_j}(\omega)$ does not intersect H_j either (Lemma 5.16, statement (1)). Note that H_j separates V_{h_j} into two components, one of which contains O and V_{h_j-1}, and the other one containing Z_0. Since $\pi_{h_j}(\omega)$ contains Z_0 and does not intersect H_j, it does not intersect V_{h_j-1} either. This further implies that, since $\pi_{h_j}(\omega \cap V_{h_j}) = \omega \cap V_{h_j}$, ω does not intersect V_{h_j-1}.

Since ω is an O-legal shortcut, the observation (item 2) after definition 5.11 implies that the height of every edge in ω is greater or equal to the height of e_j, which is greater or equal to i.

If the height of the first edge e that ω_0 traces is equal to the height of e_j, then $\delta \omega_0$ traces e_j and e in the same direction. If the height of e is strictly larger than the height of e_j, then Corollary 5.17 implies that ω_0 traces all its edges in positive direction. This, together with properties of legal shortcuts, makes $\delta \omega_0$ a raising i-ray that intersects $\alpha \setminus B(O,r)$ at a point different than P, contradicting Lemma 5.18 again.

The following lemma establishes the base of induction for our inductive proof of Proposition 5.14.

Lemma 5.20. Let α' be a minimal length almost (r,O)-detour path over a raised d-corner (ζ_d, γ_0) based at O, with the initial endpoint $P \in \zeta_d$. Let Q be the point of intersection of α' and γ_0, and let α be the arc of α' connecting P and Q. Then the length of α is at least $r - 1$.

Proof. The claim follows directly from the above observation that α intersects both traces of $\text{star}(H)$ for every hyperplane H_j, $1 \leq j \leq n - 1$: the distance between such two intersections is at least 1, which implies that the length of α is at least $r - 1$.

We can now complete the proof of Proposition 5.14.
By Lemma 5.20, for $i \geq 1$, the length of a truncated almost r-detour path over a raised i-corner is at least $p_1(r) = r - 1$, which establishes the base of induction. We proceed to prove that the existence of a polynomial p_{d-1} of degree $d-1$, where $d \geq 2$, as in the statement of the proposition, implies the existence of a polynomial p_d.

Let $\zeta_i = \sigma_i u_{i+1}$, where σ_i is an i-segment and u_{i+1} is a raising $(i+1)$-ray. For each edge e_j in $\sigma_i u_{i+1}$, $j \leq n-1$, we denote by T_j the terminal endpoint of e_j. Since ζ_i traces each edge e_j in u_{i+1} in positive direction, the point T_j lies in the rugged trace of the hyperplane corresponding to e_j, and on the smooth trace of the hyperplane corresponding to the edge e_{j+1}. If ζ_i also traces the edges in σ_i in positive orientation, the same conclusion holds for all T_j in $\{T_1, \ldots, T_{n-1}\}$: T_j is contained in the rugged trace of the hyperplane H_j and the smooth side of the hyperplane H_{j+1}, as illustrated in Figure 5.5.

![Figure 6](image_url)

Figure 6. Intersections of hyperplanes and an almost detour path α when ζ_i traces the edges in σ_i in positive direction.

If ζ_i traces the edges in σ_i in negative direction, as illustrated in Figure 5.5, then, for $j \geq 2$, the vertex T_j which is the terminal endpoint of an edge $e_j \in \sigma_i$ lies in the rugged trace of the hyperplane corresponding to the edge e_j, and on the smooth trace of the hyperplane corresponding to the edge...
\(e_{j-1}\). The vertex \(T_1\) lies on the rugged trace of the hyperplane corresponding to the edge \(e_1\) and on the smooth path \(\gamma_0\).

We will show that there is a collection \(\{\alpha_j|j \in \{1,\ldots,n-1\}\}\) of disjoint arcs \(\alpha_j\) of \(\alpha\), such that \(\alpha_j\) is a truncated almost detour path over a raised \((i_j-1)\)-corner, \(i_j \geq d\), based at \(T_j \in V_k\).

Let \(q\) to be the element of \(\{0,1,\ldots,n-1\}\) defined in the following way. If \(\zeta_i\) traces all the edges \(e_j, j \in \{1,\ldots,n-1\}\), in the positive direction, we let \(q = 0\). If \(\zeta_i = \sigma_i\) and if it traces all the edges \(e_j, j \in \{1,\ldots,n-1\}\), in the negative direction, we let \(q = n - 1\). Otherwise, let \(q\) be such that \(\zeta_i\) traces each edge \(e_j\) in negative direction for \(j \leq q\), and in positive direction the for \(j > q\). Let \(S_n = P\), and \(S_0 = Q\). For each \(j \in \{1,\ldots,n-1\}\) we inductively define a point \(S_j\) in the rugged side of the hyperplane \(H_j\) in the following way. If \(j\) is such that \(0 \leq q < j \leq n - 1\), let \(S_j\) to be the point of intersection of \(\alpha\) and the rugged side of the hyperplane \(H_j\) such that the arc \(\beta_j\) of \(\alpha\) connecting \(S_j\) and \(P\) does not intersect \(H_j\). If \(1 \leq j \leq q\) choose \(S_j\) be the point in the intersection of \(\alpha\) and the rugged side of the hyperplane \(H_j\) such that the arc \(\beta_j\) of \(\alpha\) connecting \(S_j\) and \(Q\) does not intersect \(H_j\).

Lemma 5.19 implies that \(S_j \neq T_j\)
If S_j is outside the ball $B(O, r)$ we let $P_j = S_j$. If $S_j \in B(O, r)$, then it is contained in a shortcut ω such that $\omega \cap \text{ostar}(H_j) \neq \emptyset$, and, since S_j is contained in the rugged side of H_j, Lemma 5.16 implies that there is an endpoint P_j of ω such that the oriented segment of ω connecting S_j and P_j is an positive raising ray which does not intersect H_j, and such that the geodesic connecting T_j and P_j is a raising $(i_j - 1)$-ray. We note that P_j is contained in β_j.

Let ζ_j^j be the raising $(i_j - 1)$-ray connecting T_j and P_j, and let γ_0^j the 0-ray issuing at T_j. We note that, for $j > q$, ζ_j^j does not contain S_{j+1}: if it did, the segment of ζ_j^j between T_j and S_{j+1} would be the unique geodesic segment connecting T_j and S_{j+1}, and, the definition of S_{j+1} together with our observation that $S_{j+1} \neq T_{j+1}$, imply that such geodesic segment is not contained in 1-skeleton. By the same argument, S_{j-1} is not contained in ζ_j^j for $j \leq q$.

We let α_j be the arc of β_j connecting P_j and P_{j+1} in the case $j \geq q$, and the arc of β_j connecting P_j and P_{j-1} for $j < q$. The above discussion implies that the point P_j is contained in the arc of β_j connecting S_j and S_{j+1} for $j > q$, and in the arc of β_j connecting S_j and S_{j-1} for $j \leq q$, and therefore the arcs α_j are disjoint. Each α_j is an almost detour path and Lemma 5.19 implies that α_j intersects γ_0^j at a point different than T_j. Therefore, for every $j \in \{1, \ldots, n-1\}, \alpha_j$ is a subarc of α, which is a truncated almost detour path over a $(i_j - 1)$-corner (ζ_j^j, γ_0^j) and Since $d(O,T_j) \leq j$, and α is an an almost (r, O)-detour path, $d(T_j, A) \geq r - j$ for every point $A \in \alpha_j$ which is not contained in a legal shortcut. Therefore α_j is an $(r - j)$-almost detour path over a raised $i_j - 1$-corner, for $i_j \geq d$. By the hypothesis of the induction $|\alpha_j| \geq p_{d-1}(r - j)$. Then the length of

$$|\alpha| \geq \sum_{j=1}^{n-1} |\alpha_j| \geq \sum_{j=1}^{n-1} p_{d-1}(r - j),$$

and $p_d(r) = \sum_{j=1}^{n-1} p_{d-1}(r - j)$ is a polynomial of degree d which is a lower bound for the detour function of \tilde{X}_m.

References

[1] A. Abrams, N. Brady, P. Dani, and M. Duchin. Pushing fillings in right-angled artin groups. ArXiv:1004.4253, 2010.
[2] J. Behrstock and R. Charney. Divergence and quasimorphisms of right-angled artin groups. Mathematische Annalen, (352):339–356, 2012.
[3] M. Bridson and A. Haefliger. *Metric spaces of nonpositive curvature*. Grundlehren der Mathematischen Wissenschaften, Vol. 319, Springer-Verlag, Heidelberg, 1999.

[4] W. Dison and T. Riley. Hydra groups. arXiv:1002.1945v2, 2010.

[5] S. M. Gersten. Quadratic divergence of geodesics in $CAT(0)$–spaces. *Geometric and Functional analysis*, 4(1):37–51, 1994.

[6] G.C. Hruska. Nonpositively curved 2-complexes with isolated flats. *Geom. Topol.*, 8(205-275), 2004.

[7] M. Kapovich and B. Leeb. 3-manifold groups and nonpositive curvature. *Geometric and Functional Analysis*, 8(5):841–852, 1998.

[8] N. Macura. Detour functions and quasi-isometries. *Quarterly Journal of Mathematics*, 53(2):207–239, 2002.