Mitochondrial Genome of Spirometra theileri Compared with Other Spirometra Species

Barakaeli Abdieli Ndosι1,2, Hansol Park1, Dongmin Lee1, Seongjun Choe1, Yeseul Kang1, Tilak Chandra Nath1,2, Mohammed Mebarek Bia1, Chatanun Eamudomkarn1, Hyeong-Kyu Jeon1,2, Keeseon S. Eom1,2*

1Department of Parasitology, Parasitology Research Center and Parasite Resource Bank, Chungbuk National University, School of Medicine, Cheongju 28644, Korea; 2Tanzania Wildlife Management Authority, P.O. BOX 2658 Morogoro, Tanzania; 3Department of Parasitology, Sylhet Agricultural University, Bangladesh; 4Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand

Abstract: This study was carried out to provide information on the taxonomic classification and analysis of mitochondrial genomes of Spirometra theileri. One strobila of S. theileri was collected from the intestine of an African leopard (Panthera pardus) in the Maswa Game Reserve, Tanzania. The complete mtDNA sequence of S. theileri was 13,685 bp encoding 36 genes including 12 protein genes, 22 tRNAs and 2 rRNAs with absence of atp8. Divergences of 12 protein-coding genes were as follow: 14.9% between S. theileri and S. erinaceieuropaei, 14.7% between S. theileri and S. decipiens, and 14.5% between S. theileri and S. ranarum. Divergences of 12 proteins of S. theileri and S. erinaceieuropaei ranged from 2.3% in cox1 to 15.7% in nad5, while S. theileri varied from S. decipiens and S. ranarum by 1.3% in cox1 to 15.7% in nad3. Phylogenetic relationship of S. theileri with eucestodes inferred using the maximum likelihood and Bayesian inferences exhibited identical tree topologies. A clade composed of S. decipiens and S. ranarum formed a sister species to S. erinaceieuropaei, and S. theileri formed a sister species to all species in this clade. Within the diphyllobothridean clade, Diphyllobothrium and Spirometra formed a monophyletic group, and sister genera were well supported.

Key words: Spirometra theileri, Panthera pardus, mitochondria, genome, Tanzania

INTRODUCTION

Spirometra species are intestinal tapeworms of feline and canine mammals belong to the family Diphyllobothriidae and to the order Diphyllobothridae (Pseudophyllidea). In the life cycle, Spirometra species require 2 different intermediate hosts. The freshwater copepods are the first intermediate hosts. When the amphibians and reptiles consume the copepods, they become the second intermediate host [1]. The procercoid occurs in the crustacean copepods, and the plerocercoid (sparganum) develops in amphibians, reptiles or mammals. Humans get infected by drinking natural water containing copepods or by consuming raw or undercooked second intermediate hosts [2].

Spirometra theileri (Sparganum baxteri, Simboni 1907; Diphyllobothrium theileri) was first reported with morphological description on adult S. theileri collected from bush cat (Leptailurus serval) and tiger cat (Felis lybica) in East Africa [3,4]. The studies on the physiology and biology of S. theileri were conducted using the plerocercoids obtained from the subcutaneous tissue of a warthog in Serengeti National Park, Tanzania [5,6]. The detailed morphological features of adult S. theileri were studied from African mammals such as wild cat (Felis lybica), serval (Leptailurus serval), leopard (Panthera pardus), lion (Panthera leo), and jakal (Canis aureus) [7,8].

The morphological descriptions of adult S. theileri ranged from 35 to 40 cm long with 0.4 to 3.3 mm wide. The internal organs of S. theileri consist of uterus in lobular forms of 3/4 complete coils of their inner mass, and the elliptical seminal vesicle with the average of 0.13 to 0.22 mm while the cirrus pouch measurement ranged from 0.3 to 0.19 mm [4]. The major differentiating features between S. pretoriensis and S. theileri are uterus and cirrus pouch that the uterine loops of S. theileri consists of 3-4.5 coils, and a cirrus pouch communicated through a short canal and much smaller vesicular seminis, while the uterus of S. pretoriensis forms a single large loop, and...
the cirrus pouch possess a large vesicular seminis and muscular wall [9]. The molecular identification of *S. theileri* was carried out in African leopards and spotted hyenas in Tanzania [10].

Spirometra theileri was reported by the molecular analysis of mitochondrial genes and morphological observations of adult tapeworms [10]. Species identification of the genus *Spirometra* tapeworms in Africa through reliable morphological and molecular characters remain controversial [11,12]. It was argued that the selective pressure and evolution constraints are among the factors demanding for more gene markers for proper classification [13].

The mitochondrial DNA (mtDNA) information has been used for classification, phylogenetic reconstruction, taxonomic identification, and population genetics of the order diphylobothridae [14,15]. Few *Spirometra* species have been used for genetic variation, taxonomy, and phylogenetic studies by using mtDNA sequences such as cytochrome c oxidase subunit 1 and 3 (cox1 and cox3), NADH dehydrogenase subunit 1, 3, and 4 (nad1, nad3, and nad4) [16-20]. Nevertheless, among the *Spirometra* species recovered from various carnivorous mammals in Tanzania, there is no detailed molecular information, particularly in the whole mtDNA sequences on *Spirometra* species.

This study was conducted to determine the complete mtDNA sequence and structure of *S. theileri* related to other *Spirometra* species. We described the phylogenetic affinity of *Spirometra* species with other cestodes based on the comparative phylogenetic analysis of the mitochondrial genome (mt genome) data.

MATERIALS AND METHODS

Specimens and DNA sequencing

One strobila of *S. theileri* was obtained from the intestine of male African leopard (*Panthera pardus*) in the Maswa Game Reserve of Tanzania, in February 2012. The collected tapeworm was fixed in 70% ethanol until used for genomic DNA extraction. Total genomic DNA was extracted from a single proglottid using the DNeasy tissue kit (Qiagen, Valencia, California, USA).

The complete mt genome was PCR-amplified as 15 overlapping fragments using total genomic DNA [16,17,21]. PCR and DNA sequencing were performed as described previously [22].

Analysis on mitochondrial DNA sequence

The mt genome sequences were assembled, aligned, annotated using the Geneious 9.0 program. The mt genome sequence of *S. theileri* was compared with *S. erinaceieuropaei* (GenBank no. KJ599679), *S. decipiens* (GenBank no. KJ599679), and *S. ranarum* (MN259169). The 12 protein-coding genes were searched by comparing with mt gene sequences of 16 cestodes in the GenBank database. Flatworm mitochondrial genetic codes were used to translate the mitochondrial protein-coding genes. Twenty-two putative tRNA genes were identified using tRNAscan-SE 2.0 [23] and anticodon sequences. Two ribosomal RNAs (12S and 16S subunits) were determined by comparison with other rRNAs of cestodes. Putative stem-loop structures of non-coding mt regions were inferred using RNAdraw 1.1 program [24].

Phylogenetic analysis

The sequences of 12 protein-coding genes of *Taenia, Echinococcus, Hymenolepis, Dibothrioccephalus, Dipylidium, Hydatigera, Moniezia, Spirometra*, were selected and 2 trematode sequences were set as an outgroup. The mt genome sequences used were as followings: *S. erinaceieuropaei* (KJ599680), *S. decipiens* (KJ599679), *S. ranarum* (MN259169), *S. theileri* (in this study), *D. latus* (NC_008945), *D. nhembaiense* (NC_009463), *Dipylidium caninum* (NC_021144), *Echinococcus granulosus* (NC_008075), *E. multilocularis* (NC_000928), *Hydatigera kamiyai* (AB731761), *H. krepkogorski* (NC_021142), *H. parsa* (NC_021141), *Hymenolepis diminuta* (NC_002767), *H. nana* (NC_029245), *Moniezia benedeni* (NC_036218), *M. expansa* (NC_036219), *Taenia solium* (NC_004022), *T. saginata* (NC_009938), *T. asiatica* (NC_004826), *T. crassiceps* (NC_002647), *T. crocutae* (NC_024591), *T. hydatigena* (FJ518620), and *T. regis* (NC_024589). The mitochondrial 12 protein-coding genes were analysed by jModelTest [25]. The General Time Reversible model with gamma distribution and invariant sites (GTR+I+G) were selected as the best model of evolution for all elements and genes. Bayesian Inference (BI) were conducted by using Bayesian Evolutionary Analysis Sampling Trees version 2 (BEAST 2) [26]. Bayesian was performed by Markov chain Monte Carlo (MCMC) ran for 10 million generations sampled at intervals of 1,000 generations. Phylogenetic trees were constructed using the mitochondrial 12 protein-coding gene DNA sequences of *Spirometra* tapeworms by using ML and BI.
RESULTS

Gene content and organization of mitochondrial genome

A complete mtDNA sequence of *S. theileri* revealed 13,685 bp in length (GenBank accession number MT274583), with 12 protein-coding genes, 22 tRNAs, and 2 rRNAs. An *atp*8 gene was absent from this mt genome. All genes and elements were arranged in one direction, and at the same positions relative to loci in the cestode mt genomes (Fig. 1). Mt genome of *S. theileri* composed of 19.8% A, 45.9% T, 23.6% G, and 10.7% C, with the A-T content of 65.7% (Table 1). Genes overlapping were revealed in mt genome of *S. theileri* in *nad*4L/*nad*4 (40 bp), *tmQ-tmF* (4 bp), *tmQ-tmM* (4 bp), and *cox1-tmT* (10 bp) (Table 2).

Protein-coding genes and codon usage

The 12 protein-coding genes constituted 10,086 bp in *S. theileri*, and concealed 70% of the total *Spirometra* mt genomes (Table 1). The putative open reading frames of the 12 protein-coding genes in 4 *Spirometra* species start and end with complete codons. The ATG initiation codon of 4 *Spirometra* mt genome was used in 11 genes (*atp*6, *cob*, *cox*1-3, *nad*1, *nad*2-4, *nad*4L, *nad*5, and *nad*6), while the GTG initiation codon was used only in *cox*3 gene. The TAG stop codon was used in 9

![Schematic representation of the mitochondrial genome of *Spirometra theileri*.](image)

Fig. 1. Schematic representation of the mitochondrial genome of *Spirometra theileri*.

Spp.	Complete mtDNA sequence	Protein-coding sequence	rRNA sequence															
	Length (bp)	T	C	A	G	T+A	Length (bp)	T	C	A	G	T+A	Length (bp)	T	C	A	G	T+A
Sta	13,685	45.9	10.7	19.8	23.6	65.7	10,086	48.3	10.3	17.7	23.7	66.0	1,698	38.5	12.6	23.9	25.0	62.4
Sba	13,643	45.9	10.9	19.8	23.5	65.7	10,083	48.3	10.6	17.5	23.5	65.8	1,700	38.7	12.2	24.9	24.2	63.6
Sdc	13,641	46.0	11.0	20.3	22.6	66.3	10,086	48.6	10.6	18.3	22.5	66.9	1,703	37.6	12.9	25.1	24.4	62.7
Srd	13,644	45.8	11.2	20.4	22.6	66.2	10,067	66.2	10.7	17.9	23.9	65.3	1,702	38.1	12.5	25.0	24.3	63.1

S. theileri (This study), *S. erinaceieuropaei* [16], *S. decipiens* [16], *S. ranarum* [17].
Table 2. Position and characteristics of the protein coding and non-coding sequences in the mitochondrial genomes of *Spirometra theileri*, *S. erinaceieuropaei*, *S. decipiens*, and *S. ranarum*

Gene or sequence	Length of gene and sequence	Codon used	Position in genome (5'-3')															
	No. of nucleotide	Initiation	St^a	Se^a	Sd^a	Sr^a	St^b	Se^b	Sd^b	Sr^b	St^c	Se^c	Sd^c	Sr^c	St^d	Se^d	Sd^d	Sr^d
tmG	66 67 67 67	ATG	1-68	1-67	1-67	1-67												
cox3	651 651 651 651	GTG	72-714	71-721	71-721	71-713												
tmH	71-781	TAG	713-781	712-781	712-780	714-782												
cob	1,110 1,110 1,110 1,110	ATG	785-1,894	785-1,894	784-1,893	786-1,895												
nad4L	261 261 261 261	ATG	1,869-2,159	1,899-2,159	1,898-2,158	1,900-2,160												
nad4	1,254 1,254 1,254 1,254	ATG	2,120-3,373	2,120-3,373	2,119-3,372	2,121-3,374												
tmQ	63 64 64 64	GTG	3,374-3,436	3,374-3,437	3,373-3,436	3,375-3,438												
tmF	64 64 64 64	TAG	3,433-3,496	3,434-3,497	3,433-3,496	3,435-3,498												
trnP	63 68 68 68	ATG	3,654-4,079	3,665-4,080	3,664-4,079	3,566-4,081												
atp6	516 516 516 516	ATG	4,081-4,953	4,092-4,964	4,087-4,959	4,089-4,961												
nad2	873 873 873 873	ATG	4,985-5,049	4,986-4,935	4,972-5,036	4,972-5,036												
tmV	65 65 66 65	ATG	5,070-5,130	5,054-5,111	5,052-5,112	5,054-5,114												
trnA	61 61 61 61	ATG	5,136-5,202	5,116-5,181	5,118-5,181	5,120-5,183												
trnT	391 391 391 391	ATG	5,203-5,603	5,182-6,072	5,182-6,072	5,184-6,074												
tmW	67 66 66 66	ATG	6,099-6,165	6,076-6,143	6,078-6,143	6,080-6,145												
tmP	65 65 65 65	ATG	6,173-6,237	6,150-6,214	6,150-6,214	6,152-6,216												
tmL	64 64 64 64	ATG	6,243-6,306	6,220-6,283	6,220-6,283	6,222-6,285												
trnK	63 63 63 63	ATG	6,319-6,381	6,291-6,353	6,290-6,352	6,292-6,354												
nad3	357 357 357 357	ATG	6,387-6,732	6,359-6,715	6,356-6,712	6,359-6,703												
trnS1^B	59 59 59 59	ATG	6,733-6,798	6,705-6,763	6,702-6,760	6,704-6,762												
trnW	66 66 66 66	ATG	6,801-6,866	6,773-6,837	6,763-6,828	6,765-6,830												
cox1	1,566 1,566 1,566 1,566	ATG	6,874-8,439	6,845-8,410	6,836-8,401	6,838-8,403												
tmT	69 69 70 70	ATG	8,430-8,489	8,401-8,469	8,392-8,461	8,394-8,463												
rnl	986 967 973 972	ATG	8,499-9,466	8,470-9,436	8,462-9,434	8,464-9,435												
trnC	67 65 65 65	ATG	9,467-9,533	9,437-9,501	9,435-9,499	9,436-9,500												
rmS	730 730 730 730	ATG	9,534-10,263	9,502-10,234	9,500-10,229	9,501-10,230												
cox2	570 570 570 570	ATG	10,264-10,833	10,235-10,804	10,230-10,799	10,231-10,800												
tmF	70 65 65 65	ATG	10,839-10,908	10,810-10,874	10,805-10,869	10,806-10,870												
nad6	468 465 468 468	ATG	10,913-11,530	10,879-11,343	10,874-11,341	10,875-11,342												

(Continued to the next page)
genes (cob, cox1, cox3, nad1-4, nad4L, and nad6) in S. theileri, 7 genes (cox1-3, nad2-4, and nad4L) in S. erinaceieuropaei and 6 genes (cox1, cox3, nad2, Nad3, nad4, and nad4L) in S. decipiens and S. ranarum. The TAA stop codon was used in 3 genes (atp6, cox2, and nad5) in S. theileri, 5 genes (atp6, cob, nad1, nad5, and nad6) in S. erinaceieuropaei and for S. decipiens and S. ranarum, 6 genes were used such as atp6, cob, cox2, nad1, nad5, and nad6 (Table 3). tRNAs most commonly used were tRNA\(^{Asp(CTN)}\) (15.3%), tRNA\(^{Thr(TTV)}\) (12.5%), tRNA\(^{Lys(CTN)}\) (11.2%), tRNA\(^{Asn(AGN)}\) (9.6%) (Table 3).

Transfer RNA and ribosomal RNA

Twenty-two transfer RNAs were found in putative secondary structures ranging from 59 to 70 bp (Fig. 2). Nineteen tRNAs had a typical cloverleaf shape with 4 arms such as aminoacyl acceptor arms, DHU arm, anticodon stems, and YFC arms except in trnR, trnS1, and trnS2 were replaced with 7-13 bp of unpaired loop in the DHU of S. theileri slightly varied by 7-12 bp arms of unpaired loop in the DHU from other Spirometra species. The aminoacyl acceptor arms consisted of 7 bp such as trnC, trnM, trnQ, trnR, trnS1, and trnT which contained 1-3 non-canonical base pairs. The anticodon stems of trnY of 4 Spirometra species contained 5 bp with 2 non-canonical base pairs in stem structures. The YFC arms of the 22 tRNAs in 4 Spirometra species consist of 2-5 bp, and a loop of 3-9 bp. The most prominent shapes of tRNAs were revealed in tRNA\(^{Asp(AGN)}\) (S1) with unpaired Amino-Acyl arm, and tRNA\(^{Asp(TTU)}\) structure with 7bp paired in DHU arm found in S. theileri varied from S. erinaceieuropaei, and S. decipiens (Fig. 2). Two mitochondrial ribosomal subunits rrnL and rrnS were separated by trnC in the 4 Spirometra species. The rrnL and rrnS were 968 bp and 730 bp long in S. theileri: 967 bp and 733 bp long in S. erinaceieuropaei, 973 bp and 730 bp long in S. decipiens and S. ranarum, respectively (Table 3). The average nucleotide contents of the 16S rRNA and 12S rRNA in S. theileri were 38.5% T, 12.6% C, 23.9% A, and 25.0% G with the A-T contents of 62.4%, different from the S. erinaceieuropaei, S. decipiens, and S. ranarum (Table 3).

Non-coding regions

Two non-coding regions in mt genome of 4 Spirometra species were predicted with the hairpin structures confined between trnY and trnL1 (NR1), and between trnR and nad5 (NR2). The length of NR1 was 200 bp long, and NR2 was 178 bp length with the average nucleotide contents of 34.2% A, 10.3% C, 20.5% G, and 35.1% T in S. theileri (Table 3).
Table 3. Codon usage in the 12 protein-coding genes of the mitochondrial genomes of Spirometra species

NC	AA	St%	Se%	Sd%	Sr%	NC	AA	St%	Se%	Sd%	Sr%
TTT	Phe	11.7	11.9	11.5	11.8	TAT	Tyr	4.8	4.7	5.3	4.4
TTC	Phe	0.8	0.7	1	2.2	TAC	Tyr	1.2	1.2	0.7	0.8
TTA	Leu	4.7	5.6	6.2	4.6	TAA	*	0.1	0.1	0.2	1.6
TGG	Leu	6.9	6.7	5.7	4.1	TAG	*	0.2	0.2	0.2	1.8
CTT	Leu	1.9	1.7	2.2	2.6	CAT	His	1.4	1.3	1.1	0.9
CTC	Leu	0.2	0.2	0.1	0.6	CAC	His	0.1	0.3	0.4	0.3
CTA	Leu	0.7	0.6	0.7	1.2	CAA	Gin	0.1	0.1	0.1	0.5
CGT	Leu	0.9	0.8	0.8	1.3	CAG	Gin	0.4	0.5	0.5	0.6
ATT	Ile	3.8	4.2	4.2	5.2	AAT	Asn	1.5	1.5	1.6	1.3
ATC	Ile	0.4	0.5	0.4	0.7	AAC	Asn	0.3	0.3	0.2	0.5
ATA	Ile	2.2	1.9	2.2	2.1	AAA	Asn	1.0	0.9	1.1	0.8
AGG	Met	2.3	2.4	2.4	1.7	AAG	Lys	1.4	1.4	1.4	0.9
GTC	Val	5.9	5.3	5.7	5.4	GAT	Asp	1.7	1.9	1.6	1.7
GTA	Val	0.5	0.7	0.5	0.6	GAC	Asp	0.4	0.4	0.5	0.4
GTG	Val	1.6	1.6	1.4	1.6	GAA	Glu	0.5	0.5	0.5	0.4
CTC	Ser	3.5	3.6	3.6	2.2	TGT	Cys	3.4	3.6	3.7	4.1
GCC	Ser	0.3	0.4	0.5	0.6	TGC	Cys	0.6	0.4	0.3	1.2
ACA	Ser	1.1	1.0	1.2	0.7	TGA	Trp	0.8	0.7	1.1	1.7
CGT	Ser	0.8	0.5	0.5	0.6	TGG	Trp	1.9	2.2	1.7	2.9
CCT	Pro	1.4	1.4	1.4	1.2	CGT	Arg	1.3	1.3	1.4	0.9
CCC	Pro	0.4	0.7	0.6	0.4	CCC	Arg	0.1	<0.1	<0.1	0.1
CCA	Pro	0.4	0.3	0.4	0.4	CGA	Arg	0.1	0.1	<0.1	0.3
CGG	Pro	0.4	0.3	0.2	0.5	CGG	Arg	0.1	0.2	0.2	0.7
ACT	Thr	2.0	2.0	2.1	1.3	AGT	Ser	2.8	2.4	2.9	2.2
ACC	Thr	0.2	0.4	0.5	0.3	AGC	Ser	0.2	0.5	0.3	0.3
ACA	Thr	0.6	0.4	0.3	0.4	AGA	Ser	0.6	0.7	0.4	0.5
AGG	Thr	0.4	0.6	0.5	0.3	AGG	Ser	0.3	0.8	0.5	0.8
GCT	Ala	1.9	2.1	1.9	0.9	GGT	Gly	4.4	4.5	4.3	2.9
GCC	Ala	0.2	0.5	0.6	0.2	GGC	Gly	0.3	0.4	0.3	0.6
GCA	Ala	0.3	0.2	0.4	0.2	GGA	Gly	0.6	0.6	0.8	0.5
GCG	Ala	0.5	0.3	0.2	0.3	GGG	Gly	2.6	2.4	2.5	2.5

S. theileri (This study), *S. erinaceieuropaei* [16], *S. decipiens* [16], *S. ranarum* [17], *Termination codon, Putative initiation (ATG and GTG) and termination (TAA and TAG) codons are underlined.*

NC, Nucleotide codons; AA, Amino acid; No, Number of codons.

Mitochondrial sequence divergence among *Spirometra* species

The percentage pairwise comparison of the nucleotides and predicted amino acids composition of 4 *Spirometra* species were specified in Table 4. The overall nucleotide sequence divergences of 12 protein-coding genes differed by 14.9% in *S. theileri* and *S. erinaceieuropaei*, 14.7% in *S. theileri* and *S. decipiens* and 14.5% in *S. theileri* and *S. ranarum* (Table 4). Divergences of amino acids of 12 protein-coding genes of *S. theileri* ranged from 1.3% to 2.3% in *cox1* and 15.7% in *nad3* and *nad5*. The rRNA of *S. theileri* differed with the range of 12.2% to 12.9% (rnrL) and 8.4% to 9.4% (rrnS) among the *Spirometra* species (Table 4).

Phylogenetic relationships of diphyllobothridian cestodes among the eucestodes

Phylogenetic analyses of 4 *Spirometra* species such as *S. theileri*, *S. erinaceieuropaei*, *S. decipiens*, and *S. ranarum* was performed using BI and ML based on concatenated amino acids sequences of 12 protein-coding genes from 20 cestodes, and 2 trematodes. An alignment set of 10,821 bp was used from 12 protein-coding genes loci of 22 taxa. Of the 2,896 (26.8%) identical sites and 67.7% pairwise identity showed in the set of the mtDNA sequences from ML analysis. A total of 4,019 amino acids lengths, 165 (4.1%) identical sites, and 37.3% pairwise identity was used phylogenetically informative under ML criterion. Phylogenetic relationships of diphyllobothridian cestodes among the eucestodes inferred using the BI and ML.
approaches exhibited identical tree topologies. A clade composed of *Dibothriocephalus latus* and *D. nihonkaiense*, formed the sister group to *Diphyllobothrium stemmacephalum*, *Diplodonoporus balaenopterae*, and *D. grandis*. The sister group rela-

![Fig. 2. Inferred secondary structures of 22 mitochondrial tRNA from *Spirometra theileri*. Differences among the secondary tRNA structures of *S. theileri* in tRNA\(^{\text{ser(AGN)}}\) (S1) structure with an unpaired Amino-acyl arm and tRNA\(^{\text{tyr(TUC)}}\) structure with 7 bp paired DHU arm found in *S. theileri*.](image)

Table 4. Divergences of nucleotides and amino acids of the protein-coding genes

	St	Se	Sd	Sr												
cox1																
	-	2.3	1.7	1.3	-	4.2	5.3	5.3	-	7.9	8.4	7.9	-	5.7	5.4	5.7
cox2	10.1	2.9	2.9	12.3	-	3.2	3.2	13.8	-	5.6	5.1	12.6	-	4.1	3.8	
cox3	9.6	9.4	0.4	13.2	10.4	0.0	14.3	12.0	0.9	12.9	10.9	1.1				
cob	9.8	8.8	2.2	13.2	10.4	0.0	14.3	12.7	1.4	13.6	11.2	2.4				
atp6																
	-	8.7	11.6	10.5	-	9.1	7.1	7.1	-	14.1	12.8	12.8	-	13.9	13.9	15.7
nad1	16.5	8.2	8.2	12.0	6.1	5.4	16.2	8.6	7.6	17.6	7.0	7.8				
nad2	17.2	13.4	1.2	13.0	9.8	0.7	16.3	13.7	1.0	18.2	13.0	0.9				
nad3	18.2	14.1	1.9	12.6	10.0	2.1	16.2	14.0	1.7	18.8	13.6	1.7				
nad4																
	-	11.0	8.2	9.1	-	5.8	3.5	4.7	-	15.7	14.7	14.5	-	16.2	9.7	9.7
nad5	15.8	9.4	9.1	11.9	2.3	2.3	21.2	11.9	12.1	19.9	14.8	14.8				
nad6	12.2	14.0	1.4	12.3	11.9	0.2	20.5	18.1	0.8	15.8	18.8	0.0				

Percentage pairwise divergences of nucleotides (above diagonal) and amino acids (below diagonal) of the 12 protein-coding genes of the *Spirometra* tapeworms.

S. theileri (This study), *S. erinaceieuropaei* [16], *S. decipiens* [16], *S. ranarum* [17].
Phylogenetic classification beffited an important feature in taxonomical studies over decades. In the present study, the whole mt genome of *S. theileri* was sequenced and compared with *S. erinaceieuropaei*, *S. decipiens* and *S. ranarum*. The molecular characteristics of the mt genome of *S. theileri* were similar with other cestodes in gene arrangement, nucleotide composition, genetic code, and secondary structure of rRNA. The mt genomes of *Spirometra* species reported to date are ranged from 13,643 bp to 13,685 bp in length such as 13,643 bp in *S. erinaceieuropaei* (KJ599690) [16], 13,641 bp in *S. decipiens* (KJ599679) [16], 13,644 bp in *S. ranarum* (MN259169) [17], and 13,685 bp in *S. theileri* (MT274583, this study). The mt genome contains 12 protein-coding genes (lacking *atp8*), 22 tRNAs, 2 rRNAs, and all genes and elements were transcribed in the same direction, which is a common feature of flatworm mtDNAs [27]. The gene order in *S. theileri* is identical with other *Spirometra* species and the diphyllobothriidean cestodes published to date, with the exception of *Hymenolepis diminuta* in which the relative positions of trn L1 and trn S2 are switched [28]. The nucleotide composition of the entire *S. theileri* mt genome is biased towards A and T, and some genes overlapping were found in gene boundaries as often found in other metazoan mtDNAs. The start and termination codons of the 12 protein-coding genes were identified and compared with other cestodes mtDNAs. The genetic code of the Platyhelminthes mt genome has been investigated [29]. The peculiarity in codon usage was observed in *Spirometra* species like other cestode mt genomes. Of the 12 protein coding genes, the open reading frames inferred to initiation with ATG while the *cox3* uses GTG coding valine as an initiation codon, while the stop codon use TAG and TAA like in other metazoans. The predicted composition of amino acids encoded by high T and low C contents cause bias toward the use of T against C, which is common in Platyhelminthes. The most variable tRNA structures are tRNA^{tyr(TCU)} and tRNA^{ser(AGN)} (S1). The tRNA^{ser(AGN)} structure had 7 bp paired in DHU arm while unpaired Amino-Acyl arm in tRNA^{tyr(TCU)} (S1) revealed in *S. theileri* varied from *S. erinaceieuropaei* (KJ599690) and *S. decipiens* (KJ599679).

The non-coding regions were found in a stem and loop structure of the NR1 and NR2 in *Spirometra* species mtDNAs. These 2 non-coding areas have conserved secondary hairpin
structures and are known to serve as the initiation site for second L-strand synthesis in other metazoan animal groups [30]. These conserved sequence regions are also evident in the control regions for the most other cestodes mt genomes [16].

The fact that genetic differences of 12 protein-coding genes between S. theileri and other Spirometra species differed by more than 14.5%, whereas the sequence differences for whole mtDNA sequences were more than 14.6% reveal that the S. theileri is a valid species within the genus Spirometra. The nucleotide sequence differences of 12 protein-coding genes in S. decipiens and S. ranarum was 1.5%, keeping it in the 0.0% to 2.4% range. The degree of divergence in mtDNA sequence of the sister or congeneric species was estimated using the genetic distance of the cob gene among mammalian group, and it was found that there is more than 2% sequence divergence for closely related species, while intraspecific divergences are greater than 2%, and more are less than 1% among amphibian, reptile, and avian host animals [31]. However, cox1 divergence among 13,320 species in 11 animal phyla ranged from 0.0% to 53.7%, while 79% of those species were greater than 8% sequence differences at the species taxonomy [32]. In the current study, the sequence differences of cox1, cob, nad2, and nad4 genes between S. decipiens and S. ranarum were greater than 2% while other genes were less than 1.4% ranged from 0.0 to 1.4%, indicating that the S. ranarum might be the inter or intra-species of S. decipiens.

All haplotypes of Spirometra species were separated into 3 distinct clades in phylogenetic analyses based on ML and BI methods. Clade I was S. theileri, clade II was S. decipiens and S. ranarum and clade III was S. erinaceieuropaei. The ML and BI analyses supported monophyly of Spirometra species and identified the S. theileri, S. erinaceieuropaei and S. decipiens species as valid species.

In summary, this is the first study conducted revealing the complete mt genomes of Spirometra theileri recovered from African leopard in Tanzania. The use of mt genomes will solve the greater diversification of Spirometra species that can be used as an inference for evolutionary analysis. The information derived from the complete DNA sequences of the Spirometra species mt genomes will provide the knowledge of the mt genomes of parasitic cestodes, a source for molecular investigations and systematic studies of Spirometra species.

ACKNOWLEDGMENT

This work was supported by the International Parasite Resource Bank and Inclusive Business Solution (IBS) project, Korea (No. 2020-0042).

CONFLICT OF INTEREST

We have no conflict of interest related to this work.

REFERENCES

1. Vitta A, Srisawangwong T, Sithithaworn P, Laha T, Tesana S. Laboratory production and maintenance of Spirometra erinacei sparganum. Southeast Asian J Trop Med Public Health 2004; 35 (suppl): 280-283.
2. Li MW, Song HQ, Li C, Lin HY, Xie WT, Lin BQ, Zhu XQ. Sparganosis in mainland China. Int J Infect Dis 2011; 15: 154-156. https://doi.org/10.1016/j.ijid.2010.10.001
3. Baer JG. Contribution à la faune helminthologique Sud-Africaine. Note préliminaire. Ann. Parasitol Hum Comp 1924; 2: 237-247 (in French). https://doi.org/10.1051/parasite/192402239
4. Baer JG. Contribution to the helminth fauna of South Africa. Mammalian cestodes. Union of South Africa. Department of Agriculture. 11th & 12th Reports of the Director of Veterinary Education and Research. 1926, pp 63-136.
5. Baer JG, Faín A. Cestodes. Report d’Exploration Parcs Nationaux de l’U’Pemba. Brussel, Belgium. Insitut des Parcs Nationaux du Congo Belge. 1955, pp 36.
6. Opuni EK, Muller RL. Studies on Spirometra theileri (Baer, 1925) n. comb. 1. Identification and biology in the laboratory. J Helminthol 1974; 48: 15-23. https://doi.org/10.1017/S0022149X00022550
7. Graber M. Diphyllobothriosis and sparganosis in tropical Africa. Rev Elev Méd Vét Pays Trop 1981; 34: 303-311 (in French).
8. Müller-Graf CD. A coprological survey of intestinal parasites of wild lions (Panthera leo) in the Serengeti and the Ngorongoro Crater, Tanzania, East Africa. J Parasitol 1995; 8: 812-814. https://doi.org/10.2307/3283987
9. Eom KS, Park H, Lee D, Choe S, Kang Y, Bia MM, Ndosi BA, Nath TC, Eamudomkarn C, Keyyu J, Fymagwa R, Mduma S, Leon HK. Identity of Spirometra theileri from a leopard (Panthera pardus) and spotted hyena (Crocuta crocuta) in Tanzania. Korean J Parasitol 2019; 57: 639-645. https://doi.org/10.3347/kjp.2019.57.6.639
10. Ndosi BA, Park H, Lee D, Choe S, Kang Y, Nath TC, Bia MM, Eamudomkarn C, Leon HK, Eom KS. Morphological and molecular identification of Spirometra tapeworms (Cestoda: Diphyllobothriidae) from carnivorous mammals in the Serengeti and Selous ecosystems of Tanzania. Korean J Parasitol 2020; 58: 653-660. https://doi.org/10.3347/kjp.2020.58.6.653
11. Kavana N, Sonaimuthu P, Kasanga C, Kassuku A, Al-Mehdiali HM, Fong MY, Khan MB, Mahmud R, Lau YL. Seroprevalence of
sparganosis in rural communities of northern Tanzania. Am J Trop Med Hyg 2016; 95: 874-876. https://doi.org/10.4269/ajtmh.16-0211

12. Yamasaki H, Sanpool O, Redpai R, Sadaow L, Laummaunwai P, Um M, Thanchomnang T, Laymanivong S, Aung WPP, Intapan PM, Maleewong W. Spirometra species from Asia: Genetic diversity and taxonomic challenges. Parasitol Int 2021; 80: 102181. https://doi.org/10.1016/j.parint.2020.102181

13. Avise JC. Molecular Markers, Natural History and Evolution. New York, USA. Chapman & Hall. 1994, 1-511.

14. Park JK, Kim KH, Kang S, Jeon HK, Kim JH, Littlewood DT, Eom KS. Characterization of the mitochondrial genome of Diphyllobothrium latum (Cestoda: Pseudophyllidea)-implications for the phylogeny of eucestodes. Parasitology 2007; 134: 749-759. https://doi.org/10.1017/S003118200600206X

15. Kim KH, Jeon HK, Kang S, Sultana T, Kim GJ, Eom KS, Park JK. Characterization of the complete mitochondrial genome of Diphyllobothrium nihonlaiense (Diphyllobothriidae: Cestoda), and development of molecular markers for differentiating fish tapeworms. Mol Cell 2007; 3: 379-390.

16. Eom KS, Park H, Lee D, Choe S, Kim KH, Jeon HK. Mitochondrial genome sequences of Spirometra erinaceieuropaei and S. decipiens (Cestoidea: Diphyllobothriidae). Korean J Parasitol 2015; 53: 455-463. https://doi.org/10.3347/kjp.2015.53.4.455

17. Jeon HK, Park H, Lee D, Choe S, Kang Y, Bia MM, Lee SH, Eom KS. Complete sequence of the mitochondrial genome of Spirometa ranarum: comparison with S. erinaceieuropaei and S. decipiens. Korean J Parasitol 2019; 57: 55-60. https://doi.org/10.3347/kjp.2019.57.1.55

18. Liu W, Zhao GH, Tan MY, Zeng DL, Wang KZ, Yuan ZG, Lin RQ, Zhu XQ, Liu Y. Survey of Spirometra erinaceieuropaei spargana infection in the frog Rana nigromaculata of the Hunan Province of China. Vet Parasitol 2010; 173: 152-156. https://doi.org/10.1016/j.vetpar.2010.06.005

19. Liu W, Liu GH, Li E, He DD, Wang T, Sheng XF, Zeng DL, Yang FE, Liu Y. Sequence variability in three mitochondrial DNA regions of Spirometra erinaceieuropaei spargana of human and animal health significance. J Helminthol 2012; 86: 271-275. https://doi.org/10.1017/S0022149X1100037X

20. Boonyasiri A, Cheumsuchon P, Suputtamongkol Y, Yamasaki H, Sanpool O, Maleewong W, Intapan PM. Nine human sparganosis cases in Thailand with molecular identification of causative parasite species. Am J Trop Med Hyg 2014; 51: 389-393. https://doi.org/10.4269/ajtmh.14-0178

21. Jeon HK, Lee KH, Kim KH, Hwang UW, Eom KS. Complete sequence and structure of the mitochondrial genome of the human tapeworm, Taenia asiatica (Platyhelminthes: Cestoda). Parasitol 2005; 130: 717-726. https://doi.org/10.1017/S0031182004007164

22. Jeon HK, Park H, Lee D, Choe S, Kim KH, Huh S, Sohn WM, Chai JY, Eom KS. Human infections with Spirometra decipiens plerocercoids identified by morphologic and genetic analyses in Korea. Korean J Parasitol 2015; 53: 299-305. https://doi.org/10.3347/kjp.2015.53.3.299

23. Lowe TM, Eddy SR. tRNAscan-SE: a program improved detection of transfer DNA genes in genomic sequence. Nucleic Acids Res 1997; 25: 955-964. https://doi.org/10.1093/nar/25.5.955

24. Matzura O, Wennborg A. RNAdraw: an integrated program for RNA secondary structure calculation and analysis under 32-bit Microsoft Windows. Comput Appl Biosci 1996; 12: 247-249. https://doi.org/10.1093/bib/12.2.247

25. Posada D. jModelTest: Phylogenetic model averaging. Mol Biol Evol 2008; 25: 1253-1256. https://doi.org/10.1093/molbev/mns083

26. Suchard MA, Kitchen CM, Sinheimer JS, Weiss RE. Hierarchical phylogenetic models for analyzing multipartite sequence data. Syst Biol 2003; 52: 649-664. https://doi.org/10.1080/1063515039238879

27. Littlewood DTJ, Lockyer AE, Webster BL, Johnston DA, Le TH. The complete mitochondrial genomes of Schistosoma haematobium and Schistosoma spindale and the evolutionary history of mitochondrial genome changes among parasitic flatworms. Mol Phylogenet Evol 2006; 39: 452-467. https://doi.org/10.1016/j.mpev.2005.12.012

28. Von Nickisch-Rosenegk M, Brown WM, Boore JL. Complete sequence of the mitochondrial genome of the tapeworm Hymenolepis diminuta: gene arrangements indicate that Platyhelminths and Eutrochozoans. Mol Biol Evol 2001; 18: 721-830. https://doi.org/10.1093/oxfordjournals.molbev.a003854

29. Garey JR, Wolstenholme DR. Palythelminth mitochondrial DNA: evidence for early evolutionary origin of a tRNA^{ser(AGN)} that contains a dihydrouridine arm replacement loop, and of serine-specifying AGA and AGG codons. J Mol Evol 1989; 28: 374-387. https://doi.org/10.1007/BF002603072

30. Clay DM, Wolstenholme DR. Drosophila mitochondrial DNA: conserved sequences in the A+T rich region and supporting evidence for a secondary structure model of the small ribosomal RNA. J Mol Evol 1987; 25: 116-125. https://doi.org/10.1007/BF02101753

31. Johns GC, Avise JC. A comparative summary of genetic distances in the vertebrates from the mitochondrial cytochrome b gene. Mol Biol Evol 1998; 15: 1481-1490. https://doi.org/10.1093/oxfordjournals.molbev.a025875

32. Herbert PDN, Ratnasingham S, deWaard JR. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species Proc Biol Sci 2003; 270 (suppl): 96-99. https://doi.org/10.1098/rspb.2003.0025