Transcriptome-Wide Identification and Characterization of MicroRNAs from Castor Bean (*Ricinus communis* L.)

Wei Xu1,*, Qinghua Cui2,*, Fei Li3, Aizhong Liu1,3*

1 Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China, 2 College of Life Sciences, Yunnan University, Kunming, China, 3 Key Laboratory of Tropical Plant Resource Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China

Abstract

Background: MicroRNAs (miRNAs) are endogenously encoded small RNAs that post-transcriptionally regulate gene expression and play essential roles in numerous developmental and physiological processes. Currently, little information on the transcriptome and tissue-specific expression of miRNAs is available in the model non-edible oilseed crop castor bean (*Ricinus communis* L.), one of the most important non-edible oilseed crops cultivated worldwide. Recent advances in sequencing technologies have allowed the identification of conserved and novel miRNAs in many plant species. Here, we used high-throughput sequencing technologies to identify and characterize the miRNAs in castor bean.

Results: Five small RNA libraries were constructed for deep sequencing from root tips, leaves, developing seeds (at the initial stage, seed1; and at the fast oil accumulation stage, seed2) and endosperms in castor bean. High-throughput sequencing generated a large number of sequence reads of small RNAs in this study. In total, 86 conserved miRNAs were identified, including 63 known and 23 newly identified. Sixteen miRNA isoform variants in length were found from the conserved miRNAs of castor bean. MiRNAs displayed diverse organ-specific expression levels among five libraries. Combined with criteria for miRNA annotation and a RT-PCR approach, 72 novel miRNAs and their potential precursors were annotated and 20 miRNAs newly identified were validated. In addition, new target candidates for miRNAs newly identified in this study were proposed.

Conclusions: The current study presents the first high-throughput small RNA sequencing study performed in castor bean to identify its miRNA population. It characterizes and increases the number of miRNAs and their isoforms identified in castor bean. The miRNA expression analysis provides a foundation for understanding castor bean miRNA organ-specific expression patterns. The present study offers an expanded picture of miRNAs for castor bean and other members in the family Euphorbiaceae.

Introduction

The castor bean (*Ricinus communis* L., Euphorbiaceae) is one of the most important non-edible oilseed crops and its seed derivatives are often used in aviation oil, lubricants, nylon, dyes, inks, soaps, adhesive and biodiesel. Among all the vegetable oils, seed oil of castor bean is distinctive due to its high level of ricinoleic acid (over 85%), a fatty acid consisting of 18 carbons, a double bond between C9 and C10, and a hydroxyl group attached to C12. In particular, owing to its excellent solubility in ethanol or methanol, seed oil of castor bean was considered as an ideal and unique feedstock for biodiesel production [1–3]. Because of its high economic value, castor bean is widely cultivated in tropical, sub-tropical and warm-temperate countries, particularly India, China and Brazil [4]. Due to increased demand for production of castor bean seed oils in many countries, breeding and improvement of varieties are drawing a great attention from breeders [5]. Particularly, genetic improvement of varieties by genetic engineering techniques offers great promises in castor bean [6,7]. Enhanced efforts should be paid for elucidating the molecular mechanism underlying the regulation of growth and development.

The microRNAs (miRNAs) are endogenous noncoding small RNAs which play significant roles in the regulation of gene expression. Post-transcriptional gene regulation by miRNAs constitutes one of the most conserved and well-characterized gene regulatory mechanisms. In higher plants, miRNAs play significant roles in different developmental stages by regulating gene expression at transcriptional and post-transcriptional levels [8–12]. Identification and characterization of miRNAs and their targets in diverse species has been a major focus in recent years [13–16]. Although a number of miRNAs have been identified from diverse plants, information on identification and characterization of miRNAs in the family Euphorbiaceae, an important resource plant group, is very limited. So far, the miRNA database miRBase[17–19] (Release 19, January 2013, http://www.mirbase.
MicroRNAs in Castor Bean

Results

Library Construction, Sequencing and Characterization of Small RNA Transcriptomes in Castor Bean

In order to identify and characterize conserved and novel miRNAs in castor bean, we constructed five small RNA libraries from leaves, root tips, developing seeds at the initial stage (seed1) and at the oil fast accumulation stage (seed2) and endosperms, and obtained sequence reads through Solexa high-throughput sequencing technologies. Initially, a total number of 14,259,011 (leaf), 13,467,037 (root tip), 11,423,439 (seed1), 11,334,893 (seed2), 12,955,198 (endosperm) raw reads were obtained. After filtering the low quality reads, adaptor and contaminant sequences, the clean reads were 14,187,024, 13,317,609, 11,098,154, 11,089,507 and 12,553,234 for leaf, root tip, seed1, seed2 and endosperm libraries, respectively. Based on these sequences we analyzed the length distribution and found that among the unique size distribution pattern, most of the reads were distributed between 21 and 24 nt (Figure 1). This observation was consistent with the typical size of miRNA from Dicer digestion products. Among which, sequences with the length of the 21 nt and 24 nt were shown to be significantly in abundance, specifically, the sequences with length of 21 nt was highest abundance in leaf, root tip and seed1 libraries, accounting for 56.82%, 37.22% and 28.42% of the sequence number, respectively, whereas sequences with the length of 24 nt were the highest abundance in seed2 and endosperm libraries, accounting for 33.35% and 33.17% of the sequence number.

Subsequently, we annotated all the reads fall into the length of 16–26 nt from all the five libraries (including leaf, root, seed1, seed2 and endosperm) and obtained 1,742,976, 2,758,394, 2,411,289, 2,944,394, 3,557,270 unique reads (the sequence of a particular type with non-redundancy) for leaf, root, seed1, seed2 and endosperm libraries, respectively. Among them, non-coding small RNAs annotated (snRNAs, snoRNAs, tRNAs, rRNAs and miRNAs) occupy 7,050,077, 5,569,288, 4,714,941, 3,012,704 and 3,742,076 reads in leaf, root, seed1, seed2 and endosperm, respectively (Table 1). In addition, a small proportion of reads could be mapped to coding sequences, which are likely to be RNA degradation products; a small proportion of reads could be
Identification of Conserved miRNAs in Castor Bean

To identify conserved miRNAs in castor bean small RNA libraries, the unique reads (excluded reads mapped to snRNAs, snoRNAs, tRNAs and coding sequence or intron sequence) 11,637,637, 9,950,773, 7,612,537, 8,844,149, 9,647,553 from five libraries were subjected to the homolog search against miRBase 19. A number of 6,193,105, 3,677,233, 2,405,407, 2,100,760, and 2,283,045 reads in leaf, root, seed1, seed2 and endosperm libraries, respectively, were homologous with known castor bean miRNAs, which accounts for 53.2%, 36.9%, 31.6%, 23.8%, and 23.7% of unique reads from each library, respectively (see Table 1). These observations suggest that known miRNAs are only a small portion of the unique reads from each library, respectively. (see Table 1). These observations suggest that known miRNAs are only a small portion of the unique reads from each library, respectively (see Table 1).

In total, 86 conserved miRNAs were detected, covering 26 miRNA families. As shown in Table 2 and Table S1, the most abundant are miR169 (12 members), miR170/171 (nine members), and miR156/157 (eight members). Of the 86 miRNAs, 69 miRNAs were expressed in all five libraries, which accounted for 80.2%; 13 miRNAs (including one miR159/319, nine miR169s, one miR172, two miR399s) were not detected in the leaf library; seven miRNAs (including one miR160, four miR169s, one miR398 and miR2111) were not detected in the root library; ten miRNAs (including nine miR169s and one miR170/171) were not detected in the seed1 library; six miR169s were not detected in the seed2 library; and four miRNAs (including two miR169s, one miR170/171 and one miR399) were not detected in the endosperm tissue.

When analyzing the miRNA/miRNA* duplex structure for all conserved miRNAs identified in castor bean, we found that 60 of 86 conserved miRNAs displayed the miRNA/miRNA* duplex structure (Figure 2 for examples), involving 23 families (see Table 3). In contrast, the abundance of miRNA* is significantly

Table 1. Reads abundance of small RNAs in leaf, root, seed1, seed2 and endosperm libraries.

Category	Leaf	Root	Seed1	Seed2	Endosperm
Total reads	14259011	13467037	11423439	11334893	12955198
Clean reads	14187024	13317609	11098154	11089507	12553234
Unique reads	1742976	2758394	2411289	2944394	3557270
exon_antisense	117549	108113	62340	88220	98610
exon_sense	484447	269154	271996	281762	265621
intron_antisense	212386	328599	233083	272340	317912
intron_sense	878033	768915	608664	691092	764507
rRNA	406058	1463991	1887217	690693	1152370
snRNA	8759	8069	5631	4197	6062
snoRNA	4444	21301	6350	8406	9969
tRNA	437711	398694	410336	208648	290630
miRNA	6193105	3677233	2405407	2100760	2283045
perfect miRNA matching reads	5716106	2938562	863191	564291	814579
miRNA isoform reads	476999	738671	1542216	1536469	1468466
unannotated	5444332	6273540	5207130	6743389	7364508

doi:10.1371/journal.pone.0069995.t001

mapped to intron sequences, which are likely to be related to the splicing of the host gene to produce pre-miRNA molecules.

The sequencing frequencies for miRNAs in the library can be used as an index for estimating the relative abundance of miRNAs. High-throughput sequencing produced a large number of miRNA sequences, allowing us to determine the relative abundance of miRNAs in castor bean; the frequencies of miRNA families varied largely in different libraries, e.g. most members of miRNA156, miRNA167, miRNA168, miRNA355 were abundant in all libraries, whereas members of miRNA160, miRNA169, miRNA319, miRNA393, miRNA395, miRNA398 and miRNA399 were scarce in all libraries (see Table 2), indicating that expression level of miRNAs varies significantly among different miRNA families in castor bean. In addition, most of the miRNA members displayed a tissue- or developmental stage-specific expression, e.g. miR156c has a low expression in leaf and root libraries and a high expression in the seed libraries; the miRNA156f, miRNA156g and miRNA156 h have the highest expression in the leaf library and the lowest expression in seed1 library.

When analyzing the miRNA/miRNA* duplex structure for all conserved miRNAs identified in castor bean, we found that 60 of 86 conserved miRNAs displayed the miRNA/miRNA* duplex structure (Figure 2 for examples), involving 23 families (see Table 3). In contrast, the abundance of miRNA* is significantly
Table 2. Conserved miRNAs and their expression levels among different tissues.

miRNA family	Reference miRNA	Sequence (5'–3')	Length (nt)	Reads	leaf	root	seed1	seed2	endosperm
156	rco-miR156a	TGACAGAAGAGGTAGAC	20	115967	554938	20415	397950	259577	
	rco-miR156b	TGACAGAAGAGGTAGAC	20	116382	555438	20532	398971	261537	
	rco-miR156c	TGACAGAAGAGGTAGAC	20	117010	555518	20426	398098	259709	
	rco-miR156d	TGACAGAAGAGGTAGAC	20	117010	555438	20532	398971	261537	
	rco-miR156e	TTGACAGAAGAGGTAGAC	21	1734	2320	819809	928064	912186	
	rco-miR156f	TTGACAGAAGAGGTAGAC	21	4581458	2141241	170320	254303	517291	
	rco-miR156g	TTGACAGAAGAGGTAGAC	21	4574207	2143679	169362	253236	517521	
	rco-miR156h	TTGACAGAAGAGGTAGAC	21	4574207	2143679	169362	253236	517521	
159	rco-miR159	TTTGGATTGAAGGTCCTCA	21	11246	8102	8950	4359	1711	
160	rco-miR160a	TGCCGGTCCCTTCCTTGAC	21	100	38	9	28	71	
	rco-miR160b	TGCCGGTCCCTTCCTTGAC	21	93	80	8	28	71	
	rco-miR160c	TGCCGGTCCCTTCCTTGAC	21	63	0	4	22	37	
162	rco-miR162	TGCTAACCCCTGCATCAGC	21	1125	925	1682	866	713	
164	rco-miR164a	TGGGAAGCCAGGCGAGCTGCA	21	1792	5372	30683	448	2143	
	rco-miR164b	TGGGAAGCCAGGCGAGCTGCA	21	1788	5256	30613	447	2141	
	rco-miR164c	TGGGAAGCCAGGCGAGCTGCA	21	1812	5269	30783	447	2150	
166	rco-miR166a	TGGAGACCGGTCCTCCTATCCC	21	1041527	630125	521438	192914	200808	
	rco-miR166b	TGGAGACCGGTCCTCCTATCCC	21	1040582	629444	521029	192753	200683	
	rco-miR166c	TGGAGACCGGTCCTCCTATCCC	21	1044631	634097	533841	193804	201735	
167	rco-miR167a	TGAAGCTGCCAGAGCTGATCTA	21	25258	17649	72490	21432	32506	
	rco-miR167b	TGAAGCTGCCAGAGCTGATCTA	21	199726	26315	657226	165097	258009	
	rco-miR167c	TGAAGCTGCCAGAGCTGATCTA	21	15711	2542	10441	6967	7664	
	rco-miR167d*	TAAAGCTGCCAGAGCTGATCTA	21	808	456	604	292	148	
168	rco-miR168	TGCCTTGGTCCAGGGGCAAGAG	21	64409	112339	19109	78883	52530	
169	rco-miR169a	CAGCCAAGGGATGTACCTGCGGA	21	24	417	8	79	456	
	rco-miR169b	CAGCCAAGGGATGTACCTGCGGA	21	24	406	7	64	414	
	rco-miR169c	CAGCCAAGGGATGTACCTGCGGA	21	22	200	6	3	31	
	rco-miR169d	CAGCCAAGGGATGTACCTGCGGA	21	0	152	0	0	5	
	rco-miR169e	CAGCCAAGGGATGTACCTGCGGA	21	0	152	0	0	0	
	rco-miR169f	CAGCCAAGGGATGTACCTGCGGA	21	0	154	0	1	0	
	rco-miR169g	CAGCCAAGGGATGTACCTGCGGA	21	0	152	0	0	9	
	rco-miR169h	CAGCCAAGGGATGTACCTGCGGA	21	0	152	0	0	8	
	rco-miR169i	CAGCCAAGGGATGTACCTGCGGA	21	0	152	0	0	5	
	rco-miR169j	CAGCCAAGGGATGTACCTGCGGA	21	0	19	0	8	20	
	rco-miR169k	CAGCCAAGGGATGTACCTGCGGA	21	0	27	0	10	30	
	rco-miR169l	CAGCCAAGGGATGTACCTGCGGA	21	0	19	0	8	20	
171	rco-miR171a	TGATTGACCGGTCCCAATATC	21	539	260	195	364	1274	
	rco-miR171b	TGATTGACCGGTCCCAATATC	21	539	260	195	364	1274	
	rco-miR171c	TGATTGACCGGTCCCAATATC	21	511	268	193	374	1294	
	rco-miR171d	TGATTGACCGGTCCCAATATC	21	510	257	191	364	1261	
	rco-miR171e	TGATTGACCGGTCCCAATATC	21	516	435	241	432	1487	
	rco-miR171f	TGATTGACCGGTCCCAATATC	21	510	257	191	364	1261	
	rco-miR171g	TGATTGACCGGTCCCAATATC	21	4	107	6	5	0	
	rco-miR171h	TGATTGACCGGTCCCAATATC	21	27	143	0	24	60	
	rco-miR171i	TGATTGACCGGTCCCAATATC	21	2448	78	45	626	635	
lower than their reference miRNAs, except for rco-miR171e* and rco-miR408* (which has abundances higher than their references rco-miR171e and rco-miR408).

miRNA family	Reference miRNA	Sequence (5’-3’)	Length (nt)	Reads				
				leaf	root	seed1	seed2	endosperm
172	rco-miR172a	GGAATCTTGATGATGCTGCA	21	0	1	702	24	82
	rco-miR172b	AGAATCTTGATGATGCTGAT	21	16659	964	1160	2865	3119
	rco-miR172c	AGAATCTTGATGATGCTGAT	21	16659	964	1160	2865	3119
319	rco-miR319a	TTGGACCTGAAGGAGAGTCCC	20	21	10	7	9	2
	rco-miR319b	TTGGACCTGAAGGAGAGTCCC	20	21	9	7	9	2
	rco-miR319c	TTGGACCTGAAGGAGAGTCCC	20	22	21	8	9	2
	rco-miR319d	TTGGACCTGAAGGAGAGTCCC	21	0	10	1	4	1
390	rco-miR390a	AAGCTCAGAGGGAGATGCC	21	308	6671	6698	246	554
	rco-miR390b	AAGCTCAGAGGGAGATGCC	21	326	6759	6844	254	562
393	rco-miR393a	TCCAAAGGGATCGCATTGTCT	22	31	8	76	101	135
	rco-miR393b	TCCAAAGGGATCGCATTGTCT	22	24	7	35	8	21
394	rco-miR394*	TTGGACCTCAGCTACCCTCCC	20	9	0	10	25	108
	rco-miR394*	TTGGACCTCAGCTACCCTCCC	20	14	0	13	25	110
395	rco-miR395a	CTGAAAGTTGGGGAACCTC	21	341	58	10	14	30
	rco-miR395b	CTGAAAGTTGGGGAACCTC	21	341	58	10	14	30
	rco-miR395c	CTGAAAGTTGGGGAACCTC	21	337	58	10	13	30
	rco-miR395d	CTGAAAGTTGGGGAACCTC	21	336	58	10	13	30
	rco-miR395e	CTGAAAGTTGGGGAACCTC	21	341	58	10	14	30
396	rco-miR396a	TTCCCACAGCTTTCTTAACCT	21	171	36	951	94	96
	rco-miR396b	TTCCCACAGCTTTCTTAACCT	21	1859	1001	1088	579	1032
	rco-miR396c	TTCCCACAGCTTTCTTAACCT	21	1854	1005	1092	580	1035
397	rco-miR397	TCATTGTGGAGCAGGTGGTGATG	21	368	3350	509	582	237
398	rco-miR398a	TTTCAAGTTGGGGAACCTC	21	1	0	2	1	3
	rco-miR398b	TTTCAAGTTGGGGAACCTC	21	47	60	13	1	3
399	rco-miR399a	TGCCAAAGGGAGTTGCCCTG	21	177	16	34	70	95
	rco-miR399b	TGCCAAAGGGAGTTGCCCTG	21	1	284	2	7	15
	rco-miR399c	TGCCAAAGGGAGTTGCCCTG	21	1	280	2	7	15
	rco-miR399d	TGCCAAAGGGAGTTGCCCTG	21	0	1	1	1	0
	rco-miR399e	TGCCAAAGGGAGTTGCCCTG	18	0	5	1	4	7
403	rco-miR403a	TTGATCATCGGCAAACACTG	21	761	309	368	2293	1061
	rco-miR403b	TTGATCATCGGCAAACACTG	21	761	309	368	2293	1061
408	rco-miR403	CTGCACCTGCCTTCTGGCG	21	77	250	243	94	69
482	rco-miR482*	GGAATGGGCCGTTGGAAGAAG	21	3467	178492	5481	2955	34179
535	rco-miR535	TGCAACAGAGAGAAGACACGC	21	44477	37580	56970	27692	21852
827	rco-miR827*	TTAGACCCACTACAAACAAAC	21	2338	132	86	15	201
2111	rco-miR2111*	TAATCTGCATCAGGAGATTGTA	21	180	0	132	109	153
4414	rco-miR4414*	TATGAATGAGGGAGGATAA4A	21	3033	22022	60	1905	51

Note: *: New conserved miRNA in known miRBase in other species. The loci on genome were identified for six miRNAs newly identified in this study. rco-miR167d, 29883:144402:144497; +; homologue: Arabidopsis thaliana miR167a; rco-miR394a,b, 30170:38663:386672; +; 30170:128336:128443; +; homologue: Arabidopsis thaliana miR394a,b; rco-miR482, 29586:144986:145094; +; homologue: Malus domestica miR482a; rco-miR827, 28266:68399:68502; +; homologue: Gossypium hirsutum miR827a; rco-miR2111, 29973:58727:58830; +; homologue: Arabidopsis thaliana miR2111a; rco-miR4414, 29729:702439:702549; +; homologue: Medicago truncatula miR4414b. doi:10.1371/journal.pone.0069995.t002

Identification of miRNA Isoforms

MiRNAs were initially thought to have a specific sequence of a defined length. Identification of miRNAs from different species has revealed that there are variations in pre-miRNA processing, which
could result in miRNA isoforms with one or two nucleotide variation in length or structure from the same locus [26]. Ehrhardt et al. (2010) demonstrated that one fifth of the annotated Arabidopsis thaliana miRNAs (miRBase 14) have a stable miRNA isoform of one or two nucleotides longer [34]. Previous studies have revealed that these miRNA isoforms may have functional divergence due to differential associations with AGO proteins [35–36]. To identify miRNA isoforms from our transcriptome data, all

Figure 2. The secondary structures of rco-miR482, rco-miR2111, rcomiR827 and rco-miR167 miRNAs identified from castor bean. Sequences shaded in red and blue, corresponding to miRNA and predicated miRNA*, respectively. doi:10.1371/journal.pone.0069995.g002
Table 3. Conserved mature-star miRNAs from castor bean.

miRNA family	Reference miRNA	Star sequence(5' - 3')	Length (nt)	Reads root	leaf	seed1	seed2	endosperm
156	rco-miR156a	GCTACACCTATATCTGTCGCC	21	18	2	15	1	5
	rco-miR156b	GCTACACCTATATCTGTCGCC	22	18	5	1	5	46
	rco-miR156c	GCTTACTCTATATCTGTCACC	23	1024	1275	2	96	58
	rco-miR156d	TGTCACCTCTCTTCTTGTGAC	22	0	0	16	21	109
	rco-miR156e	TTTTGTGCTTTTTTCTTCTGT	22	0	20	0	0	0
	rco-miR156f	GCTCTCTAGTCTCTTCTGTAC	21	82	1	0	7	29
	rco-miR156g	GCTTCTTACCTCTTCTGTAC	21	48	106	2	8	82
160	rco-miR160b	GCGTGCGAGGACCAAGCATATA	21	49	4	0	2	0
	rco-miR160c	CATGAGCGAGGACCAAGCATATA	21	0	1	0	0	1
162	rco-miR162	TGGACGAGCCGGTATCTGATCT	22	98	43	23	32	20
164	rco-miR164a	CACGTCGGCGACTCTTCTGCAAC	25	7	0	0	0	1
	rco-miR164c	CATGACGCGCGACTCTTCTGCAAC	21	18	12	60	5	8
166	rco-miR166b	GAAATGTGCTCTGGCAGGAGG	21	7533	1685	1581	2078	1428
	rco-miR166c	TGAATGTGCTCTGGCAGGAGG	21	131	46	174	9	18
	rco-miR166d	GGAATGTGCTCTGGCAGGAGG	21	0	6	5	1	4
	rco-miR166e	GGAATGTGCTCTGGCAGGAGG	21	7533	1685	1581	2078	1428
167	rco-miR167a	GTTCTATCTGAGACGCTCTAC	23	91	0	0	2	4
	rco-miR167b	CATGACGCGAGGACCAAGCATATA	21	75	94	22	57	79
	rco-miR167c	CATGACGCGAGGACCAAGCATATA	21	75	94	22	57	79
	rco-miR167d	CATGACGCGAGGACCAAGCATATA	20	23	9	1	11	1
168	rco-miR168	CCGCGCTTGGATCAACTGGAAT	21	1650	555	116	1729	1276
169	rco-miR169a	CGGGATGCTCTTGGCTCTACT	21	207	5	43	126	503
	rco-miR169b	GGGCATGCTCTTGGCTCTACT	21	4	1	0	0	1
	rco-miR169c	GCAAGACCTCTTGGCTCTACT	21	59	20	0	0	21
	rco-miR169d	GCAAGACCTCTTGGCTCTACT	21	0	4	0	0	5
	rco-miR169e	GGGCATGCTCTTGGCTCTACT	20	0	354	0	0	0
	rco-miR169f	GGG CATGCTCTTGGCTCTACT	21	410	0	13	0	0
	rco-miR169g	GGGGATGCTCTTGGCTCTACT	19	0	0	0	0	3
	rco-miR169h	GGGGATGCTCTTGGCTCTACT	19	0	0	0	0	10
	rco-miR169i	GGGGATGCTCTTGGCTCTACT	20	0	2	0	2	2
171	rco-miR171a	ATATAGGTCGAGGATCAACTGGAAT	21	5	45	1	9	1
	rco-miR171b	CGAGATATGGCGGTCTCAG	21	12	57	14	12	8
	rco-miR171c	TTCGGTATGGGATCTAATCAG	21	2488	75	458	355	4104
	rco-miR171d	CGATGATGGCTTCTAATCAG	21	21	0	0	1	0
	rco-miR171e	GGGGATGCTCTTGGCTCTACT	23	2	11	0	3	7
	rco-miR171f	GGGGATGCTCTTGGCTCTACT	22	230	18	45	181	24
172	rco-miR172a	GGAGCATACATCAAGATTCCACA	21	0	0	119	20	512
	rco-miR172b	GGAGCATACATCAAGATTCCACA	21	42	9	3	1	13
	rco-miR172c	GTAGCATACATCAAGATTCCACA	21	16	2	0	2	6
	rco-miR172d	GGGGATGCTCTAAGATTCCACA	21	1	4	0	32	156
390	rco-miR390a	CGTATGTGTGACTGGTTCTTA	21	94	3	161	6	8
	rco-miR390b	CGTATGTGTGACTGGTTCTTA	21	94	3	161	6	8
	rco-miR393a	ATGTGTGACTGGTTCTTA	21	1	1	1	3	4
	rco-miR393b	ATGTGTGACTGGTTCTTA	21	7	0	4	2	11
394	rco-miR394a	ATGTGTGACTGGTTCTTA	20	2	0	37	9	13
396	rco-miR396a	ATGTGTGACTGGTTCTTA	20	17	17	257	7	8
miRNA reads (including 6,193,105, 3,677,233, 2,405,407, 2,100,760, 2,283,045 reeds from leaf, root, seed1, seed2 and endosperm, respectively) obtained from previous analyses were aligned against miRBase 19, allowing at most two mismatches or four nucleotides in length difference. The total number of isoform variants found for each library was subjected to a filter that consisted of choosing variants that had a total number of reads 50% greater than the number of total reads of their reference miRNA previously reported, so that low-abundance and probable non-functional variants were discarded.

Compared with the length and sequences of the reference miRNAs identified from castor bean genome based on computational prediction in previous study [20], 16 isoform variants from five libraries were detected totally, involving ten families (miRNAs 156, 167, 171, 319, 393, 395, 396, 398, 399 and 403; see Table 4). In the case of miR156, the isoform variant iso-miR156a-d with the 3’ single nucleotide U/T extension from one locus (c). For the miR156 family, two isoforms with a 3’ single nucleotide A (iso-miR156b) extension or G (iso-miR156c) deletion were detected from two loci (b and c). In the case of miR319, two isoform variants with a 3’ single nucleotide T (iso-miR319a-c) and a 5’ single T extension and a 3’ di- nucleotide TT deletion (iso-miR319d) were detected from different loci. In the case of miR395, the isoform variant iso-miR395a-e with a 3’ tri-nucleotide TCT deletion were detected from all miR395 loci identified (a, b, c, d and e). Similarly, in the case of miR399, the isoform variant with a 3’ bi- nucleotide GG deletion (iso-miR399b-d) was detected from three loci (b, c and d), and the isoform variant with a 3’ tri- nucleotide CAG deletion (iso-miR399e) was detected from the e locus. In the cases of miR171 and miR398, two isoform variants (iso-miR171a-b and iso-miR171g, and iso-miR398a and iso-miR398b) with a 5’ tri- or tetra- nucleotide addition and a 3’ tri- or tetra- nucleotide deletion were detected from different loci. In the other cases such as miR393, miR396 and miR403, isoform variants were produced due to the 1–3 nucleotide addition or deletion in the 3 strand of miRNAs. These results indicated that the isoform variants mainly occurred in several specific miRNA families such as miR156 (isoforms were detected from five loci), miR395 (isoforms were detected from five loci) and miR399 (isoforms were detected from four loci) in castor bean. The variation in length of isoforms identified involved two types: 1) single or several nucleotides addition or deletion in the 3’ strand only (such as miR167 and iso-miR167, miR395 and iso-miR395, miR399 and iso-miR399); and 2) single or several nucleotides addition or deletion both in the 3’ and 3’ strands simultaneously (such as miR156 and iso-miR156, miR171 and iso-miR171, miR398 and iso-miR398).

When inspecting the expression of these isoform variants among five libraries, we unexpectedly found that the expression of these isoforms among different libraries had significant divergence, e.g., in the cases of miR156a-d, miR156e, miR167c and miR171a,b, the variants iso-miR156a-d, iso-miR156e, iso-miR167c and iso-miR171a,b were more highly expressed in all libraries than the rco-miR156a-d, rco-miR156e, rco-miR167c and rco-miR171a,b (Figure 3 for examples); in the case of miR395, rco-miR395a-c had relatively higher expression in the leaf library than its expression in other libraries, whereas the iso-miR395a-c was weakly expressed in all libraries; in the case of miR399, rco-miR399b-d was relatively highly expressed in root library than other tissues, whereas the rco-miR399b-d was weakly expressed in all libraries; in the case of miR403, rco-miR403a,b was relatively highly expressed in the leaf library than other libraries, whereas the iso-miR403a,b was weakly expressed in the seed2 library than others; in the case of miR171, rco-miR171g was only present in the root library, whereas the iso-miR171g was present in all libraries except for the endosperm library (see Table 4).

Expression Patterns of miRNAs among Tissues

Preferential expression of a miRNA in specific tissues might provide clues about its physiological function. To investigate the expression patterns of miRNAs among leaf, root, developing seeds and endosperm in castor bean, read count of each identified miRNA was normalized to the total number of miRNA read count in each library. Based on the relative abundance, we found that the expression of certain members within the miRNA families varied greatly in the given tissues, suggesting functional divergence within the family in castor bean. For example, abundance of the miR156 family varied from 122 reads (rco-miR156e) to 322,939 reads (rco-miR156e) in the leaf library, similar to the case for

Table 3. Cont.

miRNA family	Reference miRNA	Star sequence(5’-3’)	Length (nt)	Reads			
			root	leaf	seed1	seed2	endosperm
rco-miR396c	GTTCAAGAAAAACTGTTGAAAA	0	0	0	3	0	
rco-miR397	CACCAGCCTGATTTCAACCA	20	1	0	0	0	0
rco-miR398a	CAGAGGATTGCTCCTGAGAAACA	24	0	32	6	3	17
rco-miR398b	GAGGAGCTTGAATACATG	22	127	22	2	1	2
rco-miR399d	GGGCAGTCTGCTGTTGGCGAGG	21	0	1	0	1	4
rco-miR403a	ATTTTTGTTGTGAATACATT	21	0	2	0	1	3
rco-miR403b	TCTCTAGTTTGTGTTGGGATTAC	21	5	3	0	5	1
rco-miR408	GAGAAGCGGAAACAGCAGCTGC	21	1770	357	544	239	337
rco-miR482	TCCCAATTCGCCATCGCA	22	87	1437	209	31	289
rco-miR535	GTGCCCCATCATGTTGCTCAAT	21	930	2218	485	890	1272
rco-miR827	TTTTGTGTAAGTCACATTTG	21	471	42	10	3	42
rco-miR2111	GCCCTCGGTTGGCAGATTACC	21	1	0	1	0	5

doi:10.1371/journal.pone.0069995.t003
miR167 family varied from 941 reads to 59,219 reads in the seed1 library (see Table S2). These results indicate that miRNA members in one given miRNA family display clearly different expression levels, probably implying their functional divergence.

We compared the expressional differentiation of conserved miRNAs identified between the leaf and seed1, root and seed1, seed2 and seed1, and endosperm and seed1, respectively. We found that 49 out of 69 miRNAs detected between the leaf and seed1 were significantly differentially expressed (log2 ratio fold-change >1.0 and P value <0.001, see Figure 4a and Table S2) with 15 miRNAs up-regulated and 34 miRNAs down-regulated in leaf. Similarly, 42 out of 69 miRNAs between the seed1 and root were significantly differentially expressed with 17 miRNAs up-regulated and 25 miRNAs down-regulated in root (see Figure 4b and Table S2). When comparing the expressional differentiation of miRNAs between the seed2 and seed1, endosperm and seed1, respectively, we found that 42 out of 65 miRNAs detected between the seed1 and seed2, and 60 out of 68 miRNAs detected between the endosperm and seed1, were significantly differentially expressed (log2 ratio fold-change >1.0 and P value <0.001, see Figure 4c-d and Table S2) with 23 miRNAs up-regulated and 19 miRNAs down-regulated in the seed2, and 23 miRNAs up-regulated and 37 miRNAs down-regulated in the endosperm. It is worthy to note that some families such as miR166 and miR165 were of abundance cross the five libraries, whereas many families such as miR160, miR169, miR171, miR395 were lowly expressed in five libraries. Based on their abundance in the libraries, most members of miR156 family were of higher abundance in vegetable tissues (leaf and root), whereas the rco-miR156e had higher expression in developing seeds than in the leaf and root; the members of miR167 and miR164 had obviously preferential expression among tissues (see Table 2 and Table S2).

miRNA	Sequence (5’–3’)	Length (nt)	Reads	leaf	root	seed1	seed2	endosperm
rco-miR156a-d	TGACAGAGAGAGTGGACCAA	21	18327	12383	169	3649	2407	
rco-miR156e	TGACAGAGAGAGAGGCCCA	22	24	14	184	112	586	
rco-miR167b	TGAAGTCGCCAGCTGATCTA	21	24537	17445	70355	20807	31417	
rco-miR167c	TGAAGTCGCCAGCTGATCTG	22	1074	678	2656	1352	1578	
rta-miR171a,b	TGAAGCTGGAAGAGAGAGCA	21	6	0	0	1		
rco-miR171g	ATAGAAGTCGCGGCAATATC	21	0	1	0	0		
rco-miR319a-c	TGAAGTCGAGAGGAGCTCC	21	11	3	3	5		
rco-miR319d	TGAAGTCGAGAGGAGCTCC	22	7	0	1	1		
rco-miR393	TCTAGAGGATGGATGCATGC	21	1	0	13	21		
rco-miR395a-e	TCTAGAGGAGATGGATCC	21	296	47	8	5		
rco-miR399b-d	TGCCAAAGGAGATTGCCCCG	21	1	275	1	3		
rco-miR399e	TGCCAAAGGAGATTGCCCCG	21	0	1	0	2		
rco-miR403a-b	TGAGTTAGCCCAAAACTG	21	688	278	137	358	267	

Table 4. miRNA isoforms identified from castor bean.

![Image](https://doi.org/10.1371/journal.pone.0069995.t004)
Novel miRNA Detection

One of the most important features for high-throughput sequencing is that it can be employed to detect novel miRNAs in small RNA transcriptome [22,37]. In the previous study, 83 miRNAs were predicted based on genome sequences in castor bean and 63 of 83 miRNAs predicted were validated and released in the miRNA database [20]. In this study, remaining unannotated reads (5,444,532, 6,273,540, 5,207,130, 6,743,389 and 7,364,508 from leaf, root, seed1, seeds and endosperm, respectively) were mapped to reference genome of castor bean for identifying the genomic location and retrieving the adjoining sequence to help with secondary structure prediction of a miRNA precursor using the MIREAP pipeline (developed by BGI). The resulting reads, with a characteristic hairpin structure, a maximum free energy of ~25 kcal/mol, minimal matched base pairs of miRNA and miRNA* exceeding 16 nt and the sequence length of 20–23 nt, and reads abundance more than 100 at least in one independent library were considered as novel miRNA candidates. As a result, 72 potential miRNA candidates were identified with typical stem-loop structure (Figure S1), the negative folding free energies ranged from 25.4 to 103 (kcal/mol), and diverse loci in castor bean genome (see Table 5 and Table S3). Of the 72 potential miRNAs, 24 represented both the miRNA and miRNA* and 48 were miRNA*-deficient cases (having only the 5’ arm or 3’ arm sequences) (see Table 5 and Table S3). Fifty-three of these novel miRNA candidates were expressed in at least two independent libraries, and 19 of these candidates were expressed in a single library. A recently published article proposed precise and strict new miRNA annotation criteria by Meyers et al. [38]. Besides the primary criteria used by Mireap, two elementary requirements are demanded in high-throughput sequencing data analysis: (i) high-throughput sequencing data should represent both the miRNA and miRNA*; and (ii) in miRNA*-deficient cases, isolation and sequencing of the candidate miRNA should come from multiple and independent libraries. Based on these precise criteria, 58 of 72 novel miRNA candidates were categorized as highly confident. Fourteen miRNA candidates identified by Mireap did not meet Meyers et al.’s criteria (see Table 5).

Figure 3. Differential processing of castor bean pre-miRNAs. Stem-loop precursors of rco-miR156a and rco-miR167c pre-miRNAs were aligned against mature (red) and isoform (blue) miRNA sequences. Count data number represents the total number of reads found in leaf libraries. doi:10.1371/journal.pone.0069995.g003
Predicted Targets of Castor Bean miRNAs

According to Allen et al. and Schwab et al.’s methods [39,40], we predicted targets of the 95 miRNA candidates (including 23 new conserved and 72 novel miRNAs) using the currently annotated mRNAs of genes in the castor bean (from the CBGD database http://castorbean.jcvi.org). As a result, 80 of 95 miRNA candidates were identified to have their target genes, involving 482 miRNA:target pairs. The function of these target genes were broadly involved in the growth and development process of castor bean. The predicted target genes of these 95 miRNA candidates and their potential functional annotations are listed in Table S4.

Validation of the Putative miRNAs Newly Identified in Castor Bean

To validate the 95 miRNA candidates newly identified by high-throughput sequencing results, RT-PCR analysis was performed according to the method described in “Materials and Methods”. Using first-strand cDNAs obtained respectively from leaves, root tips and developing seeds, 20 primer pairs showed clean amplification bands for miRNAs PCR products including five conserved miRNA families (rco-miR172bc-d, 396b-c, 482, 827 and 4414) and fifteen novel putative miRNAs (Rco-miR002, Rco-miR006, Rco-miR029, Rco-miR030, Rco-miR032, Rco-miR038, Rco-miR040, Rco-miR043, Rco-miR044, Rco-miR052, Rco-miR053, Rco-miR054, Rco-miR058, Rco-miR064 and Rco-miR068, see Figure 5), suggesting the 20 miRNAs newly identified were validated by RT-PCR amplification. When comparing the abundance of these miRNAs validated in five miRNA libraries, we found these miRNAs were relatively more abundant than other miRNAs newly identified (see Table 2 and Table 5). Those miRNAs newly identified with low abundances were not validated by RT-PCR amplification probably because of their low expression levels in these tissues tested. These RT-PCR results exhibited the same expression profiles as the original high-throughput sequencing results.

Discussion

Although miRNAs have been studied extensively in diverse plant species in these years, limited knowledge is known for plant species in the family Euphorbiaceae. Based on complete genome data of castor bean, the study on a genome-scale computational prediction of miRNAs combined with experimental analysis [20] provided a basis for further characterization and functional analysis of miRNAs in Euphorbiaceae species. The current study
Table 5. Novel miRNAs identified from castor bean.

miRNA	Sequences (5’-3’)	Length(nt)	Reads	RNA*	No of loci						
	leaf	root	seed1	seed2	endosperm						
Rco-miR001a	TTGGAGGATTTCTAGGCGG	22	0	127	0	19	0	no	1		
Rco-miR002a	TGGAGCACGCGGGAGGTTTA	21	1565	3188	0	1221	1656	no	2		
Rco-miR003b	TGTGGAGTTCTAGGACGAC	21	814	0	0	0	0	no	1		
Rco-miR004a	TCGGAGGATCTAGAGGACGTTT	22	302	0	0	412	100	no	1		
Rco-miR005a	TCTGAAATGGAGGGAGCCTTAAA	21	225	0	0	372	124	205	343	no	1
Rco-miR006a	TTCTGTATTCTTCTTACGGGAG	22	1312	2054	1735	1394	1314	no	1		
Rco-miR007a	AGAGAAGGATTTCTAGGACGTTT	21	3	0	27	0	276	no	2		
Rco-miR008a	TATCCTGTGATTCTAGAGGACG	22	322	0	0	705	547	no	1		
Rco-miR009a	TCTGAAATTCTGAGGAGGCCTAAA	21	225	0	0	372	124	205	343	no	1
Rco-miR010a	TATCCTGTGATTCTAGAGGACG	21	22	110	0	0	59	22	no	1	
Rco-miR011a	TCTGAAATTCTGAGGACG	21	193	0	0	178	43	71	58	yes	1
Rco-miR012a	CAAATTGCCGTTATTGCTTCA	21	113	0	0	137	87	167	132	no	1
Rco-miR013a	AGGTGAAAGGATTTCTAGGACG	21	17	0	123	0	96	0	18	yes	1
Rco-miR014a	TAACTCTTCTACGGGACTAAA	21	29	0	0	163	0	55	yes	1	
Rco-miR015a	GCCGCTATTCTGAGGAGGCCTTCA	20	407	0	0	0	0	yes	1		
Rco-miR016a	TACCCTGTGATTCTAGAGGACG	21	0	0	0	0	371	346	yes	1	
Rco-miR017a	AGGGAGGAGGAGGAGGACG	23	147	0	0	0	0	yes	2		
Rco-miR018a	TCAAAAGGAGAAGGTTACAAA	22	457	0	0	0	0	yes	1		
Rco-miR019a	ACATCCTTGAAGCTAATCTA	21	45	0	19	465	386	573	yes	1	
Rco-miR020a	AGGAGCTCAAGCTTCTGCTAC	21	0	0	0	0	0	163	yes	1	
Rco-miR021a	CAGGCTATTCTGAGGAGGCCTTCA	21	0	0	443	0	0	0	yes	1	
Rco-miR022a	AGGGAGGAGGAGGAGGACG	21	189	0	0	0	0	yes	1		
Rco-miR023a	TTTTATCACTCAGCTTCTTCA	21	127	0	0	333	77	221	185	no	1
Rco-miR024a	TTTTGTGCTTTCTATCCACTTCA	22	0	637	0	621	0	0	no	4	
Rco-miR025a	ATAGTTGATTGTATGTGCGC	22	323	0	0	0	0	yes	1		
Rco-miR026a	ATTTAGGGAAGGAAATGAAAC	21	249	0	0	768	368	653	431	yes	1
Rco-miR027a	TATTTTTGATTCTTAGCTTCTTCTTTC	22	180	0	0	0	0	no	5		
Rco-miR028a	TCTTCTGCTATTCTGAGGAGGCCTTCA	23	0	16651	0	16651	0	0	yes	1	
Rco-miR029a	TATGGGGGATCTGAGGAGGCCTTCA	21	3079	0	0	8498	6191	4222	2431	yes	1
Rco-miR030a	GTCTGTTGTTGTTGAGGATTTCTTCTTTC	21	3842	0	0	3735	5213	5004	5369	no	1
Rco-miR031a	TGTGCTGAGAGAATGAGCCCA	22	132	0	114	64	0	0	no	1	
Rco-miR032a	GAAGCTGTGTTGAGGAGGAGGAGG	21	14	0	33	11443	0	0	yes	1	
Rco-miR033a	TCCGGAGAATTTGAGGAGGAGG	21	237	0	0	418	0	285	no	1	
Rco-miR034a	TCCGGAGAATTTGAGGAGGAGG	21	171	0	0	167	600	419	no	1	
Rco-miR035a	TCCGGAGAATTTGAGGAGGAGG	22	0	0	0	0	418	0	285	no	1
Rco-miR036a	CATGGAGAGCAGGAGGACG	21	103	0	82	0	84	66	no	1	
Rco-miR037a	CTGACAGTTGAGGAGGAGGAGG	23	0	0	579	111	0	0	no	5	
Rco-miR038a	TGAGCTGTTGAGGAGGAGGAGG	22	923	0	0	641	376	1013	1707	no	1
Rco-miR039a	TGGAGAGTGTGAGGAGGAGG	23	0	0	0	579	111	0	0	no	5
Rco-miR040a	ACCTCTGTTGAGGAGGACG	21	3199	0	0	1179	935	4583	4525	no	1
Rco-miR041a	TCCGGAGATTTGAGGAGGACG	22	418	0	0	515	0	285	yes	1	
Rco-miR042a	TCTATGATGAGGAGGACG	22	0	3225	0	0	76	0	863	yes	1
Rco-miR043a	TTGGCATGACCTGAGGAGGACG	21	81	0	9617	243	28454	25073	no	1	
Rco-miR044a	TGAGAATTTCTGGGTTGAGG	21	0	0	2799	2941	896	314	no	1	
Rco-miR045a	ATCGACACAGGAGGAGGACG	21	0	0	0	0	121	0	no	1	
Rco-miR046a	TCGAGATCAGGAGGAGGACG	22	0	0	0	0	1789	0	no	1	
Rco-miR047a	GAGGCTTTGAGGAGGACG	22	105	0	0	0	0	40	yes	1	

MicroRNAs in Castor Bean
using high-throughput sequencing method greatly enriches our knowledge in identifying miRNAs in castor bean and facilitates more particular and specific miRNA studies castor bean and other members of the family Euphorbiaceae as well.

High-throughput sequencing analyses have become one of the major sources supporting miRNA annotations [22–24]. This study is the first report on identification and characterization of miRNAs and generates a large number of small RNA sequence reads using high-throughput sequencing techniques in castor bean. Studies to elucidate the number of miRNA molecules sequenced from these small RNA sequence reads are still needed for more accurate small RNA profiling studies. In term of reads, the small RNA libraries sequenced finally yielded a large number of unannotated reads after new miRNA screen in this study. These remaining unannotated reads could remain for further analyzing character-ization of siRNA populations in castor bean.

Usually, miRNA isoform variants are considered to be a consequence of inaccuracies in Dicer pre-miRNA processing [41]. However, sequence length variation often have been overlooked, as small variations in the sequence length might not have been thought to alter the function of individual miRNAs, as they are directed to their target genes by base pairing [34]. Recent studies had showed that miRNAs and their isoform variants in length broadly co-existed and these variants might lead to functional differentiation, in particular, when the variation occurs in the 5'-end and gives rise to a alternation of the miRNA and argonaute (AGO) binding [36,42]. A decrease in abundance of the 21 nt isoform variant reduces miR168 homeostasis and leads to developmental defects in Arabidopsis and sequence length hetero-geneity for plant miRNAs often is essential for correct plant development and environmental responses [36]. Although most of the isoform variants identified from the length variant group exhibit 3’ heterogeneity, little is known about the biological interest of the variation occurring in 3’-end of miRNAs.

In this study, small RNA sequences from libraries were considered as miRNA isoforms only if they were similar to a reference miRNA identified in miRBase and had a significantly greater number of reads compared to those found for the reference miRNA in all five libraries. From these analyses for isoform identification, 16 miRNA isoforms involving 10 miRNA families were added to the total number of conserved miRNA families identified in castor bean. Six miRNA isoforms displayed 5’ heterogeneity and ten displayed 3’ heterogeneity. Whether these isoform variants detected in castor bean have functional differen-tiation and play different regulatory roles in plant growth and environmental responses are yet unknown. The expressional differentiation of these isoform variants and their references among tissues, however, imply their functional divergence, if these isoform variants have their biological interest. In addition, those variant sequences with missing bases and low frequencies produced from high-throughput sequencing could be viewed as degradation products or pyrophosphate sequencing errors.

Table 5. Cont.

miRNA	Sequences (5’–3’)	Length(nt)	Reads	RNA*	No of loci				
			leaf	root	seed1	seed2	endosperm		
Rcc-miR049a	TAGGCAAGGATGACGACATT	22	2121	434	0	0	no	2	
Rcc-miR050a	TGTGTTGACGAGCCGACAT	22	174	167	201	68	139	no	1
Rcc-miR051a	CTGCTGAGGACGGGATGCCAC	22	687	523	23	0	0	yes	1
Rcc-miR052a	GGTATTGGACGGGAGTCCGAAGA	22	9127	19777	4389	8140	1429	yes	1
Rcc-miR053a	TCGAACCCTCAGAAGATCTC	22	0	0	1225	2281	1379	no	4
Rcc-miR054a	ATGTGAACGCTGATGAGCTC	21	290	5820	886	867	417	no	1
Rcc-miR055a	TAGCAAGGATGACGACATT	22	0	214	244	422	472	no	1
Rcc-miR056b	TCTGGAGGATGGGTAGCTAC	22	0	0	549	0	0	no	1
Rcc-miR057a	GGGCTATGTTAGAATTG	20	407	17	0	15	0	no	1
Rcc-miR058a	TAGAGTGGGCAAGAGCTGAGT	22	0	1470	0	0	0	no	1
Rcc-miR059a	CAGCAAGGATGACGACATT	22	296	0	556	0	0	no	1
Rcc-miR060a	TGGAACTGCTAGAAGGAGAACAT	21	0	0	277	0	0	no	2
Rcc-miR061a	GAAAGGTCATTGAGCCAGAAG	23	101	35	17	10	yes	1	
Rcc-miR062a	CTGAACTGCTAGAAGGAGAACAT	22	0	53	0	159	0	yes	1
Rcc-miR063b	ATGGAGAAGAGAAGAAGGTTT	22	0	0	328	0	0	no	1
Rcc-miR064a	CTCTTATAGAAGGCTCTCGGAG	22	2595	1375	1103	1600	1864	no	1
Rcc-miR065a	TTGGTTGCAAGAAGCTTGGTT	22	237	121	48	0	198	no	5
Rcc-miR066a	TGGATAAGTCTTACGAGACATC	22	667	833	795	825	yes	1	
Rcc-miR067b	TGGGCTTGAAGAAGAAGGTA	21	0	0	110	0	0	no	1
Rcc-miR068b	TATATGGGATGAGAAGGATGG	22	1064	0	933	0	0	no	1
Rcc-miR069a	TGGCTTGGAGAATCGTTT	22	0	0	129	0	0	no	1
Rcc-miR070a	TCTGGAGGATGAAGCTGAGT	22	1182	0	0	147	0	no	1
Rcc-miR071b	ATGGAGTTGGGATGAGGTTA	22	0	0	140	0	0	no	1
Rcc-miR072a	TTGAAACGCTTGGACAGC	23	0	0	36	189	0	yes	1

Note: *a* these candidates meet Meyers et al.'s criteria; *b* these candidates do not meet Meyers et al.'s criteria.

doi:10.1371/journal.pone.0069995.t005
Application of deep sequencing technology can shed considerable novel lights hidden in the small RNA transcriptome data not only for identification of new conserved miRNAs, but also for successful discovery of novel miRNAs with high accuracy and efficiency [41]. Our current study has led to the discovery of 23 new conserved and 72 novel miRNA candidates in castor bean. These new miRNA candidates largely enriched the miRNA database for castor bean and Euphorbiaceae members. However, only seven new conserved and 15 novel miRNAs were validated using experimental RT-PCR method, though 58 of 72 novel miRNA candidates had been categorized as highly confident according to previous strict miRNA annotation criteria, with 35 represented both the miRNA and miRNA*. Most of novel miRNA candidates identified in this study have not been validated. The most likely reason is due to the limit of RT-PCR method when target miRNAs tested have a low expression [23,37]. Thus, validity of these novel miRNA candidates need to be further confirmed.

When comparing the numbers of miRNAs identified using the same high-throughput sequencing approach between rubber tree [43] and castor bean, we found that castor bean appeared to have less conserved miRNAs (96) involving 27 miRNA families than rubber tree which had 115 conserved miRNAs, covering 56 families. Further, we found that all homologs of 27 conserved miRNA families of castor bean in rubber tree, but we did not find any homolog of the 72 novel miRNAs identified from castor bean in other members of Euphorbiaceae including rubber tree [43,44], *Jatropha curcas* [45] and *Manihot esculenta* [46], implying that the 72 novel miRNAs detected might represent castor bean species-specific miRNAs. Compared to the target genes identified in other plants, rco-miR167, rco-miR172 and rco-miR1482 exhibited similar targets to their homologs in Arabidopsis [47] and maize [25]. However, four conserved miRNAs newly identified (including rco-miR396, rco-miR827, rco-miR2111 and rco-miR4414) and most of the novel miRNAs in castor bean displayed species-specific targets.

In addition, high-throughput sequencing technologies can serve as a powerful miRNA expression profiling tool to identify the differentially expressed miRNAs, providing the basis for future analysis of miRNA functions and elucidating underlying mechanisms in regulating diverse molecular and physiological pathways [12,37]. In the study, comparison of their expression patterns among different tissues shows that 49, 42, 42 and 60 of 86 conserved miRNAs are significantly differentially expressed between seed1/leaf, seed1/root, seed1/seed2 and seed1/endosperm, respectively. Similarly, many of the miRNA*, isoform variants and novel miRNAs identified in this study presented differential expression patterns among tissues sampled. Although the biological function of miRNAs in castor bean is unclear the expressional differentiation of these miRNAs among tissues provides a clue for further investigation of the physiological roles of miRNAs in castor bean. Castor bean is of an important oilseed crop worldwide, containing significant amounts of lipid and protein. In this study, we searched for miRNAs that might play a function in regulating biological processes related to the biosynthesis of lipid and protein in developing seeds and endosperms. Our results demonstrated that ten miRNAs (rco-miR156f,e, rco-miR159, rco-miR168, rco-miR390a, rco-miR393a, rco-miR396a, rco-miR408, rco-miR003 and rco-miR020) had 21 target genes, which were involved in amino acid metabolism, fatty acid metabolism and lipid metabolism with differential expressions at different stages of seed development. These results imply that the ten miRNAs might have a physiological role in regulating lipid and protein biosynthesis in castor bean.
In summary, we have identified and characterized a large number of miRNAs from castor bean, analyzed their expression and predicted the putative targets of these miRNAs. It will be very important to experimentally characterize these miRNAs and their downstream targets, as this will lead to a better understanding of the function relationship and mechanism of miRNAs in the regulation network. In particular, our high-throughput sequencing approach to miRNA discovery suggests that a significant number of novel miRNAs remain to be further analyzed and characterized. The current study is the first report on identification and characterization of miRNA using the high-throughput sequencing approach in castor bean.

Materials and Methods

Ethics Statement

No specific permits were required for the described field studies. No specific permissions were required for these locations and activities. The location is not privately-owned or protected in any way and the field studies did not involve endangered or protected species.

Sample Preparation and Total RNA Extraction

Seeds of castor bean var. ZB306 elite inbred line (provided kindly by Zibo Academy of Agricultural Sciences, Shandong, China) were cultivated in the greenhouse of Xishuangbanna tropical botanical garden (Kunming branch) with the temperature of day at 24–26°C and night at 18–20°C with the humidity controlled at 60–80%. Leaf tissue was collected from a fully expanded young leaf and root tips were collected, washed and dissected. Immature seeds at two different stages, i.e. seed1 at the initial stage (15 days after pollination) and seed2 at the fast oil accumulation stage (35 days after pollination) of seed development, were collected. Endosperm tissue was dissected from the immature seeds (40 days after pollination). The developing seeds did not start to accumulate TAG at the initial stage (seed1) and fast accumulated TAG at the fast oil accumulation stage (seed2), see Figure S2). Total RNA was extracted from the leaf, root tip, immature seed (seed1 and seed2) and endosperm tissues separately using Trizol (TaKaRa, Dalian, China) following the manufacturer’s protocol. The quality of total RNA samples was tested using both the NanoDrop Spectrometer (ND-1000 Spectrophotometer, Peqlab) and agarose gel (1.5%) electrophoresis.

Small RNA Library Construction and Sequencing

Total RNA samples were firstly processed by 15% denaturing polyacrylamide gel electrophoresis (PAGE). The small RNA fragments in the range of 16–30 nt in length were isolated from the gel and purified by sRNAs gel extraction Kit (TaKaRa Bio, Otsu, Japan). Then, the 5’ and 3’ termini of the small RNA were linked with proprietary adapters sequentially and RT-PCR was performed to amplify RNA to DNA, which can be used as templates to produce sequencing libraries. At last, approximately 20 μg sequencing libraries were produced and Illumina Solexa Genome Analyzer was employed to sequence the generated libraries.

Small RNA Sequencing Analysis

After sequencing, we trimmed the adaptor sequences, filtered the low quality tags and eliminated contamination of adaptor sequences. Non-coding RNAs including rRNA, tRNA, snRNA and snoRNA were identified by reads alignment to the Pfam 10.1 (http://www.sanger.ac.uk/software/Rfam) and GeneBank databases. After removing non-coding RNAs, the clean small RNA sequences ranging from 16–28 nt were collected and mapped to the castor bean genome for getting the unique reads with abundance and position on the genome using SOAP 2.0 program (http://soap.genomics.org.cn/). The unique RNA sequences that perfectly matched the castor bean genome were subjected to subsequent analysis. Sequence reads overlapping with exons and introns of mRNA were excluded to avoid DNA contamination or mRNA degradation products.

Identification of Conserved, Isoform and Novel miRNAs

In order to determine conserved miRNAs, the trimmed unique reads were aligned against the mature or precursor of conserved castor bean miRNAs in the miRBase [48]. Only the small RNA sequences that perfectly matched known castor bean miRNAs were considered to be conserved miRNAs. To find new conserved miRNAs, the remaining reads were aligned with mature plant miRNA sequences in miRBase allowing at most two mismatches. According to the genomic positions of new conserved miRNA candidates identified, we retrieved the flanking genomic sequences around matched loci to form possible precursors of candidate miRNAs with the Mfold program [49]. Those candidate sequences containing a typical RNA stem-loop with at least 18 bp in matched regions and having folding energy no greater than −18 kcal/mol were considered as new conserved miRNAs. Meanwhile, we inspected stem-loop structures for each miRNAs identified in castor bean and defined the star miRNA sequences based on Dicer-cleavage rules as implemented in the miRDeep software tool [50].

With the purpose of identifying miRNA isoforms, the sequence reads from all libraries that perfectly matched in the annotated miRNA precursor sequences but not representing annotated miRNA mature and star sequences, were not shifted more than four positions from their original mature or star 5’ position and have a total number of reads 50% greater than the total reads of their reference miRNA were considered as isoform miRNAs in castor bean. If no reference miRNA for a variant was previously detected in all libraries, the variant with the highest frequency was considered.

To identify the novel miRNAs, the unannotated reads that were identical to genome sequence were collected and the flanking sequences around matched position were retrieved. The MIREAP pipeline (https://sourceforge.net/projects/mireap/) was used to analyze their characteristic hairpin structure of miRNA precursor. Those reads which could meet criteria including having a characteristic hairpin structure and the Dicer cleavage site with a maximum free energy of −25kcal/mol, minimal matched base pairs of miRNA and miRNA* exceeding 16 nt, the sequence length of 20–23 nt and the reads abundance >100, were considered as novel miRNAs. The filtered pre-miRNA sequences were folded again using Mfold and checked manually.

Validation of miRNAs Newly Identified

To validate castor bean miRNAs newly identified in this study, a modified oligo (dT) primers RT-PCR approach as described by Fiedler et al. [51] was performed. Briefly, after total miRNAs were extracted from plant tissues, polyA tails to all transcript miRNAs were added, and then transcript miRNAs with polyA tails were reversely transcribed into cDNAs using a set of 12 modified oligo(dT) primers containing a unique sequence tag at the 5’ end and two bases at the 3’ end. This step reaction converts all miRNAs into cDNAs with ~90bp length. Further, RT-PCR amplification is achieved using a primer specific to the miRNA in interest and a primer specific to the tag.
In our study, total miRNA was isolated from leaves, root tips and developing seeds of castor bean using Plant MicroRNA Extraction Kit ([BIOTEKE, Beijing, China]), following the manufacturer’s instructions. MiRNA reverse transcription reactions were performed using One Step miRNA 1st cDNA Synthesis Kit (HaiGene Biotech, Haerbin, China) in a 20 μL reaction solution containing 1000 ng miRNAs, 4 μL 4x One Step miRNA RT solution, 2 μL 10x miRNA RT Primers, and RNase-free water was used to adjust the total volume of the reverse transcription reaction to 20 μL. The miRNA reverse transcription reactions were incubated in an Eppendorf Mastercycler (Eppendorf North America, Westbury, NY) for 60 min at 37°C, followed by 5 min at 95°C, and then 4°C until further use. For PCR amplification, 86 specific primers were designed based on mature miRNA sequences for amplifying 95 miRNAs new indentified (see Table S4). The RT-PCR reactions were performed in a 10 μL volume containing 1 μL diluted reverse transcription product, 1×PCR buffer, 0.2 mM dNTPs, 2.0 U EasyTaq DNA polymerase (TransGen Biotech, Beijing, China), and 0.5 μM specific miRNA primer and universal primer (5’-TTACCTAGGTATCGGAGGAGC-3’) on Eppendorf Mastercycler. The PCR reaction conditions used were as follows: 2 min at 95°C, followed by 38 cycles of denaturation for 5 s at 95°C, annealing for 5 s at 55-60°C, extension for 35 s at 70°C, and then 4°C. PCR amplification products were confirmed on 1.5% agarose gel.

Differential Expression Analysis

To investigate the differentially expressed miRNAs among castor bean leaf, root, seed1, seed2 and endosperm, miRNAs considered for this analysis were the conserved miRNAs (Table 2). Firstly, each miRNA read count was normalized against the total number of miRNA reads in each given sample. Subsequently, the fold-change (log2(sample1/sample2) and P-value were calculated from the normalized expression, and significantly difference of a given miRNA was determined by the P≤0.001 and fold-change ≥1 in two samples.

Prediction of miRNA Targets

The whole genome and transcript databases of castor bean (http://castorbean.jcvi.org/index.php) provide a rich resource for predictions of miRNA targets. The putative target sites of miRNA candidates were identified by aligning the miRNA sequences with the genome and transcript database of castor bean. Allen et al.’s and Schwab et al.’s criteria [39,40] were used in our analysis, i.e.: each G:U wobble pairing was assigned 0.5 point; each indel was assigned 2.0 points; all other noncanonical Watson-Crick pairings were each assigned 1.0 point; no more than two adjacent mismatches in the miRNA/target duplex with a minimum free energy (MFE) of the miRNA/target duplex 75% greater than the MFE of the miRNA bound to it’s perfect complement.

Supporting Information

Figure S1 The second structures of newly identified 95 miRNAs including 23 conserved (*) miRNAs and 72 novel pre-miRNAs in castor bean.

(DOC)

Figure S2 Developing seeds of castor bean and lipid (triacylglycerols, TAG) accumulation at two different developmental stages.

(DOC)

Table S1 The conserved miRNAs identified from castor bean and their distribution among miRNA families.

(DOC)

Table S2 The expressional differentiation of conserved miRNAs identified between seed1/leaf, seed1/root, seed1/seed2, seed1/endosperm, respectively.

(XLS)

Table S3 Novel eco-miRNAs identified and their expression levels in castor bean.

(XLS)

Table S4 Putative targets for the conserved 23 miRNAs newly identified (*) and 72 novel miRNAs in castor bean.

(XLS)

Table S5 The 86 primers designed for RT-PCR amplification of 95 miRNAs newly identified in this study.

(XLS)

Author Contributions

Conceived and designed the experiments: AL. Performed the experiments: WX QC. Analyzed the data: WX QC. Contributed reagents/materials/analysis tools: FL. Wrote the paper: AL QC WX.

References

1. Akpan U, Jinoh A, Mohammed A (2006) Extraction, characterization and modification of castor seed oil. Leonardo J Sci 8: 43–52.
2. Oggunniyi DS (2006) Castor oil: A vital industrial raw material. Biosour Technol 97: 1086–1091.
3. Scholz V, da Silva JN (2008) Prospects and risks of the use of castor oil as a fuel. Bioresour Technol 100: 806–810.
4. Atsmon D (1989) Castor. In: Robbelen G, Downey RK, Ashri A, editors. Oil Crops of the world: their breeding and utilization. New York: McGraw-Hill.
5. Eldem V, Okay S, Unver T (2013) Plant microRNAs: new players in functional divergence of microRNAs and their functions in Euphorbiaceous plants. Nucleic Acids Res 36: D154–D158.
6. Sujatha M, Reddy TP, Mahasi MJ (2008) Role of biotechnological interventions on Euphorbiaceous plants. Turk J Agric For 37: 1–21.
7. Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36: D134–D138.
8. Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ (2006) miRBase: microphone sequences, targets and gene nomenclature. Nucleic Acids Res 34: D140–D144.
9. Griffiths-Jones S, Nasi H, van Dongen S, Ratman E, Enright AJ (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 36: D140–D144.
21. Creighton CJ, Reid JG, Gunaratne PH (2009) Expression profiling of microRNAs by deep sequencing. Brief Bioinform 10: 490–497.

22. Fahlgren N, Sullivan CM, Kaschau KD, Chapman EJ, Cumbie JS, et al. (2009) Computational and analytical framework for small RNA profiling by high-throughput sequencing. RNA 15: 992–1002.

23. Git A, Dringe H, Salmon-Divon M, Osborne M, Kutter C, et al. (2010) Systematic comparison of microarray profiling, real-time PCR, and next-generation sequencing technologies for measuring differential microRNA expression. RNA 16: 991–1006.

24. Motameny S, Wolters S, Nürnberg P, Schumacher Bjorn (2010) Next Generation Sequencing of miRNAs: Strategies, Resources and Methods. Gene 2010: 70–84.

25. Zhang L, Chia JM, Kumari S, Stein JC, Liu ZJ, et al. (2009) A Genome-Wide Characterization of MicroRNA Genes in Maize. PLoS Genet 5: e1000716.

26. Peláez P, Trejo MS, Itúquez LP, Estrada-Navarrete G, Covarrubias AA, et al. (2012) Identification and characterization of microRNAs in Phaseolus vulgaris by high-throughput sequencing. BMC Genomics 13: 83.

27. Chi X, Yang Q, Chen X, Wang J, Pan L, et al. (2011) Identification and characterization of microRNAs from Peanut (Arachis hypogaea L.) by High-Throughput Sequencing. PLoS ONE 6: e27530.

28. Li H, Dong Y, Sun Y, Zhu E, Yang J, et al. (2011) Investigation of the microRNAs in sunflower seed, leaf, and petal by high-throughput sequencing. Planta 235: 611–619.

29. Martinez G, Forment J, Llave C, Pallás V, Gómez G (2011) High-Throughput Sequencing, Characterization and Detection of New and Conserved Cucumber miRNAs. PLoS ONE 6: e19523.

30. Shaminuzzaman M, Vodkin L (2012) Identification of soybean seed developmental stage-specific and tissue-specific miRNA targets by degradome sequencing. BMC Genomics 13: 310.

31. Wang F, Li L, Liu L, Li H, Zhang Y, et al. (2012) High-throughput sequencing discovery of conserved and novel microRNAs in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Mol Genet Genomics. 287: 555–63.

32. Wu B, Wang M, Ma Y, Yuan L, Lu S (2012) High-throughput sequencing and characterization of the small RNA transcriptome reveal features of novel and conserved MicroRNAs in Panax ginseng. PLoS ONE 7: e44385.

33. Wan LG, Zhang H, Lu S, Zhang L, Qiu Z, et al. (2012) Transcriptome-wide identification and characterization of miRNAs from Panax notoginseng. BMC Genomics. 13: 132.

34. Ebhardt HA, Fehlmann A, Fahlman RP (2010) Naturally occurring variations in sequence length create microRNA isoforms that differ in argonaute effector complex specificity. Silence 1: 12.

35. Mi S, Cai T, Hu Y, Chen Y, Hodges E, et al. (2008) Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5′ terminal nucleotide. Cell 133: 116–127.

36. vanAchtert H (2009) AGO1 homeostasis involves differential production of 21-nt and 22-nt miR168 species by MIR166a and MIR166b. PLoS One 4: e6442.

37. Pritchard CC, Cheng HH, Tevarri M (2012) MicroRNA profiling: approaches and considerations. Nat Rev Genet 13: 358–369.

38. Meyers BC, Axtell MJ, Bartel DP, Baulcombe D, et al. (2006) Criteria for annotation of plant microRNAs. Plant Cell 20: 3186–3190.

39. Allen E, Xie Z, Gustafson AM, Carrington JC (2005). MicroRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121: 207–221.

40. Schwab R, Palanuk JF, Kiefer M, Schommer C, Schmid M, et al. (2005) Specific effects of microRNAs on the plant transcriptome. Dev Cell 8: 517–527.

41. Lu C, Tej SS, Luo S, Haudenschild CD, Meyers BC, et al. (2005) Elucidation of the small RNA component of the transcriptome. Science 309: 1567–1569.

42. Montgomery TA, Howell MD, Cupers JT, Li D, Hansen JE, et al. (2006) Specificity of ARGOAUT7-miR390 interaction and dual functionality in TAS3 transacting siRNA formation. Cell 133: 128–141.

43. Lertpanyasampatha M, Gao L, Kongsawadworakul P, Viboonjun U, Chrestin H, et al. (2012) Genome-wide analysis of microRNAs in rubber tree (Hevea brasiliensis) using high-throughput sequencing. Planta 236: 437–445.

44. Gebelin V, Argout X, Enghuan W, Pitollat B, Duan C, et al. (2012) Identification of novel microRNAs in Hevea brasiliensis and computational prediction of their targets. BMC Plant Biol 12: 18.

45. Wang CM, Liu P, Sun F, Li L, Liu P, et al. (2012) Isolation and identification of miRNAs in Jatropha curcas. Int J Biol Sci 8: 418–29.

46. Patanun O, Lertpanyasampatha M, Sojikul P, Viboonjun U, Narangajavan J (2013) Computational Identification of microRNAs and Their Targets in Cassava (Manihot esculenta Crantz.). Mol Biotechnol 53: 257–269.

47. Wu MF, Tian Q, Reed JW (2006) Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction. Development 133: 4211–4218.

48. Kozomara A, Griffiths-Jones S (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39:D152–D157.

49. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31: 3406–3415.

50. Friedlaender MR, Chen W, Adamidi C, Maaskola J, Einspanier R, et al. (2008) Computational annotation and deep-sequencing data. Nucleic Acids Res 39:D152–D157.

51. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31: 3406–3415.

52. Friedlander MR, Chen W, Adamidi C, Maaskola J, Einspanier R, et al. (2008) Discovering microRNAs from deep sequencing data using miRDeep. Nat Biotechnol 26: 407–415.

53. Friedlander MR, Chen W, Adamidi C, Maaskola J, Einspanier R, et al. (2008) Quantitative RT-PCR methods for mature microRNA expression analysis. Methods Mol Biol 630: 49–64.