Decadal and Monthly Change of an Empirical Coefficient in the Relation between Solar Radiation and the Daily Range of Temperature in Japan: Implications for the Estimation of Solar Radiation Based on Temperature

Sonia Hossain, Koki Homma and Tatsuhiko Shiraiwa

(Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan)

Abstract: The need for solar radiation \((R_s; \text{MJ m}^{-2} \text{d}^{-1}) \) estimation remains a common concern for agronomists. Evaluation of crop productivity is primarily based on \(R_s \) data, which are difficult to collect because of cost and calibration requirements. Generally, historical \(R_s \) data are more difficult to obtain. This study focused on an estimation model based on the daily range of temperature and evaluated its accuracy from the viewpoint of crop productivity analysis. The variability of an empirical coefficient in the model \((K_{Rs}) \), which was derived from the relation between \(R_s \) and daily range of temperature \((T_{max} - T_{min}) \), was analyzed using climatic data observed in Japan considering data availability and quality. \(K_{Rs} \) had significant monthly differences, and it significantly increased from 1981 – 1985 to 2003 – 2007 at all 10 locations. Period-month interactions were not significant, except for in Utsunomiya, suggesting that the seasonal pattern did not change during the period. Weather data indicated that the increase in \(K_{Rs} \) was caused not only by increased solar radiation but also by a decrease in \(T_{max} - T_{min} \). The substantial differences in \(K_{Rs} \) produced considerable bias for the estimated \(R_s \) when the estimation was conducted with a constant \(K_{Rs} \) (0.16). Despite the bias, the model is considered to perform well given the present availability of \(R_s \) data. The results of this study suggest that the evaluation of the seasonal pattern of \(K_{Rs} \) greatly improves the model accuracy.

Key words: Daily range of temperature, Decadal change, Empirical coefficient, Hargreaves and Samani model, Seasonal pattern, Solar radiation.

Solar radiation \((R_s; \text{MJ m}^{-2} \text{d}^{-1}) \) is a driving factor in all physical and biochemical processes on the earth’s surface. Crop production also depends fundamentally on the amount of intercepted \(R_s \). Although \(R_s \) data has been collected for its significance (WRDC, 2013; Kuwagata et al., 2011), the number of weather stations that collect \(R_s \) data is still limited in the world due to the cost, maintenance and calibration requirements (Ball et al., 2004; Liu et al., 2009). Even where \(R_s \) data have been routinely measured, there are often significant gaps as a result of instrument errors or failures. Moreover, historical data are strongly recommended to evaluate the effects of climatic change on crop production, and these data typically lack \(R_s \) information. Hence, empirical models estimating \(R_s \) from commonly available climate data have been required.

One common approach to predicting \(R_s \) is the product of extraterrestrial radiation \((R_a; \text{MJ m}^{-2} \text{d}^{-1}) \) and an estimated atmospheric transmissivity coefficient \((T_t) \) as follows:

\[
R_s = R_a \times T_t
\]

This model is based on the assumption that the difference

Received 24 September 2013. Accepted 15 April 2014. Corresponding author: K. Homma (homma@kais.kyoto-u.ac.jp, fax +81-75-753-6065).

Abbreviations: \(\text{Alt} \), altitude; ANOVA, analysis of variance; DOY, day of the year; \(K_{Rs} \), empirical coefficient in the estimation model for solar radiation; \(R_s \), extraterrestrial radiation; RMSE, root-mean-square error; \(R_s \), solar radiation; \(T_{max} \), daily maximum temperature; \(T_{min} \), daily minimum temperature; \(T_t \), transmissivity coefficient.
between daily maximum and minimum temperatures provides a general indication of cloudiness. Compared to clear skies, cloud cover usually decreases the maximum air temperature due to lower solar radiation levels and increases minimum air temperature due to increased downward emission and reflection of longwave radiation by clouds at night (Allen, 1997). Although other important factors, e.g., wind speed, humidity, elevation, precipitation and available soil water for evaporation, also affect transmissivity, these factors are not included in the model by assuming that the effects are fairly constant over a period of as long as one month (Hargreaves and Samani, 1982). Accordingly, the model is commonly applied to estimate monthly R_s based on weekly or monthly averages of daily temperature ranges (Meza and Varas, 2000; Samani, 2000). Despite the inaccuracy caused by the assumption, the advantage in estimating R_s using the model is greater because temperature data are available for wider areas and over longer periods around the world (Homma et al., 2007; JMA, 2013; GHCN, 2013).

Annandale et al. (2002) set K_{Rs}, an empirical coefficient in the model, to 0.16 for inland sites and 0.19 for coastal sites. However, Ball et al. (2004) and Fletcher and Moot (2007) reported that model performance is improved when the K_{Rs} value is not fixed (0.16 or 0.19) and is instead calibrated to each site. Not only location differences but also seasonal differences in K_{Rs} are important when using the model for the estimation of climate on crop production because the seasonal pattern of R_s has a significant meaning in crop production. Historical changes in K_{Rs} are also important when the evaluation is conducted using historical data. However, many studies have used constant K_{Rs} (e.g. Irmak et al., 2012; van Wart et al., 2013), which could be a source of error in the R_s estimates. This study aimed to evaluate seasonal and historical changes in K_{Rs} and their effects on the estimation of R_s to evaluate effects of climate on crop production because the seasonal pattern of R_s has a significant meaning in crop production. Historical changes in K_{Rs} are also important when the evaluation is conducted using historical data. However, many studies have used constant K_{Rs} (e.g. Irmak et al., 2012; van Wart et al., 2013), which could be a source of error in the R_s estimates. This study aimed to evaluate seasonal and historical changes in K_{Rs} and their effects on the estimation of R_s in order to characterize the error derived from the Hargreaves and Samani (1982) model. The effects on the estimation of R_s were evaluated by setting K_{Rs} as a constant. We used daily weather data because daily values are sometimes recommended when analyzing the effects of climate on crop production, e.g., analysis using a crop simulation model (van Wart et al., 2013). Data quality is of prime importance in the analysis of the above mentioned topics. Accordingly, we selected the dataset in Japan that included R_s strictly certified by a certain standard (JMA, 2012), and yet covered a range of climatic and geographical conditions.

Materials and methods

1. Database and data sources

We selected 10 locations, which are representative agricultural areas widely distributed in Japan (Fig. 1). The locations were classified into Cfa, Dfa and Dfb of the Köppen-Geiger climate classification (Peel et al., 2007). The daily maximum temperature (T_{max}), minimum temperature (T_{min}) and solar radiation (R_s) data over the periods of 1981–1985 and 2003–2007 were collected from the Japan Meteorological Agency (JMA, 2012). Extraterrestrial radiation (R_a) was calculated using standard geometric methods for any given day of the year (DOY) based on latitude, solar constant, sunset hour angle and solar declination angle. The dataset was used for the estimation of K_{Rs} and model validation.
2. Estimation of K_{Rs}

The transmissivity coefficient (T_t) was estimated using the following equation:

$$T_t = K_{Rs} \times (1 + 2.7 \times 10^{-5} \times Alt)^{(T_{max} - T_{min})^{0.5}}. \quad (3)$$

The equation was modified by Annandale et al. (2002) to include a correction factor for altitude (Alt; m). By combining Equation (1) and (3), Rs is expressed as follows:

$$Rs = K_{Rs} [Ra (1 + 2.7 \times 10^{-5} \times Alt)^{(T_{max} - T_{min})^{0.5}}]. \quad (4)$$

Depending on the equation, K_{Rs} was obtained as a regression coefficient where $[Ra (1 + 2.7 \times 10^{-5} \times Alt)^{(T_{max} - T_{min})^{0.5}}]$ is an independent variable and Rs is a dependent variable with the intercept equal to 0 (as shown in Fig. 2).

The K_{Rs} value for each month and each prefecture was estimated. Differences in K_{Rs} between the periods of 1981 – 1985 and 2003 – 2007 as well as for each month were tested using two-way analysis of variance (ANOVA).

3. Model testing and assessment

To evaluate the effect of differences in K_{Rs} on R, we used two-way analysis of variance (ANOVA). The results for each location are shown in Table 1.

Table 1. Comparison of location-wise K_{Rs} variation for 1981 – 1985 and 2003 – 2007.

Location	Year	Obihiro	Sapporo	Morioka	Utsunomiya	Niigata	Matsumoto	Nagoya	Hikone	Hiroshima	Fukuoka
Latitude	42.92 N	43.06 N	39.70 N	36.55 N	37.91 N	36.25 N	35.17 N	35.28 N	34.40 N	33.58 N	
Longitude	143.21 E	141.33 E	141.17 E	139.87 E	139.05 E	137.97 E	136.97 E	136.24 E	132.46 E	130.38 E	
Altitude	38.4 m	17.2 m	155.2 m	119.4 m	1.9 m	610.0 m	51.1 m	87.3 m	3.6 m	2.5 m	
Distance from sea	45 km	14 km	69 km	67 km	2 km	81 km	19 km	46 km	6 km	2 km	
K_{Rs}	1981 – 1985	0.151	0.163	0.146	0.144	0.147	0.151	0.154	0.161	0.162	
	2003 – 2007	0.160	0.176	0.151	0.152	0.157	0.156	0.165	0.160	0.165	
	Whole	0.155	0.166	0.149	0.148	0.152	0.153	0.160	0.161	0.163	

ANOVA Period (P) < 0.01 < 0.01 < 0.05 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 | < 0.01 | < 0.05 | < 0.01 |
Math (M) < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 | < 0.01 | < 0.01 | < 0.01 |
P × M 0.71 0.55 0.47 < 0.01 0.26 0.52 0.74 0.31 0.29 0.20 |

Table 2. Comparison of location-wise daily range of temperature ($T_{max} - T_{min}$, ºC) and R (MJ m$^{-2}$ d$^{-1}$) variation for 1981 – 1985 and 2003 – 2007.

Location	Year	Obihiro	Sapporo	Morioka	Utsunomiya	Niigata	Matsumoto	Nagoya	Hikone	Hiroshima	Fukuoka
$T_{max} - T_{min}$	1981 – 1985	10.65	7.86	9.31	10.08	6.85	11.07	8.72	7.73	7.86	7.44
	2003 – 2007	10.45	7.50	8.86	9.59	7.03	11.21	8.73	7.56	8.50	7.25
	Whole	10.55	7.68	9.09	9.84	6.94	11.14	8.72	7.64	8.18	7.34
Period (P)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
ANOVA	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
P × M	0.52	0.65	0.77	< 0.01	0.02	0.13	0.02	0.14	0.86	0.61	
R	1981 – 1985	12.52	12.18	12.03	12.45	11.39	14.46	12.84	12.98	13.11	13.16
	2003 – 2007	13.17	12.52	12.27	12.89	12.24	15.09	13.83	12.97	13.88	13.71
	Whole	12.84	12.35	12.15	12.67	11.81	14.77	13.33	12.97	13.50	13.43
Period (P)	< 0.01	0.12	0.34	0.13	< 0.01	< 0.01	< 0.01	< 0.01	0.95	0.01	< 0.05
ANOVA	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
P × M	0.37	0.38	0.28	0.39	0.52	0.57	0.40	0.72	0.60	0.33	
prediction, we estimated daily \(R_s \) using Eq. 3 with \(K_{Rs} = 0.16 \) and compared with the observed \(R_s \). Bias and root-mean-square error (RMSE) were used as measures of the estimated \(R_s \) accuracy as follows:

\[
\text{bias} = \frac{\sum (\text{estimated} \ R_s - \text{measured} \ R_s)}{n}, \quad (5)
\]

\[
\text{RMSE} = \left(\frac{\sum (\text{estimated} \ R_s - \text{measured} \ R_s)^2}{n} \right)^{0.5}. \quad (6)
\]

Bias shows the over- or under-estimation, and RMSE shows the magnitude of error. Two-way ANOVA was also conducted to quantify the bias and RMSE.

Results

1. **Effect of locations, periods and seasons on \(K_{Rs} \)**

The \(K_{Rs} \) value varied from 0.148 (Utsunomiya) to 0.166 (Sapporo and Fukuoka) during the entire study period (1981 – 2007; Table 1). The values generally decreased with the distance from sea, except Niigata (Table 1 and Fig. 3). At almost all locations, except Hikone and Hiroshima, \(K_{Rs} \) significantly increased from the 1981 – 1985 period to the 2003 – 2007 period (note: the probability of period...
between the months of January and March followed by a steep decline between May and July (0.12 to 0.14) and a gradual increase from August to December (Fig. 4). However, Niigata showed an opposite pattern of KRs values, i.e., higher values in the middle of the year and lower values in the late and early months of the year. The KRs values for Hikone, Hiroshima and Fukuoka did not show a clear pattern for any given year. The pattern appeared similar in both time periods (1981 – 1985 and 2003 – 2007) because the period and month interactions for KRs values...
were not significant, except for Utsunomiya (Table 1).

2. Errors in R_s estimation with a constant K_{Rs} value

A constant value of K_{Rs} ($= 0.16$) produced bias in the R_s estimation in both periods in a pattern that was somewhat similar but inverse to the monthly variation pattern of K_{Rs} (Fig. 5). Bias for the entire period was the highest in November to March (Fig. 5). Bias for the entire period was the highest in November to March from April to July in comparison with the estimation from a seasonal variation, i.e., the model tended to overestimate the relation between measured and estimated R_s.

The relation between measured and estimated R_s (-0.35 MJ m$^{-2}$) and RMSE (MJ m$^{-2}$) for 1981 – 1985 and 2003 – 2007 periods. Solar radiation was estimated by setting $K_{Rs} = 0.16$.

$$T_{max} - T_{min}$$

Location	Year	Obihiro	Sapporo	Morioka	Utsunomiya	Niigata	Matsumoto	Nagoya	Hikone	Hiroshima	Fukuoka
1981 – 1985	3.79	3.91	4.20	3.95	4.26	4.03	4.06	4.33	3.90	4.77	
2003 – 2007	3.98	4.11	4.26	4.12	4.81	3.97	4.52	4.52	4.16	5.01	
Whole	**3.89**	**3.96**	**4.23**	**4.04**	**4.53**	**4.00**	**4.19**	**4.42**	**4.03**	**4.89**	

ANOVA

Period (P)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Month (M)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
P × M	0.61	0.14	0.04	0.17	0.15	0.79	0.51	0.69	0.35	0.27	

RMSE

Period (P)	< 0.05	< 0.01	0.54	0.18	< 0.01	0.59	< 0.05	0.09	< 0.05	< 0.05	
Month (M)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
P × M	0.21	0.94	0.17	0.33	< 0.01	0.64	0.57	0.13	< 0.01	< 0.01	

Discussion

Solar radiation (R_s) is one of the major determinant factors of crop production, but the observations have locational and historical limitations (WRDC, 2013). Accordingly, the estimation of R_s is quite important when the relation between weather and crop production is historically analyzed in a wide range of locations. Among many methods to estimate R_s, models based on sunshine hours are most reliable (Angstrom, 1924; Kondo et al., 1991). However, sunshine hours have the same problem as R_s in terms of data availability (Homma et al., 2007). This study focused on the estimation method based on temperature, which is historically collected in a large number of locations (JMA, 2013; NOAA, 2013).

The Hargreaves and Samani (1982) model has been tested and accepted as a reasonable method for estimating solar radiation by several previous studies (Ball et al., 2004; Fortin et al., 2008; Bandyopadhyay et al., 2008) for a wide range of locations. Some studies have modified the original model by adding one more coefficient (De Jong and Stewart, 1993; Hunt et al., 1998; Chen et al., 2004), which commonly produces better results but only for a specific location because the goals did not encompass the examination of diverse locations (Liu and Scott, 2001). In fact, Liu et al. (2009) showed that the original Hargreaves and Samani (1982) model (with or without the Annandale et al., 2002 modification) is still more accurate than the complex modified model for a wide range of locations. Although an alternate method, which estimates R_s based on temperature, has also been proposed (Bristow and Campbell, 1984 and modified by Weiss et al., 2001), Ball et al. (2004) concluded that the Hargreaves and Samani (1982) model with the Annandale et al. (2002) modifications is better than the Bristow and Campbell (1984) model modified by Weiss et al. (2001). We selected the model according to Ball et al. (2004).

To characterize the bias variability, we first calculated the
empirical constant (K_{Rs}) in the model. The recommended values by Annandale et al. (2002) for K_{Rs} are 0.16 for inland sites and 0.19 for coastal sites. Although the K_{Rs} estimated in this study also tended to decrease along with the distance from the sea (Fig. 3), the values seemed lower than the recommendation by Annandale et al. (2002). Further study might be necessary to determine the accurate value of K_{Rs} in the worldwide range. Other weather factors, such as humidity and precipitation, might be necessary to estimate K_{Rs} more accurately, (Thornton and Running, 1999). However, such modification requires other weather data and decreases the applicability of the model. In this study, we did not modify the model, and we set K_{Rs} to 0.16 to estimate R_s because K_{Rs} was approximately 0.16 and 0.16 was one of the recommended values by Annandale et al. (2002). The difference in K_{Rs} between the constant (0.16) and actual values produced bias. Accordingly, the average K_{Rs} ranged from 0.166 at Fukuoka to 0.148 at Utsunomiya, which corresponded to the average bias ranging from -0.35 MJ m$^{-2}$ at Fukuoka to 1.72 at Utsunomiya. K_{Rs} values showed a distinct seasonal pattern in most areas studied (Fig. 4) and the difference of the seasonal pattern against $K_{Rs} = 0.16$ created seasonal bias differences.
(Fig. 5). In this study, most locations tended to have a lower \(K_{\text{R}} \) and higher bias in the summer, but Niigata had a higher \(K_{\text{R}} \) and lower bias in the summer. The difference in monthly bias between the largest and smallest was largest at Obihiro (6.3 MJ m\(^{-2}\)) and smallest at Hikone (2.3 MJ m\(^{-2}\)). Abraha and Savage (2008) also reported that the Hargreaves and Samani (1985) model, which was taken from the Hargreaves and Samani (1982) model, tends to overestimate in the summer. Apart from the seasonal pattern, \(K_{\text{R}} \) also changed with the period (Fig. 4). Therefore, reproducing the results of this study suggested that the estimation of \(R_s \) from April to September (Fig. 5). The increase in RMSE was mainly due to increased RMSE negative, and RMSE tended to increase over the decades. The interaction between month and period was small overestimation area in the figure, which was one of the distributed from April to July than from August to March.

RMSE showed a more distinct seasonal pattern than bias (Fig. 5). The pattern showed the maximum around June and the minimum around December, which correspond with the extraterrestrial radiation \((R_s) \). Several studies have indicated that the global warming trend commonly decreases the daily range of temperature because the increase in daily minimum temperature is commonly larger than that of daily maximum temperature (Karl et al., 1991; Kawatsu et al., 2007). Urbanization also decreases the daily range of temperature (Suzuki et al., 2001). Although historical changes in solar radiation are not obvious (Pinkier et al., 2005; Wild et al., 2007), the decreasing trend in the daily range of temperature itself produces an increasing trend in \(K_{\text{R}} \). The interaction between month and period was small for \(K_{\text{R}} \), thereby suggesting that the seasonal pattern of \(K_{\text{R}} \) is location-specific and less affected by global warming.

The increase in RMSE was mainly due to increased RMSE from April to September (Fig. 5).

Although the Hargreaves and Samani (1982) model is widely used (e.g. Irmak et al., 2012; van Wart et al., 2013), the results of this study suggested that the estimation of \(R_s \) using the Hargreaves and Samani (1982) model has a considerable problem with bias when analyzing crop production, i.e., bias changes depending on the location, year and, especially, month. However, use of this model may be the best method in the present situation in which obtaining adequate and qualified data for \(R_s \) around the world is quite difficult, especially in developing countries (Thornton and Running, 1999; Homma et al., 2007; Liu et al., 2009). Accordingly, the difference in bias must be considered when the estimation of \(R_s \) by the model is applied to analyze crop productivity. For example, the maximum location-wise difference in bias was 2 MJ m\(^{-2}\) in this study corresponding to approximately 15% of \(R_s \). The maximum periodic difference was 1 MJ m\(^{-2}\) corresponding to 7%, and the maximum monthly difference was 6.5 MJ m\(^{-2}\) corresponding to 50%. These values may suggest that the method is not suitable to discuss seasonal changes in productivity. The relatively smaller periodic difference together with the smaller interaction between period and month for bias (Table 3) suggest that the evaluation of seasonal pattern of \(K_{\text{R}} \) in the present situation improved the estimation accuracy of \(R_s \) for the past decades.

References

Abraha, M.J. and Savage, M.J. 2008. Comparison of estimates of daily solar radiation from air temperature range for application in crop simulations. Agric. For. Meteorol., 148: 401-416.

Allen, R.G. 1997. Self-calibrating method for estimating solar radiation from air temperature. J. Hydrol. Eng., ASCE 2: 5647.

Angstrom, A. 1924. Solar and terrestrial radiation. Q. J. R. Met. Soc. 50: 121-125.

Annandale, J.G., Jovanovic, N.Z. and Benadé, N., Allen, R.G. 2002. Software for missing data error analysis of Penman–Monteith reference evapotranspiration. Irrig. Sci. 21: 57-67.

Ball, R.A., Purcell, L.C. and Carey, S.K. 2004. Evaluation of Solar radiation prediction models in North America. Agron. J. 96: 391-397.

Bandyopadhyay, A., Bhadra, A., Raghuvanshi, N.S. and Singh, R. 2008. Estimation of monthly solar radiation from measured air temperature extremes. Agric. Forest Meteorol., 148: 1707-1718.

Bristow, K.L. and Campbell, G.S. 1984. On the relationship between incoming solar radiation and daily maximum and minimum temperature. Agric. Forest Meteorol., 31: 159-166.

Chen, R.S., Ersi, K., Yang, J.P., Lu, S.H. and Zhao, W.Z. 2004. Validation of five global radiation models with measured daily data in China. Energy Convers. Manage., 45: 1759-1769.

De Jong, R. and Stewart, D.W. 1993. Estimating global solar radiation from common meteorological observations in western Canada. Can. J. Plant Sci. 73: 509-518.

Fortin, J.G., Ancil, F., Parent, L.É. and Bolinder, M.A. 2008. Comparison of empirical daily surface incoming solar radiation models. Agric. For. Meteorol., 148: 1332-1340.

Fletcher, A.L. and Moott, D.J. 2007. Estimating daily solar radiation in New Zealand using air temperatures. N.Z. J. Crop Horticultural Sci. 35: 147-157.

GHCN (Global Historical Climatology Network). 2013. Climate Data Online [Online]. Available at http://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/global-historical-climatology-network-ghcn.

Hargreaves, G.H. and Samani, Z.A. 1982. Estimating potential evapotranspiration. J. Irrig. Drain. Eng., ASCE 108: 225-230.

Hargreaves, G.L., Hargreaves, G.H. and Riley, J.P. 1985. Irrigation water requirement for Senegal river basin. J. Irrig. Drain. Eng., ASAE 111: 265-275.

Homma, K., Horie, T. and Shiraiwa, T. 2007. Usefulness of the world surface data arranged by Japan Meteorological Agency. Irri. J. Crop
Hossain et al. — Decadal and Monthly Change in the Relation between Solar Radiation and the Daily Range of Temperature

Sci. 76: 464-467.

Hunt, L.A., Kucharb, L. and Swanton, C.J. 1998. Estimation of solar radiation for use in crop modeling. Agric. For. Meteorol. 91: 293-300.

Irmak, S., Kabenge, I., Skaggs, K.E. and Mutuibwa, D. 2012. Trend and magnitude of changes in climate variables and reference evapotranspiration over 116-yr period in the Platte River Basin, central Nebraska-USA. J. Hydro. 420-421: 228-244.

JMA (Japan Meteorological Agency). 2012. Weather Observations [Online]. Available at http://www.data.jma.go.jp/obd/stats/etrn/index.php.

JMA (Japan Meteorological Agency). 2013. World Surface Data [CD-ROM]. Tokyo.

Karl, T.R., Kukla, G., Razuvayev, V.N., Changery, M.J., Qusyle, R.G., Heim Jr., R.R., Easterling, D.R. and Fu, C.B. 1991. Global warming: evidence for asymmetric diurnal temperature change. Geophys. Res. Lett. 18: 2253-2256.

Kawatsu, S., Homme, K., Horie, T. and Shiraiwa, T. 2007. Change of weather condition and its effect on rice production during the past 40 years in Japan. Jpn. J. Crop Sci. 76: 423-432.

Kuwagata, T., Yoshimoto, M., Ishigaoka, Y., Hasegawa, T., Utsumi, M., Nishimori, M., Masaki, Y. and Saito, O. 2011. MeteoCrop DB: an agro-meteorological database coupled with crop models for studying climate change impacts on rice in Japan. J. Agric. Meteorol. 67: 297-306.

Liu, X., Mei X., Li Y., Wang A., Jensen J.R., Zhang Y. and Porter J.R. 2009. Evaluation of temperature-based global solar radiation models in China. Agric. For. Meteorol. 149: 1433-1436.

Meza, F. and Varas, E. 2000. Estimation of mean monthly solar radiation as a function of temperature. Agric. For. Meteorol. 100: 231-241.

NOAA (National Oceanic and Atmospheric Administration). 2013. National Climatic Data Center [Online]. Available at http://www.ncdc.noaa.gov/.

Peel, M.C., Finlayson, B.L. and McMahon, T.A. (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 11: 1633-1644.

Pinker, R.T., Zhang, B. and Dutton, E.G. 2005. Do satellites detect trends in surface solar radiation? Science 308: 850-854.

Suzuki, T., Genchi, Y., Iizuka, Y. and Komiyama, H. 2001. Extracting diurnal temperature changing patterns of Tokyo in mid-summer. Grasping heat island phenomena by means of statistical methods. J. Appl. Meteor. 31: 1146-1164.

Thornton, P.E. and Running S.W. 1999. An improved algorithm for estimating incident daily solar radiation from measurements of temperature, humidity, and precipitation. Agric. For. Meteorol. 93: 211-228.

van Wart, J., Kersebaum, K.C., Peng, S., Milner, M. and Cassman, K.G. 2013. Estimating crop yield potential at regional to national scales. Field Crops Res. 143: 34-43.

Weiss, A., Hays, C.J., Hu, Q. and Easterling, W.E. 2001. Incorporating bias error in calculating solar irradiance: Implications for crop yield simulations. Agron. J. 93: 1321-1326.

Wild, M., Ohmura, A. and Makowski, K. 2007. Impact of global dimming and brightening on global warming. Geophysic. Res. Lett. 34: L04702, doi: 10.1029/2006GL028031.

WRDC (World Radiation Data Center). 2013. WRDC Online Archive [Online]. Available at http://wrde-mgo.nrel.gov/.

* In Japanese with English abstract.

** In Japanese.