Dirichlet forms for singular diffusion in higher dimensions

Uta Freiberg and Christian Seifert*

July 17, 2014

Abstract

We describe singular diffusion in bounded subsets Ω of \(\mathbb{R}^n \) by form methods and characterize the associated operator. We also prove positivity and contractivity of the corresponding semigroup. This results in a description of a stochastic process moving according to classical diffusion in one part of \(\Omega \), where jumps are allowed through the rest of \(\Omega \).

Keywords: singular diffusion, Dirichlet forms, submarkovian semigroups, jump-diffusion process

MSC 2010: 47D06, 47A07, 35Hxx, 35J70, 60J45

1 Introduction

The aim of this paper is to present a treatment of multi-dimensional “singular” diffusion in the framework of Dirichlet forms. Singular diffusion (sometimes called gap-diffusion) in one dimension goes back at least to Feller [5] and has a long history, see e.g. [13] and references therein.

To describe singular diffusion, we consider a suitable measure \(\mu \) on an open and bounded subset \(\Omega \subseteq \mathbb{R}^n \), and let particles move in \(\Omega \) according to “Brownian motion”, where the particles may only be located in the support \(\text{spt} \mu \) of \(\mu \). Furthermore, the particles are accelerated or slowed down by the “speed measure” \(\mu \). If \(\mu \) is supported only on a proper subset of \(\Omega \), in terms of

*corresponding author
the stochastic process describing the motion of a particle this yields a time
changed process (on spt \(\mu \)), see \([9, \text{Section 6.2}]\). In terms of the Dirichlet
form we may also see that as a trace of the corresponding Dirichlet space \([9, \text{Section 6.2}]\).

We want to treat the evolution by constructing the corresponding Dirich-
let form. Since the particles moving according to Brownian motion are only
located in spt \(\mu \), we will interpret the classical Dirichlet form in \(L_2(\Omega, \mu) \).
There is an abstract generating theorem to find generators associated to
forms defined in different spaces in \([2]\); however, our approach is different
in that we consider the form itself in the Hilbert space \(L_2(\Omega, \mu) \) (where the
generator should act in). We will characterize the generating self-adjoint
operator, and show that the corresponding \(C_0 \)-semigroup is submarkovian.
The associated process is a jump-diffusion process, with a diffusion part on
spt \(\mu \) and jumps through \(\Omega \setminus \text{spt} \mu \).

Such singular diffusions in one dimension and the form approach were
described in \([18, 7, 8, 17, 16]\), see also e.g. \([15]\) for form methods. As it turns
out in one dimension, functions in the domain of the form (and hence also
the operator) have to be affine on the complement of spt \(\mu \). Since in one
dimension affine functions are exactly the harmonic functions, this will be
the right condition occurring in higher dimensions.

In higher dimensions there are only few results in the literature, see
\([14, 11, 16]\), focussing on the construction of the operator (however under
somewhat different assumptions; we will work with capacities).

In Section 2 we describe the setup and interpret the classical Dirichlet
form in \(L_2(\Omega, \mu) \). The generator is characterized in Section 3 where also
properties of the associated semigroup are proven. In Section 4 we apply our
result to two different situations. First we consider singular diffusion sup-
ported on a subset of codimension 1. Then we apply our results to diffusion
on a fractal domain (we choose the Koch’s snowflake here).

2 Dirichlet forms for singular diffusion

Let \(K \in \{ \mathbb{R}, \mathbb{C} \} \) denote the field of scalars. We write \(\lambda^n \) for the \(n \)-dimensional
Lebesgue measure on \(\mathbb{R}^n \).

Let \(\Omega \subseteq \mathbb{R}^n \) be open and bounded. We define the classical Dirichlet form
\(\tau_0 \) on \(\Omega \) by

\[
D(\tau_0) := W_{2,0}^1(\Omega),
\]

\[
\tau_0(u,v) := \int_{\Omega} \text{grad } u \cdot \text{grad } v \quad (u,v \in D(\tau_0)).
\]

The corresponding form norm \(\|\cdot\|_{\tau_0} := \tau_0(\cdot,\cdot) + \|\cdot\|_{L^2(\Omega,\lambda^n)}^2 \) is just the usual \(W_{1,2} \)-norm on \(\Omega \), where \(\tau_0(u) := \tau_0(u,u) \).

We will provide some notions from potential theory, which will be needed in the following. For an open subset \(V \subseteq \Omega \) we define

\[
\text{cap}(V) := \inf\{\|u\|_{\tau_0}^2; u \in D(\tau_0), u \geq 1 \lambda^n\text{-a.e. on } V\}.
\]

For arbitrary \(A \subseteq \Omega \) we set

\[
\text{cap}(A) := \inf\{\text{cap}(V); V \subseteq \Omega \text{ open}, A \subseteq V\}.
\]

Then \(\text{cap}(A) \) is called the capacity of \(A \). We say that a property holds true quasi everywhere (q.e.) if there exists \(N \subseteq \Omega \) of zero capacity such that the property is satisfied on \(\Omega \setminus N \).

Let \((F_k)_{k \in \mathbb{N}} \) be a sequence of closed subsets of \(\Omega \) satisfying \(F_k \subseteq F_{k+1} \) for all \(k \in \mathbb{N} \). Then \((F_k) \) is called a nest if \(\text{cap}(\Omega \setminus F_k) \to 0 \). If \((F_k) \) is a nest then we set

\[
C((F_k)) := \{u: \Omega \to \mathbb{K}; u|_{F_k} \in C(F_k) \quad (k \in \mathbb{N})\}.
\]

A function \(u: \Omega \to \mathbb{K} \) is said to be quasi-continuous if there exists a nest \((F_k) \) such that \(u \in C((F_k)) \). Note that this is equivalent to saying that for any \(\varepsilon > 0 \) there exists an open subset \(U \subseteq \Omega \) such that \(\text{cap}(U) < \varepsilon \) and \(u|_{\Omega \setminus U} \in C(\Omega \setminus U) \).

Proposition 2.1 (see [9, Theorem 2.1.3]). Every \(u \in D(\tau_0) \) admits a q.e. uniquely defined quasi-continuous representative \(\tilde{u} \).

We set (writing \(\mathcal{B}(\Omega) \) for the Borel subsets of \(\Omega \))

\[
M_0(\Omega) := \{\mu: \mathcal{B}(\Omega) \to [0,\infty]; \mu \sigma\text{-additive}, \mu(N) = 0 \text{ for any Borel set } N \subseteq \Omega \text{ of zero capacity}\}.
\]

It is easy to see that \(\mu \in M_0(\Omega) \) if \(\mu \) is absolutely continuous with respect to the Lebesgue measure \(\lambda^n(\cdot \cap \Omega) \) on \(\Omega \). As shown in [3, Theorem 4.1],
also the \((n - 1)\)-dimensional Hausdorff measure on \((n - 1)\)-dimensional \(C^1\)-submanifolds of \(\Omega\) belongs to \(M_0(\Omega)\).

Let \(\mu \in M_0(\Omega)\) be a finite measure and \(U := \Omega \setminus \text{spt } \mu\). The measure \(\mu\) may be considered as a “speed measure”. Furthermore, we may assume

\[
W^1_{2,0}(U) = \{u \in W^1_{2,0}(\Omega) ; \tilde{u} = 0 \mu\text{-a.e.}\},
\]

where \(\tilde{u}\) is a quasi-continuous representative of \(u\). Note that “\(\subseteq\)” is trivial; however, “\(\supseteq\)” does not hold in general, as the following example due to Jürgen Voigt [19] shows.

Example 2.2. We start with a claim: Let \(n \geq 2\), \(\varepsilon > 0\) and \(r_0 > 0\). Then there exist \(0 < r < r' \leq r_0\) and \(\varphi \in C^1_c(\mathbb{R}^n)\) such that \(\text{spt } \varphi \subseteq B(0, r')\), \(1_{B[0,r]} \leq \varphi \leq 1\) and \(\|\varphi\|_{2,1} \leq \varepsilon\). Here \(B(y, \rho)\) and \(B[y, \rho]\) denote the open and closed balls around \(y\) with radius \(\rho\), respectively.

Let \(B_+ := \{x \in B(0,1); x_1 > 0\}\). Using the claim there exist \((x^k)\) in \(B_+\), \((r_k)\) and \((r'_k)\) in \((0, \infty)\) satisfying \(r_k < r'_k\) for all \(k \in \mathbb{N}\) and \((\varphi_k)\) in \(C^1_c(\mathbb{R}^n)\) such that \(\text{spt } \varphi_k \subseteq B(x^k, r'_k)\), \(1_{B[x^k, r_k]} \leq \varphi_k \leq 1\) such that

- the set of accumulation points of \((x^k)\) is exactly \(\{x \in B(0,1); x_1 = 0\}\),
- \(B(x^k, r'_k) \cap B(x^j, r'_j) = \emptyset\) for all \(k, j \in \mathbb{N}\), \(k \neq j\),
- \(\sum_{k=1}^{\infty} \|\varphi_k\|_{2,1} < \infty\).

Let \(K := \bigcup_{k \in \mathbb{N}} B[x^k, r'_k]\); \(\Omega \supseteq K\) be open and bounded and \(\mu\) the Lebesgue measure on \(K\). Let \(\varphi := \sum_{k \in \mathbb{N}} \varphi_k\) and \(\psi \in C^1_c(\mathbb{R}^n)\) such that \(\psi = 1\) in a neighborhood of \(K\). Then \(\psi - \varphi\) is quasi-continuous and \(\psi - \varphi = 1\) on \(\{x \in B(0,1); x_1 = 0\}\), a set with positive capacity. On the other hand, \(\psi - \varphi = 0\) \(\mu\text{-a.e.},\) since \(\psi - \varphi = 0\) on \(\bigcup_{k \in \mathbb{N}} B[x^k, r_k]\) and the set

\[
K \setminus \bigcup_{k \in \mathbb{N}} B[x^k, r_k] = \{x \in B(0,1); x_1 = 0\}
\]

has \(\mu\)-measure zero. Hence, \(\psi - \varphi \notin \{u \in W^1_{2,0}(\Omega) ; \tilde{u} = 0 \mu\text{-a.e.}\}\), but

\[
\psi - \varphi \notin \{u \in W^1_{2,0}(\Omega) ; \tilde{u} = 0 \text{ q.e. on } K\}.
\]

By [10] Theorem 1.13 we observe

\[
\{u \in W^1_{2,0}(\Omega) ; \tilde{u} = 0 \text{ q.e. on } K\} = W^1_{2,0}(\Omega \setminus K).
\]

Thus, \(\psi - \varphi \notin W^1_{2,0}(\Omega \setminus K)\).
Remark 2.3. In fact, we do not need condition (I). The subspace of $W_{2,0}^1(\Omega)$ we could work with is $\{ u \in W_{2,0}^1(\Omega); \tilde{u} = 0 \mu\text{-a.e.} \}^\perp$. As the following proposition shows, in case (I) is satisfied this subspace is exactly the space of $W_{2,0}^1(\Omega)$-functions, which are harmonic on $\Omega \setminus \text{spt } \mu$.

Proposition 2.4. Let $\Omega \subseteq \mathbb{R}^n$ be open and bounded, $U \subseteq \Omega$ open. Then $W_{2,0}^1(\Omega) = W_{2,0}^1(U) \oplus D_{2,0}^1(U)$, where

$$D_{2,0}^1(U) := \{ u \in W_{2,0}^1(\Omega); \Delta(u|_U) = 0 \}.$$

Proof. Let $u \in W_{2,0}^1(\Omega)$. We show that there exists a unique $v \in W_{2,0}^1(U)$ such that

$$0 = \int_U u\Delta \varphi - \int v\Delta \varphi \quad (\varphi \in C^\infty_c(U)).$$

Then $Ju := u - v \in D_{2,0}^1(U)$ and this implies the assertion.

By Poincaré’s inequality we observe that

$$(f,g) \mapsto (f|_U g)_0 := \int_U \text{grad } f \cdot \overline{\text{grad } g}$$

defines an inner product on $W_{2,0}^1(U)$ such that this space becomes a Hilbert space.

Since

$$\left| \int_U u\Delta \varphi \right| = \left| \int_U \text{grad } u \cdot \text{grad } \varphi \right| \leq ||\text{grad } u||_{L^2(\Omega)} ||\varphi||_0 \quad (\varphi \in C^\infty_c(U)),$$

the mapping $\varphi \mapsto - \int_U u\Delta \varphi$ is a continuous linear functional on $W_{2,0}^1(U)$. By Riesz’ representation theorem there exists a unique $v \in W_{2,0}^1(U)$ such that

$$(\varphi | \tau)_0 = - \int_U u\Delta \varphi \quad (\varphi \in C^\infty_c(U)).$$

Let $J: W_{2,0}^1(\Omega) \to D_{2,0}^1(U)$ be the orthogonal projection. Then $\tilde{J}u = \tilde{u}$ μ-a.e.

Let $D := \{ u \in L^2(\Omega, \mu); \exists v \in W_{2,0}^1(\Omega) : \tilde{v} = u \mu\text{-a.e.} \}$. Then $\iota: D \to D_{2,0}^1(U)$, $\iota(u) := Ju$ is a well-defined linear mapping.

Define

$$D(\tau_D) := D,$$

$$\tau_D(u,v) := \int_{\Omega} \text{grad } \iota(u)(x) \cdot \overline{\text{grad } \iota(v)(x)} \, dx = \tau_0(\iota(u), \iota(v)) \quad (u,v \in D(\tau_D)).$$
Theorem 2.5. \(\tau_D \) is densely defined, symmetric, nonnegative and closed. Furthermore, \(C^\infty_c(\Omega) \) is a core for \(\tau_D \).

Proof. \(\tau_D \) is densely defined since \(C^\infty_c(\Omega) \subseteq D(\tau_D) \) is dense in \(L_2(\Omega, \mu) \). Symmetry and non-negativity is clear by definition. To show closedness, let \((u_n) \) in \(D(\tau_D) \) be a \(\tau_D \)-Cauchy sequence, i.e. \(\tau_D(u_n - u_m) \to 0 \), and \(u_n \to u \) in \(L_2(\Omega, \mu) \). By Poincaré’s inequality there exists \(v \in W^{1}_2(\Omega) \) such that \(\iota(u_n) \rightarrow v \) in \(W^{1}_2(\Omega) \). For \(\varphi \in C^\infty_c(\Omega) \) we compute

\[
0 = \int_u \iota(u_n) \Delta \varphi \rightarrow \int_U v \Delta \varphi,
\]

i.e. \(v \in D^{1}_{2,0}(U) \).

There exists a subsequence \((u_{n_k}) \) such that \(\iota(u_{n_k}) \rightarrow \tilde{v} \) q.e., and hence also \(\mu \)-a.e. Since \(\iota(u_n) = u_n \mu \)-a.e. we observe \(\tilde{v} = u \mu \)-a.e. Hence, \(u \in D(\tau_D) \) and

\[
\tau_D(u_n - u) = \tau_0(\iota(u_n) - v) \to 0.
\]

Let us now show that \(C^\infty_c(\Omega) \) is a core for \(\tau_D \). It suffices to approximate \(0 \leq u \in D(\tau_D) \). First, assume that \(u \in L_\infty(\mu) \). Then there exists a sequence \((\varphi_l) \) in \(C^\infty_c(\Omega) \) such that \(\varphi_l \rightarrow \iota(u) \) in \(W^{1}_{2,0}(\Omega) \), \(\varphi_l \rightarrow \iota(u) \) q.e. and \(M := \sup \{ \| \varphi_l \|_{\infty, \text{spt} \mu}; \ l \in \mathbb{N} \} < \infty \). Since \(\mu \in M_0(\Omega) \) we also have \(\varphi_l \rightarrow \iota(u) \) \(\mu \)-a.e., and since \(\iota(u) = u \mu \)-a.e. also \(\varphi_l \rightarrow u \mu \)-a.e. Since \(|\varphi_l| \leq M \chi_{\Omega} \in L_2(\mu) \) Lebesgue’s dominated convergence theorem yields \(\varphi_l \rightarrow u \) in \(L_2(\mu) \), and therefore \(\varphi_l \rightarrow u \) in \(D_{\tau_D} := (D(\tau_D), \| \cdot \|_{\tau_D}) \).

For general \(0 \leq u \in D(\tau_D) \) there exists \(0 \leq v \in W^{1}_{2,0}(\Omega) \) such that \(\tilde{v} = u \) \(\mu \)-a.e. Then, for \(k \in \mathbb{N} \), we have \(u_k := u \wedge k \in D(\tau_D) \), where \(f \wedge g := \min \{ f, g \} \) denotes the minimum, since \(v \wedge k \in W^{1}_{2,0}(\Omega) \) and \(v \wedge k = \tilde{v} \wedge k = u_k \) \(\mu \)-a.e. Hence, for \(k \in \mathbb{N} \) there exists \((\varphi^k_{l})_l \) in \(C^\infty_c(\Omega) \) such that \(\varphi^k_{l} \rightarrow \iota(u_k) \) in \(W^{1}_{2,0}(\Omega) \) and \(\varphi^k_{l} \rightarrow u_k \) in \(L_2(\mu) \). Since \(u_k \rightarrow u \) in \(L_2(\mu) \) and \(v \wedge k \rightarrow v \) in \(W^{1}_{2,0}(\Omega) \) we also have \(\iota(u_k) = J(v \wedge k) \rightarrow Jv = \iota(u) \) in \(W^{1}_{2,0}(\Omega) \). Hence, \(u_k \rightarrow u \) in \(D_{\tau_D} \).

Thus, a suitable subsequence of \((\varphi^k_{l})_l \) converges to \(u \) in \(D_{\tau_D} \).

\[\square \]

3 Characterization of the operator

Let \(H \) be the self-adjoint operator in \(L_2(\Omega, \mu) \) associated with \(\tau_D \), where \(\Omega \) and \(\mu \) are as in the previous section.
Definition. Let $F \in L_{1,\text{loc}}(\Omega; \mathbb{K}^n)$, $g \in L_1(\Omega, \mu)$. Then g is called *distributional divergence* of F with respect to μ, denoted by $\text{div}_\mu F = g$, if
\[
\int_\Omega F(x) \nabla \varphi(x) \, dx = -\int_\Omega g(x) \varphi(x) \, d\mu(x) \quad (\varphi \in C_c^\infty(\Omega)).
\]

Theorem 3.1. We have
\[
D(H) = \{ u \in D(\tau_D); \text{div}_\mu \nabla \iota(u) \in L_2(\Omega, \mu) \},
\]
\[
Hu = -\text{div}_\mu \nabla \iota(u) \quad (u \in D(H)).
\]

Proof. First note that for $u \in D(\tau_D)$ and $\varphi \in C_c^\infty(\Omega)$ we have
\[
\tau_0(\iota(u), \varphi) = \int_\Omega \nabla \iota(u) \cdot \overline{\nabla \varphi} = \int_\Omega \nabla \iota(u) \cdot \overline{\nabla \iota(\varphi)} = \tau_D(u, \varphi).
\]
Indeed, since $\iota(\varphi) = J\varphi$ and $\varphi - J\varphi \in W_{2,0}^1(U)$, we obtain
\[
\int_\Omega \nabla \iota(u) \cdot \overline{\nabla(\varphi - J\varphi)} = 0.
\]
Let H_1 be the operator defined by the right-hand side in the theorem. Let $u \in D(H_1)$ and $\varphi \in C_c^\infty(\Omega)$. Then by the above we have
\[
\tau_D(u, \varphi) = \int_\Omega \nabla \iota(u) \cdot \overline{\nabla \varphi} = -\int_\Omega \text{div}_\mu \nabla \iota(u) \varphi \, d\mu = (H_1u | \varphi).
\]
By continuity we obtain
\[
(H_1u | v) = \tau_D(u, v) \quad (v \in D(\tau_D)).
\]
Thus, $u \in D(H)$ and $Hu = H_1u$.

To show the converse inclusion let $u \in D(H) \subseteq D(\tau_D)$ and $\varphi \in C_c^\infty(\Omega)$. Then
\[
\int_\Omega \nabla \iota(u) \cdot \overline{\nabla \varphi} = \int_\Omega \nabla \iota(u) \cdot \overline{\nabla \iota(\varphi)} = \tau_D(u, \varphi) = (Hu | \varphi)
\]
\[
= \int_\Omega Hu \overline{\varphi} \, d\mu.
\]
Hence, $\text{div}_\mu \nabla \iota(u)$ exists and $\text{div}_\mu \nabla \iota(u) = -Hu \in L_2(\Omega, \mu)$. Thus, $u \in D(H_1)$ and $H_1u = Hu$. \qed
Remark 3.2. The operator H is the multidimensional analogue of the operator $-\partial_\mu \partial_\nu$ with Dirichlet boundary conditions, see [12, 16, 17] and also [7, 8].

We now focus on properties of the semigroup $(e^{-tH})_{t \geq 0}$. A C_0-semigroup $T: [0, \infty) \to L(L_2(\mu))$ of bounded linear operators in $L_2(\mu)$ is called positive, if $T(t)f \geq 0$ for all $0 \leq f \in L_2(\mu)$, $t \geq 0$. The semigroup is called submarkovian, if it is positive and L_∞-contractive, i.e., $f \in L_2(\mu)$, $0 \leq f \leq 1$ implies $0 \leq T(t)f \leq 1$ for all $t \geq 0$.

Theorem 3.3. The C_0-semigroup $(e^{-tH})_{t \geq 0}$ is submarkovian.

Proof. We have to check the Beurling-Deny criteria for the corresponding Dirichlet form τ_D. Note that it suffices to check it with C_∞-normal contractions. Let F be a C_∞-normal contraction and $u \in C_0^\infty(\Omega)$. Then $F \circ u \in C_\infty(\Omega) \subseteq D(\tau_D)$.

We show that $J(F \circ u) = J(F \circJu)$. Indeed, since $\tilde{F} \circ u = F \circ u = F \circ Ju = F \circ Ju \ \mu$-a.e. we obtain $F \circ u - F \circ (Ju) \in W_{2,0}^1(\Omega)$. Thus,

$$0 = J(F \circ u - F \circ (Ju)) = J(F \circ u) - J(F \circ (Ju)).$$

We now compute

$$\tau_D(F \circ u) = \tau_0(\nu(F \circ u)) = \tau_0(J(F \circ u)) = \tau_0(J(F \circ (Ju)))$$

$$\leq \tau_0(F \circ (Ju)) \leq \tau_0(Ju) = \tau_0(\nu(u)) = \tau_D(u).$$

Remark 3.4. In [9, Section 6.2] the traces of Dirichlet forms and associated processes were considered. Our result characterizes the corresponding generating operator H in case of (suitably scaled) Brownian motion on a bounded domain $spt\mu$, where μ is the corresponding volume measure (i.e. Lebesgue measure). The process may jump through $\Omega \setminus spt\mu$, however (due to the Dirichlet boundary condition at $\partial\Omega$) gets killed on $\partial\Omega$.

4 Applications

We will now show two applications. Note that by Remark 2.3 in fact we only need to prove $\mu \in M_0(\Omega)$. However, we will also show “⊇” in (1) (so that equality in (1) holds).
Note that for an open subset \(V \subseteq \mathbb{R}^n \) we have
\[
W_{2,0}^1(V) = \{ u|_V; \ u \in W_2^1(\mathbb{R}^n), \ \tilde{u} = 0 \text{ q.e. on } \partial V \},
\]
see e.g. [6, Theorem 2.5] and [4, Theorem 4.2].

Example 4.1. Let \(n \geq 2, \Omega := (-1, 1)^n \subseteq \mathbb{R}^n, \Gamma := \Omega \cap (\mathbb{R}^{n-1} \times \{0\}) \) and \(\mu := \lambda^{n-1}(\cdot \cap \Gamma) \) be the \((n-1)\)-dimensional Lebesgue measure on \(\Gamma \). Then \(\mu \in M_0(\Omega) \) by [3, Theorem 4.1]. We will show the equality in (1). Write \(\Omega_+ := \Omega \cap (\mathbb{R}^{n-1} \times (0, \infty)) \) and \(\Omega_- := \Omega \cap (\mathbb{R}^{n-1} \times (-\infty, 0)) \).

![Figure 1: The hypercube \(\Omega \), divided into two parts \(\Omega_+ \) and \(\Omega_- \) by the hyperplane \(\Gamma \).](image)

Let \(u \in W_{2,0}^1(\Omega), \ \tilde{u} = 0 \) \(\mu \)-a.e. There exists \((\varphi^k) \in C_c^\infty(\Omega) \) such that \(\varphi^k \to u \) in \(W_2^1(\Omega) \) and \(\varphi^k \to \tilde{u} \) q.e. Thus, also \(\varphi^k(\cdot, 0) \to \tilde{u}(\cdot, 0) = 0 \) \(\lambda^{n-1} \)-a.e.

For \(v \in L_2(\Omega) \) let
\[
Ev(x) := \begin{cases} v(x) & x \in \Omega, \\ 0 & \mathbb{R}^n \setminus \Omega \end{cases}
\]
be the extension of \(v \) by zero, and \(v_+ := (Ev)|_{\mathbb{R}^{n-1} \times (0, \infty)} \).

We obtain \(\varphi^k_+ \to u_+ \) in \(W_2^1(\mathbb{R}^{n-1} \times (0, \infty)) \). By [11, Theorem 5.36] there exists a bounded linear trace operator \(\text{tr}: W_2^1(\mathbb{R}^{n-1} \times (0, \infty)) \to L_2(\mathbb{R}^{n-1}) \). Hence, \(\text{tr} \varphi^k_+ \to \text{tr} u_+ \) in \(L_2(\mathbb{R}^{n-1}) \). Since also \(\text{tr} \varphi^k_+ = \varphi^k(\cdot, 0) \to \tilde{u}_+(\cdot, 0) = 0 \) \(\lambda^{n-1} \)-a.e. we obtain \(\text{tr} u_+ = 0 \). By [11, Theorem 5.37] we obtain \(u_+ \in W_{2,0}^1(\mathbb{R}^{n-1} \times (0, \infty)) \). Two applications of [11, Theorem 5.29] finally yield \(u|_{\Omega_+} \in W_{2,0}^1(\Omega_+) \). Analogously, \(u|_{\Omega_-} \in W_{2,0}^1(\Omega_-) \), and hence \(u \in W_{2,0}^1(\Omega) \).

Thus the corresponding stochastic process describes a particle diffusing in the hyperplane and jumping through \(\Omega \).

Example 4.2. Let \(D \) be the filled (open) Koch’s snowflake centered at the origin and \(\Omega \subseteq \mathbb{R}^2 \) be a large open square centered at the origin such that \(\overline{D} \subseteq \Omega \). Let \(\mu := \lambda^2(\cdot \cap D) \) be the Lebesgue measure on \(D \).
Figure 2: The square Ω and the snowflake D.

Then $\mu \in M_0(\Omega)$. We show equality in (11). Let $u \in W^1_{2,0}(\Omega)$, $\tilde{u} = 0 \mu$-a.e. By [11, Theorem 5.29] the extension of u by zero yields $u \in W^1_2(\mathbb{R}^2)$. By [6, Theorem 2.5] we observe $\tilde{u} = 0$ q.e. on $\partial \Omega$.

Since $u|_D = 0 \lambda^2$-a.e., we have $\text{tr}(u|_D) = 0 \mathcal{H}^d$-a.e. on the boundary of D by [20, Theorem 2], where \mathcal{H}^d is the d-dimensional Hausdorff measure with $d = \frac{\log 4}{\log 3}$. By [4, Corollary 4.5] we thus obtain $\tilde{u} = 0$ q.e. on ∂D.

Hence, for $U := \Omega \setminus D$ we obtain $\tilde{u} = 0$ q.e. on ∂U, which by [6, Theorem 2.5] yields $u \in W^1_{2,0}(U)$.

We can thus describe jump-diffusion, where the diffusion takes part on the snowflake D and jumps may occur along its boundary ∂D.

Acknowledgement

C.S. warmly thanks Jürgen Voigt and Hendrik Vogt who led him to the topic.

References

[1] R.A. Adams and J.J.F. Fournier: Sobolev Spaces. 2nd edition. Academic Press, Oxford, 2003.

[2] W. Arendt and A.F.M. ter Elst, Sectorial forms and degenerate differential operators. J. Operator Theory 67(1), 33–72 (2012).

[3] J.F. Brasche, P. Exner, Y.A. Kuperin and P. Šeba, Schrödinger Operators with singular interactions. J. Math. Anal. Appl. 184(1), 112–139 (1994).
[4] K. Brewster, D. Mitrea, I. Mitrea and M. Mitrea, Extending Sobolev Functions with partially vanishing traces from locally \((\varepsilon, \delta)\)-domains and applications to mixed boundary problems. J. Funct. Anal. 266(7), 4314–4421 (2014). arXiv-preprint: 1208.4177v1.

[5] W. Feller, The general diffusion operator and positivity preserving semi-groups in one dimension, Ann. Math. 60, 417–436 (1954).

[6] J. Frehse, Capacity methods in the theory of partial differential equations. Jber. d. Dt. Math.-Verein 84, 1–44 (1982).

[7] U. Freiberg, Analytic properties of measure geometric Krein-Feller operators on the real line. Math. Nach. 260, 34–47 (2003).

[8] U. Freiberg, Dirichlet forms on fractal subsets of the real line. Real Analysis Exchange 30(2), 589–604 (2004/2005).

[9] M. Fukushima, Y. Oshima and M. Takeda, Dirichlet Forms and Symmetric Markov Processes. Walter de Gruyter, Berlin, New York, 1994.

[10] L.I. Hedberg, Spectral synthesis and stability in Sobolev spaces. In: Euclidean Harmonic Analysis. Proceedings Maryland, J. J. Benedetto (ed.), Lect. Notes in Math. 779, 73–103 (1980).

[11] J. Hu, K.-S. Lau and S.-M. Ngai, Laplace operators related to self-similar measures on \(\mathbb{R}^d\). J. Funct. Anal. 239, 542–565 (2006).

[12] U. Kant, T. Klauß, J. Voigt and M. Weber, Dirichlet forms for singular one-dimensional operators and on graphs. J. Evol. Equ. 9, 637–659 (2009).

[13] H. Langer and W. Schenk, Generalized second-order differential operators, corresponding gap diffusions and superharmonic transformations. Math. Nachr. 148, 7–45 (1990).

[14] K. Naimark and M. Solomyak, The eigenvalue behaviour for the boundary value problems related to self-similar measures on \(\mathbb{R}^d\). Math. Res. Lett. 2(3), 279–298 (1995).

[15] E.M. Ouhabaz, Analysis of Heat Equations on Domains. Princeton Univ. Press, Princeton, NJ, 2005.
[16] C. Seifert, *Behandlung singulärer Diffusion mit Hilfe von Dirichletformen*. Diploma thesis, TU Dresden (2009).

[17] C. Seifert and J. Voigt, *Dirichlet forms for singular diffusion on graphs*. Oper. Matrices 5(4), 723–734 (2011).

[18] M. Solomyak and E. Verbitsky, *On a spectral problem related to self-similar measures*. Bull. London Math. Soc. 27, 242–248 (1995).

[19] J. Voigt, private communication.

[20] H. Wallin, *The trace to the boundary of Sobolev spaces on a snowflake*. Manuscripta Math. 73(2), 117–125 (1991).

Uta Renata Freiberg
Universität Stuttgart
Fachbereich Mathematik
Institut für Stochastik und Anwendungen
Pfaffenwaldring 57
70569 Stuttgart, Germany
uta.freiberg@mathematik.uni-stuttgart.de

Christian Seifert
Technische Universität Hamburg-Harburg
Institut für Mathematik
Schwarzenbergstraße 95 E
21073 Hamburg, Germany
christian.seifert@tuhh.de