Nucleotide substitutions in CD101, the human homolog of a diabetes susceptibility gene in non-obese diabetic mouse, in patients with type 1 diabetes

Misako Okuno1,2,3, Yoshihito Kasahara3,4, Masafumi Onodera5, Noriyuki Takubo3,6, Michiko Okajima3,4, Shigeru Suga3,7, Nobuyuki Watanabe5, Junichi Suzuki1,2,3, Tadayuki Ayabe1,3, Tatsuhiko Urakami2,3, Tomoyuki Kawamura3,8, Nobuyuki Kikuchi3,9, Ichiro Yokota3,10, Toru Kikuchi3,11, Shin Amemiya3,11, Kazuhiko Nakabayashi12, Keiko Hayashi12, Kenichiro Hata12, Yoichi Matsubara13, Tsutomu Ogata1,3,14, Maki Fukami1,3*, Shigetaka Sugihara3,15

1Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2Department of Pediatrics, Nihon University School of Medicine, Tokyo, 3The Japanese Study Group of Insulin Therapy for Childhood and Adolescent Diabetes, 4Department of Pediatrics, Kanazawa University, Kanazawa, 5Department of Human Genetics, National Research Institute for Child Health and Development, 6Department of Pediatrics, Juntendo University, Tokyo, 7Department of Pediatrics, National Hospital Organization Mie Hospital, Tsu, 8Department of Pediatrics, Osaka City University, Osaka, 9Department of Pediatrics, Yokohama City Minato Red Cross Hospital, Yokohama, 10Department of Pediatrics, Division of Pediatric Endocrinology and Metabolism, Shikoku Medical Center for Children and Adults, Zentsuji, 11Department of Pediatrics, Saitama Medical University, Saitama, 12Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, 13Department of Institute Director, National Research Institute for Child Health and Development, Tokyo, 14Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, and 15Department of Pediatrics, Tokyo Women’s Medical University Medical Center East, Tokyo, Japan

Keywords
Disease susceptibility, Exome, Mutation

*Correspondence
Maki Fukami
Tel.: +81-3-5494-7025
Fax: +81-3-5494-7026
E-mail address: fukami-m@ncchd.go.jp

J Diabetes Invest 2017; 8: 286–294
doi: 10.1111/jdi.12586

ABSTRACT
Aims/Introduction: Although genome-wide association studies have identified more than 50 susceptibility genes for type 1 diabetes, low-frequency risk variants could remain unrecognized. The present study aimed to identify novel type 1 diabetes susceptibility genes by newly established methods.

Materials and Methods: We carried out whole-exome sequencing and genome-wide copy-number analysis for a Japanese family consisting of two patients with type 1 diabetes and three unaffected relatives. Further mutation screening was carried out for 127 sporadic cases. The functional consequences of identified substitutions were evaluated by in silico analyses and fluorescence-activated cell sorting of blood samples.

Results: Whole-exome sequencing and genome-wide copy-number analysis of familial cases showed co-segregation of the p.V863L substitution in CD101, the human homolog of an autoimmune diabetes gene in the non-obese diabetic mouse, with type 1 diabetes. Mutation screening of CD101 in 127 sporadic cases detected the p.V678L and p.T944R substitutions in two patients. The p.V863L, p.V678L and p.T944R substitutions were absent or extremely rare in the general population, and were assessed as ‘probably/possibly damaging’ by in silico analyses. CD101 expression on monocytes, granulocytes and myeloid dendritic cells of mutation-positive patients was weaker than that of control individuals.

Conclusions: These results raise the possibility that CD101 is a susceptibility gene for type 1 diabetes.

INTRODUCTION
Type 1 diabetes mellitus is a multifactorial disease in which pancreatic β-cells are destroyed primarily by a T cell-mediated autoimmune reaction. Autoimmunity in type 1 diabetes is facilitated by various cells, including dendritic cells (DCs). A subset of patients with type 1 diabetes shows familial aggregation, suggesting a significant contribution of genetic factors to the etiology of the disease. Type 1 diabetes represents a polygenic disorder, whereas other forms of diabetes mellitus, such as type 2 diabetes, are typically attributable to lifestyle factors.
as maturity-onset diabetes of the young, neonatal diabetes and syndromic diabetes, often result from monogenic mutations or chromosomal abnormalities. Genome-wide association studies (GWAS), together with candidate gene approaches, have identified more than 50 susceptibility genes for type 1 diabetes. However, these genes account for just ~80% of the genetic heritability of type 1 diabetes, indicating that additional disease-associated genes remain to be identified. In particular, susceptibility variants of low frequency might be undetected by GWAS, as this method focuses primarily on relatively common polymorphisms.

CD101 (also known as V7 and IGSF2) is a transmembrane glycoprotein expressed on various types of immune cells. CD101 has been reported as an autoimmune diabetes gene in the non-obese diabetic (NOD) mouse. Murine CD101 is known to modulate the function of regulatory T cells and antigen-presenting cells, with genotype-dependent CD101 expression determining the risk of autoimmune diabetes in NOD mice. In addition, monoclonal antibodies against CD101 inhibit alloreactive T cell responses. Human CD101 has also been implicated in immune regulation. Previous studies have suggested that human CD101 plays a costimulatory role in T cell activation mediated by T cell receptor/CD3 or skin DCs. However, CD101 mutations have not been associated with diabetes in humans. Here, we report the identification of three CD101 substitutions in patients with type 1 diabetes. These substitutions were detected through whole-exome sequencing of familial cases and mutation screening of sporadic cases.

MATERIALS AND METHODS
Whole-exome sequencing and genome-wide copy-number analysis of a family with type 1 diabetes
The present study was approved by the institutional review board committee at the National Center for Child Health and Development, and was carried out after obtaining written informed consent. We carried out molecular analyses of a Japanese family (family A) consisting of two patients with type 1 diabetes and three unaffected relatives. The male proband (case 1) and his mother (case 2) developed diabetes at the ages 2.6 and 18 years, respectively (Table 1). At disease onset, case 1 was positive for the insulin autoantibody, whereas case 2 was positive for the islet cell surface antibody. Human leukocyte antigen (HLA) typing showed known risk alleles of the Japanese population, DRB1*04:05 and DQB1*04:01, in cases 1 and 2 and two unaffected family members, and DQB1*03:02 in case 1 and his unaffected father (Table 1). The unaffected grandmother of case 1 (the mother of case 2) carried two risk alleles, DRB1*04:05 and DQB1*04:01, together with a protective DQB1*03:01 allele. Cases 1 and 2 showed no additional clinical features. No family history of other autoimmune diseases was recorded in this family.

We carried out whole-exome sequencing using genomic DNA samples obtained from cases 1 and 2 and three unaffected family members (the father and two older siblings of the proband). DNA libraries were constructed using a SureSelect Kit (51 Mb version 4; Agilent Technologies, Santa Clara, CA, USA), and sequenced using a HiSeq 1000 sequencer (Illumina, San Diego, CA, USA). Nucleotide alterations were called by Avadis NGS 1.3.1 (DNA Chip Research, Yokohama, Japan) or SAMtools 0.1.17 software (https://sourceforge.net/projects/samtools/files/samtools/). We searched for nucleotide alterations shared by cases 1 and 2, but absent from the three unaffected relatives. We focused on exonic mutations that alter protein sequences and intronic substitutions located within a 5-bp region from an exon–intron boundary. Known polymorphisms with an allele frequency of more than 1.0% in the general population (NCBI Browser, http://www.ncbi.nlm.nih.gov/), and mutations whose functional outcomes were predicted as ‘benign’ by in silico analysis using PolyPhen-2 (http://genetics.bwh.harvard.edu/pph2/) were excluded from further analysis. We referred to the OMIM database (https://www.ncbi.nlm.nih.gov/omim) to examine whether the genes identified in the present study were associated with any human disorders. We also searched the PubMed database (http://www.ncbi.nlm.nih.gov/pubmed/) for previous reports on these genes. Nucleotide alterations in CD101 (NM_004258) and GAD2 (NM_000818.2) were confirmed by Sanger sequencing. Primer sequences are available on request. In addition, we analyzed the parental origin of a CD101 mutation identified in case 2. Copy-number alterations in case 1 were analyzed by array-based comparative genomic hybridization (SurePrint G3 Human Microarray, 2 × 400 k format; Agilent Technologies). We referred to the Database of Genomic Variants (http://projects.tcag.ca/variation/) to exclude known benign variants.

Mutation screening of CD101 in sporadic cases with type 1 diabetes
We carried out mutation screening of CD101 in 127 sporadic cases with type 1 diabetes (49 males and 78 females, aged 2.0–18.1 years). All patients were of Japanese origin, and developed diabetes between the age of 0.9 and 15.7 years. The patients were positive for anti-GAD and/or islet antigen 2 antibodies. Patients with syndromic diabetes were excluded from the study.

Nucleotide alterations in CD101 coding exons and their flanking regions were examined by amplicon-sequencing using Nextera Kits (FC-121-1031 and FC-121-1012; Agilent Technologies). We referred to the Database of Genomic Variants (http://projects.tcag.ca/variation/) to exclude known benign variants.

Functional assessment of CD101 substitutions
We examined whether the CD101 substitutions identified in the patients are present in the general population. First, we analyzed 185 DNA samples obtained from healthy Japanese controls (Human Science Research Resources Bank, Tokyo, Japan; present distributor, National Institute of Biomedical Innovation,
Table 1 | Clinical and molecular findings of CD101-substitution-positive patients and unaffected family members

| Familial/Sporadic | Family A | Case 2 (mother) | Grandmother of case 1 | Father of case 1 | Older brother of case 1 | Older sister of case 1 | Sporadic Case 3 | Sporadic Case 4 |
|-------------------|----------|-----------------|-----------------------|-----------------|------------------------|----------------------|----------------|----------------|
| Sex               | Male     | Female          | Female                | Male            | Male                   | Female               | Male           | Female         |
| Age at onset (years) | 2.6     | 18              | –                     | –               | –                      | –                    | 10.5           | 13.2           |
| Body mass index (kg/m²) | 14.8 (14.4–17.2) | 22 (16.3–23.5) | –                     | –               | –                      | –                    | 17.1 (15.0–21.5) | 16.6 (16.3–23.5) |
| Blood glucose (mmol/L) | 18.9 (4.1–5.2) | 8.6 (4.4–5.2) | –                     | –               | –                      | –                    | 51 (4.5–5.2)   | 13 (4.4–5.2)   |
| HbA1c (mmol/mol) | 95 (26–36) | 53 (26–36) | –                     | –               | –                      | –                    | 89 (26–36)     | 92 (26–36)     |
| HbA1c (%) | 10.8 (4.5–5.4) | 7 (4.5–5.4) | –                     | –               | –                      | –                    | 10.3 (4.5–5.4) | 10.6 (4.5–5.4) |
| Blood C-peptide (nmol/L) | 0.2 (0.3–0.6) | NA              | –                     | –               | –                      | –                    | 0.2 (0.4–0.8)  | NA             |
| Urine C-peptide (μg/day) | <9 (12–34) | 15 (29–167) | –                     | –               | –                      | –                    | NA             | 90 (29–167)   |
| Anti-GAD antibody (U/mL) | Negative (<1.5) | NA              | –                     | –               | –                      | –                    | 3.8 (<1.5)     | 81 (<1.5)     |
| Insulin autoantibody (%) | 20.8 (<10) | NA              | –                     | –               | –                      | –                    | NA             | NA             |
| Islet cell surface antibody | NA | Positive† (negative) | –                     | –               | –                      | –                    | NA             | NA             |

Molecular findings

| HLA-DRB1       | *405  | *405  | *1101 | *405  | *405  | *405  | *405  | *901  |
|----------------|-------|-------|-------|-------|-------|-------|-------|-------|
|               | *1101 | *1202 | *1302 | *1302 | *1302 | *1302 | *1302 | *1302 |
| HLA-DQB1       | *302  | *401  | *301† | *302  | *401  | *401  | *401  | *401  |
|               | *401  | *401  | *609  | *609  | *609  | *609  | *609  | *302  |
| CD101 substitution | p.V863L | p.V863L | p.V863L | None | None | None | p.V678L | p.T944R |

Reference ranges are shown in parentheses. Values above or below the reference range are boldfaced. Glycated hemoglobin (HbA1c) is measured by a National Glycohemoglobin Standardization Program-certified method (%) and converted to International Federation of Clinical Chemistry value (mmol/mol). Human leukocyte antigen (HLA) class II genotypes known as risk alleles of diabetes in Japanese are underlined. †Actual value unknown. ‡Known as a protective allele of diabetes in Japanese. NA, not analyzed.
Osaka, Japan). The presence or absence of the CD101 substitutions were examined by single-nucleotide polymorphism genotyping (custom-made TaqMan SNP Genotyping Assays; Life Technologies, Carlsbad, CA, USA) or by Sanger direct sequencing. Second, we examined frequencies of the CD101 substitutions in databases. We referred to the Human Genetic Variation Database (http://www.genome.med.kyoto-u.ac.jp/SnpDB/) and the Exome Aggregation Consortium (ExAC) Browser (http://exac.broadinstitute.org/). We also examined the position and evolutionary conservation of affected amino acids in the CD101 protein.

Expression analysis of CD101 in unaffected individuals and substitution-positive patients
To analyze CD101 expression on hematopoietic cells, we carried out multicolor fluorescence-activated cell sorting using LSRFortessa (BD Biosciences, San Jose, CA, USA). Fresh peripheral blood was obtained from five healthy individuals and three CD101 substitution-positive patients (cases 1, 2 and 4). Fresh blood samples of case 3 were unavailable. Populations of lymphocytes, monocytes and granulocytes were differentiated using forward scatter and side scatter of flow cytometry. For analysis of CD101 expression on DCs, cells expressing human CD45 were gated on HLA-DR+ and lineage-; that is, CD11c+/CD123+ cells, which were referred to as myeloid and plasmacytoid DCs, respectively (Figure 1a,b). Antibodies used were FITC-conjugated human CD45, APC-Cy7-conjugated HLA-DR, APC-conjugated CD123, PerCP-Cy5.5-conjugated CD11c, PE-conjugated CD101, and brilliant violet 421-conjugated CD3, CD19 and CD14 for lineage markers. The CD101 antibody was purchased from AbD Serotec (Kidlington, Oxford, UK), and other antibodies were purchased from BioLegend (San Diego, CA, USA).

RESULTS
Molecular analyses of family A
Whole-exome sequencing of family A showed that nine hitherto unreported nucleotide changes in nine genes and 15 rare polymorphisms in 14 genes co-segregated with type 1 diabetes (Table 2; Figure 2a,b). Seven of the 24 nucleotide changes were intronic substitutions or an intron frame of unknown pathogenicity. Of the 23 mutated genes, CD101 represented the human homolog of a known diabetes-causative gene in NOD mice11,12, and GAD2 encoded a major autoantigen for type 1 diabetes9. The p.V863L substitution in CD101 was hitherto unreported, whereas the p.I228T substitution in GAD2 was found in 262 of 121,380 alleles in the ExAC Browser. The remaining 21 genes have not been associated with type 1 diabetes or other autoimmune disorders; eight of these genes were associated with some genetic disorders other than diabetes. The p.V863L substitution in CD101 was shared by the unaffected mother of case 2 (the grandmother of case 1). Mutations in 289

http://onlinelibrary.wiley.com/journal/jdi

J Diabetes Investig Vol. 8 No. 3 May 2017

http://onlinelibrary.wiley.com/journal/jdi

CD101 mutations and type 1 diabetes

Mutation screening of CD101 in sporadic cases with type 1 diabetes
Mutation screening of CD101 of 127 sporadic patients identified 10 rare nucleotide substitutions (Table S1). These substitutions included p.V678L and p.T944R, which were absent or extremely rare in the general populations, and were assessed as ‘probably damaging’ by in silico analysis (Table S1; Figure 2a, b). Case 3 carrying the p.V678L substitutions and case 4 carrying the p.T944R substitutions developed diabetes at 10.5 and 13.2 years-of-age, respectively (Table 1). At disease onset, these cases were positive for anti-GAD antibodies. Both cases 3 and 4 carried risk HLA alleles of the Japanese population. Blood samples from family members of cases 3 and 4 were unavailable for genetic testing.

Functional assessment of CD101 substitutions
The p.V863L, p.V678L and p.T944R substitutions were absent in 185 healthy Japanese individuals. Furthermore, these substitutions have not been registered in the Human Genetic Variation Database. Likewise, the p.V678L and p.V863L substitutions were absent from 121,412 alleles in the ExAC Browser, and the p.T944R substitution has been identified in one of 121,370 alleles.

The p.V678L and p.V863L substitutions resided within the immunoglobulin-like domains of CD101, whereas the p.T944R substitution was located in a connecting region between an immunoglobulin-like domain and the transmembrane domain (Figure 2a). The signal peptide was not affected by these substitutions. The three substitutions involved nucleotides that were evolutionary conserved among humans, rhesus, dogs and elephants (Figure 2b).

Expression analysis of CD101 in unaffected individuals and substitution-positive patients
In keeping with previous reports7-9,13,14, CD101 was highly expressed on monocytes and granulocytes of control individuals, whereas lymphocytes including T cells, B cells and natural killer cells of these individuals barely expressed it (red lines in Figure 1c). Interestingly, the expression of CD101 on the monocytes and granulocytes of cases 1, 2 and 4 was weaker than that of the control individuals. The reduction of CD101 expression was also observed in myeloid DCs of these cases (Figure 1b and blue lines in Figure 1c). Expression of CD101 was weak or absent on plasmacytoid DCs of both patients and control individuals. Collectively, the CD101 mutations likely affected protein expression primarily on myeloid lineage cells.

DISCUSSION
Whole-exome sequencing of family A showed that a p.V863L substitution in CD101, the human homolog of an autoimmune

© 2016 The Authors. Journal of Diabetes Investigation published by AARD and John Wiley & Sons Australia, Ltd
diabetes gene in NOD mice\textsuperscript{10-12}, co-segregated with type 1 diabetes. Notably, type 1 diabetes was seen in cases 1 and 2, but not in the father or the older siblings of case 1, although HLA risk alleles were shared by all of these individuals. Whereas 23 other nucleotide substitutions were also linked to the disease phenotype of this family, there were no data supporting an association between these substitutions and diabetes. In fact, many of the 23 substitutions were of unknown pathogenicity, or resided within genes that underlie human disorders other than diabetes. Although cases 1 and 2 carried a p.I228T substitution (rs143186590) in \textit{GAD2} encoding a major autoantigen of type 1 diabetes, a relatively high frequency of \textit{GAD2} p.I228T in the general population argued against the pathogenicity of this mutation. Johnson \textit{et al.}\textsuperscript{18} suggested that genetic variations in \textit{GAD2} are unlikely to underlie type 1 diabetes. Actually, \textit{GAD2} variations have been associated with obesity and anxiety disorders, rather than type 1 diabetes\textsuperscript{19,20}. Mutations in known diabetes-causative genes, including \textit{INS}, \textit{PTPN22}, \textit{IL2RA} and \textit{CTLA4} were excluded in family A. Furthermore, although several submicroscopic deletions in the genome have been associated with type 1 diabetes\textsuperscript{21}, such defects were absent in case 1. Subsequently, we carried out \textit{CD101} mutation screening of 127

\begin{figure*}[h]
\centering
\includegraphics[width=\textwidth]{figure1}
\caption{CD101 expression on peripheral blood cells. (a) Major subpopulations of peripheral blood cells, such as lymphocytes (Lymp), monocytes (Mono) and neutrophils (Neutro), were differentiated based on forward scatter (FSC)/side scatter (SSC) of flow cytometry. (b) Cells expressing human CD45 were gated on human leukocyte antigen-DR positive (HLA-DR\textsuperscript{+}) and lineage\textsuperscript{−}, and divided into two subpopulations; that is, CD11c\textsuperscript{−}CD123\textsuperscript{−} myeloid dendritic cells (mDCs) and CD11c\textsuperscript{+}CD123\textsuperscript{+} plasmacytoid DCs (pDCs). (c) Results of cases 1, 2 and 4 are shown in blue lines. Representative results of control individuals and the unstained control population of cells are shown with red and gray lines, respectively. Samples of case 3 were not available for this analysis.}
\end{figure*}
| Gene       | Nucleotide change | Amino acid change | Allele frequency in the general population | In silico functional prediction | Human disease associated with the gene |
|------------|-------------------|-------------------|--------------------------------------------|--------------------------------|--------------------------------------|
|            |                   |                   | HGVD | ExAC |                          |                                      |
| Rare polymorphism                                      |                    |                   | 0.004 | 74/121,400 | Unknown                             | Ehlers–Danlos syndrome               |
| COL3A1    | IVS25 + 5         | –                 | 0.002 | 13/103,616 | Unknown                             | Unknown                              |
| NEDD4L    | IVS14 + 5         | –                 | 0.008 | 0 | Unknown                             | Glycerol kinase deficiency           |
| GK        | IVS17 + 4         | –                 | 0 | 1/119,520 | Unknown                             | Adermatoglyphia                      |
| SMARCAD1  | IVS1-2            | –                 | 0.005 | 262/121,380 | Possibly damaging                   | Unknown                              |
| GAD2      | T683C             | I228T             | 0.002 | 6/119,982 | Possibly damaging                   | Unknown                              |
| COL3A1†   | G3133A            | A1045T            | 0.003 | 71/121,296 | Probably damaging                   | Unknown                              |
| OR52D1    | G604A             | G202R             | 0.004 | 878/121,376 | Probably damaging                   | Unknown                              |
| OBSCN     | T8774G            | L2925R            | 0.002 | 3/21,498 | Possibly damaging                   | Chediak–Higashi syndrome             |
| LYST      | T9898C            | Y3299C            | 0.001 | 0 | Possibly damaging                   | Unknown                              |
| VCP      | G2513C            | P837A             | 0.001 | 0 | Possibly damaging                   | Brittle cornea syndrome              |
| MYF5      | A431G             | N144S             | 0.001 | 0 | Possibly damaging                   | Unknown                              |
| ZNF469    | C7381T            | R2461W            | 0.007 | 15/118,480 | Possibly damaging                   | Unknown                              |
| FOX5      | G878C             | P292A             | 0.001 | 1/109,312 | Possibly damaging                   | Unknown                              |
| CIQTNF8   | C140T             | D46N              | 0.002 | 0 | No data                             | Pigmented nodular adrenocortical disease |
| PDE11A    | G481C             | S160X             | 0 | 0 | Unknown                             | Unknown                              |
| CREB3L1   | IVS11 + 1         | –                 | 0 | 0 | Unknown                             | Unknown                              |
| GOLGA8S   | IVS16-5           | –                 | 0 | 0 | Unknown                             | Unknown                              |
| TPRN      | 1650insCCG        | S50_551insA       | 0 | 0 | Unknown                             | Hearing loss                         |
| CD101     | G2587T            | V863L             | 0 | 0 | Possibly damaging                   | Unknown                              |
| PRKX2     | T2699C            | I900T             | 0 | 0 | Possibly damaging                   | Oncogene                             |
| LOHI2GR1  | G451C             | E151Q             | 0 | 0 | Possibly damaging                   | Unknown                              |
| ZNF532    | C449G             | P150R             | 0 | 0 | Possibly damaging                   | Unknown                              |
| SDF2L1    | C185A             | S62Y              | 0 | 0 | Possibly damaging                   | Unknown                              |
| SHROOM2   | C3890T            | S1297F            | 0 | 0 | Possibly damaging                   | Ocular albinism                      |

ExAC, the Exome Aggregation Consortium Browser; HGVD, Human Genetic Variation Database. †Two polymorphisms were identified in COL3A1. ‡Based on the data of PolyPhen-2 (http://genetics.bwh.harvard.edu/pph2/). §Based on the data of OMIM (http://www.ncbi.nlm.nih.gov/omim).
sporadic patients with type 1 diabetes and identified additional missense substitutions. The p.V863L, p.V678L and p.T944R substitutions in CD101 were absent or extremely rare in the general population, and were scored as possibly or probably damaging. Furthermore, the three substitutions were well-conserved among most placental mammals. Collectively, the present findings, in conjunction with prior observations that CD101 plays a significant role in T cell regulation\textsuperscript{6–16,22,23}, imply an association between CD101 mutations and type 1 diabetes. CD101 mutations might increase genetic predisposition to diabetes only in individuals at risk of the disease, because cases 1–4 invariably carried one or more of the HLA risk alleles. While the mother of case 2 was free from the disease despite having the same CD101 substitution as cases 1 and 2, this normal phenotype might reflect the presence of the protective DQB1*03:01 allele. Considering the small number of participants in the present study, our findings need to be validated in future studies.

Fluorescence-activated cell sorting analysis detected CD101 expression on hematopoietic cells in both control individuals and mutation-positive patients. The percentage of CD101-positive cells among monocytes, neutrophils and myeloid DCs was somewhat lower in cases 1, 2 and 4 compared with that in five control individuals. The underlying mechanism of the reduced CD101 expression in these cases remains unknown. Actually, the signal peptide and the transmembrane domain are not...
affected by the p.V678L or p.T944R substitutions. Furthermore, it is unclear whether these minor differences in the expression levels are of clinical significance. We cannot exclude the possibility that CD101 mutations identified in the present study are functionally neutral variants. Nevertheless, altered CD101 expression has been associated with various autoimmune disorders. Jovanovic et al.20 showed that the fraction of CD101-positive cells among the CD8+ T cell population was reduced in patients with rheumatoid arthritis. Akesson et al.23 found that CD101 expression in regulatory T cells was moderately increased in children with celiac disease. In addition, reduced surface expression of murine CD101 was associated with the risk of infection-induced liver autoimmunity22. Altered expression of CD101 on DCs could influence the progression of pancreatic insulitis, because DCs are known to play a critical role in the recruitment of lymphocytes in insulitis of the NOD mouse24. Further studies, such as viral vector-mediated transduction of the mutant CD101 to immune cells, will clarify the functional consequences of the p.V678L, p.V863L and p.T944R substitutions.

Previous GWAS did not suggest any association between CD101 and diabetes. This can be explained by the rarity of CD101 substitutions in the general population. It is known that disease-associated variants with an allele frequency of less than 0.5% in the general population are barely detectable by GWAS, unless the variants underlie monogenic Mendelian disorders5. As we identified CD101 substitutions in just two of the 127 sporadic patients, such substitutions appear to be rare, even in patient cohorts. The present results show that next-generation sequencing of familial cases is useful for identifying rare risk variants that have been missed by GWAS.

In conclusion, we identified rare CD101 mutations in familial and sporadic cases of type 1 diabetes. The present findings, in conjunction with the results of previous studies6–16,22–24, raise the possibility that CD101 is a susceptibility gene for type 1 diabetes.

ACKNOWLEDGMENTS

The Japanese Study Group of Insulin Therapy for Childhood and Adolescent Diabetes (JSGIT): Koji Takemoto, Shigeyuki Ohtsu, Kohji Tsubouchi, Reiko Horikawa, Kisho Kobayashi, Akemi Koike, Takahiro Mochizuki, Kanshi Minamitani, Ryuzo Takaya, Hiroshi Mochizuki, Katsuya Aizu, Aki Nishii, Zenro Kizaki, Tetsuo Mori, Naoto Shimura, Tokuo Mukai, Nobuo Matsuura, Takao Fujisawa, Kenji Ibara, Kitaro Kosa, Rika Kizu, Toshikazu Takahashi, Satoshi Matsu, Keichi Hanaki, Yutaka Igarashi, Goro Sasaki, Shun Soneda, Shinichi Teno, Susumu Kanzaki, Ikuko Takahashi, Yusuke Tanahashi, Akira Endo, Mahoko Huruiyo, Yoshiya Ito, Tomohiro Hori, Yasusada Kawata, Hisakazu Nakajima, Yukio Yamamoto, Hiroko Kadowaki, Hiroki Matsuura, Eishin Ogawa, Emiko Tachikawa, Kaori Sasaki, Junichi Nagaishi, Junko Ito, Yohei Ogawa, Shinji Kodoya, Shoji Nakayama, Junichi Arai and Kentaro Shiga. We are grateful to Dr J Tang at the National Center for Child Health and Development for editing this manuscript. This study was supported by the National Center Biobank Network. This work was supported by Grants-in-Aid from the Japan Society for the Promotion of Science, and by Grants from the Ministry of Health, Labor and Welfare, the Japan Agency for Medical Research and Development, the National Center for Child Health and Development, the Takeda Foundation, the Japan Diabetes Foundation, and the Manpei Suzuki Diabetes Foundation.

DISCLOSURE

The authors declare no conflict of interest.

REFERENCES

1. Morran MP, Vonberg A, Khadra A, et al. Immunogenetics of type 1 diabetes mellitus. Mol Aspects Med 2015; 42: 42–60.
2. Santin I, Eizirik DL. Candidate genes for type 1 diabetes module pancreatic islet inflammation and β-cell apoptosis. Diabetes Obes Metab 2013; 15(Suppl 3): 71–81.
3. Precechtlelova J, Borsanyiova M, Sarmirova S, et al. Type I diabetes mellitus: genetic factors and presumptive enteroviral etiology or protection. J Pathog 2014; 2014: 738512.
4. Groop L, Pociot F. Genetics of diabetes—are we missing the genes or the disease? Mol Cell Endocrinol 2014; 382: 726–739.
5. Manolio TA, Collins FS, Cox NJ, et al. Finding the missing heritability of complex diseases. Nature 2009; 461: 747–753.
6. Ruegg CL, Rivas A, Madani ND, et al. V7, a novel leukocytesurface protein that participates in T cell activation. II. Molecular cloning and characterization of the V7 gene. J Immunol 1995; 154: 4434–4443.
7. Soares LR, Tsvaler L, Rivas A, et al. V7 (CD101) ligation inhibits TCR/CD3-induced IL-2 production by blocking Ca2+ flux and nuclear factor of activated T cell nuclear translocation. J Immunol 1998; 161: 209–217.
8. Bouloc A, Bagot M, Delaire S, et al. Triggering CD101 molecule on human cutaneous dendritic cells inhibits T cell proliferation via IL-10 production. Eur J Immunol 2000; 30: 3132–3139.
9. Fernandez I, Zeiser R, Kasunky H, et al. CD101 surface expression discriminates potency among murine Foxp3+ regulatory T cells. J Immunol 2007; 179: 2808–2814.
10. Penha Gonçalves C, Moule C, Smink L, et al. Identification of a structurally distinct CD101 molecule encoded in the 950-kb Idd10 region of NOD mice. Diabetes 2003; 52: 1551–1556.
11. Yamaji K, Ikegami H, Fujisawa T, et al. Evidence for Cd101 but not Fcgr1 as candidate for type 1 diabetes locus, Idd10. Biochem Biophys Res Commun 2005; 331: 536–542.
12. Rainbow DB, Moule C, Fraser HI, et al. Evidence that Cd101 is an autoimmune diabetes gene in nonobese diabetic mice. J Immunol 2011; 187: 325–336.
13. Rivas A, Ruegg CL, Zeitung J, et al. V7, a novel leukocyte surface protein that participates in T cell activation. I. Tissue
distribution and functional studies. *J Immunol* 1995; 154: 4423–4433.

14. Soares LR, Rivas A, Ruegg C, et al. Differential response of CD4+ V7+ and CD4+ V7- T cells to T cell receptor-dependent signals: CD4+ V7+ T cells are co-stimulation independent and anti-V7 antibody blocks the induction of anergy by bacterial superantigen. *Eur J Immunol* 1997; 27: 1413–1421.

15. Maier LM, Smyth DJ, Vella A, et al. Construction and analysis of tag single nucleotide polymorphism maps for six human-mouse orthologous candidate genes in type 1 diabetes. *BMC Genet* 2005; 6: 9.

16. Jovanovic DV, Bournsell L, Bensussan A, et al. CD101 expression and function in normal and rheumatoid arthritis-affected human T cells and monocytes/macrophages. *J Rheumatol* 2011; 38: 419–428.

17. Sugihara S, Ogata T, Kawamura T, et al. HLA-class II and class I genotypes among Japanese children with type 1a diabetes and their families. *Pediatr Diabetes* 2012; 13: 33–44.

18. Johnson GC, Payne F, Nutland S, et al. A comprehensive, statistically powered analysis of GAD2 in type 1 diabetes. *Diabetes* 2002; 51: 2866–2870.

19. Choquette AC, Lemieux S, Tremblay A, et al. GAD2 gene sequence variations are associated with eating behaviors and weight gain in women from the Quebec family study. *Physiol Behav* 2009; 98: 505–510.

20. Unschuld PG, Ising M, Specht M, et al. Polymorphisms in the GAD2 gene-region are associated with susceptibility for unipolar depression and with a risk factor for anxiety disorders. *Am J Med Genet B Neuropsychiatr Genet* 2009; 150B: 1100–1109.

21. Grayson BL, Smith ME, Thomas JW, et al. Genome-wide analysis of copy number variation in type 1 diabetes. *PLoS One* 2010; 5: e15393.

22. Mohammed JP, Fusakio ME, Rainbow DB, et al. Identification of Cd101 as a susceptibility gene for *Novosphingobium aromaticivorans*-induced liver autoimmunity. *J Immunol* 2011; 187: 337–349.

23. Åkesson K, Tompa A, Rydén A, et al. Low expression of CD39(+)CD45RA(+) on regulatory T cells (Treg) cells in type 1 diabetic children in contrast to high expression of CD101(+)CD129(+) on Treg cells in children with Coeliac disease. *Clin Exp Immunol* 2015; 180: 70–82.

24. Nikolic T, Geutskens SB, van Rooijen N, et al. Dendritic cells and macrophages are essential for the retention of lymphocytes in (peri)-insulitis of the nonobese diabetic mouse: a phagocyte depletion study. *Lab Invest* 2005; 85: 487–501.

**SUPPORTING INFORMATION**

Additional Supporting Information may be found in the online version of this article:

Table S1| Frequency of single nucleotide polymorphisms in *CD101* in our sporadic patients and the Japanese general population.