Spin and Parity of $\Xi_{3/2}$ Exotic Baryon from Kaon Scattering on the Nucleon

D.L. Borisyuk, A.P. Kobushkin1 and Yu.V. Kutafin2

Bogolyubov Institute for Theoretical Physics, Metrologicheskaya str. 14B, 03143 Kiev, Ukraine

Abstract

We calculate total cross section for production of the $\Xi_{3/2}(1862)$ exotic baryon in $\bar{K}N \rightarrow K\Xi_{3/2}$ reaction assuming the following spin-parity values of the $\Xi_{3/2}$ baryon $J^\pi = \frac{1}{2}^+, \frac{1}{2}^-, \frac{3}{2}^+$ and $\frac{3}{2}^-$. We demonstrate that the reaction total cross section strongly depends on the spin of the $\Xi_{3/2}$ baryon.

Key words: exotic baryon, spin, parity

1 Introduction

Experimental observation [1,2,3,4,5,6,7,8,9,10,11,12,13] of a narrow baryon, Θ^+, which, due to its strangeness $S = +1$, cannot be a three-quark bound system pushes great interest to physics of exotic hadrons, see, e.g., [14,15] and further references therein. The Θ^+ mass is close to 1540 MeV/c^2 and width is much smaller than a typical hadron width. It was found no evidence for Θ^{++} [4,6,9,13] which leads to the conclusion that Θ^+ should be isoscalar. The Θ^+ baryon has been included as a three-star resonance in 2004 PDG listings.

Somewhat later two another candidates for the exotic baryons, $\Xi^{−−}_{3/2}$ and $\Xi^0_{3/2}$, with strangeness $S = −2$, mass near 1860 MeV/c^2 and narrow width < 18 MeV were reported by the NA49 collaboration [16]. According to its strangeness and electric charge the minimal value of the $\Xi_{3/2}$ isospin is $I = \frac{3}{2}$. It is natural to assume that the isospin

1 email address: kobushkin@bitp.kiev.ua
2 email address: kutafin@i.com.ua
singlet Θ^+ and isospin quartet Ξ^\pm, Ξ^0, Ξ^+_3 and Ξ^-_3 should be members of the same flavor multiplet ($\bar{10}_f$).

Besides that, a narrow anti-charmed baryon with a minimal constituent quark composition $uudd\bar{c}$ was observed by the H1 collaboration [17].

Finally, a narrow peak at 1734 MeV/c^2 in ΛK^0 invariant mass observed in preliminary results from the STAR experiment at RHIC was interpreted as a pentaquark state with the isospin $I = \frac{1}{2}$ [18].

Despite these impressive results, the negative results of a search for Θ^+ [19,20,21,22], as well as for Ξ^\pm_3 [23,24], were also reported very recently. So it is evident that a new kind of experimental study is necessary to clarify the situation. For example,

- Experiments with high statistics and different beams and targets to confirm or reject the observed exotic baryons and to search, if any, for new exotic states.
- Measurement of spin and parity of the observed pentaquarks.

A lot of theoretical models were proposed to interpret the obtained experimental results for the exotic baryons, chiral-skyrmion models, constituent quark models, QCD sum rules, lattice QCD, etc., see discussion in [14,15]. Here it is important to stress, that all such calculations, been “turned to” the experimental mass and width of the Θ^+, give very different predictions for the spectroscopy of exited exotic baryons, as well as predict different spin-parity quantum numbers for the Θ^+ and the Ξ^\pm_3. For example, in the chiral-skyrmion model the lowest exotic states are members of the $\bar{10}_f$-plet with $J^\pi = \frac{1}{2}^+$ [25,26,27]. The next states belong to the 27_f-plet with $J^\pi = \frac{3}{2}^+$ [28,29,30,31]. Some of them are very close to appropriate states from the $\bar{10}_f$-plet, but could have different flavor quantum numbers. In turn, the constituent quark model predicts two partners of ideally mixed 10_f and 8_f multiplets with $J^\pi = \frac{1}{2}^+$ and $\frac{3}{2}^+$ splitting within tens of MeV [32].

The aim of this paper is to estimate the production cross section of the Ξ^\pm_3 baryon with spin $\frac{3}{2}$. We are concentrated on the simplest strong interaction reaction, Ξ^\pm_3 production in $\bar{K}N$ scattering

$$\bar{K}N \rightarrow K\Xi^\pm_3,$$

and demonstrate that the total cross section for the exotic baryon with spin $\frac{3}{2}$ is at least 50 times larger than that for the exotic baryon with spin $\frac{1}{2}$.

The paper is organized as follows. In Section 2 we formulate the model. Then in Section 3 we determine the parameters of the model and provide numerical calculations. Conclusions are given in Section 4.
2 Model and effective Lagrangians

We estimate the reaction cross section considering Born diagrams with Σ baryon pole in the s and u channels, Figure 1. We use k and k' for the kaon momentum in the initial and final state, p and q for the proton and $\Xi_{3/2}$ momentum, respectively.

The cross sections for different channels of the reaction (1) are connected by isospin Clebsh-Gordan coefficients

$$
\sigma(\bar{K}^0 p \rightarrow K^0\Xi_{3/2}^+) = 3\sigma(\bar{K}^0 p \rightarrow K^+\Xi_{3/2}^0) = 3\sigma(K^- p \rightarrow K^0\Xi_{3/2}^-) = \\
= 3\sigma(\bar{K}^0 n \rightarrow K^+\Xi_{3/2}^-) = 3\sigma(\bar{K}^0 n \rightarrow K^0\Xi_{3/2}^0) = 3\sigma(K^- p \rightarrow K^+\Xi_{3/2}^-) = \\
= 3\sigma(K^- n \rightarrow K^0\Xi_{3/2}^-) = \sigma(K^- n \rightarrow K^+\Xi_{3/2}^-).
$$

(2)

The $KN\Sigma$ effective Lagrangian is well known

$$
\mathcal{L}_{KN\Sigma} = ig_{KN\Sigma}\Sigma\gamma_5 K N + \text{h.c.} \quad (3)
$$

with the coupling constant $g_{KN\Sigma} = 3.54$ [33]. From Jülich-Bonn potential $g_{KN\Sigma} = 5.38$ [34]. We use the first value. Because spin and parity of the $\Xi_{3/2}$ baryon are unknown we use one of the following $K\Sigma\Xi_{3/2}$ Lagrangians depending on the spin-parity of the $\Xi_{3/2}$ baryon

$$
\begin{align*}
\mathcal{L}_{K\Sigma\Xi_{3/2}} &= ig_{K\Sigma\Xi_{3/2}}\Sigma\gamma_5 K \Xi + \text{h.c.}, \quad \text{for } J^p(\Xi_{3/2}) = \frac{1}{2}^+ \\
\mathcal{L}_{K\Sigma\Xi_{3/2}} &= g_{K\Sigma\Xi_{3/2}}\Sigma K \Xi_{3/2} + \text{h.c.}, \quad J^p(\Xi_{3/2}) = \frac{1}{2}^- \\
\mathcal{L}_{K\Sigma\Xi_{3/2}} &= \frac{g_{K\Sigma\Xi_{3/2}}}{m_{\Xi_{3/2}}} \Sigma \gamma_5 \partial_\mu K \Xi_{3/2}^\mu + \text{h.c.}, \quad J^p(\Xi_{3/2}) = \frac{3}{2}^+ \\
\mathcal{L}_{K\Sigma\Xi_{3/2}} &= \frac{g_{K\Sigma\Xi_{3/2}}}{m_{\Xi_{3/2}}} \Sigma \partial_\mu K \Xi_{3/2}^\mu + \text{h.c.}, \quad J^p(\Xi_{3/2}) = \frac{3}{2}^- \quad (4)
\end{align*}
$$
In (4) we use Rarita-Schwinger field $\Xi_{3/2}(x)$ for a particle with spin $\frac{3}{2}$. An additional factor $1/m_{\Xi_{3/2}}$ (where $m_{\Xi_{3/2}}$ is the $\Xi_{3/2}$ mass) is introduced to make coupling constant $g_{K\Sigma\Xi_{3/2}}$ dimensionless for the spin-$\frac{3}{2}$ $\Xi_{3/2}$ baryon.

A spinor $U^\mu(q)$ for a free spin-$\frac{3}{2}$ particle satisfies the following equation

$$(\not{q} - m_{\Xi_{3/2}})U^\mu(q) = 0,$$ \hspace{1cm} (5)

with constraints

$$\gamma_\mu U^\mu(q) = 0$$

where $\not{q} \equiv \gamma_\nu q^\nu$ and γ_ν are Dirac 4×4 matrices. The normalization condition reads

$$U^\mu(q)U_\mu(q) = -2m_{\Xi_{3/2}}.$$ \hspace{1cm} (6)

The spin summation formula for the Rarita-Schwinger spinor reads

$$\sum_{\text{spin}} U_\mu(q)U_\nu(q) = -\frac{1}{3m_{\Xi_{3/2}}} (\not{q} + m_{\Xi_{3/2}}) \left(g_{\mu\nu} - \frac{q_\mu q_\nu}{m_{\Xi_{3/2}}^2} - \frac{1}{4} [\gamma_\mu, \gamma_\nu] \right) (\not{q} + m_{\Xi_{3/2}}) \equiv P_{\mu\nu}(q).$$ \hspace{1cm} (7)

Reaction scattering amplitude squared, summed over spin states of the $\Xi_{3/2}$ and averaged over nucleon spin states reads

$$|\mathcal{M}|^2 = |\mathcal{M}_s|^2 + |\mathcal{M}_u|^2 + \mathcal{M}_s \mathcal{M}_u^* + |\mathcal{M}_u|^2,$$ \hspace{1cm} (8)

where \mathcal{M}_s and \mathcal{M}_u are the s and u pole terms corresponding to left and right diagrams of Figure 1. For the $\Xi_{3/2}$ baryon with $J^\pi = \frac{3}{2}^+$ appropriate terms of (9) are

$$\mathcal{M}_x \mathcal{M}_y^* = \frac{1}{2} g_{K\Sigma\Xi_{3/2}} g_{KN\Sigma} \frac{F^2(\kappa_x^2)}{\kappa_x^2 - m_{\Sigma}^2} \frac{F^2(\kappa_y^2)}{\kappa_y^2 - m_{\Sigma}^2} \frac{\kappa_x^\mu \kappa_y^\nu}{3m_{\Xi_{3/2}}^2} \times \text{Tr} \left\{ (\not{k}_x - m_{\Sigma}) P_{\mu\nu}(q) (\not{k}_y - m_{\Sigma}) (\not{p} + m_N) \right\},$$

where x, y labels either s- or u-channel, $\kappa_x (\kappa_u)$ is the momentum of the intermediate Σ baryon, $\kappa_x = k + p$, $\kappa_u = q - k$, and $F(\kappa^2)$ is form factor. We use a relativistically invariant parameterization for the form factor from Ref. [36]

$$F(\kappa^2) = \frac{\Lambda^2}{\sqrt{\Lambda^4 + (\kappa^2 - m_{\Xi_{3/2}}^2)^2}}.$$ \hspace{1cm} (10)

extracted from the cross section $\gamma p \rightarrow K^+ \Lambda$. The cut-off parameter $\Lambda = 0.85$ GeV [36]. The above formula (10) is for positive parity $\Xi_{3/2}$ baryon, in the case of negative parity one has to change the sign of $\Xi_{3/2}$ mass entering $P_{\mu\nu}$.

The trace in the expression (10) was calculated on computer analytically.
Table 1

	$J = 1/2$	$J = 3/2$
$\pi = +1$	3.84	38.4
$\pi = -1$	0.53	5.34

3 Numerical calculations and discussion of the results

We estimate the coupling constant $g_{K\Sigma\Xi^{3/2}}$ by the same procedure, which was used in Ref. [35]. Both exotic baryons, Θ^+ and $\Xi^{3/2}$, are assumed to belong to the same $SU(3)_f$ multiplet. Assuming $SU(3)_f$ symmetry for the interaction one gets

$$g_{K\Theta} = g_{K\Sigma\Xi^{3/2}}.$$ \hspace{1cm} (12)

Since the Θ^+ has only one decay channel, $\Theta^+ \to KN$, one can simply calculate the coupling constant $g_{K\Theta}$ from the total Θ width

$$\Gamma_{\Theta} = g_{K\Theta}^2 \frac{(m_\Theta \mp m_N)^2 - m_K^2}{4\pi m_\Theta^2} \times \begin{cases} Q & \text{for } J^\pi = \frac{1\pm}{2} \\ \frac{Q^3}{3m_\Theta^3} & \text{for } J^\pi = \frac{3\pm}{2} \end{cases}$$ \hspace{1cm} (13)

where m_Θ, m_N and m_K are masses of the Θ^+, the nucleon and the kaon and

$$Q = \frac{1}{2m_\Theta} \sqrt{m_\Theta^4 + m_N^4 + m_K^4 - 2m_\Theta^2 m_N^2 - 2m_\Theta^2 m_K^2 - 2m_N^2 m_K^2}$$ \hspace{1cm} (14)

is the kaon momentum in the Θ^+ rest frame. Taking $\Gamma_{\Theta} = 15$ MeV as an upper limit for the Θ^+ decay width one obtains values summarized in Table 1.

The estimated total cross section of the $\Xi_{3/2}$ production with spin $3/2$ are displayed on Figure 2. We also compare our results with the results of Ref. [35] for the $\Xi_{3/2}$ with spin $1/2$. One concludes that

• The total cross section for the same parity but different spin of the $\Xi_{3/2}$ is approximately 50–100 times larger for the spin $3/2$ than for the spin $1/2$.
• Similarly to the case of spin $1/2$ [35] the cross section $\sigma(J^\pi = \frac{3^+}{2})$ is approximately two orders larger than $\sigma(J^\pi = \frac{3^-}{2})$.

It must be also stressed that according to (13) the cross section is proportional to the Θ^+ width, Γ_{Θ^+}, which is unknown from experiment. The coupling constant $g_{K\Sigma\Xi^{3/2}}$ in Table 1 was estimated from the “average” upper limit of the width, $\Gamma_{\Theta^+} < 15$ MeV. Further restrictions on the width come from the K^+d total cross section, $\Gamma_{\Theta^+} < 6$ MeV, [37], and from PWA of K^+N scattering in the $I = 0$ channel, $\Gamma_{\Theta^+} < 1$ MeV, [38,39].
4 Conclusions

We estimate the upper limit of the total cross section for the $\Xi_{3/2}^-$ production in $\bar{K}N$ scattering employing $\Xi_{3/2}$ spin-parity $J^\pi = \frac{3}{2}^+$ and $J^\pi = \frac{3}{2}^-$. The estimate was done using the s and u pole diagrams with Σ hyperon in the intermediate state, Figure 1. We compare our results with the results of [35] for the $\Xi_{3/2}$ with $J^\pi = \frac{1}{2}^+$ and $J^\pi = \frac{1}{2}^-$. It is shown that from the two cross sections with the same parity and different spins, the cross section for the spin $\frac{3}{2}$ of the $\Xi_{3/2}$ is 50–100 times larger than that for the $\Xi_{3/2}$ with spin $\frac{1}{2}$.

References

[1] T. Nakano et al., The LEPS collaboration, Phys. Rev. Lett., 91 (2003), 012002 [hep-ex/0301020].
[2] V.V. Barmin et al., The DIANA collaboration, Phys. Atom. Nucl., 66 (2003) 1715-1718; Yad. Fiz. 66 (2003) 1763-1766 [hep-ex/0304040].

[3] S. Stepanyan et al., The CLAS collaboration, Phys. Rev. Lett., 91 (2003) 252001 [hep-ex/0307018].

[4] J. Barth et al., The SAPHIR collaboration, Phys. Lett., B572 (2003) 127 [hep-ex/0307083].

[5] A.E. Asratyan, A.G. Dolgolenko, M.A. Kubantsev, Yad. Fiz., 67 (2004) 704 (Phys. Atom. Nucl., 67 (2004) 682) [hep-ex/0309042].

[6] V. Kubarovsky et al., The CLAS collaboration, Phys. Rev. Lett., 92 (2004) 032001 [hep-ex/0311046].

[7] R. Togoo et al., Proc. Mongolian Acad. Sci., 4 (2003) 2.

[8] A. Aleev et al., The SVD collaboration, [hep-ex/0401024].

[9] A. Airapetian et al., The HERMES collaboration, Phys. Lett., B585 (2004) 213 [hep-ex/0312044].

[10] A. Abdel-Bary et al., The COSY-TOF collaboration, [hep-ex/0403011].

[11] P.Z. Aslanyan et al., The 2m propan bubble chamber collaboration, [hep-ex/0403044].

[12] Yu.A. Troyan et al., The JINR H2 bubble chamber collaboration, [hep-ex/0404003].

[13] S. Chekanov et al., The ZEUS collaboration, [hep-ex/0403051].

[14] Shi-Lin Zhu, [hep-ph/0406204].

[15] Makoto Oka, [hep-ph/0406211].

[16] C. Alt et al., The NA49 collaboration, Phys. Rev. Lett., 92 (2004) 042003 [hep-ph/0310014].

[17] A. Aktas et al., The H1 collaboration, [hep-ex/0403017].

[18] S. Kabana, The STAR collaboration, [hep-ex/0406032].

[19] J.Z. Bai et al., The BES collaboration, [hep-ex/0402012].

[20] K.T. Knopfle, M. Zavertyaev and T. Zivko, The HERA-B collaboration, J. Phys. G: Nucl. Phys., 30 (2004) S1361 [hep-ex/0403020].

[21] C. Pinkenburg, The PHENIX collaboration, [nucl-ex/0404001].

[22] Yu.M. Antipov et al., The SPHINX collaboration, [hep-ex/0407026].

[23] M.I. Adamovich et al., The WA89 collaboration, [hep-ex/0405042].

[24] H.G. Fischer and S. Wenig, [hep-ex/0401014].

[25] M. Praszalowicz, in: Skyrmions and Anomalies, M. Jezabek and M. Praszalowicz, eds., World Scientific (1987) p.112.
[26] M. Praszalowicz, Phys. Lett. B575 234 2003 hep-ph/0308114.

[27] D. Diakonov, V. Petrov and M. Polyakov, Z. Phys. A 359 (1997) 305.

[28] H. Walliser and V.B. Kopeliovich, J. Exp. Theor. Phys. 97 (2003) 433-440; Zh. Eksp. Teor. Fiz. 124 (2003) 483-490 hep-ph/0304058.

[29] D. Borisyuk, M. Faber and A. Kobushkin, hep-ph/0307370 and hep-ph/0312213 (to be published in Ukr. Phys. J.).

[30] Bin Wu, Bo-Qiang Ma, hep-ph/0312041

[31] J. Ellis, M. Karliner and M. Praszalowicz, hep-ph/0401127

[32] J.J. Dudek and F.E. Close, hep-ph/0311258.

[33] V.G.J. Stokes and Th.A. Rijken, Phys. Rev., C59 (1999) 3009.

[34] A. Render, K. Holinde and J. Speth, Nucl. Phys., A570 (1994) 543.

[35] S. Nam, A. Hosaka and H. Kim, hep-ph/0405227

[36] S.I. Nam, A. Hosaka and H.Ch. Kim, hep-ph/0402138

[37] S. Nussinov, hep-ph/0307357

[38] R.A. Arndt, I.I. Strakowsky and R.A. Workman, Phys. Rev., C68 (2003) 042201 [nucl-th/030012].

[39] J. Haidenbauer and G. Kein, Phys. Rev., C68 (2003) 052201 hep-ph/0309243.