A retarded mean-field approach for interacting fiber structures

Citation for published version (APA):
Borsche, R., Klar, A., Nessler, C., Roth, A., & Tse, O. T. C. (2017). A retarded mean-field approach for interacting fiber structures. Multiscale Modeling & Simulation, 15(3), 1130-1154. https://doi.org/10.1137/151005592

DOI:
10.1137/151005592

Document status and date:
Published: 01/01/2017

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Apr. 2020
A RETARDED MEAN-FIELD APPROACH FOR INTERACTING FIBER STRUCTURES

R. BORSCHE†, A. KLAR‡, C. NESSLER†, A. ROTH†, AND O. TSE†

Abstract. We consider an interacting system of one-dimensional structures modeling fibers with fiber-fiber interaction in a fiber lay-down process. The resulting microscopic system is investigated by looking at different asymptotic limits of the corresponding stochastic model. Equations arising from mean-field and diffusion limits are considered. Furthermore, numerical methods for the stochastic system and its mean-field counterpart are discussed. A numerical comparison of solutions corresponding to the different scales (microscopic, mesoscopic, and macroscopic) is included.

Key words. interacting stochastic particles, fibers, mean-field equations, retarded potential, delay equations

AMS subject classifications. 92D50, 35B40, 82C22, 92C15

DOI. 10.1137/151005592

1. Introduction. One-dimensional structures appear in various contexts of industrial applications. They are used, for example, in the modeling of polymers in suspensions, composite materials, nanostructures, fiber dynamics in turbulent flows, and, in particular, fiber lay down in technical processes of nonwoven materials. Furthermore, such structures have been modeled on different levels of description involving different scales. Besides microscopic models, mesoscopic kinetic or Fokker–Planck equations have been widely used for a statistical description of the fiber or polymer distributions. We refer to [1, 2] and [18, 22] for concrete examples in the industry. In this article, we consider nonwoven materials, which are webs of long flexible fibers. Production processes and models corresponding to the lay down of such fibers have been intensively investigated. See [4] and the above cited references.

These models do not represent reality in the sense of a physical model. Instead the focus has been on the development of relatively simple models suitable for large scale computations and optimization routines. Such models include basic physical features like coiling, buckling, reaction to turbulent flow in a strongly simplified way; however, parameters in these models are fitted via full physical simulations. The present model represents one more step in such a hierarchy of models including the finite size of fibers and interactions between the fibers. This has not been considered in the models for mutually independent fibers developed up to now.

Therefore, the present work aims at including fiber–fiber interaction, thereby describing the size of each fiber and, simultaneously, the absence of intersection among fibers. This is achieved by simply including the interaction of structures into a well-investigated model described in nonwoven production processes. Taking into account

*Received by the editors January 26, 2015; accepted for publication (in revised form) June 9, 2017; published electronically July 27, 2017.

http://www.siam.org/journals/mms/15-3/100559.html

Funding: This research was supported by the Deutsche Forschungsgemeinschaft (DFG) within the RTG GrK 1932 “Stochastic Models for Innovations in the Engineering Sciences,” project area P1.

†Fachbereich Mathematik, Technische Universität Kaiserslautern, Germany (borsche@mathematik.uni-kl.de, nessler@mathematik.uni-kl.de, roth@mathematik.uni-kl.de, tse@mathematik.uni-kl.de).

‡Fachbereich Mathematik, Technische Universität Kaiserslautern, Germany. Current address: Fraunhofer ITWM, Kaiserslautern, Germany (klar@itwm.fhg.de).

1130
the interaction of the structures on the microscopic level leads to coupled systems of stochastic differential equations. Its statistical description should also take into account the interactions and will consequently no longer be based on the classical Fokker–Planck model.

The new model uses of microscopic systems of retarded stochastic differential equations, and its mesoscopic description is obtained via formal mean-field procedures. The mean-field limit is described by a McKean–Vlasov-type equation with a delay term. We perform an analytical investigation of the mean field limit, as well as a numerical comparison of microscopic, mean field, and macroscopic equations. The analysis of the limit is based on the work in [5, 12, 15, 16, 17, 26, 32]. For numerical methods for mean-field-type equations we refer to [2, 27, 28, 31].

The paper is organized as follows: starting from a model for independent fibers, we present in section 2 a new model for interacting fibers, which takes into account the finite size of the fibers and prevents intersection of the fibers. The model is based on a system of retarded stochastic differential equations with suitable interaction potentials. Section 3 describes the mean-field equation and a discussion of its stationary solutions. The core of this section is devoted to the proof of the mean-field limit for the corresponding deterministic system, i.e., the rigorous derivation of the mean-field equation from the system of retarded deterministic equations. Section 4 contains the diffusion limit of the kinetic equation, while section 5 contains a description of the numerical methods used for the microscopic and mean-field equations. The numerical results include an investigation and comparison of stationary states, as well as a convergence analysis of solutions to equilibrium for both the microscopic and mean-field equations. We finally conclude in section 6.

2. Interacting isotropic fiber models. We begin by reviewing a basic, mutually independent fiber model for the lay-down process of fibers, described by a stochastic dynamical system in dimensions \(d \geq 2 \) (cf. [4, 22, 25]).

A nonwoven material is generated by the superposition of many elastic, slender, and inextensible fibers. Neglecting the interaction of neighboring fibers, a single fiber in an isotropic lay-down process is modeled on the conveyor belt as an arc-length parametrized curve \(x_t : \mathbb{R}^+ \to \mathbb{R}^d \) satisfying \(\|\tau_t\| = \|\partial_t x_t\| = 1 \), where \(\tau_t \) is the normalized tangent on the fiber. Assuming constant cross sections, the curve carries the full information of the mass contribution of this fiber to the mass distribution of the nonwoven material. We prescribe \(x_t \) by a dynamical system with respect to the arc length \(t \) that contains the crucial physical characteristics of the lay-down process, i.e., buckling or coiling of the fiber as well as the influence of the turbulent air flow in the deposition region on the fiber. Assuming a nonmoving conveyor belt, the dynamical system is modeled by the following stochastic differential equations using the state space \(\mathcal{M} := \mathbb{R}^d \times \mathbb{S}^{d-1} \), where \(\mathbb{S}^{d-1} \) denotes the unit sphere in \(\mathbb{R}^d \); a fiber is given by a path of the following stochastic differential equation for \((x_t, \tau_t) \in \mathcal{M} \),

\[
\begin{align*}
 dx_t &= \tau_t \, dt, \\
 d\tau_t &= (I - \tau_t \otimes \tau_t) \odot \left(-\frac{1}{d-1} \nabla_x V(x_t) \, dt + A \, dW_t\right)
\end{align*}
\]

with initial condition \((x_0, \tau_0) \in \mathcal{M} \). Here, \(V : \mathbb{R}^d \to \mathbb{R} \) is the so-called coiling is tial, \(A \) a nonnegative diffusion coefficient, and \(W_t \) is the standard Brownian motion. We use a coordinate free formulation, where \(\odot \) denotes the Stratonovich integral. Note that \((I - \tau \otimes \tau) \) is the projector of \(\mathbb{R}^d \) onto the tangent space of the unit sphere \(\mathbb{S}^{d-1} \) having the effect that \(\tau_t \) is on the unit sphere. We note also that this is only true using the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
Stratonovich stochastic integral; see [33] for a definition of Brownian motion on the unit sphere. We equip our state space with the measure \(dxdυ\), where \(dx\) denotes the Lebesgue measure on \(\mathbb{R}^d\) and \(dυ\) the normalized surface measure on \(S^{d-1}\). Note that the dimensional scaling \(1/(d-1)\) is introduced for convenience, in order to achieve a stationary state which does not explicitly depend on the spatial dimension. Finally, we refer to [11] for related work.

The fiber model above only describes the evolution of the center line of the fiber and does not capture the effects of the finite size of the fibers. Hence, self-intersection and intersection among fibers are not prevented in the model. A fiber model taking these points into account and including interactions between the fibers is developed in the following.

Consider \(N ∈ \mathbb{N}\) fibers with position and velocity \((x^i, τ^i) ∈ M\), for each \(i ∈ \{1, . . . , N\}\). The interacting fiber model reads

\[
\begin{align*}
 dx^i_t &= τ^i_t \, dt, \\
 dτ^i_t &= (I − τ^i_t ⊗ τ^i_t) \circ \left(-\frac{1}{d−1} \nabla x V(x^i_t) \, dt \\
 &\quad - \frac{1}{d−1} \left[\sum_{j=1}^{N} \int_{0}^{t} \nabla x U(x^i_t − x^j_s) \, ds \right] dt + AdW^i_t \right)
\end{align*}
\]

(2.2)

with independent Brownian motions \(W^i_t\). In comparison to the previous fiber model, we include a scaled, nonlocal interaction term

\[
\int_{0}^{t} \nabla x U(x^i_t − x^j_s) \, ds,
\]

where \(U\) is an interaction potential, which is repulsive in our case, so as to avoid any contact among the fibers. Note that a “nonretarded” version of this system would be similar to a model for swarming with roosting potential (cf. [7, 8]). In addition to the interaction term, our new model includes a delay term, i.e., an integration with respect to time, to describe the fact that fibers interact with each other and each with itself on the whole fiber length.

There is some freedom in the choice of the interaction potential. As a simple example, one can use a mollifier type potential

\[
U(x) = U(|x|) = C \exp \left(-\frac{(2R)^2}{(2R)^2 - |x|^2} \right) \quad \text{for } |x| < 2R,
\]

where \(R\) is a nonnegative parameter representing the fiber radius and \(C > 0\) is a fixed constant describing the strength of the interaction. Alternatively, a potential could be described by a smoothed version of Heaviside-type potential

\[
U(x) = U(|x|) = CΘ(2R − |x|)
\]

with Heaviside function \(Θ\). A smooth version of such a potential may be given by

(2.3)

\[
U(x) = \frac{C}{1 + \exp \left(-k \left(1 - \frac{|x|^2}{(2R)^2} \right) \right)}
\]
for some regularizing parameter $k > 0$. It should be noted that, with smooth u, intersections cannot be strictly prevented. The choices of U discussed here describe “soft fibers.”

In Figure 1 we compare the fiber curves for different noise amplitudes A. We use the coiling potential $V(x) = \frac{1}{2}|x|^2$ and the interaction potential U from (2.3), with $k = 100$, $C = 10$, and $R = 0.4$. We observe that the nonintersecting fiber curves are increasingly altered with increasing noise amplitude.

Remark 1.
1. For $U \equiv 0$, one obtains a fully decoupled system for (x^i, τ^i), and each fiber is described by the mutually independent model given in (2.1).
2. To consider inelastic interactions, one could include damping terms depending on the velocity in the interaction potential. This would lead to equations where a dissipative force is included in the interaction term.
3. As in the case without interaction, it is also possible to formulate a smooth version of the interacting fiber system. The basic idea is to replace the Brownian motion on the sphere by an Ornstein–Uhlenbeck process (cf. [23]).

Remark 2. It is also possible to include reference curves γ into the model, which describe, for example, the motion of a conveyor belt. This can be done in the following way.
way. We denote with \(x_i^t : \mathbb{R}_+ \to \mathbb{R}^d \) the actual fiber curves. Then (2.2) changes to
\[
\begin{align*}
\dot{x}_i^t &= \tau_i^t dt, \\
\dot{\tau}_i^t &= (I - \tau_i^t \otimes \tau_i^t) \circ \left(-\frac{1}{d-1} \nabla_x V(x_i^t - \gamma) dt \\
&\quad - \frac{1}{d-1} \left[\sum_{j=1}^N \int_0^t \nabla_x U(x_i^s - x_j^s) ds \right] dt + A dW_i^t \right).
\end{align*}
\]
(2.4)

A change of variables \(\xi_i^t := x_i^t - \gamma \) describes the deviation of the fiber curves from the reference curve and, thus, (2.4) may be written as
\[
\begin{align*}
\dot{\xi}_i^t &= \tau_i^t dt - d\gamma_t, \\
\dot{\tau}_i^t &= (I - \tau_i^t \otimes \tau_i^t) \circ \left(-\frac{1}{d-1} \nabla_x V(\xi_i^t) dt \\
&\quad - \frac{1}{d-1} \left[\sum_{j=1}^N \int_0^t \nabla_x U((\xi_i^t - \xi_j^s) + \gamma_t - \gamma_s) ds \right] dt + A dW_i^t \right).
\end{align*}
\]
(2.5)

In this case the force due to the interaction potential depends on the relative fiber point position as well as on the difference \(\gamma_t - \gamma_s \) in the reference curve.

In the relevant case of nonwovens on a conveyor belt moving with constant speed, we consider \(d \in \{2, 3\} \) and a reference curve given by \(\gamma_t = -v_{\text{ref}} e_1 t \). Here \(v_{\text{ref}} = v_{\text{belt}}/v_{\text{prod}} \) is the ratio between the speed of the conveyor belt, \(v_{\text{belt}} \), and the speed of the production process, \(v_{\text{prod}} \), and \(e_1 \) denotes the direction of belt movement (cf. [22]).

In the following, we formulate a slightly more general model than (2.2). Since, in reality, the fiber material is transported away by the belt, interaction will not take place for the full history of the fibers. Thus, it is reasonable to consider a cutoff with a cutoff size \(H > 0 \) depending potentially on the speed of the belt. Define
\[
h(t) = \begin{cases}
 t & \text{for } t \leq H, \\
 H & \text{for } t > H,
\end{cases} \quad H \in (0, \infty).
\]

Then the interacting fiber model with cutoff is given by
\[
\begin{align*}
\dot{x}_i^t &= \tau_i^t dt, \\
\dot{\tau}_i^t &= (I - \tau_i^t \otimes \tau_i^t) \circ \left(-\frac{1}{d-1} \nabla_x V(x_i^t - \gamma) dt \\
&\quad - \frac{1}{d-1} \left[\sum_{j=1}^N \int_{t-h(t)}^t \nabla_x U((x_i^s - x_j^s) + \gamma_t - \gamma_s) ds \right] dt + A dW_i^t \right).
\end{align*}
\]
(2.6)

In the limit \(H \to 0 \), we obtain here the model for independent fibers (2.1), whereas, in the limit \(H \to \infty \), we obtain the interacting fiber model in (2.2). For the following investigations we neglect the motion of the belt and consider (2.6) with \(\gamma = 0 \).
3. Mean-field equation. For the following investigations we consider a scaled version of (2.6) and restrict ourselves for simplicity to the case $\gamma = 0$. We consider

\[
\begin{align*}
\frac{dx_i}{dt} &= \tau_i \cdot dt, \\
\frac{d\tau_i}{dt} &= (I - \tau_i \otimes \tau_i) \circ \left(-\frac{1}{d-1} \nabla_x V(x_i) dt - \frac{1}{d-1} \sum_{j=1}^{N} \frac{1}{h(t)} \int_{t-h(t)}^{t} \nabla_x U(x_i - x_j) ds \right) dt + A dW_i.
\end{align*}
\]

The factor $1/N$ leads to the so-called “weak coupling scaling” (cf. [5, 26]). Similarly, the scaling $1/t$ is a normalization of the potential with respect to the integration over t. Also note that the summation does not exclude $i = j$, which accounts for self-interaction of a fiber with itself.

We note that in this case we obtain for $H \to 0$ a nonretarded interacting particle model with constant speed, whereas, in the limit $H \to \infty$, we obtain a scaled version of (2.2).

Remark 3. The scalings $1/t$ and $1/N$ are normalizations of the total amount of fiber material in the system. The equations with such a scaling could be viewed as a model for a textile composed of a large number of fibers with a given area weight and fiber density. The unscaled version would result in a fabric increasing to infinity with fiber length and fiber number.

The associated mean-field equation for the distribution function $f = f(t, x, \tau)$ may be formally derived from the microscopic equations following the procedure described, for example, in [15, 17] for the classical case, in [6] for the case with stochastic forcing, or [15, 6, 17] for an equation with delay terms. A rigorous convergence result for the case with velocities restricted to the unit sphere, but without a stochastic term, is presented in the next section. The equation reads

\[
\partial_t f + \tau \cdot \nabla_x f + Sf = Lf
\]

with deterministic force term $Sf = S^V f + S^U f$ given by

\[
\begin{align*}
S^V f &= -\nabla_{\tau} \cdot \left(f (I - \tau \otimes \tau) \frac{1}{d-1} \nabla_x V \right), \\
S^U f &= -\nabla_{\tau} \cdot \left(f (I - \tau \otimes \tau) \frac{1}{d-1} \frac{1}{h(t)} \int_{t-h(t)}^{t} \int_{\mathbb{R}^d} \nabla_x U(x - y) \rho(s, y) dy ds \right),
\end{align*}
\]

where ∇_{τ} is the gradient on S^{d-1}, and diffusion operator

\[
Lf = \frac{A^2}{2} \Delta_{\tau} f,
\]

where Δ_{τ} denotes the Laplace–Beltrami operator on S^{d-1}. In addition, we have the normalization $\int_{\mathbb{R}^d} \rho \, dx = 1$, where ρ denotes the zeroth moment $\rho = \int_{S^{d-1}} f \, dv$.
The rest of this section is devoted to a rigorous proof of the mean-field limit for the deterministic interacting fiber model

\[
\frac{dx_i}{dt} = \tau_i,
\]

\[
\frac{d\tau_i}{dt} = (I - \tau_i \otimes \tau_i) \circ \left(-\frac{1}{d-1} \nabla_x V(x_i) - \frac{1}{d-1} \frac{1}{N} \sum_{j=1}^{N} \int_{t-h(t)}^{t} \nabla_x U(x_i - x_j) \, ds \right),
\]

towards the Vlasov-type equation

\[
\partial_t f + \tau \cdot \nabla_x f + Sf = 0,
\]

where \(S = S^V + S^U \) is as given in (3.3).

3.1. Mean-field limit of a retarded system.

We consider a system of \(N \in \mathbb{N} \) interacting particles with state \(Z_i^t \in \mathbb{R}^m, \, m \in \mathbb{N} \) at time \(t \in \mathbb{R}_+ \):

\[
\frac{dZ_i^t}{dt} = a(Z_i^t) + \frac{1}{N} \sum_{j=1}^{N} \frac{1}{h(t)} \int_{t-h(t)}^{t} B(Z_i, Z_j^s) \, ds, \quad Z_i^0 = z^i \in \mathbb{R}^m,
\]

for each \(i \in \{1, \ldots, N\} \), where as above

\[
h(t) = \begin{cases}
 t & \text{for } t \leq H, \\
 H & \text{for } t > H, \quad H \in (0, \infty) \text{ or } h(t) = t,
\end{cases}
\]

and \(a \in \text{Lip}(\mathbb{R}^m), \, B \in \text{Lip}_b(\mathbb{R}^m \times \mathbb{R}^m; \mathbb{R}^m) \) are globally Lipschitz, satisfying

\[
\begin{align*}
\sup_{z_1, \hat{z}_1, z_2, \hat{z}_2 \in \mathbb{R}^m} |B(z_1, \hat{z}_1) - B(z_2, \hat{z}_2)| &\leq \text{Lip}(B) \, 1 \wedge |z_1 - z_2|, \\
\sup_{z_1, \hat{z}_1, z_2, \hat{z}_2 \in \mathbb{R}^m} |B(z, \hat{z}_1) - B(z, \hat{z}_2)| &\leq \text{Lip}(B) \, 1 \wedge |\hat{z}_1 - \hat{z}_2|,
\end{align*}
\]

where we use the notation \(x \wedge y = \min\{x, y\} \). As in (2.2) and (2.6), (3.7) is a retarded system of ordinary differential equations.

Denote by \(\mathcal{P}_r(\mathbb{R}^m), \, r > 0 \), the set of Borel probability measures \(\mu \) such that

\[
\int_{\mathbb{R}^m} |z|^r \mu(dz) < \infty.
\]

For every probability measure \(\mu \in \mathcal{P}_1(\mathbb{R}^m) \), we set

\[
\mathcal{K}\mu(z) := \mu(B(z, \cdot)) = \int_{\mathbb{R}^m} B(z, \hat{z}) \mu(d\hat{z}), \quad z \in \mathbb{R}^m.
\]

Taking the empirical measure \(\mu^N_s = \frac{1}{N} \sum_{j=1}^{N} \delta(\cdot - Z^t_j) \in \mathcal{P}_1(\mathbb{R}^m) \) as \(\mu \) in (3.8) gives

\[
\mathcal{K}\mu^N_s(Z^t_j) = \int_{\mathbb{R}^m} B(Z^t_j, \hat{x}) \mu^N_s(d\hat{x}) = \frac{1}{N} \sum_{j=1}^{N} B(Z^t_j, Z^t_j).
\]
Therefore, we may consider a mean-field equation given by
\begin{equation}
\frac{dZ_t}{dt}(z) = F(t, Z_t(z), \{\mu_t\}) := a(Z_t(z)) + \frac{1}{h(t)} \int_{t-h(t)}^{t} K_{\mu_s}(Z_t(z)) \, ds \tag{3.9}
\end{equation}
with initial condition \(Z_0(z) = z \), \(\text{law}(Z_0) = \mu_0 \). Here \(\mu_t = Z_t(\cdot) \# \mu_0 \) denotes the push forward of the measure \(\mu_0 \in \mathcal{P}_1(\mathbb{R}^m) \), i.e.,
\[
\int_{\mathbb{R}^m} \varphi(z) \, \mu_t(dz) = \int_{\mathbb{R}^m} \varphi(Z_t(z)) \, \mu_0(dz) \quad \forall \varphi \in C_0(\mathbb{R}^m)
\]
under the flow \(Z \in \mathcal{C}(\mathbb{R}_+ \times \mathbb{R}^m; \mathbb{R}^m) \) generated by the mean-field equation, and \(\{\mu_t\}_t \) denotes the family of measures \(\{\mu_s, s \in [0, t]\} \) up to time \(t > 0 \).

We begin with an existence and uniqueness result for solutions of (3.9). Our results generalize those given in [16], which follow the general scheme introduced in [12] (cf. [5, 26]). The proof relies on a slight modification of the proof in [16, Proposition 4.1]. For the sake of completeness, we include the proof in Appendix A.

Proposition 3.1. Let the assumptions on \(a \) and \(B \) above be satisfied. Then the mean-field equation (3.9) admits a unique global solution \(Z \in \mathcal{C}(\mathbb{R}_+ \times \mathbb{R}^m; \mathbb{R}^m) \).

Remark 4. The family of measures \(\{\mu_t = Z_t(\cdot) \# \mu_0\} \subset \mathcal{P}_1(\mathbb{R}^m) \) generated by the flow \(Z \in \mathcal{C}(\mathbb{R}_+ \times \mathbb{R}^m; \mathbb{R}^m) \) provides a weak solution to the Vlasov equation
\begin{equation}
\partial_t \mu_t + \text{div}(F(t, z, \{\mu_t\}) \mu_t) = 0. \tag{3.10}
\end{equation}
More precisely, for all \(h \in C_0^\infty(\mathbb{R}^m) \), the functions \(\mu_t(h) \) are differentiable,
\[
\frac{d\mu_t(h)}{dt} = \mu_t(F(t, \cdot, \{\mu_t\}) \cdot \nabla h)
\]
for all \(t > 0 \), and \(\mu_t(h) \to \mu_0(h) \) for \(t \to 0^+ \).

Next, we show that solutions to the mean-field equation (3.9) depend continuously on the initial probability measures \(\mu_0 \in \mathcal{P}_1(\mathbb{R}^m) \). To do so, we need to measure the difference of two probability measures \(\mu, \nu \in \mathcal{P}_1(\mathbb{R}^m) \). A convenient way is to use the Monge–Kantorovich–Rubinstein distance \(W_1 \) on \(\mathcal{P}_1(\mathbb{R}^m) \) defined in [20] (cf. [34]),
\[
W_1(\mu, \nu) = \inf_{\pi \in \Pi(\mu, \nu)} \int_{\mathbb{R}^m \times \mathbb{R}^m} 1 \wedge |x - y| \, \pi(dx \, dy),
\]
where \(\Pi(\mu, \nu) \) is the set of Borel probability measures on \(\mathbb{R}^m \times \mathbb{R}^m \) such that
\[
\int_{\mathbb{R}^m \times \mathbb{R}^m} (\phi(x) + \psi(y)) \pi(dx \, dy) = \int_{\mathbb{R}^m} \phi(z) \, dz + \int_{\mathbb{R}^m} \psi(z) \, dz
\]
for all \(\phi, \psi \in C_0(\mathbb{R}^m) \). This distance is also called the Wasserstein distance.

Proposition 3.2. Let \(\mu_0^j \in \mathcal{P}_1(\mathbb{R}^m) \), and \(Z^j \in \mathcal{C}(\mathbb{R}_+ \times \mathbb{R}^m; \mathbb{R}^m) \) be the corresponding solution to the mean-field equation (3.9) with initial conditions
\[
Z^j_0(z) = z, \quad \text{law}(Z^j_0) = \mu_0^j \quad \text{for} \ j = 1, 2,
\]
then for every \(T > 0 \), the following stability estimate holds:
\[
\sup_{t \in [0, T]} W_1(\mu^1_t, \mu^2_t) \leq c(1 + T) e^{cT} W_1(\mu_0^1, \mu_0^2)
\]
for some constant \(c = c(F, H) > 0 \), where \(\mu^j_t := Z^j_t(\cdot) \# \mu^j_0 \).
Finally, optimizing in π given in Proposition 3.2 provides the convergence

$$\lim_{t \to \infty} \mathcal{D}(t) = 0$$

is a weak solution to the Vlasov equation (3.10) by construction. Therefore, if we know that $\lim_{N \to \infty} W_1(\mu_t, \mu_0^N) = 0$ for some $\mu_0 \in \mathcal{P}_1(\mathbb{R}^m)$, then the stability result given in Proposition 3.2 provides the convergence

$$\lim_{N \to \infty} W_1(\mu_t, \mu_0^N) = 0 \quad \text{for any } t \in [0, T],$$

where $\mu_t = Z_t(\cdot) \# \mu_0$ with $Z \in \mathcal{C}([0, T] \times \mathbb{R}^m; \mathbb{R}^m)$.

Remark 5. For any $N \in \mathbb{N}$, the family of empirical measures $\{\mu_t^N, t \geq 0\} \subset \mathcal{P}_1(\mathbb{R}^m)$ defined by $\mu_t^N = Z_t(\cdot) \# \mu_0^N \in \mathcal{P}_1(\mathbb{R}^m)$, where

$$\mu_0^N = \frac{1}{N} \sum_{j=1}^{N} \delta(\cdot - z_j), \quad z_j \in \mathbb{R}^m, \quad j = 1, \ldots, N,$$

is a weak solution to the Vlasov equation (3.10) by construction. Therefore, if we know that $\lim_{N \to \infty} W_1(\mu_t, \mu_0^N) = 0$ for some $\mu_0 \in \mathcal{P}_1(\mathbb{R}^m)$, then the stability result given in Proposition 3.2 provides the convergence

$$\lim_{N \to \infty} W_1(\mu_t, \mu_0^N) = 0 \quad \text{for any } t \in [0, T],$$

where $\mu_t = Z_t(\cdot) \# \mu_0$ with $Z \in \mathcal{C}([0, T] \times \mathbb{R}^m; \mathbb{R}^m)$.

Proof. Let $\pi_0 \in \Pi(\mu_0^1, \mu_0^2)$, and define

$$\mathcal{D}(t) := \int_{\mathbb{R}^m \times \mathbb{R}^m} 1 \wedge |Z_t^1(z_1) - Z_t^2(z_2)| \, \pi_0(dz_1 dz_2).$$

Following the arguments in the proof of Proposition 3.1, we derive the estimate

$$\mathcal{D}(t) \leq \mathcal{D}(0) + \text{Lip}(F) \int_0^t \mathcal{D}(s) \, ds + \text{Lip}(B) \int_0^t \frac{1}{h(s)} \int_{s - h(s)}^s \mathcal{D}(\sigma) \, d\sigma \, ds.$$

We only show the estimate for the case $H = \infty$, i.e., $h(t) = t$. The general case $H > 0$ may be shown analogously. Similarly to Proposition 3.1, by simple but tedious computations, we have

$$\mathcal{D}(t) \leq \mathcal{D}(0) + \text{Lip}(F) \int_0^t g(t, s) \, \mathcal{D}(s) \, ds$$

with $g(t, s) = 1 + \ln(t) - \ln(s)$. Recursively, we obtain

$$\left(1 - \text{Lip}(F) \frac{(n+1)T^k}{k!}\right) \sup_{t \in [0, T]} \mathcal{D}(t) \leq \sum_{\ell=0}^{k} \text{Lip}(F)^{\ell} \frac{(1+1)T^{\ell}}{\ell!} \mathcal{D}(0).$$

Therefore, passing to the limit $k \to \infty$ yields

$$\sup_{t \in [0, T]} \mathcal{D}(t) \leq c(1 + T) e^{cT} \mathcal{D}(0)$$

with $c = \max\{1, \text{Lip}(F)\}$. Since

$$\mathcal{D}(t) = \int_{\mathbb{R}^m \times \mathbb{R}^m} 1 \wedge |z_1 - z_2| \pi_t(dz_1 dz_2),$$

where π_t is the push forward measure of π_0 under the map (Z_t^1, Z_t^2) and

$$\pi_0 \in \Pi(\mu_0^1, \mu_0^2) \implies \pi_t \in \Pi(\mu_t^1, \mu_t^2)$$

for any $t \geq 0$, we have

$$\sup_{t \in [0, T]} W_1(\mu_t^1, \mu_t^2) \leq c(1 + T) e^{cT} \mathcal{D}(0).$$

Finally, optimizing in π_0 yields the required assertion.
3.2. Application to the retarded fiber equations. We now use the results above to show the mean-field limit of (3.5) towards (3.6). For this reason, we denote
\[Z^i_t = (x^i_t, \tau^i_t) \in \mathbb{R}^d \times \mathbb{R}^d, \]
and write \(a = (a_1, a_2) \), \(B = (B_1, B_2) \) with
\[
a_1(Z^i_t) = \tau^i_t, \quad a_2(Z^i_t) = -\frac{1}{d-1} (I - \tau^i_t \otimes \tau^i_t) \circ \nabla_x V(x^i_t),
\]
\[
B_1(Z^i_t, Z^j_t) = 0, \quad B_2(Z^i_t, Z^j_t) = -\frac{1}{d-1} (I - \tau^i_t \otimes \tau^i_t) \circ \nabla_x U(x^i_t - x^j_t).
\]

Obviously, we are unable to directly apply the results developed above, since \(a \) and \(B \) do not satisfy the assumptions above. Consider \(B_2 \) for the moment. Simple but tedious computations yield
\[
|B_2(z_1, \hat{z}) - B_2(z_2, \hat{z})| \leq \text{Lip}(\nabla_x U) \left((1 + |\tau_1|^2) |x_1 - x_2| + (|\tau_1| + |\tau_2|) |\tau_1 - \tau_2| \right),
\]
\[
|B_2(z, \hat{z}_1) - B_2(z, \hat{z}_2)| \leq \text{Lip}(\nabla_x U) (1 + |\tau|^2) |\hat{x}_1 - \hat{x}_2|.
\]

Hence, \(B \) is not globally Lipschitz. Fortunately, if we only consider \(B \) on the subset \(\mathcal{M} \subset \mathbb{R}^d \times \mathbb{R}^d \), then \(\text{Lip}(B) = 2\text{Lip}(\nabla_x U) \). Consequently, \(B \) is globally Lipschitz on \(\mathcal{M} \). Clearly, the same conclusion holds for \(a \).

In order to ensure that \(Z^i_t \in \mathcal{M} \) for all \(t \geq 0 \), we observe that
\[
\frac{d}{dt} \frac{1}{2} |\tau^i_t|^2 = 0 \quad \text{for all } t \geq 0, \quad i = 1, \ldots, N.
\]

Therefore, if we start with \(\tau^i \in \mathbb{S}^{d-1} \), then also \(\tau^i_t \in \mathbb{S}^{d-1} \) for all other times \(t > 0 \), and we may apply our results obtained above to initial measures \(\mu_0 \in \mathcal{P}_1(\mathbb{R}^d \times \mathbb{R}^d) \) with \(\text{supp}(\mu_0) \subset \mathcal{M} \). Indeed, since \(Z_t(x, \tau) \in \mathcal{M} \) for any \((x, \tau) \in \mathcal{M} \), we may consider the flow on \(\mathcal{M} \) and the push forward \(\mu_t = Z_t(\cdot) \# \mu_0 \in \mathcal{P}_1(\mathcal{M}) \), as soon as \(\text{supp}(\mu_0) \subset \mathcal{M} \).

4. Large diffusion scaling. In this section we formally investigate situations with large values for the noise amplitude on a diffusive time scale, i.e., we change \(\hat{L} = \epsilon L \) and \(\hat{t} = \epsilon t \) (cf. [3, 19]). Replacing the scaled operators in (3.2) and omitting the tilde lead to the scaled equation
\[
(4.1) \quad \epsilon \partial_t f + \tau \cdot \nabla_x f + Sf = \frac{1}{\epsilon} Lf.
\]

We use a Hilbert expansion of the form \(f = f_0 + \epsilon f_1 + \cdots \) for (4.1). To order 1, we simply get \(f_0 = f_0(x) = \rho(x) \). To order \(\epsilon \), one obtains
\[
\tau \cdot \nabla_x f_0 + Sf_0 = \frac{A^2}{2} \Delta_x f_1
\]
which, due to the Fredholm alternative, gives
\[
f_1 = -\frac{2}{A^2(d+1)} \tau \cdot \nabla_x \left(\ln f_0 + V + \frac{1}{\hat{h}(t)} \int_{-\hat{h}(t)}^t (U * f_0)(s, \cdot) \, ds \right).
\]

Integrating (4.1) with respect to \(dv \) gives
\[
\epsilon \partial_t \int_{\mathbb{S}^{d-1}} f \, dv + \nabla_x \cdot \int_{\mathbb{S}^{d-1}} \tau f \, dv = 0.
\]
Considering terms up to order ϵ, we obtain
\[\partial_t f_0 + \nabla_x \cdot \int_{S^{d-1}} \tau_1 f_1 d\nu = 0. \]

Therefore, inserting f_1 and computing the integral over the tensor product yields
\[\partial_t \rho = \frac{2}{d(d-1)A^2} \nabla_x \cdot \left[\rho \nabla_x \left(\ln \rho + V + \frac{1}{h(t)} \int_{t-h(t)}^t (U \ast \rho)(s, \cdot) ds \right) \right]. \]

This equation is similar to an equation derived in [4, 19, 25] for the case without an interaction potential. The stationary equation reads
\[\rho \nabla_x \left(\ln \rho + V + U \ast \rho \right) = 0, \quad \int_{\mathbb{R}^d} \rho \, dx = 1, \]
which leads to the integral equation
\[\ln \rho + V + U \ast \rho = c, \tag{4.2} \]
where the constant c is fixed by the normalization $\int_{\mathbb{R}^d} \rho \, dx = 1$. It may be written in the equivalent fixed-point form
\[\rho = \frac{e^{-V - U \ast \rho}}{\int_{\mathbb{R}^d} e^{-V - U \ast \rho} \, dx}. \tag{4.3} \]

Remark 6. A stationary solution of the mean-field equation (3.2) is given by the time-independent solution of
\[\tau \cdot \nabla_x f + Sf = \frac{A^2}{2} \Delta f. \]

One observes that a solution independent of τ is given by $f = \rho$, where ρ is the solution of the above equation (4.2):
\[\rho \nabla_x \left(\ln \rho + V + U \ast \rho \right) = 0. \]

In contrast to the case without interaction, the stationary solution has to be determined numerically.

5. Numerical method and results. In this section we investigate the qualitative behavior of solutions corresponding to the interacting fiber model numerically. More specifically, we consider the case of isotropic fibers in three spatial dimensions.

5.1. Numerical methods. We describe numerical solvers for the microscopic, mean-field, and macroscopic equations, respectively.

5.1.1. Microscopic model. To solve (2.2) or (2.6) numerically we use the Euler–Maruyama method. Using Itô integration, (2.2) is written as
\[dx^i_t = \tau^i_t \, dt, \]
\[d\tau^i_t = -\frac{1}{2} \left(I - \tau^i_t \otimes \tau^i_t \right) \left(\nabla_x V(x^i_t) + \frac{1}{N} \sum_{j=1}^N \frac{1}{t} \int_0^t \nabla_x U \left(x^i_t - x^j_s \right) ds \right) \, dt + A^2 \tau^i_t \, dt + A \left(I - \tau^i_t \otimes \tau^i_t \right) dW^i_t. \]
The Itô form of (2.6) is obtained in an analogous way. We consider an equidistant time grid given by \(0 = t_0 < \cdots < t_n\) with step size \(\Delta t\). We denote \(x_n^i := x_{tn}^i\) for the position of fiber \(i\) at time \(t_n = n\Delta t\). The time integration in (2.2) is approximated by

\[
(5.1) \quad \frac{1}{\tau} \int_0^t \nabla_x U(x_t^i - x_s^i) \, ds \approx \frac{1}{n} \sum_{k=1}^n \frac{1}{\tau_n} \nabla_x U(x_n^i - x_k^i) \Delta t = \frac{1}{n} \sum_{k=1}^n \nabla_x U(x_n^i - x_k^i).
\]

For (2.6) with \(H \geq 0\), we set up a buffer to store the previous positions \(x_n^i\). The buffer size is determined by \(n_{buf} = h(t)/\Delta t\). The time integration is then approximated by

\[
(5.2) \quad \frac{1}{h(t)} \int_{t-h(t)}^t \nabla_x U(x_t^i - x_s^i) \, ds \approx \frac{1}{n_{buf}} \sum_{k=1}^{n_{buf}} \nabla_x U(x_n^i - x_{n-k}^i) \Delta t.
\]

Hence, the Euler–Maruyama iteration is given by

\[
x_{n+1}^i = x_n^i + \Delta t \cdot \tau_n^i,
\]

\[
\tilde{\tau}_{n+1}^i = \tau_n^i - \Delta t \cdot \left(\frac{1}{2} (I - \tau_n^i \otimes \tau_n^i) \left(\nabla_x V(x_n^i) + \frac{1}{N} \sum_{j=1}^N \left[\sum_{k=1}^n \frac{1}{\tau_n} \nabla_x U(x_n^i - x_k^i) \Delta t \right] \right) - A^2 \tau_n^i \right)
\]

\[
+ \sqrt{\Delta t} \cdot A (I - \tau_n^i \otimes \tau_n^i) R_n^i,
\]

\[
\tau_{n+1}^i = \frac{\tilde{\tau}_{n+1}^i}{\|\tilde{\tau}_{n+1}^i\|},
\]

where \(R_n^i \in \mathbb{R}^3\) for \(i = 1, \ldots, N\) is a vector containing three normally distributed random values. For (2.6), one has to replace the sum over all previous time steps (5.1) by the sum over the time step buffer (5.2). Without taking further measures, \(\tau_{n+1}^i\) will not have norm 1 after a time step \(\Delta t > 0\). That is why we renormalize \(\tau_{n+1}^i\) after each time step. Typical simulations of the microscopic system include \(N \sim 10^6\) fibers, whose positions are used to obtain a histogram, which will be compared to the solution of the mean-field equation described below. For such large values of \(N\), the evaluation of the interaction term is quite costly. Several measures were taken to ensure reasonable computing time:

1. We did not sum up every time step in (5.1) and considered only every \(\bar{n}\)th time step. In that way, the results are not altered in a significant way, if \(\bar{n}\) is not too large.

2. Furthermore, the Fortran code carrying out the microscopic simulations was parallelized using OpenMP. If a reasonable scaling of the computing time with the number of processors is to be achieved, the parts of the code running in parallel have to be as mutually independent as possible, in order to reduce the overhead in communication between parallel threads.

3. Therefore, we divided \(N\) into smaller groups of fibers, which then interact only within each group, thereby enabling a parallel computation with very little overhead. The histogram for the spatial density is then produced from the position data of all the groups.

5.1.2. Mean-field equation

The numerical methods used here are an advancement of the schemes used in [9, 28, 29]. We apply a second order Strang splitting [10] to (3.2) to obtain subproblems on spatial and velocity domain. We split the equation

\[
\partial_t f + \tau \cdot \nabla_x f + S f = L_f
\]
into the subequations

\begin{align}
\partial_t f^{(1)} &= -\frac{1}{2}(Sf^{(1)} - Lf^{(1)}), \\
\partial_t f^{(2)} &= -\tau \cdot \nabla_x f^{(2)}, \\
\partial_t f^{(3)} &= -\frac{1}{2}(Sf^{(3)} - Lf^{(3)}).
\end{align}

Equation (5.4) has to be solved only on the spatial domain \mathbb{R}^3, while (5.3) and (5.5) are to be solved on the velocity domain \mathbb{S}^2. Note however, that all the computation steps on one grid have to be carried out for every grid point on the other grid.

First, we discuss the solution of (5.3) and (5.5) with a finite volume discretization of the velocity space based on a geodesic grid (cf. [28, 30]). The geodesic grid consists of spherical triangles, which are represented with vertices and normals in \mathbb{R}^3, neighbor relations, and correct distance and surface measures. In this way the geometry is included implicitly into the method. We denote by T_i the ith cell of the grid with cell midpoint τ_i. The cell midpoint is chosen to be the intersecting point of the great circle arcs passing perpendicularly through the midpoints of the cell edges. $|\cdot|$ denotes a length or surface measure, T_{ij} denotes the edge between cells T_i and T_j, τ_{ij} denotes the edge midpoint, and $e(\tau_{ij})$ denotes the outer normal vector of cell i at the edge midpoint τ_{ij}. The distance from cell midpoint τ_i to τ_j is given by h_{ij}, which is divided into the parts h_1 and h_2. Due to the construction of the grid, the distance between cell midpoints does not vary that much, and $h_1, h_2 \sim h_{ij}/2$, so all the cells have nearly the same size and shape. The reader is referred to Figure 2 for a visualization of the grid structure and notations.

As for any finite volume scheme, the solution is obtained via cell averages

$$f_i^n = \frac{1}{|T_i|} \int_{T_i} f(t_n, x, \tau) \, d\tau,$$

where $d\tau$ is the canonical surface measure on the sphere. We define

$$F(t, x, \tau) := \frac{1}{2}(I - \tau \otimes \tau) \left(\nabla_x U + \frac{1}{h(t)} \int_{t-h(t)}^t \nabla_x U * \rho \, ds \right),$$

\textbf{Fig. 2.} The left figure depicts two connected triangles of the geodesic grid, while the right figure shows the full spherical grid.
and integrate (5.3, 5.5) over the cells \([t_n, t_{n+1}] \times T_i\) to obtain

\[
f^{n+1}_i - f^n_i = \frac{1}{|T_i|} \sum_{j \in N(i)} \left[\int_{t_n}^{t_{n+1}} \int_{T_{ij}} F(s, x, \tau) \cdot e(\tau) \, f \, d\tau \, ds \\
+ \frac{A^2}{2} \int_{t_n}^{t_{n+1}} \int_{T_{ij}} \nabla f \cdot e(\tau) \, d\tau \, ds \right].
\]

Applying the midpoint rule on the cell edge and in time, one obtains the iteration

\[
\frac{f^{n+1}_i - f^n_i}{\Delta t} \sim \frac{1}{|T_i|} \sum_{j \in N(i)} \left[|T_{ij}| \left(F(x, \tau_{ij}) \cdot e(\tau_{ij}) f(t_{n+\frac{1}{2}}, x, \tau_{ij}) - f^n_i \right) \\
+ \frac{A^2}{2} |T_{ij}| \nabla f(t_{n+\frac{1}{2}}, x, \tau_{ij}) \cdot e(\tau_{ij}) \right].
\]

The overall order of the method depends on the approximation of \(f(t_{n+\frac{1}{2}}, x, \tau_{ij})\) and the normal flux \(\nabla f(t_{n+\frac{1}{2}}, x, \tau_{ij}) \cdot e(\tau_{ij})\). In this case, we choose

\[
f(t_{n+\frac{1}{2}}, x, \tau_{ij}) \sim \frac{h_1 + \frac{A^2}{2}(F(x, \tau_{ij}) \cdot e(\tau_{ij}))}{h_{ij}} \cdot f^n_i \\
+ \frac{h_2 - \frac{A^2}{2}(F(x, \tau_{ij}) \cdot e(\tau_{ij}))}{h_{ij}} \cdot f^n_j,
\]

\[
\nabla f(t_{n+\frac{1}{2}}, x, \tau_{ij}) \cdot e(\tau_{ij}) \sim \frac{f^n_j - f^n_i}{h_{ij}}.
\]

The approximation for \(f(t_{n+\frac{1}{2}}, x, \tau_{ij})\) is similar to the Lax–Wendroff numerical flux function, except that we evaluate \(F(x, \tau) \cdot e(\tau)\) at the edge midpoint \(\tau_{ij}\), and not at the cell midpoints \(\tau_i\) and \(\tau_j\), since the grid structure only provides normal vectors at the cell interfaces. The value for \(\nabla f(t_{n+\frac{1}{2}}, x, \tau_{ij}) \cdot e(\tau_{ij})\) is obtained by a finite difference approximation on the connecting circle arc of the cell midpoints \(\tau_i\) and \(\tau_j\); see [28]. Although the method is not a second order method, the numerical results are close to those of a second order method; see the discussion below and Figure 3 for the convergence rates of the splitting scheme.

Equation (5.4) is solved using a semi-Lagrangian method [24, 31] on an equidistant grid \(x_{ijk} \in \mathbb{R}^3, i, j, k = 1, \ldots, n_x\), with grid size \(\Delta x\). The characteristic curves \(\gamma(t)\) of (5.4) starting at grid point \(x_{ijk}\) at time \(t_{n+1}\) are given by

\[
\gamma(t) = x_{ijk} + t \cdot \tau.
\]

The derivative of \(f\) with respect to time on a characteristic curve is given by

\[
\frac{d}{dt} f(t, \gamma(t), \tau) = \frac{\partial f(\gamma(t), \tau, t)}{\partial \gamma} |_{\gamma = \gamma(t)} + \tau \cdot \nabla x f(\gamma(t), \tau, t) = 0
\]

and it follows that \(f\) is constant along the characteristic curve:

\[
f(t_{n+1}, x_{ijk}, \tau) = f(t_n, \gamma(-\Delta t), \tau).
\]

Since only the values of \(f\) at the grid points at time \(t_n\) are known, we have to interpolate \(f(t_n, \gamma(-\Delta t), \tau)\) from \(f(t_n, x_{ijk}, \tau)\). The order of the method depends on
the order of the interpolation procedure, since the characteristic curves can be computed analytically in this case. An order higher than one will produce unphysical oscillations at discontinuities of the numerical solution, which has to be prevented. We use a Bézier interpolation \cite{9, 29}. We use the notations \(x_{ijk} = (x_{ijk}^l)_{l=1,2,3} \), \(\gamma(-\Delta t) = (\gamma(-\Delta t))_{l=1,2,3} \in [x_{ijk}^1, x_{ijk}^1 + \Delta x] \times [x_{ijk}^2, x_{ijk}^2 + \Delta x] \times [x_{ijk}^3, x_{ijk}^3 + \Delta x] \), and define \(\xi = (\xi_l)_{l=1,2,3} \) as follows:

\[
\xi_l = \frac{\gamma_l(-\Delta t) - x_{ijk}^l}{\Delta x}, \quad l = 1, 2, 3.
\]

Then the interpolated values on each cell are given by an interpolating polynomial of three space variables of the following form:

\[
f(t_n, \gamma(-\Delta t), \tau) = \sum_{\lambda, \mu, \nu=0}^3 B_{\lambda,3}(\xi_1)B_{\mu,3}(\xi_2)B_{\nu,3}(\xi_3)v_{\lambda\mu\nu},
\]

where \(B_{\lambda,3}(\xi) = \binom{\lambda}{\nu} \xi^\nu(1 - \xi)^{3-\nu}, \ l \in \{0, 1, 2, 3\} \), are the cubic Bernstein polynomials, and \(v_{\lambda\mu\nu} \) are the control values for the interpolation. This interpolant never leaves the convex hull of the control values. These values are chosen appropriately, such that the required interpolation order is preserved on smooth sections of the solution, and oscillations are prevented elsewhere. This can be done by computing an interpolating Newton polynomial of appropriate order, performing a change of basis to the Bernstein polynomials, and then shifting control points back into the convex hull of the neighboring grid function values. See \cite{9, 29} for more information on this method.

We note that semi-Lagrangian methods are not conservative in general. For linear advection, we get a conservative method using the Bézier interpolation procedure without slope limiting. In \cite{27}, this is shown for a third order interpolating polynomial, which is identical to the Newton polynomial. Since we reproduce this polynomial in the Bernstein polynomial basis, the same computation can be done for the Bézier interpolation used here. However, the slope limiting procedure destroys mass conservation and we have to apply conservation techniques as described in \cite{14, 24}.

Fig. 3. Order of convergence for the mean-field equation without interaction: The green and red lines correspond to an error of first and second order, respectively. The blue line represents the error obtained by our numerical method. Its slope coincides with the second order error curve.
5.1.3. **Stationary equation.** The stationary equation (4.2) is solved via an iteration scheme. We use the fixed-point form (4.3) and the iterative scheme
\[\rho_{n+1} = e^{-(V+U\star\rho_n)} \int e^{-(V+U\star\rho_n)}dx. \]
As starting point \(\rho_0 \) we use the solution of the stationary equation without interaction, namely, \(\rho_0 = Ce^{-V} \). The iteration is well-defined, i.e., \(\rho_n \) is integrable and has integral one. In addition, \(\rho_n \) is strictly positive for all \(n \in \mathbb{N} \).

5.1.4. **Computation of the interaction term.** For the implementation we have to approximate the convolution \(U\star\rho \) or \(\nabla_x U\star\rho \). This is done using the midpoint rule on each grid cell. One obtains
\[(U \star \rho)(x_{ijk}) = \int U(x_{ijk} - y)\rho(y)dy \approx \sum_{\lambda,\mu,\nu} U(x_{ijk} - x_{\lambda\mu\nu})\rho(x_{\lambda\mu\nu})(\Delta x)^3, \]
where \(x_{ijk} \) are the grid points and \(\Delta x \) is the (constant) grid size in each direction, as before. For the computation of the convolution, one has to compute the distance matrix \(|x_{ijk} - x_{\lambda\mu\nu}| \), which consumes a lot of computing time and memory. One advantage over the solution of the microscopic system is that the grid points are fixed in contrast to the fiber positions in the microscopic context. Therefore, the distance matrix and the evaluation of \(U, \nabla_x U \) for every entry of the distance matrix can be precomputed. This step alone saves computing time but due to the high dimensionality of the problem, we have to store \(n_x^6 \) values, where \(n_x \) is the number of grid points in every spatial direction, and still have to compute a sum over three dimensions.

Fortunately, the potential (2.3) decays to zero rapidly for distances larger than \(R \). We use this fact in the following way: In the preprocessing, for every spatial grid point, we compute the pairwise occurring force terms exerted by the potential for all other grid points. For every grid point \(x_{ijk} \), we do not store all \(n_x^3 \) pairwise force terms \(\nabla_x U(|x_{ijk} - x_{\lambda\mu\nu}|) \), but only the ones with a relevant influence. For a given grid point, we store only force terms with an absolute value that is at least 0.1 percent of the maximum occurring force term for that grid point.

All other influences from other points with smaller force terms are neglected in the computation. The relevant force terms are collected in a list for each grid point, and when the summation (5.6) is evaluated, for every grid point we just have to sum over the list entries instead of the full domain. For the used set of parameters, we save a lot of memory and computing time by that. Note, however, that this method would not provide significant advantage for long range potentials, since then the neighbor lists start to grow.

The time integration in (3.3) for \(h(t) = t \) does not increase the effort in the mean-field context, because it can be realized by just summing up the interaction forces from different time steps. For the case \(H \in (0, \infty) \), a time step buffer as in the microscopic context is used.

5.2. **Numerical results.** We show numerical results for the microscopic model (2.6) and the mean-field equation (3.2) in three spatial dimensions. In particular, we investigate the convergence of the microscopic and mean-field solutions to the corresponding stationary state. The stationary states obtained from microscopic and mean-field computations are compared to the solution of (4.3). For a more detailed
investigation of the convergence to equilibrium for different values of the delay \(H \), we investigate the time decay of the distance to equilibrium for microscopic and mean-field equations and compare it to the one obtained for the case without interaction. Moreover, the sensitivity of the stationary solutions with respect to the parameters of the interaction model is investigated.

For all computations we consider the three-dimensional case for (2.6). Unless otherwise stated, we choose the interaction potential given in (2.3) with \(k = 10, C = 10, \) and \(R = 1 \).

4. The coiling potential \(V \) is chosen as \(V(x) = \frac{|x|^2}{2} \).

We are especially interested in the comparison of the numerical results for the mean-field equation and the microscopic stochastic model. For this comparison, we consider different noise coefficients \(A \) and a box-shaped initial condition for the mean-field equation given by

\[
f_0(x, \tau) = C \cdot \begin{cases} 1 & \text{for } x \in [-1, 1]^3, \tau_3 > 0, \\ 0 & \text{else} \end{cases}
\]

where \(\tau_3 \) denotes the third component of the vector \(\tau \) and \(C \) is a normalizing constant. The corresponding initial condition for the microscopic system can be obtained by randomly placing particles in the cube \([-1, 1]^3\] with initial velocities having the third component larger than zero. We start the investigation by studying order of convergence of the numerical method for the mean-field equation described above.

5.2.1. Order of convergence of the numerical method for the mean-field equations without interaction. In this section we give a numerical investigation of the method for the mean-field equation (3.2) for the case without interaction by comparing the end state of the numerical solution to the analytic stationary solution. In the case without interaction (\(S^U = 0 \) in (3.3)), one can obtain the stationary solution from (4.2) as

\[
f_{\text{stat}}(x, \tau) = C \cdot \exp(-V(x))
\]

independent of \(\tau \), where \(C \) is a normalization constant [22].

The numerical stationary distribution is obtained by running the simulation of (3.2) with the methods from section 5.1.2 up to a time \(T_{\text{end}} \), when the solution does not change any more over time. This is considered to be the end state we want to compare to (5.7). The comparison is done in a discrete \(L^2 \)-norm: let \(f_{\text{num}}(x_{ijk}, \tau_l, T_{\text{end}}) \) be the numerical solution at spatial grid point \(x_{ijk} \) and cell midpoint \(\tau_l \) on the sphere at the equilibrium time \(T_{\text{end}} \), then we compute the error

\[
\text{err}_{L^2} = \left(\sum_{i,j,k} \sum_l \left(f_{\text{num}}(x_{ijk}, \tau_l, T_{\text{end}}) - f_{\text{stat}}(x_{ijk}, \tau_l) \right)^2 \cdot h_k^3 \cdot |T_i| \right)^{1/2},
\]

where \(h_k \) is the spatial grid size in every direction and \(|T_i| \) is the area of triangle \(T_i \) on the spherical grid.

Although the method is not a second order method, owing to the geodesic grid, the numerical results show that the numerical order of convergence is of order two. Let \(n_x \) be the number of spatial grid points in each direction and \(n_k \) the number of cells on the sphere, \(h_x \) and \(h_k \) are the respective grid sizes. Note that \(h_k \) is the average distance between cell midpoints on the geodesic grid. The spatial step size was chosen to match \(h_k \). The following grid sizes were simulated:
From these data, we obtain the convergence plot shown in Figure 3.

5.2.2. Stationary solution

In Figure 4, we consider the stationary distributions obtained from the microscopic and mean-field equations for different values of the delay H. The stationary solutions are obtained again by running either simulation until the solution does not change any more over time. We show radial plots of the radially symmetric density function. The case without interaction is compared to the case with interaction, with delay given by $H \in \{0, 0.1, 0.5, \infty\}$. The grid resolutions simulated for the mean-field equations were $n_x = 40$ points in each spatial direction with a grid size of $h_x = 0.205$ for the cases without interaction and the cases $H \in \{0, \infty\}$. To slightly reduce the computing time, we use a smaller spatial resolution of $n_x = 35$ and $h_x = 0.235$ in the cases with $H \in \{0.1, 0.5\}$. In all cases, the sphere is discretized by 320 geodesic triangles, which leads to an average cell midpoint distance of 0.175. These grid sizes are matched by the histograms generated from the microscopic fiber positions and velocities.

To achieve smooth data, the total number of simulated fibers has to be chosen sufficiently large. In the case without interaction, the microscopic density is generated from $4.8 \cdot 10^6$ simulated fiber positions. For the cases with interaction, we have computed 800 realizations of a system of 600 interacting fibers and generated the histogram from the fiber positions of all the realizations, which means that the histogram is based on $4.8 \cdot 10^9$ microscopic fiber positions. As mentioned earlier, the interaction computation in the microscopic context is quite costly. So, although the computing time for $4.8 \cdot 10^6$ fibers without interaction took only a couple of minutes, depending on how many processing cores we have at our disposal, it took up to several days of computing time for the case $H = 0.5$, which is the most expensive task here. Computing times for the mean-field solver lie in the range of 3 to 24 hours on the given hardware, which was an Intel XEON E5 2670 with 8 cores at 3.3 GHz.

As expected, the stationary distribution does not change with different values of H. However the stationary distribution for the case with interaction is significantly

Fig. 4. Numerical stationary distributions for different cases of interaction, as described in subsection 5.2.2.
wider than the distribution for the case without interaction. We note that the solutions obtained by the microscopic and by the mean-field equation are in very good agreement for the cases considered here.

5.2.3. Convergence to equilibrium. In this subsection we instigate the convergence to equilibrium in more detail. In Figures 5 and 6, we investigate the behavior (in time) of the L^2-norm of the distance to equilibrium for the spatial density ρ. Again, the case without interaction is compared to the case with interaction with cutoff given by $H \in \{0, 0.1, 0.5, \infty\}$. In Figure 5, the case $A = 1.0$ is considered, while Figure 6 shows the case $A = 0.5$. The stationary solution is as before given by the end state of the numerical simulation either for the SDE system or the mean field equation. We compute the deviation of the solutions at several time steps to this stationary state in L^2 like in (5.8) and show these values over time.

The figures provide a strong indication that all cases with interaction converge to the same stationary distribution. We also observe the decay to equilibrium for the case without interaction (cf. [13] for a theoretical exposition). Furthermore, the graph with the square marker shows the case with a strongly retarded potential ($\frac{1}{t} \int_0^t U \ast \rho, H = \infty$). The decay is no longer strictly monotone and it takes more time to achieve the stationary state, in comparison to the cases without significant delay. In this case significant differences between the case with delay and interaction,
the case with interaction and without delay, and the case without interaction can be observed. In all cases very good coincidence between the mean field and the solution of the microscopic SDE system is observed.

We note furthermore, that the displayed spatial density derived from the solution of the SDE system is computed by counting fibers in spatial cells and then normalizing the resulting number density to one on the given domain. Since fibers are subject to random motion due to the parameter $A > 0$ and random distribution in the beginning to reproduce the mean-field initial condition and we only use a finite number of fibers for the simulation, there is always some noise included in the derived density. Thus, even though the behavior of the solution is stationary, i.e., an equilibrium is reached, the difference in L^2 between stationary density and the density at different time steps in the equilibrium cannot become zero in Figures 5 and 6. Obtaining a smoother density requires computation with a lot more fibers to get a better average. For the completely deterministic behavior of the numerical mean-field solution, this problem does not occur.

Figure 7 displays a comparison between the decay to equilibrium for different values of A. As can be observed, the decay becomes slower and, in particular, less and less regular for smaller values of A.

5.2.4. Sensitivity of stationary solutions with respect to parameters in the interaction potential. Finally, we investigate the behavior of the stationary solution for different parameters in the interaction model. In particular, we expect a wider profile for larger radii, as well as for stronger interaction, i.e., C large. To numerically analyze the behavior for the different parameters, we consider the stationary equation in fixed-point form (4.3). We are interested in the change of the stationary solution for varying parameters R and C, respectively.

In Figure 8, the stationary solution is shown. First, we consider the case of varying radius R. We use the potential U from (2.3) and keep C and k fixed. As we can see in Figure 8, the solution ρ is becoming less concentrated for increasing radius R. Second, we vary C keeping R and k fixed obtaining similar results as before.

6. Conclusion and outlook. In this work we extended existing models for describing the lay-down process of fibers during the production of nonwoven material to a model which captures the interaction between the fibers by using a system of retarded SDEs and their corresponding mean-field approximations. A theoretical investigation of the mean-field limit for the deterministic retarded system is included. The solutions of the (retarded) microscopic and mean-field approximations are numerically compared with each other. In particular, the stationary solutions and the decay
to equilibrium are numerically investigated. The form of the stationary solutions is affected by the interaction, but not by the length of the delay term. However, the dynamical behavior, i.e., here the decay to equilibrium, is, in particular, for smaller values of the noise, strongly influenced by the form of the delay term. Moreover, different types of interaction potentials are presented and the influence of different parameters in the interaction potential is investigated. Furthermore, a large diffusion scaling for the mean-field equations has been considered.

Another interesting theoretical issue is the analytical investigation of the convergence of the retarded mean-field equation towards equilibrium, which is partially discussed in a forthcoming publication [21].

Appendix A. Proof of Proposition 3.1. Here we give a proof of Proposition 3.1; cf. [16]. We begin by writing the differential equation in its integral form

\[(A.1) \quad Z_t(z) = z + \int_0^t a(Z_s(z)) \, ds + \int_0^t \frac{1}{h(s)} \int_{s-h(s)}^s K_{\mu \sigma}(Z_s(z)) \, d\sigma \, ds. \]

Let \(T > 0 \) be arbitrary but fixed and set \(\mathcal{B}_T := C([0,T] \times \mathbb{R}^m; \mathbb{R}^m) \). We now denote \(T \) to be the operator on the right-hand side, and show the existence of a unique fixed point for this operator.

To see that this operator is well-defined, let \(Z \in \mathcal{B}_T \). The first two terms on the right-hand side are obviously well-defined. Let us now consider the third term. By definition of the push forward measure, \(\mu = Z_# \mu_0 \in C([0,T]; \text{w–} \mathcal{P}_1(\mathbb{R}^m)) \). Furthermore, since

\[|K_{\mu_t}(z_1) - K_{\mu_t}(z_2)| \leq \int_{\mathbb{R}^m} |B(z_1, \hat{z}) - B(z_2, \hat{z})| \mu_t(d\hat{z}) \leq \text{Lip}(B)|z_1 - z_2| \]

for every \(t \in [0,T] \), we infer that \(K_{\mu} \in C([0,T]; \text{Lip}_b(\mathbb{R}^m)) \) \(\hookrightarrow \mathcal{B}_T \). A simple reformulation of the term under the integral leads to

\[\frac{1}{h(s)} \int_{s-h(s)}^s K_{\mu \sigma}(Z_s(z)) \, d\sigma = \int_0^1 K_{\mu \alpha(s,h(s),\sigma)}(Z_s(z)) \, d\sigma \]

\[= \int_0^1 \int_{\mathbb{R}^m} B(Z_s(z), Z_{\alpha(s,h(s),\sigma)}(\hat{z})) \mu_0(d\hat{z}) \, d\sigma \]

with \(\alpha(s,h(s),\sigma) = (1-\sigma)(s-h(s)) + \sigma s \). From the assumptions, we conclude that this term is continuous in \(s \in [0,T] \) and Lipschitz in \(z \in \mathbb{R}^m \). Consequently, the third term is well-defined. Altogether, we have that \(\mathcal{T}: \mathcal{B}_T \rightarrow \mathcal{B}_T \) as required.
As a first estimate, we obtain
\[
|\langle T Z - \hat{T} \hat{Z} \rangle_t(z) | \\
\leq \text{Lip}(F) \int_0^t |Z_s(z) - \hat{Z}_s(z)| \, ds \\
+ \text{Lip}(B) \int_0^t \frac{1}{h(s)} \int_{s-h(s)}^s |Z_\sigma(\hat{T}) - \hat{Z}_\sigma(\hat{T})| \, d\sigma \, ds
\]
from the Lipschitz continuity of the mappings on the right-hand side. Denoting
\[
E(t) := \sup_{z \in \mathbb{R}^m} |\langle T Z - \hat{T} \hat{Z} \rangle_t(z) |, \quad E(k)(t) := \sup_{z \in \mathbb{R}^m} |\langle Z - \hat{Z} \rangle_t(z) |,
\]
we obtain for the cases $H \in (0, \infty)$, $t \leq H$, and $h(t) = t$, the following estimate:
\[
\begin{align*}
\hat{E}(t) & \leq \text{Lip}(F) \int_0^t E(s) \, ds + \text{Lip}(B) \int_0^t \frac{1}{s} \int_0^s E(\sigma) \, d\sigma \, ds \\
& = \text{Lip}(F) \int_0^t E(s) \, ds + \text{Lip}(B) \int_0^t (\ln(t) - \ln(s)) E(s) \, ds \\
& \leq \text{Lip}(F) \int_0^t (1 + \ln(t) - \ln(s)) E(s) \, ds,
\end{align*}
\]
where we used integration by parts in the equality. With this estimate at hand, we can construct a solution by the Picard iteration procedure, and show that the generated sequence converges. We, therefore, define the sequence $(Z^{(k)})_{k \geq 0} \subset B_T$ recursively by $Z^{(k+1)} = T Z^{(k)}$ for $k \geq 0$, and denote
\[
\mathcal{E}_k(t) = \sup_{z \in \mathbb{R}^m} |\langle Z^{(k+1)} - Z^{(k)} \rangle_t(z) |, \quad g(t, s) = 1 + \ln(t) - \ln(s).
\]
Applying the above estimate iteratively leads to
\[
\mathcal{E}_k(t) \leq \text{Lip}(F) \int_0^t g(t, t_1) \mathcal{E}_{k-1}(t_1) \, dt_1 \\
\leq \text{Lip}(F)^2 \int_0^t g(t, t_1) \int_0^{t_1} g(t_1, t_2) \mathcal{E}_{k-2}(t_2) \, dt_2 \, dt_1 \\
\vdots \\
\leq \text{Lip}(F)^k \left[\int_0^t g(t, t_1) \cdot s \int_0^{t_{k-1}} g(t_{k-1}, t_k) \, dt_k \, dt \right] \sup_{0 \leq t_k \leq t} \mathcal{E}_0(t_k).
\]
Elementary computations of the term in the bracket gives
\[
\mathcal{E}_k(t) \leq \text{Lip}(F)^k \frac{(k+1)t^k}{k!} \sup_{0 \leq t_k \leq t} \mathcal{E}_0(t_k)
\]
for any $k \geq 0$. Since the series
\[
\sum_{k \geq 0} \frac{k(k+1)t^k}{k!} = (1 + ct)e^{ct} < +\infty,
\]
for any $t \geq 0$.
summing up the terms $E_k(t)$ in $k \geq 0$ yields
\[
\sum_{k \geq 0} E_k(t) \leq \sup_{0 \leq t_k \leq t} E_0(t_k) (1 + \text{Lip}(F)t) e^{\text{Lip}(F)t} < +\infty
\]
and, hence, $E_k(t) \to 0$ pointwise in $t > 0$. Consequently, the Picard sequence $(Z^{(k)})_{k \geq 0}$ converges uniformly in B_T to the solution of the integral equation (A.1). Since T was chosen arbitrarily, the solution may be extended to $Z \in C(\mathbb{R}_+ \times \mathbb{R}^m; \mathbb{R}^m)$.

As for uniqueness, we take two solutions Z and \hat{Z} of the integral equation, and denote its difference by
\[
E(t) = \sup_{z \in \mathbb{R}^m} |(Z - \hat{Z})_t(z)|.
\]
From the estimates above, we have
\[
E(t) \leq \text{Lip}(F) \int_0^t g(t, s) E(s) \, ds.
\]
Let $T > 0$ be arbitrary but fixed. Following the arguments from above, we obtain
\[
\left(1 - \text{Lip}(F)^k \left(\frac{k + 1}{k!}\right)\right) \sup_{0 \leq t \leq T} E(t) \leq 0.
\]
Passing to the limit $k \to \infty$ yields $E \equiv 0$ on $[0, T]$ and, hence, $Z = \hat{Z}$ on $[0, T] \times \mathbb{R}^m$. Since T was chosen arbitrarily, this uniqueness result extends to $\mathbb{R}_+ \times \mathbb{R}^m$.

We now consider the case $H \in (0, \infty)$. As above, we establish a unique solution $Y \in B_H$. Setting $Y_H(z) = y$ as initial value, the integral form for $t \geq H$ reads
\[
Z_t(y) = y + \int_H^t A(Z_s(y)) \, ds + \int_H^t \frac{1}{h(s)} \int_{s-h(s)}^s K_{t,s} (Z_s(y)) \, d\sigma \, ds.
\]
With the same notations as above, we obtain the following estimate,
\[
\hat{E}(t) \leq \text{Lip}(F) \int_H^t E(s) \, ds + \text{Lip}(B) \int_H^t \frac{1}{h(s)} \int_{s-h(s)}^s E(\sigma) \, d\sigma \, ds.
\]
The second term on the right-hand side may be expressed in the form
\[
\int_H^t \frac{1}{h(s)} \int_{s-h(s)}^s \hat{E}(\sigma) \, d\sigma \, ds = \frac{t}{H} \int_{t-H}^t \hat{E}(s) \, ds - \int_0^H \hat{E}(s) \, ds
\]
\[
- \frac{1}{H} \int_H^t s \hat{E}(s) \, ds
\]
\[
= \frac{t}{H} \int_{t-H}^t \hat{E}(s) \, ds - \int_0^H \hat{E}(s) \, ds
\]
\[
- \frac{1}{H} \int_H^t s \hat{E}(s) \, ds + \frac{1}{H} \int_0^{t-H} (s + H) \hat{E}(s) \, ds
\]
\[
\leq \frac{t}{H} \int_0^t \hat{E}(s) \, ds,
\]
where we used integration by parts in the first equality, and the fact that
\[
\int_H^t (H - s) \hat{E}(s) \, ds \leq 0, \quad \int_0^{t-H} (s - t) \hat{E}(s) \, ds \leq 0, \quad \int_0^{t-H} \hat{E}(s) \, ds \leq \int_0^t \hat{E}(s) \, ds,
\]

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
in the last inequality. Consequently, there is a constant \(c = c(F, H) > 0 \) such that
\[
\hat{\mathcal{E}}(t) \leq c(1 + t) \int_0^t \mathcal{E}(s) \, ds.
\]
Constructing a sequence \((Z^{(k)})_{k \geq 0} \in B_T\) via the Picard iteration for some arbitrary but fixed \(T > H \) with \(Z^{(k)}_t \equiv Y_t \) for \(t \in [0, H] \), we obtain as above
\[
\mathcal{E}_k(t) \leq (1 + t)c^k \left(\frac{t^k}{k!} + 2 \frac{t^{k+1}}{(k+1)!} \right) \sup_{0 \leq t_k \leq t} \mathcal{E}_0(t_k).
\]
Notice that \(\mathcal{E}_k \equiv 0 \) on \([0, H]\). Replicating the arguments above yields existence and uniqueness of a solution \(Z \in B_T \). Moreover, we may extend the solution to \(\mathbb{R}_+ \times \mathbb{R}^m \).

To conclude, we observe that
\[
\int_0^1 \int_{\mathbb{R}^m} B(Z^{(k)}_s(z), Z^{(k)}_{\alpha(s,h(s),\sigma)}(\hat{z})) \mu_0(\hat{z}) \, d\sigma \longrightarrow \int_0^1 \int_{\mathbb{R}^m} B(Z_s(z), Z_{\alpha(s,h(s),\sigma)}(\hat{z})) \mu_0(\hat{z}) \, d\sigma
\]
for \(k \to \infty \) by the Lebesgue dominated convergence, and so
\[
s \mapsto \frac{1}{h(s)} \int_{s-h(s)}^s \mathcal{K} \mu_\sigma(Z_s(z)) \, ds
\]
is continuous for all \(z \in \mathbb{R}^m \). Consequently, \(t \mapsto Z_t(z), t > 0, \) is continuously differentiable for all \(z \in \mathbb{R}^m \), and satisfies the differential form (3.9). \(\square \)

REFERENCES

[1] J.W. Barrett and E. S"uili, Existence of global weak solutions to some regularized kinetic models of dilute polymers, Multiscale Model. Simul., 6 (2007), pp. 506–546.
[2] J.W. Barrett and E. S"uili, Finite element approximation of kinetic dilute polymer models with microscopic cut-off, ESAIM Math. Model. Numer. Anal., 45 (2011), pp. 39–89.
[3] A. Bensoussan, J.-L. Lions, and G. Papanicolaou, Asymptotic Analysis for Periodic Structures, North Holland, Amsterdam, 1978.
[4] L. Bonilla, T. G"otz, A. Klar, N. Marheineke, and R. Wegener, Hydrodynamic limit of a Fokker–Planck equation describing fiber lay-down processes, SIAM J. Appl. Math., 68 (2008), pp. 648–665.
[5] W. Braun and K. Hepp, The Vlasov dynamics and its fluctuations in the 1/N limit of interacting classical particles, Comm. Math. Phys., 56 (1977), pp. 101–113.
[6] F. Bolley, J.A. Canizo, and J.A. Carrillo, Stochastic mean-field limit: Non-Lipschitz forces and swarming, Math. Models Methods Appl. Sci., 21 (2011), pp. 2179–2210.
[7] J.A. Carrillo, A. Klar, S. Martin, and S. Tiwari, Self-propelled interacting particle systems with roosting force, Math. Models Methods Appl. Sci., 20 (2010), pp. 1533–1552.
[8] J.A. Carrillo, M.R. D’Orsogna, and V. Panferov, Double milling in self-propelled swarms from kinetic theory, Kinet. Relat. Models, 2 (2009), pp. 363–378.
[9] J.A. Carrillo, A. Klar, and A. Roth, Single to double mill small noise transition via semi-Lagrangian finite volume methods, Commun. Math. Sci., 14 (2016), pp. 1111–1136.
[10] C. Cheng and G. Knorr, The integration of the Vlasov equation in configuration space, J. Comput. Phys., 22 (1976), pp. 330–351.
[11] J.W. Barrett and E. S"uili, Existence of global weak solutions to some regularized kinetic models of dilute polymers, Multiscale Model. Simul., 6 (2007), pp. 506–546.
[12] J.W. Barrett and E. S"uili, Finite element approximation of kinetic dilute polymer models with microscopic cut-off, ESAIM Math. Model. Numer. Anal., 45 (2011), pp. 39–89.
[13] A. Bensoussan, J.-L. Lions, and G. Papanicolaou, Asymptotic Analysis for Periodic Structures, North Holland, Amsterdam, 1978.
[14] L. Bonilla, T. G"otz, A. Klar, N. Marheineke, and R. Wegener, Hydrodynamic limit of a Fokker–Planck equation describing fiber lay-down processes, SIAM J. Appl. Math., 68 (2008), pp. 648–665.
[15] W. Braun and K. Hepp, The Vlasov dynamics and its fluctuations in the 1/N limit of interacting classical particles, Comm. Math. Phys., 56 (1977), pp. 101–113.
[16] F. Bolley, J.A. Canizo, and J.A. Carrillo, Stochastic mean-field limit: Non-Lipschitz forces and swarming, Math. Models Methods Appl. Sci., 21 (2011), pp. 2179–2210.
[17] J.A. Carrillo, A. Klar, S. Martin, and S. Tiwari, Self-propelled interacting particle systems with roosting force, Math. Models Methods Appl. Sci., 20 (2010), pp. 1533–1552.
[18] J.A. Carrillo, M.R. D’Orsogna, and V. Panferov, Double milling in self-propelled swarms from kinetic theory, Kinet. Relat. Models, 2 (2009), pp. 363–378.
[19] J.A. Carrillo, A. Klar, and A. Roth, Single to double mill small noise transition via semi-Lagrangian finite volume methods, Commun. Math. Sci., 14 (2016), pp. 1111–1136.
[20] C. Cheng and G. Knorr, The integration of the Vlasov equation in configuration space, J. Comput. Phys., 22 (1976), pp. 330–351.
[21] P. Degond and S. Motsch, Continuum limit of self-driven particles with orientation interaction, Math. Models Methods Appl. Sci., 18 (2008), pp. 1193–1215.
[22] R. Dobrushin, Vlasov equations, Funkt. Anal. Appl., 13 (1979), pp. 115–123.
[23] J. Dolbeault, A. Klar, C. Mouhot, and C. Schmeiser, Exponential rate of convergence to equilibrium for a model describing fiber lay-down processes, Appl. Math. Res. Express AMRX, 2013 (2013), pp. 165–175, https://doi.org/10.1093/amrx/abs015.
[14] J. Douglas, C. Huang, and F. Pereira, The modified method of characteristics with adjusted advection, Numer. Math., 83 (1999), pp. 353–369.
[15] F. Golse, The mean field limit for the dynamics of large particle systems, J. Equ. Dérivées Partielles, 9 (2003), pp. 1–47.
[16] F. Golse, The mean field limit for a regularized Vlasov-Maxwell dynamics, Comm. Math. Phys., 310 (2012), pp. 789–816.
[17] F. Golse, C. Mouhot, and V. Ricci, Empirical measures and Vlasov hierarchies, Kinet. Relat. Models, 6 (2013), pp. 919–943.
[18] T. Götz, A. Klar, N. Marheineke, and R. Wegener, A stochastic model and associated Fokker–Planck equation for the fiber lay-down process in nonwoven production processes, SIAM J. Appl. Math., 67 (2007), pp. 1704–1717.
[19] M. Herty, A. Klar, S. Motsch, and F. Olawsky, A smooth model for fiber lay-down processes and its diffusion approximations, Kinet. Relat. Models, 2 (2009), pp. 480–502.
[20] L.V. Kantorovich and G.S. Rubinshtein, On the space of totally additive functions, Vestn. Leningrad. Univ., 13 (1958), pp. 52–59.
[21] A. Klar, L. Kreusser, and O. Tse, Trend to Equilibrium for a Delay Vlasov-Fokker-Planck Equation and Explicit Decay Estimates, preprint, arXiv:1512.01074, 2015.
[22] A. Klar, J. Maringer, and R. Wegener, A 3D model for fiber lay-down processes in non-woven production processes, Math. Models Methods Appl. Sci., 22 (2012), 1230020.
[23] A. Klar, J. Maringer, and R. Wegener, A smooth 3D model for fiber lay-down processes in non-woven production processes, Kinet. Relat. Models, 5 (2012), pp. 97–112.
[24] A. Klar, P. Reuterswärd, and M. Seaid, A semi-Lagrangian method for a Fokker-Planck equation describing fiber dynamics, J. Sci. Comput., 38 (2009), pp. 349–367.
[25] A. Klar, F. Schneider, and O. Tse, Approximate models for stochastic dynamic systems with velocities on the sphere and associated Fokker-Planck equations, Kinet. Relat. Models, 7 (2014), pp. 509–529.
[26] H. Neunzert, The Vlasov equation as a limit of Hamiltonian classical mechanical systems of interacting particles, Trans. Fluid Dyn., 18 (1977), pp. 663–678.
[27] J.-M. Qiu and A. Christlieb, A conservative high order semi-Lagrangian WENO method for the Vlasov equation, J. Comput. Phys., 229 (2010), pp. 1130–1149.
[28] A. Roth, A. Klar, B. Simeon, and E. Zharovsky, A semi-Lagrangian method for 3-D Fokker Planck equations with stochastic dynamical systems on the sphere, J. Sci. Comput., 61 (2014), pp. 513–532, https://doi.org/10.1007/s10915-014-9835-2.
[29] A. Roth, Numerical Schemes for Kinetic Equations with Applications to Fibre Lay-Down and Interacting Particles, Verlag Dr. Hut, München, 2015.
[30] R. Sadourny, A. Arakawa, and Y. Mintz, Integration of the nondivergent barotropic vorticity equation with an icosahedral-hexagonal grid for the sphere, Monthly Weather Rev., 96 (1968), pp. 351–356.
[31] E. Sonnendrücker, J. Roche, P. Bertrand, and A. Ghizzo, The semi-Lagrangian method for the numerical resolution of the Vlasov equation, J. Comput. Phys., 149 (1999), pp. 201–229.
[32] H. Spohn, Large Scale Dynamics of Interacting Particles, Texts Monogr. Phys., Springer, Berlin, 1991.
[33] D.W. Stroock, On the growth of stochastic integrals, Z. Wahr. verw. Geb., 18 (1971), pp. 340–344.
[34] C. Villani, Optimal Transport, Old and New, Grundlehren Math. Wiss. 338, Springer, Berlin, 2008.