The article presents the results of the radiocarbon dating and Bayesian analysis of 14C dates of bones from the burial ground in Domasław. The Bayesian analysis used the relative chronology obtained based on the characteristic features of grave goods and the assigning of individual burials to specific periods of the late Bronze Age (III EB – V EB) or the early Iron Age (HC – LTA). A coherent chronological model of the burial ground was accepted after assuming that graves with transitional features, attributable to two subsequent periods, could have been contemporary of graves from one or the other period. The temporal frames of particular periods calculated by the model allow us to improve previously published chronological diagrams of the late Bronze Age and the early Iron Age in the region.

KEY WORDS: radiocarbon dating, Bayesian analysis, Bronze Age, Domasław

TOMASZ GOSLAR

THE CHRONOLOGY AND PERIODIZATION OF THE BRONZE AND THE EARLY IRON AGE BURIAL GROUND IN DOMASŁAW, WROCŁAW DISTRICT, BASED ON RADIOCARBON DATING

METODYKA I WYNIKI DATOWANIA 14C KOŚCI Z DOMASŁAWIA

Ze stanowiska w Domasławiu do datowania 14C wyselekcjonowano próbki kości z 50 grobów ciałopalnych (program realizowany w ramach projektu Narodowego Centrum Nauki „Przemiany w obrządku grzebalnym w epoce brązu i wczesnej epoce żelaza jako wyraz zmian społeczno-kulturowych w południowo-zachodniej Polsce” – projekt nr UMO-2014/15/B/HS3/02463 podpisany 10.08.2015). Kości były datowane z użyciem techniki AMS (akceleratorowej spektrometrii mas), w Poznańskim Laboratorium Radiowęglowym (Goslar et al. 2004, 5-11). Na skutek kremacji ciała, w żadnej z próbek kości (prócz jednej, najmłodszej) nie zachował się kolagen, będący frakcją najczęściej wykorzystywana w datowaniu 14C tego materiału.

Ekstrakcję kolagenu z najmłodszej próbki (z grobu 10336) przeprowadzono standardową metodą Longina (1971, 241-242), z dodatkowym zastosowaniem NaOH dla usunięcia kwasów humusowych, oraz ultrafiltracji (Bronk Ramsey et al. 2004, 155-163; Brock et al. 2010, 106-107) dla usunięcia krótszych łańcuchów aminokwasowych powstających w wyniku degradacji kolagenu w kościach zalegających w osadzie. Zadowalająca jakość otrzy-
manego kolagenu (wydajność ekstrakcji 0,7%) została potwierdzona wynikiem pomiaru stosunku C/N (3,33), który mieści się w ogólnie przyjętym przedziale dopuszczalności (van Klinken 1999, 689-691).

W przypadku pozostałych kości, ich niemal biały kolor wskazywał przepalenie w wysokiej temperaturze, przekraczającej 600°C (tzw. kalcynację). Badania Lantinga et al. (2001, 249-254) pokazały, że w procesie kalcynacji zachodzi rekrystalizacja apatytu, którego ziarna stają się większe i lepiej upakowane niż w apatycie kości żyjącego osobnika. Dzięki temu apatyt staje się bardziej odporny na wymianę węgla z otoczeniem, i również dzięki temu, daje się go odizolować od mniej odpornego wtórnego kalcytu, ewentualnie wykrystalizowanego w kości po jej odłożeniu w osadzie. Z tego względu preparatyka takich materiałów do datowania 14C obejmuje usunięcie resztek frakcji organicznej (przez traktowanie w NaClO₃) oraz usunięcie ewentualnego wtórnego kalcytu (przez traktowanie w CH₃COOH) i dopiero po tych etapach prowadzi się rozkład apatytu, uwalniając z niego węgiel przeznaczony do pomiaru 14C.

Jak wykazały późniejsze badania (Zazzo et al. 2009, 601-611; Zazzo et al. 2013, 1409-1421), w czasie kalcynacji może zachodzić wymiana węgla z otoczeniem, m.in. z CO₂ zawartym w powietrzu oraz z CO₂ powstałym przy spalaniu paliwa służącego do kremacji. Takie procesy mogłyby wpływać na wynik datowania radiowęglowego, gdyż kalcynacji poddano stare kości (gdzie kremację przeprowadzono długo po śmierci osobników) lub gdyby paliwem było drewno bardzo stare już w momencie kremacji (względnie węgiel kamienny). W przypadku kości z grobów w Domasławiu, trudno zakładać występowanie takich problemów.

Wyniki datowania 14C przedstawia Tabela 1. Próbki w Tabeli 1 uszeregowano na podstawie datowania względnego (Gediga 1982, 49-59; Gediga 2019, w tym tomie), wykonanego w oparciu o charakterystyczne cechy wyposażenia grobów. Symbole poszczególnych okresów podane w tabeli odpowiadają podziałowi późnej epoki Brązu i okresu halszackiego zaproponowanemu dawno temu przez J. Kostrzewskiego (1948, 118-359) i przywoływaniu w licznych późniejszych publikacjach (np. Kostrzewski et al. 1965, 119-228; Dąbrowski 2009, 17, tab. 1; Gediga 2013, 383, tab. 1). W datowaniu względnym grobów z Domasławia (Gediga 2019, w tym tomie), określającym ich przypisanie okresom systemu J. Kostrzewskiego (III, IV i V w późnej Epoce Brązu, HC i HD w Hallstacie), wykreślono groby o cechach przejściowych, dające się przypisać obydwu następującym po sobie okresom, tj. II/III EB, III/IV EB, IV/V EB, V EB/HC oraz HC/HD.

Nr grobu	Nr lab.	Wiek 14C BP	Data kalibrowana BC (68,2%)	Data kalibrowana BC (95,4%)	Datowanie względne zespołu wg B. Gediga*	Data w Modelu B BC (68,2%)	Data w Modelu B BC (95,4%)				
10336	Poz-96690	2285±30	399-262	405-213	LT A	400-378	405-362				
8966	Poz-96457	2455±30	749-485	756-413	HD	549-428	575-409				
8893	Poz-85730	2465±30	751-516	764-430	HC/HD	735-490	751-428				
Poz	Data	Odpowiedniość	Zabytek								
-----	------------	---------------	---------	---------------	---------	---------------	---------	---------------	---------	---------------	---------
4417 Poz-85723	2430±30	727-414	750-405	HC/HD	541-415	744-404					
12117 Poz-85666	2540±30	795-591	799-547	HC	797-600	801-555					
10821 Poz-85663	2675±30	887-803	896-800	HC	831-806	856-796					
8956 Poz-85732	2570±30	802-766	809-559	HC	802-766	810-561					
8905 Poz-85731	2545±30	797-592	801-549	HC	797-591	801-549					
4271 Poz-85722	2545±30	797-592	801-549	HC	797-592	801-550					
4270 Poz-85720	2500±30	767-552	788-537	HC	767-558	779-541					
1693 Poz-85716	2605±30	810-786	825-768	HC	809-786	824-768					
818 Poz-85715	2495±30	763-550	783-517	HC	763-556	776-539					
390 Poz-85714	2565±30	802-761	806-556	HC	802-761	808-556					
369 Poz-85713	2500±30	767-552	788-537	HC	767-556	780-541					
366 Poz-85712	2560±30	801-599	805-553	HC	801-599	806-556					
F 77 Poz-92820	2775±35	976-850	1005-836	VEB/HC	973-855	990-839					
F 213 Poz-92816	2815±35	1007-922	1073-850	VEB	981-916	1010-856					
E 233 Poz-92821	2815±35	1007-922	1073-850	VEB	981-916	1010-854					
B 225 Poz-92855	2725±30	897-836	924-812	VEB	900-840	924-820					
B 106 Poz-92861	2810±30	1000-925	1050-895	VEB	978-918	1009-895					
3496 Poz-85719	2725±30	897-836	924-812	VEB	900-840	925-820					
C 195 Poz-92850	2935±35	1210-1060	1257-1019	IV/VEB	1210-1085	1231-1018					
B 116 Poz-92858	2870±30	1110-1003	1127-931	IV/VEB	1107-1005	1187-973					
F 212 Poz-92817	2865±35	1110-981	1188-923	IV/VEB	1110-994	1187-923					
C 95 Poz-92852	2940±30	1213-1111	1257-1044	IV/VEB	1213-1110	1232-1039					
B 144 Poz-92856	2950±35	1223-1112	1264-1044	IV/VEB	1222-1112	1261-1048					
12012 Poz-85665	2825±30	1011-929	1071-902	IV/VEB	1011-930	1075-902					
10140 Poz-85733	2800±30	996-915	1027-848	IV/VEB	994-915	1026-849					
F 197 Poz-92819	2930±35	1196-1057	1226-1014	IVEB	1196-1060	1225-1016					
E 83 Poz-92823	3065±35	1393-1280	1415-1230	IVEB	1292-1229	1319-1206					
C 200 Poz-92849	2925±30	1192-1056	1215-1022	IVEB	1192-1057	1215-1023					
C 97 Poz-92851	2855±30	1056-940	1115-928	IVEB	1070-985	1121-968					
C 19 Poz-92854	2865±30	1109-996	1123-930	IVEB	1109-996	1123-930					
8428 Poz-85726	2835±30	1023-931	1107-911	IVEB	1025-931	1086-911					
8375 Poz-85725	2835±30	1023-931	1107-911	IVEB	1024-931	1107-911					
B 85 Poz-92862	2825±30	1011-929	1071-902	IVEB	1039-975	1107-949					
5011 Poz-85724	2840±30	1043-936	1108-917	IVEB	1049-981	1112-963					
Znajomitym narzędziem dla wykorzystania informacji chronologicznej wypływającej z datowania \(^{14}C\) serii próbek jest analiza bayesowska. Wykorzystując dodatkowe, niezależne od datowania \(^{14}C\), informacje chronologiczne, pozwala ona na ustalenie chronologii dokładniejszej od tej bazującej wyłącznie na wynikach datowania radiowęglowego (Bayliss 2015, 677-700). Wśród prac polskich badaczy w tej materii na uwagę zasługują m.in. opracowania serii dat \(^{14}C\) z Catalhöyük w Turcji (Marciniak et al. 2015, 154-176), Bukivny na Ukrainie (Makarowicz, Goslar 2018, 40-51) czy Bronocic w Polsce (Kruk et al. 2018, 1-153).

W niniejszym opracowaniu wieki \(^{14}C\) poszczególnych próbek wykalibrowano względem krzywej \textit{Intcal13} (Reimer et al. 2013, 1869-1887), przy użyciu program Oxcal v4.2.3 (Bronk Ramsey 2009, 337-360; Bronk Ramsey, Lee 2013, 720-730). Wyniki datowania względnego wykorzystano następnie jako informacje \textit{a priori} w bayesowskiej analizie całego zespołu dat. Przyjęto, że daty poszczególnych próbek winny mieścić się w następujących po sobie fazach, pozynajcące od najstarszej III EB, a kończące na najmłodszej LtA, odpowiadającej okresowi lateńskiemu.

W pierwszym podejściu (Model A, ryc. 1A) założono, że groby o cechach przejściowych pochodzą z faz bezwzględnie rozdzielających zasadnicze okresy (np. każdy grób z fazy IV/V EB jest młodszy od każdego grobu z fazy IV EB oraz starszy od każdego grobu z fazy V EB). Wyniki modelowania bayesowskiego przy tym założeniu przedstawia ryc. 2. Wewnętrzna spójność tego modelu jest bardzo słaba, na co wskazuje wartość wskaźnika zgodności A (Bronk Ramsey 1995, 425-430), wynosząca A\textsubscript{model}: 7, czyli zdecydowanie poniżej wartości 60 rekomendowanej przez Bronk Ramseya (1995, 428). Powodem niskiej wartości Amodel jest słaba zgodność dziesięciu dat z modelem. Datai o niskich współczynnikach zgodności (ryc. 2) są tu daty z grobów C195, C95 i B144 (faza IV/V EB, odpowiednio A:44, A:30 i A:26), wszystkie starsze od dat innych grobów z tej fazy, daty z grobów E83, 8428, 8375, B85 i 5011 (faza IV EB, odpowiednio A:38, A:29, A:29, A:17 i A:37), a także daty z grobów E110 i E220 (faza III EB, A:6, oraz faza II/III EB, A:10).

Słaba zgodność dziesięciu dat z modelem nie oznacza, że wszystkie te daty są nierепрезentatywne. Przykładowo, niezgodność dat próbek z pochówków C195, C95, B144, E83, 8428, 8375, B85 oraz 5011 jest powodowana tym, że kalibrowane daty \(^{14}C\) pierwszych trzech próbek z tej grupy (faza IV/V EB) są najprawdopodobniej starsze od kalibrowanych dat pozostałych pięciu (faza IV EB),
czas gdy datowanie względne, przy założeniu
chronologicznego modelu A, sugeruje przeciwne
następstwo dat tych próbek. W efekcie, usunięcie
z modelu jednej lub drugiej podgrupy próbek auto-
matycznie likwidowałoby niezgodność dat drugiej
podgrupy próbek z modelem. Podobna niezgodność
dotyczy próbek E110 (faza III EB) i E220 (faza
II/III EB).
Fig. 2. Bayesian analysis of the set of dates of bone samples from Domasław, assuming the chronological model A (Fig. 1A). Grey profiles represent the probability distributions of calibrated dates of independent samples, while black profiles represent the probability distributions of dates of the samples associated with the model.
Ryc. 3. Analiza bayesowska zespołu dat próbek kości z Domasławia, przy założeniu
chronologicznego modelu B (ryc. 1B)

Fig. 3. Bayesian analysis of the set of dates of bone samples from Domaslaw, assuming
the chronological model B (Fig. 1B)
Powyższe spostrzeżenia każą zrewidować założenie modelu chronologicznego. W zrewidowanym modelu (Model B, ryc. 1B) założono, że groby z wyposażeniem o cechach dwóch następujących po sobie okresów mogą być równowekowe z grobami z jednego lub drugiego okresu. To założenie jest znacznie bardziej rozsądne od założenia modelu A, gdyż nie ma wątpliwości, że zmiany cech stylistyki przedmiotów wytwarzanych przez człowieka (które, stanowiąc wyposażenie badanych dziś grobów, są podstawą datowania względnego) miały charakter płynny i przedmioty z elementami stylistyki dwóch kolejnych okresów mogły być wytwarzane w tym samym czasie co przedmioty o cechach charakterystycznych dla jednego czy drugiego okresu. Analiza bayesowska modelu B daje bardzo dobry wskaźnik zgodności (Amodel:97), zdecydowanie potwierdzając jego słuszność, w opozycji do „sztucznie sztywnego” modelu A.

RAMY CHRONOLOGICZNE
PERIODYZACJI PÓŹNEJ EPOKI
BRĄZU I WCZESNEJ EPOKI ŻELAZA
NA STANOWISKU W DOMASŁAWIU

Analiza bayesowska, oprócz uściślenia informacji o danych poszczególnych próbek, pozwala określić wieki bezwzględne przedziałów czasu odpowiadających kolejnym fazom modelu (w tym przypadku: okresom chronologii względnej). Wyniki datowania okresów rozpoznanych w datowaniu względnym grobów z Domasława (Gediga 2019, w tym tomie) przedstawia Tabela 2.

Wyznaczone modelami 68% przedziały po szczególności okresów przedstawiono też na rycinie 4. Trzeba zwrócić uwagę, że dokładność wyznaczenia ram chronologicznych jest dla różnych okresów różna. W szczególności, najmłodsze dwa okresy (HD i Lta) są w Domasławiu reprezentowane tylko przez pojedyncze próbki, tak więc zakres w Tabeli 2 ramy czasowe tych okresów trzeba traktować jako orientacyjne. Z drugiej strony, na okres HC, w radiowęglowej krzywej kalibracyjnej przypada tzw. plateau halsztackie, oznaczające, że wieki 14C materiałów uformowanych kiedykolwiek między ok. 750 a 400 BC są wszystkie niemal takie same (por. ryc. 6). Z tego powodu precyzyjne określenie kalibrowanych dat 14C próbek jest zawsze trudne.

Porównanie otrzymanych tu wyników modelowania z chronologicznymi ramami systemu J. Kostrzewskiego opublikowanymi przez J. Dąbrowskiego (2009, 17, tab. 1) i reprodukowanymi w późniejszej publikacji B. Gedigi (2013, 383, tab. 1) wskazuje (ryc. 4), że zgodność modelu z Domasława ze schematem J. Dąbrowskiego (2009, 17, tab. 1) dotyczy tylko najmłodszej granicy HD – Lta. Wszystkie wcześniejsze okresy w modelach z Domasława wyglądają o 100-200 lat postrzone w stosunku do schematu J. Dąbrowskiego, przy czym postarzenie to jest tym większe, im starszych okresów dotyczy. Ciekawe, że w analizowanym wycinku przeszłości w podobny sposób zmienia się różnica między wiekiem kalendarzowym (cal BP) a wiekiem radiowęglowym (14C BP).

Tabela 2. Daty kalendarzowe faz odpowiednich okresom rozpoznanych w datowaniu względnym grobów z Domasława.

Table 2. Calendar dates of phases corresponding to periods recognised in relative dating of graves from Domaslaw.

Okres	Liczba dat	Przedział 68% cal BC	Przedział 95% cal BC
	Number of dates	Interval 68% cal BC	Interval 95% cal BC
Lta	1	400-376	406-358
HD	1	549-428	575-409
HC	11	820-580	856-476
VEB	5	945-844	981-816
IVEB	9	1218-1001	1277-955
IIIEB	10	1458-1285	1527-1233
Różnica ta (ryc. 5), przekraczająca 200 lat ok. roku 1500 BC, zmniejsza się do ok. 100 lat ok. roku 1000 BC i do zera ok. roku 500 BC. Nasuwa się więc wątpliwość, czy Dąbrowski (2009, 17, tab. 1) w konstrukcji schematu chronologicznego nie prze-liczył lat radiowęglowych BP na lata kalendarzowe BC przez proste odjęcie 1950 (wiek BP jest liczony względem roku 1950 AD), ignorując kształt krzywej kalibracyjnej? Niestety, publikacja J. Dąbrowskiego ma charakter popularny i przedstawiony tam
Fig. 5. Comparison of radiocarbon age (\(^{14}\)C BP, Reimer et al. 2013) and calendar age (cal BP) in the period 1600-200 BC

Na sąsiedniej stronie (On next page):

Ryc. 6. Kalibrowane daty \(^{14}\)C próbek z Domasławia (niniejsza praca) i Kietrza (Chchorowski 2007), pobranych z grobów datowanych archeologicznie na okresy od II/III EB do LtA. Dla uproszczenia, na rysunku pominięto domasławskie daty z grobów wykazujących cechy dwóch kolejnych okresów. Zróżnicowanie dat z Kietrza w zależności od frakcji użytej do pomiaru \(^{14}\)C (wg Chochorowski 2007), przedstawiono przed numerami laboratoryjnymi Ki-, w formie symboli: WD – węgiel drzewny, WK – węgiel kostny, WM – węgiel masowy

Fig. 6. Calibrated 14C dates of samples from Domaslaw (this work) and Kietrz (Chochorowski, 2007), taken from archaeologically dated graves to periods from II/III EB to LtA. For simplicity, the figure omits Domaslaw dates from graves with the characteristics of two subsequent periods. Diversity of dates from Kietrz depending on the fraction used to measure 14C (after Chochorowski, 2007), was presented before the laboratory numbers Ki-, in the form of symbols: WD – charcoal, WK – bone coal, WM – mass coal
R_Date	Domaslaw_gr_10336_N
	Domaslaw LIA
	Domaslaw HD
	R_Date Domaslaw_gr_12117/N7
	R_Date Domaslaw_gr_10621/N1
	R_Date Domaslaw_gr_6956/N7
	R_Date Domaslaw_gr_8056/N1
	R_Date Domaslaw_gr_4271/N1
	R_Date Domaslaw_gr_4270/N17
	R_Date Domaslaw_gr_1693/N1
	R_Date Domaslaw_gr_818/N1
	R_Date Domaslaw_gr_3902/N2
	R_Date Domaslaw_gr_369/N1
	R_Date Domaslaw_gr_366/N3
	Domaslaw HC
	R_Date Domaslaw 35 gr F23f3
	R_Date Domaslaw 35 gr E233
	R_Date Domaslaw 35 gr B236
	R_Date Domaslaw 35 gr B106
	R_Date Domaslaw_gr_3496/N1
	Domaslaw V EB
	R_Date Domaslaw 35 gr F197
	R_Date Domaslaw 35 gr E83
	R_Date Domaslaw 35 gr C200
	R_Date Domaslaw 35 gr C97
	R_Date Domaslaw 35 gr C19
	R_Date Domaslaw_gr_8428/N2
	R_Date Domaslaw_gr_5375/N8
	R_Date Domaslaw 35 gr B65
	R_Date Domaslaw_gr_5011/N1
	Domaslaw IV EB
	R_Date Domaslaw 35 gr E110
	R_Date Domaslaw 35 gr E27
	R_Date Domaslaw 35 gr D11
	R_Date Domaslaw 35 gr C182
	R_Date Domaslaw 35 gr B109
	R_Date Domaslaw 35 gr B64
	R_Date Domaslaw_gr_10162/N9
	R_Date Domaslaw_gr_6653/N2
	R_Date Domaslaw_gr_2892/2eb.
	R_Date Domaslaw_gr_2835/N4
	Domaslaw III EB
	R_Date Kietrz Gr 1801 WM Ki-8600
	Kietrz H3
	R_Date Kietrz Gr 380 WM Ki-7047
	R_Date Kietrz Gr 295 WM Ki-6601
	R_Date Kietrz Gr 1147 WK Ki-12671
	Kietrz V EB
	R_Date Kietrz Gr 1713 WM Ki-7048
	R_Date Kietrz Gr 1713 WK Ki-7050
	R_Date Kietrz Gr 1152 WK Ki-12762
	R_Date Kietrz Gr 544 WK Ki-13080
	R_Date Kietrz Gr 544 WK Ki-13138
	R_Date Kietrz Gr 544 WK Ki-13081
	Kietrz IV EB
	R_Date Kietrz Gr 1733 WM Ki-7044
	R_Date Kietrz Gr 720 WM Ki-6597
	R_Date Kietrz Gr 720 WM Ki-6596
	R_Date Kietrz Gr 1719 WM Ki-7046
	R_Date Kietrz Gr 793 WM Ki-6599
	R_Date Kietrz Gr 793 WM Ki-6538
	R_Date Kietrz Gr 1719 WD Ki-7084
	R_Date Kietrz Gr 793 WD Ki-7083
	Kietrz III EB
	R_Date Kietrz Gr 1730 WM Ki-7045
	R_Date Kietrz Gr 586 WM Ki-6594
	R_Date Kietrz Gr 586 WM Ki-6595
	R_Date Kietrz Gr 586 WD Ki-7082
	R_Date Kietrz Gr 586 WD Ki-7081

Calibrated date (calBC/calAD)
schemat chronologiczny trudno przeanalizować w oparciu o obecny stan wiedzy w sposób ścisły.

Jeśli opublikowany przez J. Dąbrowskiego (2009, 17, tab. 1) schemat chronologiczny w istocie przedstawia wieki radiowęglowe pomniejszone o 1950, jego poprawa sprowadzałaby się do kalibracji tychże wieków. Tak „poprawiony” schemat (ryc. 4) nieźle zgadzałby się z ramami chronologicznymi wynikającymi z badań grobów z Domasławia, generalnie wzmocniając wiarygodność tych ostatnich.

PORÓWNANIE WYNIKÓW DATOWANIA 14C GROBÓW CIAŁOPALNYCH Z DOMASŁAWIA I KIETRZA

Pokaźna seria dat radiowęglowych z tego samego okresu co w Domasławiu została wcześniej uzyskana w badaniach grobów ciałopalnych z cmentarzyska w niedalekim Kietrzu (Chochorowski 2007, 103-138). W tamtych badaniach radiowęglowe datowanie kości z użyciem koloagu (wypalonego wskutek kremacji) również nie było możliwe i do analizy radiowęglowej używano frakcji tzw. „węgla kostnego” lub „węgla masowego” (węglanu).

Datowania radiowęglowe były wykonane techniką radiometryczną w Laboratorium 14C w Kijowie. Opis zastosowanej w tamtych badaniach preparatyki kości (Chochorowski 2007, 104-107) jest raczej ogólnikowy; można się domyślać, że frakcja „węgla kostnego” to węgiel organiczny, pozostały po usunięciu węglanów wskutek traktowania roztworem HCl oraz usunięciu kwasów huminowych w kąpieli w roztworze NaOH, natomiast „węgiel masowy” to suma resztek węgla organicznego oraz węgla związanego z frakcją węglanową. Dodatkowo, w badaniach grobów w Kietrzu datowano kilka próbek węgla drzewnego.

Jak zauważa J. Chochorowski (2007, 106), daty 14C „węgla masowego” mogą być odmłodzone, głównie węglanem wapnia wyrzączanym z jonów węglanowych niesionych przez wody gruntowe. Ten efekt, zauważony przez J. Chochorowskiego (2007, 106), zilustrowano na rycinie 6, na której kalibrowane daty z Kietrza (o numerach laboratoryjnych Ki-), uzyskane z użyciem frakcji „węgla masowego”, są systematycznie młodsze od dat pochodzących z tych samych okresów próbek „węgla kostnego” czy też węgli drzewnych.

Jak pokazują badania J.N. Lantinga i J. Van der Plichta (2001, 249-254), zafałszowania daty radiowęglowej kości poddanych kremacji w wysokiej temperaturze można uniknąć, usuwając resztki frakcji organicznej oraz rozkładając ziarna wtórnego węglanu i do pomiaru 14C biorąc tylko węgiel uwolniony z pozostałości frakcji apatytowej. Taką właśnie preparatykę stosowano, datując kości z Domasławia w niniejszej pracy (patrz rozdział: „Metodyka i wyniki datowania…”). Uzyskane w ten sposób kalibrowane daty 14C kości z Domasławia są wyraźnie starsze od dat 14C „węgla masowego” pochodzących z tych samych okresów kości z Kietrza (ryc. 6) i z pewnością są bardziej poprawne. Rzecz jasna, ilości węgla uzyskiwanego z frakcji apatytyowej są bardzo małe, dając szansę pomiaru 14C tylko przy użyciu niedostępnej laboratorium kijowskiego techniki AMS.

W zespole dat 14C z Kietrza, bardziej zbliżone do dat domasławskich (z tych samych okresów), są te otrzymane dla frakcji „węgla kostnego” (ryc. 6). W szczególności, w datę z grobu 1147 w Kietrzu (K-12671) z okresu V EB wypada w środku fazy „V EB” datowanej próbami z Domasławia, natomiast daty grobów 1713, 1152 i 544 w Kietrzu (K-7050, K-12762, K-13080, K-13138 i K13081), wprawdzie średnio rzecz biorąc młodsze od domasławskich dat fazy „IV EB”, nie wykraczać istotnie poza przedział czasu wyznaczony dla tej fazy w Domasławiu. Niemniej jednak trzeba zwrócić uwagę, że nie wiadomo, czy „węgiel kostny” kości z Kietrza był związany wyłącznie z kolagenu (frakcją kości najlepiej nadającą się do datowania), czy też zawierał inne grupy związków. Ponadto, nawet jeśli datując „węgiel kostny” kości z Kietrza zastosowano ekstrakcję kolagenu, niemal z pewnością nie zastosowano ultrafiltracji (możliwej prawdopodobnie tylko dla porcji miligramowych, nadających się do pomiaru 14C jedynie techniką AMS). Pominiecie ultrafiltracji (Brock Ramsey et al. 2004, 155-163; Brock et al. 2010, 106-107) stwarza niebezpieczeństwo zafałszowania daty 14C obecnością atomów „młodszego” węgla, przyłączonym do końców krótkich łańcuchów aminokwasowych, powstałych w wyniku degradacji cząsteczek oryginalnego kolagenu. Wydaje się, że przecież młodszy wiek próbek dat „węgla kostnego” z Kie-
trza w stosunku do dat fazy „IV EB” z Domasławia może być właśnie skutkiem niezastosowania ultra-filtracji kolagenu.

W publikacji dotyczącej datowania grobów z cmentarzyska w Kietrzu J. Chchorowski (2007, 130-132) zawarł wniosek, iż „we wczesnołużyckiej populacji, użytkującej cmentarzysko w Kietrzu, różne tradycje kulturowe mogły być kultywowane równolegle”. W świetle dyskusji na temat poprawności radiowęglowych dat próbek z tamtego stanowiska (a również biorąc pod uwagę duże niepewności laboratoryjne kijowskich oznaczeń wieku), powyższy wniosek można by uznać za dość słabo udokumentowany. Jednak wniosek ten znajduje silne poparcie w datowaniu grobów z Domasławia, w których z dwóch modeli chronologicznych (A i B, ryc. 1) do przyjęcia okazał się tylko ten zakładający równoległe powstawanie grobów z wyposażeniem o cechach charakterystycznych dla danego okresu oraz cechach charakterystycznych dla dwóch okresów.

EFEKT REZERWUAROWY

Wyznaczając ramy chronologiczne na podstawie datowania ¹⁴C kości ludzkich, trzeba pamiętać o możliwości zafalszowania wyników, spowodowanym efektem rezerwuarowym. Efekt rezerwuarowy, występujący, jeśli znaczący udział w diecie datowanych osób miał pokarm pochodzenia wodnego (ryby, skorupiaki), może powodować poostarzenie wieku ¹⁴C nawet o setki lat (np. Olsen et al. 2010, 635-644; Shishlina et al. 2014, 767-778). Stwierdzenie udziału takiego pokarmu w diecie datowanego osoba wymaga analizy składu izotopów stabilnych węgla (δ¹³C), a przede wszystkim azotu (δ¹⁵N) w kolagenie wyekstrahowanym z kości (np. Pospieszny, Belka 2015, 197-218; Goslar et al. 2017, 64-90). Niestety, brak kolagenu w badanych kościach wyklucza możliwość przeprowadzenia takiej analizy, tak w Domasławiu, jak i w Kietrzu. Tak więc w tym aspekcie analizy chronologii grobów ciałopalnych z Domasławia skazani jesteśmy na niepewność.

BIBLIOGRAFIA

Bayliss A. (2015). Quality in Bayesian chronological models in archaeology. *World Archaeology, 47*(4), 677-700.

Brock F., Higham T., Ditchfield P., Bronk Ramsey C. (2010). Current pretreatment methods for AMS radiocarbon dating at the Oxford Radiocarbon Accelerator Unit (ORAU). *Radiocarbon, 52*, 103-112.

Bronk Ramsey C. (1995). Radiocarbon calibration and analysis of stratigraphy: the OxCal program. *Radiocarbon, 37*, 425-430.

Bronk Ramsey C. (2009). Bayesian analysis of radiocarbon dates. *Radiocarbon, 51*, 337-360.

Bronk Ramsey C., Higham T., Bowles A., Hedges R.E.M. (2004). Improvements to the pretreatment of bone at Oxford. *Radiocarbon, 46*, 155-163.

Bronk Ramsey C., Lee S. (2013). Recent and Planned Developments of the Program OxCal. *Radiocarbon, 55*, 720-730.

Chchorowski J. (2007). Metodyczne i metodologiczne problemy datowania radiowęglowego pozostałości kremacji z grobów ciałopalnych kultury łęczyckiej (na przykładzie materiałów z cmentarzyska w Kietrzu). W: J. Chchorowski (red.), *Studia nad epoką brązu i wczesną epoką żelaza w Europie* (103-138). Kraków: Wydawnictwo Uniwersytetu Jagiellońskiego.

Dąbrowski J. (2009). Polska przed trzema tysiącami lat. Czyz kultury łęczyckiej (Poland three thousand years ago: the Lusatian Culture and his times). Warszawa: Wydawnictwo „Troio”.

Gediga B. (1982). Zagadnienia periodyzacji okresu rozwoju kultury łęczyckiej w świetle kontaktów z Południem. W: M. Gedl (red.), *Południowa strefa kultury łęczyckiej i powiązania tej kultury z Południem* (49-59). Kraków-Przemyśl: Materiały z konferencji, która odbyła się w Krakowie, Nowej Hucie i Nowym Sączu w dniach od 11 do 14 IV 1978 r.

Gediga B. (2013). The Culture of the Early Iron Age in the South-Western Regions of Poland in the Light of New Research. W: S. Bergebrant, S. Sabatini (red.), *Counterpoint: Essays in Archaeology and Heritage Studies in Honour of Professor Kristian Kristiansen* (383-399). *BAR International Series* 2508, Archeopress.
Gediga B. (2019). Uwagi do datowania i periodyzacji użytkowania cmentarzyska w Domasławiu-Chrzanowie, pow. wrocławski. *Przegląd Archeologiczny*, 67, w tym tomie.

Goslar T., Czernik J., Goslar E. (2004). Low-energy 14C AMS in Poznan Radiocarbon Laboratory, Poland. *Nuclear Instruments and Methods in Physics Research B*, 223–4, 5-11.

Goslar T., Jankowski M., Kośko A., Lityńska-Zając M., Włodarczak P., Żurkiewicz D. (2017). Builders and users of ritual centres, Yampil Barrow Complex: studies of diet based on stable carbon and nitrogen isotope composition. W: A. Kośko (red.), *Podolia „Barrow Culture” communities: 4th/3rd mill. BC. The Yampil Complex: interdisciplinary studies* (64-90). *Baltic-Pontic Studies*, 22.

Kostrzewski J. (1948). Od mezolitu do okresu wędrówek ludów. W: S.W. Krukowski (red.), *Prehistoria ziem polskich*. Kraków: Nakładem Polskiej Akademii Umiejętności.

Kostrzewski J., Chmielewski W., Jażdżewski K. (1965). *Pradzieje Polski (Prehistorie de la Pologne)*. Warszawa: Zakład im. Ossolińskich.

Kruk J., Milisauskas S., Włodarczak P. (2018). *Real time. Radiocarbon dates and bayesian analysis of the neolithic settlement at Bronocice, fourth millennium BC*. Kraków: Instytut Archeologii i Etnologii PAN.

Lanting J.N., Van der Plicht J. (2001). Dating of cremated bones. *Radiocarbon*, 43, 249-254

Longin R. (1971). New method of collagen extraction for radiocarbon dating. *Nature*, 230, 241-242.

Makarowicz P., Goslar T., Niebieszczanski J., Cwaliński M., Kochkin I.T., Romaniszyn J., Lysenko S.D., Waży T. 2018. Middle Bronze Age societies and barrow line chronology. A case study from the Bukivna ‘necropolis’, Upper Dniester Basin, Ukraine. *Journal of Archaeological Science*, 95, 40-51, doi: 10.1016/j.jas.2018.04.010.

Marciniak A., Barański M.Z., Bayliss A., Czerniak L., Goslar T., Southon J., Taylor R.E. (2015). Fragmenting times: interpreting a Bayesian chronology for the Late Neolithic occupation of Catalhöyük, East Turkey. *Antiquity*, 89(343), 154-176.

Olsen J., Heinemeier J., Lübke H., Lüth F., Terberger T. (2010). Dietary habits and freshwater reservoir effects in bones from a Neolithic ME Germany cemetery. *Radiocarbon*, 53, 635-644.

Pospieszny L., Belka Z. (2015). Dieta i mobilność u schyłku starożytności. Szczątki ludzkie z cmentarzyska w Karczynie/Witowach stan 21/22 w świetle badań izotopowych. W: J. Bednarczyk, A. Romańska (red.), *Karczyn/Witowy stan. 21/22. Brytyjne cmentarzysko kultury przeworskiej z Kujaw (197-218). Studia i Materialy do Dziejów Kujaw 12. Poznań-Inowrocław*.

Reimer P.J., Bard E., Bayliss A., Beck W.J., Blackwell P.G., Bronk-Raymsey C., Buck C.E., Cheng H., Edwards R.L., Friedrich N., Grootes P.M., Guilderson T.P., Hafif Hafif, Hajdas I., Heaton T.J., Hoffmann D.L., Hogg A.G., Hughen K.A., Kaiser K.F., Kromer B., Manning S.V., Niu M., Reimer R.W., Richards D.A., Scott E.M., Southon J.R., Staff R.A., Turney S.M., Van der Plicht J. (2013). IntCal13 and marine 13 radiocarbon age calibration curves 0-50,000 years cal BP. *Radiocarbon*, 55, 1869-1887.

Shishlina N., Sevastyanov V., Zazovskaya E., van der Plicht J. (2014). Reservoir effect of archaeological samples from steppe bronze age cultures in southern Russia. *Radiocarbon*, 56, 767-778.

van Klinken G.J. (1999). Bone collagen quality indicators for palaeodietary and radiocarbon measurements. *Journal of Archaeological Science*, 26, 687-695.

Zazzo A., Salèje J.F., Person A., Boucher H. (2009). Radiocarbon dating of calcined bones: where does the carbon come from? *Radiocarbon*, 51, 601-611.

Zazzo A., Lebon M., Chiotti L., Comby C., Delqué-Kolié E., Nespoulet R., Reiche I. (2013). Can we use calcined bones for 14C dating the Paleolithic? *Radiocarbon*, 55, 1409-1421.
Methodology and results of radiocarbon dating of the bones from Domaslaw

Bone samples from 50 cremation graves found at the site in Domaslaw were selected for radiocarbon dating (the programme was implemented as part of the National Science Centre’s project ‘Transformations in the burial rite in the Bronze Age and the early Iron Age as an expression of socio-cultural changes in south-western Poland’ – contract No. UMO-2014/15/B/H13/02463 signed on 10.08.2015). The bones were dated using the AMS technique (accelerator mass spectrometry) at the Poznań Radiocarbon Laboratory (Goslar et al. 2004). As a result of the cremation of the bodies, in none of the bone samples (except the youngest one) has collagen been preserved, the substance most often used in the radiocarbon dating of this material.

Extraction of collagen from the youngest sample (from grave 10336) was carried out using the standard Longin method (1971) with the additional use of NaOH to remove humic acids, and ultrafiltration (Bronk Ramsey et al. 2004; Brock et al. 2010) to remove shorter amino acid chains resulting from collagen degradation in bones lying in sediment. The satisfactory quality of the obtained collagen (extraction yield 0.7%) was confirmed by the result of measuring the C/N ratio (3.33), which is within the generally accepted admissibility range (van Klinken 1999).

In the case of other bones, their nearly white colour indicated a high burning temperature, exceeding 600°C (i.e. calcination). Research of Lanting et al. (2001) showed that, during the calcination process, recrystallization occurs of apatite, the grains of which become larger and better packed than in the apatite of bones of a living individual. As a result, apatite becomes more resistant to the exchange of carbon with the environment, thanks to which it can be isolated from the less resistant secondary calcite, crystallized in the bone after it has been deposited in the sediment. Therefore, the pretreatment of such 14C dating materials includes the removal of organic fraction residues (by treatment with NaClO2) and the removal of possible secondary calcite (by treatment with CH3COOH), and only after these steps is the apatite leached to release the carbon designated for 14C measurement.

As evidenced by later research (Zazzo et al. 2009; 2013), during calcination, carbon exchange with the environment may occur, including CO2 contained in the air and CO2 generated during the combustion of cremation fuel. Such processes could influence the result of radiocarbon dating if old bones underwent calcination (if cremation was carried out long after the death of individuals), or if the fuel was wood that was very old at the time of cremation (or hard coal). In the case of the bones from graves in Domaslaw, this problem is unlikely.

The results of 14C dating are shown in Table 1. The samples in Table 1 are arranged based on relative dating (Gediga 1982; 2019), made on the basis of the characteristic features of grave goods. The symbols of particular periods in the Table correspond to the division of the late Bronze Age and the Hallstatt period proposed a long time ago by J. Kostrzewski (1948), and cited in numerous subsequent publications (e.g. Kostrzewski et al. 1965; Dąbrowski 2009; Gediga 2013). In the relative dating of graves from Domaslaw (Gediga, in this volume), which assigns them to the periods of the system by J. Kostrzewski, (III, IV and V in the late Bronze Age, IIc and HD in the Hallstatt period), graves with transitional features attributable to both subsequent periods, i.e. II/III EB, III/IV EB, IV/V EB, V EB/IIc and HC/HD were distinguished.

Bayesian analysis of the calibrated 14C dates of samples from Domaslaw

Bayesian analysis is a great tool for the use of chronological information from the 14C dating of a sample series. By using additional chronological information independent of the 14C dates, it allows us to establish a more accurate chronology than what is based solely on the results of radiocarbon dating (Bayliss 2015, 677-700). Amongst the works of Polish researchers in this matter that deserve attention are the studies of the 14C dates series from Catalhöyük in Turkey (Marciniak et al. 2015, 154-176), Bukivna in Ukraine (Makarowicz and Goslar 2018, 40-51) and Bronocice in Poland (Kruk et al. 2018, 1-153).

In this paper, the 14C dates of individual samples were calibrated according to the Intcal13 curve (Reimer et al. 2013) using the Oxcal v4.2.3 program (Bronk Ramsey 2009; Bronk Ramsey and Lee 2013). The relative dating results were then used as a priori information in the Bayesian analysis of the whole set of dates. It was assumed that the dates of individual samples should fall into successive phases, beginning with the oldest III EB, and ending with the youngest LTA, corresponding to the La Tène period.
In the first approach (Model A, Fig. 1A) it was assumed that graves with transitional features come from the phases absolutely separating the basic periods (e.g. each grave from phase IV/V EB is younger than each grave from phase IV EB and older than each grave from phase V EB). The results of Bayesian modelling in this assumption are presented in Fig. 2. The internal coherence of this model is very weak, which is indicated by the value of the agreement index A (Bronk Ramsey 1995), amounting to Amodel: 7, i.e. well below the 60 recommended by Bronk Ramsey (1995). The reason for the low Amodel value is the poor match of the dates of some samples with the model. The dates with low compliance indicators (Fig. 2) are dates from graves C195, C95 and B144 (phase IV/V EB, A: 44, A: 30 and A: 26 respectively), all older than dates of other graves from this phase, dates from graves E83, 8428, 8375, B85 and 5011 (phase IV EB, A: 38, A: 29, A: 29, A: 17 and A: 37 respectively), as well as dates from graves E110 and E220 (phase III EB, A: 6, and phase II/III EB, A: 10).

The poor consistency of the ten dates with the model does not mean that all of these dates are unrepresentative. For example, the inconsistency of the dates of samples C195, C95, B144, E83, 8428, 8375, B85 and 5011 is due to the fact that the calibrated 14C dates of the first three samples from this group (IV/V EB phase) are most likely older than the calibrated dates of the remaining five (phase IV EB), while relative dating, with the chronological assumption of model A, suggests the opposite sequence of the dates of these samples. As a result, removing one or the other subgroup of samples from the model would automatically eliminate the incompatibility of the dates of the second subgroup of samples with the model. A similar discrepancy applies to samples E110 (phase III EB) and E220 (phase II/III EB).

The above observations make it necessary to revise the assumption of the chronological model. In the revised model (Model B, Fig. 1B), it was assumed that graves with equipment exhibiting features of two consecutive periods can be contemporaneous with graves from one or the other period. This assumption is much more reasonable than that of model A, because there is no doubt that changes in the stylistic features of man-made objects (which, being the equipment of studied graves, are the basis for relative dating) were of a fluid nature and objects with design elements of two subsequent periods could be manufactured at the same time as objects with characteristics of one or the other period. Bayesian analysis of model B gives a very good agreement index (Amodel: 97), definitely confirming its validity, in opposition to the ‘artificially rigid’ model A.

The chronological framework of the periodization of the late Bronze Age and the early Iron Age on site in Domasław

Bayesian analysis, in addition to clarifying information on the dates of individual samples, allows us to determine the absolute dates of time sections corresponding to the subsequent phases of the model (in this case: periods of relative chronology). The results of dating periods identified in the relative dating of graves from Domasław (Gediga, in this volume) are presented in Table 2.

Determined by models the 68% confidence intervals of dates of individual periods, are also shown in Fig. 4. It should be noted that the accuracy of determining the chronological frames is different for different periods. In particular, the two youngest periods (HD and LTA) are represented in Domasław only by individual samples, hence the timeframes of these periods outlined in Table 2 should be treated as approximate. On the other hand, to the HC period, the radiocarbon calibration curve has the Hallstatt plateau, meaning that the 14C dates of materials formed between 750 and 400 BC are almost all the same (see Fig. 6). For this reason, it is always difficult to precisely determine the calibrated dates of 14C samples.

A comparison of the modelling results obtained here with the chronological frames of the J. Kostrzewski system published by J. Dąbrowski (2009) and reproduced in a later publication by B. Gediga (2013) indicates (Fig. 4) that the compliance of the Domasław model with the Dąbrowski scheme (2009) concerns only the youngest border HD – LTA. All earlier periods, in the Domasław models, look 100-200 years aged with respect to the Dąbrowski scheme, with the aging being the higher the older the periods. It is interesting that in the analyzed part of the past, the difference between the calendar age (cal BP) and radiocarbon age (14C BP) changes in a similar way. This difference (Fig. 5), exceeding 200 years around 1500 BC, decreases to about 100 years around 1000 BC and about 500 BC to around zero. This raises the question whether Dąbrowski (2009) in his construction of the chronological scheme did not calculate the radiocarbon years of BP for the BC calendar years by simply subtracting 1950 (the BP is counted to 1950 AD), ignoring the shape of the calibration curve. Unfortunately, Dąbrowski’s publication is of a popular nature and the chronological scheme presented there is difficult to analyze based on the current state of knowledge in a strict manner.

If the chronological scheme published by Dąbrowski (2009) essentially presents radiocarbon dates reduced by 1950, its improvement would amount to the calibration of these dates. Such a ‘corrected’ scheme (Fig. 4) would be...
well suited to the chronological framework of the graves from Domaslaw, generally strengthening the credibility of the latter.

Comparison of \(^{14}\text{C} \)\ dating results of the cremation graves from Domaslaw and Kietrz

A substantial series of radiocarbon dates from the same period as Domaslaw was previously obtained in the study of cremation graves from the burial ground in nearby Kietrz (Chochorowski 2007). In these studies, the radiocarbon dating of bones with the use of collagen (burned out due to cremation) was also not possible, and for the radiocarbon analysis the ‘bone coal’ or ‘mass coal’ (carbonate) fraction was used. Radiocarbon dates were obtained using the radiometric technique at the \(^{14}\text{C} \) Laboratory in Kiev. The description of bone pretreatment used in these studies (Chochorowski 2007) is rather vague; one can guess that the ‘bone coal’ fraction is organic carbon, remaining after carbonate removal due to treatment with HCl solution and removal of humic acids in a NaOH solution, while ‘mass coal’ is the sum of organic carbon residues and carbon associated with the carbonate fraction. Additionally, several samples of charcoal were dated in the study of graves in Kietrz.

As noted by Chochorowski (2007), the \(^{14}\text{C} \) dates of ‘mass coal’ may be rejuvenated, mainly with calcium carbonate precipitated from carbonate ions carried by groundwater. This effect, noticed by Chochorowski (2007), is illustrated in Figure 6, in which calibrated dates from Kietrz (with laboratory numbers Ki-) obtained by using the ‘massive coal’ fraction are systematically younger than those from ‘bone carbon’ or charcoal samples hailing from the same periods.

As shown by the research of Lanting et al. (2001), misinterpretation of the radiocarbon dates of bones subjected to cremation at high temperature can be avoided by removing the remains of the organic fraction and decomposing the secondary carbonate grains as well as taking for \(^{14}\text{C} \) measurement only the carbon released from the remaining apatite fraction. This pretreatment was used to date bones from Domaslaw in this work (see chapter: ‘Methodology and results of radiocarbon dating ...’). The \(^{14}\text{C} \) calibrated dates of bones from Domaslaw obtained this way are clearly older than the \(^{14}\text{C} \) dates of ‘mass coal’ bones from Kietrz that come from the same periods (Fig. 6) and are certainly more correct. Of course, the amount of carbon obtained from the apatite fraction is very small, giving a chance for \(^{14}\text{C} \) measurement only by using the AMS technique, inaccessible to the Kiev laboratory.

In the set of \(^{14}\text{C} \) dates from Kietrz, closer to the Domaslaw dates (from the same periods), are those obtained for the ‘bone coal’ fraction (Fig. 6). In particular, the date from grave 1147 in Kietrz (Ki-12671) from the V EB period falls in the middle of the phase ‘V EB’ dated by samples from Domaslaw, while the dates of graves 1713, 1152 and 544 in Kietrz (Ki-7050, Ki-12762, Ki-13080, Ki-13138 and Ki-13081), although on average younger than the Domaslaw dates of the ‘IV EB’ phase, do not go significantly beyond the time period set for this phase in Domaslaw. Nevertheless, it should be noted that it is not known whether the ‘bone charcoal’ of Kietrz’s bones was associated exclusively with collagen (a bone fraction best suited for dating), or if it contained other groups of compounds. In addition, even when dating by the ‘bone charcoal’ of the bones from Kietrz, extraction of collagen was used, almost certainly no ultrafiltration was used (practically possible to perform only for milligram portions, suitable for \(^{14}\text{C} \) measurement only by AMS technique). The omission of ultrafiltration (Bronk Ramsey et al. 2004; Brock et al. 2010) poses a danger of falsifying the \(^{14}\text{C} \) date by the presence of atoms of ‘younger’ carbon attached to the ends of short amino acid chains resulting from the degradation of the original collagen molecules. It seems that, on average, the younger age of the samples of ‘bone coal’ dates from Kietrz in relation to the dates of the ‘IV EB’ phase from Domaslaw, may be the result of the failure to use collagen ultrafiltration.

In a publication on dating graves from the burial ground in Kietrz, Chochorowski (2007) concluded that ‘in the early Lusatian population, using the burial ground in Kietrz, different cultural traditions could have been cultivated in parallel’. In the light of the discussion on the correctness of radiocarbon dates of samples from that site (and also taking into account the large laboratory uncertainties of the Kiev date marks), the above conclusion could be deemed poorly documented. However, this conclusion is strongly supported in dating graves from Domaslaw, in which of the two chronological models (A and B, Fig. 1) only the one assuming parallel formation of graves with equipment with characteristics of a given period and characteristic features of two periods proved to be acceptable.

Reservoir effect

When determining the chronological frames based on the \(^{14}\text{C} \) dating of human bones, one must bear in mind the possibility of results’ falsification due to the reservoir effect. Reservoir effect, occurring if a significant portion of the diet of dated individuals had water-based food (fish,
crustaceans), can cause aging of the 14C date even by hundreds of years (e.g. Olsen et al. 2010; Shishlina et al. 2014).

Finding the contribution of such food to the diet of the dated individual requires analysis of the composition of stable carbon isotopes (δ^{13}C), and above all nitrogen (δ^{15}N) in the collagen extracted from the bones (e.g. Pospieszny and Belka 2015; Goslar et al. 2017). Unfortunately, the lack of collagen in the examined bones precludes the possibility of such analysis, both in Domaslaw and in Kietrz. Thus, in this aspect of the analysis of the chronology of cremation graves from Domaslaw, we are doomed to uncertainty.