Differential expression of breast cancer-associated genes between stage- and age-matched tumor specimens from African- and Caucasian-American Women diagnosed with breast cancer

Jessica M Grunda¹, Adam D Steg², Qinghua He³, Mark R Steciuk⁴, Suzanne Byan-Parker⁴, Martin R Johnson⁵ and William E Grizzle⁴*

Abstract

Background: Recent studies suggest that the poorer breast cancer outcome observed in African-American women (AAW) may, in part, result from underlying molecular factors. The purpose of this study was to investigate gene expression differences between Caucasian-American women (CAW) and AAW that may contribute to this poorer prognosis.

Methods: The expression of 84 genes involved in breast carcinoma prognosis, response to therapy, estrogen signaling, and tumor aggressiveness was assessed in age- and stage-matched CAW and AAW paraffin-embedded breast cancer specimens. The Wilcoxon–Mann–Whitney Test was used to identify genes with a significant difference in expression between CAW and AAW. To determine if the differentially expressed genes could segregate between the CAW and AAW, we performed semi-supervised principal component analysis (SSPCA).

Results: Twenty genes were differentially expressed between AAW and CAW. SSPCA incorporating these 20 genes segregated AAW and CAW into two distinct groups. AAW were significantly (p < 0.05) more likely to display aberrations in G1/S cell-cycle regulatory genes, decreased expression of cell-adhesion genes, and low to no expression of ESR1, PGR, ERBB2 and estrogen pathway targets.

Conclusions: The gene expression differences identified between AAW and CAW may contribute to more aggressive disease, resistance to therapy, enhanced metastatic potential and poor clinical outcome. These findings support the hypothesis that breast cancer specimens collected from AAW display distinct gene expression differences compared to similar tissues obtained from CAW. Additional population-based studies are necessary to determine if these gene expression variations contribute to the highly aggressive and treatment-resistant breast cancer phenotype frequently observed in AAW.

Keywords: Breast cancer, Gene expression, Race, Estrogen signaling, Cell cycle, Cell migration

* Correspondence: wgrizzle@uab.edu

¹Department of Pathology, University of Alabama at Birmingham, Zeigler Research Building, 703 South 19th Street, ZRB 408, Birmingham, AL 35294, USA

Full list of author information is available at the end of the article
Background
Multiple studies have found distinct ethnic disparities in breast cancer outcome between African-American women (AAW) and Caucasian-American women (CAW) in incidence rate, age-of-onset, mortality and survival. Although the overall incidence rate for breast cancer is higher in CAW compared to AAW, the age-adjusted mortality rate for AAW (33/100,000) is significantly higher than any other ethnic group examined, including women of Caucasian descent [1]. In fact, AAW at all breast cancer stages assessed (localized, regional & distant) have a much lower 5-year survival rate (78%) compared to CAW (90%) [2]. Although breast cancer risk increases with age in all ethnicities, women of African-American ancestry are more often diagnosed at a younger age, with 30–40% of AAW diagnosed with breast cancer prior to 50 years of age, compared to just 20% for CAW [3]. This trend is even more striking considering AAW are diagnosed more frequently with breast cancer prior to 50 years of age, compared to just 20% for CAW [3]. This trend is even more striking considering AAW are diagnosed more frequently with higher-grade tumors that are resistant to traditional therapies [4]. The mechanisms underlying poorer outcome in AAW diagnosed with breast cancer remains to be elucidated.

Early studies suggested that the poorer outcome observed for AAW diagnosed with breast cancer resulted from disparities in social economic status (SES), education level, access to health care, diet, religious beliefs, and geographical location [5-9]. However, recent research suggests that differences in clinical outcomes likely arise from both societal and genetic factors. Several large population-based meta-analyses report that AAW display a significantly higher mortality rate than when compared to any other ethnicity, even after accounting for SES [10,11]. Additionally, even when African and Caucasian-American women had equal access to health care and/or underwent identical treatment regimens, the disparity in patient outcome persisted. For instance, two Department of Defense studies examining treatment outcome in breast cancer patients found that mortality rates were still significantly higher in AAW versus CAW even though patients had equal access to health care and underwent identical treatment regimens [12,13]. Another study by Albain et al. investigating survival of breast cancer patients enrolled in randomized clinical trials of the Southwest Oncology Group found that overall survival rates for African American patients were significantly poorer, even though patients received the same treatment regimens and were controlled for both prognostic factors and SES [14]. These studies collectively support the hypothesis that while there are sociological factors contributing to the higher mortality rates seen in AAW, other causative factors exist.

A mounting body of evidence now suggests that women of African-American ancestry may harbor a greater genetic predisposition for a more aggressive breast cancer phenotype. Recent studies have demonstrated that young, premenopausal women of African American descent are more likely to display histological characteristics depictive of the basal-like subtype of breast cancer, known for its aggressive behavior and poorer clinical outcome, compared to any other age group of any other ethnic background examined [15,16]. Histologically, breast carcinomas from AAW more often display pushing, non-infiltrative tumor margins, nuclear pleomorphism, lymphocytic infiltrate, large primary tumors, necrosis, lack of tubule formation, as well as high mitotic indices and histological grade [15,17–21]. In addition, AAW are more likely to lack expression of both the estrogen and progesterone receptors, and often display the triple negative phenotype (ER-, PR-, HER2-), thus precluding treatment with such targeted therapies as tamoxifen, anastrozole, and Herceptin [17,20,22]. Women of African-American ethnicity are also more likely to exhibit specific alterations in the levels of genes involved in cell-cycle regulation and apoptosis, including higher quantities of p16, p53, and cyclin E, and lower levels of BCL-2, cyclin D1, and p27 [20,22]. In addition to these ‘basal-like’ features, other studies have found that AAW had a significantly higher prevalence of deleterious mutations in BRCA1 and BRCA2 compared with CAW [23].

Many of these genetic differences may be associated with differences in tumor grade and hormone receptor status (ER and HER-2/neu), both of which have been found to independently influence gene expression profiles. Although, a study recently published by Field et al. determined that even when patient tissues were matched on age, grade, and estrogen receptor status, significant differences in gene expression profiles were still observed [24]. The genes identified spanned a diverse array of cellular functions including the proteasome system, eye lens physiology, cell growth and differentiation, and cellular immunity and inflammation [24]. While these studies collectively provided insight into potential biological factors contributing to the poor clinical outcome of AAW, further studies are needed to clarify the role of genetics in AAW breast cancer epidemiology. The identification of potential gene expression differences driving the disparities in health outcome between AAW and CAW is critical to improving the treatment response and survival of these women as these molecular differences may impact breast cancer prevention, screening practices, diagnostic testing and treatment protocols. In this study we utilized a novel experimental approach to investigate differences in gene expression between AAW and CAW, independent from age or disease stage at diagnosis. Paraffin-embedded, age- and stage-matched breast carcinoma samples from AAW...
and CAW patients were macrodissected to enrich the specimens in tumor cell content (>80%). Gene expression analysis of genes previously implicated in breast cancer prognosis, treatment response, estrogen signaling, and tumor aggressiveness was performed using the Human Breast Cancer and Estrogen Receptor Signaling RT2 Profiler PCR Array from SABiosciences. Using the Wilcoxon-Mann–Whitney Test we identified genes displaying a significant difference in expression between tumors obtained from AAW and CAW breast cancer patients. These analyses identified a distinct molecular profile in women of African-American descent, often associated with the basal-like phenotype and previously associated with resistance to therapy and poor clinical outcome, supporting the hypothesis that AAW may have a gene-expression based predisposition for a more aggressive disease phenotype.

Methods
Selection of cases
Consent was obtained for all patients prior to start of study. The use of human tissues was approved by and conducted in accordance with the policies of the Institutional Review Board at the University of Alabama at Birmingham. The records of archival cases of breast cancer from UAB Surgical Pathology were searched to identify age (± 5 years) and stage (assessed by a pathologist) matched cases of ductal carcinoma. The quality of the available archival blocks from the matched cases was then assessed through hematoxylin and eosin (H+E) staining of newly cut sections from the original diagnostic blocks. Sections were examined and selected for areas of tumor that could be macrodissected into greater than 80% invasive cancer.

Analysis of receptor status
ER, PR and HER2 status were determined in the CAP/CLIA accredited laboratory of University of Alabama at Birmingham Hospital with the exception of one case. Immunostaining of ER (Clone SP1) and PR (1 E2) was performed using a semi-automated immunostainer (Ventana, Model XT) and an Ultraview HPR Multitimer approach. Tumors were considered positive if 1% or greater of tumor cells stained. Percentage of staining as well as intensity 1+ (weak) to 3+ (strong) was also reported. The HER2/neu status was determined by CISH using the Spot-Light Kit (Invitrogen), which is specific for the HER2 gene locus on chromosome 17q11.2-21. A minimum of 30 tumor cell nuclei were evaluated per patient. Criteria are as follows: ≥ 6 dots in the majority of carcinoma cells is amplified, 4–6 is equivocal, and ≤ 4 dots is non-amplified. All evaluations are done by standard microscopy. Cases prior to 2005 were evaluated by immunohistochemistry where 0 was negative if no staining or membrane staining in less than 10% of tumor cells, 1+ was negative if weak membrane staining in greater than 10% of tumor cells, 2+ was positive if weak to moderate complete membrane staining in greater than 10% of tumor cells, and 3+ was positive if strong complete membrane staining in greater than 10% of tumor cells [25,26].

For the one case in which ER, PR, HER2/neu clinical data was unavailable, immunostaining was performed in Dr. William Grizzle’s research laboratory using ER alpha (clone SP1), PR alpha and beta (clone PgR 636), and HER2/neu (clone 3B5) and evaluated by a pathologist.

Sample preparation
Macrodissection
An H+E section was matched and orientated to the paraffin block from which it was cut and areas of benign tissue and non-invasive neoplasms were identified and removed so that after macrodissection, the ductal carcinoma remaining in the block contained at least 80% ductal carcinoma. The tumor areas were re-embedded and new H+E sections were cut to confirm that the ductal carcinoma was successfully enriched by the macrodissection. Ten 10-μm sections were then cut for RNA extraction.

RNA extraction
Paraffin tissue curls were deparaffinized as previously described [27]. Total RNA isolation was then performed using the Roche High Pure RNA Paraffin Kit (Roche Diagnostics, Manheim, Germany) as per manufacturer’s instructions. Total RNA was eluted in 30 μl of RNase-free water and stored at −80°C until further analysis. The concentration of all RNA samples was quantitated through linear regression analysis of a standard curve derived from known concentrations of normal breast RNA. Ribosomal protein, large, P0 (RPLP0), which has been previously validated by our laboratory [28], was used as the housekeeping gene.

Reverse transcription
Complementary DNA was prepared using the RT² First Strand Kit (SABiosciences, Frederick, MD) as per manufacturer’s instructions. Approximately 0.5 μg of total RNA from each sample was used for cDNA synthesis.

Analysis of samples by the RT² profiler PCR array
The pre-designed Human Breast Cancer and Estrogen Receptor Signaling RT² Profiler PCR Array (SABiosciences) was utilized to simultaneously analyze 84 genes related to breast cancer regulation and estrogen receptor-dependent signal transduction in cDNA samples. The housekeeping genes B2M, HPRT1, RPL13A, GAPDH and ACTB are included on each Array. Each
cDNA sample was added to 2X SuperArray RT\(^2\) qPCR Master Mix (SABiosciences) and 25 μl of the mixture was added to each well of the PCR Array using an eight-channel pipettor. The plate was sealed and PCR amplification was performed using an Applied Biosystems Prism 7900HT sequence detection system. Thermal cycler conditions were as follows: 2 minutes at 50°C, 10 minutes at 94.5°C, then 40 cycles of 30 seconds at 97°C and 1 minute at 59.7°C. Delta cycle threshold (ΔCT) and expression values were calculated using the comparative cycle threshold (C\(_T\)) method as previously described by our laboratory [27,29].

Statistical analysis

Fisher’s exact test

Fisher’s exact test is a statistical significance test used in the analysis of contingency tables to calculate whether there is a significant association between categorical variables. It is employed when sample sizes are small so the normal approximation and chi-square calculations are not accurate [30].

Wilcoxon–Mann–Whitney test

In order to determine what genes were differentially expressed between the CAW and AAW, we utilized the Wilcoxon–Mann–Whitney test [31] using gene ΔCT values. The Wilcoxon–Mann–Whitney test examines the null hypothesis that gene expression levels in the two groups (CAW and AAW) are independent samples from identical continuous distributions with equal medians, compared against the alternative that they do not have equal medians. Each gene is evaluated independently to determine the statistical significance of the difference between the two-group medians. A p-value of <0.05 was considered statistically significant in this study.

Semi-Supervised Principal Component Analysis (SSPCA)

To determine if the genes identified through the Wilcoxon–Mann–Whitney test could visually segregate the AAW and CAW into two distinct groups we performed SSPCA [32,33]. In traditional PCA, all gene expression values are used to identify combinations of genes that separate samples into distinct groups. SSPCA has the advantage of using only those genes previously associated with clinical and/or demographic factors, and, in this case, patient ethnicity, to segregate samples into subgroups, thus allowing clear visualization of how gene expression patterns segregate groups without interfering background noise from genes that are not differentially expressed. The Komogorov-Smirnov normality test was applied to the identified principle components (PCs) to ensure the data was approximately normally distributed [34].

Pearson correlation

To calculate the strength and direction of the linear association between the expression of gene pairs across all samples, and/or the AAW and CAW patient subpopulations individually, we used Pearson’s Correlation. Pearson’s correlation assumes a Gaussian distribution of gene expression values within sample sets (i.e. AAW patients).

Hotelling’s T\(^2\) test

Hotelling’s T\(^2\) test is used in multivariate hypothesis testing, which is a generalization of Student’s t test in univariate hypothesis testing [35]. Given the case of p-variate observations from two multivariate normally-distributed populations with common covariance matrix, Hotelling’s T\(^2\) statistic can be used to test the equality of the vector of means associated with the two samples [35]. In this work, we apply Hotelling’s T\(^2\) test to examine the multivariate gene differences between AAW and CAW patients.

Results

Patient characteristics

Both age and disease stage at diagnosis are potential factors influencing the poorer outcome observed in women of African-American descent. To ensure that any gene expression differences identified in this study were not due to age or disease stage, we selected age- and stage-matched paraffin-embedded samples of ductal breast carcinoma samples from African- and Caucasian-American women using archival records stored at the University of Alabama at Birmingham. From 80 matched archival specimens surveyed, 12 pairs were deemed of high enough quality for macrodissection and future study. All samples examined in this study were collected through biopsy or tumor
Table 2 Human breast cancer and estrogen receptor RT2 profiler PCR array

Description of Genes Associated with Breast Cancer Prognosis

Description	Accession #
Androgen receptor (AR)	NM_000044
Antigen identified by monoclonal antibody Ki-67 (MKI67)	NM_002417
B-cell CLL/lymphoma 2 (BCL2)	NM_000633
BCL2-associated agonist of cell death (BAG1)	NM_004322
BCL2-associated athanogene (BAG1)	NM_004323
Cadherin 1, type 1, E-cadherin (CDH1)	NM_004360
Catenin (cadherin-associated protein), beta 1, (CTNNB1)	NM_001904
Cathepsin B (CTSB)	NM_001908
Clusterin (CLU)	NM_001831
Collagen, type VI, alpha 1 (COL6A1)	NM_001848
Cyclin A1 (CCNA1)	NM_003914
Cyclin A2 (CCNA2)	NM_001237
Cyclin D1 (CCND1)	NM_053056
Cyclin E1 (CCNE1)	NM_001238
Cyclin-dependent kinase inhibitor 1A (CDKN1A)	NM_000389
Cyclin-dependent kinase inhibitor 1B (CDKN1B)	NM_000404
Cyclin-dependent kinase inhibitor 2A (CDKN2A)	NM_000077
Epidermal growth factor receptor (EGFR)	NM_005228
Estrogen receptor 1 (ESR1)	NM_001215
Estrogen receptor 2 (ESR2)	NM_001437
Fas ligand (TNF superfamily, member 6) (FASLG)	NM_000639
FOS-like antigen 1 (FOSL1)	NM_005438
GATA binding protein 3 (GATA3)	NM_002051
Gelsolin (GSN)	NM_000177
Inhibitor of DNA binding 2 (ID2)	NM_002166
Insulin-like growth factor binding protein 2 (IGFBP2)	NM_000597
Integrin, alpha 6 (ITGA6)	NM_000210
Integrin, beta 4 (ITGB4)	NM_000213
Interleukin 2 receptor, alpha (IL2RA)	NM_000417
Interleukin 6 (IL6)	NM_000600
Interleukin 6 receptor (IL6R)	NM_000565
Interleukin 6 signal transducer (IL6ST)	NM_002184
Jun oncogene (JUN)	NM_002228
Kallikrein-related peptidase 5 (KLK5)	NM_012427
Keratin 19 (KRT19)	NM_002276
Kruppel-like factor 5 (KLF5)	NM_001730
Mitogen-activated protein kinase kinase 7 (MAP2K7)	NM_145185
Mucin 1, cell surface associated (MUC1)	NM_001085
Nerve growth factor (NGF)	NM_002566
Nerve growth factor receptor (NGFR)	NM_002507
Prostaglandin-endoperoxide synthase 2 (PTGS2)	NM_000963
TNF receptor superfamily, member 6 (FAS)	NM_000043

Description of Genes Associated with Estrogen Receptor Signaling

Description	Accession #
Non-metastatic cells 1 (NME1)	NM_000269
Phosphatase and tensin homolog (PTEN)	NM_000314
Plasminogen activator, urokinase (PLAU)	NM_002658
Progesterone receptor (PGR)	NM_000926
Serpin peptidase inhibitor, clade B, member 5 (SERPINB5)	NM_002639
Serpin peptidase inhibitor, clade E, member 1 (SERPINE1)	NM_000602
Thrombospondin 1 (THBS1)	NM_003236
Topoisomerase (DNA) II alpha (TOP2A)	NM_001067
Transforming growth factor, alpha (TGFA)	NM_003236
Tumor protein p53 (TP53)	NM_000546
Tyrosine kinase with immunoglobulin-like and EGF-like domains 1 (TIE1)	NM_005424
Vascular endothelial growth factor A (VEGFA)	NM_003376

Description of Genes Associated with Response to Chemotherapy

Description	Accession #
Cathepsin D (CTSD)	NM_001909
Complement component 3 (C3)	NM_000064
Heat shock 27 kDa protein 1 (HSPB1)	NM_001540
Keratin 18 (KRT18)	NM_000224
Serpin peptidase inhibitor, member 3 (SERPINA3)	NM_001085
Solute carrier family 7, member 5 (SLC7A5)	NM_003486
Stanniocalcin 2 (STC2)	NM_003714
Trefoil factor 1 (TFF1)	NM_003225

Description of Genes Associated with Breast Cancer Diagnosis and Progression

Description	Accession #
BCL2-like 2 (BCL2L2)	NM_004050
CD44 molecule (CD44)	NM_000610
Claudin 7 (CLDN7)	NM_003107
Cytochrome P450, family 19, subfamily A, polypeptide (CYP19A1)	NM_000103
Deleted in liver cancer 1 (DLC1)	NM_006909
Fibroblast growth factor 1 (FGF1)	NM_008000
Fibronectin leucine rich transmembrane protein 1 (FLRT1)	NM_013280
Gamma-aminobutyric acid (GABA) A receptor, pi (GABRP)	NM_014211
GNAS complex locus (GNAS)	NM_008425
High-mobility group box 1 (HMGBI1)	NM_002128
Metallothionein 3 (MT3)	NM_005954
Nuclear transcription factor Y, beta (NFBY)	NM_006166
Pregnancy-associated plasma protein A, pappalysin 1 (PAPPA)	NM_002581
Ras-related C3 botulinum toxin substrate 2 (RAC2)	NM_002872
Of these 20 genes, only 70% (7 of the 20) of the 20 differentially expressed genes, 70% (AR, BCL2, CCND1, ESR1, GATA3, IGFBP2, IL6ST, KRT19, MUC1, PGR, SERPINE1, HSPB1, SERPINA3, and STC2) have been previously associated with estrogen signaling and/or estrogen receptor 1 expression. To determine if similar associations with estrogen signaling could be detected in this study, Pearson’s correlation was used to determine the strength and direction of any underlying relationships with ESR1 expression. Of the above listed genes, ESR1 was positively associated with the expression of BCL2, GATA3, IL6ST, MUC1, SERPINE1, AR, and HSPB1 expressions in women of African-American descent, with BCL2 displaying the strongest association (Table 3). In contrast, only the expression of KRT19 and CCND1 were correlated with ESR1 expression in the Caucasian population (Table 4).

In addition to estrogen signaling genes, 4 of the 20 identified genes have been implicated in resistance to targeted therapies (ERBB2, ESR1, PGR, and AR). Previous studies have reported that tumor specimens from women of African-American heritage are significantly more likely to lack expression of the hormone receptors ESR1, PGR, and AR, compared to other ethnicities. In the current study we found significantly lower expression of these receptors (6.7-fold) in the AAW compared to CAW patients (Table 3). In addition, a larger percentage of AAW than CAW patients had no measurable expression of the PGR (33%; 8%) and ESR1 (50%; 8%) genes respectively. AAW patients were also less likely to express ERBB2 (42%; 8%).

In addition to estrogen signaling and resistance to therapy, 7 of the identified genes have been previously associated with cell cycle regulation (CCND1, CDKN1A, CDKN1B, and CDKN2A) and breast cancer aggressiveness (CLDN7 and DLC1) (Table 3).
Discussion

Women of African-American descent are diagnosed with breast cancer at a younger age and clinical stage than their Caucasian counterparts. In addition, although CAW have a higher incidence of breast cancer, AAW have poorer survival rates. While multiple studies have shown that these disparities in health outcomes are, in part, due to such societal factors as social economic status, access to appropriate health care, diet and religious beliefs, population-based studies showed that differences in patient diagnosis and survival remained even after taking such factors into account, suggesting biological underpinnings in race may be responsible. Identification of genetic contributors that may be driving the racial differences in clinical outcome is critical as such factors may alter preventative medicine, cancer screening practices, and therapeutic guidelines. The aim of the current study was to gain a more in-depth understanding of gene expression differences between AAW and CAW breast cancer patients that may contribute to the poorer outcome of AAW patients.

Interestingly, even though patients were matched on both age and stage at diagnosis, tumor tissues from women of African decent were significantly more likely to be of higher grade. Although AAW tumors were also more likely to display the triple negative (ER-, PR-, HER2-) phenotype, these observations did not reach statistical significance. Higher grade and a triple negative phenotype are known negative predictors of breast cancer prognosis. Thus, these findings are in agreement with past studies and support that AAW have a molecular predisposition for a more aggressive breast cancer phenotype.

In the current study the expression of 84 genes (Table 2) previously implicated in breast cancer aggressiveness, estrogen receptor signaling, resistance to chemotherapy, and patient prognosis were examined in formalin-fixed, paraffin-embedded (FFPE) tissues obtained from age- and stage-matched AAW and CAW patients. Gene expression analysis of archival tissues has traditionally been problematic due to nucleotide degradation resulting from tissue processing. However, interestingly, even though patients were matched on both age and stage at diagnosis, tumor tissues from women of African decent were significantly more likely to be of higher grade. Although AAW tumors were also more likely to display the triple negative (ER-, PR-, HER2-) phenotype, these observations did not reach statistical significance. Higher grade and a triple negative phenotype are known negative predictors of breast cancer prognosis. Thus, these findings are in agreement with past studies and support that AAW have a molecular predisposition for a more aggressive breast cancer phenotype.

In the current study the expression of 84 genes (Table 2) previously implicated in breast cancer aggressiveness, estrogen receptor signaling, resistance to chemotherapy, and patient prognosis were examined in formalin-fixed, paraffin-embedded (FFPE) tissues obtained from age- and stage-matched AAW and CAW patients. Gene expression analysis of archival tissues has traditionally been problematic due to nucleotide degradation resulting from tissue processing. However,
immense progress has been made in both the RNA isolation from and expression analysis of FFPE tissues [36,37]. In fact, several studies specifically comparing gene expression profiles from matched snap-flash frozen and FFPE tissues demonstrated significant concordance (r = 0.92, P < 0.0001) [29,38], opening the use of archival tissues for gene expression analysis.

The current study identified 20 genes that had a significant and greater than 2-fold change in expression between AAW and CAW patients using the Wilcoxon-Mann-Whitney test (Table 3). As illustrated in Figure 1, virtually all of the genes identified displayed increased expression in Caucasian compared to African-American women. Only CDKN1A displayed a significantly higher expression in AAW. To determine if the differential expression of these genes could discriminate between African-American and Caucasian patients, we performed SSPCA. SSPCA is advantageous over general principal component analysis in that, by only using those genes associated with ethnic background, patient clustering can be visualized without background noise resulting from genes that are not differentially expressed. This analysis determined that the AAW and CAW breast cancer patients could be visually clustered based only on the expression of these 20 genes using combinations of principal component PC1, PC2, and PC3 (Figure 2, p < 0.001 for all PC combinations).

In support of previous studies examining molecular differences between African-American and Caucasian-American women, our study suggests that AAW have a gene expression-based predisposition for a more aggressive and treatment resistant tumor phenotype than CAW. The 20 differentially expressed genes identified (Table 3) have been implicated in cell cycle regulation, response to therapy, estrogen signaling and breast cancer aggressiveness. Abnormalities in the levels of G1/S phase cell-cycle regulatory proteins have been previously associated with breast cancer prognosis and response to therapy [39-44]. In our study the expression of CCND1, CDKN1A and CDKN1B was significantly elevated, while CDKN2A was significantly lower, in Caucasian-American compared to African-American patients. CCND1 (Cyclin D) drives the G1/S phase transition through binding with cyclin dependent kinase 4 (CDK4) and cyclin dependent kinase 6 (CDK6), which then phosphorylates retinoblastoma (pRb), inducing downstream Cyclin E transcription [45]. In contrast CDKN1A (p21), CDKN1B (p27), and CDKN2A (p16) are cyclin dependent kinase inhibitor proteins (CDK inhibitors) involved in cell cycle arrest through inhibition of CDK4, CDK6, and cyclin dependent kinase 2 (CDK2) [45]. As a whole, the lower expression of CCND1, CDKN1A and CDKN1B, and higher expression of CDKN2A in AAW versus CAW patients would hypothetically result in decreased cellular proliferation in AAW tumor specimens, yet AAW patient tissues had a statistically significant higher grade than CAW specimens in this study. Interestingly, other studies have also observed this same contradiction [20], and in fact, have noted a distinct inverse relationship between cyclin D1 [20,46,47] and p16 [20,48,49] levels with poorer clinical outcome, a more aggressive cancer phenotype, and resistance to multiple chemotherapeutic agents. The collective findings of our and these studies suggest that deregulation of cell-cycle G1 regulatory
Table 4 Genes previously associated with estrogen signalling

Gene	CAW r	P - Value	AAW r	P - Value
BCL2	NS	NS	0.95	<0.001
CCND1	0.65	0.0228	NS	NS
GATA3	NS	NS	0.76	0.0043
IGFBP2	NS	NS	NS	NS
IL6ST	NS	NS	0.85	0.0043
KRT19	0.76	0.0041	NS	NS
MUC1	NS	0.84	NS	0.0006
SERPINE1	NS	NS	0.86	0.004
AR	NS	NS	0.80	0.0017
HSPB1	NS	NS	0.82	0.001
SERPINA3	NS	NS	NS	NS
STC2	NS	NS	NS	NS

NS Not Significant.

genes is common in women of African-American heritage and may contribute to the poorer outcome of this ethnic group.

In addition to differences in cell-cycle regulatory genes, we also noted distinct differences in the expression of genes previously implicated in treatment response between AAW and CAW patient tumor specimens. As clearly illustrated in Figure 2, AAW patients had significantly lower (P < 0.05) expression of ESR1 (ER), PGR (PR), and ERBB2 (HER-2), compared to CAW patients with a greater percentage of AAW patients exhibiting no detectable expression of ESR1 (8% vs. 50%) or PGR (8% vs. 33%). A similar trend was observed in the tumoral protein receptor status for ER, PR, and HER2 (Table 1). These data add to the growing body of evidence that women of African-American descent are statistically more likely to be estrogen and progesterone receptor-negative [17,50-53]. ER+ and PR+ tumor status is typically associated with increased survival and enhanced response to hormonal therapy. In contrast, lack of estrogen and progesterone receptor expression has been associated with a more aggressive phenotype and worse clinical outcome, as lack of estrogen or progesterone receptor status precludes treatment with tamoxifen or trastuzumab [50,51]. Unlike the racial differences observed for ESR1 and PGR, no such association has been described for ERBB2. In two separate multiethnic population-based studies conducted by Elledge et al. [52] and Porter et al. [20], HER-2 levels were found to be similar between all ethnic groups examined. However, the protein expression of HER-2 was assessed through immunohistochemistry in both of these studies, and thus differences in findings may reflect a dissociation between protein and mRNA levels of HER-2/ERRB2. While elevated ERBB2 expression has been associated with increased disease recurrence, metastasis, and shorter survival, enhanced survival is also observed for these patients when treated with HER-2 targeted therapies such as Herceptin [54,55] and Tykerb [54,56]. These results suggest AAW may harbor gene expression profile differences that increase tumor resistance to current targeted hormone and HER2 therapies. Collectively, this data supports that there are inherent gene expression differences in ESR1, PGR, and ERBB2 between women of African and Caucasian-American descent that potentially contributes to the triple negative phenotype (ER-, PR-, and HER2-) and poorer outcome often observed for AAW.

Interestingly, 70% of the genes differentially expressed between African-American and Caucasian-American women in our study have been implicated in estrogen signaling, including AR, BCL2, CCND1, ESR1, GATA3, IGFBP2, IL6ST, KRT19, MUC1, PGR, SERPINE1, HSPB1, SERPINA3, and STC2, all of which displayed decreased expression in AAW compared to CAW patients (Table 4). The expression of AR [57,58], BCL2 [57-59], CCND1 [57,58,60], GATA3 [57,58,61,62], IL6ST [57,58], MUC1 [58,63,64], PGR [57,65], SERPINE1 [66,67], HSPB1 [58,68,69] and STC2 [57,58,69,70] have been positively associated with ESR1 expression and/or upregulated by ESR1. Other studies have found estrogen can directly upregulate transcription of AR [57], GATA3 [57], IGFBP2 [71,72], KRT19 [73], and MUC1 [64], PGR [57,74,75], SERPINE1 [76], HSPB1 [77-79], SERPINA3 [80,81], SERPINE1 [76], and STC2 [57,69,70]. In support of these studies, we also found that the expression of AR, BCL2, GATA3, IL6ST, MUC1, PGR, SERPINE1, and HSPB1, were significantly associated with ESR1 expression in AAW; although, only KRT19 and CCND1 were positively correlated with ESR1 levels in American women of Caucasian descent. Interestingly, lower levels of BCL2 [59,82,83], CCND1 [46,84], GATA3 [62,85,86], IL6ST [87], KRT19 [88], MUC1 [63,64,89], PGR [65,90], SERPINE1 [66], SERPINA3 [69], STC2 [91], while higher levels of AR [65,92], SERPINA3 [69], and STC2 [69] have been associated with enhanced response to hormone therapy in sex steroid positive tumors. These results suggest that women of African-American ethnicity are more prone to displaying negative or low expression of ESR1 and its associated estrogen response genes, which have been correlated with resistance to hormone therapy and worse clinical outcome.

In addition to genes involved in cell cycle, treatment response, and estrogen signaling, we also determined that the cell adhesion-related genes CLDN7 and DLC1 were significantly decreased in the AAW patients (Table 3, Figure 1). CLDN7 is a member of the claudin family of transmembrane proteins, which are critical
structural and molecular components of tight junctions [93,94], necessary for cell-cell adhesion. Studies suggest that loss of tight junctions from down-regulation of claudins in various cancers, results in loss of cohesion, increased invasiveness, and cell dedifferentiation [95]. In support of these findings, loss or decreased expression of CLDN7, which is expressed constitutively during mammary epithelium development [96], has been significantly associated with higher histological grade, loss of cellular cohesion, and increased metastasis in breast carcinoma [97,98]. In light of this data, CLDN7 has been proposed as a breast cancer tumor-suppressor gene. Like CLDN7, DLC1 is has been considered a tumor suppressor gene involved in the regulation of the actin cytoskeleton, cell polarity, inter-cell focal adhesion, cell migration, and apoptosis [99-101] through negative regulation of Rho signaling pathways [99]. DLC1 is expressed in multiple tissues including the brain, heart, kidney, liver, lung, skin, spleen, and testis [102]. Studies have found that the mRNA levels of DLC1 are diminished in various cancers [103], including breast, through loss of heterozygosity or heterozygous gene deletions [104]. Furthermore, several studies investigating the role of DLC1 in breast cancer found that forced expression of DLC-1 in DLC-1 negative breast cancer cell lines resulted in growth inhibition, reduction in colony formation, and abolishment of in vivo tumorigenicity [103,105], whereas downregulation of DLC1 expression enhanced cell motility and chemotactic behavior [106]. These studies suggest that loss or reduced expression of CLDN7 and DLC1, as was observed in tumor specimens from AAW, may lead to increased cell motility, migration, metastasis and dedifferentiation, all of which may contribute to the worse clinical prognosis observed for AAW.

The large number of gene expression differences observed in this study between AAW and CAW patients supports that women of African-American descent may harbor differences in gene expression profiles that predispose them to increased tumor grade, a triple negative (ER-, PR-, HER2-) phenotype, and worse clinical disease outcome. Future studies are needed to determine if these gene expression profiles are grade and receptor status, or represent other attributing factors to AAW phenotype.

Conclusions

The main objective of this study was to identify gene expression differences between AAW and CAW that may contribute to the poor clinical outcome observed for women of African-American descent. While the small sample size examined in this study is a limiting factor, the use of only age- and stage-matched tumor specimens strengthens findings from this study. This study demonstrated that tumor specimens from AAW were significantly more likely to display aberrations in G1/S cell-cycle regulatory genes, lack or exhibit low expression of ESRI, PGR, and ERBB2 with a decrease in estrogen signaling pathway targets, and display a decrease in the expression of cell-adhesion genes. These factors have been collectively linked with a more aggressive cancer phenotype, resistance to multiple chemotherapeutic agents, enhanced metastatic potential, and poorer clinical outcome, further supporting the hypothesis that women of African-American ancestry have ethnic differences in gene expression patterns that predisposes them to a highly aggressive and treatment-resistant breast cancer phenotype.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

JMG carried out the data interpretation, participated in the statistical analysis, and drafted the manuscript. ADS processed the tissue samples, carried out the gene expression analysis, and participated in drafting the manuscript. QH carried out the statistical analysis and participated in drafting the manuscript. MRS participated in sample acquisition. SBP participated in the study design and carried out the patient data acquisition. MRJ and WEG jointly conceived and coordinated the study. All authors reviewed and approved of the final manuscript.

Acknowledgements

This study was funded in part by a grant from the Susan G. Komen Breast Cancer Foundation (BCTR0600484), the Breast SPORE (CA899010-09) and the US4 (CA118948).

Author details

1. Department of Medicine, Division of Endocrinology, University of Alabama at Birmingham, Birmingham, AL 35294, USA. 2. Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL 35294, USA. 3. Department of Chemical Engineering, Tuskegee University, Tuskegee, AL 36088, USA. 4. Department of Pathology, University of Alabama at Birmingham, Zeigler Research Building, 703 South 19th Street, ZRB 408, Birmingham, AL 35294, USA. 5. Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.

Received: 1 September 2011 Accepted: 25 April 2012
Published: 22 May 2012

References

1. Society AC: Breast cancer facts and figures: 2009–2010. Atlanta: American Cancer Society, Inc.; 2009.
2. Society AC: Cancer Facts and Figures for African Americans 2011–2012. Atlanta: American Cancer Society; 2011.
3. Newman LA: Breast cancer in African-American women. Oncologist 2005, 10(1):1–14.
4. Chen WW, Correa P, Kneman RJ, Wu XC, Eley JW, Austin D, Muss H, Hunter CP, Redmond C, Sobhan M, et al: Histological characteristics of breast carcinoma in blacks and whites. Canc Epidemiol Biomarkers Prev 1994, 3(2):127–135.
5. Fedewa SA, Edge SB, Stewart AK, Halpern MT, Marlow NM, Ward EM: Race and ethnicity are associated with delays in breast cancer treatment (2003–2006). J Health Care Poor Underserved 2011, 22(1):128–141.
6. Fedewa SA, Ward EM, Stewart AK, Edge SB: Delays in adjuvant chemotherapy treatment among patients with breast cancer are more likely in African American and Hispanic populations: a national cohort study 2004–2006. J Clin Oncol 2010, 28(7):4135–4141.
7. Freedman RA, Virgo KS, He Y, Pavluck AL, Winer EP, Ward EM, Keating NL: The association of race/ethnicity, insurance status, and socioeconomic factors with breast cancer care. Cancer 2011, 117(1):180–189.
8. Gullate M: Influence of spirituality and religiosity on breast cancer screening delay in African American women: application of the Theory of Reasoned Action and Planned Behavior (TRA/TPB). ABNF J 2006, 17(2):89–94.

9. Wang J, John EM, Horn-Ross PL, Inglies SA: Dietary fat, cooking fat, and breast cancer risk in a multiracial population. Nutr Cancer 2008, 60(4):492–504.

10. Newman LA, Griffith KA, Jatoi I, Simon MS, Crowe JP, Colditz GA: Meta-analysis of survival in African American and white American patients with breast cancer: ethnicity compared with socioeconomic status. J Clin Oncol 2006, 24(11):1342–1349.

11. Newman LA, Mason J, Cote D, Vin Y, Carolin K, Bouwman D, Colditz GA: African-American ethnicity, socioeconomic status, and breast cancer survival: a meta-analysis of 14 studies involving over 10,000 African-American and 40,000 White American patients with carcinoma of the breast. Cancer 2002, 94(1):2844–2854.

12. Jatoi I, Becher H, Leake CR: Widening disparity in survival between white and African-American patients with breast cancer treated at the U.S. Department of Defense Healthcare System. Cancer 2003, 98(5):894–899.

13. Wojcik BE, Spinks MK, Optenberg SA: African American and white women in an equal-access health care system. J Natl Cancer Inst 2000, 92(14):894–902.

14. CAREY LA, Perou CM, Livasy CA, Droller L, Cowan D, Conklin B, et al: Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. JAMA 2006, 295(2):2492–2502.

15. Nielsen TO, Hu D, Jensen K, Cheang M, Karaca G, Hsu Z, Hernandez-Boussard T, Livasy C, Droller L, et al: Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res 2004, 10(16):5367–5374.

16. Amend K, Hicks D, Ambrosone CB: Breast cancer in African-American women: differences in tumor biology from European-American women. Breast Cancer Res Treat 2006, 100(1):253–2542.

17. Rahka EA, Abd El Rehim D, Pinder SE, Lewis SA, Ellis IO: E-cadherin expression in invasive non-luminal carcinoma of the breast and its prognostic significance. Histopathology 2005, 46(6):685–693.

18. Lund MJ, Trivers KR, Porter PL, Coates RJ, Leyland-Jones B, Brawley OW, Flagg EW, O'Regan RM, Gabram SG, Eley JW: Race and triple negative status is a threat to breast cancer survival: a population-based study in Atlanta, GA, Breast Cancer Res Treat 2009, 113(2):357–370.

19. Field LA, Love B, Dearyim B, Hooke JA: Shriver CD, Ellsworth RE: Identification of differentially expressed genes in breast tumors from African American compared with Caucasian women. Cancer, 2011.

20. Hammond ME, Hayes DF, Dowsett M, Allred DC, Hagerty KL, Badve S, Fitzgibbons PL, Francis G, Goldstein NS, Hayes M, et al: American Society of Clinical Oncology/Collaborative of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. Arch Pathol Lab Med 2010, 134(6):907–922.

21. Portier PL, Malone KE, Heagerty PJ, Alexander GM, Gatti LA, Firpo EJ, Daling JR, Roberts JM: Expression of cell-cycle regulators p27Kip1 and cyclin E, alone and in combination, correlate with survival in young breast cancer patients. Breast Cancer Res Treat 2009, 113(2):227–230.

22. Gorgoulis VG, Koutroumi EN, Kotsinas A, Zacharatos P, Markopoulous C, Giannikos L, Kyrakiou V, Voulgaris Z, Gogas I, Kittas C: Alterations of p16-ink4a and p53 gene expression in tamoxifen-treated mammary tumors. J Natl Cancer Inst 2009, 101(16):1260–1270.

23. Hillander M, Wolfe D: Nonparametric Statistical Methods. 1999, (2nd).

24. Brawley OW, deCock PM, Daling JR, Wanebo HJ, Neely DR, et al: Decreased levels of the cell-cycle inhibitor p27Kip1 protein: prognostic implications in primary breast cancer. J Natl Cancer Inst 1999, 91(17):1331–1334.

25. Portier PL, Coates RJ, Eley JW: Increased expression of thymidylate synthetase (TS) in breast cancer: a clinicopathological study. J Natl Cancer Inst 2000, 92(17):2854–2860.

26. Hallander M, Wolfe D, Ellsworth RE: Cyclins and breast cancer. Nat Med 2001, 7(3):292–299.

27. Steeg PS, Zhou Q: Cyclins and breast cancer. Breast Cancer Res Treat 1998, 52(1–3):17–28.

28. Satyanarayana A, Kaldas P: Mammalian cell cycle regulation: several Cdk's, numerous cyclins and diverse compensatory mechanisms. Oncogene 2000, 20(53):2935–2959.

29. Michalides R, Hageman P, van Tinteren H, Houben L, Wientjens E, Lobeniglio AF, Frost AR, Johnson MR: Hedgehog pathway expression in heterogeneous pancreatic adenocarcinoma: implications for the molecular analysis of clinically available biopsies. Diagn Mol Pathol 2007, 16(4):229–237.

30. Steeg PS, Zhou Q, Aliquand C, Gronda JM, Etzioni IA, Wang K, Buchsbaum DJ, Vickers SM, Russo S, Diabo RB, et al: Multiple gene expression analyses in paraffin-embedded tissues by TaqMan low-density array: Application to hedgehog and Wnt pathway analysis in ovarian endometrioid adenocarcinoma. J Mol Diagn 2006, 8(1):76–83.

31. Fisher RA: Statistical Methods for Research Workers: Oliver and Boyd, 1954.

32. Hallander M, Wolfe D: Nonparametric Statistical Methods. 1999, (2nd).

33. Brawley OW, deCock PM, Daling JR, Wanebo HJ, Neely DR, et al: Decreased levels of the cell-cycle inhibitor p27Kip1 protein: prognostic implications in primary breast cancer. J Natl Cancer Inst 1999, 91(17):2854–2860.

34. Brawley OW, deCock PM, Daling JR, Wanebo HJ, Neely DR, et al: Decreased levels of the cell-cycle inhibitor p27Kip1 protein: prognostic implications in primary breast cancer. J Natl Cancer Inst 1999, 91(17):2854–2860.

35. Brawley OW, deCock PM, Daling JR, Wanebo HJ, Neely DR, et al: Decreased levels of the cell-cycle inhibitor p27Kip1 protein: prognostic implications in primary breast cancer. J Natl Cancer Inst 1999, 91(17):2854–2860.

36. Brawley OW, deCock PM, Daling JR, Wanebo HJ, Neely DR, et al: Decreased levels of the cell-cycle inhibitor p27Kip1 protein: prognostic implications in primary breast cancer. J Natl Cancer Inst 1999, 91(17):2854–2860.

37. Brawley OW, deCock PM, Daling JR, Wanebo HJ, Neely DR, et al: Decreased levels of the cell-cycle inhibitor p27Kip1 protein: prognostic implications in primary breast cancer. J Natl Cancer Inst 1999, 91(17):2854–2860.

38. Brawley OW, deCock PM, Daling JR, Wanebo HJ, Neely DR, et al: Decreased levels of the cell-cycle inhibitor p27Kip1 protein: prognostic implications in primary breast cancer. J Natl Cancer Inst 1999, 91(17):2854–2860.

39. Brawley OW, deCock PM, Daling JR, Wanebo HJ, Neely DR, et al: Decreased levels of the cell-cycle inhibitor p27Kip1 protein: prognostic implications in primary breast cancer. J Natl Cancer Inst 1999, 91(17):2854–2860.

40. Brawley OW, deCock PM, Daling JR, Wanebo HJ, Neely DR, et al: Decreased levels of the cell-cycle inhibitor p27Kip1 protein: prognostic implications in primary breast cancer. J Natl Cancer Inst 1999, 91(17):2854–2860.

41. Brawley OW, deCock PM, Daling JR, Wanebo HJ, Neely DR, et al: Decreased levels of the cell-cycle inhibitor p27Kip1 protein: prognostic implications in primary breast cancer. J Natl Cancer Inst 1999, 91(17):2854–2860.

42. Brawley OW, deCock PM, Daling JR, Wanebo HJ, Neely DR, et al: Decreased levels of the cell-cycle inhibitor p27Kip1 protein: prognostic implications in primary breast cancer. J Natl Cancer Inst 1999, 91(17):2854–2860.

43. Brawley OW, deCock PM, Daling JR, Wanebo HJ, Neely DR, et al: Decreased levels of the cell-cycle inhibitor p27Kip1 protein: prognostic implications in primary breast cancer. J Natl Cancer Inst 1999, 91(17):2854–2860.

44. Brawley OW, deCock PM, Daling JR, Wanebo HJ, Neely DR, et al: Decreased levels of the cell-cycle inhibitor p27Kip1 protein: prognostic implications in primary breast cancer. J Natl Cancer Inst 1999, 91(17):2854–2860.

45. Brawley OW, deCock PM, Daling JR, Wanebo HJ, Neely DR, et al: Decreased levels of the cell-cycle inhibitor p27Kip1 protein: prognostic implications in primary breast cancer. J Natl Cancer Inst 1999, 91(17):2854–2860.

46. Brawley OW, deCock PM, Daling JR, Wanebo HJ, Neely DR, et al: Decreased levels of the cell-cycle inhibitor p27Kip1 protein: prognostic implications in primary breast cancer. J Natl Cancer Inst 1999, 91(17):2854–2860.
56. Burris HA:

55. Campiglio M, Bufalino R, Sandri M, Ferri E, Aiello RA, De Matteis A,

Human epidermal growth factor receptor-2-positive

53. Chu KC, Anderson WF, Fritz A, Ries LA, Brawley OW:

48. Nielsen NH, Loden M, Grunda et al. BMC Research Notes

Meta-analysis of human cancer microarrays reveals

60. Spyratos F, Andrieu C, Vidaud D, Briffod M, Vidaud M, Lidereau R, Bieche I:

66. Minisini AM, Fabbro D, Di Loreto C, Pestrin M, Russo S, Cardellino GG,

65. Napieralski R, Brunner N, Mengele K, Schmitt M:

63. Rakha EA, Boyce RW, Abd El-Rehim D, Kurien T, Green AR, Paish EC,

62. Mehra R, Varambally S, Ding L, Shen R, Sabel MS, Ghosh D, Chinnaiyan AM,

expression of estrogen receptor and progesterone receptor status for eight racial/ethnic groups.

72. Bouras T, Southey MC, Chang AC, Reddel RR, Willhite D, Gryne R, Henderson MA, Armitage P, Venner DJ. Stanniocalcin 2 is an estrogen-responsive gene coexpressed with the estrogen receptor in human breast cancer. Cancer Res 2002, 62(5):1289–1295.

71. Michels KM, Lee WH, Seltzer A, Sweeney JM, Bandy CA: Up-regulation of IGF-II expression in breast cancer. Breast Cancer Res Treat 2004, 82(5):283–289.

70. Wilson CL, Sims AH, Howell A, Miller CL, Clarke RB: Effect of oestrogen on gene expression in epithelium and stroma of normal human breast tissue. Endocrine-related cancer 2006, 13(4):617–628.

69. Graham JD, Romain SD, McGowan S, Euanthria RS, Clarke CL: Preferential stimulation of human progesterone receptor B expression by estrogen in T-47D human breast cancer cells. J Biol Chem 1995, 270(51):30993–30700.

68. Kroll J, Briand P: Estrogenic activity of E2 and of estrogenic compounds in human breast cancer cell lines. J Steroid Biochem 2006, 38(6):297–304.

67. Lin CY, Chen TH, Lee CH, Shiow J, Wu SS: The expression of six estradiol-induced marker genes, ESR1, ESR2, CCND1, ERBB2, PRKACA and PRKACB, in human breast cancer tissue microarrays. Breast Cancer Res Treat 2003, 81(1):23–33.

66. Minisini AM, Fabbro D, Di Loreto C, Pestrin M, Russo S, Cardellino GG, Briffod M, Vidaud M, Lidereau R, Bieche I: Estrogen-induced 24 K protein in MCF-7 breast cancer cells is localized in granules. Breast Cancer Res Treat 1984, 6(2):161–64.

65. Nakajima K, Takahara Y, Nakamura K, Takase T, Yano M, Ishida K, Naruse K, Suda T, Takahashi T: Expression of the tumor susceptibility gene 4 (TSG4) in invasive breast cancers. Breast Cancer Res Treat 2007, 105(1):17–24.

64. Dawson SJ, Makretsov N, Blows FM, Driver KE, Provenzano E, Le Quesne J, Robertson JF, Ellis IO: Expression of mucins (MUC1, MUC2, MUC3, MUC4, MUC6) and their prognostic significance in human breast cancer. Mod Pathol 2010, 23(3):366–373.

63. Rakha EA, Boyce RW, Abd El-Rehim D, Kurien T, Green AR, Paish EC, Robertson JF, Ellis IO: Expression of mucins (MUC1, MUC2, MUC3, MUC4, MUC6) and their prognostic significance in human breast cancer. Mod Pathol 2010, 23(3):366–373.

62. Mehra R, Varambally S, Ding L, Shen R, Sabel MS, Ghosh D, Chinnaiyan AM, Robertson JF, Ellis IO: Expression of mucins (MUC1, MUC2, MUC3, MUC4, MUC6) and their prognostic significance in human breast cancer. Mod Pathol 2010, 23(3):366–373.

61. Rakha EA, Boyce RW, Abd El-Rehim D, Kurien T, Green AR, Paish EC, Robertson JF, Ellis IO: Expression of mucins (MUC1, MUC2, MUC3, MUC4, MUC6) and their prognostic significance in human breast cancer. Mod Pathol 2010, 23(3):366–373.

60. Spyratos F, Andrieu C, Vidaud D, Briffod M, Vidaud M, Lidereau R, Bieche I: CCND1 mRNA overexpression is highly related to estrogen receptor positivity but not to proliferative markers in primary breast cancer. Int J Mol Med 2000, 5(1):210–214.

59. Sallemi-Boudawara T, Aifa S, Rebai A: CCND1 mRNA overexpression is highly related to estrogen receptor positivity but not to proliferative markers in primary breast cancer. Int J Mol Med 2000, 5(1):210–214.

58. Wilson BJ, Giguere V: Meta-analysis of human cancer microarrays reveals GATA3 is integral to the estrogen receptor alpha pathway. Mol Cancer 2008, 7(4):295–305.

57. Nanni O, Ciccarelli O, Bosi A, Del Rosso U, Cossu F, Ruggeri M, Musumeci C, De Placido S, Querzoli P, Alaggio R, et al: Identification of new genes associated with breast cancer progression by gene expression analysis of predefined sets of neoplastic tissues. Int J Cancer 2004, 112(6):1327–1338.

56. Yamaura J, Myoshii Y, Yamaki T, Taguchi Y, Iwao K, Monden M, Kato K, Noguchi S: mRNA expression level of estrogen-inducible gene, alpha 1-antichymotrypsin, is a predictor of early tumor recurrence in patients with invasive breast cancers. Cancer Sci 2004, 95(11):887–892.

55. Bouras T, Southey MC, Chang AC, Reddel RR, Willhite D, Gryne R, Henderson MA, Armitage P, Venner DJ. Stanniocalcin 2 is an estrogen-responsive gene coexpressed with the estrogen receptor in human breast cancer. Cancer Res 2002, 62(5):1289–1295.

54. Michels KM, Lee WH, Seltzer A, Sweeney JM, Bandy CA: Up-regulation of IGF-II expression in breast cancer. Breast Cancer Res Treat 2004, 82(5):283–289.

53. Chu KC, Anderson WF, Fritz A, Ries LA, Brawley OW: Meta-analysis of human cancer microarrays reveals a global gene expression meta-analysis. Canc Res 2005, 65(24):11259–11264.

52. Elledge RM, Clark GM, Charness GC, Osborne CK: Tumor biologic factors and breast cancer prognosis among white, Hispanic, and black women in the United States. J Natl Cancer Inst 1994, 86(9):705–712.

51. Tuot S, Giraud V, Vacher S, Vendrell J, Andrieu C, Spyratos F, Cohen P, Lidereau R, Bieche I: Identification of novel genes that co-cluster with estrogen receptor alpha in breast tumor biopsy specimens, using a large-scale real-time reverse transcription-PCR approach. Endocr Relat Cancer 2006, 13(4):1109–1120.

50. Kroll J, Briand P: Estrogen-dependent release of serum proteins from human breast cancer cell lines. Mol Cell Endocrinol 2010, 317(1):1166–1177.

49. Kallal-Bayoudh I, Hassen HB, Kharbi A, Boujebelene N, Daoud J, Frikha M, Sallemi-Boudawara T, Alfa S, Rebai A: Bcl-2 expression and triple-negative breast cancer patients continuing trastuzumab treatment: evidence from a retrospective study. Breast Cancer Res Treat 2011, 128(1):147–154.

48. Nielsen NH, Loden M, Grunda et al. BMC Research Notes

Meta-analysis of human cancer microarrays reveals GATA3 is integral to the estrogen receptor alpha pathway. Mol Cancer 2008, 7(4):295–305.

47. Rakha EA, Boyce RW, Abd El-Rehim D, Kurien T, Green AR, Paish EC, Robertson JF, Ellis IO: Expression of mucins (MUC1, MUC2, MUC3, MUC4, MUC6) and their prognostic significance in human breast cancer. Mod Pathol 2005, 18(10):1295–1304.

46. Wei X, Xu H, Kufe D: MUC1 oncoprotein stabilizes and activates estrogen receptor alpha. Mol Cell 2006, 21(2):295–305.

45. Napierska R, Brunner N, Mengelle K, Schmitt M: Emerging biomarkers in breast cancer care. Biomark Med 2010, 4(4):505–522.

44. Minisini AM, Febbraro D, Di Loeto C, Pietri M, Russo S, Cardellino GG, Andreotta C, Damante G, Puglisi F: Markers of the uPA system and common prognostic factors in breast cancer. Am J Clin Pathol 2007, 128(3):112–117.

43. Smith LH, Coats SF, Qin H, Petrie MS, Covington JV, Su M, Eren M, Vaughan DE: Differential and opposing regulation of PAI-1 promoter activity by estrogen receptor alpha and estrogen receptor beta in endothelial cells. Circ Res 2004, 95(3):269–275.

42. Cirino D, Fusco L, Silligoi C, Biglia N, Ponzone R, Maggiorotto F, Russo G, Cicatiello L, Weisz A, Taverna D, et al: Identification of new genes

associated with breast cancer progression by gene expression analysis of predefined sets of neoplastic tissues. Int J Cancer 2003, 105(6):4301–4307.
clinical outcome in operable breast cancer patients. Clin Breast Canc 2010, 10(5):378–384.

89. van der Vegt B, de Roos MA, Peterse JL, Patriarca C, Hilkens J, de Bock GH, Wesseling J: The expression pattern of MUC1 (EMA) is related to tumour characteristics and clinical outcome of invasive ductal breast carcinoma. Histopathology 2007, 51(3):322–335.

90. Clark GM, McGuire WL: Progestosterone receptors and human breast cancer. Breast Canc Res Treat 1983, 3(2):157–163.

91. Esseghir S, Kennedy A, Seedhar P, Nerurkar A, Poulsom R, Reis-Filho JS, Isacke CM: Identification of NTN4, TRA1, and STC2 as prognostic markers in breast cancer in a screen for signal sequence encoding proteins. Clin Canc Res: an official Journal of the American Association for Cancer Research 2007, 13(11):3164–3173.

92. Schippinger W, Regitnig P, Dandachi N, Wernecke KD, Bauernhofer T, Kominsky SL, Argani P, Korz D, Evron E, Raman V, Garrett E, Rein A, Sauter G, Kallioniemi OP, Sukumar S: Reduced expression of Claudin-7 in fine needle aspirates from breast carcinomas correlate with grading and metastatic disease. Cytopathology 2005, 16(4):193–198.

93. Anderson JM, Van Itallie CM: Physiology and function of the tight junction. Cold Spring Harb Perspect Biol 2009, 1(2):a002584.

94. Gupta IR, Ryan AK: The expression pattern of Claudin proteins in human cancer: promising new targets for diagnosis and therapy. Cancer Res 2005, 65(21):9603–9606.

95. Blackman B, Russell T, Nordeen SK, Medina D, Neville MC: Claudin 7 expression and localization in the normal murine mammary gland and murine mammary tumors. Breast Canc Res Treat 2005, 92(1):25–35.

96. Schipper V, Regitin P, Dandachi N, Wenecke KD, Bauernhofer T, Samonig H, Moinfar F: Evaluation of the prognostic significance of androgen receptor expression in metastatic breast cancer. Virchows Arch 2006, 449(1):24–30.

97. Anderson JM, Van Itallie CM: Claudins: unlocking the code to tight junction function during embryogenesis and in disease. Clio Genet 2010, 7(4):314–325.

98. Morin PJ: Claudin proteins in human cancer: promising new targets for diagnosis and therapy. Cancer Res 2005, 65(21):9603–9606.

99. Clark GM, McGuire WL: Progestosterone receptors and human breast cancer. Breast Canc Res Treat 1983, 3(2):157–163.

100. Lahoz A, Hall A: DLC1: a significant GAP in the cancer genome. Genes Dev 2008, 22(13):1724–1730.

101. D’Souza SN, Samuel E, Ebert B, Zilberstein K, Naess O: Differential expression of breast cancer-associated genes between stage- and age-matched tumor specimens from African- and Caucasian-American Women diagnosed with breast cancer, BMC Research Notes 2012 5:248.

102. Zhou X, Thorgeirsson SS, Popescu NC: Restoration of DLC-1 gene expression induces apoptosis and inhibits both cell growth and tumorigenicity in human hepatocellular carcinoma cells. Oncogene 2004, 23(6):1308–1313.

103. Zhou X, Thorgeirsson SS, Popescu NC: Gene structure, tissue expression, and linkage mapping of the mouse DLC-1 gene (Arhgap7). Gene 2003, 288(1-2):119–127.

104. Zhou X, Thorgeirsson SS, Popescu NC: DLC-1 gene inhibits human breast cancer cell growth and in vivo tumorigenicity. Oncogene 2003, 22(3):445–450.

105. Zhou X, Miller MJ, Keck CL, Zimonjic DB, Thorgeirsson SS, Popescu NC: Cloning, characterization, and chromosomal localization of a gene frequently deleted in human liver cancer (DLC-1) homologous to rat RhoGAP. Cancer Res 1998, 58(10):2196–2199.

106. Holleter G, Heering J, Erimann P, Schmid S, Janhe R, Olayoye MA: Deleted in liver cancer 1 controls cell migration through a Dia1-dependent signaling pathway. Cancer Res 2008, 68(21):7843–8751.

Submit your next manuscript to BioMed Central and take full advantage of:

• Convenient online submission
• Thorough peer review
• No space constraints or color figure charges
• Immediate publication on acceptance
• Inclusion in PubMed, CAS, Scopus and Google Scholar
• Research which is freely available for redistribution

Cite this article as: Grunda et al.: Differential expression of breast cancer-associated genes between stage- and age-matched tumor specimens from African- and Caucasian-American Women diagnosed with breast cancer, BMC Research Notes 2012 5:248.