Spectral saturation: inverting the spectral Turán theorem

Vladimir Nikiforov
Department of Mathematical Sciences, University of Memphis, Memphis TN 38152
email: vnikifrv@memphis.edu

February 2, 2008

Abstract

Let $\mu(G)$ be the largest eigenvalue of a graph G and $T_r(n)$ be the r-partite Turán graph of order n.

We prove that if G is a graph of order n with $\mu(G) > \mu(T_r(n))$, then G contains various large supergraphs of the complete graph of order $r+1$, e.g., the complete r-partite graph with all parts of size $\log n$ with an edge added to the first part.

We also give corresponding stability results.

Keywords: complete r-partite graph; stability, spectral Turán's theorem; largest eigenvalue of a graph.

1 Introduction

This note is part of an ongoing project aiming to build extremal graph theory on spectral grounds, see, e.g., [3], [13, 20].

Let $\mu(G)$ be the largest adjacency eigenvalue of a graph G and $T_r(n)$ be the r-partite Turán graph of order n. The spectral Turán theorem [16] implies that if G is a graph of order n with $\mu(G) > \mu(T_r(n))$, then G contains a K_{r+1}, the complete graph of order $r+1$.

On the other hand, it is known (e.g., [2], [4], [9], [12]) that if $e(G) > e(T_r(n))$, then G contains large supergraphs of K_{r+1}.

It turns out that essentially the same results also follow from $\mu(G) > \mu(T_r(n))$.

Recall first a family of graphs, studied initially by Erdős [7] and recently in [2]: an r-joint of size t is the union of t distinct r-cliques sharing an edge. Write $js_r(G)$ for the maximum size of an r-joint in a graph G. Erdős [7], Theorem 3’, showed that:

If G is a graph of sufficiently large order n satisfies $e(G) > e(T_r(n))$, then $js_{r+1}(G) > n^{r-1}/(10(r+1))^{6(r+1)}$.

Here is a explicit spectral analogue of this result.

Theorem 1 Let $r \geq 2$, $n > r^{15}$, and G be a graph of order n. If $\mu(G) > \mu(T_r(n))$, then $js_{r+1}(G) > n^{r-1}/r^{2r+4}$.
Erdős [4] introduced yet another graph related to Turán’s theorem: let \(K_r^* (s_1, \ldots, s_r) \) be the complete \(r \)-partite graph with parts of size \(s_1 \geq 2, s_2, \ldots, s_r \), with an edge added to the first part. The extremal results about this graph given in [4] and [9] were recently extended in [12] to:

Let \(r \geq 2 \), \(2/\ln n \leq c \leq r^{-(r+7)(r+1)} \), and \(G \) be a graph of order \(n \). If \(G \) has \(t_r(n) + 1 \) edges, then \(G \) contains a \(K_r^* ([c \ln n], \ldots, [c \ln n], [n^{1-\sqrt{c}}]) \).

Here we give a similar spectral extremal result.

Theorem 2 Let \(r \geq 2 \), \(2/\ln n \leq c \leq r^{-(2r+9)(r+1)} \), and \(G \) be a graph of order \(n \). If \(\mu(G) > \mu(T_r(n)) \), then \(G \) contains a \(K_r^* ([c \ln n], \ldots, [c \ln n], [n^{1-\sqrt{c}}]) \).

As an easy consequence of Theorem 2 we obtain

Theorem 3 Let \(r \geq 2 \), \(c = r^{-(2r+9)(r+1)} \), \(n \geq e^{2/c} \), and \(G \) be a graph of order \(n \). If \(\mu(G) > \mu(T_r(n)) \), then \(G \) contains a \(K_r^* ([c \ln n], \ldots, [c \ln n]) \).

Theorems 1, 2, and 3 have corresponding stability results.

Theorem 4 Let \(r \geq 2 \), \(0 < b < 2^{-10r^{-6}}, n \geq r^{20} \), and \(G \) be a graph of order \(n \). If \(\mu(G) > (1 - 1/r - b)n \), then \(G \) satisfies one of the conditions:

(a) \(js_{r+1}(G) > n^{r-1}/r^{2r+5} \);

(b) \(G \) contains an induced \(r \)-partite subgraph \(G_0 \) of order at least \((1 - 4b^{1/3})n \) with minimum degree \(\delta(G_0) > (1 - 1/r - 7b^{1/3})n \).

Theorem 5 Let \(r \geq 2 \), \(2/\ln n \leq c \leq r^{-(2r+9)(r+1)/2}, 0 < b < 2^{-10r^{-6}} \), and \(G \) be a graph of order \(n \). If \(\mu(G) > (1 - 1/r - b)n \), then \(G \) satisfies one of the conditions:

(a) \(G \) contains a \(K_r^* ([c \ln n], \ldots, [c \ln n], [n^{1-2\sqrt{c}}]) \);

(b) \(G \) contains an induced \(r \)-partite subgraph \(G_0 \) of order at least \((1 - 4b^{1/3})n \) with minimum degree \(\delta(G_0) > (1 - 1/r - 7b^{1/3})n \).

Theorem 6 Let \(r \geq 2 \), \(c = r^{-(2r+9)(r+1)/2}, 0 < b < 2^{-10r^{-6}}, n \geq e^{2/c} \), and \(G \) be a graph of order \(n \). If \(\mu(G) > (1 - 1/r - b)n \), then one of the following conditions holds:

(a) \(G \) contains a \(K_r^* ([c \ln n], \ldots, [c \ln n]) \);

(b) \(G \) contains an induced \(r \)-partite subgraph \(G_0 \) of order at least \((1 - 4b^{1/3})n \) with minimum degree \(\delta(G_0) > (1 - 1/r - 7b^{1/3})n \).

Remarks

- Obviously Theorems 1, 2, and 3 are tight since \(T_r(n) \) contains no \((r+1)\)-cliques.

- Theorems 2, 4, 5, and 6 are essentially best possible since for every \(\varepsilon > 0 \), choosing randomly a graph \(G \) of order \(n \) with \(e(G) = \lceil (1 - \varepsilon)n^2/2 \rceil \) edges we see that \(\mu(G) > (1 - \varepsilon)n \), but \(G \) contains no \(K_2(c \ln n, c \ln n) \) for some \(c > 0 \), independent of \(n \).
- Theorem 1 implies in turn spectral versions of other known results, like Theorem 3.8 in [8]:

Every graph G of order n with $\mu(G) > \mu(T_r(n))$ contains cn distinct $(r+1)$-cliques sharing an r-clique, where $c > 0$ is independent of n.

- The relations between c and n in Theorems 2 and 5 need explanation. First, for fixed c, they show how large must be n to get valid conclusions. But, in fact, the relations are subtler, for c itself may depend on n, e.g., letting $c = 1/\ln \ln n$, the conclusions are meaningful for sufficiently large n.

- Note that, in Theorems 2 and 5, if the conclusion holds for some c, it holds also for $0 < c' < c$, provided n is sufficiently large;

- The stability conditions (b) in Theorems 4, 5, and 6 are stronger than the conditions in the stability theorems of [6], [21] and [11]. Indeed, in all these theorems, condition (ii) implies that G_0 is an induced, almost balanced, and almost complete r-partite graph containing almost all the vertices of G;

- The exponents $1 - \sqrt{c}$ and $1 - 2\sqrt{c}$ in Theorems 2 and 5 are far from the best ones, but are simple.

The next section contains notation and results needed to prove the theorems. The proofs are presented in Section 3.

2 Preliminary results

Our notation follows [1]. Given a graph G, we write:

- $V(G)$ for the vertex set of G and $|G|$ for $|V(G)|$;
- $E(G)$ for the edge set of G and $e(G)$ for $|E(G)|$;
- $d(u)$ for the degree of a vertex u;
- $\delta(G)$ for the minimum degree of G;
- $k_r(G)$ for the number of r-cliques of G;
- $K_r(s_1, \ldots, s_r)$ for the complete r-partite graph with parts of size s_1, \ldots, s_r.

The following facts play crucial roles in our proofs.

Fact 7 ([16], Theorem 1) Every graph G of order n with $\mu(G) > \mu(T_r(n))$ contains a K_{r+1}. □

Fact 8 ([15], Theorem 5) Let $0 < \alpha \leq 1/4$, $0 < \beta \leq 1/2$, $1/2 - \alpha/4 \leq \gamma < 1$, $K \geq 0$, $n \geq (42K + 4)/\alpha^2 \beta$, and G be a graph of order n. If

$$\mu(G) > \gamma n - K/n \quad \text{and} \quad \delta(G) \leq (\gamma - \alpha) n,$$

then G contains an induced subgraph H satisfying $|H| \geq (1 - \beta) n$ and one of the conditions:

(a) $\mu(H) > \gamma (1 + \beta \alpha/2) |H|$;

(b) $\mu(H) > \gamma |H|$ and $\delta(H) > (\gamma - \alpha) |H|$.

□
Fact 9 ([2], Lemma 6) Let \(r \geq 2 \) and \(G \) be a graph of order \(n \). If \(G \) contains a \(K_{r+1} \) and \(\delta (G) > (1 - 1/r - 1/r^4) n \), then \(j_{s_{r+1}} (G) > n^{r-1}/r^{r+3} \). \(\square \)

Fact 10 ([3], Theorem 2) If \(r \geq 2 \) and \(G \) is a graph of order \(n \), then
\[
k_r(G) \geq \left(\frac{\mu (G)}{n} - 1 + \frac{1}{r} \right) \frac{r (r - 1)}{r + 1} \left(\frac{n}{r} \right)^{r+1}.
\]
\(\square \)

Fact 11 ([3], Theorem 4) Let \(r \geq 2, 0 \leq b \leq 2^{-10} r^{-6} \), and \(G \) be a graph of order \(n \). If \(G \) contains no \(K_{r+1} \) and \(\mu (G) \geq (1 - 1/r - b) n \), then \(G \) contains an induced \(r \)-partite graph \(G_0 \) satisfying \(|G_0| \geq (1 - 3e^{1/3}) n \) and \(\delta (G_0) > (1 - 1/r - 6e^{1/3}) n \). \(\square \)

Fact 12 ([12], Theorem 6) Let \(r \geq 2, 2/\ln n \leq c \leq r^{-(r+8)} \), and \(g \) is a graph of order \(n \). If \(G \) contains a \(K_{r+1} \) and \(\delta (G) > (1 - 1/r - 1/r^4) n \), then \(G \) contains a \(K_r^+ \left(\lfloor c \ln n \rfloor, \ldots, \lfloor c \ln n \rfloor, \left\lceil n^{1-r^2} \right\rceil \right) \). \(\square \)

Fact 13 ([10], Theorem 1) Let \(r \geq 2, c^r \ln n \geq 1 \), and \(G \) be a graph of order \(n \). If \(k_r(G) \geq cn^r \), then \(G \) contains a \(K_r (s, \ldots, s, t) \) with \(s = \lfloor c^r \ln n \rfloor \) and \(t > n^{1-c^{-1}} \). \(\square \)

Fact 14 The number of edges of \(T_r(n) \) satisfies \(2e(T_r(n)) \geq (1 - 1/r) n^2 - r/4 \). \(\square \)

3 Proofs

Below we prove Theorems [1], [2], [4] and [5]. We omit the proofs of Theorems [3] and [6] since they are easy consequences of Theorems [2] and [5].

All proofs have similar simple structure and follow from the facts listed above.

Proof of Theorem [1]

Let \(G \) be a graph of order \(n \) with \(\mu (G) > \mu (T_r(n)) \); thus, by Fact [7] \(G \) contains a \(K_{r+1} \). If
\[
\delta (G) > (1 - r^{-1} - r^{-4}) n,
\]
then, by Fact [9] \(j_{s_{r+1}} (G) > n^{r-1}/r^{r+3} \), completing the proof.

Thus, we shall assume that [11] fails. Then, letting
\[
\alpha = 1/r^4, \quad \beta = 1/2, \quad \gamma = 1 - 1/r, \quad K = r/4,
\]
we see that
\[
\delta (G) \leq (\gamma - \alpha) n \quad (3)
\]
and also, in view of Fact [14]
\[
\mu (G) > \mu (T_r(n)) \geq 2e(T_r(n))/n \geq (1 - 1/r) n - r/4n = \gamma n - K/n. \quad (4)
\]
Given (2), (3) and (4), Theorem 8 implies that, for \(n \geq r^{15} \), \(G \) contains an induced subgraph \(H \) satisfying \(|H| \geq n/2\) and one of the conditions:

(i) \(\mu(H) > (1 - 1/r + 1/(4r^4))|H| \);
(ii) \(\mu(H) > (1 - 1/r)|H| \) and \(\delta(H) > (1 - 1/r - 1/r^4)|H| \).

If condition (i) holds, Fact 10 gives

\[
js_{r+1}(G) \geq js_{r+1}(H) \geq \left(\frac{r + 1}{2} \right) \frac{k_{r+1}(H)}{e(H)} > r(r + 1) \frac{k_{r+1}(H)}{H^2}
\]

and so,

\[
js_{r+1}(G) > js_{r+1}(H) > \frac{|H|^{r-1}}{r^{r+3}} > \frac{1}{2^{r+1}r^{r+3}}n^{r-1} > \frac{1}{r^{2r+4}}n^{r-1},
\]

completing the proof.

If condition (ii) holds, then \(H \) contains a \(K_{r+1} \); thus, by Fact 9, \(js_{r+1}(H) > |H|^{r-1}/r^{r+3} \). To complete the proof, notice that

\[
js_{r+1}(G) > js_{r+1}(H) > \frac{|H|^{r-1}}{r^{r+3}} \geq \frac{1}{2^{r-1}r^{r+3}}n^{r-1} > \frac{1}{r^{2r+4}}n^{r-1}.
\]

\[\square\]

Proof of Theorem 2

Let \(G \) be a graph of order \(n \) with \(\mu(G) > \mu(T_r(n)) \); thus, by Fact 7, \(G \) contains a \(K_{r+1} \). If

\[
\delta(G) > (1 - 1/r - 1/r^4)n, \tag{5}
\]

then, by Fact 12, \(G \) contains a \(K_{r+1}^{+} \left(\lfloor c \ln n \rfloor, \ldots, \lfloor c \ln n \rfloor, \lceil n^{1-cr^3} \rceil \right) \), completing the proof, in view of \(cr^3 < \sqrt{e} \).

Thus, we shall assume that (5) fails. Then, letting

\[
\alpha = 1/r^4, \quad \beta = 1/2, \quad \gamma = 1 - 1/r, \quad K = r/4, \tag{6}
\]

we see that

\[
\delta(G) \leq (\gamma - \alpha)n \tag{7}
\]

and also, in view of Fact 14,

\[
\mu(G) > \mu(T_r(n)) \geq 2e(T_r(n))/n \geq (1 - 1/r)n - r/4n = \gamma n - K/n. \tag{8}
\]

Given (6), (7) and (8), Theorem 8 implies that, for \(n > r^{15} \), \(G \) contains an induced subgraph \(H \) satisfying \(|H| \geq n/2\) and one of the conditions:
(i) $\mu(H) > (1 - 1/r + 1/(4r^4)) |H|$;
(ii) $\mu(H) > (1 - 1/r) |H|$ and $\delta(H) > (1 - 1/r - 1/r^4) |H|$.

If condition (i) holds, Fact 10 gives

$$k_{r+1}(H) > \left(\frac{\mu(H)}{|H|} - 1 - \frac{1}{r^4} \right) \frac{r(r-1)}{n+1} \left(\frac{|H|}{r} \right)^{r+1} > \frac{r(r-1)}{4r^4} \left(\frac{|H|}{r} \right)^{r+1}$$

$$> \frac{1}{2^{r+3}r^{r+4}(r+1)} n^{r+1} > \frac{1}{r^{2r+9}} n^{r+1} \geq c^{1/(r+1)} n^{r+1}.$$

Thus, by Fact 13, G contains a $K_{r+1}(s, \ldots, s, t)$ with $s = \lceil c \ln n \rceil$ and $t > n^{1-c/(r+1)} > n^{1/\sqrt{r}}$. Then, obviously, G contains a $K_r^+\left(\lfloor c \ln n \rfloor, \ldots, \lfloor c \ln n \rfloor, \left\lceil \left| H \right|^{1-2c \alpha^3} \right\rceil\right)$.

To complete the proof, note that $2c \ln |H| \geq 2c \ln \frac{n}{2} > c \ln n$ and

$$|H|^{1-2c \alpha^3} \geq \left(\frac{n}{2} \right)^{1-2c \alpha^3} \geq \frac{1}{2} n^{1-2c \alpha^3} > n^{1-\sqrt{r}}.$$

Proof of Theorem 4 Let G be a graph of order n with $\mu(G) > (1 - 1/r - b) n$. If G contains no K_{r+1}, then condition (b) follows from Fact 11; thus we assume that G contains a K_{r+1}. If

$$\delta(G) > (1 - 1/r - 1/r^4) n,$$

then Fact 9 implies condition (a).

Thus, we shall assume that (9) fails. Then, letting

$$\alpha = 1/r^4 - b, \quad \beta = 4b/\alpha, \quad \gamma = 1 - 1/r - b, \quad K = 0,$$

we easily see that

$$\beta = \frac{4b}{1/r^4 - b} \leq \frac{1}{2}, \quad \delta(G) \leq (\gamma - \alpha) n,$$

and

$$\mu(G) > (1 - 1/r - b) n = \gamma n.$$ \hspace{1cm} (12)

Given (10), (11) and (12), Theorem 8 implies that, for $n \geq r^{20}$, G contains an induced subgraph H satisfying $|H| \geq (1 - \beta) n$ and one of the conditions:

(i) $\mu(H) > (1 - 1/r) |H|$;
(ii) $\mu(H) > (1 - 1/r - b) |H|$ and $\delta(H) > (1 - 1/r - 1/r^4) |H|$.

6
If condition (i) holds, by Theorem [1] we have

\[j_{s_{r+1}}(G) \geq j_{s_{r+1}}(H) = \frac{|H|^{r-1}}{r^{2r+4}} \geq (1 - \beta)^{r-1} \frac{n^{r-1}}{r^{2r+4}} = \left(1 - \frac{4b}{1/r^4 - b}\right)^{r-1} \frac{n^{r-1}}{r^{2r+4}} \]

implying condition (a) and completing the proof.

Suppose now that condition (ii) holds. If \(H \) contains a \(K_{r+1} \), by Fact [3] we see that

\[j_{s_{r+1}}(G) \geq j_{s_{r+1}}(H) \geq \frac{|H|^{r-1}}{r^{r+3}} \geq (1 - \beta)^{r-1} \frac{n^{r-1}}{r^{r+3}} > \frac{n^{r-1}}{2r-1/r^3+3} > \frac{n^{r-1}}{2r+5}, \]

implying condition (a).

If \(H \) contains no \(K_{r+1} \), by Fact [11], \(H \) contains an induced \(r \)-partite subgraph \(H_0 \) satisfying \(|H_0| > (1 - 3b^{1/3}) |H|\) and \(\delta(H_0) > (1 - 6b^{1/3}) |H|\). Now from

\[\beta = \frac{4b}{1/r^4 - b} \leq \frac{4b}{1/r^4 - 1/(2^{10}r^6)} \leq 8r^4b < b^{1/3}, \]

we deduce that

\[|H_0| \geq (1 - 3b^{1/3}) |H| \geq (1 - 3b^{1/3})(1 - \beta) n > (1 - 4b^{1/3}) n \]

and

\[\delta(H_0) > (1 - 6b^{1/3}) |H| \geq (1 - 7b^{1/3})(1 - \beta) n > (1 - 7b^{1/3}) n. \]

Thus condition (b) holds, completing the proof.

\[\square \]

Proof of Theorem 5 Let \(G \) be a graph of order \(n \) with \(\mu(G) > (1 - 1/r - b) n \). If \(G \) contains no \(K_{r+1} \), then condition (b) follows from Fact [11] thus we assume that \(G \) contains a \(K_{r+1} \). If

\[\delta(G) > (1 - 1/r - 1/r^4) n, \]

then Fact [12] implies condition (a).

Thus, we shall assume that [13] fails. Then, letting

\[\alpha = 1/r^4 - b, \quad \beta = 4b/\alpha, \quad \gamma = 1 - 1/r - b, \quad K = 0, \]

we easily see that

\[\beta = \frac{4b}{1/r^4 - b} \leq \frac{1}{2}; \quad \delta(G) \leq (\gamma - \alpha) n, \]

and

\[\mu(G) > (1 - 1/r - b) n = \gamma n. \]

Given [14], [15] and [16], Theorem 5 implies that, for \(n \geq r^{20} \), \(G \) contains an induced subgraph \(H \) satisfying \(|H| \geq (1 - \beta) n\) and one of the conditions:
(i) \(\mu (H) > (1 - 1/r) |H|\);
(ii) \(\mu (H) > (1 - 1/r - b) |H|\) and \(\delta (H) > (1 - 1/r - 1/r^4) |H|\).

If condition (i) holds, Theorem 2 implies that \(H\) contains a

\[K_r^+ \left(\lfloor 2c \ln |H| \rfloor, \ldots, \lfloor 2c \ln |H| \rfloor, \lceil |H|^{1-2c'r^3} \rceil \right). \]

Now condition (a) follows in view of \(2c \ln |H| \geq \frac{c}{2} > c \ln n\) and

\[|H|^{1-2c'r^3} \geq \left(\frac{n}{2} \right)^{1-2c'r^3} \geq \frac{1}{2} n^{1-2c'r^3} > n^{1-\sqrt{c}}, \]

completing the proof.

Suppose now that condition (ii) holds. If \(H\) contains a \(K_{r+1}^+\), by Fact 12 \(H\) contains a

\[K_r^+ \left(\lfloor 2c \ln |H| \rfloor, \ldots, \lfloor 2c \ln |H| \rfloor, \lceil |H|^{1-2c'r^3} \rceil \right). \]

This implies condition (a) in view of \(2c \ln |H| \geq \frac{c}{2} > c \ln n\) and

\[|H|^{1-2c'r^3} \geq \left(\frac{n}{2} \right)^{1-2c'r^3} \geq \frac{1}{2} n^{1-2c'r^3} > n^{1-\sqrt{c}}. \]

If \(H\) contains no \(K_{r+1}^+\), the proof is completed as the proof of Theorem 4.

Concluding remarks

It is not difficult to show that if \(G\) is a graph of order \(n\), then the inequality \(e (G) > e (T_r (n))\) implies the inequality \(\mu (G) > \mu (T_r (n))\). Therefore, Theorems 1-6 imply the corresponding nonspectral extremal results with narrower ranges of the parameters.

Finally, a word about the project mentioned in the introduction: in this project we aim to give wide-range results that can be used further, adding more integrity to spectral extremal graph theory.

References

[1] B. Bollobás, Modern Graph Theory, Graduate Texts in Mathematics, 184, Springer-Verlag, New York (1998).

[2] B. Bollobás, V. Nikiforov, Joints in graphs, to appear in Discrete Math.

[3] B. Bollobás, V. Nikiforov, Cliques and the Spectral Radius, J. Combin. Theory Ser. B. 97 (2007), 859-865.

[4] P. Erdős, On the structure of linear graphs, Israel J. Math. 1 (1963), 156–160.
[5] P. Erdős, Some recent results on extremal problems in graph theory (results) in *Theory of Graphs (Internat. Sympos., Rome, 1966)*, pp. 117–130, Gordon and Breach, New York; Dunod, Paris.

[6] P. Erdős, On some new inequalities concerning extremal properties of graphs, in: *Theory of Graphs (Proc. Colloq., Tihany, 1966)*, pp. 77–81, Academic Press, New York, 1968.

[7] P. Erdős, On the number of complete subgraphs and circuits contained in graphs, *Časopis Pěst. Mat.* 94 (1969), 290–296.

[8] P. Erdős, R.J. Faudree, C.C. Rousseau, Extremal problems and generalized degrees, *Discrete Math.* 127 (1994), 139-152.

[9] P. Erdős, M. Simonovits, On a valence problem in extremal graph theory, *Discrete Math.* 5 (1973), p. 323-334.

[10] V. Nikiforov, Graphs with many \(r\)-cliques have large complete \(r\)-partite subgraphs, to appear in *Bull. of London Math. Soc.* Update available at http://arxiv.org/math.CO/0703554

[11] V. Nikiforov, Stability for large forbidden graphs, submitted for publication. Preprint available at http://arxiv.org/abs/0707.2563

[12] V. Nikiforov, Turán’s theorem inverted, submitted for publication. Preprint available at http://arxiv.org/abs/0707.3439

[13] V. Nikiforov, Some inequalities for the largest eigenvalue of a graph, *Combin. Probab. Comp.* 11 (2002), 179-189.

[14] V. Nikiforov, The smallest eigenvalue of \(K_r\)-free graphs, *Discrete Math.* 306 (2006), 612-616.

[15] V. Nikiforov, Eigenvalues and forbidden subgraphs I, *Linear Algebra Appl.* 422 (2007), 384-390.

[16] V. Nikiforov, Bounds on graph eigenvalues II, *Linear Algebra Appl.* 427 (2007) 183-189.

[17] V. Nikiforov, A spectral condition for odd cycles, to appear in *Linear Algebra Appl.* Update available at http://arxiv.org/abs/0707.4499

[18] V. Nikiforov, More spectral bounds on the clique and independence numbers, submitted for publication. Preprint available at http://arxiv.org/abs/0706.0548

[19] V. Nikiforov, A spectral Erdős-Stone-Bollobás theorem, submitted for publication. Preprint available at http://arxiv.org/abs/0707.2259

[20] V. Nikiforov, A spectral stability theorem for large forbidden graphs, submitted for publication. Preprint available at http://arxiv.org/abs/0711.3485

[21] M. Simonovits, A method for solving extremal problems in graph theory, stability problems, in: *Theory of Graphs (Proc. Colloq., Tihany, 1966)*, pp. 279–319, Academic Press, New York, 1968.