Efficient algorithms for implementing incremental proximal-point methods

Alex Shtoff

Received: date / Accepted: date

Abstract Model training algorithms which observe a small portion of the training set in each computational step are ubiquitous in practical machine learning, and include both stochastic and online optimization methods. In the vast majority of cases, such algorithms typically observe the training samples via the gradients of the cost functions the samples incur. Thus, these methods exploit the slope of the cost functions via their first-order approximations.

To address limitations of gradient-based methods, such as sensitivity to step-size choice in the stochastic setting, or inability to exploit small function variability in the online setting, several streams of research attempt to exploit more information about the cost functions than just their gradients via the well-known proximal operators. However, implementing such methods in practice poses a challenge, since each iteration step boils down to computing the proximal operator, which may not be as easy as computing a gradient. In this work we devise a novel algorithmic framework, which exploits convex duality theory to achieve both algorithmic efficiency and software modularity of proximal operator implementations, in order to make experimentation with incremental proximal optimization algorithms accessible to a larger audience of researchers and practitioners, by reducing the gap between their theoretical description in research papers and their use in practice. We provide a reference Python implementation for the framework developed in this paper as an open source library at on GitHub[35], along with examples which demonstrate our implementation on a variety of problems, and reproduce the numerical experiments in this paper. The pure Python reference implementation is not necessarily the most efficient, but is a basis for creating efficient implementations by combining Python with a native backend.

A. Shtoff
Yahoo Research
Haifa, Israel
E-mail: alex.shtoff@yahoo.com

https://github.com/alexshtf/inc_prox_pt/releases/tag/prox_pt_paper
1 Introduction

Incremental optimization is the ‘bread and butter’ of the theory and practice of modern machine learning, where we aim to minimize a cost function of the model’s parameters, and can be roughly classified into two major regimes. In the stochastic optimization regime it is assumed that the cost functions are sampled from a stationary distribution, our objective is to design algorithms which minimize the expected cost, the theoretical analysis typically produces bounds on the expected cost, and typical algorithms are variants of the stochastic gradient method [32]. In the online regime cost functions from a pre-defined family are chosen by an adversary, our objective is minimizing the cumulative cost incurred by the sequence of the cost functions we observe, the theoretical analysis tool is the performance relatively to a theoretical optimum called regret, and typical algorithms are variants of the online gradient method [39], or follow the leader [21] based methods operating on linearly approximated costs.

Both in the stochastic and online regime, these methods follow the following incremental protocol: (a) observe the cost function incurred by a small subset of training samples; (b) update the model’s parameters. Since the focus of this paper is on the implementation of the computational steps of each iteration, the exact regime plays no role, and thus we treat both regimes under the same umbrella, and refer to these methods as incremental methods, e.g. incremental gradient descent.

To be concrete, the incremental gradient method having observed the cost function f, which is usually interpreted as "make a small step in the descent direction", reads:

$$x_{t+1} = x_t - \eta \nabla f(x_t),$$

but can equivalently written using the celebrated proximal view:

$$x_{t+1} = \arg\min_{x} \left\{ f(x_t) + \langle \nabla f(x_t), x - x_t \rangle + \frac{1}{2\eta} \| x - x_t \|^2 \right\},$$

meaning "minimize a linear approximation of f, but stay close to x_t". A different approach is using the cost directly instead of its linear approximation via the well-known proximal operator [27][28]:

$$x_{t+1} = \text{prox}_{\eta f}(x_t) := \arg\min_{x} \left\{ f(x) + \frac{1}{2\eta} \| x - x_t \|^2 \right\}, \quad \text{(PROX)}$$

The idea is not new, and dates back to the first proximal iteration algorithm of [26], which was designed as a theoretical method for the non-incremental regime. In the stochastic optimization regime this idea is known as stochastic proximal point, and in the online regime as implicit online learning. Of
course, we do not have to use the cost itself, and f in (PROX) may be any approximation which is not necessarily linear. In line with our aim to use the same terminology for stochastic and online algorithms, we call the idea above \textit{incremental proximal iteration}.

In the online regime, incremental proximal iteration was first proposed by \cite{23}, and later analyzed by \cite{24} where it was termed ‘implicit online learning’. Follow-up, such as \cite{11,22}, showed improved regret guarantees and robustness in various settings.

In the stochastic regime, incremental proximal iteration was first proposed and analyzed for the finite-sum optimization problem by \cite{9}. However, significant advantages over first order methods were discovered later in the form of improved stability with respect to step-size choices \cite{2,5,34}. Consequently, hyper-parameter tuning becomes significantly cheaper when using certain proximal point based methods to train models, and consequently overall the computational cost and energetic footprint of the training process is reduced, even if training for one specific hyper-parameter configuration is more expensive.

Using a finer model instead of a linear approximation bears a cost - since f can be arbitrarily complex, computing the proximal operator may be arbitrarily hard, or even infeasible to do in practice. Thus, there is a trade-off between any advantage a finer approximation may provide, and the difficulty of proximal operator computation.

In contrast to the above-mentioned works, rather than theoretical analysis of novel high-level techniques, our aim is to substantially reduce the difficulty of computing the proximal operator devising efficient algorithms to do so in a variety of setups, and providing a Python reference implementing those algorithms. Our pure Python implementation is not necessarily the most efficient, since its main focus is demonstration and readability, and in terms of speed we aim to be modest: up to a moderate constant factor (10-20 times) slower than a competing gradient method. For some families of functions f, computing prox_f may even be as cheap as a regular gradient step, but others require solving a one-dimensional or a low-dimensional optimization problem, and a naive Python implementation is far from optimal. Our Python implementation is designed to demonstrate that efficient algorithms for computing the proximal step need not be hard to implement, and encourage our readers to adapt or revise our implementation to their needs. It is our aim, and hope, that the above contributions make it easier to apply these methods in practice for researchers, while also motivate more research by making numerical experimentation with incremental proximal point methods easily accessible to the research community.

We’d like to emphasize that the aim of this paper is devising efficient algorithms for \textit{implementing} proximal operators of useful functions in machine learning, rather than \textit{using} proximal operators to derive better converging algorithms, in order to make such implementations accessible to the research community. In addition to efficiency, we use extensive mathematical theory to derive \textit{modular} implementations, so that researchers may compose the func-
tions they desire from atomic building blocks. For example, an L1 regularized logistic regression problem’s cost function is composed of a linear function, composed onto the convex logistic function $t \rightarrow \ln(1 + \exp(t))$, and with the L1 regularizer. Thus, the code for training such models may look like this:

```python
x = torch.zeros(x_star.shape)
# note the modular composition below
optimizer = IncRegularizedConvexOnLinear(x, Logistic(), L1Reg(0.01))
ePOCH_loss = 0.
for t, (a, b) in enumerate(my_data_set, start=1):
    step_size = 1. / math.sqrt(t)
    epoch_loss += optimizer.step(step_size, a, b)
```

Clearly, a proximal step is more computationally demanding than a gradient step, thus our implementation is slower. We show, empirically, that for a variety of problems, our implementation is a small constant factor slower than (proximal) gradient steps, which is useful for both researchers and practitioners. From a practical perspective, since the works we cited above demonstrate, both theoretically and empirically, that proximal point methods methods are very robust to the step-size choice, hyper-parameter tuning becomes significantly cheaper, and thus such a library of implementations may be useful in practice for reducing the computational resources required for training a model. For researchers, an implementation whose run-time is a small constant factor that of gradient descent is useful for conducting numerical experiments for a reasonable computational cost for their new algorithms based on proximal operators. The results in this paper were obtained on a 2019 MacBook Pro with a 2.4 GHz 8-Core Intel Core i9 processor, and 32GB of RAM. The code for reproducing the results is in our code repository.

Since this paper is also aimed at an audience partially unfamiliar with convex analysis theory, but coming from a more machine-learning oriented background. Hence, we will briefly introduce the concepts we need throughout the paper, and refer to additional literature for an in-depth treatment. Consequently, some derivations and proofs in this paper may appear trivial to readers well versed in convex analysis and optimization.

1.1 Notation

Scalars are denoted by lowercase latin or greek letters, e.g., a, α. Vectors are denoted by lowercase boldface letters, e.g. \mathbf{a}, and matrices by uppercase boldface letters, e.g \mathbf{A}. Vector or matrix components are denoted like scalars, e.g. v_i, A_{ij}.

1.2 Extended real-valued functions

Optimization problems are occasionally described using extended real-valued functions, which are functions that can take any real value, in addition to the infinite values $-\infty$ and ∞. An extended real-value function $\phi : \mathbb{R}^d \rightarrow [-\infty, \infty]$
has an associated effective domain \(\text{dom}(\phi) = \{ x \in \mathbb{R}^d : \phi(x) < \infty \} \), and it’s natural to use such functions to encode constrained optimization problems, where \(\text{dom}(\phi) \) or \(\text{dom}(-\phi) \) are used to encode constraints of minimization or maximization problems. Throughout this paper, we implicitly assume that any extended real-valued function \(\phi \) is:

- \textit{proper} - its \(-\infty\) nowhere, and \(\text{dom}(\phi) \neq \emptyset \), and
- \textit{closed} - it’s epigraph \(\text{epi}(f) = \{ (x, t) \in \mathbb{R}^d \times \mathbb{R} : \phi(x) \leq t \} \) is a closed set.

When \(\phi \) is used in the context of a maximization problem, we make those assumptions about \(-\phi\). Any reasonable function of practical interest is proper, and the vast majority of functions useful in practice are closed as well. An extensive introduction to extended real-valued function can be found, for example, in [7, chap. 2].

1.3 Our contributions

In this work, we consider the following families of functions \(f \) when computing \(\text{prox}_\eta f \). For each family of functions we show examples of machine learning models for whose training it might be useful, devise an algorithm for computing its proximal operator, provide a Python reference implementation, and experimentally measure its efficiency. The families are described below.

A convex onto linear composition:

\[
 f(x) = h(a^T x + b), \quad (\text{CL})
\]

where \(h : \mathbb{R} \to (-\infty, \infty] \) is a convex extended real-valued function.

A regularized convex onto linear composition:

\[
 f(x) = h(a^T x + b) + r(x), \quad (\text{RCL})
\]

where \(h : \mathbb{R} \to (-\infty, \infty] \) and \(r : \mathbb{R}^d \to (-\infty, \infty] \) are convex extended real-valued functions.

A mini-batch of convex onto linear compositions:

\[
 f(x) = \frac{1}{m} \sum_{i=1}^{m} h(a_i^T x + b_i), \quad (\text{CL-B})
\]

where \(h : \mathbb{R} \to (-\infty, \infty] \) is a convex extended real-valued function, and \(m \) is small.

For the above families we develop a framework for computing the proximal operator, based on convex duality, to achieve both algorithmic efficiency and software modularity. We provide a pure Python reference implementation that aims to be moderately efficient. For some problems it may be on par with SGD, whereas for others it may be up to a few dozen times slower. Indeed, a pure Python reference implementation is is not necessarily the most efficient one, and a better alternative in terms of efficiency is a combination of C and Python,
where C is used for loop-intensive tasks, such as one-dimensional root finding. We chose PyTorch as our array module, due to easier integration with auto-gra

The remainder of the paper is organized as follows. After discussing previous work below, we develop the initial version for our algorithmic framework for convex onto linear compositions in Section 2. In that section, we also provide full code inline to let the readers appreciate how software modularity is facilitated by our framework. Then, we proceed to extending our framework to regularized convex onto linear compositions in Section 3 and to a mini-batch of convex onto linear compositions in Section 4. These sections contain only the framework code, whereas the remaining code stemming from these sections is available both on our GitHub repository, and in Appendices A and B in this paper.

1.4 Previous work

There has been a significant body of research into the analysis of incremental proximal iteration algorithms in various settings and approximating models, which in addition to the examples we provided above also include [3,4,15–17,20,25,36,38]. However, to the best of our knowledge, finding generic algorithms for efficient implementation of incremental proximal algorithms received little attention, and the issue has been partially addressed in the papers focused on the analysis.

Exceptions to the above rule are methods based on the proximal gradient approach, original proposed by [31], where the approximating function is of the form:

\[f(x) = a^T x + r(x), \]

where \(r(x) \) is some 'simple' function, usually a regularizer, for which a closed form solution for the proximal operator of \(r \) is known. See, for example, the works of [7,30] and references therein for examples. In this work we consider a significantly broader family of functions, aimed at machine learning applications, by building on existing theory in convex analysis, and functions whose proximal operator is known.

Proximal operators of functions belonging to the (CL) family is covered to some extent in the literature. For example, [24] shows an explicit formula for the case when the 'outer' function \(h \) is the \(\ell_2 \) cost \(h(t) = \frac{1}{2} t^2 \). The case of \(h(t) = \max(t, 0) \) has an explicit formula in the work of [5], while \(h(t) = |t| \) is treated in [15]. Additional formulas can be found in [25]. In [17] the authors provide an efficient Cython implementation for the Logistic and Hinge loss, but not in a generic framework. While [34] show an explicit method for the entire family, they do not show how the method is derived, and provide neither concrete examples, nor code. We treat this family using a uniform framework based on duality, show its benefits from a software engineering perspective of
decoupling concerns, and provide explicit code for examples which are useful in machine learning.

The work of [34] briefly discusses an algorithm for a simplified version (RCL) case where the regularizer is assumed to be separable. Their idea is similar to ours, but we devise an algorithm for a more general case, and provide explicit examples and code which is useful for machine learning practitioners. Moreover, they provide a 'switch to SGD heuristic' for improving computational efficiency by switching to a regular stochastic gradient method. This heuristic is orthogonal to the contributions of our paper.

Finally, the (CL-B) family is tackled in [2] for the special case of \(h(t) = \max(0, t) \). We devise a uniform framework for a broader family which covers a wide variety of functions \(h \), and give several examples which may be useful to practitioners.

2 A convex onto linear composition

In this section we first present some applications of the convex onto linear family described in (CL), and then describe a generic framework for designing and implementing algorithms for computing the proximal point of this function family.

2.1 Applications

Compositions of convex onto linear functions appear in a wide variety of classical machine learning problems, but also appear to be useful for other applications as well. This family is useful when training on one training sample in each iteration.

Linear regression In the simplest case, least-squares regression, we aim to minimize a sum, or an expectation, of costs of the form

\[
f(x) = \frac{1}{2}(a^T x + b)^2,
\]

where \((a, b) \in \mathbb{R}^n \times \mathbb{R}\) are the data of a training sample, and \(x\) is the model parameters vector. In this case we have \(h(t) = \frac{1}{2}t^2 \). Different regression variants are obtained by choosing a different function \(h \), for example, using \(h(t) = |t| \) we obtain robust regression:

\[
f(x) = |a^T x + b|,
\]

and using the \(h(t) = \max((p-1)t, pt) \) for some \(p \in (0, 1) \), we obtain linear quantile regression.
Logistic regression For the binary classification problem, we are given an input features \(a \in \mathbb{R}^n \) and a label \(y \in \{-1, 1\} \). The probability of \(y = 1 \) is modeled using

\[
\sigma(x) = \frac{1}{1 + \exp(-a^T x)},
\]

where \(x \) is the model’s parameter vector. The cost incurred by each training sample is computed using the binary cross-entropy loss:

\[
f(x) = \begin{cases}
 -\ln(\sigma(x)) & y = -1 \\
 -\ln(1 - \sigma(x)) & y = 1,
\end{cases}
\]

which after some algebraic manipulation can be written as:

\[
f(x) = \ln(1 + \exp(-ya^T x)).
\]

Defining \(h(t) = \ln(1 + \exp(t)) \), we obtain the convex-onto-linear form.

The APROX model \([5]\) A cost function \(\phi \) which is bounded below, where w.l.o.g we assume that it is bounded below by zero, is approximated by:

\[
f(x) = \max(\phi(x_t) + \langle \nabla\phi(x_t), x - x_t \rangle, 0).
\]

It’s similar to a linear approximation, but it also incorporates knowledge about the function’s lower bound: if a cost function is non-negative, its approximation should also be. Taking \(h(t) = \max(t, 0) \), \(a = \nabla\phi(x_t) \), and \(b = \phi(x_t) - \langle \phi(x_t), x_t \rangle \), we obtain the convex-onto-linear form \([CL]\).

The prox-linear approximation Assume we are given a cost function of the form

\[
\phi(x) = h(g(x)),
\]

where the outer function \(h \) is convex, and the inner function \(g \) is an arbitrary function, such as a deep neural network. For instance, suppose we’re solving a classification problem using a neural network \(u \), whose output is fed to the sigmoid, and then to the binary cross-entropy loss. Similarly to the logistic regression setup above, given a label \(y \in \{-1, 1\} \), and an input \(w \), we obtain:

\[
\phi(x) = \ln(1 + \exp(-yu(x, w))).
\]

Taking \(h(t) = \ln(1 + \exp(t)) \) and \(g(x) = -yu(x, w) \) we have the desired form.

The idea of the prox-linear method is to linearly approximate the inner function around the current iterate, while leaving the outer function as is. Thus, we obtain the following approximation of the cost \(\phi \)

\[
f(x) = h(g(x_t) + \langle \nabla g(x_t), x - x_t \rangle),
\]

and taking \(a = \nabla g(x) \), and \(b = g(x_t) - \langle \nabla g(x_t), x_t \rangle \) we obtain the desired convex-onto-linear form \([CL]\). See the recent work of \([19]\) and references therein for extensive analysis and origins of the method.
2.2 The proximal operator

Having shown a variety of potential applications, let’s explore the proximal operator of convex-onto-linear functions. Its computation amounts to solving the following problem:

$$\min_{x} \ h(a^T x + b) + \frac{1}{2\eta} \|x - x_t\|^2_2. \quad (1)$$

We’ll tackle this problem, and most of the remaining cost families, using the well known convex duality framework, which we briefly introduce here for completeness. An extensive introduction can be found in many optimization textbooks, such as [7].

2.2.1 Convex duality

We make a brief introduction to a subset of convex duality theory for unfamiliar readers who would like to understand how we built our framework and how to extend it for their own purposes. Since we don’t need most generic convex duality theory this paper, we introduce a simplification. Suppose we’re given an optimization problem:

$$\min_{x} \ f(x) \ \text{s.t.} \ Ax = b, \quad (Q)$$

where $A \in \mathbb{R}^{m} \times \mathbb{R}^{n}$ is a matrix, and $f : \mathbb{R}^{n} \rightarrow (-\infty, \infty]$ is a closed and convex extended real-valued function. Define

$$q(s) = \inf_{x} \{ \mathcal{L}(x, s) := f(x) + s^T (Ax - b) \},$$

namely, we replace the j^{th} linear constraint by a "price" s_j for its violation, and define q to be the optimal value as a function of these prices. The modified cost function \mathcal{L} is called the Lagrangian associated with the constrained problem $^{(Q)}$.

First, it’s apparent that $q(s)$ is concave, since it is a minimum of linear functions of s. Moreover, it’s easy to see that $q(s)$ is a lower bound for the optimal value of $^{(Q)}$, using the simple observation that minimizing over a subset of \mathbb{R}^{n} produces a value that is higher or equal to the minimization over the entire space:

$$q(s) = \inf_{x} \{ f(x) + s^T (Ax - b) \}$$

$$\leq \inf_{x} \{ f(x) + s^T (Ax - b) : Ax = b \}$$

$$= \inf_{x} \{ f(x) : Ax = b \}$$

The problem of finding the "best" lower bound is called the dual problem associated with $^{(Q)}$, namely:

$$\max_{s} \ q(s) \ \text{s.t.} \ q(s) > -\infty, \quad (D)$$
whereas the original problem \((\mathcal{Q}) \) is called the \textit{primal} problem. A well known result in convex analysis is that with slight technical conditions, the optimal values of the primal and the dual problems coincide:

Theorem 1 (Strong Duality) Suppose that \(f \) is a convex closed extended real-valued function, that the optimal value of \(\mathcal{Q} \) is finite, namely,

\[
 f_{\text{opt}} = \inf_x \{ f(x) : Ax = b \} > -\infty,
\]

and that there exists some feasible solution \(\tilde{x} \). Then,

(i) The optimal value of the dual problem \(\mathcal{D} \) is attained at some optimal solution \(s^* \), and it is equal \(f_{\text{opt}} \).

(ii) The optimal solutions of \(\mathcal{Q} \) are \(x^* \in \text{argmin}_x \mathcal{L}(x, s^*) \) which are feasible.

In particular, if \(\mathcal{L}(x, s^) \) has a unique minimizer, then it must be an optimal solution of \(\mathcal{Q} \).*

\[
 \mathcal{L}(x, s) = h(x) + \frac{1}{2\eta} \|x - x_t\|_2^2 \quad \text{s.t.} \quad z = a^T x + b
\]

The dual objective is therefore:

\[
 q(s) = \inf_{x,z} \left\{ h(z) + \frac{1}{2\eta} \|x - x_t\|_2^2 + s(a^T x + b - z) \right\}
\]

\[
 = \min_x \left\{ \frac{1}{2\eta} \|x - x_t\|_2^2 + sa^T x \right\} + \inf_z \{h(z) - sz\} + sb
\]

The term denoted by \(A \) is a strictly convex quadratic function, whose minimizer is

\[
 x^* = x_t - \eta s a, \quad (2)
\]

and the minimum itself is

\[
 A = -\frac{\eta \|a\|_2^2}{2} s^2 + (a^T x_t)s.
\]
The term denoted by B can be alternatively written as

$$B = - \sup_z \{sz - h(z)\} = -h^*(s),$$

where h^* is a well-known object in optimization called the convex conjugate of h. A catalogue of pairs of convex conjugate functions is available in a variety of standard textbooks on optimization, e.g. [7]. For completeness, in Table 1 we show conjugate pairs which are useful for the machine-learning oriented examples in this paper. Convex conjugates possess two important properties.

$h(z)$	dom(h)	$h^*(s)$	dom(h^*)	Useful for
$\frac{1}{2}z^2$	\mathbb{R}	$\frac{1}{2}s^2$	\mathbb{R}	Linear least squares
$\ln(1 + \exp(z))$	\mathbb{R}	$s \ln(s) + (1 - s) \ln(1 - s)$ where $0 \ln(0) \equiv 0$	$[0, 1]$	Logistic regression
$\max(z, 0)$	\mathbb{R}	$\begin{cases} 0 & s \in [0, 1] \\ \infty & \text{else} \end{cases}$	$[0, 1]$	AProx model, Hinge loss

Table 1: Example convex conjugate pairs

First, under mild technical conditions, we have $(h^*)^* = h$, i.e. the bi-conjugate of a convex function is the function itself. These conditions hold for most functions we care about in practice, including the functions in Table 1. Second, the conjugate is always convex.

Summarizing the above, the dual problem aims to solve the following one-dimensional and strongly concave maximization problem:

$$\max_s q(s) \equiv -\frac{\eta \|a\|^2}{2} s^2 + (a^T \mathbf{x}_t + b) s - h^*(s).$$

(3)

Strong concavity implies the existance of a unique maximizer s^*, while the strong duality theorem implies we can recover the proximal operator we seek by substituting the above maximizer into equation (2).

We implement the above idea the IncConvexOnLinear class below using the PyTorch library.

```python
import torch

class IncConvexOnLinear:
    def __init__(self, x, h):
        self._h = h
        self._x = x

    def step(self, eta, a, b):
        """Performs the optimizer's step, and returns the loss incurred."
        h = self._h
        x = self._x
```

Efficent algorithms for implementing incremental proximal-point methods
compute the dual problem's coefficients
alpha = eta * torch.sum(a**2)
beta = torch.dot(a, x) + b

solve the dual problem
s_star = h.solve_dual(alpha.item(), beta.item())

update x
x.sub_(eta * s_star * a)
return h.eval(beta.item())

def x(self):
 return self._x

Note, that from a software engineering perspective, we encode the function h using an object which has two operations: compute the value of h, and solve the dual problem. In the next sub-sections we will implement three such objects: HalfSquared for $h(z) = \frac{1}{2}z^2$, Logistic for $h(z) = \ln(1 + \exp(z))$, and Hinge for $h(z) = \max(z, 0)$.

As an example, applying the implicit online learning idea of [24] to the linear least squares problem looks like this:

```python
x = torch.zeros(d)
optimizer = IncConvexOnLinear(x, HalfSquared())
for t, (a, b) in enumerate(my_data_set):
    eta = get_step_size(t)
    optimizer.step(eta, a, b)
print('The parameters are: ' + str(x))
```

2.2.3 The half-squared function

For $h(z) = \frac{1}{2}z^2$, according to Table 1, we have $h^*(s) = \frac{1}{2}s^2$, and thus the dual problem in Equation (3) amounts to maximizing

$$q(s) = -\frac{\alpha}{2}s^2 + \beta s - \frac{1}{2}s^2 = -\frac{1 + \alpha}{2}s^2 + \beta s.$$

Hence, in this case $q(s)$ is a simple concave parabola, maximized at

$$s^* = \frac{\beta}{1 + \alpha}.$$

Consequently, our HalfSquared class is:

```python
import torch
import math
class HalfSquared:
    def solve_dual(self, alpha, beta):
        return beta / (1 + alpha)

    def eval(self, z):
        return 0.5 * (z ** 2)
```
2.2.4 The logistic function

For $h(z) = \ln(1 + \exp(z))$, according to Table 1, the dual problem in Equation (3) amounts to maximizing

$$q(s) = -\frac{\alpha}{2}s^2 + \beta s - s \ln(s) - (1 - s)\ln(1 - s). \quad (4)$$

The following simple result paves the way towards maximizing q.

Proposition 1 The function q defined in Equation (4) has a unique maximizer inside the open interval $(0, 1)$.

Proof Note that $\text{dom}(q) = [0, 1]$, thus maximizing q is done over a compact interval. Its continuity with the Weierstrass theorem ensures that it has a maximizer in $[0, 1]$, and its strict concavity ensures that the maximizer is unique. The derivative $q'(s) = -\alpha s + \beta - \ln(s) + \ln(1 + s)$ is continuous, decreasing, and satisfies:

$$\lim_{s \to 0} q'(s) = \infty, \quad \lim_{s \to 1} q'(s) = -\infty.$$

Hence, there must be a unique point in the open interval $(0, 1)$ where $q'(s) = 0$. Since q is concave, that point must be the maximizer.

□

Proposition 1 implies that we can maximize q by employing any root finding algorithm to find a zero of its derivative. Its initial interval $[l, u]$ can be found by:

- $l = 2^{-k}$ for the smallest positive integer k such that $q'(2^{-k}) > 0$.
- $u = 1 - 2^{-k}$ for the smallest positive integer k such that $q'(1 - 2^{-k}) < 0$.

For our reference implementation, we chose to rely on Brent’s method [10, Chapter 5] readily available in the scipy package. The method finds a ε-approximate root in $O(\ln(\frac{1}{\varepsilon}))$ iterations in the worst case, but is typically significantly faster than naive bisection. The resulting Logistic class is listed below:

```python
from scipy.optimize import brentq

class Logistic:
    def solve_dual(self, alpha, beta, tol = 1e-16):
        def qprime(s):
            return -alpha * s + beta + math.log(1-s) - math.log(s)

        # compute [l, u] containing a point with zero qprime
        l = 0.5
        while qprime(l) <= 0:
            l /= 2
        u = 0.5
        while qprime(1 - u) >= 0:
            u /= 2
        u = 1 - u
        solution = brentq(qprime, l, u)
        return solution

    def eval(self, z):
        return math.log(1 + math.exp(z))
```

2.2.5 The Hinge function

For $h(t) = \max(0, t)$, according to Table 1, the dual problem in Equation (3) amounts to solving the following constrained problem:

$$\max_s q(s) = -\frac{\alpha}{2} s^2 + \beta s \quad \text{s.t.} \quad s \in [0, 1].$$

The above is a maximum of a concave parabola over an interval, and it’s easy to see that its maximizer is

$$s^* = \max \left(0, \min \left(1, \frac{\beta}{\alpha} \right) \right).$$

The resulting Hinge class is therefore:

```python
class Hinge:
    def solve_dual(self, alpha, beta):
        return max(0, min(1, beta / alpha))
    def eval(self, z):
        return max(0, z)
```

2.3 Empirical evaluation

To evaluate the efficiency of our implementation, we compare it against a regular incremental gradient method. Our algorithms in this section are meant to work on one training sample at a time, but incremental gradient methods are usually used with mini-batches of samples. Thus, we’d like to see how competitive is our implementation against incremental gradient methods with various mini-batch sizes, including a mini-batch size of one sample, to appreciate the usefulness of our implementation as a tool by the research community.

We applied our evaluation on the Logistic regression and Least Squares problems, one uses the Logistic class whereas the other uses the HalfSquared class. We measured the total time to make one epoch over data-sets of various dimensions and of various lengths, and plotted a regression line, whose slope allows us to convince ourselves than our implementation is slower than a regular incremental gradient method by a modest constant factor. The results are plotted in Figure 1. To summarize, the incremental proximal point method we devised here is roughly 2-8 times slower, per iteration, than an incremental gradient method when mini-batches are used, but faster than an incremental gradient method without mini-batching. It’s also interesting to point out that without mini-batching, our implementation is faster than PyTorch, mainly due to an overhead of its AutoGrad mechanism with small mini-batches. Therefore, we do not believe it to be a “fair” comparison, but merely a part of the demonstration that our implementation is good enough to be useful.

To convince ourselves that our implementation is indeed correct, we reproduce the results seen in [3] which show that proximal-point methods are much more robust to step-size choice. For randomly generated logistic regression
Fig. 1: Execution speed evaluation of incremental proximal point. Each point is a timing of a pair of experiments on the same problem, where the x coordinate is the execution time of one SGD epoch, whereas the y coordinate is the execution time of one proximal point epoch. The corresponding line is a linear regression line, with its slope α labeled, to appreciate the ratio between the SGD and proximal point execution times, on average. The columns are various problem dimensions, from 1000 to 6000, and the rows are various mini-batch sizes for the incremental gradient method. We can see by the first row, for example, that without mini-batching the proximal-point method is actually faster than an incremental gradient method ($\alpha > 0$) based on PyTorch’s automatic differentiation. In the last row, for example, we can see that for batch sizes of 32 samples the incremental proximal point method is roughly 4 times slower for least-squares problems and 6 times slower for logistic regression problems compared to an incremental gradient method.

and least-squares problems, we solve both problems using a range of step-sizes by performing one epoch over a random shuffle of the data, and measure the training loss of that epoch. We repeat the experiment for each step-size 30 times to obtain a confidence band around the results. The problems are of dimension 100, and the data-set size is 100,000. So ideally, one epoch should simulate a large random sample from a stationary distribution. The results
Fig. 2: Reproduction of the stability results of [3]. Indeed, for both logistic regression and least squares problems, the training loss of an incremental proximal-point method is significantly more stable w.r.t the step-size choice, reinforcing the claim that with an incremental proximal-point method we can just "make a few educated guesses" instead of performing an extensive hyperparameter search for the best step-size.

are plotted in Figure 2. Indeed, the results look similar to what the authors of [3] have obtained.

2.4 Summary

Typical optimizers for machine learning rely on a well-established tool from analysis - the gradient. Using duality, we were able to design an optimizer for the convex onto linear setup using another well established tool - the convex conjugate. Moreover, duality allowed us to decouple the complexity associated with the convex function \(h \) into a separate class whose only purpose is using the conjugate to solve a one dimensional optimization problem. Thus the framework is extensible with additional functions \(h \), and designing a class for such \(h \) comprises of two steps: obtaining the conjugate \(h^* \), preferably from a textbook, and figuring out how to solve the resulting dual problem.

3 Regularized convex onto linear composition

Often, machine learning models are trained by using a regularized loss function. Thus, the applications of the regularized convex-onto-linear model [RCL] are identical to the described in Section 2.1, e.g. regularized linear least squares, or regularized logistic regression. It’s also interesting to note that, using \(h(z) = \max(0, z) \) and \(r(x) = \mu \|x\|^2 \), we can also formulate the problem of training an SVM [14]. Since the applications are obvious, we dive directly into the com-
putation of the proximal operator, by solving
\[\min_x h(a^T x + b) + r(x) + \frac{1}{2\eta} \|x - x_t\|_2^2, \]
(5)
where \(h : \mathbb{R} \to (-\infty, \infty] \), \(r : \mathbb{R}^d \to (-\infty, \infty] \), are convex extended real-valued functions. We also assume that the regularizer \(r \) is "simple", meaning that we can efficiently compute its proximal operator \(\text{prox}_r(x) \). Explicit formulae for the proximal operators can be found in a variety of textbooks on optimization, e.g. [7, chap. 6]. Examples include the squared Euclidean norm \(r(x) = \frac{\mu}{2} \|x\|_2^2 \), the Euclidean norm \(r(x) = \mu \|x\|_2 \), or the \(\ell_1 \) norm \(r(x) = \mu \|x\|_1 \). For completeness, we include a short table of proximal operators of the above-mentioned functions in Table 2.

\(r(x) \)	\(\text{prox}_{\mu r}(x) \)	Remarks		
\(\|x\|_1 \)	\(\max(x	- \mu, 0) \cdot \text{sgn}(x) \)	Absolute value, max, sgn, and \(\cdot \) are component-wise operations. Available as the softshrink function in PyTorch.
\(\frac{1}{2} \|x\|_2^2 \)	\(\frac{1}{2\eta} x \)			
\(\|x\|_2 \)	\(1 - \frac{\mu}{\max(\mu, \|x\|_2)} \cdot x \)			

Table 2: Proximal operators of commonly used regularizers

3.1 A dual problem

Following the path paved in Section 2, we begin from deriving a dual to the problem in Equation (5). Adding the auxiliary variable \(z = a^T x + b \), we obtain the equivalent optimization problem
\[\min_{x,z} h(z) + r(x) + \frac{1}{2\eta} \|x - x_t\|_2^2 \quad \text{s.t.} \quad z = a^T x + b \]

Minimizing the Lagrangian, we obtain:
\[q(s) = \inf_{x,z} \left\{ \mathcal{L}(x, z, s) \equiv h(z) + r(x) + \frac{1}{2\eta} \|x - x_t\|_2^2 + s(a^T x + b - z) \right\} \]
\[= \inf_x \left\{ r(x) + \frac{1}{2\eta} \|x - x_t\|_2^2 + sa^T x \right\} + \inf_z \{h(z) - sz\} + sb \]
(6)
The remaining challenge is the computing the first infimum. To that end, we need to introduce another well-known concept in optimization - a close relative of the proximal operator.

Definition 1 (Moreau Envelope [29]) Let \(\phi : \mathbb{R}^n \to (-\infty, \infty] \) be a convex extended real-valued function. The Moreau envelope of \(\phi \) with parameter \(\eta \), denoted by \(M_\eta \phi \), is the function:
\[M_\eta \phi(x) = \min_u \left\{ \phi(u) + \frac{1}{2\eta} \|u - x\|_2^2 \right\}. \]
Since the proximal operator is the minimizer of the minimum in the definition above, which is Moreau proved that is always attained, an alternative way to write the Moreau envelope of a function is obtained by replacing $u = \text{prox}_{\eta \phi}(x)$ inside the minimization objective above:

\[M_{\eta} \phi(x) = \phi(\text{prox}_{\eta \phi}(x)) + \frac{1}{2\eta} \| \text{prox}_{\eta \phi}(x) - x \|^2. \]

(7)

Thus, whenever we have an explicit formula of the proximal operator, we also have an explicit formula of the Moreau envelope. How does it help us with our challenge of minimizing Q over x? The following proposition provides the answer.

Proposition 2 Let $q(s)$ and the Lagrangian $L(x, z, s)$ be as defined in Equation (6). Then,

\[q(s) = M_{\eta} r(x_t - \eta sa) + (a^T x_t + b)s - \frac{\eta \|a\|^2}{2} s^2 - h^*(s). \]

Moreover, the unique minimizer of the Lagrangian w.r.t x is

\[x^* = \text{prox}_{\eta r}(x_t - \eta sa). \]

Proof Recall, that for any x, y we can open the squared Euclidean norm using the formula

\[\frac{1}{2} \| x + y \|^2 = \frac{1}{2} \| x \|^2 + x^T y + \frac{1}{2} \| y \|^2. \]

and re-arranging the above leads to the *square completion* formula

\[\frac{1}{2} \| x \|^2 + x^T y = \frac{1}{2} \| x + y \|^2 - \frac{1}{2} \| y \|^2. \]

Using the above two formulas, we compute:

\[
\begin{align*}
 r(x) + \frac{1}{2\eta} \| x - x_t \|^2 + sa^T x &= \frac{1}{\eta} \left[\eta r(x) + \frac{1}{2} \| x - x_t \|^2 + \eta sa^T x \right] \quad \leftarrow \text{Factoring out } \frac{1}{\eta} \\
 &= \frac{1}{\eta} \left[\eta r(x) + \frac{1}{2} \| x - x_t \|^2 - (x_t - \eta sa)^T x + \frac{1}{2} \| x_t \|^2 \right] \quad \leftarrow \text{opening } \frac{1}{2} \| x - x_t \|^2 \\
 &= \frac{1}{\eta} \left[\eta r(x) + \frac{1}{2} \| x - (x_t - \eta sa) \|^2 - \frac{1}{2} \| x_t - \eta sa \|^2 + \frac{1}{2} \| x_t \|^2 \right] \quad \leftarrow \text{square completion} \\
 &= \left[\frac{r(x)}{2\eta} \| x - (x_t - \eta sa) \|^2 \right] - \frac{1}{2\eta} \| x_t - \eta sa \|^2 + \frac{1}{2\eta} \| x_t \|^2 \quad \leftarrow \text{Multiplying by } \frac{1}{\eta} \\
 &= \left[\frac{r(x)}{2\eta} \| x - (x_t - \eta sa) \|^2 \right] + (a^T x_t) s - \frac{\eta \|a\|^2}{2} s^2 \quad \leftarrow \text{re-arranging}
\end{align*}
\]
Plugging the above expression into the formula of \(q(s) \), we obtain:

\[
q(s) = \inf_x \left\{ r(x) + \frac{1}{2\eta} \|x - (x_t - \eta s a)\|^2_2 \right\} + (a^T x_t + b)s - \frac{\eta \|a\|^2_2}{2} s^2 - h^*(s)
\]

Moreover, since the infimum over \(x \) above is attained, we can replace it with a minimum, and by definition the minimizer is

\[
x^* = \text{prox}_{\eta r}(x_t - \eta s a)
\]

The significance of Proposition 2 is due to the fact that we can design an algorithm for computing the proximal operator of regularized convex onto linear losses using three textbook concepts: the Moreau envelope of \(r \), the convex conjugate of \(h \), and the proximal operator of \(r \). The only thing we need to manually derive ourselves is a way to maximize the dual objective \(q \). The basic method, directly applying Proposition 2 and the strong duality theorem (Theorem 1) consists of the following three steps:

- Form \(q(s) = M_\eta r(x_t - \eta s a) + (a^T x_t + b)s - \frac{\eta \|a\|^2_2}{2} s^2 - h^*(s) \).
- Solve the dual problem: find a maximizer \(s^* \) of \(q(s) \).
- Compute \(\text{prox}_f(x_t) = \text{prox}_{\eta r}(x_t - \eta s^* a) \)

3.2 Computing the proximal operator

An important aspect of solving the dual problem is figuring out \(\text{dom}(-q) \), since this set encodes the constraints of the dual problem. It turns out that Moreau envelopes are finite everywhere [7, Theorem 6.55], and thus \(\text{dom}(-q) = \text{dom}(h^*) \). Moreover, the strong duality theorem (Theorem 1) ensures that \(q \) attains its maximum, so a maximizer \(s^* \in \text{dom}(h^*) \) must exist.

The dual problem is one dimensional, and there is a variety of reliable algorithms and their implementations for maximizing such functions. Indeed, this time we will not bother implementing a procedure to maximize \(q \), but use a readily available implementation in the SciPy package. When \(\text{dom}(-q) \) is a compact interval, we will employ the `scipy.optimize.fminbound` function on \(-q\), which uses Brent’s method [10, Chapter 5], and requires us to provide a function, and a compact interval where its maximizer must lie.

When the interval \(\text{dom}(-q) \) is not compact, we will have to locate a compact interval which contains a maximizer of \(q \). To that end, we will require \(h^* \) to be continuously differentiable, strictly convex, and \(\text{dom}(h^*) \) to be open. The object representing \(h \) needs to provide two sequences \(l_1 > l_2 > \ldots \) converging to the left endpoint of \(\text{dom}(-q) \), and \(u_1 < u_2 < \ldots \) converging to the right endpoint of \(\text{dom}(-q) \). We will shortly see the details, but the general idea of using these sequences is similar to our search for an initial interval in case of
the Logistic class we implemented in Section 2.2.4, where the sequences were $2^{-1}, 2^{-2}, \ldots$, and $1 - 2^{-1}, 1 - 2^{-2}, \ldots$. Having found an interval containing a maximizer, we will, again, employ the scipy.optimize.fminbound on $-q$ function to find our maximizer.

Remark Note, that the Scipy’s scipy.optimize.minimize_scalar function also supports finding the initial bracket for Brent’s method when we don’t possess a compact interval containing a minimizer. However, as of the time of writing of this paper, the minimize_scalar function is not able to handle half-infinite, such as $[0, \infty)$. It supports either a compact domain, or the entire real line. Thus, to be as generic as possible, we resort to finding the initial interval ourselves using the above-mentioned pairs of sequences.

The case of a compact domain To employ Brent’s method for finding a maximizer s^* of q, we need to be able to evaluate the function q. To that end, we require an oracle for evaluating the Moreau envelope of r, and the convex conjugate h^*. Moreover, to recover the solution of the primal problem, we need an oracle for computing the proximal operator of r.

The case of a non-compact domain This case requires us to employ an additional result about Moreau envelopes.

Proposition 3 Let $\phi : \mathbb{R}^d \rightarrow (-\infty, \infty]$ be a convex extended real-valued function, and let $M_\mu \phi$ be its Moreau envelope. Then $M_\mu \phi$ is continuously differentiable with gradient

$$
\nabla M_\mu \phi(x) = \frac{1}{\mu} (x - \text{prox}_{\mu \phi}(x))
$$

(8)

Proof See [7, Theorem 6.55]

Recall, that we require h^* to be continuously differentiable, strictly convex, and $\text{dom}(h^*)$ to be open. Using (8) and the chain rule to compute the derivative of $q(s)$, and then simplifying, we obtain:

$$
q'(s) = a^T \text{prox}_{\eta r}(x_t - \eta s a) - h^*(s) + b
$$

(9)

For the non-compact domain case, we will require that there is a unique maximizer s^* in the interior of $\text{dom}(h)$, which also implies that $q'(s^*) = 0$. The above is satisfied when, for example, when h^* is strictly convex and $\text{dom}(h^*)$ is open, or when h^* is a convex function of Legendre type [33, sect. 26], which is a condition satisfied by, for example, by $h^*(s) = \frac{1}{2}s^2$ in the least-squares setup. Strict convexity of h^* implies that q' is strictly decreasing, and thus any point $l < s^*$ has a positive derivative, whereas any $u > s^*$ has a negative derivative. Thus, we can find an interval $[l, u]$ containing s^* just by scanning to the left until we find a point whose derivative is positive, and to the right until we find a point whose derivative is negative. And that’s exactly why we need the sequences $\{l_k\}_{k=1}^\infty$ and $\{u_k\}_{k=1}^\infty$ for - to tell us how to scan towards the left and
right boundaries of $\text{dom}(−q) = \text{dom}(h^*)$. For example, if $\text{dom}(h^*) = [1, \infty)$, we may scan towards the left end-point using the sequence $\ell_k = 1 + 2^{-k}$, and towards the right-endpoint, which is infinity, using the sequence $u_k = 1 + 2^k$.

It is important to note that computing q' requires evaluating the proximal operator of the regularizer r. Therefore, each iteration in the search for the optimal s^* depends on the dimension d, and hence is typically significantly slower than the convex onto linear setting without regularization, that was discussed in Section 2. Of course, it would be possible to construct a dedicated procedure for each combination of outer function h and regularizer r, which may occasionally be fast, but it defeats one of the main purposes of our framework - its modularity.

The fact that the computational complexity of each iteration is linear in the dimension suggests that we could have employed an accelerated first-order method, such as [5], directly on the primal proximal sub-problem. To see why we chose not to pursue this direction, note that Brent’s method [10] used by fminbound in our code enjoys superlinear convergence (of degree 1.67) in the vicinity of the optimum. Accelerated first-order methods have a convergence rate that is linear, at best, when their objective is strongly convex. This suggests that Brent’s method, in addition to fitting well into our dual decomposition approach, is also potentially more efficient due to reduced iteration count. We chose to rely on the fact that for one-dimensional problems we have specialized methods that are often faster than methods that work in arbitrary dimensions.

The implementation Combining the two cases above, here is an implementation of our optimizer.

```python
from scipy.optimize import fminbound
import torch
class IncRegularizedConvexOnLinear:
    def __init__(self, x, h, r):
        self._x = x
        self._h = h
        self._r = r

    def step(self, eta, a, b):
        x = self._x
        h = self._h
        r = self._r

        if torch.is_tensor(b):
            b = b.item()
        lin_coef = (torch.dot(a, x) + b).item()
        quad_coef = (eta / 2.) * a.square().sum().item()
        loss = h.eval(lin_coef) + r.eval(x).item()

        def qprime(s):
            prox = r.prox(eta, x - eta * s * a)
            return torch.dot(a, prox).item() \ 
              - h.conjugate_prime(s) \ 
              + b
```

def q(s):
 return r.envelope(eta, x - eta * s * a) \
 + lin_coef * s \
 - quad_coef * (s ** 2) \
 - h.conjugate(s)

if h.conjugate_has_compact_domain():
 l, u = h.domain()
else:
 # scan left until a positive derivative is found
 l = next(s for s in h.lower_bound_sequence() if qprime(s) > 0)
 # scan right until a negative derivative is found
 u = next(s for s in h.upper_bound_sequence() if qprime(s) < 0)

min_result = fminbound(lambda s: -q(s), l, u)
s_prime = min_result.x
x.set_(r.prox(eta, x - eta * s_prime * a))
return loss

Let’s look at a usage example. Assuming that \(h(z) = \frac{1}{2}z^2 \) is represented using the HalfSquared class, and \(r(x) = \|x\|_1 \) is represented using the L1Reg class, we can perform an epoch of training an L1 regularized least-squares model (Lasso) with regularization parameter 0.1 using the following code:

```python
x = torch.zeros(d)
optimizer = IncRegularizedConvexOnLinear(x, HalfSquared(), L1Reg(0.1))
epoch_loss = 0.
for t, (a, b) in enumerate(get_training_data()):
    eta = get_step_size(t)
    epoch_loss += optimizer.step(eta, a, b)
print('Model parameters =', x)
print('Average epoch loss =', epoch_loss / t)
```

We believe that Section 2 demonstrated how to modularity is achieved, and therefore the implementation of the HalfSquared, Logistic, and Hinge classes for the functions \(h \) representing various losses, and of the L1Reg and L2Reg, and L2NormReg classes for regularization with \(\| \cdot \|_1 \), \(\| \cdot \|_2^2 \), and \(\| \cdot \|_2 \) are in Appendix A.

3.3 Empirical evaluation

Before evaluating the efficiency empirically, a word about the computational complexity is in place. Computing the proximal step requires solving a one-dimensional dual problem using an optimization algorithm over the real line. The algorithms employed by the fminbound function typically achieve \(\varepsilon \) accuracy in terms of distance to a minimize using \(O(\ln(1/\varepsilon)) \) function evaluations. By default, SciPy’s implementation achieves \(\varepsilon = 10^{-10} \), meaning that \(\ln(\varepsilon^{-1}) \approx 23 \). However, this time, evaluating \(q(s) \) requires computing the proximal operator of our regularizer, which entails a computational complexity of \(O(n) \) for \(x \in \mathbb{R}^n \). This is in contrast to the convex-onto-linear case we saw in Section 2 where evaluating \(q(s) \) was independent of the problem’s dimension.
The computational cost per iteration is dominated by few dozen evaluations of $\text{prox}_{\eta r}$, and thus we expect it to be a few dozen times slower than a regular proximal-gradient step (without mini-batches).

As was the case with the convex-onto-linear setting, we applied our speed evaluation on the Logistic regression and Least Squares problems, both with L1 and L2 regularization. We measured the total time to make one epoch over data-sets of various dimensions and of various lengths, and plotted a regression line, so that we can indeed convince ourselves than our implementation is slower than a regular incremental gradient method by a small-enough constant factor. The results are plotted in Figure 5. As a summary, without mini-batching, the proximal-point method is roughly 5-10 times slower than its proximal-gradient counterpart. However, mini-batches may make an incremental gradient method computational faster by a factor of 20-150, depending on the problem. As we pointed out, this slowdown is mainly caused by the significantly costlier solution of the dual problem. Even though it appears to be a one-dimensional optimization problem, the computational complexity of evaluating the derivative of the one-dimensional objective does depend on the problem dimension.

Regarding correctness, we again adopt a similar strategy to the convex-onto-linear setting, and solve various problem types with a variety of step-sizes, and see the achieved training loss of one epoch over a data-set of 10,000 samples in \mathbb{R}^{100}. The results are plotted in Figure 4.

3.4 Summary

Throughout this paper, our aim is to design implementations of proximal point algorithms with two objectives in mind: (a) make the algorithms extensible by decoupling concerns into separate modules, and (b) use existing text-book concepts and software libraries to help build these modules. In the case of convex onto linear composition, we were able to decouple the function h and the regularizer r into separate modules which provide oracles to a central algorithm. The oracles are implemented using three textbook concepts: the convex conjugate of h, the Moreau envelope of r, and the proximal operator of r. Using textbook concepts allows easier extension of our library with additional functions h and r, since we stand on the shoulders of the giants who already developed tables and calculus rules of convex conjugates and proximal operators for a variety of useful functions.

An alternative approach to using duality could be using a generic solver package, such as CVXPY [18], to directly solve the proximal sub-problem. The numerical experiments of the next section show that this approach is significantly slower in practice for the setting at hand, where we aim to learn from one sample at a time, rather than from a mini-batch of samples. Indeed, our solver is roughly 5-10 times slower than SGD, whereas the CVXPY approach for small batch sizes appears to be at least 30 times slower (see Figure 5b).
Fig. 3: Execution speed evaluation of incremental proximal point. Each point is a timing of a pair of experiments on the same problem, where the x coordinate is the execution time of one SGD epoch, whereas the y coordinate is the execution time of one proximal point epoch. The columns are various problem dimensions, and the rows are various mini-batch sizes for the incremental proximal gradient method. We can see by the first row, for example, that without mini-batching the proximal-point method is 5-10 times slower than its proximal-gradient variant. In the last row, for example, we can see that for batch sizes of 32 samples the incremental proximal point method is roughly 20-150 times slower, depending on the problem and the dimension.

Another alternatives for solving the proximal sub-problem could be primal-dual hybrid gradient methods, such as the celebrated Chambolle-Pock method \cite{12}, and their accelerated variants \cite{13}. However, this would result in a radically different decomposition into software components than our duality-based approach. Therefore, these approaches are out of the scope of this paper, but are worth exploring in a future work.
Fig. 4: Reproduction of the stability results of [3]. Indeed, for both logistic regression and least squares problems, with both L1 and L2 regularization, the training loss of an incremental proximal-point method is significantly more stable w.r.t the step-size choice than the incremental proximal-gradient method, reinforcing the claim that with an incremental proximal-point method we can just "make an few educated guesses" instead of performing an extensive hyper-parameter search for the best step-size.

4 Mini-batch convex onto linear composition

The mini-batch convex onto linear compositions are useful when extending the scenarios described in Section 2.1 to handle mini-batches of data, instead of individual data points. For example, suppose we're aiming to minimize

$$F(x) = \frac{1}{N} \sum_{i=1}^{N} f_i(x),$$

and that the size of the data-set N is huge. A standard practice with incremental optimization methods, such as SGD, is to use mini-batches of items: a mini-batch $B \subseteq \{1, \ldots, N\}$ is chosen in each iteration, and the model’s
parameters are updated using the gradient of the function

\[F_B(x) = \frac{1}{|B|} \sum_{j \in B} f_i(x). \]

The idea above is equivalent to using a linear approximation of \(F_B \) in each iteration. For example, the steps of mini-batch SGD are:

\[x_{t+1} = x_t - \eta \nabla F_B(x_t) = \arg\min_x \left\{ F_B(x_t) + \langle \nabla F_B(x_t), x - x_t \rangle + \frac{1}{2\eta} \|x - x_t\|^2 \right\}. \]

If our functions \(f_i \) are of the form \(h(a_i^T x + b_i) \) with \(h \) being a convex extended real-valued function, or if we chose to approximate \(f_i \) using such functions, then by replacing the linear approximation \(x_{t+1} \) is computed by solving

\[x_{t+1} = \arg\min_x \left\{ \frac{1}{|B|} \sum_{i \in B} h(a_i^T x + b_i) + \frac{1}{2\eta} \|x - x_t\|^2 \right\}. \]

Assuming w.l.o.g that \(B = \{1, \ldots, m\} \), the above is exactly of the form in Equation (CL-B). As was the case with our previous derivations, convex duality plays a central role in computing the above proximal operator. We note that an alternative formulation for mini-batching could be using the proximal average [6,37], rather than the arithmetic average of functions. In such a formulation, the proximal operator of the mini-batch reduces to the average of the proximal operators of the individual functions, and can be computed using the tools developed in Section 2. However, we also note that the interplay of such a formulation with the stochastic optimization setting is not clear - what is the bias, if any, of the proximal average as an estimator for the mean loss?

4.1 A dual problem

Embedding the vectors \(a_1^T, \ldots, a_m^T \) into the rows of the matrix \(A \), and the scalars \(b_1, \ldots, b_m \) into the vector \(b \), and introducing the auxiliary variable \(z = Ax + b \), our optimization problem can be equivalently written as

\[
\min_{x,z} \frac{1}{m} \sum_{i=1}^m h(z_i) + \frac{1}{2\eta} \|x - x_t\|^2 \quad \text{s.t.} \quad z = Ax + b.
\]

The corresponding dual problem aims to maximize

\[
q(s) = \inf_{x,z} \left\{ \frac{1}{m} \sum_{i=1}^m h(z_i) + \frac{1}{2\eta} \|x - x_t\|^2 + s^T (Ax + b - z) \right\}
\]

\[
= \inf_x \left\{ (A^T s)^T x + \frac{1}{2\eta} \|x - x_t\|^2 \right\} + \sum_{i=1}^m \inf_{z_i} \left\{ \frac{1}{m} h(z_i) - z_i s_i \right\} + s^T b
\]

\((*)
\]

\((**)
\]
The term denoted by (*) above, despite its "hairy" appearance, is the minimum of a simple convex quadratic function, which is computed by comparing the gradient of the term inside the inf with zero, which leads to

\[x = x_t - \eta A^T s, \]

and the corresponding minimum is

\[(*) = -\frac{\eta}{2} \| A^T s \|_2^2 + (Ax_t)^T s. \]

The terms denoted by (***) can be equivalently written as

\[\inf_{z_i} \frac{1}{m} \left\{ \frac{1}{m} h(z_i) - z_i s_i \right\} = -\frac{1}{m} \sup_{z_i} \left\{ (ms_i)z_i - h(z_i) \right\} = -\frac{1}{m} h^*(ms_i), \]

where, again, \(h^* \) denotes the convex conjugate of \(h \). To summarize, the dual aims to solve:

\[\max_s q(s) = -\frac{\eta}{2} \| A^T s \|_2^2 + (Ax_t + b)^T s - \frac{1}{m} \sum_{i=1}^m h^*(ms_i). \]

4.2 Computing the proximal operator

Recall, that the strong duality theorem (Theorem 1) ensures that \(q \) has a maximizer, and that Equation (10) recovers the primal minimizer, which is what we aim to compute. Thus, computing our proximal operator amounts to the following three steps:

1. Form \(q(s) = -\frac{\eta}{2} \| A^T s \|_2^2 + (Ax_t + b)^T s - \frac{1}{m} \sum_{i=1}^m h^*(ms_i) \)
2. Solve the dual problem: find a maximizer \(s^* \) of \(q(s) \)
3. Recover the desired solution: \(x_t - \eta A^T s^* \)

Note, that in the mini-batch setting, the dual problem is no longer one dimensional, but when the size of the mini-batch \(m \) is small, it is still a low dimensional problem, whose solution should be pretty quick. As was the case in Section 2, our representation of the function \(h \) amounts to a class which provides two oracles: (a) evaluate the function \(h \), and (b) maximize functions of the form \(\frac{1}{2} \| Ps \|_2^2 + c^T s - \frac{1}{m} \sum_{i=1}^m h^*(ms_i) \). Let’s first implement a generic optimizer, and then dive into the implementation of concrete functions \(h \).

```python
class MiniBatchConvLinOptimizer:
    def __init__(self, x, phi):
        self._x = x
        self._phi = phi

    def step(self, step_size, A_batch, b_batch):
        # helper variables
        x = self._x
        phi = self._phi
```

Efficient algorithms for implementing incremental proximal-point methods

The term denoted by (*) above, despite its "hairy" appearance, is the minimum of a simple convex quadratic function, which is computed by comparing the gradient of the term inside the inf with zero, which leads to

\[x = x_t - \eta A^T s, \]

and the corresponding minimum is

\[(*) = -\frac{\eta}{2} \| A^T s \|_2^2 + (Ax_t)^T s. \]

The terms denoted by (***) can be equivalently written as

\[\inf_{z_i} \frac{1}{m} \left\{ \frac{1}{m} h(z_i) - z_i s_i \right\} = -\frac{1}{m} \sup_{z_i} \left\{ (ms_i)z_i - h(z_i) \right\} = -\frac{1}{m} h^*(ms_i), \]

where, again, \(h^* \) denotes the convex conjugate of \(h \). To summarize, the dual aims to solve:

\[\max_s q(s) = -\frac{\eta}{2} \| A^T s \|_2^2 + (Ax_t + b)^T s - \frac{1}{m} \sum_{i=1}^m h^*(ms_i). \]

4.2 Computing the proximal operator

Recall, that the strong duality theorem (Theorem 1) ensures that \(q \) has a maximizer, and that Equation (10) recovers the primal minimizer, which is what we aim to compute. Thus, computing our proximal operator amounts to the following three steps:

1. Form \(q(s) = -\frac{\eta}{2} \| A^T s \|_2^2 + (Ax_t + b)^T s - \frac{1}{m} \sum_{i=1}^m h^*(ms_i) \)
2. Solve the dual problem: find a maximizer \(s^* \) of \(q(s) \)
3. Recover the desired solution: \(x_t - \eta A^T s^* \)

Note, that in the mini-batch setting, the dual problem is no longer one dimensional, but when the size of the mini-batch \(m \) is small, it is still a low dimensional problem, whose solution should be pretty quick. As was the case in Section 2, our representation of the function \(h \) amounts to a class which provides two oracles: (a) evaluate the function \(h \), and (b) maximize functions of the form \(\frac{1}{2} \| Ps \|_2^2 + c^T s - \frac{1}{m} \sum_{i=1}^m h^*(ms_i) \). Let’s first implement a generic optimizer, and then dive into the implementation of concrete functions \(h \).
compute dual problem coefficients
P = math.sqrt(step_size) * A_batch.t()
c = torch.addmv(b_batch, A_batch, x)

solve dual problem
s_star = phi.solve_dual(P, c)

perform step
step_dir = torch.mm(A_batch.t(), s_star)
x.sub_(step_size * step_dir.reshape(x.shape))

return the mini-batch losses w.r.t the params before making the step
return phi.eval(c)

We will shortly implement \(h(z) = \frac{1}{2}z^2 \) in the `HalfSquared` class, \(h(z) = \ln(1 + \exp(z)) \) in the `Logistic` class, and \(h(z) = \max(0, z) \) in the `Hinge` class.

With the above we can now, for example, solve a linear least-squares problem using mini-batches of training samples:

```python
x = torch.zeros(dim)
optimizer = MiniBatchConvLinOptimizer(x, HalfSquared())
dataset = get_my_dataset()
for t, (A_batch, b_batch) in enumerate(DataLoader(dataset, batch_size=32)):
    step_size = get_step_size(t)
optimizer.step(step_size, A_batch, b_batch)
print('The model parameter vector is', x)
```

The concrete implementation of various functions \(h \) can be found in Appendix B. We note that the dual problem for \(h(z) = \frac{1}{2}z^2 \) can be computed analytically, but for the hinge and logistic functions it cannot, and therefore we employ CVXPY [1, 18], which in fact is an interface to a variety of lower-level convex optimization solvers. Since the dual problem’s dimension is proportional to the mini-batch size, which is typically quite small, solving it should still be moderately fast. This is, again, the case when a combined C/Python implementation could be more efficient than pure Python code, since we could use C to implement a dedicated efficient convex solver for the dual problem of each loss.

4.3 Empirical evaluation

In contrast to the previous problem families, this time our proximal-point solver can handle mini-batches of data. Thus, when comparing execution speed, we compare the same mini-batch size for both our method and the incremental gradient method. Figure 5 contains the plots for various mini-batch sizes and two problem types - linear least-squares and logistic regression. We see that for least-squares problems, the mini-batched proximal point method is on par with the incremental gradient method. However, logistic regression problems employ the `Logistic` class which incurs the overhead of the CVXPY framework, and is approximately 15 times slower for mini-batches of 32 samples, and approximately 100 times slower for a mini-batch of 8 samples. The overhead of CVXPY is apparent, however, it isn’t our aim to design and develop dedicated
solving for high-dimensional convex optimization problems. However, we encourage our readers to do so, or find a faster third-party solver, if they desire a production-grade optimizer for their model.

And again, to see that we indeed harvest the fruits of a proximal-point algorithm, we conduct a stability experiment, where we solve logistic regression and least-squares problems, and expect to see the resulting algorithm being much more stable, with respect to the step-size choice, than an incremental gradient method. The results are plotted in Figure 6, where the stability is apparent—we indeed obtain a low training loss value for a large range of step-sizes, in contrast to the incremental gradient method, where we need to "pinpoint" the correct step-size to obtain good performance.

4.4 Summary

Duality played a central role here as well, but instead of reducing the proximal operator problem to a one-dimensional problem, we reduced the proximal operator to a, hopefully, low dimensional problem whose dimension is the size of the mini-batch. In practice, mini-batches typically have less than 128 samples, and thus our dual problems are of very low dimensions and can be solved extremely quickly. There is, of course, an additional overhead incurred by using a commodity optimization package such as CVXPY, and a dedicated solver for each dual problem could be substantially faster. However, writing robust and efficient convex optimization solvers is out of the scope of this paper.

References

1. Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018)
2. Asi, H., Chaudh, K., Cheng, G., Duchi, J.C.: Minibatch stochastic approximate proximal point methods. In: H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, H. Lin (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 21958–21968. Curran Associates, Inc. (2020). URL https://proceedings.neurips.cc/paper/2020/file/fa2246fa0df003e270c86767b7ba1b-Paper.pdf
3. Asi, H., Duchi, J.C.: The importance of better models in stochastic optimization. Proceedings of the National Academy of Sciences 116(46), 22924–22930 (2019). DOI 10.1073/pnas.1908018116. URL https://www.pnas.org/content/116/46/22924
4. Asi, H., Duchi, J.C.: Modeling simple structures and geometry for better stochastic optimization algorithms. In: K. Chaudhuri, M. Sugiyama (eds.) Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics, Proceedings of Machine Learning Research, vol. 89, pp. 2425–2434. PMLR (2019). URL http://proceedings.mlr.press/v89/asi19a.html
5. Asi, H., Duchi, J.C.: Stochastic (approximate) proximal point methods: Convergence, optimality, and adaptivity. SIAM Journal on Optimization 29(3), 2257–2290 (2019). DOI 10.1137/18M1230323. URL https://doi.org/10.1137/18M1230323
6. Bauschke, H.H., Goebel, R., Lueth, Y., Wang, X.: The proximal average: Basic theory. SIAM Journal on Optimization 19(2), 766–785 (2008). DOI 10.1137/070687542. URL https://doi.org/10.1137/070687542
7. Beck, A.: First-Order Methods in Optimization. Society for Industrial and Applied Mathematics, Philadelphia, PA (2017). DOI 10.1137/1.9781611974997. URL https://epubs.siam.org/doi/abs/10.1137/1.9781611974997
Fig. 5: Execution speed evaluation of mini-batch incremental proximal point. Each point is a timing of a pair of experiments on the same problem, where the x coordinate is the execution time of one SGD epoch, whereas the y coordinate is the execution time of one mini-batch proximal point epoch. Points differ in running times due to generated data-set size. The columns are various problem dimensions, and the rows are various mini-batch sizes for the incremental gradient method. The corresponding line is a least-squares regression line, whose slope allows to appreciate the ratio between the SGD and proximal point running times. For least-squares problems, the mini-batched proximal point method is on par with the incremental gradient method. However, logistic regression problems employ the \texttt{Logistic} class which incurs the overhead of the \texttt{CVXPY} framework and of a generic conic solver, and is approximately 15 times slower for mini-batches of 32 samples, and approximately 100 times slower for a mini-batch of 8 samples, where CVXPY’s overhead is more significant.
Fig. 6: Results of solving logistic regression and linear least-squares problems using an incremental gradient method and our proximal-point with minibatches implementation.

8. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM journal on imaging sciences 2(1), 183–202 (2009)
9. Bertsekas, D.P.: Incremental proximal methods for large scale convex optimization. Mathematical programming 129(2), 163–195 (2011)
10. Brent, R.P.: Algorithms for minimization without derivatives. Courier Corporation (2013)
11. Campolongo, N., Orabona, F.: Temporal variability in implicit online learning. In: H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, H. Lin (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 12377–12387. Curran Associates, Inc. (2020). URL https://proceedings.neurips.cc/paper/2020/file/9239be65fcd4058ec647f14df0b1290-Paper.pdf
12. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. Journal of Mathematical Imaging and Vision 40(1), 120–145 (2011). DOI 10.1007/s10851-010-0251-1. URL https://doi.org/10.1007/s10851-010-0251-1
13. Chambolle, A., Pock, T.: On the ergodic convergence rates of a first-order primal-dual algorithm. Mathematical Programming 159(1), 253–287 (2016). DOI 10.1007/s10107-015-0957-3. URL https://doi.org/10.1007/s10107-015-0957-3
14. Cortes, C., Vapnik, V.: Support-vector networks. Machine learning 20(3), 273–297 (1995)
15. Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019). DOI 10.1137/18M1178244. URL https://doi.org/10.1137/18M1178244
16. Davis, D., Drusvyatskiy, D., MacPhee, K.I.: Stochastic model-based minimization under high-order growth (2018)
17. Defazio, A.: A simple practical accelerated method for finite sums. In: D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, R. Garnett (eds.) Advances in Neural Information Processing Systems, vol. 29. Curran Associates, Inc. (2016). URL https://proceedings.neurips.cc/paper_files/paper/2016/file/4f6ffe13a5d7952d6a9392263922c5-Paper.pdf
18. Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016)
19. Drusvyatskiy, D., Paquette, C.: Efficiency of minimizing compositions of convex functions and smooth maps. Mathematical Programming 178(1), 503–558 (2019). DOI 10.1007/s10107-017-1311-3. URL https://doi.org/10.1007/s10107-018-1311-3
20. Duchi, J.C., Ruan, F.: Stochastic methods for composite and weakly convex optimization problems. SIAM Journal on Optimization 28(4), 3229–3259 (2018). DOI 10.1137/17M1135086. URL https://doi.org/10.1137/17M1135086
21. Kalai, A., Vempala, S.: Efficient algorithms for online decision problems. Journal of Computer and System Sciences 71(3), 291–307 (2005). DOI https://doi.org/10.1016/j.jcss.2004.10.016. URL https://www.sciencedirect.com/science/article/pii/S0022000004001394 Learning Theory 2003
22. Karampatziakis, N., Langford, J.: Online importance weight aware updates (2011)
23. Kivinen, J., Warmuth, M.K.: Exponentiated gradient versus gradient descent for linear predictors. Information and Computation 132(1), 1–63 (1997). DOI https://doi.org/10.1016/j.inco.1996.2612. URL https://www.sciencedirect.com/science/article/pii/S0890540196926127
24. Kulis, B., Bartlett, P.L.: Implicit online learning. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 575–582 (2010)
25. Liu, J., Xu, L., Shen, S., Ling, Q.: An accelerated variance reducing stochastic method with douglas-rachford splitting. Machine Learning 108(5), 859–878 (2019). DOI 10.1007/s10994-019-05785-3. URL https://doi.org/10.1007/s10994-019-05785-3
26. Martinet, B.: Brève communication. régularisation d’inéquations variationnelles par approximations successives. Revue française d’informatique et de recherche opérationnelle. Série rouge 4(R3), 154–158 (1970)
27. Moreau, J.J.: Fonctions convexes duales et points proximaux dans un espace hilbertien. Comptes rendus hebdomadaires des séances de l’Académie des sciences 255, 2897–2899 (1962)
28. Moreau, J.J.: Proximité et dualité dans un espace hilbertien. Bulletin de la Société mathématique de France 93, 273–299 (1965)
29. Moreau, J.J.: Proximité et dualité dans un espace hilbertien. Bulletin de la Société Mathématique de France 93, 273–299 (1965). DOI 10.24033/bsmf.1625. URL http://www.numdam.org/articles/10.24033/bsmf.1625/
30. Parikh, N., Boyd, S.: Proximal algorithms. Foundation Trends Optim. 1(3), 127–239 (2014). DOI 10.1561/2400000003. URL https://doi.org/10.1561/2400000003
31. Passty, G.B.: Ergodic convergence to a zero of the sum of monotone operators in hilbert space. Journal of Mathematical Analysis and Applications 72(2), 383–390 (1979). DOI https://doi.org/10.1016/0022-247X(79)90234-8. URL https://www.sciencedirect.com/science/article/pii/0022247X79902348
32. Robbins, H., Monro, S.: A stochastic approximation method. The Annals of Mathematical Statistics 22(3), 400–407 (1951). URL http://www.jstor.org/stable/2236626
33. Rockafellar, R.T.: Convex Analysis. Princeton University Press (1970). URL http://www.jstor.org/stable/j.ctt14bs1ff
34. Ryu, E.K., Boyd, S.: Stochastic proximal iteration: a non-asymptotic improvement upon stochastic gradient descent. Author website, early draft (https://web.stanford.edu/~boyd/papers/pdf/spi.pdf) (2014)
35. Shtoff, A.: alexshtf/inc_prox_pt: [Code] Efficient implementation of incremental proximal point methods (2024). DOI 10.5281/zenodo.11500107. URL https://doi.org/10.5281/zenodo.11500107
36. Tran-Dinh, Q., Pham, N., Nguyen, L.: Stochastic Gauss-Newton algorithms for nonconvex compositional optimization. In: H.D. III, A. Singh (eds.) Proceedings of the 37th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol. 119, pp. 9572–9582. PMLR (2020). URL http://proceedings.mlr.press/v119/tran-dinh20a.html
37. Yu, Y.L.: Better approximation and faster algorithm using the proximal average. In: C. Burges, L. Bottou, M. Welling, Z. Ghahramani, K. Weinberger (eds.) Advances in Neural Information Processing Systems, vol. 26. Curran Associates, Inc. (2013). URL https://proceedings.neurips.cc/paper_files/paper/2013/file/43f278f6a533f56a5965d5f5f0606-Paper.pdf
Efficient algorithms for implementing incremental proximal-point methods

38. Zhou, K., So, A.M.C., Cheng, J.: Boosting first-order methods by shifting objective: New schemes with faster worst-case rates. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 15405–15416. Curran Associates, Inc. (2020). URL https://proceedings.neurips.cc/paper_files/paper/2020/file/b096577e2864debd5f4106f359eecc24-Paper.pdf

39. Zinkevich, M.: Online convex programming and generalized infinitesimal gradient ascent. In: Proceedings of the Twentieth International Conference on International Conference on Machine Learning, ICML’03, p. 928–935. AAAI Press (2003)

5 Statements and Declarations

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

The authors have no relevant financial or non-financial interests to disclose.
A Code for regularized convex onto linear compositions

A.1 The HalfSquared class

For $h(z) = \frac{1}{2}z^2$, looking at the Table 1, we see that $h^*(s) = \frac{1}{2}s^2$ with $\text{dom}(h^*) = \mathbb{R}$, i.e. its conjugate is itself. Since the domain is non-compact and open, and h^* is strictly convex, we perfectly fit the non-compact case. We will use the sequence $-1, -2, -2^2, -2^3, \ldots$ for the lower bounds, and $1, 2, 2^2, 2^3, \ldots$ for upper bounds. The implementation is below:

```python
from itertools import count

class HalfSquared:
    def eval(self, z):
        return (z ** 2) / 2
    def conjugate_has_compact_domain(self):
        return False
    def lower_bound_sequence(self):
        return (-(2 ** j) for j in count())
    def upper_bound_sequence(self):
        return ((2 ** j) for j in count())
    def conjugate(self, s):
        return (s ** 2) / 2
    def conjugate_prime(self, s):
        return s
```

A.2 The Logistic class

For $h(z) = \ln(1 + \exp(z))$, looking at Table 1, we see that $h^*(s) = s\ln(s) + (1 - s)\ln(1 - s)$ with the convention that $0\ln(0) = 0$, and that the domain of h^* is the compact interval $[0, 1]$. Based on the above, we implement the Logistic class below:

```python
import math

class Logistic:
    def eval(self, z):
        return math.log1p(math.exp(z))
    def conjugate_has_compact_domain(self):
        return True
    def domain(self):
        return (0, 1)
    def conjugate(self, s):
        def entr(u):
            if u == 0:
                return 0
            else:
                return u * math.log(u)
        return entr(s) + entr(1 - s)
```

Note that since we’re not going to be searching for an initial interval, we don’t need to implement the methods returning upper bound and lower bound sequences.
A.3 The Hinge class

For $h(z) = \max(0, z)$, looking at Table 1, we see that $h^*(s)$ is just the indicator of the interval $[0, 1]$, and we again fall into the compact domain case. Below is the implementation:

```python
import math
class Hinge:
    def eval(self, z):
        return max(0, z)
    def conjugate_has_compact_domain(self):
        return True
    def domain(self):
        return (0, 1)
    def conjugate(self, s):
        if s < 0 or s > 1:
            return math.inf
        else:
            return 0
```

A.4 The L2Reg class

First, note that for all regularizers we need to be able to compute their Moreau envelope and their proximal operator. Hence, we first define a common base class:

```python
from abc import ABC, abstractmethod
class Regularizer(ABC):
    @abstractmethod
    def prox(self, eta, x):
        pass
    @abstractmethod
    def eval(self, x):
        pass
    def envelope(self, eta, x):
        prox = self.prox(eta, x)
        result = self.eval(prox) + 0.5 * (prox - x).square().sum() / eta
        return result.item()
```

Now we can use it to implement our L2Reg class, which represents $r(x) = \frac{\mu}{2}\|x\|_2^2$, using the proximal operator in Table 2:

```python
class L2Reg(Regularizer):
    def __init__(self, mu):
        self._mu = mu
    def prox(self, eta, x):
        return x / (1 + self._mu * eta)
    def eval(self, x):
        return self._mu * x.square().sum() / 2.
```

A.5 The L1Reg class

Using the Regularizer base class above, and on Table 2 we can also implement the L1Reg class for representing $r(x) = \mu\|x\|_1$.

from torch.nn.functional import softshrink

class L1Reg(Regularizer):
 def __init__(self, mu):
 self._mu = mu

 def prox(self, eta, x):
 softshrink(x, eta * self._mu)

 def eval(self, x):
 return self._mu * x.abs().sum()

A.6 The L2NormReg class

The following class represents the $r(x) = \mu \|x\|_2$ class.

from torch.linalg import norm

class L2NormReg(Regularizer):
 def __init__(self, mu):
 self._mu = mu

 def prox(self, eta, x):
 nrm = norm(x)
 eta = eta * self._mu
 return (1 - eta / max(eta, nrm)) * x

 def eval(self, x):
 return self._mu * norm(x)

B Code for mini-batch of convex onto linear compositions

B.1 The HalfSquared class

For $h(z) = \frac{1}{2}z^2$, we have $h^*(s) = \frac{1}{2}s^2$. Hence, our dual problem is of the form

$$q(s) = -\frac{1}{2}\|Ps\|_2^2 + c^T s - \frac{m}{2}\|s\|_2^2$$

$$= -\frac{1}{2}s^TP^TP + mI s + c^Ts,$$

where I is the identity matrix of the appropriate size. It’s a simple strictly concave quadratic function, which can be minimized by equating its gradient with zero:

$$\nabla q(s) = -(P^TP + mI)s + c = 0.$$

Re-arranging the above equation leads to the maximizer

$$s = (P^TP + mI)^{-1}c.$$

It’s also easy to see that $P^TP + mI$ is a symmetric positive-definite matrix, and thus s can be obtained using the well-known Cholesky decomposition. Fortunately, PyTorch has all the necessary machinery to do exactly that.
class HalfSquared:
 def solve_dual(self, P, c):
 m = P.shape[1] # number of columns = batch size
 # construct lhs matrix P* P + m I
 lhs_mat = torch.mm(P.t(), P)
 lhs_mat.diagonal().add_(m)
 # solve positive-definite linear system using Cholesky factorization
 lhs_factor = torch.cholesky(lhs_mat)
 rhs_col = c.unsqueeze(1) # make rhs a column vector, so that cholesky_solve works
 return torch.cholesky_solve(rhs_col, lhs_factor)

 def eval(self, lin):
 return 0.5 * (lin ** 2)

B.2 The Logistic class

In direct contrast to the case of the half-squared function, for \(h(z) = \ln(1 + \exp(z)) \) with \(h^*(s) = s \ln(s) + (1 - s) \ln(1 - s) \) we don’t have a formula for computing a maximizer \(s^* \). However, convex optimization is a mature technology, and a variety of extremely fast and efficient software packages exists to do exactly that - minimize convex functions, or equivalently, maximize concave functions. In this paper we’ll use one such package, CVXPY \(^{[1, 18]}\), which in fact is an interface to a variety of lower-level convex optimization solvers.

```python
import torch
import cvxpy as cp

class Logistic:
    def solve_dual(self, P, c):
        # extract information and convert tensors to numpy. CVXPY
        # works with numpy arrays
        dtype = P.dtype
        m = P.shape[1]
        P = P.data.numpy()
        c = c.data.numpy()
        # define the dual optimization problem using CVXPY
        s = cp.Variable(m)
        objective = 0.5 * cp.sum_squares(P @ s) -
                    cp.sum(cp.multiply(c, s)) -
                    (cp.sum(cp.entr(m * s)) + cp.sum(cp.entr(1 - m * s))) / m
        prob = cp.Problem(cp.Minimize(objective))
        # solve the problem, and extract the optimal solution
        prob.solve()
        # recover optimal solution, and ensure it’s cast to the same type as
        # the input data
        return torch.tensor(s.value).to(dtype=dtype).unsqueeze(1)

    def eval(self, lin):
        return torch.log1p(torch.exp(lin))
```

B.3 The Hinge class

As was the case with the Logistic class, there is no closed-form solution for solving the dual. The conjugate of \(h(z) = \max(0, z) \) is the indicator of the interval \([0, 1]\), and thus the
The dual problem aims to solve

\[
\max_s \quad \frac{1}{2} \|Ps\|_2^2 + c^T s \\
\text{s.t.} \quad 0 \leq s_i \leq \frac{1}{m}
\]

The corresponding Python code using CVXPY is below.

```python
import torch
import torch.nn.functional
import cvxpy as cp

class Hinge:
    def solve_dual(self, P, c):
        # extract information and convert tensors to numpy. CVXPY
        # works with numpy arrays
dtype = P.dtype
m = P.shape[1]
P = P.data.numpy()
c = c.data.numpy()

        # define the dual optimization problem using CVXPY
s = cp.Variable(m)
objective = 0.5 * cp.sum_squares(P @ s) - cp.sum(cp.multiply(c , s))
constraints = [s >= 0, s <= 1. / m]
prob = cp.Problem(cp.Minimize(objective), constraints)

        # solve the problem, and extract the optimal solution
prob.solve()
return torch.tensor(s.value).to(dtype=dtype).unsqueeze(1)

def eval(self, lin):
    return torch.nn.functional.relu(lin)
```