Recent development on COX-2 inhibitors as promising anti-inflammatory agents: The past 10 years

Zhiran Ju, Menglan Li, Junde Xu, Daniel C. Howell, Zhiyun Li, Fen-Er Chen

Abstract

Cyclooxygenases play a vital role in inflammation and are responsible for the production of prostaglandins. Two cyclooxygenases are described, the constitutive cyclooxygenase-1 and the inducible cyclooxygenase-2, for which the target inhibitors are the non-steroidal anti-inflammatory drugs (NSAIDs). Prostaglandins are a class of lipid compounds that mediate acute and chronic inflammation. NSAIDs are the most frequent choices for treatment of inflammation. Nevertheless, currently used anti-inflammatory drugs have become associated with a variety of adverse effects which lead to diminished output even market withdrawal. Recently, more studies have been carried out on searching novel selective COX-2 inhibitors with safety profiles. In this review, we highlight the various structural classes of organic and natural scaffolds with efficient COX-2 inhibitory activity reported during 2011-2021. It will be valuable for pharmaceutical scientists to read up on the current chemicals to pave the way for subsequent research.

© 2022 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Inflammation is an important part of the immune system’s response against hostile world and has been linked to a variety of immunological diseases. Chemical agents, physical injuries, immunological reactions and infection by pathogenic organisms usually cause acute or chronic inflammations. Non-steroidal anti-inflammatory drugs (NSAIDs) have long been known to alleviate inflammation. They treat a variety of diseases caused by inflammation, such as rheumatoid arthritis, acute fever as well as relieving common daily pains. In the history of medicine development, the first therapeutic NSAID was aspirin, which has been used for more than 100 years since 1898. For more than a century, more typical NSAIDs, such as celecoxib, indomethacin, ibuprofen, and diclofenac, have been latterly developed, and approved by the U.S. Food and Drug Administration (FDA) for clinical treatment. NSAIDs competitively inhibits the activity of cyclooxygenases (COXs) and thereby interferes with the bioconversion of the downstream inflammatory mediators. In 1971, Vane et al. first confirmed that the therapeutic target of NSAIDs is cyclooxygenase, further investigation found that the inhibition of cyclooxygenase directly resulted in termination of the biosynthesis of prostaglandins (PGs), which are crucial mediators of inflammation.

Four major bioactive PGs, prostaglandin E2 (PGE2), prostacyclin I2 (PGI2), prostaglandin D2 (PGD2), prostaglandin F2 (PGF2a), along with a thromboxane A2 (TXA2), are generated during inflammation. The formation of PGs was shown in Fig. 2, initially, arachidonic acid (AA) is released from the phospholipid by the catalysis of the phospholipase A2 (PLA2), and then a prostaglandin H2 (PGH2) is subsequently formed by the actions of both COX-1 and COX-2. These four PGs and TXA2 are eventually produced through the bioconversion of PGs and TXA2 synthases in downstream mechanism. The level of prostaglandin production mainly depends on the expression of cyclooxygenases (COXs) in inflammatory tissues, especially cyclooxygenases-2. PGs are hormone-like lipid compounds and are involved in many physiological reactions and play a key role in the generation of inflammatory responses. In general, PGs exert their effects by mediating the body’s responses to tissue injury or inflammation. Among them, PGE2 is the dominated prostaglandin that induces typical symptoms of inflammation, such as pain, fever, tumor, and anaphylactic reaction.

Two functional COXs are identified and defined as COX-1 and COX-2 according to their different structures and functions. COX-1 belongs to constitutive isoenzyme and extensively existed in most cells. Prostaglandins catalyzed by COX-1 have protective effects on gastrointestinal tract. COX-2 is an inducible enzyme which acts as the most important source of prostaglandins, so it is always regarded as a pathologic enzyme chiefly responsible for inflammation. NSAIDs exhibits anti-inflammatory effects by the non-selective/selective inhibition of cyclooxygenase (COX) activity and subsequently blocks the biosynthesis of prostaglandins in lesion sites. However, due to simultaneous inhibition of COX-1 and COX-2, non-selective NSAIDs not only achieve anti-inflammatory and analgesic purposes, but also cause serious adverse effects, such as digestive tract damage and platelet function disorder. While selective NSAIDs only inhibits COX-2 but does not affect the protective effect of prostaglandins catalyzed by COX-1 on gastrointestinal tract and platelet, thus greatly decreasing the risk of gastrointestinal side effects. The traditional anti-inflammatory mechanism of COX-2 inhibitor has been confirmed by recent studies. As depicted in Fig. 3, COX-2 inhibitors exert pharmacological activity through inhibition of the NF-κB pathway. Since COX-2 is responsible for producing reactive oxygen species (ROS), COX-2 inhibition causes a sharp drop in the amount of reactive oxygen species (ROS) in the upstream mechanism and keep NF-κB in an inactive state of bondage to P-IκB in the downstream, and thereby prohibit the production of pro-inflammatory cytokines, including NO, PGE2, IL-6, and TNF-α. Although selective COX-2 inhibitors are the most common choice of treatment for inflammatory diseases, they are often found to be associated with potential adverse effects of cardiovascular disorder, and a possible increased risk of heart attack, blood clots and stroke. Therefore, discovering new selective COX-2 inhibitors that can reduce such side effects appear more popular.

To prevent undesirable outcomes, finding new NSAIDs with improved safety profiles remains the most effective approach to inflammation treatment. This paper reviews the classification and pharmacological action of new COX-2 inhibitors which have been
reported in organic synthesis in the last ten years. In addition, new compounds from natural origins with potent COX-2 inhibitory and anti-inflammatory activity are also included, which are the promising COX-2 inhibitor for drug design and clinical use.

2. Chemistry and pharmacology of new synthetic COX-2 inhibitors

2.1. Compounds having a pyrazole ring

Pyrazole is a π-excess aromatic heterocycle, which has been recognized as a pharmacologically important active scaffold for organic synthesis, especially for new COX-2 inhibitor development. Clinical agents containing pyrazole fragments are celecoxib, antipyrine, aminopyrine, and metamizole. During the past ten years, a number of pyrazole derivatives were reported and screened for their COX-2 inhibition and anti-inflammatory activity (Fig. 4). In 2014, a new compound containing pyrazole fragment was synthesized by Bansal et al. Compound 1 showed excellent selective inhibition of COX-2 [IC_{50} = 0.31 μmol/L, selectivity index (SI) > 222] and potential anti-inflammatory activity with ED_{50} of 74.3 mg/kg in a carrageenan-induced rat paw edema model. The COXs inhibition activity of compound 1 was obtained by using a COX fluorescent inhibitor screening assay kit consisting of ovine COX-1 and human recombinant COX-2 enzymes [an enzyme immunoassay (EIA)]. Further investigation indicated that compound 1 presented suppression of acetic acid-induced writhes, and it showed better gastro-spasms profile compared to that of aspirin. In a molecular docking study, compound 1 showed higher selective binding affinity towards COX-2 than to COX-1. An important hydrogen bond between the oxygen of the nitro group and the hydrogen of Arg^{120} was observed, which is important for the interaction with COX-2. El-Sayed et al. reported the synthesis of a series of potentially useful 1,5-diphenyl pyrazoles. Compounds 2 and 3 displayed a considerable COX-2 inhibitory activity and a good selectivity (EIA) (IC_{50} = 0.45 μmol/L, SI = 111.1). Compounds 2 and 3 also presented high anti-inflammatory activity (ED_{50} = 118 and 120 mg/kg) comparable with diclofenac (ED_{50} = 114 mg/kg) in carrageenan-induced rat paw oedema assay. Notably, replacement of cycloalkanone moiety can significantly influence their activity. Meanwhile, molecular docking analysis indicated that compounds 2 and 3 bind into the active site of COX-2 in a similar manner to SC-558, a selective COX-2 inhibitor. Xu’s group reported a novel class of molecules, adopting a new pyrazole N-aryl sulfonate synthetic approach. This inspiration came from the selective COX-2 inhibitor-celecoxib, which has a typical sulfonamide fragment. In vitro EIA experiments indicated that compounds 4, 5, 6, and 8 have strong COX-2 inhibitory activity (Table 1). According to the selectivity index on COXs, compounds 4–8 displayed comparable selective COX-2 inhibition with that of celecoxib. Importantly, compounds 4, 5, 7, and 8 showed excellent in vivo anti-inflammatory activity (5, 7, and 8: % inhibition of auricular edemas = 27.0, 27.0 and 25.7, respectively; 4 and 7: % inhibition ratios of writhing = 50.7 and 48.5, separately, at the oral dose of 30 mg/kg, 8 mice/test group). El-Sayed et al. continued to report some pyrazole derivatives

Figure 3 A diagram of the putative anti-inflammatory mechanism of the COX-2 inhibitor in RAW264.7 cells.

Figure 4 Chemical structures of compounds 1–16.
Table 1 In vitro COX-1/COX-2 inhibition (IC50, μmol/L) and selectivity index for compounds 4–8, and standard agent.

Compd.	COX-1 IC50	COX-2 IC50	COX-2 selectivity
4	0.5	0.0011	455
5	96.57	0.0092	10,479
6	>100.00	0.092	>1087
7	>100.00	0.53	>189
8	>100.00	<0.01	–
Celecoxib	>100.00	0.056	295

*The result (IC50, μmol/L) is the mean of three determinations acquired using a COX fluorescent inhibitor screening assay kit (Cayman Chemical, MI, USA).

*COX-2 selectivity index (COX-1 IC50/COX-2 IC50).

The result (IC50, μmol/L) is the mean of three determinations acquired using a COX fluorescent inhibitor screening assay kit (Cayman Chemical, MI, USA).

Abdellatif et al.27 prepared a new series of 1,5-diaryl pyrazoles as both COX-2 and 15-lipoxygenase inhibitors. Compound 15 was more effective (ED50 = 0.98 μmol/L) on COX-2 inhibition than that of references celecoxib (ED50 = 1.54 μmol/L) and meclofenamate sodium (ED50 = 5.64 μmol/L) in an EIA assay. Meanwhile, compound 15 showed good anti-inflammatory activity and selectivity index (SI = 4.89) in an in vivo assay, which was almost identical to that of celecoxib (SI = 4.93). Moreover, the in vivo ulcer liability activity assay was explored in this study, compound 15 presented good ulcerous profile (UI = 2.78) and it was as safe as the reference celecoxib (UI = 2.9). In addition, the results suggested that presence of a (CF3) moiety in pyrazoles had no effect on COX-2 selectivity. Aiming to directly inhibit the production of PGE2 in serum samples of rats, some novel pyrazole derivatives were recently designed by Mohammed et al.29. Of these, compound 16, which contains an acylamino linker, presented COX-2 inhibition with IC50 = 1.76 μmol/L and a good selectivity index value of 11.1. Moreover, compound 16 showed potential anti-inflammatory activity (% edema inhibition = 81) and was less ulcerogenic than indomethacin in the in vivo ulcer liability assay. Unfortunately, the potency and selectivity of compound 16 cannot be compared with that of celecoxib, further structural modification is required to improve the activity.

2.2. Compounds having imidazole and imidazoline rings

The imidazole and imidazoline groups, as structurally similar pharmacophores, have been widely explored in the development of NSAIDs30. From 2014 to 2021, several literatures have reported new COX-2 inhibitors containing imidazole and imidazoline moieties (Fig. 5). In 2014, Saripitak et al.31 designed and synthesized an active imidazoline analog 17. Compound 17 displayed prominent COX-2 inhibitory activity (IC50 = 0.3 μmol/L) comparable to clinically used celecoxib (IC50 = 0.091 μmol/L) upon in vitro evaluation. This study also proved that replacement of methylsulfonyl group by sulfonamide showed no pronounced suppressive effect on COX-2 inhibition. Four years later, Abdelatif et al.32 reported a number of 4-substituted-imidazoline analogs. Compounds 18–20 were more active towards COX-2 compared to celecoxib. Compounds 18, 20, and 21 were less ulcerogenic than clinical drugs including ibuprofen and celecoxib (Table 2). Structure-activity relationship study (SAR) revealed that multiple –OCH3 (18) substituent on benzene ring has more favorable effect on the COX-2 inhibition and selectivity than other analogs. Some new substituted imidazoline-5-one derivatives 22, 23, and 24 were prepared by Metwally et al.33 Compounds 22–24 showed similar anti-inflammatory activity (% inhibition of edema = 43.1, 41.8, and 49.0) compared to celecoxib (% inhibition of edema = 43.1%), which suggested that keeping the same sulfonamide (SO2NH2) moiety in new structures is crucial to maintain or increase the anti-inflammatory activity. Further study indicated that compounds 22–24 exhibited a high efficacy towards COX-2 inhibition (EIA) with IC50 of 0.090, 0.087, and 0.092 μmol/L, respectively. In addition, several 1,5-diarylimidazole derivatives having the thioalkyl group at position 2 were reported by Navidpour et al.34 in 2014. Of these, compound 25 showed the moderate inhibition (EIA) (IC50 = 14.2 μmol/L) of COX-2 and displayed less selectivity (SI = 3.1) than celecoxib (IC50 = 0.544 μmol/L; SI = 19.4). The results suggested that compounds bearing thiomethyl group at position 2 have better activity as compared with thioethyl derivatives in this study.
Table 2 *In vitro* COX-1/COX-2 inhibition (IC\(_{50}\), μmol/L), selectivity index, ulcerogenic evaluation for compounds 18–21, and standard agents.

Compd.	COX-1 IC\(_{50}\)	COX-2 IC\(_{50}\)	COX-2 selectivity	Ulcer index
18	4.52	0.42	10.76	1.22
19	6.74	0.62	10.87	3.02
20	4.52	0.52	8.69	2.60
21	7.86	0.86	9.14	2.61
Celecoxib	7.23	0.84	8.61	2.93
Ibuprofen	–	–	–	20.25

*The result (IC\(_{50}\), μmol/L) is the mean of three determinations acquired using a COX fluorescent inhibitor screening assay kit (Cayman Chemical, MI, USA). The COX-2 selectivity index (COX-1 IC\(_{50}\)/COX-2 IC\(_{50}\)).

2.3. Compounds having an indole ring

The indole moiety belongs to an important pharmacophore core for the synthesis of novel selective COX-2 inhibitors. To discover novel selective COX-2 inhibitors, Hayashi et al. designed a new acid-type compound 26 in 2012 (Fig. 6). Compound 26 maintained the basis structure of indomethacin and exerted potent selective COX-2 inhibition with IC\(_{50}\) of 0.009 and 0.155 μmol/L in human cells and HWB cells, respectively. Moreover, compound 26 had good oral anti-inflammation efficacy and potent in vivo anti-oedematous effect. Meanwhile, a new N-1 and C-3 substituted indole derivative 27 was synthesized by Kaur’s group that showed selective COX-2 inhibitory activity (EIA) with IC\(_{50}\) of 0.32 μmol/L and SI of >312. According to the docking result, the phenyl CF\(_3\) substituent attached to the C=C=N is located near the COX-2 active site and formed an important hydrogen bond to His\(^{90}\), which is crucial for the COX-2 inhibition. Bhat’s group reported a new COX-2 inhibitor 28, compound 28 not only inhibited COX-2 expression but also possessed desirable gastric safety profile. This work provided valuable information for exploring gastro-protective COX-2 inhibitors. Recently, Singh et al. reported several new compounds containing tosyl and dipeptide groups at N-1 and C-3 position, respectively, which were developed for COX-2 inhibitors. Of all the compounds, compounds 29–31 showed similar *in vivo* anti-inflammatory activities to diclofenac. Moreover, an *in vitro* COX-2 selectivity assay showed that compounds 29 and 30 displayed competitive inhibition and selectivity of COX-2 (IC\(_{50}\) = 0.006 and 0.099 μmol/L; SI = 351 and 440, respectively). However, compound 31 showed excellent COX-2 inhibitory activity IC\(_{50}\) of 0.54 μmol/L, but the selectivity (SI = 24) is poor. Additionally, Estevão et al. synthesized a new indole derivative 32. In comparison with indomethacin, the methoxy at C-5 was replaced by a sulfonamide, the C-2 and C-3 positions were substituted by two 4-fluro benzyls, respectively. Compound 32 showed selective COX-2 inhibitory activity with 67 ± 6% (50 μmol/L) which is close to indomethacin (78 ± 3%). More recently, Jung group designed and synthesized a novel N-1, C-3 substituted indole analog 33 that merge the structural motifs of anti-inflammatory ascidian metabolites, herdmanines. To form two vital hydrogen bonds with Tyr\(^{255}\) and Arg\(^{120}\), the acid in indomethacin was replaced by a hydrazone moiety based on bioisosteric replacement drug design strategy. Compound 33 showed a considerable COX-2 inhibitory activity (7.59 μmol/L) and selectivity (SI = 5.16) compared with diclofenac (IC\(_{50}\) = 1.21 μmol/L, SI = 15.18). The indole-containing analogues were mostly designed based on the structure of indomethacin. Consequently, replacement of the C-3 acetic acid moiety in indomethacin by various substitutes is an effective strategy to improves their activity and selectivity. In addition, the modification at N-1 and C-2 is also a reasonable option.

2.4. Compounds having a thiazole ring

Thiazole is a privileged pharmacophore in medicinal chemistry and bear high potential for the anti-inflammatory therapeutic option. In the past 10 years, three groups have reported several thiazole derivatives which were developed as selective COX-2 inhibitors (Fig. 7). Sağlık et al. recently designed and synthesized novel derivatives bearing thiazolyl-hydrazine-methyl sulfonyl moiety as selective COX-2 inhibitors. Compound 34 demonstrated significant and selective COX-2 inhibition potency with an IC\(_{50}\) value of 0.140 ± 0.006 μmol/L and selectivity index of >714.28 comparable to nimesulide (IC\(_{50}\) = 1.684 ± 0.079 μmol/L) and celecoxib (IC\(_{50}\) = 0.132 ± 0.005 μmol/L) in *in vitro* COX-2 inhibition assay (EIA). Per the molecular docking results, compound 34 bounded in
a similar manner as celecoxib with COX-2 enzyme. Later, Abdel-Aziz et al. synthesized a few novel anti-inflammatory EGFR inhibitors with cardiac and gastric safety profiles. Chemically, these compounds were formed with pyrimidine-5-carbonitrile hybrids with 2-amino-4-aryl-1,3-thiazole through an acetamide group linker. Compounds displayed good and selective COX-2 inhibitions (EIA) (IC \(_{50} = 1.17, 1.13, \) and \(1.03 \mu\text{mol/L}; \) SI = 5.78, 7.84, and 8.21, respectively) relative to celecoxib (IC \(_{50} = 0.88 \mu\text{mol/L}; \) SI = 8.31). Further study indicated that compounds exhibited anti-inflammatory activity (the percentage of edema inhibition) up to 90%, 94%, and 86% of meloxicam after 4 h interval and higher gastric safety profiles than meloxicam. Compounds and had a superior safety profile with an ulcer index of 2.70 and 2.40, respectively, compared to meloxicam (\(\text{UI} = 18\)). In addition, Hofmann’s group designed a new thiazole analogue, with 4-chloro- and 2-hydroxy-substituted compound, which displayed good and selective COX-2 inhibition with activity of \(9.1/\%\) COX-2 product formation measured at a concentration of 10 \(\mu\text{mol/L}.\)

2.5. Compounds having a tetrazole ring

Since 2011, two groups have reported the synthesis and pharmacological studies of anti-inflammatory tetrazole derivatives (Fig. 8). Labib et al. designed several tetrazole derivatives based on bio-isosteric replacement of \(\text{SO}_2\text{NH}_2\) in celecoxib. Structurally, two classes of compounds were designed: isoxazoles (39, 40) and pyrazoles (41–44). Compounds 39–44 are active and displayed potential in vitro COX-2 inhibitory activity in an EIA assay (IC \(_{50} = 0.039–0.065 \mu\text{mol/L}.\) Notably, compounds 40, 42, and 44 attained significant COX-2 selectivity index values which were as selective as celecoxib. Moreover, compounds 40 and 44 showed similar anti-inflammatory activity to celecoxib at different time intervals and were less ulcerogenic than celecoxib (Table 3). Downstream inflammatory factors were also detected, compounds 40 and 44 significantly decrease the production of PGE\(_2\) (% inhibition = 81.042 and 82.724 in sequent) which is comparable to celecoxib (% inhibition = 79.666). The collected data indicated that the derivatives with methoxy are more active than those with hydrogen on the benzene ring. Al-Hourani et al. reported a tetrazole-containing compound 45, which exhibited potent COX-2 inhibition with IC \(_{50}\) value of 2.0 \(\mu\text{mol/L},\) but the SI value of compound 45 (\(\text{SI} = 210\)) was less than celecoxib (\(\text{SI} = 313\)). Five years later, this group prepared more 1,5-diaryl-substituted tetrazoles by further modifications to the methylsulfonyl unit. The collected biological data showed that compounds 46 and 47 exhibited moderate COX-2 inhibitory activity (IC \(_{50} = 24 \) and 38 \(\mu\text{mol/L},\) respectively) and selectivity (SI = 0.87 and 5.2, respectively); compound 48 displayed enhanced COX-2 inhibitory activity and selectivity towards COX-2 (EIA) (IC \(_{50} = 3 \mu\text{mol/L},\) SI = > 67). The acquired results suggested that the presence of the methylsulfonyl unit, methylene spacer at C-1, and longer linker make the new derivatives more active towards COX-2 enzyme.

2.6. Compounds having an oxadiazole ring

Oxadiazole moiety has precedent for use as a bioisosteric substitute in drug design and synthesis. In the past ten years, three groups had reported the synthesis of COX-2 inhibitors containing oxadiazole group. As summarized in Fig. 9, El-Sayed et al. designed a novel heterocyclic oxadiazoles 49, which exhibited prominent COX-2 inhibitory activity (IC \(_{50} = 0.041 \mu\text{mol/L}) and selectivity (SI = 89.72) comparably to celecoxib.
Recently, fused heterocyclic rings have been flexibly used as crucial 2.7. Derivatives having fused heterocyclic fragments

development. Derivatives having fused heterocyclic fragments provides an alternative inspiration for new COX-2 inhibitor enhancer COX-2 inhibitory activity and selectivity. This approach The results confirmed that better in vivo anti-inflammatory activity than celecoxib. Besides, compounds 53 and 55 had better in vivo anti-inflammatory activity than celecoxib (Table 4). The results confirmed that tert-butyl is an indispensable moiety to enhance COX-2 inhibitory activity and selectivity. This approach provides an alternative inspiration for new COX-2 inhibitor development.

2.7. Derivatives having fused heterocyclic fragments

Recently, fused heterocyclic rings have been flexibly used as crucial core for COX-2 inhibitors (Figs. 10 and 11). Szcukowicz et al. 52 produced a number of novel hybrid pyrrolo[3,4-d]pyridazinone derivatives bearing 4-aryl-1-(1-oxoethyl)piperazine pharmaco- phores. Compound 56 exerted cytotoxicity and had significant selective COX-2 inhibition at lower concentrations. Structurally, the arylpiperazine pharmacoaphore is connected with 1,3,4-oxadiazole ring via sulfur. The results indicated that elongating the linker part is important to enhance the anti-inflammatory activity. Khatri et al. 53 prepared several benzothiophene derivatives, and compounds 57, 58, 59, and 60 showed potent and selective COX-2 inhibition (EIA) (IC_{50} = 0.33, 0.31, 0.67, and 1.40 μmol/L respectively, selectivity index: 48.8–183.8). Analysis of SAR indicated that various substitutions of benzyl were the major determinants for COX-2 inhibition, such as compounds 59 (4-SO_{2}NH_{2}) and 60 (–NHCOCH_{3}), which showed enhanced activity compared with 57 and 58. Moreover, compounds 57–60 showed considerable anti-inflammatory activity in vivo. Sun et al. 54 reported a series of novel selective inhibitors of enzyme COX-2. Compound 61 had potential anti-inflammatory activity with no cytotoxicity. Moreover, compound 61 showed selective inhibition towards COX-2 (IC_{50} = 0.2 μmol/L) and COX-1 (IC_{50} = 8.35 μmol/L) in an enzyme immuno assay (Bio-Swamp). Four bioactive benzoxazole analogs were prepared by Kaur et al. 55. Compounds 62–65 showed significant COX-2 inhibitory activity and selectivity towards COX-2 over COX-1. Of all the compounds, compound 62 was the most active compound with excellent inhibition of COX-2 (EIA) (IC_{50} = 0.04 μmol/L) and good selectivity (SI = 25.5). The in vivo assays results indicated that compounds 62–65 had significant anti-inflammatory activity (% inhibition = 84.09%, 68.18%, 79.54% and 72.72%, respectively), greater than reference drug ibuprofen (% inhibition = 65.90, dose = 60 mg/kg). More importantly, they demonstrated a more significant gastric tolerance than ibuprofen, the pharmacokinetic profile of compounds 62–65 showed their available druggability. Later, a group of benzoxazole-benzamidine analogs 66 was reported by the same group 56. Compound 66 exhibited potent and selective COX-2 inhibition (EIA) with IC_{50} of 0.14 μmol/L as compared to celecoxib (IC_{50} = 0.15 μmol/L). Compound 66 also exhibited in vivo anti-inflammatory activity (79.54%) superior to ibuprofen (65.90%) (dose = 20 mg/kg); The ulcerogenic activity results indicated that compound 66 had significant more gastric tolerance than ibuprofen. The collected data revealed that electron withdrawing substitutions at ortho and para positions to phenyl ring aide in improving activity. Molecular docking results suggested that the benzoxazole ring is a crucial moiety to interact with Tyr^{355} and Arg^{120} of the COX-2 enzyme. All the experimental date demonstrated that compound 66 is a potential COX-2 inhibitor and valuable for further clinical investigation. Chen’s group 57 reported a novel dihydropyrazole sulfonamide derivative 67, which exhibited remarkable and selective COX-2 inhibition (IC_{50} = 0.33 μmol/L), the potency almost

Compd.	COX-1 IC_{50} (μmol/L)	COX-2 IC_{50} (μmol/L)	COX-2 selectivity (IC_{50} COX-1/IC_{50} COX-2)	Ulcer index	Rat paw edema (mm)	(% edema inhibition, 6 h)
39	11.3	0.045	251.11	0.21 ± 0.02	7.27 ± 0.14	
40	12.4	0.041	302.44	0.123 ± 0.01	5.10 ± 0.36	
41	10.5	0.064	164.06	0.26 ± 0.01	6.54 ± 0.14	
42	12.8	0.043	297.67	0.21 ± 0.01	5.47 ± 0.23	
43	10.9	0.065	167.69	0.55 ± 0.03	7.05 ± 0.35	
44	12.4	0.039	317.95	0.11 ± 0.01	4.99 ± 0.19	
Celecoxib	12.7	0.045	282.22	0.167 ± 0.01	5.21 ± 0.19	
Indomethacin	0.10	0.080	1.25	0.88 ± 0.04	–	

Table 3 In vitro COX-1/COX-2 inhibition (IC_{50}, μmol/L), selectivity index, ulcerogenic evaluation and in vivo anti-inflammation activity (dose = 50 mg/kg) for compounds 39–44 and standard agents.

aCOX-2 selectivity index (COX-1 IC_{50}/COX-2 IC_{50}).

(IC_{50} = 0.049 μmol/L, SI = 308.16) by using an enzyme immunoassay. In 2020, Alfayomy et al. 50 reported two new selective COX-2 inhibitors 50 and 51, which belong to pyrimidine-5-carbonitrile hybrids with 1,3,4-oxadiazole scaffold. Compounds 50 and 51 showed significant and selectivity on COX-2 inhibition. Further investigation indicated that compounds 50 and 51 displayed good in vivo anti-inflammatory activity up to 89.5% inhibition at 4 h in carrageenan-induced rat paw edema assay. Moreover, compound 50 displayed superior safety profile than celecoxib. The results revealed that the pyrimidinyl substituent markedly affected the activity against COX-2. Grover et al. 51 synthesized a new series of oxadiazole-comprising derivatives 52–55. Compounds 52–55 exhibited good and selective inhibition of COX-2 (EIA), but the efficacy and selectivity were less than reference drug celecoxib. Besides, compounds 53 and 55 had better anti-inflammatory activity than celecoxib (Table 4). The results confirmed that tert-butyl is an indispensable moiety to enhance COX-2 inhibitory activity and selectivity. This approach provides an alternative inspiration for new COX-2 inhibitor development.

![Figure 9 Chemical structures of compounds 49–55.](image-url)
Table 4 *In vitro* COX-1/COX-2 inhibition (IC\(_{50}\), \(\mu\)mol/L), selectivity index and *in vivo* anti-inflammation activity (dose = 150 \(\mu\)mol/kg) for compounds 52–55, and standard agents.

Compd.	COX-1 (\(\mu\)mol/L)	COX-2 (\(\mu\)mol/L)	COX-2 selectivity	Rat paw edema (% edema inhibition, 5 h)
52	54.99	0.74	74.31	41.06 ± 2.64
53	63.76	0.48	132.83	58.04 ± 1.30
54	55.05	0.81	67.96	46.38 ± 2.47
55	60.61	0.89	68.10	59.33 ± 2.19
Celecoxib	37.98	0.10	379.80	49.81 ± 1.92
Indomethacin	98.23	50.99	–	–

The result (IC\(_{50}\), \(\mu\)mol/L) is the mean of three determinations acquired using a COX fluorescent inhibitor screening assay kit (Cayman Chemical, MI, USA).

b COX-2 selectivity index (COX-1 IC\(_{50}\)/COX-2 IC\(_{50}\)).

Figure 10 Chemical structures of compounds 56–70.

Figure 11 Chemical structures of compounds 71–79.
identical to that of celecoxib. Several new benzimidazole derivatives endowed with oxadiazole were described by Rathore et al. in 2014. Compound 68 displayed reasonable COX-2 inhibition (IC50 = 8.2 μmol/L) and selectivity (SI > 12.1). Moreover, compound 68 was much safer in terms of gastric toxicity with a severity index of 0.48, lower than that of indomethacin. The SAR studies revealed that the electron-donating compounds showed better COX-2 inhibitory activity than those of the electron-withdrawing ones. An oxadiazole analog 69 was reported by Iyer et al. in 2016 and exerted good COX-2 inhibition but associated with moderate COX-1 inhibition in vivo. The undesirable COX-2 selectivity indicated that compound 69 need further modification. In the same year, Nesaragi’s group prepared some novel coumarinyl-1,3,4-oxadiazolyl-2-mercaptobenzoxazoles. Of these, compounds 70–72 displayed moderate and selective COX-2 inhibitions (IC50 = 23.71, 33.47 and 23.95 μmol/L, respectively, SI = 33.95, 20.25 and 24.98, respectively). The results suggested that the activity is influenced by the bulkiness and lipophilicity of substituent on the benzene ring. Abdulla et al. synthesized two novel 4-amino salicylate based thiazolinone derivatives 73 and 74, both of which showed excellent COX-2 inhibitory efficacy (IC50 = 44 and 39 nmol/L) and selectivity index (SI = 66.82 and 68.46). Unfortunately, the selectivity indices of tested compounds (73 and 74) were lower than celecoxib but still higher than diclofenac sodium and indomethacin. Additionally, compounds 73 and 74 showed improved safety profiles than indomethacin. Analysis of the biological data revealed that the bulkiness of the substituent at heterocyclic ring enhanced the COX-2 inhibition activity. Murahari et al. introduced five active azomethine derivatives 75–79. Compounds 75–79 showed potent and selective COX-2 inhibition revealing that substitution with electron donors such as methoxyl and hydroxyl has unfavorable effect on anti-inflammatory activity. Meanwhile, compounds 75–79 were subjected to an ulcerogenic activity assay, and showed safer profiles with low ulcer indices when compared to the clinically used drug celecoxib (Table 5).

3. Chemistry and pharmacology of structurally modified COX-2 inhibitors

3.1. Derivatives of existing market drugs

Structural modification of existing drugs is an effective approach for drug development. The structures of bumetanide, celecoxib, indomethacin, and nimesulide have also been altered to develop new derivatives (Fig. 12). In 2020, Ibrahim et al. have reported several novel benzenesulfonamide analogs which aim to developed as COX-2 inhibitors. Structurally, butamamide was used as a precursor to synthesized new analogues. Of interest, the replacement of an acetic group by the bulky triazole moieties led to the potent COX-2 inhibitors, compounds 80 and 81. Compounds 80 and 81 exhibited excellent inhibition (Cayman’s COX (ovine) Colorimetric Inhibitor Screening Assay) of COX-2 with IC50 values of 0.28 and 0.17 μmol/L, and a considerable selectivity index (SI = 71.93 and 115.82) in comparison to celecoxib (SI = 4.93). Further investigation indicated that compounds 80 and 81 showed good anti-inflammatory activity and lower ulcerogenicity when administered orally. On the basis of the structure of indomethacin, Ikeda’s group reported a fluorinated analog 82 of indomethacin, which bearing a lipophilic 3,3,3-trifluoroprop-1-etyl group at C-2 position. Compound 82 displayed greater COX-2 inhibitory activity and selectivity than indomethacin. Molecular docking results indicated that fluorine substituent of compound 82 contributed to a significant gain of the binding affinity for COX-2 by increasing van der Waals contacts. Aiming to discover novel selective COX-2 inhibitor. Chandra et al. designed two series of celecoxib derivatives containing 1,5-diaryl fragments by bioisosteric replacement. The first series of celecoxib analogue were synthesized bearing a cyano group in place of sulfonylamide moiety and then carbothioamide moiety was introduced and prepared the second series of analogues. Among these compounds, 83–86 exhibited potential selective COX-2 inhibitions (IC50 = 7.07–19.22 μmol/L), but the activity of compounds 83–86 is weaker than that of celecoxib (Table 6). Nevertheless, compounds 83–86 showed potent in vivo anti-inflammatory activity which is comparable to indomethacin. Based on SAR study, the carbothioamide substituent compounds displayed better activity and selectivity than those of cyano substituent ones. In another study, Hassan et al. reported a series of anti-inflammatory celecoxib analogs 87–91 by introducing a benzofuran moiety. It’s worth noting that phenyl sulfonylamide is an indispensable pharmacophore to maintain COX-2 selectivity. Accordingly, compounds 87–91 presented potent and selective COX-2 inhibitions with IC50 values of 0.34–0.52 μmol/L. Meanwhile, changing the hydrogen in 87 into methyl in 89 led to minor decrease in COX-2 inhibition. The celecoxib analogue 91 with trifluoromethyl also had better COX-2 inhibition than fluoro analogue 90. Compounds 87–91 also possess better gastric safety profile and less gastric ulceration effect compared to clinical drug celecoxib (Table 7). Renard et al. prepared a series of nimesulide analogs 92–94 in accordance with its favorable gastric and cardiovascular safety profile. Chemically, these derivatives were designed in which the nitrobenzene ring was replaced by pyridine nucleus based on isosteric replacement. The oxygen atom also has been replaced with nitrogen to construct a new linker between two aromatic rings. As a consequence, compounds 92–94 exhibited remarkable inhibitory activity associated to a COX-2/COX-1 selectivity ratio (7.46, 15.35, and 7.67, respectively; IC50 = 0.26, 0.09, and 0.30 μmol/L) similar or higher than that of celecoxib (ratio: 7.46, IC50 = 0.35 μmol/L) in a human whole blood model. The SAR study indicated that the various substitutions on the benzene ring are the main factor affecting their activity towards COXs.

3.2. Derivatives having fragments of natural products

Pharmaceutical chemists continuously design new chemical scaffolds inspired by reported natural products from 2011 to 2021, including examples that were displayed in Fig. 13. Ribeiro et al. designed a series of cinnamic acid derivatives, and found three

Table 5 In vitro COX-1/COX-2 inhibition (IC50, μmol/L), selectivity index, ulcerogenic evaluation for compounds 75–79, and standard agent.

Compd.	COX-1*	COX-2*	COX-2 selectivity	Ulcer index
75	276.44	4.320	63.99	0.603 ± 0.15
76	76.67	25.87	2.963	
77	300.72	11.48	26.19	0.642 ± 0.25
78	33.58	7.750	4.332	
79	225.68	21.87	10.31	1.991 ± 0.34
Celecoxib	>50	0.34	147.05	1.204 ± 0.06

*The result (IC50, μmol/L) is the mean of three determinations acquired using a COX fluorescent inhibitor screening assay kit (Cayman Chemical, MI, USA).

*COX-2 selectivity index (COX-1 IC50/COX-2 IC50).
active compounds 95–97 as new COX-2 inhibitors. Compounds 95–97 exhibited moderate inhibition of COX-2 (human whole blood assay) (IC50 = 3.0, 2.4, and 1.09 μmol/L; SI ≥ 33, 10.0, and 3.9, respectively). The results confirmed that phenolic hydroxyl fragment is a potential pharmacological core for COXs inhibition. The data acquired also indicated that by introducing a couple of bulky hydrophobic groups may be a fruitful approach to increase the COX-2 selective inhibition. Takahash et al.69 reported a new synthetic serotonin derivative: compound 98. Compound 98 showed weak inhibition on COX-2 (IC50 = 42.5 μmol/L) and considerable selectivity in serotonin derivatives testing assay. In this study, it was confirmed that extending amide linkage of 98 is crucial to increase COX-2 inhibitory activity. Rayar et al.70 prepared a cyclocoumarol analog 99, which exhibited good inhibitory activity against PGE2 production, and no inhibitory activity against the COX-1 was observed. Further study indicated that compound 99 showed considerable anti-inflammatory activity in a concentration-dependent manner.

4. Chemistry and pharmacology of potential COX-2 inhibitors from nature origin

Naturally occurring compounds have been reported to inhibit COX-2 enzyme, thereby possessing beneficial effects against inflammation. In the past ten years, a large number of natural compounds were identified as COX-2 inhibitors or exerting COX-2 inhibitory activity, examples as natural phenols, flavonoids, terpenoids, alkaloids, and other hybrids. The characteristics of their structural core scaffolds, COX-2 inhibitory activity, anti-inflammatory effects, and structure–activity relationships are introduced as follows:
showed potent COX-2 inhibitory activity (EIA) (IC50 < 1.82, 1.52, and 1.64, respectively). Hu et al.79 identified a flavonoid, kaempferol-3-O-rutinoside 116, which showed VEGF-C-mediated anti-inflammation by interfering with VEGF-C-related signal transduction and interfered with the NF-κB signaling pathway. Compound 116 exhibited high potency to trigger the receptor activation and inhibited the production of IL-6, TNF-α, and the expression of iNOS and COX-2. The anti-inflammatory effects of compound 116 was investigated in LPS-induced macrophages, and indicated that 116, as a natural compound, could be developed as an anti-inflammatory agent with good drug likeness. Nobiletin 117 (NOB) is a potential anti-inflammatory candidate. Xiao’s group80 recently reported their work on the anti-inflammatory potency of 117. 117 showed significant anti-inflammatory activity by inhibiting the expression of pro-inflammatory markers. Further investigation demonstrated that compound 117 sharply reduced the levels of iNOS and COX-2 protein in a concentration-dependent manner. Three new flavonoids 18–20 (Fig. 15) were found from the leaves of Myrica rubra sieb1, which can inhibit the expression levels of iNOS and COX-2 protein in a dose-dependent manner, and they also showed significant anti-inflammatory activity by inhibiting LPS-stimulated pro-inflammatory cytokines. Hanáková et al.72 isolated a new geranylated flavanone 121 from Paulownia tomentosa fruits. Compound 121 had moderate COX-2 inhibition activity (EIA) (IC50 = 9.5 μmol/L, SI = 2.8) and was more selective than ibuprofen (IC50 = 4.2 μmol/L, SI = 1.5). Hosek et al.83 reported a new

Table 6: In vitro COX-1/COX-2 inhibition (IC50, μmol/L), selectivity index and in vivo anti-inflammation activity for compounds 83–86, and standard agents.

Compd.	COX-1a	COX-2a	COX-2 selectivityb	Rat paw edema (% edema inhibition, 4 h)
83	>30	19.22	>1.56	0.24 ± 0.05
84	>30	7.07	>4.24	0.84 ± 0.01
85	>30	9.07	>3.31	0.7 ± 0.07
86	>30	17.43	>1.72	0.3 ± 0.01
Celecoxib	>30	0.15	>200	–
Indomethacin	0.18	>30	–	0.17 ± 0.03

*aThe result (IC50, μmol/L) is the mean of three determinations acquired using a COX fluorescent inhibitor screening assay kit (Cayman Chemical, MI, USA).
*bCOX-2 selectivity index (COX-1 IC50/COX-2 IC50).

Table 7: In vitro COX-1/COX-2 inhibition (IC50, μmol/L), selectivity index, ulcerogenic evaluation (rat 50 mg/kg) and for compounds 87–91, and standard agent.

Compd.	COX-1a	COX-2a	COX-2 selectivityb	Ulcer index
87	>50	0.40	>6.67	13.82 ± 0.62
88	>50	0.52	>9.65	11.56 ± 0.54
89	>50	0.36	>13.80	10.50 ± 0.63
90	>50	0.46	>108.70	9.40
91	>50	0.34	>147.06	10.50 ± 0.59
Celecoxib	>50	0.28	>178.57	16.12 ± 0.86

*aThe result (IC50, μmol/L) is the mean of three determinations acquired using a COX fluorescent inhibitor screening assay kit (Cayman Chemical, MI, USA).
*bCOX-2 selectivity index (COX-1 IC50/COX-2 IC50).

4.1. Phenols

Culénová et al.71 investigated a phenolic compound 100 from Morus alba root bark. Compound 100 showed significant more in vitro COX-2 inhibition with the IC50 value of 15.85 μmol/L than indomethacin (IC50 = 27.04 μmol/L, SI = 0.16), but the selectivity of COX-2 is low (SI = 0.47). Nata’s group72 isolated an anti-inflammatory compound 101 from Alpinia officinarum Hance. Biological investigation indicated that compound 101 exhibited potent anti-inflammatory ability by the inhibition of the release and/or action of histamine, serotonin and kinin, and by COX-2 inhibition. Liu et al.73 recently discovered two novel anti-inflammatory compounds 102 and 103 from Carissa spinarum. Compounds 102 and 103 were identified and showed good COX-2 inhibition by the COX-2 inhibition screening method (EIA) and the activity of compound 102 (IC50 value = 0.3 μmol/L) was comparable to indomethacin (IC50 = 1.1 μmol/L). Nile et al.74 investigated the anti-inflammatory potency of three natural acids: ferulic acid (104), caffeicacid (105), and gallic acid (106). Compounds 104–106 showed potent COX-2 inhibitory activity (EIA) (IC50 = 68.5, 62.5, and 65.2 μg/mL, respectively). Further investigation suggested that compounds 104–106 exerted anti-inflammatory effect through suppressing the activity of xanthine oxidase and COX-2 enzyme. Paulino et al.75 extracted and analyzed the phenols of propolis and grape pomace from Uruguayan species. Z-Feraric acid 107 was identified and demonstrated good anti-inflammatory activity, and COX-2 inhibitory activity. The potential pharmacological activity of curcumin 108 was investigated11. Briefly, curcumin exhibited anti-inflammatory activity by significantly reducing the production of pro-inflammatory mediators including COX-2 and PGE2 through NF-κB pathway. A new homoeogonol 109 was isolated from the extracts of Mamuyo (Styrox ramirezii Greenm)77. 109 displayed anti-inflammatory activity by nitric oxide reduction. In addition, 109 was able to decrease the LPS-induced transcription of inducible pro-inflammatory enzyme coding genes of COX-2. Cheng’s group78 reported the isolation and anti-inflammatory evaluation of two phenols, Periplanetol A (110) and Periplanetol B (111) (Fig. 14), from Periplaneta americana. 110 and 111 exhibited good COX-2 inhibition activity with IC50 values of 0.768 and 0.617 μmol/L, but it is lower than that of celecoxib (IC50 = 0.041 μmol/L).

4.2. Flavonoids

Honmore et al.72 discovered a flavonoid derivative 112, which exhibited selective COX-2 inhibition. The in vivo mice assay showed that 112 had potential anti-inflammatory activity in paw edema in comparison with diclofenac. Paulino et al.75 extracted several flavonoids from propolis and grape pomace, flavonoid glycosylate (113), pinobanksin (114), and anthocyanin (115). 113–115 showed potent anti-inflammatory and selective COX-2 inhibitory activity (EIA) (SI = 1.82, 1.52, and 1.64, respectively). Hu et al.79 identified a flavonoid, kaempferol-3-O-rutinoside 116, which showed VEGF-C-mediated anti-inflammation by interfering with VEGF-C-related signal transduction and interfered with the NF-κB signaling pathway. Compound 116 exhibited high potency to trigger the receptor activation and inhibited the production of IL-6, TNF-α, and the expression of iNOS and COX-2. The anti-inflammatory effects of compound 116 was investigated in LPS-induced macrophages, and indicated that 116, as a natural compound, could be developed as an anti-inflammatory agent with good drug likeness. Nobiletin 117 (NOB) is a potential anti-inflammatory candidate. Xiao’s group80 recently reported their work on the anti-inflammatory potency of 117. 117 showed significant anti-inflammatory activity by inhibiting the expression of pro-inflammatory markers. Further investigation demonstrated that compound 117 sharply reduced the levels of iNOS and COX-2 protein in a concentration-dependent manner. Three new flavonoids 18–20 (Fig. 15) were found from the leaves of Myrica rubra sieb1, which can inhibit the expression levels of iNOS and COX-2 protein in a dose-dependent manner, and they also showed significant anti-inflammatory activity by inhibiting LPS-stimulated pro-inflammatory cytokines. Hanáková et al.72 isolated a new geranylated flavanone 121 from Paulownia tomentosa fruits. Compound 121 had moderate COX-2 inhibition activity (EIA) (IC50 = 9.5 μmol/L, SI = 2.8) and was more selective than ibuprofen (IC50 = 4.2 μmol/L, SI = 1.5). Hosek et al.83 reported a new
geranylated flavonoid, diplacone 122, which can significantly down-regulated the expression of COX-2 in Western blot assay. Meanwhile, a new flavonoid 123 was purified from licorice residues\(^8\), which displayed potent NO inhibitory effect (IC\(_{50} = 9.89 \mu mol/L\)) compared with minocycline (IC\(_{50} = 33.20 \mu mol/L\)). Compound 123 also notably exhibited IL-1\(\beta\), IL-6, iNOS, and COX-2 inhibition. A new compound 124 was identified from Daphne genkwa Sieb and showed anti-inflammatory activity through NF-\(\kappa\)B signaling pathway\(^8\), decreased expression levels of iNOS and COX-2 mRNA were observed. A large family of flavonoids, comprising compounds 125–132 (Fig. 16), was isolated from lotus plumule\(^8\). Compounds 125–132 displayed significant anti-inflammatory activity by inhibiting the production of pro-inflammatory cytokines. Further study demonstrated that compounds 125–132 were considered as potential COX-2 ligands by computer modeling calculations. An et al.\(^9\) analyzed the anti-inflammatory effect of Saxifragin (133) which is founded abundantly in plants, especially in Saxifrage stolonifera. Compound 133 showed outstanding anti-inflammatory activity and decreased the production of PGE\(_2\) through suppressing the level of protein expression of COX-2. Puerarin (134) is a flavonoid derivative and possesses antipyretic and sedation activity. Pharmacological experiments indicated that puerarin exerted anti-inflammatory activity via the ERK/Nrf2/ARE pathway by inhibiting the production of pro-inflammatory markers including iNOS and COX-2\(^8\). It has the potential to be a COX-2 inhibitor. Toyama’s group\(^9\) reported their work on the anti-inflammatory activity of 8-C-rhamnosyl apigenin 135, which demonstrated selective COX-2 inhibitory activity with an IC\(_{50}\) value of 28.6 \(\mu mol/L\) and potent in \(\textit{vivo}\) anti-inflammatory activity. Waller et al.\(^9\) evaluated the COX-2 inhibitory activity of four flavonoids 136–139 from the bulbs of the Southern African \(\textit{Ledebouria socialis}\). Compounds 136–139 showed good activity towards COX-2. Notably, compounds 136 and 137 had reasonable and selective COX-2 inhibitory activity (EIA) (IC\(_{50}\) = 1.12 and 2.87 \(\mu mol/L\), respectively). Kim et al.\(^9\) evaluated the anti-inflammatory activity of a new chalcone 140 from \textit{Alpinia} species. Compound 140 demonstrated inhibition of COX-2 expression and NF-\(\kappa\)B activation in a luciferase transcriptional assay. Recently, Zhou et al.\(^9\) detected the anti-inflammatory therapeutic effects of a natural chalcone, isobavachalcone 141, which showed strong iNOS, COX-2, and NF-\(\kappa\)B p65 inhibitory activity and attenuated the production levels of pro-inflammatory cytokine PGE\(_2\). This compound is also a potential lead for further modifications and pharmacological evaluation. In addition, the methanol extract of \textit{Boerhaavia diffusa} roots was investigated and led to the discovery of two active rotenoids 142 and 143\(^9\), both of which showed moderate COX-2 inhibition with IC\(_{50}\) value of 31.4 and 25.5 \(\mu mol/L\), respectively. However, both compounds 142 and 143 exerted less COX-2 selectivity indices of 1.09 and 0.79.

Figure 13 Chemical structures of compounds 95–99.

Figure 14 Chemical structures of compounds 100–111.
4.3. Terpenoids

Bauer’s group94 reported two new terpenoid derivatives: \textbf{144} and \textbf{145} from \textit{Hypericum cistifolium}. Compounds \textbf{144} and \textbf{145} exhibited anti-inflammatory activity by inhibiting COXs activities (EIA). However, both of compounds \textbf{144} and \textbf{145} displayed relative low COX-1 and COX-2 inhibition. Zhang et al.95 isolated and evaluated the ethyl acetate fraction of the ethanol extract from \textit{Mallotus conspurcatus} croizat, and found two new terpenoids \textbf{146} and \textbf{147}, both of which demonstrated marked suppression of the secretion of PGE2 and the expression of TNF-\alpha, iNOS, NF-\kappaB, and COX-2 proteins. Three new sesquiterpenoids \textbf{148}, \textbf{149}, and \textbf{150} were isolated from the rhizomes and roots of \textit{Nardostachys jatamansi} (Fig. 15)96, which inhibit the expression of pro-inflammatory mediators COX-2 protein and cytokine PGE2. An’s group97 reported a novel triterpenoid \textbf{151} from \textit{Rosa rugosa} root, which potently inhibited the expression of COX-2 protein and also suppressed the production of PGE2. Five new anti-inflammatory sesquiterpenes \textbf{152}–\textbf{156} (Fig. 17) were found from the leaves of \textit{Artemisia lavandulaefolia}98, the biological evaluation results showed that compounds \textbf{152}–\textbf{156} had weak COX-2 inhibitory activity with IC\textsubscript{50} values of 43.29–236.33 \textmu mol/L. In 2020, Choo group99 investigated the potential activity of a sesquiterpene...
lactone, costunolide 157. Compound 157 decreased the expression level of COX-2 protein and have good anti-inflammatory activity through NF-κB signaling pathway. Gao’s group100 recently isolated several new cyathane diterpenoids from the bird’s nest fungus Cyathus africanus. Of the new compounds, compound 158 exhibited the most active COX-2 and iNOS inhibitory effects. Kim’s group101 reported two anti-inflammatory compounds, elatoside (159) and kalopanax-saponin F (160), which were first isolated from Aralia elata. Compounds 159 and 160 suppressed the NF-κB activation induced by TNF-α with IC50 values of 4.1 and 9.5 μmol/L, respectively. Compounds 159 and 160 also showed inhibitory activity towards COX-2 in a dose-dependent manner.

4.4. Alkaloids

More recently, a large family of quinolizidine alkaloids were purified from the seeds of Sophora alopecuroides (Fig. 18)102. Among them, a new anti-inflammatory alkaloid 161 exhibited higher NO inhibition with IC50 values of 29.19 μmol/L than matrine (IC50 = 38.90 μmol/L). Compound 161 also showed anti-inflammatory activity through decreasing the protein levels of COX-2. Feng et al.103 had investigated the COX-2 inhibitory activity of berberine hydrochloride 162, which showed inhibitory activity of the overexpressed COX-2 through PPAR-γ pathway.

Kang et al.104 reported a new alkaloid 163 extracted from Amaryllidaceae, which exhibited anti-inflammatory activity via the P38 and STATs signal pathways. The expression levels of iNOS and COX-2 protein inhibited by 163 were observed, but didn’t suppress the transcription of the COX-2 gene, suggesting that 163 may serve as a COX-2 inhibitor. Mohan et al.105 investigated and assessed a major carbazole alkaloid girinimbine 164 presents in curry leaves, which exhibited potential anti-inflammatory activity. Compound 164 demonstrated suppressing effect on COX-2 enzyme, but no effect on COX-1 in an EIA assay. The result indicated that girinimbine 164 significantly inhibited COX-2 enzyme (% inhibition = 52.5; Dose = 25 μg/mL). Rui’s group106 reported an isoquinoline alkaloid (coptisine, 165) from Coptidis rhizome. Similarly, compound 165 showed anti-inflammatory activity via the inhibition of NF-κB pathway. In particular, compound 165 effectively blocked the production of PGE2 through COX-2 inhibition. Lee’s group107 evaluated and assessed the anti-platelet activity of a major alkaloid of black pepper and long pepper: piperine 166, which showed anti-inflammatory activity by regulating the AA-metabolizing enzymes. In the downstream mechanism, compound 166 decreased the production of PGE2 and PGD2 via COX-2 inhibition.

4.5. Others

In addition to the typical classes of natural products as introduced above, hybrid natural compounds (Fig. 19) were also discovered and showed COX-2 inhibitory and anti-inflammatory activity. Lin et al.108 isolated and identified a novel quinone 167 from soft coral Sinularia flexibilis. The expression of COX-2 protein was significantly inhibited by compound 167 at 20 μmol/L with no cytotoxicity. Choi et al.109 examined the anti-inflammatory activity of several naturally occurring anthraquinone derivatives, which were isolated from the Rhubarb Rhizome. The results indicated that compound 168 was the most potent of the compounds in inhibiting the protein expression of COX-2. Liu’s group110 reported a new phenyl compound 169, which was identified from a mangrove plant derived fungus Botryosphaeria sp. Compound 169 exhibited remarkable COX-2 inhibitory activity (IC50 = 1.12 μmol/L). A few...
phenylpropanoid derivatives 170–172 were purified from Chinese Olive by He’s group. Western blot analyses were performed in this study and found that they significantly and dose-dependently reduced the expression level of COX-2 protein. Shen’s group isolated a new phenylpropanoid (+)-episesaminone 173 from Cinnamomum camphora, which prominently suppressed the expression levels of COX-2 protein. Additionally, three phenylpropanoids 174–176 were isolated from Lilium Asiatic hybrids flowers by Baek’s group. At a concentration of 50 μg/mL, compounds 174–176 can effectively decreased COX-2 expressions.

5. Conclusions and future perspectives

COX-2 is a bio-functional enzyme that catalyzes the biosynthesis of PGs during inflammation, and has become a significant therapeutic target when searching for anti-inflammatory drugs. Since 2011, more efforts have been focused on mining new chemical scaffolds as COX-2 inhibitors. The main emphasis of this review was on the potent COX-2 inhibitory and anti-inflammatory activity of various structural families of compounds, which have been reported within the last decade. With respect to the SAR, pyrazole analogs showed the most potent and selective inhibition of COX-2. Derivatives having fragments of natural products only showed moderate COX-2 inhibition and thereby demand more structural modification to improve their activity. Moreover, derivatives having indole, oxadiazole, thiazole, and tetrazole pharmacological cores also displayed acceptable COX-2 inhibitory activity. His90, Arg120 and Arg513 were found to be most important amino acids for the inhibition and selectivity of COX-2. Meanwhile, extensive in vitro and in vivo pharmacological tests were performed and aim to discover new selective COX-2 inhibitors with safety profiles. In addition, a lot of natural compounds with good COX-2 inhibitory and anti-inflammatory activity were included herein. Natural products described in this review may provide inspiration for pharmaceutical chemists and also could serve as a foundation for novel COX-2 inhibitor design to avoid undesirable adverse effects.

Selective inhibition of COX-2 is a major feature of the new generation of NSAIDs, there are several prospects need to be considered for the development of next-generation of NSAIDs.

1) The new COX-2 inhibitors must be able to reduce stomach irritation and the risk of peptic ulcers.
2) In some respects, COX-1/COX-2 balanced inhibitors maybe a new direction for the development of NSAIDs, when the serious adverse effects of either non-selective or selective inhibitors are considered.
3) Majority of derivatives require the presence of aryl group as the basic scaffold for COX-2 inhibitors and thereby the solubility of the new compounds need to be further considered in clinical use. Introducing hydrophilic groups into the structures may be helpful to address this problem.

The above discussion will undoubtedly attract more interest in the coming years. Regarding the future research on COX-2 inhibitor, we strongly feel that utilizing the traditional medicinal chemistry approach seems to be insufficient for current clinical needs, combing genetic engineering, enzyme engineering, and computer science may be a fruitful way to confront future challenges.

Acknowledgments

The author would like to thank Dr. K. Kaliyaperumal, Dr. M. Fredimoses, and Dr. B. Sachin for their careful revisions of this work.

Author contributions

Zhiran Ju and Fen-Er Chen generated the manuscript draft. Menglan Li, Junde Xu, Daniel C. Howell, and Zhiyun Li edited and revised the manuscript. All authors reviewed and approved the final version of the manuscript.

Conflicts of interest

The authors have no conflicts of interest to declare.

References

1. Nathan C, Ding A. Nonresolving inflammation. Cell 2010;140: 871–82.
2. Lichtenberger LM, Wang ZM, Romero JJ, Ulloa C, Perez JC, Giraud MN, et al. Non-steroidal anti-inflammatory drugs (NSAIDs) associate with zwitterionic phospholipids: insight into the mechanism and reversal of NSAID-induced gastrointestinal injury. Nat Med 1995;1:154–8.
3. Bindu S, Mazumder S, Bandyopadhyay U. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: a current perspective. Biochem Pharmacol 2020;114147.
4. Vane JR, Botting RM. Mechanism of action of nonsteroidal anti-inflammatory drugs. Am J Med 1998;10:25–85.
5. Vane JR, Botting RM. Mechanism of action of anti-inflammatory drugs. Scand J Rheumatol 1996;25(sup102):9–21.
Development on COX-2 inhibitors as promising anti-inflammatory agents

6. Ricciotti E, FitzGerald GA. Prostaglandins and inflammation. *Arthritis Rheum* 2011;62(1):1-117.

7. Morteau O. Prostaglandins and inflammation: the cyclooxygenase controversy. *Arch Immunol Ther Exp (Warsz)* 2000;48:473–80.

8. Rossi A, Kapahi P, Natoli G, Takahashi T, Chen Y, Karin M, et al. Anti-inflammatory cyclopentone prostaglandins are direct inhibitors of IκB kinase. *Nature* 2000;403:103–8.

9. Funk CD. Prostaglandins and leukotrienes: advances in eicosanoid biology. *Science* 2001;294:1871–5.

10. Smith WL, Dewitt DL. Prostaglandin endoperoxide H synthases-1 and -2. *Adv Immunol* 1996;62:167–215.

11. Xie W, Robertson DL, Simmons DL. Mitogen-inducible prostaglandin G/H synthase: a new target for nonsteroidal antiinflammatory drugs. *Drug Dev Res* 1992;25:249–65.

12. Nantel F, Denis D, Gordon R, Northej A, Cirino C, Chan CC. Distribution and regulation of cyclooxygenase-2 in carrageenan-induced inflammation. *Br J Pharmacol* 1999;128:853–9.

13. Gupta AK, Gupta RA, Soni LK, Kaskhedikar SG. Exploration of physicochemical properties and molecular modelling studies of 2-sulfon-phenyl-3-phenyl-indole analogs as cyclooxygenase-2 inhibitors. *Eur J Med Chem* 2008;43:1297–303.

14. Tanaka A, Araki H, Komoike Y, Hase S, Takeuchi K. Inhibition of both COX-1 and COX-2 is required for development of gastric damage in response to nonsteroidal antiinflammatory drugs. *J Physiol Paris* 2001;95:21–7.

15. Ahlström MM, Ridderdström M, Zamora I, Luthman K. CYP2C9 inhibitors of IκB kinase. *Nature* 2000;403:103–8.

16. Wallace JL, McKnight W, Reuter BK, Vergnolle N. NSAID-induced gastric damage in rats: requirement for inhibition of both cyclooxygenase 1 and 2. *Gastroenterology* 1993;104:179–88.

17. Lamie PF, Ali WAM, Bazgier V, Rarova L. Novel N-substituted hydrazone and pyrazole derivatives as selective COX-2 inhibitors and anti-inflammatory agents. *Br J Pharmacol* 2014;174:201–12.

18. Bansal S, Bala M, Suthar SK, Choudhary S, Bhattacharya S, Bhardwaj V, et al. Design and synthesis of novel 2-phenyl-5-(1,3-diphenyl-5-aryl sulfon-1H-pyrazol-4-yl)-1,3,4-oxadiazoles as selective COX-2 inhibitors with potent anti-inflammatory activity. *Eur J Med Chem* 2014;80:167–74.

19. Charlier C, Michaux C. Dual inhibition of cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) as a new strategy to provide safer non-steroidal anti-inflammatory drugs. *Eur J Med Chem* 2003;38:645–59.

20. Somakala K, Amir M, Synthesis, characterization and pharmacological evaluation of pyrazolyl urea derivatives as potential anti-inflammatory agents. *Acta Pharm Sin B* 2017;7:230–40.

21. Bansk S, Bala M, Suthar SK, Choudhary S, Bhattacharya S, Bhardwaj V, et al. Design and synthesis of novel 2-phenyl-5-(1,3-diphenyl-1H-pyrazol-4-yl)-1,3,4-oxadiazoles as selective COX-2 inhibitors with potent anti-inflammatory activity. *Eur J Med Chem* 2014;80:167–74.

22. El-Sayed MA, Abdel-Aziz NI, Abdel-Aziz AA, El-Azab AS, Asiri YA, Eltahir KE. Design, synthesis, and biological evaluation of substituted hydrazine and pyrazole derivatives as selective COX-2 inhibitors: molecular docking study. *Bioorg Med Chem* 2011;19:3416–24.

23. Vao HY, Guo Q, Wang MR, Wang R, Xu ZQ. Discovery of pyrazole N-aryl sulfonate: a novel and highly potent cyclooxygenase-2 (COX-2) selective inhibitor. *Bioorg Med Chem* 2021;46:161364.

24. El-Sayed MAA, Abdel-Aziz NI, Abdel-Aziz AAM, El-Azab AS, ElTahir KEH. Synthesis, biological evaluation and molecular modeling study of pyrazole and pyridazine derivatives as selective COX-2 inhibitors and anti-inflammatory agents, Part 2. *Bioorg Med Chem* 2012;20:3306–16.

25. Tewari AK, Singh VP, Yadav P, Gupta G, Singh A, Goel RK, et al. Synthesis, biological evaluation and molecular modeling study of pyrazole derivatives as selective COX-2 inhibitors and anti-inflammatory agents. *Bioorg Med Chem* 2014;56:8–15.

26. Abdellatif KRA, Abdelall EKA, Labib MB, Fadaly WAA, Zidan TH. Synthesis of novel halogenated triarylpyrazoles as selective COX-2 inhibitors: anti-inflammatory activity, histopathological profile and in-silico studies. *Bioorg Chem* 2020;105:104418.

27. Abdellah KE, Kamel GM. Synthesis of novel triazole-CeLecoxib analogues as dual cyclooxygenase-2/15-lipoxygenase inhibitors: determination of regio-specific different pyrazole cyclization by 2D NMR. *Eur J Med Chem* 2016;118:250–8.

28. Mohammed KO, Nissan YM. Synthesis, molecular docking, and biological evaluation of some novel hydrazones and pyrazole derivatives as anti-inflammatory agents. *Chem Biol Drug Des* 2014;84:473–88.

29. Tyagi R. Imidazoline and its derivatives: an overview. *J Oleo Sci* 2007;56:21–22.

30. Sampatpi P, Mujumdar P, Morisseau C, Hwang SH, Hammock B, Lurchenko V, et al. Potent, orally available, selective COX-2 inhibitors based on 2-imidazoline core. *Eur J Med Chem* 2014;84:160–72.

31. Abdellatif KRA, Fadaly WAA. New 1.2-diaryl-4-substituted-benzylidene-5-H-imidazoline derivatives: design, synthesis and biological evaluation as potential anti-inflammatory and analgesic agents. *Bioorg Chem* 2017;72:123–9.

32. Metwally NH, Mohamed MS. New imidazoline derivatives comprising a benzoate or sulfonamide moiety as anti-inflammatory and antibacterial inhibitors: design, synthesis, selective COX-2, DHFR and molecular-modeling study. *Bioorg Chem* 2020;99:103438.

33. Navidpour L, Amini M, Mirti R, Firuzi O, Tavakkoli M, Shafiee A. Synthetic approaches towards the sulfonamide substituted-1,5-dia-rylimidazole-2-thiones as selective cyclooxygenase-2 inhibitors. *J Heterocycl Chem* 2014;51:71–9.

34. Liu H, Du DM. Recent advances in the synthesis of 2-imidazolines and their applications in homogeneous catalysis. *Adv Synth Catal* 2009;351:489–519.

35. Hayashi S, Ueno N, Murase A, Nakagawa Y, Takada J. Novel acid-type cyclooxygenase-2 inhibitors: design, synthesis, and structure–activity relationship for anti-inflammatory drug. *Eur J Med Chem* 2012;50:179–95.

36. Kaur J, Bhuradjw A, Huang Z, Knaus EE. N-1 and C-3 substituted indole Schiff bases as selective COX-2 inhibitors: synthesis and biological evaluation. *Bioorg Med Chem Let* 2012;22:2154–9.

37. Bhat MA, Al-Ormar MA, Raish M, Ansari MA, Abueliz HA, Bakheit AH, et al. Indole derivatives as cyclooxygenase inhibitors: synthesis, biological evaluation and docking studies. *Molecules* 2018;23:1250.

38. Singh P, Prasher P, Dhillon P, Bharti R. Indole based peptidomimetics as anti-inflammatory and anti-hyperalgesic agents: dual inhibition of 5-LOX and COX-2 enzymes. *Eur J Med Chem* 2015;97:104–23.

39. Estevão MS, Carvalho LC, Freitas M, Gomes A, Viegas A, Manso J, et al. Indole based cyclooxygenase inhibitors: synthesis, biological evaluation, docking and NMR screening. *Eur J Med Chem* 2012;54:823–33.

40. Ju ZR, Su M, Hong J, La Kim E, Moon HR, Chung HY, et al. Design of balanced COX inhibitors based on anti-inflammatory and/or COX-2 inhibitory acidic metabolites. *Eur J Med Chem* 2019;180:86–98.

41. Vazzana I, Terranova E, Mattioli F, Sparatore F. Aromatic Schiff bases and 2,3-disubstituted-1,3-thiazolol-4-one derivatives as anti-inflammatory agents. *Arkivoc* 2004;5:364–74.

42. Sağlık BN, Osmanie D, Levent S, Çevik UA, Çavusoğlu BK, Ozkay Y, et al. Design, synthesis and biological assessment of new selective COX-2 inhibitors including methyl sulfonyl moiety. *Eur J Med Chem* 2021;209:112918.

43. Abdel-Aziz SA, Taher ES, Lan P, Assaad GF, Gomaa HAM, El-Kousii NA, et al. Design, synthesis, and biological evaluation of new...
pyrimidine-5-carbonitrile derivatives bearing 1,3-thiazole moiety as novel anti-inflammatory EGFR inhibitors with cardiac safety profile. *Bioorg Chem* 2021;111:104890.

45. Rodl CB, Vogt D, Kretschmer SB, Ihlefeld K, Barzen S, Bruggerhoff A, et al. Multi-dimensional target profiling of NAT-4 ary1-1,3-thiazole-2-amines as potent inhibitors of eicosanoid metabolism. *Eur J Med Chem* 2014;84:302–11.

46. Labib MB, Fayez AM, El-Nahass ES, Awadallah M, Halim PA. Novel tetrazole-based selective COX-2 inhibitors: design, synthesis, anti-inflammatory activity, evaluation of PGE2, TNF-α, IL-6 and histopathological study. *Bioorg Chem* 2020;104:104308.

47. Al-Hourani BJ, Sharma SK, Mane JY, Tuszynski J, Baracos V, Kniess T, et al. Synthesis and evaluation of 1,5-diaryl-substituted tetrazoles as novel selective cyclooxygenase-2 (COX-2) inhibitors. *Bioorg Med Chem Lett* 2011;21:1823–6.

48. Al-Hourani BJ, Al-Awaida W, Matalka KZ, El-Barghouthi MI, Alsoubani F, Wuest F. Structure-activity relationship of novel series of 1,5-disubstituted tetrazoles as cyclooxygenase-2 inhibitors: design, synthesis, bioassay screening and molecular docking studies. *Bioorg Med Chem Lett* 2016;26:4757–62.

49. El-Sayed NA, Nour MS, Salem MA, Araf RK. New oxadiazoles with selective-COX-2 and EGFR dual inhibition activity: design, synthesis, cytotoxicity evaluation and in silico studies. *Eur J Med Chem* 2019;183:111693.

50. Alfayomy AM, Abdel-Aziz SA, Marzouk AA, Shaykoon MSA, Narumi A, Konno H, et al. Design and synthesis of pyrimidine-5-carbonitrile hybrids as COX-2 inhibitors: anti-inflammatory activity, ulcerogenic liability, histopathological and docking studies. *Bioorg Chem* 2021;108:104555.

51. Groover J, Bhatt N, Kumar V, Patel NK, Gondalia BJ, Elizabeth Sobhia M, et al. 2,5-Diaryl-1,3,4-oxadiazoles as selective COX-2 inhibitors and anti-inflammatory agents. *RSC Adv* 2015;5:45535–44.

52. Ł. Szczykowski, Krzyżak E, Zborowska A, Zając P, Potryk K, Peręgrym K, et al. Design, synthesis and comprehensive investigations of pyrrolo[3,4-d] pyridazinedione-based 1,3,4-oxadiazole as new class of selective COX-2 inhibitors. *Int J Mol Sci* 2020;21:9623.

53. Khatri CK, Indalkar KS, Patil CR, Goyal SN, Chaturbhuj GU. Novel 2-phenyl-4,5,6,7-tetrahydro[1]benzothiophene analogues as selective COX-2 inhibitors: design, synthesis, anti-inflammatory evaluation, and molecular docking studies. *Bioorg Med Chem Lett* 2017;27:1721–6.

54. Sun JA, Wang S, Sheng GH, Lian ZM, Liu HY, Zhu HL. Synthesis of phenylpiperazine derivatives of 1,4-benzodioxan as selective COX-2 inhibitors and anti-inflammatory agents. *Bioorg Med Chem* 2016;24:5626–32.

55. Kaur A, Pathak DP, Sharma V, Wakode S. Synthesis, biological evaluation and docking study of a new series of di-substituted benzoazole derivatives as selective COX-2 inhibitors and anti-inflammatories. *Bioorg Med Chem* 2018;26:891–902.

56. Kaur A, Pathak DP, Sharma V, Narasimhan B, Sharma P, Mathur R, et al. Synthesis, biological evaluation and docking study of N-(2-(3-(4,5,6-trimethoxybenzyl)benzoazol-5-yl) benzamide derivatives as selective COX-2 inhibitor and anti-inflammatory agents. *Bioorg Chem* 2018;81:191–202.

57. Chen Z, Wang ZC, Yan XQ, Wang PF, Lu XY, Chen LW, et al. Design, synthesis, biological evaluation and molecular modeling of dihydropropylamine sulfonamide derivatives as potential COX-1/COX-2 inhibitors. *Bioorg Med Chem Lett* 2015;25:1947–51.

58. Rathore A, Rahman MU, Siddiqui AA, Ali A, Shaharyar M. Design and synthesis of benzimidazole analogs endowed with oxadiazole as selective COX-2 inhibitor. *Arch Pharm* 2014;347:923–35.

59. Iyer VB, Gurupadaya B, Koganti VS, Inturi B, Chandan RS. Design, synthesis and biological evaluation of 1,3,4-oxadiazoles as promising anti-inflammatory agents. *Med Chem Res* 2016;26:190–204.

60. Nesaragi AR, Kamble RR, Dixit S, Kodasi B, Hoolageri SR, Bayamvar PK, et al. Green synthesis of therapeutically active 1,3,4-oxadiazoles as antioxidants, selective COX-2 inhibitors and their in silico studies. *Bioorg Med Chem Lett* 2021;43:128112.

61. Abu-Allah HHM, Abdelmoez AAB, Tarazi H, El-Shorbagi AA, El-Awady R. Conjugation of 4-aminoalicylate with thiazolines afforded non-cytotoxic potent in vitro and in vivo anti-inflammatory hybrids. *Bioorg Chem* 2020;94:103378.

62. Murahari M, Mahajan V, Neeladri S, Kumar MS, Mayur YC. Ligand based design and synthesis of pyrazole based derivatives as selective COX-2 inhibitors. *Bioorg Chem* 2019;36:583–97.

63. Ibrahim TS, Salem IM, Mostafa SM, El-Sabbagh OI, ElHamisi MKM, Hegazy L, et al. Design, synthesis, and pharmacological evaluation of novel and selective COX-2 inhibitors based on bumenatide scaffold. *Bioorg Chem* 2020;100:103878.

64. Ikeda A, Funakoshi E, Araki M, Mi B, Karuo Y, Tanri A, et al. Structural modification of indomethacin toward selective inhibition of COX-2 with a significant increase in van der Waals contributions. *Bioorg Med Chem* 2019;27:1799–94.

65. Chandna N, Kumar S, Kaushik P, Kaushik D, Roy SK, Gupta GK, et al. Synthesis of novel celecoxib analogues by bioisosteric replacement of sulfonamide as potent anti-inflammatory agents and cyclooxygenase inhibitors. *Bioorg Med Chem* 2013;21:4581–90.

66. Hassan GS, Abou-Seri SM, Kamei G, Ali MM. Celecoxib analogs bearing benzofuran moiety as cyclooxygenase-2 inhibitors: design, synthesis and evaluation as potential anti-inflammatory agents. *Eur J Med Chem* 2014;76:482–93.

67. Renard JF, Lecomte F, Hubert P, de Leval X, Pirotte B. N-(3-Arylamino)pyridin-4-yl)alkanenitriles as pyridine analogs of nimesulide: cyclooxygenases inhibition, anti-inflammatory studies and insight on metabolism. *Eur J Med Chem* 2014;74:12–22.

68. Ribeiro D, Proenca C, Varela C, Janela J, Tavares da Silva EJ, Fernandes E, et al. New phenolic cinnamic acid derivatives as selective COX-2 inhibitors. Design, synthesis, biological activity and structure-activity relationships. *Bioorg Chem* 2019;91:103179.

69. Takahashi T, Miyazawa M. N-Caffeoyl serotinin as selective COX-2 inhibitor. *Bioorg Med Chem Lett* 2012;22:2494–6.

70. Rayar AM, Lagarde N, Martin F, Blanchard F, Liagre B, Ferroud C, et al. New selective cyclooxygenase-2 inhibitors from cyclo-coumarol: synthesis, characterization, biological evaluation and molecular modeling. *Eur J Med Chem* 2018;146:577–87.

71. Culenová M, Sychrová A, Hassan STS, Berchová-Bímová K, Svobodová P, Helclová A, et al. Multiple in vitro biological effects of phenolic compounds from *Morus alba* root bark. *J Ethnopharmacol* 2020;248:112296.

72. Homore VS, Kandhare AD, Kadam PP, Khedkar VM, Sarkar D, Bodhankar SL, et al. Isolates of *Alpinia officinarum* Hance as COX-2 inhibitors: evidence from anti-inflammatory, antioxidant and molecular docking studies. *Int Immunopharmacol* 2016;33:8–17.

73. Liu Y, Zhang YL, Muema FW, Kimutai F, Chen GL, Guo MQ. Phenolic compounds from *Carissa spinarum* are characterized by their antioxidant, anti-inflammatory and hepatoprotective activities. *Antioxidants* 2021;10:652.

74. Nile SH, Ko EY, Kim DH, Keum YS. Screening of ferulic acid related compounds as inhibitors of xanthine oxidase and cyclooxygenase-2 with anti-inflammatory activity. *Rev Bras Farmacogn* 2016;26:50–5.

75. Paulino M, Alvareda E, Iribarne F, Miranda P, Espinosa V, Aguilera S, et al. Toward the understanding of the molecular basis for anti-inflammatory activity, suppression of oxidative stress, and apoptosis. *J Biomol Struct Dyn* 2016;34:2643–57.

76. Dai CS, Ciccotosto GD, Cappai R, Tang S, Li D, Xie S, et al. Curcumin attenuates colistin-induced neurotoxicity in N2a cells via anti-inflammatory activity, suppression of oxidative stress, and apoptosis. *Mol Neurobiol* 2018;55:421–34.

77. Timmers MA, Guerrero-Medina JL, Esposito D, Grace MH, Paredes-Lopez O, Garcia-Saucedo PA, et al. Characterization of phenolic compounds and antioxidant and anti-inflammatory activities from Mamuyo (*Styrax ramirezii* Greenm.) Fruit. *J Agric Food Chem* 2015;63:10459–65.
Development on COX-2 inhibitors as promising anti-inflammatory agents

Bai HF, Li YP, Qin FY, Yan YM, Wang SM, Zhang HX, et al. Periplanetols A-F: phenolic compounds from Periplanta americana with potent COX-2 inhibitory activity. *Fitoterapia* 2020; 143:104589.

Hu WH, Dai DK, Zheng BZ, Duan R, Chan GK, Dong TT, et al. The binding of kaempferol-3-O-rutinoside to vascular endothelial growth factor potentiates anti-inflammatory efficiencies in lipopolysaccharide-treated mouse macrophage RAW264.7 cells. *Phytomedicine* 2021; 80:153400.

Wu X, Song M, Rakariyatham K, Zheng J, Wang M, Xu F, et al. Inhibitory effects of 4′-demethylbolutein, a metabolite of bolutein, on 12-0-tetradecanoylphorbol-13-acetate (TPA)-induced inflammation in mouse ears. *J Agric Food Chem* 2015; 63:10921–7.

Kim HH, Kim DH, Kim MH, Oh MH, Kim SR, Park KJ, et al. Flavonoid constituents in the leaves of *Myrica rubra* sieb. et zucc. with anti-inflammatory activity. *Arch Pharm Res* 2013; 36:1533–40.

Haníková Z, Hosek J, Kutlíl K, Temmlí V, Landa P, Vanek T, et al. Anti-inflammatory activity of natural gananylated flavonoids: cyclo-oxygenase and lipoxigenase inhibitory properties and proteinase analysis. *J Nat Prod* 2017; 80:999–1006.

Hosek J, Toniole A, Neuwirth O, Bolego C. Prenylated and gananylated flavonoids increase production of reactive oxygen species in mouse macrophages but inhibit the inflammatory response. *J Nat Prod* 2013; 76:1586–91.

Bai M, Yao GD, Ren Q, Li Q, Liu QB, Zhang Y, et al. Triterpenoid saponins and flavonoids from licorice residues with anti-inflammatory activity. *Int Crop Prod* 2018; 12:50–8.

Sun YW, Bao YG, Yu H, Chen QJ, Liu F, Zhai S, et al. Anti-rheumatoid arthritis effects of flavonoids from Daphne genkwa. *Int Immunopharm* 2020; 83:106364.

Chen GL, Fan MX, Wu JL, Li N, Guo MQ. Antioxidant and anti-inflammatory properties of flavonoids from lotus plummule. *Food Chem* 2019; 277:706–12.

Cheon SY, Chung KS, Jeon E, Nuggroho A, Park HJ, An HJ. Anti-inflammatory activity of Saxifragin via inhibition of NF-κB involves caspase-1 activation. *J Nat Prod* 2015; 78:1579–85.

Ma JQ, Ding J, Xiao ZH, Liu CM. Puerarin ameliorates carbon tetrachloride-induced oxidative DNA damage and inflammation in mouse kidney through ERK/Nrf2/ARE pathway. *Food Chem Toxicol* 2014; 71:264–71.

Tamayose CI, Romoff P, Toyama DO, Gaeta HH, Costa CRC, Belchon MN, et al. Non-clinical studies for evaluation of 8-C-ramnosyl apigenin purified from *Peporonia obtusifolia* against acute edema. *Int J Molec Sci* 2017; 18:19722.

Waller CP, Thaenert AE, Langat MK, Crouch NR, Mulolland DA. COX-2 inhibitory activity of homoisoflavanones and xanthones from the bulbs of the Southern African Ledebouria socialis and Ledebouria ovatifolia (Hyacinthaceae: Hyacinthoideae). *Phytochemistry* 2013; 95:284–90.

Kim AY, Shim HJ, Kim SY, Heo S, Youn HS. Differential regulation of MyD88- and TRIF-dependent signaling pathways of Toll-like receptor cardimom. *Int Immunopharm* 2020; 134:1–9.

Yin X, Wei J, Wang WW, Gao YQ, Stadler M, Kou RW, et al. New cythame diterpenoids with neurotrophic and anti-neuroinflammatory activity from the bird’s nest fungus *Cythus africanus*. *Fitoterapia* 2019; 134:201–9.

Nhiem NX, Lim HY, Kim PV, Minh CV, Thu VK, Tai BH, et al. Oleane-type terepenoid saponins from the bark of *Aralia elata* and their NF-κB inhibition and PPAR activation signal pathway. *Bioorg Med Chem Lett* 2011; 21:6143–7.

Li JC, Dai WF, Liu D, Zhang ZJ, Jiang MY, Rao KR, et al. Quinolizidine alkaloids from *Sophora alopecuroides* with anti-inflammatory and anti-tumor properties. *Bioorg Chem* 2021; 110:104781.

Feng AW, Gao W, Zhou GR, Yu R, Li N, Huang XL, et al. Berberine ameliorates COX-2 expression in rat small intestinal mucosa partially through PPARgamma pathway during acute endotoxemia. *Int Immunopharm* 2012; 12:182–8.

Kang JZ, Zhang YS, Cao X, Fan J, Li GL, Wang Q, et al. Lycorine inhibits lipopolysaccharide-induced iNOS and COX-2 up-regulation in RAW264.7 cells through suppressing P38 and STATs activation and increases the survival rate of mice after LPS challenge. *Int Immunopharm* 2012; 12:249–56.

Mohan S, Hobani YH, Shaheen E, Abou-Elhamad AS, Abdelbaleem A, Alhazmi HA, et al. Girinimbine from curry leaves promotes gastro protection against ethanol induced peptic ulcers and improves healing via regulation of anti-inflammatory and antioxidant mechanisms. *Food Funct* 2020; 11:3493–505.

Zhou K, Hu L, Liao WJ, Yin DF, Rui F. Coptisine prevented IL-beta-induced expression of inflammatory mediators in chondrocytes. *Inflammation* 2016; 39:1588–65.

Son DJ, Akiba S, Hong JT, Yun YP, Hwang SY, Park YH, et al. Piperine inhibits the activities of platelet cytosolic phospholipase A2 and thromboxane A2 synthase without affecting cyclooxygenase-1 activity: different mechanisms of action are involved in the inhibition of platelet aggregation and macrophase inflammatory response. *Nutrients* 2014; 6:3356–52.

Lin YF, Kuo CY, Wen ZH, Lin YY, Wang WH, Su JH, et al. Flexibilisiquinone, a new anti-inflammatory quinone from the cultured soft coral *Sinularia flexibilis*. *Molecules* 2013; 18:8160–7.

Choi RJ, Ngoc TM, Bae K, Cho HJ, Kim DD, Chun J, et al. Anti-inflammatory properties of anthraquinones and their relationship with the regulation of P-glycoprotein function and expression. *Eur J Pharm Sci* 2013; 48:272–81.

Ju ZR, Qin XC, Lin XP, Wang JF, Kaliyaperumal K, Tian YQ, et al. New phenyl derivatives from endophytic fungus *Botryosphaeria sp.* *SClO* Kc6 derived of mangrove plant *Kandelia candel*. *Nat Prod Res* 2016;30:192–8.

Zhang SJ, Huang YY, Li Y, Wang YH, He XJ. Anti-neuroinflammatory and anti-phenylpropanoids from Chinese olive. *Food Chem* 2019; 286:421–7.

Li YR, Fu CS, Yang WJ, Wang XL, Feng D, Wang XN, et al. Investigation of constituents from *Cinnamomum vomitorium* (L.) J. Presl and evaluation of their anti-inflammatory properties in lipopolysaccharide-stimulated RAW 264.7 macrophages. *J Ethno-pharmacol* 2018; 221:37–47.

Thi NN, Song HS, Oh EJ, Lee YG, Ko JH, Kwon JE, et al. Phenylpropanoids from *Lilium asiatic* hybrid flowers and their anti-inflammatory activities. *Appl biol chem* 2017; 60:527–33.