CASE REPORT

Hereditary Disorders of Dentin: Dentinogenesis Imperfecta Type II and Dentin Dysplasia Type II

Sandhya Shanmugam1, Kuzhanchinathan Manigandan2, Angambakkam Rajasekaran PradeepKumar3

Abstract

Dentin is a mineralized tissue in tooth, produced from odontoblasts, that differentiates from the mesenchymal cells of dental papilla. Hereditary dentin defects are broadly classified into two types, namely, dentinogenesis imperfecta (DGI – type I and II) and dentin dysplasia (DD – type I and II). DGI is an autosomal dominant hereditary disorder, and DD is a rare hereditary disturbance of dentin formation that affects both the primary and the permanent dentition. The purpose of this report was to present a case of DGI-type II and a case of DD-type II to highlight the importance of diagnosing hereditary dentin disorders.

Keywords: Dentin, Dentin discoloration, Dentin disorders, Dentin dysplasia, Dentinogenesis imperfecta.

Journal of Operative Dentistry and Endodontics (2020): 10.5005/jp-journals-10047-0091

Introduction

Dentin is a mineralized tissue forming the body of a tooth, which serves as a protective covering for the pulp and supports overlying enamel and cementum. Mature dentin is about 70% mineral, 20% organic matrix, and 10% water by weight. Dentin is the product of specialized cells called odontoblasts.1

Hereditary developmental disorders affecting dentin are rare anomalies occurring due to a genetic defect in structural or regulatory proteins in dentin. They include dentinogenesis imperfecta (DGI), dentin dysplasia (DD), regional odontodysplasia, and dentin hypocalcification.2

DGI is a hereditary autosomal dominant disorder of dentin formation characterized by opalescent blue to brownish discoloration of teeth.3 It can also be associated with osteogenesis imperfecta (OI).4 Shields et al. classified DGI into three types: DGI-I, associated with OI and resulting from mutations in collagen type I genes; DGI-II, which manifests clinically in teeth, similar to DGI-I but in the absence of OI; and DGI-III, a phenotype characterized by large pulp chambers.2 In DGI type II, both the primary and the permanent dentitions are affected, whereas in type I the primary dentition is predominantly affected.5

DGI-II is one of the most common inherited disorders and affects approximately one person in 8,000.5 DGI-II occurs due to mutations in dentin sialophosphoprotein (DSP) gene.2 The color of teeth can vary from brown to blue and is sometimes described as amber or gray.3,5 Enamel can show hypoplastic or hypocalcified defects in about one-third of the patients, and it tends to separate from the defective dentin.7

DD is an autosomal dominant disturbance of dentin formation characterized by normal enamel, atypical dentin formation, and anomalous pulp morphology.2 Witkop in 1972 classified DD into type I: Radicular DD and type II: Coronal DD.3

DD type I was illustrated as rootless teeth. It commonly affects the radicular portions of both the primary and the permanent teeth and results in teeth with short roots and mobility with an incidence of 1 in 100,000.5,6

DD type II is an unusual dentin disorder which is characterized by yellow, brown, or amber-colored translucent primary teeth along with complete pulp obliteration. The permanent teeth are usually seen with normal appearance. Roots are normal in size and shape with a “thistle tube” shaped pulp chamber with denticles. Histologically, teeth with DD are characterized by alterations in dentine (e.g. narrower dentinal tubules, reduced number of tubules, and irregular collagen organization), alterations to the dentino–enamel junction, and increased quantum of rodless enamel compared to healthy teeth.8

This article presents two cases, one with DGI type II and another with DD type II.

Case Descriptions

Case 1

A 24-year-old female patient reported to a private dental clinic with a chief complaint of gingival bleeding. There was no relevant past medical history. Patient had a previous dental history of orthodontic treatment and orthognathic surgical therapy 4 years ago. Specifically, she had a class III malocclusion and had undergone orthognathic surgical procedure (sagittal split osteotomy) for correction of the same. General examination revealed no abnormalities. On clinical examination, all teeth were yellowish...
to amber brown in color (Fig. 1). There was no clinical evidence of enamel loss and attrition. The orthopantomogram (OPG) (Fig. 2) revealed short roots with pulpal obliteration and bulbous crowns along with cervical constriction. OPG also revealed a surgical plate on the body of the mandible. The patient was provisionally diagnosed with DGI type II with generalized gingivitis.

Treatment
Appropriate periodontal treatment was done. Esthetic treatment options including bleaching and veneers were explained to the patient, and the patient was advised to come for regular recall dental visits for monitoring DGI II.

Case 2
A 10-year-old female patient came to the private dental clinic with a chief complaint of fractured front teeth. There was no relevant past medical history. Patient revealed a past dental history of trauma six months ago with complete crown fracture in upper front tooth region. General examination revealed all vital signs within normal range, with no pallor, icterus, cyanosis, clubbing, or edema. Intraoral examination revealed fracture of crown en masse in 11 and 21 as was evident clinically, and radiographic evaluation revealed root stumps in relation to 11 and 21 (Fig. 3). Other findings included clinically missing 13 and 23 (Fig. 4). Clinical examination also noticed enamel with normal color, texture, and consistency with minimal attrition. There was no pitting or softening of enamel. On pulp sensibility testing 12, 22, and mandibular anteriors responded within limits.

Intraoral periapical radiographs revealed teeth having normal enamel thickness. However, the dentin was found to be very thin. Pulp chambers were enlarged and extending into the roots; however, the root length was normal. Sudden constriction was noticed at the base of the pulp chamber along with very thin, narrow root canals revealing a typical “thistle tube appearance in mandibular anteriors as well as in maxillary and mandibular premolars” (Figs 5 to 8). Since the patient was 10 years old, root formation was not complete in both maxillary and mandibular premolars with the appearance of periapical radiolucency.

When the parents were interviewed, no relevant family history was apparent. Differential diagnoses considered were DGI type I, DD type I, DD type II, and odontodysplasia.

A provisional diagnosis of DD type II—autosomal dominant hereditary disorder—was arrived at due to the radiographic appearance of thistle–tube appearance of pulp and root canal space calcification in mandibular anterior, mandibular posterior, and maxillary posterior teeth (Figs 5 to 8). In this case, maxillary and mandibular premolars were associated with the appearance of periapical radiolucency. Also, root formation was not complete. However, no treatment was done, as the teeth were not carious or otherwise defective. It was decided to observe and wait for complete root formation.

Treatment
In this case of DD type II, no treatment was done for maxillary or mandibular posterior teeth or existing anterior teeth. However, both 11 and 21 root stumps were planned for extraction followed by replacement. Patient was advised to come for regular recall dental visits for monitoring root formation in maxillary and mandibular posterior teeth and DD type II.

Discussion
In humans, there are about 20 different types of collagen that have been expressed from 22 different collagen genes. Dentin primarily consists of type I collagen that constitutes 85% to 90% of the organic matrix. The noncollagenous proteins evident in dentin are DSPP, dentin phosphoprotein (DPP), and dentin glycoprotein (DGP). It has been proved that DSPP is an important factor for dentin formation.

DGI is one of the most commonly occurring hereditary conditions of dentin formation, wherein the dental papilla of either or both the primary and the permanent dentition can be affected. DGI II is caused by mutation in the DSPP gene (gene map locus 4q21.3), encoding DPP and DSP.

Diagnosis and differential diagnosis is very essential in differentiating the types of DGI. Both DGI-I and DGI-II have similar clinical, radiographical, and histological findings. However, patients with DGI-I can also suffer from OI, which demands a more comprehensive management. In our case, the patient was diagnosed with DGI-II, as no evidence of OI or other types of DGI was found. As DGI-II is a hereditary disease, to confirm our diagnosis, gene sequencing can be done to investigate the implicated DSPP mutation. Also, we could not identify any relevant family history.

Treatment of DGI is focused on several objectives to maintain the dental health and preserve vitality, form and size of the dentition; to provide esthetic appearance; to rehabilitate with a functional dentition; to prevent loss of vertical dimension; to avoid interfering with eruption of the remaining permanent teeth; and to allow normal growth of the facial bones and temporomandibular joint. However, in our case, the patient was only treated for her primary complaint. Esthetic treatment modalities were explained.
to the patient. We have educated the patient to report for follow-up
dental visits (every 6 months) to monitor the DGI II condition.

DD is a rare genetic disorder of dentin with unknown etiology.
Dentin dysplasia (DD) is an autosomal dominant and hereditary
disease caused by mutation of DSPP gene. DSPP mutations have
been reported to be associated with the pathogenesis of dentin
diseases without bone involvement, including DGI-II, DGI-III, and
DD-II.17 Logan et al. stated that dental papilla is responsible for
abnormal root development and that when multiple degenerative
foci within the papilla gets calcified, it can lead to reduced growth

and obliteration of pulp space.18 Wesley et al. stated that DD is
caused by an interaction of odontoblasts with ameloblasts that lead
to abnormal differentiation and/or function of the odontoblasts.19

Fig. 3A and B: (A) Fracture of crown en masse in 11 and 21; (B) Intraoral periapical radiograph reveals root stumps of 11, 21

Fig. 4: Missing teeth in relation to upper front teeth region9,10

Fig. 5: Intraoral periapical radiograph of mandibular anterior teeth shows early obliteration of root canals with thistle tube appearance

Fig. 6: Intraoral periapical radiograph of maxillary posterior teeth reveals early obliteration of root canals with thistle tube appearance

Fig. 7: Intraoral periapical radiograph of mandibular posterior teeth shows early obliteration of root canals with thistle tube appearance
DD type II is scarce. Root canal treatment followed by crowns can be recommended for teeth with pulpal necrosis in permanent teeth with DD type I. When teeth are unsalvageable, removal and reconstruction with implant supported prosthesis can be done. Patients with DD type II usually do not present with clinical defects in the permanent dentition. Routine follow-up is done to prevent periodontal disease and dental caries in order to retain the teeth as long as possible.

Conclusion

This case report emphasizes the correct diagnosis of hereditary dentin defects such as DGI type II and dentin dysplasia type II.

References

1. Nanci A. Dentin–pulp complex. Ten cate’s oral histology development, structure and function. 9th ed., Mosby Elsevier; 2017.
2. Gulati N, Juneja S, Singh A, et al. A histological continuum between dentinogenesis imperfecta and dentin dysplasia: a case report with literature review. Indian J Dent Res 2019;30(4):643–646. DOI: 10.4103/ijdj.dcr_318_18.
3. Witkop CJ. Hereditary defects in enamel and dentin. Acta Genet Stat Med 1957;7(1):236–239. DOI: 10.1159/000150974.
4. Fan F, Li N, Huang S, et al. A multidisciplinary approach to the functional and esthetic rehabilitation of dentinogenesis imperfecta type II: a clinical report. J Prosthodont 2019;122(2):95–103. DOI: 10.1016/j.prosdent.2018.10.028.
5. Shields ED, Bixler D, El-Kafrawy AM. A proposed classification for heritable human dentine defects with a description of a new entity. Arch Oral Biol 1973;18(4):543–553. DOI: 10.1016/0003-9969(73)90075-7.
6. Kim JW, Simmer JP. Hereditary dentin defects. J Dent Res 2007;86(5):392–399. DOI: 10.1177/0022034507078600502.
7. Hart PS, Hart TC. Disorders of human dentin. Cells Tissues Organs 2007;186(1):70–77. DOI: 10.1159/000102682.
8. Brenneise CV, Conway KR. Dentin dysplasia, type II: report of 2 new families and review of the literature. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1999;87(6):752–755. DOI: 10.1016/S1079-2104(99)07175-7.
9. Sivapathasundharam B. Shafer’s Textbook of Oral Pathology. 8th ed., Elsevier; 2016.
10. Gallusi G, Libonati A, Campanella V. SEM–morphology in dentinogenesis imperfecta type II: microscopic anatomy and efficacy of a dentine bonding system. Eur J Paediatr Dent 2006;7(1):9–17.
11. Myllyharju J, Kivirikko KI. Collagens and collagen-related diseases. Ann Med 2001;33(1):7–21. DOI: 10.1039/07853890109002055.
12. Linde A, Bhown M, Butler WT. Noncollagenous proteins of dentin. A re-examination of proteins from rat incisor dentin utilizing techniques to avoid artifacts. J Biol Chem 1980;255(12):5931–5942.
13. MacDougall M, Simmons D, Luan X, et al. Dentin phosphophosphoprotein and dentin sialoprotein are cleavage products expressed from a single transcript coded by a gene on human chromosome 4. J Biol Chem 1997;272(2):835–842. DOI: 10.1074/jbc.272.2.835.
14. Yamakoshi Y. Dentinogenesis and dentin sialophosphoprotein (DSPP). J Oral Biosci 2009;51(3):134–142. DOI: 10.1016/S1349-0079(09)80021-2.
15. MacDougall M, Jeffords LG, Gu TT, et al. Genetic linkage of the dentinogenesis imperfecta type III locus to chromosome 4q. J Dent Res 1999;78(6):1277–1282. DOI: 10.1177/00220345990780061301.
16. Devaraju D, Devi B, Vasudevan V, et al. Dentinogenesis imperfecta type I: A case report with literature review on nomenclature system. J Oral Maxillofac Pathol 2014;18(4):131–134. DOI: 10.4103/0973-029X.141363.
17. Acevedo AC, Santos LJS, Paula LM, et al. Phenotype characterization and DSPP mutational analysis of three Brazilian dentinogenesis
imperfecta type II families. Cells Tissues Organs 2009;189(1-4): 230–236. DOI: 10.1159/000152917.

18. Logan J, Beck H, Silverman Jr S, et al. Dentinal dysplasia. Oral Surg 1962;15(3):317–333. DOI: 10.1016/0030-4220(62)90113-5.

19. Wesley RK, Wysocki GP, Mintz MS, et al. Dentin dysplasia type I. Clinical, morphologic, and genetic studies of a case. Oral Surg 1976;41(4):516–524. DOI: 10.1016/0030-4220(76)90279-6.

20. Daryani D, Nair G, Naidu G, et al. Dentin dysplasia type II: an exclusive report of two cases in siblings. J Indian Acad Oral Med Radiol 2017;29(2):132–134. DOI: 10.4103/jiaomr.JIOMR_23_16.

21. Ravanshad S, Khayat A. Endodontic therapy on a dentition exhibiting multiple periapical radiolucencies associated with dentinal dysplasia type I. Aus Endod J 2006;32(1):40–42. DOI: 10.1111/j.1747-4477.2006.00008.x.

22. Pettiette MT, Wright JT, Trope M. Dentinogenesis imperfecta: endodontic implications. Case report. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1996;86(6):733–737. DOI: 10.1016/S1079-2104(96)90013-X.

23. Beltrame AP, Rosa MM, Noschang RA, et al. Early rehabilitation of incisors with dentinogenesis imperfecta type II - case report. J Clin Pediatr Dent 2017;41(2):112–115. DOI: 10.17796/1053-4628-41.2.112.

24. Bencharit S, Border MB, Mack CR, et al. Full-mouth rehabilitation for a patient with dentinogenesis imperfecta: a clinical report. J Oral Implantol 2014;40(5):593–600. DOI: 10.1563/AAID-JOI-D-12-00217.

25. Depprich RA, Ommerborn MA, Handschel JG, et al. Dentin dysplasia type I: a challenge for treatment with dental implants. Head Face Med 2007;22(3):31. DOI: 10.1186/1746-160X-3-31.