Variations of the high-level Balmer line spectrum of the helium-strong star σ Orionis E

M. A. Smith1,** and D. A. Bohlender2

1 Department of Physics, Catholic University of America, Washington, DC 20064, USA
e-mail: msmith@stsci.edu
2 National Research Council of Canada, Herzberg Institute of Astrophysics, 5071 W. Saanich Rd., Victoria, BC V9E 2E7, Canada

Received 30 June 2007 / Accepted 18 September 2007

ABSTRACT

Using the high-level Balmer lines and continuum, we trace the density structure of two magnetospheric disk segments of the prototypical Bp star σ Orionis E (B2p) as these segments occult portions of the star during the rotational cycle. High-resolution spectra of the Balmer lines \geqH9 and Balmer edge were obtained on seven nights in January–February 2007 at an average sampling of 0.01 cycles. We measured equivalent width variations due to the star occultations by two disk segments 0.4 cycles apart and constructed differential spectra of the migrations of the corresponding absorptions across the Balmer line profiles. We first estimated the rotational and magnetic obliquity angles. We then simulated the observed Balmer jump variation using the model atmosphere codes synspec/circus and evaluated the disk geometry and gas thermodynamics. We find that the two occultations are caused by two disk segments. The first of these transits quickly, indicating that the segment resides in a range of distances, perhaps 2.5–6 R_\star, from the star. The second consists of a more slowly moving segment situated closer to the surface and causing two semi-resolved absorbing maxima. During its transit this segment brushes across the star’s “lower” limb. Judging from the line visibility up to H23-H24 during the occultations, both disk segments have mean densities near 10^{12} cm$^{-3}$ and are opaque in the lines and continuum. They have semiheights less than $1/4$ R_\star, and their temperatures are near 10,500 K and 12,000 K, respectively. In all, the disks of Bp stars have a much more complicated geometry than has been anticipated, as evidenced by their (sometimes) non-coplanarity, decentricity, and from star to star, differences in disk height.

Key words. stars: individual: σ Orionis E – stars: magnetic fields – stars: circumstellar matter – stars: winds, outflows – stars: early-type – ultraviolet: stars

1. Introduction

Over the last several years the interest in the class of magnetic Bp stars has spurred the accumulation of datasets at many wavelengths over the stars’ rotational/magnetic cycles. These datasets support the view that the circumstellar environment is the site of a balance of physical processes that channels the wind toward the magnetic plane. If the magnetic field is strong, that is if the circumstellar magnetic energy density exceeds the wind energy density, the star’s wind is channeled into the magnetic plane where a shock is formed and the cooled shock settles to form a stable disk. The magnetic axis is typically inclined with respect to the rotational axis. Then, as different portions of the disk wobble in front of the star during the rotational cycle, they produce alternate absorption and emission components in the Hα, UV resonance lines, and low-excitation metallic lines (e.g., Bohlender et al. 1987; Shore 1987; Bolton 1994). To complicate the picture, it appears that slow infall of disk matter is responsible for producing inhomogeneous metal-poor patches or a belt along the magnetic equator (e.g., Khokhlova et al. 2000; Groote 2003). Also, although there remains a theoretical difficulty with the fractionation hypothesis for helium (Krtička et al. 2006), enough neutral helium atoms in fact seem likely to separate from the polar wind, return to the surface, and accumulate there as helium caps.

Recent theoretical refinements in the picture (e.g., Preuss et al. 2004; Townsend & Owocki 2005, hereafter TO05) suggest that the wind will settle onto low equipotential surfaces determined by the balance of radiative, gravitational, magnetic, and centrifugal forces. These surfaces reside primarily, though not exclusively, in the disk plane. Because the disk is likely to have a nonaxisymmetric density distribution, we will refer to the accumulations near the plane responsible for time-variable spectral features as disk segments. TO05 have presented a “rigidly rotating magnetospheric” ab initio model to explain physical properties of these segments for the case of σ Ori E and it can be applied to the cases of other Bp stars with arbitrary magnetic inclinations and viewed from any rotational inclinations. TO05 find that the disk plane is not precisely perpendicular to the magnetic polar axis for intermediate magnetic inclinations, including those they obtained for σ Ori E.

The spectroscopic anomalies of σ Ori E (HD 37479, B2 Vp; Lesh 1968) were first noticed by Berger (1956) and discussed further by Osmer & Peterson (1972). This star is the prototype and most studied of the helium-strong subclass of Bp stars. Walborn (1974) discovered Hα emissions in this star’s spectrum that varied on a timescale of hours. This variability was subsequently established to be associated with the rotation of a frozen-in disk, as described above. Hesser et al. (1977) determined a
period of 1.19081 days based on several nights of photometric observations distributed over a few years. Subsequently, various studies (Landstreet & Borra 1978; Bohlender et al. 1987) determined that the magnetic variations (suggestive of an approximately dipolar field with polar field strength \(B_p \approx 10 \) kG) are consistent with the photometric period. Various periods over the range 1.19081–1.19084 days have since been determined by several authors from analyses of variations of photospheric and circumstellar H\(\alpha \) line emissions (Hesser et al. 1977; Reiners et al. 2000, hereafter R00; Townsend et al. 2005, hereafter TOG05).

Groote & Hunger (1976, 1977 hereafter GH76 and GH77) discussed the variations of high-level Balmer lines based on only photographic spectra. The GH76 data indicated that two disk occultations of the star, about 0.4 cycles apart, cause high-level Balmer line absorptions visible at these times. At the same times, the intervening disk material absorbs flux just shortward of the Balmer edge. Although the analysis of line absorptions do not generally allow us to infer the extent and total volume of such a corotating structure, these absorptions do yield considerable information about its three dimensional geometrical character. Smith & Groote (2001, hereafter SG01) combined strength and shape information of many ultraviolet metallic lines obtained by the International Ultraviolet Explorer around the rotation cycle to exploit this potential. Their study provides some of the first estimates of the physical parameters of the disk gas, including disk temperature, column density, and areal coverage of the star. The limitations of this study were the low signal-to-noise ratio and the paucity of phase sampling of the archival database. What has been needed is a study that includes complete rotational phase coverage of absorption lines sensitive to electron density. To respond to this need, we have obtained complete phase coverage of the hydrogen lines from H9 (H\(\gamma \)) to the Balmer edge over the entire rotation period of \(\sigma \) Ori E. Such datasets have the potential to better elucidate areal coverage and density structure of the absorbing disk segments than has previously been possible.

2. Observations and modeling methodology

2.1. Observations

In an attempt to search for variations in high-level Balmer lines from the variable occultation of \(\sigma \) Ori E by its circumstellar disk, we obtained 114 spectra with the 1.85 m Plaskett telescope of the Dominion Astrophysical Observatory (DAO) on seven nights between 2007 January 25 and February 28. We used the f/5 Casseigrain spectrograph with an 1800 l/mm grating blazed at 5000 Å and the STF-2 CCD. Despite the sometimes mediocre seeing at the DAO, we used a narrow 1 arcsec slit rather than an available image slicer in order to maximize the resolution and to permit background sky subtraction. We note, however, that observing conditions and seeing were very good on each of our observing nights. Exposure times were 15 min and to minimize the effects of any possible flexure in the spectrograph Fe/Ar comparison arc reference spectra were obtained approximately every hour. The data were processed in a standard fashion with IRAF. The resulting spectra have a dispersion of 10 Å mm\(^{-1}\), a resolution of about 16,400, and cover the wavelength region \(\lambda \lambda 3645–3863 \). Typical signal-to-noise ratios, as measured in a flat region of the spectrum near \(\lambda 3850 \), are about 150 per pixel. Table 1 provides a journal of observation numbers (the DAO 1.8-m odometry numbers for 2007 spectra), observing times expressed as Heliocentric Julian Day (HJD) and rotational phases.

2.2. Spectral synthesis computations

To perform the analysis of the high-level Balmer line and continuum spectra, we utilized a pair of programs written by Hubeny and Lanz with both LTE (Kurucz 1993) and non-LTE models in the BSTAR2006 series (Lanz & Hubeny 2007). The first of these, synspec, is a photospheric line synthesis program that computes the line and continuum photospheric spectrum of a star (Hubeny et al. 1994). We also made use of synspec’s capability of convolving the photospheric lines with functions approximating the instrumental and rotational broadening. We computed the synthetic spectra in steps of 0.01 Å.

The goal of our analysis was to compute effects of the high-level Balmer lines and Balmer continuum due to the intervening disk during each of the two occultation events that occur during \(\sigma \) Ori E’s rotation cycle. Since it is already known from the SG01 study that the disk is cooler than the photosphere, these effects will only include absorptions. To simulate these absorptions we used the radiative transfer program \textit{circus} (Hubeny & Heap 1996). This program computes strengths of absorption or emission components of lines in a circumstellar medium from user-input quantities such as disk temperature, column density, areal coverage factor (the portion of the disk that passes in front of the star), and microturbulent velocity. \textit{Circus} combines this contribution with the synspec-computed spectrum of the photosphere. In the solution of the radiative transfer in its “LTE mode”, \textit{circus} calculates the line absorption reemission along a line of sight according to an input disk temperature, \(T_{\text{disk}} \). The physical rationale for choosing this convenient mode is that the formation of the Balmer line flux in the disk is believed to be due to recombination, and the atomic levels of the high-level lines and continuum may be plausibly assumed to be close to equilibrium with the gas kinetic temperature. As a reference point, we first considered temperatures near 12 750 K, the value SG01 found for \(T_{\text{disk}} \) from an analysis of low-excitation UV metallic lines. As detailed below, at one point in our analysis we also used the \textit{circus} “scattering” (no reemission) approximation to gauge the effects of non-LTE in the disk formation of Balmer line cores. In addition, we point out that absorptions from the corotating disk are formed at these same Doppler velocity as for the background star, i.e., no differential velocities were imposed along the line of sight. Although \textit{circus} is capable of computing the spectrum for as many as three circumstellar cloud components, our initial assessment of the equivalent width (EW) variations suggested that the absorbing disk segments have a complicated density stratification perpendicular to the disk plane. Since these details can not yet be explained by \textit{circus} models, it was sufficient to describe the absorptions in terms of a single-component cloud model in our \textit{circus} analysis.

3. Description of disk-induced absorptions

3.1. Equivalent width variations over the cycle

To survey the absorptions of the high-level Balmer series in our spectra, we chose the members H9, H12, and H14 for EW measurement. To these members we added the He\(\lambda \lambda 3819 \) line, as it showed important differences with respect to the Balmer lines. We selected the Balmer H9 line for study because of its

1 IRAF is distributed by the National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under cooperative agreement with the National Science Foundation.
Table 1. σOri E observing log including DAO 1.8-m spectrograph 2007 odometer numbers. Heliocentric Julian Dates – 2 450 000.0 and rotation phases are given in Cols. 2 and 3. The phases are derived using a formal period of 1.190 841 days and the 1976 zeropoint of HJD 2 442 778.819

Obsn. #	Obsn. HJD	φ						
069	4125.724	0.380	375	4130.696	0.655	453	4131.774	0.561
072	4125.748	0.500	375	4130.709	0.666	454	4131.785	0.569
073	4125.758	0.509	376	4130.720	0.675	456	4131.796	0.579
074	4125.769	0.517	377	4130.730	0.683	457	4131.807	0.588
076	4125.783	0.529	378	4130.741	0.693	508	4132.622	0.272
077	4125.794	0.538	380	4130.752	0.702	509	4132.632	0.281
078	4125.804	0.547	381	4130.763	0.711	510	4132.643	0.290
079	4125.814	0.556	382	4130.773	0.720	511	4132.653	0.298
080	4125.824	0.565	383	4130.784	0.729	513	4132.665	0.308
081	4125.834	0.574	385	4130.796	0.739	514	4132.675	0.317
082	4125.844	0.583	386	4130.807	0.748	515	4132.686	0.326
083	4125.854	0.592	387	4130.817	0.757	516	4132.696	0.335
084	4125.864	0.601	388	4130.828	0.766	518	4132.708	0.345
085	4125.874	0.610	389	4130.840	0.776	519	4132.719	0.354
086	4125.884	0.620	390	4130.850	0.784	520	4132.729	0.362
087	4125.894	0.630	392	4130.860	0.793	521	4132.739	0.371
088	4125.904	0.640	393	4130.870	0.802	522	4132.751	0.381
089	4125.914	0.650	394	4130.880	0.811	523	4132.762	0.390
090	4125.924	0.660	395	4130.890	0.820	524	4132.772	0.399
091	4125.934	0.670	396	4130.900	0.829	525	4132.783	0.408
092	4125.944	0.680	397	4130.910	0.838	526	4132.792	0.417
093	4125.954	0.690	398	4130.920	0.847	527	4132.801	0.426
094	4125.964	0.700	399	4130.930	0.856	528	4132.811	0.435
095	4125.974	0.710	400	4130.940	0.865	529	4132.821	0.444
096	4125.984	0.720	401	4130.950	0.874	530	4132.831	0.453
097	4125.994	0.730	402	4130.960	0.883	531	4132.841	0.462
098	4126.004	0.740	403	4130.970	0.892	532	4132.851	0.471
099	4126.014	0.750	404	4130.980	0.901	533	4132.861	0.480
100	4126.024	0.760	405	4130.990	0.910	534	4132.871	0.489

proximity to the He I line and therefore the convenience of exploiting a nearly common local continuum level that would allow reliable measurements of line core and wing variations. The H12 and H14 lines were chosen arbitrarily because they measure effects of yet higher atomic levels (such as diminished line opacity), and they are largely redundant to one another. This advantage allows one to check the consistency of the EW variations.

For our line analysis we first rectified each spectrum by identifying maximum fluxes along the spectrum and fitting consistent orthogonal polynomials through these points using the IRAF task continuum. “Raw” EWs were measured from fluxes within ±2.5 Å of the line centers; for H14 this window was relaxed to ±2.4 Å. These windows were chosen because they delimit the absorption from the disk occultation. For the initial measures these core depths were referenced to a pair of quasi-continuum points intermediate between the line to be measured and the nearest hydrogen and helium lines. One of these points falls between the closely occurring He I 3839 and H9 lines. This circumstance allowed us to check for residual errors in local continuum placement. Such errors would produce similarly low or high EW measures in both these lines at the same phase, rather than the opposing variations in these two lines caused by deviations from the mean of the surface He/H value as the star rotates. Because our analysis is based on absorption excesses of the line cores, our measurements can be tied directly to the computed absorptions in our disk models.

We noticed that our raw EWs were significantly affected by an approximately single-waved variation in the line wings that is well correlated with the variation of the He I line measures and hence instantaneous integrated He/H abundances measured by R00. We corrected for this effect by first measuring the variable fluxes in their wings at windows between ±2.5 Å and ±5 Å from line center. These fluxes are not affected by the disk. The wing EW components of the H and He I lines vary in perfect anti-correlation. We chose an arbitrary reference phase of φ = 0.35, which corresponds to the middle of an extended low plateau of the strength of helium lines (R00), signifying a near-normal He/H abundance for the region of the star visible during this phase. We then corrected the core EWs using an empirical relation derived from the slowly varying wing and core variations for the H9 and He I lines throughout the cycle (excepting the brief occultation maxima discussed below).

 noticing that this correction resulted in an equality of the two H9 line EW minima, we adopted similar relations for the H12 and H14 line EWs that forced equal EWs in their minima as well. Figure 1 exhibits the corrected variations through the rotation cycle for these four lines. Different symbols are used for different nights’ observations to best exhibit the (generally negligible) night to night differences in our measurements at those phases observed on multiple nights.
maximum is only weakly present. The existence of the brief minima was surprising because they have not been noticed in previous EW studies in the UV and optical (e.g., R00, SG01). As our *circus* analysis will also show, all of the lines are optically thick, but the H14 line is significantly less thick than H9. Additionally, one notices differences in the approach of these curves to their maxima and minima. The edges of some of these plateaus are sharp, and this is likely to be a manifestation of the line opacities changing from optically thin to thick regimes.

The primary maximum differs in morphology from the secondary feature, being more short-lived and triangular. Observation #800 coincides with the maximum EW for all the H lines. Following, Hesser et al. (1977), we assign \(\phi = 0.0 \), defining the line flux minimum with the midpoint of this observation #800. HID 2 454 159.687, as the epoch-defining flux minimum. For completeness, we note that if one adopts Hesser et al.'s 1976 epoch of HJD 2 442 778.819, uses the cycle counts of R00, and assumes that the period has been constant over this 10,000 cycle interval, a period of 1.190841 days would result. However, we hesitate to claim this formally as the star's true period (or to assign error bars) because the apparent phase difference in photometric minimum and line strength maximum of 0.02 cycles suggests that caution should be exercised in combining heterogeneous data types – that is our \(\phi = 0 \) corresponds to 0.02 for the Stromgren filter \(\alpha \) minimum phase of Hesser et al., according to the GH77 phases. If correct, this would modify the value of the period to 1.190839 days. We also point out that the most current value of a wholly photometrically derived period, 1.190832 days (Townsend 2007), is only 3\(\sigma \) from the above value, according to the errors we would perhaps simplistically assign to our own measurements.

In addition to the maxima and minima, minor brief changes in the absorption take place, such as that occurring at \(\phi = 0.80 \) in the strong lines H9 and He I \(\lambda 3819 \). More conspicuously, the flat plateaus at \(\phi = 0.7 \)–0.8 in the EW curves of these lines are not shared in the weaker H12 and H14 curves, suggesting a thinning of absorbing circumstellar material that is first betrayed in the least optically thick lines. Brief minor absorption bumps can be seen in these curves near \(\phi = 0.20 \) and 0.93. Altogether, there is substantial evidence for the existence of static, high-latitude circumstellar matter. The fact that these absorptions are present to some extent in He I argues as well that this matter is heated more than, for example, the disk segment responsible for the primary absorption. The excitation of this matter is still influenced by a largely undiluted UV radiation field from the nearby star.

We end this section by discussing whether the EW variations in Fig. 1 could be due to the passage across the disk of surface inhomogeneities, which could influence the line strengths either through changing the number of absorbers in the line or indirectly through their influence on the structure of the photosphere. To address this hypothetical problem, we stress that the wings of these lines *do* respond to such changes consistently with EW variations of the He I lines, including the \(\lambda 4713 \) line depicted by R00 (e.g. during the phase interval \(\phi = 0.65 \)–0.80) and do not deviate from the anti-correlation established from this interval at intervals when the H1 and HeI line cores undergo sudden changes. Second, the occultation maxima found in Fig. 1 develop in very short intervals, contrary to the slower variations of at least 0.15 cycles for which the He I and metal line strengths evolve (R00; Groote 2007).

A third reason for doubting that inhomogeneities influence our line wing measurement derives from results using specialized model atmospheres results appropriate to Bp stars with He and metallic patches. In particular, Krtička et al. (2007) have studied the effects of chemical inhomogeneities on the surface of the B2p star HD 37776, another B2p star with a very strong magnetic field. Both the abundance variations across the surface and the magnetic field strength are at least 10 times greater than those in \(\sigma \) Ori E. These authors find that photometric variations of this star are likely due to the effects of bound-free absorption edges produced by abundance patches of elements like silicon (the iron abundance is depleted). They show that the temperatures of superficial regions of the photosphere should be elevated by this added opacity. Because this is the general region where most line cores and bound-free edges are formed, the effect is to cause a weakening of the line cores arising from “passive” species, in this case helium and hydrogen atoms. The metals and helium variations are anti-correlated because for both \(\sigma \) Ori E and HD 37776 the metals are less depleted in belts distributed on the magnetic equator. Thus, the passages of patchy regions...
of the star’s surface, irrespective of an intervening disk, produce continuum light variations. Returning again to our spectroscopic data for σ Ori E, and utilizing the Krtička et al. simulations, the cores of hydrogen and helium lines should weaken during these phases according to our hypothesis – yet they do not. We note in particular that this fact shows that the slight enhancement of the phases according to our hypothesis is about 0.02 cycles smaller than the value determined from the mean profile. Panels a), b), and c) represent the spectral region around H9 and \(\lambda 3819 \), H13 and H14, and H15–H24. Sloped dotted lines trace the migration of subfeatures in three lines with time. The difference spectra refer to observations \#798 & 800, 801–802, 803, 805–806, and 807–808. These correspond to approximate phases of 0.99, 0.01, 0.03, 0.04, and 0.06, respectively.

3.2. Line profile variations

To represent the line profile variations of the two occultations, we compared individual or pairs of line profiles differenced against average profiles of the two minima. Specifically, for the first stretch of absorption minimum centered at \(\phi = 0.87 \) the mean was computed from observations \#305–311, and for the second minimum (\(\phi = 0.55 \)) from observations \#448–457. Figures 2 and 3 exhibit, at the bottom of each panel, the migration of absorption lobes across the profile for He I and H9, H12 and H13 line, and H15 and higher for both occultation events. At the top of each panel we depict the rectified unabsorbed mean spectrum and an example of one of the observations during the occultation. Close inspection of the difference spectra during the second occultation discloses the passage of two lobes across the profile. In our depiction the two lobes can be discerned in Fig. 3 by the flat-bottomed difference profiles of observations \#513–515 (\(\phi = 0.31–0.33 \)), followed by a second flat-bottom in the \#523–524 (\(\phi = 0.38–0.39 \)) profiles. The second lobe in the second occultation can be parameterized by a \(\sim 50 \) km s\(^{-1}\) Gaussian and is deeper than the first one. The first lobe of this occultation, as well as the lobe of the first occultation, are slightly narrower and can be fit with a \(\sim 40 \) km s\(^{-1}\) Gaussian.

From Fig. 2 we estimate that the midpoint of the first occultation, as judged from the transit across the profile of the centroid of the excess absorption lobe, occurs for observation \#802 (\(\phi = 0.018 \)), or \(\approx 0.02 \) cycles later than the observation responsible for the maximum hydrogen EWs in Fig. 1. Our error estimate given above was obtained from the \(0.02 \) cycle difference between the light minima and line profile passage events found by GH76.

The difference between times of passage of the absorption line in the profile and EW maximum for the whole line carries over to the second occultation. From Fig. 3 because of the finite signal to noise, the breadth and unequal depths of the features we cannot establish a reliable phase for the mid-point of the occultation. Our best estimate is at the beginning of observation \#524 (\(\phi = 0.390 \)), which would be some 0.37 cycles after the central lobe passage in the primary event and identified with observation \#802 (\(\phi = 0.018 \)). Thus, whereas there is a separation of 0.40 cycles between the EW maxima, the separation between the lobe passage events is somewhat smaller. Similar structure can be discerned in the semi-resolved double lobes, centered at \(\phi \approx 0.35 \) and 0.42 of the secondary occultation in the light curves of Hesser et al. (1977) and Oksala & Townsend (2007). Perhaps related to the complicated shape of the secondary EW maximum is the fact that our best estimate of the separation between this and the primary occultation, 0.40 cycles, is about 0.02 cycles smaller than the value determined from

![Fig. 2. Montage of mean and differences profiles through the primary occultation event. Bottom spectra depict difference profiles with time (downward); top spectra are the mean spectrum of the non-absorption times at \(\phi = 0.85–0.90 \) and the observation \#802 (\(\phi = 0.18 \)) for which the central absorption lobe crosses the mean profile.](image-url)
in the Hesser et al. (1977) and the nearly contemporaneous Oksala & Townsend (2007) light curves. It is not clear to us whether this minor discrepancy has any consequences on the details of the disk model. The most conservative assumption is that the opacity (column density) of the disk is unequal at opposing positions on either side of the central plane. As already suggested from resonance line data (GH97; SG01), a disk “warping” could explain in principle both the appearance of a minor lobe within the secondary occultation event as well as an apparent unequal fall off in column density at small and opposite phases from the central maximum absorption. This circumstance would likely affect optically thin (photometric) and thick (Balmer line) measurements differently.

In the curves of the primary and secondary occultations (Figs. 2c and 3c) the Balmer line series can be discerned out to H24 and H23, respectively. (We note that differences formed against the mean of all spectra except those in the two occultations have a higher signal quality and bring out these limiting lines more clearly.) We will return to these limiting line members in our later discussion of electron densities in Sect. 4. In the lower panels of Figs. 2 and 3 we have also indicated the acceleration of the absorption lobes through the profile. A cross-correlation analysis of the shifts of the line with respect to a fiducial spectrum discloses that the average acceleration of these features is 72 km s$^{-1}$ h$^{-1}$ and 50 km s$^{-1}$ h$^{-1}$ for the primary and secondary occultations, respectively. The larger accelerations of the features occurring during the primary occultation (assuming the disk is rigidly rotating) indicate that it lies further from the star than the disk segment producing the secondary occultation. As pointed out earlier, the absence of the He I line absorption during the primary occultation is likewise consistent with this segment lying further from the star.

3.2.1. Balmer line and continuum absorptions

In preparation for a circus analysis of the physical parameters of the absorbing disk segments, we have computed ratioed spectra of the means of the raw (unrectified) spectra. These exhibit the largest absorptions during the two occultations (observation #800 for the primary, and observations #516–524 ($\phi \approx 0.36$) for the secondary) with respect to the absorption minima spectra occurring at nearby phases (observations #305–311 and observations #448–457, or $\phi \approx 0.86$ and 0.56, respectively). These spectra and the ratios are depicted in the two panels of Fig. 4. These panels show the clear absorptions in both the lines and the effective Balmer continuum, which starts at $\lambda 3690–3700$. The ratios $F(\lambda 3650)/F(>\lambda 3700)$ for the occultations come to about 0.845 and 0.925. We will use circus to reproduce these ratios in the next section.

It is worth pointing out that the Balmer continuum absorption in these particular pairs of spectra are unlikely to be contaminated significantly by the effect of telluric UV absorption through different air masses. For example, in the case of the primary occultation, the observation was obtained at an hour angle (HA) of 0.49, as compared to the nearly equivalent value of a mean HA of 0.47 for the observations comprising the minimum
The spectrum exhibiting the maximum absorption during central occultation and the mean spectrum representing no disk absorption referenced in previous figures. The ratio of these spectra are depicted at the top. Panels a) and b) represent the primary and secondary occultations, respectively. In a), by “M” we denote metallic line features used in the text to set a rough disk temperature and also the weakened helium line (shown as apparent “emission”) due to chemical inhomogeneities. The Balmer jump is represented by the lower flux shortward of about λ3690.

4. Determination of disk parameters

The primary estimates we are able to make for the disk segments causing the hydrogenic absorptions come from analysis with the synspec and circus models. We adopted a solar H/He abundance in our disk models. However, since these are unlikely to be strictly correct (assuming the He/H abundance in the disk substantially reflects the values for the material at both magnetic poles), the column densities we derive should be understood to substantially reflect the values for the material at both magnetic poles. Groote (2003) gives β = 67°. However, this value is based on an analysis of the distribution of He/H on the surface. In particular, it is likely that the centroid of the He-rich patch is somewhat displaced from one of the two magnetic poles (e.g., Groote & Hunger 1997). An additional set of constraints can be placed on these angles from the shapes of the equivalent profiles of the two maxima. As already mentioned, the primary maximum in Fig. 1 has a triangular shape, and the two legs of this triangle have unequal durations. This occultation appears to be the one for which the segment passes most closely to the projected center of the star in the observer’s line of sight. At φ = 0.4 the opposing segment occults only the lowermost limb of the star during mid-occultation. We will now investigate the shapes and intensities of the occultation profiles.

We have designed and discussed a disk occultation tool to quantify the absorption of light and equivalent width curves from an optically thick disk or, alternatively, from a thick disk surrounded by a translucent periphery at greater distances from the magnetic plane (see discussion and Figs. 6, 7 in Smith et al. 2006). We found that a triangular shaped occultation profile can be reproduced if the disk has a limited radial extent (i.e., it is ring-like) and/or its height perpendicular to the magnetic plane, is small. Another signature of a ring-like structure is if the ingress/egress edges of the occultation event are sharp. This can happen only if the disk is separated from the star.

Additional considerations in evaluating the disk geometry in our model are first, that the ratio of secondary to primary line and continuum absorptions is 1.3–1.4. We will use this range as a starting guess for the ratio of the stellar areas eclipsed by the disk segments. The amounts of the absorptions in the circus computations discussed below will also translate to the individual occultation areas. This leads to a secondary constraint that the angles i and β must be near 90° and not much larger than 55°, respectively. Otherwise, the measured Balmer continuum absorption cannot be attained by an occultation that is too weak when the disk crosses the “lower” limb of the star, as seen from our vantage point. Finally, the fact that there is just a hint of an M-like reversion in the secondary occultation profile limits the value of i to at least 80° ± 5°. (However, if the two peaks result from disk warping this argument is questionable.) With the constraints we imposed above as well as TO05’s arguments, this fixes the β value as near 55° ± 5°. These values are in reasonable agreement with estimates based on different criteria by other authors.

For completeness, we find that for i ≥ 80°, a period of 1.19 days, and its vsin i of 140–162 km s⁻¹ (e.g., Bolton et al. 1986; R00), the mean radius of σ Ori E comes to 3.4–3.9 R_\odot. As

Fig. 4. The spectrum exhibiting the maximum absorption during central occultation and the mean spectrum representing no disk absorption referenced in previous figures. The ratio of these spectra are depicted at the top. Panels a) and b) represent the primary and secondary occultations, respectively. In a), by “M” we denote metallic line features used in the text to set a rough disk temperature and also the weakened helium line (shown as apparent “emission”) due to chemical inhomogeneities. The Balmer jump is represented by the lower flux shortward of about λ3690.
is by now well known (e.g., Hunger et al. 1989); these radius estimates seem low for a B2 main sequence star, but we can offer no solution to this apparent dilemma.

4.2. Disk dimensions

The dimensions of the disk segment responsible for the primary occultation can also be inferred by high-excitation studies, which provide estimates of $5-6.4 \, R_\star$ for the outer disk dimension (Groote & Hunger 1982; Short & Bolton 1994; TO05), the accelerations and durations of the absorption lobes in Figs. 2 and 3, and the areal coverage arguments of the previous section. Our simulations also show that for the primary occultation the outer radius must be at least $4 \, R_\star$, in order for the disk to have a finite thickness in the radial extent. Table 2 gives the dimensions of the absorbing disk segments in units of stellar radii as well as the mean densities and temperatures of our solutions. The radial thickness refers to the quantity $R_{\text{outer}} - R_{\text{inner}}$. We note that the derived radius is consistent with that given from the durations of the lobe apparitions found in Figs. 2 and 3. The errors for these parameters are about $\pm 20\%$. For the primary occultation the results pertain to the rise time phase for the first half of the event, which lasts 0.04 cycles. The shorter span for the decline (0.03 cycles) of the second half can best be simulated by decreasing the semihelium from $0.3 \, R_\star$ to $0.2 \, R_\star$. These parameters also preserve the triangular shape of this primary occultation profile.

The challenge for deriving the dimensions for the disk segment causing the secondary absorption maximum is that they should be large enough to ensure enough areal coverage of the star and to produce the observed absorption in the Balmer lines and the Balmer jump. In general, lower values of β and R_{outer} and larger h values insure this. A value of $R_{\text{inner}} > 2 \, R_\star$ is impossible to reconcile with the observed amplitude and shape of the occultation profile with phase in our models with the assumed β and i angles. However, if one adopts the view that the extended lifetime of the occultation is due to seeing two different radial zones of the same segment along a line of sight (i.e., the disk is warped), one can relax the distance R_{outer} up to $4 \, R_\star$, (but no higher). Since this constraint is consistent with the radial size of the disk suggested by the two acceleration rates determined in Sect. 3.2, we cannot rule this out. We have added this possibility in Table 2 by showing the admissible ranges of the inner and outer radii, parameter to the assumption of disk warping, i.e. $2 \, R_\star \leq R_{\text{outer}}$. We also point out that in the warping interpretation, R_{inner} can move in to $1.2 \, R_\star$, so the disk extends almost to the star’s surface.

According to our picture, at the middle of the first occultation at $\phi = 0$ the whole of the disk segment is silhouetted against the star. For this portion of the disk we may estimate the mass from the dimensions of the segment (area and column density) and its density. This gives a mass of about $5 \times 10^{-11} \, M_\odot$. If we take half the mass loss rate as the rate of resupply of this hemispheric disk segment ($1.2 \times 10^{-9} \, M_\odot \, yr^{-1}$; Krtička et al. 2006), the mass loss will replenish this disk segment in about 2 weeks. Because a small fraction of the wind emanating from close to the magnetic poles will avoid being focused into the disk and, further, we may not see the full disk segment in azimuth around the hemisphere, the actual lifetime of the particles in the disk will be somewhat longer\footnote{The fact that our column densities are averaged over the disk height will cause the total density and hence mass in our model to be underestimated. We may reasonably expect the longevity of particles in the disk to be a few months.}. Note that the transit of a disk across the star lasts only $<10^{-3}$ of this time. Therefore, leakage of disk particles either into the star or through its outer edge would produce a tapered absorption wing that is too small to be visible in our data.

We conclude this discussion by calling attention to the EW minima within the general model for the disk, which occurred on a total of three of the seven nights of our observing run on this star. One explanation for these minima is that a second translucent component exists layered over the more confined opaque disk. In this explanation, we would be looking through a light “haze” (with about 1% of the column density) through most viewing aspects. However, little if any tail is observed in the curves of Fig. 1. (This fact underscores our finding above that the density contrast of the disk proper relative to circumstellar matter at moderate or high magnetic latitudes is rather high.) A second possible way to explain the EW minima is that they are “reflexes” of small incipient emissions that may still be detectable in the high level lines. Indeed, FEROS observations of the Hα line at these phases (Groote 2007) exhibit strong emissions and an elevation of the line core at these phases. In this event there would be no need of a pervasive low-absorption component.

4.3. Thermodynamic parameters of the disk segments

The Balmer absorption spectra of Fig. 4 provide sufficient information to estimate the temperature, electron density and column density of the intervening disk segments. To make these estimates, we must assess the importance of errors in various factors used in these calculations. First, and importantly, the assumed areal coverages depend strongly on the geometrical angles derived above. Despite our agreement with earlier authors, errors in our estimates of these parameters propagate to the areas in complex ways and should be considered the largest source of our uncertainty. Second, it turns out that the disk microturbulence, ξ, is not an important factor. We find almost identical solutions for fitting excess Balmer line and continuum absorptions for values of ξ in the range $0-20 \, \text{km} \, \text{s}^{-1}$. Third, we have used non-LTE model atmospheres computed from the BSTAR2006...
grid (Lanz & Hubeny 2007) and found that the photospheric Balmer jumps for LTE and non-LTE model atmospheres differ negligibly given the adopted T_{eff} for σ Ori E. This can be inferred also by examining Fig. 6 of Lanz & Hubeny. These authors find that changes in abundances have little effect on photospheric temperatures in the range τ_e = 0.01–0.003, where much of the Balmer line cores is formed.

SG01 pointed out that the presence of certain low resolution line aggregates in the far-UV spectra suggest the presence of a cool component to the disk of σ Ori E having a temperature of about 12 750 K ± 750 K\(^{1}\). In this study we discovered a weak but important diagnostic in the excess absorption spectrum of the secondary occultation (Fig. 4b), namely weak absorption blends at \(\lambda3760\) and \(\lambda3855\)–60 arising primarily from transitions of once ionized light and iron-group metals. Our \(\textit{circus}\) show that these lines appear for T_{disk} ≤ 12 000 K over disk column densities of interest.

Our primary modeling diagnostic for column density and areal coverage is the excess Balmer jump noted in Fig. 4. While potentially useful, the Balmer lines themselves were found to be enhanced primarily by non-LTE effects. Thus, whenever the excess absorption below \(\lambda3647\) could be fit, the disk Balmer line spectrum is far too strong. We will therefore confine ourselves to fitting the Balmer jump in the following discussion.

The electron density \(N_e\) of the disk medium can be determined by the presence of the highest-level Balmer lines in the occultation spectra (Fig. 4). One might first draw an analogy to the prominence of these lines in the spectra of B supergiants. For low density atmospheres, the lines are visible because the weak Stark wings cause less blending. This motivated us to inquire whether the Inglis-Teller (1939) criterion might apply in this instance. This condition gives as an estimator that the last visible line of an hydrogenic spectrum scales with the electron density as \(N_e^{-7.5}\). By comparing the highest visible Balmer lines in the spectra of early-B\(3\) stars (e.g., Bagnulo et al. 2006) and appealing to model atmospheres for stars of these temperatures and gravities (e.g., Crowther & Lennon 2006), we found that the visibility of H24 and H23 in occultation spectra suggest \(N_e\) values of 1 \(\times\) 10\(^{12}\) and 2 \(\times\) 10\(^{12}\) cm\(^{-3}\), respectively. However, this argument may not be precise as our spectra show that the strengthening of these lines occurs mainly in the line cores. Our modeling of these absorptions suggests that what is important in determining the visibility of the last Balmer line is the column density of high-level hydrogenic atoms producing the absorption. In particular, we find that through the Saha equation \(N_e\) is largely determined by fixing the column density at which the optical thickness of a high-level line is \(\approx 1\). For temperatures of interest (10 000–14 000 K) the density corresponding to the semi-visibility of H23–H24 is also \(N_e\) = 1 \(\times\) 10\(^{12}\) cm\(^{-2}\). We found that the fitting of the Balmer continuum absorption is insensitive to the value of \(N_e\). Therefore, we adopt this density for both disk segments in our \(\textit{circus}\) analysis of the disk segment parameters.

We adopted the densities from the above arguments to determine disk temperatures, column densities and fractional areal coverage factors needed from the Balmer jump found below \(\lambda3700\) in Fig. 4. To add to these constraints, we also invoked the condition that the areal coverage ratio should be 1.3–1.4. However, we modified this by determining that a correction of about 10% for limb darkening (assuming a coefficient \(\mu = 0.6\)) is necessary to account for the transit of the disk segments across noncentral regions of the star. This consideration brings us to a ratio of 1.5 for the fractional areas. This condition is met by the entries in Table 2. Our models established quickly that the hydrogen column density should be near 1 \(\times\) 10\(^{24}\) cm\(^{-2}\). (However, the column lengths are not determined well enough to compare the radial distances of the two disk segments.) This condition derives from the broad opacity plateau at \(\approx 1 \times 10^{-25}\) cm\(^{-2}\) in this wavelength region for the relevant temperatures. For substantially larger column densities the disk plasma becomes optically thick in the continuum, and the Balmer jump it forms begins to decrease. For smaller column densities one runs quickly into unrealistically large fractional areal coverages and the Balmer jump decreases owing to optical thinness of the Balmer continuum. Given these considerations, we believe that the column densities we found, which are coincidentally the same for the disk segments causing the two occultations, are accurate to within a factor of two. The fractional coverages we infer depend on this condition combined with the absorption ratio of 1.3–1.4 derived above from the two occultations.

Our estimated column density agrees well with the derived values of the electron density, 10\(^{12}\) cm\(^{-3}\), the inferred radial extent of the disk (2.5–3 R,) for the segment causing the primary maximum and within a factor of two of that for the segment producing the secondary. Note that SG01 found a column density of 3 \(\times\) 10\(^{23}\) cm\(^{-2}\) from the strengths of absorption of Fe aggregates and low excitation light-metal lines in the UV. When account is taken that SG01 assumed for simplicity a full occultation of the stellar disk, their column density is virtually the same as the value we derived from the assumed density and the values given in Table 2, 3–7 \(\times\) 10\(^{23}\) cm\(^{-2}\). Our solution, assuming \(T_{\text{continuum}}\approx 2\) and disk homogeneity, likewise agrees perhaps fortuitously well with the peak value \(T_{\text{continuum}}\approx 1.6\) determined by TOG05 for the optical thickness viewed along the central magnetic plane. The latter determination was made for a decelerated dipole that probably most accurately reflects the magnetic geometry.

Our homogeneous disk solution overlooks the evidence that the segment producing the secondary occultation occurs in two semi-resolved stages. As already mentioned, one interpretation of this is that the a warping occurs in the inner disk, as suggested by previous studies. In any case, this semi-resolved structure of the occultation is noticeable in light curves at several wavelengths as well. It may be that what observers identify as “warping” is in fact due to a departure from strict coplanarity predicted for extensive Bp disks for which the magnetic \(\beta\) obliquity has an intermediate value (TO05).

Returning to the Balmer lines, we were able to evaluate departures from LTE in the line source functions by comparing the column densities needed to fit the Balmer jump with those in the lines. As already stipulated, we assumed that the Balmer continuum flux is formed in the disk in near LTE. By comparing the column densities needed to fit the lines to the Balmer continua, we found for both occultations the same approximate ratios of source to Planck functions: \(S/B = 0.006\) for H9 and \(S/B = 0.1\) for H20.

Finally, the temperatures for the two disk segments are consistent with the radiative temperatures one would expect for radiatively excited matter close to the star. There is no evidence in these disk segments in particular for the heating responsible for the presence of the variable N V resonance lines (SG01).
5. Summary and conclusions

We have used high-level Balmer absorption data finely sampled around the rotation cycle to show that the distribution of plasma in the magnetosphere of \(\sigma \) Ori E is more complicated than previously believed. Most especially, the secondary occultation is comprised of two semi-resolved events. In addition, there seem to be at least two brief appearances of absorbing matter well beyond the disk plane. The disk plane is dominated by two segments which occult portions of the star some 0.4 cycles apart. We have no direct information from absorption profiles alone on the distribution of matter at other azimuths in the plane and so look forward to future analyses based on the \(\text{H} \alpha \) and/or \(\text{H} \beta \) emissions over the cycle.

The occulting disk segments are sections of a ring which occult the star as the frozen disk corotates around the star. The segment causing the primary occultation lies further from the star (between limits of \(\approx 2.5 \, R_* \) and \(6 \, R_* \)) than the opposing segment. There are at least three arguments that point to the disk segments lying at different orbital radii. First, gas in the segment causing the primary occultation has a lower temperatures (10,500 K, compared to 12,000 K). This can be inferred first from the lack of an enhanced He I feature and also from the absence of weak absorptions of metallic-line blends referred to in Sect. 4.3. Second, the acceleration of spectral migrating components across the line profile is higher for this segment. Third, our occultation analysis program indicates that one cannot reconcile the radii of the two segments even if one attributes the broad secondary absorption maximum as being due to viewing two occultations of a single warped disk segment.

Perpendicular to the magnetic disk, the semiheights of the two segments are some \(0.3-0.45 \, R_* \). It is important to stress that the disk of \(\sigma \) Ori E has a smaller semiheight than disks for other disk-harboring Bp stars that we have analyzed with similar modeling techniques (e.g., SG01; Smith et al. 2006). It is tempting to speculate that a disk should be more compressed toward the plane due to the pressure provided by a large magnetic field (e.g., Babel & Montmerle 1997). However, this cannot be the full story because the most relevant quantity, the ratio \("p" \) of magnetic to wind energies densities is actually larger for 36 Lyn than for \(\sigma \) Ori E and yet the disk of the former has a somewhat larger height (Smith et al. 2006). Might other considerations, such as the larger radial extent of the disk (e.g. in the case of 36 Lyn), have a bearing on this question?

In addition to these dimensional properties, we find that a phase discrepancy of \(+0.018 \) cycles exists between the phase at which the central absorption transits the center of the hydrogen line and the phase of EW maximum. This agrees with a similar phase difference found by GH77 and calls into definition of the star’s period when determined from different observation modes. The secondary occultation is distinguished by the passage of two weak lobes, the phases of which are consistent with the semi-resolved structure of the light curves in the literature. The interpretation of this structure is not clear, but it may be related to a disk “warping” or a corrugation of the disk plane predicted in the TO05 models.

When we view the disk edge-on through the magnetic plane, the Balmer line absorptions are opaque, and thus the absorptions of the high-level members of this series increase. For H9 the optical depth is about 100, while it is \(\approx 10 \) for H20, and \(\approx 2 \) at the Balmer edge. As the disk ingresses and egresses there is an absence of an absorption tail in the equivalent width curves. This confirms the theoretical expectation (e.g., TO05) that the density scale height is very small compared to the stellar radius. This implies in turn that our homogeneous slab models of the disk and the total mass estimate of about \(1 \times 10^{-10} \, M_\odot \) are only rough approximations.

How would hypothetical data of indefinitely high quality (signal-to-noise, spectral resolution, and cadence) improve on our analysis of the disk of \(\sigma \) Ori E? We can think of the following applications of enhanced quality data:

One improvement would be in the mapping of vertical density distribution and indeed the separation of the two density maxima associated with the secondary occultation. This would result from tracing eddies of the absorption subfeatures as they migrate across the line profiles. An improvement in our understanding of the vertical stratification should indirectly improve our understanding of whether the disk is warped and the inner edge of the secondary occultation-causing segment extends almost to the star or not. It will also clarify the cause of the phase delays that both we and GH76 have found among various hydrogen lines and with respect to the continuum. A resolution of this issue would allow an improved determination of ephemerides from flux curves derived from different diagnostics, thereby leading to a definitive determination of the period and perhaps its first derivative.

Second, the changes in the highest-level lines detected during the ingress and egress of the occultations can be used in principle to further map the vertical density distribution of the disk segments because of the different optical depth regimes in which the various lines are formed.

Third, highly accurate difference profiles should allow one to search for asymmetric absorption features in the EW curves that could indicate the rate at which disk particles leak from the disk either through the inner or outer edge.

Fourth, increased data quality improvements (assuming a stable spectrograph and atmospheric transmission) can lead to the observation of subtle changes in disk structure. We suggest that these might occur on timescales of one to a few months or longer. Finding such changes could allow one ultimately to correlate them with the expected “break out” of disk matter through the outer edge (ud-Doula et al. 2006), possibly associated with X-ray flares from this star (Groote & Schmitt 2004; Sanz-Forcada et al. 2004).

Acknowledgements. The authors are indebted to Drs. Detlef Groote and Rich Townsend for key discussions on phase discrepancies and surface inhomogeneities that improved the quality of this work. D.A.B. also thanks Dr. Dmitry Monin for conducting the critical primary occultation phase observations of \(\sigma \) Ori E on the final night of the observing run.

References

Babel, J., & Montmerle, T. 1997, A&A, 323, 121
Bagnulo, S., Cabanac, R., Jehin, E., et al. 2006, The UVES Paranal Observatory Project, http://www.sc.eso.org/santiagouvespopfield_stars_pton.html
Berger, J. 1956, Contr. Inst. Ap. Paris, Ser. A, 217
Bohlender, D. A., Brown, D. N., Landstreet, J. D., et al. 1987, ApJ, 323, 325
Bolton, C. T., Fullerton, A. W., Bohlender, D. A., et al. 1986. The Physics of Be Stars, ed. A. Slettebak, & T. P. Snow (Cambridge: Cambridge Univ. Press), 82
Bolton, C. T. 1994, Ap. & Sp. Sci., 221, 95
Crowther, P. A., & Lennon, D. J. 2006, A&A, 446, 279
Groote, D. 2003, Magnetic Fields in O, B, and A Stars, ed. L. Balona, et al., ASP Conf. Ser., 205, 243
Groote, D. 2007, priv. commun.
Groote, D., & Hunger, K. 1976, A&A, 52, 303 (GH76)
Groote, D., & Hunger, K. 1977, A&A, 56, 129 (GH77)
Groote, D., & Hunger, K. 1982, A&A, 116, 64
Groote, D., & Hunger, K. 1997, A&A, 319, 250
Groote, D., & Schmitt, J. H. 2004, A&A, 418, 235
Hesser, J. E., Moreno, H., & Ugarie, P. 1977, ApJ, 210, L31
