Holographic energy loss in an anisotropic strong coupled plasma

Qi Zhou1* and Ben-Wei Zhang1,2

1Key Laboratory of Quark \\& Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079, China
2Guangdong Provincial Key Laboratory of Nuclear Science, Institute of Quantum Matter, South China Normal University, Guangzhou 510006, China

(Dated: November 29, 2022)

We study the energy loss of a quark moving in the strongly coupled $\mathcal{N} = 4$ supersymmetric Yang-Mills (SYM) plasma under the influence of spatial anisotropy. The heavy quark drag force, the diffusion coefficient and the jet quenching parameter are calculated within the Einstein-Maxwell-dilaton model, in which anisotropic background is specified by an arbitrary dynamical exponent A. It is shown that with anisotropic factor A increasing, the drag force and the jet quenching parameter go up, while the diffusion coefficient goes down. We find that the energy loss becomes larger when the quark moving perpendicular to anisotropy direction in transverse plane. The enhancement of drag forces for a fast moving heavy quark as well as jet quenching parameters near critical temperature T_c is observed, which presents one of typical features of QCD phase transition.

PACS numbers:

I. INTRODUCTION

The heavy ion collisions (HICs) at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC) created a strongly-coupled Quark Gluon Plasma (QGP) [1–3]. This provides a novel window to study the physics of strongly coupled Quantum Chromodynamics (QCD). Since the properties of a strongly coupled system cannot be reliably calculated directly by perturbative techniques, we have to resort to some nonperturbative approaches such as lattice QCD [4], AdS/CFT duality [5–8] to conquer the challenges.

The AdS/CFT correspondence, initially proposed by Maldacena in 1997 [5], provides a conjecture between a strongly coupled $\mathcal{N} = 4$ supersymmetric Yang-Mills (SYM) theory and a classical supergravity in the asymptotic AdS$_5$ background in the limit of large t’Hooft coupling $\lambda \equiv g^2 N_c$. Following efforts of pioneers, the duality is introduced to handle problems in the strongly coupled QCD scenario [6–8]. Although the precise gravity dual of QCD is unknown, the SYM and QCD may share same qualitative features in the strongly coupled regime at finite temperature, which means one could capture physics of strong coupled QCD by deformed AdS$_5$ [9–11]. One of the significant achievements is the calculation of the ratio of shear viscosity over to entropy density of the QGP, which has been shown to be $1/4\pi$, a simple universal value in gravity side [12]. In weak coupling gravity side, plenty of real time dynamical quantities were computed within top-down and bottom up holographic QCD models, such as hydrodynamic transport coefficients [13–19], energy loss of energetic parton quenching through the QGP [20–28], the thermal photon and di-lepton production rates [29–31], elliptic flow [32–36] and so on [37, 38].

With the gauge theory and gravity duality, the anisotropic geometries have been investigated to understand the properties of the QGP for a long time [39–48]. It should be noticed that only the holographic QCD models with anisotropy succeeded in attempting to reproduce energy dependence of the total multiplicity of experiments in HICs [49–52]. Theoretically, it is also very interesting to study spatial anisotropic systems in deformed $\mathcal{N} = 4$ SYM theory. The neutral anisotropic black brane solution at zero temperature was found originally [40]. Soon nonzero temperature was constructed from type-IIB supergravity by Mateos and Trancane [41, 42]. The gravity solution they constructed is firmly embedded in type IIB superstring theory and dual to a topologically deformed SYM theory, where the topological deformation injects anisotropy into the theory. Although the sources of anisotropy in such models may be different from the hot and dense QCD matter created in the RHIC and the LHC, we expect this kind of models to capture some intrinsic features of the QGP [53–58].

Most of the earlier holographic efforts on anisotropic systems focus on top-down scale-invariant systems and non-conformal charged systems where the anisotropy is introduced by a magnetic field. Recently, the authors of [59, 60] proposed a new bottom-up Einstein-Maxwell-dilaton (EMD) model, where the isotropy is broken by introducing a source at a spatial direction in metric. It is illuminating to take an investigation on the energy loss of an energetic parton within this neutral anisotropic bottom-up system. Besides, since the EMD model is designed to mimic the QCD deconfinement phase transition, it is also of great interest to utilize this anisotropic EMD model to study the propagation of a quark around critical temperature T_c. Much attention having been attracted by recent BES program in HICs, we hope our work could shed light on studying the real time dynamical properties around critical point.

This paper is organized as follows. In Sec. II, we briefly
introduce the EMD model with the spatial anisotropic background [60]. In Sec. III we derive the drag force of heavy quark energy loss when passing through the QGP with the classic trailing string model. In Sec. IV we compute non-relativistic diffusion parameters by using Einstein relation together with the results of Sec. III. And the numerical results of jet quenching parameters are discussed in Sec. V. In the end we present a brief summary in Sec. VI.

II. THE EMD MODEL

The EMD system with spatial anisotropy has been studied by the author of [59, 60]. In this section, we briefly review this spatial anisotropic holographic model starting from the Einstein-dilaton-two-Maxwell action,

\[S = \int \frac{d^5 x}{16\pi G_5} \sqrt{-g} \left[R - \frac{f_1(\phi)}{4} F_{(1)}^2 - \frac{f_2(\phi)}{4} F_{(2)}^2 - \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - V(\phi) \right] \]

(1)

where \(F_{(1)} \) and \(F_{(2)} \) are the field strength tensors of the two U(1) gauge fields, \(\phi \) is the dilaton field and \(V(\phi) \) denotes the dilaton potential. \(f_1(\phi), f_2(\phi) \) are the gauge kinetic functions, representing the coupling with the two U(1) gauge fields respectively.

For holographic description of the hot and dense anisotropic QGP, the metric ansatz is given by

\[ds^2 = \frac{L^2 b(z)}{z^2} \left[-g(z) dt^2 + dx^2 + z^2 \left(dy_1^2 + dy_2^2 \right) + \frac{dz^2}{g(z)} \right] \]

(2)

where \(L \) gives the AdS-radius, \(b(z) \) denotes the warp factor, \(g(z) \) stands for the blackening function. \(A \) is the parameter of anisotropy and a slight anisotropy \(A = (1.01 - 1.04) \) is taken in our calculation [60, 61]. Since there is rotational invariance in the \(y_1y_2 \)-direction, the anisotropic direction is considered to be \(x \)-direction [62]. The warp-factor is chosen from light quark system and take the form \(b(z) = e^{-2a\log(bz^2+1)+\sqrt{2}\phi(z)} \) in the string frame. In the following calculations we set the AdS radius \(L \) to be one for convenience.

The solution for the blackening function may be obtained in

\[g(z) = 1 - \frac{\int_0^z (1 + b\xi^2)^{3a} \xi^{1+\frac{\phi}{2}} d\xi}{\frac{2\mu^2 c}{L^2 (1 - e^{c\xi^2})^2} \int_0^z e^{c\xi^2} (1 + b\xi^2)^{3a} \xi^{1+\frac{\phi}{2}} d\xi} \times \left[1 - \frac{\int_0^z (1 + b\xi^2)^{3a} \xi^{1+\frac{\phi}{2}} d\xi}{\int_0^{z_h} (1 + b\xi^2)^{3a} \xi^{1+\frac{\phi}{2}} d\xi} \right] \]

Then the temperature is

\[T = \frac{|g'(z)|}{4\pi} |_{z=z_h} \]

\[= \frac{1}{4\pi} \left[\frac{(1 + b\xi^2)^{3a} \xi^{1+\frac{\phi}{2}}}{\int_0^{z_h} (1 + b\xi^2)^{3a} \xi^{1+\frac{\phi}{2}} d\xi} \right] \left[1 - \frac{2\mu^2 c e^{2cz_h}}{L^2 (1 - e^{cz_h})^2} \right] \]

\[\times \left[1 - e^{-cz_h} \frac{\int_0^{z_h} e^{c\xi^2} (1 + b\xi^2)^{3a} \xi^{1+\frac{\phi}{2}} d\xi}{\int_0^{z_h} (1 + b\xi^2)^{3a} \xi^{1+\frac{\phi}{2}} d\xi} \right] \]

(4)

where \(z_h \) denotes the location of horizon.

And the dilaton field \(\phi(z) \) reads

\[\phi(z) = \int_0^z d\xi \times 2\sqrt{A - 1 + [2(A - 1) + 9aA^2] b\xi^2 + K} \]

(5)

\[\frac{A - 1 + 3a(1 + 2a)A^2}{(1 + b\xi^2)A\xi} \]

where \(K = \frac{A - 1 + 3a(1 + 2a)A^2}{(1 + b\xi^2)A\xi} \).

There are no divergences in the isotropic case \(A = 1 \) for the dilaton field, but in the anisotropic case the dilaton field has a logarithmic divergence with \(\phi(z) \approx \frac{2\sqrt{A - 1}}{A} \log \left(\frac{\xi}{\xi_0} \right) \). It is proposed in [60, 61] that a sufficiently small boundary condition point \(z_0 \) should reproduce the proper behavior of the scalar field. In this paper we take \(a = 4.046, b = 0.01613, c = 0.227 \) to be compatible with results in the isotropic case [63], where a first-order Hawking-Page-like phase transition happen at critical temperature \(T_c = 157.8 \text{ MeV} \).

III. DRAG FORCE

In small momentum transfer limit, the multiple scattering of heavy quarks with thermal partons in the QGP can be treated as Brownian motion [64–66], which can be described by the Langevin equation as,

\[\frac{dp}{dt} = -\eta dp + f_{\text{drive}}. \]

(7)

When the heavy quark moving with a constant velocity \(v \), the driving force \(f_{\text{drive}} \) is equal to the drag force \(f_{\text{drag}} = \eta dp \).

In gauge theory side, the heavy quark suffers a drag force and consequently loses its energy while traversing through the strongly coupled plasma. In gravity side, this process could be modeled by a trailing string [22, 23], and the drag force \(f_{\text{SYM}} \) in isotropic SYM plasma with zero chemical potential is then given by

\[f_{\text{SYM}} = -\frac{\pi T^2}{\sqrt{1 - v^2}} \left(\frac{v}{2} - \sqrt{1 - v^2} \right), \]

(8)

where \(\sqrt{\lambda} = \frac{L^2}{\pi} = \sqrt{g_{YM} N_c} \). The energy loss of the heavy quark can be understood as the energy flow from
the endpoint along the string towards the horizon of the world-sheet.

We follow the argument in [22, 23] to analyze the energy loss of a heavy quark in the anisotropic background. The drag forces are calculated near the critical temperature T_c, and the string dynamics is captured by the Nambu-Goto string world-sheet action

$$S = -\frac{1}{2\pi\alpha'} \int d\tau d\sigma \sqrt{-\det g_{\alpha\beta}},$$

(9)

$$g_{\alpha\beta} = \frac{\partial X^\mu}{\partial \sigma^\alpha} \frac{\partial X^\nu}{\partial \sigma^\beta},$$

(10)

where $g_{\alpha\beta}$ is induced metric, and $g_{\mu\nu}$ and X_μ are the brane metric and target space coordinates.

The trailing string corresponding to a quark moving on the boundary along the chosen direction $x_p(x_p = x, y_1, y_2)$ with a constant velocity v has the usual parametrization

$$t = \tau, x_p = vt + \xi(z), z = \tau.$$

(11)

Plugging static gauge Eq. (11) into the metric Eq. (2), we have

$$ds^2 = g_{tt} dt^2 + g_{xx} dx^2 + g_{zz} dz^2,$$

(12)

$$g_{tt} = -L^2 b(z) g(z),$$

(13)

$$g_{xx} = \frac{L^2 b(z)}{z^2 g(z)} (x_p = x),$$

(14)

$$g_{xx} = \frac{L^2 b(z)}{z^2 g(z)},$$

(15)

$$g_{zz} = \frac{L^2 b(z)}{z^2 g(z)}.$$

(16)

The Lagrangian density can be obtained from the Nambu-Goto action as

$$\mathcal{L} = \sqrt{-g_{tt} g_{zz} - g_{zz} g_{xx} v^2 - g_{tt} g_{xx} v^2}.$$

(17)

The Lagrangian density does not depend on ξ from Eq. (17), which implies that the canonical momentum is conserved,

$$\Pi_\xi = \frac{\partial \mathcal{L}}{\partial \xi'} = \frac{-g_{tt} g_{xx} \xi'}{\sqrt{-g_{tt} g_{zz} - g_{zz} g_{xx} v^2 - g_{tt} g_{xx} v^2}}.$$

(18)

Then one can get

$$\xi^2 = \frac{-g_{zz}(g_{tt} + g_{xx} v^2) \Pi_\xi^2}{g_{tt} g_{xx}(g_{tt} g_{xx} + \Pi_\xi^2)}.$$

(19)

Both the numerator and the denominator must change sign at the same location z_c from Eq. (19). The critical point z_c can be written as

$$g_{tt}(z_c) = -g_{xx}(z_c) v^2,$$

(20)

and

$$\Pi_\xi^2 = -g_{tt}(z_c) g_{xx}(z_c).$$

(21)

Finally, we obtain the drag force

$$f = -\frac{1}{2\pi\alpha'} \Pi_\xi = -\frac{1}{2\pi\alpha'} g_{xx}(z_c) v.$$

(22)

There are two different drag forces, $f^{v||A}$ and $f^{v\perp A}$, for the anisotropy in background metric in Eq. (2). To be specific, $f^{v||A}$ stands for the drag force in parallel with anisotropy direction, when the jet parton moving along anisotropy direction. And $f^{v\perp A}$ denotes the drag force in parallel with its motion direction, when the jet parton moving perpendicular to anisotropy direction. Plugging Eq. (12) into Eq. (22), we have

$$f^{v||A} = -\frac{1}{2\pi\alpha'} g_{xx}(z_c) v |_{x_p = x}$$

(23)

$$= -\frac{v}{2\pi\alpha'} b(z_c) z_c^{-\frac{2}{3}},$$

(24)

and

$$f^{v\perp A} = -\frac{1}{2\pi\alpha'} g_{xx}(z_c) v |_{x_p = y_1}$$

(25)

$$= -\frac{v}{2\pi\alpha'} b(z_c) z_c^{-\frac{2}{3}}.$$

(26)

![FIG. 1: Perpendicular (dashed line) and parallel (solid line) drag force at lower speed ($v = 0.6$) normalized by conformal limit as a function of the temperature for different values of the anisotropy factor A.](image)

The influence of spatial anisotropy on drag forces are illustrated in Fig. 1 and Fig. 2, where the drag forces in anisotropic plasma are rescaled by the isotropic SYM result at zero chemical potential given in Eq. (8). Fig. 1 shows, at lower speed ($v = 0.6$) the drag force $f^{v||A}$ always becomes larger with increasing anisotropic factor A. Similar trend is also observed for drag forces perpendicular to anisotropy direction $f^{v\perp A}$. It is seen that the perpendicular direction drag force $f^{v\perp A}$ is larger than parallel direction drag force $f^{v||A}$ with the same anisotropic factor around critical temperature T_c.
At higher speed $v = 0.96$, corresponding to faster charm quark, the situation becomes more complicated as presented in Fig. 2. Plots (a), (b), (c) and (d) in Fig. 2 present drag forces at different anisotropy $A = 1$, $A = 1.01$, $A = 1.02$ and $A = 1.03$ respectively. We find the drag force $f^{v \parallel A}$ always goes up with increasing anisotropic factor A. The perpendicular direction drag force $f^{v \perp A}$ is larger than the parallel direction drag force $f^{v \parallel A}$ around T_c. Furthermore, there is a peak near critical temperature $T/T_c = 1.1$ when the velocity of quark ($v = 0.96$) is approaching the speed of light. The enhancement of energy loss around critical temperature T_c is one of typical features of QCD phase transition.

From Fig. 1 and Fig. 2, we also find that charm quark (with faster velocity and lighter mass) is more sensitive to properties of the anisotropy QGP than bottom quark (with slower velocity and heavier mass), when they pass through the anisotropic plasma with a fixed initial energy E_i.

IV. DIFFUSION COEFFICIENTS

The diffusion coefficient, another important transport parameter of plasma, has been studied extensively at the RHIC and the LHC. It is of a general practice to utilize Einstein-Maxwell system to study this transverse momentum broadening when heavy quark propagation in plasma [68, 69]. The heavy quark transverse momentum diffusion constant D in the strongly coupled $\mathcal{N} = 4$ supersymmetric Yang-Mills theory was first computed in [70, 71], and then it was generalized to non-conformal theories in [72]. The Langevin dynamics of non-relativistic heavy quarks is completely determined by the momentum broadening D. The Einstein relation together with the expression of η_D allow us to infer the value of D for this strongly coupled anisotropic plasma. The diffusion coefficient in the isotropic SYM theory [71] is

$$D_{SYM} = \frac{T}{mt_{SYM}} = \frac{2}{\pi T \sqrt{\lambda}},$$ \hspace{1cm} (27)

where $t_{SYM} = \frac{1}{\eta_D}$ is the diffusion time.

From Eq. (22) and Eq. (27), we obtain diffusion coefficient in anisotropic plasma normalized by isotropic SYM results as,

$$D = D_{SYM} \frac{\pi^2 T^2}{g_{xx}(z_c) \sqrt{1 - v^2}|(x_p=x_1,y_2)|},$$ \hspace{1cm} (28)

Now there are also two different diffusion coefficients, $D^{v \parallel A}$ and $D^{v \perp A}$, for the anisotropy in background metric Eq. (2). $D^{v \parallel A}$ gives the diffusion coefficient when jet partons moving along anisotropy direction, while $D^{v \perp A}$ gives the one when the jet parton moves perpendicular to anisotropy direction. Plugging Eq. (12) into Eq. (28),

![FIG. 2: Perpendicular (dashed line) and parallel (solid line) drag force at higher speed ($v = 0.96$) normalized by conformal limit as a function of the temperature for different values of the anisotropy factor A.](image-url)
we have

\[
\frac{D_{\parallel}^A}{D_{\text{SYM}}} = \frac{\pi^2 T^2}{g_{xx}(z_c)\sqrt{1-v^2}} |_{x_p=x} (29)
\]

and

\[
\frac{D_{\perp}^A}{D_{\text{SYM}}} = \frac{\pi^2 T^2}{g_{xx}(z_c)\sqrt{1-v^2}} |_{x_p=y_1} (30)
\]

\[
\frac{D_{\parallel}^A}{D_{\text{SYM}}} = \frac{\pi^2 T^2}{b(z_c)z_c^2\sqrt{1-v^2}} (31)
\]

\[
\frac{D_{\perp}^A}{D_{\text{SYM}}} = \frac{\pi^2 T^2}{b(z_c)z_c^2\sqrt{1-v^2}} (32)
\]

The numerical results of the influences on diffusion constants \(D\) from anisotropy factor are displayed in Fig. 3 and Fig. 4, normalized by the isotropic SYM result at zero baryon density given in Eq. (27). It is seen from Fig. 3 that, at lower speed \((v = 0.6)\) both \(D_{\parallel}^A\) and \(D_{\perp}^A\) suffer stronger suppression with increasing anisotropic factor \(A\). In addition, the perpendicular direction diffusion constant \(D_{\perp}^A\) has stronger suppression than parallel direction diffusion constant \(D_{\parallel}^A\) around critical temperature \(T_c\).

Fig. 4 gives the results at higher speed \((v = 0.96)\), and plots (a), (b), (c) and (d) in Fig. 4 present diffusion constants at different anisotropy \(A = 1, A = 1.01, A = 1.02\) and \(A = 1.03\) respectively. We find diffusion constant \(D_{\parallel}^A\) goes down with increasing anisotropic factor \(A\). It is also seen that the perpendicular direction diffusion constant \(D_{\perp}^A\) has stronger suppression than parallel direction diffusion constant \(D_{\parallel}^A\) around critical temperature \(T_c\). One may observe the strongest suppression near critical temperature \(T/T_c = 1.1\) when quark moves almost with the speed of light \((v = 0.96)\). All numerical results show the same trend that the energy loss in perpendicular direction is larger than the one in parallel direction.
V. JET TRANSPORT COEFFICIENT

In dual gravity theory, a non-perturbative definition of jet transport coefficient \(\hat{q} \) has been provided \[21\], based on the computation of light-like adjoined Wilson loops for \(\mathcal{N} = 4 \) SYM plasma. It has been shown that the jet quenching parameter at an isotropic SYM plasma with zero chemical potential is

\[
\hat{q}_{\text{SYM}} = \frac{\pi^2 \sqrt{T_{33}^\tau}}{\Gamma(\frac{1}{3})}. \tag{33}
\]

Later, this work has been extended to various cases, for instance, the impact of chemical potential on \(\hat{q} \) \[73, 74\]. In this section we discuss the jet quenching parameter \(\hat{q} \) in the anisotropic background. We follow the argument in \[62\] to study the jet quenching parameter of a light quark system in anisotropic medium, in which the jet quenching parameter \(\hat{q} \) is directly related to light-like adjoined Wilson loop \[21\] as

\[
\langle W^A[C]\rangle \approx \exp[-\frac{1}{4\sqrt{2}}\hat{q}L^2L^-], \tag{34}
\]

where \(C \) is a null-like rectangular Wilson loop formed by a quark-antiquark pair, \(L \) gives the separated distance and \(L^- \) the traveling distance along light-cone time duration.

Using the equations

\[
\langle W^A[C]\rangle \approx \langle W^F[C]\rangle^2 \tag{35}
\]

and

\[
\langle W^F[C]\rangle \approx \exp[-S_I], \tag{36}
\]

we obtain a general relation of jet quenching parameter

\[
\hat{q} = 8\sqrt{2} \frac{S_I}{L^-L^2}. \tag{37}
\]

To calculate the Wilson loop, we take advantage of the light-cone coordinates

\[
x_+ = \frac{t + x_p}{\sqrt{2}}, \quad x_- = \frac{t - x_p}{\sqrt{2}}, \tag{38}
\]

where \(x_p \) is chosen to be the direction of motion.

The metric Eq. (2) is then given by

\[
ds^2 = G_{--}(dx_*^2 + dx_+^2) + G_{++} dx_+ dx_-, \tag{39}
\]

\[
+G_{zt} dx_+ dz^2 + G_{zz} d^2 z, \tag{40}
\]

\[
G_{--} = \frac{g_{tt} + g_{pp}}{2}, \tag{41}
\]

\[
G_{++} = \frac{g_{tt} - g_{pp}}{2}, \tag{42}
\]

\[
G_{ii} = g_{ii}(i=x_1, y_1), \tag{43}
\]

\[
G_{zz} = g_{zz}. \tag{44}
\]

Given the Wilson loop extending along the \(x_k \) direction, we choose static gauge coordinates

\[
x_- = \tau, x_k = \sigma, u = u(\sigma). \tag{45}
\]

The Nambu-Goto action Eq. (9) can be given as

\[
S = \frac{L}{\pi\alpha'} \int_0^{\frac{L^-}{2}} d\sigma \sqrt{G_{zz}G_{--}(G_{zz}z^2 + G_{kk})}. \tag{46}
\]

As action Eq. (46) does not depend explicitly on \(\sigma \) explicitly, we could have a conserved quantity

\[
E = \int_0^{\frac{L^-}{2}} \frac{\partial L}{\partial \dot{z}} \dot{z} - L = E, \tag{47}
\]

resulting in

\[
z^2 = \frac{(G_{kk}G_{--} - c^2)}{c^2 G_{zz}}. \tag{48}
\]

Combining Eq. (48) and Eq. (46), we get

\[
S_0 = \frac{L}{\pi\alpha'} \int_0^{\frac{L^-}{2}} dz \sqrt{G_{iiu}G_{--}}. \tag{49}
\]

The total action is divergent and should be subtracted by the self-energy of the two free quarks part

\[
S - S_0 = \frac{L}{\pi\alpha'} \int_0^{\frac{L^-}{2}} dz \sqrt{G_{zz}} \sqrt{\left(\frac{G_{zz} - G_{kk}}{G_{zz}G_{kk} - E^2} - 1\right)} \tag{50}
\]

In our calculation, indices \(p \) and \(k \) here denote a chosen direction. Substituting Eq. (50) into Eq. (37), we show

\[
\hat{q}_{(p,k)} = \frac{\sqrt{2}}{\pi\alpha'} \left(\int_0^{\frac{L^-}{2}} dz \, \frac{1}{g_{kk}} \sqrt{\frac{2 g_{zz}}{g_{tt} g_{zz}}} \right)^{-1} \tag{51}
\]

Now we see there are three types of jet quenching parameters, \(\hat{q}_{(||, \perp)} \), \(\hat{q}_{(\perp, ||)} \) and \(\hat{q}_{(||, \perp)} \) for anisotropic background given in Eq. (2). Here \(\hat{q}_{(||, \perp)} \) denotes the jet transport coefficient when energetic partons moving along anisotropy, and the momentum broaden perpendicular to anisotropy direction; \(\hat{q}_{(\perp, ||)} \) stands for the jet quenching parameter when energetic partons moving perpendicular to anisotropy direction, and the momentum broadening along anisotropy; \(\hat{q}_{(||, \perp)} \) gives the coefficient with fast parton moving perpendicular to anisotropy direction, and the momentum broadening perpendicular to anisotropy direction.

\[
\hat{q}_{(||, \perp)} = \frac{\sqrt{2}}{\pi\alpha'} \left(\int_0^{\frac{L^-}{2}} dz \, \frac{1}{g_{zz}} \sqrt{\frac{2 g_{zz}}{g_{tt} (f(z) + 1)}} \right)^{-1} \tag{52}
\]

\[
\hat{q}_{(\perp, ||)} = \frac{\sqrt{2}}{\pi\alpha'} \left(\int_0^{\frac{L^-}{2}} dz \, \frac{1}{g_{zz}} \sqrt{\frac{2 g_{zz}}{g_{tt} g_{yy}}} \right)^{-1} \tag{53}
\]
\[\hat{q}_{(\perp,\perp)} = \frac{\sqrt{2}}{\pi \alpha'} \left(\int_0^{z_h} dz \frac{1}{g_{y_1 y_1}} \sqrt{\frac{1}{g_{tt} + g_{y_1 y_1}}} \right)^{-1} \]

\[= \frac{\sqrt{2}}{\pi \alpha'} \left[\int_0^{z_h} dz \left(b(z) z^2 \sqrt{\frac{2}{g(z)(-f(z) + z^2 - \frac{4f}{z})}} \right)^{-1} \right] \]

Fig. 5 demonstrates the impact of spatial anisotropy on jet quenching parameters, normalized by the isotropic SYM result at zero baryon density given in Eq. (33). Plots (a), (b), (c) and (d) in Fig. 5 show jet quenching parameters at different anisotropy \(A = 1, A = 1.01, A = 1.02 \) and \(A = 1.03 \) respectively. Figure (a) with \(A = 1 \) corresponds to the isotropic case. One see that all three jet quenching parameters \(\hat{q}_{(||,\perp)} \), \(\hat{q}_{(\perp,||)} \) and \(\hat{q}_{(\perp,\perp)} \) increase with anisotropic factor \(A \). And we observe the small peak around critical temperature \(T/T_c = 1.4 \), which is one of typical features of QCD phase transition. It is noted that our results are consistent with recent lattice simulations in [75]. One reads from different anisotropic cases in Figure (b), (c) and (d) of Fig. 5, that in general \(\hat{q}_{(||,\perp)} \geq \hat{q}_{(\perp,\perp)} \geq \hat{q}_{(\perp,\perp)} \), which indicates that the energy loss is larger in the transverse plane than along the anisotropic direction. It also shows that the momentum broadening of an energetic parton in anisotropic medium depends more on the direction of motion rather than the direction of momentum broadening.

VI. CONCLUSION

The study of jet quenching properties as functions of parameters such as the temperature, chemical potential, and anisotropy factor is of great relevance for the understanding the anisotropic QGP. In present work, we have taken an investigation on energy loss of a fast parton passing through a strongly coupled plasma from an EMD model with anisotropy.

We focus on the influences of spatial anisotropy on several important quantities related to parton energy loss. It is demonstrated that with increasing anisotropic factor \(A \), the drag force and jet quenching parameter go up, while the diffusion constant goes down. The comparison of drag forces in different directions shows that energy loss is larger when moving perpendicular to anisotropy direction than paralleled to anisotropy direction. The jet quenching parameter and diffusion constant also give the same conclusion that energy loss is stronger when the jet parton moves perpendicular to anisotropy direction.

We also observe a peak near critical temperature \(T_c \) both on the drag force and the jet quenching parameter when energetic partons move nearly with the speed of light. The small enhancement of the drag forces \((f^{||,A} + f^{\perp,\perp}) \) is around \(T_c/T = 1.1 \), while the enhancement of the jet quenching parameters \(\hat{q}_{(||,\perp)}, \hat{q}_{(\perp,\perp)}, \) and \(\hat{q}_{(\perp,\perp)} \) is around \(T_c/T = 1.4 \). It is noticed that our results are consistent with recent lattice calculations given
in [75]. However, when parton moving at lower speed the peak of the drag force near \(T_c \) may disappear. Comparing numerical results of the drag force at different speeds, we see charm quark is more sensitive to the properties of the plasma than bottom quark when the initial jet energy is fixed.

ACKNOWLEDGMENTS

We thank Zhou-Run Zhu for his enlightening advice and very useful discussions. This research is supported by the Guangdong Major Project of Basic and Applied Basic Research No. 2020B0301030008, and Natural Science Foundation of China with Project Nos. 11935007.

[1] K. Adcox et al. Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration. Nucl. Phys. A, 757:184–283, 2005.
[2] I. Arsene et al. Quark gluon plasma and color glass condensate at RHIC? The Perspective from the BRAHMS experiment. Nucl. Phys. A, 757:1–27, 2005.
[3] John Adams et al. Experimental and theoretical challenges in the search for the quark gluon plasma: The STAR Collaboration’s critical assessment of the evidence from RHIC collisions. Nucl. Phys. A, 757:102–183, 2005.
[4] Marco Panero, Kari Rummukainen, and Andreas Schäfer. Lattice Study of the Jet Quenching Parameter. Phys. Rev. Lett., 112(16):162001, 2014.
[5] Juan Martín Maldacena. The Large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys., 2:231–252, 1998.
[6] Edward Witten. Anti-de Sitter space and holography. Adv. Theor. Math. Phys., 2:253–291, 1998.
[7] S. S. Gubser, Igor R. Klebanov, and Alexander M. Polyakov. Gauge theory correlators from noncritical string theory. Phys. Lett. B, 428:105–114, 1998.
[8] Edward Witten. Anti-de Sitter space, thermal phase transition, and confinement in gauge theories. Adv. Theor. Math. Phys., 2:505–532, 1998.
[9] Joshua Erlich. How Well Does AdS/QCD Describe QCD? Int. J. Mod. Phys. A, 25:411–420, 2010.
[10] Tadakatsu Sakai and Shigeki Sugimoto. Low energy hadron physics in holographic QCD. Prog. Theor. Phys., 113:843–882, 2005.
[11] Umut Gursoy, Elias Kiritsis, Liuba Mazzanti, Georgios Michalogiorgakis, and Francesco Nitti. Improved Holographic QCD. Lect. Notes Phys., 828:79–146, 2011.
[12] G. Policastro, Dan T. Son, and Andrei O. Starinets. The shear viscosity of strongly coupled N=4 supersymmetric Yang-Mills plasma. Phys. Rev. Lett., 87:081601, 2001.
[13] Christopher P. Herzog. The Hydrodynamics of M theory. JHEP, 12:026, 2002.
[14] Paolo Benincasa and Alex Buchel. Hydrodynamics of Sakai-Sugimoto model in the quenched approximation. Phys. Lett. B, 640:108–115, 2006.
[15] Rudolf Baier, Paul Romatschke, Dan Thanh Son, Andrei O. Starinets, and Mikhail A. Stephanov. Relativistic viscous hydrodynamics, conformal invariance, and holography. JHEP, 04:100, 2008.
[16] Javier Mas and Javier Tarrio. Hydrodynamics from the Dp-brane. JHEP, 05:036, 2007.
[17] Makoto Natsuume and Takashi Okamura. Causal hydrodynamics of gauge theory plasmas from AdS/CFT duality. Phys. Rev. D, 77:066014, 2008. [Erratum: Phys.Rev.D 78, 089902 (2008)].
[18] Makoto Natsuume. Causal hydrodynamics and the membrane paradigm. Phys. Rev. D, 78:066010, 2008.
[19] J. I. Kapusta and T. Springer. Shear Transport Coefficients from Gauge/Gravity Correspondence. Phys. Rev. D, 78:066017, 2008.
[20] Dimitrios Giatanagas and Hesam Soltanpanahi. Universal Properties of the Langevin Diffusion Coefficients. Phys. Rev. D, 89(2):026011, 2014.
[21] Hong Liu, Krishna Rajagopal, and Urs Achim Wiedemann. Calculating the jet quenching parameter from AdS/CFT. Phys. Rev. Lett., 97:182301, 2006.
[22] Steven S. Gubser. Drag force in AdS/CFT. Phys. Rev. D, 74:126005, 2006.
[23] C. P. Herzog, A. Karch, P. Kovtun, C. Kozcaz, and L. G. Yaffe. Energy loss of a heavy quark moving through N=4 supersymmetric Yang-Mills plasma. JHEP, 07:013, 2006.
[24] Andrej Ficnar, Steven S. Gubser, and Miklos Gyulassy. Shooting String Holography of Jet Quenching at RHIC and LHC. Phys. Lett. B, 738:464–471, 2014.
[25] Andrej Ficnar and Steven S. Gubser. Finite momentum at string endpoints. Phys. Rev. D, 89(2):026002, 2014.
[26] Peter Arnold and Diana Vaman. Jet quenching in hot strongly coupled gauge theories simplified. JHEP, 04:027, 2011.
[27] Berndt Muller, Shang-Yu Wu, and Di-Lun Yang. Elliptic flow from thermal photons with magnetic field in holography. Phys. Rev. D, 89(2):026013, 2014.
[28] Z. R. Zhu, J. Chen and D. Hou, Eur. Phys. J. A 58, no.6, 104 (2022) doi:10.1140/epja/s10050-022-00754-2 [arXiv:2109.09933 [hep-ph]].
[29] Simon Caron-Huot, Pavel Kovtun, Guy D. Moore, Andrei O. Starinets, and Laurence G. Yaffe. Photon and dilepton production in supersymmetric Yang-Mills plasma. JHEP, 12:15, 2006.
[30] Kiminad A. Mamo. Enhanced thermal photon and dilepton production in strongly coupled SYM plasma in strong magnetic field. JHEP, 08:083, 2013.
[31] Ioannis Iatrakis, Elias Kiritsis, Chun Shen, and Di-Lun Yang. Holographic Photon Production in Heavy Ion Collisions. JHEP, 04:035, 2017.
[32] Leonardo Patino and Diego Trancanelli. Thermal photon production in a strongly coupled anisotropic plasma. JHEP, 02:154, 2013.
[33] Shang-Yu Wu and Di-Lun Yang. Holographic Photon Production with Magnetic Field in Anisotropic Plasmas. *JHEP*, 08:032, 2013.

[34] Stefano I. Finazzo and Jorge Noronha. Holographic calculation of the electric conductivity of the strongly coupled quark-gluon plasma near the deconfinement transition. *Phys. Rev. D*, 89(10):106008, 2014.

[35] Gustavo Arciniega, Francisco Nettel, Patricia Ortega, and Leonardo Patiño. Brighter Branes, enhancement of photon production by strong magnetic fields in the gauge/gravity correspondence. *JHEP*, 04:192, 2014.

[36] Daniel Ávila, Tonantzin Monroy, Francisco Nettel, and Leonardo Patiño. Emission of linearly polarized photons in a strongly coupled magnetized plasma from the gauge/gravity correspondence. *Phys. Lett. B*, 817:136287, 2021.

[37] Jorge Casalderrey-Solana, Hong Liu, David Mateos, Krishna Rajagopal, and Urs Achim Wiedemann. *Gauge/String Duality, Hot QCD and Heavy Ion Collisions*. Cambridge University Press, 2014.

[38] Oliver DeWolfe, Steven S. Gubser, Christopher Rosen, and Derek Teaney. Heavy ions and string theory. *Prog. Part. Nucl. Phys.*, 75:86–132, 2014.

[39] Romulo Rougemont, Renato Critelli, and Jorge Noronha. Holographic calculation of the QCD crossover temperature in a magnetic field. *Phys. Rev. D*, 93(4):045013, 2016.

[40] Tatsuo Azeyanagi, Wei Li, and Tadashi Takayanagi. On String Theory Duals of Lifshitz-like Fixed Points. *JHEP*, 06:084, 2009.

[41] David Mateos and Diego Trancanelli. Thermodynamics and instabilities of a Strongly Coupled Anisotropic Plasma. *JHEP*, 07:054, 2011.

[42] David Mateos and Diego Trancanelli. The anisotropic N=4 super Yang-Mills plasma and its instabilities. *Phys. Rev. Lett.*, 107:101601, 2011.

[43] R. Rougemont, R. Critelli, and J. Noronha. Anisotropic heavy quark potential in strongly-coupled $N = 4$ SYM in a magnetic field. *Phys. Rev. D*, 91(6):066001, 2015.

[44] John F. Fuini and Laurence G. Yaffe. Far-from-equilibrium dynamics of a strongly coupled non-Abelian plasma with non-zero charge density or external magnetic field. *JHEP*, 07:116, 2015.

[45] Zhou-Run Zhu, De-fu Hou, and Xun Chen. Potential analysis of holographic Schwinger effect in the magnetized background. *Eur. Phys. J. C*, 80(6):550, 2020.

[46] Irina Ya. Aref’eva, Anastasia A. Golubtsova, and Eric Gourgoulhon. Analytic black branes in Lifshitz-like backgrounds and thermalization. *JHEP*, 09:142, 2016.

[47] Tara Drwenski, Umut Gursoy, and Ioannis Iatrakis. Thermodynamics and CP-odd transport in Holographic QCD with Finite Magnetic Field. *JHEP*, 12:049, 2016.

[48] Umut Gursoy, Ioannis Iatrakis, Matti Järvinen, and Govert Nijs. Inverse Magnetic Catalysis from improved Holographic QCD in the Veneziano limit. *JHEP*, 03:053, 2017.

[49] Steven S. Gubser, Silviu S. Pufu, and Amos Yarom. Entropy production in collisions of gravitational shock waves and of heavy ions. *Phys. Rev. D*, 78:066014, 2008.

[50] Yuri V. Kovchegov and Sha Lin. Toward Thermalization in Heavy Ion Collisions at Strong Coupling. *JHEP*, 03:057, 2010.

[51] Elias Kiritsis and Anastasios Taliotis. Multiplicities from black-hole formation in heavy-ion collisions. *JHEP*, 04:065, 2012.

[52] I. Ya. Aref’eva, E. O. Pozdeeva, and T. O. Pozdeeva. Holographic estimation of multiplicity and membranes collision in modified spaces AdS_3. *Theor. Math. Phys.*, 176:861–872, 2013.

[53] Mariano Chemicoff, Daniel Fernandez, David Mateos, and Diego Trancanelli. Drag force in a strongly coupled anisotropic plasma. *JHEP*, 08:100, 2012.

[54] Kazem Bitaghsir Fadafan and Hesam Soltanpanahi. Energy loss in a strongly coupled anisotropic plasma. *JHEP*, 10:085, 2012.

[55] Mariano Chemicoff, Daniel Fernandez, David Mateos, and Diego Trancanelli. Jet quenching in a strongly coupled anisotropic plasma. *JHEP*, 08:041, 2012.

[56] Berndt Müller and Di-Lun Yang. Light Probes in a Strongly Coupled Anisotropic Plasma. *Phys. Rev. D*, 87(4):046004, 2013. [Erratum: Phys.Rev.D 98, 069903 (2018)].

[57] Shankhadeep Chakraborty, Somdeb Chakraborty, and Najmul Haque. Brownian motion in strongly coupled, anisotropic Yang-Mills plasma: A holographic approach. *Phys. Rev. D*, 89(6):066013, 2014.

[58] Dimitrios Giataganas and Hesam Soltanpanahi. Heavy Quark Diffusion in Strongly Coupled Anisotropic Plasmas. *JHEP*, 06:047, 2014.

[59] Irina Aref’eva and Kristina Ramu. Holographic Anisotropic Background with Confinement–Deconfinement Phase Transition. *JHEP*, 05:206, 2018.

[60] Irina Ya. Aref’eva, Kristina Ramu, and Pavel Slepov. Holographic anisotropic model for light quarks with confinement–deconfinement phase transition. *JHEP*, 06:090, 2021.

[61] PS Slepov. A way to improve the string tension dependence on temperature in holographic model. *Physics of Particles and Nuclei*, 52(4):560–563, 2021.

[62] Dimitrios Giataganas. Probing strongly coupled anisotropic plasma. *JHEP*, 07:031, 2012.

[63] Meng-Wei Li, Yi Yang, and Pei-Hung Yuan. Approaching Confinement Structure for Light Quarks in a Holographic Soft Wall QCD Model. *Phys. Rev. D*, 96(6):066013, 2017.

[64] Shanshan Cao and Steffen A. Bass. Thermalization of charm quarks in infinite and finite QGP matter. *Phys. Rev. C*, 84:064902, 2011.

[65] Guy D. Moore and Derek Teaney. How much do heavy quarks thermalize in a heavy ion collision? *Phys. Rev. C*, 71:064904, 2005.

[66] Benjamin Svetitsky. Diffusion of charmed quarks in the quark-gluon plasma. *Phys. Rev. D*, 37:2484–2491, May 1988.

[67] S. I. Finazzo, R. Critelli, R. Rougemont and J. Noronha, Phys. Rev. D 94 (2016) no.5, 054020 [erratum: Phys. Rev. D 96 (2017) no.1, 019903] doi:10.1103/PhysRevD.94.054020 [arXiv:1605.06061 [hep-ph]].

[68] Zhou-Run Zhu, Sheng-Qin Feng, Ya-Fei Shi, and Yang Zhong. Energy loss of heavy and light quarks in holographic magnetized background. *Phys. Rev. D*, 99(12):126001, 2019.

[69] Zhou-Run Zhu, Jun-Xia Chen, Xian-Ming Liu, and Defu Hou. Thermodynamics and energy loss in D dimensions from holographic QCD model. 9 2021.

[70] Jorge Casalderrey-Solana and Derek Teaney. Transverse Momentum Broadening of a Fast Quark in a N=4 Yang Mills Plasma. *JHEP*, 04:039, 2007.

[71] Steven S. Gubser. Momentum fluctuations of heavy...
quarks in the gauge-string duality. *Nucl. Phys. B*, 790:175–199, 2008.

[72] Umut Gursoy, Elias Kiritsis, Liuba Mazzanti, and Francesco Nitti. Langevin diffusion of heavy quarks in non-conformal holographic backgrounds. *JHEP*, 12:088, 2010.

[73] Nestor Armesto, Jose D. Edelstein, and Javier Mas. Jet quenching at finite 't Hooft coupling and chemical potential from AdS/CFT. *JHEP*, 09:039, 2006.

[74] Feng-Li Lin and Toshihiko Matsuo. Jet Quenching Parameter in Medium with Chemical Potential from AdS/CFT. *Phys. Lett. B*, 641:45–49, 2006.

[75] A. Kumar, A. Majumder and J. H. Weber, Phys. Rev. D 106, no.3, 034505 (2022) doi:10.1103/PhysRevD.106.034505 [arXiv:2010.14463 [hep-lat]].