Coupled quintessence and the impossibility of an interaction: a dynamical analysis study

Fabrízio F. Bernardi a,1, Ricardo G. Landimb,1

1Instituto de Física, Universidade de São Paulo
Caixa Postal 66318, 05314-970 São Paulo, São Paulo, Brazil

Abstract We analyze the coupled quintessence in the light of the linear dynamical systems theory, with two different interactions: i) proportional to the energy density of the dark energy and ii) proportional to the sum of the energy densities of the dark matter and dark energy. The results presented here enlarge the previous analyses in the literature, wherein the interaction has been only proportional to the energy density of the dark matter. In the first case it is possible to get the well-known sequence of cosmological eras. For the second interaction only the radiation and the dark energy era can be described by the fixed points. Therefore, from the point-of-view of the dynamical system theory, the interaction proportional to the sum of the energy densities of the dark matter and dark energy does not describe the universe we live in.

1 Introduction

Sixty eight percent of our universe [1] consists of a still mysterious component called “dark energy” (DE), which is believed to be responsible for the present acceleration of the universe [2, 3]. In addition to ordinary matter, the remaining 27% of the energy content of the universe is a form of matter that interacts in principle only gravitationally, known as dark matter (DM). Among a wide range of alternatives for the dark energy, which includes the cosmological constant, scalar or vector fields [4–16], holographic dark energy [17–29], metastable dark energy [30–34], modifications of gravity and different kinds of cosmological fluids [35–41], the usage of a canonical scalar field, called “quintessence”, is a viable candidate [42–46].

In addition, the two components of the dark sector may interact with each other [21–24, 39, 47–59] (see [60] for a review) and the interaction can eventually alleviate the coincidence problem [61, 62].

When a scalar field is in the presence of a barotropic fluid (with equation of state \(w_m = p_m/\rho_m \), where \(p_m \) is the pressure and \(\rho_m \) is the energy density of the fluid) the relevant evolution equations can be converted into an autonomous system. Such approach is a good tool to analyze asymptotic states of cosmological models and it has been done for uncoupled dark energy (quintessence, tachyon field, phantom field and vector dark energy, for instance [63–70]) and coupled dark energy [48, 54, 71–76]. The coupling assumed for the quintessence field has been proportional to the energy density of the dark matter \(\rho_m \). However, there are other possibilities as for instance the coupling proportional to the energy density of the dark energy \(\rho_\phi \) or the sum of the two energy densities \(\rho_m + \rho_\phi \). Similar kernels have been widely studied in the literature [77–84]. In particular, the dark energy evolution at high redshifts measured by the BOSS-SDSS Collaboration [85] shows a deviation from the cosmological constant which can be explained assuming interacting dark energy models [86].

A dynamical analysis remained to be done for these two kernels. In this paper we use the linear dynamical systems theory to investigate the critical points that come from the evolution equations for the quintessence, assuming the interaction between DE and DM proportional to i) \(\rho_\phi \) and ii) \(\rho_\phi + \rho_m \). We found that in the case i) there are fixed points that can describe the sequence of three cosmological eras. In the second case either radiation era or dark energy era can be described by fixed points, but the matter-dominated universe is absent.

The remainder of this paper is structured as follows. In Sect. 2 we present the basics of the interacting dark energy and the dynamical analysis theory. The quintessence dynamics is presented in Sect. 3 and the dynamical system theory is used to study the coupled quintessence in Sect. 4, wherein
the critical points are shown. We summarize our results in Sect. 5. We use Planck units \(\hbar = c = M_{pl} = 1 \) throughout the text.

2 Interacting dark energy and dynamical analysis

We consider that dark energy is described by a scalar field with energy density \(\rho_\phi \) and pressure \(p_\phi \), and with an equation of state given by \(w_\phi = p_\phi/\rho_\phi \). We assume that the scalar field is coupled with dark matter, in such a way that total energy-momentum tensor is still conserved. In the flat Friedmann–Lemaître–Robertson–Walker (FLRW) background with a scale factor \(a \), the continuity equations for both components and for radiation are

\[
\begin{align*}
\dot{\rho}_\phi + 3H(\rho_\phi + p_\phi) &= -\mathcal{Q}, \\
\dot{\rho}_m + 3H\rho_m &= \mathcal{Q}, \\
\dot{\rho}_r + 4H\rho_r &= 0,
\end{align*}
\]

respectively, where \(H = \dot{a}/a \) is the Hubble rate, \(\mathcal{Q} \) is the coupling and the dot is a derivative with respect to the cosmic time \(t \). The indices \(m \) and \(r \) stand for matter and radiation, respectively.\(^1\) The case of \(\mathcal{Q} > 0 \) corresponds to dark energy transformation into dark matter, while \(\mathcal{Q} < 0 \) is the transformation in the opposite direction. In principle, the coupling can depend on several variables \(\mathcal{Q} = \mathcal{Q}(\rho_\phi, \rho_m, \phi, H, t, \ldots) \), so we assume for the quintessence the coupling is i) \(\mathcal{Q} = Q_\phi \dot{\phi} \) and ii) \(\mathcal{Q} = Q(\rho_\phi + \rho_m) \dot{\phi} \), where \(Q \) is a positive constant. The case with negative \(Q \) is the same as the case with \(Q > 0 \) but with negative fixed point \(x \), described in the next section by \(\dot{\phi}/\sqrt{6H} \).

To deal with the dynamics of the system, we will define dimensionless variables. The new variables are going to characterize a system of differential equations in the form

\[
X' = f[X],
\]

where \(X \) is a column vector of dimensionless variables and the prime is the derivative with respect to \(\log a \), where we set the present scale factor \(a_0 \) to be one. The critical points \(X_c \) are those ones that satisfy \(X' = 0 \). In order to study stability of the fixed points we consider linear perturbations \(U \) around them, thus \(X = X_c + U \). At the critical point the perturbations \(U \) satisfy the following equation

\[
U' = \mathcal{J} U,
\]

where \(\mathcal{J} \) is the Jacobian matrix. The stability around the fixed points depends on the nature of the eigenvalues \((\mu) \) of \(\mathcal{J} \), in such a way that they are stable points if they all have negative values, unstable points if they all have positive values and saddle points if at least one eigenvalue has positive (or negative) value, while the other ones have opposite sign. In addition, if any eigenvalue is a complex number, the fixed point can be stable (Re \(\mu < 0 \)) or unstable (Re \(\mu > 0 \)) spiral, due to the oscillatory behavior of its imaginary part.

3 Quintessence dynamics

The scalar field \(\phi \) is described by the Lagrangian

\[
\mathcal{L} = -\sqrt{-g} \left(\frac{1}{2} \partial \phi \partial \phi + V(\phi) \right),
\]

where \(V(\phi) \) is the scalar potential given by \(V(\phi) = V_0 e^{-\lambda \phi} \) and \(V_0 \) and \(\lambda \) are constants. This choice is motivated by the autonomous system, as we shall see soon. For a homogeneous field \(\phi \equiv \phi(t) \) in an expanding universe with FLRW metric with scale factor \(a \equiv a(t) \), the equation of motion is

\[
\ddot{\phi} + 3H \dot{\phi} + V'(\phi) = 0,
\]

where the prime denotes derivative with respect to \(\phi \).

The interaction between the quintessence field with DM due to the oscillatory behavior of its imaginary part.

The dark energy density parameter is written in terms of state \(w_\phi \).

\[
\Omega_\phi = \frac{\rho_\phi}{3H^2} = x^2 + y^2,
\]

so that Eq. (8) can be written as

\[
\Omega_\phi + \Omega_m + \Omega_r = 1,
\]
where the matter and radiation density parameter are defined by $\Omega_i = \rho_i/(3H^2)$, with $i = m, r$. From Eqs. (12) and (13) we have that x and y are restricted in the phase plane by the relation

$$0 \leq x^2 + y^2 \leq 1,$$

(14)
due to $0 \leq \Omega_\phi \leq 1$. The equation of state w_ϕ becomes

$$w_\phi = \frac{x^2 - y^2}{x^2 + y^2},$$

(15)
and the total effective equation of state is

$$w_{eff} = \frac{\rho_\phi + p_r}{\rho_\phi + \rho_m + p_r} = x^2 - y^2 + \frac{z^2}{3},$$

(16)
with an accelerated expansion for $w_{eff} < -1/3$.

4.1 Interaction $Q \rho_\phi$

The dynamical system for the variables x, y, z and λ with the interaction proportional to ρ_ϕ is

\[
\begin{align*}
\frac{dx}{dN} &= -3x + \sqrt{3} y^2 \lambda - \sqrt{2} Q (x^2 + y^2) - x H^{-1} \frac{dH}{dN}, \\
\frac{dy}{dN} &= -\sqrt{6} x y \lambda - y H^{-1} \frac{dH}{dN}, \\
\frac{dz}{dN} &= -2z - 2H^{-1} \frac{dH}{dN}, \\
\frac{d\lambda}{dN} &= -\sqrt{6} \lambda^2 x (I - 1),
\end{align*}
\]

(17–19)

where

$$H^{-1} \frac{dH}{dN} = -\frac{3}{2} \left(1 + x^2 - y^2 + \frac{z^2}{3}\right).$$

(20)

4.1.1 Critical points

The fixed points of the system are obtained by setting $dx/dN = 0$, $dy/dN = 0$, $dz/dN = 0$ and $d\lambda/dN = 0$ in Eq. (17–20). When $I = 1$, λ is constant the potential is $V(\phi) = V_0 e^{-\lambda \phi}$ [63, 64]. The fixed points are shown in Table 1. Notice that y cannot be negative and recall that $\Omega_i = z^2$.

The point x is

$$x_f = \frac{-3 + Q \lambda - \lambda^2 + \sqrt{Q^2(\lambda^2 - 12) - 2Q(\lambda^2 - 9) + (\lambda^2 - 3)^2}}{2\sqrt{6}(Q - \lambda)}.$$

(22)

The eigenvalues of the Jacobian matrix were found for each fixed point in Table 1. The results are shown in Table 2, where the eigenvalues $\mu_{f, \pm}$ are

$$\mu_{f, \pm} = \frac{1}{2} \left\{ -12 + \sqrt{6} \sqrt{x_f (-2Q + 3\lambda)} \right. + \left. \pm \sqrt{4(\lambda - 2Q) + 9(1 - Q + \lambda)} \right\}.$$

(23)

The fixed point (a) describes a radiation-dominated universe and in order to the fixed points be real and Ω_ϕ satisfy the nucleosynthesis bound $\Omega_\phi^{BBN} < 0.045$ [87] we should have $\lambda > \frac{20\sqrt{3}}{7}$ and $Q \leq \frac{9\lambda^2 - 800}{9\lambda}$. The eigenvalues were found numerically. For $\lambda = 10$ and the the upper limit for the interaction ($Q = 10/9$) we get the eigenvalues $\mu_1 = -0.7 + 2.1i$, $\mu_2 = -0.7 - 2.1i$ and $\mu_3 = 1$, so this critical point is a saddle point. Similar results are found for other values of λ and Q.

Both points (b) and (c) also describe the radiation era and are unstable or saddle points. The eigenvalues μ_2 and μ_3 of the point (b) can be either positive or negative, depending on the values of λ and Q. On the other hand, the first eigenvalue μ_1 is always positive. The same happens with the eigenvalues of the point (c) and in this case the interaction must be $Q > \sqrt{2}$ for the fixed points be real and $Q > 20/(3\sqrt{3})$ for $\Omega_\phi^{BBN} < 0.045$.

The matter-dominated universe is described by the saddle point (d) and also by the point (e), provided that Q is sufficiently large for the latter case. Whatever the value of the interaction all eigenvalues of the point (e) cannot be simultaneously negative.

The last fixed point (f) is an attractor and it describes the dark-energy dominated universe if either $\lambda \leq \sqrt{2}$ and $Q < \lambda$ or $\lambda > \sqrt{2}$ and $-\frac{2\lambda + \lambda^3}{4 + \lambda^2} \leq Q < \lambda$. The real part of the eigenvalues are negative for these range of values, thus the fixed point is stable or stable spiral. Its behavior is illustrated in Fig. 1, where we plot the phase plane with $\lambda = 1$ and $Q = 1/4$.

The allowed values of λ and Q, for the fixed points (a), (c) and (f), are shown in Fig. 2. From the figure we see that the fixed points (a) and (f) do not have common regions.
4.2 Interaction $Q\rho + \rho_m$

The dynamical system for the variables x, y, z and λ with the interaction proportional to $\rho\phi + \rho_m$ is

\[\frac{dx}{dN} = -3x + \sqrt{6}y^2\lambda - \sqrt{6}Q(1 - z^2) - xH^{-1}\frac{dH}{dN}, \]

\[\frac{dy}{dN} = -\sqrt{6}xy\lambda - yH^{-1}\frac{dH}{dN}. \]

The eigenvalues of the Jacobian matrix were found for each fixed point of the Table 3. The results are shown in Table 4, where

\[\mu_{el} = \frac{1}{4} \left(\lambda^2 - 5 - \sqrt{\mu} \right), \]

\[\frac{dz}{dN} = -2z - zH^{-1}\frac{dH}{dN}, \]

\[\frac{d\lambda}{dN} = -\sqrt{6}\lambda^2x(\Gamma - 1), \]

where

\[H^{-1}\frac{dH}{dN} = -\frac{3}{2} \left(1 + x^2 + y^2 + \frac{z^2}{3} \right). \]
The critical points are real with $0 < Q < 3$ for $0 < \lambda \leq \sqrt{2}$ and $0 < Q < \frac{27}{2 \lambda^4} - \frac{3}{3 \lambda^2}$. For these ranges of λ and Q the real part of the eigenvalues are negative, so the point is stable or stable spiral. The attractor point has $\Omega_\phi = 1$ and $w_\phi = w_{\text{eff}} = -1$ for $Q = \lambda$.

Therefore, both radiation and dark-energy-dominated universe can be described by the fixed points, however, none of them represent the matter era.

5 Conclusions

In the light of the linear dynamical systems theory we have studied coupled quintessence with dark matter with two different interactions: i) proportional to the energy density of the dark energy ρ_ϕ and ii) proportional to the sum of the two energy densities $\rho_m + \rho_\phi$. The results presented here enlarge the previous analysis in the literature, wherein the interaction has been only proportional to the energy density of the dark matter. In the case i) the transition of cosmological eras is fully achieved with a suitable sequence of fixed points. In the second case either radiation era or dark energy era can be described by the fixed points, but not the matter-dominated universe. Therefore, the second interaction does not provide the cosmological sequence: radiation \rightarrow matter \rightarrow dark energy. This is not the first time that an interaction proportional to the sum of the energy densities leads to cosmological disasters. A phenomenological model with that coupling suffers early-time instability for $w_d > -1$, as shown in [79, 80]. Further analysis for high redshifts and different coupling are summarized in [60].

Acknowledgements

We thank Elcio Abdalla for comments. This work is supported by CAPES and CNPq.

References

1. P. A. R. Ade et al. Planck 2015 results. XIII. Cosmological parameters. *Astron. Astrophys.*, 594:A13, 2016.
2. A. G. Riess et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. *Astron.J.*, 116:1009–1038, 1998.
3. S. Perlmutter et al. Measurements of Omega and Lambda from 42 high redshift supernovae. *Astrophys.J.*, 517:565–586, 1999.
4. C. Armendariz-Picon, V. F. Mukhanov, and P. J. Steinhardt. A Dynamical solution to the problem of a small cosmological constant and late time cosmic acceleration. *Phys. Rev. Lett.*, 85:4438–4441, 2000.
5. T. Padmanabhan. Accelerated expansion of the universe driven by tachyonic matter. *Phys. Rev.*, D66:021301, 2002.
6. J. S. Bagla, H. K. Jassal, and T. Padmanabhan. Cosmology with tachyon field as dark energy. *Phys.Rev.*, D67:063504, 2003.
Table 4 Eigenvalues and stability of the fixed points for the quintessence field with $Q(\rho_{\phi} + \rho_m)$.

Point	μ_1	μ_2	μ_3	Stability
(a)	2	see the main text	saddle	
(b)	$-\sqrt{\frac{2}{3}} - 3$	-1	1	saddle
(c)	$\sqrt{\frac{2}{3}} - 3$	$2 + \frac{1}{\sqrt{3}}$	saddle or unstable	
(d)	μ_{c1}	see the main text	saddle or unstable	
(e)	μ_{c2}	μ_{c3}	stable	

7. P. Brax and J. Martin. Quintessence and supergravity. Phys. Lett., B468:40–45, 1999.
8. E. J. Copeland, N. J. Nunes, and F. Rosati. Quintessence models in supergravity. Phys. Rev., D62:123503, 2000.
9. R. C. G. Landim. Cosmological tracking solution and the Super-Higgs mechanism. Eur. Phys. J., C76(8):430, 2016.
10. C. Armendariz-Picon. Could dark energy be vector-like? JCAP, 0407:007, 2004.
11. T. Koivisto and D. F. Mota. Vector Field Models of Inflation and Dark Energy. JCAP, 0808:021, 2008.
12. K. Bamba and S. D. Odintsov. Inflation and late-time cosmic acceleration in non-minimal Maxwell-$F(R)$ gravity and the generation of large-scale magnetic fields. JCAP, 0804:024, 2008.
13. V. Emelyanov and F. R. Klinkhamer. Possible solution to the main cosmological constant problem. Phys. Rev., D85:103508, 2012.
14. V. Emelyanov and F. R. Klinkhamer. Reconsidering a higher-spin-field solution to the main cosmological constant problem. Phys. Rev., D85:063522, 2012.
15. V. Emelyanov and F. R. Klinkhamer. Vector-field model with compensated cosmological constant and radiation-dominated FRW phase. Int. J. Mod. Phys., D21:1250025, 2012.
16. S. Kouwn, P. Oh, and C.-G. Park. Massive Photon and Dark Energy. Phys. Rev., D93(8):083012, 2016.
17. S. D. H. Hsu. Entropy bounds and dark energy. Phys. Lett., B594:13–16, 2004.
18. M. Li. A model of holographic dark energy. Phys. Lett., B603:1, 2004.
19. S. Nojiri and S. D. Odintsov. Unifying phantom inflation with late-time acceleration: Scalar phantom-non-phantom transition model and generalized holographic dark energy. Gen. Rel. Grav., 38:1285–1304, 2006.
20. D. Pavon and W. Zimdahl. Holographic dark energy and cosmic coincidence. Phys. Lett., B628:206–210, 2005.
21. B. Wang, Y.-G. Gong, and E. Abdalla. Transition of the dark energy equation of state in an interacting holographic dark energy model. Phys. Lett., B624:141–146, 2005.
22. B. Wang, Y. Gong, and E. Abdalla. Thermodynamics of an accelerated expanding universe. Phys. Rev., D74:083520, 2006.
23. B. Wang, C.-Y. Lin, and E. Abdalla. Constraints on the interacting holographic dark energy model. Phys. Lett., B637:357–361, 2006.
24. B. Wang, C.-Y. Lin, D. Pavon, and E. Abdalla. Thermodynamical description of the interaction between dark energy and dark matter. Phys. Lett., B662:1–6, 2008.
25. R. C. G. Landim. Holographic dark energy from minimal supergravity. Int. J. Mod. Phys., D25(4):1650050, 2016.
26. M. Li, X.-D. Li, S. Wang, and X. Zhang. Holographic dark energy models: A comparison from the latest observational data. JCAP, 0906:036, 2009.
27. M. Li, X.-D. Li, S. Wang, Y. Wang, and X. Zhang. Probing interaction and spatial curvature in the holographic dark energy model. JCAP, 0912:014, 2009.
28. M. Li, X.-D. Li, S. Wang, and Y. Wang. Dark Energy. Commun. Theor. Phys., 56:525–604, 2011.
29. S. Wang, Y. Wang, and M. Li. Holographic Dark Energy. 2016.
30. D. Stojkovic, G. D. Starkman, and R. Matsuo. Dark energy, the colored anti-de Sitter vacuum, and LHC phenomenology. Phys. Rev., D77:063006, 2008.
31. R. G. Landim and E. Abdalla. Metastable dark energy. Phys. Lett. B., 764:271, 2017.
32. E. Greenwood, E. Halstead, R. Poltis, and D. Stojkovic. Dark energy, the electroweak vacua and collider phenomenology. Phys. Rev., D79:103003, 2009.
33. E. Abdalla, L. L. Graef, and B. Wang. A Model for Dark Energy decay. Phys. Lett., B726:786–790, 2013.
34. A. Shafieloo, D. K. Hazra, V. Sahni, and A. A. Starobinsky. Metastable Dark Energy with Radioactive-like Decay. 2016.
35. E. J. Copeland, M. Sami, and S. Tsujikawa. Dynamics of dark energy. Int. J. Mod. Phys., D15:1753–1936, 2006.
36. S. Nojiri and S. D. Odintsov. Unified cosmic history in modified gravity: from F(R) theory to Lorentz non-invariant models. Phys. Rept., 505:59–144, 2011.
37. K. Bamba, S. Capozziello, S. Nojiri, and S. D. Odintsov. Dark energy cosmology: the equivalent description via different theoretical models and cosmography tests. Astrophys. Space Sci., 342:155–228, 2012.
38. G. Dvali, G. Gabadadze, and M. Porrati. 4D Gravity on a Brane in 5D Minkowski Space. *Phys. Lett. B*, 485:208, 2000.

39. S. Yin, B. Wang, E. Abdalla, and C. Lin. Transition of equation of state of effective dark energy in the Dvali-Gabadadze-Porrati model with bulk contents. *Phys.Rev. D*, 76:124026, 2007.

40. S. Jamali and M. Roshan. The phase space analysis of modified gravity (MOG). *Eur. Phys. J.*, C76(9):490, 2016.

41. G. R. Farrar and P. J. E. Peebles. Cosmology with a Time Variable Cosmological Constant. *Astrophys.J.*, 325:L17, 1988.

42. J. A. Frieman, C. T. Hill, and R. Watkins. Late time cosmological phase transitions. 1. Particle physics models and cosmic evolution. *Phys.Rev.*, D46:1226–1238, 1992.

43. J. A. Frieman, C. T. Hill, A. Stebbins, and I. Waga. Cosmology with ultralight pseudo Nambu-Goldstone bosons. *Phys. Rev. Lett.*, 75:2077, 1995.

44. R. R. Caldwell, R. Dave, and P. J. Steinhardt. Cosmological imprint of an energy component with general equation of state. *Phys. Rev. Lett.*, 80:1582, 1998.

45. C. Wetterich. The Cosmon model for an asymptotically vanishing time dependent cosmological 'constant'. *Astron.Astrophys.*, 301:321–328, 1995.

46. L. Amendola. Coupled quintessence. *Phys. Rev. D.*, D62:043511, 2000.

47. A. A. Costa, L. C. Olivari, and E. Abdalla. Quintessence with Yukawa Interaction. *Phys. Rev.*, D92(10):103501, 2015.

48. L. P. Chimento, A. S. Jakubi, D. Pavon, and W. Zimdahl. Interacting quintessence solution to the coincidence problem. *Phys.Rev.*, D67:083513, 2003.

49. G. Dvali, G. Gabadadze, and M. Porrati. 4D Gravity on a Brane in 5D Minkowski Space. *Phys. Lett. B*, 485:208, 2000.

50. A. R. Liddle and D. Wands. Exponential potentials and cosmological scaling solutions. *Phys.Rev. D*, 57:4686–4690, 1998.

51. E. J. Copeland, A. R. Liddle, and D. Wands. Interacting dark energy. *Phys.Rev. D*, 71:043501, 2005.

52. M. Azreg-Ainou. Phase-space analysis of the cosmological 3-fluid problem: Families of attractors and repellors. *Class. Quant. Grav.*, 30:205001, 2013.

53. X.-H. Zhai and Y.-B. Zhao. Dynamics of interacting dark energy models and their multi-field generalizations. *Phys.Rev. D*, 73:103504, 2006.

54. L. Amendola, M. Quartin, S. Tsujikawa, and I. Waga. Challenges for scaling cosmologies. *Phys.Rev.*, D74:023525, 2006.
73. X.-M. Chen, Y.-G. Gong, and E. N. Saridakis. Phase-space analysis of interacting phantom cosmology. *JCAP*, 0904:001, 2009.
74. N. Mahata and S. Chakraborty. Dynamical system analysis for DBI dark energy interacting with dark matter. *Mod. Phys. Lett. A*, 30(02):1550009, 2015.
75. R. C. G. Landim. Coupled tachyonic dark energy: a dynamical analysis. *Int. J. Mod. Phys.*, D24:1550085, 2015.
76. R. C. G. Landim. Coupled dark energy: a dynamical analysis with complex scalar field. *Eur. Phys. J.*, C76(1):31, 2016.
77. E. Abdalla, L. R. W. Abramo, L. Sodre, Jr., and B. Wang. Signature of the interaction between dark energy and dark matter in galaxy clusters. *Phys. Lett.*, B673:107–110, 2009.
78. J.-H. He and B. Wang. Effects of the interaction between dark energy and dark matter on cosmological parameters. *JCAP*, 0806:010, 2008.
79. J.-H. He, B. Wang, and E. Abdalla. Stability of the curvature perturbation in dark sectors’ mutual interacting models. *Phys. Lett.*, B671:139–145, 2009.
80. J. Valiviita, E. Majerotto, and R. Maartens. Instability in interacting dark energy and dark matter fluids. *JCAP*, 0807:020, 2008.
81. E. Abdalla, L. R. Abramo, and J. C. C. de Souza. Signature of the interaction between dark energy and dark matter in observations. *Phys. Rev.*, D82:023508, 2010.
82. M. B. Gavela, D. Hernandez, L. Lopez Honorez, O. Mena, and S. Rigolin. Dark coupling. *JCAP*, 0907:034, 2009. [Erratum: JCAP1005, E01(2010)].
83. J.-H. He, B. Wang, and E. Abdalla. Testing the interaction between dark energy and dark matter via latest observations. *Phys. Rev.*, D83:063515, 2011.
84. R. J. F. Marcondes, R. C. G. Landim, A. A. Costa, B. Wang, and E. Abdalla. Analytic study of the effect of dark energy-dark matter interaction on the growth of structures. *JCAP*, 1612(12):009, 2016.
85. T. Delubac et al. Baryon acoustic oscillations in the Lyδs forest of BOSS DR11 quasars. *Astron. Astrophys.*, 574:A59, 2015.
86. E. G. M. Ferreira, J. Quintin, A. A. Costa, E. Abdalla, and B. Wang. Evidence for interacting dark energy from BOSS. *Phys. Rev.*, D95(4):043520, 2017.
87. R. Bean, S. H. Hansen, and A. Melchiorri. Early universe constraints on a primordial scaling field. *Phys. Rev.*, D64:103508, 2001.