Hb H Interference on Measurement Of HbA1c With Ion-Exchange HPLC

Mehmet Agilli¹, Halil Yaman¹, Fevzi Nuri Aydin¹, Erdinc Cakir¹, Tuncer Cayci¹, Yasemin Gulcan Kurt¹, Emin Ozgur Akgul¹, Ibrahim Aydin¹

Department of Medical Biochemistry, Gulhane Military Medical Academy, Ankara, Turkey¹

Correspondence Author: Mehmet Agilli, M.D. Department of Medical Biochemistry, Gulhane Military Medical Academy, 06018 Etlik, Ankara, Turkey. mehmetagilli@yahoo.com Phone: +90 505 6829819 Fax: +90 312 3043300

Case report

ABSTRACT
In this article, an interference caused by hemoglobin H (Hb H), during the measurement of hemoglobin A1c (HbA1c) with ion exchange high pressure liquid chromatography (HPLC) method, was presented in blood sample of a 20-year-old male patient. HbA1c measurement was performed with Agilent 1200 HPLC system using a commercial Recipe HbA1c ion-exchange column. Hemoglobin electrophoresis was performed with Interlab G26 agarose electrophoresis automated compact system. HbA1c level was 18.2% and HbA0 level was 81.5% with ion-exchange HPLC method. Patient’s fasting serum glucose was assessed before HbA1c measurement and the result was 165 mg/dL (9.16 mmol/L). On the other hand, the result of HbA0 was 87.9%, Hb H was 10.8% and Hb A2 was 1.3% with electrophoresis. Whole blood test values were within reference ranges except MCV. MCV value was 79.6 fl. It is important to keep in mind that HbA1c level might be considered falsely high with ion-exchange HPLC method because of Hb H containing sample.

Key words: Hemoglobin H; Hemoglobin A1c, High Pressure Liquid Chromatography.

1. INTRODUCTION
According to International Federation of Clinical Chemistry (IFCC), hemoglobin A1c (HbA1c) is defined as hemoglobin that is irreversibly glycated at one or both N-terminal valines of the beta chains (1). HbA1c has been the most widely used and accepted test for diagnosing and monitoring the glycaemic control in individuals with diabetes (2).

Several methods are used to determine HbA1c levels; based on chemical, structural and charge characteristics of the molecule; such as electrophoresis, isoelectric focusing, high pressure liquid chromatography (HPLC), affinity chromatography, immune measurements. Because of the variety of measurement methods and the factors causing interference; standardization has not been achieved yet (3).

Hemoglobinopathy is one of the factors that causes interference. Cayci et al. has shown that increased Hb F levels, which is the major hemoglobin of fetal life, cause falsely high HbA1c results (4). It was reported that Hb F, Hb S, Hb C and Hb D also caused false HbA1c results when used HPLC method (5). National Glycohemoglobin Standardization Program (NGSP) was established by American Assosiation for Clinical Chemistry (AACC) to study for standardization of HbA1c measurement in 1996. NGSP has published several factors that cause interference in HbA1c measurement (6).

Alpha thalassemia is a common genetic disorder that is characterized by deficient or absent synthesis of alpha globin chains of the hemoglobin molecule. The α-thalassemias usually result from deletions in involving the α-globin genes, less commonly they are due to point (nondeletion) mutations. The incidence of alpha thalassemia is about 3 per cent in the Çukurova region at Southern Turkey (7).

There can be differences between several HPLC methods. Little et al. reported that, higher HbA1c results were obtained with affinity chromatography method than other HPLC methods in the presence of Hb E (8). This finding was supported with another study (9). Moiz et al. thought affinity chromatography was superior than other HPLC methods for measurement of HbA1c (10). However Tiran et al. compared boronate affinity chromatography method and ion-exchange HPLC method for measurement of HbA1c and found good correlation with each other and acceptable coefficient of variation (CV%) values for each method of HbA1c assay performance (11).

In our laboratory, HbA1c measurement performed with ion-exchange chromatography method using the Agilent 1200 instrument (Agilent technologies, USA) and HbA1c commercially kit was Recipe HbA1c (Recipe Chemicals – Instruments GmbH, Munich, Germany). This HPLC technique was certified by NGSP. Hemoglobin electrophoresis was performed with Interlab G26 agarose electrophoresis automated compact system (Via Rina Monti, Rome, Italy).

In this article, we wanted to draw attention the interference caused by Hb H, a variant hemoglobin, during the measurement of HbA1c with ion-exchange HPLC method in a sample from a 20-year-old patient whose fasting plasma glucose level was 165 mg/dL (9.16 mmol/L).
2. CASE REPORT

HbA1c assay was performed for a 20-year-old patient follow-up because of his elevated fasting plasma glucose level (165 mg/dL; 9.16 mmol/L). In our laboratory, we use HPLC device equipped with UV-1000 visible detector (Shimadzu Class-VP, Kyoto, Japan) and Recipe HbA1c assay kit (Recipe Chemicals–Instruments GmbH, Munich, Germany) for HbA1c measurement. The standard and control materials were appropriate for IFCC standards. Intraassay and interassay coefficient of variations (CVs) were 1.6% and 2.4%, respectively. Hemoglobin electrophoresis was performed with Interlab G26 (Via Rina Monti, Rome, Italy) device with Interlab SRE604K (Via Rina Monti, Rome, Italy) assay kit.

HbA1c and HbA0 were found 18.2% and 81.5%, respectively (Figure 1).

The very high level of HbA1c was disputable and we decided to do hemoglobin electrophoresis. Consequently, we established that Hb A1c result was 87.9%; Hb H result was 10.8% and Hb A2 result was 1.3% (Figure 2).

3. DISCUSSION

There are more than 30 methods for measurement of HbA1c and these methods could be interfered by many factors. There are several studies about interferences on measurement of HbA1c with HPLC. In this case report, it has been shown that Hb H and HbA1c peaks are overlapped on the chromatogram and caused falsely high HbA1c level. Pravatmuang et al. reported that they found HbA1c levels were falsely low with the presence of Hb H (12). They thought that the possible explanation of these observations might be the amount of glycated β chain which polymerized as β4 or Hb H, and it was evaluated as the first peak of the non-quantitating area of the chromatogram which caused the HbA1c level by HPLC to be very low. Conversely, Lee et al. found HbA1c levels were falsely higher with the presence of Hb H (13). Lee et al. reported Hb H and HbA1c peaks were overlapped on the chromatogram and this caused falsely high HbA1c levels.

However there are some methods for HbA1c assay which are not affected by hemoglobin electrophoresis. Consequently, we established that Hb A1c result was 87.9%; Hb H result was 10.8% and Hb A2 result was 1.3% (Figure 2).

REFERENCES

1. Genc S, Omer B, Aycan‐Ustyol E, Ince N, Bal F, Gur dol F. Evaluation of Turbidimetric Inhibition Immunoassay (TINIA) and HPLC Methods for Glycated Haemoglobin Determination. Journal of Clinical Laboratory Analysis. 2012, 26(6): 481-485.

2. Organization WH. Use of glycated haemoglobin (HbA1c) in the diagnosis of diabetes mellitus. Abbreviated report of a WHO consultation. Geneva, WHO, 2011: 1-25.

3. Stein DS, Lyles RH, Graham NM, Tassoni CJ, Margolick JB, Phair JP, Rinaldo C, Detels R, Saah A, Bilello J. Predicting clinical progression or death in subjects with early-stage human immunodeficiency virus (HIV) infection: a comparative analysis of quantification of HIV RNA, soluble tumor necrosis factor type II receptors, neopterin, and β2-microglobulin. Journal of Infectious Diseases. 1997; 176(5): 1161-1167.

4. Cayci T, Kurt YG, Aydin I, Yaman H, Cakir E. Interference of HbF in HbA1c measurement by high performance liquid chromatography method: a case report. Gulhane Med J. 2011; 53(3): 211-213.

5. Nadzimah N, Thevarajah M, Chew Y. Hemoglobin variants detected by hemoglobin A1c (HbA1c) analysis and the effects on HbA1c measurements. Int J Diabetes Dev Ctries. 2010, 30(2): 86-90.

6. Little RR, Sacks DB. HbA1c: how do we measure it and what does it mean? Current Opinion in Endocri-
