THE C-EIGENVALUE OF THIRD ORDER TENSORS AND ITS APPLICATION IN CRYSTALS

YANNAN CHEN*
School of Mathematical Sciences, South China Normal University
Guangzhou 510631, China

ANTAL JÁKLI
Liquid Crystal Institute, Kent State University
Kent, OH 44242, USA

LIQUN QI
Department of Applied Mathematics, The Hong Kong Polytechnic University
Hung Hom, Kowloon, Hong Kong, China

(Communicated by Jin-Yan Fan)

Abstract. In crystallography, piezoelectric tensors of various crystals play a crucial role in piezoelectric effect and converse piezoelectric effect. Generally, a third order real tensor is called a piezoelectric-type tensor if it is partially symmetric with respect to its last two indices. The piezoelectric tensor is a piezoelectric-type tensor of dimension three. We introduce C-eigenvalues and C-eigenvectors for piezoelectric-type tensors. Here, “C” names after Curie brothers, who first discovered the piezoelectric effect. We show that C-eigenvalues always exist, they are invariant under orthogonal transformations, and for a piezoelectric-type tensor, the largest C-eigenvalue and its C-eigenvectors form the best rank-one piezoelectric-type approximation of that tensor. This means that for the piezoelectric tensor, its largest C-eigenvalue determines the highest piezoelectric coupling constant. We further show that for the piezoelectric tensor, the largest C-eigenvalue corresponds to the electric displacement vector with the largest 2-norm in the piezoelectric effect under unit uniaxial stress, and the strain tensor with the largest 2-norm in the converse piezoelectric effect under unit electric field vector. Thus, C-eigenvalues and C-eigenvectors have concrete physical meanings in piezoelectric effect and converse piezoelectric effect. Finally, by numerical experiments, we report C-eigenvalues and associated C-eigenvectors for piezoelectric tensors corresponding to several piezoelectric crystals.

1. Introduction. In sciences and engineering, there are various third order tensors, such as second-order derivatives of the system of nonlinear equations in mathematics, third order susceptibility tensors in nonlinear optics study [12, 14], third order symmetric traceless-tensors in liquid crystal study [3, 7, 23], and piezoelectric...
tensors in crystal study [4, 8, 13, 17, 18, 26]. Among these third order tensors, the most popular one is the piezoelectric tensor, which plays the key role in piezoelectric effect and converse piezoelectric effect. Piezoelectricity was discovered by Jacques Curie and Pierre Curie in 1880 [4]. In the next year, the converse piezoelectric effect was predicted by Lippmann [16] and confirmed by Curies [5] immediately. Now it has wide applications in the production and detection of sound, electronic frequency generation, microbalances, generation of high voltages, and ultra fine focusing of optical assemblies [13].

Eigenvalues of higher order tensors were introduced and studied in the recent years [19, 21, 22]. Particularly, tensor eigenvalues were applied to third order symmetric traceless-tensors in liquid crystal study [3, 7, 23]. Can we also apply tensor eigenvalues to piezoelectric tensors? We found that to make it physically meaningful, we may introduce some new eigenvalue definitions for piezoelectric tensors. On the other hand, the new eigenvalue of tensors attracts attentions from many researchers and forms an active research areas [2, 15, 24].

In the next section, we introduce C-eigenvalues and C-eigenvectors for piezoelectric-type tensors. Here, “C” names after Curie brothers. A third order real tensor is called a piezoelectric-type tensor if it is partially symmetric with respect to its last two indices. For solid materials, the last two indices of the piezoelectric tensor is symmetric since the stress tensor is symmetric. Thus, for solid materials, the piezoelectric tensor is a piezoelectric-type tensor of dimension three. This is not true for liquid crystal, where there is dissipation [9, 10, 11]. We show that C-eigenvalues always exist, they are invariant under orthogonal transformations, and for a piezoelectric-type tensor, the largest C-eigenvalue and its C-eigenvectors form the best rank-one approximation of that tensor. This means that for the piezoelectric tensor, its largest C-eigenvalue determines the highest piezoelectric coupling constant. In addition, we count the number of C-eigenvalues of a piezoelectric-type tensor if it is finite.

In Section 3, we further show that for the piezoelectric tensor in solid crystal, the largest C-eigenvalue corresponds to the electric displacement vector with the largest 2-norm in the piezoelectric effect under unit uniaxial stress, and the strain tensor with the largest 2-norm in the converse piezoelectric effect under unit electric field vector. Thus, C-eigenvalues and C-eigenvectors have concrete physical meanings in piezoelectric effect and converse piezoelectric effect.

In Section 4, we compute C-eigenvalues and associated C-eigenvectors of typical piezoelectric tensors for various crystal classes.

Then, in Section 5, we show that the definition of C-eigenvalues for piezoelectric tensors is different from the definitions of matrix singular values if we look piezoelectric tensors as a 3×6 matrices [18, 26]. Moreover, upper and lower bounds of the largest C-eigenvalue of a piezoelectric-type tensor are established.

Our results are summarized in Section 6.

2. Spectral analysis of piezoelectric-type tensors. First, we introduce the definition of piezoelectric-type tensors [20]. Let $\mathbb{R}^{n \times n \times n}$ be the space of third-order n dimensional real tensors.

Definition 2.1. Let $\mathcal{A} = [a_{ijk}] \in \mathbb{R}^{n \times n \times n}$. If the last two indices of \mathcal{A} are symmetric, i.e., $a_{ijk} = a_{ikj}$ for all j and k, then \mathcal{A} is called a piezoelectric-type tensor.

Obviously, the number of independent elements of a piezoelectric-type tensor $\mathcal{A} \in \mathbb{R}^{n \times n \times n}$ is $\frac{1}{2}n^2(n + 1)$. For $\alpha, \beta \in \mathbb{R}$ and $\mathcal{A} = [a_{ijk}], \mathcal{B} = [b_{ijk}] \in \mathbb{R}^{n \times n \times n}$,
\(\alpha A + \beta B = [\alpha a_{ijk} + \beta b_{ijk}] \in \mathbb{R}^{n \times n \times n} \). The inner product of \(A \) and \(B \) is \(\langle A, B \rangle = \sum_{i,j,k} a_{ijk} b_{ijk} \). A nonnegative scalar
\[
\| A \|_F = \sqrt{\langle A, A \rangle}
\]
is the Frobenius norm of \(A \). For vectors \(x \in \mathbb{R}^n \) and \(y \in \mathbb{R}^n \), we denote a scalar
\[
x A y = \sum_{i,j,k} a_{ijk} x_i y_j y_k \in \mathbb{R}
\]
as a product of the piezoelectric tensor \(A \) with vectors \(x \) and \(y \). Moreover, we define
\[
A y = \begin{pmatrix}
\sum_{j,k} a_{1jk} y_j y_k \\
\vdots \\
\sum_{j,k} a_{njk} y_j y_k
\end{pmatrix} \in \mathbb{R}^n \quad \text{and} \quad x A y = \begin{pmatrix}
\sum_{i,j} x_i a_{1ij} y_j \\
\vdots \\
\sum_{i,j} x_i a_{nij} y_j
\end{pmatrix} \in \mathbb{R}^n.
\]

Let \(\lambda \) be a real number and \(x, y \in \mathbb{R}^n \) be unit vectors, i.e., \(x^\top x = 1 \) and \(y^\top y = 1 \). Elements of a rank-one piezoelectric-type tensor \(\lambda x \circ y \circ y \in \mathbb{R}^{n \times n \times n} \) are \(\lambda x \circ y \circ y_{ijk} = \lambda x_i y_j y_k \) for \(i, j, k \in \{1, 2, \ldots, n\} \). Here, "\(\circ \)" means the outer product. If a scalar \(\lambda \in \mathbb{R} \) and vectors \(x, y \in \mathbb{R}^n \) minimize the following optimization problem
\[
\min \left\{ \| A - \lambda x \circ y \circ y \|_F^2 : \lambda \in \mathbb{R}, x^\top x = 1, y^\top y = 1 \right\},
\]
then \(\lambda x \circ y \circ y \) is called the best rank-one piezoelectric-type approximation of \(A \).

Using these notations, we present the following definition of C-eigenvalues and C-eigenvectors of a piezoelectric-type tensor. Here, "C" names after Curie brothers.

Definition 2.2. Let \(A \in \mathbb{R}^{n \times n \times n} \) be a piezoelectric-type tensor. If there exist a scalar \(\lambda \in \mathbb{R} \), vectors \(x \in \mathbb{R}^n \) and \(y \in \mathbb{R}^n \) satisfying the following system
\[
\lambda x = x A y = \lambda y, \quad x^\top x = 1, \quad \text{and} \quad y^\top y = 1,
\]
then \(\lambda \) is called a C-eigenvalue of \(A \), \(x \) and \(y \) are called associated left and right C-eigenvectors, respectively.

We have the following theorem.

Theorem 2.3. Let \(A \) be a piezoelectric-type tensor. Then we have the following conclusions.

(a) There exist C-eigenvalues of \(A \) and associated left and right C-eigenvectors.

(b) Suppose that \(\lambda, x \) and \(y \) are a C-eigenvalue and its associated left and right C-eigenvectors of \(A \), respectively. Then
\[
\lambda = x A y.
\]
Furthermore, \((\lambda, x, -y) \), \((-\lambda, -x, y) \), and \((-\lambda, -x, -y) \) are also C-eigenvalues and their associated C-eigenvectors of \(A \).

(c) Denote the largest C-eigenvalue of \(A \) and its associated left and right C-eigenvectors as \(\lambda^* \) and \(x^* \) and \(y^* \), respectively. Then
\[
\lambda^* = \max \left\{ x A y : x^\top x = 1, y^\top y = 1 \right\}.
\]
Furthermore, \(\lambda^* x^* \circ y^* \circ y^* \) forms the best rank-one piezoelectric-type approximation of \(A \).
Proof. (a) We consider the following optimization problem
\[\max \{ xAy : x^\top x = 1, y^\top y = 1 \}. \] (4)
On one hand, since the objective function \(xAy \) is continuous in variables \(x \) and \(y \), and the feasible region \(\{(x, y) \in \mathbb{R}^n \times \mathbb{R}^n : x^\top x = 1, y^\top y = 1\} \) is compact, there exist vectors \(x^* \) and \(y^* \) that solve (4) with the maximal objective value \(\lambda^* \equiv x^*Ay^* \).

On the other hand, we write the Lagrangian of (4):
\[L(x, y, \mu_1, \mu_2) = -xAy + \frac{\mu_1}{2}(x^\top x - 1) + \mu_2(y^\top y - 1). \] (5)
By the Lagrangian multiplier method, for the optimal solution \((x^*, y^*) \), there exist multipliers \(\mu_1 \) and \(\mu_2 \) such that
\[
\begin{align*}
\frac{\partial L}{\partial x} &= -Ay^* + \mu_1 x^* = 0, \\
\frac{\partial L}{\partial y} &= -2x^*Ay^* + 2\mu_2 y^* = 0, \\
\frac{\partial L}{\partial \mu_1} &= \frac{1}{2}(x^\top x - 1) = 0, \\
\frac{\partial L}{\partial \mu_2} &= y^\top y - 1 = 0.
\end{align*}
\]
By \(x^\top x^* = y^\top y^* = 1 \), we have \(\mu_1^* = \mu_2^* = x^*Ay^* = \lambda^* \). Hence, \(\lambda^* \), \(x^* \) and \(y^* \) satisfy (2) and hence they are the \(C \)-eigenvalue and its associated left and right \(C \)-eigenvectors of \(A \). This proves the existence.

(b) It is straightforward to verify the assertion (b).

(c) By some calculations, we find
\[\|A - \lambda x \circ y \circ y\|^2_F = \|A\|^2_F - 2\lambda \langle A, x \circ y \circ y \rangle + \lambda^2 \|x\|^2 \|y\|^4. \]
Minimizing this square-cost with respect to \(\lambda \), we get \(\lambda = \langle A, x \circ y \circ y \rangle \) because of \(\|x\| = \|y\| = 1 \). By substituting \(\lambda = \langle A, x \circ y \circ y \rangle \) to the square-cost, we have
\[\|A - \lambda x \circ y \circ y\|^2_F = \|A\|^2 - \langle A, x \circ y \circ y \rangle^2. \]
Hence, there is a dual problem of (1) [25]:
\[\max \{ \langle A, x \circ y \circ y \rangle : x^\top x = 1, y^\top y = 1 \}. \]
Then, there exist vectors \(x^* \) and \(y^* \) such that
\[\langle A, x^* \circ y^* \circ y^* \rangle = \max \{ \langle A, x \circ y \circ y \rangle : x^\top x = 1, y^\top y = 1 \} \]
because a piezoelectric-type tensor \(A \) is partially symmetric with respect to the later two indices. This yields (1). Here, \(\langle A, x^* \circ y^* \circ y^* \rangle = x^*Ay^*y^* = \lambda^* \) is the largest \(C \)-eigenvalue of \(A \), \(x^* \) and \(y^* \) are its associated left and right \(C \)-eigenvectors respectively.

By Theorem 2.3 (c), \(\lambda^* x^* \circ y^* \circ y^* \) forms the best rank-one piezoelectric-type approximation of \(A \). This implies that for the piezoelectric tensor \(A \), its largest \(C \)-eigenvalue determines the highest piezoelectric coupling constant, and \(y^* \) is the corresponding direction of the stress where this appears. Thus, the largest \(C \)-eigenvalue of the piezoelectric tensor has concrete physical meaning. In the next section, we will further discuss its meanings.

Next, we show that \(C \)-eigenvalues of a piezoelectric-type tensor \(A = [a_{ijk}] \) are invariant under orthogonal transformations. Let \(Q = [q_{ir}] \in \mathbb{R}^{n \times n} \) be an orthogonal matrix. We define a new tensor \(AQ^3 = [q_{rst}] \in \mathbb{R}^{n \times n \times n} \) in which elements are
\[[AQ^3]_{rst} = \sum_{i,j,k} a_{ijk}q_{ir}q_{js}q_{kt}. \]
THE C-EIGENVALUE OF THIRD ORDER TENSORS

for \(r, s, t = 1, 2, \ldots, n\). Obviously, \(AQ^3\) is also a piezoelectric-type tensor.

Theorem 2.4. Suppose that \(Q \in \mathbb{R}^{n \times n}\) is an orthogonal matrix. Let \(\lambda, x\) and \(y\) be a C-eigenvalue and its associated C-eigenvectors of a piezoelectric-type tensor \(A \in \mathbb{R}^{n \times n \times n}\). Then, \(\lambda, Q^\top x\) and \(Q^\top y\) are a C-eigenvalue and its associated C-eigenvectors of \(AQ^3\).

Proof. We look at the \(r\)th component of a vector \((AQ^3)(Q^\top y)(Q^\top y)\):

\[
[(AQ^3)(Q^\top y)(Q^\top y)]_r = \sum_{s,t} [AQ^3]_{rst} [Q^\top y]_s [Q^\top y]_t
\]

\[
= \sum_{s,t} \left(\sum_{i,j,k} a_{ijk} q_{ir} q_{js} q_{kt} \right) \left(\sum_{j} q_{js} y_j \right) \left(\sum_{k} q_{kt} y_k \right)
\]

\[
= \sum_{i} q_{ir} \left(\sum_{j,k} a_{ijk} \sum_{s,j} q_{js} q_{js} y_j \sum_{t,k} q_{kt} q_{kt} y_k \right)
\]

\[
= \sum_{i} q_{ir} \left(\sum_{j,k} a_{ijk} [QQ^\top y]_j [QQ^\top y]_k \right)
\]

\[
= \sum_{i} q_{ir} \left(\sum_{j,k} a_{ijk} y_j y_k \right)
\]

\[
= \sum_{i} q_{ir} [Ayy]_i,
\]

where matrix \(Q\) satisfies \(QQ^\top = I\). Then, we get \((AQ^3)(Q^\top y)(Q^\top y) = Q^\top (Ayy)\).

From \(Ayy = \lambda x\), we immediately get an equation

\[
(AQ^3)(Q^\top y)(Q^\top y) = \lambda Q^\top x.
\]

Similarly, we have

\[
(Q^\top x)(AQ^3)(Q^\top y) = \lambda Q^\top y.
\]

In addition,

\[
(Q^\top x)^\top (Q^\top x) = (Q^\top y)^\top (Q^\top y) = 1.
\]

Hence, \(\lambda\) is a C-eigenvalue of \(AQ^3\), \(Q^\top x\) and \(Q^\top y\) are its associated C-eigenvectors.

Several interesting theorems on the inclusion intervals of C-eigenvalues for piezoelectric-type tensors were studied by [2, 15, 24].

Motivated by the concept of equivalence class of Z-eigenpairs of tensors [1], we introduce equivalence class of C-eigenvalues and associated C-eigenvectors of piezoelectric-type tensors. Recalling Theorem 2.3(b), if \((\lambda, x, y)\) are a C-eigenvalue and associated C-eigenvectors of the piezoelectric-type tensor \(A\), we know that \((\lambda, x, -y), (-\lambda, -x, y)\), and \((-\lambda, -x, -y)\) are also C-eigenvalues and associated C-eigenvectors of \(A\). These four C-eigenvalues and associated C-eigenvectors are considered as an equivalence class of \(A\). Then, we can establish the following theorem.
Theorem 2.5. If a piezoelectric-type tensor \(A \in \mathbb{R}^{n \times n \times n} \) has finitely many equivalence classes of C-eigenvalues and associated C-eigenvectors, then their number counted with multiplicity is equal to
\[
\frac{3^n - 1}{2}.
\]

Proof. Given a piezoelectric-type tensor \(A \in \mathbb{R}^{n \times n \times n} \), we define a tensor \(B \in \mathbb{R}^{n \times n \times n \times n} \) whose entries are
\[
b_{ijkl} \equiv \sum_{p=1}^{n} a_{pij}a_{plt},
\]
for \(i, j, k, l \in \{1, 2, \ldots, n\} \). For \(y \in \mathbb{R}^n \), we denote a vector \(By^3 \in \mathbb{R}^n \) in which elements are
\[
(By^3)_\ell \equiv \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} b_{ijkl}y_iy_jy_k = \sum_{p=1}^{n} \left(\sum_{i=1}^{n} \sum_{j=1}^{n} a_{pij}y_iy_j \right) a_{plt}y_k.
\]
Hence, we have \(By^3 = (Ayy)Ay \). Next, we will prove that the number of equivalence classes of C-eigenvalues and associated C-eigenvectors of \(A \) is equal to the number of equivalence classes of Z-eigenpairs of \(B \).

On one hand, if \((\lambda, x, y)\) are a C-eigenvalue and associated C-eigenvectors of \(A \) and hence satisfy (2), we have
\[
By^3 = (Ayy)Ay = \lambda xAy = \lambda^3 y.
\]
That is to say, \((\lambda^2, y)\) is an equivalence class of Z-eigenpairs of \(B \). On the other hand, if \((\bar{\lambda}, \bar{y})\) is an equivalence class of Z-eigenpairs of \(B \). We define
\[
\lambda = \sqrt{\frac{\lambda^2}{||\bar{y}||}}, \quad x = \frac{A\bar{y}y}{||A\bar{y}y||}, \quad \text{and} \quad y = \frac{\bar{y}}{||\bar{y}||}.
\]
Then, because \((A\bar{y}y)Ay = B\bar{y}^3 = \bar{\lambda}^2 \bar{y}\), we have \(||A\bar{y}y||^2 = \bar{\lambda}^2 ||\bar{y}||^2 = \lambda^2 ||\bar{y}||^4\) and hence
\[
\lambda = \frac{||A\bar{y}y||}{||\bar{y}||^2}.
\]
It yields that
\[
Ayy = \frac{A\bar{y}y}{||\bar{y}||^2} = \frac{x ||A\bar{y}y||}{||\bar{y}||^2} = \lambda x
\]
and
\[
xAy = \frac{(A\bar{y}y)A\bar{y}}{||A\bar{y}y|| ||\bar{y}||} = \frac{\bar{\lambda}^2 \bar{y}}{\lambda ||\bar{y}||^3} = \lambda y.
\]
Hence, \((\lambda, x, y)\) is an equivalence class of C-eigenvalues and associated C-eigenvectors of \(A \).

Finally, from [1, Theorem 1.2], if the number of equivalence classes of Z-eigenpairs of \(B \) is finite, the number of equivalence classes is \(\frac{3^n - 1}{2}\). Then, this theorem follows from this counting immediately.
3. **Applications in piezoelectric effect and converse piezoelectric effect.** In the last section, we showed that for the piezoelectric tensor, the largest C-eigenvalue of \(\mathbf{A} \) determines the highest piezoelectric coupling constant, and \(\mathbf{y}^* \) is the corresponding direction of the stress where this appears. We now further discuss its physical meanings.

For non-centrosymmetric materials, the linear piezoelectric equation is expressed as

\[
\mathbf{P}_i = \sum_{j,k} a_{ijk} T_{jk},
\]

where \(\mathbf{A} = [a_{ijk}] \in \mathbb{R}^{3 \times 3 \times 3} \) is a piezoelectric tensor, \(T \in \mathbb{R}^{3 \times 3} \) is the stress tensor, and \(\mathbf{P} \) is the electric change density displacement (polarization). Since \(\mathbf{A} \) is a piezoelectric-type tensor, the last two indices of \(\mathbf{A} \) are symmetric, i.e., \(a_{ijk} = a_{ikj} \) for all \(j \) and \(k \). Hence, there are 18 independent elements in \(\mathbf{A} \).

What situations trigger the extreme piezoelectricity under unit uniaxial stress? An example of uniaxial stress is the stress in a long, vertical rod loaded by hanging a weight on the end [18, Page 90]. In this case, the stress tensor could be rewritten as \(\mathbf{T} = \mathbf{yy}^\top \) with \(\mathbf{y}^\top \mathbf{y} = 1 \). Then, we consider the following problem

\[
\begin{align*}
\max & \quad \| \mathbf{P} \|_2 \\
\text{s.t.} & \quad \mathbf{P} = \mathbf{Ayy}, \quad \mathbf{y}^\top \mathbf{y} = 1.
\end{align*}
\]

Using a dual norm, we have \(\| \mathbf{P} \|_2 = \max_{\mathbf{x}^\top \mathbf{x} = 1} \mathbf{x}^\top \mathbf{P} = \max_{\mathbf{x}^\top \mathbf{x} = 1} \mathbf{x}^\top \mathbf{Ayy} \). Hence, it suffices to consider the optimization problem

\[
\begin{align*}
\max & \quad \mathbf{x}^\top \mathbf{Ayy} \\
\text{s.t.} & \quad \mathbf{x}^\top \mathbf{x} = 1, \quad \mathbf{y}^\top \mathbf{y} = 1.
\end{align*}
\]

We denote \((\mathbf{x}^*, \mathbf{y}^*)\) as the optimal solution of the above optimization problem. Then, \(\lambda^* = \mathbf{x}^* \mathbf{A} \mathbf{y}^* \) is the largest C-eigenvalue of the piezoelectric tensor \(\mathbf{A} \), and \(\mathbf{y}^* \) is the unit uniaxial direction that the extreme piezoelectric effect along took place. Then we have the following theorem.

Theorem 3.1. Suppose that \(\lambda^*, \mathbf{x}^* \) and \(\mathbf{y}^* \) are the largest C-eigenvalue and its associated C-eigenvectors of the piezoelectric tensor \(\mathbf{A} \). Then, \(\lambda^* \) is the maximum value of the 2-norm of the electric polarization under a unit uniaxial stress along direction \(\mathbf{y}^* \).

The linear equation for the converse piezoelectric effect is

\[
\mathbf{S}_{jk} = \sum_i a_{ijk} \mathbf{E}_i,
\]

where \(\mathbf{S} \) is the strain tensor and \(\mathbf{E} \) is the electric field strength. Let \(\| \cdot \|_2 \) be the matrix spectral norm, i.e., \(\| \mathbf{S} \|_2 = \max_{\mathbf{y}^\top \mathbf{y} = 1} \mathbf{y}^\top \mathbf{S} \mathbf{y} \). Now, we maximize the spectral norm of \(\mathbf{S} \):

\[
\begin{align*}
\max & \quad \| \mathbf{S} \|_2 \\
\text{s.t.} & \quad \mathbf{S}_{jk} = \sum_i \mathbf{E}_i a_{ijk} \quad \forall j, k \in \{1, 2, 3\}, \quad \| \mathbf{E} \| = 1.
\end{align*}
\]

Since \(\| \mathbf{S} \|_2 = \max_{\mathbf{y}^\top \mathbf{y} = 1} \mathbf{y}^\top \mathbf{S} \mathbf{y} = \max_{\mathbf{y}^\top \mathbf{y} = 1} \mathbf{E} \mathbf{Ayy} \), we rewrite (8) as follows

\[
\max \{ \mathbf{E} \mathbf{Ayy} : \mathbf{E}^\top \mathbf{E} = 1, \mathbf{y}^\top \mathbf{y} = 1 \}.
\]
We denote \((E^*, y^*)\) as the optimal solution of the above optimization problem. Then, \(\lambda^* = E^*Ay^*y^*\) is the largest C-eigenvalue of \(A\), \(E^*\) and \(y^*\) are its associated left and right C-eigenvectors.

Theorem 3.2. Suppose that \(\lambda^*, x^*\) and \(y^*\) are the largest C-eigenvalue and its associated C-eigenvectors of the piezoelectric tensor \(A\). Then, \(\lambda^*\) is the largest spectral norm of a strain tensor generated by the converse piezoelectric effect under unit electric field strength \(\|x^*\| = 1\).

4. C-Eigenvalues for piezoelectric tensors

Owing to the crystallographic symmetry of materials, there are 32 classes in crystals [8]. However, for 11 classes in crystals possing the center of symmetry, piezoelectricity vanishes. For the class 432, piezoelectric changes cancel each other. Hence, piezoelectricity may exist in the remaining 20 crystallographic classes. We examine some typical crystals in these classes in this section.

By Theorem 2.3 (b), we know that \((-\lambda, -x, y), (\lambda, x, -y),\) and \((-\lambda, -x, -y)\) are C-eigenvalues and associated C-eigenvectors of a piezoelectric tensor if \(\lambda\) is a C-eigenvalue and \(x, y\) are the associated C-eigenvectors of the piezoelectric tensor. In this section, we use \((\lambda, x, y)\) to present a equivalence class of these four C-eigenvalues and associated C-eigenvectors of the piezoelectric tensor for compactness.

Piezoelectric tensors of crystals have special structures owing to the symmetry. First, we consider crystals in 23 and \(\bar{4}3m\) crystallographic point groups. There is only one independent parameter in the corresponding piezoelectric tensor \(A(\alpha)\):

\[
a_{123} = a_{213} = a_{312} = -\alpha,
\]

where \(\alpha \neq 0\). Other elements of \(A(\alpha)\) are zeros. Then, we have the following proposition, which is consistent with Theorem 2.5.

Proposition 1. There are 13 equivalence classes of C-eigenvalues and associated C-eigenvectors of \(A(\alpha)\).

Proof. We solve the polynomial system (2) for \(A(\alpha)\):

\[
\begin{align*}
-2\alpha y_2 y_3 &= \lambda x_1, \\
-2\alpha y_1 y_3 &= \lambda x_2, \\
-2\alpha y_1 y_2 &= \lambda x_3, \\
-\alpha x_2 y_3 - \alpha x_3 y_2 &= \lambda y_1, \\
-\alpha x_1 y_3 - \alpha x_3 y_1 &= \lambda y_2, \\
-\alpha x_1 y_2 - \alpha x_2 y_1 &= \lambda y_3, \\
x_1^2 + x_2^2 + x_3^2 &= 1, \\
y_1^2 + y_2^2 + y_3^2 &= 1.
\end{align*}
\]

If \(\lambda = 0\), we know two of \(y_1, y_2, y_3\) are zeros from (9a)-(9c) and (9h). Assume \(y = (\pm 1, 0, 0)^T\). By (9e)-(9f), we have \(x_2 = x_3 = 0\). In addition, \(x_1 = \pm 1\) by (9g). Hence, we get the solution

\[
\lambda_1^* = 0, \quad x_1^* = (1, 0, 0)^T, \quad y_1^* = (1, 0, 0)^T.
\]

Similarly, we have

\[
\begin{align*}
\lambda_2^* &= 0, \quad x_2^* = (0, 1, 0)^T, \quad y_2^* = (0, 1, 0)^T, \\
\lambda_3^* &= 0, \quad x_3^* = (0, 0, 1)^T, \quad y_3^* = (0, 0, 1)^T.
\end{align*}
\]
Next, we consider the case that $\lambda \neq 0$ and $y_3 = 0$. By (9a)-(9b), we get $x_1 = x_2 = 0$. In addition, by (9b), we obtain $x_3 = \pm 1$. From (9d)-(9e), we know $\mp \alpha y_2 = \lambda y_1$ and $\mp \alpha y_1 = y_2$. Then, $\lambda y_1 y_2 = \mp \alpha y_2^2 = \mp \alpha y_1^2$. Hence, $y_1^2 = y_2^2 = \frac{1}{2}$ by (9h). In short, we have two solutions
\[
\lambda_4^* = \alpha, \quad x_4^* = (0, 0, -1)^\top, \quad y_4^* = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)^\top,
\]
and
\[
\lambda_5^* = \alpha, \quad x_5^* = (0, 0, 1)^\top, \quad y_5^* = \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0\right)^\top.
\]
Using a similar approach, we obtain four more solutions for the case of $\lambda \neq 0$ and $y_2 = 0$ and the case of $\lambda \neq 0$ and $y_1 = 0$:
\[
\begin{align*}
\lambda_6^* &= \alpha, \quad x_6^* = (0, -1, 0)^\top, \quad y_6^* = \left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right)^\top, \\
\lambda_7^* &= \alpha, \quad x_7^* = (0, 1, 0)^\top, \quad y_7^* = \left(\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}}\right)^\top, \\
\lambda_8^* &= \alpha, \quad x_8^* = (-1, 0, 0)^\top, \quad y_8^* = \left(0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)^\top, \\
\lambda_9^* &= \alpha, \quad x_9^* = (1, 0, 0)^\top, \quad y_9^* = \left(0, -\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)^\top.
\end{align*}
\]
Finally, we consider the case that $y_1 \neq 0$, $y_2 \neq 0$, $y_3 \neq 0$, and $\lambda \neq 0$. From (9a)-(9c), we know $x_1 \neq 0$, $x_2 \neq 0$, and $x_3 \neq 0$. By (9a)-(9b), we have
\[
\frac{x_1}{y_1} = \frac{y_2}{x_2} = t \neq 0.
\]
Then, by multiplying t to both sides of (9d), we get $-\alpha x_1 y_3 - \alpha x_3 y_1 t^2 = \lambda y_2$. Combining this equation and (9e), we get $-\alpha x_3 y_1 (t^2 - 1) = 0$. Hence,
\[
t^2 = 1, \quad x_1^2 = x_2^2, \quad \text{and} \quad y_1^2 = y_2^2.
\]
Similarly, we have $x_1^2 = x_3^2$ and $y_1^2 = y_3^2$. By (9g) and (9h), we have $x_1^2 = x_2^2 = x_3^2 = \frac{1}{3}$ and $y_1^2 = y_2^2 = y_3^2 = \frac{1}{3}$. In a word, we obtain four more solutions
\[
\begin{align*}
\lambda_{10}^* &= \frac{2\alpha}{\sqrt{3}}, \quad x_{10}^* = \left(-\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}\right)^\top, \quad y_{10}^* = \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)^\top, \\
\lambda_{11}^* &= \frac{2\alpha}{\sqrt{3}}, \quad x_{11}^* = \left(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}\right)^\top, \quad y_{11}^* = \left(\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)^\top, \\
\lambda_{12}^* &= \frac{2\alpha}{\sqrt{3}}, \quad x_{12}^* = \left(-\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)^\top, \quad y_{12}^* = \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}\right)^\top, \\
\lambda_{13}^* &= \frac{2\alpha}{\sqrt{3}}, \quad x_{13}^* = \left(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)^\top, \quad y_{13}^* = \left(\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}\right)^\top.
\end{align*}
\]
The proof is complete. \qed

Now, we are presenting C-eigenvalues and associated C-eigenvectors of piezoelectric tensors arising from known piezoelectric materials with different symmetries. Here, coefficients of piezoelectric tensors are measured in [6] with unit (pC/N) that is omitted for convenience. We note that “p” means pico (10^{-12}), “C” stands for coulomb (electric), and “N” is newton (force).
Example 1. The compound VFeSb belongs to the 43m crystallographic point group [6]. Nonzero coefficients of the piezoelectric tensor \mathcal{A}_{VFeSb} are

$$a_{123} = a_{213} = a_{312} = -3.68180667.$$

By Proposition 1, we find that the largest C-eigenvalue of \mathcal{A}_{VFeSb} is about 4.25138. In remainder examples, the polynomial system (2) of C-eigenvalues are solved by the function NSolve in Mathematica. Numerical results are trustable up to numerical error.

Example 2. The piezoelectricity of α-quartz (SiO_2) crystal were discovered by Curie brothers in 1880 [4]. The α-quartz belongs to the 32 crystallographic point group [8]. Hence, there are two independent parameters in the piezoelectric tensor $\mathcal{A}_{\text{SiO}_2}$:

$$a_{111} = -a_{122} = -a_{212} = -0.13685 \quad \text{and} \quad a_{123} = -a_{213} = -0.009715.$$

Other elements of the piezoelectric tensor are zeros. Positive C-eigenvalue of $\mathcal{A}_{\text{SiO}_2}$ and associated C-eigenvectors are reported in Table 1.

No.	λ	\mathbf{x}^\top	\mathbf{y}^\top
1	0.137536	1.0 0.0 0.0	0.0 0.997515 -0.0704604
2	0.137536	-0.5 0.866025 0.0	0.863873 0.498757 0.0704604
3	0.137536	-0.5 -0.866025 0.0	0.863873 -0.498757 -0.0704604
4	0.13685	-1.0 0.0 0.0	1.0 0.0 0.0
5	0.13685	0.5 0.866025 0.0	0.5 0.866025 0.0
6	0.13685	0.5 -0.866025 0.0	0.5 -0.866025 0.0
7	0.000686228	-1.0 0.0 0.0	0.0 0.0704604 0.997515
8	0.000686228	0.5 -0.866025 0.0	0.0610205 0.0352302 -0.997515
9	0.000686228	0.5 0.866025 0.0	0.0610205 -0.0352302 0.997515

Example 3. The compound Cr$_2$AgBiO$_8$ belongs to the 4 crystallographic point group [6]. There are four independent parameters in the piezoelectric tensor $\mathcal{A}_{\text{Cr}_2\text{AgBiO}_8}$

$$a_{123} = a_{213} = -0.22163, \quad a_{113} = -a_{223} = 2.608665,$$

$$a_{311} = -a_{322} = 0.152485, \quad \text{and} \quad a_{312} = -0.37153.$$

Other elements of the piezoelectric tensor are zeros. Then, positive C-eigenvalue of $\mathcal{A}_{\text{Cr}_2\text{AgBiO}_8}$ and associated C-eigenvectors are reported in Table 2.

Example 4. The compound RbTaO$_3$ belongs to the 3m crystallographic point group [6]. There are four independent parameters in the piezoelectric tensor $\mathcal{A}_{\text{RbTaO}_3}$

$$a_{113} = a_{223} = -8.40955, \quad a_{222} = -a_{212} = -a_{211} = -5.412525,$$

$$a_{311} = a_{322} = -4.3031, \quad \text{and} \quad a_{333} = -5.14766.$$

Other elements of the piezoelectric tensor are zeros. Positive C-eigenvalue of $\mathcal{A}_{\text{RbTaO}_3}$ and associated C-eigenvectors are reported in Table 3.
Table 2. Positive C-eigenvalues of the piezoelectric tensor of $\text{Cr}_2\text{AgBiO}_8$.

No.	λ	\mathbf{x}^\top	\mathbf{y}^\top				
1	2.6258	0.872141	0.48317	0.0769254	0.589036	-0.394962	0.705012
2	2.6258	-0.872141	-0.48317	-0.0769254	0.589036	-0.394962	-0.705012
3	2.6258	-0.48317	0.872141	-0.0769254	0.394962	0.589036	0.705012
4	2.6258	0.48317	-0.872141	0.0769254	0.394962	0.589036	-0.705012
5	2.61806	0.961197	-0.275862	0.0	0.693742	0.136827	0.707107
6	2.61806	-0.961197	0.275862	0.0	0.693742	0.136827	-0.707107
7	2.61806	0.275862	0.961197	0.0	0.136827	-0.693742	0.707107
8	2.61806	-0.275862	-0.961197	0.0	0.136827	-0.693742	-0.707107
9	0.401605	0.0	0.0	1.0	0.830569	-0.556916	0.0
10	0.401605	0.0	0.0	-1.0	0.830569	0.556916	0.0

Table 3. Positive C-eigenvalues of the piezoelectric tensor of RbTaO_3.

No.	λ	\mathbf{x}^\top	\mathbf{y}^\top				
1	12.4234	0.804378	0.464408	-0.370541	0.695227	0.401389	-0.596277
2	12.4234	-0.804378	0.464408	-0.370541	0.695227	-0.401389	0.596277
3	12.4234	0.0	-0.928816	-0.370541	0.0	0.802779	0.596277
4	7.82245	0.677808	-0.391333	-0.622442	0.49743	-0.287191	-0.818587
5	7.82245	-0.677808	-0.391333	-0.622442	0.49743	0.287191	0.818587
6	7.82245	0.0	0.782666	-0.622442	0.0	0.574382	-0.818587
7	6.91463	0.677894	-0.391382	-0.622318	0.5	0.866025	0.0
8	6.91463	-0.677894	-0.391382	-0.622318	0.5	-0.866025	0.0
9	6.91463	0.0	0.782764	-0.622318	1.0	0.0	0.0
10	5.14766	0.0	0.0	-1.0	0.0	0.0	1.0
11	4.38052	0.0247105	0.0142666	-0.999593	0.826334	0.477084	0.299271
12	4.38052	-0.0247105	0.0142666	-0.999593	0.826334	-0.477084	-0.299271
13	4.38052	0.0	-0.0285332	-0.999593	0.0	0.954168	-0.299271

Example 5. The compound NaBiS_2 belongs to the $mm2$ crystallographic point group [6]. There are five independent parameters in the piezoelectric tensor $\mathbf{A}_{\text{NaBiS}_2}$

$$
\begin{align*}
 a_{113} &= -8.90808, & a_{223} &= -0.00842, & a_{311} &= -7.11526, \\
 a_{322} &= -0.6222, & a_{333} &= -7.93831.
\end{align*}
$$

Other elements of the piezoelectric tensor are zeros. Positive C-eigenvalue of $\mathbf{A}_{\text{NaBiS}_2}$ and associated C-eigenvectors are reported in Table 4.

Example 6. The compound LiBiB_2O_5 belongs to the 2 crystallographic point group [6]. There are eight independent parameters in the piezoelectric tensor $\mathbf{A}_{\text{LiBiB}_2\text{O}_5}$

$$
\begin{align*}
 a_{123} &= 2.35682, & a_{112} &= 0.34929, & a_{211} &= 0.16101, & a_{222} &= 0.12562, \\
 a_{233} &= 0.1361, & a_{313} &= -0.05587, & a_{323} &= 6.91074, & a_{332} &= 2.57812.
\end{align*}
$$

Other elements of the piezoelectric tensor are zeros. Then, positive C-eigenvalue of $\mathbf{A}_{\text{LiBiB}_2\text{O}_5}$ and associated C-eigenvectors are reported in Table 5.
Table 4. Positive C-eigenvalues of the piezoelectric tensor of NaBiS$_2$.

No.	λ	x^\top	y^\top	
1	11.6674	0.762919	0.0 -0.646494	0.693139 0.0 -0.720804
2	11.6674	-0.762919	0.0 -0.646494	0.693139 0.0 0.720804
3	7.93831	0.0 0.0	-1.0	0.0 0.0 1.0
4	7.11526	0.0 0.0	-1.0	1.0 0.0 0.0
5	0.6222	0.0 0.0	-1.0	0.0 1.0 0.0

Example 7. The compound KBi$_2$F$_7$ belongs to the 1 crystallographic point group [6]. There are eighteen independent parameters in the piezoelectric tensor $A_{KBi_2F_7}$:

\[
\begin{align*}
a_{111} &= 12.64393, & a_{122} &= 1.08802, & a_{133} &= 4.14350, & a_{123} &= 1.59052, \\
a_{113} &= 1.96801, & a_{112} &= 0.22465, & a_{211} &= 2.59187, & a_{222} &= 0.08263, \\
a_{233} &= 0.81041, & a_{223} &= 0.51165, & a_{213} &= 0.71432, & a_{212} &= 0.10570, \\
a_{311} &= 1.51254, & a_{322} &= 0.68235, & a_{333} &= -0.23019, & a_{323} &= 0.19013, \\
& & a_{313} &= 0.39030, & a_{312} &= 0.08381.
\end{align*}
\]

Positive C-eigenvalue of $A_{KBi_2F_7}$ and associated C-eigenvectors are reported in Table 6.

Example 8. The compound BaNiO$_3$ belongs to the 6 crystallographic point group [6]. There are three independent parameters in the piezoelectric tensor A_{BaNiO_3}:

\[
\begin{align*}
a_{113} &= a_{223} = 0.038385, & a_{311} &= a_{322} = 6.89822, & a_{333} &= 27.4628.
\end{align*}
\]

Other elements of the piezoelectric tensor are zeros. There exists a C-eigenvalue of A_{BaNiO_3} with infinitely many C-eigenvectors. We report positive C-eigenvalue of A_{BaNiO_3} and associated C-eigenvectors in Table 7.

Table 5. Positive C-eigenvalues of the piezoelectric tensor of LiBiB$_2$O$_5$.

No.	λ	x^\top	y^\top	
1	7.3762	0.302351	0.0148322 0.953081	0.234203 0.707114 0.667187
2	7.3762	-0.302351	0.0148322 -0.953081	0.234203 -0.707114 0.667187
3	0.499616	0.902379	0.320695 -0.287865	0.675213 -0.698513 -0.236998
4	0.499616	-0.902379	0.320695 0.287865	0.675213 0.698513 -0.236998
5	0.205796	0.0 1.0	0.0	0.780252 0.0 -0.625465
6	0.12562	0.0 1.0	0.0	0.0 1.0 0.0
7	0.0913135	0.0 1.0	0.0	0.625465 0.0 0.780252

Table 6. Positive C-eigenvalues of the piezoelectric tensor of KBi$_2$F$_7$.

No.	λ	x^\top	y^\top		
1	13.5021	0.970501	0.209737	0.118907	0.972258 0.0506481 0.228363
2	4.46575	0.981961	0.189047	-0.00301752	0.22771 -0.414908 -0.880908
3	0.544863	0.759805	-0.368785	0.535439	0.0616756 0.870474 -0.488334
Table 7. Positive C-eigenvalues of the piezoelectric tensor of BaNiO$_3$.

No.	λ	x^\top	y^\top	
1	27.4628	0.0	0.0 1.0	
2	6.89822	0.0	0.0 1.0	$y_1 \pm \sqrt{1 - y_2^2}$

5. **Difference from matrix singular values.** An n-by-n symmetric matrix $S = [s_{ij}]$ contains $\frac{n(n+1)}{2}$ independent elements. Hence we may vectorize S as a vector

$$\text{vec}(S) = (s_{11}, s_{22}, \ldots, s_{nn}, \sqrt{2}s_{n(n-1)}, \ldots, \sqrt{2}s_{12})^\top \in \mathbb{R}^{\frac{n(n+1)}{2}}.$$

Here, we equip off-diagonal elements of S with coefficient $\sqrt{2}$, while diagonal elements of S are with coefficient 1. Hence, we have $\|S\|_F = \|\text{vec}(S)\|_2$.

Let $A \in \mathbb{R}^{n \times n \times n}$ be a piezoelectric-type tensor that contains $\frac{n^2(n+1)}{2}$ independent elements. Owing to the symmetry of last two indices of A, we could represent each symmetric slice-matrix as a vector. Collecting these vectors, we obtain an n-by-$\frac{n(n+1)}{2}$ matrix

$$M(A) = \begin{pmatrix}
 a_{111} & a_{122} & \cdots & a_{1nn} & \sqrt{2}a_{11(n-1)n} & \cdots & \sqrt{2}a_{112} \\
 \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
 a_{n11} & a_{n22} & \cdots & a_{nnn} & \sqrt{2}a_{n(n-1)n} & \cdots & \sqrt{2}a_{n12}
\end{pmatrix}. \quad (10)$$

Here, each row of the above matrix corresponds to a symmetric slice-matrix of the piezoelectric tensor. Let $y = (y_1, \ldots, y_n)^\top \in \mathbb{R}^n$. By some calculations, we find that

$$Ayy = M(A)\text{vec}(yy^\top).$$

Theorem 5.1. Let λ^* and μ^* be the largest C-eigenvalue of a piezoelectric-type tensor A and the largest singular value of the matrix $M(A)$, respectively. Then,

$$\lambda^* \leq \mu^*. \quad (11)$$

In the above inequality, strict inequality may hold in some cases.

Proof. From Theorem 2.3 (c), λ^* is the optimal objective value of the following maximization problem

$$\lambda^* = \max \ \{x^\top Ay : \|x\|_2 = 1, \|y\|_2 = 1\}.$$

We denote the corresponding optimal solution as (x^*, y^*). Obviously, we have $\|\text{vec}(y^*y^{*\top})\|_2 = \|y^*y^{*\top}\|_F = \|y^*\|_2^2 = 1$.

By matrix theory, μ^* is the optimal objective value of

$$\mu^* = \max \ \{x^\top M(A)z : \|x\|_2 = 1, \|z\|_2 = 1\}.$$

It is easy to see that $(x^*, \text{vec}(y^*y^{*\top}))$ is a feasible of this problem. Hence,

$$\mu^* \geq x^*^\top M(A)\text{vec}(y^*y^{*\top}) = x^*^\top Ay^* = \lambda^*.$$

We now give an example for which strict inequality holds in (11). Consider a piezoelectric-type tensor A_0 with dimension 2. There are only two nonzero elements in A_0:

$$a_{112} = a_{222} = 1.$$
Hence,

\[
M(A_0) = \begin{pmatrix} 0 & 0 & \sqrt{2} \\ 0 & 1 & 0 \end{pmatrix}.
\]

(12)

By some calculation, the largest singular value of \(M(A_0)\) is \(\sqrt{2}\), and the associated singular vectors are \((1, 0)^\top\) and \((0, 0, 1)^\top\).

Then, we turn to C-eigenvalues of \(A_0\). The system (2) reduces to

\[
\begin{align*}
2y_1y_2 &= \lambda x_1, \\
y_2^2 &= \lambda x_2, \\
x_1y_2 &= \lambda y_1, \\
x_1y_1 + x_2y_2 &= \lambda y_2, \\
x_1^2 + x_2^2 &= 1, \\
y_1^2 + y_2^2 &= 1.
\end{align*}
\]

(13a) (13b) (13c) (13d) (13e) (13f)

If \(\lambda = 0\), we know \(y_2 = 0\) by (13b). From (13f), we have \(y_1 = \pm 1\). Using (13d), we get \(x_1 = 0\). By (13e), we obtain \(x_2 = \pm 1\). Hence, we obtain a solution \(\lambda^* = 0, \quad x^*_1 = (0, 1)^\top, \quad y^*_1 = (1, 0)^\top\).

In the case of \(\lambda \neq 0\) and \(y_2 = 0\), we get \(y_1 = 0\) by (13c), which contradicts (13f).

Now, we consider the case that \(\lambda \neq 0\) and \(y_2 \neq 0\). By (13b), we know \(x_2 \neq 0\).

From (13a) and (13b), we have

\[
\frac{x_1}{x_2} = \frac{2y_1}{y_2} = t.
\]

Then, \(x_1 = tx_2\) and \(y_1 = \frac{t}{2}y_2\). From (13c) and (13d), we know

\[
\frac{t}{2} = \frac{x_1y_2}{x_1y_1 + x_2y_2} = \frac{tx_2y_2}{\frac{t}{2}x_2y_2 + x_2y_2} = \frac{2t}{t^2 + 2}.
\]

Solving this equation in \(t\), we get

\[
t_1 = \sqrt{2}, \quad t_2 = -\sqrt{2}, \quad \text{and} \quad t_3 = 0.
\]

If \(t = \sqrt{2}\), by \(x_1 = \sqrt{2}x_2\) and (13e), we know \(x_1 = \pm \frac{\sqrt{2}}{\sqrt{3}}\) and \(x_2 = \pm \frac{1}{\sqrt{3}}\). By \(y_1 = \frac{t}{2}y_2\) and (13f), we have \(y_1 = \pm \frac{1}{\sqrt{3}}\) and \(y_2 = \pm \frac{\sqrt{2}}{\sqrt{3}}\). Then, by (13b), we know \(\lambda = \pm \frac{2}{\sqrt{3}}\). In sum, we have a solution

\[
\lambda^*_2 = \frac{2}{\sqrt{3}}, \quad x^*_2 = \left(\frac{\sqrt{2}}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)^\top, \quad y^*_2 = \left(\frac{1}{\sqrt{3}}, \frac{\sqrt{2}}{\sqrt{3}}\right)^\top.
\]

Using similar discussions, we get two more solutions

\[
\lambda^*_3 = \frac{2}{\sqrt{3}}, \quad x^*_3 = \left(-\frac{\sqrt{2}}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)^\top, \quad y^*_3 = \left(\frac{1}{\sqrt{3}}, -\frac{\sqrt{2}}{\sqrt{3}}\right)^\top,
\]

and

\[
\lambda^*_4 = 1, \quad x^*_4 = (0, 1)^\top, \quad y^*_4 = (0, 1)^\top.
\]

Hence, the largest C-eigenvalue of \(A_0\) is \(\frac{2}{\sqrt{3}}\). Obviously, \(\frac{2}{\sqrt{3}} < \sqrt{2}\). Hence, strict inequality in (11) holds. The proof is completed.
Theorem 5.1 means that the C-eigenvalue theory of piezoelectric-type tensors cannot be replaced by the matrix singular value theory. Next, we give bounds of the largest C-eigenvalue of a piezoelectric-type tensor.

Theorem 5.2. Let A_i be the ith horizontal slice $A_{i::}$ of a piezoelectric-type tensor $A \in \mathbb{R}^{n \times n \times n}$ and let $\|A_i\|_2$ be the spectral norm of A_i, for $i = 1, \ldots, n$. We define a vector

$$\sigma \equiv (\|A_1\|_2, \ldots, \|A_n\|_2)^\top.$$

Then, we have

$$\|\sigma\|_\infty \leq \lambda^* \leq \|\sigma\|_2,$$

in which λ^* is the largest C-eigenvalue of the piezoelectric-type tensor A.

Proof. From Theorem 2.3(c), it yields

$$\lambda^* = \max \{x Ay : \|x\|_2 = 1, \|y\|_2 = 1\}$$

$$= \max \left\{y^\top \left(\sum_{i=1}^n x_i A_i\right) y : \|x\|_2 = 1, \|y\|_2 = 1\right\}$$

$$= \max \left\{\|\sum_{i=1}^n x_i A_i\|_2 : \|x\|_2 = 1\right\}.$$

On one hand, by taking special vectors $x = e_i$, the ith column of the identity matrix, we have

$$\lambda^* \geq \max_{i = 1, \ldots, n} \|A_i\|_2 = \|\sigma\|_\infty.$$

On the other hand, since $\|\cdot\|_2$ is convex, we get

$$\lambda^* \leq \max \left\{\sum_{i=1}^n x_i \|A_i\|_2 : \|x\|_2 = 1\right\}$$

$$= \max \{x^\top \sigma : \|x\|_2 = 1\}$$

$$= \|\sigma\|_2.$$

Finally, we consider again the two dimensional piezoelectric-type tensor A_0 with only two nonzero elements: $a_{112} = a_{222} = 1$. It is straightforward to calculate $\|A_1\|_2 = \|A_2\|_2 = 1$. Hence, we obtain the following strict inequality

$$\|\sigma\|_\infty = 1 < \lambda^* = \frac{2}{\sqrt{3}} < \|\sigma\|_2 = \sqrt{2}.$$

We complete the proof.

6. Summary. We defined C-eigenvalues and C-eigenvectors for a piezoelectric tensor, where “C” names after Curie brothers. The existence of C-eigenvalues and its invariance under orthogonal transformations were also addressed. The number of equivalence classes of C-eigenvalues and associated C-eigenvectors of a piezoelectric-type tensor is bounded by thirteen if it is finite. We argued that for a piezoelectric tensor, the largest C-eigenvalue corresponds to the electric displacement vector with the largest 2-norm in the piezoelectric effect under unit uniaxial stress, and the strain tensor with the largest 2-norm in the converse piezoelectric effect under unit electric field vector. Thus, C-eigenvalues and C-eigenvectors have concrete physical meanings in piezoelectric effect and converse piezoelectric effect. Finally, we present C-eigenvalues and associated C-eigenvectors of piezoelectric tensors for various crystal classes.
REFERENCES

[1] D. Cartwright and B. Sturmfels, The number of eigenvalues of a tensor, *Linear Algebra Appl.*, 438 (2013), 942–952.
[2] X. Che, H. Chen and Y. Wang, C-eigenvalue inclusion theorems for piezoelectric-type tensors, *Appl. Math. Lett.*, 89 (2019), 41–49.
[3] Y. Chen, L. Qi and E. G. Virga, Octupolar tensors for liquid crystals, *J. Phys. A: Mathematical and Theoretical*, 51 (2018), 025206.
[4] J. Curie and P. Curie, Développement, par pression, de l'électricité polaire dans les cristaux hémisphériques à faces inclinées, *Comptes Rendus (in French)*, 91 (1880), 294–295.
[5] J. Curie and P. Curie, Contraction et dilatations produites par des tensions électriques dans les cristaux hémisphériques à faces inclinées, *Comptes Rendus (in French)*, 93 (1881), 1137–1140.
[6] M. de Jong, W. Chen, H. Geerlings, M. Asta and K. A. Persson, A database to enable discovery and design of piezoelectric materials, *Scientific Data*, 2 (2015), 150053.
[7] G. Gaeta and E. G. Virga, Octupolar order in three dimensions, *The European Physical Journal E*, 39 (2016), 113.
[8] S. Haussühl, *Physical Properties of Crystals: An Introduction*, Wiley-VCH Verlag, Weinheim, 2007.
[9] A. Jákli, Electro-mechanical effects in liquid crystals, *Liquid Crystals*, 37 (2010), 825–837.
[10] A. Jákli, I. C. Pintre, J. L. Serrano, M. B. Ros and M. R. de la Fuente, Iezoelectric and electric-field-induced properties of a ferroelectric bent-core liquid crystal, *Advanced Materials*, 21 (2009), 3784–3788.
[11] A. Jákli, T. Tóth-Katona, T. Scharf, M. Schadt and A. Saupe, Piezoelectricity of a ferroelectric liquid crystal with a γ transition, *Physical Review E*, 66 (2002), 011701.
[12] J. Jerphagnon, Invariants of the third-rank Cartesian tensor: Optical nonlinear susceptibilities, *Physical Review B*, 2 (1970), 1091.
[13] A. L. Kholkin, N. A. Pertsev and A. V. Goltsve, Piezoelectricity and crystal symmetry, in *Piezoelectric and Acoustic Materials*, (eds. A. Safari and E.K. Akdoğan), Springer, New York, (2008), 17–38.
[14] I. A. Kulagin, R. A. Ganeev, R. I. Tugushev, A. I. Ryasnyansky and T. Usmanov, Components of the third-order nonlinear susceptibility tensors in KDP, DKDP and LiNbO₃ nonlinear optical crystals, *Quantum Electronics*, 34 (2004), 657.
[15] C. Li, Y. Liu and Y. Li, C-eigenvalues intervals for piezoelectric-type tensors, *Appl. Math. Comput.*, 358 (2019), 244–250.
[16] G. Lippmann, Principe de la conservation de l'électricité, *Annales De Chimie Et De Physique*, 24 (1881), 145–178.
[17] D. R. Lovett, *Tensor Properties of Crystals*, 2nd Edition, Institute of Physics Publishing, Bristol, 1989.
[18] J. F. Nye, *Physical Properties of Crystals: Their Representation by Tensors and Matrices*, 2nd Edition, Clarendon Press, Oxford, 1985.
[19] L. Qi, Eigenvalues of a real supersymmetric tensor, *J. Symbolic Computation*, 40 (2005), 1302–1324.
[20] L. Qi, H. Chen and Y. Chen, *Tensor Eigenvalues and Their Applications*, Advances in Mechanics and Mathematics, 39. Springer, Singapore, 2018.
[21] L. Qi and Z. Luo, *Tensor Analysis: Spectral Theory and Special Tensors*, Advances in Mechanics and Mathematics, 39. Springer, Singapore, 2018.
[22] L. Qi, Y. Wang and E. X. Wu, D-eigenvalues of diffusion kurtosis tensors, *J. Comput. Appl. Math.*, 221 (2008), 150–157.
[23] E. G. Virga, Octupolar order in two dimensions, *The European Physical Journal E*, 38 (2015), 63.
[24] W. Wang, H. Chen and Y. Wang, A new C-eigenvalue interval for piezoelectric-type tensors, *Appl. Math. Lett.*, 100 (2020), 106035.
[25] T. Zhang and G. H. Golub, Rank-one approximation to high order tensors, *SIAM J. Matrix Anal. Appl.*, 23 (2001), 534–550.

Received January 2021; revised May 2021; early access November 2021.
E-mail address: yuchen@scnu.edu.cn
E-mail address: ajakil@kent.edu
E-mail address: maqliq@polyu.edu.hk