Sheaves of ordered spaces and interval theories

Krzysztof Worytkiewicz
AGH
Al. Mickiewicza 30
30-059 Kraków, Poland

December 20, 2009

Abstract
We study the homotopy theory of locally ordered spaces, that is manifolds with boundary whose charts are partially ordered in a compatible way. Their category is not particularly well-behaved with respect to colimits. However, this category turns out to be a certain full subcategory of a topos of sheaves over a simpler site. The ambient topos makes available some general homotopical machinery.

1 Introduction
It has been of interest for some time to consider topological spaces where paths are made irreversible, globally or locally. Such artifacts are well suited to model the behavior of interacting computational processes, in a way which captures the flow of time. A typical setup involves topological spaces interacting with order structures. Computational paths are modeled by continuous locally non-decreasing maps. Meaningful homotopies among such paths are the non-decreasing ones, that is those which respect the flow of time. Such homotopies are called directed in the literature [FRG06].

There are many variants of the notion of directed homotopy. In this paper we study two important variations, namely “Di-homotopy” [FRG06] on one hand and “D-homotopy” [Gra03] on the other. Di-homotopy is much like the usual homotopy in the category of topological spaces, in the sense that the standard topological interval is used. However, it takes place in the category of locally ordered spaces and so is equipped with the discrete order while all the maps involved, including the homotopies themselves, are locally non-decreasing. This is to be contrasted with D-homotopy where the standard topological interval is equipped with the natural order from the start. It is to be said that D-homotopy as studied in the literature occurs in settings distinct to the present one, namely in so-called D-spaces with better categorical properties. However, this is achieved at a price: it has to be distinguished between directed and undirected paths in a way which may seem arbitrary. D-homotopy makes nonetheless
good sense also when living in the category of locally ordered spaces. The relationship between these two notions of directed homotopy has been a recurrent question for some time. The present work can be seen as an effort to give a homotopy theoretic answer to this question.

The paper is organized as follows. Section 2 contains definitions and some facts about our notion of elementary partially ordered spaces viz. *epo-spaces* and our notion of locally partially ordered spaces viz. *local epo-spaces*.

In section 3 we introduce the site (\mathcal{P}, τ) of epo-spaces and exhibit the category \mathcal{L} of local epo-spaces as a full subcategory of the topos of sheaves $\text{Sh}(\mathcal{P}, \tau)$.

Theorem. Let \mathcal{L} be the category of local epo-spaces. The embedding $h_{\mathcal{P}} : \mathcal{L} \to \text{Sh}(\mathcal{P}, \tau)$ given by restriction of the Yoneda functor

$$X \mapsto \mathcal{L}(_, X)_{|\mathcal{P}}$$

is full and faithful.

We further characterize those sheaves which are local epo-spaces, ultimately in terms of *étale* dimaps. As might be expected, we call a dimap *étale* if the underlying continuous map is a local homeomorphism. Such dimaps are obviously stable under pullbacks. *Étale* dimaps lead to the notion of \mathcal{P}-locality. Namely, a morphism of sheaves $\alpha : F \to G$ is \mathcal{P}-*local* if pulling back any morphism

$$h_{\mathcal{P}}(X) \to G$$

from a local epo-space $h_{\mathcal{P}}(X)$ to G along α yields another local epo-space $h_{\mathcal{P}}(Y)$

and, moreover, if the canonical morphism $\pi_1 : h_{\mathcal{P}}(Y) \to h_{\mathcal{P}}(X)$ is induced by an *étale* dimap.

Theorem. The following are equivalent:

(i) a sheaf $L \in \text{Sh}(\mathcal{P}, \tau)$ is a local epo-space;

(ii) there is a family

$$(\kappa_i : h_{\mathcal{P}}(U_i) \to L)_{i \in I}$$

of \mathcal{P}-local monos such that the canonical morphism

$$[\kappa_i]_{i \in I} : \coprod_{i \in I} h_{\mathcal{P}}(U_i) \to L$$

is an epi.
In section 4 we briefly review the material of [Cis02] about interval-based model structures in Grothendieck topoi. The weak equivalences of such model structures are given by contravariant action on quotients of certain homsets while cofibrations are always monos. It is in fact a (very) far-reaching generalization of the classical work of Gabriel and Zisman [GZ67]. We then build on this material by introducing a natural notion of morphism of intervals. Given such a morphism, there are in particular two model structures on the same topos, induced by the source respectively the target interval. We investigate the relationship between these model structures under additional hypotheses. Our main observation can be summarized as follows.

Theorem. Let \(I \) and \(I' \) be intervals in a topos and \(W_I \) respectively \(W_I' \) be the classes of weak equivalences in the induced model structures. Suppose \(\iota : I \rightarrow I' \) is a morphism of intervals. Then

\[
W_I \subseteq W_{I'},
\]

if \(\iota \) is a section-wise \(I \)-weak equivalence and

\[
W_I' \subseteq W_I
\]

if \(\iota \) is a section-wise \(I' \)-weak equivalence.

In section 5 we apply this machinery to compare the homotopy theories given by the two mentioned notions of directed homotopy.

Theorem. Let \(I_d \) be the interval in \(Sh(\mathbb{P}, \tau) \) given by the discrete order on \([0,1]\) and \(I_D \) be the interval in \(Sh(\mathbb{P}, \tau) \) given by the natural order on \([0,1]\). Then \(W_{I_D} \subseteq W_{I_d} \) and

\[
id : (Sh(\mathbb{P}, \tau), I_D) \rightarrow (Sh(\mathbb{P}, \tau), I_d)
\]

is a left Quillen functor.

The author acknowledges Peter Bubenik, Eric Goubault, André Joyal, Sanjeevi Krishnan and Krzysztof Ziemiański for inspiring discussions. He thanks the anonymous referee for pointing out an error and suggesting a fix, as well as for the general helpful comments and suggestions. The author’s debt to Rick Jardine deserves a sentence of its own. The author wishes to thank the MSRI and the Fields Institute for their hospitality. This research was performed by far and large at these two institutions where the author was detached from the Department of Mathematics at the University of Western Ontario. Finally, the author wishes to thank AGH’s Department of Computer Science for support with respect to the Polonium grant.

Contents

1 Introduction
2 Locally ordered spaces

2.1 Atlases

Definition 1. An epo-space is a pair (U, \preceq) where

- U is a topological space homeomorphic to an open set of the upper half-space
 \[\mathbb{H}^n \overset{def}{=} \{(x_1, \ldots, x_n) \in \mathbb{R}^n | x_n \geq 0\} \]
 for some $n \in \mathbb{N}$;

- $\preceq \subseteq U \times U$ is a partial order on U which is closed in the product topology.

“Epo-space” stands for “elementary partially-ordered space”. The notion of epo-space is a particular case of the notion of po-space [FRG06].

Notation 1. An epo-space (U, \preceq) shall be denoted U if the order is understood from context.

Definition 2. Let X be a topological space.

1. A chart on X is an open subset $U \subseteq X$ which is an epo-space.

2. Charts U and U' on X are compatible if

\[\preceq_U = \preceq_{U' \cap U} \]
3. An atlas on X is an open covering $(U_i)_{i \in I}$ of X such that

(a) U_i is a chart for each $i \in I$;

(b) U_i and U_j are compatible for each $(i,j) \in I \times I$.

Notation 2. We write $U \simeq V$ when U and V are compatible charts. $\text{At}(X)$ stands for the collection of atlases on X.

2.2 Local epo-spaces

Definition 3. A local epo-space $(X, (U_i))$ consists of a topological space X and an atlas (U_i).

Definition 4. A continuous map $f : X \to Y$ is locally non-decreasing with respect to atlases $(U_i) \in \text{At}(X)$ and to $(V_j) \in \text{At}(Y)$ if

$$f_{|f^{-1}(V_j) \cap U_i} : f^{-1}(V_j) \cap U_i \to V_j$$

is non-decreasing for all $(i,j) \in I \times J$.

Definition 5. Let $(X, (U_i))$ and $(Y, (V_j))$ be local epo-spaces. A dimap $f : (X, (U_i)) \to (Y, (V_j))$ is a locally non-decreasing continuous map.

Remark 1. An epo-space is a local epo-space equipped with a one-chart atlas. A dimap among epo-spaces is just a continuous non-decreasing map. Notice also, that the underlying topological space of a local epo-space is a topological manifold with boundary.

Example 1. The unit interval $[0, 1] \subset \mathbb{R}$ is a manifold with non-empty boundary. The discrete order on $[0, 1]$ gives rise the to epo-space Δ_d while the natural order produces the epo-space Δ_D.

Example 2. Consider the unit circle S^1 and let

$$C_{\varepsilon, \varphi} \overset{\text{def}}{=} \{ e^{i\theta} | \varphi - \varepsilon \leq \theta \leq \varphi + \varepsilon \}$$

Then $(C_{\pi/2, \pi/2}, C_{3\pi/2, 2\pi/2})$ is an atlas on S^1, with the order on the charts being (say) counterclockwise. The corresponding local epo-space is not an epo-space.

2.3 The category of local epo-spaces

Notation 3. The following categories are of particular interest:

- \mathbb{P}, the category of epo-spaces and dimaps;
- \mathbb{L}, the category of local epo-spaces and dimaps;
- Man, the category of topological manifolds with boundary and continuous maps.
Proposition 1. There is an adjunction \(F \dashv U : \text{Man} \rightarrow \mathbb{L} \). The forgetful functor \(U : \mathbb{L} \rightarrow \text{Man} \) preserves and creates subobjects and limits.

Proof. Consider a local epo-space \((X, (U_i))\) and the inclusion map of topological manifolds with boundary \(i : X' \rightarrow X \). Then \((X' \cap U_i)_{i \in I}\) gives is an atlas on \(X'\) with respect to the subspace topology and \(i \) is a dimap

\[i : (X', (X' \cap U_i)) \rightarrow (X, (U_i)) \]

The converse statement is trivial. In particular, \(U \) preserves and creates equalizers. As for products, let \((X^t, (U^t_i)_{i \in I(t)})_{t \in T}\) be a family of local epo-spaces. Then

\[\left(\prod_{t \in T} U^t_i \right)_{t \in T, i \in I(t)} \]

is an atlas on \(\prod_{t \in T} X^t \) and

\[\left(\prod_{t \in T} X^t, \left(\prod_{t \in T} U^t_i \right)_{t \in T, i \in I(t)} \right) \]

is a product. The converse statement is again trivial. \(\vartriangleleft \)

Sums exist in \(\mathbb{L} \) and are calculated the usual way. On the other hand, coequalizers are somehow elusive. We do not know if \(\mathbb{L} \) admits them, yet if it should be the case then they are not created by \(U \) for the following reason. Suppose \((X, (U_i)) \in \mathbb{L}\) is a local epo-space and let \(X' \subseteq X \) be a subspace of the underlying topological space \(X \). It is certainly the case that \((U_i/U_i \cap X')_{i \in I}\) is an open covering \(X/X'\) with respect to the quotient topology. However, quotients of partial orders are preorders which are not necessarily antisymmetric. Consider for instance \(\Delta_D \) as in example \(\Pi \) and \(\{0, 1\} \) equipped with the discrete order. Passing to the quotient we get

\[\Delta_D/\{0, 1\} \cong S^1 \]

as topological spaces, yet the order relation becomes a preorder which is not an order. Nonetheless, an important type of colimits do exist in \(\mathbb{L} \).

Proposition 2. Let \((X, (U_i)) \in \mathbb{L}\). The family

\[\left\{ \left(u_i : U_i \rightarrow X \right)_{i \in I}, \left(u_{ij} : U_{ij} \rightarrow X \right)_{(i,j) \in I \times I} \right\} \]

of dimaps in

\[\cdots \quad U_i \quad \overset{\pi_{ij}}{\longrightarrow} \quad U_{ij} \quad \overset{\pi_{ji}}{\longrightarrow} \quad U_j \quad \cdots \]

is a product.
is a colimit of the diagram \(\left(\pi_{ij}^i : U_{ij} \to U_i, \pi_{ij}^j : U_{ij} \to U_j \right)_{(i,j) \in I \times I} \).

Proof. The family \(\left\{ (u_i : U_i \to X)_{i \in I}, (u_{ij} : U_{ij} \to X)_{(i,j) \in I \times I} \right\} \) is a colimit of the diagram \(\left(\pi_{ij}^i : U_{ij} \to U_i, \pi_{ij}^j : U_{ij} \to U_j \right)_{(i,j) \in I \times I} \) in \(\text{Man} \). Suppose \((Y, (V_j)) \in L \) and let \((t_i : U_i \to Y)_{i \in I} \) be a family of dimaps such that
\[
t_i \circ \pi_{ij}^i = t_j \circ \pi_{ij}^j \quad \text{def.} = t_{ij}
\]
There is the canonical map \(c : X \to Y \)
\[
\begin{array}{c}
\pi_{ij}^i \\
\downarrow \\
U_i \\
\downarrow \\
\downarrow \\
X \\
\downarrow \\
Y \\
\end{array}
\]
\[
\begin{array}{c}
\pi_{ij}^j \\
\downarrow \\
U_j \\
\downarrow \\
\downarrow \\
X \\
\downarrow \\
Y \\
\end{array}
\]
\[
\begin{array}{c}
t_i \\
\downarrow \\
U_i \\
\downarrow \\
\downarrow \\
X \\
\downarrow \\
Y \\
\end{array}
\]
\[
\begin{array}{c}
t_j \\
\downarrow \\
U_j \\
\downarrow \\
\downarrow \\
X \\
\downarrow \\
Y \\
\end{array}
\]
\[
\begin{array}{c}
u_i \\
\downarrow \\
\cdots \\
\downarrow \\
X \\
\downarrow \\
Y \\
\end{array}
\]
\[
\begin{array}{c}
u_j \\
\downarrow \\
\cdots \\
\downarrow \\
X \\
\downarrow \\
Y \\
\end{array}
\]
\[
\begin{array}{c}
c \\
\downarrow \\
\cdots \\
\downarrow \\
X \\
\downarrow \\
Y \\
\end{array}
\]

in \(\text{Man} \). This map is locally non-decreasing since
\[
e_{(i-1(\nu_j) \cap U_i)} (c \circ u_i)_{(i-1(\nu_j) \cap U_i)} = t_{i|_{(i-1(\nu_j) \cap U_i)}}
\]
for all \((i, j) \in I \times I \).

\[\triangleright\]

Remark 2. More succinctly, \(X \) can be calculated as the coequalizer
\[
\prod_{i,j \in I^2} U_{ij} \rightrightarrows \prod_{i,j \in I} U_i \rightrightarrows X
\]

\[\triangleright\]

Remark 3. Let \(f : (X, (U_i)) \to (Y, (W_k)) \) be a dimap. For each \(i \in I \) there is a commuting triangle
\[
\begin{array}{c}
U_i \\
\downarrow \\
X \\
\downarrow \\
Y \\
\end{array}
\]
\[
\begin{array}{c}
u_i \\
\downarrow \\
X \\
\downarrow \\
Y \\
\end{array}
\]
\[
\begin{array}{c}
f \\
\downarrow \\
Y \\
\end{array}
\]

in \(L \). Hence
\[
f = \left[f_{U_i} \right]_{i \in I}
\]
is the comparison morphism.

\[\triangleright\]
3 Locally ordered spaces as sheaves

In this section, we exhibit L as a subcategory of a topos of sheaves by appropriately restricting a family of Yoneda embeddings.

3.1 The open-dicover topology

Remark 4. The assignment

$$\tau(X) \overset{def}{=} \left\{(X_i)_{i \in I} \mid \forall i \in I. X_i \subseteq X and \bigcup_{i \in I} X_i = X\right\}$$

determines (a basis of) a Grothendieck topology on P, called the open-dicover topology (see [BW06]).

Proposition 3. The site (P, τ) is subcanonical.

Proof. Assume $(U_i)_{i \in I}$ is a family of epo-spaces with $U_i \subseteq U$ for each $i \in I$ and

$$\bigcup_{i \in I} U_i = U$$

Consider a representable presheaf $P(_, V)$ for some $V \in P$. A matching family for this presheaf with respect to the covering family (U_i) amounts to a family

$$(f_i : U_i \rightarrow V)_{i \in I} \in \left(\prod_{i \in I} P(U_i, V)\right)$$

of continuous non-decreasing functions such that $f_i|_{U_i \cap U_j} = f_j|_{U_i \cap U_j}$ for all $(i, j) \in I^2$. The underlying continuous functions can in this case be patched together into a unique continuous function $f : U \rightarrow V$ such that $f|_{U_i} = f_i$ for each $i \in I$. Since the order on the U_i’s is the one inherited from U, f is non-decreasing.

3.2 An embedding in the topos of sheaves

Definition 6. The functor h_P is given by

$$h_P : \overset{\mathbb{L}}{\overset{\mathbb{P}}{\leftarrow}} \overset{\mathbb{L} (-, X) : \mathbb{P}^{op} \rightarrow \text{Set}}{\leftarrow} \overset{\mathbb{P}}{\leftarrow} \overset{\mathbb{P}}{\leftarrow} \overset{\mathbb{P}}{\leftarrow}$$

$$f : X \rightarrow Y \quad \overset{\mathbb{P}}{\leftarrow} \quad f^* = f \circ (-)$$

Remark 5. The functor h_P verifies

$$h_P = y_{\mathbb{L}|P}$$

and

$$h_{\mathbb{P}|P} = y_P$$
Lemma 1. Let \(f : A \to B \) be a dimap in \(\mathcal{P} \) such that \(h_\mathcal{P}(f) \) is a mono. Then \(f \) itself is a mono.

Proof. Suppose \(f(x) = f(y) \). Let \(1 \) be the one-point epo-space and let \([x], [y] : 1 \to A \) be the dimaps choosing \(x \) and \(y \), respectively. We have

\[
h_\mathcal{P}(f) ([x]) = f^* ([x]) = f^* ([y]) = h_\mathcal{P}(f) ([y])
\]

Now \(h_\mathcal{P}(f) \) is a mono of sheaves, since \((\mathcal{P}, \tau) \) is subcanonical and \(h_\mathcal{P}|_\mathcal{P} = y_\mathcal{P} \). Hence there is a cover \((A_i \to 1) \) of \(1 \in \mathcal{P} \) for which \([x] = [y] \) locally. But the only possible covers of \(1 \) are identities. Hence \(x = y \). \(\blacklozenge \)

Remark 6. Notice that the proof of lemma 1 does not work with an arbitrary Grothendieck topology. \(\diamondsuit \)

Lemma 2. \(h_\mathcal{P} \) is faithful.

Proof. Suppose \(f, g : (X, (U_i)) \to (Y, (V_j)) \) are dimaps such that \(h_\mathcal{P}(f) = h_\mathcal{P}(g) \). Then

\[
f = [f|_{U_i}]_{i \in I} = [f \circ u_i]_{i \in I} = [g \circ u_i]_{i \in I} = [g|_{U_i}]_{i \in I} = g
\]

Lemma 3. \(h_\mathcal{P} \) is full.

Proof. Let \(\alpha : h_\mathcal{P}(X) \Rightarrow h_\mathcal{P}(Y) \) be a natural transformation, so in particular

\[
\begin{array}{c}
\mathbb{L}(U_i, X) \\
\downarrow (-) \circ \pi_i^j \end{array}
\begin{array}{c}
\mathbb{L}(U_i, Y) \\
\downarrow (-) \circ \pi_i^j \end{array}
\begin{array}{c}
\mathbb{L}(U_i, X) \\
\downarrow (-) \circ \pi_i^j \end{array}
\begin{array}{c}
\mathbb{L}(U_i, Y) \\
\downarrow (-) \circ \pi_i^j \end{array}
\begin{array}{c}
\mathbb{L}(U_i, X) \\
\downarrow (-) \circ \pi_i^j \end{array}
\begin{array}{c}
\mathbb{L}(U_i, Y) \\
\downarrow (-) \circ \pi_i^j \end{array}
\begin{array}{c}
\mathbb{L}(U_i, X) \\
\downarrow (-) \circ \pi_i^j \end{array}
\begin{array}{c}
\mathbb{L}(U_i, Y) \\
\downarrow (-) \circ \pi_i^j \end{array}
\begin{array}{c}
\mathbb{L}(U_i, X) \\
\downarrow (-) \circ \pi_i^j \end{array}
\begin{array}{c}
\mathbb{L}(U_i, Y) \\
\downarrow (-) \circ \pi_i^j \end{array}
\end{array}
\]

commutes. Since \(u_i \circ \pi_i^j = u_j \circ \pi_i^j \) by construction, it follows that \(\alpha_{U_i}(u_i) \circ \pi_i^j = \alpha_{U_j}(u_j) \circ \pi_i^j \). By proposition 2 there is the comparison map \(t : X \to Y \).
We claim that $\alpha_A = t \circ (-)$ for all $A \in \mathcal{P}$. Given $f : A \to X$, there is the pullback square

$$
\begin{array}{c}
\text{(1)}
\end{array}
$$

for each $i \in I$. In particular, $(f^{-1}(U_i))_{i \in I}$ is an atlas on A, hence

$$
\alpha_A(f) = \left[\alpha_A(f)|_{f^{-1}(U_i)} \right]_{i \in I}
$$

is given by universal property. On the other hand

$$
\alpha_A(f)|_{f^{-1}(U_i)} = \alpha_A(f) \circ f^* u_i = \alpha_{f^{-1}(U_i)}(f \circ f^* u_i) = \alpha_{f^{-1}(U_i)}(u_i \circ f_i) \quad (\ast) \text{ commutes}
$$

$$
= \alpha_{U_i}(u_i) \circ f_i = (t \circ u_i) \circ f_i = t \circ \left(f_{f^{-1}(U_i)} \right)
$$

hence

$$
\alpha_A(f) = \left[\alpha_A(f)|_{f^{-1}(U_i)} \right]_{i \in I} = \left[t \circ (f_{f^{-1}(U_i)}) \right]_{i \in I} = t \circ \left[f_{f^{-1}(U_i)} \right]_{i \in I} = t \circ f
$$
Lemma 4. The functor h_P preserves limits and subobjects.

Lemma 5. Let $(X, (U_i)) \in \mathbb{L}$. Then $h_P (X, (U_i)) : P^{op} \rightarrow \text{Set}$ is a sheaf with respect to the open-dicover topology τ.

Proof. Let $C \in P$. Assume that $(C_s)_{s \in S} \in \tau(C)$ and let

$$(k_s \in h_P (X, (U_i)) (C))_{s \in S} = (k_s \in \mathbb{L} (C_s, X))_{s \in S}$$

be a matching family. By definition of a matching family we have

$$k_s \circ \pi_s^t = k_t \circ \pi_s^t$$

for each pair of indices $(s, t) \in S \times S$. This family has a unique amalgamation $k : C \rightarrow X$ by proposition 2.

Theorem 1. The functor h_P is fully faithful and preserves limits as well as subobjects. Moreover, $h_P(X)$ is a sheaf for all $X \in \mathbb{L}$.

Proof. By remark 7 and lemmata 2, 3, 4 and 5.

3.3 A characterisation of the embedding’s image

Remark 7. In a well-powered regular category, the union

$$x' \vee x'' : X' \vee X'' \rightarrow X$$

of two subobjects $x' : X' \rightarrow X$ and $x'' : X'' \rightarrow X$ of X can be calculated as the comparison morphism

from the inscribed pushout object. This remains true for set-indexed unions if the category is complete. In this case, set-indexed unions can be calculated as the colimit of the diagram given by binary intersections:
In particular, the above is true in any topos since topoi are regular, well-powered and complete. ♦

Definition 7. A dimap is étale if the underlying continuous map is a local homeomorphism.

Remark 8. Étale dimaps are stable under pullback. ♦

Definition 8. A morphism $u : F \to G$ in $\text{Sh}(\mathbb{P}, \tau)$ is \mathbb{P}-local if

(i) for all $X \in \mathbb{P}$ and morphisms $h_{\mathbb{P}}(X) \to G$ there is an $Y \in \mathbb{P}$ such that

$$F \times_{G} h_{\mathbb{P}}(X) \cong h_{\mathbb{P}}(Y)$$

(ii) given the projection $p : F \times_{G} h_{\mathbb{P}}(X) \cong h_{\mathbb{P}}(Y) \to h_{\mathbb{P}}(X)$ from the fibered product above, the image $(h_{\mathbb{P},X})^{-1}(p)$ of p under the inverse of the bijection

$$h_{\mathbb{P},X} : \mathbb{P}(Y, X) \leftarrow \text{Sh}(\mathbb{P}, \tau)(h_{\mathbb{P}}(Y), h_{\mathbb{P}}(X))$$

is an étale dimap.

Theorem 2. Let $L \in \text{Sh}(\mathbb{P}, \tau)$. The following are equivalent:

(i) L is a local epo-space;

(ii) there is a family

$$(\kappa_{i} : h_{\mathbb{P}}(U_{i}) \to L)_{i \in I}$$

of \mathbb{P}-local monos such that the canonical morphism

$$[\kappa_{i}]_{i \in I} : \prod_{i \in I} h_{\mathbb{P}}(U_{i}) \to L$$

is an epi.
Proof. "⇒" Let \(L \overset{\text{def.}}{=} h_P(U, (U_i)) \). The canonical morphism

\[
[h_P(u_i)]_{i \in I} : \prod_{i \in I} h_P(U_i) \to L = h_P(U)
\]

is a local epi at any object, hence an epi of sheaves. Similarly, \(h_P(u_i) \) is a local mono at any object and so a mono of sheaves, this for all \(i \in I \).

We claim that \(h_P(u_i) \) is \(P \)-local for all \(i \in I \).

Suppose \(X \in P \) and consider the pullback square

\[
\begin{array}{ccc}
M & \xrightarrow{\pi_1} & h_P(X) \\
\downarrow & & \downarrow \\
\pi_2 & \xrightarrow{\phi} & h_P(U)
\end{array}
\]

We have \(\phi = h_P(f) \) for some dimap \(f : X \to U \) since \(h_P \) is full. Hence

\[
M(P) \cong \{(u, v) \in \mathbb{P}(P, U_i) \times \mathbb{P}(P, X)| u_i \circ u = f \circ v\} \cong \mathbb{P}(P, U_i \times_U X) = h_P(U_i \times_U X)(P)
\]

for all \(P \in \mathbb{P} \), so \(M \cong h_P(U_i \times_U X) \). Now \(\pi_1 = h_P(p_1) \) with \(p_1 : U_i \times_U X \to X \) the corresponding projection from the fibred product in \(\mathbb{P} \). But \(p_1 \) is obtained by pulling back \(u_i \), which is an étale dimap, hence \(p_1 \) is an étale dimap by remark 8.

"⇐" We proceed here in three steps:

1. the construction of a local epo-space \(U \cong \colim_{i \in I} U_i \);
2. the proof of the assertion \(L \cong \colim_{i \in I} h_P(U_i) \);
3. the proof of the assertion \(h_P(\colim_{i \in I} U_i) \cong \colim_{i \in I} h_P(U_i) \).

Step 1. Let \(i, j \in I \). By hypothesis there is an \(U_{ij} \in \mathbb{P} \) along with the étale dimaps \(p_{ij} : U_{ij} \to U_i \) and \(q_{ij} : U_{ij} \to U_j \) assembling to the pullback square

\[
\begin{array}{ccc}
h_P(U_{ij}) & \xrightarrow{p_{ij}} & h_P(U_i) \\
\downarrow q_{ij} & & \downarrow \kappa_i \\
h_P(U_j) & \xrightarrow{\kappa_j} & L
\end{array}
\]

in \(\text{Sh}(\mathbb{P}, \tau) \). Doing the construction for all pairs of indices \((i, j) \in I^2 \) yields a family \((U_{ij})_{(i, j) \in I^2} \) of epo-spaces. The \(p_{ij} \)’s and the \(q_{ij} \)’s are étale since the \(\kappa_i \)’s and the \(\kappa_j \)’s are \(\mathbb{P} \)-local by hypothesis. Moreover, they are monos by lemma \(\text{[1]} \)

Hence \(U_{ij} \to U_i, U_j \) represent open subobjects.

Let \(U \cong \colim_{i \in I} U_i \) be the colimit of the diagram.
The u_i’s are monos by construction. Recall from remark \(\ref{remark} \) that U can be calculated as the quotient

$$\coprod U_{ij} \xrightarrow{[in \circ p_{ij}]} \coprod U_i \xrightarrow{q} U$$

In particular, U_i is open for all $i \in I$ since

$$q^{-1}(U_i) = \coprod_{j \in I} U_{ij} \subseteq \coprod_{i \in I} U_i$$

and the U_{ij}’s are open in U.

Finally, we need to show that $U_{ij} \cong U_i \times_U U_j$. Consider

$$\text{The étale dimap } t = \langle p_{ij}, q_{ij} \rangle_U \text{ is surjective by construction of } U. \text{ It is also injective since } p_{ij} \text{ is a mono. But an étale bijection is a homeomorphism. Hence } (U_i)_{i \in I} \text{ is an atlas on } U.$$
with c the canonical morphism. Then

$$\prod_{i \in I} h_P(U_i) \xrightarrow{[\kappa_i]_{i \in I}} L$$

commutes so c is an epi. But c is also a mono, being the inclusion of a set-indexed union of subobjects (c.f. remark 7). Hence c is an iso since a topos is balanced.

Step 3. Consider

The canonical morphism d is a representative of the inclusion of the union of subobjects

$$\bigvee_{i \in I} h_P(U_i) \cong \operatorname{colim}_{i \in I} h_P(U_i)$$

In particular, d is a mono.
It is also the case that \(d \) is an epi. To see this, let \(A \in \mathcal{P} \) and let
\[
q^* : L\left(A, \coprod U_i\right) \longrightarrow L(A, U)
\]
be the component of \(h_{\mathcal{P}}(q) \) at \(A \). Suppose \(f \in L(A, U) \). The assignment
\[
A_i \overset{d_{\mathcal{P}_i}}{=} f^{-1}(q \circ i_n)
\]
determines a cover of \(A \) and \(q^* \) is locally surjective at this cover. Hence \(h_{\mathcal{P}}(q) \)
is an epi of sheaves. A similar argument shows that
\[
[in^*_i] : \coprod h_{\mathcal{P}}(U_i) \longrightarrow h_{\mathcal{P}}\left(\coprod U_i\right)
\]
is an epi of sheaves as well. Finally, the top row of
\[
\begin{array}{ccc}
\coprod h_{\mathcal{P}}(U_{ij}) & \overset{[in'_i \circ p_{ij}]_{*}}{\longrightarrow} & \coprod h_{\mathcal{P}}(U_i) \\
\downarrow_{[in'_i \circ q_{ij}]_*} & & \downarrow_{[in'_i]_*} \\
 h_{\mathcal{P}}(\coprod U_i) & \overset{d}{\longrightarrow} & h_{\mathcal{P}}(U)
\end{array}
\]
is a coequalizer diagram. It is easy to see that
\[
h_{\mathcal{P}}(q) \circ [in^*_i] \circ [in'_i \circ p_{ij}] = h_{\mathcal{P}}(q) \circ [in^*_i] \circ [in'_i \circ q^*_{ij}]
\]
and that \(d \) is the canonical morphism. In particular, \(d \) is an epi since it is a second factor of an epi. \(\triangleright \)

Remark 9. Theorem \(\mathcal{P} \) says that the site \((\mathcal{P}, \tau) \) along with the class of étale dimaps form what is called a geometric context in \(\mathcal{Lod} \). \(\triangleright \)

4 Intervals and homotopy theories

4.1 Cellular models

A cellular model generates (in a certain sense) all the monos in a given category.

Definition 9. Let \(\mathcal{C} \) be a category and let \(M \in \mathcal{C}_1 \) be a class of morphisms in \(\mathcal{C} \). Then \(M - \text{inj} \) is the class if all morphisms having the right lifting property with respect to \(M \) and \(M - \text{cof} \) is the class if all morphisms having the left lifting property with respect to \(M - \text{inj} \).

Definition 10. A cellular model of a category \(\mathcal{C} \) is a set of monos \(\mathcal{M} \subset \mathcal{C}_1 \) such that \(\mathcal{M} - \text{cof} \) is the class of all monos in \(\mathcal{C} \).

Proposition 4. Any locally presentable category \(\mathcal{C} \) with effective unions of subobjects and monos closed under transfinite composition admits a cellular model \(\mathcal{M} \subset \mathcal{C}_1 \).
Remark 10. One such \(\mathcal{M} \) is the set of (representatives of) subobjects of (representatives of) regular quotients of the set of \(C \)'s strong generators (see [Bek01] for a proof). In particular, any topos verifies the assumptions of proposition \[\Box\] and so admits a cellular model. Of course, more practical cellular models are known in cases of interest, like the set \((\partial \Delta [n] \hookrightarrow \Delta [n])_{n \in \mathbb{N}} \) of boundary inclusions of simplicial sets.

4.2 Intervals

Let \(C \) be a category with coproducts and pullbacks.

Definition 11. A cylinder \(\mathcal{I} = (I, \partial^0, \partial^1, \sigma) \) on \(C \) is given by the following data:

- an endofunctor \(I : C \rightarrow C \);
- natural transformations \(\partial^0, \partial^1 : \text{id}_C \Rightarrow I \) and \(\sigma : I \Rightarrow \text{id}_C \) such that \(\sigma \circ \partial^0 = \sigma \circ \partial^1 = \text{id}_{\text{id}_C} \).

A morphism of cylinders \(\iota : \mathcal{I} \rightarrow \mathcal{I}' \) is a natural transformation \(\iota : I \rightarrow I' \) such that

(i) \(\iota \circ \partial^e_I = \partial^e_{I'} \) for \(e \in \{0, 1\} \);
(ii) \(\sigma_I = \sigma_{I'} \circ \iota \).

Definition 12. Let \(\mathcal{I} \) be a cylinder. Morphism \(f_0, f_1 : X \rightarrow Y \) are \(\mathcal{I} \)-homotopic if there is a morphism \(h : I(X) \rightarrow Y \), called \(\mathcal{I} \)-homotopy, such that \(h \circ \partial^e = f_e \) for \(e \in \{0, 1\} \).

Notation 4. We write \(f \sim_{\mathcal{I}} g \) to indicate that \(f \) and \(g \) are \(\mathcal{I} \)-homotopic.

Definition 13. Let \(\mathcal{I} \) be a cylinder. A morphism \(f : X \rightarrow Y \) in \(\mathcal{E} \) is an \(\mathcal{I} \)-homotopy equivalence if there is a morphism \(g : Y \rightarrow X \) such that \(g \circ f \sim_{\mathcal{I}} \text{id}_X \) and \(f \circ g \sim_{\mathcal{I}} \text{id}_Y \).

Definition 14. A cylinder is cartesian if the naturality square

\[
\begin{array}{ccc}
A & \rightarrow & B \\
\downarrow \sigma^e_A & & \downarrow \sigma^e_B \\
I(A) & \rightarrow & I(B)
\end{array}
\]

is a pullback square for all monos \(j \) and \(e \in \{0, 1\} \). An interval \(\mathcal{I} \) is a cartesian cylinder

\(\mathcal{I} = (I, \partial_0, \partial_1, \sigma) \)

such that
(i) I preserves monos and colimits;

(ii) the canonical morphism $[\partial_C^0, \partial_C^1] : C + C \to I(C)$ is mono for all $C \in C$.

A morphism of intervals $\iota : \mathcal{I} \to \mathcal{I}'$ is a morphism of the underlying cylinders.

Remark 11. Let $\iota : \mathcal{I} \to \mathcal{I}'$ be a morphism of intervals and $u, v : X \to Y$ two morphisms in C. Then

$u \sim_{\mathcal{I}} v \implies u \sim_{\mathcal{I}'} v$

since the homotopy $h : \mathcal{I}'(X) \to Y$ witnessing the antecedent extends to a homotopy

$h \circ \iota_X : I(X) \to Y$

witnessing the conclusion. In particular, an \mathcal{I}'-homotopy equivalence is always an \mathcal{I}-homotopy equivalence. ♦

Remark 12. Colimits in a topos are universal. It follows that

$$
\begin{array}{ccc}
A + A & \xrightarrow{j+j} & B + B \\
\downarrow & & \downarrow \\
[\partial_A^0, \partial_A^1] & \xrightarrow{\iota_{(j)}} & [\partial_B^0, \partial_B^1] \\
I(A) & \xrightarrow{i(j)} & I(B)
\end{array}
$$

is a pullback square. ♦

4.3 Anodyne extensions and model structures

For the rest of this section we fix a topos \mathcal{E} and a cellular model \mathfrak{M} thereof.

Definition 15. Let \mathcal{I} be an interval. Given a set L of monos in \mathcal{E}, let

$$
sat(L) \overset{\text{def.}}{=} \left\{ I(l) \lor \left[\partial_{\text{cod}(m)}, \partial_{\text{cod}(m)}^1 \right] \mid l \in L \right\}
$$

Then

- $\Lambda_I^0 \overset{\text{def.}}{=} \left\{ I(m) \lor \partial_{\text{cod}(m)}^e \mid m \in \mathfrak{M}, e \in \{0, 1\} \right\};$
- $\Lambda_I^{n+1} \overset{\text{def.}}{=} sat(\Lambda_I^n)$ for $n \geq 0$;
- $\Lambda_I \overset{\text{def.}}{=} \bigcup_{n \geq 0} \Lambda_I^n$.

A morphism in $(\Lambda_I) - inj$ is called an \mathcal{I}-naive fibration. An object $X \in \mathcal{E}$ is \mathcal{I}-naively fibrant if the canonical morphism $!_X : X \to 1$ is an \mathcal{I}-naive fibration. A morphism in $(\Lambda_I) - cof$ is called an \mathcal{I}-anodyne extension.
Notation 5. We shall write A_I for the class of I-anodyne extensions and \hat{F}_I for the class of I-naive fibrations and E_I^{nf} for the subcategory of I-naively fibrant objects.

Theorem 3. (Cisinski) Let I be an interval. The I-homotopy relation is an equivalence relation on $\mathcal{E}(X,T)$ provided T is I-naively fibrant. \mathcal{E} admits a cofibrantly generated model structure for which the cofibrations are the monos and the weak equivalences are the morphisms $f : X \rightarrow Y$ inducing a bijection

$$f^* : \mathcal{E}(Y,T)/\sim \cong \mathcal{E}(X,T)/\sim$$

on I-homotopy classes for all I-naively fibrant objects $T \in \mathcal{E}$.

It is to be said that Cisinski’s original theorem [Cis02] is more general since there is a further parameter allowed, namely an arbitrary set of monos \mathcal{S} can be added to Λ_0. Theorem 3 above states thus the special case when $\mathcal{S} = \emptyset$ (which is enough for our purposes). As pointed out by Jardine [Jar06], in the general case the same homotopy theory is presented by Bousfield-localising by S a model structure obtained with the above process for $\mathcal{S} = \emptyset$.

Since model structures on topoi constructed following the recipe of theorem 3 are fully determined by the “input” interval I, we shall call such model structures I-model structures. Since we will be dealing with different I-model structures on the same topos \mathcal{E}, let us make the convention to write (\mathcal{E},I) when seeing \mathcal{E} as an “I-model category” with respect to the interval I.

Next we compile some useful facts about I-model structures.

Notation 6. We shall write W_I for the class of I-weak equivalences and F_I for the class of I-fibrations.

Remark 13. An I-homotopy equivalence is always an I-weak equivalence.

Proposition 5. In an I-model structure:

(i) $X \in \mathcal{E}$ is I-fibrant if and only if it is I-naively fibrant;

(ii) $\Lambda_I \subseteq A_I \subseteq C_I \cap W_I$;

(iii) $\partial_X \in A_I$ for $e \in \{0,1\}$ and all $X \in \mathcal{E}$.

Proof. By propositions [Cis02 2.20], [Cis02 2.23], [Cis02 2.28] and remark 7.

Remark 14. Suppose $w : X \rightarrow Y$ is an I-weak equivalence and $f \sim_I w$. Then f is an I-weak equivalence by proposition 5. It is further the case that σ_X (see definition 11) is an I-weak equivalence for each object $X \in \mathcal{E}$.
4.4 Quillen pairs induced by morphisms intervals

Lemma 6. Suppose there is a morphism of intervals $I \longrightarrow I'$ which is an I-weak equivalence component-wise. Then

$$\Lambda_{I'} \subseteq C_I \cap W_I$$

Proof. Let $\iota : I \longrightarrow I'$ be a morphism of intervals which is a section-wise I-weak equivalence. Let $j : A \rightarrow B$ be in \mathcal{M} and $e \in \{0, 1\}$. We have $\iota_A \circ \partial^e_{I,A} = \partial^e_{I',A}$ and $\iota_B \circ \partial^e_{I,B} = \partial^e_{I',B}$ since ι is a morphism of intervals, hence $\partial^e_{I',A}$ and $\partial^e_{I',B}$ are I-trivial cofibrations. It follows that t_1 in

\[\begin{array}{ccc}
A \\ \downarrow^j \\
I(A) \vee B \\
\downarrow^{t_1} \\
I(A) \\
\downarrow^{I'(j)} \\
I(B)
\end{array} \]

is an I-trivial cofibration and so is t by remark 7. Hence $\Lambda^0_{I'} \subseteq C_I \cap W_I$.

Let $n > 0$ and suppose $\Lambda_{I'} \subseteq C_I \cap W_I$. Let $t \in \Lambda_{I'}^{n-1}$. Then $t + t$ is an I-trivial cofibration and so is k_2 in

\[\begin{array}{ccc}
A + A \\ \downarrow^{t+t} \\
I'(A) \vee B + B \\
\downarrow^{[\partial^0_{I',A}, \partial^1_{I',A}]} \\
I'(A) \\
\downarrow^{I'(t)} \\
I'(B)
\end{array} \]

On the other hand, chasing around

\[\begin{array}{ccc}
A \\ \downarrow^i \\
I'(A) \\
\downarrow^{I'(t)} \\
I'(B)
\end{array} \]

one finds that $I'(t)$ is an I-weak equivalence so k is an I-trivial cofibration by remark 7.

20
Hence
\[\Lambda^n_I \subseteq C_I \cap W_I \]
for all \(n \geq 0 \).

\textbf{Proposition 6.} Suppose there is a morphism of intervals \(I \to I' \) which is a section-wise \(I \)-weak equivalence. Then
\[W_{I'} \subseteq W_I \]
and \(id_E : (\mathcal{E}, I) \to (\mathcal{E}, I') \) is a right Quillen functor.

\textit{Proof.} We have \(\Lambda_{I'} \subseteq C_I \cap W_I \) by lemma \(\text{6} \). Let \(X \in \mathcal{E} \) be \(I \)-naively fibrant. Then \(!_X \in \mathcal{F}_I \) by proposition \(\text{5}(i) \) so \(!_X \) has the right lifting property with respect to all \(t \in \Lambda_{I'} \). It follows that
\[\mathcal{E}_{n,I}^{nf} \subseteq \mathcal{E}_{n,I'}^{nf} \]
and thus \(W_{I'} \subseteq W_I \). Now both model structures have the same cofibrations, namely the monos. Hence \(id_E : (\mathcal{E}, I') \to (\mathcal{E}, I) \) preserves cofibrations and trivial cofibrations and is thus left Quillen.

\textbf{Lemma 7.} Suppose there is a morphism of intervals \(I \to I' \) which is a section-wise \(I' \)-weak equivalence. Then
\[\Lambda_I \subseteq C_{I'} \cap W_{I'} \]

\textit{Proof.} Same argument as for lemma \(\text{6} \) save for a different case of the 2-of-3 property.

\textbf{Proposition 7.} Suppose there is a morphism of intervals \(I \to I' \) which is a section-wise \(I' \)-weak equivalence. Then
\[W_I \subseteq W_{I'} \]
and \(id : (\mathcal{E}, I) \to (\mathcal{E}, I') \) is a left Quillen functor.

\textit{Proof.} Same argument as for proposition \(\text{6} \)

\section{Directed homotopy theories}

\subsection{Dihomotopy}

Let \(\Delta_d \) be the unit interval equipped with the discrete order, as in example \(\text{1} \).

\textbf{Remark 15.} For any \(P \in \mathcal{P} \), let
\[k_{d,P}^x : P \to \Delta_d \]
\[x \mapsto e \]
be the constant dimaps with values $e = 0$ and $e = 1$, respectively. Let

$$I_d \overset{\text{def}}{=} (-) \times h_\mathbb{P}(\Delta_d) : Sh(\mathbb{P}, \tau) \to Sh(\mathbb{P}\tau)$$

be the endofunctor acting by taking the product with $h_\mathbb{P}(\Delta_d)$. There are natural transformations

$$\partial_e^d : id_{Sh(\mathbb{P}, \tau)} \Rightarrow I_d$$

for $e \in \{0, 1\}$, given by

$$\partial_{d,F}^e : F \Rightarrow F \times h_\mathbb{P}(\Delta_d)$$

$$\partial_{d,F,P}^e : F(P) \to F(P) \times L(P, \Delta_d)$$

There is furthermore the natural transformation $\sigma_d : I \Rightarrow id_{Sh(\mathbb{P}, \tau)}$ given components by the first projection $\sigma_{d,F} \overset{\text{def}}{=} \pi_1:F \times h_\mathbb{P}(\Delta_d) \Rightarrow F$. Obviously, the quadruple $(I_d, \partial_d^0, \partial_d^1, \sigma_d)$ is a cylinder.

Lemma 8. The cylinder $(I_d, \partial_d^0, \partial_d^1, \sigma_d)$ is cartesian.

Proof. Let $F, K, L \in Sh(\mathbb{P}, \tau)$, $\beta : F \Rightarrow L$, $\gamma : F \Rightarrow K \times h_\mathbb{P}(\Delta_d)$, $\alpha : K \Rightarrow L$ and $e \in \{0, 1\}$. Suppose α is mono and the outer diagram of

![Diagram](image)

commutes. Assume $x \in F(P)$, $(a, f) = \gamma_P(x)$ and $b = \beta_P(x)$. Then $f = k_d^e$ and $b = \alpha_P(x)$ since the outer diagram commutes. Hence

$$(\partial_{d,K,P}^e \circ \sigma_{d,K,P} \circ \gamma_P)(x) = \left(\partial_{d,K,P}^e \circ \sigma_{d,K,P}\right)(a, k_d^e) = \partial_{d,K,P}^e(a, k_d^e) = \gamma_P(x)$$

and

$$(\alpha_P \circ \sigma_{d,K,P} \circ \gamma_P)(x) = \alpha_P(a) = b = \beta_P(x)$$

Moreover, $\sigma_{d,K,P} \circ \gamma_P$ is the unique morphism with this property since α_P is mono.

Lemma 9. The canonical morphism $[\partial_d^0, \partial_d^1] : id_{Sh(\mathbb{P}, \tau)} + id_{Sh(\mathbb{P}, \tau)} \Rightarrow I_d$ is a mono.
Proof. The components of this morphism at \(F \in Sh(\mathbb{P}, \tau) \) and \(P \in \mathbb{P} \) are given by
\[
\begin{align*}
[\partial^0_{d,F,P}, \partial^1_{d,F,P}] : \quad F(P) + F(P) & \rightarrow F(P) \times \mathbb{P}(P, \Delta_d) \\
m & \mapsto \begin{cases}
(x, k^0_{d,P}) & m = \text{in}_1(x) \\
(x, k^1_{d,P}) & m = \text{in}_2(y)
\end{cases}
\end{align*}
\]
Suppose \([\partial^0_{d,F,P}, \partial^1_{d,F,P}] (m) = [\partial^0_{d,F,P}, \partial^1_{d,F,P}] (m') \). There are two possible cases:
(a) \(m = \text{in}_1(x) \) and \(m' = \text{in}_1(x') \);
(b) \(m = \text{in}_2(x) \) and \(m' = \text{in}_2(x') \)
for some \(x, x' \in F(P) \). Hence
(a) \((x, k^0_{d,P}) = (x', k^0_{d,P}) \Rightarrow x = x' \);
(b) \((x, k^1_{d,P}) = (x', k^1_{d,P}) \Rightarrow x = x' \).
\[\triangleright\]

Proposition 8. The quadruple
\[I_d \overset{\text{def.}}{=} (I_d, \partial^0_d, \partial^1_d, \sigma_d)\]
is an interval.

Proof. The functor \(I \) preserves monos by construction. It preserves colimits by construction as well, since colimits are universal in a topos. Proposition 8 follows thus by remark 15 and lemmata 8 and 9.
\[\triangleright\]

5.2 D-homotopy

Let \(\Delta_D \) be the unit interval equipped with the natural total order, as in example 11.

Remark 16. For any \(P \in \mathbb{P} \), let
\[k^e_{d,P} : P \rightarrow \Delta_D\]
be the the constant dimaps with values \(e = 0 \) and \(e = 1 \), respectively. Let
\[I_D \overset{\text{def.}}{=} (-) \times h_{\mathbb{P}}(\Delta_D) : Sh(\mathbb{P}, \tau) \rightarrow Sh(\mathbb{P})\]
be the endofunctor acting by taking the product with \(h_{\mathbb{P}}(\Delta_D) \). There are natural transformations
\[\partial^e_d : id_{Sh(\mathbb{P}, \tau)} \Rightarrow I_D\]
for $e \in \{0, 1\}$, given by

$$
\partial_{D,F}^e : F \quad \Rightarrow \quad F \times h_{D} (\Delta_d)
$$

$$
\partial_{D,F,P}^e : F(P) \quad \mapsto \quad F(P) \times L(P, \Delta_d)
$$

There is furthermore the natural transformation $\sigma_D : I \Rightarrow id_{Sh(\mathcal{P}, \tau)}$ given component wise by the first projection $\sigma_{D,F} \overset{\text{def.}}{=} \pi_{1,F} : F \times h_{D} (\Delta_d) \Rightarrow F$.

Proposition 9. The quadruple

$$
\mathcal{I}_D \overset{\text{def.}}{=} (I_D, \partial_D^0, \partial_D^1, \sigma_D)
$$

is an interval.

5.3 Dihomotopy vs. D-homotopy

Proposition 10. Let $0^D : 1_{\mathcal{L}} \rightarrow \Delta_D$ the dimap choosing 0. The induced morphism of sheaves

$$
0^D_* : 1 \rightarrow h_D (\Delta_d)
$$

is an \mathcal{I}_d-homotopy inverse of the canonical morphism $!_D : h_D (\Delta_d) \rightarrow 1$. In particular, $h_D (\Delta_d)$ is (strongly) \mathcal{I}_d-contractible.

Proof. Obviously $!_D \circ 0^D_* = id$. Let $f \in h_D (\Delta_d) (P) = L(P, \Delta_d)$ and $k \in h_D (\Delta_d) (P) = L(P, \Delta_d)$. The assignment

$$
h_P (f, g) \overset{\text{def.}}{=} f \cdot g
$$

(with $f \cdot g$ the point-wise multiplication) determines the morphism of sheaves

$$
h : h_D (\Delta_d) \times h_D (\Delta_d) \rightarrow h_D (\Delta_d)
$$

This morphism makes

$$
\begin{array}{ccc}
L(P, \Delta_D) & \xrightarrow{\partial_D^0} & L(P, \Delta_D) \\
\downarrow_{\partial_D^0 \cdot h_D (\Delta_d) \cdot P} & \quad & \quad \downarrow_{\partial_D^0 \cdot h_D (\Delta_d) \cdot P} \\
L(P, \Delta_D) \times L(P, \Delta_d) & \xrightarrow{h_P} & L(P, \Delta_D)
\end{array}
$$

commute for all $P \in \mathcal{P}$, so h is an \mathcal{I}_d-homotopy witnessing $0^D_* \circ !_D \sim id$.

\diamondsuit
Corollary 1. The morphism of sheaves

\[\text{id}_F \times \sigma^D : F \times 1 \longrightarrow F \times h_P (\Delta_D) \]

is an \(I_d \)-weak equivalence for all \(F \in Sh (\mathcal{P}, \tau) \).

Proof. We have

\[(\text{id}_F \times !_D) \circ (\text{id}_F \times 0^D) = \text{id}_F \times 1 \]

and

\[(\text{id}_F \times 0^D) \circ (\text{id}_F \times !_D) \sim \text{id}_F \times h_P (\Delta_D) \]

by functoriality of \(F \times \cdot \). \(\triangleright \)

Lemma 10. Let \(!_d : h_P (\Delta_d) \longrightarrow 1 \) be the canonical morphism of sheaves. The morphism of sheaves \((\text{id}_F \times !_d) : F \times h_P (\Delta_d) \longrightarrow F \times 1 \) is an \(I_d \)-weak equivalence for all \(F \in Sh (\mathcal{P}, \tau) \).

Proof. The square

\[
\begin{array}{ccc}
F \times h_P (\Delta_d) & \overset{\sigma = \pi_1}{\longrightarrow} & F \\
\downarrow \text{id} \times !_d & & \downarrow \text{id} \times !_d \\
F \times 1 & \overset{\sim}{\longrightarrow} & F
\end{array}
\]

commutes and \(\sigma \) is an \(I_d \)-weak equivalence by remark 14. \(\triangleright \)

Remark 17. Let \(i : \Delta_d \longrightarrow \Delta_D \) be the morphism in \(\mathbb{L} \) with the identity as its underlying map and let

\[i_* : h_P (\Delta_d) \longrightarrow h_P (\Delta_D) \]

be the induced morphism of sheaves. The morphism of sheaves \(\iota : I_d \longrightarrow I_D \) given by

\[\iota_F \overset{\text{def.}}{=} \text{id}_F \times i_* \]

at \(F \in Sh (\mathcal{P}, \tau) \) is a morphism of intervals \(\iota : I_d \longrightarrow I_D \). \(\diamond \)

Lemma 11. The morphism of intervals \(\iota : I_d \longrightarrow I_D \) is a component-wise \(I_d \)-weak equivalence.

Proof. The assignment

\[h'_P(f, g) \overset{\text{def.}}{=} f \cdot g \]

determines a morphism of sheaves

\[h' : h_P (\Delta_d) \times h_P (\Delta_d) \longrightarrow h_P (\Delta_D) \]

such that
commutes for all \(F \in Sh(\mathbb{P}, \tau) \). Now we have that \(id_F \times 1_d \) is an \(\mathcal{I}_d \)-weak equivalence by lemma 10 while \(id_F \times 0_D^\circ \) is an \(\mathcal{I}_d \)-weak equivalence by corollary 1, so \(\iota_F \) is an \(\mathcal{I}_d \)-weak equivalence by remark 14.

\[\text{Theorem 4. } W_{\mathcal{I}_D} \subseteq W_{\mathcal{I}_d}. \text{ In particular, } id : (Sh(\mathbb{P}, \tau), \mathcal{I}_D) \rightarrow (Sh(\mathbb{P}, \tau), \mathcal{I}_d) \text{ is a left Quillen functor.} \]

\[\text{Proof.} \text{ By propositions 6 and lemma 11.} \quad \Box \]

\[\text{Remark 18.} \text{ The “contracting homotopy” } \]

\[h : h_P(\Delta_d) \times h_P(\Delta_d) \rightarrow h_P(\Delta_D) \]

of proposition 10 given by the assignment

\[h_P(f, g) \overset{\text{def.}}{=} f \cdot g \]

is crucial to establish theorem 4. This homotopy exhibits the canonical morphism

\[!_D : h_P(\Delta_D) \rightarrow 1 \]

as an \(\mathcal{I}_d \)-homotopy equivalence (hence as an \(\mathcal{I}_d \)-weak equivalence). The argument fails in the other direction since there is no contracting homotopy

\[h_P(\Delta_D) \times h_P(\Delta_D) \rightarrow h_P(\Delta_d) \]

as di-maps to \(\Delta_d \) have to be constant on order-connected components. We nonetheless conjecture that

\[W_{\mathcal{I}_d} \not\subseteq W_{\mathcal{I}_D} \]

and expect to prove the assertion by cohomological means. The latter will be described in a subsequent paper. \[\Diamond \]

\section*{References}

[Bek01] Tibor Beke. Sheafifiable homotopy model categories. \textit{Mathematical Proceedings of the Cambridge Philosophical Society}, 129(03):447–475, 2001.
[BW06] Peter Bubenik and Krzysztof Worytkiewicz. A model category for local po-spaces. *Homology, Homotopy and Applications*, 8(1), 2006.

[Cis02] Denis-Charles Cisinski. Théories homotopiques dans les topos. *Journal of Pure and Applied Algebra*, 174:43–82, 2002.

[FRG06] Lisbeth Fajstrup, Martin Raussen and Eric Goubault. Algebraic topology and concurrency. *Theoretical Computer Science*, 357:241–278, 2006.

[Gra03] Marco Grandis. Directed homotopy theory. *Cahiers de Topologie et Géométrie Différentielle Catégorique*, 44:281–316, 2003.

[GZ67] Peter Gabriel and Michel Zisman. *Calculus of Fractions and Homotopy Theory*. Springer, 1967.

[Jar06] John F. Jardine. Categorical homotopy theory. *Homology, Homotopy and Applications*, 8, 2006.

[Toê] Bertrand Toën. Champs algébriques. Lecture notes.