Formulas for the amplitude of the van der Pol limit cycle

J.L. Lópeza, S. Abbasbandyb,c, R. López-Ruizd

aDepartment of Mathematical and Informatics Engineering, Universidad Pública de Navarra, 31006-Pamplona, Spain
bDepartment of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, 14778, Iran
cDepartment of Mathematics, Imam Khomeini International University, Ghazvin, 34149-16818, Iran
dDepartment of Computer Science and BIFI, Universidad de Zaragoza, 50009-Zaragoza, Spain

Abstract

The limit cycle of the van der Pol oscillator, $\ddot{x} + \epsilon (x^2 - 1) \dot{x} + x = 0$, is studied in the plane (x, \dot{x}) by applying the homotopy analysis method. A recursive set of formulas that approximate the amplitude and form of this limit cycle for the whole range of the parameter ϵ is obtained. These formulas generate the amplitude with an error less than 0.1\%. To our knowledge, this is the first time where an analytical approximation of the amplitude of the van der Pol limit cycle, with validity from the weakly up to the strongly nonlinear regime, is given.

Key words: van der Pol oscillator; Homotopy analysis method; Limit cycles
PACS numbers: 02.30.Hq, 02.30.Mv, 02.60.Lj
AMS Classification: 34C07, 65L80

1 Introduction

The differential equation,

$$\ddot{x}(t) + \epsilon (x^2 - 1) \dot{x}(t) + x(t) = 0, \quad t \geq 0,$$ \hspace{1cm} (1.1)

with ϵ a real parameter and the dot denoting the derivative with respect to time t, is called the van der Pol oscillator \cite{1}. For $\epsilon > 0$, and due to the nonlinear term $\epsilon (x^2 - 1) \dot{x}$, the system accumulates energy in the region $|x| < 1$ and dissipates this energy in the region $|x| > 1$. This constraint implies the existence of an stable periodic motion (limit cycle \cite{2}) when $\epsilon > 0$. If the nonlinearity is increased, the
dynamics in the time domain runs from near-harmonic oscillations when $\epsilon \to 0$ to relaxation oscillations when $\epsilon \to \infty$, making it a good model for many practical situations \[3,4\]. The closed curve representing this oscillation in the plane (x, \dot{x}) is quasi circular when $\epsilon \to 0$ and a sharp figure when $\epsilon \to \infty$. For $\epsilon < 0$, the dynamics is dissipative in the region $|x| < 1$ and amplificative for $|x| > 1$. Under these conditions, the periodic motion is still possible but unstable. In this case, the limit cycle can be derived from that one with $\epsilon > 0$ taking into account the symmetry $\epsilon, x(t) \to (-\epsilon, -x(-t))$. Therefore, it is enough to study the case $\epsilon > 0$ to obtain also the behavior of the system for $\epsilon < 0$.

Different standard methods (perturbative, non-perturbative, geometrical) \[112,13,15,6,7\] have permitted to study extensively the limit cycle of the van der Pol equation, in the weakly ($\epsilon \to 0$) and in the strongly ($\epsilon \to \infty$) nonlinear regimes. However, investigations giving analytical information of this object in the intermediate regime ($0 \ll \epsilon \ll \infty$) are lacking in the literature. In this paper, it is our aim to fill in this gap by applying to the Eq. (1.1) the homotopy analysis method (HAM) introduced by Liao \[8,9\] in the nineties. This method has been shown to be powerful to solve different nonlinear problems \[10,11,12,13,14,15,16\]. In particular, it has been applied in \[17\] to Liénard equation, $\ddot{x} + \epsilon f(x) \dot{x} + x = 0$, which is the generalization of the van der Pol system when $f(x)$ is an arbitrary function. As the interest in that work \[17\] was the amplitude and the frequency of the periodic motions, the calculations were performed with the time variable being explicit. As here we are only interested in the amplitude and form of the limit cycles, the time dependence of the solutions can be omitted, and we can work directly in the phase space (x, \dot{x}). Our results for the van der Pol limit cycle are presented in Section 2. In Section 3 it is explained how these results have been obtained from our specific application of the HAM to the van der Pol equation. Some conclusions are given in the last Section.

2 The amplitude of the van der Pol limit cycle

Nowadays, the amplitude of the van der Pol limit cycle a can be easily approximated with a classical Runge-Kutta method. The results of this computational calculation a_E are shown in Table 1. Let us observe that $a_E(\epsilon) > 2$ for $\epsilon > 0$, with the asymptotic values: $a_E(\epsilon \to 0) = a_E(\epsilon \to \infty) = 2$. An upper bound rigorously established in \[18\] for the amplitude a is 2.3233. However, as it was signalled there \[18\], the maximum of a_E is 2.02342 and it is obtained for $\epsilon = 3.3$. In view of this result, Odani \[18\] conjectured that the amplitude of the limit cycle of the van der Pol equation is estimated by $2 < a(\epsilon) < 2.0235$ for every $\epsilon > 0$.

Due to the difficulty of calculating the amplitude a by analytical means, one could propose as a good solution the constant amplitude

$$\bar{a} = 2$$

for the whole range of the parameter ϵ. Knowing that the experimental upper bound for a is 2.02342, i.e. $2 < a(\epsilon) < 2.02342$ for every $\epsilon > 0$, the error made with this approximation, $(a(\epsilon) - \bar{a})/a(\epsilon)$, would be about 1%.

If more precision is needed, the different analytical expansions in ϵ that have been found for the amplitude in the weakly and in the strongly nonlinear regimes can be considered. Evidently, the error becomes very large in the regions where these approximations are not valid. In [17,19,20], a recursive perturbation approximation is used to find the formula for the amplitude when $\epsilon \to 0$. This is, up to order $O(\epsilon^8)$,

$$a(\epsilon)_{\epsilon \to 0} = 2 + \frac{1}{96} \epsilon^2 - \frac{1033}{552960} \epsilon^4 + \frac{1019689}{55738368000} \epsilon^6 + O(\epsilon^8).$$

(2.2)

This expansion agrees for small ϵ with the computational calculation a_E presented in Table 1. For $0 < \epsilon < 2$ the error is less than 1%, for $\epsilon \approx 4$ the error is bigger than 10%, and for $\epsilon \approx 6$ the formula has lost its validity and the error is bigger than 50%. In [21], the asymptotic dependence of the amplitude on ϵ is given for sufficiently large $\epsilon > 0$,

$$a(\epsilon)_{\epsilon \to \infty} = 2 + 0.7793 \epsilon^{-4/3} + O_1(\epsilon^{-4/3}),$$

(2.3)

where O_1 means $O_1(\epsilon^{-4/3}) < O(\epsilon^{-4/3})$. Compared with a_E, this formula generates the amplitude with an error bigger than 15% for $\epsilon < 2$. The formula starts to have validity for $\epsilon \approx 10$ with an error around 1%, that passes to be less than 0.1% when $\epsilon > 50$. In Figs. 1.a and 1.b, formulas (2.2) and (2.3) are respectively plotted versus ϵ in their regions of validity.

Table 1.

ϵ	0.1	0.5	1.0	1.5	2.0	2.5
a_E	2.00010	2.00249	2.00862	2.01522	2.01989	2.02235
ϵ	3.0	3.5	4.0	5.0	10	50
a_E	2.02330	2.02337	2.02296	2.02151	2.01428	2.00295

We propose here two formulas, $a_{R1}(\epsilon)$ and $a_{R2}(\epsilon)$, that approximate the amplitude of the van der Pol limit cycle for every $\epsilon > 0$. The first one with an error less than
Fig. 1. Comparison of the ‘experimental’ amplitude $a_E(\epsilon)$ (dotted curve) with (a) amplitude $a(\epsilon)_{\epsilon \to 0}$ given by formula (2.2) (solid line), and (b) amplitude $a(\epsilon)_{\epsilon \to \infty}$ given by formula (2.3) (solid line).

0.1%, and the second one with an error less than 0.05%. These formulas have been obtained by applying the HAM to the van der Pol equation. The details of the derivation of these formulas are given in Section 3.

The first formula is

$$a_{R1}(\epsilon) = 2 + \frac{1.737 \, \epsilon^2}{(8\pi + 9\epsilon)(4 + \epsilon^2)},$$

(2.4)

that derives from expression (3.30). The error obtained, $|a(\epsilon) - a_{R1}(\epsilon)|/a(\epsilon)$, with this formula is less than 0.1% for every $\epsilon > 0$. Fig. 2a shows a_{R1} in comparison with the ‘experimental’ amplitude a_E. The maximum of a_{R1} is 2.02317 and it is taken for $\epsilon = 3.3$.

The second formula is

$$a_{R2}(\epsilon) = 2 + \frac{0.74958 \, \epsilon^2}{(8\pi + 9\epsilon)(4 + \epsilon^2)} + \frac{\epsilon^2(75.3562 + 43.0023\epsilon + 28.1589\epsilon^2 + 8.3479\epsilon^3)}{(8\pi + 9\epsilon)^2(4 + \epsilon^2)^2},$$

(2.5)

that derives from expression (3.33). The error obtained, $|a(\epsilon) - a_{R2}(\epsilon)|/a(\epsilon)$, with this formula is less than 0.05% for every $\epsilon > 0$. The maximum of a_{R2} is 2.02346 and it is taken for $\epsilon = 3.29482$. The plot of a_{R2} in comparison with the amplitude a_E obtained computationally can be seen in Fig. 2b. Let us observe that it can be guessed from Fig. 2b that $a_{R2}(\epsilon) > a_E(\epsilon)$ for every $\epsilon > 0$.

The expansion of expression (2.5) for small ϵ gives

$$a_{R2}(\epsilon)_{\epsilon \to 0} = 2 + 0.01491 \, \epsilon^2 + O(\epsilon^3).$$

(2.6)

For large ϵ, we obtain

$$a_{R2}(\epsilon)_{\epsilon \to \infty} = 2 + 0.18648 \, \epsilon^{-1} + O(\epsilon^{-2}).$$

(2.7)

Let us note the different scaling of this last expression (with behavior ϵ^{-1}) respect to expansion (2.3) (with behavior $\epsilon^{-1.33}$). Taking into account that these approxi-
Fig. 2. (a) Amplitude $a_{R1}(\epsilon)$ given by formula (2.4) (solid curve), and experimental amplitude $a_E(\epsilon)$. (b) Amplitude $a_{R2}(\epsilon)$ given by formula (2.5) (solid curve), and experimental amplitude $a_E(\epsilon)$ (dotted curve), and ϵ given in logarithmic scale.

Simulations start to be valid when $\epsilon > 100$, it can be easily seen that this difference is negligible, in fact less than 0.01%. Nevertheless, we have tried to modify formula (2.5) to obtain the correct scaling $\epsilon^{-1.33}$ of expression (2.3), but the increase of the error in other regions of the parameter ϵ does not recommend this possibility.

In summary, let us remark the exceptional fit of the ‘experimental’ points a_E by the amplitudes a_{R1} and a_{R2} generated with formulas (2.4) and (2.5), respectively (see Figs. 2a and 2b). Moreover, by inspection of Fig. 2b, let us finish this section by posing the following

Conjecture: the amplitude $a_{R2}(\epsilon)$ obtained with formula (2.5) is an upper bound for the amplitude $a(\epsilon)$ of the van der Pol limit cycle, that is

$$a_{R2}(\epsilon) > a(\epsilon) \text{ for every } \epsilon > 0.$$ \hspace{1cm} (2.8)

3 The HAM and the van der Pol equation

The generalization of the van der Pol equation, $\ddot{u} + \epsilon(u^2 - 1)\dot{u} + u = 0$, is called the Liénard equation. In coordinates (u, v), it reads

$$\ddot{u}(t) + \epsilon f(u)\dot{u}(t) + u(t) = 0, \quad t \geq 0,$$ \hspace{1cm} (3.1)

where we consider that $f(u)$ is an even function. The HAM has been applied to this equation in [17] working explicitly in the time domain. We proceed now to apply the HAM to this system by following a different strategy, namely, by omitting the time variable of Eq. (3.1).
3.1 HAM applied to Liénard equation

If we define the variable $v = \dot{u}$, and suppose that v is a function of u, the acceleration \ddot{u} can be rewritten as $v'v$, where the prime denotes the derivative respect to u. The result is a new equation with the time variable eliminated:

$$vv' + \epsilon f(u)v + u = 0.$$ (3.2)

When $f(u)$ is even [22,23], the limit cycles of this equation are closed trajectories of amplitude a in the (u,v) plane, with $-a \leq u \leq a$ and $v(a) = v(-a) = 0$.

After the re-scaling $(u,v) = (ax, ay)$ to the new variables (x,y), the limit cycles are transformed in solutions of the equation

$$yy' + \epsilon yf(ax) + x = 0, \quad -1 \leq x \leq 1, \quad y(-1) = y(1) = 0,$$ (3.3)

where the prime is now denoting the derivative respect to x.

From [22,23], we know that an approximate solution of the positive branch solution of (3.3), for any value of $\epsilon > 0$, is

$$\tilde{y}(x) = \sqrt{1 - x^2} + \frac{\epsilon}{\bar{a}} \begin{cases}
0 & \text{if } -1 \leq x < x_0/\bar{a} \\
F(\bar{a}) - F(ax) & \text{if } x_0/\bar{a} \leq x \leq 1,
\end{cases}$$ (3.4)

where $F'(x) = f(x)$, x_0 is a negative root of $f(x)$: $f(x_0) = 0$ with $x_0 < 0$, and \bar{a} is a positive root of $F(x_0) - F(x)$: $F(x_0) = F(\bar{a})$ with $\bar{a} > 0$. The number of possible stable limit cycles in the strongly non-linear regime (for large ϵ) is obtained from the number of positive roots of $F(x_0) - F(x)$ when x_0 runs over the set of all the negative roots of $f(x_0) = 0$. We take the positive roots \bar{a} selected by the algorithm explained in [22,23] as the corresponding approximate amplitudes. Let us observe that the initial approximate limit cycle $\tilde{y}(x)$ recovers the exact circular form when $\epsilon \to 0$, and also, when $\epsilon \to \infty$, it becomes exactly the two-piecewise limit cycle proposed in [22]. Moreover, it must be noticed that $\tilde{y}(x)$ has sense only when $\epsilon > 0$, and then the results obtained from this initial guess only will have validity for $\epsilon > 0$.

After eliminating the time variable, the non-linear differential equation $yy' + \epsilon yf(ax) + x = 0$ is of order one. Then, to construct the homotopy [39], we build a linear differential equation of order one for the whole range $[0, 1]$ of what is called the homotopy parameter p.

We define an auxiliary linear operator \mathcal{L} by

$$\mathcal{L}[\phi(x; p)] = \frac{\partial}{\partial x} \phi(x; p),$$ (3.5)

with the property

$$\mathcal{L}[C_1] = 0,$$ (3.6)
where C_1 is a constant, and p is a (homotopy) parameter explained below.

From (3.3) we define a nonlinear operator

$$
N[\phi(x;p), A(p)] = \phi(x;p) \frac{\partial \phi(x;p)}{\partial x} + \epsilon \phi(x;p)f(A(p)x) + x,
$$

and then construct the homotopy

$$
H[\phi(x;p), A(p)] = (1 - p)L[\phi(x;p) - \tilde{y}(x)] + hpN[\phi(x;p), A(p)],
$$

where h is a nonzero auxiliary parameter. Setting $H[\phi(x;p), A(p)] = 0$, we have the zero-order deformation equation

$$
(1 - p)L[\phi(x;p) - \tilde{y}(x)] + hpN[\phi(x;p), A(p)] = 0,
$$

subject to the boundary conditions

$$
\phi(-1;p) = 0, \quad \phi(1;p) = 0,
$$

where $p \in [0, 1]$ is an embedding parameter. When the parameter p increases from 0 to 1, the solution $\phi(x;p)$ varies from $y_0(x) = \tilde{y}(x)$ to $y(x)$, $A(p)$ varies from a_0 to a. Assume that $\phi(x;p)$ and $A(p)$ are analytic in $p \in [0, 1]$ and can be expanded in the Maclaurin series of p as follows:

$$
\phi(x;p) = \sum_{n=0}^{+\infty} y_n(x)p^n, \quad A(p) = \sum_{n=0}^{+\infty} a_n p^n,
$$

where

$$
y_n(x) = \frac{1}{n!} \frac{\partial^n \phi(x;p)}{\partial p^n} \bigg|_{p=0}, \quad a_n = \frac{1}{n!} \frac{\partial^n A(p)}{\partial p^n} \bigg|_{p=0}.
$$

Notice that series (3.11) contain the auxiliary parameter h, which has influence on their convergence regions. Assume that h is properly chosen such that all of these Maclaurin series are convergent at $p = 1$. Hence at $p = 1$ we have

$$
y(x) = y_0(x) + \sum_{n=1}^{+\infty} y_n(x), \quad a = a_0 + \sum_{n=1}^{+\infty} a_n.
$$

At the Nth-order approximation, we have the analytic solution of Eq. (3.3), namely

$$
y(x) \approx Y_N(x) := \sum_{n=0}^{N} y_n(x), \quad a \approx A_N := \sum_{n=0}^{N} a_n.
$$

The parameter h is free and can be chosen arbitrarily, in particular, it can be a function of ϵ. Nevertheless, the function $\tilde{y}(x)$ is the exact limit cycle solution of the Liénard equation (3.3) in the limits $\epsilon \to 0$ and $\epsilon \to \infty$. This means that the general solution $y(x, h)$ of Eq. (3.9) should tend to $\tilde{y}(x)$ for any p in those limits of ϵ, loosing its dependence on h. Then, a reasonable property for h would be to
vanish in those limits of \(\epsilon \). Hence, the solution of (3.9) would be the exact solution \(\tilde{y}(x) \) for any value of the parameter \(p \) in the limits \(\epsilon \to 0 \) and \(\epsilon \to \infty \). A simple function \(h(\epsilon) \) satisfying these properties is

\[
h(\epsilon) = \frac{b\epsilon}{c + \epsilon^2}, \quad \text{with} \quad b, c \in \mathbb{R}.
\]

(3.13)

Differentiating Eqs. (3.9) and (3.10) \(n \) times with respect to \(p \), then setting \(p = 0 \), and finally dividing by \(n! \), we obtain the \(n \)-th-order deformation equation

\[
\mathcal{L}[y_n(x) - \chi_n y_{n-1}(x)] + h R_n(x) = 0, \quad (n = 1, 2, 3, \ldots),
\]

(3.14)

subject to the boundary conditions

\[
y_n(-1) = 0, \quad y_n(1) = 0,
\]

(3.15)

where \(R_n(x) \) is defined by

\[
R_n(x) = \frac{1}{(n-1)!} \left. \frac{\partial^{n-1} N[\phi(x; p), A(p)]}{\partial p^{n-1}} \right|_{p=0},
\]

(3.16)

and

\[
\chi_n = \begin{cases}
0, & n \leq 1, \\
1, & n > 1.
\end{cases}
\]

At each iteration, we have two unknowns, \(C_1 \), in Eq. (3.6), and \(a_n \). These unknowns are obtained by considering the boundary conditions (3.15) as follows.

At zero order, we obtain

\[
y_0(x) = \tilde{y}(x).
\]

(3.17)

At 1th-order, we obtain

\[
y_1(x) = \frac{h}{2} \left[1 - x^2 - y_0^2(x) \right] - h \epsilon \int_{-1}^{1} y_0(t) f(a_0 t) dt,
\]

(3.18)

where we have imposed the condition \(y_1(-1) = 0 \) choosing the integration constant, \(C_1 \), appropriately. At this moment \(a_0 \) is free, but we can fix the value of \(a_0 \) by imposing \(y_1(1) = 0 \):

\[
\int_{-1}^{1} y_0(t) f(a_0 t) dt = 0.
\]

(3.19)

This is a non linear equation for \(a_0 \). When \(f(x) \) is an even polynomial of degree \(2n \), it is a polynomial equation of degree \(n \) in the variable \(a_0^2 \). Therefore, at this order, the number of limit cycles is the number of positive roots of this equation, at most \(n \) (see [23] for a longer discussion of this point).

Then, for every one of the \(a_0 \) solutions of the above equation, i.e. for every one of the limit cycles of the system, we proceed order by order in \(p \) to obtain higher order corrections to the amplitude \(a \) and to the shape of the limit cycle \(y(x) \). At
any nth-order, with $n \geq 2$, we obtain the nth-order correction y_n to the shape of the limit cycle:

$$y_n(x) = y_{n-1}(x) - \frac{h}{2} \sum_{k=0}^{n-1} y_k(x) y_{n-k-1}(x) - \epsilon h \int_{-1}^{x} y_{n-1}(t) f(a_0 t) dt$$

$$- \epsilon h \sum_{k=1}^{n-1} \int_{-1}^{x} y_{n-k-1}(t) \sum_{m=1}^{k} B_{k,m}(a_1, a_2, \ldots, a_k) \frac{t^m f^{(m)}(a_0 t)}{m!} dt,$$

(3.20)

where $B_{n,m}(a_1, ..., a_n)$ are the partial ordinary Bell polynomials \([24], p. 190\). We have $B_{0,0} = 1$ and, for $n = 1, 2, 3, \ldots$, $B_{n+1,0} = 0$ and they satisfy the recurrence

$$B_{n,m}(a_1, ..., a_n) = \sum_{k=m-1}^{n-1} a_{n-k} B_{k,m-1}(a_1, ..., a_n).$$

(3.21)

We recall that $B_{n,m}(a_1, ..., a_n)$ is linear in a_n.

At nth-order, we can obtain also the nth-order correction a_{n-1} to the amplitude of the limit cycle by imposing the condition $y_n(1) = 0$. The result is a linear equation for a_{n-1} with solution:

$$a_{n-1} = - \left[\int_{-1}^{1} y_{n-1}(x) f(a_0 x) dx + \sum_{k=1}^{n-1} \sum_{m=1}^{k} y_{n-k-1}(x) \frac{B_{k,m}(a_1, ..., a_k)}{m!} x^m f^{(m)}(a_0 x) dx \right]$$

$$/ \left[\int_{-1}^{1} x y_0(x) f'(a_0 x) dx \right],$$

(3.22)

where the star in the sum symbol means that the term $(k, m) = (n-1, 1)$ is excluded.

For example, at 2th-order we obtain

$$y_2(x) = y_1(x) - h y_0(x) y_1(x) - h e \int_{-1}^{x} [y_1(t) f(a_0 t) + t y_0(t) f'(a_0 t) a_1] dt$$

(3.23)

and

$$a_1 = - \left[\int_{-1}^{1} y_1(x) f(a_0 x) dx \right] / \left[\int_{-1}^{1} x y_0(x) f'(a_0 x) dx \right].$$

(3.24)

Therefore, a first approximation to the shape of the limit cycle is $y_0(x) + y_1(x)$, and a first order approximation to the amplitude of the limit cycle is $a = a_0 + a_1$.

At 3th-order, we have

$$y_3(x) = y_2(x) - h y_0(x) y_2(x) - \frac{h}{2} y_1^2(x)$$

$$- h e \int_{-1}^{x} [y_2(t) f(a_0 t) + a_1 t y_1(t) f'(a_0 t) + \frac{1}{2} a_1^2 t^2 y_0(t) f''(a_0 t) + t y_0(t) f'(a_0 t) a_2] dt$$

(3.25)
and

$$a_2 = - \left[\int_{-1}^{1} \left[y_2(x) f(a_0 x) + a_1 x y_1(x) f'(a_0 x) + \frac{1}{2} a_2^2 x^2 y_0(x) f''(a_0 x) \right] dx \right] / \left[\int_{-1}^{1} x y_0(x) f'(a_0 x) dx \right].$$

(3.26)

Therefore, a second order approximation to the shape of the limit cycle is \(y_0(x) + y_1(x) + y_2(x) \) and a second order approximation to the amplitude of the limit cycle is \(a = a_0 + a_1 + a_2 \).

Moreover, at every order in \(p \) the appropriate function \(h(\epsilon) \) is indicated by the experiment.

3.2 Results for the van der Pol equation

For the van der Pol system, we have \(f(x) = x^2 - 1, \ F(x) = x^3/3 - x, \ x_0 = -1, \ \tilde{a} = 2 \) and

$$\bar{y}(x) = \sqrt{1-x^2} + \frac{\epsilon}{2} \begin{cases} 0 & \text{if} \ -1 \leq x < -1/2, \\ F(2) - F(2x) & \text{if} \ -1/2 \leq x \leq 1. \end{cases}$$

(3.27)

The expressions for \(y_n(x) \) given by the recursive formula (3.20) can be calculated with Mathematica. Although they are elementary functions, their length is excessive to be reproduced here. From (3.19) we get

$$\int_{-1}^{1} y_0(t) f(a_0 t) dt = \frac{9\epsilon + 8\pi}{64} (a_0^2 - 4) = 0 \implies a_0 = 2.$$ (3.28)

From (3.24) we obtain

$$a_1(h) = -\frac{27\sqrt{3}\epsilon h}{35(8\pi + 9\epsilon)}.$$ (3.29)

Therefore, a first approximation to the amplitude of the limit cycle is

$$a(h) \approx 2 - \frac{27\sqrt{3}\epsilon h}{35(8\pi + 9\epsilon)}.$$ (3.30)

At it was advanced at the beginning of this section, note that this expression is only valid for positive \(\epsilon \). Choosing \(b = -1.3 \) and \(c = 4 \) in (3.13),

$$h(\epsilon) = -\frac{1.3\epsilon}{4 + \epsilon^2},$$ (3.31)

the formula \(a_{R1}(\epsilon) \) given in (2.4) is obtained.
From (3.32) we get

\[
a_2(h) = \frac{3e h [19197 \sqrt{3} e^2 h - 5040 (8 \sqrt{3} - 21 h) \pi + 2e (-22680 \sqrt{3} + h (54837 + 7700 \sqrt{3} \pi))]}{19600 (9e + 8\pi)^2}.
\]

Therefore, a second approximation to the amplitude of the limit cycle is

\[
a(h) \simeq 2 - \frac{27 \sqrt{3} e h}{35 (8\pi + 9e)} + \frac{3e h [19197 \sqrt{3} e^2 h - 5040 (8 \sqrt{3} - 21 h) \pi + 2e (-22680 \sqrt{3} + h (54837 + 7700 \sqrt{3} \pi))]}{19600 (9e + 8\pi)^2}.
\]

Choosing \(b = -0.561 \) and \(c = 4 \) in (3.13),

\[
h(e) = \frac{-0.561e}{4 + e^2},
\]

the formula \(a_{R2}(e) \) shown in (2.5) is finally obtained.

As an example, and to conclude this section, we plot in Fig. 3 the form of the van der Pol limit cycle when \(y_0(x) \), \(y_0(x) + y_1(x) \) and \(y_0(x) + y_1(x) + y_2(x) \) are used as approximated limit cycles. It is not banal to recall here that the reconstruction of the shape of limit cycles is not a problem less difficult than that of the calculation of their amplitudes.
4 Conclusions

In this work, the conjecture \[2.8\] has been posed. This is a consequence of the different formulas here presented for approximating the amplitude \(a\) of the van der Pol limit cycle. In addition to the well known constant approximation \(\bar{a} = 2\) that generates an error less than 1\%, we establish a family of recursive formulas that are valid for the whole range of the parameter \(\epsilon\). Two of them, \(a_{R1}(\epsilon)\) and \(a_{R2}(\epsilon)\), have been explicitly given. The first one, \(a_{R1}\), produces an error less than 0.1\% and the second one, \(a_{R2}\), reduces the error to less than 0.05\%. Moreover, \(a_{R2}\) is conjectured to be an upper bound of \(a\).

As far as we know, this is the first time where an analytical approximation of the amplitude of the van der Pol limit cycle, with validity from the weakly up to the strongly nonlinear regime, is proposed.

Acknowledgements:

The Gobierno of Navarra, Spain, Res. 07/05/2008 is acknowledged by its financial support.

References

[1] Van der Pol B. On relaxation oscillations. Phil Mag 1926; 2:978–992
[2] Andronov AA, Vitt AA, Khaikin SE. Theory of oscillators, Dover, New York; 1989.
[3] Van der Pol B and van der Mark M. Le battement du coeur considéré comme oscillation de relaxation et un modèle électrique du coeur (The beating of the heart considered as relaxation oscillation and an electric model of the heart). L’onde électrique 1928; 7:365–392.
[4] López-Ruiz R, Pomeau Y. Transition between two oscillation modes. Phys Rev E 1997; 55:R3820-R3823.
[5] Odani K. The limit cycle of the van der Pol equation is not algebraic. J Differen Equat 1995; 115:146–152.
[6] Jordan AW, Smith P. Nonlinear ordinary differential equations, Oxford University Press, Oxford; 1977.
[7] Ye Y. Theory of limit cycles. In: Trans Math Monographs, vol. 66. Boston: American Mathematical Society; 1986.
[8] Liao SJ. The proposed homotopy analysis technique for the solutions of non-linear problems, Ph.D. Thesis, Shanghai Jiao Tong University, 1992.
[9] Liao SJ. Beyond perturbation: introduction to the homotopy analysis method. Boca Raton: Chapman & Hall/CRC Press; 2003.
[10] Liao SJ. An analytic approximate approach for free oscillations of self-excited systems. Int J Non-Linear Mech 2004;39:271–280.

[11] Wu W, Liao SJ. Solving solitary waves with discontinuity by means of the homotopy analysis method. Chaos, Solitons & Fractals 2005;26:177–185.

[12] Hayat T, Khan M. Homotopy solutions for a generalized second-grade fluid past a porous plate. Nonlinear Dynam 2005;42:395–405.

[13] Abbasbandy S. The application of homotopy analysis method to solve a generalized Hirota–Satsuma coupled KdV equation. Phys Lett A 2007;361:478–483.

[14] Abbasbandy S. Homotopy analysis method for heat radiation equations. Int Commun Heat Mass Transf 2007;34:380–387.

[15] Abbasbandy S, Tan Y, Liao SJ. Newton-Homotopy analysis method for nonlinear equations. Appl Math Comput 2007;188:1794–1800.

[16] Tan Y, Abbasbandy S. Homotopy analysis method for quadratic Riccati differential equation. Commun Nonlinear Sci Numer Simul 2008;13:539–546.

[17] Abbasbandy S, Lopez JL, Loper-Ruiz R. The homotopy analysis method and the Liénard equation. arXiv:0805.3916[nlin.PS].

[18] Odani K. On the limit cycle of the Liénard equation. Archivum Mathematicum (Brno) 2000;36:25–31.

[19] López JL, López-Ruiz R. Approximating the amplitude and form of limit cycles in the weakly nonlinear regime of Liénard systems. Chaos, Solitons & Fractals 2007;34:1307–1317.

[20] López JL, López-Ruiz R. The limit cycles of Liénard equations in the weakly nonlinear regime. ArXiv 2006[nlin/0605025]

[21] Cartwright ML. Van der Pol’s equation for relaxation oscillation. In Contributions to the theory of non-linear oscillations II, S. Lefschetz ed. Ann. of Math. Studies 1952;29:3–18.

[22] López JL, López-Ruiz R. The limit cycles of Liénard equations in the strongly nonlinear regime. Chaos, Solitons & Fractals 2000;11:747-756.

[23] López-Ruiz R, López JL. Bifurcation curves of limit cycles in some Liénard systems. Int J Bifurcat Chaos 2000;10:971-980.

[24] Riordan, J. Combinatorial Identities, John Wiley & Sons, New York; 1968.