Targeting neurosteroidogenesis as therapy for PTSD

Graziano Pinna*

Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
*Correspondence: gpinna@psych.uic.edu

Edited by:
Thibault Renoir, Florey Institute of Neuroscience and Mental Health, Australia

Reviewed by:
Jamie Maguire, Tufts University School of Medicine, USA
Rainer Rupprecht, University Regensburg, Germany

Keywords: neurosteroidogenesis, PTSD, PTSD treatment, GABAergic neurotransmission, anti-PTSD drug discovery, selective brain steroidogenic stimulants (SBSSs), allopregnanolone, ganaxolone

Posttraumatic stress disorder (PTSD) is a severe condition resulting from exposure to traumatic events, such as combat situations, sexual assault, serious injury or the threat of death. Symptoms include disturbing recurring flashbacks, avoidance or numbing of memories of the event, and hyperarousal, which continue for more than a month after the traumatic event. Reduced cortical GABA (Kugaya et al., 2006) that positively and allosterically modulate GABA action at GABA_A receptors (Belelli and Lambert, 2005) suggest that in PTSD patients, a perturbation of GABAergic neurotransmission plays a role in the pathogenesis of this disorder. Thus restoring downregulated brain allopregnanolone levels may be beneficial in treating PTSD.

There is a general consensus that maladaptive fear responses (i.e., impaired fear extinction) are a neurofeature of stress-induced PTSD (Myers and Davis, 2007; Maren, 2008). Exaggerated fear responses and impaired extinction learning, or the inability to extinguish fear memories, are often treated with exposure-based therapy (EBT), which involves the exposure of the patient to the feared context without any danger (Joseph and Gray, 2008). This closely approximates the procedure used to simulate and study fear responses and fear extinction learning in PTSD mouse models (Marks, 1979). While psychological therapy has been highly effective both in treating PTSD and in preventing the progression of the event sequelae that leads to consolidation of fear memories, one challenge of PTSD therapy is the spontaneous recovery of fear that often reemerges following successful EBT.

For this reason, pharmacological treatment may be advantageous alone or in combination with EBT. Selective serotonin reuptake inhibitors (SSRIs) are currently the drugs of choice in treating PTSD. They are effective in facilitating and restoring the neurobiological changes altered in PTSD patients, and they are devoid of the unwanted side effects that plague the use of benzodiazepines, more importantly, SSRIs are potent therapeutics where benzodiazepines fail to be beneficial. Following the observation that low non-serotonergic doses of fluoxetine and congener increase allopregnanolone levels as their primary mechanism of action, we suggested that SSRIs acting as selective brain steroidogenic stimulants (SBSSs) can improve dysfunctional emotional behavior and may be of advantage in PTSD treatment. In addition to its use in PTSD, this novel steroidogenic mechanism of action of SSRIs given at low doses offers enormous therapeutic potentials for the treatment of other psychiatric disorders, including anxiety spectrum disorders, premenstrual dysphoria, and probably depression, as these disorders may be caused by a downregulation of neurosteroid biosynthesis (Uzunov et al., 1996; Westenberg, 1996; Guidotti and Costa, 1998; Romeo et al., 1998; Uzunova et al., 1998; Steiner and Pearlstein, 2000; Berton and Nestler, 2006; Pinna et al., 2006a, 2009; Pinna, 2010; Ipser and Stein, 2012; Pinna and Rasmussen, 2012; Lovick, 2013).

In vitro studies show that SSRIs may activate 3α-hydroxysteroid dehydrogenase, thereby facilitating the reduction of 5α-dihydroprogesterone into allopregnanolone (Griffin and Mellon, 1999). Nonetheless, the precise neuronal mechanisms involved in the neurosteroidogenic action of SSRIs remain unclear. Drug design welcomed allopregnanolone biosynthesis as a target for novel rapidly acting anxiolytics devoid of sedation, tolerance, and withdrawal liabilities (Rupprecht et al., 2009, 2010; Schüle et al., 2011), and, in addition to low doses of SSRIs, selective ligands for the (18 kDa) translocase protein (TSPO), which increase allopregnanolone levels, may be beneficial in anxiety and PTSD (Rupprecht et al., 2009).

A PTSD MOUSE MODEL

In our laboratory, we have used the socially isolated (SI) mouse as a model characterized by a downregulation of allopregnanolone biosynthesis associated with endophenotypic features of PTSD. The relevance of the SI mice as a model of PTSD lays in reproducing behavioral and neurochemical alterations that are found in PTSD patients (Pibiri et al., 2008). Thus, SI mice express decreased corticolimbic allopregnanolone levels in emotion-relevant brain areas (frontal cortex, hippocampus, basolateral amygdala) (Pibiri et al., 2008; Pinna et al., 2008). The impulsivity and violence of combat veterans (Forbes et al., 2008), is matched in SI mice by high levels of aggression (Pinna et al., 2003). In PTSD patients, enhanced contextual fear and impaired fear extinction learning was shown during re-exposure to events that symbolize the triggering traumatic event; however, cued fear was not changed (Ameli et al., 2001; Rauch et al., 2006). SI mice, analogously, display exaggerated contextual fear and impaired
Likewise, GABA_A receptor subunit expression of GABA_A receptor subunits, The cortical expression of α1, α2, and γ2 subunit mRNA was decreased by ≈50%, and α4 and α5 was increased by 130% in SI mice. The expression α1 subunit mRNA in layer I was decreased by 50% and unchanged in layer V of SI mice (Pinna et al., 2006b). Likewise, GABA_A receptor subunit expression of α1 was decreased and that of α5 was increased in the hippocampus. A downregulation of α1 (−40%) and an increase in the expression of α5 subunit proteins (+100%) was also determined in SI mice. Because γ2 subunits are a necessary prerequisite for the formation of benzodiazepine-sensitive GABA_A receptors, our study suggests that the decrease in γ2 expression and the lack of benzodiazepine’s anxiolytic action observed in SI mice may be a result of stress-induced formation of benzodiazepine-insensitive GABA_A receptors strategically integrated in circuitry that regulate anxiety. Interestingly, we observed a decreased benzodiazepine binding to hippocampal synaptic membranes (Pinna et al., 2006b).

Unlike benzodiazepines, which have a selective pharmacological profile and fail to activate GABA_A receptors containing α4 and α6 subunits (Brown et al., 2002), allopregnanolone modulation of GABA_A receptors exhibits a broad pharmacological profile. Although allopregnanolone acts preferentially on δ subunit-containing GABA_A receptors, which confers neurosteroid sensitivity, it also exerts effects on other GABA_A receptor subtypes at higher concentrations (Mihalek et al., 1999; Stell et al., 2003). Thus, increasing corticolimbic allopregnanolone levels with allopregnanolone injections or stimulating allopregnanolone biosynthesis with S-norflouoxetine, or directly activation of GABA_A receptors with ganaxolone likely improved anxiety because allopregnanolone/ganaxolone acts on a larger spectrum of GABA_A receptor subunits. Thus, allopregnanolone or analogs are more advantageous than benzodiazepines because they improve anxiety, fear, and aggressiveness when benzodiazepines are inactive. In addition, unlike benzodiazepines, allopregnanolone, ganaxolone, or SBSS ligands may improve emotional behavior at non-sedative concentrations (Pinna et al., 2003, 2006b; Nelson and Pinna, 2011; Nin et al., 2011; Pinna and Rasmussen, submitted). These observations suggest that drugs designed to selectively increase neurosteroidogenesis may alleviate PTSD by facilitating GABA_A receptor neurotransmission.

PHARMACOLOGICAL TARGETS TO STIMULATE NEUROSTEROIDOGENESIS

A seminal observation by Uzunova et al. (1998) suggested that SSRIs, including fluoxetine and fluvoxamine might be beneficial in the treatment of major unipolar depression by increasing the brain levels of allopregnanolone. This SSRI-induced neurosteroidogen effect correlated with improved depressive symptomatology and was confirmed by several other reports in the field (Rupprecht et al., 2009, 2010). Pregnenolone can then be taken up by pyramidal neurons (Costa and Guidotti, 1991) where a cascade of enzymatic processes takes place in the cytosol resulting in the production of neurosteroids, including pregnenolone sulfate and allopregnanolone Figure 1. New molecules that bind with high affinity to TSPO have been recently investigated; these drugs are able to exert important anxiolytic effects but are devoid of the unwanted side effects associated with benzodiazepines, including over-sedation, tolerance, and withdrawal symptoms (Rupprecht et al., 2009, 2010). In mouse models, TSPO agents have been shown to potently increase allopregnanolone levels in the hippocampus and cortex, as well as to induce anxiolytic effects (Kita et al., 2004). XBD173 and etifoxine have proven to be highly efficacious anxiolytic and antidepressant drugs in a number of behavioral tests (Rupprecht et al., 2010; Schüle et al., 2011). The anxiolytic effects of these agents were related to their ability to increase neurosteroid biosynthesis upstream of allopregnanolone synthesis within the neurosteroidogenic cascade Figure 1, as confirmed by studies
in which key enzyme blockers for neurosteroid biosynthesis, including finasteride and triolostane (Schüle et al., 2011), were used. TSPO ligands (AC-5216/XBD173 and YL-IPA08) also improve PTSD-like behavior in rodents in studies of situational reminders and contextual fear responses (Qiu et al., 2013). In summary, these studies demonstrated the neuropharmacological effects of several TSPO agents, suggesting that TSPO may represent a therapeutic target for drug discovery. Thus, these drugs, which fulfill the requirements as SBSS molecules, may be a new class of drugs for the future treatment of PTSD and other anxiety disorders. Consistently, TSPO ligands have recently showed promising therapeutic effects in clinical studies (Rupprecht et al., 2010; Schüle et al., 2011).

The advantage of having a drug that “indirectly” activates GABA_A receptors by increasing allopregnanolone levels Figure 1 within the brain is that allopregnanolone will not be globally increased. Physiological concentrations of allopregnanolone are unevenly expressed in the brain (Pinna et al., 2000; Pibiri et al., 2008), and regulated by rate-limiting step enzymes such as 5α-reductase type I. Pharmacological treatments also induce a cell specific upregulation of brain allopregnanolone, which is increased in frontal cortex (pyramidal neurons, 5α-reductase is not expressed in interneurons), hippocampus (CA1-3 pyramidal neurons and dentate gyrus granular cells), and basolateral amygdala (pyramidal-like neurons) after fluoxetine but not in striatum (where allopregnanolone is produced in GABAergic long-projecting neurons, spiny neurons) (Agis-Balboa et al., 2006, 2007). Hence, while allopregnanolone is downregulated during social isolation, fluoxetine elevates its levels in glutamatergic neurons but not in GABAergic neurons (Nelson and Pinna, 2011). If allopregnanolone is administered directly, it would be expressed all over the brain and reach high levels in brain regions where its levels are physiologically lower.

Ideally, the SBSS drugs of the future that selectively induce anxiolytic and anti-PTSD effects, will be those molecules, prototypic of fluoxetine, devoid of serotonergic effects but capable of activating a neurosteroidogenesis cascade downstream, possibly stimulating allopregnanolone content at the level of 5α-reductase or 3α-hydroxysteroid dehydrogenase. Understanding whether FLX’s action on neurosteroidogenesis is mediated by upregulating expression or function of 5α-reductase is of pivotal importance because this enzyme is downregulated in corticolimbic areas of SI mice and in post-mortem frontal cortex (BA9) of depressed patients (Agis-Balboa et al., submitted).

As an alternative, in patients who cannot adequately synthesize allopregnanolone and in whom administration of an SBSS is ineffective because neurosteroidogenesis is greatly impaired, the administration of an allopregnanolone analog (Gulinello et al., 2003; Kaminski et al., 2004), such as ganaxolone that directly activates GABA_A receptors Figure 1 may offer a safe therapeutic alternative. A multisite Phase II trial of the efficacy and safety of ganaxolone in PTSD is currently under process.

CONCLUSION
Targeting allopregnanolone biosynthesis with selective neurosteroidogenic agents offers several therapeutic advantages: (1)
allopregnanolone is not globally expressed in the brain like in the case of administering allopregnanolone itself, in fact, using a neurosteroidogenic molecule relies on the stimulation of rate-limiting step enzymes Figure 1, which guard allopregnanolone levels and thereby normalize its physiological levels in the required brain areas; and (2) stimulating allopregnanolone biosynthesis downstream of pregnenolone in the neurosteroidogenic cascade circumvents the production of several neurosteroids, which by activating various neurotransmitter systems may be associated with unwanted side effects.

ACKNOWLEDGMENTS

Supported by MH 085999 to Graziano Pinna.

REFERENCES

Agis-Balboa, R. C., Pinna, G., Kadriu, B., Costa, E., and Guidotti, A. (2007). Downregulation of 5α-reductase type I mRNA expression in corticolumbic glutamatergic circuits of mice socially isolated for four weeks. Proc. Natl. Acad. Sci. U.S.A. 104, 18736–18741. doi: 10.1073/pnas.0709419014

Agis-Balboa, R. C., Pinna, G., Zhubi, A., Maloku, E., Veldic, M., Costa, E., et al. (2006). Characterization of brain neurons that express enzymes mediating active neurosteroid biosynthesis. Proc. Natl. Acad. Sci. U.S.A. 103, 14602–14607. doi: 10.1073/pnas.1007047985

Myers, K. M., and Davis, M. (2007). Mechanisms of fear extinction. Mol. Psychiatry 12, 120–150. doi: 10.1038/sj.mp.4001939

Nelson, M., and Pinna, G. (2011). S-norfluoxetine microinfused into the basolateral amygdala increases allopregnanolone levels and reduces aggression in socially isolated mice. Neuropharmacology 27, 1180–1185. doi: 10.1016/j.neuropharm.2010.10.011

Nin, S. M., Martinez, L. A., Thomas, R., Nelson, M., and Pinna, G. (2011). Allopregnanolone and S-norfluoxetine decrease anxiety-like behavior in a mouse model of anxiety/depression. Trabajos del Instituto Cajal 83, 215–216. doi: 10.3389/fendo.2011.00073

Papadoopoulos, V., Baraldi, M., Guiltarte, T. R., Knudsen, T. B., Lacapère, J. J., Lindemann, P., et al. (2006). Translocator protein (18kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function. Trends Pharmacol. Sci. 27, 402–409. doi: 10.1016/j.tips.2006.06.005

Pibiri, E., Nelson, M., Guidotti, A., Costa, E., and Pinna, G. (2008). Decreased allopregnanolone content during social isolation enhances contextual fear: a model relevant for posttraumatic stress disorder. Proc. Natl. Acad. Sci. U.S.A. 105, 5567–5572. doi: 10.1073/pnas.081853105

Pinna, G. (2010). In a mouse model relevant for post-traumatic stress disorder, selective brain steroidogenic regulators (SBSS) improve behavioral deficits by normalizing allopregnanolone biosynthesis. Behav. Pharmacol. 21, 438–450. doi: 10.1097/FBP.0b0133e3283d38b0

Pinna, G., Agis-Balboa, R., Pibiri, F., Nelson, M., Guidotti, A., and Costa, E. (2008). Neurosteroid biosynthesis regulates sexually dimorphic fear and aggressive behavior in mice. Neurochem. Res. 33, 1990–2007. doi: 10.1007/s11064-008-9718-5

Pinna, G., Costa, E., and Guidotti, A. (2004). Fluoxetine and norfluoxetine stereospecifically facilitate pentobarbital sedation by increasing neurosteroids. Proc. Natl. Acad. Sci. U.S.A. 101, 6222–6223. doi: 10.1073/pnas.0401479101

Pinna, G., Costa, E., and Guidotti, A. (2006a). Fluoxetine and norfluoxetine stereospecifically and selectively increase brain neurosteroid content at doses that are inactive on 5-HT receptor uptake. Psychopharmacology 186, 362–372. doi: 10.1007/s00213-005-0213-2

Pinna, G., Agis-Balboa, R. C., Zhubi, A., Matsumoto, K., Grayson, D. R., Costa, E., et al. (2006b).
Imidazenil and diazepam increase locomotor activity in mice exposed to protracted social isolation. Proc. Natl. Acad. Sci. U.S.A. 103, 4275–4280. doi: 10.1073/pnas.0603291103

Pinna, G., Costa, E., and Guidotti, A. (2009). SSRIs act as selective brain steroidogenic stimulants (SBSSs) at low doses that are inactive on 5-HT reuptake. Cur. Opin. Pharmac. 9, 24–30. doi: 10.1016/j.coph.2008.12.006

Pinna, G., Dong, E., Matsumoto, K., and Costa, E., and Guidotti, A. (2003). In socially isolated mice, the reversal of brain allopregnanolone down-regulation mediates the anti-aggressive action of fluoxetine. Proc. Natl. Acad. Sci. U.S.A. 100, 2035–2040. doi: 10.1073/pnas.0337642100

Pinna, G., and Rasmusson, A. M. (2012). Up-regulation of neurosteroid biosynthesis as a pharmacological strategy to improve behavioural deficits in a putative mouse model of post-traumatic stress disorder. J. Neuroendocrinol. 24, 102–116. doi: 10.1111/j.1365-2826.2011.02234.x

Pinna, G., Uzunova, V., Matsumoto, K., Puia, G., Costa, E., and Guidotti, A. (2000). Brain allopregnanolone regulates the potency of the GABA_A receptor agonist muscimol. Neuropharmacology 39, 440–448. doi: 10.1016/S0028-3908(99)00149-5

Qiu, Z. K., Zhang, L. M., Zhao, N., Chen, H. X., Zhang, Y. Z., Liu, Y. Q., et al. (2013). Repeated administration of AC-5216, a ligand for the 18 kDa translocator protein, improves behavioral deficits in a mouse model of post-traumatic stress disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry 45, 40–46. doi: 10.1016/j.pnpbp.2013.04.010

Rasmusson, A. M., Pinna, G., Paliwal, P., Weisman, D., Gottshalk, C., Charney, D., et al. (2006). Decreased cerebrospinal fluid allopregnanolone levels in women with posttraumatic stress disorder. Biol. Psychiatry 60, 704–713. doi: 10.1016/j.biopsych.2006.03.026

Received: 17 October 2013; accepted: 14 December 2013; published online: 06 January 2014. Citation: Pinna G (2014) Targeting neurosteroidogenesis as therapy for PTSD. Front. Pharmacol. 4:166. doi: 10.3389/fphar.2013.00166

This article was submitted to Neuropharmacology, a section of the journal Frontiers in Pharmacology. Copyright © 2014 Pinna. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.