Preoperative evaluation of endoscopic submucosal dissection for early gastric cancer

Yu-Lan Gaoa,*, Yue-han Zhangb, Meng Caoca

Abstract

Objective: To retrospectively analyze the preoperative endoscopic evaluation of the size, nature, and depth of lesions in endoscopic submucosal dissection (ESD) for early gastric cancer and precancerous lesions, determine whether the lesions can be completely resected, and reduce the risk of additional surgery after ESD.

Methods: A total of 114 patients with high-grade intraepithelial neoplasia (HGIN) and early gastric cancer treated with ESD in Hebei General Hospital from January 2016 to April 2021 were enrolled in this study. The lesions were evaluated preoperatively according to the endoscopic findings of white light, magnifying endoscopy, endoscopic features of narrow band imaging, and preoperative pathology. Lesion size, positive resection margin, lesion depth, and vascular invasion of postoperative pathology were used as criteria.

Results: There were 121 lesions in 114 patients. The coincidence rates of preoperative and postoperative pathology were 87.21% (75/86) for HGIN and 92.1% (35/38) for adenocarcinoma. There was no significant difference in the coincidence rate between preoperative pathological evaluation and postoperative pathological among the 3 lesions (χ² = 10.614, P = .005). The type and malignancy of the lesion were not related to its location or size. Magnifying endoscopy combined with narrow-band imaging showed that HGIN and early gastric cancer had clear borders, irregular microvessels, and irregular surface microarchitecture on endoscopic features. Lesions > 3 cm, surface ulcers and spontaneous bleeding may be risk factors for deeper lesions.

Conclusion: ESD is not only a method for the treatment of early gastric cancer and precancerous lesions, but is also an important method for definite pathological diagnosis. Accurate preoperative assessment of lesion type, lesion extent and depth of invasion is helpful to improve the complete resection rate of ESD and reduce the risk of additional surgery.

Abbreviations: ESD = endoscopic submucosal dissection, HGIN = high-grade intraepithelial neoplasia, LGIN = low-grade intraepithelial neoplasia, NBI = narrowband imaging, WOS = White opaque substance.

Keywords: Early gastric cancer, endoscopic submucosal dissection, high grade intraepithelial neoplasia, preoperative evaluation

1. Introduction

Early gastric cancer is defined as cancer tissue confined only to the mucosa or submucosa regardless of the presence of lymph node metastasis. Precancerous lesions refer to pathological changes that have been confirmed to be closely related to the occurrence of gastric cancer, that is, intraepithelial neoplasia, which is divided into low-grade intraepithelial neoplasia (LGIN) and high-grade intraepithelial neoplasia (HGIN). According to the 2015 guidelines for the treatment of gastric cancer in Japan, approximately 25.0% of patients with HGIN will progress to adenocarcinoma within 1 year of onset. At present, with the update of endoscopy and treatment equipment and the improvement of operation technology, endoscopic treatment of early gastric cancer is possible. At the same time, people’s health awareness is gradually improved, and the detection rate of early gastric cancer is increasing year by year. Endoscopic submucosal dissection (ESD) is the standard for the treatment of early gastric cancer, which has the advantages of high complete resection rate, less trauma, rapid recovery and low cost, and can also be used as a diagnostic method. It is the preferred regimen for differentiated intramucosal carcinoma without ulceration as well as undifferentiated intramucosal carcinoma <2 cm in diameter. However, the inaccurate evaluation of the type, depth, and extent of the lesion may lead to the failure of ESD treatment, additional surgery, and increased doctor-patient disputes, so ESD is very important for the evaluation of the size, nature, depth, border, and difficulty of complete resection of the lesion, and this paper retrospectively analyzes the preoperative evaluation of ESD.

2. Materials and Methods

2.1. General information

A total of 114 patients with gastric mucosal HGIN and early gastric cancer who were treated in Hebei General Hospital from January 2016 to April 2021 were selected as the study subjects.
There were 79 males and 35 females, aged 40 to 82 years, with mean one of (60.21 ± 6.98) years. Inclusion criteria: ① patients with mucosal lesions by gastroscopy and no lymph node metastasis by CT; ② patients with ESD indications; ③ patients who voluntarily participate in this study and have signed the informed consent form. Exclusion criteria: ① only gastroscopy, without subsequent ESD treatment; ② diagnosed as advanced gastric cancer by white light endoscopy. The endoscopy and records of all patients were retrospectively analyzed, including patient basic information, clinical symptoms, conventional white light endoscopy, narrowband imaging (NBI), magnifying endoscopy, histopathological features, surgery-related adverse events, and postoperative results during follow-up. Before endoscopy, informed consent was obtained from all patients and approved by the hospital ethics committee.

2.2. Method

2.2.1. Main instruments. GIF-260H, GIF-290H gastroscope, GIF-260Z magnifying gastroscope, injection needle, Dual knife and hemostatic forceps (Olympus, Japan).

2.2.2. Endoscopy. 10 minutes before endoscopy, the patient orally took tetracaine mucilage, used sodium bicarbonate, dimethicone and pronase to remove the foam and mucus. First, used the common endoscopic mode for examination, carefully observed the local mucosa different from the surrounding mucosal manifestations, such as local mucosal color changes (redness or whitening), local mucosal fine granular or small nodular roughness, local mucosal elevation or depression, superficial mucosal erosion or ulcer, submucosal vascular network disappeared, mucosal folds interrupted or disappeared, mucosal tissue fragility, easy spontaneous bleeding, surrounding mucosal concentration or interruption and central depression erosion and ulcer. In 3 cases of LGIN, 86 (71.07%) for HGIN, and 35 (28.93%) for adenocarcinoma. Postoperative pathological diagnosis was LGIN (Fig. 1) in 8 (6.61%), HGIN (Fig. 2) in 75 (61.98%), and adenocarcinoma in 38 (31.40%). The preoperative and postoperative pathological coincidence rates were 0% (0/8) for LGIN, 87.21% (75/86) for HGIN and 92.1% (35/38) for adenocarcinoma. The postoperative pathology was milder than the preoperative pathology in 6.61% (8/121), and the postoperative pathology was heavier than the preoperative pathology in 2.48% (3/121). There was no significant difference in the agreement rate between preoperative pathological assessment and postoperative pathology among the 3 lesions (χ² = 10.614, P = .005).

2.2.3. Endoscopic classification. Endoscopic classification of early gastric cancer was based on the 2005 Paris classification criteria. Superficial gastric cancer (type 0) is divided into elevated lesions (0-I), flat lesions (0-II), and depressed lesions (0-III). Type 0-I is subdivided into ingrained (0-Ip) and uningrained (0-Ia). Type 0-II is divided into 3 subtypes: 0-IIa, 0-IIb, and 0-IIc according to the slightly elevated, flat, and slightly depressed lesions.

2.3. Outcome measures

Lesion size, white light endoscopic findings, magnifying endoscopy, NBI endoscopic findings, postoperative pathological type, positive margin rate, incidence of bleeding, infection, and perforation.

2.4. Statistical methods

SPSS 19.0 software was used for statistical analysis. Measurement data not conforming to normal distribution were described in the form of M (Q1, Q3). Wilcoxon signed rank test was used for comparison. Categorical data were described in the form of number of cases (%), χ² test for continuous correction or Fisher exact test were used for comparison. P < .05 was considered statistically significant.

3. Results

3.1. Location of each lesion

A total of 121 lesions were found in 114 patients: 13 (10.74%) in the gastric body, 15 (12.40%) in the gastric angle, 28 (23.14%) in the antrum, and 65 (53.72%) in the cardia and subcardia.

3.2. Preoperative assessment of the nature of the lesion and diagnosis of postoperative pathological findings

The nature of the lesions was assessed preoperatively as 0 for LGIN, 86 (71.07%) for HGIN, and 35 (28.93%) for adenocarcinoma. Postoperative pathological diagnosis was LGIN (Fig. 1) in 8 (6.61%), HGIN (Fig. 2) in 75 (61.98%), and adenocarcinoma in 38 (31.40%). The preoperative and postoperative pathological coincidence rates were 0% (0/8) for LGIN, 87.21% (75/86) for HGIN and 92.1% (35/38) for adenocarcinoma. The postoperative pathology was milder than the preoperative pathology in 6.61% (8/121), and the postoperative pathology was heavier than the preoperative pathology in 2.48% (3/121). There was no significant difference in the agreement rate between preoperative pathological assessment and postoperative pathology among the 3 lesions (χ² = 10.614, P = .005).

3.3. Preoperative depth assessment

Preoperatively, 117 lesions were confined to the epithelial layer, lamina propria, and mucosa by white light lesion characteristics, magnifying endoscopy, and indigo carmine staining, and the possible depth of invasion was considered to reach 4 superficial submucosa. Postoperative pathological results showed that the depth of invasion was limited to 116 sites in the epithelial layer, lamina propria, and mucosa, and the depth of invasion reached 5 sites in the submucosa. Among them, 3 cases were inconsistent, 1 case was considered to infiltrate the submucosa, but postoperative pathology was limited to the mucosal layer, 2 cases were limited to the mucosal layer by preoperative evaluation, and postoperative pathology revealed submucosal invasion of the lesion, with a depth accuracy of 97.52% by preoperative evaluation. There were 5 lesions infiltrating into the submucosa, of which 2 cases of 0-IIc lesions, both <2 cm, one of which was located in the angle of the stomach, showing large nodules in the depression, surrounding concentrated fold swelling, and mucosal bridge formation. One was located in the posterior wall of the cardia, with interruption of the surrounding mucosal elevation and central depression erosion and ulcer. In 3 cases of type 0-Ic lesions, lesions > 3 cm, surface ulcers and spontaneous bleeding may all be risk factors for deeper lesions (Table 1).

Figure 1. high-grade intraepithelial neoplasia (HE staining × 100).
3.4. Endoscopic characteristics of 121 lesions and assessment of lesion types by magnifying endoscopy + NBI

According to the 2005 Paris classification criteria, there were a total of 121 lesions, mostly type 0-IIa lesions, 108 (89.26%) in total, type 0-IIc lesions in 45 (37.19%), and type 0-IIb lesions in 42 (34.71%), and the endoscopic findings were mainly redness, clear borders, irregular surface microarchitecture, and irregular microvessels (Tables 2 and 3).

Table 1

Item	Mucosal layer and mucosa (n = 116)	Submucosal layer even deeper (n = 5)
LGIN	8 (6.90)	0 (0)
HGIN	75 (64.65)	0 (0)
Adenocarcinoma	33 (28.45)	5 (100.00)
Concurrent ulcer	16 (13.79)	3 (60.00)
Spontaneous	17 (14.66)	3 (60.00)
Periferal fold accumulation	3 (2.59)	2 (40.00)
Sign positive	10 (8.62)	2 (40.00)
Mucosal bridge formation	0 (0)	2 (40.00)

LGIN = low-grade intraepithelial neoplasia, HGIN = high-grade intraepithelial neoplasia.

Table 2

Item	Type 0-I	Type 0-II					
	0-IIa (21)	0-IIb (42)	0-IIc (45)	0-III (2)	Total (121)		
Redness	1 (100.00)	8 (80.00)	17 (80.95)	29 (60.05)	41 (91.1)	2 (100.00)	98 (80.99)
Whitish	0 (0)	2 (100.00)	2 (9.52)	11 (26.19)	3 (6.67)	0 (0)	17 (14.05)
Tone change yellow	0 (0)	2 (100.00)	13 (61.90)	19 (45.24)	15 (33.33)	0 (0)	49 (40.50)
Clear boundary	1 (100.00)	10 (100.00)	20 (95.24)	39 (92.86)	41 (91.1)	2 (100.00)	113 (93.39)
Irregular microstructure	1 (100.00)	8 (80.00)	18 (85.71)	41 (97.61)	42 (93.33)	2 (100.00)	112 (92.56)
Microvascular irregularities	1 (100.00)	9 (90.00)	18 (85.71)	41 (97.61)	41 (91.1)	1 (50.00)	111 (91.74)
Atrophy/bowel background	1 (100.00)	4 (40.00)	12 (57.14)	36 (80.48)	32 (71.11)	0 (0)	87 (71.90)
WOS*	0 (0)	3 (30.00)	9 (42.86)	21 (50.00)	9 (20.00)	0 (0)	42 (34.71)
Concurrent ulcer	0 (0)	2 (100.00)	5 (23.81)	7 (31.87)	4 (8.89)	2 (100.00)	20 (16.53)
Spontaneous hemorrhage	0 (0)	3 (30.00)	4 (19.05)	4 (9.52)	8 (17.78)	2 (100.00)	21 (17.36)
Peripheral fold accumulation	0 (0)	0 (0)	1 (2.38)	2 (4.44)	0 (0)	3 (2.48)	

Note: Select the most important classification for lesion classification.

*WOS = white opaque substance.
surrounding concentrated folds, embankment elevation of the surrounding mucosa, central depressed erosion, and spontaneous bleeding.

After ESD treatment of early gastric cancer and precancerous lesions, there is still a certain chance of local recurrence. Lesion size, operation time, incomplete resection, pathological classification, and atypical morphology of scars after ESD are predictors of recurrence after ESD treatment in early gastric cancer and precancerous lesions.[13] However, accurate preoperative assessment of lesion type, extent of disease, and depth of invasion is beneficial to improve the complete resection rate of ESD and reduce the risk of postoperative recurrence. Several studies have treated submucosal invasive early gastric cancer with ESD, which preserves the stomach in 28.8% of patients, while ESD does not affect the results of further subtotal gastrectomy surgery. Diagnostic ESD should be regarded as a treatment modality in some cases of submucosally infiltrating gastric cancer.[14,15]

In summary, gastric HGIN and early cancer can be treated with ESD, which has the advantages of complete resection rate, less trauma, fewer postoperative complications, high quality of life, and less cost.[16,17] Accurate preoperative assessment of lesion type, extent of disease, and depth of invasion is beneficial to improve the complete resection rate of ESD and reduce the risk of additional surgical procedures. Therefore, precise preoperative assessment is necessary. This study had the following limitations: (1) few cases, especially those with submucosal invasion, which required more cases to be accumulated; (2) this study was a single-center retrospective analysis, and the results were biased. However, we can still summarize the importance of preoperative evaluation of ESD, which needs to be comprehensively judged in combination with white light endoscopy, chromoendoscopy, magnifying endoscopy, and preoperative biopsy pathology.

Author contributions

Yu-Lan Gao and Meng Cao: 1. Substantial contributions to the conception and design of the work; 2. Drafting the work or revising it critically for important intellectual content; Yue-han Zhang: Substantial contributions to the acquisition, analysis, or interpretation of data for the work and the analysis and manuscript preparation.

Yu-Lan Gao: 1. Final approval of the version to be published; 2. Agreement to be accountable for all aspects of the work.

References

[1] Yao K, Uedo N, Kamada T, et al. Guidelines for endoscopic diagnosis of early gastric cancer. Dig Endosc. 2020;32:663–98.
[2] Evans JA, Chandrasekhara V, Chatradi KV, et al. The role of themanagement of premalignant and malignant conditions of the stomach endoscopy. Gastrointest Endosc. 2015;82:18.
[3] Fujiya K, Takizawa K, Tokunaga M, et al. The value of diagnostic endoscopic submucosal dissection for patients with clinical submucosal invasive early gastric cancer. Gastric Cancer. 2018;21:124–32.
[4] Kim YL, Kim YA, Kim CG, et al. Serial intermediate-term quality of life comparison after endoscopic submucosal dissection versus surgery in early gastric cancer patients. Surg Endosc. 2018;32:2114–22.
[5] Rong L, Cai Y, Nian W, et al. Efficacy comparison between surgical resection and endoscopic submucosal dissection of early gastric cancer in a domestic single center. Zhong hua Wei Chang Wang Ke Za Zhi. 2018;21:190–5.
[6] Xu G, Zhang W, Lv Y, et al. Risk factors for under-diagnosis of gastric intraepithelial neoplasia and early gastric carcinoma in endoscopic forcpes in biopsy comparison with endoscopic submucosal dissection in Chinese patients. Surg Endosc. 2016;30:2716–22.
[7] Shiotaku K, Takizawa K, Ono H. Indications of endoscopic submucosal dissection for early gastric cancer. Gan To Kagaku Ryoho. 2020;47:563–8.
[8] Di L, Wu H, Zhu R, et al. Multi-disciplinary team for early gastric cancer diagnosis improves the detection rate of early gastric cancer. BMC Gastroenterol. 2017;17:147.
[9] Wang SF, Yang YS, Yuan J, et al. Magnifying endoscopy with narrow-imaging may improve diagnostic accuracy of differentiated gastric intraepithelial neoplasia: a band feasibility study. Chin Med J. 2012;125:728–32.
[10] Yokoyama A, Inoue H, Minami H, et al. Novel narrow-band imaging magnifying endoscopic classification for early gastric cancer. Dig Liver Dis. 2010;42:704–8.
[11] Yoshimizu S, Yamamoto Y, Horiuchi Y, et al. Diagnostic performance of routine esophagogastroduodenoscopy using magnifying endoscope with narrow-band imaging for gastric cancer. Dig Endosc. 2018;30:71–8.
[12] Kume K. Endoscopic therapy for early gastric cancer: standard techniques and recent advances in ESD. World J Gastroenterol. 2014;20:6425–32.
[13] Qianxiang D. Predictive factor analysis of recurrence after endoscopic submucosal dissection for early gastric cancer and precancerous lesions. Modern Digestive Int Ther. 2019;24:1166–8.
[14] Nishizawa T, Tahagi N, et al. Long-term outcomes of using endoscopic submucosal dissection to treat early gastric cancer. Gut Liver. 2018;12:119–24.
[15] Hahn KY, Park CH, Lee YK, et al. Comparative study between endoscopic submucosal dissection and surgery in patients with early gastric cancer. Surg Endosc. 2018;32:73–86.
[16] Tanabe S, Ishido K, Matsumoto T, et al. Long-term outcomes of endoscopic submucosal dissection for early gastric cancer: a multicenter collaborative study. Gastric Cancer. 2017;20:45–52.
[17] Yano T, Tanabe S, Ishido K, et al. Different clinical characteristics associated with acute bleeding and delayed bleeding after endoscopic submucosal dissection in patients with early gastric cancer. Surg Endosc. 2017;31:4542–50.