DISCOVERY OF BURST OSCILLATIONS IN THE INTERMITTENT ACCRETION-POWERED MILLISECOND PULSAR HETE J1900.1-2455

ANNA L. WATTS, DIEGO ALTAMIRANO, MANUEL LINAÑES, ALESSANDRO PATRUNO, PIERGIORGIO CASELLA, YURI CAVECCHI, NATHALIE DEGENAAR, NANDA REA, PAOLO SOLERI, MICHAEL VAN DER KLIS, AND RUDY WIJNANDS
Astronomical Institute “Anton Pannekoek,” University of Amsterdam, Kruislaan 403, 1098 SJ Amsterdam, the Netherlands; A.L.Watts@uva.nl

ABSTRACT

We report the discovery of burst oscillations from the intermittent accretion-powered millisecond pulsar (AMP) HETE J1900.1-2455, with a frequency ≈1 Hz below the known spin frequency. The burst oscillation properties are far more similar to those of the non-AMPs and Aql X-1 (an intermittent AMP with a far lower duty cycle), than those of the AMPs SAX J1808.4-3658 and XTE J1814-338. We discuss the implications for models of the burst oscillation and intermittency mechanisms.

Key words: binaries: general – stars: individual (HETE J1900.1-2455) – stars: neutron – stars: rotation – X-rays: bursts – X-rays: stars

1. INTRODUCTION

There are two ways in which we can measure the spin of rapidly rotating accreting neutron stars: via accretion-powered pulsations (due to magnetic channeling of infalling material), or burst oscillations (coherent pulsations seen during the thermonuclear explosions of accreted fuel that give rise to Type I X-ray bursts). The mechanism that generates the brightness asymmetries responsible for burst oscillations is not yet known. Once understood, however, it should shed light on the thermonuclear burning process and the composition of the outer layers of the neutron star (Strohmayer & Bildsten 2006; Watts 2008).

Burst oscillations often drift upward in frequency by a few Hz during a burst. However, the stability of the asymmetric frequency for a particular source (Muno et al. 2002a), and the detection of the same frequencies in superbursts as well as Type I bursts (Strohmayer & Markwardt 2002), suggested even at an early stage that burst oscillation frequency might be (to within a few Hz) the spin frequency. This was confirmed in 2003 with the discovery of burst oscillations at or within a few Hz of the spin frequency in the accretion-powered millisecond pulsars (AMPs) SAX J1808.4-3658 and XTE J1814-338 (Chakrabarty et al. 2003; Strohmayer et al. 2003). The near identity of burst oscillation frequency and spin frequency is now the major constraint on models for the burst oscillation mechanism.

The AMPs are particularly useful when investigating the burst oscillation mechanism, since they are the only sources in which we can gauge the effects of the magnetic field and asymmetric fuel deposition. They are also the only stars where we can measure the size and sign of the small offset between the spin and burst oscillation frequencies. However, both SAX J1808.4-3658 and XTE J1814-338 have burst oscillations with quite atypical properties compared to the other sources (Section 3). It is not yet clear whether we are seeing a continuum of behavior (which could be explained by one burst oscillation mechanism) or completely separate classes.

The picture has evolved in the last three years with the discovery of three intermittent AMPs: HETE J1900.1-2455, SAX J1748.9-2021, and Aql X-1 (Kaaret et al. 2006; Galloway et al. 2007; Gavriil et al. 2007; Altamirano et al. 2008; Casella et al. 2008). Unlike the other AMPs, these sources show accretion-powered pulsations only sporadically. What causes the intermittency is also not known, with models including sporadic obscuration of the magnetic poles (Gögüş et al. 2007 and references therein), wandering of the accretion funnel and hence the hot spot around the magnetic pole (Romanova et al. 2003, 2004; Lamb et al. 2008), or magnetic field burial (Cumming et al. 2001; Cumming 2008).

If the magnetic field is what makes the burst oscillations of the AMPs so different from those of other stars, then an intermittency mechanism that affects the magnetic field may also influence burst oscillation properties. Burst oscillations from the intermittent AMPs (all of which burst) are therefore an important piece of the puzzle. Until now, however, only Aql X-1 has shown burst oscillations, at ≈0.5 Hz below the spin frequency (Zhang et al. 1998; Casella et al. 2008). The properties of the Aql X-1 burst oscillations are very similar to those of the non-AMPs; however, this source has the lowest pulsation duty cycle of any of the intermittent AMPs. In this Letter, we report the discovery of burst oscillations from the intermittent AMP HETE J1900.1-2455 (Watts et al. 2009), and consider the implications for the burst oscillation and intermittency mechanisms.

2. BURST ANALYSIS

HETE J1900.1-2455 was first detected in 2005 June, and has remained in outburst ever since apart from a three week period of quiescence in 2007 (Degenaar et al. 2007). It was quickly identified as an AMP with a spin frequency of 377.3 Hz, an orbital period of 83.3 minutes, and a low (<0.1 M⊙) mass companion (Kaaret et al. 2006). It is at a distance of ≈5 kpc, determined from Eddington-limited X-ray bursts (Galloway et al. 2008a). Accretion-powered pulsations of low fractional amplitude (≪3 %) were detected sporadically during the first two months of outburst, but have not been seen since (Galloway et al. 2007, 2008b). There is some evidence that the intermittent appearance of the accretion-powered pulsations may be related to the occurrence of Type I X-ray bursts, but whether the relationship is causal is not clear (Galloway et al. 2007). From 2005–2008 several X-ray bursts from this source were detected by HETE-II, the Rossi X-Ray Timing Explorer (RXTE) and SWIFT.1 We searched the bursts detected by both the RXTE...
Proportional Counter Array (PCA) and the SWIFT Burst Alert Telescope (BAT) for oscillations, but found no significant signal.

2.1. Burst Oscillations

During routine monitoring on 2009 April 2 (08:57 UTC), RXTE detected another X-ray burst with both the PCA and the High Energy X-ray Timing Experiment (HEXTE). Timing analysis was conducted using 125 μs time resolution PCA event mode data from the two active PCUs (PCUs 0 and 2). We used all photons in the 2–30 keV range, the band where burst emission exceeds the persistent level. The data were barycentered using the JPL DE405 and spacecraft ephemerides, with the source position of Fox (2005). Some event mode data overruns occurred in the burst peak, leading to short data gaps.

A dynamical power spectrum (Figure 1) reveals strong burst oscillations during the initial decay of the burst, drifting upward by about 1 Hz. Selecting only data after \(t = 4 \) s in Figure 1 (the time of the final data gap), we find maximum Leahy power in the range 17–30 in four independent consecutive 2 s bins, with the mean subtracted. The resulting profile is well fit by a simple sinusoid (overplotted) with no requirement for any harmonic content. Two cycles are shown for clarity.

Figure 1. Light curve and dynamical power spectrum (2–30 keV) for the 2009 April 2 burst. The dynamical power spectrum uses overlapping 4 s bins, with new bins starting at 0.25 s intervals. We use a Nyquist frequency of 2048 Hz and an interbin response function to reduce artificial drops in amplitude as the frequency drifts between Fourier bins (van der Klis 1989). The contours show Leahy normalized powers of 20–40, increasing in steps of 5. The dashed line indicates the 377.3 Hz spin frequency. The inset shows the pulse profile of the burst oscillations for the 8 s interval where they are detected, folded with the best-fit polynomial frequency model (counts per 0.05 cycle phase bin against phase in cycles), with the mean subtracted. The resulting profile is well fit by a simple sinusoid (overplotted) with no requirement for any harmonic content.
B6, the burst with the oscillations, has quite a different light curve. All previous bursts have been detected in harder states. Fitting the PCA spectrum with an absorbed disk–blackbody plus power-law model, and assuming a standard bolometric correction factor of 2 (in’t Zand et al. 2007), we find an unabsorbed bolometric flux of 3.5×10^{-9} erg s$^{-1}$ cm$^{-2}$ (interstellar absorption was fixed to 1.6×10^{21} cm$^{-2}$). At a distance of 5 kpc, this corresponds to 4% of the Eddington luminosity if we assume $L_{\text{Edd}} = 2.5 \times 10^{38}$ erg s$^{-1}$.

3. DISCUSSION

What causes burst oscillations is still not understood. Flame spread from a point should lead to asymmetries in the early phase of the burst. However, while this may explain the presence of burst oscillations during the rise, it is not sufficient to explain the continuing presence of large-scale asymmetries in the burst tail once the entire stellar surface has ignited (Strohmayer & Bildsten 2006). This has led to the consideration of alternative models. Non-radial global oscillations in the surface layers of the star, excited by the flame spread, remain a promising possibility (Heyl 2004). In this case, the brightness asymmetry would be caused by variations in ocean height associated with the mode. Inertial frame pattern speed can be very close to the spin rate, and cooling of the layers in the aftermath of the burst would naturally lead to frequency drift. The major problem of this model is that it overpredicts the size of the frequency drift compared to observations (Piro & Bildsten 2005; Berkhout & Levin 2008).

Alternative possibilities like photospheric modes (Heyl 2004) or shear oscillations (Cumming 2005) also have shortcomings in their present form (Berkhout & Levin 2008). Current efforts to resolve these problems are focusing on the role of the magnetic field, which can dominate the dynamics in the surface layers and is expected to have a large effect on surface modes.

If the magnetic field is the most important factor determining the properties of burst oscillations then this might lead to a natural explanation for the differences in the properties of the burst oscillations of SAX J1808.4–3658 and XTE J1814–338 (hereafter collectively referred to as SX; Chakrabarty et al. 2003; Strohmayer et al. 2003; Watts et al. 2005; Watts & Strohmayer 2006) compared to those of the non-AMPs (Muno et al. 2002a, 2002b, 2003, 2004; Galloway et al. 2008a). These differences can be summarized as follows. (1) SX show oscillations in all of their bursts, even in the hard state; the non-AMPs do not (oscillations are detected primarily although not exclusively in...
the spin frequency but rapidly overshoot it, settling J1808.4-3658, the burst oscillations are first detected below the case for SAX J1808.4-3658 and XTE J1814-338. In SAX that this is the case for non-AMPs as well. However, it is not possible, then this could point to photospheric rather than oceanic modes as a cause of burst oscillations.

The magnetic field also plays an important role in models for intermittency of accretion-powered pulsations. In the obscuration and accretion stream wander models, the field is always present at the level necessary to channel the flow: but the accretion hot spot either wanders out of the line of sight or is obscured by magnetospheric material. In the magnetic burial model the field strength and geometry change as the field is suppressed by accretion. If magnetic field affects both intermittency and burst oscillations, then studying the latter may enable us to pinpoint the cause of the former.

In Aql X-1 the burst oscillations are similar in properties to those of the non-AMPs: however this source has an exceptionally low duty cycle so its intermittent pulsation episode may have been triggered by an extremely rare event. In HETE J1900.1-2455, the accretion-powered pulsations lasted for much longer. Its burst oscillations, however, also behave like those of the non-AMPs. This has important implications. If hot spot wander or obscuration models for intermittency are correct, then a field strong enough to channel infalling material cannot be the only factor causing the atypical burst oscillations of SAX J1808.4-3658 and XTE J1814-338. Some other factor, such as the presence of a strong temperature gradient around the magnetic pole, must also play a role in the burst oscillation mechanism (Watts et al. 2008). If on the other hand the field has been buried in HETE J1900.1-2455, then it must be screened to a depth where it is unable to affect the burst oscillation mechanism on the timescale of the burst. Detailed calculations will be required to resolve this issue, but if screening at the burning depth is not possible, then this could point to photospheric rather than oceanic modes as a cause of burst oscillations.

One other point of note is that in both Aql X-1 and HETE J1900.1-2455, burst oscillation frequency remains below spin frequency. Given the similarities in properties it seems probable that this is the case for non-AMPs as well. However, it is not the case for SAX J1808.4-3658 and XTE J1814-338. In SAX J1808.4-3658, the burst oscillations are first detected below the spin frequency but rapidly overshoot it, settling ~0.1 Hz above the spin frequency in the burst tail (Chakrabarty et al. 2003). In XTE J1814-338 the two frequencies are identical, and in fact burst oscillations and accretion-powered pulsations are coherent and phase-locked (Strohmayer et al. 2003; Watts et al. 2005, 2008). Any unified model of burst oscillations must be able to explain this diversity in the relationship between burst oscillation frequency and spin.

REFERENCES

Altamirano, D., et al. 2008, ApJ, 674, L45
Berkhout, R. G., & Levin, Y. 2008, MNuRA, 385, 1029
Casella, P., et al. 2008, ApJ, 674, L1
Chakrabarty, D., et al. 2003, Nature, 424, 42
Cumming, A. 2005, ApJ, 630, 441
Cumming, A. 2008, in AIP Conf. Proc. 1068, A Decade of Accreting Millisecond Pulsars, ed. R. Wijnands et al. (Melville, NY: AIP), 152
Cumming, A., et al. 2001, ApJ, 557, 958
Degenaar, N., et al. 2007, ApJ, 1098
Fox, D. B. 2005, ATel, 526
Galloway, D. K., et al. 2009, ApJ, 654, L73
Galloway, D. K., et al. 2008, ApJS, 179, 360
Galloway, D. K., et al. 2008, in AIP Conf. Proc. 1068, A Decade of Accreting Millisecond Pulsars, ed. R. Wijnands et al. (Melville, NY: AIP), 55
Gavriil, F. P., et al. 2007, ApJ, 669, L29
Göğüş, E., et al. 2007, ApJ, 659, 580
Hasinger, G., & van der Klis, M. 1989, A&A, 225, 79
Heyl, J. 2004, ApJ, 600, 939
in’t Zand, J. J. M., et al. 2007, A&A, 465, 953
Kaares, P., et al. 2006, ApJ, 638, 963
Kuulkers, E., et al. 1994, A&A, 289, 795
Kuulkers, E., et al. 2003, A&A, 399, 663
Lamb, F. K., et al. 2008, arXiv:0809.4016
Morrison, R., & McCammon, D. 1983, ApJ, 270, 119
Muno, M. P., et al. 2002, ApJ, 580, 1048
Muno, M. P., et al. 2002, ApJ, 581, 550
Muno, M. P., et al. 2003, ApJ, 595, 1066
Muno, M. P., et al. 2004, ApJ, 608, 930
Piro, A. L., & Bildsten, L. 2005, ApJ, 629, 438
Romanova, M. M., et al. 2003, ApJ, 595, 1009
Romanova, M. M., et al. 2004, ApJ, 610, 920
Strohmayer, T., & Bildsten, L. 2006, in Cambridge Astrophys. Ser. 39, Compact Stellar X-ray Sources, ed. W. Lewin & M. Klis van der (Cambridge: Cambridge Univ. Press), 113
Strohmayer, T. E., & Markwardt, C. B. 2002, ApJ, 577, 337
Strohmayer, T. E., et al. 2003, ApJ, 596, L67
van der Klis, M. 1989, in Timing Neutron Stars, ed. H. Ögelman & E. J. P. van den Heuvel (New York: Kluwer/Plenum), 27
van Straaten, S., et al. 2003, ApJ, 596, 1155
Watts, A. L. 2008, in AIP Conf. Proc. 1068, A Decade of Accreting Millisecond Pulsars, ed. R. Wijnands et al. (Melville, NY: AIP), 199
Watts, A. L., & Strohmayer, T. E. 2006, MNRAS, 373, 769
Watts, A. L., et al. 2005, ApJ, 634, 547
Watts, A. L., et al. 2008, ApJ, 688, L37
Watts, A. L., et al. 2009, ATel, 2004
Zhang, W., et al. 1998, ApJ, 495, L9