FILTER REGULAR SEQUENCES AND GENERALIZED LOCAL COHOMOLOGY MODULES

ALI FATHI, ABOLF AZL TEHRANIAN, AND HOSSEIN ZAKERI

Abstract. Let \(a, b \) be ideals of a commutative Noetherian ring \(R \) and let \(M, N \) be finite \(R \)-modules. The concept of an \(a \)-filter grade of \(b \) on \(M \) is introduced and several characterizations and properties of this notion are given. Then, using the above characterizations, we obtain some results on generalized local cohomology modules \(H^i_a(M, N) \). In particular, first we determine the least integer \(i \) for which \(H^i_a(M, N) \) is not Artinian. Then we prove that \(H^i_a(M, N) \) is Artinian for all \(i \in \mathbb{N}_0 \) if and only if \(\dim R/(a + \operatorname{Ann} M + \operatorname{Ann} N) = 0 \). Also, we establish the Nagel-Schenzel formula for generalized local cohomology modules. Finally, in a certain case, the set of attached primes of \(H^i_a(M, N) \) is determined and a comparison between this set and the set of attached primes of \(H^i_a(N) \) is given.

1. Introduction

Throughout this paper, \(R \) is a commutative Noetherian ring with nonzero identity, \(a, b \) are ideals of \(R \) and \(M, N, L \) are finite \(R \)-modules. We will use \(\mathbb{N} \) (respectively \(\mathbb{N}_0 \)) to denote the set of positive (respectively non-negative) integers. The generalized local cohomology functor was first introduced, in the local case, by Herzog [10] and, in the general case, by Bijan-Zadeh [3]. The \(i \)-th generalized local cohomology functor \(H^i_a(\cdot, \cdot) \) is defined by

\[
H^i_a(X, Y) = \lim_{n \to \infty} \operatorname{Ext}^i_R(X/a^n X, Y)
\]

for all \(R \)-modules \(X, Y \) and \(i \in \mathbb{N}_0 \). Clearly, this notion is a natural generalization of the ordinary local cohomology functor [5].

There is a lot of current interest in the theory of filter regular sequences in commutative algebra; and, in recent years, there have appeared many papers concerned with the role of these sequences in the theory of local cohomology. In particular case, when one works on a local ring, the concept of a filter regular sequence has been studied in [23, 26] and has led to some interesting results. We will denote the supremum of all numbers \(n \in \mathbb{N}_0 \) for which there exists an \(a \)-filter regular \(M \)-sequence of length \(n \) in \(b \) by \(\operatorname{f-grad}(a, b, M) \). In a local ring \((R, m) \), \(\operatorname{f-grad}(m, a, M) \) is known as \(\operatorname{f-depth}(a, M) \). Lü and Tang [13] proved that

\[
\operatorname{f-depth}(a, M) = \inf \{ i \in \mathbb{N}_0 | \dim \operatorname{Ext}^i_R(R/a, M) > 0 \}
\]

and that \(\operatorname{f-depth}(a, M) \) is the least integer \(i \) such that \(H^i_a(M) \) is not Artinian. As a theorem, we generalize their results and characterize \(\operatorname{f-grad}(a, b, M) \) to non local
cases as follows.

\[
f\text{-grad}(a, b, M) = \inf\{i \in \mathbb{N}_0 | \text{Supp} \text{Ext}_R^i(R/b, M) \not\subseteq V(a)\}
\]

\[
= \inf\{i \in \mathbb{N}_0 | \text{Supp} H^i_a(M) \not\subseteq V(a)\},
\]

\[
f\text{-grad}(a, b + \text{Ann} N, M) = \inf\{i \in \mathbb{N}_0 | \text{Supp} H^i_a(N, M) \not\subseteq V(a)\},
\]

and

\[
sup_{A \in \mathcal{M}} f\text{-grad}(\bigcap_{m \in A} m, a + \text{Ann} M, N)
\]

\[
= \inf\{i \in \mathbb{N}_0 | H^i_a(M, N) \text{ is not Artinian}\}
\]

\[
= \inf\{i \in \mathbb{N}_0 | \text{Supp} H^i_a(M, N) \not\subseteq \max(R)\}
\]

\[
= \inf\{i \in \mathbb{N}_0 | \text{Supp} H^i_a(M, N) \not\subseteq A \text{ for all } A \in \mathcal{M}\}
\]

\[
= \inf\{i \in \mathbb{N}_0 | \dim \text{Ext}_R^i(M/aM, N) > 0\},
\]

where \(\mathcal{M}\) is the set of all finite subsets of \(\max(R)\).

As an application of this theorem, we show that, if \(n \in \mathbb{N}\), then \(H^i_a(M, N)\) is Artinian for all \(i < n\) if and only if \(H^i_{aR}(M_p, N_p)\) is Artinian for all \(i < n\) and all prime ideals \(p\). Also, we prove that \(H^i_a(M, N)\) is an Artinian \(R\)-module for all \(i \in \mathbb{N}_0\) if and only if \(\dim R/(a + \text{Ann} M + \text{Ann} N) = 0\). In particular, \(\text{Ext}_R^i(M, N)\) has finite length for all \(i \in \mathbb{N}_0\) if and only if \(\dim R/(\text{Ann} M + \text{Ann} N) = 0\).

Let \(x_1, \ldots, x_n\) be an \(a\)-filter regular \(N\)-sequence in \(a\). Then the formula

\[
H^i_a(N) = \begin{cases} H^{i}_{\{x_1, \ldots, x_n\}}(N) & \text{if } i < n, \\ H^{i-n}_{a}(H^{n}_{\{x_1, \ldots, x_n\}}(N)) & \text{if } i \geq n, \end{cases}
\]

is known as Nagel-Schenzel formula (see [20] and [11]). We generalize the above formula for the generalized local cohomology modules. Indeed, we prove that:

(i) \(H^i_a(M, N) \cong H^{i}_{\{x_1, \ldots, x_n\}}(M, N)\) for all \(i < n\);

(ii) if proj \(\dim M = d\) and \(L\) is projective, then

\[
H^{i+n}_{a}(M \otimes_R L, N) \cong H^i_a(M, H^{n}_{\{x_1, \ldots, x_n\}}(L, N))
\]

for all \(i \geq d\).

Assume that \(\bar{R} = R/(a + \text{Ann} M + \text{Ann} N)\) and that the ideal \(r\) is the inverse image of the Jacobson radical of \(\bar{R}\) in \(R\). If \(\bar{R}\) is semi local, then, by using the isomorphisms described in (i) and Theorem 4.2, we prove that

\[
f\text{-grad}(r, a + \text{Ann} M, N) = \inf\{i \in \mathbb{N}_0 | H^i_a(M, N) \text{ is not Artinian}\}
\]

\[
= \inf\{i \in \mathbb{N}_0 | H^i_a(M, N) \not\cong H^i_{\bar{R}}(M, N)\}.
\]

Let \((R, \mathfrak{m})\) be a local ring and \(\dim N = n\). Macdonald and Sharp [15] Theorem 2.2] show that

\[
\text{Att} H^i_a(N) = \{p \in \text{Ass } N | \dim R/p = n\}.
\]

As an extension of this result, Dibaei and Yassemi [8] Theorem A] proved

\[
\text{Att} H^i_a(N) = \{p \in \text{Ass } N | \text{cd}_a(R/p) = n\},
\]
Theorem 2.2. In the case where M is a weak $R,$ in addition, if x is a sequence, then $\dim M < \infty,$ then Gu and Chu [9, Theorem 2.3] proved that $H^a_{n+d}(M, N)$ is Artinian and

$$\text{Att} H^a_{n+d}(M, N) = \{p \in \text{Ass } N | cd_a(M, R/p) = n + d\},$$

where, for an R-module $Y,$ $cd_a(M, Y)$ is the greatest integer i such that $H^i_a(M, Y) \neq 0.$ Notice that $cd_a(M, N) \leq d + n$ [3, Lemma 5.1]. We prove the above result in general case where R is not necessarily local. As a corollary we deduce that $\text{Att} H^a_{n+d}(M, N) \subseteq \text{Att} H^a_0(N).$ Also, we give an example to show that this inclusion may be strict. Indeed, our example not only show that the Theorem 2.1 of [17] is not true, but it also rejects all of the following conclusions in [17].

Finally, Let $\dim M = d < \infty$ and $\dim N = n < \infty$ and $b = \text{Ann } H^a_0(N).$ We prove that, if R/b is a complete semilocal ring, then

$$\text{Att} H^a_{n+d}(M, N) = \text{Supp} \text{Ext}_R^d(M, R) \cap \text{Att} H^0_0(N).$$

In particular, if in addition, $\dim_{R_p} M_p = \dim M$ for all $p \in \text{Supp } M,$ then

$$\text{Att} H^a_{n+d}(M, N) = \text{Supp } M \cap \text{Att} H^0_0(N).$$

2. Filter regular sequences

We say that a sequence x_1, \ldots, x_n of elements of R is an a-filter regular M-sequence, if $x_i \notin p$ for all $p \in \text{Ass } M/(x_1, \ldots, x_{i-1})M \setminus V(a)$ and for all $i = 1, \ldots, n.$ In addition, if x_1, \ldots, x_n belong to $b,$ then we say that x_1, \ldots, x_n is an a-filter regular M-sequence in $b.$ Note that x_1, \ldots, x_n is an R-filter regular M-sequence if and only if it is a weak M-sequence in the sense of [6, Definition 1.1.1].

Some parts of the next elementary proposition are included in [20, Proposition 2.2] in the case where (R, m) is local and $a = m.$

Proposition 2.1. Let x_1, \ldots, x_n be a sequence of elements of R and $n \in \mathbb{N}.$ Then the following statements are equivalent.

(i) x_1, \ldots, x_n is an a-filter regular M-sequence.
(ii) $\text{Supp}((x_1, \ldots, x_{i-1})M :_M x_i)/(x_1, \ldots, x_{i-1})M \subseteq V(a)$ for all $i = 1, \ldots, n.$
(iii) $x_1/1, \ldots, x_n/1$ is a weak M_p-sequence for all $p \in \text{Supp } M \setminus V(a).$
(iv) $x_1^{\alpha_1}, \ldots, x_n^{\alpha_n}$ is an a-filter regular M-sequence for all positive integers $\alpha_1, \ldots, \alpha_n.$
(v) x_i is a weak $(M/(x_1, \ldots, x_{i-1})M)/\Gamma_n(M/(x_1, \ldots, x_{i-1})M)$-sequence for all $i = 1, \ldots, n.$
(vi) $(x_1, \ldots, x_{i-1})M :_M x_i \subseteq (x_1, \ldots, x_{i-1})M :_M (a)$ for all $i = 1, \ldots, n,$ where $N :_M (a) = \{x \in M | a^n x \subseteq N \text{ for some } n \in \mathbb{N}\}$ for any submodule N of $M.$

It is clear from definition, that, for a given $n \in \mathbb{N},$ one can find an a-filter regular M-sequence of length $n.$ The following theorem characterizes the existence of an a-filter regular M-sequence of length n in $b.$

Theorem 2.2. Let $n \in \mathbb{N}.$ Then the following statements are equivalent.

(i) b contains an a-filter regular M-sequence of length $n.$
(ii) Any a-filter regular M-sequence in b of length less than n can be extended to an a-filter regular M-sequence of length n in $b.$
(iii) $\text{Supp} \text{Ext}_R^i(R/b, M) \subseteq V(a)$ for all $i < n.$
(iv) If $\text{Supp } N = V(b),$ then $\text{Supp} \text{Ext}_R^i(N, M) \subseteq V(a)$ for all $i < n.$
(v) $\text{Supp } H^i_b(M) \subseteq V(a)$ for all $i < n.$
(vi) If $\text{Ann} N \subseteq b$, then $\text{Supp} H^i_b(N, M) \subseteq V(a)$ for all $i < n$.

Proof. The implications (ii)⇒ (i), (iv)⇒ (iii) and (vi)⇒ (v) are clear.

(i)⇒ (ii). Assume the contrary that x_1, \ldots, x_t is an a-filter regular M-sequence in b such that $t < n$ and that it can not be extended to an a-filter regular M-sequence of length n in b. Then $b \subseteq p$ for some $p \in \text{Ass} M/(x_1, \ldots, x_t)M \setminus V(a)$. So that $bR_p \subseteq pR_p \in \text{Ass}_{R_p} M_p/(x_1/1, \ldots, x_t/1)M_p$. It follows that $x_1/1, \ldots, x_t/1$ is a maximal M_p-sequence in bR_p, which is a contradiction in view of the hypothesis, Proposition 2.1 and [6, Theorem 1.2.5].

(i)⇒ (iv) Suppose that x_1, \ldots, x_n is an a-filter regular M-sequence in b. Let $t \in \mathbb{N}$ be such that $x_i^t \in \text{Ann} N$ for all $i = 1, \ldots, n$. By Proposition 2.1 for any $p \in \text{Supp} M \setminus V(a)$, $x_i^t/1, \ldots, x_n^t/1$ is a weak M_p-sequence in $\text{Ann}_{R_p} N_p$. So that, for all $i < n$, we have $\text{Ext}^1_{R_p}(N_p, M_p) = 0$. Therefore (iv) holds.

(i)⇒(vi) Suppose that x_1, \ldots, x_n is an a-filter regular M-sequence in b. For any $p \in \text{Supp} M \setminus V(a)$, $x_1/1, \ldots, x_n/1$ is a weak M_p-sequence in bR_p. So that, by [3, Proposition 5.5], $H^i_{bR_p}(N_p, M_p) = 0$ for all $i < n$. This proves the implication (i)⇒(vi).

Next we prove the implications (iii)⇒(i) and (v)⇒(i) by induction on n. Let $n = 1$. In either cases $\text{Supp} \text{Hom}_R(R/b, M) \subseteq V(a)$. Therefore (i) holds. Suppose that, for all $i \in \mathbb{N}_0$, $T^i(\cdot)$ is either $\text{Ext}^i_{R}(R/b, \cdot)$ or $H^i_{b}(\cdot)$. Assume that $n > 1$ and $\text{Supp} T^i(M) \subseteq V(a)$ for all $i < n$. Then b contains an a-filter regular M-sequence, say x_1. The exact sequences
\[
0 \rightarrow 0 :_M x_1 \rightarrow M \xrightarrow{x_1} x_1M \rightarrow 0
\]
and
\[
0 \rightarrow x_1M \rightarrow M \rightarrow M/x_1M \rightarrow 0
\]
induce the long exact sequences
\[
\cdots \rightarrow T^i(0 :_M x_1) \rightarrow T^i(M) \rightarrow T^i(x_1M) \rightarrow T^{i+1}(0 :_M x_1) \rightarrow \cdots
\]
and
\[
\cdots \rightarrow T^i(x_1M) \rightarrow T^i(M) \rightarrow T^i(M/x_1M) \rightarrow T^{i+1}(x_1M) \rightarrow \cdots.
\]
Since $\text{Supp} 0 :_M x_1 \subseteq V(a)$, by Proposition 2.1 it follows that $\text{Supp} T^i(0 :_M x_1) \subseteq V(a)$ for all $i \in \mathbb{N}_0$. Therefore, using the above long exact sequences, we have $\text{Supp} T^i(M/x_1M) \subseteq V(a)$ for all $i < n - 1$. Hence, by inductive hypothesis, b contains an a-filter regular M/x_1M-sequence of length $n - 1$ such as x_2, \ldots, x_n. This completes the inductive step, since x_1, \ldots, x_n is an a-filter regular M-sequence in b. \hfill \square

Remark 2.3. One may use Theorem 2.2 (iii)⇒(ii) and Proposition 2.1 to see that $\text{Supp} M/bM \subseteq V(a)$ if and only if, for each $n \in \mathbb{N}$, there exists an a-filter regular M-sequence of length n in b. Moreover, if $\text{Supp} M/bM \not\subseteq V(a)$, then it follows from Theorem 2.2 that any two maximal a-filter regular M-sequences in b have the same length. Therefore, we may give the following.

Definition 1. Let $\text{Supp} M/bM \not\subseteq V(a)$. Then the common length of all maximal a-filter regular M-sequences in b is denoted by $f\text{-grad}(a, b, M)$ and is called the a-filter grade of b on M. We set $f\text{-grad}(a, b, M) = \infty$ whenever $\text{Supp} M/bM \subseteq V(a)$.

Let \((R, \mathfrak{m})\) be a local ring. Then the \(\mathfrak{m}\)-filter grade of \(\mathfrak{a}\) on \(M\) is called the filter depth of \(\mathfrak{a}\) on \(M\) and is denoted by \(\text{f-depth}(\mathfrak{a}, M)\). Notice that, by Remark 2.3, \(\text{f-depth}(\mathfrak{a}, M) < \infty\) if and only if \(M/\mathfrak{a}M\) has finite length.

Remark 2.4. The following equalities follows immediately from Theorem 2.2
\[
\text{f-grad}(\mathfrak{a}, \text{Ann} N, M) = \inf \{ i \in \mathbb{N}_0 | \text{Supp} \text{Ext}^i_R(\mathfrak{a}, N, M) \not\subseteq V(\mathfrak{a}) \},
\]
\[
\text{f-grad}(\mathfrak{a}, \mathfrak{b} + \text{Ann} N, M) = \inf \{ i \in \mathbb{N}_0 | \text{Supp} \text{H}^i_{\mathfrak{b}}(N, M) \not\subseteq V(\mathfrak{a}) \}.
\]
In particular,
\[
\text{f-grad}(\mathfrak{a}, \mathfrak{b}, M) = \inf \{ i \in \mathbb{N}_0 | \text{Supp} \text{Ext}^i_R(\mathfrak{a}, M) \not\subseteq V(\mathfrak{a}) \}
= \inf \{ i \in \mathbb{N}_0 | \text{Supp} \text{H}^i_{\mathfrak{b}}(M) \not\subseteq V(\mathfrak{a}) \}.
\]
Suppose in addition that \((R, \mathfrak{m})\) is local. Then
\[
\text{f-depth}(\mathfrak{a}, M) = \inf \{ i \in \mathbb{N}_0 | \dim \text{Ext}^i_R(\mathfrak{a}, M) > 0 \}
= \inf \{ i \in \mathbb{N}_0 | \text{Supp} \text{H}^i_{\mathfrak{b}}(M) \not\subseteq \{ \mathfrak{m} \} \}.
\]

3. **A generalization of Nagel-Schenzel formula**

Let \(x_1, \ldots, x_n\) be an \(\mathfrak{a}\)-filter regular \(M\)-sequence in \(\mathfrak{a}\). Then, by [11 Proposition 1.2],
\[
\text{H}^i_{\mathfrak{a}}(M) = \begin{cases}
\text{H}^i_{\mathfrak{a},(x_1,\ldots,x_n)}(M) & \text{if } i < n, \\
\text{H}^{i-n}_{\mathfrak{a}}(\text{H}^n_{\mathfrak{a},(x_1,\ldots,x_n)}(M)) & \text{if } i \geq n.
\end{cases}
\]
This formula was first obtained by Nagel and Schenzel, in [20 Lemma 3.4], in the case where \((R, \mathfrak{m})\) is a local ring and \(\mathfrak{a} = \mathfrak{m}\). Afterwards Khashyarmanesh, Yassi and Abbasi [12 Theorem 3.2] and Mafi [16 Lemma 2.8] generalized the second part of this formula for the generalized local cohomology modules as follows.

Suppose that \(M\) has finite projective dimension \(d\) and that \(x_1, \ldots, x_n\) is an \(\mathfrak{a}\)-filter regular \(N\)-sequence in \(\mathfrak{a}\). Then
\[
\text{H}^{i+n}_{\mathfrak{a}}(M, N) \cong \text{H}^{i}_{\mathfrak{a}}(M, \text{H}^n_{\mathfrak{a},(x_1,\ldots,x_n)}(N))
\]
for all \(i \geq d\).

The following Theorem establishes the Nagel-Schenzel formula for the generalized local cohomology modules. The first part of the following theorem is needed in the proof of the Corollary 4.5.

Theorem 3.1. Let \(x_1, \ldots, x_n\) be an \(\mathfrak{a}\)-filter regular \(N\)-sequence in \(\mathfrak{a}\). Then the following statements hold.

(i) \(\text{H}^i_{\mathfrak{a}}(M, N) \cong \text{H}^i_{\mathfrak{a},(x_1,\ldots,x_n)}(M, N)\) for all \(i < n\).

(ii) If \(\text{proj dim } M = d < \infty\) and \(L\) is projective, then
\[
\text{H}^{i+n}_{\mathfrak{a}}(M \otimes_R L, N) \cong \text{H}^{i}_{\mathfrak{a}}(M, \text{H}^n_{\mathfrak{a},(x_1,\ldots,x_n)}(L, N))
\]
for all \(i \geq d\).

Proof. (i) Set \(x = x_1, \ldots, x_n\). Since \(\Gamma_{\mathfrak{a}}(N) \subseteq \Gamma_{(x)}(N)\) we have a natural monomorphism \(\varphi_{M,N} : \text{H}^0_{\mathfrak{a}}(M, N) \to \text{H}^0_{\mathfrak{x}}(M, N)\). Now, let \(\mu_i(p, N)\) be the \(i\)-th Bass number of \(N\) with respect to a prime ideal \(p\) and let \(0 \to E^0 \xrightarrow{d^0} E^1 \xrightarrow{d^1} E^2 \to \cdots\) be
the minimal injective resolution of N. Then, by Proposition 2.1, $\mu_i(p, N) = 0$ for all $p \in \text{Supp } N \cap V(x) \setminus V(a)$ and all $i < n$. So

$$\Gamma_a(E^i) = \bigoplus_{p \in \text{Supp } N \cap V(a)} E(R/p)^{\mu_i(p, N)}$$

$$= \bigoplus_{p \in \text{Supp } N \cap V(a)} E(R/p)^{\mu_i(p, N)} = \Gamma_a(E^i)$$

for all $i < n$. Therefore φ_{M, E^i} is an isomorphism for all $i < n$. Now let $i < n$. Since $\varphi_{M, E^{i-1}}$ and φ_{M, E^i} are isomorphisms and $\varphi_{M, E^{i+1}}$ is a monomorphism, one can use the following commutative diagram

$$\begin{array}{ccc}
H^0_\alpha(M, E^{i-1}) & \xrightarrow{\varphi_{M, E^{i-1}}} & H^0_\alpha(M, E^i) \\
\downarrow{\varphi_{M, E^i}} & & \downarrow{\varphi_{M, E^i}} \\
H^0_{(x)}(M, E^{i-1}) & \xrightarrow{\varphi_{M, E^i}} & H^0_{(x)}(M, E^i)
\end{array}$$

$$\begin{array}{ccc}
H^0_\alpha(M, E^i) & \xrightarrow{\varphi_{M, E^i}} & H^0_\alpha(M, E^{i+1}) \\
\downarrow{\varphi_{M, E^{i+1}}} & & \downarrow{\varphi_{M, E^{i+1}}} \\
H^0_{(x)}(M, E^i) & \xrightarrow{\varphi_{M, E^{i+1}}} & H^0_{(x)}(M, E^{i+1})
\end{array}$$

to see that the induced homomorphism

$$\tilde{\varphi}_{M, E^i} : H^i_a(M, N) = \frac{\ker H^0_\alpha(M, d^i)}{\text{im } H^0_\alpha(M, d^{i-1})} \rightarrow \frac{\ker H^0_{(x)}(M, d^i)}{\text{im } H^0_{(x)}(M, d^{i-1})} = H^i_{(x)}(M, N),$$

is an isomorphism.

(ii) Set $F(\cdot) = H^0_a(M, \cdot)$ and $G(\cdot) = H^0_{(x)}(L, \cdot)$. Then F and G are left exact functors and $FG(\cdot) \cong H^0_a(M \otimes_R L, \cdot)$. Furthermore if E is an injective R-module and $R^pF(p \in \mathbb{N}_0)$ is the p-th right derived functor of F, then it follows from [27, Lemma 1.1] and (i) that

$$R^pF(G(E)) = H^0_a(M, H^0_{(x)}(L, E)) \cong H^0_a(M, H^0_a(L, E))$$

$$\cong \text{Ext}^p_M(M, \text{Hom}_R(L, \Gamma_a(E))) = 0$$

for all $p \geq 1$. This yields the following spectral sequence

$$E_2^{p,q} = H^p_a(M, H^q_{(x)}(L, N)) \Rightarrow H^{p+q}_a(M \otimes_R L, N)$$

(see for example [21, Theorem 11.38]). Let $t = p + q \geq d + n$. If $q > n$, then $H^q_{(x)}(N) = 0$ by [31, Corollary 3.3.3]. Since L is projective, it therefore follows that $H^q_{(x)}(L, N) = 0$. On the other hand if $q < n$, then $p > d = \text{proj dim } M$. Hence

$$E_2^{p,q} = H^p_a(M, H^q_{(x)}(L, N)) \cong H^p_a(M, H^q_a(L, N)) \cong \text{Ext}^p_M(M, H^q_a(L, N)) = 0.$$

Therefore, for $t \geq n + d$, there is a collapsing on the line $q = n$. Thus, there are isomorphisms

$$H^{t-n}_a(M, H^q_a(L, N)) \cong H^t_a(M \otimes_R L, N)$$

for all $t \geq n + d$.

4. Artinianness of Generalized Local Cohomology Modules

Let (R, \mathfrak{m}) be a Noetherian local ring. In view of [19, Theorem 3.1] and [13, Theorem 3.10], one can see that $f\text{-depth}(a, M)$ is the least integer i for which $H^i_a(M)$ is not Artinian. Also, as a main result, it was proved in [7, Theorem 2.2] that $f\text{-depth}(a + \text{Ann } M, N)$ is the least integer i such that $H^i_a(M, N)$ is not Artinian.
We use rather a short argument to generalize this to the case in which R is not necessarily a local ring. The following lemma is elementary.

Lemma 4.1 ([22] Exercise 8.49). Let X be an Artinian R-module, then $\text{Ass } X = \text{Supp } X$ is a finite subset of $\text{max}(R)$.

Theorem 4.2. Let \mathcal{M} be the set of all finite subsets of $\text{max}(R)$. Then

\[
\sup_{A \in \mathcal{M}} \text{f-grad}((\cap_{m \in A} m, a + \text{Ann } M, N)) = \inf \{ i \in \mathbb{N}_0 \mid H^i_a(M, N) \text{ is not Artinian} \}
\]

\[
= \inf \{ i \in \mathbb{N}_0 \mid \text{Supp } H^i_a(M, N) \not\subseteq \text{max}(R) \}
\]

\[
= \inf \{ i \in \mathbb{N}_0 \mid \text{Supp } H^i_a(M, N) \not\subseteq A \text{ for all } A \in \mathcal{M} \}
\]

Proof. Since $H^i_a(M, N) \cong H^i_{a + \text{Ann } M}(M, N)$, we can assume that $\text{Ann } M \subseteq a$. It is clear that

\[
\sup_{A \in \mathcal{M}} \text{f-grad}((\cap_{m \in A} m, a, N)) = \inf \{ i \in \mathbb{N}_0 \mid \text{Supp } H^i_a(M, N) \not\subseteq A \text{ for all } A \in \mathcal{M} \}.
\]

Let \mathcal{S} be either $\{ X \in \mathcal{C}_R \mid \text{Supp } X \subseteq \text{max}(R) \}$ or $\{ X \in \mathcal{C}_R \mid \text{Supp } X \subseteq A \text{ for some } A \in \mathcal{M} \}$, where \mathcal{C}_R is the category of R-modules. Set $r = \inf \{ i \in \mathbb{N}_0 \mid H^i_a(M, N) \text{ is not Artinian} \}$ and $s = \inf \{ i \in \mathbb{N}_0 \mid H^i_a(M, N) \not\subseteq \mathcal{S} \}$. By Lemma [4.1] $r \leq s$. If $r = \infty$, there is nothing to prove. Assume that $r < \infty$. We show by induction on r, that $H^r_a(M, N) \not\subseteq \mathcal{S}$.

If $r = 0$, then $H^0_a(M, N) \not\subseteq \mathcal{S}$. Now suppose, inductively, that $r > 0$ and that the result has been proved for smaller values of r. In view of [27] Lemma 1.1 the exact sequence

\[
0 \longrightarrow \Gamma_a(N) \longrightarrow N \longrightarrow N/\Gamma_a(N) \longrightarrow 0
\]

induces the following long exact sequence

\[
\cdots \rightarrow \text{Ext}^i_R(M, \Gamma_a(N)) \rightarrow H^i_a(M, N) \rightarrow H^i_a(M, N/\Gamma_a(N)) \rightarrow \cdots.
\]

Since $H^0_a(M, N)$ has finite length, we have

\[
\text{Supp } H^0_a(M, N) = \text{Ass } \text{Hom}_R(M, \Gamma_a(N)) = \text{Ass } \Gamma_a(N);
\]

so that $\Gamma_a(N) \in \mathcal{S}$. Thus $\text{Ext}^i_R(M, \Gamma_a(N)) \in \mathcal{S}$ for all $i \in \mathbb{N}_0$. It follows that for each $i \in \mathbb{N}_0$, $H^i_a(M, N) \in \mathcal{S}$ if and only if $H^i_a(M, N/\Gamma_a(N)) \in \mathcal{S}$. Also we have $H^i_a(M, N)$ is Artinian if and only if $H^i_a(M, N/\Gamma_a(N))$ is Artinian. Hence we can replace N by $N/\Gamma_a(N)$ and assume that N is an a-torsion free R-module. Thus there exists an element $x \in a$ which is a non-zero divisor on N. The exact sequence

\[
0 \longrightarrow N \overset{x}{\longrightarrow} N \longrightarrow N/xN \longrightarrow 0
\]

induces the long exact sequence

\[
\cdots \rightarrow H^i_a(M, N) \rightarrow H^i_a(M, N) \rightarrow H^i_a(M, N/xN) \rightarrow H^{i+1}_a(M, N) \rightarrow \cdots.
\]

Since $H^i_a(M, N)$ is Artinian for all $i < r$, we may use the above sequence to see that $H^i_a(M, N/xN)$ is Artinian for all $i < r - 1$. On the other hand, $H^i_a(M, N)$ is not Artinian. Hence, using the above exact sequence and [27] Theorem 7.1.2, we see that $0 : H^{r-1}_a(M, N/xN) \not\subseteq \text{im } f_{r-1}$ is not Artinian. Thus $H^{r-1}_a(M, N/xN)$ is not Artinian; and hence, by inductive hypothesis, $H^{r-1}_a(M, N/xN) \not\subseteq \mathcal{S}$. So, again
by using the above sequence, we get $H^i(M, N) \notin \mathcal{S}$. This completes the inductive step. □

Corollary 4.3. Suppose that $\text{Supp} \ L = \text{Supp} \ M/aM$. Then

$$\inf \{i \in \mathbb{N}_0 | H^i_d(M, N) \text{ is not Artinian} \} = \inf \{i \in \mathbb{N}_0 | \dim \text{Ext}^i_R(L, N) > 0 \}.$$

Proof. Let $n \in \mathbb{N}_0$. Then, by the Theorem 4.2, $H^i_d(M, N)$ is an Artinian R-module for all $i \leq n$ if and only if $n < f\text{-grad}(m_1 \cap \ldots \cap m_i, a + \text{Ann} M, N)$ for some maximal ideals m_1, \ldots, m_i of R. By the Remarks 2.3(i), it is equivalent to $\text{Supp} \text{Ext}^i_R(L, N) \subseteq \{m_1, \ldots, m_i\}$ for some maximal ideals m_1, \ldots, m_i of R and for all $i \leq n$. This proves the assertion. □

The following corollary extend the main result of [25] to the generalized local cohomology modules.

Corollary 4.4. Let $n \in \mathbb{N}$. Then $H^i_b(M, N)$ is Artinian for all $i < n$ if and only if $H^i_{aR_p}(M_p, N_p)$ is Artinian for all $i < n$ and all prime ideal p.

Proof. This is immediate by the Corollary 1.3 □

Corollary 4.5. Let $\overline{R} = R/(a + \text{Ann} M + \text{Ann} N)$ be a semi local ring and let \mathfrak{t} be the inverse image of the Jacobson radical of R in R. Then we have

$$f\text{-grad}(\mathfrak{t}, a + \text{Ann} M, N) = \inf \{i \in \mathbb{N}_0 | H^i_d(M, N) \text{ is not Artinian} \} = \inf \{i \in \mathbb{N}_0 | H^i_d(M, N) \not\cong H^i_d(M, N) \}.$$

Proof. The first equality is immediate by Theorem 4.2. To prove the second equality, let $n \leq f\text{-grad}(\mathfrak{t}, a + \text{Ann} M, N)$ and let x_1, \ldots, x_n be an \mathfrak{t}-filter regular N-sequence in $a + \text{Ann} M$. Then x_1, \ldots, x_n is an $a + \text{Ann} M$-filter regular N-sequence. So by Theorem 8.1(i),

$$H^i_a(M, N) \cong H^i_{aR_p}(M_p, N_p) \cong H^i_{(x_1, \ldots, x_n)} (M, N) \cong H^i_{\mathfrak{t}}(M, N)$$

for all $i < n$. If $f\text{-grad}(\mathfrak{t}, a + \text{Ann} M, N) = \infty$, then the above argument shows that, $\inf \{i \in \mathbb{N}_0 | H^i_a(M, N) \not\cong H^i_d(M, N) \} = \infty$ and therefore the required equality holds. Therefore, we may assume that $f\text{-grad}(\mathfrak{t}, a + \text{Ann} M, N) = n < \infty$. By the first equality, $H^a(M, N)$ is not Artinian while $H^a_{\mathfrak{t}}(M, N)$ is Artinian. Hence the second equality holds. □

It was shown in [25] Theorem 2.2 that if $\dim R/a = 0$, then $H^i_a(M, N)$ is Artinian for all $i \in \mathbb{N}_0$. The following corollary is a generalization of this.

Corollary 4.6. Let $\overline{R} = R/(a + \text{Ann} M + \text{Ann} N)$. Then $H^i_a(M, N)$ is an Artinian R-module for all $i \in \mathbb{N}_0$ if and only if $\dim \overline{R} = 0$. In particular, $\text{Ext}^i_R(M, N)$ has finite length for all $i \in \mathbb{N}_0$ if and only if $\dim R/(\text{Ann} M + \text{Ann} N) = 0$.

Proof. Assume that p is a prime ideal of R. By the Corollary 4.5, $H^i_{aR_p}(M_p, N_p)$ is Artinian for all $i < n$ if and only if $f\text{-depth}((a + \text{Ann} M)R_p, N_p) = \infty$ or equivalently $\dim R_p N_p/(aR_p + (\text{Ann} M)R_p)N_p = 0$ (Remark 2.3). Now, the result follows by corollary 4.4. □
5. Attached primes of the top generalized local cohomology modules

Let $X \neq 0$ be an R-module. If, for every $x \in R$, the endomorphism on X given by multiplication by x is either nilpotent or surjective, then $p = \sqrt{\text{Ann} X}$ is prime and X is called a p-secondary R-module. If for some secondary submodules X_1, \ldots, X_n of X we have $X = X_1 + \ldots + X_n$, then we say that X has a secondary representation.

One may assume that the prime ideals $p_i = \sqrt{\text{Ann} X_i}$, $i = 1, \ldots, n$, are distinct and, by omitting redundant summands, that the representation is minimal. Then the set $\text{Att} X = \{p_1, \ldots, p_n\}$ does not depend on the choice of a minimal secondary representation of X. Every element of $\text{Att} X$ is called an attached prime ideal of X. It is well known that an Artinian R-module has a secondary representation. The reader is referred to [14] for more information about the theory of secondary representation.

Let (R, m) be a local ring and $n = \dim N < \infty$ and $d = \text{proj dim } M < \infty$. It was proved in [3] Theorem 2.3 that $H_{a}^{n+d}(M, N)$ is Artinian and that

$$\text{Att } H_{a}^{n+d}(M, N) = \{p \in \text{Ass } N| \text{cd}_{a}(M, R/p) = n + d\},$$

where, for an R-module Y, $\text{cd}_{a}(M, Y)$ is the greatest integer i such that $H_{a}^{i}(M, Y) \neq 0$. Notice that $\text{cd}_{a}(M, N) \leq d + n$ [3] Lemma 5.1]. Next, we prove the above result without the local assumption on R. The following lemmas are needed.

Lemma 5.1 ([3] Theorem A and B). Let $\text{proj dim } M < \infty$. Then

(i) $\text{cd}_{a}(M, N) \leq \text{cd}_{a}(M, L)$ whenever $\text{Supp } N \subseteq \text{Supp } L$.

(ii) $\text{cd}_{a}(M, L) = \max\{\text{cd}_{a}(M, N), \text{cd}_{a}(M, K)\}$ whenever $0 \to N \to L \to K \to 0$ is an exact sequence.

Lemma 5.2. Let $\text{proj dim } M < \infty$, $\dim N < \infty$, $t = \text{cd}_{a}(M, N) \geq 0$ and

$$\Sigma = \{L \subsetneq N| \text{cd}_{a}(M, L) < t\}.$$

Then Σ has the largest element with respect to inclusion, L say, and the following statements hold.

(i) If K is a non-zero submodule of N/L, then $\text{cd}_{a}(M, K) = t$.

(ii) $H_{a}^{1}(M, N) \cong H_{a}^{t}(M, N/L)$.

(iii) If $t = \text{proj dim } M + \dim N$, then

$$\text{Ass } N/L = \{p \in \text{Ass } N| \text{cd}_{a}(M, R/p) = t\}.$$

Proof. Since N is Noetherian, Σ has a maximal element, say L. Now assume that L_1, L_2 are elements of Σ. Using the exact sequence

$$0 \to L_1 \cap L_2 \to L_1 \oplus L_2 \to L_1 + L_2 \to 0$$

and Lemma 5.1 we see that $t > \text{cd}_{a}(M, L_1 + L_2)$. Hence the sum of any two elements of Σ is again in Σ. It follows that L contains every element of Σ; and so it is the largest one.

(i) Let $K = K'/L$ be a non-zero submodule of N/L. Since L is the largest element of Σ, by applying Lemma 5.1 to the exact sequence

$$0 \to L \to K' \to K \to 0$$

we see that $t = \text{cd}_{a}(M, K)$.

(ii) The exact sequence $0 \to L \to N \to N/L \to 0$ induces the exact sequence

$$0 = H_{a}^{t}(M, L) \to H_{a}^{t}(M, N) \to H_{a}^{t}(M, N/L) \to H_{a}^{t+1}(M, L) = 0.$$
This completes the proof. □

(iii) Assume that $\text{cd}_\alpha(M, N) = \text{proj dim } M + \text{dim } N$. For each $p \in \text{Ass } L$, we have $\text{cd}_\alpha(M, R/p) < t$; so that

$$\{ p \in \text{Ass } N | \text{cd}_\alpha(M, R/p) = t \} \subseteq \text{Ass } N/L.$$

To establish the reverse inclusion, let $p \in \text{Ass } N/L$. Then by (i) and [3 Lemma 5.1] $t = \text{proj dim } M + \text{dim } R/p$. Therefore $p \in \text{Ass } N$ and equality holds.

Theorem 5.3. Let $d = \text{proj dim } M < \infty$ and $n = \dim N < \infty$. Then the R-module $H_n^{n+d}(M, N)$ is Artinian and

$$\text{Att } H_n^{n+d}(M, N) = \{ p \in \text{Ass } N | \text{cd}_\alpha(M, R/p) = n + d \}.$$

Proof. Let $x = x_1, \ldots, x_n$ be an a-filter regular N-sequence in a and let E^\bullet be the minimal injective resolution of $H_n^{(x)}(N)$. Since, by [3 Exercise 7.1.7], $H_n^{(x)}(N)$ is Artinian, every component of E^\bullet is Artinian. On the other hand by 3.1

$$H_n^{n+d}(M, N) \cong H_n^d(M, H_n^n(x)(N)) \cong H^d(\text{Hom}_R(M, \Gamma_a(E^\bullet))).$$

It follows that $H_n^{n+d}(M, N)$ is Artinian.

Now we prove that $\text{Att } H_n^{n+d}(M, N) = \{ p \in \text{Ass } N | \text{cd}_\alpha(M, R/p) = n + d \}$. If $\text{cd}_\alpha(M, N) < n + d$, then $\text{Att } H_n^{n+d}(M, N) = \emptyset = \{ p \in \text{Ass } N | \text{cd}_\alpha(M, R/p) = n + d \}$. So one can assume that $t = \text{cd}_\alpha(M, N) = n + d$. Let L be the largest submodule of N such that $\text{cd}_\alpha(M, L) < t$. By Lemma 5.2 there is no non-zero submodule K of N/L such that $\text{cd}_\alpha(M, K) < t$. Also we have $H_n^d(M, N) \cong H_n^d(M, N/L)$ and $\text{Ass } N/L = \{ p \in \text{Ass } N | \text{cd}_\alpha(M, R/p) = t \}.$ Moreover $t = \text{cd}_\alpha(M, N/L) = \text{proj dim } M + \text{dim } N/L$. Thus we may replace N by N/L and prove that $\text{Att } H_n^d(M, N) = \text{Ass } N$. Now, for any non-zero submodule K of N, $\text{cd}_\alpha(M, K) = t$ and $\text{dim } K = n$.

Assume that $p \in \text{Att } H_n^d(M, N)$. We have $p \supseteq \text{Ann } H_n^d(M, N) \supseteq \text{Ann } N$. Hence $p \in \text{Supp } N$. Now let $x \in \text{Reg } \setminus \bigcup_{p \in \text{Ass } N} p$. The exact sequence

$$0 \rightarrow N \xrightarrow{x} N \rightarrow N/xN \rightarrow 0$$

induces the exact sequence

$$H_n^d(M, N) \xrightarrow{x} H_n^d(M, N) \rightarrow H_n^d(M, N/xN) = 0.$$

Therefore $x \notin \bigcup_{p \in \text{Att } H_n^d(M, N)} p$. So $\bigcup_{p \in \text{Att } H_n^d(M, N)} p \subseteq \bigcup_{p \in \text{Ass } N} p$. Thus $p \subseteq q$ for some $q \in \text{Ass } N$. Hence $p = q$ and $\text{Att } H_n^d(M, N) \subseteq \text{Ass } N$. Next we prove the reverse inclusion. Let $p \in \text{Ass } N$ and let T be a p-primary submodule of N. We have $t = \text{cd}_\alpha(M, R/p) = \text{cd}_\alpha(M, N/T)$. Moreover N/T has no non-zero submodule K such that $\text{cd}_\alpha(M, K) < t$. Hence, using the above argument, one can show that $\text{Att } H_n^d(M, N/T) \subseteq \text{Ass } N/T = \{ p \}$. It follows that

$$\{ p \} = \text{Att } H_n^d(M, N/T) \subseteq \text{Att } H_n^d(M, N).$$

This completes the proof. □

Corollary 5.4. Let $d = \text{proj dim } M < \infty$ and $n = \dim N < \infty$. Then

$$\text{Att } H_n^{n+d}(M, N) \subseteq \text{Supp } M \cap \text{Att } H_n^d(N).$$
Proof: If \(\text{Att } H_a^{n+d}(M, N) = \emptyset \), there is nothing to prove. Assume that \(\mathfrak{p} \in \text{Att } H_a^{n+d}(M, N) \). Then, by Lemma 19.1(iii) \(\mathfrak{p} \in \text{Ass } N \) and \(H_a^{n+d}(M, R/\mathfrak{p}) \neq 0 \). Next one can use the spectral sequence

\[
E_2^{p,q} = \text{Ext}_{R/\mathfrak{p}}^p(M, H_a^q(R/\mathfrak{p})) \Rightarrow H_a^{p+q}(M, R/\mathfrak{p})
\]

to see that \(H_a^{n+d}(M, R/\mathfrak{p}) \cong \text{Ext}_{R/\mathfrak{p}}^d(M, H_a^0(R/\mathfrak{p})) \). Therefore \(H_a^0(R/\mathfrak{p}) \neq 0 \); and hence \(\text{cd}_a(R/\mathfrak{p}) = n \). Thus, again by Lemma 5.5 \(\mathfrak{p} \in \text{Att } H_a^0(N) \). Also, we have \(\mathfrak{p} \supseteq \text{Ann } \text{Ext}_{R}^d(M, H_a^0(N)) \supseteq \text{Ann } M \), which completes the proof.

Let \(X \) be an \(R \)-module. Set \(E = \bigoplus_{m \in \max R} E(R/m) \) (minimal injective cogenerator of \(R \)) and \(D = \text{Hom}_R(\cdot, E) \). We note that the canonical map \(X \to DDX \) is an injection. If this map is an isomorphism we say that \(X \) is (Matlis) reflexive. The following lemma yields a classification of modules which are reflexive with respect to \(E \).

Lemma 5.5 (Theorem 12). An \(R \)-module \(X \) is reflexive if and only if it has a finite submodule \(S \) such that \(X/S \) is artinian and that \(R/\text{Ann } X \) is a complete semilocal ring.

Assume that \(a \subseteq b \) and \(R/a \) is a complete semilocal ring. By above lemma \(R/a \) is reflexive as an \(R \)-module. On the other hand, the category of reflexive \(R \)-modules is a Serre subcategory of the category of \(R \)-modules. Therefore \(R/b \) is reflexive as an \(R \)-module and hence, by the above lemma, \(R/b \) is a complete semilocal ring. We shall use the conclusion of this discussion in the proof of the next theorem.

Theorem 5.6. Let \(M, N \) be two finite \(R \)-modules with \(\text{proj dim } M = d < \infty \) and \(\text{dim } N = n < \infty \). Let \(b = \text{Ann } H_a^0(N) \). If \(R/b \) is a complete semilocal ring, then

\[
\text{Att } H_a^{n+d}(M, N) = \text{Supp } \text{Ext}_{R}^d(M, R) \cap \text{Att } H_a^0(N).
\]

In particular, if in addition, \(\text{proj dim }_{R/\mathfrak{p}} M/\mathfrak{p} \) = \(\text{proj dim } M \) for all \(\mathfrak{p} \in \text{Supp } M \), then

\[
\text{Att } H_a^{n+d}(M, N) = \text{Supp } M \cap \text{Att } H_a^0(N).
\]

Proof. Since \(\text{Ext}_{R}^d(M, \cdot) \) is a right exact \(R \)-linear covariant functor, we have

\[
H_a^{n+d}(M, N) \cong \text{Ext}_{R}^d(M, H_a^0(N)) \cong \text{Ext}_{R}^d(M, R) \otimes_R H_a^0(N).
\]

Set \(\mathfrak{c} = \text{Ann } H_a^{n+d}(M, N) \). It is clear that \(b \subseteq c \). Therefore \(R/c \) is a complete semilocal ring. Now, by Lemma and [5, Exercise 7.2.10] and [4, VI.1.4 Proposition 10] we have

\[
\text{Att } H_a^{n+d}(M, N) = \text{Ass } D D H_a^{n+d}(M, N)
\]

\[
= \text{Ass } D H_a^{n+d}(M, N)
\]

\[
= \text{Ass } D(\text{Ext}_{R}^d(M, R) \otimes_R H_a^0(N))
\]

\[
= \text{Ass } \text{Hom}_R(\text{Ext}_{R}^d(M, R), D H_a^0(N))
\]

\[
= \text{Supp } \text{Ext}_{R}^d(M, R) \cap \text{Ass } D H_a^0(N)
\]

\[
= \text{Supp } \text{Ext}_{R}^d(M, R) \cap \text{Att } DD H_a^0(N)
\]

\[
= \text{Supp } \text{Ext}_{R}^d(M, R) \cap \text{Att } H_a^0(N)
\]

The final assertion follows immediately from the first equality, [18, Lemma 19.1(iii)] and the fact that \(\text{Supp } \text{Ext}_{R}^d(M, R) \subseteq \text{Supp } M \).
By Corollary 5.3 $\text{Att} H_{m}^{n+d}(M, N) \subseteq \text{Att} H_{m}^{n}(N)$. Next, we give an example to show that this inclusion may be strict even if (R, m) is a complete regular local ring and $a = m$. Also, this example shows that the following theorem of Mafi is not true.

[17, Theorem 2.1]: Let (R, m) be a commutative Noetherian local ring and $n = \dim N, d = \text{proj dim} M < \infty$. If $H_{m}^{n+d}(M, N) \neq 0$, then

\[\text{Att} H_{m}^{n+d}(M, N) = \text{Att} H_{m}^{n}(N). \]

Example 5.7. Let (R, m) be a complete regular local ring of a dimension $n \geq 2$ and assume that R has two distinct prime ideals p, q such that $\dim R/p = \dim R/q = 1$. Set $M = R/p$ and $N = R/p \oplus R/q$. Then, by Theorem 5.3

\[\text{Att} H_{m}^{1}(N) = \{p, q\}. \]

On the other hand, $\text{proj dim} M = \dim R - \depth M = n - 1$ and $\dim N = 1$. Now, by Theorem 5.6

\[\text{Att} H_{m}^{n}(M, N) = \text{Supp} M \cap \text{Att} H_{m}^{1}(N) = \{p\}. \]

Therefore [17, Theorem 2.1] is not true. Also, by [5, Proposition 7.2.11],

\[\sqrt{(\text{Ann} H_{m}^{n}(M, N))} = \bigcap_{p \in \text{Att} H_{m}^{n}(M, N)} p = p \]

and

\[\sqrt{(\text{Ann} H_{m}^{1}(N))} = \bigcap_{p \in \text{Att} H_{m}^{1}(N)} p = p \cap q. \]

Hence, again, Corollary 2.2 and Corollary 2.3 of [17] are not true. We note that, the other results of [17] are concluded from [17, Theorem 2.1, Corollary 2.2 and Corollary 2.3].

It is known that if (R, m) is a local ring and $\dim M = n > 0$, then $H_{m}^{n}(M)$ is not finite [5, Corollary 7.3.3]. It was proved in [9, Proposition 2.6] that if $d = \text{proj dim} M < \infty$ and $0 < n = \dim N$, then $H_{m}^{n+d}(M, N)$ is not finite whenever it is non-zero. Next, we provide a generalization of this result. The following lemma, which is needed in the proof of the next proposition, is elementary.

Lemma 5.8. Let X be an R-module. Then X has finite length if and only if X is Artinian and $\text{Att} X \subseteq \text{max} R$. Moreover if X has finite length, then $\text{Att} X = \text{Supp} X = \text{Ass} X$.

Proposition 5.9. Let $d = \text{proj dim} M < \infty, 0 < n = \dim N < \infty$. If $H_{a}^{n+d}(M, N) \neq 0$, then it is not finite.

Proof. Assume that $p \in \text{Att} H_{a}^{n+d}(M, N)$. By [5.3] $H_{a}^{n+d}(M, N)$ is an Artinian R-module and $n + d = \text{cd}_{a}(M, R/p) = \text{proj dim} M + \dim R/p$. Therefore $\dim R/p = n > 0$; So that $\text{Att} H_{a}^{n+d}(M, N) \not\subseteq \text{max} R$. It follows that, in view of [5.8] $H_{a}^{n+d}(M, N)$ is not finite.

References

[1] J. Amjadi and R. Naghipour, Cohomological dimension of generalized local cohomology modules, *Algebra Colloq.* 15 (2008), no. 2, 303–308.

[2] R. G. Belshoff, E. E. Enochs and J. R. García Rozas, Generalized Matlis duality, *Proc. Amer. Math. Soc.* 128 (2000), no. 5, 1307–1312.
[3] M. H. Bijan-Zadeh, A common generalization of local cohomology theories, *Glasgow Math. J.* **21** (1980), no. 2, 173–181.

[4] N. Bourbaki, *Commutative Algebra*, Chapter 1-7, Elements of Mathematics, Springer-Verlag, Berlin, 1998.

[5] M. P. Brodmann and R. Y. Sharp, *Local Cohomology: an Algebraic introduction with geometric applications*, Cambridge Studies in Advanced Mathematics, 60. Cambridge University Press, Cambridge, 1998.

[6] W. Bruns and J. Herzog, *Cohen-Macaulay rings*, Cambridge Studies in Advanced Mathematics, 39. Cambridge University Press, Cambridge, 1993.

[7] L. Chu and Z. Tang, On the Artinianness of generalized local cohomology, *Comm. Algebra* **35** (2007), no. 12, 3821–3827.

[8] M. T. Dibaei and S. Yassemi, Attached primes of the top local cohomology modules with respect to an ideal, *Arch. Math. (Basel)* **84** (2005), no. 4, 292–297.

[9] Y. Gu and L. Chu, Attached primes of the top generalized local cohomology modules, *Bull. Aust. Math. Soc.* **79** (2009), no. 1, 59–67.

[10] J. Herzog, Komplexe, Auflösungen und Dualität in der lokalen Algebra, Habilitationsschrift, Universität Regensburg, 1970.

[11] K. Khashyarmanesh and Sh. Salarian, Filter regular sequences and the finiteness of local cohomology modules, *Comm. Algebra* **26** (1998), no. 8, 2483–2490.

[12] K. Khashyarmanesh, M. Yassi and A. Abbasi, Filter regular sequences and generalized local cohomology modules, *Comm. Algebra* **32** (2004), no. 1, 253–259.

[13] R. Lü and Z. Tang, The f-depth of an ideal on a module, *Proc. Amer. Math. Soc.* **130** (2002), no. 7, 1905–1912 (electronic).

[14] I. G. MacDonald, Secondary representation of modules over a commutative ring, Symposia Mathematica, Vol. XI (Convegno di Algebra Commutativa, INDAM, Rome, 1971), pp. 23–43. Academic Press, London, 1973.

[15] N. Suzuki, On the generalized local cohomology and its duality, *J. Math. Kyoto Univ.* **18** (1978), no. 1, 71–85.

[16] N. Suzuki, On the generalized local cohomology and its duality, *J. Math. Kyoto Univ.* **15** (1975), no. 1, 71–85.

[17] Z. Tang, Local-global principle for the Artinianness of local cohomology modules, *Comm. Algebra* **40** (2012), no. 1, 58–63.

[18] N. V. Trung, Absolutely superficial sequences, *Math. Proc. Cambridge Philos. Soc.* **93** (1983), no. 1, 35–47.

[19] S. Yassemi, L. Khatami and T. Sharif, Associated primes of generalized local cohomology modules, *Comm. Algebra* **30** (2002), no. 1, 327–330.

[20] A. Mafi, On the associated primes of generalized local cohomology modules, *Comm. Algebra* **34** (2006), no. 7, 2489–2494.

[21] A. Mafi, Top generalized local cohomology modules, *Turkish J. Math.* **35** (2011), no. 4, 611–615.

[22] H. Matsumura, *Commutative ring theory*, Cambridge Studies in Advanced Mathematics, 8. Cambridge University Press, Cambridge, 1986.

[23] L. Melkersson, Some applications of a criterion for Artinianness of a module, *J. Pure Appl. Algebra* **101** (1995), no. 3, 291–303.

[24] U. Nagel and P. Schenzel, Cohomological annihilators and Castelnuovo-Mumford regularity, *Commutative algebra: syzygies, multiplicities, and birational algebra* (South Hadley, MA, 1992), 307–328, Contemp. Math., 159, Amer. Math. Soc., Providence, RI, 1994.

[25] J. J. Rotman, An introduction to homological algebra, Pure and Applied Mathematics 85. Academic Press, Inc., New York, 1979.

[26] R. Y. Sharp, *Steps in commutative algebra*, London Mathematical Society Student Texts, 19. Cambridge University Press, Cambridge, 1990.

[27] J. Stöckrad and W. Vogel, *Buchsbaum rings and applications. An interaction between algebra, geometry and topology*, Springer-Verlag, Berlin, 1986.
Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran.
E-mail address: alifi1387@gmail.com

Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran.
E-mail address: tehranian@srbiau.ac.ir

Faculty of Mathematical Sciences and Computer, Tarbiat Moallem University, Tehran, Iran.
E-mail address: zakeri@tmu.ac.ir