Amphiregulin suppresses epithelial cell apoptosis in lipopolysaccharide-induced lung injury in mice

緒方, 彩子

https://doi.org/10.15017/1831411

出版情報：九州大学，2017，博士（医学），論文博士
権利関係：© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
氏名：緒方 彩子

論文名：Amphiregulin suppresses epithelial cell apoptosis in lipopolysaccharide-induced lung injury in mice

（Amphiregulin は LPS 肺傷害マウスにおいて肺胞上皮細胞のアポトーシスを抑制する）

区分：乙

論文内容の要旨

背景：ARDS は Ashbaugh らによって 1967 年に初めて提唱された疾患で、好中球性炎症と上皮傷害によって特徴づけられる。ARDS の一般的な原因としては肺炎、胃酸誤嚥、敗血症、重症外傷等があり、そのリスクやメカニズムについても検討されているが依然として致死率は高いままである。LPS は肺傷害や ARDS に強く関与しており、マウスへの投与により好中球集簇やアポトーシスを起こすことが報告されている。EGF family の一つである Amphiregulin は細胞増殖に寄与しており、COPD、喘息患者の損傷を受けた肺組織や人工呼吸関連肺傷害マウスモデルの肺胞上皮にも発現していることが報告されている。また近年 Amphiregulin は LPS による肺傷害を抑制することが報告されているが、そのメカニズムについては報告されていない。本研究において我々は LPS 肺傷害マウスのアポトーシスにおける Amphiregulin の役割を検討した。

方法：C57BL/6 マウス、雌、7 週令に対して LPS0.5 mg/kg を経鼻投与し急性肺傷害を起こした。このマウスに対して Coadministrant Amphiregulin7.5 µg/body もしくは PBS を、LPS を投与する 6 時間前、0.5 時間前と 3 時間後に腹腔内投与を行った。LPS 投与 6、24 時間後にこれらのマウスに対し組織学的検査、免疫染色、気管支肺胞洗浄液、Terminal deoxynucleotidyl transferase-mediated dUTP nick end label (TUNEL) 染色を施行した。またマウス肺胞上皮細胞の cell line である LA-4 細胞に Amphiregulin 0、10、100 nM を 3 時間投与したのち PBS で洗浄し、LPS 0、50 µg/ml を投与した。24 時間後に細胞を回収しフローサイトメトリー、ウエスタンプロッティングを行い、Amphiregulin のアポトーシスやその経路における効果を検討した。

結果：LPS 肺傷害マウスの肺組織においては炎症細胞浸潤、浮腫、肺胞出血が見られたが、これらの変化は Amphiregulin 投与によって軽減された(Fig. 1A, B)。また LPS を投与されたマウスの肺胞洗浄液中の免疫細胞数、好中球数、肺血管透過性亢進を示す蛋白濃度はコントロールマウスと比較して有意に上昇し、Amphiregulin 投与によって有意に抑制された(Fig. 1C, D)。肺胞洗浄液中の炎症性サイトカイン (IL-1β, IL-6, TNFα) やケモカイン (CXCL-1, CCL2) は LPS 投与によって有意に上昇し、Amphiregulin 投与によって IL-6, CCL2 は軽度抑制されたものの有意差は見られなかった。6、24 時間後に LPS 投与
マウスではコントロールマウスと比較してICAM-1が有意に上昇し、LPS投与24時間後にはAmphiregulin投与によって有意に抑制された。TUNEL染色では、LPS投与によって上皮細胞のアポトーシスが見られるが、Amphiregulin投与によって有意にアポトーシスは抑制された。In vitroにおいて、LPS投与24時間後にLA-4細胞の12.39±0.58％にアポトーシスが見られたが、LPS投与前にAmphiregulin100nMを投与すると有意に抑制された(Fig.2A)。ウエスタンブロット法では、Amphiregulin投与によってカスパーゼ11に変化はなかったものの活性型カスパーゼ8,3は有意に抑制していた(Fig.2B,C)。

考察: Amphiregulinは肝障害やプレオマイシン肺傷害の抑制において重要な役割を担う事は報告されている。今回我々は、LPSマウス肺傷害においてAmphiregulinは肺胞上皮細胞のアポトーシスを抑制し、In vitroにおいてカスパーゼ8の活性を阻害することでアポトーシスを抑制することを示した。しかし炎症とアポトーシスのいずれも調整しているカスパーゼ11についてはAmphiregulin投与によって抑制されていなかったことからAmphiregulinはLPS肺傷害の上皮細胞のアポトーシスにおいて中心的な役割を果たしてはいるが完全ではないことが考えられた。また肺胞洗浄液中の炎症性サイトカイン(IL-1β、IL-6、TNFα)やケモカイン(CXCL-1、CCL2)を有意に抑制しなかったが、過去の報告とのLPSの投与方法の違いのためと考えられた。LPS肺傷害マウスにおいてNF-κBを介して肺組織中のICAM-1のmRNAが増加し、結果として好中球の集簇がおこるとの報告があるが、今回我々はAmphiregulin投与によって有意にICAM-1が抑制されることを報告した。しかしこの機序については不明であり、更なる研究が必要と考えられた。

結語: 本研究結果より、AmphiregulinはLPSによる肺傷害において肺胞上皮細胞のアポトーシスを抑制し、その治療手段になり得ると考えられた。