A Triple-Error-Correcting Cyclic Code from the Gold and Kasami-Welch APN Power Functions

Xiangyong Zeng, Jinyong Shan, Lei Hu ∗†

April 1, 2010

Abstract: Based on a sufficient condition proposed by Hollmann and Xiang for constructing triple-error-correcting codes, the minimum distance of a binary cyclic code $C_{1,3,13}$ with three zeros $\alpha, \alpha^3,$ and α^{13} of length $2^m - 1$ and the weight divisibility of its dual code are studied, where $m \geq 5$ is odd and α is a primitive element of the finite field \mathbb{F}_{2^m}. The code $C_{1,3,13}$ is proven to have the same weight distribution as the binary triple-error-correcting primitive BCH code $C_{1,3,5}$ of the same length.

Keywords: Cyclic code, BCH code, triple-error-correcting code, minimum distance, almost perfect nonlinear function

1 Introduction

In coding theory, binary triple-error-correcting primitive BCH codes of length $n = 2^m - 1$ are one of the most studied objects [6, 15]. Let α be a primitive element of the finite field \mathbb{F}_{2^m} with 2^m elements, and for a subset I of $\mathbb{Z}_{2^m-1},$ let C_I denote the length-n cyclic code with zeros α^i ($i \in I$). The primitive BCH code $C_{1,3,5}$ has minimum distance 7, and its weight distribution was discussed in [19, 1, 2, 3]. For some other integers d_1 and d_2 (they are naturally assumed to be different in the sense of cyclotomic equivalence modulo $2^m - 1$ and be different to 1), the code C_{1,d_1,d_2} can also have the same weight distribution as the binary triple-error-correcting primitive BCH code $C_{1,3,5}$. For example, Table 1 lists all known such exponent pairs $\{d_1, d_2\}$ for odd

∗X. Zeng and J. Shan are with Faculty of Mathematics and Computer Science, Hubei University, Wuhan 430062, China (e-mail: xiangyongzeng@yahoo.com.cn).
†L. Hu is with the State Key Laboratory of Information Security, Graduate School of Chinese Academy of Sciences, Beijing 100049, China (e-mail: hu@is.ac.cn).
where there exists only one class of exponents with binary weight greater than 2, namely
\[(2^{\frac{m+1}{2}} + 1)^3\] in the construction of [10].

Table 1: Known exponent pairs \(\{d_1, d_2\}\) for odd \(m\) such that \(C_{1,d_1,d_2}\) and \(C_{1,3,5}\) have the same weight distributions

\(\{d_1, d_2\}\)	condition
\(\{2^r + 1, 2^{2r} + 1\}\)	\(m\) odd, \(\gcd(m, r) = 1\) [20]
\(\{2^r + 1, 2^{3r} + 1\}\)	\(m\) odd, \(\gcd(m, r) = 1\) [20]
\(\{2^{\frac{m+1}{2}} + 1, 2^{\frac{m+1}{2} - 1} + 1\}\)	\(m\) odd [22]
\(\{2^{\frac{m+1}{2}} + 1, (2^{\frac{m+1}{2}} + 1)^2\}\)	\(m\) odd [10]

Recently, Hollmann and Xiang [16] proposed a sufficient condition for constructing binary triple-error-correcting codes of length \(n = 2^m - 1\) for odd \(m\). More precisely, if a binary cyclic code \(C\) of length \(n = 2^m - 1\) and dimension \(n - 3m\) has minimum distance at least 7, and if the weights of all codewords of its dual code \(C^\perp\) are divisible by \(2^{m-1}\), then \(C\) has the same weight distribution as the code \(C_{1,3,5}\). For two exponents \(d_1\) and \(d_2\) such that both \(x^{d_1}\) and \(x^{d_2}\) are almost perfect nonlinear (APN) power functions from \(\mathbb{F}_{2^m}\) to itself, each of the codes \(C_{1,d_1}\) and \(C_{1,d_2}\) has minimum distance exactly 5 by Theorem 5 of [9] (see also Lemma 1 in Section 2). Notice that \(C_{1,d_1,d_2}\) is a subcode of both \(C_{1,d_1}\) and \(C_{1,d_2}\), then \(C_{1,d_1,d_2}\) has minimum distance at least 5. This motivates us to look for suitable APN power exponents \(d_1\) and \(d_2\) such that \(C_{1,d_1,d_2}\) has the same weight distribution as \(C_{1,3,5}\).

Table 2: Known values of APN power exponents for odd \(m\)

Type	\(d\)	condition
Gold	\(2^r + 1\)	\(\gcd(r, m) = 1\) [14]
Kasami-Welch	\(2^{2r} - 2^r + 1\)	\(\gcd(r, m) = 1\) [20]
Welch	\(2^{\frac{m-1}{2}} + 3\)	\(m\) odd [24]
Niho	\(2^{2r} + 2^r - 1\)	\(4^r \equiv -1 \pmod{m}, m\) odd [24]
Inverse	\(2^{m-1} - 1\)	\(m\) odd [4, 25]
Dobbertin	\(2^{4r} + 2^{3r} + 2^{2r} + 2^r - 1\)	\(m = 5r, m\) odd [13]

Following this idea, we experimentally test all known values of APN power exponents (listed in Table 2) for odd integers \(m = 5, 7, 9\) and 11, to try to find pairs \((d_1, d_2)\) such that \(C_{1,d_1,d_2}\) and \(C_{1,3,5}\) have the same weight distributions. By the MacWilliams identity for binary linear codes [22], this is equivalent to say that their dual codes \(C_{1,d_1,d_2}^\perp\) and \(C_{1,3,5}^\perp\) have the same weight.
distributions. The weight distribution of \(C_{1,3,5}^\perp \) is given in [19, 22]. The dual code \(C_{1,d_1,d_2}^\perp \) is simply given by

\[
C_{1,d_1,d_2}^\perp = \left\{ c(\epsilon, \gamma, \delta) = \left(Tr_{\mathbb{F}^m_2}(\epsilon x + \gamma x^{d_1} + \delta x^{d_2})\right)_{x \in \mathbb{F}^m_2} \mid \epsilon, \gamma, \delta \in \mathbb{F}^2_2 \right\}
\]

and its weight distribution is better to compute than that of the target code \(C_{1,d_1,d_2} \).

All APN exponent pairs \((d_1, d_2)\) such that \(C_{1,d_1,d_2}^\perp \) and \(C_{1,3,5} \) have the same weight distributions in our experiment are listed in Table 3. For odd \(m \) and \(\gcd(r, m) = 1 \), the code \(C_{2^r+1,2^{r+1},2^{r+1}} \) also has the same weight distribution as \(C_{1,3,5} \) [20]. This construction and those in Table 1 can explain all pairs \{\(d_1, d_2 \)\} without the mark \(\star \) in Table 3. Notice that we say a pair \((d_1, d_2) \) has actually been explained if \(C_{d_1,2^{r+1},d_2} \) is proven to have the same weight distribution as \(C_{1,3,5} \) for three integers \(i_1, i_2, d \) with \(0 \leq i_1, i_2 \leq m - 1 \), \(\gcd(d, 2^m - 1) = 1 \) since \(C_{1,d_1,d_2} \) and \(C_{d_1,2^{r+1},d_2} \) have the same weight distributions, where the subscripts are taken modulo \(2^m - 1 \).

Table 3: Exponent pairs \((d_1, d_2)\) such that \(C_{1,d_1,d_2} \) and \(C_{1,3,5} \) have the same weight distributions for \(m = 5, 7, 9 \) and 11

Exponent pair \((d_1, d_2)\)	\(m = 5 \)	\(m = 7 \)	\(m = 9 \)	\(m = 11 \)
(Gold, Gold)	(3,5)	(3,5), (3,9)	(3,5), (3,9)	(3,5), (3,9), (3,17), (3,33)
(Gold, Kasami-Welch)	(3,13)	(3,13)*,(9,13)	(3,13)*	(3,13)*
(Gold, Welch)	(5,7)	(5,11),(5,11)*		
(Gold, Niho)	(3,5)			
(Kasami-Welch, Welch)	(13,7)			
(Kasami-Welch, Niho)	(13,39)			

Indeed, we find a new pair marked by \(\star \) which can not be explained by known results, where we regard \((5, 11) \) and \((3, 13) \) as a same pair since \(C_{1,5,11} \) has the same weight distribution as \(C_{13,2^{5} \times 13,2^{4} \times 11 \times 13} \), i.e., \(C_{1,3,13} \). It is the Gold exponent \(d_1 = 3 \) and Kasami-Welch exponent \(d_2 = 13 \), and the latter is another example of exponents with binary weight 3.

This paper will prove that for any odd integer \(m \geq 5 \), the code \(C_{1,3,13} \) has the same weight distribution as \(C_{1,3,5} \). To this end, we use a method developed by Hollmann and Xiang in [16, 17] which analyzes the divisibility of the weights of the codewords in \(C_{1,3,13}^\perp \) by an add-with-carry algorithm and a technical graph-theoretic deduction. In reference [16], Hollmann and Xiang also applied this method to study the code \(C_{1,d_1,d_2} \) proposed in [10], where \(d_4 = 2^{\frac{m+1}{2}} + 1 \) and
\(d_2 = (2^{m+1} + 1)^2 \) are dependent on \(m \). The pair \((3, 13)\) in this paper is independent on \(m \), and this makes the divisibility analysis more complex than that in [16].

The remainder of this paper is organized as follows. Section 2 gives some preliminaries and the results of this paper. Section 3 establishes a lower bound on the minimum distance of the code \(C_{1,3,13} \). Section 4 discusses the weight divisibility of \(C_{1,3,13}^\perp \). Section 5 concludes the study.

2 Preliminaries and the Results

Let \(\mathbb{F}_{2^m}^* = \mathbb{F}_{2^m} \setminus \{0\} \). The trace function \(\text{Tr}^m_1 \) from \(\mathbb{F}_{2^m} \) to \(\mathbb{F}_2 \) is defined by [21]

\[
\text{Tr}^m_1(x) = \sum_{i=0}^{m-1} x^{2^i}, \quad x \in \mathbb{F}_{2^m}.
\]

A binary cyclic code \(C \) of length \(n \) is a principal ideal in the ring \(\mathbb{F}_2[x]/(x^n - 1) \). If \(g(x) \) is a generator polynomial of \(C \), then a power \(\beta \) of a primitive \(n \)-th root of unity is a zero of the code \(C \) if and only if \(g(\beta) = 0 \). A codeword \(c \) in \(C \) has the form as \(c_0 + c_1x + \cdots + c_{n-1}x^{n-1} \), which corresponds to a binary vector \((c_0, c_1, \cdots, c_{n-1}) \). The Hamming weight of the codeword \(c \) is the number of nonzero \(c_i \) for \(0 \leq i \leq n-1 \), denoted by \(\text{wt}(c) \).

Definition 1: A function \(f \) from \(\mathbb{F}_{2^m} \) to itself is said to be almost perfect nonlinear (APN) if for each \(e \in \mathbb{F}_{2^m}^* \), the function \(\Delta_{f,e}(x) = f(x+e) + f(x) \) is two-to-one from \(\mathbb{F}_{2^m} \) to itself.

APN functions were introduced in [25] by Nyberg to define them as the mappings with highest resistance to differential cryptanalysis. For more details we refer the reader to [4, 7, 8, 11, 12, 13, 14, 18, 20, 25] and the references therein.

For a function \(f \) from \(\mathbb{F}_{2^m} \) to itself with \(f(0) = 0 \), let \(C_f \) denote the binary cyclic code of length \(n = 2^m - 1 \) with parity check matrix

\[
H_f = \begin{pmatrix}
1 & \alpha & \alpha^2 & \cdots & \alpha^{2^n-2} \\
1 & f(1) & f(\alpha) & \cdots & f(\alpha^{2^n-2})
\end{pmatrix}
\]

where each entry is viewed as a binary column vector basing on a basis expression of elements of \(\mathbb{F}_{2^m} \) over \(\mathbb{F}_2 \).

The APN properties of \(f \) can be characterized by the minimum distance of \(C_f \) [9].

Lemma 1: ([9]) The code \(C_f \) has minimum distance 5 if and only if \(f \) is APN.

Since the 1960s, the family of triple-error-correcting binary primitive BCH codes of length \(n = 2^m - 1 \) has been thoroughly studied. The following lemma given by Hollmann and Xiang presented a sufficient condition for constructing families of triple-error-correcting codes.
Lemma 2: ([16]) Let m be odd and C be a binary cyclic code of length $n = 2^n - 1$, dimension $n - 3m$ and minimum distance at least 7. If all weights of the codewords in C^\perp are divisible by $2^{\frac{m-1}{2}}$, then C has the same weight distribution as $C_{1,3,5}$.

With Lemma 2, for odd m, we can construct binary triple-error-correcting codes of length $n = 2^m - 1$ and dimension $n - 3m$ by analyzing their minimum distances and weight divisibility of their dual codes. The following Proposition 1 will be proven in the next section, and the following Lemma 3 shows that the product of the nonzeros of a binary cyclic code can be used to analyze the weight divisibility.

Proposition 1: For odd $m \geq 5$, the code $C_{1,3,13}$ has minimum distance at least 7.

Lemma 3: ([23]) Let C be a binary cyclic code, and let l be the smallest positive integer such that l nonzeros of C (with repetitions allowed) have product 1. Then the weight of every codeword in C is divisible by 2^{l-1}, and there is at least one codeword whose weight is not divisible by 2^l.

Based on Lemma 3, Hollmann and Xiang presented an add-with-carry algorithm to obtain information on the largest power of 2 dividing the weights of all codewords of a binary cyclic code as below [16, 17].

For a positive integer m and a non-negative integer a with the binary expression $a = \sum_{i=0}^{m-1} a_i 2^i$, $a_i \in \{0, 1\}$, the (binary) weight $w(a)$ of a is defined as the integer $w(a) = \sum_{i=0}^{m-1} a_i$. For $d_1, d_2, \ldots, d_j \in \mathbb{Z}_{2^m - 1}$, define

$$M(m; d_1, d_2, \ldots, d_j) = \max \left(w(s) - \sum_{l=1}^{j} w(a^{(l)}) \right)$$

where the maximum is taken over all integers $s, a^{(1)}, \ldots, a^{(j)}$ satisfying

$$0 \leq s, a^{(1)}, \ldots, a^{(j)} \leq 2^m - 1, s \equiv \sum_{l=1}^{j} d_l a^{(l)} \pmod{2^m - 1} \text{ and } a^{(l)} \not\equiv 0 \pmod{2^m - 1} \text{ for some } l.$$

The add-with-carry algorithm for integers modulo $2^m - 1$ can be used to determine $M(m; d_1, d_2, \ldots, d_j)$ [16, 17].

Let $a^{(l)}$ and s have binary expressions

$$a^{(l)} = \sum_{i=0}^{m-1} a_i^{(l)} 2^i \text{ for } 1 \leq l \leq j \text{ and } s = \sum_{i=0}^{m-1} s_i 2^i,$$

respectively. Furthermore, let d_1, d_2, \ldots, d_j be nonzero integers, and define $d_+ = \sum_{d_l > 0} d_l$ and
\[d_- = \sum_{d_l < 0} d_l \text{ so that } \sum_{l=1}^{j} d_l = d_+ + d_- , \quad d_+ \geq 0, \quad d_- \leq 0, \text{ and suppose that } s \equiv d_1 a^{(1)} + d_2 a^{(2)} + \cdots + d_j a^{(j)} \pmod{2^m - 1}. \]

Lemma 4: (16-17) There exists a unique integer sequence \(c_{-1}, c_0, \ldots, c_{m-1} \) with \(c_{-1} = c_{m-1} \) such that
\[
2c_i + s_i = \sum_{l=1}^{j} d_l a^{(l)}_i + c_{i-1} , \quad 0 \leq i \leq m - 1
\]
holds. Moreover, with notation \(w(c) = \sum_{i=0}^{m-1} c_i \), we have that
\[
w(c) = \sum_{l=1}^{j} d_l w(a^{(l)}) - w(s).
\]
The numbers \(c_i \) satisfy \(d_- - 1 \leq c_i \leq d_+ \), and further
\[
d_- \leq c_i < d_+
\]
for all \(i \) if \(a^{(l)} \not\equiv 0 \pmod{2^m - 1} \) holds for some \(l \).

The integers \(s_i \) and \(c_i \) are called the *digits* and *carries* for the computation of \(s \) modulo \(2^m - 1 \) in terms of \(a^{(1)}, \ldots, a^{(j)}, d_1, \ldots, d_j \).

Lemma 5: (16-17) All the weights of \(C_{1,d_1,d_2}^{1,3,13} \) are divisible by \(2^{m-M(m;d_1,d_2)-1} \), and there is at least one codeword whose weight is not divisible by \(2^{m-M(m;d_1,d_2)} \).

The following proposition will be proven in Section 4.

Proposition 2: \(M(m; 3, 13) = (m - 1)/2 \).

By Propositions 1 and 2 and Lemmas 2 and 5, we obtain the following theorem as the main result in this paper.

Theorem 1: For any odd integer \(m \geq 5 \), the code \(C_{1,3,13} \) has the same weight distribution as the binary triple-error-correcting primitive BCH code \(C_{1,3,5} \).

3 Minimum Distance of \(C_{1,3,13} \)

Proof of Proposition 1: Let \(c = (c_0, c_1, \ldots, c_{n-1}) \) be an arbitrary codeword in \(C_{1,3,13} \), where \(n = 2^m - 1 \). The Discrete Fourier Transform of \(c \) is the sequence \(\{ A_\lambda \} \) with
\[
A_\lambda = \sum_{i=0}^{n-1} c_i \alpha^{i\lambda}, \quad 0 \leq \lambda < n.
\]
From the above formula, we have that \(n \) is a period of the sequence \(\{ A_\lambda \} \). If \(A_5 = 0 \), then \(c \) is a codeword of the code \(C_{1,3,5} \) which has minimum distance 7 \([20] \). This shows \(wt(c) \geq 7 \). If \(A_9 = 0 \), then \(c \) is a codeword of the code \(C_{1,3,9} \) which also has minimum distance 7 \([20] \). Consequently, \(wt(c) \geq 7 \). Thus we can assume that \(A_5A_9 \neq 0 \) in the following analysis.

By \([20] \), the Hamming weight of \(c \) equals to the linear complexity (also called linear span) of the sequence \(\{ A_\lambda \} \). It is sufficient to prove that the rank of \(M \) is at least 7, where

\[
M = \begin{pmatrix}
A_0 & A_1 & \cdots & A_{n-1} \\
A_1 & A_2 & \cdots & A_0 \\
\vdots & \vdots & \ddots & \vdots \\
A_{n-1} & A_0 & \cdots & A_{n-2}
\end{pmatrix}.
\]

(4)

To this end, we will argue separately according to the parity of \(wt(c) \).

1. Suppose that \(wt(c) \) is odd, i.e., \(A_0 = 1 \).

In this case, we will find two submatrices \(M_1 \) and \(M_2 \) of \(M \) such that either \(M_1 \) or \(M_2 \) has full rank, where

\[
M_1 = \begin{pmatrix}
A_0 & A_1 & A_2 & A_4 & A_6 & A_8 \\
A_1 & A_2 & A_3 & A_5 & A_7 & A_9 \\
A_2 & A_3 & A_4 & A_6 & A_8 & A_{10} \\
A_3 & A_4 & A_5 & A_7 & A_9 & A_{11} \\
A_5 & A_6 & A_7 & A_9 & A_{11} & A_{13} \\
A_6 & A_7 & A_8 & A_{10} & A_{12} & A_{14}
\end{pmatrix}
\]

and

\[
M_2 = \begin{pmatrix}
A_0 & A_1 & A_3 & A_4 & A_7 & A_8 \\
A_1 & A_2 & A_4 & A_5 & A_8 & A_9 \\
A_2 & A_3 & A_5 & A_6 & A_9 & A_{10} \\
A_3 & A_4 & A_6 & A_7 & A_{10} & A_{11} \\
A_4 & A_5 & A_7 & A_{11} & A_{12} & \ \\
A_5 & A_6 & A_8 & A_9 & A_{12} & A_{13}
\end{pmatrix}
\]

Notice that \(A_\lambda = 0 \) if \(\lambda \in C_1 \cup C_3 \cup C_{13} \), where \(C_i \) denotes the cyclotomic coset modulo \(2^m - 1 \) containing the integer \(i \). Consequently, we have \(A_1 = A_2 = A_3 = A_4 = A_6 = A_8 = A_{12} = A_{13} = 0 \). From the expression of \(A_\lambda \), we have \(A_{10} = A_5^2 \), \(A_{14} = A_7^2 \) and \(A_{18} = A_5^3 \).

It can be directly verified that

\[
\det(M_1) = A_5^2A_7(A_5^2 + A_5^2A_{11}) \quad \text{and} \quad \det(M_2) = A_5^2(A_5^2A_7^2 + A_5A_9A_7^2 + A_5^3A_7A_{11}).
\]

If \(A_7 = 0 \), then \(\det(M_2) = A_5^2A_7^2 \neq 0 \) by our assumption that \(A_5A_9 \neq 0 \), i.e., \(\text{rank}(M_2) = 6 \). If \(A_7 \neq 0 \) and \(A_{11} = 0 \), then \(\det(M_1) \neq 0 \) by \(A_5A_7 \neq 0 \), i.e., \(M_1 \) has rank 6. If \(A_7 \neq 0 \), \(A_{11} \neq 0 \) and \(\det(M_1) = 0 \), then \(A_5^3 = A_5^2A_{11} \). Thus,

\[
\det(M_2) = A_5^2(A_5^2A_7^2 + A_5A_9A_7^2 + A_5^3),
\]

which is either \(A_5^2A_9A_7^2 \neq 0 \) if \(A_5A_9 = A_7^2 \) or

\[
A_5^2(A_5A_9 + A_7^2)^{-1}(A_5A_9)^3 + (A_7^2)^3 \neq 0
\]

7
since \(\gcd(3, n) = 1 \) if \(A_5 A_9 \neq A_7^2 \). Therefore, either \(M_1 \) or \(M_2 \) has full rank, and then \(\text{rank}(M) \geq 6 \). As a consequence, \(wt(c) \geq 7 \).

(2) Suppose that \(wt(c) \) is even, i.e., \(A_0 = 0 \).

If \(A_7 = 0 \), we will prove the following submatrix

\[
M_3 = \begin{pmatrix}
A_0 & A_1 & A_2 & A_4 & A_5 & A_6 & A_8 \\
A_1 & A_2 & A_3 & A_5 & A_6 & A_7 & A_9 \\
A_2 & A_3 & A_4 & A_6 & A_7 & A_8 & A_{10} \\
A_4 & A_5 & A_6 & A_8 & A_9 & A_{10} & A_{12} \\
A_5 & A_6 & A_7 & A_9 & A_{10} & A_{11} & A_{13} \\
A_7 & A_8 & A_9 & A_{11} & A_{12} & A_{13} & A_{15} \\
A_8 & A_9 & A_{10} & A_{12} & A_{13} & A_{14} & A_{16}
\end{pmatrix}
\]

has rank 7. By a direct calculation, we have \(\det(M_3) = A_5^2 A_9^2 \neq 0 \). Thus \(\text{rank}(M_3) \geq 7 \) which implies that \(wt(c) \geq 7 \).

If \(A_7 \neq 0 \), we will prove the submatrix

\[
M_4 = \begin{pmatrix}
A_0 & A_1 & A_2 & A_4 & A_5 & A_6 & A_7 & A_8 \\
A_1 & A_2 & A_3 & A_5 & A_7 & A_8 & A_9 & A_{10} \\
A_2 & A_3 & A_4 & A_6 & A_8 & A_9 & A_{10} & A_{12} \\
A_4 & A_5 & A_6 & A_8 & A_{10} & A_{11} & A_{12} & A_{13} \\
A_5 & A_6 & A_7 & A_9 & A_{11} & A_{12} & A_{13} & A_{15} \\
A_8 & A_9 & A_{10} & A_{12} & A_{14} & A_{15} & A_{16} & A_{18} \\
A_{12} & A_{13} & A_{14} & A_{16} & A_{18} & A_{19} & A_{20}
\end{pmatrix}
\]

has rank 7. By a direct calculation, we have \(\det(M_4) = A_5^3 A_7 (A_5^2 A_9^2 + A_5 A_9 A_7 + A_7^2) \). With a similar analysis as for \([20]\), we have \(\det(M_4) \neq 0 \) and then \(\text{rank}(M) \geq 7 \). Thus, \(wt(c) \geq 7 \). ■

Remark 1: The reference \([20]\) showed that the minimum distance of a linear cyclic code is equal to the rank of a matrix constructed by using Discrete Fourier Transform. This together with BCH or HT bound established a lower bound on the minimum distance of the code proposed in \([10]\). In Proposition 1, we apply this method and the results for the minimum distances of the cyclic codes \(C_{1,3,5} \) and \(C_{1,3,9} \) \([20]\) to obtain a lower bound on minimum distance of \(C_{1,3,13} \).

4 Divisibility of Weights in \(C_{1,3,13}^\perp \)

In this section, for an odd integer \(m = 2k + 1 \) with \(k \geq 2 \), we will prove \(M(m; 3, 13) = k \).
Let \(s, a \) and \(b \) be integers with \(0 \leq s, a, b \leq 2^m - 1 \), \(s \equiv 3a + 13b \pmod{2^m - 1} \), and assume that at least one of \(a \) and \(b \) is nonzero modulo \(2^m - 1 \). Let \(s = \sum_{i=0}^{m-1} s_i 2^i \), \(a = \sum_{i=0}^{m-1} a_i 2^i \), and \(b = \sum_{i=0}^{m-1} b_i 2^i \) be the binary expressions of \(s, a \) and \(b \), respectively.

We first prove \(M(m; 3, 13) \leq k \), namely \(w(s) - w(a) - w(b) \leq k \) in the sequel.

Notice that \(2a, 8b, 4b \pmod{2^m - 1} \) have the binary expressions \(\sum_{i=0}^{m-1} a_i 2^i \), \(\sum_{i=0}^{m-1} b_i 3 2^i \), \(\sum_{i=0}^{m-1} b_{i-2} 2^i \), respectively, and \(s \equiv 3a + 13b \equiv 2a + a + 8b + 4b + b \pmod{2^m - 1} \). Taking \(d_l = 1 \) for \(l \in \{1, 2, 3, 4, 5\} \) and \(a^{(1)} = 2a, a^{(2)} = a, a^{(3)} = 8b, a^{(4)} = 4b, a^{(5)} = b \) and applying Lemma 4, there are carries \(c_i \in \{0, 1, 2, 3, 4\} \) such that

\[
2c_i + s_i = a_{i-1} + a_i + b_{i-3} + b_{i-2} + b_i + c_{i-1}, \quad 0 \leq i \leq m - 1,
\]

where the subscripts are taken modulo \(m \). With \(w(c) = \sum_{i=0}^{m-1} c_i \), by the \(m \) equalities in (6) we have

\[
w(c) + w(s) = 2w(a) + 3w(b).
\]

Let

\[
\nu_i = a_{i-1} + a_i + b_{i-3} + b_{i-2} + b_i - c_{i-1} - c_i, \quad 0 \leq i \leq m - 1
\]

and \(w(\nu) = \sum_{i=0}^{m-1} \nu_i \). Then by (5) and (7), we have

\[
w(\nu) = 2w(a) + 4w(b) - 2w(c) = 2(w(s) - w(a) - w(b)).
\]

To prove \(w(s) - w(a) - w(b) \leq k \), by (3) it is sufficient to prove \(w(\nu) \leq m \). To this end, we will define a certain weighted directed graph \(\mathbb{D} \) and recall some related definitions in [5] as below.

A directed graph \(\mathbb{D} \) is an ordered pair \((V(\mathbb{D}), A(\mathbb{D})) \) consisting of a set \(V(\mathbb{D}) \) of vertices and a set \(A(\mathbb{D}) \), disjoint from \(V(\mathbb{D}) \), of arcs, together with an incidence function \(\psi_\mathbb{D} \) that associates with each arc \(\vartheta \) of \(\mathbb{D} \) an ordered pair of (not necessarily distinct) vertices \(\psi_\mathbb{D}(\vartheta) = (T(\vartheta), H(\vartheta)) \) of \(\mathbb{D} \). The vertex \(T(\vartheta) \) is the tail of \(\vartheta \), and the vertex \(H(\vartheta) \) its head. For each arc \(\vartheta \) in a directed graph \(\mathbb{D} \), we can associate a real number \(w(\vartheta) \) with \(\vartheta \), and \(w(\vartheta) \) is called its weight. In this case, \(\mathbb{D} \) is called to be a weighted directed graph. In a directed graph \(\mathbb{D} \), a directed walk is an alternating sequence of vertices and arcs

\[
W := P_0\vartheta_0 P_1 \cdots P_{l-1}\vartheta_{l-1} P_l
\]
such that for each i with $1 \leq i \leq l$, P_{i-1} and P_i are the tail and head of ϑ_{i-1}, respectively. In this case, we refer to W as a directed (P_0, P_l)-walk. For two vertices P_i and P_j in the walk W where $0 \leq i < j \leq l$, the (P_i, P_j)-segment of W is the subsequence of W starting with P_i and ending with P_j, and it is denoted $P_i W P_j$. The directed walk W in \mathbb{D} is closed if its initial and terminal vertices P_0, P_l are identical.

With these preparations, we can define a weighted directed graph \mathbb{D}. The vertices of \mathbb{D} consist of all vectors $P = (x, y, z, u)$, where $x, y, z \in \{0, 1\}$ and $u \in \{0, 1, 2, 3, 4\}$. Let $P_1 = (x_1, y_1, z_1, u_1)$ and $P_2 = (x_2, y_2, z_2, u_2)$ be two vertices of \mathbb{D}, and define an arc ϑ with $T(\vartheta) = P_1$ and $H(\vartheta) = P_2$ if

$$x_1 + y_1 + z_1 + x_2 + z_2 - 2u_1 + u_2 = 0, \text{ or } 1. \quad (10)$$

The weight of the arc ϑ is defined as $$w(\vartheta) = x_1 + y_1 + z_1 + x_2 + y_2 + z_2 - u_1 - u_2.$$ Thus for $i \in \{0, 1, \cdots, m-1\}$,

$$V_i = (a_i, b_i, b_{i-2}, c_i) \quad (11)$$

are m vertices of \mathbb{D}, where a_i, b_i, and c_i are those integers in \mathbb{D}. Furthermore, there are m arcs ϑ_i with $w(\vartheta_i) = \nu_i$ defined by (8) with the tail $V_i = (a_i, b_i, b_{i-2}, c_i)$ and head $V_{i-1} = (a_{i-1}, b_{i-1}, b_{i-3}, c_{i-1})$ for all $0 \leq i \leq m-1$ since $a_i + b_i + b_{i-2} + a_{i-1} + b_{i-3} - 2c_i + c_{i-1} = s_i \in \{0, 1\}$ by (3), where the subscripts are taken modulo m.

With the help of a computer, we have that there are totally 320 arcs in \mathbb{D}, and their weight distribution is given in Table 4. Furthermore, every vertex in the set

$$\Gamma = \left\{ (1,1,0,0), (1,0,1,0), (0,1,1,0), (1,1,1,0) \right\} \quad (12)$$

cannot be the tail of any arc in \mathbb{D}. Some arcs ϑ with head $H(\vartheta) \notin \Gamma$ will be used in this section and they are listed in Appendix A.

Table 4: The weight distribution of all arcs in the weighted directed graph \mathbb{D}

Weight	-6	-5	-4	-3	-2	-1	0	1	2	3	4
The number of arcs	1	16	36	43	43	42	43	43	36	16	1

Notice that for the case $\nu_i < 2$ for all $i \in \{0, 1, \cdots, m-1\}$, it can be easily verified that $w(\nu_i) \leq m$. Consequently, the proof for $w(\nu_i) \leq m$ can be proceeded in two steps as below.

Step 1: To prove that for any $\nu_i \geq 2$, there exists a positive integer $t \leq m$ such that $\nu_i + \nu_{i-1} + \cdots + \nu_{i-t+1} \leq t$.

10
Step 2: Based on Step 1, we will prove \(w(\nu) = \sum_{i=0}^{m-1} \nu_i \leq m \).

The two steps are summarized as the following Propositions 3 and 4.

Proposition 3: For any \(\nu_i \geq 2 \), there exists a positive integer \(t \leq m \) such that \(\nu_i + \nu_{i-1} + \cdots + \nu_{i-t+1} \leq t \), where the subscripts are taken modulo \(m \).

By the weighted directed graph \(\mathbb{D} \) defined as above, the number \(\nu_i + \nu_{i-1} + \cdots + \nu_{i-t+1} \) can be regarded as the sum of the weights of some arcs in \(\mathbb{D} \). To finish the proof of Proposition 3, we need to study a set consisting of all directed walks \(W \) with the following properties:

1. any vertex of the set \(\Gamma \) in (12) does not occur in \(W \);
2. for \(0 \leq i \leq q - 2 \), any three consecutive vertices \(P_i, P_{i+1}, \) and \(P_{i+2} \) in \(W \) satisfy \(P_i(3) = P_{i+2}(2) \), where \(P_i(l) \) denotes the \(l \)-th component of \(P_i \) for \(l \in \{1, 2, 3, 4\} \); in addition, if the walk \(W \) is closed, then \(P_{q-1}(3) = P_1(2) \);
3. any arc \(\vartheta_i \) in \(W \) satisfies that \(w(\vartheta_i) \geq (i + 2) - T_i \) for \(0 \leq i \leq q - 1 \), where \(T_0 = 0 \) and
 \[T_i = \sum_{l=0}^{i-1} w(\vartheta_l) \] for \(i \geq 1 \).

If Proposition 3 cannot be true, then there is an integer \(i_0 \) with \(0 \leq i_0 \leq m - 1 \) such that \(\nu_i \geq 2 \) and \(\nu_{i_0} + \nu_{i_0-1} + \cdots + \nu_{i_0-t+1} \geq t + 1 \) for any positive integer \(t \) with \(2 \leq t \leq m \). Let

\[W_0 = P_0 \vartheta_0 P_1 \vartheta_1 \cdots P_{i_0-1} \vartheta_{i_0-1} P_{i_0} \vartheta_{i_0} \cdots P_{m-2} \vartheta_{m-2} P_{m-1} \] (14)

be the walk such that \(P_i = V_{i_0-i} \) in (11) for \(0 \leq i \leq m - 1 \), and \(\vartheta_i \) be the arc with \(T(\vartheta_i) = P_i \) and \(H(\vartheta_i) = P_{i+1} \) for \(i \in \{0, 1, \cdots, m-1\} \), where the subscripts are taken modulo \(m \). Then, we have \(w(\vartheta_0) \geq 2 \) and for any positive integer \(t \) with \(2 \leq t \leq m \) such that \(w(\vartheta_0) + w(\vartheta_1) + \cdots + w(\vartheta_{t-1}) \geq t + 1 \). Thus by (11) and the analysis therein, \(W_0 \in \mathcal{P} \) and it is closed. As a consequence, it will lead to a contradiction if any walk \(W \in \mathcal{P} \) is not closed. In fact, we can prove that any walk \(W \in \mathcal{P} \) is not closed in the sequel. This will give the proof of Proposition 3.

The following notations are used throughout this section:

- \(P_i \xrightarrow{\eta, \omega} \) denotes any walk \(P_i \vartheta_i P_{i+1} \) with \(T(\vartheta_i) = P_i, H(\vartheta_i) = P_{i+1}, P_{i+1}(2) = \eta \) and \(w(\vartheta_i) \geq \omega \);
- \(P_i \xrightarrow{\zeta, \omega} \) denotes any walk \(P_i \vartheta_i P_{i+1} \) with \(T(\vartheta_i) = P_i, H(\vartheta_i) = P_{i+1}, P_{i+1}(2) \in \{0, 1\} \) and \(w(\vartheta_i) \geq \omega \);
• $P_i \xrightarrow{(\eta, \omega)} O$ denotes that there does not exist any arc ϑ such that $T(\vartheta) = P_i$, $H(\vartheta) \in \mathbb{D}$, $(H(\vartheta))(2) = \eta$ and $w(\vartheta) \geq \omega$.

With the above notations, we can conveniently describe the walks in \mathcal{P}.

Example 1: Let q be a positive integer and $\omega = (j + 2) - T_j = 1$ for some positive integer j with $0 \leq j < q$, and let

$$W : P_0 \rightarrow P_1 \rightarrow \cdots \rightarrow P_{j-1} \rightarrow P_j = (0, 0, 0, 0) \xrightarrow{(0, \omega)} P_{j+1} \rightarrow P_{j+2} \rightarrow \cdots \rightarrow P_q$$

be a walk in the set \mathcal{P}, and ϑ_i be the arc with the tail P_i and head P_{i+1} for each $i \in \{0, 1, \cdots, q-1\}$. By Appendix A, we can find all possibilities for the segment $P_{j+1}WP_q$, which is completely determined by the walk $(0, 0, 0, 0) \xrightarrow{(0, 1)}$.

If we find all possibilities for the segment $P_{j+1}WP_q$, then we also know all possibilities for the segment $P_{j+1}WP_{q'}$ for any integer $j + 1 \leq q' \leq q$. Therefore, without loss of generality, we can assume that the integer q is large enough.

Since $P_{j+1}(2) = 0$ and $w(\vartheta_j) \geq 1$, by Appendix A, we have $P_{j+1} \in \{(1, 0, 0, 0), (0, 0, 1, 0)\}$. If $P_{j+1} = (1, 0, 0, 0)$, by Properties (II) and (III) of the walks in \mathcal{P}, we have $P_{j+2}(2) = P_j(3) = 0$ and

$$w(\vartheta_{j+1}) \geq (j + 3) - T_{j+1} = (j + 3) - w(\vartheta_j) - T_j = (j + 2) - w(\vartheta_j) - T_j = 1$$

By Appendix A, we can uniquely determine $P_{j+2} = (0, 0, 0, 0)$. Furthermore, with $w(\vartheta_{j+1}) = 1$ and $P_{j+1} = (1, 0, 0, 0)$, we have

$$w(\vartheta_{j+2}) \geq (j + 4) - T_{j+2} = (j + 4) - w(\vartheta_{j+1}) - T_{j+1} = (j + 3) - T_{j+1} = 1$$

and $P_{j+3}(2) = 0$. Therefore, for $P_{j+1} = (1, 0, 0, 0)$, P_jWP_{j+3} can be expressed as

$$(0, 0, 0, 0) \xrightarrow{(0, 1)} (1, 0, 0, 0) \xrightarrow{(0, 1)} (0, 0, 0, 0) \xrightarrow{(0, 1)} .$$

Similarly, for $P_{j+1} = (0, 0, 1, 0)$, P_jWP_{j+5} is given by

$$(0, 0, 0, 0) \xrightarrow{(0, 1)} (0, 0, 1, 0) \xrightarrow{(0, 1)} (0, 0, 0, 0) \xrightarrow{(1, 1)} (0, 1, 0, 0) \xrightarrow{(0, 1)} (0, 0, 0, 0) \xrightarrow{(0, 1)} .$$

Combining (15), we have an expression consisting of two segments with initial vertex P_j

$$\left\{\begin{array}{l}
(0, 0, 0, 0) \xrightarrow{(0, 1)} (1, 0, 0, 0) \xrightarrow{(0, 1)} \\
(0, 0, 0, 0) \xrightarrow{(0, 1)} (0, 0, 0, 0) \xrightarrow{(1, 1)} (0, 1, 0, 0) \xrightarrow{(0, 1)} (0, 0, 0, 0) \xrightarrow{(0, 1)} .
\end{array}\right.$$

In the first segment of (18), $P_{j+3} = (1, 0, 0, 0)$ or $(0, 0, 1, 0)$ since $(0, 0, 0, 0) \xrightarrow{(0, 1)}$ has only two possible forms, which have occurred as P_jWP_{j+1} in the first and second segments of (18),
respectively. By a similar analysis, we have $P_{j+3} = (1,0,0,0)$ or $(0,0,1,0)$ in the second segment of (18). Therefore, again by (18), we have that $P_{j+3} WP_{j+5}$ has the form as

$$ (1,0,0,0) \xrightarrow{(0,1)} (0,0,0,0) \xrightarrow{(0,1)} $$

(19)
or $P_{j+3} WP_{j+7}$ has the form as

$$ (0,0,1,0) \xrightarrow{(0,1)} (0,0,0,0) \xrightarrow{(1,1)} (0,1,0,0) \xrightarrow{(0,1)} (0,0,0,0) \xrightarrow{(0,1)} $$

(20)
in the first segment of (18). Similarly, we have that $P_{j+3} WP_{j+7}$ has the form as (19) or $P_{j+5} WP_{j+9}$ has the form as (20) in the second segment of (18). Repeating the above process, all possibilities of $P_{j+1} WP_q$ can be obtained. Further, all vertices P_l ($j \leq l \leq q$) have occurred in the two segments of (18), and they are $(0,0,0,0)$, $(1,0,0,0)$, $(0,1,0,0)$, and $(0,0,1,0)$.

Remark 2: In Example 1, $(0,0,0,0) \xrightarrow{(0,1)}$ completely determines all possibilities for the segment $P_{j+1} WP_q$ of W. The expression (18) consists of two basic segments of W, by which all possibilities of the segment $P_{j+1} WP_q$ can be conveniently found. In the proofs of Lemmas 6 and 7, for some given $P_j \xrightarrow{(\eta, \omega)}$ of a walk W in P, we will frequently need to determine all possibilities for the segment $P_{j+1} WP_q$ of W. Similarly as in Example 1, we will use some expression consisting of basic segments of W to determine all possibilities of $P_{j+1} WP_q$. We call the expression as (18) a set of basic segments (SBS) of $P_j \xrightarrow{(\eta, \omega)}$.

The following two lemmas will be used to prove Proposition 3.

Lemma 6: Let q be a positive integer and $\omega = (j + 2) - T_j$ for some positive integer j with $0 \leq j < q$. For any walk

$$ W : P_0 \rightarrow P_1 \rightarrow \cdots \rightarrow P_{j-1} \rightarrow P_j = (0,0,0,0) \xrightarrow{(-, \omega)} P_{j+1} \rightarrow \cdots \rightarrow P_{q-1} \rightarrow P_q $$
in the set P defined by (13), we have

(i) if $\omega = 0$ or 1, all vertices P_l ($j + 1 \leq l \leq q$) occurring in the walk W are contained in the set

$$ S_1 = \left\{(0,0,0,0), (0,0,1,0), (0,1,0,0), (1,0,0,0), (0,1,0,1)\right\}; $$

(21)

(ii) if $\omega = -1$, all vertices P_l ($j + 1 \leq l \leq q$) occurring in the walk W are contained in the set

$$ S_2 = S_1 \cup \left\{(0,0,0,1), (0,0,1,1), (1,0,0,1)\right\}; $$

(22)

(iii) if $\omega = -2$, all vertices P_l ($j + 1 \leq l \leq q$) occurring in the walk W are contained in the set

$$ S_3 = S_2 \cup \left\{(1,0,1,1), (0,1,1,1), (1,1,0,1)\right\}. $$

(23)
The proof of Lemma 6 is presented in Appendix B.

Lemma 7: For the walk

\[W : P_0 \rightarrow P_1 \rightarrow \cdots \rightarrow P_{q-1} \rightarrow P_q \]

in the set \(\mathcal{P} \), if the initial vertex \(P_0 \in \{(1,0,0,0),(0,1,0,0),(0,0,1,0),(1,0,1,1),(1,1,0,1),\)

\((0,1,1,1)\} \), then \(W \) cannot be closed.

Proof: Let \(\vartheta_j \) denote the arc with the tail \(P_j \) and head \(P_{j+1} \) for each \(j \in \{0,1,\cdots,q-1\} \).

Since \(W \in \mathcal{P} \), by Property (III) of the walks in \(\mathcal{P} \), we have \(w(\vartheta_0) \geq 2 \). If \(W \) is closed, then we must have \(P_q = P_0 \) and \(P_{q-1}(3) = P_1(2) \). The lemma is proven according to six cases of the vertex \(P_0 \) as follows.

If \(P_0 = (1,0,0,0) \) and \(w(\vartheta_0) \geq 2 \), then \(P_1 = (0,1,0,0) \) by Appendix A. Consequently, \(P_2(2) = 0 \) and by Property (III) of the walks in \(\mathcal{P} \), \(w(\vartheta_1) \geq 1 \). By a similar analysis as in Example 1, \((0,1,0,0)\) has an SBS as

\[
(0,1,0,0) \xrightarrow{(0,1)} (0,0,0,0) \xrightarrow{(0,1)} \left\{ \begin{array}{c}
(1,0,0,0) \xrightarrow{(0,1)} (0,0,0,0) \xrightarrow{(0,1)} \\
(0,0,1,0) \xrightarrow{(0,1)} (0,0,0,0) \xrightarrow{(1,1)} (0,1,0,0) \xrightarrow{(0,1)} .
\end{array} \right. \] (24)

From (24), we can know that all vertices and arcs in \(P_1 WP_2 \) have occurred in (24). If \(P_q = P_0 = (1,0,0,0) \), then by (24), \(P_{q-1} = (0,0,0,0) \) and then \(P_{q-1}(3) = 0 \neq P_1(2) \). Therefore the walk \(W \) cannot be closed if \(P_0 = (1,0,0,0) \).

The case \(P_0 = (0,1,0,0) \) can be similarly proven as the case \(P_0 = (1,0,0,0) \).

If \(P_0 = (0,0,1,0) \), then \(P_0 WP_4 \) has the form as

\[
(0,0,1,0) \xrightarrow{(-2)} (0,1,0,0) \xrightarrow{(1,1)} (0,1,0,0) \xrightarrow{(0,0)} (0,0,0,0) \xrightarrow{(0,0)} . \] (25)

If \(W \) is closed, then \(P_q = (0,0,1,0) \) and \(P_{q-1}(3) = 1 \). By (25), we have \(q \geq 5 \). By Lemma 6 (i), the vertices \(P_j \) for \(4 \leq j \leq q \) in \(W \) are contained in \(S_1 \). Consequently, \(P_{q-1} \in S_1 \). Notice that \((0,0,1,0)\) is the unique vertex with the third component 1 in the set \(S_1 \). As a consequence, \(P_{q-1} = (0,0,1,0) \) and the arc \(\vartheta_{q-1} \) is \((0,0,1,0) \rightarrow (0,0,1,0)\), which does not exist by Appendix A. This leads to a contradiction and then \(W \) cannot be closed.

If \(P_0 = (1,0,1,1) \), then \((1,0,1,1)\) has an SBS as

\[
(1,0,1,1) \xrightarrow{(-2)} \left\{ \begin{array}{c}
(1,0,0,0) \xrightarrow{(1,1)} (0,1,0,0) \xrightarrow{(0,0)} (0,0,0,0) \xrightarrow{(0,0)} \\
(0,1,0,0) \xrightarrow{(1,1)} (0,1,0,0) \xrightarrow{(0,0)} (0,0,0,0) \xrightarrow{(0,0)} \\
(0,0,1,0) \xrightarrow{(1,1)} (0,1,0,0) \xrightarrow{(1,0)} (0,1,0,0) \xrightarrow{(0,-1)} (0,0,0,0) \xrightarrow{(0,-1)} .
\end{array} \right. \] (26)
The vertices P_j for $4 \leq j \leq q$ of the first and second segments of (26) are contained in S_1 and the vertices P_j for $5 \leq j \leq q$ of the third segment in (26) are contained in S_2 by Lemma 6 (i) and (ii). Notice that $(1,0,1,1) \not\in S_1$ and $(1,0,1,1) \not\in S_2$. Consequently, the walk W cannot be closed.

If $P_0 = (1,1,0,1)$, then $P_0 WP_3$ has three possible forms as

$$
(1,1,0,1) \xrightarrow{(-2)} \begin{cases}
(1,0,0,0) \xrightarrow{(0,1)} (0,0,0,0) \xrightarrow{(0,1)} \\
(0,1,0,0) \xrightarrow{(0,1)} (0,0,0,0) \xrightarrow{(0,1)} \\
(0,0,1,0) \xrightarrow{(0,1)} (0,0,0,0) \xrightarrow{(1,1)} .
\end{cases}
$$

The vertices P_j for $3 \leq j \leq q$ are contained in S_1 by Lemma 6 (i). The fact $(1,1,0,1) \not\in S_1$ implies that W cannot be closed.

The case $P_0 = (0,1,1,1)$ can be similarly proven as the case $P_0 = (1,0,1,1)$.

The proof is finished. ■

Applying Lemmas 6 and 7, we will finish the proof of Proposition 3 as below.

Proof of Proposition 3: If the result is not true, the walk W_0 defined in (14) belongs to the set P and $w(\vartheta_0) \geq 2$. We will prove that W_0 cannot be closed according to ϑ_0. Notice that there are no arcs ϑ with tail $T(\vartheta) \in \Gamma$, where Γ is defined by (12). As a consequence, W_0 cannot be closed if ϑ_0 occurs in Table 5.

$T(\vartheta)$	$H(\vartheta)$	$w(\vartheta)$	$T(\vartheta)$	$H(\vartheta)$	$w(\vartheta)$	$T(\vartheta)$	$H(\vartheta)$	$w(\vartheta)$
$(0,0,0,0)$	$(1,1,0,0)$	2	$(0,0,0,0)$	$(0,1,1,0)$	2	$(0,0,0,1)$	$(1,1,1,0)$	2
$(1,0,0,1)$	$(1,1,0,0)$	2	$(1,0,0,1)$	$(1,0,1,0)$	2	$(1,0,0,1)$	$(0,1,1,0)$	2
$(1,0,0,1)$	$(1,1,1,0)$	3	$(0,1,0,1)$	$(1,1,0,0)$	2	$(0,1,0,1)$	$(1,0,1,0)$	2
$(0,1,0,1)$	$(0,1,1,0)$	2	$(0,1,0,1)$	$(1,1,1,0)$	3	$(1,1,0,1)$	$(1,1,0,0)$	3
$(1,1,0,1)$	$(0,1,1,0)$	3	$(1,1,0,2)$	$(1,0,1,0)$	2	$(1,1,0,2)$	$(1,1,1,0)$	3
$(0,0,1,1)$	$(1,1,0,0)$	2	$(0,0,1,1)$	$(1,0,1,0)$	2	$(0,0,1,1)$	$(0,1,1,0)$	2
$(0,0,1,1)$	$(1,1,1,0)$	3	$(1,0,1,1)$	$(1,1,0,0)$	3	$(1,0,1,1)$	$(0,1,1,0)$	3
$(1,0,1,2)$	$(1,0,1,0)$	2	$(1,0,1,2)$	$(1,0,1,0)$	2	$(1,0,1,2)$	$(1,1,1,0)$	3
$(1,1,1,2)$	$(0,1,1,0)$	3	$(0,1,1,2)$	$(1,0,1,0)$	2	$(0,1,1,2)$	$(1,1,1,0)$	3
$(1,1,1,2)$	$(1,1,0,0)$	3	$(1,1,1,2)$	$(1,0,1,0)$	3	$(1,1,1,2)$	$(0,1,1,0)$	3
$(1,1,1,2)$	$(1,1,1,0)$	4						

We list all arcs ϑ with $w(\vartheta) \geq 2$, $T(\vartheta) \not\in S_3$ and $H(\vartheta) \not\in \Gamma$ in Table 6, where S_3 is defined
If \(\vartheta_0 \) is the arc \((1,1,0,2) \rightarrow (1,1,1,1) \) in Table 6, by Appendix A, \(P_3W_0P_3 \) has the form as
\[
(1,1,0,2) \rightarrow (1,1,1,1) \xrightarrow{(0,1)} (0,0,0,0) \xrightarrow{(1,0)} .
\]
The vertices \(P_j \) for \(j \geq 3 \) are contained in \(S_1 \) by Lemma 6 (i). Notice that \((1,1,0,2) \notin S_1 \).
Consequently, \(W_0 \) cannot be closed.

Table 6: All arcs \(\vartheta \) with \(w(\vartheta) \geq 2, T(\vartheta) \notin S_3 \) and \(H(\vartheta) \notin \Gamma \)

\(T(\vartheta) \)	\(H(\vartheta) \)	\(w(\vartheta) \)	\(T(\vartheta) \)	\(H(\vartheta) \)	\(w(\vartheta) \)	\(T(\vartheta) \)	\(H(\vartheta) \)	\(w(\vartheta) \)
\((1,1,0,2)\)	\((1,1,1,1)\)	2	\((1,0,1,2)\)	\((1,1,1,1)\)	2	\((0,1,1,2)\)	\((1,1,1,1)\)	2
\((1,1,1,3)\)	\((1,1,1,1)\)	2	\((1,1,1,1)\)	\((0,0,0,0)\)	2	\((1,1,1,1)\)	\((0,1,0,0)\)	3
\((1,1,1,2)\)	\((1,1,0,1)\)	2	\((1,1,1,2)\)	\((0,1,1,1)\)	2	\((1,1,1,2)\)	\((1,0,0,0)\)	2
\((1,1,1,2)\)	\((0,0,1,0)\)	2	\((1,1,1,2)\)	\((0,1,0,0)\)	2	\((1,1,1,2)\)	\((1,0,0,0)\)	2

If \(\vartheta_0 \) is the arc \((1,0,1,2) \rightarrow (1,1,1,1) \) in Table 6, \(P_3W_0P_3 \) has the form as
\[
(1,0,1,2) \rightarrow (1,1,1,1) \xrightarrow{(1,1)} (0,1,0,0) \xrightarrow{(1,0)} (0,1,0,0) \xrightarrow{(0,2)} (0,0,0,0) \xrightarrow{(0,2)} .
\]
The vertices \(P_j \) for \(j \geq 5 \) are contained in \(S_3 \) by Lemma 6 (iii). Therefore, \(W_0 \) cannot be closed since \((1,0,1,2) \notin S_3 \).
The cases for the arcs \((0,1,1,2) \rightarrow (1,1,1,1) \) and \((1,1,1,3) \rightarrow (1,1,1,1) \) in Table 6 can be similarly proven.

If \(\vartheta_0 \) is the arc \((1,1,1,1) \rightarrow (0,0,0,0) \) in Table 6, then \(P_3W_0P_2 \) has the form as \((1,1,1,1) \rightarrow (0,0,0,0) \xrightarrow{(1,1)} \). Thus, all vertices \(P_j \) for \(j \geq 2 \) are contained in \(S_1 \) by Lemma 6 (i), and then \(W_0 \) cannot be closed since \((1,1,1,1) \notin S_1 \).

If \(\vartheta_0 \) is the arc \((1,1,1,1) \rightarrow (0,1,0,0) \) in Table 6, \(P_3W_0P_4 \) has the form as
\[
(1,1,1,1) \rightarrow (0,1,0,0) \xrightarrow{(1,0)} (0,1,0,0) \xrightarrow{(0,-1)} (0,0,0,0) \xrightarrow{(0,-1)} ,
\]
and the vertices \(P_j \) for \(j \geq 4 \) are contained in \(S_2 \) by Lemma 6 (ii). So \(W_0 \) cannot be closed since \((1,1,1,1) \notin S_2 \).

If \(\vartheta_0 \) is the arc \((1,1,1,2) \rightarrow (1,1,0,1) \) in Table 6, \((1,1,0,1) \xrightarrow{(1,1)} \) has an SBS as
\[
(1,1,0,1) \xrightarrow{(1,1)} \left\{ \begin{array}{c}
(0,1,0,0) \xrightarrow{(0,0)} (0,0,0,0) \xrightarrow{(0,0)} \\
(0,1,0,1) \xrightarrow{(0,1)} \left\{ \begin{array}{c}
(1,0,0,0) \xrightarrow{(0,1)} (0,0,0,0) \xrightarrow{(0,1)} \\
(0,0,1,0) \xrightarrow{(0,1)} (0,0,0,0) \xrightarrow{(1,1)}
\end{array} \right.
\end{array} \right.
\]
and then the vertices P_j for $j \geq 4$ are contained in S_1 by Lemma 6 (i). Thus W_0 cannot be closed since $(1,1,1,2) \notin S_1$.

If ϑ_0 is the arc $(1,1,1,2) \rightarrow (0,1,1,1)$ in Table 6, $(0,1,1,1) \overset{(1,1)}{\rightarrow}$ has an SBS as

$$
(0,1,1,1) \overset{(1,1)}{\rightarrow} \begin{cases}
(0,1,0,0) \overset{(0,1)}{\rightarrow} (0,1,0,0) \overset{(0,-1)}{\rightarrow} (0,0,0,0) \overset{(0,-1)}{\rightarrow} \\
(0,1,0,1) \overset{(1,1)}{\rightarrow} (1,1,0,1) \overset{(0,1)}{\rightarrow} (0,1,1,1) \overset{(0,1)}{\rightarrow}
\end{cases}
$$

The walks $(0,1,1,1) \overset{(0,1)}{\rightarrow}$ and $(1,1,0,1) \overset{(0,1)}{\rightarrow}$ have been analyzed in [35] and [36] in Appendix B, respectively. Thus by Lemma 6, the vertices P_j for $j \geq 1$ are contained in S_3. So W_0 cannot be closed since $(1,1,1,2) \notin S_3$.

If ϑ_0 is the arc $(1,1,1,2) \rightarrow (1,0,0,0)$ in Table 6, $P_3W_0P_4$ has the form as

$$(1,1,1,2) \rightarrow (1,0,0,0) \overset{(1,1)}{\rightarrow} (0,1,0,0) \overset{(0,0)}{\rightarrow} (0,0,0,0) \overset{(0,0)}{\rightarrow},$$

and the vertices P_4 for $j \geq 4$ are contained in S_1 by Lemma 6 (i). So W_0 cannot be closed since $(1,1,1,2) \notin S_1$.

If ϑ_0 is the arc $(1,1,1,2) \rightarrow (0,0,1,0)$ in Table 6, $P_3W_0P_5$ has the form as

$$(1,1,1,2) \rightarrow (0,0,1,0) \overset{(1,1)}{\rightarrow} (0,1,0,0) \overset{(1,0)}{\rightarrow} (0,1,0,0) \overset{(0,-1)}{\rightarrow} (0,0,0,0) \overset{(0,-1)}{\rightarrow}.$$

Thus the vertices P_j for $j \geq 5$ are contained in S_2 by Lemma 6 (ii). So W_0 cannot be closed since $(1,1,1,2) \notin S_2$.

The above facts show that if ϑ_0 is any arc in Table 6 then the walk W_0 cannot be closed. Suppose that ϑ_0 satisfies $T(\vartheta_0) \in S_3$ and $H(\vartheta_0) \notin \Gamma$, i.e., those arcs in Table 7. By Lemma 7, we still have that the walk W_0 cannot be closed for any ϑ_0 given by Table 7. However, by [11] and the analysis therein, we have that W_0 is closed. This contradiction shows that the assumption at the beginning of the proof does not hold, and then the proof is finished. ■

Table 7: All arcs ϑ with $w(\vartheta) \geq 2$, $T(\vartheta) \in S_3$ and $H(\vartheta) \notin \Gamma$

$T(\vartheta)$	$H(\vartheta)$	$w(\vartheta)$	$T(\vartheta)$	$H(\vartheta)$	$w(\vartheta)$	$T(\vartheta)$	$H(\vartheta)$	$w(\vartheta)$
$(1,0,0,0)$	$(0,1,0,0)$	2	$(1,0,1,0)$	$(0,1,0,0)$	2	$(0,0,1,0)$	$(0,1,0,0)$	2
$(1,0,1,1)$	$(1,0,0,0)$	2	$(1,0,1,1)$	$(0,1,0,0)$	2	$(1,0,1,1)$	$(0,0,1,0)$	2
$(1,1,0,1)$	$(1,0,0,0)$	2	$(1,1,0,1)$	$(0,1,0,0)$	2	$(1,1,0,1)$	$(0,0,1,0)$	2
$(0,1,1,1)$	$(1,0,0,0)$	2	$(0,1,1,1)$	$(0,1,0,0)$	2	$(0,1,1,1)$	$(0,0,1,0)$	2

17
Remark 3: In the proof of Proposition 3, we do not distinguish whether the vertices of the walk \(W_0 \) are in the set \(\{V_0, V_1, \cdots, V_{m-1}\} \) or not. That is to say, we have proven that each walk in \(\mathcal{P} \) cannot be closed.

Proposition 4: For the integer sequence \(\nu_0, \nu_1, \ldots, \nu_{m-1} \) of period \(m \), if for any \(\nu_i \geq 2 \), there exists a positive integer \(t \leq m \) such that \(\nu_i + \nu_{i-1} + \cdots + \nu_{i-t+1} \leq t \), then \(\sum_{i=0}^{m-1} \nu_i \leq m \).

Proof: Let \(I = \{i \mid \nu_i \geq 2\} \) and \(|I| = p \). Thus, all elements of \(I \) can be listed as \(i_1, i_2, \cdots, i_p \), where \(i_1 < i_2 < \cdots < i_p \). For each integer \(i_j \in I \), there exists a least positive integer \(t_j \) such that
\[
\nu_{i_j} + \nu_{i_j-1} + \cdots + \nu_{i_j-t_j+1} \leq t_j, \tag{27}
\]
and let \(N_j = \{i_j, i_j-1, \cdots, i_j-t_j+1\} \) be a subset of \(\mathbb{Z}_m \). Then the inequality \(\text{(27)} \) can be written as \(\sum_{i \in N_j} \nu_i \leq t_j = |N_j| \). Let \(N = \bigcup_{j=1}^{p} N_j \), and we have that \(\nu_i \leq 1 \) if \(i \in \mathbb{Z}_m \setminus N \).

If \(p = 1 \), \(\nu_{i_1} + \nu_{i_1-1} + \cdots + \nu_{i_1-t_1+1} \leq t_1 \). In this case, the proof follows the fact that other \(\nu_j \) satisfies \(\nu_j \leq 1 \).

If \(p \geq 2 \), we claim that for two integers \(j \) and \(j' \) with \(1 \leq j < j' \leq p \), the sets \(N_j \) and \(N_{j'} \) are disjoint or one containing another one. Without loss of generality, we take \(j = 1 \) and \(j' = 2 \). Then we have
\[
\nu_{i_1} + \nu_{i_1-1} + \cdots + \nu_{i_1-t_1+1} \leq t_1 \quad \text{and} \quad \nu_{i_2} + \nu_{i_2-1} + \cdots + \nu_{i_2-t_2+1} \leq t_2, \tag{28}
\]
respectively, where the subscripts are taken modulo \(m \) since the integer sequence has period \(m \).

If the above claim is not true, then we have \(i_1 - t_1 + 1 < i_2 - t_2 + 1 \leq i_1 < i_2 \) and consider the following sequence
\[
\nu_{i_1-t_1+1}, \cdots, \nu_{i_2-t_2+1}, \nu_{i_2-t_2+2}, \cdots, \nu_{i_1}, \cdots, \nu_{i_2}.
\]
Notice that \(t_1 \) and \(t_2 \) are the least positive integers satisfying \(\text{(28)} \). Consequently, we have
\[
\nu_{i_2-t_2+1} + \nu_{i_2-t_2+2} + \cdots + \nu_{i_1} > i_1 - i_2 + t_2, \quad \text{and} \quad \nu_{i_1+1} + \nu_{i_1+2} + \cdots + \nu_{i_2} > i_1 - i_2.
\]
This implies
\[
\nu_{i_2-t_2+1} + \nu_{i_2-t_2+2} + \cdots + \nu_{i_1} + \nu_{i_1+1} + \nu_{i_1+2} + \cdots + \nu_{i_2} > t_2,
\]
which contradicts with \(\text{(28)} \) and then the claim is true. Thus there exists a subset \(J \) of the set \(\{1, 2, \cdots, p\} \) such that
\[
N = \bigcup_{j \in J} N_j \quad \text{and} \quad N_j \cap N_{j'} = \emptyset \quad \text{for any two different elements} \; j \; \text{and} \; j' \; \text{of} \; J.
\]
Thus $|N| = \sum_{j \in J} |N_j| = \sum_{j \in J} t_j$ and we have that

$$\sum_{i \in N} \nu_i = \sum_{j \in J} \sum_{i \in N_j} \nu_i \leq \sum_{j \in J} t_j = |N|.$$

Therefore, we have

$$\sum_{i=0}^{m-1} \nu_i = \sum_{i \in \mathbb{Z}_m \setminus N} \nu_i + \sum_{i \in N} \nu_i \leq \sum_{i \in \mathbb{Z}_m \setminus N} 1 + |N| = m,$$

and this finishes the proof. ■

Propositions 3 and 4 tell us that $M(m; 3, 13) \leq k$. Furthermore, we can also prove that the equal sign holds.

Lemma 8: (Theorem 14, [17]) We have that

$$M(m; 2^r + 1) = \begin{cases} m/2, & \text{if } m/(r, m) \text{ is even}, \\ (m - (m, r))/2, & \text{if } m/(r, m) \text{ is odd}. \end{cases}$$

Proof of Proposition 2: By Propositions 3 and 4, we have $w(\nu) \leq m$ and then by (9)

$$M(m; 3, 13) = \max(w(s) - w(a) - w(b)) \leq k$$

where the maximum is over all integers s, a, b such that

$$0 \leq s, a, b \leq 2^m - 1, \ s \equiv 3a + 13b \pmod{2^m - 1}, \ a \text{ or } b \not\equiv 0 \pmod{2^m - 1}.$$

On the other hand, we have $M(m; 3, 13) \geq M(m; 3)$ by the definition of $M(m; 3, 13)$. Applying Lemma 8, we have

$$k = (m - (m, r))/2 = M(m; 3) \leq M(m; 3, 13) \leq k.$$

Therefore, we have $M(m; 3, 13) = k$ and the proof is finished. ■

5 Concluding Remarks

For odd $m \geq 5$, a new triple-error-correcting cyclic code of length $2^m - 1$ has been found. It is defined by zeros α, α^3 and α^{13}, and the exponents 3 and 13 come from the Gold and Kasami-Welch APN power functions, respectively. To generalize the construction of the code $C_{1,3,13}$, one can consider the class of cyclic codes C with the dual codes C^\perp having the form

$$C^\perp = \{c(\epsilon, \gamma, \delta) = (\text{Tr}^m_1(\epsilon x + \gamma f(x) + \delta g(x)))_{x \in \mathbb{F}_2^m} \mid \epsilon, \gamma, \delta \in \mathbb{F}_2^m\}$$

where $f(x)$ and $g(x)$ are different APN functions from \mathbb{F}_2^m to itself. If the polynomial $\text{Tr}^m_1(\epsilon x + \gamma f(x) + \delta g(x))$ in variable x has algebraic degree greater than 2, some tools other than the theory of quadratic forms are possibly needed.
References

[1] E. Berlekamp, Algebraic Coding Theory, New York: McGraw-Hill, 1968.

[2] E. Berlekamp, The weight enumerators for certain subcodes of the second order binary Reed-Muller codes, Inf. Contr., vol. 17, no. 5, pp. 485-500, 1970.

[3] E. Berlekamp, Weight enumeration theorems, in Proc. Sixth Allerton Conf. Circuit and Systems Theory, Urbana, IL, pp. 161-170, 1968.

[4] T. Beth and C. Ding, On almost perfect nonlinear permutations, in Advances in Cryptography-EUROCRYPT’93, Lecture Notes in Computer Science 765, Berlin, Germany: Springer-Verlag, pp. 65-76, 1994.

[5] J. Bondy and U. Murty, Graph Theory, Berlin, Germany: Springer-Verlag, 2008.

[6] R. Bose and D. Ray-Chaudhuri, On a class of error correcting binary group codes, Inf. Contr., vol. 3, no. 1, pp. 68-79, 1960.

[7] K. Browning, J. Dillon, R.E. Kibler and M. McQuistan, APN polynomials and related codes, to appear in a special volume of J. Combin. Inform. System Sci., 2008, in press; honoring the 75th birthday of Prof. D.K. Ray-Chaudhuri.

[8] C. Carlet, On almost perfect nonlinear functions, IEICE Trans. Fundamental., vol. E91-A, no. 12, pp. 3665-3678, 2008.

[9] C. Carlet, P. Charpin and V. Zinoviev, Codes, bent functions, and permutations suitable for DES-like cryptosystems, Des. Codes Cryptogr., vol. 15, pp. 125-156, 1998.

[10] A. Chang, P. Gaal, S.W. Golomb, G. Gong, and P.V. Kumar, On a sequence conjectured to have ideal 2-level autocorrelation function, ISIT 1998, Cambridge.

[11] H. Dobbertin, Almost perfect nonlinear power functions on GF(2^n): the Niho case, Inform. and Comput., vol. 151, no. 1-2, pp. 57-72, 1999.

[12] H. Dobbertin, Almost perfect nonlinear power functions on GF(2^n): the Welch case, IEEE Trans. Inform. Theory, vol. 45, no. 4, pp. 1271-1275, 1999.

[13] H. Dobbertin, Almost perfect nonlinear power functions on GF(2^n): a new case for n divisible by 5, in Finite Fields and Applications (Augsburg, 1999), Berlin, Germany: Springer-Verlag, pp. 113-121, 2001.
[14] R. Gold, Maximal recursive sequences with 3-valued cross-correlation functions, IEEE Trans. Inform. Theory, vol. 14, no. 1, pp. 154-156, 1968.

[15] A. Hocquenghem, Codes correcteurs d’erreurs, *Chiffres* (Paris), 2, pp. 147-156, 1959.

[16] H. Hollmann and Q. Xiang, On binary cyclic codes with few weights, in Finite Fields and Applications (Augsburg, 1999), Berlin, Germany: Springer-Verlag, pp. 251-275, 2001.

[17] H. Hollmann and Q. Xiang, A proof of the Welch and Niho conjectures on cross-correlations of binary m-sequences, Finite Fields Appl., vol. 7, no. 2, pp. 253-286, 2001.

[18] X. Hou, Affinity of permutations of F_{2^n}, Discrete Applied Mathematics, vol. 154, no. 2, pp. 313-325, 2006.

[19] T. Kasami, Weight distributions of Bose-Chaudhuri-Hocquenghem codes, in Combinatorial Mathematics and Its Applications, R.C. Bose and T.A. Dowling, Eds. Chapel Hill, NC: Univ. North Carolina Press, pp. 335-357, 1969.

[20] T. Kasami, The weight enumerators for several classes of subcodes of the second order binary Reed-Muller codes, Inf. Contr., vol. 18, no. 4, pp. 369-394, 1971.

[21] R. Lidl and H. Niederreiter, Finite Fields, in Encyclopedia of Mathematics and Its Applications. Reading, MA: Addison-Wesley, vol. 20, 1983.

[22] F. MacWilliams and N. Sloane, The Theory of Error-Correcting Codes, NorthHolland, Amsterdam, 1977.

[23] R. McEliece, On periodic sequence from GF(q), J. Combin. Theory Ser. A, vol. 10, no. 1, pp. 80-91, 1971.

[24] Y. Niho, Multi-valued cross-correlation functions between two maximal linear recursive sequences, Ph.D. dissertation, Univ. of Southern California, Los Angeles, 1972.

[25] K. Nyberg, Differentially uniform mappings for cryptography, in Advances in Cryptology-EUROCRYPT’93, Lecture Notes in Computer Science 765, Berlin, Germany: Springer-Verlag, pp. 55-64, 1994.

[26] T. Schaub, A linear complexity approach to cyclic codes, Ph.D. dissertation, Swiss Federal Ins. Technol., Zurich, Switzerland, 1988.
Appendix A: Some Arcs ϑ in \mathbb{D}

Appendix A gives all arcs ϑ with the tail $T(\vartheta)$ in the set

$$
\{(0,0,0,0),(0,0,0,1),(1,0,0,0),(1,0,0,1),(0,1,0,0),(0,1,0,1),(1,1,0,1),(1,1,0,2),(0,0,1,0),(0,0,1,1),(1,0,1,1),(0,1,1,2),(0,1,1,1),(1,1,1,1),(1,1,1,2),(1,1,1,3)\}
$$

and head $H(\vartheta) \notin \Gamma$.

1. $T(\vartheta) = (0,0,0,0)$.

$H(\vartheta)$	$(0,0,0,0)$	$(0,0,0,1)$	$(1,0,0,0)$	$(0,1,0,0)$	$(0,1,0,1)$	$(0,0,1,0)$
$w(\vartheta)$	0	-1	1	1	0	1

2. $T(\vartheta) = (0,0,0,1)$.

$H(\vartheta)$	$(0,0,0,2)$	$(0,0,0,3)$	$(1,0,0,1)$	$(1,0,0,2)$	$(0,1,0,2)$	$(0,1,0,3)$	$(1,1,0,1)$
$w(\vartheta)$	-3	-4	-1	-2	-2	-3	0

$H(\vartheta)$	$(1,1,0,2)$	$(0,0,1,1)$	$(0,0,1,2)$	$(1,0,1,1)$	$(0,1,1,1)$	$(0,1,1,2)$	$(1,1,1,1)$
$w(\vartheta)$	-1	-1	-2	0	0	-1	1

3. $T(\vartheta) = (1,0,0,0)$.

$H(\vartheta)$	$(0,0,0,0)$	$(0,1,0,0)$
$w(\vartheta)$	1	2

4. $T(\vartheta) = (1,0,0,1)$.

$H(\vartheta)$	$(0,0,0,1)$	$(0,0,0,2)$	$(1,0,0,0)$	$(1,0,0,1)$	$(0,1,0,1)$
$w(\vartheta)$	-1	-2	1	0	0

$H(\vartheta)$	$(0,1,0,2)$	$(1,1,0,1)$	$(0,0,1,0)$	$(0,0,1,1)$	$(0,1,1,1)$
$w(\vartheta)$	-1	1	1	0	1

5. $T(\vartheta) = (0,1,0,0)$.

$H(\vartheta)$	$(0,0,0,0)$	$(0,1,0,0)$
$w(\vartheta)$	1	2

6. $T(\vartheta) = (0,1,0,1)$.

$H(\vartheta)$	$(0,0,0,1)$	$(0,0,0,2)$	$(1,0,0,0)$	$(1,0,0,1)$	$(0,1,0,1)$
$w(\vartheta)$	-1	-2	1	0	0

$H(\vartheta)$	$(0,1,0,2)$	$(1,1,0,1)$	$(0,0,1,0)$	$(0,0,1,1)$	$(0,1,1,1)$
$w(\vartheta)$	-1	1	1	0	1
7. $T(\vartheta) = (1, 1, 0, 1)$.

$H(\vartheta)$	(0,0,0,0)	(0,0,0,1)	(1,0,0,0)	(0,1,0,0)	(0,1,0,1)	(0,0,1,0)
$w(\vartheta)$	1	0	2	2	1	2

8. $T(\vartheta) = (1, 1, 0, 2)$.

$H(\vartheta)$	(0,0,0,2)	(0,0,0,3)	(1,0,0,1)	(1,0,0,2)	(0,1,0,2)	(0,1,0,3)	(1,1,0,1)
$w(\vartheta)$	-2	-3	0	-1	-1	-2	1

$H(\vartheta)$	(1,1,0,2)	(0,0,1,1)	(0,0,1,2)	(1,0,1,1)	(0,1,1,1)	(0,1,1,2)	(1,1,1,1)
$w(\vartheta)$	0	0	-1	1	1	0	2

9. $T(\vartheta) = (0, 0, 1, 0)$.

$H(\vartheta)$	(0,0,0,0)	(0,1,0,0)
$w(\vartheta)$	1	2

10. $T(\vartheta) = (0, 0, 1, 1)$.

$H(\vartheta)$	(0,0,0,1)	(0,0,0,2)	(1,0,0,0)	(1,0,0,1)	(0,1,0,1)
$w(\vartheta)$	-1	-2	1	0	0

$H(\vartheta)$	(0,1,0,2)	(1,1,0,1)	(0,0,1,0)	(0,0,1,1)	(0,1,1,1)
$w(\vartheta)$	-1	1	1	0	1

11. $T(\vartheta) = (1, 0, 1, 1)$.

$H(\vartheta)$	(0,0,0,0)	(0,0,0,1)	(1,0,0,0)	(0,1,0,0)	(0,1,0,1)	(0,0,1,0)
$w(\vartheta)$	1	0	2	2	1	2

12. $T(\vartheta) = (1, 0, 1, 2)$.

$H(\vartheta)$	(0,0,0,2)	(0,0,0,3)	(1,0,0,1)	(1,0,0,2)	(0,1,0,2)	(0,1,0,3)	(1,1,0,1)
$w(\vartheta)$	-2	-3	0	-1	-1	-2	1

$H(\vartheta)$	(1,1,0,2)	(0,0,1,1)	(0,0,1,2)	(1,0,1,1)	(0,1,1,1)	(0,1,1,2)	(1,1,1,1)
$w(\vartheta)$	0	0	-1	1	1	0	2

13. $T(\vartheta) = (0, 1, 1, 1)$.

$H(\vartheta)$	(0,0,0,0)	(0,0,0,1)	(1,0,0,0)	(0,1,0,0)	(0,1,0,1)	(0,0,1,0)
$w(\vartheta)$	1	0	2	2	1	2

14. $T(\vartheta) = (0, 1, 1, 2)$.

$H(\vartheta)$	(0,0,0,2)	(0,0,0,3)	(1,0,0,1)	(1,0,0,2)	(0,1,0,2)	(0,1,0,3)	(1,1,0,1)
$w(\vartheta)$	-2	-3	0	-1	-1	-2	1

$H(\vartheta)$	(1,1,0,2)	(0,0,1,1)	(0,0,1,2)	(1,0,1,1)	(0,1,1,1)	(0,1,1,2)	(1,1,1,1)
$w(\vartheta)$	0	0	-1	1	1	0	2
15. $T(\vartheta) = (1,1,1,1)$.

$H(\vartheta)$	(0,0,0,1)	(0,0,0,2)	(1,0,0,0)	(1,0,0,1)	(0,1,0,1)
$w(\vartheta)$	0	-1	2	1	1

16. $T(\vartheta) = (1,1,1,2)$.

$H(\vartheta)$	(0,1,0,2)	(1,1,0,1)	(0,0,1,0)	(0,0,1,1)	(0,1,1,1)
$w(\vartheta)$	0	2	2	1	2

17. $T(\vartheta) = (1,1,1,3)$.

$H(\vartheta)$	(0,0,0,3)	(0,0,0,4)	(1,0,0,2)	(1,0,0,3)	(0,1,0,3)	(0,1,0,4)	(1,1,0,2)	(1,1,0,3)
$w(\vartheta)$	-3	-4	-1	-2	-2	-3	0	-1
$H(\vartheta)$	(0,0,1,2)	(0,0,1,3)	(1,0,1,1)	(1,0,1,2)	(0,1,1,2)	(0,1,1,3)	(1,1,1,1)	(1,1,1,2)
$w(\vartheta)$	-1	-2	1	0	0	-1	2	1

Appendix B: The Proof of Lemma 6

Proof: The proofs of Lemma 6 (i) and (ii) are contained in the proof of Lemma 6 (iii), so we only focus on the proof for (iii). Furthermore, the proof for the case $P_{j+1}(2) = 1$ and $\omega = -2$ is contained in that for the case $P_{j+1}(2) = 0$ and $\omega = -2$, thus we always assume that $P_{j+1}(2) = 0$ and $\omega = -2$ in the sequel. For the same reason as in Example 1, without loss of generality, we can also assume that the integer q is large enough.

Let ϑ_i denote the arc with the tail P_i and head P_{i+1} for each $i \in \{0,1,\cdots,q-1\}$.

Since $P_{j+1}(2) = 0$ and $\omega = -2$, by $P_j = (0,0,0,0)$ and Appendix A, we have $P_{j+1} \in \{(0,0,0,0),(0,0,0,1),(0,0,1,0),(1,0,0,0)\}$. If $P_{j+1} = (0,0,0,0)$, then $w(\vartheta_j) = 0$. By a similar analysis as in (15), we have $w(\vartheta_{j+1}) \geq -1$. Consequently, P_jWP_{j+2} has the form as

\[
(0,0,0,0) \xrightarrow{(0,-2)} (0,0,0,0) \xrightarrow{(0,-1)} (\Phi 1).
\]

For $P_{j+1} \in \{(0,0,0,1),(0,0,1,0),(1,0,0,0)\}$, by a similar analysis P_jWP_{j+2} has other three possible forms as below.

\[
(0,0,0,0) \xrightarrow{(0,-2)} \begin{cases}
(0,0,0,1) \xrightarrow{(0,0)} & (\Phi 2) \\
(0,0,1,0) \xrightarrow{(0,-2)} & (\Phi 3) \\
(1,0,0,0) \xrightarrow{(0,-2)} & (\Phi 4).
\end{cases}
\]
In the case (Φ1), \(P_{j+2}(2) = 0 \) and then by Appendix A, we have
\[
P_{j+2} \in \{(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 0), (1, 0, 0, 0)\}.
\]
Since the weights of the arcs with the tail \(P_{j+1} \) and heads \((0, 0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0, 0)\) are 0, −1, 1, 1, respectively, there are four possible forms for \(P_j W P_{j+3} \) as
\[
(0, 0, 0, 0) \xrightarrow{(0, -2)} (0, 0, 0, 0) \xrightarrow{(0, -1)} \begin{cases}
(0, 0, 0, 0) & (\Phi 1.1) \\
(0, 0, 0, 1) & (\Phi 1.2) \\
(0, 0, 1, 0) & (\Phi 1.3) \\
(1, 0, 0, 0) & (\Phi 1.4).
\end{cases}
\]
For the case (Φ1.1), \(P_{j+3}(2) = 0 \) and \(w(\partial_{j+2}) \geq 0 \). So \(P_{j+3} \in \{(0, 0, 0, 0), (1, 0, 0, 0), (0, 0, 1, 0)\} \) by Appendix A. When \(P_{j+3} = (0, 0, 0, 0) \), we have \(w(\partial_{j+2}) = 0 \) and \(w(\partial_{j+3}) \geq 0 + 1 - w(\partial_{j+2}) = 1 \). By Example 1, in the case (Φ1.1) and \(P_{j+3} = (0, 0, 0, 0) \), all vertices \(P_l \) \((j+1 \leq l \leq q)\) occurring in the walk \(W \) are contained in the set \(\{(0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0)\} \) which is a subset of \(S_1 \). When \(P_{j+3} = (1, 0, 0, 0) \), by a similar analysis \(P_{j+3} W P_{j+5} \) has the form
\[
(1, 0, 0, 0) \xrightarrow{(0, 0)} (0, 0, 0, 0) \xrightarrow{(0, 0)} .
\]
When \(P_{j+3} = (0, 0, 1, 0) \), \(P_{j+3} W P_{j+7} \) has three possible forms
\[
(0, 0, 1, 0) \xrightarrow{(0, 0)} (0, 0, 0, 0) \xrightarrow{(1, 0)} \begin{cases}
(0, 1, 0, 1) & (\Phi 1.1) \\
(1, 0, 0, 0) & (\Phi 1.1) \\
(0, 1, 0, 0) & (\Phi 1.1) \\
(0, 0, 0, 0) & (\Phi 1.1) \\
\end{cases}
\]
Therefore, for the case (Φ1.1), \((0, 0, 0, 0) \xrightarrow{(0, 0)} \) has an SBS as
\[
\begin{align*}
(0, 0, 0, 0) & \xrightarrow{(0, 1)} \begin{cases}
(0, 0, 1, 0) & (\Phi 1.1) \\
(1, 0, 0, 0) & (\Phi 1.1) \\
\end{cases} \\
(0, 0, 1, 0) & \xrightarrow{(0, 0)} \begin{cases}
(0, 1, 0, 1) & (\Phi 1.1) \\
(1, 0, 0, 0) & (\Phi 1.1) \\
\end{cases} \\
(1, 0, 0, 0) & \xrightarrow{(0, 0)} \begin{cases}
(0, 1, 0, 0) & (\Phi 1.1) \\
(0, 0, 0, 0) & (\Phi 1.1) \\
\end{cases}
\end{align*}
\]
in which all vertices and arcs in \(P_{j+2} W P_q \) have occurred for the case \(P_{j+2} = (0, 0, 0, 0) \). Thus, all vertices \(P_l \) \((j+1 \leq l \leq q)\) occurring in the walk \(W \) are contained in the set \(S_1 \) defined by
Furthermore, by (30), all walks with the form \((0, 0, 0, 0) \xrightarrow{\eta, \omega} \) for \(\eta \in \{0, 1\} \) and \(\omega \in \{0, 1\} \) have occurred in (30). This finishes the proof of Lemma 6 (i).

For the case \((\Phi 1.2)\), by Appendix A, we have \((0, 0, 0, 1) \xrightarrow{(0, 1)} O\), i.e., \(q = j + 2\) and \(P_{j+2} = P_q\).

For the case \((\Phi 1.3), P_{j+2}W_{j+3}\) has five possible forms as

\[
\begin{cases}
(0, 0, 1, 0) \xrightarrow{(0, -1)} (0, 0, 0, 0) \xrightarrow{(1, -1)} \quad \Phi 1.3.1 \\
(0, 1, 0, 1) \xrightarrow{(0, 0)} \quad \Phi 1.3.2 \\
(1, 0, 0, 1) \xrightarrow{(0, 0)} \quad \Phi 1.3.3 \\
(1, 0, 1, 1) \xrightarrow{(0, 0)} \quad \Phi 1.3.4 \\
(0, 0, 1, 0) \xrightarrow{(0, 0)} \quad \Phi 1.3.5.
\end{cases}
\]

The walks \((0, 0, 1, 0) \xrightarrow{(0, 0)} \) in \((\Phi 1.3.2)\) and \((1, 0, 0, 0) \xrightarrow{(0, 0)} \) in \((\Phi 1.3.4)\) have occurred in (30). We need to further analyze the cases \((\Phi 1.3.3)\) and \((\Phi 1.3.5)\). By Appendix A, \((0, 0, 1, 1) \xrightarrow{(0, 1)} \) has an SBS as

\[
(0, 0, 1, 1) \xrightarrow{(0, 1)} \begin{cases}
(0, 0, 1, 0) \xrightarrow{(1, 1)} (0, 1, 0, 0) \xrightarrow{(0, 1)} (1, 0, 0, 0) \xrightarrow{(0, 0)} (0, 0, 0, 0) \xrightarrow{(0, 0)} \Phi 1.3.3.
\end{cases}
\]

for the case \((\Phi 1.3.3)\) and \((1, 0, 0, 1) \xrightarrow{(0, 1)} \) has an SBS as

\[
(1, 0, 0, 1) \xrightarrow{(0, 1)} \begin{cases}
(0, 0, 1, 0) \xrightarrow{(0, 1)} (0, 0, 0, 0) \xrightarrow{(1, 1)} (1, 0, 0, 0) \xrightarrow{(0, 1)} (0, 0, 0, 0) \xrightarrow{(0, 1)} \Phi 1.3.5.
\end{cases}
\]

for the case \((\Phi 1.3.5)\).

For the case \((\Phi 1.4), P_{j+2}W_{j+4}\) is given by

\[
(1, 0, 0, 0) \xrightarrow{(0, -1)} (0, 0, 0, 0) \xrightarrow{(0, -1)} .
\]

Notice that the walk \((0, 0, 0, 0) \xrightarrow{(0, -1)} \) in \((\Phi 1.3.1), (\Phi 1.3.3)\) and \((\Phi 1.4)\) has occurred as \(P_{j+1}W_{j+2}\) in (29). Therefore, by the above analysis for \((\Phi 1.1)-(\Phi 1.4)\) and Lemma 6 (i), in the case that \(P_jW_{j+2}\) has the form as (29), all vertices \(P_l\ (j + 1 \leq l \leq q)\) occurring in the walk \(W\) are contained in the set \(S_2\) defined by (22). Furthermore, the walks \((0, 0, 0, 0) \xrightarrow{\eta, -1} \) for \(\eta \in \{0, 1\} \) have occurred in (31). This finishes the proof of Lemma 6 (ii).
For the case (Φ2), \((0, 0, 0, 1) \xrightarrow{(0,0)} (1, 0, 1, 1)\) has an SBS as

\[
(0, 0, 0, 1) \xrightarrow{(0,0)} (1, 0, 1, 1) \xrightarrow{(0,1)} \begin{cases}
(0, 0, 0, 0) \xrightarrow{(1,1)} (0, 0, 0, 0) \\
(0, 0, 1, 0) \xrightarrow{(1,0)} (0, 1, 0, 0) \xrightarrow{(0,-2)} (0, 0, 0, 0) \xrightarrow{(0,-2)} \\
(1, 0, 0, 0) \xrightarrow{(1,0)} (0, 1, 0, 0) \xrightarrow{(0,-1)} (0, 0, 0, 0) \xrightarrow{(0,-1)} .
\end{cases}
\]

For the case (Φ3), \(P_{j+1}WP_{j+5}\) has six possible forms as

\[
(0, 0, 1, 0) \xrightarrow{(0,-2)} (0, 0, 0, 0) \xrightarrow{(1,-2)} \begin{cases}
(0, 1, 0, 0) \xrightarrow{(0,-2)} (0, 0, 0, 0) \xrightarrow{(0,-2)} \\
(0, 0, 1, 0) \xrightarrow{(1,-1)} (0, 1, 0, 0) \xrightarrow{(0,-1)} \xrightarrow{(0,-1)} \\
(0, 1, 0, 1) \xrightarrow{(0,-1)} (0, 0, 0, 0) \xrightarrow{(0,-1)} \\
(1, 0, 0, 0) \xrightarrow{(1,-1)} (0, 0, 0, 0) \xrightarrow{(1,-1)} \\
(1, 0, 0, 1) \xrightarrow{(1,-1)} .
\end{cases}
\]

The walk \((0, 0, 0, 1) \xrightarrow{(0,1)}\) in (Φ3.2) has occurred as \(P_{j+2}WP_{j+3}\) in (Φ1.2). For the case (Φ3.3), since the segment \(P_{j+4}WP_{j+5}\) has the form \((0, 0, 1, 0) \xrightarrow{(0,-1)}\), the segment \(P_{j+4}WP_{j+6}\) has the form \((0, 0, 1, 0) \xrightarrow{(0,-1)} (0, 0, 0, 0) \xrightarrow{(1,-1)}\). By Lemma 6 (ii), for the cases (Φ3.2) and (Φ3.3), all vertices in \(W\) are contained in the set \(S_2\).

For the case (Φ3.4), \((0, 0, 1, 1) \xrightarrow{(0,0)}\) has an SBS as

\[
(0, 0, 1, 1) \xrightarrow{(0,0)} \begin{cases}
(0, 0, 1, 0) \xrightarrow{(1,0)} (0, 1, 0, 0) \xrightarrow{(1,-1)} (0, 1, 0, 0) \xrightarrow{(0,-2)} (0, 0, 0, 0) \xrightarrow{(0,-2)} \\
(0, 0, 1, 1) \xrightarrow{(1,1)} \begin{cases}
(1, 1, 0, 1) \xrightarrow{(1,1)} (0, 1, 0, 0) \xrightarrow{(1,-1)} \\
(0, 1, 1, 1) \xrightarrow{(1,1)} (0, 0, 0, 0) \xrightarrow{(1,-1)} \\
(1, 0, 0, 0) \xrightarrow{(1,0)} (0, 1, 0, 0) \xrightarrow{(0,-1)} (0, 0, 0, 0) \xrightarrow{(0,-1)} \\
(1, 0, 0, 1) \xrightarrow{(1,1)} \begin{cases}
(0, 1, 1, 1) \xrightarrow{(0,1)} \\
(1, 1, 0, 1) \xrightarrow{(0,1)} \xrightarrow{(0,1)} .
\end{cases}
\end{cases}
\]

For the case (Φ3.4.2), \((0, 0, 1, 1) \xrightarrow{(1,1)}\) has an SBS as

\[
(0, 0, 1, 1) \xrightarrow{(1,1)} (1, 1, 0, 1) \xrightarrow{(1,1)} \begin{cases}
(0, 1, 0, 0) \xrightarrow{(0,0)} (0, 0, 0, 0) \xrightarrow{(0,0)} \\
(0, 1, 0, 1) \xrightarrow{(0,1)} \xrightarrow{(0,1)}
\end{cases}
\]

and the walk \((0, 1, 0, 1) \xrightarrow{(0,1)}\) has occurred in [30]. For the case (Φ3.4.3), \(P_{j+5}WP_{j+9}\) has three
possible forms as

\[
(0, 0, 1, 1) \xrightarrow{(1,1)} (0, 1, 1, 1) \xrightarrow{(1,1)} \left\{ \begin{array}{c}
(0, 1, 0, 0) \xrightarrow{(1,0)} (0, 1, 0, 0) \xrightarrow{(0,-1)} \\
(0, 1, 0, 1) \xrightarrow{(1,1)} (0, 1, 1, 1) \xrightarrow{(0,1)} \\
(1, 1, 0, 1) \xrightarrow{(0,1)}
\end{array} \right\} \text{(Φ3.4.3.1)}
\]

Since the walk \(0, 1, 0, 0 \xrightarrow{(0,-1)} \) in the case (Φ3.4.3.1) has occurred in the case (Φ1.3.1) as \(31\), we need to further analyze the cases (Φ3.4.3.2) and (Φ3.4.3.3). \(0, 1, 1, 1 \xrightarrow{(0,1)} \) has an SBS as

\[
(0, 1, 1, 1) \xrightarrow{(0,1)} \left\{ \begin{array}{c}
(0, 0, 0, 0) \xrightarrow{(1,1)} \\
(0, 0, 1, 0) \xrightarrow{(1,0)} (0, 1, 0, 0) \xrightarrow{(0,-1)} (0, 1, 0, 0) \xrightarrow{(0,-2)} (0, 0, 0, 0) \xrightarrow{(0,-2)} \\
(1, 0, 0, 0) \xrightarrow{(1,0)} (0, 1, 0, 0) \xrightarrow{(0,-1)} (0, 0, 0, 0) \xrightarrow{(0,-1)}
\end{array} \right\} \text{ (35)}
\]

for (Φ3.4.3.2), and \(1, 1, 0, 1 \xrightarrow{(0,1)} \) has an SBS as

\[
(1, 1, 0, 1) \xrightarrow{(0,1)} \left\{ \begin{array}{c}
(0, 0, 0, 0) \xrightarrow{(0,1)} \\
(0, 0, 1, 0) \xrightarrow{(0,0)} (0, 0, 0, 0) \xrightarrow{(1,0)} \\
(1, 0, 0, 0) \xrightarrow{(0,0)} (0, 0, 0, 0) \xrightarrow{(0,0)}
\end{array} \right\} \text{ (36)}
\]

for (Φ3.4.3.3).

Notice that the walk \(0, 0, 0, 0 \xrightarrow{(0,-1)} \) in (Φ3.4.4) has occurred in (Φ1) and the walks \(0, 1, 1, 1 \xrightarrow{(0,1)} \) in (Φ3.4.5) and \(1, 1, 0, 1 \xrightarrow{(0,1)} \) in (Φ3.4.6) have been analyzed in \(35\) and \(36\), respectively.

For the case (Φ3.5), \(P_{j+4}WP_{j+6} \) has the form as \(1, 0, 0, 0 \xrightarrow{(0,-1)} (0, 0, 0, 0) \xrightarrow{(0,-1)} \) and for the case (Φ3.6), \(1, 0, 0, 1 \xrightarrow{(0,0)} \) has an SBS as

\[
(1, 0, 0, 1) \xrightarrow{(0,0)} \left\{ \begin{array}{c}
(0, 0, 1, 0) \xrightarrow{(0,0)} (0, 0, 0, 0) \xrightarrow{(1,0)} \\
(0, 0, 1, 1) \xrightarrow{(0,1)} \\
(1, 0, 0, 0) \xrightarrow{(0,0)} (0, 0, 0, 0) \xrightarrow{(0,0)} \\
(1, 0, 0, 1) \xrightarrow{(0,1)}
\end{array} \right\}.
\]

Notice that the walks \(0, 0, 1, 1 \xrightarrow{(0,1)} \) and \(1, 0, 0, 1 \xrightarrow{(0,1)} \) have been analyzed in \(32\) and \(33\), respectively.

For the case (Φ4), the segment \(P_{j+1}WP_{j+3} \) has the form \(1, 0, 0, 0 \xrightarrow{(0,-2)} (0, 0, 0, 0) \xrightarrow{(0,-2)} \).

Notice that the walk \(0, 0, 0, 0 \xrightarrow{(0,-2)} \) in the cases (Φ2), (Φ3.1), (Φ3.4.1), (Φ3.4.3.2), (Φ3.4.5), and (Φ4) has occurred as \(P_jWP_{j+1} \). Therefore, combining the above analysis for the cases (Φ2)-(Φ4) and by Lemma 6 (i), (ii), all vertices \(P_l \) \((j + 1 \leq l \leq q) \) occurring in the walk \(W \) are
contained in the set S_3. The proof for the case $\eta = 1$ and $\omega = -2$ is contained in the analysis of the case $(\Phi 3)$ in (34). This finishes the proof of Lemma 6 (iii). ■