D3NET: DENSELY CONNECTED MULTIDILATED DENSENET FOR MUSIC SOURCE SEPARATION

Naoya Takahashi, Yuki Mitsufuji

Sony Corporation, Japan

ABSTRACT

Music source separation involves a large input field to model a long-term dependence of an audio signal. Previous convolutional neural network (CNN)-based approaches address the large input field modeling using sequentially down- and up-sampling feature maps or dilated convolution. In this paper, we claim the importance of a rapid growth of a receptive field and a simultaneous modeling of multi-resolution data in a single convolution layer, and propose a novel CNN architecture called densely connected dilated DenseNet (D3Net). D3Net involves a novel multi-dilated convolution that has different dilation factors in a single layer to model different resolutions simultaneously. By combining the multi-dilated convolution with DenseNet architecture, D3Net avoids the aliasing problem that exists when we naively incorporate the dilated convolution in DenseNet. Experimental results on MUSDB18 dataset show that D3Net achieves state-of-the-art performance with an average signal to distortion ratio (SDR) of 6.01 dB.

Index Terms— source separation, DenseNet, SiSEC

1 Introduction

Music source separation (MSS) has been intensively studied and neural-network-based approaches have shown impressive progress in recent years. Many types of neural network architecture have been proposed, including feedforward fully connected networks (FNNs) [4,2], recurrent neural networks (RNNs) [3], convolutional neural networks (CNNs) [4,9] and their combinations [10,11]. In particular, CNNs have attracted great attention because of their superior performance, parameter efficiency and generality for different types of data. Takahashi et. al. [10] applied a CNN architecture with a dense skip connectivity pattern, called DenseNet [12], to MSS and obtained state-of-the-art results in SiSEC 2018 [13]. Such dense connectivity allows maximum information flow and deeper CNN while keeping the model size small by efficiently reusing intermediate representations of preceding layers.

One of the benefits of a deeper CNN is its larger receptive field that allows a large context to be modeled, which is important since audio signals can have long time and wide frequency band dependences. Although the receptive field grows linearly with the number of layers stacked, it is not the optimal way to increase the receptive field only by stacking convolutional layers, as it requires too many layers to cover a sufficiently large input field to model global information, making the network training too difficult. A popular approach to incorporating a large context is to repeatedly downsample intermediate network outputs and apply operations in lower resolution representations. The low-resolution representations are again upsampled to recover the lost resolution while carrying over the global perspective from downsampled layers [4,5]. Another approach is a dilated convolution, which is shown to be effective for audio generation and MSS tasks [7,11,14]. The dilation factors are set to grow exponentially with the number of layers stacked and, therefore, the networks cover the large receptive field with a small number of layers. Although the down–upsampling structure and dilated convolution allow a large receptive field, each layer in the network sees only one resolution at a time. However, the simultaneous consideration of the local and global information can be useful, e.g., the local structure can be more precisely estimated by using global structure information and vice versa.

DenseNet partially addresses this problem by means of the dense skip connectivity that allows the direct aggregation of features from early layers and features in later layers within a single convolution layer. However, it may still be too slow to transform local features to global features and it is inefficient to have many parameters, especially for high-resolution data.

In this work, we combine the advantages of DenseNet and dilated convolution, and propose a novel network architecture called dilated DenseNet (D2Net). To properly combine DenseNet with the dilated convolution, we propose a multi-dilated convolution layer that has a multiple dilation factor within a single layer. The dilation factor depends on which skip connection the channels come from, as shown in Fig.1. The multidilated convolution can prevent the aliasing that occurs when a standard dilated convolution is applied to feature maps with receptive fields smaller than the dilation factor. Although a naive combination of DenseNet with dilation has already been proposed [15], standard dilated convolutions are used and dilation factors are determined depends on the layer depth, which causes considerable aliasing. In contrast, we show the effectiveness of the proposed multidilated convolution in our ablation study. Furthermore, we propose a nested architecture of dilated dense blocks to effectively repeat dilation factors multiple times with dense connections that ensure the sufficient depth required for modeling each resolution. We call the nested architecture
densely connected dilated DenseNet (D3Net).

The contributions of this work are summarized below:

1. We claim that a naive incorporation of dilation in DenseNet architecture can cause a significant aliasing problem, and propose a multidilated convolution layer to properly incorporate the dilated convolution into DenseNet.
2. We further introduce the D3Net architecture of nested dilated dense blocks to effectively apply different dilation factors multiple times.
3. We experimentally show the effectiveness of the proposed architectures. The D3Net achieves state-of-the-art results on MUSDB18 dataset.

2 Multidilated convolution for DenseNet

In DenseNet, the outputs of the lth convolutional layer x_l are computed using filters k_l and outputs of all preceding layers as

$$x_l = \psi([x_0, x_1, \ldots, x_{l-1}]) \circ k_l,$$

where $\psi()$ denotes the composite operation of batch normalization and nonlinearity, $[x_0, x_1, \ldots, x_{l-1}]$ the concatenation of feature maps from $1, \ldots, l-1$ layers, and \circ the convolution. A naive way of incorporating dilated convolution is to replace the convolution \circ with the dilated convolution \circ_d with the dilation factor $d = 2^{l-1}$. However, this causes a severe aliasing problem; for instance, at the third layer, input is subsampled with 4 sample intervals without any anti-aliasing filtering because of the skip connections. Assuming that the kernel size is 3, only the path that passes through all convolution operations without any skip connection covers the input field without omission and all other paths from skip connections have blind spots in their receptive fields that inherently make it impossible for proper anti-aliasing filters to be learned in the preceding layers (Fig. 2a). To overcome this problem, we propose the multidilated convolution \circ_l^m defined as

$$Y_l \circ_l^m k_l = \sum_{i=0}^{l-1} y_i \circ_d d_i k_l^i,$$

where $Y_l = [y_0, y_1, \ldots, y_{l-1}] = \psi([x_0, x_1, \ldots, x_{l-1}])$ is the composite layer output, k_l^i the subset of filters that correspond to the ith skip connection, and $d_i = 2^i$. As depicted in Fig. 2b, DenseNet with the proposed multidilated convolution has different dilation factors depending on which layer the channel comes from. This allows the receptive field to cover the input field without the loss of coverage between the samples the filters to be applied and, hence, to learn proper filters to prevent aliasing. One advantage of the dilated dense block (D2 block) is its ability to integrate information from very local to exponentially large receptive field within a single layer. This fast information flow provides more flexibility in modeling information in a wide range of resolutions.

Note that the multidilation convolution is not equivalent to applying the multibranch convolution where convolutions with different dilation factors are applied to the same input feature maps, similar to the Inception block [16][18], again causing the aliasing problem.
The four networks for each source instrument were trained to estimate the source spectrogram by minimizing the mean square error with the Adam optimizer for 50 epochs. The patch length was set to 256 frames; thus, the dimensions of input were $2 \times 256 \times 2049$. The batch size was set to 6. The learning rate was initially set to 0.001 and annealed to 0.0001 at 40 epochs.

Model architecture Following [4, 10], in which the best results obtained in SiSEC 2018 were reported, we used the multiscale multiband architecture in which band-dedicated modules and a full band module, each with a bottleneck encoder–decoder architecture with skip connections, are placed. The network configuration is shown in Table 1. The network outputs are used to calculate the multichannel Wiener filter (MWF) to obtain the final separations, as commonly performed in frequency domain audio source separation methods [3, 8, 10, 11].

Results The signal-to-distortion ratio (SDR) of our proposed method and existing state-of-the-arts methods are compared in Table 2. The SDRs were computed using the museval package [13] and median SDRs are reported. TAK1 [10] and UHL2 [5] are the two best performing methods in SiSEC 2018 (among submissions that do not use external data) and the network architectures are the combination of DenseNet and recurrent units for TAK1 and an ensemble of bi-directional LSTM models for UHL2. The proposed D3Net exhibited the best performance for vocals, drums and accompaniment (the summation of drums, bass and other) and performed comparably to the best method for other. The average SDR of four instruments is significantly better than all baseline values. The primally difference between MMDenseLSTM (TAK1) and the proposed method is that MMDenseLSTM incorporates LSTM units to further expand the receptive field, whereas the proposed method uses the multidiated convolution. Comparison of these methods indicate the effectiveness of the multidiated convolution. On the other hand, GRU dilation 1 [11] consists of dilated convolution and dilated GRU units without a down–up-sampling path. This also highlights the effectiveness of the multiresolution modeling of the multidilated convolution with the dense connection. For bass, approaches that operate in the time domain perform better, as they are capable of recovering the target phase, which is easier in the low frequency range. Among the frequency domain approaches, D3Net performs the best.

We also conducted an ablation study to validate the effectiveness of the multidiated convolution. By replacing the multidilated convolutions with the standard convolutions without dilation, we obtained comparable results as the best performing model in SiSEC2018, TAK1 (MMDenseLSTM). When we replaced the multidilated convolution with the standard dilated convolution, we obtained a decent improvement over the D3Net without dilation even though the aliasing problem arises. However, the proposed multidilated convolution clearly outperforms the standard dilated convolution, showing the importance of handling the aliasing problem in order to incorporate dilation in DenseNet.

We further investigated the effects of the multidilated convolution by assessing the learned weights. We calculated the L1 norm of the convolution weights in the last layer of the first model in SiSEC2018, TAK1 (MMDenseLSTM). When we replaced the multidilated convolution with the standard dilated convolution, we obtained a decent improvement over the D3Net without dilation even though the aliasing problem arises. However, the proposed multidilated convolution clearly outperforms the standard dilated convolution, showing the importance of handling the aliasing problem in order to incorporate dilation in DenseNet.
Table 1. Proposed architectures. All d3 blocks are equipped with 3×3 kernels with growth rate k, L layers and B d2 blocks. The pooling and transposed convolution kernel sizes are 2×2.

Layer	scale	Vocals, Other	Drums	Bass							
	low	high	full	low	high	full	low	high	full		
band split index	1	23-256	27-1000	3x3, 32	3x3, 32	1-128	128-1600	3x3, 32	3x3, 32	1-192	192-1000
conv (t x f	1	16, 5, 2	2, 1, 1	13, 4, 2	16, 5, 2	2, 1, 1	13, 4, 2	16, 5, 2	2, 1, 1	10, 4, 2	
down sample	1	avg. pool 2×2									
D3 block 2 (k, L, B)	4	18, 5, 2	2, 1, 1	14, 5, 2	18, 5, 2	2, 1, 1	14, 5, 2	18, 5, 2	2, 1, 1	10, 5, 2	
down sample	4	avg. pool 2×2									
D3 block 3 (k, L, B)	4	20, 5, 2	2, 1, 1	15, 6, 2	20, 5, 2	2, 1, 1	15, 6, 2	18, 5, 2	2, 1, 1	12, 6, 2	
down sample	4	avg. pool 2×2									
D3 block 4 (k, L, B)	4	22, 5, 2	2, 1, 1	16, 7, 2	22, 4, 2	2, 1, 1	16, 7, 2	20, 5, 2	2, 1, 1	14, 7, 2	
down sample	4	avg. pool 2×2									
D3 block 5 (k, L, B)	16	-	-	17, 8, 2	-	-	16, 8, 2	-	-	16, 8, 2	
up sample	-	-	-	-	-	-	-	-	-	-	
D3 block 6 (k, L, B)	4	-	-	-	-	-	-	-	-	-	
up sample	-	-	-	-	-	-	-	-	-	-	
D3 block 7 (k, L, B)	4	-	-	-	-	-	-	-	-	-	
up sample	-	-	-	-	-	-	-	-	-	-	
D3 block 8 (k, L, B)	4	-	-	-	-	-	-	-	-	-	
up sample	-	-	-	-	-	-	-	-	-	-	
D3 block 9 (k, L, B)	4	-	-	-	-	-	-	-	-	-	
concate. (axis)	-	-	-	-	-	-	-	-	-	-	
concat. (axis)	-	-	-	-	-	-	-	-	-	-	
d3 block 2 (k, L)	-	-	-	-	-	-	-	-	-	-	
gate conv (t x f	1	-	-	-	-	-	-	-	-	-	

Table 2. SDR values for MUSDB18 dataset. SDR values are median of median SDR of each song. *"* denotes method operating in time domain.

Method	Vocals	Drums	Bass	Other	Acco.	Avg.
TAM (MLSTM-STM)	6.60	6.83	5.16	4.15	12.83	5.39
UHL2 (B.LSTM ensemble)	5.93	5.92	5.03	4.19	12.23	5.27
GRU dilation	6.85	5.86	4.86	4.65	13.40	5.56
UXM	6.32	5.73	5.23	4.02	-	5.33
Demus [15]	6.29	6.08	5.83	4.12	-	5.58
Meta-TasNet	6.40	5.91	5.58	4.19	-	5.52
Nachmani et. al. [20]	6.92	6.15	5.88	3.32	-	5.82
D3Net w/o dilation	6.86	6.37	4.97	4.21	13.19	5.60
D3Net standard dilation	7.12	6.61	5.19	4.53	13.39	5.86
D3Net (proposed)	7.24	7.01	5.25	4.53	13.52	6.01

Fig. 4. Comparison of normalized L1 norm of weights in the last layer of first d3 block.

5 Conclusion

We proposed a novel neural network architecture called D3Net. D3Net employs the multidilated convolution with dense skip connections that enables the local and global feature information to be modeled simultaneously within a single layer. Experimental results showed that D3Net achieves state-of-the-art results for the MUSDB18 dataset. The ablation study demonstrated the importance of handling the aliasing problem when we combine DenseNet with the dilated convolution.
6 References

[1] A. A. Nugraha, A. Liutkus, and E. Vincent, “Multichannel music separation with deep neural networks,” in Proc. EUSIPCO, 2015.

[2] S. Uhlich, F. Giron, and Y. Mitsufuji, “Deep neural network based instrument extraction from music,” in Proc. ICASSP, 2015, pp. 2135–2139.

[3] S. Uhlich, M. Porcu, F. Giron, M. Enenkl, T. Kemp, N. Takahashi, and Y. Mitsufuji, “Improving music source separation based on deep networks through data augmentation and network blending,” in Proc. ICASSP, 2017, pp. 261–265.

[4] N. Takahashi and Y. Mitsufuji, “Multi-scale Multi-band DenseNets for Audio Source Separation,” in Proc. WASPAA, 2017, pp. 261–265.

[5] D. Stoller, S. Ewert, and S. Dixon, “Wave-u-net: A multi-scale neural network for end-to-end audio source separation,” in Proc. ISMIR, 2018.

[6] N. Takahashi, P. Agrawal, N. Goswami, and Y. Mitsufuji, “Phasenet: Discretized phase modeling with deep neural networks for audio source separation,” in Proc. Interspeech, 2018, pp. 3244–3248.

[7] A. Défossez, N. Usunier, L. Bottou, and F. Bach, “Music source separation in the waveform domain,” arXiv preprint arXiv:1911.13254, 2019.

[8] D. Samuel, A. Ganeshan, and J. Naradowsky, “Meta-learning extractors for music source separation,” in Proc. ICASSP, 2020.

[9] R. Hennequin, A. Khlif, F. Voituret, and M. Moussallam, “Spleeter: A fast and state-of-the-art music source separation tool with pre-trained models,” Late-Breaking/Demo ISMIR 2019, November 2019, Deezer Research.

[10] N. Takahashi, N. Goswami, and Y. Mitsufuji, “MM-DenseLSTM: An efficient combination of convolutional and recurrent neural networks for audio source separation,” in Proc. IWAENC, 2018.

[11] J.-Y. Liu and Y.-H. Yang, “Dilated convolution with dilated GRU for music source separation,” in International Joint Conferences on Artificial Intelligence Organization (IJCAI), 2019.

[12] G. Huang, Z. Liu, and L. van der Maaten, “Densely connected convolutional networks,” in Proc. CVPR, 2017.

[13] A. Liutkus, F.-R. Stöter, and N. Ito, “The 2018 signal separation evaluation campaign,” in Proc LVA/ICA, 2018.

[14] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu, “Wavenet: A generative model for raw audio,” arXiv preprint arXiv:1609.03499, 2016.

[15] A. Fuchs, R. Priewald, and F. Pernkopf, “Recurrent dilated densenets for a time-series segmentation task,” in IEEE International Conference on Machine Learning and Applications (ICMLA), 2019, pp. 75–80.

[16] B. McMahan and D. Rao, “Listening to the world improves speech command recognition,” in Proc. AAAI, 2018.

[17] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in Proc. CVPR, 2015.

[18] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, “Inception v4, inception-resnet and the impact of residual connections on learning,” in Proc. AAAI, 2016.

[19] F.-R. Stöter, S. Uhlich, A. Liutkus, and Y. Mitsufuji, “Open-unmix - a reference implementation for music source separation,” Journal of Open Source Software, 2019.

[20] E. Nachmani, Y. Adi, and L. Wolf, “Voice separation with an unknown number of multiple speakers,” in Proc. ICML, 2020.