Effects of Low Light Stress on Growth Parameters of Rice (Oryza sativa L.) Genotypes

Aradhana Dhruw* and Arti Guhey

Department of Plant Physiology, College of Agriculture Raipur (IGKV, RAIPUR), India

*Corresponding author

Abstract

Light is a major constraint for the rice production. Twenty five rice genotypes was exposed to normal light and low light to study some growth parameters. The statistical analysis showed significant difference between the normal light and low light condition. Under low light condition the growth parameters specific leaf weight (SLW), Relative growth rate (RGR), net assimilation rate (NAR), crop growth rate (CGR) were decreased whereas specific leaf area (SLA), leaf area ratio (LAR), leaf area index (LAI) were increased. The genotype DXD (124)-17-192 and DXD (124)-17-193 exhibited higher specific leaf weight (SLW) and net assimilation rate (NAR).

Keywords

Low light stress, Growth parameters, Oryza sativa, Genotypes

Introduction

Rice (Oryza sativa L.) is the world single most important food crop, being the primary source for more than one third of the world population. Solar radiation is a limited during the monsoon season and in July and August, the average daily duration of bright sunshine in only 2-3 hours per day. Lower incidence of solar radiation coupled with fluctuating light intensity due to overcast sky sun during the wet season (Feb. to Nov.) is one of the major constraints for rice production in eastern India. Light intensity is a basic characteristic asset, which controls morphogenesis and production in plants. It has a major role in photosynthesis, photoperiodism, and photonasty. In fact, agriculture can be defined as the exploitation of solar radiation with the help of water and nutrients (Fageria, 2013). The Light intensity is among essential prerequisites for plant development, advancement, survival, and yield efficiency (Wang, 2013). Under low light during the grain-filling stage decreased supply of carbohydrates to grains as well as a decrease in starch synthase activity in grains, which directly inhibits grain filling and enhances the occurrence of chalky rice (Li et al., 2005).
Materials and Methods

The field experiment was laid out in split plot design and consisted of 160 rice genotype (139 RILs lines and 17 released varieties from IGKV, Raipur and 4 varieties from NRRI) under normal condition and shade net (70:30) condition (low light condition) and net shade condition had provided at 40 days after transplanting whereas, grown 25 selected from 160 rice genotype and light intensity was measured by lux meter at different growth stages under both condition (normal light and low light condition).

Results and Discussion

Significant differences were noticed among the treatment in relation to specific leaf area (Table 1 and Fig. 1). Specific leaf area (cm²/g) at 50% flowering stage of crop was increased under low light as compare to normal light. Overall mean increase in specific leaf area was noticed 44 % under low light condition and variety DXD (124)-17-193 attained minimum specific leaf area under low light stress. Lower SLA was seen in rice genotype grown in a normal light condition which is in consistence with the findings of these authors. For shaded rice genotype, the increased SLA and the development of a darker green colour were mainly attributed to the higher nitrogen content found in their leaves. It is likely that the increased SLA and the development of dark green leaf colour under shaded rice genotype partly contributed for the higher rate of photosynthesis observed under this condition. Similar result was also noticed by Robakowski et al., (2003).

The data on specific leaf weight presented in Table 1 and Figure 2. Specific leaf weight (g/cm²) at 50% flowering stage of crop was decreased under low light as compare to normal light condition by 30%. Rice genotype DXD (124)-17-192 exhibited maximum specific leaf weight (SLW) and showed significant and positive association with positive and significant correlation with grain yield. Under low light condition SLW was significantly decreased as compare to normal light condition. (Koumoto et al., 2016) Shade decreased the specific leaf weight and the leaf sugar and starch contents. Low light condition during vegetative growth increased the susceptibility of rice plants to chilling damage during panicle development.

Relative growth rate (mg/g/day) at vegetative stage of crop was decreased under low light condition as compare to normal light (Table 2 and Fig. 3). Overall mean reduce in relative growth rate was noticed 40% under low light condition and showed positive and significant correlation with net assimilation rate, grain yield and harvest index (Table 3).

The rice genotype DXD (124)-17-193 exhibited maximum relative growth rate (RGR). In low light condition RGR was significantly reduced. Similar result was found by Janardhan et al., (1980).

Net assimilation rate (mg/dm² leaf area/day) at vegetative stage of crop was decreased under low light condition as contrast with normal light Table 2 and Fig. 4). Rice genotype DXD (124)-17-192 exhibited maximum NAR. It was reduced 20% under low light stress and showed significant and positive association with crop growth rate and grain yield under low light intensity. Ahmad et al., (2009) reported that the low light can affect the morphological, physiological and yield parameters of rice crops such as the source sink relationships, LAI, crop growth rate (CGR), net assimilation rate (NAR), number of panicles m⁻². Janardhan and Murty (1980) also found that the dry matter production under low light impaired through reduced photosynthetic rate and net assimilation rate in rice.
Table 1. Effect of normal light and low light condition on specific leaf area (SLA) and specific leaf weight (SLW) at 50% flowering in rice genotypes

S.N.	Name of entries	2015	2016	2015	2016	2015	2016	2015	2016	2015	2016	2015	2016
		NL	LL										
1	DXD(124)-1-10	62.8	65.0	59.4	63.9	61.1	64.4	318.1	453.9	328.5	354.5	300.3	404.2
2	DXD(124)-1-12	67.7	81.5	78.6	88.6	73.2	85.1	264.5	447.3	239.1	348.7	251.8	398.0
3	DXD(124)-2-22	38.6	45.5	40.0	41.0	39.3	43.3	253.8	432.5	229.7	336.4	241.8	384.4
4	DXD(124)-3-28	31.7	41.9	34.6	40.6	33.2	42.0	225.9	427.0	269.5	327.1	297.5	409.0
5	DXD(124)-4-72	22.2	25.9	25.1	33.6	25.2	29.4	387.7	474.1	266.4	399.5	327.0	436.8
6	DXD(124)-9-89	31.9	34.1	33.0	37.6	32.5	35.8	281.7	325.9	208.5	333.9	245.1	329.9
7	DXD(124)-9-91	33.7	38.1	35.9	48.8	34.8	43.4	224.4	426.9	275.3	364.3	249.9	395.6
8	DXD(124)-11-133	45.9	42.5	46.7	50.6	46.3	46.6	469.1	524.8	263.8	378.5	366.4	451.7
9	DXD(124)-13-148	29.4	52.6	35.1	44.6	32.3	48.6	323.8	485.0	323.8	420.0	323.8	452.5
10	DXD(124)-15-164	44.7	38.1	34.2	41.2	39.4	39.7	262.5	355.0	328.8	490.5	297.6	422.9
11	DXD(124)-15-168	36.9	52.9	47.3	66.5	42.1	59.7	272.7	403.2	236.9	341.9	254.8	372.6
12	DXD(124)-16-179	24.9	36.0	29.5	30.4	27.2	33.2	271.7	434.7	440.5	544.8	356.1	489.7
13	DXD(124)-17-191	47.1	47.2	45.4	47.2	46.2	47.2	431.3	438.3	452.9	553.9	442.1	496.1
14	DXD(124)-17-192	36.3	43.2	39.4	38.4	37.9	40.8	341.3	481.4	210.1	353.7	271.1	417.6
15	DXD(124)-17-193	28.6	54.2	35.6	43.6	32.1	48.9	305.6	325.5	242.4	344.5	274.0	335.0
16	DXD(124)-17-210	22.9	44.5	32.5	36.9	30.9	40.7	336.7	469.6	298.0	395.3	317.3	432.5
17	DXD(124)-21-262	26.0	30.2	28.1	33.7	27.1	31.9	290.7	352.3	318.0	469.3	304.3	410.8
18	SWARNA SUB 1	38.3	47.3	40.8	45.9	39.5	46.6	429.4	552.0	431.3	702.2	430.3	427.1
19	SAMLESHWARI	54.3	57.9	55.3	62.7	54.8	60.3	238.8	314.3	246.3	361.2	242.5	337.7
20	IBID-1	42.6	46.6	44.9	55.6	43.7	51.1	265.7	352.9	196.9	377.7	231.3	365.3
21	IGKV R-1(RAJESHWARI)	34.7	34.8	34.7	44.8	34.7	39.8	359.9	372.3	233.6	323.7	296.7	348.0
22	IGKV R-2(MAHESHWARI)	29.6	29.2	29.4	41.4	29.5	35.3	337.9	433.4	287.7	476.2	312.8	454.8
23	JALDUBI	81.4	85.4	82.7	92.9	82.1	89.1	281.8	437.2	250.5	351.8	266.1	394.7
24	ISD-1	33.8	33.8	33.8	39.2	33.8	36.5	317.4	456.2	244.8	324.1	281.1	390.3
25	INDIRA SONA	53.8	58.7	53.7	44.2	43.8	51.4	371.1	463.7	338.4	532.9	354.8	498.3
	TRATMENT MEAN	40.4	46.6	41.4	48.6	40.9	47.6	314.5	425.6	284.4	409.4	299.5	417.5

CD	SEM						
CD	SEM	CD	SEM	CD	SEM	CD	SEM

Notes:
- **NL** = normal light, **LL** = low light, **N/A** = non-significant, **CD** = critical difference, **SEM** = standard error of mean.
Table 2: Effect of normal light and low light condition on relative growth rate (RGR), net assimilation rate (NAR) and crop growth rate (CGR) at vegetative stage in rice genotype

S.N.	Name of genotype	2015 RGR (mg g⁻¹ day⁻¹)	2016 RGR (mg g⁻¹ day⁻¹)	Pooled RGR (mg g⁻¹ day⁻¹)	2015 NAR (mg dm⁻² leaf area day⁻¹)	2016 NAR (mg dm⁻² leaf area day⁻¹)	Pooled NAR (mg dm⁻² leaf area day⁻¹)	2015 CGR (g m⁻² day⁻¹)	2016 CGR (g m⁻² day⁻¹)	Pooled CGR (g m⁻² day⁻¹)									
		NL	LL																
1	DXD(124)-1-10	0.627	0.497	0.594	0.364	0.611	0.431	0.0080	0.0050	0.0070	0.0030	0.0060	0.0030	2.555	2.085	1.160	1.010	1.858	1.548
2	DXD(124)-1-12	0.457	0.344	0.751	0.105	0.604	0.225	0.0040	0.0030	0.0110	0.0020	0.0060	0.0020	1.795	1.220	1.105	1.035	1.450	1.128
3	DXD(124)-2-22	0.446	0.441	0.430	0.086	0.438	0.264	0.0050	0.0040	0.0080	0.0020	0.0040	0.0020	1.905	1.555	1.085	1.020	1.495	1.288
4	DXD(124)-3-28	0.532	0.278	0.505	0.291	0.519	0.285	0.0070	0.0040	0.0100	0.0050	0.0060	0.0030	1.715	0.985	1.060	1.020	1.388	1.003
5	DXD(124)-5-72	0.822	0.468	0.674	0.246	0.748	0.357	0.0070	0.0060	0.0080	0.0020	0.0050	0.0030	3.205	0.260	1.245	1.025	1.775	0.643
6	DXD(124)-9-89	0.546	0.328	0.456	0.301	0.501	0.315	0.0070	0.0070	0.0110	0.0030	0.0070	0.0040	1.440	0.580	1.130	1.025	1.285	0.803
7	DXD(124)-9-91	0.592	0.257	0.508	0.241	0.550	0.249	0.0050	0.0030	0.0070	0.0040	0.0040	0.0020	2.275	0.675	1.140	1.015	1.708	0.845

Note: NL = normal light, LL = low light, N/A = non-significant, CD = critical difference, SEM = standard error of mean.

Source: Int. J. Curr. Microbiol. App. Sci. (2018) 7(7): 472-478
Table 3 Correlation analysis among the growth and yield of rice genotype under low light condition

	SLA	SLW	RGR	NAR	CGR	GY
SLA	1.000	0.056	-0.127	0.238	0.109	-0.063
SLW	1.000		0.111	0.365	0.341	0.408*
RGR	1.000			0.455*	0.217	0.404*
NAR			1.000		0.539**	0.426*
CGR	1.000			0.017		1.000

Significance at the 5% and 1% levels are indicated by *, ** respectively. SLA=Specific leaf area, SLW=Specific leaf weight, RGR=Relative growth rate, NAR=Net assimilation rate, CGR=Crop growth rate and GY=Grain yield.

Fig. 1 Effects of normal light (NL) and low light (LL) conditions on specific leaf area of rice (Oryza sativa L.) genotypes

Fig. 2 Effects of normal light (NL) and low light (LL) conditions on specific leaf weight of rice (Oryza sativa L.) genotypes
Fig. 3 Effects of normal light (NL) and low light (LL) conditions on relative growth rate (g day$^{-1}$) of rice (*Oryza sativa* L.) genotypes.

Fig. 4 Effects of normal light (NL) and low light (LL) conditions on net assimilation rate (g cm$^{-2}$ day$^{-1}$) of rice (*Oryza sativa* L.) genotypes.

Fig. 5 Effects of normal light (NL) and low light (LL) conditions on crop growth rate (g cm$^{-2}$ sec$^{-1}$) of rice (*Oryza sativa* L.) genotypes.
Significant differences were noticed among the treatments in relation to crop growth rate (Table 2 and Fig. 5). Crop growth rate (g/m²/day) at vegetative stage of crop was decreased under low light condition as contrast with normal light.

Overall mean decrease in crop growth rate was observed 35% under low light intensity. The variety Jaldubi exhibited maximum crop growth rate (CGR) under low light condition. It may be due to the low light condition, leaves are not able to receive sufficient light for the production of photosynthetic assimilates and they have a reduced ability to produce dry matter. Similar results were also reported by Sun et al., (2012).

Acknowledgement

This study was financially supported by KrishiVishwavidylaya DRS, IGKV, Raipur and Rajiv Gandhi National Fellowship (RGNF), New Delhi.

References

Ahmad, A.S., Iqbal, S., Ahmad, T., Khaliq, W., Nasim, Z., Hussain, A., Hussain, M., Zia-Ul-Haq and Hoogenboom, G. 2009. Seasonal growth, radiation interception, its conversion efficiency and biomass production of rice (Oryza sativaL.) Under diverse agro-environments in Pakistan. Pak. J. Bot. 41: 1241-1257.

Fageria, N.K. 2013. Mineral nutrition of rice. CRC press, Taylor and Francis Group. Boca Raton.

Li, T., Ohsugi, R., Yamagishi, T., Sasaki, H. 2005. Effects of weak light on rice starch accumulation and starch synthesis enzyme activities at grain filling stage. Chin J Rice Sci, 19(6): 545–550.

Sun, Y.Y., Sun, Y. J., Chen, L., Xu, H. and Ma, J. 2012. Effects of different sowing dates and lowlightstress at heading stage on the physiological characteristics and grain yield of hybrid rice. Ying Yong Sheng Tai XueBao, 23(10): 273-744.

Robakowski P., Montpied P. and Dreyer E. 2003. Plasticity of morphological and physiological traits in response to different levels of irradiance in seedling of silver fir (Abiesalba Mill.) Trees, (Berl.).7: 431-441.

Wang, L., Deng, F., Ren, W.J., and Yang, W.Y., 2013.Effects of Shading on Starch Pasting Characteristics of Indica Hybrid Rice (Oryza sativa L.). Plos one 8(7):68220.

How to cite this article:

Aradhana Dhruw and Arti Guhey. 2018. Effects of Low Light Stress on Growth Parameters of Rice (Oryza sativa L.) Genotypes. Int.J.Curr.Microbiol.App.Sci. 7(07): 472-478.
doi: https://doi.org/10.20546/ijcmas.2018.707.057