Trial watch: Dendritic cell-based anticancer immunotherapy

Abhishek D. Garg, Monica Vara Perez, Marco Schaaf, Patrizia Agostinis, Laurence Zitvogel, Guido Kroemer, and Lorenzo Galluzzi

ABSTRACT
Dendritic cell (DC)-based vaccines against cancer have been extensively developed over the past two decades. Typically DC-based cancer immunotherapy entails loading patient-derived DCs with an appropriate source of tumor-associated antigens (TAAs) and efficient DC stimulation through a so-called “maturation cocktail” (typically a combination of pro-inflammatory cytokines and Toll-like receptor agonists), followed by DC re-introduction into patients. DC vaccines have been documented to (re)activate tumor-specific T cells in both preclinical and clinical settings. There is considerable clinical interest in combining DC-based anticancer vaccines with T cell-targeting immunotherapies. This reflects the established capacity of DC-based vaccines to generate a pool of TAA-specific effector T cells and facilitate their infiltration into the tumor bed. In this Trial Watch, we survey the latest trends in the preclinical and clinical development of DC-based anticancer therapeutics. We also highlight how the emergence of immune checkpoint blockers and adoptive T-cell transfer-based approaches has modified the clinical niche for DC-based vaccines within the wide cancer immunotherapy landscape.

ABBREVIATIONS:
ACT, adoptive T-cell transfer; APC, antigen-presenting cell; CTL, cytotoxic T lymphocyte; DAMP, damage-associated molecular pattern; DC, dendritic cell; ICB, immune checkpoint blocker; iDC, immature DC; IFN, interferon; IL, interleukin; MAMP, microbe-associated molecular pattern; mDC, mature DC; MRC1, mannose receptor C type 1; MUC1, mucin 1; pDC, plasmacytoid DC; TAA, tumor-associated antigen; TIL, tumor-infiltrating lymphocyte; TLR, Toll-like receptor; Treg, regulatory T cell; WT1, Wilms tumor 1

Introduction
Dendritic cells (DCs) are one of the major antigen-presenting cells (APCs) of the innate immune system. Due to their proficiency at antigen presentation, including the capacity to cross-present antigens (i.e., presenting extracellular antigens on MHC class I molecules), DCs engage a decisive spot at the interface between innate and adaptive immunity. DCs were first discovered in 1973 by Ralph Steinman, who was later awarded a Nobel Prize for this achievement.1-4 DCs are named as such due to their peculiar, tree-like morphology (“Dendron” is the Greek word for “tree”).5-7 Since their discovery nearly three decades ago, a considerable number of studies have focused on the unique phenotypic and functional characteristics of DCs.8

DCs are a relatively ubiquitous population of myeloid cells (which differentiate from common myeloid bone marrow progenitors) exhibiting heterogeneity at various levels, including morphology, ontogeny and immunological features.9 This heterogeneity is the basis for the classification of DCs into various subsets. DC subsets tend to specialize in specific immunological functions: (1) processing and presenting antigens (e.g., murine CD8α+ DCs and their human counterparts, CD141+ DCs, are particularly efficient at antigen cross-presentation),10-17 (2) specifically interfacing with selected cells from the adaptive immune system (e.g., CD14+ dermal DCs or epidermal Langerhans cells preferentially facilitate humoral or CD8+ T-cell responses, respectively)18-20 and (3) mediating specific interferon (IFN) responses (e.g., plasmacytoid DCs (pDCs) tend to react to microbial stimuli by secreting high amounts of type I IFNs).21-24

In absence of pathophysiological insults, circulating or tissue-resident DCs tend to exist in a perpetual immature state. Immature DCs (iDCs) are highly effective elicitors of immunological...
tolerance, typically due to their capacity to facilitate the suppression or clonal deletion of auto-reactive T cells as well as the clonal expansion of immunosuppressive CD4⁺CD25⁺FOXP3⁺ regulatory T cells (Tregs). 25-28 This immature state is connoted by (1) continuous engulfment of extracellular material coupled to the secretion of limited amounts of cytokines or chemokines, (2) retention of MHC class II molecules within late endosomes, (3) expression of some assorted chemokine receptors and (4) negligible expression of co-stimulatory ligands like CD86, CD40, CD83, CD70, CD80 and tumor necrosis factor (ligand) superfamily, member 4 (TNFSF4, also known as OX40L) on the cell surface. 29,30

However, several microbial (e.g., microbe-associated molecular patterns (MAMPs)) or endogenous (e.g., damage-associated molecular patterns (DAMPs)) cues can drive iDCs into maturation. 33-37 Mature DCs (mDCs) exhibit little-to-null phagocytic activity and efficiently home toward a nearby lymph node for antigen presentation to T cells rather than ensuring continuous phagocytic clearance (the latter function is mainly executed by local macrophages or neutrophils). 7,29,38 Generally, mDCs are characterized by increased expression of antigen-bound MHC class II molecules and co-stimulatory molecules (e.g., CD80, CD40, CD83, CD70, CD86 and OX40L) on the cell surface, upregulation of chemokine (C–C motif) receptor 7 (CCR7) and abundant secretion of immunostimulatory cytokines and inflammatory chemokines. 7,27,29,39-41 These molecules are used by mDCs to co-stimulate T cells during antigen presentation. 42-45

Owing to their significant contribution to antigen processing and presentation as well as to immunomodulation of T-cell functions, DCs have a strong impact on oncogenesis, tumor progression and response to anticancer therapy. 46-50 This crucial role of DCs has been documented in a plethora of preclinical tumor models (e.g., through vaccination, antibody-dependent depletion or genetic ablation) as well as in several clinical studies (e.g., by correlating intra-tumoral DC levels with disease outcome in various cohorts of cancer patients). 46-49,51-54 An established tumor usually strives to limit antigen availability to DCs and to enforce immunosuppression to disrupt the generation of antigen-specific T-cell responses. 8,55-59 This is one of the reasons underlying the emergence of DC-based vaccines for cancer immunotherapy. Indeed, DCs can be obtained from the monocytes of a cancer patient, loaded with an appropriate source of tumor-associated antigens (TAAs) ex vivo, matured in a proper manner ex vivo, and infused back into the patient. At least theoretically, this provides cancer patients with a pool of autologous DCs capable of priming tumor-targeting cytotoxic T lymphocytes (CTLs). 46,47,60-62

In the past few decades, significant experimental and clinical resources have been devoted to the development of anticancer DC-based vaccines. 46,47,60,63 Various types of DC-based vaccines have been generated so far, which can be classified depending on the protocol for loading DCs with TAAs or for the biochemical manipulation of DCs. 54,63 These include (but are not limited to) (1) unstimulated DCs or DCs exposed to specific maturation cocktails (consisting of various immunostimulatory cytokines and toll-like receptor (TLR) agonists), 66-70 (2) DCs exposed ex vivo to tumor-cell lysates or other preparations enriched in one or more TAAs; 71-121 (3) direct delivery of TAAs to DCs in vivo; 122-134 (4) in situ anticancer vaccination by intra-tumoral administration of immunomodulatory molecules to activate local DCs 135 and (5) exosomes derived from DCs. 136-141 However, the DC-based vaccine most commonly used so far involves the loading of DCs with a source of TAAs followed by their stimulation with defined maturation cocktails. 142,143 Ex vivo, DC loading with TAAs is typically accomplished by (1) co-culturing iDCs with either autologous or allogeneic tumor-cell lysates 71,80,144-146 or recombiant TAAs; 81,88,147 (2) transfecting DCs with vectors or RNAs coding for TAA(s), or even bulk RNA derived from tumor cells; 41,89,113,148-152 and (3) creating fusions between DCs and incapacitated malignant cells (also known as “dendritomes”). 114-121 Alternatively, TAAs can be specifically conveyed to DCs in vivo by (1) fusing them to monoclonal antibodies, polypeptides or carbohydrates that specifically target DC-specific receptors (e.g., mannose receptor, C type 1 (MRC1), CD209 (also known as DC-SIGN), and lymphocyte antigen 75 (LY75, also known as DEC-205)). 122-128,136,131,133,153 or DC-associated glycolipids (e.g., glycosphingolipid globotriaosylceramide (Gb3)); 154,155 (2) encapsulating them in immunoliposomes that target DCs, 156-158 or (3) encoding them in vectors targeting DCs. 159,162 In the latter case, to overcome the tolerogenic activity of iDCs, 123,124 strategies aiming to target DCs in vivo also need to simultaneously integrate DC-activating stimuli such as TLR agonists and/or pro-inflammatory cytokines. 163 The concept of targeting TAAs to DCs in vivo has recently been harnessed for the development of CDX1401 (Celldex Therapeutics, USA), a DC-based vaccine consisting of a fully human anti-DEC205 monoclonal antibody (3G9) fused to the human TAA cancer/testis antigen 1B (CTAG1B; also known as NY-ESO-1). 164 In an early phase clinical trial, cancer patients receiving CDX1401 in combination with TLR3 and TLR7/8 agonists experienced efficient generation of NY-ESO-1-directed T-cell and humoral responses. 164

Another strategy of DC-based vaccination that has begun to receive attention involves specific naturally occurring DC subsets, which can be isolated via high-performance antibody-coated magnetic beads. 165,166 Accumulating clinical evidence demonstrates that DC-based vaccines consisting of pDC or CD1c⁺ DCs loaded with TAA-derived peptides achieve promising efficacy in melanoma patients. 165,166 In fact, CD1c⁺ DC-based vaccines induced long-term progression-free survival (1–3 y) in ~28% of treated melanoma patients. 166 Last but not least, while most of DC-based vaccines are administered to cancer patients in a curative setting, DC-based vaccines have recently been used also as neoadjuvant treatment. 167 Breast cancer patients exhibiting overexpression of Erb-B2 receptor tyrosine kinase 2 (ERBB2; also known as HER2) are often susceptible to disease recurrence. In this setting, DC-based vaccine pulsed with HER2-derived MHC class I and II-binding peptides is being applied before surgical resection of the tumor. 167 While clinical trials based on this strategy are ongoing (e.g., NCT02063724), preliminary evidence suggests that this vaccine efficiently induces HER2-targeting immunity and decreases the burden of residual HER2high tumor cells in breast cancer patients. 167

In general, the efficacy of DC-based vaccination is influenced by various factors including the amount of functional
activation that can be achieved, the nature and source of TAAs, the immunological fitness of the host, the type of DC receptors engaged and the specific DC-subset that was targeted.\(^{168-172}\) Moreover, the presence of some cytokines like interleukin 12 (IL-12) can also be decisive for patients administered with DC-based vaccines to achieve clinical responses. Thus, the combinatorial administration of IL-12 or CD40 and TLR ligands (which stimulate IL-12 secretion) is generally encouraged.\(^{173,174}\) It is important to mention that only one cellular therapy involving DCs (but not restricted to them) is presently licensed for use in humans, namely, sipuleucel-T (branded as Provenge\(^\circ\)). Since 2010, sipuleucel-T has been approved for the treatment of asymptomatic or minimally-symptomatic metastatic castration-resistant prostate cancer.\(^{175-178}\) The company manufacturing Provenge\(^\circ\), however, filed for bankruptcy a few years later, and has now been acquired by a multinational specialty pharmaceutical company, casting doubts on the actual cost-effectiveness of their lead product.

In this Trial Watch, we recapitulate the latest developments in the field of DC-based cancer immunotherapy, discussing the results of major preclinical and clinical studies published recently, and ongoing clinical trials relative to the publication of our previous Trial Watch on this topic. Moreover, we analyze the broad impact of cancer immunotherapies including immune checkpoint blockers (ICBs),\(^{179,180}\) and adoptive T-cell transfer (ACT)\(^{181,182}\) on the field of DC-based vaccines.\(^{183,184}\) Indeed, ongoing clinical trials are identifying a niche for DC-based vaccines in a cancer immunotherapy landscape dominated by ICBs and ACT.

Recent preclinical developments

A number of interesting preclinical studies dealing with DC-based anticancer immunotherapy have been published in the last 2.5 y (September 2014 to February 2017, i.e., the approximate period since the publication of the latest Trial Watch on this topic). While summarizing all of these studies here is not possible, we found the following ones to be of particular interest and, in some cases, largely representing the general trends in this field (not mentioned in any particular order): (1) Mitchell et al. documented that pre-conditioning the intended site for DC-based vaccination with the tetanus/diphtheria toxoid (acting as a "recall antigen") significantly improves the lymph node-homing of DCs thereby inducing (CCL3-dependent) anti-glioblastoma immunity following DC-based vaccination in mice and patients;\(^{185}\) (2) Carreno et al. reported that a DC-based vaccine boosts (naturally-occurring) neoantigen-specific anti-melanoma immunity (comprising an increase in diversity and clonality of neoantigen-specific T cells) associated with de novo emergence of MHC class I-restricted neoantigens;\(^{186}\) (3) Garg et al. found that next-generation DC-based vaccines relying on immunogenic cell death (ICD) elicited by hypericin-dependent photodynamic therapy (Hyp-PDT) in glioma cells induce potent anti-glioblastoma immunity in an orthotopic murine model (both in prophylactic and curative settings, alone or in combination with chemotherapy), accompanied by a shift from a Treg-dominated intracranial immune contexture to a Th1/Th17/CTLs-dominated one;\(^{187}\) (4) Ohshio et al. observed that targeting immunosuppressive cancer-associated fibroblasts with an anti-fibrotic agent, tranilast, in combination with DC-based vaccination drastically improves (CTL- and NK-cell-driven) antitumor immunity against subcutaneously transplanted lymphomas, lung carcinomas and melanomas;\(^{188}\) (5) Xiang et al. documented that ovalbumin-loaded upconversion nanoparticles (i.e., nanoparticles exhibiting photon upconversion, a process wherein two or more photons of low energy are absorbed and converted into a single emitted photon of higher energy) can be used for antigen loading and maturation of DCs, which can also be tracked in vivo (via luminescence imaging), so that these DCs eventually drive potent ovalbumin-specific immunity;\(^{189}\) (6) Carmi et al. discovered that DC-based vaccines relying on tumor cells coated with naturally occurring tumor-binding IgG antibodies or DC-based vaccines administered in combination with allogeneic IgG antibodies (two strategies aimed at facilitating allogeneic tumor rejection) elicit strong antitumor immunity in mouse models of (autologous or autochthonous) melanoma as well as breast, pancreatic and lung carcinoma;\(^{190}\) (7) Vandenberk et al. reported that DC-based vaccines relying on irradiated, freeze/thawed (F/T) glioma cells induce significant anti-glioblastoma immunity, driven (at least in part) by CTL responses elicited by oxidation-associated molecular patterns (OAMPs);\(^{191}\) (8) Lu et al. observed that a DC-based vaccine generated with a cancer stem cell (CSC)-lyste administered in combination with localized radiotherapy induce potent antitumor immunity driven (at least in part) by B cell-dependent humoral responses and a significant shift in the "chemokine" of the tumor;\(^{192}\) (9) Jung et al. discovered that using *Mycobacterium tuberculosis* heat shock protein X (HspX) as an adjuvant for DC-based vaccines facilitates Th1/CTL-driven antitumor immunity;\(^{193}\) (10) Willemen et al. reported that electroporating DCs with an IFN-\(\alpha\)-coding mRNA significantly enhances their ability to drive TAA-specific CTLs and antitumor NK-cell responses;\(^{194}\) and (11) Martin et al. discovered that ansamitocin P3, a microtubule depolymerizing agent, enhances DC activation thereby making DC-based vaccines potent inducers of antigen-specific T cells, especially in combination with ICBs targeting programmed cell death 1 (PDCD1, also known as PD-1) and cytotoxic T lymphocyte-associated protein 4 (CTLA4).\(^{195}\)

Completed clinical trials

In the last 2.5 y (September 2014 to February 2017), 43 peer-reviewed publications have documented the outcome of various clinical trials evaluating DC-based vaccines as therapeutic anticancer interventions. These publications were acquired from PubMed (http://www.ncbi.nlm.nih.gov/pubmed), by using the following search string: “[cancer OR tumor OR tumor] AND ([DC OR dendritic OR "dendritic cells" OR "dendritic cell"] AND (vaccine OR vaccination OR infusion OR injection OR immunotherapy)).” The initial list was manually curated to ensure relevance for this Trial Watch.

More than half of these studies (Fig. 1) involved autologous DCs exposed to autologous tumor-derived RNA,\(^{196}\) tumor-cell lysates,\(^{197,203}\) autologous tumor stem cell lysates,\(^{204}\) self-renewing and proliferating autologous tumor cells,\(^{205}\) allogeneic cancer cell line lysates,\(^{206-208}\) TAAs or TAA-derived peptides\(^{209-218}\) or a combination thereof.\(^{219}\) Most clinical studies based on the latter approach preferred
melanoma-associated differentiation antigens including pre-melanosome protein (PMEL; also known as gp100), antigens belonging to the melanoma antigen gene (MAGE) family, tyrosinase (TYR) and Melan-A (MLANA; also known as MART1) (Fig. 1). In addition, a few trials tested autologous DCs manipulated by electroporation or (viral) transfection with TAA-coding mRNA (Fig. 1). Finally, a few studies preferred to use “unpulsed” autologous (matured ex vivo) DCs, administered in combination with cytokine-induced killer cells (CIKs), chemotherapy and/or radiotherapy. Other approaches included the use of autologous dendritomas, allogeneic peripheral blood mononuclear cells matured ex vivo into DCs, or autologous unpulsed DCs combined with ACT.

Regarding the distribution across different cancer types (Fig. 1), patients harboring melanoma were most commonly enrolled in these trials, followed by patients with prostate cancer, glioma or glioblastoma (GBM), hepatocellular carcinoma, non-small cell lung carcinoma (NSCLC), renal cell carcinoma (RCC), esophageal carcinoma, and pancreatic ductal adenocarcinoma, among others. Of note, only two trials included a wide range of advanced solid tumors refractory to previous treatments.

Most of these publications documented DC-based vaccines to elicit immune responses (generally in combination with standard-of-care therapies) achieving disease stabilization in most cases and partial or complete responses at a comparatively
lower frequency. In several instances, DC-based vaccines have been administered in combination with conventional immunostimulatory agents including cytokines (e.g., IL-2, colony stimulating factor 2 (CSF2; also known as GM-CSF), IFN-α/β, IFNγ or IFNβ),{199,205,221,224,227} the tetanus toxoid,{185} or TLR agonists.{211} Interestingly, a few clinical studies also tested DC-based vaccines in combination with ACT and ICBs.{198,230,235} The combination of a DC-based vaccine with ipilimumab (an anti-CTLA4 ICB currently approved for the treatment of melanoma patients) achieved a promising overall response rate of 38% (eight patients with complete responses and seven with partial responses) and a 6-mo disease control rate of 51%.{235} Similarly, among eight Stage IV melanoma patients treated with DC-based vaccination followed by tumor-infiltrating lymphocyte (TIL)-based ACT, one patient achieved complete remission and two others achieved stable disease (although in this case the study size prevented from drawing robust conclusions).{198} Interestingly, a Phase III trial demonstrated that unpulsed DCs in combination with adoptively transferred autologous activated CTLs derived from patient lymph nodes (delivered in combination with platinum-based chemotherapy) significantly improved long-term survival in NSCLC patients when compared with chemotherapy alone.{230}

Many of these studies also brought into focus various predictive biomarkers of clinical responses to DC-based vaccination. For instance, an increased overlap in the TCR repertoire of TILs and blood-borne T cells correlated with improved responses to DC-based vaccination and overall survival in glioma patients.{202} Conversely, a T-cell polarization skewed toward an immunosuppressive Th2 phenotype was found to reduce the therapeutic efficacy of DC-CIK co-administration in NSCLC patients.{207} Finally, increased plasma levels of pro-inflammatory cytokines like IL-6 and IL-8 negatively correlated with overall survival following DC-based vaccination in pancreatic ductal adenocarcinoma patients.{236}

Collectively, these studies highlight that DC-based vaccines are well-tolerated by cancer patients, with mild flu-like symptoms and local irritation at the injection site being the most common side effects, and can elicit antitumor immune response of therapeutic value.

Ongoing clinical trials

When this Trial Watch was being redacted (February 2017), official sources listed no less than 72 clinical trials initiated after 1st of September, 2014 to be evaluating anticancer DC-based vaccines in the ClinicalTrials.gov database (http://www.clinicaltrials.gov/). These were retrieved by using the following search string: “(cancer OR tumor OR tumor) AND (((DC OR dendritic OR “dendritic cells” OR “dendritic cell”) AND (vaccine OR vaccination OR infusion OR injection)).” The initial list was manually curated to ensure relevance for this Trial Watch. The specific details of the different short-listed clinical trials are elaborated in the Table 1.

The majority of these studies involved autologous DCs exposed to autologous tumor-derived RNA, tumor-cell lysates and TAAs or TAA-derived peptides (Fig. 1 and Table 1). The rest consisted of either autologous DCs loaded with autologous tumor stem cell lysates, autologous DCs (virally) transfected with TAAs-coding mRNA, or autologous dendritomas, among others (Table 1). Most clinical studies focusing on TAAs or TAA-derived peptides selected following antigens: mucin 1 (MUC1), baculo viral IAP repeating containing 5 (BIRC5; also known as survivin), HER2, NY-ESO-1 and Wilms Tumor 1 (WT1) (Fig. 1 and Table 1). Also, several ongoing clinical trials relied on loading a complex mixture of TAAs or TAA-derived peptides onto the autologous DCs for vaccine production (Table 1). Regarding trial distribution across cancer types, patients harboring glioma or GBM were the most commonly enrolled, followed by patients with lung cancer, melanoma, liver cancer and gastric cancer, among others (Fig. 1 and Table 1). Of note, there is no ongoing Phase III clinical trial administering DC-based vaccines.

Most ongoing clinical trials are testing the administration of DC-based vaccines in combination with standard-of-care chemo- or radiotherapy (including known ICD inducers) (Table 1).{35,237,238} However, several chemotherapies that are unable to promote ICD are also being combined with DC-based vaccination, wherein cisplatin is the preferred option (Table 1).{35} Furthermore, combinatorial regimens included targeted therapies such as the broad spectrum receptor tyrosine kinase inhibitor sunitinib, the CD25-targeting antibody basiliximab, the CD20-targeted antibody rituximab and HER2-targeted antibodies like trastuzumab and pertuzumab. Interestingly, a few studies are testing DC-based vaccines in combination with anti-inflammatory drugs (e.g., celecoxib). It will be interesting to see whether such drugs increase or decrease the efficacy of DC-based vaccination.

Finally, multiple ongoing clinical trials are combining DC-based vaccines with immunostimulatory cytokines (IL-2, GM-CSF, IFN-α/β), the tetanus diphtheria toxoid, or TLR agonists (e.g., rintatolimod, hiltonol). Notably, there has been a palpable surge in the number of clinical trials combining DC-based vaccines with the tetanus diphtheria toxoid in GBM patients. Finally, several ongoing clinical trials are testing DC-based vaccines in combination with CIK cells, ICBs and ACT (Table 1).

Status update on clinical trials

The following clinical trials, enlisted in the previous edition of Trial Watch dealing with this topic,{238} have changed status since: NCT02042053 and NCT02107378 have been “Terminated,” NCT02115126 and NCT02033616, have been “Withdrawn;” NCT02063724, NCT02049489, NCT01974661, NCT02107937, NCT02107950, NCT02107404, NCT02137746, NCT01956630, NCT02129075 and, NCT01981122, were previously “Recruiting” but are now listed as “Active, Not recruiting;” NCT0183297, NCT02070406, NCT02151448, NCT01983748 and, NCT02170389, were previously “Not yet recruiting,” but are now listed as “Recruiting;” NCT01926639 and NCT02159950, have since been “Completed” (source http://www.clinicaltrials.gov). NCT02115126 and NCT02033616 have been withdrawn due to unknown reasons. NCT02107378 has been terminated due to a not-better specified decision by the trial sponsors, and NCT02042053 has been terminated because the principal investigator of the trial left the designated institute.
Type of DC vaccine	Cancer type	Trial phase	Status	TAA(s)	Combinatorial treatment	Ref.
DCs transfected with adenovirus coding TAAs	Small cell lung cancer	I/II	Active, not recruiting	MUC1, Survivin	CIK cells	NCT02688673
	NSCLC	I/II	Not yet recruiting	SOCS, MUC1, Survivin	CIK cells	NCT02688686
	Esophageal cancer	I/II	Active, not recruiting	MUC1, Survivin	CIK cells	NCT02693236
	Gastric cancer	I	Not yet recruiting	CEA	CTLs	NCT02602249
	Multiple myeloma	I	Active, not recruiting	Survivin	Autologous haematopoietic cell transplantation	NCT02496273
						NCT02851056
	Allogeneic DCs (Intuvax)	RCC	Recruiting	—	Sunitinib (Nephrectomy)	NCT02432846
		Gastrointestinal stromal tumors	Not yet recruiting	—	Sunitinib	NCT02686944
	Autologous DCs	Ovarian cancer	Recruiting	—	Cisplatin, celecoxib, IFN, Rintatolimod	NCT02432378
		Solid tumors	Active, not recruiting	—	Pemetrexed, Carboplatin	NCT02882659
		NSCLC with wild type-EGFR	Recruiting	—	Pemetrexed, Carboplatin	NCT02669719
		Follicular lymphoma	Recruiting	—	Intranodal immunotherapy (Radiation, Rituximab, GM-CSF) and Pembrolizumab	NCT02677155
		Colon cancer	Not yet recruiting	—	Calecoxib, IFN2b, Rintatolimod	NCT02615574
	Autologous DCs loaded with tumor cell lysate	Multiple myeloma	I/II Recruiting	—	Cyclophosphamide	NCT02248402
		RCC	Not yet recruiting	—	CIKs	NCT02487550
		Sarcomas or CNS tumors	Recruiting	—	Surgery/Chemotherapy/Radiotherapy	NCT02496520
		Colorectal cancer	Not yet recruiting	—	Modified FOLFOX6 [mFOLFOX6] (Oxaliplatin, 5-Fluorouracil and Leucovorin)	NCT02503150
		Solid pediatric malignancies	Completed	—	IL-2	NCT02533895
		Esophageal cancer	Recruiting	—	CIK cells; Prior to DC-CIK: Paclitaxel, cisplatin	NCT02644863
		Melanoma	Recruiting	—	IL2	NCT02718391
		Neuroblastoma	Recruiting	—	Standard-of-Care ICBs treatment	NCT02678741
		GBM	Active, not recruiting	—	Haematopoietic progenitor cell (HPC) transplant	NCT02745756
		GBM	Recruiting	—	Temozolomide, Radiotherapy	NCT02772094
		GBM	Not yet recruiting	—	Basiliximab, Tetanus Diptheria toxin	NCT02366728
		Colorectal cancer	Not yet recruiting	—	Nivolumab	NCT03014804
		GBM	Not yet recruiting	—		NCT02820584
		GBM	Recruiting	—	Mixture of five allogeneic tumor cell lysates	NCT02395679
	Hematological malignancies	I/II	Recruiting	Minor histocompatibility complex	—	NCT02528682
	Acute myeloid leukemia	I/II	Recruiting	—	—	NCT02405338
	Glioma and/or GBM	I/II	Recruiting	—	—	NCT02465268
	I	Recruiting	—	GM-CSF, Tetanus Dipheria Toxoid	NCT02529072	
	II	Recruiting	—	Nivolumab, Tetanus Dipheria Toxoid	NCT02694982	
	II	Recruiting	—	Temozolomide, Allogeneic PBMCs, Autologous irradiated tumor cells	NCT02808364	
	II	Recruiting	—	Allogeneic PBMCs, Chemo/Radiotherapy and cycles of Temozolomide treatment	NCT02709616	
	II	Recruiting	—	Platinum/Pemetrexed, Cisplatin, TAs-pulsed Allogeneic PBMCs, Autologous irradiated tumor cells	NCT02649829	
	Pleural mesothelioma	I/II	Recruiting	WT1	Allogeneic PBMCs, Chemo/Radiotherapy and cycles of Temozolomide treatment	NCT02808416

(Continued on next page)
Type of DC vaccine	Cancer type	Trial phase	Status	TAA(s)	Combinatorial treatment	Ref.
Autologous DCs loaded with TAA(s) or TAA-derived peptide(s)	Prostate cancer	II	Recruiting	TARP	—	NCT02362451
		I	Enrolling by invitation	TARP	—	NCT02362464
		II	Recruiting	Whole antigens, NY-ESO-1, MUC1 PepTivator	—	NCT0269976
Breast cancer	I	Recruiting	Tumor blood vessel antigen	Gemcitabine	—	NCT02479230
CML	I/II	Recruiting	BCR/ABL, WT1, proteinase-3	—	—	NCT02543749
Melanoma	II	Active, not recruiting	—	—	—	NCT02574377
		Active	—	—	—	NCT02993315
	II	Recruiting	NY-ESO-1, Melan-A/MART-1	—	—	NCT02334735
Solid malignancies	I/II	Not yet recruiting	—	—	—	NCT02705703
Liver cancer	I/II	Not yet recruiting	Sp17, Ropporn, AKAP4, PTTG1, Span-xb, HER2, HM1.24, NY-ESO-1, MAGE-1	—	—	NCT02709993
Solid tumors	I	Not yet recruiting	NY-ESO-1	—	—	NCT02775292
	I/II	Recruiting	—	—	—	NCT02789195
RCC	I/II	Not yet recruiting	MAGE-3, MAGE-4, Survivin, HER2, COX-2 CTL epitopes	—	—	NCT02529579
	I/II	Terminated	MAGE-A1, MAGE-A3, NY-ESO-1	—	—	NCT02332889
HGG, medulloblastomas, CNS tumors	Ductal carcinoma in situ	I/II	Active, not recruiting	HER2	Trastuzumab, Pertuzumab	NCT02336984
HER-2 positive cancers	I	Temporarily not available	—	—	—	NCT02473653
Pancreatic cancer	I/II	Recruiting	—	—	—	NCT02548169
	I/II	Recruiting	—	—	—	NCT02529579
	I/II	Withdrawn	MUC1	—	—	NCT02310971
	I/II	Recruiting	IDH1R132H	—	—	NCT02771301
Glioma	NSCLC	I	Withdrawn	Neoantigens	Cyclophosphamide	NCT02419170
Dendritomas	Multiple myeloma	II	Recruiting	—	—	NCT02728102
				—	—	
Autologous DC-CIK combinations	Solid tumors	I/II	Recruiting	—	CIK cells, anti-PD1 immunotherapy	NCT02886897
	Hepatocellular carcinoma	I	Recruiting	—	CIK cells, TACE, S-FU, Lipiodol	NCT02487017
	Breast cancer	I	Active, not recruiting	—	CIKs, Capecitabine	NCT02491697
DC-CTL	NSCLC	II	Not yet recruiting	—	Gemcitabine/Cisplatin	NCT02766348
DCs combination with T cells targeting neoantigens or TAA	Biliary tract tumors	I/II	Recruiting	—	Gemcitabine	NCT02632019
	Liver cancer	I/II	Recruiting	—	—	NCT02873442
	I/II	Recruiting	—	—	—	NCT02862613
	I/II	Recruiting	—	—	—	NCT02632188
	I/II	Recruiting	—	—	—	NCT02638857
	Gastric cancer	I/II	Recruiting	—	Cisplatin, S-FU	NCT02862561
	I/II	Recruiting	—	—	Cisplatin, S-FU	NCT02873520
	Lung cancer	I/II	Recruiting	—	Cisplatin, Gemcitabine	NCT02862587
	I/II	Recruiting	—	—	Cisplatin, Gemcitabine	NCT02873416

Abbreviations: S-FU, 5-fluourouracil; CEA, Carcinoembryonic antigen; CIK, cytokine-induced killer; CML, chronic myeloid leukemia; CNS, central nervous system; COX, cyclooxygenase; CTL, cytotoxic T lymphocytes; DC, dendritic cell; DLI, donor lymphocyte infusion; GBM, glioblastoma multiforme; GM-CSF, granulocyte macrophage colony-stimulating factor; GMCSF, granulocytic monocytic colony-stimulating factor; HGG, high-grade glioma; ICB, immune checkpoint blocker; IFN, interferon; IL, interleukin; IMAGE, melanoma antigen family; MLANA, melan A; MUC1, mucin 1; NSCLC, non-small cell lung cancer; NY-ESO-1, New York esophageal squamous cell carcinoma-1; PBMC, peripheral blood mononuclear cells; PD1, programmed cell death-1; PRAME, preferentially expressed antigen in melanoma; RCC, renal cell carcinoma; TAA, tumor-associated antigen; TACE, trans-cathether arterial chemoembolization; TARP, T-cell receptor γ alternate reading frame protein; TCR, T cell receptor; WT1, Wilms tumor 1.
Concluding remarks

A plethora of strategies have been developed in the past decades to exploit the anticancer activity of DCs – culminating in the paradigm of DC-based cancer immunotherapy. The studies presented in this survey show that – despite the emergence of ICBs and ACT – the field of DC-based vaccination is still vibrant (both preclinically and clinically). However, ICBs and ACT have definitely influenced the clinical application of DC-based vaccines. For instance, many clinical studies that have been published in the period between September 2014 and February 2017 were initiated before or just around the time ICBs gained clinical foothold. In these studies, DC-based vaccines were mostly administered to melanoma patients and hence were based on melanoma-associated differentiation antigens240 (Fig. 1). However, the major survival advantage provided to melanoma patients by ICBs is not responsive to DC-based vaccines. Interestingly, recombinant TAAs, TAA-derived peptides and tumor-cell lysates remain the preferred source of antigens for loading DCs for DC-based vaccines across both Phase I/II clinical trials (derived from Phase I/II clinical trials) rather than on long-term survival, also reflecting a paucity in Phase III clinical trials testing anticancer DC-based vaccines.68,184,187,241 Interestingly, recombiant TAAs, TAA-derived peptides and tumor-cell lysates remain the preferred source of antigens for loading DCs for DC-based vaccines across both published and ongoing clinical studies (Fig. 1 and Table 1). These trends illustrate that the field of DC-based vaccines is readily adapting to the shift in cancer immunotherapy.

As it stands, there is an urgent need for clinical studies demonstrating that DC-based vaccines can induce durable objective responses and improve long-term survival in cancer patients. While the field of DC-based vaccination gained momentum with the approval of sipuleucel-T for the immunotherapy of prostate cancer patients,242 the overall development of DC-based vaccines has been facing multiple obstacles. For instance, DC-based vaccines have failed to achieve more than 15% objective response rates in cancer patients.48 Moreover, most of the clinical efficacy data in this setting rely on short-term criteria (derived from Phase I/II clinical trials) rather than on long-term survival, also reflecting a paucity in Phase III clinical trials testing anticancer DC-based vaccines.46 Besides efficacy issues, the development of DC-based vaccination for clinical use has also been hampered by the relatively high financial and human resources associated with production in good manufacturing practice (GMP) facilities.47 Immunologically speaking, the relatively low avidity of TAA-specific T cells and the robust immunosuppression imposed on TILs have constituted major obstacles to the efficacy of DC-based vaccines even when vaccines could successfully generate tumor-specific, peripheral CTLs (a typical mechanistic biomarker of the immunostimulatory potency of DC-based vaccines in patients).47,243-245 At least theoretically, this latter problem could be overcome by combining DC-based vaccines with ICBs or ACT – an endeavor currently being pursued by many investigators. That said, highly reliable predictive biomarkers of the clinical efficacy of DC-based vaccines are still missing. In conclusion, there is an urgent need to reduce the costs associated with the manufacturing of DC-based vaccines and to increase the homogeneity of the process (which would enable for multi-center Phase III clinical trials). Moreover, biomarker-guided clinical trials involving highly efficacious DC-based vaccines combined with ICBs, ACT or other (immuno)therapies will have to be designed to elucidate the actual clinical potential of DC-based vaccination.

Disclosure of potential conflicts of interest

LG provides remunerated consulting to OmniSEQ (Buffalo, NY).

Funding

ADG, MVP and MS are recipients of FWO Postdoctoral or Doctoral Fellowships from FWO-Vlaanderen, Belgium. PA is supported by grants from FWO (G060713N, G076617N), KU Leuven (C16/15/073) and Belgian State (IAP7/32). GK is supported by Ligue contre le Cancer (équipe labellisée); Agence National de la Recherche (ANR); Association pour la recherche sur le cancer (ARC); Cancéropolé Ile-de-France; AXA Chair for Longevity Research; Institut National du Cancer (INCa); Fondation Bettencourt-Schueller; Fondation de France; Fondation pour la Recherche Médicale (FRM); the European Commission (ArtForce); the European Research Council (ERC); the LabEx Immuno-Oncology; the SIRIC Stratified Oncology Cell DNA Repair and Tumor Immune Elimination (SOCRATE); the SIRIC Cancer Research and Personalized Medicine (CARPEM); and the Paris Alliance of Cancer Research Institutes (PACRI). LG is supported by WCMC (intramural funds) and Sotio a.c. (Prague, Czech Republic)

ORCID

Abhishek D. Garg http://orcid.org/0000-0002-9976-9922
Lorenzo Galluzzi http://orcid.org/0000-0003-2257-8500

References

1. Lanzavecchia A, Sallusto F, Ralph M. Steinman 1943–2011. Cell 2011; 147:1216-7; PMID:22263224; https://doi.org/10.1016/j.cell.2011.11.040
2. Nussenzweig MC, Mellman I. Ralph Steinman (1943–2011). Nature 2011; 478:460; PMID:22031432; https://doi.org/10.1038/478460a
3. Mellman I, Nussenzweig M. Retroactive. Ralph M. Steinman (1943–2011). Science 2011; 334:466; PMID:22034425; https://doi.org/10.1126/science.1215136
4. Steinman RM, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med. 1973; 137:1142-62; PMID:4573839; https://doi.org/10.1084/jem.137.5.1142
5. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature 1998; 392:245-52; PMID:9521319; https://doi.org/10.1038/325588
6. Steinman RM, Banchereau J. Taking dendritic cells into medicine. Nature 2007; 449:419-26; PMID:17898760; https://doi.org/10.1038/nature06175
7. Merad M, Sathe P, Helft J, Miller J, Mortha A. The dendritic cell lineage: Ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu Rev Immunol 2013; 31:563-604; PMID:23166985; https://doi.org/10.1146/annurev-immunol-020711-074950
8. Dudek AM, Martin S, Garg AD, Agostinis P. Immature, semi-mature, and fully mature dendritic cells: Toward a DC-cancer cells interface that augments anticancer immunity. Front Immunol 2013; 4:438; PMID:24376443; https://doi.org/10.3389/fimmu.2013.00438
9. Morello S, Pinto A, Blandizzi C, Antonioli L. Myeloid cells in the tumor microenvironment: Role of adenosine. OncoImmunology 2016; 5:e1108515; PMID:27141365; https://doi.org/10.1080/2162402X.2015.1108515
10. Bachem A, Guttler S, Hartung E, Ebstein F, Schaefer M, Tannert A, Salama A, Movassaghki K, Optiz C, Mages HW et al. Superior antigen cross-presentation and XCR1 expression define human CD11c+CD141+ cells as homologues of mouse CD8+ dendritic cells. J Exp Med 2010; 207:1273-81; PMID:20479115; https://doi.org/10.1084/jem.20100348.

11. Crozat K, Guitton V, Contreras V, Feuillet V, Dutertre CA, Ventre E, Vu Manh TP, Baranek T, Stroset AK, Marvel J et al. The Xc chemokine receptor 1 is a conserved selective marker of mammalian cells homologous to mouse CD8alpha+ dendritic cells. J Exp Med 2010; 207:1283-92; PMID:20479118; https://doi.org/10.1084/jem.20100223.

12. Jongbloed SL, Kassianos AJ, McDonald KJ, Clark GJ, Xu X, Angel CE, Chen CJ, Dunbar PR, Wedley RB, Jeet V et al. Human CD141+ (BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents nontoxic cell antigens. J Exp Med 2010; 207:1247-60; PMID:20479116; https://doi.org/10.1084/jem.20092140.

13. Poulin LF, Salio M, Griessinger E, Anjos-Afonso F, Craciun L, Chen JL, Keller AM, Joffre O, Zelenay S, Nye E et al. Characterization of human DNGR-1 (BDCA-3) leukocytes as putative equivalents of mouse CD8alpha+ dendritic cells. J Exp Med 2010; 207:1261-71; PMID:20479117; https://doi.org/10.1084/jem.20092618.

14. Joffre OP, Segura E, Savina A, Amigorena S. Cross-presentation by plasmacytoid dendritic cells. J Exp Med 2010; 207:1273-81; PMID:20479115; https://doi.org/10.1084/jem.20100348.

15. van Beek JJP, Gorris MAJ, Skold AE, Hatipoglu I, Van Acker HH, Verbist G, Agostinis P, Van den Eygauz P, Verheij J, Vergote I, Coosemans AN. Generation of murine dendritic cells activated by in vivo cell death. J Exp Med 2010; 213:1835-7; PMID:2092402X.2016.1192739.

16. Di Blasio S, Wortel IMN, van Bladel DAG, de Vries LE, Duiveman-Duynartzua E, Keirsse J, Morias Y, Van Overmeire E, Geeraerts X, Elkrim M, Idoyaga J, Fiorese C, Malissen B, Nussenzweig MC. Tolerogenic dendritic cells. Annu Rev Immunol 2003; 21:685-711; PMID:12615891; https://doi.org/10.1146/annurev.immunol.21.120601.141040.

17. Baert T, Garg AD, Vindevogel E, A VANH, Verbist G, Agostinis P, Baert D, Advancing targeted co-stimulation with antibody-fusion proteins by introducing TNF superfamily members in a single-chain format. OncoImmunology 2016; 5:e1238540; PMID:27999756; https://doi.org/10.1038/onci.2016.1238540.

18. Sistigu A, Yamazaki T, Vacchelli E, Chaba K, Enot DP, Adam J, Vitale I, Goubar A, Baracco EE, Remédios C et al. Cancer cell-autonomous contribution of type I interferon signaling to the efficacy of chemotherapies. Nat Med 2014; 20:1301-9; PMID:25344738; https://doi.org/10.1038/nm.3708.

19. Fucikova J, Moserova I, Urbanova L, Bezui L, Kepp O, Cremer I, Salek C, Stransd P, Kroemer G, Galluzzi L et al. ProGNostic and Predictive value of DAMPs and DAMP-associated processes in cancer. Front Immunol 2015; 6:588; PMID:26635802; https://doi.org/10.3389/fimmu.2015.00588.

20. Cella M, Facchetti F, Lanzavecchia A, Colonna M. Plasma cytoid dendritic cells cross activate each other and synergize in inducing NK cell cytotoxicity. OncoImmunology 2016; 5:e1227902; PMID:27853652; https://doi.org/10.1016/j.jci.2016.12.008.

21. Idoyaga J, Fiorese C, Zbytnuik L, Lubkin A, Miller J, Malissen B, McIlvain D, Merad M, Steinman RM. Specialized role of migratory dendritic cells in peripheral tolerance induction. J Clin Invest 2013; 123:844-54; PMID:23298832; https://doi.org/10.1172/JCI65200.

22. Steinman RM, Haver J, Nussenzweig MC. Tolerogenic dendritic cells. Annu Rev Immunol 2003; 21:685-711; PMID:12615891; https://doi.org/10.1146/annurev.immunol.21.120601.141040.

23. Fucikova J, Moserova I, Urbanova L, Bezui L, Kepp O, Cremer I, Salek C, Stransd P, Kroemer G, Galluzzi L et al. ProGNostic and Predictive value of DAMPs and DAMP-associated processes in cancer. Front Immunol 2015; 6:588; PMID:26635802; https://doi.org/10.3389/fimmu.2015.00588.

24. Baert T, Garg AD, Vindevogel E, A VANH, Verbist G, Agostinis P, Baert D, Advancing targeted co-stimulation with antibody-fusion proteins by introducing TNF superfamily members in a single-chain format. OncoImmunology 2016; 5:e1238540; PMID:27999756; https://doi.org/10.1038/onci.2016.1238540.

25. Fellermeier S, Beha N, Meyer J-E, Ring S, Bader S, Kontermann RE, Müller D. Advancing targeted co-stimulation with antibody-fusion proteins by introducing TNF superfamily members in a single-chain format. OncoImmunology 2016; 5:e1238540; PMID:27999756; https://doi.org/10.1038/onci.2016.1238540.

26. Garg AD, Dudek AM, Agostinis P. Cancer immunogenicity, danger signals, and DAMPs: What, when, and how? BioFactors 2013; 39:355-67; PMID:23930066; https://doi.org/10.1002/biof.1125.

27. Garg AD, Galluzzi L, Apetoh L, Baert T, Birge RB, Bravo-San Pedro JM, Breckpot K, Brough D, Chaurio R, Cironne M et al. Molecular and translational classifications of DAMPs in immunogenic cell death. Front Immunol 2015; 6:588; PMID:26635802; https://doi.org/10.3389/fimmu.2015.00588.

28. Fucikova J, Moserova I, Urbanova L, Bezui L, Kepp O, Cremer I, Salek C, Stransd P, Kroemer G, Galluzzi L et al. ProGNostic and Predictive value of DAMPs and DAMP-associated processes in cancer. Front Immunol 2015; 6:588; PMID:26635802; https://doi.org/10.3389/fimmu.2015.00402.

29. Land WG, Agostinis P, Gasser S, Garg AD, Linkermann A. DAMP-induced allograft and tumor rejection: The circle is closing. Am J Transplant 2016; 16:3322-37; PMID:27529775; https://doi.org/10.1111/ajt.14012.

30. Land WG, Agostinis P, Gasser S, Garg AD, Linkermann A. Transplantation and damage-associated molecular patterns (DAMPS). Am J Transplant 2016; 16:3322-37; PMID:27529775; https://doi.org/10.1111/ajt.14012.

31. Fucikova J, Moserova I, Urbanova L, Bezui L, Kepp O, Cremer I, Salek C, Stransd P, Kroemer G, Galluzzi L et al. ProGNostic and Predictive value of DAMPs and DAMP-associated processes in cancer. Front Immunol 2015; 6:588; PMID:26635802; https://doi.org/10.3389/fimmu.2015.00402.

32. Land WG, Agostinis P, Gasser S, Garg AD, Linkermann A. DAMP-induced allograft and tumor rejection: The circle is closing. Am J Transplant 2016; 16:3322-37; PMID:27529775; https://doi.org/10.1111/ajt.14012.

33. Land WG, Agostinis P, Gasser S, Garg AD, Linkermann A. DAMP-induced allograft and tumor rejection: The circle is closing. Am J Transplant 2016; 16:3322-37; PMID:27529775; https://doi.org/10.1111/ajt.14012.
42. Steinman RM. Decisions about dendritic cells: Past, present, and future. Annu Rev Immunol 2012; 30:1-22; PMID:22136168; https://doi.org/10.1146/annurev-immunol-031111-102839

51. Hargadon KM. The extent to which melanoma alters tissue-resident dendritic cell function correlates with tumorigenicity. OncoImmunology 2015; 4:e1019197; PMID:26927520; https://doi.org/10.1084/jem.189.3.587

46. Sabado RL, Balan S, Bhardwaj N. Dendritic cell-based immunotherapy: State of the art and beyond. Clinical Immunology. 2016; 4:e1069462; PMID:26942090; https://doi.org/10.1080/10780432.2016.1185583

56. Cornwall SMJ, Wikstrom M, Musk AW, Alvarez J, Nowak AK, Nelson DJ. Human mesothelioma induces defects in dendritic cell numbers and antigen-processing function which predict survival outcomes. OncoImmunology 2016; 5:e1082028; PMID:27057464; https://doi.org/10.1080/2162402X.2015.1082028
71. Nair SK, Snyder D, Rouse BT, Gilboa E. Regression of tumors in mice vaccinated with professional antigen-presenting cells pulsed with tumor extracts. Int J Cancer 1997; 70:706-15; PMID:9096653; https://doi.org/10.1002/(SICI)1097-0215(19970317)70:6<706::AID-IJC3>3.0.CO;2-7
72. DeMatos P, Abdel-Wahab Z, Vervaert C, Hester D, Seigler H. Pulsing of dendritic cells with cell lysates from either B16 melanoma or MCA-106 fibrosarcoma yields equally effective vaccines against B16 tumors in mice. J Surg Oncol 1998; 68:79-91; PMID:9642036; https://doi.org/10.1002/(SICI)1096-9098(199809)68:2<79::AID-IJSO3>3.0.CO;2-H
73. DeMatos P, Abdel-Wahab Z, Vervaert C, Seigler HF. Vaccination with dendritic cells inhibits the growth of hepatic metastases in B6 mice. Cell Immunol 1998; 185:65-74; PMID:9636684; https://doi.org/10.1006/cimm.1998.1277
74. Fields RC, Shimizu K, Mule JJ. Murine dendritic cells pulsed with whole tumor lysates mediate potent antitumor immune responses in vitro and in vivo. Proc Natl Acad Sci U S A 1998; 95:9482-7; PMID:9689106; https://doi.org/10.1073/pnas.95.16.9482
75. Chen Z, Moyana T, Saxena A, Warrington R, Jia Z, Xiang J. Efficient antitumor immunity derived from maturation of dendritic cells that had phagocytosed apoptotic/necrotic tumor cells. Int J Cancer 2001; 93:539-48; PMID:11477558; https://doi.org/10.1002/ijc.1365
76. Pachzesny S, Beranger S, Salzmann JL, Klatzmann D, Colombo BM. Protection of mice against leukemia after vaccination with bone marrow-derived dendritic cells loaded with apoptotic leukemia cells. Cancer Res 2001; 61:2386-9; PMID:11289101
77. Kokhaei P, Choudhury A, Mahdian R, Lundin J, Moshefgheh A, Osterborg A, Mellstedt H. Apoptotic tumor cells are superior to tumor cell lysate, and tumor cell RNA in induction of autologous T cell response in B-CLL. Leukemia 2004; 18:1810-5; PMID:15389206; https://doi.org/10.1038/sj.lie.2103733
78. Kokhaei P, Rezvany MR, Vrizving L, Choudhury A, Rabbani H, Osterborg A, Mellstedt H. Dendritic cells loaded with apoptotic tumour cells induce a stronger T-cell response than dendritic cell/tumour hybrids in B-CLL. Leukemia 2003; 17:894-9; PMID:12757003; https://doi.org/10.1038/sj.leu.2402913
79. Albert ML, Sauter B, Bhardwaj N. Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 1998; 392:86-9; PMID:9510252; https://doi.org/10.1038/312813
80. Albert ML, Pearce SF, Francisco LM, Sauter B, Roy P, Silverstein RL, Bhardwaj N. Immature dendritic cells phagocytose apoptotic cells via alphabeta5 and CD36, and cross-present antigens to cytotoxic T lymphocytes. J Exp Med 1998; 188:1359-68; PMID:9783615; https://doi.org/10.1084/jem.188.7.1359
81. Mayordomo JJ, Zorina T, Storkus WJ, Zitvogel L. Therapy of murine tumors with p53 wild-type and mutant sequence peptide-based vaccines. J Exp Med 1996; 183:1357-65; PMID:8666694; https://doi.org/10.1083/jem.183.4.1357
82. Paglia P, Chiodoni C, Rodolfo M, Colombo MP. Murine dendritic cells loaded in vitro with soluble protein prime cytotoxic T lymphocytes against tumor antigen in vivo. J Exp Med 1996; 183:317-22; PMID:8551239; https://doi.org/10.1083/jem.183.1.317
83. Mackey MF, Gunn JR, Maliszewsky C, Kikutani H, Noelle RJ, Barth RJ Jr. Dendritic cells require maturation via CD40 to generate protective antitumor immunity. J Immunol 1998; 161:2094-8; PMID:9725199
84. Paglia P, Chiodoni C, Rodolfo M, Colombo MP, Lotze MT, Storkus WJ, Therapy of murine tumors with tumor peptide-pulsed dendritic cells: Dependence on T cells, B7 costimulation, and T helper cell 1-associated cytokines. J Exp Med 1996; 183:87-97; PMID:8551248; https://doi.org/10.1084/jem.183.1.87
85. Mayordomo JJ, Zorina T, Storkus WJ, Zitvogel L, Garcia-Prats MD, DeLeo AB, Lotze MT. Bone marrow-derived dendritic cells serve as potent adjuvants for peptide-based antitumor vaccines. Stem Cells 1997; 15;94-103; PMID:9090785; https://doi.org/10.1002/stem.150094
86. Fernandez NC, Lozier A, Flament C, Ricciardi-Castagnoli P, Bellet D, Suter M, Perricaudet M, Tursz T, Maraskovsky E, Zitvogel L. Dendritic cells directly trigger NK cell functions: Cross-talk relevant in innate anti-tumor immune responses in vivo. Nat Med 1999; 5:405-11; PMID:10202929; https://doi.org/10.1038/jem.184.2.465
87. Boczkowski D, Nair SK, Snyder D, Gilboa E. Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo. J Exp Med 1996; 184:465-72; PMID:8760800; https://doi.org/10.1084/jem.184.2.465
88. Ashley DM, Faiola B, Nair S, Hale LP, Bigner DD, Gilboa E. Bone marrow-generated dendritic cells pulsed with tumor extracts or tumor RNA induce antitumor immunity against central nervous system tumors. J Exp Med 1997; 186:1177-82; PMID:9314567; https://doi.org/10.1083/jem.186.7.1177
89. Boczkowski D, Nair SK, Nam JH, Lyerly HK, Gilboa E. Induction of tumor immunity and cytotoxic T lymphocyte responses using dendritic cells transfected with messenger RNA amplified from tumor cells. Cancer Res 2000; 60:1028-34; PMID:10706120
90. Irvine AS, Trinder PK, Laughton DL, Ketteringham H, McDermott RH, Reid SC, Haines AM, Amir A, Hussain R, Doshi R et al. Efficient nonviral transfection of dendritic cells and their use for in vivo immunization. Nat Biotechnol 2000; 18:1273-8; PMID:11101806; https://doi.org/10.1038/sj.leu.2403517
91. Boczkowski D, Nair SK, Trinity PK, Laughton DL, Ketteringham H, McDermott RH, Reid SC, Haines AM, Amir A, Hussain R, Doshi R et al. Efficient nonviral transfection of dendritic cells and their use for in vivo immunization. Nat Biotechnol 2000; 18:1273-8; PMID:11101806; https://doi.org/10.1038/sj.leu.2403517
92. Tuting T, DeLeo AB, Lotze MT, Storkus WJ. Genetically modified bone marrow-derived dendritic cells expressing tumor-associated viral or “self” antigens induce antitumor immunity in vivo. Eur J Immunol 1997; 27:2702-7; PMID:9368829; https://doi.org/10.1002/eji.1830271033
93. Van Wagoner ML, Sauter B, Bhardwaj N. Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 1998; 392:86-9; PMID:9510252; https://doi.org/10.1038/312813
94. Ossevoort MA, Feltpkamp MC, van Veen KJ, Melief CJ, Kast WM, Deleo AB et al. Bone marrow-derived dendritic cells pulsed with synthetic tumor peptides elicit protective and therapeutic antitumor immunity. Nat Med 1995; 1:1297-302; PMID:7489412; https://doi.org/10.1038/nn1295-1297
95. Mayordomo JJ, Loftus DJ, Sakamoto H, De Cesare CM, Appasamy PM, Lotze MT, Storkus WJ, Appella E, DeLeo AB. Therapy of murine tumors with p53 wild-type and mutant sequence peptide-based vaccines. J Exp Med 1996; 183:1357-65; PMID:8666694; https://doi.org/10.1083/jem.183.4.1357
96. Paglia P, Chiodoni C, Rodolfo M, Colombo MP. Murine dendritic cells loaded in vitro with soluble protein prime cytotoxic T lymphocytes against tumor antigen in vivo. J Exp Med 1996; 183:317-22; PMID:8551239; https://doi.org/10.1083/jem.183.1.317
97. Mackey MF, Gunn JR, Maliszewsky C, Kikutani H, Noelle RJ, Barth RJ Jr. Dendritic cells require maturation via CD40 to generate protective antitumor immunity. J Immunol 1998; 161:2094-8; PMID:9725199
1. J Neurosurg 2001; 94:474-81; PMID:11235953; https://doi.org/10.3171/jns.2001.94.3.0474
2. J Exp Med 2004; 205 receptor improves T cell vaccination. J Exp Med 2004; 199:815-24; PMID:15024047; https://doi.org/10.1084/jem.20032220
3. Blood 2005; 106:1278-67:8847-55; PMID:17875726; https://doi.org/10.1158/0008-5472.
4. J Immunol 2007; 179:3371-9; PMID:17709554; https://doi.org/10.4049/jimmunol.170.11.10471
5. J Exp Med 2001; 194:769-79; PMID:11560993; https://doi.org/10.1084/jem.194.6.769
6. J Immunol 2003; 170:3591-7; PMID:12759413; https://doi.org/10.4049/jimmunol.170.11.5391
7. J Immunol 1999; 160:3081-5; PMID:9531260
8. J Immunol 1998; 160:3081-5; PMID:9531260
9. J Immunol 2000; 165:5713-9; PMID:11067929; https://doi.org/10.4099/jimmunol.165.5.5713
10. J Immunol 2002; 165:5516-24; PMID:9820528
11. J Immunol 2002; 162:161-7; PMID:12718934; https://doi.org/10.1016/S0021-2253(03)00009-1
12. J Immunol 2000; 220:1-12; PMID:12718934; https://doi.org/10.1016/S0021-2253(03)00009-1
dendritic cells through DCIR. Blood 2010; 116:1685-97; PMID:20530286; https://doi.org/10.1182/blood-2010-01-249690

129. Cruz LJ, Tacken PJ, Pots JM, Torensma R, Buschow SI, Figdor CG. Comparison of antibodies and carbohydrates to target vaccines to human dendritic cells via DC-SIGN. Biomaterials 2012; 33:4229-39; PMID:22410170; https://doi.org/10.1016/j.biomaterials.2012.02.036

130. Schmidt LJ, Klinenberg LJ, Cruz LJ, Tacken PJ, Tel J, Kreutz M, Adema GI, Brown GD, Figdor CG, de Vries Jj. The C-type lectin receptor CLECA9 mediates antigen uptake and (cross-)presentation by human blood DCDA+ myeloid dendritic cells. Blood 2012; 119:2284-92; PMID:22224694; https://doi.org/10.1182/blood-2011-08-373944

131. Tacken PJ, Ginter W, Berod L, Cruz LJ, Joosten B, Sparwasser T, Figdor CG, Cambi A. Targeting DC-SIGN via its neck region leads to effective vaccine delivery by dendritic cells. J Immunother 2012; 35:198-208; PMID:22460931; https://doi.org/10.1002/jimm.2162402X.2012.02.015

132. Vacchelli E, Aranda F, Bloy N, Brtnicky T, Bob L, Bartunovska K, Spiess R. Human tumor cells killed by anthracyclines induce a tumor-specific immune response. Cancer Res 2011; 71:4821-33; PMID:21602432; https://doi.org/10.1158/0008-5472.CAN-11-0950

133. Ferracin M, d’Addario F, Conforti F, Cutrera I, Neri P, Raposo G, Amigorena S. Molecular characterization of dendritic cell-derived exosomes. Nat Med 1998; 4:594-600; PMID:9585234; https://doi.org/10.1038/nm0598-594

134. Thery C, Regnault A, Garin J, Wolfs J, Zitvogel L, Ricciardi-Castagnoli P, Raposo G, Amigorena S. Molecular characterization of dendritic cell-derived exosomes. Nat Med 1998; 4:594-600; PMID:9585234; https://doi.org/10.1038/nm0598-594

135. Thery C, Regnault A, Garin J, Wolfs J, Zitvogel L, Ricciardi-Castagnoli P, Raposo G, Amigorena S. Characterization of dendritic cell-derived exosomes. Selective accumulation of the heat shock protein hsc73. J Cell Biol 1999; 147:599-610; PMID:10545503; https://doi.org/10.1083/jcb.147.3.599

136. Viala S, Thery C, Ploux S, Tursz T, Lapiere V, Lantz O, Zitvogel L, Chaput N. Dendritic cell-derived exosomes for cancer immunotherapy: What’s next? Cancer Res 2010; 70:1281-5; PMID:20415319; https://doi.org/10.1158/0008-5472.CAN-09-3276

137. Consortium E-T, Van Deun J, Mestdagh P, Agostinis P, Akay O, Anand S, Anckaert J, Martinez ZA, Baetens T, Beghein E et al. EVTRACK: Transparent reporting and centralizing knowledge in extracellular vesicles research. Nat Met 2017; 14:228-32; PMID:28245209; https://doi.org/10.1038/nmeth.4185

138. Besse B, Charrier M, Lapiere V, Dansin E, Lantz O, Planchard D, Le Chevalier T, Livartowski A, Barlesi F, Laplanche A et al. Dendritic cell-derived exosomes as maintenance immunotherapy after first line chemotherapy in NSCLC. OncolImmunology 2016; 5:e1071008; PMID:27141373; https://doi.org/10.1080/2162402X.2015.1071008

139. Liu Y, Gu Y, Cao X. The exosomes in tumor immunity. OncolImmunology 2015; 4:e102742; PMID:26405598; https://doi.org/10.1080/2162402X.2015.1027472

140. Iribarren K, Bloy N, Buqué A, Cremer I, Eggermont A, Friman WH, Fucikova J, Galon J, Spiess R, Zitvogel L et al. Trial watch: Immunostimulation with toll-like receptor agonists in cancer therapy. OncolImmunology 2016; 5:e1088631; PMID:27141345; https://doi.org/10.1080/2162402X.2015.1088631

141. Vacchelli E, Aranda F, Bloy N, Buqué A, Cremer I, Eggermont A, Friman WH, Fucikova J, Galon J, Spiess R et al. Trial Watch—Immunostimulation with cytokines in cancer therapy. OncolImmunology 2016; 5:e1115942; PMID:27057468; https://doi.org/10.1080/2162402X.2015.1115942

142. Fucikova J, Rozkova D, Ulicova H, Budinsky V, Sochorova K, Pokorna K, Bartunovska K, Spiess R. Poly I: C-activated dendritic cells that were generated in CellGiro for use in cancer immunotherapy trials. J Transl Med 2011; 9:223; PMID:22220910; https://doi.org/10.1186/1479-5876-9-223

143. Fucikova J, Králikova P, Falitova A, Brtnicky T, Rob L, Bartunovska K, Spiess R. Human tumor cells killed by anthracyclines induce a tumor-specific immune response. Cancer Res 2011; 71:4821-33; PMID:21602432; https://doi.org/10.1158/0008-5472.CAN-11-0950

144. Bercovici N, Haicheur N, Massicard S, Vernel-Paulic A, Adotevi O, Landais D, Gorin I, Robert C, Prince HM, Grob J et al. Analysis and characterization of antitumor T-cell response after administration of dendritic cells loaded with allogeneic tumor lysate to metastatic melanoma patients. J Immunother 2008; 31:101-12; PMID:18157017; https://doi.org/10.1097/CJI.0b013e318159f5ba

145. Pol J, Bloy N, Buqué A, Eggermont A, Cremer I, Sauter-Fridman C, Galon J, Tartour E, Zitvogel L, Kroemer G et al. Trial Watch: Peptide-based anticancer vaccines. OncolImmunology 2015; 4:e974411; PMID:26137405; https://doi.org/10.4161/2162402X.2014.974411

146. Borch TH, Engell-Noergaard I, Zeeberg Ellebaek E, Met O, Hansen M, Andersen MH, Thor Stratøn P, Svane IM. mRNA-transfected dendritic cell vaccine in combination with metronomic cyclophosphamide as treatment for patients with advanced malignant melanoma. OncolImmunology 2015; 5:e1207842; PMID:27757300; https://doi.org/10.1080/2162402X.2016.1207842

147. Apostolopoulos V, Thalhammer T, Tzakos AG, Stojanovska L. Targeting antigens to dendritic cell receptors for vaccine development. J Drug Deliv 2013; 2013:869718; PMID:24228179; https://doi.org/10.1155/2013/869718

148. Vingert B, Adotevi O, Patin D, Jung S, Shrikant P, Freyburger L, Eppolito C, Sapoznikov A, Amessou M, Quintin-Colonna F et al. The Shiga toxin B-subunit targets antigen in vivo to dendritic cells and elicits anti-tumor immunity. Eur J Immunol. 2006; 36:3300-11; PMID:17088360; https://doi.org/10.1002/eji.200535443

149. Haicheur N, Bismuth E, Bosset A, Spiess R, Warden G, Lacabanne V, Regnault A, Desaymard C, Amigorena S, Ricciardi-Castagnoli P et al. The B subunit of Shiga toxin fused to a tumor antigen elicits CTL and targets dendritic cells to allow MHC class 1-restricted presentation of peptides derived from exogenous antigens. J Immunol 2000; 165:3301-8; PMID:10975847; https://doi.org/10.4049/jimmunol.165.6.3301

150. Copland MJ, Baird MA, Rades T, McKenzie JL, Becker B, Beck F, Tyler PC, Davies NM. Liposomal delivery of antigen to human dendritic cells. Vaccine 2003; 21:883-90; PMID:12547598; https://doi.org/10.1016/S0264-410X(02)00535-4

151. van Broekhoven CL, Parish CR, Demangel C, Britton WJ, Altin JG. Targeting dendritic cells with antigen-containing liposomes: A highly effective procedure for induction of antitumor immunity and for...
Carreno BM, Magrini V, Becker-Hapak M, Kaabinejad S, Hundal J, Petti AA, Ly A, Lie WR, Hildebrand WH, Mardis ER et al. Cancer immunotherapy. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science 2015; 348:803-8; PMID:25837513; https://doi.org/10.1126/science.aaa3828

Garg AD, Vandenberk L, Koks C, Verschuere T, Boon L, Van Gool SW. A dendritic cell vaccine based on immunogenic cell death elicits danger signals and T cell-driven rejection of high-grade glioma. Sci Transl Med 2016; 8:33ra27; PMID:26936504; https://doi.org/10.1126/scitranslmed.aae0105

Ohshio Y, Teramoto K, Hanaoka J, Tezuka N, Itoh Y, Asai T, Daigo Y, Ogasawara K. Cancer-associated fibroblast-targeted strategy enhances antitumor immune responses in dendritic cell-based vaccine. Cancer Sci 2015; 106:134-42; PMID:25843888; https://doi.org/10.1111/cas.12584

Xiang J, Xu L, Gong H, Zhu W, Wang C, Xu J, Feng L, Cheng L, Peng R, Liu Z. Antigen-loaded upconversion nanoparticles for dendritic cell stimulation, tracking, and vaccination in dendritic cell-based immunotherapy. ACS Nano 2015; 9:6401-11; PMID:26028363; https://doi.org/10.1021/acs.nanolett.5b01204

Carmi Y, Spitzer MH, Linde IL, Burt BM, Prestwood TR, Perlman N, Davidson MG, Kenkel JA, Segal E, Pusapati GV et al. Allogeneic IgG combined with dendritic cell stimuli induce antitumor T-cell immunity. Nature 2015; 521:99-104; PMID:25924063; https://doi.org/10.1038/nature14424

Vandenberk L, Garg AD, Verschuere T, Koks C, Belmans J, De Vleeschouwer S, Van Gool SW. Irradiation of necrotic cancer cells, employed for pulsing dendritic cells (DCs), potentiates DC vaccine-induced antitumor immunity against high-grade glioma. Oncoimmunology 2016; 5:e1083669; PMID:27057467; https://doi.org/10.1080/2162402X.2015.1083669

Lu L, Tao H, Chang AE, Hu Y, Shu G, Chen Q, Egenti M, Owen J, Moyer JS, Prince ME et al. Cancer stem cell vaccine inhibits metastases of primary tumors and induces humoral immune responses against cancer stem cells. Oncoimmunology 2015; 4:e990767; https://doi.org/10.1080/2162402X.2015.990767

Jung ID, Shin SJ, Lee MG, Kang TH, Han HD, Lee SJ, Kim WS, Kim HM, Park WS, Kim HW et al. Enhancement of tumor-specific T cell-mediated immunity in dendritic cell-based vaccines by Mycobacterium tuberculosis heat shock protein X. J Immunol 2014; 193:1233-45; PMID:24990079; https://doi.org/10.4049/jimmunol.1400656

Willemsen Y, Van den Bergh JM, Lion E, Anguille S, Roelandts VA, Cannon J, He J, Fu Q, Liu J et al. Phase I trial of active specific immunotherapy with autologous dendritic cells pulsed with autologous irradiated tumor stem cells in hepatitis B-positive patients with hepatocellular carcinoma. J Surg Oncol 2015; 111:862-7; PMID:25873453; https://doi.org/10.1002/jso.23897

Dillman RO, McClay EF, Barth NM, Amatruda TT, Schwartzberg LS, Mahdavi K, de Leon C, Ellis RE, DePriest C. Dendritic versus tumor cell presentation of autologous tumor antigens for active specific immunotherapy in metastatic melanoma: Impact on long-term survival by extent of disease at the time of treatment. Cancer Biother Radiopharm 2015; 30:187-94; PMID:26083950; https://doi.org/10.1089/cbr.2015.1843

Podrazil M, Horvath R, Becth E, Rozkova D, Sochorova K, Hromadkova H, Javorekova J, Vavrova K, Lastovicka J et al. Phase I/II clinical trial of dendritic-cell based immunotherapy (DCVAC/PCa) combined with chemotherapy in patients with metastatic, castration-resistant prostate cancer. Oncotarget 2015; 6:18192-205; PMID:26078335; https://doi.org/10.18632/oncotarget.4145

Zhao P, Bu X, Wei X, Sun W, Xie X, Li C, Guo Q, Zhu D, Wei X, Gao D. Dendritic cell immunotherapy combined with cytokine-induced killer cells promotes skewing toward Th2 cytokine profile in patients with metastatic non-small cell lung cancer. Int Immunopharmacol 2015; 25:450-6; PMID:25698555; https://doi.org/10.1016/j.intimp.2015.02.010

Reker H. [Study and therapy of metastatic castration-resistant prostate cancer: A randomized, double blind, multicenter, parallel-group, phase III study to evaluate efficacy and safety of DCVAC/PCa versus placebo in men with metastatic castration resistant prostate cancer eligible for first line chemotherapy (VIABLE) - AUO study AP 78/]. Urologe A 2015; 54:67-71; PMID:25758238; https://doi.org/10.1007/s00262-014-1638-8

Tsukinaga S, Kajihara M, Takakura K, Ito Z, Kanai T, Saito K, Takami S, Kobayashi H, Matsuyama Y, Ozhara S et al. Prognostic significance of plasma interleukin-6/-8 in pancreatic cancer patients receiving chemotherapy. World J Gastroenterol 2015; 21:11168-78; PMID:26494971; https://doi.org/10.3748/wjg.v21.i39.11168

Qiu Y, Yun MM, Dong X, Xu M, Zhao R, Han X, Zhou E, Yun F, Su L, Liu C et al. Combination of cytokine-induced killer and dendritic cells pulsed with antigenic alpha-1,3 galactosyl epitope-enhanced lymphoma cell membrane for effective B-cell lymphoma immunotherapy. Cytotherapy 2016; 18:91-8; PMID:26549382; https://doi.org/10.1016/j.jcyt.2015.09.012
222. Si Y, Deng Z, Lan G, Du H, Wang Y, Si J, Wei J, Weng J, Qin Y, Wilgenhof S, Corthals J, Van Nuffel AM, Benteyn D, Heirman C, Sakai K, Shimodaira S, Maejima S, Udagawa N, Sano K, Higuchi Y, Bol KF, Mensink HW, Aarntzen EH, Schreibelt G, Keunen JE, Coulie Prue RL, Vari F, Radford KJ, Tong H, Hardy MY, D Lee JH, Lee Y, Lee M, Heo MK, Song JS, Kim KH, Lee H, Yi NJ, Lee e1328341-16

221. Wilgenhof S, Corthals J, Tong K, Hardy MY, D'orozario R, Waterhouse NJ, T. Coleman R, Tracey C et al. A phase I clinical trial of CD1c (BDCA-1+) dendritic cells pulsed with HLA-A*0201 peptides for immunotherapy of metastatic hormonal refractory prostate cancer. J Immunother 2015; 38:71-6; PMID:25658616; https://doi.org/10.1007/s10539-014-0601-5

220. Prue RL, Vari F, Radford KJ, Tong K, Hardy MY, D'orozario R, Waterhouse NJ, T. Coleman R, Tracey C et al. A phase I clinical trial of CD1c (BDCA-1+) dendritic cells pulsed with HLA-A*0201 peptides for immunotherapy of metastatic hormonal refractory prostate cancer. J Immunother 2015; 38:71-6; PMID:25658616; https://doi.org/10.1007/s10539-014-0601-5

219. Sakai K, Shimodaira S, Maejima S, Udagawa N, Sano K, Higuchi Y, Bol KF, Mensink HW, Aarntzen EH, Schreibelt G, Keunen JE, Coulie Prue RL, Vari F, Radford KJ, Tong H, Hardy MY, D Lee JH, Lee Y, Lee M, Heo MK, Song JS, Kim KH, Lee H, Yi NJ, Lee e1328341-16

218. Saito S, Yanagisawa R, Yoshikawa K, Higuchi Y, Koya T, Yoshizawa K, Tanaka M, Sakanishi K, Kobayashi T, Kurata T et al. Safety and tolerability of allogeneic dendritic cell vaccination with induction of Wilms tumor 1-specific T cells in a pediatric donor and pediatric patient with relapsed leukemia: A case report and review of the literature. Cancer Med 2016; 5:613-23; PMID:26928027; https://doi.org/10.1002/cam4.504

217. Yoon JH, Kim HT, Koo H, Park H, Lee Y et al. Sequential infusion of donor-derived dendritic cells with donor lymphocyte infusion for relapsed hematologic cancers after allogeneic hematopoietic stem cell transplantation. T Cancer Immunother 2015; 65:329-37; PMID:26464175; https://doi.org/10.1007/s12935-015-0376-9

216. Saito S, Yanagisawa R, Yoshikawa K, Higuchi Y, Koya T, Yoshizawa K, Tanaka M, Sakanishi K, Kobayashi T, Kurata T et al. Safety and tolerability of allogeneic dendritic cell vaccination with induction of Wilms tumor 1-specific T cells in a pediatric donor and pediatric patient with relapsed leukemia: A case report and review of the literature. Cancer Med 2016; 5:613-23; PMID:26928027; https://doi.org/10.1002/cam4.504

215. Wilgenhof S, Corthals J, Heirman C, van Baren N, Lucas S, Kvistborg P, Thielemans K, Neyns B. Phase II study of autologous monocyte-derived mRNA electroporated dendritic cells (TriMixDC-MEL) plus ipilimumab in patients with pretreated advanced melanoma. J Clin Oncol 2016; 34:1330-8; PMID:26926680; https://doi.org/10.1200/JCO.2015.63.4121

214. van den Hout MF, Sluijter BJ, Santegoets SJ, van Leeuwen PA, van den Tol MP, van den Eertwegh AJ, Schep RJ, de Gruijl TD. Local delivery of CpG-B and GM-CSF induces concerted activation of effector and regulatory T cells in the human melanoma sentinel lymph node. Cancer Immunol Immunother 2016; 65:405-15; PMID:26930577; https://doi.org/10.1007/s00262-016-1811-z

213. Wilgenhof S, Corthals J, Van Nuffel AM, Benteyn D, Heirman C, Bonchill A, Thielemans K, Neyns B. Phase II study of autologous monocyte-derived mRNA electroporated dendritic cells (TriMixDC-MEL) plus ipilimumab in patients with pretreated advanced melanoma. J Clin Oncol 2016; 34:1330-8; PMID:26926680; https://doi.org/10.1200/JCO.2015.63.4121

212. Wilgenhof S, Corthals J, Van Nuffel AM, Benteyn D, Heirman C, Bonchill A, Thielemans K, Neyns B. Phase II study of autologous monocyte-derived mRNA electroporated dendritic cells (TriMixDC-MEL) plus ipilimumab in patients with pretreated advanced melanoma. J Clin Oncol 2016; 34:1330-8; PMID:26926680; https://doi.org/10.1200/JCO.2015.63.4121
236. Tsukinaga S, Kajihara M, Takakura K, Ito Z, Kanai T, Saito K, Takami S, Kobayashi H, Matsumoto Y, Odahara S et al. Prognostic significance of plasma interleukin-6/-8 in pancreatic cancer patients receiving chemoimmunotherapy. World J Gastroenterol 2015; 21:11168-78; PMID:26494971; https://doi.org/10.3748/wjg.v21.i39.11168

237. Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic cell death in cancer therapy. Annu Rev Immunol 2013; 31:51-72; PMID:23157435; https://doi.org/10.1146/annurev-immunol-032712-100008

238. Garg AD, De Ruyscher D, Agostinis P. Immunological metagenome signatures derived from immunogenic cancer cell death associate with improved survival of patients with lung, breast or ovarian malignancies: A large-scale meta-analysis. Oncoimmunology 2016; 5:e1069938; PMID:27057433; https://doi.org/10.1080/2162402X.2015.1069938

239. Bloy N, Pol J, Aranda F, Eggermont A, Cremer I, Fridman WH, Fuciková J, Galon J, Tartour E, Spisek R et al. Trial watch: Dendritic cell-based anticancer therapy. Oncoimmunology 2014; 3:e963424; PMID:25941593; https://doi.org/10.4161/21624011.2014.963424

240. Bol KF, Aarntzen EHJG, Hout FEMit, Schreibelt G, Creemers JHA, Lesterhuis WJ, Gerritsen WR, Grunhagen DJ, Verhoef C, Punt CJ et al. Favorable overall survival in stage III melanoma patients after adjuvant dendritic cell vaccination. Oncoimmunology 2016; 5:e1057673; PMID:26942068; https://doi.org/10.1080/2162402X.2015.1057673

241. Hodges TR, Ferguson SD, Caruso HG, Kohanbash G, Zhou S, Cloughesy TF, Berger MS, Poste GH, Khasraw M, Ba S et al. Prioritization schema for immunotherapy clinical trials in glioblastoma. Oncoimmunology 2016; 5:e1145332; PMID:27471611; https://doi.org/10.1080/2162402X.2016.1145332

242. Gulley JL, Mulders P, Albers P, Banchereau J, Bolla M, Pantel K, Powles T. Perspectives on sipuleucel-T: Its role in the prostate cancer treatment paradigm. Oncoimmunology 2016; 5:e1107698; PMID:27141392; https://doi.org/10.1080/2162402X.2015.1107698

243. Simon S, Vignard V, Florenceau L, Dreno B, Khammari A, Lang F, Labarriere N. PD-1 expression conditions T cell avidity within an antigen-specific repertoire. Oncoimmunology 2016; 5:e1104448; PMID:26942093; https://doi.org/10.1080/2162402X.2015.1104448

244. Chevalier MF, Bobisse S, Costa-Nunes C, Cesson V, Jichlinski P, Speiser DE, Harari A, Courus G, Romero P, Nardelli-Haefliger D et al. High-throughput monitoring of human tumor-specific T-cell responses with large peptide pools. Oncolmmunology 2015; 4:e1029702; PMID:26451296; https://doi.org/10.1080/2162402X.2015.1029702

245. Poschke I, Faryna M, Bergmann F, Flossdorf M, Lauenstein C, Hermes J, Hinz U, Hank T, Ehrenberg R, Volkmar M et al. Identification of a tumor-reactive T-cell repertoire in the immune infiltrate of patients with resectable pancreatic ductal adenocarcinoma. Oncoimmunology 2016; 5:e1240859; PMID:28123878; https://doi.org/10.1080/2162402X.2016.1240859