Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Review

Effects of influenza vaccination on the risk of cardiovascular and respiratory diseases and all-cause mortality

Yangyang Cheng, Xinxi Cao, Zhi Cao, Chenjie Xu, Li Sun, Ying Gao, Yuan Wang, Shu Li, Cunjin Wu, Xin Li, Yaogang Wang, Sean X. Leng

Department of Health Service Management, Tianjin Medical University School of Public Health, Tianjin, China
Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
Department of Geriatric, Second Hospital of Tianjin Medical University, Tianjin, China
Division of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA

ABSTRACT

Keywords: Influenza vaccination Cardiovascular disease Respiratory disease All-cause mortality

Background: Influenza vaccination is a simple strategy recommended for the prevention of influenza infection and its complications. This meta-analysis aimed to provide current supportive evidence for the breadth and validity of the observed protective effects of influenza vaccination on cardiovascular and respiratory adverse outcomes and all-cause mortality in older adults and in general adult population.

Methods: We searched PubMed, Embase, Web of Science, and the Cochrane Library to identify all published studies comparing influenza vaccination with placebo from the database inception to November 11, 2018. These included studies reporting the associations of influenza vaccination with the risk of aforementioned adverse outcomes.

Results: The pooled adjusted relative risks among influenza-vaccinated people relative to unvaccinated people for the outcomes of interest were 0.74 (95% confidence interval [CI] = 0.70 – 0.78) for cardiovascular diseases (63 studies), 0.82 (95% CI = 0.75 – 0.91) for respiratory diseases (29 studies), and 0.57 (95% CI = 0.51 – 0.63) for all-cause mortality (43 studies). We performed subgroup analysis of age, sex, and region/country and found that these protective effects were evident in the general adult population and particularly robust in older adults and in those with pre-existing specific diseases.

Conclusion: Influenza vaccine is associated with a significant risk reduction of cardiovascular and respiratory adverse outcomes as well as all-cause mortality. Such a preventative measure can benefit the general population as well as those in old age and with pre-existing specific diseases.

1. Introduction

Despite significant progress in the advancement of medical and surgical treatment and healthcare delivery, influenza remains to be a cause of significant morbidity and mortality. According to the World Health Organization (WHO), up to 650,000 people die from influenza infection worldwide each year (Organization, 2014). Influenza also causes tremendous loss of productivity and economic burden. For example, in 2015, influenza-related direct medical costs topped $3.2 billion while lost earnings and productivity for adults reached $8 billion in the US (Putri et al., 2018).

Older adults are particularly vulnerable to influenza infection and its complications. In fact, over 90% influenza-related mortality occur in adults aged 65 years and older (Simonsen et al., 2005; Thompson et al., 2009). This is likely because of the multifaceted immune system re-modeling during aging, leading to immune functional decline in older adults, or immunosenescence (Nikolich-Zugich, 2018). The aging immune system also manifests a chronic low-grade inflammatory phenotype (CLIP) or inflamaging that has been implicated in the pathogenesis of almost all age-related chronic conditions including those in the cardiovascular and respiratory systems (Chen et al., 2019; Franceschi et al., 2000). This increased vulnerability to respiratory...
infections is further demonstrated by the ongoing coronavirus disease 2019 (COVID-19) pandemic as older adults suffer disproportionately high rate of severe COVID-19 disease and deaths (Salje and Tran Kiem, 2020; Zhou et al., 2020). While the underlying mechanism for this COVID-19 susceptibility is not known at the present time, CLIP or inflamming is hypothesized to play an important role (Bonafè et al., 2020). Older adults with chronic diseases are particularly at higher risk for influenza infection and its complications and, in turn, influenza infection may worsen their chronic conditions (Sanei and Wilkinson, 2016).

Influenza vaccination has been approved as a simple protective strategy for reducing influenza and its complications (Grohskopf et al., 2016; Wang et al., 2018). It is considered the most effective measure for the prevention of influenza. Especially in the elderly, influenza vaccination has been shown to halve the incidence of serological and clinical influenza (in periods of antigenic drift) (Govaert et al., 1994). Previous studies indicated that influenza vaccination is associated with a significant reduction in respiratory diseases, including influenza and secondary pneumonia (Gross et al., 1995; Nichol et al., 1994; Wang et al., 2002), exacerbation of chronic lung disease (Nichol et al., 1999) including chronic obstructive pulmonary disease (COPD) (Kopsaftis et al., 2018) and acute episodes of asthma (Vasileiou et al., 2017). In recent years, growing attention has turned to cardiovascular diseases, as influenza vaccination has been linked to a significant risk reduction for cardiovascular diseases like stroke (Christiansen et al., 2019; Smeeth et al., 2004), acute coronary syndrome (ACS) (Phrommintonkul et al., 2011; Sung et al., 2014), heart failure (Christiansen et al., 2019; Vardeny et al., 2016), and myocardial infarction (Christiansen et al., 2019; Naghavi et al., 2000; Smeeth et al., 2004). Influenza vaccination is also associated with a significant reduction in mortality in adults aged 65 years and older. In one study after adjusting for age, sex, and risk status, influenza vaccination was found to be associated with a 44% reduction in all-cause mortality (Wang et al., 2007).

However, comprehensive analyses of the data available in the literature that are supportive of protective effects of influenza vaccination beyond influenza prevention in the general population as well as those in old age and with comorbidities are few and far between. Therefore, the objective of this study was to conduct an in-depth synthesis of the available data addressing the breadth and validity of the reported protective effects of influenza vaccination against cardiovascular and respiratory adverse outcomes and all-cause mortality in adults. To this end, we have conducted a meta-analysis of the evidence across existing studies.

2. Methods

2.1. Search strategy

We searched PubMed, Embase, Web of Science, and the Cochrane Library to identify all published studies comparing influenza vaccination with placebo from the database inception to November 11, 2018 and limited the search to English-language papers. The search used key terms, including influenza, influenza vaccination, cohort, case control and randomized controlled trial (RCT).

2.2. Inclusion and exclusion criteria

Our study inclusion criteria were (i) reporting the association between influenza vaccination and cardiovascular diseases, respiratory diseases, and all-cause mortality risk in adults; (ii) comparing an influenza-vaccinated group with an unvaccinated control group; (iii) all RCTs, observational studies, cohort studies (including prospective, retrospective and ambispective cohort studies), and case-control studies; (iv) published in English; (v) results reporting adjusted measures of association (e.g., hazard ratio, risk ratio, or odds ratio) and their 95% confidence intervals (CIs).

We excluded studies that included children, adolescents or pregnant women; studies that measured adverse events like narcolepsy or Guillain-Barre Syndrome after taking influenza vaccination; as well as case series (including self-controlled case series), case reports, reviews, and commentaries. Additionally, studies with incomplete data or duplicate publications were excluded.

2.3. Data extraction and quality assessment

Two investigators (YYC and XXC) extracted data independently, and any disagreement was resolved by consensus or consultation with a third author (ZC). For each study, we collected the first author, journal, year of publication, study design, sample size, population demographics (including study region/country, number of males, and mean age or age range), the number of vaccinated subjects, outcomes, and fully adjusted measures of association with the corresponding 95% CIs.

The Newcastle-Ottawa Scale (NOS) was designed for the evaluation of case-control and cohort studies (http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp). The quality of each study was graded as good, fair, or poor. To be rated as good, studies needed to meet all the criteria. A study was rated as poor when one or more domains were assessed as having a serious flaw. Studies that met some but not all of the criteria were rated as fair quality. Trail quality was determined as high quality by the Cochrane criteria if at least the first 3 criteria were accounted for, or otherwise of uncertain risk of material bias. Any disagreements or discrepancies regarding study selection, data extraction, and quality assessment were resolved by consensus. The Cochrane Collaboration was employed to evaluate the quality of each RCT (Higgins et al., 2011).

2.4. Outcomes measures, data synthesis and analysis

Outcomes measures for this meta-analysis included overall or composite cardiovascular outcomes and respiratory diseases as well as all-cause mortality. According to the disease outcome extracted from the original studies, the cardiovascular outcomes were further evaluated as individual conditions including stroke, myocardial infarction, ACS, heart failure, ischemic heart disease (IHD), major adverse cardiovascular events (MACEs), cardiovascular mortality, and unspecified heart disease. Similarly, respiratory outcomes were further evaluated as individual conditions, such as COPD, asthma, pneumonia, respiratory failure, respiratory infection, respiratory mortality, and unspecified respiratory disease.

We used a random-effects model to estimate the effect of the influenza vaccination. For each outcome measure of interest, we pooled the confounder-adjusted HR/OR/RR and used the Cochran’s Q chi-square test and I^2 statistic to assess the heterogeneity. Subgroup analyses and sensitivity analyses were performed to assess the associations found by selected studies with risks for cardiovascular diseases, respiratory diseases, and all-cause mortality, including age, sex, seasonality, pre-existing specific diseases (e.g., cardiovascular diseases, chronic kidney, COPD, etc.), and region/country. Finally, a funnel plot and Egger’s rank were used to evaluate the publication bias. All statistical procedures used a two-sided significance level of 0.05 and were conducted by Stata v.15.0.

3. Results

3.1. Identification of the studies included in this meta-analysis

Fig. 1 showed a flow diagram for the identification of studies included in this meta-analysis. First, our initial search yielded a total of 53,830 articles, 33,560 articles were included after the removal of duplicates. After screening the titles and abstracts, 33,078 records were excluded because the studies did not meet the selection criteria (e.g., no related outcome [n = 14,657], influenza, not vaccination [n =
11,895], vaccination not our aim [n = 4834], comment/reply/letter [n = 284], subjects not human [n = 205], and meta-analysis [n = 1203]. Full-text articles were assessed for eligibility, 408 records were excluded because they included children or pregnant women [n = 53], did not involve influenza vaccination [n = 80], were conference abstracts [n = 30], or presented outcomes not related to our aim [n = 245]. Finally, we were left with 74 articles (including 75 studies) relevant for our meta-analysis. Among them, 47 were observational cohort studies, 22 were case–control studies, and 6 were RCTs.

3.2. Characteristics of included studies and quality assessment

Table 1 showed the details of the included articles. These articles were published between 1999 and 2018. The sample size of the included studies ranges from 60 to 2,244,594 participants. Among the included studies, one study was performed in the Europe, two were multi-national, and others were conducted in individual countries or regions. Among the latter, eleven were in the United States, three in Argentina, two in Canada, one in Germany, three in China-Hong Kong, three in Israel, one in Italy, three in Japan, three in the Netherlands, two in Poland, one in Saudi Arabia, seven in Spain, two in Sweden, twenty in China-Taiwan, two in Thailand, one in Turkey, and five in the United Kingdom. Some of these studies [n = 63] examined mainly outcomes related to cardiovascular diseases, such as stroke, myocardial infarction, ACS, heart failure, IHD, MACEs, cardiovascular mortality, and unspecified heart disease. Others mainly examined all-cause mortality [n = 43] or respiratory diseases [n = 34] including COPD, asthma, pneumonia, respiratory failure, respiratory infection, respiratory mortality, and unspecified respiratory disease.

Of the 47 cohort studies, 23 were good quality, 19 were fair quality and 5 were poor quality; of the 22 case–control studies, 8 were good quality, 11 were fair quality and 3 were poor quality (details in Supplement Table A).

3.3. Cardiovascular diseases

Influenza vaccination was associated with lower risk of adverse cardiovascular outcomes overall, with a relative risk of 0.74 (95% CI = 0.70 – 0.78; Table 2 and Fig. 2). When stratified by specific cardiovascular conditions, the results showed that influenza vaccination was associated with reduced risk of stroke (RR = 0.80, 95% CI = 0.72 – 0.88), myocardial infarction (RR = 0.81, 95% CI = 0.76 – 0.86), ACS (RR = 0.44, 95% CI = 0.32 – 0.60), heart failure (RR = 0.60, 95% CI = 0.44 – 0.83), IHD (RR = 0.83, 95% CI = 0.77 – 0.90), MACEs (RR = 0.71, 95% CI = 0.62 – 0.82), and cardiovascular mortality (RR = 0.78, 95% CI = 0.65 – 0.94).

In the subgroup analyses, most associations between influenza vaccination and cardiovascular risk reduction remained robust, while some were not significant. There were significant differences in the subgroup analyses according to the presence or absence of pre-existing specific diseases. Individuals with pre-existing diseases had a lower risk of 0.62 (95% CI = 0.54 – 0.72), while individuals without them had a risk of 0.83 (95% CI = 0.80 – 0.86; Table 3).

3.4. Respiratory diseases

Influenza vaccination was also associated with lower risk of adverse respiratory outcomes overall, with a relative risk of 0.82 (95% CI = 0.75 – 0.91; Table 2 and Fig. 3). Regarding specific respiratory diseases, there were no statistically significant differences for COPD (RR = 0.82, 95% CI = 0.47 – 1.43), unspecific respiratory diseases (RR = 1.00, 95% CI = 0.90 – 1.11), respiratory failure (RR = 0.62, 95% CI =
Table 1
Details of the studies included in this meta-analysis.

Study (year)	Trial design	Study area, country	Sample size (total)	Sample size (man)	Vaccination (Yes)	Age (years)	Follow-up time	Specific disease	Outcome measured
(Chen et al., 2016)	Cohort	China-Taiwan	4406	1835	2206	70	9 years	Chronic Kidney Disease	ACS
(Lavallée et al., 2014)	Cohort	Multinational	10,108	6083	5054	70	—	Recent ischemic stroke or TIA	MACEs, Myocardial infarction, Stroke
(Johnstone et al., 2012)	Cohort	Multinational	31,546	18,278	12,241	≥ 55	6 months-5.5 years	Vasculardisease	MACEs
(Hu et al., 2013)	Cohort	China-Taiwan	29,178	14,581	7613	All ages	8 years	COPD	IHD
(Kao et al., 2017)	Cohort	China-Taiwan	5670	3470	2547	73.39 ± 9.65	8 years	Atrial fibrillation	Stroke
(Jia et al., 2012)	Cohort	China-Taiwan	1964	111	501	≥ 50	8 years	Acute heart failure	All-cause mortality
(Hev et al., 2016)	Cohort	China-Taiwan	202,058	101,746	93,051	≥ 65	64 weeks	Pneumonia, COPD, Asthma, Stroke, BID, Myocardial infarction, Heart failure, All-cause mortality	
(Jin et al., 2019)	Cohort	China-Taiwan	202,058	—	93,051	≥ 65	—	—	—
(Chen et al., 2013)	Cohort	China-Taiwan	25,609	13,860	3345	≥ 55	12 months	COPD	IHD
(Arriola et al., 2017)	Cohort	US	16,284	7450	8142	≥ 75	1 year	Hospitalization of influenza	Heart failure, Cardiovascular mortality
(Kaya et al., 2017)	Cohort	Turkey	656	473	265	62 ± 13	15 ± 6 months	Heart failure	Heart failure, Cardiovascular mortality
(Tay et al., 2016)	Cohort	Thailand	2,244,594	770,913	874,221	51.5 ± 18.7	6 months	Respiratory infection	Pneumonia
(Chang et al., 2018)	Cohort	China-Taiwan	16,284	7450	8142	≥ 75	1 year	All-cause mortality	Pneumonia
(Christensen et al., 2019)	Cohort	Sweden	163,931	134,045	75	≥ 65	12 months	All-cause mortality	Respiratory infection, Pneumonia, COPD, Heart failure
(Li et al., 2018)	Cohort	China-Taiwan	8080	4596	4434	≥ 20	9 years	Chronic hepatitis B virus infection	Heart disease, Respiratory failure, All-cause mortality
(Herag et al., 2019)	Cohort	US	12,566	5899	8479	≥ 65	1 year	—	All-cause mortality
(Landi et al., 2020)	Cohort	Italy	2082	837	1245	78.8 ± 9.5	12 months	—	All-cause mortality

(continued on next page)
Study	Trial design	Study area, country	Sample size (total)	Sample size (man)	Vaccination (Yes)	Age (years)	Follow-up time	Specific disease	Outcome measured	
Armstrong et al., 2004	Cohort	UK	24,535	—	—	≥75	4 years	—	All-cause mortality, Cardiovascular mortality, Respiratory mortality, Stroke, Myocardial infarction	—
Voordouw et al., 2004	Cohort	Netherlands	26,071	15,131	11,759	≥65	6 years	—	All-cause mortality, Cardiovascular mortality, Respiratory mortality	—
Vila-Córcoles et al., 2008	Cohort	Spain	1298	960	836	75.4±6.9	40 months	COPD	All-cause mortality	—
de Diego et al., 2009	Cohort	Spain	1340	635	860	76.2±7.1	3 years and 3 months	CHD	All-cause mortality	—
Li et al., 2012	Cohort	China-Taiwan	5048	2793	2750	Non-vaccinated: 75.7±7.0 Vaccinated: 74.8±6.3	4 years	IHD	All-cause mortality, Cardiovascular diseases	—
Chan et al., 2013	Cohort	China-Hong Kong	1859	634	1214	Non-vaccinated: 85.8±7.9 Vaccinated: 85.8±7.5	1 year	—	All-cause mortality, Pneumonia mortality	—
Mahamat et al., 2013	Cohort	France	43,818	13,562	18,671	>65	1 year	—	All-cause mortality	—
Li et al., 2014	Cohort	China-Taiwan	5063	2370	3393	—	1 year	—	All-cause mortality, Respiratory diseases	—
Castilla et al., 2015	Cohort	Spain	208,296	—	112,480	≥65	5 months	—	All-cause mortality	—
Chan et al., 2016	Cohort	China-Taiwan	10,125	1172	1750	>18	1 year	—	Systemic Lupus Erythematosus, Pneumonia, Heart disease, All-cause mortality	—
Gurfinkel and de la Fuente, 2004	RCT	Argentina	301	126	175	>21	2 years	ACS	Myocardial Infarction/PCI	—
Gurfinkel et al., 2002	RCT	Argentina	301	126	175	>21	6 months	—	Myocardial Infarction/PCI	—
Gurfinkel et al., 2004	RCT	Argentina	292	126	176	>21	1 year	—	Myocardial Infarction/PCI	—
Siscovick et al., 2000	Case-control	US	891	713	255	25−74	6 years	—	Cardiac arrest	—
Graue et al., 2005	Case-control	Germany	740	510	230	>21	1 year	—	Myocardial Infarction/PCI	—
Siriwardena et al., 2010	Case-control	UK	78,706	30,339	18,575	≥40	—	—	Myocardial infarction	—
Huan et al., 2017	Case-control	China-Taiwan	19,788	11,574	6226	≥45	≥5 years or until date of death	COPD	Respiratory failure, Stroke, TIA	—
Tsai et al., 2007	Case-control	Taiwan	1729	906	867	72.9±6.1	1 year	—	Respiratory infection, Stroke, TIA	—
Heffelfinger et al., 2006	Case-control	US	2485	819	1666	>21	1 year	—	Myocardial Infarction/PCI	—
Yokomichi et al., 2014	Case-control	Japan	150	116	52	≥18	—	Myocardial Infarction/PCI	—	
Bond et al., 2012	Case-control	US	20,220	9494	10,726	≥21	1 year	—	Myocardial Infarction/PCI	—
Chang et al., 2016	Case-control	China-Taiwan	56,870	31,539	16,431	>21	1 year	—	Myocardial Infarction/PCI	—
Chan et al., 2017	Case-control	China-Taiwan	160,726	89,474	71,252	≥21	1 year	—	Myocardial Infarction/PCI, Stroke, Myocardial infarction, Stroke	—
Lavallee et al., 2002	Case-control	France	270	168	102	>21	1 year	—	Myocardial Infarction/PCI	—
Li et al., 2019	Case-control	US	534	279	325	>21	1 year	—	Myocardial Infarction/PCI	—
Table 1 (continued)

Study	Trial design	Study area, country	Sample size (total)	Sample size (man)	Vaccination (Yes)	Age (years)	Follow-up time	Specific-disease	Outcome measured
(Naghavi et al., 2000)	Case-control	US	218	137	123	cases:62.9 ± 11.9 controls:64.6 ± 13.5	—	CHD	Myocardial infarction
(Piñol-Ripoll et al., 2008)	Case-control	Spain	794	426	311	cases:73.48 ± 11.45 controls:73.18 ± 10.08	—	Chronic Bronchitis and Acute Infections	Stroke
(Siriwardena et al., 2014)	Case-control	UK	94,022	45,168	7021	≥ 18	—	—	Stroke, TIA
(Ting et al., 2011)	Case-control	UK	586	380	293	68	—	COPD	COPD
(Razavi et al., 2005)	Case-control	Saudi Arabia	51,100	—	17,565	—	—	Respiratory diseases	
(Kondo et al., 2015)	Case-control	Japan	60	33	18	≥ 65	—	—	Pneumonia
(Washio et al., 2016)	Case-control	Japan	160	98	74	≥ 65	—	—	Pneumonia
(Jordan et al., 2007)	Case-control	UK	796	—	591	≥ 65	—	Acute respiratory illness	Respiratory diseases
(Puig-Barberà et al., 2007)	Case-control	Spain	1301	—	971	≥ 65	—	—	ACS, Stroke, Pneumonia

RCT: randomized controlled trial; COPD: Chronic Obstructive Pulmonary Disease; HBV: Hepatitis B Virus; ACS: Acute Coronary Syndrome; TIA: Transient Ischemic Attack; MACEs: Major Adverse Cardiovascular Events; IHD: Ischemic Heart Disease; PCI: Percutaneous Coronary Intervention.

“—” represented data not available.
Our results indicated that influenza vaccination had protective effects as well as RCTs evaluating potential impact of influenza vaccination on severe cardiovascular and respiratory outcomes and all-cause mortality. Our results indicated that influenza vaccination had protective effects against morbidity and mortality of cardiovascular diseases (RR = 0.74, 95 % CI = 0.70–0.78) and respiratory diseases (RR = 0.82, 95 % CI = 0.75–0.91) as well as all-cause mortality (RR = 0.57, 95 % CI = 0.51–0.63). Subgroup analyses showed that those effects of influenza vaccination were evident in the general population as well as in older adults and those with pre-existing specific diseases.

The results on composite and specific cardiovascular adverse outcomes are consistent with two meta-analyses of RCTs that demonstrate significant association between influenza vaccination and a lower risk of major adverse cardiovascular events (Clar et al., 2015; Udell et al., 2013), with a more pronounced effect in high-risk patients with recent coronary artery disease (Udell et al., 2013). In patients with heart failure, influenza vaccination in the previous year has been shown to reduce the risk of mortality and hospitalization (Fukuta et al., 2019; Poudel et al., 2019; Rodrigues et al., 2020). Influenza vaccination is also reported to reduce the risk of stroke (Lee et al., 2017; Smeeth et al., 2004; Tsivgoulis et al., 2018).

The underlying mechanisms for the observed protective effects of influenza vaccination against cardiovascular adverse events (and all-cause mortality) are likely complex and yet to be elucidated. However, several hypotheses have been proposed. First, respiratory infections including influenza can acutely increase cardiac and pulmonary workload and burden and, thus, trigger acute cardiovascular events, particularly in individuals with existing clinical or subclinical atherosclerosis or coronary artery disease. As such, by virtue of infection prevention, influenza vaccination provides cardiovascular protection. While this is a plausible mechanism, it cannot account for the effect size of cardiovascular protective effects from influenza vaccination, particularly during mild influenza seasons. Immune modulation on chronic inflammation, i.e., aforementioned age-related CLIP or inflammaging, has also been proposed as an attractive underlying mechanism. This is because age-related CLIP or inflammaging is known to play an important role in the development of atherosclerosis, coronary artery disease, and stroke (Chen et al., 2019; Elkind, 2009; Ferrucci and Fabbri, 2018). Acutely, influenza infection can cause local and systemic inflammatory response (Madjid et al., 2007) that can adversely impact plaque stability, leading to plaque rupture and acute cardiovascular events (Barnett, 2019). Therefore, annual influenza vaccination may prevent or delay the development or progression of atherosclerosis through its immune modulation of age-related CLIP or inflammaging for the long term and prevent adverse cardiovascular events acutely through its regulation on influenza-induced inflammatory response. By extension of the latter, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes acute systemic inflammatory response or “cytokine storm” in severe COVID-19 (Moore and June, 2020). Whether influenza vaccination could regulate such cytokine storm and mitigate

Table 2

Characteristics and main findings from the studies reporting pertinent outcomes.

Outcomes	No. of studies	Relative risk (95 % CI)	P value	I² (%)	Tau-squared	Egger's test
Cardiovascular diseases	63	0.74 (0.70 – 0.78)	0.000	88.2	0.025	0.013
Stroke	15	0.80 (0.72 – 0.88)	0.000	89.9	0.024	
Myocardial infarction	10	0.81 (0.76 – 0.86)	0.161	31.0	0.092	
Acute coronary syndrome	4	0.44 (0.32 – 0.60)	0.002	79.2	0.066	
Heart failure	8	0.60 (0.44 – 0.83)	0.000	93.5	0.172	
Ischemic heart disease	4	0.83 (0.77 – 0.90)	0.000	0.0	0.000	
MACIs	9	0.71 (0.62 – 0.82)	0.000	83.7	0.029	
Cardiovascular mortality	7	0.78 (0.65 – 0.94)	0.129	39.3	0.021	
Unspecific heart disease	3	0.74 (0.52 – 1.05)	0.009	78.7	0.064	
Respiratory diseases	34	0.82 (0.75 – 0.91)	0.000	85.7	0.052	0.971
COPD	3	0.82 (0.47 – 1.43)	0.002	83.6	0.194	
Pneumonia	15	0.79 (0.65 – 0.95)	0.000	86.0	0.078	
Respiratory failure	3	0.62 (0.38 – 1.00)	0.000	91.5	0.158	
Respiratory infection	2	0.95 (0.82 – 1.09)	0.085	66.3	0.007	
Respiratory mortality	6	0.79 (0.67 – 0.92)	0.016	64.3	0.022	
Unspecific respiratory diseases	4	1.00 (0.90 – 1.11)	0.269	23.6	0.003	
All-cause mortality	43	0.57 (0.51 – 0.63)	0.000	93.6	0.090	0.235
Fig. 2. Forest plot of incident cardiovascular diseases associated with influenza vaccination.
The present study is that we used influenza vaccination as our keyword and did not limit the outcomes, enabling us to increase the chance of detecting all outcomes. Our study has several limitations. First, heterogeneity was evident within individual outcome endpoints. We only performed subgroup analyses according to age, sex, study design, study country or region, and pre-existing specific disease. Second, given the lack of more detailed study parameters such as the type or dose of influenza vaccine administered, we were unable to examine other factors.

Most previous studies have focused on one specific outcome or patient population with a specific disease. A major strength of the present study is that we used influenza vaccination as our keyword and did not limit the outcomes, enabling us to increase the chance of detecting all outcomes. Our study has several limitations. First, heterogeneity was evident within individual outcome endpoints. We only performed subgroup analyses according to age, sex, study design, study country or region, and pre-existing specific disease. Second, given the lack of more detailed study parameters such as the type or dose of influenza vaccine administered, we were unable to examine other factors.
that can potentially account for the observed heterogeneity. Third we extracted the adjusted estimates (OR/RR/HR), but were unable to convert them into a unified format. Finally, as the funnel plot revealed an apparent asymmetry, there are potential publication bias, language bias, and potential risk of inflated estimates by a flawed methodological design in smaller studies and/or a lack of publication of small trials with opposite results. Despite of these limitations, findings from this comprehensive and in-depth meta-analysis suggest significant protective effects of influenza vaccination against cardiovascular and respiratory adverse outcomes as well as all-cause mortality. They also provide strong evidence to support and promote influenza vaccination coverage. In the US, influenza vaccination coverage in the general adult population remains suboptimal (Ji et al., 2019) and the National Institute of Allergy and Infectious Disease (NIAID) of NIH has launch the universal influenza vaccine initiative (Paules et al., 2017). The situation in China is even more concerning as a national survey conducted from 2004 to 2014 reported vaccination coverage in China as low as 1.5–2% (Yan et al., 2016). Therefore, efforts for promoting vaccination coverage (Li and Leng, 2020) and evidence supporting such efforts have profound public health implications, particularly in the era of the ongoing COVID-19 pandemic.

![Fig. 3. Forest plot of incident respiratory diseases associated with influenza vaccination.](image-url)
5. Conclusion

This meta-analysis provides comprehensive summary and synthesis of existing evidence supportive of significant associations between influenza vaccination and reduced risks for cardiovascular diseases and respiratory adverse outcomes as well as all-cause mortality. These beneficial associations are evident not only in older adults and individuals with pre-existing conditions, but also in the general adult population across different countries and regions, indicating the generalizability. The findings also point out the need for more RCTs to further evaluate and confirm the beneficial health effects of influenza vaccination on respiratory health and other important health outcomes beyond influenza prevention. They also provide supportive evidence for promoting influenza vaccination coverage with significant public health implications, particularly in the era of the ongoing COVID-19 pandemic.

Funding

This study was funded by the National Natural Science Foundation of China (NSFC, Grant No. 71910107004, 91746205) to YGW, National Institutes of Health (NIH) of USA (R01 AI108907, R21 AG059742, and U54 AG062333) to SXL, Irma and Paul Milstein Program for Senior Health fellowship award to CJW and funding from Milstein Medical Asian American Partnership (MMAAP) Foundation of USA (www.mmaapf.org) to SXL.

Declaration of Competing Interest

We declare no competing interests.
Appendix A. Supplementary data can be found at the online version, at doi:https://doi.org/10.1016/j.arr.2020.101124.

References
Armstrong, B.G., Mangtani, P., Fletcher, A., Kovats, S., McMichael, A., Pattenden, S., Wilkinson, P., 2004. Effect of influenza vaccination on excess deaths occurring during periods of high circulation of influenza: cohort study in elderly people. BMJ 329, 660.
Arroll, B., Garg, S., Anderson, E.J., Ryan, P.A., Neunert, C.E., Grant, S., Reilly, A., Aitken, A., Boag, J., Beaton, S., Bennett, A., Begg, W., Beighton, P., Berger, M., Berntzen, B., Bernstein, R., Beighton, P., 2004. A randomized double-blind placebo-controlled trial. JAMA 272, 1661-1665.
Grunau, A.J., Fischer, B., Barth, C., Ling, P., Lichy, C., Buggel, F., 2005. Influenza vacci- nation is associated with a reduced risk of stroke. Stroke 36, 1301-1306.
Grau, A.K., Sokolow, L.Z., Broder, K.R., Olsen, S.J., Karron, R.A., Jernigan, D.B., Breshe, J.S., 2016. Prevention and control of seasonal influenza with vaccines. MMWR Recomm. Rep. 65, 1-54.
Gross, A.A., Hormogenes, A.W., Sacks, H.S., Lau, J., Levandowski, R.A., 1995. The efficacy of influenza vaccine in elderly persons. A meta-analysis and review of the literature. Ann. Intern. Med. 123, 518-527.
Gurfinkel, E.P., de la Fuente, R.L., 2004. Two-year follow-up of the FLUvaccination acute coronary syndromes (FLUvACS) registry. Heart. 85, 38-32.
Gurfinkel, E.P., de la Fuente, R.L., Mendez, O., Baum, J., 2002. Flu vaccine pilot study in acute coronary syndromes and planned percutaneous coronary interven- tions: the FLUVAccination Acute Coronary Syndromes (FLUvACS) Study. Circulation 105, 214-217.
G deliver,. A.J., Fischer,. B., Barth,. C., Ling,. P., Lichy,. C., Buggel,. F., 2005. Influenza vacci- nation is associated with a reduced risk of stroke. Stroke 36, 1301-1306.
Grau, A.K., Sokolow, L.Z., Broder, K.R., Olsen, S.J., Karron, R.A., Jernigan, D.B., Breshe, J.S., 2016. Prevention and control of seasonal influenza with vaccines. MMWR Recomm. Rep. 65, 1-54.
Gross, A.A., Hormogenes, A.W., Sacks, H.S., Lau, J., Levandowski, R.A., 1995. The efficacy of influenza vaccine in elderly persons. A meta-analysis and review of the literature. Ann. Intern. Med. 123, 518-527.
Gurfinkel, E.P., de la Fuente, R.L., 2004. Two-year follow-up of the FLUvaccination acute coronary syndromes (FLUvACS) registry. Heart. 85, 38-32.
Gurfinkel, E.P., de la Fuente, R.L., Mendez, O., Baum, J., 2002. Flu vaccine pilot study in acute coronary syndromes and planned percutaneous coronary interven- tions: the FLUVAccination Acute Coronary Syndromes (FLUvACS) Study. Circulation 105, 214-217.
Gurfinkel, E.P., de la Fuente, R.L., Mendez, O., Baum, J., 2002. Flu vaccine pilot study in acute coronary syndromes and planned percutaneous coronary interven- tions: the FLUVAccination Acute Coronary Syndromes (FLUvACS) Study. Circulation 105, 214-217.
Gurfinkel, E.P., de la Fuente, R.L., Mendez, O., Baum, J., 2002. Flu vaccine pilot study in acute coronary syndromes and planned percutaneous coronary interven- tions: the FLUVAccination Acute Coronary Syndromes (FLUvACS) Study. Circulation 105, 214-217.
Gurfinkel, E.P., de la Fuente, R.L., Mendez, O., Baum, J., 2002. Flu vaccine pilot study in acute coronary syndromes and planned percutaneous coronary interven- tions: the FLUVAccination Acute Coronary Syndromes (FLUvACS) Study. Circulation 105, 214-217.
Gurfinkel, E.P., de la Fuente, R.L., Mendez, O., Baum, J., 2002. Flu vaccine pilot study in acute coronary syndromes and planned percutaneous coronary interven- tions: the FLUVAccination Acute Coronary Syndromes (FLUvACS) Study. Circulation 105, 214-217.
Gurfinkel, E.P., de la Fuente, R.L., Mendez, O., Baum, J., 2002. Flu vaccine pilot study in acute coronary syndromes and planned percutaneous coronary interven- tions: the FLUVAccination Acute Coronary Syndromes (FLUvACS) Study. Circulation 105, 214-217.
Gurfinkel, E.P., de la Fuente, R.L., Mendez, O., Baum, J., 2002. Flu vaccine pilot study in acute coronary syndromes and planned percutaneous coronary interven- tions: the FLUVAccination Acute Coronary Syndromes (FLUvACS) Study. Circulation 105, 214-217.
Gurfinkel, E.P., de la Fuente, R.L., Mendez, O., Baum, J., 2002. Flu vaccine pilot study in acute coronary syndromes and planned percutaneous coronary interven- tions: the FLUVAccination Acute Coronary Syndromes (FLUvACS) Study. Circulation 105, 214-217.
Gurfinkel, E.P., de la Fuente, R.L., Mendez, O., Baum, J., 2002. Flu vaccine pilot study in acute coronary syndromes and planned percutaneous coronary interven- tions: the FLUVAccination Acute Coronary Syndromes (FLUvACS) Study. Circulation 105, 214-217.
Gurfinkel, E.P., de la Fuente, R.L., Mendez, O., Baum, J., 2002. Flu vaccine pilot study in acute coronary syndromes and planned percutaneous coronary interven- tions: the FLUVAccination Acute Coronary Syndromes (FLUvACS) Study. Circulation 105, 214-217.
Gurfinkel, E.P., de la Fuente, R.L., Mendez, O., Baum, J., 2002. Flu vaccine pilot study in acute coronary syndromes and planned percutaneous coronary interven- tions: the FLUVAccination Acute Coronary Syndromes (FLUvACS) Study. Circulation 105, 214-217.
Gurfinkel, E.P., de la Fuente, R.L., Mendez, O., Baum, J., 2002. Flu vaccine pilot study in acute coronary syndromes and planned percutaneous coronary interven- tions: the FLUVAccination Acute Coronary Syndromes (FLUvACS) Study. Circulation 105, 214-217.
Gurfinkel, E.P., de la Fuente, R.L., Mendez, O., Baum, J., 2002. Flu vaccine pilot study in acute coronary syndromes and planned percutaneous coronary interven- tions: the FLUVAccination Acute Coronary Syndromes (FLUvACS) Study. Circulation 105, 214-217.
Gurfinkel, E.P., de la Fuente, R.L., Mendez, O., Baum, J., 2002. Flu vaccine pilot study in acute coronary syndromes and planned percutaneous coronary interven- tions: the FLUVAccination Acute Coronary Syndromes (FLUvACS) Study. Circulation 105, 214-217.
Gurfinkel, E.P., de la Fuente, R.L., Mendez, O., Baum, J., 2002. Flu vaccine pilot study in acute coronary syndromes and planned percutaneous coronary interven- tions: the FLUVAccination Acute Coronary Syndromes (FLUvACS) Study. Circulation 105, 214-217.
Gurfinkel, E.P., de la Fuente, R.L., Mendez, O., Baum, J., 2002. Flu vaccine pilot study in acute coronary syndromes and planned percutaneous coronary interven- tions: the FLUVAccination Acute Coronary Syndromes (FLUvACS) Study. Circulation 105, 214-217.
Gurfinkel, E.P., de la Fuente, R.L., Mendez, O., Baum, J., 2002. Flu vaccine pilot study in acute coronary syndromes and planned percutaneous coronary interven- tions: the FLUVAccination Acute Coronary Syndromes (FLUvACS) Study. Circulation 105, 214-217.
Gurfinkel, E.P., de la Fuente, R.L., Mendez, O., Baum, J., 2002. Flu vaccine pilot study in acute coronary syndromes and planned percutaneous coronary interven- tions: the FLUVAccination Acute Coronary Syndromes (FLUvACS) Study. Circulation 105, 214-217.
Gurfinkel, E.P., de la Fuente, R.L., Mendez, O., Baum, J., 2002. Flu vaccine pilot study in acute coronary syndromes and planned percutaneous coronary interven- tions: the FLUVAccination Acute Coronary Syndromes (FLUvACS) Study. Circulation 105, 214-217.
Ortqvist, A., Gunor, H., Sari, I., Oguz, D., Yucel, H., Zoriu, A., Yilmaz, M.B., 2017. Influence of influenza vaccination on recurrent hospitalization in patients with heart failure. Herz 42, 307-315.

Keshkar-Jahromi, M., Ouyang, M., Keshkarjahromi, M., Almeid, S., Li, H., Walston, J.D., Riley, G., Leng, S., 2014. Effect of influenza vaccine on tumor necrosis factor like weak inducer of apoptosis (TWEAK) in older adults. Vaccine 36, 2220-2225.

Klein, S.L., Marriott, L., Fish, E.N., 2015. Sex-based differences in immune function and responses to vaccination. Trans. R. Soc. Trop. Med. Hyg. 109, 19-55.

Kondo, K., Suzuki, M., Ohjishi, F., Fukushima, W., Maeda, A., Hirota, Y., 2015. Association between monoclonal influenza A (H1N1) pdm09 vaccine and pneumonia among the elderly in the 2009-2010 season in Japan: a case-control study.Hum. Vaccin. Immunother. 11, 1088-1093.

Kopel, E., Klempner, S., Goldemberg, I., 2014. Influenza vaccine and survival in acute heart failure. Eur. J. Heart Fail. 16, 264-270.

Kopstain, Z., Wood-Baker, R., Poole, P., 2018. Influenza Vaccine for Chronic Obstructive Pulmonary Disease (COPD). The Cochrane Database of Systematic Reviews 6, CD002733.

Landi, F., Onder, G., Cesari, M., Gravina, E.M., Lattanzio, F., Russo, A., Bernabei, R., 2003. Effects of influenza vaccination on mortality among frail, community-living elderly patients: an observational study. Aging Clin. Exp. Res. 15, 254-258.

Lavallée, P., Perchau, G., Vautier-Bertrand, M., Grabi, D., Armañon, P., 2002. Association between influenza vaccination and reduced risk of brain infarction. Stroke 33, 513-518.

Lavallée, P., Labrousse, E., Fox, K.M., Lavados, P., Mattle, H., Stieg, P.G., Armañon, P., 2014. Influenza vaccination and cardiovascular risk in patients with recent TIA and stroke. Neurology 82, 1905-1913.

Lee, W.J., Chen, L.K., Tang, G.J., Lan, T.Y., 2014. The impact of influenza vaccination on hospitalizations and mortality among frail older people. J. Am. Med. Dir. Assoc. 15, 256-260.

Lee, K.R., Bae, J.H., Hwang, I.C., Kim, K.K., Suh, H.S., Ko, K.D., 2017. Effect of influenza vaccination on risk of stroke: a systematic review and meta-analysis.Neuroepidemiology 49, 110.

Li, X., Xie, S.X., 2020. Influenza immunization among Chinese seniors: urgent calling for improving vaccination coverage, education, and research. Aging Med. (Milton (N.S.W)) 12, 12-15.

Lin, H.C., Chiu, H.F., S.C., Yang, C.Y., 2014. Association of influenza vaccination and reduced risk of stroke hospitalization among the elderly: a population-based case-control study. Int. J. Environ. Res. Public Health 11, 3639-3649.

Liu, T.F., Huang, C.C., Chan, W.L., Huang, P.H., Chung, C.M., Lin, S.J., Chen, J.W., Lee, H.B., 2012. Effect of vaccination on patients with ischemic heart disease: a nationwide population-based study. Prev. Med. 54, 431-433.

Liu, W.C., Lin, C.S., Yeh, C.C., Wu, H.H., Lee, Y.J., Chung, C.L., Cheng, Y.G., Chen, T.L., Liao, C.C., 2018. Effect of influenza vaccination against postoperative pneumonia and mortality for geriatric patients receiving major surgery: a nationwide matched study. J. Infect. Dis. 217, 816-826.

Lu, P.J., Hung, M.C., O'Halloran, A.C., Ding, H., Srivastav, A., Williams, W.W., Singleton, J.A., 2019. Seasonal influenza vaccination coverage trends among adults, U.S. 2010-2016. Am. J. Prev. Med. 57, 458-469.

Madjid, M., Miller, C.C., Zurawski, V.V., Marinich, I.G., Kiselev, O.I., Lobzin, Y.V., Filipov, A.E., Carpenter, L.W., 2007. Influenza epidemics and acute respiratory disease activity are associated with a surge in autopsy-confirmed coronary heart disease death: results from 8 years of autopsies in 34,892 subjects. Eur. Heart J. 28, 1205-1210.

Marmion, B., Daurès, J.P., de Wzieres, B., 2013. Additive preventive effect of influenza vaccination in healthy elderly persons with chronic lung disease.Ann. Intern. Med. 130, 397–403.

Marmion, B.P., Yang, S., Nair, H., Croxford, T.,你好, H., Harrison, E., Stobert, A., 2020. Influenza vaccination and outpatient visits, hospitalization, and mortality in elderly persons with chronic lung disease: understanding immunogenicity, efficacy and effectiveness. Ther. Adv. Resp. Dis. 10, 346-367.

Saetre, G., Fernández-Laso, V., Madrigal-Matute, J., Muñoz-García, B., Moreno, J.A., Pastor-Vargas, C., Illamas-Granda, P., Burkly, L.C., Egido, J., Martín-Ventura, J.L., Blanco-Colio, L.M., 2014. Genetic deletion or TWEAK blocking antibody administration reduce atherothrombosis and enhance plaque stability in mice. J. Cell. Mol. Med. 18, 721–734.

Shapiro, Y., Shemer, J., Heymey, A., Shalev, M., Maharshak, N., Chodik, G., Green, M.S., Kokia, E., 2003. Influenza vaccination: reduction in hospitalizations and death rates among members of “Maccabi Healthcare Services” during the 2002-2003 influenza season. Isr. Med. Assoc. J. 5, 706-708.

Sipilä, P., Jamsrisri, S., 2018. Impact of influenza vaccine campaign on respiratory illness in Thailand, 2010-2011. Southeast Asian J. Trop. Med. Public Health 49, 266-275.

Simonsen, L., Reichert, T.A., Viboud, C., Blackwelder, W.C., Taylor, R.J., Miller, M.A., 2005. Impact of influenza vaccination on seasonal mortality in the US elderly population. J. Infect. Dis. 191, 256-260.

Sirisawadana, A., Gwinn, S.M., Coupland, C.A., 2010. Influenza vaccination, pneumococcal vaccination and risk of acute myocardial infarction: matched case-control study. OMJA 182, 1617-1623.

Sirisawadana, A.N., Akgar, F., Coupland, C.C., 2014. Influenza vaccination and pneumococcal vaccination and risk of stroke or transient ischaemic attack-matched case control study. Vaccine 32, 1354-1361.

Sicovick, D.S., Raghunathan, T.E., Lin, D., Weinmann, S., Arboagut, P., Lemaire, R.N., Paul, S.M., Alexander, L., 2000. Influenza vaccination and the risk of primary cardiac arrest. Am. J. Epidemiol. 152, 674-677.

Smeeth, L., Thomas, S.L., Hall, A.J., Hubbard, R., Farrington, P., Vallance, P., 2004. Risk of myocardial infarction and stroke after acute infection or vaccination. N. Engl. J. Med. 351, 2611-2618.

Spadea, K.A., Aburyn, E., Kirchner, C., Kim, A., Daley, J., Fisman, D.N., 2007. Influenza vaccination and risk of mortality among adults hospitalized with community-acquired pneumonia. Arch. Intern. Med. 167, 53-59.

Su, F.H., Hwang, Y.L., Sung, P.C., Su, C.C., Hsu, H.W., Chang, S.N., Yeh, C.C., 2016. Annual influenza vaccination reduces total hospitalization in patients with chronic hepatitis B virus infection: a population-based analysis. Vaccine 34, 120-127.

Sung, I.C., Chen, C.I., Fang, Y.A., Lai, C.H., Hsu, Y.P., Cheng, T.H., Miner, J.S., Liu, J.C., 2013. Influenza vaccination services hospitalization for acute coronary syndrome in elderly patients with chronic obstructive pulmonary disease: a population-based cohort study. Vaccine 31, 2843-2849.

Thompson, W.W., Weintraub, E., Dhanakar, P., Cheng, P.Y., Brannen, L., Metzler, M., Brenes, J.S., Shry, D.K., Good, C., Hsu, H.W., Chang, S.N., Yeh, C.C., 2015. Influenza vaccination offers protection offeredbytheinfluenzavaccination.Cerebrovasc.Dis.26,339–347.

Vidal, D., Gilard, N., Cailler, E., Gaudillere, J.P., Richet, C., 2008. Influenza and pneumococcal vaccination in older adults living in nursing home: a survival analysis on the chelier study. Eur. J. Public Health 27, 1016–1020.

van Aalst, R., Chit, A., Mylonakis, E., 2010. The Effect of Influenza Vaccination on Mortality and Risk of Hospitalization in Patients with Heart Failure: A Systematic Review and Meta-analysis. J. Am. Coll. Cardiol. 56, 1205–1210.

Yakoub, G., Weynants, R., de Maertelaer, V., van Haren, K., Uyttenhove, N., van den Berghe, G., Desaive, T., Beyaert, R., 2008. TWEAK/Fn14 axis is a positive regulator of cardiacehypertrophy. Cytokine 46, 43-45.
Udell, J.A., Zawi, R., Bhatt, D.L., Keshtkar-Jahromi, M., Gaughan, P., Fratamocikul, A., Ciszewski, A., Vakili, H., Hoffman, E.B., Farkhoub, M.E., Cannon, C.P., 2013. Association between influenza vaccination and cardiovascular outcomes in high-risk patients: a meta-analysis. JAMA 310, 1711–1720.

Vardeny, O., Glaggert, B., Udell, J.A., Packer, M., Zile, M., Rouleau, J., Swedberg, K., Desai, A.S., Leffkowitz, M., Shi, V., McMurray, J.J.V., Solomon, S.D., 2016. Influenza vaccination in patients with chronic heart failure: the PARADIGM-HF trial. JACC Heart Fail. 4, 152–158.

Vaziri, E., Shiel, A., Butler, C., El Ferkh, K., von Wissmann, B., McMenamin, J., Ritchie, L., Schwarze, J., Papadopoulos, N.G., Johnston, S.L., Tian, L., Simpson, C.R., 2017. Effectiveness of influenza vaccines in asthma: a systematic review and meta-analysis. Clin. Infect. Dis. 65, 1388–1395.

Vila-Córcoles, A., Ochoa, O., de Diego, C., Valdivieso, A., Herreros, I., Bobé, F., Alvarez, M., Juárez, M., Guineu, I., Ansa, X., Saín, N., 2008. Effects of annual influenza vaccination on winter mortality in elderly people with chronic pulmonary disease. Int. J. Clin. Pract. 62, 10–17.

Voordouw, A.C., Sturkenboom, M.C., Dieleman, J.P., Stijnen, T., Smith, D.J., van der Lei, J., Stricker, B.H., 2004. Annual revaccination against influenza and mortality risk in community-dwelling elderly persons. JAMA 292, 2089–2095.

Voordouw, B.C., Sturkenboom, M.C., Dieleman, J.P., Stijnen, T., van der Lei, J., Stricker, B.H., 2006. Annual influenza vaccination in community-dwelling elderly individuals and the risk of lower respiratory tract infections or pneumonia. Arch. Intern. Med. 166, 1980–1985.

Vu, T., Farish, S., Jenkins, M., Kelly, H., 2002. A meta-analysis of effectiveness of influenza vaccine in persons aged 65 years and over living in the community. Vaccine 20, 1831–1836.

Wang, C.S., Wang, S.T., Chou, P., 2002. Efficacy and cost-effectiveness of influenza vaccination of the elderly in a densely populated and unvaccinated community. Vaccine 20, 2494–2499.

Wang, C.S., Wang, S.T., Lai, C.T., Lin, L.J., Chou, P., 2007. Impact of influenza vaccination on major cause-specific mortality. Vaccine 25, 1196–1203.

Wang, I.K., Lin, C.L., Lin, P.C., Chang, S.N., Chou, C.Y., Yen, T.H., Chang, C.T., Huang, C.C., Sung, F.C., 2016. Seasonal influenza vaccination is associated with reduced morbidity and mortality in peritoneal dialysis patients. Nephrol. Dial. Transplant. 31, 269–274.

Wang, Q., Yue, N., Zheng, M., Wang, D., Duan, C., Yu, X., Zhang, X., Ban, C., Jin, H., 2018. Influenza vaccination coverage of population and the factors influencing influenza vaccination in mainland China: a meta-analysis. Vaccine 36, 7262–7269.

Washio, M., Kondo, K., Fujisawa, N., Harada, E., Tashiro, H., Mizokami, T., Nogami, H., Iwana, T., Nakaniishi, Y., Suzuki, K., Ohfuji, S., Fukushima, W., Hirota, Y., 2016. Hypoalbuminemia, influenza vaccination and other factors related to the development of pneumonia acquired outside hospitals in southern Japan: a case-control study. Geriatr. Gerontol. Int. 16, 223–229.

Yang, J., Atkins, K.E., Feng, L., Pang, M., Zheng, Y., Liu, X., Cowling, B.J., Yu, H., 2016. Seasonal influenza vaccination in China: landscape of diverse regional reimbursement policy, and budget impact analysis. Vaccine 34, 5724–5735.

Yin, M., Huang, L., Zhang, Y., Yu, N., Xu, X., Liang, Y., Ni, J., 2018. Effectiveness and safety of dual influenza and pneumococcal vaccination versus separate administration or no vaccination in older adults: a meta-analysis. Expert Rev. Vaccines 17, 653–663.

Yokomichi, H., Kurihara, S., Yokoyama, T., Inoue, E., Tanaka-Taya, K., Kono, S., Yamagata, Z., 2014. The pandemic influenza A (H1N1) 2009 vaccine does not increase the mortality rate of idiopathic interstitial pneumonia: a matched case-control study. PLoS One 9, e88927.

Zhou, F., Yu, T., Du, R., Fan, G., Liu, Y., Liu, Z., Xiang, J., Wang, Y., Song, B., Gu, X., Guan, L., Wei, Y., Li, H., Wu, X., Xu, J., Tu, S., Zhang, Y., Chen, H., Cao, B., 2020. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet (London, England) 395, 1054–1062.