Linking evolutionary mode to palaeoclimate change reveals rapid radiations of staphylinoid beetles in low-energy conditions

Liang Lü a,b,c,* Chen-Yang Cai d,e Xi Zhang f Alfred F. Newton g Margaret K. Thayer g,h and Hong-Zhang Zhou a,c,*

*Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Rd, Chaoyang District, Beijing 100101, China, bCollege of Life Science, Hebei Normal University, No.20 Road East. 2nd Ring South, Yuhua District, Shijiazhuang, Hebei 050024, China, cUniversity of Chinese Academy of Sciences, 19A Yuyuan Rd, Shijingshan District, Beijing 100049, China, dKey Laboratory of Economic Stratigraphy and Palaeogeography, Nanjing Institute of Geology and Palaeontology, and Centre for Excellence in Life and Paleoenvironment Chinese Academy of Sciences, Nanjing 210008, China, eSchool of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK, fDepartment of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China, gIntegrative Research Center, Field Museum of Natural History, Chicago, IL 60605, USA, and hCommittee on Evolutionary Biology, University of Chicago, Chicago, IL 60637, USA

*Address correspondence to Liang Lü and Hong-Zhang Zhou. E-mail: lianges.lux@gmail.com and zhouhz@ioz.ac.cn

Handling editor: Maria Servedio

Received on 9 June 2019; accepted on 17 October 2019

Abstract

Staphylinoidea (Insecta: Coleoptera) is one of the most species-rich groups in animals, but its huge diversity can hardly be explained by the popular hypothesis (co-radiation with angiosperms) that applies to phytophagous beetles. We estimated the evolutionary mode of staphylinoid beetles and investigated the relationship between the evolutionary mode and palaeoclimate change, and thus the factors underlying the current biodiversity pattern of staphylinoid beetles. Our results demonstrate that staphylinoid beetles originated at around the Triassic–Jurassic bound and the current higher level clades underwent rapid evolution (indicated by increased diversification rate and decreased body size disparity) in the Jurassic and in the Cenozoic, both with low-energy climate, and they evolved much slower during the Cretaceous with high-energy climate. Climate factors, especially low O2 and high CO2, promoted the diversification rate and among-clade body size disparification in the Jurassic. In the Cenozoic, however, climate factors had negative associations with diversification rate but little with body size disparification. Our present study does not support the explosion of staphylinoid beetles as a direct outcome of the Cretaceous Terrestrial Revolution (KTR). We suppose that occupying and diversifying in refuge niches associated with litter may elucidate rapid radiations of staphylinoid beetles in low-energy conditions.

Key words: evolutionary diversification, low-energy conditions, palaeoclimate change, rapid radiation, Staphylinoidea

Introduction

Why there are so many beetles is a longstanding question that has drawn the persistent attention of biologists (Gould 1993; Farrell 1998; Hunt et al. 2007; McKenna et al. 2015b; Zhang et al. 2018). As one of the most species-rich superfamilies of beetles, Staphylinoidea (Agyrtidae, Hydraenidae, Leiodidae, Ptiliidae, Silphidae, and Staphylinidae) contains nearly 70,000 extant species...
(Supplementary Table S1) and accounts for approximately 18% of beetle diversity (Ślipiński et al. 2011). Numbers of species are dramatically uneven among (sub-)families (Supplementary Table S1), ranging from 1 (Neophoninae and Solieriinae) to over 16,000 species (Aleocharinae). Staphylinoid beetles also vary considerably in body size, from diminutive species shorter than 0.4 mm (e.g., some Ptiliidae species being the smallest known non-parasitoid insects [Grebeník 2008]) to giants that measure up to 40 mm (e.g., some Silphidae species). Evidence from paleontological studies (see Supplementary Table S2) and inferences made by molecular dating (McKenna et al. 2015; Zhang et al. 2018) both reveal that staphylinoid beetles possibly appeared in the Late Triassic or the Early Jurassic. Since then, the global climate has experienced large-scale shifts (Jansen et al. 2007; Price 2009). Therefore, if climate is a pivotal element that affects the diversification of organisms as proposed by many previous theories (e.g., Erwin 2009; Bellard et al. 2012; Condamine et al. 2013), the prediction would be that the climate dynamics of such a species-rich group should be correlated with the climatic variation during the entire history or at least in some decisive periods.

Species diversity is largely the cumulative outcome of a few radiations that produce most extant species. As a prevalent ecological explanation of speciation, adaptive radiation is characterized by a positive diversification shift (an increased speciation rate and/or a decreased extinction rate leading to species multiplication) and rapid morphological variation (Glor 2010; Losos and Mahler 2010). Climate in high-energy conditions is expected, under the species-energy hypothesis, to promote niche positions and breadth and ultimately to enhance net diversification rate (Wright 1983; Evans et al. 2005; Erwin 2009). More available and/or broader niches, in turn, are predicted to result in increased morphological variation (or disparification) (Schluter 2000; Harmon et al. 2003) as the ecologically relevant traits constrained by environmental factors respond to the opening and shrinking of new niches (Schluter 2000; Harmon et al. 2003; Glor 2010; Burbrink et al. 2012). Caraboidae (ground beetles and related) is an example in beetles, whose diversity and morphological variation expanded in the Cretaceous and contracted before and after that period (Erwin 1985). Consequently, not only diversification shifts but also morphological disparification should be taken into account when examining the impact of climate change on adaptive radiation and thus on species diversity.

In this study, we use staphylinoid beetles as a model system. We estimate the diversification time of Staphylininaeoides with a time-calibrated phylogeny and detect the shifts of net diversification rate. Then, we investigate the relationship among climatic factors, diversification rate, and disparification of body size (as an ecologically relevant trait). We would expect that 1) there would be significant increase in diversification rate (radiations) during climate-changing periods and the radiations are responsible for the higher-level current diversity patterns; 2) the temporal mode of both the diversification rate and body size disparification would be correlated with climate change (at least in some critical periods); and 3) the relationship between diversification and disparification would be explainable in the light of the adaptive modes referred to in (2).

Materials and Methods

Estimation of divergence time

Bayesian relaxed clock methods (e.g. BEAST, MrBayes) are popular for inferring tree topology and estimating divergence times simultaneously, but computational burden prevents their use for large datasets. We therefore built a phylogeny of Staphyliniformia and Scarabaeoidea (distant outgroups) with 664 terminal taxa and estimated the substitution rate per site using RAxML v8.2.10 (Stamatakis 2014) (see details in Supplementary Appendices S1 and S3). We then used the program r8s v1.80 (Sanderson 2003) to date the maximum likelihood tree (Supplementary Figure S1) with the penalized likelihood (Sanderson 2002) method with an additive penalty function and TN Algorithm. We used 50 fossils to calibrate the phylogeny (Supplementary Table S2, Supplementary Figure S2). The recent limit of the geological age of the stratum where the fossils were found was used as minimum age and the boundary age of Upper and Lower Cretaceous (100.5 million years ago (Ma)) and that of Triassic and Permian (252 Ma) were used as maximum ages (soft bound) for the Cenozoic fossils and the Mesozoic fossils, respectively. When the time-scaled phylogeny was created, we used R 3.3.1 (R Core Team 2016) with APE package (Paradis et al. 2004) to resolve the chronogram randomly (2 polymorphies were collapsed by r8s for very short branches) and pruned the tree into a genus-level one for analyses regarding body size.

Shifts of diversification rate

We detected the diversification shifts using BAMM 2.5 and the associated R package BAMMTools (Rabosky et al. 2013; Rabosky et al. 2014; Rabosky 2014), which offer program/functions for modelling dynamics of speciation (λ) and extinction (μ) by reversible jump Markov chain Monte Carlo (MCMC) method and thus detect shifts in net diversification rates (r = λ–μ). We used the dataset that associates (sub-)/superfamily richness (Supplementary Table S1) with the relevant clades on the tree (distant outgroups dropped). Omalinae, Empelinae, Glypholomatinae, and Microphilinae were clustered together, so their species richness was used in summation (OMA + EMP + GLY + MICS). Protoselaphinae were not sampled, thus its richness was attached to Pselaphinae (PSE + PROP). The richness of Phloeocharinae was averaged into each of the 2 parts, and the data of Ostorinae, Tachyporinae, and Leiodinae were counted according to cladal divisions. Because this dataset includes all the subgroups of the superfamily and the complete species richness data, but some clades on the tree are incompletely sampled, we set the global sampling probability to 1.0, and the clad-specific sampling probabilities are calculated by program with cladal richness and number of tips. We expected 30 shifts and left other parameters in their default settings. We performed 4 MCMC runs for 100 million generations per run, sampled every 10,000 generations, and dropped the first 20% (stably convergent thereafter and effective sample size of all parameters > 200) when inputting the results for the subsequent analyses. The best shift model (expected shifts = 33, core shifts = 11, distinct threshold = 35) was selected by Bayesian factor (1,211.97 over the null model and 65.81 over the second) and posterior probability (0.099). The net diversification rate of each lineage was averaged across all shift configurations sampled during simulation of the posterior, and diversification rate variation through time (DRTT) of both Staphylinoidea and Staphyliniformia (including near outgroups) was calculated by median of lineage rates (Rabosky et al. 2014).

Evolution and disparification of body size

We compiled a body size dataset of 5,364 species representing 218 genera (out of 4,268 staphylinoid genera) that appeared in the genus-level tree. Body size here indicates body length, which is commonly documented in the literature on staphylinoid beetles. The dataset was built on the data extracted from 1,143 taxonomic
we considered temperature, O2, and CO2 as the markers of climate change. Climate is a complicated set of variables, but herein we simply considered body length, temperature, and atmospheric CO2 concentration (cCO2 in p.p.m.) were obtained from Royer et al. (2004) and provided by Dr. D. L. Royer (Wesleyan University, USA). The atmospheric oxygen percentage data (pO2 in %) were extracted from Berner (2009). We then performed a natural log-transformation for cCO2 and a logit transformation for pO2, followed by cubic spline interpolations of all three climate variables to harmonize the timing of the climate data set with that of disparity deviation. We correlated the net diversification rates and the disparity deviations, respectively, with the climate factors to assess the impact of these climate factors by using generalized least square (GLS) in the NLME package, treating the time (age) as a continuous time covariate. We accounted for all 7 combinations of the climate factors and selected the best-fitting model using the Akaika Information Criterion (AIC) and Akaika weight (w). The models with difference of AIC from the minimum AIC (dAIC) less than 2 units are also considered. We assessed the goodness-of-fit of each model by likelihood-ratio-based pseudo-R-square (R2seudo) (MuMIn package). We also tested the statistical significance of the regression coefficients (b) for all the models and calculated the standardized regression coefficients (β) for the best-fitting model(s). Climate factors with high standardized regression coefficients have strong explanatory power. We investigated the correlation between the net diversification rate and the disparity deviations by using Pearson’s correlation coefficient (cor). Both the curve of diversification rate and the curve of disparity deviations are obviously nonmonotonic, so we separated the whole history of staphylinoids into 3 stages: early (Jurassic, root age to 145 Ma), middle (Cretaceous, 145–66 Ma), and late (Cenozoic, 66 Ma to present), and performed the correlation tests for all the 3 stages. All these calculations were executed in R.

Results

Phylogeny and divergence times of higher level taxa

Our estimation depicts the timing of major diversification events in the early history of staphylinoid beetles (Supplementary Table S1, Figures 1 and 2A, and see detail in Supplementary Figure S2). The ancestor of staphylinoid beetles was estimated to have appeared 199.3 Ma, and the basal split occurred 194.6 Ma (very beginning of the Jurassic). All 6 families (Silphidae nested into Staphylinidae) appeared and started radiating in the Middle Jurassic or earlier. Most of the main subfamilies of Staphylinidae have their origins in the Jurassic, but some hyperdiverse subfamilies, such as Aleocharinae, Pselaphinae, Staphylininae (Staphylinini), and Paederinae, emerged in the Late Jurassic or the Early Cretaceous. Since many recent studies have discussed relationships among the higher level taxa and our study focuses on climatic influence on the early radiations of Staphylinoidea, we detail the results and discussion of our phylogenetic analysis in Supplementary Appendix S3. Here we tentatively divide Staphylinoidea into 10 major clades: 1) Hydraenidae + Ptiliidae, 2) Leiodidae + Agyrthidae, 3) “Oxylaelarinae +”, 4) “Omalinae +”, 5) “Staphylininae +”, 6) “Silphidae +”, 7) “Sycmaeninae +”, 8) “Steninae +”, 9) “Pselaphinae +”, and 10) Aleocharinae.

Diversification shifts and climate change

We investigated the tempo of diversification by detecting the branches and the time at which the diversification rate changes. The best-fitting model of BAMM recognizes 29 rate shifts (excluding the root process) on our tree, and 11 of them are “core” shifts (Figure 1 and Supplementary Figure S3). Our result shows that the diversification process of staphyliniform beetles was fueled by multiple radiations...
(where diversification rate increases). The oldest shift (core, marginal probability $q = 0.827$) took place at the most recent common ancestor (MRCA) of Staphylinoidea and Hydrophiloidea, but within the clade Hydrophiloidea there were no core shifts. Four increased shifts (3 core shifts) occurred in the early stage; 11 (2 core, 2 decreased) occurred in the middle stage; 14 (6 core, 1 decreased) occurred in the late stage. Among the 10 major clades, the Hydraenidae $+$ Ptiliidae, “Silphidae $+$”, and “Steninae $+$” clades did not show core rate shifts, but each of the other 7 clades possessed at least 1 core shift. A basic pattern is that the diversification rate in basal groups is prone to decrease (Figure 1 and Supplementary Figure S3, cold colored) and all the decreasing shifts occurred in basal groups of relevant clades or subclades, for example, Agyrtidae (though its rate increased for a while at first), Apateticinae, Habrocerinae, Trichophyinae, Trigonurinae, Olisthaerinae, Phloeocarinae (Phloeocaris), Solierinae, and Neophioninae; whereas the rate in derivative groups is prone to increase (Figure 1 and Supplementary Figure S3, hot colored) and all the increasing shifts occurred in basal groups of relevant clades or subclades, for example, Apteroloma (though its rate increased for a while at first), Agyrtidae, Apateticinae, and Neophioninae.

The temporal mode of rate evolution (Figure 2A) shows that the net diversification rate rose rapidly in the Early Jurassic and peaked in the middle of the Jurassic, then kept stable and even fell slightly during the entire Cretaceous, but climbed exponentially since the Paleogene.

Climate change impacts on both diversification rate and body size disparification

The evolution of body size strongly fits the lambda model. The λ value (0.9708), which is close to 1, indicates a high phylogenetic signal in the body size of staphylinoid beetles and the evolution of body size closely fits the BM model. The DTT plot (Figure 2B) shows the observed disparity steeply declined since the origin of Staphylinoidea until the middle of the Jurassic and it was clearly lower than the simulated disparity in most of staphylinoid history (MDI $= 0.196$). In the late Paleogene (≈ 30 Ma, roughly Oligocene), the observed disparity leapt over the simulated curve. Pearson’s correlation supports that the relationship, in fact, has different patterns among 3 stages: the diversification rate had a negative correlation with the disparity deviation (cor $= -0.3644$, $P = 0.009$) before 145 Ma but had positive correlations in 145–66 Ma (cor $= 0.5799$, $P < 0.001$) and after 66 Ma (cor $= 0.5438$, $P < 0.001$).

The AIC-based model selection (Figure 3; Table 1) also shows different patterns among 3 stages. In the early stage, the best-fitting model ($R^2_{pse} = 0.974$, $w = 0.556$) shows that the net diversification rate is significantly and negatively associated with pO_2 ($b = -0.0172$, $\beta = -0.2372$, $P = 0.0037$), but positively associated with
cCO2 ($b = 0.0138$, $\beta = 0.9932$, $P < 0.001$). Meanwhile, the disparity deviation is correlated to all the 3 factors ($R^2_{pse} = 0.877$, $w = 0.715$), among which pO_2 ($b = 1.4228$, $\beta = 0.7957$, $P < 0.001$) has a significantly positive association, whereas cCO_2 ($b = 0.3142$, $\beta = 0.9314$, $P < 0.001$) has a negative association and the strongest power (ΔT is not significant). The second best-fitting model (without ΔT) shows the same pattern. In the middle stage, the net diversification rate has a significantly negative association with both pO_2 ($b = -0.0035$, $\beta = -0.4328$, $P < 0.001$) and cCO_2 ($b = -0.0050$, $\beta = -0.8904$, $P < 0.001$), according to the best-fitting model.
The disparity deviation has a significantly positive association with \(D_T (b = 0.0318, \beta = 0.3106, P = 0.0036) \) and a negative association with \(\text{cCO}_2 (b = -0.1551, \beta = -0.7591, P < 0.001) \). In the late stage, the net diversification rate is significantly and negatively associated with all the 3 climate factors \((R_pse^2 = 0.999, w = 0.992) \) but the disparity deviation is negatively associated with only \(D_T (b = -0.0323, P = 0.0409) \).

Discussion

Age of staphylinoid beetles

The result of molecular clock indicates the MRCA of staphylinoid beetles possibly lived at the very beginning of the Jurassic (194.6 Ma). This is older than, but does not contradict, the oldest fossil record \textit{Ochtebites minor} (Ponomarenko 1985), a Hydraenidae species that was present 191–183 Ma. A Triassic fossil was described as the oldest staphylinid species, \textit{Leehermania prorova} (Chatzimanolis et al. 2012), but it is recently moved to Myxophaga by Fikáček et al. (2019). Currently there are no staphylinid fossils having been found in the Triassic strata. As another \textit{a posteriori} test, we did not calibrate the clade of Paederinae; their resulting age is 147.6 Ma, older than \textit{Mesostaphylinus} spp. (Yixian formation, 125 Ma), the oldest paederine fossils (Solodovnikov et al. 2013). As to the previous molecular results, McKenna et al. (2015b), under the frame of the whole Coleoptera, estimated the age of the MRCA of staphylinoids as 193.16 (210.26–175.26) Ma. Toussaint et al. (2017) questioned it and dated the MRCA of staphylinoids at 280.42 (294.88–265.46) Ma by using a different set of fossil calibrations. Zhang et al. (2018) used extensive sampling of genes and another set of fossils, which

Figure 3. GLS regression of net diversification rate \((r)\) versus climate factors (squares and dashed lines) and disparity deviation \((DD)\) of body size versus climate factors (circles and solid lines). Black lines depict the trends with single climate predictors, and colored lines depict the (partial) trends of the individual climate predictor(s) in the best-fitting model (see Table 1).
The hash-signed (#) expressions show the standardized regression coefficients of the best-fitting models (multiple regressions only). R_{pse}^2, likelihood-ratio-based pseudo-R^2 of each model; AIC, Akaike information criterion; dAIC, difference of AIC from the minimum AIC; w, Akaike weight. The estimates in bold type indicate the statistical significance ($P < 0.05$) of relevant coefficients.

Table 1. GLS estimation of the models of net diversification rate (r) versus climate factors and disparity deviation (DD) of body size versus climate factors, according to the AIC-based selection (ascending order of AIC).

Response	Explanatory	R_{pse}^2	AIC	dAIC	w
Early (before 145 Ma)	r - 0.0172 $pO_2 - 0.0138 \, cCO_2 - 0.0949$ - 0.2372 $pO_2 + 0.9932 \, cCO_2$ (#) - 0.0014 $\Delta T - 0.0142 \, pO_2 + 0.0163 \, cCO_2 - 0.1053$ - 0.2290 $\Delta T - 0.1921 \, pO_2 + 1.1733 \, cCO_2$ (#) - 0.0029 $\Delta T + 0.0181 \, cCO_2 + 0.0910$ 0.0117 $cCO_2 - 0.0490$ 0.0036 $\Delta T - 0.0164 \, pO_2 + 0.0020$ 0.0023 $\Delta T + 0.0327$ - 0.0030 $pO_2 + 0.0326$	0.974	-598.545	0.000	0.556
DD	$0.0934 \, \Delta T + 1.4228 \, pO_2 - 0.3142 \, cCO_2 + 4.3012$ 0.6246 $\Delta T + 0.7958 \, pO_2 - 0.9314 \, cCO_2$ (#) 1.8573 $pO_2 - 0.1610 \, cCO_2 + 4.0993$ 1.0396 $pO_2 - 0.4773 \, cCO_2$ (#) 1.1854 $pO_2 + 1.7410$ - 0.0645 $\Delta T + 2.0034 \, pO_2 + 3.2744$ 0.0967 $\Delta T - 0.4580$ 0.2805 $\Delta T - 0.6035 \, cCO_2 + 3.6081$ 0.1261 $cCO_2 - 1.1817$	0.877	-193.212	0.000	0.715
Middle (145–66 Ma)	r - 0.0035 $pO_2 - 0.0050 \, cCO_2 + 0.0722$ - 0.4328 $pO_2 - 0.8904 \, cCO_2$ (#) - 0.0000 $\Delta T - 0.0035 \, pO_2 - 0.0050 \, cCO_2 + 0.0722$ - 0.0025 $\Delta T - 0.4334 \, pO_2 - 0.8911 \, cCO_2$ (#) - 0.0041 $cCO_2 + 0.0711$ - 0.0001 $\Delta T - 0.0041 \, cCO_2 + 0.0711$ - 0.0001 $\Delta T + 0.0418$ - 0.0006 $pO_2 + 0.0405$ - 0.0001 $\Delta T - 0.0006 \, pO_2 + 0.0410$	0.994	-1073.633	0.000	0.727
DD	$0.0318 \, \Delta T - 0.1551 \, cCO_2 + 0.7980$ 0.3106 $\Delta T - 0.7591 \, cCO_2$ (#) 0.0315 $\Delta T + 0.0025 \, pO_2 - 0.1537 \, cCO_2 + 0.7930$ 0.3075 $\Delta T + 0.0114 \, pO_2 - 0.7510 \, cCO_2$ (#) 0.1681 $cCO_2 + 0.9917$ 0.0669 $pO_2 - 0.1357 \, cCO_2 + 0.8511$ 0.2075 $pO_2 + 0.0632$ 0.0225 $\Delta T - 0.3065$ 0.0217 $\Delta T + 0.1867 \, pO_2 - 0.0342$	0.929	-381.926	0.000	0.642
Late (after 66 Ma)	r - 0.0087 $\Delta T - 0.4732 \, pO_2 - 0.0324 \, cCO_2 - 0.3244$ - 0.4361 $\Delta T - 0.7230 \, pO_2 - 0.6180 \, cCO_2$ (#) - 0.4586 $pO_2 - 0.0518 \, cCO_2 - 0.1967$ - 0.0203 $\Delta T - 0.4892 \, pO_2 - 0.5311$ - 0.3442 $pO_2 - 0.3647$ - 0.0139 $\Delta T - 0.0556 \, cCO_2 + 0.4140$ - 0.0239 $cCO_2 + 0.2368$ - 0.0061 $\Delta T + 0.0984$	0.999	-1105.852	0.000	0.992
DD	$0.0323 \, \Delta T + 0.0025$ 0.0575 $cCO_2 + 0.3132$ 0.0522 $\Delta T + 0.0475 \, cCO_2 - 0.2665$ 0.8171 $\Delta T + 0.3146 \, cCO_2$ (#) 0.0396 $pO_2 + 0.0020$ - 0.0326 $\Delta T - 0.0835 \, pO_2 - 0.1059$ - 0.4627 $\Delta T - 0.0225 \, pO_2$ (#) - 0.0422 $pO_2 - 0.0587 \, cCO_2 + 0.2656$ - 0.0532 $\Delta T - 0.0961 \, pO_2 + 0.0509 \, cCO_2 - 0.4109$	0.973	-540.788	1.878	0.119

The estimates in bold type indicate the statistical significance ($P < 0.05$) of relevant coefficients.
estimated the age as 199.4 (192.0–207.6) Ma. Different time priors, applications (BEAST or MCMCTREE), and calibrating positions (on stem or crown) may be responsible for their discrepancy. The results of McKenna et al. (2015b) and Zhang et al. (2018) are closer and close to our results. Unlike the 3 previous studies, in which the clade Staphylinoidae was calibrated and constrained, we left the MRCA node free and dated it by the expanded sampling of species and more time priors which were evenly placed across the tree, on deep and shallow secondary nodes. Not including Jacobsoniidae in our study would not significantly change the result, because this family has a small number of species and is nested within Staphylinidae (not a sister group) (see McKenna et al. 2015b; Zhang et al. 2018). Another older estimate by Zhang and Zhou (2013) dated the family Staphylinae back to the Early Triassic epoch (243.35 Ma). This overestimation was caused by the poorly built phylogeny and inappropriate calibrations. From both fossil records and molecular clock studies, we can safely draw the conclusion that staphylinoid beetles were probably present at around the Triassic–Jurassic bound and started radiating in not earlier than the beginning of the Jurassic.

Climatic impact on staphylinoid evolution: a 3-staged pattern

Our results indicate that the significant radiations of staphylinoids tend to take place in the period of changing (cooling) climate (see the first expectation in the Introduction). The three relevant climate factors of interest experienced wide but synchronous fluctuations during the period in question (Figure 2D). The result of diversification rate shifts shows that most of the rate increases (9 of 11 core increases) occurred in the Jurassic and the Cenozoic. Most of modern staphylinoid (sub-)family-level taxa had been present by the Middle Jurassic (a short period of about 30 million years (Myr) after the 200-Ma initial radiation), although Aleocharinae, Staphylinae, Paederinae and Pselaphinae were absent (Figure 1 and Supplementary Figure S3). These current species-rich groups and other two (Leiidae and Scydmaeninae) comprise the groups with more than 4,000 species in Staphylinoida, and their diversity was largely produced by the Cenozoic radiations (Figure 1 and Supplementary Figure S3). Zhang et al. (2018) detected the radiations using a family-level beetle tree but failed to find any radiations in the staphylinoid clade, which is partly due to the method and incomplete sampling (May and Moore 2016). Despite lack of reliable molecular clock studies on the subgroups of Staphylinoida, our results can be tested by many palaeontological studies (see the literature cited in Supplementary Table S2). For example, Solodovnikov et al. (2013) studied the fossil fauna of Staphylinae and supposed that the hyperdiverse groups of Staphylinae originated later than the Early Cretaceous, which is also supported by this study.

Our findings also reveal the correlations between climate change and the diversification rate and between climate change and body size disparification (see the second expectation in the Introduction). Specifically, the 3 climatic factors have different patterns of impact on the evolution of staphylinid beetles in the 3 stages of their history (Figure 3; Table 1). O$_2$ and CO$_2$ have opposite effects on both diversification rate and body size disparification in the early stage (before 145 Ma), that is, low O$_2$ and high CO$_2$ would promote net diversification and among-clade disparification. Considering the negative correlation between net diversification rate and disparity deviation, we suppose the among-clade disparification should be positively associated with the increase of diversification rate. Our results indicate an adaptive radiation, which is characterized by a rise of diversification rate and an increase of among-clade morphological disparification (Figure 2B) (Scluter 2000; Harmon et al. 2003; Glor 2010), under the influence of the decrease of O$_2$ and the increase of CO$_2$ in the early history of staphylinoid beetles. The effect of temperature on net diversification rate in the early stage is similar to O$_2$ in function and explanatory power, but it is not supported by the statistical test (Table 1). In our GLS result, the addition of climate factors did not enhance the R_{adj}^2 of the polynomial model (Table 1), which indicates high collinearity of the historical climate factors. Nevertheless, our results demonstrated that low O$_2$ and high CO$_2$ played prominent roles in the increases of diversification and among-clade disparification in the Jurassic, which explain the early radiations. The diversification of non-phytophagous beetles, including staphylinid beetles, is unable to be explained by the rise of angiosperms and the most species-rich predacious families (Staphylinae and Carabidae) are not originated in Cretaceous (Hunt et al. 2007; Zhang et al. 2018). Our climatic explanation provides a new insight into this issue.

The middle stage (145–66 Ma) is a “watershed” for staphylinoid beetles. Both net diversification rate and disparity deviation are negatively associated with CO$_2$ (Figure 3; Table 1). The increasing disparity deviation suggests that the ecological opportunity that enhanced diversification in the early stage has been saturated and body size evolution is in a transition from among-clade to within-clade disparification in this period. In addition, the net diversification rate changes little and this stage has the comparatively lowest proportion of core shifts (2 out of all 11 core shifts) and the most decreased shifts (2 of all 3 decreased shifts) (Figure 1 and Supplementary Figure S3). Nevertheless, we find that the curve of median net diversification rate transforms from a logarithmic curve into an exponential curve (Figure 2A) and more lineage color changes can be observed in this period (Figure 1). These illustrate that the diversification rate was discriminating between species-rich and species-poor groups. Many studies have made a conjecture that the land-dwelling animals experienced a similar Cretaceous Terrestrial Revolution (KTR) (125–50 Ma), during which the replacement of ferns and gymnosperms by angiosperms and the subsequent explosion of the latter provided new evolutionary opportunities for pollinating insects (Grimald 1999), squamates (Evans 2003; Longrich et al. 2012), and mammals (Meredith et al. 2011; Grossnickle and Polly 2013) and drove them to diversify rapidly. Some studies, however, denied this conjecture in particular groups, for example, dinosaurs (Lloyd et al. 2008). Whether the success of beetles is the outcome of KTR remains in dispute. Hunt et al. (2007) supposed that the extreme variety of niches is the reason. Zhang et al. (2018) found that most of coleopteran families (most are herbivorous) fit the KTR model, which explains the diversification upsurge of the whole beetle tree in the Cretaceous. Although our results do not support any direct linkage of staphylinid radiation with KTR (in agreement with Zhang et al. 2018; most staphylinoids do not eat plants), the Cretaceous origins of the groups (e.g., Aleocharinae and Pselaphinae) that would diversify in the Cenozoic does make sense in the present diversity of staphylinoids.

In the late stage (after 66 Ma), the net diversification rate, rocketing up under an accelerating and exponential mode, is positively correlated with within-clade disparification and negatively associated with all 3 climate factors, whereas within-clade disparification is associated only with temperature (negatively) (Figure 3; Table 1). However, the Cenozoic radiations occurred locally and the uneven pattern of diversification rate had simultaneously become approximately consistent with that of current diversity (Figure 1 and Supplementary Figure S3). The most striking rate increases belong to Leptodirini, Philonthina,
Xanthopygina, Clavigeritae, and some derivative (higher) Aleocharinae clades (embracing Athetini, Tachyusini, Lomechusini, Pygostenini, and Oxypodini) (Figure 1 and Supplementary Figure S3). All of them started radiating in the Palaeogene, when the within-clade disparification of body size increased over the among-clade disparification (Figure 2). Therefore, it is reasonable to interpret their proliferation as the outcome of interspecific competition (the predator species) or as the outcome of habitat/host isolation (the rest include major groups of endoparasites, myrmecophiles, termitophiles, or troglobites in rove beetles [Seevers 1957; Seevers 1965; Fresneda et al. 2011; Parker and Grimaldi 2014; Newton et al. 2016]). These suggest that the rise of the diversification rate and that of the within-clade disparification in the Palaeogene are not directly due to the cooling temperature but due to a variety of local adaptations in the specific habitats or niches opened during the Palaeogene cooling.

Rapid radiations in low-energy conditions

Our study finds that the initial radiation of staphylinoid beetles and the steep falling of body size disparity both happened in the Jurassic, which implies that the typical low-energy conditions (low temperature, low O2, and high CO2) may promote among-clade diversification, thus prompting the Jurassic radiations of staphylinoid beetles. Additionally, the Cenozoic (particularly the recent 30 Ma), also a low-energy era (with low temperature and decreasing O2, though with low CO2) after the Cretaceous, coincided with increasing diversification rate and within-clade disparification. It is surprising that staphylinoid beetles would have a positive response of diversification to low-energy climatic conditions. On the contrary, in the high-energy Cretaceous (high temperature, high O2, and moderate but decreasing CO2), the net diversification rate of staphylinoid beetles went flat and even declined slightly, and the among-clade disparification of body size also regressed. This appears to contradict the prediction under the “ecological opportunity” hypothesis that both diversification and morphological disparification would intensify under high-energy conditions (Wright 1983; Evans et al. 2005; Erwin 2009; Grossnickle and Polly 2013), although more recent studies have found similar examples by different approaches, for example, the rapid body size evolution of birds and mammals in the cool Cenozoic (Clavel and Morlon 2017).

Our findings imply that there could be alternative connotations of “opportunity” for early staphylinoid beetles. McKenna et al. (2015a) hypothesized that forest litter would play important roles in diversification of staphylinoid beetles. Examining the main habitats (litter and the associated habitats, e.g., dead wood, carcasses, dung, nests of social insects, etc.) of extant staphylinoid species, we agree with McKenna et al. (2015a) and suppose that these habitats provided “refuges” that would be unoccupied or newly occurred in the low-energy climate, for example, the niche vacancy caused by the Triassic–Jurassic or Cretaceous–Palaeogene mass extinction and the slow recovery of biodiversity constrained by the low-energy climate in the Early and Middle Jurassic. We thus suppose that the “litter-refuge” hypothesis explains well the rapid radiations of staphylinoids in low-energy conditions (see our third expectation in Introduction).

Data accessibility

• DNA sequences: GenBank accession numbers are available in Supplementary Appendix S1: Table S4.
• Species richness data: Numbers of species of Staphyliniformia (Supplementary Table S1) are provided by A. F. Newton in 2016. The full database is currently unpublished and will be eventually deposited at the website of the Field Museum of Natural History. An updated (November 2018) but simplified version of the database is available at the Catalogue of Life web site (http://www.catalogueoflife.org/col/, accessed 26 October 2019).
• Climate data: Temperature and CO2 data were provided by Dana L. Royer (Wesleyan University); O2 data were extracted from the Figure 3 in Berner (2009).
• Body size data: Those prepared for analyses are available in Supplementary Appendix S1: Table S4. The raw data that we collected are available upon request. The references of the body size data are given in Supplementary Appendix S4.

Author contributions

L.L. and H.Z.Z. designed the study; L.L. and X.Z. performed the phylogenetic analyses; L.L. and C-Y.C. executed molecular dating; A.F.N. provided the data of species richness of involved taxa; A.F.N., M.K.T., C-Y.C., and L.L. contributed to the interpretation of phylogenetic results; L.L. gathered data and performed the rest analyses; L.L., C-Y.C., and X.Z. wrote the first draft of the manuscript, all authors contributed substantially to revisions.

Acknowledgments

We thank Dana L. Royer (Wesleyan University) who kindly provided the temperature and CO2 data used in our study. We thank Liang He, Yan-Peng Cai, Tian-Hong Luo, and Xiao-Yan Li, Cheng-Bin Wang, Liang Li, and Zi-Wei Yin for the natural history knowledge of special staphylinoid taxa. Tian-Hong Luo, Liang He, Cheng-Bin Wang, Liang Tang, Zi-Wei Yin, and Field Museum of Natural History permitted us to use their photos, for which we are grateful. Our thanks are also extended to Xiao-Dong Yu, Fabien L. Condamine, who gave us many valuable suggestions on the analytical methods and implements. Maria Servedio and Zhi-Yun Jia reviewed the earlier versions of the manuscript. We thankfully appreciate their constructive comments.

Funding

This study was supported by the National Natural Science Foundation of China (NSFC-31501883 to L.L., NSFC-31472036 to H-Z.Z.), the Youth Top-notch Talent Support Program of Hebei Province to L.L. (BJ2018057), the Biodiversity Survey and Assessment Project of the Ministry of Ecology and Environment, China to H-Z.Z. (2019HJ0960001006), a grant from the Key Laboratory of the Zoological Systematics and Evolution of the Chinese Academy of Sciences to H-Z.Z (Y229YX3105), and a grant from the Strategic Priority Research Program of the Chinese Academy of Sciences to C-Y.C. (XDB26000000).

Supplementary Material

Supplementary material can be found at https://academic.oup.com/cz.

References

Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F, 2012. Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377.
Berner RA, 2009. Phanerozoic atmospheric oxygen: new results using the GEOCARBSULF model. Am J Sci 309:603–606.
Burbank FT, Ruane S, Pyron RA, 2012. When are adaptive radiations replicated in areas? Ecological opportunity and unexceptional diversification in West Indian dipsadine snakes (Colubridae: Aplodontina). J Biogeogr 39:465–473.
Chatzimanolis S, Grimaldi DA, Engel MS, Fraser NC, 2012. Leeherrmania pro-
rova, the earliest staphyliniform beetle, from the late Triassic of Virginia
(Coleoptera: Staphylinidae). *Am Mus Novit* 3761:1–28.

Clavel J, Morlon H, 2017. Accelerated body size evolution during cold climat-
ic periods in the Cenozoic. *Proc Natl Acad Sci USA* 114:4183–4188.

Condamin FL, Rolland J, Morlon H, 2013. Macroevolutionary perspectives
to environmental change. *Ecol Lett* 16:72–85.

Erwin DH, 2009. Climate as a driver of evolutionary change. *Carr Biol* 19:
R575–R583.

Erwin TL, 1985. The taxon pulse: a general pattern of lineage radiation and
extinction among carabid beetles. In Ball GE, editor. *Taxonomy, Phylogeny
and Zoogeography of Beetles and Ants: A Volume Dedicated to the Memory
of Philip Jackson Darlington Jr. (1904-1983).* Series Entomologica. Dordrecht,
The Netherlands: Dr W, Junk Publishers. 437–472.

Evans KL, Warren PH, Gaston KJ, 2005. Species-energy relationships at the
macroecological scale: a review of the mechanisms. *Biol Rev* 80:1–25.

Evans SE, 2003. At the feet of the dinosaurs: the early history and radiation of
lizards. *Biol Rev* 78:513–551.

Farrell BD, 1998. “Inordinate fondness” explained: why are there so many
beetles? *Science* 281:555–559.

Fikáček M, Beutel RG, Cai C, Lawrence JF, Newton AF et al., 2019. Reliable
placement of beetle fossils via phylogenetic analyses – Triassic Leeherrmania
as a case study (Staphylinidae or Myxophaga?). *Syst Entomol Online.* doi:
10.1111/syen.12386.

Fresneda J, Grebennikov VV, Ribera I, 2011. The phylogenetic and geographic
limits of Leptodrina (Insecta: Coleoptera: Leiodidae: Cholevinae), with
a description of *Scaphytes shetakovi* sp. n. from the Russian Far East.
Arthropod Syst Phylogeny 69:99–123.

Glor RE, 2010. Phylogenetic insights on adaptive radiation. *Ann Rev Ecol
Evol Syst* 41:251–270.

Gould SJ, 1993. A special fondness for beetles. *Nat Hist* 102:4–12.

Grebennikov VV, 2008. How small you can go: factors limiting body mini-
aturization in winged insects with a review of the pantropical genus
Discheranomoeplus and description of six new species of the smallest beetles
(Pterygota: Coleoptera: Ptiliidae).* *Eur J Entomol* 105:313–328.

Grimaldi D, 1999. The co-radiations of pollinating insects and angiosperms in
the Cretaceous. *Ann Mo Bot Gard* 86:373–406.

Grossnickle DM, Polly PD, 2013. Mammal diversification decreases during the
Cretaceous angiosperm radiation. *Proc R Soc B Biol Sci* 280:20132110.

Harmon LJ, Schulte JA, Larson A, Losos JB, 2003. Tempo and mode of evolu-
tionary radiation in iguanian lizards. *Science* 301:961–964.

Harmon LJ, Weir JT, Brock CD, Glor RE, Challenger W, 2008. GEIGER:
investigating evolutionary radiations. *Bioinformatics* 24:129–131.

Hunt T, Bergsten J, Levkancova Z, Papadopoulos A, John OS et al., 2007. A
comprehensive phylogeny of beetles reveals the evolutionary origins of a
superradiation. *Science* 318:1913–1916.

Jansen E, Overpeck J, Briffa KR, Duplessy J-C, Joos F et al., 2007.
Paleoclimate. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M
et al., editors. *Climate Change 2007: The Physical Science Basis.
Contribution of Working Group I to the Fourth Assessment Report of the
Intergovernmental Panel on Climate Change.* Cambridge, UK & New
York, NY, USA: Cambridge University Press. 433–497.

Lloyd GT, Davis KE, Pisani D, Tarver JE, Ruta M et al., 2008. Dinosaurs and
the Cretaceous terrestrial revolution. *Proc R Soc B Biol Sci* 275:2483–2490.

Longrich NR, Bluhmann B-A, Gauthier JA, 2012. A transitional snake from the
Late Cretaceous period of North America. *Nature* 488:205–208.

Losos JB, Mahler DL, 2010. Adaptive radiation: the interaction of ecological
opportunity, adaptation, and speciation. In: Bell MA, Futuyama DJ, Eanes
WF, Levinton JS, editors. *Evolution Since Darwin: The First 150 Years.*
Sunderland, MA: Sinauer Associates. 381–420.

May MR, Moore BR, 2016. How well can we detect lineage-specific diversifi-
ication-rate shifts? A simulation study of sequential AIC methods. *Syst Biol*
65:1076–1084.

McKenna DD, Farrell BD, Caterino MS, Farnum CW, Hawks DC et al., 2015a.
Phylogeny and evolution of Staphyliniformia and Scarabaeiformia: forest
litter as a stepping stone for diversification of nonphytophagous beetles.
Syst Entomol 40:35–60.