Discovery of a stripped red giant core in a bright eclipsing binary system

P.F.L. Maxted1†, D.R. Anderson1, M.R. Burleigh2, A. Collier Cameron3, U. Heber4, B.T. Gänsicke5, S. Geier4, T. Kupfer4, T.R. Marsh5, G. Nelemans6, S.J. O’Toole7, R.H. Østensen8, B. Smalley1, R.G. West9

1 Astrophysics Group, Keele University, Keele, Staffordshire ST5 5BG
2 Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH
3 SUPA, School of Physics and Astronomy, University of St. Andrews, North Haugh, Fife, KY16 9SS, UK
4 Dr. Karl Remeis-Observatory & ECAP, Astronomical Institute, Friedrich-Alexander University Erlangen-Nuremberg, Sternwartstr. 7, D 96049 Bamberg, Germany
5 Department of Physics, University of Warwick, Coventry, CV1 7AL
6 Department of Astrophysics, IMAPP, Radboud University Nijmegen, PO Box 9010, 6500 GL Nijmegen, The Netherlands
7 Australian Astronomical Observatory, PO Box 296, Epping, NSW, 1710, Australia
8 Institute of Astronomy, K.U.Leuven, Celestijnenlaan 200D, 3001, Heverlee, Belgium
9 Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH

To be inserted

ABSTRACT

We have identified a star in the WASP archive photometry with an unusual lightcurve due to the total eclipse of a small, hot star by an apparently normal A-type star and with an orbital period of only 0.668 d. From an analysis of the WASP lightcurve together with V-band and I$_C$-band photometry of the eclipse and a spectroscopic orbit for the A-type star we estimate that the companion star has a mass of 0.23 ± 0.03 M_\odot and a radius of 0.33 ± 0.01 R_\odot, assuming that the A-type star is a main-sequence star with the metalicity appropriate for a thick-disk star. The effective temperature of the companion is 13400 ± 1200 K from which we infer a luminosity of 3 ± 1 L_\odot. From a comparison of these parameters to various models we conclude that the companion is most likely to be the remnant of a red giant star that has been very recently stripped of its outer layers by mass transfer onto the A-type star. In this scenario, the companion is currently in a shell hydrogen-burning phase of its evolution, evolving at nearly constant luminosity to hotter effective temperatures prior to ceasing hydrogen burning and fading to become a low-mass white dwarf composed of helium (He-WD). The system will then resemble the pre-He-WD/He-WD companions to A-type and B-type stars recently identified from their Kepler satellite lightcurves (KOI-74, KOI-81 and KIC 10657664). This newly discovered binary offers the opportunity to study the evolution of a stripped red giant star through the pre-He-WD stage in great detail.

Key words: binaries: spectroscopic – binaries: eclipsing – stars: peculiar – binaries: close – stars: individual: KOI-74 – stars: individual: KOI-81 – stars: individual: V209 ω Cen, PC1-V36, HD 188112, KIC 10657664, NGC 6121-V46, 1SWASP J024743.37–251549.2

1 INTRODUCTION

Wide-area surveys for transiting extra-solar planets such as WASP (Wide Angle Search for Planets, Pollacco et al. 2006), HATnet (Bakos et al. 2004), XO (McCullough et al. 2005) and TrES (O’Donovan et al. 2006) provide high cadence photometry for millions of bright stars across a large fraction of the sky. This provides the opportunity to find and study many new examples of known classes of variable star, e.g., eclipsing brown dwarf binary systems (Anderson et al. 2011), double-mode RR Lyr stars (Wils 2010), W UMa stars (Norton et al. 2011), young solar-type stars (Messina et al. 2011) and cataclysmic variable stars (Wils 2011). New discoveries will certainly be made now...
that much of the data from these surveys is becoming widely available (Butters et al. 2010). The photometric precision achieved by these surveys with modest equipment (\(\lesssim 0.01\) magnitudes at V=12) is impressive, but cannot compete with the micro-magnitude photometry achieved from space by surveys such as CoRoT (Baglin et al. 2006) and Kepler (Borucki et al. 2009). Photometry with this precision has made it possible to identify new types of variable star that are difficult or impossible to study from the ground, e.g., triply eclipsing binary stars (Carter et al., 2011), stars with tidally excited pulsations (Welsh et al., 2011), subdwarfs with white dwarf companions (Bloemen et al., 2011), and white dwarf companions to early-type main sequence stars (Rowe et al., 2010; van Kerkwijk et al., 2010).

One advantage that ground-based surveys currently have over space-based surveys is that they cover a much larger fraction of the sky. This makes it possible in some cases to discover rare or extreme examples of these new classes of variable star. In the case of the white-dwarf companions to early-type stars KOI-74 and KOI-81, these were identified from the eclipses and transits in the Kepler lightcurves, even though these features are much less than 1% deep (Rowe et al., 2010; van Kerkwijk et al., 2010). These low-mass white dwarfs have an unusual evolutionary history, but it is difficult to study them in detail because they are very much fainter than their companions. Ground-based surveys offer the opportunity to discover similar eclipsing binary systems that are more favourable for detailed follow-up observations.

Low mass white dwarf stars \((M < 0.4 M_\odot)\) are the product of binary star evolution (Iben & Livio, 1993; Marsh et al., 1993). They are the result of mass transfer from a red giant onto a companion star when the giant has a small degenerate helium core. There are several possible outcomes from this mass transfer depending on the mass ratio of the binary and the type of companion star. If the companion is a neutron star then the mass transfer is likely to stable so the binary can go on to become a low mass X-ray binary (LMXB) containing a millisecond pulsar. Several millisecond radio pulsars are observed to have low mass white dwarf (LMWD) companions (Lorimer, 2008). Many new LMWDs have recently been identified in the Sloan Digital Sky Survey (Kille et al., 2007) and from proper motion surveys (Kawka & Vennes, 2009). Searches for radio pulsar companions to these LMWDs have so far found nothing, suggesting that the majority of these LMWDs have white dwarf companions (Agueros et al., 2008). LMWDs can also be produced by mass transfer from a red giant onto a main sequence star, either rapidly through unstable common-envelope evoluition or after a longer-lived “Algol” phase of stable mass transfer (Reischl & Weigert, 1963; Giannone & Gianuzzi, 1970; Willems & Koh, 2004; Iben & Livio, 1993; Chen & Han, 2003; Nelson & Eggleton, 2004).

The evolution of LMWDs is expected to be very different from more massive white dwarfs. It is expected that once mass transfer stops the LMWD will have a thick layer of hydrogen surrounding the degenerate helium core which leads to steady hydrogen shell burning via the p-p chain and can lead to unstable phases of CNO burning for LMWD in the mass range 0.2 - 0.3 M_\odot (Driebe et al., 1999). These hydrogen shell flashes lead to mixing between the inner and outer layers, producing a hydrogen deficient surface composition for the LMWD. Models that include hydrogen shell burning provide a much better match between the “cooling age” of the LMWD and the “spin-down age” of the millisecond pulsars in LMXBs. The number of hydrogen shell flashes depends strongly on the mass of the hydrogen layer that remains on the surface of the LMWD (Sarna et al., 2004), which in turn depends strongly on the details of the mass loss from the red giant (Podsiadlowski et al., 2002). Details such as the treatment of diffusion can also lead to large differences in the predictions between different models (Althaus et al., 2001).

In this paper we present the discovery from WASP photometry of an eclipsing binary star that is related to KOI-74, KOI-81 but that has much deeper eclipses, i.e. the companion to the early-type star is much brighter and larger than the white-dwarf companions to these Kepler discoveries. We present the data used to identify this new eclipsing binary star and the follow-up photometry and spectroscopy we have obtained; we analyse these data to determine the masses, radii and luminosities of the stars; and we outline how our discovery of this bright pre-white dwarf companion to an early-type star makes it possible to study the formation of an LMWD in detail.

Table 1. Catalogue photometry and astrometry of J0247–25.

Parameter	Value	Source
RA (J2000.0)	02 47 43.38	NOMAD
Dec (J2000.0)	-25 15 49.3	NOMAD
\(\mu_a\)	23.2 ± 2.5 mas/yr	PPMXL
\(\mu_0\)	25.9 ± 1.2 mas/yr	UCAC3
\(\mu_\delta\)	-5.4 ± 1.2 mas/yr	PPMXL
\(\mu_\phi\)	-5.3 ± 1.0 mas/yr	UCAC3
\(f_{AB}\)	16.03 ± 0.02	GALEX
\(r_{AB}\)	14.46 ± 0.01	GALEX
B	12.13	NOMAD
V	12.44	NOMAD
J	11.85	2MASS
H	11.81	2MASS
K	11.79	2MASS

outer layers, producing a hydrogen deficient surface composition for the LMWD. Models that include hydrogen shell burning provide a much better match between the “cooling age” of the LMWD and the “spin-down age” of the millisecond pulsars in LMXBs. The number of hydrogen shell flashes depends strongly on the mass of the hydrogen layer that remains on the surface of the LMWD (Sarna et al., 2004), which in turn depends strongly on the details of the mass loss from the red giant (Podsiadlowski et al., 2002). Details such as the treatment of diffusion can also lead to large differences in the predictions between different models (Althaus et al., 2001).

In this paper we present the discovery from WASP photometry of an eclipsing binary star that is related to KOI-74, KOI-81 but that has much deeper eclipses, i.e. the companion to the early-type star is much brighter and larger than the white-dwarf companions to these Kepler discoveries. We present the data used to identify this new eclipsing binary star and the follow-up photometry and spectroscopy we have obtained; we analyse these data to determine the masses, radii and luminosities of the stars; and we outline how our discovery of this bright pre-white dwarf companion to an early-type star makes it possible to study the formation of an LMWD in detail.

2 OBSERVATIONS AND DATA REDUCTION

2.1 WASP photometry

The star, 1SWASP J024743.37–251549.2 (J0247–25 hereafter) was observed by the WASP-South instrument as part of the WASP survey. The WASP survey is described in Pollacco et al. (2006) and Wilson et al. (2008). The data from this survey are automatically processed and analysed in order to identify stars with lightcurves that contain transit-like features that may indicate the presence of a planetary companion. The candidate selection methods can be found in Collier Cameron et al. (2007), Pollacco et al. (2008), and references therein. In practice, these automatic methods produce tens of thousands of candidates, so we use a database to
Figure 1. Lightcurves of J0247−25 with lightcurve model fits (solid lines). From bottom-to-top: WASP (small points); SAAO 1.0-m Ic-band and V-band (filled circles); ASAS V-band (small crosses).

Figure 2. Distribution of selected lightcurve parameters from the bootstrap Monte Carlo simulation.

Figure 3. Flux calibrated and normalized GMOS-S spectrum of J0247−25 (lower spectrum) compared to the normalized, flux-calibrated and smoothed spectrum of the A6Vp star HD148898 offset by +0.5 units (upper spectrum).

Figure 4. Radial velocity measurements of J0247−25 B as a function of phase with a circular orbit fit (solid line). The spectrograph used is indicated as follows: filled circles – EFOSC2; triangles – ISIS; diamonds – GMOS.

store the results of the automatic analysis plus other information available for the stars such as catalogue photometry and astrometry. This makes it possible to efficiently reject large numbers of candidates that are unlikely to host planets using a variety of criteria such as eclipse depth and the noise level in the lightcurve. The number of candidates that remain after sifting is small enough to make selection by inspection of the available data by a small number of people feasible. The same database can also be used to identify eclipsing binary stars by modifying the sifting criteria.

J0247−25 was spotted by one of us (PM) while looking at lightcurves of stars with deep eclipses and low reduced proper motions, i.e., stars that may be eclipsing binary subdwarfs. Catalogue photometry and astrometry of J0247−25 are summarized in Table 1. The automatic transit detection algorithm correctly identified a period of 0.6678 d from 6633 observations of this star obtained with the WASP-South instrument. The observations were obtained with a single camera through a broad-band filter (400−700 nm) between 2006 August 10 and 2007 December 31. The WASP photometry
is shown as a function of orbital phase in Fig. 1. The deeper of the two eclipses in the lightcurve shows a flat section between a sharp ingress and egress. This type of lightcurve is produced by the eclipse of one star by a larger but cooler star. It is not possible to produce a lightcurve with these properties if both the stars in the binary are on the main sequence. For this reason we organised follow-up observations of this unusual object.

2.2 SAAO 1.0-m photometry

We observed the egress phases of two eclipses of J0247−25 using the UCT CCD photometer on the SAAO 1.0-m telescope. The star approximately 2.5 magnitudes fainter located 71 arcsec west of J0247−25 was used as a comparison star. Images with an exposure time of 10 s through an I-band filter were obtained on the night 2009 October 30. Exposures with an exposure time of 30 s through a V-band filter were obtained on the night 2009 November 5. We used synthetic aperture photometry to measure the apparent fluxes of J0247−25 and the comparison star. The apparent flux of J0247−25 relative to the comparison star normalized to the flux out of eclipse is shown in Fig. 1.

2.3 Spectroscopy

We obtained 9 spectra of J0247−25 on four nights with the GMOS spectrograph on the Gemini-South telescope using the 600 line/mm grating and a 0.5 arcsec slit. We only used the data from the CCD covering the wavelength range 3698−4619Å for this study. The resolution of these spectra estimated from a Gaussian fit to an arc line is approximately 2.5Å and the dispersion is 0.9Å per pixel. We also obtained 6 spectra with the EFOSC2 spectrograph on the ESO NTT telescope with grism #19. These spectra cover the wavelength range 4434−5109Å at a dispersion of 0.67Å per pixel and have a resolution of approximately 2.2Å. Finally, we obtained 2 consecutive spectra of J0247−25 with the ISIS spectrograph on the 4.2-m WHT. These spectra cover the wavelength range 3984−4776Å at a dispersion of 0.22Å per pixel and have a resolution of 0.6Å.

The flux-calibrated spectrum of J0247−25 is compared to the spectrum of the A6Vp star HD148898 in Fig. 3.

Table 2. Parameters for the lightcurve model fit by least-squares. Parameter definitions are given in the text.

Parameter	Value
T_0	2455135.295 ± 0.00004
P [d]	0.6678321 ± 0.0000002
S_{ASAS}	3.36 ± 0.16
S_{WASP}	2.50 ± 0.14
S_V	2.16 ± 0.12
b	0.163 ± 0.007
R_A/a	0.4492 ± 0.0025
R_B/a	0.0866 ± 0.0023
k	0.1929 ± 0.0043
q	0.121 ± 0.005
i [°]	85.0 ± 0.2

Table 3. Heliocentric radial velocities for J0247−25 A.

HJD	V_r	Instrument
−2450000	80.5 ± 3.0	ISIS
5137.5367	82.9 ± 3.0	ISIS
5137.5499	78.7 ± 8.4	EFOSC2
5144.6820	85.3 ± 8.4	EFOSC2
5144.7587	46.6 ± 8.4	EFOSC2
5145.6794	30.5 ± 8.4	EFOSC2
5146.7065	66.1 ± 8.4	EFOSC2
5147.6335	72.5 ± 8.4	EFOSC2
5128.6879	74 ± 13	GMOS-S
5129.8440	14 ± 13	GMOS-S
5129.8522	18 ± 13	GMOS-S
5130.7851	75 ± 13	GMOS-S
5130.7873	81 ± 13	GMOS-S
5141.6567	40 ± 13	GMOS-S
5141.6638	32 ± 13	GMOS-S
5141.6709	37 ± 13	GMOS-S
5141.6780	30 ± 13	GMOS-S

Table 4. Circular orbit fit for J0247−25 A. The function fitted to the radial velocities in Table 3 from $\gamma + K_A \sin(2\pi(HJD - T_0)/P)$

Parameter	Value
T_0	2455135.295 (fixed)
P [d]	0.66783 (fixed)
γ [km s$^{-1}$]	52.6 ± 2.4
K_A [km s$^{-1}$]	38.5 ± 3.6
N	17
χ^2	12.2

3 ANALYSIS

We refer to the larger, cooler component of J0247−25 as J0247−25 A and its companion (the star eclipsed at phase 0) as J0247−25 B.

3.1 Lightcurve model

In addition to the 3 lightcurves we obtained, we also analysed the V-band photometry for J0247−25 provided by the ASAS survey (Pojmanski 2002). We used only the 503 measurements graded “A” for our analysis. We used the lightcurve model ebop (Etzel 1981, Popper & Etzel 1981) to analyse all four lightcurves simultaneously and so derive the following parameters: the radii of the stars relative to their separation, R_A/a and R_B/a; the inclination, i; the ratio of the surface brightnesses for the stars at each wavelength, $S_{\text{WASP}}/S_{\text{ASAS}}$, S_V and S_I; the linear limb-darkening coefficients in the V-band and Ic-band, x_V and x_{Ic}, respectively; the time (HJD UTC) of mid-primary eclipse, T_0; the orbital period, P; and the normalization of the 4 lightcurves. For the WASP data we use the average of x_V and x_{Ic} as the linear limb darkening parameter. We assigned the same linear limb-darkening coefficient to both stars because the limb darkening of J0247−25 B has a negligible effect on the lightcurve. For numerical stability and to avoid non-physical values for the various parameters, the free parameters we use in the least-squares fit are: $\log(S_{\text{WASP}})$; $\log(S_{\text{ASAS}})$; $\log(S_V)$;
log(S_{1C}); log(1/b - 1) (where b = a cos i/[R_A + R_B] is the impact parameter); R_A/a; k = R_B/R_A; (P = 0.66783173) × 1000; T_0 = 2455134.6272; log(1/x_{V}); log(1/x_{I}; 1); log(q) (where q = M_B/m_A is the mass ratio). The optimum values of the parameters of interest derived by least-squares are given in Table 2. The standard errors on the parameters are derived using a bootstrap Monte Carlo method. The fits to the lightcurves can be seen in Fig. 1. The joint distributions from the Monte Carlo simulation for selected pairs of parameters are shown in Fig. 2. The linear limb-darkening parameters x_V and x_{I; C} are found to be indeterminate from the lightcurve and the other parameters have only a weak dependence on them.

3.2 Effective temperatures of J0247–25 A and J0247–25 B

We used the observed V–K colour of J0247–25 combined with the luminosity ratio and surface brightness ratio in the V-band from the lightcurve solution to estimate the effective temperatures of J0247–25 A and J0247–25 B. For the V-band magnitude we used the mean value of V from the ASAS photometry, with the sample standard deviation as a standard error, 12.28 ± 0.07. This standard error is intended to account for the variation of the flux between eclipses and any systematic offset from the ASAS V-band and the standard V-band photometric system. We use the observed value of K_s from Table 1 but as the phase at which this magnitude was measured is not known we assign it the same standard error as the sample standard deviation of the ASP photometry. We also convert the K_s magnitude to K using (K_s)_{V, MASS} = K − 0.044 [Bessell 2000] to obtain K = 11.83 ± 0.05.

The effective temperature of a single star with V–K = 0.45 is 8250 K [Zombeck 2007]. We used the spectral energy distributions from [Kurucz 1993] to calibrate the relation between surface brightness and effective temperature in the V-band. We then used the initial value of T_{eff, A} = 8400 K for J0247–25 A and the values of S_v from the lightcurve solution to obtain T_{eff, B} = 14050 K for J0247–25 B. We then use the V–K value for a star of this effective temperature and the luminosity ratio in the V-band from the lightcurve solution to derive a value of (V–K)_{A; K} = 0.51 ± 0.07. Repeating the steps above then leads to the improved effective temperature estimates of T_{eff, A} = 8060 ± 330 K for J0247–25 A and T_{eff, B} = 13400 ± 1200 K for J0247–25 B.

We did not attempt a detailed analysis of our spectra for J0247–25 because we were not able to clearly identify any spectral lines from J0247–25 B. This makes it very difficult to account for the contamination of the combined spectrum by J0247–25 B, particularly since this highly evolved star may have a very peculiar atmospheric composition, e.g., it may be hydrogen deficient. We were able to estimate that the projected rotational velocity of J0247–25 A is V_\sin i = 95 ± 5 km s^{-1} from the observed widths of various metal lines.

3.3 Spectroscopic orbit of J0247–25 A

We measured the radial velocity of J0247–25 A by cross-correlation of the spectra against a high-resolution spectrum of the A6p-type star HD148898 [Bagnulo et al. 2003]. We excluded the broad Balmer lines from the cross-correlation. There is no indication of a second peak in the cross-correlation function due to J0247–25 B. The radial velocities derived from the cross-correlation function are given in Table 3. These radial velocities have been corrected for the radial velocity of the template star (2.5 km s^{-1} [Wilson 1953]). For well-exposed spectra such as these the dominant sources of error are systematic, e.g., motion of the star in the slit and instrument flexure. From experience we find that using dispersion/5 gives a reasonable estimate of the standard error in these cases, so this is the value given in Table 3. The parameters of the spectroscopic orbit assuming zero eccentricity in the least-squares fit are given in Table 4.

3.4 Kinematics

We have calculated the Galactic U-V velocity components of J0247–25 using the method described by [Pauli et al. 2003]. We used the mean of the proper motion values given in Table 1 and assigned an error of 1.5 mas to each component. The radial velocity of the system is taken from Table 2. We used the isochrones from [Siess et al. 2007] to estimate that a zero-age main-sequence star with the same effective temperature as J0247–25 A has an absolute V magnitude M_v = 1.4 ± 0.3. We calculated the apparent V magnitude of J0247–25 A assuming that it contributes 89 per cent of the light in the V-band. From the apparent distance modulus of J0247–25 A and ignoring the effects of reddening we estimate the distance to J0247–25 to be d = 1500 ± 300 pc. The resulting U-V velocity components for J0247–25 A are shown in Fig. 5 compared to the region of this diagram occupied by thin-disk and thick-disk stars. J0247–25 clearly has the kinematics of a thick-disk star, which suggests that it is likely to be old (\gtrsim 7 Gyr), metal poor (\lesssim -1 \lesssim [Fe/H] \lesssim 0.3) and have enhanced α-element abundance ([Mg/Fe] \gtrsim 0.3).
compared to the models of Girardi et al. (2000) for Z=0.004. Stellar evolutionary tracks are shown as thick lines and labelled by mass. Isochrones for log(age/Gyr) = 9.0, 9.2, 9.4 are plotted with dotted, dashed and dash-dotted lines, respectively.

Figure 6. The effective temperature and density of J0247−25 A compared to the models of Girardi et al. (2000) for Z=0.004. Stellar evolutionary tracks are shown as thick lines and labelled by mass. Isochrones for log(age/Gyr) = 9.0, 9.2, 9.4 are plotted with dotted, dashed and dash-dotted lines, respectively.

Figure 7. The effective temperature and surface gravity of J0247−25 B compared to the models for core hydrogen burning stars (solid lines), core helium burning stars (dashed lines) and a model for the formation of a 0.195M⊙ white dwarf (dotted line, Driebe et al. 1999). Core hydrogen burning models from Siess et al. (2000) are labelled by age. Core helium burning models are labelled as follows: ZAEHB/TAEHB = zero-age/terminal-age extreme horizontal branch (Dorman et al. 1993); ZAHB = zero-age horizontal branch (Sweigart 1987); HeMS = helium main sequence (Dorman et al. 1993).

3.5 Mass, radius and luminosity of the components

Using Kepler’s 3rd law we find that the density of J0247−25 A, ρA, is related to the orbital period, the parameter RA/a derived from the lightcurve model and the mass ratio, q = M_B/M_A, as follows:

\[\rho_A = \frac{3 \pi}{G(1+q)(R_A/a)^2}P^2. \]

The value of ρA is not sensitive to the exact value of q provided this value is small, so we take a value of q = 0.16±0.08 and compare the values of ρA and T_{eff,A} to the stellar models for main-sequence stars from Girardi et al. (2000). This value of q is chosen for consistency with the masses derived below. The error on q is arbitrary but large enough to easily cover all likely values for this parameter. For the models shown in Fig. 6 the best estimate of the mass is 1.48±0.09M⊙ where the error includes the uncertainties in T_{eff,A}, ρA and [Fe/H] = −0.65±0.35.

In Table 5 we give the values for the mass, radius and luminosity for J0247−25 A and J0247−25 B derived from the lightcurve model and mass function assuming M_A = 1.48±0.09M⊙.

Table 5. Physical parameters of the components of J0247−25.

Parameter	J0247−25 A	J0247−25 B
Mass (M⊙)	1.48±0.09a	0.23±0.03a
Radius (R⊙)	1.71±0.04a	0.33±0.01a
T_{eff} (K)	8060±300	13400±1200
log g [cgs]	4.13±0.02a	4.75±0.05
Luminosity (L⊙)	11±2a	3±1a

aassuming J0247−25 A is a main-sequence star with [Fe/H] = −0.65±0.35.

4 DISCUSSION

Our estimate of the surface gravity for J0247−25 B, log g_B, is independent of the assumed mass for J0247−25 A (Southworth et al. 2004) so in Fig. 7 we compare the observed values of T_{eff,B} and log g_B to various models. It is clear that J0247−25 B cannot be a core hydrogen burning star and is too cool to be a core helium burning star. In contrast, the model for the formation of a 0.195M⊙ white dwarf from Driebe et al. (1999) is a good match to the observed values of T_{eff,B} log g_B and a reasonable match to the estimated value of M_B. We therefore conclude that J0247−25 B is the precursor of a low mass white dwarf. As this white dwarf will be composed almost entirely of helium, we refer to J0247−25 B and similar stars as pre-He-WD stars.

In Fig. 8 we show the Hertzsprung-Russell diagram.
A-type star has a mass much lower than expected (0.7 to its tidal deformation. The mass ratio for the binary can be inferred from Kepler photometry (Carter et al. 2011). The Kepler lightcurve of this binary shows a well defined total variation between the eclipses that were identified as the Doppler beaming (DB) signal due to the orbital motion of the A-star and the ellipsoidal variation (ELV) due to its tidal deformation. The mass ratio for the binary can be estimated from either the DB or ELV signal, but these are found to be inconsistent with one another unless the A-type star has a mass much lower than expected (0.7M⊙ cf. 2.5M⊙). HD 188112 is a single-lined spectroscopic binary star for which the mass (0.24±0.04M⊙) can be inferred from its Hipparcos parallax (Heber et al. 2002). The companion to this star is a compact object and the orbital of the system 0.606585 d. The object PCI-V36 is a binary star with an orbital period of 0.8 d in the globular cluster 47 Tuc (Knigge et al. 2008). The companion to this very low mass object (M=0.056M⊙) is very faint and may be a neutron star. NGC 6121-V46 is also a binary star in a globular cluster (M4) with an unseen companion (O’Toole et al. 2008).

The object V209ωCen B is one component of an eclipsing binary with a period of 0.83 d in the globular cluster ω Cen (Kaluzny et al. 2003). This star also has a similar mass to J0247−25 B (0.144 ± 0.008M⊙). The other component in this binary star, V209ωCen A, is too hot to be a main sequence star given its mass (Teff = 9370 K, M=0.945M⊙). This casts doubt on our assumption that the mass of J0247−25 A can be estimated from models of normal main-sequence stars. The same doubt applies to the analysis of KIC 10657664 by (Carter et al. 2011, who also assumed that the A-type primary star in that binary is a main-sequence star because a mass of 0.3M⊙ for a star with Teff ≈ 9500 K is “not physically plausible”. Kaluzny et al. suggest that V209ωCen A may be a white dwarf that has accumulated sufficient mass to re-ignite shell hydrogen burning. As far as we can ascertain, this intriguing scenario has not been studied further.

The position of J0247−25 B in Fig. 7 is not affected by the assumed mass for J0247−25 A, so an alternative way to estimate the mass of J0247−25 A is to assume that J0247−25 B has a mass of 0.195M⊙ from the model of Driebe et al. (1999) that is a good match to the observed values of T_eff, B and log g_B. In this case, the mass function implies a mass of M_A = 1.2 ± 0.2 M⊙, i.e., similar to the mass of V209ωCen A. Alternatively, if we assume that J0247−25 A rotates synchronously, then the observed value of V sin i = 95 ± 5 km s^−1 combined with the parameters in Table 2 can be used to infer the value of the semi-major axis, a, and thus M_A ≈ 0.6 M⊙ and M_B ≈ 0.13 M⊙. Finally, we can use the mass ratio estimated from the lightcurve solution together with the mass function to estimate M_A = 2.8±0.1 M⊙. This estimate must be regarded with some caution because the only feature of the lightcurve that depends strongly on q is the ellipsoidal variation in brightness between eclipses. It is not known at the time writing whether the algorithm used to remove systematic noise from the WASP lightcurves may also reduce the strength of variations on timescales of ~8 hours, i.e., the duration of observations on a typical night and the period of the ellipsoidal variation in J0247−25. Although these various estimates of M_A are not consistent with one another, this does not affect our main conclusion that J0247−25 B is a pre-He-WD.

We have not shown in Fig. 8 the complex evolutionary paths followed by low mass white dwarfs during hydrogen shell flashes. Some of these paths match the observed properties of J0247−25 B rather well, but the timescale for the evolution through the relevant part of the HRD is generally extremely short (decades–centuries), so this is a rather remote possibility.

J0247−25 B contributes about 11% of the flux at visible wavelengths so better quality spectroscopy should make it possible to directly measure the radial velocity of J0247−25 B and so derive precise, model-independent masses for both stars. It will also be possible to recover the individual spectra of the two components of J0247−25 by comparing the spectra in-eclipse and out-of-eclipse or using spectral disentangling techniques (Pavlovsky & Hensbergen 2010). This will make it possible to test the prediction of Driebe et al. that a 0.195M⊙ white dwarf should have a helium-enhanced atmosphere at this stage of its evolution as a consequence of the extreme mass loss that this star has suffered.

Models for the formation of LMWD suggest that the relationship between orbital period and white dwarf mass (P_b−M_WD relation) should be almost independent of the details of how the mass is lost from the red giant, although the relation is expected to show some dependence on metallicity. In practice, these models seem to under-estimate the mass of LMWD companions to milli-second pulsars (Stairs et al. 2002). The masses and periods of various low-mass white dwarf and pre-He-WD binary systems are given in Table 6 and are compared to selected models for their formation through a phase of stable mass transfer in Fig. 8. The relation between mass and period is very steep at the short period end, so precise and accurate (model independent) mass measurements are needed to define an empirical P_b−M_WD relation. Spectroscopy of J0247−25 with sufficient signal-to-noise and resolution to allow a spectroscopic orbit for J0247−25 B to be measured should yield a precise mass estimate for J0247−25 B. This would make possible an interesting comparison with V209ωCen B and PCI-V36, which have similar orbital periods to J0247−25 but that are both members of metal-poor globular clusters.

It seems clear that the formation of J0247−25 must have involved extensive mass loss from a red giant star, but the mechanism for the mass loss is not so clear. The progenitor of J0247−25 B must have had a mass ≳ 0.8M⊙ to evolve off the main-sequence within the lifetime of the Galaxy, so this star has lost ≳ 0.5M⊙. This suggests that J0247−25 B has accreted rather a lot of material or the evolution of this binary system has required highly non-conservative mass transfer. A full exploration of the possible evolutionary pathways for the formation of J0247−25 is beyond the scope of this paper, but we note here that the low projected rotational velocity of J0247−25 A may be
Figure 9. The masses and periods for low-mass white dwarfs and pre-He-WDs from Table 6, compared to selected models as follows: solid line – Nelson et al. (2004); dotted line – Rappaport et al. (1995); dashed line – Tauris & Savonije (1999). Star for which the mass estimates have no quoted error bar are shown with open symbols.

Table 6. Masses and periods for low mass white dwarfs and pre-He-WDs in binary systems.

Name	Period [d]	Mass [M_⊙]	Source
NGC 6121-V46	0.087	~0.19	1
HD 188112	0.607	0.23 ± 0.03	3
J0247−25	0.668	0.37 ± 0.08	7
PCE-V36	0.794	0.056 ± 0.018	4.5
V209 ω Cen B	0.834	0.14 ± 0.008	6
KIC 10657664	3.274	0.26 ± 0.04	7
KOI-74	5.189	0.22 ± 0.03	8
KOI-81	23.89	~0.3	8
Regulus B	40.11	0.28 ± 0.05	9

References: 1 – O’Toole et al. (2006); 2 – Heber et al. (2003); 3 – this paper; 4 – Albrow et al. (2001); 5 – Kaluzny et al. (2007); 6 – Kaluzny et al. (2009); 7 – Carter et al. (2011); 8 – van Kerckwijk et al. (2010); 9 – Rappaport et al. (2009)

Figure 9. The masses and periods for low-mass white dwarfs and pre-He-WDs from Table 6, compared to selected models as follows: solid line – Nelson et al. (2004); dotted line – Rappaport et al. (1995); dashed line – Tauris & Savonije (1999). Star for which the mass estimates have no quoted error bar are shown with open symbols.

Table 6. Masses and periods for low mass white dwarfs and pre-He-WDs in binary systems.

Name	Period [d]	Mass [M_⊙]	Source
NGC 6121-V46	0.087	~0.19	1
HD 188112	0.607	0.23 ± 0.03	3
J0247−25	0.668	0.37 ± 0.08	7
PCE-V36	0.794	0.056 ± 0.018	4.5
V209 ω Cen B	0.834	0.14 ± 0.008	6
KIC 10657664	3.274	0.26 ± 0.04	7
KOI-74	5.189	0.22 ± 0.03	8
KOI-81	23.89	~0.3	8
Regulus B	40.11	0.28 ± 0.05	9

References: 1 – O’Toole et al. (2006); 2 – Heber et al. (2003); 3 – this paper; 4 – Albrow et al. (2001); 5 – Kaluzny et al. (2007); 6 – Kaluzny et al. (2009); 7 – Carter et al. (2011); 8 – van Kerckwijk et al. (2010); 9 – Rappaport et al. (2009)

a very useful constraint in any such study. If the mass of J0247−25 B is $\gtrsim 0.2 M_\odot$ then J0247−25 A must be rotating sub-synchronously or have significantly non-zero obliquity. This would be difficult to explain in any scenario in which J0247−25 A has gained a large amount of mass and angular momentum from the red giant progenitor to J0247−25 B. Nevertheless, J0247−25 A appears to be a young star when compared to the isochrones for metal-poor stars shown in Fig 6 (1-2 Gyr), certainly much younger than a typical star in the thick-disk population (Feltzing & Bensby 2008). This suggests that J0247−25 A was spinning down to a blue-straggler, i.e., an anomalously young, massive star when compared to other thick-disk stars. The synchronisation timescale for a 1.4 M_\odot star is about 10 Myr (Claret 2004), comparable to the time since the formation of J0247−25 B according to the 0.195 M_\odot model of Driebe et al. This suggests that there has not been sufficient time for J0247−25 A to have lost a large amount of rotational angular momentum through tidal interactions with J0247−25 B since its formation. It may be that the formation of J0247−25 B left J0247−25 A far from equilibrium and that the slow rotation is caused by the subsequent expansion of this star.

5 CONCLUSIONS

The star 1SWASP J024743.37−251549.2 is an eclipsing binary star in which the precursor to a low mass white dwarf with a mass $\approx 0.25 M_\odot$ is totally eclipsed by a larger, cooler star once every 0.6678 d. More detailed spectroscopy will be required to measure a precise masses for the stars. This will enable us to determine the nature of the larger star and to make detailed tests of models for the formation pre-He-WDs and low mass white dwarfs.

ACKNOWLEDGMENTS

Funding for WASP comes from consortium universities and from the UK’s Science and Technology Facilities Council.

WASP-South is hosted by the South African Astronomical Observatory and we are grateful for their ongoing support and assistance.

This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation.

Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência e Tecnologia (Brazil) and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina) (Program ID GS-2009B-Q-96).

REFERENCES

Agüeros M. A., Camilo F., Silvestri N. M., Kleinman S. J., Anderson S. F., Liebert J. W., 2009, ApJ, 697, 283
Albrow M. D., Gilliland R. L., Brown T. M., Edmonds P. D., Guhathakurta P., Sarajedini A., 2001, ApJ, 559, 1060
Althaus L. G., Seregni E. A., Benvenuto O. G., 2001, MNRAS, 323, 471
Anderson D. R., et al., 2011, ApJ, 726, L19
Baglin A., Auvergne M., Barge P., Deleuil M., Catala C., Michel E., Weiss W., The COROT Team 2006, in M. Fridlund, A. Baglin, J. Lochard, & L. Conroy ed., ESA Special Publication Vol. 1306 of ESA Special Publication, Scientific Objectives for a Minisat: CoRoT. pp 33
Baguña S., Jehin E., Ledoux C., Cabanac R., Melo C., Gilmozzi R., The ESO Paranal Science Operations Team 2003, The Messenger, 114, 10
Bakos G., Noyes R. W., Kovács G., Stanek K. Z., Sasselov D. D., Domsa I., 2004, PASP, 116, 266
