Shikha Jaiswal
Department of Physics, Feroze Gandhi P.G. College, Raebareli (U.P.), India

*Corresponding author: shikhajk@gmail.com

Abstract: Nanotechnology has its wide applications in different fields of health, energy, electronics, environment, space exploration and transportation. Green means the use of plant products and green nanotechnology is the branch that utilizes the concept of green chemistry and green engineering. It reduces the use of energy and fuel by using renewable inputs and develops clean technologies in order to minimize health and environmental risks. These products, processes and applications save materials, energy and water thus contributing to the environment. Apart from the development of solar cells, biofuels and fuel cells, synthesis of nanoparticles using sunlight or by recycling the industrial waste to produce nanomaterials is also necessary. Thus, green nanotechnology encourages the substitution of existing products in order to develop new products. This article reviews the applications of nanoparticles with their green synthesis and emphasizes their use to make the environment clean and green.

Keywords: Environment, Green nanotechnology, Health, Nanotechnology.

INTRODUCTION

There’s plenty of room at the bottom (Feynman, 1960) means the feasibility of manipulation at nanoscale. Nanotechnology is a technology to study extremely small structures. It has various applications in fields of health, medicine, electronics, energy and environment. Nanotechnology deals with materials in size 0.1 to 100nm. At this size they display properties different from bulk materials like electric conductance, chemical reactivity, magnetism, optical effects and physical strength. The Nano world is the intermediary between the atom and the solid, given in Table 1 from the large molecule or the small solid object to the strong relationship between surface and volume. Strictly speaking, the Nano world has existed for a long time and it is up to experts to study the structures and properties of molecules. They have learnt (with the help of physicists) to manipulate them and build more and more complex structures. Progress in observation tools such as electron microscopes, scanning-tunneling microscopes (STM) and atomic force...
microscopes (AFM) as well as in analysis tools (particularly X-ray diffraction (XRD), neutron and mass spectrometry) has been a decisive factor. The production of nanoscopic material is constantly improving, as is the case for the process of catalysis and surfaces used in the nano world. A substantial number of new materials with nano elements such as ceramics, glass, polymers and fibres are making their way onto the market and are present in all shapes and forms in everyday life, from washing machines to architecture. The milestones in the development of this field are tabulated in Table 2 and the initiatives taken for its periodical developments are given in Table 3.

Table 1: Comparative size of different things to understand the concept of Nano scale.

| Things          | Water | Glucose | Antibody | Virus | Bacteria | Cancer cell | Tennis ball |
|-----------------|-------|---------|----------|-------|----------|-------------|-------------|
| Nanometers (nm) | $10^3$| 1       | 10       | $10^2$| $10^3$   | $10^4$      | $10^6$      |

Table 2: Milestones in the development in nanotechnology.

| S.No. | Scientist       | Year | Development                                         |
|-------|-----------------|------|-----------------------------------------------------|
| 1.    | Feynman         | 1959 | Initiate the thought                                |
| 2.    | Taniguchi       | 1974 | Coined the term Nanotechnology                     |
| 3.    | Binnig, Rohrer  | 1970s| Scanning Tunneling Microscope                       |
| 4.    | Binnig, Quate, Gerber | 1980s | Atomic Force Microscope                           |
| 5.    | Harry Kroto     | 1990s| Bucky ball                                          |
| 6.    | Iijima          | 1991 | Carbon Nano tube                                   |
| 7.    | Frietas         | 1999 | Book on nanomedicine                               |
| ----- | ---             | 2000 | Launch of National Nanotechnology mission           |

On the basis of dimensions, nanomaterials can be classified as nanorods, nanowires with dimension less than 100 nm, quantum dots with dimension lesser than 100nm, and phase composition single phase (crystalline, amorphous and layers), matrix composites (coated particles) and multiphase system (colloids, aerogels and ferrofluids).

Table 3: Periodic developments in the field of Nanotechnology.

| S. No. | Year | Periodic development in the field of Nanotechnology |
|--------|------|---------------------------------------------------|
| 1.     | 2001 | Feynman Prize in Nanotechnology was awarded for development of nanometer scale electronic devices and synthesis of carbon nanotube and nanowires. |
| 2.     | 2002 | Feynman Prize in Nanotechnology was awarded for using DNA for new structures and advanced abilities to model molecular systems. |
| 3.     | 2003 | Feynman Prize in Nanotechnology was awarded for modelling the molecular and electronic structures of new materials and for integrating single molecule biological motors with nano-scale silicon devices. |
| 4.     | 2004 | Feynman Prize in Nanotechnology was awarded for designing stable protein structures and constructing novel enzyme. First policy conference on advanced nanotech held. First Nano-mechanical system was established. |
| 5.     | 2005-10 | 3D Nano systems like robotics, 3D nanomaterials and change in their states during use. |

2011-----Era of Molecular Nanotechnology started.
Synthesis of nanoparticles

There are basically two general approaches for the synthesis of nanoparticles and the fabrication of nanostructures: Bottom-up approach and Top-down approach as shown in Fig. 1.

1. **Bottom-up Approach:** It includes the miniaturization of material components (up to atomic level) with further self-assembly process leading to the formation of nanostructures. During self-assembly, the physical forces operating at nanoscale are used to combine basic units into larger stable structures. Typical examples are quantum dot formation during epitaxial growth and formation of nanoparticles from colloidal dispersion. Here, it is started with atoms or molecules and build up to nanostructures. Fabrication is also much less expensive.

2. **Top-down Approach:** It uses larger (macroscopic) initial structures, which can be externally controlled in the processing of nanostructures. Typical examples are etching through the mask, ball milling, and application of severe plastic deformation. Here, it is started with a pattern generated on a larger scale, then reduce them to nanoscale. By nature, they aren't cheap and quick to manufacture. It is slow process and is not suitable for large scale production.

In the recent years, there has been much concern about the synthesis of environment-friendly nanoparticles that do not produce toxic wastes in their process of synthesis (Mansoori et al., 2007). This can only be achieved through benign synthesis processes of biological nature which are considered safe and ecologically sound for nanomaterial fabrication as an alternative to conventional physical and chemical methods (Joerger et al., 2000) i.e. a step towards green technology using green synthesis.

**Fig. 1: Synthesis of nanoparticles.**
APPLICATIONS OF NANOPARTICLES
Nanotechnology is revolutionizing almost all the major technology and industrial sectors namely information technology, medicine, homeland security, energy, environmental science and transportation, and many others. Nanoparticles are considered as the fundamental building blocks of nanotechnology (Mansoori, 2005; Mansoori et al., 2007). The synthesis and characterization of nanoparticles and their applications represent a rapidly growing concept and an emerging trend in science and technology (Anstas and Warner, 1998; Li et al., 2001). Nano particles have extensive use in targeted drug delivery. Titanium dioxide and zinc oxide nanoparticles are extensively used in sunscreen, cosmetics and some food products. Silver nanoparticles are used in food packaging, clothing, disinfectants and household appliances such as Silver Nano. Cerium oxide used as fuel catalyst. The nanotech solar cells and batteries using nanomaterials can be manufactured at significantly lower cost than conventional solar cells and batteries. The use of nanoparticles with their properties and applications are tabulated in Table 4.

Table 4: Applications of nanoparticles in different areas.

| Nanoparticles                              | Properties improved                                 | Industry               |
|--------------------------------------------|-----------------------------------------------------|------------------------|
| Aluminate, carbon nanotube, CNT, silicon dioxide, zinc oxide | Stiffness, durability, Light in weight              | Polymer                |
| CNT, silicon dioxide, titanium dioxide      | Anti-reflective, self-cleaning electrically conductive, resistant to UV and infra-red | Electronics            |
| Titanium dioxide, silicon dioxide           | Cleansing, absorption, antioxidant, antimicrobial   | Cosmetics              |
| Silicon dioxide                            | Stronger and light weight                           | Sustainable energy     |
| Titanium dioxide                           | Absorption, cleaner environment Environmental mediation |                        |

Despite the advantages and applications with the bright future of nanotechnology, there is an increasing concern regarding significant health effects and environmental pollution. The field of Nanotoxicology is dealing with effects and risks of nanoparticles. A lot of more quality studies are required to assess the damage caused by nanoparticles. Transfer of nanoparticles through food chain is also a serious issue. The influence of nanoparticles on the environmental factors like humidity, temperature, and wind flow rate, nature of light is also significant. To maximize the benefits and minimizing the harm a step towards green nanotechnology is necessary though challenging but increases the energy efficiency, waste reduction, reduction in gas emissions and minimization of non-renewable raw materials (Maksimovi and Omanovi-Mikličanin, 2017).

SYNTHESIS OF NANOPARTICLES FROM PLANT EXTRACTS
In several studies, the biological routes to the synthesis of nanoparticles have been proposed by exploiting microorganisms and vascular plants (Anderson et al., 1998; Nair and Pradeep, 2002; Ahmad et al., 2003; Gardea-Torresdey et al., 2003). However, the utilization of herbal and medicinal plant extracts for the synthesis of nanoparticles is a relatively recent activity. In a number of studies, gold and silver have been used mostly for the synthesis of stable dispersions of nanoparticles using the extracts of herbal and medicinal plants (Hussain et al., 2003; Chandran et al., 2006; Smith et al., 2006; Kearns et al., 2006; Armendariz et al., 2009).

Plants extracts contain various bio actives such as alkaloids, proteins, phenolic acids, terpenoids and polyphenols which are used to reduce and stabilize metallic ions (Palak and Jain, 2018). Silver nanoparticles are said to inhibit the binding of virus to the host cell in vitro (Morones et al., 2005; Elechiguerra et al., 2005). Sulphur layer protein nanoparticles of Bacillus sphaericus...
have abilities to clean uranium contaminated waste water (Duran et al., 2007). Magnetosome particles isolated from magnetotactic bacteria are used as a carrier for immobilization of bioactive substances such as enzymes, DNA, RNA and antibodies (Mohanpuria et al., 2008). The gold nanoparticles synthesized by E. coli are used in electrochemistry of haemoglobin (Du et al., 2007). To synthesize the paints embedded with nanoparticles, having antibacterial activity, vegetable oils are used (Kumar et al., 2008). To enhance the properties of agrochemicals, nanoparticles are used (Sorensen et al., 2003). The organic-inorganic nanohybrid materials for the controlled release of herbicides are also in process (Bin Hussein et al., 2005; Liu et al., 2006). The Nano emulsion non-toxic surfactant is also in process (Wang et al., 2007). Different nanoparticles with the extracting plants and applications are tabulated in Table 5.

Table 5: Different nanoparticles extracted from the plants and their application.

| Nanoparticles     | Plants for extraction                      | Applications                                                      |
|-------------------|-------------------------------------------|------------------------------------------------------------------|
| Silver            | Aloevera, Rhododendron dauricum, Citrullus colocynthis | Antibacterial, Drug delivery, Cancer treatment, biomarking, Coating for solar energy absorption |
| Gold              | Eucalyptus, Psidium guajava, pear fruit extract | Catalysis, biosensing, antibacterial drugs, optics sensor, coating, hyperthermia therapy |
| Cadmium sulphide  | Annona muricata leaf extract              | Fluorescent labels                                                |
| Zinc oxide        | Cassia fistula and Melia azedarach        | Catalysis, biosensing, drug delivery diagnostics                 |
| Titanium dioxide  | Psidium guajava, Eclipta prostrata leaf   | Antioxidant and antibacterial                                     |
| Palladium         | Curcuma longa, Cinnamom bark extract, custard apple peel extract, tea and coffee leaf extract | Catalytic material and application as hydrogen storage and sensing |
| Platinium         | Diopyros kaki, Persimmon leaf extract     | Biomedical applications like imaging, implants, photothermal therapy and drug delivery |

**GREEN SYNTHESIS OF METAL NANOPARTICLES**

Green nanotechnology is a branch of green chemistry. The green synthesis moves the world from nanotechnology to green nanotechnology. The plants have good potential for biological reduction of metallic ions and hyper accumulation (Fig. 2), hence are more environmentally friendly. Using biological materials to produce nanoparticles is a bottom-up approach and can be used as a sustainable alternative to conventional nanoparticle synthesis.

![Fig. 2: Green Synthesis of nanoparticles.](image-url)
The metallic salt solutions can be silver nitrate, palladium chloride etc. and the reducing agent can be amino acids, flavonoids, reducing sugar etc. After biological reduction, nucleation and production of nanoparticles starts, the capping agents to be used are enzymes, functional groups, proteins etc. and stabilized nanoparticles are produced.

The first step is to prepare the plant extract for the synthesis of nanoparticles and then metallic solution is mixed in plant extract for biological reduction. Once the bioreduction of metal to metallic nanoparticle by plant extract is done, the metallic nanoparticle is produced that can be analysed using UV (ultra violet) and Visible spectroscopy and characterization is done using SEM, TEM, XRD and is ready for applications.

CONCLUSION
The green nanotechnology has potential to become an eco-friendly industry with many advantages to step to go green but has challenges especially in research and development with high implementation cost and technical issues. This can take years to develop and productive but it will improve the quality of life, promotes environmental friendly commitments as well as ethical values.

REFERENCES
1. Ahmad A., Senapati S., Khan M.I., Kumar R. and Sastry M. (2003). Extracellular biosynthesis of Monodisperse Gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp., Langmuir. 19:3550-3553. https://doi.org/10.1021/la020672l.
2. Anderson C.W.N., Brooks R.R., Stewart R.B. and Simcock R. (1998). Harvesting a crop of gold in plants. Nature. 395 (6702):553-554. 10.1038/26875.
3. Anstas P.T. and Warner J. (1998). Green Chemistry: Theory and Practice, Oxford University Press, New York.
4. Armendariz V., Parsons J.G., Lopez M.L., Peralta-Videa J.R., Jose-Yacaman M., Gardea-Torresdey J.L. (2009). The extraction of gold nanoparticles from oat and wheat biomasses using sodium citrate and cetyltrimethylammonium bromide, studied by x-ray absorption spectroscopy, high-resolution transmission electron microscopy, and UV-visible spectroscopy. Nanotechnology. 20(10):105607. 10.1088/0957-4484/20/10/105607.
5. Bin Hussein M.Z., Yahaya A. H., Zainal Z. and Kian L.H. (2005). Nanocomposite-based controlled release formulation of an herbicide, 2,4-dichlorophenoxycetate encapsulated in zinc–aluminium-layered double hydroxide, Science and Technology of Advanced Materials. 6(8):956-962. 10.1016/j.stam.2005.09.004.
6. Chandran S.P., Chaudhary M., Pasricha R., Ahmad A. and Sastry M. (2006). Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol Prog. 22(2):577-583. 10.1021/bp0501423.
7. Du L., Jiang H., Liu X. and Wang E. (2007). Biosynthesis of gold nanoparticles assisted by Escherichia coli DH5a and its application on direct electrochemistry of hemoglobin. Electrochemistry Communications. 9(5):1165-1170.
8. Duran N., Marcato P.D., De Souza G.I., Alves O.L. and Esposito E. (2007). Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. Journal of Biomedical Nanotechnology. 3(2):203-208.
9. Elechiguerra J.L., Burt J.L., Morones J.R. et al. (2005). Interaction of silver nanoparticles with HIV-1. Journal of Nanobiotechnology. 3(1):6 https://doi.org/10.1186/1477-3155-3-6.
10. Feynman R. (1960). There’s Plenty of Room at the Bottom. Engineering and Science. 23:22-36. http://resolver.caltech.edu/CaltechES:23.5.1960Bottom.
11. Gardea-Torresdey J.L., Gomez E., Peralta-Videa J.R., Parsons J.G., Troiani H., Jose-Yacaman M. (2003). Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir. 19:1357-1361. https://doi.org/10.1021/la020835i.
12. Hussain I., Brust M., Papworth A.J. and Cooper A.I. (2003). Preparation of Acrylate-Stabilized Gold and Silver Hydrosols and...
Gold-Polymer Composite Films. *Langmuir*. 19, 4831-4835. http://dx.doi.org/10.1021/la020710d.

13. Joerger R., Klaus T. and Granqvist C. G. (2000). Biologically produced silver-carbon composite materials for optically functional thin-film coatings. *Advanced Materials*. 12(6):407-409. https://doi.org/10.1002/(SICI)1521-4095(200003)12:6<407::AID-ADMA407>3.0.CO;2-O.

14. Kearns G.J., Foster E.W. and Hutchison J.E. (2006). Substrates for direct imaging of chemically functionalized SiO2 surfaces by transmission electron microscopy. *Analytical Chem.* 78:298-303.

15. Kumar A., Vemula P.K., Ajayan P.M. and John G. (2008). Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil. *Nature materials*. 7(3):236-241.

16. Li L., Hu J., Yang W. and Alivisatos A.P. (2001). Band gap variation of size- and shape-controlled colloidal CdSe quantum rods. *Nano Letters*. 1(7):349-351. 10.1021/nl015559r.

17. Liu F., Wen L.X., Li Z.Z., Yu W., Sun H.Y. and Chen, J.F. (2006). Porous hollow silica nanoparticles as controlled delivery system for water-soluble pesticide. *Materials Research Bulletin*. 41(12):2268-2275.

18. Maksimović M. and Omanović-Miklićanin E. (2017). Towards green nanotechnology: maximizing benefits and minimizing harm. CMBEIH, Springer, Singapore. 164-170p.

19. Mansoori G.A. (2005). Principles of Nanotechnology- Molecular-Based Study of Condensed Matter in Small Systems, World Scientific Pub Co Hackensack, New Jersey.

20. Mansoori G.A., George T.F., Assoufid L. and Zhang G. (2007). Molecular Building blocks for Nanotechnology: from Diamondoids to Nanoscale materials and Applications. *Topics in Applied Physics*. 109. Springer, New York.

21. Mohanpuria P., Rana N.K. and Yadav S.K. (2008). Biosynthesis of nanoparticles: technological concepts and future applications. *Journal of Nanoparticle Research*. 10(3):507-517.

22. Morones J.R., Elechiguerra J.L., Camacho A., Holt K., Kouri J.B., Ramírez J.T. and Yacaman M.J. (2005). The bactericidal effect of silver nanoparticles. *Nanotechnology*. 16(10):2346-2353. 10.1088/0957-4484/16/10/059.

23. Nair B. and Pradeep T. (2002). Coalescence of nanoclusters and formation of submicron crystallites assisted by *Lactobacillus* strains. *Crystal Growth & Design*. 2:293-298. https://doi.org/10.1021/cg0255164.

24. Palak K. L. and Jain N. (2018). Nanotechnology and Green Nanotechnology: A Road Map for Sustainable Development, Cleaner Energy and Greener World. *International Journal of Innovative Science and Research Technology*. 3(1):580-588.

25. Smith A.M., Duan H., Rhyner M.N., Ruan G. and Nie S. (2006). A systematic examination of surface coatings on the optical and chemical properties of semiconductor quantum dots. *Phys Chem Chem Phys*. 8(33):3895-3903. 10.1039/b606572b.

26. Sorensen P.S., Ross C., Clemmesen K.M., Bendtzen K., Frederiksen J.L. et al. (2003). Clinical importance of neutralising antibodies against interferon beta in patients with relapsing-remitting multiple sclerosis. *Lancet*. 362(9391):1184-1191. 10.1016/S0140-6736(03)14541-2.

27. Wang L., Li X., Zhang G., Dong J. and Eastoe J. (2007). Oil-in-water nanoemulsions for pesticide formulations. *J Colloid Interface Sci*. 314(1):230-235. 10.1016/j.jcis.2007.04.079.