Analysis of a two grade system when Interdecision times have exponential geometric distribution

L S Jayanthi and K P Uma

1Department of Science and Humanities, Christ Nagar College, Trivandrum, Kerala
2Hindusthan College of Engineering and Technology, Coimbatore, Tamilnadu.
E. Mail: jayanthils2007@gmail.com1, umamaths95@gmail.com2

Abstract: Consider any single graded marketing organization where depletion of manpower occurs since decisions, exit of personnel etc.. There is an assumption that the depletion due to voluntary exit is correlated. By assuming that the inter-involuntary exit times, inter-breaking decision times forms different modified renewal processes, estimated mean and estimated variance of time to recruitment are determined. The stochastic model assuming that intercontact times between successive contacts as correlated random variables are proposed. Shock models with intercontact time have been obtained by assuming the threshold distribution as exponential. In this paper, it is assumed that threshold follows exponential geometric distribution.

Keywords: Inter-voluntary exit times, Inter-involuntary exit times, Inter-breaking decision times, Threshold, Shock model

1. Introduction
It is very common in business world to face the availability and shortage of Manpower periods. These two periods are liable to be dependent on each other due to various reasons such as larger number of employees leaving the organization, unavailability of suitable persons in the job market, stringent recruitment policies and such similar reasons. There are many reasons for an employee to leave the organization. It may be for higher salary or to join family or for higher education etc. As loss and shortcomings are inevitable and fund management are to be done during busy period and in the recruitment period, one may have to speed up recruitments using different strategies in order to start business early. The duration of busy period and the duration to recruit employees are random and they occur alternately in a business organization. When a busy period is long, one may like to speed up recruitment so as to start the next busy period early. For a single graded system, many authors worked out estimated mean and estimated variance of the time to recruitment by a univariate CUM policy of recruitment for many distributions of the threshold for the depletion of manpower in a system for independent as well as correlated interdecision times. This paper study the work of Uma[16] using a bivariate CUM policy of recruitment when the interdecision times form an exponential geometric process. A stochastic model to estimate the expected mean to recruitment for a manpower model and expected variance of recruitment derived under the assumption that the inter-arrival times between contacts may be treated as correlated random variables and the threshold distribution follows exponential-
geometric distribution is discussed. For a detailed study of exponential-geometric distribution, one can refer to Adamidis and Loukas. Shock model with correlated intercontact times has been studied by Sathiyamoorthi. In developing this model the results of Gurland has been used.

2. Notations:

\[X_i \]
We assume that \(X_1, X_2, \ldots, X_n \) are continuous i.i.d random variables, with probability distribution function \(g(.) \) and c.d.f \(G(.) \).

\[Y_i \]
Random variable threshold following exponential-geometric distribution has parameter \(g_1, g_2, \ldots, g_{18} \leq 3, g_{2869}, g_{18} \leq 3, g_{2870}, g_{18} \leq 3, g_{2871}, g_{18} \leq 3, g_{2872} \), with probability distribution function \(h(.) \) and c.d.f \(H(.) \).

\[U_i \]
a continuous random variable denoting the inter-arrival times between successive contacts with probability distribution function \(r(.) \) and c.d.f \(R(.) \).

\[g_k(.) \]
Denotes the probability distribution function of the random variable \(\sum_{j=0}^{k} X_j \).

\[\zeta \]
is correlation coefficient between \(x_i \) and \(x_j \), \(i \neq j \).

\[V_k(t) \]
Probability of exactly \(k \) contacts in \([0,t]\).

\[Z_k \]
random variable denote the time with probability distribution function \(l(.) \) and c.d.f \(L(.) \).

\[l^*(s) \]
denotes Laplace transform of \(l(t) \).

\[f^*(s) \]
denotes Laplace transform of \(f(t) \).

3. Result

The threshold variable \(Y \) has exponential-geometric distribution with parameters \(a_1, a_2, a_3, a_4 \), so that,

\[
P(Z_p^A < c)P(Z_p^B < c) = (Z_p^A - e^{-a_1c})(Z_p^A - a_2e^{-a_1c})^{-1}(Z_p^B - e^{-a_2c})(Z_p^B - a_4e^{-a_2c})^{-1}
\]

If we assume it follow exponential distribution with parameter \(a_3, a_4 \) then

\[
P[\sum_{j=1}^{k} X_j < Y] = [k_1(1 - a_3) \sum_{j=1}^{k} \frac{a_3^{j-1}}{k_1 + ja_3}] [k_2(1 - a_4) \sum_{j=1}^{k} \frac{a_4^{j-1}}{k_2 + ja_4}]
\]

and \(S(t) = \sum_{k=0}^{\infty} (R_K(t) - R_{k+1}(t)) [k_1(1 - a_3) \sum_{j=1}^{k} \frac{a_3^{j-1}}{k_1 + ja_3}] [k_2(1 - a_4) \sum_{j=1}^{k} \frac{a_4^{j-1}}{k_2 + ja_4}] \)

\[
L(t) = 1 - S(t) \text{ is called the prevalence function}
\]

\[
L(t) = 1 - \sum_{k=0}^{\infty} (R_K(t) - R_{k+1}(t)) [k_1(1 - a_3) \sum_{j=1}^{k} \frac{a_3^{j-1}}{k_1 + ja_3}] [k_2(1 - a_4) \sum_{j=1}^{k} \frac{a_4^{j-1}}{k_2 + ja_4}] \quad \ldots \quad (1)
\]

If the intercontact timings are independent, it is easy to obtain the joint distribution of their sum, but if they are correlated the determination of the distribution of \(U_1 + U_2 + \cdots + U_n \) is very complex in any general case but Gurland has obtained of \(Z_k = \sum_{j=1}^{k} u_j \)

When \(U_i \)'s are a sequence of constantly correlated random variables, each having exponential distribution with p.d.f

\[
R(u) = e^{-u^p}, \quad p > 0, \quad 0 < u < \infty
\]
such that the correlation coefficient between any \(x_i \) and \(x_j \), \(i \neq j \) is \(\xi \).

\[
R_p (u) = P \left[Z_p \leq u \right] = (1 - \xi) \sum_{j=0}^{\infty} \frac{(\tau \varphi)^j}{(1 - \tau \varphi)^{j+1}} \frac{\varphi}{(1+\tau \varphi)^{j+1}(p+j-1)!} \quad \cdots (2), \quad \varphi = \frac{1 - \tau}{\tau}
\]

\[
\chi (k,u) = \int_0^u e^{-\varphi} \varphi^{p-1} d\varphi
\]

Laplace transform of \(Z_k \) is given by,

\[
\mathcal{L} \{Z_k\} = \sum_{g=18}^{30} \left(\sum_{g=18}^{73} \ldots \sum_{g=30}^{3} \sum_{g=18}^{73} \right) \prod_{g=18}^{30} \frac{1 - \xi_g}{\xi_g} = (1 - \xi) \prod_{g=18}^{30} \frac{1 - \xi_g}{\xi_g} + \ldots (3)
\]

Laplace transform of \(l(t) \) is given by,

\[
\mathcal{L} \{l(t)\} = \sum_{g=18}^{30} \left(\sum_{g=18}^{71} \ldots \sum_{g=30}^{3} \sum_{g=18}^{71} \right) \prod_{g=18}^{30} \frac{1 - \xi_g}{\xi_g} + \ldots (3)
\]

Where,

\[
R_p (s) = \frac{1}{(1+ws)^p} \prod_{g=18}^{30} \frac{1 - \xi_g}{\xi_g} \frac{1}{(1+\tau \varphi)^{1+(p+1)\varphi}} \quad \cdots (3)
\]

Taking first order differentiation,

\[
\frac{\partial R_p (s)}{\partial s} = \frac{-p}{\varphi} \quad \text{and} \quad \frac{\partial R_{p+1} (s)}{\partial s} = \frac{p+1}{\varphi}
\]

And second order differentiation,

\[
\frac{\partial^2 R_p (s)}{\partial s^2} = \frac{p(1-\tau^2) + p^2(1+\tau^2)}{\varphi^2} \quad \text{and} \quad \frac{\partial^2 R_{p+1} (s)}{\partial s^2} = \frac{p^2(1+3\tau^2-2\tau) + p(1+\tau)^2 + 2}{\varphi^2}
\]

Hence \(E(T) \) or \(ETR = - \frac{\partial^2 \Psi (s)}{\partial s^2} \big|_{s=0} \)

\[
ETR = \left(\frac{1}{\varphi^2} \right) \left[k_1 (1 - a_3) \sum_{g=18}^{30} \frac{a_{g,j-1}^{k_1 + j/a_1}}{k_2 (1 - a_4) \sum_{g=18}^{30} \frac{a_{g,j-1}^{k_2 + j/a_2}}{k_2 + j/a_2}} \right] \quad \text{(on simplification)}
\]
And $E(T^2) = \frac{\partial^2 E(x)}{\partial x^2}|_{x=0}$

$= 2\sum_{p=0}^{\infty} \left[\frac{p^2 \tau (r-1) + p \tau (r+1) + 1}{\varphi^2} \right] [\sum_{j=1}^{k} \alpha_{j-1} \sum_{j=1}^{k} \frac{\alpha_{j-1}}{k_{2}+j_{2}}]^{2}$

Hence $VTR = E(T^2) - [E(T)]^2$

Therefore $VTR = \sum_{K=0}^{\infty} \left[\frac{2 p^2 \tau (r-1) + 2 p \tau (r+1) + 1}{\varphi^2} \right] [\sum_{j=1}^{k} \alpha_{j-1} \sum_{j=1}^{k} \frac{\alpha_{j-1}}{k_{2}+j_{2}}]^{2}$

If $\tau = 0$,

$VTR = \frac{1}{\varphi^2} [\sum_{j=1}^{k} \alpha_{j-1} \sum_{j=1}^{k} \frac{\alpha_{j-1}}{k_{2}+j_{2}}]^{2}$

…………….(4)

Numerical Data

φ	ETR	VTR
0.00.1	0.19335	20.19
0.00.2	0.9668	5.0475
0.00.3	0.6445	2.2433
0.00.4	0.4834	1.2619
0.00.5	0.3867	0.8076
0.00.6	0.3225	0.5608
0.00.7	0.2762	0.4120
0.00.8	0.2417	0.3154
0.00.9	0.2148	0.2493
Table 2.

k_{\perp}	ETR	VTR
00.1	00.0967	00.002
00.2	00.1934	00.0081
00.3	00.29	00.0182
00.4	00.3867	00.0323
00.5	00.4834	00.0505
00.6	00.5801	00.0727
00.7	00.6767	00.0989
00.8	00.7734	00.1292
00.9	00.8701	00.1635

Figure 1.
4. Conclusion.

From the table 1, we observe that for fixed $k_1, k_2, a_1, a_2, a_3, a_4$, and τ, when φ increases which means that the average inter-arrival time become smaller, so the mean time decreases and also variance time decreases.

From the table 2, we observe that for fixed and k_2, a_1, a_2, a_3, a_4, and φ, when k_1 increases then it is seen that the mean time and variance time increases.

References:

[1] Bartholomew DJ and Forbes AF 1979 Statistical techniques for manpower planning *John Wiley and Sons* New York.

[2] Bartholomew DJ 1973 Statistical models for social processes (3rd Ed.,) *John Wiley and Sons* New York

[3] BrindhaM 2008 Stochastic model on the time to recruitment in a single graded manpower system associated with a bivariate policy of recruitment *M.Phil Dissertation Bharathidasan University*

[4] Esther Clara JB and Srinivasan A 2008 Expected time for recruitment in a single graded manpower system with two thresholds *Proceedings of the AICTE sponsored National Conference on Recent Developments and Applications of Probability Theory Random Process and Random Variables in Computer Science* pp. 98-102.

[5] Esther Clara J B and Srinivasan A 2010 A stochastic model for the expected time to recruitment in a single graded manpower system with two thresholds using bivariate policy *Recent Research in Science and Technology* pp 70-75

[6] Esther Clara J B and Srinivasan A 2011 A stochastic model for the expected time to recruitment using bivariate recruitment policy involving two thresholds associated with correlated inter-decision times *International Mathematical Sciences and Engineering Applications* pp 281-288
[7] KasturriK 2007 Mean time for recruitment and cost analysis on some univariate policies of recruitment in manpower models Ph.D. Thesis Bharathidasan University

[8] KomathiS 2008 Stochastic models on the time for recruitment in a single graded manpower system with correlated inter-decision times using a bivariate policy of recruitment M.Phil. Dissertation Bharathidasan University

[9] MuthaiyanA 2010 A study on stochastic models in manpower planning Ph.D. Thesis Bharathidasan University

[10] Muthulakshmi N, Srinivasan A and KasturriK 2008 Mean and variance of the time for recruitment in a single graded manpower system with an univariate policy of recruitment involving geometric threshold ActaCienciaIndica 34 pp 1637-1641.

[11] Parthasarathy S and Vinoth R 2009 Determination of expected time to recruitment in manpower planning Recent Research in Science and Technology 1(3) pp 147-150

[12] Sathiyamoorthi R and ElangovanR 1998 Shock model approach to determine the expected time for recruitment Journal of Decision and Mathematika Sciences 3(1-3) pp 67-78

[13] Sathiyamoorthi R and ParthasarathyS 2002 On the expected time to recruitment in a two graded marketing organization Indian Association for Productivity Quality and Reliability 27(1) pp 77-81

[14] Sudha A, Saavithri V and Srinivasan A 2008 Mean and variance of the time for recruitment in a single graded manpower system associated with a bivariate policy of recruitment ActaCienciaIndica 34M(1) pp 85-89

[15] Uma KP 2010 A study on manpower models with univariate and bivariate policies of recruitment Ph.D. Thesis Avinashilingam University for Women,

[16] Uma K P Shivarajani N and Srinivasan A 2012 Expected time to recruitment in a single graded man power system with inter-decision times as an order statistics To appear in the Proceedings of Heber International Conference on Applied Mathematics and Statistics