Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Understanding the COVID 19 Conundrum and Decluttering the scientific literature on COVID 19

Vaibhav Bagaria, MBBS, MS, FCPS, DIP. SICOT a, *, Raju Vaishya, MBBS MS FRCS FACS b

a Department of Orthopaedic Surgery, Sir H N Reliance Foundation Hospital, Girgaum, Mumbai, Maharashtra, India
b Department of Orthopaedic Surgery, Indraprastha Apollo Hospitals, New Delhi, India

ABSTRACT

As COVID 19 continues to over burden the healthcare system globally, the scientists are relentlessly pursuing research and publishing copious data on relevant managements strategies for the infection. This short communication has attempted to simplify the available information on the subject in a manner that is easy to understand and implement in clinical setting. COVID 19 is not a single disease but a spectrum and should be classified based on clinical, radiological and laboratory parameters. A simple yet powerful way is to classify COVID 19 as COVIN — COVID Infection but no disease; COVIRI — COVID infection with predominant respiratory symptoms; COVID1 — COVID infection leading to an abnormal immune response and COVID S- referring to the sequelae of an acute COVID Infection. A clinical subtype specific approach may result in easier communication between healthcare providers which in turn may improve patient outcomes by providing targeted therapy.

© 2021 Diabetes India. Published by Elsevier Ltd. All rights reserved.

It is an old saying that ‘As one goes too close to the tree, one stands losing the sight of the forest’ Today researchers are continually providing newer and valuable insight on COVID19. Sadly, the world is becoming increasingly cluttered with unorganized and unconfirmed data. We believe that it is time to take a pause and look at what we have learned so far and organize it in an orchestrated manner. (see Figs. 1 and 2)

COVID 19 is not a single disease but a spectrum. Patient condition specific management is key to successful outcome. COVID can be classified into 4 main types based on type of presentation. These may further be sub-classified based on predominant organ affliction (Table 1).

1. COVID classification

1.1. COVIN

COVID infection but no disease: these are the people who have tested positive on a screening test but never reported any major symptoms beyond a low-grade fever and myalgia. These people from a medical standpoint just warrant close observation in a home

* Corresponding author.
E-mail address: bagariavaibhav@gmail.com (V. Bagaria).

https://doi.org/10.1016/j.dsx.2021.05.010
1871-4021/© 2021 Diabetes India. Published by Elsevier Ltd. All rights reserved.
quarantine setting. They should be given wearables that monitor their temperature and Oxygen saturation [1].

1.2. COVID -RI

COVID infection resulting in Respiratory infection URTI or LRTI. These occur in early stage of disease and persists for longer duration only in elderly or immunocompromised people. In them the disease behaves as typical pneumonia affecting the respiratory system. In these people ensuring that early institution of antivirals (e.g., Remdesivir), broad spectrum antibiotics (e.g., Amoxiclav) to prevent secondary infection, saturations are maintained, aggressive chest physiotherapy and good nursing care are key to successful outcomes. Assisted Ventilation where possible should be the last resort as weaning them away from the ventilators may prove difficult [2].

1.3. COVID -I

COVID infection resulting in Immunological condition. This subset consists of relatively young people with a strong immune system who have responded to COVID infection in an unusually strong and atypical fashion much like an autoimmune disease — Systemic Lupus Erythematosus (SLE). Just like SLE, the manifestation can be varied and organ-specific [3]. The subtypes depending on the predominant organ affliction are described below. Just like any other autoimmune disorder, the focus will be on lowering the inciting agent load by giving antivirals early on along with disease-modifying agents/biologicals that limit inflammation for e.g., Tocilizumab.

1.4. COVID -S

COVID sequlae — No active infection but COVID has resulted in residual damages. These appear between 4 weeks and 3 months of the COVID infection [8]. Depending on the primary subtype, it may affect different organs.

Table 1

Type	Nomenclature	Description
I	COVID- IN	COVID Infection but No disease
II	COVID- RI	COVID confined to Respiratory Tract
III	COVID- I	COVID leading to Immunological malfunction
	Subtype	Predominant Affliction
	H [4]	Hematological Affliction
	M [5]	Myocardial
	N [6]	Neurological
	O [3]	Orthopedics
	T [7]	Thrombotic
	V [3]	Vasculitis
	D [3]	Dermatological
IV	COVID- S	Clinical Impact
	Subtype	Predominant
	Pulmonary Fibrosis	Low Sp02; COVID lung; Antifibrotics like Pirfenidone and nintedanib.
	Diabetes	HbA1c Monitoring; OHA
	Persistent Arthralgia/Myalgia	Require NSAID, Physio, Targeted manual therapy, Vit D and Mineral replenishment
	Secondary Infections/abscess	Diagnosed on US/MRI; Antibiotics; Incision and drainage; Beware of Joint Sepsis
	Bone Necrosis/Infarcts	Primary and secondary to steroid use; May require Core decompression/Alendronate
	Neuro weakness	Self-limiting with rapid recovery; Physiotherapy
	Others (Unclassified)	Surgical Site Infections; Conjunctivitis; Dermatological conditions, Mucormycosis

Fig. 2. Distribution of two major COVID 19 pattern changes with Age and co morbidities. An intermediary group will have features of both the patterns. Younger patients are more likely to have strong immune response components and older patient predominant respiratory affliction resulting in respiratory failures.
Declaration of competing interest

Authors declare no conflict of interest pertaining to the manuscript.

No external funding

No financial and personal relationships with other people or organizations that could inappropriately influence (bias) their work.

References

[1] Oran DP, Topol EJ. Prevalence of asymptomatic SARS-CoV-2 infection: a narrative review. Ann Intern Med 2020 Sep 1;173(5):362–7. https://doi.org/10.7326/M20-3012. Epub 2020 Jun 3. PMID: 32491919; PMCID: PMC7281624.

[2] Yuan H, Cao X, Ji X, Du F, He J, Zhou X, Xie Y, Zhu Y. An updated understanding of the current emerging respiratory infection: COVID-19. BioMed Res Int 2020 Oct 27;6870512. https://doi.org/10.1155/2020/6870512. PMID: 33134384; PMCID: PMC7591962.

[3] Lai CC, Ko WC, Lee PI, Jean SS, Hsueh PR. Extra-respiratory manifestations of COVID-19. Int J Antimicrob Agents 2020 Aug;56(2):106024. https://doi.org/10.1016/j.ijantimicag.2020.106024. Epub 2020 May 22. PMID: 32450197; PMCID: PMC7243791.

[4] Debuc B, Smadja DM. Is COVID-19 a new hematologic disease? Stem Cell Rev Rep 2021 Feb;17(1):4–8. https://doi.org/10.1007/s12015-020-09987-4. PMID: 32398806; PMCID: PMC7217340.

[5] Bonow RO, Fonarow GC, O’Gara PT, Yancy CW. Association of coronavirus disease 2019 (COVID-19) with myocardial injury and mortality. JAMA Cardiol 2020 Jul 1;5(7):751–3. https://doi.org/10.1001/jamacardio.2020.1105. PMID: 32319362.

[6] Barrantes FJ. The unfolding palette of COVID-19 multisystemic syndrome and its neurological manifestations. Brain Behav Immun Health 2021 Apr 3;14:100251. https://doi.org/10.1016/j.bbih.2021.100251. Epub ahead of print. PMID: 33842898; PMCID: PMC8019247.

[7] Kashi M, Jacquin A, Dakhil B, Zaimi R, Mahé E, Tella E, Bagan P. Severe arterial thrombosis associated with Covid-19 infection. Thromb Res 2020 Aug;192:75–7. https://doi.org/10.1016/j.thromres.2020.05.025. Epub 2020 May 16. PMID: 32425264; PMCID: PMC7229939.

[8] Wang F, Kream RM, Stefano GB. Long-term respiratory and neurological sequelae of COVID-19. Med Sci Mon Int Med J Exp Clin Res 2020 Nov 1;26:e928996. https://doi.org/10.12659/MSM.928996. PMID: 33177481; PMCID: PMC7643287.