Frequency-dependent block of excitatory neurotransmission by isoflurane via dual presynaptic mechanisms

https://doi.org/10.1523/JNEUROSCI.2946-19.2020

Cite as: J. Neurosci 2020; 10.1523/JNEUROSCI.2946-19.2020
Received: 11 December 2019
Revised: 18 February 2020
Accepted: 2 March 2020
Frequency-dependent block of excitatory neurotransmission by isoflurane via dual presynaptic mechanisms

Han-Ying Wang¹, Kohgaku Eguchi¹,², Takayuki Yamashita³, and Tomoyuki Takahashi¹

¹Cellular and Molecular Synaptic Function Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
²Molecular Neuroscience group, Institute of Science and Technology Austria, Am Campus 1, 3400, Klosterneuburg, Austria.
³Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan.

Correspondence: ttakahas@oist.jp (T.T.).

Key words: isoflurane; calyx of Held; variance-mean analysis; presynaptic Ca²⁺ currents; exocytic capacitance change; excitatory neurotransmission; frequency-dependent inhibition; cerebral cortical synapse

Running title: Presynaptic mechanism of isoflurane anesthesia (46)

Acknowledgments

This work was supported by funding from the Okinawa Institute of Science and Technology to T.T., KAKENHI grants (18K16467 to H.-Y. W., 17H05744 and 16H05927 to T.Y.) and the Takeda Science Foundation to T.Y. We thank Toshihiko Hosoya for providing Rbp4-Cre mice, Kenji Ono for providing Ai32 mice, Tetsuya Hori for technical advice, Shigetoshi Oiki and Satyajit Mahapatra for comments and
Steven D. Aird for editing this paper. We are also grateful to Larisa Sheloukhova and Izumi Fukunaga for their experimental contributions in the early stage of this study.

The authors declare no competing financial interest.

Author contributions

All authors designed research. H.-Y. W., K.E. and T.Y. performed experiments and data analysis. H.-Y. W., T.Y. and T.T. wrote the paper.

Abstract (185)

Volatile anesthetics are widely used for surgery, but neuronal mechanisms of anesthesia remain unidentified. At the calyx of Held in brainstem slices from rats of either sex, isoflurane at clinical doses attenuated excitatory post-synaptic currents by decreasing the release probability and the number of readily releasable vesicles. In presynaptic recordings of Ca$^{2+}$ currents and exocytic capacitance changes, isoflurane attenuated exocytosis by inhibiting Ca$^{2+}$ currents evoked by a short presynaptic depolarization, whereas it inhibited exocytosis evoked by a prolonged depolarization via directly blocking exocytic machinery downstream of Ca$^{2+}$ influx. Since the length of presynaptic depolarization can simulate the frequency of synaptic inputs, isoflurane anesthesia is likely mediated by distinct dual mechanisms, depending upon input frequencies. In simultaneous pre- and postsynaptic action potential recordings, isoflurane impaired the fidelity of repetitive spike transmission, more strongly at higher frequencies. Furthermore, in the cerebrum of adult mice, isoflurane inhibited monosynaptic cortico-cortical spike transmission, preferentially at a higher frequency.

We conclude that dual presynaptic mechanisms operate for the anesthetic action of isoflurane, of which direct inhibition of exocytic machinery plays a low-pass filtering role in spike transmission at central excitatory synapses.
Significance Statement (64)

Synaptic mechanisms of general anesthesia remain unidentified. In rat brainstem slices, isoflurane inhibits excitatory transmitter release by blocking presynaptic Ca\(^{2+}\) channels and exocytic machinery, with the latter mechanism predominating in its inhibitory effect on high-frequency transmission. Both in slice and in vivo, isoflurane preferentially inhibits spike transmission induced by high-frequency presynaptic inputs. This low-pass filtering action of isoflurane likely plays a significant role in general anesthesia.

Introduction

Volatile anesthetics have been widely utilized for surgery since the nineteenth century. Sherrington (1906) predicted that the synapse is the main target of volatile anesthetics. At inhibitory synapses, volatile anesthetics prolong postsynaptic responses (Nicoll, 1972; Mody et al., 1991), and at both excitatory and inhibitory synapses, they inhibit neurotransmitter release (Takenoshita and Takahashi, 1987; Kullmann et al., 1989; Wu et al., 2004; Baumgart et al., 2015). Various mechanisms have been postulated to explain presynaptic inhibitory effects of volatile anesthetics. These include (i) inhibition of voltage-gated Na\(^+\) channels (Haydon and Urban, 1983; Rehberg et al., 1996; Ouyang and Hemmings, 2005), (ii) inhibition of voltage-gated Ca\(^{2+}\) channels (Study, 1994; Kamatchi et al., 1999), and (iii) activation of voltage-independent K\(^+\) channels (Patel et al., 1999; Ries and Puil, 1999; Franks and Honore, 2004). Volatile anesthetics are also proposed to (iv) directly block vesicle exocytosis via inhibiting vesicle fusion machineries (van Swinderen et al., 1999; Nagele et al., 2005; Herring et al., 2009; Xie et al., 2013). However, the primary target of anesthetics remains unidentified.

Recently, at hippocampal synapses in culture, Baumgart et al (2015) reported
that isoflurane inhibits presynaptic Ca2+ influx without changing the Ca2+-release relationship. Hence, they postulated that a reduction of Ca2+ influx fully explains presynaptic inhibitory effect of isoflurane. Since this conclusion is based on experiments using single action potential (AP) stimulation, the target of the anesthetics on repetitive neurotransmission remain open. It also remains unidentified whether the reduction of Ca2+ influx is caused by direct inhibition of Ca2+ channels or indirectly caused by a reduction of presynaptic AP amplitude. At the calyx of Held in brainstem slices from pre-hearing rats, Wu et al. (2004) did not observe consistent inhibition of presynaptic Ca2+ channel currents by isoflurane, but found that isoflurane reduces presynaptic AP amplitude, thereby proposing that the latter mechanism may mediate inhibition of transmitter release by isoflurane.

Hence, using the calyx of Held in post-hearing rat brainstem slices, we systematically addressed the target of isoflurane. In variance-mean analysis, isoflurane attenuated both the release probability (p_r) and the number of functional release sites (N), suggesting that multiple mechanisms likely underlie the isoflurane effect. In presynaptic recordings, we consistently found that isoflurane inhibited voltage-gated Ca2+ channels (VGCCs) of P/Q type, thereby reducing Ca2+ influx. Isoflurane also inhibited voltage-gated Na+ channels and reduced presynaptic AP amplitude, but in contrast to previous proposal (Wu et al., 2004), this effect could not explain the reduction of EPSC amplitude by isoflurane because of the wide safety margin of AP amplitude for transmitter release (Hori and Takahashi, 2009). When vesicle exocytosis was triggered by Ca2+ through VGCCs activated by a short depolarizing pulse, isoflurane inhibited exocytosis via inhibiting Ca2+ influx. However, when more massive exocytosis was induced by a long presynaptic depolarization, isoflurane directly inhibited exocytic machinery downstream of Ca2+ influx. In simultaneous recordings of pre- and postsynaptic APs, isoflurane preferentially
impaired the fidelity of transmission at higher frequencies. Likewise, in unit recordings from cerebral cortical neurons in mice \textit{in vivo}, isoflurane preferentially inhibited monosynaptic transmission evoked by a higher frequency stimulation. Thus, isoflurane inhibits excitatory transmission by dual mechanisms, of which its direct inhibitory effect on exocytic machinery significantly contributes to general anesthesia by low-pass filtering excitatory spike transmission.

Materials and Methods

All animal experiments were performed in accordance with guidelines of the Physiological Society of Japan, and institutional regulations of animal experiments at Okinawa Institute of Science and Technology and Nagoya University Research Institute of Environmental Medicine.

Slice preparation and solutions. Wistar rats (postnatal day [P] 13-15) of either sex were killed by decapitation under isoflurane anesthesia. Transverse brainstem slices (175-200 μm in thickness) containing the medial nucleus of the trapezoid body (MNTB) were cut in ice-cold solution containing (in mM): 200 sucrose, 2.5 KCl, 26 NaHCO₃, 1.25 NaH₂PO₄, 6 MgCl₂, 10 glucose, 3 myo-inositol, 2 sodium pyruvate, and 0.5 sodium ascorbate (pH 7.4 when bubbled with 95% O₂ and 5% CO₂, 310–320 mOsm) by using vibroslicer (VT1200S, Leica, Germany). Before recording, slices were incubated for 1 h at 36-37°C in standard artificial cerebrospinal fluid (aCSF) containing (in mM): 125 NaCl, 2.5 KCl, 26 NaHCO₃, 1.25 NaH₂PO₄, 2 CaCl₂, 1 MgCl₂, 10 glucose, 3 myo-inositol, 2 sodium pyruvate, and 0.5 sodium ascorbate (pH 7.4 when bubbled with 95% O₂ and 5% CO₂, 310–320 mOsm), and maintained thereafter at room temperature (24–26 °C). For recordings aCSF routinely contained bicuculline methiodide (10 μM) and strychnine hydrochloride (0.5 μM) to block inhibitory synaptic transmission, unless otherwise mentioned. Tetrodotoxin (TTX, 1
μM) was added to aCSF for recording miniature EPSCs. For postsynaptic EPSC recordings, pipette solution contained (mM): 110 CsF, 30 CsCl, 10 HEPES, 5 EGTA, 1 MgCl₂ and 5 QX-314-Cl (pH adjusted to 7.3–7.4 with CsOH, 300–320 mOsm). For recording postsynaptic APs, pipettes contained (mM): 120 potassium gluconate, 30 KCl, 5 EGTA, 12 disodium phosphocreatine, 1 MgCl₂, 3 Mg-ATP, 0.3 Na₂-GTP, 1 L-arginine (pH 7.3–7.4 adjusted with KOH, 315–320 mOsm). For presynaptic K⁺ current recording, TTX (1 μM) was added to aCSF. For recording presynaptic Ca²⁺ currents or membrane capacitance, NaCl in the aCSF was replaced with tetraethylammonium chloride (TEA-Cl, 10 mM), and TTX (1 μM) and 4-aminopyridine (4-AP, 0.5 mM) were added. For presynaptic Na⁺ current recording, the extracellular Na⁺ concentration was reduced to 5%, being replaced by TEA-Cl (119 mM), to optimize voltage-clamp control. 4-AP (0.5 mM) and CdCl₂ (200 μM) were added to aCSF to block K⁺ and Ca²⁺ conductance, respectively. In most experiments, presynaptic pipette solutions contained (mM): 105 cesium gluconate, 30 CsCl, 10 HEPES, 0.5 EGTA, 1 MgCl₂, 12 disodium phosphocreatine, 3 Mg-ATP, 0.3 Na-GTP (pH 7.3–7.4 adjusted with CsOH, 315–320 mOsm). For presynaptic AP recording, potassium gluconate concentration was reduced to 110 mM from the postsynaptic pipette solution and 10 mM L-glutamate was supplemented. In experiments for testing the effect of presynaptic AP amplitude on EPSCs (Fig. 3E), we added kynurenic acid (1 mM) to aCSF to minimize saturation of postsynaptic AMPA receptors (Koike-Tani et al., 2008).

Slice experiments. Recordings from slices were made mostly at room temperature (RT, 24-26 °C), but AP recordings from presynaptic terminals and postsynaptic MNTB neurons were made at near physiological temperature (PT, 31-33°C). Simultaneous pre- and postsynaptic AP recordings (Fig. 7) were performed at PT to improve synaptic fidelity (Kushmerick et al., 2006; Piriya Ananda Babu et al., 2020). MNTB
principal neurons and calyx of Held presynaptic terminals were visually identified using a x40 water immersion objective (Olympus, Japan) attached to an upright microscope (BX51WI, Olympus, Japan). Whole-cell recordings were made from MNTB principal neurons and presynaptic terminals using an EPC-10 patch-clamp amplifier controlled by PatchMaster software (HEKA, Germany) after on-line low-pass filtering at 5 kHz and digitizing at 50 kHz. EPSCs were evoked by stimulation using a bipolar tungsten electrode (FHC, USA) positioned between the midline and the MNTB region. MNTB neurons were voltage-clamped at a holding potential of -70 mV. The postsynaptic pipette was pulled to a resistance of 2–3 MΩ and had a series resistance of 4–10 MΩ, which was compensated by 40-70% for a final value of 3 MΩ. For variance-mean analysis (Clements and Silver, 2000), EPSCs were evoked at 0.05 Hz in the presence of kynurenic acid (1 mM) under aCSF with various extracellular [Ca²⁺] /[Mg²⁺] (Fig. 2). Fifteen successive EPSCs were collected for constructing a variance-mean plot. To acquire EPSCs at high release probability (ρr), 4-AP (10 μM) was added to the aCSF (Koike-Tani et al., 2008). Plots of variance as a function of mean were fit by using the simple parabola equation:

\[\sigma^2 = qI - \frac{I^2}{N} \]

where \(\sigma^2 \) and \(I \) represent the variance and mean amplitude of EPSCs respectively. The parameters \(q \) and \(N \) denote the mean quantal size and the number of release sites respectively. \(q \) can be estimated from the initial slope of the parabola. \(Nq \) can be estimated from the large \(X \) intercept of the parabola, \(p_r \) at 2 mM Ca²⁺ was calculated as \(I/Nq \).

For presynaptic recordings, pipettes were pulled at a resistance of 5-7 MΩ and had a series resistance of 9-25 MΩ, which was compensated by up to 80% for a final value of ~7 MΩ. For measuring presynaptic Na⁺ and K⁺ currents, membrane potential
was stepped up by 10 mV with a 20-ms pulse from -80 to +60 mV. For presynaptic
Ca^{2+} current recordings, membrane potential was stepped up by 10 mV with a 20-ms
pulse from -80 to +40 mV. The P/4 method was used for correcting leak and
capacitance currents. For monitoring presynaptic membrane capacitance (C_m, Fig. 4,
5), pipette tips were coated with dental wax to reduce stray capacitance. A sinusoidal
voltage command was applied with a peak-to-peak amplitude of 60 mV at 1 kHz.
Samples of C_m were plotted as average values of 50 data points within 50 ms (short
time scale) or 500 ms (long time scale). Presynaptic membrane capacitance changes
(ΔC_m) were induced by Ca^{2+} currents as described previously (Taschenberger et al.,
2002; Sun et al., 2004; Yamashita et al., 2005; Yamashita et al., 2010). The amplitude
of exocytic capacitance changes was measured between the baseline and the maximal
value of C_m at 450-500 ms after depolarization to avoid contamination by artificial
ΔC_m changes (Yamashita et al., 2005). For testing the fidelity of synaptic transmission,
simultaneous presynaptic and postsynaptic whole-cell recordings in current-clamp
mode were made at near PT.

We applied isoflurane to slices as described previously (Wu et al., 2004). The
gas mixture of 95% O$_2$ and 5% CO$_2$ was introduced by a flowmeter into a calibrated
commercial vaporizer (MK-AT210, Muromachi, Japan) containing isoflurane (100%,
24.5 mM, Fig 1a). The gas mixture at various isoflurane concentrations (0.5%-5%)
was then bubbled into the experimental solution in a tightly capped bottle. In most
slice experiments, we used isoflurane at 3%, which was 0.72 ± 0.06 mM when
examined using gas chromatography (Fig. 1B) and corresponded to twice the
minimum alveolar concentration (2 MAC) of isoflurane (Mazze et al., 1985; Pal et al.,
2012). For testing neurotransmission fidelity (Fig. 7), we applied isoflurane at 1.5 %
or 3% (1 or 2 MAC). The aqueous concentration of isoflurane, measured with gas
chromatography-mass spectrometry (Pegasus 4D-C GCxGC-TOFMS, Saint Joseph,
USA), was linearly proportional to the gaseous partial concentration of isoflurane (Fig. 1B). For in vivo experiments, isoflurane (1.4%) was applied by inhalation.

In vivo unit recordings. For optogenetic stimulation (Fig. 8), we used double transgenic mice expressing channelrhodopsin 2 (ChR2) in layer 5 (L5) pyramidal neurons of cerebral cortex (Rbp4-Cre; LSL-ChR2) that were obtained by crossing Rbp4-Cre (Gensat STOCK Tg(Rbp4-cre)KL100Gsat/Mmucd) mice with Ai32 (Jax #012569). Adult Rbp4-Cre; LSL-ChR2 mice were implanted with a light-weight metal head-holder and a recording chamber under isoflurane anesthesia, as previously described (Yamashita et al., 2013). A small craniotomy was opened over the left whisker primary somatosensory cortex (wS1, 1.65 mm posterior, 3.0 mm lateral from the bregma; Yamashita et al., 2018) and left whisker primary motor cortex (wM1, 1 mm anterior, 1 mm lateral from Bregma; Sreenivasan et al., 2016). In some recordings, the location of the left wS1-C2 barrel column was also identified using intrinsic optical imaging under light isoflurane anesthesia (Ferezou et al., 2007; Yamashita et al., 2013). Extracellular spikes were recorded using a silicon probe (A1x32-Poly2-10mm50s-177, NeuroNexus) with 32 recording sites along a single shank, covering 775 mm of the cortical depth in awake states or under isoflurane (1.4%) anesthesia (Miyazaki et al., 2019). The probe was lowered gradually until the tip was positioned at a depth of ~950 μm under the wS1 pial surface. Neural data were filtered between 0.5 Hz and 7.5 kHz and amplified using a digital head-stage (RHD2132, Intan technologies). The head-stage digitized the data with a sampling frequency of 30 kHz. The digitized signal was transferred to an acquisition board (Open Ephys) and stored on an internal HDD of the host PC for offline analysis. Photo-stimulation was carried out by applying 1-ms pluses of blue LED (19 mW) with an optical fiber (400 μm diameter) placed over the wM1 craniotomy. Two sweeps of 200 photo-stimuli at 0.2 Hz every 20 min were first applied in awake states...
and subsequently two sweeps of 0.2-Hz stimulation were applied under isoflurane anesthesia. Mice were then recovered by stopping isoflurane inhalation, and, after whisking behavior was observed as the mice awoke, five sweeps of 200 photo-stimuli at 2 Hz every 6 min were applied. Mice were again anesthetized by isoflurane inhalation and another five sweeps of 2-Hz stimulation were applied. Recordings with 0.2-Hz stimuli and 2-Hz stimuli were saved separately.

Spiking activity on each probe was detected and sorted into different clusters using Kilosort, an open source spike sorting software (https://github.com/cortex-lab/KiloSort). After an automated clustering step, clusters were manually sorted and refined. Only well-isolated single units (total 175 units) were included in the dataset. For analysis, we excluded units (32/175 units) that showed AP rates less than 5 Hz on average at 5-25 ms after photo-stimulation in awake states. Units that have reliably evoked APs with a low jitter (~1 ms) were tested for collisions in which we looked for absence of antidromic spikes when preceded by spontaneous spikes. Among these units, 11 units showed collisions between evoked and spontaneous APs (Fig. 8C) indicating putative wS1-to-wM1 projection neurons generating antidromic spikes. These data were excluded from analysis. In total, 143 units (83 units for 0.2 Hz stimulation and 60 units for 2 Hz stimulation) were selected for analysis as trans-synaptically activated units. Averaged spontaneous AP rates were measured for a period of 50 ms before photo-stimulation onset at 0.2 Hz. Evoked AP rates were calculated by subtracting averaged AP rates 0-50 ms before photo-stimulation from those during 5-25 ms after photo-stimulation.

In vivo whole-cell recordings. Adult Rbp4-Cre; LSL-ChR2 mice were implanted with a light-weight metal head-holder and a recording chamber under isoflurane anesthesia. After recovery, mice were habituated to head restraint (three sessions, one session per day) before recording. At the experimental day, a small craniotomy was opened over
the left S1 under isoflurane anesthesia. Recording pipettes (5-8 MΩ) were advanced into the cortex through the craniotomy with a positive pressure until the pipette resistance increased and then suction was applied to establish a giga-ohm seal followed by the whole-cell configuration using a patch-clamp amplifier (Multiclamp 700B, Molecular devices) (Margrie et al., 2002; Petersen et al., 2003). Pipettes were filled with a solution containing (in mM): 135 potassium gluconate, 4 KCl, 10 HEPES, 10 sodium phosphocreatine, 4 Mg-ATP, 0.3 Na3GTP (adjusted to pH 7.3 with KOH). Recordings were made at the putative subpial depth of 250–400 μm in a dark environment to avoid ChR2 activation. The membrane potential, which was not corrected for liquid junction potential, was filtered at 8 kHz and digitized at 20 kHz.

Data analysis. Data from slice experiments and *in vivo* whole-cell recordings were analyzed using IGOR Pro 6 (WaveMatrics), OriginPro 2015 (OriginLab), Sigmaplot 13 (Systat Software), and MS Excel 2016 (Microsoft). All values were expressed as mean ± SEM and 95% confidence intervals on the difference of the means were considered statistically significant in paired sample *t*-tests or one-way repeated measures *ANOVA* with a post-hoc Bonferroni test (p < 0.05), Mann-Whitney test (p < 0.05) or Kruskal-Wallis test with a post-hoc Dunn’s test (p < 0.05).

Results

Isoflurane attenuates EPSCs at the calyx of Held

At the calyx of Held in slices, bath-application of isoflurane for 10 min attenuated the amplitude of EPSCs elicited in postsynaptic principal cells in the MNTB by input fiber stimulation (12.2 ± 1.4 nA in control, n = 8), in a concentration-dependent manner (Fig. 1A). The Hill plot fitted to the dose-response curve indicated that isoflurane inhibited EPSCs maximally by 76% with an EC50 of 1.9% that corresponds to 0.47 mM (Fig. 1B). Isoflurane had no effect on rise or decay time kinetics of EPSCs.
EPSCs (see Fig. 1 legend for values). In most following experiments, we utilized isoflurane at 0.72 mM (3%), which reduced EPSC amplitude by 46 ± 2.6% (Fig. 1B). This isoflurane concentration corresponds to twice the minimum alveolar concentration (2 MAC) for rats (Mazze et al., 1985; Taheri et al., 1991; Pal et al., 2012). Unlike neurally evoked EPSCs, isoflurane had no significant effect on the amplitude or frequency of spontaneous miniature EPSCs (mEPSCs, Fig. 1C, D). Thus, these results are consistent with those reported at the calyx of Held in pre-hearing rat brainstem slices (Wu et al., 2004).

Effects of Isoflurane on quantal parameters

The lack of isoflurane effect on mEPSC amplitude suggests that its site of action is presynaptic, as reported previously for this and other volatile anesthetics (Takenoshita and Takahashi, 1987; Kullmann et al., 1989; Wu et al., 2004; Baumgart et al., 2015). To identify quantal parameters involved in isoflurane action, we performed variance-mean analysis (Clements and Silver, 2000; Koike Tani et al., 2008). EPSCs were evoked under different extracellular Ca$^{2+}$ / Mg$^{2+}$ concentration ratios, and 4-AP (10 μM) was supplemented to maximally increase the release probability p_r (Fig. 2A). The variance-mean plots of EPSC amplitudes, made before and 10 min after isoflurane application, provided values of quantal parameters, N, p_r, q from parabola fit curves (Materials and Methods). The quantal size q, measured from the initial slope of the parabola, was unchanged after application of isoflurane (Fig. 2B), in agreement with unchanged mean amplitude of mEPSCs (Fig. 1C). The number of functional release sites N was measured from the X-axis intercept (Nq) of the parabola, divided by q. The release probability p_r was then calculated from the mean EPSC amplitude (Np_rq) divided by Nq. These analyses indicated that isoflurane reduced N and p_r, by 43% and 24%, respectively (Fig 2B, n = 7, p = 0.005 and 0.009 for N and
Isoflurane inhibits presynaptic voltage-gated ion channels and action potentials

Isoflurane inhibits somatic T, N, and L type Ca\(_{2+}\) channels (Study, 1994) or recombinant Ca\(_{2+}\) channels (Kamatchi et al., 1999). However, it is not known whether it inhibits presynaptic Ca\(_{2+}\) channels mediating transmitter release. To determine this, we evoked presynaptic Ca\(_{2+}\) currents (I\(_{Ca}\)) using 20-ms square command pulses, stepped up from a holding potential (-80 mV) to different membrane potentials, after pharmacological block of Na\(^+\) and K\(^+\) conductance (Fig. 3A, B, C). At the calyx of Held of post-hearing rats, P/Q type (Ca\(_{v}\), 2.1) VGCCs predominantly mediate transmitter release (Iwasaki and Takahashi, 1998), like at many other mammalian central synapses (Iwasaki et al., 2000). Isoflurane significantly and reversibly inhibited I\(_{Ca}\) between -20 mV and +40 mV, without affecting the current-voltage relationship (Fig. 3A). The maximal magnitude of inhibition was 26.7 ± 0.4 % (n = 8), which was comparable to the inhibitory effect of a metabotropic glutamate receptor (mGluR) agonist on presynaptic I\(_{Ca}\) (24.3%, Takahashi et al., 1996).

Voltage-gated K\(^+\) channels in presynaptic terminals regulate transmitter release by counteracting Ca\(_{2+}\) entry (Katz and Miledi, 1969). The main K\(^+\) channel shaping presynaptic APs is Kv3 at the calyx of Held (Ishikawa et al., 2003). After blocking Na\(^+\) conductance with TTX, we tested the effect of isoflurane on presynaptic K\(^+\) channel currents. As reported at neuro-hypophysial terminals (Ouyang and Hemmings, 2005), isoflurane reversibly inhibited K\(^+\) currents for the voltage above +10 mV (by 14.1 ± 0.3 %, at +60 mV, n =6, Fig. 3B). This effect of isoflurane on K\(^+\) currents could potentially counteract the inhibitory effect of isoflurane on transmitter release (but see below).
Volatile anesthetics inhibit Na\(^+\) currents in squid axons (Haydon and Urban, 1983) and at neuro-hypophysial terminals (Ouyang and Hemmings, 2005), as well as recombinant Na\(^+\) channel currents (Rehberg et al., 1996; Sand et al., 2017). Isoflurane attenuates presynaptic AP amplitude at calyces of Held (Wu et al., 2004) and at neuro-hypophyseal terminals (Ouyang and Hemmings, 2005). We examined whether isoflurane inhibits presynaptic Na\(^+\) channels at the calyx of Held (Leao et al., 2005).

To optimize voltage-clamp control, we reduced extracellular Na\(^+\) concentration to 5% and blocked both Ca\(^{2+}\) and K\(^+\) conductance (Materials and Method). Na\(^+\) currents showed a peak at -20 mV and decreased in a graded manner above or below this potential, indicating adequate voltage-clamp control. Isoflurane significantly attenuated Na\(^+\) currents in a reversible manner between -40 mV and +60 mV, with a maximal inhibition of 18.8 ± 0.3% at -20 mV (n = 4, Fig. 3C). Unlike the report for recombinant Na\(^+\) channels (Sand et al., 2017), isoflurane had no effect on the inactivation rate of presynaptic Na\(^+\) currents (Na\(^+\) current decay time constant, 0.22 ± 0.01 ms in controls, 0.21 ± 0.01 ms with isoflurane, p = 0.28 at -20 mV, paired sample t-test).

We next examined the effect of isoflurane on presynaptic APs. Isoflurane significantly reduced AP amplitude from 116 ± 2.0 mV (overshoot, 46.7 ± 0.9 mV) to 98.6 ± 2.0 mV (overshoot, 30.6 ± 0.71 mV, n = 9, p < 0.001, one-way repeated measures ANOVA) (Fig. 3D). This magnitude of inhibition (17 mV, 15% in AP amplitude) was greater than that previously reported at pre-hearing calyces of Held (Wu et al., 2004; 5.5 mV or 5%, from 106 mV to 100.5 mV). Isoflurane also significantly attenuated depolarizing after potential (DAP, Borst et al., 1995; Kim et al., 2010) (Fig. 3D). The inhibitory effect of isoflurane on voltage-gated K\(^+\) channels (Fig. 3B) had no apparent effect on the AP waveform. Unlike previously reported (hyperpolarization by 1.2 mV, Wu et al., 2004), isoflurane had no significant effect on...
resting membrane potential (-69.6 ± 0.5 mV in control, -69.9 ± 0.31 mV in Iso, n = 9,
p = 0.3, one-way repeated measures ANOVA), ruling out the involvement of
voltage-independent K⁺ channels in the inhibitory effect of isoflurane on transmitter
release at this synapse.

To examine how a reduction of presynaptic AP amplitude affects transmitter
release, we performed simultaneous recording of presynaptic APs and EPSCs, and
applied TTX at a low concentration (10 nM) to allow gradual decrease in AP
amplitude (Hori and Takahashi, 2009). When TTX reduced presynaptic AP amplitude
by 17 mV (to 30.1 ± 1.9 mV in overshoot), EPSC amplitude remained the same (Fig.
3E), indicating that presynaptic AP amplitude has a wide safety margin for transmitter
release (Hori and Takahashi, 2009). EPSCs started to diminish only when AP
amplitude was reduced by more than 33 mV (i.e., AP overshoot decline below 14
mV). Thus, isoflurane inhibits Na⁺ channels and reduces presynaptic AP amplitude,
but neurotransmitter release is protected from this mechanism at the calyx of Held.

Effects of isoflurane on exo-endocytosis and recycling of synaptic vesicles

The inhibitory effect of isoflurane on N (Fig. 2), can be caused by direct inhibition of
vesicle exocytosis, or indirectly by inhibiting vesicle recycling (Yamashita et al.,
2005). To determine which mechanism underlies isoflurane action, we performed
presynaptic membrane capacitance measurements from calyceal presynaptic terminals
(Taschenberger et al., 2002; Sun et al., 2004; Yamashita et al., 2005; Yamashita et al.,
2010; Eguchi et al., 2012). After blocking both Na⁺ and K⁺ conductance, exocytosis
and subsequent endocytosis of synaptic vesicles were triggered by presynaptic I_{Ca}
elicted by a square pulse, stepped from -80 mV to +10 mV for 20 ms. Isoflurane
reduced the magnitude of exocytosis (ΔC_m) by 29 % (n = 8, p = 0.003, paired sample
t-test), but had no effect on endocytosis (Fig. 4). These results of capacitance
measurements at the calyx of Held is consistent with those reported from pHluorin experiments at cultured hippocampal synapses (Hemmings et al., 2005), indicating that vesicle endocytosis is not affected by isofurane. In separate experiments of input fiber stimulation, during a train of 30 stimulations at 100 Hz, EPSCs underwent a short-term depression (STD, Fig. 5A). In addition to the initial EPSC amplitude, isofurane significantly inhibited the steady-state amplitude of EPSCs during the train. The rate of recovery of EPSC amplitude from STD provides a measure of synaptic vesicle recycling (von Gersdorff et al., 1997). Isofurane had no effect on the recovery time course of EPSC from STD (Fig. 5B). These results (Fig. 4, and Fig. 5B) together indicate that isofurane has no effect on vesicle endocytosis or recycling.

This stimulation protocol also provides estimates for quantal parameters from the cumulative amplitude histograms of EPSCs (Fig. 5C), as previously reported (Elmqvist and Quastel, 1965; Schneggenburger et al., 1999; Taschenberger et al., 2002). Isofurane reduced N_q measured from 0-time axes of cumulative EPSC amplitude by 27% (from 29.42 ± 4.34 nA to 21.58 ± 3.51 nA, $n = 7$; $p = 0.03$, one-way repeated measures ANOVA) and p_r, calculated from the first EPSC amplitude divided by N_q, by 24% (from 0.41 ± 0.03 to 0.31 ± 0.03; $p = 0.008$, one-way repeated measures ANOVA, Fig. 5C). These results are consistent with those from the mean-variance analysis (Fig. 2), confirming that isofurane reduces the number of release sites and release probability.

We next investigated whether isofurane might affect vesicle fusion machinery downstream of Ca^{2+} influx. To test this, we evoked exocytic membrane capacitance changes using presynaptic I_{Ca} elicited by square pulses of different durations ($\Delta T = 1$, 2, 5, 10, and 20 ms), stepped up from -80 mV to +10 mV. Isofurane significantly attenuated Ca^{2+} current charges (Q_{Ca}) evoked by these pulses (Fig. 6A). Exocytic
magnitude (ΔC_m) represents the number of vesicles undergoing exocytosis at a time.

When we increased command pulse duration, ΔC_m increased initially in proportion to Q_{Ca} but then reached a maximal level (Fig. 6B). Isoflurane reduced this maximal ΔC_m by ~30%.

The Q_{Ca}-ΔC_m relationships, with or without isoflurane, significantly overlapped at small Q_{Ca} range (< 3 pC) induced by short depolarizing pulses (Fig. 6B) in agreement with previous report on single AP-induced exocytosis (Baumgart et al., 2015). However, when more massive exocytosis was induced by longer depolarizing pulses, direct inhibition of exocytic machinery became a main mechanism of isoflurane action.

Frequency-dependent inhibition of neurotransmission by isoflurane

Even though isoflurane attenuates EPSC amplitude (Fig. 1A), spike transmission from a presynaptic terminal to a postsynaptic cell does not fail unless excitatory postsynaptic potentials (EPSPs) diminish below the firing threshold. To clarify whether isoflurane affect spike transmission, we simultaneously recorded presynaptic and postsynaptic APs at the calyx of Held at near PT (31-33 ℃), at which synaptic depression is minimized (Kushmerick et al., 2006) and synaptic fidelity is improved (Piriya Ananda Babu et al., 2020). Although DAP reportedly supports presynaptic AP generation at high-frequency (Kim et al., 2010) and isoflurane attenuated DAP (Fig. 3D), presynaptic APs did not fail during stimulation (200 APs) even in the presence of 3% (2 Mac) isoflurane at 200 Hz (Fig. 7A). In controls, postsynaptic APs followed presynaptic APs without a failure for the frequency range of 0.2-200 Hz (200 APs, Fig. 7A-C) indicating that the fidelity of transmission was 100%.

Isoflurane (1.5-3%, 1-2 Mac) had no effect on the transmission fidelity at low frequency ranges (< 2 Hz at 1 Mac, and < 0.2 Hz at 2 Mac, n = 5, Fig. 7A, B), with no
AP failure. At higher frequencies, however, isoflurane reduced the fidelity of neurotransmission in dose-dependent and frequency-dependent manners (Fig. 7B). Since transmitter release evoked by high-frequency stimulation can be as massive as that evoked by long depolarizing pulse (Fig. 6B), direct inhibition of exocytic machineries, rather than inhibition of Ca\(^{2+}\) influx, likely underlies the isoflurane effect on high-frequency transmission.

MNTB neurons receive feedback inhibitory inputs from recurrent axon collaterals of neighboring neurons (Kuwabara et al., 1991; Kopp-Scheinpflug et al., 2008), but these inhibitory inputs are blocked by bicuculine and strychnine in the present experiments. Since volatile anesthetics prolong inhibitory postsynaptic responses (Nicoll, 1972; Mody et al., 1991), we tested whether inhibitory inputs might affect the effect of isoflurane on the fidelity of excitatory synaptic transmission in the absence of bicuculline and strychnine (Fig. 7C). The results were essentially the same, suggesting that inhibitory transmission has little influence on the fidelity of excitatory transmission at this synapse.

Might isoflurane cause AP failures also by a postsynaptic mechanism? We tested this possibility by evoking APs in postsynaptic MNTB neurons by direct injection of depolarizing currents (Fig. 7D). Isoflurane (3%) hyperpolarized MNTB neurons by 4 mV on average, increased firing threshold by 5 mV and accordingly increased rheobase currents by two-fold (n =12, Fig. 7D). However, isoflurane did not cause failure of postsynaptic APs evoked by trains of repetitive stimulations (200 stimuli at 0.2-200 Hz, n = 12, Fig. 7E).

Effects of isoflurane on cortico-cortical spike transmission in vivo

We next examined the effect of isoflurane on in vivo synaptic transmission at cortico-cortical excitatory synapses in awake head-restrained mice. The wM1 is
anatomically and functionally connected to wS1 via mutual monosynaptic excitatory
c connecions (Welker et al., 1988; Ferezou et al., 2007; Aronoff et al., 2010; Mao et al.,
2011; Zagha et al., 2013; Sreenivasan et al., 2016). Using L5-specific
ChR2-expressing mice, we evoked APs at 0.2 Hz or 2 Hz in L5 pyramidal neurons in
wM1 using optical stimulation (1-ms blue light pulses) (Fig. 8A). Spontaneous and
evoked APs were recorded extracellularly from wS1 neurons using a 32-channel
silicone probe. Blue light stimulation applied to the wM1 evoked APs in a subset of
wS1 neurons within 5-25 ms after stimulation onset. When photo-stimulation excited
wS1 axons projecting to wM1, a clear peak of antidromic spikes appeared 3-10 ms
after stimulation, showing collisions with preceding spontaneous orthodromic APs
(Fig. 8B, C). These units with antidromic spikes together with those showing unclear
or unreliable increase in AP rate after photo-stimuli (data not shown) were excluded
from further analysis in order to specifically interrogate the units showing
synaptically evoked APs. The rate of spontaneous APs of the units was on average 7.4
± 0.7 Hz (n = 83, Fig. 8D-F). The rate of APs evoked by photo-stimulation at 0.2 Hz
and 2 Hz was 35.0 ± 4.0 Hz (n = 83) and 30.3 ± 5.0 Hz (n = 60), respectively after
subtraction of spontaneous AP rate, with no significant difference between the
stimulation frequencies (p = 0.23, Fig. 8D, E, G). Subsequently, AP firing ceased for ~
0.1s, presumably due to inhibition by internuncial neurons in wS1 (Mateo et al., 2011),
till the next ‘rebound’ firings occurred (Fig. 8D).

When isoflurane was inhaled at 1.4% (~1 Mac), both spontaneous and evoked
APs were markedly inhibited (Fig. 8D-F). After isoflurane inhalation, spontaneous AP
frequency declined to 0.22 ± 0.04 Hz (2.9 % of control before inhalation). The
frequency of evoked APs also declined to 7.3 ± 1.4 Hz at 0.2 Hz stimulation, whereas
it declined more markedly to 1.9 ± 0.6 Hz at 2 Hz stimulation (p = 0.039), indicating
that isoflurane impaired the fidelity of postsynaptic AP generation to 22.2 ± 4.1% (n =
83) at 0.2 Hz, whereas more strongly to 9.5 ± 2.6% (n = 60) at 2 Hz stimulations (Fig. 8G). Thus, the inhibitory effect of isoflurane on synaptic transmission was significantly stronger at a higher frequency (p = 0.0039, Fig. 8H). These results are comparable to those at the calyx of Held in slice (Fig. 7), suggesting low-pass filtering effect of isoflurane on central synaptic transmission.

Since isoflurane hyperpolarized postsynaptic MNTB neurons (Fig. 7E), it may also affect the resting membrane potential (RMP) of cortical neurons. We therefore performed whole-cell recordings in vivo from wS1 L2/3 neurons during wakefulness and under isoflurane anesthesia. The average RMPs during wakefulness were above -70 mV (-63.1 ± 1.1 mV, n = 6 cells) with spontaneous depolarizing responses occasionally generating APs (Fig. 8I, J). The membrane potential profile ranged broadly from the hyperpolarized “Down” state at around -70 mV to the depolarized “Up” state at around -55 mV (Fig. 8I, J). After isoflurane inhalation (1.4%), the average RMPs were hyperpolarized below -70 mV (-74.3 ± 1.8 mV, n = 6 cells), and the membrane potential profile shifted toward more negative potentials with reduced Up-state occurrences as reported previously after general anesthetics administration (Petersen et al., 2003). Such hyperpolarizing effects could underlie the decrease of spontaneous and evoked AP rates with isoflurane inhalation (Fig. 8F, G).

DISCUSSION

Dual presynaptic targets of isoflurane

At the calyx of Held in rat brainstem slices, we have systematically addressed targets of isoflurane action. Clinical doses of isoflurane attenuated evoked EPSC amplitude without affecting the mean quantal size, measured from spontaneous mEPSCs or variance-mean analysis, indicating that the site of its action is presynaptic. Isoflurane
significantly lowered the release probability (p_r) and decreased the number of functional release sites (N). Presynaptic capacitance measurements revealed dual mechanisms underlying isoflurane action. Within a relatively low range of exocytosis, isoflurane reduces exocytosis via reducing Ca$^{2+}$ influx without altering the Ca$^{2+}$-exocytosis relationship as reported previously (Baumgart et al., 2015), whereas for greater exocytosis, isoflurane directly blocks exocytic machinery downstream of Ca$^{2+}$ influx. The former and latter mechanism explains a reduction of p_r and N, respectively, particularly since isoflurane had no effect on vesicle recycling. In agreement with inhibitory effect of isoflurane on release machinery, volatile anesthetics can reportedly bind to recombinant syntaxin (Nagele et al., 2005) and their inhibitory effects on neurosecretion can be eliminated by syntaxin mutant over-expressed in secretory cells (Herring et al., 2009).

Isoflurane reduced presynaptic AP amplitude at the calyx of Held as reported previously (Wu et al., 2004). However, low dose TTX-application experiments in simultaneous pre- and postsynaptic recordings indicated that EPSC amplitude is protected from a reduction of presynaptic AP amplitude with a wide safety margin in such a way that EPSCs remain unaffected when AP amplitude is reduced by isoflurane. Such a safety margin is absent in voltage-clamp experiments, where EPSCs are evoked by AP-waveform command pulses (Wu et al., 2004; Hori and Takahashi, 2009). This is likely because of limited space-clamp control of an AP-waveform command pulse. Thus, a reduction of Na$^+$ influx cannot be a mechanism for a reduction of transmitter release by isoflurane at the calyx of Held. However, this does not rule out the possibility that a reduction of AP amplitude might contribute to the inhibitory effect of isoflurane on transmitter release at other synapses having narrower safety margin or smaller presynaptic APs. Although isoflurane broadly inhibited presynaptic voltage-gated ion channels at the calyx of Held, only the
inhibition of VGCCs could fully explained the inhibitory effect of isoflurane on transmitter release evoked by a single AP or a short depolarizing pulse.

Frequency-dependent inhibitory effects of isoflurane on spike transmission in slice and in vivo

Excitatory neurotransmission is completed by a generation of postsynaptic AP. Even when transmitter release is reduced, as far as postsynaptic potentials (EPSPs) reach firing threshold, neurotransmission remains intact. In simultaneous pre- and postsynaptic recordings of AP trains, at the calyx of Held at near PT, isoflurane (1-2 Mac) had no effect on the initial or low-frequency transmission, but significantly inhibited high-frequency transmission in a frequency-dependent manner. Thus, a reduction of Ca\(^{2+}\) influx alone by isoflurane cannot inhibit spike transmission at this sensory relay synapse. In response to high-frequency inputs, EPSPs undergo STD, primarily due to a reduction in N (von Gersdorff et al., 1997; Schneggenburger et al., 2002). Isoflurane further decreased N by direct inhibition of exocytic machinery, thereby diminishing EPSPs below firing threshold. Therefore, with respect to the physiological excitatory transmission at the calyx of Held, the main target of isoflurane action is exocytic machinery rather than VGCCs. Unlike at the calyx of Held, however, at cortico-cortical synapses in vivo, isoflurane attenuated spike transmission evoked at low-frequency (0.2 Hz), suggesting that the inhibition of VGCCs may also operate for the effect of isoflurane. Nevertheless, like at the calyx of Held, inhibitory effect of isoflurane on cortico-cortical spike transmission was much stronger at higher frequency (2 Hz). Thus, both at the calyx of Held and cortico-cortical synapses, exocytic machinery is likely an important target of isoflurane for attenuating high-frequency neurotransmission.

Altogether, the inhibitory nature of isoflurane on excitatory neurotransmission can
be characterized as a low-pass filter. Weaker effect of anesthetics on low-frequency transmission seems favorable for the maintenance of life-supporting basal neurotransmission. Low-pass filtering effect of isoflurane is also consistent with large-scale slow-wave synchronization of cortical neurons during anesthesia (Mohajerani et al., 2010; Kuroki et al., 2018). Since high-frequency neuronal activity plays essential roles in the maintenance of consciousness (Hermann et al., 2004; Larchaux et al., 2012), cognition (Sabatini and Regher, 1999; Buzsáki and Draguhn, 2004; Uhlhaas and Singer, 2010) and motor-control (Sugihara et al., 1993), selective inhibition by volatile anesthetics of high-frequency transmission will effectively attenuate such integral neuronal functions, with minimal inhibition of basal neuronal functions.

References

Aronoff R, Matyas F, Mateo C, Ciron C, Schneider B, Petersen CCH (2010) Long-range connectivity of mouse primary somatosensory barrel cortex. Eur J Neurosci 31: 2221–2233 (2010).

Baumgart JP, Zhou Z-Y, Hara M, Cook DC, Hoppa MB, Ryan TA, Hemmings HC Jr. (2015) Isoflurane inhibits synaptic vesicle exocytosis through reduced Ca\(^{2+}\) influx, not Ca\(^{2+}\)-exocytosis coupling. Proc Natl Acad Sci USA 112: 11959-11964.

Borst JGG, Helmchen F, Sakmann B (1995) Pre- and postsynaptic whole-cell recordings in the medial nucleus of the trapezoid body of the rat. J Physiol 489:825-840.

Buzsáki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304:1926-1929.

Clements JD, Silver RA (2000) Unveiling synaptic plasticity: a new graphical and analytical approach. Trends Neurosci 23: 105-113.

Eguchi K, Nakanishi S, Takagi H, Taoufiq Z, Takahashi T (2012) Maturation of a PKG-dependent retrograde mechanism for endocytic coupling of synaptic vesicles. Neuron 74: 517-529.

Elmqvist D, Quastel DMJ (1965) A quantitative study of end-plate potentials in isolated human muscle. J Physiol. 178:505-529.

Ferezou I, Haiss F, Gentet LJ, Aronoff R, Weber B, Petersen CCH (2007)
Spatiotemporal dynamics of cortical sensorimotor integration in behaving mice. Neuron 56: 907–923.

Franks NP, Honore E (2004) The TREK K2P channels and their role in general anaesthesia and neuroprotection. Trends Pharmacol Sci 25: 601-608.

Haydon DA, Urban BW (1983) The effects of some inhalation anaesthetics on the sodium current of the squid giant axon. J Physiol 341: 429-439.

Hemming HC Jr, Yan W, Westphalen RI, Ryan TA (2005) The general anesthetic isoflurane depresses synaptic vesicle exocytosis. Mol Pharmacol 67: 1591-1599.

Herring BE, Xie Z, Marks J, Fox AP (2009). Isoflurane inhibits the neurotransmitter release machinery. J Neurophysiol 102: 1265-1273.

Herrmann CS, Munk MHJ, Engel AK (2004) Cognitive functions of gamma-band activity: memory match and utilization. Trends Cogn Sci 8: 347-355.

Hori T, Takahashi T (2009) Mechanisms underlying short-term modulation of transmitter release by presynaptic depolarization. J Physiol 587: 2987-3000.

Ishikawa T, Nakamura Y, Saitoh N, Li WB, Iwasaki S, Takahashi T (2003) Distinct roles of Kv1 and Kv3 potassium channels at the calyx of Held presynaptic terminal. J Neurosci 23: 10445-10453.

Iwasaki S, Takahashi T (1998) Developmental changes in calcium channel types mediating synaptic transmission in rat auditory brainstem. J Physiol 509: 419-423.

Iwasaki S, Momiyama A, Uchitel OD, Takahashi T (2000) Developmental changes in calcium channel types mediating central synaptic transmission. J Neurosci. 20: 59-65.

Kamatchi GL, Chan CK, Snutch T, Durieux ME, Lynch C III (1999) Volatile anesthetic inhibition of neuronal Ca channel currents expressed in Xenopus oocytes. Brain Res 831:85-96.

Katz B, Miledi R (1969) Tetrodotoxin-resistant electric activity in presynaptic terminals. J Physiol 203: 459-487.

Kim JH, Kushmerick C, von Gersdorff H (2010) Presynaptic resurgent Na+ currents sculpt the action potential waveform and increase firing reliability at a CNS nerve terminal. J Neurosci 30: 15479-15490.

Koike-Tani M, Kanda T, Saitoh N, Yamashita T, Takahashi T (2008) Involvement of AMPA receptor desensitization in short-term synaptic depression at the calyx of Held in developing rats. J Physiol 586: 2263-2275.

Kopp-Scheinpflug C, Dehnel S, Tolnai B, Milekovic I, Rubsamen R (2008) Glycine-mediated changes of onset reliability at a mammalian central synapse. Neuroscience 157: 432-445.
Kullmann DM, Martin RL, Redman SJ (1989) Reduction by general anaesthetics of group Ia excitatory postsynaptic potentials and currents in the cat spinal cord. J Physiol 412: 277-296.

Kuroki S, Yoshida T, Tsutsui H, Iwama M, Ando R, Michikawa T, Miyawaki A, Ohshima T, Itohara S (2018) Excitatory neuronal hubs configure multisensory integration of slow waves in association cortex. Cell Rep. 22, 2873-2885.

Kushmerick C, Renden R, von Gersdorff H (2006). Physiological temperatures reduce the rate of vesicle pool depletion and short-term depression via an acceleration of vesicle recruitment. J Neurosci 206:1366-1377.

Kuwabara N, DiCaprio RA, Zook JM (1991) Afferents to the medial nucleus of the trapezoid body and their collateral projections. J comp Neurol 314: 684-706.

Lachaux J-P, Axmacher N, Mormann F, Halgren E, Crone NE (2012) High-frequency neuronal activity and human cognition: Past, present and possible future of intracranial EEG research. Progr Neurobiol 98: 279-301.

Leao RM, Kushmerick C, Pinaud R, Renden R, Li G-L, Taschenberger H, Spirou G, Levinson SR, von Gersdorff H (2005) Presynaptic Na⁺ channels: Locus, development, and recovery from inactivation at a high-fidelity synapse. J Neurosci 25: 3724-3738.

Mao T, Kusefoglu D, Hooks BM, Huber D, Petreanu L, Svoboda K (2011) Long-range neuronal circuits underlying the interaction between sensory and motor cortex. Neuron 72: 111–123 (2011).

Margrie TW, Brecht M, Sakmann B (2002) In vivo, low-resistance, whole-cell recordings from neurons in the anaesthetized and awake mammalian brain. Pflügers Arch 444: 491-498.

Mateo C, Avermann M, Gentet LJ, Zhang F, Deisseroth K, Petersen CCH (2011) In vivo optogenetic stimulation of neocortical excitatory neurons drives brain-state-dependent inhibition. Curr Biol 21:1593-1602.

Mazze RI, Rice SA, Baden JM (1985) Halothane, isoflurane, and enflurane MAC in pregnant and nonpregnant female and male mice and rats. Anesthesiol 62: 339-341.

Miyazaki T, Chowdhury S, Yamashita T, Matsubara T, Yawo H, Yuasa H, Yamanaka A (2019) Large timescale interrogation of neuronal function by fiberless optogenetics using lanthanide micro-particles. Cell Rep. 26: 1033–1043.

Mody I, Tanelian DL, MacIver MB (1991) Halothane enhances tonic neuronal inhibition by elevating intracellular calcium. Brain Res 538: 319-323.

Mohajerani MH, McVea DA, Fingas M, Murphy TH (2010) Mirrored bilateral slow-wave cortical activity within local circuits revealed by fast bihemispheric voltage-sensitive dye imaging in anesthetized and awake mice. J Neurosci 30:
Nagele P, Mendel JB, Placzek WJ, Scott BA, d'Avignon DA, Crowder CM (2005) Volatile anesthetics bind rat synaptic snare proteins. Anesthesiology 103: 768-778.

Nicoll RA (1972) The effects of anaesthetics on synaptic excitation and inhibition in the olfactory bulb. J Physiol 223: 803-814.

Ouyang W, Hemmings HC Jr (2005) Depression by isoflurane of the action potential and underlying voltage-gated ion currents in isolated rat neurohypophysial nerve terminals. J Pharmacol Exp Ther 312: 801-808.

Pal D, Walton ME, Lipinski WJ, Koch LG, Lydic R, Britton SL, Mashour GA (2012) Determination of minimum alveolar concentration for isoflurane and sevoflurane in a rodent model of human metabolic syndrome. Anesth Analg 114: 297-302.

Patel AJ, Honore E, Lesage F, Fink M, Romey G, Lazdunski M (1999) Inhalational anesthetics activate two-pore-domain background K+ channels. Nat Neurosci 2: 422-426.

Petersen CCH, Hahn TTG, Mehta M, Grinvald A, Sakmann B (2003) Interaction of sensory responses with spontaneous depolarization in layer 2/3 barrel cortex. Proc Natl Acad USA, 100: 13638-13643.

Piriya Ananda Babu L, Wang H-Y, Eguchi K, Guillaud L, Takahashi T (2020) Microtubule and actin differentially regulate synaptic vesicle cycling to maintain high frequency neurotransmission. J Neurosci 40:131-142

Rehberg B, Xiao Y-H, Duch DS (1996) Central nervous system sodium channels are significantly suppressed at clinical concentrations of volatile anesthetics. Anesthesiology 84: 1223-1233.

Ries CR, Puil E (1999) Ionic mechanism of isoflurane's actions on thalamocortical neurons. J Neurophysiol 81:1802-1809.

Sabatini BL, Regehr WG (1999) Timing of synaptic transmission. Ann Rev Physiol 61: 521-542.

Sand RM, Gingrich KJ, Macharadze T, Herold KF, Hemmings HC Jr (2017) Isoflurane modulates activation and inactivation gating of the prokaryotic Na+ channel NaChBac. J Gen Physiol 149: 623-638.

Schneggenburger R, Meyer AC, Neher E (1999) Released fraction and total size of a pool of immediately available transmitter quanta at a calyx synapse. Neuron 23: 399-409.

Schneggenburger R, Sakaba T, Neher E (2002) Vesicle pools and short-term synaptic depression: lessons from a large synapse. TINS 25: 206-212.

Sherrington C (1906) *The integrative action of the nervous system*. Yale University
Sreenivasan V, Esmaeili V, Kiritani T, Galan K, Crochet S, Petersen CCH (2016) Movement initiation signals in mouse whisker motor cortex. Neuron 92: 1368–1382.

Study RE (1994) Isoflurane inhibits multiple voltage-gated calcium currents in hippocampal pyramidal neurons. Anesthesiology 81: 104-116.

Sugihara I, Lang EJ, Llinas R (1993) Uniform olivocerebellar conduction time underlies Purkinje cell complex spike synchronicity in the rat cerebellum. J Physiol 470: 243-271 (1993).

Sun J-Y, Wu X-S, Wu W, Jin S-X, Dondzillo A, Wu L-G (2004) Capacitance measurements at the calyx of Hel in the medial nucleus of the trapezoid body. J Neurosci Met 134: 121-131.

Taheri S, Halsey MJ, Liu J, Eger EI 2nd, Koblin DD, Laster MJ (1991) What solvent best represents the site of action of inhaled anesthetics in humans, rats, and dogs? Anesth Analg 72: 627-634.

Takahashi T, Forsythe ID, Tsujimoto T, Barnes-Davies M, Onodera K (1996) Presynaptic calcium current modulation by a metabotropic glutamate receptor. Science 274: 594-597.

Takenoshita M, Takahashi T (1987) Mechanisms of halothane action on synaptic transmission in motoneurons of the newborn rat spinal cord in vitro. Brain Res 402: 303-310.

Taschenberger H, Leao RM, Rowland, KC, Spirou GA, von Gersdorff H (2002) Optimizing synaptic architecture and efficiency for high-frequency transmission. Neuron 36:1127-1143.

Uhlhaas PJ, Singer W (2010) Abnormal neural oscillations and synchrony in schizophrenia. Nat Rev Neurosci 11:100-113.

van Swinderen B, Saifee O, Shebester L, Roberson R, Nonet ML, Crowder CM (1999) A neomorphic syntaxin mutation blocks volatile-anesthetic action in Caenorhabditis elegans. Proc Natl Acad Sci USA 96: 2479-2484.

von Gersdorff H, Schneggenburger R, Weis S, Neher E (1997) Presynaptic depression at a calyx synapse: The small contribution of metabotropic glutamate receptors. J Neurosci 17: 8137-8146.

Welker E, Hoogland PV, Van der Loos H (1988) Organization of feedback and feedforward projections of the barrel cortex: a PHA-L study in the mouse. Exp Brain Res 73: 411–435 (1988).

Wu X-S, Sun J-Y, Evers AS, Crowder M, Wu L-G (2004) Isoflurane inhibits transmitter release and the presynaptic action potential. Anesthesiology 100: 663-670.
Figure legends

Figure 1. Isoflurane attenuates evoked EPSC amplitude. (A) Upper panel, sample records of EPSCs averaged from 6 cells each, before (Ctrl, black) and 10 min after 3% isoflurane application (Iso, red). Eight EPSCs are superimposed on averaged traces. Amplitudes of EPSC before and after 3% Iso application were 12.2 ± 1.4 nA and 5.6 ± 0.9 nA, respectively. Isoflurane did not affect the 10-90% rise time (0.18 ± 0.01 ms in Ctrl, 0.18 ± 0.01 ms in Iso, n = 8, p = 0.63, paired sample t-test) or the decay time constant (0.41 ± 0.06 ms in Ctr, 0.39 ± 0.06 ms in Iso, n = 8, p = 0.49, paired t-test) of EPSCs. Lower panel, time plots of EPSC amplitude attenuated by various gaseous concentrations of isoflurane. EPSCs were evoked every 30 s. After 10 min of baseline recording, isoflurane was bath-applied for 10 min. (B) Upper panel, the fractional block of EPSCs by isoflurane at different isoflurane concentrations,
fitted with a Hill equation: \(Y = \text{Max} - \frac{\text{Max}}{1 + \left(\frac{X}{\text{EC}_{50}} \right)^{Hill}} \), where the EC\(_{50}\) was 0.47 mM.

(shown by dashed lines), maximal inhibition (Max) was 76\%, and Hill coefficient (Hill) was 1.0. Lower panel, a linear relationship between gaseous concentrations (%) and aqueous concentration (mM) of isoflurane measured using gas chromatography-mass spectrometry. (C) Upper panel, mEPSCs averaged from 126 events each before (Ctrl, black) and 10 min after isoflurane application (Iso, red).

Lower panel, sample traces of mEPSCs at slow time scale. (D) Upper panel, isoflurane had no effect on mEPSC amplitude (50.3 ± 3.1 pA in Ctrl, 53.1 ± 3.2 pA in Iso, n = 8, p = 0.52, paired sample t-test). Individual (368) events are superimposed on averaged traces. Lower panel, no effect of isoflurane on mEPSC frequency (0.45 ± 0.04 Hz in control, 0.40 ± 0.02 Hz in Iso, n = 8, p = 0.39, paired sample t-test). Error bars indicate ± SEM in this and subsequent Figures. Ctrl, control; Iso, isoflurane: N.S., not significant in this and following Figures.

Figure 2. Isoflurane reduces the number of functional release sites (N) and the release probability (pr) but has no effect on mean quantal size (q). (A) Top, sample traces of averaged EPSCs at different Ca\(^{2+}\) and Mg\(^{2+}\) concentrations superimposed with (red) or without (black) isoflurane (3%). Middle panel, EPSC amplitudes in aCSF solutions containing 1 mM Ca\(^{2+}\) and 2 mM Mg\(^{2+}\) (1Ca\(^{2+}\)), 2 mM Ca\(^{2+}\) and 1 mM Mg\(^{2+}\) (2Ca\(^{2+}\)), 4 mM Ca\(^{2+}\) and 0 mM Mg\(^{2+}\) (4Ca\(^{2+}\)), and 4 mM Ca\(^{2+}\) and 0 mM Mg\(^{2+}\) with 10 μM 4-AP (4Ca\(^{2+}\) + 4-AP). ACSF contained kynurenic acid (1 mM) throughout to minimize saturation and desensitization of postsynaptic AMPA receptors. Bottom panel, variance-mean plots in the absence (Ctrl, black) or presence of isoflurane (Iso, red, superimposed). Data points were fitted with simple parabolic functions (see Materials and Method). (B) Bar graphs for the effect of isoflurane (3%) on N (top
panel, 302 ± 45 in Ctrl, 171 ± 30 in 3% Iso, n = 7; p = 0.005, paired sample t-test), p_r
(middle panel, 0.38 ± 0.01 in control, 0.29 ± 0.03 in 3% Iso, n = 7; p = 0.009, paired
sample t-test) and q (bottom panel, 40.0 ± 0.2 pA in control, 42.0 ± 0.5 pA in Iso, n = 7;
p = 0.572, paired sample t-test). Double asterisks indicate p < 0.01 in this and
following Figures.

Figure 3. Isoflurane inhibits voltage-gated ion channel currents recorded from
calyceal presynaptic terminals. (A) Top, presynaptic Ca$^{2+}$ currents before (Ctrl, black),
10 min after isoflurane application (Iso, red), and 10 min after isoflurane washout
(WO, blue). Dashed lines (A-C) indicate maximal current amplitudes in controls.
Bottom, Ca$^{2+}$ current-voltage relationships in Ctrl (black), 3% Iso (red), and WO
(blue). Peak amplitudes of presynaptic Ca$^{2+}$ currents were significantly reduced by 3%
Iso, between -20 mV and +40 mV (n = 8). (B) Top, presynaptic K$^+$ currents in Ctrl,
3% Iso, and WO. Bottom, K$^+$ current-voltage relationships in Ctrl, 3% Iso, and WO.
Isoflurane significantly decreased presynaptic K$^+$ current amplitudes above +10 mV
(n = 6). (C) Top, presynaptic Na$^+$ currents in Ctrl, 3% Iso, and WO. Bottom, Na$^+$
current-voltage relationships in Ctrl, 3% Iso, and WO. Isoflurane significantly
decreased presynaptic Na$^+$ current amplitudes between -40 mV and +10 mV (n = 4).
(D) Top, presynaptic APs in Ctrl, 3% Iso, and WO (superimposed). Bottom left bar
graphs, isoflurane significantly and reversibly reduced presynaptic AP overshoot (Ctrl
46.7 ± 0.9 mV, 3% Iso 30.6 ± 0.7 mV, WO 42.0 ± 0.9 mV, n = 9, p < 0.001, one-way
repeated measures ANOVA: F(2,24) = 48.98, p < 0.001, upper right bar graphs), but
does not affect presynaptic AP half-width (Ctrl 0.28 ± 0.006 ms, Iso 0.29 ± 0.006 ms,
WO 0.29 ± 0.004 ms, n = 9, one-way repeated measures ANOVA: F(2,24) = 0.73, p =
0.5) or resting membrane potential (Ctrl -69.63 ± 0.5 mV, Iso -68.85 ± 0.32 mV, WO
-69.67 ± 0.31 mV, n = 9, one-way repeated measures ANOVA: F(2,24) = 1.28, p = 0.3).
Isoflurane also attenuated DAP (Ctrl 5.98 ± 0.55 mV, Iso 3.78 ± 0.42 mV, WO 5.75 ± 0.55 mV, n = 9, one-way repeated measures ANOVA: F(2,24) = 17.83, p = 0.02). (E) Top, simultaneous recordings of presynaptic APs and EPSCs sampled from different epochs after bath application of 10 nM TTX. ACSF contained kynurenic acid (1 mM). Bottom, the relationship between presynaptic AP overshoot and normalized EPSC amplitude during TTX application. EPSC amplitude remained unchanged even if the AP overshoot was reduced to 30.1 ± 1.9 mV by isoflurane (red shadow). EPSC amplitude declined only after AP overshoot was reduced by TTX to less than 13.5 ± 0.3 mV. Data derived from 5 pairs. Single and triple asterisks indicate p < 0.05 and p < 0.001, respectively, in this and following Figures.

Figure 4 Isoflurane attenuated vesicle exocytosis without affecting endocytosis. Presynaptic membrane capacitance evoked by a 20-ms square pulse (stepped from -80 mV to 10 mV), with (red) or without (black) isoflurane (superimposed). Left upper panel, averaged traces (from 6 terminals) of exo-endocytic capacitance changes, with (Iso, red) or without (Ctrl, black) isoflurane (superimposed). Left bottom panel, ∆Cm traces normalized at the peak amplitude, with or without isoflurane (superimposed) showing no difference in endocytic time course. Right panels, bar graphs indicating inhibitory effect of 3% isoflurane on exocytic magnitude (upper panel, ∆Cm from 0.41 ± 0.02 pF to 0.30 ± 0.02 pF, n = 8, p = 0.003, paired sample t-test) and no effect of isoflurane on endocytic time (lower panel, half decay time; Ctrl, 9.86 ± 0.1 s; Iso, 9.69 ± 0.17 s, n = 8, p = 0.175, paired sample t-test).

Figure 5 Isoflurane attenuated STD, but had no effect on the recovery of EPSCs from STD. (A) STD was induced by a 100-Hz train. Isoflurane (Iso, red) reversibly...
attenuated the magnitude of STD (right panel bar graphs) measured for 20-30th
EPSCs (dashed line square). (B) Isoflurane had no effect on the recovery of EPSCs
from STD (stimulation protocol on left top panel). Recovery time courses before (Ctrl,
black), during isoflurane application (Iso, red) and after washout isoflurane (WO,
blue). Right panel, time course of recovery from STD before (black) during (red), and
after washout (blue) of isoflurane. (C) Estimation of quantal parameters from
cumulative EPSC amplitudes. Isoflurane reduced N_q (left bar graphs; Ctrl 29.42 ±
4.34 nA, Iso 21.58 ± 3.51 nA, WO 26.03 ± 3.4 nA, n = 7, one-way repeated measures
ANOVA: $F(2,19) = 13.15, p = 0.03$) and p_r (right bargraphs; Ctrl 0.41 ± 0.03, Iso 0.31
± 0.03, WO 0.4 ± 0.02, n = 7, one-way repeated measures ANOVA: $F(2,19) = 19.36, p$
= 0.008) in a reversible manner.

Figure 6. Isoflurane inhibits both presynaptic Ca$^{2+}$ currents and exocytosis
downstream of Ca$^{2+}$ entry. (A) Left panel, Ca$^{2+}$ currents evoked by square pulses of
different durations ($\Delta T = 1, 2, 5, 10, \text{ and } 20 \text{ ms}$) stepped from -80 mV to +10 mV
(stimulation pulse protocol on top panel), in the presence (red) or absence (black) of
isoflurane (superimposed). For 1-ms pulse stimulation, Ca$^{2+}$/Mg$^{2+}$ ratio in aCSF was
either normal (2 mM / 1 mM) or reduced (1 mM / 2 mM). Right panel, presynaptic
Ca$^{2+}$ charge transfer (Q_{Ca}) at different pulse duration (ΔT), in the presence (red) or
absence (black) of Iso (low Ca$^{2+}$ data not included). Q_{Ca} in Iso was significantly less
than that in control at all ΔT; $p = 0.028$ at 1 ms (1Ca/2Mg), $p = 0.004$ at 1 ms
(2Ca/1Mg), $p = 0.002$ at 2 ms, $p < 0.001$ at 5 ms, 10 ms and 20 ms (paired sample
t-test). (B) Top panels, ΔC_m induced by Ca$^{2+}$ currents evoked by square pulses of
different durations (superimposed), in the presence (Iso, red) or absence (Ctrl, black)
of isoflurane. Bottom panels, relationships between exocytic ΔC_m and presynaptic Q_{Ca},
in the presence (Iso, red) or absence (Ctrl, black) of isoflurane. Bottom left panel, the
maximal exocytic ΔC_m after isoflurane application (0.30 ± 0.02 pF) was significantly less than control (0.41 ± 0.02 pF, $p = 0.003$, paired sample t-test). Bottom right panel, ΔC_m for a low range of Q_{Ca} (indicated by dashed lines on the left graph) showing an overlap of the Q_{Ca}-ΔC_m relationships between control and isoflurane.

Figure 7. Frequency-dependent impairments of synaptic fidelity by isoflurane. (A) Simultaneous recording of APs from a presynaptic terminal and a postsynaptic neuron (recording mode illustrated on the top left). Representative traces of presynaptic APs (green, control in the top raw and with 2MAC isoflurane on the third raw, APs at 200 Hz shown at faster time scale in inset) and postsynaptic APs in control (black), 1 MAC isoflurane (1.5 % Iso, yellow), and 2 MAC isoflurane (3 % Iso, red). Two hundred APs were generated by depolarizing pulses in presynaptic terminals at 0.2-200 Hz and postsynaptic APs were recorded in whole-cell current-clamp mode at PT (31-33 °C). Data at 0.2 Hz were not shown because of too long stretches (1000 s).

(B) Fidelity (%) of synaptic transmission at different frequencies. Isoflurane at 1 MAC (yellow) or 2 MAC (red) impaired the fidelity of excitatory neurotransmission in a frequency-dependent manner. (C) Fidelity of synaptic transmission at different frequencies in the absence of bicuculline and strychnine in aCSF. Isoflurane was used at 1 MAC (blue, dashed line) or 2 MAC (blue line). Double and triple asterisks indicate $p < 0.01$ and $p < 0.001$, respectively (paired sample t-test). (D) (i) APs generated in a postsynaptic neuron before (black), during (red) and after washout (blue) of isoflurane (superimposed). (ii) isoflurane raised threshold of AP generation determined with dV/dt analysis. (iii), isoflurane increased rheobase current required for AP generation. (iv) resting membrane potential. Isoflurane hyperpolarized postsynaptic neuron. (E) Postsynaptic recording of APs (illustrated on the top). Left panel, 200 APs evoked in a postsynaptic neuron by depolarizing current injections (1
ms, 1 nA) before (Ctrl, black) and 10 min after isoflurane application (3% Iso, red).

Right panel, APs generated by 100 % at different frequencies both in the absence (Ctrl, black) or presence of isoflurane (2 Mac, red).

Figure 8 Inhibition of cortico-cortical excitatory synaptic transmission by isoflurane.

(A) Left illustration, double transgenic mouse line (Rbp4-Cre; LSL-ChR2) with L5-specific ChR2 expression was utilized. Presynaptic APs were evoked in wM1-L5 excitatory neurons by 1-ms blue light pulses and postsynaptic APs were recorded in wS1 using a silicone probe. **Right pictures**, representative epi-fluorescent images of wM1 (upper panel) and wS1 (lower panel) regions. Green color, ChR2-eYFP; blue color, DAPI; red color: DiI (probe trace). **(B)** Selection of units for analysis. Units responding with APs at > 5 Hz at 5-25 ms after photo-stimulation onset are selected, whereas units showing antidromic spikes or unreliable AP generation from trial to trial were excluded. **(C)** Example raster plot from a unit with antidromic spikes. Note that no spikes in the targeted time window (red shadow) are recorded in the presence of preceding spontaneous firings at the scan period (gray shadow), as indicated with dashed lines. **(D)** Representative recording of spikes before and after 0.2-Hz photo-stimulation (blue line). Raster plots in awake states (top plots in black) and after isoflurane inhalation (middle plots in red). The number of APs per 5-ms bin is plotted in the *bottom graph*. Averaged AP waveforms in awake states (black) and after isoflurane inhalation (red) were also shown in the inset (superimposed). **(E)** Representative recordings of spikes with 0.2-Hz (left) or 2-Hz (right) stimuli are shown in a shorter timescale. **(F)** Average frequencies of spontaneous APs before stimulation, in the absence (black bar) or presence (red bar) of isoflurane (1.4 %, ****p < 0.0001, *Mann-Whitney U test*). **(G)** Frequencies of APs evoked by photo-stimulation within 5-25 ms after stimulation onset, in the absence or presence
of isoflurane. ****p < 0.0001, *p = 0.039, Dunn’s multiple comparison test. (H) Fidelity of postsynaptic AP generation at 0.2 Hz or 2 Hz in the presence of isoflurane relative to controls before isoflurane inhalation. **p = 0.0033, Mann-Whitney U test. (I) Left panels, example membrane potential recording from a wS1 neuron at the depth of 378 μm during wakefulness (top) and under isoflurane (1.4 %) anesthesia (bottom). Right panels, distributions of membrane potentials of the cell shown in the left panels. Data in awake (top) and isoflurane-anesthetized (bottom) states were obtained from a 30-s epoch for each. (J) Average RMPs of 6 neurons at L2/3 of wS1 were hyperpolarized by isoflurane inhalation. **p = 0.0013, paired sample t-test. Open circles and gray lines in (F), (G), (H) and (J) correspond to individual units or cells. Filled circles with error bars show mean ± SEM.
Figure 2
Figure 3
Figure 4
Figure 5

Graph showing changes in membrane capacitance (ΔC_m) and normalized ΔC_m over time for Ctrl and Iso conditions. The graphs illustrate the decay times for both conditions, with statistical significance indicated for the Ctrl group.
Figure 6
Figure 7
Figure 8
Figure 1

A

Ctrl

Iso

Time (min)

Normalized EPSC

0 5 10 15 20 25 30

Ctrl

Iso

B

% inhibition of EPSC

Log [Isoflurane] (mM)

EC_{50} = 0.47 mM

Isoflurane (mM)

Isoflurane (%)

C

Ctrl

Iso

Amplitude (pA)

20 pA 1 ms

Ctrl

Iso

D

Frequency (Hz)

20 pA 10 s

Ctrl

Iso

N.S.
Figure 2

A

Cmpn

1 Ca²⁺

2 Ca²⁺

4 Ca²⁺

4 Ca²⁺ + 4-AP

1 nA

1 ms

B

Numbers of release site (N)

	Ctrl	Iso
Bar	500	300

**

Release probability (p_r)

	Ctrl	Iso
Bar	0.5	0.4

**

Mean quantal size (pₐ)

	Ctrl	Iso
Bar	40	40

N.S.
Figure 5

A. EPSC amplitude (nA) over time (ms) for different stimuli (Ctrl, Iso, WO) showing the decay of EPSC amplitude.

B. EPSC recovery (%) over inter-stimulus interval (s) for different treatments (Ctrl, Iso, WO).

C. Cumulative EPSC (nA) over time (ms) showing a linear increase for different treatments (Ctrl, Iso, WO).
Figure 6

A

-80 mV

10 mV

ΔT (1Ca/2Mg)

1 ms

2 ms

5 ms

1 nA

5 ms

10 ms

20 ms

Q_{Ca} (pC)

ΔT (ms)

B

Ctrl

20 ms

10 ms

5 ms

2 ms

1 ms

0.1 pF

0.5 s

ΔCm (pF)

Q_{Ca} (pC)

Iso

1 ms

(1Ca/2Mg)

1 ms

2 ms

20 ms

10 ms

5 ms

2 ms

1 ms

ΔCm (pF)

Q_{Ca} (pC)
Figure 7

A

Pre and Post, AP recording

Ctrl 2 Mac

Pre 2 Hz 20 Hz 200 Hz

Post Ctrl

Pre 20 Hz 40 mV

Post Ctrl

Pre 20 Hz 40 mV

Post 1 Mac

Pre 20 Hz 40 mV

Post 2 Mac

10 s 1 s 0.1 s 20 mV

B

Fidelity (%)

Ctrl 1 Mac 2 Mac

0.2 Hz 2 Hz 20 Hz 200 Hz

C

Fidelity (%)

Ctrl 1 Mac 2 Mac

0.2 Hz 2 Hz 20 Hz 200 Hz

D

i

Ctrl 0 mV

Iso (2 Mac) -70 mV 20 mV

WO 2 ms

ii

Threshold (mV)

Ctrl Iso WO

-48 -44 -42

iii

Rheobase (pA)

Ctrl Iso WO

0 200 500

iv

RMP (mV)

Ctrl Iso WO

-60 -70 -80

E

Post, AP recording

Ctrl 2 Mac

Post 2 Hz 20 Hz 200 Hz

Post Ctrl

Post 20 Hz 20 Hz 200 Hz

Post Ctrl

Post 2 Mac

10 s 1 s 0.1 s

Normalized #AP (%)

Ctrl 2 Mac

0.2 Hz 2 Hz 20 Hz 200 Hz

N.S.
