저작자표시-동일조건변경허락 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

- 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.
- 이차적 저작물을 작성할 수 있습니다.
- 이 저작물을 영리 목적으로 이용할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

동일조건변경허락. 귀하가 이 저작물을 개작, 변형 또는 가공했을 경우에는, 이 저작물과 동일한 이용허락조건하에서만 배포할 수 있습니다.

- 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건을 명확하게 나타내어야 합니다.
- 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer []:

![Collection Logo]
석사학위논문

고수를 첨가한 고추장의 품질 및 관능적 특성
Quality and Sensory Characteristics of Kochujang Added With Coriadner (Coriandrum sativum L.)

지도교수 최 수 근

경희대학교 관광대학원
조리외식경영학과
최 기철

2009년 8월
Quality and Sensory Characteristics of Kochujang Added With Coriadner (Coriandrum sativum L.)
최기철의 관광경영학 석사학위 논문을 인준함

주심교수 윤혜현 (인)
부심교수 이광석 (인)
부심교수 최수근 (인)

경희대학교 관광대학원

2009년 8월
목 차

I. 서론 ... 1

II. 이론적 배경 .. 3

1. 고수의 문헌고찰 ... 3
 1) 고수의 역사 및 재배현황 ... 3
 2) 고수의 효능 및 기능성 .. 4
 3) 고수의 선행연구 .. 6

2. 고추장의 문헌고찰 ... 8
 1) 고추장의 역사와 유래 .. 8
 2) 고추장의 성분 및 영양 .. 9
 3) 고추장의 특성 및 종류 .. 11
 3) 고추장의 선행연구 .. 14

III. 실험재료 및 방법 ... 17

1. 실험재료 및 기기 .. 17
 1) 실험재료 ... 17
 2) 실험기기 ... 17

2. 실험 방법 ... 18
1) 시료의 제조 .. 18
2) 고수첨가 고추장의 제조 .. 18
3) 고수첨가 고추장을 이용한 세육볶음과 덮볶이의 제조 ... 21

3. 고수 파우더 원액을 첨가한 고추장의 이화학적 특성 ... 23
 1) 수분 함량 측정 ... 23
 2) 색도 측정 ... 23
 3) pH 측정 .. 23
 4) 염도 측정 ... 23
 5) 점도 측정 ... 24

4. 관능검사 .. 25
 1) 정량적 묘사분석 ... 26
 2) 기호도 검사 ... 26
 3) 시료의 준비 및 제시 .. 26

5. 통계처리 방법 .. 27

IV. 결과 및 고찰 ... 28

1. 고수 첨가 고추장의 수분 .. 28
2. 고수 첨가 고추장의 색도 .. 31
3. 고수 첨가 고추장의 pH .. 34
4. 고수 첨가 고추장의 염도 .. 35

- ii -
5. 고수 첨가 고추장의 점도 ... 36

6. 관능특성 .. 37
 1) 정량적 묘사분석 ... 37
 2) 기호도 검사 ... 44

7. 활용식품을 이용한 관능검사 ... 48
 1) 정량적 묘사분석 ... 60
 2) 기호도 검사 ... 68

V. 요약 및 결론 .. 68

참고문헌 .. 71

Appendix .. 79

Abstract .. 87
List of Tables

Table 1. Previous studies on Coriander ... 6
Table 2. Ingredients of Kochujang .. 10
Table 3. 대표적인 고추장의 종류 및 제조방법 ... 13
Table 4. 고추장 제조에 관여하는 미생물의 대표적인 특징 13
Table 5. Previous studies on Kochujang ... 14
Table 6. Formulas for preparation of Kochujang added with various amount of coriander .. 19
Table 7. Formulas for preparation of Jeyuk bokkeum and Tteokbokki with coriander Kochujang .. 22
Table 8. Moisture contents of main ingredient ... 28
Table 9. Moisture contents of Kochujang added with various amount of coriander .. 30
Table 10. Color values of Kochujang added with various amount of coriander · 33
Table 11. pH values of Kochujang added with various amount of coriander 34
Table 12. Total soluble solid content of Kochujang added with various amount of coriander .. 35
Table 13. Viscosity of Kochujang added with various amount of coriander 36
Table 14. QDA results of Kochujang added with various amount of coriander Powder .. 39
Table 15. QDA results of Kochujang added with various amount of coriander a crude liquid .. 42
Table 16. Acceptance of Kochujang added with various amount of Coriander Powder ... 45
Table 17. Acceptance of Kochujang added with various amount of Coriander a crude liquid .. 47
Table 18. QDA results of Jeyuk bokkeum with Kochujang containing various of coriander Powder ... 49
Table 19. QDA results of Tteokbokki with Kochujang containing various of coriander Powder .. 52
Table 20. QDA results of Jeyuk bokkeum with Kochujang containing various of coriander a crude liquid ... 55
Table 21. QDA results of Tteokbokki with Kochujang containing various of coriander a crude liquid ... 58
Table 22. Acceptance of Jeyuk bokkeum with Kochujang containing various of coriander Powder .. 61
Table 23. Acceptance of Tteokbokki with Kochujang containing various of coriander Powder .. 63
Table 24. Acceptance of Jeyuk bokkeum with Kochujang containing various of coriander a crude liquid ... 65
Table 25. Acceptance of Tteokbokki with Kochujang containing various of coriander a crude liquid ... 67
List of Figures

Fig. 1. Procedures for preparation of Kochujang added with various amount of coriander ... 20
Fig. 2. QDA profile of Kochujang added with various amount of coriander Powder ... 40
Fig. 3. QDA profile of Kochujang added with various amount of coriander a crude liquid ... 43
Fig. 4. QDA profile of Jeyuk bokkeum with Kochujang containing various of coriander Powder ... 50
Fig. 5. QDA profile of teokbokki with Kochujang containing various of coriander a crude liquid ... 53
Fig. 6. QDA profile of Jeyuk bokkeum with Kochujang containing various of coriander Powder ... 56
Fig. 7. QDA profile of Tteokbokki with Kochujang containing various of coriander a crude liquid ... 59
I. 서론

최근 국내외에 한류확산과 더불어 웰빙(well-being)에 대한 관심 증가 등으로 한식의 세계화에 대한 요구가 증가되고 있으며, 식품 החברה가 보수기기치를 창출할 수 있는 블루 오션분야로 인식되면서 세계 각국은 정부가 주도적으로 나서서 자국 음식의 세계화를 위해 총력말기도があり 있으며, 건강에 대한 의식 변화로 식품의 첨가물에 대한 관심이 높아지면서 발효식품과 천연 항산농가 부각되고 있다(Lee 외 2008).

향산농료는 향신(香辛)의 범위를 넘어 각종 생리활성기능을 가지고 있는 것이 발전됨에 따라 원래의 목적과 함께 새로운 관점에서 그 중요성이 인식되고 있으며 이에 관한 연구가 세계 각 나라에서 이루어지고 있다(이성우 1990).

우리나라에서 가장 대표적인 항산농료는 고추라고 할 수 있으며, 대표적인 소비 형태는 고추장이다.

고추장은 대표적인 발효식품이며 애날로그 각 가지의 식탁에서 그 특유한 맛과 기호성 때문에 아주 중요한 위치를 차지하며 온 기호식품이다(임성일 외 2006).

현재 장류 시장은 2006년에 간장 259,134 ton, 된장 99,679 ton, 고추장 160,294ton 이며 지역별 장류 생산 및 수출실태를 보면 경기도 130,234ton으로 가장 많았고, 그 뒤를 충청남도 126,900 ton, 전라북도 100,636ton으로 뒤를 이고 있다. 2005년 출하액 대비 고추장 19.4%, 된장 9.29% 신장을 나타냈다(식품의약안전청 2008). 또한 공장산 제품의 공급은 매년 증가하는 현상을 보이고 있으며, 장류의 수출입 현황에서 고추장의 수출현황은 2005년도에 중량 5,906 ton, 금액으로는 12,005천 USD(United States Dollar)이었고, 주 대중 시장은 선진국과 일본이었다(한장협동조합 2006).

최근 고추장을 주체로 많은 연구들이 등장하고 있다. 그러나 양적 질적인 면에서 다양하지 못하고 있으며, 고추장의 제품 개발, 제조 방법과 부재료의 기능성 재료를 참가한 제조 고추장에 대한 연구들이 대부분이다.

새로운 고추장 제조를 위한 연구로는 과원액을 첨가한 고추장(박정선 외 1993), 진주박을 이용한 저 식염 고추장(이갑성 1991), 호박을 첨가한 고추장(이은선 외 2000 : 구동재 외 2000), 마늘을 첨가한 고추장(송호수 외 2008), 양념료를 첨가한 고추장(신동화 1997), 부원료를 달리한 고추장에는 홍삼 첨가 고추장(신현주 외 1999), 해양 삼 종수입 및 다시마 첨가 고추장(함승희 외 2008), 키위 첨가 고추장(김영수 2002), 매실액 첨가 고추장(장원혁 외 2005), 사과·갑과실 첨가 고추장(서지형 2000), 매실 첨가
고추장(박우포 2007)과 오미자 추출물 첨가 고추장(김영숙 외 2003), 동충하초 첨가 고추장(권동진 2004), 비섯 첨가 고추장(안미란 2003), 등의 다양한 기능성재료를 첨가한 고추장 개발이 이루어지고 있다.

한국의 소스 문화의 대표적인 고추장은 비빔밥과 같은 한국 전통음식의 국제시장에의 진출에 힘입어 소비가 촉진되고 있다(심영자 외 2000; 서용건 외 2004).

하지만 현재 선연형구들을 살펴본 바 고추장의 기능성에 관련 개발들은 많이 이루어지고 있지만 세계화에 맞게 외국인을 대상으로 한 고추장 개발은 거의 이루어지고 있지 않은 실정이다.

중국에서도 고추장과 같이 매콤한 맛을 내는 두부장이나 해산물들이 이용되고 있는 점을 고려해 볼 때 중국인 소비자에게도 접근 용이성이 높을 것으로 기대된다.

그러나 중국시장에서의 고추장 소비 확대를 위한 전략 구축에 있어서 가장 큰 문제점은 쓰 =='식 재료의 활용법이나 소스개발에 대한 연구가 부족하고(ENUM J M 2004), 한국음식에 대한 인지도가 높아추세이지만 활용도는 미미한 수준이다(김선야 외 2005).

따라서 본 연구는 서구권 국가에서도 영양학적 우수성을 인정하고 소비가 점차 증가하는 추세이며 기능성이 있는(민성희 2006), 천연 항산화 작용을 한 음식을 만들기 위한 연구가 부족해(Changes of Antioxidant Activity of Coriander, Coriandrum Sativum L. 1991: Cai X.J. 1995), 개발된 고추장에 착소하여 기능성이 향상된 고추장 개발을 통해 고추장의 활용성과 소비를 확대하는 데 목적이 있다.

다음으로 이렇게 개발된 고추장 소스를 이용해 중국음식에서 고추장의 활용도를 높이고, 중국인들의 고추장의 거부감을 덜어 고추장이 보편화된 음식으로 널리 알려지는 것이 목적이다.

또한 고추장 소스 개발을 통한 중국음식에 보편적 활용 기반을 구축하고, 고추장의 세계화의 기반이 마련되는 데 도움이 되는 것이 가장 큰 목적이고, 건강 기능성 고추 고추장 소스로 발전, 보급시켜 산업화 및 한식 세계화를 위한 기초 자료로 제공하는데 목적이 있다.
II. 이론적 배경

1. 고수의 문헌고찰

1) 고수의 역사 및 재배

고수 (*Coriandrum sativum L.*)는 중국 과슬리라고도 하는 미나리과 식물로서, 중국과 지중해 연안이 원산지이며, 지중해 전역에 야생으로 자생하는 작은 임연생 허브이다. 영국의 이주민들에 의해 미국에 전해졌으며(현영희 외 2000), 학명인 *Coriandrum*은 그리스어로 ‘빈대’를 뜻하는 *Koris*와 ‘아니스 향’을 의미하는 *annon*이 합쳐진 낱말로서 고수가 풀로서는 빈대냄새가 나고 익은 씨는 아니스와 같이 좋은 향이 나는 것을 뜻한다(최영전 2006 : 최성희 2006 : 정한진 2006 : 박권우 2007).

미나리과에 속하는 임연생초로서 원산지는 지중해 동쪽지역이나, 현재 중국, 인디아, 호주, 소련, 아메리카 등에서 널리 재배되고 있다. 고수의 키, 성장기간, 씨의 정유 함량, 잎의 크기와 색동에 따라 크게 2종류로 분류 하나, 같은 종이라도 잎의 색, 수확량, 크기 등에 따라 여러 가지 품종으로 더 세분화 된다(이성우 1978).

중국, 우리나라 등 동남아시아에 널리 재배되고 있는 고수 품종은 북경, 산동대일, 백화등 여러 가지가 있으며, 성장기간은 75 ~ 90일 정도이고 키는 약 20 ~ 50㎝이다. 잎과 줄기는 녹색을 띠고, 부드럽고, 향기가 있기 때문에 생채, 절임, 당 볶음 등에 조미재료로 이용되고 있다(Gupta K. 1991 : Loaza J. 1997). 고수의 잎은 cilantro 또는 chinese parsley라고 하며, 생채나 볶음, 절임 또는 요리에 향미를 더하기 위한 향료나 차로 이용되고 있으며(Thomas L.P 1990), 또한 중국인들이 향신료 중 가장 많이 고수를 섭취하는 것도 기름진 중국 음식의 단점을 보완하기 위한 것이라고 알려져 있다(금현지 2000).

향신료를 목적으로 하는 고수는 주로 유럽에서 재배 되며, 특히 고수는 일, 열매, 정유 등 용도가 다양하고 생리 활성 물질이 포함되어 있으며 우리나라는 고조선 시대부터 고수 잎을 고미료(高味料)로, 씨는 약으로 사용하였고, 삼국시대와 동일 신라 때에는 향신료로, 조선시대 때는 강회, 걸절이, 밥으로 이용되어 왔고 현대에는 사찰음식으로 숙채, 생채, 김치 등으로 일부 전해오고 있다(이성우 1978). 남쪽 지역의 고수의
재배지로 매우 적합하기 때문에 우리의 식생활에 이용된다면 다양한 식생활을 위한 하나의 식품 재료로서 건강식품으로서 큰 역할을 할 것이다(금현지 2000).

고수(Coriandrum sativum L.)는 인류가 최초로 사용한 향신료이기도 하며 고대 시대부터 지금까지 의사들이 약이나 치료제로 이용하고 있는 약용식물이다(Thomas L.P 1990).

고수는 세계의 곳곳에서 다양한 용도로 이용되어 왔다. 구약에는 고수가 과사(pasah) 축제에 사용된 허브 중 하나이며, 셀을 끓는 와물같은 맛이 난다고 쓰여 있고, 산스크리트어 문헌, 이집트의 문헌들도 나와 있으며, 기원전 10C의 피라미드에서도 고수의 셔));이 발견되었다. 이집트인들은 고수를 무덤에 넣어주는 부葬품 중의 하나로 이용하였고, 꽃을 만들어 마셨는데 이 꽃을 마시면 행이 오고 전한한 짓을 잘 수 있다고 하였다. 이집트에서 고수를 수입한 로마인들은 고기를 오래 보존하는 일종의 방부제로 이용하였다(최성희 2006 : 최영전 2006 : 정한진 2006).

특히 고수는 중국음식에 많이 사용되는데 타지요리에 장식용이나 생선의 비린내 제거에 도움을 주며, 수프, 샐러드, 육수제조시 사용되며 과우더로 만들어 카이크 제조시에도 참가한다. 고수 잎은 사용하기 바로 전에 준비해 두어 요리가 끝날 봉에 참가하거나 마무리된 요리 위에 뿌려준다. 다진 신선한 고수 잎을 가금류 요리, 빨 콘요리, 수프 그리고 카레요리 위에 뿌려준다. 또한 고수의 어린잎은 그린샐러드에 넣고, 샐러 드드레싱이나 마요네즈에 다져서 넣는다. 뿌리는 깨끗이 세척 후 가루로 만들어 카레 가루를 만드는데 사용한다(최수근 외 2008).

2) 고수의 효능 및 기능성

고수(Coriander Sativum L.)는 특특한 향을 갖는 산형화과 식물로서 쌓, 나물, 샐러드 그리고 생선요리의 비린내를 제거하는데 이용된다. 또한 종자나 잎, 줄기에서 추출한 정유는 진정제, 살균제, 항문제, 항립마티스와 항산화제로써의 효능을 갖는다고 한다(Hoffmann 1996). 또한 체내에서 세정의 기능을 도와서 인슐린 glucose의 농도를 낮추고(Farnsworth N.R. 1971 : Lewis W.H. 1982), 위를 진정하여 음료를 돕으며, 체내의 지질분해 역할 뿐만 아니라 구동제, 수두치료제, 항염증제, 최음제로도 작용한다(Thomas L.P. 1999 : Alison M.G. 1999).
또 고수 씨는 탄수화물의 소화 작용이 뛰어나고 한방에서는 건위제, 구풍, 거담제로 쓰며, 유럽에서는 소스 재조용 항산료로 쓰고 있다. 또 줄기와 잎은 고수탕기, 고수강치, 고수값지 등으로 이용된다(현영희 외 2000: Kalra A. 1995). 고수는 재배조건 중 기후에 크게 영향을 받지 않고, 병충해가 적으며, 일 년 내내 지속적으로 재배가 가능할 뿐만 아니라, 칼슘, 인 등의 무기질, 카로틴 색소, 비타민 C 함량이 높고 영양이 풍부하다(Alison M.G. 1999 : Samillfield B.M. 1994).
3) 고수의 선행연구

Table 1. Previous studies on Coriander.

연구자	제목	내용
최옥자 외 2002	고수의 가열처리에 따른 향미 성분의 변화	고수 잎을 blanching하여 SDE법에 의해 취방성 성분을 분리한 결과 고수의 잎과 뿌리의 유리당 함량은 21.28mg%, 21.89mg%로 나왔으며, 유기산의 함량은 malic acid 148.61mg%, tartaric acid 134.69mg%로 결과가 나왔다. 그리고 고수 잎에서 98종의 향기성분이 나왔으며 가열 후 75종의 향기 성분이 분석, 뿌리에서는 77종의 향기성분이 분석, 가열 후 71종의 성분이 확인 되었다. 이것으로 blanching에 의하여 aldehyde류, alcohol류, acid류의 함량은 각각 감소한 반면 ester, ketone류는 증가 되는 경향을 보였다.
김경자 외 2001	고수의 향미성분에 관한 연구	고수 잎에 함유된 유기산은 malic acid, tartaric acid의 함량이 각각 353.55mg%, 281.32mg%로 뿌리, 셋에 비하여 높게 나타났다. 각 아미노산의 함량은 잎과 뿌리에는 glutamic acid와 aspartic acid의 함량이 높았고, 셋에는 glutamic acid와 proline의 함량이 높게 나타났다. 잎과 셋의 유리 아미노산의 함량은 glutamic acid와 serine의 함량이 높았고, 뿌리에는 glutamic acid와 threonine의 함량이 높으며 아미노산의 조성 비율은 구성야미노산과 유리야미노산이 각각 차이가 있었다.
하수진 외 2002	미나리와 산채의 육가공품에 대한 저장성 및 관능특성 -참당귀·돌미나리·고수-	미나리와 산채가루 참당귀, 돌미나리, 고수 청가 소시지의 저장 기간 중 청가량이 많을수록 pH는 증가 하였으며, 저장함에 따라 pH의 수치는 감소하였다. 소시지의 관능평가에서 산채가루 0.5% 청가 소시지가 모든 항목에서 점수가 가장 높았으며, 3.0% 청가 시료가 가장 낮았다. 또한 고수 청가 시료는 청가량과 저장 기간에 관계없이 모두 높은 관능점수를 보였으며, 모든 시료는 저장 기간에 경과함에 따라 대부분의 관능점수가 감소를 보였다.
황금희 외 2001

식이내고수의 첨가가 당뇨성 흰쥐의 혈당과 간의 지질함량에 미치는 영향

고수의 첨가가 당뇨성 화장의 혈당, 혈청 및 간조직의 지질수준 저하 효과와 각 부위별 효능을 규명하고자 실험한 결과 당뇨병이 있어서 고수는 혈당 감소효과를 나타내 주지 못하였으나 고수의 뿌리가 혈장의 지질수준을 낮추었고, 비타민E 함량을 감소시키며 혈장과 간조직의 파산화지질 생성을 억제시키는 효과가 나타나 혈장에서 경화증을 방지하고, 항산화성을 보이는 항산화 또는 식품재료로서의 개발 가능성이 있음을 시사하였다.

김옥희 외 2001

향신료고수의 핀산화특성

고수의 잎, 씨를 건조한 가루를 식빵에 첨가하였을 때 조단백질과 조화분의 함량은 대조구보다 높게 나타났으며, 조지방과 조슬유의 함량은 씨 첨가구에서 높게 나타났고, 뿌리의 수분 결합력은 대조군에 비하여 씨 3% 첨가구를 제외하고 고수 가루를 첨가하였을 때 낮았고, 청량이 증가한 수록 잔과 씨 첨가 병 모두 더 낮아졌다. 조상감 평가에서 경도는 고수를 첨가하였을 때 대체로 낮아지는 경향을 보였고, 단백질은 대조구 씨, 첨가구 잎, 첨가구 순으로 높았으나, 고수 청구곡에 따라서는 큰 차이는 없었다. 음감성, 점착성, 한반성은 대조구에 비해 고수를 첨가하였을 때 유의적으로 낮은 값을 보였으며, 식, 숙달의 점감에 대한 기호도, 전체적인 선호도는 씨 3% 첨가구가 가장 좋은 결과를 나타냈다.

이문정 외 2000

식물체내에 휘발되는 Se이 고수의 저장 중 휘발되는 정도 를 알아보고 이를 바탕으로, Se 처리 적정 농도와 저장기간 동안 Se의 함량 변화와 적합성을 실험한 결과 Se농도는 양에 내 Se공급증가와 높은 상관관계가 있었고, Se의 처리에 따른 생장과 수량에는 유의성 있는 효과를 얻지 못했다. 다만 저유와 비타민C는 Se의 공급에 의해 증가되었다. 본 실험에서 Se에 의한 식물체의 저온장해 완화효과를 찾아 봤 수 있었다.

* 출처 : 논자재구성
2. 고추장의 문헌고찰

1) 고추장의 역사 및 유래

고추장은 콩과 전분질에 고춧가루를 혼합해서 발효시킨 우리 고유의 발효식품이다. 고추장은 콩 단백질과 참딸, 멜발, 보리쌀 등의 탄수화물 등이 여러 효소에 의하여 분해되어 얻어지는 구수한 맛, 단맛과 고추의 매운 맛, 소금의 짠 맛 등이 조화된 독특한 샳을 가지면서 영양적으로 우수한 발효식품이다(이삼빈 외 2001).

그 중 가장 중요한 재료인 고추는 임진왜란(1592년)을 전후로 일본으로부터 우리나라에 전래되었다고 전해진다. 따라서 초기의 이름은 '왜개자(倭芥子)'라 불리었고, 귀한 식품이라 하여 '변초', '악초'라 불렀으며(윤숙자 2003), 고추의 전래시기 및 경로에 관한 최초의 기록은 「지봉유설(之蜂維說)(1645)」이다. 여기에 '만초는 일본을 거쳐 온 것으로서 왜개자라고 한다'고 설리 있다. 이후 「성호사설(星湖僿說)」, 「오주연문장전산고(五州衍文藏癲散誥)」 등에서도 변초가 일본에서 도입되었고, 그 시기가 선조임전 이후라고 하여 이를 끝받침해 주고 있다(장지현 외 2001). '고추'라는 이름은 후추와 비슷하면서 맵다 하여 '매운 후추'라는 의미에서 붙여진 것이라 한다.

최초 고추의 사용은 술안주로 고추 그 자체를 사용하거나, 고추씨를 사용하다가 17세기 말경에는 고추를 가루로 내어 이전부터 사용했던 항산료인 후추, 천초(초피나무 열매껍질)를 섞어 사용했다. 천초를 섞어 당근 잔을 '초시(川椒葹)'라고 한다. 점차 고추재배 보급의 일반화를 도모하여 종래의 원장, 간장 경용장에 매운맛을 첨가시키는 고추장 맛으로 변천 발달되었다고 전해온다(윤숙자 2003).

고추장이 개발된 배경을 알아보면밥을 주식으로 하는 우리 농경민족은 식탁에서 반찬으로 이용되는 채소류에 맛을 부여하기 위해 목적한 자극적인 맛을 얻는 음식을 찾고자 하는 활동과 자극적인 맛의 순화방법으로 발효기법이 도입되었을 것으로 생각된다(구민선 1990).

고추장이 우리나라에서 사용되기 시작한 것은 16세기말이나 17세기 초인 것으로 추정되고 있다.

선조 때 태어나서 메란을 세웠던 허균(許筠: 1569~1618)의 저서 『도문대작(屠門大爵)』에서 '초시(椒：매운 초, 豉：매주지)'란 음어가 발견되는데, 이것이 바로 오늘날
의 고추장으로 확인되고 있다(선동화 2005).

『규합총서』에는 순창 고추장과 천안 고추장이 팔도의 명물 중 하나로 소개 되어 있고, 『월여농기』(1861년)에는 고추장을 ‘변초장’이라 하였다. 『중보산림경제』(1765년)에는 “콩으로 담근 말장(末醬) 가루 한 말에 고춧가루 세 흰, 참-Methods 가루 한 되의 세 가지 맛을 취하여 좋은 창장으로 치장된 뒤 행렬에 숙성 시킨다”고 써어 있어 지금과 비슷한 고추장을 달가 먹었음을 알 수 있다(한복진 외 1998). 이 외에도 수문사설(搜聞事說, 이표, 1740) 중 식치방에 “순창고추장 조법”에는 전복, 큰새우, 흑합, 생강 등을 첨가하여 담근 기록이 있으며, 역주방문(曆酒方文, 1800년대 중엽)에는 보리쌀을 섞은 고추장을 달아 보이고, 조선말기의 우수한 조리시인 백허각 이(李)씨의 『규합총서(閨閤叢書)』에는 고추장 메주를 따로 달아 담그는 방법을 사용하였으며, 꿀, 육포, 대추를 섞는 등 소금 대신 창장을 이용하여 간을 맞추는 방법도 시술되어 있다.

2) 고추장의 성분 및 영양

고추장의 성분은 원료의 종류, 배합 또는 제조방법에 따라서 차이가 있다. 고추의 매운맛과 적색소의 함량은 고추장 품질을 결정하는 중요한 요소이다. 영양 면에서 고추장은 다른 장류와 비교할 때 곡류의 함량이 많아 당질식품이며, 콩 가공식품이므로 단백질 공급식품이다(유미영 외 2005).

숙성과정 중 탄수화물과 단백질의 분해효소의 작용으로 발효에 의한 당 성분과 아미노산들이 생성되며, 효모와 유산균에 의한 발효가 일어나면서 고추장 맛의 조화와 향기, 풍미, 단맛 성분에 영향을 미친다. 고추장 담근 초기의 pH가 5.0이고, 숙성 3개월일 때는 균균의 대사 작용과 산 생성균의 작용으로 pH가 4.7~4.8로 낮아지면서 효모의 작용이 활발해 진다(김영수 외 2002).

고추장은 간장, 된장에 비해 탄수화물의 함량이 높으므로 단맛이 있는 것이 특징이다. 고추장의 성분 중 유리당은 glucose 와 fructose가 주된 성분이며, 유기산은 pyruvic acid, citric acid, lactic acid등이 많이 검출된다. 고추장의 조지방은 2.24~2.53%로 편수지방산인 linoleic acid, linolenic acid 등이 전 지방산의 61~85%를 포함하며 비타민도 상당량 함유한다. 고추장은 7.0% 정도의 염분과 200mg% 이상의 아미노질소를 포함한다.
전통발효식품인 고추장은 저кал식품으로서 짜맛, 단맛, 구수한 맛, 매운 맛을 갖는 조미료이다. 고추장 성분 중의 ascorbic acid는 자동산화 역제를 도와주며, 고춧가루의 capsaicin은 B. subtilis균에 대한 항균작용이 있으며, β-carotene, 비타민 C는 항노화 및 항균후에 효과가 있다(이삼빈 외 2001).

Table 2. Ingredient of Kochujang

열량 (kcal)	단백 (g)	지방 (g)	탄수화물 (g)	탄수 (g)	비타민 (mg)				
고추장	148	8.9	4.1	15.9	3.5	19.9	126	13.6	0.35

* 출처: 발효식품학 (이삼빈 외 2002)
고추장의 특성 및 종류

고추장은 참쌀, 대두 및 고춧가루 등을 주원료로 하고 코지, 소금 등을 섞어 발효시킨 우리나라 고유의 전통 발효식품으로 간장 및 된장과 더불어 요리의 필수품으로서, 고추장의 특유한 맛과 기호성 때문에 식생활에서 벗어놓을 수 없는 중요한 조미식품이다(조한옥 외 1981).

고추장은 참쌀 등의 전분질원료가 가수분해되어 생성되는 단맛 성분, 대두 등의 단백질로부터 유래되는 조미 성분, 고추의 매운맛과 식염의 짙은 맛 등이 잘 조화를 이루고 있는 우수한 식품이며, 더욱이 미생물의 작용으로 생성되는 유기산, 알코올 등의 풍미 성분으로 더욱 조화를 이루는 발효식품이다. 또한, 비만억제 및 항암효과, 항변이원성, 항산화성 등의 생리적 기능성이 있다고 알려져 있으며, 그 역할을 하는 성분으로서 고추장의 매운맛 성분인 캡사이신(trans-8-methyl-N-vanillyl-6-nonenamide, capsaicin)이 알려져 있다(Breene, W.M. 1990).

고추장의 품질은 원료와 배합비율, 담근 방법과 숙성조건 등에 따라 다르고(권영미 외 2002), 고추장의 품질은 코지에 따라 크게 좌우된다(권동진 2004). 고추장은 사용원료에 따라 가공방식 및 숙성방법에 따라 크게 세분화되며, 고추장의 품질은 코지에 따라 크게 좌우된다(권영미 외 2002), 고추장의 품질은 코지에 따라 크게 좌우된다(권동진 2004).

전통고추장은 전분질원으로 참쌀을 사용하나 특징적으로 보리와 밀을 사용하기도 하며(김영수 1993), 메주를 부우는 과정에서 많은 종류의 곰팡이체 세균이 증식하여 고추장의 숙성과정에서 이들의 발효작용으로 고유의 풍미를 가지게 되며 비교적 숙성 기간이 길고(신동화 1997), 메주에 번식한 세균류의 작용으로 제품에 이취가 생성되기도 한다(최진영 2000). 또 개량식 고추장과는 달리 메주를 부우는 과정에서 많은 종류의 세균이나 곰팡이체가 작용하여 고추장 숙성과정에서 이들 미생물이 분비하는 효소작용에 의하여 원료성분이 분해되어 각종 맛 성분이 형성된다(신동화 1996).

즉 당 성분에 의한 단맛과 단백질 성분이 분해되어 생성되는 구수한 맛이 재래 고추장의 고유한 맛을 이루어 이와 함께 메주에 함유된 미생물의 대사산물로 유기산, 항산, 알코올 등이 형성되어 감각적 기호성을 향상시키므로서 단일 코지나 효소제를 이용한 개량식 고추장과는 구별된다.

현재 전통적인 방법에 의한 재래식 고추장은 전라도 지방을 비롯해서 각 지역, 각
가정마다 원료 및 담금 방법을 달리하여 다양한 특성을 나타낸다(조원옥 1981). 반면
개량식은 주로 국균의 효소작용과 효모의 발효작용에 의하여 슬관을 생성하며, 숙성
기간이 짧다(이택수 1979).

고추장 제조시 관여하는 미생물은 주원료가 단백질과 전분질이므로 1차적으로 이에
관여하는 미생물은 프로테아제와 아밀라제를 많이 분비하는 것들이며 Table 2과 같
다. 전통적인 재배 고추장은 뮤코속(Mucor), 리조퍼스속(Rhizopus), 아스퍼질러스속
(Aspergillus) 등의 야생 곰팡이와 고초균(Bacillus subtilis) 등의 야생 세균이 발효에
관여하는 반면에, 코지 고추장은 아스퍼질러스 오리제(Aspergillus oryzae)의 순수 배
양을 이용하여 만든다(김귀영 외 2008).

고추장은 재료의 혼합비율과 숙성조건에 맛을 좌우한다. 고추장 기본 맛은 매운맛, 단맛, 짜맛, 새콤한 맛, 감칠맛으로 구성되어 있다. 고추에서 오는 매운맛은 식은간장
에 효과가 있으며 탄수화물의 가수분해에 의해서 생기는 단맛, 콩단백에서 오는 아미
노산의 감칠맛, 소금의 짜맛과 발효에 의해 생성되는 각종 유기산 및 알코올 성분으로
만들어진 에스테르의 복 썩는 맛과 항기가 잘 어우러져 조화를 이루는 식품이다. 이런
고추장의 종류에는 Table 4와 같은 것이 있으며, 대표적 고추장의 종류 및 제조 방법
은 Table 3과 같다.
미생물	관련 미생물	특 징
곰팡이 | *Aspergillus oryzae* | 코끼 농장으로 이용한다. 야말라체, 프로테아세의 성장력이 강한 균주이다.
세균 | *Bacillus subtilis* | 야말라체, 프로테아세를 생성하는 균주이다.

* 출처: 김귀영 외 2008*
4) 고추장의 선행연구

Table 5. Previous studies on Kochujang.

연구자	제목	내용
함승식 외 (2008)	해양 심층수면 및 다시마 분말 청가 고추장의 품질특성	고추장은 소금 대신 해양 심층수면과 콜레스테롤 수치와 함양효과가 있는 다시마를 청가하여 제조한 고추장의 품질특성 실험결과 일반 고추장과 비교시 칼슘의 더 높았으며, 나트륨 함량은 높았고, 아미노산 함량은 높았다. 또 불포화지방산인 oleic acid가 75.3%로 해양 심층수 고추장에서 높은 값을 나타났다.
박우표 외 (2007)	매실분말 및 농축액을 청가한 고추장의 숙성 중 품질변화	매실 강가 고추장은 매실분말과 매실농축액을 각각 청가하여 제조한 고추장의 품질변화 실험결과 숙성 기간이 경과함에 따라 모든 시험구의 수분 함량이 증가하였으며, pH는 낮아졌고, 색도의 L, a, b 값이 감소함을 알 수 있었다.
유미영 외 (2005)	고추장의 숙성과정 중 품질특성	매원액을 청가 제조한 고추장을 30℃에서 2개월간 숙성시 키면서 품질특성을 비교한 결과 숙성이 완성에 따라 수분함량이 증가하였으며, 조단백질함량은 감소하였다. 또한 pH는 감소하였으며, 산도는 증가하였다. 고추장의 농, 색도, 항기, 진반적인 기호도는 매원액 6% 청가된 가장 좋았다.
오지영 외 (2005)	양고추장이 분말을 청가한 전통 고추장의 품질특성	고추장이 청가 고추장에서 식성 청가량을 낮추기 위해 고추장이 분말을 청가한 전통 고추장의 발효, 숙성 실험결과 β-amylase 증가 및 산성 protease 활성은 발효·숙성기간 중 진반적으로 대조구보다 높게 나타났으며, β-amylase 활성은 식성의 농도가 높을수록 높게 나타났다.
감윤성 외 (2005)	삼국 청가 고추장에서 삼국을 청가한 고추장의 품질특성	삼국 청가 고추장에서 삼국을 청가한 고추장의 품질특성을 실험결과 수분활동도는 숙성 120일까지 서서히 감소하였으며, pH도 감소하였다. 아미노태실소 함량은 당근 초기에 높은 값을 나타냈으며, 고추장의 색도는 숙성기간이 증가함에 따라 L, a, b 값 모두 감소하였다.
연구자	제목	내용
-------------	--	---
권동진 (2004)	동충하초를 이용한 고추장의 품질개선	항상, 장장호르가 있는 동충하초를 청가한 고추장의 품질 특성 조사결과 protease의 활성은 우수한 반면 amylase의 역가는 낮은 것으로 나타났으며, 장국균을 이용한 코지와 동충하초를 이용한 코지는 7:3의 비율로 혼합하여 숙성시킨 고추장의 기호도가 높게 평가되었다.
안미란 외 (2003)	비섯을 청가한 전통고추장의 품질 특성	비섯을 청가한 고추장의 저장 중 수분함량은 발효 120일까지 시리의 증가하였고, 고추장의 폴에 중요한 영향을 주는 알코 함량도 증가하였다. 또 고추장의 구수한 맛에 영향을 주는 아미노산성 질소 함량도 발효과정중 지속적으로 증가하였다.
권영미 외 (2002)	다시마와 키토산을 청가한 전통고추장의 품질특성에 관한 연구	다시마와 키토산을 청가한 전통고추장의 품질향상을 위해 다시마와 키토산을 고추장에 청가 후 20℃에서 24주간 숙성시키며 실험한 결과, 고추장의 α와 β-amylase는 각각 다시마 2%, 키토산 0.1% 청가군에서 높은 활성을 보였으며, 고추장의 맛과 색, 전반적인 기호도는 키토산 0.1% 청가가 가장 높게 나타났다.
김영수 외 (2002)	키위첨가 전통고추장의 품질 특성	키위 청가 고추장에서 키위를 청가하여 제조한 고추장의 관능특성에서 키위 청가가 고추장의 색과 향에 있어서 유의적으로 좋은 영향을 끼쳤으며, 키위 9% 청가군이 종합적 기호도가 높게 나타났다.
정용진 외 (2000)	사과·감 과실을 청가한 고추장의 수분 함량 수분활성도는 수분활성도와 유관성의 관점에서 사과고추장이 감고추장보다 수분활성도가 높았 다. 환경의 함량은 증가하였고, 유기산으로 citric acid, malic acid, lactic acid, oxalic acid 가 검출되었음을 알 수 있었다.	
연구자 | 제목 | 내용
--- | --- | ---
신동화 외 (2000) | 양 고추냉이와 거자 분말을 첨가한 고추장의 발효특성 | 고추냉이와 거자분말 첨가 고추장은 고추냉이와 거자분말을 첨가하여 제조한 고추장을 25℃에서 발효시켜 실험한 결과 암산으로 첨가한 고추장의 증식이 적게 되어 발효가 진행되지 않았으며, 아미노산성 질소는 발효가 진행되면서 계속하여 증가했음을 알 수 있었다.

호박 고추장의 숙성 중 주요 성분 변화에 관한 연구

호박 첨가 고추장의 숙성시 품질 변화는 수분 함량이 전반적으로 감소하였고, pH도 감소하였다. 호박 첨가에 의해 고추장의 pH는 낮아지고, 적정 산도는 높아지는 것으로 나타났는데, 이는 호박 중의 유기산에 기인되는 것으로 나타났다.

홍삼 첨가에 따른 고추장의 이화학적 특성

홍삼 첨가 고추장은 대조고추장에 비해 환원당 함량이 높았으며, 홍삼첨가량이 증가할수록 아미노산성 질소 함량이 높아지는 경향을 보였다. 색도 L, a, b 값은 숙성 전반에 걸쳐 대조고추장보다 약간 높게 분석되었다.

* 출처 : 논자 재구성
III. 실험재료 및 방법

1. 실험재료 및 기기

1) 실험재료

본 연구에 사용한 고추장은 해찬들 태양초 고추장으로 서울 동대문구 소재 마트에서 2009년 5월 일괄 구입하여 사용하였고, 고수파우더는 일산 허브마을에서 2009년 4월 재배하여 동결건조 한 제품을 일괄 구입하여 사용하였으며, 생고수도 같은 곳에서 구입하여 사용하였다.

활용식품의 관능검사를 위해 사용한 돈육(호주산)과 떡볶이(송화식품)는 동대문구 회기동 (주)진로마트에서 일괄 구입하였다.

2) 실험기구

고수 파우더의 균질화를 위해 체은 청계상공사의 20mesh 체를 사용하였고, 고수를 분쇄하는데 사용한 분쇄기는 후드브랜드(주) 대성아트론을 사용하였다.

수분측정은 할로겐방식 수분분석기(Moisture Analyzer, MB-45, Ohaus, Switzerland), 색도는 측색 색차계(JC 801, Color Tecno System Co. LTD, Japan)를 사용하였다. pH는 pH meter(TOA HM-7E, TOA Electronic Ltd, Japan)를 사용하여 측정하였고, 염도는 salinity meter(Model TM-30, 0-30%, TAKEMURA, Japan)로 측정하였다. 점도의 측정은 점도계(Viscometer, DV-II+ Brookfield, USA)를 이용하여 측정하였다.
2. 실험방법

1) 시료의 제조

고수 파우더는 시판제품을 구입하여 20 mesh체에 넣어 고가정화한 후 polyethylene bag으로 2번 포장하여 냉동고에서 보관하여 시료로 사용하였고, 생 고수는 3회 세척하여 수분을 제거한 후 믹서기로 꾸며 갈아 이과기에 거른 다음 원액만을 취하여 시료로 사용하였다.

2) 고수첨가 고추장의 제조

고수를 첨가한 고추장의 적절한 재료 배합비를 얻기 위하여 윤숙자 (2003)의 고추장 제조법을 참고하여 여러 번의 예비실험을 한 결과 고수를 첨가한 고추장의 재료 배합비는 Table 6과 같다.

고수파우더 첨가 고추장은 예비실험에서 8%이상 첨가시 고수 특유의 향과 쓴맛이 강하여 고추장 고유의 풍미를 잃어트리기로부터 얇은 재료 배합비는 0%, 1%, 3%, 5%, 7%이다.

생고수 원액의 형태로 첨가한 고추장은 예비실험에서 1%이하를 첨가하여 제조하여 본 결과 고수의 맛이나 향이 미미하여 첨가율을 0%, 1%, 2%, 3%, 4%로 하였다.
Table 6. **Formulas for preparation of Kochujang added with various amount of coriander.**

Sample Label	Ingredients (g)		
	amount	Coriander Powder	Hot pepper paste
control	0	CP1 1	99
		CP3 3	97
		CP5 5	95
		CP7 7	93
control	0	CJ1 1	99
		CJ2 2	98
		CJ3 3	97
		CJ4 4	96

Table 6: Formulas for preparation of Kochujang added with various amount of coriander.
Fig 1. Procedures for preparation of Kochujang added with various amount of coriander.
3) 고수 첨가 고추장을 이용한 제육 볶음과 떡볶이의 제조

고수 고추장을 첨가한 제육볶음과 떡볶이의 적절한 재료 배합비를 얻기 위하여 제육볶음의 표준 배합비는 최수근(2005), 삼성출판사(2007), 김민희(2007)에서 떡볶이는 김지현(2009), 김갑수 외(2005), 김미경(2008), 김은주(2008), 김민희(2007), 이현우(2001)의 양목표를 종합하여 최적의 첨가 비율을 선택 하였다. 고수 고추장을 첨가한 제육볶음과 떡볶이의 재료 배합비는 Table 7과 같다.
Table 7. Formulas for preparation of *Jeyuk bokkeum* and *Tteokbokki* with coriander Kochujang.

Sample Label	Ingredients	Sample Label	Ingredients								
	amount	Hot pepper paste	Coriander Kochujang Water(ml)	amount	Hot pepper paste	Rice cake(g)	Coriander Kochujang Water(ml)				
coriander Powder	0	100	200	40	100	control	0	100	200	40	100
CPJ1	1	99	200	40	100	CPJ1	1	99	200	40	100
CPJ3	3	97	200	40	100	CPJ3	3	97	200	40	100
CPJ5	5	95	200	40	100	CPJ5	5	95	200	40	100
CPJ7	7	93	200	40	100	CPJ7	7	93	200	40	100

Jeyuk bokkeum:
- coriander Powder:
 - control: 0, 100, 200, 40, 100
 - CJJ1: 1, 99, 200, 40, 100
 - CJJ2: 2, 98, 200, 40, 100
 - CJJ3: 3, 97, 200, 40, 100
 - CJJ4: 4, 96, 200, 40, 100
- coriander a crude liquid:
 - control: 0, 100, 600, 50, 200
 - CPT1: 1, 99, 600, 50, 200
 - CPT3: 3, 97, 600, 50, 200
 - CPT5: 5, 95, 600, 50, 200
 - CPT7: 7, 93, 600, 50, 200

Tteokbokki:
- coriander Powder:
 - control: 0, 100, 600, 50, 200
 - CJT1: 1, 99, 600, 50, 200
 - CJT2: 2, 98, 600, 50, 200
 - CJT3: 3, 97, 600, 50, 200
 - CJT4: 4, 96, 600, 50, 200
- coriander a crude liquid:
 - control: 0, 100, 600, 50, 200
 - CJT1: 1, 99, 600, 50, 200
 - CJT2: 2, 98, 600, 50, 200
 - CJT3: 3, 97, 600, 50, 200
 - CJT4: 4, 96, 600, 50, 200
3. 고수 파우더 원액을 첨가한 고추장의 이화학적 특성

고수파우더와 생고수의 수분측정은 할로겐 방식 수분분석기(Moisture Analyzer, MB-45, Ohaus, Switzland)를 사용하여 측정하여 105℃ 상압 가열 건조법으로 측정하였고, 모든 분석은 5회 반복으로 실현하여 평균값으로 나타내었다.

1) 수분함량측정

고수첨가 고추장의 수분측정은 할로겐 방식 수분분석기(Moisture Analyzer, MB-45, Ohaus, Switzland)를 사용하여 측정하였고, 5회 반복 실현하여 평균값으로 나타내었다.

2) 색도측정

각 시료를 제조한 직후 측색 색차색도계(chroma meter CR-300 Minolta, Japan)로 반사광에 의해 측정 하였다.
측정은 표준으로 표준백색판(L값 93.87, a값 -1.41, b값 1.61)을 이용하여 시료를 요 기(35×10 mm)에 담아 시료대 직경 25 mm에서 측정하였다. 시료 당 3회 측정한 평균 값을 1회의 측정치로 하였으며 시료별로 5회씩 측정 하였다.

3) pH측정

각 시료의 pH는 pH meter(TOA HM-7E, TOA Electronic Ltd, Japan)를 사용하여 측정하였으며, 모든 실험은 5회 반복 측정하여 평균값으로 나타내었다.

4) 염도측정

염도는 시료 10 mL을 취하여 중류수 90 mL에 희석한 후 salinity meter(Model TM-30, 0-30%, TAKEMURA, Japan)를 이용하여 각각의 염도를 측정하였으며, 표시 하였다. 5회 반복으로 실현하여 평균값으로 나타내었다.
5) 점도측정

각 시료를 60℃ water bath에 보관하면서 500 mL 비커에 시료 400 mL씩 3개를 담아 LVF viscometer(DV-Ⅱ)를 이용하여 5회 반복 측정하였다. 사용 조건은 spindle No.2, rpm 20이었다.
4. 관능검사

고수를 첨가한 고추장의 관능검사 방법은 검사 방법에 따라 질문과 수행 절차를 달리 하였으며 묘사분석, 기호도 적도법 등을 사용하였다. 페널들이 사용하는 여러 가지 적도법에 따라서도 서로 다른 인지과정이 적용되어 차이 식별력이 달라질 수 있다. 식품의 품질은 이화학적 평가치 또는 객관적 관점에서 설명하는 경우가 많이 있다. 이것은 많은 식품 관련 연구자들이 식품을 물리적, 화학적 특성의 집합체로 생각하기 때문이다. 그러나 연구실을 떠나 실제 상황에서는 소비자가 식품의 품질을 결정하며, 그 결과에 따라 식품을 구매할 것인지 아닌지를 결정하게 된다. 따라서 제품이 개발되어 시장에 도입되면 이화학적 품질 특성이 제품의 성공이나 실패를 결정하는 것이 아니라 소비자의 관능적 기호도가 이를 결정하게 된다(정종록 2004 ; 김동석 2006).

따라서 본 연구에서는 고수 파우더, 원액의 첨가량을 고수의 품질 특성을 비교하기 위하여 정량적 묘사분석을 실시하였고, 고추장에 적합한 고수의 파우더, 원액의 첨가량을 알아보기 위하여 기호도 검사를 실시한 다음 활용식품으로 제조하였을 때 고수 파우더, 원액의 첨가 고추장의 최적 배합비를 알아 보기 위해 정량적 묘사분석과, 기호도 검사를 실시하였다.

고수 파우더, 원액을 첨가한 고추장의 관능검사 방법은 혼연된 페널들을 대상으로 먼저 시판 고추장의 선택을 위해 시판 제품 5개 선정하여 관능검사 후 가장 선호하는 제품을 선정하였다. 선정한 고추장을 제공하여 묘사분석의 응용 선택을 위해 색, 맛, 잡 등을 검사하고 적합한 응용을 선택할 수 있도록 특성묘사를 조사하고, 선택된 응용을 취합하여 토론을 통해 페널이 전원이 이해 가능한 적절한 응용을 채택하여 관능검사 절차를 작성하였다.

관능검사의 페널은 향후 고수 고추장이 국내 중 중국을 대상으로 한 고추장 개발이므로 경희대학교의 중국 유학생 25명을 선정하여 검사의 특성과 평가방법을 충분히 혼연시킨 후 실시하였다.
1) 정량적 묘사분석

고수를 첨가한 고추장의 정량적 묘사분석은 김병필(2007)의 연구를 참조하여, 색의 강도(color intensity), 윤기(gloss), 고추장 향(Kochujang flavor), 고수의 향(Coriander flavor), 고추장의 맛(Kochujang taste), 고수의 맛(Coriander taste), 부드러운 정도(softness)의 항목을 5점 척도를 이용하여 특성이 강한수록 높은 점수를 주도록 하였다.

2) 기호도 검사

고수를 첨가한 고추장의 기호도 검사는 강태구(2008)의 연구를 참조하여, 외관(appearance), 향(flavor), 맛(taste), 총족한 정도(moisturness), 전반적인 기호도(overall preference)의 항목을 5점 척도를 이용하여 높을수록 높은 점수를 주도록 하였다.

3) 시료의 준비 및 제시

시간은 오후 3시에서 4시 사이에 하고, 지름 5 cm의 흰색의 일회용 접시에 일정하게 담아 난수표를 이용하여 3자리 숫자로 시료번호를 정하여 입 행균용 물과 소형 스푼을 같이 제공하였다. 한 시료가 끝날 때마다 반드시 입을 행균용 물로 행구도록 하고 다음 시료를 평가하도록 하였다(김동석 2006).
5. 통계처리방법

고수를 첨가한 고추장의 모든 실험은 5회 반복하여 결과를 SPSS 12.0을 이용하여 분석하였다. 시료간의 유의성 검정은 one-way ANOVA를 이용하여 분석하였으며, p<0.05 수준에서 Duncan test를 통한 다중범위검정(Duncan’s multiple range test)을 실시하여 각 시료간의 통계적 유의성을 검증하였다.
IV. 결과 및 고찰

1. 고수 첨가 고추장의 수분

고수 첨가 고추장을 만들 때 사용한 주재료의 수분 측정 결과는 Table 8과 같다. 고추장의 수분 함량은 42.89%이었고, 고수 파우더의 수분 함량은 7.81%이었으며, 고수 원액은 93.09%이었다.

Table 8. Moisture Contents of main ingredient

Main ingredient(%)	Kochujang	Coriander Powder	Coriander a crude liquid
Moisture Contents(%)	42.89±1.17	7.81±0.17	93.09±1.52
1) 고수파우더를 첨가한 고추장의 수분함량

고수 파우더의 첨가비율을 달리하여 만든 고추장의 수분측정 결과는 Table 9와 같다.

고수 파우더를 첨가한 고수 고추장의 수분함량은 control가 42.89%로 가장 높았고, CP1 > CP3 > CP5 > CP7 순서로 각각 41.70%, 41.03%, 39.90%, 38.61%로 고수 파우더 첨가량이 증가함수록 고수 고추장의 수분함량이 유의적(p<0.001)인 차이를 보이며 감소하였다. 이것은 고추장의 수분함량보다 고수 파우더의 수분함량 더 낮기 때문에 고수 파우더 첨가량이 증가함수록 고추장의 수분함량도 낮아진 것으로 사료되며, 박 우표 외(2007)의 매실분말 및 농축액을 첨가한 고추장의 숙성 중 품질 변화에서 매실 분말 첨가량이 증가함수록 고추장의 수분함량이 감소했다는 결과와 일치하는 경향이 이었다.

2) 고수 원액을 첨가한 고추장의 수분함량

고수 원액의 첨가비율을 달리하여 만든 고추장의 수분측정 결과는 Table 9와 같다.

고수 원액을 첨가한 고추장의 수분함량은 CJ4 4.0이 44.69%로 가장 높게 나타났으며, 그 다음은 CJ3 3.0이 43.43%였다. 고수 원액의 첨가량이 많아 질수록 고추장의 수분함량이 유의적으로 높았으며, 이는 보통 93.09%의 수분함량을 갖는 고수 원액을 고추장에 첨가함으로 인해 고수 원액의 첨가량이 증가함수록 고추장의 수분함량도 증가한 것으로 사료된다. 이는 정용진 외(2000)의 사과·감드 과실을 첨가한 고추장의 숙성 중 성분 변화에서 사과·감드 과실의 첨가량이 증가함수록 고추장의 수분함량이 증가했다는 결과와 일치한다.

전체적으로 고수 원액을 첨가한 고추장이 고수 파우더를 첨가한 고추장보다 높은 수분함량을 보였으며, CJ4 4.0이 44.69%로 가장 높았고, CP7 3.861로 가장 높았다. 고수 파우더 첨가군은 첨가량이 증가함수록 고추장의 수분 함량이 유의적(p<0.001)으로 낮아지는 경향을 보였고, 고수 원액 첨가군은 첨가량이 증가함수록 고추장의 수분 함량이 유의적(p<0.01)으로 높아지는 경향을 보였다.
Table 9. Moisture Contents of Kochujang added with various amount of coriander.

Sample	control	CP1	CP3	CP5	CP7	F-value
Coriander Powder						
	42.89±1.17^a	41.70±0.64^b	41.03±0.34^b	39.90±0.14^c	38.61±0.18^d	20.84***
Sample						
Coriander crude liquid						
	42.89±1.17^b	41.45±0.29^b	42.50±0.46^b	43.43±0.23^b	44.69±0.58^a	10.40**

Mean±S.D. **P<0.01 ***P<0.001
^{abcd}Means in a row by different superscripts are significantly different at 5% significance level by Duncan’s multiple range test.
* Legends are refer in table 6
2. 고수 첨가 고추장의 색도

고수 파우더와 원액의 첨가비율을 달리하여 만든 고추장의 색도측정 결과는 Table 10과 같다.

1) 고수 파우더를 첨가한 고추장의 색도

고수 파우더를 첨가한 고추장의 명도(\(L\)값:lightness)는 모두 유의적\((p<0.05)\)인 차이를 보였다. 고수 파우더가 가장 많이 첨가된 CP7의 명도가 20.88으로 가장 높은 값을 보였고, 고수 파우더의 첨가량이 적어질수록 명도가 낮아졌으며, 대조군의 control이 19.68로 가장 낮은 명도 값을 보였다.

적색도\((a\)값:redness\)는 모두 유의적\((p<0.01)\)인 차이를 보였다. CP1가 24.40, GP7이 19.99로 고수 파우더 첨가량이 증가할수록 적색도가 감소하였는데, 이는 고수파우더의 첨가가 증가함에 녹색이 증가하여 적색도가 감소한 것으로 사료된다. 권영미 외(2002)의 다시마와 키토산을 첨가한 전통고추장의 품질 특성에 관한 연구에서 다시마와 키토산을 첨가 비율이 증가할수록 적색도가 감소했다는 연구결과와 일치하는 경향을 보였다.

황색도\((b\)값:yellowness\)는 CP1, CP3, CP5, CP7 모든 군에서 대조군과 비교 시 고수파우더 첨가비율이 증가하여도 시료간에 유의적인 차이가 없었다.

고수파우더 첨가량이 증가할수록 명도는 증가하여 고추장이 밝아지는 경향을 보였고, 적색도를 나타내는 \(a\)값은 감소하였으며, 황색도를 나타내는 \(b\)값은 우의적 차이가 없었다.
2) 고수 원액을 첨가한 고추장의 색도

고수 원액을 첨가한 고추장의 명도는 모두 유의적(p<0.001)한 차이를 보였다. 고수 원액이 가장 많이 첨가된 CJ4의 명도가 17.73로 가장 낮은 값을 보였다. 실험군중 명도가 가장 밝은 것은 19.50으로 CJ1가 가장 높은 값을 나타내었고, 고수 원액을 첨가하지 않은 대조군이보다 높은 값인 19.68을 나타내었다.

적색도는 고수 원액 첨가량이 증가함수록 감소하였으며, CJ1이 21.42로 가장 높았다. 그 다음으로는 CJ2 > CJ3 > CJ4 순서로 각각 19.54, 18.69, 18.24로 고수 원액의 첨가량이 증가함수록 고추장의 적색도도 유의적(p<0.001)한 차이를 보이며 감소하였으며, 고수 원액을 첨가하지 않는 대조군가 가장 높은 a값을 나타내었다.

황색도는 CJ1, CJ2, CJ3, CJ4 모두 군에서 고수 원액의 첨가비율이 증가하여도, 모든 시료간에는 유의적인 차이가 없었다. 이는 고수 파우더를 첨가한 고추장의 황색도의 결과와 같았다.

전체적으로 볼 때 고수 파우더 첨가량이 증가함수록 명도는 높아졌으며, 고수 원액의 첨가량이 증가함수록 명도는 낮아져 고수 파우더 첨가 고추장이 고수 원액 첨가 고추장보다 높은 명도 값을 나타냈다. 적색도는 고수 파우더, 고수 원액 첨가량이 증가함수록 낮아졌다. 첨가량이 증가함수록 두 실험군 모두에서 유의적(p<0.01, p<0.001)한 차이를 보이 고수 원액 첨가 고추장이 더 낮은 값을 보이며 감소하였음을 알 수 있다. 적색도는 대조군 비교시 고수 파우더, 고수 원액 첨가에 따라 유의적인 변화가 없었다.
Table 10. Color value of Kochujang added with various amount of coriander.

L	Coriander Powder	control	CP1	CP3	CP5	CP7	F-value
		19.68±0.21^c	20.04±0.24^b	20.60±0.12^a	20.73±0.12^a	20.88±0.71^a	6.01[*]
	Coriander a crude liquid	control	CJ1	CJ2	CJ3	CJ4	F-value
		19.68±0.21^a	19.50±0.11^a	19.00±0.37^b	18.22±0.18^c	17.73±0.33^d	32.06^{***}
a	Coriander Powder	control	CP1	CP3	CP5	CP7	F-value
		22.70±0.27^b	24.40±0.45^a	22.92±0.32^b	21.69±0.26^a	19.99±1.67^c	12.42^{**}
	Coriander a crude liquid	control	CJ1	CJ2	CJ3	CJ4	F-value
		22.70±0.27^a	21.42±0.42^b	19.54±0.49^b	18.69±0.23^c	18.24±0.25^d	89.28^{***}
b	Coriander Powder	control	CP1	CP3	CP5	CP7	F-value
		32.84±1.77^a	31.76±1.81^a	31.93±3.17^b	31.15±5.93^c	35.72±0.49^a	0.94<sup:NS</sup>
	Coriander a crude liquid	control	CJ1	CJ2	CJ3	CJ4	F-value
		32.85±1.77^a	30.83±1.23^b	30.86±1.16^b	29.75±1.91^a	29.92±0.95^c	2.17<sup:NS</sup>

Mean±S.D. *p<0.05 **p<0.01 ***p<0.001 N.S. - Not Significance
^{a,b,c,d}Means in the row by different superscripts are significantly different at 5% significance level by Duncan’s multiple range test.

* Legends are refer in table 6
3. 고수 첨가 고추장의 pH

고수 파우더와 고수 원액의 첨가비율을 달리하여 만든 고추장의 pH 측정결과는 다음 Table 11과 같다.

고수 파우더를 첨가한 고추장의 pH는 CP7이 5.43으로 가장 높았고, CP1 > CP3 > CP5 순서로 각각 5.83, 5.63, 5.56로 고수 파우더 첨가량이 증가함수록 고추장의 pH가 유의적(p<0.001)인 차이를 보이며 감소하였다.

고수 원액을 첨가한 고추장의 pH는 CJ4 4.0이 5.84로 가장 높았고, CJ1 < CJ2 < CJ3 순서로 각각 5.56, 5.62, 5.66로 고수 원액 첨가량이 증가함수록 고추장의 pH가 유의적(p<0.001)인 차이를 보였다.

Table 11. pH content of Kochujang added with various amount of coriander.

Coriander Powder	control	CP1	CP3	CP5	CP7	F-value
	5.53±0.17^a	5.83±0.03^a	5.63±0.03^b	5.56±0.49^b	5.43±0.25^c	67.11***

Coriander a crude liquid	control	CJ1	CJ2	CJ3	CJ4	F-value
	5.53±0.06^a	5.56±0.04^a	5.62±0.01^b	5.66±0.03^b	5.84±0.05^d	45.79***

Mean±S.D. ***p<0.001
^{abc}Means in a row by different superscripts are significantly different at 5% significance level by Duncan's multiple range test.

* Legends are refer in table 6
4. 고수 첨가 고추장의 염도

고수 고추가루와 고수 원액의 첨가비율을 달리하여 만든 고추장의 염도 측정결과는 다음 Table 12와 같다.

고수 고추가루를 첨가한 고추장의 염도는 CP1, CP3가 0.20%로 가장 높은 값을 나타냈고, CP5, CP7이 0.10%로 가장 낮은 값으로 유의적(p<0.001)인 차이를 나타냈다. 고수 원액을 첨가한 고추장의 염도는 CJ4가 0.30%로 가장 높은 값을 나타냈고, CJ1이 0.20%로 가장 낮은 값으로 유의적(p<0.01)인 차이를 나타냈다.

Table 12. Salinity content of Kochujang added with various amount of Coriander.

Coriander Powder(%)	control	CP1	CP3	CP5	CP7	F-value
	0.23±0.06*	0.20±0.00*	0.20±0.00*	0.14±0.00b	0.10±0.00b	17.50***
Coriander crude liquid(%)	control	CJ1	CJ2	CJ3	CJ4	F-value
	0.23±0.06b	0.20±0.00b	0.21±0.01b	0.24±0.01b	0.30±0.00a	6.96**

Mean±S.D. **p<0.01 ***p<0.001

abcd Means in a row by different superscripts are significantly different at 5% significance level by Duncan’s multiple range test.

* Legends are refer in table 6
5. 고수 첨가 고추장의 점도

고수 파우더와 고수 원액의 첨가 비율을 달리하여 만든 고추장의 점도 측정결과는 Table 13과 같다.

고수 파우더를 첨가한 고추장의 점도는 모두 유의적(p<0.001)인 차이를 보였다. 고수 파우더가 가장 많이 첨가된 CP7의 점도가 2031.79cP으로 가장 높은 값을 보였고, 고수 파우더의 첨가량이 증가함수록 점도가 높아 졌으며, 대조군인 control의 점도가 407.90cP으로 가장 낮은 값을 보였다. 이는 Kwon 외(2002)의 연구 결과와 유사한 것으로 다시한 첨가구에서 숙성기간이 경과함에 따라 점성이 증가하던 Shin 외(1999)는 이것을 고추장의 점성이 숙성과정 중 분해산물에 의한 변화라기보다는 원료 성분의 구조적 차이에 의한 것으로 추정하였다.

고수 원액을 첨가한 고추장의 점도는 CJ4가 295.90cP으로 가장 높았고, CJ1 > CJ2 > CJ3 순서로 각각 406.57cP, 353.90cP, 313.97cP으로 고수 원액 첨가량이 증가함수록 고추장의 점도는 감소하였다. 가장 높은 값을 보인 것은 대조군인 control 으로 407.90cP이었으며, 모든 시료는 유의적(p<0.01)인 차이를 보였다.

Table 13. Viscosity of Kochujang added with various amount of Coriander.

Coriander Powder (cP)	control	CP1	CP3	CP5	CP7	F-value
CP1	407.90±	865.07±	1192.56±	1849.94±	2031.79±	20.85***
CP3	21.63*	13.41*	1565.20*	142.20*	1733.05*	
CP5						
CP7						
Coriander crude liquid (cP)	control	CJ1	CJ2	CJ3	CJ4	F-value
CJ1	407.90±	406.57±	353.90±	313.97±	295.90±	11.24*
CJ2	21.63*	30.55*	27.50*	21.06*	52.78*	
CJ3						
CJ4						

Mean±S.D. **p<0.01 ***p<0.001

a,b,c,dMeans in a row by different superscripts are significantly different at 5% significance level by Duncan’s multiple range test.

* Legends are refer in table 6
6. 관능특성

1) 정량적 묘사분석

(1) 고수 파우더 첨가 고추장

고수 파우더를 첨가한 고추장의 정량적 묘사분석 결과는 Table 14와 같으며, QDA profile은 Fig 2와 같다.

고수 파우더 첨가 고추장의 색의 강도(color intensity)가 가장 강하게 평가된 것은 고수 파우더를 7%를 첨가한 CP7(4.04)이었고, 그 다음은 CP5(3.64) > CP3(3.36) > CP1(2.64) 순서였다. 색이 가장 약한 것은 대조군인 control(2.20)로 고수 파우더 첨가량이 증가할수록 기계적인 실험 색도 측정 결과 명도 값이 높아져 고추장의 색이 강하게 보이는 것으로 가인하는 것으로 사료되며, 모든 시료들 간에 유의적(p<0.001)인 차이가 있었다.

윤기(gloss)는 대조군인 control(4.24)가 가장 강하다고 평가 되었으며, 모든 시료는 유의적(p<0.001)인 차이가 있었다. 기계적 실험시 수분함량이 가장 적게 측정된 CP7이 다른 실험군에 비해 윤기가 가장 낮게 평가되었으며, 수분함량이 적을수록 고추장의 윤기가 약하다고 평가되었다.

고추장의 향(kochujang flavor)은 모든 시료는 유의적(p<0.001)인 차이를 보였으며, 고수 파우더 7%를 첨가한 CP7(1.92)가 가장 약한 것으로 평가 되었고, 그 다음은 CP1(3.20) > CP3(2.72) > CP5(2.40) 순서로 고수 파우더 첨가량이 적을수록 고추장의 향은 약하게 평가되었다.

고수의 향(coriander flavor)은 실험군인 CP7(3.72)가 가장 강하다고 평가되었고, CP1(2.20)가 가장 약하다고 평가되어 고수 파우더의 첨가량이 적을수록 고추장의 향이 약하게 평가되었다. 시료들 간에 유의적(p<0.001)인 차이가 있었다.

고수의 맛(coriander taste)은 시료간의 유의적(p<0.001)인 차이를 보이며 CP1(3.32)가 가장 강한 것으로 평가 되었고, CP3(2.96) > CP5(2.04) > CP7(1.80) 순서로 고수 파우더의 첨가량이 증가할수록 고추장의 맛은 약하게 평가 되었으며, 고추장의 향과 비슷한 결과였다.

고수의 맛(kochujang taste)은 시료간의 고수의 향과 마찬가지로 시료간의 유의적
(p<0.001)인 차이를 보이며 CP7(3.92)가 가장 강한 것으로 평가 되었으며, CP1(3.00)이 가장 약한 것으로 평가 되었다.

부드러운 정도(softness)는 대조군인 control(1.84)로 가장 부드럽다고 평가 되었으며, CP7 (4.36)으로 가장 강하다고 평가되어 유의적(p<0.001)인 차이가 이었다. 이는 고수 과우더의 수분 함량에 기인한 것으로 사료된다.
Table 14. QDA result of Kochujang added with various amount of coriander Powder.

Descriptors	Sample (%)	F-value				
	control	CP1	CP3	CP5	CP7	
color intensity	2.20±1.23c	2.64±0.76c	3.36±0.64b	3.64±0.99b	4.04±1.33a	13.28***
gloss	4.24±0.83c	3.80±0.71b	2.68±0.56c	2.00±0.71d	1.44±0.92c	61.32***
kochujang flavor	3.72±1.31c	3.20±1.19ab	2.72±0.61bc	2.40±0.96d	1.92±1.19c	10.44***
coriander flavor	1.64±0.99d	2.20±0.96d	2.56±1.00c	2.96±1.17c	3.72±1.30c	12.85***
kochujang taste	3.92±1.08c	3.32±1.07b	2.96±0.73b	2.04±0.73c	1.80±0.87d	23.65***
coriander taste	1.52±0.82c	3.00±1.26c	3.32±0.90bc	3.48±1.05c	3.92±1.15c	19.12***
softness	1.84±0.90d	2.52±0.96c	2.88±0.78b	3.68±0.80d	4.36±0.81c	33.34***

Mean±S.D. ***p<0.001
abcde Means in a row by different superscripts are significantly different at 5% significance level by Duncan’s multiple range test.
* Legends are refer in table 6
Fig 2. QDA profile of Kochujang added with various amount of coriander Powder.

* Legends are refer in table 6
(2) 고수 원액 첨가 고추장

고수 원액을 첨가한 고추장의 정량적 묘사분석 결과는 Table 15와 같으며, QDA profile은 Fig 3과 같다.

고수 원액 첨가 고추장의 색의 강도(kochujang color)가 가장 강하게 평가된 것은 고수 원액을 4%를 첨가한 CJ4(3.42)이었고, 그 다음은 CJ3(3.96) > CJ2(3.83) > CJ1(2.50) 순서였으며, 모든 시료간에 유의적(p<0.001)인 차이가 있었다.

윤기(gloss)는 대조군과 실험군 CJ4(3.42)가 가장 강하다고 평가 되었으나, 각각의 시료간의 유의적 차이는 없었다.

고추장의 향(kochujang flavor)은 고수 원액 7%를 첨가한 CJ4(2.75)가 가장 약하다고 평가 되었으나 각각의 시료간의 유의적 차이는 없었다.

고수의 향(coriander flavor)은 시료간의 유의적(p<0.001)인 차이를 보이며 CJ4(3.04)가 가장 강한 것으로 평가 되었고, control(2.46) < CJ2(2.96) < CJ3(2.92) 순서로 고수 원액의 첨가량이 증가할수록 고추장의 향은 약하게 평가 되었다.

고추장의 맞(kochujang taste)은 고수 원액의 첨가량이 증가할수록 고추장의 맞은 감소하는 결과를 나타내었지만 유의적 차이는 없었다. 이는 고추장의 향과 같은 결과는 나타내었다.

고수의 맞(coriander taste)은 시료간의 고수의 향과 마찬가지로 시료간의 유의적(p<0.001)인 차이가 보이며, CJ4(4.29)가 가장 강한 것으로 평가 되었으며, CJ1(2.75)가 가장 약한 것으로 평가 되었다

부드러운 정도(softness)는 시료간의 유의적(p<0.001)인 차이를 보이며, CJ4(3.07)가 가장 부드럽다고 평가 되었다. 이는 고수 원액의 수분함량에 기인한 것으로 사료된다.
Table 15. QDA result of Kochujang added with various amount of coriander a crude liquid.

Descriptors	Sample (%)					F-value
	control	CJ1	CJ2	CJ3	CJ4	
color intensity	1.96±0.69^a	2.50±0.83^b	3.83±0.82^c	3.96±0.86^d	3.42±1.06^e	24.59***
gloss	3.42±1.14^a	3.13±1.04^b	2.88±0.90^c	3.29±1.30^d	3.42±1.18^e	1.91NS
kochujang flavor	3.29±1.27^a	3.04±1.30^b	2.75±0.74^c	3.17±1.01^d	2.75±1.39^e	1.96NS
coriander flavor	1.63±1.01^a	2.46±0.88^b	2.92±1.06^c	2.92±0.92^d	2.94±1.43^e	7.02***
kochujang taste	3.33±1.40^a	3.08±1.14^b	2.96±0.96^c	3.04±1.04^d	3.36±1.54^e	0.47NS
coriander taste	1.79±1.29^a	2.75±1.11^b	3.25±0.99^c	3.25±1.15^d	4.29±1.23^e	14.72***
softness	2.75±1.15^a	2.63±0.82^b	3.08±0.88^c	3.04±1.12^d	2.58±1.53^e	1.02NS

Mean±S.D. ***p<0.001 N.S. = Not Signification
^{abcde}Means in a row by different superscripts are significantly different at 5% significance level by Duncan's multiple range test.

* Legends are refer in table 6
Fig 3. QDA profile of Kochujang added with various amount of coriander a crude liquid.

* Legends are refer in table 6
2) 기호도 검사

(1) 고수파우더 첨가 고추장

고수파우더를 첨가한 고추장의 기호도 분석 결과는 Table 16과 같다.

외관(appearance)에서 가장 높은 기호도를 보인 것은 CP1으로 3.92이었고, CP7은 1.96로 고수 파우더의 첨가량이 증가 할수록 기호도는 낮아졌으며 모든 시료들 간에 유의적(p<0.001)한 차이가 있었다.

향(flavor)에서 가장 높은 기호도를 보인 것은 CP3으로 3.64이었고, 그 다음은 CP1(3.56)이었으며 CP5(2.96)와 CP7(3.08)은 비슷한 기호도를 보이며 모든 시료들 간에 유의적(p<0.05)한 차이를 보였다.

맛(taste)에 대한 기호도는 CP3이 3.68로 유의적(p<0.01)으로 가장 높은 기호도를 보였으며, 다음으로 CP1(3.36) > CP5(2.92) > CP7(2.48) 순으로 평가되었다.

고수파우더를 첨가한 고추장의 총촉한 정도(moistness)에 대한 기호도는 CP1이 3.92로 유의적(p<0.001)으로 가장 높은 기호도를 나타냈으며, 고수 파우더의 첨가량이 증가할수록 부드러운 정도에 대한 기호도가 낮아지는 것으로 나타났다.

종합적인 기호도(overall quality)에 있어서 CP3이 4.08로 가장 높은 기호도를 나타냈으며, 그 다음이 CP1이 3.44로 평가 되었다. 고수 파우더를 5%, 7%를 첨가한 CP5(2.48), CP7(2.28)은 고수 파우더의 첨가량이 늘어나면서 기호도가 낮아지는 것을 알 수 있다. 이는 고추장에 고수 파우더를 3% 첨가하는 바람직하다고 볼 수 있다.
Table 16. Acceptance of Kochujang added with various amount of coriander Powder.

characteristics	Sample (%)	F-value				
	control	CP1	CP3	CP5	CP7	
appearance	4.00±0.82a	3.92±0.70a	3.48±0.82b	2.40±0.71bc	1.96±1.10c	30.01***
flavor	3.40±0.87ab	3.56±0.77a	3.64±0.81a	2.96±0.84b	3.08±1.29b	2.53*
taste	3.52±1.05ab	3.36±1.08b	3.68±0.95a	2.92±0.95bc	2.48±1.26c	5.28**
moistness	3.92±0.81a	3.92±0.86a	3.32±0.75b	2.36±0.81c	2.12±0.83c	27.33***
overall quality	3.76±0.72ab	3.44±1.00b	4.08±0.81a	2.48±0.92c	2.28±1.10c	18.49***

Mean±S.D. *p<0.05 **p<0.01 ***p<0.001
abcd Means in a row by different superscripts are significantly different at 5% significance level by Duncan’s multiple range test.
* Legends are refer in table 6
(2) 고수 원액 첨가 고추장

고수 원액을 첨가한 고추장의 기호도 분석 결과는 Table 17과 같다.
고수 원액을 첨가한 고추장의 외관(appearance)에 있어 기호도가 가장 높은 것은 CJ2가 3.56으로 나왔으나, 모든 시료간의 유의적 차이는 없었다.
향(flavor) 역시 CJ2가 3.38로 높은 기호도를 나타냈으나, 모든 시료간에 유의적 차이는 없었다.
맛(taste)은 외관과 향과 달리 유의적(p<0.001)으로 큰 차이를 나타냈다. 가장 높은 기호도를 나타낸 것은 CJ1이 3.63으로 평가 되었으며, 다음으로 CJ2(3.50) > CJ3(3.75) > CJ4(2.21) 순으로 기호도를 나타내었다.
촉촉한 정도(moistness)에서 CJ3이 3.29로 가장 높은 기호도를 보였으나 모든 시료간의 유의적 차이는 없었다.
종합적 기호도(overall quality)에서 모든 시료간에 유의적(p<0.001)인 차이를 보였으며, CJ2가 4.04로 가장 높은 기호도를 나타냈으며, CJ1(3.46) > CJ3(3.00) > CJ4(2.13) 순으로 기호도를 나타내었다. 고수 원액 첨가가 많은수록 높은 기호도를 나타내는 것은 아니며, 고수 원액 2% 첨가가 가장 바람직하다고 본다.
Table 17. Acceptance of Kochujang added with various amount of Coriander a crude liquid.

characteristics	Sample (%)	F-value				
	control	CJ1	CJ2	CJ3	CJ4	
appearance	3.08±1.18^a	3.50±1.10^a	3.56±1.32^a	3.25±0.94^a	3.17±0.96^a	0.64^{NS}
flavor	3.42±0.93^a	3.29±0.86^a	3.38±1.10^a	3.17±0.82^a	2.96±1.23^a	0.82^{NS}
taste	3.04±0.86^b	3.63±0.82^a	3.50±1.10^a	2.75±1.03^{bc}	2.21±1.29^c	7.45^{***}
moistness	2.92±1.10^a	3.21±0.98^a	3.25±0.85^a	3.29±1.23^a	3.08±1.50^a	0.42^{NS}
overall quality	3.21±0.78^b	3.46±0.83^b	4.04±0.86^a	3.00±1.21^b	2.13±1.36^c	10.98^{***}

Mean±S.D. ***p<0.001 N.S. = Not Signification
^{abcd}Means in a row by different superscripts are significantly different at 5% significance level by Duncan’s multiple range test.
* Legends are refer in table 6
7. 활용식품을 이용한 관능점사

1) 정량적 묘사 분석

(1) 고수 파우더 고추장을 첨가한 계육볶음의 정량적 묘사분석

고수 파우더 고추장을 첨가한 계육볶음의 정량적 묘사분석 결과는 Table 18과 같으며, QDA profile은 Fig 4와 같다.

고수 파우더 고추장 첨가 계육볶음의 색(color)이 가장 강하게 평가된 것은 고수 파우더 고추장 7%를 첨가한 CPJ7 7.0(4.44)이었고, 그 다음은 CPJ5 5.0(3.80) > CPJ3 3.0(3.48) > CPJ1 1.0(2.40) 순서였다. 색이 가장 약한 것은 대조군인 control 0(1.96)으로 고수 파우더 고추장의 첨가량이 증가할수록 유의적(p<0.001)인 차이를 보이며 색이 강하다고 평가되었다.

윤기(gloss)는 CPJ1 1.0이 3.88로 가장 강한 것으로 평가되었고, 모든 시료간의 유의적(p<0.001)인 차이가 있었다. 기계적 실험시 수분 함량이 가장 적게 측정된 CPJ7 7.0이 다른 실험군에 비해 윤기가 약하게 평가되어 수분 함량이 적은수록 계육볶음의 윤기가 낮게 평가됨을 알 수 있다.

고추장의 향(kochujang flavor)은 모든 시료간의 유의적(p<0.001)인 차이를 보였으며, CPJ1 1.0이 3.56으로 가장 높게 평가되었다. 다음 순으로 CPJ3 3.0(2.56) > CPJ5 5.0(2.16) > CPJ7 7.0(1.64) 순으로 고수 파우더의 첨가량이 많아질수록 계육볶음의 고추장 향은 적게 나타남을 알 수 있다.

고수의 향(coriander flavor)은 고수 파우더 7% 첨가한 CPJ7가 4.40으로 가장 높게 평가되었으며, 모든 시료간의 유의적(p<0.001)인 차이가 있었다. 고추장의 향과 같이 고수 파우더의 첨가량이 증가할수록 고수의 향은 증가함을 알 수 있다.

고추장의 맛(kochujnag taste)은 대조군인 control 0(3.96)이 가장 강하다고 평가되었고, CPJ7 7.0(1.56)이 가장 약하다고 평가되어 고수 파우더의 첨가량이 많음수록 고추장의 맛은 약하게 평가되었으며, 시료들 간에 유의적(p<0.001)인 차이가 있었다.

고수의 맛(coriander taste)은 고수의 향과 마찬가지로 시료간의 유의적(p<0.001)인 차이를 보이며 고수의 향과 마찬가지로 CPJ7 7.0(4.28)이 가장 높게 평가되어 고수 파우더 첨가량이 증가할수록 계육볶음의 고추장 맛은 감소한다는 것을 알 수 있다.
Table 18. QDA result of Jeyuk bokkeum with Kochujang containing various amount of coriander Powder.

Descriptors	Sample (%)	F-value				
	control	CPJ1	CPJ3	CP5J	CPJ7	
color	1.96±0.84^d	2.40±0.58^e	3.48±0.65^b	3.80±0.82^b	4.44±0.71^a	49.15***
gloss	4.16±0.69^a	3.88±0.67^a	2.56±0.51^b	1.88±5.23^c	1.28±0.46^d	117.07***
kochujang flavor	4.08±0.81[*]	3.56±0.77^b	2.56±0.51^c	2.16±0.55^d	1.64±0.70^e	54.66***
coriander flavor	1.60±0.82^e	2.00±0.71^d	3.04±0.61^c	3.72±0.54^b	4.40±0.76^a	70.20***
kochujang taste	3.96±0.98^{de}	3.56±0.92^{de}	2.72±0.54^{de}	1.92±0.64^{de}	1.56±0.65^{de}	43.92***
coriander taste	1.36±0.49^d	2.64±0.95^{de}	3.40±0.71^b	3.72±0.68^b	4.28±0.61^a	64.22***

Mean±S.D. ***p<0.001
^{abcd}Means in a row by different superscripts are significantly different at 5% significance level by Duncan’s multiple range test.
* Legends are refer in table 7
Fig 4. QDA profile of Jeyuk bokkeum with Kochujang containing various of coriander Powder.
* Legends are refer in table 7
2) 고수 파우더 고추장을 첨가한 떡볶이의 정량적 묘사분석

고수 파우더 고추장을 첨가한 떡볶이의 정량적 묘사분석 결과는 Table 19와 같으며, QDA profile은 Fig 5와 같다.

고수 파우더 고추장을 첨가한 떡볶이의 색(color)은 고수 파우더 7%를 첨가한 고추장 CPT7 7.0(4.16)이 가장 강하게 평가 되었고, CPT1 1.0(2.92) < CPT3 3.0(3.84) < CPT5 5.0(3.96) 순으로 평가 되었다. 이것은 고수 파우더 고추장 첨가 제품을 음과 동일한 결과를 나타냈으며, 고수 파우더 첨가가 많은 고추장의 시료가 색이 강하다고 평가 되었다.

윤기(gloss)는 대조군인 control(4.16)이 가장 가장하다고 평가 되었고, CPT7(1.28)이 가장 약하다고 평가 되었으며, 모든 시료는 유의적(p<0.001)인 차이가 있었다. 고수 파우더 첨가 고추장의 정량적 묘사분석의 관능 결과와 비슷한 결과를 나타냈다.

고추장의 향(kochujang flavor)은 모든 시료간에 유의적(p<0.001)인 차이를 보였으며, 고수 파우더 1%를 첨가한 CPT1(3.56)이 가장 강한 것으로 평가되었고, 그 다음은 CPT3(2.56) > CPT5(2.16) > CPT7(1.64).

고수의 향(coriander flavor)은 모든 시료간에 유의적(p<0.001)인 차이를 보였으며, CPT7(4.40)이 가장 강한 것으로 평가되었고, 그 다음은 CPT1(2.00) < CPT3(3.04) < CPT(3.72) 순서로 평가 되었다.

고추장의 맛(kochujang taste)은 고추장의 향과 마찬가지로 시료간의 유의적 (p<0.001)인 차이를 보이며 대조군인 control(3.96)이 가장 강하다고 평가 되었고, 실험군은 CPT7(1.56)이 가장 약하고, CPT1(3.56)이 가장 강한 것으로 평가 되었다.

고수의 맛(coriander taste)은 모든 시료간의 유의적(P<0.001)인 차이를 보이며 CPT7(4.28)이 고수의 맛의 가장 강하다고 평가 되었으며, 다음 순으로 CPT5(3.72) > CP3(3.44) > CPT1(2.64) 순서로 평가 되었다.
Table 19. QDA result of Tteokbokki with Kochujang containing various amount of coriander Powder.

Descriptors	Sample (%)	F-value				
	control	CPT1	CPT3	CPT5	CPT7	
color	2.16±0.94 \(a\)	2.92±0.76 \(b\)	3.84±0.75 \(a\)	3.96±0.84 \(a\)	4.16±0.75 \(a\)	27.12***
gloss	4.00±0.82 \(a\)	3.24±0.97 \(b\)	2.12±0.60 \(c\)	1.72±0.54 \(d\)	1.28±0.46 \(e\)	63.70***
kochujang flavor	4.04±0.73 \(a\)	3.48±0.77 \(b\)	2.64±0.95 \(c\)	1.92±0.57 \(d\)	1.92±0.70 \(e\)	39.06***
coriander flavor	1.84±0.90 \(d\)	2.84±0.75 \(b\)	3.68±0.69 \(a\)	3.88±0.60 \(ab\)	4.24±0.72 \(a\)	42.54***
kochujang taste	3.88±1.01 \(a\)	3.60±0.58 \(d\)	2.32±0.75 \(b\)	1.92±0.81 \(bc\)	1.76±0.66 \(c\)	39.72***
coriander taste	1.60±0.58 \(d\)	2.80±0.71 \(a\)	3.68±0.90 \(b\)	4.08±0.64 \(ab\)	4.12±0.78 \(a\)	53.45***

Mean±S.D. ***p<0.001

Means in a row by different superscripts are significantly different at 5% significance level by Duncan’s multiple range test.

* Legends are refer in table 7
Fig 5. QDA profile of Tteokbokki with Kochujang containing various of coriander Powder.

* Legends are refer in table 7
3) 고수 원액 고추장을 첨가한 제육볶음의 정량적 묘사분석

고수 원액 고추장을 첨가한 제육볶음의 정량적 묘사분석 결과는 Table 20과 같으며, QDA profile은 Fig 6과 같다.

고추장의 색(kochujang color)이 가장 강하게 평가된 것은 대조군인 control(4.40)이 가장 강하다고 평가 되었고, CJJ1(3.84)이 가장 약하다고 평가 되었다. 다음 순서는 CJJ2(3.80) > CJJ3(3.40) > CJJ4(3.00) 순서 이었고 시료간의 유의적(P<0.01)인 차이가 있었다.

윤기(gloss)는 모든 시료는 유의적(p<0.001)인 차이를 보였으며, CJJ4(3.88)가 가장 강한 것으로 평가 되었으며, 대조군인 control(2.00)이 가장 약하다고 평가 되었다. 고수 원액 고추장의 첨가량이 적을수록 윤기는 약하다고 평가 되었다.

고추장의 향고추장의 향(kochujang flavor)은 모든 시료간에 유의적(p<0.001)인 차이를 보였으며, 대조군인 control(4.38)이 가장 강하다고 평가 되었으며, 실험군에서는 CJJ1(3.76)이 가장 강한 것으로 평가되었고, 그 다음은 CJJ2(3.23) > CJJ3(3.08) > CJJ4(2.04) 순으로 평가 되었다.

고수의 향(coriander flavor)은 모든 시료간에 유의적(p<0.001)인 차이를 보였으며, CJJ4(4.28)가 가장 강한 것으로 평가되었고, 그 다음은 CJJ1(2.20) < CJJ2(3.28) < CJJ4(3.84) 순서로 평가 되었다.

고추장의 맛(kochujang taste)은 고추장의 향과 마찬가지로 시료간의 유의적(p<0.001)인 차이를 보이며 대조군인 JJ0(4.21)이 가장 강하다고 평가 되었고, 실험군은 CJJ4(2.32)가 가장 약하고, CJJ1(3.76)이 가장 강한 것으로 평가 되었다.

고수의 맛(coriander taste)은 모든 시료간의 유의적(P<0.001)인 차이를 보이며 CJJ4(4.28)가 고수의 맛의 가장 강하다고 평가 되었으며, 다음 순으로 CJJ3(3.81) > CJJ2(3.12) > CJJ1(2.00) 순서로 평가 되었다.
Table 20. QDA result of *Jeyuk bokkeum* with Kochujang containing various amount of coriander a crude liquid.

Descriptors	Sample (%)	F-value				
	control	CJJ1	CJJ2	CJJ3	CJJ4	
color	4.04±0.86^a	3.84±0.80^a	3.80±0.89^a	3.72±0.94^a	3.00±0.87^b	5.19**
gloss	2.00±0.70^d	2.76±0.72^d	2.83±0.76^c	3.40±1.04^b	3.88±0.82^a	19.15***
kochujang flavor	4.38±0.65^a	3.76±0.72^b	3.23±0.76^c	3.08±1.04^c	2.04±0.61^d	31.02***
coriander flavor	1.29±0.46^e	2.20±0.65^d	3.28±0.74^c	3.84±0.67^b	4.28±0.84^a	78.47***
kochujang taste	4.21±0.72^c	3.76±0.66^c	3.40±0.82^c	3.26±0.83^c	2.32±0.75^d	21.06***
coriander taste	1.58±0.50^c	2.00±0.76^d	3.12±0.93^c	3.81±0.69^b	4.28±0.68^a	62.02***

Mean±S.D. **p<0.01 ***p<0.001

^{abcd}Means in a row by different superscripts are significantly different at 5% significance level by Duncan’s multiple range test.

* Legends are refer in table 7
Fig 6. QDA profile of Jeyuk bokkeum with Kochujang containing various amount of coriander a crude liquid.

* Legends are refer in table 7
4) 고수 원액 고추장을 첨가한 떡볶이의 정량적 묘사분석

고수 원액 고추장을 첨가한 떡볶이의 정량적 묘사분석 결과는 Table 21과 같으며, QDA profile은 Fig 7과 같다.

고수 원액 고추장 첨가 떡볶이의 색의 강도(color intensity)가 가장 강하게 평가된 것은 CJT3(4.08)이었고, 그 다음은 CJT2(3.84) > CJT1(3.24) > CJ4(2.72) 순서였으며, 모든 시료들 간에 유의적(p<0.001)인 차이가 있었다.

윤기(gloss)는 대조군인 CJT3(3.60)이 가장 강하다고 평가 되었으며, 모든 시료는 유의적(p<0.001)인 차이가 있었다. CJT4(1.56)는 윤기가 가장 약하다고 평가 되었다.

고추장의 향(kochujang flavor)은 모든 시료는 유의적(p<0.001)인 차이를 보였으며, 대조군인 control(4.24)이 가장 강한 것으로 평가 되었으며, 실험군에서 CJT4(2.16)가 가장 약한 것으로 평가 되었다. 그 다음은 CJT3(2.64) > CJT2(2.92) > CJT1(3.52) 순서로 고추장의 향은 약하게 평가되었다.

고수의 향(coriander flavor)은 대조군인 control(1.24)이 가장 약하다고 평가되었고, CJ4(4.32)가 가장 약하다고 평가되었으며, 모든 시료들 간에 유의적(p<0.001)인 차이가 있었다.

고추장의 맛(kochujang taste)은 모든 시료간의 유의적(p<0.001)인 차이를 보이며 CJT1(3.68)가 가장 강한 것으로 평가 되었고, 다음으로 CJT2(2.84) > CJT3(2.56) > CJT4(2.32) 순으로 약하다고 평가 되었다.

고수의 맛(coriander taste)은 시료간의 고수의 향과 마찬가지로 시료간의 유의적(p<0.001)인 차이를 보이며 CJT4(4.48)가 가장 강한 것으로 평가 되었으며, CJT1(2.48)가 가장 약한 것으로 평가 되었다.
Table 21. QDA result of *Tteokbokki* with Kochujang containing various amount of coriander a crude liquid.

Descriptors	Sample (%)	F-value				
	control	CJT1	CJT2	CJT3	CJT4	
color	3.52±0.87^c	3.24±0.83^c	3.84±0.75^b	4.08±0.57^c	2.72±0.84^d	11.57***
gloss	2.52±0.89^b	2.12±0.60^c	2.76±0.83^c	3.60±0.58^a	1.56±0.51^d	36.32***
kochujang flavor	4.24±0.66^a	3.52±0.65^b	2.92±0.64^c	2.64±0.95^c	2.16±0.47^d	33.81***
coriander flavor	1.24±0.44^d	2.60±0.65^c	3.68±0.69^c	0.80±0.64^c	4.32±0.75^d	91.33***
kochujang taste	4.12±0.73^c	3.68±0.56^c	2.84±0.90^c	2.56±0.58^d	2.32±0.75^c	28.80***
coriander taste	1.64±0.49^d	2.48±0.59^b	3.68±0.90^c	3.84±0.75^b	4.48±0.59^c	71.23***

Mean±S.D. ***p<0.001
^{abcd}Means in a row by different superscripts are significantly different at 5% significance level by Duncan’s multiple range test.

* Legends are refer in table 7
Fig 7. QDA profile of Tteokbokki with Kochujang containing various amount of coriander a crude liquid.

* Legends are refer in table 7
2) 기호도 검사

(1) 고수 파우더 고추장을 첨가한 제육볶음의 기호도 검사

고수 파우더 고추장을 첨가한 제육볶음의 기호도 분석 결과는 Table 22와 같다.

외관(appearance)에서 가장 높은 기호도를 보인 것은 GPJ1로 4.04였으며, 가장 낮은 기호도를 보인 것은 CPJ5(2.20)로 평가 되었고, 모든 시료들 간에는 유의적(p<0.001)인 차이가 있었다.

향(flavor)에서 가장 높은 기호도를 보인 것은 CPJ3으로 3.96이었고, 그 다음은 CPJ1(3.52)이었으며 CPJ5(2.72)와 CPJ7(1.84)은 낮은 기호도를 보였고, 모든 시료간에는 유의적(p<0.001)인 차이가 있었다.

맛(taste) 역시 대조군보다 고수 파우더 고추장을 첨가한 실험군에 유의적(p<0.001)으로 높게 평가되었으며, CPJ3이 3.80으로 가장 높은 기호도를 보였다. 그 다음은 CPJ1(3.72) > CPJ5(2.72) > CPJ7(1.76) 순서로 기호도를 나타냈다.

어울림(harmony with food)에 대한 기호도는 CPJ3이 3.92로 유의적(p<0.001)으로 높은 기호도를 보였으며 가장 낮은 기호도를 보인 것은 CPJ7(1.88)이었다.

종합적 기호도(overall quality)에 있어서 CJP3이 4.04로 가장 높은 기호도를 나타냈고, 그 다음이 CPJ1(3.88)이 높은 기호도를 나타내었으며, 제육볶음에 고수 파우더 3%가 첨가된 고추장을 첨가하는 것이 바람직하다고 본다.
Table 22. Acceptance of *Jeyuk bokkeum* with Kochujang containing various amount of coriander a crude liquid.

characteristics	Sample (%)	F-value				
	control	CPJ1	CPJ3	CPJ5	CPJ7	
appearance	3.84±0.75^b	4.04±0.61^a	3.56±0.82^b	2.20±0.50^c	3.06±0.11^d	52.36***
flavor	3.52±0.65^b	3.52±0.71^b	3.96±0.68^a	2.72±0.61^c	1.84±0.68^d	39.33***
taste	3.64±0.81^a	3.72±0.84^a	3.80±0.76^a	2.72±0.98^b	1.76±0.66^c	28.93***
harmony with food	3.64±0.95^a	3.64±0.76^a	3.92±0.81^a	2.20±0.71^b	1.88±0.60^b	36.92***
overall quality	3.72±0.79^a	3.88±0.88^a	4.04±0.79^a	2.32±0.80^b	1.68±0.63^c	45.88***

Mean±S.D. ***p<0.001

^{abcd}Means in a row by different superscripts are significantly different at 5% significance level by Duncan’s multiple range test.

* Legends are refer in table 7
(2) 고수 파우더 고추장을 첨가한 떡볶이의 기호도 검사

고수 파우더 고추장을 첨가한 떡볶이의 기호도 분석 결과는 Table 23과 같다.

외관(appearance)에서 가장 높은 기호도를 보인 것은 GJT1로 4.04이었으며, 가장 낮은 기호도를 보인 것은 CPT5(0.58)이었고, 모든 시료간에는 유의적(p<0.001)인 차이가 있었다.

향(flavor)에서 가장 높은 기호도를 보인 것은 CPT3으로 3.76이었고, 그 다음은 CPT1(3.68) > CPT5(1.88) > CPT7(1.60) 순서였으며, 모든 시료간에는 유의적(p<0.001)인 차이가 있었다.

맛(taste) 역시 대조군보다 고수 원액 고추장을 첨가한 실험군에 유의적(p<0.001)으로 높게 평가되었으며, CPT3이 4.16으로 가장 높은 기호도를 보였다. 그 다음은 CPT1(3.64) > CPT5(1.92) > CPT7(1.88) 순서로 기호도를 나타냈다.

어울림(harmony with food)에 대한 기호도는 CPT3이 4.24로 유의적(p<0.001)으로 높은 기호도를 보였으며 가장 낮은 기호도를 보인 것은 CPT7(1.08)이었다.

종합적 기호도(overall quality)에 있어서 CPT3이 3.80으로 가장 높은 기호도를 나타냈고, 그 다음 순으로 CPT1(3.64) > CPT5(1.80) > CPT7(1.60)으로 기호도를 나타내었으며, 떡볶이에 고수 파우더 3%가 첨가된 고추장을 첨가하는 것이 바람직하다고 본다.
Table 23. Acceptance
Tteokbokki
with Kochujang containing various amount of coriander a crude liquid.

characteristics	Sample (%)					F-value
		control	CPT1	CPT3	CPT5	CPT7
appearance	4.00±0.65^a	4.04±0.73^a	2.96±0.89^b	0.58±0.12^b	1.36±0.49^a	81.78***
flavor	3.72±0.61^a	3.68±0.69^a	3.76±0.72^a	1.88±0.73^b	1.60±0.58^b	66.32***
taste	3.84±0.80^b	3.64±0.70^b	4.16±0.69^b	1.92±0.76^b	1.88±0.73^c	55.91***
harmony with food	4.12±0.73^a	3.64±0.70^b	4.24±3.56^a	1.92±0.64^c	1.80±0.50^c	89.46***
overall quality	3.84±0.99^a	3.64±0.91^a	3.80±0.71^a	1.80±0.65^b	1.60±0.58^b	52.67***

Mean±S.D. *p<0.05 **p<0.01 ***p<0.001
^a^b^c^d Means in a row by different superscripts are significantly different at 5% significance level by Duncan’s multiple range test.
* Legends are refer in table 7
(3) 고수 원액 고추장을 첨가한 제육볶음의 기호도 검사

고수 원액 고추장을 첨가한 제육볶음의 기호도 분석 결과는 Table 24과 같다.
외관(appearance)에서 가장 높은 기호도를 보인 것은 GJJ3로 3.92였으며, 가장 낮은 기호도를 보인 것은 CJJ4(3.32)로 평가 되었으나, 모든 시료들 간에는 유의적인 차이

이었다.

향(flavor)에서 대조군 control(2.36)이 실험군보다 낮은 기호도를 보였으며, 가장 높 은 기호도를 보인 것은 CJJ3으로 3.96이었고, 그 다음은 CJJ4(3.88) > CJJ2(2.88) > CJJ1(2.88) 순으로 기호도를 보였고, 모든 시료간에는 유의적(p<0.001)인 차이가 있었 다.

맛(taste)에서는 대조군 control(2.82)보다 고수 원액 고추장을 첨가한 실험군에 유 의적(p<0.001)으로 높게 평가되었으며, CJJ3이 3.88로 가장 높은 기호도를 보였다. 그 다음은 CJJ4(3.76) > CJJ2(3.28) > CJJ1(2.82) 순서로 낮은 기호도를 나타냈다.

어울림(harmony with food)에 대한 기호도는 CJJ3이 3.56으로 유의적(p<0.05)인 차 이를 보였으며, 가장 낮은 기호도를 보인 것은 CJJ1(2.64)이었다.

종합적 기호도(overall quality)에 있어서 CJJ3이 3.96으로 가장 높은 기호도를 나타 냈고, 그 다음이 CJJ4(3.80) > CJJ2(3.08) > CJJ1(2.73) 순으로 기호도를 나타내었으 며, 어울림(harmony with food)에서 CJJ1을 제외한 모든 실험군에서 대조군 보다 높 은 기호도를 나타냈고, 제육볶음에 고수 원액 3%가 첨가된 고추장을 첨가하는 것이 바람직하다고 본다.
Table 24. Acceptance *Jeyuk bokkeum* with Kochujang containing various amount of coriander a crude liquid.

characteristics	Sample (%)				F-value	
	control	CJJ1	CJJ2	CJJ3	CJJ4	
appearance	3.44±0.51^{ab}	3.52±1.08^{ab}	3.52±0.82^{ab}	3.92±0.76^a	3.32±1.07^b	1.66^{NS}
flavor	2.36±0.81^c	2.88±1.13^{bc}	3.36±0.81^{ab}	3.96±0.84^a	3.88±1.45^a	10.60^{***}
taste	2.82±0.98^b	2.84±1.40^b	3.28±0.84^b	3.88±1.27^a	3.76±0.83^a	5.76^{**}
harmony with food	2.68±1.14^b	2.64±1.15^b	3.32±1.14^a	3.56±0.65^a	3.52±1.32^a	4.16[*]
overall quality	2.48±1.12^b	2.72±1.24^b	3.08±1.11^b	3.96±0.79^a	3.80±1.19^a	8.73^{***}

Mean±S.D. *p*<0.05 **p**<0.001 N.S. - Not Signification
^{abcde} Means in a row by different superscripts are significantly different at 5% significance level by Duncan’s multiple range test.

* Legends are refer in table 7
(4) 고수 원액 고추장을 첨가한 떡볶이의 기호도 점사

고수 원액 고추장을 첨가한 떡볶이의 기호도 분석 결과는 Table 25와 같다.

외관(appearance)에서 가장 높은 기호도를 보인 것은 GJT3로 3.60이었으며, 가장 낮은 기호도를 보인 것은 CJT4(2.80)로 평가 되었으며, 모든 시료들 간에는 유의적 (P<0.05)인 차이가 있었다.

향(flavor)에서 모든 시료간에 유의적(P<0.001)인 차이를 보였으며, 가장 높은 기호도를 보인 것은 CJT3으로 4.24이었고, 그 다음은 CJT2(3.80) > CJT1(3.56) > CJT4(1.80) 순으로 기호도를 나타내었다.

맛(taste)에서는 대조군 control(3.48)보다 고수 원액 고추장을 첨가한 실험군에 유의적(p<0.001)으로 평가되었으며, CJT4가 4.24로 가장 높은 기호도를 보였다. 그 다음은 CJT2(3.64) > CJT1(3.56) > CJT4(1.88) 순차로 낮은 기호도를 나타냈다.

어울림(harmony with food)에 대한 기호도는 CJT3이 4.04로 유의적(p<0.001)으로 높은 차이를 보였으며, 가장 낮은 기호도를 보인 것은 CJT4(1.64)이었다.

종합적 기호도(overall quality)에 있어서 CJT4가 4.28로 가장 높은 기호도를 나타냈고, 그 다음이 CJT2(3.84) > CJT1(3.68) > CJT4(1.84) 순으로 기호도를 나타내었으며, 떡볶이에 고수 원액 3%가 첨가된 고추장을 첨가하는 것이 바람직하다고 본다.
Table 25. Acceptance Tteokbokki with Kocujang containing various amount of coriander a crude liquid.

characteristics	Sample (%)	F-value				
	control	CJT1	CJT2	CJT3	CJT4	
appearance	3.24±1.09^b	3.52±0.77^a	3.44±0.92^a	3.60±0.91^a	2.80±1.04^b	2.82[*]
flavor	3.56±0.77^b	3.56±0.71^b	3.80±0.70^b	4.24±0.97^a	1.80±0.58^c	37.85^{***}
taste	3.48±3.56^b	3.56±1.08^b	3.64±0.70^b	4.24±0.97^a	1.88±0.73^c	27.21^{***}
harmony with food	3.96±0.61^{ab}	3.64±1.08^{ab}	3.36±0.57^{ab}	4.04±1.02^a	1.64±0.49^c	38.43^{***}
overall quality	3.36±0.81^b	3.68±1.03^b	3.84±0.69^{ab}	4.28±0.97^a	1.84±0.75^c	29.35^{***}

Mean±S.D. *p<0.05 ***p<0.001
^{ab}Means in a row by different superscripts are significantly different at 5% significance level by Duncan’s multiple range test.

* Legends are refer in table 7
본 연구는 중국시장에서의 고추장 소비 확대를 통한 활용도를 높이기 위한 전략 구축에 기반이 되는데 도움이 되며, 천연 향신료 중 독특한 향과 향함수, 항암효과를 갖는 고수를 고추장에 첨가하여 기능성이 향상된 고추 절가 고추장 개발을 통해 고추장의 활용성 증대를 높이고자 하여, 고수를 고추장에 첨가하여 기계적 검사, 관능적 특성과 기호도 검사를 하였다.

또한 개발된 고수 고추장을 이용해 중국음식과 중국인들에게 고추장의 활용도를 높이고, 고추장이 보편화된 음식의 재료로서 널리 알리고자 하였다.

마지막으로 고수 절가 고추장의 개발을 통해 고추장의 한식 세계화의 기반에 도움이 되고자 하였다.

고수 고추장의 고수는 고수 파우더 0, 1, 3, 5, 7%와 고수 원액 0, 1, 2, 3, 4%를 첨가하여 제조한 후 기계적 검사는 수분함량, 색도, pH, 염도, 점도를 측정하였고, 관능적 특성과 기호도 검사, 활용식품 제육볶음과 떡볶이를 이용하여 관능적 특성과, 기호도 검사를 하여 결론은 다음과 같다.

1. 수분함량
고수 고추장을 만들 때 사용한 재료의 수분함량은 고추장 42.89%, 고수 파우더 7.18%, 고수원액 93.09%이었으며, 고수 원액이 가장 많이 첨가된 CJ4가 44.69%로 수분함량이 가장 높았고, 고수 파우더가 가장 많이 첨가된 CP7이 38.61%로 가장 낮았다. 고수 파우더 절가군은 절가량이 증가함수록 고추장의 수분함량이 유의적(p<0.001)으로 낮아지는 경향을 보였고, 고수 원액 절가군은 절가량이 증가함수록 고추장의 수분함량이 유의적(p<0.001)으로 높아지는 경향을 보였다.

2. 색도
고추장의 명도가 가장 높은 것은 CP7(20.88)이었으며, 가장 낮은 것은 CJ4(17.73)로 고수 파우더의 절가량이 증가함수록 유의적(p<0.05)으로 명도는 높아지며 고수 원액의 절가량이 증가함수록 명도는 유의적(p<0.001)으로 낮아졌다.

V. 요약 및 결론
적색도의 경우 CP3(22.92)이 가장 높은 값을 보였고, CJ4(18.24)이 가장 낮게 평가되어, 적색도는 고수 첨가량이 증가함수록 실험군 모두에서 유의적(p<0.001, p<0.01)한 차이를 보였으며, 황색도의 경우 유의적인 차이가 없었다.

3. pH
고수 파우더를 첨가한 고추장의 pH는 대조군과 비교시 유의적(p<0.001)으로 대조군을 제외한 CP1(0.20), CP3(0.20)이 가장 낮게 나타났으며, 고수 원액을 첨가한 고추장의 pH 결과 유의적(p<0.001) 차이가 있었다. 파우더 첨가시 pH는 높아지며, 원액 첨가시 pH는 높아졌다.

4. 염도
염도는 CJ4가 0.30%으로 가장 높은 값을 나타냈고, CP5, CP7이 0.10%로 가장 낮은 값을 나타냈으며 고수의 첨가량이 증가함수록 염도는 유의적(p<0.001)로 감소하고 고수 원액의 첨가량이 증가함수록 염도는 유의적(p<0.05)으로 높아지는 것을 알 수 있었다.

5. 점도
고추장의 점도가 가장 높게 나타난 것은 고수 파우더가 가장 많이 첨가된 CP7(2031.79cP)이었으며, CJ4(295.90cP)가 가장 낮은 점도를 보였다. 고수 파우더 첨가 고추장은 첨가량이 증가하면 점도도 증가하여 유의적(p<0.001)한 차이를 보였고, 고수 원액 첨가 고추장은 첨가량이 증가하면 점도는 유의적(p<0.05)으로 감소하였다.

6. 관능검사
정량적 묘사분석 결과, CP군에서 고수 파우더가 가장 많이 첨가된 CP7이 색(4.04), 고수의 향(3.72), 고수의 맛(3.92), 부드러운 정도(4.36)가 가장 강하게 평가되었고, 대조군인 control이 온기(4.24), 고추장의 향(3.72), 고추장의 맛(3.92)이 가장 강하게 평가되었다. CJ군에서는 CJ4가 온기(3.42), 고수의 향(3.04), 고수의 맛(4.29) 가장 강하게 평가되었고, 대조군인 control이 고추장의 향(3.29), 고추장의 맛(3.33)이 가장 강하게 평가되어 고수 원액의 첨가량이 증가함수록 고수의 향, 맛이 강하게, 고추자의 향과
고추자의 맛은 약하게 평가되는 것을 알 수 있었다.
기호도 검사결과 CP군에서 향, 맛, 종합적 기호도에서 CP3(4.08)이 가장 기호도가 높았고, CJ군에서는 CJ2(4.04)가 가장 기호도가 높았다.

7. 활용식품을 이용한 관능검사
제육볶음에서 정량적 묘사분석 결과 CPJ군은 CPJ7의 색의강도(4.44), 고수의 향(4.40), 고수의 맛(4.28)이 가장 높게 평가 되었으며, CJJ군에서도 CJJ7은 윤기(3.88), 고수의 향(4.28), 고수의 맛(4.28)이 가장 높게 평가 되었다.
떡볶이에서 정량적 묘사분석 결과 CPT군은 CPT7의 색의강도(4.16), 고수의 향(4.24), 고수의 맛(4.12)이 가장 높게 평가 되었으며, CJT군에서 CJT7은 고수의 향(4.32), 고수의 맛(4.48)이 가장 높게 평가 되었다.
기호도 검사결과 제육볶음에서 CPJ군에서 CPJ3 향(3.96), 맛(3.80), 어울림(3.92), 종합적 기호도(4.04)가 가장 기호도가 높았고, CJJ군에서는 CJJ3(3.96)이 가장 기호도가 높았다.
떡볶이의 기호도 검사결과 CPJ군에서 향(3.76), 맛(4.16), 어울림(4.24), 종합적 기호도(3.80)에서 CPT3가 기호도가 가장 높았고, CJT군에서는 CJT3(4.28)가 가장 기호도가 높았다.

이상의 결과를 토대로 본 때 고수 첨가는 중국인들에게 고추장의 기호도를 높여 주고 활용식품을 이용하였을 때 제육볶음, 떡볶이는 고수 파우더 3%, 원액 3%를 첨가하는 것이 가장 좋다고 사료된다.
본 연구는 고추장에 고수 파우더, 원액을 첨가하여 기호도를 높이기 위하여 관능적 특성을 기호도 검사를 하였으나 기능성에 관하여는 그 여부는 파악하기 어렵고, 현대 중국인들이 고추장에 대한 매운맛이 많이 적응 되었으나, 소비확대와 한식 세계화에 있어서는 미흡한 설정이다. 향후 매운맛에 대한 연구가 필요하다고 사료된다.
참고 문헌

국내 논문

2006년 식품 및 식품첨가물 생산실태 (2008. 3. 31) 식품의약품안전청 www.kfda.go.kr
강태구 (2008). 백포도주 첨가량에 따른 생선희수의 품질특성. 경희대학교 관광대학원 식사학위논문.
구민선 (1990). 재래식 고추장 숙성중 미생물군과 성분의 변화. 숙명여자대학교 생물학과 식사학위논문.
구종재 · 신현주 (2000). 호박을 첨가하여 제조한 고추장의 숙성 중 성분 변화 및 관능적 특성. 「한국식품과학회지」 32(4), 851-859
권동진 (2004). 동충하초를 이용한 고추장의 품질개선. 「한국식품과학회지」 36(1), 81-85
권동진 · 정진웅 · 김종은 · 박종현 · 유진영 · 구영조 · 정건섭 (1996). 재래식 참설고추장 및 보리고추장의 식성 숙성기간 설정을 위한 연구. 「한국농화학회지」 39(2), 127-133
권영미 · 김동환 (2002). 다시마와 키토산을 첨가한 전통고추장의 품질특성에 관한 연구. 「한국식품영양과학회지」 31(6), 977-985
금현지 (2000). 고수(Coriandrum stivum L.)의 항균성에 관한 연구. 순천대학교 대학원 식품공학과 식사학위 논문
김갑수 · 김낭 (2005). 마트형 인간의 그립싸한 맛상 차리기. 경기도 : (주)북21p.190-193
김경사 · 최옥자 · 김용두 · 강성구 · 황금희 (2001). 고수의 항미성분에 관한 연구. 「한국조리과학회」 17(1), 80-90
권동석 (2006). 갈색육수 및 메미글라스소스 제조방법의 최적화. 영남대학교 대학원 박사학위논문.
김미경 (2008). 마이드림의 행복한 요리. 경기도 : 성안당 pp.208-209
김민희 (2006). 국민요리책. 서울 : (주)삼성출판사 p.147/174
김민희 (2007). 국민간식책. 서울 : (주) 삼성출판사 p.22
김병필 (2007). 농후재의 종류와 첨가량을 달리한 브라운소스의 품질 특성에 관한 연구. 경희대학교 관광대학원 석사학위논문.
김선아·이민아·박정은 (2005). 고추장 첨가율에 대한 중한인의 관능적 특성 및 기호도 분석. 「한국조리학회지」 21(5). 607-615
김영수·송근섭 (2002). 기위첨가 전통고추장의 품질 특성. 「한국식품학회지」 34(6). 1091-1097
김건영·공규리·정근욱·이석희 (2001). Inhibitory Effects of Kochujang Extracts on the Tumor Formation and Lung Metastasis in Mice. 「한국조리학회지」 22(4). 514-520

- 72 -
박권우 (2007). 서양채소론(학술연구총서 25). 고려대학교출판부, pp.324-327
박권우·김충호 (1997). 차세대 고품질 기능성 채소의 향상 방안 연구. 「한국조리학회」 6(3). 187-191
박기문 (1998). 천연 항산균의 기능성을 이용한 유제품개발. 「한국유가공기술학회」 16(2) 137-153
박우포·조성환·이승철·김성용 (2007). 매실분말 및 농축액을 첨가한 고추장의 숙성 중 품질변화. 「한국식품저장공학회」 147(4). 378-384
박정선·이택수·재윤우·안성민·노봉수 (1993). 과일 원액을 첨가한 고추장제조에 관한 연구. 「한국식품과학회」 25(2). 98-104
삼성출판사 편집부(2007). 반찬.밀반찬(쉬운요리1), 서울 : 삼성출판사 p.98
서용건·서용구 (2004). 한류가 한국에의 관광지 이미지와 관광객 의사결정에 미치는 영향. 「관광학연구」 28(3). 47-64
신동화 (2005). 우리나라 정류산업의 현황과 제품개발 방향. 「식품저작권가공산업」 5(1). 31-46
신동화·김동한·최용·임대관·임미선 (1996). 전통고추장의 맛 성분. 「한국식품과학회」 28(1). 152-156
신동화·김동한·최용·임대관·임미선 (1996). 전통고추장의 품질특성. 「한국식품과학회」 28(1). 157-161
신동화·김동한·최용·임미선·안윤영 (1997). 닭고기 원료에 따른 전통식 고추장의 숙성 중 이화학적 특성 변화. 「한국식품과학회」 29(5). 907-912
신동화·김동한·최용·임미선·안윤영 (1997). 닭은 농약에 따른 전통식 고추장의 숙성 중 맛 성분의 변화. 「한국식품과학회」 29(5). 913-918
신동화·안윤영·김용석·오지영 (2000). 양 고추냉이와 겉자 분말을 첨가한 고추장의 발효특성. 「한국조리과학회」 32(6). 1350-1357
신한주 (1998). 동양참가 고추장의 이화학적 특성 및 환죽에서 지질대사에 미치는 영
향. 전북대학교 대학원 식품공학과 석사학위논문.
신현우·신동화·곽이성·주종재·김선영 (1999). 홍삼 첨가에 따른 고추장의 이화학적 특성 변화.『한국식품영양학회지』28(4), 760-765
심영자·정복미·김은실·주나미 (2000). 미국거주 기간에 따른 채비한인들의 한식 세계화에 관한 설문 조사 연구.『한국조리과학회지』16(3), 210-215
안미란·정도연·홍선표·송근섭·김영수 (2003). 비섯을 첨가한 전통고추장의 품질 특성.『한국생명과학회지』46(3), 229-234
오지영·김영숙·신동화 (2005). 양 고추장이 분말을 첨가한 저염 고추장의 숙성 중 미생물 효소 활성의 변화.『한국식품과학회지』37(3), 465-469
유나 (2008). 사과 첨가 고추장 개발. 숙명여자대학교 전통문화예술대학원 석사학위논문.
유미영·정건혁·양지영 (2005). 배 원액을 첨가한 전통고추장의 숙성과정 중 품질특성.『한국식품영양학회지』34(8), 1226-1231
윤숙자 (2003). 한국의 저장 발효음식 - 이론과 실제. 서울 : 신광출판사, p.67/76
이간상 (1991). 청주박을 이용한 저염고추장의 양조.『한국식품과학회지』23(1), 109-115
이은정·강호민·박권우 (2000). 고수의 생육, 저장수명 및 저장중 내적품질에 미치는 셀레늄의 영향.『한국원예학회지』41(5), 2000
이상빈·고경희·양지영·오성훈 (2002). 발효식품학. 서울 : 효일출판사, p.93
이시례 (1986). 한국의 발효식품. 이화여자대학교 출판부.
이성우 (1978). 고려의 체가한국 식생활사 연구. 서울 : 한문사, p.149
이성우 (1990). 조미 황선료의 역사.『한국식문화학회지』5(3), 373-379
이용선·강성희·이영상 (2000). 호박 고추장의 숙성중 주요 성분변화에 관한 연구.『영남대학교 정류연구소 연구 업적집』2, p.182-182
이택수 (1979). 효모절가에 의한 고추장의 양조에 관한 연구.『한국응용생명과학회지』22(2), 65-90
이현우 (2001). 이현우의 싱글을 위한 이지쿠정. 서울 : (주) 음진닷컴 무브, p.101
이효지 (1998). 한국의 음식문화. 서울 : 신광출판사, p32
임성일·최시양·조경현 (2006). 기능성 소재의 첨가가 고추장의 품질특성에 미치는 영향. 「한국식품과학회지」 38(6), 779-784
장지현 (1996). 우리나라의 장류문화. 「농촌생활과학지」 17, 31-36
장지현 외 11명 (2001). 한국음식대과 4. 발효·저장·가공식품. 서울 : 한림출판사, p.117
정용진·지성원·이기동·이명희·윤성란 (2000). 사과·감과실을 첨가한 고추장의 숙성중 성분 변화. 「한국식품영양과학회지」 29(4), 575-581
정정록 (2004). 인삼소스 제품 개발 요구도 및 평가. 「한국조리학회지」 13(2), 252-262
정현진 (2006). 항산료 이야기. 경기도 : 살림, p.60-61
조현옥·김종근·이현자·강주훈·이택수 (1981). 전라북도지방 전통고추장의 재법조 사와 심분. 「한국응용생명과학회지」 24(1), 21-28
조현옥·박승애·김종근 (1981). 전통고추장의 품질개량에 있어서 재래식 및 개량식 고추장 매주의 효과. 「한국식품과학회지」 13(4), 319-327
주종재 (2000). 고지방 식이를 섭취시킨 환자에서 고추장의 항미효과. 「한국영양학 회지」 33(8), 787-793
주종재·신현주 (2000). 호박을 첨가하여 제조한 고추장의 숙성 중 성분 변화 및 관능 적 특성. 「한국조리과학회지」 32(4), 851-859
최성희 (2006). 전통사 허브차 한잔에 담긴 건강 마시기. 서울 : 중양생활사, p.135
최수근 (2005). 소스의 비밀. 서울 : 형실출판사, p.98
최영진 (2006). 상식의 식물. 서울 : 아카데미서적, p.115
최옥자·김성수·정현숙 (2002). 고수의 가열처리에 따른 향미 심분의 변화. 「한국가 정과학회」 5(1), 94-106
최진영·이택수·노봉수 (2000). 메주와 코요지를 혼용하여 담근한 고추장 숙성중의 품질특성. 「한국식품과학회지」 32(1), 125-131
최진영·이택수·박성오 (1997). 콩과요지를 사용한 개양식고추장의 숙성과정 중취발 성 항기성분의 특성. 「한국식품과학회지」 29(6), 1144-1150
한복진·한복리 (1998). 우리가 알아야 할 우리 음식 백가지. 서울 : 현암사, p.511,
함승시·김수현·유스정·오현택·최현진·정미자 (2008). 해양 신흥수염 및 다시마 분말 첨가 고추장의 품질특성. 「한국식품저잡유동학회지」 15(2), 214-218

허수진·조은자 (2002). 미나리과 산채의 육가공품에 대한 저장성 및 관능특성 -참당귀·돌미나리·고수 「동아시아식생활학회」 12(2), 141-153

현진희 (2006). 베비로즈의 요리비책. 경기도 : (주)복이실업 p.144

홍상필·김은미·조경현 (2004). 전통 고추장을 이용한 소스의 제조 및 특성. 「식생활문화학회지」 5(91), 239-246

홍상필·김은미·조경현 (2004). 전통 고추장을 이용한 소스의 제조 및 특성. 「한국식생활문화학회지」 19(2), 239-249

황금희·윤연희·최인선·최옥자·강성구·김응두 (2001). 식이내 고수(Coriandrum sativum L.)의 첨가가 당뇨병 환자의 혈당과 간의 지질함량에 미치는 영향. 「한국식품영양과학회지」 30(4), 684-691
국외 논문

M.G. Alisom · R.F. Peter (1990). Insulin-releasing and insulin-like activity of the traditional antidiabetic plant *Coriandrum sativum L.* Argric. Food Chem. 38. 2054–2058

M.J. Axely · A. Böck and T.C. Stadtman (1991). Catalytic properties of an Escherichia coli formate dehydrogenase mutant in which sulfur replaces selenium. Proc. Nat. Aad. Sci. U.S.A. 88. 8540–8454

X.J. Cai · J.E. Blockl · Unden · X. Zhang · B.D. Quimby and J.J. Sullivan (1995). Allium chemistry : Identification of selenoamino acids in ordinary and selenium–enriched garlic, onion, and broccoli using gas chromatography with atomic emission detection. J. Agric. Food Chem. 43. 1754–1757

N.R. Farnsworth · A.B. Segelman (1971). Hypoglycemic plants. Tile and Till. 57. 52–56

K. Gupta · K.K. Thakral · S.K. Arora and D.S. Wagle (1991). Studies on Growth, Structural Carbohydrate and Phytate in Coriander (*Coriandrum sativum L.*) Durring Seed Development. Journal of the Science of Food and Agritural. 54(1) 43

D. Hoffmann (1996). The complete illustrated holistic herbal. 82

A. Kalra · T.N. Parameswaran · N.S. Ravindra (1995). Effect of Powdery Mildew(*Erysipe Polygoni*) on Yields and Yield Components of Early and Late Maturing Coriander(*Coriandrum sativum L.*). The Journal of Agritural Science. 125. 395

Kwon Y.M. · Kim D.H. (2002). Effect of sea tangle and chitosan on the Physicochemical properies of Traditional Kochujang. J. Korean Soc. Food Sci. Nurt. 311. 997–985

Lee KJ. · Cho MS. · Lee JM. (2008). Cotent Analysis of the New York Rimes on Koran Food from 1980 to 2005. Korean J. Food Culture. 22(2). 289–298
W.H. Lewis · M.P.F. Elvin-Lewis (1982). Medical Btany: Plants Affecting Man’s Health. Wiley, New York

J. Loaza · M. Cantwell (1997). Postharvest Physiology and Quality of Cilantro(Coriandrum sativum L.) Hrtscience. 32(1). 104

J.M. Neman (2005). Food culture in China, Greenwood press. London UK. 29–68

B.M. Samillfield · N.B. Perry · D.A. Beauregard · L.M. Foster and K.G. Dodds (1994). Effects of Postharvest Treatments on Yield and Composition of Coriander Herb Oil. Journal of Agritural and Food Chmestry. 42(2). 254

L.P. Thomas · S.F. Irving (1990). Composition of Coriander Leaf Volatailes, Journal of Agric. and Food Chem. 38. 2054–2056
※ 品尝过各种材料的味道后给予评价并用 △号表示。

1. 色的强度

sample	非常嫩	嫩	一般	浓	非常浓
218					
327					
546					
133					
754					

2. 光泽

sample	非常嫩	嫩	一般	浓	非常浓
218					
327					
546					
133					
754					

3. 辣椒酱的香味

sample	非常嫩	嫩	一般	浓	非常浓
218					
327					
546					
133					
754					
4. 香菜的香味

sample	非常嫩	嫩	一般	浓	非常浓
218					
327					
546					
133					
754					

5. 辣椒酱的味道

sample	非常嫩	嫩	一般	浓	非常浓
218					
327					
546					
133					
754					

6. 香菜的味道

sample	非常嫩	嫩	一般	浓	非常浓
218					
327					
546					
133					
754					

7. 부드러운 정도 (입안의 촉감)

sample	非常嫩	嫩	一般	浓	非常浓
218					
327					
546					
133					
754					
※ 品尝过各种材料的味道后给予评价并用 ∨ 号表示。

1. 外观

sample	非常不好	不好	一般	好	非常好
324					
318					
566					
428					
972					

2. 香

sample	非常不好	不好	一般	好	非常好
324					
318					
566					
428					
972					

3. 味道

sample	非常不好	不好	一般	好	非常好
324					
318					
566					
428					
972					
4. 嫩的程度

Sample	非常不好	不好	一般	好	非常好
324					
318					
566					
428					
972					

5. 综合喜好度

Sample	非常不好	不好	一般	好	非常好
324					
318					
566					
428					
972					
※ 品尝过各种材料的味道后给予评价并用∨号表示．

1. 颜色的强度

sample	非常嫩	嫩	一般	浓	非常浓
112					
245					
657					
785					
842					

2. 光泽

sample	非常弱	弱	一般	强	非常强
112					
245					
657					
785					
842					

3. 辣椒酱的香味

sample	非常弱	弱	一般	强	非常强
112					
245					
657					
785					
842					
4. 香菜的香味

sample	非常弱	弱	一般	强	非常强
112					
245					
657					
785					
842					

5. 辣椒酱的香味

sample	非常弱	弱	一般	强	非常强
112					
245					
657					
785					
842					

6. 香菜的味道

sample	非常弱	弱	一般	强	非常弱
112					
245					
657					
785					
842					

7. 细腻的程度

sample	非常弱	弱	一般	强	非常弱
112					
245					
657					
785					
842					
辣椒酱添加香菜汁(年糕条) - 感官检表Ⅰ

※ 品尝过各种材料的味道后给予评价并用 △号表示。

1. 外观

sample	非常不好	不好	一般	好	非常好
324					
445					
463					
485					
751					

2. 香味

sample	非常不好	不好	一般	好	非常好
324					
445					
463					
485					
751					

3. 味道

sample	非常不好	不好	一般	好	非常好
324					
445					
463					
485					
751					
4. 和年糕条的合适度

sample	非常不好	不好	一般	好	非常好
324					
445					
463					
485					
751					

5. 综合喜好数

sample	非常不好	不好	一般	好	非常好
324					
445					
463					
485					
751					
Abstract

The Quality and Sensory Characteristics of Kochujang Added with Coriadner (*Coriandrum sativum* L.)

Gee Cheol Choe
Adviser: Prof. Soo Keun Choi
Dept. of Culinary Science and Food Service Management
The Graduate School of Tourism
Kyounghee University

Coriander (*Coriandrum sativum* L.), which has a unique flavor and antioxidant and anti-oxidant effects, is a natural functional spice most preferred by Chinese, and its nutritive superiority is recognized and its consumption is increasing even in Western countries. Thus, this study purposed to increase the acceptance and consumption of kochujang in the Chinese market by developing coriander kochujang with improved functionality through the addition of coriander (*Coriandrum sativum* L.), a natural spice most preferred by Chinese.

For this purpose, we prepared coriander kochujang by adding coriander powder...
0, 1, 3, 5, and 7% and coriander extract 0, 1, 2, 3, 4%, and performed mechanical tests on water content, color, pH, salinity, and viscosity. In addition, we performed sensory tests and acceptance tests, and analyzed the sensory characteristics and acceptance of pork saute and rice cake saute prepared using coriander kochujang. Conclusions drawn from this study are as follows.

Water content in the materials was 42.89% in kochujang, 7.18% in coriander powder, and 93.09% in coriander extract. As to color, lightness was highest in CP7 (20.88) and lowest in CJ4 (17.73).

Redness was highest in CP3 (22.92) and lowest in CJ4 (18.24), but yellowness was not significantly different.

pH was lowest in CP1 (0.20) and CP3 (0.20), and according to coriander type, pH decreased when coriander powder was added to kochujang, and increased when coriander extract was added.

Salinity was highest in CJ4 (0.30%) and lowest in CP5 (0.10%) and CP7 (0.10%). Salinity increased with increase in the addition of coriander powder and decreased with increase in the addition of coriander extract.

The viscosity of kochujang was highest in CP7 (2031.79cP), which had the largest addition of coriander powder, and lowest in CJ4 (295.90cP). Viscosity increased with increase in the addition of coriander powder, and decreased with increase in the addition of coriander extract.

In the results of quantitative descriptive analysis, among the CP group, CP7, which had the largest addition of coriander powder, was given the highest score in color (4.04), coriander smell (3.72), coriander taste (3.92), and softness (4.36), and the control was given the highest score in shining (4.24), kochujang smell (3.72), and kochujang taste (3.92). Among the CJ group, CJ4 was given the highest score in shining (3.42), coriander smell (3.04), and coriander taste (4.29), and the control was given the highest score in kochujang smell (3.29), kochujang taste (3.33). This shows that, with increase in the addition of coriander extract, coriander smell and
taste grow stronger and kochujang smell and taste grow weaker.

In the results of acceptance tests, smell, taste and overall acceptance were highest in CP3 (4.08) among the CP group, and CJ2 (4.04) among the CJ group.

In the results of quantitative descriptive analysis with pork saute prepared using coriander kochujang, CPJ7 showed the strongest color (4.44), coriander smell (4.40), and coriander taste (4.28) among the CPJ group, and CJJ7 showed strongest shining (3.88), coriander smell (4.28), and coriander taste (4.28) among the CJJ group.

In the results of quantitative descriptive analysis with rice cake saute prepared using coriander kochujang, CPT7 showed the strongest color (4.16), coriander smell (4.24), and coriander taste (4.12) among the CPT group, and CJT7 showed the strongest coriander smell (4.32), and coriander taste (4.48) among the CJT group.

In the results of acceptance tests with pork saute, CPJ3 showed the highest acceptance in smell (3.96), taste (3.80), harmony (3.92), and general acceptance (4.04) among the CPJ group, and CJ3 showed the highest acceptance (3.96) among the CJJ group.

In the results of acceptance tests with rice cake saute, CPT3 showed the highest acceptance in smell (3.76), taste (4.16), harmony (4.24), and general acceptance (3.80), and CJT3 showed the highest acceptance (4.28) among the CJT group.

According to the results of this study, the addition of coriander increases the acceptance of kochujang to Chinese, and when coriander kochujang is used in pork saute and rice cake saute, the most desirable additions are coriander powder 3% and coriander extract 3%, respectively.