Molecular characterization of endophytic fungi associated with the roots of *Chenopodium quinoa* inhabiting the Atacama Desert, Chile

M. González-Teuber a,⁎, C. Vilo a, L. Bascuñán-Godoy b

a Departamento de Biología, Universidad de La Serena, Casilla 554, La Serena, Chile
b Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Casilla 599, La Serena, Chile

A R T I C L E I N F O

Article history:
Received 21 December 2016
Accepted 30 December 2016
Available online 05 January 2017

Keywords:
Fungal endophytes
Quinoa
Internal transcribed spacer
Phylogenetic analysis
Atacama Desert

A B S T R A C T

Plant roots can be highly colonized by fungal endophytes. This seems to be of particular importance for the survival of plants inhabiting stressful habitats. This study focused on the identification of the fungal endophytic community associated with the roots of quinoa plants (*Chenopodium quinoa*) growing near the salt lakes of the Atacama Desert, Chile. One hundred endophytic fungi were isolated from healthy quinoa roots, and the internal transcribed spacer (ITS) region was sequenced for phylogenetic and taxonomic analysis. The isolates were classified into eleven genera and 21 distinct operational taxonomic units (OTUs). Despite a relatively high diversity of root endophytic fungi associated with quinoa plants, the fungal community was dominated by only the Ascomycota phyla. In addition, the most abundant genera were *Penicillium*, *Phoma* and *Fusarium*, which are common endophytes reported in plant roots. This study shows that roots of *C. quinoa* harbor a diverse group of endophytic fungi. Potential roles of these fungi in plant host tolerance to stressful conditions are discussed.

© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Plant roots can be associated with a variety of endosymbiotic microbes including mycorrhizal fungi, rhizosphere bacteria and endophyte microorganisms [1]. Root-associated endophytic fungi commonly occur in angiosperms and a high rate of colonization has been described for different plants and environments [2–6]. Non-clavicipitaceous endophytes associated with plant roots involve different groups of fungi, including the ‘class II endophytes’ and the ‘dark septate endophytes’ (DSE) [7]. These groups differ in ecological aspects, such as host colonization patterns, mechanism of transmission and biodiversity levels [7], but both are capable of extensive tissue colonization and appear to be of particular relevance for plant survival in stress habitats [8,9,5,10]. Although the study of endophytic fungal communities in plants has gained attention in recent years, little is known about the diversity and composition of endophytic fungi associated with agricultural crops [11,12].

Desert habitats represent one of the most challenging environments for the growth of plants [13], whose distribution and diversity are restricted by environmental stresses, including low water availability and high temperatures, salinity and irradiance. The Atacama Desert of Northern Chile is considered to be one of the driest regions of the world [14]. It is a severe environment for plant growth due to its high salinity, low temperatures and drought. The pseudo-cereal *Chenopodium quinoa* is a native crop well-adapted to the harsh climatic conditions of the Atacama Desert. Quinoa is an important food source in the Andean region since 3000 BCE [15]. Recently, this crop plant has gained attention due to its high nutritional value, being considered an important crop with the potential of contributing to food security worldwide [16].

The goal of this study was to investigate the fungal endophyte community associated with the roots of *C. quinoa* growing near the Salt Lake of the Atacama Desert, Chile. We isolated and identified root-associated endophytic fungi of *C. quinoa* plants by the amplification of the internal transcribed spacer (ITS) region of fungus genomic DNA. This study is the first research performed in Chile that provides data on the relationship between *C. quinoa* and its endosymbiotic microbes.

2. Methods

2.1. Studied species

C. quinoa Willd. (Amaranthaceae) is a gynoecious annual plant with an erect stem. It bears alternate leaves that are variously coloured due to the presence of betacyanins. The inflorescence is a panicle, 15–70 cm in length, rising from the top of the plant and from the axils of lower leaves [17]. Quinoa is mainly cultivated in the Andean highlands and lowlands of Bolivia, Peru, Chile and Argentina. Root samples were collected from the plants of *C. quinoa* growing close to the Village of...
Socaire (23°36′00″ S and 67°50′60″ W), situated 3,500 m above sea level, 50 km East of the Salt Lake of the Atacama Desert. The climate is characterized as extreme arid [13]. Daily temperatures range from a maximal average of 24.5 °C to a minimum average of 7.1 °C and the mean annual precipitation is 18 mm [18].

2.2. Isolation of fungal endophytes

Six plants of C. quinoa were randomly selected for root collection in March 2015. Plant roots without visible damage were collected. Primary and secondary roots were washed under running tap water to remove soil debris and then surface-sterilized with ethanol (70%) for 3 min, sodium hypochlorite (1%) for 1 min, followed by three rinses in sterile distilled water for 3 min each. The success of surface sterilization was confirmed by the absence of any microbial growth from the waterwash on PDA plates (potato-dextrose-agar, Phyto Technology Laboratories). Small sections of sterilized roots (0.5–1.0 cm) were subsequently cultivated on PDA petri dishes plates. Plates were then incubated at room temperature for 3–4 weeks. After that time, emerging colonies were subcultured to obtain pure isolates. Fungal isolates were first grouped according to similar morphological characteristics. From those fungi that belonged to the same genus, only three pure isolates were considered for DNA extraction. Pure isolates were grown on PDA plates at room temperature for one month before DNA extraction and molecular identification.

2.3. Molecular characterization of endophytes

Genomic DNA was extracted from the mycelial mat of 45 pure isolates using the method described by Nicholson [19] with slight modifications. Species identification of endophytic fungi was performed using the primers ITS1-F-KY01 (CTHGGCTATTAGGAASTAA) and ITS4 (TCTCCGCTATTGATATGC). Amplification of the ITS regions (around 680 kbp) was conducted with 50 mL of PCR reaction mixtures, each containing 7 μL of total fungal genomic DNA, 1 μL of each primer (10 μM), 27.5 μL of SapphireAmp Fast PCR Master Mix (Takara) and 13.5 μL of sterilized water. PCR was performed in a Techne TC-5000 Thermal Cycler (Fisher Scientific) with the following program: 94 °C for 3 min, followed by 35 cycles of denaturation at 94 °C for 1 min, annealing at 54 °C for 30 s and primer extension at 72 °C for 1 min, completed with a final extension at 72 °C for 7 min. PCR products were sent to Macrogen (South Korea) for purification and sequencing. Sequences were assembled using SeqTrace software. Consensus sequences were used for BLAST search at the NCBI (http://www.ncbi.nlm.nih.gov).

Sequences alignments and phylogenetic tree were constructed by using MEGA software, version 7.0 [20]. Alignments were performed with ClustalW [21], DNA weight matrix ClustalW 1.6 and default parameters. Phylogenetic reconstruction was performed by using neighboring method [22], with p-distance substitution model and bootstrapping of 1000. Additional 18S rRNA sequences for the different genera were found in rare instances, with frequencies between 1% and 5% (Fig. 1).

The phylogenetic tree (Fig. 2) showed eleven clades representing different genera as follows: Phoma, Alternaria, Rhinocladiella, Cadophora, Plectosphaerella, Penicillium, Bartalina, Coniochaeta, Neocentria, Fusarium, Sarcocladium, and Plectosphaerella. The first clade contained ten sequences, which cluster with sequences from Phoma genera obtained from NCBI (ID: KF367492, KF367493, and KT989566) at 94% of bootstrap. The second clade was comprised by the genus Alternaria, which contains seven endophyte sequences, grouped with 93% of bootstrap to sequences from Alternaria and Alternaria sp. obtained from NCBI (ID: LC131449, LC131448, and GUS84948). The third clade contained one endophyte sequence that grouped with 100% bootstrap to Rhinocladiella sequences obtained from NCBI (ID: KF811429, HE608796, and KU555990.1 85).

Table 1

Phylum Order Description Accession Identity
Ascomycota Pleosporales Alternaria alternata KK355190.1 99
Ascomycota Pleosporales Alternaria sp. KR094462.1 100
Ascomycota Xylariales Bartalina robliardoides NR_1261645.2 99
Ascomycota Undefined Cadophora malarum JQQ796752.1 99
Ascomycota Coniochaetales Coniochaeta sp. KF367563.1 99
Ascomycota Pleosporales Embellisia sp. JN853773.1 99
Ascomycota Hypocreales Fusarium accuminatum KR051403.1 100
Ascomycota Hypocreales Fusarium avenaceum KT961799.1 100
Ascomycota Hypocreales Fusarium oxysporum KU059956.1 99
Ascomycota Hypocreales Fusarium sambucinum KM231813.1 98
Ascomycota Hypocreales Fusarium sp. KF727426.1 99
Ascomycota Hypocreales Fusarium tricinctum KF913341.1 99
Ascomycota Hypocreales Neocentria macrodysidia FR877539.1 99
Ascomycota Eurotiales Penicillium brevicompactum LT558911.1 99
Ascomycota Eurotiales Penicillium minioluteum JP010284.1 94
Ascomycota Eurotiales Penicillium murcianum NR_138358.1 99
Ascomycota Eurotiales Penicillium sp. HQ631007.1 99
Ascomycota Eurotiales Phoma sp. KF367493.1 99
Ascomycota Eurotiales Plectosphaerella sp. KU553590.1 85
Ascomycota Eurotiales Rhinocladiella similis KF132562.1 98
Ascomycota Hypocreales Sarcocladium spinificis KF690506.1 98

Fig. 1. Frequency of endophytes taxa isolated from healthy roots of plants of Chenopodium quinoa growing in the Atacama Desert.
sequences with 100% bootstrapping to the NCBI clade, we clearly observed two sub-clades. The NCBI (ID: HM589226, KF646089, and JQ796752). In the 100% bootstrapping to KC254071). Following, we observed one endophyte that grouped with Penicillium sequence (ID: NR138358). The second sub-clade contained one endophyte sequence that grouped with Fusarium oxysporum sequences obtained from NCBI (ID: EU839369, KU872840) with 95% of bootstrapping, which allows to classify the endophyte in this species. The second sub-clade comprised seven endophyte sequences, which were grouped with 98% bootstrapping to Fusarium sp. sequences obtained from NCBI (ID: KF727426, KUS164666, and KTED8939). The last two clades showed 100% of bootstrapping. One of them contained one endophyte sequence grouped to Sarocladium sp. sequences retrieved from NCBI (ID: KF269096, KP968451, and KP968441). The last clade comprised one endophyte sequence, and Plectosphaerella cucumerina sequences obtained from NCBI (ID: KU555990, KUS30731, and KUS300698), allowing classification of the endophyte to species level.

Fig. 2. Neighbor Joining (NJ) tree showed phylogenetic relationship between 45 sequences of endophytic fungi from Ascomycota phylum, based on the ITS rDNA sequences. NCBI sequences were added for showing clades. Bootstrap 1000, values are shown at the branch nodes.

KC254071). Following, we observed one endophyte that grouped with 100% bootstrapping to Cadophora malorum sequences retrieved form NCBI (ID: HM589226, KF646089, and JQ796752). In the Penicillium clade, we clearly observed two sub-clades. The first sub-clade contained sequences with 100% bootstrapping to the NCBI P. murcianum sequence (ID: NR138358). The second sub-clade showed 96% bootstrapping to the P. minioluteum sequence (ID: EU833222). Another clade contained one endophyte sequence that grouped with Bartalinea robillardoides sequences obtained from NCBI with 100% bootstrapping (ID: FR822822, KT269525, and NR126145). The next clade comprises sequences belonging to the Coniochaeta genera obtained from NCBI (ID: KF367658, KF367656, and KF367562) and one endophyte, with a 100% of bootstrapping. The next clade contained one endophyte that grouped with 99% bootstrapping to Neonectria sequences obtained from NCBI (ID: QQ131876, QQ131875, and FR877539). The following clade was divided in two sub-clades, one of them containing four endophyte sequences that grouped to Fusarium oxysporum sequences retrieved from NCBI (ID: EU839369, KU872840) with 95% of bootstrapping, which allows to classify the endophyte in this species. The second sub-clade comprised seven endophyte sequences, which were grouped with 98% bootstrapping to Fusarium sp. sequences obtained from NCBI (ID: KF727426, KUS164666, and KTED8939). The last two clades showed 100% of bootstrapping. One of them contained one endophyte sequence grouped to Sarocladium sp. sequences retrieved from NCBI (ID: KF269096, KP968451, and KP968441). The last clade comprised one endophyte sequence, and Plectosphaerella cucumerina sequences obtained from NCBI (ID: KU555990, KUS30731, and KUS350698), allowing classification of the endophyte to species level.

4. Discussion

All OTUs described in this study belong to the Ascomycota, which usually is the predominant root-colonizing fungal group [23,24]. These data support earlier findings showing that root-associated fungal community is diverse for many plant species [25,26,5], nevertheless, only a few species dominate the community [27,5]. Even though the taxonomical classification of DSE has not been well defined yet [7], Penicillium, Phoma and Fusarium, which are the most abundant fungi occurring in C. quinoa roots, have been described as class II endophytes [7]. Further microscopic analysis is required to thoroughly investigate the presence of DSE in roots of C. quinoa.

In desert environments fungal endophyte communities usually appear to be diverse [5,24]. It has been proposed that heterogeneous conditions of desert ecosystems may be responsible for the high diversity of fungal communities in these habitats [28,29]. Considering the increase evidence showing that fungal endophytes improve tolerance to drought conditions [30–32], association of quinoa plants with an array of fungi might be of crucial importance for its survival under the extreme environmental conditions of the Atacama Desert.

Sequencing of the amplified endophyte ITS regions allowed the identification of all the isolates to the genus level, and in several cases enabled us to assign the species classification based on nucleotides conservation. Examples are the sequence Q1 that had a 99% of identity to Fusarium oxysporum sp. sequences obtained from NCBI (ID: KF727426, KUS164666, and KTED8939), another study on fungal root symbionts in roots of Bolivian Andean quinoa. Seque
quinoa plants revealed that fungal endophyte presence was negligible [37]. The present study is the first report on the fungal endophyte community present in Chilean quinoa variety. It highlights the importance of considering root-endophytic fungi as a new additional player, together with endophytic bacteria [36], which promote quinoa’s resistance to high-stress environmental conditions.

In Chile, there is a lack of information about endophytic fungi associated with plant roots [37], and about the potential benefits that endophytic fungi can provide to their host plants. Quinoa is well adapted to severe environmental conditions, including extreme aridity [38], low temperatures [39,40] and high salinity [41]. Further experimental studies are required to elucidate the effects of root endophytic fungi on plant tolerance of *C. quinoa* to high-stress environmental conditions.

5. Conclusion

Data here showed a relatively high diversity of endophytic fungi associated with roots of *C. quinoa*. The fungal community was dominated by only three fungal genera: *Penicillium*, *Phoma* and *Fusarium*, which are common endophytes reported in plant roots. This study provided information that roots of *C. quinoa* harbor a diverse group of endophytic fungi, which might play potential roles on plant host tolerance to stressful conditions.

Funding

This work was partially supported by Fondecyt grants No. 11130039 (MG-T) and No. 11130460 (LB-G).

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

We are very grateful to Mónica Cisternas, Andrea Morales and Carolina Murciano for their valuable help in the lab.

References

[1] J. Dighton, J.J. White, P. Oudemans, The Fungal Community: Its Organization and Role in the Ecosystem, Taylor & Francis Group, CRC Press, Boca Raton, FL, 2005.

[2] K. Andala, K.R. Sridhar, Diversity of endophytic fungi in the roots of mangrove species on west coast of India. Can. J. Microbiol. 48 (2002) 871–878.

[3] H.H. Khidir, D.M. Eudy, A. Porras-Alfaro, J. Herrera, D.O. Natvig, R.L. Sinsabaugh, A. Porras-Alfaro, J. Herrera, R.L. Sinsabaugh, A. Jumpponen, J.M. Trappe, Dark septate endophytes: a review of facultative biotrophic root colonizing fungi. New Phytol. 140 (1998) 295–310.

[4] J. Wehner, J.R. Powell, L.A.H. Muller, T. Caruso, S.D. Veresoglu, S. Hempel, M.C. Rillig, Determinants of root-associated fungal communities within Asteraceae in a semiarid grassland. J. Ecol. 102 (2014) 425–436.

[5] A. Porras-Alfaro, P. Bayman, Hidden fungi, emergent properties: endophytes and plant microbiomes. Annu. Rev. Phytopathol. 49 (2011) 295–315.

[6] H. Toju, S. Yamamoto, H. Sato, A. Tanabe, G. Gilbert, K. Kadowaki, Community composition of root-associated fungi in a semiarid grassland. J. Arid Environ. 74 (2010) 35–50.

[7] K.K. Newsham, A meta-analysis of plant responses to dark septate endophytes in polar regions. Fungal Ecol. 2 (2009) 10–20.

[8] A. Porras-Alfaro, J. Herrera, R.L. Sinsabaugh, K.J. Odenbach, T. Lowrey, D.O. Natvig, Novel root fungal consortium associated with a dominant desert grass. Appl. Environ. Microbiol. 74 (2008) 2805–2813.

[9] H. Toju, S. Yamamoto, H. Sato, A. Tanabe, G. Gilbert, K. Kadowaki, Community composition of root-associated fungi in a *Quercus* dominated temperate forest: codominance of mycorrhizal and root-endophytic fungi. Ecol. Evol. 3 (2013) 1281–1293.

[10] R.J. Rodríguez, J.F. White Jr., A.E. Arnold, et al., Fungal endophytes: Diversity and functional roles. New Phytol. 182 (2009) 314–330.

[11] J. Crozier, S.E. Thomas, M.C. Ame, H.C. Evans, K.A. Holmes, Molecular characterization of fungal endophytic morphospecies isolated from stems and pods of *Theobroma cacao*. Plant Pathol. 55 (2006) 783–791.

[12] K.K. Newsham, A meta-analysis of plant responses to dark septate root endophytes. New Phytol. 190 (2011) 783–793.

[13] R.J. Rodríguez, R.S. Redman, J.M. Henson, The role of fungal symbioses in the adaptation of plants to high stress environments. Mitig. Adapt. Strateg. Glob. Chang. 9 (2004) 261–272.

[14] A.L. Khan, M. Hamayun, N. Ahmad, J. Hussain, S.M. Kang, Y.H. Kim, M. Adnan, D.C. Tang, M. Waqas, R. Radhakrishnan, Y.H. Hwang, J.L. Lee, Salinity stress resistance offered by endophytic fungal interaction between *Penicillium minioluteum* LH09 and *Glycine max*. L. J. Microbiol. Biotechnol. 21 (2011) 893–902.

[15] L. Zakaria, M.J. Jamil, I.S. Anuar, Molecular characterisation of endophytic fungi from roots of wild banana (*Musa acuminate*). Trop. Life Sci. Res. 27 (2016) 153–162.

[16] I. Noy-Meir, Desert ecosystems: Environment and producers. Annu. Rev. Ecol. Syst. 4 (1973) 25–51.

[17] J.A. Erkine, Antiquity of aridity in the Chilean Atacama Desert. Geomorphology 73 (2006) 101–114.

[18] M. Tapia, The Environment, Crops and Agricultural Systems in the Andes of South America. J. Arid Environ. 74 (2010) 35–46.

[19] T.P. Nicholson, B.A.M. Rudd, M.J. Dawson, C.M. Lazarus, T.J. Simpson, R.J. Cox, Design and utility of oligonucleotide gene probes for fungal polyketide synthases. Chem. Biol. 8 (2001) 157–178.