Type B Chloramphenicol Acetyltransferases Are Responsible for Chloramphenicol Resistance in Riemerella anatipestifer, China

Li Huang1,2, Hui Yuan1,2, Ma-Feng Liu2,3, Xin-Xin Zhao2,3, Ming-Shu Wang2,3, Ren-Yong Jia1,2, Shun Chen2,3, Kun-Feng Sun2,3, Qiao Yang2,3, Ying Wu2,3, Xiao-Yue Chen1,2, An-Chun Cheng1,2 and De-Kang Zhu1*

1Research Center of Avian Diseases, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China, 2Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China, 3Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China

Riemerella anatipestifer causes serositis and septicaemia in domestic ducks, geese, and turkeys. Traditionally, the antibiotics were used to treat this disease. Currently, our understanding of \textit{R. anatipestifer} susceptibility to chloramphenicol and the underlying resistance mechanism is limited. In this study, the \textit{cat} gene was identified in 69/192 (36\%) \textit{R. anatipestifer} isolated from different regions in China, including \textit{R. anatipestifer} CH-2 that has been sequenced in previous study. Sequence analysis suggested that there are two copies of \textit{cat} gene in this strain. Only both two copies of the \textit{cat} mutant strain showed a significant decrease in resistance to chloramphenicol, exhibiting 4 \(\mu\)g/ml in the minimum inhibitory concentration for this antibiotic, but not for the single \textit{cat} gene deletion strains. Functional analysis of the \textit{cat} gene via expression in \textit{Escherichia coli} BL21 (DE3) cells and \textit{in vitro} site-directed mutagenesis indicated that His79 is the main catalytic residue of CAT in \textit{R. anatipestifer}. These results suggested that chloramphenicol resistance of \textit{R. anatipestifer} CH-2 is mediated by the \textit{cat} genes. Finally, homology analysis of types A and B CATs indicate that \textit{R. anatipestifer} comprises type B3 CATs.

\textbf{Keywords:} Riemerella anatipestifer, chloramphenicol acetyltransferase, antibiotics resistance, homologous recombination, site-directed mutagenesis

\section*{INTRODUCTION}

\textit{Riemerella anatipestifer} is a gram-negative, non-flagellar bacterium belonging to the \textit{Flavobacteriaceae} family of bacteroidetes that causes serositis and septicaemia in domestic ducks, geese, and turkeys. Currently, the fatality rate of \textit{R. anatipestifer}-infected ducks has reached up to 75\%, thereby resulting in significant economic losses in the duck industry (Ruiz and Sandhu, 2013).

The extensive use of antibiotics for the treatment and prevention of serositis and septicaemia has resulted in multi-drug resistance in \textit{R. anatipestifer} (Zhong et al., 2009). It was found that 40.5\% of \textit{R. anatipestifer} strains were resistant to chloramphenicol (Chen et al., 2010). Based on the reported whole genome sequence of \textit{R. anatipestifer} (GenBank accession number: CP004020) (Wang et al., 2014), we searched for resistance genes in \textit{R. anatipestifer} CH-2 in the Comprehensive Antibiotic Resistance Database (Aakra et al., 2010). We have identified two copies of the \textit{cat} gene in \textit{R. anatipestifer} CH-2, namely, G148_1769 and G148_1772.
The cat gene encodes chloramphenicol acetyltransferases (CATs) that inactivate the drugs chloramphenicol, thiamphenicol, and azidamfenicol by acetylation, which is the most common mechanism conferring chloramphenicol resistance in bacteria (Schwarz et al., 2004). However, CAT did not inactivate florfenicol because of the replacement of the hydroxyl group at C3 by a fluor residue, and the acceptor site of the acetyl groups was structurally altered in florfenicol (Schwarz et al., 2004). In addition to acetylation inactivation of chloramphenicol, other enzymatic inactivation mechanisms, such as O-phosphorylated (Mosher et al., 1995) and hydrolysis reaction have been identified (Mosher et al., 1990; Tao et al., 2012). Moreover, resistance to chloramphenicol may also be due to mutations/modifications of the target site (Montero et al., 2007), decreased outer membrane permeability (Burns et al., 1989), and the presence of efflux pumps that often act as multidrug extrusion transporters (Daniels and Ramos, 2009), thereby reducing the effective intracellular drug concentration.

In this study, the cat gene was identified in 69/192 (36%) R. anatipestifer isolated from different regions in China by PCR. In order to verify whether cat gene was responsible for chloramphenicol resistance in R. anatipestifer, we constructed the cat gene deletion strains, complement strains and assessed the protein enzyme activity.

MATERIALS AND METHODS

Bacterial Strains, Plasmids, and Growth Conditions

The bacterial strains and plasmids in this study are listed in Table 1. R. anatipestifer strains were grown at 37°C in tryptic soybean broth (TSB, Oxoid) or tryptic soy agar (TSA, Oxoid) in an atmosphere of 5% CO₂. Escherichia coli (E. coli) strains were grown on Luria-Bertani (LB, Oxoid) broth or agar at 37°C. When required, antibiotics were added at the following final concentrations (µg/ml): Chloramphenicol (Cm, Sigma), 25; cefotaxin (Cfx, Sigma), 1; kanamycin (Kan, Sigma), 100; ampicillin (Amp, Sigma), 100 or spectinomycin (Spc, Sigma), 70. Diaminopimelic acid (DAP, 50 µg/ml) to E. coli X7213αpir cultures (Edwards et al., 1998).

Detection of the cat Gene in R. anatipestifer Isolates

For this study, 192 R. anatipestifer isolates were collected from different regions of China. All isolates were identified using the Biolog Microbial Identification System (Biolog, Hayward, CA, USA), as well as PCR and biochemical analyses (data not shown). After lysing the bacteria in lysis buffer (0.5% NP-40, Sigma; 200 ng/ml protease K, Takara Biotechnology Co., Ltd. Dalian, China), the presence of the cat gene was determined by PCR analysis using primers cat-F1 and cat-R1 (Table 2).

Construction of R. anatipestifer CH-2 cat Deletion Mutants and Generation of catH79A Mutant

The cat genes were deleted by homologous recombination using a suicide vector pRE112 (Kong et al., 2011) as described previously (Luo et al., 2015). Briefly, the right flanking sequence (~620 bp) and the left flanking sequence (~620 bp) of the target genes G148_1769 and G148_1772 were amplified using primers 1769up-F and 1769up-R, 1769down-F and 1769down-R, 1772up-F and 1772up-R, and 1772down-F and 1772down-R, respectively (Table 2). The 1,145 bp SpcR cassette and the 1,192 bp CfxR cassette were amplified from plasmid pYES1 (Luo et al., 2015) and pLMF01 (Liu et al., 2016) using primers Spc-F, Spc-R and Cfx-F, Cfx-R, respectively (Table 2). The SpcR cassette and the CfxR cassette were used for deletion of G148_1769 and G148_1772, respectively. The PCR fragments were overlapped using the PCR method (Xiong et al., 2006). The fused PCR fragments were ligated to suicide plasmid pRE112, respectively, to produce pRE112: 1769USD (SpcR) and pRE112: 1772UCD (CfxR). Subsequently, the recombinant plasmids were introduced into R. anatipestifer CH-2 by conjugation as described previously (Liao et al., 2015). The transconjugants were selected on TSA plates supplemented with Spc (40 µg/ml) or Cfx (1 µg/ml). The gene-deletion mutant strains, which were designated as RA-CH2Δ1769, RA-CH2Δ1772, and RA-CH2Δ1769Δ1772, were identified by PCR analysis.

The catH79A mutant was constructed by in vitro site-directed mutagenesis. The upstream and downstream mutated regions of the cat gene of R. anatipestifer CH-2 amplified using primers MF1, MR1 and MF2, MR2 his, respectively (Table 2). The fragments were fused by overlap extension PCR to yield the mutant gene catH79A.

Construction of the Recombinant Vector for Complementation and Expression

Complete cat and catH79A genes were amplified by PCR from R. anatipestifer CH-2 chromosomal DNA and by in vitro site-directed mutagenesis using primers catF2 and catR2, catF2, catR2, MR1 and MF2, catR2 (Table 2), for complementation. Complete cat and catH79A genes were amplified by PCR from R. anatipestifer CH-2 chromosomal DNA and by in vitro site-directed mutagenesis using primers MF1 and MR2 his, MF1, MR1 and MF2, MR2 his, respectively (Table 2), for expression of CAT and CATH79A proteins. The complementation fragments were purified and digested with NcoI and XhoI, and ligated to the pLMF02 plasmid digested with NcoI and XhoI. The expression fragments were purified and digested with NdeI and XhoI, and ligated with the pET30a plasmid digested with corresponding restriction endonucleases. The ligation mixtures were introduced into CaCl₂-competent DH5α cells. Transformants were screened by PCR, and positive clones were sequenced.

Construction of R. anatipestifer ATCC 11845 Cat and CatH79A Complementary Strains

The plasmids, pLMF02, pLMF02:: cat, and pLMF02:: catH79A, were introduced into R. anatipestifer ATCC 11845, respectively, by the method described previously (Liao et al., 2015). The transconjugants were selected on TSA plates supplemented with Cfx (1 µg/ml) and Kan (40 µg/ml). The complementation strains, RA-ATCC11845 (pLMF02), RA-ATCC11845 (pLMF02::
TABLE 1 | Strains and plasmids used in this study.

Strains	Description	Source or reference
Riemerella anatipestifer ATCC 11845	Serotype 6	ATCC
R. anatipestifer CH-2	Serotype 2	Laboratory collection
RA-CH2a,1769	RA-CH2a,1769, Spc^R	This study
RA-CH2a,1772	RA-CH2a,1772, Cfx^R	This study
RA-CH2a,1769Δ1772	RA-CH2a,1769Δ1772, Spc^R, Cfx^R	This study
RA-ATCC11845 (pLMF02)	*R. anatipestifer* ATCC11845 carrying pLMF02, Amp^R, Cfx^R	This study
RA-ATCC11845 (pLMF02:: cat)	*R. anatipestifer* ATCC11845 carrying pLMF02:: H79A, Amp^R, Cfx^R	This study
RA-ATCC11845 (pLMF02:: cat^H79A)	*R. anatipestifer* ATCC11845 carrying pLMF02:: cat^H79A	This study

Escherichia coli strains	Description	Source or reference
X7232	endA1 hisdR17 (pC[m^M]_I) glnV44 thi-1 recA1 gyrA relA1Δ(lacZYA-argF)U169pir deoR (Φ80dΔlac Δ(lacZ)M15)	Roland et al., 1999
X7232 (pRE112:: 1769USD)	*E. coli* X7232 pRE112:: 1769USD, Spc^R Cm^R	This study
X7232 (pRE112:: 1772UCD)	*E. coli* X7232 pRE112:: 1772UCD, Cfx^R Cm^R	Roland et al., 1999
X7213	thi-1 thr-1 leuB6 glnV44 fhuA21 lacY1 recA1 RP4-2-Tc:: Mu asdA4 Δzhf-2:: Tn10	This study
X7213 (pRE112:: 1769USD)	*E. coli* X7213 pRE112:: 1769USD, DAP, Spc^R Cm^R	This study
X7213 (pRE112:: 1772UCD)	*E. coli* X7213 pRE112:: 1772UCD, DAP Cfx^R Cm^R	This study
BL21 (DE3)	*E. coli* BL21 (DE3), expressing host cell	Laboratory collection
BL21 (DE3) (pET30a)	*E. coli* BL21 (DE3) carrying pET30a, Kan^R	This study
BL21 (DE3) (pET30a:: cat-s)	*E. coli* BL21 (DE3) carrying pET30a:: cat-s, Kan^R	This study
BL21 (DE3) (pET30a:: cat^H79A)	*E. coli* BL21 (DE3) carrying pET30a:: cat^H79A, Kan^R	This study
S17-1	Thr-1 thr leu tonA Y supE recA::RP4-2-Tc:: Mu Kan^R	Miller and Mekalanos, 1988
S17-1 (pLMF02)	S17-1 carrying pLMF02, Amp^R Cfx^R	This study
S17-1 (pLMF02:: cat)	S17-1 carrying pLMF02:: cat, Amp^R Cfx^R	This study
S17-1 (pLMF02:: cat^H79A)	S17-1 carrying pLMF02:: cat^H79A, Amp^R Cfx^R	This study

Plasmids	Description	Source or reference
pET30a	pBR322 lacZ, IPTG-inducible promoter, Kan^R	Laboratory collection
pET30a:: cat-s	pET30a carrying cat adding his tag from *R. anatipestifer* CH-2, Kan^R	This study
pET30a:: cat^H79A-s	pET30a carrying cat^H79A adding his tag from *R. anatipestifer* CH-2, Kan^R	This study
pLMF02	shuttle vector transferred between *E. coli* and *R. anatipestifer* Amp^R, Kan^R	Liu et al., 2016
pLMF02:: cat	pLMF02 carrying cat from *R. anatipestifer* Amp^R, Cfx^R	This study
pLMF02:: cat^H79A	pLMF02 carrying cat^H79A, Amp^R Cfx^R	This study
pYES1new	YAC-BAC shuttle plasmid with Spc^R	Laboratory collection
pRE12	sacB mobRP4 R6K ori Cm^R, pRE12-T-vector	Laboratory collection
pRE12:: 1769USD	pRE12 carrying 1769USD from *R. anatipestifer* CH-2 and plasmid pCP29, Cfx^R	This study
pRE12:: 1772UCD	pRE12 carrying 1772UCD from *R. anatipestifer* CH-2 and plasmid pCP29, Cfx^R	This study

ATCC: American Type Culture Collection.

cat), and RA-ATCC11845 (pLMF02:: cat^H79A), were identified by PCR analysis.

Expression and Purification of CAT and CAT^H79A* His-Tagged Proteins

Strains *E. coli* BL21 (DE3) (pET30a:: cat-s) and *E. coli* BL21 (DE3) (pET30a:: cat^H79A-s) were grown overnight in LB medium containing Kan (100 μg/ml). Stationary-phase cultures were diluted to an OD₆₀₀ of 0.05 in 500 ml of LB medium containing Kan (100 μg/ml) and incubated with shaking at 37°C until the culture density reached an OD₆₀₀ of 0.6. Cells were then induced with 0.4 mM of isopropyl β-D-1-thiogalactopyranoside (IPTG) and reincubated at 37°C. The cells were harvested by centrifugation for 10 min at 8,000 rpm at 4°C, and then the pellet was resuspended in lysis buffer (20 mM Tris-HCl, pH 8.0; 50 ml) and sonicated. The cell lysate was clarified.
by centrifugation to eliminate cell debris and then applied to a metal affinity resin column that was equilibrated with the same buffer. The column was successively washed with buffers containing 20 mM, 50 mM imidazole, and phosphate buffer (pH 4.4 and 5.0, respectively). Recombinant proteins were ultrafiltered with storage buffer (20 mM Tris-HCl, pH 7.8).

Determination of mRNA Levels of the cat Gene by Real-Time PCR (RT-PCR) Analysis

To assess whether the cat gene of *R. anatipestifer* was regulated by chloramphenicol, the wild-type strain was grown with TSB with or without 1 µg/ml of chloramphenicol. Total RNA was isolated from strains grown to log phase (OD_600_ ≈ 0.8–1.0) by using the RNAiso Plus kit (TaKaRa). DNA was removed using RNase-Free DNase. cDNA was generated by using the Senscript RT kit (TaKaRa), according to the manufacturer’s instructions. Real-time quantitative PCR (qPCR) was performed to measure cat mRNA levels using SYBR Premix EX Taq II (TaKaRa). The primers used in real-time qPCR analysis are listed in Table 2. The expression level of the cat gene was normalized to that of the recA gene, which was used as a reference. All PCR reactions were performed in triplicate. The efficiency of primer binding was determined by linear regression by plotting the cycle threshold (CT) value vs. the log of the cDNA dilution. Relative quantification of the transcript was determined using the comparative CT method (2^(-ΔΔCT)), calibrated to recA. The experiments were performed multiple times independently and generated comparable results. The findings are presented as fold-change relative to the mRNA expression levels of the control strains.

Table 2 | Primers used in this study.

Primers	Description	Source and reference
1769up-F	5′-ATTCCAGTTTTTCAAAATCTCAATCTCCCTA-3′	This study
1769up-R	5′-CTGTCCTGCTGTGATATTCAATTCATTTAAATTTAACATTA-3′	This study
Spc-F	5′-ATATGTAAATACCGACGCCGCAAGAAATGCG-3′	This study
Spc-R	5′-CTCTTTTTTATTTTTGCGGACTACCTTGGTGA-3′	This study
1769down-F	5′-CCGCAATAATAAAAAGGAGGTCCGGAAAAT-3′	This study
1769down-R	5′-TTGATGGCATTTGCGCACTAT-3′	This study
1769dent-F	5′-TTTCGGAAGAACCGGCTAA-3′	This study
1769dent-R	5′-CAAAGTGTTTCCGCGCGT-3′	This study
1769Big-F	5′-TACCTAACCGCGGATTTCGCA-3′	This study
1769Big-R	5′-AAGGAGCCAGCCAAGGACTG-3′	This study
1772up-F	5′-ATTCTCCAAGATCGGATCTGTTGAAATTTTATAATATATTTATGATTTTAATAAATTTAACATATTA-3′	This study
1772up-R	5′-GCTTGCGGCTCAATTATATATTATCATATATTATAACATATTTAACATATTTAACATT-3′	This study
Cfx-F	5′-ATATGTGTTAATATATGACCCCGGGAAGGCTG-3′	This study
Cfx-R	5′-GAACCTTTTATTTATTAAAGATTAAAAATTTACTGAAATTGCCATT-3′	This study
1772down-F	5′-TTCAATCGAAATTTTTAATGGAAGGAGGTCCGGAAAATC-3′	This study
1772down-R	5′-CTTATCAAACTGTTTTTGTGCGAC ACAACCTTAC-3′	This study
1772dent-F	5′-ATTTTGACGGATTTATTAGTTGTT-3′	This study
1772dent-R	5′-TTCCGTATAAGCTTCTGCAATAATTTTTAAATTTAACATTA-3′	This study
1772Big-F	5′-AATTTTGACGTTAATACCGCGC-3′	This study
1772Big-R	5′-ACTACGTCGACACATCGATGTTG-3′	This study
16SrRNA-F	5′-CGAAAGTGAATAAGTTACCGCGGACCT-3′	This study
16SrRNA-R	5′-GCAAGAACCCTTGAATAATGCGGCGCC-3′	This study
cat-F1/MF1	5′-GGGAAATTCCTATGGAATTTCCTGCAAAAGTC-3′	This study
cat-R1/MR2	5′-CCGCTCGAGTCAATGTGCGTGTGGTGTGGTGGTGTGGTGCATTATTTTCGAAACCTTAC-3′	This study
MR1	5′-ATATTTACCCGATTTGACGCGC-3′	This study
MF2	5′-GTAATCAAAGGCGTCAATATGATTG-3′	This study
cat-F2	5′-CATGCGCATGAGTGAATTTCTCTGCGAAATGTC-3′	This study
cat-R2	5′-CGGCTCGAGTCAATTTTCGTTTAAAAAACCTTAC-3′	This study
CAT Activity Assay
CAT catalyzes the transfer of an acetyl group from acetyl-CoA to Cm, producing acetylated Cm and CoASH. The CATase activity was assayed based on the disappearance of acetyl-CoA during Cm acetylation (Kobayashi et al., 2015). The reaction mixture contained 0.25 ml of 0.2 M Tris-HCl (pH 7.8), 0.05 ml of 1 mM acetyl-CoA, 0.05 ml of 1 mM Cm, 0.05 ml of 10 mM DTNB [5,5-dithio-bis (2-nitrobenzoic acid)], and 0.1 ml enzyme extract. The reaction was initiated by the addition of Cm. An increase in absorbance at a wavelength of 412 nm, which arises from 5-thio-2-nitrobenzoic acid, was determined using its molar extinction coefficient at 412 nm (13,600 M$^{-1}$ cm$^{-1}$). The value was then used in the determination of the amount of CoASH produced during the reaction. One unit of enzyme activity is defined as the amount of activity catalyzing 1 µmol of acetyl transfer per min under the assay conditions.

Softwares
The changes of mRNAs were expressed as fold expression and calculated using the comparative CT ($2^{-\Delta\Delta CT}$) method. The error bars represent the standard deviation of three independent experiments.

RESULTS
Identification and Sequence Analysis of the cat Gene in R. anatipestifer Isolates
The cat gene was identified in 69/192 (36%) R. anatipestifer isolates collected from China, thereby suggesting that the cat gene was widely distributed among R. anatipestifer strains. Sequence analysis found that there are two copies of the cat gene (G148_1769: 1854900...1855529 and G148_1772: 1858427...1859056) in R. anatipestifer CH-2. There is no similarity between the cat gene from R. anatipestifer CH-2 and type A cat genes previously reported. However, the cat genes share 99–100% identity in R. anatipestifer strains reported in NCBI.

MIC of Chloramphenicol for R. anatipestifer CH-2 and Other Strains
To verify whether the cat genes of R. anatipestifer CH-2 were responsible for chloramphenicol resistance, the deletion strains and complementation strains were constructed. Table 3 showed that the chloramphenicol MICs of R. anatipestifer CH-2 and RA-CH2Δ1769 were 32 and 64 µg/ml, respectively. Compared to the MIC of the wild-type strain, the MIC of RA-CH2Δ1769 increased (Table 3). Similarly, another signal cat gene deletion strain RA-CH2Δ1772 had no obviously decreased in resistance to chloramphenicol, exhibiting 32 µg/ml in the minimum inhibitory concentration for chloramphenicol (Table 3). Thus, we supposed that the two copies of cat gene in R. anatipestifer CH-2 were involved in chloramphenicol resistance. The two copies of the cat gene deletion strain RA-CH2Δ1769Δ1772 was constructed. The level of chloramphenicol resistance was determined to be significantly reduced, 4 µg/ml.

To further verify that the cat genes are related to chloramphenicol resistance in R. anatipestifer, shuttle plasmid pLMF02 with the cat gene was introduced into R. anatipestifer ATCC 11845, which is sensitive to chloramphenicol. It was restored the level of chloramphenicol resistance (Table 3). These results strongly suggested that the cat gene was responsible for chloramphenicol resistance in R. anatipestifer.

The Transcription of cat Gene Was Increased in RA-CH2Δ1769
According to the study described above, the minimum inhibitory concentrations for chloramphenicol between RA-CH2Δ1769 and RA-CH2Δ1772 are not same (Table 3). To explore whether the transcription of cat gene is affected by single deletion strain, RT-PCR analysis was performed. The result revealed that G148-1772 was upregulated 3.82-fold in the RA-CH2Δ1769 mutant (Figure 1). However, the mRNA level of G148-1769 in RA-CH2Δ1772 did not increased significantly. This information could explain why the resistance level of RA-CH2Δ1769 is greater than RA-CH2Δ1772 and wild-type
strain. The result showed that the cat genes do mediate the production of chloramphenicol resistance and the relationship of the two cat copies is complementary and cooperative in \textit{R. anatipestifer} CH-2.

The Transcription of cat Gene Was Induced by Chloramphenicol

In order to study the cellular strategies used by \textit{R. anatipestifer} CH-2 and mutant strains in the presence of chloramphenicol, we decided to analyze transcriptional changes of cat gene in these strains growing in the presence of 1 \(\mu \text{g/ml} \) of this antibiotic. Chloramphenicol treatment had no bactericidal effect when sub-inhibitory concentration of chloramphenicol were applied (data not shown). We found that the mRNA level of cat genes was increased 11-fold, 13.94- and 18.31-fold in wild strain and mutant strains RA-CH2\(\Delta1\)1769, RA-CH2\(\Delta1\)1772, respectively (Figure 2). These results suggested that cat genes were regulated by chloramphenicol.

Catalytic Activity of the CAT and CAT\(^{H79A}\) Proteins

In a previous study involving \textit{Pseudomonas aeruginosa}, His79 served as a major catalytic residue (Beaman et al., 1998).

The two amino acid sequences of cat from \textit{P. aeruginosa} and \textit{R. anatipestifer}, respectively, showed 86.95\% identity (Figure 3). To examine the main catalytic site of CAT from \textit{R. anatipestifer} CH-2, the cat gene and the cat\(^{H79A}\) gene were expressed in \textit{E. coli} cells. The gene products, which contained C-terminal His-tag, were purified by Ni-agarose affinity chromatography, yielding a distinct protein band in the SDS-PAGE gel, with an approximately molecular weight of \(\sim 25 \) kDa. The catalytic activities of CAT and CAT\(^{H79A}\) were analyzed at \(37^\circ \text{C} \). The detailed information of the reaction mixtures is described in the Materials and Methods. The specific activities of CAT and CAT\(^{H79A}\) were 8.33 \(\pm 0.38 \) and 0 U\(\cdot \text{mg}^{-1}\), respectively (Table 4). Meanwhile, the MIC of ATCC 11845 harbored cat\(^{H79A}\) was significantly lower than that of ATCC 11845 carried the cat gene (Table 3). Thus, the H79A substitution had a significant effect on CAT activity.

DISCUSSION

CATs inactivate chloramphenicol via acetylation, which is the most prevalent mechanism of resistance to chloramphenicol in bacteria (Shaw, 1983; Murray and Shaw, 1997; Schwarz et al., 2004). CATs have been described in both gram-positive and gram-negative bacteria. There are two defined types of CATs that distinctly differ in their structure: The classical CATs, which are referred to as type A CATs, and the novel CATs, which are also known as type B CATs (Schwarz et al., 2004). There are at least 16 distinct groups of cat\(^A\) genes (A1–A16) and at least 5 different groups of type B cat genes (B1–B5) (Schwarz et al., 2004). Types A and B CATs are both capable of acetylating the hydroxyl group at C\(_3\) of chloramphenicol.

In our case, there was two copies of the cat gene in \textit{R. anatipestifer} CH-2. Not surprisingly, the phenomenon of having 2 copies of the cat gene was found in other bacteria,

Protein	Specific activity (U/mg)
CAT	8.75 8.25 8.0 8.33 \(\pm 0.38 \)
CAT\(^{H79A}\)	0 0 0 0

\[\text{TABLE 4 | The CAT and CAT}^{H79A}\text{ activity.}\]

![Figure 2](image2.png)

![Figure 3](image3.png)
for example *Clostridium sporogenes* (CP009225) (Zhang et al., 2015), *Chryseobacterium* sp. (AP014624) (Morohoshi et al., 2014), *M. odoratimimus* (CP013690) (Hu et al., 2016), and *Aliivibrio wodanis* (LN554847). Mutant strains were constructed. Only both two copies of the *cat* mutant strain showed a significant reduction in resistance to chloramphenicol, but not for the single *cat* gene deletion strains. ATCC 11845 is a *R. anatipestifer* strain that was isolated from ducklings in 1932, and genome analysis indicated that it does not harbor the *cat* gene and is sensitive to chloramphenicol. Complementation ATCC 11845 with the *cat* gene from *R. anatipestifer* CH-2 restored the level of chloramphenicol resistance. These results showed that the *cat* genes do mediate the production of chloramphenicol resistance and the relationship of the two *cat* copies is complementary and cooperative in *R. anatipestifer*.

To explore the function and the active site of the *cat* gene in *R. anatipestifer*, CAT and CAT^{H79A} were expressed and purified. Enzymatic activity analysis of CAT and CAT^{H79A} produced by *in vitro* site-directed mutagenesis indicated that CAT^{H79A} had no catalytic activity, thereby suggesting that His79 is the main catalytic residue of CAT. In addition, the present study further demonstrated that the *cat* gene is involved in chloramphenicol resistance, thus supporting our hypothesis that the *cat* genes are chloramphenicol resistance determinant factors in *R. anatipestifer*.

Type B CATs can be further classified into at least five groups. We constructed a homology tree of types A and B CATs (Figure 4) based on their reported amino acid sequence (van Hoek et al., 2011; Roberts et al., 2012). Types A and B CATs showed 10% similarity. We also determined that the *R. anatipestifer* CAT forms a separate branch from the type B CATs. In addition, types A4 and A7 CATs were observed to be 100% similarity. Thus, the classification of CATs should be revisited. Two types of genes that encode CATs could be based on their structure, namely, types A and B, by using the criterion of ≥80% amino acid identity to define a subgroup (Roberts and Schwarz, 2009). The sequence information of types A and B CATs is listed in the Supplementary Table 1. A total of 15 distinct groups were identified, A1–A15 for type A CATs and five different groups for type B CATs, B1–B5. Types A4 and A7 share 100% identity and belong to a subclass that we designated as A4. Groups A8–A16 were renamed as A7–A15. Groups B2, B3, and B6 showed >80% homology. These three categories are classified as a subclass, namely, B2. The CAT of *R. anatipestifer* was designated as B3. The rest of the type B classifications remained the same.

It was reported that the *cat* genes identified in gram-positive bacteria *Bacillus* spp. and *Staphylococcus* were inductively expressed by chloramphenicol (Mongkolsuk et al., 1984; Bruckner and Matzura, 1985; Duvall et al., 1985). To verify whether the *cat* genes were induced by chloramphenicol in *R. anatipestifer* CH-2, RT-PCR was performed to determine the *cat* transcript level of the wild-type strain and mutant strains in the presence or absence of chloramphenicol at a concentration of 1 µg/ml. The results exhibited that the level of transcription of the *cat* gene increased in the presence of chloramphenicol. However, the inducing mechanism is not understood at this time in *R. anatipestifer*.

It has been demonstrated that *catA86* and *catA112* were regulated by a mechanism known as translation attenuation.

FIGURE 4 | Homology analysis of types A and B CATs based on amino acid identity using DNAMAN 8.0 (Lynnon-Biosoft, Ontario, Canada). The sequence information of types A and B CATs are listed in the Supplementary Table 1.
in the previous studies (Lovett, 1996). Later, translational attenuation has been proposed as the regulatory mechanism for the chloramphenicol-inducible catB1 gene of Agrobacterium tumefaciens (Rogers et al., 2002). Sequence analysis found that CAT from *R. anatipestifer* shared 65% identity with that of *A. tumefaciens*. It is unclear whether they have the same inducing mechanism. Further studies determining the regulatory mechanism underlying the cat gene in *R. anatipestifer* are warranted.

AUTHOR CONTRIBUTIONS

DZ and AC conceived and designed the project; LH and HY constructed the cat deletion mutant of *R. anatipestifer* and detected resistance; ML and XZ detected the mRNA levels of the *cat* gene by RT-PCR; LH and HY constructed ATCC 11845 *cat* and catH79A complementary strains. LH, RJ, and SC performed expression and purification of CAT and CATH79A His-tagged proteins; LH, QY, and YW performed CAT activity assay; MW, KS, and XC detected the cat gene in *R. anatipestifer* isolates; LH and DZ drafted and revised the manuscript. All authors have read and approved the final version manuscript.

REFERENCES

Aakra, A., Vebo, H., Indahl, U., Snipen, L., Gjerstad, O., Lunde, M., et al. (2010). The response of *Enterococcus faecalis* V583 to chloramphenicol treatment. *Int. J. Microbiol.* 2010:483048. doi: 10.1155/2010/483048

Beaman, T. W., Sugantino, M., and Roderick, S. L. (1998). Structure of the hexapeptide xenobiotic acetyltransferase from *Pseudomonas aeruginosa*. *Biochemistry* 37, 6689–6696. doi: 10.1021/bi980106v

Bruckner, R., and Matzura, H. (1985). Regulation of the inducible chloramphenicol acetyltransferase gene of the *Staphylococcus aureus* plasmid pUB112. *EMBO J.* 4, 2299–2300.

Burns, J. L., Hedin, L. A., and Lien, D. M. (1989). Chloramphenicol resistance in *Pseudomonas cepacia* because of decreased permeability. *Antimicrob. Agents Chemother.* 33, 136–141. doi: 10.1128/AAC.33.2.136

Chen, Y. P., Tsao, M. Y., Lee, S. H., Chou, C. H., and Tsai, H. J. (2010). Prevalence and molecular characterization of chloramphenicol resistance in *Riemerella anatipestifer* isolated from ducks and geese in Taiwan. *Avian Pathol.* 39, 333–338. doi: 10.1080/03079451.2010.507761

CLSI (2015). *Performance Standards for Antimicrobial Susceptibility Testing: Twenty-fifth Informational Supplement. CLSI document M100-S25*. Wayne, PA: Clinical and Laboratory Standards Institute.

Daniels, C., and Ramos, J. L. (2009). Adaptive drug resistance mediated by root-nodulation-cell division efflux pumps. *Clin. Microbiol. Infect.* 15(Suppl. 1), 32–36. doi: 10.1111/j.1469-0691.2008.02693.x

Duvall, E. J., Mongkolbuk, S., Kim, U. J., Lovett, P. S., Henkin, T. M., and Chamblish, G. H. (1985). Induction of the chloramphenicol acetyltransferase gene cat-86 through the action of the ribosomal antibiotic amicetin: involvement of a *Bacillus subtilis* ribosomal component in cat induction. *J. Bacteriol.* 161, 665–672.

Edwards, R. A., Keller, L. H., and Schifferli, D. M. (1998). Improved allelic exchange vectors and their use to analyze 987P fimbria gene expression. *Gene* 207, 149–157. doi: 10.1016/S0378-1119(97)00619-7

Hu, S. H., Yuan, S. X., Qu, H., Jiang, T., Zhou, Y. J., Wang, M. X., et al. (2016). Antibiotic resistance mechanisms of *Myxobacterium* sp. J. *Zhejiang Univ. Sci. B* 17, 188–199. doi: 10.1631/jzus.B1500068

Kobayashi, J., Furukawa, M., Ohshiro, T., and Suzuki, H. (2015). Thermoadaptation-directed evolution of chloramphenicol acetyltransferase in an error-prone thermophile using improved procedures. *Appl. Microbiol. Biotechnol.* 99, 5563–5572. doi: 10.1007/s00253-015-6522-4

Kong, Q., Yang, J., Liu, Q., Alamuri, P., Roland, K. L., and Curtiss, R. III. (2011). Effect of deletion of genes involved in lipopolysaccharide core and O-antigen synthesis on virulence and immunogenicity of *Salmonella enterica* serovar *typhimurium*. *Infect. Immun.* 79, 4227–4239. doi: 10.1128/IAI.05398-11

Liao, H., Cheng, X., Zhu, D., Wang, M., Jia, R., Chen, S., et al. (2015). TonB energy transduction systems of *Riemerella anatipestifer* are required for iron and hemin utilization. *PLoS ONE* 10:e0127506. doi: 10.1371/journal.pone.0127506

Liu, M., Liu, M., Zhu, D., Wang, M., Jia, R., Chen, S., et al. (2016). Investigation of TnBla in *Riemerella anatipestifer* using plasmid-based methods for gene over-expression and knockdown. *Sci. Rep.* 6:37159. doi: 10.1038/srep37159

Lovett, P. S. (1996). Translation attenuation regulation of chloramphenicol resistance in bacteria. *Gene* 179, 157–162. doi: 10.1016/S0378-1119(96)00420-9

Luo, H., Liu, M., Wang, L., Zhou, W., Wang, M., Cheng, A., et al. (2015). Identification of ribosomal RNA methyltransferase gene ermF in *Riemerella anatipestifer*. *Avian Pathol.* 44, 162–168. doi: 10.1080/03079457.2015.1019828

Miller, V. L., and Mekalanos, J. J. (1988). A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in *Vibrio cholerae* requires toxR. *J. Bacteriol.* 170, 2575–2583. doi: 10.1128/jb.170.6.2575-2583.1988

Mongkolbuk, S., Ambulos, N. P. Jr., and Lovett, P. S. (1984). Chloramphenicol-inducible gene in *Bacillus subtilis* is independent of the chloramphenicol acetyltransferase structural gene and its promoter. *J. Bacteriol.* 160, 1–8.

Montero, C. I., Johnson, M. R., Chou, C. J., Conners, S. B., Geouge, S. G., Tachdjian, S., et al. (2007). Responses of wild-type and resistant strains of the hyperthermophilic bacterium *Thermotoga maritima* to chloramphenicol challenge. *Appl. Environ. Microbiol.* 73, 5058–5065. doi: 10.1128/AEM.00453-07

Morohoshi, T., Wang, W. Z., Someya, N., and Ikeda, T. (2014). Complete genome sequence of *Chryseobacterium* sp. StrStR126, an N-Acylhomoserine lactone-degrading bacterium isolated from potato root. *Genome Announc.* 2:e00952-14. doi: 10.1128/genomea.00952-14

FUNDING

This work was supported by the National Natural Science Foundation of China under Grant No. 31372468; National Science and Technology Support Program under Grant No. 2015BAD12B05; China Agricultural Research System under Grant No. CARS-43-8; Youth Science and Technology Innovation Research Team of Sichuan Province for Waterfowl Diseases Prevention and Control under Grant No. 2013TD0015; Integration and Demonstration of Key Technologies for Duck Industrial in Sichuan Province under Grant No. 2014NZ0030.

ACKNOWLEDGMENTS

We would like to thank professor Francis Biville, Département Infection et Épidémiologie, Institut Pasteur, for his helpful suggestions which have improved the quality of this paper.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: http://journal.frontiersin.org/article/10.3389/fmicb.2017.00297/full#supplementary-material
Mosher, R. H., Camp, D. J., Yang, K., Brown, M. P., Shaw, W. V., and Vining, L. C. (1995). Inactivation of chloramphenicol by o-phosphorylation: a novel resistance mechanism in Streptomyces venezuelae isp5230, a chloramphenicol producer. J. Biol. Chem. 270, 27000–27006. doi: 10.1074/jbc.270.45.27000

Mosher, R. H., Ranade, N. P., Schrempf, H., and Vining, L. C. (1990). Chloramphenicol resistance in Streptomyces: cloning and characterization of a chloramphenicol hydrolase gene from Streptomyces venezuelae. J. Gen. Microbiol. 136, 293–301. doi: 10.1099/00221287-136-2-293

Murray, I. A., and Shaw, W. V. (1997). O-Acetyltransferases for chloramphenicol and other natural products. Antimicrob. Agents Chemother. 41, 1–6.

Roberts, M. C., and Schwarz, S. (2009). “Tetracycline and chloramphenicol resistance mechanisms,” in Mechanisms of Drug Resistance, ed D. L. Mayers (New York, NY: Humana Press), 183–193.

Roberts, M. C., Schwarz, S., and Aarts, H. J. (2012). Erratum: acquired antibiotic resistance genes: an overview. Front. Microbiol. 3:384. doi: 10.3389/fmicb.2012.00384

Rogers, E. J., Rahman, M. S., Hill, R. T., and Lovett, P. S. (2002). The chloramphenicol-inducible catB gene in Agrobacterium tumefaciens is regulated by translation attenuation. J. Bacteriol. 184, 4296–4300. doi: 10.1128/JB.184.15.4296-4300.2002

Roland, K., Curtiss, R. III., and Sizemore, D. (1999). Construction and evaluation of a delta cya delta crp Salmonella typhimurium strain expressing avian pathogenic Escherichia coli OrfL LPS as a vaccine to prevent airsacculitis in chickens. Avian Dis. 43, 429–441. doi: 10.2307/1592640

Ruiz, J., and Sandhu, T. S. (2013). “Riemerella anatipestifer infection,” in Diseases of Poultry, 13th Edn. eds D. E. Swayne, J. R. Glisson, L. R. McDougald, L. K. Nolan, D. L. Suarez, and V. L. Nair (Hoboken, NJ: John Wiley & Sons, Inc.), 823–828.

Schwarz, S., Kehrenberg, C., Doublet, B., and Cloeckaert, A. (2004). Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiol. Rev. 28, 519–542. doi: 10.1016/j.femsre.2004.04.001

Shaw, W. V. (1983). Chloramphenicol acetyltransferase: enzymology and molecular biology. CRC Crit. Rev. Biochem. 14, 1–46. doi: 10.3109/10409238309102789

Tao, W., Lee, M. H., Wu, J., Kim, N. H., Kim, J. C., Chung, E., et al. (2012). Inactivation of chloramphenicol and florfenicol by a novel chloramphenicol hydrolase. Appl. Environ. Microbiol. 78, 6295–6301. doi: 10.1128/AEM.01154-12

van Hoek, A. H., Mevius, D., Guerra, B., Mullany, P., Roberts, A. P., and Aarts, H. J. (2011). Acquired antibiotic resistance genes: an overview. Front. Microbiol. 2:203. doi: 10.3389/fmicb.2011.00203

Wang, X., Liu, W., Zhu, D., Yang, L., Liu, M., Yin, S., et al. (2014). Comparative genomics of Riemerella anatipestifer reveals genetic diversity. BMC Genomics 15:479. doi: 10.1186/1471-2164-15-479

Xiong, A. S., Yao, Q. H., Peng, R. H., Duan, H., Li, X., Fan, H. Q., et al. (2006). PCR-based accurate synthesis of long DNA sequences. Nat. Protoc. 1, 791–797. doi: 10.1038/nprot.2006.103

Zhang, Y., Grosse-Honebrink, A., and Minton, N. P. (2015). A universal mariner transposon system for forward genetic studies in the genus Clostridium. PLoS ONE 10:e0122411. doi: 10.1371/journal.pone.0122411

Zhong, C. Y., Cheng, A. C., Wang, M. S., Zhu de, K., Luo, Q. H., Zhong, C. D., et al. (2009). Antibiotic susceptibility of Riemerella anatipestifer field isolates. Avian Dis. 53, 601–607. doi: 10.1637/8552-120408-ResNote.1

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2017 Huang, Yuan, Liu, Zhao, Wang, Jia, Chen, Sun, Yang, Wu, Chen, Cheng and Zhu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.