Abstract—Deep Convolutional Neural Networks (CNNs) have made substantial improvement on human attention prediction. There still remains room for improvement over deep learning based attention models that do not explicitly deal with scale-space feature learning problem. Our method learns to predict human eye fixation with view-free scenes based on an end-to-end deep learning architecture. The attention model captures hierarchical saliency information from deep, coarse layers with global saliency information to shallow, fine layers with local saliency response. We base our model on a skip-layer network structure, which predicts human attention from multiple convolutional layers with various reception fields. Final saliency prediction is achieved via the cooperation of those global and local predictions. Our model is learned with a deep supervision manner, where supervision is directly fed into multi-level layers, instead of previous approaches of providing supervision only at the output layer and propagating this supervision back to earlier layers. Our model thus incorporates multi-level saliency predictions within a single network, which significantly decreases the redundancy of previous approaches of learning multiple network streams with different input scales. Extensive experimental analysis on various challenging benchmark datasets demonstrate our method yields state-of-the-art performance with competitive inference time.

Index Terms—Visual attention prediction, convolutional neural network, visual saliency detection, deep learning, human eye fixation prediction, deep supervision.

I. INTRODUCTION

Humans have astonishing ability to quickly discriminate and selectively pay attention to parts of the image instead of processing the whole scene in its entirety. Simulating such selective attention mechanism of human visual system, which commonly referred as visual attention prediction or visual saliency detection[1] is a classic research area in the fields of computer vision and neuroscience. This modeling not only gives an insight into human vision, but also shows much potential in areas such as image cropping [4], object recognition [5], visual tracking [6], video segmentation [7], to name a few.

In the past few decades, many computational models have been developed to quantitatively predict human eye attended locations in the form of a saliency map, where a brighter pixel indicates it has higher probability of receiving human attention. These models can be generally classified into two main categories as bottom-up approaches [8], [9] and top-down approaches [10], [11], [12]. The former methods are stimulus-driven, which infer the human attention based on visual stimuli themselves without the knowledge of the image content. In contrast, the top-down attention mechanisms are task-driven and usually require explicit understanding of the context of the scene. Learning with a specific class is therefore a frequently adopted principle.

Early bottom-up attention models [8], [9] mainly adopted hand-designing features (e.g., intensity, color, and edge orientation) or heuristics (e.g., center-surround contrast [9]) based on limited human knowledge on visual attention. Recently, it has observed a new wave of development [13], [1], [14], [15], [16], [3] using Convolutional Neural Networks (CNNs) that emphasize the importance of automatic hierarchical feature extraction and end-to-end task learning. Provided with enough training data, the deep learning architectures have been shown impressive performance on a diverse set of visual tasks, ranging from a global scale image classification [17], to a more local object detection [18] or semantic segmentation [19].

In this work, we address the problem of task-free bottom-up visual attention of predicting human eye fixations in natural images, which is based on CNNs. CNNs are powerful visual models that are capable of learning features from data in a task dependent manner and yield hierarchies of features by building high-level features from low-level ones. It is also well-known that hierarchical processing is ubiquitous in low-level human vision [20], including human visual attention. This makes deep networks a natural choice for the problem of human eye fixation prediction. For fully exploiting the powerful hierarchical representations of CNNs, a skip architecture is designed to capture multi-level saliency response, ranging from the local to the global, using shallower to deep convolutional layers with small to large receptive fields. The proposed CNNs based attention model learns visual attention at multiple scales and multiple levels in a deep supervision manner [21]. As shown in Fig. 1 the final attention prediction is achieved via the deep

Fig. 1. The proposed attention model efficiently infers human attention (b) via incorporating multi-scale and multi-level saliency information (d) from different convolution layers within a single network.
fused, fusion of various saliency estimations from multiple levels. Another advantage is that the multi-scale saliency information is learned within a single network, which is more succinct compared with conventional multi-scale attention models with multi-stream networks.

The core trainable network of our attention model works with an encoder-decoder architecture, where the encoder network is topologically identical to the first 13 convolutional layers in the VGG16 network [22] and decoder network is for mapping the low resolution encoder feature maps dense full-input-resolution feature maps. The decoder performs up-sampling with a sequence of inverse convolutions, which is also termed as deconvolution, and also achieves dimensionality reduction for compressing the encoder feature maps. The upsampling is performed with trainable multi-channel up-sampling kernels, which is more favored than previous attention methods with a fixed bilinear interpolation kernel. A detailed discussion for the architectures of conventional CNNs based attention models and the proposed model will be presented in Sec. II-B. The attention model is trained using whole images and corresponding ground truth saliency masks. When testing, saliency maps can be generated by directly and efficiently feed-forwarding testing images through the network, without relying on any prior knowledge.

We comprehensively evaluate our method on the five public challenging datasets: MIT300 [23], MIT1003 [24], TORONTO [25], PASCAL-S [26] and DUT-OMRON [27], where the proposed attention model produces more accurate saliency maps than state-of-the-arts. Meanwhile, it achieves a frame rate of 2fps (including all steps) on a GPU. Thus it is a practical attention prediction model in terms of both speed and accuracy. To summarize, the main contributions of this paper are three-fold:

- We investigate convolutional neural networks for saliency prediction, which captures multi-level saliency information within a single network. It is designed to be efficient both in terms of memory and computational time during inference.
- The proposed model is trained with deep supervision manner, which feeds supervision directly into multiple layers, thus naturally learns multi-level saliency information and improves the discriminativeness and robustness of learned saliency features.
- The proposed model works in an encoder-decoder architecture, where the decoder performs up-sampling with trainable multi-channel kernels, instead of previous methods of fixed bilinear interpolation kernel. The effectiveness of the proposed approach is confirmed by comparisons with other approaches in extensive experiments.

The rest of this paper is structured as follows: An overview of the related work is given in Section II. Section III defines our proposed deep saliency model, which is based on a convolutional encoder-decoder architecture and captures multi-level saliency cues. Section IV shows experiment results on different databases and compare with the state-of-the-art methods. Finally, concluding remarks can be found in Section V.

II. RELATED WORK

In this section, we first give a brief review of related research for saliency detection. Then we summarize the typical deep learning architectures used in saliency detection.

A. Saliency Detection

Visual saliency detection has a long history and is still an active research area in computer vision community. Traditional saliency algorithms targeted at visual attention prediction, which refers to the task of identifying the fixation points that human viewers would focus on at first glance. The work of Itti et al. [28], which was inspired by the Koch and Ullman model [29], was one of the earliest computational models in the literature. Since then, many follow-up works [30], [31] have been proposed in this direction. In recent decades, there is a new wave in saliency detection [32], [33] that concentrated on uniformly highlighting the most salient object regions in an image, starting with the works of Liu et al. [33] and Achanta et al. [34]. The later methods, also named as salient object detection, are directly driven by object-level computer vision and image processing tasks. In this study, we mainly overview the typical works of the first type of saliency models, since our method tries to predict human eye fixations over an image. We refer the reader to two recent literatures: [35] and [36] for more detailed overviews of those two kinds of saliency models.

Most of classic attention models belong to bottom-up mechanism. The basis of those bottom-up models can date back to Treisman and Gelade’s [37] Feature Integration Theory (FIT), where they stated which visual features are important and how they are combined to direct human attention over pop-out and conjunction search tasks. With Treisman and Gelade’s theory, typical attention models mainly consist of three cascaded components: visual feature extraction, saliency inference over features maps, and saliency maps integration. Low-level features, e.g., intensity, color, and orientation are engineered by hand. Inspired by studies that the salient regions in the visual field would first pop out through different low-level features from their surroundings, center-surround contrast is widely adopted for inferring the saliency. Saliency is either computed by the relative difference between a region and its local surrounding [28], [38], [24], or calculating global rarity of features over the entire scene [25], [39], [40]. Since saliency is computed over several features in parallel, the final step is for fusing them in a scalar map called the “saliency map”. This step is guided by different principles, e.g., pre-defined linear weights [28], trainable weights based on Support Vector Machine (SVM) [24]. From the view of mechanism to obtain attention, previous attention models can also be classified into different schools [41], such as cognitive model [28], [38], Bayesian model [40], decision theoretic model [5], [10], information theoretic model [25], graphical model [38], [33], spectral analysis model [39], [44], pattern classification model [24] and some other models [41] that are based on other mechanisms.

In the last few years, inspired by the success of deep learning in object recognition, many deep representation learning architectures have been proposed in this field. Those
deep learning solutions generally achieved better performance, compared with traditional non-deep learning techniques. The Ensemble of Deep Networks (eDN) [13] represented an early architecture that automatically learns the representations for saliency prediction, blending feature maps from different layers. DeepGaze [42] fed the responses of different layers of AlexNet [17] and a predefined center bias into a softmax layer, and generated a probability distribution of human eye fixation. A updated version of DeepGaze, called DeepGaze II [45], recently was proposed that provides a deeper network with VGG-19 [22], where the attention information is directly inferred from the original VGGNet, without fine-tuning on attention dataset. Kruthiventi et al. [44] also proposed a DeepFix model based on VGG-16. In [16], saliency prediction and salient object detection were achieved in a deep convolutional neural network. SALICON net [45] was designed to capture multi-scale saliency via concatenating fine and coarse features from two stream convolutional networks trained with multi-scale inputs. In [15], two deep learning models with shallow and deep network architectures were exploited for saliency prediction. Jetley et al. [14] tested several loss functions based on probability distance measures, such as \(\chi^2 \) divergence, total variation distance, cosine distance, KL divergence and Bhattacharyya distance by considering saliency map models as generalized Bernoulli distributions. The Bhattacharyya distance was found to give the best performance.

B. Deep Learning Architectures of Saliency Detection Models

In this section, we discuss typical deep learning architectures of previous deep learning based saliency detection models and present a graphical illustration in Fig. 2. We classify the configurations of exiting deep learning solutions to attention prediction into three main categories: i) single-stream network; ii) multi-stream network learning with multi-scale inputs; and iii) skip-layer network. For completeness, we also include an architecture, namely bottom-up/top-down network, which is used in salient object segmentation and instance segmentation. Having these alternative architectures in mind will help make clearer the advantages of our adopted network with respect to previous efforts.

1) Single-stream Network: As demonstrated in Fig. 2(a), single-stream network is the standard architecture of CNNs based attention models, which is opted by many saliency detection works [44], [14], [16], [2], [15]. All other kinds of deep learning architectures can be viewed as variations of single-stream network.

It has been proved that saliency cues on different level and scales are important in saliency detection [46], [27]. Incorporating multi-scale feature representations of neural networks into attention models is a natural choice. In the following variation of single-stream network, namely multi-stream network, the modifications are performed in this line.

2) Multi-stream Network: Examples of this form of network include [45], [47], [31], [1]. The key concept in multi-stream network is illustrated in Fig. 2(b). This kind of network pursues learning multi-scale saliency information via training multiple networks with multi-scale inputs. The multiple network streams are parallel and may have different architectures, corresponding to multiple scales. As demonstrated in [48], input data are simultaneously fed into multiple streams, after which the concatenated feature responses produced by the various streams are fed into a global output layer to produce the final result.

We can find that, with multi-stream network, the multi-scale learning happens “outside” the networks. In the following architecture, the multi-scale or multi-level learning is “inside” the network, which is achieved via combining hierarchical features from multiple convolutional layers.

3) Skip-layer Network: A typical skip-layer learning architecture is shown in Fig. 2(c), which is adopted in [42], [43], [49]. Rather than training multiple parallel streams on multiple (scaled) input images, skip-layer network learns multi-scale features “inside” a primary stream. Multi-scale responses are learnt from different layers with increasingly larger receptive fields and downsampling ratios, and these responses are then concatenated together for outputting final saliency.

4) Bottom-up/top-down Network: Readers may also be interested in a recent network architecture, called bottom-up/top-down network, that is used in salient object segmentation [50] and instance segmentation [51]. We show the configuration of such network in Fig. 2(d), where segmentation features are first generated via traditional bottom-up convolution manner, and then a top-down refinement is proceeded for merging the information from deep to shallow layers into segmentation mask. The main rationale behind this bottom-up/top-down architecture is for generating high-fidelity object masks since deep convolutional layers should lose detailed image information. The bottom-up/top-down network can be seen as a kind of skip-layer network, as different layers are also linked...
5) The Adopted Network: We show the architecture configuration of our attention model in Fig. 2 (e), which is inspired by the network proposed by Xie et al. [48] and deeply-supervised network proposed in [21]. The network incorporates multi-scale and multi-level attention information from different layers, which is learned in a deeply supervised manner. The major difference between the adopted network and previous models is that, our network provides integrated direct supervision to the hidden layers, rather than the standard approach of providing supervision only at the output layer and propagating this supervision back to earlier layers. The multi-level and multi-scale saliency is explicitly learned from different layers with corresponding supervision. Such hidden layer supervision brings improvement in both performance and robustness of features, as discussed in [21, 48].

It inherits the advantage of skip-layer network (Fig. 2(c)) that does not require learning multiple networks streams with multi-scale inputs. It’s also a light-weighted version compared with multi-stream network (Fig. 2(d)) and bottom-up/top-down network (Fig. 2(e)). We find the bottom-up/top-down network is difficult to train in practice while the network equipped with deep supervision gains high training effectiveness.

III. OUR APPROACH

A. Architecture Overview

CNNs are capable of capturing the hierarchy of features, where the lower layers respond to primitive image features such as edges, corners and shared common patterns, and the higher layers extract semantic information like object parts or faces. Such low and high-level features are shown to be both important and complementary in estimating visual attention, which motivates us incorporates multi-layer information together for inferring the visual attention.

The architecture of the proposed deep learning based attention model is depicted in Fig. 3. Multi-scale predictions are learned from different layers with different receptive field sizes (see Fig. 3(a)). For obtaining such multi-scale predictions, supervision is directly fed into corresponding layers (see Fig. 3(b)). Such deep supervision learning strategy boosts the performance via: 1) directly producing multi-scale saliency predictions; and 2) improving discriminativeness of intermediate layers, thus gaining improvement of overall performance, as demonstrated in [21].

For recovering the spatial information destroyed by the pooling operation in the convolutional layers, our model works in an encoder-decoder architecture. The encoder part captures high-level features via convolving and downsampling the low-level feature map, which decreases the size of the feature maps from bottom to up. Our decoder network upsamples feature maps, which constructs an output that maintains the original resolution of the input. The decoder part also brings two advantages: 1) the convolutional filters used in decoder network are learnable, which is preferable to the fixed interpolation kernel used in previous methods; and 2) the decoder gradually reduces feature dimensions, leading to higher computation efficiency.

B. Proposed Attention Model

The proposed attention model is a fully convolutional neural network, which is trained to predict pixel-wise saliency values for a given image in an end-to-end manner. From the view of network structure, our model adopts an encoder-decoder architecture. The encoder part of the network is a stack of convolutional layers. A convolutional layer is defined on a translation invariance basis and has shared weights across different spatial locations. Each layer input and output in a convolutional network are three-dimensional tensors, called feature maps. The first layer is the image, with pixel size h and w, and three channels. The output feature map is obtained by convolving the input feature map with a linear filter, then adding a bias term. For improving translation invariance and representation capability, convolutional layers are usually interleaved with max pooling layers and rectified linear units (ReLU). If we denote the input feature map of l-th layer as X^{l-1}, whose convolution filters are determined by the weights W^{l}, then the output feature map X^{l} of l-th layer is obtained via:

$$
X^{l} = f_{con}(X^{l-1}; W^{l}) = W^{l} \ast X^{l-1}, l = 1...L
$$

where \ast denotes the convolution operation, L denotes the total number of layers, X^{0} is the input image I. For simplicity, in our present discussion, we absorb the bias term into the weight parameters and omit the activate and max-pooling operation.

Due to the stride of convolutional and pooling layers, detailed spatial information is lost, thus the local output feature maps are very coarse. For upsampling the coarse feature map, deconvolution (transposed convolution) layer could be adopted. Deconvolution layer works by swapping the forward and backward passes of a convolution, which upsamples the input feature map via backwards convolution with a given stride s:

$$
f_{decon}(X; W_{decon}) = W_{decon} \circ_{s} X,
$$

where \circ_{s} indicates fractionally strided convolution, which can be viewed as the reverse convolution operation via adding stride s into the input. The stride s can be viewed as upsampling factor. Activation functions can also be attached for learning a nonlinear upsampling [19]. For restoring downsampled feature map X^{l} of l-th layer to a fine feature map with the same size as input, a decoder with multiple deconvolution layers could be added on the top of X^{l}:

$$
Y^{l} = D(X^{l}; W_{decon}^{l}),
$$

where the D indicates a set of deconvolution operations and the W_{decon}^{l} indicates all the kernel weights of the deconvolution layers. Again, the non-linear activation layers are omitted. Then a classifier, composed of a 1×1 convolution layer with sigmoid nonlinearity, is added to produce saliency map with the same size of the input image.

In the encoder network, several convolutional layers and pooling layers are stacked alternately in depth, thus hierarchical features are extracted with increasingly larger receptive fields. In this way, the low level features are characterized via
lower layers, while high-level semantic features are encoded in higher layers.

Previous works have shown that saliency is best captured when features are considered from multiple scales. This motivates us select M layers from the encoder network for explicitly predicting saliency in multi-scales and multi-levels, where each selected layer is associated with a decoder network. Thus we are able to obtain M output attention prediction maps with the same size of the input. For combining all the parameters of the convolution and deconvolution layers of the encoder and decoder networks, we define:

$$W = \{W^1_{\text{con}}, \ldots, W^L_{\text{con}}, W^1_{\text{decon}}, \ldots, W^L_{\text{decon}}\}. \quad (4)$$

For each decoder network, the weights of the corresponding classifier are denoted as w_c^m. Then we also combine all the parameters of classifiers together:

$$w_c = \{w_c^1, \ldots, w_c^M\}. \quad (5)$$

We derive an objective function that merges all the output-layer classification error:

$$Q(W, w_c) = \sum_{m=1}^{M} \mathcal{L}(W, w_c^m), \quad (6)$$

where the \mathcal{L} denotes the image-level loss function for saliency prediction. Given an image I with size $h \times w \times 3$ and its groundtruth attention map $G \in [0, 1]^{h \times w}$, \mathcal{L} is defined as the cross-entropy loss:

$$\mathcal{L}(W, w_c^m) = -\sum_{i=1}^{(|I|)} (G_i \log P(S_i^m = 1 | I, W, w_c^m)) + (1 - G_i) \log P(S_i^m = 0 | I, W, w_c^m)), \quad (7)$$

where S^m indicates the predicted attention map from m-th decoder network.

For fusing the multi-layer output saliency predictions, an "attention fusion" layer with 1×1 convolution kernel is added to merge all the predicted attention maps $\{S^m\}_{m=1}^{M}$, which simultaneously learns the fusion weight during training. Let F indicate the fused attention prediction: $F = \sum_{m=1}^{M} w_f^m S^m$ and $w_f = \{w_f^m\}_{m=1}^{M}$ is the fusion weight, the loss function for the fusion layer is defined as:

$$P(W, w_c, w_f) = -\sum_{i=1}^{(|I|)} (G_i \log P(F_i = 1 | I, W, w_c, w_f)$$

$$+ (1 - G_i) \log P(F_i = 0 | I, W, w_c, w_f)), \quad (8)$$

Then all the parameters W, w_c, and w_f can be learned via minimizing the following objective function over all the training set via standard (back-propagation) stochastic gradient descent:

$$(W, w_c, w_f)^* = \text{argmin} \left(\frac{1}{M} Q(W, w_c) + P(W, w_c, w_f) \right). \quad (9)$$

After training, given a test image, we can use the trained CNN model to predict a pixel-level attention map.

\section*{C. Implementation Detail}

1) Encoder Network: The encoder part of the network is inspired by the VGG-16 \cite{simonyan2014very} that consists of five convolutional blocks and three fully connected layer. Since our network explicitly utilizes the extracted CNNs feature maps, we only consider convolutional layers and omit the fully connected layers, which results in a memory and time-efficient model.

In the standard VGG-16 model, with an input image having a size of $h \times w \times 3$, the spatial dimensions of the features generated from the last convolution layer ($\text{conv}5-3$) is $\frac{h}{16} \times \frac{w}{16}$ which is relatively small for the saliency prediction task. For preserving more spatial information of the feature map, we modify the network structure via removing the final pooling layer ($\text{pool}5$). This results in an output feature blob of spatial dimensions $\frac{h}{16} \times \frac{w}{16}$ after the last convolution layer.

2) Decoder Network: The units of the CNNs are sensitive to small sub-regions of the visual field, called a receptive field. The receptive field of deeper convolution layer with
respect to the input image is larger with the convolution and pooling operations. Therefore, in the encoder network, stacking many convolution layers leads to gradually learning “local” to “global” saliency information (i.e. responsive to increasingly larger region of pixel space). For capturing multi-scale saliency information, we select \(M = 3 \) feature maps generated respectively from conv3-3, conv4-3, and conv5-3 convolution layers of our encoder network. Then those saliency maps are fused for inferring the final saliency prediction. In our experiments we find that considering further more layers does not contribute to performance improvement, but brings extra computation burden.

For each saliency feature map, a decoder with multiple deconvolution layers is added to gradually enlarge the spatial dimension until obtaining saliency prediction with original input size. The saliency feature map from conv4-3 layer of the encoder network, for example, has spatial size of \(\frac{h}{8} \times \frac{w}{8} \). Since spatial dimensions of the output blob are halved after each convolution block, its decoder network has three deconvolution layers, where each deconvolution layer doubles the spatial size of input feature correspondingly. Thus the spatial dimensions of the features gradually increase as \(\{ \frac{h}{8} \times \frac{w}{8} \} \rightarrow \{ \frac{h}{4} \times \frac{w}{4} \} \rightarrow \{ h \times w \} \). Each deconvolution layer is equipped with ReLU layer, which learns a nonlinear upampling. Analogously, the decoder networks of conv3-3 layer and conv5-3 layer have two and four deconvolution layers, respectively.

Starting from the first convolutional block, the number of channels in the outputs of successive blocks gradually increase as \(32 \rightarrow 64 \rightarrow 128 \rightarrow 256 \rightarrow 512 \). This enables the net to progressively learn richer semantic representations of the input image. However, maintaining the channel dimension of the feature map unchanged within the decoder network will cause large redundancy both in terms of memory and computational time during inference. Therefore, our decoder network not only increases the spatial dimension of the feature map, but also reduces the dimensionality of the feature channel space. Again, taking the output of conv4-3 layer as an example, the channel dimension is decreased as \(256 \rightarrow 128 \rightarrow 64 \rightarrow 32 \rightarrow 1 \) via three deconvolution layers and final classifier with \(1 \times 1 \) convolution layer.

3) Training and Testing: While training, the weights of the filters in the five convolution blocks of the encoder network are initialized from the VGG-16 net. The weights of VGG-16 net have been learnt by training on 1.3 million images of the ImageNet [17] database for the task of classification. Initializing the weights from network trained on such a large corpus of images is observed to be important for stable and effective learning. The weights of the remaining layers are randomly initialized from a Gaussian distribution with zero mean and standard deviation of 0.01.

We train the networks on the 10,000 images from the SALICON [52] training set where eye fixation annotations are simulated through mouse movements of users on blurred images. The author of [52] show that the mouse-contingent saliency annotations strongly correlate with actual eye-tracker annotations. We did data augmentation by horizontally flipping each image to double image samples so as to enhance model generalization. We use a mini-batch of 16 images in each iteration. An initial learning rate of \(1 \times 10^{-4} \) is assigned to each layer. Using a larger learning rate causes the learning to diverge. We scale down the learning rates of all the layers by a factor of 0.1 after 2,000 iterations. The network was validated against the SALICON validation set (5,000 images) after every 100 iterations to monitor convergence and overfitting. The network parameters are learned by back-propagating the loss function defined in Equ. 9 using Stochastic Gradient Descent (SGD) with momentum. The network is trained with a momentum of 0.9 and a weight decay of \(5 \times 10^{-4} \). The whole training process costs about 20 hours on a PC with 3.4 GHz CPU, a TITANX GPU, and 32G RAM.

During testing, given a query image, we obtain final saliency prediction from the last multi-scale attention fusion layer. More details of obtaining saliency prediction from different convolution layers will be discussed in next section. Our model achieves processing speed as little as 0.5 seconds with our GPU. Here, we exclude I/O time, and do not allow processing multiple images in parallel.

IV. EXPERIMENTAL RESULTS

In this section, we report experimental results to evaluate the proposed approach in saliency prediction. We first introduce the saliency detection benchmark datasets and the evaluation metrics used to evaluate our saliency prediction model. Then the results of our approach and quantitative and qualitative comparison with other state-of-the-art models are presented. Finally, we perform an ablation analysis concerning the contribution of each component of our network.

The proposed deep saliency network is implemented with the publicly available Caffe library [53], an open source framework for CNNs training and testing.

A. Datasets

We conducted evaluation on five widely used saliency datasets with different characteristics.

1) MIT300 [23]: The MIT300 dataset\(^2\) is a collection of 300 natural images where saliency maps were generated from eye-tracking data of 39 users. Saliency maps of this entire dataset are held out.

2) MIT1003 [24]: The MIT1003 dataset\(^3\) contains 1,003 images selected from Flickr and LabelMe, including 779 landscape and 228 portrait images. The groundtruth saliency maps have been created from eye-tracking data of 15 human observers.

3) TORONTO [25]: The TORONTO dataset\(^4\) is one of the most widely used dataset for model comparison. It contains 120 color images with resolution of \(511 \times 681 \) pixels from indoor and outdoor environments. Images are presented at random to 20 subjects for 3 seconds with 2 seconds of gray mask in between.

\(^2\)Available at http://saliency.mit.edu/results_mit300.html
\(^3\)Available at http://people.csail.mit.edu/tjudd/WherePeopleLook
\(^4\)Available at http://www-sop.inria.fr/members/Neil.Bruce
4) **PASCAL-S** [26]: The PASCAL-S dataset [5] uses the 850 natural images of the validation set of the PASCAL VOC 2010 segmentation challenge [54], with the eye fixations during 2 seconds of 8 different subjects.

5) **DUT-OMRON** [27]: The DUT-OMRON dataset [7] consists of 5,168 images with the largest height or width of 400 pixels. Each image is viewed by 5 subjects; then, a postprocessing step is applied to remove outlier eye fixation points that do not lie on a meaningful object.

Some statistics and features of these datasets are summarized in Table I. Above datasets record human eye fixation positions with eye-tracking equipment. Once the human eye fixations are collected, they often convert discrete fixations into a continuous distribution, a ground-truth saliency map, by smoothing. Each fixation location is blurred with a Gaussian kernel, whose parameters are established by the authors of each dataset. Taking MIT1003 dataset as an example, the authors provide ground-truth saliency maps which, according to their technical report [23], are computed with a Gaussian kernel whose size corresponds to a cutoff frequency of 8 cycles per image.

Evaluation Metrics

There are several ways to measure the agreement between model predictions and human eye fixations. Previous studies on saliency metrics [55] show that it’s hard to achieve a fair comparison for evaluating saliency models by any single metric. Here, we carried out our quantitative experiments by comprehensively considering a variety of different metrics, including Earth Movers Distance (EMD), Normalized Scanpath Saliency (NSS), Similarity Metric (SIM), Linear Correlation Coefficient (CC), AUC-Judd, AUC-Borji, and shuffled AUC. Those metrics are selected since they are widely-accepted and standard for evaluating a saliency model.

Table I

Characteristics of 5 Selected Eye-Tracking Datasets.

Dataset	#Images	#Viewers	Resolution
MIT300	300	39	max(w, h) = 1024
MIT1003	1,003	15	max(w, h) = 1024
TORONTO	120	20	511 × 681
PASCAL-S	850	8	max(w, h) = 500
DUT-OMRON	5,168	5	max(w, h) = 400

Table II

Evaluation Metrics.

Category	Groundtruth
Earth Movers Distance	Distribution-based Saliencey Map G
Linear Correlation Coefficient (CC)	Distribution-based Saliencey Map G
Normalized Scanpath Saliency (NSS)	Distribution-based Saliencey Map G
AUC-Judd	Value-based Fixation Map Q
AUC-Borji	Location-based Fixation Map Q
shuffled AUC	Location-based Fixation Map Q

For the sake of simplification, in the following section, we denote the predicted saliency map as S, the map of fixation locations as Q and the continuous saliency map (distribution) as G. In Table I, we list the characteristics formation of our adopted evaluation metrics. Next we describe these evaluation metrics in detail.

1) **Earth Movers Distance (EMD):** Earth Movers Distance, EMD, is a measure of the distance between the two 2D maps, G and S. It is the minimal cost of transforming the probability distribution of the estimated saliency map S to that of the ground truth map G. Therefore, a low EMD corresponds to a high-quality saliency map.

2) **Normalized Scanpath Saliency (NSS):** Normalized Scanpath Saliency, NSS, is a metric specifically designed for saliency map evaluation. Given saliency map S and a binary map of fixation locations Q:

$$\text{NSS} = \frac{1}{N} \sum_{i=1}^{N} S(i) \times Q(i),$$

where $N = \sum_{i} Q(i)$ and $\overline{S} = S - \mu(S) / \sigma(S)$, (10)

where N is the total number of human eye positions. This metric is calculated by taking the mean of scores assigned by the unit normalized saliency map (with zero mean and unit standard deviation) at human eye fixations.

3) **Linear Correlation Coefficient (CC):** The Linear Correlation Coefficient, CC, is a statistical method generally used for measuring how correlated or dependent two variables are. CC can be used to interpret saliency and fixation maps, G and S as random variables to measure the linear relationship between them:

$$CC = \frac{\sigma(S, G)}{\sigma(S) \times \sigma(G)},$$

(11)

where $\sigma(S, G)$ is the covariance of S and G. It ranges between -1 and +1, and a score close to -1 or +1 indicates a perfect alignment between the two maps.

4) **Similarity Metric (SIM):** The Similarity Metric, SIM, measures the similarity between two distributions, viewed as histograms. SIM is computed as the sum of the minimum values at each pixel, after normalizing the input maps:

$$SIM = \sum_{i=1}^{N} \min(S'(i), G'(i)),$$

where $\sum_{i} S'(i) = 1$ and $\sum_{i} G'(i) = 1$,

(12)

where S' and G' are normalized to be probability distributions, given a saliency map S and the continuous fixation map G. A SIM of one indicates the distributions are the same, while a SIM of zero indicates no overlap.

5) **AUC [25]:** The AUC metric, defined as the area under the receiver operating characteristic (ROC) curve, is widely used to evaluate the maps estimated by saliency models. Given an image and its groundtruth eye fixation points, fixated points and other ones are regarded as the positive and negative sets, respectively. Then, the computed saliency map is binarily classified into salient region and non-salient region by using a threshold. Through varying the threshold from 0 to 1, ROC
curve is obtained by plotting true positive rate versus false positive rate, with its underneath area calculated as AUC score. AUC can be greatly influenced by center-bias and border cut.

Depending upon the choice of the non-fixation distribution, there are several variants of AUC. In our experiments we opt AUC-Judd, AUC-Borji and the shuffled AUC. The former two variants choose non-fixation points with a uniform distribution, while the last one, shuffled AUC, uses human fixations of other images in the dataset as non-fixation distribution.

C. Comparison Results

To demonstrate the effectiveness of the proposed deep attention model in predicting eye fixations, we evaluated it by comparison to 13 state-of-the-art models, including six classical models: ITTI [28], GBVS [38], Judd Model [24], BMS [57], CAS [41], AIM [56], and seven deep learning based models: DeeFix [44], SALICON [45], Mr-CNN [1], SalNet [15], Deep Gaze I [42], eDN [13], and Saliency Unified [16]. These methods have been reported in recent years or are representative and widely used for comparison. For the methods: ITTI [28], CAS [41], and AIM [56], that we calculated saliency maps using their publicly available code, we use the recommended parameter settings provided by the authors. A summary of these models is provided in Table III. As seen, most of the models require off-line training or based on deep learning framework. Our model, denoted as deep visual attention, is also included in Table III.

The quantitative results obtained on the MIT300 [23], MIT1003 [24], TORONTO [25], PASCAL-S [26] and DUT-OMRON [27] datasets are presented in Table IV, Table V, Table VI, Table VII and Table VIII respectively. As evident from above tables, the proposed method achieves state-of-the-art results on all the datasets.

The qualitative results obtained by the proposed deep attention network, along with that of other recent methods on a few example images from MIT1003 [24], TORONTO [25], PASCAL-S [26] and DUT-OMRON [27] datasets are presented in Fig. 4 and Fig. 5. As shown in the figures, the proposed attention model is able to consistently capture saliency arising from both low-level features such as colour contrast as well as the more high-level aspects such as humans, faces and text. It can be also observed that our saliency maps are very localized in the salient regions compared with other methods, even when images have cluttered backgrounds or salient regions in different sizes. We attribute the performance of the proposed deep attention model to its large depth and the utilization of multi-level features.

D. Ablation Study

We evaluate the contribution of each component of the proposed deep attention model on TORONTO [25] and PASCAL-S [26] datasets and measure the performance using the shuffled AUC metric. We study different variants of our model in several aspects. Our experiments are summarized in Table IX.

1) **Submodule**: We first examine the performance of individual encoder-decoder layers: conv3-3, conv4-3, and conv5-3, which capture saliency information at different scales. It can be observed that the predictions obtained using different layers are complementary and the overall architecture is able to predict better saliency maps.

2) **Fusion Strategy**: We next study the effect of our fusion strategy. In our attention model, we adopt a convolution layer for merging the multi-layer output saliency predictions, which automatically learns the fusion weight during training. To validate the effectiveness of this strategy, we directly average all of the multi-layer outputs (avg. output). This experiment yields some interesting results. First, we can find the averaged prediction achieves higher performance, compared with single-layer outputs. This validates combining predictions from multiple scales leads to better performance. Secondly, the learned weighted-fusion achieves best performance. Thus we can safely draw a conclusion that the proposed attention fusion strategy contributes to the performance gain.

3) **Supervision**: Here we discuss the role of deep supervision of our attention model. For examining the contribution of deep supervision, we train our model with weighted-fusion supervision only (minimizing object function \mathcal{P} in Equ. 8 only). We can find that our whole model with both considering weighted-fusion supervision and deep supervision of each output layer (via Equ. 9) is more preferable. This observation verifies that the deep supervision directly leads to improved performance.

4) **Upsampling**: We experiment with different upsampling strategies. In our decoder network, the upsampling is performed with multi-channel trainable upsampling kernels. Here we test the performance of directly feeding features of conv3-3, conv4-3, and conv5-3 into classifier layers and upsampling the multi-layer output saliency via a fixed bilinear interpolation kernel. The result in Table IX suggests a drop in performance without using learnable kernel.

V. Conclusions and Discussions

In this work, we have proposed a neural network for predicting human eye fixations on images. The proposed deep attention model inherits the advantages of deeply supervised nets and fully utilizes the potential of neural network for representing hierarchy of features to extract saliency information at multiple scales. It builds on top of encoder-decoder framework.
Fig. 4. Comparison of saliency maps with various state-of-the-art methods on MIT1003 [24] dataset (top) and TORONTO [25] dataset (bottom). Note that the proposed method generates more reasonable saliency maps compared with the state-of-the-art.
Fig. 5. Comparison of saliency maps with various state-of-the-art methods on PASCAL-S [26] (top) dataset and DUT-OMRON [27] dataset (bottom). Note that the proposed method generates more reasonable saliency maps compared with the state-of-the-art.
Saliency Models	AUC-Judd	SIM	EMD	AUC-Borji	shuffled AUC	CC	NSS
Humans	0.92	1.00	0.00	0.88	0.81	1.00	3.29
DeeFix	0.87	0.67	2.04	0.80	0.71	0.78	2.26
SALICON	0.87	0.60	2.62	0.85	0.74	0.74	2.12
Mr-CNN	0.77	0.45	4.33	0.76	0.69	0.41	1.13
SalNet	0.83	0.51	3.53	0.85	0.65	0.55	1.41
Deep Gaze	0.84	0.39	4.97	0.83	0.66	0.48	1.22
BMS	0.83	0.51	3.35	0.82	0.65	0.55	1.41
eDN	0.82	0.41	4.56	0.81	0.62	0.45	1.14
CAS	0.74	0.43	4.46	0.73	0.65	0.36	0.95
AIM	0.77	0.40	4.73	0.75	0.66	0.31	0.79
Judd Model	0.81	0.42	4.45	0.80	0.60	0.47	1.18
GBVS	0.81	0.48	3.51	0.80	0.63	0.48	1.24
ITTI	0.75	0.44	4.26	0.74	0.63	0.37	0.97

Deep Visual Attention: 0.85, 0.58, 3.05, 0.78, 0.71, 0.68, 1.98

Table IV: COMPARISON OF QUANTITATIVE SCORES OF DIFFERENT SALIENCY MODELS ON MIT300 [23] DATASET.

Saliency Models	AUC-Judd	SIM	shuffled AUC	CC	NSS
Mr-CNN	0.80	0.35	0.73	0.38	1.36
Saliency Unified	0.80	0.35	0.73	0.38	1.36
DeeFix	0.90	0.54	0.74	0.72	2.58
BMS	0.79	0.33	0.69	0.36	1.25
eDN	0.85	0.30	0.66	0.41	1.29
CAS	0.76	0.32	0.68	0.31	1.07
AIM	0.79	0.27	0.68	0.26	0.82
Judd Model	0.76	0.29	0.68	0.30	1.02
GBVS	0.83	0.36	0.66	0.42	1.38
ITTI	0.77	0.32	0.66	0.33	1.10

Deep Visual Attention: 0.87, 0.50, 0.77, 0.64, 2.38

Table V: COMPARISON OF QUANTITATIVE SCORES OF DIFFERENT SALIENCY MODELS ON MIT1003 [24] DATASET.

Saliency Models	AUC-Judd	SIM	shuffled AUC	CC	NSS
Mr-CNN	0.80	0.47	0.71	0.49	1.41
eDN	0.85	0.40	0.62	0.50	1.25
CAS	0.78	0.44	0.69	0.45	1.27
AIM	0.76	0.36	0.67	0.30	0.84
Judd Model	0.78	0.40	0.67	0.41	1.15
GBVS	0.83	0.49	0.64	0.57	1.52
ITTI	0.80	0.45	0.65	0.48	1.30

Deep Visual Attention: 0.86, 0.58, 0.76, 0.72, 2.12

Table VI: COMPARISON OF QUANTITATIVE SCORES OF DIFFERENT SALIENCY MODELS ON TORONTO [25] DATASET.
TABLE IX
Assessment of individual modules and variants of our deep attention model on Toronto [25] and PASCAL-S [26] datasets using shuffled AUC. Higher values are better.

aspect	variant	TORONTO shuffled AUC	PASCAL-S shuffled AUC
whole model		0.76	0.77
submodule			
conv3-3 output		0.68	-0.08
conv3-4 output		0.69	-0.07
conv3-5 output		0.69	-0.07
fusion			
avg. output		0.72	-0.04
supervision			
w/o deep supervision	0.71	-0.05	0.71
upsampling		0.74	-0.02

[8] O. Le Meur, P. Le Callet, D. Barba, and D. Thoreau, “A coherent computational approach to model bottom-up visual attention,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 5, pp. 802–817, 2006.

[9] D. Gao, V. Mahadevan, and N. Vasconcelos, “The discriminant center-surround hypothesis for bottom-up saliency,” in Advances in Neural Information Processing Systems, 2008, pp. 497–504.

[10] D. Gao, S. Han, and N. Vasconcelos, “Discriminant saliency, the detection of suspicious coincidences, and applications to visual recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 31, no. 6, pp. 998–1005, 2009.

[11] C. Kanan, M. H. Tong, L. Zhang, and G. W. Cottrell, “SUN: Top-down saliency using natural statistics,” Visual Cognition, vol. 17, no. 6-7, pp. 979–1003, 2009.

[12] A. Borji, D. N. Shiha, and L. Itti, “Probabilistic learning of task-specific visual attention,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2012, pp. 470–477.

[13] E. Vig, M. Dorr, and D. Cox, “Large-scale optimization of hierarchical features for saliency prediction in natural images,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 2798–2805.

[14] S. Jetley, N. Murray, and E. Vig, “End-to-end saliency mapping via probability distribution prediction,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 5753–5761.

[15] J. Pan, E. Sayrol, X. Giro-i Nieto, K. McGuinness, and N. E. O’Connor, “Saliency unified: A deep architecture for simultaneous eye fixation prediction and salient object segmentation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 598–606.

[16] S. S. Kruthiventi, V. Gudisa, J. H. Dhokaliya, and R. Venkatesh Babu, “Saliency unified: A deep architecture for simultaneous eye fixation prediction and salient object segmentation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 5781–5790.

[17] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” in Advances in Neural Information Processing Systems, 2012, pp. 1097–1105.

[18] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for accurate object detection and semantic segmentation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 580–587.

[19] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmentation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 3431–3440.

[20] D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex,” The Journal of Physiology, vol. 160, no. 1, pp. 106–154, 1962.

[21] C.-Y. Lee, S. Xie, P. W. Gallagher, Z. Zhang, and Z. Tu, “Deeply-supervised nets,” in AISTATS, vol. 2, no. 3, 2015, p. 8.

[22] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv preprint [arXiv:1409.1556] 2014.

[23] T. Judd, F. Durand, and A. Torralba, “A benchmark of computational models of saliency to predict human fixations,” MIT Technical Report, 2012.

[24] T. Judd, K. Ehinger, F. Durand, and A. Torralba, “Learning to predict where humans look,” in Proceedings of the IEEE International Conference on Computer Vision, 2009, pp. 2106–2113.

[25] N. Bruce and J. Tsotsos, “Saliency based on information maximization,” Advances in Neural Information Processing Systems, vol. 18, p. 155, 2006.

[26] Y. Li, X. Hou, C. Koch, J. M. Rehg, and A. L. Yuille, “The secrets of salient object segmentation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 280–287.

[27] C. Yang, L. Zhang, H. Lu, X. Ruan, and M.-H. Yang, “Saliency detection via graph-based manifold ranking,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2013, pp. 3166–3173.

[28] L. Itti, C. Koch, and E. Niebur, “A model of saliency-based visual attention for rapid scene analysis,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20, no. 11, pp. 1254–1259, 1998.

[29] C. Koch and S. Ullman, “Shifts in selective visual attention: towards the underlying neural circuitry,” in Matters of Intelligence, 1987, pp. 115–141.

[30] D. Walther and C. Koch, “Modeling attention to salient proto-objects,” Neural Networks, vol. 19, no. 9, pp. 1395–1407, 2006.

[31] G. Li and Y. Yu, “Visual saliency based on multiscale deep features,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 5455–5463.

[32] W. Wang, J. Shen, L. Shao, and F. Porikli, “Correspondence driven saliency transfer,” IEEE Transactions on Image Processing, vol. 25, no. 11, pp. 5025–5034, 2016.

[33] T. Liu, J. Sun, N.-N. Zheng, X. Tang, and H.-Y. Shum, “Learning to detect a salient object,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2007, pp. 1–8.

[34] R. Achanta, S. Hemami, F. Estrada, and S. Susstrunk, “Frequency-tuned salient region detection,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2009, pp. 1597–1604.

[35] A. Borji and L. Itti, “State-of-the-art in visual attention modeling,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 1, pp. 185–207, 2013.

[36] A. Borji, M.-M. Cheng, H. Jiang, and J. Li, “Salient object detection: A benchmark,” IEEE Transactions on Image Processing, vol. 24, no. 12, pp. 5706–5722, 2015.

[37] A. M. Treisman and G. Gelade, “A feature-integration theory of attention,” Cognitive Psychology, vol. 12, no. 1, pp. 97–136, 1980.

[38] J. Harel, C. Koch, P. Perona et al., “Graph-based visual saliency,” Advances in Neural Information Processing Systems, vol. 1, no. 2, p. 5, 2006.

[39] X. Hou and L. Zhang, “Saliency detection: A spectral residual approach,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2007, pp. 1–8.

[40] L. Zhang, M. H. Tong, T. K. Marks, H. Shan, and G. W. Cottrell, “SUN: A bayesian framework for saliency using natural statistics,” Journal of Vision, vol. 8, no. 7, pp. 32–32, 2008.

[41] S. Goferman, L. Zelnik-Manor, and A. Tal, “Context-aware saliency detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 34, no. 10, pp. 1915–1926, 2012.

[42] M. Kümmere, L. Theis, and M. Bethge, “Deep gaze I: Boosting saliency prediction with feature maps trained on imagenet,” in Proceedings of the International Conference on Learning Representations Workshop, 2015.

[43] M. Kümmere, T. S. Wallis, and M. Bethge, “Deeppgaze II: Reading fixations from deep features trained on object recognition,” arXiv preprint [arXiv:1610.01563] 2016.

[44] S. S. Kruthiventi, K. Ayush, and R. V. Babu, “Deepfix: A fully convolutional neural network for predicting human eye fixations,” arXiv preprint [arXiv:1510.02927] 2015.

[45] X. Huang, C. Shen, X. Boix, and Q. Zhao, “SALICON: Reducing the semantic gap in saliency prediction by adapting deep neural networks,” in Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 262–270.
[46] M.-M. Cheng, N. J. Mitra, X. Huang, P. H. Torr, and S.-M. Hu, “Global contrast based salient region detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 37, no. 3, pp. 569–582, 2015.

[47] R. Zhao, W. Ouyang, H. Li, and X. Wang, “Saliency detection by multi-context deep learning,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 1265–1274.

[48] S. Xie and Z. Tu, “Holistically-nested edge detection,” in Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 1395–1403.

[49] M. Cornia, L. Baraldi, G. Serra, and R. Cucchiara, “A deep multi-level network for saliency prediction,” in Proceedings of the International Conference on Pattern Recognition, 2016.

[50] N. Liu and J. Han, “DHSNet: Deep hierarchical saliency network for salient object detection,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016.

[51] P. O. Pinheiro, T.-Y. Lin, R. Collobert, and P. Dollár, “Learning to refine object segments,” in Proceedings of the European Conference on Computer Vision, 2016, pp. 75–91.

[52] M. Jiang, S. Huang, J. Duan, and Q. Zhao, “SALICON: Saliency in context,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 1072–1080.

[53] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for fast feature embedding,” in Proceedings of the ACM International Conference on Multimedia, 2014.

Wenguan Wang received the B.S. degree in computer science and technology from the Beijing Institute of Technology in 2013. He is currently working toward the Ph.D. degree in the School of Computer Science, Beijing Institute of Technology, Beijing, China. His current research interests include deep learning for salient object segmentation in videos.

Jianbing Shen (M’11–SM’12) is a Professor with the School of Computer Science, Beijing Institute of Technology, Beijing, China. He has published about 60 journal and conference papers such as IEEE TNNLS, IEEE TPAMI, IEEE TIP, IEEE TVCG, IEEE CVPR, and IEEE ICCV. He has also obtained many flagship honors including the Fok Ying Tung Education Foundation from Ministry of Education, the Program for Beijing Excellent Youth Talents from Beijing Municipal Education Commission, and the Program for New Century Excellent Talents from Ministry of Education. His research interests include computer vision and deep processing. He serves as an associate editor of Neurocomputing.