NEW RESULTS ON SCRAMBLING USING THE MESH ARRAY

Sandhya Rangineni

Abstract. This paper presents new results on randomization using Kak’s Mesh Array for matrix multiplication. These results include the periods of the longest cycles when the array is used for scrambling and the autocorrelation function of the binary sequence obtained from the cycles.

INTRODUCTION

The mesh array of matrix multiplication was introduced by Kak in 1988 [1],[2]. It is able to multiply the matrices in only $2n-1$ steps for two $n \times n$ matrices. In a new paper, this array has been proposed as a scrambling transformation [3]. Figure 1 presents the mesh array for multiplying two 4×4 matrices. Here we investigate some additional scrambling properties of the array and also consider triple matrix multiplication.

PRELIMINARIES

When multiplying two matrices A and B ($C=AB$), the components of C are obtained in the following arrangement:

11 22 33 44
12 31 24 43
32 14 41 23
34 42 13 21

As shown in [3], the items of both standard array and mesh array will be written in an array as follows:

11 12 13 14 21 22 23 24 31 32 33 34 41 42 43 44

()

11 22 33 44 12 31 24 43 32 14 41 23 34 42 13 21

By writing the above arrays into cycles, we can get period of the matrix of order 4. The period is nothing but the maximum of lengths of the cycles. The cycles of the matrix of order 4 are as follow:

$= (11) (42) (12 22 31 32 14 44 21) (13 33 41 34 23 24 43)$

Here the lengths of the cycles are $\{1,1,7,7\}$, and the period of the scrambling transformation $= 7$. We will now consider the longest cycle in each scrambling matrix. The period of the scrambling
transformation will be the lcm of the cycles associated with the scrambling. Since the periods increase very rapidly, we shall consider only the longest cycles.

Figure 1: Mesh Architecture for multiplication of matrices A and B and store the result in C from [1]

We now consider further properties of the array for scrambling [4],[5], which has many applications in signal processing.

Table 1: Longest cycles for the matrices from order 2 to 100

ORDER	LONGEST CYCLE
2	3
3	7
4	7
5	20
6	23
7	19
8	27
9	79
10	31
11	88
12	46
13	150
14	180
---	---
15	103
16	197
17	242
18	270
19	121
20	220
21	438
22	402
23	367
24	455
25	478
26	362
27	667
28	514
29	262
30	678
31	697
32	414
33	507
34	620
35	512
36	492
37	1357
38	687
39	751
40	1110
41	1065
42	824
43	813
44	1221
45	912
46	1435
47	1347
48	877
49	2015
50	1391
51	1341
52	1090
53	2370
54	2182
55	974
56	2508
57	2064
58	2955
59	2146
---	-----
60	2392
61	2452
62	2171
63	1448
64	2687
65	1957
66	4046
67	3069
68	1116
69	1501
70	3539
71	2219
72	2064
73	2542
74	3191
75	3194
76	5085
77	5329
78	2831
79	6060
80	3140
81	5390
82	3007
83	4786
84	6970
85	4012
86	3213
87	5143
88	7488
89	7685
90	5941
91	3383
92	6903
93	2521
94	4930
95	5869
96	6214
97	4419
98	3173
99	5150
100	7984
Prime orders

The number of primes in the list of longest cycles has the following distribution:

- 001 – 100 ---- 16
- 101 – 200 ---- 15
- 201 – 300 ---- 10
- 301 – 400 ---- 11
- 401 – 500 ---- 5
- 501 – 600 ---- 3
- 601 – 700 ---- 8
- 701 – 800 ---- 5
- 801 – 900 ---- 4
- 901 – 1000---- 12

![Number of prime orders](image)

Figure 2: The graph for the number of prime orders from 0 to 1000

This in itself does not tell us how good are the randomness properties of the sequences of cycles associated with the mesh array. For this we will look at the autocorrelation function derived from the sequence.

BINARY SEQUENCE FOR THE CYCLES

We can create a binary sequence of the longest cycles in terms of 1s and 0s where the even cycle is represented as 1 and odd cycle is represented as 0. The binary sequence for the cycles of orders 2 to 1000 is as follows:
Autocorrelation function is used to show the similarity between the observations as a function according to time. Here autocorrelation function is used to represent the variations of the cycles as a single function.

\[
C(k) = \frac{1}{999} \sum A(i)A(i+k) \text{ where } i=1 \text{ to } 999
\]

Here, A(i) is the polar sequence of the cycles where 0 is converted as -1 in binary sequence and 1 remains same. The autocorrelation function for k ranging from 0 to 100 is shown in Figure 3.

Figure 3: Autocorrelation function C(k) where k ranges from 0 to 1000

The autocorrelation function is effectively two valued which demonstrates that the sequence of orders is random.
TRIPLE MATRIX MULTIPLICATION ON A MESH ARRAY

Now we consider the multiplication of three matrices of the same order in the manner of [6],[7]. Let A, X, B be the matrices to be multiplied and let us store the result in another matrix Y i.e., Y = A X B.

The computation of Y = A X B is decomposed into:

- Z = XB
- Y = AZ

![Mesh Architecture for Z = XB](image)

Figure 4: Mesh Architecture for Z = XB where 11 in the node represent Z_{11}

At time t=n the first row of the product XB is completed and the results of Z are stored in the nodes of first row and then we switch the X and B values to the second row transmitting downwards in the array. Now immediately after t=n the elements of the matrix, A follows the same path as X has passed. When t=2n, the product of XB in the second row and the product of AZ in the first row are done in parallel and the result of Z is stored in the nodes of second row and the result of AZ is stored in Y_{ij}(1) respectively.
Figure 5: The triple matrix multiplication at time $t=2n$

Then at time $t=2n$, the results obtained are the Z values of second row and the Y values of first row. The process is continued till all the results are obtained.

$$Y_{ij} = Y_{ij}(1) + Y_{ij}(2) + Y_{ij}(3) + Y_{ij}(4)$$

At time $t=4n$, the mesh architecture for triple matrix multiplication is as follows:

Figure 6: The mesh array representation for $Y = AXB$
DISCUSSION

This article represents new results on scrambling using Kak’s mesh array for matrix multiplication. These results includes the periods of the matrices multiplied, the binary sequence of the longest cycles for even and odd numbers, and the autocorrelation function for an even and odd sequence obtained from the order. The structure for triple matrix multiplication on a mesh array has also been presented.

REFERENCES

[1] S. Kak, Multilayered array computing. Information Sciences 45, 347-365, 1988.

[2] S. Kak, A two-layered mesh array for matrix multiplication. Parallel Computing 6, 383-385, 1988.

[3] S. Kak, On the mesh array for matrix multiplication. 2010. arXiv:1010.5421

[4] S. Kak, An overview of analog encryption. Proceedings IEE 130, Pt. F, 399-404, 1983.

[5] S. Kak and N.S. Jayant, On speech encryption using waveform scrambling. Bell System Technical Journal 56, 781-808, 1977.

[6] A.Benaini and Y.Robert, An even faster systolic array for matrix multiplication. Parallel Computing 12, 249-254, 1989.

[7] J.L.Aravena, Triple matrix product architectures for fast signal processing. IEEE Trans. Circuits Syst. 35, 119-122, 1988.