Multi-modal segmentation with missing MR sequences
Using pre-trained fusion networks

K. van Garderen, M. Smits, S. Klein
MIL3ID 2019
Oct. 17, 2019
Introduction

BraTS Challenge

= Brain Tumor segmentation with 4 MR sequences

Our goal:

any combination of 4 sequences

Baseline: UNet

-> Input sequences as channels
Approach 1: Sequence dropout

Dropout of sequences during training

Increase p from 0 to 0.5 in steps
Approach 2: Multipath

Each sequence its own U-Net

Number of parameters constant
Approach 2: Multipath

Each sequence its own UNet

Number of parameters constant
Approach 3: Shared representation

Idea: force similar feature representations across paths
Approach 3: Shared representation

Idea: force similar feature representations across paths

	All	All but T1W	All but T1WC	All but T2W	All but FLAIR	T1W, FLAIR	T1WC, FLAIR	T1W, FLAIR	T1W, FLAIR							
UNet	83	65	78	74	43	65	43	46	63	23	18	37	30	14	14	4
Dropout	77	76	81	76	59	73	62	59	77	61	33	51	60	21	8	
Multipath	82	81	82	77	70	80	74	69	77	70	42	69	63	32	25	
SharedRep	83	82	82	79	72	81	74	71	76	71	48	72	69	36	29	
Dedicated	83	81	81	79	73	79	77	74	76	72	59	73	71	49	48	

Whole tumor
Approach 4: Pretraining

1. Train UNet paths separately

2. Train only last layer with sequence dropout

-> Longer training, but less memory!
Approach 4: Pretraining

Idea: force similar feature representations across paths

	All	All but T1W	All but T1WC	All but T2W	All but FLAIR	T2W, FLAIR	T1W, FLAIR	T1WC, FLAIR	T1W, T2W	T1W, T1WC	Whole tumor
UNet	83	65	78	74	43	65	43	46	63	23	18
Dropout	77	76	81	76	59	73	62	59	77	61	33
Multipath	82	81	82	77	70	80	74	69	77	70	42
SharedRep	83	82	82	79	72	81	74	71	76	71	48
Multipath + Pretraining	84	83	83	82	75	82	78	74	78	73	56
SharedRep + Pretraining	83	83	82	81	74	81	77	72	79	73	58
Dedicated	82	81	81	79	73	79	77	74	76	72	59

Erasmus MC
Conclusions

Segmentation with missing sequences
- No need to train dedicated networks!

Pretraining improves multipath network

Shared representations...
Multi-modal segmentation with missing MR sequences
Using pre-trained fusion networks

K. van Garderen, M. Smits, S. Klein
MIL3ID 2019
Oct. 17, 2019