The association between Geographic Information System-based neighborhood built environmental factors and accelerometer-derived light-intensity physical activity across the lifespan: a cross-sectional study

Sofie Compernolle1,2, Lieze Mertens1,3, Jelle Van Cauwenberg2,3, Iris Maes1 and Delfien Van Dyck1

1 Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
2 Research Foundation Flanders, Brussels, Belgium
3 Department of Public Health and Primary Care, Ghent University, Ghent, Belgium

\textbf{ABSTRACT}

\textbf{Background.} Evidence on associations between environmental factors and accelerometer-derived light-intensity physical activity (LPA) is scarce. The aim of this study was to examine associations between Geographic Information System (GIS)-based neighborhood built environmental factors and accelerometer-derived LPA, and to investigate the moderating effect of age group (adolescents, adults, older adults) on these associations.

\textbf{Methods.} Objective data were used from three similar observational studies conducted in Ghent (Belgium) between 2007 and 2015. Accelerometer data were collected from 1,652 participants during seven consecutive days, and GIS-based neighborhood built environmental factors (residential density, intersection density, park density, public transport density, entropy index) were calculated using sausage buffers of 500 m and 1,000 m around the home addresses of all participants. Linear mixed models were performed to estimate the associations.

\textbf{Results.} A small but significant negative association was observed between residential density (500 m buffer) and LPA in the total sample ($B = -0.002$; $SE = 0.0001$; $p = 0.04$), demonstrating that every increase of 1,000 dwellings per surface buffer was associated with a two minute decrease in LPA. Intersection density, park density, public transport density and entropy index were not related to LPA, and moderating effects of age group were absent.

\textbf{Conclusions.} The small association, in combination with other non-significant associations suggests that the neighborhood built environment, as classically measured in moderate-to-vigorous intensity physical activity research, is of limited importance for LPA. More research is needed to unravel how accelerometer-derived LPA is accumulated, and to gain insight into its determinants.

\textbf{Subjects} Epidemiology, Public Health, Environmental Health

\textbf{Keywords} Physical environment, Physical activity, Built environment, Residential density, Light physical activity

\textbf{How to cite this article} Compernolle S, Mertens L, Van Cauwenberg J, Maes I, Van Dyck D. 2022. The association between Geographic Information System-based neighborhood built environmental factors and accelerometer-derived light-intensity physical activity across the lifespan: a cross-sectional study. \textit{PeerJ} 10:e13271 \url{http://doi.org/10.7717/peerj.13271}
BACKGROUND

Physical inactivity is considered to be a major public health issue worldwide due to its contribution to a range of non-communicable diseases and premature mortality (Katzmarzyk et al., 2021). Research has estimated that a lack of physical activity causes 6% of the burden of disease from coronary heart disease, 7% of type 2 diabetes, 10% of breast and colon cancer, and 9% of premature mortality, which corresponds to approximately 5.3 million deaths worldwide (Lee et al., 2012). To reduce the burden of physical inactivity, updated physical activity guidelines were proposed in 2020 by the World Health Organization (WHO). These updated guidelines emphasize that all types and intensities of physical activity count, bringing greater attention to the previously ignored light-intensity physical activities (LPA) (Van der Ploeg & Bull, 2020). According to Ainsworth’s Compendium of Physical Activities, LPA’s include all activities performed at 1.6–3 metabolic equivalent of tasks (METs) (Ainsworth et al., 2000). Examples of frequently performed LPA’s are standing, slow walking (≤ 3 km/h) and gardening (Mendes et al., 2018).

Although often overlooked, LPA can play a key role in health promotion and disease prevention. Recent systematic reviews and meta-analyses have indicated that LPA was favorably associated with some cardiometabolic risk factors including waist circumference, triglyceride levels, insulin, and the presence of metabolic syndrome in different age groups (Chastin et al., 2019; Amagasa et al., 2018; Poitras et al., 2016). LPA was also inversely associated with all-cause mortality risk after adjustment for moderate-to-vigorous intensity physical activity (MVPA) (Amagasa et al., 2018; Ku et al., 2020; Fuezeki, Engeroff & Banzer, 2017). Results of a longitudinal cohort study among 4,840 US adults showed that those adults who performed 4 h/day of LPA had a 21% lower risk of mortality compared with those who did less LPA (Matthews et al., 2016). Focusing on LPA might thus be important, particularly for whom the recommended 60 min/day (adolescents) or 150–300 min/week (adults and older adults) of MVPA are challenging to achieve (Del Pozo Cruz et al., 2021).

According to the ecological model of active living, physical activity is influenced by individual characteristics as well as characteristics of the environment in which the behavior is performed (Sallis et al., 2006). Various studies have addressed which neighborhood built environmental factors promote or hinder more intense levels of physical activity in different age groups (e.g., Cain et al., 2021; De Bourdeaudhuij et al., 2015; Lee, Ewing & Sesso, 2009; McCormack & Shiell, 2011). Residential density, intersection density, public transport density, park density and land-use mix (often measured using an entropy index) were frequently identified as correlates of moderate-to-vigorous physical activity or active transport (McCormack & Shiell, 2011; Sallis et al., 2016; Van Cauwenberg et al., 2018). Residential density may impact on physical activity by an increased sense of safety or by increasing access to shops, services and public transport facilities that, in turn, may reduce car dependency and, thus, promote active transport (Forsyth et al., 2007; Cerin et al., 2020). Intersection density, as an indicator of street connectivity, is expected to influence physical activity by an increase in active transport, possibly because distances to destinations tend to decrease (Sallis et al., 2016; Bungum et al., 2009). Similarly, dense public transport services
are expected to stimulate active transport, as people usually walk or cycle to the nearest public transport stop (Sallis et al., 2016). Parks density may impact physical activity directly as parks are supportive environments for recreational physical activity; and indirectly, as nearby parks can also be a destination for active transportation (McCormack et al., 2010). Finally, a higher land-use mix should increase the availability of destinations within walking distance from home, thus decreasing passive transport (Sallis et al., 2016).

Importantly, the built environmental factors presented above were mainly examined as correlates of MVPA. Little determinant studies have been conducted focusing on LPA, and the ones that exist have mainly focused on walking (McCormack & Shiell, 2011; Haselwandter et al., 2015; Durand et al., 2011). Walking, which is a common form of LPA if performed slowly, is influenced by one’s built environmental neighborhood (Saelens & Handy, 2008). Concretely, systematic reviews revealed strong evidence for positive associations between neighborhood walkability, number of destinations, greenery, and aesthetically pleasing environments on the one hand, and walking on the other hand, in different age groups (McCormack & Shiell, 2011; Saelens & Handy, 2008; Barnett et al., 2017; Smith et al., 2017; Wang et al., 2016). However, important to note, is that the majority of these findings are based on self-reported walking data without taking into account walking speed. The proportion of slow walking in previous studies remains thus unclear, and it might be that only a small part of the self-reported walking can be classified as LPA. In addition, many other LPA’s, such as gardening and cooking, are not taken into account when analyzing self-reported walking behavior. Consequently, research into objective accelerometer-derived LPA can provide useful and complementary insights.

A recent systematic review, focusing on objectively Geographic Information System (GIS)-measured built environmental factors and accelerometer-derived physical activity, showed that among the sixty included studies, only eight investigated the influence on LPA (Yi et al., 2019). Results of these few studies were also inconsistent (Whitaker et al., 2019). For example, in the cross-sectional study of Chen et al. (2019) no significant associations were found between neighborhood walkability attributes and LPA in 124 older Taiwanese adults, whereas in the study of Van Holle et al. (2014a) and the study of Gonçalves et al. (2017) walkability and residential density were inversely associated with LPA in a sample of 438 Belgian older adults, and 305 Brazilian adults, respectively. Next to the potential moderating role of geographical location, the detected inconsistencies might also be attributed to age-related differences in the studied samples.

Neighborhood built environmental factors might be less important for adults’ LPA, as this population subgroup generally spend not as much time in their neighborhood as adolescents and older adults due to two reasons (Glass & Balfour, 2003). Firstly, many adults are in full-time employment, often outside their own neighborhood, which reduces the available free time in their neighborhood (Glass & Balfour, 2003; Kaczynski et al., 2009). Secondly, most adults own a car, and have a driver license, which gives them easy access to more distant neighborhoods (Simons et al., 2017). In contrast, many adolescents and older adults cannot travel independently by car due to the lack of a driver license, or due to aging-related health issues (Beard et al., 2009; Oyeyemi et al., 2019; Vilhjalmsdottir et al., 2016; Shigematsu et al., 2009). Consequently, they are often dependent on public transport.
for trips outside their neighborhood. The use of public transport involves several barriers, especially for older adults. A recent study concluded that these barriers can be classified as physical (e.g., struggling to board the bus), emotional (e.g., worrying about getting a seat), and spatiotemporal (e.g., staying home when the weather is bad) barriers (Ravensbergen et al., 2021). Next to the importance of the neighborhood, the sausage buffer representing ones neighborhood might also differ across age groups. It is hypothesized that the sausage buffer should be smaller in older adults as their walking distance is more likely to be diminished due to functional limitations (Cerin et al., 2017; Carlson et al., 2012).

Up till now, existing studies on the association between built environmental factors and physical activity have mainly focused on one specific age group. Although these studies yield interesting insights, they fail to examine the moderating role of age group on the associations between GIS-based neighborhood built environmental factors and accelerometer-derived LPA. However, as the built environment affects all population subgroups living in a certain neighborhood, examining the moderating role of age groups is important to inform policy makers and urban planners on the environmental changes that may yield the greatest benefits for diverse age groups.

To add to the limited knowledge on the determinants of objectively measured LPA, and to inform policy makers and urban planners on health-enhancing environments, the aims of the current study were (1) to investigate the associations between GIS-based neighborhood built environmental factors and accelerometer-derived LPA, and (2) to examine the moderating effect of age group (adolescents, adults, older adults) on these associations. It was hypothesized that stronger associations will be detected between neighborhood built environmental factors and LPA in adolescents and older adults, compared to young and middle-aged adults.

MATERIALS AND METHODS

Study design

Data from three observational studies with a similar methodology were combined to examine associations between neighborhood built environmental factors and LPA across the lifespan. All three studies were conducted in Ghent, Flanders. The Belgian Environmental Physical Activity Study (BEPAS) collected data from adults (20–65 years) between May 2007 and September 2008 (Van Dyck et al., 2010), and the BEPAS Seniors collected data from older adults (≥65 years) between October 2010 and September 2012 (Van Holle et al., 2014b). The Belgian International Physical activity and the Environment Network (IPEN) study in Adolescents collected data from adolescents (11–17 years) between September 2014 and December 2015 (Cain et al., 2021). All three studies were approved by the Ethics Committee of the Ghent University Hospital (B670201423000) and all participants provided written informed consent.

Participant selection and procedure

Stratified cluster sampling based on walkability (i.e., a composite measure of residential density, street connectivity and land use mix diversity; low vs high) and median annual household income (as a measure for neighborhood socio-economic status [SES]; low vs
high) was used to select neighborhoods (i.e., 1 to 5 adjacent statistical sectors) in Ghent (i.e., city in Flanders, Belgium) for the three observational studies (Van Dyck et al., 2010; Van Holle et al., 2014b). A total of 24 neighborhoods were selected from four neighborhood types (i.e., high walkable/high SES; high walkable/low SES; low walkable/high SES; low walkable/low SES) to recruit adult participants for BEPAS (Van Dyck et al., 2010). Low and high walkable neighborhoods were defined as neighborhoods in the lowest and highest walkability quartiles, respectively. Low and high SES neighborhoods were neighborhoods from the second, third or fourth versus seventh, eighth, or ninth decile of neighborhood income. The first and tenth deciles were excluded in order to avoid extremely poor or wealthy neighborhoods skewing our results. Subsequently, 250 adults of each neighborhood were randomly sampled by the Public Service of Ghent. For BEPAS Seniors, 20 out of these 24 neighborhoods were selected to randomly sample 1750 older adults stratified by age and gender (Van Holle et al., 2014b). For IPEN Adolescents, 442 adolescents were randomly sampled from the 24 neighborhoods that were initially selected for BEPAS. Next to the recruitment by residential address, adolescents were also recruited from schools located in the 24 neighborhoods (Cain et al., 2021). Selected adolescents, adults and older adults received an invitation letter with the announcement of a home or school visit of a trained researcher within the next days. Candidates were considered to be eligible for the study if they lived in a private dwelling, were able to walk a couple of hundred meters without assistance and were able to fill out a Dutch questionnaire. The recruitment process resulted in a sample of 373 adolescents, 1,200 adults, and 508 older adults who were found at home/school, met the inclusion criteria, and willing to participate. All participants filled in a questionnaire on sociodemographic and psychosocial factors, and physical activity. Additionally, one of the parents of each adolescent participant also completed a brief sociodemographic questionnaire. By the end of the first home/school visit, participants received an Actigraph accelerometer, which they were instructed to wear for seven consecutive days. After seven days, a second home/school visit took place to collect the Actigraph accelerometers.

Measures

Outcome variable: LPA

LPA was objectively assessed with ActiGraph 7164, GT1M, GT3X and GT3X+ accelerometers (ActiGraph, Fort Walton Beach, FL, USA), which are valid and reliable tools to measure PA levels in different age groups (Aadland & Ylvisåker, 2015; Vanhelst et al., 2012b; Colbert et al., 2011; Vanhelst et al., 2012a). Previous research has confirmed the acceptability of using these different models simultaneously in studies, as the levels of physical activity are comparable (Vanhelst et al., 2012b; John, Tyo & Bassett, 2010; Lee, Macfarlane & Cerin, 2013). Accelerometers were attached using an adjustable elastic waist belt above the right hip for seven consecutive days. Participants were asked to only remove the accelerometer while sleeping, and for water-based activities, such as swimming or bathing. Accelerometer counts were collected using 60-second epochs. Non-wear time, which was defined as ≥60 min of consecutive zeros, was removed (Choi et al., 2012), and participants with less than five valid days of data (i.e., at least 10 wearing hours)
were excluded from the analysis (Grimm et al., 2012). Although there is still no consensus on the optimal cut-points to estimate physical activity, the recommended cut points of Freedson (Freedson, Melanson & Sirard, 1998), and Evenson (Evenson et al., 2008), were used to convert the counts per minute into minutes of LPA (101 through 1,951 counts/minute were considered LPA in adults and older adults, and 101 through 2,296 counts/minutes were considered LPA in adolescents). By doing so, comparability with existing research is possible (Gorman et al., 2014; Trost et al., 2011; Loprinzi et al., 2012). The complete accelerometer data processing was performed using Actilife software version 6.

Predictor variables: GIS-based neighborhood built environmental factors

Geographical data were obtained through the Service for Environmental Planning in Ghent. ArcGIS (version 10.3; ESRI) software was used to geocode participants’ residences, to create the sausage buffers of 500 m and 1,000 m (1 km) around the home address for each participant, and to generate the included built environmental factors based on the International Physical Environmental Network (IPEN) guidelines (Adams et al., 2014). These guidelines provide standardized templates, including operational definitions, in- and exclusion criteria, and concrete examples of GIS-based computations. The templates are available in Adams et al. (2014) Sausage buffers are preferred over the more traditional Euclidian buffers, as sausage buffers are directly based on the road networks used to travel (Forsyth et al., 2012). The 1,000 m sausage buffer was chosen because this is considered to be a walkable distance (i.e., within a 20 min walking distance) (Adams et al., 2014; Cerin et al., 2016), and because this scale is the most prevalent one in the physical activity literature (Saelens et al., 2012; Oliver, Schuurman & Hall, 2007; Troped et al., 2010). The 500 m sausage buffer was added as for older adults the near and direct environment might be more important due to mobility limitations (Cerin et al., 2017; Carlson et al., 2012). Five GIS-based neighborhood built environmental factors were included in the current study (see Table 1).

Potential confounding/moderating variables: socio-demographic factors, valid days, and wear time

Age group, gender, educational level (primary, secondary, or tertiary), neighborhood SES, number of valid days, and wear time were selected a priori as potential confounding/moderating variables. Socio-demographic confounding variables were self-reported by the participants (or their parents) during the first home/school visit. Since adolescents were still studying, highest achieved educational level of the parent who filled in the questionnaire was included in the analyses as a proxy for their SES. Neighborhood SES was based on Belgian census income data from the National Institute of Statistics. Number of valid days and wear time were extracted from the accelerometer data.

Statistical analyses

Descriptive statistics of participants’ characteristics were calculated for the total sample and the three age groups (adolescents, adults and older adults) separately. Means and standard deviations were provided for normally distributed continuous variables, medians
Table 1 Operational definitions for GIS-based built environmental factors.

Built environmental factor	Operational definition
Residential density	Number of residential dwellings (houses and apartments) fully or partially in the buffer divided by the residential land area (derived from residential parcels only) within participants’ buffers.
Intersection density	Number of three- or more-way pedestrian-accessible street intersections divided by the area within participants’ buffers. Intersections on limited access roads (e.g., limited-access highways and on-ramps) were excluded.
Park density	Number of public parks of any size contained in or intersected by the buffer, divided by the land area within participants’ buffers. A public park was defined as a government designated park of any size that was free of cost and open to the public and maintained by a government agency. Parks included improved or landscaped areas and unimproved or natural areas.
Public transport density	Number of bus, rail, or ferry stops and stations divided by the land area within participants’ buffers. The complexity was shown by a variety of modes (i.e., bus, rail, and ferry) and mode types (e.g., regular bus vs bus rapid transit and light vs heavy rail) within and across cities.
Entropy index	The land-use mix diversity within the buffers, calculated using the following formula \(H(S) = -\sum_{i=1}^{k} (\rho_i \cdot \ln(\rho_i))/\ln k \) where \(H(S) \), Entropy index (Shannon index); \(\rho_i \), the area of a particular category of land-use over the total area of all categories (within the scope of one district); and \(k \), the number of land-use categories in the particular district (Simons et al., 2017). Six land use categories were included in the formula: residential, commercial, institutional, entertainment, food, and private/public recreational.
Table 2 Descriptive statistics of the participants.

	Total sample	Adolescents	Adults	Older adults
	(n = 1,652)	(n = 150)	(n = 1,059)	(n = 443)
Socio-demographic variables				
Age, in years, mean (SD)	48.8 (20.4)	13.6 (1.3)	42.9 (12.4)	74.1 (6.2)
Gender, % female	52.4	53.7	51.6	54.1
Educational level				
% primary	9.9	4.8	4.2	25.2
% secondary	32.8	20.0	33.1	36.4
% tertiary	57.3	75.2	62.7	38.4
Accelerometer-derived variables				
LPA, min/day, mean (SD)	304.6 (96.3)	226.9 (46.8)	335.2 (92.2)	257.9 (84.3)
LPA, % of the day, mean (SD)	35.0 (10.5)	27.6 (9.2)	38.1 (10.3)	30.1 (5.5)
Wear time	869.4 (83.8)	821.5 (54.0)	882.3 (84.2)	854.8 (83.0)
Valid days	6.8 (0.8)	7.4 (1.2)	6.8 (0.8)	6.8 (0.5)
GIS-based neighborhood built environmental variables				
Residential density 500 m, mean (SD)	4770.5 (3226.2)	4271.9 (3150.4)	4795.6 (3227.7)	4879.2 (3240.1)
Residential density 1,000 m, mean (SD)	4357.4 (2987.6)	3875.4 (2669.5)	4387.7 (3018.7)	4448.3 (3006.0)
Intersection density 500 m, mean (SD)	160.5 (68.3)	155.0 (63.0)	159.9 (68.4)	163.7 (69.6)
Intersection density 1,000 m, mean (SD)	157.2 (65.0)	148.7 (56.6)	158.1 (65.6)	157.8 (66.1)
Park density 500 m, median (Q1–Q3)	8.0 (3.7–12.6)	6.6 (0.0–13.3)	7.6 (0.0–11.5)	9.9 (5.5–15.8)
Park density 1,000 m, median (Q1–Q3)	7.2 (3.9–11.4)	7.6 (3.7–12.5)	6.9 (3.8–10.8)	8.0 (4.5–13.3)
Public transport density 500 m, mean (SD)	33.7 (20.0)	29.8 (19.8)	34.4 (20.0)	33.6 (20.0)
Public transport density 1,000 m, mean (SD)	32.9 (13.7)	29.2 (14.4)	33.1 (13.6)	33.5 (13.4)
Entropy index 500 m, mean (SD)	0.5 (0.2)	0.4 (0.2)	0.5 (0.2)	0.5 (0.2)
Entropy index 1,000 m, mean (SD)	0.5 (0.2)	0.5 (0.1)	0.5 (0.2)	0.6 (0.2)

Notes.
SD, Standard deviation; min, minutes; LPA, light-intensity physical activity.

% of wear time.

Number of dwellings per surface buffer 500 m.

Number of dwellings per surface buffer 1 km.

Number of intersections per surface buffer 500 m.

Number of intersections per surface buffer 1 km.

Number of public parks of all sizes per surface buffer 500 m.

Number of public parks of all sizes per surface buffer 1 km.

Number of public transportation stops of any kind per surface buffer 500 m.

Number of public transportation stops of any kind per surface buffer 1 km.

Range from 0 (=perfect homogenous land use) to 1 (=perfect heterogeneous land use).

RESULTS

Descriptive statistics of the participants
Participants with invalid accelerometer data (i.e., less than five days with at least 10 h of wearing time) (n = 323) or GIS-data (n = 106) were excluded from the study. This resulted in a total sample of 1652 participants, of which 150 adolescents, 1059 adults and 443 older adults (see File S1). Descriptive statistics of the participants are presented in Table 2. The mean age of the sample was 48.8 (±20.4) years, and about half of the sample was female. The sample spent on average 304.6 (±96.3) min in LPA per day, ranging from 226.9 (±46.8) min/day for adolescents to 335.2 (±92.2) min/day for adults.
Associations between GIS-based neighborhood built environmental factors and accelerometer-derived LPA

The ICC of the random intercept null model was 0.123, indicating that 12.3% of the variance in LPA can be attributed to the neighborhood level. Table 3 presents the results of the single- and multiple-predictor mixed effects regression models. Results of the multiple-predictor model for the 500 m sausage buffer showed that residential density is significantly related to LPA. Concretely, every increase of 1,000 dwellings per 500 m surface buffer was associated with a two minute decrease in LPA, given age group, gender, educational level and wear time are held constant. None of the other GIS-based neighborhood built environmental factors were related to LPA in the model with the 500 m sausage buffer. Results of the multiple-predictor model for the 1,000 m buffer showed that none of the included GIS-based built environmental factors (i.e., residential density, intersection density, park density, public transport density and entropy) were significantly associated with LPA.

Moderating role of age group on the associations between GIS-based neighborhood built environmental factors and accelerometer-derived LPA

Table 4 lists the results of the likelihood ratio test comparing the multiple-predictor model of accelerometer-derived LPA with and without interaction terms (GIS-based built environmental factors * age group). Results showed that none of the interaction effects were significant, indicating that the association between GIS-based built environmental factors and LPA did not differ depending on age group.

DISCUSSION

This study is the first to investigate the association between GIS-based neighborhood built environmental factors and accelerometer-derived LPA in different age groups. The results showed only one significant association, namely that residential density (500 m buffer) was inversely associated with LPA in the total sample. This finding is in line the results of previous LPA studies, Gonçalves et al. (2017) and Van Holle et al. (2014a), suggesting that residents of dense neighborhoods are less likely to engage in LPA. Important to note is, however, that the association was only present once the analyses were controlled for socio-demographic factors and wear time, and that the effect size of the observed association was rather limited. As such, the clinical relevance might be questioned.

At first sight, it seems that the current findings contrast with previous evidence regarding built environmental determinants of MVPA, showing that neighborhoods with high residential density were positively associated with MVPA (Van Dyck et al., 2010; Cerin et al., 2018; Loh et al., 2019). However, LPA and MVPA are interrelated as they both occur—together with sleep and sedentary behavior—within a finite 24-hour window (Rosenberger et al., 2019). Less time in one behavior might thus lead to more time in another behavior. Or, concretely, it might be that residents of more dense neighborhoods might partly replace their LPA by MVPA. More research including the full 24-hour activity cycle is
Table 3 Associations between GIS-based neighborhood built environmental factors and accelerometer-derived LPA.

Socio-demographic variables	Single-predictor models—LPA	Multiple-predictor models—LPA	
	Buffer 500 m	Buffer 1,000 m	
	B (SE) p 95% CI	B (SE) p 95% CI	
Adults (ref. adolescents)	110.5 (8.1) <0.001 93.43–124.69	88.8 (7.4) <0.001 74.21–103.28	89.3 (7.5) <0.001 74.64–103.99
Older adults (ref. adolescents)	32.4 (8.8) <0.001 15.42–49.38	15.0 (8.1) 0.06 –0.93 to 30.85	16.4 (8.2) 0.05 0.39–32.37
Women (ref. men)	18.48 (4.6) <0.001 9.68–27.16	26.3 (4.1) <0.001 18.34–34.23	26.4 (4.1) <0.001 18.47–34.37
Secondary (ref. primary)	37.5 (8.4) <0.001 20.95–54.06	4.7 (5.7) 0.54 10.13 to 19.47	5.7 (7.5) 0.45 9.06 to 20.53
Tertiary (ref. primary)	24.6 (8.3) 0.003 8.32–40.96	–18.1 (7.5) 0.02 32.76 to –3.47	–16.1 (7.5) 0.03 30.79 to –1.47

| Neighborhood SES | | |
| High (ref. low) | 1.27 (11.59) 0.913 –22.04 to 24.24 | – – – | – – – | – – – |

Acclerometer-derived variables				
Wear time (min/day)	0.36 (0.02) <0.001 0.29–0.39	0.3 (0.02) <0.001 0.26–0.36	0.3 (0.02) <0.001 0.26–0.36	
Valid days	4.6 (2.9) 0.11 –1.80 to 6.91	– – –	– – –	– – –

GIS-based neighborhood built environmental variables				
Residential density 500 m³	–0.001 (0.001) 0.30 –0.003 to 0.001	–0.002 (0.001) 0.04 –0.004 to –0.0005	– – –	
Residential density 1,000 m³	–0.001 (0.001) 0.24 –0.003 to 0.001	– – –	–0.003 (0.002) 0.09 –0.01 to 0.0004	– – –
Intersection density 500 m²	–0.05 (0.05) 0.28 –0.14 to 0.04	–0.03 (0.05) 0.58 –0.12 to 0.07	– – –	– – –
Intersection density 1,000 m²	–0.0007 (0.05) 0.99 –0.11 to 0.11	– – –	0.05 (0.07) 0.51 –0.09 to 0.18	– – –
Park density 500 m²	–0.37 (0.29) 0.21 –0.94 to 0.21	–0.04 (0.24) 0.87 –0.52 to 0.44	– – –	– – –
Park density 1,000 m³	–1.33 (0.61) 0.03 –2.56 to –0.09	– – –	–0.34 (0.52) 0.51 –1.36 to 0.72	– – –
Public transport density 500 m²	–0.06 (0.14) 0.67 –0.33 to 0.21	–0.11 (0.12) 0.38 –0.35 to 0.13	– – –	– – –
Public transport density 1,000 m³	–0.15 (0.23) 0.53 –0.60 to 0.31	– – –	0.05 (0.02) 0.90 –0.42 to 0.48	– – –
Entropy index 500 m³	–22.0 (13.6) 0.11 –49.95 to 1.88	–13.5 (13.8) 0.33 –40.62 to 13.57	– – –	– – –
Entropy index 1,000 m³	–22.2 (17.4) 0.20 –65.49 to 1.21	– – –	–34.7 (19.8) 0.08 –73.31 to 4.19	– – –

Notes.

- Min, minutes; LPA, light-intensity physical activity.
- Number of dwellings per surface buffer 500 m.
- Number of dwellings per surface buffer 1 km.
- Number of intersections per surface buffer 500 m.
- Number of intersections per surface buffer 1 km.
- Number of public parks of all sizes per surface buffer 500 m.
- Number of public parks of all sizes per surface buffer 1 km.
- Number of public transportation stops of any kind per surface buffer 500 m.
- Number of public transportation stops of any kind per surface buffer 1 km.
- Range from 0 (=perfect homogenous land use) to 1 (=perfect heterogeneous land use).
- Single-predictor models were run with each potential confounding variable (i.e., age group, gender, educational level, neighborhood SES, number of valid days, and wear time), and each GIS-based neighborhood built environmental factor (i.e., residential density, intersection density, park density, public transport density, and entropy) separately.
- Multiple-predictor models were fitted including the significant confounding variables from the previous step (i.e., age group, gender, educational level, and wear time), and the GIS-based built environmental neighborhood factors.
- Significant P-values (i.e., ≤0.05) were displayed in bold.
Table 4 Moderating role of age group on the association between GIS-based neighborhood built environmental factors and accelerometer-derived LPA.

Buffer size	Built environmental factor	Chi² (df) for interaction effect age group * built environmental factor	p
500 m	Residential densityᵃ	2.05 (2)	0.36
	Intersection densityᵇ	0.04 (2)	0.98
	Park densityᶜ	1.89 (2)	0.39
	Public transport densityᵈ	2.29 (2)	0.32
	Entropy indexᵉ	0.89 (2)	0.64
1 km	Residential densityᶠ	1.70 (2)	0.43
	Intersection densityᵍ	0.05 (2)	0.97
	Park densityʰ	0.43 (2)	0.81
	Public transport densityⁱ	0.50 (2)	0.78
	Entropy indexᵉ	0.92 (2)	0.63

Notes.
ᵃNumber of dwellings per surface buffer 500 m.
ᵇNumber of intersections per surface buffer 500 m.
ᶜNumber of public parks of all sizes per surface buffer 500 m.
ᵈNumber of public transportation stops of any kind per surface buffer 500 m.
ᵉLand-use mix diversity ranging from 0 (=perfect homogenous land use) to 1 (=perfect heterogeneous land use).
ᶠNumber of dwellings per surface buffer 1 km.
ᵍNumber of intersections per surface buffer 1 km.
ʰNumber of public parks of all sizes per surface 1 km.
ⁱNumber of public transportation stops of any kind per surface buffer 1 km.

Multiple-predictor models including age, gender, educational level, wear time, residential density, intersection density, park density, entropy index and the interaction term (i.e., built environmental factor*age group).

Significant P-values (i.e., ≤0.05) were displayed in bold.

needed in order to confirm the previous hypothesis, and to decide upon the most physical activity-friendly neighborhood environment.

Furthermore, it is important to shed light on the behaviors that are included in accelerometer-derived LPA to fully understand the inverse association. Although the interpretation of LPA is still not entirely clear, it seems that activities, such as gardening, cooking and cleaning belong to LPA (Mendes et al., 2018). As residents of neighborhoods with low residential density are more likely to live in large houses, with large gardens, this could possibly explain the inverse association (Van Holle et al., 2014a). Next to the behaviors that are classified as LPA, additional insight into the percentage of LPA that is spent walking in one’s neighborhood could help to identify potential determinants. Given the limited number of observed associations between neighborhood built environmental factors and LPA, it is suspected that walking slowly in the neighborhood makes only a small contribution to the total time spent in LPA. This would also explain the disagreement between the current results and the ones previously found in built environment-walking studies. Several reviews found evidence of positive associations between residential density/urbanization, walkability, street connectivity, overall access to destinations/services, land use mix, pedestrian-friendly features and access to several types of destinations with walking (Cerin et al., 2017; Hilland et al., 2020; Owen et al., 2004). Studies combining GPS and accelerometer data are recommended to map the proportion of time in LPA spent in- and outdoors.
Contrary to our hypothesis, no stronger associations were observed between environmental neighborhood factors and LPA in adolescents and older adults, compared to young and middle-aged adults. Again, this could be explained by the fact that walking slowly in one’s neighborhood represents only a small part of total accelerometer-derived LPA. If future research confirms that LPA occurs only to a limited extent in one’s neighborhood, examining the role of the home, school and work environment will, just as with sedentary behavior, be more relevant to detect determinants than investigating the influence of neighborhood factors (Compernolle et al., 2017). Next to the home, school and work environment, psychological and social environmental factors were also understudied, and deserve more attention in future LPA studies.

This study has several strengths. To our knowledge, no previous studies have investigated the associations between GIS-based neighborhood built environmental factors and accelerometer-derived LPA in three different age groups. However, including different age groups is important in environmental research, as recommendations to policy makers and urban planners can only be formulated if an environment is supportive for all age groups. Secondly, GIS-based measures were used to assess neighborhood built environmental factors, and accelerometers were applied to estimate LPA. By relying solely on objective measures, recall and/or social desirability biases were eliminated, and accuracy of estimations was improved. Lastly, a sample of more than 1600 people was included in the current study, which guarantees sufficient power to detect potential associations. Limitations of the current study include firstly the lack of context- and location specific LPA information. Information on the context and location in which LPA was performed would have been helpful to interpret the results, and to formulate recommendations. Secondly, the cross-sectional design did not allow us to address the direction of causality. A longitudinal design would be recommended to understand the residential density-LPA association. Thirdly, the absence of information on sleep duration has prevented us from analyzing the so-called 24-hour activity behaviors (i.e., sleep, sedentary behavior, LPA and MVPA) together. This would have been of added value as time spent in one behavior impacts the time spent in at least one of the other behaviors. Future studies should consider investigating all activity behaviors in the same model, using suitable statistical approaches, to formulate the most appropriate policy recommendations. Fourthly, the overrepresentation of highly educated persons, and adults in the sample limits the representativeness and generalizability. Moreover, the limited sample size for adolescents might have influenced the results, and have caused power issues. More than half of the adolescents were excluded from the analysis due to incomplete data. Specifically, 97 adolescents lack GIS data as they were recruited through schools and did not live in Ghent, and 126 adolescents did not provide valid accelerometer data. A more heterogeneous sample with regard to highest obtained educational level, and age group, would have improved the external validity of the results. Finally, the lack of universal consensus on accelerometer cut-points, especially in older adults, might have influenced the results of the current study. Time in LPA may have been overestimated for older adults with low fitness (Del Pozo Cruz et al., 2021).
CONCLUSION

The current results suggest that the contribution of the objectively-measured physical neighborhood environment is limited in explaining accelerometer-derived LPA in all age groups. Only residential density (500 m buffer) was related to LPA. The small, but significant inverse association suggested that residents from dense neighborhoods are less likely to engage in LPA compared to residents from less dense neighborhoods. This association is opposite to the association between residential density and MVPA, and should be taken into consideration by policy makers and urban planners when designing health-enhancing neighborhoods. As no other associations were found between neighborhood built environmental factors and accelerometer-derived LPA, the role of the neighborhood environment seems negligible for LPA, and policy recommendations that were formulated based on MVPA research should be retained. More research is needed into the neighborhood influence on the full 24-hour activity cycle, and into the concept of accelerometer-derived LPA to fully understand the findings of the current study.

ACKNOWLEDGEMENTS

The authors would like to thank the master students who contributed to the data collection, and the participants of the three studies (BEPAS Adults, BEPAS Seniors and IPEN adolescents).

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This research was supported by the Research Foundation Flanders (FWO) B/13018/01. Sofie Compernolle (FWO20/PDJ/088), Lieze Mertens (FWO17/PDO/140) and Jelle Van Cauwenberg (FWO 12I117N) were supported by a postdoctoral fellowship of the Research Foundation Flanders. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Research Foundation Flanders (FWO): B/13018/01.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Sofie Compernolle analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the paper, and approved the final draft.
• Lieze Mertens and Iris Maes analyzed the data, authored or reviewed drafts of the paper, and approved the final draft.
• Jelle Van Cauwenberg conceived and designed the experiments, performed the experiments, analyzed the data, authored or reviewed drafts of the paper, and approved the final draft.
Delfien Van Dyck conceived and designed the experiments, performed the experiments, authored or reviewed drafts of the paper, and approved the final draft.

Ethics
The following information was supplied relating to ethical approvals (i.e., approving body and any reference numbers):

All three studies were approved by the Ethics Committee of the Ghent University Hospital (B670201423000) and all participants provided written informed consent.

Data Availability
The following information was supplied regarding data availability:

The raw data and the R script are available in the Supplementary Files.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/peerj.13271#supplemental-information.

REFERENCES

Aadland E, Ylvisåker E. 2015. Reliability of the Actigraph GT3X+ accelerometer in adults under free-living conditions. *PLOS ONE* 10(8):e0134606 DOI 10.1371/journal.pone.0134606.

Adams MA, Frank LD, Schipperijn J, Smith G, Chapman J, Christiansen LB, Coffee N, Salvo D, Toit I, Dygrýn J, Hino AAF, Lai P-C, Mavoa S, Pinzón JD, Van de Weghe N, Cerin E, Davey R, Macfarlane D, Owen N, Sallis JF. 2014. International variation in neighborhood walkability, transit, and recreation environments using geographic information systems: the IPEN adult study. *International Journal of Health Geographics* 13(1):1–17 DOI 10.1186/1476-072X-13-1.

Ainsworth BE, Haskell WL, Whitt MC, Irwin ML, Swartz AM, Strath SJ, O'Brien WL, Bassett Jr DR, Schmitz KH, Emplaincourt PO, Jacobs Jr DR, Leon AS. 2000. Compendium of physical activities: an update of activity codes and MET intensities. *Medicine and Science in Sports and Exercise* 32(9; SUPP/1):S498–S504 DOI 10.1097/00005768-200009001-00009.

Amagasa S, Machida M, Fukushima N, Kikuchi H, Takamiya T, Odagiri Y, Inoue S. 2018. Is objectively measured light-intensity physical activity associated with health outcomes after adjustment for moderate-to-vigorous physical activity in adults? A systematic review. *International Journal of Behavioral Nutrition and Physical Activity* 15(1):1–13 DOI 10.1186/s12966-017-0635-3.

Barnett DW, Barnett A, Nathan A, Van Cauwenberg J, Cerin E. 2017. Built environmental correlates of older adults’ total physical activity and walking: a systematic review and meta-analysis. *International Journal of Behavioral Nutrition and Physical Activity* 14(1):1–24 DOI 10.1186/s12966-016-0456-9.

Bates D, Maechler M, Bolker B, Walker S. 2014. lme4: linear mixed-effects models using Eigen and S4. R package version 1.1-7.
Beard JR, Blaney S, Cerda M, Frye V, Lovasi GS, Ompad D, Rundle A, Vlahov D. 2009. Neighborhood characteristics and disability in older adults. *Journals of Gerontology: Series B* 64(2):252–257.

Bungum TJ, Lounsbery M, Moonie S, Gast J. 2009. Prevalence and correlates of walking and biking to school among adolescents. *Journal of Community Health* 34(2):129–134 DOI 10.1007/s10900-008-9135-3.

Cain KL, Salmon J, Conway TL, Cerin E, Hinckson E, Mitáš J, Schipperijn J, Frank LD, Anjana RM, Barnett A, Dygryn J, Islam MZ, Molina-Garcia J, Moran M, Muda WAMW, Ouyyemi AL, Reis R, Santos MP, Schmidt T, Schofield GM, Timperio A, Dyck DV, Sallis JF. 2021. International physical activity and built environment study of adolescents: IPEN Adolescent design, protocol and measures. *BMJ Open* 11(1):e046636 DOI 10.1136/bmjopen-2020-046636.

Carlson JA, Sallis JF, Conway TL, Saelens BE, Frank LD, Kerr J, Cain KL, King AC. 2012. Interactions between psychosocial and built environment factors in explaining older adults’ physical activity. *Preventive Medicine* 54(1):68–73 DOI 10.1016/j.ypmed.2011.10.004.

Cerin E, Conway TL, Adams MA, Barnett A, Cain KL, Owen N, Christiansen B, Dyck D, Mitas J, Sarmiento OL, Davey RC, Reis R, Salvo D, Schofield G, Sallis JF. 2018. Objectively-assessed neighbourhood destination accessibility and physical activity in adults from 10 countries: an analysis of moderators and perceptions as mediators. *Social Science & Medicine* 211:282–293 DOI 10.1016/j.socscimed.2018.06.034.

Cerin E, Nathan A, Van Cauwenberg J, Barnett DW, Barnett A. 2017. The neighbourhood physical environment and active travel in older adults: a systematic review and meta-analysis. *International Journal of Behavioral Nutrition and Physical Activity* 14(1):1–23 DOI 10.1186/s12966-016-0456-9.

Cerin E, Van Dyck D, Zhang CJ, Van Cauwenberg J, Lai P-C, Barnett A. 2020. Urban environments and objectively-assessed physical activity and sedentary time in older Belgian and Chinese community dwellers: potential pathways of influence and the moderating role of physical function. *International Journal of Behavioral Nutrition and Physical Activity* 17(1):1–15 DOI 10.1186/s12966-019-0902-6.

Cerin E, Zhang CJ, Barnett A, Sit CH, Cheung MM, Johnston JM, Lai P-C, Lee RSY. 2016. Associations of objectively-assessed neighborhood characteristics with older adults’ total physical activity and sedentary time in an ultra-dense urban environment: findings from the ALECS study. *Health Place* 42:1–10 DOI 10.1016/j.healthplace.2016.08.009.

Chastin SF, De Craemer M, De Cocker K, Powell L, Van Cauwenberg J, Dall P, Hamer M, Stamatakis E. 2019. How does light-intensity physical activity associate with adult cardiometabolic health and mortality? Systematic review with meta-analysis of experimental and observational studies. *British Journal of Sports Medicine* 53(6):370–376 DOI 10.1136/bjsports-2017-097563.

Chen B-I, Hsueh M-C, Rutherford R, Park J-H, Liao Y. 2019. The associations between neighborhood walkability attributes and objectively measured physical activity in older adults. *PLOS ONE* 14(9):e0222268 DOI 10.1371/journal.pone.0222268.
Choi L, Ward SC, Schnelle JF, Buchowski MS. 2012. Assessment of wear/nonwear time classification algorithms for triaxial accelerometer. *Medicine & Science in Sports & Exercise* 44(10):2009–2016 DOI 10.1249/MSS.0b013e318258cb36.

Colbert LH, Matthews CE, Havighurst TC, Kim K, Schoeller DA. 2011. Comparative validity of physical activity measures in older adults. *Medicine and Science in Sports and Exercise* 43(5):867–876.

Compernolle S, De Cocker K, Mackenbach JD, Van Nassau F, Lakerve J, Cardon G, Bourdeaudhuij ID. 2017. Objectively measured physical environmental neighbourhood factors are not associated with accelerometer-determined total sedentary time in adults. *International Journal of Behavioral Nutrition and Physical Activity* 14(1):1–6 DOI 10.1186/s12966-016-0456-9.

De Bourdeaudhuij I, Van Dyck D, Salvo D, Davey R, Reis RS, Schofield G, Sarmiento OL, Mitas J, Christiansen LB, MacFarlane D, Sugiyama T, Aguinaga-Ontoso I, Owen N, Conway TL, Sallis JF, Cerin E. 2015. International study of perceived neighbourhood environmental attributes and Body Mass Index: IPEN Adult study in 12 countries. *International Journal of Behavioral Nutrition and Physical Activity* 12(1):1–10 DOI 10.1186/s12966-014-0159-z.

Del Pozo Cruz B, Biddle SJ, Gardiner PA, Ding D. 2021. Light-intensity physical activity and life expectancy: national health and nutrition survey. *American Journal of Preventive Medicine* 61(3):428–433 DOI 10.1016/j.amepre.2021.02.012.

Durand CP, Andalib M, Dunton GF, Wolch J, Pentz MA. 2011. A systematic review of built environment factors related to physical activity and obesity risk: implications for smart growth urban planning. *Obesity Reviews* 12(5):e173-e82.

Evenson KR, Catellier DJ, Gill K, Ondrak KS, McMurray RG. 2008. Calibration of two objective measures of physical activity for children. *Journal of Sports Sciences* 26(14):1557–1565 DOI 10.1080/02640410802334196.

Forsyth A, Oakes JM, Schmitz KH, Hearst M. 2007. Does residential density increase walking and other physical activity? *Urban Studies* 44(3):679–697 DOI 10.1080/00420980601184729.

Forsyth A, Van Riper D, Larson N, Wall M, Neumark-Sztainer D. 2012. Creating a replicable, valid cross-platform buffering technique: the sausage network buffer for measuring food and physical activity built environments. *International Journal of Health Geographics* 11(1):1–9 DOI 10.1186/1476-072X-11-1.

Freedson PS, Melanson E, Sirard J. 1998. Calibration of the computer science and applications, inc. accelerometer. *Medicine and Science in Sports and Exercise* 30(5):777–781 DOI 10.1097/00005768-199805000-00021.

Fuezeki E, Engeroff T, Banzer W. 2017. Health benefits of light-intensity physical activity: a systematic review of accelerometer data of the National Health and Nutrition Examination Survey (NHANES). *Sports Medicine* 47(9):1769–1793 DOI 10.1007/s40279-017-0724-0.

Glass TA, Balfour JL. 2003. Neighborhoods, aging, and functional limitations. *Neighborhoods and Health* 1:303–334.
Gonçalves PB, Hallal PC, Hino AAF, Reis RS. 2017. Individual and environmental correlates of objectively measured physical activity and sedentary time in adults from Curitiba, Brazil. *International Journal of Public Health* 62(7):831–840 DOI 10.1007/s00038-017-0995-0.

Gorman E, Hanson H, Yang P, Khan K, Liu-Ambrose T, Ashe M. 2014. Accelerometry analysis of physical activity and sedentary behavior in older adults: a systematic review and data analysis. *European Review of Aging and Physical Activity* 11(1):35–49 DOI 10.1007/s11556-013-0132-x.

Grimm EK, Swartz AM, Hart T, Miller NE, Strath SJ. 2012. Comparison of the IPAQ-Short Form and accelerometry predictions of physical activity in older adults. *Journal of Aging and Physical Activity* 20(1):64–79 DOI 10.1123/japa.201.1.64.

Haselwandter EM, Corcoran MP, Folta SC, Hyatt R, Fenton M, Nelson ME. 2015. The built environment, physical activity, and aging in the United States: a state of the science review. *Journal of Aging and Physical Activity* 23(2):323–329 DOI 10.1123/japa.2013-0151.

Hilland TA, Bourke M, Wiesner G, Bengoechea EG, Parker AG, Pascoe M, Craike M. 2020. Correlates of walking among disadvantaged groups: a systematic review. *Health Place* 63:102337 DOI 10.1016/j.healthplace.2020.102337.

John D, Tyo B, Bassett DR. 2010. Comparison of four ActiGraph accelerometers during walking and running. *Medicine & Science in Sports & Exercise* 42(2):368–374.

Kaczynski AT, Potwarka LR, Smale BJ, Havitz ME. 2009. Association of parkland proximity with neighborhood and park-based physical activity: variations by gender and age. *Leisure Sciences* 31(2):174–191 DOI 10.1080/01490400802686045.

Katzmarzyk PT, Friedenreich C, Shiroma EJ, Lee I-M. 2021. Physical inactivity and non-communicable disease burden in low-income, middle-income and high-income countries. *British Journal of Sports Medicine* 56(2):101–106.

Ku PW, Hamer M, Liao Y, Hsueh MC, Chen LJ. 2020. Device-measured light-intensity physical activity and mortality: a meta-analysis. *Scandinavian Journal of Medicine & Science in Sports* 30(1):13–24 DOI 10.1111/sms.13557.

Lee I-M, Ewing R, Sesso HD. 2009. The built environment and physical activity levels: the Harvard Alumni Health Study. *American Journal of Preventive Medicine* 37(4):293–298 DOI 10.1016/j.amepre.2009.06.007.

Lee K-Y, Macfarlane DJ, Cerin E. 2013. Comparison of three models of actigraph accelerometers during free living and controlled laboratory conditions. *European Journal of Sport Science* 13(3):332–339 DOI 10.1080/17461391.2011.643925.

Lee I-M, Shiroma EJ, Lobelo F, Puska P, Blair SN, Katzmarzyk PT, Lancet Physical Activity Series Working Group. 2012. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. *The Lancet* 380(9838):219–229 DOI 10.1016/S0140-6736(12)61031-9.

Loh VH, Veitch J, Salmon J, Cerin E, Thornton L, Mavoa S, Villanueva K, Timperio A. 2019. Built environment and physical activity among adolescents: the moderating effects of neighborhood safety and social support. *International Journal of Behavioral Nutrition and Physical Activity* 16(1):1–8 DOI 10.1186/s12966-018-0763-4.
Loprinzi PD, Lee H, Cardinal BJ, Crespo CJ, Andersen RE, Smit E. 2012. The relationship of actigraph accelerometer cut-points for estimating physical activity with selected health outcomes: results from NHANES 2003–06. Research Quarterly for Exercise and Sport 83(3):422–430.

Matthews CE, Keadle SK, Troiano RP, Kahle L, Koster A, Brychta R, Domelen DV, Caserotti P, Chen KY, Harris TB, Berrigan D. 2016. Accelerometer-measured dose–response for physical activity, sedentary time, and mortality in US adults. The American Journal of Clinical Nutrition 104(5):1424–1432 DOI 10.3945/ajcn.116.135129.

McCormack GR, Rock M, Toohey AM, Hignell D. 2010. Characteristics of urban parks associated with park use and physical activity: a review of qualitative research. Health Place 16(4):712–726 DOI 10.1016/j.healthplace.2010.03.003.

McCormack GR, Shiell A. 2011. In search of causality: a systematic review of the relationship between the built environment and physical activity among adults. International Journal of Behavioral Nutrition and Physical Activity 8(1):1–11 DOI 10.1186/1479-5868-8-1.

Mendes MDA, Da Silva I, Ramires V, Reichert F, Martins R, Ferreira R, Tomasi E. 2018. Metabolic equivalent of task (METs) thresholds as an indicator of physical activity intensity. PLOS ONE 13(7):e0200701 DOI 10.1371/journal.pone.0200701.

Oliver LN, Schuurman N, Hall AW. 2007. Comparing circular and network buffers to examine the influence of land use on walking for leisure and errands. International Journal of Health Geographics 6(1):1–11 DOI 10.1186/1476-072X-6-1.

Owen N, Humpel N, Leslie E, Bauman A, Sallis JF. 2004. Understanding environmental influences on walking: review and research agenda. American Journal of Preventive Medicine 27(1):67–76 DOI 10.1016/j.amepre.2004.03.006.

Oyeyemi AL, Kolo SM, Oyeyemi AY, Omotara BA. 2019. Neighborhood environmental factors are related to health-enhancing physical activity and walking among community dwelling older adults in Nigeria. Physiotherapy Theory and Practice 35(3):288–297 DOI 10.1080/09593985.2018.1443187.

Poitras VJ, Gray CE, Borghese MM, Carson V, Chaput J-P, Janssen I, Katzmarzyk PT, Pate RR, Gorber SC, Kho ME, Sampson M, Tremblay MS. 2016. Systematic review of the relationships between objectively measured physical activity and health indicators in school-aged children and youth. Applied Physiology, Nutrition, and Metabolism 41(6):S197–S239 DOI 10.1139/apnm-2015-0663.

Ravensbergen I, Newbold KB, Ganann R, Sinding C. 2021. ‘Mobility work’: Older adults’ experiences using public transportation. Journal of Transport Geography 97:103221 DOI 10.1016/j.jtrangeo.2021.103221.

Rosenberger ME, Fulton JE, Buman MP, Troiano RP, Grandner MA, Buchner DM, Haskell WL. 2019. The 24-hour activity cycle: a new paradigm for physical activity. Medicine and Science in Sports and Exercise 51(3):454–464.

Saelens BE, Handy SL. 2008. Built environment correlates of walking: a review. Medicine and Science in Sports and Exercise 40(7 Suppl):S550–S566 DOI 10.1249/MSS.0b013e31817c67a4.
Saelens BE, Sallis JF, Frank LD, Cain KL, Conway TL, Chapman JE, Slymen DJ, Kerr J. 2012. Neighborhood environment and psychosocial correlates of adults’ physical activity. *Medicine & Science in Sports & Exercise* 44(4):637–646 DOI 10.1249/MSS.0b013e318237fe18.

Sallis JF, Cerin E, Conway TL, Adams MA, Frank LD, Pratt M, Salvo D, Schipperijn J, Smith G, Cain KL, Davey R, Kerr J, Lai P-C, Mitas J, Reis R, Sarmiento OL, Schofield G, Troelsen J, Dyck DV, Bourdaudhuij ID, Owen N. 2016. Physical activity in relation to urban environments in 14 cities worldwide: a cross-sectional study. *The Lancet* 387(10034):2207–2217 DOI 10.1016/S0140-6736(15)01284-2.

Sallis JF, Cervero RB, Ascher W, Henderson KA, Kraft MK, Kerr J. 2006. An ecological approach to creating active living communities. *Annual Review of Public Health* 27:297–322 DOI 10.1146/annurev.publhealth.27.021405.102100.

Shigematsu R, Sallis JF, Conway TL, Saelens BE, Frank LD, Cain KL, Chapman JE, King AC. 2009. Age differences in the relation of perceived neighborhood environment to walking. *Medicine & Science in Sports & Exercise* 41(2):314–321.

Simons D, De Bourdaudhuij I, Clarys P, De Geus B, Vandelanotte C, Van Cauwenberg J, Deforche B. 2017. Choice of transport mode in emerging adulthood: Differences between secondary school students, studying young adults and working young adults and relations with gender, SES and living environment. *Transportation Research Part A* 103:172–184.

Smith M, Hosking J, Woodward A, Witten K, MacMillan A, Field A, Baas P, Mackie H. 2017. Systematic literature review of built environment effects on physical activity and active transport—an update and new findings on health equity. *International Journal of Behavioral Nutrition and Physical Activity* 14(1):1–27 DOI 10.1186/s12966-016-0456-9.

Troped PJ, Wilson JS, Matthews CE, Cromley EK, Melly SJ. 2010. The built environment and location-based physical activity. *American Journal of Preventive Medicine* 38(4):429–438 DOI 10.1016/j.amepre.2009.12.032.

Trost SG, Loprinzi PD, Moore R, Pfeiffer KA. 2011. Comparison of accelerometer cut points for predicting activity intensity in youth. *Medicine & Science in Sports & Exercise* 43(7):1360–1368 DOI 10.1249/MSS.0b013e318206476e.

Van Cauwenberg J, Nathan A, Barnett A, Barnett DW, Cerin E. 2018. Relationships between neighbourhood physical environmental attributes and older adults’ leisure-time physical activity: a systematic review and meta-analysis. *Sports Medicine* 48(7):1635–1660 DOI 10.1007/s40279-018-0917-1.

Van der Ploeg HP, Bull FC. 2020. Invest in physical activity to protect and promote health: the 2020 WHO guidelines on physical activity and sedentary behaviour. Springer DOI 10.1186/s12966-020-01051-1.

Van Dyck D, Cardon G, Deforche B, Sallis JF, Owen N, De Bourdaudhuij I. 2010. Neighborhood SES and walkability are related to physical activity behavior in Belgian adults. *Preventive Medicine* 50:S74–S79 DOI 10.1016/j.ypmed.2009.07.027.
Van Holle V, Van Cauwenberg J, Van Dyck D, Deforche B, Van de Weghe N, De Bourdeaudhuij I. 2014a. Relationship between neighborhood walkability and older adults’ physical activity: results from the Belgian Environmental Physical Activity Study in Seniors (BEPAS Seniors). *International Journal of Behavioral Nutrition and Physical Activity* 11(1):1–9 DOI 10.1186/1479-5868-11-1.

Van Holle V, Van Cauwenberg J, Van Dyck D, Deforche B, Van de Weghe N, De Bourdeaudhuij I. 2014b. Relationship between neighborhood walkability and older adults’ physical activity: results from the Belgian Environmental Physical Activity Study in Seniors (BEPAS Seniors). *International Journal of Behavioral Nutrition and Physical Activity* 11(1):110 DOI 10.1186/s12966-014-0110-3.

Vanhelst J, Béghin L, Duhamel A, Bergman P, Sjöström M, Gottrand F. 2012a. Comparison of uniaxial and triaxial accelerometry in the assessment of physical activity among adolescents under free-living conditions: the HELENA study. *BMC Medical Research Methodology* 12(1):1–6 DOI 10.1186/1471-2288-12-1.

Vanhelst J, Mikulovic J, Bui-Xuan G, Dieu O, Blondeau T, Fardy P, Béghin L. 2012b. Comparison of two ActiGraph accelerometer generations in the assessment of physical activity in free living conditions. *BMC Research Notes* 5(1):1–4 DOI 10.1186/1756-0500-5-1.

Vilhjalmsdottir A, Gardarsdottir RB, Bernburg JG, Sigfusdottir ID. 2016. Neighborhood income inequality, social capital and emotional distress among adolescents: a population-based study. *Journal of Adolescence* 51:92–102 DOI 10.1016/j.adolescence.2016.06.004.

Wang Y, Chau CK, Ng W, Leung T. 2016. A review on the effects of physical built environment attributes on enhancing walking and cycling activity levels within residential neighborhoods. *Cities* 50:1–15 DOI 10.1016/j.cities.2015.08.004.

Whitaker KM, Xiao Q, Gabriel KP, Larsen PG, Jacobs Jr DR, Sidney S, Reis JP, Gibbs BB, Sternfeld B, Kershaw K. 2019. Perceived and objective characteristics of the neighborhood environment are associated with accelerometer-measured sedentary time and physical activity, the CARDIA Study. *Preventive Medicine* 123:242–249 DOI 10.1016/j.ypmed.2019.03.039.

Yi L, Wilson JP, Mason TB, Habre R, Wang S, Dunton GF. 2019. Methodologies for assessing contextual exposure to the built environment in physical activity studies: a systematic review. *Health & Place* 60:102226 DOI 10.1016/j.healthplace.2019.102226.