Important role of alkali atoms in A_4C_{60}

O. Gunnarsson
Max-Planck-Institut für Festkörperforschung, D-70506 Stuttgart, Germany

S.C. Erwin
Complex Systems Theory Branch, Naval Research Laboratory, Washington, D.C. 20375-5000

E. Koch and R.M. Martin
Department of Physics, University of Illinois, Urbana, Illinois 61801
(March 31, 2018)

We show that hopping via the alkali atoms plays an important role for the t_{1u} band of A_4C_{60} (A=K, Rb), in strong contrast to A_3C_{60}. Thus the t_{1u} band is broadened by more than 40% by the presence of the alkali atoms. The difference between A_4C_{60} and A_3C_{60} is in particular due to the less symmetric location of the alkali atoms in A_4C_{60}.

I. INTRODUCTION

The alkali doped fullerene compounds A_3C_{60} (A=K, Rb) and A_4C_{60} show strikingly different properties. While A_3C_{60} are metals and superconductors, A_4C_{60} are insulators. The t_{1u} band of A_4C_{60} is only partly filled, and in contrast to A_3C_{60}, A_4C_{60} is not a band insulator, since band structure calculations predict a metal with a large density of states at the Fermi energy. This raises interesting questions about what makes A_4C_{60} an insulator. To understand the differences between A_3C_{60} and A_4C_{60}, it is important to understand the electronic structure in more detail. It is, for instance, surprising that for K$_4C_{60}$ the t_{1u} band width (0.56 eV) is not much smaller than for A_3C_{60} (0.61 eV), although the separation of the closest carbon atoms on neighboring molecules is much larger in A_4C_{60} (3.5 Å) than in A_3C_{60} (3.1 Å).

In A_3C_{60} it has been demonstrated that the alkali atoms (K, Rb) play a small role for the states in the partly filled t_{1u} band. The reason is that the alkali atoms sit in very symmetric positions relative to the carbon atoms, and that there is a large cancellation between different contributions to the hopping matrix elements. Here, we find that in A_4C_{60} the indirect hopping via the alkali atoms between t_{1u} orbitals on different C_{60} molecules is of great importance, due to the much less symmetric positions of the alkali atoms in A_4C_{60}. This indirect hopping increases the t_{1u} band width by more than 40%.

In Sec. II we introduce a tight-binding (TB) formalism and apply it to A_nC_{60} (n = 0, 3 and 4). We show that this leads to a good description of the t_{1u} band for C_{60} and A_3C_{60} but not for A_4C_{60}. In Sec. III we include the hopping between the carbon and alkali atoms and show that this is important for A_4C_{60} but not for A_3C_{60}. Finally, in Sec. IV we present a first-principles all-electron band structure calculation for the A_4C_{60} structure with and without the alkali atoms, which demonstrates the importance of the alkali atoms.

II. TIGHT-BINDING DESCRIPTION OF THE t_{1u} BAND

To address the differences between A_3C_{60} and A_4C_{60}, we apply a TB formalism which was found to work well for A_3C_{60}.

We consider only the 60 $2p$ orbitals pointing radially out from a C_{60} molecule, since these make the dominating contribution to the t_{1u} band. A parametrization is then needed for the $2p-2p$ hopping integrals $V_{pp\sigma}$ and $V_{pp\pi}$. Following Harrison, we assume $V_{pp\sigma}/V_{pp\pi} = -1/4$. We make the parametrization

$$V_{pp\sigma} = v_\sigma R e^{-\lambda(R-1.43)},$$

where R is the atomic separation in Å and v_σ and λ are parameters to be determined below. Like Harrison, we only use nearest neighbor hopping inside the C_{60} molecule. For the intermolecular hopping this prescription is ill-defined, since many neighbors have similar separations. Since the intermolecular separations correspond to a range where the hopping integrals decay exponentially, we can include all hopping integrals and still have a small contribution from distant neighbors.

The TB Hamiltonian is solved for a free C_{60} molecule with the bond lengths 1.40 Å and 1.46 Å. This gives the three t_{1u} orbitals

$$|\nu\rangle = \sum_{i=1}^{60} c_{\nu i}^t |i\rangle,$$

where $|i\rangle$ is a radial 2p orbital on atom i and $c_{\nu i}^t$ is the expansion coefficient of the νth t_{1u} orbital. Using Eqs. (1), we can easily calculate the hopping matrix elements between the t_{1u} orbitals on different C_{60} molecules, and obtain an analytical Hamiltonian describing the t_{1u} band.
structure. This was applied to C_{60} in the fcc structure, adjusting the parameters v_σ to reproduce the t_{1u} band width and λ to reproduce the lattice parameter dependence of a band structure calculation in the local density approximation (LDA) of the density functional formalism.

In the following we compare with LDA calculations based on a Gaussian basis set which gives slightly different band width than the atomic sphere LMTO calculation in Ref. 12. The prefactor $v_\sigma = 8.07$ eV/Å has therefore been readjusted to reproduce the band width of Ref. 12. The value of $\lambda = 1.98$ Å$^{-1}$ in Ref. 12 was kept unchanged. In Fig. 1 we compare the TB and LDA band structure calculations for C_{60}. The agreement is very good, given that only the overall band width has been adjusted to the LDA calculation. Within the present TB formalism, the band structure for A_3C_{60} is the same as for C_{60}, apart from a small change in the band width due to the difference in lattice parameter. Since the band structures of C_{60} and A_3C_{60} are very similar, it follows that our TB formalism also describes A_3C_{60} well. A_3C_{60} is further discussed below.

![FIG. 1. Band structure for C_{60} (a) according to LDA and (b) according to the tight-binding (TB) formalism.](image1)

We have next applied the same TB formalism to K_4C_{60}. Fig. 2 compares the result of the TB approach (d) with the LDA result (a). There are striking differences between the results. In particular, the TB band width (0.37 eV) is substantially (34%) smaller than the LDA band widths (0.56 eV). Given the difference in the separation between the closest carbon atoms on neighboring C_{60} molecules for C_{60} (3.1 Å) and K_4C_{60} (3.5 Å), it is, however, not surprising that the band width is strongly reduced compared with C_{60} (0.55 eV). Actually, from the difference in separation alone, one would have expected an even larger reduction (44%) in the t_{1u} band width relative to C_{60}. In the following we analyze the reason for the large deviation between the TB and LDA results for K_4C_{60} in spite of the good agreement for C_{60} and A_3C_{60}.

![FIG. 2. The t_{1u} band for K_4C_{60} according to (a) LDA with alkalis, (b) TB with alkalis, (c) LDA without alkalis and (d) TB without alkalis.](image2)

III. INDIRECT HOPPING VIA THE ALKALI ATOMS

So far the alkali atoms have been completely neglected in the discussion. It is well-known that they indeed play a very small role for the t_{1u} band in A_3C_{60}. It was, however, observed by Satpathy et al. that the unimportance of the alkalis is rather accidental. For instance, an alkali atom at the tetrahedral position sits above a hexagon and has six nearest neighbor C atoms on a given C_{60} molecule. The coefficients c''_i (Eq. (2)) for a given t_{1u} orbital, however, tend to change sign between each atom along a hexagon since the t_{1u} orbital is antibonding. The result is therefore that the hopping integral between a t_{1u} orbital and an alkali orbital is strongly reduced. One can therefore estimate that the mixing of s-character into the t_{1u} orbital from the tetrahedral alkali atoms is reduced by about a factor of 22 due to cancellations between the contributions from the different c''_i. The mixing of the octahedral alkali atoms into the t_{1u} orbital is even more strongly reduced. It is then an interesting question to ask if such a cancellation
does not take place for A_4C_{60}.

In A_4C_{60} the alkali atoms are in general in less symmetric positions relative to the neighboring C_{60} molecules than in A_3C_{60}. Relative to a given C_{60} molecule, the 16 nearest neighbor alkali atoms can be grouped in four groups with four atoms in each. In the first group the alkali atoms sit symmetrically above a pentagon, in the second they sit strongly asymmetrically above a hexagon, being much closer to two of the hexagon atoms, in the third they sit weakly asymmetrically above a hexagon and in the fourth they sit strongly asymmetrically above a pentagon, being much closer to one of the pentagon atoms.

We now use

$$C = \sum_{\nu \in t_{1u}} \left| \sum_{\gamma \in \text{nn}} \epsilon_{\gamma}^{\nu} \right|^2$$

as a measure of the coupling to a given alkali atom. The sum is over the t_{1u} states ν and over the carbon atoms on a given C_{60} molecule which are near neighbors (atoms which are less than five per cent further away than the nearest neighbors) of the alkali atom considered. If we assume that the corresponding C-A hopping integrals are equal, C is proportional to the square of the t_{1u}-A hopping integrals and a measure of how much s-character is mixed into the t_{1u} orbitals from this alkali atom. We find that C is 0.14, 0.14, 0.03 and 0.05 for an alkali atom in the first, second third or fourth groups, respectively. The corresponding number for each of the eight alkali atoms above a hexagon (tetrahedral position for A_3C_{60}) is 0.07.

As a result, the mixing of alkali character into the t_{1u} orbitals is about a factor of $2 \frac{1}{3}$ larger for A_4C_{60} than for A_3C_{60}. The large coupling of an alkali atom to a pentagon is due to the less drastic cancellation between the contributions from the different atoms than in the case of a hexagon, as has also been observed in other contexts. This cancellation still reduces the coupling by about a factor of seven for the pentagon, but much less than for a hexagon (factor 22). In the same way, the cancellation is much less severe in the strongly asymmetric position above a hexagon, since there are only two nearest neighbors. For the weakly symmetric hexagon the cancellation is large. For the asymmetric pentagon, finally, the coupling to mainly just one atom, considering only nearest neighbor interaction, is not quite enough to give a strong coupling, although the cancellations are now less important.

To be able to treat the C-A hopping more quantitatively, we introduce matrix elements which decay as the separation of the atoms squared. To follow the spirit of Harrison, with only nearest neighbor interaction in a system where the nearest neighbors are ill-defined, we further introduce an exponential cut off in the matrix elements

$$V_{\text{spec}} = 1.84D \frac{\hbar^2}{m d^2} e^{-3(d-R_{\text{min}})}$$

where d is the A-C separation and m is the electron mass. R_{min} is the shortest A-C separation for a given alkali atom and C_{60} molecule. The exponential cut off means that we essentially have only nearest neighbor interaction for each A-C$_{60}$ pair. The precise value of the factor three in the exponent is unimportant for the following discussion, which is determined by the signs of the coefficients e_{ν}^γ. We have introduced an adjustable parameter D to be discussed below. The indirect hopping via the alkali atoms introduces new effective matrix elements for the C_{60}-C_{60} hopping

$$t_{\alpha\mu,\beta\nu} = \sum_{\gamma} \frac{t_{\alpha\mu,\gamma} t_{\beta\nu,\gamma}}{\epsilon_{t_{1u}} - \epsilon_s},$$

where $t_{\alpha\mu,\gamma}$ is a hopping matrix element between the μth t_{1u} orbital on the αth C_{60} molecule to the γth alkali atom and $\epsilon_{t_{1u}}$ and ϵ_s are the t_{1u} and alkali s eigenvalues, respectively. We have put $\epsilon_s - \epsilon_{t_{1u}} = 4$ eV. Adding these matrix elements to the direct C_{60}-C_{60} hopping matrix elements gives the band structure in Fig. 2b. The parameter D in Eq. (5) has been set to 0.47, which reproduces the LDA band width for K_4C_{60}. We can see that the indirect alkali hopping increases the band width by about 50%, although the C-A matrix elements have been reduced by a factor of two (1/$D = 2.1$) compared with Harrison’s prescription.

We next apply the same formalism to K_3C_{60}. K_3C_{60} differs from C_{60} due to a slightly different lattice parameter and the presence of the alkali atoms. The presence of the alkali atoms increases the band width by only about 6% and the largest indirect contribution to the hopping matrix elements is down by about a factor of five compared with A_4C_{60}. This illustrates how much less important the alkali hopping is for A_3C_{60} than A_4C_{60}. We consider the lattice parameter $a = 14.24$ Å, which is somewhat larger than $a = 14.2$ Å used for C_{60}. The increase in a reduces the band width to about 0.53 eV (from 0.55 eV for C_{60}), but the inclusion of the alkali atoms in A_3C_{60} increases the band width again to 0.56 eV. This is still somewhat smaller than the width 0.61 eV found in LDA.

The large increase in the band width for A_4C_{60} is primarily due to a large increase in the nearest neighbor $y-y$ hopping, where y is one of the t_{1u} orbitals. The nearest neighbor indirect hopping goes via four alkali atoms in A_4C_{60} but just via two atoms in A_3C_{60}. The large $y-y$ indirect hopping in A_4C_{60} goes via the two alkalis which are strongly asymmetric with respect to a hexagon on one C_{60} molecule and a pentagon on the other C_{60} molecule. Due to the lob-structure of the t_{1u} orbitals, $y-y$ hopping via these alkalis is very favorable, while there is no $x-x$ or $z-z$ hopping for symmetry reasons via these alkalis. The indirect $x-x$ hopping instead takes place via alkalis located over a pentagon on one molecule and weakly asymmetrically over a hexagon on another molecule. The lob structure is, however, less favorable for this hopping. The indirect nearest neighbor $z-z$ hopping is for
symmetry reasons suppressed for hopping over all four alkalis which are the common nearest neighbors of two neighboring C_{60} molecules. Finally, there is efficient indirect \(z - z \) hopping to the second nearest neighbor in the \(z \)-direction and \(y - y \) hopping to the second nearest neighbor in the \(z \)-direction. We observe that it is not surprising to find a large indirect second nearest neighbor hopping via the alkalis, since the larger molecular separation does not inhibit this hopping. In addition to this large indirect hopping, there is also a large direct second nearest neighbor hopping for \(A_4C_{60} \). The second nearest neighbor molecules in the \(z \)-direction are unusually close together due to the compression of the bct lattice in the \(z \)-direction. In addition, the coefficients \(c_1' \) in Eq. (2) are unusually favorable for the second nearest neighbor hopping. In the present TB formalism, the largest total (direct plus indirect) second nearest neighbor hopping is therefore more than 70% of the largest nearest neighbor hopping, i.e., unusually large.

The diagonal indirect \(t_{\text{eff}}^{\alpha \beta} \) and direct hopping terms have the same sign as for both \(A_3C_{60} \) and \(A_4C_{60} \), while the nondiagonal terms have the same sign for \(A_4C_{60} \) but different signs for \(A_3C_{60} \). In the present parameter range, the band width is determined by the diagonal elements. The differences in signs for the nondiagonal terms therefore do not influence the band width, but they do increase the second moment for \(A_4C_{60} \). Thus the increased dispersion can be traced to three effects: (i) a general increase of the alkali hopping due to the less symmetric positions of the alkali atoms relative to the C_{60} molecules, (ii) the particularly large increase of a certain matrix element crucial for the band width and (iii) constructive interference of the direct and indirect contributions to the off-diagonal matrix elements, leading to an additional increase of the second moment.

IV. COMPARISON BETWEEN \(A_4C_{60} \) AND \(V_4C_{60} \)

To test these considerations, we have performed a LDA calculation for “\(V_4C_{60} \),” where the C_{60} molecules are in exactly the same positions as for K_{4}C_{60} but where the the potassium atoms are missing (“vacancies”). The calculation method was the same as described in Ref. 18. The results are shown in Fig. 2b. Comparison with the K_{4}C_{60} calculation in Fig. 2a illustrates that the \(t_{1u} \) band is indeed substantially narrower in the absence of the alkali atoms, and that the inclusion of these atoms increases the band width by more than 40%. This emphasises the importance of the alkali atoms for \(A_4C_{60} \).

The TB \(V_4C_{60} \) width (0.37 eV) is close to the LDA result (0.39 eV). The shapes of the TB and LDA \(V_4C_{60} \) bands also agree rather well, the main difference being a too small TB splitting at the \(\Gamma \)-point. This suggests that the TB formalism describes the C-C hopping rather well in all three structures studied.

V. SUMMARY

To summarize, we have illustrated that the alkali atoms have a large influence on the \(t_{1u} \) band in \(A_4C_{60} \), contrary to their small influence on \(A_3C_{60} \). The reason is, in particular, the nonsymmetric positions of the alkali atoms relative to the carbon atoms in \(A_4C_{60} \), which leads to a less efficient cancellation of the contributions to the \(t_{1u} \)-alkali hopping integrals than in \(A_3C_{60} \).

ACKNOWLEDGEMENTS

We would like to thank O.K. Andersen and O. Jepsen for many helpful discussions. This work was funded in part by the Office of Naval Research (S.C.E.).

1. Haddon, R.C., A.F. Hebard, M.J. Rosseinsky, D.W. Murphy, S.J. Duclos, K.B. Lyons, B. Miller, J.M. Rosamilia, R.M. Fleming, A.R. Kortan, S.H. Glarum, A.V. Makhija, A.J. Muller, R.H. Eick, S.M. Zahrakur, R. Tycko, G. Dabbagh, and F.A. Thiel, Nature 350, 320 (1991).
2. Rosseinsky, M.J., A.P. Ramirez, S.H. Glarum, D.W. Murphy, R.C. Haddon, A.F. Hebard, T.T.M. Palstra, A.R. Kortan, S.M. Zahrakur, and A.V. Makhija, Phys. Rev. Lett. 66, 2830 (1991).
3. Hebard, A.F., M.J. Rosseinsky, R.C. Haddon, D.W. Murphy, S.H. Glarum, T.T.M. Palstra, A.P. Ramirez, and A.R. Kortan, Nature 350, 600 (1991).
4. Murphy, D.W., M.J. Rosseinsky, R.M. Fleming, R. Tycko, A.P. Ramirez, R.C. Haddon, T. Siegrist, G. Dabbagh, J.C. Tully, and R.E. Walstedt, J. Phys. Chem. Solids 53, 1321 (1992).
5. Kiefl, R.F., T.L. Duty, J.W. Schneider, A. MacFarlane, K. Chow, J.W. Elzey, P. Mendels, G.D. Morris, J.H. Brewer, E.J. Ansaldo, C Niedermayer, D.R. Noakes, C.E. Stronach, B. Hitti, and J.E. Fischer, Phys. Rev. Lett. 69, 2005 (1992).
6. Benning, P.J., F. Stepniak, D.M. Poirier, J.L. Martins, J.H. Weaver, L.P.F. Chibante, and R.E. Smalley, Phys. Rev. B 47, 13843 (1993).
7. S.C. Erwin and C. Bruder, Physica B 199-200, 600 (1994).
8. Erwin, S.C., in Buckminsterfullerenes, Eds. W.E. Bllups and M.A. Ciufolini (VCH Publishers, New York), p. 217 (1993).
9. S.C. Erwin and W.E. Pickett, Science 254, 842 (1991).
10. S. Saito and A. Oshiyama, Phys. Rev. B 44, 11532 (1991).
11. J.L. Martins and N. Troullier, Phys. Rev. B 46, 1766 (1992).
12. S. Satpathy, V.P. Antropov, O.K. Andersen, O. Jepsen, O. Gunnarsson, and A.I. Liechtenstein, Phys. Rev. B 46, 177 (1992).
13. O. Gunnarsson, S. Satpathy, O. Jepsen, and O.K. Andersen, Phys. Rev. Lett. 67, 3002 (1991).
14. S.C. Erwin and E.J. Mele, Phys. Rev. B 50, 5689 (1994).
The C_{60} molecule has been oriented so that the double bond with the largest z coordinate is along the x-axis. The band structure therefore differs from Ref. 12 where the orientation is along the y-axis.

15 N. Laouini, O.K. Andersen, and O. Gunnarsson, Phys. Rev. B 51, 17446 (1995).
16 W.A. Harrison, Electronic Structure and the Properties of Solids, (Dover, New York, 1980).
17 S.C. Erwin, M.R. Pederson, and W.E. Pickett, Phys. Rev. B 41, 10437 (1990).