Abstract. Exosomes are excretory vesicles that can deliver a variety of bioactive cargo molecules to the extracellular environment. Accumulating evidence demonstrates exosome participation in intercellular communication, immune response, inflammatory response and they even play an essential role in affecting the tumor immune microenvironment. The role of exosomes in the immune microenvironment of ovarian cancer is mainly divided into suppression and stimulation. On one hand exosomes can stimulate the innate and adaptive immune systems by activating dendritic cells (DCs), natural killer cells and T cells, allowing these immune cells exert an antitumorigenic effect. On the other hand, ovarian cancer-derived exosomes initiate cross-talk with immunosuppressive effector cells, which subsequently cause immune evasion; one of the hallmarks of cancer. Exosomes induce the polarization of macrophages in M2 phenotype and induce apoptosis of lymphocytes and DCs. Exosomes further activate additional immunosuppressive effector cells (myeloid-derived suppressor cells and regulatory T cells) that induce fibroblasts to differentiate into cancer-associated fibroblasts. Exosomes also induce the tumorigenicity of mesenchymal stem cells to exert additional immune suppression. Furthermore, besides mediating the intercellular communication, exosomes carry microRNAs (miRNAs), proteins and lipids to the tumor microenvironment, which collectively promotes ovarian cancer cells to proliferate, invade and tumors to metastasize. Studying proteins, lipids and miRNAs carried by exosomes could potentially be used as an early diagnostic marker of ovarian cancer for designing treatment strategies.

Contents

1. Introduction
2. Biological characteristics of exosomes
3. Cell signaling and exosome-mediated tumor immune microenvironment modification in ovarian cancer
4. Immune cells
5. Immunosuppressive effector cells
6. Exosomal miRNAs, proteins and lipids in the tumor microenvironment
7. Significance of exosomes in ovarian cancer immunotherapy
8. Conclusions

1. Introduction

Ovarian cancer is one of the three primary gynecological tumors, with a 5-year survival rate of 44%. Due to its lack of specific clinical symptoms and practical measures for early diagnosis, >75% patients are diagnosed in advanced stages and quickly become prone to drug resistance during treatment (1). Ovarian cancer cells can simultaneously regulate immune activation and suppression by presenting cancer antigens to immune cells, secreting cytokines and a large number of soluble factors, as well as releasing exosomes to the tumor microenvironment affecting the proximal and distal tissues. These influencing factors together form a complex interactome called the tumor immune microenvironment (2). Inmate and adaptive immune cells can stimulate an antitumor response by recognizing cancer antigens via the antigen presenting cells (APCs) (3). In addition, immune cells, such as lymphocytes, macrophages, dendritic cells (DCs), mast
cells and natural killer (NK) cells, can regulate angiogenesis, certain tumorigenic metabolic pathways and metastasis within the tumor microenvironment (4,5). Exosomes have also been shown to play an important role in affecting the tumor immune microenvironment and ensuing immune responses, such as antigen presentation, migration, metastasis and tumor invasion. Previous research indicates that exosomes carry a number of immunologically active molecules (including major histocompatibility complex (MHC) I), heat shock protein (HSP) and CD81 that can stimulate an antitumor immune response (6). Conversely, some studies have shown that exosomes will weaken the antitumor immune response to effect cancer progression by potentiating immune evasion (7-9). Analyzing the immune microenvironment of ovarian cancer and understanding the role of exosomes in cancer progression could play a vital role in its early diagnosis and designing an effective immunotherapy regimen.

2. Biological characteristics of exosomes

Biological characteristics and functions. As endogenous cellular components, exosomes are vesicles (30-100 nm) derived from the endosomal compartments called multivesicular bodies (Fig. 1) that are secreted by various cells into the extracellular microenvironment. When exosomes are isolated by density gradient centrifugation or ultracentrifugation, they appear as round vesicles in solution. The ultrastructure is resolved by dehydration, where it appears cup-shaped under an electron microscope (10). Exosomes are double-membraned organelles formed by periodic endocytosis of intracellular fluid throughout the life cycle of eukaryotic cells. As early endosomes mature and develop into late endosomes, the inner membrane sprouts inward to form intraluminal vesicles (ILVs), which contain randomly engulfed parts of the cytoplasmic content, rich with mRNAs, microRNAs (miRNAs/miRs), proteins and lipids. ILVs that are released to the extracellular environment are called exosomes (11). Studies show that exosomes can be found in various extracellular fluids, such as blood, urine, ascites, semen and cerebrospinal fluid.

Exosomes can be used as delivery vehicles for a variety of bioactive molecules, for example proteins, lipids, mRNA, miRNA, long non-coding RNA (IncRNA), genomic DNA and cDNA. This unique composition is also occasionally used as an identifier for a particular exosome (12). Previous research indicates that the common proteins in exosomes include tetraspanins, co-stimulatory molecule CD86 and adhesion molecules, such as integrins, ICAM1, CD166 and CD146. Besides specialized proteins, exosomes may also carry common proteins, such as HSP-70, HSP84 and HSP90 (11). Exosomes can accelerate peptide loading onto MHC I and II, thereby mediating a rapid immune response. Exosomes also carry signal transduction proteins, for example, receptor tyrosine kinases and membrane transport and fusion proteins, such as the GTPases Rab5 and Rab7 (11). Studies have also reported that nucleic acids are carried by exosomes, comprising of a diverse mix of DNA (13,14), RNA (15), IncRNA (16) and miRNA (17,18) molecules. Exosomal miRs (miR-15, -16, 151 and -375) can promote angiogenesis and tumor progression in the TME (11). The bioactive cargo carried by exosomes can participate in the modification of immune response of an ovarian cancer microenvironment (19).

Exosome involvement in pathological conditions. In infectious and non-infectious pathological conditions, both non-tumorous and tumorous cells tend to release exosomes more actively, whereas the number of exosomes quantified from the blood of patients with ovarian cancer is 3-4 times higher compared with healthy individuals (11). The exosomes extracted from two human ovarian carcinoma cell lines OVCAR-3 and IGROV1 have a density ranging from 1.09-1.15 g/ml, while ~2,230 proteins are detected in the exosomal cargo, including other significant exosomal protein markers (20). Andre et al (6) in 2002 detected human epidermal growth factor (EGF) receptor (Her2/neu gene) signaling in exosomes of patients with ovarian cancer via western blotting. Activated matrix metalloproteinase (MMP)-2, MMP-9 and urokinase plasminogen activator are found in exosomes derived from the ascites of patients with ovarian cancer, which promotes protease activation to increase degradation of the extracellular matrices (ECMs) and tumor cell invasion and metastasis (21).

3. Cell signaling and exosome-mediated tumor immune microenvironment modification in ovarian cancer

The tumor microenvironment is the product of a number of cells and their accompanying extracellular matrix component (EMCs) jointly contributing towards the development of a distinct microenvironment surrounding the tumor mass. The cells comprise of stromal cells, including: Fibroblasts, macrophages, myeloid-derived suppressor cells, endothelial cells and mesenchymal stem cells. EMCs comprise of inflammatory cytokines, chemokines, MPMs, integrins and exosomes (22) (Fig.2). Tumor cells interact with stromal cells to promote angiogenesis, infiltration and metastasis that cause the tumor to grow and invade other tissues (23). TNF-α is a pro-inflammatory cytokine that is secreted primarily by macrophages along with other cells of the stroma, which promotes tumor necrosis or apoptosis. In total, ~28% of all cancer types are affected by TNF-mediated necrosis (24). 5-Lipoxygenase (5-LOX) is a member of the lipoxygenase family of genes that is a key enzyme in the conversion of arachidonic acid to leukotrienes. In ovarian cancer, upregulation of 5-LOX metabolites and TNF-α can promote recruitment of macrophages to the tumor site (25). In addition, the pro-inflammatory interleukin-6 (IL-6) has been shown to be an important cytokine in the ovarian cancer tumor microenvironment. IL-6 can mediate the maturation of macrophages into M2 macrophages, which enhance tumor vascular stability by VEGF and TGF-β1, thus promoting tumor progression (26-29). Upregulation of miR-217 in ovarian cancer downregulates the IL-6-dependent JAK3/STAT3 signaling pathway, thereby potentially inhibiting the maturation of macrophages from M1 to M2 stage (30). Ovarian cancer-associated mesenchymal stem cells (MSCs) highly express IL-6 and leukemia inhibitor factor that activate the JAK3/STAT3 signaling pathway to increase the tumorigenicity of ovarian cancer stem cells (31). Wang et al (32) have found that cancer-associated fibroblasts (CAFs) can also secrete IL-6 and promote the accumulation
of ovarian cancer stem cells in residual tumors by activating the STAT3 signaling pathway. Exosomes derived from ascites in patients with ovarian cancer can promote the release of more IL-6 from monocytes (THP-1 cells) and activate the NF-kB and STAT3 signaling pathways, which leads to a cytokine environment conducive for immune evasion of tumor cells (33). In addition, IL-6 has been associated with chemotherapy resistance and poor prognosis in patients with ovarian cancer. Studies have shown that the level of IL-6 in the serum of patients with cancer is significantly higher compared with that of normal individuals (34,35). IL-6 can upregulate the expression of resistance-related genes multi-drug resistance-1 and glutathione S-transferase π; in addition to the expression of apoptosis inhibitor protein. Moreover, IL-6 can activate the Ras/MEK/ERK and PI3K/Akt signaling pathways that jointly induce chemotherapy resistance (34,36). The value of IL-6 as a prognostic and diagnostic indicator of ovarian cancer has been confirmed (37,38).

Studies suggest that a higher ratio of M2:M1 macrophages is associated with poor prognosis in patients with ovarian cancer, whereas a higher ratio of M1:M2 macrophages is associated with good prognosis (39,40). Some investigations have shown that tumor-associated macrophages (TAMs) can activate the MMP9/HEGF pathway along with the production of EGF to promote ovarian cancer and breast cancer progression (41,42). TGF-β can promote the transformation of epithelial cells to mesenchymal cells, promoting angiogenesis and inducing immunosuppression, subsequently promoting tumor progression (43). TAMs release TGF-β1 and tenascin-C to promote tumor metastasis in ovarian cancer (44). CAFs can also promote invasion and metastasis of ovarian cancer in the tumor microenvironment (45,46). Studies have shown that TGF-β1 secreted by CAFs can notably potentiate the mechanism of epithelial-mesenchymal transition (EMT), thereby promoting bladder cancer to metastasize (47). Similarly, CAFs highly express the TGF-β gene in ovarian cancer (48). In addition, studies have shown that CAFs in ascites can promote the production of multicellular aggregates, thereby promoting peritoneal metastasis (46,49). CAFs highly express X-linked sushi repeat-containing protein, which are peroxiredoxin enzymes that control cytokine-induced peroxide levels. Similarly, CAFs also highly express hemicentin-1 genes in ovarian cancer tissue samples. Sequential knock-down of these two genes can weaken the ability of CAFs to promote ovarian cancer metastasis (50). Myeloid-derived suppressor cells (MDSCs) and Tregs are important components of the tumor immune evasion mechanism (51,52). A previous study confirmed that the co-culture of MDSCs and ovarian cancer cells can promote the formation of tumor spheres, cell colonies and the accumulation of cancer stem cells, thus a strong indication that MDSCs can induce tumor progression (53). VEGF-induced MDSCs inhibit the activity of CD8+ T cells in ovarian cancer, weakening the host's antitumor immune response and leading to a poor prognosis (54). A study showed that a higher count of Treg cells could be detected in the peripheral blood of patients with ovarian cancer and thus is associated with poor prognosis (55).

In addition to stromal cells, non-cellular components are also included in the tumor microenvironment. TGF-β is a major cytokine in the tumor microenvironment. TGF-β combines with SMADs, the main signal transducers for TGF-β receptors, to activate cells, which can promote...
transformation of fibroblasts and regulate cell proliferation and apoptosis (56). The high expression of TGF-β3 is associated with poor prognosis of high-grade serous carcinoma, and it is a potential indicator for the evaluation of ovarian cancer prognosis (57). Recent studies have reported that in ovarian cancer stem cells, inhibition of TGF-β/SMAD pathway activation can further inhibit EMT (58-60). In 2012, Kulbe et al (61) first described the ‘TNF’ network in the ovarian cancer microenvironment. ‘TNF’ network means that TNF, CXCL12 and IL-6 have a paracrine effect in the tumor microenvironment, affecting angiogenesis and immune cell infiltration. In addition, cytokine-induced tumor cells can release guanylate binding-protein-1 and have an antitumor effect (62). The role of cytokines in the tumor microenvironment provides new possibilities for the treatment of ovarian cancer.

As an essential constituent of the tumor microenvironment, the role of exosomes in the tumor microenvironment can be summarized into two aspects, namely tumor-promoting and tumor-inhibiting. Exosomes modulate immune regulation to reshape the tumor microenvironment through metabolism-regulation, stimulation signal upregulation and inhibition signal evasion (63,64). Exosomes induce angiogenesis by changing the biological characteristics of endothelial cells and regulating pro-angiogenic factors (65). In addition, exosomes may induce human hepatocellular carcinoma metastasis and invasion through EMT, ECM degradation and vascular leakage (66). Ras-like in rat brain (Rab) protein is a member of the GTPase family and plays an important role in regulating the budding, movement and fusion of microvesicles. Studies have shown that ovarian cancer cells can increase the release of exosomes by upregulating Rab27a, downregulating Rab7, lysosome-associated membrane protein-1, neuraminidase-1 mRNA and therefore promoting the secreted lysosomal phenotype (67,68). In addition, the hypoxia-induced exosomes carry oncogenic proteins STAT3 and FAS, which can significantly increase ovarian cancer cell migration, invasion and chemotherapy resistance (67). Epithelial ovarian cancer cells transfer metastasis-associated lung adenocarcinoma transcript-1 a lncRNA to human umbilical vein endothelial cells through exosomes, activating the expression of genes related to angiogenesis (69). Tang et al (70) demonstrated that ascites-derived exosomes highly express soluble E-cadherin, which can promote angiogenesis and ovarian cancer progression. The immune response regulated by exosomes also plays a role in suppressing tumor progression. Exosomes derived from ascites in patients with ovarian cancer can detect T cell receptors, CD20 and human leukocyte antigen-DR isotype (HLA-DR), in addition to histones H2A, B7-2 and HER2/neu gene, in order to participate in immune modulation (21). In addition, exosomes extracted from ascites of patients with ovarian cancer can induce apoptosis, inhibit proliferation, invasion and metastasis of tumor cells as they exert an antitumorigenic effect (21,71).

As aforementioned, the tumor immune microenvironment is a product of immune cells and immune molecules that inhibit the proliferation of tumor cells (3). There are also a variety of components that can promote the proliferation and
invasion of tumor cells, including immunosuppressive cells such as Tregs, TAMs, CAFs, MDSCs and some immunosuppressive signaling factors (72).

4. Immune cells

In the tumor immune microenvironment, the host gives an innate immune response against the tumor mass while an adaptive immune response is given against the tumor antigens, thus preventing tumor progression. Innate immune cells include NK cells, macrophages and DCs. Adaptive immune effectors include CD8⁺, cytotoxic T lymphocyte (CTL) and CD4⁺ Th cells (72). Exosomes play a role in mediating cross-talk with immune cells to exert an antitumorigenic and/or a pro-tumorigenic effect (Fig. 3).

Macrophages. Macrophages are the first line of defense against foreign pathogens and key effectors of innate immunity, they are the key cells to bridge innate and adaptive immunities (73). According to their activation pathways, macrophages can be divided into two types: Classically-activated macrophages (named M1) and alternatively-activated macrophages (named M2) (74). Macrophages are usually polarized into M1 phenotype after being induced by IFN-γ, TNF-α, IL-6 and lipopolysaccharides. Their surface highly expresses MHC II and co-stimulatory proteins, such as CD80 and CD86 (75). M1 macrophages are generally considered pro-inflammatory and release IL-6, IL-12, TNF-α and reactive oxygen species (ROS), which are considered intermediates that are associated with cytotoxicity and anti-tumorigenic properties (76,77). M2 macrophages are polarized by IL-4, IL-13, IL-10 and IL-33 (56). The markers on the surface of M2 macrophages include found in inflammatory zone 1, mannose receptor 1 and MHC II (74). M2 macrophages have the capacity to secrete TGF-β, IL-6 and arginase-1 to facilitate neovascularization, inhibit the adaptive immune response, ensure tumor cell survival and remodel the ECM, which are all generally considered as tumor-promoting functions (78,79). In addition, TAMs are the main cells in the tumor immune microenvironment that have two phenotypes: M1-Like TAMs and M2-like TAMs (80). In the immune microenvironment of ovarian cancer TAMs usually manifest as the M2-like phenotype. The variety of biomarkers on the surface are scavenging receptor B (CD163), mannose receptor (CD204), IL-10 and chemotactic factor ligands CCL18 and CCL22 (81,82). IL-10 secreted by TAMs can activate Treg cells and promote tumor progression (83). miR-29a-3p and -21-5p, which are abundant in TAM-derived exosomes, can be transferred to CD4⁺ T cells; thereby inhibiting STAT3 from regulating the ratio of Treg:Th17 and creating an immunosuppressive microenvironment that is necessary for the ovarian tumor to evade an active immune response, thus helping in tumor progression (84).

Tumor-derived exosomes can induce macrophages to differentiate into the M2 phenotype and TAMs, which have been confirmed in extracts from various organs, including: Ovaries, colorectal regions, endometrium, pancreas, melanoma,
In a hypoxic microenvironment, high expression of miR-940 in exosomes has been derived from epithelial ovarian cancer cells, which induces macrophages to differentiate into the M2 phenotype, thus promoting proliferation and metastasis of epithelial ovarian cancer (92). Similar research shows that under hypoxic conditions, exosomes derived from epithelial ovarian cancer activate hypoxia-inducible factors that induce macrophages to highly express miR-21-3p, -125b-5p and -181d-5p and promotes their polarization to the M2 phenotype through the cytokine signal transduction 4/5/STAT3 signaling pathway, which was also verified in vivo. The JAK-STAT pathway mediates inflammatory immune response by converting cytokine signals, and SOCS is the key regulator of the pathway (76).

Through microarray analyses, some researchers found that the expression of miR-221-3p was upregulated in exosomes that were derived from M2 macrophages. Additionally, miR-221-3p can target the inhibition of cyclin-dependent kinase inhibitor 1B, thus promoting the proliferation of ovarian cancer cells via transition from G1 to S (93). In addition, epithelial ovarian cancer-derived exosomes overexpress miR-222-3p and transfer it to macrophages to induce them into M2-like polarization by the SOCS3/STAT3 pathway. miR-222-3p targets downregulation of SOCS3 gene expression and activates STAT3 expression (94). This transfer of miR-222-3p can facilitate the progression of ovarian cancer (94). Wu et al (95) have shown that TAM-derived exosomes inhibit endothelial cell migration by targeting the miR-146b-5p/TRAFC6/NF-kB/MMP2 pathway, whereas ovarian cancer-derived exosomes can reverse the role of TAMs in endothelial cells by transferring lncRNAs.

In order for macrophages to differentiate into TAMs, macrophage-derived exosomes are important components involved in the antitumor immune response (84,93,96). The TNF-related weak inducer of apoptosis (TNSFS12 or TWEAK)-stimulated macrophage-derived exosomes can be internalized by the tumor cells, which can inhibit ovarian cancer metastasis. A study revealed that TWEAK-stimulation increased the expression of miR-7 (a tumor suppressor) in exosomes released by macrophages, which downregulates the activity of the EGFR/AKT/ERK1/2 signaling pathway and inhibits ovarian cancer metastasis (96). This was performed in mouse models where TWEAK-stimulated macrophage-derived exosomes blocked the metastasis of epithelial ovarian cancer (96). In addition, Baj-Krzyworzeka et al (97) have shown that tumor-derived exosomes can activate monocytes by increasing HLA-DR expression, upregulating reactive oxygen intermediates and TNF and by accumulating and secreting IL-10 and IL-12 mRNA. Exosomes activate monocytes and induce them to differentiate into macrophages (97-99).

At present, there are few studies on macrophage-derived exosomes in ovarian cancer, which is an area that needs to be explored further. Exosomes derived from breast cancer cells have upregulated levels of miR-130 and miR-33, which can alter the polarization of macrophages from M2 to M1 phenotype and inhibit tumor progression (100). The exosomes derived from TAMS of progranulin (PGRN)-negative tumor tissues have upregulated expression of miR-5100, which inhibits the invasion, migration and EMT of breast cancer cells by targeting the CXCL12/CXCR4 axis (101). Although a similar study in ovarian cancer has not been performed, studies have shown that expression of PGRN protein relates to poor ovarian cancer prognosis (102,103). Moreover, high expression of PGRN can induce EMT in ovarian cancer cells (104). This suggests that exosomes are a potential therapeutic target for ovarian cancer.

NK cells. In a tumor environment, NK cells are the first line of defense within the immune system. NK cells mainly kill target cells in four ways: i) Antibody-dependent cell-mediated cytoxicity via the Fas/FasL pathway (105), ii) the perforin-granzyme pathway (106), iii) binding to target cells through adhesion molecules (107) and iv) releasing cytokines to attack target cells (108,109). NK cells are important effectors in the cancer immune surveillance (110,111). Upon activation, they secrete pro-inflammatory factors and chemokines, for example IFN-γ, TNF, IL-6, GM-CSF and chemotactic cytokine ligand 5 to mediate antitumor immune responses, affect antitumor activity and promote formation of the tumor microenvironment (112). IL-15 enhances the antitumor activity of NK cell-derived exosomes and has been validated in mouse models (113). Exosomes derived from NK cells express the killer protein (CD56), FasL, perforin, granzyn, and granzyme A and B, which show antitumor activity and play a role in immune surveillance (114). Killer proteins expressed by NK cell-derived exosomes can participate in NK cell-mediated cytotoxic killing effects (115), and the expressed DNAx accessory molecule 1 (DNAM-1/CD226) receptor can bind to DNAM-1 ligands on the cell membrane of tumor cells to exert a cytotoxic tumor cell killing effect (116). This is an important role of NK cells in cancer immune surveillance. NK cell-derived exosomes express FasL and perforin and exert cytotoxic effects in melanoma (117). NK cell-derived exosomes carry miR-186, which can inhibit neuroblastoma growth (118). The antitumor effect of NK cell-derived exosomes on invasive melanoma and neuroblastoma has been confirmed, exosomes derived from NK cells can potentially be used in cancer treatment (117,118).

Although NK cells are a part of the innate immune system and are capable of killing tumor cells, tumor microenvironment also affects the cytotoxicity of NK cells (119). Exosomes released by ovarian cancer cells highly express KLRK1/ natural killer group 2 (NKG2D) ligands in the manner of MHC 1 chain-related protein A and B and UL16-binding protein. This downregulates the expression of NKG2D receptors on peripheral blood mononuclear cells, affecting the activation of NK cells and suppressing their natural killing effect (120).

Lymphocytes. Adaptive immune effector cells include CD8+, CTL and CD4+Th. In acute infection, CTL is the main effector cell and has a specific killing effect on tumors through the perforin-granzyme, Fas/FasL and TNF pathways (121). CD4+Th cells play an auxiliary role in activating CTL (122). In contrast, during chronic infections and cancer, T cell dysfunction occurs due to continuous stimulation of antigens (123). In addition, the cytokines produced by CD4+Th cells can indirectly participate in antitumor immune effects. In theory, dendritic cell-derived exosomes can stimulate T cells through three different mechanisms: i) Direct presentation of exosomal MHC I and II to T cells, ii) indirect stimulation
Exosomes of patients with ovarian cancer can effectively block cancer immunotherapy (137). In addition, the ascites-derived exosomes of patients with ovarian cancer can effectively block the NF-kB and later functional activation of IFN-γ. Researchers have demonstrated that this can be reversed within 24-48 h by the removal of exosomes. Therefore, targeted removal of exosomes will increase the antitumorigenic effect of the host T cells (139).

Tumor-derived exosomes can also inhibit T cell activation to cause immunosuppression. Functional CD39 and CD73 expressed by exosomes can dephosphorylate exogenous ATP and cAMP to form adenosine, and inhibit T cell activation through the adenosine A2A receptor. Therefore, exosomes increase the production of extracellular adenosine to regulate the antitumor immune effect of the T cells (140). In addition, phosphatidylinerine (PS)-positive exosomes derived from the ascites of patients with ovarian cancer block the NF-kB and NFAT pathway signaling cascade in T cells, and reversibly inhibit T cell activation (141). Thus, depletion of anti-PS antibodies or blocking PS can notably eliminate the inhibition of T cells, which could be another new treatment method for patients with ovarian cancer (142).

DCs. DCs are unique, in that they can activate T cells. They can also activate immune responses or induce immune tolerance (143). Mast cell-derived exosomes contain HSP60 and HSP70, which can promote DC maturation and exert antitumorigenic immune effects in a mouse model (144). The ovarian cancer microenvironment is rich in cytokines and angiogenic factors, which can change the phenotype and function of DCs. Most studies corroborate that the ability of exosomes to stimulate T cells can be enhanced through the interaction of exosomes with DCs (145-147). Exosomes derived from the ascites of patients with ovarian cancer express tumor-specific cytotoxic T lymphocytes (6). Exosomes isolated from the ascites of patients with ovarian cancer express MHC I molecules, HSP70 and HSP90. DCs treated with these exosomes can promote T cell activation and produce cytokoticy (148). DC-derived exosomes present antigens to DCs, and then these DCs can activate T cells. These results suggest that the exosome is a potential safe and feasible immunotherapy for advanced tumors (149). At present, the antitumor immunotherapy of exosomes derived from DCs is in phase II clinical trials of advanced malignant tumors.

Although DCs have antitumorigenic activity, their function may be inhibited in tumor immune microenvironment. The ovarian cancer microenvironment is rich in factors that inhibit monocyte differentiation into DCs. Ascites-derived exosomes from patients with ovarian cancer induce apoptosis in DCs by activation of the Fas/FasL pathway and mediating TRAIL apoptosis-inducing signal molecules in mature DC precursors. In one investigation, ovarian cancer-derived exosomes were cultured with dendritic precursor cells for 48 h. Exosome co-cultured DCs had an apoptotic rate of 12.6% while the control group had an apoptotic rate of 8.6% (21). Overall, exosomes may induce apoptosis of DCs and stimulate precursors of mature DCs.

Mesenchymal stem cells. MSCs are an important member of the stem cell family, which play an important role in cancer progression. They are present, albeit in small numbers, in
a variety of tissues (bone marrow, umbilical cord blood, umbilical cord, placenta and adipose) and are reported to have multidirectional differentiation and regeneration properties (150). In addition, MSCs also have the capability of immune modulation, which in a number of cases can cause immunosuppressive effects. De Miguel et al (151) demonstrated in vitro that MSCs can inhibit the proliferation of immune cells (lymphocytes, NK cells and DCs) and inhibit secretion of cytokines, thereby inhibiting the cytotoxic effect of T and NK cells via indoleamine 2,3-dioxygenase, while also activating and inducing the maturation of DCs. A co-culture of ovarian cancer cell lines (SKOV-3 and OVCAR-3) and MSCs demonstrates that adhesion, migration, invasion, proliferation and chemical resistance of ovarian cancer cells is enhanced, leading to accelerated tumorigenicity (152). In the tumor microenvironment, exosomes derived from MSCs also play an immunoregulatory role. Bone marrow MSC-derived exosomes have anti-inflammatory, anti-apoptotic, pro-angiogenic and immune-regulating effects (153). Bone marrow MSC-derived exosomes inhibit the proliferation of T and B cells and affect mRNA function; downregulating the expression of CXCL8 and marginal zone B and B1 cell-specific protein the level of IgM to affect the anti-tumorigenic function of B cells (154). MSC-derived exosomes upregulate MMP-2 and activate ectype 5-nucleases, causing tumor cells to become more malignant and thus altering the tumor microenvironment, as well as enhancing tumor heterogeneity (155). In addition, cancer cell-derived exosomes affect the tumorigenicity of MSCs. In vitro analysis demonstrates that SKOV-3 and OVCAR-3 cell line-derived exosomes can enhance the migration capacity of MSCs (156). In the microenvironment of ovarian cancer, cancer stem cells are associated with creating drug resistance and making the tumor mass refractory to a specific drug (147,157). Vera et al (158) have revealed that upon treatment with cisplatin, exosomes released by ovarian cancer that are rich in cancer stem cells can upregulate IL-6, IL-8 and VEGFA, increasing the migration capacity of cancer cells. In addition, factors secreted by MSCs can induce endothelial cell angiogenesis and accelerate the migration of low-invasive ovarian cancer cells. Exosomes have also been shown to enhance the oncogenicity of MSCs, leading to drug resistance and tumor progression (158). The expression of miR-146a in MSC-derived exosomes is upregulated, which targets laminin γ-2 to regulate the phosphoinositide 3-kinase (PI3K/Akt) signaling pathway. This subsequently inhibits the proliferation of ovarian cancer cells and induces chemotherapy resistance (159).

Previous studies have confirmed the antitumor effect of MSC-derived exosomes. Human adipose MSC-derived exosomes can induce apoptotic signals by upregulating pro-apoptotic signaling via BAX, CASP9, CASP3 and downregulating the anti-apoptotic protein BCL2 to inhibit A2780 and SKOV-3 cell proliferation, wound-repair and colony-forming ability (160). In mouse models of ovarian cancer, paclitaxel-loaded MSC-derived exosomes have strong antitumor effects, which suggests that they can be used as drug carriers to target ovarian cancer (161).

5. Immunosuppressive effector cells

The host immune system recognizes the tumor during progression, allowing immune cells to enter the tumor microenvironment under the action of chemokines. Subsequently, immune cells such as CD4+ T, CD8+ T, B lymphocytes, NK cells, macrophages and DCs are recruited to suppress the tumor in vivo. However, during the course of tumor development, immune monitoring through cancer immune editing is less selective for cancer cells that are less immunogenic, allowing them to escape the immune attack and thus achieve immune escape (Fig. 4). The clinical manifestations of tumor immune editing trigger the establishment of an immunosuppressive tumor microenvironment (112).

Tregs. Tregs negatively regulate the antitumor response in both a direct and indirect manner while also playing a key role in immune escape (162). The increase of Tregs in the tumor microenvironment of patients is related to poor prognosis and shortened overall survival (OS) time (55). Treg-derived exosomes can exert immunosuppressive effects by expressing CD73 and inhibiting the proliferation of CD4+ T cells (107). Curiel et al (163) in 2004 analyzed 104 specimens of epithelial ovarian cancer and found that CD4+CD25+FOXP3+ Tregs inhibited T cells in vivo and promoted tumor development.
After tumor-derived exosomes activate Tregs, the expression levels of STAT3/SMAD2/3/IL-10/TGF-B increase and the expression of granzyme B, perforin and FasL are upregulated, thereby reducing the antitumor immune response. In addition, exosomes act on the SMAD2/3 and STAT3 signaling pathways to convert CD4+CD25+ cells into CD4+CD25+FOXP3+ Tregs, which upregulates their immunosuppressive function and anti-apoptotic potential (164).

MDSCs. MDSC is an immunosuppressive cell of marrow-derived cells, which are induced to differentiate into DCs, macrophages and granulocytes. These MDSCs can depress the activity of T and NK cells, which can significantly suppress immune cell response (165). IL-6 is produced by autocrine activation in a Toll-like receptor 2 (TLR2)/myeloid differentiation primary response 88-dependent manner, triggering STAT3 activation and promoting the immunosuppressive function of MDSCs (166). A similar study found that HSP70 is highly expressed on the surface of ovarian cancer-derived exosomes, which fuses with and activates MDSCs by binding TLR2 to promote cancer progression (166,167). Notably, the study found that the A8 peptide blocked this HSP70/TLR2 binding to weaken the ability of tumor-derived exosomes to activate MDSCs in a mouse model. Drugs, such as cisplatin and 5-fluorouracil, cause tumor cells to release more exosomes with HSP70 surface expression to activate MDSCs. When cisplatin or 5-fluorouracil is used in combination with A8 peptide, it can effectively antagonize the activation of MDSCs caused by cisplatin or 5-fluorouracil, which greatly enhances the antitumor effect of these drugs. Overall, this study has notable implications for novel ovarian cancer therapies (168).

CAFs. As an important element of the tumor microenvironment, CAFs secrete a variety of growth factors and pro-inflammatory cytokines (TGF-β, VEGF, IL-6 and CXCL12) which promotes angiogenesis and recruits immunosuppressive cells into the tumor microenvironment to assist in immune evasion (169). Exosomes derived from epithelial ovarian cancer induce adipose tissue-derived mesenchymal stem cells to differentiate into tumor-associated myofibroblasts and upregulate tumorigenic factors such as stromal cell-derived factor 1 and TGF-β (170). TGF-β receptor and SMAD signaling can regulate the expression of multifunctional proteoglycan VERISCAN protein, encoded by the VCAN gene. Upregulating VCAN activates the NF-kB signal pathway, which upregulates the expression of CD44, MMP-9 and hyaluronic acid-mediated motor receptors that collectively promote the migration and invasion of ovarian cancer cells (171). Further the CAF-derived exosomes can be internalized by SKOV-3 and CAOV-3 cell lines leading to a more aggressive tumorous phenotype, promoting the EMT of ovarian tumors. This evidence suggests that CAF-derived exosomes have the potential to provide a breakthrough in the treatment of ovarian cancer (172).

6. Exosomal miRNAs, proteins and lipids in the tumor microenvironment

Exosomes can carry a variety of biologically active molecules. miRNA is a type of non-coding RNA molecule (range, 9-25 nucleotides in length) encoded by an endogenous gene, that specifically binds to the 3'-untranslated region of target mRNA to effectively repress gene expression after it has been transcribed (173,174). Cancer-associated adipocytes and CAFs transfer miR-21 to cancer cells via exosomes, thereby inhibiting ovarian cancer cell apoptosis (175). Releasing exosomal miRNA into the tumor microenvironment is a mechanism for reprogrammed gene expression at the epigenetic level. Ovarian cancer cells excrete unnecessary genetic material by releasing exosomes to maintain their aggressiveness and tumor immunogenicity (176-178). As a tumor-inhibiting factor, miR-6126 inhibits tumor progression by decreasing integrin β1 mRNA level to promote metastatic behavior (177). miR-940 can inhibit ovarian cancer cell proliferation, colony formation, invasion and migration, and is highly expressed in exosomes derived from SKOV3-IP1, HeyA8 and HeyA8-MDR cell lines. Ovarian cancer cells enhance the tumorigenicity of cells through miRNA excretion mechanisms (178). A recent study provided supporting evidence that exosomes derived from epithelial ovarian cancer cells carry miR-141-3p, which activates the JAK/STAT3 and NF-kB signaling pathways in endothelial cells. This increases the level of VEGFR-2 in endothelial cells and enhances migration and angiogenesis (179). Exosomal miR-99a-5p derived from epithelial ovarian cancer cells affects human peritoneal mesothelial cells (HPMCs) by upregulating fibronectin and vitronectin to promote ovarian cancer progression (180). miRNAs carried by exosomes play a pro-tumorigenic role in the immune microenvironment of ovarian cancer (Table 1).

In different ovarian cancer cell lines, the miRNA profile of exosomes varies. The miR-200 family inhibits EMT, which is only detected in the exosomes of poorly-invasive cell line OVCAR-3 (181). In a study of 109 patients with ovarian cancer and eight with ovarian cystadenoma, exosomal miRNA analysis revealed that miR-200b and miR-320 have a positive correlation with cellular proliferation and apoptosis. Additionally, the levels of exosomal miR-200b is related to cancer antigen 125 (CA125) and the OS rate of patients. Exosomal miR-200b has the potential to become a new prognostic indicator. The expression of miR-23a and miR-92a in ovarian cystadenoma-derived exosomes is lower compared with that of ovarian cancer-derived exosomes and exosomes derived from healthy individuals (182). Therefore, exosomal miRNAs can be used as biomarkers of ovarian cancer. In 2018 Kobayashi et al (183) found that miR-1290 is a potential biomarker for high-grade serous ovarian cancer and can be used to distinguish patients with other histologically malignant tumor types. This means that studying miRNAs carried by exosomes can provide new directions for the early diagnosis of ovarian cancer and in the search for novel and improved tumor markers for targeted therapy.

Proteomic analysis of ovarian cancer-derived exosomes revealed that these exosomes are rich in proteins related to antigen processing, and that they can effectively initiate antitumor immune responses (20). Exosomes from different types of malignant tumors show varying protein and lipid mass spectra. By comparing the proteome and lipid profiles of exosomes derived from SKOV-3 cell line and ovarian surface epithelial cells, it becomes clear that collagen α-2(V) (also known as COL5A2) and lipoprotein lipase are highly expressed in SKOV-3 derived exosomes (184). Plus, CD44
is commonly found in the ovarian cancer-derived exosomes that become internalized by HPMCs. Increased expression of CD44 in HPMCs induces HPMCs to secrete MMP9 and allows HPMCs to clear the mesothelial barrier thus promoting cancer cell invasion and peritoneal metastasis (185). The ovarian cancer-derived exosomes promote tumor progression, and the proteins they carry have a role in malignancy of the tumor. These proteins include membrane proteins such as programmed cell death 6-interacting protein, tumor susceptibility gene 101, tetraspanins, HSPs and a variety of enzymes such as phosphate isomerase, peroxidase, aldehyde reductase and fatty acid synthase (186). Ovarian cancer cell-derived exosomes that overexpress LIN28 (an RNA-binding protein that promotes pluripotency) can enhance cell invasion and migration (187). HSP27 can also enhance the invasiveness and drug resistance of ovarian cancer and is a potential biological marker of ovarian cancer. Stoppe et al (188) demonstrated that exosomes can carry HSP27 secreted by OVCAR-3 and SKOV-3 cell lines to the tumor microenvironment, thereby promoting tumor progression.

7. Significance of exosomes in ovarian cancer immunotherapy

Cancer immunotherapy is a relatively new treatment option. By understanding the exosome profile and signal transduction mechanism, it can be better applied to cancer treatment. The advantages of exosomes are summarized as follows: i) Tumor-derived exosomes have the heterogeneity profile of tumor cells, ii) exosomes derived from homologous or

Table I. Role of exosomal miRNAs in the tumor microenvironment.

Exosomal miRs	Source	Mechanism	Function	Recipient cells	(Refs.)
miR-6126	Ovarian cancer	Release tumor suppressor	Promote invasion and migration	Ovarian cancer cell	(177)
miR-141-3p	Ovarian cancer	Upregulate JAK/STAT3 and NF-kb, VEGFR-2	Promote endothelial cell angiogenesis	Endothelial cell	(179)
miR-99a-5p	Ovarian cancer	Affect HPMCs via fibronectin and vitronectin upregulation	Promote invasion and apoptosis	Human peritoneal mesothelial cell	(180)
miR-200b	Ovarian cancer plasma	NA (Not discussed in original research)	Proliferation and apoptosis	OVCAR3 and SKOV3 cell	(182)
miR-1290	Ovarian cancer	NA (Not discussed in original research)	Biomarker		(183)
miR-222-3p	Ovarian cancer	Induce M2 phenotype via SOCS3/STAT3	Induce TAM and tumor progression	Macrophage	(94)
miR-1246	Ovarian cancer	Cav1/p-GP/M2 macrophage axis	Resistant to paclitaxel	Macrophage	(194)
miR-940	Ovarian cancer	Induce macrophage M2 polarization	Promote proliferation and metastasis	Macrophage	(92)
miR-21-3p, -125b-5p and -181d-5p	Ovarian cancer	Induce macrophage M2 polarization	Promote proliferation and metastasis	Macrophage	(76)
miR-223	Macrophage	PTEN-PI3K/AKT pathway	Promote drug resistance	Ovarian cancer cell	(193)
miR-7	Macrophage	Inhibit EGFR/AKT/ERK1/2	Inhibit metastasis	Ovarian cancer cell	(96)
miR-221-3p	Macrophage	Inhibit CDKN1B	Promote proliferation	Ovarian cancer cell	(93)
miR-21	CAF and CAA	NA (Not discussed in original research)	Inhibit apoptosis	Ovarian cancer cell	(175)
miR-98-5p	CAF	Downregulate CDKN1A	Resistant to cisplatin	Ovarian cancer cell	(195)
miR-146a	MSC	LAMC2-P13K/Akt signaling pathway	Inhibit proliferation and chemotherapy resistance	Ovarian cancer cell	(159)

AKT, protein kinase B; Cav1/p-gp, caveolin-1/ multidrug resistance protein 1; CDKN, cyclin-dependent kinase inhibitor; EGFR, epidermal growth factor receptor; ERK, extracellular signal-regulated kinases; HPMC, human peritoneal mesothelial cell; JAK/STAT, the Janus kinase/signal transducer and activator of transcription; LAMC2, laminin γ2; PI3K, Phosphatidylinositol 3-kinase; PTEN, gene of phosphate and tension homology deleted on chromosome ten; SOCS/ STAT, suppressors of cytokine signaling/signal transducer and activator of transcription; VEGFR, vascular endothelial growth factor receptor.
allogeneic cells can reduce unnecessary immune responses, iii) exosomes have good stability, iv) the bio-distribution of exosomes can be adjusted by modifying the surface of exosomes to target a specific tumor location, v) exosomes have a long half-life and can improve the efficacy of drugs loaded into them as cargo and vi) exosomes have multiple types of internalization methods and can avoid the degradation of lysosomes, so as to efficiently transport drugs to the recipient cells.

At present, numerous achievements have been made in applying exosomes to cancer treatment. Small interfering RNAs and miRNAs carried by exosomes target and inhibit tumor cell proliferation and drug resistance (175). The reorganization of the exosomal membrane can improve the efficiency of drug loading and the sustained release of drugs (189). Exosomes can overcome the weak immunogenicity of tumor antigens that are likely to be used in a cancer vaccine (190). DC-derived exosomes can stimulate T cells by transporting MHC molecular complexes to the surface and facilitating T cells binding to tumor cells. At present, the antitumor immunotherapy of DC-derived exosomes has undergone II clinical trials in advanced non-smooth cell lung carcinoma, showing the feasibility and safety of antitumor exosome immunotherapy. It also has a new importance in ovarian cancer therapy (131). Exosomes derived from NK cells have a natural killing effect on melanomas, which is a potential cancer immunotherapy strategy (117) and exosomes have potential for ovarian cancer treatment.

In addition, exosomes can be used as carriers of antitumor drugs. In mouse models, a combination of mesenchymal stem cell-derived exosomes and paclitaxel increases the antitumor effect of paclitaxel (191). Previous studies have clarified the mechanism of miRNA generated resistance when carried by exosomes in ovarian cancer (192-194). Exosomes released by macrophages carry miR-223, which downregulates the PTEN-P13K/AKT signaling pathway that can make ovarian cancer drug resistant (193). In addition, Kanlikilicer et al (194) demonstrated that miR-1246 expressed by ovarian cancer-derived exosomes can make ovarian cancer resistant to paclitaxel via the Cav1/multidrug resistance protein 1 (p-gp)/M2 phenotype macrophage axis, miR-1246 targets the Cav1 gene and acts though platelet-derived growth factor receptor target recipient cells, induces polarization of M2 macrophages. Exosomes derived from CAFs carry miR-98-5p to promote the resistance of cisplatin in ovarian cancer (195). Using specific exosome inhibitors can effectively prevent this mechanism of drug resistance. Ovarian cancer-derived exosomes are enriched with DNA methyltransferase 1 that makes cancer cells resistant to cisplatin, but the exosomal inhibitor gw4869 can reverse this resistance and restore their drug sensitivity (196). This information will provide new avenues of exploration for targeted therapies against ovarian cancer. Cancer-derived exosomes can carry CRISPR/Cas9 to other ovarian cancer cells, inhibit PARP-1 expression, cause ovarian cancer cell apoptosis and enhance the sensitivity to cisplatin (197). Until now, there have been no reports on the application of exosomes to ovarian cancer immunotherapy, but it is an area should continue to be explored in the future.

8. Conclusions

As outlined in this article, the role of exosomes in the immune microenvironment of ovarian cancer can be described as a double-edged sword. Exosomes derived from immune cells can target tumor cells to exert antitumor immune effects. NK cell-derived exosomes mediate NK cell cytotoxicity through their surface receptors NKG2D and DNAX accessory molecule-1 (115,116); NK cell-derived exosomes can carry killer protein (CD56), FasL, perforin, granulysin, granzymes A and B to the tumor microenvironment of distant tumors (114). DC-derived exosomes can activate T cells to exert antitumor effects (145). Exosomes can also mediate cellular communication between immune cells. Mast cell-derived exosomes can promote the maturation of DCS (144). T cell-derived exosomes can regulate miRNA and TCR-rich vesicles to regulate gene expression and extracellular signal transduction of DCS (125). Treg-derived exosomes can inhibit CD4+ T cell proliferation by expressing CD73 (140).

However, tumor cell-derived exosomes exert immunosuppression and immune escape through a variety of pathways in the tumor microenvironment. Exosomes derived from epithelial ovarian cancer can induce macrophages to differentiate into TAMs, downregulate the killing effect of NK cells on tumors, induce T cell apoptosis through Fas/FasL interactions and induce DC apoptosis. Ovarian cancer-derived exosomes also upregulate the functions of Tregs and MDCSCs, induce the differentiation of CAFs and induce the tumorigenic activity of mesenchymal stem cells; forming a microenvironment that is beneficial to tumor proliferation, invasion, metastasis and tumor progression.

A study has shown that the tumor microenvironment contains functionally heterogeneous B lymphocytes and regulates tumor immunity by producing immunoglobulins and presenting costimulatory molecules (198). However, in ovarian cancer, research on the interaction between exosomes and B lymphocytes is rare, and is thus an area that requires further exploration. The regulation of the immune system by exosomes highlights the great potential of exosomes in cancer immunotherapy. The release of exosomes in patients with ovarian cancer is 3-4 times higher compared with in individuals without ovarian cancer. If the production of tumor-derived exosomes can be reduced, this could theoretically weaken the impact on immune suppression and thus would make immune escape more difficult. At present, preventing the excessive production of cancer cell-derived exosome has shown significant antitumor and anti-metastatic effects in breast cancer (199). If this technology can be applied to ovarian cancer, it will become a new strategy for ovarian cancer treatment.

Chemosensitivity is common during the treatment of ovarian cancer and is usually associated with poor prognosis. Current biological techniques can effectively load chemotherapeutic drugs into exosomes through co-culture, electroporation or ultrasound (200). Studies have verified that exosomes loaded with paclitaxel and cisplatin can induce apoptosis of ovarian cancer cells (175,192,194). If the exosomes loaded with paclitaxel and cisplatin can be used in clinical treatment, it will be a novel strategy for the treatment of drug-resistant ovarian cancer. Of course, this requires a large number of clinical trials for the verification of the treatment efficacy, and would require the joint efforts of various research centers and hospitals. At present, Clinicaltrials.gov (https://clinicaltrials.gov/) has reported 198 studies on
exosomes, including three studies on exosomes as biomarkers of ovarian cancer, and one study on polycystic ovary syndrome and exosomes. There are no clinical trials using exosomes in the treatment of ovarian cancer, to the best of our knowledge. Before clinical trials, large-scale separation and purification of exosomes is still a huge challenge. Fortunately, research on the production of exosome mimics has made preliminary progress. Pisano et al (201) used monocytes as raw materials to produce exosome mimics through filters of different porosity and size exclusion chromatography columns. The development of immune-derived exosome mimics is expected to solve the problems of yield and reproducibility, which greatly improves the feasibility of applying exosomes to clinical trials (201).

The RNA, protein and lipid profiles of exosomes derived from different ovarian tumors are different, and the circular RNAs carried by ovarian tumor cell-derived exosomes are also different from healthy volunteers (134). In addition, serum exosomal piwi-interacting RNAs are considered to be a promising biomarker for patients with gastric cancer (202). Researchers have found that the detection level of CA125 in exosomes is higher compared with that in serum, which significantly improves the sensitivity of ovarian cancer diagnosis (203). This suggests that exosomes have the potential to become biomarkers for clinical analysis of ovarian cancer. With the development of biochips, microfluidic Raman biochips have been successfully used to monitor exosomes in prostate clinical serum samples (204). These devices can be similarly applied for ovarian cancer investigations based on exosomes.

Acknowledgements
Not applicable.

Funding
This study was supported by The National Natural Science Foundation of China (grant no. 81472761) and The Natural Science Foundation of Tianjin City (grant no. 14JCYBJC25300).

Authors' contributions
GYL designed the review. XL drafted the manuscript and prepared the figures. YL, TYZ, SSZ, JZZ, JW, and YS helped to modify the manuscript. All authors read and approved the final manuscript.

Availability of data and materials
Not applicable.

Ethics approval and consent to participate
Not applicable.

Patient consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

References
1. Siegel RL, Miller KD and Jemal A: Cancer statistics, 2019. CA Cancer J Clin 69: 7-34, 2019.
2. Drakes ML and Stiff PF: Regulation of ovarian cancer prognosis by immune cells in the tumor microenvironment. Cancers (Basel) 10: 302, 2018.
3. Gajewska TF, Schreiber H and Fu YX: Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol 14: 1014-1022, 2013.
4. Albini A, Bruno A, Noonan DM and Mortara L: Contribution to tumor angiogenesis from innate immune cells within the tumor microenvironment: Implications for immunotherapy. Front Immunol 9: 527, 2018.
5. Cassim S and Pouyssegur J: Tumor microenvironment: A metabolic player that shapes the immune response. Int J Mol Sci 21: 157, 2019.
6. Andre F, Schartz NE, Movassagh M, Flament C, Pautier P, Morice P, Pomel C, Lhomme C, Escudier B, Le Chevalier T et al: Malignant effusions and immunogenic tumour-derived exosomes. Lancet 360: 295-305, 2002.
7. Giordano C, La Camera G, Gelsomino L, Barone I, Bonofilio D, Arti S and Catalano S: The biology of exosomes in breast cancer progression: Dissemination, immune evasion and metastatic colonization. Cancers (Basel) 12: 2179, 2020.
8. Kulikarni B, Kirave P, Gondaliya P, Jash K, Jain A, Tekade RK and Kalia K: Exosomal miRNA in chemoresistance, immune evasion, metastasis and progression of cancer. Drug Discov Today 24: 2058-2067, 2019.
9. Lundholm M, Schroder M, Nagaeva O, Baranov V, Widmark A, Mincheva-Nilsson L and Wikström P: Prostate tumor-derived exosomes down-regulate NKG2D expression on natural killer cells and CD8+ T cells: Mechanism of immune evasion. PLoS One 9: e108925, 2014.
10. Cheng L, Wu S, Zhang K, Qing Y and Xu T: A comprehensive overview of exosomes in ovarian cancer: Emerging biomarkers and therapeutic strategies. J Ovarian Res 10: 73, 2017.
11. Beach A, Zhang HG, Ratajczak MZ and Kakar SS: Exosomes: An overview of biogenesis, composition and role in ovarian cancer. J Ovarian Res 7: 14, 2014.
12. Doyle LM and Wang MZ: Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells 8: 727, 2019.
13. Sharma A and Johnson A: Exosome DNA: Critical regulator of tumor immunity and a diagnostic biomarker. J Cell Physiol 235: 1921-1932, 2020.
14. Ilevy D, Strandskog G, Nepal A, Aspar A, Olsen R, Jergensen J, Wolfson D, Ahluwalia BS, Handzhiyski J and Mironova R: Stimulation of exosome release by extracellular DNA is conserved across multiple cell types. FEBS J 285: 3114-3133, 2018.
15. Tang YT, Huang YY, Zheng L, Qin SH, Xu XP, An TX, Xu Y, Wu YS, Hu XM, Ping BH and Wang Q: Comparison of isolation methods of exosomes and exosomal RNA from cell culture medium and serum. Int J Mol Med 40: 834-844, 2017.
16. Shyu KG, Wang BW, Pan CM, Fang WJ and Lin CM: Hyperbaric oxygen boosts long noncoding RNA MALAT1 exosome secretion to suppress microRNA-92a expression in therapeutic angiogenesis. Int J Cardiol 274: 271-278, 2019.
17. Hannafon BN, Trigoso YD, Calloway CL, Zhao YD, Lum DH, Welm AL, Zhao ZJ, Bick KE, Dooley WC and Ding WQ: Plasma exosome microRNAs are indicative of breast cancer. Breast Cancer Res 18: 90, 2016.
18. Kobayashi M, Sawada K, Miyamoto M, Shimizu A, Yamamoto M, Kinose Y, Nakamura K, Kawano M, Kodama M, Hashimoto K and Kimura T: Exploring the potential of engineered exosomes as delivery systems for tumor-suppressor microRNA replacement therapy in ovarian cancer. Biochem Biophys Res Commun 327: 153-161, 2020.
19. Mittal S, Gupta P, Chaluvally-Raghavan P and Pradeep S: Emerging role of extracellular vesicles in immune regulation and cancer progression. Cancers (Basel) 12: 3563, 2020.
1. Liang B, Peng P, Chen S, Li L, Zhang M, Cao D, Yang J, Li H, Gui T, Li X and Shen K: Characterization and proteomic analysis of ovarian cancer-derived exosomes. J Proteomics 80: 171-182, 2017.
2. Peng P, Yan Y and Keng S: Exosomes in the ascites of ovarian cancer patients: Origin and effects on anti-tumor immunity. Oncol Rep 25: 749-762, 2011.
3. Luo Z, Wang Q, Lau WB, Lau B, Xu L, Zhao L, Yang H, Feng M, Xuan Y, Yang J, et al: Tumor microenvironment: The culprit for ovarian cancer metastasis? Cancer Lett 377: 174-182, 2016.
4. Da Silva AC, Jammal MP, Crispim PCA, Murta EFC and Nomelini RS: The role of stroma in ovarian cancer. Immunol Invest 49: 406-424, 2020.
5. Josephs SF, Ichim TE, Prince SM, Kesarvi S, Marincola FM, Escobedo AE, et al: Un得失iangi inflammatory TIFA-alpha as a cancer immunotherapeutic. J Transl Med 16: 242, 2018.
6. Wen Z, Liu H, Li M, Li B, Gao W, Shao Q, Fan B, Zhao F, Wang Q, Xie Q, et al: Increased metabolites of 5-lipoxygenase from hypoxic ovarian cancer cells promote tumor-associated macrophage infiltration. Oncogene 34: 1241-1252, 2015.
7. Browning L, Patel MR, Horvath EB, Tawara K and Jorcyk CL: IL-6 and ovarian cancer: Inflammatory cytokines in promotion of metastasis. Cancer Manag Res 10: 6685-6693, 2018.
8. Sanmarco LM, Ponce NE, Visconti LM, Eberhardt N, Theurer MG, Minguez AR and Aoki MP: IL-6 promotes M2 macrophage polarization by modulating TGF-β signal transduction that regulates the lethal release of nitric oxide during Trypanosoma cruzi infection. Biochim Biophys Acta Mol Basis Dis 1863: 857-869, 2017.
9. Yin Z, Ma T, Lin Y, Lu X, Zhang C, Chen S and Jian Z: IL-6 enhances TGF-β1 and Smad3 phosphorylation andSmad1/5/8 phosphorylation in the regulation of the hepatocellular carcinoma. J Cell Biochem 99: 9419-9432, 2018.
10. Fu XL, Duan W, Su CY, Mao FY, Lv YP, Teng YS, Yu PW, Zhuang Y and Zhao YL: Interleukin-6 induces M2 macrophage differentiation by STAT3 activation that correlates with gastric cancer progression. Cancer Immunol Immunother 66: 1597-1608, 2017.
11. Jiang B, Zhu SJ, Xiao SS and Xue M: miR-217 Inhibits M2-like macrophage polarization by suppressing secretion of interleukin-6 in colorectal cancer. Int J Cancer 140: 2262-2273, 2017.
12. McLean K, Tan L, Bolland DE, Coffman LG, Peterson LF, Talpaz M, Neamati N and Buckanovich RJ: Leukemia inhibitory factor functions in parallel with interleukin-6 to promote ovarian cancer growth. Oncogene 38: 1576-1584, 2019.
13. Wang Y, Zong X, Mitra S, Mitra AK, Matei D and Nephew KP: IL-6-mediated enrichment of ovarian cancer stem cells. JCI Insight 3: e122360, 2018.
14. Bretz NP, Rijding J, Rupp AK, Török MA, Keller S, Rupp C, Bretz NP: Dendritic Cells Are Exemplary for the Role of TGF-β in the Tumor Microenvironment: A Humanized Cell Therapy Approach. Front Immunol 11: 1680, 2020.
15. Li X, Wang J, Wu W, Gao H, Liu N, Zhan G, Li L, Han L and Guo X: Myeloid-derived suppressor cells promote epithelial ovarian cancer cell stemness by inducing the CSF2/P-STAT3 signaling pathway. FEBS J 287: 5218-5235, 2020.
16. Komatsu N, Akiho K, Seto M, Horikawa N, Abiko K, Matsumura N, Hamanishi J, Baba T, Yamaguchi K, Yoshioka Y, Koshiyama M and Konishi I: Expression of vascular endothelial growth factor in ovarian cancer inhibits tumor immunity through the accumulation of myeloid-derived suppressor cells. Clin Cancer Res 23: 587-599, 2017.
17. De Cicco P, Ercole G and Gianar A: The new era of cancer immunotherapy: Targeting myeloid-derived suppressor cells to overcome immune evasion. Front Immunol 11: 1680, 2020.
18. Sadasivan Nair V and Ellord E: Immune checkpoint inhibitors in cancer therapy: A focus on T-Regulatory cells. Immunol Cell Biol 96: 21-33, 2018.
19. Li X, Wang J, Wu W, Gao H, Liu N, Zhan G, Li L, Han L and Guo X: Myeloid-derived suppressor cells promote epithelial ovarian cancer cell stemness by inducing the CSF2/P-STAT3 signaling pathway. FEBS J 287: 5218-5235, 2020.
20. Han Q, Huang B, Huang Z, Cai J, Gong L, Zhang Y, Jiang J, Dong W and Wang Z: Tumor cell-fibroblast heterotypic aggregates in malignant ascites of patients with ovarian cancer. Int J Mol Med 44: 2245-2255, 2019.
21. Liu CL, Pan HW, Torng PL, Fan MH and Mao TL: SRPX and HMCN1 regulate cancer-associated fibroblasts to promote the invasiveness of ovarian carcinoma. Oncol Rep 24: 2706-2715, 2010.
22. De Cicco P, Ercole G and Ianaro A: The new era of cancer immunotherapy: Targeting myeloid-derived suppressor cells to overcome immune evasion. Front Immunol 11: 1680, 2020.
23. Sadasivan Nair V and Ellord E: Immune checkpoint inhibitors in cancer therapy: A focus on T-Regulatory cells. Immunol Cell Biol 96: 21-33, 2018.
24. Li X, Wang J, Wu W, Gao H, Liu N, Zhan G, Li L, Han L and Guo X: Myeloid-derived suppressor cells promote epithelial ovarian cancer cell stemness by inducing the CSF2/p-STAT3 signaling pathway. FEBS J 287: 5218-5235, 2020.
25. Komatsu N, Akiho K, Seto M, Horikawa N, Abiko K, Matsumura N, Hamanishi J, Baba T, Yamaguchi K, Yoshioka Y, Koshiyama M and Konishi I: Expression of vascular endothelial growth factor in ovarian cancer inhibits tumor immunity through the accumulation of myeloid-derived suppressor cells. Clin Cancer Res 23: 587-599, 2017.
26. Dutsch-Wicherek MM, Szubert S, Dzibok K, Wisniewski M, Lukaszewskas E, Wicherek L, Jozwicki W, Rokita W and Koper K: Analysis of the tumor cell population in the peripheral blood of ovarian cancer patients in relation to the long-term survival. Gynecol Oncol 90: 179-184, 2019.
27. Batlle E and Massague J: Transforming growth factor-beta signaling in immunity and cancer. Immunity 50: 924-940, 2019.
28. Zhou J, Jiang W, Huang W, Ye M and Zhu X: Prognostic values of transforming growth factor-Beta subtypes in ovarian cancer. Biomed Res Int 2020: 2170606, 2020.
29. Worrall E, Jiang W, Han X, Li M, Yu Q and Leng Z: Inhibiting of self-renewal, migration and invasion of ovarian cancer stem cells by blocking TGF-beta pathway. PLoS One 15: e0230230, 2020.
30. Bai Y, Li LD, Li J, Chen RF, Yu HL, Sun HF, Wang JY and Lu X: Autocrine HBEGF expression promotes breast cancer intravasation, metastasis and macrophage-independent invasion in vivo. Oncogene 33: 3792-3793, 2014.
31. Haque S and Morris JC: Transforming growth factor-beta: A therapeutic target for cancer. Hum Vaccin Immunother 13: 1741-1750, 2017.
32. Steitz AM, Steffes A, Finkenagel F, Unger B, Sommerfeld L, Lambrecht BM, Wagner U, Gruhlmann J, Müller R and Remnitz S: Tumor-associated macrophages promote ovarian cancer cell migration by secreting transforming growth factor beta induced (TGFBI) and tenascin C. Cell Death Dis 11: 249, 2020.
33. Dasari S, Fang Y and Mitra AK: Cancer associated fibroblasts: Naught neighbors that drive ovarian cancer progression. Cancers (Basel) 10: 406, 2018.
34. Gao Q, Yang Z, Xu S, Li X, Yang J, Yin P, Liu Y, Zhou X, Zhang T, Gong C, et al: Heterotypic CAF-tumor spheroids promote early peritoneal metastasis of ovarian cancer. J Exp Med 216: 688-703, 2017.
35. Zhang H, Lu Q, Shen B, Huang X, Shen L, Zheng X, Huang R, Yan J and Guo H: TGFβ1 secreted by cancer-associated fibroblasts induces epithelial-mesenchymal transition of bladder cancer cells through IncRNA-ZEB2/NAT. Sci Rep 5: 11924, 2015.
36. Kan T, Wang W, Ip PP, Zhou S, Wong AS, Wang X and Yang M: Single-cell EMT-related transcriptional analysis revealed intra-cluster heterogeneity of tumor cell clusters in epithelial ovarian cancer ascites. Oncogene 39: 4227-4240, 2020.
37. Han Q, Huang B, Huang Z, Cai J, Gong L, Zhang Y, Jiang J, Dong W and Wang Z: Tumor cell-fibroblast heterotypic aggregates in malignant ascites of patients with ovarian cancer. Int J Mol Med 44: 2245-2255, 2019.
38. Liu CL, Pan HW, Torng PL, Fan MH and Mao TL: SRPX and HMCN1 regulate cancer-associated fibroblasts to promote the invasiveness of ovarian carcinoma. Oncol Rep 24: 2706-2715, 2010.
61. Kulbe H, Chakravarty P, Leinster DA, Charles KA, Kwong J, Thompson RG, Coward JJ, Schioppa T, Robinson SC, Gallagher WM, et al.: A dynamic inflammatory cytokine network in the human ovarian cancer microenvironment. Cancer Res 72: 66-75, 2012.

62. Carabotti G, Petretto A, Nashberger E, Sturzl M, Martini S, Míngari MC, Filaci G, Ferrini S and Fabbi F: Cytokine-Induced Guanylate Binding Protein 1 (GBP1) release from human ovarian cancer cells. Cancers (Basel) 12: 488, 2020.

63. Bird H, Yang L, Baddour J, Achreja A, Bernard V, Moss T, Marinji JC, Tudawe T, Seviour EG, San Lucas FA, et al.: Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism. Elife 5: e01250, 2016.

64. Whiteside TL: The effect of tumor-derived exosomes on immune regulation and cancer immunotherapy. Future Oncol 13: 1593-1601, 2017.

65. Gong M, Yu B, Wang J, Yang Y, Liu M, Paul C, Millard RW, Xiao DS, Ashraf M and Xu M: Mesenchymal stem cells release exosomes that transfer miRNAs to endothelial cells and promote angiogenesis. Oncotarget 8: 45200-45212, 2017.

66. Wu Q, Zhou L, Lv D, Zhu X and Tang H: Exosome-mediated communication in the tumor microenvironment contributes to hepatocellular carcinoma development and progression. J Hepatol Oncol 12: 53, 2019.

67. Dorayappan KD, Wanner R, Wallbillich JJ, Saini U, Zingarelli R, Suarez AA, Cohn DE and Selvedaran K: Hypoxia-induced exosomes contribute to a more aggressive and chemoresistant ovarian cancer phenotype: A novel mechanism linking STAT3/Rab proteins. Oncogene 37: 3806-3821, 2018.

68. Matias Ostrowski NBC, Sophie Krumeich, Isabelle Fanget, Graça Raposo, Ariel Savina, et al.: Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol 12: 19-30, 2010.

69. Qui JJ, Lin XJ, Tang XY, Zheng TT, Lin YY and Hua KQ: Metastasis associated lung adenocarcinoma Transcript 1 promotes angiogenesis and predicts poor prognosis in epithelial ovarian cancer. Int J Biol Sci 16: 1960-1973, 2020.

70. Tang MKS, Yue PYK, Ip PP, Huang RL, Lai HC, Cheung ANY, Tse KY, Ng CF and Wong AST: Soluble E-cadherin promotes tumor angiogenesis and localizes to exosome surface. Nat Commun 9: 2270, 2018.

71. Runz S, Keller S, Rupp C, Stoeck A, Issa Y, Koensgen D, Runz M, Keller S, Rupp C, Stoeck A, Issa Y, Koensgen D and Meissner W: Mixed-polarization macrophages by miR-130 and miR-33 containing exosomes. Oncol Rep 38: 522-528, 2017.

72. TWEAK-stimulated macrophages inhibit metastasis of epithelial ovarian cancer cells. Cancer Lett 435: 80-91, 2018.

73. Ruffell B, Affara NI and Coussens LM: Differential macrophage polarization in the tumor microenvironment. Trends Immunol 33: 119-126, 2012.

74. Shapouri-Moghaddam A, Mohammadian S, Vaziri H, Taghadosi M, Emazeli SA, Mardani F, Seiti B, Mohammadi A, Afshari JT and Sahebkar A: Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol 233: 6425-6440, 2018.

75. Funes SC, Rios M, Escobar-Vera J and Kalergis AM: Implications of macrophage polarization in autoimmunity. Immunology 154: 186-195, 2018.

76. Madeddu C, Gramignano G, Kotsosin P, Coghe F, Atzeni V, Scarzotti M and Macciò A: Microenvironmental M1 tumor-associated macrophage polarization influences cancer-related anemia in advanced ovarian cancer: Key role of interleukin-6. Haematologica 103: e388-e391, 2018.

77. Reinaert S, Schumann T, Finkenpelg F, Wortmann A, Jansen JM, Meissner W, Krause M, Schwörer AM, Wagner U, Müller-Brüsselbach S and Müller R: Mixed-polarization phenotype of ascs-associated macrophages in human ovarian carcinoma: Correlation of CD163 expression, cytokine levels and early relapse. Int J Cancer 134: 32-42, 2014.

78. Nowak M and Klink M: The role of tumor-associated macrophages in the progression and chemoresistance of ovarian cancer. Cells 9: 1299, 2020.

79. Zhou Q, Wu X, Wu X, Wu X and Wang X: Interaction between Treg cells and tumor-associated macrophages in the tumor microenvironment of epithelial ovarian cancer. Oncol Rep 36: 3472-3478, 2016.

80. Zhou J, Li X, Wu X, Zhang T, Zhou Q, Wang X, Wang H, Kang K, Lin Y and Wang X: Exosomes released from tumor-associated macrophages transfer miRNAs that induce a Treg/Th17 cell imbalance in epithelial ovarian cancer. Cancer Immunol Res 6: 1578-1592, 2018.

81. Huang YJ, Huang TH, Yadav VK, Sumitra MR, Tzeng DT, Wei PL, Shih JWH and Wu AT: Preclinical investigation of ovatodiolide as a potential inhibitor of colon cancer stem cells via downregulating sphingolipid-derived exosomal beta-catenin/STAT3/miR-1246 cargoes. Am J Cancer Res 10: 2337-2354, 2020.

82. Xiao L, He Y, Peng F, Yang J and Yuan C: Endometrial cancer cells promote M2-like macrophage polarization by delivering exosomal miRNA-21 under hypoxia condition. J Immunol Res 2020: 9731049, 2020.

83. Wang X, Luo G, Zhang K, Cao J, Huang C, Jiang T, Liu B, Su L and Qiu Z: Hypoxia tumor-derived exosomal miR-30a Mediates M2 macrophage polarization via PTEN/PI3K/Akt to promote pancreatic cancer metastasis. Cancer Res 78: 4586-4598, 2018.

84. Bardi GT, Smith MA and Hood JL: Melanoma exosomes promote mixed M1 and M2 macrophage polarization. Cytokine 105: 63-72, 2018.

85. Li X, Lei Y, Wu M and Li N: Regulation of macrophage activation and polarization by HCC-derived exosomal lncRNA TUC339. Int J Mol Sci 19: 2958, 2018.

86. Piao YJ, Kim HS, Huang EH, Woo J, Zhang M and Moon WK: Breast cancer cell-derived exosomes and macrophage polarization are associated with lymph node metastasis. Oncotarget 9: 7398-7410, 2018.

87. Prichard A, Tousif S, Wang Y, Hough K, Khan S, Strenkowsi J, Chacko BK, Darley-Usmar VM and Deshane JS: Lung tumor cell-derived exosomes promote M2 macrophage polarization. Cells 9: 1303, 2020.

88. Chen X, Ying X, Wang X, Wu X, Zhu Q and Wang X: Exosomes derived from hypoxic epithelial ovarian cancer deliver microRNA-940 to induce macrophage M2 polarization. Oncol Rep 38: 522-528, 2017.

89. Li X and Tang M: Exosomes released from M2 macrophages transfer miR-221-3p contributed to EOC progression through targeting CDKN1B. Cancer Med 9: 6098-6109, 2020.

90. Ying X, Wu Q, Wu X, Zhu Q, Wang X, Jiang L, Chen X and Wang X: Epithelial ovarian cancer-secreted exosomal miR-222-3p induces polarization of tumor-associated macrophages. Oncotarget 7: 43076-43087, 2016.

91. Wu Q, Wu X, Ying X, Zhu Q, Wang X, Jiang L, Chen X, Wu Y and Wang X: Suppression of endothelial cell migration by tumor associated macrophage-derived exosomes is reversed by epithelial ovarian cancer exosomal lncRNA. Cancer Cell Int 17: 62, 2017.

92. Hu Y, Li D, Wu A, Qiu X, Di W, Huang L and Qiu L: TWEAK-stimulated macrophages inhibit metastasis of epithelial ovarian cancer via exosomal shunting of microRNA. Cancer Lett 393: 60-67, 2017.

93. Baj-Krzyworzeka M, Szatanek R, Weglarzcyk K, Baran J and Zembala M: Tumour-derived microvesicles modulate biological activity of human monocytes. Immuno Lett 113: 76-82, 2007.

94. Baj-Krzyworzeka M, Baran J, Yang Y, Szmigielska A, Szflarska A, Siedlar M and Zembala M: Tumour-derived microvesicles (TMV) mimic the effect of tumour cells on monocyte subpopulations. Anticancer Res 30: 3515-3520, 2010.

95. Baj-Krzyworzeka M, Mytar B, Szatanek R, Surmiak M, Weglarzcyk K, Baran J and Siedlar M: Colorectal cancer-derived microvesicles modulate differentiation of human monocytes to macrophages. J Transl Med 14: 36, 2016.

96. Moradi-Chaleshti M, Bandehpour M, Soudi S, Mohammadi-Yeganesh S and Hashemi SM: In vitro and in vivo evaluation of anti-tumor effect of MI phenotype induction in macrophages by miR-130 and miR-33 containing exosomes. Cancer Immunol Immunother 2020 (Epub ahead of print).
Ishii S and Koziel MJ: Immune responses during acute and chronic infections of epithelial ovarian cancers through an epithelial mesenchymal transition program and the activation of cancer associated fibroblasts. Exp Mol Pathol 100: 17‑25, 2016.

Dong T, Yang D, Li R, Zhang L, Zhao H, Shen Y, Zhang X, Kong B and Wang L: PGRN promotes migration and invasion of epithelial ovarian cancer cells through an epithelial mesenchymal transition program and the activation of cancer associated fibroblasts. Exp Mol Pathol 100: 17‑25, 2016.

Dong T, Yang D, Li R, Zhang L, Zhao H, Shen Y, Zhang X, Kong B and Wang L: PGRN promotes migration and invasion of epithelial ovarian cancer cells through an epithelial mesenchymal transition program and the activation of cancer associated fibroblasts. Exp Mol Pathol 100: 17‑25, 2016.

Basu S and Koziel MJ: Immune responses during acute and chronic infections of epithelial ovarian cancers through an epithelial mesenchymal transition program and the activation of cancer associated fibroblasts. Exp Mol Pathol 100: 17‑25, 2016.

Basu S and Koziel MJ: Immune responses during acute and chronic infections of epithelial ovarian cancers through an epithelial mesenchymal transition program and the activation of cancer associated fibroblasts. Exp Mol Pathol 100: 17‑25, 2016.
ROLES OF EXOSOMES IN OVARIAN CANCER

142. Li X and Wang X: The emerging roles and therapeutic potential of exosomes in epithelial ovarian cancer. Mol Cancer 16: 92, 2017.

143. Wang Y, Xiang Y, Xin W, Wang WX, Peng XC, Liu XQ, Wang D, Li N, Chen JY, JT, Zhou J, Li Q and Chen CY: Deranged lipid metabolism and its role in tumor immunotherapy. J Hematol Oncol 13: 107, 2020.

144. Skokos D, Botros HG, Demeure C, Morin J, Peronnet R, Birkenmeier G, Boudaly S and Mécheri S: Mast cell-derived exosomes induce phenotypic and functional maturation of dendritic cells and elicit specific immune responses in vivo. J Immunol 180: 3034-3045, 2008.

145. Robbins PD and Morelli AE: Regulation of immune responses by extracellular vesicles. Nat Rev Immunol 14: 195-208, 2014.

146. Lindenbergh MFS, Koerhuis DGJ, Bor GEG, van’t Veld EM, Driedonks TAP, Wubbolts R, Stoorvogel W and Boes M: Bystander cell support Clonal T cell activation by controlling the release of dendritic Cell-Derived Immune-Stimulatory extracellular vesicles. Front Immunol 10: 448, 2019.

147. Zheng L, Li Z, Ling W, Zhu D, Feng Z and Kong L: Exosomes derived from dendritic cells attenuate liver injury by modulating the balance of Treg and Th17 Cells after ischemia reperfusion. Cell Physiol Biochem 46: 740-756, 2018.

148. Li QL, Bu N, Yu YC, Hua W and Xin XY: Ex vivo experiments of human ovarian cancer ascites-derived exosomes presented by dendritic cells derived from umbilical cord blood for immunotherapy treatment. Clin Med Oncol 2: 461-467, 2008.

149. Pitt JM, Amesbury VA, Gentiletti-Silva S, Gullaci-Kraft C, Pascual CY, Aller MA, Arias J and Arnalich-Montiel FA: Immunosuppressive properties of mesenchymal stem cells: Advances and applications. Curr Mol Med 12: 574-591, 2012.

150. Ris R, Touboul C, Raynaud CM, Malek JA, Suhre K, Mirshahi M and Rafii S: Mesenchymal cell interaction with ovarian cancer cells triggers pro-metastatic properties. PLoS One 7: e38340, 2012.

151. Zhang B, Tian X, Hao J, Xu G and Zhang W: Mesenchymal Stem Cell-Derived extracellular vesicles in tissue regeneration. Cell Transplant 29: 963689720908500, 2020.

152. Khare D, Or R, Resnick I, Barkatz C, Almomgi-Hazan O and Avni B: Mesenchymal stromal Cell-Derived exosomes affect mRNA expression and function of B-Lymphocytes. Front Immunol 9: 3035, 2018.

153. Yang Y, Bucan V, Bächler H, von der Ohe J, Otto A and Hass R: Acquisition of new tumor cell properties by MSC-derived exosomes. Int J Oncol 47: 244-254, 2015.

154. Sharma S, Alharbi M, Kobayashi M, Lai A, Guanzon D, Zuniga F, Ormazabal V, Palma C, Scholz-Romerko K, Rice GE, et al: Proteomic analysis of exosomes reveals an association between cell invasiveness and exosomal bioactivity on endothelial and mesenchymal cell migration in vitro. Clin Sci (Lond) 130: 2029-2044, 2012.

155. Dean M, Fojo T and Bates S: Tumour stem cells and drug resistance. Nat Rev Cancer 5: 275-284, 2005.

156. Vera N, Acuna-Gallardo S, Grunenwald F, Caceres-Verschae A, Cho JA, Park H, Lim EH, Kim KH, Choi JS, Lee JH, Shin JW and Lee JW: Mesenchymal stem cells induce adipose tissue-derived mesenchymal stem cells to acquire the physical and functional characteristics of tumor-supporting myofibroblasts. Gynecol Oncol 133: 379-386, 2011.

157. Yeung TL, Leung CS, Wong KK, Samimi G, Thompson MS, Lu X, Zaid TM, Das J, Banerjee S, Burrell MA and Mok SC: TGF-β modulates ovarian cancer invasion by upregulating CAF-derived versican in the tumor microenvironment. Cancer Res 73: 5016-5028, 2013.

158. Li W, Zhang X, Wang J, Li M, Cao C, Tan J, Ma D and Gao Q: TGFβ1 in fibrolasts-derived exosomes promotes epithelial-mesenchymal transition of ovarian cancer cells. Oncotarget 8: 96035-96047, 2017.

159. Li W and Rothenberg MB: MicroRNA. J Allergy Clin Immunol 141: 1202-1207, 2018.

160. Zhang J, Li S, Li L, Li M, Guo C, Yao J and Mi S: Exosome and exosomal microRNA: Trafficking, sorting, and function. Genomics Proteomics Bioinformatics 13: 17-24, 2015.

161. Au Yeung CL, Co CN, Tsursuga T, Yeung TL, Kwan SY, Leung CS, Li Y, Lu ES, Kwan K, Wong KK, et al: Exosomal transfer of stroma-derived miR21 confers paclitaxel resistance in ovarian cancer cells. Cancer Res 76: 7194-7207, 2016.

162. Kobayashi M, Miyamoto M, Ishida K, Matsumoto Y, Kodama M, et al: Exosomal miR-99a-5p is elevated in sera of ovarian cancer patients and promotes ovarian cancer cell invasion by increasing fibronectin and vitronectin expression in neighboring peritoneal mesothelial cells. BMC Cancer 18: 1065, 2018.

163. Kobayashi M, Salomon C, Tapia J, Illanes SE, Mitchell MD and Rice GE: Ovarian cancer cell invasiveness is associated with discordant exosomal sequestration of Let-7 miRNA and miR-200. J Transl Med 12: 4, 2014.
182. Pan C, Stevic I, Muller V, Ni Q, Oliveira-Ferrer L, Pantel K and Schwarzenbach H: Exosomal microRNAs as tumor markers in epithelial ovarian cancer. Mol Oncol 12: 1935‑1948, 2018.

183. Kobayashi M, Sawada K, Nakamura K, Yoshimura A, Miyamoto M, Shimizu A, Ishida K, Nakatsuka E, Kodama M, Hashimoto K, et al: Exosomal miR-1290 is a potential biomarker of high‑grade serous ovarian carcinoma and can discriminate patients from those with malignancies of other histological types. J Ovarian Res 11: 81, 2018.

184. Cheng L, Zhang K, Qing Y, Li D, Cui M, Jin P and Xu T: Proteomic and lipidomic analysis of exosomes derived from ovarian cancer cells and ovarian surface epithelial cells. J Ovarian Res 13: 9, 2020.

185. Nakamura K, Sawada K, Kinose Y, Yoshimura A, Tada A, Nakatsuka E, Hashimoto K, Mabuchi S, Morishige KI, Kurachi H, et al: Exosomes promote ovarian cancer cell invasion through transfer of CD44 to peritoneal mesothelial cells. Mol Cancer Res 15: 78‑92, 2017.

186. Dorayappan KDP, Wallbillich JJ, Cohn DE and Selvendiran K: The biological significance and clinical applications of exosomes in ovarian cancer. Gynecol Oncol 142: 199‑205, 2016.

187. Enriquez VA, Cleys ER, Da Silveira JC, Spillman MA, Winger QA and Bouma JG: High LIN28A expressing ovarian cancer cells secrete exosomes that induce invasion and migration in HEK293 cells. Biomed Res Int 2015: 701390, 2015.

188. Stope MB, Klinkmann G, Diesing K, Koensgen D, Burchardt M and Mustea A: Heat Shock Protein HSP27 secretion by ovarian cancer cells is linked to intracellular expression levels, occurs independently of the endoplasmic reticulum pathway and HSP27’s phosphorylation status, and is mediated by exosome liberation. Dis Markers 2017: 1575374, 2017.

189. Nam GH, Choi Y, Kim GB, Kim S, Kim SA and Kim IS: Identification of exosomal and non‑exosomal microRNAs associated with the drug resistance of ovarian cancer. Mol Med Rep 19: 3376‑3392, 2019.

190. Cheng L, Zhang K, Qing Y, Li D, Cui M, Jin P and Xu T: Proteomic and lipidomic analysis of exosomes derived from ovarian cancer cells and ovarian surface epithelial cells. J Ovarian Res 13: 9, 2020.

191. Nakamura K, Sawada K, Kinose Y, Yoshimura A, Tada A, Nakatsuka E, Hashimoto K, Mabuchi S, Morishige KI, Kurachi H, et al: Exosomes promote ovarian cancer cell invasion through transfer of CD44 to peritoneal mesothelial cells. Mol Cancer Res 15: 78‑92, 2017.

192. Dorayappan KDP, Wallbillich JJ, Cohn DE and Selvendiran K: The biological significance and clinical applications of exosomes in ovarian cancer. Gynecol Oncol 142: 199‑205, 2016.

193. Zhu X, Shen H, Yin X, Yang M, Wei H, Chen Q, Feng F, Liu Y, Xu W and Li Y: Macrophages derived exosomes deliver miR-223 to epithelial ovarian cancer cells to elicit a chemoresistant phenotype. J Exp Clin Cancer Res 38: 81, 2019.

194. Kanlikilicer P, Bayraktar R, Denizli M, Rashed MH, Ivan C, Aslan B, Mitra R, Karagoz K, Bayraktar E, Zhang X, et al: Exosomal miRNA confers chemoresistance via targeting Caveol/p‑gp/M2-type macrophage axis in ovarian cancer. EBioMedicine 38: 100‑112, 2018.

195. Guo H, Ha C, Dong H, Yang Z, Ma Y and Ding Y: Cancer-associated fibroblast-derived exosomal microRNA-98-5p promotes cisplatin resistance in ovarian cancer by targeting CDKN1A. Cancer Cell Int 19: 347, 2019.

196. Cao YL, Zhuang T, Xing BH, Li N and Li Q: Exosomal DNM1 mediates cisplatin resistance in ovarian cancer. Cell Biochem Funct 35: 296‑303, 2017.

197. Kim SM, Yang Y, Oh SJ, Hong Y, Seo M and Jang M: Cancer-derived exosomes as a delivery platform of CRISPR/Cas9 confer cancer cell tropism-dependent targeting. J Control Release 266: 8‑16, 2017.

198. Tsu P, Katayama H, Ostrin EJ and Hanash SM: The emerging role of B Cells in tumor immunity. Cancer Res 76: 5597‑5601, 2016.

199. Im EJ, Lee CH, Moon PG, Rangaswamy GG, Lee B, Lee JM, Lee JC, Lee JG, Bae JS, Kwon TK, et al: Sulfisoxazole inhibits the secretion of small extracellular vesicles by targeting the endothelin receptor A. Nat Commun 10: 1387, 2019.

200. Walker S, Busatto S, Pham A, Tian M, Suh A, Carson K, Quintero A, Lefranc M, Malik H, Santanta MX and Wolfram J: Extracellular vesicle‑based drug delivery systems for cancer treatment. Theranostics 9: 8001‑8017, 2019.

201. Pisano S, Pierini I, Gu J, Gazze A, Francis LW, Gonzalez D, Conlan RS and Corradetti B: Immune (Cell) Derived Exosome Mimetics (IDEM) as a treatment for ovarian cancer. Front Cell Dev Biol 8: 553576, 2020.

202. Ge L, Zhang N, Li D, Wu Y, Wang H and Wang J: Circulating exosomal small RNAs are promising non‑invasive diagnostic biomarkers for gastric cancer. J Cell Mol Med 24: 14502‑14513, 2020.

203. Chen Z, Liang Q, Zeng H, Zhao Q, Guo Z, Zhong R, Xie M, Cai X, Su J, He Z, et al: Exosomal CA125 as a promising biomarker for ovarian cancer diagnosis. J Cancer 11: 6445‑6453, 2020.

204. Wang Y, Li Q, Shi H, Tang K, Qiao L, Yu G, Ding C and Yu S: Microfluidic Raman biochip detection of exosomes: A promising tool for prostate cancer diagnosis. Lab Chip 20: 4632‑4637, 2020.