How Do Alien Plants Fit in the Space-Phylogeny Matrix?

Şerban Procheş1*, Félix Forest2, Sarah Jose2, Michela De Dominicis1, Syd Ramdhani3, Timothy Wiggill1

1 Discipline of Geography, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, South Africa, 2 Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, United Kingdom, 3 School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, South Africa

* setapion@gmail.com

Abstract

Recent advances in the field of plant community phylogenetics and invasion phylogenetics are mostly based on plot-level data, which do not take into consideration the spatial arrangement of individual plants within the plot. Here we use within-plot plant coordinates to investigate the link between the physical distance separating plants, and their phylogenetic relatedness. We look at two vegetation types (forest and grassland, similar in species richness and in the proportion of alien invasive plants) in subtropical coastal KwaZulu-Natal, South Africa. The relationship between phylogenetic distance and physical distance is weak in grassland (characterised by higher plant densities and low phylogenetic diversity), and varies substantially in forest vegetation (variable plant density, higher phylogenetic diversity). There is no significant relationship between the proportion of alien plants in the plots and the strength of the physical-phylogenetic distance relationship, suggesting that alien plants are well integrated in the local spatial-phylogenetic landscape.

Introduction

Recently, there has been a great deal of interest in plant community phylogenetics [1], and especially in its main invasion biology projection, Darwin’s naturalization hypothesis. This hypothesis states that plants that have close indigenous relatives in a region are less likely to become naturalized, compared to those that do not [2,3,4,5,6]. The assumption behind this hypothesis is that common ancestry implies similar traits, potentially resulting in competitive exclusion, and this assumption has been recently both qualified and quantified with the introduction and measurement of the concept of phylogenetic conservatism [7,8].

While phylogenetics adds to Darwin’s original idea by converting relatedness from a categorical variable (alien plant belongs to the same genus, or not, as their closest indigenous relative) into a continuous one (the phylogenetic distance between the two), to our knowledge, no attempt has been made to convert co-occurrence into a continuous variable, although the physical (spatial) distance between plants seems to be an obvious choice. While much work in this
field was performed at large scales (tens to thousands of kilometers \([9,10]\)), the scale which is relevant for Darwin’s naturalization hypothesis is likely to be fine (phytosociological plot size or finer). Some of the most convincing results in community phylogenetics are indeed considering very small plots \([11]\). At large scale, alien species need to be somewhat similar to native species to share the same physical environment. Therefore, at this scale, it is likely that alien species are more related to native species than expected by random \([1]\), thus the expectation would be a positive relationship between physical and phylogenetic distance. In the very close neighborhood, however, species interact by competing for resources. Here, to coexist, species need to be somewhat dissimilar, and it can be expected that alien species are less related to native species. It can thus be expected that alien plants would show an increased phylogenetic distance to plants in their neighborhoods, compared to native plants \([3]\). If so, this should result in a negative relationship between physical and phylogenetic distance.

In several previous studies, plant stems have been fully mapped for vegetation plots \([12,13,14]\), and in at least one such case \([15]\) the relatedness between plants has been taken into consideration. Nevertheless, this article is a first attempt—a simple and static one—at understanding how the relationship between phylogenetic distance and spatial distance is or is not affected by whether a plant is or not indigenous to the study region. Given the broad range of phylogenetic diversity values in plant communities \([16]\), we considered it important to also include some cross-vegetational variation. In grasslands, many species co-occur in the same stratum, while forests have several layers (e.g. understorey, canopy), which could impact on the nature and intensity of plant interactions \([12,14]\). Furthermore, there may be differences between these two vegetation types in total plant abundance. Furthermore, since grass species (Poaceae, dominant in grassland) were the example used to illustrate Darwin’s naturalization hypothesis in the study that was most successful in this direction yet \([6]\), we were also interested in determining whether community phylogenetic patterns are particularly strong in vegetation dominated by grasses.

Methods

Study area

The study was conducted in the Palmiet Nature Reserve (managed by the eThekwini/Durban Municipality) and on the neighboring Westville Campus of the University of KwaZulu-Natal in Durban, South Africa—an area naturally covered by a mosaic of grassy and woody vegetation, but having been largely engulfed by urban development during the twentieth century. The patchy nature of the remaining natural vegetation is in itself not fundamentally distinct from the natural patchiness of the two vegetation types, but both have recently become invaded by alien shrubs, vines, and small trees \([17]\). The borderline between forest and grassland in the region was naturally kept sharp by fire (mostly managed by campus and conservation authorities), but is now locally blurred by invasive plants \([18]\). Ten alien plant species are targeted by control operations in the area, given their current or potential negative impact on indigenous plant assemblages and/or human activities in the area (Cardiospermum grandiflorum, Chromolaena odorata, Ipomoea purpurea, Lantana camara, Litsea glutinosa, Melia azedarach, Pennisetum purpureum, Ricinus communis, Solanum mauritianum, Tithonia diversifolia) \([17]\).

Sampling

Twenty 5 x 5 m plots were selected, ten dominated by woody plants (‘forest’) and ten dominated by herbaceous plants (‘grassland’); intermediate vegetation was avoided. Considering that much of the study area is extremely steep (and including several sheer cliff faces), plots had to be selected to approximate a random distribution within the more accessible parts of the
relevant vegetation patches (slope of less than 30°; see plot coordinates in S1 Table). While we
noticed alien plant control teams working in neighboring areas on various occasions, we could
detect no evidence of these measures having been applied in any of our plots. All plants with
living above-ground parts were manually mapped in the plots by laying down a grid of string
across the plot and assigning x and y values for each individual plant. This approach could re-
sult in potential errors of 5 cm or less. All data collection and mapping were performed from
April to July 2008. All data points were digitized using the ArcGIS software [19], thus recording
the x-y coordinates for each plant. Hawth’s tools (Geospatial Modelling Environment; www.
spatialecology.com) were used to calculate the physical distance between every two plant indivi-
duals. Plants were identified to species level (either in the field or based on photographs), and
their regional status (indigenous, alien) was recorded using relevant references [20,21,22]. As
no plant collections were performed at the study sites, no permits were required.

Phylogenetic diversity
Phylogenetic distances between taxa were calculated using the phydist option in Phylocom
(4.0.1b [23]). The phylogenetic tree was reconstructed using DNA sequences from the plastid
rbcL exon (coding for the ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit) for
one exemplar species for each genus found in the plots. We chose to use the rbcL exon as it is a
widely use marker in plant phylogenetics, with very good coverage at the genus level in publicly
available sequence databases, and it also presents an appropriate level of variability for the re-
construction of phylogenetic relationships across the angiosperms, as needed here [24]. DNA
sequences we obtained from Genbank. The phylogenetic tree was reconstructed using the par-
simony criteria as implemented in PAUP [25] (heuristic search, 1000 replicates of random ad-
dition sequence, and tree bisection reconnection branch swapping). Branch lengths were made
ultrametric using the penalized likelihood approach as implemented in the software r8s [26]
(see resulting tree in S1 Fig). Phylogenetic diversity measures were obtained using the same ap-
proach as described in [27], by adding branch lengths (as measured in millions of years). Using
a randomization procedure (with 10,000 replicates; see [17] for details), each plot was evaluated
to determine if its phylogenetic diversity is higher (overdispersed) or lower (clustered) than ex-
pected from their taxon richness.

Statistical analyses
First, we compared the two vegetation types in terms of number of species, phylogenetic diver-
sity, and proportional representation of alien plants using one-way ANOVA. We then correlat-
ed phylogenetic distance and physical distance by assigning the phylogenetic distance between
two species to every pair of individual plants from those two species co-occurring within one
plot. Thus, in most cases, multiple physical distance values corresponded to one phylogenetic
distance value. We performed a Mantel tests for each plot, calculating Pearson’s correlation co-
efficient with 999 permutations [28,29]. We then explored how these coefficients varied be-
tween grassland and forest vegetation, and in relation to the number of species, phylogenetic
diversity, plant density, and log-transformed percentage alien plants (generalized linear mod-
els, Gaussian distribution). All analyses were performed in R 2.10.0 [30]; with the mantel func-
tion from the package vegan 1.17–2 [31].
Results

The diversity and abundance of indigenous and alien plants

A total of 4,276 individual plants were recorded, of which 261 were aliens. These comprised 194 species assigned to 135 genera and 52 families. Alien individuals belonged to 18 species assigned to 17 genera and nine families. Only one genus (*Indigofera*) contained both indigenous and alien species (not in the same plot). The majority of the most abundant indigenous plants, in both forest and grassland, were graminoids (Poaceae and Cyperaceae), although these belonged to different species in the two vegetation types. The most abundant aliens (predominantly Asteraceae), in contrast, crossed vegetation boundaries (Table 1). The high turnover in indigenous trees meant that none of these were particularly abundant overall (see S1 Table).

Forest-grassland comparisons

 Phylogenetic diversity values range from 1341 Ma to 2321 Ma for forest plots and from 925 Ma to 1528 Ma for grassland plots. There was no difference between the two vegetation types in terms of species numbers per plot (F = 2.220, P > 0.1), but phylogenetic diversity was higher in forest (F = 18.969, P < 0.0001); plant density was higher in grassland (F = 14.802, P = 0.001), and there was no difference in the percentage of plants belonging to alien species (F = 2.424, P > 0.1) (Fig 1). The randomization procedure identified eight of the ten grasslands plots as clustered. None of the forest plots was clustered, but one of them had higher phylogenetic diversity than expected by chance (over-dispersed). Removing alien species resulted in virtually the same results (one additional grassland plot became clustered), whereas removing grasses had a more substantial effect—in this case several of the otherwise clustered grassland plots were no longer clustered (but four such plots remained), and one forest plot became clustered.

Mantel tests

 Mantel test r values were mostly positive (always positive and mostly significant in forest, mostly positive and seldom significant in grassland; Fig 2)—overall significantly lower in grassland (F = 10.709; P = 0.004; Fig 1). When using generalised linear models to express Mantel test r values as a function of vegetation type and other variables, the only significant effect was that of vegetation type on the way in which species richness influenced the value of Mantel’s r (t = -2.155, P = 0.0467). The effect of the percentage of alien plants in the assemblage on

Table 1. Summary of the most abundant indigenous and alien species recorded.

Species	Total abundance	Forest plots present	Grassland plots present
Indigenous			
Cymbopogon plurinodis (Poaceae)	491	6	
Digitaria eriantha (Poaceae)	395	6	
Oplismenus hirtellus (Poaceae)	251	8	
Cyperus albostriatus (Cyperaceae)	249	6	
Gerbera piloselloides (Asteraceae)	189	9	
Alien			
Chromolaena odorata (Asteraceae)	88	9	3
Sonchus oleraceus (Asteraceae)	43		7
Sorghum halepense (Poaceae)	27	2	
Tagetes minuta (Asteraceae)	25		1
Melia azedarach (Meliaceae)	17	1	5

doi:10.1371/journal.pone.0123238.t001

How Do Alien Plants Fit in the Space-Phylogeny Matrix?
Mantel’s r was not significant (t = -1.867, P = 0.0816; this was however the second lowest of the twelve P values across all the generalised linear models—including interactions). On the two-dimensional graphs visually exploring links between different plot-level variables and Mantel test r values (Fig 2), grassland sites formed separate clusters from the bulk of the forest sites, but in most cases there were a few forest plots overlapping the grassland cluster. These patterns were in no obvious way linked to those of phylogenetic clustering or over-dispersion described above. The only clear separation between grassland and forest plots was in the case of phylogenetic diversity. Although grassland and forest values overlapped in both phylogenetic diversity and Mantel r values, grassland sites formed a fairly distinct cluster in the two-dimensional graph, with low values in both (Fig 2).

Discussion

Potential caveats

Although we used a genus-level phylogenetic tree, this is very unlikely to have affected our results substantially, as congeneric species very seldom occurred in the same plot—and this was never the case with indigenous and alien congenerics. Far more important in taking our results
further could be recording plant sizes, and even more so, following changes in plant size and survival in plots through time. Once time is taken into consideration, the importance of the indigenous/alien status may emerge. Woody invaders often reduce the survival of other seedlings [32]. This is not necessarily linked to how closely related they are [33], but interactions between phylogenetic distance and plant status in the region are to be expected anyway [34]. Furthermore, an assessment of the specific types of competitive interactions ("phenotypic matching" versus "phenotypic differences"; [5]) will probably add further depth to studies of this kind once these are better understood.

Peculiarities of the system studied here, such as the remarkable patchiness of vegetation types (both natural and anthropogenic) and the high turnover of indigenous tree species in forest, could mean that our results should not be directly extrapolated elsewhere. Nevertheless, several points are remarkable and probably not unique to the system we studied.

Birds of a feather flock together

In our study, only positive relationships between physical distance and phylogenetic distance were significant (plants that are closely related occur closer to each other), but this was less likely in plots with denser vegetation and where graminoid plants were dominant (Fig 2). The
absence of significant negative relationships is remarkable, considering that our method should allow picking up interactions across finer scales than elsewhere [34].

Grassland plots in general had fewer significant relationships than forest plots, but this may only indicate that, in this case, the tendency of related plants to track similar resources is compensated by competitive interactions. Darwin’s naturalisation hypothesis is supported when considering grasses alone [9], which is less likely to be shown in other plants [35]. Furthermore, grasses are among several families locally overrepresented on invasive species lists, which can result in a phylogenetic clustering effect for the vegetation as a whole [36]. The forest plots more similar to grassland in terms of Mantel r values either had lower levels of invasion (similar to grassland) or actually contained high numbers of grass or sedge individuals. Grassy systems as a whole have been shown to represent clustered subsets of the angiosperm assemblages present regionally [16], although within grasslands there is no clear link between niche and phylogenetics [37]. This can explain why grassland appears clustered when the random model is a grassland-forest species mix, as analysed here, but without significant Mantel test results.

The significant effect of vegetation type on the species richness-Mantel’s r relationship can be described as follows: the grassland plots, as well as those forest plots that are species rich, show low values for Matel’s r. Conversely, forest plots that are species poor (and have lower understory cover) have high values for Mantel’s r. The high tree diversity in our study area (even in plots with overall low species diversity) means that our results are complementary to the finding of competition though spatial point-patterns analysis in species-poor Boreal forests [14]. The interactions in the herbaceous layer are complex, and the effects of competition and positive interactions [12] may cancel out and result in non-significant Mantel tests.

Aliens behave local

Most importantly for the central question of the study, we did not find a significant effect of the level of invasion (measured as the proportion of plants belonging to alien species) on the physical distance-phylogenetic distance relationship. This is surprising given the dynamic nature of the invasion in the studied system [38], but fits in with the lack of significant difference between indigenous and alien plants as regards a variety of morphological traits [39]. Nevertheless, given the fact that the P value was in this case close to significance level, we cannot exclude the possibility that such effect will be detected in future studies, particularly if conducted in vegetation with different properties. In particular, a broader range of invasion level values, and species-poor tree-dominated assemblages could hold promise in detecting significant effects.

Conclusion

Our results indicate that alien plants are, at least in the systems studied here, by-and-large fitting well in the indigenous phylogenetic landscape—although this picture may change with the stages of invasion [40,41]. This could even be the case in our study area, given the rapid invasion dynamics documented at our sites [38].

Methodologically, we show that analyses measuring physical distances between plants can complement plot-level analyses that are currently widely used. In particular, these should be employed in longitudinal long-term studies with competition in mind—in which case they would provide a complex tool, especially relevant in invasion ecology.

Supporting Information

S1 Fig. The phylogenetic tree produced for the study. (DOCX)
S1 Table. The representation of alien and indigenous plant species across forest and grassland plots as analysed in the study.

(XLS)

Acknowledgments

Marcel Rejmánek originally suggested the utility of a phylogenetic neighbourhood index in an invasion context; also thanked for discussion are Spencer Barrett, Nompumelelo Myende, Dave Richardson, Phil Rundel, and John Wilson. Ingolf Kühn and Desika Moodley helped with statistical analysis.

Author Contributions

Conceived and designed the experiments: SP. Performed the experiments: MdD TW. Analyzed the data: SP FF SJ SR. Contributed reagents/materials/analysis tools: SP FF SR. Wrote the paper: SP FF SR.

References

1. Cavender-Bares J, Ackerley DD, Baum DA, Bazzaz FA (2004) Phylogenetic overdispersion in Floridian oak communities. Amer Nat 163: 823–843.
2. Daehler CC (2001) Darwin’s naturalization hypothesis revisited. Amer Nat 158: 324–330.
3. Procheş Ş, Wilson JRU, Richardson DM, Rejmánek M (2008) Searching for phylogenetic pattern in biological invasions. Global Ecol Biogeogr 17: 5–10.
4. Thuiller W, Gallien L, Boulangeat I, de Bello F, Münkemüller T, Roquet C, et al. (2011) Resolving Darwin’s naturalization conundrum: a quest for evidence. Div Distrib 16: 471–475.
5. Jones EI, Nuismser SL, Gomulkiewicz R (2013) Revisiting Darwin’s conundrum reveals a twist on the relationship between phylogenetic distance and invasibility. Proc Nat Acad Sci USA 110: 20627–20632. doi: 10.1073/pnas.1310247110 PMID: 24297938
6. Vilà M, Rohr RP, Espinar JL, Hulme PE, Pergl J, Le Roux JL et al., (2015) Explaining the variation in impacts of non-native plants on local-scale species richness: the role of phylogenetic relatedness. Glob Ecol Biogeogr 24: 139–146.
7. Prinzing A, Durka W, Klotz S, Brandl R (2001) The niche of higher plants: evidence for phylogenetic conservatism. Proc R Soc Lond B Biol Sc 268: 1–7.
8. Prinzing A, Reiffers R, Braakhkeke WG, Hennekens SM, Tackenberg O, Ozinga WA, et al. (2008) Less lineages—more trait variation: phylogenetically clustered plant communities are functionally more diverse. Ecol Lett 11: 809–819. doi: 10.1111/j.1461-0248.2008.01189.x PMID: 18445034
9. Strauss SY, Webb CO, Salamin N (2006) Exotic taxa less related to native species are more invasive. Proc Nat Acad Sci USA 103: 5841–5845. PMID: 16581902
10. Escobedo VM, Aranda JE, Castro SA (2011) Darwin’s naturalization hypothesis assessed in the alien flora of continental Chile. Rev Chil Hist Nat 84: 543–552.
11. Slingsby JA, Verboom GA (2006) Phylogenetic relatedness limits co-occurrence at fine spatial scales: Evidence from the schoenoid sedges (Cyperaceae: Schoenae) of the Cape Floristic Region, South Africa. Amer Nat 168: 14–27.
12. Eccles N, Eserer KJ, Cowling RM (1999) Spatial pattern analysis in Namaqualand desert plant communities: evidence for general positive interactions. Plant Ecol 142: 71–85.
13. Dale MRT, Powell RD (2001) A new method for characterizing point patterns in plant ecology. J Veg Sci 12: 597–608.
14. Gray L, He F-L (2009) Spatial point-pattern analysis for detecting density-dependent competition in a boreal chronosequence of Alberta. Forest Ecol Manag 259: 98–106.
15. Shen G-C, Wiegand T, Mi X-C, He F-L (2013) Quantifying spatial phylogenetic structures of fully stemmapped plant communities. Meth Ecol Evol 4: 1132–1141.
16. Procheş Ş, Wilson JRU, Cowling RM (2006) How much evolutionary history in a 10x10 m plot? Proc R Society B Biol Sc 273: 1143–1148. PMID: 16600893
17. eThekwini Municipality (2010) Framework strategy for the control of invasive alien species in eThekwini Municipality, South Africa. Environmental Management Department, eThekwini Municipality, Durban, South Africa.

18. Zachariades C, Goodall JM (2000) Distribution, impact and management of Chromolaena odorata in southern Africa. In Zachariades C, Muniappan R, Strathie LW, editors. Proceedings of the Fifth International Workshop on Biological Control and Management of Chromolaena odorata, Durban, South Africa, 23–25 October 2000. South Africa, ARC-Plant Protection Research Institute.

19. Environmental Systems Research Institute (2008) ArcGIS version 9.3, ESRI, Redlands.

20. Germishuizen G, Meyer NL (2003) Plants of southern Africa: an annotated checklist. National Botanical Institute, Pretoria.

21. Pooley E (2003) The complete field guide to trees of Natal Zululand & Transkei. Natal Flora Publications Trust, Durban.

22. Pooley E (2005) A field guide to wild flowers KwaZulu-Natal and the eastern region. Natal Flora Publications Trust, Durban.

23. Webb CO, Ackerly DD, Kembel SW (2008) Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 24: 2098–2100. doi: 10.1093/bioinformatics/btn358 PMID: 18678590

24. Soltis DE, Soltis PS (1998) Choosing an approach and an appropriate gene for phylogenetic analysis. In Soltis DE, Soltis PS, Doyle JJ, editors. Molecular systematics of plants II: DNA sequencing. New York: Kluwer Academic Publishers. pp. 1–41.

25. Swofford DL (2002) PAUP*: Phylogenetic Analysis Using Parsimony (*and other methods) 4.0b 10 ed. Sinaur Associates, Sunderland, Massachusetts.

26. Sanderson MJ (2002) Estimating absolute rates of molecular evolution and divergence times: A penalized likelihood approach. Mol Biol Evol 19: 101–109. PMID: 11752195

27. Forest F, Grenyer R, Rouget M, Davies TJ, Cowling RM, Faith DP, et al. (2007) Preserving the evolutionary potential of floras in biodiversity hotspots. Nature 445: 757–760. PMID: 17301791

28. Legendre P, Fortin M-J (2010) Comparison of the Mantel test and alternative approaches for detecting complex multivariate relationships in the spatial analysis of genetic data. Mol Ecol Res 10: 831–844. doi: 10.1111/j.1755-0998.2010.02866.x PMID: 21565094

29. Diniz-Filho JAF, Soares TN, Lima JS, Dobrovolski R, Landeiro VL, de Campos Telles MP, et al. (2013) Mantel test in population genetics. Genet Mol Biol 36: 475–485. doi: 10.1590/S1415-47572013000400002 PMID: 24385847

30. R Development Core Team (2010) R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna. Available: http://www.R-project.org. Accessed 1 April 2010.

31. Øksanen J, Kindt R, Legendre P, O’Hara B, Simpson GL, Solymos P, et al. (2009) Vegan: Community Ecology Package (R package version 1.15–4). Available: http://cran.r-project.org/package = vegan. Accessed 29 July 2011.

32. Greene BT, Blossey B (2012) Lost in the weeds: Ligustrum sinense reduces native plant growth and survival. Biol Invasions 14: 139–150.

33. Dostál P (2011) Plant competitive interactions and invasiveness: searching for the phylogenetic relatedness and origin on competition intensity. Amer Nat 177: 655–667. doi: 10.1086/659060 PMID: 21508611

34. Davies KF, Cavender-Bares J, Deacon N (2011) Native communities determine the identity of exotic invaders even at scales at which communities are unsaturated. Div Distrib 17: 35–42.

35. Duncan RP, Williams PA (2002) Darwin’s naturalization hypothesis challenged. Nature 417: 608–609. PMID: 12050652

36. Carvallo GO, Tellier S, Castro SA, Figueroa JA (2014) The phylogenetic properties of native- and exotic-dominated plant communities. Austr Ecol 39: 304–312.

37. Silvertown J, McConway K, Gowing D, Dodd M, Fay MF, Joseph JA, et al. (2006) Absence of phylogenetic signal in the niche structure of meadow plant communities. Proc R Soc B Biol Sci 273: 39–44.

38. Padayachy Y, Proche Ş, Ramsay LF (2014) Beetle assemblages of indigenous and alien decomposing fruit in subtropical Durban, South Africa. Arthropod-Plant Inte 8: 135–142.

39. Pyšek P, Richardson DM (2007) Traits associated with invasiveness in alien plants: where do we stand? Biol Invasions 9: 97–125.

40. Dawson W, Burslem DFRP, Hulme PE (2009) Factors explaining alien plant invasion success in a tropical ecosystem differ at each stage of invasion. J Ecol 97: 657–665.

41. Pellock S, Thompson A, He KS, Mecklin CJ, Yang J (2013) Validity of Darwin’s naturalization hypothesis relates to the stages of invasion. Comm Ecol 14: 172–179.