NanoVar: accurate characterization of patients’ genomic structural variants using low-depth nanopore sequencing

Cheng Yong Tham, Roberto Tirado-Magallanes, Yufen Goh, Melissa J. Fullwood, Bryan T.H. Koh, Wilson Wang, Chin Hin Ng, Wee Joo Chng, Alexandre Thiery, Daniel G. Tenen, Touati Benoukraf

Additional file 1
Figure S1: NanoVar SV characterization algorithm displayed as a decision tree. The algorithm consists of only conditional control statements coded in Python to analyse long-read alignment profiles for SV characterization.
Figure S2: SV simulation and read simulation information. (a) Kernel density plot of the distribution of simulated SV sizes across the three simulated datasets. (b) Read length and (c) indel percentage distribution of simulated long reads and whole-genome patient Nanopore sequencing reads.
Figure S3: Repetitive sequence analysis of SVs recalled in homozygous (Top) and heterozygous (bottom) simulation datasets by the different tools.
Figure S4: Recall benchmarking using NA12878 PacBio benchmark sample distributed by Parikh et al., 2016 (2676 DEL and 68 INS). The number of reads used had been downsized to 4x coverage (Top) and 8x coverage (Bottom).
Figure S5: Donut charts showing the distribution of SV classes characterized by NanoVar in Patient 1 and Patient 2. TLO: Translocation, TPO: Transposition.
Figure S6: Genome browser snapshots of Nanopore long reads and Illumina short reads at each SV breakpoint location for SVs in (a) Patient 1 and (b) Patient 2. The top one-third of each snapshot displays the long reads in blue rectangles, while the bottom two-thirds displays short reads in red and blue rectangles. The cumulative read coverages for long reads (blue) and short reads (grey) are displayed above all the respective reads. The Integrative Genomics Viewer (IGV, https://software.broadinstitute.org/software/igv/) was used for the visualization of reads.
Homozygous

Tool	Optimum threshold score	Recall Sim 1	Recall Sim 2	Recall Sim 3	Recall Avg	Precision Sim 1	Precision Sim 2	Precision Sim 3	Precision Avg	F1 score Sim 1	F1 score Sim 2	F1 score Sim 3	F1 score Avg	Area under curve (AUC) Sim 1	Area under curve (AUC) Sim 2	Area under curve (AUC) Sim 3	Area under curve (AUC) Avg
NanoVar	1.0	0.955	0.955	0.954	0.955	0.951	0.948	0.950	0.950	0.953	0.952	0.952	0.952	0.965	0.965	0.965	0.965
NanoSV	0	0.314	0.310	0.319	0.314	0.997	0.997	0.997	0.997	0.477	0.477	0.477	0.477	0.478	0.478	0.478	0.478
Sniffles	N/A	0.832	0.836	0.832	0.833	0.897	0.895	0.896	0.896	0.863	0.864	0.864	0.864	N/A	N/A	N/A	N/A
SVIM	0	0.791	0.790	0.791	0.719	0.720	0.714	0.718	0.753	0.753	0.751	0.757	0.753	N/A	N/A	N/A	N/A
Picky	N/A	0.588	0.583	0.583	0.584	0.023	0.023	0.023	0.023	0.044	0.044	0.044	0.044	N/A	N/A	N/A	N/A
novoBreak	27.5	0.616	0.630	0.606	0.618	0.965	0.949	0.963	0.959	0.752	0.757	0.746	0.752	0.654	0.666	0.649	0.650
Delly	N/A	0.708	0.707	0.706	0.707	0.977	0.977	0.977	0.976	0.821	0.820	0.820	0.820	N/A	N/A	N/A	N/A

Heterozygous (Sim1)

Tool	Optimum threshold score	Recall 4x	Recall 8x	Recall 12x	Precision 4x	Precision 8x	Precision 12x	F1 score 4x	F1 score 8x	F1 score 12x	Area under curve (AUC) 4x	Area under curve (AUC) 8x	Area under curve (AUC) 12x	Area under curve (AUC) Avg
NanoVar	1.0	0.757	0.883	0.929	0.972	0.968	0.965	0.951	0.923	0.947	0.879	0.980	0.974	
NanoSV	0	0.155	0.314	0.407	0.989	0.999	0.997	0.269	0.477	0.578	0.155	0.313	0.407	
Sniffles	N/A	0.579	0.832	0.894	0.988	0.848	0.792	0.704	0.840	0.840	N/A	N/A	N/A	
SVIM	0	0.641	0.793	0.848	0.674	0.571	0.483	0.657	0.663	0.616	0.586	0.742	0.804	
Picky	N/A	0.384	0.600	0.666	0.015	0.012	0.011	0.029	0.023	0.021	N/A	N/A	N/A	
novoBreak	27.5	0.585	0.977	0.732	0.625									
Delly	N/A	0.698	0.960	0.615										

Table S1: Precision and recall values of Figure 2a (Top) and 2b (Bottom). Sim # refers to simulation dataset #, where # refers to the dataset number. Avg: Average.
Table S2: Precision and recall values for different SV classes characterized by different tools presented in Figure 2c (Top) and 2d (Bottom). Numbers in parentheses in the recall columns represent the number of true SV breakends recalled. SV class annotation accuracy is considered in this analysis. For BND total breakends, 10,000 breakends are points of transposition location, and 20,000 breakends are the left and right coordinates of genomic sequences that were inserted. DUP: tandem duplication, DEL: deletion, INS: insertion, BND: breakend, INV: inversion, TP: True positive, FP: False positive.

Table S3: Oxford Nanopore MinION sequencing details of Patient 1 and Patient 2.
Table S4: Genomic coordinates of SVs characterized in Patient 1 and Patient 2.

SV id	SV class	Chromosome	Coordinates
1-1	Del	14	68528678-68528737
1-2	Del	7	134665255-134665664
1-3	Ins	18	40768187
1-4	Ins	7	110844695
1-5	Del	14	51911629-51912185
1-6	Ins	14	53333449
1-7	Del	4	79439473-79441569
1-8	Ins	4	89221858
2-1	Del	4	142108392-142108444
2-2	Ins	4	137377851
2-3	Del	5	79717888-79718187
2-4	Dup	4	7834853-7835893
2-5	Del	21	10475720-10476287
2-6	Ins	10	35706138
2-7	Dup	6	66974314-66974585
2-8	Del	3	194894010-194894311

Table S5: SV validation in AML patients and NanoVar recall status for PCR-discovered SVs. (a) Results of SV validation and shared-SV detectability by NanoVar in the respective patient samples. Y=Yes, N=No, n/a=Not applicable. (b) Summary results for Patient 1 and Patient 2.

(a) Patient 1 and Patient 2 validation results

SV id	Validated	Shared-SV recalled	Patient 1	Patient 2
1-1	Y	n/a	n/a	Y
1-2	Y	n/a	n/a	Y
1-3	Y	n/a	n/a	Y
1-4	Y	n/a	n/a	Y
1-5	Y	n/a	n/a	Not shared
1-6	Y	n/a	n/a	Y
1-7	Y	n/a	n/a	Y
1-8	Y	n/a	n/a	Not shared
2-1	n/a	Y	Y	n/a
2-2	n/a	N	Y	n/a
2-3	n/a	N	Y	n/a
2-4	n/a	Y	Y	n/a
2-5	n/a	Y	Y	n/a
2-6	n/a	Y	Y	n/a
2-7	n/a	Y	Y	n/a
2-8	n/a	N	Y	n/a

(b) Summary results

Sample	SV validated	Shared-SV recalled
	Individual	Total
Patient 1	8/8	16/16
Patient 2	8/8	11/14

Y=Yes, N=No, n/a=Not applicable.
Table S6: Runtime and maximum memory usage consumed by the workflows of each tool using 24 threads for the SV characterization in Patient 1. For 3GS tools, 12 Gb of sequencing data was used, while for 2GS tools, 160 Gb of sequencing data was used. Data was collected using GNU Time. Please note that each tool workflow is inclusive of the read mapping step using their recommended aligner.

Tool workflow*	CPU time (min)	Wall clock time (min)	Maximum resident set size (RAM in gigabytes)
NanoVar	1188	196	31.7
Picky	16910	1194	25.1
Sniffles	13187	561	18.9
SVIM	12795	558	18.9
NanoSV	32076	5278	21.5
Delly	28281	3374	33.2
novoBreak	57157	3519	45.0

*Comprise of sequence mapping and SV calling, using 24 threads

Table S7: GenBank accession number and name of viruses used for SV insertion simulation to mimic viral insertion events.

GenBank accession no.	Virus name	GenBank accession no.	Virus name
NC_012959.1	Human adenovirus 54	NC_034618.1	Human papillomavirus type 85 isolate 114B
NC_001460.1	Human adenovirus A	NC_004500.1	Human papillomavirus type 92
NC_011203.1	Human adenovirus B1	NC_005134.2	Human papillomavirus type 96
NC_011202.1	Human adenovirus B2	NC_001596.1	Human papillomavirus type 9
NC_001405.1	Human adenovirus C	NC_001401.2	Adeno-associated virus 2
NC_010956.1	Human adenovirus D	NC_001729.1	Adeno-associated virus 3
NC_003377.2	Hepatitis B virus (strain ayw)	NC_006152.1	Adeno-associated virus 5
NC_001806.2	Human herpesvirus 1 strain 17	NC_018102.1	MW polymavirus
NC_001708.2	Human herpesvirus 2 strain HG52	NC_020106.1	STL polymavirus strain MA138
NC_001348.1	Human herpesvirus 3	NC_020890.1	Human polymavirus 12 strain hu4103
NC_007005.1	Human herpesvirus 4	NC_024118.1	New Jersey polymavirus-2013 isolate NJ-PyV-2013
NC_006273.2	Human herpesvirus 5 strain Merlin	NC_001538.1	BK polymavirus
NC_001716.2	Human herpesvirus 7	NC_001699.1	JC polymavirus
NC_006333.1	Human herpesvirus 8	NC_009236.1	KI polymavirus Stockholm 60
NC_017944.1	Human papillomavirus type 136	NC_009539.1	WU Polymavirus
NC_017996.1	Human papillomavirus type 140	NC_010277.2	Merkel cell polymavirus isolate R17b
NC_021483.1	Human papillomavirus type 154 isolate PV77	NC_014406.1	Human polymavirus 6
NC_003378.1	Human papillomavirus type 156 isolate GC01	NC_014407.1	Human polymavirus 7
NC_001526.4	Human papillomavirus type 16	NC_014361.1	Trichodysplasia spinulosa-associated polymavirus
NC_023981.1	Human papillomavirus type 178	NC_015150.1	Human polymavirus 9
NC_022095.1	Human papillomavirus type 179	NC_001069.1	Simian virus 40
NC_001357.1	Human papillomavirus 18	NC_022518.1	Human endogenous retrovirus K113
NC_001356.1	Human papillomavirus 1	NC_001802.1	Human immunodeficiency virus 1
NC_027528.1	Human papillomavirus type 201 isolate HPV201	NC_001722.1	Human immunodeficiency virus 2
NC_001352.1	Human papillomavirus 2	NC_001436.1	Human T-lymphotropic virus 1
NC_001591.1	Human papillomavirus type 49	NC_001488.1	Human T-lymphotropic virus 2
NC_001531.1	Human papillomavirus type 5	NC_001364.1	Simian foamy virus
Table S8: Statistics of 3GS and 2GS reads and read mapping of real reads and simulated reads. All reads were mapped using Minimap2 aligner except for 2GS real reads which was aligned by BWA-MEM. Simulated reads were aligned to GRCh37 reference genome while real reads were aligned to GRCh38 reference genome. Statistics were calculated by SAMTools. The sequencing depth was estimated from the Lander/Waterman equation.

Sample	Number of reads	Read length (bp)	Total bases (x10^6)	Bases mapped (x10^6)	Percentage of bases mapped	Alignment error rate	Lengthwise genome coverage	Estimated sequencing depth
Simulation 1	2,080,000	6316	13,304	12,198	91.69%	1.72E-01	90.55%	3.95x
Simulation 2	2,080,000	6322	13,315	12,201	91.63%	1.72E-01	90.57%	3.95x
Simulation 3	2,080,000	6315	13,300	12,190	91.66%	1.72E-01	90.58%	3.95x
Patient 1	1,793,667	6271	12,434	11,308	90.94%	1.60E-01	91.19%	3.66x
Patient 2	1,939,432	6196	12,273	11,191	91.18%	1.84E-01	91.01%	3.62x

Table S9: Primers used for SV validation in Patient 1 and Patient 2 shown in Figure 3, and nested primers used for PCR product reamplification for Sanger sequencing (SV 2-4).