AN EXTENSION THEOREM OF HOLOMORPHIC FUNCTIONS
ON HYPERCONVEX DOMAINS

SEUNGJAE LEE AND YOSHIKAZU NAGATA

Abstract. Let \(n \geq 3 \) and \(\Omega \) be a bounded domain in \(\mathbb{C}^n \) with a smooth negative plurisubharmonic exhaustion function \(\varphi \). As a generalization of Y. Tiba’s result, we prove that any holomorphic function on a connected open neighborhood of the support of \((i\partial\bar{\partial}\varphi)^{n-2}\) in \(\Omega \) can be extended to the whole domain \(\Omega \). To prove it, we combine an \(L^2 \) version of Serre duality and Donnelly-Fefferman type estimates on \((n,n-1)\)- and \((n,n)\)-forms.

1. Introduction

In this article, we study a kind of the Hartogs extension theorem, which appears in Y. Tiba’s paper [9]. The Hartogs extension theorem states that any holomorphic function on \(\Omega \setminus K \), where \(\Omega \) is a domain in \(\mathbb{C}^n \), \(n > 1 \), \(K \) is a compact set in \(\Omega \) and \(\Omega \setminus K \) is connected, extends holomorphically on the whole domain \(\Omega \).

This phenomenon is different from the case of the function theory of one complex variable, and have become a starting point of the function theory of several complex variables. For the several complex variables, the notion of the (strict) pseudoconvexity for the boundary of a given domain have become crucial. Let \(\Omega \) be a smoothly bounded pseudoconvex domain. Denote by \(A(\Omega) \) the uniform algebra of functions that are holomorphic on \(\Omega \) and continuous on \(\overline{\Omega} \). The Shilov boundary of \(A(\Omega) \) is the smallest closed subset \(S(\Omega) \) in \(\partial \Omega \) on which the maximum value of \(|f|\) coincides with that on \(\overline{\Omega} \) for every function \(f \) in \(A(\Omega) \). In fact, the Shilov boundary of \(A(\Omega) \) is the closure of the set of strictly pseudoconvex boundary points of \(\Omega \) (see [1]). By [6], it is known that any holomorphic function \(f \) on \(\overline{\Omega} \) can be represented as \(f(x) = \int f(z) d\mu_x(z) \) where \(d\mu_x \) is a measure supported on the Shilov boundary \(S(\Omega) \).

Assume further that \(\Omega \) has a negative smooth plurisubharmonic function \(\varphi \) on \(\Omega \) such that \(\varphi \to 0 \) when \(z \to \partial \Omega \). Denote by \(\text{Supp}(i\partial\bar{\partial}\varphi)^k \) the support of \((i\partial\bar{\partial}\varphi)^k\). By [2], it can be shown that, for small \(\epsilon > 0 \), the Shilov boundary \(S(\Omega_\epsilon) \) of \(\Omega_\epsilon = \{ \varphi < -\epsilon \} \) is a subset of \(\text{Supp}(i\partial\bar{\partial}\varphi)^{n-1} \).

In this context, it is natural to ask whether any holomorphic function on the support of \((i\partial\bar{\partial}\varphi)^{n-1}\) can be extended to the whole domain \(\Omega \). With this motivation, Y. Tiba proved the following theorem in [9].

Theorem 1.1. Let \(\Omega \) be a bounded domain in \(\mathbb{C}^n \), \(n \geq 4 \). Suppose that \(\varphi \in C^\infty(\Omega) \) is a negative plurisubharmonic function which satisfies \(\varphi(z) \to 0 \) as \(z \to \partial \Omega \). Let \(V \) be an open connected neighborhood of \(\text{Supp}(i\partial\bar{\partial}\varphi)^{n-3} \) in \(\Omega \). Then any holomorphic function on \(V \) can be extended to \(\Omega \).

2010 Mathematics Subject Classification. Primary 32A10, 32D15, 32U10.

Key words and phrases. Hartogs extension theorem, Plurisubharmonic functions, Donnelly-Fefferman type estimate, Serre duality.
In [9], Y. Tiba proved Donnelly-Fefferman type estimates for \((0,1)\)- and \((0,2)\)-forms and used them for establishing suitable \(L^2\) estimates of \(\bar{\partial}\)-equations. In this process, the Donnelly-Fefferman type estimate of \((0,2)\)-form and an integrability condition contribute to appear the restriction of the power \(n-3\) in Theorem 1.1.

In this article, we use the Donnelly-Fefferman type estimates for \((n,n)\)- and \((n,n-1)\)-forms rather than \((0,1)\)- and \((0,2)\)-forms. In this case, the restriction of \(n-3\) is changed by \(n-2\), and it improves Theorem 1.1. Finally, using dualities between \(L^2\)-Dolbeault cohomologies, in the same way as [7, 8], we can simplify Y. Tiba’s proof and obtain the generalized result:

Theorem 1.2. Let \(\Omega\) be a bounded domain in \(\mathbb{C}^n\), \(n \geq 3\). Suppose that \(\varphi \in C^\infty(\Omega)\) is a negative plurisubharmonic function which satisfies \(\varphi(z) \to 0\) as \(z \to \partial\Omega\). Let \(V\) be an open connected neighborhood of \(\text{Supp}(i\bar{\partial}\varphi)^{n-2}\) in \(\Omega\). Then any holomorphic function on \(V\) can be extended to \(\Omega\).

If the boundary is smooth, then Lemma 4.3 and the proof of Theorem 1.2 show the following.

Corollary 1.3. Let \(\Omega\) be a smoothly bounded domain in \(\mathbb{C}^n\), \(n \geq 3\), with a smooth plurisubharmonic defining function \(\varphi\) on a neighborhood of \(\overline{\Omega}\). Let \(S\) be the closure of the subset \(\{z \in \partial\Omega : \text{the Levi form of } \varphi \text{ at } z \text{ is of rank at least } n-2\}\) in \(\partial\Omega\). Then for any connected open neighborhood \(V\) of \(S\) in \(\overline{\Omega}\), any holomorphic function on \(V \cap \Omega\) can be extended to \(\Omega\).

By using a convergence sequence of smooth plurisubharmonic functions to \(\varphi\), we also obtain the following corollary which is the improvement of Corollary 1 of [9].

Corollary 1.4. Let \(\Omega\) be a bounded domain in \(\mathbb{C}^n\), \(n \geq 3\). Suppose that \(\varphi \in C^0(\Omega)\) is a negative plurisubharmonic function which satisfies \(\varphi(z) \to 0\) as \(z \to \partial\Omega\). Let \(V\) be an open connected neighborhood of \(\text{Supp}(i\bar{\partial}\varphi)\) in \(\Omega\). Then any holomorphic function on \(V\) can be extended to \(\Omega\).

2. Preliminaries

In this section, we review \(L^2\) estimates of \(\bar{\partial}\)-operators and introduce some notations which are used in this paper. Let \(\Omega \subset \mathbb{C}^n\) be a domain, and let \(\omega\) be a Kähler metric on \(\Omega\). We denote by \(|\cdot|_\omega\) the norm of \((p,q)\)-forms induced by \(\omega\) and by \(dV_\omega\) the associated volume form of \(\omega\). Then, we denote by \(L^2_{p,q}(\Omega, e^{-\varphi}, \omega)\) the Hilbert space of measurable \((p,q)\)-forms \(u\) which satisfy

\[
||u||^2_{L^2_{p,q}(\Omega, e^{-\varphi}, \omega)} = \int_\Omega |u|^2 e^{-\varphi} dV_\omega < \infty.
\]

Let \(\bar{\partial} : L^2_{p,q}(\Omega, e^{-\varphi}, \omega) \to L^2_{p,q+1}(\Omega, e^{-\varphi}, \omega)\) be the closed densely defined linear operator, and \(\bar{\partial}^*_\varphi\) be the Hilbert space adjoint of the \(\bar{\partial}\)-operator. We denote the \(L^2\)-Dolbeault cohomology group as \(H^2_{p,q}(\Omega, e^{-\varphi}, \omega)\) and the space of Harmonic forms as

\[
H^2_{p,q}(\Omega, e^{-\varphi}, \omega) = L^2_{p,q}(\Omega, e^{-\varphi}, \omega) \cap \text{Ker} \bar{\partial} \cap \text{Ker} \bar{\partial}^*_\varphi.
\]

It is known that, if the image of the \(\bar{\partial}\)-operator is closed, then these two spaces are isomorphic:

\[
H^2_{p,q}(\Omega, e^{-\varphi}, \omega) \cong H^2_{p,q}(\Omega, e^{-\varphi}, \omega).
\]
Thus, we have

\[|[i\partial\bar{\partial}\varphi, A_u]u, u|_\omega \geq (\lambda_1 + \cdots + \lambda_q - \lambda_{p+1} \cdots - \lambda_n) |u, u|_\omega \]

for any smooth \((p, q)\)-form. Here, \(A_u\) is the adjoint of left multiplication by \(\omega\).

Suppose that \(A_{\omega, \varphi} = [i\partial\bar{\partial}\varphi, A_u]\) is positive definite and \(\varphi\) is a Kähler metric. By [3], if \(\Omega\) is a pseudoconvex domain, then for any \(\partial\bar{\partial}\)-closed form \(f \in L^2_{p,q}(\Omega, e^{-\varphi}, \omega)\), there exists a \(u \in L^2_{n,q-1}(\Omega, e^{-\varphi}, \omega)\) such that \(\bar{\partial}u = f\) and

\[
\int_\Omega |u|^2 e^{-\varphi} dV_\omega \leq \int_\Omega (A^{-1}_{\omega, \varphi} f, f) e^{-\varphi} dV_\omega.
\]

3. Donnelly-Fefferman type estimates for \((n, q)\)-forms

Let \(\Omega \subset \mathbb{C}^n\) be a bounded domain with a negative plurisubharmonic function \(\varphi \in C^\infty(\Omega)\) such that \(\varphi \to 0\) as \(z \to \partial\Omega\). Consider a smooth strictly plurisubharmonic function \(\psi\) on \(\overline{\Omega}\). Since \(\phi = -\log(-\varphi)\) is a plurisubharmonic exhaustion function on \(\Omega\) and \(|\partial\phi|^2 \leq 1, \omega = i\partial\bar{\partial}(\frac{1}{2\pi} \psi + \phi)\) is a complete Kähler metric on \(\Omega\). Let \(A_{\omega, \delta}\) be \([i\partial\bar{\partial}(\psi + \delta\phi), A_u]\) with \(\delta' > 0\).

Lemma 3.1. Suppose that \(0 < \delta < q, 1 \leq q \leq n\). Then for any \(\partial\bar{\partial}\)-closed form \(f \in L^2_{n,q}(\Omega, e^{-\psi+(\delta-\delta')\phi}, \omega)\), there exists a solution \(u \in L^2_{n,q-1}(\Omega, e^{-\psi+(\delta-\delta')\phi}, \omega)\) such that \(\bar{\partial}u = f\) and

\[
\int_\Omega |u|^2 e^{-\psi+(\delta-\delta')\phi} dV_\omega \leq C_{q, \delta} \int_\Omega (A^{-1}_{\omega, \delta', \delta} f, f) e^{-\psi+(\delta-\delta')\phi} dV_\omega
\]

where \(C_{q, \delta}\) is a constant which depends on \(q, \delta\).

By Lemma 3.1, the \(L^2\)-Dolbeault cohomology group \(H^2_{n,q}(\Omega, e^{-\psi+(\delta-\delta')\phi}, \omega)\) vanishes.

Corollary 3.2. Under the same condition as Lemma 3.1, \(H^2_{n,q}(\Omega, e^{-\psi+(\delta-\delta')\phi}, \omega) = \{0\}\).

To prove Lemma 3.1, we use the idea of Berndtsson’s proof of the Donnelly-Fefferman type estimate in [3].

Proof. Since \(\Omega\) can be exhausted by pseudoconvex domains \(\Omega_k \subset \subset \Omega\), for any \(\partial\bar{\partial}\)-closed form \(f \in L^2_{n,q}(\Omega, e^{-\psi-(\delta+\delta')\phi}, \omega)\), there exists the minimal solution \(u_k \in L^2_{n,q-1}(\Omega_k, e^{-\psi-(\delta+\delta')\phi}, \omega)\) of \(\bar{\partial}u_k = f\) such that

\[
\int_{\Omega_k} |u_k|^2 e^{-\psi-\delta\phi} dV_\omega \leq \int_{\Omega_k} (A^{-1}_{\omega, \delta', \delta} f, f) e^{-\psi-\delta\phi} dV_\omega.
\]

We consider \(u_k e^{\delta\phi}\). Since \(\phi\) is bounded on \(\Omega_k\), \(u_k e^{\delta\phi} \in L^2_{n,q-1}(\Omega_k, e^{-\psi-(\delta+\delta')\phi}, \omega)\) and it is orthogonal to \(N_{n,q-1}\) where \(N_{n,q-1}\) is the kernel of

\[
\bar{\partial} : L^2_{n,q-1}(\Omega_k, e^{-\psi-(\delta+\delta')\phi}, \omega) \to L^2_{n,q}(\Omega_k, e^{-\psi-(\delta+\delta')\phi}, \omega).
\]

By \(|\partial\phi|^2 \leq 1\), we have \((f + \delta u_k \wedge \bar{\partial}\phi) e^{\delta\phi} \in L^2_{n,q}(\Omega_k, e^{-\psi-(\delta+\delta')\phi}, \omega)\). Therefore, \(u_k e^{\delta\phi}\) is the minimal solution of

\[
\bar{\partial}(u_k e^{\delta\phi}) = (f + \delta u_k \wedge \bar{\partial}\phi) e^{\delta\phi} \in L^2_{n,q}(\Omega_k, e^{-\psi-(\delta+\delta')\phi}, \omega).
\]

Thus, we have

\[
\int_{\Omega_k} |u_k|^2 e^{-\psi+(\delta-\delta')\phi} dV_\omega \leq \int_{\Omega_k} (A^{-1}_{\omega, \delta', \delta} (f + \delta u_k \wedge \bar{\partial}\phi), f + \delta u_k \wedge \bar{\partial}\phi) e^{-\psi+(\delta-\delta')\phi} dV_\omega.
\]
Let \(\phi\) be a plurisubharmonic defining function. By the Cauchy-Schwarz inequality, for any \(t > 0\),
\[
\int_{\Omega_k} \langle A_{-1}^{\omega, \delta + \delta'} (f + \delta u_k \wedge \partial \phi), f + \delta u_k \wedge \partial \phi \rangle \omega e^{-\psi + (\delta - \delta') \phi} dV_\omega \\
\leq \left(1 + \frac{1}{t}\right) \int_{\Omega_k} \langle A_{-1}^{\omega, \delta + \delta'} f, f \rangle \omega e^{-\psi + (\delta - \delta') \phi} dV_\omega \\
+ (1 + t) \delta^2 \int_{\Omega_k} \langle A_{-1}^{\omega, \delta + \delta'} (u_k \wedge \partial \phi), u_k \wedge \partial \phi \rangle \omega e^{-\psi + (\delta - \delta') \phi} dV_\omega.
\]
Since \(\omega = i \partial \overline{\partial}(\frac{1}{t} \psi + \phi)\) and \(\delta < 2n\), we have \(i \partial \overline{\partial}(\psi + (\delta' + \delta) \phi) \geq \delta i \partial \overline{\partial}(\frac{1}{t} \psi + \phi)\). Hence, \(\langle A_{\omega, \delta + \delta'}, f, f \rangle \omega \geq q \delta^2 f^2 \omega\) if \(f\) is an \((n, q)\)-form. If we take \(t\) sufficiently close to 0, then \(C_{q, \delta} := (1 + \frac{t}{q})/(1 - (1 + t)^{\frac{1}{q}})\) is positive since \(\delta < q\). Note that \(C_{q, \delta}\) does not depend on \(k\). For such a \(t\), we have
\[
\int_{\Omega_k} |u_k|^2 e^{-\psi + (\delta - \delta') \phi} dV_\omega \leq C_{q, \delta} \int_{\Omega} \langle A_{-1}^{\omega, \delta + \delta'} f, f \rangle \omega e^{-\psi + (\delta - \delta') \phi} dV_\omega.
\]
Note that \(L^2(\Omega, e^{-\psi + (\delta - \delta') \phi})\) is a subset of \(L^2(\Omega, e^{-\psi - \delta' \phi})\). Hence, for any \(\overline{\partial}\)-closed form \(f \in L^2(\Omega, e^{-\psi + (\delta - \delta') \phi})\), the right-hand side of (3.2) is finite. Since \(\{\Omega_k\}\) is an exhaustion of \(\Omega\) and \(u_k\) is uniformly bounded by (3.2), we obtain a weak limit \(u \in L^2_{\text{loc}}(\Omega, e^{-\psi + (\delta - \delta') \phi})\) of \(u_k\), and it satisfies \(\overline{\partial} u = f\) and, for each compact set \(K\) in \(\Omega\),
\[
\int_K |u|^2 e^{-\psi + (\delta - \delta') \phi} dV_\omega \leq C_{q, \delta} \int_{\Omega} \langle A_{-1}^{\omega, \delta + \delta'} f, f \rangle \omega e^{-\psi + (\delta - \delta') \phi} dV_\omega.
\]
Using the monotone convergence theorem for \(K\), we obtain the desired result. \(\square\)

4. PROOF OF THE MAIN THEOREM 1.2

The key proposition of this section is the following:

Proposition 4.1. Under the same condition as Theorem 1.2, if \(1 \leq q < n\), \(\delta' > 0\), and \(0 < \delta < n - q\) then \(H^2_{\omega, q}(\Omega, e^{\psi - (\delta - \delta') \phi}) = \{0\}\).

Proof. Corollary 3.2 implies that two cohomologies \(H^2_{n, n-q}(\Omega, e^{-\psi + (\delta - \delta') \phi})\) and \(H^2_{n, n-q+1}(\Omega, e^{-\psi + (\delta - \delta') \phi})\) are \(\{0\}\). Therefore, the Serre duality in [3] implies that
\[
\overline{\partial} : L^2_{0, q-1}(\Omega, e^{\psi - (\delta - \delta') \phi}) \rightarrow L^2_{0, q}(\Omega, e^{\psi - (\delta - \delta') \phi})
\]
has a closed range and
\[
H^2_{n, n-q}(\Omega, e^{-\psi + (\delta - \delta') \phi}) \cong H^2_{0, q}(\Omega, e^{\psi - (\delta - \delta') \phi}) = \{0\}
\]
since \(\omega\) is a complete Kähler metric on \(\Omega\). Hence, \(H^2_{0, q}(\Omega, e^{\psi - (\delta - \delta') \phi}) = \{0\}\). \(\square\)

For the convenience of readers, we repeat Lemma 5 in [2].

Lemma 4.2. Let \(\Omega\) be a smoothly bounded pseudoconvex domain in \(\mathbb{C}^n\) with a plurisubharmonic defining function \(\varphi \in C^\infty(\Omega)\), i.e., \(\Omega = \{\varphi < 0\}\) and \(d\varphi(z) \neq 0\) on \(\partial \Omega\). Let \(p \in \partial \Omega\) and let \(1 \leq k \leq n\) be an integer. Assume that \((i \partial \overline{\partial} \varphi)^k = 0\) in a neighborhood of \(p\). If \(\delta > k\), then \(\exp(\psi - \delta \varphi) dV_\omega\) is integrable around \(p\). Here, \(\varphi = \log(-\varphi)\) and \(\omega = i \partial \overline{\partial}(\frac{1}{\delta} \psi + \varphi)\).

The following lemma is a variant of Lemma 5 in [2]. It is used to prove Corollary 1.3.
Lemma 4.3. Let Ω be a smoothly bounded pseudoconvex domain in \mathbb{C}^n with a smooth plurisubharmonic defining function φ. Let $p \in \partial \Omega$ and let $1 \leq k \leq n-1$ be an integer. Assume that

\[(i\partial \bar{\partial} \varphi)^k \wedge \partial \varphi \wedge \bar{\partial} \varphi = 0\]

in a neighborhood of p in $\partial \Omega$, i.e. the Levi form of φ is of rank less than k. If $\delta > k$, then $\exp(-\delta \varphi) dV_\omega$ is integrable around p in Ω. Here, $\phi = -\log(-\varphi)$ and $\omega = i\partial \bar{\partial}(1/2n\psi + \phi)$.

Proof. Denote by $\bar{\nu}$ the unit outward normal vector at p. For a point $q \in \partial \Omega$ near p, (4.3) implies that the Levi form of φ at q has at least $n-k$ zero eigenvalues. Now consider a holomorphic coordinate system (z_1, \ldots, z_n) such that $i\partial \bar{\partial} \varphi = \sum_{ij} a_{ij} dz_i \wedge d\bar{z}_j$ and $i\partial \bar{\partial} \varphi|_q = \sum_i a_i(q) dz_i \wedge d\bar{z}_i$, where a_{ij} is a smooth function on Ω and $a_i(q) = 0$ when $1 \leq i \leq n-k$.

By smoothness of a_{ij}, it follows that $a_{ij}(q - t\bar{\nu}) = O(t)$ for $i \neq j$ and $1 \leq i = j \leq n-k$. Hence,

\[(i\partial \bar{\partial} \varphi)^{k+1} \wedge \partial \varphi \wedge \bar{\partial} \varphi \wedge (i\partial \bar{\partial} \varphi|_q)^n = O(t^{k+1})(i\partial \bar{\partial} \varphi|_q)^n\]

and

\[(i\partial \bar{\partial} \varphi)^{k+1} \wedge (i\partial \varphi|_q)^n - k - l = O(t^l)(i\partial \bar{\partial} \varphi|_q)^n\]

on the real half line $q - t\bar{\nu}$, $t > 0$. Since

\[
\exp(-\delta \varphi) \omega^n \approx (-\varphi)\delta \left(\frac{(i\partial \bar{\partial} \varphi|_q)^n \wedge \partial \varphi \wedge \bar{\partial} \varphi}{(-\varphi)^{n+1}} + \frac{(i\partial \bar{\partial} \varphi|_q)^n}{(-\varphi)^n} \right),
\]

$\exp(-\delta \varphi) dV_\omega$ is integrable near p by the Fubini theorem. \qed

We also need the following lemma. It is similar to the Lemma 5.1 of [7].

Lemma 4.4. Let Ω be a smoothly bounded domain in \mathbb{C}^n with defining function $\varphi \in C^\infty(\Omega)$. Let U be an open set in \mathbb{C}^n such that $\partial \Omega \cap U \neq \emptyset$ and $\Omega \cap U$ is connected. If u is a holomorphic function on $\Omega \cap U$ such that

\[(4.2) \quad \int_{\Omega \cap U} |u|^2(\varphi)^\alpha dV < \infty\]

for some $\alpha \leq -1$, then $u = 0$ on $\Omega \cap U$.

Proof. Take a point $p \in \partial \Omega \cap U$. Consider a holomorphic coordinate such that $p = 0$ and the unit outward normal vector ν to $\partial \Omega$ at p is $(0, \ldots, 0, 1)$. Take an open ball $B(p, r)$ which is centered at p with sufficiently small radius $r > 0$ such that $B(p, r) \subset U$.

Denote by Z_q the complex line $\{q + \lambda \bar{\nu}: \lambda \in \mathbb{C}\}$ for each $q \in \partial \Omega \cap B(p, r)$. By the Fubini theorem and (4.2),

\[
\int_{q \in E} \left(\int_{Z_q \cap \Omega \cap B(p, r)} |u|^2(-\varphi)^\alpha d\lambda \right) d\sigma \leq \int_{\Omega \cap B(p, r)} |u|^2(-\varphi)^\alpha dV,
\]

where $E \subset \partial \Omega \cap B(p, r)$ is a local parameter space for Z_q of finite measure. Note that E can be chosen as $(2n-2)$-dimensional smooth surface in $\partial \Omega$ and any fiber $(p + \mathbb{C}\bar{\nu}) \cap \partial \Omega$ for $p \in E$ is transversal to E. Then, we have

\[(4.3) \quad \int_{Z_q \cap \Omega \cap B(p, r)} |u|^2(-\varphi)^\alpha d\lambda < \infty\]
for $q \in E$ almost everywhere. Since $Z_q' = Z_q$ if $q' \in Z_q \cap \partial \Omega$, there exists an connected open set V in $\partial \Omega$ such that (4.4) holds for $q \in \partial \Omega \cap V$ almost everywhere. For such q, since $\alpha \leq -1$ and u is holomorphic on $\Omega \cap \Omega$, by Lemma 5.1 of [7], $u = 0$ on $Z_q \cap \Omega \cap B(p, r)$. Therefore, $u = 0$ on $\Omega \cap U$.

Proof of the Theorem 1.2. First, we assume that $\partial \Omega$ is smooth, φ is smooth plurisubharmonic on Ω, $d \varphi \neq 0$ on $\partial \Omega$ and the distance between $\partial V \cap \Omega$ and Supp($i \partial \partial \varphi$)$^{n-2}$ is positive. Take a neighborhood W of Supp($i \partial \partial \varphi$)$^{n-2}$ such that W is contained in V, the distance between $\partial W \cap \Omega$ and Supp($i \partial \partial \varphi$)$^{n-2}$ is positive, and $\partial V \cap \partial W \cap \Omega = \emptyset$. Consider a real-valued smooth function χ on Ω which is equal to one on Supp($i \partial \partial \varphi$)$^{n-2}$ and equal to zero on $\Omega - W$.

Choose $0 < \delta < n - 1$ and $\delta' > 0$ so that $n - 2 < \delta - \delta' < n - 1$. By Lemma 1.7, $\partial \chi(f) \in L^{2,1}_2(\Omega, e^{\psi - (\delta - \delta')\varphi}, \omega)$. Applying Proposition 4.1, we can find a function $u \in L^2(\Omega, e^{\psi - (\delta - \delta')\varphi}, \omega)$ such that $\partial u = \partial \chi(f)$.

Take a strictly pseudoconvex point $p \in \partial \Omega$ and a connected open set U such that $p \in U \cap \partial \Omega \subset \Omega \cap \text{Supp}(i \partial \partial \varphi)^{n-1}$. Since $\omega = i(\partial \bar{\partial} \psi + \frac{\partial \bar{\partial} \varphi}{\varphi} + \frac{\partial \varphi \wedge \bar{\partial} \varphi}{\psi^2})$, we have

$$\int_{\Omega \cap U} |u|^2 e^{\psi - (\delta - \delta')\varphi} (\varphi)^{(n+1)} dV \lesssim \int_{\Omega} |u|^2 e^{\psi - (\delta - \delta')\varphi} dV < \infty.$$

Since $\partial u = 0$ on $\Omega \cap U$, by Lemma 4.4 $u = 0$ on $\Omega \cap U$. Therefore, the holomorphic function $\chi f - u$ on Ω coincides with f on V by the uniqueness of analytic continuation.

To prove the general case, we consider the subdomain $\Omega_\epsilon = \{ \varphi < -\epsilon \}$ of Ω with smooth boundary, where $\epsilon > 0$. If ϵ is sufficiently small, f has the holomorphic extension for each Ω_ϵ by the previous argument. Due to analytic continuation, we have the desired holomorphic extension of f on Ω.

Acknowledgments

The first named author wishes to express gratitude to professor Kang-Tae Kim for his guidance. He is also grateful to professor Masanori Adachi for a discussion on this program. We are thankful to professor Yusaku Tiba and professor Masanori Adachi for comments to a manuscript of this article. The work is a part of the first named author’s Ph.D. thesis at Pohang University of Science and Technology.

References

1. R. F. Basener, Peak points, barries and pseudoconvex boundary points, Proc. Amer. Math. Soc. 65 (1977), no. 1, 89–92.
2. E. Bedford, M. Kalka, Foliations and Complex Monge-Ampère equations, Comm. Pure Appl. Math. 30 (1977), no. 5, 543–571.
3. B. Berndtsson and P. Charpentier, A Sobolev mapping property of the Bergman kernel, Math. Z. 235 (2000), no. 1, 1–10.
4. D. Chakrabarti, M-C. Shaw, L^2 Serre duality on domains in complex manifolds and applications, Trans. Amer. Math. Soc. 364 (2012), no. 7, 3529–3554.
5. J. P. Demailly, Complex analytic and algebraic geometry, Available at https://www-fourier.ujf-grenoble.fr/~demailly/books.html.
6. J. Duval and N. Sibony, Polynomial convexity, rational convexity, and Currents, Duke Math. J. 79 (1995), no. 2, 487–513.
7. T. Ohsawa, L^2 approaches in several complex variables. Development of Oka-Cartan theory by L^2 estimates for the $\bar{\partial}$ operator, Springer Monographs in Mathematics, Springer Tokyo, 2015.
8. ______, Hartogs type extension theorems on some domains in Kähler manifolds, Ann. Polon. Math. 106 (2012), no. 1, 243–254.
9. Y. Tiba, The extension of holomorphic functions on a non-pluriharmonic locus, arXiv.org: 1706.01441v2.

Department of Mathematics, Pohang University of Science and Technology, Pohang, 790-784, Republic of Korea
E-mail address: seungjae@postech.ac.kr

Graduate School of Mathematics, Nagoya University, Furocho, Chikusaku, Nagoya, 464-8602, Japan
E-mail address: m10035y@math.nagoya-u.ac.jp