JETS IN DEEP-INELASTIC SCATTERING AT HERA AND DETERMINATIONS OF α_s*

R. PÖSCHL

DESY Hamburg
Notkestr. 85,
22607 Hamburg, Germany
E-mail: poeschl@mail.desy.de

Several methods to extract the strong coupling constant α_s by means of highly energetic jets in Deep-Inelastic Scattering are presented. The results from the various methods agree with one another and with the world average. The errors are competitive to those achieved in α_s determinations in other processes such as proton-anti-proton scattering.

1. Introduction

Measurements of the hadronic final state in deeply inelastic ep scattering (DIS) provide precision tests of quantum chromodynamics (QCD). At HERA data are collected over a wide range of the negative four-momentum-transfer Q^2, and the transverse energy E_T of hadronic final state jets. As sketched in Eq. 1 the jet cross section can be expressed as a power series of α_s combined with a convolution of the hard matrix element, $\hat{\sigma}_{jet}$, and appropriate parton distribution functions of the proton.

$$\sigma_{jet} = \sum \alpha_s^n(\mu_r) \sum \hat{\sigma}_{jet}(\mu_r, \mu_f) \otimes \text{pdf}(\mu_f, ...),$$

(1)

with μ_r and μ_f being mass scales.

Fig. 1 shows diagrams of the leading order, here $O(\alpha_s)$, processes for dijet-production in DIS.

The accurate measurement of jet production, hence, allows for a precise determination of α_s.

*Talk given on behalf of the H1 and ZEUS collaborations at the Lake Louise Winter Institute 15-21 Feb. 2004, Lake Louise, Canada
Figure 1. Leading order diagrams for dijet production in ep scattering. (a) photon-gluon fusion and (b) QCD-Compton process.

Figure 2. Single inclusive jet cross section as a function of Q^2 (left) and $E_{T,jet}$ (right) compared with NLO QCD predictions.

2. Single Inclusive Jet Cross Section

For this analysis it is required to identify at least one jet above a given transverse energy. Fig. 2 shows the measured single inclusive jet cross section as a function of Q^2 and the transverse energy of the jet as measured in the Breit-Frame compared with NLO-QCD calculations.\(^1\)

The data have a typical experimental uncertainty of 7% and are well reproduced by the theoretical predictions at large values of E_T and Q^2. The NLO-QCD calculations, currently only available at the parton level, are corrected for hadronisation effects using LO models. These corrections are expected to be small at large E_T and Q^2.\(^1\)
2.1. Determination of α_s

The dependency of a generic jet cross section on $\alpha_s(M_Z)$ is parameterized in the corresponding analysis bins with the help of suitable NLO-QCD predictions featuring slightly different values of $\alpha_s(M_Z)$. By comparison of the parameterized cross section with the measured cross section the values for α_s are obtained. The resulting $\alpha_s(M_Z)$ from e.g. the single inclusive jet cross section for $Q^2 > 500$ GeV is found in the ZEUS analysis to be

$$\alpha_s(M_Z) = 0.1212 \pm 0.0017 \text{(stat.)}^{+0.0023}_{-0.0031} \text{(exp.)}^{+0.0030}_{-0.0027} \text{(theor.)}.$$

The experimental error (exp.) is dominated by the uncertainty on the energy scale for the jet measurement. The largest contribution to the theoretical uncertainty (theor.) is given by a residual dependency on the renormalization scale μ_r which corresponds to uncertainties due to the contributions of terms beyond next-to-leading order.

In Figure 3 the result is displayed as a function of a mass scale μ together with other values of α_s extracted from DIS-jet data.

The expected running of α_s as a function of μ is clearly visible. In addition the figure demonstrates the compatibility of the resulting α_s values with those obtained in global fits.
3. Jet Substructure and Determination of α_s

Jets appear as a collimated spray of particles which are combined to by dedicated algorithms. These particles are the end point of a cascade of successive particle emissions from the hard interaction to the hadronic final state.

The development of the cascade is governed by the strong coupling constant α_s. An attempt is made to resolve subjets using dedicated algorithms within the identified jets. The amount of subjets is expected to depend on α_s. Fig. 4 shows the number of subjets as a function of the jet-E_T measured in the laboratory frame. The number of subjets decreases as the transverse energy of the jet increases. The transverse energy of the jet sets the scale for α_s. Thus, the probability to radiate partons is small at large transverse energies. The data are well described by NLO-QCD calculations employing different parton pdfs featuring slightly different values of $\alpha_s(M_Z)$. For E_T larger than 30 GeV the hadronization corrections become small allowing for a QCD analysis to determine α_s from subjet multiplicites. The resulting value is found by ZEUS to be

$$\alpha_s(M_Z) = 0.1187 \pm 0.0017^{+0.0024}_{-0.0009}\text{(stat.)} +0.0093_{-0.0076}\text{(exp.).}$$

4. 3-jet Cross Sections

3-jet cross sections are well suited for an extraction of α_s because the lowest order contribution to this event class is proportional to α_s^2. The sensitivity to uncertainties due to proton pdf’s can be reduced by building the ratio $R_{3/2}$, i.e. the ratio of 3-jet to dijet cross sections. A measurement of this observable is shown in Fig. 5. While a minor sensitivity to variations of the pdf’s is observed the ratio is very sensitive to small variations of α_s which underlines the potential of this observable for future determinations of α_s.
5. Conclusion and Outlook

The analysis of jet events in DIS allows for precise measurements of the strong coupling constant α_s. A compilation of results is given in Fig. 6. They have a major impact on the current world average value of α_s. Ongoing analysis of HERA I 6 data as well as new data expected from HERA II open the possibility for α_s determinations including 3-jet cross sections.

Figure 6. $\alpha_s(M_Z)$ values obtained in DIS together with results from pp-collisions and the world average.

References

1. S. Chekanov et al. [ZEUS Collaboration], Phys. Lett. B \textbf{547} (2002) 164.
2. J. Breitweg et al. [ZEUS Collaboration], Phys. Lett. B \textbf{507} (2001) 70. C. Adloff et al. [H1 Collaboration], Eur. Phys. J. C \textbf{19} (2001) 289. S. Chekanov et al. [ZEUS Collaboration], Phys. Lett. B \textbf{570} (2003) 7.
3. S. Bethke, Nucl.Phys.Proc.Suppl. \textbf{121} (2003) 74.
4. S. Chekanov et al. [ZEUS Collaboration], Phys. Lett. B \textbf{558} (2003) 41.
5. C. Adloff et al. [H1 Collaboration], Phys. Lett. B \textbf{515} (2001) 17.
6. ZEUS Collaboration, Contr. Paper No. 504 to EPS03.