Model Predictive Vehicle Yaw Stability Control via Integrated Active Front Wheel Steering and Individual Braking

Mümin Tolga EMİRLER, Bilin AKSUN GÜVENÇ
MEKAR Mechatronics Research Lab, Mechanical Engineering Department, İstanbul Technical University, Gümüşsuyu, Taksim TR 34437 İstanbul, Turkey

Abstract

Vehicle stability control systems are important components of active safety systems for road transport. The problem of vehicle lateral stability control is addressed in this paper using active front wheel steering and individual braking. Vehicle lateral stability control means keeping the vehicle yaw rate and the vehicle side slip angle in desired values. For this reason, a model-based controller is designed. The desired yaw rate is obtained from the single track vehicle model and the desired side slip angle is chosen as zero. Controller design consists of two parts, lower and upper controller parts. Upper controller is designed based on Model Predictive Control (MPC) method. This upper controller changes front wheel steering angles utilizing steer-by-wire system and also it generates the required control moment for stabilizing the yaw motion of the vehicle. Lower controller is an individual braking algorithm. It determines the individual braking wheel. In this way, the control moment can be applied to the vehicle. The designed controller is tested using the nonlinear single track vehicle model and the higher fidelity CarMaker vehicle model.

Keywords: Vehicle lateral stability control, Model Predictive Control, Active front wheel steering, Steer-by-wire steering, Individual wheel braking
1. Introduction

Unexpected yaw disturbances caused by unsymmetrical vehicle perturbations like side wind forces, unilateral loss of tire pressure or braking on unilaterally icy road may result in dangerous lateral motions of a vehicle. Safe driving requires the driver to react extremely quickly in such dangerous situations. This is not possible as the driver who can be modeled as a high-gain control system with dead time overreacts, resulting in instability. Consequently, improvement of vehicle lateral dynamics by active vehicle control to avoid such catastrophic situations has been and is continuing to be a subject of active research [1, 2].

From literature, research papers may be categorized by three parts. These parts; only vehicle yaw rate control, only vehicle side slip angle control and integrated vehicle yaw rate and side slip angle control [3]. Besides, vehicle lateral dynamics control may be classified actuation type (steering or braking actuation) like active front steering control (AFS), active rear steering control (ARE), four wheel steering control (4WS), individual braking, active differential control.

Firstly, let’s examine only vehicle yaw rate control papers. In [4-7], Ackermann et al. designed robust controllers for vehicle yaw rate control using only front wheel steering, only rear wheel steering or both of them. In these papers, the steering task of the driver separated two parts; path following and disturbance attenuation. These tasks separated using decoupling law and disturbance attenuation realized utilizing automatic control system.

Aksun Güvenç et al. used 2 DOF model regulator based control approach to solve vehicle yaw rate control problem and they found successful results in [2, 8]. They used active front wheel steering. Using this approach, controller was designed robustly to modeling errors and disturbance (unexpected yaw moment) rejection was realized. Designed controller was tested in hardware-in-the-loop simulations and experimental studies [9, 10]. Also, they tried to
combine active front wheel steering and individual braking actuation together in their controller design [11-13].

Canale et al. designed vehicle yaw rate controller using internal model control approach, they used active rear differential actuation in their design [14, 15]. Moreover, they tried sliding mode control to solve vehicle yaw rate control problem [16]. Drakunov et al, also used sliding mode control and they realized their controllers using individual wheel braking [17].

Zheng et al used active front wheel steering and they developed a control algorithm following Ackermann’s footsteps. They used a decoupling law similar to Ackermann’s. They tested their design in experimental tests [18].

Only vehicle side slip angle control is generally realized with feedforward in literature [3].

Combined vehicle yaw rate and side slip angle control is the third and the last group of the literature research. Nagai et al, tried to control both (yaw rate and side slip angle) using active rear wheel steering and direct yaw moment control. They used state feedback control to control this MIMO system. They mentioned that state feedback gain could be found using control methods such as LQR, LQG and H infinity control [19, 20].

Yang et al, used integrated vehicle yaw rate and side slip control to solve the vehicle lateral control problem and they utilized active front steering and direct yaw moment control. When determining reference vehicle yaw rate and side slip angle, they used first order transfer functions. In this research, controller is designed as two parts: upper and lower controllers. Upper controller is a kind of optimal control named optimal guaranteed controller and lower controller is brake pressure distribution algorithm [21].
Falcone et al, propose a path following MPC based controller utilizing steering and braking. The control aim is to track a desired path for obstacle avoidance maneuver. The controller contains two parts: MPC based main controller and braking logic [22].

In this paper, we design an integrated controller different from literature using active steer-by-wire front wheel steering and individual wheel braking actuation. The controller separated two parts: MPC based upper controller and individual wheel braking based lower controller. The main contribution of this paper is (i) applying vehicle control using velocity scheduled MPC based control, (ii) realizing this control action utilizing steer-by-wire steering system and individual wheel braking, and (iii) testing designed controller in wide range of vehicle parameter (velocity, tire-road coefficient) and vehicle input (steering wheel angle) variations in high DOF simulation environment.

The organization of this paper is as follows. The vehicle models; single track vehicle model and CarMaker vehicle model, are introduced in Section II. The control strategy used in this paper is given in Section III. The controller design (MPC based upper controller and individual wheel braking based lower controller) is presented in Section IV. Section V is reserved for simulation studies, in this Section, are given along with nonlinear vehicle model and high fidelity CarMaker vehicle model simulation results are given. The paper ends with conclusions in Section VI.

2. Vehicle models

This section describes the vehicle models used for controller design and simulations. The two vehicle models used in this paper are the single track vehicle model and the higher fidelity CarMaker vehicle model.
The single track vehicle model is the simplest vehicle model that accurately captures lateral dynamics up to 0.3 – 0.4 g of lateral acceleration. In the single track vehicle model two tires on the same axle are lumped together and this results in one front and one rear tire set. Figure 1 shows the illustration and basic parameters of the single track vehicle model. The numerical values of vehicle parameters can be seen from Table 1. In simulations, these values are taken into consideration.

![Figure 1 Illustration of the single track vehicle model](image)

Table 1 Numerical Values of Vehicle Parameters

Parameter	Value
m	1321 kg
C_f	72500 N/rad
C_r	92500 N/rad
I_z	2120 kgm2
l_f	1.07 m
l_r	1.53 m

The single track vehicle model contains nonlinear motion equations, which are the following:

$$F_x = m \left[\dot{V} \cos \beta - V (\dot{\beta} + r) \sin \beta \right]$$ \hspace{1cm} (1)
In simulations, nonlinear single track vehicle model is used for testing of the designed controller. On the other hand, for the consideration of convenience and reducing the computational load, the model predictive controller design is worked out on the basis of the linearized single track vehicle model. Linearization is carried out some assumptions.

Assumption 1: The vehicle side slip angle is considered very small.

Assumption 2: The derivative of vehicle speed is taken as zero.

Assumption 3: The front wheel steering angles are considered very small.

Assumption 4: The wheel side slip angles are taken very small.

Under these assumptions, the linearized single track vehicle model is obtained. Its state space model is given as follows:

\[\dot{x} = Ax + Bu \]

\[y = Cx \] \hspace{1cm} (4)

where

\[x = [\beta \ r]^T \quad u = [\delta_f \ M]^T \]

\[A = \begin{bmatrix} -\frac{(C_{ro} + C_{fo})\mu}{mV} & -1 + \frac{(C_{ro}l_r - C_{fo}l_f)\mu}{mV^2} \\ \frac{(C_{ro}l_r - C_{fo}l_f)\mu}{I_z} & -1 + \frac{(C_{ro}l_r^2 + C_{fo}l_f^2)\mu}{I_zV} \end{bmatrix} \]

\[B = \begin{bmatrix} \frac{C_{fo}\mu}{mV} \\ \frac{C_{fo}l_f\mu}{I_z} \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \]
Secondly, the designed controller is tested using CarMaker vehicle model. CarMaker vehicle model is a highly realistic model that incorporates simple engine dynamics, tire dynamics, steering dynamics, suspension dynamics, vehicle sprung body dynamics, longitudinal and lateral dynamics, a driver, road and environment models.

3. Control Strategy

The main control strategy is depicted Figure 2. The control strategy consists of upper controller (velocity scheduled model predictive control) and lower controller (individual wheel braking algorithm). This strategy employs active front wheel steering and individual brake torque distribution to control vehicle yaw rate and side slip angle.

The reference model is a 2 DOF linear single track vehicle model to produce the desired yaw rate. Besides, zero side slip angle is selected to obtain desired side slip angle. In reference model, tire-road friction coefficient (µ) is chosen as 1 to force the vehicle ideal driving behavior. Also, reference model was taken as velocity scheduled to eliminate the most important uncertainty source. The error between desired and measured yaw rate also the error between desired and measured side slip angle is feed to the velocity scheduled model predictive controller.

The velocity scheduled model predictive controller generates two output. One of them is front wheel steering angle (δf) and the second one is corrective yaw moment (M). Considering that the front wheel steering angle is actuated by steer-by-wire steering system. The use of a steer-by-wire system, where the steering controller and driver steering commands are superimposed and sent to the steering actuator, is assumed in this paper. Moreover, corrective yaw moment transforms to the braking torques using lower controller and this actuation is realized by the braking system of the vehicle.
4. Controller Design

4.1. Upper Controller – Model Predictive Controller

MPC based controller is designed to compute the optimal front wheel steering angle and corrective yaw moment in this section. The linearized vehicle model is used as prediction model of MPC, so that computational load of the calculations is reduced. The model in equation (4) is discretized by using ZOH method.

At each time \(k \), the optimization problem below is solved,

\[
J = \min \left[\sum_{i=1}^{m} (x_{k+i} - x_{k+i,n,f})^T Q (x_{k+i} - x_{k+i,n,f}) + \sum_{i=1}^{m} ((\Delta u_{k+i})^T R_{m} (\Delta u_{k+i}) + (u_{k+i} - u_{k+i})^T R_{s} (u_{k+i} - u_{k+i})) \right]
\]

subject to

\[
x_{k+i+1} = A_{D} x_{k+i} + B_{D} u_{k+i}
\]

\[
\Delta u_{k+i+1} = u_{k+i+1} - u_{k+i}, \quad \forall i \leq m - 1
\]

\[
u_{\min} \leq u_{k+i+1} \leq u_{\max}
\]
\[\Delta u_{\text{min}} \leq u_{k+i} - u_{k+i} \leq \Delta u_{\text{max}} \]

where \[
\begin{bmatrix}
\beta_r \\
r
\end{bmatrix}, \quad x = \begin{bmatrix}
\beta_{r_{\text{ref}}} \\
r_{\text{ref}}
\end{bmatrix}, \quad u = \begin{bmatrix}
\delta_f \\
M
\end{bmatrix}, \quad \Delta u = \begin{bmatrix}
\Delta \delta_f \\
\Delta M
\end{bmatrix}
\]

prediction horizon \(p = 15 \), control horizon \(m = 2 \), \(T_s = 0.001 \) sec

\[-15 \text{ deg} \leq \delta_f \leq 15 \text{ deg}, \quad -1 \text{ deg} \leq \Delta \delta_f \leq 1 \text{ deg} \]

\[-10000 \text{ Nm} \leq M \leq 10000 \text{ Nm}, \quad -100 \text{ Nm} \leq \Delta M \leq 100 \text{ Nm} \]

\(Q, R_c \) and \(R_u \) are weighting matrices of appropriate dimensions.

The quadratic cost function and linear constraints yield convex optimization problem and this optimization problem can be solved using an Quadratic Programming solver (QP solver) such as Matlab Model Predictive Toolbox.

The constraints from system dynamics are mentioned by equations (4.2) and (4.3). The constraint equation (8) limits the front wheel steering angle and the corrective yaw moment. Moreover, the equation (9) limits the front wheel steering angle variation and the corrective yaw moment variation between two successive time steps.

The MPC based upper controller was designed considering velocity scheduled prediction model. Vehicle velocity was divided some intervals and for each interval new MPC based controller designed. These intervals can be seen from Table 2.

The if-else algorithm in Table 2 was programmed utilizing Matlab and it is used embedded with overall control design.
Table 2 Controller Decision Algorithm

Vehicle velocity [m/s]	Controller	Vehicle velocity used in prediction model [m/s]
$V < 25$	Controller 1	20
$25 \leq V < 35$	Controller 2	30
$35 \leq V < 45$	Controller 3	40
$45 \leq V < 55$	Controller 4	50
$45 \leq V < 55$	Controller 5	60
$V \geq 65$	Controller 6	70

4.2. Lower Controller – Individual Wheel Braking Algorithm

Lower controller is a rule-based control algorithm based on individual wheel braking. After calculation of corrective yaw moment by upper controller, lower controller computes the individual wheel braking torques and determines which wheel will be braked.

![Figure 3 Vehicle schematic](image-url)
Braking torques for each wheels can be calculated using equation (10) and (11) for vehicle in Figure 3 [22].

\[
T_{bFL} = T_{bFR} = \frac{|M| R}{\sin[\arctan((I_{wF}/2)/I_{v}) - \delta_f]} \left[\sqrt{l_r^2 + (l_{wF}/2)^2} \right]
\]

\[
T_{bRL} = T_{bRR} = \frac{|M| R}{\sin[\arctan((I_{wR}/2)/I_{v})]} \left[\sqrt{l_r^2 + (l_{wR}/2)^2} \right]
\]

The main differences of the equations for front and rear wheels arise from the existence of the front wheels steering angle.

While the algorithm development process, firstly all cases of vehicle yaw rate situation were derived. Then, in accordance with these cases, the braking wheel was decided. Six cases were found [21], these cases can be seen from Table 3. and also Figure 4.

Case	Vehicle yaw rate	Desired yaw rate	Situation	Braking wheel
1	\(r > 0 \)	\(r_d \geq 0 \)	\(r_d < r \)	Front right (FR)
2	\(r \geq 0 \)	\(r_d > 0 \)	\(r_d > r \)	Rear left (RL)
3	\(r < 0 \)	\(r_d \geq 0 \)	\(r_d > r \)	Front left (FL)
4	\(r > 0 \)	\(r_d < 0 \)	\(r_d < r \)	Front right (FR)
5	\(r \leq 0 \)	\(r_d < 0 \)	\(r_d < r \)	Rear right (RR)
6	\(r < 0 \)	\(r_d < 0 \)	\(r_d > r \)	Front left (FL)

Table 3: Vehicle cases for lower controller design
Figure 4 Vehicle Cases
In Figure 4, red vehicle (normal path) shows the vehicle’s first uncontrolled situation, and green vehicle (dashed path) shows the vehicle’s situation after individual braking occurs. The abovementioned individual wheel braking algorithm was coded using Matlab and it runs embedded with model predictive controller in Simulink.

5. Simulation Studies

Designed integrated vehicle stability controller is tested using nonlinear single track vehicle model and the higher fidelity CarMaker vehicle model. In nonlinear vehicle model simulations, two different step steering wheel input and one step disturbance moment input were taken consideration separately. Simulation conditions were changed with manipulating vehicle initial speed and tire-road friction coefficient. So that, the designed controller was tested in a wide range. Besides, three steroscopic plots were drawn for different type of simulations to see vehicle trajectory changes. In CarMaker simulations, three different steering wheel input were used to obtain vehicle yaw rate and side slip angle response of the vehicle. Also, in these more realistic simulations, the controller was tested in a wide range of
5.1. Nonlinear STVM Simulation Results

Figure 5 Simulation 1, vehicle yaw rate response for $\delta_y = 90^\circ$, $M_{zd} = 0$.

Figure 6 Simulation 1, vehicle side slip angle response for $\delta_y = 90^\circ$, $M_{zd} = 0$.
Figure 7 Simulation 1, vehicle trajectory for $V = 20 \text{ m/s}, \mu = 0.6$

Figure 8 Simulation 2, vehicle yaw rate response for $\delta_s = 45^\circ, M_{zd} = 0$.
Figure 9 Simulation 2, vehicle side slip angle for $\delta_s = 45^\circ$, $M_{sd} = 0$.

Figure 10 Simulation 2, vehicle trajectory for $V = 50 \, m/s$, $\mu = 0.7$.
Figure 11 Simulation 3, vehicle yaw rate for $\delta_y = 0$, $M_{zd} = 10000 \, Nm$.

Figure 12 Simulation 3, vehicle side slip angle for $\delta_y = 0$, $M_{zd} = 10000 \, Nm$.
Figure 13 Simulation 3, vehicle trajectory for $V = 70$, $\mu = 0.4$

5.2. CarMaker Vehicle Model Simulation Results

Figure 14 CarMaker simulation 1, vehicle yaw rate response for $\delta = 45^\circ$, $M_{\omega r} = 0$.
Figure 15 CarMaker simulation 1, vehicle side slip angle response for $\delta_s = 45^\circ$, $M_{sd} = 0$.

Figure 15 CarMaker simulation 2, vehicle yaw rate response for $\nu = 30 m/s$, $\mu = 0.6$.

[Diagrams explaining the response for different conditions]
Figure 16 CarMaker simulation 2, vehicle yaw rate response for $\delta_s = 30^\circ$, $M_{zd} = 0$.

Figure 17 CarMaker simulation 2, vehicle side slip angle response for $\delta_s = 30^\circ$, $M_{zd} = 0$.
6. Conclusions

In this paper, we proposed a solution to vehicle lateral stability control problem. We presented velocity scheduled MPC based upper controller and individual wheel braking based lower controller design. MPC based controller relies on a linear single track vehicle prediction model and the required constraints. Its optimization problem is solved by QP solver. The individual wheel braking algorithm distributes calculated corrective yaw moment to the wheels using braking torques for different cases and also it determines which wheels will be brake. Controllers realize actuation utilizing steer-by-wire steering system and braking system of the vehicle.
We tested our integrated (combined) controller with nonlinear single track vehicle model and the higher fidelity CarMaker vehicle model simulations. The simulations were performed on a wide range of different vehicle initial and tire-road coefficient alteration. The results showed that the use of integrated (combined) vehicle stability controller bring on encouraging results.

There have been many developments that were reported in the literature since the original writing of this paper. Other approaches like model regulation also called disturbance observer control (Oncu et al, 2007; Aksun-Guvenc and Guvenc, 2002, 2001; Guvenc and Srinivasan, 1995, 1994), speed scheduled LQR control (Emirler et al, 2015), intelligent control (Boyali and Guvenc, 2010), parameter space based robust control (Guvenc et al, 2017; Guvenc et al, 2021; Emirler et al, 2014, Emirler et al, 2015; Wang et al, 2018; Guvenc and Ackermann, 2001; Ma et al, 2021; Ma et al, 2020; Emirler et al, 2018; Zhu and Aksun-Guvenc, 2020; Zhu et al, 2019; Gelbal et al, 2020) and repetitive control (Demirel and Guvenc, 2010; Necipoglu et al 2011; Orun et al, 2009) for periodic speed profiles can also be applied for yaw stability control with application to fully electric vehicles. The yaw stability controller designed can also be tested as part of an autonomous driving system in an autonomous vehicle hardware-in-the-loop simulator (Gelbal et al, 2017; Cebi et al, 2005; Acar et al, 2019; Emirler et al, 2018; Hartavi et al, 2016; Emirler et al, 2016; Unal and Guvenc, 2014;).

Acknowledgements

The first author would like to thank the support of TÜBİTAK National Scholarship Programme for PhD Students (TÜBİTAK BİDEB 2211).
References

[1] Aksun, Guvenc, B., Bunte, T, Odenthal, D., and Guvenc, L., 2004. Robust two degree-of-freedom vehicle steering controller design, IEEE Transactions on Control Systems Technology, Vol. 12, No. 4, pp. 627-636.

[2] Emirler, 2009. Vehicle yaw rate estimation and vehicle lateral stability control (In Turkish), M.Sc. Thesis, Istanbul Technical University, Institute of Science and Technology.

[3] Manning, W. J., and Crolla, D. A., 2007. A review of yaw rate and sideslip controllers for passenger vehicles, Transactions of the Institute of Measurement and Control, Vol. 29, No. 2, pp. 117-135.

[4] Ackermann, J., 1990. Robust car steering by yaw rate control, in Proceedings of the 29th Conference on Decision and Control, pp. 2033-2034, Honolulu, Hawaii.

[5] Ackermann, J., 1993. Robust control prevents car skidding, in Proceedings IEEE Transactions on Control Systems Technology, Vol. 1, No. 1, pp. 15-20.

[6] Ackermann, J., 1997. Robust control prevents car skidding, in Proceedings IEEE Control Systems Magazine, Vol. 17, Issue. 3, pp. 23-31.

[7] Ackermann, J., Blue, P., Bunte, T., Guvenc, L., Kaesbauer, M., Kordt, M., Muhler, M., and Odenthal, D., 2002: Robust Control: The Parameter Space Approach, New York: Springer-Verlag.

[8] Aksun, Guvenc, B., Guvenc, L., Odenthal, D., and Bunte, T, 2001. Robust two degree of freedom vehicle steering control satisfying mixed sensitivity constraint, in Proceedings of European Control Conference, pp. 1198-1203.

[9] Karaman, S., Oncu, S., Guvenc Guvenc L., Ersolmaz, Ş. S., Çetin, E., and Kanbolat, A., 2006. Robust velocity scheduled yaw stability control of a light commercial vehicle, in Proceedings of Intelligent Vehicle Symposium (IV’06), pp. 504-509, June 13-15, Tokyo, Japan.

[10] Oncu, S., Karaman, S., Guvenc Guvenc L., Ersolmaz, S. S., Çetin, E., and Kanbolat, A., 2007. Robust yaw stability controller design for a light commercial vehicle using a hardware in the loop steering test rig, in Proceedings of Intelligent Vehicle Symposium (IV’07), pp. 852-859, June 13-15, İstanbul, Turkey.

[11] Aksun, Guvenc,B., Ozturk, E. S., Yigit, T., and Guvenc, L., 2003. Model regulator based individual wheel braking control, in Proceedings of IEEE Conference on Control Applications (CCA), pp. 31-36.

[12] Aksun, Guvenc, B., Guvenc, L., Yigit, T., and Ozturk, E., S., 2004. Coordination strategies for combined steering and individual wheel braking actuated vehicle yaw stability control, 4th IFAC Symposium on Advances in Automotive Control, Salerno, April 19-23.
[13] Ozturk, E. S., Guvenc, L., and Yiğit, T., Aksun, Guvenc, B., 2005. Application of combined steering and individual wheel braking actuated yaw stability control to a realistic vehicle model, 16th IFAC World Congress, 4-8 July, Prague, Czech Republic.

[14] Canale, M., Fagiano, L., Milanese, M., and Borodani, 2006, Robust vehicle yaw control using active differential and internal model control techniques, in Proceedings of American Control Conference (ACC), June 14-16, USA.

[15] Canale, M., Fagiano, L., Milanese, M., and Borodani, 2007, Robust vehicle yaw control using active differential and IMC techniques, Control Engineering Practice, Vol. 15, pp. 923-941.

[16] Canale, M., Fagiano, L., Ferrara, A., and Vecchio, C., 2008, Vehicle yaw control via sliding-mode technique, IEEE Transactions on Industrial Electronics, Vol. 55, No. 11, pp. 3908-3916.

[17] Drakunov, S. V., Ashrafi, B., and Rosiglioni, A., 2000. Yaw control algorithm via sliding mode control, in Proceedings of American Control Conference (ACC), pp. 580-583, Chicago, Illinois.

[18] Zheng, B., and Anwar, S., 2009. Yaw stability control of a steer-by-wire equipped vehicle via active front wheel steering, Mechatronics, Vol. 19, pp. 799-804.

[19] Nagai, M., Hirano, Y., and Yamanaka, S., 1997. Integrated control of active rear wheel steering and direct yaw moment control, Vehicle System Dynamics, Vol. 27, pp. 357-370.

[20] Nagai, M., Hirano, Y., and Yamanaka, S., 1998. Integrated control of active rear wheel steering and direct yaw moment control, Vehicle System Dynamics, Vol. 28, Supplement, pp. 416-421.

[21] Yang, X., Wang, Z., and Peng, W., 2009. Coordinated control of AFS and DYC for vehicle handling and stability based on optimal guaranteed cost theory, Vehicle System Dynamics, Vol. 47, pp. 57-79.

[22] Falcone, P., Tseng, H. E., Borrelli, F., Asgari, J., and Hrovat, D., 2008. MPC-based yaw and lateral stabilisation via active front steering and braking, Vehicle System Dynamics, Vol. 46, Supplement, pp. 611-628.

[23] Oncu, S., Guvenc, L., Ersolmaz, S.S., Ozturk, E.S., Kilic, N., Sinal, M., (2007). Steer-by-Wire Control of a Light Commercial Vehicle Using a Hardware-in-the-Loop Setup. SAE Commercial Vehicles Conference, Advancements in Steering Systems. SAE paper number 2007-01-4198. Chicago. Oct. 30 – Nov. 1.

[24] Aksun Guvenc, B.; Guvenc, L., (2002) Robust Steer-by-wire Control based on the Model Regulator. In Proceedings of the Joint IEEE Conference on Control Applications and IEEE Conference on Computer Aided Control Systems Design, Glasgow, U.K., pp. 435-440.
[25] Aksun Guvenc, B.; Guvenc, L., (2002) The Limited Integrator Model Regulator and its Use in Vehicle Steering Control. Turkish Journal of Engineering and Environmental Sciences 2002, pp. 473-482.

[26] Aksun Guvenc, B., Guvenc, L., (2001), “Robustness of Disturbance Observers in the Presence of Structured Real Parametric Uncertainty,” Proceedings of the 2001 American Control Conference, June, Arlington, pp. 4222-4227.

[27] Guvenc, L., Srinivasan, K. (1995). Force Controller Design and Evaluation for Robot Assisted Die and Mould Polishing. Journal of Mechanical Systems and Signal Processing. Vol. 9. No. 1. pp. 31-49.

[28] Guvenc, L.; Srinivasan, K. (1994) Friction Compensation and Evaluation for a Force Control Application. Journal of Mechanical Systems and Signal Processing, 8, 623-638.

[29] Emirler, M.T., Wang, H., Aksun-Guvenc, B., Guvenc, L. (2015). Automated Robust Path Following Control based on Calculation of Lateral Deviation and Yaw Angle Error. ASME Dynamic Systems and Control Conference. DSC 2015. October 28-30. Columbus. Ohio. U.S.

[29] Boyali A., Guvenc, L. (2010). Real-Time Controller Design for a Parallel Hybrid Electric Vehicle Using Neuro-Dynamic Programming Method. IEEE Systems, Man and Cybernetics. Istanbul. October 10-13. pp. 4318-4324.

[30] Guvenc, L., Aksun-Guvenc, B., Demirel, B., Emirler, M.T. (2017). Control of Mechatronic Systems. the IET. London. ISBN: 978-1-78561-144-5.

[31] Guvenc, L.; Aksun-Guvenc, B.; Zhu, S.; Gelbal, S.Y. (2021), Autonomous road vehicle path planning and tracking control, 1st ed.; Wiley / IEEE Press: New York, ISBN: 978-1-119-74794-9.

[32] Emirler, M.T., Uygan, I.M.C., Aksun-Guvenc, B., Guvenc, L. (2014). Robust PID Steering Control in Parameter Space for Highly Automated Driving. International Journal of Vehicular Technology. Vol. 2014. Article ID 259465.

[33] Emirler, M.T., Kahraman, K., Senturk, M., Aksun Guvenc, B., Guvenc, L., Efendioglu, B., 2015, “Two Different Approaches for Lateral Stability of Fully Electric Vehicles,” International Journal of Automotive Technology, Vol. 16, Issue 2, pp. 317-328.

[34] Wang, H., Tota, A., Aksun-Guvenc, B., Guvenc, L. (2018). Real Time Implementation of Socially Acceptable Collision Avoidance of a Low Speed Autonomous Shuttle Using the Elastic Band Method. IFAC Mechatronics Journal. Volume 50. April 2018. pp. 341-355.

[35] Guvenc, L., Ackermann, J. (2001), “Links Between the Parameter Space and Frequency Domain Methods of Robust Control,” International Journal of Robust and Nonlinear Control, Special Issue on Robustness Analysis and Design for Systems with Real Parametric Uncertainties, Vol. 11, no. 15, pp. 1435-1453.
[36] Ma, F.; Yang, Y.; Wang, J.; Li, X.; Wu, G.; Zhao, Y.; Wu, L.; Aksun-Guvenc, B.; Guvenc, L. (2021) Eco-Driving-Based Cooperative Adaptive Cruise Control of Connected Vehicles Platoon at Signalized Intersections. Transportation Research Part D: Transport and Environment, 92, 102746, ISSN 1361-9209, https://doi.org/10.1016/j.trd.2021.102746.

[37] Ma, F., Wang, J., Zhu, S., Gelbal, S.Y., Yu, Y., Aksun-Guvenc, B., Guvenc, L. (2020), “Distributed Control of Cooperative Vehicular Platoon with Nonideal Communication Condition,” IEEE Transactions on Vehicular Technology, Vol. 69, Issue 8, pp. 8207-8220, doi:10.1109/TVT.2020.2997767.

[38] Emirler, M.T., Guvenc, L., Aksun-Guvenc, B. (2018), “Design and Evaluation of Robust Cooperative Adaptive Cruise Control Systems in Parameter Space,” International Journal of Automotive Technology, Vol. 19, Issue 2, pp. 359-367.

[39] S Zhu, B Aksun-Guvenc, (2020). Trajectory planning of autonomous vehicles based on parameterized control optimization in dynamic on-road environments. Journal of Intelligent & Robotic Systems 100 (3), 1055-1067.

[40] Zhu, S., Gelbal, S.Y., Aksun-Guvenc, B., Guvenc, L. (2019), “Parameter-space Based Robust Gain-scheduling Design of Automated Vehicle Lateral Control,” IEEE Transactions on Vehicular Technology, doi: 10.1109/TVT.2019.2937562, Vol. 68, Issue 10, pp. 9660-9671.

[41] Gelbal, S.Y., Aksun-Guvenc, B., Guvenc, L. (2020), “Elastic Band Collision Avoidance of Low Speed Autonomous Shuttles with Pedestrians,” International Journal of Automotive Technology, Vol. 21, No. 4, pp. 903-917.

[42] Demirel, B., Guvenc, L. (2010) Parameter Space Design of Repetitive Controllers for Satisfying a Mixed Sensitivity Performance Requirement. IEEE Transactions on Automatic Control. Vol. 55. No. 8. pp. 1893-1899.

[43] Necipoglu, S., Cebeci, S.A., Has, Y.E., Guvenc, L., Basdogan, C. (2011). A Robust Repetitive Controller for Fast AFM Imaging. IEEE Transactions on Nanotechnology. Vol. 10. No. 5. pp. 1074-1082.

[44] Orun, B., Necipoglu, S., Basdogan, C., Guvenc, L. (2009). State Feedback Control for Adjusting the Dynamic Behavior of a Piezo-actuated Bimorph AFM Probe. Review of Scientific Instruments. Vol. 80. No. 6.

[45] Gelbal, S.Y., Cantas, M.R, Tamilarasan, S., Guvenc, L., Aksun-Guvenc, B. (2017). A Connected and Autonomous Vehicle Hardware-in-the-Loop Simulator for Developing Automated Driving Algorithms. IEEE Systems, Man and Cybernetics Conference. Banff. Canada.

[46] Cebi, A.; Guvenc, L.; Demirci, M.; Kaplan Karadeniz, C.; Kanar, K.; Guraslan, E. (2005). A Low Cost, Portable Engine ECU Hardware-In-The-Loop Test System,” Mini Track of Automotive Control, In Proceedings of IEEE International Symposium on Industrial Electronics Conference, Dubrovnik, June 20-23.
[47] Acar, O.U., Guvenc, L., Altug, E. (2019) “Hardware-in-the-loop Testing of Automatic Lift Dropping System for Heavy Trucks,” Journal of Intelligent and Robotic Systems, Vol. 98, pp. 693–703, https://doi.org/10.1007/s10846-019-01092-0.

[48] Emirler, M.T., Gozu, M., Uygan, I.M.C., Boke, T.A., Aksun-Guvenc, B., Guvenc, L. (2018), “Evaluation of Electronic Stability Controllers Using Hardware-in-the-Loop Vehicle Simulator,” International Journal of Advances in Automotive Engineering, pp. 123-141.

[49] Hartavi, A.E., Uygan, I.M.C., Guvenc, L. (2016), “A Hybrid Electric Vehicle Hardware-in-the-Loop Simulator as a Development Platform for Energy Management Algorithms,” International Journal of Vehicle Design, Vol. 71, No. 1/2/3/4, pp. 410-420.

[50] Emirler, M.T., Uygan, I.M.C., Gelbal, Ş.Y., Gozu, M., Boke, T.A., Aksun Guvenc, B., Guvenc, L. (2016), “Vehicle Dynamics Modelling and Validation for a Hardware-in-the-Loop Vehicle Simulator,” International Journal of Vehicle Design, Vol. 71, No. 1/2/3/4, pp. 191-211.

[51] Unal, K., Guvenc, L. (2014), “Real-time Hardware-in-the-Loop Simulation of Time to Rollover Warning for Heavy Commercial Vehicles,” International Journal of Heavy Vehicle Systems, Vol. 21, No. 2, pp.105–122.