Echocardiographic Assessment of Diastolic Dysfunction in Elderly Patients with Severe Aortic Stenosis Before and After Aortic Valve Replacement

Hatice Akay Caglayan
Universitetssykehuset Nord-Norge

Didrik Kjønås
Universitetssykehuset Nord-Norge

Siri Malm
Universitetssykehuset Nord-Norge

Henrik Schirmer
University of Oslo: Universitetet i Oslo

Assami Rösner (assami.rosner@unn.no)
University Hospital of North Norway

Research

Keywords: Left ventricular filling pressures, aortic stenosis, aortic valve replacement, Doppler echocardiography, brain natriuretic peptide

DOI: https://doi.org/10.21203/rs.3.rs-764226/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Methods

In this study, 169 patients who underwent surgical aortic valve replacement (SAVR) or transcatheter aortic valve replacement (TAVR) were prospectively enrolled. Resting echocardiography was performed including Doppler of the mitral inflow, pulmonary venous flow, tricuspid regurgitant flow and tissue Doppler in the mitral ring and indexed volume-estimates of the left atrium (LAVI). Echocardiography, and NT-proBNP levels were assessed before TAVR/SAVR and at two postoperative visits at 6 and 12 months.

Results: Pre- and postoperative values were septal e’; 5.1±3.9, 5.2±1.6 cm/s; lateral e’ 6.3±2.1; 7.7±2.7 cm/s; E/e’19±8; 16±7 cm/s; E velocity 96±32; 95±32 cm/s; LAVI 39±8; 36±8 ml/m², pulmonary artery pressure (PAP) 39±8; 36±8 mmHg, respectively. The scoring recommended by ASE/EACVI detected elevated NT pro-BNP with a specificity of 25%. Adjusting thresholds towards PAP ≥ 40 mmHg, E velocity ≥ 100 cm/s, E deceleration time < 220 ms, and E/septal e’ ≥ 20 or septal e’ < 5.0 cm/s increased prediction of NT-proBNP levels ≥ 500 ng/L with substantially increased specificity (>85%).

Conclusion: Diastolic echocardiographic parameters in AS indicate persistent impaired relaxation and NT-proBNP indicate elevated filling pressures in most of the patients, improving only modestly 6-12 months after TAVR and SAVR. Applying the 2016 ASE/EACVI recommendations for detection of elevated filling pressures to patients with AS, elevated NT pro-BNP levels could not be reliably detected. However, adjusting thresholds of the echocardiographic parameters increased specificities to useful diagnostic levels.

Trial registration: The study was prospectively approved by the regional ethical committee, REK North with the registration number: REK 2010/397-10

Introduction

Degenerative aortic valve stenosis (AS) is a chronic and progressive disease which gradually provokes afterload and thereby causes pressure overload on the left ventricle (LV), leading to ventricular fibrosis and consequently diastolic dysfunction over time. The associated diastolic properties start with delayed relaxation at normal filling pressures, consecutively facilitating a state with increased filling pressures, and finally inducing the clinical image of heart failure with pulmonary congestion.

According to the 2016 recommendations of the American Society of Echocardiography (ASE) and the European Association of Cardiovascular Imaging (EACVI), elevated LV filling pressures should be assessed by left atrial volume index (LAVI) and blood-flow and tissue Doppler parameters, i.e. septal and/or lateral a’ ratio, peak gradient over the tricuspid regurgitation (TR) (1). The ASE/EACVI recommend modified assessment-criteria for hearts with reduced EF and for hearts with special forms of cardiomyopathies.

However, in AS, they do not recommend modification of these criteria (1), even though altered relaxation and filling properties in AS are well known (2–7). The elderly population with AS has a complex structure of ventricular diastolic properties with delayed relaxation related to age, hypertension and hypertrophy. Using unmodified criteria for AS might probably lead to under- or over-estimation of filling pressures. Consequently, the assessment of diastolic dysfunction in this population remains challenging (2–7).

During progression of diastolic dysfunction, LV wall stress, pressure and volume overload induce the secretion of BNP/ NT-proBNP (N-terminal prohormone of brain natriuretic peptide), a cardiac neurohormone which is secreted by cardiomyocytes in the ventricles. Several studies have shown that high plasma BNP/NT-proBNP levels correlate well with elevated filling pressures and severity of heart failure in patients with AS (8–10). An age dependent increase of plasma BNP/NT-proBNP levels is observed in population-based studies, while recent studies indicate the association with LV hypertrophy or subclinical heart failure rather than age only (11, 12).

In this study, we aim to describe diastolic functional parameters in elderly patients with severe AS, at baseline and after aortic valve replacement (AVR). We also tested these parameters and their cut-off values to predict high NT-proBNP levels as a marker of elevated LV filling pressure.
Clinical characteristics, mortality and complications during and after surgery were obtained from the patients’ electronic journals. Patients were classified according to the global initiative for chronic obstructive lung disease (GOLD) classification for chronic obstructive pulmonary disease (COPD), and the patients with COPD of unknown grade were classified as having COPD grade 1. The patients who had a history of stroke or transient ischemic attacks, or significant (>70%) stenosis of the carotid arteries, were classified as having cerebrovascular disease. Chronic and paroxysmal atrial fibrillation/flutter conditions were grouped as one variable. The patients with records, less than two weeks prior to surgery, of physician documented clinical signs of heart failure in the form of unusual dyspnoea on light exertion, orthopnoea, fluid retention, description of rales on auscultation, or pulmonary oedema on chest X-ray, were classified as having heart failure (HF<2 weeks). The patients were classified as having left bundle branch block (LBBB) according to the Minnesota criteria in the resting ECG. Predominance of ventricular pacing or LBBB was assessed by the rhythm registered during echocardiography.

Echocardiography

All patients underwent preoperative echocardiography in the left lateral decubital position with an iE33 scanner (S5-1 probe, Philips Medical systems, Andover, MA). Conventional 2-dimensional grey scale images were obtained in parasternal long- and short- axes as well as apical four-chamber, two-chamber and long-axis-views. LV EF was derived from the two- and four-chamber views using the biplane Simpson's method. The same two views were used to calculate LAVI at end-systole. The degree of AS was expressed using the mean gradient of the Doppler flow across the aortic valve and the indexed aortic valve area calculated using the continuity equation.

For the evaluation of mitral regurgitation and aortic regurgitation, we performed a multiparametric, semiquantitative approach as recommended in the guidelines.(13)

Diastolic LV function was assessed by evaluation of the following parameters: Mitral E- and A-wave velocity, E/A ratio, E deceleration time (DT), septal, lateral wall and average tissue Doppler velocities (e’) and their E/e’ ratios, systolic filling fraction of the pulmonary veins (SFF), LAVI, the velocity and peak gradient over the tricuspid regurgitation (TRpeak) and an estimate of the systolic pulmonary arterial pressure (PAP) by adding 10 mmHg to the TRpeak, and the isovolumetric relaxation time (IVRT).

We applied the scoring system according to the ASE/EACVI 2016 guidelines based on at least two of the criteria for ventricles with normal EF: septal e’ ≤ 7c-m/sec and/or lateral e’ ≤ 10 cm/sec, average E/e’ ratio ≥ 14 cm/sec, TRpeak ≥ 2,8 m/sec and LAVI ≥ 34 ml/m2. We scored also relaxation properties based on the ASE/EACVI 2009 guidelines, which states the presence of impaired relaxation if septal e’<8, lateral e’<10 cm/s or LA>34ml/m2.

Finally a new scoring system was established based on independent predictors of the multivariate-analysis, adding for each variable “-1” for normal values, “0” for intermediate and + 1 for high probability of elevated filling pressures.

Statistical analysis

Statistical analysis was performed using SPSS 25 and 26 (SPSS Inc., Chicago, IL, USA). Preoperative patient-characteristics of the TAVR and SAVR groups were compared using either t-test or chi-square test. The frequencies of categorized diastolic parameters were compared using chi-square test to analyse the differences between the age groups (≥ or <80years) and pre- and postoperative data baseline and control after TAVR/SAVR. We compared further pre-operative to post-operative echocardiographic diastolic parameters using paired t-test. For this comparison, one average value of each parameter was calculated for parameters of the first and second post-AVR control.

Receiver operating characteristic (ROC) curve analysis was performed on pre- and post-operative echocardiographic measurements when NT-proBNP values were available. The NT-proBNP level > 500 ng/L was chosen from the clinical cut-off value in our hospital for the largest age group of patients in our study (females and males 70-80 years). Age-related cut-off values were not chosen, since the NT-proBNP threshold increased in many patients during the first control-year. To identify predictors of elevated NT-proBNP levels, three cut-off values of similar sensitivity-specificity-sum were chosen for each diastolic parameter, among the values with high sensitivity and moderate specificity and high specificity combined with moderate sensitivity.

For the independent and dependent correlation of diastolic echocardiographic indices with the presence of NT-proBNP value >500 ng/L, univariate and multivariate logistic regression analysis was performed. Variables with p ≤0.05 and deemed clinically relevant were selected and tested to analyse interaction and co-linearity prior to forward and backward multivariable logistic regression analysis. When the interaction terms in the backward analysis were non-significant, the forward model was used. For the final inclusion into a multiple regression model, a p-value of ≤0.05 was considered significant. Independent predictors of the multivariable analysis were combined in a scoring system. For this new score, sensitivities and specificities were calculated for different cut-off values using ROC curve analysis.

Results

Over a three-year period, 169 patients were included in this study. Of these, 18 patients died during the procedure or during the first 6 months after SAVR or TAVR. 135 patients returned to either follow-up control, 132 participants attended the first postoperative control at 6 months, and 121 patients attended the second control at 12 months. Of 388 visits with NT-proBNP measurements, NT-proBNP values could be linked to echocardiographic parameters in 358 cases.

We compiled baseline demographic and clinical characteristics of the patients who underwent TAVR and SAVR (Table 1). The TAVR group consisted of 98 (49% male) patients and the SAVR group of 71 (56% male) patients. Patients in the TAVR group were significantly older, and had significantly higher body mass index (BMI), pulmonary artery pressure (PAP) and NT-proBNP levels than the patients in the SAVR group. More COPD, peripheral vascular disease (PVD) and heart failure < 2 weeks cases were observed in the TAVR than in the SAVR group. In line with renal dysfunction, pre-glomerular filtration rate (GFR) and
Impaired relaxation in elderly AS patients

Aortic stenosis modifies ventricular diastolic properties with three different mechanisms:

1. Delayed relaxation and relaxation velocity of the mitral ring might be associated with increased afterload and left ventricular hypertrophy (14). Filling pressures can be normal in delayed relaxation (14). Delayed relaxation velocity is expressed by reduced e’ in the septal or lateral ventricular wall. Low pressure gradient due to low ventricular pressure fall and prolonged early filling period are reflected by low E velocity, prolonged IVRT and prolonged DT (15).

2. Increased filling pressures can be determined by invasive measurement of ventricular pre-A pressure, which is a condition often followed by increased end-diastolic pressure and pulmonary capillary wedge pressure (PCWP). Increased filling pressures in AS are often reversible and can occur at superimposed afterload in a ventricle with reduced relaxation properties and initially normal filling pressures (14). Filling pressures can typically occur at decreased stroke volume, shortened diastole during tachycardia or at missing compensatory atrial filling in atrial fibrillation. Increased diastolic pressure gradients are associated with higher E velocities, shortened DT and IVRT, reduced PV SFF and higher PAP (1, 15). Additionally, LA size and E/e’ are associated with increased PCWP at rest and during exercise (16).

3. Ventricular hypertrophy, fibrosis and molecular mechanisms of diastolic dysfunction (17) might affect ventricular relaxation, and might also increase ventricular stiffness. These conditions, in turn, increase LV filling pressures with a non-reversible component after afterload reduction, and might contribute to persistently elevated NT-proBNP levels after TAVR/SAVR.

Diastolic dysfunction in aortic stenosis, hemodynamic considerations

Aortic stenosis modifies ventricular diastolic properties with three different mechanisms:

Mechanism	Description
1.	Delayed relaxation and relaxation velocity of the mitral ring might be associated with increased afterload and left ventricular hypertrophy. Increased filling pressures can be normal in delayed relaxation. Delayed relaxation velocity is expressed by reduced e’ in the septal or lateral ventricular wall. Low pressure gradient due to low ventricular pressure fall and prolonged early filling period are reflected by low E velocity, prolonged IVRT and prolonged DT.
2.	Increased filling pressures can be determined by invasive measurement of ventricular pre-A pressure, which is a condition often followed by increased end-diastolic pressure and pulmonary capillary wedge pressure (PCWP). Increased filling pressures in AS are often reversible and can occur at superimposed afterload in a ventricle with reduced relaxation properties and initially normal filling pressures. Filling pressures can typically occur at decreased stroke volume, shortened diastole during tachycardia or at missing compensatory atrial filling in atrial fibrillation. Increased diastolic pressure gradients are associated with higher E velocities, shortened DT and IVRT, reduced PV SFF and higher PAP.
3.	Ventricular hypertrophy, fibrosis and molecular mechanisms of diastolic dysfunction might affect ventricular relaxation, and might also increase ventricular stiffness. These conditions, in turn, increase LV filling pressures with a non-reversible component after afterload reduction, and might contribute to persistently elevated NT-proBNP levels after TAVR/SAVR.

Discussion

This study demonstrates range and distribution of echocardiographic parameters in the elderly population with high grade aortic stenosis. Independent predictors of elevated NT-proBNP levels (> 500 ng/L) are PAP, mitral peak E, DT and septal E/e’ or septal e’ which can be used interchangeably. Parameters which are recommended for the assessment of diastolic dysfunction according to the 2016 ASE and EACVI guidelines (i.e. high average E/e’, low septal e’, MV DT and PAP) were independent significant markers of high NT-proBNP levels.

Table 4 displays cut-off values based on high sensitivity (left row), intermediate sensitivity and specificity (middle row) and high enough specificity to reliably indicate the presence of elevated filling pressure (right row). Cut-off values for acceptable specificities (both >80%) are different compared the cut-off values which are recommended in the 2016 ASE/EACVI guidelines. Specificity for the ASE/EACVI recommended algorithm was 23% in the AS population.

Table 4

Parameter	Sensitivity	Specificity
MV peak A	≥ 60%	> 45%
MV peak A	≥ 85%	> 75%
MV peak A	≥ 336/393 (85%)	> 346/392 (88%)

Table 5

Parameter	Sensitivity	Specificity
NT-proBNP level was found to be ≥ 500 ng/L	in 256 of 388 (66%) visits.	

Figure 2 and Table 3 display the results of the ROC curve analysis of the ability of echocardiographic diastolic parameters to predict high NT-proBNP levels (≥ 500 ng/L). Table 5 shows the results of the univariable and multivariable regression analyses of the same echocardiographic diastolic parameters to determine high NT-proBNP levels. Septal and average e, septal, lateral and average E/e’, PV SFF, LA volume, MV peak E, MV DT and PAP showed significant correlation with high NT-proBNP levels, whereas lateral e, MV peak A, MV E/A and IVRT showed nosignificance if icant or relation is univariab ≤ regression analysis. Mt variab ≤ regression analysis and E/e’, MV DT and PAP as independent significant markers of high NT-proBNP levels.

Table 4 displays cut-off values based on high sensitivity (left row), intermediate sensitivity and specificity (middle row) and high enough specificity to reliably indicate the presence of elevated filling pressure (right row). Cut-off values for acceptable specificities (both >80%) are different compared the cut-off values which are recommended in the 2016 ASE and EACVI guidelines. Specificity for the ASE/EACVI recommended algorithm was 23% in the AS population.

Diastolic dysfunction in aortic stenosis, hemodynamic considerations

Aortic stenosis modifies ventricular diastolic properties with three different mechanisms:

Mechanism	Description
1.	Delayed relaxation and relaxation velocity of the mitral ring might be associated with increased afterload and left ventricular hypertrophy. Increased filling pressures can be normal in delayed relaxation. Delayed relaxation velocity is expressed by reduced e’ in the septal or lateral ventricular wall. Low pressure gradient due to low ventricular pressure fall and prolonged early filling period are reflected by low E velocity, prolonged IVRT and prolonged DT.
2.	Increased filling pressures can be determined by invasive measurement of ventricular pre-A pressure, which is a condition often followed by increased end-diastolic pressure and pulmonary capillary wedge pressure (PCWP). Increased filling pressures in AS are often reversible and can occur at superimposed afterload in a ventricle with reduced relaxation properties and initially normal filling pressures. Filling pressures can typically occur at decreased stroke volume, shortened diastole during tachycardia or at missing compensatory atrial filling in atrial fibrillation. Increased diastolic pressure gradients are associated with higher E velocities, shortened DT and IVRT, reduced PV SFF and higher PAP.
3.	Ventricular hypertrophy, fibrosis and molecular mechanisms of diastolic dysfunction might affect ventricular relaxation, and might also increase ventricular stiffness. These conditions, in turn, increase LV filling pressures with a non-reversible component after afterload reduction, and might contribute to persistently elevated NT-proBNP levels after TAVR/SAVR.

Impaired relaxation in elderly AS patients

Most echocardiographic parameters of diastolic dysfunction have a U-shaped function with normal values between two extremes of either impaired relaxation or increased filling pressures (15). For correct interpretation of indicators on increased filling pressures, diastolic properties of the LV at normal filling pressures in AS need to be considered. Results of our study and previous investigations (2, 16, 18) on diastolic parameters in AS, indicate that most AS LVs predominantly display signs of impaired relaxation. This is reflected by low e’, which increases after TAVR/SAVR, though without complete normalization (7, 19).
Age alone is one important factor for reduced relaxation properties. However, the patient population with TAVR, typically ages >75 years, is scarcely represented in epidemiological studies (20) or in control groups of clinical studies. Probably due to the low number of study subjects, the 2016 ASE and EACVI guidelines refer to the high age group as ≥ 60 years (1).

Compared to the high age group of the guidelines, the septal and lateral e' are significantly lower, and LAVI and DT are significantly higher in the present study. To a smaller extent, age might reduce relaxation properties in higher age groups, however, most of the diastolic parameters were not different between the two age groups ≥ 80 and <80 years in the present study.

Steine et al (2) investigated patients (65±12 years) with moderate AS, showing decreased septal e' and increased atrial velocity compared to age-matched controls. Furthermore, E velocity, DT and E/e' ratio were highly elevated compared to age-matched controls (17.4±10 vs 11±4)(2). These results demonstrate that AS has age independent effects on ventricular diastolic properties.

Even though the present study represents an older patient population with higher degree of AS compared to Steines and other younger study populations (2,7,19,21), we found a similar reduction of e’. Our results stress the predominance of factors other than age like LV hypertrophy, changed LV stiffness and increased afterload as the main reasons for decreased relaxation properties in AS patients. PAP was the only diastolic echocardiographic parameter which was significantly different between age-groups. One explanation of this could be low LV compliance with elevated filling pressures due to diffuse myocardial fibrosis in the elderly patients. Another explanation might be the high number of COPD patients in the elderly TAVR group.

Changes of diastolic properties after TAVR/SAVR

Even though e’ increases after TAVR/SAVR (7,19,21-23), average e’ stayed lower than 10 cm/s in 90% of postoperative AS patients, indicating persistent impaired relaxation also after afterload reduction with AVR. Postoperatively, relaxation velocities in the lateral but not septal wall were significantly higher than pre-operative values, suggesting regionally inhomogeneous response to reduced afterload.

The correlation of e’ and improvement of s’ and their increase after AVR, indicate an association between ventricular contraction and relaxation velocities, which are both influenced by afterload changes (14,24). These findings point to afterload dependent, reversible reduction of contraction and relaxation velocities of the lateral wall, whereas the bulky, structurally changed septum of hypertensive ventricles (25) have less ability to recover. The majority of previous studies report a similar degree of diastolic dysfunction in AS patients with reduced recovery of relaxation properties (7,19,21-23), while only one study could be identified describing normalized E/e’, e’ and LA volume post TAVR (26).

Indicators for increased filling pressures

The present study refers to the 2016 ASE/EACVI recommendations for the evaluation of LV diastolic dysfunction (1), which propose a simplified approach of estimating increased filling pressures (i.e. grade II and grade III of diastolic dysfunction). For assessment of impaired relaxation (i.e. Grade I diastolic dysfunction) we refer to the better definition of this state in the recommendations of 2009 (15).

The current results reflect the difficulties of estimating filling pressures in ventricles with highly impaired relaxation. Impaired relaxation will naturally change thresholds for increased filling pressures due to the U-shaped function of many Doppler-based parameters. This applies for mitral peak E velocity, DT, IVRT and PV SFF (9). In opposite, the parameters e’ increases and E/e’ decreases with an additive effect of both, impaired relaxation and increased filling pressures. In AS patients, E/e’ seem to be predominantly influenced by ventricular relaxation properties (i.e. e’) rather than mitral pressure gradients (i.e. E velocity). Thus, e’ is lower in AS patients, while E-wave velocities are not elevated compared to age-matched controls (1,2). Similarly, comparing pre- and post AVR parameters shows that reduction of E/e’ was mainly related to postoperatively increasing e’, while E velocity was unchanged.

NT-proBNP

Plasma NT-proBNP levels correlate well with elevated filling pressures in many different settings (8,10,27). For this reason, in the present study, NT-proBNP was chosen as a marker for increased end-diastolic pressures. The cut-off NT-proBNP value of 500 ng/L was derived from the clinical normalcy range for females between 70-80 years and males ≥70 years, appropriate for the majority of our patients.

Significantly reduced NT-proBNP levels after AVR indicate moderately improved but not normalized filling pressures following afterload reduction. ROC curve analyses for several diastolic parameters distinguish high and low NT-proBNP values with AUC values between 65% and 76%, which indicates moderate diagnostic value when values are measured in the intermediate range. In line with our findings, Sasaki et al showed that E/e’ was a highly sensitive and specific predictor of NT-proBNP levels, even after adjustment for clinical and systolic parameters (11). Notably, in the present study, E/e’ was not superior to low septal e’ as a marker for high NT-proBNP levels. Even though high E/é is a widely used marker for elevated filling pressures (8,11,27), changes in filling are thought to be driven by changing peak E velocity, while low e’ is thought to be closer related to impaired relaxation (15). However, the close correlation of e’ to NT-proBNP indicate that afterload and filling pressures have a direct influence on e’. A previous experimental study (14), tried to explain this inverse correlation by showing partially irreversible relation of impaired relaxation to increased filling pressures. Interestingly, peak E velocity showed low correlation with E/e’ or e’, and appeared to be an independent predictor of high NT-proBNP.

High PAP is a consistent and independent marker of elevated filling pressures (1,11,27) and a predictor for outcomes after TAVR and SAVR (21,28). In accordance with previous findings, high PAP values showed independent correlation with elevated NT-proBNP levels (27). In consistency with the 2016 guidelines, this study shows that PAP is the most specific prognosticator with incremental effect to other parameters for detection of high filling pressures.

Clinical implication
Preoperatively and postoperatively, 91% and 78% of patients with AS, respectively, displayed at least 2-3 of 3 criteria of grade I-III diastolic dysfunction, which include septal e’, lateral e’, LAVI, according to the 2009 ASE/EACVI guidelines.

Following the 2016 guidelines, all mitral flow and tissue-Doppler based parameters indicated elevated filling pressures in the majority of AS patients with unacceptably low specificity (25%). Only TR velocity >2.8m/s indicated high NT-proBNP levels with high specificity at acceptable sensitivity.

According to the results of the present study, we suggest the use of an adjusted model for elderly patients with AS by taking the following considerations into account:

First, E/e’ and e’ are good indicators of elevated filling pressures. Because of high correlation with each other, they have no significant additive value and can be used interchangeably. Septal or average E/e’ and e’ seemed to be more accurate than lateral e’ measurements in assessment of increased filling pressure.

Second, LA volume was not a significant indicator of increased NT-proBNP levels and thus of lesser value in the assessment of increased filling pressures in AS patients. LA size changes with atrial fibrillation, which was present in 25% of the AS patients, and it increased due to impaired relaxation which is present in the majority of AS patients. LA size might be a better indicator for long-term increased filling pressures when separately assessed for patients with sinus-rhythm or atrial fibrillation.

Third, our study confirms a highly specific PAP cut-off level of 40 mmHg which is the equivalent of TR peak velocity of 2.8 m/s suggested in the 2016 guidelines.

Fourth, E wave velocity and E DT, are independent indicators of elevated NT-proBNP levels in the multiple logistic regression analysis. E wave velocity decreases and DT is prolonged after AVR, indicating a closer relationship with reversible pressures. However, E velocity, DT, E/e’ and e’ cut-off values have to be adjusted towards cut-off values with higher specificities to be relevant for clinical use. According to our results, at least one of the following parameters need to cross their thresholds to indicate high filling pressures in patients with pre- or postoperative aortic stenosis: E/e’sept > 20, E velocity > 100 cm/s, DT <220ms , PAP > 40 mmHg or e’sept <5.0 cm/s.

Limitation of the study

The gold standard for diastolic filling pressures is invasive pressure measurements by right or left-heart catheter, which were not available in the present study. We used NT-proBNP as a surrogate marker of increased filling pressure, as previously practiced in other studies (17,19). Even though NT-proBNP correlates well with diastolic pressures, it is not known whether age alone increases proBNP. Setting the cut-off value of NT-proBNP at 500 ng/L did not take age-adjusted normalcy into account. However, a model with age-adjusted cut-off values for NT-proBNP was tested and rendered similar results.

The present study was performed on one ultrasound-system and the same reader, resulting in highly robust tissue velocity measurements. However, tissue Doppler indices are known to differ between ultrasound-systems with vendor specific machine-settings(29). Comparison of E/e’ and e’ and cut-off values with guidelines or other studies are therefore challenging as varying results might be due to systematic errors.

Abbreviations

AS - aortic stenosis
ASE - American Society of Echocardiography
AVR - aortic valve replacement
AUC – area under the curve
DT – deceleration time
e’ – peak tissue velocity in early diastole
EACVI - European Association of Cardiovascular Imaging
IVRT – isovolumetric relaxation time
LAVI - left atrial volume index
LBBB – left bundle branch block
LV - left ventricle/left ventricular
NT-proBNP - N-terminal prohormone of brain natriuretic peptide
PAP – pulmonary arterial pressure
PV SFF – systolic filling fraction of the pulmonary veins
ROC – receiver operator characteristics
SAVR - surgical aortic valve replacement
TAVR - transcatheter aortic valve replacement
TR - tricuspid regurgitation

Conclusion
Diastolic echocardiographic parameters in AS indicate persistent impaired relaxation and NT-proBNP indicate higher filling pressures in most of the patients, improving only modestly 6-12 months after TAVR and SAVR. Applying the 2016 ASE/EACVI recommendations for detection of elevated filling pressures to patients with AS, elevated NT pro-BNP levels could not be reliably detected. However, adjusting thresholds of the echocardiographic parameters increased specificities to useful diagnostic levels.

Declarations

• Ethics approval and consent to participate
• The study was prospectively approved by the regional ethical committee, REK North with the registration number: REK 2010/397-10. All participants signed a written consent.
• Consent for publication "Not applicable"
• Availability of data and materials
• The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.
• Competing interests
• There are no competing interest to report
• Funding: The study was supported by a grant by Helse Nord ID HN 2012/6884
• Authors’ contributions
• Acknowledgements
• Authors' information (optional)

References

1. Nagueh SF, Smiseth OA, Appleton CP et al. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 2016,29:277-314.
2. Steine K, Rossebo AB, Stugaard M, Pedersen TR. Left ventricular systolic and diastolic function in asymptomatic patients with moderate aortic stenosis. Am J Cardiol 2008,102:897-901.
3. Rassi AN, Pibarot P, Elmariah S. Left ventricular remodeling in aortic stenosis. Can J Cardiol 2014,30:1004-11.
4. Elahi MM, Chuang A, Ewing MJ, Choi CH, Grant PW, Matata BM. One problem two issues! Left ventricular systolic and diastolic dysfunction in aortic stenosis. Ann Transl Med 2014,2:10.
5. Carstensen HG, Larsen LH, Hassager C et al. Tissue Velocities and Myocardial Deformation in Asymptomatic and Symptomatic Aortic Stenosis. J Am Soc Echocardiogr 2015,28:969-80.
6. Badiani S, van Zalen J, Treibel TA, Bhattacharyya S, Moon JC, Lloyd G. Aortic Stenosis, a Left Ventricular Disease: Insights from Advanced Imaging. Curr Cardiol Rep 2016,18:80.
7. Blair JEA, Atri P, Friedman JL et al. Diastolic Function and Transcatheter Aortic Valve Replacement. J Am Soc Echocardiogr 2017,30:541-551.
8. Maeda K, Tsutamoto T, Wada A, Hisanaga T, Kinoshita M. Plasma brain natriuretic peptide as a biochemical marker of high left ventricular end-diastolic pressure in patients with symptomatic left ventricular dysfunction. Am Heart J 1998,135:825-32.
9. Michaud M, Maurin V, Simon M, Chauvel C, Bogino E, Abergel E. Patients with high left ventricular filling pressure may be missed applying 2016 echo guidelines: a pilot study. Int J Cardiovasc Imaging 2019,35:2157-2166.
10. Kazanegra R, Cheng V, Garcia A et al. A rapid test for B-type natriuretic peptide correlates with falling wedge pressures in patients treated for decompensated heart failure: a pilot study. J Card Fail 2001,7:21-9.
11. Sasaki S, Daimon M, Kawata T et al. Factors responsible for elevated plasma B-type natriuretic peptide levels in severe aortic stenosis: comparison between elderly and younger patients. J Cardiol 2014,64:476-81.
12. Stylidis M, Leon DA, Rsrer A, Schirmer H. Global myocardial longitudinal strain in a general population-associations with blood pressure and subclinical heart failure: The Tromso Study. Int J Cardiovasc Imaging 2020,36:459-470.
13. Baumgartner H, Falk V, Bax JJ et al. 2017 ESC/EACTS Guidelines for the management of valvular heart disease. Eur Heart J 2017,38:2739-2791.
14. Leite S, Rodrigues S, Tavares-Silva M et al. Afterload-induced diastolic dysfunction contributes to high filling pressures in experimental heart failure with preserved ejection fraction. Am J Physiol Heart Circ Physiol 2015,309:H1648-54.
15. Nagueh SF, Appleton CP, Gillebert TC et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography. J Am Soc Echocardiogr 2009,22:107-33.
16. Christensen NL, Dahl JS, Carter-Storch R et al. Association Between Left Atrial Dilatation and Invasive Hemodynamics at Rest and During Exercise in Asymptomatic Aortic Stenosis. Circ Cardiovasc Imaging 2016,9.

17. van Heerebeek L, Hamdani N, Falcao-Pires I et al. Low myocardial protein kinase G activity in heart failure with preserved ejection fraction. Circulation 2012,126:830-9.

18. Dalsgaard M, Kjaergaard J, Pecini R et al. Left ventricular filling pressure estimation at rest and during exercise in patients with severe aortic valve stenosis: comparison of echocardiographic and invasive measurements. J Am Soc Echocardiogr 2009,22:343-9.

19. Utsunomiya H, Mihara H, Itabashi Y et al. Impact of Mitral Annular Displacement on Left Ventricular Diastolic Function Improvement After Transcatheter Aortic Valve Implantation. Circ J 2017,81:558-566.

20. Styliidis M, Sharashova E, Wilsgaard T et al. Left atrial diameter, left ventricle filling indices, and association with all-cause mortality: Results from the population-based Tromso Study. Echocardiography 2019,36:439-450.

21. Ha SJ, Yoo SY, Hong MK, Hong GR. Immediate and Evolutionary Recovery of Left Ventricular Diastolic Function after Transcatheter Aortic Valve Replacement: Comparison with Surgery. Yonsei Med J 2020,61:30-39.

22. Muratori M, Fusini L, Tamborini G et al. Sustained favourable haemodynamics 1 year after TAVI: improvement in NYHA functional class related to improvement of left ventricular diastolic function. Eur Heart J Cardiovasc Imaging 2016,17:1269-1278.

23. Maayan K, Simon B, Yan T et al. Predictors of improvement in diastolic function after transcatheter aortic valve implantation. J Echocardiogr 2014,12:17-23.

24. Rosner A, Bijnens B, Hansen M et al. Left ventricular size determines tissue Doppler-derived longitudinal strain and strain rate. Eur J Echocardiogr 2009,10:271-7.

25. Baltabaeva A, Marciniak M, Bijnens B et al. Regional left ventricular deformation and geometry analysis provides insights in myocardial remodelling in mild to moderate hypertension. Eur J Echocardiogr 2008,9:501-8.

26. Guo Y, Sun M, Chen H, Kong D, Shu X, Pan C. Assessment of left ventricular diastolic function after Transcatheter aortic valve implantation in aortic stenosis patients by echocardiographic according to different guidelines. Cardiovasc Ultrasound 2020,18:3.

27. Gumauskiene B, Krivickiene A, Jonkaitiene R, Vaskelyte JJ, Siudikas A, Ereminiene E. Impact of Left Ventricular Diastolic Dysfunction and Biomarkers on Pulmonary Hypertension in Patients with Severe Aortic Stenosis. Medicina (Kaunas) 2018,54.

28. Kjonas D, Dahle G, Schirmer H et al. Predictors of early mortality after transcatheter aortic valve implantation. Open Heart 2019,6:e000936.

29. Olsen NT, Jons C, Fritz-Hansen T, Mogelvang R, Sogaard P. Pulsed-wave tissue Doppler and color tissue Doppler echocardiography: calibration with M-mode, agreement, and reproducibility in a clinical setting. Echocardiography 2009,26:638-44.

Tables

Table 1 is not available with this version.

Table 2: Distribution of diastolic measurements in patients with severe aortic stenosis
n	Range (cm/s)	e’septal (cm/s)	e’lateral (cm/s)	e’avrg (cm/s)	Range (cm/s)	E/e’sept ()	E/e’lat ()	E/e’avrg ()	Range (ms)	IVRT	Range (mmHg)	PAP	PV SFF	LA volume Index	MV peak E	MV peak A	MV E/A ()	Range (ms)
Before	After SAVR/TAVR	Before SAVR/TAVR	After SAVR/TAVR	Before SAVR/TAVR	After SAVR/TAVR	Before SAVR/TAVR	After SAVR/TAVR	Before SAVR/TAVR	After SAVR/TAVR	Before SAVR/TAVR	After SAVR/TAVR	Before SAVR/TAVR	After SAVR/TAVR					
		Before SAVR/TAVR	After SAVR/TAVR	Before SAVR/TAVR	After SAVR/TAVR	Before SAVR/TAVR	After SAVR/TAVR	Before SAVR/TAVR	After SAVR/TAVR	Before SAVR/TAVR	After SAVR/TAVR	Before SAVR/TAVR	After SAVR/TAVR					
		Before SAVR/TAVR	After SAVR/TAVR	Before SAVR/TAVR	After SAVR/TAVR	Before SAVR/TAVR	After SAVR/TAVR	Before SAVR/TAVR	After SAVR/TAVR	Before SAVR/TAVR	After SAVR/TAVR	Before SAVR/TAVR	After SAVR/TAVR					
		Before SAVR/TAVR	After SAVR/TAVR	Before SAVR/TAVR	After SAVR/TAVR	Before SAVR/TAVR	After SAVR/TAVR	Before SAVR/TAVR	After SAVR/TAVR	Before SAVR/TAVR	After SAVR/TAVR	Before SAVR/TAVR	After SAVR/TAVR					
		Before SAVR/TAVR	After SAVR/TAVR	Before SAVR/TAVR	After SAVR/TAVR	Before SAVR/TAVR	After SAVR/TAVR	Before SAVR/TAVR	After SAVR/TAVR	Before SAVR/TAVR	After SAVR/TAVR	Before SAVR/TAVR	After SAVR/TAVR					
		Before SAVR/TAVR	After SAVR/TAVR	Before SAVR/TAVR	After SAVR/TAVR	Before SAVR/TAVR	After SAVR/TAVR	Before SAVR/TAVR	After SAVR/TAVR	Before SAVR/TAVR	After SAVR/TAVR	Before SAVR/TAVR	After SAVR/TAVR					
		Before SAVR/TAVR	After SAVR/TAVR	Before SAVR/TAVR	After SAVR/TAVR	Before SAVR/TAVR	After SAVR/TAVR	Before SAVR/TAVR	After SAVR/TAVR	Before SAVR/TAVR	After SAVR/TAVR	Before SAVR/TAVR	After SAVR/TAVR					
		Before SAVR/TAVR	After SAVR/TAVR	Before SAVR/TAVR	After SAVR/TAVR	Before SAVR/TAVR	After SAVR/TAVR	Before SAVR/TAVR	After SAVR/TAVR	Before SAVR/TAVR	After SAVR/TAVR	Before SAVR/TAVR	After SAVR/TAVR					
		Before SAVR/TAVR	After SAVR/TAVR	Before SAVR/TAVR	After SAVR/TAVR	Before SAVR/TAVR	After SAVR/TAVR	Before SAVR/TAVR	After SAVR/TAVR	Before SAVR/TAVR	After SAVR/TAVR	Before SAVR/TAVR	After SAVR/TAVR					
E decel time	Before SAVR/TAVR	130	13%	30%	19%	39%	251±95	0.050										
--------------	------------------	-----	-----	-----	-----	-----	--------	--------										
	After SAVR/TAVR	132	5%	28%	30%	37%	260±76											
Range (ng/L)							<500	500-850										
							850-1700	1700-5000										
							>5000											
NT-proBNP	Before SAVR/TAVR	119	23%	16%	19%	30%	13%	3168±6270	<0.0001									
	After SAVR/TAVR	120	43%	19%	21%	13%	4%	1274±2238										
Range ()		0					1 (Normal)	2 (Indeterminate)										
							3 (Positive)	4 (Positive)										
Score 2016	Before SAVR/TAVR	117	3%	9%	22%	40%	26%	2.7±1.0	0.071									
	After SAVR/TAVR	128	2%	13%	35%	36%	15%	2.5±1.0										
Range ()		0					1 (Normal)	2										
							3											
2009 Criteria for Grade I, II or III	Before SAVR/TAVR	127	1%	8%	20%	72%	2.6±1	<0.0001										
	After SAVR/TAVR	130	2%	20%	28%	51%	2.3±1											

2009 Criteria for Grade I, II or III diastolic dysfunction were septal e’<8, lateral e’<10, LA ≥34 ml/m2, displayed is the number of criteria met.

A, late (atrial) diastolic transmitral flow velocity, E, early diastolic transmitral flow velocity, e’, early diastolic mitral annular velocity, IVRT, isovolumic relaxation time, LA, left atrium, MV dec time, mitral valve deceleration time, MV peak E, mitral valve early diastolic filling velocity, MV peak A, mitral valve late diastolic atrial filling velocity, NT-proBNP: N-terminal prohormone of brain natriuretic peptide, PAP, pulmonary artery pressure, PV SFF, pulmonary veins systolic filling fraction, SAVR: Surgical aortic valve replacement, TAVR: Transcatheter aortic valve replacement

Table 3: ROC curve analysis of echocardiographic parameters to predict NT-proBNP ≥ 500 ng/L in patients with severe aortic stenosis
N= 210 NT-proBNP ≥ 500
N= 123 NT-proBNP < 500
Parameter

e’ septal (cm/s)
e’ lateral (cm/s)
e’ avg (cm/s)
E/e’ sept ()
E/e’ lat ()
E/e’ avg ()
PV SFF
LA volume (ml)
MV peak E (cm/s)
MV peak A (cm/s)
MV E/A ()
MV dec time (ms)
IVRT (ms)
PAP (mmHg)
Score 2016
Score 1 e’ sept
Score 2 E/e’ avg

A, late (atrial) diastolic transmitral flow velocity, AUC, Area Under the Curve, CI, confidence interval, E, early diastolic transmitral flow velocity, e’, early diastolic mitral annular velocity, IVRT, isovolumic relaxation time, LA, left atrium, MV dec time, mitral valve deceleration time, MV peak E, mitral valve early diastolic filling velocity, MV peak A, mitral valve late diastolic atrial filling velocity, NT-proBNP: N-terminal prohormone of brain natriuretic peptide, PAP, pulmonary artery pressure, ROC, receiver operating characteristic.
Table 4: Cut-off values, sensitivity and specificity for detection of elevated NT-proBNP

	A																
	N pos	N neg	Cut-off A	Sensitivity (%)	Specificity (%)	Cut-off B	Sensitivity (%)	Specificity (%)	Cut-off C	Sensitivity (%)	Specificity (%)	Cut-off D	Sensitivity (%)	Specificity (%)	Cut-off E	Sensitivity (%)	Specificity (%)
e’septal (cm/s)	227	129	6.0	83	35	5.5	75	53	5.0	64	60						
e’avrg (cm/s)	227	129	7.0	72	39	6.0	65	56	5.5	45	72						
E/e’sept	227	129	16	72	50	18	64	65	20	55	76						
E/e’avrg	227	129	14	67	57	15	58	66	16	54	70						
PV SFF	220	128	60	80	41	55	67	63	50	55	77						
LA volume (ml)	227	130	70	85	43	80	73	60	90	61	75						
PAP (mmHg)	220	128	30	84	31	35	61	74	40	41	90						
Peak E (cm/s)	228	130	80	68	45	90	59	63	100	52	81						
E DT (ms)	228	130	280	68	52	250	59	68	220	44	81						
Score of the parameters above	-1	0	0	0	+1												
Sum Score of e’sept * peakE * DT * PAP	219	125	-1.5	82	51	-0.5	62	73	0.5	45	92						
Sum Score of: E/e’sept * peakE * DT * PAP	196	123	-1.5	66	63	-0.5	55	72	0.5	40	86						
Score 2016	214	124	1.5	93	23	2.5	68	68	3.5	27	96						

Score: sum of score for the three independent parameters <cutoff A = -1, between cutoff B and 3: 0, ≥cutoff C = 1

DT, deceleration time, E, early diastolic transmitral flow velocity, e’, early diastolic mitral annular velocity, IVRT, isovolumic relaxation time, LA, left atrium, NT-proBNP, N-terminal prohormone of brain natriuretic peptide, PAP, pulmonary artery pressure, PV SFF, pulmonary veins systolic filling fraction.

Table 5: Univariate and multivariate regression analysis for indicators of elevated NT-proBNP (≥500ng/L)
Variable	Univariate regression (Unadjusted model)	Multivariate regression (Adjusted model)						
	OR	95% CI	95% CI	p-value	OR	95% CI	95% CI	p-value
e' septal (cm/s)	0.731	0.632	0.845	<0.0001	1.196	1.118	1.279	<0.0001*
e' lateral (cm/s)	0.921	0.847	1.002	0.056	1.196	1.118	1.279	<0.0001*
e' avg (cm/s)	0.807	0.713	0.913	0.001	1.196	1.118	1.279	<0.0001*
E/e' sept ()	1.108	1.071	1.147	<0.0001	1.196	1.118	1.1279	<0.0001*
E/e' lat ()	1.079	1.039	1.127	<0.0001	1.196	1.118	1.1279	<0.0001*
E/e' avg ()	1.090	1.040	1.142	<0.0001	1.196	1.118	1.1279	<0.0001*
PV SFF	0.947	0.929	0.965	<0.0001	1.196	1.118	1.1279	<0.0001*
LA volume (ml)	1.022	1.013	1.030	<0.0001	1.196	1.118	1.1279	<0.0001*
MV peak E (cm/s)	1.019	1.010	1.027	<0.0001	0.965	0.949	0.982	0.001
MV peak A (cm/s)	0.999	0.991	1.007	0.782	0.965	0.949	0.982	0.001
MV E/A ()	2.278	1.210	4.289	0.011	0.965	0.949	0.982	0.001
MV dec time (ms)	0.994	0.991	0.997	<0.0001	0.994	0.991	0.998	0.001
IVRT (ms)	0.997	0.993	1.001	0.192	1.095	1.039	1.154	0.001
PAP (mmHg)	1.114	1.097	1.192	<0.0001	1.095	1.039	1.154	0.001

*E’ sept or E'/avg exclude each other in the equation and can be used interchangeably.

A, late atrial diastolic transmitral flow velocity. E, early diastolic transmitral flow velocity. e’, early diastolic mitral annular velocity. IVRT, isovolumic relaxation time. LA, left atrium. MV dec time, mitral valve deceleration time, MV peak E, mitral valve early diastolic filling velocity, MV peak A, mitral valve late diastolic atrial filling velocity, NT-proBNP, N-terminal prohormone of brain natriuretic peptide, PAP, pulmonary artery pressure, PV SFF, pulmonary veins systolic filling fraction.
Figure 1

Example for mitral valve and tissue-Doppler parameters before and after aortic valve replacement (AVR). Upper panel: TI: tricuspid insufficiency, Vmax: maximal velocity, Mid panel: Mitral flow: E vel: E-wave velocity, E/A: ratio of E-wave and A-wave velocity, DT: deceleration time, Lower panel: Tissue Doppler: s': peak systolic velocity, e': peak e-velocity
Figure 2

ROC curve analyses of echocardiographic diastolic parameters for NT-proBNP ≥ 500 ng/L. DT, deceleration time, E, early diastolic transmitral flow velocity, e', early diastolic mitral annular velocity, LA, left atrium, PAP, pulmonary artery pressure, PV SFF, pulmonary veins systolic filling fraction, ROC, receiver operating characteristic.