Novel Evidence That the Mannan-Binding Lectin Pathway of Complement Activation Plays a Pivotal Role in Triggering Mobilization of Hematopoietic Stem/Progenitor Cells by Activation of Both the Complement and Coagulation Cascades

M. Adamiak
University of Louisville

A. Abdelbaset-Ismail
University of Louisville

M. Suszynska
University of Louisville

Ahmed K. Abdel-Latif
University of Kentucky, abdel-latif@uky.edu

J. Ratajczak
University of Louisville

Repository Citation
Adamiak, M.; Abdelbaset-Ismail, A.; Suszynska, M.; Abdel-Latif, Ahmed K.; Ratajczak, J.; and Ratajczak, M. Z., "Novel Evidence That the Mannan-Binding Lectin Pathway of Complement Activation Plays a Pivotal Role in Triggering Mobilization of Hematopoietic Stem/Progenitor Cells by Activation of Both the Complement and Coagulation Cascades" (2017). *Internal Medicine Faculty Publications*. 153.
https://uknowledge.uky.edu/internalmedicine_facpub/153

This Letter to the Editor is brought to you for free and open access by the Internal Medicine at UKnowledge. It has been accepted for inclusion in Internal Medicine Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.
Authors
M. Adamiak, A. Abdelbaset-Ismail, M. Suszynska, Ahmed K. Abdel-Latif, J. Ratajczak, and M. Z. Ratajczak

Novel Evidence That the Mannan-Binding Lectin Pathway of Complement Activation Plays a Pivotal Role in Triggering Mobilization of Hematopoietic Stem/Progenitor Cells by Activation of Both the Complement and Coagulation Cascades

Notes/Citation Information
Published in Leukemia, v. 31, issue 1, p. 262-265.

© The Author(s) 2017

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/.

Digital Object Identifier (DOI)
https://doi.org/10.1038/leu.2016.278

This letter to the editor is available at UKnowledge: https://uknowledge.uky.edu/internalmedicine_facpub/153
REFERENCES
1 Brandes M, Willmann K, Moser B. Professional antigen-presentation function by human gammadelta T Cells. Science 2005; 309: 264–268.
2 Hayday AC. Gammadelta T cells and the lymphoid stress-surveillance response. Immunity 2009; 31: 184–196.
3 Hayday A, Tigelaar R. Immunoregulation in the tissues by gammadelta T cells. Nat Rev Immunol 2003; 3: 233–242.
4 Kunzmann V, Bauer E, Feurle J, Weissingler F, Tony HP, Wilhelm M. Stimulation of gammadelta T cells by aminobisphosphonates and induction of antiplasma cell activity in multiple myeloma. Blood 2000; 96: 384–392.
5 Mariani S, Muraro M, Pantaleoni F, Fiore F, Nuschak B, Peola S et al. Effector gammadelta T cells and tumor cells as immune targets of zoledronic acid in multiple myeloma. Leukemia 2005; 19: 664–670.
6 Cui Q, Shibata H, Oda A, Amou H, Nakano A, Yata K et al. Targeting myeloma-osteoclast interaction with Vgamma9Vdelta2T cells. Int J Hematol 2011; 94: 63–70.
7 Vantourout P, Hayday A. Six-of-the-best: unique contributions of gammadelta T cells to immunology. Nat Rev Immunol 2013; 13: 88–100.
8 Braza MS, Klein B. Anti-tumour immunotherapy with Vgamma9Vdelta2T lymphocytes: from the bench to the bedside. Br J Haematol 2013; 160: 123–132.
9 Kortum KM, Zhu YX, Shi CX, Jedlowksi P, Stewart AK. Cereblon binding molecules in multiple myeloma. Blood Rev 2015; 29: 329–334.
10 Lagrue K, Carisey A, Morgan DJ, Chopra R, Davis DM. Lenalidomide augments actin remodeling and lowers NK-cell activation thresholds. Blood 2015; 126: 50–60.
11 Pang DJ, Neves JF, Sumaria N, Pennington DJ. Understanding the complexity of gammadelta T-cell subsets in mouse and human. Immunology 2012; 136: 283–290.
12 Gandhi AK, Kang J, Havens CG, Conklin T, Ning Y, Wu L et al. Immunomodulatory agents lenalidomide and pomalidomide co-stimulate T cells by inducing degra- dation of T cell repressors Ikars and Aiolos via modulation of the E3 ubiquitin ligase complex CRL4(CRB). Br J Haematol 2014; 164: 811–821.
13 Bjorklund CC, Lu L, Kang J, Hagner PR, Havens CG, Amatangelo M et al. Rate of CRL4(CRB) substrate Ikars and Aiolos degradation underlies differential activity of lenalidomide and pomalidomide in multiple myeloma cells by regulation of c-Myc and IRF4. Blood Cancer J 2015; 5: e354.
14 Martinet L, Fleury-Cappellesso S, Godelorge M, Dietrich G, Bourin P, Fournie JJ et al. A regulatory cross-talk between Vgamma9Vdelta2T lymphocytes and mesenchymal stem cells. Eur J Immunol 2009; 39: 752–762.
15 Castella B, Foglietta M, Sciancalepore P, Rigoni M, Cossia M, Griggo V et al. Anergic bone marrow Vgamma9Vdelta2T cells as early and long-lasting markers of PD-1-targetable microenvironment-induced immune suppression in human myeloma. Oncoimmunology 2015; 4: e1047580.

Supplementary Information accompanies this paper on the Leukemia website (http://www.nature.com/leu)

OPEN

Novel evidence that the mannan-binding lectin pathway of complement activation plays a pivotal role in triggering mobilization of hematopoietic stem/progenitor cells by activation of both the complement and coagulation cascades

Leukemia (2017) 31, 262–265; doi:10.1038/leu.2016.278

Hematopoietic stem progenitor cells (HSPCs) circulate at low levels in peripheral blood (PB) and follow changes in circadian rhythm. Evidence has accumulated that their egress from stem cell niches is significantly augmented in a complement cascade (ComC)-dependent manner. The number of HSPCs circulating in PB increases during infection, tissue or organ injuries and particularly after administration of pharmacological drugs, such as granulocyte-colony stimulating factor (G-CSF) or the CXCR4 receptor antagonist AMD3100, and pharmacological mobilization is a means to obtaining HSPCs for hematopoietic reconstitution.

ComC and CoaC activation pathways are involved in triggering the mobilization of HSPCs after administration of G-CSF or AMD3100. MBL is a soluble receptor-like molecule that activates the ComC by engaging the so-called MBL-associated serine proteases (MASP-1 and -2). The MBL pathway of ComC activation in triggering the mobilization of HSPCs has been previously demonstrated, plays a role in the mobilization process. On the basis of these findings, we hypothesized that the MBL-initiated ComC and CoaC activation pathways are involved in triggering mobilization of HSPCs and that MBL–MASP deficiency results in poor mobilization efficiency.

In our experiments, we employed 2-month-old, MBL-deficient (MBL/−) and MASP-1-deficient (MASP-1/−) mice as well as their normal wild type (WT) littermates, and animals were mobilized with G-CSF (100 μg/kg daily for 3 or 6 days) or AMD3100 (5 mg/kg). Following mobilization, we measured the total number of white blood cells, the number of circulating clonogenic colony-forming unit granulocyte/macrophage (CFU-GM) progenitors and the number of Sca-1+ c-kit+ lineage− (SKL) cells in PB. In parallel, we evaluated activation of the CoaC after administration of G-CSF or AMD3100 in experimental animals by employing C5a ELISA. We found that MBL-deficient and MASP-1-deficient mice did show impairment in mobilization of HSPCs.

Therefore, we became interested in the potential role of the MBL pathway of ComC activation in triggering the mobilization of HSPCs after administration of G-CSF or AMD3100. MBL is a soluble pattern-recognition receptor circulating in PB that is involved in the first line of defense of innate immunity and, as mentioned above, activates the ComC by engaging the so-called MBL-associated serine proteases (MASP-1 and -2). The MBL–MASP pathway also activates the CoaC, which, as also recently demonstrated, plays a role in the mobilization process.

On the basis of these findings, we hypothesized that the MBL-initiated ComC and CoaC activation pathways are involved in triggering mobilization of HSPCs and that MBL–MASP deficiency results in poor mobilization efficiency.
in some of the experiments with an inhibitor of the CoaC (refudan).

We found that MBL-KO (Figure 1a) and MASP-1-KO (Figure 1b) mice are poor mobilizers in response to mobilizing agents compared with WT littermates. Moreover, to exclude defects in hematopoiesis in animals employed in this study that could be responsible for the observed mobilization defects, we found that under steady-state conditions MBL-deficient (Supplementary Figure 1) and MASP-1-deficient (Supplementary Figure 2) mice have normal PB cell counts (Panels A), red blood cell parameters (Panels B), numbers of bone marrow-residing HSPCs (Panels C) and numbers of clonogenic progenitors (Panels D) compared with WT animals.

Since, as mentioned above, the MBL–MASP-1 complex has been reported to also activate the CoaC, and thrombin provides C5-like convertase activity to activate/cleave C5a, 6,8 which is pivotal for egress of HSPCs from BM into PB, we performed mobilization studies in MBL−/− and WT mice in the presence or absence of the CoaC inhibitor refudan. Figure 1c shows that, as expected, control mice exposed to refudan have impaired G-CSF-induced mobilization. However, administration of refudan did not augment the mobilization defect in MBL−/− mice, which indicates that the MBL–MASP pathway is most likely the crucial pathway in activation of the CoaC following G-CSF administration.

Overall, the salient observation of our work is that MBL and its downstream effector MASP-1 play a pivotal role in activation of the CoaC during G-CSF- and AMD3100-mediated mobilization of HSPCs. For example, Figure 2a demonstrates defective generation of C5a in MBL−/− and MASP-1−/− animals, which explains our previous results in which mice that have a defect in activation of the classical pathway (C1q−) mobilize HSPCs into PB normally, because distal ComC pathway and C5 in C1q− mice is properly activated in MBM–MASP-dependent manner. We also demonstrate that, in addition to the ComC, the CoaC, which augments mobilization of HSPCs by providing thrombin-mediated C5-like convertase activity is also activated during mobilization in an MBL–MASP-dependent manner. On the basis of these and other published results, we propose the mechanistic scenario depicted in Figure 2b, which portrays mobilization of HSPCs in response to pharmacological agents (G-CSF or AMD3100).

Specifically, the first step during mobilization is activation of Gr−1 granulocytes and monocytes in the BM microenvironment, which are a source of several proteolytic 9,10 and, as recently demonstrated, also lipolytic enzymes 11 that together cooperate to

![Figure 1](image-url)
impair retention signals for HSPCs in BM niches as well as disturb membrane lipid raft integrity. The fact that experiments with mouse mutants for several proteolytic enzymes that are released from activated Gr-1+ cells in BM have failed so far to identify a crucial enzyme\(^3,^{12}\) suggests redundancy among enzymes and the involvement of several other proteases, such as cathepsin K. Moreover, it is widely acknowledged that proteolytic enzymes digest proteins involved in retention of HSPCs in BM niches, such as stromal-derived factor 1 and vascular cell adhesion molecule 1, expressed in the BM microenvironment, with the corresponding digestion proteins involved in retention of HSPCs in BM niches, such as stromal-derived factor 1 and vascular cell adhesion molecule 1, expressed in the BM microenvironment, with the corresponding proteolytic and lipolytic BM microenvironment, Gr-1+ cells also mobilize HSPCs. Mobilizing agents, G-CSF or AMD3100, activate Gr-1+ neutrophils and monocytes and enhance secretion of ROS by these cells. In the BM microenvironment, ROS expose neoepitopes. Moreover, during mobilization, several types of DAMP molecules are released. Neoepitope–IgM complexes as well as DAMPs are recognized by MBL, which activates the ComC and the CoaC in a MASP-dependent manner. CS convertases (classical and ‘CS-like’) generated in the next step cleave C5 to release cleavage fragments crucial to executing egress of HSPCs from BM.

Figure 2. (a) Defective cleavage of C5 in MBL- and MASP-1-deficient mice during mobilization. Plasma collected from PB of mice mobilized with G-CSF (short or long) or AMD3100 show lower levels of C5a compared with WT mice. Results shown as a percentage of mobilized WT mice, \(P \leq 0.05\). (b) Interplay of components of innate immunity (the ComC, Gr-1+ cells, naturally occurring IgM antibodies), and the CoaC in the mobilization of HSPCs. Mobilizing agents, G-CSF or AMD3100, activate Gr-1+ neutrophils and monocytes and enhance secretion of ROS by these cells. In the BM microenvironment, ROS expose neoepitopes. Moreover, during mobilization, several types of DAMP molecules are released. Neoepitope–IgM complexes as well as DAMPs are recognized by MBL, which activates the ComC and the CoaC in a MASP-dependent manner. CS convertases (classical and ‘CS-like’) generated in the next step cleave C5 to release cleavage fragments crucial to executing egress of HSPCs from BM.
In conclusion, we have identified a previously unrecognized role for the MBL–MASP-1 pathway in triggering both ComC and CoaC activation during the HSPC mobilization process. This finding explains the pivotal role of the MBL pathway in triggering activation of the proximal part of the ComC and explains why, with a deficiency in activation of classical pathway components (C1q), mobilization of HSPCs proceeds normally as long as the MBL pathway remains intact.15 Taking into consideration that ~10% of normal people are poor activators of the MBL pathway15 and that this percentage may correspond with the ~10% of the normal healthy population that are poor mobilizers, we are currently investigating whether MBL deficiency correlates with poor mobilization status in patients. If our hypothesis is correct, the MBL level could become an important predictive parameter for identifying poor mobilizers. Finally, our results again confirm a pivotal role of the ComC and other elements of innate immunity as well as involvement of the CoaC in the mobilization process.

CONFLICT OF INTEREST
The authors declare no conflict of interest.

ACKNOWLEDGEMENTS
This work was supported by NIH grants 2R01 DK074720 and R01HL112788, the Stella and Henry Endowment and the Harmonia NCN grant UMO-2014/14/M/NZ3/00475 to MZR. AAI was on leave of absence from the Faculty of Veterinary Medicine, Zagazig University, Egypt. MA and AAI equally contributed to this paper.

M Adamiak1,2, A Abdelbaset-Ismail1, M Suszynska1, A Abdel-Latif3, J Ratajczak1 and MZ Ratajczak1,2
1Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA; 2Department of Regenerative Medicine Warsaw Medical University, Warsaw, Poland and 3Division of Cardiovascular Medicine, Gill Heart Institute, University of Kentucky, Lexington, KY, USA

E-mail: mizrata01@louisville.edu

REFERENCES
1 Katayama Y, Battista M, Kao WM, Hidalgo A, Peired AJ, Thomas SA et al. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 2006; 124: 407–421.
2 Ratajczak MZ, Kim CH, Wojakowski W, Janowska-Wieczorek A, Kucia M, Ratajczak J. Innate immunity as orchestrator of stem cell mobilization. Leukemia 2010; 24: 1667–1675.
3 Bonig H, Papayannopoulou T. Hematopoietic stem cell mobilization: updated conceptual renditions. Leukemia 2013; 27: 24–31.
4 Song WC. Crosstalk between complement and toll-like receptors. Toxicol Pathol 2012; 40: 174–182.
5 Lee HM, Wu W, Wysoczynski M, Liu R, Zuba-Surma EK, Kucia M et al. Impaired mobilization of hematopoietic stem/progenitor cells in CS-deficient mice supports the pivotal involvement of innate immunity in this process and reveals novel promobilization effects of granulocytes. Leukemia 2009; 23: 2052–2062.
6 Borkowska S, Suszynska M, Mierzejewska K, Ismail A, Budkowska M, Salata D et al. Novel evidence that crosstalk between the complement, coagulation, and fibrinolysis proteolytic cascades is involved in mobilization of hematopoietic stem/progenitor cells (HSPCs). Leukemia 2014; 28: 2148–2154.
7 Jablonski M, Marquez-Curtis L, Shivaikar N, Wysoczynski M, Ratajczak M, Janowska-Wieczorek A. Complement C1q enhances homing-related responses of hematopoietic stem/progenitor cells. Transfusion 2010; 50: 2002–2010.
8 Gür-Cohen S, Itkin T, Chakraborty S, Graf C, Kollet O, Luidin A et al. PAR1 signaling regulates the retention and recruitment of EPCR-expressing bone marrow hematopoietic stem cells. Nat Med 2015; 21: 1307–1317.
9 Lévesque JP, Helwani FM, Winkler IG. The endosteal ‘osteoblastic’ niche and its role in hematopoietic stem cell homing and mobilization. Leukemia 2010; 24: 1979–1992.
10 Lévesque JP, Liu F, Simmons PJ, Betsuyaku T, Senior RM, Pham C et al. Characterization of hematopoietic progenitor mobilization in protoe-deficient mice. Blood 2004; 104: 65–72.
11 Adamiak M, Poniewierska-Baran A, Borkowska S, Schneider G, Abdelbaset-Ismail A, Suszynska M et al. Evidence that a lipolytic enzyme-hematopoietic-specific phospholipase C-β2-promotes mobilization of hematopoietic stem cells by decreasing their lipid raft-mediated bone marrow retention and increasing the promobilizing effects of granulocytes. Leukemia 2015; 30: 919–928.
12 Hoggatt J, Tate TA, Pelus LM. Hematopoietic stem and progenitor cell mobilization in mice. Methods Mol Biol 2014; 1185: 43–64.
13 Reca R, Cramer D, Yan J, Laughlin MJ, Janowska-Wieczorek A, Ratajczak J et al. A novel role of complement in mobilization: immunodeficient mice are poor granulocyte-colony stimulating factor mobilizers because they lack complement-activating immunoglobulins. Stem Cells 2007; 25: 3093–3100.
14 Lapidot T, Kollet O. The brain-bone-blood triad: traffic lights for stem-cell homing and mobilization. Hematology Am Soc Hematol Educ Program 2010; 1: 1–6.
15 Keizer MP, Wouters D, Schlapbach LJ, Kuipers TW. Restoration of MBL-deficiency: redefining the safety, efficacy and viability of MBL-substitution therapy. Mol Immunol 2014; 6: 174–184.

Letters to the Editor

© The Author(s) 2017

NonCommercial-ShareAlike 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/