Fracture behaviour of zirconium alloy cylindrical tube with pellets under axial impact loading

Naoki MORISHIGE*1,*2, Farid TRIAWAN*3, Kazuaki INABA*3 and Kikuo KISHIMOTO*4

*1 Department of Mechanical Sciences and Engineering, Tokyo Institute of Technology
2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
*2 Nuclear Fuel and Core Research & Development Department, Nuclear Development Corporation
622-12 Funashikawa, Tokaimura, Naka-gun, Ibaraki 319-1111, Japan
*3,*4 School of Environment and Society, Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology
2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan

Received: 5 July 2017; Revised: 1 September 2017; Accepted: 25 October 2017

Abstract
A zirconium alloy cylindrical tube exhibited fracture under high-velocity axial impact load when high yield strength pellets were inserted as reported by Morishige et al., 2016. The fracture occurred after a crack was initiated at the tensile side of the bending tube. In this paper, FE analyses were conducted to clarify the fracture mechanism as well as the deformation behavior. At first, axial tensile tests using tubes with four slit-holes located at the center were performed in order to evaluate the fracture behavior of the tube. Then, digital image correlation (DIC) method was utilized to measure the local strain near the slit-holes. The results showed that the fracture displacement became smaller with smaller slit-holes’ radius. Also, the strain was concentrated at the slit-holes’ tips where cracks were generated before fracture. Subsequently, FE analyses of the tensile tests were conducted by LS-DYNA using the implicit method to obtain the fracture criterion. The load-displacement curve agreed well with the experiment. Then, the relationship between stress triaxiality and equivalent plastic strain near the slit-holes’ area were evaluated to define the fracture criterion. Finally, FE analyses of the axial impact tests using the dynamic explicit method were conducted to compare with the fracture criterion defined by the axial tensile tests. The results indicated that a localized stress and strain might occur at the tube boundary adjacent to pellets. This was caused by the interaction between tube and pellets’ edge which generated a tensile stress condition at the tube boundary when high yield strength pellet was applied. Under this condition, both stress triaxiality and effective plastic strain could increase and eventually lead to the fracture criterion.

Keywords: Cylindrical tubes, Pellets, Axial impact load, Fracture, Tensile test, Digital image correlation, Stress triaxiality, Finite element analysis

1. 緒言
原子燃料の燃料棒は、円筒形状のジルコニウム合金にセラミックである円柱形状の酸化ウランペレットが内装された体系となっている。この燃料棒には落下事故等の事故時に衝撃荷重が加わることが想定され、そのよ
うな荷重が付与された場合の挙動を評価する必要がある。著者らの過去の研究にて、ジルコニウム合金の一つであるジルカロイ-4（Zry-4）製円筒にアルミニナペレットあるいは鉛-アンチモンペレットのように異なる強度のペレットを内装した体系、及び内装物のない空管の体系で軸衝撃試験を実施した。軸衝撃荷重付与により空管、鉛-アンチモンペレット内装管では曲げ変形が生じるのみであったが、高速度条件でのアルミニナペレット内装管では曲げ変形に伴い、変形曲げ部の引張側にき裂が生じ破断に至ることが確認された（森重他, 2016）。この一因として、円筒と内装物の接触に伴う複雑な応力場の発生による影響が推定されるが、その詳細は明らかとなっていない。応力場の指標の一つとして応力三軸度が挙げられ、応力三軸度と破断歪の関係は鉄鋼材料、アルミニウム合金、アルミニウム鋳造合金等において報告されており、いずれにおいても単軸引張条件である応力三軸度0.33に対して応力三軸度が増加すると小さな相当塑性歪で破断に至ると報告されている（Otsuka et al., 1987; Bao and Wierzbicki, 2004; 前他, 2008）。しかし、この応力三軸度と破断歪の関係が明らかとなっているのは限られた材料のみで、本研究で対象とされているZry-4でのこれらの相関は、現状不明である。

よって、本研究では、上記軸衝撃荷重作用時の曲げ変形にてき裂の発生した引張側に着目し、まずジルカロイ合金であるZry-4円筒の応力三軸度と破断歪の関係を得るために、材料特性評価試験として軸引張試験を実施した。一般に、応力三軸度試験では丸棒にノッチを加工することで応力場を変化させて実施することが多いが、本研究での対象形状は円筒であることから、円筒に種々の円孔/楕円孔を加工することで丸棒でのノッチと同様の効果を期待した。また、試験時の供試体に生じる歪を得るために、局所歪を測定することが可能となる画像相関法（Digital Image Correlation, DIC法）を適用した。DIC法は、スプレー塗布などで表面に斑模様を形成した試料を用いて機械試験を実施し、カメラで撮影した試験時の供試体の時刻歴変形画像から斑模様の移動、変形を数値解析することで試験表面の歪を算出するもので、近年、一般的に用いるようになってきている（LaVision Gmbh, 2014）。次に軸引張試験時に生じている応力場は解析により求められるので、軸引張試験の再現解析を実施した。再現解析結果より算出した応力三軸度、歪から、本材料の破断条件について評価した。最後に、既報の軸衝撃試験にて円筒の破断が生じた条件での再現解析を実施した。解析結果から軸衝撃荷重作用時に発生する応力三軸度、発生歪を算出した結果を、軸引張試験、軸引張解析より求めた材料の破断条件と比較することで、軸衝撃作用時の破壊メカニズムについて考察した。

2. 材料特性評価試験

2.1 試験方法

引張試験機（インストロンジャパン製5982型）を用いて、軸引張試験を実施した。供試体は外径9.5 mm、内径8.4 mm、長さ100 mmのZry-4製円筒とし、円筒の両端にスウェジロックを取り付け、引張試験機に取り付けた。円筒の材料物性は表1に示すとおりである（燃料安全特別専門委員会, 1979; 軽水炉燃料のふるまい編集委員, 1998）。スウェジロック固定部の円筒内部には、局所的な変形を抑制するために中子を挿入した。供試体円筒の形状は図1に示す通りであり、通常の円筒に加えて、応力場を変化させるために軸方向中心位置の同一断面上の4か所に90°ピッチでスリットもしくは穴加工した供試体も準備した。スリット及び穴形状は幅2 mm×R寸法0.1, 0.5, 1.0 mmの3種類とした。各供試体の名称は、穴加工のないものは円筒、スリットもしくは穴加工したものはその軸方向R寸法にて呼称する。変位付与速度は1.5 mm/minとし、試験の繰り返し数は3回とした。供試体表面にはDIC法（LaVision製StrainMaster）にて歪を計算するための斑模様を市販の白色、黒色スプレーにて作成し、変位付与時の供試体状況を2台の高速度カメラ（フォトロン製FASTCAM SA1.1）で撮影した。DIC法の計算に用いる撮影画像は、試験1回目は供試体全体を対象として5秒もしくは10秒ごとに撮影した画像を、試験2, 3回目は供試体の破断部分を拡大し破断前後を60 fpsで撮影した画像とした。空間分解能はそれぞれ0.07×0.07 mm², 0.02×0.02 mm²であった。DIC法での歪測定結果の妥当性確認のため、供試体表面には歪ゲージを貼り付けた。
Table 1 Material properties of specimens. Al₂O₃ pellets and UO₂ pellets have higher stiffness compared with Zry-4 tube, while deteriorated UO₂ pellets have lower stiffness.

Specimen	Materials	Young's modulus (GPa)	Yield strength (MPa)	Density (g/cm³)	Poisson's ratio
Tubes	Zry-4	97	approx. 590	6.6	0.3
	Al₂O₃	360	2160	3.8	0.23
	UO₂	196	965	10.4	0.32
	Deteriorated	50	100*	10.4	0.32

Fig. 1 Schematic drawing of the tube specimens. Four cylindrical tubes (length: 100 mm, outer diameter: 9.5 mm, inner diameter: 8.4 mm) made of zirconium alloy were examined. The tubes were machined with 4 slit-holes equally spaced at the axial center position. The width of the slit-holes was 2 mm with three types of radius: (2) 0.1 mm, (3) 0.5 mm and (4) 1.0 mm. The tube with no slit-holes is shown in (1).

2.2 試験結果
引張荷重と試験機のクロスヘッド変位の結果を図 2 に示す。図より、円筒（図中黒線）では変位の増加に伴い荷重は増加して飽和した後、ネックリングの発生により荷重が低下し、変位9〜10 mmで破断が生じた。一方、穴加工した円筒では、変位初期は穴加工のない円筒と同じ傾向を示すが、ネックリングの発生に伴う荷重の低下は生じずに約 2 mm で破断が生じた。また、その破断変位は、R1.0 mm（図中緑線）、R0.5 mm（図中青線）、R0.1 mm（図中赤線）と R 寸法が小さくなるほど小さくなっ。DIC 法による歪の計算結果の例として、破断部を拡大撮影した円筒、R0.1 mm の破断直前の軸方向歪分布を図 3 に示す。円筒では、くびれの発生により引張歪が生じ、軸方向で変化し、円周方向では一定となっているのに対し、R0.1 mm を含む穴加工した供試体では穴の端部に歪が集中することが確認された。

DIC 法による歪を、被覆管表面に貼り付けた歪ゲージの計測結果と比較した結果の一例を図 4 に示す。比較位置は加工した穴の中心から水平方向に 2 mm の位置である。図より、DIC 法による歪（図中○、×）は歪ゲージの計測結果（図中黒線、黒破線）とよく一致し、また、他の位置での計測結果においても同等の結果が得ら
れたことから、DIC 法により算出した歪が妥当であることが確認された。しかし、破断直前では DIC 法による軸方向歪は加速して増加する傾向を示し、歪ゲージの測定結果と異なる。この軸方向歪の加速傾向はき裂の発生に伴う歪の局所的な増加によるものであり、DIC 法では局所歪を感度よく計測したものに対し、歪ゲージではそのサイズの影響でき裂の発生に伴う局所歪の増加が計測されなかったと考えられる。

き裂の発生は図 5 に示す R0.1 mm での試験画像からも確認されており、穴加工された供試体の全てにおいて破断に至る前に延性き裂の発生が確認された。よって、次章以降はき裂発生のタイミングに着目する。

Fig. 2 The load-displacement curve of tensile tests. Fracture occurred at 9-10 mm of displacement for the tube with no slit-holes (black line). For the tubes with slit-holes (R0.1 mm: red line, R0.5 mm: blue line, R1.0 mm: green line), the displacement at fracture decreased with smaller holes radius.

Fig. 3 Contours of the axial strain calculated by DIC software at the fracture region immediately before fracture for the tube with no slit-holes and the tube with R0.1 mm slit-holes. The strain is distributed along the axial direction for the tube with no slit-holes, while it concentrates at the slit-holes’ tips for the tube with R0.1 mm holes.

Fig. 4 Comparison of strain data between that of the strain gauges and the DIC at a position of 2 mm from the slit-hole’s center for the tube with R0.1 mm holes (1) and with R0.5 mm holes (2). The strains calculated by the DIC (squares (axial) and x-marks (horizontal)) showed a good agreement with those measured by the strain gauges (line (axial) and dashed line (horizontal)) for both cases of directions. Moreover, the axial strain calculated by the DIC increased quickly before fracture because of the cracks initiation.
3. 破壊条件

3.1 解析モデル

試験での応力場を算出するために、LS-DYNA（Version 7.1.1）を用いて陰解法にて試験の再現解析を実施した。解析モデルは試験で用いた供試体半周の1/4を、8節点完全積分選択的低減要素を用いて全長にわたりモデル化し、穴加工のない円筒での要素数は73920である。対称面上の節点は円周方向変位及び円周方向以外の回転変位を拘束した。試験での中の円は、相当する位置の内部の半径方向、円周方向変位を拘束してモデル化した。解析モデルの全体及び軸方向中心位置を拡大したものを図6に示す。軸、円周、肉厚方向の要素サイズは0.5×0.1×0.1 mm³とし、軸方向中央位置では軸方向要素サイズを0.1、0.02 mmと細分化した。材料物性は前出の表1に示す。Zry-4の応力-歪線図は耐力s_σ, 塩性歪ε, 歪硬化指数$n = 0.09$として式(1)にて設定した（燃料安全特別専門委員会、1979）。

$$\sigma = \sigma_y \left(\frac{\varepsilon}{0.002} \right)^n$$

(1)

以上の解析モデルの下端を完全拘束、上端に変位を付与することで再現解析を実施した。

Fig. 5 Deformation images focused on the slit-hole with R0.1 mm. Cracks initiation occurred at the slit-holes’ tips.

Fig. 6 Finite element model (1) and models enlarged at the axial center position (2)-(5). The FE model consisted of 1/4 tube, and the side faces were set as symmetric boundary condition. The internal fitting devices for avoiding a deformation at the top and bottom positions were modeled by constraining the deformation in horizontal (x and y) direction. Element sizes in axial, circumferential and radial direction were 0.5 mm, 0.1 mm and 0.1 mm, respectively. Axial element size decreased to 0.1 mm or 0.02 mm at the center position. Calculations were conducted by fully constraining the bottom end and applying displacement at the top end.
3.2 解析結果

荷重変位曲線を図7に示す。なお、変位は破断位置を中心としたゲージ長10 mmの変化量とし、試験で認められたき裂発生変位までを対象とした。また、円筒においては、試験ではき裂の発生は確認されなかったので、破断が生じた変位までを対象とした。図より、解析結果は試験結果とよく一致するが、円筒の塑性域においては試験では荷重は減少するのに対し、解析では増加する結果となった。これは変形形状の違いであり、試験ではネッキングが生じて破断に至るのに対し、解析ではモデルは直線であり、肉厚も均一であることが1様変形が生じたためである。穴加工のある場合、ネッキングがほとんど生じずにき裂が発生するためこのような差異は生じず、R0.5 mm、R1.0 mmにおいてもよい一致を示した。

次に、弾性変形範囲におけるき裂が発生した軸方向中心位置外面での応力三軸度の円周方向分布を図8(1)に示す。応力三軸度

\[
\frac{\sigma_m}{\sigma} = \frac{1}{E} \int E \frac{d \varepsilon_p}{d \sigma}
\]

(2)

\(\varepsilon_f \)はき裂発生相当塑性歪である。試験でき裂が発生した変位における解析結果から求めた。また、\(\varepsilon_p \)は相当塑性歪である。き裂発生相当塑性歪と平均応力三軸度を図8(2)中に合わせて記載している。この応力三軸度最大位置がき裂の発生の起点と考え、応力三軸度最大位置での塑性変形の進行に伴う応力三軸度、相当塑性歪を算出した結果を図8(1)に示す。応力三軸度は円筒では塑性変形の進行に伴い変化する。このような場合にBaoら、前他(2008)においてもこれをもとに破断条件を算出した(Bao and Wierzbicki, 2004; 前他, 2008)。

\(\varepsilon_f = 0.023 \left(\frac{\sigma_m}{\sigma} \right)^{2.8} \)

(3)

4. 軸衝撃解析

4.1 解析モデル

既報のジルカロイ4(Zry-4)製円筒にアルミナペレットあるいは鉛アンチモンペレットのように異なる強度のペレットを内装した体系、及び内装物のない空管の体系での軸衝撃試験結果(森重他, 2016)より、高速度条件において空管、鉛-アンチモンペレット内装管では曲げ変形が生じるのみであったが、アルミナペレット内装管では曲げ変形に伴い、曲げ変形部の引張側にてき裂が生じ破断に至ることが確認された。破断の生じなかった空管、破断が生じたアルミナペレット内装管での軸衝撃荷重作用時の応力場を算出するために、LS-DYNA（Version 7.1.1）の陽解法を用いた時刻歴応答解析にて試験の再現解析を実施した。解析モデルを図11、アル
Fig. 7 Comparison of load–displacement curves between tensile test and FE analyses. The curves were drawn from the load and displacement at the gauge length (10mm) until fracture position for the tube with no slit-holes (1), and the tube with slit-holes (2)-(4). FE analyses (line) exhibited a good agreement with the experimental results (squares, diamonds and triangles) for all specimens. However, in the plastic region, the tube with no slit-holes showed different tendency. This was because of the necking phenomenon which did not occur in the FE simulation (uniform deformation).

Fig. 8 (1) Distribution of stress triaxiality in circumferential direction at the axial center position for elastic region. For the tube with no slit-holes, the stress triaxiality shows constant value along the circumferential direction. On the other hand, for the tube with slit-holes, the stress triaxiality changes along the circumferential direction. The maximum value of stress triaxiality increases with decreasing slit-holes’ radius and its position is located at the inside of holes’ tips. (2) Stress triaxiality and equivalent plastic strain curve at the maximum stress triaxiality positions. Stress triaxiality changes with increasing equivalent plastic strain for the tube with slit-holes; the average value of stress triaxiality is also plot in the figure (squares, diamonds and triangles). For the tubes with slit-holes, as the holes’ radius decreases, the average stress triaxiality increases while the equivalent plastic strain decreases.
Fig. 9 Axial and horizontal strain–displacement data of gauge length (10mm) until fracture for the tube with no slit-holes (1), and the tube with R0.1 mm holes (2). For the tube without hole, the FE analysis results underestimate the experimental results for both axial and horizontal directions. This is because of the difference in deformation shape due to necking in the test, whereas uniform deformation without necking for the FE simulation. On the other hand, for the tube with R0.1 mm slit-holes, the FE analysis results agreed well with the experimental results.

Fig. 10 Relationship between the equivalent plastic strain and the stress triaxiality obtained from FE analyses on the axial tensile tests. The plot in the bracket shows the corrected equivalent plastic strain from FE analysis which was multiplied by the test/analysis ratio of 1.6 for considering the difference in deformation shape due to necking. This ratio was obtained by averaging the test/analysis ratio values of the axial and horizontal strain as shown in Fig. 9 (1) at the crack initiation stage. The relationship offers satisfaction for all of the strain components, i.e. when stress triaxiality increases, equivalent plastic strain of crack initiation decreases. The area below the curve can be considered as the safety region, whereas the area near or above the curve can be regarded as a dangerous region (high risk of fracture).

ミナペレットの材料物性を前出の表 1 に示す（京セラ株式会社, 2016）。解析モデルは供試体、供試体保持治具、飛翔体である重錘から構成され、全て 8 節点完全積分選択的低減要素を用いてモデル化した。供試体を除く構成品は剛体とし、重錘の質量は 3 kg とした。円筒は外径 9.5 mm、内径 8.4 mm、長さ 485 mm であり、Zry-4 製円筒の両端にスウェジロックを取り付けた空管の内部に外径 8.2 mm、長さ 11.4 mm の円柱形上のアルミナペレット複数個を挿入したものとした。Zry-4 製円筒は弾塑性体、ペレットは弾完全塑体、端栓は剛体とした。Zry-4 円筒は軸、円周、肉厚方向の要素サイズは 1.2 × 1.2 × 0.1 mm³ とし、後述する図 14 に示す曲げ変形の大きい箇所では軸方向サイズを 0.2 mm と細分化した。本解析モデルのメッシュサイズは 3.1 で示した軸引張試験の解析モデルに比べて大きいが、4.2 で議論する相当塑性歪の分布を捉える観点からすると、評価位置とその軸方向に隣接する要素での相当塑性歪の大きさがほぼ同じ値であることから、十分に小さなメッシュサイズであると判断した。また、供試体治具間、円筒ペレット間及び隣接するペレット間には接触を定義し、摩耗係数は 0.3 とした。Zry-4 の応力-歪線図は、式 (1) に歪速度感受性 m = 0.02 を考慮し、歪速度 ε は試験にて計測できた重錘衝突速度 6 m/s での歪速度 10 sec⁻¹ として、式 (3) より設定した（燃料安全特別専門委員会, 1979).

\[
\sigma = \sigma_y \left(\frac{\varepsilon}{0.002} \right)^m \left(\frac{\varepsilon}{10^{-2}} \right)^m
\]

(4)
ロードセル側の供試体保持治具は完全拘束、衝突側の供試体保持治具および重錘は X 方向を除いて拘束し、重錘に 16 m/s の X 方向の初期速度を与えることにより試験の再現解析を実施した。なお、解析実施に際しては、試験にて大きな曲げ変形が生じた図 11 に示す 2 か所に、それぞれ Z 方向に円筒外径の約 1% である -0.1, 0.1 mm の変位を付与した際の変形形状を初期形状とするることで、初期不整を付与した。また、アルミナペレット内装管の他、同じ円筒にウラン酸化物を内装した原子燃料棒を想定した解析も実施した。ウラン酸化物ペレットの製造時の材料物性を前出の表 1 に示す（Burdick and Parker, 1956）。なお、ウラン酸化物ペレットは原子炉内実用条件下で核分裂に伴う熱応力等により割れが生じる等劣化することが知られているが、劣化後の材料物性は不明である（軽水炉燃料のふるまい編集委員, 1998）。よって、劣化状態の模擬として、表 1 に示す通り製造時のヤング率と耐力を、それぞれ約 1/4, 1/10 と低下させた条件でも解析を実施した。

4・2 解析結果

空管、アルミナペレット内装管での荷重時刻歴及び変形形状を比較した結果を図 12, 13 に示す。図 12 での荷重は円筒の耐力にて規格化し、図 13 の変形量、軸方向位置はそれぞれ試験での最大変形量、初期形状にて規格化している。空管での解析結果は荷重時刻歴、同時刻での変形形状共に試験結果とよく一致する。一方、アルミナペレット内装管での解析結果では、円筒とペレットに作用する荷重の合計である供試体に全体に作用する荷重時刻歴は試験結果に比べて過大となっており、変形が早く進展して、試験で破断が生じた 1.9 × 10^{-3} 秒における変形形状と同等となるのに要する時間は 0.94 × 10^{-3} 秒と非常に短くなっている。これは、ペレットによる荷重分担の違いによるもので、試験にて確認されたペレットの破損を、解析では考慮していないことに起因する。しかし、図 13 (1) に示すように解析での円筒のみに作用する荷重は約 1.0 で飽和しており、試験結果と同様、規格化に用いた円筒の耐力相当荷重で飽和していることから、ペレットの接触による影響を過大に評価する可能性はあるものの、軸衝撃荷重により生じる円筒の応力、歪の傾向の把握は可能と判断した。図 13 に示した時刻の相当塑性歪のコンター図を図 14 に示す。空管では曲げ変形部の圧縮側にて最大相当塑性歪が生じている。このような傾向は他研究者によっても報告されている（感本他, 2011a；感本他, 2011b；感本他, 2011c）。

Fig. 11 FEM model of (1) the test apparatus and (2) the specimen. The model consisted of a specimen, specimen holders and a weight (3 kg). The specimen holders and the weight were modeled by rigid solid elements. For the specimen, the cylindrical tube (length: 100 mm, outer diameter: 9.5 mm, inner diameter: 8.4 mm), the pellets (length: 11 mm, diameter: 8.2 mm) and the end plugs were modeled by elastoplastic solid elements, elastic-perfectly plastic solid elements, and rigid solid elements, respectively. A friction coefficient between the tube and the pellets was set to 0.3. One specimen holder (load cell transducer side) shown in the left side was fully constrained, and another specimen holder (impact side) in the right side and weight were constrained except for displacement for axial direction. FE analyses were conducted by applying an initial velocity to the weight.
方、アルミナペレット内装管では、曲げ変形部の引張側にて最大相当塑性歪が生じており、また局所歪の発生が確認された。当該位置はペレットとペレットの境界面であり、曲げ変形の進展に伴い円筒とペレットが接触し、円筒がペレット端部にて引っ張られることにより生じている。円筒の破断は曲げ変形部の引張側にて発生したため、曲げ変形部の引張側に着目して最大相当塑性歪発生位置を算出し、その要素での応力三軸度、相当塑性歪を算出した。応力三軸度-相当塑性歪曲線は図15に示す通りであり、ペレットが内装されることにより応力三軸度、相当塑性歪は共に増加する結果となった。この結果をもとに、3.2節と同様の手法にて平均応力三軸度を算出し、図15中に合わせて記載した。平均応力三軸度算出の際は、応力三軸度が正の範囲を対象として実施し、応力三軸度算出の際は応力三軸度が正の範囲での相当塑性歪の増分を用いて平均応力三軸度を求めた。応力三軸度-相当塑性歪曲線は図17に示す通りであり、平均応力三軸度及び相当塑性歪は空管及びアルミナペレット内装管の中間値となった。

以上のように、解析より算出した平均応力三軸度及び相当塑性歪を、3.2節にて示し、き裂発生条件と比較した結果を図18に示す。過去の研究によると、破壊条件に対する歪速度の影響は小さいとの報告がある(Johnson and Cook, 1985)。また、走査型電子顕微鏡(JCM-5000)を用いた破面観察結果から、軸衝撃実験、軸引張実験とともに、破面はディンプルが支配的な延性破面であることが確認された。これらのことから、両試験における破壊メカニズムは同じと推定される。き裂発生条件も同じと考えた。図18より、空管では応力三軸度、相当塑性歪ともに小さく、き裂発生条件以下である。一方、ペレット内装管では、応力三軸度及び相当塑性歪が増加しており、き裂発生条件に達した。よって、試験にて破断が生じた原因は、ペレット端部の接触による局所変形により、応力三軸度及び相当塑性歪が増加し、き裂発生条件に達したためと考えられる。また、この結果は軸衝撃実験での破断の有無と整合していることから、本研究での歪速度の範囲においては、き裂発生条件に対する歪速度の影響は小さいものと考えられる。一方、ウラン酸化物ペレット内装管を用いた試験は実施しておらず、破断の有無は確認されていないが、照射の影響と受けていないZry-4円筒にウラン酸化物ペレットが内装された場合、製造時状態、劣化状態にかかわらず、空管に比べて応力三軸度及び相当塑性歪が増加するもののでき裂発生条件に達しないことから、原子燃料棒では破断しない見通しだである。

Fig. 12 (1) Load histories and (2) deformation shapes for the empty tube. FE analysis results ((1) black bold line, (2) black diamonds) are in a good agreement with the experimental results ((1) black thin line, (2) white diamonds) in both load history and deformation shape.
Fig. 13 (1) Load histories normalized to the yield load and (2) deformation shapes for the tube with aluminum oxide pellets. The load of FE analysis (black bold line) overestimates the experimental results (black thin line), however, the load of the tube saturates at the yield load (black bold dashed line). In (2), FE analysis and experimental results show similar deformation shape when fracture occurred for the tests at early time.

Fig. 14 Contour of effective plastic strain in case of (1) the empty tube and (2) the tube with aluminum oxide pellets at impact velocity of 16 m/s. For the empty tube, the maximum plastic strain occurs in the compressive side of the bending tube. On the other hand, for the tube with the aluminum oxide pellets, the maximum plastic strain occurs in the tensile side of the bending tube and peaks of the strain are located near the interface between tube and pellets’ edge.

Fig. 15 Stress triaxiality-equivalent plastic strain curve in case of the empty tube (solid line) and the tube with aluminum oxide pellets (dashed line) at impact velocity of 16 m/s. The average stress triaxiality and equivalent plastic strain increase when aluminum oxide pellets are inserted into the tube (tube: circle mark, tube with aluminum oxide pellets: square mark).
(1) Tube with uranium dioxide pellets (1.82×10^{-3} s)
(2) Tube with deteriorated uranium dioxide pellets (D) (2.82×10^{-3} s)

Fig. 16 Contour of effective plastic strain in case of the tube with uranium dioxide pellets of both as manufactured (1) and deteriorated (2) at impact velocity of 16 m/s. For the tube with uranium dioxide pellets, the maximum plastic strain occurs in the compressive side of the bending tube regardless of pellets’ condition.

Fig. 17 Stress triaxiality-equivalent plastic strain curve in case of the tube with uranium dioxide pellets of both as manufactured (solid line) and deteriorated (dashed line) conditions at impact velocity of 16 m/s. The average stress triaxiality and equivalent plastic strain show intermediate value between the empty tube and the tube with aluminum oxide pellets as shown in Fig. 15 (manufactured condition: circle mark, deteriorated (D) condition: square mark).

Fig. 18 The equivalent plastic strain and the average stress triaxiality obtained from the FE analyses of axial impact tests in Figs. 15 and 16 are plotted on the fracture criteria denoted in Fig. 10. For the empty tube, the average stress triaxiality and the equivalent plastic strain are small and located far away from fracture region (circle mark). When pellets are inserted into the tube, the average stress triaxiality and the equivalent plastic strain increases with higher Young’s modulus and higher yield strength of the pellets. From the plots, the average stress triaxiality and the equivalent plastic strain for the tube with aluminum oxide pellets (x mark) almost reach the level of fracture condition. As for the tube with uranium dioxide pellets, both the manufactured (black cross) and deteriorated (white cross) conditions do not reach the fracture condition.
5. 結 言

ジルコニウム合金の一つである Zry-4 製の円筒（外径 9.5 mm, 内径 8.4 mm, 長さ 100 mm）について, 幅 2 mm, R 半径 0.1, 0.5, 1.0 mm の円孔を加工して軸引張試験を実施し, その再現解析結果を実施することで, 応力三軸度, 相当塑性歪に着目した材料の破壊条件について検討した. 次に, 同一形状で長さ 485 mm の Zry-4 製円筒に外径 8.2 mm, 長さ 11.4 mm のアルミナペレットが複数個内装された体系にて, 質量 3 kg の重錘を 16 m/s の速度で衝突させた試験の再現解析を実施し, 軸衝撃作用時に円筒に生じる応力三軸度, 相当塑性歪を算出して, 軸引張試験解析より算出した破壊条件と比較した結果, 以下のごとことがわかった.

1. 軸引張試験において, ジルコニウム合金製円筒は穴加工され, かつその R 寸法が小さくなるほど小さな変位で破断に至り, 穴加工があると, 破断前にき裂が生じることが確認された。

2. 軸引張試験の再現解析から, ジルコニウム合金製円筒は穴加工され, かつその R 寸法が小さくなると, 応力三軸度が増加し, き裂が発生する相当塑性歪は小さくなり, この結果をもとにき裂発生条件を得た。ただし, 穴加工のない円筒においては, 変形形状が試験と解析にて異なるため, 更なる検討を要する。

3. 軸衝撃解析結果より, 空管では, 応力三軸度, 相当塑性歪共に小さく, き裂発生条件に至らない。一方, アルミナペレットが内装されると, ペレット端部と円筒との接触部において円筒の応力三軸度, 相当塑性歪共に空管に比べて増加した。

4. 軸引張試験及び解析より算出した応力三軸度-相当塑性歪のき裂発生条件を軸衝撃解析結果に適用することで, き裂発生有無を予測できた。

文 献

Bao, Y. and Wierzbicki, T., On fracture locus in the equivalent strain and stress triaxiality space, International Journal of Mechanical Sciences, Vol.46 (2004), pp.81-98.

Burdick, M. D. and Parker, H. S., Effect of particle size on bulk density and strength properties of uranium dioxide specimens, Journal of the American Ceramic Society, Vol.39, No.5 (1956), pp.181-187.

Johnson, G. R. and Cook, W. H., Fracture characteristics of three metals subjected to various strains, strain rates, temperature and pressure, Engineering Fracture Mechanics, Vol.21, No.1 (1985), pp.31-48.

軽水炉燃料のふるまい編集委員会, 軽水炉燃料のふるまい (1998), 財団法人 原子力安全研究協会

京セラ株式会社, アルミナ材料物性, <http://www.kyocera.co.jp/prdct/ic/list/material/alumina/alumina.html>, (参照日 2016年3月13日).

LaVision Gmbh, Strain master Product manual (2014), LaVision Gmbh.

前博行, Teng, X., Bai, Y. and Wierzbicki, T., アルミ鍛造合金の応力 3 軸度における延性破壊特性, 実験力学, Vol.8, No.1 (2008), pp.45-51.

感本広文, 中司雅文, 河村庄造, 応力波の伝ばを考慮した燃料棒の座屈に関する研究 (燃料ペレットを考慮した場合), 日本機械学会論文集 A 編, No.77, Vol.783 (2011a), pp.1896-1909.

感本広文, 中司雅文, 河村庄造, 衝撃荷重を受ける燃料棒の動的応答解析, 日本機械学会論文集 A 編, No.77, Vol.783 (2011b), pp.1910-1922.

感本広文, 安田隆芳, 中司雅文, 河村庄造, 衝撃荷重を受ける燃料棒の座屈に関する数値計算, 日本機械学会論文集 A 編, No.77, Vol.782 (2011c), pp.1687-1700.

森重直樹, 高橋航圭, 因幡和晃, 岸本喜久雄, ペレットを有する円筒容器の衝撃挙動に関する研究, 日本機械学会論文集 B 編, No.82, Vol.841 (2016), DOI:10.1299/transjsme.16-00194.

燃料安全特別専門委員会, 軽水炉燃料のための物性値集 (1979), 財団法人 原子力安全研究協会

Otsuka, A., Tohgo, K. and Okamoto, Y., Relationship between ductile crack initiation and void volume fraction, Nuclear Engineering and Design, Vol.105 (1987), pp.121-129.

References

Bao, Y. and Wierzbicki, T., On fracture locus in the equivalent strain and stress triaxiality space, International Journal of Mechanical Sciences, Vol.46 (2004), pp.81-98.

[DOI: 10.1299/transjsme.17-00304] © 2017 The Japan Society of Mechanical Engineers
Burdič, M. D. and Parker, H. S., Effect of particle size on bulk density and strength properties of uranium dioxide specimens, Journal of the American Ceramic Society, Vol.39, No.5 (1956), pp.181-187.

Johnson, G. R. and Cook, W. H., Fracture characteristics of three metals subjected to various strains, strain rates, temperature and pressure, Engineering Fracture Mechanics, Vol.21, No.1 (1985), pp.31-48.

KEISUIRONENRYOUNOFURUMAIHENSHUUIINKAI, KEISUIRONENRYOUNOFURUMAI (1998), Nuclear Safety Research Association, (in Japanese).

KYOCERA corporation, Information of alumina, available from <http://www.kyocera.co.jp/prdct/fc/list/material/alumina/alumina.html>, (accessed on 13 March, 2016).

LaVision Gmbh, Strain master Product manual (2014), LaVision Gmbh.

Mae, H., Teng, X., Bai, Y. and Wierzbicki, T., Characteriation of ductile fracture locus at wide range of stress triaxiality on cast aluminum alloy, JIKKENRIKIGAKU, Vol.8, No.1 (2008), pp.45-51 (in Japanese).

Minamoto, H., Nakatsuka, M. and Kawamura, S., Numerical study on the buckling of fuel rods considering stress propagation (case of consideration of fuel pellets), Transactions of the Japan Society of Mechanical Engineers, Series A, No.77, Vol.783 (2011a), pp.1896-1909 (in Japanese).

Minamoto, H., Nakatsuka, M. and Kawamura, S., Numerical analysis on the dynamic response of fuel rods under impact loads, Transactions of the Japan Society of Mechanical Engineers, Series A, No.77, Vol.783 (2011b), pp.1910-1922 (in Japanese).

Minamoto, H., Yasuda, T., Nakatsuka, M. and Kawamura, S., Numerical study on the buckling of fuel rods under impact loads, Transactions of the Japan Society of Mechanical Engineers, Series A, No.77, Vol.782 (2011c), pp.1687-1700 (in Japanese).

Morishige, N., Takahashi, K., Inaba, K. and Kishimoto, K., Study on impact behavior for cylindrical tubes with and without pellets, Transactions of the JSME (in Japanese), Vol.82, No.841 (2016), DOI:10.1299/transjsme.16-00194.

NENRYOUANZENTOKUBETSUSENMONIINKAI, KEISUIRONENRYOUNOTAMENOBUSSEICHISHUU (1979), Nuclear Safety Research Association (in Japanese).

Otsuka, A., Tohgo, K. and Okamoto, Y., Relationship between ductile crack initiation and void volume fraction, Nuclear Engineering and Design, Vol.105 (1987), pp.121-129.