Aspects of Perturbation theory in Quantum Mechanics: The BenderWu MATHEMATICA® package

Tin Sulejmanpasic and Mithat Ünsal

Department of Physics, North Carolina State University, Raleigh, NC 27695, USA

E-mail: tin.sulejmanpasic@gmail.com, unsal.mithat@gmail.com

ABSTRACT: We discuss a general setup which allows the study of the perturbation theory of an arbitrary, locally harmonic 1D quantum mechanical potential as well as its multi-variable (many-body) generalization. The latter may form a prototype for regularized quantum field theory. We first generalize the method of Bender-Wu, and derive exact recursion relations which allow the determination of the perturbative wave-function and energy corrections to an arbitrary order, at least in principle. For 1D systems, we implement these equations in an easy to use MATHEMATICA® package we call BenderWu. Our package enables quick home-computer computation of high orders of perturbation theory (about 100 orders in 10-30 seconds, and 250 orders in 1-2h) and enables practical study of a large class of problems in Quantum Mechanics. We have two hopes concerning the BenderWu package. One is that due to resurgence, large amount of non-perturbative information, such as non-perturbative energies and wave-functions (e.g. WKB wave functions), can in principle be extracted from the perturbative data. We also hope that the package may be used as a teaching tool, providing an effective bridge between perturbation theory and non-perturbative physics in textbooks. Finally, we show that for the multi-variable case, the recursion relation acquires a geometric character, and has a structure which allows parallelization to computer clusters.

BUNDLED WITH THE SOURCE FILES OF THIS DOCUMENT IS A FOLDER “BENDERWU_V1.0” WHICH CONTAINS THE MATHEMATICA® PACKAGE FILES AND INSTRUCTIONS. THE MOST UP-TO-DATE PACKAGE FILES CAN BE ACCESSED AT HTTP://LIBRARY.WOLFRAM.COM/INFOCENTER/MATHSOURCE/9479/
Contents

1 Introduction 2

2 The Bender-Wu method for arbitrary locally harmonic potentials in one dimension 5
2.1 The classical 1D potential 5
2.2 Adding the quantum effective action 8
 2.2.1 The generalization of the recursion relations to an arbitrary effective potential 10
2.3 The symmetries and the form of the perturbation series 10

3 Multi-variable case 11

4 The BenderWu MATHEMATICA® package 16
4.1 An example 18
4.2 The options 21
4.3 The polynomials in level number and the BWLevelPolynomial function 21

5 Conclusion 24

A The highest power for $v_1 = v_2 = \cdots = v_{L-1} = 0$ and $v_L \neq 0$. 25
A.1 The Rayleigh-Schrödinger proof 25
A.2 The proof by the recurrence equations 26
1 Introduction

Time-independent perturbation theory in quantum mechanics, developed by Erwin Schrödinger, is almost as old as quantum mechanics itself. Published in 1926 [1], the same year as the Schrödinger equation [2], it is a standard topic of any textbook of quantum mechanics. However the method is rooted in wave-mechanics and dates back to Lord Rayleigh and his 1877 textbook on *The Theory of Sound* [3]. For this reason the theory is often referred to as *The Rayleigh-Schrödinger perturbation theory*.

Little did these great minds know that had they been able to compute large orders of perturbation theory, for most systems they would have come to a surprising revelation: the radius of convergence of the perturbation theory is zero. The reason for this is a factorial growth of the coefficient of the expansion parameter, which we refer to here as “the coupling” and denote by g.

Rather than being a curse, it is now becoming increasingly clear that the perturbative expansion is intimately tied up with non-perturbative physics. The analysis and study of such series, functions and theories goes under the name of *Resurgence theory*. Although the resurgence idea is old [4], it has been the subject of recent rapid development, from one-dimensional integrals [5–7], through quantum mechanics [8–13] to quantum field theory [14, 15] and string theory, see e.g. [16–19].

The resurgence structures are mostly studied in Quantum Mechanics. However, to our knowledge, all publications to date deal with case-by-case examples, and no practical general procedure of studying large orders of perturbation theory was published. In this work we adapt the method, developed originally by C. M. Bender and T. T. Wu [20] for the anharmonic oscillator with quartic term in the potential, to a perturbative expansion of an *arbitrary locally-harmonic potential* around one of its harmonic minima\(^1\). In addition we develop a workable MATHEMATICA® computer code which can easily compute many orders of perturbation theory (about \(\sim 100\) orders in \(\sim 10 – 30\) seconds, and \(\sim 250\) orders in \(1 – 2\)h on a modern home computer). The computation is done symbolically by default, so the result is an exact result in perturbation theory without any numerical error. Furthermore, the potential can be allowed to depend on arbitrary symbolic variables, allowing the study of the parametric dependance of the perturbation theory.

To be more specific, the code presented here allows a perturbative treatment of a one-dimensional systems with a Hamiltonian in the coordinate representation given by

\[H = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial X^2} + V(X) \quad (1.1) \]

where $V(X)$ is an arbitrary non-singular potential. Such a potential is typically characterized by some length scale α characterizing its spatial variation, and a frequency scale of the harmonic motion around

\(^1\)The procedure discussed here is most likely applicable to any system where the leading order of the potential can be computed analytically. An interesting practical system to adapt to this method would be to the case of a coulomb potential, which is of importance in atomic physics and chemistry.
one of its minima. On dimensional grounds we can write in general

\[V(x) = m\omega^2 a^2 v(X/a) , \tag{1.2} \]

where \(v(X/a) \) is an arbitrary (dimensionless) function defining a non-trivial potential. The perturbation theory is defined by an expansion of the potential \(V(X) = m\omega^2 a^2 v(X/a) \) around one of its local minima, which coincide with the minima of \(v(X/a) \). Without loss of generality, we will take that one such minimum is at \(x = 0 \), and construct the perturbation theory around it. A dimensionless combination of parameters is given by \(g = \sqrt{\frac{\hbar}{ma^2}} \), which is made small when either \(\omega, a \) or \(m \) is made large. A time-independent perturbation series is therefore an expansion of the wave-function and energy in this small coupling, by an expansion of the potential \(v(X/a) \) in powers of \(X/a \), treating non-quadratic terms as a perturbation of a Harmonic oscillator.

To make this more explicit, let us go to a dimensionless spatial coordinate \(x = X/(ag) \). Then the Hamiltonian becomes

\[H = \frac{\hbar^2}{ma^2g^2} \left[-\frac{1}{2} \frac{\partial^2}{\partial x^2} + \frac{v(xg)}{g^2} \right] . \tag{1.3} \]

Finally, we define a reduced Hamiltonian given by

\[h = \frac{ma^2g^2}{\hbar^2} H = -\frac{1}{2} \frac{\partial^2}{\partial x^2} + \frac{v(xg)}{g^2} . \tag{1.4} \]

We wish to construct the perturbative solution to the Schrödinger equation by expanding the potential \(v(xg) \) for small \(g \) around one of its minima, taken to be at \(x = 0 \),

\[\frac{v(xg)}{g^2} = \frac{v(0)}{g^2} + \frac{1}{2} v''(0)x^2 + \frac{g}{3!} v'''(0)x^3 + \ldots . \tag{1.5} \]

It is clear that the higher terms are made arbitrarily small by taking \(g \) arbitrarily small. We can therefore treat all terms, except the quadratic term, as a perturbation, and solve the reduced Schrödinger equation

\[h\psi(x) = \epsilon\psi(x) \tag{1.6} \]

for \(\psi(x) \) and \(\epsilon \) as a power series

\[\psi(x) = \psi_0(x) + \psi_1(x)g + \psi_2(x)g^2 + \ldots \tag{1.7} \]

and

\[\epsilon = \epsilon_0 + \epsilon_1 g + \epsilon_2 g^2 + \ldots . \tag{1.8} \]

\(^2\)The frequency may be different at individual minima, but the rate of the particle oscillations around them is set only by a single frequency scale \(\omega \). Note that in subsequent sections we will define \(\omega \) to be the dimensionless number specifying the coefficient of the quadratic term of the \(v(X/a) \).

\(^3\)The square root is inserted for convenience, because, as we shall see, the wave-function is in general an expansion in \(g \) defined in this way. The energy eigenvalue, however, will be an expansion in \(g^2 \).

\(^4\)The factor of \(g \) is inserted for convenience.

\(^5\)Notice that if \(v(0) \neq 0 \), then there will be a \(1/g^2 \) energy contribution. We will almost entirely ignore this classical shift, and even suppress its output by default in the \texttt{BenderWu} package.
Note however that $\epsilon_{2n+1} = 0$ (see 2.3) for the potential at hand. To do this we will apply the Bender-Wu method, originally developed for an anharmonic oscillator with the gx^4 perturbation [20]. As we shall see, however, it is possible to generalize this method to an arbitrary potential, as long as its minima are harmonic and non-singular.

We will also be interested in a more general problem with the reduced Hamiltonian

$$ h = -\frac{1}{2} \frac{\partial^2}{\partial x^2} + V(x) $$

(1.9)

where $V(x)$ is given by

$$ V(x) = v_0(xg) + v_2(xg) . $$

(1.10)

The term $v_2(x)$ is clearly suppressed by a power of g^2 compared to the first term, and is important in the definition of supersymmetric quantum mechanics, as well as some quasi exactly solvable models which were an initial motivation for this work. Studies of these problems is the topic of a separate publication [21]. Note however that such potentials cannot be classical in nature, and must come from some quantum effects.

Although we will not implement it in the MATHEMATICA® package which accompanies this work, we also give BenderWu recursion relations for the potential of the form

$$ V(x) = \frac{1}{g^2} \sum_{m=0}^{N} g^m v_m(xg) $$

(1.11)

for an arbitrary integer N. This potential is of some interest in the literature (see for example a elegant book [22]).

Finally we also note the multi-variable (many-body) Schrödinger problem

$$ \left(-\sum_{i=1}^{N} \frac{1}{2} \frac{\partial^2}{\partial x_i^2} + \frac{1}{g^2} v(gx_1, gx_2, \ldots, gx_N) \right) \psi = \epsilon \psi . $$

(1.12)

is possible to treat by our methods in principle. This problem, although a natural generalization of the one-variable problem, is not pertinent to the rest of the paper. Nevertheless, given the importance of such a problem for higher dimensional and multi-particles QM problems, as well as its extensions to quantum field theory, we felt compelled to derive the recursion relations for (1.12) and explain how they are solved, at least in principle. We also restrict the discussion to non-degenerate perturbation theory only, leaving the study of general degenerate case for the future. The efficacy of this approach in the multi-dimensional problem above is also left for future work.

The paper is organized as follows: In Section 2 we generalize the method of Bender-Wu to the arbitrary potential in 1D quantum mechanics. In Section 3, we sketch how the discussion generalizes to the multi-variable quantum mechanics, and briefly discuss the geometric structure which arises there. Section 4 is dedicated to the explanation of the BenderWu MATHEMATICA® package. The content of this section is largely independent of the rest of the paper, and the user interested in learning how to run and use the package is invited to go there immediately. We conclude in Section 5.

Quantum field theory can be thought of as quantum mechanics where the number of degrees of freedom is sent to infinity.
Comments on the Literature

We dedicate this small section to briefly comment on the literature available and the application of the Bender-Wu method. Following the original publication the vast application of the method was used to analyze the anharmonic oscillator. A notable exception is [23], which attempted to generalize the method to a Mathieu potential, but encountered a numerical instability of the recurrence relations for level numbers $\nu > 1$. Reference [24] applied the method to the supersymmetric version of the double-well potential. In [25] the method was applied to a PT symmetric potential $x^2 + igx^3$, while in [26] the complex Hénon-Heiles potential was analyzed. All of these results, save the last one\(^7\), are easily reproduced the BenderWu function of our package, within seconds.

2 The Bender-Wu method for arbitrary locally harmonic potentials in one dimension

In this section we will develop the recursion relations which will allow us to compute the perturbative expansion of the wave-function and energy. The method goes under the name of Bender-Wu who first invented it to study the quartic potential problem in quantum mechanics [20]. Here we adapt the method for a general classical potential with the structure $v(gx)/g^2$, and some of its generalization to quantum effective potentials. It is important to realize that the potential can even be a periodic function, or, indeed, any function with a harmonic minimum at $x = 0$, and infinitely differentiable at $x = 0$. In the next section we will also consider adding the potential of the form (1.11).

The contents of this section are not important for understanding how to use the BenderWu package and its functions. A reader who is not interested in details of the generalized Bender-Wu method is encouraged to proceed to Sec. 4 as well as to the installation and example MATHEMATICA® notebooks accompanying this work.

2.1 The classical 1D potential

Consider the Schrödinger equation

$$-\frac{1}{2} \psi''(x) + \frac{1}{g^2} v(gx) \psi(x) = \epsilon \psi(x).$$ \hspace{1cm} (2.1)

We wish to construct a perturbative expansion around a harmonic minimum which, without loss of generality we take to be located at $x = 0$ and set\(^8\) $v(0) = 0$. We first set

$$\psi(x) = u(x) e^{-\frac{\omega x^2}{2}},$$ \hspace{1cm} (2.2)

where\(^9\)

$$\omega^2 = v''(0).$$ \hspace{1cm} (2.3)

\(^7\)The potentials considered in [26] involve two and three dimensional potentials, which are currently not implemented in the BenderWu package. See however Section 3 however.

\(^8\)This corresponds to a classical shift in energy and can simply be reinstated by introducing a contribution $\epsilon_{-2} = v(0)$.

\(^9\)Note the difference between the definition of ω here and the introduction.
which reduces the Schrödinger equation to
\[- u''(x) + 2\omega x u'(x) + \frac{2}{g^2} \tilde{v}(gx) u(x) = 2 \left(\epsilon - \frac{\omega}{2} \right) u. \tag{2.4}\]

Here we defined
\[\tilde{v}(gx)/g^2 = v(gx)/g^2 - \frac{\omega^2}{2} x^2. \tag{2.5}\]

Now let us write a formal expansion of \(u(x)\) in powers of \(g\).
\[u(x) = \sum_{l=0}^{\infty} u_l(x) g^l. \tag{2.6}\]

Further we expand
\[\tilde{v}(gx)/g^2 = \sum_{n=1}^{\infty} v_n g^n x^{n+2}, \quad v_n = \frac{1}{(n+2)!} V^{(n+2)}(0). \tag{2.7}\]

Now we formally write an expansion for \(\epsilon\)
\[\epsilon = \sum_{n=0}^{\infty} \epsilon_n g^n. \tag{2.8}\]

Plugging these into the eq. (2.4) and equating the powers of \(g\), we have
\[- u_l''(x) + 2\omega x u_l'(x) + 2 \sum_{n=1}^{l} v_n x^{n+2} u_{l-n}(x) = 2 \sum_{n=0}^{l} (\epsilon_n - \delta_n 0 \omega/2) u_{l-n}(x) \tag{2.9}\]

Notice that the leading order contribution is given by \(l = 0\), for which
\[- u_0''(x) + 2\omega x u_0'(x) = 2(\epsilon_0 - \omega/2) u_0(x), \tag{2.10}\]
which is the Hermite equation, so that \(u_0(x) = H_\nu(x)\) and \(\epsilon_0 - \omega/2 = \nu \omega\), where \(\nu\) is the level number. This in turn gives the leading order energy \(^{10}\)
\[\epsilon_0 = \omega \left(\nu + \frac{1}{2} \right), \tag{2.11}\]

as expected.

Now let us expand \(u_l(x)\) in powers of \(x\)
\[u_l(x) = \sum_{k=0}^{K_l} A_k^l x^k, \tag{2.12}\]

\(^{10}\)Keep in mind that in principle \(\psi, \epsilon\), and therefore \(u_l(x)\) and \(\epsilon_l\) also depend on \(\nu\), which defines the level number. To avoid unnecessary clutter, we make this dependence implicit, setting \(\nu\) to a fixed integer.
where \(K_l \) is the maximal power of \(x \) that can appear at order \(l \). The upper bound of \(K_l \) is given by an expression\(^{11}\)

\[
K_l \leq \nu + 3l ,
\]

where the equality holds if \(v_1 \neq 0 \). Plugging into (2.9) and equating powers of \(x \), we have

\[
-(k + 2)(k + 1)A_l^{k+2} + 2\omega k A_l^k - 2\omega \nu A_l^k = 2 \sum_{n=1}^{l} (\epsilon_n A_{l-n}^k - v_n A_{l-n}^{k-n-2})
\]

(2.14)

The equations (2.14) can now be solved recursively for \(A_l^k \) and \(\epsilon_l \). We proceed in the following way. First notice that if \(k = \nu \), rearranging (2.14) we have

\[
2\epsilon_l A_0^\nu = -(\nu + 2)(\nu + 1)A_0^{\nu+2} - 2 \sum_{n=1}^{l-1} \epsilon_n A_{l-n}^\nu + 2 \sum_{n=1}^{l} v_n A_{l-n}^{\nu-n-2}
\]

(2.15)

So we can determine the energy \(\epsilon_l \) as long as we have all \(A \)-coefficients with order smaller than \(l \) and as long as we find the coefficient \(A_0^\nu + 2 \). Further we choose

\[
A_0^\nu = 1 , A_0^l = 0 , \forall l > 0
\]

as a normalization\(^{12}\), so that (2.15) becomes

\[
\epsilon_l = -\frac{1}{2}(\nu + 2)(\nu + 1)A_0^{\nu+2} + \sum_{n=1}^{l} v_n A_{l-n}^{\nu-n-2}
\]

(2.17)

Next we rearrange the equation (2.14) to read

\[
A_l^k = \frac{1}{2\omega(k - \nu)} \left[(k + 2)(k + 1)A_l^{k+2} + 2 \sum_{n=1}^{l} \epsilon_n A_{l-n}^k - 2 \sum_{n=1}^{l} v_n A_{l-n}^{k-n-2} \right] .
\]

(2.18)

We are now in a position to use (2.18) and (2.17) to solve for all \(A_l^k \) and \(\epsilon_l \) recursively. The steps are as follows:

- Consider the equation (2.18) first for\(^{13}\) \(k > \nu \) and \(l > 0 \), giving

\[
A_l^k = \frac{1}{2\omega(k - \nu)} \left[(k + 2)(k + 1)A_l^{k+2} + 2 \sum_{n=1}^{l-1} \epsilon_n A_{l-n}^k - 2 \sum_{n=1}^{l-1} v_n A_{l-n}^{k-n-2} \right] .
\]

We emphasize that the \(\epsilon_l \) does not appear on the right hand side because in (2.18) it multiplies a coefficient \(A_0^k \), which is zero for \(k > \nu \). Furthermore, since \(A_l^{K_l+2} = 0 \), by taking \(k = K_l \)

\(^{11}\)The exact expression for \(K_l \) is given by (A.1) in Appendix A, which clearly obeys this inequality. The upper bound however will suffice for solving the recursion relations.

\(^{12}\)This just fixes the coefficient of \(x^\nu \) in the wave-function to be unity. Other normalizations will give the same result for all physical observables.

\(^{13}\)Recall that for \(l = 0 \) \(A_l^k = 0 \) for \(k > \nu \) as the polynomial \(u_0(x) \) are just Hermite polynomials.
we can compute $A_{l}^{K_l}$, as well as $A_{l}^{K_l-1}$ if we know all coefficients and energies of order $< l$. Now that we know $A_{l}^{K_l}$ and $A_{l}^{K_l-1}$, we can compute A_{k}^{l}, $k = K_l, K_l - 1, K_l - 2, \ldots \nu + 1$. Notice that an overestimate in K_l does not invalidate this procedure, so, by (2.13), we may as well start with $k = \nu + 3l$ and solve in sequence for $k = \nu + 3l, \nu + 3l - 1, \ldots, \nu + 1$.

• Now that all A_{k}^{l}, $k > \nu$ are known, and in particular $A_{l}^{\nu+2}$ is known, use (2.17)

$$\varepsilon_l = -\frac{1}{2}(\nu + 2)(\nu + 1)A_{l}^{\nu+2} + \sum_{n=1}^{l} v_n A_{l-n}^{\nu-n-2}.$$

to compute ε_l.

• Finally, now that we know ε_l we use (2.18) again to obtain the remaining A_{k}^{l} with $k < \nu$ (recall that $A_{l}^{l} = 0, l > 0$ by our normalization).

$$A_{l}^{k} = \frac{1}{2\omega(k - \nu)} \left[(k+2)(k+1)A_{l}^{k+2} + 2 \sum_{n=1}^{l} \varepsilon_n A_{l-n}^{k-n} - 2 \sum_{n=1}^{l-1} v_n A_{l-n}^{k-n-2} \right].$$

Next we will discuss the generalized problem (1.9) with $V(x)$ given by (1.10).

2.2 Adding the quantum effective action

The discussion so far only considered classical potentials, not containing powers of the Planck constant. However, as was mentioned in the introduction, we are also interested in describing supersymmetric problems, as well as so-called Quasi-Exactly Solvable (QES) problems which are of the form

$$\left(-\frac{1}{2} \partial_x^2 + V(x)\right) \psi = \epsilon \psi,$$

(2.19)

with

$$V(x) = \frac{1}{g^2}v_0(gx) + v_2(gx).$$

(2.20)

Further if we define v_0^0 and v_2^2 as coefficients of expansion

$$\omega = \sqrt{v_0^0(0)},$$

(2.21)

$$v_0(gx)/g^2 - \omega^2 x^2/2 = \sum_{n=1}^{\infty} g^n x^{n+2} v_0^0,$$

$$v_n = v_n^{(n+2)}(0)/(n+2)!,$$

(2.22)

$$v_2(gx) = \sum_{n=0}^{\infty} g^n x^n v_2^2,$$

$$v_n^f = v_2^f(0)/n!.$$

(2.23)

Most of the previous discussion remains unchanged, but relation (2.14) now becomes

$$-(k+2)(k+1)A_{l}^{k+2} + 2\omega k A_{l}^{k} - 2\omega \nu A_{l}^{k} = \sum_{n=1}^{l} \left(2\varepsilon_n A_{l-n}^{k} - 2v_n^b A_{l-n}^{k-n-2} - 2v_n^f A_{l-n}^{k-n} \right)$$

(2.24)
while (2.17) and (2.18) become

$$2\epsilon_l A_l^\nu = -(\nu + 2)(\nu + 1)A_l^{\nu+2} - 2 \sum_{n=1}^{l-1} \epsilon_n A_l^{\nu-n} + 2 \sum_{n=1}^{l} (v_n^b A_{l-n}^{\nu-n-2} + v_n^f A_{l-n}^{\nu-n})$$ \hspace{1cm} (2.25)

$$A_l^k = \frac{1}{2\omega(k-\nu)} \left[(k+2)(k+1)A_l^{k+2} + \sum_{n=1}^{l} 2\epsilon_n A_l^{n-k} - 2 \sum_{n=1}^{l} (v_n^b A_{l-n}^{k-n-2} + v_n^f A_{l-n}^{k-n}) \right] .$$ \hspace{1cm} (2.26)

In particular we will choose the normalization which sets the coefficient of x^ν to unity, so that $A_0^\nu = 1$ and $A_0^k = 0, k \neq \nu$. This turns (2.25) into

$$\epsilon_l = -\frac{1}{2}(\nu + 2)(\nu + 1)A_l^{\nu+2} + \sum_{n=1}^{l} (v_n^b A_{l-n}^{\nu-n-2} + v_n^f A_{l-n}^{\nu-n})$$ \hspace{1cm} (2.27)

The procedure for solving the recursion relations at order l is identical to that described below (2.18), however, considering its centrality to the procedure and adhering to an adage *repetitio est mater studiorum*, it is repeated here for convenience and clarity:

- Starting from $k = \nu + (3 + L)l$ solve

$$A_l^k = \frac{1}{2\omega(k-\nu)} \left[(k+2)(k+1)A_l^{k+2} + \sum_{n=1}^{l} 2\epsilon_n A_l^{n-k} - 2 \sum_{n=1}^{l} (v_n^b A_{l-n}^{k-n-2} + v_n^f A_{l-n}^{k-n}) \right]$$

for all $k = \nu + (3 + L), \nu + (3 + L)-1, \ldots, \nu + 1$ in terms of wave-function coefficients A_l^k and ϵ_l' with $l' < l$ which are already known.

- Solve for ϵ_l using (recall that $A_l^\nu = 0$ for $l \neq 0$ by normalization)

$$\epsilon_l = -\frac{1}{2}(\nu + 2)(\nu + 1)A_l^{\nu+2} + \sum_{n=1}^{l} (v_n^b A_{l-n}^{\nu-n-2} + v_n^f A_{l-n}^{\nu-n})$$

- Finally solve for A_l^k with $k = \nu - 1, \nu - 2, \ldots, 0$ (notice the dependance on ϵ_l which was found in the previous step)

$$A_l^k = \frac{1}{2\omega(k-\nu)} \left[(k+2)(k+1)A_l^{k+2} + \sum_{n=1}^{l} 2\epsilon_n A_l^{n-k} - 2 \sum_{n=1}^{l} (v_n^b A_{l-n}^{k-n-2} + v_n^f A_{l-n}^{k-n}) \right]$$

It is this algorithm that is the essence of the *BenderWu* function contained in the *BenderWu MATHEMATICA®* package. Next we discuss the recursion relations for the general case of (1.9) with the potential (1.11). Although the *MATHEMATICA®* package does not implement this generalization at the moment, since it is of some importance in the literature [22], and since its implementation is a trivial generalization of what has been discussed so far, we dedicate a brief statement of the recursion relations.
2.2.1 The generalization of the recursion relations to an arbitrary effective potential

Although we will not implement it in the MATHEMATICA® code which accompanies this work, we also generalize the Bender-Wu to the potential of the form

\[
\left(-\frac{1}{2} \frac{\partial^2}{\partial x^2} + V(x)\right) \psi = \epsilon \psi ,
\]

(2.28)

with

\[
V(x) = \frac{1}{g^2} \sum_{m=0}^{N} g^m v_m(xg) ,
\]

(2.29)

and define

\[
\omega = \sqrt{v''_0(0)} ,
\]

(2.30)

\[
v_0(gx)/g^2 - \omega^2 x^2/2 = \sum_{n=1}^{\infty} g^n x^{n+2} v_n^{(0)} ,
\]

(2.31)

\[
v_m(gx) = \sum_{n=0} g^n x^n v_n^{(m)} ,
\]

(2.32)

while the recursion relations, appearing in the itemized list under equations (2.18) and (2.27) become

\[
2\epsilon_l A_0^l = -(\nu + 2)(\nu + 1) A_{l+2}^\nu - 2 \sum_{n=1}^{l-1} \epsilon_n A_{l-n}^\nu + 2 \sum_{n=1}^{l} \sum_{m=0}^{N} v_n^{(m)} A_{l-n}^{\nu-n-2+m}
\]

(2.33)

\[
A_k^l = \frac{1}{2\omega(k - \nu)} \left[(k + 2)(k + 1) A_{l+2}^k + \sum_{n=1}^{l} 2\epsilon_n A_{l-n}^k - 2 \sum_{n=1}^{l} \sum_{m=0}^{N} v_n^{(m)} A_{l-n}^{k-n-2+m}\right].
\]

(2.34)

2.3 The symmetries and the form of the perturbation series

We have already mentioned in the introduction that the corrections odd in \(g\) of the energy series vanishes. This in fact holds if the potential is symmetric under a simultaneous interchange of \(x \rightarrow -x, g \rightarrow -g\), which we will call \(g\)-parity.

Consider the reduced Schrödinger equation (1.6)

\[
h(x, g)\psi(x, g) = \epsilon(g)\psi(x, g) ,
\]

(2.35)

where we made explicit the dependance of \(x\) and \(g\) of \(h, \epsilon\) and \(\psi\). By a \(g\)-parity transformation \(x \rightarrow -x, g \rightarrow -g\), the above equation maps to

\[
h(x, g)\psi(-x, -g) = \epsilon(-g)\psi(-x, -g) .
\]

(2.36)

Therefore, \(\psi(-x, -g)\) is also an eigenfunction of \(x, g\) with an eigenvalue \(\epsilon(-g)\). However, consider the overlap

\[
\int dx \psi(-x, -g)^*\psi(x, g) .
\]

(2.37)
If the above overlap is zero, then the two states \(\psi(x, g), \psi(-x, -g) \) are distinct states. This however cannot be, as making an expansion in small coupling \(\psi(-x, -g) = \psi_0(-x) + \psi_1(-x)g + \ldots \), where \(\psi_0(-x) \) is proportional to the harmonic oscillator wave-function, and is therefore even. To leading order, the overlap is therefore nonzero. Since the two states \(\psi(x, g) \) and \(\psi(-x, -g) \) are the same to leading order in \(g \), they must be so to sub-leading orders as well, therefore we have

\[
E(g) = E(-g)
\]
\[
\psi(x, g) = C(g)\psi(-x, -g).
\]

Notice that while the first equation implies that \(E(g) \) is an even function of \(g \), the wave-function in general gets multiplied by a constant which is \(g \) dependent. However, we can always choose \(C(g) \) to be \(\pm 1 \). The choice is arbitrary and it is purely a normalization issue.

In any event, while this consideration implies that the power series of energy is always in even powers of \(g \), the wave-function can always be normalized so that it contains only powers \(g^l x^k \), such that \(l + k \) is even (i.e. \(C(g) = 1 \)) or \(l + k \) is odd (i.e. \(C(g) = -1 \)).

We have derived (2.26) and (2.27) with the normalization \(A_0^l = 1 \) and \(A_0^l = 0 \), which sets \(C(g) = 1 \) if \(\nu \) is even and \(C(g) = -1 \) if \(\nu \) is odd. The consequence of \(g \)-parity is that \(A_k^l = 0 \) if \(l + k + \nu \) is odd and \(\epsilon_l = 0 \) if \(l \) is odd. Indeed we can see that if we assume that \(A_{p}^{l} = 0 \) when \(k + l' + \nu \), and \(\epsilon_l' = 0 \) when \(l' \) is odd for all \(l < l' \), we can see that (2.26) implies that all \(A_k^l \) will be zero if \(l + k + \nu \) is odd. To see that note that if we set \(l + k + \nu \) to an odd number, sums on the RHS of (2.26) involve only coefficients \(A_{l-2p}^{k}, A_{l-n}^{k-n-2} \) and \(A_{l-n}^{k-n} \), for integer \(p \) and \(n \). However, if \(l + k + \nu \) is odd, it is easily seen that all of these coefficients vanish.\(^{14}\) Hence \(A_l^k \) must vanish if \(l + k + \nu \) is odd. Taking \(l \)-odd in (2.27), we see that the RHS contains terms \(A_{l-2p}^{l-\nu} \), \(A_{l-n}^{l-\nu-2} \) and \(A_{l-n}^{l-\nu} \), all of which vanish for \(l \)-odd. Hence \(\epsilon_l = 0 \) with \(l \)-odd.

3 Multi-variable case

Although this work is mostly about the one-dimensional quantum mechanics, we wish to present a generalization to multi-variable case. The content of this section is not implemented in the BenderWu package, and can be skipped entirely without affecting the understanding of the remainder of the paper. Nevertheless the study of this case is important for multiple reasons, some of which we emphasize here

• The study of of higher dimensional quantum mechanics systems,

• The study of many-body systems,

• The study of quantum-field theories as a limit when number of degrees of freedom goes to infinity.

\(^{14}\)This is because when \(l + k + \nu \) is odd, then \(l - 2p + k + \nu, l - n + k - n - 2 + \nu \) and \(l - n + k - n + \nu \) are all odd, and so \(A_{l-2p}^{l-\nu} \), \(A_{l-n}^{l-\nu-2} \) and \(A_{l-n}^{l-\nu} \) vanish by assumption.
We wish to emphasize the final point that the discussion contained in this section may have direct application to quantum field theory, and the role of resurgence there. A skeptical reader may have doubts that the limiting process of infinitely many degrees of freedom may invalidate all of the resurgence structure that is believed to hold in quantum mechanics. Indeed for a long time it was commonly believed that the IR renormalon singularities, first discussed by t’ Hooft [27], cannot be fixed by any resurgence-like perturbative/non-perturbative interplay15. Our perspective is that the difference between quantum mechanics and quantum field theory is not a major obstacle. Regularized QFT with the UV and IR cutoffs can be interpreted as a many-body quantum mechanics. In this respect, our proposal is similar to lattice field theory, and may provide an alternative thereof. In lattice field theory, in which Euclidean space-time is discretized in a finite volume, with the use of stochastic perturbation theory [32–34], one can in principle extract the large-order asymptotic growth of perturbation theory, and try to find connections with the IR renormalon singularities and resurgence structure.

Therefore, under the assumption that resurgence is a phenomenon present in all Quantum Mechanical systems16 one is forced either to concede that the resurgence is operative in both quantum mechanics and quantum field theories, or that the IR and UV regularization of quantum field theories completely change the nature of the theory in question. Since there is much evidence the latter cannot be correct, (namely, the very existence and success of lattice field theory is a numerical evidence that the UV and IR regularization does not alter nature of a QFT dramatically), we strongly suspect that the resurgence structure is bound to be present in quantum field theories as well.

Since in our formalism, time is already continuous, and recursion relations happen to have a geometric (and paralellizable) structure, in the long run, we hope that the formalism presented below can be used to determine the connection between perturbation theory and non-perturbative physics in QFT. It is worthwhile checking how efficient is this formalism compared to the conventional path-integral perturbation theory via Feynman diagrams. This is, however, beyond the scope of the present work.

The reduced Hamiltonian we consider is of the form
\begin{equation}
 h = -\sum_{i=1}^{N} \frac{1}{2} \partial_{i}^{2} + \frac{1}{g^{2}} v(gx_{1}, gx_{2}, \ldots, gx_{N}) .
\end{equation}
with the Schrödinger equation
\begin{equation}
 h\psi = \epsilon\psi .
\end{equation}

Further, we will assume that
\begin{equation}
 \frac{v(gx_{1}, gx_{2}, \ldots, gx_{N})}{g^{2}} = \sum_{i} \frac{\omega_{i}^{2}}{2} x_{i}^{2} + \tilde{v}(gx_{1}, gx_{2}, \ldots, gx_{N}) .
\end{equation}

15A progress in this direction is provided in 2d and 4d QFTs [14, 28, 29], also see [30, 31].

16There is currently ample evidence indicating that this is true, see the examples [11, 12] and [21]. However, the working of the resurgence for quantum systems whose associated classical mechanics is a higher genus Riemann surface is currently an open problem.
Using an ansatz
\[\psi = u(\{x_i\})e^{-\frac{1}{2} \sum_{i=1}^{N} \omega_i x_i^2}, \] (3.4)

we have
\[\sum_{i=1}^{N} \left[-\partial_i^2 u + 2x_i \omega_i \partial_i u \right] + \frac{2}{g^2} \tilde{v}((gx_i))u = 2 \left(\epsilon - 2 \frac{1}{g^2} (0) - \frac{\sum \omega_i}{2} \right) u \] (3.5)

Upon writing
\[u(\{x_i\}) = \sum_i u_i(\{x_i\})g^l \] (3.6)

and expanding \(\tilde{v} \)
\[\tilde{v}((gx_i)) = \sum_{n_{i_{>2}}} v_{n_{i_{>2}}} g^{n_{i_{>2}}} x_1^{n_1} x_2^{n_2} \cdots x_N^{n_N}, \] (3.7)

\[v_{n_{i_{>2}}} = \frac{1}{n_1! \cdots n_N!} \frac{\partial_{n_1}}{\partial y_1} \cdots \frac{\partial_{n_N}}{\partial y_N} \tilde{v}(\{y_i\})(y_i=0) \] (3.8)

and
\[\epsilon = \sum_n g^n \epsilon_n. \] (3.9)

we obtain from (3.5)
\[\sum_{i=1}^{N} \left[-\partial_i^2 u_l + 2x_i \omega_i \partial_i u_l \right] + 2 \sum_{n_{i_{>2}}} v_{n_{i_{>2}}} u_l - \sum_{n_{i_{>2}}} w_{n_{i_{>2}}} x_1^{n_1} x_2^{n_2} \cdots x_N^{n_N} = 2 \sum_{n=0}^{l} \epsilon_n u_{l-n}. \] (3.10)

The equation for \(l = 0 \)
\[-\partial_i^2 u_0 + 2x_i \omega_i \partial_i u_0 = 2 \epsilon_0 u_0, \] (3.11)

with a solution
\[u_0 = H_{\nu_1}(x_1)H_{\nu_2}(x_2) \cdots H_{\nu_N}(x_N) \] (3.12)
\[\epsilon_0 = \nu_1 + \nu_2 + \cdots + \nu_N. \] (3.13)

which is just the multi-dimensional Harmonic oscillator solution. Finally we take
\[u_l = \sum_{k_1, \ldots, k_N} A_{k_1, \ldots, k_N} x_1^{k_1} x_2^{k_2} \cdots x_N^{k_N}, \] (3.14)

and, upon equating powers of \(x_i \), obtain
\[\sum_{i=1}^{N} \left[-(k_i + 2)(k_i + 1)A_{l_{k_i+2,k_i+2,\ldots,k_N}} + 2w_i(k_i - \nu_i)A_{l_{k_i+2,\ldots,k_N}} \right]
+ 2 \sum_{n_{i_{>2}}} v_{n_{i_{>2}}} x_1^{n_1} x_2^{n_2} \cdots x_N^{n_N} = 2 \sum_{n=0}^{l} \epsilon_n A_{l-n_{>2}}. \] (3.15)
To solve the recursion relation, we will assume that all the leading order harmonic oscillator states are non-degenerate\footnote{The degenerate case is more subtle, and we postpone it for future work.}, so that the only solution of the equation is

\[\sum_i \omega_i (k_i - \nu_i) = 0 \Rightarrow k_i = \nu_i \quad \text{(3.16)} \]

This allows us to set \(k_i = \nu_i \) into the equation (3.15) and obtain

\[\epsilon_l A_{\nu_1, \nu_2, \ldots, \nu_N} = \sum_{i=1}^N \left[-\frac{1}{2} (\nu_i + 2)(\nu_i + 1) A_i^{\nu_1, \ldots, \nu_i + 2, \ldots, \nu_N} - \sum_{n=0}^{l-1} \epsilon_n A_{l-n}^{\nu_1, \ldots, \nu_N} + \sum_{i, n_i > 2} A_{l-(n_1+n_2+\ldots-2)}^{\nu_1-2, \ldots, \nu_N-n_N} v_{n_1, n_2, \ldots, n_N} \right] \quad \text{(3.17)} \]

By choosing the coefficient of \(x_1^{\nu_1} x_2^{\nu_2} \ldots x_N^{\nu_N} \) to be unity, we may set

\[A_{\nu_1, \nu_2, \ldots, \nu_N}^0 = 1, \quad A_{\nu_1, \nu_2, \ldots, \nu_N}^l = 0, \text{ when } l \neq 0, \quad \text{(3.18)} \]

and

\[\epsilon_l = \sum_{i=1}^N \left[-\frac{1}{2} (\nu_i + 2)(\nu_i + 1) A_i^{\nu_1, \ldots, \nu_i + 2, \ldots, \nu_N} + \sum_{i, n_i > 2} A_{l-(n_1+n_2+\ldots-2)}^{\nu_1-2, \ldots, \nu_N-n_N} v_{n_1, n_2, \ldots, n_N} \right] \quad \text{(3.19)} \]

To find an energy correction \(\epsilon_l \) we need to have all \(\epsilon_{l' < l} \) and \(A_{l' < l}^{k_1, \ldots, k_N} \), as well as \(A_l^{\nu_1, \ldots, \nu_i + 2, \ldots, \nu_N} \). On the other hand if at least one \(k_j \neq \nu_j \) for some \(j \in \{1, \ldots, N\} \), from (3.15) we obtain

\[A_l^{k_1, \ldots, k_N} = \frac{1}{\sum_i \omega_i (k_i - \nu_i)} \left[\sum_{i=1}^N \frac{1}{2} (k_i + 2)(k_i + 1) A_i^{k_1, \ldots, k_i + 2, \ldots, k_N} - \sum_{i, n_i > 2} A_{l-(n_1+n_2+\ldots-2)}^{k_1-1, k_2-2, \ldots, k_N-n_N} v_{n_1, n_2, \ldots, n_N} + \sum_{n=1}^l \epsilon_n A_{l-n}^{k_1, k_2, \ldots, k_N} \right] \quad \text{(3.20)} \]

To show a way to solve these equations, let us first introduce some notation. Let all the indices \(k_1, k_2, \ldots, k_N \) be grouped into a vector of integers

\[\vec{k} = (k_1, k_2, \ldots, k_N) \quad \text{(3.21)} \]

Further, let the basis vectors be

\[\vec{e}_1 = (1, 0, \ldots, 0) \]
\[\vec{e}_2 = (0, 1, 0, \ldots, 0) \]
\[\vdots \]
\[\vec{e}_N = (0, \ldots, 0, 1) \]
Now, let the vector \vec{K}_l be the maximum power vector at the order l

$$\vec{K}_l = (K^1_l, K^2_l, \ldots, K^N_l), \quad K_l \in \mathbb{N}^+. \tag{3.22}$$

meaning that

$$A^K_l = 0, \quad \text{if } \exists \vec{i} \text{ such that } \vec{e}_i \cdot \vec{k} > K^i_l. \tag{3.23}$$

To abbreviate notation, we will denote the condition above

$$\vec{k} > \vec{K}_l \tag{3.24}$$

to mean that \textit{at least one component of the vector \vec{k} is larger than the vector s}. Note that the ordering of this inequality is important, and we have not defined the relation $\vec{k} < \vec{s}$. Notice also that, since the leading order coefficients A^K_0 are of order no higher than $\nu_1, \nu_2, \ldots, \nu_N$ in the coordinates x_1, \ldots, x_N, the K_0 is given by

$$\vec{K}_0 = (\nu_1, \ldots, \nu_N) = \vec{\nu}. \tag{3.25}$$

We can write any vector \vec{k} as

$$\vec{k} = \vec{K}_l - \vec{s}. \tag{3.26}$$

Further, we classify values of \vec{k}, uniquely determined by the \vec{s}, by the value of the integer

$$n^e_{\vec{k}} = \sum_{i=1}^{N} s_i. \tag{3.27}$$

We now claim that we can successively solve for the coefficients A^K_l for the classes

$$n^e_{\vec{k}} = 0, 1, 2, \ldots n^e_{\vec{\nu}} \tag{3.28}$$

using the equation (3.20). Indeed notice that since for a given \vec{k} in a fixed class labeled by the integer \vec{n}, the RHS of (3.20) contains only coefficients $A^K_{l+2\vec{e}_i}, i = 1, \ldots, N$ which are in the class $n^e_{\vec{k}} - 2$.

Since we assume that we know all the coefficients $A^K_{l'}$ such that $n^e_{\vec{k}} < n^e_{\vec{k}'}$, we can solve for all the coefficients A^K_l. However, in order to ensure that ϵ_l does not appear in the RHS of (3.20), we must restrict ourselves for the coefficients of classes $n^e_{\vec{k}} \geq n^e_{\vec{\nu}}$.

Notice that if we know all A^K_l with $n^e_{\vec{k}} = 0, 1, 2, \ldots, n^e_{\vec{\nu}}$, we in particular know the class $n^e_{\vec{k}} + 2\vec{e}_1$. This allows us to use (3.19) to solve for ϵ_l. Now that ϵ_l is known, we can solve for the classes $n^e_{\vec{k}} < n^e_{\vec{\nu}}$.

To illustrate this procedure, let us explain how the recursion relations can be solved in the case of the two-variable problem. Then $\vec{k} = (k_1, k_2)$, and a particular recursion procedure can be presented graphically. We illustrate it in Fig. 1. Starting from the vector $\vec{k} = \vec{K}_l$, we can follow the arrowed path to determine the coefficients A^K_l. Note (3.20) requires the knowledge of the previous coefficients $A^K_{l+\vec{e}_1}$ and $A^K_{l+\vec{e}_2}$ (denoted by blue arrows). These coefficients are clearly always located at positions in the diagram for which the A-coefficients were already determined\(^\text{18}\).

\(^{18}\)Note that the successive recursion pattern we show here is not unique. In fact to solve for any coefficient A^K_l in the same class $n^e_{\vec{\nu}}$, we need only to know all the coefficients in the class labeled by $n^e_{\vec{k}} + 2$. This fact allows for the recursion algorithm to be parallelized.
Figure 1. A recursion diagram showing how all coefficients $A_{\vec{k}}^l$ can be found using (3.20) and (3.19) in the case of the two-variable system. The white circles denote the vector \vec{k} for which the coefficients $A_{\vec{k}}^l$ do not a priori vanish. The red-shading indicates the coefficient $A_{\vec{k}}^l$ of the same class labeled by the integer $n_{\vec{k}}$. The black line with an arrow indicates a particular order in which the coefficients $A_{\vec{k}}^l$ can be solved. The two red circles indicate the value of \vec{k} for the coefficients $A_{\vec{k}}^l$ which appear in the equation (3.19) for ϵ_l. The shaded area indicates the values of \vec{k} for which coefficients $A_{\vec{k}}^l$ using (3.20) can be found only if ϵ_l is known. The blue arrows indicates that for a coefficient $A_{\vec{k}}^l$ to be found, the knowledge of $A_{\vec{k}+2\vec{e}_1}^l$ and $A_{\vec{k}+2\vec{e}_2}^l$ is required.

4 The BenderWu MATHEMATICA® package

In this section we describe how the MATHEMATICA® BenderWu package is used and what are its abilities. However rather than explaining its features in details, we will mostly focus on working out a particular example. Many more examples are found in an example file accompanying this work, and the reader is encouraged to refer to it.

Installing and loading the BenderWu package

To install the BenderWu package, open the accompanying installation MATHEMATICA® notebook under the name

BenderWu_Installation.nb

which allows one to easily copy the BenderWu package into your computers repository. Once complete, use the command
In[1]:= Needs['BenderWu']

or

In[1]:= <<'BenderWu'

to load the package. This loads the package content, which comprises the functions: \texttt{BenderWu} function, \texttt{BWProcess} function and \texttt{BWLevelPolynomials}. We briefly describe their application.

\textbf{The} \texttt{BenderWu} \textbf{function}

The integral part of a \texttt{BenderWu} package is the function of the same name. The \texttt{BenderWu} takes in four essential arguments and a number of options. The function is called with the following basic syntax

\texttt{BenderWu}[V[x],x,(Level Number), (Order),Options]

The arguments above are:

\begin{itemize}
 \item The potential which has a local minimum at \(x = 0\) (e.g. \(x^2+3x^7\))
 \item The argument of the potential (e.g. \(x\))
 \item The level number for which one wishes to compute (e.g. 3)
 \item The order of \(g^2\) to which one wishes to compute the energy and the wave-function (e.g. 30).
 \item After fourth argument is called, a number of options can be called. These are discussed in Sec. 4.2
\end{itemize}

Notice that the order of \(g^2\), and not \(g\) which is specified in our normalization19.

The first argument, \' can be input in two basic forms: either by just writing the potential, in which case the entry specifies the classical potential only discussed in Sec. 2.1, or it can be entered as

\texttt{BenderWu}[\{V0[x],V2[x]\},x,(Level Number), (Order),Options]

where \(V0[x]\) and \(V2[x]\) are the classical and the quantum effective potentials \(v_0(x)\) and \(v_2(x)\) discussed in Sec. 2.2.

It is important to remember that the the code assumes that the potential \(v_0(x)\) is at a local minimum when the argument is equal to zero. This means that the perturbative analysis will be carried out assuming that \(v'_0(x) = 0\). Also it must hold that \(v''_0(0) \neq 0\). To do an expansion around a minimum at \(x = x0\), one can use a syntax

\texttt{BenderWu}[\{V0[x0+x],V2[x0+x]\},x,(Level Number), (Order),Options]

19This labeling is done to be consistent with most of the literature where the order refers to the order of \(\hbar \propto g^2\). See the definition of \(g\) in the introduction.
The \texttt{BWProcess} function

The \texttt{BWProcess} function serves as a processing function for the output of the \texttt{BenderWu} function. It helps to format the output and present it in a way that is most useful to the user. It allows for a number of options which control how the output is formatted. The basic syntax is

\[
\texttt{BWProcess[(output of BenderWu), Options]}
\]

\texttt{BWLevelPolynomial} function

The \texttt{BenderWu} function allows only for the insertion of the integer values for the level number, and cannot directly compute the analytical level-number dependence. The \texttt{BWLevelPolynomial} function, however, allows for the reconstruction of the level-number dependence by computing the perturbative data for multiple values of the level-number. The details of how to use this function are found in the Section 4.3.

To illustrate how the function \texttt{BenderWu} and \texttt{BWProcess} function we will go through an example of the potential \(v(gx)/g^2 = \frac{x^2}{2} + g^2x^4 \) explicitly and demonstrate how some of the basic functions and options work. The discussion of the use of the usage of the function \texttt{BWLevelPolynomial} is postponed to the section 4.3. In addition more examples have been worked out in the \textsc{Mathematica}® notebook \texttt{Examples.nb} accompanying this work. The reader is strongly encouraged to refer to this supplemental material.

4.1 An example

Let us consider an example where the \texttt{BenderWu} function is used to compute the first 100 corrections of the perturbation for the third excited state for the potential \(v(xg)/g^2 = \frac{x^2}{2} + g^2x^4 \), where \(g \) is treated as an expansion parameter:

\[
\text{In[2]} := \text{BW} = \text{BenderWu}[x^2/2+x^4,x,3,100];
\]

Upon execution of the above command, a progress monitor will appear indicating some basic information about the progress of the computation. An example of the progress monitor is given below:

\[
\begin{align*}
\text{Computing order: 67} \\
\text{Computing polynomial power: 53} \\
\text{CPU time per order: 0.175167} \\
\text{Memory in use: 65.1391 MB} \\
\text{Total time elapsed: 0 minutes and 4 seconds.}
\end{align*}
\]

The progress monitor gives the information about:

- The order of \(g^2 \) it is currently computing, the CPU time it needs per order,

- The power of \(x \) (which we labeled as “k” in Sec. 2) it is currently computing,
• The CPU time it takes for each order,
• The total memory in use,
• The total time elapsed since the beginning of the computation.

In certain situations it may be desirable to turn off the Progress Monitor. To do that use the option `Monitor->False`, e.g.

```
In[1]:= BW = BenderWu[x^2/2 + x^4, x, 3, 100, Monitor->False];
```

Once the computation is done, the symbol `BW` is assigned an array with three elements. The elements of the array are, in order: energy corrections ϵ_l, wave-function coefficients A_l^k and a list of

The first element of the variable `BW` gives a series of coefficients.

```
In[4]:= BW[[1]]
Out[4]= {7/2, 75/4, -1575/8 + 66825/16 - 15184575/128 + 1024977375/256 - 155898295875/1024 + 12977225578125/2048 - 9294825375966375/32768, ...
```

where we indicated with dots that we have trimmed the output as it is too long at this order. The second element, `BW[[2]]` outputs a matrix A_l^k where rows are associated with index l (the order of g) and k is associated with the index k (the power of x). Since this output is large and not very illuminating, we will not show it here. We will see in a moment how one can use post-processing function `BWProcess` in order to generate a more convenient output.

The function `BWProcess` takes in the default output of the function `BenderWu`. It allows the raw data generated by the call to of `BenderWu` function to be post-processed into an output which is most suitable for the user. If called without any options it returns the energy eigenvalues.

```
In[5]:= BWProcess[BW]
Out[5]= {7/2, 75/4, -1575/8 + 66825/16 - 15184575/128 + 1024977375/256 - 155898295875/1024 + 12977225578125/2048 - 9294825375966375/32768, ...
```

However, to change the output into a series in g, we can simply use the option `OutputStyle->"Series"`

```
In[6]:= BWProcess[BW, OutputStyle->"Series"]
Out[6]= 7/2 + 75/4 g^2/2 + 1575/8 g^4/4 + 66825/16 g^6/6 - 15184575/128 g^8/8 + 1024977375/256 g^10/10 + ...
where again we indicated with dots that we have trimmed the output because it is too large. Indeed, often the full output is too long to be illuminating, and one is most interested in the first few orders. To generate an output which only contains data up to a specific order, one can use the option Order->n, where n specifies the order (of $g^2$) at which to trim the output, e.g.

```math
In[7]:= BWProcess[BW, OutputStyle->"Series", Order->2]
Out[7]= 7/2 + 75 g^2/4 - 1575 g^4/8
```

We can also output the wave-function series $u(x) = \sum_{l,k} A^l_k g^l x^k$ by utilizing the option Output->"WaveFunction". This gives

```math
In[8]:= BWProcess[BW, OutputStyle->"Series", Order->2, Output->"WaveFunction"]
Out[8]= -3 x^2/2 + x^3 + g^2 \left(225 x^4/16 - 15 x^6/8 - x^7/4\right) +
\quad g^4 \left(-35 775 x^8/128 + 315 x^{10}/16 + 135 x^{11}/32 + 115 x^{12}/192 + x^{11}/32\right)
```

Note that the options Output and OutputStyle of the BWProcess function are also the options of BenderWu. This is also true for many other options, discussed in the next section. Therefore, the last output we generated could have equally been generated by calling the BenderWu function like so

```math
In[9]:= BenderWu[x^2/2 + x^4, x, 0, 2, Output->"WaveFunction", OutputStyle->"Series"]
Out[9]= -3 x^2/2 + x^3 + g^2 \left(225 x^4/16 - 15 x^6/8 - x^7/4\right) +
\quad g^4 \left(-35 775 x^8/128 + 315 x^{10}/16 + 135 x^{11}/32 + 115 x^{12}/192 + x^{11}/32\right)
```

Note finally that the potential can also contain an arbitrary non-numerical parameter, i.e.

```math
In[10]:= BenderWu[x^2/2 + x^4 + a x^3, x, 0, 2, Simplify -> True, Output -> "Energy", OutputStyle -> "Series"]
Out[10]= \frac{1}{2} + \frac{1}{8} (6 - 11 a^2) g^2 - \frac{3}{32} (28 - 228 a^2 + 155 a^4) g^4
```

Notice that we also used the option Simplify->True. This option simplifies the analytical expressions at each step, often resulting in faster evaluation an a simplified result when non-numerical symbols are used, as well as when irrational factors appear in the calculation.
Option	Values	Description
Evaluation	"Analytical" (default)	Use symbolic calculation
	"Numerical"	Evaluate numerically (good if irrational constants appear in the potential
		or harmonic oscillator frequency)
WorkingPrecision	MachinePrecision (default)	Use hardware machine precision for numerical evaluation (recommended)
	non-negative integer	The number of digits used for internal computations
MaxTime	Infinity (default)	Perform a computation to the specified order, regardless of the length of
	number > 0	time it takes.
		Specifies the maximal number of seconds used for a computation of a
		single order
TotalMaxTime	Infinity (default)	Perform a computation to the specified order, regardless of the length of
	number > 0	total time it takes.
		Specifies the maximal number of minutes used for an entire computation
Simplify	False (default) or True	If True then the function Simplify is used in each step of the evaluation.
Monitor	True (default)	Turns on the monitor during the computation
	False (default)	Turns off the monitor during the computation

Table 1. The evaluation options of the BenderWu function.

4.2 The options

The BenderWu function can be called without only the four essential arguments. The output is then given as an array with three entries. The first entry is an array of perturbative corrections to the energies $\epsilon_k$. The second entry is a matrix $A^k_l$ of the wave-function coefficients. The third entry passes arguments $x, \nu, l_{\text{max}}$ as well as a variable even which determines whether the function is even or not. The purpose of the third entry in the output array is to allow the post-processing by the function BWProcess which uses these values.

The basic evaluation options which can be specified in the BenderWu function are given in the Table 4.2, as well as a brief description.

The BenderWu also allows for a number of options which determine the way the data is output. These options are options of the function BWProcess which takes in a single argument

The options are called with the standard MATHEMATICA® syntax:

*(Option) -> (Option Value)*

The table of options of as well as their description is given in tables 4.2 and 4.2

4.3 The polynomials in level number and the BWLevelPolynomial function

In this section we describe another function of the package BenderWu which allows one to compute the functional form of the energy correction $\epsilon_{2n}$ (recall that we call *n the order*) on the level number
Table 2. The output formatting options of the \texttt{BenderWu} and the \texttt{BWProcess} function. All of the options, save for the option \texttt{Order} are shared between the two functions. Notice that if no options are called in the \texttt{BenderWu} function, or only evaluation options of table 4.2 are called, the default output is in terms of raw data which serves as an input to the \texttt{BWProcess} function.

\[ \epsilon_{2n} = a_0^n + a_1^n \nu + a_2^n \nu^2 + \cdots + a_{p(n)} n \nu^{p(n)} \]  

(4.1)

where \( p \) is the highest power of \( \nu \) that appears. Notice that \( p \) depends on \( n \) in general.

To determine the polynomial form we must

- Assume that at the maximal order \( n_{\text{max}} \) we are interested in, the highest power of the polynomial in \( \nu \) is \( p_{\text{max}} = p(n_{\text{max}}) \).
- Use the \texttt{BenderWu} function to compute the energy corrections up to the order \( n_{\text{max}} \) and for values of \( \nu = 0, 1, 2, \ldots \nu_{\text{max}} \), where \( \nu_{\text{max}} \geq p_{\text{max}} \).
- Use the data to fix the coefficients \( a_i^n \) \( (n = 0, 1, \ldots, n_{\text{max}}, i = 0, 1, \ldots, p(n)) \) of a polynomial in \( \nu \).
The function `BWLevelPolynomial` does precisely that. It takes a two-dimensional array, with first-level entries of the energy series coefficients $\epsilon_{2n}$ up to some order $n_{\text{max}}$, for various level numbers $\nu$, and returns an array of the polynomials in $\nu$ corresponding to each order of $n = 0, \ldots n_{\text{max}}$.

In other words, by taking $\nu_{\text{max}} = 4$ and $p_{\text{max}} = 3$ we can simply generate a table

```
In[11]:= Levels = Table[BenderWu[x^2/2+x^4,x,nu,3,
Output->"Energy"],{nu,0,4}];
```

which produces a two dimensional array, or a matrix $e_{2n}(\nu)$, where $n$ index is the column index and $\nu$ is the row index. This matrix can be forwarded to the function `BWLevelPolynomial` to produce an output

```
In[12]:= BWLevelPolynomial[Levels]
Out[12]= \{\frac{1}{2} + \nu , \frac{3}{4} + \frac{3 \nu}{2} + \frac{3 \nu^2}{2}, - \frac{21}{8} - \frac{59 \nu}{8} - \frac{51 \nu^2}{8} - \frac{17 \nu^3}{4}\}
```

returning the polynomial form of the three orders which we computed. Notice that the leading order is just the usual Harmonic Oscillator term, while the rest correspond to the Bohr-Sommerfeld quantization terms. The levels function can also take an optional argument which is used as a symbol for $\nu$.

```
In[13]:= BWLevelPolynomial[Levels,n]
Out[13]= \{\frac{1}{2} + n , \frac{3}{4} + \frac{3 \ n}{2} + \frac{3 \ n^2}{2}, - \frac{21}{8} - \frac{59 \ n}{8} - \frac{51 \ n^2}{8} - \frac{17 \ n^3}{4}\}
```

Note that, although technically we can have $\nu_{\text{max}} = p_{\text{max}}$, since $p_{\text{max}}$ is not a priori known for the function `BWLevelPolynomial` to be able to check that the returned polynomials are correct, it needs extra data. Therefore it is necessary that $\nu_{\text{max}} > p_{\text{max}}$. Running the same steps, except taking $\nu_{\text{max}} = 3$ results in a warning and a truncated result

```
In[14]:= Levels = Table[BenderWu[x^2/2+x^4,x,nu,3,Output->"Energy"],{nu,0,3}];
In[15]:= BWLevelPolynomial[Levels]
```

The polynomial form could not be established for the last 1 orders.

```
Out[15]= \{\frac{1}{2} + \nu , \frac{3}{4} + \frac{3 \nu}{2} + \frac{3 \nu^2}{2}\}
```

returning only the results which were computed reliably.
5 Conclusion

We have presented the generalization of the Bender-Wu recursion relations treating all locally harmonic potentials uniformly. In addition we considered various effective action forms, and derived generalizations for them.

Additionally we have developed a MATHEMATICA® package incorporating these relations for an easy computation of the perturbative expansions in 1D quantum mechanics. Although the method of Bender-Wu is well known in the literature, the application seems to have been focused on a case-by-case basis. It is our hope that the unified treatment, and simplicity of the MATHEMATICA® package introduced here will stimulate a more fervent development of the resurgence program, as well as bring the program closer to a wider audience. We further hope to adapt the package into a Wolfram demonstration project, accessible to students and researchers who currently do not have access to a MATHEMATICA® license.

We also hope to develop the package to include new, as well as incorporate already known methods of processing and analyzing the resurgence data. Some immediate obvious generalizations are incorporations of arbitrary effective actions, ability to easily change the initial harmonic oscillator ansatz incorporating an analytically resummed subclass (see [35]), and generalizations to multi-variable Schrödinger equation. The last generalization is of potentially vital importance in the attempt to connect resurgence ideas to quantum field theories.

Acknowledgments

We would like to give special thanks to Aleksey Cherman for thoroughly testing the code and giving useful comments on an early draft of this work. In addition we are very thankful to Gerald Dunne, Can Kozçaz and Yuya Tanizaki for discussions, suggestions and code-testing. This research was supported by the DOE under Grants No. DE-FG02-03ER41260 (TS) and DE-SC0013036 (MÜ).
A The highest power for \( v_1 = v_2 = \cdots = v_{L-1} = 0 \) and \( v_L \neq 0 \).

Here we prove the formula

\[
K_l = \begin{cases} 
\nu \delta_{l0} & \text{for } 0 \leq l < L \\
\nu + (L + 2) \left\lfloor \frac{l}{L} \right\rfloor + (l \mod L) & \text{for } l \geq L 
\end{cases}
\]  

(A.1)

We will give two proofs. The first one is more intuitive and uses the standard textbook methods of Reyleigh-Schrödinger, while the second one is using the Bender-Wu recurrence relations.

A.1 The Rayleigh-Schrödinger proof

Consider the Schrödinger equation

\[
(h_0 + v_I) |\psi\rangle = \epsilon |\psi\rangle
\]

where we separated the Hamiltonian of (2.1) into the harmonic oscillator part \( h_0 \) and the “interaction” terms

\[
h_0 = -\frac{1}{2} \partial_x^2 + \frac{1}{2} \omega^2 x^2
\]

\[
v_I = \frac{\tilde{v}(gx)}{g^2} = v_1 gx^3 + v_2 g^2 x^4 + \ldots .
\]

Now write \( \epsilon = \epsilon_0(\nu) + \tilde{\epsilon} \). The Schrödinger equation (A.2) can be formally rewritten as

\[
|\psi\rangle = |\nu\rangle + \frac{1}{h_0 - \epsilon_0(\nu)} P(\tilde{\epsilon} - v_I) |\psi\rangle
\]

(A.5)

where \( |\nu\rangle \) is the harmonic oscillator state at level \( \nu \), and \( P \) is the projector onto the subspace orthogonal to \( |\nu\rangle \). Notice that when \( v_I \rightarrow 0 \) then \( \tilde{\epsilon} \rightarrow 0 \) and \( |\psi\rangle \rightarrow |\nu\rangle \), as it should.

Now we can iterate the above equation by plugging in the LHS to the RHS. We then get

\[
|\psi\rangle = |\nu\rangle + \frac{1}{h_0 - \epsilon_0(\nu)} P(-v_I) |\nu\rangle + \frac{1}{h_0 - \epsilon_0(\nu)} P(\tilde{\epsilon} - v_I) \frac{1}{h_0 - \epsilon_0(\nu)} P(-v_I) |\nu\rangle + \ldots
\]

(A.6)

We can now insert complete set of Harmonic oscillator states, and obtain that the \( k \)-th power contribution of \( v_I \) is of the form

\[
\psi^{(k)}(x) \propto \sum_{\{n_i\}} H_{n_1}(x) e^{-\frac{\omega^2}{2} v_{n_1 n_2} v_{n_2 n_3} \ldots v_{n_k n}}
\]

(A.7)

where we specified to the coordinate basis, and where

\[
v_{n_i, n_{i+1}} = \langle n_i | v_{int} | n_{i+1} \rangle, \quad \epsilon_{n_i, n_{i+1}} = \epsilon_0(n_i) - \epsilon_0(n_{i+1}).
\]

(A.8)

The \( H_n(x) \) are Hermite polynomials of order \( n \). If \( v_1 \neq 0 \) in (A.4), then by replacing \( v_I \) with its leading term\(^{20} \) \( v_1 gx^3 \) would allow \( n_1 \) at order \( g^k \) to be at most \( \max[n_1] = \nu + 3k \), because each \( \nu \) can be shown by staring at the equations that this term maximizes the power of \( x \) at order \( g^k \).
Now consider the power of \( v_I \) would contribute an \( x^3 \) term, and change the harmonic oscillator level number by 3. This confirms (A.1) for \( L = 1 \).

Now if \( v_i = 0, i < L \) and \( v_L \neq 0 \) then the lowest power of \( g \) in the potential \( v_I \) is \( g^L v_L x^{L+2} \), so that there is no contribution to the wave-function until order \( g^L \). Therefore all \( K_l = 0 \) for \( l = 1, 2, \ldots L - 1 \). Now for order \( g^L \), it is easy to see \( K_L = K_0 + L + 2 = \nu + L + 2 \). At order \( g^{L+1} \) we can take the term in \( v_I \) proportional to \( v_{L+1} g^{L+1} x^{L+3} \), and get \( K_{L+1} = \nu + L + 3 \). Continuing one can show that formula (A.1) is indeed valid.

### A.2 The proof by the recurrence equations

The proof is by induction. First notice that if we take \( l < L \) then the formula (2.18) becomes

\[
A_L^k = \frac{1}{2\omega(k - \nu)} \left[ (k + 2)(k + 1)A_{l}^{k+2} + 2\epsilon_1 A_{l-1}^k + 2\epsilon_2 A_{l-2}^k + \ldots + 2\epsilon_l A_0^k \right] \tag{A.9}
\]

while (2.17) becomes

\[
\epsilon_l = -\frac{1}{2} (\nu + 2)(\nu + 1) A_l^{\nu+2} \tag{A.10}
\]

It is easy to convince oneself that these two equations imply \( \epsilon_l = 0 \) and \( A_l^k = 0 \) for \( l < L \). This just means that there is no corrections to the Harmonic oscillator states and energies up to order \( g^L \), which is the first order at which the potential gives a non-trivial contribution. This translates into

\[
K_l = 0, \quad \text{for } 0 < l < L. \tag{A.11}
\]

So the first contribution comes at order \( l = L \). Plugging that into (2.18), we get

\[
A_L^k = \frac{1}{2\omega(k - \nu)} \left[ (k + 2)(k + 1)A_{l}^{k+2} - 2v_L A_{0}^{k-L-2} \right]. \tag{A.12}
\]

Since \( A_0^{k-L-2} = 0 \) for \( k > K_0 + L + 2 = \nu + L + 2 \), then it must follow that

\[
K_L = \nu + L + 2. \tag{A.13}
\]

Now consider \( l = L + 1 \). Then (2.17) becomes

\[
A_{L+1}^k = \frac{1}{2\omega(k - \nu)} \left[ (k + 2)(k + 1)A_{L+1}^{k+2} - 2v_L A_{L}^{k-L-2} - 2v_{L+1} A_{0}^{k-L-3} \right]. \tag{A.14}
\]

The two last terms vanish if both \( k > K_1 + L + 2 = 2(L+2) \) and \( k > K_0 + L + 3 = \nu + (L+2) + 1 \), so

\[
K_{L+1} = \nu + L + 3. \tag{A.15}
\]

Now for \( L \leq l < 2L \), we have

\[
A_l^k = \frac{1}{2\omega(k - \nu)} \left[ (k + 2)(k + 1)A_{L+1}^{k+2} + 2\epsilon_L A_{L}^{k-L} + 2\epsilon_{L+1} A_{L-1}^{k-L} + \ldots + 2\epsilon_l A_0^k \right.
\]

\[
- 2v_L A_{L}^{k-L-2} - 2v_{L+1} A_{L-1}^{k-L-3} \ldots - 2v_{l-1} A_{0}^{k-l-1} - 2v_l A_{0}^{k-l-2} \right], \tag{A.16}
\]

- 26 -
Now notice that all the terms, except the first on the RHS vanish if $k > K_0 + l + 2 = \nu + l + 2$, so that

$$K_l = \nu + (l + 2), \quad L \leq l < 2L,$$

which agrees with (A.15) when $l = L + 1$.

Now that we have proven that the formula (A.1) is valid for $l < 2L$, let us assume that it is valid for all $l < \tilde{l}$. Now notice that the formula (A.1) implies

$$K_{\tilde{l}} \geq K_{\tilde{l} - 1} + 1. \quad \text{(A.18)}$$

Now taking $l = \tilde{l}$, the last term in the square bracket of (2.18)

$$v_L A_{\tilde{l} - L}^{k - L - 2} + v_{L+1} A_{\tilde{l} - L - 1}^{k - L - 3} + v_{L+2} A_{\tilde{l} - L - 2}^{k - L - 4} + \ldots v_{\tilde{l} - 1} A_{1}^{k - \tilde{l} - 1} + v_{\tilde{l}} A_{0}^{k - \tilde{l} - 2} \quad \text{(A.19)}$$

will dictate the maximum $k$ for which $A_k^l$ does not vanish. In other words, in order for $A_k^l$ to vanish, all terms above must vanish as well. It is clear that in order for this to be fulfilled, we must have that

$$\left[ k > K_{\tilde{l} - L} + (L + 2) \right] \& \left[ k > K_{\tilde{l} - L - 1} + (L + 3) \right] \& \left[ k > K_{\tilde{l} - L - 2} + (L + 4) \right] \& \ldots \& \left[ k > K_1 + (\tilde{l} + 1) \right] \& \left[ k > K_0 + (\tilde{l} + 2) \right] \quad \text{(A.20)}$$

However, notice that because (A.18) holds for all $l < \tilde{l}$, all of the above conditions are fulfilled if the first one is fulfilled. Therefore

$$K_{\tilde{l}} = K_{\tilde{l} - L} + (L + 2) = \nu + (L + 2) \left( 1 + \left\lfloor \frac{\tilde{l} - L}{L} \right\rfloor \right) + (\tilde{l} \mod L) = \nu + (L + 2) \left\lfloor \frac{\tilde{l}}{L} \right\rfloor + (\tilde{l} \mod L) \quad \text{(A.21)}$$

which implies that formula (A.1) is also true for $l = \tilde{l}$. This finally proves (A.1) for all $l$.

References

[1] E. Schrödinger, *Quantisierung als eigenwertproblem*, Annalen der Physik 385 (1926), no. 13 437–490.

[2] E. Schrödinger, *An undulatory theory of the mechanics of atoms and molecules*, Phys. Rev. 28 (Dec, 1926) 1049–1070.

[3] J. W. S. B. Rayleigh, *The Theory of Sound*, vol. 1. Macmillan and Co., 1877.

[4] J. Ecalle, *Les Fonctions Resurgentes*, Vol. I-III. Publ. Math. Orsay, 1981.

[5] M. V. Berry and C. J. Howls, *Hyperasymptotics for integrals with saddles*, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 434 (1991), no. 1892 657–675.

[6] C. J. Howls, “hyperasymptotics for multidimensional integrals, exact remainder terms and the global connection problem.”, Proc. R. Soc. London, 453 (1997) 2271.

[7] E. Delabaere and C. J. Howls, *Global asymptotics for multiple integrals with boundaries*, Duke Math. J. 112 (04, 2002) 199–264.
[8] E. Bogomolny, *Calculation of Instanton–Anti-instanton Contributions in Quantum Mechanics*, Phys.Lett. B91 (1980) 431–435.

[9] J. Zinn-Justin, *Multi-Instanton Contributions in Quantum Mechanics*, Nucl.Phys. B192 (1981) 125–140.

[10] J. Zinn-Justin, *Multi-Instanton Contributions in Quantum Mechanics. 2.*, Nucl. Phys. B218 (1983) 333–348.

[11] G. V. Dunne and M. Unsal, *Generating Non-perturbative Physics from Perturbation Theory*, Phys.Rev. D89 (2014) 041701, [arXiv:1306.4405].

[12] G. V. Dunne and M. Unsal, *Uniform WKB, Multi-instantons, and Resurgent Trans-Series*, Phys.Rev. D89 (2014), no. 10 105009, [arXiv:1401.5202].

[13] T. Misumi, M. Nitta, and N. Sakai, *Resurgence in sine-Gordon quantum mechanics: Exact agreement between multi-instantons and uniform WKB*, arXiv:1507.0040.

[14] G. V. Dunne and M. Unsal, *Resurgence and Trans-series in Quantum Field Theory: The CP(N-1) Model*, JHEP 1211 (2012) 170, [arXiv:1210.2423].

[15] A. Cherman, D. Dorigoni, and M. Unsal, *Decoding perturbation theory using resurgence: Stokes phenomena, new saddle points and Lefschetz thimbles*, arXiv:1403.1277.

[16] M. Marino, *Nonperturbative effects and nonperturbative definitions in matrix models and topological strings*, JHEP 12 (2008) 114, [arXiv:0805.3033].

[17] S. Garoufalidis, A. Its, A. Kapaev, and M. Marino, *Asymptotics of the instantons of Painlevé I*, Int. Math. Res. Not. 2012 (2012), no. 3 561–606, [arXiv:1002.3634].

[18] I. Aniceto, R. Schiappa, and M. Vonk, *The Resurgence of Instantons in String Theory*, Commun. Num. Theor. Phys. 6 (2012) 339–496, [arXiv:1106.5922].

[19] I. Aniceto and R. Schiappa, *Nonperturbative Ambiguities and the Reality of Resurgent Transseries*, Commun. Math. Phys. 335 (2015), no. 1 183–245, [arXiv:1308.1115].

[20] C. M. Bender and T. T. Wu, *Anharmonic oscillator. 2: A Study of perturbation theory in large order*, Phys. Rev. D7 (1973) 1620–1636.

[21] C. Kozcza, T. Sulejmanpasic, Y. Tanizaki, and M. Unsal, *Cheshire Cat Resurgence, Self-resurgence, and Quasi-Exact Solvability*, (to appear soon).

[22] T. Kawai and Y. Takei, *Algebraic analysis of singular perturbation theory*, vol. 227. American Mathematical Soc., 2005.

[23] M. Stone and J. Reeve, *Late Terms in the Asymptotic Expansion for the Energy Levels of a Periodic Potential*, Phys. Rev. D18 (1978) 4746.

[24] J. J. M. Verbaarschot, P. C. West, and T. T. Wu, *Large order behavior of the supersymmetric anharmonic oscillator*, Phys. Rev. D42 (1990) 1276–1284.

[25] C. M. Bender and G. V. Dunne, *Large order perturbation theory for a nonHermitian PT symmetric Hamiltonian*, J. Math. Phys. 40 (1999) 4616–4621, [quant-ph/9812039].

[26] C. M. Bender, G. V. Dunne, P. N. Meisinger, and M. Simsek, *Quantum complex Henon-Heiles potentials*, Phys. Lett. A281 (2001) 311–316, [quant-ph/0101095].

[27] G. ’t Hooft, *Can We Make Sense Out of Quantum Chromodynamics?*, Subnucl. Ser. 15 (1979) 943.
[28] P. C. Argyres and M. Unsal, The semi-classical expansion and resurgence in gauge theories: new perturbative, instanton, bion, and renormalon effects, *JHEP* **1208** (2012) 063, [arXiv:1206.1890].

[29] P. Argyres and M. Unsal, A semiclassical realization of infrared renormalons, *Phys.Rev.Lett.* **109** (2012) 121601, [arXiv:1204.1661].

[30] A. Cherman, D. Dorigoni, G. V. Dunne, and M. Unsal, Resurgence in Quantum Field Theory: Nonperturbative Effects in the Principal Chiral Model, *Phys.Rev.Lett.* **112** (2014), no. 2 021601, [arXiv:1308.0127].

[31] M. M. Anber and T. Sulejmanpasic, The absence of IR renormalons in gauge theories on $\mathbb{R}^3 \times S^1$ and what it means for resurgence, arXiv:1410.0121.

[32] C. Bauer, G. S. Bali, and A. Pineda, Compelling Evidence of Renormalons in QCD from High Order Perturbative Expansions, *Phys. Rev. Lett.* **108** (2012) 242002, [arXiv:1111.3946].

[33] P. V. Buividovich, Feasibility of Diagrammatic Monte-Carlo based on weak-coupling expansion in asymptotically free theories: case study of O($N$) sigma-model in the large-$N$ limit, *PoS LATTICE2015* (2016) 293, [arXiv:1510.0656].

[34] M. Brambilla, F. Di Renzo, M. Guagnelli, and B. De Palma, Clover fermions in Numerical Stochastic Perturbation Theory, *PoS LATTICE2015* (2016) 270.

[35] C. M. Bender and L. M. A. Bettencourt, Multiple scale analysis of quantum systems, *Phys. Rev.* **D54** (1996) 7710–7723, [hep-th/9607074].