Random noise stimulation in the treatment of patients with neurological disorders

Mateo A. Herrera-Murillo1, Mario Treviño2, Elias Manjarrez3.

Abstract

Random noise stimulation technique involves applying any form of energy (for instance, light, mechanical, electrical, sound) with unpredictable intensities through time to the brain or sensory receptors to enhance sensory, motor, or cognitive functions. Random noise stimulation initially employed mechanical noise in auditory and cutaneous stimuli, but electrical energies applied to the brain or the skin are becoming more frequent, with a series of clinical applications. Indeed, recent evidence shows that transcranial random noise stimulation can increase corticospinal excitability, improve cognitive/motor performance, and produce beneficial aftereffects at the behavioral and psychological levels. Here, we present a narrative review about the potential uses of random noise stimulation to treat neurological disorders, including attention deficit hyperactivity disorder, schizophrenia, ambylopia, myopia, tinnitus, multiple sclerosis, post-stroke, vestibular-postural disorders, and sensitivity loss. Many of the reviewed studies reveal that the optimal way to deliver random noise stimulation-based therapies is with the concomitant use of neurological and neuropsychological assessments to validate the beneficial aftereffects. In addition, we highlight the requirement of more randomized controlled trials and more physiological studies of random noise stimulation to discover another optimal way to perform the random noise stimulation interventions.

Key Words: random noise stimulation; mechanical noise; neurological disorders; neuronal noise; noise galvanic stimulation; non-invasive brain stimulation; transcranial electrical stimulation; transcranial random noise stimulation

Introduction

Random noise stimulation (RNS) is becoming a clinical research technique with potential applications for treating neurological disorders. In this review, we elaborate the idea that, although the results of these investigations are promising, the auditory, tactile, and electrical RNS aftereffects in patients with neurological disorders remain widely unexplored in the context of controlled clinical trials. Hence, this work could serve as an initial framework for future clinical research in this field.

On the other hand, the study of RNS deserves the critical attention of therapists to carefully examine the side effects for extended periods (years) of RNS stimulation. In the second place, though there are several randomized single and double-blinded studies, more systematic evidence is needed to understand these therapies using auditory, electrical, or other types of RNS. Likewise, it is necessary to evaluate the effects of RNS on larger samples, as the ones reported so far are still relatively small (Table 1). Finally, this review could help visualize the common beneficial effects of RNS interventions in different types of neurological diseases.

Search Strategy

A narrative review was carried out, including articles from Medline and Web of Science electronic databases updated until November 2021. The terms used for the database search were “RNS or noise or transcranial random noise stimulation (RNS) OR tRNS OR nGVS OR stochastic resonance (SR) AND therapy and patient AND neuron AND (brain or peripheral) OR tinnitus OR ADHD OR schizophrenia, ambylopia, or myopia, or tinnitus, or multiple sclerosis, OR stroke, OR vestibular-postural disorders, OR sensitivity loss.” The selected articles focused on auditory, tactile, or electrical RNS in patients previously diagnosed with conditions involving nervous system alterations. At least two independent researchers evaluated the reviewed articles. We filtered the database search to original articles referred to as experimental studies, randomized controlled trials, controlled clinical trials, observational studies, and case reports published in “RNS” and “tRNS.” We also explored the reviewed publications found beneficial effects of auditory, mechanical, or electrical RNS in various neurological disorders.

General Aspects of Random Noise Stimulation

For several years, non-invasive stimulation techniques using noise have been developed, with the idea of activating sensory receptors and brain regions to improve the quality of life of patients with neuronal dysfunction. In particular, auditory noise stimulation (which we will refer to as “auditory RNS”) was examined to improve visual sensations in the multisensory interaction via a stochastic resonance (SR)-like phenomenon, also known as cross-modal or multisensory SR (Manjarrez et al., 2007; Lugo et al., 2008). SR is a mechanism by which noise enhances the response of a system to an input signal. In 1981, Benzi et al. introduced for the first time this concept, mentioning that “a dynamical system subject to both periodic forcing and random perturbation may show a resonance (peak in the power spectrum) which is absent when either the forcing or the perturbation is absent.” Auditory RNS was employed to improve the ability of listeners to understand spoken words during the observation of another person performing mouth articulatory movements (Ross et al., 2007; Liu et al., 2013). Furthermore, “mechanical RNS” applied on the finger skin was employed to increase visual evoked potentials via multisensory SR in primary visual cortical areas, but not in regions overlying the somatosensory cortex (Mendez-Baluena et al., 2015).

In a similar context, Terney et al. (2008) introduced a technique of electrical stimulation known as transcranial random noise stimulation (tRNS), which can increase the amplitude of corticospinal motor evoked potentials elicited by transcranial magnetic stimulation. This technique is a form of transcranial alternating current stimulation (tACS), where a low-intensity current varies randomly with a flat probability density function, similar to white noise. Most studies employed tRNS with a frequency between 0.1 to 640 Hz or with a higher frequency range from 101 to 640 Hz (Antal and Herrmann, 2016; Ghin et al., 2018).

1Facultad de Medicina, Plan de Estudios Combinados en Medicina (PECEM), UNAM, Circuito Interior, Ciudad Universitaria, Av. Universidad, Ciudad de México, México; 2Instituto de Neurociencias, Universidad de Guadalajara, Guadalajara, Jalisco, México; 3Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, México

*Correspondence to: Elias Manjarrez, eliasmanjarrez@gmail.com or elias.manjarrez@correo.buap.mx

Funding: This work was supported by Cátedra Marcos Moshinsky (to EM), CONACYT Fronteras de la Ciencia #536 (to EM), VIEP-PHII-FOMES-PROMEP-BUAP-Puebla (to EM), and Comité de Internacionalización de la Investigación (to EM), México.

How to cite this article: Herrera-Murillo MA, Treviño M, Manjarrez E (2022) Random noise stimulation in the treatment of patients with neurological disorders. Neural Regen Res 17(12):2557-2562.
In another study, Van der Groen and Wenderoth (2016) applied tRNS in participants who were asked to detect Gabor patches in two trials visually. These authors found that stimulating the visual cortex with tRNS at an intensity of approximately 1 to 2 mA improved the performance in a visual alternative forced-choice task. Furthermore, they suggested that tRNS improved the detection of a subthreshold signal by increasing cortical excitability and lowering the response threshold (Potok et al., 2021). These results were consistent with an SR-like phenomenon and with other reports showing that high-frequency RNS (hf-tRNS) of 1.5 mA to the extrastriate visual area produced maximal enhancement of performance (Soudijn et al., 2018; Pavan et al., 2019). In the study by Pavan et al. (2019), there was an optimal intensity for hf-tRNS, but it also confirmed the detrimental effect when using higher noise intensities.

The utility of tRNS is beneficial for perceptual learning (Fertonani et al., 2011), memory performance (Penton et al., 2018), auditory gap discrimination (Rufener et al., 2017), visual motion adaptation (Campana et al., 2016), and the induction of long-lasting effects on execution speed (i.e., reduction of reaction times) in Go-NoGo tasks in healthy subjects (Brevet-Aebty et al., 2019). In the same context, hf-tRNS reduced the task-related activity in the prefrontal cortex, the cuneus, and the anterior cingulate cortex during a visuomotor learning task (Saioete et al., 2013).

Another modality of non-invasive noisy stimulation recently developed is noise galvanic vestibular stimulation (nGVS), which employs electrodes bilaterally placed caudal to the ear on the mastoid, close to the tensor tympani and masseter muscles (Mulvany et al., 2019). The nGVS usually uses imperceptible zero-mean Gaussian-white Galvanic noise. There is evidence that nGVS improves balance and locomotor stability in healthy persons (Mulvany et al., 2011; Goel et al., 2015; Galvan-Garza et al., 2018; Temple et al., 2018).

Regarding the mechanisms of tRNS, there are only a few physiological studies in this area. (Chaieb et al., 2015; Remedios et al., 2019) and the dorsal root ganglia (Onorato et al., 2016) evidencing the participation of sodium (Na+) channels in these tRNS amping aftereffects. As a potential mechanism, it is speculated that the nonlinear dynamics generated in ion channels, the repeated pulses generated by tRNS could induce multiple ionic influxes, amplifying membrane voltage fluctuations. In this context, more physiological studies about the mechanisms of action of tRNS, or other forms of RNS, are required.

The studies mentioned in this section reveal that RNS of different energies could be a research technique with potential clinical applications. In the following paragraphs, we will describe the effects of RNS in the treatment of particular neurological disorders.

Attention Deficit Hyperactivity Disorder

The effect of auditory RNS under several experimental paradigms has demonstrated its alleged role as a therapeutic option for patients with attention deficit hyperactivity disorder (ADHD) (Figure 1). It has shown its usefulness in improving language, working memory (Pickens et al., 2019), and reducing impulsivity (Cook et al., 2014). One of the first studies exploring the effects of auditory RNS on memory tasks originated partly from the observation that background music could improve performance on arithmetic tasks, which is interesting considering it is a task-irrelevant stimulus (Abikoff et al., 1996). Another relevant study involved a controlled clinical trial in children with ADHD. In this study, auditory RNS was beneficial on cognitive performance and motor learning, possibly due to the facilitation of information transmission or the constant promoting of phasic dopamine release. Consequently, this increase in tonic dopamine release could conduct the brain towards moderate arousal, benefiting cognitive performance. However, several other theories about the effects of auditory RNS in the treatments of ADHD could be incorporated, as the “optimal stimulation theory,” which establishes that every individual has its optimal level of arousal, an idea which has been supported by empirical studies (Abikoff et al., 1996; Baijot et al., 2016). Finally, we could speculate that other theories and methods employing neurofeedback with an optimal noise level, such as auditory RNS, could also be helpful in the treatment of ADHD.

Schizophrenia

The effects of electrical noise (i.e., tRNS) and auditory RNS on schizophrenic patients have been tested based on empirical methods in some studies. For instance, Palm et al. (2013) reported the case of a 29-year-old patient diagnosed with both paranoid schizophrenia and a history of severe suicidal conduct. The patient was medicated with clozapine, haloperidol, pregabaline, and lamotrigine. In this study, tRNS was delivered on twenty occasions to the dorsolateral prefrontal cortex. The authors found that tRNS produced a modest improvement as reflected by the reduced ADHD rating-scale score from baseline compared to the changes produced by transcranial direct current stimulation (tDCS). Finally, Cook et al. (2014) reported that auditory RNS delivered through headphones reduced passive off-task behavior in three ADHD underling stimulant medication. These authors recommended auditory RNS in individuals with ADHD due to its easy application in classrooms and homes and no side effects.

In contrast, Metin et al. (2016) examined the impulsive choice in children with ADHD, finding that auditory RNS in the environment did not reduce impulsive choice in ADHD. These controversial findings indicate that the hypothesis that auditory RNS is beneficial in children with ADHD requires further examination regarding the types of acoustic noise employed and their biological processes.

We can also speculate regarding the theories behind the observed behavioral aspects of ADHD improved by the auditory RNS. For instance, ADHD could be due to abnormally low tonic Dopamine levels, which are compensated by phasic or stimulus-dependent dopamine release (Sikström and Söderlund, 2007). In this scenario, the stimulation with moderately continuous auditory RNS in environments could benefit cognitive performance and motor learning, possibly due to the facilitation of information transmission or the constant promoting of phasic dopamine release. Consequently, this increase in tonic dopamine release could conduct the brain towards moderate arousal, benefiting cognitive performance. However, several other theories about the effects of auditory RNS in the treatments of ADHD could be incorporated, as the “optimal stimulation theory,” which establishes that every individual has its optimal level of arousal, an idea which has been supported by empirical studies (Abikoff et al., 1996; Baijot et al., 2016). Finally, we could speculate that other theories and methods employing neurofeedback with an optimal auditory RNS, or tRNS, based on chaotic resonance (Nobukawa et al., 2021), could also be helpful in the treatment of ADHD.
More recently, a randomized, double-blind pilot study evaluated patients with schizophrenia through hf-tRNS and various psychiatric medications (Chang et al., 2021). Here hf-tRNS was applied on AF3 twice a day for five weeks to 35 patients with adequate antipsychotic medication and who exhibited negative symptoms, assessed through the PANSS factor score for negative symptoms (PANSS-FSNS). Consistent with prior studies, the negative symptoms of schizophrenia decreased in the group treated with hf-tRNS, showing this effect up to one month from the first hf-tRNS session. The authors suggested that the underlying mechanisms could be associated with increased cortical excitability in the brain, probably involving an SR-like phenomenon.

Finally, Kaneko et al. (2013) showed that auditory RNS delivered through a tinnitus control apparatus improved behavioral and psychological symptoms of dementia in old patients exhibiting dementia with schizophrenia (Figure 2). Here, the auditory RNS intervention applied once a day for four weeks significantly reduced the Neuropsychiatric Inventory scores in these patients compared to those diagnosed with dementia. Furthermore, these authors did not find changes in the mini-mental state and Barthel tests in these patients with dementia and schizophrenia (Kaneko et al., 2013).

Although the etiology of schizophrenia has not yet been completely elucidated, there is work suggesting the possible involvement of neuronal noise as one of the factors in the symptoms observed (Braver et al., 1999). Therefore, we can speculate that the tRNS intervention could modulate such neuronal noise in patients with schizophrenia. Furthermore, this possibility supports the suggestion that dopamine serves as a gating neuromodulator, regulating access to context representations into active memory (Braver et al., 1999). Thus, the combined use of tRNS with the Braver et al. 1999 theory could be helpful to understand the benefits of tRNS in schizophrenia.

Moreover, increased neuronal noise in prefrontal cortical information processing in schizophrenia has been described (Winterer and Weinberger, 2004), reinforcing the proposal that tRNS could modulate such neuronal noise in these patients. Similarly, the increased cortical noise during cognitive tasks relates to a small local field potential synchronization in cortical microcircuits, translating into a decreased signal-to-noise ratio in cortical computations (Winterer and Weinberger, 2004). This is consistent with studies claiming that increased internal noise is responsible for facial recognition and speed discrimination (Christensen et al., 2013). Therefore, it is tempting to speculate that the application of tRNS could impact the reestablishment of these altered internal noise levels in schizophrenia disease. A recent review by Haller et al. (2022) discusses the promising therapeutic options of using tRNS in the treatment of schizophrenia.

Myopia, Amblyopia, and Visual Learning

Camilleri et al. (2014b) showed that a combination of behavioral training and tRNS can be fast and efficacious in improving sight in individuals with mild myopia. These authors examined whether 2 weeks of behavioral training with a Gabor patch procedure combined with online tRNS improved visual functions in participants with mild myopia compared to a 2-month behavioral training regime without tRNS (Figure 3). Perceptual learning acquired through a forced-choice task with a Gabor patch of two intervals combined with tRNS improved visual acuity (VA) and, more subtly, the contrast sensitivity (CS) in participants with mild myopia (Camilleri et al., 2014b).

Another experimental study using behavioral training illustrated in Figure 3 was conducted in eight sessions for two weeks. However, eight of the sixteen participants with mild myopia received hf-tRNS on the occipital cortex during the training. The control group, which only performed behavioral training, did not change VA and CS after the test. In contrast, the group that received concurrent hf-tRNS improved VA and CS as shown in the uncorrected VA and CS tests, with the progress being more pronounced at intermediate spatial frequencies for the latter (Camilleri et al., 2014a).

Subsequently, a randomized controlled trial carried out in thirty patients with mild myopia was developed to show how the improvement effects previously observed appeared in the following three conditions: perceptual learning alone, perceptual learning combined with hf-tRNS, and hf-tRNS alone (Camilleri et al., 2016; Campagna et al., 2016). However, as mentioned above, a combination of behavioral and tRNS can be fast and efficacious in improving sight in individuals with mild myopia.

Later, a similar sham-controlled study recreated the behavioral training regime and the VA and CS assessment and hf-tRNS procedure, although it consisted of a larger sample (n = 20) (Moret et al., 2018). In this experimental design, two groups were formed, one which carried out the behavioral training with hf-tRNS and another with the same behavioral training with sham stimulation. In this study, CS did not exhibit a significant difference between groups, thus suggesting that hf-tRNS is not crucial for improving CS. However, a considerable improvement was only observed in the hf-tRNS group for VA. These results prove that the hf-tRNS is selective, producing differential effects in VA and CS in adults with amblyopia.

The abovementioned results are supported by recent evidence that tRNS produces a long-lasting improvement in VA in a 28-day follow-up. Still, it induces short-term CS improvements in adult amblyopic eyes (Donkor et al., 2021). However, further experiments will be necessary to understand the physiological mechanisms of these differential effects produced by hf-tRNS in these patients.

Tinnitus

The effect of electrical tRNS in tinnitus has shown exciting results. In a preliminary study, Claes et al. (2014) compared the impact of tRNS and tACS applied on T3 and T4 positions in 226 patients with chronic non-pulsatile tinnitus. These authors used both stimulation modalities either in a single session or in 8 sessions distributed in a four-week interval (Claes et al., 2014). Participants were asked to rank loudness and annoyance on a scale from 1 to 10, revealing that while tACS had no impact on reducing these symptoms, tRNS appeared to improve both.

This result of the beneficial effects of tRNS obtained by Claes et al. (2014) is consistent with previous reports that evaluated tinnitus loudness, distress, and annoyance after non-invasive brain stimulation consisting of tDCS, tACS, or tRNS, where all three aspects of the conditions were improved (Vanneste et al., 2013). However, after performing univariate analysis, it was shown that tRNS was responsible for most of the observed results in loudness and distress. These results open the question of whether tRNS acts through different mechanisms apart from tDCS and tACS, desynchronizing the over-synchronized network in the auditory cortex of tinnitus patients.

In a randomized controlled trial, other authors evaluated the effects of low-frequency tRNS (hf-tRNS), hf-tRNS, and whole spectrum tRNS in 154 chronic non-pulsatile tinnitus patients who underwent a single session of stimulation (Joos et al., 2015). The results indicated that both hf-tRNS and hf-tRNS positively impacted tinnitus loudness and distress reflected on a numerical scale report. However, these authors assumed that hf-tRNS only influenced pure tone tinnitus, whereas hf-tRNS affected pure tone and narrow bandwidth noise tinnitus. They also suggested that the effects observed after tRNS may be due to a non-focal effect, pointing towards modulation of areas involved in the distress network, such as the parahippocampal-subgenual anterior cingulate cortex (Figure 4).

Other authors employed the Tinnitus Questionnaire and numerical rating for annoyance, unpleasantness, and depression to explore the effects of tRNS in tinnitus patients who had previously received repetitive transcranial magnetic stimulation. This pilot study applied hf-tRNS at the T7/T8 electroencephalogram position in ten consecutive sessions, reducing tinnitus loudness after the tRNS even though some patients reported a temporary increase in tinnitus loudness (Kreuzer et al., 2019). Nevertheless, the
effectiveness of the intervention (31%) was comparable to that obtained in repetitive transcranial magnetic stimulation in the center where the study took place. Furthermore, these results agree with the previous case report of a woman suffering from red ear syndrome in combination with tinnitus, in which tRNS given in 2-3 day sessions alleviated pain intensity and prolonged the interval between the pain episodes (Kreuzer et al., 2017).

Other procedures have shown a positive effect of tRNS on alleviating negative tinnitus symptoms, such as the paradigm developed by To et al. (2017). In this randomized controlled trial, patients received tDCS at F3 and F4, or tRNS delivered at T3 and T4 after tDCS (To et al., 2017). The added value of this combined tDCS and tRNS showed the most significant relief, although tDCS alone also reduced the Tinnitus Questionnaire score and the score of a visual analog scale for tinnitus. The authors claimed that tRNS inhibits the auditory cortex activity facilitating the prefrontal cortex output by tDCS, providing more potent relief (Figure 4).

Multiple Sclerosis and Post-Stroke

Another neurological disorder where the effect of tRNS has been addressed is multiple sclerosis (MS) (left panel of Figure 5). Mainly, two studies have explored this disease in the context of tRNS. First, a randomized controlled trial was carried out in patients with relapsing or remitting MS, in which tRNS was administered over the primary motor cortex (M1) of the most affected limb, at a frequency of 640 Hz, for 2 consecutive weeks (Salemi et al., 2019). The authors evaluated the patients’ fatigue through the modified fatigue impact scale. When compared to the sham control group, Salemi et al. (2019) found that the patients significantly improved after a week of tRNS. However, in a previous report, tRNS applied towards the dorsolateral prefrontal cortex did not produce significant changes in attention and mood in MS patients even though tRNS tended to diminish pain, as reflected in the decreased amplitude of pain-related evoked potentials (Palm et al., 2016). The lack of effects by tRNS in attention and mood could be possibly due to the short duration of the intervention, which consisted of two blocks of three consecutive sessions separated by three weeks. Consistently, in a recent single-blind, randomized controlled trial, the intervention with nGVS did not change the dizziness and imbalance symptoms in MS patients (Lofti et al., 2021).

Regarding limb disability secondary to subacute ischemic stroke, noisy electrical stimulation (tRNS) has also shown complementary benefits for rehabilitation in post-stroke patients (right panel of Figure 5). The application of tRNS in the corresponding motor cortex of the affected limb for five days, combined with a graded repetitive arm supplementary program, improved patients’ condition, as evaluated through the Fugl-Meyer assessment of the affected extremity (FMA-UE). However, more work is necessary to know whether these beneficial effects can last more than one month after tRNS in subacute ischemic stroke patients.

Parkinson’s Disease

The uses of tRNS in Parkinson’s disease revealed that this technique could change the electrical activity of their central nervous system and produce improvements in several motor disorders. For example, Stephani et al. (2011) demonstrated that hf-tRNS could decrease motor cortex excitability in Parkinson’s disease. Moreover, the stochastic whole-body vibration (mechanical RNS) improves bradykinesia and postural stability in Parkinson’s disease patients (Kaut et al., 2011). In the same way, Kaut et al. (2014) demonstrated that mechanical RNS improves postural stability in some clinical scores for patients with spinocerebellar ataxia. Furthermore, more recent studies confirmed that mechanical RNS applied to idiopathic Parkinson’s disease patients improves postural stability (Kaut et al., 2016).
Noise delivered on plantar surface, fingertips and nGVS

Figure 7 | Noise improving balance is evaluated through motion capture and force plates in older people and patients with bilateral vestibulopathy receiving noise through noisy galvanic vestibular stimulation (nGVS) or vibrating insoles.

In addition, sensitivity is enhanced in diabetic patients with neuropathy receiving vibratory mechanical noise on the plantar surface or in the fingertips. Figure is created with BioRender.com based on information from the following references: Clouter et al. (2009), Magalhães and Kohn (2011) and Pripila et al. (2006).

As happens with other noisy stimulation interventions, the mechanisms underlying the effects of nGVS in balance and locomotor stability are unknown, or they are attributed to SR-like phenomena (Malavara et al., 2011, 2015; Goel et al., 2015; Galvan-Garza et al., 2018; Tempel et al., 2018). Moreover, although nGVS has been proven safe, it still requires further experimentation in patients with postural disorders and sensitivity loss to evaluate its impact on the overall quality of those who receive it.

Conclusions and Future Directions of Random Noise Stimulation

We described several studies where noisy stimulation has benefited certain aspects of particular neurological and psychiatric disorders. As may have been noted, tRNS and nGVS are those modalities of stimulation that have been reported more widely. Nevertheless, perhaps because of the relatively recent development of such techniques, well-defined mechanisms of action are missing at the neurobiological level, and more systematic and controlled studies are required.

There are three common observations derived from this review. The first is that the optimal way to deliver RNS based therapies is with the concomitant stimulation of the external noise and the power of population heterogeneity to promote neural desynchronization (Hunsberger et al., 2014) could be helpful to understand the impact of tRNS in tinnitus, schizophrenia, and Parkinson's disease.

As proposed for tinnitus, noise in the RNS intervention could be working by desynchronizing a network whose over-synchronization accounts for the pathophysiology of the diseases studied.

As such, it is tempting to propose that the RNS intervention in these pathologies could also be working by desynchronizing over-synchronized neuronal networks. In this context, the use of new computational simulations showing the ability of external noise and the power of population heterogeneity to promote neural desynchronization (Hunsberger et al., 2014) could be helpful to understand the effects of RNS in neurological disorders. Finally, previous results utilizing other types of non-invasive stimulation techniques such as tDCS and tACS (Liu et al., 2018) could help select appropriate targets in various disorders when different noisy energies could be employed as a therapeutic tool.

On the other hand, transcranial brain stimulation devices with different stimulation profiles have been used to treat epilepsy, probably much earlier than other neurological disorders. For instance, in drug-resistant epilepsy, tDCS can reduce seizure frequency and last several months (Sudbrack-Oliveira et al., 2021). Similarly, other studies have shown the efficacy of repetitive transcranial magnetic stimulation to reduce seizure frequency as well as epileptiform discharges (Cooper et al., 2017; Walton et al., 2022). Therefore, given the dynamic nature of epilepsy, studies of tRNS on epilepsy models or patients may shed more light on the physiological mechanisms of tRNS.

With the increasing evidence of noise being beneficial for neuronal function, RNS stimulation in neurological disorders could provide new information about how this benefit happens and the importance of the RNS interventions for health. We believe this is an attractive avenue for investigation, as noise has acquired a new position on our understanding of neural function. Hence, novel techniques of RNS with diverse energies offer promising approaches.

Author contributions: EM conceptualized the content of the review article. MAHM wrote the first draft of the manuscript and illustrated the figures under the supervision of EM. EM and MT improved the writing of the first draft and added information to improve the final version of this manuscript. All authors approved the final version of the manuscript.

Conflicts of interest: The authors declare no conflicts of interest.

Availability of data and materials: All data generated or analyzed during this study are included in this published article and its supplementary information files.

Open access statement: This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

Open peer reviewers: Ramkinker Mishra, Baylor College of Medicine, USA; Jiaxin Du, The University of Queensland, Australia.

Additional file: Open peer review reports 1 and 2.

References

Abikoff H, Courneye ME, Szobel PJ, Koplewicz HS (1996) The effects of auditory stimulation on the arithmetic performance of children with ADHD and non-disabled children. J Learn Disabil 29:238-246.

Antal A, Herrmann CS (2016) Transcranial alternating current and random noise stimulation: possible mechanisms. Neural Plast 2016:3610687.

Bagherpoosh Chami M, Mohseni-Bandpei MA, Bahrami-Zadeh M, Kalsaki S, Biglan A (2016) The clinical and biomechanical effects of subthreshold random noise on plantar pressure in the foot in diabetic patients and elderly people: a systematic review. Prostheth Orthot Int 40(3):646.

Baijot S, Slama H, Söderlund G, Dan B, Deltenre P, Colin C, Deconinck N (2016) Neuropsychological and neurological benefits from white noise in children with and without ADHD. Behav Brain Funct 12:11.

Benzo R, Suteru A, Vulpani A (1981) The mechanism of stochastic resonance. J Phys A Math Gen 14:4453-457.

Bergner I, Daikワワカワ R, Grossman ES, Nahum M, Cohen Kadmos R (2021) Scaffolding the attention-deficit/hyperactivity disorder brain using transcranial direct current and random noise stimulation: a randomized controlled trial. Clin Neuroradiol 31:699-707.

Braver TS, Barch DM, Cohen JD (1999) Cognition and control in schizophrenia: a computational model of dopamine and prefrontal function. Biol Psychiatry 46:312-328.

Brewster A, C, Mondino M, Poulet E, Konrad AM, G (2009) Theoretical and simulation studies of transcranial random noise stimulation (tRNS) leads to long-term effects on reaction time in the Go/No-Go task. Neurophysiol Clin 49:27-32.

Camilleri R, Pavan A, Campagna G (2016) The application of online transcranial random noise stimulation and perceptual learning in the improvement of visual functions in mild myopia. Neurougeopolis 89:225-231.

Camilleri R, Pavan A, Ghin F, Battaglini L, Campagna G (2014a) Improvement of uncorrected visual acuity (UCVA) and contrast sensitivity (UCCS) with perceptual learning and transcranial random noise stimulation (tRNS) in individuals with mild myopia. Front Physiol 5:1238.
Camilleri, R., Pavan, A., Ghin, F., & Campana, G. (2014b). Improving myopia via perceptual learning: a comparison between imperceptible stimulation applied to the anterior and to the posterior balance in patients with multiple sclerosis. J Vestib Res 31:541-551.

Kawamoto, Y., Struzik, Z.R., Soma, R., Ohashi, K., & Kwak, S. (2005). Noisy vestibular stimulation improves dynamic walking stability in bilateral vestibulopathy. Acta Otolaryngol 125: 207-212.

Palm U, Hasan A, Keeser D, Falkai P, Padberg F (2013) Transcranial random noise stimulation for the treatment of sleep disorders in schizophrenia. Schizophr Res 146:372-373.

Pan W, Soma R, Kwak S, Yamamoto Y (2008) Improvement of movement functions by noisy vestibular stimulation in central neurodegenerative disorders. J Neural Transm 115:765-772.

Pavone C, Dhawan SP, Berlardi DI (2017) White noise as a possible therapeutic option for children with ADHD. Complement Ther Med 28:1-7.

Petrot C, Bacher M, Monnard M, Robin M, Cuenod C, Sensenbrenner JU, Zuberbühler K (2015) Transcranial direct current stimulation (tDCS) in the treatment of negative symptoms in schizophrenia. Nervenarzt 93:15-20.

Rosenblum MG, Pikovsky A, Rossler W (2001) Phase synchronization and the formation of networks of phase-synchronized oscillators. Phys Rev Lett 83:1626-1628.

Sannen M, van der Groen O, Wenderoth N (2016) Transcranial random noise stimulation of visual cortex: the generation of visual hallucinations. Vis Res 121:182-189.

Söderlund G, Sikström S, Stendahl A (2009) Transcranial random noise stimulation for treatment of epilepsy. Cochrane Database Syst Rev 4:CD011025.

Temple DR, De Dios YE, Layne CS, Bloomberg JJ, Mulavara AP (2018) Efficacy of stochastic vibration therapy in spinocerebellar ataxia. Cerebellum 17:299-305.