Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Correspondence

Risk of disease relapse following COVID-19 vaccination in patients with AQP4-IgG-positive NMOSD and MOGAD

ARTICLE INFO

Keywords
SARS-CoV-2 Vaccination MOG MOGAD AQP4 NMOSD

ABSTRACT

Post-vaccination disease relapses have been reported in patients with MOGAD and AQP4-IgG-NMOSD. In this retrospective multicenter Italian study we assessed the frequency of relapses after SARS-CoV-2 vaccination. We included 56 cases: MOGAD, 30; AQP4-IgG+NMOSSD, 26. Vaccines received were BNT162b2-Pfizer-BioNTech in 42 patients and mRNA-1273-Moderna in 14 patients. Six patients had a history of SARS-CoV-2 infection; two of them experienced a post-infection disease relapse (MOGAD). The frequency of relapses within one month of SARS-CoV-2 vaccination was 4% (1/26) in the AQP4-IgG+NMOSSD group and 0% in the MOGAD group. In these patients the potential benefits of vaccination overcome the risk of relapses.

1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the related pandemic have posed relevant challenges in the management of patients with demyelinating CNS disorders. In particular, the urgent need for mass vaccination has raised the question whether SARS-CoV-2 vaccines may increase the risk of disease relapse in these patients. While several studies have assessed the safety of SARS-CoV-2 vaccines in patients with multiple sclerosis, (Di Flippo et al., 2021) there are limited data available on patients with aquaporin-4-IgG neuromyelitis optica spectrum disorder -AQP4-IgG+NMOSSD- or myelin oligodendrocyte glycoprotein associated disease -MOGAD- (Lotan et al., 2021). This topic is of relevance since a post-vaccination onset or worsening has been reported in both conditions. (Mealy et al., 2018; Kumar et al., 2020)

In this multicentric study we assessed the frequency of disease relapses following SARS-CoV-2 vaccination in patients with AQP4-IgG+NMOSSD and MOGAD.

2. Materials and methods

From five Neurology Units in Italy, we retrospectively identified patients with: 1) a diagnosis of AQP4-IgG-NMOSD or MOGAD; and 2) ≥1 month follow-up after receiving at least one dose of one of the approved SARS-CoV-2 vaccines. Demographics, clinical information, and information related to SARS-CoV-2 vaccine and/or preceding infection were collected in a dedicated form at different sites. Relapses were defined as new or worsening neurological symptoms that lasted for ≥24 h, separated by at least one month interval and confirmed with paraclinical investigations (i.e. new or enhancing lesions on MRI scans or abnormalities at visual evoked potentials).

Continuous and categorical variables were reported as median (range) and number (%), and compared by using the Chi square, Fisher's, and Wilcoxon rank sum tests, as appropriate. P-values <0.05 were considered statistically significant (IBM SPSS 26).

3. Results

A total of 56 patients were included from 5 centers: MOGAD, 30; AQP4-IgG+NMOSSD, 26 (Supplementary Table 1). Clinical and demographic features, and data related to SARS-CoV-2 infection/vaccination are summarized in Table 1. At the time of SARS-CoV-2 vaccination, patients with AQP4-IgG+NMOSSD were more frequently female and older, and had longer disease duration, longer time from last disease attack, and greater disability when compared to MOGAD patients.

3.1. Vaccine-related adverse events and relapse frequency

The SARS-CoV-2 vaccines received were BNT162b2-Pfizer-BioNTech in 42 patients and mRNA-1273-Moderna in 14 patients. Overall, minor side effects were reported by 36 (64.3%) patients after the first dose and by 38 (71.7%) patients after the second dose, with pain at injection site being the most common.

The frequency of relapses within one month of SARS-CoV-2 vaccination was 4% (1/26) in the AQP4-IgG+NMOSSD group and 0% in the MOGAD group. The AQP4-IgG-positive patient was a 38-year-old woman under treatment with rituximab who experienced an optic neuritis 10 days after the second dose of BNT162b2-Pfizer-BioNTech vaccination; symptoms resolved completely after intravenous steroids.

Two patients experienced relapses ≥1 month from vaccination: 1) an untreated 61-year-old woman developed an AQP4-IgG-related myelitis 97 days after her second dose of BNT162b2-Pfizer-BioNTech vaccination; and 2) an untreated 61-year-old man with MOG-IgG positivity who...
Table 1
Demographic and clinical data of included patients.

Parameter	All patients (n = 56)	AQP4-IgG+NMOSD (n = 26)	MOGAD (n = 30)
Side effects after vaccination			
Local pain	8 (14%)	5 (19%)	3 (10%)
Fever	10 (18%)	7 (27%)	3 (10%)
Fatigue	5 (9%)	2 (8%)	3 (10%)
Nausea	2 (4%)	1 (4%)	1 (3%)
Previous history of SARS-CoV-2			
SARS-CoV-2 infection			
Asymptomatic	2 (36%)	1 (4%)	1 (3%)
Mild symptoms	12 (21%)	6 (23%)	6 (20%)
Clinical features of post-			
infection relapses			
Optic neuritis	1 (2%)	1 (4%)	0
Optic neuritis + PN	1	1	
Type of vaccine received			
BNT162b2-Pfizer-BioNTech	2	1	
mRNA-1273-Moderna	19 (34%)	9 (35%)	10 (33%)
Number of doses received			
120	2 (2%)	2 (2%)	
200	2 (2%)	2 (2%)	

Data expressed as number (%) or median (range), as appropriate. EDS: Expanded Disability Status Scale; MMF: Mofetil Mycophenolate, 1Vg: intravenous immunoglobulins; MTX: Methotrexate; PLEX: plasma exchange; PN: peripheral neuropathy; *p < 0.05; **p < 0.001.

3.2. Prior SARS-CoV-2 infection

Six patients had a history of SARS-CoV-2 infection (5 before and 1 after vaccination). Of these, one patient was asymptomatic, while 5 cases were mild symptomatic not requiring admission to hospital. Two patients experienced relapses after SARS-CoV-2 infection but before receiving the vaccine. In particular, a 76-year-old woman and a 40-year-old man, both affected by MOGAD, developed optic neuritis 62 and 12 days after the infection, respectively. The first case showed complete symptoms resolution after intravenous steroids, while the second improved after steroids and intravenous immunoglobulins. The second patient had a previous history of post-vaccination and post-infection relapses. Both patients did not relapse after SARS-CoV-2 vaccination.

4. Discussion

We found that SARS-CoV-2 vaccines are safe in patients with MOGAD and AQP4-IgG+NMOSD. The risk of vaccine-related disease relapses is low, even in patients with prior history of relapses following infections (including SARS-CoV-2 infection) or vaccinations. An increased risk of post-vaccination relapses has been reported for AQP4-IgG+NMOSD, particularly in untreated patients (Mealy et al., 2018) and several studies have reported MOGAD attacks following vaccinations (Kumar et al., 2020). In a large web-based study on SARS-CoV-2 vaccination in patients with neuroimmunological disorders, including MOGAD and AQP4-IgG+NMOSD, no post-vaccination relapses were detected, although 17.8% of patients reported new or worsening of previous symptoms requiring in some cases specific treatment (Lotan et al., 2021). Of note, distinction of relapses vs pseudo-relapses is mandatory and often challenging, since infection or vaccination side effects (as fever) can per se cause transient worsening of...
symptoms. In this context, MRI scans should be performed to exclude the presence of new or gadolinium enhancing lesions. Similarly, no attacks were reported among 9 NMOSD patients that received the Beijing/Sinopharm-BBIBP-CoV2 (n = 8) or BNT162b2-Pfizer-BioNTech vaccines (n = 1) (Jovicevic et al., 2021). These data are in line with our findings, although we observed a higher frequency of minor side effects, particularly pain at vaccine injection site (Lotan et al., 2021; Jovicevic et al., 2021).

Post-vaccination relapses in our study were rare and occurred at variable intervals following the SARS-CoV-2 vaccinations, with only one case relapsing within one month, making a causal association challenging. Our findings confirm the importance of vaccination in patients with AQP4-IgG+NMOSD and MOGAD to prevent hospitalization and death, given the higher mortality rate reported during SARS-CoV-2 infection (Newsome et al., 2021). Moreover, we observed an overall higher relapse rate during the first month in patients who developed SARS-CoV-2 infection before receiving the vaccine (20%; 1/5) compared to that observed after vaccination (2%; 1/56), although this difference was not statistically significant.

Our study is limited by the small sample size, the retrospective design, and exclusive exposure to mRNA-based vaccines (the incidence of relapses might be different following other types of vaccines) (Fragosso et al., 2021). In addition, patients did not perform brain or spinal cord imaging during the post-vaccination follow-up, but clinically silent lesions are rare in these conditions and MOGAD lesions frequently resolve over time limiting the utility of MRI for disease activity monitoring (Fadda et al., 2021; Sechi et al., 2021).

5. Conclusions

SARS-CoV-2 vaccination is safe in patients with MOGAD and AQP4-IgG+NMOSD. The benefits of the vaccination in these patients clearly outweigh the risk of potential vaccine-related disease reactivations.

Funding

The present study received no funding.

Availability of data and material

Data are available upon reasonable request.

Ethics approval

The study was approved by the local ethical committee (Prog.56COVIDESC)

Consent to participate

Patients gave their informed consent to participate.

Consent for publication

Patients gave their informed consent for publication.

CRediT authorship contribution statement

Alessandro Dinoto: Conceptualization, Methodology, Formal analysis, Investigation, Writing – original draft. Elia Sechi: Conceptualization, Methodology, Formal analysis, Investigation, Writing – original draft, Resources. Sergio Ferrari: Investigation, Resources, Writing – review & editing. Alberto Gajofatto: Investigation, Resources, Writing – review & editing. Riccardo Orlandi: Investigation, Resources, Writing – review & editing. Paolo Solla: Investigation, Resources, Writing – review & editing. Alessandra Maccabeo: Investigation, Resources, Writing – review & editing. Giorgia Teresa Maniscalco: Investigation, Resources, Writing – review & editing. Vincenzo Andreone: Investigation, Resources, Writing – review & editing. Arianna Sartori: Investigation, Resources, Writing – review & editing. Sarah Rasia: Investigation, Resources, Writing – review & editing. Ruggero Capra: Investigation, Resources, Writing – review & editing. Chiara Rosa Mancinelli: Investigation, Resources, Writing – review & editing. Sara Mariotto: Conceptualization, Methodology, Formal analysis, Investigation, Writing – original draft, Resources.

Declaration of Competing Interest

A Dinoto has received funding for travel from Novartis, Genzyme, Biogen.

E Sechi declares no competing interests.

S Ferrari declares no competing interests.

A Gajofatto declares no competing interests.

R Orlandi declares no competing interests.

P Solla declares no competing interests.

A Maccabeo declares no competing interests.

GT Maniscalco declares no competing interests.

A Sartori has received funding for travel honoraria from Novartis, Teva, Merk, Genzyme, Roche, Biogen.

P Manganotti declares no competing interests.

S. Rasia declares no competing interests.

R Capra declares no competing interests.

CR Mancinelli declares no competing interests.

S Mariotto received support for attending scientific meetings by Merck and Euroimmun and received speaker honoraria from Biogen.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.msard.2021.103424.
References

Di Filippo, M., Cordioli, C., Malucchi, S., et al., 2021. mRNA COVID-19 vaccines do not increase the short-term risk of clinical relapses in multiple sclerosis. J. Neurol. Neurosurg Psychiatry. https://doi.org/10.1136/jnnp-2021-327200. Epub ahead of print. PMID: 34408003.

Fadda, G., Banwell, B., Waters, P., Marrie, R.A., Yeh, E.A., O'Mahony, J., Arnold, D.A., Bar-Or, A., 2021. Silent new brain MRI lesions in children with MOG-antibody associated disease. Ann. Neurol. 89, 408-413.

Fragoso, Y.D., Gomes, S., Gonçalves, M.V.M., et al., 2021. New relapse of multiple sclerosis and neuromyelitis optica as a potential adverse event of AstraZeneca AZD1222 vaccination for COVID-19. Mult. Scler. Relat. Disord. https://doi.org/10.1016/j.msard.2021.103321. Article in press 12 October 2021.

Jovicevic, V., Ivanovic, J., Andabaka, M., Tamas, O., Veselinovic, N., Moncîlovic, N., 2021. COVID-19 and vaccination against SARS-CoV-2 in patients with Neuromyelitis optica spectrum disorders. Mult. Scler. Relat. Disord. https://doi.org/10.1016/j.msard.2021.103320. Article in press 12 October 2021.

Kumar, N., Graven, K., Joseph, N.I., Johnson, J., Fulton, S., Hostoffer, R., Abboud, H., 2020. Postvaccination anti-myelin oligodendrocyte glycoprotein neuromyelitis optica spectrum disorder: a case report and literature review of postvaccination demyelination. Int. J. MS Care 22, 85-89. https://doi.org/10.7224/1537-2073.2018-104.

Lotan, I., Romanow, G., Levy, M., 2021. Patient-reported safety and tolerability of the COVID-19 vaccines in persons with rare neuroimmunological diseases. Mult. Scler. Relat. Disord. 55, 103189 https://doi.org/10.1016/j.msard.2021.103189.

Medley, M.A., Cook, L.J., Pache, F., Velez, D.L., Borisow, N., Becker, D., Arango, J.A.J., Paul, F., Levy, M., 2018. Vaccines and the association with relapses in patients with neuromyelitis optica spectrum disorder. Mult. Scler. Relat. Disord. 23, 78-82. https://doi.org/10.1016/j.msard.2018.05.003.

Newsome, S.D., Cross, A.H., Fox, R.J., Halper, J., Kanellis, P., Bebo, B., Li, D., Cutter, G. R., Rammohan, K.W., Salters, A., 2021. COVID-19 in patients with neuromyelitis optica spectrum disorders and myelin oligodendrocyte glycoprotein antibody disease in North America: from the COVIMS registry. Neurol. Neuroimmunol. neuro-inflammation 8. https://doi.org/10.1212/NX1.0000000000001057.

Sechi, E., Krecke, K.N., Messina, S.A., et al., 2021. Comparison of MRI lesion evolution in different central nervous system demyelinating disorders. Neurology 97 (11), e1097-e1109.

Alessandro Dinotoa,b, Elia Sechi,C, Sergio Ferraria, Alberto Gajofattoa, Riccardo Orlandid, Paolo Sollia, Alessandra Maccabeob,c, Giorgia Teresa Maniscalcoa, Vincenzo Andreonea, Arianna Sartori, Paolo Manganotti, Sarah Rasin, Ruggero Capra, Chiara Rosa Mancinellia, Sara Mariottoa.

a Neurology Unit, Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Italy
b Department of Medical, Surgical and Experimental Sciences, University of Sassari, Italy
c Department of Medical Sciences and Public Health, University of Cagliari, Italy
d Department of Neurology and Stroke Unit ‘A. Cardarelli Hospital’, Naples, Italy
e Neurology Unit, Department of Medical, Surgical and Health Sciences, Cattinara University Hospital, ASUGI, University of Trieste, Trieste, Italy
f Multiple Sclerosis Center, ASST - Spedali Civili of Brescia, Montichiari, Brescia, Italy

* Corresponding author at: Neurology Unit, Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Policlinico GB Rossi, P.le LA Scuro 10, 37135, Verona, Italy.
E-mail addresses: sara.mariotto@gmail.com, sara.mariotto@univr.it (S. Mariotto).

1 These authors gave an equal contribution.