SEQUENTIAL PROPERTIES OF FUNCTION SPACES WITH THE COMPACT-OPEN TOPOLOGY

GARY GRUENHAGE, BOAZ TSABAN, AND LYUBOMYR ZDOMSKYY

Abstract. Let M be the countably infinite metric fan. We show that $C_k(M, 2)$ is sequential and contains a closed copy of Arens space S_2. It follows that if X is metrizable but not locally compact, then $C_k(X)$ contains a closed copy of S_2, and hence does not have the property AP.

We also show that, for any zero-dimensional Polish space X, $C_k(X, 2)$ is sequential if and only if X is either locally compact or the derived set X' is compact. In the case that X is a non-locally compact Polish space whose derived set is compact, we show that all spaces $C_k(X, 2)$ are homeomorphic, having the topology determined by an increasing sequence of Cantor subspaces, the nth one nowhere dense in the $(n + 1)$st.

1. Introduction

Let $C_k(X)$ be the space of continuous real-valued functions on X with the compact-open topology. $C_k(X)$ for metrizable X is typically not a k-space, in particular not sequential. Indeed, by a theorem of R. Pol [8], for X paracompact first countable (in particular, metrizable), $C_k(X)$ is a k-space if and only if X is locally compact, in which case X is a topological sum of locally compact σ-compact spaces and $C_k(X)$ is a product of completely metrizable spaces. A similar result holds for $C_k(X, [0, 1])$: it is a k-space if and only if X is the topological sum of a discrete space and a locally compact σ-compact space, in which case $C_k(X)$ is the product of a compact space and a completely metrizable space. It follows that, for separable metric X, the following are equivalent:

1. $C_k(X)$ is a k-space;
2. $C_k(X)$ is first countable;
3. $C_k(X)$ is a complete separable metrizable space, i.e., a Polish space;
4. X is a locally compact Polish space.

The same equivalences hold for $C_k(X, [0, 1])$. On the other hand, for Polish X, $C_k(X)$ always has the (strong) Pytkeev property [9].

A space X has the property AP if whenever $x \in \overline{A} \setminus A$, there is some $B \subseteq A$ such that $x \in \overline{B} \subseteq A \cup \{x\}$. X has the property WAP when a subset A of X is closed if and only if there is no $B \subseteq A$ such that $|\overline{B} \setminus A| = 1$. Thus, every Fréchet space is AP and every sequential space is WAP. It was asked in [5] whether $C_k(\omega^n)$ is WAP.

In this note, we first show that if X is metrizable but not locally compact, then $C_k(X)$ contains a closed copy of Arens space S_2, and hence is not AP. In fact, such a closed copy of S_2 is contained in $C_k(M, 2)$, where M is the countable metric fan. We then show that $C_k(M, 2)$ is sequential, in contrast to the full function space $C_k(M)$. Next we show that for a zero-dimensional Polish space X, if $C_k(X, 2)$ is
Theorem 7.1 observed that, for closed copies of copy of the space M

By Lemma 8.3 of [4], a first countable space X is not metrizable (which is the case if and only if X is not locally compact), then $C_k(X, 2)$ is sequential if and only if the derived set X' is compact. We obtain a complete description of $C_k(X, 2)$ for a non-locally compact Polish X such that X' is compact: any such $C_k(X, 2)$ is homeomorphic to the space $(2^\omega)^\infty$, which is the space with the topology determined by an increasing sequence of Cantor sets, the nth one nowhere dense in the $(n + 1)$st.

2. When $C_k(X)$ Contains S_2

Arens’s space S_2 is the set

$\{(0, 0), (1/n, 0), (1/n, 1/nm): n, m \in \omega \setminus \{0\}\} \subseteq \mathbb{R}^2$

carrying the strongest topology inducing the original planar topology on the convergent sequences $C_0 = \{(0, 0), (\frac{1}{n}, 0): n > 0\}$ and $C_n = \{(\frac{1}{n}, 0), (\frac{1}{n}, \frac{1}{nm}): m > 0\}$, $n > 0$. The sequential fan is the quotient space $S_\omega = S_2/C_0$ obtained from the Arens space by identifying the points of the sequence C_0 [6]. S_ω is a non-metrizable Fréchet-Urysohn space, and S_2 is sequential and not Fréchet-Urysohn. In fact, any space which is sequential but not Fréchet-Urysohn contains S_2 as a subspace.

The countably infinite metric fan is the space $M = (\omega \times \omega) \cup \{\infty\}$, where points of $\omega \times \omega$ are isolated, and the basic neighborhoods of ∞ are $U(n) = \{\infty\} \cup ((\omega \setminus n) \times \omega)$, $n \in \omega$. M is not locally compact at its non-isolated point ∞.

Lemma 2.1. $C_k(M, 2)$ contains a closed copy of S_2.

Proof. For each $n > 1$ and each k, let

$U(n, k) = \{(0) \times n\} \cup ((n \setminus \{0\}) \times k) \cup U(n),$

and let $f_{n,k}$ be the member of $C_k(M)$ which is 0 on $U(n, k)$ and 1 otherwise (i.e., the characteristic function of $M \setminus U(n, k)$).

Let $f_n \in C_k(M)$ be the function which is 1 on $\{0\} \times (\omega \setminus n)$ and 0 otherwise, and let c_0 be the constant 0 function. For each n, $\lim_k f_{n,k} = f_n$, and $\lim_n f_n = c_0$. Thus, c_0 is a limit point of the set $A = \{f_{n,k}: n > 1, k \in \omega\}$. Let $S = \{f_n: n > 1\}$, and $X = \{c_0\} \cup S \cup A$.

We claim that X is homeomorphic to the Arens space S_2. It suffices to show that for each sequence $(k_n)_{n>1}$, c_0 is not in the closure of the set $\{f_{n,k}: k < k_n, n > 1\}$. Given $(k_n)_{n>1}$, set $K = \{(n - 1, k_n): n > 1\} \cup \{\infty\}$. Then K is a sequence convergent to ∞, and for each $f_{n,k} \in \{f_{n,k}: k < k_n, n > 1\}$ there exists $x \in K$, namely, $x = (n - 1, k_n)$, such that $f(x) = 1$. Therefore $\{f_{n,k}: k < k_n, n > 1\}$ does not intersect the neighborhood $\{f \in C_k(M, 2): f \upharpoonright K \equiv 0\}$ of c_0, and hence does not contain c_0 in its closure.

By [1] Corollary 2.6, if every point z in a topological space Z is regular G_δ (i.e., $\{z\}$ is equal to $\bigcap_n U_n$ for some open neighborhoods U_n of z), and Z contains a copy of S_2, then Z contains a closed copy of S_2. Since every point of $C_k(M, 2)$ is regular G_δ, $C_k(M, 2)$ contains a closed copy of S_2. In fact, the space X constructed above is closed, even in $C_p(M, 2)$. □

Theorem 2.2. If X is metrizable and not locally compact, then $C_k(X)$ contains closed copies of S_2 and S_ω.

Proof. By Lemma 8.3 of [4], a first countable space X contains a closed topological copy of the space M if and only if X is not locally compact. E.A. Michael [7] Theorem 7.1 observed that, for Y a closed subspace of a metrizable space X, the
linear extender \(e : C(Y) \to C(X) \) given by the Dugundji extension theorem is a homeomorphic embedding when both \(C(Y) \) and \(C(X) \) are given the compact-open topology (or the topology of uniform convergence, or pointwise convergence). Thus we have that for each metrizable space \(X \) which is not locally compact, \(C_k(M, 2) \) is closely embedded in \(C_k(X) \), and hence \(C_k(X) \) contains a closed copy of \(S_2 \). Finally, \(C_k(X) \) also contains a closed copy of \(S_\omega \) because for any topological group \(G, G \) contains a (closed) copy of \(S_\omega \) if and only if it contains a closed copy of \(S_\omega \). \(\square \)

Remark. C.J.R. Borges [2] showed that the Dugundji extension theorem holds for the class of stratifiable spaces, and hence Theorem 2.2 holds more generally for first countable stratifiable spaces.

3. **Sequentiality of \(C_k(X, 2) \)**

A topological space \(X \) carries the inductive topology with respect to a closed cover \(C \) of \(X \), if for each \(F \subseteq X \), \(F \) is closed whenever \(F \cap C \) is closed in \(X \) for each \(C \in C \). A topological space is a \(k \)-space (respectively, sequential space) if it carries the inductive topology with respect to its cover by compact (respectively, compact metrizable) subspaces. \(X \) is sequential if and only if for every non-closed \(A \subseteq X \), there exists a sequence in \(A \) converging to a point in \(X \setminus A \).

Since the metric fan \(M \) is not locally compact, \(C_k(M) \) and \(C_k(M, [0, 1]) \) are not \(k \)-spaces [3]. However, we have the following.

Theorem 3.1. \(C_k(M, 2) \) is sequential.

Proof. Suppose not. Then there is \(A \subseteq C_k(M, 2) \) which is not closed and yet contains all limit points of convergent sequences of its elements. As \(M \) is zero-dimensional, \(C_k(M, 2) \) is homogeneous. Thus, without loss of generality, we may assume that \(c_0 \in \overline{A} \setminus A \), where \(c_0 \) is the constant 0 function. We may additionally assume that \(f(\infty) = 0 \) for all \(f \in A \). Let \(A_n = \{ f \in A : f(U(n)) = \{0\} \} \).

Note that the sets \(A_n \) are increasing with \(n \), and their union is \(A \).

Claim 3.2. There exists a sequence \((k_n)_{n \in \omega} \) such that for each \(n \) with \(f \in A_{n+1} \), \(1 \in f(\bigcup_{i \leq n} \{i\} \times k_i) \).

Proof. By induction. Assume that for all \(i < n \), there are \(k_i \) such that \(f \in A_{i+1} \) implies \(1 \in f(\bigcup_{i \leq j} \{j\} \times k_j) \), but that for each \(k \), there is \(f_k \in A_{n+1} \) such that \(f_k((\bigcup_{i < n} \{i\} \times k_i) \cup (\{n\} \times k)) = \{0\} \). Let \(f'_k = f_k \upharpoonright (n+1) \times \omega \). As \(2^{(n+1)} \times \omega \) is homeomorphic to the Cantor space, there is a subsequence \(\{f'_{k'_i}\} \) of \(\{f'_k\} \), converging to an element \(f' \in 2^{(n+1)} \times \omega \). As \(f_k \in A_{n+1} \), \(f_k(U(n+1)) = \{0\} \). Define \(g \in C_k(M) \) by \(g(U(n+1)) = \{0\} \) and \(g \upharpoonright (n+1) \times \omega = f' \). Then in \(C_k(M) \), \(g = \lim f_{k_i} \), and therefore \(g \in A \). As \(f'_k(\{n\} \times k) = \{0\} \), \(g(\{n\} \times \omega) = \{0\} \). As \(g(U(n+1)) = \{0\} \), \(g(U(n)) = \{0\} \), and thus \(g \in A_n \). But \(g(\bigcup_{i \leq n-1} \{i\} \times k_i) = \{0\} \) (indeed, this holds for all \(f_k \)'s), contradicting the induction hypothesis. \(\square \)

Let

\[
K = (\bigcup_{i \in \omega} \{i\} \times k_i) \cup \{\infty\}.
\]

Let \(V \) be the set of all functions which map \(K \) into the interval \((-1/2, 1/2)\). Then \(V \) is a neighborhood of \(c_0 \) which misses \(A \), a contradiction. \(\square \)
We proceed to characterize the zero-dimensional Polish spaces X such that $C_k(X, 2)$ is sequential.

A topological space Y has the **strong Pytkeev property** [9] (respectively, **countable cs*-character**) if for each $y \in Y$, there is a countable family \mathcal{N} of subsets of Y, such that for each neighborhood U of y and each $A \subseteq Y$ with $y \in \overline{A} \setminus A$ (respectively, each sequence A in $Y \setminus \{y\}$ converging to y), there is $N \in \mathcal{N}$ such that $N \subseteq U$ and $N \cap A$ is infinite.

For every Polish space X the space $C_k(X)$ has the strong Pytkeev property [9, Corollary 8]. Thus, any subspace of $C_k(X)$ has the strong Pytkeev property, and therefore has countable cs*-character.

An mk_ω-space is a topological space which carries the inductive topology with respect to a countable cover of compact metrizable subspaces. A topological group G is an mk_ω-group if G is an mk_ω-space.

Theorem 3.3 ([3]). *Let G be a sequential non-metrizable topological group with countable cs*-character. Then G contains an open mk_ω-subgroup H and thus is homeomorphic to the product $H \times D$ for some discrete space D.***

Corollary 3.4. *Let G be a sequential separable topological group with countable cs*-character. If G is not metrizable, then G is σ-compact.*

Lemma 3.5. *Let X be a zero-dimentional first countable space. Then $C_k(X, 2)$ is metrizable if and only if X is locally compact and σ-compact.*

Proof. (\Rightarrow) Assume that $C_k(X, 2)$ is a topological group, its metrizability is equivalent to its first countability at c_0, the constant zero function.

(\Leftarrow) Assume that $C_k(X, 2)$ is metrizable and fix a countable base $\{W_n : n \in \omega\}$ at c_0. Without loss of generality, $W_n = \{f \in C_k(X, 2) : f \upharpoonright K_n \equiv 0\}$ for some compact $K_n \subseteq X$, and $K_n \subseteq K_{n+1}$ for all n. It suffices to prove that for every $x \in X$ there are a neighborhood U of x and $n \in \omega$, such that $U \subseteq K_n$. If not, we can find $x \in X$ and a sequence $(x_n)_{n \in \omega}$ of elements of X such that $x_n \in U_n \setminus K_n$, where $\{U_n : n \in \omega\}$ is a decreasing base at x. Set $K = \{x\} \cup \{x_n : n \in \omega\}$ and $W = \{f \in C_k(X, 2) : f \upharpoonright K \equiv 0\}$. Since $K_n \cap K$ is finite for every $n \in \omega$, there exists a function $f \in C_k(X, 2)$ such that $f \upharpoonright K_n \equiv 0$ but $f \upharpoonright K \not\equiv 0$, and hence $W_n \not\subseteq W$ for all $n \in \omega$. This contradicts our assumption that $\{W_n\}$ is a local base at c_0. \square

For a topological space X, X' is the set of all non-isolated points of X.

Theorem 3.6. *Let X be a zero-dimentional Polish space which is not locally compact. Then $C_k(X, 2)$ is sequential if and only if the derived set X' is compact.*

Proof. Assume that X' is compact and consider the subgroup $H = \{f \in C_k(X, 2) : f \upharpoonright X' \equiv 0\}$. H is an open subgroup of $C_k(X, 2)$, and thus it suffices to prove that H is sequential. Since X is not locally compact, there is a clopen base $\{U_n : n \in \omega\}$ of X' such that $U_0 = X$, $U_{n+1} \subseteq U_n$, and $U_n \setminus U_{n+1}$ is infinite for all $n \in \omega$. Let $f : X \to M$ be a map such that $f(X') = \{\infty\}$ and $f \upharpoonright (U_n \setminus U_{n+1})$ is an injective map onto $\{n\} \times \omega$. Then the map

$$f^* : \{g \in C_k(M, 2) : g(\infty) = 0\} \to H$$

assigning to g the composition $g \circ f$ is easily seen to be a homeomorphism, and hence H is sequential.
Now assume that X' is not compact. Then there exists a countable closed discrete subspace $T \subseteq X'$, and hence there exists a discrete family $\{U_t : t \in T\}$ of clopen subsets of X such that $t \in U_t$ for all $t \in T$. $C_k(X, 2)$ contains a closed copy of the product $\Pi_{t \in T} C_k(U_t, 2)$.

Claim 3.7. Let Z be a non-discrete metrizable separable zero-dimensional space. Then $C_k(Z, 2)$ is not compact.

Proof. If Z is locally compact, then it contains a clopen infinite compact subset C. Then $C_k(C, 2)$ is a closed subset of $C_k(Z, 2)$ homeomorphic to ω, and hence $C_k(Z, 2)$ is not compact.

If Z is not locally compact, then Z contains a closed copy Y of M. By Lemma 2.1 $C_k(Y, 2)$ contains a closed copy of S_2, and is thus not compact. As restriction to Y is a continuous map from $C_k(Z, 2)$ onto $C_k(Y, 2)$, $C_k(Z, 2)$ is not compact. □

Claim 3.8. If none of the spaces X_i, $i \in \omega$, is compact, then the product $\Pi_{i \in \omega} X_i$ is not σ-compact.

Proof. A simple diagonalization argument. □

Since $T \subseteq X'$, U_t is not discrete for all $t \in T$. By Claims 3.8 and 3.7 the product $\Pi_{t \in T} C_k(U_t, 2)$ is not σ-compact. Thus, $C_k(X, 2)$ is not σ-compact.

As X is Polish, $C_k(X)$ has the strong Pytkeev property [9], and thus has countable cs*-character. Consequently, so does its subspace $C_k(X, 2)$. As $C_k(X, 2)$ is separable and X is not locally compact, $C_k(X, 2)$ is not first countable, and hence it is not metrizable. Apply Corollary 3.9. □

Corollary 3.9. $C_k(\omega \times M, 2)$ is not sequential.

Let $(0) \in 2^\omega$ be the constant zero sequence. Following [1], let $(2^\omega)^\omega$ be the space $\bigcup_{n \in \omega} (2^\omega)^n$, where $(2^\omega)^n$ is identified with the subspace $(2^\omega)^n \times \{(0)\}$ of $(2^\omega)^{n+1}$, with the inductive topology with respect to the cover $\{(2^\omega)^n : n \in \omega\}$.

Theorem 3.10 (Banakh [1]). Every non-metrizable uncountable zero-dimensional mk_σ-group is homeomorphic to $(2^\omega)^\omega$.

Corollary 3.11. For zero-dimensional Polish spaces X, the following are equivalent:

1. $C_k(X, 2)$ is sequential but not metrizable;
2. $C_k(X, 2)$ is homeomorphic to $(2^\omega)^\omega$;
3. X is not locally compact but X' is compact.

Proof. (1) \rightarrow (3). Since $C_k(X, 2)$ is not metrizable, X is not locally compact (Lemma 3.8). By Theorem 3.6 X' is compact.

(3) \rightarrow (1). Since X is not locally compact, $C_k(X, 2)$ is not metrizable (Lemma 3.8). By Theorem 3.6 the compactness of X' implies that $C_k(X, 2)$ is sequential.

(1) \rightarrow (2). By [9, Corollary 8], $C_k(X, 2)$ has countable cs*-character. Applying Theorem 3.3 we have that $C_k(X, 2)$ contains an open mk_σ-subgroup. Since $C_k(X, 2)$ is separable, it is an mk_σ-group. Apply Theorem 3.10.

$C_k(\omega \times M, 2)$ is homeomorphic to $C_k(M, 2)^\omega$, and hence to $((2^\omega)^\omega)^\omega$. Thus, a negative answer to the following question would imply that $C_k(P)$ is not WAP for “most” Polish spaces, including ω and some σ-compact ones.

Question 3.12. Does the space $((2^\omega)^\omega)^\omega$ have the WAP property? What about S_2^ω?
References

[1] T. Banakh, Topological classification of zero-dimensional \mathcal{M}_ω-groups, Matematychni Studii 15 (2001), 109–112.
[2] C.J.R. Borges, On stratifiable spaces, Pacific Journal of Mathematics 17 (1966), 1–16.
[3] T. Banakh and L. Zdomskyy, The topological structure of (homogeneous) spaces and groups with countable cs*-character, Applied General Topology 5 (2004), 25–48.
[4] E. van Douwen, The integers and Topology, in: K.Kunen, J.E.Vaughan (eds.), Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984, 111–167.
[5] G. Gruenhage and K. Tamano, If X is σ-compact Polish, then $C_b(X)$ has a σ-closure-preserving base, Topology and its Applications 151 (2005), 99–106.
[6] S. Lin, A note on Arens space and sequential fan, Topology and its Applications 81 (1997), 185–196.
[7] E. A. Michael, Some extension theorems for continuous functions, Pacific Journal of Mathematics 3 (1953), 789-806.
[8] R. Pol, Normality in function spaces, Fundamenta Mathematicae 84 (1974), 145–155.
[9] B. Tsaban and L. Zdomskyy, On the Pytkeev property in spaces of continuous functions, II, Houston Journal of Mathematics 35 (2009), 563–571.

(Gruenhage) Department of Mathematics and Statistics, Auburn University, Auburn, AL 36830, USA
E-mail address: garyg@auburn.edu

(Tsaban) Department of Mathematics, Bar-Ilan University, Ramat-Gan 52900, Israel
E-mail address: tsaban@math.biu.ac.il

(Zdomskyy) Kurt Gödel Research Center for Mathematical Logic, University of Vienna, Währinger Str. 25, 1090 Vienna, Austria
E-mail address: lzdomsky@logic.univie.ac.at