Bortezomib in autoimmune hemolytic anemia and beyond

Raffaella Pasquale, Juri Alessandro Giannotta, Wilma Barcellini and Bruno Fattizzo

Abstract: Bortezomib is a first-in-class, potent, selective and reversible proteasome inhibitor approved for the treatment of multiple myeloma (MM) and relapsed/refractory mantle cell lymphoma. In these diseases, bortezomib targets plasma cells and lymphocytes reducing tumor burden. Recently, preclinical evidence highlighted its efficacy in reducing long-lived plasma cells responsible of autoantibodies production in several models of autoimmune conditions. These findings paved the way to a number of experiences of bortezomib use in patients with various autoimmune conditions, including autoimmune hemolytic anemia (AIHA). The latter is a nice model of autoimmunity in hematology and is caused by the production of autoantibodies against erythrocytes resulting in various degrees of hemolytic anemia. AIHA is classified in warm and cold forms according to the thermal characteristics of the autoantibody, and first-line treatment mainly relies on steroids for warm cases and the anti-CD20 rituximab for cold ones. Relapsed/refractory cases are still an unmet need, and bortezomib has been proposed in this setting with intriguing efficacy. In this review, we collected available literature on bortezomib use in AIHA and in other immune-mediated hematologic and non-hematologic diseases. Overall, most experiences highlight bortezomib efficacy even in multi-relapsed/refractory patients and suggest to consider its use in AIHA after rituximab failure.

Keywords: autoimmune diseases, autoimmune hemolytic anemia, bortezomib, long-lived plasma cells

Received: 23 May 2021; revised manuscript accepted: 28 August 2021.

Introduction

Bortezomib is a first-in-class, potent, selective and reversible proteasome inhibitor. This drug was initially developed to treat inflammation and cachexia until its antitumor activity emerged in the late 1990s. The drug received US Food and Drug Administration approval for the treatment of patients with multiple myeloma (MM) and relapsed/refractory mantle cell lymphoma.1 Its use in these diseases is mainly based on the proapoptotic effect on plasma cells and lymphocytes. These cells are also involved in the pathogenesis of a plethora of autoimmune diseases, where they directly produce autoantibodies or sustain autoimmunity/inflammation through the release of various mediators. Therefore, the use of bortezomib in autoimmune conditions, including autoimmune hemolytic anemia (AIHA), has recently gained more and more attention and has been addressed in various preclinical and clinical studies. In this review, we collected available literature on bortezomib use in AIHA, in other immune-mediated hematologic and non-hematologic diseases. A brief description of bortezomib pharmacodynamics and pharmacokinetics is also provided, along with evidence of its effects in preclinical studies.

Bortezomib pharmacodynamics and pharmacokinetics

Bortezomib inhibits the ubiquitin-proteasome pathway that plays a prominent role in regulating cell growth, both in normal and neoplastic cells.
The proteasome acts via the degradation of most intracellular proteins, required throughout cell cycle progression and mitosis. In addition, the proteasome prevents apoptosis through the degradation of nuclear factor-κB (NF-κB) inhibitory protein, IκB. NF-κB promotes cell viability by increasing the expression of apoptosis inhibitors. Therefore, the degradation of IκB activates NF-κB signaling, making cells less prone to apoptosis. Bortezomib acts by blocking the 26S proteasome subunit, a large complex composed by a 20S proteolytic core and up to two 19S regulatory subunits. The drug specifically binds to the chymotryptic site of the 20S subunit. By inhibiting the proteasome, bortezomib is able not only to induce apoptosis but also to inhibit many other processes related to ubiquitin-proteasome pathway, that is, angiogenesis, cell-cell adhesion and proliferation. Specifically, in plasma cell dyscrasia and in autoantibody-mediated diseases, bortezomib may rapidly lead to protein engulfment and death of the pathogenic cell. Bortezomib is administered intravenously or subcutaneously at a starting dose of 1.3 mg/sqm on 21-day cycles: twice weekly for 2 weeks (days 1, 4, 8 and 11) followed by a 10-day rest period (days 12–21). After eight cycles, a maintenance schedule can be followed, that is, once weekly for 4 weeks (days 1, 8, 15 and 22) followed by a 13-day rest period (days 23–35). Pharmacokinetic parameters are similar with subcutaneous or IV administration. The pharmacokinetic profile bortezomib is characterized by a two-compartment model with a rapid initial distribution (half-life < 10 min), longer elimination phase (half-life > 40 h) and large volume of distribution. The drug does not pass the blood/brain barrier. Moleurally, maximum inhibition of 20S proteasome activity occurred within 1 h after bortezomib administration and recovered to baseline within 72 h. Bortezomib dissociates from the proteasome with a half-life of 20 min, demonstrating a reversible inhibition. The distribution of proteasome in tissue significantly influences bortezomib tissue selectivity and efficacy. In fact, the high abundance of proteasome in erythrocytes limits the distribution outside the blood compartment and maximizes the efficacy in the lympho-hematopoietic system. Bortezomib metabolism occurs mainly in the liver; thus, impaired hepatic function may extend the half-life of the drug. More specifically, the primary metabolic pathway of bortezomib involves multiple cytochrome P (CYP) enzymes, including CYP3A4, CYP2C19 and CYP1A2, and moderate or severe hepatic impairment causes an increase in plasma concentrations of bortezomib. In fact, 20S proteasome inhibition following 1.3 mg/sqm does not apparently change in patients with mild hepatic impairment, while patients with moderate or severe hepatic impairment should be started at reduced doses (i.e. 0.7 and 1.0 mg/sqm). Finally, renal impairment does not influence the intrinsic pharmacokinetics of bortezomib. Among toxicities, peripheral neuropathy is the most frequently registered. It is predominantly sensory, being reversible in more than half of cases after dose adjustment and in about 70% of cases after discontinuation. Other rarer side effects are hypotension, congestive heart failure, acute diffuse infiltrative pulmonary disease and reversible posterior leukoencephalopathy syndrome. Finally, hematological toxicity (thrombocytopenia and neutropenia) may be observed following the typical cyclical pattern of the administration schedule.

Preclinical studies about bortezomib in autoimmune diseases

The use of bortezomib in autoimmune disorders is supported by several preclinical studies (Table 1). For instance, in human and animal models of immune thrombocytopenia (ITP), bortezomib eliminated long-lived plasma cells and decreased antiplatelet antibodies, thus alleviating thrombocytopenia. Several studies, involving both animal models and ex vivo human samples, are available for systemic lupus erythematosus (SLE). Bortezomib lowered immunoglobulin levels by 30%, resulting in the reduction of autoantibodies. In particular, in mice models, bortezomib plus anti-CD20 monoclonal antibody (moAb) depleted long-lived and anti-double-strand (ds) DNA-secreting plasma cells in bone marrow and spleen. This resulted in persistent reduction of anti-dsDNA antibodies, delayed nephritis and prolonged survival. In some experiences, bortezomib ameliorated both the histopathology (glomerular and tubulointerstitial damage, podocyte damage, glomerulosclerosis, immunoglobulin deposition and lymphocyte infiltration) and clinical picture (arterial pressure and albuminuria) of lupus nephritis. In mice models of rheumatoid arthritis, bortezomib exerted a proapoptotic activity in splenocytes and fibroblast-like synoviocytes, reducing their invasiveness. Ex vivo studies in patients showed that the drug inhibited the release...
Autoimmune disease	Study type	Number of patients/models	Comments	References
ITP	In vivo animal model, ex vivo human samples	ITP patients (N = 45) Controls (N = 20) Experimental ITP	Bortezomib eliminated long-lived plasma cells and decreased antiplatelet antibodies in ITP murine models, and alleviated thrombocytopenia	Li et al.3
	Animal model, in vivo	Experimental SLE	Bortezomib eliminated autoantibody production, ameliorated glomerulonephritis and prolonged survival	Neubert et al.4
	Animal model, in vivo	Experimental SLE (N = 20) Controls (N = 10)	Bortezomib inhibited antibody production and prevented the development of nephritis	Hainz et al.5
	Animal model, in vivo	Experimental SLE	Bortezomib ameliorated SLE progression in mice models, by dual inhibition of type I IFN activation and autoantibody production by plasma cells	Ichikawa et al.6
	Animal model, in vivo	Experimental SLE	Bortezomib plus anti-CD20 antibodies depleted long-lived and anti-dsDNA-secreting plasma cells in bone marrow and spleen; this resulted in persistent reduction of anti-dsDNA antibodies, delayed nephritis and prolonged survival	Khodadadi et al.7
	Animal model, in vivo	Experimental SLE (N = 24) Controls (N = 26)	Bortezomib lowered bone marrow plasma cell. Bortezomib normalized mean arterial pressure in SLE mice and attenuated renal injury	Taylor et al.8
	Human, ex vivo	SLE patient (N = 10) Controls (N = 9)	Bortezomib did not restore the SLE-specific defect in the expression of PKC isoenzymes in the T-cells	Griger et al.9
	Human, ex vivo	SLE patients (N = 8)	Bortezomib decreased immunoglobulin levels by 30%, resulting in reduction of autoantibodies, and serum complement	Alexander et al.10
RA	Animal model, in vivo	Experimental RA	Bortezomib exhibited significant inhibitory and proapoptotic activity in splenocytes and fibroblast-like synoviocytes, altered the inflammatory cytokine pattern and reduced the invasiveness of fibroblast-like synoviocytes; in vivo, bortezomib significantly ameliorated disease severity	Yannaki et al.11
	Human, ex vivo	RA patients (N = 19) Controls (N = 7)	Bortezomib inhibited the release of several NF-κB-inducible cytokines (including TNF-α, IL-1β, IL-6 and IL-10) by activated T-cells from healthy volunteers and RA patients; bortezomib reduced T-cell activation and induced T-cell apoptosis	van der Heijden et al.12
SS	In vivo animal model, ex vivo human samples	Experimental SS and SS patients	Bortezomib suppressed Th17 differentiation in naive T-cells in culture, ameliorated saliva flow in rats and reduced tissue destruction in the salivary glands	Xiao et al.13
MG	Animal model, in vivo	Experimental autoimmune MG (N = 54) Controls (N = 36)	Bortezomib efficiently reduced anti-acetylcholine receptor autoantibody titers, prevented ultrastructural damage of the postsynaptic membrane, improved neuromuscular transmission and decreased myasthenic symptoms in Lewis rat models	Gomez et al.14

(continued)
of several NF-κB-inducible cytokines, including tumor necrosis factor–alpha (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) and interleukin-10 (IL-10); reduced T-cell activation; and induced T-cell apoptosis. In experimental Sjogren syndrome, bortezomib suppressed Th17 differentiation in naïve T cells in culture, ameliorated saliva flow and reduced tissue destruction in the salivary glands.13

Concerning autoimmune neurological diseases, bortezomib reduced anti-acetyl-choline receptor autoantibody titers, prevented ultrastructural damage of the postsynaptic membrane, improved neuromuscular transmission and decreased myasthenic symptoms in mice models of myasthenia gravis (MG). In multiple sclerosis animal model, the proteasome inhibitor reduced T-cell secreting proinflammatory cytokines, reducing NF-κB activity in central nervous system and lymphoid organs.16 Furthermore, in cultured thymus cells from MG patients, bortezomib killed long-lived plasma cells and consistently halted the production of autoantibodies.14,15

Bortezomib use in AIHA
AIHA is caused by destruction of red blood cells (RBCs) by autoantibodies.17 It can be primary (idiopathic) or associated with an underlying condition (secondary), including lymphoproliferative and autoimmune diseases, infections, drugs or neoplasms. Two mechanisms for RBC destruction are recognized: intravascular hemolysis (i.e. directly in the bloodstream) and extravascular hemolysis (i.e. in the spleen, liver or both, where macrophages remove autoantibody-bound RBC). AIHA is usually classified according to the thermal characteristics of the autoantibody. Warm AIHAs (wAIHA) represent about 70–80% of cases and are usually sustained by polyclonal IgG, resulting in a direct antiglobulin test (DAT) positivity for immunoglobulin G (IgG) or IgG plus complement fraction 3d (C3d). Cold AIHAs (cAIHA) are usually caused by a monoclonal IgM that fixes complement at low temperatures and cause complement-mediated RBC lysis. The DAT is typically positive with C3d alone. Finally, mixed forms may also occur when both a warm and a cold autoantibody are present, and the DAT is positive for IgG plus C3d and high-titer cold agglutinins.18

AIHA therapy
AIHA treatment should be differentiated in warm and cool forms. wAIHA are generally managed with steroids from the start with approximately 80% of patients responding, sustained in 20–30% of cases only. Second-line treatment comprises the anti-CD20 mAb rituximab or splenectomy in fit young patients. Both treatments are effective in up to 70% of cases and more than half on a long-term basis.17–20 Patients refractory to rituximab can be considered for splenectomy if eligible, but surgical, infectious and thrombotic risk should be remembered and prevented. Classic immunosuppressors, such as azathioprine, cyclosporine, cyclophosphamide and mycophenolate mofetil, are now suggested in third/further lines if a clinical trial is not available.

Autoimmune disease	Study type	Number of patients/models	Comments	References
Human, ex vivo	MG patients ([N = 10])	Bortezomib killed long-lived plasma cells in cultured thymus cells from MG patients and consistently halted the production of autoantibodies against the acetylcholine receptor and total IgG	Gomez et al.15	
MS	Experimental MS ([N = 24])	Bortezomib ameliorated experimental autoimmune encephalomyelitis reducing T-cells-secreting proinflammatory cytokines; bortezomib reduced NF-κB activity in the central nervous system and lymphoid organs	Fissolo et al.16	

dsDNA, double-strand DNA; IFN, interferon; IgG, immunoglobulin G; IL, interleukin; ITP, immune thrombocytopenia; MG, myasthenia gravis; MS, multiple sclerosis; PKC, protein kinase C; RA, rheumatoid arthritis; SLE, systemic lupus erythematosus; SS, Sjogren syndrome; Th17, T helper 17; TNF-α, tumor necrosis factor–alpha.
For cAIHA, steroids are usually effective only at high unacceptable doses, so that rituximab is the preferred first line, inducing about 50–60% of responses, mainly partial. The association of rituximab with fludarabine and bendamustine improved responses although with some side effects, particularly with the former. Complement inhibitors are new promising therapeutic options.19

For relapsed/refractory cases, a number of agents targeting various lymphocyte antigens have been suggested as potential therapies, including other anti-CD20 moAbs (obinutuzumab and ofatumumab) and the anti-CD52 moAb alemtuzumab. Moreover, B-cell receptor (BCR) inhibitors ibrutinib and idelalisib that have shown some efficacy in AIHA secondary to chronic lymphocytic leukemia have also been proposed. Specifically for wAIHA, fostamatinib, a spleen tyrosine kinase (Syk) inhibitor and several neonatal Fc receptor inhibitors are under active study. Finally, in both wAIHA and cAIHA, plasma cells depleting agents have also been employed, including bortezomib, and the anti-CD38 moAbs daratumumab and isatuximab that are licensed for MM.19,21

Bortezomib use in AIHA
The use of antiplasma cell therapies in AIHA is supported by their effect on short- and long-lived plasma cells that produce the autoantibodies.22 In fact, it has been shown that patients with cAIHA harbor long-lived plasma cells within bone marrow and spleen, which have the same heavy and light chain restriction as the B-cells, consistent with a plasmacytoid differentiation of the B-cell clone. These cells are not affected by CD20-directed therapies, thus accounting for rituximab refractoriness, and may be rather targeted by bortezomib.

Bortezomib in cold type AIHA. Table 2 summarizes clinical evidence on bortezomib use in AIHA. Only one clinical trial exists with published results.31 This is an Italian prospective multicenter, phase 2, open-label study on refractory cAIHA (NCT01696474). Twenty-one patients were enrolled and received a single course of bortezomib – 1.3 mg/sqm IV on days 1, 4, 8 and 11. Among the 19 evaluable patients, 3 achieved a complete response (CR, 15.8%) and 3 a partial response (PR, 15.8%) for an overall response rate (ORR) of 31.6%, including transfusion independence in 4 patients. Among responders, four maintained the response after a median follow-up of 16 months (range: 10–31). One patient relapsed 1 year later but obtained a second remission with a second course of bortezomib. At last follow-up, all patients were alive except one who died during off-treatment period because of a septic shock occurred 10 months after treatment start. Importantly, treatment-related toxicities, including neurotoxicity, were rarely recorded, most probably due to the low cumulative dose of bortezomib administered in this study. Regarding clinical trials, one study on bortezomib plus anti-CD20 moAb in relapsed/refractory AIHA and one in post-transplant AIHA (NCT04083014; NCT01929980) are ongoing. Beyond clinical trials, 14 reports described the use of bortezomib in AIHA, mainly including single patient case reports. In all of them, bortezomib was used in relapsed/refractory patients, mostly pretreated with two or more lines.

Case reports on cAIHA comprise six patients, all adults, that received variable doses of IV or subcutaneous bortezomib (1.3 mg/sqm from 1 to 13 courses), either single agent or in combination with rituximab-dexamethasone ($ N = 1$) or cyclophosphamide-dexamethasone ($ N = 1$).22,23,32,33 All patients responded, CR was obtained in four cases (66.6%) and PR in two cases (33.4%). In this setting, bortezomib appeared well tolerated without adverse events potentially attributable to proteasome inhibition. One patient died for a metastatic carcinoma, while AIHA was in PR.

Bortezomib in warm type AIHA. Concerning wAIHA, 16 adult patients who received variable doses of IV or subcutaneous bortezomib (1.3 mg/sqm from one to three cycles) have been reported.22,24,25,29,34,35 Bortezomib was administered with dexamethasone in eight patients, in combination with cyclophosphamide and dexamethasone in two, and in one case with rituximab. On the whole, ORR was 75%, with five CR (37.5%) and seven PR (52.5%). Four patients did not respond: all were multi-treated wAIHA, one post-hematopoietic stem cell transplant (HSCT) and one of them died for massive hemolysis. Bortezomib appeared well tolerated: four patients experienced G1 thrombocytopenia and G3
Study type	AIHA type	Thermal features	Population	\(N\)	Comments	References
Case report	CAD with MGUS	Cold	Adult [78 years]	2	Bortezomib single agent 1.3 mg/sqm for three doses	Carson et al. 23
Case report	Secondary to SLE	Warm	Adult [60 years]	1	Bortezomib single agent 1.3 mg/sqm on days 1, 4, and 8	Danchaivijitr et al. 24
Case report	Secondary to umbilical cord blood HSCT for AML	Warm	Adult [28 years]	1	Bortezomib single agent 1.3 mg/sqm for four doses	Danchaivijitr et al. 24
Case report	ES secondary to HSCT for SCID	Warm	Pediatric [1.25 and 2.3 years]	2	Bortezomib single agent 1.3 mg/sqm on days 1, 4, 8, and 11	Rovira et al. 25
Case report	ES secondary to HSCT for ALL	Warm	Pediatric [1 year]	1	Bortezomib 1.3 mg/sqm IV on days 1, 4, 9, 12, 23, and 26, + vincristine + prednisolone	Waespe et al. 28
Case report	Secondary to HSCT for post-MDS AML	Warm	Adult [67.8-81 years]	8	Bortezomib single agent 1.3 mg/sqm/week for four doses	Hosoda et al. 29
Case report	Secondary to SLE	Warm	Adult [65 years]	1	Bortezomib single agent 1.3 mg/sqm/week for four doses	Wang et al. 30
Clinical trial	12 primary, 9 secondary (3 CLL, 6 B-NHL)	Cold	Adult [46 years]	21	Bortezomib single agent 1.3 mg/sqm IV on days 1, 4, 8, and 11	Rossi et al. 31

Table 2. Bortezomib use in AIHA.

Notes:
- CAD: Cold agglutinin disease
- MGUS: Monoclonal gammopathy of undetermined significance
- ES: Essential thrombocythemia
- SLE: Systemic lupus erythematosus
- HSCT: Hematopoietic stem cell transplantation
- CLL: Chronic lymphocytic leukemia
- B-NHL: B-cell non-Hodgkin lymphoma
- CR: Complete response
- NR: No response
- PR: Partial response
- G1: Grade 1
- G2: Grade 2
- G3: Grade 3
- G4: Grade 4
- N: Number
| Study type | AIHA type | Population | N | Thermal features | Comments | References |
|------------------|--|------------|---|------------------|--|------------|
| Case report | Secondary to cryoglobulinemic vasculitis | Adult (72 years) | 1 | Cold | Bortezomib 1.3 mg/sqm on days 1, 8, 15 and 22 + cyclophosphamide + dexamethasone every 35 days for two courses
Response: CR
No toxicity | Liu et al.
32 |
| Case report | CAD with IgA/λ MGUS | Adult (60 years) | 1 | Cold | Bortezomib 1.3 mg/sqm/week for 3 weeks + rituximab [375 mg/sqm/week] + dexamethasone [20 mg on days 1, 2, 8, 9, 15 and 16] for four cycles
Response: CR
No toxicity | Sefland et al.
33 |
| Case report | Primary | Adult (83 years) | 1 | Warm | Bortezomib 1.3 mg/sqm for four doses in combination with rituximab
Response: CR
No toxicity | Ames et al.
24 |
| Case report | Secondary to low-grade B-NHL (N = 2), Hodgkin lymphoma (N = 2), SLE (N = 2); 2 of them ES | Adult (median age 48.5 years) | 8 | Warm | Bortezomib single agent 1.3 mg/sqm on days 1, 4, 8 and 11 in combination with dexamethasone
Response: CR (N = 3), PR (N = 3), NR (N = 2)
Toxicity: G2 peripheral neuropathy (N = 2) and thrombocytopenia (N = 2), G5 death for sepsis with multiple organ failure (N = 1) | Fadlallah et al.
35 |
| Case report | Secondary to combined liver-small bowel-pancreas transplant | Pediatric (4 years) | 1 | Unknown | Bortezomib 1.3 mg/sqm on days 1, 4, 8 and 11 for six administrations
Response: complete remission
Toxicity: increased ileal stoma output, G1-2 neutropenia and thrombocytopenia, increased transaminases | Knops et al.
34 |

AIHA, autoimmune hemolytic anemia; ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; B-NHL, B-cell non-Hodgkin lymphoma; CAD, cold agglutinin disease; CLL, chronic lymphocytic leukemia; CR, complete response; ES, Evans syndrome; HSCT, hematopoietic stem cell transplant; IgG, immunoglobulin G; IV, intravenous; MDS, myelodysplastic syndrome; MGUS, monoclonal gammopathy of undetermined significance; NR, non-response; PR, partial response; SCID, severe combined immunodeficiency; SLE, systemic lupus erythematosus.
neutropenia, one patient self-limiting low-grade diarrhea and only two had mild peripheral neuropathy. There was an episode of grade 3 hepatotoxicity in the context of high alcohol intake which necessitated bortezomib cessation.

Finally, two patients have been described with mixed form AIHA and two patients without available DAT. The two mixed AIHA cases were secondary to SLE and HSCT, an adult and a pediatric patient; received bortezomib single agent 1.3 mg/sqm weekly for 4 doses; and obtained CR without toxicity. Two pediatric patients without available DAT were treated with variable doses of bortezomib from one to six cycles, with success and with only mild toxicities (increased ileal stoma output, G1-2 neutropenia, thrombocytopenia and transient rise in transaminase values). Finally, four cases of Evans syndrome (ES, association of AIHA and ITP) have been reported, two pediatrics and two adults. They were treated with bortezomib in combination with steroids and, in one patient, with vincristine. All patients responded, but one who died for sepsis with multiorgan failure. Mild peripheral neurotoxicity was experienced in one case.

Overall, bortezomib appears effective and well tolerated in multi-treated AIHA, although only case reports are available in warm cases and a single clinical trial for cold ones. The drug was administered either subcutaneously or intravenously, and generally for less cycles than those used in MM.

Bortezomib use in other hematological autoimmune diseases

Fourteen reports described the use of bortezomib in other autoimmune hematological diseases, mainly including single patient case reports, in relapsed/refractory setting (Table 3).

Bortezomib in autoimmune cytopenias other than AIHA

Eight cases of ITP have been described, six pediatrics and two adults. They were treated with bortezomib from less than one to two cycles, and five patients responded (four pediatric and one adult). The non-responding adult patient died for uncontrollable bleeding. Notably, two responding cases were ES and required additional treatments (plasma exchange and cyclosporine A).

Based on this evidence, a clinical trial of bortezomib in ITP is currently ongoing (NCT03013114). Regarding autoimmune neutropenia, three pediatric cases have been reported. They were treated with bortezomib as single agent, and all patients responded. Notably, one patient experienced febrile neutropenia and Clostridium difficile colitis 29 days after the first dose of bortezomib, and one cellulitis at the injection site, both requiring IV antibiotics.

Bortezomib in autoimmune hemostatic disorders

Eighteen cases with thrombotic thrombocytopenic purpura (TTP) have been described, 17 adults and 1 pediatric. Two cases were secondary to either checkpoint inhibitors or Sjogren syndrome, and 17 patients (94%) responded. One patient refractory to sc bortezomib responded to IV infusion. Overall, toxicities were mild, except for one patient who discontinued treatment after 13 doses of bortezomib due to worsening interstitial lung disease. Of note, TTP remained in remission after discontinuation. One patient with acquired hemophilia has been described, treated by four cycles of bortezomib obtaining CR. Finally, bortezomib has been effectively used to abrogate anti-human leukocyte antigen (HLA) antibodies in patients subjected to kidney allograft, in combination with IV methylprednisolone, plasmapheresis and rituximab.

Overall, early evidences of bortezomib use in hematological autoimmune diseases other than AIHA show promising efficacy with low toxicity and warrant future prospective studies.

Bortezomib use in other autoimmune diseases

Several reports describing bortezomib use in autoimmune conditions are summarized in Tables 4 to 6.

Bortezomib in systemic connective tissue diseases

Forty-seven adult cases with SLE treated with bortezomib have been described, (Table 4). In particular, 17 patients suffered from lupus nephritis, and 2 had underlying MM. Bortezomib was administered from one to four cycles, mostly in combination with steroids, and all patients had a
Study type	Hematologic disease	Study population	N	Comments	References
Case series	Transplanted patients with anti-HLA alloantibodies	Adult [median age, 27.5 years, range: 19–48]	11	• Bortezomib + PEX [N = 11] + rituximab [N = 6]	
 | | | | Response: reduction of antibody titer
 | | | | Toxicity: G1-2 diarrhea [N = 3], thrombocytopenia [N = 11], generalized weakness | Trivedi et al. |
| Case report | Idiopathic TTP | Adult [53 years] | 1 | • Bortezomib 1.3 mg/sqm single agent for four doses
 | | | | Response: PR
 | | | | No toxicity | Shortt et al. |
| Case report | Chronic relapsing TTP | Adult [48 years] | 1 | • Bortezomib 1.3 mg/sqm was resumed 28 days after the initial dose; on days 1 and 8 of a 21-day cycle [13 doses]
 | | | | Response: CR
 | | | | Toxicity: pulmonary | Yates et al. |
| Case report | Relapsed refractory idiopathic TTP | Adult [51 years] | 1 | • Bortezomib 1.3 mg/sqm on days 1, 4, 8 and 11 on a 21-day cycle [two cycles] + mycophenolate + steroids
 | | | | Response: CR, reduction of inhibitory antibodies and normalization of ADAMTS13 activity
 | | | | No toxicity | Mazepa et al. |
| Case report | Refractory idiopathic TTP | Pediatric [16 years] | 1 | • Bortezomib 1.3 mg/sqm on days 1, 4, 8 and 11 on a 21-day cycle
 | | | | Response: CR
 | | | | No toxicity | van Balen et al. |
| Case report | Refractory idiopathic TTP | Adult [22 years] | 1 | • Bortezomib 1.3 mg/sqm SC on days 1, 4, 8 and 11, then IV for a second cycle
 | | | | Response: NR to SC, CR to IV bortezomib
 | | | | Toxicity: G1 peripheral neuropathy | Patel et al. |
| Case report | Refractory TTP | Adult [36 years] | 1 | • Bortezomib 1.3 mg/sqm on days 1, 4, 8 and 11 on a 21-day cycle [two cycles]
 | | | | Response: CR
 | | | | Toxicity: G1-2 infection | Acedillo et al. |
| Case series | Refractory TTP | Adult [median age 49.6 years, range: 27–76] | 6 | • Bortezomib 1 mg/sqm IV or SC for one to maximum three administrations
 | | | | Response: CR [IV = 5], 1 died for cardiac arrest due to underlying disease
 | | | | No toxicity | Patriquin et al. |
| Case report | Refractory TTP | Adult [33 years] | 1 | • Bortezomib 1.3 mg/sqm on days 1, 4, 8 and 11 on a 21-day cycle [three cycles] + steroids + PEX
 | | | | Response: CR
 | | | | Toxicity: G1-2 peripheral neuropathy | Pandey et al. |
| Case report | Relapsed/refractory TTP in Sjögren syndrome | Adult [47 years] | 1 | • Bortezomib 1.3 mg/sqm on days 1, 4, 8 and 11 on two 21-day cycles + steroids
 | | | | Response: CR
 | | | | No toxicity | Sun et al. |

(continued)
clincial improvement. Toxicity was limited, with only mild peripheral neurotoxicity and six infections (one herpes zoster and five G3-G4 fever). Three adult patients with rheumatoid arthritis concomitant to MM received bortezomib in combination with steroids from three to eight cycles with joint disease improvement. Finally, one adult patient with refractory Sjogren syndrome was successfully treated with bortezomib without toxicity.54 A clinical trial has been designed to evaluate bortezomib use in antibody-mediated autoimmune diseases, including adult patients with treatment-refractory MG, SLE and rheumatoid arthritis.56

Bortezomib in autoimmune neurologic diseases

Seventeen cases of refractory anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis have been described, all, but one, adults (Table 5).57–65 Bortezomib was administered as single agent or in combination with IV/intrathecal rituximab, tocilizumab and cyclophosphamide. All patients responded, and in four cases central nervous system, plasma cell concentration and antibody declined. It was well tolerated, and no neurological toxicities were observed. One phase II trial has been designed to evaluate efficacy and safety of bortezomib in patients with severe autoimmune encephalitis (NCT02102594). Regarding demyelinating disorders, five patients with highly relapsing neuromyelitis optica spectrum disorder (NMOSD) were enrolled in a clinical trial with bortezomib single agent (NCT02893116): all had clinical improvement, and only one patient relapsed. A case series reported 10 adults with refractory inflammatory demyelinating neuropathy successfully treated with bortezomib.67 Interestingly, no neurologic toxicities were reported. Finally, one adult case of refractory MG responding to bortezomib has been published.68

Bortezomib in autoimmune renal diseases

There are several case reports of adult patients with immune-mediated nephropathy treated with bortezomib (Table 6).69–73 The latter was administered as single agent or in combination with cyclophosphamide and dexamethasone, and about 60% of patients responded. Two patients suffering from nephrotic syndrome were treated with bortezomib in combination with thalidomide and dexamethasone, or with ramipril and steroids, respectively. The first patient

Study type	Hematologic disease	N	Study population	Hematologic disease	Hematologic disease	Hematologic disease
Case report	TTP secondary to melanoma	1	Adult (56 years)	ITP	AH	AIN (autoimmune nephropathy, MG, Siogren)
Case report	Post-HSCT TTP/ES/AIN	7	Adult (32 years)	Relapsing ES	AIN, acquired hemophilia, CR, complete remission, ES, Evans syndrome, HLA, human leukocyte antigen, HSCT, hematopoietic stem cell transplant, IP, immune thrombocytopenia, IV, intravenous, NR, non-response, PEX, plasma exchange, PR, partial remission, SC, subcutaneous, TTP, thrombotic thrombocytopenic purpura.	
Table 4. Bortezomib use in systemic autoimmune diseases.

Study type	Autoimmune disease	Study population	N	Comments	References
Case report	SLE and MM	Adult (63 years)	1	• Bortezomib 1.5 mg/sqm on days 1, 4, 8 and 11 + steroids [28-day cycles] for three cycles	Fröhlich et al.49
				• Response: clinical improvement	
				• No toxicity	
Case report	SLE and APS in IgA MM	Adult (70 years)	1	• Bortezomib 1.3 mg/sqm IV on days 1, 8, 15 and 22 [for four cycles] + dexamethasone	Quartuccio et al.50
				• Response: PR of MM and disappearance of SLE autoantibodies, then MM progression after 3 years	
				• Toxicity: G1 peripheral neuropathy	
Case series	Refractory SLE	–	20	• Bortezomib 1.3 mg/sqm IV in 21-day cycles + dexamethasone [N = 16] for a median of two cycles [range: 1–4]	Alexander et al.51
				• Response: clinical improvement [N = 20]	
				• Toxicity: G3-4 infections [N = 3], fever [N = 2], G1-2 nausea [N = 3], headache [N = 3], polyneuropathy [N = 2], allergic skin reactions [N = 2]	
Case series	SLE	–	8	• Bortezomib 1.3 mg/sqm for four injections in two cycles	Alexander et al.10
				• Response: gradual and significant depletion of short- and long-lived PCs in peripheral blood and BM by 50%, accompanied by a significant reduction of autoantibodies and total Ig	
Case series	Refractory lupus nephritis	Adult [median age 27.8 years, range: 21–43]	5	• Bortezomib 1.3 mg/sqm IV on days 1, 4, 8 and 11 of 21-day cycles for four cycles + steroids	Zhang et al.52
				• Response: CR [N = 3], PR [N = 1], NR [N = 1]	
				• Toxicity: G1-2 thrombocytopenia [N = 5], gastrointestinal [N = 3], neurotoxicity [N = 3], transient elevated creatinine [N = 2], fever [N = 3], zoster [N = 1], hypertension [N = 1]	
Case series	Resistant lupus nephritis	–	12	• Bortezomib for a median of six [range: 5–7] weekly cycles	Segarra et al.53
				• Response: CR [N = 1], PR [N = 10], NR [N = 1]	
				• Toxicity: G2 polyneuropathy [N = 2]	
Case report	Refractory primary Sjögren syndrome	Adult (44 years)	1	• Bortezomib 1.3 mg/sqm on days 1, 4, 8, 11, 22, 29, 36, 43, 50 and 57	Jakez-Ocampo et al.54
				• Response: clinical improvement	
				• No toxicity	
Case series	RA and MM	Adult (78, 72 and 60 years)	3	• Bortezomib 1.3 mg/sqm IV on days 1, 4, 8 and 11 + steroids for eight cycles for two patients, three cycles for one patient	Lassoued et al.91
				• Response: improvement of joint disease	
				• No toxicity	

APS, antiphospholipid syndrome; BM, bone marrow; CR, complete remission; Ig, immunoglobulins; IV, intravenous; MM, multiple myeloma; NR, non-response; PC, plasma cell; PR, partial remission; RA, rheumatoid arthritis; SLE, systemic lupus erythematosus.
Table 5. Bortezomib use in neurologic autoimmune diseases.

Study type	Autoimmune disease	Study population	N	Comments	References
Clinical trial	MG (N = 6), SLE (N = 6) and RA (N = 6)	Adult	18	• Bortezomib 1.3 mg/sqm for four injections/cycle in two cycles	Kohler et al.56
				• Response: reduction of autoantibody serum levels	NCT02102594
Case report	Refractory anti-NMDAR encephalitis	–	2	• Bortezomib + rituximab	Titulaer et al.57
				• Response: clinical remission	
				• No toxicity	
Case report	Severe course of anti-NMDAR encephalitis	Adult (30 and 20 years)	2	• Bortezomib 1.3 mg/sqm on days 1, 4, 8 and 11 for one cycle for the first patient, two cycles for the second patient	Behrendt et al.58
				• Response: clinical remission	
				• No toxicity	
Case report	Refractory anti-NMDAR encephalitis	Adult (25 years)	1	• Bortezomib 1.3 mg/sqm/week for four cycles + intrathecal rituximab	Sveinsson et al.59
				• Response: clinical remission	
				• No toxicity	
Case report	Refractory anti-NMDAR encephalitis	Adult (22 years)	1	• Bortezomib single agent 1.3 mg/sqm on days 1, 4, 14 and 25	Schroeder et al.60
				• Response: fast improvement of neurological deficits	
				• No toxicity	
Case series	Anti-NMDAR encephalitis	Adult	5	• Bortezomib 1.3 mg/sqm on days 1, 4, 8 and 11 for one to six cycles	Neyens et al.61
				• Response: decreased CNS PC concentration, clinical improvement and antibody decline (N = 4)	
				• Toxicity: infusion reactions, cytopenias, neuropathy, heart failure exacerbation, herpes virus reactivation	
Case report	Refractory anti-NMDAR encephalitis	Adult (35 and 49 years)	2	• Bortezomib 1.3 mg/sqm on days 1, 4, 8 and 11 of a 21-day cycle for three cycles + oral cyclophosphamide + dexamethasone (patient 1)	Keddie et al.52
				• Bortezomib 1.3 mg/sqm SC on days 1, 4, 8, 11 and 14 for one cycle + rituximab (patient 2)	
				• Response: clinical improvement	
				• No toxicity	
Case report	Immunotherapy refractory anti-NMDAR encephalitis	Adult (23 and 53 years)	2	• Bortezomib 1.3 mg/sqm on days 1, 4, 8 and 11 for maximum two cycles	Zhang et al.63
				• Response: clinical improvement	
				• No toxicity	

(continued)
Study type	Autoimmune disease	Study population	N	Comments	References
Case report	Refractory anti-NMDAR encephalitis	Pediatric (8 years)	1	• Bortezomib single agent 1.3 mg/sqm IV q3d for four administrations	
• Response: marked clinical improvement with progressive return of consciousness					
• No toxicity	Cordani et al.⁶⁴				
Case report	Refractory anti-NMDAR encephalitis	Adult (29 years)	1	• Bortezomib 1.3 mg/sqm IV on days 1, 4, 8 and 11 for four cycles	
• Response: progressive amelioration of consciousness					
• No toxicity	Lazzarin et al.⁶⁵				
Clinical trial	NMOSD, idiopathic (N=3) or secondary (N=2) to MG or Sjogren syndrome	–	5	• Bortezomib 1 mg/sqm on days 1, 4, 8 and 11 per cycle followed by a 10-day treatment-free interval for four cycles	
• Response: clinical improvement (N=5), relapse (N=1)					
• Toxicity: G1-2 headache (N=2), maculopapular rash at injection site (N=2), G1-2 common cold (N=2), G1-2 enterocolitis (N=1)	Zhang et al.⁶⁶				
Case series	Demyelinating neuropathy (1 ASCT prior to bortezomib)	Adult (median age 48.5 years, range: 23–65)	10	• Bortezomib 1.3 mg/sqm on days 1, 4, 8 and 11 for 28-day cycles repeated after 6 to 12 months depending on the clinical response	
• Response: stabilization during treatment (N=10); two patients received ASCT after bortezomib, which led to fatal infections					
• No toxicity	Pitarokoili et al.⁶⁷				
Case report	Severe refractory MG	Adult (26 years)	1	• Bortezomib 25 mg total dose	
• Response: NR
• No toxicity | Håkansson et al.⁶⁸ |

ASCT, autologous stem cell transplant; CNS, central nervous system; IV, intravenous; MG, myasthenia gravis; NMDAR, N-methyl-D-aspartate receptor; NMOSD, neuromyelitis optica spectrum disorder; NR, non-response; PC, plasma cell; RA, rheumatoid arthritis; SC, subcutaneous; SLE, systemic lupus erythematosus.
Table 6. Bortezomib use in renal and cutaneous autoimmune diseases.

Study type	Autoimmune disease	Study population	N	Comments	References
Case series	IgA nephropathy	Adult [35 ± 12 years]	8	• Bortezomib 1.3 mg/sqm IV for four doses over a 2-week cycle	
• Response: CR [N = 3], PR [N = 1], NR [N = 3], unknown [N = 1]					
• Toxicity: G1 thrombocytopenia [N = 2]	Hartono et al. 49				
Case report	IgA vasculitis related to IgA smoldering myeloma	Adult [35 years]	1	• Bortezomib + lenalidomide + dexamethasone	
• Response: CR after two courses and disappearance of the monoclonal protein [off-therapy follow-up: 10 months]					
• No toxicity	Paule et al. 70				
Case report	Nephrotic syndrome in idiopathic membranous nephropathy	Adult [58 years]	1	• Bortezomib 1.6 mg on days 1, 4, 8 and 11 + ramipril + steroid	
• Complete remission					
• No toxicity	Hartono et al. 71				
Case report	Nephrotic syndrome in membranous nephropathy with light chain restriction	Adult [40 years]	1	• Bortezomib 1.3 mg/sqm on days 1, 4, 8 and 11 + thalidomide + dexamethasone for six 28-day cycles	
• Response: progressive rise in serum creatinine from the second year	Ramachandran et al. 72				
Case report	Microscopic polyangiitis	Adult [58 years]	1	• Bortezomib 1.3 mg/sqm/week for four cycles	
• Response: prolonged remission					
• No toxicity	Novikov et al. 73				
Case report	IgA pemphigus and MGUS	Adult [61 years]	1	• Bortezomib 1.3 mg/sqm on days 1, 4, 8 and 15 + cyclophosphamide + dexamethasone	
• Response: CR					
• No toxicity	Adam et al. 74				
Case report	MM and IgA pemphigus	Adult [50 years]	1	• Bortezomib 1.3 mg/sqm IV on days 1, 4, 8 and 15 + cyclophosphamide + dexamethasone [28-day cycles] for six cycles	
 • Response: rapid skin response; the complete skin and hematologic remission lasted 18 months
 • Toxicity: neuropathic pain and weakness leading to suspension after six cycles | Szturz et al. 75 |

CR, complete remission; Ig, immunoglobulins; IV, intravenous; MGUS, monoclonal gammopathy of undetermined significance; MM, multiple myeloma; NR, non-response; PR, partial remission.
obtained disease stabilization, while the second achieved CR. Another case report described a patient with IgA vasculitis secondary to an IgA smoldering myeloma that obtained CR after two courses of bortezomib plus lenalidomide and dexamethasone, paralleled by the disappearance of the monoclonal protein.70 Finally, one adult patient with microscopic polyangiitis was successfully treated with bortezomib without toxicity.

Bortezomib in autoimmune cutaneous disease

Two patients with IgA plasma cell dyscrasia and cutaneous pemphigus were successfully treated with bortezomib in combination with cyclophosphamide and dexamethasone (Table 6). Both patients had cutaneous clinical improvement, and one experienced peripheral neuropathy.74,75 Notably, these two patients likely suffered from monoclonal gammopathy of clinical significance (MGCS), a well-recognized entity that can also occur with cutaneous manifestations. The latter may have therefore improved as the plasma cell dyscrasia improves, as observed with other paraneoplastic autoimmune conditions.

Overall, bortezomib appears effective in organ- and non-organ-specific autoimmune conditions, including cases secondary to plasma cell dyscrasia, both as single agent or in combination with cyclophosphamide and dexamethasone.

Conclusion

Bortezomib is effective not only in myeloma but also in several heterogeneous autoimmune diseases. In AIHA, bortezomib efficacy has been reported in warm, cold and mixed forms, in adult and in pediatric patients. The frequency of responses is difficult to evaluate, since bortezomib has been often used in combination with other treatments, particularly steroids. Moreover, most articles are case reports that usually describe responding patients only, thus limiting response analysis. Beyond these limitations, bortezomib may fill the gap of treatment need in relapsed/refractory wAIHA patients, particularly when rituximab and splenectomy are ineffective or contraindicated. The drug may be useful even in cAIHA after failure of rituximab (alone or in combination) and possibly after upstream complement inhibitors that are, however, not yet commercially available. In fact, the drug exhibited a good toxicity profile in AIHA, with only low grade and mostly transient adverse events, and the number of cycles required appears lower than in myeloma patients. Finally, similarly to what described for rituximab, bortezomib cycles can be repeated with further response.

In addition, many reports show the utility of bortezomib in a plethora of other autoimmune diseases, suggesting that the drug targets a common pathogenic mechanism in these conditions. In fact, preclinical data showed that the drug reduces the number of long-lived plasma cells along with autoantibody production, and also exerts an immunomodulatory activity on several cytokines. Most of the reported experiences highlighted the need of additional therapies, targeting various pathogenic pathways in these complex conditions. Contrary to neoplastic clones that are mono- or oligoclonal, autoimmune diseases are characterized by the derangement of several polyclonal compartments including B-cells, T-cells and innate immunity that may be ‘benign’ but more difficult to immunomodulate.

Author Note

Bruno Fattizzo is now affiliated to Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy.

Author contributions

R.P. and B.F. reviewed the literature and wrote the article. J.A.G. and W.B. revised the manuscript for important intellectual content.

Conflict of interest statement

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

ORCID iD

Bruno Fattizzo https://orcid.org/0000-0003-0857-8379

References

1. Kane RC, Bross PF, Farrell AT, et al. Velcade®: U.S. FDA approval for the treatment of multiple
myeloma progressing on prior therapy. Oncologist 2003; 8: 508–513.

2. Tan CRC, Abdul-Majeed S, Cael B, et al. Clinical pharmacokinetics and pharmacodynamics of bortezomib. Clin Pharmacokinet 2019; 58: 157–168.

3. Li G, Wang S, Li N, et al. Proteasome inhibition with bortezomib induces apoptosis of long-lived plasma cells in steroid-resistant or relapsed immune thrombocytopenia. Thromb Haemost 2018; 118: 1752–1764.

4. Neubert K, Meister S, Moser K, et al. The proteasome inhibitor bortezomib depletes plasma cells and protects mice with lupus-like disease from nephritis. Nat Med 2008; 14: 748–755.

5. Hainz N, Thomas S, Neubert K, et al. The proteasome inhibitor bortezomib prevents lupus nephritis in the NZB/W F1 mouse model by preservation of glomerular and tubulointerstitial architecture. Nephron Exp Nephrol 2012; 120: e47–e58.

6. Ichikawa HT, Conley T, Muchamuel T, et al. Beneficial effect of novel proteasome inhibitors in murine lupus via dual inhibition of type I interferon and autoantibody-secreting cells. Arthritis Rheum 2012; 64: 493–503.

7. Khodadadi L, Cheng Q, Alexander T, et al. Bortezomib plus continuous B cell depletion results in sustained plasma cell depletion and amelioration of lupus nephritis in NZB/W F1 mice. PLoS ONE 2015; 10: e0135081.

8. Taylor EB, Barati MT, Powell DW, et al. Plasma cell depletion attenuates hypertension in an experimental model of autoimmune disease. Hypertension 2018; 71: 719–728.

9. Griger Z, Tóth BI, Baráeth S, et al. Different effects of bortezomib on the expressions of various protein kinase C isoenzymes in T cells of patients with systemic lupus erythematosus and in Jurkat cells. Scand J Immunol 2012; 75: 243–248.

10. Alexander T, Cheng Q, Klotsche J, et al. Proteasome inhibition with bortezomib induces a therapeutically relevant depletion of plasma cells in SLE but does not target their precursors. Eur J Immunol 2018; 48: 1573–1579.

11. Yannaki E, Papadopoulou A, Athanasiou E, et al. The proteasome inhibitor bortezomib drastically affects inflammation and bone disease in adjuvant-induced arthritis in rats. Arthritis Rheum 2010; 62: 3277–3288.

12. van der Heijden JW, Oerlemans R, Lems WF, et al. The proteasome inhibitor bortezomib inhibits the release of NFκB-inducible cytokines and induces apoptosis of activated T cells from rheumatoid arthritis patients. Clin Exp Rheumatol 2009; 27: 92–98.

13. Xiao F, Lin X, Tian J, et al. Proteasome inhibition suppresses Th17 cell generation and ameliorates autoimmune development in experimental Sjögren’s syndrome. Cell Mol Immunol 2017; 14: 924–934.

14. Gomez AM, Vrolix K, Martinez-Martinez P, et al. Proteasome inhibition with bortezomib depletes plasma cells and autoantibodies in experimental autoimmune myasthenia gravis. J Immunol 2011; 186: 2503–2513.

15. Gomez AM, Willcox N, Vrolix K, et al. Proteasome inhibition with bortezomib depletes plasma cells and specific autoantibody production in primary thymic cell cultures from early-onset myasthenia gravis patients. J Immunol 2014; 193: 1055–1063.

16. Fissolo N, Kraus M, Reich M, et al. Dual inhibition of proteasomal and lysosomal proteolysis ameliorates autoimmune central nervous system inflammation. Eur J Immunol 2008; 38: 2401–2411.

17. Barcellini W and Fattizzo B. How I treat warm autoimmune hemolytic anemia. Blood 2021; 137: 1283–1294.

18. Berentsen S. How I treat cold agglutinin disease. Blood 2021; 137: 1295–1303.

19. Barcellini W and Fattizzo B. The changing landscape of autoimmune hemolytic anemia. Front Immunol 2020; 11: 946–912.

20. Jäger U, Barcellini W, Broome CM, et al. Diagnosis and treatment of autoimmune hemolytic anemia in adults: recommendations from the First International Consensus Meeting. Blood Rev 2020; 41: 100648.

21. Zaninoni A, Giannotta JA, Galli A, et al. The immunomodulatory effect and clinical efficacy of daratumumab in a patient with cold agglutinin disease. Front Immunol 2021; 12: 649441.

22. Ratnasingam S, Walker PA, Tran H, et al. Bortezomib-based antibody depletion for refractory autoimmune hematological diseases. Blood Adv 2016; 1: 31–35.

23. Carson KR, Beckwith LG and Mehta J. Successful treatment of IgM-mediated autoimmune hemolytic anemia with bortezomib. Blood 2010; 115: 915.

24. Danchaivijitr P, Yared J and Rapoport A. Successful treatment of IgG and complement-
mediated autoimmune hemolytic anemia with bortezomib and low-dose cyclophosphamide. *Am J Hematol* 2011; 86: 331–332.

25. Rovira J, Cid J, Gutiérrez-García G, et al. Fatal immune hemolytic anemia following allogeneic stem cell transplantation: report of 2 cases and review of literature. *Transfus Med Rev* 2013; 27: 166–170.

26. Khandelwal P, Davies SM, Grimley MS, et al. Bortezomib for refractory autoimmunity in pediatrics. *Biol Blood Marrow Transplant* 2014; 20: 1641–1665.

27. Mehta B, Mahadeo K, Zaw R, et al. Bortezomib for effective treatment of a child with refractory autoimmune hemolytic anemia post allogeneic hematopoietic stem cell transplant. *Pediatr Blood Cancer* 2014; 61: 2324–2325.

28. Waespe N, Zeilhofer U and Güngör T. Treatment-refractory multi-lineage autoimmune cytopenia after unrelated cord blood transplantation: remission after combined bortezomib and vincristine treatment. *Pediatr Blood Cancer* 2014; 61: 2112–2114.

29. Hosoba S, Jaye DL, Cohen C, et al. Successful treatment of severe immune hemolytic anemia after allogeneic hematopoietic stem cell transplantation with bortezomib: report of a case and review of literature. *Transfusion* 2015; 55: 259–264.

30. Wang Y, Zhou W and Zhang Z. Successful treatment of warm-type haemolytic anaemia with bortezomib in a rituximab-failed systemic lupus erythematosus patient. *Rheumatology* 2015; 54: 194–195.

31. Rossi G, Gramegna D, Paoloni F, et al. Short course of bortezomib in anemic patients with relapsed cold agglutinin disease: a phase 2 prospective GIMEMA study. *Blood* 2018; 132: 547–550.

32. Liu XH, Liu MX, Jin F, et al. Concomitant cryoglobulinemic vasculitis and cold agglutinin disease successfully treated with bortezomib; A case report. *Medicine* 2019; 98: e14201.

33. Sefland Ø, Randen U and Berentsen S. Development of multiple myeloma of the IgA type in a patient with cold agglutinin disease: transformation or coincidence? *Case Rep Hematol* 2019; 2019: 1610632.

34. Ames PRJ and Jeffrey S. Bortezomib and rituximab in multiply relapsed primary warm autoimmune hemolytic anemia. *Ann Hematol* 2021; 100: 2415–2416.

35. Fadllallah J, Michel M, Crickx E, et al. Bortezomib and dexamethasone, an original approach for treating multi-refractory warm autoimmune haemolytic anaemia. *Br J Haematol* 2019; 187: 124–128.

36. Knops N, Emonds MP, Herman J, et al. Bortezomib for autoimmune hemolytic anemia after intestinal transplantation. *Pediatr Transplant* 2020; 24: e13700.

37. Trivedi HL, Terasaki PI, Feroz A, et al. Abrogation of Anti-HLA antibodies via proteasome inhibition. *Transplantation* 2009; 87: 1555–1561.

38. Shortt J, Oh DH and Opat SS. ADAMTS13 antibody depletion by bortezomib in thrombotic thrombocytopenic purpura. *N Engl J Med* 2013; 368: 90–92.

39. Yates S, Matevosyan K, Rutherford C, et al. Bortezomib for chronic relapsing thrombotic thrombocytopenic purpura: a case report. *Transfusion* 2014; 54: 2064–2067.

40. Mazepa M, Raval JS, Moll S, et al. Bortezomib induces clinical remission and reduction of ADAMTS13 inhibitory antibodies in relapsed refractory idiopathic thrombotic thrombocytopenic purpura. *Br J Haematol* 2014; 164: 900–902.

41. van Balen T, Schreuder MF, de Jong H, et al. Refractory thrombotic thrombocytopenic purpura in a 16-year-old girl: successful treatment with bortezomib. *Eur J Haematol* 2014; 92: 80–82.

42. Patel PP, Becker J, Freyer C, et al. Rituximab-refractory thrombotic thrombocytopenic purpura responsive to intravenous but not subcutaneous bortezomib. *Transfusion* 2016; 56: 970–974.

43. Acedillo R, Govind M, Kashgary A, et al. Treatment of severe, refractory and rapidly evolving thrombotic thrombocytopenic purpura. *BMJ Case Rep* 2016; 2016: bcr2016215491.

44. Patriquin CJ, Thomas MR, Dutt T, et al. Bortezomib in the treatment of refractory thrombotic thrombocytopenic purpura. *Br J Haematol* 2016; 173: 779–785.

45. Pandey MR, Vachhani P and Ontiveros EP. Remission of severe, relapsed, and refractory TTP after multiple cycles of bortezomib. *Case Rep Hematol* 2017; 2017: 9681832.

46. Sun R, Gu W, Ma Y, et al. Relapsed/refractory acquired thrombotic thrombocytopenic purpura in a patient with Sjögren syndrome. *Medicine* 2018; 97: e12989.
47. Lancelot M, Miller MJ, Roback J, et al. Refractory thrombotic thrombocytopenic purpura related to checkpoint inhibitor immunotherapy. *Transfusion* 2021; 61: 322–328.

48. Tkachenko O, Lapin S, Maslyansky A, et al. Relapsing Evans syndrome and systemic lupus erythematosus with antiphospholipid syndrome treated with Bortezomib in combination with plasma exchange. *Clin Immunol* 2019; 199: 44.

49. Fröhlich K, Holle JU, Aries PM, et al. Proteasome inhibitor bortezomib depletes plasma cells and ameliorates clinical manifestations of refractory systemic lupus erythematosus. *Ann Rheum Dis* 2015; 74: 1474–1478.

50. Zhang H, Liu Z, Huang L, et al. Short-term efficacy of bortezomib combined with glucocorticoids for the treatment of refractory lupus nephritis. *Lupus* 2017; 26: 952–958.

51. Segarra A, Arredondo KV, Jaramillo J, et al. Efficacy and safety of bortezomib in refractory lupus nephritis: a single-center experience. *Lupus* 2020; 29: 118–125.

52. Jakez-Ocampo J, Atisha-Fregoso Y and Llorente L. Refractory primary Sjögren syndrome successfully treated with bortezomib. *J Clin Rheumatol* 2015; 21: 31–32.

53. Lassoued S, Moyano C, Beldjerd M, et al. Bortezomib improved the joint manifestations of rheumatoid arthritis in three patients. *Joint Bone Spine* 2019; 86: 381–382.

54. Kohler S, Märscbenz S, Grittner U, et al. Bortezomib in antibody-mediated autoimmune diseases (TAVAB): study protocol for a unicentric, non-randomised, non-placebo controlled trial. *BMJ Open* 2019; 9: e024523.

55. Titulaer MJ, Kayser MS and Dalmau J. Prevalence and treatment of anti-NMDA receptor encephalitis – authors’ reply. *Lancet Neurol* 2013; 12: 425–426.

56. Behrendt V, Krogius G, Reinach-Schick A, et al. Bortezomib treatment for patients with anti-N-methyl-D-aspartate receptor encephalitis. *JAMA Neurol* 2016; 73: 1251–1253.

57. Sveinsson O, Granqvist M, Forslin Y, et al. Successful combined targeting of B- and plasma cells in treatment refractory anti-NMDAR encephalitis. *J Neuroimmunol* 2017; 312: 15–18.

58. Schroeder C, Back C, Koc Ü, et al. Breakthrough treatment with bortezomib for a patient with anti-NMDAR encephalitis. *Clin Neurol Neurosurg* 2018; 172: 24–26.

59. Neyens RR, Gaskill GE and Chalela JA. Critical care management of anti-N-methyl-D-aspartate receptor encephalitis. *Crit Care Med* 2018; 46: 1514–1521.

60. Keddie S, Crisp SJ, Blackaby J, et al. Plasma cell depletion with bortezomib in the treatment of refractory N-methyl-D-aspartate (NMDA) receptor antibody encephalitis. Rational developments in neuroimmunological treatment. *Eur J Neurol* 2018; 25: 1384–1388.

61. Zhang XT, Wang CJ, Wang BJ, et al. The short-term efficacy of combined treatments targeting B cell and plasma cell in severe and refractory anti-N-methyl-D-aspartate receptor encephalitis: two case reports. *CNS Neurosci Ther* 2019; 25: 151–153.

62. Cordani R, Micalizzi C, Giacomini T, et al. Bortezomib-responsive refractory anti-N-methyl-D-aspartate receptor encephalitis. *Pediatr Neurol* 2020; 103: 61–64.

63. Lazzarin SM, Vabanesi M, Cecchetti G, et al. Refractory anti-NMDAR encephalitis successfully treated with bortezomib and associated movements disorders controlled with tramadol: a case report with literature review. *J Neuro* 2020; 267: 2462–2468.

64. Zhang C, Tian DC, Yang CS, et al. Safety and efficacy of bortezomib in patients with highly relapsing neuromyelitis optica spectrum disorder. *JAMA Neurol* 2017; 74: 1010–1012.

65. Pitarkoii K, Yoon MS, Kröger I, et al. Severe refractory CIDP: a case series of 10 patients treated with bortezomib. *J Neurol* 2017; 264: 2010–2020.

66. Håkansson I, Sandstedt A, Lundin F, et al. Successful autologous haematopoietic stem cell transplantation for refractory myasthenia gravis – a case report. *Neuromuscul Disord* 2017; 27: 90–93.

67. Hartono C, Chung M, Perlman AS, et al. Bortezomib for reduction of proteinuria in IgA nephropathy. *Kidney Int Rep* 2018; 3: 861–866.

68. Paule R, Vignon M, Régent A, et al. IgA monoclonal gammopathy associated with...
refractory IgA vasculitis successfully treated with clone-targeted therapy. *Autoimmun Rev* 2020; 19: 102611.

71. Hartono C, Chung M, Kuo SF, *et al.* Bortezomib therapy for nephrotic syndrome due to idiopathic membranous nephropathy. *J Nephrol* 2014; 27: 103–106.

72. Ramachandran R, Inamdar N, Bharati J, *et al.* Membranous nephropathy with light chain restricted deposits. *Nephrology* 2018; 23: 791–796.

73. Novikov P, Moiseev S, Bulanov N, *et al.* Bortezomib in refractory ANCA-associated vasculitis: a new option? *Ann Rheum Dis* 2016; 75: e9.

74. Adam Z, Krejčí M, Pour L, *et al.* IgA pemphigus associated with monoclonal gammopathy completely resolved after achievement of complete remission of multiple myeloma with bortezomib, cyclophosphamide and dexamethasone regimen. *Wien Klin Wochenschr* 2010; 122: 311–314.

75. Szturz P, Adam Z, Klincová M, *et al.* Multiple myeloma associated IgA pemphigus: treatment with bortezomib- and lenalidomide-based regimen. *Clin Lymphoma Myeloma Leuk* 2011; 11: 517–520.