Glycan microarray analysis of the carbohydrate-recognition specificity of native and recombinant forms of the lectin ArtinM

Y. Liu a,*, N.T. Cecílio b, F.C. Carvalho b, M.C. Roque-Barreira b,*, T. Feizia

a Glycosciences Laboratory, Department of Medicine, Imperial College London, London, United Kingdom
b Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Brazil

ARTICLE INFO

Article history:
Received 8 October 2015
Received in revised form 6 November 2015
Accepted 8 November 2015
Available online 18 November 2015

Keywords:
Glycan microarray
Lectin
ArtinM
Artocarpus heterophyllus
Immunomodulation

ABSTRACT

This article contains data related to the research article entitled “Yeast-derived ArtinM shares structure, carbohydrate recognition, and biological effects with native ArtinM” by Cecílio et al. (2015) [1]. ArtinM, a D-mannose-binding lectin isolated from the seeds of Artocarpus heterophyllus, exerts immunomodulatory and regenerative activities through its Carbohydrate Recognition Domain (CRD) (Souza et al., 2013; Mariano et al., 2014 [2,3]). The limited availability of the native lectin (n-ArtinM) led us to characterize a recombinant form of the protein, obtained by expression in Saccharomyces cerevisiae (y-ArtinM). We compared the carbohydrate-binding specificities of y-ArtinM and n-ArtinM by analyzing the binding of biotinylated preparations of the two lectin forms using a neoglycolipid (NGL)-based glycan microarray. Data showed that y-ArtinM mirrored the specificity exhibited by n-ArtinM.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Specification Table

Subject area	Biology
More specific subject area	Glycobiology
Type of data	Graphs and table
How data was acquired	The data were generated from a NGL-based microarray system [4]. After binding analyses, the slide was scanned using ProScanArray microarray scanner (PerkinElmer) and the image files were quantified using ScanArray Express software (PerkinElmer).
Data format	A dedicated in-house-designed software suite was used for storing, retrieving and displaying carbohydrate microarray data [5], here as histogram charts (Fig. 1) and result table (Table 1).
Experimental factors	n-ArtinM and y-ArtinM forms were biotinylated and analyzed for binding using a NGL-based microarray (in-house designation ‘Array Sets 18–22bis’) containing 255 lipid-linked glycan probes (Table 1).
Experimental features	Glycan microarray analyses of an immunomodulatory lectin
Data source location	University of Sao Paulo, Brazil and Imperial College London, UK.
Data accessibility	The data are supplied with this article and will be online available at the Web Portal of Glycosciences Laboratory, Imperial College London: https://glycosciences.med.ic.ac.uk/data.html.

Value of the data

- The wide spectrum of glycans that constitute the glycan microarray makes this platform suitable to compare the carbohydrate-binding specificities exhibited by native and recombinant lectins.
- The data derived from the NGL-based microarray analyses provide important information on the carbohydrate binding specificities of y-ArtinM and n-ArtinM, and serve as the basis for further studies on the fine specificities of the lectins using other microarray systems or complementary techniques.

1. Data

In this study, we analyzed the native form of ArtinM and its yeast-derived counterpart, in terms of their ability to bind to 255 glycans distributed in a microarray platform, in order to identify whether n-ArtinM and y-ArtinM shared sugar-recognition specificity. Measurement of fluorescence intensity indicated that both preparations bound to N-glycan-related sequences (Fig. 1A and B), with a preference for probes having the core trimannoside Manα1-3(Manα1-6) Man. This binding intensity was enhanced when the probe contained a Fucose residue at the trimannoside core (Table 1 – probe 131); whereas binding was diminished when a similar position in the glycan was occupied by β1-2-linked xylose (probes 130 and 132). Some differences between the two lectin forms were identified in the magnitude of binding to probes 129, 131, 133, 135, 147, 148, 149, 150, 152, 153, 158, 159 and 160. In general, y-ArtinM showed higher fluorescence intensity than n-ArtinM.
2. Materials and methods and data

2.1. Sample preparation

n-ArtinM was obtained from a saline extract of Artocarpus heterophyllus (jackfruit) seeds [6]. Saccharomyces cerevisiae BJ3501 was used to express y-ArtinM and the lectin was obtained by yeast lysis [1]. n-ArtinM and y-ArtinM were purified by affinity chromatography on a D-mannose column.

Fig. 1. Carbohydrate microarray analyses of n-ArtinM (A) and y-ArtinM (B). Numerical scores of the binding signals are means of duplicate spots at 7 fmol/spot (with error bars). The complete list of probes and their sequences and binding scores are in Table 1.
Pos.	Probe	Structure	Fluorescence signals n-ArtinM	y-ArtinM
1	Gal\(_3\)Cer	Gal\(_3\)+Cer	-	74
2	H-D\(_2\)	Fusion=2+Gal\(_3\)+DH	-	76
3	A-Tri	Gal\(_3\)+Gal\(_2\)OH	Fusion=2	83
4	B-Tri	Gal\(_3\)+Gal\(_2\)OH	Fusion=2	133
5	Sulfatide	Gal\(_3\)+Gal\(_2\)OH	Fusion=2	-
6	GSF-1	Gal\(_3\)+Gal\(_2\)OH	Fusion=2	-
7	Glucocerebrosides	Gal\(_3\)+Cer	-	128
8	GSF-19	Gal\(_3\)+Gal\(_2\)OH	Fusion=2	-
9	Lactocerebrosides	Gal\(_3\)+Gal\(_2\)OH	Fusion=2	-
10	Lac	Gal\(_3\)+Gal\(_2\)OH	Fusion=2	-
11	Lac-AO	Gal\(_3\)+Gal\(_2\)OH	Fusion=2	-
12	GalNAc-3Gal\(_3\)-4Glc	Gal\(_3\)+Gal\(_2\)OH	Fusion=2	-
13	Ceramide trihexoside	Gal\(_3\)+Gal\(_2\)OH	Fusion=2	-
14	Globo side (P-antigen)	Gal\(_3\)+Gal\(_2\)OH	Fusion=2	-
15	Forssmann glycolipid	Gal\(_3\)+Gal\(_2\)OH	Fusion=2	-
16	NeuAc(3\')Lac	NeuAc(3\')Lac	Fusion=2	-
17	NeuAc(3\')Lac-AO	NeuAc(3\')Lac-AO	Fusion=2	-
18	Neu4,5Ac(3\')Lac	NeuAc(3\')Lac	Fusion=2	-
19	Neu4,5Ac(3\')Lac-AO	NeuAc(3\')Lac-AO	Fusion=2	-
20	Neu3(3\')Lac	NeuAc(3\')Lac	Fusion=2	-
21	Neu3(3\')Lac-AO	NeuAc(3\')Lac-AO	Fusion=2	-
22	NeuAc(6\')Lac	NeuAc(6\')Lac	Fusion=2	-
23	NeuAc(6\')Lac-AO	NeuAc(6\')Lac-AO	Fusion=2	-
24	Neu6(6\')Lac	NeuAc(6\')Lac	Fusion=2	-
25	Neu6(6\')Lac-AO	NeuAc(6\')Lac-AO	Fusion=2	-
26	NeuAc\(_3\)-4Glc	NeuAc\(_3\)-4Glc	Fusion=2	-
27	NeuAc\(_3\)-4Glc-AO	NeuAc\(_3\)-4Glc-AO	Fusion=2	-
28	NeuAc\(_3\)-4Glc-AO	NeuAc\(_3\)-4Glc-AO	Fusion=2	-
29	NeuAc\(_3\)-4Glc-AO	NeuAc\(_3\)-4Glc-AO	Fusion=2	-
30	LacNac(1-3)	Gal\(_3\)+Gal\(_2\)OH	Fusion=2	-
31	LacNac(1-3)-AO	Gal\(_3\)+Gal\(_2\)OH	Fusion=2	-
32	LacNac	Gal\(_3\)+Gal\(_2\)OH	Fusion=2	-
33	LacNac-AO	Gal\(_3\)+Gal\(_2\)OH	Fusion=2	-
34	Gal\(_3\)Gal\(_3\)-4GlcNac	Gal\(_3\)+Gal\(_2\)OH	Fusion=2	-
35	SU(3\')-LN	Gal\(_3\)+Gal\(_2\)OH	Fusion=2	-
36	Lea-Tri	Gal\(_3\)+Gal\(_2\)OH	Fusion=2	-
37	Lea-Tri-AO	Gal\(_3\)+Gal\(_2\)OH	Fusion=2	-
38	Lex-Tri	Gal\(_3\)+Gal\(_2\)OH	Fusion=2	-
39	Lex-Tri-AO	Gal\(_3\)+Gal\(_2\)OH	Fusion=2	-
40	Lex-Tri-(Me)AO	Gal\(_3\)+Gal\(_2\)OH	Fusion=2	-
41	SU(3\')-Lea-Tri	Gal\(_3\)+Gal\(_2\)OH	Fusion=2	-
42	SU(3\')-Lea-Tri-AO	Gal\(_3\)+Gal\(_2\)OH	Fusion=2	-
43	NeuAc(3\')L	NeuAc(3\')L	Fusion=2	-
44	NeuAc(3\')L-AO	NeuAc(3\')L-AO	Fusion=2	-
45	NeuAc(6\')L	NeuAc(6\')L	Fusion=2	-
46	Neu5,9Ac(6\')L	NeuAc(6\')L	Fusion=2	-
No.	Compound	Formula	PubChem ID	CAS Number
-----	--------------------------	---------	------------	------------
47	SA(3')-Lea-Tri	C21H33O7N2	29	-
48	DLNN	C11H14O5	414	203
49	LNT	C16H16O7	-	124
50	Paragloboside	C34H32O7	-	75
51	LNnT	C34H32O7	236	107
52	B-like pentaosylceramide	C34H32O7	150	95
53	Klaus glycolipid	C34H32O7	114	75
54	SU(3')-Tri	C34H32O7	-	-
55	Led-II pentaosylceramide	C34H32O7	-	-
56	Led-I pentaosylceramide	C34H32O7	146	-
57	LNFPI	C34H32O7	-	111
58	B-hexaosylceramide	C34H32O7	145	60
59	A-Hexa	C34H32O7	-	139
60	A-Hepta	C34H32O7	32	44
61	LNFP-II	C34H32O7	284	129
62	LNDFH-II	C34H32O7	40	54
63	Leb-hexaosylceramide	C34H32O7	-	139
64	LNDFH-I	C34H32O7	-	103
65	LNTFH-I	C34H32O7	-	-
66	LNFPI-II	C34H32O7	63	44
67	LNFPI-III-AO	C34H32O7	-	-
68	LNNDFH-I	C34H32O7	73	70
69	LNNDFH-II	C34H32O7	-	79
70	LNNDFH-V	C34H32O7	-	4
71	LNNTFH-I	C34H32O7	374	69
72	SU(3')-LNFP-II	C34H32O7	141	-
73	SU(6')-LNFP-II	C34H32O7	-	-
74	SU(3')-LNFP-III	C34H32O7	209	51
75	SU(6')-LNFP-III	C34H32O7	-	132
76	SU(3',6')-LNFP-III	C34H32O7	52	-
77	LSTa	C34H32O7	-	30
78	LSTb	C34H32O7	230	30
79	DSLNT	C34H32O7	43	-
80	Sialylparagloboside	C34H32O7	96	18
81	LSTc	C34H32O7	-	-
82	SA(3/6)LNFP-I	C34H32O7	-	55
83	SA(3')-LNFP-II	C34H32O7	37	-
84	SA(6')-LNFP-VI	C34H32O7	92	-
---	---	---		
85	SA[3’]-LNFP-III	HexAnA5+30l3+40l3+NHAc+30l3+40l3+SH		
			Fucox-	
86	pLNH	GaI5α+30l3+NHAc+30l3+40l3+NHAc+30l3+40l3+SH	-	
87	pLNHH	GaI5α+30l3+NHAc+30l3+40l3+NHAc+30l3+40l3+SH	171	
			168	
88	LNH	GaI5α+40l3+NHAc+30l3+40l3+NHAc+30l3+40l3+SH	10	
			110	
89	iLNO	GaI5α+30l3+NHAc+30l3+40l3+NHAc+30l3+40l3+SH	-	
			92	
90	LND	GaI5α+40l3+NHAc+30l3+40l3+NHAc+30l3+40l3+SH	-	
			421	
91	LNnH	GaI5α+40l3+NHAc+30l3+40l3+NHAc+30l3+40l3+SH	-	
			-	
92	I-octaosylceramide	GaI5α+30l3+40l3+NHAc+30l3+40l3+NHAc+30l3+40l3+SH	326	
			146	
93	I-dodecaosylceramide	GaI5α+30l3+40l3+NHAc+30l3+40l3+NHAc+30l3+40l3+SH	-	
			163	
94	I-hexadecaosylceramide	GaI5α+30l3+40l3+NHAc+30l3+40l3+NHAc+30l3+40l3+SH	458	
			158	
95	I-eicosaosylceramide	GaI5α+30l3+40l3+NHAc+30l3+40l3+NHAc+30l3+40l3+SH	-	
			180	
96	B-like decaosylceramide	GaI5α+30l3+40l3+NHAc+30l3+40l3+NHAc+30l3+40l3+SH	366	
			111	
97	B-like pentadecaosylceramide	GaI5α+30l3+40l3+NHAc+30l3+40l3+NHAc+30l3+40l3+SH	501	
			126	
98	B-like eicosaosylceramide	GaI5α+30l3+40l3+NHAc+30l3+40l3+NHAc+30l3+40l3+SH	-	
			54	
99	B-like pentaeicosaosylceramide	GaI5α+30l3+40l3+NHAc+30l3+40l3+NHAc+30l3+40l3+SH	-	
			148	
100	pLNH-IV	GaI5α+30l3+40l3+NHAc+30l3+40l3+NHAc+30l3+40l3+SH	-	
			131	
101	DpLNH-II	GaI5α+30l3+40l3+NHAc+30l3+40l3+NHAc+30l3+40l3+SH	-	
			25	
102	TpLNH-I	GaI5α+30l3+40l3+NHAc+30l3+40l3+NHAc+30l3+40l3+SH	-	
			38	
103	MFLNH-III	GaI5α+30l3+40l3+NHAc+30l3+40l3+NHAc+30l3+40l3+SH	91	
			217	
Table 1 (continued)				

Species	**Structure**	**Molecular Weight**		
104	DFLNH(b)	1035 – 1047		
105	DFLNH(c)	139 – 79		
106	DFLNH(a)	- –		
107	TFLNH	- – 24		
108	MFLNNO-IV	260 – 88		
109	TFLNO	371 – 68		
110	MFLND	- – 119		
111	MFLNnH(a)	- –		
112	DFLNnH	- – 167		
113	B-III dodecaosylceramide	- – 372		
114	B-IV tetradecaosylceramide	666 – 184		
115	MSLNH	- –		
116	MSLNnH-I	- –		
117	DSLNnH	222 – 58		
118	MSMFLNH	- –		
119	MFMSLNNH	- –		
120	CAU	66 –		
121	FucC4U	- –		
122	Man2α2	- – 41		
---	---	---	---	---
123	Man2α(3)			
124	Man3α(3,6)			
125	Man5α(3,6)			
126	Man1GN1			
127	Man2GN1			
128	Man2αGN2			
129	Man3GN2			
130	Man3XY/IGN2			
131	Man3FX/IGN2			
132	Man4αGN2			
133	Man4βGN2			
134	Man5GN2			
135	Man6GN2			
136	Man7(D1)GN2			
137	Man7(D1)GN2-AO			
138	Man7(D3)GN2			
139	Man8(D1D3)GN2			
140	Man9GN2			
141	Man9GN2-AO			

Table 1 (continued)
143	Glc1Man5GN2	Manα_aManα_bManα_cManα_dManα_eManα_fManα_gManα_hManα_iManα_jManα_kManα_lGlcα_nManα_mManα_n2Manα_o2Manα_p	609	286
144	Glc1Man9GN2-AO	Manα_aManα_bManα_cManα_dManα_eManα_fManα_gManα_hManα_iManα_jManα_kManα_lGlcα_nManα_mManα_n2Manα_o2Manα_p	399	31
145	Glc2Man7[D1]GN1-AO	Manα_aManα_bManα_cManα_dManα_eManα_fManα_gManα_hManα_iManα_jManα_kManα_lGlcα_nManα_mManα_n2Manα_o2Manα_p	641	899
146	Glc3Man7[D1]GN1-AO	Manα_aManα_bManα_cManα_dManα_eManα_fManα_gManα_hManα_iManα_jManα_kManα_lGlcα_nManα_mManα_n2Manα_o2Manα_p	869	808
147	N1	Manα_aManα_bManα_cManα_dManα_eManα_fManα_gManα_hManα_iManα_jManα_kManα_lGlcα_nManα_mManα_n2Manα_o2Manα_p	5,767	14,300
148	N2	Manα_aManα_bManα_cManα_dManα_eManα_fManα_gManα_hManα_iManα_jManα_kManα_lGlcα_nManα_mManα_n2Manα_o2Manα_p	4,024	11,294
149	N4	Manα_aManα_bManα_cManα_dManα_eManα_fManα_gManα_hManα_iManα_jManα_kManα_lGlcα_nManα_mManα_n2Manα_o2Manα_p	2,429	7,224
150	N3	Manα_aManα_bManα_cManα_dManα_eManα_fManα_gManα_hManα_iManα_jManα_kManα_lGlcα_nManα_mManα_n2Manα_o2Manα_p	2,825	5,689
151	NGA2	Manα_aManα_bManα_cManα_dManα_eManα_fManα_gManα_hManα_iManα_jManα_kManα_lGlcα_nManα_mManα_n2Manα_o2Manα_p	1,225	1,499
152	NGA2F	Manα_aManα_bManα_cManα_dManα_eManα_fManα_gManα_hManα_iManα_jManα_kManα_lGlcα_nManα_mManα_n2Manα_o2Manα_p	5,772	8,604
153	NGA2B	Manα_aManα_bManα_cManα_dManα_eManα_fManα_gManα_hManα_iManα_jManα_kManα_lGlcα_nManα_mManα_n2Manα_o2Manα_p	1,390	3,523
154	NGA3B	Manα_aManα_bManα_cManα_dManα_eManα_fManα_gManα_hManα_iManα_jManα_kManα_lGlcα_nManα_mManα_n2Manα_o2Manα_p	184	112
155	NGA4	Manα_aManα_bManα_cManα_dManα_eManα_fManα_gManα_hManα_iManα_jManα_kManα_lGlcα_nManα_mManα_n2Manα_o2Manα_p	173	332
156	NGA5B	Manα_aManα_bManα_cManα_dManα_eManα_fManα_gManα_hManα_iManα_jManα_kManα_lGlcα_nManα_mManα_n2Manα_o2Manα_p	32	27
157	GNM5BG2N2	Manα_aManα_bManα_cManα_dManα_eManα_fManα_gManα_hManα_iManα_jManα_kManα_lGlcα_nManα_mManα_n2Manα_o2Manα_p	978	909
158	NA2	Manα_aManα_bManα_cManα_dManα_eManα_fManα_gManα_hManα_iManα_jManα_kManα_lGlcα_nManα_mManα_n2Manα_o2Manα_p	2,032	4,742
159	NA2F	Galt=401NAc+2Man+1 Pua=G	Man9=601NAc+401NAc+401NAc+401NAc+401NAc+401NAc+401NAc+6557
160	NA2F-AO	Galt=401NAc+2Man+1 Pua=A	Man9=601NAc+401NAc+401NAc+401NAc+401NAc+401NAc+401NAc+3594
161	NA2F-B	Galt=401NAc+2Man+1 Pua=A	GlcNAc+601NAc+401NAc+401NAc+401NAc+401NAc+401NAc+852
162	NA3	Galt=401NAc+2Man+1 Pua=G	Man9=601NAc+401NAc+401NAc+401NAc+401NAc+401NAc+401NAc+27
163	NA3-Lex	Galt=401NAc+2Man+1 Pua=G	Man9=601NAc+401NAc+401NAc+401NAc+401NAc+401NAc+401NAc+143
164	NA4	Galt=401NAc+2Man+1 Pua=G	Man9=601NAc+401NAc+401NAc+401NAc+401NAc+401NAc+401NAc+149
165	A2F(2-3)	NeuAc=301NAc+401NAc+2Man+1 Pua=G	Man9=601NAc+401NAc+401NAc+401NAc+401NAc+401NAc+3163
166	A2(2-6)	NeuAc=601NAc+401NAc+2Man+1 Pua=G	Man9=601NAc+401NAc+401NAc+401NAc+401NAc+401NAc+813
167	AGP-Bi-Ac2	NeuAc=601NAc+401NAc+2Man+1 Pua=G	Man9=601NAc+401NAc+401NAc+401NAc+401NAc+401NAc+927
168	AGP-Bi-Gc2	NeuAc=601NAc+401NAc+2Man+1 Pua=G	Man9=601NAc+401NAc+401NAc+401NAc+401NAc+401NAc+2525
169	AGP-Bi-AcGc	NeuAc=601NAc+401NAc+2Man+1 Pua=G	Man9=601NAc+401NAc+401NAc+401NAc+401NAc+401NAc+1146
170	A3	NeuAc=301NAc+401NAc+2Man+1 Pua=G	Man9=601NAc+401NAc+401NAc+401NAc+401NAc+401NAc+94
171	Fuc-GlicNAc	Pua=G	Man9=601NAc+401NAc+401NAc+401NAc+401NAc+401NAc+27
172	GM4	NeuAc=301NAc+401NAc+401NAc+401NAc+401NAc+401NAc+401NAc+61	
173	SM3	Gic=301Nac+401Nac+401Nac+401Nac+401Nac+401Nac+401Nac+114	
174	Haematoside	NeuAc=301NAc+401NAc+401Nac+401Nac+401Nac+401Nac+401Nac+61	
175	GM3	NeuAc=301NAc+401Nac+401Nac+401Nac+401Nac+401Nac+401Nac+61	
176	GM3(Gc)	NeuAc=301NAc+401Nac+401Nac+401Nac+401Nac+401Nac+401Nac+250	
177	Asialo-GM2	Galt=401NAc+401Nac+401Nac+401Nac+401Nac+401Nac+401Nac+202	
178	SM2	Galt=401NAc+401Nac+401Nac+401Nac+401Nac+401Nac+401Nac+130	
179	SB2	Galt=401NAc+401Nac+401Nac+401Nac+401Nac+401Nac+401Nac+131	
180	GM2	NeuAc=301NAc+401Nac+401Nac+401Nac+401Nac+401Nac+401Nac+88	
181	Asialo-GM1	NeuAc=301NAc+401Nac+401Nac+401Nac+401Nac+401Nac+401Nac+88	
182	Asialo-GM1-Tetra	NeuAc=301NAc+401Nac+401Nac+401Nac+401Nac+401Nac+401Nac+88	
183	SM1a	NeuAc=301NAc+401Nac+401Nac+401Nac+401Nac+401Nac+401Nac+88	
184	SB1a	NeuAc=301NAc+401Nac+401Nac+401Nac+401Nac+401Nac+401Nac+88	
185	GM1b	NeuAc=301NAc+401Nac+401Nac+401Nac+401Nac+401Nac+401Nac+88	
186	GM1	NeuAc=301NAc+401Nac+401Nac+401Nac+401Nac+401Nac+401Nac+88	
Table 1 (continued)

ID	Structure	Count
187	GM1-penta	1042
188	GM1(Gc)	1045
189	GM1(Gc)-penta	193
190	GD1a	1045
191	GD1a-hexa	1045
192	GalNAc-GD1a(Ac,Gc)	1045
193	GD3	1045
194	GD3-tetra	1045
195	GD3-tetra-AO	1045
196	GD2	1045
197	GD1b	1045
198	GT1a	1045
199	GT1b	1045
200	GQ1b	1045
201	GalNAc-Ser	514
202	GalNAc-Thr	62
203	Galβ-3GalNAc	263
204	Galβ-6GalNAc	46
205	B12/3	1045
206	DST	1045
207	Man-Ser	10
208	Man-Ser-Succ	63
209	Man-Thr	45
210	Man-Thr-Succ	28
211	Notch-1	62
212	Notch-2	72
213	Notch-3	72
214	SA2(a8)	125
215	SA3(a8)	125
216	SA4(a8)	125
217	SA5(a8)	125
218	SA6(a8)	127
219	SA7(a8)	127
220	SA8(a8)	127
221	SA9(a8)	127
222	SA10(a8)	127
223	SA11(a8)	127
224	Hep-Di IS	216
225	Hep-Di-IS-AO	223
226	Lam-2	27
227	Glc2(a2)	13
228	Glc2(a3)	118
229	Glc2(a2)-AO	13
230	Glc2(a3)-AO	13
coupled to AKTA Purifier (GE Healthcare, Bio-Science Inc. Germany), previously equilibrated with phosphate-buffered saline (PBS) containing 0.5 M NaCl. After washing with equilibrating buffer, the adsorbed material was eluted with 0.1 M D-mannose in equilibrating buffer. The preparations obtained were ultradialyzed against PBS using a YM10 membrane (Amicon Division, W.R. Grace, Beverly, MA) and biotinylated using sulfo-NHS-LC-biotin (Sigma-Aldrich, St. Louis, USA) according to the manufacturer instructions.

2.2. Glycan microarray analyses

Microarray analyses were performed using the neoglycolipid (NGL)-based system [4], with lipid-linked glycan probes, including NGLs and glycolipids, and comprising a total of 255 oligosaccharides (in-house designation ‘Array Sets 18–22bis’; list of probes are in Table 1). These were robotically printed on nitrocellulose-coated glass slides, at 2 and 7 fmol per spot, using a non-contact arrayer (Piezorray; PerkinElmer LAS, Beaconsfield, UK). The microarray binding assays were performed as described [1]. In brief, microarray slides were blocked at ambient temperature with 1% w/v bovine serum albumin (BSA; Sigma-Aldrich) in casein blocker solution (Pierce Chemical Co, USA) for 1 h. The biotinylated lectin samples were overlaid at 50 μg/mL, and binding was detected using Alexa Fluor

Table 1 (continued)

Probe	Affinity
Gal	Gal=Gal
Gal-AO	Gal=A0
GalNAc	GalN=NM
GalNAc-AO	GalNA=A0
Glc	Glc=Gl
Glc-AO	Glc=A0
GN	Glc=NM
GN-AO	Glc=MA
Man	Man=Ma
Fuc	Fuc=Fu
Fuc-AO	Fuc=A0
NeuAc	Neu=Na
NeuAc-AO	Neu=AA
NeuGc	NeuGc
NeuGc-AO	NeuGc-A0
Rha	Rha=Ri
Rha-AO	Rha=AO
GaL-6Glc-AO	GaL-Glc=AO
(6P)-Man	(6P)-Man=Gl
(6P)-Man-AO	(6P)-Man=AO
(6P)-Man5	(6P)-Man5=Gl
SU-Tyr	SU-Tyr
SU-Cholesterol	SU-Cholesterol
Glc(a6,a4,a4)	Glc(a6,a4,a4)

Note: Pos, Probe position in the screening microarray.

The oligosaccharide probes are all lipid-linked, neoglycolipids (NGLs) or glycosylceramides and are from the collection assembled in the course of research in Glycosciences Laboratory. Unless otherwise specified the NGLs are prepared from reducing oligosaccharides by reductive amination with the amino lipid, 1,2-dihexadecyl-sn-glycero-3-phosphoethanolamine (DHPE); AO, NGLs prepared from reducing oligosaccharides by oxime ligation with an aminoxy (AO) functionalized DHPE (Liu et al., Chem. Biol. 14, 847–859, 2007); Cer, natural glycolipids with various ceramide moieties; CerA and CerB denote different natural ceramides; Cer36 and Cer42, synthetic glycolipids with ceramide having a total of 32 and 42 carbon atoms, respectively; C30, a synthetic lipid [2-(tetradecyl)hexadecanol] with 30 carbon atoms. UA, 4,5-unsaturated hexuronic acid; aMan, 2,5-anhydro- mannose; aGal, 3,6-anhydro-galactose.

signal less than 1.
647-labeled streptavidin (Molecular Probes-Life Technologies, CA, USA) at 1 μg/mL in blocker solution. Glycoarray data analysis was performed with dedicated software [5]. The binding signals were probe-dose dependent. The results of glycan probes at 7 fmol per spot are shown in Fig. 1 and Table 1.

Funding sources

This study was supported by Grants from the Fundação de Amparo a Pesquisa do Estado de São Paulo (2009/16146-9; 2006/60642-3, and 2013/04088-0), Conselho Nacional de Desenvolvimento Científico e Tecnológico (306503/2009-3; 306298/2013-9), Financiadora de Estudos e Projetos (0110045900), by the United Kingdom Research Council Basic Technology Initiative Glycoarrays and Translational Grants GRS/79268 and EP/G037604/1, and by Wellcome Trust Grants WT093378MA and WT099197MA (to T F).

Acknowledgments

We thank Dr. Maria Helena de Souza Goldman for providing the pYES-DEST52 expression vector containing the ArtinM coding sequence. We also thank Dr. Sandro Gomes Soares and Dr. Ebert Seixas Hanna from Invent Biotechnologies, for their help with y-ArtinM production and purification. Supported by the United Kingdom Research Councils Basic Technology Initiative Glycoarrays Grant GRS/79268 and Translational Grant EP/G037604/1, and by Wellcome Trust Grants WT093378MA and WT099197MA (to T. F.). The microarrays contain many glycans provided by collaborators whom we thank as well as members of the Glycosciences Laboratory for their collaboration in the establishment of the NGL-based microarray system.

References

[1] N.T. Cecílio, F.C. Carvalho, Y. Liu, M. Moncrieffe, P.A.A. Buranello, A.L. Zorzetto-Fernandes, et al., Yeast expressed ArtinM shares structure, carbohydrate recognition, and biological effects with native ArtinM, Int. J. Biol. Macromol. (2015), in press.
[2] M.A. Souza, F.C. Carvalho, L.P. Ruas, R. Ricci-Azevedo, M.C. Roque-Barreira, The immunomodulatory effect of plant lectins: a review with emphasis on ArtinM properties, Glycoconj. J. 30 (2013) 641–657.
[3] V.S. Mariano, A.L. Zorzetto-Fernandes, T.A. da Silva, L.P. Ruas, L.L. Nohara, J.C. Almeida, M.C. Roque-Barreira, Recognition of TLR2 N-glycans: critical role in ArtinM immunomodulatory activity, PLoS One 9 (6) (2014) e98512.
[4] Y. Liu, R.A. Childs, A.S. Palma, M.A. Camanero-Rhodes, M.S. Stoll, W. Chai, T. Feizi, Neoglycolipid-Based Oligosaccharide Microarray System: preparation of NGLs and their noncovalent immobilization on nitrocellulose-coated glass slides for microarray analyses, Methods Mol. Biol. 808 (2012) 117–136.
[5] M.S. Stoll, T. Feizi, Software tools for storing, processing and displaying carbohydrate microarray data, in: C. Kettner (Ed.), Proceedings of the Beilstein Symposium on Glyco-Bioinformatics, 4–8 October, Potsdam, Germany, Beilstein Institute for the Advancement of Chemical Sciences, Frankfurt, Germany, pp. 123–140, Available at [http://www.beilsteininstitut.de/download/613/09_stoll.pdf], 2009 (accessed 25.08.15).
[6] R. Santos-de-Oliveira, M. Dias-Baruffi, S.M. Thomaz, L.M. Beltramini, M.C. Roque-Barreira, A neutrophil migration-inducing lectin from Artocarpus integrifolia, J. Immunol. 153 (4) (1994) 1798–1807.