Matrix Product States: Symmetries and two-body Hamiltonians

M. Sanz¹, M. M. Wolf², D. Pérez-García³, and J. I. Cirac¹
¹Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, 85748 Garching, Germany
²Niels Bohr Institute, Blegdamsvej 17, 2100 Copenhagen, Denmark
³Facultad de Matematicas UCM, Plaza de Ciencias 3, 28040 Madrid, Spain

We characterize the conditions under which a translationally invariant matrix product state (MPS) is invariant under local transformations. This allows us to relate the symmetry group of a given state to the symmetry group of a simple tensor. We exploit this result in order to prove and extend a version of the Lieb-Schultz-Mattis theorem, one of the basic results in many-body physics, in the context of MPS. We illustrate the results with an exhaustive search of SU(2)-invariant two-body Hamiltonians which have such MPS as exact ground states or excitations.

I. INTRODUCTION

Matrix Product States (MPS) [1, 2] encapsulate many of the physical properties of quantum spin chains. Of particular interest in various physical contexts is the subset of translationally invariant (TI) MPS, originally introduced as finitely correlated states [1]. Their importance stems from the fact that with a simple tensor, one can fully describe relevant states of $N$ spins, which, at least in principle, should entail to deal with an exponential number of parameters when written in a basis in the corresponding Hilbert space $\mathcal{H} \otimes N$. Thus, all the physical properties of such states are contained in $A$. It is therefore important to obtain methods to extract the physical properties directly from such a tensor, without having to resort to $\mathcal{H} \otimes N$.

An important physical property of a TI state, $\Psi$, is the symmetry group under which it is invariant. That is, the group $G$ such that

$$u_g \otimes N |\Psi\rangle = e^{i\theta_g} |\Psi\rangle,$$

where $g \in G$ and $u_g$ is a unitary representation on $\mathcal{H}$. In a recent paper [3] we showed that for certain kind of MPS (those fulfilling the so-called injectivity condition [1, 2]), this symmetry group is uniquely determined by the symmetry group of $A$ (with a tensor product representation). Roughly speaking this means that by studying the symmetries of $A$ we can obtain those for the whole state $\Psi$. This result allows us, for example, to shed a new perspective into string order [4], a key concept in strongly correlated states in many-body quantum systems.

Another relevant property of MPS is that they are all exact ground states of short–range interacting (frustration free) Hamiltonians [1, 2]. In particular, for every TIMPS we can always build a (so-called ‘parent’) Hamiltonian for which it is the ground state. Of particular interests are TIMPS with two–body parent Hamiltonians; that is, whose parent Hamiltonian consist of two–body interactions only. And among those, the ones which have a large symmetry group, like SU(2). The reason is that those are the ones that naturally appear in condensed matter problems. Two prominent examples are the AKLT [4] and the Majumdar-Gosh [5] states, who have two-body parent Hamiltonians with SU(2) symmetry. They have served as toy models to understand certain physical behavior in real physical systems, like the existence of a Haldane gap [6] in spin chains with integer spin, or the phenomenon of dimerization [5], respectively. Despite their key role in the understanding of spin chains, there are very few other examples known of TIMPS with SU(2) symmetry and with a two-body parent Hamiltonian [1, 8, 9].

In this work we first generalize the results of Ref. [3] to arbitrary TIMPS. This enables us to derive some generic properties about those states, as well as to obtain a simple proof for a version of the Lieb-Schultz-Mattis theorem [10]. This celebrated theorem states that all Hamiltonians with SU(2) symmetry are gapless for semi-integer spin ($\dim(\mathcal{H}) = n + 1/2$, $n = 0, 1, \ldots$). In our case, we can prove that all TIMPS corresponding to systems with semi-integer spins cannot be the unique ground state of a local frustration-free Hamiltonian. Furthermore, we can extend the proof to other groups, like U(1) for spin 1/2 systems, and find counterexamples for this last case when the spin is 5/2 or larger.

In the second part of our work we concentrate on MPS that are eigenstates (not necessarily grounds states) of a (so–called ‘parent’) Hamiltonian which has SU(2) symmetry and contains two–body interactions only. We find other families of Hamiltonians beyond the well–known AKLT and Majumdar-Gosh with those features. Furthermore, we find the first examples of MPS that correspond to excited states of SU(2)-invariant Hamiltonians. There is a new example of state with spin 1, which is never the ground state of any frustration free SU(2)-invariant two-body hamiltonian. In order to make a systematic search of all those MPS we develop a simple technique that allows for a numerical systematic search.

This paper is organized as follows. In Section [11] we review some of the basic properties of TIMPS and establish the notation that will be needed in the following. In Section [12] we establish the relation between the symmetry group of a TIMPS and that of the tensor $A$ defining the MPS. For continuous symmetries, such as SU(2), we will see that the set of symmetric TIMPS is intimately related to the set of Clebsch-Gordan coefficients. Section [13] then provides an MPS version of the Lieb-Schultz-Mattis theorem and in Section [14] we give a detailed investigation of
SU(2) symmetric TIMPS which are eigenstates of two-body Hamiltonians.

II. MATRIX PRODUCT STATES

Let us consider a system with periodic boundary conditions of $N$ (large but finite) sites, each of them with an associated $d$-dimensional Hilbert space. A translationally invariant MPS on this system can be defined with a valence bond construction in the following way: Let us consider another couple of $D$ dimensional ancillary/virtual Hilbert spaces associated to each site and connected to the real/physical Hilbert space. A translatonally invariant MPS on this system can be defined by introducing maximally entangled states connecting every pair of neighboring virtual Hilbert spaces (usually called entangled bonds), it is not difficult to prove that the state can be written as

$$|\Phi\rangle = \sum_{i_1,\ldots,i_N} \text{tr} [A_{i_1} \cdots A_{i_N}] |i_1 \cdots i_N\rangle$$

where we call the matrices $K = \{A_i \in \mathcal{M}_D, i = 1,\ldots,d\}$ Kraus operators. A way to work simultaneously with all of them is to define the map

$$V = \sum_i A_i \otimes |i\rangle.$$  \hfill (2)

For each MPS there exists a canonical form \cite{1,2} Theorem III.7, Lemma IV.4] which assures that one may choose all matrices $A_i$ with a block diagonal structure \cite{22}, in such a way that after gathering enough spins together, the Kraus operators fulfill:

**Property 1 (Span property).** The set of products $P = \{A_{i_1} \cdots A_{i_n}\}$, with $n$ the collected spins, spans the vector space of all matrices with the same block diagonal structure.

It is an open conjecture stated in \cite{2} and verified in many particular cases, that an upper bound for the number of sites which have to be gathered to achieve property \cite{1} depends only on the dimension $D$ of the Kraus operators. When there is only one block in the above canonical decomposition the MPS is usually called injective, since the linear operator mapping boundary conditions to the resulting states is indeed injective \cite{1,2} when taking sufficiently many particles. The definition reads:

**Property 2 (Injectivity).** There exists $n$ such that the map $\Gamma_n(X) = \sum_{i_1,\ldots,i_n} \text{tr}(X A_{i_1} \cdots A_{i_n}) |i_1 \cdots i_n\rangle$ is injective.

For each MPS $|\psi\rangle$ one can construct a Hamiltonian, called parent Hamiltonian, for which $|\psi\rangle$ is an eigenstate with eigenvalue 0.

**Definition 3 (Parent Hamiltonian).** Let $\rho^{(k)}$ be the reduced density matrix of $|\psi\rangle$ for $k$ particles ($k$ will be called the interaction length of the parent Hamiltonian). Let us suppose that $\{|v_{\tau}\rangle\}_{\tau=1}^r$, with $r \geq 1$, is an orthonormal basis for $\text{ker} [\rho^{(k)}]$. Taking any linear combination of projectors $h(\vec{a}) = \sum_{r=1}^n a_i |v_{\tau}\rangle \langle v_{\tau}|$, we define $H = \sum_i \tau_i(h) \otimes |i\rangle\langle i|$, where $\tau_i$ is the translation operator.

If $a_i \geq 0$, then the Hamiltonian is positive semidefinite and $|\psi\rangle$ is a ground state. Moreover $H$ is frustration free, since $|\psi\rangle$ minimizes the energy locally. Injectivity has now a deep physical significance. If it is reached for $n$ particles and every $a_i > 0$, it ensures that the MPS is the only ground state of its $(n+1)$-local parent Hamiltonian, that it is an exponentially clustering state and that there is a gap above the ground state energy $\rho^{(k)}$.

In this work we will focus on symmetries of states instead of Hamiltonians. There is however a close connection between the two approaches. On the one hand, it is clear that the unique ground state of a symmetric Hamiltonian has to keep the symmetry. On the other hand, we have the following

**Proposition 4.** If an MPS $|\psi\rangle$ is invariant under a representation of a group, one can choose its parent Hamiltonian $H$ invariant under the same representation.

To see that it is enough to notice that the symmetry in the state \cite{1} implies the invariance of $\text{ker} [\rho^{(k)}]$ under the same symmetry. Symmetrizing $\text{ker} [\rho^{(k)}]$ (i.e., averaging it) w.r.t. the considered group will then yield a symmetric $H$ which still constitutes a parent Hamiltonian.

III. LOCALLY SYMMETRIC MPS

In this section we analyze the implications of a given symmetry for a MPS. First, we show that the symmetry
transfers to the Kraus operators—generalizing the findings of [1,3]. In a second step we show that the symmetry in the Kraus operators imposes that they are essentially uniquely defined in terms of Clebsch-Gordan coefficients. Finally, for the special case of SU(2) one can simplify even further and analyze the qualitative differences between integer and semi-integer spin.

A. Characterization of symmetries

It was demonstrated in [3] that the Kraus operators which describe a locally invariant MPS \( |\psi\rangle \) with respect to a single unitary \( u \), i.e. \( u \otimes N |\psi\rangle = e^{i\theta}|\psi\rangle \). Then, the symmetry in the physical level can be replaced by a local transformation in the virtual level. This means that there exists a unitary \( U \) – which can be taken block diagonal with the same block structure as the \( A \)'s in the MPS and composed with a permutation matrix among blocks, i.e. \( U = P(\oplus b V_b) \) – such that

\[
\sum_j u_{ij} A_j = WU_i A_i U^\dagger
\]

with \( W = \oplus b e^{i\theta_b} 1_b \).

**Proof.** We follow here a reasoning as in the proof of [2, Lemma IV.4]. We collect the spins in five different blocks, each one of them with property [1]. Applying \( u \otimes N \) gives us the same MPS (we incorporate the global phase in the new matrices) with different matrices \( B \)'s, but with the same block diagonal form and also (after gathering) with property [1]. We now require the following lemma, which is demonstrated below.

**Lemma 6.** For each block in the \( A \)'s, for instance the one given by matrices \( A_{i} \), there is a block in the \( B \)'s, given by matrices \( B_{i} \), which expands the same MPS.

Since both are now canonical forms of the same injective MPS, by [2, Theorem 3.11], [22], they must be related by a unitary and a phase: \( V_i A_i V_i^\dagger = e^{i\theta_i} B_i \), which finishes the proof of the theorem.

Let us prove now the lemma. By using property [1] and summing with appropriate coefficients, it is possible to show that there exists a block diagonal \( D \times D \) matrix \( X \neq 0 \) such that

\[
\text{tr} [A_{i_2} \cdots A_{i_5}] = \text{tr} [XB_{i_2} \cdots B_{i_5}], \quad \forall i_2, \ldots, i_5
\]

Since \( X \neq 0 \), there exists one block, let us say \( X_1 \), different from 0. Then, summing with appropriate coefficients again we get that there exists a matrix \( Y \neq 0 \) such that

\[
\text{tr} [YA_{i_3}A_{i_4}A_{i_5}] = \text{tr} [X B_{i_3}B_{i_4}B_{i_5}], \quad \forall i_3, i_4, i_5
\]

We can now argue as in [2, Lemma IV.4] to conclude the proof.

If we have now a symmetry given by a compact connected Lie group \( G \), that is, \([1] \) holds for any \( g \in G \) and a representation \( g \mapsto u_g \), we obtain the following.

**Theorem 7 (Continuous symmetries).** The map \( g \mapsto P_g \) is a representation of \( G \) and therefore the trivial one. The maps \( g \mapsto e^{i\theta_g} \) and \( g \mapsto V_g \) are also representations of \( G \).

**Proof.** Let us start with the map \( g \mapsto P_g \). From eq. \([3]\) we get

\[
W_{g_2 g_1} U_{g_2 g_1} A_h U_{g_2 g_1}^\dagger = \sum_j u_{jg}^2 A_j = \sum_j u_{jk}^2 u_{kh} A_j = W_{g_2} W_{g_1} P_{g_2} U_{g_2} U_{g_1} A_h U_{g_1}^\dagger U_{g_2}^\dagger
\]

where \( W_{g_1}, P_{g_2} \) is the same unitary as \( W_{g_1} \) but with the blocks permuted according to the permutation \( P_{g_2} \). Since \( P_g W_g = W_{g} P_{g_i} P_{g_2} \) and \( P_{g_2} \) commutes with all other terms appearing in eq. \([4]\), we can multiply successively and use property [1] (with \( L \) the required block size), to get, for all \( n \geq L \) and all \( X \) block-diagonal,

\[
W_{g_2 g_1} U_{g_2 g_1} X U_{g_2 g_1}^\dagger = (W_{g_2} W_{g_1} P_{g_2})^n U_{g_2} U_{g_1} X U_{g_1}^\dagger U_{g_2}^\dagger
\]

By taking \( X = 1_b \) for each block \( b \), we get that \( P_{g_2} P_{g_1} \) must be \( P_{g_2 g_1} \). But since we are assuming the group \( G \) connected, this in turn implies that \( P_g = 1 \) for all \( g \). With this we can split equation \([6]\) into blocks to get, for each \( b \), each \( n \geq L \) and each matrix \( X \),

\[
e^{in \theta_{g_2 g_1}} V_{g_2 g_1} X V_{g_2 g_1}^\dagger = e^{in(\theta_{g_1} + \theta_{g_2})} V_{g_2} V_{g_1}^\dagger X V_{g_1} V_{g_2}^\dagger
\]

Taking \( X = 1_b \) we obtain

\[
e^{in(\theta_{g_2 g_1})} = e^{in(\theta_{g_1} + \theta_{g_2})}
\]

In particular, when \( n = L \), we get that \( L(\theta_{g_2 g_1}) = L(\theta_{g_1} + \theta_{g_2}) + 2k_0 \pi \) and when \( n = L + 1 \) that \( (L+1)(\theta_{g_2 g_1}) = (L+1)(\theta_{g_1} + \theta_{g_2}) + 2k_1 \pi \). Gathering both results, the \( L \) can be removed and we obtain \( \theta_{g_2 g_1} = \theta_{g_1} + \theta_{g_2} + 2(k_1 - k_0) \pi \).

Finally, to show that \( g \mapsto V_g \) is a representation, it is enough to notice that eq. \([6]\) implies that \( V_{g_1}^\dagger V_{g_2} V_{g_2}^\dagger V_{g_1}^\dagger \) commutes with every matrix.
A trivial consequence of these theorems is the fact that having an irreducible representation $U_g$ in the virtual level implies that the MPS has to be injective. We give an alternative proof of this fact in the appendix without having to rely on the MPS canonical form. There we analyze also when the reverse implication holds.

### B. Uniqueness of the construction method

Once the theorem which provides the condition that the Kraus operators must fulfill in order to generate invariant MPS has been established, the next step is to prove that they can always be constructed by means of Clebsch-Gordan coefficients. To do that, it is more convenient to work with the map $V$ defined in (2). From the definition it is clear that the condition $\sum_i u_g^i A_i = U_g A_j U_g^\dagger$ reads then $U_g \otimes u_g V = V U_g$. Notice that we have removed the dependence on the phase. By Theorem 3 this can be done for groups with a complex enough structure, as $SU(2)$, for which there is no non-trivial one-dimensional representation.

Given a compact group $G$, the tensor product of two irreps –we are choosing a single representative for each class of equivalent irreps– can always be decomposed as a direct sum of irreps

$$u_g \otimes v_g C = C \bigoplus_i c_g^i \tag{6}$$

where $C$ is a unitary whose elements are called Clebsch-Gordan coefficients. In what follows we will denote by $\phi_i : C^{d_i} \rightarrow C^{d} \otimes C^{d'}$ the matrix associated to the restriction of $C$ to the $d_i$-dimensional invariant subspace $\mathcal{H}_i$ associated to the irrep $c_g^i$, with $d, d'$ being the dimensions of the representations $u_g$ and $v_g$ respectively.

We are interested in possible solutions of

$$u_g \otimes v_g \Omega = \Omega w_g \forall g. \tag{7}$$

where $u_g, v_g, w_g$ are irreps of a given compact group $G$. It is clear that taking

$$\Omega = \sum_i \beta_i \phi_i \tag{8}$$

does the job if we sum over $i$'s corresponding to equivalent representations $c_g^i = w_g$. The next lemma guarantees that this is all.

**Lemma 8.** All possible solutions of Equation (7) are given by (8).

**Proof.** Any $\Omega$ verifying eq. (7) gives

$$\Omega \Omega^\dagger = w_g \Omega \Omega^\dagger w_g^\dagger$$

which means by Schur’s lemma that $\Omega \Omega^\dagger = \mathbb{I}$ and we may assume that, if there is a non-zero solution, it can be taken an isometry. Moreover, introducing $V = \Omega^\dagger \Omega$, which verifies $V^\dagger V = \mathbb{I}$, one has

$$V w_g = (\oplus_i c_g^i) V \tag{9}$$

From there one gets that $P = V V^\dagger$ is a rank $d$ projector $(d$ the dimension of the representation $w_g)$ that commutes with $(\oplus_i c_g^i)$ for all $g$. By Schur’s lemma, it is supported on $\oplus_i \mathcal{H}_i$ with $i$’s such that $c_g^i = w_g$ and in this subspace it is of the form

$$\begin{pmatrix} |\beta_1|^2 1_d & \hat{\beta}_1 \hat{\beta}_2 1_d & \cdots & \hat{\beta}_1 \hat{\beta}_2 \cdots 1_d \\ \hat{\beta}_1 \hat{\beta}_2 1_d & |\beta_2|^2 1_d & & \cdots \\ \vdots & & \ddots & \vdots \\ \hat{\beta}_1 \hat{\beta}_2 \cdots 1_d & \cdots & \cdots & |\beta_n|^2 1_d \end{pmatrix} = |\beta\rangle \langle \beta| \otimes 1_d. \tag{10}$$

This implies that $V = |\beta\rangle \otimes W$ for a given $d \times d$ unitary $W$. But if we substitute this in (9), since we are assuming a unique fixed representative for each class of equivalent representations, we get $W = 1_d$ and $\Omega = \sum_i \beta_i \phi_i$. \hfill $\square$

From this we can now conclude:

**Theorem 9.** Let us consider a group $G$ and two representations $u_g$ (irrep) and $U_g = \bigoplus_i U_g^{D_i}$. Then, the structure of all possible maps $V$ fulfilling $U_g \otimes u_g V = V U_g$ is

$$V = \begin{pmatrix} \alpha_{11} V_{D_1} & \alpha_{12} V_{D_1} & \cdots & \alpha_{1n} V_{D_n} \\ \alpha_{21} V_{D_2} & \alpha_{22} V_{D_2} & \cdots & \alpha_{2n} V_{D_2} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{n1} V_{D_n} & \alpha_{n2} V_{D_n} & \cdots & \alpha_{nn} V_{D_n} \end{pmatrix} \tag{10}$$

where $V_{D_i}$ is a solution, according to Lemma 8 to $U_g^{D_i} \otimes u_g V_{D_i} = V_{D_i} U_g^{D_i}$.

### C. The case of $SU(2)$

Let us apply the results of the previous section to the case in which $G = SU(2)$. Our construction is a natural generalization of the one used in [1][16].

We consider from now on irreducible representations $u_g$ of the symmetry on the physical spin. Nevertheless, a substantial part of the results can be straightforwardly extended to the reducible case. Hence, we are interested
in analyzing the restrictions that $SU(2)$ impose in the general solution given by Theorem 9 to the equation
\[
(U \otimes J)V = VU
\] (11)
where, with some abuse of notation, $J$ is the $SU(2)$ irrep corresponding to spin $J$ and $U = (i_1 \oplus \ldots \oplus i_n)\oplus (s_1 \oplus \ldots \oplus s_m)$ is the virtual representation composed of $n$ integer irreps and $m$ semi-integer irreps. Note that in the Clebsch-Gordan decomposition of $SU(2)$ all representations appear with multiplicity one. Therefore there is only one term in the sum in (8). At this point one should distinguish the cases of $J$ integer or semi-integer. If $J$ is integer, zero is the only solution to $(i_j \otimes J)\Omega = \Omega_{s_k}$ and $(s_k \otimes J)\Omega = \Omega_{j_k}$ for all $j, k$, and we get in (10) a block diagonal structure:
\[
V = \begin{pmatrix}
\alpha_1 V_{i_1}^{s_1} & \ldots & \alpha_1 V_{i_1}^{s_m} & 0 & \ldots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & 0 & \alpha_n V_{i_1}^{s_1} & \ldots & \alpha_n V_{i_1}^{s_m} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & 0 & \alpha_n V_{i_1}^{s_1} & \ldots & \alpha_n V_{i_1}^{s_m} \\
\alpha_n V_{i_1}^{s_1} & \ldots & \alpha_n V_{i_1}^{s_m} & 0 & \ldots & 0 \\
\alpha_n V_{i_1}^{s_1} & \ldots & \alpha_n V_{i_1}^{s_m} & 0 & \ldots & 0
\end{pmatrix}
\]

The paradigmatic example in this case is the AKLT state [4], which corresponds to the case of $J = 1, U = 1/2$ in (11). In [1], the authors generalized the AKLT model to arbitrary integer $J$ and $U$ irreducible. We will call the resulting MPS FNW states. It is shown in [1] how for $U = \frac{J}{2}$ FNW states are unique ground states of frustration free nearest-neighbor interactions. An alternative construction focused on the restrictions imposed by the $SU(2)$ symmetry on the density matrix instead of the Kraus operators can be found in [18].

If $J$ is semi-integer, zero is the only solution to $(s_j \otimes J)\Omega = \Omega_{s_k}$ and $(s_k \otimes J)\Omega = \Omega_{j_k}$ for all $j, k$, and we get in (10) an off-diagonal structure:
\[
V = \begin{pmatrix}
0 & \ldots & 0 & \alpha_1 V_{s_1}^{i_1} & \ldots & \alpha_1 V_{s_1}^{i_m} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & 0 & \alpha_n V_{s_1}^{i_1} & \ldots & \alpha_n V_{s_1}^{i_m} \\
\alpha_n V_{s_1}^{i_1} & \ldots & \alpha_n V_{s_1}^{i_m} & 0 & \ldots & 0 \\
\alpha_n V_{s_1}^{i_1} & \ldots & \alpha_n V_{s_1}^{i_m} & 0 & \ldots & 0 \\
\alpha_n V_{s_1}^{i_1} & \ldots & \alpha_n V_{s_1}^{i_m} & 0 & \ldots & 0
\end{pmatrix}
\]

It is clear that the virtual representations must be reducible now, which is very much related to the Lieb-Schultz-Mattis theorem, as we will show in the following section. The paradigmatic example in this case is the Majumdar-Ghosh model [5], which corresponds to $J = \frac{1}{2}$ and $U = \frac{3}{2} \oplus 0$. A generalization of this model for the case of arbitrary $J$ and $U = F \oplus 0$, was recently proposed in [9].

In general, it is possible to find a set of representations which fits into any model with $SU(2)$ symmetry, for instance [8] [17] [19] [20].

IV. LIEB-SCHULTZ-MATTIS THEOREM

The Lieb-Schultz-Mattis theorem states that, for semi-integer spin, a $SU(2)$-invariant 1D Hamiltonian cannot have a uniform (independent of the size of the system) energy gap above a unique ground state. That is, symmetry imposes strong restrictions on the possible behaviors of a system. In this section we want to go a step further and analyze which implications one can obtain from having a single symmetric state in a semi-integer spin chain. By restricting our attention to the class of MPS we will show

Theorem 10. Any MPS with an $SU(2)$ symmetry in the sense of (1) with $u_\alpha$ irrep and even physical dimension $d$ cannot be injective. By Theorem 11 of [2] this implies that it cannot be the unique ground state of any frustration free Hamiltonian.

Proof. Let us assume that the MPS is injective and prove the theorem by contradiction. Theorems 5 and 7 guarantee that
\[
\sum_j u_{jk}^2 A_j = U g A_k U_\dagger.
\] (12)
We consider $u = e^{i J x}$ with $(J_x)_{j,k} = \delta_{j,k}(k - (d + 1)/2)$, $k = 1, \ldots, d$. Then, eq. (12) gives
\[
e^{i \varphi} A_k = U A_k U_\dagger
\] (13)
for a unitary $U$ and $\varphi$ half-integer. We finish by proving that if $N$ is odd, $\text{tr}(A_{k_1} \cdots A_{k_N}) = 0$ and hence the MPS cannot be injective. From (13) we get $\text{tr}(A_{k_1} \cdots A_{k_N}) = 0$ unless $\sum_{i=1}^N \varphi_{k_i} = N(d + 1)/2$. The latter is, however, impossible for $N$ odd as then the l.h.s. is integer whereas the r.h.s. is half-integer.

From the proof one may get the impression that only $U(1)$ symmetry is required, and this is indeed the case if the generator of such symmetry has eigenvalues $-m/2, \ldots, m/2$ as above. The next example shows that this is, however, not true for any $U(1)$ symmetry, which in turn shows that a larger symmetry like $SU(2)$ is required for the Lieb-Schultz-Mattis theorem.

Example 11. Let us consider a local symmetry generated by $G = e^{i \beta H}$ for a hermitian matrix $H$. Let us choose the physical dimension $d = D^2 - D$, which is always even, and the set of Kraus operators $K = \{ A_{(i,j)} = |i\rangle \langle j|, i \neq j \}$. Select $\alpha_1, \ldots, \alpha_D \in \mathbb{R}$ such that $\alpha_i - \alpha_j \neq 0$ if $i \neq j$ and $H$ the diagonal matrix $H = \sum_{i \neq j} (\alpha_i - \alpha_j) (|i\rangle \langle j| + |j\rangle \langle i|)$ (which has in addition only non-zero eigenvalues). With $U_\beta = e^{i \beta \Omega}$ where $\Omega = \text{diag}(\alpha_1 \ldots \alpha_D)$ it is clear that
\[
e^{i \beta (\alpha_i - \alpha_j)} A_{(i,j)} = U_\beta A_{(i,j)} U_\beta^\dagger
\] so the MPS generated by means of the Kraus operators $K$ has the local symmetry $G$. Moreover, the MPS is trivially
injective when \( D \geq 3 \). We can prove this by choosing arbitrary \( k \) and \( k' \). Since \( D \geq 3 \), we can always find an \( l \) such that \( k' \neq l \neq k \) and then \( |k\rangle\langle k'| = |k\rangle\langle l| |l| \langle k'| = A(k,l)A(l,k') \).

Let us remark that this counter-example is applicable to spin \( \geq \frac{3}{2} \). Indeed, one can prove Theorem 2 for \( U(1) \) and spin \( \frac{1}{2} \), which is the content of the following proposition. The case of spin \( \frac{3}{2} \) remains an open question.

**Proposition 12.** If \( |\Phi\rangle \) is an MPS with physical dimension \( d = 2 \) and invariant under \( U(1) \), then \( |\Phi\rangle \) cannot be injective.

**Proof.** We will show it by contradiction. By choosing a basis where the physical unitary \( u \) is diagonal, the condition on the Kraus operators becomes
\[
eq e^{iH\phi}A_n e^{-iH\phi}
\]
where \( H \) is the hermitian generator of the symmetry. Let us expand the expression for infinitesimal angles
\[
[H, A_n] = \lambda_n A_n
\]
which is the equation of eigenvalues for the operator \( L(\bullet) = [H, \bullet] \). This can be transformed into an ordinary eigenvalue equation for the matrix operator \( L = H \otimes 1 - 1 \otimes H \). The diagonalization can be easily performed by taking the spectral decomposition of \( H = \sum_i \mu_i P_i \), where \( P_i \) are orthogonal projectors. It straightforwardly follows that the eigenvalues of \( L \) are \( \lambda_{ij} = \mu_i - \mu_j \) and the corresponding eigenoperators fulfil \( A_{ij} = P_i A_{ij} P_j \).

Let us focus now on the case \( d = 2 \). Then, we have that \( A_1 = P_1 P_1 A_1 \) and \( A_2 = P_2 P_2 A_2 \), for some \( \alpha, \beta, \gamma \). If \( \beta = 1 \) \( P_1 X = X \) for all \( X \) in span \{\( A_i \cdots A_i \)\} and the MPS cannot be injective. The same happens if \( \alpha = \gamma \). So let us assume that \( \beta \neq 1 \) and \( \alpha \neq \alpha \). Now if \( \alpha = 1 \), we have \( A_1 = P_1 A_1 P_1 \), \( A_2 = (1 - P_1) A_2 (1 - P_1) \) and the MPS is block diagonal and hence non-injective. The same happens if \( \beta = \gamma \). So \( \alpha \neq 1 \) and \( \beta \neq \gamma \) and this gives \( A_1^2 = 0 = A_2^2 \) which implies that span \{\( A_i \cdots A_i \)\} = span \{\( A_1 A_2 A_1 A_2 \cdots A_2 A_1 A_2 \)\} has dimension \( \leq 2 \).

V. GENERAL CONSTRUCTION OF SU(2)

**TWO-BODY HAMILTONIANS WITH MPS EIGENSTATES**

We have seen in Definition 3 a way, called the parent Hamiltonian method, to construct local \( SU(2) \)-symmetric Hamiltonians with MPS as eigenstates. In this section we first prove that this method is the most general one to find Hamiltonians having a given MPS as local eigenstate, that is, being an eigenstate of each local term in the Hamiltonian. Then, we show examples (including the AKLT and Majumdar-Ghosh states) of MPS that are excited eigenstates of local two-body translationally invariant \( SU(2) \)-symmetric Hamiltonians. More examples are then provided in the appendix.

A. Completeness of the parent Hamiltonian method

**Theorem 13.** Given an MPS \( |\psi\rangle \), any translational invariant Hamiltonian having it as a local eigenstate is of the form \( a 1 + H \) where \( H \) is a parent Hamiltonian for \( |\psi\rangle \) in the sense of Definition 3.

**Proof.** Let us call \( h \) the local hamiltonian. By hypothesis of local eigenstate,
\[
h \rho = \lambda \rho \tag{14}
\]
for certain \( \lambda \in \mathbb{R} \). This implies \( [\rho, h] = 0 \) and hence one can find a basis of projectors \( P = \{ P_i, i = 1, \ldots, r \}, \sum_i P_i = 1 \} \) such that we can decompose both \( \rho \) and \( h \) by means of them, i.e. \( h = \sum_i a_i P_i \) and \( \rho = \sum_j \sum_{C} b_j P_j \), where \( C \) represents the set of projectors which describe the support of \( \rho \). Using eq. (14) with this decomposition gives that \( a_i = \lambda \) for all \( i \in C \) and hence
\[
h = \sum_{i \in C} a_i P_i + \lambda \sum_{i \in C} P_i = \sum_{i \in C} (a_i - \lambda) P_i + \lambda 1 \cdot
\]
Then, the translational invariance hamiltonian is \( H = \sum_j \tau^j (h) \otimes 1_{\text{rest}} \), where \( \tau \) is the translation operator. The theorem follows from replacing the result for the local hamiltonian and comparing this with Definition 3 of parent hamiltonian.

This Theorem shows that, given an MPS \( |\psi\rangle \), looking for all possible parent Hamiltonians of interaction length \( k \) is equivalent to look for all possible solutions to the equation
\[
h \rho^{(k)} = \lambda \rho^{(k)},
\]
with \( \lambda = \text{tr} [h \rho^{(k)}] \). The next lemma gives yet another equivalent formulation, which is the one we will use in the sequel.

**Lemma 14.** Given a Hermitian matrix \( h \) and a density matrix \( \rho \), \( h \rho = \lambda \rho \) if and only if
\[
\text{tr} [h^2 \rho] - \text{tr} [h \rho]^2 = 0 \tag{16}
\]

**Proof.** One implication is clear. For the other, let us write \( \langle h \rangle \) for \( \text{tr} [h \rho] 1 \). By assumption
\[
\text{tr} [(h - \langle h \rangle)^2 \rho] = \text{tr} [h^2 \rho] - \text{tr} [h \rho]^2 = 0.
\]
So \( \rho^{1/2}(h - \langle h \rangle)^2 \rho^{1/2} = 0 \), since it is a positive operator with trace 0. This implies that \( (h - \langle h \rangle) \rho = 0 \) and hence \( h \rho = \lambda \rho \).
proceed as follows. We start with a given \(SU(2)\) symmetric MPS \(|\psi\rangle\) and fix the interaction length \(n\). Then we look for possible solutions to Eq. \((16)\) of the form

\[
h = \sum_{i<j \leq n} \sum_{\alpha=1}^{2J} a^{(\alpha)}_{ij} (\vec{S}_i \circ \vec{S}_j)^\alpha + a_0 \mathbb{I}, \tag{17}
\]

to ensure \(SU(2)\) symmetry and two body interactions in the Hamiltonian. Finally, to guarantee that the MPS \(|\psi\rangle\) is an excited state, we will find another \(SU(2)\) symmetric MPS with less energy that will act as a witness. In the next section we will illustrate this procedure starting with \(|\psi\rangle\) the AKLT, the Majumdar-Ghosh state, and generalizations. Throughout we work in the thermodynamical limit \(N \to \infty\).

B. Examples of \(SU(2)\) two-body Hamiltonians

1. Spin 1

Let us consider the AKLT state as a first example. Its Kraus operators are \(A_{-1} = -\sqrt{2}\sigma^-, A_0 = \sigma^z, A_1 = \sqrt{2}\sigma^+\).

In the case \(n = 2\) the only solution to Eq. \((16)\) is the AKLT Hamiltonian. In the case \(n = 3\), the solutions are given by

\[
h = (-3v_1 + v_2 + 3v_3)(\vec{S}_1 \circ \vec{S}_2) + v_3(\vec{S}_1 \circ \vec{S}_2)^2 +
\frac{1}{2}(-3v_1 + v_2)(\vec{S}_1 \circ \vec{S}_3) - \frac{1}{2}(-3v_1 + v_2)(\vec{S}_1 \circ \vec{S}_3)^2 +
\frac{1}{2}(v_2(\vec{S}_2 \circ \vec{S}_3) + v_1(\vec{S}_2 \circ \vec{S}_3)^2)
\]

where the eigenvalue corresponding to the AKLT state is \(7v_1 - 3v_2 - 2v_3\). The total translational invariant Hamiltonian is then

\[
H = \sum_i (-3v_1 + 2v_2 + 3v_3)(\vec{S}_i \circ \vec{S}_{i+1}) +
(v_1 + v_3)(\vec{S}_i \circ \vec{S}_{i+1})^2 + \frac{1}{2}(-3v_1 + v_2)(\vec{S}_i \circ \vec{S}_{i+2}) -
\frac{1}{2}(-3v_1 + v_2)(\vec{S}_i \circ \vec{S}_{i+2})^2
\]

which contains the usual AKLT model. It is not difficult to check that there is a region in the parameter space where the AKLT state is still the ground state of this Hamiltonian. To find regions where it is an excited eigenstate we will use as a witness the \(SU(2)\) symmetric MPS associated to the virtual representation \(\frac{3}{2} \oplus \frac{1}{2}\) (see Section III). The result is plotted in Fig. 3, where one sees the existence of points in this family of spin 1 Hamiltonians for which the AKLT state is an excited state.

Note that it is possible to perform a change of variables in the total Hamiltonian, for instance \(a \to \frac{1}{2}(-3v_1 + v_2)\) and \(b \to v_1 + v_3\), such that it depends only on two parameters. However, the number of parameters that the local Hamiltonian \(h\) depends on cannot be reduced, which means that there are non-physical parameters in it. In Fig. 4 we have represented the problem above \((n = 3\) and AKLT state) in terms of the physical parameters. The positive axis \(b\) corresponds there to the usual AKLT Hamiltonian.

Concerning FNW states, that is integer spin \(J\) and virtual irrep \(j\), we have performed an exhaustive search and table I gathers the main results. The study has been carried out by increasing \(n\) and studying the number of parameters which the family of Hamiltonians depends on (notice that the case of interaction length \(n\) contains the case of interaction length \(n - 1\)). We have increased \(n\) until the number of parameters stops growing. In all the cases considered in the table, a saturation occurs when \(n > 3\), i.e. considering more than 3 particles does apparently not add new Hamiltonians.

Let us also introduce a new state of spin 1 with virtual
spin 1, given by the Kraus operators

\[
A_1 = \frac{1}{\sqrt{2}} \begin{pmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{pmatrix}, \quad A_0 = \frac{1}{\sqrt{2}} \begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{pmatrix}
\]

\[
A_{-1} = \frac{1}{\sqrt{2}} \begin{pmatrix}
0 & 0 & 0 \\
-1 & 0 & 0 \\
0 & -1 & 0
\end{pmatrix}
\]

The total translational invariant hamiltonian which has this state as eigenstate is

\[
H = \sum_i (\vec{S}_i \circ \vec{S}_{i+1})^2 - (\vec{S}_i \circ \vec{S}_{i+2}) - (\vec{S}_i \circ \vec{S}_{i+3})^2
\]

This state is injective and a local excited state. The fact that this state is an excited state of the global hamiltonian can be checked as above by means of the witness $\frac{3}{2} \oplus \frac{1}{2}$.

2. Spin $\frac{3}{2}$

Let us consider now the the Majumdar-Ghosh state as an example with semi-integer spin. The Kraus operators are now

\[
A_{-\frac{3}{2}} = \begin{pmatrix}
0 & 1 & 0 \\
0 & 0 & -1 \\
0 & 0 & 0
\end{pmatrix}, \quad A_{\frac{3}{2}} = \begin{pmatrix}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & -1
\end{pmatrix}
\]

As in the previous case, we do not find any solution for $n = 2$ and only the Majumdar-Ghosh Hamiltonian for the cases $n = 3$ and $n = 4$. For $n = 5$ the solutions to Eq. (16) are given by

\[
h = (v_1 - v_2 + v_4)(\vec{S}_1 \circ \vec{S}_2) + (v_1 - v_2 + v_4)(\vec{S}_1 \circ \vec{S}_3) + v_3(\vec{S}_1 \circ \vec{S}_4) + v_3(\vec{S}_1 \circ \vec{S}_5) + v_4(\vec{S}_2 \circ \vec{S}_3) + v_4(\vec{S}_2 \circ \vec{S}_4) + v_1(\vec{S}_3 \circ \vec{S}_5) + v_1(\vec{S}_4 \circ \vec{S}_5)
\]

and the energy associated to the state is $-\frac{3}{2}(v_1 + v_4)$. The total Hamiltonian $H = \sum_i \tau_i(h)$ is given by

\[
H = \sum_i 2(v_1 + v_4)(\vec{S}_i \circ \vec{S}_{i+1}) + (v_1 + v_3 + v_4)(\vec{S}_i \circ \vec{S}_{i+2}) + 2v_3(\vec{S}_i \circ \vec{S}_{i+3}) + v_3(\vec{S}_i \circ \vec{S}_{i+4})
\]

As in the AKLT case, by means of a change of variables $a \rightarrow v_3$ and $b \rightarrow v_1 + v_4$, the number of physical parameters in the total Hamiltonian is 2, compared with the four parameters the local Hamiltonian depends on. The Majumdar-Ghosh state is an excited local eigenstate for a region in the space of parameters, which in this case is detected by the witness $\frac{3}{2} \oplus 1 \oplus 0$, as shown in fig. 5. The usual Majumdar-Ghosh Hamiltonian [24] corresponds to the positive axis $b$.

3. Spin $\frac{3}{2}$

Let us consider as final example the $SU(2)$ symmetric MPS corresponding to spin $\frac{3}{2}$ and virtual representation $\frac{3}{2} \oplus 0$. For $n = 3$, the solutions to Eq. (16) are given by

\[
h = v_3(\vec{S}_1 \circ \vec{S}_2) + v_2(\vec{S}_1 \circ \vec{S}_2)^2 + v_1(\vec{S}_1 \circ \vec{S}_2)^3 + (2v_1 - v_2 + v_3)(\vec{S}_1 \circ \vec{S}_3) + (4v_1 - v_2)(\vec{S}_1 \circ \vec{S}_3)^2 + v_1(\vec{S}_1 \circ \vec{S}_3)^3 + v_3(\vec{S}_2 \circ \vec{S}_3) + v_2(\vec{S}_2 \circ \vec{S}_3)^2 + v_1(\vec{S}_2 \circ \vec{S}_3)^3
\]

and the energy associated to the MPS is in this case $-\frac{15}{64}(165v_1 - 60v_2 + 16v_3)$. The global Hamiltonian reads
FIG. 5: Space of physical parameters of the total Hamiltonian for \( n = 5 \) associated to the Majumdar-Ghosh state. The orange points represent where the state is the local (and hence the global) ground state. The green surface represents points corresponding to excited states detected by means of the witness \( \frac{1}{2} \oplus 1 \oplus 0 \).

\begin{equation}
H = \sum_i 2v_3(S_i \circ S_{i+1}) + 2v_2(S_i \circ S_{i+1})^2
+ 2v_1(S_i \circ S_{i+1})^3 + (2v_1 - v_2 + v_3)(S_i \circ S_{i+2}) +
(4v_1 - v_2)(S_i \circ S_{i+2})^2 + v_1(S_i \circ S_{i+2})^3 \tag{21}
\end{equation}

It is remarkable that in this case there are no spurious parameters in the local Hamiltonian \( h \). Considering the family of states whose virtual representation is \( \frac{1}{2} \oplus 1 \oplus 0 \) as a witness, it is possible to demonstrate that there is a region in the space of parameters of the Hamiltonian for which the MPS is an excited eigenstate, as shown in Fig. 6.

VI. CONCLUSIONS

Despite the fact that all our results are restricted to the family of TIMPS, their relevance is manifested by the fact that those states approximate all ground states of 1-dimensional Hamiltonians with short range interactions. Thus, one would expect that the properties derived for MPS would be relevant in a more general context. Moreover, due to their simplicity, MPS can be then thought as a ‘laboratory’ where to search for some generic mathematical and physical properties of states that are relevant in 1-dimensional spin chains. Later on, one may use more powerful mathematical methods to try to extrapolate those properties to general spin chains. Furthermore, many of the techniques used in the present work are amenable of an extension to higher spatial dimensions, where PEPS play the role of MPS. In Ref. 3 some first results in this direction were derived, which will be generalized in a further publication.

VII. ACKNOWLEDGMENTS

M. Sanz would like to thank Dr. Miguel Aguado, Dr. Marco Roncaglia and Dr. Frank Verstraete for their helpful discussions and the QCCC Program of the EliteNetzWerk Bayern as well as the DFG (FOR 635, MAP and NIM) for the support. D. Perez-Garcia acknowledges financial support from Spanish grants I-MATH, MTM2005-00082 and CCG07-UCM/ESP-2797 and M.M. Wolf acknowledges support by QUANTOP and the Danish Natural Science Research Council(FNU).

[1] M. Fannes, B. Nachtergaele and R. W. Werner, Comm. Math. Phys. 144, 443 (1992).
[2] D. Perez-Garcia, F. Verstraete, M. M. Wolf and J. I. Cirac, Quantum Inf. Comput. 7, 401 (2007).
[3] D. Perez-Garcia, M. M. Wolf, M. Sanz, F. Verstraete and J. I. Cirac, Phys. Rev. Lett. 100, 167202 (2008)
Appendix A: Relations between Irreducibility and Injectivity

In this appendix we give a direct proof of the fact that an irreducible representation in the virtual level of a symmetric MPS implies that the MPS is injective. We also see that the reverse inclusion is not true in general, but it holds under some conditions on the Kraus operators.

We have to recall that, given a set of Kraus operators defining an MPS $K = \{A_1, \ldots, A_d\}$, we can define an associated completely positive map $E(X) = \sum_{j=1}^d A_i X A_j$.

The symmetry in the MPS transfers then to the covariance of the channel, that is, $E(U_i X U_j^*) = U_g E(X) U_g^*$ for all $X$. It is shown in [1, 2] that if $E$ is trace preserving and has $I$ as its unique fixed point, then the MPS is injective. Moreover, it is trivial to see that if $E$ is the ideal channel ($E(X) = X$ for all $X$), then the MPS is a product state. Therefore, the desired result that irreducible implies injectivity is a consequence of the following theorem.

**Theorem 15.** Let us take a completely positive map $E: M_D \rightarrow M_D$ that is covariant for an irreps of a compact connected Lie group $G$. Then, either $E$ is the ideal channel or it is trace preserving and the identity its unique fixed point.

**Proof.** Let us consider a fixed point $\Delta$ of $E$. Then $U_g \Delta U_g^*$ is also a fixed point because of the covariance. Therefore, integrating under the Haar measure and using Schur’s lemma, $I$ is also a fixed point. A similar argument shows that $E$ is also trace preserving.

Now we can apply Lüders’ theorem [7], which ensures that the set of fixed points $P$ of $E$ coincides with the commutant $K$ of the set of Kraus operators of $E$. This is trivially a $C^*$-subalgebra of $M_D$. Moreover, we know by the classification of the $C^*$-subalgebra $M_D$ that there exists a unitary $V \in M_D$ such that $V^* PV^* = \bigoplus_i(M_{n_i} \otimes I_{n_i}) = A$.

The equivalent representation $V_g = V U_g V^*$ is also an irrep and fulfills that $V_g AV_g^* = A$. This means that the block structure of $A$ remains invariant under the action of $V_g$ by conjugation. Now we use that

$$V_g AV_g^* \subset A \Leftrightarrow [J, A] \subset A \text{ for all generators } J.$$

This implies that $J$ has the same block structure as $A$. If there is more than one block, the representation is reducible. If $A = M_n \otimes I_{n'}$, then we use again eq. (A1):

The Schmidt decomposition allows us to take $J = \sum_i A_i \otimes B_i$ where the $B_i$’s form a basis of $M_{n'}$, with $B_1 = I$. Then, eq. (A1) gives that $\sum_i [A_i, M_n] \otimes B_i = C \otimes I$, which implies that $A_i$ is proportional to $I$ for all $i \geq 2$.

This gives $J = I \otimes X + Y \otimes I$ and hence $V_g = V_2^* \otimes V_2^*$, which is reducible unless $A = I$ or $A = M_N$ (which implies that $E$ is the ideal channel).

Although the implication in the opposite direction could also seem true, it is not, as shown by the following example.

**Example 16.** Let us consider the family of $SU(2)$ symmetric MPS of spin 1 with a reducible virtual representation $\frac{1}{2} \otimes \frac{1}{2}$ given by the following maps (see Section III).

$$\tilde{V} = \begin{pmatrix}
    e^{i\alpha_{11}} \cos \theta_1 V_1^\frac{1}{2} & e^{i\alpha_{12}} \sin \theta_1 V_1^\frac{1}{2} \\
    e^{i\alpha_{21}} \sin \theta_1 V_2^\frac{1}{2} & e^{i\alpha_{22}} \cos \theta_1 V_2^\frac{1}{2}
\end{pmatrix}$$

It is not difficult to check that the MPS is injective except in particular directions in space, such as those for which the isometry breaks into blocks, i.e. $\theta_1 = n \frac{\pi}{2}$.

Although the equivalence is not true in general, we can still give a sufficient condition which applies, for instance, to the AKLT and other FNW states. Let us recall from
or Theorems 5 and 7 that an injective symmetric MPS verifies
\[ \sum_{i} u_{ij}^g A_i = e^{i \delta_{ij} U_g A_j U_g^\dagger}, \quad (A2) \]
where in addition one may ask for \( \sum_{i} A_i^\dagger A_i = 1 \) [2].

**Proposition 17.** If \( u_g \) is irreducible and \( \{ A_i^\dagger A_j \}_{i,j} \) spans the whole space of matrices, then the virtual representation \( U_g \) of (A2) is also irreducible.

**Proof.** From (A2) one gets
\[ \sum_{i_1,i_2} \bar{u}_{i_1,i_2} u_{i_2,j}^g A_{i_1}^\dagger A_{i_2} = U_g A_{j_1}^\dagger A_{j_2} U_g^\dagger. \]
Integrating now with respect to the Haar measure, the lhs is simplified by the irreducibility of \( u_g \) and the orthogonality relations. The result is \( \delta_{i_1,j_2} \sum_{i} A_i^\dagger A_i = \delta_{j_1,j_2} 1. \) This means that \( \int_{\mathcal{U}} U_g X U_g^\dagger \propto 1, \forall X \in \mathcal{M}_D, \) since we can span the complete space of matrices. But this implies that \( U_g \) is an irrep by means of the inverse of Schur’s lemma.

**APPENDIX B: LIST OF PARENT HAMILTONIANS**

The following lists \( SU(2) \)-invariant two-body Hamiltonians for which the MPS with physical spin \( J \) (irrep) and virtual spin \( j \) is an exact eigenstate with energy \( \epsilon \).

1. **Spin \( J = \frac{1}{2} \)**

- \( j = \frac{3}{2} \oplus 0, \epsilon = -\frac{3}{4}(v_1 + v_4) \):

\[ H = \sum_{i} 2(v_1 + v_4)(\vec{S}_i \circ \vec{S}_{i+1}) + (v_1 + v_3 + v_4)(\vec{S}_i \circ \vec{S}_{i+2}) + 2v_3(\vec{S}_i \circ \vec{S}_{i+3}) + v_3(\vec{S}_i \circ \vec{S}_{i+4}) \]

- No solutions found (with \( n \leq 6 \)) for \( j = \frac{1}{2} \oplus 1, \frac{3}{2} \oplus 1, \frac{3}{2} \oplus 2, \frac{5}{2} \oplus 2 \).

2. **Spin \( J = 1 \)**

- \( j = \frac{1}{2}, \epsilon = 7v_1 - 3v_2 - 2v_3 \):

\[ H = \sum_{i} (-3v_1 + 2v_2 + 3v_3)(\vec{S}_i \circ \vec{S}_{i+1}) + (v_1 + v_3)(\vec{S}_i \circ \vec{S}_{i+1})^2 + \frac{1}{2}(-3v_1 + v_2)(\vec{S}_i \circ \vec{S}_{i+2}) - \frac{1}{2}(-3v_1 + v_2)(\vec{S}_i \circ \vec{S}_{i+2})^2 \]

- \( j = 1, \epsilon = 1 \):

\[ H = \sum_{i} (\vec{S}_i \circ \vec{S}_{i+1})^2 - (\vec{S}_i \circ \vec{S}_{i+2}) - (\vec{S}_i \circ \vec{S}_{i+2})^2 \]

- No solutions found (with \( n \leq 4 \)) for \( j = \frac{3}{2}, 2, \frac{5}{2}, 3 \).

3. **Spin \( J = \frac{3}{2} \)**

- \( j = \frac{3}{2} \oplus 0, \epsilon = -\frac{15}{16}(165v_1 - 60v_2 + 16v_3) \):

\[ H = \sum_{i} 2v_3(\vec{S}_i \circ \vec{S}_{i+1}) + 2v_2(\vec{S}_i \circ \vec{S}_{i+1})^2 + 2v_1(\vec{S}_i \circ \vec{S}_{i+1})^3 + (2v_1 - v_2 + v_3)(\vec{S}_i \circ \vec{S}_{i+2}) + (4v_1 - v_2)(\vec{S}_i \circ \vec{S}_{i+2})^2 + v_1(\vec{S}_i \circ \vec{S}_{i+2})^3 \]

- \( j = \frac{1}{2} \oplus 1, \epsilon = -\frac{45}{64} \):

\[ H = \sum_{i} \frac{243}{16}(\vec{S}_i \circ \vec{S}_{i+1}) + \frac{29}{4}(\vec{S}_i \circ \vec{S}_{i+1})^2 + (\vec{S}_i \circ \vec{S}_{i+1})^3 \]

- No solutions found (with \( n \leq 4 \)) for \( j = \frac{3}{2} \oplus 1, \frac{5}{2} \oplus 1, \frac{3}{2} \oplus 2, \frac{5}{2} \oplus 2 \).

4. **Spin \( J = 2 \)**

- \( j = 1, \epsilon = -(6986v_1 + 778v_2 - 62v_3 + 1260v_4 - 90v_5) \):

\[ H = \sum_{i} (2400v_1 - 63v_2 + 24v_3 - 792v_4 + 63v_5)(\vec{S}_i \circ \vec{S}_{i+1}) + (133v_1 - 14v_2 + 2v_3 - 133v_4 + 14v_5)(\vec{S}_i \circ \vec{S}_{i+1})^2 + (v_2 + v_5)(\vec{S}_i \circ \vec{S}_{i+1})^3 + (v_1 + v_4)(\vec{S}_i \circ \vec{S}_{i+1})^4 + (\frac{1729}{2}v_1 - 91v_2 + \frac{13}{2}v_3)(\vec{S}_i \circ \vec{S}_{i+2}) + (\frac{5719}{36}v_1 - 301v_2 + \frac{43}{36}v_3)(\vec{S}_i \circ \vec{S}_{i+2})^2 + (\frac{665}{18}v_1 + \frac{35}{9}v_2 - \frac{5}{16}v_3)(\vec{S}_i \circ \vec{S}_{i+2})^3 + (\frac{-133}{12}v_1 + \frac{7}{6}v_2 - \frac{1}{12}v_3)(\vec{S}_i \circ \vec{S}_{i+2})^4 \]

- \( j = \frac{3}{2}, \epsilon = 0 \):
\[ H = \sum_i (580v_1 - 80v_2 + 10v_3 - 330v_4 + 30v_5)(\vec{S}_i \circ \vec{S}_{i+1}) + \\
(91v_1 - 11v_2 2v_3 - 91v_4 11v_5)(\vec{S}_i \circ \vec{S}_{i+1})^2 + \\
(v_2 + v_5)(\vec{S}_i \circ \vec{S}_{i+1})^3 + (v_1 + v_4)(\vec{S}_i \circ \vec{S}_{i+1})^4 + \\
\frac{1}{6}(2275v_1 - 275v_2 + 25v_3)(\vec{S}_i \circ \vec{S}_{i+2}) + \\
\frac{1}{36}(455v_1 - 55v_2 + 5v_3)(\vec{S}_i \circ \vec{S}_{i+2})^2 + \\
\frac{1}{36}(-455v_1 + 55v_2 - 5v_3)(\vec{S}_i \circ \vec{S}_{i+2})^3 + \\
\frac{1}{36}(-91v_1 + 11v_2 - v_3)(\vec{S}_i \circ \vec{S}_{i+2})^4 \\
\]

- No solutions found (with \( n \leq 4 \)) for \( j = 2, 5/2 \).

5. Spin \( J = 3 \)

Solutions (mostly cumbersome ones) were found for \( j = 1(n = 3), j = 2(n = 2) \) and \( j = 5/2(n = 2) \).