Radiological assessment of dementia: the Italian inter-society consensus for a practical and clinically oriented guide to image acquisition, evaluation, and reporting

Francesca B. Pizzini1 · Enrico Conti2 · Angelo Blanchetti3,4,5 · Alessandra Splendiani6 · Domenico Fusco7 · Ferdinando Caranci8 · Alessandro Zozzao9 · Francesco Landi7 · Nicoletta Gandolfo10 · Lisa Farina11 · Vittorio Miele12 · Marco Trabucchi4,5,13 · Giovanni B. Frisoni14 · Stefano Bastianello11,15

Received: 19 May 2022 / Accepted: 25 July 2022 / Published online: 7 September 2022
© The Author(s) 2022

Abstract
Background Radiological evaluation of dementia is expected to increase more and more in routine practice due to both the primary role of neuroimaging in the diagnostic pathway and the increasing incidence of the disease. Despite this, radiologists often do not follow a disease-oriented approach to image interpretation, for several reasons, leading to reports of limited value to clinicians. In our work, through an intersocietal consensus on the main mandatory knowledge about dementia, we proposed a disease-oriented protocol to optimize and standardize the acquisition/evaluation/interpretation and reporting of radiological images. Our main purpose is to provide a practical guideline for the radiologist to help increase the effectiveness of interdisciplinary dialogue and diagnostic accuracy in daily practice.

Results We defined key clinical and imaging features of the dementias (A), recommended MRI protocol (B), proposed a disease-oriented imaging evaluation and interpretation (C) and report (D) with a glimpse to future avenues (E). The proposed radiological practice is to systematically evaluate and score atrophy, white matter changes, microbleeds, small vessel disease, consider the use of quantitative measures using commercial software tools critically, and adopt a structured disease-oriented report.

Summary statement In the expanding field of cognitive disorders, the only effective assessment approach is the standardized disease-oriented one, which includes a multidisciplinary integration of the clinical picture, MRI, CSF and blood biomarkers and nuclear medicine.

Keywords Dementia · Consensus · Neuroimaging · MRI · Assessment

Abbreviations
AD Alzheimer disease
ADC Apparent diffusion coefficient
AIDS Acquired immunodeficiency syndrome
AINR Italian Association of diagnostic and interventional NeuroRadiology (Associazione Italiana di Neuroradiologia Diagnostica ed Interventistica)
AIP Italian Association of Psychogeriatrics (Associazione Italiana di Psicogeriatria)
aka Also known as
ALS Amyotrophic lateral sclerosis
APOE Apolipoprotein E
APP Amyloid precursor protein
ARIA Amyloid related imaging abnormalities
ARWMC Age-related white matter changes
ASL Arterial spin labeling
AVIM Asymptomatic ventriculomegaly with features of idiopathic normal pressure hydrocephalus on MRI
AVM Arterio-venous malformations
bvFTD Behavioral variant frontotemporal dementia
CA Callosal angle
CAA Cerebral amyloid angiopathy
CAA-ri Cerebral amyloid angiopathy-related inflammation
CADASIL Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy
Key Results

1. The assessment of dementia is based on clinical, radiological, nuclear and lab evaluation.
2. Brain atrophy, white matter lesions, microhemorrhages, and vascular diseases should be radiologically evaluated.
3. Radiological assessment should be based on visual assessment, scoring, and volumetry.
4. The disease-oriented structured radiology report increases its clinical value.
5. Multidisciplinary teamwork increases diagnostic accuracy.

Background

Dementias are taking up more space in everyday clinical and radiological scenarios, considering that the worldwide population is aging [78] and that brain imaging plays a key role in the assessment of cognitive impairment [8]. In addition, the scientific community is increasingly focused on the debate over the use of AI [51], FDA- and EC-approved automated segmentation software [73], and the optimal use of neuroimaging in new drug trials [68].” A recent survey, carried out in Europe among academic and non-academic institutions [74], disclosed that the current practice in dementia imaging presents some homogeneity (mainly in imaging acquisition and image interpretation) but also differences in training and reporting, in using advanced imaging techniques and volumetric measures, as well as in communication between clinicians and radiologists. This work stems from the need of different Italian scientific societies to standardize and optimize the radiological approach for the assessment and follow-up of the aging brain and cognitive disorders.

We aim to fill this gap of variability and uncertainty, providing a practical approach in evaluating, interpreting, and monitoring the aging brain and main cognitive disorders.

Methods

The promoters of the initiative (FBP and SB) representatives of the Neuroradiological Section of the Italian Society of Radiology (SIRM), with the clinical support of EC and GBF, created a core panel with experts in dementia and cognitive disorders representatives of the Italian Association of Diagnostic and Interventional Neuroradiology (AINR). The purpose of their work is to submit a preliminary consensus draft to the representatives of SIGG (Italian Society of Geriatrics and Gerontology, Società Italiana di Geriatria e Gerontologia) and AIP (Italian Association of Psychogeriatrics, Associazione Italiana di Psicogeriatría) for their revision and final approval.

The main research questions were:

- Define the key concepts (A) of what the radiologist needs to know: main clinical features (definition of brain aging, cognitive syndromes, and primary and secondary dementias) and imaging findings.
- Frame the MRI radiological approach for the assessment and follow-up of the aging brain and cognitive disorders—MRI protocol (B), imaging evaluation and interpretation (C), and reporting (D) for clinical use
- Identify the main factors that will influence clinical and radiological practice in this population in the near future (E)
- The consensus between experts was reached using a similar approach to the previously published paper (Pizzini FB et. Insights Imaging) and consisted in:
 - A critical review of previous literature by European/American task forces and scientific societies related to A–D
 - Circulation and discussion of the draft based on this review among the core panel and then between the experts in more rounds
 - Changes of the original draft till the group converged towards an agreement on all the points A–E

Literature review

Literature review was performed through the PubMed database and on the web through Google and Google Scholar platforms, as well as specialized websites (Radiopaedia.org and radiologyassistant.nl/neuroradiology) and textbooks. The standardized strings used to search the database for literature were structured by combining the keywords (1) disease of interest, (2) biomarker (3) guidelines/recommendations/evaluation. As shown in the flowchart (Fig. 1), only original texts (abstract and full text) published in English were considered, without filtering for article type and publication date. Articles were selected after a review of the titles and abstracts of the first fifteen “best matches” to determine relevance and affinity to the research purpose. When it was useful, consultation was extended to the bibliographic references of the selected articles. Finally, in our bibliography, articles range from 1988 to 2022, with a predominance of the last decade.

Results

(A) Introduction to aging, cognitive impairment, and dementia

The following boxes represent consensus findings related to the key concepts (Box 1) and clinical features and imaging findings (Boxes 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11) of the major primary and secondary dementias.
(B) MRI protocol (acquisition)

1. **Field of the MRI suite (1.5; 3T)**. The choice of field strength does not affect the evaluation of atrophy or white matter load (WML), but it can affect the detection rate of microbleeds [46].

2. **Standard protocol (core sequences and parameters)**. They have been found to have a major impact on image resolution [15] thus on the detection rate of atrophy, white matter changes, and microbleeds (e.g. in GRE detection of 33% of the microbleeds identified by thin-section SW [46, 65]) (Table 1).

3. **Optional additional sequences** (i.e. functional MRI, microstructural DWI, spectroscopy, Magnetization Transfer Imaging) are useful at the group level [25] when comparing a specific disease with healthy subjects or other clinically overlapping diseases. Level 1 of a five-level scale of Imaging biomarkers [18, 77]. While ASL (Arterial Spin Labeling) is useful at the individual level because it reaches a sensitivity and specificity > 80% for the clinical diagnosis of a given patient (Level 2 of the same scale). None of these sequences can be considered effective for early clinical diagnosis (Level 3) or could be used as surrogate criteria for pathological diagnosis (Level 4) or provide a direct measure of the underlying neuropathological changes (Level 5).

4. **Contrast-enhanced MR**: Contrast Media injection not indicated in aging and cognitive impairment (except for CAA-ri, see Box 8. CAA).

(C) Evaluation and interpretation

1. **Visual (qualitative) assessment**

2. **Visual rating scales** (a) **ATROPHY** (see Tables 3 and 4; Figs. 2 and 3, and 4) should be evaluated in multiple planes on T1 (or FLAIR, but not T2), comparing the most preserved sulci/gyri (usually the occipital ones) to the most affected ones, symmetrically, using these scales:
Global cerebral Atrophy (GCA) [49], Koedam for posterior lobes—which are most affected in atypical AD [34], MTA-Scheltens for medial temporal lobe [60].

(b) WHITE MATTER CHANGES (WMC) (see Tables 5 and 6; Fig. 5) should be evaluated in FLAIR/T2. The most used scales are Fazekas [17] and age-related white matter changes (ARWMC) [76]. The WMC have variable size, but minimal diameter of the lesions at imaging > 1 mm (in any plane).

(c) MICROBLEEDS should be evaluated in GRE T2*/SWI and the minimal diameter of the lesions at imaging is < 10 mm in any plane (Fig. 6). They could be a feature of small vessel disease (hypertension or cerebral amyloid angiopathy, CAA) and could be related to antithrombotic bleeding risk. All possible microbleeds mimics should be excluded (i.e., vessels, small cavernomas, mineralization foci, artifacts at the air-bone interface and due to partial volume, small hemorrhagic areas due to infarcts or other bleeds).

An example of scale with high intrarater and interrater reliability is MARS (Microbleed Anatomical Rating Scale) which describes their number and location in lobar and/or infratentorial and/or deep regions [23].

(d) SMALL VESSEL DISEASE (SVD) (see Figs. 5 and 6; Figs. 7 and 8) should be evaluated in FLAIR/T2, GRE T2*/SWI, and T1 acquisitions. Parenchymal changes such as (1) microbleeds; (2) lacunae; (3) perivascular spaces; and (4) white matter changes indicate the presence of small vessel disease, but each type of imaging finding has a different risk weight. In fact, the presence of a single lacuna or microbleed adds one point of the SVD score (Total 4 points) [69], which is equivalent to that of a severe enlargement of the perivascular spaces and/or Fazekas 3, thus indicating a higher risk of clinical consequence (ischemic and hemorrhagic brain events, dementia) [47].
Box 2 Late-onset Alzheimer Disease (Lo-AD)

Generals
- The most common cause of late-onset (≥ 65 yo) dementia [52]
- Incidence and prevalence increase with age (growing up because of an aging population) [1]
- Cerebrovascular disease frequently coexists with AD
- Cerebral amyloid angiopathy (CAA) can co-occur with AD
- General neurological examination is substantially normal
- Neuropsychiatric symptoms are common

Clinical features and diagnosis

Typical presentation:
- Early and prominent episodic memory loss (recent events) *plus*
- Executive, language, and visuospatial impairment

MRI
- Disproportionate bilateral (or mild asymmetric) temporoparietal cortical atrophy with (early) prevalent involvement of entorhinal cortex/medial temporal lobes (± hippocampus †) and (more later) precuneus ‡ and posterior cingulate gyrus
- Relative sparing of the primary motor&somatic sensory (pericentral) and occipital cortex

FDG-PET: mirrors MRI findings, with gross correspondence between hypometabolic and atrophic areas ∆

Ioflupane-SPECT (DaTscan): normal

Amyloid-PET: abnormal diffuse cortex uptake with loss of gray-white differentiation (cerebellum spared)

τ-PET: hippocampal-body and precuneus abnormal τ uptake in early-stage

Atypical presentation/non-amnestic syndromes (more common in early-onset disease [42]):
- Visual variant—posterior cortical atrophy (PCA)
- Logopenic variant primary progressive aphasia (lvPPA)
- Progressive executive dysfunction

Pitfalls:
- Iron-sensitive sequences should be performed to assess for hemorrhages associated with CAA (see Box 9) [22]
- SVD associated WMHs frequent coexist with AD findings

† Compared to early-onset AD, patients with late-onset disease show greater medial temporal atrophy and less cortical atrophy
‡ The involvement of precuneus is a late feature of lo-ad or an early feature of eo-AD [see Box 3]
∆ Usually the FDG-PET findings correspond to the MRI atrophic changes, but in some cases the molecular findings may be more severe than structural findings
Box 3 Early-onset Alzheimer Disease (Eo-AD; “not just an AD at a younger age”)

Generals
- The most common cause of early-onset (< 65 yo) neurodegenerative dementia [41]
- AD with clinical onset younger than 65 yo
- Better memory but worse attention/language/executive functions/visuospatial skills than Lo-AD

Clinical features and diagnosis

- **Up to two-thirds of patients with non-amnestic phenotypic variants:**
 - *Logopenic variant primary progressive aphasia* (most common): progressive decline in language (word-finding difficulty with hesitations in repetition) with relatively spared memory and cognition
 - *Posterior cortical atrophy*—PCA (second most common): progressive and disproportionate loss of visuospatial/visuo-perceptual functions up to Gerstmann syndrome or Balint syndrome
 - *Behavioral/dysexecutive* (aka *Frontal variant*): early apathy/abulia or disinhibition and impulsivity
 - *Acalculia variant* and other parietal syndromes (anomia, ideomotor apraxia, Gerstmann syndrome)
 - *Corticobasal syndrome* (CBS) [see Box 7]

MRI:
- Hippocampal sparing and less mesial temporal lobe disease than Lo-AD
- Focal cortical atrophy
- Greater posterior (parietal, temporoparietal junction, posterior cingulate cortex) neocortical atrophy than Lo-AD
- Parieto-occipital and posterior temporal lobe involvement (PCA)
- Left posterior temporal cortex and the inferior parietal lobule involvement (lvPPA)
- Involvement of bilateral temporoparietal regions along with milder involvement in the frontal cortex (frontal variant)
- Biparietal involvement, greater on the left (parietal syndromes)

FDG-PET: mirrors MRI findings, with gross correspondence between hypometabolic and atrophic areas

Ioflupane-SPECT (DaTscan): normal

Amyloid-PET: as in Lo-AD [see Box 2]

T-PET:
- Relatively distinct areas of uptake (tau uptake correlates with clinical symptoms [6, 79])
- Possible more uptake than Late-onset-AD due to increased Tau burden in posterior neocortices

Pitfall: if suspicious of PCA is clinically high, the absence of marked parieto-occipital atrophy should not exclude the diagnosis

† Other forms of PPA, such as the nonfluent/agrammatic and semantic variants, are non-Alzheimer syndromes due to FTLD [see Box 6]

¶ Gerstmann syndrome: acalculia, left–right disorientation, finger agnosia, and agraphia

Δ Balint syndrome: ocular motor apraxia, optic ataxia, and simultanagnosia

◊ These patients overlap with or may eventually meet current criteria for posterior cortical atrophy or corticobasal syndrome
Box 4 Vascular dementia (VaD)—Vascular cognitive impairment (VCI) “not strictly a neurodegenerative dementia”

Generals
- The second most common type of dementia (after AD)
- May occur with single or multiple infarcts, cortical or subcortical
- “Silent” strokes are significant risk factors
- Often multiple-etiologic dementia (VaD plus AD)
- “Classically” stepwise dementia

Clinical features & diagnosis
Two main VaD syndromes:
- Poststroke dementia (common): stepwise cognitive decline plus clinically diagnosed stroke
- Vascular dementia without recent stroke (aka Binswanger disease and subcortical ischemic vascular dementia): progressive or stepwise cognitive decline plus brain neuroimaging evidence of cerebrovascular disease

Main stroke signs & symptoms (according to arterial vascular territory):
- Anterior cerebral artery → motor and/or sensory deficit, gait apraxia, abulia
- Middle cerebral artery:
 • Dominant hemisphere: aphasia, motor and sensory deficit up to hemiplegia, and hemianopia
 • Non-dominant hemisphere: motor and sensory deficit, homonymous hemianopia, neglect
- Posterior cerebral artery → hemianopia, alexia without agraphia, visual hallucinations, sensory loss, conjugate gaze palsies, motor deficit
- Penetrating vessels (lacunar syndromes) → pure motor hemiparesis, pure sensory deficit, pure sensory-motor deficit, ataxic hemiparesis, dysarthria/clumsy hand
- Vertebrobasilar → cranial nerve palsies, crossed brainstem syndrome, diplopia, dysarthria, dysphagia, dizziness, nausea, vomiting, ataxia, coma
- Internal carotid artery → MCA symptoms usually preceded by contralateral amaurosis fugax

MRI: variable appearance and location (usually multifocal and asymmetric abnormalities) as follows § [14, 22, 56, 58]:
- Large vessel or atherothromboembolic disease
 - Multiple infarcts (e.g., bilateral anterior cerebral artery infarction, and parieto-temporal plus temporo-occipital infarction of the dominant hemisphere)
 - Single strategically placed infarct → medial thalamus; lateral thalamus—internal capsule; caudate and pallidus; posterior cerebral artery infarction (with infarction of the paramedian thalamic region and inferior medial temporal lobe of the dominant hemisphere); left angular gyrus (Gerstman’s syndrome; basal forebrain infarction)
- Small vessel disease (relevant role)
 - Multiple (> 2) lacunar infarcts in (frontal) white matter and deep gray matter nuclei
 - Ischemic white matter changes (WMLs) involving at least more than 25% of the whole WM
 - Dilatation of perivascular spaces
 - Cortical microinfarcts and microhemorrhages
- Hemorrhage:
 - Intracerebral hemorrhage
 - Multiple cortical and subcortical microbleeds
 - Subarachnoid hemorrhage
- Hypoperfusion
 - Hippocampal sclerosis
 - Laminar cortical sclerosis
 - Watershed infarcts (aka border zone infarcts) in the dominant hemisphere (superior frontal and parietal regions)

FDG-PET: mirrors MRI findings, with gross correspondence between hypometabolic and atrophic areas

Ioflupane-SPECT (DaTscan): normal uptake
Amyloid-PET: not useful (maybe abnormal uptake)
τ-PET: no uptake
of the software in clinical practice is the double assessment—visual and quantitative—which combines the visual rating and the atrophy measurements [73].

4. Follow up
If there are any vascular findings at MRI, an annual follow-up is recommended.
In case of trials or other pathologies, the control MRI should be scheduled according to clinical indications.
Box 6 Frontotemporal dementias (FTDs)

Generals
- The fourth most common cause of late-onset dementia; second-one of early-onset dementia (after Eo-AD) [30]
- *Frontotemporal lobar degeneration* (FTLD, in which *Pick disease* is included) denotes the pathological diagnoses associated with clinical FTDs

Clinical features & diagnosis
- All FTD-forms show behavioral disturbances and whole cognitive function impairment
- Clinical presentation (first two are the main groups):
 - **Behavioral variant FTD** (bvFTD, most common): progressive personality and behavior changes. Up to 20% of patients develop *motor neuron disease* (MND) [32, 63]
 - **Primary progressive aphasia** (PPA), two variants (of three total canonical variants) [20]:
 1. Nonfluent/agrammatic variant PPA (nfvPPA): effortful and interrupted speech
 2. Semantic variant PPA (svPPA): impaired comprehension and naming with preserved fluency, repetition, and grammar
 - Motor syndromes with FTD: MND, corticobasal syndrome (CBS), and progressive supranuclear palsy (PSP)
- “Probable bvFTD” requires a supportive MRI scan (while “possible bvFTD” on clinical features basis alone)

MRI:
- Bilateral frontal and temporal involvement with anterior to posterior gradient (if severe, knifelike gyri)
- Predominant changes in the frontal and temporal lobes, with asymmetric involvement of the anterior temporal lobes, prefrontal cortices, insula, anterior cingulate, striatum, and thalamus [61] (bvFTD)
- Left more than right anterior perisylvian involvement (lvPPA-nfvPPA)
- Left (70%) more than right involvement of temporal cortex & parietal lobe (lvFTD-svPPA)
- Focal anterior temporal pole involvement (svPPA)
- (Asymmetrical) hippocampal atrophy, more pronounced anteriorly
- Disproportionate widening of the frontal horns
- Relative sparing of precuneus and occipital lobes

FDG PET: mirrors MRI findings, with gross correspondence between hypometabolic and atrophic areas
- **Ioflupane-SPECT (DaTscan): normal**
- **Amyloid-PET: not useful**
- **τ-PET: unclear role** (variable uptake depending on variants)

Structural MRI findings predict pathology:
- Severe “knife-edge” frontal and insular atrophy → *Pick disease*
- Midbrain atrophy → PSP
- Focal thalamic atrophy → C9orf72 expansion
- Ventral frontal pattern plus paper-thin anterior caudate nuclei → FTLD-FUS
- Severe dorsal frontoparietal atrophy → concern for AD

Pitfall: patients with bvFTD may occasionally have a normal MRI

† BvFTD, as well as the nfvPPA, also occur in the late stage of CBS and PSP [53]

¶ The logopenic variant is typically associated with Alzheimer pathology

Δ The relative sparing of precuneus and occipital lobes is useful in differentiating FTD from ad andDLB

◊ Three pathological subtypes (based on the composition of the protein inclusions) are recognized:
- 1. FTLD-tau (most common): several conditions, including pick disease, chronic traumatic encephalopathy, CBD, PSP
- 2. FTLD-TDP: includes the C9orf72 repeat expansion form (most common genetic cause)
- FTLD-FET (less common, up to 10% of cases): fused gene involvement (pathogenic variants linked to familial ALS)
1. A structured reporting is often not considered useful in clinical practice and could present other critical issues, so a guided report is preferable (Fig. 8). We recommend using the following template, modified from a previous ESNR dementia working group 2019 proposal.

Please consider that it is advisable to mention in the “Conclusions/Impressions” of the report:

- Any individual differences from a control population (cross-sectional assessment) by applying the visual qualitative and rating scale or/and the volumetric assessment
- Any stability or longitudinal worsening of the radiological findings (longitudinal evaluation) from previous radiological examinations, if appropriate for comparison

To do this, when evaluating brain atrophy, it is useful to take into account existing reference standards for assessing differences between a subject and the control population and individual rates of change over the life course even with respect to the trajectories of volumetric brain imaging markers [7, 75].

According to these large and inclusive datasets currently available (BrainChart open source and Rotterdam study), the trajectories of volumetric changes in gray matter, white matter, and third ventricles show nonlinear curves, with accelerated change with advancing age and some differences between men and women.

Regarding the "mixed pathology" reported in "Conclusions/Impressions," it should be emphasized that the diagnosis of "mixed dementia" is clinical, not neuroradiological. The neuroradiological description of, for example, hippocampal atrophy and Fazekas 3, does not mean that the

Box 7 Corticobasal degeneration (CBD)
Generals
- Rare (precise incidence and prevalence unknown) atypical parkinsonism
- Corticobasal syndrome (CBS) for clinical diagnosis, CBD if neuropathologic confirmation
- Challenge clinical diagnosis (wide variety of presentations)

Clinical features & diagnosis
Signs and Symptoms (characteristic but not specific):
- Behavioral and/or cognitive [43] disturbance → executive dysfunction, aphasia (variable entity, up to nonfluent variant PPA), apraxia (various types), visuospatial dysfunction
- Motor symptoms → progressive asymmetric (sometimes symmetric [29]) movement disorder initially affects one limb (upper or lower; then progression to all four limbs) with various combinations of akinesia, rigidity, dystonia, focal myoclonus, ideomotor apraxia, alien-limb phenomena (up to 50% of patients) and gait disturbance (various types)

MRI:
- Normal in early stages
- Asymmetric (contralateral to the more clinical affected side) and severe focal atrophy of the posterior frontal and parietal regions, along with dilatation of the lateral ventricles (in up to half of the patients)
- Atrophy of paracentral cortex
- Atrophy of the corpus callosum [80]
- T2-hyperintensity of the atrophic cortex and underlying white matter ± hypointensity of the putamen and pallidus [59, 67]

Atrophy of the frontal lobes, basal ganglia, and brainstem on MRI
- Voxel-based morphometry [35]

FDG-PET:
- Asymmetric hypometabolism in the posterior frontal (premotor and supplemental motor), inferior parietal, and superior temporal regions, thalamus, and striatum of the more affected hemisphere [16]
- Asymmetric decrease of global cortical oxygen consumption [44]

Ioflupane-SPECT (DaTscan): asymmetric reduced uptake (uniform reduction throughout the striatum ≠ greater putaminal loss in PD)

Amyloid-PET: not useful

τ-PET : not useful

Pitfall: focal atrophy detected on MRI by voxel-based assessment in premotor and supplemental motor areas is suggestive of CBD or PSP, while more widespread atrophy is suggestive of FTLD or AD

† To date, there are not available tau-PET ligands for detecting CBD straight filament 4repeat tau disease in clinical routine [70, 81]
Box 8 Sporadic Creutzfeldt-Jakob disease (sCJD)

Generals
- Rare disease (incidence 1/1,000,000; mean age 62yo)
- Most frequent (90%) of sporadic human prion disease

Clinical features & diagnosis
- Two cardinal clinical manifestations:
 - Rapidly progressive mental deterioration (akinetic mutism in the end-stage)
 - Myoclonus (90%)
- Gait disturbance and various among pyramidal (especially in end-stages), extrapyramidal, and cerebellar manifestations (presenting symptoms in up to 40% of cases)
- Brain MRI is the most sensitive diagnostic test in the early stages

MRI:
- FLAIR/T2-hyperintensity and DWI reduced diffusivity (unilateral or bilateral; focal, multifocal, or diffuse; and asymmetrical or symmetrical in early stages, then tendency to greater symmetrical involvement) in the head of the caudate and putamen (lesser extent in the thalamus)
- Cortical ribbon especially involving the superior frontal gyrus, superior parietal lobule, cingulate gyrus, and insular cortex
- Perirolandic cortex is usually spared
- Generalized atrophy and ventricular dilatation (prominent in later stages)
- Rare isolated limbic involvement
- Possible late Cerebellar atrophy
- Confluent hyperintense signal in the mesial and dorsal thalami on DWI, FLAIR, and T2-weighted MRI ("double hockey stick" or "pulvinar" sign)—typical of variant CJD (vCJD or 'mad cow disease', now rare) and rare cases of sCJD

MRI abnormalities may vary with the clinical syndrome and molecular subtype [40] Δ:
- Increased T2 signal in the caudate and putamen → early dementia, shorter survival, and VV2, MV2, or MM1 codon 129 genotypes
- Thalamic hyperintensities → VV2 and MV2 subtypes
- Increased wide cortical signal → VV1 and MV1 subtypes
- Normal MRI or only late atrophy or white matter changes → MM2 thalamic form [27]

PET-FDG: not sufficiently evaluated
Ioflupane-SPECT (DaTscan): possible asymmetric loss of uptake [10]
Amyloid-PET: crossreaction with prion proteins reported [39]
τ-PET: normal [13]

Pitfalls:
- DWI is the most sensitive MRI sequence for the detection of CJD-related cortical and striatal changes [38]
- MRI-findings are not fully specific for CJD (consider stroke, vasculitis, or reversible posterior leukoencephalopathy) [5, 66]

† Three forms of Creutzfeldt-Jakob disease are recognized:
- Sporadic (sCJD, 85–95%)
- Genetic (gCJD, 5–15%)
- Acquired: iatrogenic Creutzfeldt-Jakob disease (iCJD, <1%), and variant Creutzfeldt-Jakob disease (vCJD, <1%)

‡ Although the prevalence of cerebellar symptoms and neuropathological findings, DWI- and FLAIR-hyperintense signal in the cerebellum is not typical [12]

Δ Subtypes of sCJD are classified according to the genotype of the prion protein (prnp) gene codon 129 and the molecular properties. Clinical phenotypes agree with molecular subtypes (e.g., MM1 and MV1 correlate with the "classic CJD"; VV2 is the "ataxic variant"; MM2 can present as either a thalamic variant or a cortical variant, etc.)
Box 9 Cerebral amyloid angiopathy (CAA)

Generals

- Frequent cause of intracerebral hemorrhage (ICH) and cognitive impairment in the elderly
- Age-dependent incidence (rare <60 yo)
- No clinical overlap between CAA and non-central nervous system systemic amyloidosis

Clinical features & diagnosis

Acute lobar intracerebral hemorrhage (ICH, commonly older adults)

MRI:
- Commonly in posterior (temporal and occipital) lobar brain regions
- Possible cerebellum involvement (with a predilection for cortex and vermis)
- Possible extension into the subarachnoid (+“finger-like” projections [55]), subdural spaces, and into ventricles (less frequent)
- Leptomeningeal vessels deposition:
 1. Potential source for isolated convexity subarachnoid hemorrhage (cSAH)
 2. Cortical superficial siderosis (cSS, in chronic phase along with cortical microbleeds [CMBs] on T2* sequences)

Transient focal neurologic episodes (TFNE, aka “amyloid spells”): recurrent, brief and stereotyped spells of cortical symptoms (e.g., weakness, numbness, paresthesia, etc.)

Cerebral amyloid angiopathy-related inflammation (CAA-ri, inflammatory response to amyloid deposition):
- Acute/subacute/progressive cognitive decline (~75%), headache (~40%), ↓ consciousness, behavioral change, or focal neurological signs (e.g., seizures ~30%)
- Younger than those with others CAA-related manifestations

Cognitive impairment (coexisting AD and/or VCI)

Incidental imaging findings → Chronic evidence of asymptomatic bleeding detected on brain MRI of patients with or without lobar hemorrhage

Include:
- (Cortical) microbleeds (microhemorrhages, up to about 25% elderly population): 2–10 mm focal areas of hemosiderin deposition on T2*-sequences (predilection for the cerebral cortex)
- Cortical superficial siderosis ¶ (cSS, maybe the chronic form of acute convexity subarachnoid hemorrhage related to CAA; up to 60% of CAA):

MRI hemorrhagic findings (imaging-based diagnosis of CAA):

- **Modified Boston criteria** [36]: combination of clinical, radiographic and pathological criteria. Four tiers:
 1. (i) Definite (post-mortem)
 2. (ii) probable with supporting pathological evidence
 3. (iii) probable CAA, with MRI:
 - Multiple hemorrhages restricted to lobar, cortical, or cortical-subcortical regions (cerebellar hemorrhages allowed) without another cause, or
 - Single lobar, cortical, or cortical-subcortical hemorrhage and focal (three or fewer sulci) or disseminated (more than three sulci) cortical superficial siderosis without another cause
 4. (iv) possible CAA, with MRI:
 - A single lobar, cortical, or cortical-subcortical hemorrhage without another cause, or
 - Focal or disseminated cortical superficial siderosis without another cause
- **CAA-ri** → symptomatic patients with diagnostic imaging evidence of inflammation and CAA-related hemorrhagic findings plus exclusion of other causes [11]

Amyloid-PET (using early-phase 11C-PiB PETΔ) and (resting-state [18F]FDG-PET:
- Lower occipital/posterior cingulate (O/PC) tracer uptake ratio in probable CAA than AD
- Regions with high PiB uptake area associated with subsequent hemorrhage [26]

τ-PET: not useful

MRI non-hemorrhagic findings:

- Acute ischemic microinfarcts: asymptomatic punctate hyperintense lesions on DWI[71]
- Cerebral atrophy (most pronounced in occipital regions and more severe in higher cortical microbleeds burden
- WMH (T2/FLAIR): frequently small-vessel disease
- Centrum semiovale dilated perivascular spaces ◊
Box 9 (continued)

Pitfalls:

- Patients with isolated incidental hemorrhagic imaging findings (i.e., a single CMB or equivocal cSS) should undergo follow-up to detect the development of progressive subclinical findings to further support the diagnosis of CAA (sec. modified Boston Criteria).
- Consider lobar extension of a hypertensive hemorrhage, hemorrhagic transformation of an ischemic stroke, hemorrhagic venous infarction from cerebral venous thrombosis, hemorrhage of AVM, and hemorrhagic tumor as differentials of nontraumatic lobar ICH.
- Microbleeds commonly arise from either CAA or hypertensive vasculopathy (small-vessel disease).
- Microbleeds involving the cerebellum or brainstem are not specific of CCA (possible comparison in, e.g., reversible cerebral vasoconstriction syndrome, primary angiitis of the CNS, bacterial endocarditis, hyperperfusion syndrome after carotid endarterectomy, cerebral venous sinus thrombosis, posterior reversible encephalopathy syndrome, dural tear and craniospinal surgery, etc.) [9, 33, 37].

$$\Delta$$ The early-phase 11c-PiB PET help differentiate probable CAA from probable AD. Early-phase amyloid PET images are used as a surrogate for brain perfusion, as opposed to the standard late-phase 11c-PiB PET/CT which reflects binding to $\alpha\beta$ deposits.

◊ When predominantly placed in the centrum semiovale, the dilated perivascular spaces are frequently associated with CAA [72].

\uparrow If disseminated, cSS indicates a higher risk for future ICH. Notably, neither cSS nor superficial siderosis involving the cerebellum or brainstem is specific of CCA (possible comparison in, e.g., reversible cerebral vasoconstriction syndrome, primary angiitis of the CNS, bacterial endocarditis, hyperperfusion syndrome after carotid endarterectomy, cerebral venous sinus thrombosis, posterior reversible encephalopathy syndrome, dural tear and craniospinal surgery, etc.) [9, 33, 37].

\subseteq Microbleeds are not specific for CAA as they can be seen in multiple conditions, including, hypertension, cerebral cavernous malformations, coagulopathy, thrombocytopenia, anticoagulant medications, CNS vasculitis, infective endocarditis, end-stage kidney failure. Moreover, beside conditions above-mentioned, microbleeds are also more prevalent among users of antiplatelet agents [24]. Notably, while microbleeds (in general) are not specific of CAA, cortical ones (i.e., those limited to the cerebral and cerebellar cortex and vermis), suggest CAA [48] (although not pathognomonic). In contrast, deep microbleeds (those involving the basal ganglia, thalamus, or pons) are presumably of hypertensive microangiopathic origin.

\upgamma In those with ad treated with immunotherapy, CAA may develop because of the rapid destruction of parenchymal $\alpha\beta$, and/or ARIA may be triggered if CAA is preexistent to the immunotherapy.
Box 10 Chronic central nervous system complications of alcohol (ab)use [overview of main conditions]

Clinical features and diagnosis

Korsakoff syndrome (“a residual syndrome”)†:
- Memory disorder with selective anterograde and retrograde amnesia (which lead to confabulation) with apathy and relative preservation of long-term memory and other cognitive functions
- Most frequently represents a late neuropsychiatric manifestation of WE in alcohol abusers (80% of WE episodes), but also caused by a “non-alcoholic” deficit of thiamine
- Sometimes occurs without a clinical recognized WE (that may have been subclinical or unrecognized)
- No clear correlation between neuroimaging and severity/duration of alcohol abuse or degree of cognitive impairment
- Rare recovery (abstinence and nutritional repletion)

Cognitive impairment:
- 50 to 70% of chronic alcohol abusers on neuropsychological testing
- Role of ethanol neurotoxicity
- No unequivocal evidence of brain lesions which are caused solely by chronic ethanol ingestion
- Selective loss of neurons in frontal regions (mirrored on FDG-PET)
- Possible recovery with abstinence

Alcoholic cerebellar degeneration:
- Chronic cerebellar syndrome
- After 10 or more years of excessive alcohol use
- Slow development (over weeks to months or years) of abnormal stance, gait, and lower extremity coordination (sometimes abrupt onset and/or worsening
- Cognitive function is usually spared (except in cases of prior WE)
- Abstinence may prevent worsening

Marchiafava-Bignami disease:
- Rare disorder (probable undiagnosed)
- Demyelination or necrosis of the corpus callosum and adjacent subcortical white matter
- Malnourished alcoholics
- Dementia, spasticity, dysarthria, and inability to walk (acute, subacute, or chronic course)
- Variable prognosis (coma and death, survival in a demented condition, interhemispheric disconnection syndrome, occasional recovery)

Pitfall: Knowledge of typical and atypical imaging findings of WE, particularly when the clinical presentation is non-specific, is mandatory since timely administration of thiamine may halt brain damage, thus preventing the development of Korsakoff Syndrome

† The Korsakoff syndrome is part of the Wernicke-Korsakoff syndrome (WK)—the best-known neurologic complication of thiamine (vitamin bl) deficiency—which encompasses two different syndromes:

(1) the acute Wernicke encephalopathy (WE) syndrome
(2) the chronic Korsakoff syndrome (KS, usually a consequence of WE)

There is no generally accepted definition of KS, nor generally accepted criteria for the diagnosis of KS

§ Several studies showed that the ventricles and sulci become significantly smaller with short-term alcohol abstinence (approximately one month of abstinence). Notably, cognitive abnormalities improve too with alcohol abstinence [4, 62, 82]

Δ Similar to the reduction in ventricular dilation achieved with short-term abstinence, the amount of white matter also increases in response to alcohol withdrawal, suggesting a reversible damage [19]
Box 11 Idiopathic Normal Pressure Hydrocephalus—iNPH

Generals
- Insidious type of communicating hydrocephalus without substantially increasing CSF pressure
- Rare and treatable disease (“reversible dementia”)
- A correct diagnosis of NPH allows the selection of patients who will respond to shunt surgery

Clinical features & diagnosis
Clinical features (neither pathognomonic nor specific):
- Usually gait abnormality; uncommon full Hakim & Adams triad (gait abnormality, incontinence, and cognitive impairment with frontal syndrome)
- Bradykinesia (55% of cases)

MRI→symptomatic patients (features of iNPH):
Ventriloculomegaly (fourth spared; Evans’s index > 0.3 ¶)
Steepening of the callosal angle (CA < 90°, indirectly expresses DESH) Δ
Ventriloculomegaly out of proportion to generalized sulcal enlargement
Narrow sulci and subarachnoid spaces at the vertex and medial/parafalcine region
Recognize DESH (specific of iNPH, ↑ positive but ↓ negative predictive values) ◊
Look for congenital factors (e.g., aqueductal stenosis or webbing) → secondary NPH §

MRI→asymptomatic patient (incidental NPH features):
Asymptomatic ventriculomegaly with features of iNPH on MRI (AVIM)

FDG-PET, DAT-scan, τ-PET: help detect concomitant degenerative disease; do not have established findings suggestive of NPH

SPECT (reflects the morphological changes of DESH)—convexity apparent hyperperfusion (CAPPAH) sign (specific of iNPH):
- Decreased cerebral blood flow (CBF) in the anterior parts of the cerebral hemisphere and Sylvian fissure periphery
- Relatively increased CBF in high cortical areas

Diagnostic criteria (probable iNPH) [45]
1. Meets the criteria for possible iNPH ¥
2. CSF pressure of 200 mmH2O or less and normal CSF content
3. One of the following two investigational features:
 - Neuroimaging features of narrowing of the sulci and subarachnoid space over the high-convexity/midline surface (DESH) with gait disturbance (small stride, shuffle, instability during walking, and increase in instability on turning)
 - Improvement of symptoms after CSF tap test and/or drainage test

Pitfall: Incidental iNPH features configuring AVIM are an indication for further clinical evaluations and follow-up

† NPH syndrome can be primary (idiopathic NPH), or secondary to some condition that impairs CSF absorption (e.g., following infectious, inflammatory, or hemorrhagic events involving the subarachnoid space)

1Evans’s index is the ratio of the largest width of the frontal horns and the widest measure of the inner table of the skull at that level. When this ratio is greater than 0.3, the ventricles are considered enlarged [54]

Δ The CA helps to predict the effect of shunt intervention and is useful in differentiating iNPH from AD with a sensitivity of 97%, a specificity of 88%, and a positive predictive value of 93% at a cutoff value of 90° [31]. Notably, compared to AD, atrophy of the hippocampus is mild in iNPH

◊ The term DESH (included in the Japanese guideline for the diagnosis and treatment of NPH) describes prognostic MRI features in NPH, including a “tight high convexity” and enlargement of CSF spaces in the Sylvian fissure. DESH correlates with a good response to shunting

§ Notably, symptoms due to stenosis of the cerebral aqueduct may manifest in adulthood, in form of syndrome long-standing overt ventriculomegaly in adults (LOVA), which has a clinical presentation like NPH. Secondary NPH should be suspected in a patient with large head size and MRI disclosure of triventriculomegaly without the involvement of the fourth ventricle, mild or no T2/FLAIR signal change around the ventricular system, and evidence of aqueductal stenosis and/or webbing identified with sagittal fast imaging employing steady-state acquisition c (fiesta-c) sequences

¥ Possible iNPH is diagnosed if the following criteria are met:
1. More than one symptom in the clinical triad: gait disturbance, cognitive impairment, and urinary incontinence
2. Above-mentioned clinical symptoms cannot be completely explained by other neurological or non-neurological diseases
3. Preceding diseases possibly causing ventricular dilation (including subarachnoid hemorrhage, meningitis, head injury, congenital/developmental hydrocephalus, and aqueductal stenosis) are not obvious. Instead, only the “shunt responder” can be meet the diagnosis of definite iNPH [45]
The patient’s cognitive impairment is equally attributable to neurodegeneration and microangiopathy. It is up to the clinician to determine how much of the clinical picture is attributable to one or the other component.

Sample Case Report (in Supplemental material)

(E) Future avenues

In the future, the use of volumetric information in routine radiology may be increasingly widespread, and we recommend dual assessment (combining visual scoring with volumetry, see C 3). These measurements are reproducible and automatic, but are depending on scan protocol, software, and the reference population. Other critical issues include the limited access to volumetric tools in the clinical setting (data must be transferred to the workstation and results to the PACS), and the training required to properly read the results.

Differences between men and women in neuroimaging biomarkers of neurodegeneration are reported [7, 75] and these should be considered in the near future when

Table 1 MRI protocol

Sequence	Acquisition modality	Slice thickness/voxel size	Findings
T1-weighted	Three dimensions (3D), in axial or sagittal plane	< 1 mm isotropic	Grey matter atrophy
			Coronal plane: hippocampal atrophy
			Sagittal/axial plane: cortical atrophy
T2-FLAIR	Two-dimensions 2D axial/3D in sagittal plane	Minimum 1 mm for 3D, Minimum 3 mm for 2D	Atrophy, white and gray matter signal abnormalities
			Coronal plane: hippocampal signal abnormalities
TSE/FSE T2-weighted	2D axial	Minimum 3 mm	White and gray matter signal abnormalities
Diffusion-weighted imaging	2D axial	Minimum 3 mm for 2D	Recent ischemic lesions
T2*-weighted/SWI	Two-dimensional 2D axial/3D in sagittal plane	Minimum 1 mm for 3D, Minimum 3 mm for 2D	Microbleeds, superficial hemosiderosis, hemorrhages

Table 2 Qualitative visual assessment

What to check	How to report	What to report
Atrophy (in T1)	Evaluate size, symmetry, topography, associated findings	Ventricleomegaly and also disproportionate sulcal enlargement
Ventricles		Severe and diffuse enlargement (> 3 mm) associated to atrophy or small vessel disease
Perivascular spaces	Evaluate size, symmetry, topography, associated findings	Enlargement of sulci and reduced gyri not related to a specific cause (e.g., infarcts)
Sulci And gyri	Evaluate each lobe separately, describing symmetry/ asymmetry and comparing some reference areas (usually the occipital sulci and gyri) to the most reduced ones	Reduced hippocampal volume and enlarged widening temporal horn and choroid fissure
Medial temporal lobe	Evaluate each lobe separately, describing symmetry/ asymmetry	Microbleeds (size < 10 mm), superficial siderosis, macrobleeds
Parenchymal signal changes	Evaluate number, size, symmetry topography, territory/ pattern	Lacunes (size: recent ≤ 20 mm; chronic 3–15 mm) and infarcts
T2*/SWI changes		Enlargement of perivascular spaces
FLAIR/T2/T1 weighted		White matter changes (variable size, but > 1 mm)
Diffusion restriction		Recent infarcts and lacunes

Table 3 GCA-Koedam scale/score. GCA/Koedam score > 2 can be considered pathological

Gyri	Sulci	Gyri	Sulci
0	Normal volume	0	Normal width
1	Normal	1	Slight opening of sulci
2	Reduced	2	Enlarged
3	Severely reduced	3	Severely enlarged
4	Severely enlarged	4	Severely enlarged

Springer
Actuar a radiología médica (2022) 127:998–1022

normative reference values will be applied in a clinical setting to assess pathology in individual patients.

The new Alzheimer drugs (i.e., Aducanumab) are rapidly changing the clinical scenario and the role of MRI, leading to the need for specific MRI protocols and precise reporting of the side effects of ARIA (amyloid-related imaging abnormalities, referring to cerebral edema or microhemorrhages).

One of the next frontiers is the clinical application of artificial intelligence, as it can offer solutions and interpretation of complex, multimodal medical information, such as that provided by imaging (radiology and nuclear medicine), biology, and neurocognitive testing, thus improving the diagnostic and prognostic process. But the process of identifying international medico-legal rules is still at an early stage [51].

Table 4 Visual rating scale MTA-Scheltens

Score	Choroid fissure	Temporal horn	Hippocampal height
0	Normal	Normal	Normal
1	Widened	Normal	Normal
2	Moderately Widened	Widened	Reduced
3	Severely widened	Moderately widened	Moderately reduced
4	Severely widened	Severely widened	Severely reduced

Score based on the visual evaluation of the choroid fissures and temporal horns and hippocampi heights on a coronal T1 weighted image. The coronal section should be: (1) perpendicular to the long axis of both hippocampi, (2) symmetric, (3) placed at the level of the ventral pons or at the ponto-medullary sulcus. Each side should be rated and, in case of asymmetry, should be reported separately. Amygdala atrophy is part of this score and is performed by placing the previously described coronal section (1), (2), (3) anterior to the hippocampi MTA = 2, bilaterally, or if > 2: Abnormal at all ages MTA = 2, unilaterally: Abnormal in aged < 75 yrs MTA < 2, normal

Fig. 2 Axial T1 weighted images showing with increasing GCA score values from left (GCA = 0) to right (GCA = 3). The score reported is referred to the most affected brain area

Fig. 3 Axial T1 weighted images showing increasing parietal atrophy from left (Koedam = 0) to right (Koedam = 3)
Fig. 4 T1 weighted coronal images placed symmetrically and perpendicularly to the long axis of the hippocampi. Different grades of medial temporal lobe atrophy are shown, and they are rated both on the left and on the right hippocampi.

Table 5 Fazekas score

| Fazekas | Punctiform or early confluent white matter lesions (Fazekas score 0–1) in periventricular or subcortical distribution is generally normal in aging. Fazekas score 2 can be considered normal in subjects of more than 70 years old. Confluent lesions (Fazekas score 3) indicate a risk of cognitive decline and physical impairment [69]. |

Table 6 ARWMC rating scale for WMLs on MR imaging and CT

WMLs	Basal ganglia lesions
0	No lesions (may include symmetric, well-defined caps or bands)
1	Focal lesions
2	Beginning confluence of lesions
3	Diffuse involvement of the entire region, with or without involvement of U-fibers
0	No lesions
1	1 focal lesion (3–5 mm)
2	> 1 focal lesion
3	Confluent lesions

Lesions are counted for the left and right hemispheres separately in these brain areas: frontal, parieto-occipital, temporal, infratentorial/cerebellum, and basal ganglia (striatum, globus pallidus, thalamus, internal/external capsule, and insula). For each of these regions, therefore, the sum score of the left and right hemispheres is from 0 to 6.
Discussion

To complement what was presented in the results, the main practical recommendation that emerged is to try to fit all the radiological steps presented—MRI protocol (B), image evaluation and interpretation (C), and reporting (D)—to the clinical diagnosis. Unfortunately, in radiological practice, there are still several general obstacles to this [74], such as:

1. reduced confidence about the most correct approach to reading images (especially in the use of scales and volumetry),
2. report variability (with no use of structured or guided reports), and
3. generic requisition forms that do not

Fig. 6 Axial GRE T2*. On the left image and middle images, infratentorial [pons (n. 1), left middle cerebellar peduncle (n. 1) and hemisphere (n. 1)] and deep [right thalamus (n. 5), posterior putamen (n. 1)] microbleeds, correlated to systemic hypertension. On the right image 3 lobar microbleeds associated with Fazekas 3, in keeping with amyloid angiopathy.

Fig. 7 Three-dimensional brain rendering showing an example of quantitative analysis. Yellow and pink colors indicate the brain areas which are respectively below the 5 and 25 percentiles of the reference population (measures normalized to the intracranial volume). Powered by QyScore®
allow radiologists to conclude whether imaging results are in line with clinical suspicion. The latter problem could be solved by better communication among specialists (e.g., at interdisciplinary meetings), which is essential in challenging clinical settings.

The use of all proposed scores is highly recommended, possibly accompanied by a visual description, except for MARS—which in routine is best replaced by a description of the number and distribution of microbleeds, according to the major patterns (superficial distribution in cerebral amyloid angiopathy versus deep infratentorial localization in hypertension)—and for the SVD score—which can be replaced by a description of the findings of small vessel disease according to the priority of their clinical relevance.

Although MRI findings are diagnostic only for a few conditions (e.g., late-onset AD, vascular dementia, CAA, iNPH, etc.), they support the clinical diagnosis of all forms of dementia (see Boxes, above) and provide important information on differential diagnosis, overlapping/coexisting forms (e.g., AD and VaD; FTLD and VaD; DLB and VaD), and possible side effects of new drugs.

More generally, neuroimaging is crucial for the diagnosis of dementia and is recommended in every patient with cognitive decline. In older adults, especially in the oldest old or in patients with multiple comorbidities, severe disability or behavioral disorders, completion of an MRI or nuclear imaging protocol can be troublesome, due to limited collaboration. The indications for the examination should be discussed with the treating physicians, ideally in a multidisciplinary team. Limited to these cases, volumetric CT is acceptable [2], at least to rule out some secondary and potentially reversible causes of cognitive impairment, such as subdural hematoma or brain masses.

Conclusions

The diagnostic process of cognitive disorders requires a combined assessment of the clinical picture and imaging, including CT, MRI, and nuclear medicine, and can only be achieved through the dialogue between disciplines and
the ongoing review of shared knowledge, information, and reports.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s11547-022-01534-0.

Acknowledgements AINR (Associazione Italiana di NeuroRadiologia diagnostica ed interventistica), AIP (Associazione Italiana di Psicogeriatría), SIGG (Società Italiana di Geriatria e Gerontologia), SIRM (Società Italiana di Radiologia Medica e interventistica).

Authors’ contributions The conception of the study was done by Francesca B. Pizzini (FBP), Giovanni B. Frisoni (GBF) and Stefano Bastianello (SB). The study design was done by FBP, GBF and SB. Images collection was done by FBP and GBF. First drafting was done by FBP and EC and revised by all the authors/experts. Editing and final approval was done by all the authors/experts.

Funding Open access funding provided by Università degli Studi di Verona within the CRUI-CARE Agreement. None.

Availability of data and materials Data sharing is not applicable to this article as no datasets were generated.

Declarations

Competing interests The authors declare that they have no competing interests.

Ethics approval and consent to participate Not applicable.

Consent for publication Not applicable.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. You must obtain special permission from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Alzheimer’s Association. (2018) 2018 Alzheimer’s disease facts and figures. Alzheimer’s Dementia 14:367–429. https://doi.org/10.1016/j.jalz.2018.02.001
2. Auriel E, Charidimou A, Gurol ME et al (2016) Validation of clinicoradiological criteria for the diagnosis of cerebral amyloid angiopathy-related inflammation. JAMA Neurol 73:197–202. https://doi.org/10.1001/jamaneurol.2015.4078
3. Banerjee G, Carare R, Cordonnier C et al (2017) The increasing impact of cerebral amyloid angiopathy: essential new insights for clinical practice. J Neurol Neurosurg Psychiatry 88:982–994. https://doi.org/10.1136/jnnp-2016-314697
4. Bartsch AJ, Homola G, Biller A et al (2007) Manifestations of early brain recovery associated with abstinence from alcoholism. Brain 130:36–47. https://doi.org/10.1093/brain/awl303
5. Bavis J, Reynolds P, Tegeler C, Clark P (2003) Asymmetric neuroimaging in Creutzfeldt-Jakob disease: a ruse. J Neuroimaging 13:376–379
6. Bejanin A, Schönhaut DR, La Joie R et al (2017) Tau pathology and neurodegeneration contribute to cognitive impairment in Alzheimer’s disease. Brain 140:3286–3300. https://doi.org/10.1093/brain/awx243
7. Bethlehem RAI, Seidlitz J, White SR et al (2022) Brain charts for the human lifespan. Nature. https://doi.org/10.1038/s41586-022-04554-y
8. Boccardi M, Nicolosi V, Fестиari C et al (2020) Italian consensus recommendations for a biomarker-based aetiological diagnosis in mild cognitive impairment patients. Eur J Neurol 27:475–483. https://doi.org/10.1111/ene.14117
9. Boukobza M, Illic-Habensus E, Duval X, Laissy J-P (2020) Acute convexity subarachnoid hemorrhage (cSAH) in infectious endocarditis (IE): imaging features and follow-up. J Neurol 267:2971–2982. https://doi.org/10.1007/s00415-020-09953-7
10. García C, de León S, Cabello JP, Ortiz R, Vaamonde J (2018) Parkinsonism associated with pathologic 123I-FP-CIT SPECT (DaTSCAN) Results as the initial manifestation of sporadic Creutzfeldt–Jakob disease. Case Rep Neurol Med 2018:1–3. https://doi.org/10.1155/2018/5157275
11. Charidimou A, Linn J, Vernooij MW et al (2015) Cortical superficial siderosis: detection and clinical significance in cerebral amyloid angiopathy and related conditions. Brain 138:2126–2139. https://doi.org/10.1093/brain/awv162
12. Cohen OS, Hoffmann C, Lee H et al (2009) MRI detection of the cerebral syndrome in Creutzfeldt-Jakob disease. Cerebellum 8:373–381. https://doi.org/10.1007/s12311-009-0106-8
13. Day GS, Gordon BA, Perrin RJ et al (2018) In vivo [18F]-AV-1451 tau-PET imaging in sporadic Creutzfeldt-Jakob disease. Neurology 90:e896–e906. https://doi.org/10.1212/WNL.0000000000005064
14. Deng F, Sharma R (2016) Modified Boston criteria for cerebral amyloid angiopathy. Radiopaedia.org. https://doi.org/10.33347/rfID-48897
15. Di Giuliano F, Minosse S, Piccirri E et al (2021) Qualitative and quantitative analysis of 3D T1 silent imaging. Radiol med 26:912–921. https://doi.org/10.1093/jnr/imoa.2005.03.012
16. Eckert T, Barnes A, Dhawan V et al (2005) FDG PET in the differential diagnosis of parkinsonian disorders. Neuroimage 26:912–921. https://doi.org/10.1016/j.neuroimage.2005.03.012
17. Fazekas F, Chawluk J, Alavi A et al (1987) MR signal abnormalities at 1.5 T in Alzheimer’s disease and normal aging. Am J Roentgenol 149:351–356. https://doi.org/10.2214/ajr.149.2.351
18. Frisoni GB, Boccardi M, Barkhof F et al (2017) Strategic roadmap for an early diagnosis of Alzheimer’s disease based on biomarkers. The Lancet Neurology 16:661–676. https://doi.org/10.1016/S1474-4422(17)30159-X
19. Gazdzinski S, Durazzo TC, Mon A et al (2010) Cerebral white matter injury in alcoholics—a multimodality magnetic resonance study. Brain 133:1043–1053. https://doi.org/10.1093/brain/awp343
20. Gorno-Tempini ML, Hillis AE, Weintraub S et al (2011) Classification of primary progressive aphasia and its variants. Neurology 76:1006–1014. https://doi.org/10.1212/WNL.0b013e31821103e6
21. Graff-Radford J, Murray ME, Lowe VJ et al (2014) Dementia with Lewy bodies: basis of cingulate island sign. Neurology 83:801–809. https://doi.org/10.1212/WNL.0000000000000734
22. Greenberg SM, Charidimou A (2018) Diagnosis of cerebral amyloid angiopathy: evolution of the Boston Criteria. Stroke 49:491–497. https://doi.org/10.1161/STROKEAHA.117.016990

23. Gregoire SM, Chaudhary UJ, Brown MM et al (2009) The Microbleed Anatomical Rating Scale (MARS): reliability of a tool to map brain microbleeds. Neurology 73:1759–1766. https://doi.org/10.1212/WNL.0b013e3181c34a7d

24. Gregoire SM, Jäger HR, Yousry TA et al (2010) Brain microbleeds as a potential risk factor for antiplatelet-related intracerebral haemorrhage: hospital-based, case-control study. J Neurol Neurosurg Psychiatry 81:679–684. https://doi.org/10.1136/jnnp.2009.198994

25. Gunbey HP, Has AC, Aslan K et al (2021) Microstructural white matter abnormalities in hypothyroidism evaluation with diffusion tensor imaging tract-based spatial statistical analysis. Radiol med 126:283–290. https://doi.org/10.1016/j.rmed.2020.01.01234-7

26. Gurol ME, Dierksen G, Betensky R et al (2012) Predicting sites of new hemorrhage with amyloid imaging in cerebral amyloid angiopathy. Neurology 79:320–326. https://doi.org/10.1212/WNL.0b013e31826043a9

27. Hamaguchi T, Kitamoto T, Sato T et al (2005) Clinical diagnosis of MM2-type sporadic Creutzfeldt–Jakob disease. Neurology 64:643–648. https://doi.org/10.1212/01.WNL.0000151847.57956.FA

28. Harding A, Halliday G, Caine D, Kril J (2000) Degeneration of anterior thalamic nuclei differentiates alcoholics with amnesia. Brain 123(Pt 1):141–154. https://doi.org/10.1093/brain/123.1.141

29. Hassan A, Whitwell JL, Boeve BF et al (2010) Symmetric corticobasal degeneration (S-CBD). Parkinsonism Relat Disord 16:208–214. https://doi.org/10.1016/j.parkreldis.2009.11.013

30. Hogan DB, Jetté N, Fiest KM et al (2016) The prevalence and incidence of frontotemporal dementia: a systematic review. Can J Neurol Sci 43(Suppl 1):S96–S109. https://doi.org/10.1017/cjn.2016.25

31. Ishii K, Kanda T, Harada A et al (2008) Clinical impact of the callosal angle in the diagnosis of idiopathic normal pressure hydrocephalus. Eur Radiol 18:2678–2683. https://doi.org/10.1007/s00330-008-1044-4

32. Johnson JK, Diehl J, Mendez MF et al (2005) Frontotemporal lobar degeneration: demographic characteristics of 353 patients. Arch Neurol 62:925–930. https://doi.org/10.1001/archneur.62.6.925

33. Khurram A, Kleinig T, Leyden J (2014) Clinical associations and presentations of early-onset Alzheimer’s disease. Am J Alzheimers Dis Other Demen 29:413–420. https://doi.org/10.1177/153331751454711

34. Koedam ELGE, Lehmann M, van der Flier WM et al (2011) Greater incidence of frontotemporal dementia: a systematic review. Curr Alzheimer Res 8:1153. https://doi.org/10.2174/0266243117962523

35. Lee SE, Rabinovici GD, Mayo MC et al (2011) Clinicalpathological correlations in corticobasal degeneration. Ann Neurol 70:327–340. https://doi.org/10.1002/ana.22424

36. Linn J, Halpin A, Demaerel P et al (2010) Prevalence of superficial siderosis in patients with cerebral amyloid angiopathy. Neurology 74:1346–1350. https://doi.org/10.1212/WNL.0b013e3181dad605

37. Lummel N, Wollenweber FA, Demaerel P et al (2015) Clinical spectrum, underlying etiologies and radiological characteristics of cortical superficial siderosis. J Neurol 262:1455–1462. https://doi.org/10.1007/s00415-015-7736-1

38. Manners DN, Parchi P, Tonon C et al (2009) Pathologic correlates of diffusion MRI changes in Creutzfeldt–Jakob disease. Neurology 72:1425–1431. https://doi.org/10.1212/WNL.0b013e3181a18846

39. Matías-Guija JA, Guerrero-Márquez C, Cabrera-Martín MN et al (2017) Amyloid- and FDG-PET in sporadic Creutzfeldt–Jakob disease: correlation with pathological prion protein in neuropathology. Prion 11:205–213. https://doi.org/10.1080/1936896.2017.1314427

40. Meissner B, Kallenberg K, Sanchez-Juan P et al (2009) MRI lesion profiles in sporadic Creutzfeldt–Jakob disease. Neurology 72:1994–2001. https://doi.org/10.1212/WNL.0b013e3181a96e5d

41. Mendez MF (2019) Early-onset Alzheimer disease and its variants. Contin Lifelong Learn Neurol 25:34–51. https://doi.org/10.1212/CON.0000000000000687

42. Mendez MF, Lee AS, Joshi A, Shapira JS (2012) Nonamnestic Presentations of early-onset Alzheimer’s disease. Am J Alzheimers Dis Other Demen 27:413–420. https://doi.org/10.1177/1533317512454711

43. Murray R, Neumann M, Forman MS et al (2007) Cognitive and motor assessment in autopsy-proven corticobasal degeneration. Neurology 68:1274–1283. https://doi.org/10.1212/01.wnl.0000259197.78480.e3

44. Nagahama Y, Fukuyama H, Turjanski M et al (1997) Cerebral glucose metabolism in corticobasal degeneration: comparison with progressive supranuclear palsy and normal controls. Mov Disord 12:691–696. https://doi.org/10.1002/mds.870120510

45. Nakajima M, Yamada S, Miyajima M et al (2021) Guidelines for management of idiopathic normal pressure hydrocephalus (third edition): endorsed by the Japanese Society of Normal Pressure Hydrocephalus. Neurol Med Chir (Tokyo) 61:63–97. https://doi.org/10.2176/nmc.st.2020-0292

46. Nandigam RNK, Viswanathan A, Delgado P et al (2009) MR imaging detection of cerebral microbleeds: effect of susceptibility-weighted imaging, section thickness, and field strength. AJNR Am J Neuroradiol 30:338–343. https://doi.org/10.3174/ajnr.A1355

47. Pasi M, Cordonnier C (2020) Clinical relevance of cerebellar small vessel diseases. Stroke 51:47–53. https://doi.org/10.1161/STROKEAHA.119.024148

48. Pasi M, Pongpitakmetha T, Charidimou A et al (2019) Cerebellar microbleed distribution patterns and cerebral amyloid angiopathy. Stroke 50:1727–1733. https://doi.org/10.1161/STROKEAHA.119.024843

49. Pasquier F, Leys D, Weerts JGE et al (1996) Inter-and Intraobserver reproducibility of cerebral atrophy assessment on MRI scans with hemispheric inants. Eur Neurol 36:268–272. https://doi.org/10.1159/000117270

50. Pitol A-L, Chételat G, Le Berre AP et al (2012) Macrostructural abnormalities in Korsakoff syndrome compared with uncomplicated alcoholism. Neurology 78:1330–1333. https://doi.org/10.1212/WNL.0b013e318251834e

51. Pizzini FB, Pesapane F, Niessen W et al (2020) ESMRMB round table report on “can europe lead in machine learning of MRI-data?” Magn Reson Mater Phy 33:217–219. https://doi.org/10.1007/s10334-019-00821-8

52. Rabinovici GD (2019) Late-onset Alzheimer Disease. CONTINUUM: Lifelong Learning in Neurology 25:14–33. https://doi.org/10.1212/CON.0000000000000700

53. Rademakers R, Neumann M, Mackenzie IR (2012) Advances in understanding the molecular basis of frontotemporal dementia. Nat Rev Neurol 8:423–434. https://doi.org/10.1038/nrneurol.2012.117

54. Relkin N, Marmarou A, Klinge P et al (2005) Diagnosing idiopathic normal-pressure hydrocephalus. Neurosurgery 57:S24–S216. https://doi.org/10.1227/01.NEU.0000168185.29659.C5

55. Rodrigues MA, Samarasekera N, Lerpiniere C et al (2018) The Edinburgh CT and genetic diagnostic criteria for lobar
intracerebral haemorrhage associated with cerebral amyloid angiopathy: model development and diagnostic test accuracy study. Lancet Neurol 17:232–240. https://doi.org/10.1016/S1474-4422(18)30006-1
56. Román GC, Tatenchik TI, Erkinjuntti T et al (1993) Vascular dementia: diagnostic criteria for research studies. Report of the NINDS-AIREN international workshop. Neurology 43:250–260. https://doi.org/10.1212/WNL.43.2.250
57. Rotman J, Zimmerman R (2016) Patterns of ischemic stroke from Lacunar to territorial to multiple embolic to watershed hypoten- sive. In: Saba L, Raz E (eds) Neurovascular imaging. Springer, New York, pp S329–S362
58. Sachdev P, Kalaria R, O’Brien J et al (2014) Diagnostic criteria for vascular cognitive disorders: A VASCOG statement. Alzheimer Dis Assoc Disord 28:206–218. https://doi.org/10.1097/WAD.000000000000034
59. Savoiardo M, Grisoli M, Girotti F (2000) Magnetic resonance imaging in CBD, related atypical parkinsonism disorders, and dementias. Adv Neurol 82:197–208
60. Scheltens P, Launer LJ, Barkhof F et al (1995) Visual assessment of medial temporal lobe atrophy on magnetic resonance imaging: interobserver reliability. J Neurol 242:557–560. https://doi.org/10.1007/BF00868807
61. Schroeter ML, Raczka K, Neumann J, Yves von Cramon D (2007) Towards a nosology for frontotemporal lobar degenerations—a meta-analysis involving 267 subjects. Neuroimage 36:497–510. https://doi.org/10.1016/j.neuroimage.2007.03.024
62. Schroth G, Naegel T, Klose U et al (1988) Reversible brain shrinkage in abstinent alcoholics, measured by MRI. Neuroradiology 30:385–389. https://doi.org/10.1007/BF00404102
63. Seeley WW (2019) Behavioral variant frontotemporal dementia. The Karolinska imaging dementia study. AJNR Am J Neuroradiol 40:1737–1741. https://doi.org/10.3174/ajnr.A6373
64. Shams S, Fällmar D, Schwarz S et al (2017) MRI of the swallow impairment in corticobasal degeneration. Arch Neurol 55:609–613. https://doi.org/10.1001/jamaneurol.2017.0701
65. Seeley WW (2019) Behavioral variant frontotemporal dementia. Contiu Lifelong Learn Neurol 25:76–100. https://doi.org/10.1212/CON.0000000000000698
66. Shams S, Füllmar D, Schwarz S et al (2017) MRI of the swallow tail sign: a useful marker in the diagnosis of Lewy body dementia? AJNR Am J Neuroradiol 38:1737–1741. https://doi.org/10.3174/ajnr.A5274
67. Shams S, Martola J, Cavallin L et al (2015) SWI or T2*: which MRI sequence to use in the detection of cerebral microbleeds? The Karolinska imaging dementia study. AJNR Am J Neuroradiol 36:1089–1095. https://doi.org/10.3174/ajnr.A4248
68. Sibon I, Foubert A, Menegon P et al (2005) Creutzfeldt–Jakob disease mimicking radiologic posterior reversible leukoencepha- lopathy. Neurology 65:329. https://doi.org/10.1212/01.wnl.0000175231.07913.e2
69. Soliveri P, Monza D, Paridi D et al (1999) Cognitive and magnetic resonance imaging aspects of corticobasal degeneration and progressive supranuclear palsy. Neurology 53:502–507. https://doi.org/10.1212/wnl.53.3.502
70. Sperling R, Salloway S, Brooks DJ et al (2012) Amyloid-related imaging abnormalities in patients with Alzheimer’s disease treated with bapineuzumab: a retrospective analysis. Lancet Neurol 11:241–249. https://doi.org/10.1016/S1474-4422(12)70015-7
71. Staals J, Makin SDJ, Doubal FN et al (2014) Stroke subtype, vascular risk factors, and total MRI brain small-vessel disease burden. Neurology 83:1228–1234. https://doi.org/10.1212/WNL.0000000000000837
72. Svenningsson P (2019) Corticobasal degeneration: advances in clinicopathology and biomarkers. Curr Opin Neurol 32:597–603. https://doi.org/10.1097/WCO.0000000000000707
73. Ter Tolgte A, Scherlek AA, Reijmer YD et al (2020) Histopathology of diffusion-weighted imaging-positive lesions in cerebral amyloid angiopathy. Acta Neuropathol 139:799–812. https://doi.org/10.1007/s00401-020-02140-y
74. Tsai H-H, Pasi M, Tsai L-K et al (2021) Centrum semiovale perivascular space and amyloid deposition in spontaneous intracerebral hemorrhage. Stroke 52:2356–2362. https://doi.org/10.1161/STROKEAHA.120.032139
75. Vernooij MW, Jasperse B, Stokete R et al (2018) Automatic normative quantification of brain tissue volume to support the diagnosis of dementia: a clinical evaluation of diagnostic accuracy. NeuroImage Clin 20:374–379. https://doi.org/10.1016/j.nicl.2018.08.004
76. Winblad B, Amouyel P, Andrieu S et al (2016) Defeating Alzheimer’s disease and other dementias: a priority for European science and society. Lancet Neurol 15:455–532. https://doi.org/10.1016/S1474-4422(16)00062-4
77. Xia C, Makaretz SJ, Caso C et al (2017) Association of in vivo [18F]AV-1451 Tau PET imaging results with cortical atrophy and symptoms in typical and atypical Alzheimer disease. JAMA Neurol 74:427. https://doi.org/10.1001/jamaneurol.2016.5755
78. Yamauchi H, Fukuyama H, Nagahama Y et al (1998) Atrophy of the corpus callosum, cortical hypometabolism, and cognitive impairment in corticobasal degeneration. Arch Neurol 55:609–614. https://doi.org/10.1001/archneur.55.5.609
79. Zhou Y, Li J, Nordberg A, Ågren H (2021) Dissecting the binding profile of PET tracers to corticobasal degeneration tau fibrils. ACS Chem Neurosci 12:3487–3496. https://doi.org/10.1021/acschemneuro.1c00536
80. Zipursky RB, Lim KC, Pfefferbaum A (1989) MRI study of brain burden. Neurology 83:1228–1234. https://doi.org/10.1212/0000000000000837

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Authors and Affiliations

Francesca B. Pizzini1 · Enrico Conti2 · Angelo Bianchetti3,4,5 · Alessandra Splendiani6 · Domenico Fusco7 · Ferdinando Caranci8 · Alessandro Bozzao9 · Francesco Landi7 · Nicoletta Gandolfo10 · Lisa Farina11 · Vittorio Miele12 · Marco Trabucchi4,5,13 · Giovanni B. Frisoni14 · Stefano Bastianello11,15

Enrico Conti
enrico.conti.17@gmail.com

Angelo Bianchetti
angelo.bianchetti.58@gmail.com

Alessandra Splendiani
alessandra.splendiani@cc.univaq.it

Domenico Fusco
domenico.fusco@policlinicogemelli.it

Ferdinando Caranci
ferdinando.caranci@unicampania.it

Alessandro Bozzao
alessandro.bozzao@uniroma1.it

Francesco Landi
francesco.landi@policlinicogemelli.it

Nicoletta Gandolfo
ngandolfo@sirm.org

Lisa Farina
lisa.farina@mondino.it

Vittorio Miele
mielev@aou-careggi.toscana.it

Marco Trabucchi
trabucchi.m@grg-bs.it

Giovanni B. Frisoni
giovanni.frisoni@hcuge.ch

Stefano Bastianello
stefano.bastianello@unipv.it

1 Radiology, Department of Diagnostic and Public Health, University of Verona, Piazzale L.A. Scuro, 10, 37100 Verona, Italy

2 Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy

3 Department of Medicine and Rehabilitation, Clinical Institute S. Anna-Gruppo San Donato, Brescia, Italy

4 Italian Society of Gerontology and Geriatrics (SIGG), Florence, Italy

5 Italian Association of Psychogeriatrics (AIP), Brescia, Italy

6 Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy

7 Foundation Policlinico Universitario A. Gemelli IRCCS, Rome, Italy

8 Department of Medicine of Precision, School of Medicine, “Luigi Vanvitelli” University of Campania, 80147 Naples, Italy

9 NEMOS, Department of Neuroradiology, S. Andrea Hospital, University Sapienza, Rome, Italy

10 Diagnostic Imaging Department, Villa Scassi Hospital-ASL 3, Corso Scassi 1, Genoa, Italy

11 Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy

12 Dipartimento Di Radiodiagnostica Emergenza-Urgenza, Azienda Universitaria Careggi, Florence, Italy

13 University of “Tor Vergata”, Rome, Italy

14 Centre de La Mémoire, Geneva University and University Hospitals, 1205 Geneva, Switzerland

15 Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy