Article Type:
Research Paper

Original Title of Article:
An investigation of grade level and gender-based science achievement gaps in schools with different science achievement levels

Turkish Title of Article:
Farklı fen başarı düzeylerine sahip okullarda sınıf düzeyi ve cinsiyete dayalı fen başarı farklılıklarının araştırılması

Author(s):
Ömer ACAR

For Cite in:
Acar, Ö. (2020). An investigation of grade level and gender-based science achievement gaps in schools with different science achievement levels. Pegem Eğitim ve Öğretim Dergisi, 10(1), 01-16. http://dx.doi.org/10.14527/pegegog.2020.001

Makale Türü:
Özgün Makale

Orijinal Makale Başlığı:
An investigation of grade level and gender-based science achievement gaps in schools with different science achievement levels

Makalenin Türkçe Başlığı:
Farklı fen başarı düzeylerine sahip okullarda sınıf düzeyi ve cinsiyete dayalı fen başarı farklılıklarının araştırılması

Yazar(lar):
Ömer ACAR

Kaynak Gösterimi İçin:
Acar, Ö. (2020). An investigation of grade level and gender-based science achievement gaps in schools with different science achievement levels. Pegem Eğitim ve Öğretim Dergisi, 10(1), 01-16. http://dx.doi.org/10.14527/pegegog.2020.001
An investigation of grade level and gender-based science achievement gaps in schools with different science achievement levels

Ömer ACAR *a
Kocaeli University, College of Education, Kocaeli/Turkey

Abstract
Science achievement gap between fifth, sixth, and eighth grades and boys and girls in low and high performing schools were under investigation in the present study. In accordance with this purpose, three schools were selected to represent high performing schools and two schools were selected to represent low achieving schools for their performance on a nationwide exam. A total of 612 fifth, 816 sixth, and 604 eighth grade students in high achieving schools and 231 fifth, 364 sixth, and 328 eighth grade students in low achieving schools constituted the study sample. Students’ end of semester science grades were used as their science achievement measure. Results showed that students’ science achievement decreased from 5th grade to upper grades both in low and high achieving schools. In addition, they showed girls’ science achievement was higher than boys in several grade levels both in low and high achieving schools. Finally, results showed that science achievement gap between genders is more evident in high achieving schools.

Keywords:
Science achievement, Achievement, Gender.

Article Type:
Research paper

Farklı fen başarı düzeylerine sahip okullarda sınıf düzeyi ve cinsiyete dayalı fen başarı farklılıklarının araştırılması

Makale Bilgisi

DOI: 10.14527/pegelog.2020.001

Makale Geçmişi:
Geliş 19 Şubat 2019
Düzeltme 26 Temmuz 2019
Kabul 06 Ekim 2019
Çevrimiçi 24 Aralık 2019

Anahtar Kelimeler:
Fen başarı, Başarı, Cinsiyet.

Makale Türü:
Özgün makale

Öz
Bu çalışmada, düşük ve yüksek performans gösteren okullarda beşinci, altıncı ve sekizinci sınıfta okuyan öğrenciler ile kız ve erkek öğrenciler arasındaki fen başarı farklılıkları incelenmiştir. Bu amaç doğrultusunda yüksek başarılı okulların temsilen Temel Eğitimden Ortaöğretim Geçiş Sınavı’nda merkez ilçede en başarılı on okul içinden üçü ve düşük başarılı okulların temsilen ise başarı sıralamasına göre son on okul içinden ikişi seçilmiştir. Çalışma örneklemini, yüksek başarılı okullarda toplam 612 beşinci, 816 altıncı ve 604 sekizinci sınıf öğrencisi; düşük başarılı okullarda ise 231 beşinci, 364 altıncı ve 328 sekizinci sınıf öğrencisi oluşturmıştır. Öğrencilerin fen bilimleri dersi dönem son notları fen başarı ölçütü olarak kullanılmıştır. Sonuçlar öğrencilerin fen başarısının hem düşük hem de yüksek başarı(levels) arasında beşinci sınıfın üst sınıflara gidebilme düzeyini göstermiştir. Ayrıca sonuçlar, kız öğrencilerin fen başarısının hem düşük hem de yüksek başarı(levels) olarak olduğu ve erkek öğrenciler arasındaki fen başarı farkının, yüksek başarı gösteren okullarda daha belirgin olduğunu göstermiştir.

* Author: acarok@gmail.com
Orcid ID: https://orcid.org/0000-0002-9369-5539
Introduction

The importance of raising scientifically literate students, who will be citizens of their country and take active roles in solving their countries’ future problems, is emphasized in both national and international educational reports related to education (Ministry of National Education [MEB], 2013, 2017; NGSS Lead States, 2013). From the perspectives of raising scientific literate citizens and science for all, reducing the science achievement gaps between students is necessary and this situation is closely related to a nation’s scientific and economic stance in the future with regard to other nations (MEB, 2013, 2017; National Research Council, 1996; NGSS Lead States, 2013). Therefore science achievement gap between different student populations in Turkey which has been revealed in the results of national and international assessments is a problematic circumstance for policy makers in education (Alacacı & Erbaş, 2010; Dincer & Uysal, 2010; Eğitim Araştırmaları ve Geliştirme Dairesi Başkanlığı [EARGED], 2009).

In this respect, science achievement gap observed between schools is one of the major problems related to science education in Turkey (Alacacı & Erbaş, 2010; The Organisation for Economic Co-operation and Development [OECD], 2016a, 2016b; Yıldırım, Yıldırım, & Ceylan, 2017). The results of the studies which examined national or international student performance assessments are consistent on the issue that there is a considerable science achievement gap between low achieving schools (LAS) and high achieving schools (HAS) in Turkey (Acar, 2017; EARGED, 2009; OECD, 2013, 2016b). To gain more insight to the reasons behind this achievement gap, studies have compared several characteristics of LAS and HAS. Results of these studies show that LAS and HAS differ by their socio-economic profile (Alacacı & Erbaş, 2010; Dincer & Uysal, 2010), geographical region (Sirin, 2005), educational resources, instructional time and teachers’ use of science instruction method (Ceylan & Berberoglu, 2007; Kalender & Berberoglu, 2009; Martin, Mullis, Foy, & Stanco, 2012; OECD, 2016a).

Studies also demonstrate that Turkish students’ science motivation and achievement decrease and their undesirable attitudes toward science increase as grade level increases. For instance, Cavas (2011) found that students’ interest in science learning and motivation in science lesson decreased, and negative attitudes toward science increased as their grade level increased from 6th to 8th grade. Akinar, Yıldız, Tatlar and Ergin (2009) showed that students’ interest towards science, enjoyment from science and science experiments decreased whereas their science anxiety increased as their grade level increased from 6th grade to 8th grade. Similarly, Senler and Sungur (2009) found that middle school students’ (6th and 8th grades) self-concept and task value beliefs in science lesson were lower than that of elementary school students (4th and 5th grades). Finally, Bursal (2013) found that 7th and 8th graders’ science achievement was significantly lower than that of their previous grades. In conclusion, findings of these studies show that interests and motivations related to science of middle school students decrease and undesirable attitudes towards science among them increase as their grade level increases. The reasons for this undesirable situation can be listed as science curriculum being more abstract for later grades, the use of ineffective teaching methods and techniques, emphasis more on students’ performance assessment rather than their participation to the science lesson, student’s negative prejudice against science, and other family and society based factors (Akinar et al., 2009; Cavas, 2011; Senler & Sungur, 2009).

On the other hand, there is also science achievement gap in middle school years between genders in favor of girls in Turkey. This result has also been pronounced by reports of Program for International Student Assessment that were published over the years (e.g., OECD, 2013, 2016b). Results of national student performance assessments also reveal that girls outperform boys in science (e.g., Atalın, Avgın, Demir, & Yıldırım, 2016; Bursal, 2013; EARGED, 2009). Furthermore, this superiority is also evident in the comparisons of in-class science examinations and grades (Acar, Türkmen, & Bilgin, 2015; Boz, Yerdelen-Damar, Aydemir, & Aydemir, 2016; Bursal, 2013; Engin-Demir, 2009). Even Bursal (2013) has revealed that this gender based achievement gap widens as grade level increases.
Problem Statement

Although Bursal (2013) showed that decrease in grade level achievement starts by 7th grade and is still evident in the 8th grade, the author did not investigate this issue in LAS and HAS contexts. That is to say, little is known about the relation of this result to grade and gender level differences in LAS and HAS. Investigation of these achievement gaps separately for LAS and HAS is meaningful because these schools differ considerably by their school SES index, educational staff profile, and educational resources they provide (Atar, 2014; Hacieminoğlu, Ertepınar, Yılmaz-Tüzün, & Çakır, 2015; Martin et al., 2012; Sirin, 2005). In addition to scarcity of studies examining grade level achievement differences in LAS and HAS, small number of studies examined the gender-based science achievement gap in LAS and HAS. A study by Bursal, Buldur and Dede (2015) sought gender-based science achievement gap in schools with low SES index. The authors found that girls score higher than boys in science starting from the 5th grade and this achievement gap seems to increase through later grades. However, this study is limited in that it did not take into account gender-based achievement gap in HAS context. Major driving research motivation for the present study is to identify the achievement gaps by grade level and gender separately for HAS and LAS to help policymakers in education take necessary precautions for reducing achievement gaps in these contexts. This study aims to fill these aforementioned gaps in the literature by addressing the following research questions:

1. What are the science achievement differences between grade levels in LAS and HAS?
2. Is there any science achievement difference between boys and girls at the 5th, 6th, and 8th grade in LAS and HAS?
3. Does gender-based science achievement gap differ by grade level in LAS and HAS?

Method

Research Design

In this study, whether the independent variables (i.e., grade level and gender) would make a difference on the dependent variable (i.e., science achievement) is examined. Correlational comparative survey research model matches appropriately with this research aim. Groups are formed according to the independent variables and any difference regarding the dependent variable between these groups is examined in this model (Karasar, 2009).

Sample

This research was implemented in a metropolitan city in Turkey. Three criteria were taken into consideration for selecting LAS and HAS. First, both LAS and HAS must have been selected from state schools because achievement gap between schools has been more evident in state schools. Second, LAS and HAS should have been selected from ten lowest and ten highest performing schools respectively in this city in a nationwide student exam which was used to place students in high schools. Finally, LAS should have been selected from a district in which mostly people with low socio-economic status were living and HAS should have been selected from a district in which mostly people with high socio-economic status were living because students were accepted to middle schools based on their residence in Turkey. The last two criteria were necessary for maintaining the properties of these school types which were determined in the literature. As a consequence, three schools were selected as representing HAS and two schools were selected as representing LAS which fitted into these criteria. To prove the appropriateness of this selection, separate one way analysis of variances (ANOVA’s) was performed for each grade level where the school type is the independent variable and the science semester grades are the dependent variable. It was observed that ANOVA results were consistent for each grade level. That is, students in HAS had higher science grades than their peers in LAS at the 5th grade ($M_{HAS} = 88.10$, $M_{LAS} = 71.39$, $F(1, 842) = 273.18; p < .00$), 6th grade ($M_{HAS} = 81.36$, $M_{LAS} = 65.18$, $F(1, 1178) = 266.71; p < .00$), and the 8th grade ($M_{HAS} = 82.52$, $M_{LAS} = 68.13$, $F(1, 930) = 143.03; p < .00$). Number of students for each grade level at LAS and HAS can be seen in Table 1.
Table 1. Distribution of Students according to Grade Level and Gender.

Grade Level	Gender	N	Total
HAS	Girl	288	612
	Boy	324	
	Girl	380	816
	Boy	436	
	Girl	309	604
	Boy	295	
LAS	Girl	96	231
	Boy	135	
	Girl	158	364
	Boy	206	
	Girl	145	328
	Boy	183	

Data Collection Tools

Science achievement: Students’ semester grades for science were used as science achievement measure. This measure was computed as a weighted average of the students’ performance in the following assessments: three in-class exams, in-class activity participation, and a project. It can be said that students’ science semester grades which were computed in this way are a more valid measure of science achievement because weighted average of both students’ examination and in-class performance assessments were taken into account in this measure. Besides, it was found that science course achievement, which was an average of student in-class performance assessments, had positive and statistically significant correlation with students’ scientific reasoning skills (Johnson & Lawson, 1998; Lawson, Banks, & Logvin, 2007). Similarly, Topçu and Yılmaz-Tüzün (2009) showed that 4th, 5th, 6th, and 8th grade students’ epistemological beliefs and metacognitive skills predicted their science semester grades significantly. In addition, results of the analyses of students’ semester grades found by Bursal (2013) are in accordance with results of analyses of students’ science scores in a national student science evaluation exam (EARGED, 2009). The fact that science semester grades have significant correlation with scientific reasoning skills, epistemological beliefs, and metacognitive skills which are important variables in science and the similarity of the results of the analyses of these grades with the results of the analyses of other science achievement measures show that these grades can be a valid measure of science achievement. Furthermore it was found that middle school students’ school achievement grades which were calculated by taking an average of their semester grades and their scores on a national student exam which were used to place students in high schools had high correlation coefficient which was above .70 (MEB, 2018).

Data Analysis

For answering the first research question, an ANOVA was performed in which grade level was the independent variable and science semester grade was the dependent variable. First, homogeneity of variances assumption was checked for this analysis. According to the results of the Levene test, homogeneity of variances assumption was not met for HAS (F(2, 2030) = 72.83, p < .05) but this assumption was met for LAS (F(2, 920) = .42, p > .05). Therefore, Welch’s adjusted F test was performed to test if group means were equal in HAS. When a significant result in Welch’s test was obtained then Games-Howell test for post-hoc comparisons was performed to pinpoint this significance. Since this assumption was met in LAS, ANOVA was performed directly in LAS. Then post-hoc comparisons with Bonferroni adjustment for experiment-wise alpha were performed when a significant result was obtained for LAS.
It was seen that ANOVA was appropriate for examining the second research question. Therefore, whether homogeneity of variances assumption was met for this analysis was investigated. Results showed that this assumption was not met at 5th and 8th grade (F(1, 610) = 7.03, p < .05; F(1, 602) = 16.17, p < .05 respectively) and met at 6th grade (F(1, 814) = 3.17, p > .05). On the other hand, this assumption was met at the 5th (F(1, 229) = .11, p > .05), 6th (F(1, 362) = 2.62, p > .05), and 8th grade (F(1, 326) = .85, p > .05) in LAS. As a conclusion, Welch’s test was performed for the grade levels where homogeneity of variances assumption was not met (i.e., 5th and 8th grades in HAS) and ANOVA was performed for other grade levels (i.e., 6th grade in HAS and 5th, 6th, and 8th grade in LAS).

For the third research question, the interaction term in a two way ANOVA was examined in which gender and grade level were independent variables. When a significant result was found from this analysis, then, planned comparisons were performed to pinpoint the place of this significance.

Results

Descriptive statistics related to students’ science semester grades for each grade level in LAS and HAS can be seen in Table 2. Welch’s adjusted F test was performed to test if the group means related to grade level were equal in HAS. Result of this test showed that grade level has an effect on science grades (F(2, 1278.17) = 54.63; p < .00). Results of Games-Howell test for post-hoc comparisons revealed that 5th grade students’ science grades (M = 88.10) were higher than those of 6th and 8th grade students (M = 81.36, M = 82.52 respectively; p < .00 for each comparison). However, the comparison between 6th and 8th grade students’ semester grades did not reveal any significant difference (p > .05). On the other hand, ANOVA performed for students in LAS also revealed a significant effect of grade level on science grades (F(2, 920) = 8.79; p < .00). Besides, results of post-hoc comparisons with Bonferroni adjustment showed that there was a significant difference only between 5th (M = 71.39) and 6th (M = 65.18) grade students’ semester grades (p < .00).

Table 2.
Science Final Grades according to School Type and Grade Level.

Grade Level	M	Sd
HAS		
5	88.10	11.12
6	81.36	14.68
8	82.52	17.34
LAS		
5	71.39	17.29
6	65.18	17.84
8	68.13	17.90

Table 3.
Science Final Grades According to Grade Level and Gender.

Grade Level	Gender	M	Sd
HAS	Girl	89.56	10.47
	Boy	86.78	11.52
6	Girl	82.41	13.82
	Boy	80.45	15.34
8	Girl	85.58	15.33
	Boy	79.31	18.72
LAS	Girl	74.60	16.93
	Boy	69.11	17.24
6	Girl	68.00	16.95
	Boy	63.01	18.25
8	Girl	70.17	18.20
	Boy	66.52	17.54
Mean and standard deviation scores related to science semester grades of boys and girls according to their grade level and schools type can be seen in Table 3. An ANOVA, where gender was the independent variable and science semester grade, the dependent variable, was performed for 6th grade and Welch's F test was performed both for 5th and 8th grades in HAS. Results of the Welch's F test showed that girls scored higher than boys at the 5th (F(1, 609.70) = 9.77; p < .01) and 8th grade (F(1, 568.47) = 20.18; p < .00) in HAS. However, it was found that this difference was not statistically significant at the 6th grade (F(1, 814) = 3.63; p > .05) in HAS according to the result of the ANOVA. On the other hand, ANOVA results for LAS showed that girls outperformed boys significantly at the 5th (F(1, 229) = 5.78; p < .05) and 6th grade (F(1, 362) = 7.10; p < .01) but achievement difference between genders did not reach to a significant level at the 8th grade (F(1, 326) = 3.39; p > .05).

Two way ANOVAs were performed both for LAS and HAS, where grade level and gender were independent variables, for the examination of the interaction between gender and grade level. Results showed that the interaction term between these two variables was significant for HAS (F(2, 2026) = 4.10; p < .05) but not for LAS (F(2, 917) = .21; p > .05). To pinpoint the place of this significant result in HAS, several comparisons were performed. First comparison revealed that gender-based science achievement difference was similar at the 5th and the 6th grades (F(1, 2026) = .28; p > .05). On the other hand, the result of the second comparison revealed that this difference was significant between 5th and 8th grades (F(1, 2026) = 4.41; p < .05). As can be observed from Table 3, this difference was higher in the 8th grade than the 5th grade. Similarly, the result of the third comparison showed that gender-based science achievement gap significantly differ between 6th and 8th grades (F(1, 2026) = 7.68; p < .01). As can be seen in Table 3, this difference is higher in the 8th grade.

Discussion, Conclusion & Implementation

There were three research questions that were investigated in the present study. The first research question was about the grade level science achievement differences in LAS and HAS. The second research question was related to gender-based science achievement differences at each grade level in LAS and HAS. Final research question concerned if the gender-based science achievement difference in both school types was similar between grade levels. Results regarding the first research question revealed that students’ science achievement decreased in HAS from the 5th grade to the 6th and 8th grades. In addition, they showed students’ science achievement decreased in LAS only from the 5th grade to the 6th grade. On the other hand, results regarding the second research question showed that girls scored higher than boys at the 5th and 8th grade in HAS, and 5th and 6th grade in LAS. Finally, results regarding the third research question revealed that science achievement difference between girls and boys was higher at the 8th grade than the 5th and 6th grade in HAS. On the other hand, the interaction between grade level and gender did not make a significant effect on students’ science achievement in LAS. This result implies that gender-based science achievement difference is consistent across grade levels in LAS.

It seems that transition from 5th to 6th grade was crucial for students both in LAS and HAS because their science achievement decreased from 5th to 6th grade in both schools types. Although there was a slight increase in science achievement from 6th towards 8th grade both in LAS and HAS, it was observed that science achievement of students in HAS was still statistically lower at the 8th grade compared to 5th grade. Slight increase in students’ science achievement from 6th towards 8th grade both in LAS and HAS can be related to students’ study of science more for preparing of a nationwide exam implemented in Turkey which is used to place them in high schools. Similar results were found by previous studies in that students’ attitudes towards science, motivation, and achievement tend to decrease through senior years of middle school (Akpinar et al., 2009; Bursal, 2013; Cavas, 2011). According to the results of the present study, it is recommended that science educators should pay attention to how they present the scientific content to students specifically in 6th grade both in LAS and HAS because nature of science curriculum content, i.e., whether it is abstract or concrete, and of science learning environment, i.e., whether it is student-centered or teacher-centered, may have caused this decrease in science.
achievement (Akpınar et al., 2009; Cavas, 2011; Senler & Sungur, 2009). More clearly, abstract science concepts can be taught more effectively by using modeling, interactive computer simulations and analogies in order to make them more concrete to students. These strategies would strengthen student learning which would affect achievement positively in turn. Furthermore, more student-centered teaching approaches such as 5E model, predict-observe-explain, and argumentation can be used in science lesson for fostering student participation which would enhance student motivation, learning and then achievement.

It was found that science achievement of girls was higher than boys at the 5th grade both in LAS and HAS. This result is consistent with the result of Bursal et al. (2015) who found that gender-based science achievement gap started with the 5th grade in favor of girls in LAS. However, results of the present study contribute to the science achievement literature in Turkey by showing that this result also holds true for the gender-based science achievement gap in HAS contexts. Furthermore, the results show that gender-based science achievement gap still continues at the 6th grade in LAS and at the 8th grade in HAS. The latter result regarding the significant achievement difference between genders in HAS at the 8th grade was also found by Acar (2017). Despite the emphasis on the importance of implementation of student-centered teaching in science classrooms by MEB (2006, 2013), teachers still mostly use teacher-centered science teaching approaches in Turkey. This kind of instruction may be more suitable for girls’ science learning and this may have induced the gender-based achievement gap (Stark & Gray, 1999).

The results regarding the final research question revealed that gender-based science achievement gap is a problem, especially in HAS, that needs attention. That is, results showed that girls’ science achievement advantage compared to boys increased as their grade level increased in HAS contexts. Similarly, Bursal (2013) pointed out that gender-based science achievement gap increased in favor of girls as the grade level increased in middle school years. However, little was known about the relation of this finding to the gender-based achievement gap in LAS and HAS. The present study showed that the fact that gender-based science achievement gap increase from lower to upper grades found by Bursal (2013) is valid only in HAS contexts. On the other hand, gender-based science achievement gap was consistent between the grade levels in LAS according to the results of this study. That is to say, girls outperformed boys at each grade and the quantity in this superiority did not change significantly over grade levels in LAS. In light of these results, it is recommended to policymakers in education that they should take serious steps for preventing the increase of gender-based science achievement gap especially in HAS. For instance, more space in science curriculum, science textbooks, and in-service teacher workshops may be given to guided inquiry science instruction where both teacher and students are active in order to make science teaching more attractive for both genders.

Students’ semester science grades were used as science achievement measure in this study. It would have been better to use a test having same or parallel items as achievement measure for comparison of grade levels but such a test would not be valid for each grade level. For instance, although an initiative of determination of primary school students’ achievement from 4th through 8th grades was implemented in Turkey, it was observed that average item difficulty and item discrimination were not equal in these exams for each grade level (see EARGED, 2009). Therefore, achievement comparisons of grade levels would be problematic in such circumstances.

In this study, HAS and LAS were selected based on school performances on an exam administered nationwide from schools in a metropolitan city. However, these schools may not accurately reflect the HAS and LAS profile in Turkey in this way. Therefore, future research can apply a more comprehensive criterion for selection of these schools such as selecting LAS only from geographical regions having low SES and selecting HAS only from geographical regions having high SES in the country.

Acknowledgement

This research was partially supported by Kocaeli University College of Education. The author thanks Prof. Dr. Elşen Veli as serving the dean of the College at that time for having a positive attitude towards this research.
Ülkelerinin vatandaş olacak ve ülkelerinin gelecekteki problemlerinin çözümünde aktif rol alacak fen okuryazarı öğrencilerin yetiştirilmesinin önemi, eğitimle ilgili hem ulusal hem de uluslararası raporlarda vurgulanmaktadır (Milli Eğitim Bakanlığı [MEB], 2013, 2017; NGSS Lead States, 2013). Fen okuryazarı vatandaşlar yetiştirbinek için öğrenciler arasındaki fen başarı farklarının azaltılması zorunludur. Bu durum bir ulusal düzeyde çıkarılan raporlarda belirtilen bir eğilimdir (MEB, 2013, 2017; National Research Council, 1996; NGSS Lead States, 2013). Bu nedenle, ulusal ve uluslararası öğrenci performans değerlendirmelerinin sonuçlarında açıkça görülen Türkiye’de farklı öğrenci gruplarının performansında fen başarı farklılıklarını, eğitim politikalarını belirleyenler için sorunlu bir durum teşkil etmektedir (Alacacı & Erbaş, 2010; Dincer & Uysal, 2010; Eğitimi Araştırma ve Geliştirme Dairesi Başkanlığı [EARGED], 2009).

Okullar arasında gözlemlenen fen başarı farkı, Türkiye’de fen eğitimiyle ilgili en büyük sorunlardan birisidir (Alacacı & Erbaş, 2010; The Organisation for Economic Co-operation and Development [OECD], 2016a, 2016b; Yildirim, Yildirim, & Ceylan, 2017). Ulusal veya uluslararası öğrenci performans değerlendirmelerinin sonuçlarını inceleyen çalışmalarda, Türkiye’de düşük başarılı okullar (DBO) ile yüksek başarılı okullar (YBO) arasında önemli bir fen başarı farkı olduğu belirtmektedirler (Acar, 2017; EARGED, 2009; OECD, 2013, 2016b). Bu başarı farkının arka planındaki nedenlerin, fen okuryazarı öğrencilerin sosyo-ekonomik profil (Alacacı & Erbaş, 2010; Dincer & Uysal, 2010), coğrafi bölge (Sirin, 2005), eğitim kaynakları, öğretim zamanı ve öğretmenlerin fen öğretim yöntemini kullanımlarının ile ilgili olduğu belirtilmektedir (Ceylan & Berberoglu, 2007; Kalender & Berberoglu, 2009; Martin, Mullis, Foy, & Stancio, 2012; OECD, 2016a). Ayrıca alanyazın, sınıf seviyesi yükseldikçe Türk öğrencilerin fen bilimleri dersine yönelik motivasyonlarının ve başarılarının düşüğünü ve fen bilimleri dersine yönelik istenmeyen tutumlarının ise artışını göstermektedir. Örneğin, Cavas (2011) sınıf seviyesinin altından seviye yükselmekle birlikte öğrencilerin fen öğrenimine olan ilgilerinin azalığı, fen bilimlerine yönelik olumsuz tutumların arttığı ve fen dersindeki motivasyonların düşüğünü belirtmiştir. Akpınar, Yıldız, Tatar ve Ergin (2009), öğrencilerin fen bilimlerine karşı ilgilerinin sınıf seviyesinin 6. sınıfından 8. sınıfına kadar azaldığını; buna karşın fen bilimlerine yönelik kaygılarının ise artışını belirtmiştir. Benzer şekilde, Senler ve Sungur (2009), ortaokul öğrencilerinin 6. ve 8. sınıfları fen dersindeki benlik algılarının ve dersteki öğrenci uygulamalarına atfettiği değerin, ilkokul öğrencilerinden (4. ve 5. sınıflar) daha düşük olduğunu belirtmiştir. Son olarak, Bursal, 7. ve 8. sınıf öğrencilerinin fen başarısının, geçmiş sınıflardaki başarılarından anlamlı derecede düşük olduğunu belirtmiştir. Sonuç olarak çalışmanın bulguları, sınıf seviyesi artsız ve artışı ortaokul öğrencilerinin fen dersine yönelik tutumlarının olumsuzlaştığını, ilgilerinin azaldığı ve motivasyonlarının düşüğünü göstermektedir. Bu olumsuz durumun sebepleri arasında, fen bilimleri dersi içeriğinin sınıf seviyesi artsız ve artışı olduğu ve dersteki öğrenci uygulamalarının etkisiz olması, dersteki öğretim yöntem ve tekniklerin kullanılmaması, fen dersinde katıldığınız çok öğrenci performansının ölçülmesinin ve ön plana çıkması, öğrencinin fen dersine karşı olumsuz önyargısı ve aile ve topluma dayalı diğer faktörler neden olabilir (Akpınar et al., 2009; Cavas, 2011; Senler & Sungur, 2009).

Diğer tarafından, Türkiye’de ortaokul yıllarında kızlar lehine cinsiyet farkı da belirtilmektedir. Son olarak, Bursal, 7. ve 8. sınıf öğrencilerinin fen başarısının, geçmiş sınıflardaki başarılarından anlamlı derecede düşük olduğunu belirtmiştir. Sonuç olarak çalışmanın bulguları, sınıf seviyesi artsız ve artışı ortaokul öğrencilerinin fen dersine yönelik tutumlarının olumsuzlaştığını, ilgilerinin azaldığı ve motivasyonlarının düşüğünü göstermektedir. Bu olumsuz durumun sebepleri arasında, fen bilimleri dersi içeriğinin sınıf seviyesi artsız ve artışı olduğu ve dersteki öğrenci uygulamalarının etkisiz olması, dersteki öğretim yöntem ve tekniklerin kullanılmaması, fen dersinde katıldığınız çok öğrenci performansının ölçülmesinin ön plana çıkması, öğrencinin fen dersine karşı olumsuz önyargısı ve aile ve topluma dayalı diğer faktörler neden olabilir (Akpınar et al., 2009; Cavas, 2011; Senler & Sungur, 2009).

Ayrıca alanyazın, sınıf seviyesi artsız ve artışı ortaokul öğrencilerinin fen bilimleri dersine yönelik motivasyonlarının ve başarılarının düşüğünü ve fen bilimlerine yönelik istenmeyen tutumların ise artsız ve artışı ortaya çıkmaktadır. Örneğin, Cavas (2011) sınıf seviyesinin altından seviye yükselmekle birlikte öğrencilerin fen öğrenimine olan ilgilerinin azalığı, fen bilimlerine yönelik olumsuz tutumların arttığını ve fen dersindeki motivasyonlarının düşüğünü belirtmiştir. Akpınar, Yıldız, Tatar ve Ergin (2009), öğrencilerin fen bilimlerine karşı ilgilerinin sınıf seviyesinin 6. sınıfından 8. sınıfına kadar azaldığını; buna karşın fen bilimlerine yönelik kaygılarının ise artışını belirtmiştir. Benzer şekilde, Senler ve Sungur (2009), ortaokul öğrencilerinin 6. ve 8. sınıfları fen dersindeki benlik algılarının ve dersteki öğrenci uygulamalarına atfettiği değerin, ilkokul öğrencilerinden (4. ve 5. sınıflar) daha düşük olduğunu belirtmiştir. Son olarak, Bursal, 7. ve 8. sınıf öğrencilerinin fen başarısının, geçmiş sınıflardaki başarılarından anlamlı derecede düşük olduğunu belirtmiştir. Sonuç olarak çalışmanın bulguları, sınıf seviyesi artsız ve artışı ortaokul öğrencilerinin fen dersine yönelik tutumlarının olumsuzlaştığını, ilgilerinin azaldığı ve motivasyonlarının düşüğünü göstermektedir. Bu olumsuz durumun sebepleri arasında, fen bilimleri dersi içeriğinin sınıf seviyesi artsız ve artışı olduğu ve dersteki öğrenci uygulamalarının etkisiz olması, dersteki öğretim yöntem ve tekniklerin kullanılmaması, fen dersinde katıldığınız çok öğrenci performansının ölçülmesinin ön plana çıkması, öğrencinin fen dersine karşı olumsuz önyargısı ve aile ve topluma dayalı diğer faktörler neden olabilir (Akpınar et al., 2009; Cavas, 2011; Senler & Sungur, 2009).
ve not ortalamalarında da belirgin (Acar, Türkmen, & Bilgin, 2015; Boz, Yerdelen-Damar, Aydemir, & Aydemir, 2016; Bursal, 2013; Engin-Demir, 2009). Hatta Bursal (2013), sınıf seviyesinin yükselemesiyle beraber cinsiyete dayalı bu başarı farkının arttığını ortaya koymıştır.

Problem Durumu

Bursal (2013) sınıf seviyesinde fen başarısı düşüşünün 7. sınıfta başladığını ve bu düşüşün 8. sınıfta hala belirgin olduğunu gösterse de; bu konuyu DBO ve YBO bağlamında incelememiştir. Diğer bir ifadeyle, bu sonucun DBO ve YBO bağlamında sınıf ve cinsiyet düzeyindeki farklılıklar ile ilişkisi hakkında çok az şey bilinmektedir. Bu başarı farklarının DBO ve YBO için ayrı olarak araştırılması anlamlıdır, çünkü bu okulların SES indeksi, eğitim personeeli profili ve sağladıkları eğitim kaynakları bakımından önemli ölçüde farklılık göstermektedir (Atar, 2014; Hacieminoğlu, Ertepınar, Yılmaz-Tüzün, & Çakır, 2015; Martin et al., 2012; Sirin, 2005). DBO ve YBO'da sınıf düzeyinde başarı farklılıklarının inceleyen çalışmaların aziği yanında az sayıda çalışma DBO ve YBO'da cinsiyete dayalı başarı farkını incelemiştir.

Bursal, Buldur ve Dede (2015) tarafından yapılan bir çalışmada, SES indeksinin düşük olduğu okullarda cinsiyete dayalı fen başarı farkı incelendi. Yazarlar, kız öğrencilerin 5. sınıfından itibaren erkek öğrencilerden daha yüksek puan aldıği ve bu başarı farkının daha sonraki sınıflarda arttığını bulmuşlardır. Ancak bu çalışma, YBO bağlamında cinsiyete dayalı başarı farkını dikkate almamıştır. Bu çalışma, aşağıdaki araştırma sorularına cevap arayarak literatürde sözü edilen boşlukları doldurmayı amaçlamaktadır:

1. Sınıf seviyeleri arasında fen başarı farklılıkları DBO ve YBO’da nelerdir?
2. Kız ve erkek öğrenciler arasında DBO ve YBO’da 5., 6. ve 8. sınıfta herhangi bir fen başarı farkı var mıdır?
3. Cinsiyete dayalı fen başarı farkı DBO ve YBO’da sınıf seviyesine göre farklılık gösteriyor mu?

Yöntem

Araştırma Modeli

Bu araştırmada bağımsız değişkenler olan sınıf düzeyi ve cinsiyetin bağımlı değişken olarak alınan fen başarısı üzerinde fark oluşturup oluşturmadığı incelenmiştir. Bu araştırma amacına uygun model ise nicel araştırma yöntemi altında olan karşılaştırma türü ilişkisel tarama modelidir. Bu modelde bağımsız değişken ve bağımlı değişkenin sınıfların bağımlı değişken olduğunu, bağımlı değişken ve bağımsız değişkenin sınıf seviyesine göre farklılık gösterdiğini belirtmektedir. Bu çalışma, aşağıdaki araştırma sorularına cevap arayarak literatürde sözü edilen boşlukları doldurmayı amaçlamaktadır:

1. Sınıf seviyeleri arasında fen başarı farklılıkları DBO ve YBO’da nelerdir?
2. Kız ve erkek öğrenciler arasında DBO ve YBO’da 5., 6. ve 8. sınıfta herhangi bir fen başarı farkı var mıdır?
3. Cinsiyete dayalı fen başarı farkı DBO ve YBO’da sınıf seviyesine göre farklılık gösteriyor mu?

Örneklem

Bu araştırma Kocaeli’nin İzmit ilçesinde uygulanmıştır. DBO ve YBO’nun seçimi için üç kriter göz önünde bulundurulmuştur. Birinci olarak, başarı farkı devlet okulları arasında daha belirgin olduğu için hem DBO hem de YBO devlet okullarından seçildi. İkinci olarak DBO ve YBO, Temel Eğitimde Onaöğretim Geçiş (TEOG) sınavında bu iki çalışma sırasıyla aynıdır ve en yüksek performans gösteren on okul için seçilmiştir. Son olarak, ortak ortaklık oranı, öğrencinin iki öğretmene göre yapıldığından; DBO yüksek sosyo-ekonomik statüye sahip bir mahallenin ve YBO ise yüksek sosyo-ekonomik statüye sahip bir mahallenin seçilmiştir. Son iki kriter, literatürde de belirtilen DBO ve YBO’nun özelliklerini sağlamak açısından gereklidir. Bu sonucun, bağımsız değişken ve bağımlı değişkenin sınıf seviyesine göre farklılık gösterdiğini belirtmektedir. Bu seçim, uygulamaya uygun kalabalık için, okul turunun bağımsız değişik ve fen dönem sonu notlarının bağımlı değişken olduğu tek varyans analizleri (ANOVA’lları) her bir sınıf seviyesi için uygulanmıştır. ANOVA sonuçlarını her bir sınıf seviyesi için tutarı olduğu gözlemlemiştir. Yani YBO’daki öğrenciler 5. sınıfı (M_{YBO} = 88.10, M_{DBO} = 71.39, F(1, 842) = 273.18, p < .00), 6. sınıfı (M_{YBO} = 81.36, M_{DBO} = 65.18, F(1, 1178) = 266.71, p < .00) ve 8. sınıfı (M_{YBO} = 82.52, M_{DBO} = 68.13, F(1, 930) = 273.18, p < .00) arasında fen başarısında fark olduğu gözlemlemiştir. DBO ve YBO’ya uygun eğitim öğretim içerikleri ve belirli eğitim kaynakları ile oluşturulmuştur.
143.03; p < .00) DBO’daki akranlarından daha yüksek fen notu almışlardır. Tablo 1’de her bir sınıf seviyesi için DBO ve YBO’daki öğrenci sayısı gösterilmiştir.

Tablo 1. Sınıf Düzeyi ve Cinsiyete Göre Öğrenci Dağılımı.

Sınıf Düzeyi	Cinsiyet	N	Toplam
YBO	Kız	288	612
	Erkek	324	
6	Kız	380	816
	Erkek	436	
8	Kız	309	604
	Erkek	295	
DBO	Kız	96	231
	Erkek	135	
6	Kız	158	364
	Erkek	206	
8	Kız	145	328
	Erkek	183	

Veri Toplama Araçları

Fen başarısı: Öğrencilerin fen bilgisi dönem sonu notları fen başarı ölçütü olarak kullanılmıştır. Bu ölçüm sırasıyla şu öğrenci performans değerlendirmelerinin ağırlıklı ortalaması olarak hesaplanmıştır: üç sınıf içi sınav, sınıf içi etkinliklere katılım ve bir proje. Bu şekilde hesaplanan öğrencilerin fen dönem sonu notunun fen başarısı için daha geçerli bir ölçüm olduğu söylenebilir çünkü bu ölçümde öğrencilerin hem sınav hem de sınıf içi performans değerlendirme performanslarının ağırlıklı ortalamaları dikkate alınmıştır. Ayrıca öğrencilerin fen içindeki performans değerlendirme performanslarının ağırlıklı ortalamanın olduğu fen dersi başarısı ile öğrencilerin bilimsel düşünce becerilerini istatistiksel olarak anlamlı ve olumlu ilişki içinde olduğunu bulmuştur (Johnson & Lawson, 1998; Lawson, Banks, & Logvin, 2007). Benzer şekilde Topçu ve Yılmaz-Tüzün (2009) 4., 5., 6. ve 8. sınıf öğrencilerinin epistemolojik inançlarının ve üstbilişsel becerilerinin, öğrencilerin fen bilimleri dersi dönem sonu notlarını istatistiksel olarak anlamlı şekilde yordadığını bulunmuştur. Ayrıca Bursa’lı öğrencilerin fen dönem sonu notlarının analizinden elde ettiği sonuçlar, öğrencilerin ulusal fen değerlendirme sınavının ağırlıklı examine puanlarını analiz sonuçlarıyla uyum sağlamaktadır (Georgia, 2009). Fen Bilimleri dönem sonu notlarının fen bilimlerinde önemli değişkenler olan bilimsel düşünce becerileri, epistemolojik inançlar ve üstbilişsel beceriler ile anlamlı ilişki göstermiş ve bu notlarla yapılan analiz sonuçlarının diğer fen başarısı ölçümünün analiz sonuçlarıyla benzerlik göstermesi; bu notların fen başarı için geçerli ve güvenilir bir ölçüm olabileceği göstermiştir. Ayrıca ortak bir öğrencinin dönem sonu notlarının ortalamanın analizinden elde edilen puanın .70’ün üzerinde bir korelasyon katsayısı sahip olduğu bulunmaktadır (MEB, 2018).

Verilerin Analizi

İlk araştırma sorusunu cevaplamak için, sınıf düzeyinin bagimsiz ve fen bilimleri dersi dönem sonu notunun bağımlı değişiklik olduğu bir ANOVA uygulanmıştır. Oncelikle, bu analiz için varyansların homojenliği varsayıldı kontrol edilmiştir. Levene testinin sonuçlarına göre YBO için varyansların homojenliği varsayılmıştır (F(2, 2030) = 72.83, p < .05) ancak DBO için bu varyasyon karşılanmıştır (F(2, 920) = .42, p > .05). Bu nedenle, Welch’in düzeltmiş F testi, grup ortalamanın YBO’da eşit olup olmadığını test etmek için uygulanmıştır. Welch’in testinde önemli bir sonuç elde edildiğinde, bu önem tam olarak belirleyebilmek için Games-Howell çoklu karşılaştırma testi uygulanmıştır. Bu varyasyon DBO’daki gerçekleştiğinden, DBO’dan doğrudan ANOVA uygulanmıştır. Daha sonra, DBO için anlamlı bir sonuç elde edildiğinde, deneySEL alpha değeri için Bonferroni düzeltmesinin kullanıldığı çoklu karşılaştırma testi uygulanmıştır. Bu varyasyon DBO’daki gerçekleştiğinden, DBO’dan doğrudan ANOVA uygulanmıştır. Daha sonra, DBO için anlamlı bir sonuç elde edildiğinde, deneySEL alpha değeri için Bonferroni düzeltmesinin kullanıldığı çoklu karşılaştırma testi uygulanmıştır.
ANOVA’nın ikinci araştırma sorusunu incelemek için uygun olduğu görülmüştür. Bu nedenle, bu analiz için varyansların homojenliği varsayımının sağlanıp sağlanmadığı incelenmiştir. Sonuçlar, bu varyansın YBO’da 5. ve 8. sınıfta sağlanmadığını (sirasıyla F(1, 610) = 7.03, p < .05; F(1, 602) = 16.17, p < .05); 6. sınıf ise sağladıgıını (F(1, 814) = 3.17, p > .05) göstermiştir. Diğer taraftan bu varyansın DBO’da 5. (F(1, 229) = .11, p > .05), 6. (F(1, 362) = 2.62, p > .05) ve 8. sınıfarda (F(1, 326) = .85, p > .05) sağlanmıştır. Sonuç olarak, Welch testi varyansların homojenliği varsayımının sağlanmadığı sınıf seviyeleri için (YBO’daki 5. ve 8. sınıf) ve ANOVA ise diğer sınıf seviyeleri için (YBO’da 6. sınıf ve DBO’daki tüm sınıflar) uygulanmıştır.

Üçüncü araştırma sorusu için, cinsiyet ve sınıf seviyesinin bağımsız değişken olduğu iki yönlü ANOVA’daki etkileşim terimi incelenmiştir. Bu analizden anlamlı bir sonuç bulunduğunda ise bu anlamlı sonuçun yerini tam olarak belirleyebilmek için planlı karşılaştırmalar yapılmıştır.

Bulgular

Her sınıf seviyesi için öğrencilerin YBO ve DBO’da fen bilimleri dönem sonu notları ile ilgili betimleyici istatistikler Tablo 2’de verilmiştir. Sınıf seviyesiyle ilgili grup ortalamalarının YBO’da eşit olup olmadığını test etmek için Welch’in düzeltimi F testi uygulanmıştır. Bu testin sonucu, sınıf seviyesinin fen notları üzerinde etkili olduğunu göstermiştir (F(2, 1278.17) = 54.63; p < .00). Games-Howell çoklu karşılaştırma testinin sonuçları, 5. sınıf öğrencilerinin fen bilimleri notlarının (M = 88.10), 6. ve 8. sınıf öğrencilerine göre (sirasıyla M = 81.36, M = 82.52; her bir karşılaştırma için p < .00) daha yüksek olduğunu ortaya koymuştur. Ancak, 6. ve 8. sınıf öğrencilerinin dönem sonu notları arasındaki karşılaştırma için anlamlı bir fark bulunmamıştır (p > .05). Öte yandan, DBO’da öğrenciler için uygulanan ANOVA da sınıf düzeyinin fen notları üzerinde anlamlı bir etkisi olduğunu ortaya koymuştur (F (2, 920) = 8.79; p < .00). Bununla birlikte Bonferroni düzeltmesinin kullanımını sağlayan çoklu karşılaştırma sonuçları sadece 5. (M = 71.39) ve 6. sınıf öğrencilerinin dönem sonu notları (M = 65.18) arasında anlamlı bir fark olduğunu göstermiştir (p < .00).

Tablo 2.

Okul Tipi ve Sınıf Düzeyine Göre Fen Bilimleri Dönem Sonu Notları.

Sınıf Düzeyi	M	Ss
YBO		
5	88.10	11.12
6	81.36	14.68
8	82.52	17.34
DBO		
5	71.39	17.29
6	65.18	17.84
8	68.13	17.90

Tablo 3.

Sınıf Düzeyi ve Cinsiyete Göre Fen Bilimleri Dönem Sonu Notları.

Sınıf Düzeyi	Cinsiyet	M	Ss
YBO	Kız	89.56	10.47
	Erkek	86.78	11.52
	Kız	82.41	13.82
	Erkek	80.45	15.34
	Kız	85.58	15.33
	Erkek	79.31	18.72
	Kız	74.60	16.93
	Erkek	69.11	17.24
	Kız	68.00	16.95
	Erkek	63.01	18.25
	Kız	70.17	18.20
	Erkek	66.52	17.54
Tablo 3'te, sınıf seviyelerine ve okul türlerine göre kız ve erkek öğrencilerin fen dersi dönemi sonu notlarına ilişkin ortalama ve standart sapma puanları görülmektedir. Cinsiyetin bağımsız değişken ve fen dömen sonu notunun bağımlı değişken olduğu ANOVA YBO'daki 6. sınıflar ve Welch'in F testi de bu okullardaki hem 5. hem de 8. sınıflar için uygulanmıştır. Welch F testinin sonuçları, YBO'da kızların erkeklerle göre 5. (F(1, 607.70) = 9.77; p < .01) ve 8. sınıfı (F(1, 568.47) = 20.18; p < .00) daha yüksek puan aldıgı ortaya koymustur. Ancak ANOVA sonucu bu farkın YBO'da 6. sınıfta istatistiksel olarak anlamlı olmadığını göstermiştir (F(1, 814) = 3.63; p > .05). Diğer tarafından DBO için ANOVA sonuçları, kızların 5. ve 6. sınıfarda erkeklerden anlamlı şekilde daha iyi performans gösterdiğini (sıralsı F(1, 229) = 5.78; p < .05; F(1, 362) = 7.10; p < .01) ancak kız ve erkek öğrenciler arasındaki başarı farkının 8. sınıfta anlamlı düzeyde erişmediğini göstermiştir (F(1, 326) = 3.39; p > .05).

Sınıf düzeyi ile cinsiyet arasındaki etkileşimin incelenmesi için, sınıf düzeyi ve cinsiyetin bağımsız değişken olduğu iki yönlü ANOVA'lar hem DBO hem de YBO için uygulanmıştır. Sonuçlar, bu iki değişken arasındaki etkileşimin, YBO için anlamlı olduğu (F(2, 2026) = 4.10; p < .05) fakat DBO için anlamlı olmadığını göstermiştir (F(2, 917) = .21; p > .05). YBO için bulunan bu anlamlı sonucun yerini tam olarak belirleyebilmek için çeşitli karşılaştırmalar yapılmıştır. İlk karşılaştırmanın sonucu, cinsiyette dayalı fen başarı farkının 5. ve 6. sınıflarda benzer olduğu ortaya koymustur (F(1, 2026) = .28; p > .05). Diğer tarafından, ikinci karşılaştırmanın sonucu, farkın 5. ve 8. sınıflarda anlamlı olduğu ortaya koymustur (F(1, 2026) = 4.41; p < .05). Tablo 3'ten de görülebileceği gibi, bu fark 8. sınıfın 5. sınıfından daha yüksektir. Benzer şekilde, üçüncü karşılaştırmanın sonucu cinsiyete dayalı fen başarı farkının 8. sınıfın 5. sınıfından daha yüksektir. DBO için ise, 5. sınıfın 8. sınıfından daha yüksektir.

Tablo 3'ten de görülebileceği gibi, bu fark 8. sınıfın 5. sınıfından daha yüksektir.

Tartışma, Sonuç ve Öneriler

Bu çalışmada üç araştırma sorusu incelenmiştir. İlk araştırma sorusu için DBO ve YBO'da sınıf seviyelerinde fen başarı farklılıkları incelenmiştir. İkinci araştırma sorusu için DBO ve YBO'da her bir sınıf seviyesinde cinsiyetin dayalı fen başarı farklarının incelenmiştir. Son araştırma sorusu ise hem iki okul türünde cinsiyete dayalı fen başarı farkının sınırlı olduğu ve cinsiyete dayalı fen başarı farkının sınırlı olduğu incelenmiştir. İlk araştırma sorusu için bulunan sonuçlar, YBO'da fen başarısının öğrencilerin 5. sınıfın 6. ve 8. sınıfına doğru ilerlediklerinde düştüğünü ortaya koymustur. Ayrıca, sonuçlar DBO'da fen başarısının öğrencilerin 5. sınıfın 6. sınıfına doğru ilerlediklerinde düştüğünü göstermiştir. Diğer tarafından ikinci araştırma sorusu için bulunan sonuçlar, kız öğrencilerin YBO'da 5. ve 8. sınıfı, DBO'da ise 5. ve 6. sınıfı erkek öğrencilerin daha yüksek fen başarılarına sahip olduğunu göstermiştir. Son olarak üçüncü araştırma sorusuyla ilgili sonuçlar, YBO'da kiz ve erkek öğrencilerin arasındaki fen başarı farkının, 8. sınıfın 5. ve 6. sınıfının daha yüksek olduğu ortaya koymustur. Ote yandan, sınıf düzeyi ve cinsiyet arasındaki etkileşim, DBO'da öğrencilerin fen başarısı üzerinde anlamlı bir etki oluşturmuştur. Bu sonuç, cinsiyete dayalı fen başarı farkının DBO'da sınırlı olduğu ve sınırlı olduğu incelenmiştir. DBO'da öğrencilerin fen başarısı üzerinde anlamlı bir etki oluşturmuştur. Bu sonuç, cinsiyete dayalı fen başarı farkının DBO'da sınırlı olduğu ve sınırlı olduğu incelenmiştir.

5. sınıfın 6. sınıfı geçişin hem DBO hem de YBO'da okuyan öğrenciler için kritik olduğu görülmektedir çünkü fen başarıları her iki okul türünde cinsiyete dayalı fen başarı farkının sınırlı olduğu incelenmiştir. İlk araştırma sorusunun hem DBO hem de YBO'da okuyan öğrenciler için kritik olduğu görülmektedir çünkü fen başarıları her iki okul türünde cinsiyete dayalı fen başarı farkının sınırlı olduğu incelenmiştir. İlk araştırma sorusunun hem DBO hem de YBO'da okuyan öğrenciler için kritik olduğu görülmektedir çünkü fen başarıları her iki okul türünde cinsiyete dayalı fen başarı farkının sınırlı olduğu incelenmiştir. İlk araştırma sorusunun hem DBO hem de YBO'da okuyan öğrenciler için kritik olduğu görülmektedir çünkü fen başarıları her iki okul türünde cinsiyete dayalı fen başarı farkının sınırlı olduğu incelenmiştir. İlk araştırma sorusunun hem DBO hem de YBO'da okuyan öğrenciler için kritik olduğu görülmektedir çünkü fen başarıları her iki okul türünde cinsiyete dayalı fen başarı farkının sınırlı olduğu incelenmiştir. İlk araştırma sorusunun hem DBO hem de YBO'da okuyan öğrenciler için kritik olduğu görülmektedir çünkü fen başarıları her iki okul türünde cinsiyete dayalı fen başarı farkının sınırlı olduğu incelenmiştir.
Kız öğrencilerin fen başarısının 5. sınıfta hem DBO hem de YBO'da erkek öğrencilerden daha yüksek olduğu bulunmuştur. Bu sonuç, cinsiyete dayalı fen başarıının özellikle YBO'da farkı daha net olduğu ortaya koyuyor. Diğer bir deyişle, sonuçlar YBO bağlamında kız öğrencilerin erkek öğrencilerden daha iyi performans göstermişlerdir. Benzer şekilde, Bursal (2013) da ortaokul yıllarında sınıf seviyesine bağlı olmak üzere cinsiyete dayalı fen başarısının farklılıklarını belirtmektedir. Bu çalışmada bulunan YBO'da 8. sınıfında kız öğrencilerin erkek öğrencilerden daha iyi performans göstermişlerdir. Bununla birlikte, Bursal (2013) tarafından bulunan alt sınıflardan üst sınıflara doğru cinsiyete dayalı fen başarısı farklılıkların arttığını belirtmektedir. Bu, cinsiyete dayalı fen başarısının sınıfların seviyesi ile arttığını göstermektedir.

Son araştırma sorusu ile ilgili sonuçlar, cinsiyete dayalı fen başarısının özellikle YBO'da dikkat edilmesi gereken bir problem olduğunu ortaya koyuyor. Diğer bir deyişle, sonuçlar YBO bağlamında kız öğrencilerin erkek öğrencilerden daha iyi performans göstermişlerdir. Benzer şekilde, Bursal (2013) da ortaokul yıllarda sınıf seviyesine bağlı olmak üzere cinsiyete dayalı fen başarısının farklılıklarını belirtmektedir. Bu çalışmada bulunan YBO'da 8. sınıfında kız öğrencilerin erkek öğrencilerden daha iyi performans göstermişlerdir. Bununla birlikte, Bursal (2013) tarafından bulunan alt sınıflardan üst sınıflara doğru cinsiyete dayalı fen başarısı farklılıkların arttığını belirtmektedir. Bu, cinsiyete dayalı fen başarısının sınıfların seviyesi ile arttığını göstermektedir.
Bilgilendirme

Bu araştırma Kocaeli Üniversitesi Eğitim Fakültesi tarafından kısmi olarak desteklenmiştir. Yazar Fakülteye o zaman dekanlık hizmeti sunan Prof. Dr. Elşen Veli'ye çalışmaya karşı sorguladığı olumlu tutum için teşekkür eder.
References

Acar, Ö. (2017). An investigation of the differences between students in low and high achieving schools and between female and male students based on motivational and cognitive variables in Turkey. *Journal of the Human and Social Science Researches, 6*(1), 500-518.

Acar, Ö., Türkmen, L., & Bilgin, A. (2015). Examination of gender differences on cognitive and motivational factors that influence 8th graders’ science achievement in Turkey. *Eurasia Journal of Mathematics, Science & Technology Education, 11*(5), 1027-1040.

Akpinar, E., Yildiz, E., Tatar, N., & Ergin, Ö. (2009). Students’ attitudes toward science and technology: An investigation of gender, grade level, and academic achievement. *Procedia Social and Behavioral Sciences, 1*(1), 2804-2808.

Alacaci, C., & Erbas, A.K. (2010). Unpacking the inequality among Turkish schools: Findings from PISA 2006. *International Journal of Educational Development, 30*(2), 182–192.

Atalmis, E.H., Avgin, S.S., Demir, P., & Yildirim, B. (2016). Examination of science achievement in the 8th grade level in Turkey in terms of national and international exams depending upon various variables. *Journal of Education and Practice, 7*(10), 152-162.

Atar, H.Y. (2014). Multilevel effects of teacher characteristics on TIMSS 2011 science achievement. *Education and Science, 39*(172), 121-137.

Boz, Y., Yerdelen-Damar, S., Aydemir, N., & Aydemir, M. (2016). Investigating the relationships among students’ self-efficacy beliefs, their perceptions of classroom learning environment, gender, and chemistry achievement through structural equation modeling. *Research in Science & Technological Education, 34*(3), 307-324.

Bursal, M. (2013). Longitudinal investigation of elementary students’ science academic achievement in 4-8th grades: Grade level and gender differences. *Educational Sciences: Theory & Practice, 13*(2), 1151-1156.

Bursal, M., Buldur, S., & Dede, Y. (2015). Science and mathematics course success of elementary students in low socio-economic status among 4th-8th grades: Gender perspective. *Education and Science, 40*(179), 133-145.

Cavas, P. (2011). Factors affecting the motivation of Turkish primary students for science learning. *Science Education International, 22*(1), 31-42.

Ceylan, E., & Berberoglu, G. (2007). Factors related with students’ science achievement: A modeling study. *Education and Science, 32*(144), 36-48.

Dincer, M.A., & Uysal, G. (2010). The determinants of student achievement in Turkey. *International Journal of Educational Development, 30*(6), 592-598.

Eğitim Araştırması ve Geliştirme Dairesi Başkanlığı. (2009). *ÖBBS 2008: İlköğretim öğrencilerinin başarılarının belirlenmesi: Fen ve teknoloji raporu*. Ankara: Earged.

Engin-Demir, C. (2009). Factors influencing the academic achievement of the Turkish urban poor. *International Journal of Educational Development, 29*, 17-29.

Haceminoğlu, E., Ertepınar, H., Yılmaz-Tüzün, Ö., & Çakır, H. (2015). Students and school characteristics related to elementary school students’ views of the nature of science. *Education 3-13, 43*(6), 698-719.

Johnson, M.A., & Lawson, A.E. (1998). What are the relative effects of reasoning ability and prior knowledge on biology achievement in expository and inquiry classes?. *Journal of Research in Science Teaching, 35*(1), 89-103.

Kalender, I., & Berberoglu, G. (2009). An assessment of factors related to science achievement of Turkish students. *International Journal of Science Education, 31*(10), 1379-1394.

Karasar, N. (2009). *Bilimsel araştırma yöntemleri: Kavramlar-ilkeler-teknikler*. Ankara: Nobel Yayın Dağıtım.
Lawson, A.E., Banks, D.L., & Logvin, M. (2007). Self-efficacy, reasoning ability, and achievement in college biology. *Journal of Research in Science Teaching, 44*(5), 706-724.

Martin, M.O., Mullis, I.V.S., Foy, P., & Stanco, G.M. (2012). *TIMSS 2011 international results in science*. Chestnut Hill: TIMSS & PIRLS International Study Center.

Milli Eğitim Bakanlığı. (2006). *İlköğretim Fen ve Teknoloji Dersi (6, 7 ve 8. sınıflar) Öğretim Programı*. Ankara: Talim ve Terbiye Kurulu Başkanlığı.

Milli Eğitim Bakanlığı. (2012). *İlköğretim kurumları (ilkokullar ve ortaokullar) fen bilimleri dersi (3, 4, 5, 6, 7 ve 8. sınıflar) öğretim programı*. Ankara: Talim ve Terbiye Kurulu Başkanlığı.

Milli Eğitim Bakanlığı. (2017). *Fen bilimleri dersi öğretim programı (ilkokul ve ortaokul 3, 4, 5, 6, 7 ve 8. sınıflar)*. Ankara: Talim ve Terbiye Kurulu Başkanlığı.

Milli Eğitim Bakanlığı. (2018). *2018 Liselere geçiş sistemi (LGS): Merkezi sınavla yerlesen öğrencilerin performansı*. Ankara: Milli Eğitim Bakanlığı.

National Research Council. (1996). *The national science education standards*. Washington, DC: National Academy Press.

NGSS Lead States. (2013). *Next generation science standards: For States, by states*. Washington, DC: The National Academies Press.

Senler, B., & Sungur, S. (2009). Parental influences on students’ self-concept, task value beliefs, and achievement in science. *The Spanish Journal of Psychology, 12*(1), 106-117.

Sirin, S.R. (2005). Socioeconomic status and academic achievement: A meta-analytic review of research. *Review of Educational Research, 75*(3), 417-453.

Stark, R., & Gray, D. (1999). Gender preferences in learning science. *International Journal of Science Education, 21*(6), 633-643.

The Organisation for Economic Co-operation and Development. (2013). *PISA 2012 results: What makes schools successful? Resources, policies and practices (Volume IV)*. Paris: OECD Publishing.

The Organisation for Economic Co-operation and Development. (2016a). *PISA 2015 results (Volume I): Excellence and equity in education*. Paris: OECD Publishing.

The Organisation for Economic Co-operation and Development. (2016b). *PISA 2015 results (Volume II): Policies and practices for successful schools*. Paris: OECD Publishing.

Topçu, M.S., & Yılmaz-Tüzün, Ö. (2009). Elementary students’ metacognition and epistemological beliefs considering science achievement, gender and socioeconomic status. *Elementary Education Online, 8*(3), 676-693.

Yıldırım, H.H., Yıldırım, S., & Ceylan, E. (2017). *Türkiye perspektifinden TIMSS 2015 sonuçları*. Ankara: TED Yayınları.