Isolation and Expression Analysis of CYP9A11 and Cytochrome P450 Reductase Gene in the Beet Armyworm (Lepidoptera: Noctuidae)

Chunjing Zhao,1,2,* Xiaoyun Feng,1,4 Tao Tang,1,3 and Lihong Qiu1,4

1College of Science, China Agricultural University, Beijing, China
2College of Plant Protection, Nanjing Agricultural University, Nanjing, China
3Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
4Corresponding author, e-mail: lihongqiu@126.com

*These authors contributed equally to this work.

Subject Editor: Daniel Swale

J. Insect Sci. (2015) 15(1): 122; DOI: 10.1093/jisesa/iev100

ABSTRACT. Cytochrome P450 monooxygenases (CYPs), as an enzyme superfamily, is widely distributed in organisms and plays a vital function in the metabolism of exogenous and endogenous compounds by interacting with its obligatory redox partner, CYP reductase (CPR). A novel CYP gene (CYP9A11) and CPR gene from the agricultural pest insect Spodoptera exigua were cloned and characterized. The complete cDNA sequences of SeCYP9A11 and SeCPR are 1,931 and 3,919 bp in length, respectively, and contain open reading frames of 1,593 and 2,070 nucleotides, respectively. Analysis of the putative protein sequences indicated that SeCYP9A11 contains a heme-binding domain and the unique characteristic sequence (SRFALCE) of the CYP9 family, in addition to a signal peptide and transmembrane segment at the N-terminal. Alignment analysis revealed that SeCYP9A11 shares the highest sequence similarity with CYP9A13 from Mamestra brassicae, which is 66.54%. The putative protein sequence of SeCPR has all of the classical CPR features, such as an N-terminal membrane anchor; three conserved domain flavin adenine dinucleotide (FAD), flavin mononucleotide (FMN), and nicotinamide adenine dinucleotide phosphate (NADPH) domain; and characteristic binding motifs. Phylogenetic analysis revealed that SeCPR shares the highest identity with HacPR, which is 95.21%. The SeCYP9A11 and SeCPR genes were detected in the midgut, fat body, and cuticle tissues, and throughout all of the developmental stages of S. exigua. The mRNA levels of SeCYP9A11 and SeCPR decreased remarkably after exposure to plant secondary metabolites quercetin and tannin. The results regarding SeCYP9A11 and SeCPR genes in the current study provide foundation for the further study of S. exigua P450 system.

Key Words: Spodoptera exigua, cytochrome P450, CYP9A11, CPR, expression

The beet armyworm Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae) is an economically important insect that is responsible for damaging a wide range of crops throughout the world, including the United States (Atkins 1960; Ruberson et al. 1994), Europe (Mohaghegh et al. 2001), and Asia (Cheng et al. 1988; Park et al. 1991). Spodoptera exigua has received increased attention partly due to insecticide resistance, which has been widely documented (Ruberson et al. 1994; Che et al. 2013). Enzymatic detoxification is considered a major mechanism of insecticide resistance. Cytochrome P450 monooxygenase (CYP), as the most prominent metabolic oxidase (Bergé et al. 1998; Scott et al. 1998; Scott 1999), can generate an effective catalytic cycle by interacting with NADPH-CYP reductase (CPR, EC 1.6.2.4) and other partners in the CYP pathway. Meanwhile, as the primary redox partner of CYPs, CPR mainly shuttles electrons from NADPH to known CYPs (Wang et al. 1997) and is hypothesized to be the limiting factor for the CYP catalytic process (Pompon et al. 1996). CPR plays an important role in the metabolism of drugs and steroids in vertebrates (Riddick et al. 2001). CPR has all of the classical CPR features, such as an N-terminal membrane anchor; three conserved domain flavin adenine dinucleotide (FAD), flavin mononucleotide (FMN), and nicotinamide adenine dinucleotide phosphate (NADPH) domain; and characteristic binding motifs. Phylogenetic analysis revealed that SeCPR shares the highest identity with HacPR, which is 95.21%. The SeCYP9A11 and SeCPR genes were detected in the midgut, fat body, and cuticle tissues, and throughout all of the developmental stages of S. exigua. The mRNA levels of SeCYP9A11 and SeCPR decreased remarkably after exposure to plant secondary metabolites quercetin and tannin. The results regarding SeCYP9A11 and SeCPR genes in the current study provide foundation for the further study of S. exigua P450 system.

Materials and Methods

Insect. A colony of beet armyworm was collected from Hebei Province of China in 1988, and the larvae were reared with the artificial diet without exposure to any insecticide at 27 ± 1°C and 75–80% relative humidity under a 16: 8 (light: dark) photoperiod. The eggs were sterilized with a 0.1% sodium hypochlorite solution, and the moths were supplied with a 5% honey solution as a nutrient.

RNA Extraction and cDNA Synthesis

Total RNA was extracted successively with a SV Total RNA Isolation System (Promega, WI), quantified using a Lambda Bio 40 UV spectrophotometer (Perkin Elmer Company, MA), and treated using RNase-Free DNase (Promega) to remove the residual genomic DNA. The cDNA was synthesized using the EasyScript Two-Step reverse transcription polymerase chain reaction (RT-PCR) SuperMix Kit (TransGen Biotech, Beijing, China) with treated total RNA from seven developmental stages (including the whole worm of 6–18 to 1 (Feyereisen 2012). Several studies have varied the ratio of CYP and CPR in recombinant systems to better understand the activity of the system (Wen et al. 2003; Mao et al. 2006; Murataliev et al. 2008). However, understanding of the interaction between CYP and CPR in insects is still limited. To better understand the CYP and CPR in S. exigua, in this study, novel CYP and CPR genes from S. exigua were cloned and characterized. And the mRNA expression levels were measured to determine the tissue distribution, levels throughout developmental stages and effects of quercetin and tannin. The results of the current study are expected to enrich the knowledge of P450 enzyme systems and assist in the elucidation of the functions of P450 and CPR in S. exigua.

Molecular Cloning of the Putative P450 Gene from S. exigua. The full-length cDNA of SeCYP9A11 was obtained with RT-PCR and RACE techniques. The degenerate primers, DCYP1 and DCYP2 (Table 1), were designed on the basis of highly conserved amino acid

© The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
sequences (DCYP1: AGFET and DCYP2: GPRNCIG) of the first helix and the heme binding domain of CYPs in several species, respectively. The thermal cycle was followed: 3 min at 94°C, 35× (30 s at 94°C, 30 s at 67°C, and 2 min at 72°C), and 10 min at 72°C. A fragment of ~480 bp (Supp Fig. 1 [online only]) was amplified, gel-purified using a Wizard SV Gel and PCR Clean-Up System (Promega), ligated into the pGEM-T vector (Promega) and then transformed into Escherichia coli Top10 cells (TransGen Biotech). The transformants were screened on LB-agar plates containing 60 μg/ml of ampicillin. The positive clones were cultured and then sequenced by Invitrogen Company (Life Technologies, Shanghai, China).

After partial putative DNA confirmation was obtained by homology searching in National Center for Biotechnology Information (NCBI) and by Basic Local Alignment Search Tool (BLAST) analysis, the corresponding specific primers CYP3 and CYP4 (Table 1) for 5’- and 3’-RACE of cDNA were designed, respectively. The putative 5’- and 3’-RACE fragments were overlapped and identified as the 5’- and 3’-end of the putative SeCYP9A11 gene after sequencing. Subsequently, the open reading frame (ORF) of SeCYP9A11 cDNA was amplified by PCR using specific primers CYP5 and CYP6 (Table 1). The PCR program was followed: 1 min at 95°C, 40× (20 s at 95°C, 20 s at 55°C, and 1 min at 72°C), and then 5 min at 72°C.

Table 1. Primers used in this study

Function	Primer set	Primer sequence (5’→3’)
Degenerate PCR	DCYP1	TYGCYGHYYWGAAGAC
	DCYP2	CDDATRCARTTBKDXGKHC
	DCPR1	GTCGGRCARGGGGATGRTG
	DCPR2	TAYGGYARGGMMGATCCAC
	CYP3	TGCCACGTGTTACGATGTTTC
	TCPR2	GTCCATAGGTTAAGACGAACTGAC
	Provided by kit	UPMP
		CTAACGACTCATCATAAGGCAACAGTTGATCAACGCAAGAG
	3’-RACE	CYP4
		CACCAGGCATCTCAGACTCCATCACC
		TCPR1
		ATGATCTGGTTGATCATGTTGGTG
	Amplification of cDNA fragment	CYP5
		CTCATCGTAACTCGTGTATATCTCC
		TCP6
		TCCCTAAACTCTAAAGTGGCAGCC
		TCP8
		CGCCACTACAGAACATACAC
	RT-qPCR analysis	qCYP1
		GTAAAGTCTCTCGAAAAATA
		qCYP2
		GGAATCCCTACAAACTCGGAC
		qTCPR1
		TTGCTGTTCTCCTACCCATTA
		qTCPR3
		TGCAAATCTCAAAAAACCTTAC
		qTCPR4
		GCTCATATTTCTAACGTCTCTG
	House-keeper	qCYP1
		TTCTCGTCTGGAATCGGTC
		R-β-Actin
		CCTTGAATGTCACCGACAGATT

M=A/C, R=A/G, W=A/T, S=G/C, Y=C/T, K=G/T, V=A/G/C/H, A=C/T, D=A/G/T, B=G/C/T, N=A/G/C/T.
performed at the end of each PCR reaction to confirm the specificity and unique of the PCR product. The cycle threshold (Ct) values of SeCYP9A11, SeCPR, and the β-actin were examined and the comparative Ct method was used to analyze the expression of SeCYP9A11 and SeCPR mRNA as described by Livak et al. (2001). RT-qPCR data were analyzed with SDS 1.4 software (Applied Biosystems, CA).

Statistical Analyses. Values were shown as the mean ± SE of triplicates using one-way ANOVA and the significant differences were analyzed using the SPSS statistics program (SPSS Inc., IL) with Duncan’s new multiple range tests (DMRT). A P value < 0.05 was considered statistically significant. The figures were generated with GraphPad Prism 5.0 (GraphPad Software Inc., CA).

Results

Sequence Analysis of SeCYP9A11 Gene. The full-length cDNA of SeCYP9A11 was verified after assembling the sequences of /C24 480, /C24 500 and /C24 1,500 bp from the degenerate PCR, 3′- and 5′- RACE PCR, respectively (Supp Fig. 1A [online only]) and then deposited in the GenBank database with accession number of HQ340240.1. The complete sequence of SeCYP9A11 contains a 196 bp 5′-untranslated region (5′-UTR), a 142 bp 3′-UTR with a poly-A nucleotide sequence and the 1,593 bp ORF, which encodes a putative protein of 530 amino acids with a predicted Mw of 61.61 kDa and a theoretical pI of 8.10.

A signal peptide (Supp Fig. 2A [online only]) and a transmembrane helix (data not shown) were predicted in the SeCYP9A11. The SeCYP9A11 exhibited the important characteristics and common structural features of CYP superfamily members. The consensus sequences [XGX(D/E)T] within the I-helix region (AGFET) and the heme-binding domain (FXXGXRXCXG) in the C-terminal region (FGVGRPNGC) were found in the SeCYP9A11 sequence (Fig. 1). The unique CYP9-family characteristic motif [SR(F/I/L)(A/G)XX(Q/E)] was also observed in SeCYP9A11 (SRFALCE, Fig. 1) and the hydrophobicity prediction of SeCYP9A11 is shown in Supp Fig. 3A [online only]. The secondary structures, such as the I-helix, Ca-helix, K-helix, and heme-binding domain, were predicted in the primary structures of SeCYP9A11 as well (Fig. 1).

The deduced amino acid sequences of SeCYP9A11 shared 66.54% identity with CYP9A13 from the cabbage moth (M. brassicae), 65.73% with CYP9A18, and 65.23% with CYP9A12 from the cotton bollworm (Helicoverpa armigera), 62.27% with SeCYP9A9, and 59.10% with CYP9A19 from both the silkworm (Bombyx mandarina and Bombyx mori) (Fig. 2A).

Sequence Analyses of SeCPR Gene. After RT-PCR and RACE-PCR, three cDNA fragments, including the ~700 bp fragment from the degenerate primers, the ~2,700 bp from the 3′-UTR, and the ~1,200 bp from the 5′-UTR, were amplified using degenerate and specific primers (Supp Fig. 1B [online only]). The full-length cDNA sequence was obtained after assembling the three fragments and then deposited in the GenBank database with accession number HQ852049.1. The complete sequence of SeCPR contains a 195-bp 5′-UTR and a 1,648-bp 3′-UTR with a canonical polyadenylation signal site (AATAAA) 358-bp downstream of the stop codon (TAA) (Supp Fig. 4 [online only]). Surprisingly, no conventional TATA box was identified in the sequence of the 3′-UTR. The SeCPR ORF is 2,070 bp and encodes a putative protein of 690 amino acids with a predicted Mw of 77.7 kDa and a theoretical pI of 5.37.
Fig. 2. Comparison of the deduced amino acid sequences of SeCYP9A11 with other CYPs (A) and SeCPR with other CPRs (B). A, the species names and the GenBank accession numbers are as follows: B. mandarina CYP9A19 (BAM73827.1), B. mori CYP9A19 (ABQ08710.1), M. brassicae CYP9A13 (AAR26518.1), H. armigera CYP9A12 (AAQ73544.1), H. armigera CYP9A18 (ABB69055.1), S. exigua CYP9A9 (ACI43222.1), and S. exigua CYP9A11 (ADP55210.1). B, A. thaliana (CAB58576.1), B. mori (NP_001104834.1), Dr. melanogaster (AAF52367.1), H. armigera (ADK25060.1), S. exigua (ADX59746.1), H. sapiens (NP_000932.3), and R. norvegicus (NP_113764.1).
No signal peptide (Supp Fig. 2B [online only]) was observed within the deduced amino acid sequence of SeCPR, though a transmembrane anchor near the N-terminus, and the transmembrane domain is composed of 23 amino acid residues from G26 to L48 (GSLFSTFDHVLVLLGGTTWGL). The SeCPR hydrophobicity diagram was shown in Supp Fig. 3B [online only]. The functional domains, FMN, FAD, and NADPH, which are involved in cofactor binding, are predicted in the primary structure of SeCPR (Supp Fig. 4 [online only]). Similar to the conserved motif in other organisms (Ingelman et al. 1997; Zhao et al. 2014), the FAD-binding motif of SeCPR consists of three amino acids, Arg 467, Tyr 469, and Ser 470 as well. Meanwhile, the catalytic residues consist of Ser 469, Asp 686, and Try 688 (Supp Fig. 4 [online only]). According to the three-dimensional structure of SeCPR (Supp Fig. 5 [online only]), the binding pocket of NADP is composed of 15 amino acids (R 311, V 487, V 489, G 546, T 547, C578, R579, S 607, R 608, K 613, Y 615, T 617, D 643, M 647, D 650), and the binding pocket of FAD is composed of 13 amino acids (H 332, R 467, Y 468, Y 469, S 470, T 485, A 486, V 487, G 501, V 502, T 503, T 504, W 688). At the N-terminus, two FMN binding sites are identified in the FMN domain, which possess similar structures to flavodoxins and interact with the redox-partner binding site of CYPs (Lamb et al. 2006). At the C-terminus, the identified FAD and NADP binding domains are similar to those in human (H. sapiens), H. armigera and bed bug (Cimex lectularius) (Pandey et al. 2007; Zhu et al. 2012; Zhao et al. 2014).

Of SeCPR and other known CPRs on the deduced amino acid sequences level, the alignment results showed that the CPRs in yeast (Saccharomyces cerevisiae), thale cress (Arabidopsis thaliana), rat (R. norvegicus), H. sapiens, fruit fly (Drosophila melanogaster), B. mori, and H. armigera shared 30.15, 36.44, 58.5, 54.13, 67.95, 87.48, and 95.21% identity with SeCPR, respectively, which confirmed that SeCPR is a member of the CPR family. As anticipated, phylogenetic analysis results substantiated that CPRs from the close relationship insect were grouped together (Supp Fig. 6 [online only]).

Temporal and Spatial Expression of SeCYP9A11 and SeCPR mRNA. The temporal and spatial transcription profiles of SeCYP9A11 and SeCPR in different instar larvae, pupa, and adults were determined. The β-actin gene was used as a reference gene to normalize the expression levels of SeCYP9A11 and SeCPR mRNAs, as performed in previous studies (Cheng et al. 1988; Zhu et al. 2013). The results showed that the efficiency and linearity of RT-qPCR assays were sufficient for using β-actin as a reference gene with high confidence level.

The highest expression level of SeCYP9A11 mRNA was observed in the midgut (Fig. 3A). The expression levels of SeCYP9A11 mRNA were increased from the 1st to the 5th instar larvae, and the fifth instar larvae and pupae showed the highest and lowest expression levels during the growth, respectively (Fig. 3B).

The expression level of SeCPR mRNA in the midgut of the fifth instar larvae were 2.55- and 5.32-fold higher than those in the fat body and cuticle, respectively (Fig. 3C). Significant differences in the
expression levels of SeCPR mRNA were observed between different development stages, including in larvae from the 1st to 5th instar, pupae, and adult (~2–3 days old) (Fig. 3D). The expression level of SeCPR mRNA in the fourth instar was the highest, which was 9.9-fold higher than that in the pupae.

Effects of Quercetin and Tannin on the mRNA Expression Levels of SeCYP9A11 and SeCPR. Treatment with quercetin and tannin has no impact on *S. exigua* mortality. The expression of SeCYP9A11 mRNA in the midgut of *S. exigua* was significantly inhibited upon dietary exposure to quercetin at doses from 0.1 to 1 mg/g and upon dietary exposure to tannin at doses from 0.5 to 5 mg/g. The expression levels of mRNA decreased by 12.5- and 15.5-fold after 1 mg/g treatment of quercetin and tannin, respectively (Fig. 4A and B).

The SeCPR mRNA expression levels were also remarkably inhibited by quercetin (at 0.1 mg/g) and tannin compared with that of the control (Fig. 4C and D).

Discussion

CYP and CPR are the primary components of the cytochrome P450 system that involved the normal metabolism of both endogenous compounds and xenobiotics (Horike et al. 2000; Liu et al. 2013). CPR is an electron donor and shuttles an electron to CYP, which is an essential step in the cytochrome P450 catalytic cycle. To promote the understanding of P450 system in *S. exigua*, a novel CYP member, SeCYP9A11 gene, and the SeCPR gene from *S. exigua* were identified and characterized. The temporal and spatial expression of SeCYP9A11 and SeCPR mRNA, as well as the effects of secondary metabolites from host plants on the mRNA expression of both genes, were investigated in the current study.

The putative protein sequence of SeCYP9A11 exhibited a heme-binding domain and a characteristic conserved sequence specific to the CYP9 family (SRFALCE) (Fig. 1). The signal peptide that may be responsible for directing SeCYP9A11 to the periplasmic space in cells and the transmembrane segment at the N-terminal end region of SeCYP9A11 were predicted. Alignment analysis revealed that SeCYP9A11 shared the highest sequence similarity with MbCYP9A13 from *M. brassicae*, with a protein-sequence identity of 66.54% (Fig. 2A).

The conserved polyadenylation signal (AATAAA) nucleotide sequence of SeCPR is consistent with most other CPRs in eukaryotes (Guo and Sherman 1996; Zhao et al. 2014). No conserved signal peptide was found at the N-terminal end of SeCPR, suggesting that SeCPR may be retained in the cytoplasm (Supp Fig. 3 [online only]). Meanwhile, CPR is typically anchored in the endoplasmic reticulum (ER) membrane by the N-terminal hydrophobic segment, which is essential for CPR function in P450 catalytic metabolism (Kida et al. 1998; Zhu et al. 2012). The SeCPR is predicted to harbor a transmembrane region at the N-terminal end, which may be responsible for the remainder of the SeCPR enzyme to face the cytoplasmic side of the membrane (Sanglard et al. 1993). For electron transfer, maintaining the proper spatial interactions between CPR and CYP is important, that is mediated by the protein anchored to the ER (Wang et al. 1997; Pandey...
et al. 2007) and the similar results have been documented for *C. lectularius*, *Chilo suppressalis*, and *H. armigera* (Zhu et al. 2012; Liu et al. 2013; Liu et al. 2014; Zhao et al. 2014). The high level of homology between ScCPR and HaCPR may be due to the close evolutionary relationship of *S. exigua* and *H. armigera*, as both belong to the Noctuidae insect family (Zhao et al. 2014). The primary structures of the CPRs are highly conserved across diverse taxa, indicating the functional importance of this enzyme throughout insect evolution (Wang et al. 1997).

The putative structure of CPR consists of the FMN-, FAD-, and NADP-binding domains and the catalytic residues. As the catalytic cycle continues, the CPR transfers a hydride ion from NADPH to FMN due to the lower redox potential of FAD, and the hydride electron is then delivered to acceptor proteins such as CYPs (Vermilion et al. 1981; Oprian and Coon 1982) to activate molecular oxygen (Nebert and Gonzalez 1987). Cyt-b5 (Enoch and Strittmatter 1979), heme oxygenase (Schacter et al. 1972), squalene epoxidase (Teruo et al. 1977), and fatty acid elongase (Ilan et al. 1981). Furthermore, the catalytic residues (Supp Fig. 4 [online only]) are crucial for the hydride transfer catalyzed by the rat CYP oxidoreductase (Shen et al. 1999; Hubbard et al. 2001). At the N-terminus, the FMN-binding domain consists of the two FMN-binding sites FMN1 and FMN2. These binding sites are highly conserved among all insect CPRs, indicating that they may play key roles in the interaction between CPR and CYP (Zhu et al. 2012). Lamb et al. (2006) has reported that mutation of D187A and T71A in the *S. cerevisiae* CPR FMN-binding site almost completely destroys the functional activity involving CYP51.

Many previous studies have shown that CYP and CPR are expressed throughout life stages and are distributed in various tissues in insects (Ranasinge and Hobbs 1999; Malbèche-Coise et al. 2005; Zhang et al. 2010; Liu et al. 2014). These conclusions were further confirmed in our study. The transcripts of SecCYP9A11 and ScCPR were detected in all of the tested tissues (midgut, fat body, and cuticle) and throughout all developmental stages, from first instar larvae to the adults of *S. exigua*. As we known, CYP and CPR play important roles in the metabolism of plant natural products (Wang et al. 2001; Foster et al. 2003; Seki et al. 2008; Riddick et al. 2013). Hence, the temporal tissue distribution of CPR and CYP mRNA may be associated with the location of xenobiotic metabolism. In this study, much higher expression levels of ScCPR and ScCYP9A11 mRNA were observed in the midgut compared with that in the fat body and cuticle, suggesting midgut is the most important part of digestive system in *S. exigua*.

Quercetin and tannin have frequently been used to study the induction of CYP in insects and mammals (Tsyrlov et al. 1994; Rahden-Staron et al. 2001). However, information regarding the expression of SecCYP9A11 and ScCPR mRNA after treatment with quercetin and tannin is unavailable. In this study, the induction of D187A and T71A in the *S. cerevisiae* CPR FMN-binding site almost completely destroys the functional activity involving CYP51.

Quercetin and tannin have frequently been used to study the induction of CYP in insects and mammals (Tsyrlov et al. 1994; Rahden-Staron et al. 2001). However, information regarding the expression of SecCYP9A11 and ScCPR mRNA after treatment with quercetin and tannin is unavailable. In this study, the expression levels of CYP9A11 were inhibited mostly in the midgut of fourth instar *S. exigua* adults of *H. armigera*, *C. suppressalis*, and *H. armigera* as both belong to the Noctuidae insect family (Zhao et al. 2014). The primary structures of the CPRs are highly conserved across diverse taxa, indicating the functional importance of this enzyme throughout insect evolution (Wang et al. 1997).

The putative structure of CPR consists of the FMN-, FAD-, and NADP-binding domains and the catalytic residues. As the catalytic cycle continues, the CPR transfers a hydride ion from NADPH to FMN due to the lower redox potential of FAD, and the hydride electron is then delivered to acceptor proteins such as CYPs (Vermilion et al. 1981; Oprian and Coon 1982) to activate molecular oxygen (Nebert and Gonzalez 1987). Cyt-b5 (Enoch and Strittmatter 1979), heme oxygenase (Schacter et al. 1972), squalene epoxidase (Teruo et al. 1977), and fatty acid elongase (Ilan et al. 1981). Furthermore, the catalytic residues (Supp Fig. 4 [online only]) are crucial for the hydride transfer catalyzed by the rat CYP oxidoreductase (Shen et al. 1999; Hubbard et al. 2001). At the N-terminus, the FMN-binding domain consists of the two FMN-binding sites FMN1 and FMN2. These binding sites are highly conserved among all insect CPRs, indicating that they may play key roles in the interaction between CPR and CYP (Zhu et al. 2012). Lamb et al. (2006) has reported that mutation of D187A and T71A in the *S. cerevisiae* CPR FMN-binding site almost completely destroys the functional activity involving CYP51.

Many previous studies have shown that CYP and CPR are expressed throughout life stages and are distributed in various tissues in insects (Ranasinge and Hobbs 1999; Malbèche-Coise et al. 2005; Zhang et al. 2010; Liu et al. 2014). These conclusions were further confirmed in our study. The transcripts of SecCYP9A11 and ScCPR were detected in all of the tested tissues (midgut, fat body, and cuticle) and throughout all developmental stages, from first instar larvae to the adults of *S. exigua*. As we known, CYP and CPR play important roles in the metabolism of plant natural products (Wang et al. 2001; Foster et al. 2003; Seki et al. 2008; Riddick et al. 2013). Hence, the temporal tissue distribution of CPR and CYP mRNA may be associated with the location of xenobiotic metabolism. In this study, much higher expression levels of ScCPR and ScCYP9A11 mRNA were observed in the midgut compared with that in the fat body and cuticle, suggesting midgut is the most important part of digestive system in *S. exigua*.
Murataliev, M. B., V. M. Guzov, F. A. Walker, and R. Feyereisen. 2008.

Mohaghegh, J., P. D. Clercq, and L. Tirry. 2001.

Livak, K. 2001.

8 JOURNAL OF INSECT SCIENCE VOLUME 15

Rahden-Staron, I., H. Czeczot, and M. Szumilo. 2001.

Pettersen, E. F., T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Petersen, T. N., S. Brunak, G. von Heijne, and H. Nielsen. 2011.

Pandey, A. V., P. Kempna, G. Hofer, P. E. Mullis, and C. E. Fluck. 2007.

Oprian, D. D., and M. J. Coon. 1982.

Park, J., J. Lee, W. Lee, H. Goh, and K. Kim. 1991.

Yao, H.-T., Y.-W. Chang, S.-J. Lan, and T.-K. Yeh. 2008.

Scott, J. G. 1999. Cytochromes P450 and insecticide resistance. Insect Biochem. Mol. Biol. 29: 757–777.

Scott, J. G., N. Liu, and Z. M. Wen. 1998. Insect cytochromes P450: diversity, insecticide resistance and tolerance to plant toxins. Comp. Biochem. Physiol. C, Pharmacol. Toxicol. Endocrinol. 121: 147–155.

Seki, H., K. Ohyama, S. Sawai, M. Mizutani, T. Ohnishi, H. Sudo, T. Akashi, T. Aoki, K. Saito, and T. Muranaka. 2008. Licorice β-amyrin 11-oxidase, a cytochrome P450 with a key role in the biosynthesis of the triterpene sweetener glycyrrhizin. Proc. Natl. Acad. Sci. U.S.A. 105: 14204–14209.

Shen, A. L., D. S. Sem, and C. B. Kasper. 1999. Mechanistic studies on the reductive half-reaction of NAPDH-cytochrome P450 4A10 oxidoreductase. J. Biol. Chem. 274: 3591–3598.

Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731–2739.

Teruo, O., O. Shigeru, H. Fumihioko, and I. Yoh. 1977. Involvement of NAPDH-cytochrome c reductase in the rat liver squalene epoxidase system. Biochim. Biophys. Acta. 486: 401–407.

Tyrylou, I. B., V. M. Mikhailenko, and H. V. Gelbin. 1994. Isozyme- and species-specific specificity of cDNA-expressed CYP1A2-450s to different flavonoids. Biochim. Biophys. Acta. 1205: 325–335.

Vermilion, J. L., D. P. Ballou, V. Massey, and M. J. Coon. 1981. Separate roles for FMN and FAD in catalysis by liver microsomal NAPDH-cytochrome P450 reductase. J. Biol. Chem. 256: 266–277.

Wang, E., R. Wang, J. DeParasis, J. H. Loughrin, S. Gan, and G. J. Wagner. 2001. Suppression of a P450 hydroxylase gene in plant trichome glands enhances natural-product-based aphid resistance. Nat. Biotechnol. 19: 371–374.

Wang, M., D. L. Roberts, R. Paschke, T. M. Shea, B.S.S. Masters, and J.-P. Kim. 1997. Three-dimensional structure of NAPDH-cytochrome P450 reductase: prototype for FMN- and FAD-containing enzymes. Proc. Natl. Acad. Sci. U.S.A. 94: 8411–8416.

Wen, Z., L. Pan, M. R. Berenbaum, and M. A. Schulzer. 2003. Metabolism of linear and angular furanocoumarins by Papilio polyxenes CYP6B1 co-expressed with NAPDH cytochrome P450 reductase. Insect Biochem. Mol. Biol. 33: 937–947.

Yang, J., R. Van, A. Roy, D. Xu, J. Poisson, and Y. Zhang. 2015. The I-TASSER Suite: protein structure and function prediction. Nat. Methods 12: 7–8.

Yao, H.-T., Y.-W. Chang, S.-J. Lan, and T.-K. Yeh. 2008. The inhibitory effect of tannic acid on cytochrome P450 enzymes and NAPDH-CYP reductase in rat and human liver microsomes. Food Chem. Toxicol. 46: 645–653.

Zhang, H., T. Tang, Y. Cheng, R. Shui, W. Zhang, and L. Qiu. 2010. Cloning and expression of cytochrome P450 CYP6B7 in fenvalerate-resistant and susceptible Helicoverpa armigera (Hu¨bner) from China. J. Appl. Entomol. 134: 754–761.

Zhao, C., T. Tang, X. Feng, and L. Qiu. 2014. Cloning and characterisation of NAPDH-dependent cytochrome P450 reductase gene in the cotton bollworm, Helicoverpa armigera. Pest Manag. Sci. 70: 130–139.

Zhu, F., S. Sams, T. Moural, K. F. Haynes, M. F. Potter, and S. R. Palli. 2012. RNA interference of NADPH-Cytochrome P450 reductase results in reduced insecticide resistance in the bed bug, Cimex lectularius. PLoS One 7: e31037.

Zhao, C., L. Zhang, S. Ze, D. Wang, and B. Yang. 2013. Identification and tissue distribution of odorant binding protein genes in the beet armyworm, Spodoptera exigua. J. Insect Physiol. 5: 722–728.

Received 12 June 2015; accepted 3 August 2015.