Evidence for a Minimal Eukaryotic Phosphoproteome?

Sander H. Diks1*, Kaushal Parikh1, Marijke van der Sijde1, Jos Joore2, Tita Ritsema3, Maikel P. Peppelenbosch1

1 Kinome Profiling Unit, Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands, 2Pepscan Presto, Lelystad, Flevoland, The Netherlands, 3 Phytopathology, Institute of Environmental Biology, Utrecht University, Utrecht, Utrecht, The Netherlands

Background. Reversible phosphorylation catalysed by kinases is probably the most important regulatory mechanism in eukaryotes. Methodology/Principal Findings. We studied the in vitro phosphorylation of peptide arrays exhibiting the majority of PhosphoBase-deposited protein sequences, by factors in cell lysates from representatives of various branches of the eukaryotic species. We derived a set of substrates from the PhosphoBase whose phosphorylation by cellular extracts is common to the divergent members of different kingdoms and thus may be considered a minimal eukaryotic phosphoproteome. The protein kinases (or kinome) responsible for phosphorylation of these substrates are involved in a variety of processes such as transcription, translation, and cytoskeletal reorganisation. Conclusions/Significance. These results indicate that the divergence in eukaryotic kinases is not reflected at the level of substrate phosphorylation, revealing the presence of a limited common substrate space for kinases in eukaryotes and suggests the presence of a set of kinase substrates and regulatory mechanisms in an ancestral eukaryote that has since remained constant in eukaryotic life.

INTRODUCTION

Kinases are enzymes that transfer a phosphate to an acceptor, which can be carbohydrates, lipids or proteins. The superfamily of eukaryotic protein kinases responsible for phosphorylation of specific tyrosine, serine, and threonine residues is generally recognised as the major regulator of virtually all metabolic activities in eukaryotic cells including proliferation, gene expression, motility, vesicular transport, and programmed cell death [1]. Dysregulation of protein phosphorylation plays a major role in many diseases such as cancer and neurodegenerative disorders, and characterisation of the human kinome space revealed that 244 of 518 putative protein kinase genes are currently mapped to disease loci or cancer amplicons [2,3]. Accordingly, drugs targeting protein kinases are promising avenues for the therapeutic treatment of a plethora of different diseases [4]. In addition, elucidating kinase cascades has proved pivotal for understanding the disease loci or cancer amplicons [2,3]. Accordingly, drugs targeting protein kinases are promising avenues for the therapeutic treatment of a plethora of different diseases [4]. In addition, elucidating kinase cascades has proved pivotal for understanding the evolution and variability of eukaryotic kinases.

Most members of the protein kinase superfamily of enzymes can be recognized from their primary sequences by the presence of a catalytic eukaryotic protein kinase (ePK) domain of approximately 250 amino acids, whereas a small number of protein kinases do not share this catalytic domain and are often collectively called atypical kinases [5,6]. A comparison of kinase domains both within and between species displays substantial diversity, which is further increased by the non-catalytic functional domains of kinases that are involved in regulation, interactions with other protein partners, or subcellular localisation. This diversity in catalytic and non-catalytic domains explains the functional diversification of kinases within the eukaryotic kingdom. Eukaryotic protein kinases are now generally classified into several major groups [7,8]: the cyclic nucleotide- and Ca2+-dependent kinases (AGC); a group consisting of the cyclin-dependent and cyclin-dependent-like kinases, mitogen-activated kinases, and glycogen synthase kinases (CMGC); the tyrosine kinases (TK); the tyrosine kinase-like group (which are in fact serine/threonine protein kinases) (TKL); the calmodulin-dependent kinases (CAMK); the casein kinase 1 group (CK); and the STE group (first identified in analyses of sterile yeast mutants) that includes the enzymes acting upstream of the mitogen-activated kinases (STE), summarised in table 1 which is an extension on the table published by Manning et al. 2002. Plants were considered not to have a TK group but instead to have a large receptor-like kinase group (RLK). However, recently Miranda–Saavedra et al. have shown using a new library that this is not the case. This new library is outperformers BLASTP and general Pfam hidden Markov models in the classification of kinase domains. They show that plants do contain tyrosine kinases and that diverse classes of organisms have a large overlap in kinase families [8]. It should be noted, however, that many eukaryotes also have kinase sequences that are not easily assigned to one of these groups and are referred to as “other protein kinases.” Thus far, pan-eukaryotic classification of kinase substrate sequences has not been attempted and would give better insight in the evolution and variability of substrates and their kinases.

Comparative analyses of genomes have already demonstrated substantial differences in the kinomes of different eukaryotes. These differences are partly reflected in the highly variable number of protein kinase genes present in the genomes of different eukaryotes (e.g., the A. thaliana genome contains 973 apparent protein kinase genes [9], the H. sapiens genome contains 518 [2], S. pombe is predicted to have 353 protein kinases [10], D. melanogaster appears to have 240 [7], S. cerevisiae has 115 protein kinase genes [11], and P. falciparum exhibits only 65 putative protein kinases).
Many different kinases are shared among eukaryotes. For instance, plants and unicellular eukaryotes contain a large group of serine/threonine protein kinases) [12], as well as in highly divergent kinase structures. For instance, plant and unicellular eukaryotic genomes do not contain any apparent kinases from the tyrosine kinase group, despite the detection of phosphorylated tyrosine residues in plants, suggesting that tyrosine phosphorylation in these organisms is possible or that it is mediated via other types of kinases [13–16]. Strikingly, of the 106 putative protein kinases identified in *S. pombe* on the basis of primary sequence, only 67 have orthologues in *S. cerevisiae* but 47 have an orthologue in *H. sapiens* [17], indicating a great deal of conservation in kinases between different organisms. This high degree of overlap might indicate the presence of conservation in kinase substrates too. In the *P. falciparum* kinome, 30% of protein kinases belong to the FIKK family of protein kinases that is apicomplexa-specific and not found in other groups of eukaryotes [12]. As mentioned previously, plants contain a large group of serine/threonine kinases (receptor-like kinases) not found in other eukaryotes. These RLKs most likely share a common evolutionary origin with the receptor tyrosine kinases present in animals and are thus sometimes collectively referred to as receptor kinases and providing an explanation that tyrosine containing motifs on the PepChip can be phosphorylated by these lysates [9]. Interestingly, a recent *in silico* report on the kinome of the sea urchin has provided new evidence on the evolution of different kinase subfamilies as being an intermediate eukaryote between animals and plants [10]. Fungi such as yeast and *Neospora* do not appear to have representatives of the receptor kinase group, whereas the slime mould *D. discoideum* does have receptor kinases, which fits with the role of receptor kinases in multicellular organisms [18]. Thus, the eukaryotic family of protein kinases displays substantial diversity at the genetic level between different eukaryotic families.

Whether a kinase is able to phosphorylate its substrate depends on multiple factors such as the physical localisation of both molecules, availability of the substrate to the kinase, but a very important factor, in case of a protein kinase, is the amino acid context surrounding the phospho acceptor. The amino acids surrounding the substrate amino acid confer specificity to which kinase can bind correctly to the substrate and confer a phosphate group to the acceptor. The fact that different kinases have different target substrates is being exploited for phosphoproteome profiling using peptide arrays. In this approach, kinase substrates described in the PhosphoBase phosphorylation site database [19] are spotted on a glass slide and incubated with cell lysates and 33P-labelled γ-ATP. Phosphorylation of target peptides in arrays has provided substrate phosphorylation profiles for LPS-stimulated monocytes and was instrumental for the discovery of Lck and Fyn kinases as early targets of glucocorticoids [20,21]. Importantly, the extent to which the diversity of kinases at the genetic level is reflected in differences in substrate specificity has not been investigated on a large scale.

In the present study, we investigated substate requirements of phosphoproteomes of several divergent eukaryotes by employing peptide arrays on resting, unstimulated cellular lysates. Our results show that the divergence of eukaryotic protein kinases observed at the level of primary sequence is not completely reflected at the level of substrate phosphorylation, revealing a large overlap in the phosphorylation profiles from lysates of different eukaryotic origins. Furthermore, the identified minimal eukaryotic phosphoproteome suggests the presence of a set of kinase substrates in an ancestral eukaryote that has since remained invariant in eukaryotic life. The phosphoproteome seems to be involved in the maintenance of cell homeostasis as judged from the source of the peptides involved and thus may be a requisite for eukaryotic life [22].

Class	Description	Yeast	Dictyostelium	Worm	Fly	Sea Urchin	Plant	Human
AGC	PKA, PKC, PKG	17 (13%)	21 (7%)	30 (7%)	30 (13%)	29 (8%)	43 (4%)	63 (12%)
CAMK	Calcium/calmodulin Kinases	21 (16%)	21 (7%)	46 (10%)	32 (13%)	50 (14%)	89 (9%)	74 (14%)
CK1	Casein Kinase	4 (3%)	2 (1%)	85 (19%)	10 (4%)	6 (2%)	18 (2%)	12 (2%)
CMGC	CDK, MAPK, GSK3, CLK	21 (16%)	28 (9%)	49 (11%)	33 (14%)	35 (10%)	65 (7%)	61 (12%)
Other		38 (29%)	71 (24%)	67 (15%)	45 (19%)	92 (26%)	19 (2%)	83 (16%)
STE	Homologues of sterile	14 (11%)	44 (15%)	25 (6%)	18 (8%)	21 (6%)	67 (7%)	47 (9%)
TK	Tyrosine Kinase	0 (0%)	0 (0%)	90 (20%)	32 (13%)	53 (15%)	0 (0%)	90 (17%)
TKL	Tyrosine Kinase-like	0 (0%)	68 (23%)	15 (3%)	17 (7%)	35 (10%)	52 (5%)	43 (8%)
RGC	Receptor guanylate Cyclase	0 (0%)	0 (0%)	27 (6%)	6 (3%)	8 (2%)	0 (0%)	5 (1%)
RLK/Pelle	Receptor Like Kinases	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	620 (64%)	0 (0%)
Atypical		2 (2%)	0 (0%)	1 (0%)	1 (0%)	2 (1%)	0 (0%)	5 (1%)
Alpha		0 (0%)	6 (2%)	4 (1%)	1 (0%)	3 (1%)	0 (0%)	6 (1%)
RIO		2 (2%)	2 (1%)	3 (1%)	3 (1%)	3 (1%)	0 (0%)	3 (1%)
TIF1		1 (1%)	1 (0%)	2 (0%)	1 (0%)	1 (0%)	0 (0%)	2 (0%)
Other		2 (2%)	20 (7%)	1 (0%)	2 (1%)	8 (2%)	0 (0%)	9 (2%)
ABC1		3 (2%)	4 (1%)	3 (1%)	3 (1%)	4 (1%)	0 (0%)	5 (1%)
Brd		0 (0%)	2 (1%)	1 (0%)	1 (0%)	1 (0%)	0 (0%)	4 (1%)
PIKK		5 (4%)	5 (2%)	5 (1%)	5 (2%)	4 (1%)	0 (0%)	6 (1%)
Total		30 (100%)	295 (100%)	54 (100%)	240 (100%)	355 (100%)	973 (100%)	518 (100%)

References to the different kinomes are mentioned in the text. * In plants, this group consists only of raf-like members in the *A. thaliana* genome. doi:10.1371/journal.pone.0000777.t001
RESULTS AND DISCUSSION
Phosphorylation of peptide arrays exhibiting mammalian-biased kinase substrates by divergent eukaryote sources

A peptide array (PepChip) was employed to determine the preference of cell lysates for kinase substrates. We used the PhosphoBase resource (version 2.0) (now called Phospho.Elm: http://phospho.elm.eu.org) as a source of diverse peptide substrates for kinases [19]. This database contains kinase substrate peptides from diverse organisms, including yeast and plant peptides, but is strongly biased towards mammalian peptide sequences (Figure 1A and Table S1). It must be noted that this set of substrates is just a small subset of known protein kinase substrates and the complete phosphoproteome which is considered to be a lot bigger. Arrays were constructed by covalently coupling chemically synthesized, soluble peptides to glass substrates as described previously [21]. Arrays contained 1152 different oligopeptides, covering the majority of substrate peptides available through PhosphoBase (version 2.0). On each carrier, the array was spotted twice to allow assessment of variability in substrate phosphorylation. The final physical dimensions of the array were 25×75 mm. Each peptide spot had a diameter of approximately 250 μm, and each spot was 620 μm from adjacent spots. When the arrays were incubated with [33P-γ] ATP and cell lysates from diverse eukaryotic sources, radioactivity was efficiently incorporated. In contrast, no radioactivity was incorporated when arrays were incubated with [33P-γ] ATP and lysates, demonstrating that spot phosphorylation was mediated by specific attachment of the γ-phosphate of ATP to the oligopeptides in the array (Figure 1B).

Both the technical replicates (same peptide on the same chip) and the biological replicates were generally of good quality (see supplementary data). Remarkably, the efficiencies by which cell lysates derived from divergent eukaryotic sources phosphorylated specific peptides in the array overlapped substantially, with mammalian lysates showing 32P incorporation in a large number of spots (Figure 1C). This overlap in phosphorylation of a strongly mammalian-biased set of kinase substrates indicates that a subgroup of kinases is present in divergent eukaryotes. However, different peptide substrates or different mouse lysates and between mammalian lysates and other members of the fungal kingdom were not thought to express archetypical tyrosine kinases, as judged from the primary sequences of kinases present in their genomes. However, such organisms have been reported to be capable of phosphorylating tyrosine residues via dual-specificity kinases [11,14–16,23,24]. Another explanation for tyrosine phosphorylation by these lysates is the fact that serine, threonine, and tyrosine are not the only phosphate acceptors in eukaryotes. Several lines of research have already shown that histidine and aspartate are also phosphorylated in eukaryotic cells (reviewed in [25–27]). Therefore, another explanation could be that histidine and/or aspartate kinases are a possible confounder in our minimal phosphoproteome set (Table 2). This is boosted by the observation that of the 333 monophospho-substrates, only 35% of the serine/threonine motifs contained a histidine (H) or aspartate (D) and 60% of the tyrosine motifs. The difference in the distribution of the H and D amino acids between S/T and Y containing motifs could imply that phosphorylation of histidine (H), aspartate (D) and tyrosine (Y) might have a common ancestry and a coupled evolutionary background which is not unlikely as remarkable similarities exist between these two classes of kinases (reviewed by Wolanin et al. and references therein)[28]. However, most the tyrosine substrates in our minimal phosphoproteome panel do not contain a histidine or aspartate and therefore common evolutionary backgrounds for histidine, aspartate and tyrosine seems less likely. Thus, the absence of obvious tyrosine kinases in the plant and fungal kingdoms does not result in the inability to phosphorylate tyrosine containing substrates in these organisms. Thus, we compared the relative capacities of animal-derived cell lysates to phosphorylate tyrosine-containing peptide substrates with lysates obtained from the other two eukaryotic kingdoms. To this end, we compared the contribution of serine, threonine, or tyrosine amino acid-containing substrates to the total phosphorylation of all peptide substrates, correcting for the relative abundance of the amino acid in the entire set of substrates. Peptides that can be phosphorylated at more than one residue would bias the results towards a particular amino acid. For example, a peptide that is phosphorylated at two adjacent serines could result in higher signal intensity than a peptide phosphorylated on one threonine. Thus, only those peptides with a single serine, threonine, or tyrosine phosphorylation site were considered (see Table S2). When array phosphorylation was studied in this manner, it appeared that the relative capacities of cell lysates to phosphorylate serine, threonine, or tyrosine substrates were remarkably similar, independent of the kingdom (Figure 2A and B).

Clustering of array phosphorylation patterns along phylogenetic lines

We wished to determine whether the patterns of array phosphorylation reflect phylogenetic relations among the various sources of the cell lysates. To this end, we calculated the Spearman correlation coefficient among the array results using all datasets separately (Table S3), combining datasets with similar origin (Table S4) or combining datasets to organisms (Table S5) and then clustered the results according to Johnson (Figure 2C) [29]. Histograms of the distributions of positive spots of these three datasets analysis show a normal distribution which is shifted to the right (Histogram S1, S2 and S3). Cell lysates from plant and animal sources clustered intraregna, with plants showing less intraregional variation than animals. This finding could arise from the fact that plant cell lysates were produced from entire organisms, whereas animal lysates were from specialised tissues. Strikingly, the variation in array phosphorylation was comparable between different human or different mouse lysates and between mammalian lysates and a Drosophila lysate. Substrate preferences for kinases do seem to have undergone some diversification after the separation of the animal and plant branches of the eukaryotes. For example, intraregional variation in phosphorylation between monocotyledons and dicotyledons is smaller than the variation between M. musculus B-cells and H. sapiens macrophages. However, diversity in substrate preferences apparently has not increased after the separation of the Arthropoda and Chordata phyla, and the animal phosphoproteome was established early in animal evolution. This observation corresponds well with analyses of the animal phosphoproteome employing the primary sequences of kinases from divergent animals, as well as with very recent data showing that all major signalling pathways are present in the Porifera phylum, which separated from other animals very early in animal evolution [30,31]. Lysates obtained from the fungal kingdom show much more diversity in array phosphorylation than animal lysates, with a P. pastoris lysate actually clustering with plants rather than with other members of the fungal kingdom. A possible explanation...
Figure 1. (A) Distribution of the primary origin of substrates spotted on the PepChip by regnum and species. (B) Incubation of a lysate on a PepChip with equal amounts of [33P-α- and [33P-γ]-labelled ATP to show functional phosphorylation (C) Weighted average of at least three PepChip profiles of the different samples.

doi:10.1371/journal.pone.0000777.g001
Some of the substrates in the set are highly similar, phosphorylated by the divergent eukaryote cell lysates tested. The clustering analysis indicated that a significant subset of the substrates remained. These peptides are, in our set, the substrates essentially identical peptide substrates, 71 different peptide sequences, may act as tyrosine kinases [18]. In A. thaliana, APK1 is capable of tyrosine phosphorylation [13]. It would be interesting to investigate whether any of these kinases are responsible for this minimal phosphoproteome tyrosine phosphorylation events observed in the present study. Interestingly, inhibitors of animal tyrosine kinases also function in plants, suggesting substantial structural homology between the kinases responsible for tyrosine phosphorylation in both kingdoms [39,40]. Further insights into kinase evolution and specificity in different species are needed.

Table 2. Distribution of the other phospho acceptors, histidine (H) and aspartate (D) in monophospho motifs (containing only one S, T or Y).

All Substrates	Without DH	With DH	%–DH	%+DH	
STY	100% (353)	100% (219)	100% (134)	62%	38%
ST	87% (308)	92% (201)	80% (107)	65%	35%
S	69% (245)	72% (159)	64% (86)	65%	35%
T	18% (63)	19% (42)	16% (21)	67%	33%
Y	13% (45)	8% (18)	20% (27)	40%	60%

doi:10.1371/journal.pone.0000777.t002

Peptides in this minimal phosphoproteome are not general kinase substrates

An important question concerns the necessity of this minimal eukaryotic phosphoproteome for cell function. The finding that a set of peptide substrates is phosphorylated by cell lysates from highly divergent eukaryotes may indicate that such kinase activity is essential for eukaryotic life and that strong evolutionary pressure exists to prevent its loss. An alternative explanation would be that these substrates act as so-called u¨ber-substrates that are relatively non-specifically phosphorylated by multiple kinases. To investigate this question, we incubated chips with relatively high concentrations of purified kinases, e.g., human Tpl2 (MAPK3). We observed that the substrates phosphorylated by these purified kinases did not overlap with the set of substrates comprising this minimal eukaryotic phosphoproteome ($R^2 = 0.11$). Thus, phosphorylation of the substrates in the minimal phosphoproteome likely reflects the specific activities of multiple kinases in the eukaryotic cell lysates. However, this can only be validated when the phosphorylation profile all kinases are analysed separately. Apparently, strong evolutionary pressure on a minimal phosphoproteome exists, counteracting changes in substrate specificity for the kinases responsible for these phosphorylation events. By inference, this set of substrate motifs was probably present in an
ancestral eukaryotic progenitor cell. This notion is in agreement with a recent study by Scheeff and Bourne provides convincing evidence for the evolution of the various kinase families from a common ancestor [41]. It is tempting to speculate that this ancestral protein kinase, or other kinases that appeared relatively early in the history of eukaryotic life, delivered the foundation of essential kinase substrate motifs (the minimal eukaryotic phospho-proteome) that remained stable ever since.

Concluding, in this paper we described the presence of a set of kinase substrates that is recognised and phosphorylated by a diverse panel of eukaryotic cell lysates. This is remarkable since this set is biased towards mammalian motifs, but can still be a target of non-mammalian lysates. The fact that this occurs indicates that some level of conservation exists in the eukaryotic lineage. Analysis of the preferred substrates revealed that lysine and arginine have an important role in primary sequence of kinase substrates. The
Table 3. Unique substrates phosphorylated in the majority of the profiles tested (supplementary info). Distribution in other species and the conservation of each substrate are also indicated.

Sequence	Ph-Site	Put. Kinase	SwissProt	Protein	Homologues	Conserved	
GQEVYVKKT	Y-992	auto	Q02763	Angiopoietin-1 receptor	vertebrate, yeast	similar (except yeast)	
LEKTYVRDD	Y-706	auto	P09581	macrophage colony stimulating factor 1 receptor	mammal	highly similar	
KQPIYIEME	Y-424	auto	P00541	Tyrosine-protein kinase transforming protein Fps	mammal, fly	highly similar	
YKNDYRRKR	Y-2131	auto	P08941	Ras proto-oncogene tyrosine kinase	vertebrate, yeast, worm	divergent	
FKAFPSKGS	S-597	CDK	P12957	Caldesmon	aves	highly similar	
EFPLSPKKK	S-37	CDK	P16949	stathmin	mammal, insect	similar	
VIKRSRRKR	S-646	CDK	P08153	transcriptional factor SW5	yeast, mammal	divergent	
NNWMTPPARK	T-316	CDK	P13681	serine/threonine protein phosphatase PP1	bacterial, yeast	divergent	
KISIRSKA	T-36	ERA	P06616	GTP-binding protein era	insect	-	
DSYTKASK	Y-577	FAK	P34152	Focal adhesion kinase	mammal, amphibian	highly similar	
AKRISQKMA	S-277	G1/S kinase ?	P13863	Cell division control protein 2	mammal	highly similar	
AVRTTPKKS	T-231	GSK3	P10636	Microtubule-associated protein tau	mammal, insect	highly similar	
VKRISGLY	S-47	H4-PK-I	P02304	Histone H4	universal	highly similar	
KGGTYKXTE	Y-701	JAK,Src	P42224	Signal Transducer and Activator of Transcription 1	mammal	highly similar	
KNVTTPRTP	T-94	MAPK	P02687	Myelin basic protein	mammal, amphibian	highly similar	
ELILSPRKS	S-24	MAPK,CDK	P16949	stathmin	mammal, insect	similar	
AKKMSYNV	S-315	MHC1	P19706	myosin heavy chain	mammal	-	
KRAQISVRLG	S-15	PHK	P11217	glycogen phosphorylase	mammal, plant, yeast, insect	highly similar	
TKKTSTVYF	S-218	PKA	P41035	eukaryotic translation initiation factor 2 beta	mammal, plant, yeast, insect	highly similar	
SRRQSVLVK	S-715	PKA	P13002	glutamate receptor 6	mammal, amphibian	similar	
RKAARKE	S-32	PKA	P02277	Histone H2B	mammal, shark	divergent	
KRKRKRES	S-32	PKA	P02278	Histone H2B	chordata	highly similar	
KRFGSKAHM	S-374	PKA	P29476	nitric-oxide synthase	mammal	highly similar	
EIKKSWISW	S-467	PKA	P25107	parathyroid hormone/parathyroid hormone-related peptide receptor	mammal, yeast, fungih	divergent	
KRKSYYHV	S-687	PKA	P04775	Sodium channel protein type II alpha	mammal, squid	similar	
KRKSSQALV	S-15	PKA	P03373	Transforming protein erbA	aves	divergent	
RAKRSGSV	S-27	PKA	P12798	phosphoryl b kinase beta	mammal	similar	
KKKLSAIVA	S-43	PKA	P12928	pyruvate kinase	-	-	
KRRQGVPL	S-247	PKA	P16452	erythrocyte membrane protein band 4.2	mammal, yeast	divergent	
KLRRSSSVG	S-381	PKA,PKC	P02771	Acetylcholine receptor protein delta	fish	unique	
KTRSSRAGL	S-19	PKA,PKC	P02261	Histone H2A	universal	highly similar	
KRPSVRACA	S-10	PKA,PKC	P02687	Myelin basic protein	mammal, amphibian	highly similar	
GGGRADYSKS	S-131	PKA,PKC	P02687	Myelin basic protein	mammal, amphibian	highly similar	
KRKNSILNP	S-700	PKA,PKG	P13569	cystic fibrosis transmembrane conductance regulator	mammal	highly similar	
TRIPSAKYY	S-104	PKC	Q62048	astrocytic phosphoprotein PEA-15	mammal	highly similar	
KTTASTRKVK	S-790	PKC	P13569	cystic fibrosis transmembrane conductance regulator	mammal	highly similar	
RKAASVIAK	S-43	PKC	P06764	DNA polymerase beta	mammal, amphibian	highly similar	
KRRLSVERI	S-29	PKC	P11388	DNA topoisoasemose II alpha	mammal	highly similar	
RGKSSVYK	S-577	PKC	P02671	Fibrinogen alpha	human	-	
STLASSFKR	S-889	PKC	P05586	glutamate (NMDA) receptor subunit zeta 1	mammal, plant	similar	
RVRVTGKYG	T-710	PKC	P19490	glutamate (NMDA) receptor subunit zeta 1	mammal, plant	similar	
GGSVTARKK	T-416	PKC	P11516	Lamin A/C	mammal, worm	divergent	
KKKFSFPPK	S-92	PKC	P28667	MARCKS-related protein	mammal, aves	highly similar	
AKDASKRGR	S-181	PKC	P10522	myelin	mammal, aves	highly similar	
KRPSKRRAKA	S-7	PKC	P02687	Myelin basic protein	mammal, amphibian	highly similar	
KRAKAKTAKKR	T-9	PKC	P02612	Myosin regulatory light chain 2	mammal, aves, mussel	similar	
SSKRRAKAK	S-1	PKC	P02612	Myosin regulatory light chain 2	mammal, aves, mussel	similar	
LSGFSFPPK	S-162	PKC	P30009	myristolated alanine-rich C-kinase substrate	mammal, aves	highly similar	
possibility that the minimal kinome is produced by a few kinases seems unlikely since single kinase experiments reproduce a very limited part of this panel. However a limited set of kinases can very well be able to reproduce this set. This seems not unlikely since the major function of this set is to maintain cell homeostasis, other more specialised functions require specialised kinases.

MATERIALS AND METHODS

Organisms
Whole extracts of *C. albicans, P. pastoris, F. Solani, D. melanogaster, T. aestivum* and *A. thaliana* were used and cell types of *M. musculus* and *H. sapiens* were used as mentioned in the text.

Peptide Array Analysis
For kinome array samples, 10^6 ceq or 500 µg were lysed or homogenised in 100 µl of cell lysis buffer (20 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1 mM Na2EDTA, 1 mM EGTA, 1% Triton X-100, 2.5 mM sodium pyrophosphate, 1 mM MgCl2, 1 mM β-glycerophosphate, 1 mM Na3VO4, 1 mM NaF, 1 µg/ml leupeptin, 1 µg/ml aprotinin, 1 mM PMSF). The cell lysates were subsequently cleared on a 0.22-µm filter. Peptide array incubation mix was produced by adding 10 µl of filter-clarified activation mix (50% glycerol, 50 µM [γ-33P] ATP, 0.05% v/v Brij-35, 0.25 mg/ml bovine serum albumin, [γ-33P] ATP [1000 kBq]). Next, the peptide array mix was added onto the chip, and the chip was kept at 37°C in a humidified stove for 90 min. Subsequently the peptide array was washed twice with Tris-buffered saline with Tween, twice in 2 M NaCl, and twice in demineralized H2O and then air-dried. The experiments were performed three times in duplicate.

Analysis of Peptide Array
The chips were exposed to a phosphorimager plate for 72 hours, and the density of the spots was measured and analyzed with array software.

Analysis
For the analysis clustering using the spearman correlation coefficient was calculated for each combination of sets and clustering was performed using Johnston hierarchical clustering methods. Inclusion parameters for each of the kinome profiles are described in supplemental data, Table S4.

SUPPORTING INFORMATION

Table S1 Substrates spotted on the PepChip. Found at: doi:10.1371/journal.pone.0000777.s001 (0.17 MB XLS)

Table S2 List of monophospho-acceptor motifs, with the distribution of histidine and aspartate residues indicated. Found at: doi:10.1371/journal.pone.0000777.s002 (0.11 MB XLS)

Table S3 Presence (1) or absence (0) of spots phosphorylated by the different lysates tested. This table is used to determine the clustering of the different lysates. Found at: doi:10.1371/journal.pone.0000777.s003 (0.32 MB XLS)

Table S4 Presence (1) or absence (0) of spots phosphorylated averaged for the different sample background. doi:10.1371/journal.pone.0000777.t003
SwissProt	Protein	Biological Process	Molecular Function
P02718	Acetylcholine receptor protein subunit delta precursor	muscle contraction, signal transduction, transport	nicotinic acetylcholine-activated cation-selective channel activity
Q02763	Angiopoietin-1 receptor	cell-cell signaling, signal transduction, transmembrane receptor protein tyrosine kinase signaling pathway	protein kinase activity, receptor activity, transmembrane receptor protein tyrosine kinase activity
Q62048	Astrocytic phosphoprotein PEA-15	anti-apoptosis, negative regulation of glucose import, regulation of apoptosis, transport	protein binding
P12957	Caldesmon	Cel Motility	actin, tropomyosin, calmodulin binding
P16220	cAMP response element binding protein	signal transduction, DNA-dependent transcription	protein binding, transcription cofactor activity, transcription factor activity
P13863	Cell division control protein 2	apoptosis, cell proliferation, mitosis, protein amino acid phosphorylation, regulation of cell growth, regulation of mRNA processing, regulation of progression through cell cycle, regulation of transcription, DNA-dependent	ATP binding, protein binding, protein serine/threonine kinase activity
P13569	Cystic fibrosis transmembrane conductance regulator	respiratory gaseous exchange, transport	ATP binding, ATP-binding and phosphorylation-dependent chloride channel activity, channel-conductance-controlling ATPase activity, PDZ domain binding, protein binding
P33316	5'-triphosphate nucleotidohydrolase	DNA replication, nucleic acid metabolism	dUTP diphosphatase activity
P06764	DNA polymerase beta	DNA repair; DNA-dependent DNA replication	DNA polymerase activity, microtubule binding
P11388	DNA topoisomerase II alpha	DNA repair, DNA replication, signal transduction, regulation of apoptosis	DNA topoisomerase activity, drug binding, protein kinase C binding
P41035	Eukaryotic translation initiation factor 2 subunit beta	translational initiation	RNA binding, translation factor activity, nucleic acid binding
P06764	DNA polymerase beta	DNA repair, DNA-dependent DNA replication	DNA polymerase activity, microtubule binding
P11388	DNA topoisomerase II alpha	DNA repair, DNA replication, signal transduction, regulation of apoptosis	DNA topoisomerase activity, drug binding, protein kinase C binding
P13002	Glutamate receptor 6	glutamate signaling pathway, transport	kainate selective glutamate receptor activity
P11217	Glycogen phosphorylase	glycogen metabolism	glycogen phosphorylase activity
P06616	GTP-binding protein era	growth control	GTP/GDP bindin
P0256	Histone H1	chromosome organization and biogenesis, nucleosome assembly	DNA binding
P10156	Histone H1	chromosome organization and biogenesis, nucleosome assembly	DNA binding
P02261	Histone H2A	nucleosome assembly	DNA binding
P0277	Histone H2B	DNA binding	
P02305	Histone H4	establishment and/or maintenance of chromatin architecture, phosphoinositide-mediated signaling	DNA binding
P01889	HLA class I histocompatibility antigen	immune response	MHC class I receptor activity
SwissProt	Protein	Biological Process	Molecular Function
---------	---------------------------------	--	---
P11516	Lamin A/C	nuclear membrane organization and biogenesis	protein binding
P09581	Macrophage colony-stimulating factor 1 receptor	antimicrobial humoral response, cell proliferation, development, signal transduction	macrophage colony stimulating factor receptor activity
P28667	MARCKS-related protein	cell motility, signal transduction	actin filament binding, calmodulin binding
P10636	Microtubule-associated protein tau	microtubule cytoskeleton organization and biogenesis, negative regulation of microtubule depolymerization, generation of neurons, positive regulation of axon extension, positive regulation of microtubule polymerization	enzyme binding, lipoprotein binding, microtubule binding, SH3 domain binding, structural constituent of cytoskeleton
P10522	Myelin	synaptic transmission	structural molecule activity
P02687	Myelin basic protein (MBP)	central nervous system development, immune response, nerve ensheathment, synaptic transmission	structural constituent of myelin sheath
P19706	Myosin heavy chain IB	actin filament-based movement	microfilament motor activity
P02612	Myosin regulatory light chain 2	actin filament-based movement, smooth muscle contraction	ATPase activity, calcium ion binding, microfilament motor activity
P12624	Myristoylated alanine-rich C-kinase substrate	cell motility	actin filament binding, calmodulin binding
P29966	Myristoylated alanine-rich C-kinase substrate	cell motility	actin filament binding, calmodulin binding
P30009	Myristoylated alanine-rich C-kinase substrate	cell motility	actin filament binding, calmodulin binding
P06885	Sodium/potassium-transporting ATPase alpha-1 chain precursor	ATP hydrolysis coupled proton transport, hydrogen ion homeostasis, potassium ion import, sodium ion transport, sperm motility	sodium-potassium-exchanging ATPase activity
P19246	Neurofilament triplet H protein	intermediate filament cytoskeleton organization and biogenesis	structural constituent of cytoskeleton
P3722	Neurogranin	nervous system development, signal transduction	calmodulin binding
P29476	Nitric-oxide synthase	muscle contraction	nitric-oxide synthase activity
P06748	Nucleophosmin (NPM)	activation of NF-kappaB transcription factor, anti-apoptosis, cell aging, centrosome cycle, intracellular protein transport, negative regulation of cell proliferation, nucleocytoplasmic transport, response to stress, ribosome assembly, signal transduction	NF-kappaB binding, protein heterodimerization activity, protein homodimerization activity, RNA binding, Tat protein binding, transcription coactivator activity, unfolded protein binding
P25107	Parathyroid hormone/parathyroid hormone-related peptide receptor	G-protein signaling, coupled to cyclic nucleotide second messenger, skeletal development	parathyroid hormone receptor activity
P28327	Rhodopsin Kinase	regulation of G-protein coupled receptor protein signaling pathway, rhodopsin mediated signaling	protein kinase activity
P08941	Proto-oncogene tyrosine-protein kinase ROS	signal transduction	protein-tyrosine kinase activity, receptor activity
Q11179	Searine/threonine-protein kinase C	unknown	protein kinase activity
P42224	Signal transducer and activator of transcription 1-alpha/beta	caspase activation, I-kappaB kinase/NF-kappaB cascade, regulation of progression through cell cycle, response to pest, pathogen or parasite, signal transduction, transcription from RNA polymerase II promoter, tyrosine phosphorylation of STAT protein	hematopoietin/interferon-class (D200-domain) cytokine receptor signal transducer activity, protein binding, transcription factor activity
P04775	Sodium channel protein type 2	generation of action potential, sodium ion transport	Voltage-gated sodium channel activity
P17306	Spermatid nuclear transition protein 1	chromatin remodeling, chromatin silencing, fertilization, exchange of chromosomal proteins, nucleosome disassembly, sexual reproduction, single strand break repair, sperm motility, spermatid nuclear elongation	DNA binding
P22613	Spermatid nuclear transition protein 1	chromatin remodeling, chromatin silencing, fertilization, exchange of chromosomal proteins, nucleosome disassembly, sexual reproduction, single strand break repair, sperm motility, spermatid nuclear elongation	DNA binding
Table S5 Presence (1) or absence (0) of spots phosphorylated averaged for the different organisms.

Table S6 Calculation of the probability that 116 trials (substrates) are positive (in at least 90% of the samples, corrected for origin bias) in a total number of 1152 trials (= whole PepChip) using a binomial distribution calculation [http://www.stat.sc.edu/~west/applets/binomialdemo.html]. The p-value for success in the binomial distribution is calculated by using the cumulative relative amount of positive spots for every organism. The result of this test shows the chance that a spot is phosphorylated in every set.

Table S7 Histogram of frequency distribution of Table S3.

Table S8 Histogram of frequency distribution of Table S4.

Table S9 Histogram of frequency distribution of Table S5.

ACKNOWLEDGMENTS
The authors are grateful for the material that was provided by the different groups.

Author Contributions
Conceived and designed the experiments: JJ SD MP TR. Performed the experiments: SD TR Mv KP. Analyzed the data: JJ SD MP Mv KP. Contributed reagents/materials/analysis tools: JJ. Wrote the paper: SD MP TR.

REFERENCES
1. Hunter T (2000) Signaling—2000 and beyond. Cell 100: 113–127.
2. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298: 1912–1934.
3. Krupa A, Srinivasan N (2002) The repertoire of protein kinases encoded in the draft version of the human genome: atypical variations and uncommon domain combinations. Genome Biol 3: RESEARCH0066.
4. Vieth M, Sutherland JJ, Robertson DH, Campbell RM (2005) Kinomics: characterizing the therapeutically validated kinase space. Drug Discov Today 10: 839–846.
5. Hanks SK (2003) Genomic analysis of the eukaryotic protein kinase superfamily: a perspective. Genome Biol 4: 111.
6. Leonard CJ, Aravind L, Koonin EV (1998) Novel families of putative protein kinases in bacteria and archaea: evolution of the “eukaryotic” protein kinase superfamily. Genome Res 8: 1038–1047.
7. Manning G, Plowman GD, Hunter T, Sudarsanam S (2002) Evolution of protein kinase signaling from yeast to man. Trends Biochem Sci 27: 514–520.
8. Miranda-Saavedra D, Barton GJ (2007) Classification and functional annotation of eukaryotic protein kinases. Proteins.
9. Champion A, Kreis M, Mockaitis K, Picaud A, Henry Y (2004) Arabidopsis kinome: after the casting. Funct Integr Genomics 4: 163–187.
10. Bradham CA, Foltz KR, Beane WS, Arnone MI, Rizzo F, et al. (2006) The sea urchin kinome: A first look. Dev Biol 300: 180–193.
11. Hunter T, Plowman GD (1997) The protein kinases of budding yeast: six score and more. Trends Biochem Sci 22: 18–22.
12. Ward P, Equinet L, Packer J, Doering C (2004) Protein kinases of the human malaria parasite Plasmodium falciparum: the kinase of a divergent eukaryote. BMC Genomics 5: 79.
13. Hirayama T, Oka A (1992) Novel protein kinase of Arabidopsis thaliana (APK1) that phosphorylates tyrosine, serine and threonine. Plant Mol Biol 20: 655–662.
14. Malathi K, Xiao Y, Mitchell AP (1999) Catalytic roles of yeast GSK3beta/shaggy homolog Rim11p in meiotic activation. Genetics 153: 1145–1152.
15. Stern DF, Zheng P, Beidler DR, Zerillo C (1991) Spk1, a new kinase from Saccharomyces cerevisiae, phosphorylates proteins on serine, threonine, and tyrosine. Mol Cell Biol 11: 1007–1010.
16. Zhu H, Klemic JF, Chang S, Bertone P, Casamayor A, et al. (2000) Analysis of yeast protein kinases using protein chips. Nat Genet 26: 283–289.
17. Wood V, Gwilliam R, Rajandream MA, Lyne M, Lyne R, et al. (2002) The genome sequence of Schizosaccharomyces pombe. Nature 415: 871–880.
18. Goldberg JM, Manning G, Liu A, Fey P, Pilcher KE, Xu Y, Smith JL (2006) The dictyostelium kinome–analysis of the protein kinases from a simple model organism. PLoS Genet 2: e38.
19. Kreekopu A, Blons N, Brunak S (1999) PhosphoBase, a database of phosphorylation sites: release 2.0. Nucleic Acids Res 27: 237–239.
20. Lowenberg M, Tuynman J, Bilderbeek J, Gaber T, Buttgereit F, et al. (2005) Rapid immunosuppressive effects of glucocorticoids mediated through Lck and Fyn. Blood 106: 1703–1710.
21. Diks SH, Kok K, O’Toole T, Hommes DW, van Dijken P, et al. (2004) Kinome profiling for studying lipopolysaccharide signal transduction in human peripheral blood mononuclear cells. J Biol Chem 279: 49206–49213.
22. Varela FG, Maturana HR, Urbe R (1974) Autopoiesis: the organization of living systems, its characterization and a model. Cult Med Biol 5: 187–196.
23. Modesti A, Bini L, Carrarei L, Magherini F, Liberatori S, Pallini V, Mana G, Pinna LA, Ranieri G, Ramponi G (2001) Expression of the small tyrosine phosphatase (Stp1) in Saccharomyces cerevisiae: a study on protein tyrosine phosphorylation. Electrophoresis 22: 576–585.
24. Rudrabhatla P, Reddy MM, Rajasekharan R (2006) Genome-wide analysis and experimentation of plant serine/threonine/tyrosine-specific protein kinases. Plant Mol Biol 60: 293–319.
25. Besant PG, Tan E, Attwood PV (2003) Mammalian protein histidine kinases. Int J Biochem Cell Biol 35: 297–309.
26. Matthews HR (1995) Protein kinases and phosphatases that act on histidine, lysine, or arginine residues in eukaryotic proteins: a possible regulator of the mitogen-activated protein kinase cascade. Pharmacol Ther 67: 323–350.
27. Steeg PG, Palmieri D, Ousias T, Salerno M (2003) Histidine kinases and histidine phosphorylated proteins in mammalian cell biology, signal transduction and cancer. Cancer Lett 196: 1–12.
28. Wolanin PM, Thomason PA, Stock JB (2002) Histidine protein kinases: key signal transducers outside the animal kingdom. Genome Biol 3: RE-VIEWS3013.
29. Johnson SC (1967) Hierarchical clustering schemes. Psychometrika 32: 241–254.
30. Nichols SA, Dirks W, Pearse JS, King N (2006) Early evolution of animal cell signaling and adhesion genes. Proc Natl Acad Sci U S A 103: 12451–12456.
31. Segawa Y, Suga H, Iwabe N, Onoyma C, Akagi T, Miyata T, Okada M (2006) Functional development of Src tyrosine kinases during evolution from a unicellular ancestor to multicellular animals. Proc Natl Acad Sci U S A 103: 12021–12026.
32. Alexopoulos CJ, Mims CW, Blackwell M (1996) Introductory Mycology. Wiley.
33. Hawksworth DL (1991) The Fungal Dimension of Biodiversity-Magnitude, Significance, and Conservation. Mycological Research 95: 611–655.
34. Brinkworth RL, Bevil RA, Kobe B (2003) Structural basis and prediction of substrate specificity in protein serine/threonine kinases. Proc Natl Acad Sci U S A 100: 74–79.
35. Durville E, Duncan P, Abraham N, Bell JC (1994) Dual specificity kinases–a new family of signal transducers. Cancer Metastasis Rev 13: 1–7.
36. Lindberg RA, Quina AM, Hunter T (1992) Dual-specificity protein kinases: will any hydroxyl do? Trends Biochem Sci 17: 114–119.
37. Parker LL, Atherton-Fessler S, Pienica-Worms H (1992) p107weel is a dual-specificity kinase that phosphorylates p34cdc2 on tyrosine 15. Proc Natl Acad Sci U S A 89: 2917–2921.
38. Kentrup H, Becker W, Heukelbach J, Wilmes A, Schurmann A, Huppertz C, Kaimulainen H, Joost HG (1996) Dyrk, a dual specificity protein kinase with unique structural features whose activity is dependent on tyrosine residues between subdomains VII and VIII. J Biol Chem 271: 3488–3495.
39. Forsberg J, Allen JF (2001) Protein tyrosine phosphorylation in the transition to light state 2 of chloroplast thylakoids. Photosynth Res 68: 71–79.
40. Rudrabhatla P, Rajasekharan R (2004) Functional characterization of peanut serine/threonine/tyrosine protein kinase: molecular docking and inhibition kinetics with tyrosine kinase inhibitors. Biochemistry 43: 12121–12122.
41. Schreff ED, Bourne PE (2003) Structural evolution of the protein kinase-like superfamily. PLoS Comput Biol 1: e49.