Unraveling CO adsorption on model single-atom catalysts

Jan Hušvá, Matthias Meier, Roland Blüm, Zdenek Jakub, Florian Krausshofer, Michael Schmid, Ulrike Diebold, Cesare Franchini, and Gareth S. Parkinson

Understanding how the local environment of a “single-atom” catalyst affects stability and reactivity remains a challenge. We present an in-depth study of copper, silver, gold, nickel, palladium, platinum, rhodium, and iridium species on Fe₃O₄(001), a model support in which all metals occupy the same twofold-coordinated adsorption site upon deposition at room temperature. Surface science techniques revealed that CO adsorption strength at single metal sites differs from the respective metal surfaces and supported clusters. Charge transfer into the support modifies the d-states of the metal atom and the strength of the metal–CO bond. These effects could strengthen the bond (as for Ag–CO) or weaken it (as for Ni–CO), but CO-induced structural distortions reduce adsorption energies from those expected on the basis of electronic structure alone. The extent of the relaxations depends on the local geometry and could be predicted by analogy to coordination chemistry.

The reactivity of oxide-supported metal nanoparticle catalysts is traditionally understood by using the d-band model, which was developed for extended metal surfaces. Such a picture cannot be applied to so-called “single-atom” catalysts (2–8) because the isolated metal atoms are stabilized by chemical bonds to the support and are often charged. In this regard, single-atom catalysis systems resemble coordination complexes, and there is much excitement at the prospect that single-atom catalysts can be used to “heterogenize” problematic reactions currently performed in solution (9–11). Although there are similarities, there are also practical differences. Homogeneous catalysts are designed for purpose on the basis of a fundamental understanding of the structure-function relationship, and the ligands play an important role in activating reactants and stabilizing intermediates. Complexes containing O⁻ ligands are rare (5), and the binding environment of the metal adatom on the metal oxide is difficult to ascertain and control. Because robust, inexpensive metal oxides are set to continue as the support of choice in single-atom catalysis, it is vital to learn how the coordination of the metal site on an oxide surface affects its adsorption properties and ultimately catalytic activity.

Most studies of oxide-supported single-atom catalysts feature transmission electron microscopy images of powder samples showing that the metal adatoms align with the cationic sublattice. These structures are in agreement with x-ray absorption near-edge structure spectra, which typically suggest coordination to oxygen. Density functional theory (DFT) calculations also predict such sites to be most stable (albeit on simplified models of the support surface). Often, a positive charge state can be inferred from x-ray photoelectron spectroscopy, infrared vibrational spectroscopy, or both of adsorbed CO (8, 12). More definitive interpretation requires simulated or experimental reference spectra and, thus, a knowledge of the atomic configuration around the active site. Nevertheless, the charge state of the metal is frequently invoked to explain reactivity, although this explanation is not without controversy. The cationic nature of Pt has been linked to both stronger (8) and weaker (15) CO adsorption, with diametrically opposed conclusions regarding CO oxidation activity.

In this paper, we combine temperature-programmed desorption, x-ray photoelectron spectroscopy, scanning tunneling microscopy, and DFT calculations to study CO adsorption on a series of model single-atom catalysts: Cu, Ag, Au, Ni, Pd, Pt, Rh, and Ir atoms on Fe₃O₄(001). Upon deposition at room temperature, all of the metals assume the same twofold coordination to surface oxygen, which allows for direct comparison. We selected CO as the probe molecule because of the abundance of experimental and computational results on metal surfaces and nanoparticles and because many single-atom catalyst studies focus on CO oxidation and the water gas shift reaction, in which CO is a reactant. Moreover, the stretching frequency of adsorbed CO is often used to probe the charge state of the metal in single-atom catalysis systems (8, 13, 17, 18), which makes a detailed understanding of the metal–CO interaction particularly important.

Our results show that the CO binding strength broadly follows the trends established for the corresponding low-index metal surfaces, i.e., group 9 > 10 > 11, but differences emerge within the groups. Our DFT-based calculations reproduce the experimental data well and show that the adsorption energy is linked to both the electronic structure of the adatom and adsorbate-induced structural relaxations of the system. The combination of the two effects differs from metal to metal because each responds differently to the twofold-coordination environment and because each has a different relative affinity for CO and O. Where the agreement between experiment and theory is imperfect, we show that the catalyst structure evolves during the experiment. Ultimately, our results corroborate that the behavior of single-atom catalysts is better rationalized by analogy to coordination complexes than to metal nanoparticles and that the reactivity of the metal atoms in single-atom catalysis can be tuned if the coordination environment can be controlled.

The experiments described here were performed on several natural Fe₃O₄(001) single crystals over a period of 4 years. The samples were prepared in ultrahigh vacuum by cycles of Ar⁺ or Ne⁺ sputtering and 900-K annealing. The resulting surfaces exhibited the (12 × 12)R45° low-energy electron diffraction pattern and scanning tunneling microscopy signature characteristic of the so-called subsurface cation vacancy reconstruction (19, 20), which is known to stabilize dense arrays of metal atoms to temperatures as high as 700 K (20, 21). Metal was evaporated directly onto the as-prepared Fe₃O₄(001) support in ultrahigh vacuum (i.e., no additional ligands are present). We define coverages in monolayers (ML), which corresponds to 1 atom per (12 × 12)R45° unit cell, or 1.42 × 10¹⁴ per square centimeter. In Fig. 1A, scanning tunneling microscopy shows that Cu, Ag, Au, Ni, Pd, Pt, Rh, and Ir atoms all adsorb at the same location between the underlying rows of surface Fe atoms. The surface oxygen atoms are not imaged in scanning tunneling microscopy because they have no electronic states in the vicinity of the Fermi level, but their position is well known from quantitative electron (19) and x-ray diffraction (22) measurements and DFT-based calculations. The as-deposited structure and thermal stability of the adatom systems shown in Fig. 1A have all been thoroughly characterized previously (21, 23–30), which makes this an ideal model system to systematically compare the adatom properties. The adsorption site is twofold coordinated to the surface oxygen atoms that do not have a subsurface tetrahedral Fe neighbor (Cu is shown as an example in Fig. 1B). This is a site where the next Fe cation would reside if the bulk structure continued outward, and the nearest neighbor distance of these sites is the periodicity of the surface reconstruction (8.4 Å). The height of the adatoms above the surface (z) varies...
assign a +1 oxidation state for the Ni1/Fe3O4. The cations in NiO are nominally 2+, we ion at the NiO(100) surface (+1.19 eV), and Ag and Cu were straightforward to interpret because scanning tunneling microscopy measurements showed that the adatom phase was stable for densities up to almost 0.5 ML (27). Moreover, the adatom arrays were thermally stable to temperatures as high as 700 K (28) as well as after exposure to CO. For all adatoms studied in this work, CO adsorption induced a positive core-level shift in the photoemission spectra associated with the adatom (fig. S2) that disappeared when CO desorbed from the adatom, along with the peak in carbon 1s from the adsorbed CO (fig. S3). The small differences in the relative intensity of the different defect peaks from experiment to experiment were the result of these data being acquired with several different Fe3O4(001) samples.

The colored curves in Fig. 2 show selected CO temperature–programmed desorption data acquired before adsorption of the metal adatoms (omitting the much larger desorption peaks from the regular Fe sites, fig. S1). The small differences in the relative intensity of the different defect peaks from experiment to experiment were the result of these data being acquired with several different Fe3O4(001) samples.

To determine how strongly CO binds to the different metal adatoms, we conducted a series of temperature-programmed desorption experiments. The interaction of CO with the Fe3O4(001) support is weak (34), and the molecule desorbs from surface Fe3+ sites in two peaks between 60 and 100 K (fig. S1). Additional small desorption peaks between 100 and 220 K arise from CO desorbing from Fe2+-containing defects in the surface, such as antiphase domain boundaries and step edges (34). The gray curves in Figs. 2, A to G, show the “clean-surface” CO temperature–programmed desorption data acquired before adsorption of the metal adatoms (omitting the much larger desorption peaks from the regular Fe sites, fig. S1). The small differences in the relative intensity of the different defect peaks from experiment to experiment were the result of these data being acquired with several different Fe3O4(001) samples.

The colored curves in Fig. 2 show selected CO temperature–programmed desorption data obtained after deposition of metal adatoms at 300 K. In each case, the sample was cooled to 100 K, CO was adsorbed, and the sample was heated with a ramp of 1 K s−1. An arrow marks the temperature-programmed desorption peak corresponding to desorption of CO from the metal adatom in each case. The peak assignments were the result of a series of scanning tunneling microscopy, x-ray photoelectron spectroscopy, and temperature-programmed desorption experiments for different adatom coverages and experimental conditions.

This assignment was necessary because the Me1/Fe3O4(001) systems were not static and evolved differently upon CO exposure and heating. We briefly summarize the basis of the assignment for each metal. Further details can be found in the supplementary materials, and an exhaustive account of these experiments is contained within the Ph.D. thesis by Hulva (35).

Ag and Cu were straightforward to interpret because scanning tunneling microscopy measurements showed that the adatom phase was stable for densities up to almost 0.5 ML (27). Moreover, the adatom arrays were thermally stable to temperatures as high as 700 K (28) as well as after exposure to CO. For all adatoms studied in this work, CO adsorption induced a positive core-level shift in the photoemission spectra associated with the adatom (fig. S2) that disappeared when CO desorbed from the adatom, along with the peak in carbon 1s from the adsorbed CO (fig. S3).

For both Cu and Ag, a small shoulder was present on the high-temperature side of the main temperature-programmed desorption peak. This shoulder resulted from a fraction of adatoms occupying a metastable geometry after room-temperature deposition and decreased in intensity after annealing the system before CO adsorption (figs. S4 and S5). For Cu, an additional sharp peak was observed at 120 K that could arise from Cu(CO)2 dicarbonyls, which can be stabilized at low temperature. Details regarding dicarbonyl formation, including how the structures mimic common coordination complexes, can be found in the supplementary materials (tables S3 and S4).
Au was the most complicated system studied in this work because clusters coexisted with adatoms even at very low coverages (<0.15 ML) and because two CO temperature-programmed desorption peaks grew together at 335 K and 285 to 300 K as the Au coverage was increased (fig. S6). These results suggest the presence of two inequivalent sites for adsorption. We assigned the peak at 285 to 300 K to CO desorbing from regular Au adatoms because pre-annealing the system before CO adsorption increased the intensity of the 300-K peak relative to the 335-K peak and because the 335-K peak intensity increased after exposure to water (fig. S7). The latter observation suggested that the 335-K peak was probably related to Au adatoms interacting with surface hydroxyl groups, as has been observed previously by scanning tunneling microscopy for Pd adatoms on this surface (23).

Turning to the group 10 metals, the CO peak desorbing from Ni1 at 300 K was straightforward to assign on the basis of the CO-induced core-level shift. The additional peak at 200 K may be related to Ni incorporated in the surface, as Ni can move to subsurface sites at room temperature (28). Temperature-programmed desorption data for Pd are not shown because CO adsorption destabilized the adatoms and led to rapid agglomeration (23). A similar process occurred for Pt, but the temperature-programmed desorption data show a main peak that resulted from the decomposition of Pt2(CO)2 species (26).

The CO desorption peaks from the group 9 Rh and Ir adatoms are again straightforward to assign, although these metals incorporated into the oxide lattice when CO desorbed (29). Thus, the postdesorption x-ray photoelectron spectroscopy peaks of Rh and Ir exhibited a higher binding energy than the initial twofold adatom (29) rather than shifting back to the as-deposited position. The data acquired at 0.1-ML Rh coverage are shown because this metal exhibited a lower-temperature desorption peak for coverages above 0.2 ML (35).

In Fig. 2H, we convert the temperature-programmed desorption peak temperatures into desorption energies and plot these along with values for the corresponding (111) and (110) metal surfaces obtained from table S6 and ref. (36). Assuming the adsorption-desorption process is reversible and there is no barrier for adsorption, the desorption energy is equivalent to E_{ads}. The basic trend is somewhat similar to the adatoms studied in this work (i.e., group 9 > 10 > 11), but there are large differences in the absolute magnitudes as well as in the tendencies within groups. Most studies on extended metal surfaces typically use the Redhead (37) or Polanyi-Wigner equation with a preexponential factor of -10^{13} s$^{-1}$, which corresponds to a molecule adsorbed in a corrugation-free surface potential. In our case, however, scanning tunneling microscopy experiments before and after CO desorption reveal no cluster formation, which suggests the CO molecule is constrained at an immobile adatom even at the desorption temperature. We thus treat the system as an ideal two-dimensional lattice gas (38). The low density of adsorption sites results in much higher preexponential factors, and assuming the adsorbed CO has three vibrational modes with a frequency of 400 cm$^{-1}$, we obtain values between 1.27 × 1033 s$^{-1}$ for Cu and 3.25 × 1030 s$^{-1}$ for Ir. The upper and lower bounds for the experimental energies include a temperature uncertainty of ±10 K (±20 K for Au).

Figure 2H also includes the adsorption energies determined from DFT+U for a single CO molecule adsorbed on the metal adatoms (Fig. 2H, solid circles, and table S3). The calculations track the experimental trend with an offset of approximately -0.2 eV for all metals (other than Pt, which formed dimers), which shows that the optB88-D functional systematically overbinds the CO molecule (as suggested previously for water adsorption on Fe$_3$O$_4$ (39). Nevertheless, the agreement is excellent, which gave us confidence to delve into the details of the calculations and understand how the “single-atom” nature of the systems affects CO binding.

The d-band center, d-band center of mass, and d-band filling are well-known descriptors affecting the CO adsorption energy on transition metal surfaces (1, 36, 40). When the outermost d-shell is full, as for group 11 metals, CO binding is dominated by d-π* back-donation. When the d-shell is partially empty, as for group 9 metals, 5σ-d donation plays a more important role and even dominates in the case of Ir (41). Placing a metal atom on a metal-oxide support leads to the formation of chemical bonds, which affects the symmetry of the d-states as well as the filling. On this basis, one would expect the CO adsorption energy to differ from site to site and metal to metal and that there might be parallels with metal-oxide surfaces.

To understand the role of the single-atom catalysis site affects the CO adsorption energy, an extensive set of calculations was performed in which CO adsorption on each Me$_n$/Fe$_3$O$_4$(001) system was compared with CO (i) in an on-top site of the corresponding (111) metal surface and (ii) on surface cation sites at the most stable facets of the respective metal oxide. The full dataset, all acquired using the same computational setup, is shown and discussed in the supplementary materials. In what follows, we discuss three representative metals, Ni, Ag, and Ir, which allow us to illustrate the most important factors involved.

We found that the reactivity of metals was governed by electronic structure but that CO-induced structural distortions modulate the CO adsorption energy, particularly when the coordination is low.

It would be reasonable to expect that the oxide-supported metal adatoms should have properties somewhat in between a pure metal and a metal oxide. This case was exemplified by the Ni adatom, which exhibited a Bader charge (+0.68e) midway between the metal surface (+0.01e) and a fivefold-coordinated cation at the NiO(100) surface (+1.19e). Because the cations in NiO are nominally 2+, we assigned a 1+ oxidation state for the Ni$_n$/Fe$_3$O$_4$(001) adatom. Ni$^{1+}$ is not common in...
nature, which immediately shows that unusual properties can arise when metal atoms are stabilized in undercoordinated geometries. In Fig. 3A, we plot the CO adsorption energy \(E_{\text{ads}}(\text{CO})\) as a function of d-band center of mass for the three different environments mentioned above. As the metal atom becomes more oxidized (Bader charge increased), the d-band center of mass moves further below the Fermi energy \(E_F\), and the CO binding weakens. If the Ni atom replaces a fivefold-coordinated Fe at the \(\text{Fe}_2\text{O}_4(001)\) surface, as has been observed in experiment (42), the system resembles \(\text{NiO}(100)\) because the local environment is almost identical. In this configuration, the d-band center of mass is far away from \(E_F\) and \(d \rightarrow 2\pi^*\) back-donation cannot occur effectively, so the CO–Ni bond is primarily electrostatic (43).

In the case of \(\text{Ag} / \text{Fe}_2\text{O}_4(001)\) (Fig. 3B), CO is bound much more strongly than for the corresponding metal surface because the d-band center of mass shifts by 1.1 eV toward \(E_F\) in the twofold-coordinated adatom site. Because Ag retains a filled d-shell in the 1+ state, \(d \rightarrow 2\pi^*\) back-donation continues to dominate, and the CO bond is substantially strengthened. However, the interaction is so strong that the Me–support bonds are weakened to accommodate the molecule in a more favorable geometry. Our reference calculations for the \(\text{Ag}_2\text{O}(111)\) surface suggest that the CO adsorption energy is optimal when the O–Me–CO bond angle is 180° (supplementary materials). Such an ideal geometry cannot be achieved at the \(\text{Fe}_2\text{O}_4(001)\) lattice, and the system comes to equilibrium when the energetic gain achieved by strengthening the Me–CO bond balances the cost of weakening the Me–O bonds. Thus, the adsorption energy is weaker than what would be expected on the basis of electronic structure of the adatom alone.

A similar distortion of the local structure was observed for all group 10 and 11 metals. In the \(\text{Cu} / \text{Fe}_2\text{O}_4(001)\) system, the adsorption energy was almost exactly the same as calculated for the metal surface. This situation is a coincidence, however, because the stronger bond caused by the upward shift in the d-band center of mass was almost exactly compensated by the large CO-induced distortion (Fig. 1, B and C). The most extreme consequence of CO-induced distortion is the sintering observed for Pd and Pt, where the formation of a stable carbonyl weakens the support interaction to such an extent that diffusion becomes facile even at room temperature.

Finally, Ir exhibited the strongest CO binding of all the systems considered in this work. Upon CO adsorption, the twofold-coordinated Ir adatom formed a bond to a subsurface O atom and created a pseudo–square-planar environment for the Ir atom (29). Binding a second CO molecule created a highly stable Ir(CO)\(_2\) dicarbonyl with two bonds to surface oxygen (29), again highlighting the preference for the square-planar coordination. Dicarboxyls can be formed on almost all metals studied in this work, and the structure follows that expected on the basis of Me(I) coordination complexes (table S3 and associated discussion).

Regardless, the twofold Ir atom is ultimately unstable against incorporation into the \(\text{Fe}_2\text{O}_4(001)\) lattice and replaces a fivefold-coordinated Fe cation at ~450 K. Thus, CO desorption occurs from a fivefold \(\text{Ir} / \text{Fe}_2\text{O}_4(001)\) site in the temperature-programmed desorption experiment. Because the Ir–CO bonding is dominated by \(5\pi \rightarrow d\) donation (44), the high oxidation state of the Ir atom (Bader charge = 1.5e) in this coordination enhances the CO adsorption energy. The downward shift in d-band center of mass weakens \(d \rightarrow 2\pi^*\) back-donation,
Moreover, because adsorption energies are a
compared with the metal surface (table S4).

This resulted in shorter Me
 – O bonds (4, 44), which we conclude that the metal atoms become
more reactive, so the metals previously
limited by poor reactivity will shift closer to the
top of a volcano plot. We refer to bond strength
here, not adsorption energy, because the struc
tural distortions render these two quantities
independent of the twofold-coordinated
structures.

This result also has consequences for the catalysts limited by product desorption be
cause destabilization by structural distortions
will lead to product desorption at lower tem
peratures, that is, avoid poisoning by adsorbed products. Stabilizing low-coordination “single-
atom” sites could provide ways to tailor the
activity of specific metals and allow non–Pt
group metals to become competitive. This con
clusion is in line with two recent theoretical
screening studies (14, 16) suggesting that
FeOx-supported Pd, Rh, Ru, and even Ti3+
or COx species can have similar activity as Pt3+
for CO oxidation.

Knowledge of the local geometry is thus
essential to understand the adsorption proper
ties of supported metal adatoms. The observed
properties stem directly from how the partic
ular metal reacts to a particular bonding envi
ronment, and we observed a preference for the
systems to adopt the coordination and bond
angles seen in coordinating coordination
complexes when CO is adsorbed. This, coupled
to the observed ability of the single-atom cata
lysis systems to distort the structure to ac
commodate reactants, suggests that adsorbed
single atoms should be viewed as undercoor
inated complexes and not as the smallest
possible nanoparticle. The results seen in this
work will be transferrable to many oxide sup
ports, including zeolites, which also offer a
twofold-coordination environment. Partic
ularly stable configurations are possible if the
metal-oxide system forms solid solution in the bulk [e.g., the fivefold Ni/FeO2(001)], in
which case the metal site is straightforward to predict.

Although we observed a clear driving force for
higher coordination (incorporation) for many of the
metals studied in this work, low coordi
nation to the oxide could be stabilized by the
adsorption of additional ligands (reactants,
OH, water) in the reactive environment, pro
vided that these create a stable geometry for
the metal atom. If control of the active site can be achieved in industrial systems, single-
atom catalysts really do have the potential to
combine the best of heterogeneous and homo
geneous catalysis.

REFERENCES AND NOTES

1. B. Hamner, Y. Morikawa, J. K. Norskov, Phys. Rev. Lett. 76, 2141–2144 (1996).
2. X. Yang et al., Acc. Chem. Res. 46, 1740–1748 (2013).
3. C. W. Wang, C. Hao, Y. Shi, ChemCatChem 7, 2592–2625 (2015).
4. J. Liu, ACS Catal. 7, 39–54 (2016).
5. B. G. Bates, M. Fytizani-Stefanopoulou, D. A. Dixon, A. Katz, Catal. Sci. Technol. 7, 4259–4275 (2017).
6. A. Wang, J. Li, T. Zhang, Nat. Rev. Chem. 2, 65–61 (2018).
7. H. Zhang, G. Liu, L. Shi, J. Ye, Adv. Energy Mater. 8, 1701243 (2018).
8. K. Ding et al., Science 350, 189–192 (2015).
9. F. Chen, X. Jiang, L. Zhang, R. Lang, B. Qiao, Chin. J. Catal. 39, 893–898 (2018).
10. X. Cui, W. Li, P. Ryabchuk, K. Junge, M. Beller, Nat. Catal. 1, 385–397 (2018).
11. R. Lang et al., Angew. Chem. Int. Ed. 55, 16054–16058 (2016).
12. J. Liu, Chin. J. Catal. 38, 1460–1472 (2017).
13. H. Y. Thang, G. Pacchioni, L. Deffita, P. Christopher, J. Catal. 367, 104–114 (2018).
14. J. Liang, Q. Yu, X. Yang, T. Zhang, J. Li, Nano Res. 11, 1599–1611 (2018).
15. B. Qiao et al., Nat. Chem. 3, 634–641 (2011).
16. F. Li, Y. Li, X. C. Zeng, Z. Chen, ACS Catal. 5, 544–552 (2014).
17. L. Deffita et al., Nat. Mater. 18, 746–751 (2019).
18. J. Resasco, D. Berber, J. Phys. Chem. Lett. 122, 2543–2545 (2018).
19. R. Biem et al., Science 346, 1215–1218 (2014).
20. G. S. Parkinson, Surf. Sci. Rep. 71, 272–365 (2016).
21. V. Novotný et al., Phys. Rev. Lett. 108, 216103 (2012).
22. B. Ardelt et al., Surf. Sci. 653, 76–81 (2016).
23. G. S. Parkinson et al., Nat. Mater. 12, 724–728 (2013).
24. R. Biem et al., ACS Nano 8, 7531–7537 (2014).
25. R. Biem et al., Phys. Rev. B 92, 075440 (2015).
26. R. Biem et al., Proc. Natl. Acad. Sci. U.S.A. 113, 8921–8926 (2016).
27. M. Meier et al., Nanoscale 10, 2226–2230 (2018).
28. P. T. R. Ryan et al., Phys. Chem. Chem. Phys. 20, 16469–16476 (2018).
29. Z. Jakub et al., Angew. Chem. Int. Ed. 58, 13961–13968 (2019).
30. Z. Jakub et al., Nanoscale 12, 5866–5875 (2020).
31. A. Walsh, A. A. Sokol, J. Buckendrick, D. D. Scanlon, C. R. A. Catlow, Nat. Mater. 17, 958–964 (2018).
32. S. L. Hemminger, C. T. Campbell, ACS Nano 11, 1196–1203 (2017).
33. N. J. O’Connor, A. S. M. Jonayat, M. J. Janik, T. P. Serritella, Nat. Catal. 1, 531–539 (2018).
34. J. Hulva et al., J. Phys. Chem. B 112, 721–729 (2008).
35. J. Hulva, T. U. Wien, thesis, TU Wien (2019).
36. M. Gajdoš, A. Eicher, J. Hathner, J. Phys. Condens. Matter 16, 1141–1164 (2004).
37. P. A. Redhead, Vacuum 12, 203–211 (1962).
38. C. T. Campbell, L. H. Sproll, P. Arnaldottir, J. Phys. Chem. C 120, 10263–10279 (2016).
39. M. J. Gillan, D. Alfe, A. Michaelides, J. Chem. Phys. 144, 130901 (2016).
40. A. Stroppa, G. Kresse, J. Phys. Chem. B 120, 7531–7537 (2016).
41. M. T. M. Koper, R. A. van Santen, S. A. Waiselis, M. J. Weaver, J. Chem. Phys. 113, 4392–4400 (2000).
42. Z. Jakub et al., Phys. Chem. Phys. 123, 15038–15045 (2019).
43. G. Pacchioni et al., J. Phys. Condens. Matter 16, 52497–52507 (2004).
44. L. C. Grabow, B. Hvilsted, J. K. Norskov, Top. Catal. 53, 298–310 (2010).

ACKNOWLEDGMENTS

We thank P. Blaha (TU Wien) and P. T. P. Ryan (Imperial College London) for useful discussions. Funding: G.S.P., J.H., M.M., Z.J., and R.B. acknowledge funding from the Austrian Science Foundation (FWF) Start Prize (Y487-N20), and U.D. and F.K. acknowledge the Austrian Science Fund FWF (Project Wittgenstein Prize, 2290-N27). G.S.P. and M.M. acknowledge funding from the European Research Council (ERC) under the European Union’s HORIZON2020 Research and Innovation program (ERC grant agreement 864628). Z.J. also acknowledges support from the TU Wien Doctoral College TU-D. The computational results were achieved in part by using the Vienna Scientific Cluster (VSC 3 and VSC 4). Author contributions: J.H. and R.B. performed the experiments under the supervision of G.S.P., who conceptualized the research and acquired research funding for the project. M.M. performed the theoretical calculations under the supervision of C.F., J.H., and G.S.P. wrote the paper with substantial input and revision from U.D., M.S., F.K., Z.J., and C.F. Competing interests: The authors declare no competing interests. Data and materials availability: All data are available in the main text or the supplementary materials.

SUPPLEMENTARY MATERIALS

science.sciencemag.org/content/371/6527/375/suppl/DC1

5 of 5

Data and materials availability
Unraveling CO adsorption on model single-atom catalysts

Jan Hulva, Matthias Meier, Roland Bliem, Zdenek Jakub, Florian Kraushofer, Michael Schmid, Ulrike Diebold, Cesare Franchini and Gareth S. Parkinson

Science 371 (6527), 375-379.
DOI: 10.1126/science.abe5757

Modeling single-atom reactivity

Noble metals often perform best for demanding reactions such as oxygen reduction, an effect often explained by the position of their d-band. One way to minimize the cost of noble metals is to disperse them as single atoms. To model the reactivity of supported single atoms, Hulva et al. evaporated different transition metals such as nickel, silver, and iridium on an Fe₃O₄(001) support. Single atoms adsorbed in the same twofold site between underlying rows of surface iron atoms. In studies of CO adsorption as a proxy for reactivity, the d-band was strongly affected by the charge transfer to the support and CO-induced structural changes. These effects can weaken the adsorption energy compared with the expected values based on electronic structure alone.

Science; this issue p. 375