Giant effective Zeeman splitting in a monolayer semiconductor realized by spin-selective strong light-matter coupling

T. P. Lyons, D. J. Gillard, C. Leblanc, J. Puebla, D. D. Solnyshkov, L. Klompmaker, I. A. Akimov, C. Louca, P. Muduli, A. Genco, Y. Otani, G. Malpuech and A. I. Tartakovskii

Strong coupling between light and the fundamental excitations of a two-dimensional electron gas (2DEG) is of foundational importance both to pure physics and to the understanding and development of future photonic nanotechnologies. Here we study the relationship between spin polarization of a 2DEG in a monolayer semiconductor, MoSe₂, and light-matter interactions modified by a zero-dimensional optical microcavity. We find pronounced spin-susceptibility of the 2DEG to simultaneously enhance and suppress trion-polariton formation in opposite photon helicities. This leads to observation of a giant effective valley Zeeman splitting for trion-polaritons (g-factor of ∼20), exceeding the purely trionic splitting by over five times. Going further, we observe clear effective optical nonlinearity arising from the highly nonlinear behaviour of the valley-specific strong light-matter coupling regime, and allowing all-optical tuning of the polaritonic Zeeman splitting from 4 meV to >10 meV. Our experiments lay the groundwork for engineering topological phases with true unidirectionality in monolayer semiconductors, accompanied by giant effective photonic nonlinearities rooted in many-body exciton-electron correlations.

Monolayer MoSe₂ presents a four-band massive Dirac system for studying spin and valley pseudospin-dependent interactions between electrons, excitons and photons. In the presence of an appreciable free-carrier density, simple neutral exciton absorption evolves into two Fermi-polaron branches—repulsive and attractive. The monolayer then plays host to a Bose–Fermi mixture consisting of excitons dressed by electrons (or holes, for p-type doping). Strong coupling of these Fermi-polaron resonances to photonic microcavity modes has been demonstrated. Simplicistically, the repulsive and attractive polarons correspond to a spin–triplet or spin–singlet interaction, respectively, between the two-dimensional electron gas (2DEG) and the constituent electron of the exciton. In MoSe₂, subject to strict spin–valley locking and chiral optical selection rules, this has the consequence of tying the 2DEG degree of spin polarization to the oscillator strengths of the polaron resonances in opposite photon helicities. The extreme example of this effect is when the 2DEG becomes fully spin-polarized, leading to vanishing absorption of the attractive polaron in one photon helicity.

It has recently been reported that when the Fermi level is substantially smaller than the trion binding energy, the attractive polaron may be adequately described as a three-body charged exciton, or trion. Although, nominally, the trion exists only in the strict single-particle limit, in reality, the transition between these two quasiparticle regimes is unclear and probably depends heavily on the degree of exciton and carrier spatial localization over the monolayer, especially at low densities. This is particularly true in the case of non-equilibrium scenarios such as photoluminescence experiments, in which both species may coexist.

Valley Zeeman splitting of these excitonic complexes has been reported under application of strong out-of-plane magnetic fields (B fields). However, translating the relatively large Zeeman splitting of a purely matter-bound excitation into a photonic mode splitting remains a fundamental challenge, not only in opto-valleytronics, but also in topological photonics. Indeed, many topological states of light have been implemented in recent years, including using exciton-polaritons in transition metal dichalcogenides (TMDs). The ultimate goal of real topological protection against any type of disorder scattering and back-reflection requires time-reversal symmetry breaking, with the size of the topological gap limited by the effective Zeeman splitting of the photonic modes. Large splittings are difficult to achieve at optical frequencies, and in the existing realizations either based on the use of magnetic proximity effects or on the matter-based Zeeman splitting of exciton-polaritons, the topological gap was <1 meV, too small to be clearly observable.

In this Letter, by harnessing many-body interactions in a 2D Bose–Fermi mixture, we realize a giant effective trion-polariton Zeeman splitting, over five times larger than the bare (uncoupled) trion splitting and more than double the polaron linewidths, a crucial step towards elimination of unwanted coupling between chiral modes. We moreover demonstrate giant effective nonlinearity for trion-polaritons under a magnetic field. This value is one order of magnitude larger than previously reported in TMDs and is based on an original mechanism involving...
Fig. 1 | Excitations of a 2DEG strongly coupled to light in monolayer MoSe2. a. Reflectance contrast $R_{C} = (R_{T} - R)/R_{T}$ from monolayer MoSe2 (reflectance R on the flake and R_{T} on the substrate) with raised itinerant carrier density at $T = 4.2$ K and $B = -8, 0$ and $+8$ T. Two peaks are attributed to the neutral exciton (X_{NC}) and charged exciton or trion (T_{NC}). At high B fields, the trion absorption is completely suppressed in one or the other circular polarization of light. For comparison, the trion photoluminescence T_{PL} signal at $B = 0$ T is also shown, revealing a Stokes shift of ~6 meV. Neutral exciton emission is absent owing to the raised doping level of the flake and rapid trion formation. b. Sketch of the lowest conduction subbands of monolayer MoSe2, in which the electronic spin and valley pseudospin ($+K$ or $-K$ valley of momentum space) are strictly correlated. These degrees of freedom are distinct in that the spin couples to the magnetic field, whereas the valley pseudospin couples to light. Optical selection rules dictate that excitons and trions of the $+K$ ($-K$) valley pseudospin couple, weakly or strongly, to σ^+ (σ^-) polarized photons. At $B = 0$ T, the 2DEG has zero net spin polarization. At $B = +8$ T, the 2DEG is completely spin-polarized, causing the oscillator strength of the $-K$ valley trion to be suppressed owing to a lack of itinerant electrons in the $+K$ valley. c. Schematic of the zero-dimensional (0D) open cavity structure used in this work. Applying a d.c. voltage to the piezo crystal decreases the cavity length (Methods). d. Cavity PL intensity maps (counts per second, logarithmic scale) as the cavity mode is tuned through the trion resonances. Shown are the results at $B = 0$ T (left) and $B = +8$ T (right) in both photon emission helicities. The laser is linearly polarized. At $B = 0$ T, the spectra are essentially identical between both polarizations, whereas the near-unity spin polarization of the 2DEG at $B = +8$ T causes strong coupling to break down in the σ^- polarization. A modified coupled oscillator model incorporating the trion-polariton Stokes shift was used to fit the UPB and LPB (overlaid orange curves). The energies of T_{PL} and T_{RC} in both polarizations (orange horizontal lines) are obtained directly or inferred from bare flake spectra at $B = 0$ T and $+8$ T. The UPB becomes progressively dimmer at higher energies due to increasing absorption from the EuS film.

free-carrier valley relaxation and strong light–matter coupling. Large photonic nonlinearities, as in this work, are crucial for classical, quantum and topological photonics12,16.

We study a MoSe2 monolayer on a 10-nm-thick film of the ferromagnetic semiconductor europium sulfide (EuS), which coats a dielectric distributed Bragg reflector (DBR). First, we characterize the MoSe2 monolayer in the half-cavity, or bare flake, configuration, at temperature $T = 4.2$ K. Figure 1a shows the circular polarization-resolved reflectance contrast ($R_{C} = (R_{T} - R)/R_{T}$, where R and R_{T} are the reflectance from the MoSe2 and adjacent EuS substrate, respectively) spectra from the sample under linearly polarized broadband illumination at out-of-plane magnetic field strengths $B = -8, 0$ and $+8$ T. We observe, at $B = 0$ T, two clear absorption peaks attributed to the neutral exciton (X_{NC}) and trion (T_{NC}) at higher and lower energy, respectively. T_{NC} displays a substantial spectral weight, indicating an elevated doping level of the flake. These two resonances may be similarly described as Fermi-polarons, sharing the fundamental principle of a neutral exciton being either bound (attractive interaction, trion-like) or unbound (repulsive interaction) to itinerant carriers13-15. The energy separation between these peaks allows us to estimate the free-carrier density as 10^{13} cm$^{-2}$ (Supplementary Note 1). We attribute this relatively high carrier density to electron doping from the EuS film, which we expect to be highly charged owing to the deposition technique (Methods)12,22. On measuring the photoluminescence (PL) using a continuous-wave laser at 1.946 eV, only a single peak is observed, which is attributed to the trion. The absence of neutral exciton PL is consistent with the high doping level in the flake, as is the large Stokes shift of ~6 meV observed between T_{NC} and T_{PL} (Fig. 1a).

When $B = \pm 8$ T, T_{RC} is only visible in one circular polarization (Fig. 1a). Owing to its spin–singlet or intervalley nature, the trion absorption strength of σ^+ (σ^-) light depends on the itinerant carrier density in the $-K$ ($+K$) valley. The electron Zeeman splitting is thus sufficiently large at this temperature to fully spin-polarize the 2DEG (Fig. 1b and Supplementary Note 2)12. Achieving complete spin polarization of a 2DEG of such high density as here may point to itinerant ferromagnetism, in which transient domains of oppositely spin-polarized electrons at $B = 0$ T evolve into a spatially correlated spin-polarized state when $B > 0$ T (refs. 24,25). We additionally note that although EuS is ferromagnetic, we see no evidence of magnetic proximity effects in the sample (Supplementary Note 3).
For the next stage of the study, we incorporate the MoSe2/EuS structure into a tunable 0D microcavity (Fig. 1c), formed by introducing a downward-facing top concave DBR into the optical path above the sample (as described in ref. 26). By control of the mirror separation using piezo nanopositioners, we tune the ground-state longitudinal cavity mode (Laguerre-Gaussian \(LG_{m0} \)) through resonance with both \(T_{\text{ex}} \) and \(T_{\text{hv}} \), and perform cavity PL spectroscopy using a linearly polarized laser at a power of 5 \(\mu \)W. At \(B = 0 \) T we observe essentially identical PL spectra for both \(\sigma^+ \) and \(\sigma^- \) detection polarizations. As the cavity length is tuned, the observation of an anticrossing indicates strong light–matter coupling and defines upper and lower trion-polariton branches (UPB and LPB) separated by a Rabi splitting \(\Omega_R \approx 9 \) meV. We note here that the trion Stokes shift is comparable with the Rabi splitting, and therefore must be taken into account to precisely fit the polariton PL energies by going beyond the most basic coupled oscillator model (Supplementary Note 2). Indeed, although the anticrossing originates at the energy of \(T_{\text{hv}} \) where cavity photons are most strongly absorbed, the polariton PL shows a finite Stokes shift causing both UPB and LPB emission to tend to the trion PL energy at vanishing photon fractions. Repeating the experiment at \(B = +8 \) T (Fig. 1d) reveals a larger anticrossing in \(\sigma^- \), while the strong coupling regime breaks down in \(\sigma^+ \) (\(\Omega_R \) is smaller than the polariton linewidths and is unresolvable), consistent with the weak oscillator strength of \(T_{\text{hv}} \) in \(\sigma^- \) (Fig. 1a, top), and constituting observation of valley-specific strong light–matter coupling, in which trions of opposite valley pseudospin are respectively strongly coupled to \(\sigma^- \) light while only weakly coupled to \(\sigma^+ \) light.

Figure 2a shows polarization-resolved LPB PL versus piezo voltage at \(B = 0 \) and +8 T, revealing a giant effective Zeeman splitting exceeding 10 meV, whereby the large anticrossing displayed by \(+K \) valley trion-polaritons, absent for the \(-K\) valley, gives rise to a clear energy separation between \(\sigma^- \) and \(\sigma^+ \) polarized modes. This occurs because the near-unity spin polarization of the 2DEG at \(B = +8 \) T suppresses the oscillator strength of the trion in the \(\sigma^- \) polarization, by transferring it to the \(\sigma^- \) polarization. Figure 2b compares the trion PL g-factor measured on the bare flake (\(g = 21.1 \)) with that of the trion-polariton, which is over five times larger (\(g = 21.1 \)). Although the LPB Zeeman splitting increases at higher voltages, this comes at the cost of increased polariton linewidths and reduced intensity. However, we note that the LPB Zeeman splitting exceeds the bare trion splitting for all \(B \)-field strengths and all cavity lengths studied here. This result is in marked contrast to the expected scenario in which the polariton valley Zeeman splitting is reduced relative to that of the bare trion by the corresponding Hopfield coefficient.

Next we show how the giant Zeeman splitting can be very effectively and optically controlled. We fix \(B = +8 \) T and study the influence of incident laser power on the cavity PL. As can be seen in Fig. 3a, increased power reopens the anticrossing in \(\sigma^- \), which previously collapsed on application of the \(B \) field (Fig. 1d). Figure 3b shows trion-polariton PL spectra versus pumping power at fixed cavity length, where \(\Omega_R \) grows in \(\sigma^- \) and correspondingly decays in \(\sigma^+ \), suggesting that non-resonant pumping efficiently transfers electrons between spin states (equivalently, between valley states, Fig. 1b). Here, qualitatively, electron–hole pairs are injected by the laser and bind to form excitons and trions on ultrafast timescales (sub-picosecond). The initial trion population will be highly valley-polarized, as the only free carriers available are from the spin-polarized 2DEG; however, exciton and trion valley depolarization in MoSe2 is extremely efficient (picoseconds) owing to the Maialle–Silva–Sham (MSS) mechanism (confirmed here by transient ellipticity measurements, Supplementary Note 4). The initial trion population will be highly valley-polarized, as the only free carriers available are from the spin-polarized 2DEG; however, exciton and trion valley depolarization in MoSe2 is extremely efficient (picoseconds) owing to the Maialle–Silva–Sham (MSS) mechanism (confirmed here by transient ellipticity measurements, Supplementary Note 4). Therefore, rapid intervalley scattering of trions followed by their radiative decay can result in a free electron remaining in the spin state anti-aligned to the external \(B \) field. This means that each trion emission process results in partial transfer of electrons between spin–valley states. Although trion valley relaxation occurs on picosecond timescales, the spin relaxation time for free electrons is \(\sim 1,000 \) times longer, of the order of nanoseconds, as they are immune to the MSS mechanism and must undergo a large momentum transfer to scatter between spin–valley states. As such, trion
intervalley scattering and subsequent photon emission can depolarize the 2DEG—1,000 times faster than it can return to spin-polarized equilibrium. By embedding all of these processes into rate equations, we infer that laser power in the microwatt range is enough to fully balance the 2DEG spin populations and associated trion-polariton Rabi splittings in opposite circular polarizations. Our simulations are shown in Fig. 3c (top) and are in excellent agreement with experimental data.

Finally, we relate the computed exciton and trion densities to the energy shifts of the LPB when $B = +8\,T$, and deduce effective LPB interaction strengths, in this case attractive for σ^- and repulsive for σ^+. The middle panel of Fig. 3c shows the LPB blueshift in σ^+ alongside the effective interaction strength, defined as $\alpha = \partial \mathcal{E}_{LPB}^{\sigma^+}/\partial n^{\sigma^+}$ (Supplementary Note 2), which corresponds to a repulsive interaction between same-spin particles because only σ^+ excitons can depolarize electrons when $B = +8\,T$. The extracted value, $\alpha \approx 0.2 \pm 0.05\,\text{meV}\,\mu\text{m}^{-2}$ at $P = 5\,\mu\text{W}$, is one order of magnitude larger than previously reported for trion-polaritons, because it is based on a completely different mechanism\(^{31}\). It is based neither on oscillator strength nor the Coulomb interaction between carriers, but instead on linear spin relaxation processes. The increase in the interaction strength at the lowest laser powers is accompanied by a marked increase in the effective trion-polariton Zeeman splitting, confirming their shared origin in the 2DEG spin dynamics (Fig. 3c, bottom).

Our experiments demonstrate the simultaneous manifestation of strong and weak coupling regimes between a photonic mode and a many-body correlated matter excitation consisting of an exciton dressed by electrons in an effective ferromagnetic phase, resulting in a giant Zeeman splitting between trion-polariton modes. We additionally show that laser illumination acts to depolarize the 2DEG via a process of trion valley pseudospin relaxation and subsequent radiative recombination. The resulting Rabi splitting transfer between the two polarization components induces energy renormalization, to which we associate large effective interactions. Although in this work an EuS film was used to introduce additional free electrons into the flake, similar results should be observed in any MoSe\(_2\) monolayer in which the itinerant carrier density can be raised arbitrarily to give the trion sufficient oscillator strength. Magnetic 2D materials may also be used to induce 2DEG spin polarization with- out the need for strong external B fields\(^{35}\). Moreover, we note that extremely high laser powers, often pulsed and quasi-resonant, are typically needed to enter regimes of polariton nonlinearity, whereas here the strongest effective interactions occur under low-power non-resonant continuous-wave laser excitation. Our work therefore highlights doped MoSe\(_2\), as a flexible system in which to realize and apply ultrastrong low-threshold nonlinearities, for example, towards TMD-based all-optical logic gates\(^{39}\), or to explore nonlinear topological photonics\(^{39}\).

Online content

Any methods, additional references, Nature Research reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of...
author contributions and competing interests; and statements of data and code availability are available at https://doi.org/10.1038/s41566-022-01025-8.

Received: 25 October 2021; Accepted: 18 May 2022; Published online: 7 July 2022

References

1. Smolka, S. et al. Cavity quantum electrodynamics with many-body states of a two-dimensional electron gas. Science 346, 332–335 (2014).
2. Efimkin, D. K. & MacDonald, A. H. Many-body theory of trion absorption features in two-dimensional semiconductors. Phys. Rev. B 95, 035417 (2017).
3. Back, P. et al. Giant paramagnetism-induced valley polarization of electrons in charge-tunable monolayer MoSe2. Phys. Rev. Lett. 118, 237404 (2017).
4. Sidler, M. et al. Fermi polaron-polaritons in charge-tunable atomically thin semiconductors. Nat. Phys. 13, 255–261 (2017).
5. Tan, L. B. et al. Interacting polaron-polaritons. Phys. Rev. X 10, 021011 (2020).
6. Klein, J. et al. Controlling exciton many-body states by the electric-field effect in monolayer MoS2. Phys. Rev. Res. 3, L022009 (2021).
7. Roch, J. G. et al. Spin-polarized electrons in monolayer MoS2. Nat. Nanotechnol. 14, 432–436 (2019).
8. Glazov, M. M. Optical properties of charged excitons in two-dimensional semiconductors. J. Chem. Phys. 153, 034703 (2020).
9. Imamoglu, A., Cotlet, O. & Schmidt, R. Exciton-polarons in two-dimensional semiconductors and the Tavis-Cummings model. C. R. Phys. 22, 89–96 (2021).
10. MacNeill, D. et al. Breaking of valley degeneracy by magnetic field in monolayer MoSe2. Phys. Rev. Lett. 114, 037401 (2015).
11. Langer, F. et al. Lightwave valleytronics in a monolayer of tungsten diselenide. Nature 557, 76–80 (2018).
12. Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).
13. Li, M. et al. Experimental observation of topological Z2 exciton-polaritons in transition metal dichalcogenide monolayers. Nat. Commun. 12, 4425 (2021).
14. Liu, W. et al. Generation of helical topological exciton-polaritons. Science 370, 600–604 (2020).
15. Wang, Z., Chong, Y., Ioannopoulos, J. D. & Soljačić, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009).
16. Lu, L., Ioannopoulos, J. D. & Soljačić, M. Topological photonics. Nat. Photon. 8, 821–829 (2014).
17. Bahari, B. et al. Nonreciprocal lasing in topological cavities of arbitrary geometries. Science 358, 636–640 (2017).
18. Nalitov, A. V., Solyushkov, D. D. & Malpuech, G. Polariton Z topological insulator. Phys. Rev. Lett. 114, 116401 (2015).
19. Klembi, S. et al. Exciton-polariton topological insulator. Nature 562, 552–556 (2018).
20. Song, W. et al. Breakup and recovery of topological zero modes in finite non-Hermitian optical lattices. Phys. Rev. Lett. 123, 165701 (2019).
21. Emmamuel, R. P. A. et al. Highly nonlinear trion-polaritons in a monolayer semiconductor. Nat. Commun. 11, 3589 (2020).
22. Keller, J. et al. Controlling the magneto-transport properties of EuS thin films. IEEE Trans. Magn. 38, 2673–2675 (2002).
23. Grzeszczyk, M. et al. The effect of metallic substrates on the optical properties of monolayer MoSe2. Sci. Rep. 10, 4981 (2020).
24. Roch, J. G. et al. First-order magnetic phase transition of mobile electrons in monolayer MoS2. Phys. Rev. Lett. 124, 187602 (2020).
25. Lyons, T. P. et al. Interplay between spin proximity effect and charge-dependent exciton dynamics in MoSe2/CrBr3, van der Waals heterostructures. Nat. Commun. 11, 8021 (2020).
26. Dufferwiel, S. et al. Valley-addressable polaritons in atomically thin semiconductors. Nat. Photon. 11, 497–501 (2017).
27. Lundt, N. et al. Magnetic-field-induced splitting and polarization of monolayer-based valley exciton polaritons. Phys. Rev. B 100, 121303(R) (2019).
28. Glazov, M. M. et al. Exciton fine structure and spin decoherence in monolayers of transition metal dichalcogenides. Phys. Rev. B 90, 201302(R) (2014).
29. Amo, A. et al. Exciton-polariton spin switches. Nat. Photon. 4, 361–366 (2010).
30. Smirnova, D., Leykam, D., Chong, Y. & Kivshar, Y. Nonlinear topological photonics. Appl. Phys. Rev. 7, 021306 (2020).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
© The Author(s), under exclusive licence to Springer Nature Limited 2022
Methods

Low-temperature magneto-optical spectroscopy. Magneto-optical spectroscopy at 4.2 K was performed by mounting the sample in a liquid-helium bath cryostat with a superconducting magnet and free-space optical access. Reflectance contrast measurements were performed by directing broadband white light in either σ^+ or σ^- circular polarization onto the sample and measuring the reflected signal on the MoSe$_2$ monolayer (R_+) and adjacent bare EuS film ($R_-)$, and calculating $RC = \Delta R/R$. Photoluminescence spectroscopy was performed by directing a linearly polarized continuous-wave laser at 1.946 eV onto the sample and detecting the emission in either σ^+ or σ^- circular polarization. For both RC and PL, the signal was directed through a single-mode fibre to a 0.75-m spectrometer and onto a nitrogen-cooled high-sensitivity charge-coupled device (Supplementary Note 5).

The tunable 0D open microcavity is formed by bringing a concave-top DBR into the optical path above the planar-bottom DBR, on top of which is the 10-nm EuS film and monolayer MoSe$_2$. The EuS film serves to increase the itinerant electron density in the MoSe$_2$. A gap filled with helium exchange gas separates the DBRs, forming a 0D optical microcavity. Piezo nanopositioners allow precise tuning of the cavity length, whereby applying a d.c. voltage will decrease the cavity length and increase the energy of the ground-state 0D Laguerre–Gaussian mode (LG00) such that it can be tuned through resonance with both T_{Re} and T_{Im}.

EuS deposition. A 10-nm-thick film of EuS was deposited onto a dielectric DBR (top layer SiO$_2$) by electron-beam evaporation. By maintaining a low substrate temperature of 16°C during the deposition, we ensure that the resulting EuS film will be sulfur-deficient due to the much lower vapour pressure of S relative to Eu, causing S atoms to re-evaporate from the substrate during growth. The resulting sulfur vacancies act as electron donors, causing the non-stoichiometric EuS film to act as a heavily doped ferromagnetic semiconductor. The MoSe$_2$ monolayer therefore becomes highly charged when it is stamped on top of the EuS substrate.

Sample fabrication. A MoSe$_2$ bulk crystal supplied by HQ Graphene was exfoliated with tape onto a polydimethylsiloxane sheet, and a suitable monolayer identified by optical microscopy. This monolayer was then stamped onto the DBR/ EuS substrate using a conventional viscoelastic dry transfer method.

Data availability

Data supporting the plots within this paper are available from the corresponding authors upon request.

Acknowledgements

T.P.L. acknowledges financial support from the EPSRC Doctoral Prize Fellowship scheme (grant reference EP/R513313/1) and the JSPS Postdoctoral Fellowships for Research in Japan scheme. T.P.L., D.J.G., J.P., Y.O. and A.I.T. acknowledge support from the Royal Society International Exchange (grant no. IEC/19/170088). T.P.L., D.J.G., A.G., C. Louca, L.K., I.A., M.B. and A.I.T. acknowledge support from an EPSRC Centre-to-Centre grant (no. EP/S030751/1). T.P.L., D.J.G. and A.I.T. additionally acknowledge financial support from the European Graphene Flagship Project (grant agreement no. 881603) and EPSRC (grants nos. EP/V006975/1, EP/P026850/1 and EP/V026496/1). C. Leblanc, D.S. and G.M. acknowledge support from projects EU ‘TOPOLIGHT’ (964770) and ‘QUANTOPOE’ (846353), from ANR Labex GaNEXT (ANR-11-LABX-0014) and the ANR programme ‘Investissements d’Avenir’ through the IDEX-ISITE initiative 16-IDEX-0001 (CAP 20-25). L.K., I.A. and M.B. acknowledge financial support from the Deutsche Forschungsgemeinschaft through the International Collaborative Research Centre 160 (project no. C2) and a UAR professorship, Mercur Foundation (grant no. Pe-2019-0022). We thank D. N. Krizhanovskii for useful discussions.

Author contributions

T.P.L., D.J.G. and J.P. performed low-temperature magneto-optical spectroscopy. T.P.L., D.J.G., C. Leblanc, D.S., G.M. and A.I.T. analysed and discussed the bare flake and cavity spectroscopy data. C. Leblanc, D.S. and G.M. developed the cavity fitting model and rate equations. L.K. and I.A.A. collected and analysed time-resolved data. J.P. and P.M. deposited the EuS films onto DBR substrates. T.P.L., D.J.G. and J.P. and P.M. performed SQUID magnetometry. C. Louca identified and transferred MoSe$_2$ flakes onto EuS films. A.G. carried out electron density calculations. M.B., Y.O., G.M. and A.I.T. managed various aspects of the project. A.I.T. supervised the project. T.P.L. wrote the manuscript, with contributions from all co-authors.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41566-022-01025-8.

Correspondence and requests for materials should be addressed to T. P. Lyons or A. I. Tartakovskii.

Peer review information Nature Photonics thanks Anton Nalitov and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.