Alternative methods for reforestation and land rehabilitation to reduce the plastics waste in forest areas

J Holbert, D J Sudrajat, Nurhasybi, Yulianti
Forest Tree Seed Technology Research and Development Center, Forest Research, Development and Innovation Agency, Ministry of Environment and Forestry
Jl. Pakuan Ciheuleut PO BOX 105 Bogor
Email: panholbert@yahoo.com

Abstract
The accumulation of mismanaged plastic waste in the environment is a serious problem in Indonesia and become a global growing concern. Implementation of mitigation policies to reduce the use of plastics is very urgent, including in reforestation and land rehabilitation programs revealed by many plastics (polybags) used in seedling production for forest planting. Reducing the plastic waste in the planted forest areas can apply some alternative methods that were applied in several regions, such as direct seeding, bare-root seedling and bio-pot seedling. In this paper, application of several methods would be assessed as alternative methods for reforestation and land rehabilitation. Bio-pot seedlings had the highest growth performances in nursery and field test for several tree species, followed by polybag seedling, and direct seeding using seed briquette. However, seeding grown from direct seeding using seed briquette tended to have better root formation, especially in tap root length, tap root biomass and bellow-ground biomass. Direct seeding was estimated twice lower compared to transplanting using polybag or bio-pot seedlings. Furthermore, use of bio-pot seedlings was more effective in rapidly growth and establishing canopy. Direct seeding using seed briquette was a promising alternative technique for land rehabilitation and reforestation, especially for remote areas.

1. Introduction
Reforestation and land rehabilitation has been a priority program in the forestry sector of Government of Indonesia. In the present, reforestation and land rehabilitation programs generally uses containerized (polybag) media seedlings. Using polybag (plastics) in the large scale can pollute the forest soil because it is difficult to be degraded [1]. Normally, plastic items take between 400 and 1000 years to decompose in landfills naturally [2]. Due to the resilience against degradation and the impact on ecosystems, human and wildlife, the issue of plastic pollution has evolved to become a threat to global ecology [3]. However, the development of eco-friendly alternative methods for reforestation and land rehabilitation is required to improve environmental quality and to increase the success of the reforestation and land rehabilitation programs.

Several alternative methods for establishment of tree plantation was applied in several regions in the world, such as direct seeding [4], bare root seedling [5] and bio-pot seedling [6, 7]. Direct seeding can be applied in large areas rapidly, lower cost compared with transplanting of seedlings, and the development of seedling had well-structured root systems [8, 9]. However, direct seeding also has a number of potential disadvantages, including difficulties sourcing large quantities of viable seeds [8],
lack of information on optimum sowing techniques [10], variability in commencement and duration of seed germination, predation of seed and seedlings by insects and rodents [11], and competition from the existing vegetation, particularly grasses and scrubs [12, 13]. Other alternative technology is a bare-root seedling which dug, stored and shipped without growth media surrounding their root. Bare-root seedlings are easy to plant, cheap, and offer field grown hardiness. On the other hand, bio-pot seedlings were able to increase the seedling survival (9%), high (73%) and diameter (49%) on Calliandra calothyrsus out-planting study compared with containerized seedling using topsoil media [6]. However, production and planting practices especially in seedlings transportation of bio-pot seedlings is more expensive and complicated.

Reforestation and land rehabilitation by containerized seedling transplanting are more uniform, can tolerate or escape early environmental/biological stresses and can achieve earlier maturity than direct-seeded plants [14]. The choice of a planting system depends on the purpose of planting, cost of plant establishment, plant performance after establishment, and the economic value of the subsequent yield. The objective of this paper is to assess alternative methods for reforestation and land rehabilitation to reduce the plastic (polybag) in forest tree planting program. We hope that application of the alternative technology able to reduce the use of polybag which can cause the soil forest pollution.

2. Reforestation and Land Rehabilitation Program

2.1. Deforestation and degraded land

Deforestation is defined as the loss or continual degradation of forest habitat due to either natural or human-related causes. Unsustainable forestry practices, agiculture, urban sprawl, and mining, all contribute to deforestation. Degraded forest land or degraded land is defined as the formerly forested lands severely impacted by intensive and/or repeated disturbance, e.g. fires or illegal logging. Deforestation and degraded/critical land have been of major concern to many developing countries, including Indonesia. Some of the activities identified as the causes of deforestation include intensification in the felling of natural forests in timber concessions; the conversion of forest areas for use by other sectors, for example agricultural expansion (estate crops), mining activities, plantations and transmigration; unsustainable forest management; illegal logging; encroachment and illegal land occupation in forest areas; and forest fires.

Deforestation during the period 1985 to 1997 was estimated a total of 20 million ha of deforestation, 17.4 million ha of which was concentrated in Kalimantan, Sumatra and Sulawesi [15]. Further, these areas were deforested due to conversion for industrial plantation forest (11%) and estate crops (14%), forest fires (10%), small investors (10%) and forest pioneers (7%); they include logged-over areas waiting to be developed as industrial plantation forest (48%) [15]. Current situation presented by the Data and Information Center, Ministry of Environment and Forestry indicates the total area of degraded forest to be 24.3 million ha, including 19.6 million ha of critical land and 4.7 ha of very critical land [16].

2.2. Reforestation, land rehabilitation and use of polybag

Reforestation and land rehabilitation promoted by the Ministry of Environment and Forestry have consistently conducted to revegetate the critical/degraded land. In the last five years (2013-2017), areas of reforestation and land rehabilitation tended to decrease from 1,665,495 ha in 2013 to 572,439 ha in 2017 (figure 1a). During the period, the major areas of planting activities were plantation forest, land rehabilitation and community forest. Reforestation of urban forest and mangrove forest got a small portion in tree planting programs.
Notes: Data was analyzed from Environment and Forestry Statistic 2018 [16]

Figure 1. Planting areas (a), number of seedlings (b) and polybag used (c) for reforestation and land rehabilitation in the periods of 2013-2017

The width of planting program areas was directly contributed on seedling procurement. Number of seedlings for some nursery programs (community seedling garden/KBR, urban forest, productive/multipurpose plant species, mangrove forest, permanent nursery, and plantation company...
nursery) also tended to decrease. In 2013, number of seedlings prepared for plantation was 800,703,000 seedlings and continue to decrease until 2017 with the number of seedlings about 297,572,000 seedlings. If the most seedling production was assumed use of polybag for seedling containers, the polybags required were predicted about 2002 tons in 2013, 1914 tons in 2014, 1093 tons in 2015, 1043 tons in 2016 and 744 tons in 2017 (figure 1). That a lot of plastics (polybag) used in seedling production and abandoned in forest floor after out-planting, forest soil will be polluted by plastics waste.

Plastics require long time (400 and 1000 years) to decompose in landfills [2]. Plastics dumped into the forest floors prevent the production of nutrients in the soil caused the soil fertility reduces and affects the forest productivity. When its persistence in the forest soil environment can do great harm, as well as dangerously effects on animal life and alters the environment (air, water and soil) sustainability causing hazardous pollution [17, 18].

3. Development of Blocked Seedling Media, Bare-root Seedling and Seed Briquette

3.1. Bio-pot technology

Bio-pot is a blocked seedling media which can work as seedling container and seedling growth media [6, 19]. Bio-pot could be made by mixing some organic matters, such as compost, rice husk charcoal, lime, tapioca with adding a little bit of soil [6]. Most of the bio-pot materials is organic matters that is very important on the physical, chemical and biological characteristics of the seedling media [20, 21]. The organic matters have some function, such as supply essential nutrient for the plant [22], improve the water holding capacity [23], and improve the media aggregation and compactness [24].

Addition the lime in bio-pot can improve the soil pH, increase the availability of phosphor (P) and mobilium (Mo), neutralize the toxic and reduce the plant diseases [25]. Rhizobium inoculation for Leguminosae species, such as Albizia chinensis and Calliandra calothyrsus revealed the positive responses on survival and growth, both in the nursery and field [6, 7]. Use of bio-pot seedlings with adding of rhizobium on A. chinensis could improve the growth and was equal with the growth of polybag seedling from conventional nursery (use topsoil and rice husk compost media) with adding 5 kg basic fertilizer at the time of planting.

3.2. Bare-root seedling

Bare-root seedling is a seedling which prepared to plant without media. Because bare-root seedling stock lacks root contact with soil between lifting and planting [26], it is imperative that the seedlings be dormant while they are lifted, handled, stored, and planted. It is also critical that the roots be protected and kept moist to prevent desiccation. Part of the root systems of bare-root seedlings are cut off in the lifting process, and roots may be further trimmed to facilitate planting. Minimum size specifications are difficult to define because of species and site differences, but a rule of thumb is that the height should be at least 20 cm. Classification of height of bare-root seedling of Nuclea orientalis affected on seedling height and diameter on the field test at 6 months age (figure 2). The more seedling height (>50 cm), the more seedling height and diameter in the field test, whereas the polybag seedling showed the highest seedling height. The disadvantage of bare-root seedlings is that having lost the protective soil cover, roots are exposed and prone to desiccation [26] so they take longer to establish good contact between roots and soil after planting.
Notes: BR<30 = bare-root seedling with height of <30 cm, BR 30-<40 = bare-root seedling with height of 30-<40 cm, BR 40-50 = bare-root seedling with height of 40-50 cm, BR>50 = bare-root seedling with height of >50 cm, PS = polybag seedling.

Figure 2. Seedling height and diameter of the 6 months field test of *Nuclea orientalis* bare-root seedling planted based on several seedling classifications based on height [27].

Study of bare-root seedling on *Calophyllum inophyllum* L. (syn. *Balsamaria inophyllum* Lour.) showed that the seedling height and storage periods of seedling affected on seedling survival in the field test. The seedling survival tended to decrease after seedling storage. The bare-root seedling with the height of >20 cm can be stored until 3 days with the decrease that was not significant with the bare-root seedling stored for 1 day (figure 3). Other study for several species reported that the average survival rate of bare-root seedlings regardless of the tree species was 75%, whereas the survival rate of containerized seedlings was only slightly higher (81%) [28]. However, proper planting of bare-root seedlings is one critical step in a successful planting programs that includes a proper site selection and preparation, appropriate species selection, quality nursery stock, suitable temporary storage and handling, correct planting, and frequent, long term maintenance.

Notes: BR>20-1 = bare-root seedling with height >20 stored 1 day before be planted, BR>20-3 = bare-root seedling with height >20 stored 3 days before be planted, BR>20-6 = bare-root seedling with height >20 stored 6 days before be planted, BR<20-1 = bare-root seedling with height <20 stored 1 day before be planted, BR<20-3 = bare-root seedling with height <20 stored 3 days before be planted, BR<20-6 = bare-root seedling with height <20 stored 6 days before be planted, Polibag = polybag seedlings.

Figure 3. Seedling survival of the 6 months field test of *Calophyllum inophyllum* bare-root seedling based on height grading and seedling storage before being planted [27].
3.3. Seed Briquette

Seed briquette was printed using pelleting method. Pelleting is the process of coating seeds with inert materials to make them uniform in size and shape. Process of enclosing the seed carried out by mixing several materials, i.e. soil, compost, rice husk charcoal, lime and tapioca [29]. Seed briquette in relation with direct seeding was introduced in Japan called seed-ball [30] that was a mixing of seed, soil, and clay. Seed-ball contains a fundamental unit of medium to grow plants, but it can also be enough in many situations. Seed-ball restoration reduces the amount of workload to the minimum while maintaining the quality of work [30].

Application of seed briquette in direct seeding improved the survival and growth of target seedlings. In previous studies, seed pellets/briquette were found to improve biological control capacity and increase the percentage and speed of germination [31] and the effect was similar with priming treatment [32]. The other benefits of seed briquette were a protection of seeds from abiotic or biotic stress, attraction of moisture, supply of growth regulation nutrients and influence of micro-environment [33]. The addition of mycorrhizal on direct seeding practice using seed briquettes was also able to improve the seedling survival such as on C. inophyllum and Enterolobium cyclocarpum [29]. Mycorrhizae can increase plant growth [34], alter cell biochemical composition and reduce plant diseases [35]. Mycorrhizae is also able to increase plant resistance to drought stress [36].

Some factors affected on direct seedling using seed briquette are:

a. Species selection and seed character

The species for direct seeding is generally big seed species that has larger store of carbohydrates resulting the better germination and improving seedling establishment [37, 38, 39, 40]. The selected species, in general, must be stress tolerant, have fast germination, establishment and initial growth, and a certain degree of shade tolerance. Most of the species with small seeds is a pioneer species with the higher initial seedling growth rates, but the small seed species (Neolamarckia spp. dan Ficus spp.) also results the seedlings which is very sensitive to environmental stress [37]. Some species are potential to develop in direct seeding using seed briquette, such as Callophyllum inophyllum, Gmelina arborea, Acacia spp., Swietenia macrophylla and Enterolobium cyclocarpum.

Direct seeding is also difficult to apply on seeds with the extremely recalcitrant characters. Its seeds have high water content and generally are only available for a very limited period during the year. To date there is no protocol to safely dry or store seeds of this species, which may hinder its use on a large scale. On the other hand, the extreme recalcitrant seed is not be stored in long period so it could hardly to make it as seed briquette.

b. Site preparation

Site preparation in direct seeding application is very affected on the seed germination and initial seedling growth [41]. Seeds or seed Briquettes broadcasted or lied on the ground face at risk to drift away by surface run off or seed predation. Case study on Intsia bijuga direct seeding, the best seedling survival was resulted by seed buried in 3 cm [9, 29]. On the seed briquette of E. cyclocarpum, the sowing with site preparation (land clearing and seed buried) gave the highest seedling survival (52%), whereas seed briquette sowed without land clearing resulted the seedling survival of 3.7%. The same is true of the initial seedling height and diameter, the site preparation revealed the best performance (figure 4).
Notes: L1 = land clearing and seed buried, L2 = land clearing and soil loosened, L3 = land clearing, L4 = without site preparation

Figure 4. Seedling survival and height of *Ente. cyclocarpum* direct seeding using seed briquette on some site preparations [29]

c. Seed quality and briquette size

Population size and the initial genetic diversity of trees selected for seed collection can have strong effects on seed quality, germination and survival, which affects genetic diversity in future generations. To maintain a high level of genetic diversity in the new forests, the use of reproductive material originating from well-designed seed orchards, the use of seed mixtures from different seed sources and provenances, and the use of seed collected from trees of different ages are recommended.

The briquette size should be adjusted with the seed size. The small seed, of course, needs the small briquette. If the briquette is too big, and the seed is buried in the briquette, the seed is hard to be germinated. For some small seed species, such as *Acacia* spp. and *Calliandra* spp., the briquette size is enough in small briquette (for example: briquette diameter 2-3 cm, if the briquette is globular or flat). On *Gmelina arborea*, the seed briquette size can be a flat-globular with the diameter 5 cm and thickness 3 cm. The size of briquette will influence on the seed germination (table 1).

Table 1. Survival, height and diameter of *Gmelina arborea* direct seeding using seed briquette on some sizes and site preparation.

Treatment	Survival (%)	Height (cm)	Diameter (mm)
- Seed, without site preparation	3.57 d	81.25±64.33	10.44±9.52
- Seed, land clearing and seed buried	15.90 cd	88.46±22.39	10.63±4.81
- Small seed briquette, land clearing	33.75 b	101.29±41.69	12.22±7.63
- Small seed briquette, land clearing and seed buried	28.81 bc	93.96±35.76	12.18±5.97
- Medium seed briquette, land clearing	35.45 b	107.03±34.11	14.58±7.90
- Medium seed briquette, land clearing and seed buried	38.33 b	119.12±148.98	12.03±9.07
- Big seed briquette, land clearing	38.63 b	103.36±31.21	13.65±6.76
- Big seed briquette, land clearing and seed buried	56.81 a	120.32±38.96	15.92±8.24

F-test:

Treatment	Survival (%)	Height (cm)	Diameter (mm)
- Block	9.271**	1.979ns	2.223ns
- Block	0.687ns	0.355ns	3.381*

Notes: small briquette = diameter 3 cm and thickness 3 cm, medium briquette = diameter 4 cm and thickness 3 cm, big briquette = diameter 5 cm and thickness 3 cm (Source [27])

d. Sowing time
The optimal time for seed sowing in direct seeding is very affected on the seed germination and initial seedling growth [42, 43, 44]. The best time for seeding is when they have the best chance of germination; which means plentiful moisture, optimum temperature, minimal weed competition, and a potentially favorable growing season before exposure to stressful environmental conditions. The study case in Parung Panjang Forest Research Station, the best sowing time is at the middle of December, when the precipitation was stable. The sowing at the before or very early rainy season is very-high risk on the drought because the early rain falls always followed by short dry season (1-3 weeks) which causes the lack of seed germination and lots of seedling death. The same on the sowing at the late of the rainy season (March), the most of small seedling will undergo death because it can be survived with the decrease of daily precipitation (figure 5).

![Optimal application of direct seeding using seed briquette](image)

Figure 5. Optimal application for direct seeding using seed briquette (case study at Parung Panjang, Bogor) [27]

4. Plant Establishment Comparison of Reforestation Methods

4.1. The performance of plantation at early stage (case study on *Calophyllum inophyllum*)

Bio-pot and containerized seedlings had on average higher survival than bareroot seedling and direct seeding (table 2). Similar results were reported on *Capsium annum* [45] and *Quercus bicolor* [46]. Methods of bio-pot performed the highest value of height and diameter of seedling, but containerized seedling or polybag performed the highest value only for seedling height. Other methods such as direct seeding and seed briquette showed the lowest of survival and growth. This is caused by the presence of weeds that interfere with the growth of seeds sown directly (direct seeding) or through seed briquettes, so the percentage of growth becomes low. This is due to competition in getting light, water and nutrition, while other methods such as bio-pot and seedlings in polybags have a larger size when planted, so it is stronger in competing with weeds.

Plant establishment methods	Survival (%)	Seedling height (cm)	Seedling diameter (mm)
Bio-pot seedling	98±1 a	48.12±7.85 a	9.26±1.11 a
Polybag seedling	98±2 a	46.15±5.40 a	7.79±2.62 ab
Bareroot seedling	84±4 b	37.38±9.63 b	6.34±1.43 b
Direct seeding using seed briquette	62±5 c	32.77±6.9 b	6.14±2.10 bc
Direct seeding	20±5 d	25.86±9.06 c	4.38±1.54 c
Planting using seedlings that are ready for planting and in uniform of size, such as using bio-pots or polybags, is expected to be more tolerant or adapt to extreme environmental conditions than planting using direct seeding [14]. This can be seen from the optimal growth and low standard deviation values. The use of seeds that are ready for planting using biopots or polybags is very suitable for afforestation and reforestation activities on critical land (48). The results of research on *C. inophyllum* also showed the best growth (height and diameter) in seedlings that used in biopots or polybags.

The growth of bare-root seedling is not as optimal as the seedlings that use biopot or polybags, physiologically this method is very risky because the root has no protection so it is directly exposed and fragile to drought [26], so it requires more time for roots and soil to be contact when planting in the field. Root system is a very crucial parameter in the growth process, because the roots absorb nutrients and water and uptake it to the top of the plant (48). But in general the percentage of life and growth of bare root seedling is better than direct seeding.

Direct seeding method has a tendency to produce slower plant growth, especially in extreme environmental conditions such as temperature (high or low), drought, heavy rain or the presence of soil borne pests and diseases. Root growth using seed briquette is better than direct seeding, which is shown from the value of tap root length (50 cm), tap root biomass (24.9 g) and bellows-ground biomass (29.9 g). Whereas the highest value of shoot biomass or above ground is produced by seedlings from bio-pots (table 3), it showed that the bio-pot method is able to provide greater nutrition to support seedling growth [9].

Bio-pot and polybag seedlings had a greater number of basal roots with higher biomass (table 3). Blocked and polybag media may provide a more uniform moisture level around the hypocotyl, promoting early basal root growth than direct seeding. Conversely, the lateral roots were more developed in direct seeding. Similar result also was reported on *C. annum* [46].

Table 3. Root development and biomass of *Calophyllum inophyllum* seedling of various plant establishment methods.

Plant establishment methods	TRL	NBR	NLR	TRB	BRB	LRB	BGB	AGB	TRR
- Bio-pot seedling	39.0±2.8	18±1	157±23	17.8±5.9	6.3±0.7 ab	1.4±0.5	26.9±1.0 ab	108.3±9.1 a	5.3±0.4 a
- Polybag seedling	33.0±2.6	18±1	155±7.8	16.1±0.7 b	7.0±0.3a	1.6±0.2	24.7±0.9 ab	96.2±17.0 ab	4.5±0.5 ab
- Bare root seedling	48.6±1.6	15±4	133±39	16.1±1.5 b	5.7±0.7 b	1.7±0.5	25.4±3.8 ab	71.5±6.2 c	3.8±0.3 b
- Direct seeding using seed briquette	50.0±23.3	16±1	166±72	24.9±5.9 a	3.5±0.1 c	1.4±0.1	29.9±6.0 a	83.4±16.2 bc	3.8±0.3 ab
- Direct seeding	43.3±13.9	18±3	173±46	19.1±0.8 b	3.8±0.4 c	2.3±0.8	22.3±1.9 c	79.2±16.5 bc	4.6±2.9 ab

F-test | 1.302** | 1.493** | 0.483** | 4.091* | 36.895** | 2.994** | 24.517** | 898.464** | 4.522**

Notes: TRL=taproot length, NBR=number of basal root, NLR = number of lateral root, TRB= taproot biomass, BRB=basal root biomass, LRB= lateral root biomass, BGB = bellow ground biomass, AGB=above-ground biomass, TRR=top root ratio. The data shown are mean ± standard error of six replicates; Different letters a, b, c, d and ab denote significant difference (P<0.05) between different treatments; ** = Significant at P <0.01, * = Significant at P <0.05, ns = no significant. Source [9]
Naturally root systems will be formed when the seed is planted, and this happens in the process of regeneration in nature. The research results on holm oak seedlings (*Quercus ilex*) showed the development of taproots planted in polybags, the roots that grew did not exceed the length of the container, and this could increase sensitivity to drought [22]. In research on *C. inophyllum* [9] it was seen that the growth of the taproots of the seedlings using bio-pot or polybags had shorter size than the taproots of the seedlings derived from direct seeding. Research conducted on *C. annum* also showed that the contribution of taproot biomass from seedlings originating from seedlings using containers was only 4% compared to seedlings originating from direct seeding (18%) [46]. Generally, the roots of forestry plant seedlings with a bare root system, trim or reduced the roots before planting in the field, and this can increase the mortality rate of seedlings in the field. However, the choice of planting system depends on the economic value of the plant and the expected yield of the crop.

4.2. Comparison of estimated costs

Based on comparison of cost between plant establishment methods [9], which were using direct seeding, bare root seedlings and bio-pot seedlings is presented in table 4. There is considerable variation in total costs, this depends on the size and material of the plant. The calculation results show that the total cost to produce 1000 plants ha⁻¹ using seed briquettes, is the cheapest compared to other methods. However, there are some risks that must be anticipated to reduce failures, namely the right time for sowing, microclimate conditions and seed viability.
Table 4. Comparison of estimated costs for direct seeding, bareroot seedling, polybag seedling and bio-pot seedling to establish 1000 *Calophyllum inophyllum* plants

Item	Direct Seeding	Direct Seeding using Seed Briquette	Bareroot Seedling	Polybag Seedling	Bio-pot Seedling
- Seed cost	5000 (IDR)	1613 (IDR)	1429 (IDR)	1224 (IDR)	1224 (IDR)
- Seed briquette production	50000 (IDR)	1613 (IDR)	1429 (IDR)	1224 (IDR)	1224 (IDR)
- Seeding production	1190 (IDR)	466480 (IDR)	1020 (IDR)	624240 (IDR)	1020 (IDR)
- Transportation	5000 (IDR)	1613 (IDR)	1190 (IDR)	10000 (IDR)	1020 (IDR)
- Land preparation	1 ha (IDR)	2706500 (IDR)	1 ha (IDR)	3721400 (IDR)	1 ha (IDR)
- Sowing cost	5000 (IDR)	1613 (IDR)	1000 (IDR)	500000 (IDR)	1000 (IDR)
- Planting preparation			1000 (IDR)	500000 (IDR)	1000 (IDR)
- Planting hole digging cost			1000 (IDR)	500000 (IDR)	1000 (IDR)
- Planting cost			1000 (IDR)	12240 (IDR)	1000 (IDR)

Total (IDR) 3,306,500 3,167,815 4,172,980 5,946,864 6,091,500

Source : [9]

Notes: 1 *Calophyllum inophyllum* seed price IDR 3,000 kg⁻¹, germination capacity 80%, seedling survival for each method based on Table 1; 2 Production cost per briquette (Appendix 1); 3 Production cost bare-root, polybag and bio-pot seedling (appendix 1); 4 pick up charge for bio-pot and polybag seedlings and courier charge for seed/seed briquette; 5 based on standar of Ministry of Forestry, Republic of Indonesia No. P.64/Menhut-II/2009 (Standard biaya pembuatan hutan tanaman industri dan hutan tanaman rakyat), range of land preparation cost IDR 2,706,500-3,721,438; 6 Sowing cost IDR 100 per seed/seed briquette; 7 Planting preparation (making and setting up planting marker/stake in the field) for 1000 seedlings and IDR 500 per stake, seedling stock was prepared for replanting; 8, 9 Planting hole digging and planting cost based on experience of work performance per worker in Parung Panjang, Bogor, IDR 500 per a planting hole, IDR 200 per planting of a seedling.

The results of the study on *C. inophyllum* [9] showed that the cost of establishment of making seedlings (table 4) by using polybags or biopots were included in the standard category according to those listed in the seed making standards issued by the Ministry of Forestry-Republic of Indonesia which ranged from 5,320,400-7,315,551 [49]. However, the lowest cost in making 1000 plants (9 months age) is by using a direct seeding system, the cost required is only 50% of the total cost of seedlings using polybags or biopots [9], this is also supported by other research [50] in planting activities of *Oreomunnea mexicana*, which is the cost of planting using a polybag or bio pot twice as large as direct seeding. Other research [51, 52] stated, the cost required for planting using seedlings in polybags 2-4 times greater than the direct seeding system. The biggest cost component that causes high total costs is maintenance costs in nurseries [52].

5. Conclusion

Plastics waste in forest floor was worried because it has a negative impact on forest ecology and also human being. Reforestation and land rehabilitation without use of plastics can be conducted by alternative planting methods of bio-pot seedling, bare-root seedling and direct seeding using seed briquette. Based on the estimated cost for establishing 1000 target plants (study case for *Calophyllum inophyllum*), direct seeding was cheaper almost half of transplanting of polybag and bio-pot seedlings. When the planting objective is to rapidly establish canopy then planting fast-growing bio-pot and polybag seedlings are more effective method but higher in cost approach. Direct seeding using seed briquette can be recommended as a complimentary method to more intensive restoration efforts or alternative method for reforestation on the degraded lands, especially in remote areas.
Acknowledgement
This research was funded by Forest Tree Seed Technology Research and Development Center, Bogor (DIPA 2015-2018). The authors like to thank profusely the - technical and supporting staff for their extensive help in executing this piece of work, especially for Eliya Suita, Evayusvita Rustam, Eneng Baeni, Nurkim Nurochman, and Dedi Junaedi in conducting the research in the Seed Technology Laboratory, Forest Tree Research Technology Research and Development Institute, Bogor and Parung Panjang Forest Research Station, Bogor.

References
[1] Vaverkova M, Adamcova D, Kotovicova J, Toman F 2014 Evaluation of biodegradability of plastics bags in composting conditions Ecology and Chemical Engineering Science 21(1) 45-57
[2] Bell K, and Cave S. 2011. Comparison of environmental impact of plastic, paper and cloth bags. Research and Library Service Briefing Note. Paper 36/11. p 1-21.
[3] Webb H K, Arnott J, Crawford R J, and Ivanova E P 2013 Plastic degradation and its environmental implications with special reference to poly(ethylene terephthalate) Polymer 5, 1-18
[4] Bonilla-Moheno M, and Holl K D 2010 Direct seeding to restore tropical mature-forest species in areas of slash-and-burn agriculture Restoration Ecology 18(52) 438-445
[5] Li G L, Zhu Y, Liu Y, Jiang L, Shi W, Liu J, Wang J, and Cheng Z 2011 Effect of nursery nitrogen application of bare-root Larix olgensis seedlings on growth, nitrogen uptake and initial field performance Journal of Environmental Biology 34 79-85
[6] Suita E, Sudrajat D J, and Kurniati R 2017 Growth of kaliandra seedling on different block seedling media compositions in nursery and field. Jurnal Penelitian Hutan Tanaman 14(1) 73-84 (in Indonesian)
[7] Suita E, Sudrajat D J, and Nurhasybi 2018 Pertumbuhan bibit sengon merah (Albizia chinensis (Osbeck) Merr.) pada media semai cetak dan perbandingannya dengan bibit polibag. Jurnal Penelitian Kehutanan Wallacea 7(2) 141-149.
[8] Douglas G B, Dodd M B, and Power I L 2007 Potential of direct seeding for establishing native plants into pastoral land in New Zealand. New Zealand Journal of Ecology 31(2)143-153
[9] Sudrajat D J, Nurhasybi, and Suita E 2018 Comparison of nyamplung plant establishment: Direct seeding, bare-root, blocked seedling media, and containerized seedlings. Jurnal Manajemen Hutan Tropika 24(2) 51-59.
[10] Lof M, and Birkedal M 2009 Direct seeding of Quercus robur L. for reforestation: The influence of mechanical site preparation and sowing date on early growth of seedlings. Forest Ecology and Management 258 704–711
[11] Birkedal M, Lof M, Olsson E, and Bergsten U 2010 Effects of granivorous rodents on direct seeding of oak and beech in relation to site preparation and sowing date. Forest Ecology and Management 259 2382-2389.
[12] Nurhasybi, and Sudrajat D J 2009 Direct seeding technique of merbau (Instia bijuga) at Parung Panjang Forest Research Station, Bogor. Jurnal Penelitian Hutan Tanaman 6(4) 209-217. (in Indonesian).
[13] Nurhasybi, and Sudrajat D J 2013 Gained experience through direct seeding of several tree species in degraded land in West Java, Indonesia. Proceedings of the 2nd INAFOR International Conference of Indonesia Forestry Researchers, August 27-28, 2013. Forest Research and Development Agency. pp. 298-308
[14] Liptay A, Bolton E F, and Dirks V A 1982 A comparison of field seeded, and transplanted tomatoes grown on a clay soil. Canadian Journal of Plant Science 62 483-487
[15] Holmes D A 2002 Indonesia: where have all the forests gone? Discussion paper. Environment and social development, East Asia and Pacific Region. The World Bank. Washington
[16] MOEF (Ministry of Environment and Forestry). 2018. Statistic of Environment and Forestry 2017. Jakarta: Center of Data and Information. Ministry of Environment and Forestry (in Indonesian)

[17] Pavani P, and Rajeswari T R 2014 Impact of plastics on environmental pollution Journal of Chemical and Pharmaceutical Sciences Special Issue 3 87-93.

[18] Webb H K, Arnott J, Crawford R J and Ivanova E P 2013 Plastic degradation and its environmental implications with special reference to poly-(ethylene terephthalate) Polymers 5 1-18

[19] Nursyamsi 2015. Bio-pot as a media pot substitution for polybag which environment safety Info Teknis Eboni 12(2) 121-129 (in Indonesian).

[20] Kung’u J B, Kihara J, Mugendi D N and Jaenicke H 2008 Effect of small-scale farmers’ tree nursery growing medium on agroforestry tree seedlings’ quality in Mt. Kenya region. Scientific Research and Essays 3(8) 359–364

[21] Osaigbovo A U, Nwaoguala C N C and Falodun J E 2010 Evaluation of potting media for the production of pepper fruit (Dennetia tripetala) seedlings Journal of Applied and Natural Science 6(2) 47–51

[22] Tsakaldimi M, Tsitsoni T, Ganatsas P, and Zagas T 2009 A comparison of root architecture and shoot morphology between naturally regenerated and container-grown seedlings of Quercus ilex. Plant and Soil 324 103-113

[23] Mathowa T, Habaka K, Mpofu C, Legwaila G M and Mojeremane W 2014 Influence of different potting media on the growth of pod mahogany (Afzelia quanzensis) seedlings. International Journal of Advanced Research in Biological Sciences 1(7) 105–113

[24] Jacobs D F, Landis T D and Luna T 2015 Growing media. In Nursery manual for native plants: A guide for tribal nurseries. Washington, D.C.: U.S. Department of Agriculture, Forest Service.

[25] Wijaya A 2011 Pengaruh memupukan dan pemberian kapur terhadap pertumbuhan dan daya hasil kacang tanah (Arachis hypogaea L.). Bogor: Departemen Agronomi dan Holtikultura,Fakultas Pertanian, Institut Pertanian Bogor. p 1–60

[26] Anella L, Hennessey T C, and Lorenzi E M 2008 Growth of balled and bur lapped versus bare-root trees in Oklahoma, U.S. Arboriculture and Urban Forestry 34(3) 200–203

[27] Sudrajat D J, Nurhasybi, Suita E, and Rustam E 2018 Demplot of critical land rehabilitation using bio-pot and seed briquette technology. Bogor: Forest Tree Seed Technology Research and Development Center

[28] Repáč I, Tučeková A, Sarvašová I, and Vencurik J 2011 Survival and growth of outplanted seedlings of selected tree species on the High Tatras Mts. windrow area after the first growing season. Journal of Forest Science 57 349–358

[29] Sudrajat D J 2017 Seed pellets of Calophyllum inophyllum and Enterolobium cyclocarpum for direct seeding application on degraded lands. Proceeding in IUFRO INAFOR Joint International Conference 2017. Yogyakarta, 24-27 July 2017

[30] Fukuoka M 1978 The One-straw Evolution. Rodale press, Inc., place.

[31] Choong M R, Kim J, and Chang S P 2006. Improvement of biological control capacity of Paenibacillus polymxa E681 by seed pelleting on sesame. Science Direct. com-Biological Control 39(3), 282-289

[32] Govinden-Soulange J, and Levantard M. 2008. Comparative studies of seed priming and pelleting on percentage and meantime to germination of seeds of tomato (Lycopersicon esculentum Mill.) African Journal of Agricultural Research 3(10) 725-731

[33] Jyoti B, and Bhandari S 2016 Seed pelleting- A key for enhancing the seed quality. Rashtriya Krishi 11(1) 76-77

[34] Bayozzen A, and Yildiz A 2009 Determination of mycorrhhizae interactions and pathogenicity of Rhizoctonia solani Kuhn isolated from strawberry and Xanthium strumarium. Turkish Journal of Biology 33 53-57
[35] Neeraj, and Singh K 2011 Organic amendments to soil inoculated arbuscular mycorrhizal fungi and Pseudomonas fluorescens treatments reduce the development of root-rot disease and enhance the yield of Phaseolus vulgaris L. European Journal of Soil Biology 47(5) 287-295

[36] Manoharan P T, Shanmugaiah V, Balasubramanian N, Gomathinayagam S, Sharma M P, and Muthuchelian K 2010 Influence of AM fungi on the growth and physiological status of Erythrina variegata Linn. grown under different water stress conditions. European Journal of Soil Biology 46 151-156.

[37] Camargo J L C, Ferraz D K and Imakawa A M 2002 Rehabilitation of degraded areas of Central Amazonia using direct sowing of forest tree species Restorat. Ecol. 10(4) 636-644.

[38] Hossain F, Elliott S and Chairuangrisi S 2014 Effectiveness of direct seeding for forest restoration on severely degraded land in Lampang Province Thailand. Open J. Forest 4(5) 512–519

[39] Cecon E, González E J and Martorelli C 2016 Is direct seeding a biologically viable strategy for restoring forest ecosystems? Evidences from a meta-analysis. Land Degrad Dev 27(03) 511-520

[40] De Sousa D C and Engel F L 2018 Direct seeding reduces costs, but it is not promising for restoring tropical seasonal forests Ecological Engineering 116 35–44

[41] Johnson, R.L. (1980). New Ideas about Regeneration of Hardwoods. Proc. Hardwood Regeneration Symp. Southeastumber Manuf. Assoc., Forest Park. p 17-19.

[42] Carr, D., Bonney, N. & Millsom, D. (2007). The effect of sowing season on the reliability of direct seeding Publication No. 07/105 Project No. GAL-6A (Kingston-Australia: Rural Industries Research and Development Corporation)

[43] Barnett J P 2014 Direct seeding southern pines: Development of techniques, use, and current status. Tree Planters' Notes 57 35-58.

[44] Sánchez-González M, Gea-Izquierdo G, Pulido F, Acácio V, McCready D and Cañallas I 2016 Restoration of open oak woodlands in Mediterranean ecosystems of Western Iberia and California. In: Stanturf JA (ed). Restoration of Boreal and Temperate Forests, 2nd Edition, pp 377-399 (Boca Raton FL: CRC Press).

[45] Johnson R L and Krinard R M 1985 Oak regeneration by direct seeding, Alabama’s Treasured Forests 4(3) 12-15.

[46] Leskovar D I and Cantliffe D J 1993. Comparison of plant establishment method, transplant, or direct seeding on growth and yield of bell pepper Journal of the American Society for Horticultural Science 118(1) 17-22

[47] Van Sambeek J W, Godsey L D, Walter W D, Garrett H E and Dwyer J P 2016 Field performance of Quercus bicolor established as repeatedly air-root-pruned container and bareroot planting stock. Open Journal of Forestry 6 163-176

[48] Repac I, Tucekova A, Sarvasova I, and Vencurik J 2011 Survival and growth of out-planted seedlings of selected tree species on the High Tatra Mts. windthrow area after the first growing season. Journal of Forest Science 57(8) 349-358

[49] MOF (Ministry of Forestry) 2009 Cost Standard of Industrial Plantation and Community Forest Establishment (P.64/Menhut-II/2009) Ministry of Forestry-Republic of Indonesia (in Indonesian)

[50] Atondo-Bueno E J, Bonilla-Moheno M, and Lopez-Barrera F 2018 Cost-efficiency analysis of seedling introduction vs. direct seeding of Oreumunnea mexicana for secondary forest enrichment. Forest Ecology and Management 409 399-406

[51] Cole R J, Holl K D, Keene C L and Zahawi R A 2011 Direct seeding of late-successional trees to restore tropical montane forest. Forest Ecology and Management 261 1590-1597

[52] Zahawi R A, and Holl K D 2009 Comparing the performance of tree stakes and seedlings to restore abandoned tropical pastures Restoration Ecology 17 854-864
Appendix 1. Estimated cost for production of seed briquette, bareroot, containerized, and bio-pot seedlings (Source [9])

Materials and labor cost	Seed briquette	Bareroot seedling	Containerized seedling	Bio-pot seedling								
	Composition (%)	Kg	IDR	Composition (%)	Kg	IDR	Composition (%)	Kg	IDR			
Media:												
- Top soil	10	1	200	50	5	1,000	50	5	1,000	30	2	400
- Compost	40	4	4,000	-	-	-	30	3	3,000	30	4	4,000
- Rice husk	-	-	-	-	-	-	20	2	1,000	-	-	-
- Sand	-	-	-	50	5	1,500	-	-	-	-	-	-
- Rice husk charcoal	30	3	4,500	-	-	-	-	-	-	20	2	3,000
- Lime	10	1	1,000	-	-	-	-	-	-	10	1	1,000
- Tapioca	10	1	3,800	-	-	-	-	-	-	10	1	3,800
- Total cost for media	10	13,500	10	2,500	10	5000	10	12,200				
Materials (media) cost		45	41.67	152		305						
per a product												
Polyethylene bag	-	-	-	60		-						
Mycorrhizae application	50	-	-	-		50						
Seedling production	50	-	-	100		100						
Seeding maintenance	-	300	300	300		300						
- Total cost per a product	145	391.7	612	755								

Notes: The media estimated cost based on 10 kg mixed material; 1top soil IDR 200 kg; 2compost IDR 1,000 kg; 3rice husk IDR 500 kg; 4sand IDR 300 kg; 5rice husk charcoal IDR 1,500 kg; 6lime IDR 1,000 kg; 7tapioka IDR 3,800 kg; 8material cost per a product based on number of product from 10 kg mixed material (300 seed briquettes, 60 bareroot seedlings, 33 container seedlings, 40 bio-pot seedlings); 9One kg polyethylene bag IDR 30,000 containing ±500 bags; Mycorrhizae fungus IDR 25,000 kg (2 g = IDR 50); 10seedling production cost including seed sowing, filling the container or making bio-pot; 11seeding maintenance including watering, weeding etc.