Exact Matching and the Top-k Perfect Matching Problem

Nicolas El Maalouly
Department of Computer Science, ETH Zürich, Switzerland

Lasse Wulf
Institute of Discrete Mathematics, TU Graz, Austria

Abstract

The aim of this note is to provide a reduction of the Exact Matching problem to the Top-k Perfect Matching Problem. Together with earlier work by El Maalouly, this shows that the two problems are polynomial-time equivalent.

The Exact Matching Problem is a well-known 40 years old problem for which a randomized, but no deterministic poly-time algorithm has been discovered. The Top-k Perfect Matching Problem is the problem of finding a perfect matching which maximizes the total weight of the k heaviest edges contained in it.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms; Theory of computation → Parameterized complexity and exact algorithms

Keywords and phrases Perfect Matching, Exact Matching, Independence Number, Parameterized Complexity.

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.23

Funding Lasse Wulf: Supported by the Austrian Science Fund (FWF): W1230.

1 Reduction

Exact Matching (EM), defined in 1982 by Papadimitriou and Yannakakis [2], is one of only few natural problems which is known to be solvable in randomized polynomial time, but for which no deterministic poly-time algorithm is known so far.

\begin{tabular}{|l|}
 \hline
 Exact Matching (EM) \\
 \hline
 \textbf{Input:} A graph G, where every edge is colored blue or red, and an integer k. \\
 \textbf{Task:} Decide whether there exists a perfect matching M in G with exactly k red edges. \\
 \hline
\end{tabular}

Given a weight function $w : E \rightarrow \mathbb{R}$ which assigns a weight $w(e)$ to every edge of a graph, and given a subset $F \subseteq E$ of the edges, we order the elements of F by their weight. For a given integer k we let $w^k(F)$ denote the sum of the weight of the k heaviest elements in F. The function $w^k(\cdot)$ is called the top-k weight function.

We show that EM can be reduced (in deterministic polynomial time) to the following optimization problem defined and studied in [1].

\begin{tabular}{|l|}
 \hline
 Top-k Perfect Matching (TkPM) \\
 \hline
 \textbf{Input:} A weighted graph G and integer k. \\
 \textbf{Task:} Find a perfect matching M in G maximizing the top-k weight function $w^k(M)$. \\
 \hline
\end{tabular}

\textbf{Lemma 1.} $EM \leq_p TkPM$, even if the edge weights in the TkPM instance are bounded by a constant.

\textbf{Proof.} Consider an instance of EM, which is given by a graph $G := (V, E)$ and a red-blue coloring of its edges, and an integer k. We describe how to obtain in polynomial time an instance of TkPM given by a graph $G' := (V', E')$ and a weight function $w : E' \rightarrow \mathbb{R}$ and an
integer \(k' \). We start with \(G \) and subdivide all edges four times, i.e. every edge is replaced by a path of length 5. For every edge \(e \in E \), let \(P_e \subseteq G' \) be the path replacing it. In addition to this, we add \(2k \) new vertices and \(k \) independent edges forming a perfect matching of these \(2k \) vertices to the graph \(G' \). Let \(E_k \) be the set of these \(k \) edges. This completes the description of \(G' \). Observe that any perfect matching in \(G' \) must contain the set \(E_k \).

For the weight function \(w : E' \to \mathbb{R} \), we let \(w(e) = 2 \) for all \(e \in E_k \). For all the edges on some path \(P_e \), we distinguish the case whether \(e \) is colored red or blue in \(G \). If \(e \) is blue, all edges of \(P_e \) get weight 0. If \(e \) is red, the middle edge of \(P_e \) gets weight 3, the two edges adjacent to it get weight 2 and the two remaining outer edges get weight 0.

Finally, let \(k' := 2|R(G)| \) where \(|R(G)| \) is the number of red edges in \(G \). This completes our description of the TkPM instance. Let \(\alpha := 4|R(G)| + k \). We now claim that there is a PM in \(G \) with exactly \(k \) red edges if and only if there is a PM \(M' \) in \(G' \) with \(w^{k'}(M') \geq \alpha \).

To show this, observe that there is a one-to-one correspondence between perfect matchings in \(G \) and perfect matchings in \(G' \) where an edge is in the perfect matching of \(G \) if and only if the middle edge of \(P_e \) is in the perfect matching of \(G' \). Let \(M \subseteq G \) and \(M' \subseteq G' \) be two such perfect matchings which correspond to each other. Let \(r = |R(M)| \) be the number of red edges in the matching \(M \). Note that

\[
w^{k'}(M') \leq 3r + 2(k' - r) = 4|R(G)| + r.
\]

This inequality is due to the fact that the maximum weight of an edge is 3, but every edge of weight 3 is a middle edge of some path \(P_e \) where \(e \in E(G) \) is colored red. Therefore the \(k' \) heaviest edges in \(M' \) can contain at most \(r \) edges of weight 3 and at most \(k' - r \) edges of weight 2.

This shows that for the matching \(M' \) to achieve \(w^{k'}(M') \geq \alpha \), we need at least \(k \) red edges in \(M \). Finally suppose that \(M \) has at least \(k \) red edges, that is \(r \geq k \). Consider all the edges of non-zero weight in \(M' \). These are exactly the edges of weight 3 corresponding to the middle of a path \(P_e \) where \(e \) is red and \(e \in M \), and all pairs of edges of weight 2 corresponding to a path \(P_e \) where \(e \) is red and \(e \notin M \), and all the edges in \(E_k \). (Observe that paths \(P_e \) where \(e \) is blue have weight 0). We count the number of non-zero weight edges and observe that this number is \(r + 2(|R(G)| - r) + k = 2|R(G)| + k - r \). Using the assumption \(r \geq k \) we have that the number of non-zero edges is smaller or equal to \(k' \), so every non-zero edge is included in \(w^{k'}(M') \). In total, we have \(w^{k'}(M') = 3 \cdot r + 2k + 4 \cdot (|R(G)| - r) = 4|R(G)| - r + 2k \). This number is equal to \(\alpha \) in the case \(r = k \) and smaller than \(\alpha \) in the case \(r > k \).

We conclude that for all pairs \((M, M')\) of corresponding perfect matchings we have \(w^{k'}(M') \geq \alpha \) if and only if \(M \) has exactly \(k \) red edges.

In combination with the results of [1], we get that EM and TkPM are polynomially equivalent. Note that the reduction described there is not a Karp-reduction.

References

1. Nicolas El Maalouly. Exact matching: Algorithms and related problems. arXiv preprint arXiv:2203.13899, 2022.
2. Christos H Papadimitriou and Mihalis Yannakakis. The complexity of restricted spanning tree problems. Journal of the ACM (JACM), 29(2):285–309, 1982.