Supplement of

Extended Bloch–McConnell equations for mechanistic analysis of hyperpolarized 13C magnetic resonance experiments on enzyme systems

Thomas R. Eykyn et al.

Correspondence to: Thomas R. Eykyn (thomas.eykyn@kcl.ac.uk)

The copyright of individual parts of the supplement might differ from the article licence.
Supplemental Information - Extended Bloch-McConnell equations for mechanistic analysis of hyperpolarized 13C magnetic resonance experiments on enzyme systems

Matlab scripts used for simulation in Figures 1-8. These are provided here in full to enable a more detailed exploration of influence of different parameters on the simulations. Readers are invited to contact the corresponding author should further clarification be required.

S1 Matlab program for numerically solving the Bloch McConnell equations for Figure 1

```matlab
%%
% Set equilibrium magnetizations Meq
    MeqA = 1; MeqB = 0.8;

%%
% Set initial magnetization M0 in basis vector [Ax Ay Az Bx By Bz]
    M0 = [0,0,MeqA,0,0,MeqB];

%%
% Set relaxation rate constants r1 and r2, exchange rate constants k and % peak frequencies freq
    r1 = 1; r2 = 1;
    kAB = 0; kBA = 0;
    freq_A = 10*2*pi; freq_B = -10*2*pi;

%%
% Set spectral acquisition parameters sw = sweep width, td = # time domain % points, dt = dwell time
    sw = 60; td = 256; dt = 1/sw;

%%
% Set RF pulse parameters, B1 = field strength, phi = RF phase offset = % RF offset, t_pulse = RF pulse duration
    B1 = 1500*2*pi; phi = 90*pi/180; offset = 0*2*pi;
    flip_angle = 90; t_pulse = flip_angle*pi/(180*B1);

%%
% Set input parameters as vector xIn
    xIn  = [r1,r2,freq_A,freq_B,B1,offset,phi,MeqA,MeqB,kAB,kBA];

%%
% Calculate evolution during pulse using DEs BlochMcConnell
    options = odeset('RelTol',1e-6,'AbsTol',1e-6);
    [~,Mt] = ode45(@BlochMcConnell,[0,t_pulse],M0,options,xIn);
    B1 = 0; xIn(5) = B1;

%%
% Calculate evolution during FID using DEs BlochMcConnell
    options = odeset('RelTol',1e-6,'AbsTol',1e-6);
    [t,Mt] = ode45(@BlochMcConnell,dt:dt:td*dt,Mt(end,:),options,xIn);
```
Define observable magnetization $Ax - iAy + Bx - iBy$:

$$\text{Obs} = Mt(:,1) - i1i*Mt(:,2) + Mt(:,4) - i1i*Mt(:,5);$$

Calculate fid and spectrum:

- $\text{noise} = \text{randn}(1,td)' + i\text{randn}(1,td)';$
- $\text{lb} = 0; \text{phase} = 0;$
- $\text{fid} = (\text{Obs} + \text{noise}/10).*\exp(-\text{lb}*t)*\exp(1i*\text{phase}*\pi/180);$
- $\text{sig} = \text{fft}($\text{fid}$);$
- $\text{spec} = [\text{sig}(td/2+1:td);\text{sig}(1:td/2)];$
- $\text{freq} _\text{scale} = \text{sw}/2:\text{sw}/(\text{td}-1):\text{sw}/2;$

Plot results:

$$\text{subplot}(1,3,1); \text{plot}(t,\text{real}(fid),'k');$$
$$\text{subplot}(1,3,2); \text{plot}($\text{freq} _\text{scale},\text{real}(spec),'k');$$
$$\text{subplot}(1,3,3); \text{plot}(t,Mt(:,3),'k',t,Mt(:,6),'r');$$

function $dMt = \text{BlochMcConnell}(t,Mt,xIn)$

$$dMt = \text{zeros}(6,1);$
$$r1 = xIn(1); \quad r2 = xIn(2);$$
$$\text{freq} _A = xIn(3); \quad \text{freq} _B = xIn(4);$$
$$\text{Meq} _A = xIn(8); \quad \text{Meq} _B = xIn(9);$$
$$\text{kAB} = xIn(10); \quad \text{kBA} = xIn(11);$$

$$\text{wx} = \text{RFx}(t,xIn(5),xIn(6),xIn(7)); \quad \% \text{Calculate pulse } \text{wx}$$
$$\text{wy} = \text{RFy}(t,xIn(5),xIn(6),xIn(7)); \quad \% \text{Calculate pulse } \text{wy}$$

$$dMt(1) = -(r2+kAB)*Mt(1) - \text{freq} _A*Mt(2) + wy*Mt(3) + kBA*Mt(4); \quad \% Ax$$
$$dMt(2) = \text{freq} _A*Mt(1) - (r2+kAB)*Mt(2) - wx*Mt(3) + kBA*Mt(5); \quad \% Ay$$
$$dMt(3) = -wy*Mt(1) + wx*Mt(2) - (r1+kAB)*Mt(3) + kBA*Mt(6) + r1*MeqA; \quad \% Az$$
$$dMt(4) = \text{kAB}*Mt(1) - (r2+kBA)*Mt(4) - \text{freq} _B*Mt(5) + wy*Mt(6); \quad \% Bx$$
$$dMt(5) = \text{kAB}*Mt(2) + \text{freq} _B*Mt(4) - (r2+kBA)*Mt(5) - wx*Mt(6); \quad \% By$$
$$dMt(6) = \text{kAB}*Mt(3) - wy*Mt(4) + wx*Mt(5) - (r1+kBA)*Mt(6) + r1*MeqB; \quad \% Bz$$

function $[a] = \text{RFx}(tH,B1,offset,\phi)$

$a = B1*\cos(\text{offset}^*tH + \phi);$

end

function $[a] = \text{RFy}(tH,B1,offset,\phi)$

$a = B1*\sin(\text{offset}^*tH + \phi);$

end
S2 Matlab program for numerically solving the Bloch McConnell equations for hyperpolarized kinetics in Figure 2

```matlab
%%
% Set equilibrium magnetizations Meq
MeqA = 1; MeqB = 0.8;

%%
% Set initial magnetization M0 in basis vector [Ax Ay Az Bx By Bz]
enhancement_factor = 1e4;
M0 = [0,0,MeqA*enhancement_factor,0,0,0];

%%
% Set relaxation rate constants r1 and r2, exchange rate constants k and
% peak frequencies freq
r1 = 1/60; r2 = 1;
kAB = 0.005; kBA = 0.005;
freq_A = 10*2*pi; freq_B = -10*2*pi;

%%
% Set spectral acquisition parameters sw = sweep width, td = # time domain
% points, dt = dwell time
sw = 60; td = 256; dt = 1/sw;

%%
% Set RF pulse parameters, B1 = field strength, phi = RF phase, offset =
% RF offset, t_pulse = RF pulse duration
B1 = 1500*2*pi; phi = 90*pi/180; offset = 0*2*pi;
flip_angle = 1;

%%
% Set input parameters as vector xIn
xIn  = [r1,r2,freq_A,freq_B,B1,offset,phi,MeqA,MeqB,kAB,kBA];

%%
% Create 2D data matrix SPEC and FID and time vector T, temporal resolution
% dt1
td1 = 64; dt1 = 4.25; T = dt1:dt1:td1*dt1;
SPEC=zeros(td,td1);
FID=zeros(td,td1);
Mt = M0;

%%
for m = 1:1:td1

% Calculate evolution during pulse using DEs BlochMcConnell
B1 = 1500*2*pi; xIn(5) = B1; t_pulse = flip_angle*pi/(180*B1);
options = odeset('RelTol',1e-6,'AbsTol',1e-6);
[-,Mt] = ode45(@BlochMcConnell,[0,t_pulse],Mt(end,:),options,xIn);
B1 = 0; xIn(5) = B1;

% Calculate evolution during FID using DEs BlochMcConnell
options = odeset('RelTol',1e-6,'AbsTol',1e-6);
[t,Mt] = ode45(@BlochMcConnell,dt:dt:td*dt,Mt(end,:),options,xIn);

% Calculate observable magnetization Ax - i*Ay + Bx - i*By;
Obs = Mt(:,1) - li*Mt(:,2) + Mt(:,4) - li*Mt(:,5);
```
% Calculate fid and spectrum
noise = randn(1,td)' + 1i*randn(1,td)';
lb = 0; phase = 0;
fid = (Obs*noise./10).*exp(-lb*t).*exp(1i*phase*pi/180);
sig = fft(fid);
spec = [sig(1:td/2); sig(td/2+1:td)];
freq_scale = sw/2:-sw/(td-1):-sw/2;
FID(:,m) = fid;
SPEC(:,m) = spec;
end

%%
% Plot results as a waterfall plot
waterfall(freq_scale,T,real(SPEC'));axis square;axis tight;
%%
% Plot 1st and last spectrum in time series
figure;
subplot(2,2,1); plot(t,real(FID(:,1)),'k');
subplot(2,2,2); plot(freq_scale,real(SPEC(:,1)),'k');
subplot(2,2,3); plot(t,real(FID(:,td1)),'k');
subplot(2,2,4); plot(freq_scale,real(SPEC(:,td1)),'k');

%%
function dMt = BlochMcConnell(t,Mt,xIn)
dMt = zeros(6,1);
r1 = xIn(1); r2 = xIn(2);
freq_A = xIn(3); freq_B = xIn(4);
MeqA = xIn(8); MeqB = xIn(9);
kAB = xIn(10); kBA = xIn(11);
wx = RFx(t,xIn(5),xIn(6),xIn(7));
wy = RFy(t,xIn(5),xIn(6),xIn(7));
% Calculate pulse wx
dMt(1) = -(r2+kAB)*Mt(1) - freq_A*Mt(2) + wy*Mt(3) + kBA*Mt(4); %Ax
% Calculate pulse wy

end
function [a] = RFx(tH,B1,offset,phi)
a = B1*cos(offset*tH + phi);
end
function [a] = RFy(tH,B1,offset,phi)
a = B1*sin(offset*tH + phi);
end
S3 Matlab program for numerically calculating 13C relaxation times based on a simple dipole-dipole plus chemical shift anisotropy mechanism in Figure 3

```matlab
%%
% Set gyromagnetic ratios gamma of 1H and 13C
gamma_H = 26.7522e7; gamma_C = 6.7283e7; % rad s^-1 T^-1
%%
% Set chemical shift anisotropies csa of 1H and 13C
csa_H = 10e-6; csa_C = -98e-6;
%%
% Set Planck's constant h, Boltzmann constant kB, vacuum permeability mu
h = 6.626176e-34; hbar = h/(2*pi); kB = 1.380658e-23; mu = 4*pi*1e7;
%%
% Set vectors for magnetic field B0 and rotational correlation time tc
B0 = (0.5:0.5:14.1)';
x = -12:0.1:-7;
tc = 10.^x;
%%
% Set Larmor frequencies
wH = -gamma_H*B0;
wC = -gamma_C*B0;
%%
% Set CH bond length, dipolar coupling constant and csa constant
% Set rch ~ 1.09e-10 one bond C-H distance
rch = 1.45e-10;
d = (mu/(4*pi))*(gamma_H*gamma_C*hbar/rch^3);
c = gamma_C*B0*csa_C;
%%
% Calculate spectral density functions
J0 = 2*tc.*ones(length(B0),1);
Jc = 2*tc./(1 + (wC.^2*tc.^2));
Jh = 2*tc./(1 + (wH.^2*tc.^2));
Jmin = 2*tc./(1 + ((wH-wC).^2*tc.^2));
Jplus = 2*tc./(1 + ((wH+wC).^2*tc.^2));
Jhh = 2*tc./(1 + ((wH+wH).^2*tc.^2));
%%
% Calculate dipole-dipole relaxation rate constants and time constants
R1DD = d^2*((3/20)*Jc + (1/20)*Jmin + (3/10)*Jplus);
R2DD = d^2*((1/10)*J0 + (3/40)*Jc + (1/40)*Jmin + (3/20)*Jh + (3/20)*Jplus);
T1DD = 1./R1DD; T2DD = 1./R2DD;
%%
% Calculate CSA relaxation rate constants and time constants
R1CSA = c.^2.*((1/15)*Jc);
R2CSA = c.^2.*((2/45)*J0 + (1/30)*Jc);
T1CSA = 1./R1CSA; T2CSA = 1./R2CSA;
%%
% Calculate sum of DD and CSA contributions to R1 and R2
```
R1 = R1DD + R1CSA;
R2 = R2DD + R2CSA;
T1 = 1./R1; T2 = 1./R2;

%%
% Surface plot of T1 and T2 as a function of B0 and tauc

subplot(1,2,1);
mesh(B0,x,T1'); axis square;
subplot(1,2,2);
mesh(B0,x,T2'); axis square;
S4 Matlab program for numerically calculating hyperpolarized kinetics of a first order two-site exchange reaction $A \leftrightarrow B$ in Figure 4

%%
% Set initial magnetizations $A^*(0) = A_0$, $A(0) = a_0$, $B^*(0) = 0$, $B(0) = b_0$;
A0 = 1; B0 = 0; a0 = 0; b0 = 0;

%%
% Set relaxation rate constants r_1 and r_2, exchange rate constants k
 r1A = 1/60; r1B = 1/60;
kAB = 0.01; kBA = 0.005;

%%
% Set initial magnetization basis vector $[A^* B^* A B]$
M0 = [A0,B0,a0,b0];

%%
% Set input parameters as vector xIn
xIn = [r1A,r1B,kAB,kBA];

%%
% Set time vector for simulation
 dt = 0.01; tmax = 600;
t = 0:dt:tmax;

%%
% Calculate time evolution using DE function diff_eqs
options = odeset('RelTol',1e-6,'AbsTol',1e-6);
[t,x] = ode15s(@diff_eqs,t,M0,options,xIn);

%%
% Plot results
subplot(1,2,1);
pplot(t,x(:,1),'k',t,x(:,2),'r',t,x(:,3),'k--',t,x(:,4),'r--');
subplot(1,2,2);
pplot(t,x(:,1)+x(:,3),'k',t,x(:,2)+x(:,4),'r');

%%
function dy = diff_eqs(~,y,xIn)

 dy = zeros(4,1);
 r1A = xIn(1); r1B = xIn(2);
kAB = xIn(3); kBA = xIn(4);
 dy(1) = -kAB*y(1) + kBA*y(2) - r1A*y(1); % A^*
 dy(2) = kAB*y(1) - kBA*y(2) + r1B*y(2); % B^*
 dy(3) = kAB*y(3) + kBA*y(4) + r1A*y(1); % A
 dy(4) = kAB*y(3) - kBA*y(4) + r1B*y(2); % B
end
S5 Matlab program for numerically calculating hyperpolarized kinetics of a first order three-site exchange reaction \(A \leftrightarrow B \leftrightarrow C \) in Figure 5

```matlab
%%
% Set initial magnetizations \( A^*(0) = A0, B^*(0) = B0; C^*(0) = C0; A(0) = \)
% \( a(0); B(0) = b0; C(0) = c0; \)
A0 = 1; B0 = 0; C0 = 0; a0 = 0; b0 = 0; c0 = 0;
%%
% Set relaxation rate constants \( r1 \) and \( r2 \), exchange rate constants \( k \)
% \( r1A = 1/60; r1B = 1/60; r1C = 1/60; \)
% \( kAB = 0.01; kBA = 0.005; kBC = 0.01; kCB = 0.005; \)
%%
% Set initial magnetization basis vector \([A^* B^* C^* A B C]\) \nM0 = [A0,B0,C0,a0,b0,c0];
%%
% Set input parameters as vector xIn
xIn = [r1A,r1B,r1C,kAB,kBA,kBC,kCB];
%%
% Set time vector for simulation
dt = 0.01; tmax = 600;
t = 0:dt:tmax;
%%
% Calculate time evolution using DE function diff_eqs
options = odeset('RelTol',1e-6,'AbsTol',1e-6);
[t,y] = ode15s(@diff_eqs,t,M0,options,xIn);
%%
% Plot results
subplot(1,2,1)
pplot(t,y(:,1),'k'-,t,y(:,2),'.b'-,t,y(:,3),'.r'-);
hold on;
pplot(t,y(:,4),'.k'-,t,y(:,5),'.b'-,t,y(:,6),'.r'-);
subplot(1,2,2)
pplot(t,y(:,1)+y(:,4),'.k'-,t,y(:,2)+y(:,5),'.b'-,t,y(:,3)+y(:,6),'.r'-);
%%
% function dy = diff_eqs(~,y,xIn)

dy = zeros(6,1);

r1A = xIn(1); r1B = xIn(2); r1C = xIn(3);
kAB = xIn(4); kBA = xIn(5); kBC = xIn(6); kCB = xIn(7);

dy(1) = -kAB*y(1) + kBA*y(2) - r1A*y(1);  % A^*
% dy(2) = kAB*y(1) - kBA*y(2) - kBC*y(3) + kCB*y(2) = r1B*y(2);  % B^*
dy(3) = -kBC*y(2) + kCB*y(3) - r1C*y(1);  % C^*
% dy(4) = -kAB*y(4) + kBA*y(5) + r1A*y(1);  % A
% dy(5) = kAB*y(4) - kBA*y(5) - kBC*y(6) + kCB*y(6) + r1B*y(2);  % B
dy(6) = -kBC*y(5) + kCB*y(6) + r1C*y(3);  % C
end
```
S6 Matlab program for numerically calculating hyperpolarized kinetics of a second order two-site exchange reaction A + C ⇌ B + D in Figure 6

%%
% Set initial magnetizations A*(0) = A0, B*(0) = 0; A(0) = a0, B(0) = b0;
% C(0) = c0; D(0) = d0;
A0 = 1; B0 = 0; a0 = 0; b0 = 0; c0 = 0.95; d0 = 0.05;
%%
% Set relaxation rate constants r1 and r2, exchange rate constants k
r1A = 1/60; r1B = 1/60;
kAB = 0.01; kBA = 0.005;
%%
% Set initial magnetization M0 in basis vector [A* B* A B C D]
M0 = [A0,B0,a0,b0,c0,d0];
%%
% Set input parameters as vector xIn
xIn = [r1A,r1B,kAB,kBA];
%%
% Set time vector for simulation
dt = 0.01; tmax = 600;
t = 0:dt:tmax;
%%
% Calculate time evolution using DE function diff_eqs
options = odeset('RelTol',1e-6,'AbsTol',1e-6);
[t,y] = ode15s(@(diff_eqs,t,M0,options,xIn));
%%
% Plot results
subplot(1,2,1);
plot(t,y(:,1),’k’,t,y(:,2),’r’,t,y(:,3),’k--’,t,y(:,4),’r--’);
subplot(1,2,2);
plot(t,y(:,1)+y(:,3),’k’,t,y(:,2)+y(:,4),’r’,t,y(:,5),’b’,t,y(:,6),’g’);
%%
function dy = diff_eqs(~,y,xIn)
dy = zeros(6,1);
% r1A = xIn(1); r1B = xIn(2);
kAB = xIn(3); kBA = xIn(4);

% A*
dy(1) = -kAB*y(1)*y(5) + kBA*y(2)*y(6) - r1A*y(1); % A*
dy(2) = kAB*y(1)*y(5) - kBA*y(2)*y(6) - r1B*y(2); % B*
% A

dy(3) = -kAB*y(3)*y(5) + kBA*y(4)*y(6) + r1A*y(1); % A

dy(4) = kAB*y(3)*y(5) - kBA*y(4)*y(6) + r1B*y(2); % B
% C

dy(5) = -kAB*y(5)*(y(1) + y(3)) + kBA*y(6)*y(2) + y(4)); % C

dy(6) = kAB*y(5)*(y(1) + y(3)) - kBA*y(6)*y(2) + y(4)); % D
end
S7 Matlab program for numerically calculating Michaelis Menten kinetics of a hyperpolarized substrate in Figure 7

```matlab
%%
% Set initial magnetizations S*(0) = S0, ES*(0) = ES0; P*(0) = P0, S(0)
% = s0; ES(0) = es0; P(0) = p0; E(0) = E0;
S0 = 1e-3; ES0 = 0; P0 = 0; s0 = 0; es0 = 0; p0 = 0; E0 = 1e-9;
%%
% Set relaxation rate constants r1 and exchange rate constants k
r1S = 1/60; r1ES = 1/60; r1P = 1/60;
kplus1 = 1e7; kmin1 = 1e2; kplus2 = 5e3; kmin2 = 0;
%%
% Set initial magnetization M0 in basis vector [S* ES* P* S ES P E]
M0 = [S0,ES0,P0,s0,es0,p0,E0];
%%
% Set input parameters as vector xIn
xIn  = [r1S,r1ES,r1P,kplus1,kmin1,kplus2,kmin2];
%%
% Set time vector for simulation
dt = 0.01; tmax = 600;
t = 0:dt:tmax;
%%
% Calculate time evolution using DE function diff_eqs
options = odeset('RelTol',1e-10,'AbsTol',1e-10); 
[t,y] = ode15s(@diff_eqs,t,M0,options,xIn);
%%
% Plot results
subplot(2,2,1)
plot(t,y(:,1),’k’,t,y(:,4),’k--’,t,y(:,3),’r’,t,y(:,6),’r--’);
subplot(2,2,2)
plot(t,y(:,1)+y(:,4),’k’,t,y(:,3)+y(:,6),’r’);
subplot(2,2,3)
plot(t,y(:,2),’g’,t,y(:,5),’g--’);
subplot(2,2,4)
plot(t,y(:,2)+y(:,5),’g’,t,y(:,7),’y’);
%%
function dy = diff_eqs(~,y,xIn)
dy = zeros(7,1);
    r1S = xIn(1); r1ES = xIn(2); r1P = xIn(3);
kplus1 = xIn(4); kmin1 = xIn(5);
kplus2 = xIn(6); kmin2 = xIn(7);
    dy(1) = -kplus1*y(1)*y(7) + kmin1*y(2) - r1S*y(1);
dy(2) =  kplus1*y(1)*y(7) - kmin1*y(2) - kplus2*y(2) + kmin2*y(3)*y(7) - r1ES*y(3);
dy(3) =  kplus2*y(2) - kmin2*y(3)*y(7) - r1P*y(3);
dy(4) =  -kplus1*y(4)*y(7) + kmin1*y(5) + r1S*y(1);
dy(5) =  kplus1*y(4)*y(7) - kmin1*y(5) - kplus2*y(5) + kmin2*y(6)*y(7) + r1ES*y(3);
dy(6) =  kplus2*y(5) - kmin2*y(6)*y(7) + r1P*y(3); 
    dy(7) =  -kplus1*y(7)*(y(1)+y(4)) + (kmin1+kplus2)*(y(2)+y(5)) - kmin2*y(7)*(y(3)+y(6));
end
```
S8 Matlab program for numerically calculating Lactate dehydrogenase kinetics for hyperpolarized pyruvate in Figure 8

```matlab
%%
% Set initial magnetizations Pyr*(0) - P0; Lac*(0) - L0; Pyr(0) - p0; Lac(0) - l0; NADH(0) - nadh0; NAD(0) - nad0; E.NADH(0) - Enadh0; E.NAD(0) - Enad0; E(0) - E0;
P0 = 1e-3; L0 = 0; p0 = 0; l0 = 0; nadh0 = 0.1e-3; nad0 = 1e-3; Enadh0 = 0; Enad0 = 0; E0 = 1.2e-9;
%%
% Set relaxation rate constants r1 and exchange rate constants k
r1P = 1/60; r1L = 1/60;
kplus1 = 1.03e8; kmin1 = 549;
kplus2 = 6.72e6; kmin2 = 3.44e4;
kplus3 = 842; kmin3 = 9.12e5;
%%
% Set initial magnetization M0 in basis vector [P* L* P L NADH NAD E.NADH E.NAD E]
M0 = [P0,L0,p0,l0,nadh0,nad0,Enadh0,Enad0,E0];
%%
% Set input parameters as vector xIn
xIn = [r1P,r1L,kplus1,kmin1,kplus2,kmin2,kplus3,kmin3];
%%
% Set time vector for simulation
dt = 0.01; tmax = 600;
t = 0:dt:tmax;
%%
% Calculate time evolution using DEs
options = odeset('RelTol',1e-10,'AbsTol',1e-10);
[t,y] = ode15s(@diff_eqs,t,M0,options,xIn);
%%
% Plot results
subplot(1,3,1)
plot(t,y(:,1),'k',t,y(:,3),'k--',t,y(:,2),'r',t,y(:,4),'r--');
subplot(1,3,2)
plot(t,y(:,7),'g',t,y(:,8),'b',t,y(:,9),'y');
subplot(1,3,3)
plot(t,y(:,1)+y(:,3),'k',t,y(:,2)+y(:,4),'r',t,y(:,5),'g',t,y(:,6),'b');
%%
function dy = diff_eqs(~,y,xIn)
dy = zeros(9,1);
    r1P = xIn(1); r1L = xIn(2);
kplus1 = xIn(3); kmin1 = xIn(4);
kplus2 = xIn(5); kmin2 = xIn(6);
kplus3 = xIn(7); kmin3 = xIn(8);
    dy(1) = -kplus2*y(1)*y(7) + kmin2*y(2)*y(8) - r1P*y(1);
    dy(2) = kplus2*y(1)*y(7) - kmin2*y(2)*y(8) - r1L*y(2);
```
dy(3) = -kplus2*y(3)*y(7) + kmin2*y(4)*y(8) + r1P*y(1);
dy(4) = kplus2*y(3)*y(7) - kmin2*y(4)*y(8) + r1L*y(2);

dy(5) = -kplus1*y(5)*y(9) + kmin1*y(7);
dy(6) = -kmin3*y(6)*y(9) + kplus3*y(8);

dy(7) = kplus1*y(5)*y(9) - kmin1*y(7) - kplus2*y(7)*(y(1)+y(3)) + kmin2*y(8)*(y(2)+y(4));
dy(8) = kplus2*y(7)*(y(1)+y(3)) - kmin2*y(8)*(y(2)+y(4)) - kplus3*y(8) + kmin3*y(6)*y(9);

dy(9) = -kplus1*y(5)*y(9) + kmin1*y(7) + kplus3*y(8) - kmin3*y(6)*y(9);

end