In silico and in vitro evaluation of PCR-based assays for the detection of Bacillus anthracis chromosomal signature sequences

Ågren, Joakim; Hamidjaja, Raditijo A.; Hansen, Trine; Ruuls, Robin; Thierry, Simon; Vigre, Håkan; Janse, Ingmar; Sundström, Anders; Segerman, Bo; Koene, Miriam

Total number of authors: 13

Published in: Virulence

Link to article, DOI: 10.4161/viru.26288

Publication date: 2013

Document Version Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA): Ågren, J., Hamidjaja, R. A., Hansen, T., Ruuls, R., Thierry, S., Vigre, H., Janse, I., Sundström, A., Segerman, B., Koene, M., Löfström, C., Van Rotterdam, B., & Derzelle, S. (2013). In silico and in vitro evaluation of PCR-based assays for the detection of Bacillus anthracis chromosomal signature sequences. Virulence, 4(8), 671-685. https://doi.org/10.4161/viru.26288
In silico and in vitro evaluation of PCR-based assays for the detection of Bacillus anthracis chromosomal signature sequences

Joakim Ågren, Raditijo A Hamidjaja, Trine Hansen, Robin Ruuls, Simon Thierry, Håkan Vигre, Ingmar Janse, Anders Sundström, Bo Segerman, Miriam Koene, Charlotta Löfström, Bart Van Rotterdam, and Sylviane Derzelle

1National Veterinary Institute; Department of Bacteriology; Uppsala, Sweden; 2Department of Biomedical Sciences and Veterinary Public Health; Swedish University of Agricultural Sciences (SLU); Uppsala, Sweden; 3National Institute for Public Health and the Environment; Centre for Infectious Disease Control; Laboratory for Zoonoses and Environmental Microbiology; Bithoven, the Netherlands; 4National Food Institute; Technical University of Denmark; Søborg, Denmark; 5Central Veterinary Institute of Wageningen University and Research Centre; Lelystad, the Netherlands; 6University Paris-East Anses; Animal Health Laboratory; Maisons-Alfort, France

Keywords: Bacillus anthracis, qPCR, detection, specificity, chromosomal marker, in silico analysis, inter-laboratory trial, diagnostic sensitivity

Abbreviations: qPCR, quantitative real time polymerase chain reaction; WHO, World Health Organization; OIE, World Organisation for Animal Health; B., Bacillus; EU, European Union; SE, sensitivity; SP, specificity; CFU, colony forming unit; IAC, internal amplification control; Cq, quantification cycle (or threshold cycle); FRET, fluorescence resonance energy transfer; LOD, limit of detection; SNP, single nucleotide polymorphism; HRM, high resolution melting; RAPD, random amplification of polymorphic DNA; SD, standard deviation; DNA, deoxyribonucleic acid; BLAST, Basic Local Alignment Search Tool; NCBI, National Center for Biotechnology Information; FTP, file transfer protocol; SVA, National Veterinary Institute in Sweden; RIVM, National Institute for Public Health and the Environment in the Netherlands; CVI, Central Veterinary Institute of Wageningen; Anses, French agency for food, environmental and occupational health & safety; DTU, Technical University of Denmark.

Bacillus anthracis, the causative agent of anthrax, is a zoonotic pathogen that is relatively common throughout the world and may cause life threatening diseases in animals and humans. There are many PCR-based assays in use for the detection of *B. anthracis*. While most of the developed assays rely on unique markers present on virulence plasmids pXO1 and pXO2, relatively few assays incorporate chromosomal DNA markers due to the close relatedness of *B. anthracis* to the *B. cereus* group strains. For the detection of chromosomal DNA, different genes have been used, such as BA813, rpoB, gyrA, plcR, S-layer, and prophage-lambda. Following a review of the literature, an in silico analysis of all signature sequences reported for identification of *B. anthracis* was conducted. Published primer and probe sequences were compared for specificity against 134 available Bacillus spp. genomes. Although many of the chromosomal targets evaluated are claimed to be specific to *B. anthracis*, cross-reactions with closely related *B. cereus* and *B. thuringiensis* strains were often observed. Of the 35 investigated PCR assays, only 4 were 100% specific for the *B. anthracis* chromosome. An interlaboratory ring trial among five European laboratories was then performed to evaluate six assays, including the WHO recommended procedures, using a collection of 90 Bacillus strains. Three assays performed adequately, yielding no false positive or negative results. All three assays target chromosomal markers located within the lambdaBa03 prophage region (PL3, BA5345, and BA5357). Detection limit was further assessed for one of these highly specific assays.

Introduction

B. anthracis, the etiological agent of anthrax, is a zoonotic pathogen that can cause life threatening diseases in animals and humans. Virulent strains of *B. anthracis* harbor two plasmids, pXO1 and pXO2, carrying unique genes that confer toxin production and capsule synthesis, respectively. Due to its possible use as an agent for bioterrorism, *B. anthracis* is one of the most feared microorganisms.

The major challenge of developing a reliable assay for the detection of *B. anthracis* stems from its high similarity to other strains in its genus. *B. anthracis* is a member of the Bacillus cereus group of bacteria (B. cereus sensu lato) which comprises 6 genetically related species: *B. cereus*, *B. anthracis*, *B. thuringiensis*, *B. mycoides*, *B. weihenstephanensis*, and *B. pseudomycoides*. An extremely high degree of genomic homology exists between *B. cereus*, *B. anthracis*, and *B. thuringiensis*, which some authors consider genetically just one species. The main difference between these species stems from their unique virulence plasmids.
species is the presence of unique virulence plasmids. However, data gathered in the last decade have shown that *B. cereus* strains that contain anthrax-specific pXO-like plasmids exist, which further obscure the much intermixed phylogenetic structure of the *B. cereus* group.

Some PCR-based assays in use for detection of *B. anthracis* rely on plasmid-encoded targets in conjunction with a chromosomal marker to correctly differentiate pathogenic from atypical *B. anthracis* strains and *B. anthracis* from non-anthracis *Bacillus* species, respectively (for a review see ref. 13). The importance of including a chromosomal assay to verify the presence of *B. anthracis* independently of plasmid occurrence was emphasized by the discovery of forms of *B. anthracis* isolates lacking plasmids, *B. cereus* isolates harboring anthrax-like virulence plasmids, and pXO2 gene homologs in environmental *Bacillus* isolates. Several chromosomal targets have been investigated for identification purposes, but most of the markers reported to be unique for *B. anthracis* were in fact common to both *B. anthracis* and a subpopulation of closely related *B. cereus* and *B. thuringiensis* strains. Few chromosomal sequences that provide sufficient polymorphism to unambiguously distinguish *B. anthracis* from its near neighbors have been identified. Some of these assays rely upon single-nucleotide differences for discrimination and are therefore sensitive to assay conditions and PCR cycling parameters. Small alterations in these conditions can result in the loss of specificity, especially with hydrolysis probes, i.e., TaqMan chemistry.

To evaluate the wide range of PCR methods used in laboratories for *B. anthracis* identification, a computer-based comparative analysis of more than 300 PCR-target sequences reported in the literature was conducted. All sequences were compared against all publicly available *Bacillus* genomes and sorted for specificity. The three assays with highest in silico specificity, together with those with lower specificity, were evaluated in an international ring trial using DNA of *Bacillus* strains exchanged in the framework of the EU AniBioThreat project. The best chromosomal signatures for reliable *B. anthracis* genome detection are discussed for the purpose of selecting an assay as international standard for *B. anthracis* detection.

Results

Literature survey of PCR-based detection methods

The literature survey showed that at least 20 different chromosomal markers have been described (Table 1). The first DNA signatures that were developed for anthrax PCR detection methods independently of plasmids occurrence were DNA fragments used to genotype *B. anthracis*. They include the *vraA* marker and the AC-390 gene, and the SG-850/749 fragment. These genetic markers provide limited specificity and require additional time-consuming and labor-intensive post-PCR analysis steps. Other areas of the chromosome have also been investigated as potential DNA-targets for identification purposes, including the so-called BA813 and BA5510 sequences, genes *bclB*, *sap*, and *sppB* and *sppE*, the B-type small acid-soluble spore protein gene (SASP), a glycosyltransferase group 1 family protein, and a protein showing similarities with an abhydrolase, and several DNA loci located on prophage regions, i.e., BA5345, BA5357, and PL3. Although most of these regions have been claimed to be anthrax-specific, *B. cereus* strains sometimes yield false-positive results. Finally, a few single nucleotide polymorphisms (SNP) have also been considered for PCR markers. Target genes include *rpoB*, *gyrA*, *gyrB*, *plc*, and *purA*, and the 16S-23S rDNA internal spacer sequences. But, so far, only the nonsense mutation in the global regulator PlcR, which controls the transcription of secreted virulence factors in *B. cereus* and *B. thuringiensis*, has proved to be truly unique to *B. anthracis* strains. False-positive signals have sometimes been recorded with closely related strains of the *B. cereus* group using the other published SNPs.

In silico analysis

About a hundred sequences corresponding to all primers and probes currently published were compiled and compared using the primer alignment function of the Gegenees software (www.gegenees.org). Each sequence was tested against all available *Bacillus* spp. genomes and scored for specificity (Table 1). *Bacillus* is one of the largest genera represented in the bacterial genome database, with about 140 distinct members of the *B. cereus* group sequenced (www.ncbi.nlm.nih.gov).

Excluding SNP discrimination assays, it was found that out of the 35 PCR assays analyzed in silico, only four were specific for the *B. anthracis* chromosome, with a minimum unalignment value for background genomes higher than zero (Table 1). These assays target the markers BA5345, PL3, and BA5357, respectively. Three of these assays are based on hydrolysis probe (“TaqMan assay”); the fourth uses SYBR Green chemistry. These primer/probe sequences showed a perfect match to all *B. anthracis* genomes, and very poor matches to *B. thuringiensis* and *B. cereus* strains, including strains that are known to be phylogenetically very closely linked to *B. anthracis*. All other assays were found to be prone to false positive identification, as perfect matches were found for several *B. cereus* and *B. thuringiensis* strains.

To illustrate the complexity of the *B. cereus* group and why PCR-markers cross-react with some *B. cereus* and *B. thuringiensis* strains, we compared the genomes of 22 strains that were later used for PCR assays assessment in the ring trial (see below). Table 2 shows a similarity matrix that gives a phylogenomic overview of the 22 genomes. We considered an 80% average core genome similarity as threshold for a strain to be called a near neighbor as genomes passing this criterion produced most cross-reactions. Assessment of several in silico primer alignments showed that the vast majority of the cross reactions occurred within the near-neighbor group, at least for the better performing assays.

Regarding assays relying upon single-nucleotide differences for discrimination, the in silico investigation confirmed that *plc* and *purA* point mutations were unique to *B. anthracis* strains (data not shown). The SNP at position 1668 of *gyrB* was also found to be a relatively specific marker for *B. anthracis* identification as only one genome (*B. thuringiensis* serovar monterrey BGSC 4AJ1) contained the C variant specific for *B. anthracis*. Screening other published SNPs resulted in false-positive signals for several strains of the *B. cereus* group (data not shown).
Table 1. Specificity of primer/probe sequences published

Reference	Target (loci tag^{gene})	Technique	Primer/probe DNA sequence (5′-3′)	Perfect match in target genomes	Min unalignment in background genomes	Number of hits in background at that level
Hurtle et al.⁵²	gyrA	qPCR	p GGGACAAAT GATGATGAT TCGT No	0	~50	
(BA_0006)	HP-MGB	p ACCTGGGAT TTCATATCC TCGT Yes	0	~10		
	s CGCATGACCA TATC Yes	0	1			
Antwerpen et al.³¹	BAS345	qPCR	p CGTAAGGAGCATAAAGAC GGCAGGTT GTT Yes	2	2	
	(BA_5345)*	HP	p CGATACAGAC ATTTATGGGG AACTACAC Yes	7	1	
		s TGGATCGT GAGCTAATTG ACAATGACCC Yes	3	1		
Hadjinicolau et al.⁶⁰	16s rRNA	qPCR	p TTACCTCAC AACTAGCTAA TCGA Yes	0	~50	
	Beacon	p TCGGCTGTG ACTTATGGA TGG Yes	0	~50		
		p TCAGCTACGG ATCGTGCGCT TG No	0	~50		
Irenge et al.⁵⁷	purA	qPCR	p CAACACCTAA AATTGTGGT GCCATAAC Yes	0	~10	
(BA_5716)	HP-LNA	p TCACTTTCG TCAAATGTT TAAGTTTG Yes	0	~10		
	s TGATAACCT TCCCATAGCA Yes	1	18			
	ptsl	qPCR	p GCTTAGGAGC AYTCACTAAG AGT ND	1	~40-50	
(BA_4267)	HP-LNA	p TATGCTGTA WGARCAAGAT GTGTTC ND	3	~40-50		
	s GTACACACT TCGTAGT No	0	~40			
Vahedi et al.³⁸	BAB13	PCR	p AATGATAGC CCTCATTG GAG No	3	~20	
(BA_5031)		p TTAACCTAC TGCACCTGAT GGG Yes	0	1		
Qi et al.²⁴	rpoB	qPCR	p CCACCAACAG TAGAAAAATGC C Yes	0	2	
(BA_0102)	FRET	p AAATTCAC CGTTTCTGGCA TCT Yes	0	2		
	s TCAAGGCGC TAGATTAG CAAATG Yes	0	4			
		s GGTGCCTACA AGATCAACAA GAAGTACAC Yes	0	~20		
Oggioni et al.⁴⁸	rpoB	qPCR	p TTGTCACTAA AAAATGAGG TCTAC Yes	0	~50	
(BA_0102)	FRET	p ATGTGTTCTCT CGGCCGCAA AAA Yes	0	~50		
	s TGAGCTGTC TAAAGATCA ACAAG Yes	0	21			
		s AAGGCTATG ATTAGCAA Yes	0	5		
Easterday et al.²⁰	plcR	qPCR	p CCAATCAAT CTGACTATT AATTGACAC Yes	0	19	
(BA_5595)	HP-MGB	p ATGCAAAAGC ATTAATCTG GACAAT Yes	0	8		
	s CAAGGCGT TCTGTAATT No	1	25			
	s AAAGGCGT TCTGTAATT No	0	~30			
Lewerin et al.⁶⁵	BA_5345	qPCR	p GAAGGAGCAT ACAGACATT ATTGG Yes	5	2	
(BA_5345)*	SybrGreen	p ACCGCAAGTT GAATAGCAAG Yes	0	2		
Wielinga et al.⁴⁷	PL3	qPCR	p AAAGCTACA ATCTGAAT TTGAAATTTG Yes	5	1	
(BA_5358)*	HP	p CAAGGATG TGGATGATAGA GTATTTT Yes	6	2		
	s AACGAGTGT TTCACTGGAG CAATCA Yes	4	1			
Kim et al.⁴³	sspE	qPCR	p GAGAAAGATG ATGAAAAAC AACAAC Yes	0	~50	
(BA_0523)	SybrGreen	p CATTTGTGCT TCTAGCC ACCTA G Yes	0	11		
Coker et al.³⁵	BAB13	qPCR	s AATGCAAGGT TTCACTACGGT ATCGAAGCTATGC Yes	0	~20	
(BA_5031)	HP-MGB	p GAGGGAATG CAGAAACC AAGA Yes	0	~15		
		p TGGACACGGT GGGGTTT CTTG Yes	0	~15		

ND, BLAST could not handle Y, W and R; s, probe; p, primer; np, nested primer; HP, hydrolysis probes; MGB, minor-groove-binding; FRET, hybridization probes; RAPD, random amplification of polymorphic DNA; LNA, locked nucleic-acid; GT, glycosyltransferase. *DNA located on prophage region.
Reference	Target (loci tag^{max})	Technique	Primer/probe DNA sequence (5′-3′)	Perfect match in target genomes	Min unalignment in background genomes	Number of hits in background at that level
Bode et al.	B26	qPCR	TGGCGGAAAAA GCTAATAGT TAAAGTA	Yes	0	7
	(BA-2686)	HP-MGB	CCACATTCG AATCTCCCT GTCTAAA	Yes	0	6
			s ACCTCTAAA AGCCAGT AAG	Yes	0	7
Ryu et al.	sap	qPCR	CAATCGAAAT GGCTGACCAA A	Yes	0	6
	(BA-0885)	HP	ACCCTCTGGT GAAACAACCT TGGT	Yes	0	4
			s TAGCTGATGA GCCAACAGCA TTCATCTG	Yes	0	4
Ellerbrok et al.	rpoB	qPCR	CCACCAACAG TAGAAAATGC C	Yes	0	2
	(BA-0102)	HP	AAATTTCA GCATTTCTTTG A	Yes	0	2
			s ACTTGTGCT CGTTCCTG CAGCAAGC	Yes	0	~40
Luna et al.	Ba813	qPCR	AATTGGAGC ATTAACGAGT T	Yes	0	20
	(BA-5031)	HP	TTCTTTCTGA CTTGAATAG C	Yes	0	20
			s GCGAGTTCTA TACCTATCA GCAA	Yes	0	20
Letant et al.	BA5357	qPCR	TTTCATGAT TTTCATGAGC C	Yes	2	10
	(BA_5357)*	HP	TCCAAGTTTAC AGTTTGCGGCA TATT	Yes	5	3
			s ACATCAAGTC ATGGCTGAC TACCCAGT	Yes	6	1
WHO⁶⁴						
B-type SASP		qPCR	GCATTTGTAT GTACAGAGTT TGGCC	Yes	0	15
	(BA_0524)	FRET	CCATACGTA CATTGGT CTGTAAT	No	3	11
			s CAAGCAACAG CCAATACAGA AGCTAAG	Yes	10	
			s GCGCAACCTT CTGTGCTGAG C	Yes	4	~40
Jackson et al.		PCR	ACAATACCA CCCAGGGC	Yes	0	~40
	(BA_4509/11)					
		p TATAGTTGAT TTTAGTGG ATTCG	Yes	0	32	
		np TATGTTGGT ATTCG	Yes	0	16	
		np ATGTTGGCG CTATCC	Yes	0	32	
Ramisse et al.	BA813	PCR	TTAATTCAT TGCAATCT GTGG GGG	Yes	0	1
	(BA-5031)					
		p AAGATAGCT CCTACTGAT GG	Yes	0	19	
WHO⁶⁰	S-Layer, sap	PCR	CGGTATTTCTA TGCAATCT TCT	No	2	3
	(BA_0885)					
		p TTTGGAAGCT GCGTATACCA AT	No	2	~50	
Daffronchio et al.	SG-850/749	RAPD	ACTGGCTAT AAT GTATGAG T	No	2	~50
	(BA_1584/85)					
Wang et al.	BA813	microarray	CATTAGCGA AGATCCAG	Yes	0	~20
	(BA-5031)					
		p CTGCTGATA CGTTAGAAAA C	Yes	0	~20	
Brightwell et al.	Ba81	PCR	TTAATTCAT TGCAATCT ATGGG	Yes	0	1
	(BA-5031)					
		p AAGCTAGAC TTTTATAG TGGAG	Yes	0	~20	
Nubel et al.	16–235 tRNA	microarray	GCAAGGCC GCAACCC	Yes	0	~140
			s CTGAGCTAT AGCSSCCATA	No	1	~80
			s CCATAAAG TTCAGGATT T A	Yes	0	2
			s CCATAAAT TTCAGGATT T	Yes	0	2
			s CATACAAAT TTCAGGATT T	Yes	0	2
Daffronchio et al.	16–235 tRNA	PCR	GATATGAT AATAAATCG CG	No	2	2
			p GTGGTTTTCC CCATTCCG	No	0	~100

ND, BLAST could not handle Y, W and R; s, probe; p, primer; np, nested primer; HP, hydrolysis probes; MGB, minor-grove-binding; FRET, hybridization probes; RAPD, random amplification of polymorphic DNA; LNA, locked nucleic-acid; GT, glycosyltransferase. *DNA located on prophage region.
Table 1. Specificity of primer/probe sequences published (continued)

Reference	Target (loci tag)⁵	Technique	Primer/probe DNA sequence (5′-3′)	Perfect match in target genomes	Min unalignment in background genomes	Number of hits in background at that level	
Ko et al.⁵⁰	rpoB (BA_0102)	PCR	p	TTGTCCCTGT TATTGCGAG	Yes	1	~40
			p	GACGATCAY TWGGAACCGG	ND	ND	ND
			p	GGGNTYCTRA TYYGCACAT	ND	ND	ND
Cheun et al.³⁴	BA813 (BA-5031)	nested PCR	p	ACTAAGAAAT CTTCATAGGCC	Yes	0	~20
			p	ATTGCACCTTCA CATATAATTT TTT	Yes	0	~20
			np	AAGCATAGCT CTAATCTTCTT GAG	Yes	0	~20
			np	TTAATCCACT TGGATGCTTGG	Yes	0	1
	S-Layer (BA_0885)	nested PCR	p	CGGTATCTTTA TGCCATCTCTT CT	Yes	0	13
			p	TTTGAAAGCT GGCGTTAAAA AT	No	2	2
			np	CGGRCAGAGA GCAGCAAAGA	No	1	5
			np	GCTGTGCTAC CATACGTA	Yes	0	3
Park et al.⁵⁵	gyrB (BA_0005)	PCR	p	GGTAGATTCAG ATAGGCTCT TCAAAGGAC	No	1	12
			p	ACGGATTTCTT CAATATCCAA ATTCGCCG	Yes	0	11
Kim et al.⁴⁵	GT (BA_5519)	PCR	p	TCTTCGTGAA CAAACACCACA	Yes	0	2
			p	CAAGAAATCT TTTCGAAGG	Yes	0	3
Olsen et al.¹⁹	tagH (BA_5510)	qPCR	p	CTTGCTTAGT AGCAATTCTTACA	Yes	0	2
			p	CAGGTTGATA CATAAACCTT TCA	Yes	0	2
Leski et al.²⁸	bclB (BA_2450)	PCR	p	AGCCGCAAGA ATATGGGAC	Yes	0	22
			p	GAGGTCTCTC CACACTGGG	Yes	0	8
Cherif et al.²⁹	AC-390 (BA_5406)	PCR	p	GAAAATGGCC GGATGAGT	No	0	9
			p	GACGTTGAAAA CATTATGCA	No	0	11

ND, BLAST could not handle Y, W and R; s, probe; p, primer; np, nested primer; HP, hydrolysis probes; MGB, minor-grove-binding; FRET, hybridization probes; RAPD, random amplification of polymorphic DNA; LNA, locked nucleic-acid; GT, glycosyltransferase. *DNA located on prophage region.

Ring trial

The three hydrolysis probe assays with highest specificities in the in silico analysis (BA5345, PL3, and BA5357) were evaluated in vitro using a panel of 90 Bacillus strains in a laboratory ring-trial performed at 5 European laboratories (RIVM, DTU, SVA, ANSES, and CIV). Assays mentioned by the World Health Organization (WHO)^{31,40,44} were also included in the ring trial, as well as a hydrolysis probe assay³⁵ that targets the often used BA813 marker³¹⁻³⁸ (Table 3). The latter marker has shown in silico cross-reactions toward the near-neighbor strains in use in this trial and was included for this reason. The two WHO procedures tested are, respectively, a formerly used conventional gel-based PCR assay targeting the S-layer gene sap⁶⁰ and a dual hybridization probes qPCR assay targeting a gene encoding the small acid-soluble spore protein SASP⁴⁴.

Results of the ring trial confirmed the results obtained in the in silico analysis (Table 4). The three assays with highest in silico specificity (BA5345⁷, PL3⁶⁷, and BA5357⁴⁰) all performed well in the ring trial, with diagnostic sensitivity and specificity values close to 1 (Table 5). Furthermore, these assays were found to be robust and provided consistent results between laboratories (kappa values of 0.9–1.0). All 31 B. anthracis strains were correctly detected, except in one laboratory that failed to detect one sample with a lower DNA content using the BA5345 assay. None of the non-anthrax strains gave false-positive results for these assays for any of the participating laboratories.

The results obtained using the S-layer⁴⁰, BA813³⁹, and SASP⁴⁴ assays displayed a lower agreement among laboratories (k values of 0.5–0.8). In general, the three methods had relative low diagnostic sensitivity and specificity compared with the BA5345, PL3, and BA5357 assays, indicating that these methods have a lower performance both in detecting B. anthracis in truly contaminated samples and in declaring truly non-contaminated samples as free of B. anthracis. Although the BA813 assay was found to be quite effective in identifying true B. anthracis strains—except for laboratory 2, which failed to detect two strains—it yielded a number of false-positive results (ranging from 11 to 23 strains) in all laboratories. As for the former WHO recommended S-layer assay⁴⁰, this conventional PCR method was apparently not as sensitive as several of the others (Table 5), producing false-negative results in
Table 2. Similarity matrix created by Gegenees over a set of 22 *Bacillus* strains used in this study.

Organism	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
B. anthracis Vollum	100	100	100	95	95	93	94	94	93	91	91	84	83	81	74	73	74	73	70	68	69	56
B. anthracis Sterne	100	100	100	95	95	93	95	94	93	91	91	84	84	82	74	74	74	74	71	68	69	57
B. anthracis CNEVA9066	100	100	100	95	95	93	94	94	93	91	91	84	83	81	74	74	74	73	71	68	69	57
B. thuringiensis BGSC 4AJ1	94	95	94	100	95	93	93	92	91	90	83	83	81	74	73	74	73	70	68	68	55	
B. thuringiensis BGSC 4BA1	95	95	95	95	100	93	94	92	91	91	83	83	81	74	73	74	73	72	68	68	56	
B. thuringiensis 97–27	92	93	93	93	93	100	92	93	92	91	91	83	83	82	74	73	74	73	71	68	69	57
B. thuringiensis BGSC 4CC1	93	94	94	93	92	100	92	92	90	90	83	83	81	74	73	74	73	70	68	68	56	
B. thuringiensis BGSC 4AW1	93	94	94	94	94	93	100	93	91	91	83	83	81	74	73	74	73	70	68	68	56	
B. cereus NVH0597–99	92	92	92	92	92	93	100	91	91	83	83	81	74	73	74	73	71	69	69	57		
B. cereus SJ1	91	91	91	91	91	91	91	100	91	91	83	83	82	74	73	74	73	70	68	68	56	
B. cereus BGSC 6E1	91	91	91	91	91	91	91	91	91	91	83	83	82	74	73	74	73	70	68	68	56	
B. cereus 4342	83	84	84	84	83	83	83	83	83	83	83	83	83	83	83	83	83	83	83	83	83	
B. thuringiensis BGSC 4Y1	83	83	83	83	83	83	83	83	83	83	83	83	83	83	94	83	100	83	75	74	74	
B. cereus ATCC 10987	81	81	81	81	81	81	81	81	81	81	83	83	100	74	73	73	73	70	68	68	57	
B. cereus ATCC 14579	74	74	74	74	74	74	74	74	74	74	75	75	74	100	89	88	89	83	69	69	57	
B. cereus ATCC 10876	73	73	73	73	73	73	73	73	73	73	74	74	73	89	100	88	86	82	68	68	56	
B. thuringiensis BGSC 4BD1	74	74	74	74	74	74	74	74	74	74	74	88	88	100	85	81	69	69	55			
B. thuringiensis ATCC 10792	73	73	73	73	73	73	73	73	73	74	74	88	86	85	100	83	68	68	56			
B. thuringiensis ATCC 35646	71	71	71	71	71	71	71	71	71	72	71	84	83	83	85	100	67	67	54			
B. mycoides ATCC 6462	68	68	68	68	68	68	68	68	68	68	68	68	68	68	68	68	68	66	100	91	56	
B. weihenstephanensis KBAB4	68	69	68	68	68	68	68	68	68	68	68	69	68	68	68	68	66	91	100	58		
B. pseudomycoides DSM 12442	55	56	56	55	56	56	55	56	55	56	56	56	56	56	55	56	56	53	56	57	100	

Anthrax and its close neighbors are indicated in bold. The phylogenomic overview is based on average genomic core genome similarity values.
all laboratories. In contrast, higher specificity (specificity ranging from 0.88 to 0.95, depending on laboratory, Table 5) was obtained with the current WHO recommended SASP assay. This assay correctly identified most of the closely related strains, even though improper but late amplifications were sporadically observed for a few strains (ranging from 3 to 5). All *B. anthracis* strains were tested PCR-positive by two of the three laboratories that had succeeded to implement the assay on their PCR platforms. The WHO protocol relies on fluorescence resonance energy transfer (FRET) probes chemistry, but not all real-time PCR instruments have detection systems including a channel designated for FRET experiments. The third laboratory equipped with FRET-capabilities failed to detect five samples with lower DNA concentration (Table 4).

Limit of detection of the PL3 assay

In order to propose a single reference method for *B. anthracis* chromosome detection to diagnostic laboratories throughout Europe, we further assessed the laboratory sensitivity of one of the best performing assays identified in this work, the PL3 assay.7 Serial dilutions of genomic DNA from *B. anthracis* strain 17JB were used to determine the lowest concentration of DNA that could be detected at 95% probability. The detection limit (LOD, at 95% confidence interval) was found to be 2 genome equivalents. Performance in artificially contaminated organs (wild boar spleen) was also examined using 10-fold dilutions of calibrated suspensions of vegetative cells. Non-inoculated samples were confirmed to be negative. A reproducible detection (100%, n = 9) of samples containing 11 vegetative cells/PCR was observed, corresponding to 10^3 *B. anthracis* CFU per ml of spleen homogenates. Samples containing fewer targets (i.e., 10^2 CFU/ml) could be sporadically detected (data not shown).

Discussion

PCR-based identification assays are fast and sensitive methods, widely used in food, clinical or veterinary laboratories to detect the presence of pathogens or to confirm species identity. Reliable detection requires the selection of primers and probes that hybridize efficiently and specifically with DNA from the targeted bacterium, in order to prevent false negative or
Table 4. Strain identities and PCR results of the ring trial on *B. anthracis* genome detection by PCR. Five laboratories participated in the ring trial.

Species	Strain name	DNA ng/μl	BA5345 Antwerpen	PL3 Wielinga	BAS357 Letant	BA813 Coker	sop (S-layer) WHO 1998	B-type SASP WHO 2008
B. anthracis	17JB	0.5	+ + + + + + + +	+ + + + + +	+ + + + + +	+ + + + + + + + + + + +	+ + + + + + + u + u	
B. anthracis	08-1298	0.2	+ + + + + + + +	+ + + + + +	+ + + + + +	+ + + + + + + + + + + +	+ + + + + + + u + u	
B. anthracis	09-1122	0.2	+ + + + + + + +	+ + + + + +	+ + + + + +	+ + + + + + + + + + + +	+ + + + + + + u + u	
B. anthracis	07-1371	0.2	+ + + + + + + +	+ + + + + +	+ + + + + +	+ + + + + + + + + + + +	+ + + + + + + u + u	
B. anthracis	07-1167	0.2	+ + + + + + + +	+ + + + + +	+ + + + + +	+ + + + + + + + + + + +	+ + + + + + + u + u	
B. anthracis	92-9066	0.1	+ − + + + + + +	+ + + + + +	+ + + + + +	+ + + + + + + + + + + +	+ + + + + + + u + u	
B. anthracis	CIP 53.169	0.5	+ + + + + + + +	+ + + + + +	+ + + + + +	+ + + + + + + + + + + +	+ + + + + + + u + u	
B. anthracis	CIP 74.12	0.5	+ + + + + + + +	+ + + + + +	+ + + + + +	+ + + + + + + + + + + +	+ + + + + + + u + u	
B. anthracis	CIP 81.89	0.5	+ + + + + + + +	+ + + + + +	+ + + + + +	+ + + + + + + + + + + +	+ + + + + + + u + u	
B. anthracis	CIP A204	0.5	+ + + + + + + +	+ + + + + +	+ + + + + +	+ + + + + + + + + + + +	+ + + + + + + u + u	
B. anthracis	CIP A205	0.5	+ + + + + + + +	+ + + + + +	+ + + + + +	+ + + + + + + + + + + +	+ + + + + + + u + u	
B. anthracis	CIP A206	0.5	+ + + + + + + +	+ + + + + +	+ + + + + +	+ + + + + + + + + + + +	+ + + + + + + u + u	
B. anthracis	CIP A211	0.5	+ + + + + + + +	+ + + + + +	+ + + + + +	+ + + + + + + + + + + +	+ + + + + + + u + u	
B. anthracis	ATCC 14579	0.5	− − − − − − − −	− − − − − − − −	− − − − − − − −	− − − − − − − − − − − −	+ + + + + + + u + u	
B. cereus	06.1248	0.2	− − − − − − − −	− − − − − − − −	− − − − − − − −	− − − − − − − − − − − −	− + u − u	
B. cereus	08.1458	0.5	− − − − − − − −	− − − − − − − −	− − − − − − − −	− − − − − − − − − − − −	− − u − u	
B. cereus	97-BC14	0.2	− − − − − − − −	− − − − − − − −	− − − − − − − −	− − − − − − − − − − − −	− − u − u	
B. cereus	00.624.49	0.5	− − − − − − − −	− − − − − − − −	− − − − − − − −	− − − − − − − − − − − −	− − u − u	
B. cereus	97-BC17	0.5	− − − − − − − −	− − − − − − − −	− − − − − − − −	− − − − − − − − − − − −	− − u − u	
B. cereus	97-BC18	0.5	− − − − − − − −	− − − − − − − −	− − − − − − − −	− − − − − − − − − − − −	− − u − u	
B. cereus	97-BC59	0.5	− − − − − − − −	− − − − − − − −	− − − − − − − −	− − − − − − − − − − − −	− − u − u	
B. cereus	CIP A28	0.5	− − − − − − − −	− − − − − − − −	− − − − − − − −	− − − − − − − − − − − −	− − u − u	
B. cereus	CIP 63.81	0.1	− − − − − − − −	− − − − − − − −	− − − − − − − −	− − − − − − − − − − − −	− − u − u	
B. cereus	CIP 70.1	0.5	− − − − − − − −	− − − − − − − −	− − − − − − − −	− − − − − − − − − − − −	− − u − u	
B. gibsonii	CIP 104.720	0.5	− − − − − − − −	− − − − − − − −	− − − − − − − −	− − − − − − − − − − − −	− − u − u	
B. licheniformis	ATCC 14580	0.5	− − − − − − − −	− − − − − − − −	− − − − − − − −	− − − − − − − − − − − −	− − u − u	
B. subtilis	ATCC 6051	0.3	− − − − − − − −	− − − − − − − −	− − − − − − − −	− − − − − − − − − − − −	− − u − u	
B. anthracis	23932	0.5	+ + + + + + + +	+ + + + + +	+ + + + + +	+ + + + + + + + + + + +	+ + + + + + + u + u	
B. anthracis	56430	0.5	+ + + + + + + +	+ + + + + +	+ + + + + +	+ + + + + + + + + + + +	+ + + + + + + u + u	
B. anthracis	131959-5	0.5	+ + + + + + + +	+ + + + + +	+ + + + + +	+ + + + + + + + + + + +	+ + + + + + + u + u	
B. anthracis	127491	0.5	+ + + + + + + +	+ + + + + +	+ + + + + +	+ + + + + + + + + + + +	+ + + + + + + u + u	
B. anthracis	188678-1	0.5	+ + + + + + + +	+ + + + + +	+ + + + + +	+ + + + + + + + + + + +	+ + + + + + + u + u	
B. anthracis	13185	0.5	+ + + + + + + +	+ + + + + +	+ + + + + +	+ + + + + + + + + + + +	+ + + + + + + u + u	

d, doubtful; u, unsuccessfully analyzed; +, PCR positive; −, PCR negative; ser, serovar; var, variant
Table 4. Strain identities and PCR results of the ring trial on *B. anthracis* genome detection by PCR. Five laboratories participated in the ring trial (continued)

Species	Strain name	DNA ng/μl	BA5345 Antwerpen	PL3 Wielinga	BA5357 Letant	BA813 Coker	sap (S-layer) WHO 1998	B-type SASP WHO 2008
B. anthracis	128268	0.5	+ u + u					
B. cereus	1847	0.5	− + − − u − u					
B. anthracis	132064-1	0.5	+ u + u					
B. atrophaeus	ATCC 9372	0.5	− + − − u − u					
B. cereus	WSBC 10530	0.5	− d − − − − u − u					
B. cereus	WSBC 10536	0.5	− u − u					
B. cereus	WSBC 10583	0.5	− u − u					
B. cereus	WSB 10619	0.5	− u − u					
B. cereus	NV0597-99	0.5	− u − u					
B. cereus	ATCC 10702	0.5	− d − − − − u − u					
B. cereus	WSB 10286	0.5	− u − u					
B. cereus	WSB 10483	0.5	− u − u					
B. cereus	WSB 10570	0.5	− u − u					
B. cereus	ATCC 10987	0.5	− u − u					
B. coagulans	ATCC 27142	0.5	− u − u					
B. pumilus	ATCC 8245	0.5	− u − u					
B. subtilis	ATCC 6633	0.5	− u − u					
B. thuringiensis var galleriae	ATCC 29730	0.5	− u − u					
B. thuringiensis ser thuringiensis	NRRL HD-2	0.5	− u − u					
B. thuringiensis ser aizawai	NRRL HD-11	0.5	− u − u					
B. thuringiensis ser kurstaki	NRRL HD-73	0.5	− u − u					
B. anthracis	NCTC 109	0.5	+ u + u					
B. anthracis	NCTC 8234	0.5	+ u + u					
B. anthracis	NCTC 7753	0.5	+ u + u					

d, doubtful; u, unsuccessfully analyzed; +, PCR positive; −, PCR negative; ser, serovar; var, variant
Table 4. Strain identities and PCR results of the ring trial on *B. anthracis* genome detection by PCR. Five laboratories participated in the ring trial (continued)

Species	Strain name	DNA ng/μl	BA5345 Antwerpen	PL3 Wielinga	BA5357 Letant	BA813 Coker	sap (S-layer) WHO 1998	B-type SASP WHO 2008
B. anthracis	NCTC 7752	0.5	+	+	+	+	+	+
B. anthracis	NCTC 5444	0.5	+	+	+	+	+	+
B. anthracis	NCTC 2620	0.5	+	+	+	+	+	+
B. anthracis	NCTC 1328	0.5	+	+	+	+	+	+
B. anthracis	NCTC 10340	0.5	+	+	+	+	+	+
B. cereus	BGSC 6E1	0.5	−	−	−	−	−	+
B. thuringiensis ser pulsiensis*	BGSC 4CC1	0.5	−	−	−	−	+	+
B. thuringiensis ser andaloussiensis*	BGSC 4AW1	0.5	−	−	−	−	+	+
B. thuringiensis ser panderiensiensis*	BGSC 4BA1	0.5	−	−	−	−	+	+
B. thuringiensis ser monterey*	BGSC 4AJ1	0.5	−	−	−	−	+	+
B. thuringiensis ser huazhongensis*	BGSC 4BD1	0.5	−	−	−	−	+	+
B. thuringiensis ser tochigienensis*	BGSC 4Y1	0.5	−	−	−	−	+	+
B. megaterium	DSM 319	0.5	−	−	−	−	−	−
B. pumilus	ATCC 7061	0.5	−	−	−	−	−	−
B. thuringiensis ser Berliner*	ATCC 10792	0.5	−	−	−	−	−	−
B. weihenstephanensis	KBA4	0.5	−	−	−	−	−	−
B. pseudomycoides	DSM 12442	0.5	−	−	−	−	−	−
B. cereus	ATCC 10876	0.5	−	−	−	−	−	−
B. mycoides	ATCC 6462	0.5	−	−	−	−	−	−
B. subtilis	NCTC 3610	0.5	−	−	−	−	−	−
B. subtilis	NCTC 10400	0.5	−	−	−	−	−	−
B. thuringiensis ser israelensis*	ATCC 35646	0.5	−	−	−	+	−	−
B. cereus	ATCC 4342	0.5	−	−	−	−	−	−
B. thuringiensis ser konkukian*	97-27	0.5	−	−	−	+	+	−
B. cereus	SJ1	0.5	−	−	−	+	+	+
B. anthracis	SVA-2008	0.5	+	+	+	+	+	+
B. anthracis	SVA-2011	0.5	+	+	+	+	+	+

d, doubtful; u, unsuccessfully analyzed; +, PCR positive; −, PCR negative; ser, serovar; var, variant
false-positive results. For the almost clonal species of *B. anthracis*, the selection of robust DNA signature sequences for the development of PCR assays has proven to be a very difficult task since few of the investigated markers proved to be truly unique for the species. At present, only three chromosomal features appeared to be useful to differentiate *B. anthracis* from the rest of the *B. cereus* group at the genetic level: (1) being part of the clonal group at the genetic level: (1) being part of the clonal

B. anthracis strains, as analyzed by MLST, MLVA or similar methods; (2) carrying a nonsense mutation at nucleotide position 640 of the *plcR* gene, introducing a premature TAA stop codon; and (3) presence of a unique combination of four excision-proficient, lambda prophages (lambdaBa01–04).\(^4\,16\,66\)

An unexpectedly high amount of PCR assays (~88%) were found to be unspecific for *B. anthracis*. This is mostly because not much was known about the genetically closely related strains until the recent rapid increase in available genome sequences. The increasing use of Next Generation Sequencing technologies in systematic characterization of bacterial genomes has offered a powerful approach for large-scale genome comparisons and identification of specific DNA signatures. This is illustrated by the current study in which a thorough in silico analysis of published PCR assays for the detection of *B. anthracis* was possible due to the availability of manifold genome sequences. Conclusions drawn from this in silico analysis of the full set of *Bacillus* spp. genomes published to date were the following:

1) There was no PCR assay with superior specificity for any common target carried by the pXO1 or pXO2 virulence plasmids (*lef*, *cya*, *pag*, and *cap*), since several *B. cereus* strains were found to contain pXO-like plasmids carrying highly similar genes (data not shown), as was previously reported by others.\(^7\,12\)

2) Only two single-nucleotide differences appeared to be reliable markers for the specific identification of *B. anthracis*: a variant at nucleotide position 640 in the *plcR* gene or at position 1050 in the *purA* gene.

3) The four highly specific assays identified in silico (i.e., Antwerpen, Lewerin, Létant, and Wielinga) target three different loci located within the lambdaBa03 prophage region (ranging from BA5339 to BA5363 loci in the Ames annotated genome). All other markers that had been thought to discriminate *B. anthracis* from other *B. cereus* group bacteria were found in at least some closely related strains and could therefore result in erroneous species attribution, as exemplified by the BA813-targeted assays or the S-layer assay.\(^40\)

Table 5. Diagnostic sensitivity (SE) and specificity (SP) values for the different assays and laboratories

PCR assay	Values for indicated laboratory # (95% confidence limits)							
	1	2	3	4	5			
	SE	SP	SE	SP	SE	SP		
BA5345	1.00	0.98	0.94	1.00	1.00	1.00	1.00	0.97
	(0.89–1)	(0.91–1)	(0.79–0.99)	(0.94–1)	(0.89–1)	(0.94–1)	(0.89–1)	(0.88–1)
PL3	1.00	0.97	1.00	0.98	1.00	1.00	1.00	0.97
	(0.89–1)	(0.88–1)	(0.89–1)	(0.91–1)	(0.89–1)	(0.94–1)	(0.89–1)	(0.88–1)
BA5357	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95
	(0.89–1)	(0.94–1)	(0.89–1)	(0.94–1)	(0.89–1)	(0.94–1)	(0.89–1)	(0.86–0.99)
sap	0.97	0.69	0.52	0.81	1.00	0.56	1.00	0.69
(S-layer)								
	(0.83–1)	(0.56–0.81)	(0.33–0.70)	(0.69–0.90)	(0.89–1)	(0.42–0.69)	(0.89–1)	(0.56–0.81)
	(0.71)	0.93	0.52	0.92	0.94	0.86	0.97	0.92
	(0.52–0.86)	(0.84–0.98)	(0.33–0.70)	(0.81–0.97)				
	nd	nd	nd	nd	1.00	0.88	nd	nd
	(0.89–1.0)	(0.84–0.98)	(0.66–0.95)	(0.86–0.99)			(0.89–0.00)	(0.77–0.99)

nd, not determined
signature sequences, and the occurrence of false positive signals from *B. cereus* strains caused by mispriming is more likely. Even though various techniques have been evaluated to enhance the specificity of SNP-based PCR assays (including TaqMan mismatch amplification mutation assay,23 restriction site insertion-PCR,56 tentacle or locked nucleic acids probes-based PCR55 or high resolution melting (HRM)-PCR53), they are neither as robust nor as user friendly as assays based on unique signature sequences. The chromosomal markers BA5345 (Antwerpen), PL3 (Wielinga), or BA5357 (Letant), enable unambiguous identification of *B. anthracis* strains, including plasmid-cured isolates. Moreover, the PL3 assay confirmed to be sensitive enough to be used in biological samples. High diagnostic sensitivity of the assay reduces the occurrence of false-negative results, which can be further reduced by the use of an internal control to prevent pipetting errors. It should be emphasized that one of these assays should be implemented in conjunction with plasmid-encoded targets in *B. anthracis*-specific PCR methods to discriminate non-virulent from virulent strains.

In conclusion, this study highlights the importance of analyzing the diagnostic sensitivity and specificity of PCR assays designed for detection of *B. anthracis*, as many of the older protocols produce both false negative and false-positive results. This is important with regard to the aim of standardization of a PCR assay for *B. anthracis* detection. Even though only slight differences regarding the analytical sensitivity were observed between the three highly specific chromosomal assays during the ring-trial, we propose the robust and sensitive PL3 assay as possible European standard to harmonize and improve PCR methods for detection of anthrax in animal, feed, environmental, and food samples based on results of this study.

Materials and Methods

Strains

DNA from a total of 90 *Bacillus* strains were used in this study, including 31 *B. anthracis* isolates, 44 strains of *B. cereus* or *B. thuringiensis*, and 15 strains encompassing 10 other bacterial species (Table 4). Strains came from the collections of Bacilli of the different partners: Anses (*n* = 27), SVA (*n* = 22), CVI (*n* = 9) and RIVM (*n* = 32). Of the 90 *B. cereus* group strains used for in vitro studies, 22 had publicly available whole genome sequences (Table 2), including 11 *B. cereus* or *B. thuringiensis* strains closely related to *B. anthracis* (Table 2) and reported as near-neighbors based on multilocus sequence typing analysis.16 All DNA samples were randomly coded and sent to each of the 5 participating laboratories.

DNA extraction procedures

At Anses, *B. anthracis* suspensions were incubated at 100 °C for 20 min. After cooling and centrifugation, viability testing was performed to verify absence of live *B. anthracis*. DNA from artificially contaminated samples was further purified using the High Pure PCR template Preparation Kit from Roche according to the manufacturer’s recommendations. DNA from non-pathogenic non-*B. anthracis* bacilli cultures was alternatively extracted using a 200 µl aliquot of InstaGeneTM Matrix as described by the supplier (Bio-Rad Laboratories).

At CVI, bacterial suspensions were inactivated at 100 °C for 10 min and tested for absence of viable *B. anthracis* by plating aliquots on nutrient agar petri dishes. DNA was purified using the QIAamp DNA Mini Kit (Qiagen Benelux).

At RIVM, bacteria suspensions were incubated at 100 °C for 30 min, centrifuged at maximum speed for 1 min and the resulting lysates were transferred to a 0.22 µm sterile Ultrafree-MC spin filter (Millipore). The spin filter was then centrifuged for 4 min at maximum speed to clean the DNA lysate from left over cell debris. DNA lysates from *B. anthracis* and non-pathogenic bacteria were further purified or isolated, respectively using the NuclisENS Magnetic Extraction reagents (bioMerieux) following the manufacturer instructions.

At SVA, bacterial cultures were centrifuged and DNA extracted from the pellet using the MasterPure Gram positive kit (Epicenter Biotechnologies). The DNA was taken out of the BSL-3 facility by first passing it through an Ultrafree-MC 0.22 µm sterile filter (Merck Millipore).

Internal amplification control

A fragment of the blue fluorescent protein gene (*bfp*) was used as an internal amplification control (IAC). The IAC primers and probe were designed such that they do not interact with any of the primers and probes from the tested assays. Oligonucleotides design was performed by using the software package Visual Oligonucleotide Modeling Platform version 6 (DNA Software Inc.). The primers and probe were the following: ABbfp_F (5′-TCATGCGCGA CAACAGAA-3′), ABbfp_R (5′-GCTCAGGGCC GACTG-3′), and ABbfp_Tq (5′-Cy5-CGACACCACTAC CAGCAGAACA CC-BHQ2-3′). Amplicons from the *bfp* gene were produced by using conventional PCR and were purified by using the Qiagen PCR purification kit. The amount of amplicons that need to be added to samples to obtain suitable Cq values for use as internal control was determined empirically from 10-fold serial dilutions. The developed real-time qPCR assays were used to determine the amplicon dilution needed for a Cq value between 32 and 35.

Conventional and real-time qPCR conditions

Participating laboratories were asked to investigate the complete set of blinded samples using the PCR platforms available at their institute. Real-time qPCR and conventional thermocyclers used were the following: Mx3005p (Stratagene); ABI 7500 Fast, StepOnePlus or AB9700 (Applied BioSystems); LightCycler 2.0 or LightCycler 480 (Roche Applied Science); C1000, iCycler or MyCycler (BioRad). Primers and probes were synthesized by each laboratory’s usual suppliers (Eurogentec, Metabion, Sigma or Eurofins MWG operon). Total PCR reaction volume (20 µl) and template volume (2 µl of *Bacillus* DNA and 2 µl of the IAC DNA) were kept constant. Each laboratory also used the same qPCR kits and DNA polymerases as in their routine diagnostic activities. Five different commercially available or custom-made PCR kits (i.e., Taqman Universal PCR Master mix [Life Technologies], PerfeCta multiplex supermix [Quanta BioSciences], iQ Multiplex Powermix [Bio-Rad], VeriQuest qPCR fast master mix [affymetrix], and LightCycler FastStart DNA Master Hybrid Probe [Roche Applied Science]) and 5 DNA polymerases (i.e., Fermentas true start, Quanta PerfeCta...
was defined as the fraction of positive DNA samples which were known to contain *B. anthracis* (as determined by standard methods used by the different culture collections) that gave a positive PCR results by the different methods. Specificity was defined as the fraction of negative DNA samples which were known not to contain *B. anthracis* DNA that gave a negative PCR results by the different PCR methods. Kappa values measure the level of agreement between results obtained by the different participating laboratories and PCR methods combinations. The calculation is based on the difference between how much agreement is actually present ("observed" agreement) compared with how much agreement would be expected to be present by chance alone ("expected" agreement). A kappa value of 1 indicates perfect agreement, whereas a kappa of 0.5 indicates moderate agreement and a value of 0 indicates that the apparent agreement is only due to chance.69

Detection limit of the PL3 assay

The limit of detection of the PL3 assay67 was determined by using serial dilutions of genomic DNA from *B. anthracis* strain 17JB. Six dilutions around the expected limit of detection (corresponding to 5, 2, 1, 0.5, 0.2, and 0.1 genome equivalents) were used to calculate a precise LOD_{PCR} value (3 runs, 24 replicates for each dilution).70 Genomic DNA was quantified by fluorimetry using the Qubit® 2.0 Fluorometer (Invitrogen). The number of genomic copies was calculated as follows:

\[
m = n \times \frac{1.013 \times 10^{-21} \text{ g/bp}}{m}
\]

where *m* is the mass and *n* is the number of base pairs.

Wild boar spleen homogenates were used to assess the sensitivity of the assay in biological samples. Portions of 1 ml were artificially inoculated in triplicate at five contamination levels with calibrate suspensions of vegetative cells (ranging from 5.5 × 10¹ to 5.5 × 10⁵ CFU/ml) from strain 17JB as previously described.53 Samples were then incubated at 56 °C for 1 h in the presence of proteinase K and inactivated for 20 min at 100 °C in boiling water. After cooling and centrifugation, viability testing was performed to verify depletion of live *B. anthracis* DNA was then extracted from 200 µl aliquots using the High Pure PCR Template Preparation Kit (Roche). Two microliter aliquots of the eluted DNA were used as template. The exact numbers of cells introduced into spleen homogenates were determined a posteriori by plating.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

Pia Engelsmann, DTU, is acknowledged for excellent technical assistance. This research was supported by/executed in the framework of the EU-project AniBioThreat (Grant Agreement: Home/2009/ISEC/AG/191) with the financial support from the Prevention of and Fight against Crime Programme of the European Union, European Commission—Directorate General Home Affairs. This publication reflects the views only of the authors, and the European Commission cannot be held responsible for any use that may be made of the information contained therein. This work was also supported by the Swedish Civil Contingencies Agency (MSB).
38. Vahedi F, Moazeni Jula G, Kianzadeh M, Mahmoudi M. Characterization of Bacillus anthracis spores isolates from soil by biochemical and multiplex PCR analysis. East Mediterr Health J 2009; 15:149-56; PMID:19469438

39. Leski TA, Curwell CC, Pawłowski M, Klinke DJ, Bujnicki JM, Hart SJ, Lukomski S. Identification and classification of bel genes and proteins of Bacillus cereus group organisms and their application in Bacillus anthracis detection and fingerprinting. Appl Environ Microbiol 2009; 75:763-72; PMID:19576469; http://dx.doi.org/10.1128/AEM.01069-09

40. WHO. Guidelines for the surveillance and control of anthrax in human and animals. In: Turnbull PC, ed. Geneva, Switzerland: WHO Press, 1998.

41. Ryu C, Lee K, Yoo C, Seong WK, Oh HB. Sensitive and rapid quantitative detection of anthrax spores isolated from soil samples by real-time PCR. Microbiol Immunol 2003; 47:693-9; PMID:14605438

42. Hoffmaster AR, Meyer RF, Bowen MD, Marston CK, Weyant RS, Thurman K, Messenger SL, Minor EE, Winchell JM, Rasmussen MV, et al. Evaluation and validation of a real-time polymerase chain reaction assay for rapid identification of Bacillus anthracis. Emerg Infect Dis 2002; 8:1178-82; PMID:12396935; http://dx.doi.org/10.3201/eid0810.020293

43. Kim K, Soo J, Wheeler C, Park C, Kim D, Park S, Kim W, Chung SL, Leighton T. Rapid genotypic detection of Bacillus anthracis and the Bacillus cereus group by multiplex real-time PCR melting curve analysis. FEMS Immunol Med Microbiol 2005; 43:301-10; PMID:15681862; http://dx.doi.org/10.1016/j.femimmu.2004.10.005

44. WHO. Anthrax in humans and animals. In: Turnbull PC, ed. Geneva, Switzerland: WHO Press 2008.

45. Kim W, Kim JY, Cho SL, Nam SW, Shin JW, Kim YS, Shin HS. Glyco-oxidase: a specific marker for the discrimination of Bacillus anthracis from the Bacillus cereus group. J Med Microbiol 2008; 57:279-86; PMID:18287289; http://dx.doi.org/10.1099/jmm.0.47642-0

46. Létant SE, Murphy GA, Alfaro TM, Avila JR, Kane SR, Raber E, Baut TM, Shah SR. Rapid PCR-PCR method for detection of live, virulent Bacillus anthracis in environmental samples. Appl Environ Microbiol 2011; 77:6570-8; PMID:21764960; http://dx.doi.org/10.1128/AEM.00623-11

47. Wielenga PK, Hamadija RA, Ageren J, Knutsø R, Segersøn R, Fricker M, Ekelund-Schulz M, de Groot A, Burton J, Brooks T, et al. A multiplex real-time PCR for identifying and differentiating B. anthracis virulent types. Int J Food Microbiol 2011; 145(Suppl 1):S137-44; PMID:20826067; http://dx.doi.org/10.1016/j.ijfoodmicro.2010.07.039

48. Oggioni MR, Meacci F, Carattoli A, Ciervo A, Oriu G, Cassone A, Pozzi G. Protocol for real-time PCR identification of anthrax spores from nasal swabs after both enrichment. J Clin Microbiol 2002; 40:3956-63; PMID:12409358; http://dx.doi.org/10.1128/JCM.40.11.3956-3963.2002

49. Ellerbrok H, Nattermann H, Ozel M, Beutin L, Appel B, Pauli G. Rapid and sensitive identification of pathogenic and apathogenic Bacillus cereus by real-time PCR. FEMS Microbiol Lett 2002; 214:51-9; PMID:121204372; http://dx.doi.org/10.1111/j.1574-6968.2002.tb1324x