WHY IS THE SOLAR CONSTANT NOT A CONSTANT?

K. J. Li1,2, W. Feng3, J. C. Xu1,4, P. X. Gao1, L. H. Yang1,4, H. F. Liang5, and L. S. Zhan6

1 National Astronomical Observatories/Yunnan Observatory, CAS, Kunming 650011, China; kji@ynao.ac.cn
2 Key Laboratory of Solar Activity, National Astronomical Observatories, CAS, Beijing 100012, China
3 Research Center of Analysis and Measurement, Kunming University of Science and Technology, Kunming 650093, China
4 Graduate School of CAS, Beijing 100863, China
5 Department of Physics, Yunnan Normal University, Kunming 650093, China
6 Jingdezhen Ceramic Institute, Jingdezhen 333001, Jiangxi, China

Received 2011 January 7; accepted 2011 December 27; published 2012 February 23

ABSTRACT

In order to probe the mechanism of variations of the solar constant on the inter-solar-cycle scale, the total solar irradiance (TSI; the so-called solar constant) in the time interval of 1978 November 7 to 2010 September 20 is decomposed into three components through empirical mode decomposition and time–frequency analyses. The first component is the rotation signal, counting up to 42.31\% of the total variation of TSI, which is understood to be mainly caused by large magnetic structures, including sunspot groups. The second is an annual-variation signal, counting up to 15.17\% of the total variation, the origin of which is not known at this point in time. Finally, the third is the inter-solar-cycle signal, counting up to 42.52\%, which is inferred to be caused by the network magnetic elements in quiet regions, whose magnetic flux ranges from \((4.27–38.01) \times 10^{19}\) Mx.

Key words: Sun: activity – Sun: general – sunspots

1. INTRODUCTION

The total solar irradiance (TSI) is the total amount of solar electromagnetic energy over the entire spectrum observed at the top of Earth’s atmosphere per unit area and per unit time. Before TSI was measured in space, it was thought to be a constant, due to the low precision of the ground-based instruments at that time, and it was consequently known as the solar constant, having a value of about 1366 W m\(^{-2}\) (Passos et al. 2007; Fröhlich 2009). At present, the solar constant is known to vary on all timescales at which it has been measured, i.e., minutes to decades (Willson & Hudson 1991; Fröhlich 2009). For example, latest results indicate a lower value of TSI of 1361 W m\(^{-2}\) based on observations during the minimum time of cycle 23 to 24 (Kopp & Lean 2011). Irradiance variability on timescales shorter than one day (minutes to hours) is mainly caused by convection, related to granulation, mesogranulation, and supergranulation (Wolff & Hickey 1987; Solanki et al. 2003). Short-term changes of TSI on timescales of a few days to weeks are dominated by magnetic structures (Chapman 1987; Solanki et al. 2003). Over the solar cycle, TSI variations of about 0.1\% are thought to come mainly from the combination of the sunspots blocking and the intensification due to bright faculae, plages, and network elements, with a slight dominance of the bright-feature effect during the time of the maximum of a Schwabe solar cycle (Hudson et al. 1982; Pap et al. 1990). Space-based observations have existed for only about 30 years; therefore, variations on timescales longer than the Schwable cycle can not yet be measured directly (Mekaeu & Dewitte 2008; Li et al. 2010).

The variation of TSI has important implications for our understanding of solar internal structure, global changes in Earth’s climate system, and solar–terrestrial relationships (Egorova et al. 2005; Dameris et al. 2006; Krivova et al. 2007; Krivova & Solanki 2008; Gan & Li 2010; Li et al. 2010). Since the coupled system of Earth’s atmosphere and oceans reacts rather slowly to the varying solar signal, variations of solar irradiance on long timescales are possibly of even greater importance for global climate change (Solanki et al. 2000; Domingo et al. 2009). In this paper, we investigate to what extent various components add to TSI variations on the scale of longer than one day, namely why the so-called solar constant is not a constant, through analyzing a directly measured time series of TSI, the Physikalisch-Meteorologisches Observatorium Davos (PMOD) composite of TSI from 1978 November 7 to 2010 September 20 by the empirical mode decomposition (EMD) method.

2. INVESTIGATION OF VARIATIONS OF DAILY TSI

2.1. Data

The PMOD composite is an accurate measurement record of daily TSI during the last three solar cycles (Fröhlich 2006, 2009). Daily TSI from 1978 November 7 to 2010 September 20 in the PMOD composite is used here to investigate what extent TSI varies on various timescales. The time series can be downloaded from the Web site.\footnote{ftp://ftp.pmodwrc.ch/pub/data/irradiance/composite/} Figure 1 shows the PMOD composite of daily TSI. The two most striking features of the observed record of the daily TSI (for details, see Fröhlich 2009) are the inter-solar-cycle variations by about 0.1\% in phase with the solar activity cycle and sharp dips with a comparable or even greater amplitude typically lasting 7–10 days (Krivova & Solanki 2008). The mean value of the composite is 1365.91 W m\(^{-2}\) during the time interval considered.

2.2. EMD Analysis of Daily TSI

The EMD is a nonlinear time–frequency analysis method (Huang et al. 1998; Gao et al. 2011). It is an algorithm which decomposes an input signal into a finite set of oscillating functions, namely the so-called intrinsic mode functions (IMFs), which are the intrinsic periodicities of the original signal. These IMFs are extracted from the data themselves, and they are not restricted to have constant phases or amplitudes. Essentially EMD is an empirical algorithm which decomposes a signal, which can be non-stationary and nonlinear, into a finite set of IMFs (Barnhart & Eichinger 2011). These IMFs are defined to be functions which are symmetric about their local mean,
and whose number of extrema and zero-crossings are equal or differ at most by one (Huang et al. 1998). These IMFs are extracted from a signal using a process called sifting. The sifting process essentially iteratively removes the local mean from a signal until the signal meets the definition of an IMF. Here, the PMOD composite is decomposed into 10 IMFs through the EMD analysis which are shown in Figure 2. The code of the wavelet transform analysis, which is provided by Torrence & Compo (1998), is utilized to study periodicity in the first nine IMFs of the PMOD composite. IMF 10 is excluded because it is the secular trend of the composite, and the limited length of the data used gives no period to the trend at present. Figure 3 shows their global wavelet power spectra and the corresponding 95% confidence level. Table 1 gives the periods in the first nine IMFs, which are significant at the 95% confidence level. Also given in the table are the period intervals of these period values.

The periods 9.8, 14.5, 58.1, and 86.7 days are inferred to be the 1/3-, 1/2-, 2-, and 3 multiple harmonics of the period of about 29 days, which is approximately the solar rotation period. There are only those periods in IMFs 1–5, which are related to the rotation cycle, thus IMFs 1–5 are called the rotation-variation signal of TSI. The sum of IMFs 1–5, which is called here Component I of daily TSI, is shown in Figure 4. Component I is inferred to be mainly caused by magnetic structures, including sunspot groups, due to the following aspects. (1) Short-term changes of TSI on timescales of a few days to weeks are known to be dominated by magnetic structures, including sunspot groups, due to the following aspects. (2) The figure shows that Component I fluctuates with much higher amplitude around the maximum times of the Schwable cycles than around the minimum times, and long-lived solar magnetic structures usually appear around the maximum times of solar cycles. And (3) as the figure displays, sharp dips appear only in this component and around the maximum times of solar cycles, and maximum variation amplitude can even exceed 3 W m\(^{-2}\). Here, the variation amplitude is given relative to the mean value of the composite. These dips, lasting 7–10 days, are caused by the passage of sunspot groups across the visible disk as the Sun rotates. Toward activity maxima, when the number of sunspots grows considerably, the frequency and depth of the dips increase (Krivova & Solanki 2008). Figure 5 shows daily

Figure 1. PMOD composite of daily TSI from 1978 November 7 to 2010 September 20.

Figure 2. Intrinsic mode functions (IMFs) of the PMOD composite. IMFs 1–10 are shown correspondingly in the panels, ranking from the top one to the bottom, respectively.

Figure 3. Global wavelet power spectra (the thick lines) of the first nine IMFs and their corresponding 95% confidence level (the thin lines). Those for IMFs 1, 2, and 3 are shown in the top panel, respectively, by the solid lines, dashed lines, and dotted lines; for IMFs 4 and 5, in the second panel, respectively, by the solid lines and dashed lines; for IMFs 6–8, in the third panel, respectively, by the solid lines, dashed lines, and dotted lines; and for IMF 9, in the bottom panel by the solid lines.
sunspot area and daily TSI from 2003 September 10 to 2003 November 17. The figure displays the very well-known fact that when large sunspot groups pass across the solar visible disk, a sharp dip appears in the daily TSI with its amplitude decreasing from about 1366 W m$^{-2}$ to about 1362 W m$^{-2}$. These sharp dips of TSI are caused by the passage of sunspot groups across the visible disk as the Sun rotates.

The periods 781.1 and 1570 days are considered to be the 2 and 4 multiple harmonics of the period of 390.6 days, respectively, and these three periods show a broad peak in their power spectra. Thus, IMFs 6–8 show periodical annual variations, and they are called the annual-variation signal of TSI. The periodical annual-variation signal had not been determined by the helioseismic probing of the solar interior (Howe et al. 2000). The one-year periodicity is found in several solar-activity indices, but its origin is doubtful. That is, it is difficult to rule out the possibility that this periodicity is not due to the influence of seasonal effects (Javaraiah et al. 2009). Of course, it must be pointed out that so far there has been no quantitative analysis about the effect of Earth’s helio-latitude on the measurement of the Sun, and the origin of the annual periodical signal of the Sun is an open issue. Here, we speculate that IMFs 6–8 are possibly caused by Earth’s orbital revolution. However, this needs to be independently confirmed through the analysis of Earth’s/spacecraft orbital data along with the TSI time series. The sum of IMFs 6–8, which is called here Component II of the daily TSI, is shown in Figure 4, and almost all variation amplitudes are found to be less than 0.5 W m$^{-2}$.

We also calculate the correlation coefficient (cc) between daily TSI of the PMOD composite and daily sunspot number, which is available from the Solar Influences Data Analysis Center’s (SIDC) Web site, and cc = 0.4456, which is statistically significant at the 99.9% confidential level. When the annual-variation signal of daily TSI, namely Component II is deduced from the original daily TSI, cc obviously increases to be 0.4659. Based on the method used to test the statistical difference of two correlation coefficients by Li et al. (2002), the difference between these two cc values is found significant with a probability of about 91%, that is to say, the difference is not caused by randomness, and the two values are statistically different from each other.

2.3. Relation between the Schwabe-cycle-related Component of Daily TSI and Magnetic Activity

The period of 3880.2 days (≈10.63 years) corresponds to the so-called Schwabe cycle, and the period of 1104.7 days is

![Figure 4. Three components of daily TSI. Component I is shown in the top panel, which is the sum of IMFs 1–5; Component II is shown in the middle panel, which is the sum of IMFs 6–8; and Component III is shown in the bottom panel, which is the sum of IMFs 9–10.](image)

![Figure 5. Daily sunspot area (the thick line) and daily TSI (the thin line) from 2003 September 10 to 2003 November 17.](image)

IMF 1	IMF 2	IMF 3	IMF 4	IMF 5	IMF 6	IMF 7	IMF 8	IMF 9
9.8 ± 0.7	14.5 ± 1.1	29.0 ± 2.3	58.1 ± 4.3	86.7 ± 6.1	376.0 ± 16.3	390.6 ± 22.3	781.1 ± 43.2	1104.7 ± 52.1
781.1 ± 43.2	1570.0 ± 67.5	3880.2 ± 127.5						
inferred to be the 3 multiple harmonic of the approximately annual period of about 376.0 days. IMF 9, probably plus IMF 10, is therefore related to magnetic activity of the Schwabe cycle.

Jin et al. (2011) have divided the full Sun’s magnetograms into active regions (ARs) and quiet regions (QRs) and calculated the monthly average magnetic flux F_{AR} and F_{QR}, respectively, in the time interval of 1996 September to 2010 February with the MDI/Solar and Heliospheric Observatory (SOHO) data used. They found that the flux of network magnetic elements in QR could be further divided into four components: (1) those elements whose fluxes are in the range of $(1.5–2.9) \times 10^{18}$ Mx are basically independent of the sunspot cycle, and thus called by them no-correlation elements (F_{no}); (2) the elements in the flux range of $(2.9–35.9) \times 10^{18}$ Mx show an in-phase correlation with the sunspot cycle, and thus they are anti-phase elements (F_{anti}); (3) those in the flux range of $(35.9–42.7) \times 10^{18}$ Mx are called transition elements (F_{tran}), which represents a transition from anti-phase to in-phase with the sunspot cycle; and (4) the so-called in-phase elements (F_{in}), in the range of $(4.27–38.01) \times 10^{19}$ Mx, which is in-phase with the sunspot cycle. Based on IMFs 9 and 10, we calculate the monthly average value (IMF$_9$) of IMF 9 and that (IMF$_{9+10}$) of IMF 9 plus IMF 10 in the time interval of 1996 September to 2010 February. Then we calculate the correlation coefficient of IMF$_9$ and IMF$_{9+10}$, respectively, with F_{AR}, F_{QR}, F_{no}, F_{anti}, F_{tran}, and F_{in}, and the results obtained are given in Table 2.

The relation of IMF$_{9+10}$ respectively to F_{in} and F_{AR} gives the maximum two correlation coefficients among these coefficients in the table, which are correspondingly much larger than those given by the relations of IMF$_9$ respectively to F_{in} and F_{AR}, and the maximum correlation coefficient is given for the relation of IMF$_{9+10}$ to F_{in}. Thus, it is seemingly IMF$_{9+10}$, not IMF$_9$, that is most probably related with magnetic activity, and the magnetic activity is referred to the magnetic flux of F_{in}. That is to say, IMF 9 plus IMF 10 should be related to magnetic activity of the Schwabe cycle. Figure 6 plots IMF$_9$ and IMF$_{9+10}$ together with the monthly average magnetic flux values of F_{in} and F_{AR}, respectively, to illustrate the relations of IMF$_9$ and IMF$_{9+10}$, as well as the differences of its maximum and minimum values can still match up to TSI variations of about 0.1%.

In order to examine the significance in the difference of the maximum two coefficients in the above table, a statistical test is carried out following Li et al. (2002), and the difference is found significant with a probability of about 97%. Thus, Component III is inferred to be caused by the network magnetic elements, whose magnetic fluxes are of $(4.27–38.01) \times 10^{19}$ Mx. The above significant difference somewhat confirms that magnetic fields of different strengths could even act on TSI in reverse ways: intense magnetic fields, as thermal “plugs” to divert heat flow from solar deep layers, decrease TSI, but small-scale magnetic fields, as local thermal “leaks,” increase TSI (Domingo et al. 2009).

The complex Morlet wavelet transform is utilized to study the periodicity respectively in Components I and II. Figure 7 shows their global wavelet power spectra and corresponding 95% confidence levels. For Component I the periods of significance are 14.2±1.1 and 31.7±2.8 days, and for Component II the periods of significance are 366±15.0 and 726.3±38.4 days, which are all significant at the 95% confidence level. Thus, Component I is indeed the rotation signal of TSI, and Component II is the annual-variation signal.

Finally, we determine the contribution of each of the three components to the daily TSI. We calculate the sum of Components I, II, and III over the whole time interval, respectively. The sum of Component I counts up to 42.31% of the total sum of Components I–III, namely daily TSI related to its mean value (TSI minus its mean value). The sum of Component II counts up to 15.17%, and the sum of Component III up to 42.52%.

Table 2

Component	F_{AR}	F_{QR}	F_{no}	F_{anti}	F_{tran}	F_{in}
IMF$_9$	0.8319	0.6737	−0.4891	−0.6091	−0.3991	0.7198
IMF$_{9+10}$	0.9671	0.9518	−0.0046	−0.5804	0.0824	0.9818

Figure 6. Monthly average values (IMF$_9$) of IMF 9 (the thick and solid line) and monthly average values (IMF$_{9+10}$) of IMF 9 plus IMF 10 (the thick and dashed line) together with monthly average magnetic flux values of F_{in} (the thin and solid line) and F_{AR} (the thin and dashed line). F_{AR} is divided by a constant, in order to show F_{in} together with F_{AR} well.

See text for details.
3. CONCLUSIONS

First, the PMOD composite of daily TSI in the time interval of 1978 November 7 to 2010 September 20 is decomposed into 10 IMFs through EMD analysis. Second, the Morlet wavelet transform is utilized to study periodicity in the first nine IMFs (the 10th IMF shows the secular trend of TSI). And last, correlation analyses of IMF 9 and IMF 9 plus IMF 10 are made respectively with the magnetic flux of ARs, that of QRs, and that of network elements in QRs with different magnetic fluxes. As a result, a new mechanism is proposed to explain why the solar constant is not a constant. The main conclusions are obtained as follows.

Daily TSI is found to mainly consist of three components. The first one is the rotation signal, counting up to 42.31% of the total variation of TSI, which is inferred to be mainly caused by large magnetic structures, including sunspot groups. The second is the annual-variation signal, counting up to 15.17% of the total variation. We speculate that it is caused by the annual change of Earth’s helio-latitude. It should be pointed out here that we do not give a quantitative analysis about the effect of Earth’s helio-latitude. It should be pointed out here that we do not give a quantitative analysis about the effect of Earth’s helio-latitude.

When Component II is reduced from the original daily TSI, the reduced daily TSI is more intensely related to the daily sunspot number than the original daily TSI itself. This leads us to conclude that Component II should be caused by the annual change of Earth’s helio-latitude.

We thank the anonymous referees for careful reading of the manuscript and constructive comments which improved the original version. The authors thank PMOD/WRC, Davos, Switzerland, for making available the data set of total solar irradiance measurements (version d41-62-1009), comprising composite irradiance values since 1978, which includes unpublished data from the VIRGO Experiment on the cooperative NASA/SOHO mission. This work is supported by the Natural Science Funds of China (10873032, 10921303, 11147125, and 11073010), the 973 project (2011CB811406), and the Chinese Academy of Sciences.

REFERENCES

Barnhart, B. L., & Eichinger, W. E. 2011, Sol. Phys., 269, 439
Chapman, G. A. 1987, ARA&A, 25, 633
Dameris, M., Mathes, S., Deckert, R., Grewe, V., & Ponater, M. 2006, Geophys. Res. Lett., 33, 3006
Domingo, V., Ermolli, I., Fox, P., et al. 2009, Space Sci. Rev., 145, 337
Egorova, T., Rozanov, E., Zubov, V., Schmutz, W., & Peter, T. 2005, Adv. Space Res., 35, 451
Fröhlich, C. 2006, Space Sci. Rev., 125, 53
Fröhlich, C. 2009, A&A, 501, L27
Gan, W. Q., & Li, Y. P. 2010, in IAU Symp. 264, Solar and Stellar Variability: Impact on Earth and Planets, ed. A. G. Kosovichev, A. H. Andrei, & J.-P. Rozelot (Cambridge: Cambridge Univ. Press), 84
Gao, P. X., Liang, H. F., & Zhu, W. W. 2011, New Astron., 16, 147
Hudson, H. S., Silva, S., Woodard, M., & Willson, R. C. 1982, Sol. Phys., 76, 211
Javaraiah, J., Ulrich, R. K., bertello, L., & Boyd, J. E. 2009, Sol. Phys., 257, 61
Jin, C. L., Wang, J. X., & Song, Q. 2011, ApJ, 731, 37
Kopp, G., & Lean, J. L. 2011, Geophys. Res. Lett., 38, L01706
Krivova, N. A., Balmaceda, L., & Solanki, S. K. 2007, A&A, 467, 335
Krivova, N. A., & Solanki, S. K. 2008, J&A, 29, 151
Li, K. J., Xu, J. C., Liu, X. H., Gao, P. X., & Zhan, L. S. 2010, Sol. Phys., 267, 295
Mekaoui, S., & Deswarte, S. 2008, Sol. Phys., 247, 203
Pap, J., Tobiska, W. K., & Bouwer, S. D. 1990, Sol. Phys., 129, 165
Passos, D., Brandao, S., & Lopes, I. 2007, Adv. Space Res., 40, 990
Solanki, S. K., Schussler, M., & Fligge, M. 2000, Nature, 408, 445
Solanki, S. K., Selezniov, A. D., & Krivova, N. A. 2003, in International Solar Cycle Studies (ISCS) Symposium, Solar Variability as an Input to the Earth’s Environment, ed. A. Wilson (SP-535; Noordwijk: ESA), 285
Torrence, C., & Compo, G. P. 1998, Bull. Am. Meteorol. Soc., 79, 91
Willson, R. C., & Hudson, H. S. 1991, Nature, 351, 42
Wolff, C. L., & Hickey, J. R. 1987, Sol. Phys., 109, 1