Rare Earth Deposits of Africa

R.E. Harmer1 and P.A.M. Nex2

1Department of Exploration Geology, Rhodes University, P.O. Box 94, Grahamstown, 6140, South Africa. E-mail: j.harmer@ru.ac.za
2School of Geosciences, University of the Witwatersrand, Johannesburg, South Africa. E-mail: Paul.Nex@wits.ac.za

DOI:10.18814/epiiugs/2016/v39i2/95784

Rare Earth Elements (REE) are a group of chemically-coherent elements that are critical to a wide range of modern high technology applications and the critical strategic role of REE to the economic development of the U.S.A., European Union and Japan has been recognised. China holds a near monopoly over the supply of REE and REE products - accounting for around 95% of the global supply in 2010. These factors triggered a rush to discover REE deposits and develop REE production outside of China.

At the beginning of 2015 there were 11 advanced REE projects on the African continent - projects on which formally defined resources had been published. This review represents the first compilation of the geology, style of mineralisation, size and character of these REE resources drawing on reports in the public domain.

Introduction

The Rare Earth Elements (REE) are critical to a wide variety of modern high technology applications that range from fibre optics, lasers, phosphors, speciality metal alloys, rechargeable batteries and catalysts in petroleum refining, to powerful permanent magnets that are used extensively in hybrid and electrical motor vehicles, wind turbines and modern weapons systems. They are also key enablers in the miniaturisation of hard drives and consumer electronics. In the second decade of the 21st Century, China produces almost 95%, and consumes 75%, of the global production of rare earth metals. Uncertainty in supply of REE to non-Chinese producers, coupled with recognition of the critical strategic role of REE to the economic development of the U.S.A., European Union and Japan, triggered a rush in 2009-10 to find and develop REE deposits outside of China.

REE Nomenclature/Classification

In current commercial usage, the Rare Earth Elements (REE) refer to a group of chemically-coherent elements (see Table 1), that comprise the 14 stable lanthanoids1 from 57Lanthanum to 71Lutetium (Promethium is unstable and does not occur naturally) plus the chemically similar Group IIIa elements 3Scandium and 39Yttrium. Formally, IUPAC (Connelly et al., 2005) referred to this group as the Rare Earth Metals. At present, Sc seldom contributes meaningfully to the economics of an REE project and so, for the purposes of the deposits in this review, the REE represent the 14 lanthanoid elements plus yttrium.

For ease of discussion, it is useful to subdivide the REE into smaller groups by atomic number. Naming schemes have been haphazardly applied by companies developing new REE deposits outside of China: many having little formal rationale, most seem simply designed to boost the perceived value of the project(s) in the company’s portfolio!

In terms of chemical attributes, the formally acceptable subdivision of the lanthanoids is on the basis of the distribution of 4f electrons in the atomic structure: the “Light Rare Earth Elements” (LREE), La through Gd, have no paired 4f electrons; whereas the “Heavy Rare Earth Elements” (HREE), Tb through Lu, have at least one paired 4f electron. While Yttrium has no 4f electrons at all, its chemical behaviour closely approximates that of Dy and Ho and, as such, is classified as a HREE. Alternatively, it is useful to distinguish a “Medium REE” sub-group of the LREE comprising Sm through Gd, leaving La through Nd as “Light LREE”. This distinction derives from the standard practice in the solvent extraction process used to separate and purify the individual rare earth metals: the absence of Promethium in natural materials creates a larger than usual change in chemical character between Nd and Sm and advantage is taken of this “gap” to split the REE solution into three: a “light” La-Nd group, a “medium” Sm-Gd group and a “heavy” Tb-Lu+Y group (illustrated in Table 1). Since 2012, the Chinese Government has applied this distinction when allocating export quotas and export levies for REE.

In industry, concentrations of the REE are usually expressed in the oxide form as this is the common nature of the traded product: in the text the abbreviation REO is used for “rare earth oxide” and grades are conventionally expressed as percent total REO contents, abbreviated to TREO (or %TREO).

Economic Geology

It has become something of a cliché in industry announcements and reports that rare earths are not particularly rare: Ce, the most naturally abundant REE, is more common in the Earth’s Crust than copper (Cu); while the least abundant REE, Lu, has similar crustal abundance to antimony, is slightly more abundant than silver (Ag) and bismuth (Bi), but orders of magnitude more enriched than either Gold (Au) or the platinum group elements.

Being a coherent group of chemically- and hence geochemically-similar elements, individual rare earth elements do not form unique geological minerals. While REE ore minerals do preferentially

1IUPAC recommend that the popularly used collective name for these elements “lanthanides” be replaced by “lanthanoids” because: “The ending ‘ide’ normally indicates a negative ion, and therefore lanthanoid [is] preferred to lanthanide.” (Connelly et al., 2005: p52)
interested readers are directed to recent reviews (and references cited therein) such as Linnet et al. (2014), Williams-Jones et al. (2012), Houtson et al. (2011). A working classification is presented that covers the range of enrichment processes acting to produce the major REE deposits of Africa.

On average, the most REE-enriched magmatic rocks are carbonatites, followed by peralkaline granites and syenites. As a broad generalisation, enrichment of the REE to ore levels is the consequence of the incompatible behaviour of the REE during magmatic crystallisation and their limited solubility in low temperature aqueous solutions, making the REE largely immobile during weathering. Enrichment of the REE to potentially-economic ore grades generally requires the action of more than one geological process.

Enriching processes can be conveniently grouped, on the basis of the temperature range over which they operate, into Primary Magmatic, Magmatic/Hydrothermal and Epithermal.

Magmatic

Carbonatites are the most REE-enriched group of igneous rocks yet only one REE deposit is considered entirely magmatic: the Mountain Pass Deposit in the USA. Hyper-alkaline “agpatic” (Edgar et al., 1974; Sørenson, 1999) syenitic rocks crystallise REE-enriched phases (such as eudialyte, loparite) that can be concentrated by cumulus processes during magmatic crystallisation to form “reef-like” economic REE deposits (e.g. Ililmaaussaq; Lovozero). However, detailed mineralogical studies on these rocks have highlighted the significant influence of sub-solidus hydrothermal alteration on the final REE tenor in these minerals (e.g. Olivo and Williams-Jones, 1999; Mitchell and Liferovich, 2006).

In general, even the most enriched igneous rocks require the action of one or more secondary processes to produce economically significant grades of the REE.

Magmatic/Hydrothermal

Of the deposits in this review, all bar two are derived from carbonatites. The highest REE concentrations are typically encountered in iron-rich dolomitic carbonatite varieties: those with ferroan dolomite to ankerite as the main carbonate phase, sometimes accompanied by siderite.

The final stages of crystallisation of carbonatite magmas are fluid-rich: the fluids being dominated by alkalis, halogens and CO$_2$-H$_2$O. High fluid concentrations promote the growth of large crystals and the final stage of magmatic evolution can usefully be described as “pegmatic” or pegmatoidal, by analogy with granitoid systems (e.g. Wall, 2004). The transition from fluid-rich magma to the subsolidus, crystals plus fluid-only, hydrothermal stage can be difficult to confidently define in carbonatites: Wall (2004) used the appropriate phrase “pegmatic transition environment” for this stage. Burbankite (a sodium REE-Ba-Sr carbonate: Table 2) is recognised in several evolved pegmatoidal carbonatites where it always represents the earliest phase in any paragenetic sequence of REE ore minerals (Wall and Zaitsev, 2004; Wall, 2004). In the subsolidus hydrothermal stage, fluids react with the crystallised assemblage causing modification to mineralogy and texture, usually with associated enrichment in the REE. Burbankite is not stable under these conditions and is pseudomorphed by assemblages of alkali-free REE phases, such as ancyelite and the fluorocarbonates along with baryte and strontianite.

REE enrichment processes

A comprehensive discussion of rare earth element geochemistry and mineralisation processes is beyond the scope of the current review:

Table 1. The Rare Earth Elements and recommended nomenclature schemes

Rare Earth Element	Symbol	Atomic Number	4f electrons paired	Chemical	Metallurgical
Lanthanum	La	57	N		
Cerium	Ce	58	N		
Praseodymium	Pr	59	N		
Neodymium	Nd	60	N		
Promethium**	Pr	61	N		
Samarium	Sm	62	N		
Europium	Eu	63	N		
Gadolinium	Gd	64	N		
Terbium	Tb	65	Y		
Dysprosium	Dy	66	Y		
Holmium	Ho	67	Y		
Erbium	Er	68	Y		
Thulium	Tm	69	Y		
Ytterbium	Yb	70	Y		
Lutetium	Lu	71	Y		
Yttrium	Y	39	-		

** Promethium is radioactively unstable and is not found in natural materials.

concentrate specific REE, they always contain a mixture of the REE. The formulae for a selection of the more common REE minerals discussed in the text are listed in Table 2.

Table 2: A selection of important rare earth ore minerals mentioned in the text.

Mineral	Formula	\%REO*
Aeschynite	(RE$_2$Co$_2$F$_2$)$_2$	36
Allanite (orthite)	(Ca$_{10}$RE$_3$)$_2$O$_{20}$·(SiO$_2$)$_3$·(O,OH)	30
Ancyelite	Sr(RE$_3$O$_2$)$_2$(OH)$_2$·H$_2$O	46
Bastnaesite	RE$_2$CO$_3$F	76
Burbankite	(Na$_{10}$Ca$_5$)(Sr,Ba,RE$_3$)$_2$O$_{20}$	~9 - 23
Cerianite	(Ce,Er)$_2$O$_2$	81
Chuchrite	YPO$_4$·H$_2$O	44
Florencite	RE$_3$AlPO$_4$·(OH)$_2$	32
Monazite	RE$_3$ThPO$_4$	71
Parisite	Ca(RE$_3$O$_2$)$_2$F	64
Synchisite	Ca(RE$_3$O$_2$)$_2$F	51
Xenotime	YPO$_4$	61

Notes: REO*:%TREO contained in mineral - either average of known typical compositions or stoichiometric estimate;
RE$_3^+$ - site occupied by mix of rare earth elements (xenotime and chuchrite are predominantly Y; cerianite near exclusively of Ce so element shown rather than RE$_3^+$).

June 2016
The processes of weathering and alteration of the country rocks can significantly influence the REE concentrations. In particular, the role of metasomatic processes, such as fenitisation, cannot be underestimated. Fenitisation is the process by which the country rocks are altered and metasomatized, often resulting in the formation of new REE-bearing minerals. This process can affect the distribution and concentration of REEs in the deposit.

For example, in the case of xenoliths encountered within a carbonatite, these can be alkali metasomatised, forming fenites. The presence of a border zone, where the REE concentrations are significantly higher, can also be indicative of fenitisation. The fenites are typically 5-10 times richer in REEs than the original host rock.

The fenitic mineralisation is often associated with the formation of new REE-bearing minerals, such as bastnaesite and monazite, which are typically deposited in the zones of fenitisation. These minerals can then be further altered and leached during the supergene processes, leading to the formation of residual REE deposits.

Therefore, it is crucial to understand the role of fenitisation in the formation and distribution of REE deposits, as it can significantly influence the potential for economic exploitation. The review of African REE deposits highlights the importance of considering the impact of fenitisation and supergene processes in the evaluation of new deposits and the development of extraction strategies.
Investment Market (AIM) of the London Stock Exchange and 1 on the Dusseldorf Stock Exchange. Companies reporting to the TSX are required to conform to the requirements of National Instrument 43-101 (NI 43-101) and to file all reports with the System for Electronic Document Analysis and Retrieval (SEDAR) of the Canadian Securities Administrator: as such these reports are accessible to the public on the website www.sedar.com. The ASX requires all reporting to conform to the JORC (Joint Ore Reserves Committee) Code but has no requirement for complete technical reports to be lodged on their site, only company announcements and presentations. AIM does not prescribe a reporting code but requires that reports conform to either one of NI 43-101, JORC or SAMREC (South African) standards; it is even less prescriptive than ASX on what detail needs to be made public. As a consequence, far more detail is available for the TSX-listed company projects than those listed on other exchanges. Where possible, referencing of company reports or announcements is accompanied by the URL where the document may be accessed (as of January 2015).

The deposits are ordered and grouped loosely according to mode of genesis.

Kangankunde (Malawi)

Location and Ownership

The Kangankunde carbonatite complex is situated south of Lake Malawi, approximately 75 km north of Blantyre (Figure 1). Kangankunde was dated at 123 ± 6 Ma (on phlogopite: Cahen and Snelling, 1966) and represents the most REE-enriched intrusion within the Cretaceous Chilwa Alkaline Province (Wall and Mariano, 1996).

Ownership of the mineral rights over Kangankunde is unclear: Lynas Corporation (ASX:LYC; www.lynascorp.com) claims 100% title to a Mining License in their 2014 Annual Report but this is contradicted by a ruling of the Malawi High Court in 2010 preventing the transfer of the Mining License to Lynas (e.g. articles in Sydney Morning Herald [www.smh.com.au] November 10 and 14, 2011; The Nation [www.mwnation.com] 10 October 2013).

Geology

Kangankunde is one of several carbonatitic complexes in Malawi.
mapped by Magnus Garson for the Geological Survey of Nyasaland (now Malawi) between 1952 and 1963 and summarised in Garson (1966).

Kangankunde is oval in shape, 900 x 750 m in size, and consists of a central core of carbonate-rich rocks surrounded by a rim of carbonatite agglomerate and feldspathic breccia (Figure 2). The complex was emplaced into Paleoproterozoic semi-pelitic gneisses that have been fenitised over distances of up to 1200 m from the carbonatite. Truly magmatic carbonate rocks comprise only a small proportion of the complex at the present erosion level.

Based on field evidence the earliest unit of the complex is a small plug and dykes of altered (carbonated) nephelinitic rock, misleadingly termed “apatite-beforsite” by Garson (1966). The outer annulus of fragmentary rocks was regarded as a volcanic vent-fill by Garson (1966) and is composed of brecciated felsite at the outer margin with strongly carbonated rocks forming the inner portions; carbonate-rich agglomerate occupies an intermediate zone. Agglomerates consist of angular blocks of feldspathic breccia, up to 0.5 m in diameter, set in a sparse matrix of iron-rich carbonates that contain manganese oxides in places. Phlogopite replacement of the feldspathic component is sometimes noted and the rock (matrix and clasts) is cut by veinlets of ankerite and phlogopite.

The main mass of the complex is made up of “carbonatised feldspathic rock”, a heterogeneous and complex mixture of carbonated rocks ranging from slightly carbonated feldspathic types to carbonate-rich types with only minor feldspar (Woolley, 2001). Large areas of carbonated feldspathic rock became mobilised and have intruded the less carbonated types generating complex field relationships. The rock is typically red-brown and consists of varying proportions of feldspar and ankeritic carbonate with accessory iron oxides and monazite.

True carbonatites are found in the western and central parts of the complex as arcuate systems (stockworks?) of dykes and veins, with a plug-like intrusion of carbonatite mapped in the southern part of the central area (Garson, 1966; Woolley, 2001). Ferroan dolomite to ankerite carbonatites dominate (Wall and Mariano, 1996), along with siderite-ankerite types (Buckley and Woolley, 1990; Duraiswami and Shaikh, 2014). Mn-rich ankerite carbonatite underlies a zone in the central part of the complex from which emanates a ramifying network of dykelets (Woolley, 2001).

Mineralisation

REE mineralisation is pervasive within the true carbonatites and extends outwards into the fenitised and carbonated units as well. Pale-green monazite is the main REE-bearing mineral in the carbonatites, along with minor bastnaesite, florencite-gooyazite and synchysite (Wall and Mariano, 1996). Monazite typically forms euhedral crystals up to 2 mm in size and occurs in a variety of textural forms: as “zones, bands and rounded bodies showing radiate structures” in mottled light to dark brown (ankerite?) carbonatites; and disseminated through dark brown and black (ankerite-siderite?) carbonatites (Holt, 1965). Duraiswami and Shaikh (2014) argued that the mineralisation was hydrothermal, and used the presence of collingsite \(\text{Ca}_2(\text{Mg,Fe})(\text{PO}_4)_2\cdot2\text{H}_2\text{O} \) to deduce temperatures of ~250-400°C for this.

Resource

No exploration investigations were completed on Kangankunde after the initial economic studies of Holt (1965) and the geological and process test work completed between 1987 and 1990 by the BRGM. Lynas Corporation purchased the BRGM geological and geochemical data (derived from more than 2,000 m of diamond core drilling and 550 trench samples) and had the data independently validated for a mineral resource estimate. This exercise defined an inferred resource, compliant with the JORC guidelines, of 2.53 million tonnes at an average grade of 4.24% REO for 107,000 tonnes of contained REO (Lynas, 2010; details in Table 4).

Songwe (Malawi)

Location and Ownership

The Songwe carbonatite is located south of Lake Chilwa, approximately 85 km east of Blantyre and close to the Malawi-Mozambique border (Figure 1). Lancaster Exploration Ltd., a wholly-owned subsidiary of Mkango Resources (TSX.V: MKA; www.mkango.ca), owns the exclusive prospecting license (EPL) over the property.

Geology

The Songwe carbonatite vent cuts the western margin of the large Mauze nepheline syenite intrusion (Woolley, 2001); both are members of the Chilwa Alkaline Province as evidenced by dates of
thought that fenites at the top of Songwe Hill represent a roof zone to more sodic varieties occur north of Songwe at Chenga Hill. It is 2014).

fenite in a fine-grained, carbonate-rich matrix (Swinden and Hall, 2012; Croll et al., 2014a). The carbonatites were emplaced in several pulses and range from early calcite-carbonatites to later ankerite-carbonatites and ultimately minor intrusions of “ferroan-carbonatite” (Croll et al., 2014). Proterozoic gneisses surrounding the complex have been metasomatised to potassic fenites. Late-stage phonolitic dykes have 140-130 Ma for zircon from both intrusions (LA-ICP-MS U-Pb: Broom-Fendley et al., 2014a). Songwe is approximately 800 m in diameter, and composed of feldspathic breccia and agglomerate cut by arcuate carbonatite sheets (Figure 3). The carbonatites were emplaced in several pulses and range from early calcite-carbonatites to later ankerite-carbonatites and ultimately minor intrusions of “ferroan-carbonatite” (Croll et al., 2014). Calcite-carbonatites predominate and occur as irregular bodies of massive carbonatite emplaced in multiple stages. Early calcite-carbonatites contain calcite with minor apatite and zircon, while later varieties have Fe- and Mn-rich calcites with ankerite and accessory apatite, Fe- and Mn-oxides, pyrite, fluorite and K-feldspar (Swinden and Hall, 2012; Croll et al., 2014; Broom-Fendley et al., 2014a). Later ankerite-carbonatites occur as extensive thin dykes, veins and breccias and contain ankerite with accessory fluorite, calcite, REE-fluorocarbonates, pyrite and occasional quartz (Broom-Fendley et al., 2014a).

Breccias have diverse compositions but can be generalised as: (i) feldspar-rich breccias containing clasts and fragments of fenite, nepheline syenite and minor calcite carbonatite set in a Fe- and Mn-oxide bearing carbonate matrix; and (ii) carbonate-rich breccia containing fragments of fine-grained calcite carbonatite and minor fenite in a fine-grained, carbonate-rich matrix (Swinden and Hall, 2014).

Adjacent fenites are pale-red and dominated by potash feldspar; more sodic varieties occur north of Songwe at Chenga Hill. It is thought that fenites at the top of Songwe Hill represent a roof zone to the carbonatite and contain black Fe- and Mn-rich carbonate veins (Swinden and Hall, 2012).

Mineralisation

Details of the Songwe REE mineralisation are derived largely from Swinden and Hall (2012). REE mineralisation occurs mainly in the carbonatite phases but extends into fenites and breccias as well-the carbonatite component clearly controlling the enrichment levels. During the resource definition study the deposit was subdivided into three domains: carbonatite domain, fenite domain, and a mixed domain.

Pale-grey, fine-grained, calcite carbonatites predominate within the carbonatite domain. A zone of “black carbonatite” in the north-eastern part of Songwe has the highest REE grades (average 3.8% TREO) and comprises texturally complex black to light grey carbonate with an abundance of cross-cutting dark Fe- and Mn-rich carbonate veins.

REE mineralisation manifests as pervasive streaks of orange to pink rare earth fluorocarbonates and apatite. REE grades are lower in the fenite domain—typically less than 0.5% TREO—but elevated (~1% TREO) where associated with carbonatite, particularly ferroan varieties. REE levels in the mixed domain are variable and reflect the relative proportions of carbonatite in the mix. Synchisite-(Ce) and apatite are the dominant REE ore minerals throughout the deposit and are commonly associated with stromatolite and baryte. Synchisite occurs as clusters of 10-60 µm long acicular to lath-shaped crystals: aggregates can attain diameters of 400 µm. Apatite is generally recrystallized and occurs in veins (Al-Ali et al., 2014). LA-ICP-MS studies of the apatites define a progressive change in REE compositions from LREE rich in magmatic apatites in calcite carbonatites, to remobilised HREE enriched types in veins and stringers associated with iron-manganese oxides. Preliminary fluid inclusion studies suggest that secondary apatites formed at low temperatures of 300°C to 160°C (Broom-Fendley et al., 2014b). This is consistent with the REE mineralisation at Songwe being a largely post-magmatic feature associated with hydrothermal processes overprinting the magmatic assemblages (Swinden and Hall, 2012).

Resource

Mkango Resources reported a resource for the Songwe Project, following NI 43-101 guidelines, in September 2012 (Swindon and Hall, 2012). Each of the three mineralised domains were modelled separately with indicated and inferred category resources estimated for each. In 2014 Mkango reported a maiden Ore Reserve of 8.5 Mt at a grade of 1.6% TREO for 136 kilo tonnes (kt) of contained REO. Full details of the compound grades, tonnages and composition of the resource classification are presented in Table 4.

Nkombwa Hill, Zambia

Location

The Nkombwa Hill carbonatite complex, located in the Muchinga Province of north-eastern Zambia, lies within the Luangwa Valley rift segment of the western arm of the East African Rift system (Figure 1). Nkombwa has been dated at 679 ± 25 Ma (K-Ar: Snelling, 1962) and is one of a group of Precambrian carbonatites in the western limb.
of the East African Rift system that pre-date the Tertiary rifting event by hundreds of millions of years (others include Ngualla, Lueshe and Nachendezwaya: Woolley, 1989).

Geology

The complex is approximately 1.5 x 1.0 km in size and underlies a steep-sided hill rising 300 m off the flat plains of the Luangwa valley floor. The intrusion is composite (Figure 4), built of several intrusive phases of magnesian carbonatite magma. Intrusive contacts and flow foliations in all carbonatite varieties are sub-vertically disposed. No magmatic silicate rocks have been found in the complex.

The earliest recognisable carbonatite phase is a relatively uniform-textured, grey- to buff-coloured, medium-grained dolomite carbonatite which makes up the bulk of the intrusion. Zones exist where the dolomite carbonatite is locally coarse-grained with carbonate rhombs attaining diameters of 3-5 cms; no change in the nature of the dolomite occurs and no additional phases are noted in these zones. Reaction between dolomitic magma and quartzo-feldspathic country rock gneisses has generated phlogopite-rich fenites. A semi-continuous marginal facies of phlogopite carbonatite and carbonatite breccia is found near the base of the Hill (effectively traced by the potassium channel of the radiometric survey over the complex). This carbonatite variety is clearly the product of entrainment of phlogopite from fenitised country rock.

Vari-textured, coarse to pegmatoidal, iron-rich carbonatites occur as large lensoid- to sheet-like bodies within the dolomite carbonatites and are best exposed in the upper portions of the hill. Although generally concordant with the foliation in the earlier carbonatite, cross-cutting relationships are sometimes seen suggesting these may represent a later intrusive phase. Carbonate minerals are iron-rich ankerites while dark, interstitial siderite is common (see Woolley and Buckley, 1993): the high iron contents render these rocks chocolate-grey-brown in outcrop. Crystals attain lengths of 8-10 cm but median sizes are 4-5 cm (Figure 5). Outcrops of the vari-textured carbonatite are characterised by open cavities ranging in size from cm-scale vugs to cavities 10-15 cms in diameter.

Iron-rich, cherty rocks (aptly described as “limonite stained chalcedony” by Turner et al., 1989) cap the central parts of Nkombwa Hill and represent a pervasive in situ silica replacement of the carbonatites, particularly the pegmatoidal type. It is possible to recognise many of the characteristic textural features of the pegmatoidal iron-rich carbonatites in these cherty rocks; remarkably, the cavities described above persist in the silicified products. Green grains of monazite are conspicuous and readily identifiable with the naked eye (Figure 6). The basal contact with the underlying carbonatite
is undulating but essentially sub-horizontal with a gentle dip towards the east.

Mineralisation

The pegmatoidal, vari-textured carbonatites have consistently elevated REE contents. Wall (2004) describes inclusions of a burbankite-like phase in the ferroan dolomites of the pegmatoid carbonatite and relates the appearance of monazite to post-magmatic processes. Mineralogical studies of REE enriched samples of the pegmatoid confirmed the presence of bastnaesite and daqingshanite $\text{[(Ce)}(\text{Sr},\text{Ca},\text{Ba})_3(\text{REE})(\text{PO}_4)(\text{CO}_3)_2(x\text{OH},x\text{F})]_x$, a phase previously described from Nkombwa by Appleton et al. (1992). Apatite is an abundant primary cumulus mineral in the dolomitic carbonatites. Hydrothermal remobilisation of apatite within the pegmatoidal carbonatites has generated high phosphate concentrations hosted in secondary apatite and isokite (CaMgPO_4F). Isokite was first identified at Nkombwa Hill (Deans and McConnell, 1955) and is named after Isoka, the closest major village to Nkombwa.

REE mineralisation is well developed in the silicified rocks as well, highest grades being found where relict pegmatoidal textures are identified in the silicified carbonatite. Mobilisation of REE and phosphate from the primary carbonatite minerals during silicification was re-precipitated as a low-thorium, distinctly green monazite-(Ce) (Wall, 1996); along with minor bastnaesite and traces of cerianite.

An extensive surface outcrop sampling programme conducted between 2010 and 2012 identified several areas of elevated REE which were covered by close-spaced (<10 m) focussed sampling traverses. Kilogram-scale outcrop rock chip samples frequently returned grades of over 10% with the highest individual sample values being 23.6% TREO from the pegmatoidal carbonatite and 22.3% TREO in the silicified unit. Phosphate concentrations are also elevated in the pegmatoidal carbonatite - the most enriched sample contained 33.3% P$_2$O$_5$ with just over 30% of the over 1,600 exploration samples collected having >5% phosphate.

No recent drilling has been done and no resource has yet been defined on Nkombwa.

Wigu Hill (Tanzania)

Location and Ownership

Wigu Hill is a 719 m high mountain in the Morogoro District of Tanzania, approximately 250 km west of Dar es Salaam and about 10 km north of Kisaki village (Figure 1). The developer of the project is Montero Mining and Exploration (listed on TSX [TSX.V : MON]; http://www.monteromining.com).

Geology

Little published information is available on the geology of Wigu Hill (Woolley, 2001); the main source of geological information in the public domain can be found in Eggleston and Sides (2011), the technical report containing the first resource estimate for the project. Subsequent to this report, a substantial amount of mapping was carried out by company geologists - Montero management provided the authors an in-house report summarising these results prepared by Mr Paul Karpeta (Karpeta et al., 2012): the following review draws heavily on this report.

The Wigu Hill Complex is located on the northern margin of an
ENE-WSW trending, Karoo-aged, graben that cuts 1.8-2.0 Ga Usagaran gneisses: the northern boundary fault defines the southern edge of the Complex. The graben is locally filled with Permo-Triassic Karoo sedimentary rocks.

Wigu comprises a series of sheeted intrusions of carbonatite and carbonatite breccia into basement gneisses over an area of over 5,000 m (east-west) by 1,500 m. Carbonation of the gneisses is observed in places close to the intrusive contacts. Fenitisation of the gneisses involved the growth of aegirine and alkali feldspar in the gneisses, often accompanied by hematite. Signs of fenitisation are recognised 15 km from carbonatite outcrops. Foliations in the gneisses define a domal structure over the area of carbonatite intrusion.

Carbonatites

Two compositional varieties of carbonatite are recognised: medium-grained dolomitic carbonatites and coarse-grained calcite carbonatites; both of which may be locally brecciated. Magnesian carbonatites are composed of interlocking anhedral crystals of ferroan dolomite; while generally equigranular and massive, banding and foliation is often developed in these carbonatites and is sometimes flow-folded. Fresh varieties are white, becoming light brown as weathering causes oxidation of the FeCO$_3$ component in the ferroan dolomite. Coarse calcitic carbonatites also weather brown suggesting the presence of some iron-rich components.

Breccias

Breccias range from monomictic types having mostly gneiss clasts, to polymictic types containing clasts of both gneiss and carbonatite. Breccia plugs are concentrically zoned with the degree of rounding of clasts increasing away from the margins as the relative volume of matrix increases. The most matrix-rich breccias are encountered in late dykes and plugs. A range of matrix compositions are found including silica, carbonate and rare earth bearing minerals: carbonate or REE matrices characterise the central area of the Hill whereas breccias in the eastern and western areas commonly have siliceous matrices.

Mineralisation

REE mineralised sheets occur in two textural forms: a “pegmatoidal” variety, and a finer-grained, streaky to foliated variety formed of aggregates of fine-grained, anhedral REE minerals set in a granular matrix of ferroan dolomite. Pegmatoidal types are composed of large (~20 cm long) euhedral hexagonal crystals, either clustered in radiating rosette or “cockade” textures in the central parts of sheets (Figure 8) or radial to sub-parallel crystal growth orthogonal to the sheet margins. Zoning reflecting repeated periods of crystal growth is common. The large euhedral crystals are relics of primary burbankite which were pseudomorphed by aggregates of silica, baryte and mixed REE carbonate phases.

Mineralised sheets are aligned along three predominant strike directions: those oriented N-S or NNW-SSE tend to have steep dips and contain fine-grained, foliated style mineralisation; ENE-WSW oriented sheets have variable dips with pegmatoidal mineralisation developed in the steep portions and foliated mineralisation in shallower dipping sections. Sheet thicknesses can be up to 5 m - the more steeply inclined sheets usually being thicker. REE grades attain extreme values in these sheets: the highest assay value obtained on kilogram-scale outcrop exploration grab samples is 26.2% TREO.

Resource

Mapping and surface sampling identified 10 target areas of REE mineralisation: resources have been reported for two of these – the “Twiga” and “Tembo” Zones (Eggleston and Sides, 2011). Additional drilling was subsequently completed over the Twiga Zone and a revised resource statement issued (Montero, 2013) reporting an inferred resource of 1.93 million tonnes at 2.69% TREO for 51,917 tonnes of contained REO. A resource was also estimated for an identified high grade, near-surface portion of the Twiga Zone mineralisation using a cut-off of 3% TREO at an inferred level of confidence of 0.47 million tonnes at 5.26% TREO for 24,722 tonnes of contained REO. These resources represent a small fraction of the...
mineralised area on Wigu Hill - only 2 of 10 identified targets - leaving a substantial portion of the REE mineralisation as yet unexplored.

Details of the resource estimates are provided in Table 4.

Lofdal (Namibia)

Location and Ownership

The Lofdal REE project is situated in the Kunene Region of north-west Namibia, approximately 26 km west of the town of Khorixas and is covered by an Exclusive Prospecting License of 57,000 hectares held by the developer, Namibia Rare Earths Inc (TSX.NRE; www.namibiarareearths.com) (Figure 1).

Geology

Lofdal is underlain by units of the ~2 Ga Huab Metamorphic Complex which were intruded by the Lofdal alkaline-carbonatite Complex at around 750 Ma. The Lofdal Complex is composed of intrusions of nepheline syenite that were cut by two plug-like bodies of carbonatite-named the Main and Emanya intrusions- and an extensive swarm of phonolitic and carbonatitic dykes covering a surface area of around 200 km² (Figure 11). Xenotime overgrowths on zircon from carbonatite dykes yielded a date of 765 ± 16 Ma (U-Pb LA-ICP-MS; Wall et al., 2008) that is equivalent to published dates for the Lofdal and Oas syenites (Hawkesworth et al., 1983; Hoffman et al., 1996; Jung et al., 2007).

The nepheline syenites are medium- to coarse-grained and locally porphyritic. In the Main carbonatite centre, nepheline syenite forms a carapace over the intrusive carbonatite. Breccias are associated with all the syenite bodies at Lofdal and contain coarse, angular clasts of country rock and syenite – relative proportions varying markedly between occurrences. The breccias contain no carbonatite clasts and are cut by dykes of both carbonatite and phonolite indicating that the breccia formed prior to intrusion of carbonatite. Calcite carbonatites predominate in both of the plugs, the Emanya intrusion carbonatites being finer-grained. Carbonatite in the Main intrusion contains accessory aegirine, apatite and magnetite with trace amounts of feldspar, sulphides and pyrochlore; iron oxides are abundant in the Emanya body imparting a reddish-brown colouration in outcrop.

Older reports on the Lofdal Complex describe the associated dyke swarm as being composed largely of carbonatite and phonolitic dykes but more detailed recent studies undertaken as part of the exploration effort have shown that a significant number represent carbonate-rich hydrothermal vein systems (Dodd et al., 2014). As such, these carbonate dykes should not be termed carbonatites (carbonatite being a magmatic rock: Le Maitre et al., 2002).

Phonolite dykes are closely associated with the “carbonate dykes” through the swarm: generally fine-grained to moderately porphyritic, they may locally develop trachytic textures and they are geochemically similar to the Lofdal nepheline syenite bodies.

Mineralisation

As a REE deposit, Lofdal’s key characteristic is the extreme enrichment in the HREE elements relative to the LREE.

Lofdal’s two carbonatite plugs have REE distributions considered as typical for magmatic carbonatites: enrichment in the LREE relative to HREE with no Eu anomaly. Total REE levels are significantly higher in the Emanya body but are sub-economic.

Based on a comprehensive geochemical survey of the Lofdal carbonate dykes, Swindon and Siegfried (2011) reported large variations in total REE and HREE:LREE contents amongst the dykes. They recognised two distinct types of REE mineralisation - one dominated by the LREE with similar LREE/HREE to the Emanya carbonatite; the other showing increasing HREE/LREE with increase in total REE (see Figure 22b). These HREE enriched “dykes” represent carbonate-rich hydrothermal veins, which range in width from less than 10 cm to tens of metres. Alteration involves an early pervasive albitionisation, followed by brittle fracturing and “infusion of carbonate minerals and micas” (Dodd et al., 2014, p81). This alteration appears to critically control the HREE mineralisation. Most HREE-mineralised zones lie along linear alteration trends that are interpreted to reflect fluid pathways focussed by basement-related structures and appear independent of the nature of the host lithologies. Significantly, the high HREE to total REE nature of the mineralisation persists to low overall TREO grades (Dodd et al., 2014).

HREE mineralisation has been proved over a lateral extent of over 15 km across the project property but a smaller target area – termed “Area 4” by the developers (Figure 10) – was prioritised for development (Siegfried and Hall, 2013; Dodd et al., 2014). Situated to the south-east of the Main carbonatite intrusion, Area 4 represents a mineralised segment approximately 650 m long. Mineralisation is aligned along a major fault that extends for several kilometres on either side of Area 4: the orientation of the fault closely follows the fabric of the host gneisses, being ENE-trending and southward-dipping, and has a sinistral sense of movement (Figure 11).

![Figure 10: Map showing distribution of HREE enrichment across Lofdal license area and the locations of the two carbonatite intrusions and the “Area 4” resource area (diagram courtesy of Namibia Rare Earths, Inc).](image)
Alteration is recognised at surface by bleaching and reddening related to linear sheared structural features marked by the development of biotite, phlogopite, chlorite and calcite, together with albite, dolomite and iron oxides. Multiple episodes of alteration are recognised with albitisation prevalent during the early stages and carbonation characterising later episodes. High-grade HREE mineralisation is manifested by veinlets, vein networks, red alteration patches and micro-breccia veins. Typically, where multiple generations of alteration are recognised, the REE enrichment is associated with the youngest event (Dodd et al., 2014).

HREE mineralisation is principally hosted in xenotime, which contains 90% of the HREE deportment (Loye et al., 2014), along with a diverse array of minor REE-bearing phases including aeschynite-(Y), bastnaesite, parisite, synchisite-(Ce), synchisite-(Y) and monazite-(Ce). Xenotime occurs in several parageneses that reflect the transition from late magmatic through to evolve hydrothermal conditions.

The HREE mineralisation at Lofdal is argued to post-date the carbonatite-related fenitisation as well as the brecciation caused by carbo-hydrothermal fluids (Loye et al., 2014).

Resource

A resource estimate for Area 4 was reported in July 2013 (Siegfried and Hall, 2013) and formed the basis of a Preliminary Economic Assessment study completed in October 2014 (Dodd et al., 2014), which identified 2.88 Mt of indicated resource with a grade of 0.32% TREO for 9.22 kt of contained REO, plus a further 8.86 kt of REO at inferred level. Details are provided in Table 4.

Ngualla Hill deposit (Tanzania)

Location and Ownership

The Ngualla Hill REE deposit is located near Mbeya in southwest Tanzania and is being developed by Peak Resources (ASX:PEK; www.peakresources.com.au) (Figure 1).

Geology

The project is centred on the Proterozoic Ngualla Hill carbonatite complex which lies within the western limb of the East Africa Rift System. The age of the intrusive complex is uncertain but Cahen and Snelling (1966) published a K-Ar date of 1040 ± 40 Ma for an igneous biotite from Ngualla.

The carbonatite complex is circular in outline with a diameter of approximately 4 km by 3.5 km and is interpreted to be pipe-like in form (Figure 12). Country rocks are Proterozoic gneisses, quartzites and rhyodacitic volcanics. Fenitisation of the country rocks caused the metasomatic growth of alkali feldspar, biotite and riebeckite and generated a kilometre-wide alteration zone that is relatively resistant to erosion and forms a ring of hills surrounding the carbonatite intrusion. Woolley (2001) describes (and depicts on his map) a substantial zone of brecciated fenites along the outer contact of the carbonatite.
The carbonatite plug is composed of an annular body of calcite carbonatite that was intruded by a central plug of dolomitic carbonatite. The early calcite carbonatite contains variable amounts of phlogopite, richteritic amphibole, magnetite and apatite with minor to trace amounts of ilmenite, sulphides (mainly pyrrhotite) and monazite. The dolomite carbonatite is predominantly composed of ferroan dolomite (as such, references to this body as “ferrocarbonatite” is misleading: e.g. Witt et al., 2013; Peak Resources, May 2014) and contains miarolitic cavities in which quartz, calcite, baryte, fluorite and REE fluorocarbonates (synchisite, bastnaesite) are found. The abundance of these minerals appears to increase inwards from the margins of the dolomite carbonatite plug. Ovoid to irregular bodies of hematite-baryte concentrations up to several metres in size occur within the central part of the dolomite carbonatite plug. Sulphides, where present, are minor constituents with pyrite the dominant phase.

In addition to the carbonatites, olivine-bearing ultramafic and mica-rich glimmerites have been identified within the complex: they are generally poorly exposed but are inferred from strong magnetic anomalies (Witt et al., 2013).

Mineralisation

REE concentrations in the calcite carbonatite are generally less than 0.25%TREO and are held in monazite. Magnesian carbonatites have higher REE grades which are contributed by the fluoro carbonate phases synchisite and bastnaesite. In unweathered ferroan dolomite carbonatite the TREO grades increase inwards from about 0.5% or less near the periphery to 1 to 2% in the centre; a trend ascribed to in situ fractional crystallization (Witt et al., 2014). Higher primary grades (3-5%TREO) are sporadically found in close proximity to ultramafic units; however, such enrichment is not consistent.

The primary REE levels in the Ngualla carbonatites were enhanced, in places to ore grade levels, through the action of alteration and weathering.

Dolomite carbonatite weathers through oxidation of the FeCO$_3$ component in ferroan dolomite and dissolution of the CaMg(CO$_3$)$_2$ component, a process facilitated by the presence of miarolitic cavities in, and associated higher porosity of, the dolomite carbonatite. Dissolution and removal of carbonate caused a significant mass reduction and produced a porous, goethite-rich regolith unit with a very low S.G. (1.84). Quartz, baryte and rare earth minerals are unaffected by weathering and are residually enriched in the goethite-rich regolith. Further oxidation of goethite to hematite caused a further volume reduction (~27%) and generated a compact, higher density rock (S.G. ~2.28) with little additional upgrading of REE concentrations (Witt et al., 2013). The contact between regolith and underlying fresh carbonatite can be remarkably sharp - this is illustrated in Figure 13.

The principle REE resource area at Ngualla - The Bastnaesite Zone - is centred on Mount Ngualla (Figure 12 and Figure 14). Here REE mineralisation is hosted by an in situ iron oxide and baryte-rich weathering shell overlying fresh dolomite carbonatite. Weathering depths are highly variable but grades in excess of 3% TREO are common within the iron oxide-baryte-rich material over thicknesses of up to 140 metres. Studies of the iron oxide-rich material show that REE occur in bastnaesite and synchisite indicating that weathering has not greatly modified the primary REE mineralogy (Witt et al., 2014).

Enrichments in the REE content of the regolith relative to the primary carbonatite range up to 300%.

Minor additional REE resources are hosted in colluvium developed in two alluvial channels. One is hosted by colluvium deposited in an erosional channel incised into the outer margin of the dolomite carbonatite: in contrast to the regolith, rare earths in these...
colluvium channels are hosted in monazite, lesser cerianite, and bastnaesite (Witt et al., 2013).

Resource

In the REE resource for Ngualla Hill published in April 2013 (Peak Resources, 2013), JORC compliant resources were calculated at cut-off grades of 1% and 3% TREO and yielded resource grades of 2.26% and 4.19% TREO respectively. While the high grade option represents only 22% of the total resource, it is sufficient for a project life of more than 50 years at conventional processing rates. As a consequence, the Preliminary Feasibility Study (Peak Resources, 2014a) focussed on the high grade core- the central Bastnaesite Zone Weathered Mineralisation, where ore reserves are 20.7 million tonnes at 4.54% TREO for 941,000 tonnes of contained REO (Peak Resources, 2014b). Resource and reserve estimate details are provided in Table 4.

Mrima Hill (Kenya)

Location and Ownership

Mrima Hill is one of a cluster of carbonatite and alkaline intrusions located 60 km to the south-west of Mombasa and 10 km from the coast of southern Kenya (Figure 1). The Mrima Hill Project is covered by a Special Mining Lease held by Cortec Mining Kenya Limited (CMK); Pacific Wildcat Resources Corporation (TSX.V:PAW; www.pacificwildcat.com), the operators developing the project, own 70% of CMK. The Ministry of Mining of Kenya revoked all Prospecting, Exploration and Mining licenses issued between...
14th January and 15th May 2013, including Cortec’s license over Mrima Hill. Cortec’s appeal of this decision was not upheld by the High Court (20 March 2015) and the current status of the license is not clear.

Geology

Mrima Hill and associated intrusions are Cretaceous in age and were emplaced into a fault-bounded basin of Jurassic-age Karoo sediments.

Mrima Hill consists of carbonatite, agglomerate and fenitised sediments overlain by weathered materials (Northrup et al., 2011; Pollard and Mapleson, 2013). Outcrop is poor with much of the hill draped in laterite which attains thicknesses of over 100 m in the central parts. Fenitised sandstone and siltstone occur at the south-western and south-eastern margins of the Mrima Hill intrusion; fenitisation of the sandstones has generated orthoclase and aegirine.

The carbonatite is predominantly a coarse- to medium-grained calcite carbonatite, micaceous in places, with lesser amounts of dolomite carbonatite. Calcite carbonatites crop out on the south-east to north-west side of the hill, while outcrops of dolomitic carbonatite are found on the western side of the hill. Accessory phases in the carbonatites include amphibole, biotite, pyrite, pyrochlore and fluorite. Angular to rounded fragments of biotite-rich calcite-dolomite carbonatite have been reported from within the calcite carbonatite.

Agglomerate outcrops are confined to the south-western slopes of the hill and are composed of fragments of sedimentary rocks, crystals of biotite, hornblende, aegirine-augite and microcline, set in a calcite-rich matrix.

REE-Niobium mineralisation

Economic grades of REE and niobium mineralisation are developed in the laterite capping produced by weathering of the igneous components of Mrima Hill under the tropical climatic conditions experienced in southern coastal Kenya. Weathering products of the carbonatite rocks include silicified rock, iron-manganese rock, saprolite and lateritic soils enriched in phosphates, rare earth oxides, niobium and barium; and depleted in calcium, alkalies and magnesium.

Resource

In September 2013, Pacific Wildcat Resources Corporation declared an indicated REE resource of 48.7 million tonnes at 4.40% TREO for 2.15 million tonnes of contained REO; with a further 4 million tonnes of contained REO in the inferred category (Pollard and Mapleson, 2013). Full details of the defined REO resource at Mrima are provided in Table 4.

Development of the Mrima Hill deposit has been suspended pending the resolution of the dispute regarding the company’s license.

Zandkopsdrift REE deposit (South Africa)

Location and Ownership

The Zandkopsdrift Project lies close to the Atlantic coast in the south of the Northern Cape Province of South Africa (Figure 1). Development of the project is managed by Frontier Rare Earths Ltd. (TSX-listed; http://www.frontierrareearths.com); ownership details are documented in Harper et al. (2011).

Geology

The Zandkopsdrift carbonatite is located within the bounds of the Cretaceous-aged Koegel Fontein Complex: a suite of alkali granites, syenites and carbonatites that intruded the gneisses of the western part of the Mesoproterozoic Namaqua-Natal metamorphic belt during the 130 Ma rifting phase that preceded the opening of the southern Atlantic Ocean. Zandkopsdrift has recently been dated at 55.9 ± 4.3 Ma (reported in Harper et al., 2014) and so significantly post-dates the Koegel Fontein Complex and is related to the regionally extensive group of Tertiary Olivine Melilite and Kimberlite pipes and diatremes described by Moore and Verwoerd (1985).

Zandkopsdrift is a 1,300 m by 900 m ovoid-shaped intrusion described as a “carbonatitic breccia pipe” (Harper et al., 2014) that is covered by Quaternary sands and unconsolidated sediments. Several smaller satellite intrusives, plugs and dykelets, have been identified around the main central plug.

The initial phase of intrusion was accompanied by brecciation and fenitisation of the host gneisses—brecciation being discernible at distances of a kilometre from the main intrusive. The main plug is built of sub-vertical dykes of phlogopite-carbonate breccias (Figure 16: Geological map of the Zandkopsdrift Complex (after Harper et al., 2014)).

Figure 16: Geological map of the Zandkopsdrift Complex (after Harper et al., 2014).

Figure 17: Core showing late REE-enriched carbonatite sheet (light coloured) cutting carbonate-phlogopite breccia (darker, grey) in the Zandkopsdrift Complex (Hayward, 2013).
Results of a scanning electron microscope study of the fresh rock describe the rock as containing “0.5 mm to 10 mm scattered grains of variety. The late-stage, REE-enriched dykes are mostly encountered of the finer facies generally post-dates emplacement of the coarser clast size: while relationships between the facies are complex, intrusion of these dykes resulted in brecciation of the host CPB, with feather-fractures developed in the breccias close to the intrusive contacts. Sequential injections of the later dykes are reported to have caused “devolatisation and alteration” of the earlier breccias (Harper et al., 2014). The final intrusive phase recognised at Zandkopsdrift is the emplacement of rare dykes and plugs of “grey-coloured magnetic” rock.

Little petrographic detail on the different components of the complex is supplied in the available technical reports but photographs of fresh phlogopite-carbonate breccia suggest that carbonate mineral contents are low (<20%) and consist of angular clasts: as such, the intrusion is clearly not a true carbonatite. Harper et al. (2011) describe the rock as containing “0.5 mm to 10 mm scattered grains of calcite, biotite, magnetite and country rock, with disseminated pyrite”. Results of a scanning electron microscope study of the fresh carbonatite phlogopite breccia and REE-enriched dyke material are reported in Harper et al. (2014), where it is somewhat confusingly claimed that the CPB sample(s) contained 88 weight percent “carbonate” whereas the dyke(s) had 59.6 weight percent “carbonatite minerals”.

Mineralisation

Despite the lack of true carbonatite amongst the various components of the complex described in the technical reports, the complex as a whole, and the late REE-enriched dykes, are consistently interpreted as “carbonatitic” (Venter et al., 2010; Harper et al., 2012, 2014).

Primary REE enrichment is interpreted to be magmatic, the progressive concentration of incompatible REEs as the various intrusive “carbonatitic” phases evolved and crystallised; this enrichment being enhanced by late stage hydrothermal remobilisation and enrichment of the REEs through the dyke assemblage. The primary, unaltered breccia/dyke assemblage at Zandkopsdrift has REE grades generally below or close to 1%TREO (the cut-off grade used for the original resource estimate: Venter et al., 2011).

The complex has undergone several stages of alteration (including late magmatic/hydrothermal) and weathering - the average depth of the weathering profile being 80 m. Primary levels of REE are enriched in the weathered material through supergene processes discussed previously: replacement of primary phases by secondary iron and manganese oxides and hydroxides generates limonitic Fe-Mn saprolite or Fe-Mn “wad”. Sulphides such as pyrite and pyrrhotite are noted in fresh diamond drillhole cores: acidic fluids generated from the alteration of such phases would have assisted in accelerating the breakdown of the primary carbonatite phases. Silicified and manganoferous varieties of laterite are encountered in the weathered profile (Venter et al., 2010; Harper et al., 2011).

Supergene REE enrichment is concentrated in the western and south-western portions of the complex. Two zones are distinguished based on broad lithological and grade characteristics: a higher grade Central Zone, where grades exceed 2.5%TREO; and a lower grade Outer Zone where grades are typically 1 to 1.5%TREO. Enhanced REE grades in the Central Zone are the result of a greater abundance of REE-enriched dykes relative to CPB in the protolith.

Available mineralogical studies show that the majority of the REE-bearing minerals consist of late-stage, supergene members of the monazite group; along with apatite-derived REE phosphate phases such as gorceixite (Ba,REE)Al₃(PO₄)₃(OH₆,H₂O), goyazite (Sr,REE)Al₃(PO₄)₃(OH₆,H₂O), crandallite (Ca,REE)Al₅(PO₄)₁₂(OH₆,H₂O) and cheralite (REE,Ca,Th)(P,Si)O₅ (Harper et al., 2011, 2015).

Resource

A Pre-Feasibility Study was concluded on the Zandkopsdrift Project in late 2014 (Harper et al., 2014) which included a re-assessment of the mineral resources and a statement of mineral reserves - these are detailed in Table 4. Proven Reserves amount to 14.93 Mt at a grade of 2.21%TREO for 331,000 tonnes of contained REO, with an additional 458 kt of contained REO as Probable Reserve.

Xiluvo REE deposit (Mozambique)

Location and Ownership

The Xiluvo REE Project lies within the Xiluvo carbonatite complex located in the Sofala Province of Mozambique some 110 km inland of the port of Beira (Figure 1). The project lies within a mining license held by Promac Lda, who have operated a quarrying operation for building aggregate on parts of the carbonatite for several decades. The REE project was investigated through a joint venture arrangement operated initially by Southern Crown Resources (ASX) and subsequently, Galileo Resources plc (AIM): the joint venture option was not exercised and interest in the project reverted to Promac in 2012.

Geology

Monte Xiluvo is a conspicuous set of quasi-circular hills that rise 700 m above the surrounding plains underlain by Neoproterozoic metamorphic rocks. These hills form the outer parts of the Xiluvo complex and are composed of an agglomerate apron of coarse, clast-supported breccias, comprising angular clasts of country rock gneisses and schists set in a matrix of finely pulverized silicate material. Carbonate is absent from the outer portions of the agglomerate apron but becomes more common towards the centre; rare clasts of carbonatite are found in the innermost parts close to the carbonatite bodies.

The agglomerate is intruded by a composite plug of carbonatite. Calcite carbonatite forms the earliest intrusive phase and occupies an incomplete annular ring along the outer margin of the carbonatite plug. These early carbonatites generally comprise extremely coarse platy calcite crystals over 2 cm in length and commonly contain streaky and patchy concentrations of aegirine and scattered pyrochlore. They are intruded by a second phase of calcite carbonatite that is uniformly fine-grained and greyish in colour; narrow sheets of this second carbonatite phase are sometimes found intruding the agglomerate.

The last recognised intrusive phase in the complex is a series of sheets, plugs and veinlets of iron-rich tuffisite material. In the larger plugs the tuffisite is a matrix-supported breccia where angular and
sub-rounded clasts of earlier carbonatites and country rocks are enclosed in an orange to brown hematite-rich carbonate matrix. Tuffsitic plugs are found intruding country rocks beyond the limits of the complex.

REE mineralisation

Geochemical sampling of the Xihuovo carbonatites showed moderate REE concentrations in the calcitic intrusives (typically <0.8%TREO) with higher concentrations - up to 2%TREO-sporadically developed in the tuffsitic phase.

The quasi-ring structure of the outer agglomerate ridges forms a blind drainage basin in the inner valley between the central carbonatite plug and the western ridge: unconsolidated effluvial and colluvial soils accumulated in this topographic bowl and are enriched in REO, phosphate and niobium. Reconnaissance pit sampling of the soils revealed REE concentration ranges of 1.8-3%TREO with attractive concentrations of the heavy REE.

Mineralogically, the soils are essentially free of clays and comprise a mixture of iron oxides and hydroxides with smaller amounts of quartz and manganese oxides; the REE mineral is predominantly a low-Th variety of monazite.

Resource

The soil deposit was systematically drilled to bedrock at 50 m x 50 m spacing in July 2011 using a powered, sheathed augur technique, that returned undisturbed samples. A total of 220 holes were drilled from which the extent and depth of the soil deposit was determined to be far more limited than anticipated.

An Indicated category REE and P₂O₅ resource was estimated (according to the JORC specifications) on the basis of 220 boreholes (Southern Crown Resources release to the ASX: 10 November 2011). Details are provided in Table 4. As a consequence of the limited size of the resource and with no prospect of increasing this with additional exploration, the joint venture option was not exercised and the project was dropped.

Glenover REE-Phosphate deposit (South Africa)

Location and Ownership

The Glenover Complex is located in the Lephalale (Ellisras) district of north-western Limpopo Province in South Africa (Figure 1). The Exploration Right over the property is held by Glenover Pty Ltd. (www.glenover.com) who is developing the project through a joint venture arrangement with Galileo Resources plc (www.galileoresources.com).

Geology

Glenover is composed of an oval 3.5 x 4.5 km sized plug-like intrusion of micaceous pyroxenite and carbonatite, emplaced into quartz-arenite sediments of the Waterberg Group. The age of the complex is poorly constrained but Verwoerd (1967) reported an imprecise monazite date of 1000 ± 200 Ma; there is no compelling evidence to doubt that Glenover was emplaced at the same time as the other mid-Proterozoic, post-Waterberg alkaline and carbonatite complexes (as reviewed in Hanson *et al.*, 2006).

Biotite-diopside pyroxenite makes up the major part (over 90% by volume) of the intrusion. Banding of mica- and pyroxene-rich layers, sometimes accompanied by massive magnetite, occurs in places. Apatite is a ubiquitous accessory phase, and in places can reach modal abundances of 15-20%; Verwoerd (1986) describes the average phosphate content in the pyroxenite as 5% P₂O₅. Phlogopite often occurs in place of biotite; alteration to vermiculite is common and several areas of vermiculite mineralisation have been defined within the pyroxenite.

The pyroxenite plug was intruded by carbonatites which most commonly occur as metre-scale, arcuate to annular sheets with an associated network of anastomosing thin carbonatite veins. A central concentration of carbonatite was interpreted by Verwoerd (1967) to represent the surface expression of a central intrusive plug from which the sheets and veins of carbonatite emanate. Both dolomite and calcite carbonatites are represented with the magnesian variety predominating; calcite carbonatites are restricted to the outer portions of the complex. Verwoerd (1967) described mixed calcite-dolomite carbonatites near the contact between these varieties with the amounts of “accessory calcite” in the dolomite carbonatite increasing towards the calcite carbonatite. Phlogopite, magnetite and apatite are the main accessory phases in the dolomite carbonatite along with sparse sulphides.

Mineralisation

REE and phosphate mineralisation is hosted in a body of iron oxide-rich apatite-calcite breccia developed at the contact between a major body of carbonatite and pyroxenite near the centre of the complex.

This body initially formed a small, but conspicuous, 20 m high hill on the predominantly flat local landscape with a trigonometric survey beacon on its highest point. Called “Witkoppie” (white hillock) on early maps, it became known as “Breccia Hill” by geologists and miners during the exploitation of the breccia for phosphate by Goldfields of SA, between 1958 and 1982 (which transformed the hill into a 150 m deep open pit!). The mined phosphate ore was simply crushed and graded: the high phosphate material (36% P₂O₅ on average) was shipped, untreated, to a smelter for production of thermal phosphate; the balance stored in a series of stockpiles on the mine site. In 2002 FerMinOre Ltd. acquired the property from Goldfields of SA and developed and operated a 2000 tpm plant producing single superphosphate from material drawn from the stockpiles. In 2009 the property was transferred to Glenover Pty Ltd., a subsidiary of FerMinOre, to develop the identified REE and niobium potential of the breccia along with the phosphate.

This breccia is composed of centimetre-scale angular clasts of magnetite (now altered to martite or hematite), set in a reddish matrix cement which is a mixture of apatite, fine iron oxides and minor carbonates (calcite and dolomite). Grain size is highly variable and finer-grained zones and layers free of clasts are common.

The origin of the breccia has been debated: originally Verwoerd (1967) rejected the option of a volcanic vent and interpreted the breccia as resulting from karst sedimentation in a solution cavity, followed by hydrothermal alteration and brecciation by collapse. Later Verwoerd (1986) reconsidered the option that the breccia was forcibly intruded. Recent resource drilling below the base of the pit confirmed that the breccia does not extend at depth. The breccia is currently interpreted...
as the product of dissolution of the carbonatite by sub-solidus fluids - possibly both late magmatic and heated meteoric waters - and collapse of the leached residue. Acidification of the fluids by the dissolution of the volumetrically small, but widespread, sulphide component in the carbonatite is thought to have assisted the breakdown of the carbonate and phosphate phases.

Poly-metallic mineralisation of the breccia is a consequence of enrichment in the lag material remaining from the removal of the major rock phases. Phosphate is largely contributed from primary apatites in the carbonatite and pyroxenite; the REE were liberated from primary REE carbonate phases as well as the apatite, and re-precipitated as rare earth carbonates (synchisite and bastnaesite) and phosphates (secondary monazite and apatite). Two populations of apatite have been identified - low- and high-REE types. REE are also bound in the titanio-niobate mineral aeschynite indicating the contribution of components from the pyroxenite (titanium, phosphate andiron) to the final mineralised precipitate. Monazite and REE carbonates host over 50% of the REE grade; the balance is held, in near equal contributions, in niobates, apatites and an unidentified iron-cerium carbonate phase.

Resource

Resources were estimated (using the SAMREC criteria) for the breccia ore and remaining in situ material in the pit: only the REE and phosphate were assessed in the stockpiles but Nb was also estimated for the in situ ore. The study also provided resource estimates for the carbonatite and pyroxenite intersected in the resource boreholes (the resource and geology report is available at: http://www.galileoresources.com/projects/Glenover%20Geological%20Resour ce%20Report%203%20August%202012.pdf). A total of 221 kt of contained REO remain in unmined in situ breccia ore and on the stockpiles. Full details of the resource are provided in Table 4.

Tantalus (Madagascar)

Location and Ownership

The Tantalus Project is located on the Ampasindava Peninsula on the northwest coast of Madagascar (Figures 1 and 18) approximately 50 km south of the island of Nosy Bé and 580 km north of the capital, Antananarivo (Gilbertson, 2013). The Tantalus project is unique amongst the advanced REE projects in Africa in that it is claimed to be of the ion-adsorption-clay type. The Tantalus project is owned 100% by Tantalus Rare Earths AG (http://www.tre-ag.com/).

Geology

The Tantalus Project is located within the sub-volcanic Ambohimirahavavy Alkaline Complex that is a member of the late Oligocene/early Miocene Ampasindava Alkali Province. Uranium-lead zircon age determinations for the complex give dates of ~24 Ma (Estrade et al., 2014a). The complex intruded Jurassic sediments of the Isalo Group: mudstones and siltstones interbedded with sandstones, marls and minor carbonates. Ambohimirahavavy is oval in shape, 20 x 8 km in size, and consists of two sub-circular intrusive bodies interpreted as caldera structures; they comprise an association of nepheline syenite and saturated to over-saturated syenites, partially covered by their volcanic equivalents (Estrade et al., 2014; Gilbertson, 2013).

Exploration efforts have focussed on the south-eastern caldera: Ampasibikita. Magnetic and radiometric data suggest the structure is near-circular with a diameter of ~7 km; the caldera is filled with trachytic volcanic/volcanioclastics and the centre is penetrated by a rhyolithic obsidian dome (Estrade et al., 2014; see Figure 19). The outer part of the caldera structure is cut by swarms of dykes of trachyte, microsyenite, trachyphonolite and peralkaline granite composition: the latter, locally called “fasibikitites”, are enriched in REE and associated critical metals like tantalum, niobium and zirconium (Desharnais et al., 2014). Mineralised skarn systems are developed in places where peralkaline granite dykes intersect country rock marls and limestone sediments.

Style of Mineralisation

REE mineralisation developed in the Ampasibikita peralkaline granite dykes is analogous to that found in similar peralkaline rocks elsewhere (e.g. Khibiny and Lovozero in Kola, Russia; Strange Lake, Canada). At Ampasibikita, REE-bearing phases in the granites include chevkinite, eudialyte, monazite, pyrochlore and zircon; all are fine-grained (<1 mm), and interpreted as primary magmatic minerals. Contact skarns contain REE-fluorocarbonates (bastnaesite, synchisite, parisite) generated from metasomatic and/or hydrothermal processes (Gilbertson, 2013; Estrade et al., 2014).

The Tantalus REE deposit is located in the regolith developed over the trachytic/syenitic Ampasibikita caldera. The regolith has an average thickness of ~13 m but can attain thicknesses of 40 m (Gilbertson, 2013). The following zones are
recognised within the pedolith portion of the regolith; in top-down sequence:

- **Soil**: typically <0.5 m thick;
- **Ferruginous zone**: orange-red, homogenous iron-oxide-rich material; thickness variable;
- **Mottled zone**: orange-red mottled material of variable thickness;
- **Pallid zone**: variable thickness of light- to buff-coloured, clay-rich material

Basal contacts are gradational into underlying saprolite and saprock.

In the ion-adsorption-type deposits of southern China (Bhao et al., 2008), REE enrichments generally develop at the base of the pedolith section. At Tantalus the REE mineralisation is erratic but generally increases with depth; like the Chinese deposits, the HREE/LREE tends to increase with depth (Gilbertson, 2013). The regolith also contains a range of relict refractory accessory REE-bearing phases which include baddeleyite, eudialyte, pyrochlore and zircon: this is significant as at least some of the REE budget must reside in refractory phases rather than being completely ionically-bound to clay minerals.

Resource

A preliminary inferred resource was estimated for each of five prospect sub-areas within the project using data from 277 boreholes and 1,000 pits (<10 m depth) (Gilbertson, 2013). Preliminary mineralogical and metallurgical testwork “confirmed the presence of REEs that are ionically adsorbed onto clay minerals” amenable to extraction “using comparatively inert solutions” (Gilbertson, 2013).

Additional pitting was completed that extended the exploration coverage and a revised resource estimate was constructed solely from the laterite and saprolite layers incorporating several refinements to the earlier estimate. The most significant (and novel) refinement being the use of variable cut-off grades for different blocks based on their “amenability to in-situ leaching or tank leaching” to extract REE: factors essentially controlled by the slope of the landsurface (details provided in Besharnais et al., 2014).

It is estimated that over 550,000 tonnes of contained REO exist in the Tantalus Mineral Resource, including 40.1 Mt of Measured Resource at a grade of 0.097% TREO for 52,200 tonnes of contained REO. Full details of the resource are provided in Table 4.

Steenkampskraal REE-Thorium deposit (South Africa)

Location and Ownership

Steenkampskraal is located in the north-western part of the Western Cape Province of South Africa approximately 350 km north of Cape Town (Figure 1). The deposit was previously mined for thorium and the mine site is owned by Steenkampskraal Monazite Mine (Pty) Limited (“SMM”), a subsidiary of Rare Earth Extraction Co. Ltd. (“Rareco”), now a wholly-owned subsidiary of Great Western Minerals Group (GW MG: TSX.V: GWG; www .gwmg.ca). SMM holds a New Order Mining Right permitting mining operations until 2030.

Much of the following information is derived from NI 43-101 format technical reports available off the GW MG website (http://www .gwmg.ca/mining-operations/assessment-reports).

Geology

The Steenkampskraal deposit is hosted within Mesoproterozoic granitoid gneisses near the southern edge of exposure of the Namaqua Province. Younger quartzites and shales of the Vanrhynsdorp Group (550 - 530 Ma) overlie the gneisses on the Steenkampskraal property. The REE mineralisation is developed in a monazite-apatite vein ore body referred to as the “monazite mineralised zone” or MMZ. The Steenkampskraal occurrence is one of a dozen occurrences of vein-style monazite mineralisation in southern Namaqualand between Steenkampskraal and the Okiep copper district 180 km to the northwest (Andreoli et al., 1994).

Two suites of granitoids are recognised in the immediate vicinity of the Steenkampskraal deposit. Equigranular and megacrystic granite-gneisses make up the bulk of the hosting country rocks and are referred to as the *Steenkampskraal Granitic Gneisses*. These are cut by units of the *Steenkampskraal Intrusive Suite*, an assemblage of dykes of alkali granite, granite, and quartz syenite. Some bodies contain orthopyroxene, and locally are charnockite or enderbite in composition; mafic members, such as hypersthene, anorthosite, and leucotroite have been reported (Hancox and Jones, 2012).

The MMZ REE body is spatially associated with granitoid members of the Steenkampskraal Intrusive Suite and was emplaced between the late stages of the D2/F2 structural event and the initial phase of the D3/F3 event of the Namaqua Orogeny. The latter event...
involved upright folding; in places intense monoclinic folding created axial faults and shear zones that produced the “steep structures” and attendant igneous magmatism associated with the Okiep mineralisation (Clay et al., 2014). Andreoli et al. (1994) argued that the MMZ was emplaced during the F3 structural event; more recent studies reveal that the MMZ is transected and steepened by the D3, and so was injected prior to the formation of the D3 steep structures (Basson et al., in press). These findings are consistent with the new data for the crystallisation of the MMZ of 1046 ± 7.5 Ma (Knoper, 2010).

Sub-vertical normal faults associated with the later Neoproterozoic tectonism reactivated older structures causing localised brecciation of the Namaqua gneisses and displaced and deformed the MMZ.

Mineralisation

The MMZ appears as a thin lenticular-shaped lode, having an average overall thickness of about 0.6 m, a strike-length of about 400 meters at the surface, and a known southerly down-dip extension of at least 450 meters. Historic underground mine development showed the MMZ to vary in thickness between 0.2 m and 4.5 m with an average thickness of 0.5 m. Recent resource drilling confirmed the presence of significant vein thicknesses with a maximum of 5.67 m (true thickness) being intersected (Hancourt and Jones, 2012). Significantly, contacts of the MMZ with host gneisses are typically sharp and distinct, and minimal monazite mineralisation (<1%) occurs within the hangingwall or footwall. The morphology of the MMZ is fundamentally structurally controlled. The deposit is bounded in the east and west by major faults which effectively close off the mineralisation along strike but current understanding of the structural and geological framework suggests a strong potential for further mineralisation “displaced” beyond these faults and has been the focus of exploration efforts by GWMG (Clay et al., 2014).

Four broad petrographic types of mineralisation are recognised in the MMZ and these are summarised in Table 3. The MMZ is composed of approximately 40% monazite and other REE phases, along with a gangue assemblage of quartz, feldspar, iron-rich chlorite, iron oxides, ilmenite, sulphides (pyrite, chalcopyrite and/or galena) and thorite. Monazite accounts for >91% of the total REE content, comprising up to 80% of the ore mass. Sulphides, oxides, and silicates make up the remainder in decreasing order of abundance.

Several different models have been proposed for the origin of the Steenkampskaal mineralisation and there is presently no consensus on its genesis.

Early workers favoured a hydrothermal origin for the MMZ whereas Andreoli et al. (1994) argued that the monazite body was of magmatic origin, crystallising from an immiscible phosphate + sulphide + oxide magmatic liquid, analogous to the mode of formation of nelsonite. On the basis of data collected during the feasibility study on the project, Clay et al. (2014) concluded that the primary mineralising fluid was generated by “regional magmatic process”, culminating in the production of an immiscible liquid (either magma or brine) enriched in phosphate and REE (along with other elements) that was emplaced under ductile-brittle conditions at granulite facies metamorphic temperatures and pressures. The vein was affected by syn- and post-emplacement metamorphic and hydrothermal events which introduced magnetite and sulphides and other alteration assemblages (Clay et al., 2014).

Resource

The Feasibility Study for the Steenkampskaal project (Clay et al., 2014) declared a total REE resource for the project of 665,000 tonnes at an average grade of 14.0% TREO for 93,100 tonnes of contained REO. This composite resource combines in situ ore with material in historic tailings dams: a breakdown of the resource classifications and grades is provided in Table 4.

Steenkampskaal was the first of the African REE projects to complete a Feasibility Study.

Gakara (Burundi)

Location and Ownership

The Karonge / Gakara vein system occurs in the west of Burundi, approximately 20 km southeast of the capital Bujumbura and 12-14 km east of the shores of Lake Tanganyika (Figure 1). Rainbow Rare Earths (www.rainbowrareearths.com), a private company, holds 85% of the Gakara project.

Geology and Mineralisation

The Karonge/Gakara REE vein mineralisation was discovered in 1936 and was mined between 1948 and 1978, producing a total of

Type	Name	Description
Type 1	Phosphate-rich “ore”	Provides the bulk of the economic-grade material, with phosphate minerals (monazite and apatite) comprising up to 80% of the ore mass. Sulphides, oxides, and silicates make up the remainder in decreasing order of abundance.
Type 2	Oxide-rich “ore”	Monazite-bearing hercynite-magnetite-rich bands in or adjacent to the phosphate-rich ore. Relatively uncommon assemblage.
Type 3	Feldspathic “ore”	Includes a broad range of silicate and phosphate minerals - usually as stringers of magnetite and monazite in a plagioclase-quartz matrix. Chlorite, zoisite and allanite extensively replace plagioclase, biotite and monazite.
Type 4	Siliceous “ore”	Co-exists, and is banded, with massive monazite. Commonly grades into lenticular masses of dark quartz rock (up to 0.50 m thick) that are frequently developed at the contacts between tonalities and the phosphate-rich ore. Comprises monazite, minor apatite, oxides and sulphides along with small (2-3 mm) disseminated nodules of quartz, monazite, apatite, zircon, skeletal biotite and chlorite pseudomorphs after garnet.
Table 4: Details of the resources and reserves declared for the REE projects under review

Deposit	Classification	Ore Contained (millions)	Rare Earth Oxide proportions (%)														
		Grade (%)	La₂O₃	CeO₂	Pr₆O₁₁	Nd₂O₃	Sm₂O₃	EuO₂	Gd₂O₃	TbO₃	DyO₃	HoO₃	ErO₃	TmO₃	YbO₃	LuO₃	Y₂O₃
Kangankunde	Inferred	2.53	4.24	107													
Songwe	Indicated	13.2	1.62	213													
	Inferred	18.6	1.38	256													
Songwe Mineral Reserves	Probable	8.48	1.60	136													
Wigu Hill (Twiga 1%)	Inferred	1.93	2.69	51.9													
Wigu Hill (Twiga 3%)	Inferred	0.47	5.26	24.7													
Wigu Hill (Tembo)	Inferred	1.1	1.83	20.1													
Lofdal	Indicated	2.88	0.32	9.22													
	Inferred	3.28	0.27	8.86													
Ngualla Project (3%)	Measured	27	4.33	1,169													
	Indicated	13	3.99	519													
	Inferred	1.7	3.56	60.5													
Ngualla Bastnaesite (3%)	Measured	19	4.53	861													
	Indicated	2.9	4.62	134													
	Inferred	0.11	4.1	4.5													
Ngualla Mineral Reserve	Probable	21.6	4.54	981													
Mruma Hill	Indicated	48.7	4.4	2,143													
	Inferred	110.7	3.61	3,996													
Zandkopsdrift Mineral Resource	Measured	23.0	2.07	476													
	Indicated	22.7	1.73	393													
	Inferred	1.1	1.52	16.5													
Zandkopsdrift Mineral Reserve	Proven	14.93	2.21	331													
	Probable	26.19	1.75	458													
Xiluvo	Indicated	1.11	2.05	22.8													
Glenover (Stockpiles)	Inferred	2.69	1.94	52.2													
Glenover (In situ Ore)	Indicated	7.41	2.2	163													
Glenover (In situ Ore)	Inferred	0.27	2.16	5.83													
Tantalus	Measured	40.1	0.097	38.9													
	Indicated	157.6	0.088	138.7													
	Inferred	430	0.089	382.7													
Steenkampsvallei	Measured	0.085	19.5	16.58													
	Indicated	0.474	14.1	66.8													
	Inferred	0.06	10.4	6.24													
Steenkampsvallei Historic	Indicated	0.046	7.2	3.312													
5,000 tonnes of bastnaesite-rich ore grading over 50% TREO. Gakara was the first REE producer in Africa.

Gakara is hosted by Mesoproterozoic metasediments (quartzites, and pelites) which are surrounded by Mesoproterozoic tonalites and granites. The Gakara deposit consists of a structurally-controlled stockwork vein system which occurs in several NE-SW trending zones, possibly related to fault zones on a major anticlinal structure (Van Wambeke, 1977). Vein widths vary from 3-30 cm and are composed principally of bastnaesite and monazite. The bastnaesite has been dated at 586.8 ± 3.7 Ma (Ba-La technique: Nakai et al., 1988) implying that the mineralisation significantly post-dates the younger granitic pegmatites in the region. Most workers relate the REE vein mineralisation to a late-stage hydrothermal event related to a carbonatitic source (Van Wambeke, 1977; Brinckmann and Lehmann, 1983; Lehmann et al., 1994) despite the fact that the closest known carbonatite, Matongo, lies 60 km to the north.

Initial REE mineralisation was of coarse-grained bastnaesite which was later brecciated, allowing ingress of phosphatic fluids that metasomatically transformed the bastnaesite to microcrystalline monazite. A range of mineralisation types were generated in response to the intensity of the metasomatism from pure, massive bastnaesite (massive mineralisation), through mixed bastnaesite-monazite to monazite-dominated (breccia) mineralisation (Brinckmann and Lehmann, 1983). Accompanying gangue mineral phases are baryte, quartz, microcline, biotite, pyrite, molybdenite, and galena.

Resource

No modern resource estimate is available for the REE resources at Gakara.

Since 2011 Rainbow Rare Earths have completed a mapping and sampling programme to define the true distribution and extent of the REE veining across the Gakara property. They report finding 520 new in situ surface occurrences of REE veins, significantly extending the known extent of the mineralisation. In addition, they claim that 5 of these new prospects contain veins substantially thicker - up to 50 cm (company website) - than those found in the historically explored areas. A NI 43-101 compliant “mineral inventory” has apparently been compiled but is not in the public domain.

Summary Discussion

The mineralisation style and stage of project development of the 13 African rare earth metal deposits are summarised in Table 5. For many of these REE deposits, little detailed geological and/or petrological research has been done on the complexes hosting them. Having identified the deposit and acquired the necessary regulatory permissions, the focus of an exploration company (most being listed entities and responsible to shareholders) is always to acquire the data necessary to establish mineral resources and ore reserves to complete the necessary feasibility studies - acquiring a geological understanding of the deposit generally has a lower priority. Research projects have begun at a few projects but are mostly too recent for new findings to be published; some new research results remain under embargo so are not yet in the public domain. As results from these studies become public, many of the genetic models are likely to be modified or replaced with improved options.

Details of the mineral resources or ore reserves defined on the deposits under review are provided in Table 4 along with the relative proportions of each rare earth oxide. The TREO grade of the deposits is compared to size - as tonnes of contained REO - in Figure 20. Marker lines are included on the figure at contained REO values of 100 and 200 kt -TREO contents that will provide 20 years of project

| Table 5: Summary of mineralisation style and stage of development of the African REE deposits. |
|---------------------------------|-----------------|-----------------|-----------------|
| REE Deposit | Host/source | Mineralisation | Stage of development of project (January 2015) |
| Kangankunde | Carbonatite | Magmatic-Hydrothermal | Resource (Inferred); development halted |
| Songwe | Carbonatite + fenite | Magmatic-Hydrothermal | PFS Study (Reserves) |
| Nkombwa Hill | Carbonatite | Magmatic-Hydrothermal | Exploration |
| Wig Hill | Carbonatite | Magmatic-Hydrothermal | Resource (Indicated and Inferred) |
| Lofdal | Carbonatite? | Hydrothermal | PEA Study (Indicated and Inferred) |
| Ngualla Hill | Carbonatite | Epigenetic-residual soil deposit | PFS Study (Reserves) |
| Mrima Hills | Carbonatite | Epigenetic-residual soil deposit | Resource (Indicated and Inferred); development halted |
| Zandkopsdrift | Mica-carbonate breccia & “REE carbonatite” | Epigenetic-residual soil deposit | PFS Study (Reserves) |
| Xiluvo | Carbonatite | Epigenetic-residual soil deposit | Resource (Indicated); development abandoned |
| Glenover | Carbonatite + pyroxenite | Epigenetic-karst solution breccia | PEA Study (Indicated and Inferred) |
| Tantalus | Syenite + skarn | Epigenetic-adsorption clays | PEA Study (Measured, Indicated and Inferred) |
| Gakara | Carbonatite?? | Vein | Exploration |
| Steenkampskaal | Unidentified magmatic? | Vein | Feasibility Study (Measured, Indicated and Inferred) |

PEA: preliminary economic assessment; PFS: preliminary feasibility study.
life at annual production levels of 5,000 t and 10,000 t respectively; the magnitude of production generally required for a non-Chinese operation. Carbonatites are the source of, and/or host to, the REE mineralisation in at least 10 of the deposits reviewed; with magnesian, iron-rich dolomitic varieties dominating in all but 3 of them. As a consequence of the incongruent melting of dolomite at crustal pressures, calcite is the early, high temperature liquidus phase in magnesian carbonatite magmas; dolomite only crystallising from the magma at temperatures below ~815 °C (Harmer and Gittins, 1998). The REE mineralised magnesian carbonatites thus represent relatively evolved fractions of each complex.

Figure 21 illustrates the changes in relative concentrations of individual REE as TREO concentrations increase in the magnesian carbonatites from the Nkombwa Hill Complex. The plotted averages are derived from an unpublished dataset of assays on over 1,600 kilogram-scale exploration samples and span a range in TREO concentrations from below 0.1%, to over 20%TREO. The normalised REE patterns in Figure 21(a) are broadly consistent but show a progressive increase in LREE relative to HREE (reflected in a “steepening” in slope of the pattern) with increasing grade. This effect is quantified in Figure 21(b) using the ratio of Nd, a LREE, to Dy, a HREE: both elements being critical constituents of the Nd-Fe-B high strength permanent magnets, and are in high demand. Increases in the REE grade can be comfortably ascribed to magmatic fractionation processes for TREO grades up to 1%; above these levels hydrothermal processes are likely to be active.

The economic implications of the variation in the relative contents of LREE and HREE in ore zones will be appreciated when the massive range in the trading price of different RE oxides (presented in Table 6) is considered. The more “fractionated” the REE pattern, the lower the intrinsic value of the contained REE package. The economic attractiveness or viability of an REE deposit is not solely a matter of tonnes and grade; nor of mining method - whether an REE deposit will ultimately produce saleable rare earth products will depend on whether the REE-bearing phases can, economically: be liberated from their matrix, physically concentrated and brought into solution; have the REE extracted as a group free of contaminants, and refined to >99% pure chemical form of the individual REE for sale (generally as oxides, chlorides or metals). Essentially the successful development of an REE project to production is as much a chemical engineering challenge as a geological or mining one.

The demand for the HREE Ho to Lu is limited as their use is restricted to niche applications; as such they are seldom if ever included in off-take agreements. No value is assigned to them when evaluating the economics of an REE deposit (Prices from Asian Metal Pages www.asianmetal.com).

Each combination of source rock and mineralising process imparts

Figure 20: Plot of contained in situ REO against TREO grade for the 11 African deposits with declared resources. The vertical dashed lines mark 100,000 and 200,000 tonnes of contained REO, respectively, which would provide a 20 year life of project at annual production/extraction rates of 5,000 and 10,000 tonnes per annum, respectively (discussed in text).

Figure 21: Plots illustrating the fractionation of REE distribution during magmatic/hydrothermal evolution of the Nkombwa Hill carbonatite. (a) chondrite-normalised REE plot of averaged compositional ranges of analyses of over 1,600 exploration samples spanning TREO compositions from below 0.1% to over 20% (individual traces are averages for the ranges - <0.75%:<0.1, 0.1-0.3, 0.3-0.5 and 0.5-0.75; >1%: 1-3, 3-5, 5-10, >10), (b) change in Nd/Dy ratio with increasing total REE grade for the range averages shown in (a); labels provide the ppm Nd concentration for each average.
a different relative distribution of the individual REO in the resulting deposit. Chondrite-normalised plots are used to compare the resource REO distributions in each deposit in Figure 22 (a) - (d); for Nkombwa, where no resource has yet been defined, averages have been used (the four >1% groups in Figure 21; also see caption to Figure 22(a)). Each plot has been drawn with identical scaling to aid visual comparison.

The REE variations between the four carbonatite-hosted deposits mineralised through magmatic/hydrothermal processes - Kangankunde, Songwe, Wigu and Nkombwa - are shown in Figure 22(a). The normalised REE traces have shapes that are typical of carbonatites: steep, high LREE/HREE profiles with no Eu anomaly.

The “bumpy” nature of the Kangankunde trace - due to apparent “positive anomalies” at Tb and Tm - is almost certainly a consequence of poor data quality. Songwe differs from the other deposits in containing less LREE and higher relative amounts of the HREE - reflecting with the identified late metasomatic growth of HREE enriched apatite.

The significant enrichment in the HREE that characterises the Lofdal mineralisation is conspicuous in Figure 22(b). These REE distributions are consistent with the revised interpretation (Swindon and Siegfried, 2011; Dodd et al., 2014) that most of the Lofdal carbonate “dykes” are hydrothermal rather than magmatic carbonatites - the HREE mineralisation being a consequence of metasomatic processes.

The demand for the HREE Ho to Lu is limited as their use is restricted to niche applications; as such they are seldom if ever included in off-take agreements. No value is assigned to them when evaluating the economics of an REE deposit. (Prices from Asian Metal Pages www.asianmetal.com).

| Table 6. Prices for 10 of the REO as traded between June 2013 and February 2015 (values are US$ per kg pure oxide). |
|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| | La2O3 | CeO2 | Pr6O11 | Nd2O3 | Sm2O3 | Eu2O3 | Gd2O3 | Tb2O3 | Dy2O3 | Y2O3 |
| 25 June 2013 | 7.30 | 7.30 | 74.50 | 61.50 | 7.30 | 825 | 20.75 | 700 | 475 | 20.00 |
| 10 June 2014 | 5.60 | 5.50 | 120.50 | 69.50 | 7.10 | 855 | 22.67 | 700 | 415 | 48.88 |
| 5 February 2015 | 4.00 | 3.55 | 95.50 | 58.50 | 3.50 | 495 | 76.50 | 695 | 335 | 55.50 |
processes. Figure 22(b) compares the REE distribution in the Lofdal resource with the two carbonatite plugs - the Main and Emanya bodies - and averages representing “end member” compositions of the wide spectrum of carbonate “dyke” types in the swarm (data from Swinden and Siegfried, 2011). The Lofdal resource REE distribution is closely comparable to the “HREE-rich” end member dyke composition.

The normalised traces for the live supergene residual soil (laterite) deposits (Figure 22c) have similar levels of LREE to typical carbonatites but markedly elevated levels of the HREE. The reason can be appreciated with reference to Figure 21 - deep weathering of un-evolved carbonatites (always the more voluminous) elevates REE concentration in the residual laterite through removal of the matrix constituents - a process that will not fractionate the LREE (with the possible exception of Ce), relative to the HREE and so preserves the economically attractive LREE/HREE balance in mineralised laterite. The profile for the Tantalus ion-adsorbed clays is markedly different: in addition to the overall low TREO grade, the depletion in Eu is inherited from the granitic/syenitic protoliths. The profile also shows that the Tantalus clays are not unduly enriched in HREE: the key characteristic of the Longnan HREE-enriched type of adscorption clay deposits of southern China (Bao and Zhao, 2008).

Finally, Figure 22(d) reflects the high grade of the Steenkampskaal deposit relative to the other deposits while the prominent negative Eu anomaly in the MMZ is consistent with a crustal derivation of the mineralising fluid. Due to the high ore grade, concentrations of the key tradeable HREE Tb, Dy and Y are higher in the Steenkampskaal ore than at Lofdal.

Acknowledgements

The authors gratefully acknowledge the contribution of information and/or diagrams from several of the companies managing the projects discussed in this review. In particular, Jock Harmer would like to express his gratitude for the contributions made by Dave Hammond and Dr Wally Witt (Peak Resources), Tony Harwood, Paul Karpeta and Mike Evans (Montero Mining), Scott Swinden and Don Burton (Namibia Rare Earths), and Alex Andersson (Glenover); Paul Nex gratefully acknowledges the informative discussion with Cesare Morelli about Rainbow Minerals’ accomplishments at Gakara. Any errors or inaccuracies in the final product are, however, entirely our responsibility. We are grateful to Julia Haddon for drafting the Songwe Hill carbonatite, Malawi. 21

A., 2014. Process mineralogical characteristics of REE-bearing carbonatite from the Songwe Hill deposit, Malawi. 21st meeting of the International Mineralogical Association, Johannesburg, Abstract Volume, p.57.

Andreoli, M.A.G., Smith, C.R., Watkeys, M., Moore, J.M., Ashwal, L.D. and Hart, R.J., 1994. The geology of the Steenkampskaal Monazite Deposit, South Africa: Implications for REE-Th-Cu mineralization in charnockite-granulite terranes. Economic Geology, 89, 994-1016.

Appleton, J. D., Bland, D. J., Nancarrow, P. H., Styles, M. T., Mambwe, S. H. and Zambesi, P., 1992. The occurrence of daqingshanite- (Ce) in the Nkombwa Hill carbonatite, Zambia. Mineralogical Magazine, 56, 419-422.

Bao, Z. and Zhao, Z., 2008. Geochemistry of mineralization with exchangeable REY in the weathering crusts of granitic rocks in South China. Ore Geology Reviews, 33, 519-535.

Basson, I.J., Muntingh, A., Jellicoe, B.C. and Anthonissen, C.J., in press. Structural Interpretation of the Steenkampskaal Monazite Deposit, Western Cape, South Africa. Journal of African Earth Sciences, in press.

Brügger, W.C., 1921. Die Eruptivgesteine des Kristianiagebietes, IV, Das Pengebiet in Telemark. Norsk. Vidensk. Selsk. Skrifter, I, Math. Naturv. Kl., No 9, 1-408.

Broom-Fendley, S., Brady, A., Dawes, W., Wall, F., Gunn, G. and Horstwood, H., 2014a. The Songwe-Hill carbonatite, Malawi: new mapping, geochemistry and U-Pb dating. 21st meeting of the International Mineralogical Association, Johannesburg, Abstract Volume, p.195.

Broom-Fendley, S., Wall, F., Gunn, G, Andersen, J., Brady, A. and Dawes, W., 2014b. Late stage apatite: a potential heavy REE-enriched co-product of light REE minerals in carbonatites. 21st meeting of the International Mineralogical Association, Johannesburg, Abstract Volume, p.57.

Buckley, H.A. and Woolley, A.R., 1990. Carbonates of the magnesite siderite series from four carbonatite complexes. Mineralogical Magazine, 54, 413-418.

Cahen, L. and Snelling, N.J., 1966. The Geochronology of Equatorial Africa. North-Holland Publishing Company, Amsterdam.

Chi, R., Tian, J., (2008). Weathered Crust Elution-Deposited Rare Earth Ores. Nova Science Publishers, New York, 308 pp.

Clay, A.N., Machowksi, R., Jones, I., Marra, G.L., Duke, V., Harper, F. and de Klerk, A.J., 2014. National Instrument 43-101, Independent Technical Report on the Results of a Feasibility Study for the Steenkampskaal Rare Earth Element Project in the Western Cape, South Africa for Great Western Minerals Group Ltd. NI 43-101. Technical Report, pp 262. (available from www.sedar.com).

Connelly, N.G., Damhus, T., Hartshorn, R.M. and Hutton, A.T., 2005. Nomenclature of Inorganic Chemistry: IUPAC Recommendations 2005. RSC Publishing, pp 366.

Croll, R., Swinden, S., Hall, M., Brown, C., Beer, G., Scheepers, J., Redelinghuys, T., Wild, G. and Trusler, G.E., 2014. Mkango Resources Limited Songwe REE Project Malawi: NI 32-101, Pre-feasibility Report. 382 pp. (available from www.sedar.com).

Deans, T. and McConnell, J.D.C., 1955. Isokite, CaMgPO4F, a new mineral from Northern Rhodesia. Mineralogical Magazine, 30, 681-690.

Desharnais, G., Camus, Y. and Bisaillon, C., 2014. NI 43-101, Technical Report: Resources for the Tantalus Rare Earth Ionic Clay Project,Northern Madagascar. SGS Technical report for Tantalus Rare Earths AG, 20 October 2014, 165pp.

Dodd, D.S., Hannon, P.J.F., Roy, W.D., Siegfried, P.R. and Hall, M.R., 2014. Preliminary economic assessment on/ of the Lofdal rare earths project, Namibia. NI 43-101, Technical Report, pp 363. (available from www.sedar.com).

Duraiswami, R.A. and Shaikh, T.N., 2014. Fluid-rock interaction in the Kangankunde Carbonatite Complex, Malawi: SEM based evidence for late stage pervasive hydrothermal mineralisation. Central European Journal of Geosciences 6, 476-491.

Edgar, A.D., (1974). On the use of the term “Agpaitic”. Mineral. Mag., 39, 729-730.

Estrade, G., Beziat, D., Salvi, S., Tiepolo, M., Paquette, J-L. and
Rakotovao, S., 2014. Unusual evolution of silica-under-and oversaturated alkaline rocks in the Cenozoic Ambobimiharavavy Complex (Madagascar): Mineralogical and geochemical evidence. Lithos, 206-207, 361-383.

Fretz, D.C., 1969. Geology and structure of the Huab-Welwitshia area South-West Africa. Chamber of Mines, Precambrian Research Unit, University of Cape Town Bulletin 5, pp235

Garson, M.S., 1965. Carbonatites in Southern Malawi. Geological Survey of Malawi, Bulletin, 15, pp128.

Garson, M.S., 1966. Carbonatites in Malawi. In: O.F.Tuttle and J. Gittins (eds.), “Carbonatites”, 33-72, Interscience, pp 591.

Garson, M.S. and Campbell Smith, W., 1965. Carbonatitic and agglomeratic vents in the Western Shire Valley. Geological Survey of Malawi, Memoir 3, pp167.

Gilbertson, J., 2013. A competent persons report on the Tantalus project, northern Madagascar. Report for Tantalus Rare Earths AG by SRK Exploration, pp146.

Hawkesworth, C.J., Gledhill, A.R., Rodrig, J.C., Miller, R. McG, and Kroner, A., 1983. Rb-Sr and 40Ar/39Ar studies bearing on thermal models for the thermal evolution of the Damara Belt, Namibia. In: Miller, R. McG (Ed.). Evolution of the Damara Orogen of South-West Africa / Namibia. Geological Society of South Africa. Special Publication, 11, 323-338.

Hancox, P.J. and Jones, I., 2012. Resource Statement and Technical Report on the Steenkampskraal Monazite Property in the Western Cape Province, South Africa. NI 43-101, Technical Report, pp208. (available from www.sedar.com).

Hanson, R.E., Harmer, R.E, Blenkinsop, T.G. Bullen, D.S. Dalziel, I.W.D., Gose, W.A., Hall, R.P., Kampunzu, A.B., Key, R.M., Mukwakwami, J., Munyinya, H., Pancake, J.A., Seidel, E.K. Ward E., (2006). Mesoproterozoic intraplate magmatism in the Kalahari Craton: A review. J. Afr. Earth Sci., 46, 141-167.

Harper, F., Venter, M., Hall, M., Siegfried, P., Brown, J., Stripp, G, e Jager, C., Scheepers, J., Wiid, G, Vivier, K. and Grobler, M., 2011. Amended Independent technical report on the results of a Preliminary economic assessment Of Frontier Rare Earths Rare Earths Project, located in the Northern Cape Province of South Africa. Vennyn Rand NI 43-101-1, report to Frontier Rare Earths: 30 March 2012, 104 pp. (available from www.sedar.com).

Harper, F., Njowa, G, Wiid, G, Vivier, J., Siegfried, P., Zietsman, R., Brown, J., Duke, V. and Hall, M., 2014. National Instrument 43-101 - Independent Technical Report on the Results of a Preliminary Feasibility Study on the Zandkopsdrift Rare Earth Element and Manganese By-product Project in the Northern Cape Province of South Africa for Frontier Rare Earths Limited: Report: 2 June 2015, 226 pp. (available from www.sedar.com).

Hoatson, D.M., Jaireth, S. and Miezitis, Y., 2011. The major rare earth- element deposits of Australia: geological setting, exploration and resources. Geoscience Australia, 204 pp.

Hoffman, P.F., Hawkins, D.P., Isachsen, C.E. and Bowring, S.A., 1996. Precise U-Pb zircon ages for early Damaran magmatism in the Summas Mountains and Welwitshia inlier, northern Damara belt, Namibia. Communications of the Geological Survey of Namibia, 11, 47-52.

Holt, D.N., 1965. The Kgangankunde Hill rare earth prospect. Bulletin, Geological Survey of Malawi, 20.

Joint Ore Reserve Committee., 2012. The JORC Code, 2012 Edition, Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. 44pp

Jung, S., Hoffer, E. and Hoernes, S., 2007. Neo-Proterozoic rift-related syenites (Northern Damara Belt, Namibia): Geochemical and Nd-rb-Pb-O isotope constraints for mantle sources and petrogenesis. Lithos, 96, 415-435.

Karpeta, W.P. Harwood, R., Bucibo, S.,Kulwa, A. and Musengi, S., 2012. The geology of the Wigui Hill Rare Earth-Carbonatite Complex. Unpublished Internal Report : Montero Mining Ltd., 42 pp.

Knope, M.W., (2010). The Mesoproterozoic Steenkampskaal Rare-Earth Element deposit inNamaqualand, South Africa. 2010. GSA, Denver Annual Meeting (31 October -3 November 2010); Paper No. 132-134.

Kynicky, J., Smith, M.P. and Xu, C., 2012. Diversity of rare earth deposits: The key example of China. Elements, 8, 361-367.

Le Maître, R.W., (Editor), Streickeisen, A., Zanettin, B., Le Bas, M.J., Bonin, B., Bateman, P., Belliemi, G, Dudek, A., Efremova, S., Keller, J., Lameyre, J., Sabine, P.A., Schmid, R., Sotrensen, H., Woolley, A.R., 2002. Igneous rocks: A Classification and Glossary of Terms. Cambridge University Press, 236pp.

Linnen, R.L., Samson, I.M., Williams-Jones, A.E. and Chakhmouradian, A.R., 2014. Geochemistry of the rare-earth element, Nb, Ta, Hf, and Zr deposits. In: Scott, S.D. (Ed.). Treatise on Geochemistry (2nd edition), Volume 13, Geochemistry of Mineral Deposits, 543-568.

Lowe, E.R., (2014). The Geological Controls on the heavy rare earth element enriched alteration zone of Area 4, Lofdal, Khorixas, Namibia. Unpubl. MSc., Camborne School of Mines, University of Exeter, 114 p.

Lynas Corporation Ltd., 2010. Lynas receives approval from the Government of Malawi to complete the acquisition of rare earths resource. Press Release 22nd December 2010, pp 5. (https://www.lynascorp.com/Announcements/2010/Malawi_Completion_Announcement_Final_221210_928080.pdf).

Mitchell, R.H. and Liferovich, R.P., (2006). Subsolidus deuteritic/ hydrothermal alteration of eudialyte in luujavite from the Pilanesberg alkaline complex, South Africa. Lithos, 91, 352-372.

Montero Mining, (2013). Montero Revises High-Grade REE Resource in the Twiga Zone to 0.47 Million Tonnes Averaging 5.2% LREE at the Wigui Hill Rare Earth Project in Tanzania: press release 6 August 2013: (http://newsroom.monteromining.com/press releases/montero-revises-high-grade-ree-resource-in-the-twiga-zone-to-0-47-million-tonnes-tsx-venturemon-2013080608090542001.pdf).

Moore, A.E. and Verwoord, W.J., 1985. The olivine melilitite-“kimberlite”-carbonatite suite of Namaqualand and Bushmanland, South Africa. Trans. Geol. Soc. S. Afr, 88, 281-294.

Nakai, S., Masuda, A. and Lehmann, B., 1988. La-Ba dating of “kimberlite”-carbonatite suite of Namaqualand and Bushmanland, South Africa. Trans. Geol. Soc. S. Afr, 88, 1111-1113.

Northrup, W., Mossop, A., Carter, T. and Deiss, A., 2011. National Instrument, 43-101, Technical Report for the Initial Niobium Resource Estimate - Mrima Hill Niobium and Rare Earth Project, Kwale District, South Kenya. 295p.

Olivo, G.R. and Williams-Jones, A.E., (1999). Hydrothermal REE-rich eudialyte from the Pilanesberg Complex, South Africa. Can. Min., 37, 653-663.

Peak Resources, 2013. Increased Reserve Estimate To Improve Ngualla Project Economics: Report to the ASX, 4 April 2013.

Peak Resources, 2014a. Ngualla Rare Earth Project: Preliminary Feasibility Study; Executive Summary. Report to the ASX, 19 March 2014.

Peak Resources, 2014b. Ngualla Rare Earth Project - Maiden Ore Reserve. Report to the ASX, 19 March 2014.

Pollard, B. and Mapleson, D., 2013. NI 43-101, Technical Report for the Mrima Hill Niobium and Rare Earth Project, Kwalre District, Kenya.169p.

Rainbow Rare Earths, 2014. Developing the world’s richest rare earth deposit: near term, low cost production. Factsheet on http://www.rainbowrareearths.com.
Siegfried, P. and Hall, M., 2012. NI 43-101, Technical report and June 2016, 406, mineral resource estimate for area 4 of the Lofdal rare earth element (REE) project, Khorixas District, Republic of Namibia. MSA Group, NI 43-101, Technical Report to Namibia Rare Earths Ltd. (available from www.sedar.com).

Snelling, N.J., 1962. Age Determination Unit. Overseas Geological Surveys, Report for 1960-61, 27-35.

Snelling, N.J., 1965. Age determinations on three African carbonatites. Nature, 205, 491.

Størenson, H., 1997. The Agpaitic Rocks - An Overview. Mineralogical Magazine, 61, 485-498.

Swinden, S. and Siegfried, P., 2011. Amended 43-101, Technical Report on the Rare Earth Occurrences in the Lofdal Carbonatite Complex, Kunene Region, Khorixas District, Namibia; prepared for Namibia Rare Earths Inc. 210pp. (available from www.sedar.com).

Swinden, S. and Hall, M., 2012. NI 43-101, Technical report and mineral resource estimate for the Songwe Hill rare earth element (REE) project, Phalombe District, Republic of Malawi. MSA Group NI 43-101, Technical Report to Mkango Resources, pp168. (available from www.sedar.com).

Turner, D.C., Andersen, L.S., Punukollu, S.N., Silwa, A and Tembo, F., 1989. Igneous phosphate resources in Zambia. In: Notholt, A.J.G., Sheldon, R.P. and Donaldson, D.F., (eds.). Phosphate Deposits of the World, 2. Phosphate rock resources. Cambridge University Press, 247-257.

Venter, M., Hall, M. and Siegfried, P., 2010. NI 43-101, Resource Estimate and Technical Report on the Zandkopsdrift Rare Earth Element (REE) Project, located in the Republic of South Africa. MSA Group NI 43-101, report to Frontier Rare Earths Ltd. 28 September 2010, 185pp. (available from www.sedar.com).

Verwoerd, W.J., 1967. The carbonatites of South Africa and South West Africa. South Africa Geological Survey Handbook, v. 6, 452p.

Verwoerd, W.J., 1986. Mineral deposits associated with carbonatites and alkaline rocks. In: Anhaeusser, C.R. and Maske, S. (eds.): Mineral Deposits of Southern Africa, II, Geological Society of South Africa, Johannesburg, 1041-1060.

Verwoerd, W.J., 1993. Update on carbonatites of South Africa and Namibia. South African Journal of Geology, 96, 75-95.

Wall, F., 2004. An illustration of the evolution and alteration of carbonatites using REE, Sr-rich carbonatites at Nkombwa, Zambia. In: Laidykin, N.V. and Vinogradova A.P., (eds.). Deep-seated magmatism: Its sources and their relation to plume processes, 48-67.

Wall, F. and Mariano, A.N., 1996. Rare earth minerals in carbonatites: a discussion on the Kangankunde carbonatite, Malawi. In: Jones, A.P., Wall, F. and Williams, C.T., (eds.). Rare Earth Minerals: Chemistry, Origin and Ore Deposits. Chapman and Hall, 193-225.

Wall, F., Niku-Paavola, V.N., Storey, C., Muller, A. and Jeffries, T., 2008. Xenotime-(Y) from carbonatite dykes at Lofdal, Namibia: unusually low LREE-HREE ratio in carbonatite, and the first dating of xenotime overgrowths on zircon. Canadian Mineralogist 46, 861-877.

Witt, W.K., Hammond, D.P. and Townend, R., 2013. The Ngulla Rare Earth Element Deposit, Tanzania. Abstract: SGA Conference, Uppsala.

Witt, W.K., Hammond, D.P. and Townend, R., 2014. The Ngulla Rare Earth Element Deposit, Tanzania. In: N. Ilbeyli and M. Gurhan Yalcin (eds.): Abstract Volume: 30th International Conference on “Ore Potential of Alkaline, Kimberlite and Carbonatite Magmatism”, Antalya, Turkey, 224-227.

Woolley, A.R., 1989. The spatial and temporal distribution of carbonatites. In Bell, K. (ed.). Carbonatites - Genesis and Evolution, 15-37, Allen and Unwin, London.

Woolley, A.R., 1991. The Chilwa Alkaline Igneous Province of Malawi: A Review. In: Kampunzu, A.B. and Lubala, R.T., (eds.). Magmatism in Extensional Structural Settings: The Phanerozoic African Plate. Springer-Verlag, Berlin, 377-409.

Woolley, A.R., 2001. Alkaline Rocks and Carbonatites of the World: Part 3 Africa. The Geological Society, London, pp372.

Woolley, A.R. and Buckley, H.A., 1993. Magnesite-siderite series carbonates in the Nkombwa and Newania carbonatite complexes. South African Journal of Geology, 96, 126-130.