Data Article

PCR data and comparative performance of *Bacteroidales* microbial source tracking genetic markers

Pornjira Somnark a, Natcha Chyerochanab, Akechai Kongprajugb, Skorn Mongkolsuk b,c,d, Kwanrawee Sirikanchanab,d,*

a Applied Biological Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Lak Si, Bangkok 10210 Thailand
b Research Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210 Thailand
c Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400 Thailand
d Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, Bangkok 10210 Thailand

A R T I C L E I N F O

Article history:
Received 18 January 2018
Received in revised form 20 April 2018
Accepted 30 April 2018
Available online 5 May 2018

Keywords:
Endpoint PCR
Fecal pollution
Microbial source tracking
Bacteroidales
Sensitivity
Specificity
Water quality

A B S T R A C T

We reported modified endpoint PCR results analyzed by universal and human-, swine-, and cattle-specific *Bacteroidales* gene markers with human sewage and animal fecal samples (i.e., swine, cattle, chicken, goat, sheep, buffalo, and duck) from Tha Chin and Chao Phraya watersheds. Annealing locations of PCR primers were illustrated by maps of 16s rRNA *Bacteroidales* genes. We also summarized previously published work on the performance of the PCR assays. For further discussion of the data presented here, please refer to Somnark et al., Performance evaluation of *Bacteroidales* genetic markers for human and animal microbial source tracking in tropical agricultural watersheds, Environ. Pollut. 236 (2018) 100–110.

© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

DOI of original article: https://doi.org/10.1016/j.envpol.2018.01.052
* Corresponding author at: Research Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok, Thailand.
E-mail address: kwanrawee@cri.or.th (K. Sirikanchana).
Specifications Table

Subject area	Biology
More specific subject area	Applied microbiology
Type of data	Tables and figures
How data were acquired	PCR instrument (Mastercycler Pro thermocycler, Eppendorf), and literature review
Data format	Analyzed
Experimental factors	Composite fecal and sewage samples were collected, and DNA extraction was performed
Experimental features	PCR primers originally designed as endpoint and quantitative PCR were used in the modified endpoint PCR assays.
Data source location	Samples were collected from Tha Chin (Chai Nat, Suphan Buri, Nakhon Pathom, and Samut Sakhon provinces) and Chao Phraya (Phra Nakhon Si Ayutthaya, Pathum Thani, and Bangkok provinces) watersheds, located in the central part of Thailand.
Data accessibility	Data are with this article

Value of the data

- PCR results of *Bacteroidales*-modified endpoint PCR markers could be compared with microbial source tracking (MST) studies in other geographic areas for further development of region-specific MST methods.
- *Bacteroidales* PCR primer maps could offer an insight into annealing regions of primers for further design of new primers or evaluating currently available primers with their performance.
- A summary of PCR assays that are originally designed and adopted to other regions could serve as a database for comparing the MST method performance in different geographical areas.

1. Data

We performed endpoint PCR assays modified from published methods originally in PCR and qPCR platforms. PCR results of ten good-performing modified endpoint PCR assays against human sewage and animal fecal samples from Tha Chin and Chao Phraya watersheds are shown (Table 1). There were six modified endpoint PCR assays that demonstrated potentially low sensitivity or specificity during the process of testing against a limited number of samples and therefore were not further tested with total samples (Table 2). We also compiled sensitivity and specificity data of previously published *Bacteroidales* genetic markers from both studies that originally designed the assays and studies that adopted the designed assays to be used in another geographic location (Table 3). To provide further insight into PCR performance, we mapped PCR primers to 16s rRNA gene of human-, swine-, and cattle-associated *Bacteroidales* (Figs. 1 and 2). Amplified PCR products with universal and human-, swine-, and cattle-specific *Bacteroidales* PCR assays were presented (Fig. 3).

2. Experimental design, materials and methods

2.1. Sample collection and DNA extraction

Raw human sewage and non-human fecal samples were collected from Tha Chin and Chao Phraya watersheds. One composite fecal sample was prepared by mixing fresh feces of at least 20 individuals. Samples were transported on ice to the laboratory. DNA extraction of composite fecal samples and 0.22-μm-pore-size mixed cellulose ester membrane (Merck Millipore, Billerica, MA, USA) after 50-
Table 1
Positive PCR results of modified endpoint PCR markers showing good performance with samples from Tha Chin and Chao Phraya watersheds.

Host	Assay name	Tha Chin watershed	Chao Phraya watershed
		Human (19)	Swine (20)
		Cattle (20)	Chicken (19)
		Goat (7)	Sheep (5)
		Buffalo (5)	Duck (5)
Universal	BacUni EP	19	20
	GenBac3 EP	19	20
	Bac32F/Bac708R	15	20
Human	BacHum EP	18	17
	HF183F/BFDrev EP	16	4
	Modified HF183F/Bac708R	18	4
Swine	Pig-2-Bac EP	0	20
		0	0
Cattle	Bac2	0	0
	Bac3	0	0
	Cow-Bac2 EP	0	1

Host	Assay name	Tha Chin watershed	Chao Phraya watershed
		Human (9)	Swine (8)
		Cattle (5)	Chicken (2)
		Goat (3)	Buffalo (1)
Universal	BacUni EP	9	8
	GenBac3 EP	9	8
	Bac32F/Bac708R	9	8
Human	BacHum EP	9	7
	HF183F/BFDrev EP	9	0
	Modified HF183F/Bac708R	9	0
Swine	Pig-2-Bac EP	0	8
		0	0
Cattle	Bac2	0	5
	Bac3	0	5
	Cow-Bac2 EP	0	5
100 mL human sewage filtration was performed with a ZR Fecal DNA MiniPrep kit (Zymo Research, Irvine, CA, USA). DNA concentrations were measured using a NanoDrop spectrophotometer (Thermo Scientific, Wilmington, DE, USA).

2.2. **PCR method modification and performance criteria**

PCR primers targeting universal and human-, swine-, and cattle-specific fecal markers were selected from both endpoint and quantitative PCR platforms (Table 4). A 10-μL PCR is composed of 0.5 μL each of 10 μM forward primers and 10 μM reverse primers, 1-μL of DNA template (corresponding to 0.2, 2.0 or 20 ng total DNA), 5 μL of DreamTaq PCR Master Mix (2×; Thermo Fisher Scientific, Waltham, MA, USA), and sterile water. The reaction was processed in a Mastercycler Pro thermocycler (Eppendorf, Hamburg, Germany). PCR cycling conditions were modified as follows: initial denaturation at 95 °C for 3 min; 30 cycles of a denaturation step at 95 °C for 30 s, an annealing step at varying temperature and time (Table 4), and an elongation step at 72 °C for 30 s; and a final extension at 72 °C for 10 min. PCR products were visualized with a Gel Doc XR system (BIO-RAD, Hercules, CA, USA). PCRs were run in duplicate. No-template controls and extraction blanks were included for quality control. Performance criteria including sensitivity, specificity, and accuracy were calculated as TP/(TP+FN), TN/(TN+FP), and (TP+TN)/(TP+FP+TN+FN), respectively, where TP, FN, TN, and FP, are true positive, false negative, true negative, and false positive, respectively.

Fecal origin	Assay name	No. of positive samples/no. of samples tested	Sensitivity	Specificity	Accuracy
Human	Swine	PF163F/Bac708R 0/0	1.00	0.77	0.83
	Swine	CowM2 EP 0/0	1.00	0.00	0.54
	Swine	BacCow EP 0/0	1.00	0.00	0.54
	Swine	CF193F/Bac708R 0/0	1.00	0.00	0.54
	Swine	CF128F/Bac708R 0/0	1.00	0.05	0.54
	Cattle	BoBac EP 0/0	1.00	0.05	0.54

* Limited number of animal samples tested for certain assays due to potentially low sensitivity or specificity.
| Host source | Assay name | Platform | Geographical region | Original/Adopted | Sensitivity (n)a | Specificity (n) | Non-target hosts | Reference |
|-------------|------------|----------|---------------------|------------------|-----------------|-----------------|------------------|-----------|
| Universal BacUni | qPCR | California, USA | Original | 1.00 (n=73) | NAb | Human*, cow, horse, dog, cat, seagull, WWTPd (primary influent) | [1] |
| PCR | Tha Chin watershed, Thailand | Adopted | 1.00 (n=100, composite) | NA | Swine, cattle, chicken, goat, sheep, buffalo, duck, sewage | [2] |
| PCR | Chao Phraya watershed, Thailand | Adopted | 0.96 (n=28, composite) | NA | Swine, cattle, chicken, goat, buffalo, sewage | [2] |
| Universal GenBac3 | qPCR | Louisiana, Michigan, Mississippi, USA | Original | NA | NA | Surface water sample | [3] |
| PCR | Tha Chin watershed, Thailand | Adopted | 1.00 (n=100, composite) | NA | Swine, cattle, chicken, goat, sheep, buffalo, duck, sewage | [2] |
| Chao Phraya watershed, Thailand | Adopted | 1.00 (n=28, composite) | NA | Swine, cattle, chicken, goat, buffalo, sewage | [2] |
| Universal Bac32F/ Bac708R | PCR | Oregon, USA | Original | 1.00 (n=30) | NA | Human, cow | [4] |
| PCR | Southeast Queensland, Australia | Adopted | 1.00 (n=186) | NA | Cattle, pig, sheep, goat, horse, chicken, dog, duck, pelican, kangaroo, WWTP | [5] (one base pair mismatch for Bac32F primer) |
| PCR | Wisconsin, USA | Adopted | 1.00 (n=89) | NA | Cow, WWTP | [6] |
| PCR | Missouri, USA | Adopted | 0.89 (n=286) | NA | Human, sewage, dog, beef cattle, dairy cattle, chicken, turkey, horse, swine, goose | [7] |
| PCR | Brittany and Normandy, France | Adopted | 0.96 (n=136) | NA | Pig, cow, sheep, chicken, wild bird | [8] |
| Saskatchewan, Canada | Adopted | 1.00 (n=273) | NA | Human, WWTP, cow, pig, chicken, goose, moose, deer, caribou, bison, goat | [9] |
| PCR | Illinois, Nebraska, Ohio, Texas, Delaware, and West Virginia, USA | Adopted | 0.78 (n=222) | NA | Cattle, human, chicken, raccoon, horse, pig, pig manure pit, pig waste lagoon | [10] |
| PCR | Puerto Rico, USA | Adopted | 0.89 (n=356) | NA | Cow, goat, horse, swine, monkey, fish, pigeon, chicken, guinea fowl, duck, turkey, swan, WWTP | [11] |
| PCR | Tha Chin watershed, Thailand | Adopted | 0.96 (n=100, composite) | NA | Swine, cattle, chicken, goat, sheep, buffalo, duck, sewage | [2] |
| Chao Phraya watershed, Thailand | Adopted | 1.00 (n=28, composite) | NA | Swine, cattle, chicken, goat, buffalo, sewage | [2] |
| Species | Location | qPCR Type | Sample Type | Sensitivity | Specificity | Species Detected |
|---------|----------|-----------|-------------|-------------|-------------|------------------|
| Human | California, USA | BacHum qPCR | Original | 0.67 (n = 18); 1.00 (n = 14, sewage) | 0.98 (n = 41) | Cow, horse, dog, cat, seagull |
| PCR | Southeast Queensland, Australia | Adopted | 1.00 (n = 50, WWTP) | 0.96 (n = 136) | Cattle, pig, sheep, goat, horse, chicken, dog, duck, pelican, kangaroo |
| PCR | Tha Chin watershed, Thailand | Adopted | 0.95 (n = 19, sewage) | 0.54 (n = 81, composite) | Swine, cattle, chicken, goat, sheep, buffalo, duck |
| Chao Phraya watershed, Thailand | Adopted | 1.00 (n = 9, sewage) | 0.53 (n = 19, composite) | Swine, cattle, chicken, goat, buffalo |
| Human | Michigan, Minnesota, Colorado, South Dakota, Wyoming, Hawaii, Virginia, Ohio, Florida, North Carolina, and New York, USA | HF183/ BFDrev qPCR | Original | 1.00 (n = 14, WWTP) | 0.60 (n = 5, composite) | Cow, pig, chicken, dog, cat |
| PCR | Tha Chin watershed, Thailand | Adopted | 0.84 (n = 19, sewage) | 0.77 (n = 81, composite) | Swine, cattle, chicken, goat, sheep, buffalo, duck |
| Chao Phraya watershed, Thailand | Adopted | 1.00 (n = 9, sewage) | 1.00 (n = 19, composite) | Swine, cattle, chicken, goat, buffalo |
| Human | Oregon, USA | HF183/ Bac708R qPCR | Original | 0.85 (n = 13); 1.00 (n = 3, WWTP) | 1.00 (n = 46) | Cow, deer, elk, cat, dog, duck, pig, gull, goat, llama, sheep |
| PCR | Southeast Queensland, Australia | Adopted | 1.00 (n = 52, WWTP) | 1.00 (n = 155) | Duck, kangaroos, cattle, horse, dog, chicken, pig, pelican, goat, deer, wild birds, sheep |
| PCR | Spain | Adopted | 0.50 (n = 40, WWTP) | 0.71 (n = 73) | Poultry, pig, cow |
| PCR | Southeast Queensland, Australia | Adopted | 1.00 (n = 59, WWTP); 0.80 (n = 20) | 0.95 (n = 214) | Bird, camel, cattle, chicken, dog, duck, horse, kangaroo, pig, possum |
| PCR | Brittany and Normandy, France | Adopted | 0.98 (n = 44); 0.75 (n = 16, sewage WWTP) | 0.99 (n = 86) | Pig, cow, sheep, chicken, wild bird |
| PCR | Puerto Rico, USA | Adopted | 1.00 (n = 16, sewage WWTP) | 1.00 (n = 340) | Cow, goat, horse, swine, monkey, fish, pigeon, chicken, guinea fowl, duck, turkey, swan |
| PCR | Wisconsin, USA | Adopted | 1.00 (n = 14, WWTP) | 1.00 (n = 75) | Cow |
| PCR | Saskatchewan, Canada | Adopted | 1.00 (n = 8, WWTP); 0.94 (n = 54) | 1.00 (n = 211) | Cow, pig, chicken, goose, moose, deer, caribou, bison, goat |
| PCR | Tha Chin watershed, Thailand | Adopted | 0.95 (n = 19, sewage) | 0.70 (n = 81, composite) | Swine, cattle, chicken, goat, sheep, buffalo, duck |
Table 3 (continued)

Host source	Assay name	Platform	Geographical region	Original/Adopted	Sensitivity (n)*	Specificity (n)	Non-target hosts	Reference
Swine	PF163F/	PCR	Chao Phraya watershed, Thailand	Adopted	1.00 (n=9, sewage)	0.68 (n=19, composite)	Swine, cattle, chicken, goat, buffalo	[2]
	Bac708R							
	Swine	PCR	Cincinnati, Ohio	Original	1.00 (n=19)	NA	NA	[17]
			Saskatchewan, Canada	Adopted	1.00 (n=50)	1.00 (n=223)	Human, WWTP, cow, chicken, goose, moose, deer, caribou, bison, goat	[9]
		PCR	Illinois, Nebraska, Ohio, Texas, Delaware, and West Virginia, USA	Adopted	0.87 (n=97); 1.00 (n=6, slurry)	0.77 (n=119)	Human, chicken, raccoon, horse	[10]
		PCR	Puerto Rico, USA	Adopted	1.00 (n=30)	0.75 (n=261)	Human, cow, sheep, chicken, wild bird	[8]
		PCR	Brittany and Normandy, France	Adopted	1.00 (n=25)	0.98 (n=105)	Cow, goat, horse, monkey, fish, pigeon, chicken, guinea fowl, duck, swan	[11]
		PCR	Tha Chin watershed, Thailand	Adopted	1.00 (n=20, composite)	0.77 (n=61, composite)	Cattle, chicken, goat, sheep, buffalo, duck	[2]
	Swine	qPCR	Brittany, France	Original	1.00 (n=25); 1.00 (n=23, slurry)	1.00 (n=54)	Human, bovine, horse, sheep	[18]
		PCR	Tha Chin watershed, Thailand	Adopted	1.00 (n=20, composite)	0.98 (n=80, composite)	Human, horse, pig, gull, turkey	[12]
Cattle	CowM2	qPCR	West Virginia, Georgia, Wyoming, Delaware, Florida, and Ohio, USA	Original	1.00 (n=60)	1.00 (n=20, composite)	Cattle, chicken, goat, buffalo, sewage	[2]
		PCR	Tha Chin watershed, Thailand	Adopted	0.86 (n=7, composite)	0.00 (n=6, composite)	Swine, chicken, goat	[2]
Cattle	BacCow	qPCR	California, USA	Original	1.00 (n=8)	0.95 (n=65)	Human, horse, dog, cat, seagull, WWTP (primary effluent)	[1]
		PCR	Tha Chin watershed, Thailand	Adopted	1.00 (n=7, composite)	0.00 (n=6, composite)	Swine, chicken, goat	[2]
Cattle	CF193/	PCR	Oregon, USA	Original	1.00 (n=19)	0.72 (n=43)	Human, WWTP, deer, elk, cat, dog, duck, pig, gull, goat, llama, sheep	[13]
	Bac708R							
	Swine	PCR	Wisconsin, USA	Adopted	0.85 (n=75)	NA	NA	[6]
		PCR	Saskatchewan, Canada	Adopted	0.16 (n=32)	NA	NA	[9]
Country/Region	PCR Type	Original/Adopted	Animal Species					
---------------	----------	-----------------	----------------					
Spain, UK, Cyprus, France, and Sweden	PCR	Adopted	0.00 (n = 19, ruminant) 0.99 (n = 94) WWTP, poultry, pig					
USA	PCR	Adopted	0.68 (n = 247) 1.00 (n = 175) Alpaca, pronghorn, elk, gazelle, giraffe, goat, mule deer, okapi, sheep, takin, tufted deer, moose, white-tailed deer, Canadian goose, cat, chicken, dog, duck, horse, human, pelican, pig, raccoons, sea gull, turkey					
Tha Chin watershed, Thailand	PCR	Adopted	0.00 (n = 7, composite) 1.00 (n = 6, composite) Swine, chicken, goat					
Oregon, USA	Cattle CF128F/Bac708R PCR	Original	1.00 (n = 19) 0.77 (n = 43) Human, WWTP, deer, elk, cat, dog, duck, pig, gull, goat, llama, sheep					
Wisconsin, USA	PCR	Adopted	1.00 (n = 75) 0.93 (n = 14) WWTP					
Brittany and Normandy, France	PCR	Adopted	1.00 (n = 32) 0.60 (n = 98) Human, pig, chicken, sheep, wild bird					
Saskatchewan, Canada	PCR	Adopted	0.96 (n = 51, cow); 0.62 (n = 222, cow); 0.93 (n = 152, ruminant = cow, deer, caribou, bison, moose, goat) Human, WWTP, pig, chicken, goose					
Spain	PCR	Adopted	0.26 (n = 19, ruminant) 1.00 (n = 95) WWTP, poultry, pig					
USA	PCR	Adopted	0.85 (n = 247) 0.76 (n = 175) Alpaca, pronghorn, elk, gazelle, giraffe, goat, mule deer, okapi, sheep, takin, tufted deer, moose, white-tailed deer, Canadian goose, cat, chicken, dog, duck, horse, human, pelican, pig, raccoons, sea gull, turkey					
Puerto Rico, USA	PCR	Adopted	0.64 (n = 66) 0.90 (n = 290) Goat, horse, swine, monkey, fish, pigeon, chicken, guinea fowl, duck, turkey, swan, WWTP					
Tha Chin watershed, Thailand	PCR	Adopted	1.00 (n = 7, composite) 0.00 (n = 6, composite) Swine, chicken, goat					
USA	Cattle Bac2 PCR	Adopted	0.54 (n = 148) 1.00 (n = 279) Bird, human, domestic, wildlife, pets, water by cattle Alpaca, pronghorn, elk, gazelle, giraffe, goat, mule deer, okapi, sheep, takin, tufted deer, moose, white-tailed deer, Canadian goose, cat, chicken, dog, duck, horse, human, pelican, pig, raccoons, sea gull, turkey					
USA	PCR	Adopted	0.54 (n = 247) 1.00 (n = 175) Alpaca, pronghorn, elk, gazelle, giraffe, goat, mule deer, okapi, sheep, takin, tufted deer, moose, white-tailed deer, Canadian goose, cat, chicken, dog, duck, horse, human, pelican, pig, raccoons, sea gull, turkey					
Tha Chin watershed, Thailand	PCR	Adopted	0.70 (n = 20, composite) 1.00 (n = 80, composite) Swine, chicken, goat, sheep, buffalo, duck, sewage					
Thailand Chao Phraya watershed	PCR	Adopted	Swine, chicken, goat, buffalo, sewerage					
Host source	Assay name	Platform	Geographical region	Original/Adopted	Sensitivity (n)*	Specificity (n)	Non-target hosts	Reference
-------------	------------	----------	---------------------	------------------	-----------------	----------------	-----------------	-----------
Cattle	Bac3	PCR	USA	Original	1.00 (n=5, composite)	1.00 (n=23, composite)	Human, sewage, bovine, chicken, black vulture, Canadian goose, peacock, pigeon, dog, cat, guinea pig, domestic goat, pig, sheep, horse, alpaca, llama, armadillo, bobcat, coyote, gray squirrel, rabbit, opossum, raccoon, whitetail deer, wild turkey, hedgehog, prairie dog Alpaca, pronghorn, elk, gazelle, giraffe, goat, mule deer, okapi, sheep, takin, tufted deer, moose, white-tailed deer, canadian goose, cat, chicken, dog, duck, horse, human, pelican, pig, raccoons, sea gull, turkey	[21]
				Adopted	0.91 (n=148)	0.99 (n=245)		
Cattle	Cow-Bac2	qPCR		Original	1.00 (n=7)	1.00 (n=9)	Human, pig	[22]
			Sapporo and Ebetsu Cities, Japan	Adopted	1.00 (n=5, composite)	1.00 (n=23, composite)	Swine chicken, goat, sheep, buffalo, duck, sewage	[2]
Cattle	BoBac	qPCR	Tennessee, Pennsylvania, and Texas, USA	Adopted	1.00 (n=11)	0.87 (n=15)	Human, swine, canine, equine	[23]
		PCR	Chao Phraya watershed, Thailand	Adopted	1.00 (n=5, composite)	0.78 (n=23, composite)	Swine chicken, goat, buffalo, sewage	[2]
		PCR	Tha Chin watershed, Thailand	Adopted	0.90 (n=20, composite)	0.50 (n=21, composite)	Swine chicken, goat, sheep, buffalo, duck, sewage	[2]
		PCR	Chao Phraya watershed, Thailand	Adopted	1.00 (n=5, composite)	0.78 (n=23, composite)	Swine chicken, goat, buffalo, sewage	[2]

* Total number of samples being tested.

** Not applicable.

† Human individual fecal sample.

‡ Influent of municipal wastewater treatment plant, unless stated otherwise.

§ Influent of wastewater treatment system in buildings or septic tanks.
Fig. 1. Primer map targeting the 16S rRNA gene of human- and swine-associated Bacteroidales. All primers were BLASTed against the NCBI database. The representative sequences from human feces (Accession no. AB242143.1 [24]) and swine feces (AB506329.1 [25]) were selected to align with specific primers. Human-specific, swine-specific and universal Bacteroidales primers are indicated in dotted, dashed and solid arrows, respectively.

Fig. 2. Primer map targeting the 16S rRNA gene of cattle-associated Bacteroidales. All primers were BLASTed against the NCBI database. The representative sequences (Accession nos. Q821871.1 [26], KRS14419.1, LCD28711.1, and LC028829.1) were selected to align with specific primers.
Fig. 3. PCR results showing amplification products for universal and human-, swine-, and cattle-specific Bacteroidales markers (see [2] for related information).
Table 4
Primer sequences and PCR cycling conditions.

Host	Assay name	Primer name	Primer sequence (5′ - 3′)	Annealing temperature (°C)	Annealing time (s)	Original platform	Reference
Universal	BacUni EP	BacUni-520f	CGT-TAT-CCG-GAT-ATA-TTG-GGT-TTA	60.0	30	qPCR	[1]
		BacUni-690r	CAA-TCG-TTG-TTC-CTG-ATA-TCT-A				
GenBac3 EP	GenBac3F		GGG-GTT-CTG-AGA-GGA-AGG-T	60.0	30	qPCR	[3]
	GenBac3R		CGG-TCA-TCC-AGC-CTG-ATA-TCT-CT				
	Bac32F/Bac708R	Bac32F	AAC-GCT-AGC-TAC-AGG-CT	53.7	60	PCR	[4,27]
		Bac708R	CAA-TCG-GAG-TTC-TTC-CT				
Human sewage	BacHum EP	BacHum-160f	TGA-GTT-CAC-ATG-TGG-TCA-GTA	60.0	30	qPCR	[1]
		BacHum-241r	CTG-TAC-CCC-GCC-TTC-GTA-TAT-CT				
HF183/BFDrev EP	HF183		ATC-AGT-CTG-GAT-CTG-CA	60.0	30	qPCR	[12]
	BFDrev		CTG-AGG-CTG-GAT-GAC-GT-CT				
	Modified	HF183F	ATC-AGT-CTG-GAT-CTG-CT	55.3	60	PCR	[13,27]
	HF183F/Bac708R	Bac708R	CAA-TGG-TAC-GTG-CTG-CT				
Swine	PF163F/Bac708R	PF163F	GCG-GAT-TAC-GTT-CTG-AGAT-A	52.4	60	PCR	[17,27]
		Bac708R	CAA-TCG-TTC-CTG-CTG-CT				
	Pig-2-Bac EP	Pig-2-Bac41F	GCA-CTC-ATT-TAG-CTG-CT-AAA-CTT-GAT	60.0	30	qPCR	[18]
		Pig-2-Bac163Rm	ACC-CTC-ATT-CTG-ATG-CCA-CTG-C				
Cattle	CowM2 EP	CowM2F	CGG-CCA-ACT-CTG-CAT-CTG-CT	60.0	30	qPCR	[19]
		CowM2R	CCA-ACG-TTC-CTC-ATA-TGT-GA				
	BacCow EP	CF128F	GGA-CCT-CTG-GTT-AGT-AGT-CT	60.0	30	PCR	[1]
		CF193	TAT-GAA-TGC-TGC-CTG-CTC	55.0	30	PCR	[13]
	CF193/F/Bac708R	Bac708R	CAA-TCG-GAG-TTC-CTG-CT				
	Modified	CF128F	CCA-ACG-TTC-CTC-CTG-CT	62.0	60	PCR	[13,28]
	CF128F/Bac708R	Bac708R	CAA-TGG-TAC-GTG-CTG-CT				
	Bac2	Bac2F	GCT-CTG-GTG-CTG-CAT-ATG-GAT-ATAT	62.0	30	PCR	[21]
		Bac2R	ACA-AGC-CAG-TGT-ATAG-AGA-GAG-AGA				
	Bac3	Bac3F	CTA-ATG-AGA-AAT-GAA-TAT-CT-ATAT	60.0	30	PCR	[21]
		Bac3R	GCA-CAC-CCA-ATG-AGT-AGA-GAG-AGA				
Cow-Bac2 EP	qCS621F		AAC-CAC-AGC-CTA-AGA-CA-CT	62.0	30	SYBR qPCR	[22]
	qBac725R		CAA-TGG-TAC-GTG-CTG-CTA-TCT-AGAT				
BoBac EP	BoBac367f		GAA-GAC-TGA-AGC-CCA-AGA-GTA	57.0	30	qPCR	[23]
	BoBac467r		GCT-TAT-TCA-TAC-GGT-ACA-TAC-AGA				
Acknowledgements

This research was financially supported by the Thailand Research Fund (Contract no. SRI5930305) and the Kurita Water and Environmental Foundation (KWEF) – Asian Institute of Technology (AIT) research grant.

Author's statement

The authors declare that they have no competing interests.

Transparency document. Supporting information

Transparency data associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2018.04.129.

References

[1] B.J. Kildare, C.M. Leutenegger, B.S. McSwain, D.G. Bambic, V.B. Rajal, S. Wuertz, 16S rRNA-based assays for quantitative detection of universal, human-, cow-, and dog-specific fecal Bacteroidales: a Bayesian approach, Water Res. 41 (2007) 3701–3715.

[2] P. Somnark, N. Chyerochana, S. Mongkolsuk, K. Sirikanichana, Performance evaluation of Bacteroidales genetic markers for human and animal microbial source tracking in tropical agricultural watersheds, Environ. Pollut. 236 (2018) 100–110.

[3] S. Siefring, M. Varma, E. Atikovic, L. Wymer, R.A. Haugland, Improved real-time PCR assays for the detection of fecal indicator bacteria in surface waters with different instrument and reagent systems, J. Water Health. 6 (2008) 225–237.

[4] A.E. Bernhard, K.G. Field, Identification of nonpoint sources of fecal pollution in coastal waters by using host-specific 16S ribosomal DNA genetic markers from fecal anaerobes, Appl. Environ. Microbiol. 66 (2000) 1587–1594.

[5] W. Ahmed, A. Goonetilleke, D. Powell, T. Gardner, Evaluation of multiple sewage-associated Bacteroides PCR markers for sewage pollution tracking, Water Res. 43 (2009) 4872–4877.

[6] P. Bower, C.O. Scopek, E.T. Jensen, M.M. Depas, S.L. Mcelheny, Detection of genetic markers of fecal indicator bacteria in Lake Michigan and determination of their relationship to Escherichia coli densities using standard microbiological methods, Appl. Environ. Microbiol. 71 (2005) 8305–8313.

[7] C.A. Carson, J.M. Christiansen, V.W. Benson, C. Baffaut, V. Jerri, R.R. Broz, W.B. Kurtz, W.M. Rogers, W.H. Fales, H. Yampara-quise, J.V. Davis, Specificity of a Bacteroides thetaiotaomicron marker for human feces, Appl. Environ. Microbiol. 71 (2005) 4945–4949.

[8] M. Gourmelon, M.P. Caprais, R. Segura, C. Le Mennec, S. Lozach, J.Y. Piriou, A. Rince, Evaluation of two library-independent microbial source tracking methods to identify sources of fecal contamination in French estuaries, Appl. Environ. Microbiol. 73 (2007) 4857–4866.

[9] E. Fremaux, J. Gritzfeld, T. Boa, C.K. Yost, Evaluation of host-specific Bacteroidales 16S rRNA gene markers as a complementary tool for detecting fecal pollution in a prairie watershed, Water Res. 43 (2009) 4838–4849.

[10] R. Lamendella, J.W. Santo Domingo, A.C. Yannarell, S. Ghosh, G. Di Giovanni, R.J. Mackie, D.B. Oerther, Evaluation of swine-specific PCR assays used for fecal source tracking and analysis of molecular diversity of swine-specific “Bacteroidales” populations, Appl. Environ. Microbiol. 75 (2009) 5787–5796.

[11] C. Toledo-Hernandez, H. Ryu, J. Gonzalez-Nieves, E. Huertas, G. Toranzos, J.W. Santo Domingo, Tracking the primary sources of fecal pollution in a tropical watershed in a one-year study, Appl. Environ. Microbiol. 79 (2013) 1689–1696.

[12] R.A. Haugland, M. Varma, M. Sivaganesan, C. Kelly, L. Peed, O.C. Shanks, Detection of universal, human-, cow-, and dog-specific fecal Bacteroidales: a Bayesian approach, Appl. Environ. Microbiol. 76 (2010) 1789–1795.

[13] W. Ahmed, N. Masters, S. Toze, Consistency in the host specificity and host sensitivity of the Bacteroides HF183 marker for sewage pollution tracking, Lett. Appl. Microbiol 55 (2012) 283–289.

[14] L.K. Dick, A.E. Bernhard, T.J. Brodeur, J.W. Santo Domingo, J.M. Simpson, S.P. Walters, K.G. Field, Host distributions of uncultivated fecal Bacteroidales bacteria reveal genetic markers for fecal source identification, Appl. Environ. Microbiol. 71 (2005) 3184–3191.

[15] S. Mieszkin, J.P. Furet, G. Corthier, M. Gourmelon, Estimation of pig fecal contamination in a river catchment by real-time PCR using two pig-specific Bacteroidales 16S rRNA genetic markers, Appl. Environ. Microbiol. 75 (2009) 3045–3054.
[19] O.C. Shanks, E. Atikovic, A.D. Blackwood, J. Lu, R.T. Noble, J.S. Domingo, S. Seifring, M. Sivaganesan, R.A. Haugland, Quantitative PCR for detection and enumeration of genetic markers of bovine fecal pollution, Appl. Environ. Microbiol. 74 (2008) 745–752.

[20] O.C. Shanks, K. White, C.A. Kelty, S. Hayes, M. Sivaganesan, M. Jenkins, M. Varma, R.A. Haugland, Performance assessment PCR-based assays targeting Bacteroidales genetic markers of bovine fecal pollution, Appl. Environ. Microbiol. 76 (2010) 1359–1366.

[21] O.C. Shanks, J.W. Santo Domingo, R. Lamendella, C.A. Kelty, J.E. Graham, Competitive metagenomic DNA hybridization identifies host-specific microbial genetic markers in cow fecal samples, Appl. Environ. Microbiol. 72 (2006) 4054–4060.

[22] S. Okabe, N. Okayama, O. Savichtcheva, T. Ito, Quantification of host-specific Bacteroides-Prevotella 16S rRNA genetic markers for assessment of fecal pollution in freshwater, Appl. Microbiol. Biotechnol. 74 (2007) 890–901.

[23] A. Layton, L. McKay, D. Williams, V. Garrett, G. Sayler, Development of Bacteroides 16S rRNA gene tagman-based real-time PCR assays for estimation of total, human, and bovine fecal pollution in water, Appl. Environ. Microbiol. 72 (2006) 4214–4224.

[24] M.A. Bakir, M. Sakamoto, M. Kitahara, M. Matsumoto, Y. Benno, Bacteroides dorei sp. nov., isolated from human faeces, Int. J. Syst. Evol. Microbiol. 56 (2006) 1639–1643.

[25] Y. Kobayashi, A. Itoh, K. Miyawaki, S. Koike, O. Iwabuchi, Y. limura, Y. Kobashi, T. Kawashima, J. Wakamatsu, A. Hattori, H. Murakami, F. Morimatsu, T. Nakaebisu, T. Hishinuma, Effect of liquid whey feeding on fecal microbiota of mature and growing pigs, Anim. Sci. J 82 (2011) 607–615.

[26] J.Y. Jeong, H.D. Park, K.H. Lee, J.H. Hwang, J.O. Ka, Quantitative analysis of human- and cow-specific 16S rRNA gene markers for assessment of fecal pollution in river waters by real-time PCR, J. Microbiol. Biotechnol. 20 (2010) 245–253.

[27] K.R. Hussein, P.L. Waines, R.B. Nisr, G. Glegg, G. Bradley, Development and use of Bacteroides 16S rRNA polymerase chain reaction assay for source tracking dog faecal pollution in bathing waters, Hydrol.: Curr. Res. 5 (2014) 1–8.

[28] R. Lamendella, J.W.S. Domingo, D.B. Oerther, J.R. Vogel, D.M. Stoeckel, Assessment of fecal pollution sources in a small northern-plains watershed using PCR and phylogenetic analyses of Bacteroidetes 16S rRNA gene, FEMS Microbiol. Ecol. 59 (2007) 651–660.