Molecular Interactions Between Innate and Adaptive Immune Cells in Chronic Lymphocytic Leukemia and Their Therapeutic Implications

Muhammad Haseeb, Muhammad Ayaz Anwar and Sangdun Choi*

Department of Molecular Science and Technology, Ajou University, Suwon, South Korea

Innate immunity constitutes the first line of host defense against various anomalies in humans, and it also guides the adaptive immune response. The function of innate immune components and adaptive immune components are interlinked in hematological malignancies including chronic lymphocytic leukemia (CLL), and molecular interactions between innate and adaptive immune components are crucial for the development, progression and the therapeutic outcome of CLL. In this leukemia, genetic mutations in B cells and B cell receptors (BCR) are key driving factors along with evasion of cytotoxic T lymphocytes and promotion of regulatory T cells. Similarly, the release of various cytokines from CLL cells triggers the protumor phenotype in macrophages that further edges the CLL cells. Moreover, under the influence of various cytokines, dendritic cells are unable to mature and trigger T cell mediated antitumor response. The phenotypes of these cells are ultimately controlled by respective signaling pathways, the most notables are BCR, Wnt, Notch, and NF-κB, and their activation affects the cytokine profile that controls the pathogenesis of CLL, and challenge its treatment. There are several novel substances for CLL under clinical development, including kinase inhibitors, antibodies, and immune-modulators that offer new hopes. DC-based vaccines and CAR T cell therapy are promising tools; however, further studies are required to precisely dissect the molecular interactions among various molecular entities. In this review, we systematically discuss the involvement, common targets and therapeutic interventions of various cells for the better understanding and therapy of CLL.

Keywords: B cell, chronic lymphocytic leukemia, crosstalk, dendritic cell, leukemia therapy, macrophage, T cell

INTRODUCTION

Chronic lymphocytic leukemia (CLL) is the most common leukemia in the Western world, with ∼4.5 cases per 100,000 individuals reported annually (1). The development and progression of CLL are accompanied by several genetic abnormalities and disorders, and CLL is characterized by the gradual accumulation of maturing-looking clonally expanded CD5+ B lymphocytes in peripheral lymphoid organs, secondary lymphoid organs, and bone marrow. There are various signals that induce proliferation and accumulation that lead to survival of malignant cells (2). Abnormalities in the development of B cells cause CLL, immune deficiencies, malignancies, and allergies. Various mutations in hematopoietic cells and immune deficiencies are recognized in CLL, and novel studies
are being designed to gain a deeper understanding of these associations. Moreover, personalized forms of treatment are being developed to treat CLL (3).

CLL cells are largely derived from the continuum of maturation states observed in normal developmental stages when compared to normal B cells. Epigenetic maturation in CLL is associated with an indolent gene expression pattern and increasingly favorable clinical outcomes (4). In addition, previously reported tumor-specific methylation events are normally present in non-malignant B cells. Moreover, a potential pathogenic role has been identified for dysregulated transcription factors in CLL, including the induction of signaling by nuclear factor of activated T cells (NFAT) and early growth response (EGR) proteins, resulting in diminished early B cell factor (EBF) and AP-1 programming compared to that in the normal B cell epigenetic program.

The immune system response can be divided into two phases; (a) innate immunity that arise from myeloid lineage cells and mature into monocytes, macrophages, erythrocytes, platelets, and granulocytes, provide the first line of defense, (b) and the adaptive immune system arises from lymphoid progenitor cells and give rise to natural killer (NK) cells, B cells, and T cells, and provides the second line of defense against pathogens and other abnormalities (Figure 1) (5, 6). These myeloid and lymphoid cells affect the progression of CLL in an independent and collaborative manner. The CLL microenvironment is populated by macrophages, and the transfer of antigens is dependent on the contact between B cells and macrophages (7). Other than antigen transfer, the influence of various cell surface receptors, cytokine secretion, and immune suppression are frequently being interconnected among these cells. Therefore, in this review, we will address the recent advances in linking these blood cells and the therapeutic approaches to counter blood malignancies, particularly CLL.

ADAPTIVE IMMUNE SYSTEM IN CLL: LYMPHOCYTES INVOLVEMENT IN CLL PATHOGENESIS

The adaptive immune response is mainly carried out by B cells, T cells NK cells, where, B cells are the major player in various blood-related abnormalities. For the development and maturation of B cells, the B cell receptor (BCR) is the critical mediator of the proliferation and survival of mature B cells and other precursor tumor cells, as well as, BCR mutational status, is highly correlated with the pathology of disease (8). Moreover, mutations in the receptors are thought to play pivotal roles in CLL etiopathogenesis, as 20% of CLL in unrelated patients involves the display of extremely similar and sometimes even identical antigen receptors. BCR signaling is also critical for CLL cell trafficking, interaction with stromal microenvironment, impaired CLL response, and low expression of the BCR correlates with reduced induction of protein tyrosine kinase activity.

CD5+ B cells are the primary cells that give rise to CLL, although a few reports implicate T cells as well. BCR signaling is the most important feature and a diagnostic marker of CLL that can drive CLL progression in an antigen-independent manner (9). Along with BCR, several genetic modifications are also frequently reported to be causative agents of CLL, and such genetic abnormalities act in synergy with various cells types, such as stromal cells, T cells, and nurse-like cells (NLC) in the lymph nodes (10). Numerous defects affecting downstream signaling proteins in the BCR pathway and mutations in the interleukin 7 (IL-7) receptor are not direct causes of CLL; however, such factors predispose cells to develop into CLL cells, and they also influence the development of B and T cell malignancies and severe immunodeficiencies (11, 12). Moreover, B cell development in humans is heavily reliant on Bruton’s tyrosine kinase (BTK) signaling activity, as this pathway regulates the activity of various transcription factors, and any errors in this pathway severely impact and even block B cell maturation (Table 1) (43).

CLL also manipulates T cells to gain a survival edge by turning off cytotoxic functionalities of T cells and increased expression of immune checkpoints with abnormal subset distributions. Prior treatment of CLL may also shape the T cells profile (44). CLL cells using their extracellular vesicles (EV) can also modulate T cells in favor of enhanced migration, interaction with tumor cells, and immunological synapse signaling, to avoid immune attack. When analyzed, these EVs contain miR-363 that suppresses the immune modulatory molecule, CD69, and the knockdown of miR-363 altered T cell phenotype (45).

Recently, it has been identified that the lymph nodes harbor the highest number of CLL cells (46), where, the CD4+ T cells can induce them to be adhesive toward hyaluronan through CD40L and CD44 interaction and antagonizing their motility (47). The higher number of CD8+ T cells as compared to CD4+ T cells predispose the CLL patients to a shorter lifespan, and this can be correlated to the immune checkpoint receptor PD-1.
FIGURE 1 | Development of B cells, T cells and macrophages. (A) The development of B cells occurs in the bone marrow and peripheral lymphoid tissues. Development progresses from hematopoietic precursor cells (HSCs) and proceeds through several stages, such as a pro-B cell, pre-B cell, and immature B cell. During differentiation, the pre-B-cell receptor (pre-BCR) is generated following immunoglobulin locus rearrangements and is expressed on the cell surface. This pre-BCR (consisting of the surrogate light chain [VpreB or Vλ5] and an Igμ heavy chain) undergoes further rearrangements of the light and heavy-chain genes to form a mature BCR that can bind to the antigen. A selection process occurs at this immature B cell stage that prevents self-reactive cells from developing further. This stage is accompanied by both clonal selection and receptor editing. Those cells that successfully pass through this checkpoint (named transitional B cells) leave the bone marrow and migrate to the peripheral lymphoid tissues. (Continued)
CLL with supporting evidence that the expansion of CD8+ T cells in bone marrow and progresses to the thymus, where it passes through a series of developmental stages that can be recognized based on the expression of different cell surface markers. In the beginning of development, the expression of co-receptors CD4 and CD8 are absent and called double negative (DN) cells. The DN cells (DN1, DN2, DN3, and DN4) are further sub-divided by the expression of CD117, CD44, CD25, CD127, and CD3 markers. Further differentiation takes place by the up-regulation of CD4 and CD8 expression, therefore, names as double positive (DP) cells. The negative selection against self-antigen occurs in the thymus (medulla), where antigens are presented to them by dendritic cells and macrophages. T cells with stronger affinity then eliminated and the remaining T cells downregulate either co-receptor CD4 or CD8 and give rise to naïve cells stay in thymus and periphery. (C) The macrophage development and maturation also take place in bone marrow and tissues. From HSC, myeloid colony forming units are derived in bone marrow, and further grow into monocytes under colony-stimulating factor 1 (CSF1) through various highly organized stages. These monocytes can give rise to common DC progenitor cells that can transform into blood monocytes and, upon homing to various tissues except brain and skin macrophages, tissue macrophages. During most of the developmental stages, various factors influence the macrophage lineage development, however, CSF1 is likely imparted the highest influence. Finally, to address the inflammation, monocytes are recruited to tissues and restricted to specific phenotypes, M1, M2, and tumor-associated macrophages (TAM) depending upon inflammatory milieu. The development of TAM could also be influenced by tumor cells and tissue-resident macrophages. On the other side, some other factors released by TAMs suppress the local immune response by either directly suppressing T cell responses or recruiting Treg cells. Arg1, arginase 1; bFGF, basic fibroblast growth factor; CCL, chemokine (C-C motif) ligand; CD, cluster of differentiation; CSF1 colony-stimulating factor-1; CXCL, chemokine (C-X-C motif) ligand; FLT3, FMS-like tyrosine kinase receptor 3; IFN, interferon; Ig, immunoglobulin; IL, interleukin; LIF, leukemia inhibitory factor; MDP, macrophage-derived peptide; MHC, major histocompatibility complex; MMP, matrix metalloproteases; MR, Mineralocorticoid receptor; PD-L1, Programmed death-ligand; PGE, prostaglandin; SR, scavenger receptor; TAM, tumor-associated macrophage; TGF, transforming growth factor; TNF, tumor necrosis factor; VEGF, vascular endothelial growth factor.

However, the induction of Th17 cells and related cytokines may have the possibility to increase the complication of autoimmune cytopenias (56, 58).

INNER IMMUNE SYSTEM IN CLL: MACROPHAGE-DC PRECURSORS IN CLL PATHOGENESIS

The prominent cells in a myeloid lineage that are crucial for tumor response include macrophages, monocytes, and DCs. Monocytes are acquired from ancestor cells and differentiate either into macrophages or DCs at marginal tissue sites (6). At the beginning of an adaptive immune response, stimulated DCs migrate to secondary lymphoid organs and present the antigen to other antigen presenting cells (59, 60), whereas, after activation, macrophages have tissue-specific functions and remain in the peripheral tissues (61).

Macrophages are usually considered phagocytes of cancer cells and disease-causing particles and they can acquire M1 (antitumor) or M2 (protumor) phenotypes depending on various stimuli and microenvironment (62). Normally, microbial components or IFNγ activates M1 macrophages, which activate T cells, while, the M2 phenotype is triggered by IL-4 and -13 and is involved in controlling the disease response (63), hence macrophage penetration in tumors can be either positive or negative, depending on the tumor type, which suggests the dual role of macrophages (64).

The development of a tumor niche occurs during neoplastic conversion when B cell factors attract circulating monocytes that differentiate into macrophages, which express CD163, CD206, CD14+, and CD68 and show an M2-like functionality (64). The differentiated macrophages are functionally indistinguishable from NLCs, rendering TAMs and NLCs functionally equivalent in CLL tissues (65–67). CD14+ monocytes from a healthy donor cultured in vitro can be transformed into NLCs with CD19+ in the presence of CLL B cells; however, normal B cells lack this ability to transform. Differentiation into NLCs promotes the survival of CLL cells via cytokine production. In contrast, healthy...
Table 1: B cell lymphomas and mechanisms of pathogenesis.

Lymphoma	Characteristics	Suggested cellular origins	Chromosomal translocations	Tumor suppressor gene mutations
B-CLL	B cell leukemia with the expression of antigen CD5 in bone marrow cells and peripheral blood. The prognosis is worse when the normal V region gene is expressed.	MZ MB Naïve B cell	NA	ATM (30%), TP53 (15%) (13, 14)
Mantle cell lymphoma	Begins in the mantle zone of follicles, expresses CD5, and shows anomalies in the expression of cyclin D1. Almost all cases are linked to changes in BCL1-IgH.	CD5⁺ Mantle zone	CCND1-IgH [95%] (15)	ATM (40%) (16)
Lymphocyte-predominant Hodgkin's lymphoma	Shows a specific B cell phenotype in tissues. Grows in conjunction with follicular dendritic and T helper cells.	GC	BCL6-various [48%] (17)	NA
Classical Hodgkin's lymphoma	Large tumor cells. Reed-Sternberg and Hodgkin's cells account for >1% of tumor cells.	Abnormal GC	NA	IKB4 [10–20%] (18), IKB1 [10%] (19), CD95 [<10%] (20)
Multiple myelomas	Plasma cells proliferate in the bone marrow.	Plasma cells	CCND1-IgH [15–20%] (21), FGFR3-IgH [10%] (22), MAF-IgH [5–10%] (23)	CD95 [10%] (24)
Lymphoplasmacytic lymphoma	This cancer involves bone marrow, spleens, and lymph nodes and is composed of small B cells. Patients' sera exhibit monoclonal protein IgM.	Post GC	NA	NA
Primary effusion lymphoma	Mostly present in AIDS or organ transplant patients. Such type of lymphoma found in cavities, pleura, and pericardium.	Post GC	NA	NA
Post-transplant lymphoma	Arises after organ transplantation, such as diffuse large cell type of lymphoma. Large tumor cells.	GC	NA	NA
Primary mediastinal B cell lymphoma	A subtype of diffuse B cell large lymphoma located in the mediastinum. Shows similarities to Reed-Sternberg cells. Mostly found in young women.	Thymic B cells	NA	SOCS1 [40%] (26)
Diffuse large B cell lymphoma	This type of lymphoma is a heterogeneous group typhified by large B cells. Immunoblasts and centroblasts show morphological adaptations.	GC or post GC	BCL6-various [35%] (27), BCL2-IgH [15–30%] (28), MYC-IgH or MYC-IgL [15%] (29)	CD95 [10–20%] (30), ATM [15%] (31), TP53 [25%] (32, 33)
Burkitt's lymphoma	An extranodal and fast-growing lymphoma characterized by MYC-Ig translocation. Mostly, EBV positive in patients and the sporadic form is present in about 30% of cases.	GC	MYC-IgH or MYC-IgL [100%] (34, 35)	TP53 [40%] (36), RB2 [20–80%] (37)
Splenic MZ lymphoma	Mostly small IgM⁺ lymphoma cells that replace normal follicles and the MZ region. Involves infiltration into the bone marrow and circulation.	Naive B cells partially differentiated in the MZ	NA	NA
Nodal MZ lymphoma	Present in lymph nodes. The similarity with MZ or monocytoid B cells, with a mostly heterogeneous cytology. Includes plasma cell and lymphocytes range from small to large.	MZ Monocytoid B cells	NA	NA
MALT lymphoma	An extranodal MZ B cell lymphoma that develops in acquired lymphoid structures.	MZ	AP2-MALT1 [30%] (38), BCL10-IgH [5%] (39, 43), MALT1-IgH [15–20%] (41), FOXP1-IgH [10%] (42)	CD95 (5–12, 43–111)
Hairy cell leukemia	Involves the bone marrow and spleen. Few circulating leukemia cells. Cells form hairy projections.	MB	NA	NA
Follicular lymphoma	Resemble GC B cells. Follicular growth pattern. Associated with BCL2-IgH translocation.	GC	BCL2-IgH [90%] (112)	NA
B cell prolymphocytic leukemia	Chronic B cell malignancy that resembles B cell CLL. More than 50% of cancer cells are prolymphocytes.	MB	NA	NA

A list of B cell malignancies that have a direct or indirect role in the progression, maintenance, or survival of CLL cells. Numbers in square brackets are the percentages of known cases that carry mutations in this gene. Lymphomas in which the transformation frequency is >5% or the transformation mechanism has not yet been identified are not listed.

AIDS, acquired immune deficiency syndrome; EBV, Epstein–Barr virus; Ig, immunoglobulin; MALT, mucosa-associated lymphoid tissue; GC, germinal center; MZ, marginal zone; API2, apoptosis inhibitor 2; ATM, ataxia telangiectasia mutated; B-CLL, B cell chronic lymphocytic leukemia; CCND1, cyclin D1; FGFR3, fibroblast growth factor receptor 3; FOXP1, forkhead box P1; IKB1, inhibitor of nuclear factor-κB; IKB1, inhibitor of nuclear factor-κB; MALT1, mucosa-associated lymphoid tissue lymphoma translocation gene 1; PAX5, paired box gene 5; RB2, retinoblastoma-related gene 2; SOCS1, suppressor of cytokine signaling 1; NA, not available.
B cells are unable to induce an NLC phenotype in monocytes and do not support CLL cell survival (68). Thus, factors that increase the survival of CLL cells are released with the differentiation of NLCs. Moreover, NLCs are blood monocyte-derived cells that secrete CXCL12 and 13, and that protect CLL cells from spontaneous apoptosis or drug-induced apoptosis in response to CXCL12, B cell-activating factor (BAFF), a proliferation-inducing ligand (APRIL), CD31, plexin-B1, and activation of the BCR signaling cascade (69–72). NLCs are known as TAMs and LAMs (lymphoma-associated macrophages) in other B cells malignancies; however, the signaling mechanism and roles are similar.

The essential role of chemokines and cytokines in stimulating the symbiotic relationship is supported by monocytes, TAMs/NLCs, and tumor cells. CLL cells secrete IL-4, -10, and -13 (73) that endorse M2-like properties in macrophages and stimulate pro-survival responses through the secretion of IL-8 (74), CCL2, CXCL12, 12 (75, 76), and insulin-like growth factor-1 (IGF-1) (77). Because of the sustained selection of circulating monocytes, the tissue niche is expanded and is rich in chemokines, such as CCL2, 3, and 4 and CXCL12, 13, 19, and 20 (72, 78). Consequently, TAMs/NLCs are promoted by leukemic cells and anti-tumor immunity is suppressed in CLL microenvironments. The properties of TAMs can be modulated by the phosphoinositol-3 kinase/mammalian target of rapamycin (PI3K/mTOR) pathway (79, 80), and they have been shown to suppress T cell-mediated antitumor responses through the PI3K signaling pathway (81, 82). Moreover, gene expression profiling (GEP) of CLL-associated monocytes revealed aberrantly high PD-L1 expression and secretion of multiple inflammatory and immunosuppressive cytokines like IL-10, TNF-α, and CXCL9 that also contribute to worsening the situation.

The functional and clinical importance of DC is long been known, with the functional alteration of cytokine profile in CLL (83), these cells also showed phenotypically immature population with the absence of maturing antigen CD83 and CD80, reduced expression of IL-12 and unable to activate type 1 T cell response (84). Further, unable to induce T cell response can also be coupled to SOCS5 that negatively regulates STAT6, a downstream mediator of the IL-4Rx receptor. In CLL, overexpression of IL-4Rx is due to overactivation of STAT3 and to regulate IL-4Rx activation, SOCS5 comes into play. This decoupling reduced the pro-inflammatory cytokines from DCs and hinders its maturation (85). In another study, the involvement of CXCR5 has been studied in Bm-Tcl1 CLL model and it has been concluded that CXCR5-deficient cells showed reduced leukemic transformation, and in this activity, follicular DCs play a critical role (86). The disruption of this link may offer a potential therapeutic window.

DC vaccines hold therapeutic potential, and when apo-DC based vaccine along with GM-CSF, lenalidomide, and cyclophosphamide has been evaluated, it triggers a T cell response against tumor cells, however, it showed toxicity that warrants careful administration of this combination (87). The lower induction of TH1 cytokine profile from DC vaccines is an impediment to their clinical efficacy. Recently, it has been reported that α-type-1 polarized DCs (αDC1s) have shown to produce superior TH1 cytokine profile, with an equivalent number of CD70 expression. These αDC1s can be an alternative to prostaglandin-mediated DC maturation for better CLL treatment (88).

SIGNALING PATHWAYS IN CLL

In CLL, numerous pathways play essential roles in responding to external stimuli, making identification of the most significant pathway a challenge. Several pathways are involved in the proliferation and survival of CLL cells, including the mitogen-activated protein kinase/extracellular regulated kinase (MAPK/ERK), nuclear factor κB (NF-κB), Notch, Wnt, phosphatidylinositol-3-kine/akt (PI3K/AKT), and Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathways (89). The stimulation of signaling pathways, specifically MAPK/ERK, NF-κB, and PI3K/AKT, in a tissue microenvironment is dependent upon the composition of the microenvironment. This can differ among different tissues, triggering specific signaling pathways (Figure 2) (90).

The BCR signaling pathway is the most critical pathogenic factor, and it has long been considered a valuable target in CLL. In various studies, BTK (kinase factor of BCR) inhibitor has been evaluated with other chemotherapeutic agents to reduce the pathophysiology of CLL (72). Continuous activation of the BCR leads to the apoptosis-resistant CLL cells, and overexpression of the antiapoptotic proteins XIAP, MCL-1, and BCL-XL (91). Moreover, studies involving ibrutinib and CAL101 (PI3K inhibitor) have shown promising results in the treatment of CLL (92). Furthermore, evaluation of a highly selective oral AKT inhibitor, MK2206, indicated that this compound selectively inhibits BCR-induced cytokines, activates other lymphocytes, and in synergy with bendamustine, induces apoptosis in CLL cells (93).

The MAPK/ERK pathway conveys pro-survival signals in cancerous cells and is mainly activated by various growth factors, and CCL19, 21 and CXCL12, 13 stimulation (94, 95). The basic components of this pathway include one small G protein (Ras) accompanied by three other kinases (RAF, MEK, ERK) that, upon activation, leads to the translocation of the ERK to nucleus and activation of target genes (96). The entry of CLL cells into the S-phase of the cell cycle and expression of MYC are essential activities of MEK1/2, and MEK2 also upregulates antiapoptotic protein, XIAP (91, 95). MYC induces the cell cycle component cyclin D2 and downregulates p27, a cell cycle inhibitor (97, 98).

The NF-κB pathway generally promotes proliferation and is downstream of many cell surface receptors, including Toll-like receptors (TLRs). These receptors can be triggered through a multitude of signals, leading to the activation of NF-κB, which induces the transcription of CCL5, 9, 17, 20, and 22, IFNγ, IL-2, 6, 8, 9, and 10, MIPs, CCRs, CXCRs, TLR 2 and 9, and various other early response genes, transcription factors, and regulators (99). It also cross-talks with various other pathways; for instance, stimulation of NF-κB upregulates BFL-1 and B cell lymphoma-extra-large (BCL-XL) anti-apoptotic genes, which inhibit the apoptosis of CLL cells via PI3K/AKT signaling. Further, IL-4 and
soluble CD40-ligand (sCD40L) were found to be most effective in preventing CLL apoptosis by triggering NF-κB (100). NF-κB also modulates the redox state of cells, and, when production of reactive oxygen species is blocked using IT901, tumor cells become susceptible to apoptosis (101).

Notch signaling pathway plays a role in embryonic development, cell fate determination, and neural differentiation. There are four different Notch receptors: Notch1, Notch2, Notch3, and Notch4. A mutation in the Notch1 receptor has been confirmed in 10–15% of CLL patients (102). The initial events in this pathway involve the interaction of Jagged and Delta-like ligand with the Notch receptor, induces its cleavage by γ-secretases, and the cleaved Notch1 receptor forms a complex with other factors that stimulate the transcription of target genes, including HES1 and Myc. In CLL, Notch1 and Notch2 and their ligands are constitutively expressed, which allow cells to resist apoptosis, upregulates NF-κB activity, and induces expression of XIAP and cIAP2 (cellular inhibitor of apoptosis protein 2). However, inhibition of Notch signaling by γ-secretase inhibitor and specific siRNAs promotes the death of CLL cells (103). Furthermore, Notch signaling is also involved in the induction of MCL-1 and the promotion of eukaryotic translation initiation factor 4E activity that leads to CLL survival (104). Inhibition of the Notch signaling pathway may also induce the expression of target genes.
of Kruppel-like factor 4, which was suppressed due to aberrant methylation (105).

The Wnt signaling pathway plays an important role in cell development, differentiation and oncogenesis. This pathway shows a high level of Wnt and Frizzled expression, and downregulation of antagonist genes, including WIFI and secreted Frizzled-related members (SFRP). Wnt activation inhibits GSK3β mediated β-catenin phosphorylation, then the dephosphorylated β-catenin enters the nucleus and binds with lymphoid enhancing factor (LEF) to stimulate the transcription of Wnt target genes, such as LEF, CyclinD1, Myc, matrix metalloproteinasises, and cyclooxygenase-2 (106–108). During CLL, overexpression of the Wnt pathway and enhanced translocation of β-catenin to the nucleus occurs in the absence of E-cadherin (106). In a recent report, ibrutinib, a classical BTK inhibitor, was used to target metadherin, that not only inhibited dephosphorylated lymphoid enhancing factor (LEF) to stimulate the transcription of Wnt target genes, such as LEF, LEF1, and β-catenin (109). Other than canonical Wnt, recently, Wnt5a was found to act as a regulator of ROR1, a receptor in the non-canonical Wnt/planar cell polarity (PCP) pathway, which may promote CLL cell survival and subvert apoptotic signals (110).

PI3K/AKT signaling pathway is a central mediator of cancerous cells and their microenvironment and transmits signals from CXCR4 and CD40 (91). The principal regulator of this pathway is phosphatase and tensin homolog (PTEN) (113), along with other transcription factors, such as FOXO. Upon activation of PTEN, FOXO proteins are translocated to the nucleus and induce p27, which arrests the cell cycle. Activation of the PI3K/AKT pathway by microRNA-22 induces the proliferation of CLL cells, which can be reversed by inhibiting the PI3K-Δγ signaling pathway using IPI-145 (114, 115). The role of the PI3K/AKT pathway in CLL proliferation can be attributed to a chemotactic response mediated by CXCL12 and 13 and CCL19 and 21 (69, 116) and assists in the survival of cancerous cells in response to various exterior stimuli conveyed through CD40L (117), BCR (91), CCL19 and 21, vascular cell adhesion molecule 1, and anti-apoptotic proteins, such as BCL-2 and MCL-1 (90). Moreover, synergy was observed in PI3K/AKT and Hedgehog (HH)/GLI pathway, when both these targeted simultaneously, a synergistic therapeutic effect is observed in CLL, which suggests a combinatorial therapy (118).

The JAK/STAT signaling pathway is another pathway crucial that mediates signals from cytokines, which are soluble messengers produced by various cells. The JAK/STAT pathway provides a direct link from the cell surface to the nucleus. The binding of the cytokine to its cognate receptor triggers this pathway that involves phosphorylation among JAK and STAT molecules. Later, STAT molecules translocate to the nucleus and bind with DNA as either hetero- or homodimers. There are multiple JAK and STAT molecules that combine in different ways to induce diverse transcriptional profiles (119).

In CLL, inhibition of the JAK2/STAT3 pathway culminates in the apoptosis of cancerous cells. The dual inhibitor cerdulatinib, which targets both spleen tyrosine kinase (SYK, a BCR component) and JAK kinases, potently inhibits tumor growth and induces apoptosis in CLL cells at clinically feasible drug concentrations (120).

INNATE VS. ADAPTIVE IMMUNE SYSTEM: AN INTERPLAY OF MYELOID AND LYMPHOID CELLS IN CLL

The interaction between lymphocytes and myeloid cells is crucial for immune response and any anomaly may prone the individual at risk of developing diseases. B cells present in the MZ, a region between red and white pulp of spleen and enriched with macrophages, are an essential link between innate and adaptive immunity (121, 122). Recently, acquisition of antigen through BCR and then transfer to macrophages through direct contact has been reported (7) that signifies B cells involvement in macrophage-mediated CD4+ T cells activation. Further, B cell development into memory or plasma cells needs to encounter an antigen, which can either be diffusion-controlled or be presented by macrophages, DCs, or FDC (123).

B cells and macrophages show bidirectional interactions via different soluble factors. Macrophages produce APRIL and BAFF in the presence of costimulatory signals, such as IL-6, TGFβ, IL-10, and TLR ligands (124, 125). In proliferating B cells, BAFF is significantly involved in signals exchanged between macrophages and B cells. Additionally, B lymphocyte stimulator (BlyS), a TFN family member, also induces the B cell growth. The B cell tropism of BlyS is consistent with its receptor expression on B-lineage cells. The biological profile of BlyS suggests that it is involved in monocyte-driven B cell activation (125, 126). IL-10 involved in the initial development of B1 cells, and IL-6 contributing to later B cell development (127, 128). Moreover, the accumulation of B cells in response to IL-10 can suppress murine macrophage functions in vitro (129) and transform macrophages into cells with a pro-tumor phenotype both in vivo and in vitro (Figure 3) (130).

GEPs indicate complex interactions between macrophages and malignant B cells in the microenvironments that induce cellular changes. This analysis has shown that CLL cells are activated differently by bone marrow-derived stromal cells (BMSCs) and NLCs (72, 131). In particular, the expression pattern induced by BMSCs shows a characteristic upregulation of T cell leukemia/lymphoma 1 (TCL1), a lymphoid proto-oncogene, with a concomitant decrease in TCL1-interacting FOS proto-oncogene and Jun proto-oncogene (FOS/JUN) (131). However, an NLC-induced GEP pattern in leukemic cells showed the expression of genes in the NF-κB and BCR signaling pathways (72), which was astonishingly similar to the expression pattern of CLL cells that were extracted from a patient’s lymph nodes (132). Additionally, BMSCs differentially induce many vital genes (e.g., TNF receptor superfamily member 17 (TNFRSF17), pre-B lymphocyte 3, TNFSF10), but their precise functions in the CLL microenvironment remain to be explored. MDSCs have also been widely studied in the context of immune and T cells suppression in malignant diseases. MDSC (CD14+/HLA-DR−/−) was increased in CLL that suppress T cell activation and caused suppressive Tregs activation and this can be attributed to increased indoleamine 2,3-dioxygenase activity in T cells (55).

The interaction of leukemic cells with bone marrow cells is perpetuated through adhesion molecules and chemokines (133), and cell-to-cell contact via bidirectional interplay as
FIGURE 3 | Interactions between CLL cells and bystander cells that subsidize the formation of a tumor-supportive microenvironment. The molecular interactions of innate immune cells (macrophages, dendritic and nurse-like cells) and adaptive immune cells (B and T cells) have relevant effects, such as survival, immunosuppression, proliferation and signaling molecules (in blue) involved in the interactions of CLL cell. The response of CLL cells includes exhaustion of T cells, expansion, chemoattraction, immunosuppression, and immune evasion (in green) on innate and adaptive immune cells. However, IL-2 and IL-10 (in red) contribute to the autocrine self-renewal and survival of CLL cells. APRIL, a proliferation-inducing ligand; BAFF, B cell activating factor; BOR, B cell receptor; CCL, chemokine (C-C motif) ligand; CD, cluster of differentiation; CLL, chronic lymphocytic leukemia; CSF1R, colony-stimulating factor-1 receptor; CSF1, colony-stimulating factor-1; CXCL, chemokine (C-X-C motif) ligand; (TGF-β), Transforming growth factor beta; NAMPT, extracellular nicotinamide phosphoribosyltransferase; HMGB1, High mobility group box 1; IL, interleukin; MIF, mini zinc finger; P53R1/mTOR, phosphatidylinositol-3-kinase/mammalian target of rapamycin; TAM, tumor-associated macrophage; MHC, major histocompatibility complex; TNF, tumor necrosis factor; CCR, chemokine receptor; IDO, indoleamine 2,3-dioxygenase; PD-1, program cell death; IRF4, interferon regulatory factor; IFN, interferon.

studied by Hacken and Burger (134). The CXCR5 expression on leukemic cells controls the approach to FDCs, which provide the proliferative stimuli and expression of myeloid cell leukemia-1 (MCL-1) antiapoptotic protein (86, 135). The stimulation or suppression of the development of CLL clones by T cells have been reported, suggesting that T cells are unable to form efficient immunological synapses alone (136). On the other hand, colocalization with CLL cells indicates that they may induce the development of leukemic clones (133). There are several T-cell-attracting chemokines, such as CCL3 and 4, which are secreted at high levels by CLL cells in response to TNF-α, IFNα, and IL-2 that protect cancerous cells from apoptosis (72, 134).

Human signaling lymphocytic activation molecule family 1 (SLAMF1/CD150) receptor is expressed by T cells, B cells, macrophages, and DC, where it acts as a co-stimulatory through self-interactions on the hematopoietic cell surface, and plays critical roles for various T and B cells functions. In a subset of CLL patients, SLAMF1 was found to be downregulated that warranted the shorter life spans (137). Moreover, SLAMF1−/− positively affects chemotactic response to CXCL12 by overexpression of CD38, CD44, and CXCR4, and its activation through antibody can facilitate the autophagic flux. SLAMF1 along with other receptors, particularly, CD180, influences the leukemic cells pathobiology. This signaling crosstalk causes the inhibition of AKT and MAPK pathways and results in reduced phosphorylation of ERK1/2, AKT, ribosomal S6 kinase, c-Jun, and other vital intermediate kinases (138, 139). Thus, various studies revealed that SLAMF1 plays a critical role in CLL pathogenesis and restoring the expression of SLAMF1 would be a great therapeutic target for CLL.
THERAPEUTIC IMPLICATIONS

CCL is either resistant to chemotherapy or the outcome is very poor. Consequently, various studies are underway to develop new therapies that either inhibit intracellular signaling or block extracellular signals using small molecules, antibodies, kinase inhibitors, immunomodulators, and antagonists (Table 2) (90).

The role of colony stimulating factor 1 (CSF1/CSF1R) in regulating the survival and differentiation of macrophages is well-recognized, and blocking signaling through this pathway may have therapeutic significance (141, 142). The activity of CSF1R is blocked by the inhibitor pacritinib, which reduces NLCs and limits the progress of CLL (143). Importantly, a novel treatment, anti-CSF1R monoclonal antibody, is under clinical assessment in solid tumors (144). It has also been observed that CSF1R blockade targets TAMs and reprograms the microenvironment to an antileukemic phenotype. Targeting macrophages not only increases the death of CLL cells but also that of CD20+ leukemic cells (145). In a recent clinical trial, patients were given ibrutinib alone and in combination with anti-CD20 monoclonal antibodies (moAbs). The study revealed that ibrutinib had both positive and negative effects, as ibrutinib consistently downregulated CD20, rendering cells less susceptible to moAb. However, ibrutinib can impair trogocytosis, a major contributor to antigen loss and tumor escape during moAb therapy (146). Moreover, macrophage targeting through CSF1R blockade can also increase CD20+ leukemic cells, and targeting of macrophages by either CSF1R signaling blockade or clodronate-induced macrophage killing can significantly inhibit established leukemia. The removal of macrophages facilitates TNF-mediated leukemic cell death and modifies the microenvironment to induce an antitumor response. By inhibiting CSF1R, it reduces the CLL cell population and increases CD20+ CLL cells that can be co-targeted along with TAM to achieve superior results (145).

Recently, a scavenger receptor, MARCO, was identified on TAMs that is immunosuppressive and is present in the tumor microenvironment. This receptor is specific for a subtype of TAMs and has been successfully targeted through moAbs in various solid tumors, where it has antitumor effects (80). The antitumor effects obtained by targeting this receptor is proposed to be mediated by the Fc-receptor FcγRIIB. Although it has not been evaluated in CLL, it presents a potential target for therapy. Trabectedin is used for the treatment of soft tissue sarcomas, where it reduces TAMs (147). It is cytotoxic for human monocytes and inhibits the production of IL-6 and CCL2; in addition, it may shape the microenvironment.

Class	Agent	Target	Phase of study	Status	Side effects	Reference/clinicaltrials.gov
Small molecules/antibodies	Obinutuzumab	CD20	III	Completed	Transfusion-related reactions	NCT01680991
	BI 836826 (moAb 37.1)	CD37	I	Active, not recruiting	Liver enzymes	NCT01296932
	Otteruzumab	CD37	I/II	NA	Infusion reaction, nausea, fatigue, diarrhea	(143)
	Blinatumomab	CD19	I	Recruiting	Cytokine release syndrome	NCT02568553
	Rituximab	CD20	II	Terminated	Nausea, heartburn, joint pain, diarrhea	NCT01625741
Kinase inhibitors	Idelalisib	PI3Kδ	I	Active, not recruiting	Pneumonitis, diarrhea	NCT01539291
	AMG319	PI3Kδ	I	Completed	Diarrhea	NCT01300026
	IP1-145	PI3Kγ	I/II	Active, not recruiting	Pneumonitis, neutropenia	NCT01258091
	Ibrutinib	BTK	III	Active, not recruiting	Pneumonitis, diarrhea	NCT02801578
	AVL-292	BTK	I	Completed	Cytopenia	NCT01351935
	ONO-4059	BTK	I	Completed	NA	NCT01659255
	Dasatinib	BCR-ABL, Src	II	Completed	Pleural effusion	NCT00438854
	Fostamatinib	SYK	I/II	NA	Fatigue, diarrhea, nausea	(140)
	GS-9973	SYK	I	Completed	NA	NCT01841489
	CC115	mTOR, DNA-PK	I	Active, not recruiting	Hyperglycemia	NCT01353625
	PRT-207/0	SYK	I (pending)	NA	NA	NA
BCL-2 antagonists	ABT-199	BCL-2	II	Active, not recruiting	Neutropenia, tumor lysis syndrome	NCT02141282
Immunomodulators	Lenalidomide	Multiple	III	Terminated	Myelotoxicity, tumor flare, immunosuppression, thromboembolic events	NCT00751296
CARTs	CTL019	CD19	II	Recruiting	B cell depletion, cytokine release syndrome	NCT02228096

CARTs, chimeric antigen receptor transduced T cells; moAb, monoclonal antibody; PI3K, phosphoinositide 3-kinase; BTK, Bruton tyrosine kinase; mTOR, mammalian target of rapamycin; DNA-PK, DNA protein kinase; NA, not applicable.
of chronic B lymphoid malignancies (147). CD47 is another target molecule that needs to be explored in CLL as a potential therapy (148). Lenalidomide is an immunomodulatory drug used for the treatment of CLL, (149) and showed rare cytotoxicity in malignant cells, but apparently, it acts on tumor-supporting microenvironments and affects the CLL myeloid compartment (150).

Valproic acid (VPA) is a histone deacetylase inhibitor (HDAC/HDI), which has long been used as an antiepileptic drug. VPA has also been evaluated in hematological malignancies for the apoptosis induction of cancerous cells, and has been clinically tested to cause differentiation in carcinoma cells, acute myeloid leukemia cells from patients, and transformed hematopoietic progenitor cells. It has also reduced the tumor growth in animal models (151, 152). VPA perpetuates its effects by up-regulating cyclin-dependent kinase inhibitor 1A, BCLA1, and p53, whereas proto-oncogene (e-Myc, BCL2, BCL-XL, Ataxia-Telangiectasia Mutated, protein kinase B) were downregulated, thereby augmenting mTOR inhibitor to induce autophagic cell death in several kinds of lymphomas including Burkitt leukemia/lymphoma, cutaneous T cell lymphoma and CLL (153, 154). Furthermore, VPA alone or in combination with other drugs, such as fludarabine, flavopiridol, cladribine, lenalidomide, and bortezomib is highly effective in inducing cell death in CLL cells and could be considered for therapeutic intervention (155, 156).

Immune checkpoint inhibitors (ICI) are gaining popularity for their therapeutic potential as these ICIs block the interaction of cytotoxic T lymphocyte-associated 4 (CTLA4) and PD-1 to their cognate ligands, CD80/CD86 and PD-1 ligand (PD-L1), respectively. These interactions are critical for cancer cell survival including CLL in the tumor microenvironment (157). Various ligands and antibodies have been developed to target this particular interaction. Recently, chimeric antigen receptor (CAR) T cell therapy is being studied that targets B cell-specific antigen in CLL, CD19 (anti-CD19 CART [CTL019]), and observed a promising response in clinical trials for CLL patients (158). In future, CAR-T cells combining with other therapeutic agents could be the treatment of choice for various malignancies.

FUTURE PROSPECT AND CONCLUSION

B cells and macrophages are crucial components of the immune system. These cells interact and influence each other at various levels, beginning in development and later inactivation and immune responses. There are several links between these cells that are either protumoral or antitumoral. In this review, we provided a sketch of B cells and macrophages and discussed their links. The molecular interactions between macrophages and B cells have been characterized in detail in CLL. There are various mutations that cause CLL, affecting different pathways as either causative agents or enhancers of CLL pathogenicity, as well as, a plethora of signals from the microenvironment and the interplay of various other cells that play roles in the progression of CLL. All these aspects complicate the mechanistic elucidative studies, hinder the formulating and devising therapeutic strategies, and complicate the outcome of already implemented therapeutic regimens.

Several pathways are involved in CLL. The real problem arises when these pathways interact with other pathways to increase the overall intensity or exaggerate the outcome. These interactions are surprisingly difficult to manage in cancer cases, and particularly in CLL. Moreover, CLL is a neoplasm of immune-related cells, adding an extra layer of complexity, because any immunotherapy approach that activates immune cells can also activate tumor cells.

Consequently, we assessed that single molecule therapy is often inadequate for CLL as these offer a wide range of interactions that simultaneously propagate the disease, suppress the immune system, and resist the therapeutic intervention. Therefore, we emphasized on the common targets such as, PD-1, BTK, CSF1R, and CD20 that were in one cell influence the phenotype of other cells rendering the possibility of co-targeting multiple cells simultaneously in order to achieve superior results.

AUTHOR CONTRIBUTIONS

MH and MA conceptualized and drafted the manuscript. MH created the tables. MH and SC created the figures. SC critically analyzed and coordinated the project. All authors read and approved the final manuscript.

FUNDING

This work was supported by the National Research Foundation of Korea (NRF-2015R1A2A2A09001059) and the Commercializations Promotion Agency for R&D Outcomes funded by the Ministry of Science and ICT (2018K000369).

REFERENCES

1. Howlader N, Noone A, Krapcho M, Garshell J, Neyman N, Altekruse S, et al. SEER Cancer Statistics Review, 1975–2012. Rockville, MD: National Cancer Institute 2015. The statistics of cancer in the United States Google Scholar (2016).

2. Hulkkonen J, Vilpo L, Hurme M, Vilpo J. Surface antigen expression in chronic lymphocytic leukemia: clustering analysis, interrelationships and effects of chromosomal abnormalities. Leukemia (2002) 16:178–85. doi: 10.1038/sj.leu.2402363

3. Pieper K, Grimbacher B, Eibel H. B-cell biology and development. J Allergy Clin Immunol. (2013) 131:959–71. doi: 10.1016/j.jaci.2013.01.046

4. Oakes CC, Seifert M, Assenow Y, Gu L, Przekopowitz M, Ruppert AS, et al. DNA methylation dynamics during B cell maturation underlie a continuum of disease phenotypes in chronic lymphocytic leukemia. Nat Genet. (2016) 48:253–64. doi: 10.1038/ng.3488

5. Simon AK, Hollander GA, McMichael A. Evolution of the immune system in humans from infancy to old age. Proc Biol Sci. (2015) 282:20143085. doi: 10.1098/rspb.2014.3085

6. Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K. Development of monocytes, macrophages, and dendritic cells. Science (2010) 327:656–61. doi: 10.1126/science.1178331
27. Ye BH, Rao PH, Chaganti RS, Dalla-Favera R. Cloning of bcl-6, the locus involved in chromosome translocations affecting band 3q27 in B-cell lymphoma. *Cancer Res.* (1993) 53:2732–3.

28. Weiss LM, Warnke RA, Sklar J, Cleary ML. Molecular analysis of the t(14;18) chromosomal translocation in malignant lymphomas. *N Engl J Med.* (1987) 317:1185–9. doi: 10.1056/NEJM198710311904

29. Ladanyi M, Oliff K, Jinwar SC, Filippa DA, Chaganti RS. MYC rearrangement and translocations involving band 8q24 in diffuse large cell lymphomas. *Blood* (1991) 77:1057–63.

30. Gronbaek K, Stratton PT, Ralkiäe R, Ahrenkiel V, Andersen MK, Hansen NE, et al. Somatic Fas mutations in non-Hodgkin’s lymphoma: association with extranodal disease and autoimmune. *Blood* (1998) 92:3018–24.

31. Gronbaek K, Worm J, Ralkiäe R, Ahrenkiel V, Hokland P, Guldberg P. ATM mutations are associated with inactivation of the ARF-TP53 tumor suppressor pathway in diffuse large B-cell lymphoma. *Blood* (2002) 100:1430–7. doi: 10.1182/blood-2002-02-0382

32. Koduru PR, Raju K, Vadmal V, Menezes G, Shah S, Sussin M, et al. Correlation between mutation in P53, p53 expression, cytogenetics, histologic type, and survival in patients With B-Cell non-Hodgkin’s lymphoma. *Blood* (1997) 90:4078–91.

33. Moller MB, Ino Y, Gerdes AM, Skjodt K, Louis DN, Pedersen NT. Aberrations of the p53 pathway components p53, MDM2 and CDKN2A appear independent in diffuse large B cell lymphoma. *Leukemia* (1999) 13:435–9.

34. Dalla-Favera R, Martinotti S, Gallo RC, Jerg JM, Croce CM. Translocation and rearrangements of the c-myc oncogene locus in human undifferentiated B-cell lymphomas. *Science* (1983) 219:963–7.

35. Taub R, Kirsch I, Morton C, Lenoir G, Swan D, Tronick S, et al. Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytoma cells. *Proc Nat Acad Sci USA.* (1982) 79:7837–41.

36. Gaigano D, Ballerini P, Gong JZ, Inghirami G, Neri A, Newcomb EW, et al. p53 mutations in human lymphoid malignancies: association with Burkitt lymphoma and chronic lymphocytic leukemia. *Proc Natl Acad Sci USA.* (1991) 88:5413–7.

37. Cinti C, Leoninci L, Nyongo P, Ferrari A, Bellan C, et al. Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytoma cells. *Proc Nat Acad Sci USA.* (1982) 79:7837–41.

38. Dierlamm J, Baens M, Wlodarska I, Stefanova-Ouzounova M, Hernandez JM, Hossfeld DK, et al. The apoptosis inhibitor gene API2 and a novel 18q mutation of the retinoblastoma-related gene RB2/p130 identify different pathogenetic mechanisms in and among Burkitt’s lymphoma subtypes. *Am J Pathol.* (2000) 156:751–60. doi: 10.1006/ajpath.2000.104941-3

39. Dierlamm J, Baens M, Wlodarska I, Stefanova-Ouzounova M, Hernandez JM, Hossfeld DK, et al. The apoptosis inhibitor gene API2 and a novel 18q mutation of the retinoblastoma-related gene RB2/p130 identify different pathogenetic mechanisms in and among Burkitt’s lymphoma subtypes. *Am J Pathol.* (2000) 156:751–60. doi: 10.1006/ajpath.2000.104941-3

40. Willis TG, Jadayel DM, Du M-Q, Peng H, Perry AR, Abdul-Rauf M, et al. Bcl10 is involved in t (1:14) (p22: q22) of MALT B cell lymphoma and mutated in multiple tumor types. *Cell* (1999) 96:35–45.

41. Zhang Q, Siebert R, Yan M, Hinzmann B, Cui X, Xue L, et al. Inactivating mutations and overexpression of BCL10, a caspase recruitment domain-containing gene, in MALT lymphomas with extranodal disease. *Blood* (1998) 91:2675–81.

42. Streubel B, Vinatzer U, Lamprecht A, Dierlamm J, Stolte M, Ott G, et al. T(14;18)(q32;q21) involving IGH and MALT1 is a frequent chromosomal aberration in MALT lymphoma. *Blood* (2003) 101:2355–9. doi: 10.1182/blood-2002-09-2963

43. Streubel B, Vinatzer U, Lamprecht A, Raderer M, Chott A. T(3;14)(p14.1;q32) involving IGH and FOXP1 is a novel recurrent chromosomal aberration in MALT lymphoma. *Leukemia* (2005) 19:652–8. doi: 10.1038/sj.leu.4703464

44. Wong JA, Bojinik E, Ruppert AS, Stefanovsky MR, Goetl VM, Smucker KA, et al. Bruton’s tyrosine kinase (BTK) function is important to the development and expansion of chronic lymphocytic leukemia (CLL). *Blood* (2014) 123:1207–13. doi: 10.1182/blood-2013-07-51361

45. Palma M, Gentilcore G, Heinemier K, Mozaffari F, Nasman-Glaser B, Young E, et al. T cells in chronic lymphocytic leukemia display dysregulated expression of immune checkpoint and activation markers. *Haematologica* (2017) 102:562–72. doi: 10.3324/haematol.2016.151100
45. Smallwood DT, Apollonio B, Willmott S, Lezina L, Alharthi A, Ambrose AR, et al. Extracellular vesicles released by CD40/IL-4-stimulated CLL cells confer altered functional properties to CD4+ T cells. Blood (2016) 126:542–52. doi: 10.1182/blood-2015-11-682377

46. Herndon TM, Chen SS, Saba NS, Valdez J, Emson C, Gatmaitan M, et al. Direct ex vivo evidence for increased proliferation of CLL cells in lymph nodes compared to bone marrow and peripheral blood. Leukemia (2017) 31:1340–7. doi: 10.1038/leu.2017.11

47. Girbi T, Hintereer E, Grossinger EM, Asllaber D, Oberascher K, Weiss L, et al. CD40-mediated activation of chronic lymphocytic leukemia cells promotes their CD44-dependent adhesion to hyaluronan and restricts CCL21-induced motility. Cancer Res. (2013) 73:361–70. doi: 10.1158/0008-5472.CAN-12-2749

48. Wu J, Xu X, Lee EJ, Shull AY, Pei L, Awan F, et al. Phenotypic alteration of CD8+ T cells in chronic lymphocytic leukemia associated with epigenetic reprogramming. OncoTarget (2016) 7:45558–70. doi: 10.18632/oncotarget.9941

49. McClanahan F, Riches JC, Miller S, Day WP, Kotsiou E, Neuberg D, et al. Macrophage heterogeneity in microenvironmental influences. J. Immunol. (2015) 195:2031–9. doi: 10.4049/jimmunol.1403165

50. Naik E, Dixit VM. Usp9X is required for lymphocyte activation and homeostasis during its control of ZAP70 ubiquitination and PKB kinase activity. J Immunol. (2016) 196:3438–51. doi: 10.4049/jimmunol.1405.1632

51. Jadidi-Niaragh F, Ghalamfarsa G, Yousefi M, Tabrizi MH, Shokri AR, et al. Extracellular vesicles released by CD40/IL-4-stimulated CLL cells confer altered functional properties to CD4+ T cells. Blood (2016) 126:542–52. doi: 10.1182/bcmd.2012.12-67273

52. Laflamme F, Riches JC, Miller S, Day WP, Kotsiou E, Neuberg D, et al. Macrophage heterogeneity in microenvironmental influences. J. Immunol. (2015) 195:2031–9. doi: 10.4049/jimmunol.1405.1632

53. Burgert M, Ellis J, Mapp S, Mollee P, Mazzieri R, Mattarollo R, et al. Transcriptional analysis of monocytes and macrophages derived from CLL patients which display differing abilities to respond to therapeutic antibody immune complexes. Genom Data (2016) 7:4–6. doi: 10.1016/j.gdata.2015.11.010

54. Filip AA, Cisel B, Kozczokajd D, Waski-Szczepanek E, Piersk T, Dmoszynska A. Circulating microenvironment of CLL are nurse-like cells related to tumor-associated macrophages? Blood Cells Mol Dis. (2013) 50:263–70. doi: 10.1016/j.bcmd.2012.12.003

55. Martinez FO, Gordon S, Locati M, Mantovani A. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol. (2006) 177:7303–11. doi: 10.4049/jimmunol.1252434

56. Burgstaller JA, Zvaizer NJ, Kips TJ. Distinctive features of “nursetile” cells that differentiate in the context of chronic lymphocytic leukemia. Blood (2002) 99:1030–7. doi: 10.1182/blood.V99.3.1030

57. Bisrat L, Niedermeier M, Schmitt-Gräff A, Wierda WG, Keating MJ, Burger JA. Overexpression of the CXCR5 chemokine receptor, and its ligand, CXCL13 in B-cell chronic lymphocytic leukemia. Blood (2007) 110:3316–25. doi: 10.1182/blood-2007-05-089409

58. Burgstaller JA, Quiroga MP, Hartmann E, Bürlke A, Wierda WG, Keating MJ, et al. High-level expression of the T-cell chemokines CCL3 and CCL4 by chronic lymphocytic leukemia B cells in nurse-like cell coccultures and after BCR stimulation. Blood (2009) 113:3050–8. doi: 10.1182/blood-2008-11-170415

59. DiLillo DJ, Weinberg JB, Yoshikawa M, Bryant JM, Iwata Y, et al. Chronic lymphocytic leukemia and regulatory B cells share IL-10 competence and immunosuppressive function. Leukemia (2013) 27:170–82. doi: 10.1038/leu.2012.165

60. Mural PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerd S, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity (2014) 41:14–20. doi: 10.1016/j.immuni.2014.06.008

61. Burgstaller JA, Quiroga MP, Hartmann E, Bürlke A, Wierda WG, Keating MJ, et al. High-level expression of the T-cell chemokines CCL3 and CCL4 by chronic lymphocytic leukemia B cells in nurse-like cell coccultures and after BCR stimulation. Blood (2009) 113:3050–8. doi: 10.1182/blood-2008-11-170415

62. Yaktapour N, Übelhart R, Schüler J, Aumann K, Dierks C, Burger M, et al. Lenalidomide treatment of chronic lymphocytic leukemia cells promotes their CD44-dependent adhesion to hyaluronan and restricts CCL21-induced motility. Cancer Res. (2013) 73:361–70. doi: 10.1158/0008-5472.CAN-12-2749

63. Burger M, Hartmann T, Krome M, Rawluk J, Tamamura H, Fujii N, et al. Small peptide inhibitors of the CXCR4 chemokine receptor (CD184) antagonize the activation, migration, and antiapoptotic responses of CXCL12 target in chronic lymphocytic leukemia. Blood (2005) 106:1824–30. doi: 10.1182/blood-2004-03-0889

64. Saladino S, Vaissit T, Bergui L, Bonello L, Horenstein AL, Talmagone L, et al. CD38 and CD100 lead a network of surface receptors relaying positive signals for B-CLL growth and survival. Blood (2005) 105:3042–50. doi: 10.1182/blood-2004-10-3873

65. Burger JA, Quiroga MP, Hartmann E, Bürlke A, Wierda WG, Keating MJ, et al. High-level expression of the T-cell chemokines CCL3 and CCL4 by chronic lymphocytic leukemia B cells in nurse-like cell coccultures and after BCR stimulation. Blood (2009) 113:3050–8. doi: 10.1182/blood-2008-11-170415

66. Ticchioni M, Essafi M, Jeandel P, Davi F, Cassuto J, Deckert M, et al. Homeostatic chemokines increase survival of B-chronic lymphocytic leukemia cells through inactivation of transcription factor FOXP3. Oncogene (2007) 26:7081–91. doi: 10.1038/sj.onc.1210519
Haseeb et al. Therapeutic Implications of Lymphocytes and Monocytes Crosstalk

79. Blunt MD, Carter MJ, Larrayaroz M, Smith LD, Aguilar-Hernandez M, Cox KL, et al. The PI3K/mTOR inhibitor PF-0491502 induces apoptosis and inhibits microenvironmental signaling in CLL and the Emircro-TCLl mouse model. *Blood* (2013) 125:8032–41. doi: 10.1182/blood-2014-11-610329

80. Georgoudaki AM, Prokopce KE, Boura VF, Hellqvist E, Sohn S, Oltjng I, et al. PI3K/Akt upregulation in lymphoma-associated macrophages by antibody targeting inhibits cancer progression and metastasis. *Cell Rep.* (2016) 15:2000–11. doi: 10.1016/j.celrep.2016.04.084

81. De Henau O, Rausch M, Winkler D, Campesato LF, Liu C, Cymerman DH, et al. Overcoming resistance to checkpoint blockade therapy by targeting PI3Kγ in myeloid cells. *Nature* (2016) 539:443–7. doi: 10.1038/nature20554

82. Kaneda MM, Messer KS, Balainirima N, Li H, Leem CJ, Gorejstani S, et al. PI3Kγ is a molecular switch that controls immune suppression. *Nature* (2016) 539:437–42. doi: 10.1038/nature19834

83. Rezvany MR, Jeddi-Tehrani M, Biberfeld P, Soderlund J, Mellstedt H, Osterborg A, et al. Dendritic cells in patients with non-progressive B-chronic lymphocytic leukemia have a normal functional capability but abnormal cytokine pattern. *Br J Haematol.* (2001) 115:263–71. doi: 10.1046/j.1365-2411.2001.03117.x

84. Orsini E, Guarini A, Chiaretti S, Mauro FR, Foa R, et al. Analysis of the chronic lymphocytic leukemia coding genome: role of NOTCH1 mutation activation. *Exp Hematol.* (2011) 39:1389–401. doi: 10.1016/j.exphem.2010.05.003

85. Rosati E, Sabatini R, Rampino G, Tabilio A, Di Ianni M, Fettucciarl K, et al. Constitutively activated Notch signaling is involved in survival and apoptosis resistance of B-CLL cells. *Blood* (2009) 113:856–65. doi: 10.1182/blood-2008-02-139725

86. Jordaen G, Liao W, Sharma S, E-cadherin gene re-expression in chronic lymphocytic leukemia B cells by HDAC inhibitors. *BMC Cancer* (2013) 13:88. doi: 10.1186/1471-2407-13-88

87. Gutierrez A, Tschumper RC, Wu X, Shanafelt TD, Eckel-Passow J, Huddleston PM, et al. LEF1 is a prosurvival factor in chronic lymphocytic leukemia and is expressed in the preleukemic state of monoclonal B-cell lymphocytosis. *Blood* (2010) 116:2975–83. doi: 10.1182/blood-2010-02-269878

88. K Gandhirajan R, J Poll-Wolbeck S, Gehrke I, Kreuzer K-A, Watzl-batemann EM, LEF-1 signaling in chronic lymphocytic leukemia (CLL): a target for current and potential therapeutic options. *Curr Cancer Drug Targets* (2010) 10:716–27. doi: 10.2174/156800910793605794

89. Li PP, Lu K, Geng LY, Zhou XX, Li XY, Wang X. Bruton’s tyrosine kinase inhibitor restrains Wnt signaling in chronic lymphocytic leukemia. *Mol Med Rep.* (2016) 14:4934–8. doi: 10.3892/mmr.2016.5111

90. Janovska P, Poppova I, Plepceva K, Plesingerova H, Behel M, Kaucka M, et al. Anticorine signaling by Wnt-5a regulates chemotaxis of leukemic cells and predicts clinical outcome in chronic lymphocytic leukemia. *Clin Cancer Res.* (2016) 22:459–69. doi: 10.1158/1078-0432.CCR-15-0154

91. Seeberger H, Starostik P, Schwarz S, Knörr C, Kalla J, Ott G, et al. Loss of Fas (CD95/APO-1) regulatory function is an important step in early MALT-type lymphoma development. *Lab Invest.* (2001) 81:977–86. doi: 10.1038/labinvest.3780310

92. Jünger B, Böckstor S, Le T, Mitterbauer G, Bolz I, Chott A, et al. Follicular lymphomas9 BCL-2/IgH junctions contain templated nucleotide insertions: novel insights into the mechanism of t (14; 18) translocation. *Blood* (2000) 95:3520–9.

93. Cully M, You H, Levine AJ, Mak TW. Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. *Nat Rev Cancer* (2006) 6:184–92. doi: 10.1038/nrc1819

94. Bar N, Dickstein R, miR-22 forms a regulatory loop in PTEN/PI3K pathway and modulates signaling kinetcs. *PLoS ONE* (2010) 5:e10859. doi: 10.1371/journal.pone.0010859

Frontiers in Immunology | www.frontiersin.org 14 November 2018 | Volume 9 | Article 2720
122. Veninga H, Borg EG, Vreeman K, Taylor PR, Kalay H, Kooyk Y, et al. VEGF A, Bachmann M, Richardson SJ, Matthews C, Catherwood MA, Alexander HD, Carey BS, Fargue J, et al. ZAP-70 expression is associated with enhanced ability to respond to migratory and survival signals in B cell chronic lymphocytic leukemia (B-CLL). Blood (2006) 107:3584–92. doi: 10.1182/blood-2005-04-1718
123. Cuni S, Perez-Acepio P, Perez-Chacon G, Vargas J, Sanchez A, Martin-Saevedra F, et al. A sustained activation of PI3K/NF-κB pathway is critical for the survival of chronic lymphocytic leukemia B cells. Leukemia (2004) 18:1391–400. doi: 10.1038/sj.leu.2403398
124. Kern D, Regg G, Hofbauer SW, Altenhofer P, Achatz G, Dlugosz A, et al. Hedgehog/Gli and PI3K signaling in the initiation and maintenance of chronic lymphocytic leukemia. Oncogene (2015) 34:5341–51. doi: 10.1038/onc.2014.450
125. Pike KA, Tremblay ML. TC-PTP and PTP1B: regulating JAK-STAT signaling, controlling lymphoid malignancies. Cytokine (2016) 82:52–7. doi: 10.1016/j.cyto.2015.12.025
126. Moore PA, Belvedere O, Orr A, Pieri K, LaFleur DW, Feng P, et al. BLyS: a cytokine that activates B cells and promotes germinal center B-cell responses. J Immunol (2015) 45:747–57. doi: 10.1101/ej.20144983
127. Batista FD, Harwood NE. The who, how and where of antigen presentation to B cells. Nature Rev Immunol (2009) 9:15–27. doi: 10.1038/nri2454
128. Veninga H, Borg EG, Vreeman K, Taylor PR, Kalay H, Kooyk Y, et al. Antigen targeting reveals splenic CD169+ macrophages as promoters of germinal center B-cell responses. Eur J Immunol (2015) 45:477–57. doi: 10.1101/ej.20144983
129. Ceccarelli M, Puglisi M, Puga I. Activation of B cells by non-canonical helper signals. Annu Rev Immunol (2012) 30:233–65. doi: 10.1146/annurev-immunol-031210-102355
130. Popi AF, Lopes JD, Mariano M. Interleukin-10 secreted by B-1 cells promotes tumor progression in models of colorectal cancer. Oncogene (2013) 32:8098–105. doi: 10.1038/onc.2013.242
131. Ten Hacken E, Burger JA. Microenvironment interactions and B-cell development. Leukemia (2012) 26:1296–307. doi: 10.1038/embob.2012.111
132. O’Garra A, Chang R, Go N, Hastings R, Haughton G, Howard M. Ly-1 B (B-1) cells are a source of B cell-derived interleukin 10. Eur J Immunol (1992) 22:771–7. doi: 10.1002/eji.1830220314
133. Thies FG, Laurindo MFL, Perez EC, e Brito RRN, Mariano M, Popi AF. Cross talk between peritoneal macrophages and B-1 cells in vitro. PLoS ONE (2013) 8:e62805. doi: 10.1371/journal.pone.0062805
134. Vazquez GM, Bagala J, Lopez M, Mariner D, Lopes JD, Mariano M. Interleukin-10 secretion by B cells modulates the phagocytic activity of murine macrophages. J Immunol (2004) 173:3438–44. doi: 10.4049/jimmunol.173.9.3438
135. Popi AF, Lopes JD, Mariano M. Interleukin-10 secretion by B cells modulates the phagocytic activity of murine macrophages in vitro. Immunology (2004) 112:354–58. doi: 10.1111/j.1365-2567.2004.01969.x
136. Wong SC, Puaux AL, Chittezhath M, Shalova I, Kajiji TS, Wang X, et al. Colony-stimulating Factor-1 receptor is required for nurse-like cell survival in chronic lymphocytic leukemia. Clin Cancer Res. (2016) 22:6188–28. doi: 10.1158/1078-0432.CCR-15-3099
137. Polk A, Lu Y, Wang T, Seymour E, Bailey NG, Singer J, et al. Colony-stimulating Factor-1 receptor is required for nurse-like cell survival in chronic lymphocytic leukemia. Clin Cancer Res. (2016) 22:6188–28. doi: 10.1158/1078-0432.CCR-15-3099
138. Gunnafors RN, Alkema F, Wierda WG, et al. The phosphoinositide-3-kinase (PI3K)-delta and gamma members of the tumor necrosis factor family and B lymphocyte stimulator. Blood (2015) 126:2446–52. doi: 10.1182/blood-2015-02-633102
139. Ten Hacken E, Burger JA. Microenvironment interactions and B-cell development. Leukemia (2012) 26:1296–307. doi: 10.1038/embob.2012.111
140. Skarzynski M, Niemann CU, Lee YS, Martyr S, Marie I, Salem D, et al. Interactions between CCR7 and anti-CD20 antibodies: competing effects on the outcome of combination therapy. Clin Cancer Res. (2016) 22:86–95. doi: 10.1158/1078-0432.CCR-15-1304
141. Cappese P, Frappoli R, Belgiovine C, Anselmo A, Pesce S, Liguori M, et al. Role of macrophage targeting in the antitumor activity of trabectedin. Cancer Cell (2013) 23:249–62. doi: 10.1016/j.ccr.2013.01.008
142. Weiskopf K, Weissen I. Macrophages are critical effectors of antibody therapies for cancer. Mabs (2015) 7:303–10. doi: 10.1080/19420862.2015.1101450
143. Chanan-Khan AA, Cheson BD. Lenalidomide for the treatment of B-cell malignancies. J Clin Oncol. (2008) 26:1544–52. doi: 10.1200/JCO.2007.14.3367
144. Schulz A, Durr C, Zenz T, Dohner H, Stülenbauer S, Lichter P, et al. Lenalidomide reduces survival of chronic lymphocytic leukemia cells in primary cocultures by altering the myeloid microenvironment. Blood (2013) 112:2503–11. doi: 10.1182/blood-2012-08-447664
145. Park K, Kosior K, Karczmarczyk A, Zajac M, Zaleska I, Tomczak W, et al. Cytotoxic activity of valproic Acid on primary chronic lymphocytic leukemia cells. Cytogenetics (2015) 41:55–62. doi: 10.17219/acem/29264
152. Göttlicher M, Minucci S, Zhu P, Krämer OH, Schimpf A, Giavara S, et al. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. *EMBO J.* (2001) 20:6969–78. doi: 10.1093/emboj/20.24.6969

153. Stamatopoulos B, Meuleman N, De Bruyn C, Mineur P, Martiat P, Bron D, et al. Antileukemic activity of valproic acid in chronic lymphocytic leukemia B cells defined by microarray analysis. *Leukemia* (2009) 23:2281–9. doi: 10.1038/leu.2009.176

154. Dong LH, Cheng S, Zheng Z, Wang L, Shen Y, Shen ZX, et al. Histone deacetylase inhibitor potentiated the ability of MTOR inhibitor to induce autophagic cell death in Burkitt leukemia/lymphoma. *J Hematol Oncol.* (2013) 6:53. doi: 10.1186/1756-8722-6-53

155. Elknerova K, Myslivcova D, Lacinova Z, Marinov I, Uherkova L, Stockbauer P. Epigenetic modulation of gene expression of human leukemia cell lines-induction of cell death and senescence. *Neoplasma* (2011) 58:35–44. doi: 10.4149/neop_2011_01_35

156. Yoshida GJ. Therapeutic strategies of drug repositioning targeting autophagy to induce cancer cell death: from pathophysiology to treatment. *Journal of hematology & oncology* (2017) 10:67. doi: 10.1186/s13045-017-0436-9

157. Grzywnowicz M, Karczmarczyk A, Skorka K, Zajac M, Zaleska J, Chocholska S, et al. Expression of programmed death 1 ligand in different compartments of chronic lymphocytic leukemia. *Acta Haematol.* (2015) 134:255–62. doi: 10.1159/000430980

158. Fraietta JA, Beckwith KA, Patel PR, Ruella M, Zheng Z, Barrett DM, et al. Ibrutinib enhances chimeric antigen receptor T-cell engraftment and efficacy in leukemia. *Blood* (2016) 127:1117–27. doi: 10.1182/blood-2015-11-679134

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2018 Haseeb, Anwar and Choi. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.