Genome- and transcriptome-derived microsatellite loci in lumpfish *Cyclopterus lumpus*: molecular tools for aquaculture, conservation and fisheries management

Simo N. Maduna, Adam Vivian-Smith, Ölöf Dóra Bartels Jónsdóttir, Albert K. D. Imsland, Cornelya F. C. Klütsch, Tommi Nyman, Hans Geir Eiken & Snorre B. Hagen

The lumpfish *Cyclopterus lumpus* is commercially exploited in numerous areas of its range in the North Atlantic Ocean, and is important in salmonid aquaculture as a biological agent for controlling sea lice. Despite the economic importance, few genetic resources for downstream applications, such as linkage mapping, parentage analysis, marker-assisted selection (MAS), quantitative trait loci (QTL) analysis, and assessing adaptive genetic diversity are currently available for the species. Here, we identify both genome- and transcriptome-derived microsatellites loci from *C. lumpus* to facilitate such applications. Across 2,346 genomic contigs, we detected a total of 3,067 microsatellite loci, of which 723 were the most suitable ones for primer design. From 116,555 transcriptomic unigenes, we identified a total of 231,556 microsatellite loci, which may indicate a high coverage of the available STRs. Out of these, primer pairs could only be designed for 6,203 loci. Dinucleotide repeats accounted for 89 percent and 52 percent of the genome- and transcriptome-derived microsatellites, respectively. The genetic composition of the dominant repeat motif types showed differences from other investigated fish species. In the genome-derived microsatellites AC/GT (67.8 percent), followed by AG/CT (15.1 percent) and AT/AT (5.6 percent) were the major motifs. Transcriptome-derived microsatellites showed also most dominantly the AC/GT repeat motif (33 percent), followed by A/T (26.6 percent) and AG/CT (11 percent). Functional annotation of microsatellite-containing transcriptomic sequences showed that the majority of the expressed sequence tags encode proteins involved in cellular and metabolic processes, binding activity and catalytic reactions. Importantly, STRs linked to genes involved in immune system process, growth, locomotion and reproduction were discovered in the present study. The extensive genomic marker information reported here will facilitate molecular ecology studies, conservation initiatives and will benefit many aspects of the breeding programmes of *C. lumpus*.
C. lumpus also plays an increasingly indispensable role in salmonid aquaculture. As a ‘cleaner fish’ it forms an important biological control measure for sea lice (Lepeophtheirus salmonis Kroyer, 1838) on Atlantic salmon (Salmo salar Linnaeus, 1758) aquaculture farms in the Northern Hemispherere. The importance of C. lumpus in both fisheries and aquaculture has therefore motivated genetic studies to delineate the population structure and define management units in the wild. The available panel of 22 microsatellite markers for C. lumpus can efficiently address many questions in molecular ecology; however, the current panel is not sufficient for downstream applications such as linkage mapping, parentage analysis, identification of quantitative trait loci (QTL), marker-assisted selection (MAS) and for studying adaptive genetic diversity.

Microsatellites, also known as Short Tandem Repeats (STRs), are repeated motifs of one to six nucleotides that have a characteristic mutational behaviour resulting in repeat number differences within and amongst individuals. The multi-allelic nature of STRs is a consequence of their elevated mutation rates as compared to other marker types. However, STR mutation rates are highly variable among organisms, loci, repeat types, and even alleles at a locus. STRs are co-dominantly inherited (each allele can be scored), ubiquitously distributed in eukaryotic genomes, and occur in both coding and non-coding regions. Accordingly, STRs are classified into two types based on their location in the genome: Type I STR loci are located within functional genes, while Type II STR loci are located within non-coding intergenic regions. Type I STRs are commonly isolated from transcribed regions or expressed sequence tags (EST) obtained through transcriptome sequencing (EST-STRs hereafter), while Type II STRs are derived from non-transcribed genomic regions through genome sequencing (genomic STRs, g-STRs hereafter). Genomic-based STRs are still among the most frequently used genetic markers for inferring spatial patterns of population structure, genetic diversity, migration rates, effective population size and kinship within species since, in most cases, these markers are selectively neutral. By contrast, EST-STRs are gene-linked markers (i.e., they are within or proximal to functional genes) that may be subject to selection. Accordingly, EST-STRs have a higher probability of association to phenotypic effects, or to causal mutations, therefore, they are also useful in studying adaptive processes within and between species. In addition, transferability of STRs amongst congeneric and confamilial (target) species has been reported in many taxonomic groups, with the rate of success often correlating with evolutionary distance between the source and target species. Therefore, STRs remain one of the most informative and versatile markers available for genetic investigations into ecosystem-, population- and individual-level questions.

Recent advances in high throughput sequencing (HTS) techniques have led to innovative labour- and cost-effective methods for discovering and genotyping STRs in species for which little or no sequence information is available. Similar to the approaches used for the simultaneous detection and genotyping (genotyping by sequencing, GBS) of single nucleotide polymorphisms (SNPs), STRs can now be genotyped faster and cheaper using HTS-based microsatellite-GBS approaches instead of traditional capillary electrophoresis. Microsatellite-GBS approaches have rapidly advanced and been applied in population-genetic studies of Atlantic cod (Gadus morhua Linnaeus, 1758), boarfish (Capros aper Linnaeus, 1758), muskrat (Ondatra zibethicus Linnaeus, 1766), fruit fly (Drosophila melanogaster Meigen, 1830), red deer (Cervus elaphus Linnaeus, 1758), brown bear (Ursus arctos Linnaeus, 1758) and chimpanzee (Pan troglodytes Blumenbach, 1776). Nonetheless, these methods require prior knowledge on STR loci and their variation and, most critically, information on the flanking sequences for primer design. Background information for designing primers can be obtained by using reduced-representation sequencing approaches such as double-digest (dd) restriction site-associated DNA sequencing (RADseq), which offers a relatively fast and cheap option for recovering large amounts of sequence data. Recently, ddRADseq has proved useful in discovery of STRs in numerous non-model species (e.g.,). In this work, our aims were twofold: (i) to investigate the distribution and nucleotide composition of microsatellite sequences in C. lumpus; and (ii) to expand the STR marker base for C. lumpus by developing a larger set of genomic-based and EST-derived STRs using an in-silico approach. The genomic information generated for C. lumpus will facilitate linkage- and QTL mapping as well as marker-assisted selection for important traits, particularly to those relating to the genetic patterns of both adaptive and neutral variation in wild populations, but also for gaining invaluable insight into the impact of escapes from aquaculture farming.

Results
Reduced-representation ddRAD sequencing of two individuals of Cyclopterus lumpus in a two sequencing runs on the Ion PGM™ NGS platform resulted in a total of 990,653 quality filtered single-end reads (25–532 bp sequence length; 46 percent GC content). The transcriptome assembly based on 13 C. lumpus individuals, comprised of 346,430 transcripts from 221,659 trinity genes, while the de novo transcriptome assembly of the Fish-T1K data consists of 49 million assembled bases in 98,767 transcripts from 89,342 trinity genes. The median transcript length was 362 bases, average length 550 bases and median length 669 bases. Assembly of unigenes by CAP3 from the transcriptome assembly of C. lumpus by Eggstedt et al. generated a total of 255,957 unigenes (52,671 contigs and 203,286 singletons), while for the Fish-T1K transcriptome a total of 53,703 unigenes (23,831 contigs and 29,872 singletons) were produced. We obtained 2,346 STR-containing consensus sequences by analysing the ddRADseq data generated from two unrelated individuals of Cyclopterus lumpus. A total of 1,791 sequences contained STRs of different motif types, and 555 sequences contained two STR types. STR detection by the QDD-VM pipeline revealed a total of 3,067 g-STRs, of which 2,387 (77.83 percent) were simple repeat motifs and 680 (22.17 percent) were in compound formation (Table 1). Dinucleotide repeat motifs were most frequent (2,736; 89.21 percent), followed by trinucleotide (196, 6.39 percent), mononucleotide (79; 2.57 percent), and tetranucleotide (51; 1.66 percent) repeats, while only three (0.1 percent) hexanucleotide and two (0.07 percent) pentanucleotide repeat units were found (Fig. 1a). The distribution of g-STRs to different repeat motif length classes estimated by MISA varied from 5 to 156 repeats (25.69 percent) being most common, followed by 15+ (14.31 percent), six (12.16 percent) and seven (7.76 percent) repeats (Table 2). The frequency of the dinucleotide repeat motifs was highly represented.
across repeat length classes. A total of 33 types of consensus (non-redundant) repeat motif were found among the STR-containing sequences (Table S1, Supplementary Material). The dominant repeat motif type was dinucleotide (AC/GT)n, where n refers to the number of times the unit is repeated, with a frequency of 67.80 percent (2,027), followed by (AG/CT)n (463, 15.10 percent), and (AT/AT)n (173, 5.60 percent). Trinucleotide repeats were only represented by an overall frequency of 6.10 percent among the 13 most abundant repeat motif types (Fig. 2a). Of the 2,346 STR-containing sequences, 723 were suitable for microsatellite primer design, and a total of 8,313 primers targeted at producing different amplicon sizes (multiple primer pairs) per locus were successfully designed (Table 1; Table S2, Supplementary Material).

Using the QDD-VM pipeline to also screen the transcriptome of \textit{C. lumpus} for Type I STRs, we isolated a total of 116,555 sequences containing STRs of different motif types, where 57,717 sequences contained between

Search parameters	Genomic	Transcriptomic
Total number of sequences examined	990,653	322,381
Total length of examined sequences (bp)	213,385,867	418,639,584
Total number of unique reads (reduced by QDD)	2,346	57,717
Total number of identified STRs	3,067	231,556
Number of STR-containing sequences	2,346	116,555
Number of sequences containing more than 1 STR	555	57,717
Number of STRs present in compound formation	680	38,550
Number of STR-containing sequences with primers	723 (394)	6,203

Table 1. Summary of the \textit{in silico} search for STRs in the \textit{Cyclopterus lumpus} genome and transcriptome, respectively. Figure in parenthesis show the total number of STR-containing post-annotation filtering.

Repeats motif	Number of repeats											
	5	6	7	8	9	10	11	12	13	14	15	15+
Mononucleotide						30	15	8	11	6	4	5
Dinucleotide	657	333	206	207	164	175	137	153	108	98	67	431
Trinucleotide	101	31	25	20	7	2	2	5	2	1	0	0
Tetranucleotide	26	9	6	1	1	1	2	1	0	0	1	3
Pentanucleotide	1	0	1	0	0	0	0	0	0	0	0	0
Hexanucleotide	3	0	0	0	0	0	0	0	0	0	0	0
Total	788	373	238	228	172	208	156	167	121	105	72	439
Type percentage	25.69	12.16	7.76	7.43	5.61	6.78	5.09	5.45	3.95	3.42	2.35	14.31

Table 2. Distribution of \textit{Cyclopterus lumpus} g-STRs to different repeat motif length classes.

Figure 1. Relative frequencies of different motif length classes in (a) g-STRs and (b) EST-STRs of \textit{Cyclopterus lumpus}.
two and 15 STRs, as expected for a transcriptome assembly. QDD-VM detected a total of 231,556 EST-STRs, of which 193,006 (83.35 percent) represented simple repeat motifs and 38,550 (16.65 percent) were in compound formation (Table 1). The relative abundance of STRs was estimated to be 630.43 loci/Mb. Dinucleotide repeat motifs were most frequent (120,353; 51.98 percent), followed by mononucleotide (76,565; 33.06 percent), trinucleotide (30,900; 13.34 percent), and tetranucleotide motifs (3,005; 1.30 percent), while only 433 (0.19 percent) hexanucleotide and 300 (0.13 percent) pentanucleotide repeat units were found (Fig. 1b). The distribution of EST-STRs to different repeat motif length classes ranged from 5 to 83, with a maximum frequency for five repeats (23.86 percent), followed by 10 (14.35 percent), six (12.05 percent) and 15+ (11.7 percent) repeats (Table 3).

Local BLAST search of the 22 microsatellites reported by Skirnisdottir et al.13 against our ddRADseq data-set returned significant hits only for loci Clu11 (IX485370.1) and Clu40 (IX485383.1), with a 100 percent and 99.2 percent sequence similarity, respectively (Table S5, Supplementary Material). However, the STR contigs containing Clu11 and Clu40 did not meet our criteria for primer design in our dataset. A similar search for previously-reported C. lumpus loci in our EST dataset yielded significant hits for six loci: Clu07, Clu11, Clu19, Clu36, Clu40, and Clu45 (Table S5). As for the two previously-described g-STRs, these loci were not part of the sequences used for primer design in our study.

Functional annotation of EST-STR-containing unigenes based on the BLASTx analysis through BLAST2GO resulted in a total of 4,931 annotations. Through mapping, we could extract GO terms for assigning gene products into three categories, biological process (BP), cellular component (CC), and molecular function (MF). According
to the GO analysis, 2,009 unigenes were assigned to the BP category, 1,789 to the MF category and 1,119 to the CC category. The small discrepancy between total annotation and the number of unigenes is expected for transcriptome assemblies, since contigs may contain multiple gene regions that are assigned to different categories. Within the BP category, genes involved in cellular, metabolic and biological regulation comprised the largest portion (Fig. 3), while in the CC category the greatest number of genes were found to encode cellular components and cell parts (Fig. 3). Likewise, many sequences in the MF category encode proteins with binding and enzymatic activity (Fig. 3). We recovered a total of 135 annotations for g-STR-containing sequences, and a local BLAST search of g-STRs in our EST-STR database yielded 332 significant hits. After removing these sequences, we could retain a final set of 394 actual g-STRs.

Discussion
Developments in high-throughput sequencing (HTS) technologies have afforded us with the opportunity to obtain genomic and transcriptomic sequences suitable for isolating vastly larger sets of STRs distributed across genomes compared to previous enrichment methods involving oligonucleotide hybridisation and cloning\(^4\). We implemented a STR discovery pipeline suitable for detecting STRs from either assembled (contigs or scaffolds) or non-assembled sequences. From assembled sequences STRs are extracted along with their flanking regions for primer design. Non-assembled sequences are first filtered to remove adaptors and eliminate short reads (<80 bp in our case) prior to identifying reads with STRs. Importantly, STRs can be detected at any given sequence length (a user-defined parameter). Although, to produce functional markers \(i.e\). those loci that will successfully amplify \(i.e\). in vitro, the optimum read length range is 150–500 bp for non-assembled sequences\(^6\). In the present study, 30 percent of the STR-containing non-assembled ddRAD sequences were suitable for primer design while 5 percent of the STR-containing transcriptome assembly sequences were suitable for primer design, indicating that the length and sequence properties of the STR-flanking region is also an important parameter. In all, we report on the identification of a total of some 232,000 genome-wide STR loci in \(C.\) lumpus based on an \textit{in silico} STR development approach. As expected, ca. 98 percent of the genome-wide STRs were isolated from the transcriptome assembly compared to the data generated from reduced-genome sequencing. Nevertheless, the combinatorial use of genomic and transcriptomic sequences allowed us to isolate and design primers for STRs located in both coding and non-coding regions of the \(C.\) lumpus genome.

In \(C.\) lumpus the most common STR lengths were five, six and 10. We note that dinucleotide repeats motifs were dominant in the genome-derived STRs accounting for 89 percent, which is similar to previous studies on other fish\(^3,4\). Dinucleotide repeats were overrepresented also in EST-derived STRs, where they accounted for 52 percent, indicating that dinucleotide repeats are the dominant motif in the genome of \(C.\) lumpus. This trend is in accordance with EST-STR distributions described earlier in several fish species, including the channel catfish \textit{Ictalurus punctatus} Rafinesque, 1818 (72 percent), killifish \textit{Fundulus heteroclitus} Linnaeus, 1766 (52 percent), Japanese medaka \textit{Oryzias latipes} Temminck and Schlegel, 1846 (47 percent), platyfish \textit{Xiphophorus maculatus} Günther, 1866 (78 percent), zebrafish \textit{Danio rerio} Hamilton, 1822 (64 percent)\(^2,3,5\), and crucian carp \textit{Carassius auratus} (as defined by Zheng et al.\(^5\)). Linnaeus, 1758 (44 percent)\(^5\). Dinucleotide repeat motifs in \(C.\) lumpus were
predominantly composed of AC/GT, which has been found to be the case also in all the aforementioned fishes except the killfish, in which the most common motif was AT/TA. The proportion of trinucleotide motifs in C. lumpus likewise resembles findings from other fishes, however, the nucleotide composition appears to differ since the most abundant trinucleotide motif in C. lumpus is AAG/CCT, while in catfish the two most abundant types are ATA and TTA, and in zebrafish, killfish and crucian carp the AAT/TTA motif dominates. These differences suggest that the predominant repeat motif in fish is by no means consistent across species and taxa.

Functional annotation of the STR-containing EST unigenes revealed that the majority of these encoded for proteins involved in protein-binding and catalytic reactions. This is consistent with earlier studies providing compelling evidence that STRs, especially the AC repeat motif, play an important role in protein-binding and transcriptional activity. The recently assembled transcriptome of C. lumpus by Egggestøl and co-workers was targeted at identifying and mapping the components of the immune system involved in early immune responses of leukocytes following in vitro exposure to the pathogenic bacterium Vibrio anguillarum O1. As such, we anticipated to also uncover STRs linked to genes involved in immunity. Interestingly, an investigation into the cleaning behaviour (sea lice grazing efficacy) and disease resistance in several families of C. lumpus showed significant difference among families. Inquiries into the genetic basis of grazing efficacy and disease resistance traits have been hampered by the limited available genomic resources for C. lumpus. In the present study, we also discovered STRs linked to genes involved in immune system process, growth, locomotion and reproduction to aid in such endeavours. We also noticed that genome-derived STRs to some degree overlapped with transcriptome-derived STRs, both in our g-STR dataset and in that of Skirnisdottir et al., indicating that genome-derived STRs can also include Type I STR loci. To this end, our bioinformatic framework allows for distinguishing Type I and -II STR loci in genome-derived STR databases and could be useful for developing both STR types in other species.

Khimoun et al. assessed whether the patterns and levels of genetic variation and between-breed populations are similar for EST- and g-STRs, and investigated how the levels of differentiation influence the relative efficiency of the respective marker types. They showed that when there is strong genetic differentiation, inferred population-genetic structures were similar for both marker types, but that g-STRs slightly outperformed EST-STRs when differentiation was moderate. On the contrary, the study then provides compelling evidence that EST-STRs have a higher resolution in detecting weak population genetic structure compared to g-STRs. This pattern is consistent with earlier studies in plants and, more recently, in sharks. The previous studies also show that when using EST- and g-STRs as a single panel, this can result in the underestimation of the degree of population structure, especially when genetic structuring is weak. Functional annotation of STR-containing sequences during marker development is therefore crucial, so that the actual distribution of anonymous g-STRs and EST-STRs can be accurately quantified and then applied in downstream genetic analyses.

Bioinformatics workflows for extracting STR locus-specific sequences from HTS dataset are gradually becoming available to facilitate genotyping-by-sequencing (GBS) of STRs. Barbian and co-workers compared the performance of capillary electrophoresis and HTS to validate and improve the STR-GBS approach. In that study, it was shown that the GBS approach identified new alleles based on sequence differences that were previously masked by size homoplasy. The large STR primer base reported in the present study for C. lumpus used the revised primer design parameters of Meglécz et al. which were empirically validated to improve genotypic success rates. Although the present study did not involve the in vitro validation of the primers to determine amplification efficiency and the level of polymorphism (i.e., number of alleles) at each of the loci, Meglécz et al. reported that the target region complexity had no effect on the polymorphism of STRs, and that the levels of polymorphism increased from di- to tetra-nucleotide repeat motifs in their two focal species. Furthermore, as HTS data generated from a larger panel of individuals becomes available for C. lumpus, it will be possible to perform electronic PCR (e-PCR) and extract locus-specific genotypes without the need to perform in vitro experiments. For instance, the specificity of e-PCR (in silico) amplification (compared to BLAST) previously enabled breeders to identify the map positions of STRs in rice Oryza sativa L. and potato Solanum tuberosum L., and anchor the STR loci within linkage groups without the need to perform additional PCR reactions. Moreover, e-PCR was used successfully to align the STR loci on the linkage map of Brassica napus L. to the genome of B. rapa L. and B. oleracea L. to identify candidate genes of QTLs for seed weight through comparative mapping of these Brassica species to Arabidopsis thaliana L. Therefore, STRs provide significant utility in that they provide a source of genetic variation that has a higher mutation rate and transferability success rate across populations and species than for SNPs.

The C. lumpus STR database reported in the present study provides valuable molecular markers to the scientific community for a myriad of downstream applications, such as linkage mapping, parentage analysis, marker-assisted selection (MAS), quantitative trait loci (QTL) analysis, and assessing adaptive genetic diversity in this commercially valuable fish. Moreover, the large STR primer sets reported here readily allows for exploring the cost-efficient HTS-based STR genotyping-by-sequencing approach in C. lumpus or even data generated from HTS-based SNP genotyping experiments.

Methods

Sampling and DNA extraction. We obtained finclip samples of two C. lumpus individuals, of which one originated from southern Norway (Mandal, N 57.99 E 7.48) and one from northern Norway (Hekkingen, N 69.37 E 17.48). The finclip samples used in our study were from dead specimens caught during normal fishing activity and, therefore, no approval from the local ethics committee was necessary. We stored the samples at 4 degrees Celsius in absolute ethanol. To extract total genomic DNA from the samples, we used the DNeasy Blood and Tissue Kit following the manufacturer's instructions (Qiagen).

ddRAD library preparation and NGS data processing. DNA extracts were quantified with the Qubit Broad Range dsDNA Assay (Thermo Fisher Scientific), and then diluted to standardised working concentrations in nuclease-free water. Library preparation was then performed following the modified ddRAD digestion-ligation
Transcriptome sequence retrieval, pre-processing and assembly. We obtained a recently assembled transcriptome of *C. lumpus* (accession number E-MTAB-6388, Eggestøl et al.45) from the ArrayExpress Archive of Functional Genomics Data (https://www.ebi.ac.uk/arrayexpress/). In that study, the kidney leukocytes were used to generate RNAseq data for the *de novo* transcriptome assembly. In addition, we downloaded raw RNAseq Illumina paired-end reads of *C. lumpus* (accession number SRX315215) from the NCBI Sequence Read Archive (SRA) database (https://www.ncbi.nlm.nih.gov/sra) under BioProject PRJNA398732, the Fish-T1K (Transcriptomes of 1000 fishes) Phylogeny Project (Beijing Genome Institute). We submitted the raw sequence reads to a quality control (QC) step in FASTQC as implemented in the BLAST2GO program64–66. Next, we conducted a *de novo* transcriptome assembly using the quality-filter sequence data generated from the Fish-T1K project, employing the TRINITY pipeline of Grabherr et al.67 with the option for read trimming by quality during assembly using TRIMMOMATIC68 also implemented in BLAST2GO. Then, we filtered out known contaminants (Vibrio and IPNV), mitochondrial DNA and ribosomal DNA from the assembly using BLAST v. 2.7.1-1.69. Subsequently, we performed further clustering and alignment of each respective transcriptome assembly to form transcript assemblies (unigenes) using the CAP3 program70 with parameters -p 95, -o 49, and -t 10 000. Finally, we merged the two transcript assemblies (contigs and singletons) for STR discovery (Fig. 4).

Microsatellite mining and primer design. To detect and extract STR-containing sequences from the quality-filtered and trimmed ddRADseq dataset, we used the QDD-VM v. 3.2.1 pipeline for low-coverage NGS data67 (Fig. 4). First, we used the perl script QDD pipe1.pl to convert the input fastq file to fasta and to extract the STR-containing reads with di-to hexanucleotide motifs in both pure (perfect) and compound (imperfect) form, and longer than 80 bp. Second, we used the QDD pipe2.pl script to compare STR-containing reads of each individual using BLAST+, and the reads with very high sequence identity (>95 percent) were grouped into contigs and then used to create a consensus file with CLUSTALW v. 2.072. To construct the consensus sequence for a given locus, we required greater than 0.66 of the sequences to have the same base at a particular site. This step allowed for identifying polymorphic STR loci *i.e*., *in silico* characterisation. Third, we executed the QDD pipe3.pl script to automatically design primers from unique (singletons and consensus) STR-containing sequences using the Primer3 algorithm71 empirically determined to improve genotyping success rate of STRs and to force the design of primer pairs with variable amplicon size in QDD-VM. The optimised parameters were as follows: product size 90–320 bp; primer size 18–20 bp (min-optimal–max); melting temperature (Tm) = 57–60–63 degrees Celsius (min–optimal–max); GC content = 20–50–80 percent; maximum Tm difference = 10 degrees Celsius. The design of multiple primer pairs with different amplicon size per locus facilitates in silico selection of primer pairs for the design of multiplex PCR during the wet laboratory validation experiments. Last, we executed the QDD pipe4.pl script to check for contamination by a BLASTn (query nucleotide against nucleotide database) search (E-value cut-off < 10–20) of all STR-containing sequences with successful primer design against the NCBI database, as well as to compare these sequences to known transposable elements of vertebrates using RepeatMaster v. 4.0.7 (available from http://www.repeatmasker.org/).

To search for EST-STRs we used the QDD-VM pipeline for assembled contigs, which is the same as the above-mentioned pipeline, except for the following parameters: *pipe1.pl* and *pipe3.pl*, -contig was set to 1 to extract STRs with 200 bp flanking regions on both side in the assembled unigenes, *pipe2.pl*, -makecons was set to 0 to avoid paralogs.

Additionally, using the unique STR-containing sequences generated by the QDD *pipe2.pl* script, we executed the perl script *misa.pl* (MiCroSAtellite identification tool; available from http://pgrc.ipk-gatersleben.de/misa/) of Thiel et al.74 to obtain further summary statistics on the identified STRs, which include (i) the distribution of STRs to different repeat unit classes, (ii) the distribution of STRs to different repeat motif length classes, and (iii) the frequency of STR motifs. We defined each repeat motif class of STRs using the MISA specification file (*misa.ini*) with the following parameters: minimum repeat sequence of 10 nucleotides for mononucleotide repeats, and at least five consecutive repeat units for di-, tri-, tetra-, penta- and hexanucleotide motifs. We used the default parameter of less than equal to 100 bp minimum distance between two repetitive units to identify and classify compound repeats. We then estimated the relative abundance of STRs in the transcriptome of *C. lumpus* by dividing the number of STRs found with the total assembly length length (loci/Mb).
Finally, we downloaded the 22 available STR-containing contigs for *C. lumpus* from GenBank (Accession Numbers JX485364–JX485385) and created local BLAST databases for our genomic and transcriptomic datasets, against which we searched for significant hits using BLAST+.

Functional annotation of contigs containing microsatellites. To classify the putative function of the sequences containing STRs for which primers could be designed, we subjected the EST-derived sequences to a BLASTx (translated query nucleotide against protein database) search with a threshold E-value 10−5 as implemented in BLAST2GO. The three gene ontology (GO) descriptors for functional characterisation of STR-containing sequences were biological process (BP), cellular component (CC), and molecular function (MF). Finally, we executed the mapping function to extract the GO descriptors associated with each of the obtained BLAST hits in BLAST2GO using the annotation cut-off value of 10−6. Since our goal was also to provide Type II STRs, we used the same protocol to annotate all g-STR-containing sequences for which primers could be designed, in order to filter out loci associated with coding regions.

Received: 4 January 2019; Accepted: 17 December 2019; Published online: 17 January 2020
References

1. Bañón, R., Garazo, A. & Fernández, A. Note about the presence of the lump sucker Cyclopterus lumpus (Teleostei, Cyclopteridae) in galician waters (NW Spain). J. Appl. Ichthyol. 24, 108–109 (2008).

2. Dulčić, J. & Golani, D. First record of Cyclopterus lumpus L., 1758 (Osteichthyes: Cyclopteridae) in the Mediterranean Sea. J. Fish Biol. 69, 300–303 (2006).

3. Johannesson, J. Lumpfish caviar: from vessel to consumer. 0–885 (Food & Agriculture Org., 2006).

4. Wright, A. J. et al. Possible causes of a harbour porpoise mass stranding in Danish waters in 2005. PLoS One 8, e55553 (2013).

5. Imsland, A. K. et al. The use of lumpfish (Cyclopterus lumpus L.) to control sea lice (Lepeophtheirus salmonis kroyer) infestations in intensively farmed Atlantic salmon (Salmo salar L.). Aquaculture 424, 18–23 (2014).

6. Imsland, A. K. et al. Is cleaning behaviour in lumpfish (Cyclopterus lumpus) parental controlled? Aquaculture 459, 156–165 (2016).

7. Bolton-Warberg, M. An overview of cleaner fish use in Ireland. J. Fish Dis 41, 935–939 (2018).

8. Powell, A. et al. Use of lumpfish for sea lice control in salmon farming: challenges and opportunities. Rev. Aquac 10, 683–702 (2018).

9. Pampoulie, C. et al. Genetic structure of the lumpfish Cyclopterus lumpus across the North Atlantic. ICES J. Mar. Sci. 71, 2390–2397 (2014).

10. Garcia-Mayoral, E. et al. Genetic structure of West Greenland populations of lumpfish Cyclopterus lumpus. J. Fish Biol. 89, 2625–2642 (2016).

11. Jónsdóttir, Ó. D. B. et al. Population genetic structure of lumpfish along the Norwegian coast: aquaculture implications. Aquac. Int. 26, 49–60 (2018).

12. Whittaker, B. A., Consuegra, S. & de Leaniz, C. G. Genetic and phenotypic differentiation of lumpfish (Cyclopterus lumpus). PeerJ 6, e6974 (2018).

13. Skirnisdottir, S. et al. Twenty-two novel microsatellite loci for lumpfish (Cyclopterus lumpus). Conserv. Genet. Resour 5, 177–179 (2013).

14. Tautz, D. & Renz, M. Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res 12, 4127–4138 (1984).

15. Lagercrantz, U., Ellegren, H. & Andersson, L. The abundance of various polymorphic microsatellite motifs differs between plants and vertebrates. Nucleic Acids Res 21, 1111–1115 (1993).

16. Kelk, T. D. et al. What is a microsatellite: a computational and experimental definition based upon repeat mutational behavior at A/T and G/T/A/C repeats. Genome Biol. Evol. 2, 620–635 (2010).

17. Sellke, K. A. & Toonen, R. J. Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol. Lett. 9, 615–629 (2006).

18. Guichoux, E. et al. Current trends in microsatellite genotyping. Mol. Ecol. Resour 11, 591–611 (2011).

19. Weber, J. L. & Wong, C. Mutation of human short tandem repeats. Hum. Mol. Genet. 2, 1123–1128 (1993).

20. Dib, C. et al. A comprehensive genetic map of the human genome based on 5,264 microsatellites. Nature 380, 152 (1996).

21. Ellegren, H. Microsatellite mutations in the germline:: implications for evolutionary inference. Trends Genet. 16, 551–558 (2000).

22. Huang, Q.-Y. et al. Mutation patterns at dinucleotide microsatellite loci in humans. The Am. J. Hum. Genet. 70, 625–634 (2002).

23. Dupuy, B. M., Stenersen, M., Egeland, T. & Olaersen, B. Y-chromosomal microsatellite mutation rates: differences in mutation rate between and within loci. Hum. Mutat. 23, 117–124 (2004).

24. Jarne, P. & Lagoda, P. J. Microsatellites, from molecules to populations and back. Trends Ecol. & Evol 11, 424–429 (1996).

25. Teacher, A., Kakhkøen, K. & Merila, J. Development of 61 new transcriptome-derived microsatellites for the Atlantic herring (Clupea harengus). Conserv. Genet. Resour 4, 71–74 (2012).

26. Postolache, D. et al. Transcriptome versus genomic microsatellite markers: highly informative multiplexes for genotyping Abies alba mill. and congeneric species. Plant Mol. Biol. Report 32, 730–760 (2014).

27. Khimoun, A., Ollivier, A., Faivre, B. & Garnier, S. Level of genetic differentiation affects relative performances of expressed sequence tag and genomic SSRs. Mol. Ecol. Resour 17, 893–903 (2017).

28. Bernard, A. M., Richards, V. P., Stanhope, M. J. & Shivy, M. S. Transcriptome-derived microsatellites demonstrate strong genetic differentiation in Pacific white sharks. J. Hered. 109, 771–779 (2018).

29. Rico, C., Rico, I. & Hewitt, G. 470 million years of conservation of microsatellite loci among fish species. Proc. Royal Soc. Lond. B 263, 549–557 (1996).

30. Primmer, C., Moller, A. & Ellegren, H. A wide-range survey of cross-species microsatellite amplification in birds. Mol. Ecol. 5, 365–378 (1996).

31. Barbara, T. et al. Cross-species transfer of nuclear microsatellite markers: potential and limitations. Mol. Ecol. 16, 3759–3767 (2007).

32. Maduna, S. N., Rossouw, C., Rooodt-Wilding, R. & Bester-van der Merwe, A. E. Microsatellite cross-species amplification and utility in southern African elasmobranchs: a valuable resource for fisheries management and conservation. BMC Res. Notes 7, 352 (2014).

33. Andreassen, R. et al. A forensic DNA profiling system for northern European brown bears (Ursus arctos). Forensic Sci. Int. Genet. 6, 798–809 (2012).

34. Carlsson, J. et al. Rapid, economical single-nucleotide polymorphism and microsatellite discovery based on de novo assembly of a reduced representation genome in a non-model organism: a case study of atlantic cod Gadus morhua. J. Fish Biol. 82, 944–958 (2013).

35. Suez, M. et al. MicNeSs: genotyping microsatellite loci from a collection of (NGS) reads. Mol. Ecol. Resour 16, 524–533 (2016).

36. Barbian, H. J. et al. CHILLIMP: An automated high-throughput microsatellite genotyping platform reveals greater allelic diversity in wild chimpanzees. Ecol. Evol. 8, 7946–7963 (2018).

37. Kumar, G. & Kocour, M. Applications of next-generation sequencing in fisheries research: a review. Fish. Res 186, 11–22 (2017).

38. Vartia, S. et al. A novel method of microsatellite genotyping-by-sequencing using individual combinatorial barcoding. Royal Soc. Open Sci 3, 150565 (2016).

39. Farrell, E. D., Carlsson, J. E. & Carlsson, J. Next Gen Pop Gen: implementing a high-throughput approach to population genetics in boarfish (Capros aper). Royal Soc. Open Sci 3, 160651 (2016).

40. Darby, B. J., Erickson, S. F., Hervey, S. D. & Ellis-Felege, S. N. Digital fragment analysis of short tandem repeats by high-throughput amplicon sequencing. Ecol. Evol. 6, 4502–4512 (2016).

41. De Barba, M. et al. High-throughput microsatellite genotyping in ecology: Improved accuracy, efficiency, standardization and success with low-quantity and degraded dna. Mol. Ecol. Resour. 17, 492–507 (2017).

42. Peterson, B. K., Weber, J. N., Kay, E. H., Fisher, H. S. & Hoekstra, H. E. Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS One 7, e37135 (2012).

43. Vivian-Smith, A. & Sønstebø, J. A streamlined ddRAD tag protocol for use with the Ion Torrent sequencer, as a versatile probe for populations, genetics and genomics. Protocols.io 1–16 (2017).

44. Luo, W. et al. Rapid development of microsatellite markers for the endangered fish Schizothorax biddulphi (Ganther) using next generation sequencing and cross-species amplification. Int. J. Mol. Sci. 13, 14946–14955 (2012).

45. Jansson, E. et al. Development of SNP and microsatellite markers for goldsinny wrasse (Ctenolabrus rastrepis) from ddRAD sequencing data. Conserv. Genet. Resour 8, 201–206 (2016).

46. Maduna, S. N. et al. New polymorphic microsatellite loci revealed for the dusky shark Carcharhinus obscurus through Ion Proton double-digest RAD sequencing. Mol. Biol. Reports 1–5 (2018).
47. Eggelst, H. Ø. et al. Transcriptome-wide mapping of signaling pathways and early immune responses in lumpfish leukocytes upon in vitro bacterial exposure. *Sci. Reports* **8**, 5261 (2018).
48. Zane, L., Barboglio, L. & Patarnello, T. Strategies for microsatellite isolation: a review. *Mol. Ecol.** **11**, 1–16 (2002).
49. Meglécz, E. et al. QDD version 3.1: a user-friendly computer program for microsatellite selection and primer design revisited: experimental validation of variables determining genotype success rate. *Mol. Ecol. Resour.** **14**, 1302–1313 (2014).
50. Song, N., Chen, M., Gao, T. & Yanagimoto, T. Profile of candidate microsatellite markers in *Sebastes marmoratus* using 454 pyrosequencing. *Chin. J. Oceanol. Limnol.* **35**, 198–202 (2017).
51. Takeshima, H. et al. Rapid and effective isolation of candidate sequences for development of microsatellite markers in 30 fish species by using kit-based target capture and multiplexed parallel sequencing. *Conserv. Genet. Resour.* **9**, 479–490 (2017).
52. Serapion, J., Kucuktas, H., Feng, J. & Liu, Z. Bioinformatic mining of Type I microsatellites from expressed sequence tags of channel catfish (*Ictalurus punctatus*). *Mar. Biotechnol.* **6**, 364–377 (2004).
53. Ju, Z., Wells, M. C., Martinez, A., Hazlewood, L. & Walter, R. R. An in silico mining for simple sequence repeats from expressed sequence tags of zebrafish, medaka, fundulus, and xiphophorus. *In Silico Biol.* **5**, 439–463 (2005).
54. Zheng, X., Kuang, Y., Lü, W., Cao, D. & Sun, X. Transcriptome-derived EST–SSR markers and their correlations with growth traits of crucian carp *Carassius auratus*. *Fis. Sci* **80**, 977–984 (2014).
55. Hanada, H., Seidman, M., Howard, B. & Gorman, C. M. Enhanced gene expression by the poly (dT-dG). poly (dC-dA) sequence. *Mol. Cell. Biol.* **4**, 2622–2630 (1984).
56. Vashakidze, R., Chelidze, M., Mamulashvili, N., Kalandarishvili, K. & Tsalkalamanidze, N. Nuclear proteins from *Drosophila melanogaster* embryos which specifically bind to simple homopolymeric sequences poly [(dT-dG)-(dC-dA)]. *Nucleic Acids Res.* **16**, 4989–4994 (1988).
57. Kash, Y. & Soller, M. Functional roles of microsatellites and minisatellites. *Microsatellites: evolution applications* 10–23 (1999).
58. Peleg, Z., Fahima, T., Abbo, S., Krugman, T. & Saranga, Y. Genetic structure of wild emmer wheat populations as reflected by transcribed versus anonymous SSR markers. *Genome* **51**, 187–195 (2008).
59. Schuler, G. D. Sequence mapping by electronic PCR. *Genome Res.* **7**, 541–550 (1997).
60. McCouch, S. R. et al. Development and mapping of 2240 new SSR markers for rice (*Oryza sativa* L.). *DNA Res.* **9**, 199–207 (2002).
61. Li, J. et al. SSR and e-PCR provide a bridge between genetic map and genome sequence of potato for marker development in target QTL region. *Am. J. Potato Res.* **92**, 312–317 (2015).
62. Cai, G. et al. Identification of candidate genes of QTLs for seed weight in *Brassica napus* through comparative mapping among *Arabidopsis* and *Brassica* species. *BMC Genet.* **13**, 105 (2012).
63. Ogden, R., Baird, J., Senn, H. & McEwing, R. The use of cross-species genome-wide arrays to discover SNP markers for conservation genetics: a case study from Arabian and Scimitar-horned Oryx. * Conserv. Genet. Resour.* **4**, 471–473 (2012).
64. Conesa, A. et al. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. *Bioinformatics* **21**, 3674–3676 (2005).
65. Götz, S. et al. High-throughput functional annotation and data mining with the Blast2GO suite. *Nucleic Acids Res.* **36**, 3420–3435 (2008).
66. Andrews, S. FastQC, a quality control tool for high throughput sequence data. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2010).
67. Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. *Nat. Biotechnol.* **29**, 644 (2011).
68. Bolger, A. & Gigi, F. Trimmomatic: a flexible read trimming tool for Illumina NGS data. Available online at: http://www.usadellab.org/cms/index.php (2014).
69. Camacho, C. et al. BLAST+: architecture and applications. *BMC Bioinforma.* **10**, 421 (2009).
70. Huang, X. & Madan, A. CAP3: A DNA sequence assembly program. *Genome Res.* **9**, 868–877 (1999).
71. Meglécz, E. et al. QDD: a user-friendly computer program to select microsatellite markers and design primers from large sequencing projects. *Bioinformatics* **26**, 403–404 (2010).
72. Larkin, M. A. et al. Clustal W and Clustal X version 2.0. *Bioinformatics* **23**, 2947–2948 (2007).
73. Rozen, S. & Skaltsky, H. Primer3 on the WWW for general users and for biologist programmers. In *Bioinformatics Methods and Protocols*, 365–386 (Springer, 2000).
74. Thiel, T., Michalek, W., Varshney, R. & Grner, A. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (*Hordeum vulgare* L.). *Theor. Appl. Genet.* **106**, 411–422 (2003).

Acknowledgements

The financial assistance from the Lerøy Seafood Group, Norwegian Research Council (RFFNord, 282460) and Icelandic Centre for Research (Rannís, 186971-0611) towards this research are hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the authors and are not necessarily to be attributed to the funding bodies.

Author contributions

S.N.M., A.V.-S. and S.B.H. designed and conceived the study; O.D.B.J., A.K.D.I. and S.B.H. collected and quality controlled the samples. S.N.M. and A.V.S. performed the main experiments and analyses; S.N.M. interpreted the results and wrote the manuscript with input from A.V.-S., S.B.H., O.D.B.J., C.F.C.K., T.N. and H.G.E. All authors reviewed the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s41598-019-57071-w.

Correspondence

and requests for materials should be addressed to S.N.M. or S.B.H.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
