Gsα-dependent signaling is required for postnatal establishment of a functional β-cell mass

Berta Serra-Navarro 1,2, Rebeca Fernandez-Ruiz 1,2, Ainhoa Garcia-Alamán 1,3, Marta Pradas-Juni 1,2, Eduardo Fernandez-Rebollo 1,3, Yaiza Esteban 1,3, Joan Mir-Coll 1,2, Julia Mathieu 4, Stephane Dalle 5, Max Hahn 5, Ulf Ahlgren 5, Lee S. Weinstein 6, Josep Vidal 1,2,3,7, Ramon Gomis 1,2,3,8, Rosa Gasa 1,3,8

ABSTRACT

Objective: Early postnatal life is a critical period for the establishment of the functional β-cell mass that will sustain whole-body glucose homeostasis during the lifetime. β-cells are formed from progenitors during embryonic development but undergo significant expansion in quantity and attain functional maturity after birth. The signals and pathways involved in these processes are not fully elucidated. Cyclic adenosine monophosphate (cAMP) is an intracellular signaling molecule that is known to regulate insulin secretion, gene expression, proliferation, and survival of adult β-cells. The heterotrimERIC G protein Gs stimulates the cAMP-dependent pathway by activating adenylyl cyclase. In this study, we sought to explore the role of Gs-dependent signaling in postnatal β-cell development.

Methods: To study Gs-dependent signaling, we generated conditional knockout mice in which the α subunit of the Gs protein (Gsα) was ablated from β-cells using the Cre deleter line Ins1Cre. Mice were characterized in terms of glucose homeostasis, including in vivo glucose tolerance, glucose-induced insulin secretion, and insulin sensitivity. β-cell mass was studied using histomorphometric analysis and optical projection tomography. β-cell proliferation was studied by ki67 and phospho-histone H3 immunostaining, and apoptosis was assessed by TUNEL assay. Gene expression was determined in isolated islets and sorted β-cells by qPCR. Intracellular cAMP was studied in isolated islets using HTRF-based technology. The activation status of the cAMP and insulin-signaling pathways was determined by immunoblot analysis of the relevant components of these pathways in isolated islets. In vitro proliferation of dissociated islet cells was assessed by BrdU incorporation.

Results: Elimination of Gsα in β-cells led to reduced β-cell mass, deficient insulin secretion, and severe glucose intolerance. These defects were evident by weaning and were associated with decreased proliferation and inadequate expression of key β-cell identity and maturation genes in postnatal β-cells. Additionally, loss of Gsα caused a broad multilevel disruption of the insulin transduction pathway that resulted in the specific abrogation of the islet proliferative response to insulin.

Conclusion: We conclude that Gsα is required for β-cell growth and maturation in the early postnatal stage and propose that this is partly mediated via its crosstalk with insulin signaling. Our findings disclose a tight connection between these two pathways in postnatal β-cells, which may have implications for using cAMP-raising agents to promote β-cell regeneration and maturation in diabetes.

Keywords β-cell mass; cAMP; Gs; Insulin signaling; Cell maturation; Postnatal development; Replication

1. INTRODUCTION

Pancreatic β cells secrete the blood-glucose-lowering hormone insulin and play a crucial role in controlling whole-body glucose homeostasis. A deficit in the number of functional β cells leads to insulin deficiency, elevated blood glucose levels, and the emergence of diabetes. Regenerative medicine strategies aimed to replace lost or dysfunctional β cells are currently viewed as promising therapies to treat this disease. Some approaches propose endogenous β cell regeneration by stimulating the proliferation/survival of residual β cells, whilst others propose transplantation of substitute β cells created in the laboratory from other cell sources. Progress on these two fronts relies on our

1Diabetes and Obesity Research Laboratory, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149-153, 08036, Barcelona, Spain 2University of Barcelona, Barcelona, Spain 3Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain 4CHU Montpellier, Laboratory of Cell Therapy for Diabetes (LTCd), Hospital St-Eloi, Montpellier, France 5Umeå Centre for Molecular Medicine (UCMM), Umeå, Sweden 6Metabolic Diseases Branch, National Institute of Diabetes, Digestive, and Kidney Diseases, NIH, Bethesda, MD, USA 7Department of Endocrinology and Nutrition, Hospital Clinic of Barcelona, Barcelona, Spain 8Universitat Oberta de Catalunya (UOC), Barcelona, Spain

*Corresponding author. Diabetes and Obesity Research Laboratory, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149-153, 08036, Barcelona, Spain. E-mail: rgas@clinic.cat (R. Gasa).

Abbreviations: Gsα, Stimulatory G protein (Gs) alpha subunit; Giα, Inhibitory G protein (Gi) alpha subunit; cAMP, Cyclic adenosine monophosphat; GPi, G protein coupled receptor; Igf, Insulin-like growth factor

Received March 18, 2021 • Revision received May 17, 2021 • Accepted May 30, 2021 • Available online 4 June 2021

https://doi.org/10.1016/j.molmet.2021.101264
knowledge of agents and molecular pathways amenable to be manipulated to promote β-cell expansion and/or to achieve β cell functional maturation. Early postnatal life is a critical period for acquiring the appropriate number of functional β cells needed to sustain the metabolic needs of the adult organism [1]. The β-cell population expands dramatically during the perinatal period due to increased proliferation [2–4], which rapidly declines until reaching low replication values maintained throughout adulthood (cells in cycle: ≈ 1% in rodents and < 0.2% in humans) [5]. In concert with their expansion, neonatal β cells up-regulate the expression of identity and functionality genes and develop the capability to regulate insulin secretion in response to high glucose (GSIS), which is the hallmark of their mature state [6–9]. Therefore, early postnatal life (in mice, between birth and weaning) is a critical period in β-cell development that can provide information on the identity of central regulators of β-cell growth and function. Cyclic adenosine monophosphate (cAMP) is a common and versatile intracellular signaling molecule. In β cells, cAMP has been implicated in the stimulus-insulin secretion coupling process [10–12], in the expression of key β-cell markers such as Insulin and the transcription factors Pdx1 and Mafa [13–15], as well as in β-cell proliferation and survival [16–20]. cAMP is generated from ATP by adenylyl cyclases, which can be regulated by G-protein coupled receptors (GPCRs) that either stimulate this enzyme via Gsα or inhibit it via Giα subunits. In adult mice, genetic approaches that disrupt these subunits have evidenced their involvement in the regulation of β-cell mass. Thus, deletion of the gene encoding Gsα in mouse pancreatic β cells using the Rat Insulin Promoter 2 (RIP2)-Cre transgene resulted in reduced β-cell mass, deficient insulin secretion and whole-body glucose intolerance in adult mice [21]. Conversely, inhibition of G/ox through the expression of the Pertussis toxin in β cells led to increased β-cell mass, augmented insulin secretion, and improved glucose tolerance [22]. In both models, the β-cell mass phenotype appeared during the early postnatal stage and was associated with altered β-cell proliferation. However, neither the mechanisms involved nor the effects on postnatal β-cell maturation were explored. Here we sought to investigate the involvement of Gsα-dependent signaling in postnatal β-cell development in detail. To ablate the Gnas gene (i.e., codes for Gsα) from β cells, we used Ins1Cre knock-in mice, which present highly selective induction of Cre-dependent recombination in β cells [23]. Because the RIP2-Cre line used before is known to drive significant non-β-cell Cre expression, namely in the hypothalamus and pituitary [24], and to display transgene-related β-cell dysfunction [25], we reasoned that using Ins1Cre deleter mice should lead to unambiguous insights into the role of Gsα signaling in postnatal β cells. Our study demonstrates that the specific elimination of Gsα in β cells results in hyperglycemia and whole-body glucose intolerance. This metabolic phenotype is associated with a compromised postnatal functional β-cell mass establishment and entails both reduced β-cell expansion and deficient β-cell maturation. Mechanistically, we show that Gsα ablation leads to severe depletion of intracellular cAMP levels, reduced Creb activation, and multilevel dysregulation of the insulin transduction pathway in postnatal β cells.

2. METHODS

2.1. Mice

Mice with loxP sites surrounding Gnas exon 1 (Gnas<sup>fl<sup>ox</sup>/fl<sup>ox</sup></sup>) [26], Ins1(Cre) knock-in mice [23], and ROSA26-Stop-YFP mice [27] were described elsewhere. Female Gnas<sup>fl<sup>ox</sup>/fl<sup>ox</sup></sup>/Ins1<sup>Cre<sup>+</sup></sup>- mice were mated to male Gnas<sup>fl<sup>ox</sup>/fl<sup>ox</sup></sup>/Ins1<sup>Cre<sup>−</sup></sup>- mice to generate Gsα knockout mice (Gnas<sup>fl<sup>ox</sup>/fl<sup>ox</sup></sup>/Ins1<sup>Cre<sup>−</sup></sup>-). As controls, we used littermates with Gnas<sup>fl<sup>ox</sup>/fl<sup>ox</sup></sup>/Ins1<sup>Cre<sup>−</sup></sup>-; Ins1<sup>Cre<sup>−</sup></sup>-; Ins1<sup>Cre<sup>−</sup></sup>- genotypes, except for β-cell sorting experiments, where we used Gnas<sup>fl<sup>ox</sup>/fl<sup>ox</sup></sup>/Ins1<sup>Cre<sup>−</sup></sup>- and Gnas<sup>fl<sup>ox</sup>/fl<sup>ox</sup></sup>/Ins1<sup>Cre<sup>−</sup></sup>-;R26-YFP mice. Experimental procedures and postnatal tissues were collected at the indicated times, considering birth the postnatal day 0 (p0). Mice were bred and maintained on a standard pellet diet (2014S Teklad Global, Harlan Laboratories) and 12:12 h light/dark cycle at the barrier animal facility of the University of Barcelona. Principles of laboratory animal care were followed (European and local government guidelines), and animal experimental procedures were approved by the Animal Research Committee of the University of Barcelona. Animals were euthanized by cervical dislocation. Genotyping for mice was performed by PCR on tail DNA using primers supplied in Supplementary Table S1. The PCR was carried out using DreamTaq DNA polymerase (Thermo Fisher Scientific, Waltham, US), and the reaction was performed by denaturation at 95 °C for 3 min and 35 cycles of amplification (95 °C for 30 s, 60 °C for 30 s, 72 °C for 1 min), finishing with 10 min at 72 °C.

2.2. Whole-body metabolic tests

The Intraperitoneal and Oral Glucose Tolerance Tests were performed after 6 h of food deprivation by the administration of α-glucose (2 g/kg body weight) via intraperitoneal injection or by oral gavage, respectively. The Insulin Tolerance Test was performed after 6 h of food deprivation by the administration of an injection of insulin (Humulin; 0.5 U/kg body weight). Glucose levels in tail vein blood samples were measured at 0, 15, 30, 60, and 120 min after injection using a clinical glucometer and Accu—Check test strips (Roche Diabetes Care, Sant Cugat, Spain). Glucose-stimulated insulin secretion (GSIS) was measured in 5–6 h fasted mice following an intraperitoneal injection of glucose (3 mg/kg body weight). Tail vein blood was collected in heparinized capillary tubes (Mircovette, Sarstedt, Nümbrecht, Germany) at indicated time points. Plasma insulin concentration was measured using the Ultra-sensitive Mouse Insulin ELISA (Chrysal Chem, Zaandam, Netherlands). Plasma proinsulin levels were measured with the highly specific Mouse Proinsulin ELISA (Mercodia, Upppsala, Sweden).

2.3. Islet isolation and culture

Islets were isolated by collagenase digestion (Collagenase P, Roche Diagnostics GmbH, Mannheim, Germany) and discontinuous Histopaque (Sigma—Aldrich, Steinheim, Germany) gradient centrifugation (p28 and adult mice) [28] or manual handpicking under a stereomicroscope (p7 mice). The collagenase solution (0.7 mg/ml) was injected into the common bile duct in p28 and adult animals or multi-injected at a concentration of 0.5 mg/ml in the pancreas of p7 mice. After isolation, islets were either used fresh or transferred to dishes containing an RPMI-1640 medium (Sigma—Aldrich) with 11 mM of glucose, 10% fetal bovine serum (FBS) (Biosera, Nuaille, France), 2 mM L-glutamine, and HyClone™ Penicillin-Streptomycin (100 U/ml penicillin, 100 μg/ml streptomycin; GE Healthcare Life Sciences, PGG, USA) for a 16–24 h recovery culture before performing additional procedures.

2.4. Purification of β cells by fluorescence activated cell sorting

Freshly isolated islets from p28 Gnas<sup>fl<sup>ox</sup>/fl<sup>ox</sup></sup>/Ins1<sup>Cre<sup>−</sup></sup>-; R26-YFP and Gnas<sup>fl<sup>ox</sup>/fl<sup>ox</sup></sup>/Ins1<sup>Cre<sup>−</sup></sup>-;R26-YFP or Gnas<sup>fl<sup>ox</sup>/fl<sup>ox</sup></sup>/Ins1<sup>Cre<sup>−</sup></sup>-;R26-YFP mice were dispensed with 0.125% trypsin-EDTA (Life Technologies-Thermo Fisher Scientific) and 50 mg/ml Dnase I ( Stem cell Technologies, Égrène, France) with agitation for 9–12 min at 37 °C. Digestion was inactivated by the addition of 0.4 volumes of FBS. Dispersed islets were collected in 15 ml tubes, pelleted, and resuspended to a concentration of ~2 × 10⁶ cells/ml in RPMI +10% FBS. Sorting was
performed using a BD FACSaraiIl (for YFP) machine, and cells were recovered in RNA lysis buffer for RNA extraction.

2.5. Gene expression
Total RNA was prepared from isolated islets using the NucleoSpin XS RNA kit (MackereyJagel, Düren, Germany). First-strand cDNA was prepared using the Superscript III RT kit and random hexamer primers (Invitrogen, Carlsbad, CA, USA). Reverse transcription reaction was carried for 90 min at 50 °C and an additional 10 min at 55 °C. Quantitative real-time PCR (qPCR) was performed on an ABI Prism 7900 sequence detection system using GoTaq® qPCR Master Mix (Promega Biotech Ibérica, Alcobendas, Madrid, Spain). Expression relative to a housekeeping gene was calculated using the deltaCt method. We picked the moderately expressed gene Tbp as housekeeping for all the genes except for the pancreatic hormones and LAP, which are more abundant and whose expression was compared to that of Actb.

Conventional PCR was performed on 10 ng of islet cDNA in 20 μl reactions containing DreamTaq Green PCR Mastermix (Thermo Fisher Scientific) and 0.5 μM forward and reverse primers. PCR conditions were as follows: 95 °C for 3 min, then 35 cycles of 95 °C for 15 s, 60 °C for 15 s, 72 °C for 45 s followed by 10 min at 72 °C. PCR products were separated on 3% low-melting agarose gel. All primer sequences are provided in Supplementary Table S1.

2.6. Immunofluorescence and morphometric analysis
Pancreases from p14, p28, and adult mice were fixed in 4% formalin overnight at 4 °C. Pancreases from p0 mice were fixed in 4% paraformaldehyde (PFA) (Electron Microscopy Sciences, Hatfield, PA) for 5–6 h. After fixation, pancreases were washed, dehydrated, embedded in paraffin wax, sectioned at 3 μm, and stained following standard immunodetection protocols [29]. Briefly, tissues were dehydrated and, when required, subject to heat-mediated antigen retrieval in a citrate buffer. After a blocking step in 5% donkey serum/0.2% Triton X-100, sections were incubated overnight with primary antibodies: guinea pig anti-insulin (1:1000 dilution, Dako, Glostrup, Denmark), mouse anti-Cre, rabbit anti-insulin (1:500 dilution, Dako) and secondary goat Alexa 594 anti-guinea pig or anti-rabbit (1:500), Alexa Fluor® 488 anti-rabbit (1:250) (Thermo Fisher Scientific), and Cy2 anti-chicken (1:250, Jackson ImmunoResearch, Suffolk, UK). Nuclei were stained with Hoechst 33258 (Sigma—Aldrich).

Fluorescent images were captured using a Leica DMI 6000 B widefield microscope or a Leica TCS SPE confocal microscope. For morphometric analysis, p0 pancreases were sectioned at 3 μm and distributed as serial sections onto sets of 5 slides, and at least 10 sections per animal (45 μm apart) were analyzed. For other age groups, pancreases were cut into tail, body, and head portions sectioned at 3 μm. A total of 2–3 sections (>100 μm apart) per portion and animal were analyzed. For Ki67, pH3, and TUNEL assay, 2500–3000 insulin + nuclei were counted. Morphometric analyses were performed using Image J software (http://rsb.info.nih.gov/ij/index.html).

2.7. Optical projection tomography
Isolated pancreases were fixed in 4% paraformaldehyde and divided into the splenic, gastric, and duodenal lobes [30]. At this point, all samples were randomized and blinded for further Optical projection tomography (OPT) processing, which was performed as previously described [30,31]. Sample processing for OPT measurements was performed as follows: pancreatic specimens were freeze-thawed to increase permeability, bleached (in DMSO, Methanol, and hydrogen peroxide, 1:2.3, respectively, Thermo Fisher Scientific) to reduce endogenous fluorescence, and stained with primary guinea pig anti-insulin (1:500 dilution, Dako) and secondary goat Alexa 594 anti-guinea pig (1:500 dilution, Molecular Probes) antibodies. Once stained, all samples were mounted in 1.5% Low-melting SeaPlaqueTM Agarose (Lonza Bioscience, Basel, Switzerland), dehydrated in pure Methanol (Thermo Fischer Scientific), and optically cleared using a 1.2 dilution of benzyl alcohol and benzyl benzoate, respectively (Acros organics). OPT imaging of cleared samples was performed using a BiOPTonics SkyScanner 3001 (version 1.3.13 SkyScan, Belgium). Once all iso-tropic voxel-based images were collected, image data sets were identically processed using a contrast limited adaptive histogram equalization (CLAHE), and post-acquisition misalignment correction was performed using Discrete Fourier Transform Alignment (DFTA). The processed and aligned frontal projection images were then reconstructed to tomographic sections (NRecon version 1.6.9.18, Bruker SkyScan) and uploaded to imaris (version 8.1, Bitplane, UK). For insulin-positive volume quantifications, an iso-surface algorithm with a threshold value between 5 and 8 and a voxel filtering of 10 (corresponding to ≤50 μm diameter of a sphere) was applied to measure individual islet volumes and islet count.

2.8. cAMP measurements
Following the recovery culture, islets were incubated in Krebs solution containing 2.8 mM glucose for 1 h 30min at 37 °C with agitation. Then, batches of 20 islets were either resuspended immediately in 30 μl of lysis buffer (Cisbio assays, Parc Marcel Boiteux, France), supplemented with 0.5 mM IBMX (Sigma—Aldrich) for determination of basal cAMP levels or incubated for 20 min at 37 °C with IBMX (0.5 mM) and Forskolin (1 μM, Sigma—Aldrich) and then washed twice with HBSS-BSA and lyzed as previously described. Lysates were kept at −80 °C until cAMP determinations using the CAMP dynamic 2 assay kit (Cisbio, Codolet, France).

2.9. Islet hormone content
Between 8 and 20 islets from p7, p14, and p28 mice were placed into an acid alcohol solution (75% ethanol, 0.18 N HCl), sonicated, and extracted overnight at 4 °C. The solution was then centrifuged to remove tissue in suspension and neutralized. Insulin and/or proinsulin concentrations were measured using mouse insulin and proinsulin ELISA kits (Mercodia).

2.10. Immunoblotting
Freshly isolated or cultured islets were lysed in triple detergent lysis buffer (Tris-HCl 50 mM, NaCl 150 mM, 0.1% SDS, 1% IGEPAI-C630, 0.5% Sodium Deoxycholate, protease and phosphatase inhibitors), followed by sonication and frozen-thaw cycles. Protein concentration was measured with the Lowry protein assay kit (Bio-Rad, Hercules, CA, USA). Protein extracts (15–50 μg per replicate) were separated by SDS-PAGE electrophoresis onto 7.5–10% Tris-tricine gels and transferred to a Polyvinyd PVDF membrane (Perkin Elmer, Waltham, MA, USA). Membranes were blocked for 1 h with PBS-0.05%Tween-5% BSA solution, followed by overnight incubation at 4 °C with the corresponding primary antibodies diluted in TBS-0.05%Tween-5% BSA solution, followed by overnight incubation at 4 °C with the corresponding primary antibodies diluted in TBS-0.05%Tween-5% BSA. Rabbit anti-MafA (1:250, Novus Biologicals), rabbit anti-p-Cre, rabbit anti-p-Erk1/2 (T202/Y204), anti-Erk, anti-p-Akt (T308), anti-Akt, anti-p-S6 (S235,S236), anti-S6 (1:1000, Cell Signaling Technology, and mouse anti-α-tubulin (1:1000, Sigma—Aldrich) as a loading control. Blots were visualized with ECL Reagent (Pierce Biotechnology, Thermo Fischer Scientific).
2.11. Dissociated isolated β cells and proliferation assay

After isolation and in order to eliminate fibroblasts, islets were cultured for 7 days in RPMI-1640 medium (Sigma–Aldrich) with 11 mM glucose, 10% FBS (Biosera), 2 mM l-glutamine, and antibiotics. Dissociated islet cells were obtained by treatment with 0.05% trypsin-EDTA for 4–5 min, seeded onto 384-well plates (15,000 cells/well), and cultured for 24 h with RPMI-1640 media supplemented as before. For proliferation assays, DICs were blanked overnight with RPMI-1640 medium containing 8 mM glucose and 0.1% FBS and then incubated for an additional 24 h period in the same media supplemented with the following reagents: exendin (200 nM), recombinant human IGF1 (10 nM), and recombinant human insulin (10 nM). During the last 5 h of culture, 5-Bromo-2’-deoxyuridine (5-BrdU) was added, and BrdU incorporation was determined using the Cell Proliferation ELISA kit (colorimetric) following the manufacturer’s instructions (Roche Diagnostics, Mannheim, Germany).

2.12. Statistics

Data are presented as mean ± standard error of the mean (SEM). Statistical significance was tested using unpaired Student’s t-test or two-way ANOVA for in vivo metabolic tests.

3. RESULTS

3.1. β-Cell specific Gsζ knockout mice exhibit whole-body glucose intolerance

We generated mice in which the gene Gnas was ablated from β cells using Ins1Cre knock-in mice (β-GsζKO, hereafter). Initially, to specifically evaluate the extent of Cre-mediated recombination, we introduced the reporter R26-YFP allele. Immunostaining against YFP revealed that most β cells had recombined this allele by postnatal day 28 (p28; Figure 1A). Next, to determine the extent of Gsζ downregulation, we compared the expression of Gsζ-coding transcripts in RNA that were isolated from whole islets and purified γ-cell + β-cell + α-cell cells of p28 β-GsζKO mice and their Cre-negative littermates. Gnas mRNA levels were reduced in knockout compared to controls (about 50% and 90% in p28 islets and sorted p28 γ-cell + β-cell + α-cell cells, respectively; Figure 1B). The smaller reduction observed in islets compared to purified γ-cell + β-cell + α-cell cells is possibly due to non-recombined β-cells and/or non-β-cells present in the islets.

Next, we characterized whole-body glucose homeostasis in β-GsζKO mice. As a preliminary experiment, we confirmed that Ins1Cre/+ knock-in mice did not show changes in whole-body glucose tolerance or insulin sensitivity compared to their wild-type littermates (Figure S1). Hence, Cre-negative littermates served as controls throughout the rest of the study. β-GsζKO mice had similar body weight as controls from p0 to p28 but weighed 20% less at 8 weeks of age (wo; Figure 1C). Random blood glucose levels were significantly higher in β-GsζKO mice than their control littermates from p14, with differences ranging from +28% at p0 to +180% at p28/8wo (Figure 1D). At 8wo, β-GsζKO mice displayed marked whole-body glucose intolerance without detectable changes in insulin sensitivity as compared to littermate controls (Figure S2). Importantly, impaired intrapancreal and oral glucose tolerance in the context of normal insulin sensitivity was evident as early as p28 (Figure 1E–O), revealing that defects in glucose homeostasis develop during the first weeks of postnatal life. Glucose intolerance was associated with insufficient insulin as indicated by blunted glucose-induced insulin secretion and lower random plasma insulin levels in p28 GsζKO as compared to controls (Figure 1H, I). In summary, β-GsζKO mice phenocopied the β-cell specific GsζKO mice generated with the RIP2-Cre transgene in terms of development of insulin-deficient diabetes. However, β-GsζKO mice did not exhibit the increased early postnatal lethality, linear growth retardation, or improved insulin sensitivity reported in the former model [21].

3.2. Deletion of Gsζ in β cells results in limited postnatal β-cell mass expansion

We performed a histomorphometric analysis of the insulin-positive area in fixed pancreatic tissue from newborn to adult β-GsζKO mice and control littermates. β-GsζKO mice presented normal fractional β-cell areas at p0, indicating that the absence of Gsζ does not impair β-cell formation during embryonic development (Figure 2A,B). At p14 we observed a tendency of decreased fractional β-cell areas (−28%), which became significant at p28 (Figure 2A,B). In agreement, β-cell mass was lower in p28 knockout relative to control animals (−25%), this difference becoming larger at 8wo (−50%; Figure 2C). By contrast, the α-cell mass was comparable between knockout and control mice from p14 to adulthood (Figure 2D). Using OPT [32], we identified an overall decrease in the islet number (−11%) and a specific reduction in islet volume corresponding to small islets (<100 um3) in p28 β-GsζKO as compared to controls (Figure S3). Together, these results demonstrate that a loss of Gsζ decreases β-cell mass. Furthermore, this effect first appears during the second to fourth weeks of life, supporting a role of Gsζ-dependent signaling in postnatal β-cell mass establishment.

To define the cause of reduced postnatal β-cell growth, we studied β-cell proliferation and death. We found fewer proliferating β cells in p28 β-GsζKO pancreases than in controls, both using ki67 and phospho-Histone 3 immunostaining (Figure 2E,F). The number of double positive Insulin+/p-Histone3+ cells was already decreased at p14, indicating that β-cells from lactating β-GsζKO pups underwent mitosis at a lower rate than control β-cells. Compatible with decreased proliferation, gene expression analysis of cell cycle machinery genes revealed the downregulation of Ccn2 and Cdk4 and the upregulation of the inhibitor Cdkn1a (Figure 2G). Lastly, we examined whether the loss of Gsζ was deleterious for β-cell survival but did not detect β-cell death by TUNEL assay at p14 or p28 in β-GsζKO or control pancreases (data not shown). Accordingly, apoptosis and endoplasmic reticulum stress genes were expressed at similar levels in animals from both genotypes (Figure S4). Therefore, the loss of Gsζ impairs postnatal β-cell expansion through decreased β-cell proliferation, ostensibly without changes in β-cell survival.

3.3. Deletion of Gsζ in β cells impairs postnatal β-cell maturation

During early postnatal life, β cells not only expand in number but also acquire functional maturity [33]. To determine the extent to which the absence of Gsζ affects this latter process, we surveyed the expression of functionally relevant genes in p28 β-GsζKO islets. We found that the gene coding for the prohormone convertases Pcsk1 and Pcsk2 as well as genes typically upregulated during β-cell maturation, such as the exocytosis regulator Syt4 [34] and the mature β-cell maturation marker Ucn3 [6], were decreased in β-GsζKO islets. Conversely, other genes expressed in β cells, such as lapp, Slc2a2, Gck, or Syt7 or the hormones genes Gcg (α-cell) and Sst (β-cell), remained unchanged (Figure 3A), opposing the possibility that gene expression differences between β-GsζKO and control islets were merely due to variations in the portion of β cells. Among the transcription factors known to drive β-cell maturation, NeuroD1 and Nkx6.1 mRNAs levels were similar, Pdx1 mRNA showed a tendency to be reduced (p = 0.08), and Mafa transcripts were significantly downregulated in β-GsζKO relative to control islets
In agreement, Mafa protein was reduced in p28 β-GsaKO mice as assessed by immunoblot analysis using whole islet extracts and immunofluorescence staining in fixed pancreatic tissue (Figure S5). Examining Mafa and Pdx1 mRNA levels at an earlier time revealed that both genes were downregulated at p7 (Figure 3B), demonstrating an early requirement of Gsa-dependent signaling for the expression of these two transcription factors in young postnatal β cells. Finally, we checked the expression of several mRNAs normally repressed in mature β cells, including the transcription factors Neurog3, Sox9, and Mafb and the enzymes Hkt1, Ldhα, Cat, and Oat, which belong to the designated β-cell disallowed genes. All these genes were expressed at comparable low levels in p28 β-GsaKO and control islets (Figure S6), thus indicating that β cells in β-GsaKO mice do not exhibit a progenitor-like state.

β-GsaKO islets also displayed reduced insulin content as measured by ELISA, ranging from 52% to 8% of controls at p7 and 8wo, respectively (Figure 3C). Magnification of the difference was mainly due to the absence of an age-dependent increase in the total islet insulin content in β-GsaKO islets relative to controls (Figure 3C). Weaker insulin immunostaining in β-GsaKO islets, compared to size-matched control

Figure 1: Whole-body glucose homeostasis in β-GsaKO mice. (A) Immunofluorescence staining of fixed pancreatic sections from p28 β-GsaKO/YFP mice using antibodies for insulin in red and YFP in green. Nuclei in blue were stained with Hoechst. Scale bars are 25 μm. (B) Quantification of Gnas mRNA levels by qPCR in islets and sorted β cells from p28 β-GsaKO (islets: n = 9; β cells: n = 6) and littermate controls (islets: n = 9; β cells: n = 5). Expression was normalized with Tbp and expressed relative to control, given the value of 1. (C) Body weight of β-GsaKO (n = 6) and control littersmates (n = 6–10) at the indicated ages. (D) Non-fasting blood glucose of β-GsaKO (n = 4–7) and control littersmates (n = 6–10) at the indicated ages. (E,F) Glucose tolerance tests were performed on 6 h fasted p28 β-GsaKO (n = 5) and control (n = 5–7) mice. A glucose load was administered via intraperitoneal injection (E) or by oral gavage (F), and blood samples were taken at the indicated times. (G) Insulin tolerance test of p28 β-GsaKO (n = 3) and control littersmates (n = 3). (H) Plasma insulin levels before and 20 min after an intraperitoneal glucose injection in 6 h fasted p28 β-GsaKO (n = 5) and control (n = 5) mice. (I) Non-fasting plasma insulin of β-GsaKO (n = 7–13) and control littersmates (n = 11–13) at the indicated ages. All bars and data points represent the mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 vs. control animals (B–G, I) or between time points (H) using two-tailed Student’s t test (B,H) and two-way ANOVA (C–G, I).
islets, suggest decreased insulin protein content per cell (Figure 3D). Mafa and Pdx1 are transcriptional regulators of the Insulin gene, and therefore, we postulated that decreased Ins gene transcription might be responsible for reduced islet insulin content in knockout islets. We found that Ins1 mRNA levels were reduced by ~50% (conceivably due to the inactivation of one Ins1 allele in Ins1Cre/+ knock-in mice), whereas the Ins2 gene expression was unaltered at both p7 and p28 (Figure 3E). However, because Ins1 is expressed much less than Ins2 in β cells [35], this gene is not considered the primary determinant for insulin production. Therefore, translational and/or post-translational

**Figure 2:** Characterization of the β-cell compartment in β-GsaKO mice. (A) Representative immunofluorescence images of fixed pancreatic sections from control and β-GsaKO mice at the indicated ages, stained for insulin in green and glucagon in red. Nuclei are marked with Hoechst in blue. Scale bars are 75 µm. (B) Fractional insulin area was calculated as the percentage of insulin+ area relative to the total pancreatic area (p0: n = 4, p14/p28: n = 5, 8wo: n = 3). (C,D) Quantification of β-cell (C) and α-cell (D) mass. Values were calculated by multiplying fractional insulin area x pancreas weight (p14/p28: n = 5, 8wo: n = 3). (E,F) Quantification of the percentage of β (insulin+) cells that are Ki67+ (E) or p-HH3+ (F) in pancreases from p14 and p28 β-GsaKO (n = 5) and control (n = 4) mice. (G) Quantification of the expression of the indicated cell cycle and proliferation genes in p28 β-GsaKO (n = 4–10) and control (n = 4–9) islets as determined by qPCR. Expression was normalized with Tbp and expressed relative to control, given the value of 1. All bars represent the mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 vs. control animals by two-tailed Student’s test.
mechanisms are likely involved in reduced insulin islet content in knockout islets. We postulated that reduced processing of proinsulin into mature insulin might contribute to the diminished islet insulin content, as the genes encoding the processing enzymes Pcsk1 and Pcsk2 were downregulated in knockout islets (Figure 3A). In line with this idea, proinsulin content was 1.8-fold higher in β-Gsa KO islets relative to controls (Figure 3F). This difference in proinsulin content translated into a 4.2-fold increase in circulating proinsulin levels and a

Figure 3: β-cell maturation in β-GsaKO mice. (A) Quantification of the expression of the indicated genes by qPCR in p28 β-GsaKO (n = 4–15) and control (n = 4–13) islets. Expression was normalized with Tbp and expressed relative to control, given the value of 1. (B) Pdx1 and Mafa mRNA levels in p7 β-GsaKO (n = 5–6) and control (n = 6) measured by qPCR. Expression was normalized with Tbp and expressed relative to control, given the value of 1. (C) Insulin content of β-GsaKO and control islets isolated at the indicated ages and determined by ELISA (p7, n = 4–5; p14, n = 11; p28, n = 8–14; 8wo, n = 25–32). (D) Representative immunofluorescence images of islet matched for size from β-GsaKO and control mice. Insulin is shown in green, glucagon in red, and nuclei in blue. Images were taken using the same exposure times for comparison purposes. Scale bars are 10 μm. (E) Quantification of the expression of the Ins1 and Ins2 genes by qPCR in β-GsaKO and control islets at p7 (n = 3–6) and p28 (n = 6–8). Expression was normalized with Tbp and expressed relative to control, given the value of 1. (F) Proinsulin content of p28 β-GsaKO (n = 4) and control (n = 7) islets as determined by ELISA. (G) Plasma proinsulin levels in p28 β-GsaKO (n = 6) and control (n = 8) mice. (H) Plasma C-peptide levels in p28 β-GsaKO (n = 4) and control (n = 4) mice. All bars represent the mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 vs. controls by two-tailed Student’s test.
72% reduction of circulating levels of C-peptide in p28 β-GsaKO mice (Figure 3G,H). Collectively, these observations indicate that Gsa-dependent signaling is involved in the acquisition of β-cell maturity during postnatal stages.

3.4. Loss of Gsa reduces intracellular cAMP and Creb-dependent signaling in postnatal islets

As an initial step to gain insight into the molecular mechanisms responsible for reduced functional β-cell mass in β-GsaKO mice, we studied intracellular cAMP levels in isolated islets from p28 and 8 wo mice. At both ages and under basal conditions, β-GsaKO islets presented cAMP levels of approximately 15% of controls of the same age (Figure 4A). Further, despite the combination of the adenylyl cyclase activator forskolin and the phosphodiesterase inhibitor IBMX elevating cAMP levels by 4-fold and 12-fold in p28 and 8 wo β-GsaKO islets respectively, the cAMP content remained much lower than in stimulated controls (8 and 14% of controls at p28 and 8wo, respectively; Figure 4A). These results show that loss of Gsa severely depletes intracellular cAMP levels, jeopardizing cAMP-dependent signaling in islets.

Protein kinase A (PKA) is considered one of the primary mediators of cAMP signaling in the cell. We surveyed gene expression of components of the PKA branch and found that mRNAs for the regulatory and catalytic subunits of PKA, Prkar1b and Prkaca, as well as the anchor protein Akap11 were reduced in knockout islets as compared to controls (Figure 4B). Likewise, the expression of the Creb3 gene encoding the cAMP response element binding (Creb) transcription factor, a main downstream effector of PKA signaling, was also decreased. To validate these results, we studied Creb at the protein level (Figure 4C).

Figure 4: cAMP signaling pathway in β-GsaKO islets. (A) Intracellular cAMP concentration in freshly isolated p28 and 8wo β-GsaKO and control islets incubated for 20 min with or without forskolin (1 μM) + IBMX (0.5 mM) (n = 3). (B) Expression of the indicated genes in p28 β-GsaKO (n = 4–8) and control (n = 4–9) islets as determined by qPCR. Expression was normalized with 73p and expressed relative to control, given the value of 1. (C) Determination of phospho-Creb and total Creb by immunoblot analysis in the whole islet extracts from p28 β-GsaKO and control islets. Left: representative immunoblot image. Right: quantification of p-Creb (relative to total Creb) and Creb (relative to tubulin) levels. Values are expressed relative to control islets, given the value of 1 (n = 7–10). (D) Determination of phospho-Erk1/2 and total Erk1/2 by immunoblot analysis in whole islet extracts from p28 β-GsaKO and control islets. Left: representative immunoblot image. Right: quantification of Erk1/2 activation (p-Erk1/2/total Erk1/2). Values are expressed relative to control islets, given the value of 1 (n = 7). (E,F) Quantification of the indicated genes by qPCR in p28 β-GsaKO (n = 4–8) and control (n = 4–9) islets. Expression was normalized with 73p and expressed relative to control, given the value of 1. All data points represent the mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 vs. controls by two-tailed Student’s test.
level. At p28, β-GsζKO islets contained less Creb protein and displayed lower Creb phosphorylation (relative to total Creb) than controls (Figure 4C). Our prior results showing downregulation of Ccn2, Mafa, and Pck1 in p28 β-GsζKO islets (see Figures 2G and 3A) reinforce this finding, as these genes have been reported to be direct Creb targets [15,36,37]. Therefore, these results support the reduction of PKA/Creb signaling in p28 β-GsζKO islets.

In addition to PKA, cAMP can trigger signaling through guanine nucleotide exchange proteins, directly activated by cAMP (Rapgef; formally known as Epac factors) [38], which can then regulate gene expression via the Calcineurin/Nuclear factor of activated T-cells (Nfat), a factor family of transcriptional regulators [39]. Importantly, Nfat signaling has been shown to regulate postnatal β cell development [40]. Among the Rapgef and Nfat genes expressed in islets, only Rapge3 gene expression was changed (30% increase) in β-GsζKO as compared to controls (Figure 4B). In islets, ePAC/Rap1 regulates the MAP kinases Erk1/2 [41], which have been reported to phosphorylate Creb [42] and induce β-cell proliferation [43]. Similar to Creb, total Erk1/2 protein was modestly decreased in β-GsζKO islets (Figure 4D). However, the degree of Erk1/2 activation was similar in knockout and control islets (Figure 4D). Together, these results indicate that signaling through the ePAC branch is not grossly impacted by Gsζ loss in p28 islets. Next, we investigated whether loss of Gsζ had effects on the expression of other proximal components of the cAMP signaling machinery. Of the GPCR-Gs receptors tested, we found that the incretin receptors Glp1r and Gipr, the cannabinoid receptor Gpr119, and the PAPAC/VIP receptor Vipr were significantly downregulated in β-GsζKO as compared to control islets, whereas the glucagon receptor (Gcgr) was upregulated (Figure 4E). By contrast, gene expression of GPCR desensitizers, including β-arrestins (Barr1, Barr2) or G protein-coupled receptor kinases (Grk2), was unaltered in p28 β-GsζKO islets (Figure 4E).

Lastly, we assessed whether Gsζ inactivation exerted compensatory effects on the expression of other genes involved in regulating cAMP levels, including the mechanistically opposite G protein subclass Gi, phosphodiesterases, and adenylyl cyclases. However, we found that all the genes assayed were similarly expressed in β-GsζKO and control islets (Figure 4F).

3.5. Loss of Gsζ impairs insulin signaling in postnatal islets

Mouse models targeting one or more proteins in the insulin/insulin-like growth factor (Igf) transduction pathway show that this pathway regulates β-cell proliferation [44–47]. Expression of proximal components of this pathway, namely the Igf1 receptor (Igf1r) [20,48] and insulin receptor substrate 2 (Irs2) [49], are known to be regulated by cAMP, indicating the possibility that impaired insulin/Igf signaling causes the β-cell mass phenotype of β-GsζKO mice. However, this hypothesis was rejected in RIP2-Cre/GsζKO mice due to the normality of the Irs2 expression in adult islets from this model. Here, we reexamined this notion in more detail using islets at a younger age. First, we assessed the activation status of the main intracellular effector of the insulin/Igf1 pathway, the kinase Akt/PKBo. We found that phosphorylated Akt (active state) was significantly reduced in p28 β-GsζKO relative to control islets (Figure 5A), confirming that the loss of Gsζ negatively affects insulin-signaling activity in postnatal β cells. We then measured the phosphorylation of ribosomal protein S6, which is activated downstream of Akt and required for Akt-driven β-cell proliferation [50], and found that it was decreased in β-GsζKO islets (Figure 5B), linking anomalies in this pathway to the postnatal β-cell expansion defect in β-GsζKO mice.

To reveal the molecular alterations responsible for abnormal insulin/Igf signaling activity, we first examined the expression of the cAMP/Creb target Irs2 in islets from p28 β-GsζKO mice. We found that, in agreement with the earlier study in the RIP2-Cre/GsζKO model, the Irs2 gene expression was unaltered (Figure 5C). As Irs2 is expressed in all cell types of the islet [51], we also assayed its expression in sorted β cells and found that it was significantly downregulated in knockout β cells compared to controls (Figure 5C). Though this result confirms that Irs2 is a target of Gsζ signaling in β cells, β-cell specific inactivation of Irs2 had no impact on β-cell mass in the early postnatal period [46]. Thus, alterations in Irs2 alone cannot explain the β-cell expansion defect in β-GsζKO mice.

CAMP also regulates the expression of the Igf1r receptor (Igf1r) in islets [20,48]. Though genetic ablation of Igf1r has no impact on β-cell mass [52], β-cell specific compound deletion of Igf1r and the insulin receptor (Irs2) was reported to reduce β-cell mass as early as p14 [44]. This body of knowledge prompted us to look at the status of both receptors in β-GsζKO islets. Using immunoblot analysis, we found that Igf1r and Irs2 protein levels were decreased in p28 β-GsζKO islets (Figure 5D). In contrast, though Igf1r gene expression was downregulated, Irs2 mRNA levels were similar in p28 β-GsζKO islets and controls (Figure 5E), suggesting that different mechanisms cause the depletion of these receptors in β-GsζKO islets. The Irs2 has two isoforms (i.e., Irs2-A and Irs2-B), derived from alternative splicing of the same pre-Irs2 mRNA. We performed conventional RT-PCR using primers of exons 10 and 12, which permit amplification of the two splice variants. As shown in Figure 5F, we observed that β-GsζKO islets presented a higher Irs2A:Irs2B ratio. Using qPCR, we quantified Irs2-B (including exon 11) transcripts and found that they were significantly reduced at p28, using both islet and sorted β cells RNA (Figure 5G), confirming that the loss of Gsζ specifically affects the expression of the Irs2-B isoform within β cells. The Irs2A/Irs2B ratio is regulated by several splicing factors, some of which promote inclusion (i.e., Srsf1, Srsf3, Mbnl1), whereas others promote exclusion (Celf1) of exon 11 [53]. The relative expression of these factors determines the degree of exon 11 inclusion and thereby Irs2 isoform distribution. Nicely correlating with reduced Irs2-B mRNA levels, we found that p28 β-GsζKO islets exhibited decreased Srsf1 and increased Celf1 expression (Figure 5H).

Together, these findings reveal that Gsζ signaling not only regulates Igf1r but also Irs2 in β cells. Importantly, the downregulation of Igf1r and Irs2 was evident as early as p7 (Figure 5I), placing defective signaling through these receptors at the correct time to negatively impact postnatal β-cell mass expansion in β-GsζKO mice.

Finally, we measured BrdU incorporation in dissociated islet cells (DIs) from p28 β-GsζKO and control islets following incubation with insulin, Igf1, and the Glp1 agonist Exendin as control. While control DIs augmented BrdU incorporation in response to the three molecules, β-GsζKO DIs only responded to Igf1 (Figure 5J). Therefore, Gsζ ablation impairs the proliferative activity of insulin in postnatal islets, indicating that deficient insulin signaling contributes to the β-cell mass phenotype in β-GsζKO mice.

4. DISCUSSION

In mice, pancreatic β-cell development culminates in two essential milestones during the first weeks of postnatal life. First, the proliferation of neonatal β cells leads to the rapid expansion of the β-cell mass. Second, β cells acquire the ability to secrete appropriate amounts of insulin in response to glucose. Here we demonstrate that the specific disruption of Gsζ signaling in β cells compromises both processes, resulting in an inadequate functional β-cell mass that cannot maintain proper glucose homeostasis in adult life. Importantly, these changes occur in the absence of other alterations described in
RIP2-Cre/Gs\textsuperscript{a}KO mice \cite{21}, including poor postnatal growth, reduced survival, or enhanced \textit{in vivo} insulin sensitivity, indicating that off-target Cre-mediated recombination events likely caused these effects \cite{24} in the former model.

The identity of the endogenous ligands and GPCRs that function via Gs\textsuperscript{a} to regulate postnatal \(\beta\)-cell development remains poorly explored. Here, we show that Gs\textsuperscript{a} KO islets present decreased expression of some Gs\textsuperscript{a}-GPCRs, including the receptors for the incretin hormones.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure5}
\caption{Insulin signaling in \(\beta\)-Gs\textsuperscript{a}KO islets. (A) Determination of phospho(p)-Akt and total Akt by immunoblot analysis in whole islet extracts from p28 \(\beta\)-Gs\textsuperscript{a}KO and control mice. Top: representative immunoblot image. Bottom: quantification of Akt activation (p-Akt/2/total Akt) (\(n = 12\)). Values are expressed relative to control islets, given the value of 1. (B) Determination of phospho(p)-S6 and total S6 by immunoblot analysis in whole islet extracts from p28 \(\beta\)-Gs\textsuperscript{a}KO and control mice. Top: representative immunoblot image. Bottom: quantification of S6 activation (p-S6/total S6) (\(n = 6 \pm 7\)). Values are expressed relative to control islets, given the value of 1. (C) Quantiﬁcation of Irs2 mRNA levels by qPCR in islets (\(n = 9 \pm 10\)) and sorted \(\beta\) cells (\(n = 3 \pm 5\)) from p28 \(\beta\)-Gs\textsuperscript{a}KO and littermate controls. Expression was normalized with Tbp and expressed relative to control, given the value of 1. (D) Quantiﬁcation of Igf1r and Insr protein levels by immunoblot analysis in whole islet extracts from p28 \(\beta\)-Gs\textsuperscript{a}KO and control mice. Top: representative immunoblot image. Bottom: quantification of Igf1r and total Insr protein levels relative to tubulin (\(n = 8\)). Values are expressed relative to control islets, given the value of 1. (E) Quantiﬁcation of Igf1r and Insr mRNA levels by qPCR in p28 \(\beta\)-Gs\textsuperscript{a}KO and control islets (\(n = 8 \pm 9\)). Expression was normalized with Tbp and expressed relative to control, given the value of 1. (F) Gene expression of Insr-A and Insr-B isoforms in p28 \(\beta\)-Gs\textsuperscript{a}KO and control islets as determined by conventional PCR. Top: representative gel. Bottom: quantification of the ratio Insr-A/Insr-B (\(n = 6\)). Actin is shown as a housekeeping gene. (G) Quantiﬁcation of Insr-B mRNA levels by qPCR in islets (\(n = 4 \pm 6\)) and sorted \(\beta\) cells (\(n = 2\)) from p28 \(\beta\)-Gs\textsuperscript{a}KO and control mice. Expression was normalized with Tbp and expressed relative to control, given the value of 1. (H) Expression of genes encoding factors involved in Insr splicing in p28 \(\beta\)-Gs\textsuperscript{a}KO and control mice as determined by qPCR. Top: representative gel. Bottom: quantification of Insr-B mRNA levels in p28 \(\beta\)-Gs\textsuperscript{a}KO and control islets (\(n = 5 \pm 8\)) and control (\(n = 3 \pm 6\)) islets as determined by qPCR. Expression was normalized with Tbp and expressed relative to control, given the value of 1. (I) Quantiﬁcation of Igf1r and Insr-B mRNA levels in p28 \(\beta\)-Gs\textsuperscript{a}KO and control islets (\(n = 5 \pm 9\)) and control (\(n = 3 \pm 6\)) measured by qPCR. Expression was normalized with Tbp and expressed relative to control, given the value of 1. (J) Proliferation determined by BrdU incorporation in DICS prepared from 5 wo \(\beta\)-Gs\textsuperscript{a}KO and control islets, and stimulated for 24 h with exendin-4 (200 nM), insulin (11 nM) or Igf1 (11 nM) (\(n = 3\), with 6 replicates per experiment). Values are expressed as fold-increase over un-stimulated DICS. All data points represent the mean ± SEM. \(P < 0.05\), ***\(P < 0.001\) vs. control animals by two-tailed Student’s t-test.

Figure 5: Insulin signaling in \(\beta\)-Gs\textsuperscript{a}KO islets.

---

RIP2-Cre/Gs\textsuperscript{a}KO mice \cite{21}, including poor postnatal growth, reduced survival, or enhanced \textit{in vivo} insulin sensitivity, indicating that off-target Cre-mediated recombination events likely caused these effects \cite{24} in the former model.

The identity of the endogenous ligands and GPCRs that function via Gs\textsuperscript{a} to regulate postnatal \(\beta\)-cell development remains poorly explored. Here, we show that Gs\textsuperscript{a} KO islets present decreased expression of some Gs\textsuperscript{a}-GPCRs, including the receptors for the incretin hormones.
Glp1 and Gip, the receptor for PACAP/VIP and the orphan receptor Gpr119, all of which have been shown to potentiate glucose-induced insulin secretion and hence regulate β-cell function. Incretins, especially Glp1, are also inducers of β-cell proliferation and could therefore be potentially involved in the defects in postnatal β-cell growth of β-GszKO mice. However, mouse models of disrupted incretin receptor action lack alterations in β-cell mass establishment under homeostatic conditions [54–57], challenging the idea that defective incretin signaling underlies the defects in postnatal β-cell growth observed in β-GszKO mice. Likewise, the absence of β-cell mass phenotypes after the genetic disruption of Gpr119 or Vip in mice challenges the dominant roles of these two molecules in postnatal β-cell expansion [58,59]. Multiple other Gsz-GPCRs exist, some of which have been described in young β cells [22]. It will be interesting to study if they are affected in β-GszKO mice and involved in the β-cell growth defect observed in this model. An alternative view is that the β-cell defects observed in β-GszKO mice do not derive from anomalies in individual ligands or receptors, but rather, they are a consequence of the complete blockade of Gsz-GPCRs signaling and the resulting loss of counteregulation of Gα-GPCRs signaling, which is known to limit β-cell expansion during the perinatal period [22].

In eukaryotic cells, two primary intracellular mediators, the kinase PKA and the effectors Epac, control the cellular functions of cAMP [38]. Our results indicate that the inactivation of Gszα impairs PKA signaling, as illustrated by the reduced activation of its principal effector, the transcription factor Creb. In accordance, several genes reported to be regulated by Creb activity and involved in β-cell proliferation (i.e., Ccna2, cdkn1a) and maturation (i.e., Pdx1 and Mafa) were downregulated in β-GszKO islets [13–15,35,36], directly connecting Gzs/PKA/CREB signaling to postnatal β-cell development. Interestingly, Mafa disruption is shown to be reduced β-cell proliferation and alter β-cell gene expression by 3 weeks of age [60]. Moreover, some of the genes regulated by this transcription factor are decreased in p28 β-GszKO islets (namely, Pcsk1, Ucn3, Glp1r) [60–62]. Collectively, this evidence supports the claim that aberrant Mafa induction contributes to impaired postnatal β-cell development in β-GszKO mice.

The involvement of the Epac factors in abnormal β-cell development in β-GszKO mice is less clear. Epac proteins are known to participate in exocytosis and influence the release of Ca2+: [10], which could potentially link Gszα/cAMP with the calcineurin/Nfat pathway [39], a well-known regulator of postnatal β-proliferation and maturation [40]. Interestingly, research demonstrates that the mitogenic effects of Glp1r activation in human islets require activation of the Nfat genes [63]. However, we found that neither Epac nor Nfat genes were modified in β-GszKO islets. Likewise, genes found to be downregulated upon disruption of calcineurin/Nfat signaling, such as lms2, Csk, Slc2a2, or lapp, were unaffected, implying that Epac/Nfat proteins are unlikely to be the primary mediators of Gsz effects in early postnatal β-cell development.

Our work shows that Gszα inactivation jeopardizes insulin signaling in postnatal β cells. Though the crosstalk between the Gszα/cAMP and insulin pathways has been previously recognized in adult β cells, this study reveals that this connection is present from early postnatal life. At p28, Gszα-depleted β cells exhibit a diminished expression of lgsr1 and Insr2, two previously recognized cAMP/Creb targets [20,48,49]. Intriguingly, here we uncover a new interaction at the level of the insulin receptor that may expound upon the postnatal β-cell expansion defect of β-GszKO mice. Indeed, the β-cell mass phenotype of β-GszKO mice is reminiscent of the phenotype described in mice carrying a compound deletion of lgsr1 and Insr in β cells, namely reduced postnatal β-cell mass associated with decreased phosphorylated Akt and Mafa expression [44]. Of note, reduced β-cell mass was only observed in adult stages upon inactivation of Insr alone [43] or not observed at all upon a single deletion of lgsr1 [52], suggesting that insulin might play a dominant role in postnatal β-cell growth. In this regard, it is significant that β-GszKO islets exhibit severely depleted insulin content from shortly after birth. It may be argued that diminished autocrine insulin signaling (due to the combination of decreased insulin content and down-regulation of insulin signaling elements) underlies the β-cell expansion defect in β-GszKO mice. We acknowledge that the autocrine actions of insulin are still a matter of debate [64,65]. However, most of the studies addressing this question have used adult β cells, and their intrinsic features and the microenvironment they reside in (i.e., proportion of other endocrine cells, islet vascularization, or innervation) are different from postnatal β cells. Thus, it is plausible that autocrine insulin signaling exerts discrepant roles in young and adult β cells.

The molecular mechanisms that connect Gsz with the insulin receptor remain to be further elucidated. The insulin receptor protein has two isoforms (A and B) generated by alternative splicing of the Insr gene (A: exon 11 included; B: exon 11 included) that differ in binding affinities and activation of downstream signaling pathways [66]. Moreover, the relative proportion of these isoforms is cell-specific and can vary during development and changing environmental conditions. Here, we show that loss of Gsz results in decreased levels of the Insr-B isoform in β cells. In agreement, gene expression of the splicing factor Srf1, which promotes exon 11 inclusion, is reduced, though the gene expression of the factor Celf1, which causes exon 11 skipping, is increased in β-GszKO islets. Remarkably, insulin induces the generation of Insr-B in islets [67]. Therefore, reduced Insr-B levels could be a consequence of impaired insulin signaling activity. In support of this possibility, the splicing factor Srf1 has also been reported to enhance Insr exon 11 inclusion upon insulin stimulation in islets [67]. To date, the role of Insr alternative splicing and the importance of the different Insr isoforms for pancreatic β-cell proliferation, survival, or function is unclear. Interestingly, the Insr-B isoform is associated with stronger insulin binding and might play a role in β-cell survival [67]. It will be interesting to address how alternative splicing of the Insr regulates postnatal β-cell proliferation and/or maturation in the future. Collectively, our study, using conditional ablation of Gsz in β cells, reveals critical functions of Gsz-dependent signaling in postnatal β cell expansion and maturation. We also show that inactivation of Gszα has an early and broad impact on several proximal elements of the insulin signaling transduction machinery and propose that these alterations are involved in impaired postnatal β cell development in β-GszKO mice. Remarkably, we identify the insulin receptor as a target of Gsz-dependent signaling in postnatal β cells. This finding encourages further work to decipher whether this interaction is conserved in adult β cells and whether it could be exploited to expand or preserve adult β cell mass in diabetes.

**AUTHOR CONTRIBUTION**

BSN conducted all experiments. RFR and AG provided assistance with mouse experiments and proliferation assays. MPJ, EFR, JMC, and YE provided assistance in several experiments. JM and SD performed cAMP studies. MH and UA performed OPT studies. LSW provided floxed Gnα mice. RGo and RGa conceived the project. BSN, JV, RGo, and RGa analyzed and discussed the data. BSN and RGa wrote the manuscript. All authors read and approved the manuscript.
Original Article

ACKNOWLEDGEMENTS

This work has been supported by projects P116/00774 (Rga) and P119/00896 (Rga and RGo) integrated in the Plan Estatal de I+D+i and cofinanced by ISCIII-Subdirección General de Evaluación y Fondo Europeo de Desarrollo Regional (FEDER: “A way to build Europe”); grant 2014 SGR659 from the Generalitat de Catalunya and Fundación DiabetesCero (Rga). The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/ 2009—2013) under the grant agreement n° 229673 (EFR). CIBERDEM (Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas) is an initiative of the Instituto de Salud Carlos III.

CONFLICT OF INTEREST

None declared.

APPENDIX A. SUPPLEMENTARY DATA

Supplementary data to this article can be found online at https://doi.org/10.1016/j.molmet.2021.101264.

REFERENCES

[1] Butler, P.C., Meier, J.J., Butler, A.E., Bhushan, A., 2007. The replication of beta cells in normal physiology, in disease and for therapy. National Clinical Practice Endocrinology and Metabolism 3(11):758—768.
[2] Bouwens, L., Rooman, I., 2005. Regulation of pancreatic beta-cell mass. Physiological Reviews 85(4):1255—1270.
[3] Zeng, C., Mulas, F., Suí, Y., Guan, T., Miller, N., Tan, Y., et al., 2017. Pseudodatemporal ordering of single cells reveals metabolic control of postnatal β cell proliferation. Diabetes 58(5):1160—1175 e1111.
[4] Wang, Y., Sun, J., Qi, O., Nie, A., Gu, Y., 2019. Dual effect of raptor on neonatal β-cell proliferation and identity maintenance. Diabetes 68(10):1950—1964.
[5] Wang, P., Fiaschi-Taesch, N.M., Vasavada, R.C., Scott, D.K., García-Ocana, A., Stewart, A.F., 2015. Diabetes mellitus—advances and challenges in human beta-cell proliferation. Nature Reviews Endocrinology 11(4):201—212.
[6] Blum, B., Hrватin, S., Schuetz, C., Reznick, A., Melton, D.A., 2012. Functional beta-cell maturation is marked by an increased glucose threshold and by expression of urocortin 3. Nature Biotechnology 30(3):261—264.
[7] Salinno, C., Cota, P., Bastidas-Ponce, A., Tarquis-Medina, M., Ličtart, H., Bakhti, M., 2019. Beta-cell maturation and identity in health and disease. International Journal of Molecular Sciences 20(21).
[8] Yoshihara, E., Wei, Z., Lin, C.S., Fang, S., Ahmadian, M., Kida, Y., et al., 2016. ERRy is required for the metabolic maturation of therapeutically functional glucose-responsive β cells. Cell Metabolism 23(4):622—634.
[9] Stolchovich-Rain, M., Enk, J., Vikesa, J., Nielsen, F.C., Saada, A., Glaser, B., et al., 2015. Weaning triggers a maturation step of pancreatic β cells. Developmental Cell 32(9):535—545.
[10] Tengholm, A., Gyfle, E., Shibasaki, T., Takahashi, T., Takahashi, H., Seino, S., et al., 2017. cAMP signalling in insulin and glucagon secretion. Diabetes, Obesity and Metabolism 19(2):42—53.
[11] Seino, S., 2012. Cell signalling in insulin secretion: the molecular targets of ATP, cAMP and sulfonurea. Diabetesologia 55(8):2096—2108.
[12] Müller, T.D., Finan, B., Bloom, S.R., D’Alessio, D., Drucker, D.J., Flatt, P.R., et al., 2019. Glucagon-like peptide 1 (GLP-1). Molecular Metabolism 30:72—130.
[13] Taneya, J., Daï, S., Mohammed, A.K., Mukhopadhyay, D., Aljaibe, H., Sulaiman, N., et al., 2019. GNAS gene is an important regulator of insulin secretory capacity in pancreatic β-cells. Gene 715:144028.
Sharpe, J., Ahlgren, U., Perry, P., Hill, B., Ross, A., Heckshcer-Sorensen, J., et al., 2002. Optical projection tomography as a tool for 3D microscopy and gene expression studies. Science 296(5567):541–545.

Liu, J.S., Hebrok, M., 2017. All mixed up: defining roles for beta-cell subtypes in mature islets. Genes & Development 31(3):228–240.

Huang, C., Walker, E.M., Dadi, P.K., Hu, R., Xu, Y., Zhang, W., et al., 2018. Synaptotagmin 4 regulates pancreatic beta cell maturation by modulating the Ca(2+)-sensitivity of insulin secretion vesicles. Developmental Cell 45(3):347–361 e345.

Shin, S., Le Lay, J., Everett, L.J., Gupta, R., Ra, B.E., et al., 2019. Akt-driven hyperplasia and malignant transformation, but not for hypertrophy, Anorexypin and hyperfunction of pancreatic beta-cells. PLoS One 11(2):e0149995.

Araujo, E.P., Amaral, M.E., Souza, C.T., Bordin, S., Ferreira, F., Saad, M.J., et al., 2002. Blockade of IRS1 in isolated rat pancreatic islets improves glucose-induced insulin secretion. FEBS Letters 531(3):437–442.

Otani, K., Kulkarni, R.N., Baldwin, A.C., Kutzfeldt, J., Ueki, K., Stoffel, M., et al., 2004. Reduced beta-cell mass and altered glucose sensing impair insulin-secretory function in betaARKO mice. American Journal of Physiology. Endocrinology and Metabolism 286(1):E41–E49.

Belfiore, A., Malaguarnera, R., Vetta, V., Lawrence, M.C., Sciacca, L., Frasca, F., et al., 2017. Insulin receptor isoforms in physiology and disease: an updated view. Endocrine Reviews 38(5):53.

Pamir, N., Lynn, F.C., Buchanan, A.M., Enses, J., Hinke, S.A., Posspilil, K., et al., 2003. Glucose-dependent insulinotropic polypeptide receptor null mice exhibit compensatory changes in the enteroinnervation axis. American Journal of Physiology. Endocrinology and Metabolism 284(5):E631–E639.

Hansotia, T., Baggio, L.L., Delmeire, D., Hinke, S.A., Yamada, Y., Tsukiyama, K., et al., 2004. Double incretin receptor knockout (DIRKO) mice reveal an essential role for the enteroinsular axis in transducing the glucoregulatory actions of DPP-4 inhibitors. Diabetes 53(5):1326–1335.

Flamez, D., Van Breusegem, A., Scarroci, L.A., Quartier, E., Pipeleers, D., Drucker, D.J., et al., 1998. Mouse pancreatic beta-cells exhibit preserved glucose competence after disruption of the glucagon-like peptide-1 receptor gene. Diabetes 47(4):646–652.

Campbell, J.E., Usher, J.R., Mulvihill, E.E., Kolic, J., Baggio, L.L., Cao, X., et al., 2016. TC1F1 links GIPR signaling to the control of beta cell function and survival. Nature Medicine 22(1):84–90.

Panaro, B.L., Rock, G.B., Campbell, J.E., Beaudy, J.L., Cao, X., Drucker, D.J., 2017. Beta-cell inactivation of Gpr119 unmasks incretin dependence of GPR119-mediated glucoregulation. Diabetes 66(6):1626–1635.

Martin, B., Shin, Y.K., White, C.M., Ji, S., Kim, W., Carlson, O.D., et al., 2010. Vasoactive intestinal peptide-null mice demonstrate enhanced sweet taste preference, dysglycemia, and reduced taste bud leptin receptor expression. Diabetes 59(5):1143–1152.

Hang, Y., Yamamoto, T., Benninger, R.K.P., Brissova, M., Guo, M., Bush, W., et al., 2014. The Matα3 transcription factor becomes essential to islet β-cells soon after birth. Diabetes 63(8):1994–2005.

Nishimura, W., Takahashi, S., Yasuda, K., 2015. Matα3 is critical for maintenance of the mature beta cell phenotype in mice. Diabetesology 58(3):566–574.

Aramata, S., Han, S.-L., Kataoka, K., 2007. Roles and regulation of transcription factor Matα in islet beta-cells. Endocrine Journal 54(5):659–666.

Dai, C., Hang, Y., Shostak, A., Poffenberger, G., Hart, N., Prasad, N., et al., 2017. Age-dependent human beta cell proliferation induced by glucagon-like peptide 1 and calcineurin signaling. Journal of Clinical Investigation 127(10):3835–3844.

Rhodes, C.J., White, M.F., Leahy, J.L., Kahn, S.E., 2013. Direct autocrine action of insulin on beta-cells: does it make physiological sense? Diabetes 62(7):2157–2163.

Rachdoua, N., 2020. Insulin: the friend and the foe in the development of type 2 diabetes mellitus. International Journal of Molecular Sciences 21(6).

Belfiore, A., Frasca, F., Pandini, G., Sciacca, L., Vigneri, R., 2009. Insulin receptor isoforms and insulin/insulin-like growth factor receptor hybrids in physiology and disease. Endocrine Reviews 30(6):586–623.

Malakar, P., Chartaritsky, L., Hija, A., Leibowitz, G., Glaser, B., Dor, Y., et al., 2016. Insulin receptor alternative splicing is regulated by insulin signaling and modulates beta cell survival. Scientific Reports 6:31222.

Birnbaum, L., et al., 2016. Phosphorylated ribosomal protein S6 is required for Akt-driven hyperplasia and malignant transformation, but not for hypertrophy, Anorexypin and hyperfunction of pancreatic beta-cells. PLoS One 11(2):e0149995.