Nutrient improvement of *Bruguiera gymnorrhiza* peel fruit through fermentation using commercial tempeh (Indonesian fermented soybean) mold

M N G Amin¹,3*, R A Prastiya², and M N Hasan³ Zakariya³ and M A Alamsjah¹

¹Departemen Marine, Faculty of Fisheries and Marine, Universitas Airlangga
²Bachelor Program in Veterinary Education (Banyuwangi Campus), Faculty of Veterinary Medicine, Universitas Airlangga
³Bachelor Program in Aquaculture (Majoring in Fisheries Product Technology, Faculty of Fisheries and Marine, Universitas Airlangga

*Corresponding author: m-nurghoyatulamin@fpk.unair.ac.id

Abstract. The whole *Bruguiera gymnorrhiza* fruit contains about 80 ±1.75% edible fruit and 20 ±1.75% peel, in which the peel contains about 94,400 ppm tannin. This research aims to study the nutritional improvement of *Bruguiera gymnorrhiza* peel flour through fermentation using commercial tempeh (Indonesian fermented soybean). The blanched fruit was peeled out, and then the peel was chopped and inoculated thoroughly with the dry matter of tempeh culture at a concentration of 0.2% (w/w), 0.4% (w/w) and 0.6% (w/w). The fermentation was carried out in a glass jar for 72 hours at the ambient temperature. This research showed that fermentation can reduce the tannin concentration and increase the carbohydrates and protein. The lowest tannin concentration was obtained using a mold concentration of 0.6% (w/w) (39,600 ± 0.01 ppm), which was much lower than the unfermented fresh peel (94,400 ± 0.01 ppm). Fermentation using mold at 0.6% (w/w) also produced flour with the highest carbohydrate and protein content compared to the unfermented fresh peel and other lower mold concentrations used. Hence, the higher the mold concentration, the more nutritional value and the less anti-nutritional *Bruguiera gymnorrhiza* flour can be obtained.

1. **Introduction**

Bruguiera gymnorrhiza is a mangrove plant that is widely cultivated in some coastal areas in Indonesia, which protects the land from the risk of sea waves as well as maintaining other living organism sustainability. The whole *Bruguiera gymnorrhiza* fruit contains about 80 ±1.75% edible fruit and 20 ±1.75% peel. The peeled fruit is processed by people in the surrounding coastal area into flour, which can be formulated into food ingredients such as cake, cookies and bread. *Bruguiera gymnorrhiza* peel
can be abundant, since the flour is massively produced. Meanwhile, Bruguiera gymnorrhiza peel has not yet been utilized.

The preliminary study on the chemical characteristics of Bruguiera gymnorrhiza peel demonstrated that Bruguiera gymnorrhiza peel contains about 94,400 ppm tannin. Tanin is a natural antioxidant substance derived from various plants, but it can be toxic for humans or animals in excess concentrations. Aside from tanin, HCN is also an anti-nutritional substance found in Bruguiera gymnorrhiza fruit [1].

Massive Bruguiera gymnorrhiza flour production will produce peel abundantly, so the utilization of peel is highly possible to be carried out on a massive scale as well. So far, people use ash suspension to reduce the content of HCN and tannin in the fruit, instead of repeatedly water rinsing, because ash absorbs those substances [1]. Unfortunately, ash is produced through burning wood or leaves, whereas these are not highly recommended to be massively exploited, due to environmental sustainability issues.

Solid state fermentation using Rhizopus sp. proved able to reduce the content of HCN and tannin in the Bruguiera gymnorrhiza peel, which is catalyzed by the cyanogenic glucosidases secreted by Rhizopus sp. during fermentation [2, 3]. It also secretes lipase, amylase and protease, which modify the physicochemical of growth medium [4]. However, although the use of pure Rhizopus sp. was successfully proven able to improve the medium, it is not really practical as the price is not that affordable.

Tempeh is a soybean product produced through fermentation inoculated using Rhizopus sp. Nowadays, people have discovered a commercial mixed culture containing Rhizopus sp., which is easily found and not expensive. The mixed culture contains yeast, mold and microfloras (lactobacillus sp.) which modify the physicochemical properties of the tempeh [5]. Therefore, this promotes the use of the tempeh mixed culture. Therefore, this work aims to study the effect of inoculum (commercial tempeh mold) on the content of the HCN, tannin and other macronutrients of Bruguiera gymnorrhiza peel flour.

This research is expected to be able to provide pivotal information to improve the quality of Bruguiera gymnorrhiza peel flour, which is simply implemented by people for feed purposes. Aside from that, this is a reference for the government to assist them in conserving the mangrove ecosystem for maintaining or even improving environmental sustainability.

2. Material and method

2.1. Bruguiera gymnorrhiza peel preparation

The Bruguiera gymnorrhiza fruit was obtained from the mangrove conservation site in Wonorejo, Surabaya, East Java, Indonesia. The fruit was heated in hot water at the temperature of 90 °C for 4 - 5 minutes and then the fruit was peeled and copped using a copper food processor.

2.2. Production of fermented Bruguiera gymnorrhiza peel flour

Solid state fermentation was carried out using cooked Bruguiera gymnorrhiza peel as the medium. The mold was inoculated throughout the copped fruit peel at a concentration of 0.2 % (w/w), 0.4 % (w/w) and 0.6 % (w/w), and then incubated at an ambient temperature for 3 days. After 3 days, the fermented peel was sun-dried until fully dry and the dry peel was milled and then passed through a 100 mesh cut-off membrane.

3. Results and discussion

Solid-state fermentation often brings about an improved quality in the substrate and enhances the nutritional quality of the food. The results have been summarized in Table 1, and they tend to support the previous studies. This is because the chemical quality of the fermented Bruguiera gymnorrhiza peel was richer than that of the unfermented peel. Several interrelated biochemical processes are believed to have led to the improved quality of the peel [2, 3, 6]. The complex processes characterizing fungal growth and peel degradation may have resulted in the depletion of the sugars, particularly the monosaccharides. This may have lead to the biosynthesis of new ones.
The changes in the tannin content of the peel were a good indicator of fermentation. Based on these results, the extent of detoxification appeared to be related to fungal growth in the fresh peel. Thus, the major benefit of fermentation was the drastic reduction in the concentration of the toxic components. The final tannin level of the fermented peel was lower than the official level recommended for Bruguiera gymnorrhiza products. HCN was not found in both fermented and unfermented peel flour, because the content of HCN in the peel was too low and the analysis could not detect it. This phenomenon is caused by the environmental condition of the Bruguiera gymnorrhiza that was cultivated.

A few species of fungi are known to produce enzymes that hydrolyse cyanogenic glucosides [2, 3]. They are important in the detoxification process. Therefore, it is possible that the Rhizopus sp. used in this study had a high potential to produce cyanogenic glucosidases and other enzymes important in the modification of the texture and digestibility of the Bruguiera gymnorrhiza peel. The results could be important in the development of food stuffs from the Bruguiera gymnorrhiza peel.

4. Conclusion

This research showed that fermentation reduced the tanin concentration and increased the carbohydrate and protein. The lowest tanin concentration was obtained using a mold concentration of 0.6 % (w/w) (39,600 ± 0.01 ppm), which was much lower than in the unfermented fresh peel (94,400 ± 0.01 ppm). Fermentation using mold at 0.6 % (w/w) also produced flour with the highest carbohydrate and protein content compared to the unfermented fresh peel and other lower mold concentrations used. Hence, the higher the mold concentration, the more nutritional value and less anti-nutritional Bruguiera gymnorrhiza flour was obtained.

References

[1] Sulistyowati W, Kumalaningsih S 2012 Produksi tepung buah lindur (Bruguiera gymnorrhiza lamk.) rendah tanin dan HCN sebagai bahan pangan alternative. JTP UB, 3, 187-98

[2] Ofuya C O and Obilor S N 1993 The suitability of fermented cassava peel as a poultry feedstuff. Bioresource Technology, 44, 101-4

[3] Ofuya C O and Obilor S N 1994 The effects of solid-state fermentation on the toxic components of cassava peel. Process Biochemistry, 29, 25-8

[4] Han B-Z, Ma Y, Rombouts F M and Robert Nout M J 2003 Effects of temperature and relative humidity on growth and enzyme production by Actinomucor elegans and Rhizopus oligosporus during sufu pehtze preparation. Food Chemistry, 81, 27-34
[5] Samson R, Van Kooij J and De Boer E 1987 Microbiological quality of commercial tempeh in the Netherlands. *Journal of Food Protection*, 50, 92-4
[6] Aidoo K, Hendry R and Wood B 1982 Solid substrate fermentations. *Advances in applied microbiology*, 28, 201-37