Novel Aspects of Nitrate Regulation in Arabidopsis

Hongmei Fan¹, Shuxuan Quan¹, Shengdong Qi¹, Na Xu² and Yong Wang¹∗

¹ State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China, ² School of Biological Science, Jining Medical University, Rizhao, China

Nitrogen (N) is one of the most essential macronutrients for plant growth and development. Nitrate (NO₃⁻), the major form of N that plants uptake from the soil, acts as an important signaling molecule in addition to its nutritional function. Over the past decade, significant progress has been made in identifying new components involved in NO₃⁻ regulation and starting to unravel the NO₃⁻ regulatory network. Great reviews have been made recently by scientists on the key regulators in NO₃⁻ signaling, NO₃⁻ effects on plant development, and its crosstalk with phosphorus (P), potassium (K), hormones, and calcium signaling. However, several novel aspects of NO₃⁻ regulation have not been previously reviewed in detail. Here, we mainly focused on the recent advances of post-transcriptional regulation and non-coding RNA (ncRNAs) in NO₃⁻ signaling, and NO₃⁻ regulation on leaf senescence and the circadian clock. It will help us to extend the general picture of NO₃⁻ regulation and provide a basis for further exploration of NO₃⁻ regulatory network.

Keywords: nitrate regulation, leaf senescence, circadian clock, post-transcriptional regulation, non-coding RNA

INTRODUCTION

Nitrogen (N) is a macronutrient required by many important biological processes in plants and also a limiting factor for crop production in the agricultural system. Most crops such as maize and wheat absorb nitrate (NO₃⁻) as the main N forms. NO₃⁻ uptake, transport, and assimilation are the principal processes for NO₃⁻ utilization and have long been studied. Besides its nutritional role, NO₃⁻ can also serve as a signaling molecule that modulates plant growth and development. During the last decade, great progress has been made on NO₃⁻ regulation in root system architecture, shoot growth, seed dormancy, flowering time, as well as crosstalk with other signals (hormone, calcium) and nutrients (P and K) (Footitt et al., 2011, 2013; Bouguyon et al., 2015, 2016; Riveras et al., 2015; Yan et al., 2015; Yuan et al., 2016; Li et al., 2017; Lin and Tsay, 2017; Gaudinier et al., 2018; Gras et al., 2018; Du et al., 2019; Hu et al., 2019; Medici et al., 2019). Some crucial components involved in NO₃⁻ signaling have been identified, such as ANR1, NRT1.1, NLP6/7, TCP20, LBD37/38/39, TGA1/4, SPL9, bZIP1, NAC4, NRG2, and NIGT/HRS1.
Post-transcriptional Regulation of Nitrate

The importance of post-transcriptional modifications of genes associating with a wide range of plant responses has been already described in plants (Kim et al., 2008; Kwon et al., 2009; Berr et al., 2010; Nelissen et al., 2010). However, the role of post-transcriptional modifications in N regulation is still poorly understood. The factor IWS1 has been shown to be involved in several aspects of transcription, like transcription elongation, recruitment of chromatin-remodeling factors, mRNA processing and export, and post-transcriptional histone modification (Krogan et al., 2002; Yoh et al., 2007, 2008; Zhang et al., 2008). Lepechin’s group found that IWS1 represses NRT2.1 transcription in response to high N supply, which is associated with an IWS1-dependent accumulation of histone H3 lysine 27 trimethylation (H3K27me3) (Nimura et al., 2011). The result suggests that IWS1 represses gene expression by specifically promoting H3K27me3 methylation under high N conditions. This is the first evidence demonstrating that post-transcriptional chromatin modifications regulate N acquisition. More recently, Coruzzi’s group reported that histone methyltransferase SET DOMAIN GROUP8 (SDG8) mediates genome-wide changes of H3K36me3 after NO$_3^-$ treatments, resulting in the altered expression of its target genes, RNA processing, and physiological responses (Li et al., 2020).

More epigenetic marks, such as other histone modifications (e.g., histone acetylation), chromatin landscape, and DNA methylation need to be investigated in the future to gain a comprehensive understanding of chromatin regulation in NO$_3^-$ signaling.

RNA processing is important for the post-transcriptional regulation of gene expression, and is a rate-limiting step in the expression of proteins. The CPSF30 gene encodes the cleavage and polyadenylation specificity factor, which forms a larger protein (CPSF30-L) with 65 kDa and a smaller protein (CPSF30-S) with 28 kDa. Both proteins possess three characteristic C3H zinc finger motifs and act as an RNA-binding protein and an endonuclease (Addeppalli and Hunt, 2007). The CPSF30-L contains an additional YT512-B Homology (YTH) domain along with the three zinc finger motifs (Li et al., 2017). By using forward genetics, the CPSF30-L gene was cloned and found that it plays a crucial role in NO$_3^-$ signaling, transport, and assimilation in Arabidopsis (Li et al., 2017). Molecular and genetic assays revealed that CPSF30-L works upstream and regulates the expression of NRT1.1, while it functions independently in NLP7 in NO$_3^-$ signaling. FIP1, another RNA-binding protein, is also a core component of a pre-mRNA processing complex (Forbes et al., 2006). Further research showed that FIP1 interacts with CPSF30-L and regulates NO$_3^-$ signaling and assimilation (Wang et al., 2018b). Both CPSF30-L and FIP1 modulate the expression of NO$_3^-$ regulatory genes CIPK8 and CIPK23 and influence the alternative polyadenylation (APA) of the 3’-UTR of NRT1.1 mRNA (Li et al., 2017; Wang et al., 2018b). These results indicate that CPSF30-L and FIP1 may modulate NO$_3^-$ signaling through influencing the APA processing of NRT1.1.

RNA can be chemically modified with many different reactions, among which methylation is one of the most well studied modifications. N6-methyladenosine (m6A) is a pivotal internal mRNA modification, which plays crucial roles in plant growth and development by regulating gene expression at the post-transcriptional level. Recently, it has been reported that the EVOLUTIONARILY CONSERVED C-TERMINAL REGION2 (ECT2) acts as an m6A reader depending on the presence of the YTH domain (Wei et al., 2018; Yue et al., 2019). As CPSF30-L contains an YTH domain, whether it also serves as the m6A reader to regulate NO$_3^-$ signaling needs further investigation.

There are over 100 types of RNA modifications (Roundtree et al., 2017; Bailey-Serres et al., 2020), yet our knowledge about their occurrence and functions are still limited. One thing is certain though: post-transcriptional regulation of gene expression is much more intricate than previously thought. Unraveling the functions and underlying mechanisms of RNA modifications are essential to understand the roles of NO$_3^-$ regulatory genes and will provide valuable insights into post-transcriptional regulation of NO$_3^-$.
Nitrate and ncRNAs

Whole-genome sequencing analyses have identified thousands of ncRNAs playing vital roles in numerous biological processes in plants (Laporte et al., 2007; Rymarquis et al., 2008). Several microRNAs (miRNAs) and a long ncRNA (lncRNA) have been reported to function in NO$_3^-$ regulation in Arabidopsis and crops (Miin-Feng et al., 2006; Vidal et al., 2010; Liu et al., 2019; Table 1). In Arabidopsis, miR167 targets two auxin responsive factors ARF6 and ARF8. The miR167/ARF8 module regulates lateral root growth in response to NO$_3^-$ by controlling a group of NO$_3^-$-responsive genes (Miin-Feng et al., 2006; Gifford et al., 2008). The miR393 and AFB3 can respond to NO$_3^-$ by integrating internal organic N signals, external NO$_3^-$ availability and root auxin sensitivity to control root architecture (Vidal et al., 2010). Upon N starvation, the expression of miR160, miR164, miR780, miR826, miR842, miR846, and miR5090 is induced, whereas the expression of miR169, miR171, miR395, miR397, miR399, miR408, miR827, and miR857 is repressed (Xu et al., 2011; Liang et al., 2012; He et al., 2014; Li et al., 2016). Among them, miR160, miR167, and miR171 can be responsible for the development of root systems under N-starvation conditions (Liang et al., 2012). Moreover, miR826 and miR5090 suppress the expression of ALKENYL HYDROXALKYL PRODUCING 2 (AOP2), which is involved in the modification of the glucosinolate side chain. Overexpression of miR826 and miR5090 results in less glucosinolate and enhanced tolerance to N starvation (He et al., 2014). Overexpression of miR169 reduces N uptake and total N content by decreasing the expression of NRT1.1 and NRT2.1 and thus promotes N starvation-induced early leaf senescence (Zhao et al., 2011; Figure 1A). In addition, the miR5640 post-transcriptionally regulates the expression of its target AtPPC3 in response to NO$_3^-$ (Vidal et al., 2013). The N-responsive miRNA miR156 works upstream of SPL9, a SBP-box transcription factor (TF) identified to control the genes involved in the NO$_3^-$ primary response (Krouk et al., 2010), implying that the miR156/SPL9 module functions in NO$_3^-$ regulation. MiRNAs have also been found to be responsive to N limitation in crops (Xu et al., 2011; Trevisan et al., 2012). MiR169 is up-regulated in maize but down-regulated in rice under N starvation condition (Xu et al., 2011; Li et al., 2016). Two novel putative miR169 species miRC10 and miRC68 are reported to play major roles in the adaptation to NO$_3^-$ limitation in maize seedlings (Zhao et al., 2013). Furthermore, OsmiR444a plays multiple roles including NO$_3^-$-dependent root growth, NO$_3^-$ accumulation and phosphate-starvation responses in rice (Yan et al., 2014). Chengcai Chu’s group reported that OsmiR3979 functions as a key regulator to optimize root growth in response to NO$_3^-$. It targets LOC Os06g40330 and LOC Os01g59660, encoding MYB family TFs, and cleaves them at the predicted cleavage sites (Jeong et al., 2011; Li et al., 2016). Those results suggest that miRNAs play critical roles in NO$_3^-$ regulation by modulating the expression of their target genes.

Long non-coding RNAs are a class of ncRNAs with a length longer than 200 nucleotides and poor protein-coding potential (Pang et al., 2006; Ponting et al., 2009). A multitude of lncRNAs have been identified by using next-generation sequencing during the last several years, but only a few have been characterized (Xin et al., 2011; Liu et al., 2012; Meng et al., 2012). It has been reported that lncRNAs play crucial roles in flowering, phosphate starvation, polar auxin transport, photomorphogenesis, mRNA alternative splicing, and plant immune response (Francozorrilla et al., 2007; Amor et al., 2009; Swiezewski et al., 2009; Heo and Sung, 2011; Bardou et al., 2014; Seo et al., 2017). Several papers described changes of lncRNA responding to N treatments or N deficiency in Populus and maize (Vidal et al., 2013; Alvarez et al., 2014; Chen M. et al., 2016; Lv et al., 2016). However, the role of lncRNAs in N regulation remains largely unclear. Our group found six NO$_3^-$-dependent lncRNAs using RNA-seq technology and validated by qRT-PCR. Further investigation revealed that the TCONS_00005120 (T5120), showing the highest induction by NO$_3^-$, could regulate NO$_3^-$ response and assimilation.

Table 1: Characterized ncRNAs involved in NO$_3^-$ regulation.

Gene name	Targets	Species	Reference
miR156	SPL9	Arabidopsis	Krouk et al., 2010
miR160	Auxin response factors	Arabidopsis	Liang et al., 2012
miR167	ARF6, ARF8	Arabidopsis	Miin-Feng et al., 2006
miR169	CCAAT-binding transcription factor	Arabidopsis, Maize, Rice	Zhao et al., 2011
miR171	SCL transcription factors	Arabidopsis	Liang et al., 2012
miR393	AFBS	Arabidopsis	Vidal et al., 2010
miR5090	AOP2	Arabidopsis	He et al., 2014
miR6840	PPC3	Arabidopsis	Vidal et al., 2013
miR826	AOP2	Arabidopsis	He et al., 2014
miR827	NLA	Arabidopsis, Maize	Liu et al., 2017
miR846	Jacalin lectin family	Arabidopsis	Xu et al., 2011
miR444a	MKC-type MADS-box genes	Rice	Yan et al., 2014
miR979	IAA3	Rice	Li et al., 2016
miR159a.1	LOC Os06g40330, LOC Os01g59660	Rice	Jeong et al., 2011; Li et al., 2016
IncRNA T5120	Unknown	Arabidopsis	Liu et al., 2019
Molecular and genetic assays showed that NLP7 directly binds to the promoter of T5120 to regulate its expression. In addition, the expression of T5120 was modulated by NRT1.1 (Liu et al., 2019). This is the first attempt to investigate the role of IncRNAs in NO3 signaling and provides a fundamental base for discovering more IncRNAs functioning in NO3 regulation.

Nitrate and Leaf Senescence

Leaf senescence is a developmental process accompanying resource rearrangement (Havé et al., 2017). It occurs in a coordinated manner, starting with the inhibition of leaf expansion, and then the induction of metabolic changes followed by degradation of organic substances and nutrient remobilization (Soltabayeva et al., 2018). Some environmental stresses can induce early leaf senescence, among which N deficiency tends to promote leaf senescence to meet the demand of N in young and developing tissues (Aguera et al., 2010).

Although it is previously known that N deficiency can accelerate leaf senescence (Schildhauer et al., 2008; Gregersen et al., 2013), the underlying mechanisms are still poorly understood. It has been found that NRT1.5 functions in transporting NO3 from the roots to the shoots (Lin et al., 2008) and the expression of NRT1.5 is strongly induced by leaf senescence in *Arabidopsis* (Van Der Graaff et al., 2006). Jiming Gong’s lab has recently reported that NRT1.5 suppresses the leaf senescence induced by NO3 (but not nitrogen) starvation (Meng et al., 2016) and this suppression is independent of the NO3 transport function of NRT1.5. Further analyses showed that foliar K+ levels decreased in nrt1.5 when exposed to NO3 starvation and adding K+ could restore the early leaf senescence phenotype of nrt1.5 plants, suggesting that NRT1.5 may increase foliar K+ levels to suppress NO3 starvation-induced leaf senescence (Meng et al., 2016; Figure 1A). Lately, it was found that the expression of NRT1.5 could be positively modulated by CPSF30-L (Li et al., 2017) and suppressed by FIP1 (Wang et al., 2018b). Therefore, it would be interesting to investigate if both genes participate in NO3 starvation-induced leaf senescence (Figure 1A).

Nitrogen limitation adaptation encodes a RING E3 ubiquitin ligase. A previous study showed that the nla mutant could not accumulate anthocyanin and instead exhibited early senescence phenotype under N deficiency condition (Peng et al., 2008). Recently, Wenxue Li’s group confirmed this result and found that the content of \(^{15}\text{N}\) in the young leaves of *nla* mutant is significantly higher than that of wild-type (WT), indicating that NLA decreases translocation of N from the old leaves to the young leaves (Liu et al., 2017). It has been reported that NRT1.7 works in transporting NO3 from the old to young leaves as less \(^{15}\text{NO}_3\) spotted onto old leaves is remobilized to young leaves in nrt1.7 mutant compared with WT (Fan et al., 2009). Further investigation demonstrated that NLA directly interacts with NRT1.7 and promotes NRT1.7 degradation in vivo to repress early senescence. The NLA gene is a target of miRNA827. N limitation strongly repressed the NLA protein abundances in...
WT, while the loss of function of miRNA827 abolished the repression of NLA protein and down-regulated the NRT1.7 protein abundance under N limitation condition, indicating that N deficiency-induced repression of NLA is dependent on miRNA827 (Liu et al., 2017; Figure 1A).

An extensive reprogramming of gene expression has been found to be involved in leaf senescence to meet the complex biochemical and structural changes. Up to now, about 100 TFs that belong to about 20 different families (in particular, bZIP, WRKY, NAC, C2H2 zinc finger, MYB, and AP2-EREBP) have been described to play important roles in leaf senescence (Guo et al., 2004; Buchanan-Wollaston et al., 2005; Ay et al., 2014). ORESARA1 (ORE1, also known as NAC92) is a key factor that promotes age-dependent leaf senescence by regulating the expression of hundreds of senescence-associated genes (SAGs). These SAGs function mainly in the breakdown of nucleic acids and proteins, and the transport of sugar in Arabidopsis (Balazadeh et al., 2010a; Matallana-Ramirez et al., 2013). Nam-Hai Chua's group showed that ORE1 interacts with NLA and UBPI2/13 (ubiquitin-specific protease 12/13) to regulate leaf senescence (Park et al., 2014, 2018, 2019). Under N sufficient condition, ORE1 is polyubiquitinated by NLA and its E2 conjugase PHO2 (UBC24), and then degraded by 26S proteasomes leading to delayed leaf senescence (Park et al., 2018). But when plants were exposed to N-deficient conditions, UBPI2/UBP13 antagonize the action of NLA to maintain ORE1 homeostasis by promoting the deubiquitination of ORE1 (Park et al., 2019). The elevated ORE1 levels activate the expression of downstream SAGs such as BFN1, RNS3, NYE1, VNI2, SAG29, and SINA1 resulting in early leaf senescence (Park et al., 2019; Figure 1A). Those results provide us the post-translational regulation of N deficiency-induced leaf senescence. In addition, miR164 regulates age-induced leaf senescence by targeting ORE1 mRNA cleavage (Kim et al., 2009; Balazadeh et al., 2010b). But miR164 does not regulate the expression of ORE1 at transcriptional levels under N-starvation condition (Liang et al., 2015; Park et al., 2018).

HY5 is a key regulator of photomorphogenesis (Lee et al., 2007). About 30% of the senescence-related regulatory genes are predicted as putative targets of the HY5, such as AP2-EREBP, NAC, and WRKY (Breeze et al., 2011; Ay et al., 2014), suggesting that HY5 may play an important role in the regulatory network of leaf senescence. Interestingly, HY5 has been found to activate the expression of NIA1, NIA2, and NRT2.1, but inhibit the expression of NRT1.1 (Jonassen et al., 2009a,b; Chen X. et al., 2016), implying that HY5 may be involved in NO3− regulation. Recently, the light-signaling protein FAR-RED ELONGATED HYPOCOTYL3 (FHY3) was reported to negatively regulate salicylic acid (SA) biosynthesis and light-mediated leaf senescence (Tian et al., 2020). Both the fhy3 mutant and WRKY28-overexpressing plants exhibited early leaf senescence under high (Red/Far-Red) R: FR light conditions. FHY3 could directly bind to the promoter of WRKY28 to repress its expression. These results indicate that the FHY3-WRKY28 module prevents leaf senescence under high R: FR light conditions (Tian et al., 2020). It was reported previously that FHY3 and HY5 physically interact with each other and co-regulate the expression of CONSTITUTIVE PHOTOMORPHOGENESIS1 (COP1), a multifunctional E3 ubiquitin ligase, in response to photomorphogenic UV-B (Huang et al., 2012). Further investigation is needed to determine if FHY3, COP1, and HY5 function in N starvation-induced leaf senescence.

Although N starvation induces senescence in plants, it has also been reported that senescence is reversible in some cases after the resupply of N (Schildhauer et al., 2008). Mueller-Roemer's group further performed transcriptome analysis to investigate the N resupply induced reversal of senescence in Arabidopsis. Their results showed that the senescence program was tuned by the N status, indicating that plants undergoing senescence retain the capacity to sense and respond to the N availability (Balazadeh et al., 2014). Crops such as maize (Girardin et al., 1985), rice (Wang et al., 2012), or barley (Schildhauer et al., 2008), have also been found to have the ability to stop or even reverse the senescence induced by N deficiency when sufficient N is resupplied. However, the underlying mechanism still remains unclear. It is nevertheless evolutionarily important to have a regulatory system capable of monitoring and integrating such environmental stimuli.

Nitrate and Circadian Clock

The circadian clock is one of the most central endogenous factors that allow organisms to synchronize internal biological activities with the external environment. There is increasing evidence that circadian clock regulates N assimilation (Tucker et al., 2004; Cookson et al., 2005; Gutiérrez et al., 2008; Teng et al., 2017). It has been shown that organic N such as Glu or Gln can serve as signals to regulate the expression of N-related genes in plants (Oliveria and Coruzzi, 1999). Coruzzi's group performed a transcriptome analysis on plants treated with organic N (Gutiérrez et al., 2008). By using systems biology, they found that the center clock gene CCA1 could regulate the expression of organic N-regulated genes. Further investigation revealed that CCA1 could directly bind to the promoters of the glutamine synthetase gene (GLN1.3) and the glutamate dehydrogenase gene (GDH1) to regulate their expression. Moreover, the phase response curve analysis exhibited that organic N could influence the CCA1 phase. These data indicate that organic N may regulate circadian rhythms through CCA1-mediated mechanism (Gutiérrez et al., 2008). Another group found that low N conditions increased the amplitudes of CCA1, LHY, and TOC1 transcripts throughout the circadian cycle, whereas high N conditions decreased the amplitudes of these genes in WT plants (Yuan et al., 2016). Further study showed that CCA1 influence nitrate reductase activity by binding to the CCA1-binding site in the promoters of NIA1 and NIA2 in vitro and activating the NIA1 expression while repressing NIA2 expression (Teng et al., 2017). These results provide basic insight for the link between N and circadian clock (Figure 1B).

It has been reported that TCP20 binds to the promoters of NIA1, NRT1.1, NRT2.1 and acts in systemic NO3− signaling that directs NO3− foraging in Arabidopsis roots (Guan et al., 2014). Furthermore, TCP20 can physically interact with NLP6/7 and ARF8, and their interactions are required for activating
the expression of the G2/M cell-cycle marker gene CYCB1;1 to regulate lateral root initiation and growth (Guan et al., 2017; Fan et al., 2019a,b). Interestingly, TCP20 has also been found to be a circadian clock factor that can interact with LIGHT-REGULATED WD1 (LWD1). Both TCP20 and LWD1 can bind to the promoter of CCA1 to activate its expression (Wu et al., 2016). These results imply that TCP20 may be involved in connecting the N signaling with circadian clock.

During last several years, scientists have demonstrated the roles of the circadian clock genes in the regulation of leaf senescence in plants (Sakuraba et al., 2014; Song et al., 2014; Kim et al., 2018; Zhang et al., 2018). PIF4/PIF5 promote dark-induced leaf senescence by directly activating the expression of ORE1 and indirectly activating the expression of ETHYLENE INSENSITIVE 3 (EIN3) in ethylene signaling and bZIP factors ABA INSENSITIVE 5 (ABI5) and ENHANCED EM LEVEL (EEL) in ABA signaling (Sakuraba et al., 2014; Song et al., 2014). ELF3 inhibits leaf senescence by repressing the activity of PIF4/PIF5 (Sakuraba et al., 2014; Figure 1C). The transcript levels of ORE1 and its repressor miR164 show circadian rhythmic patterns (Kim et al., 2018). PRR9 can activate the expression of ORE1 directly or suppress the expression of miR164 to promote dark-induced leaf senescence (Kim et al., 2018; Figure 1C). In addition, elf4 and lux show obviously early leaf senescence than WT in darkness (Sakuraba et al., 2014; Kim et al., 2018). The circadian evening complex (ELF3-ELF4-LUX) can repress jasmonate-induced leaf senescence by directly binding to the promoter of MYC2, a key activator of jasmonate-induced leaf senescence (Zhang et al., 2018; Figure 1D). Ubiquitin-specific protease genes UBP12 and UBP13 are regulated by circadian clock and they in turn regulate circadian clock and photoperiodic flowering through GI and CO, which extends our understanding of deubiquitination in circadian clock and photoperiodic flowering regulation at posttranslational level (Cui et al., 2013). These results demonstrate a strong interplay between the circadian clock and leaf senescence. However, if circadian clock is involved in N deficiency-induced senescence remains unknown.

CONCLUSIONS AND PERSPECTIVES

During last several years, research on NO$_3^-$ regulation has expanded to multiple regulatory levels such as post-transcriptional modulations and also to some new developmental processes such as leaf senescence and circadian clock. The progress on these fields has started to shed light on better understanding the complex NO$_3^-$ regulatory network. However, we still lack an integrated view on how NO$_3^-$ regulates these processes and the full picture of NO$_3^-$ regulatory network is far from complete.

Post-transcriptional regulation of NO$_3^-$ has attracted more attention recently and gained further insights into NO$_3^-$ regulation. The C3H-type zinc finger motif-containing protein CPSF30-L has been characterized to function in NO$_3^-$ signaling (Li et al., 2017). The C3H-type zinc finger protein family contains 68 members and whether other members of this family participate in NO$_3^-$ regulation needs to be investigated. Although ncRNAs have been found to be involved in the regulation of multiple biological processes, the underlying mechanisms still remain elusive, especially in NO$_3^-$ signaling. The leaf senescence is finely tuned by N status. However, our understanding of the mechanisms that N availability affects leaf senescence is fragmentary and more efforts are still needed. One interesting avenue for future research is to screen mutants without early senescence symptoms under N-deficient conditions to identify the key components. In addition, systems biology may be used to globally reveal novel regulatory genes involved in N deficiency-induced leaf senescence. The core circadian genes CCA1, LHY, TOC1 are the main factors that connect circadian clock and NO$_3^-$ regulation reported so far. Further studies are needed to find out more genes involved in circadian clock and NO$_3^-$ regulation and explore their intrinsic mechanisms. The application of translatomics, structural biology and other new technologies will surely promote the clarification of the mechanisms that NO$_3^-$ regulates plant development. Notably, the major part of the results therein resumed have been obtained in Arabidopsis, which although being an excellent model for studying NO$_3^-$ signaling and providing useful fundamental knowledge for the scientific community, is quite different from crops (especially monocots), for which specific and targeted research projects are required. With the identification of more novel NO$_3^-$ regulators and decryption of NO$_3^-$ regulatory networks, as well as combined with scientific and rational fertilization management, we will effectively improve NUE and reduce the environmental pollution caused by loss of N fertilizers.

AUTHOR CONTRIBUTIONS

HF and YW wrote the manuscript. SXQ, SDQ, and NX provided assistance for further modification of manuscript. All authors contributed to the article and approved the submitted version.

FUNDING

This work was supported by grants from the National Natural Science Foundation of China (grant no. 31970270), the Taishan Scholar Foundation, Funds of Shandong “Double Tops” Program (grant no. SYL2017YSTD01), National Science and Technology Major Projects of China (2016ZX08003005-009) to YW, Natural Science Foundation of Shandong Province (ZR2017BC081), and National Natural Science Foundation of China (31700211) to NX.

REFERENCES

Addepalli, B., and Hunt, A. G. (2007). A novel endonuclease activity associated with the Arabidopsis ortholog of the 30-kDa subunit of cleavage and polyadenylation specificity factor. Nucl. Acids Res. 35, 4453–4463. doi: 10.1093/nar/gkm457

Aguera, E., Cabello, P., and de la Haba, P. (2010). Induction of leaf senescence by low nitrogen nutrition in sunflower (Helianthus annuus)
plants. *Physiol. Plant.* 138, 256–267. doi: 10.1111/j.1399-3054.2009.01336.x

Alvarez, J. M., Riveras, E., Vidal, E. A., Gras, D. E., Contreras-Lopez, O., Tamayo, K. P., et al. (2014). Systems approach identifies TGA1 and TGA4 transcription factors as important regulatory components of the nitrate response of Arabidopsis thaliana roots. *Plant J.* 80, 1–13. doi: 10.1111/pj.12618

Amor, B. B., Wirth, S., Merchan, F., Laporte, P., D’Aubenton-Carafa, Y., Hirsch, J., et al. (2009). Novel long non-protein coding RNAs involved in Arabidopsis differentiation and stress responses. *Genome Res.* 19, 57–69. doi: 10.1101/gr.080275.108

Araus, V., Vidal, E. A., Puelma, T., Alamos, S., Mieulet, D., Guiderdoni, E., et al. (2016). Members of BTB gene family of scaffold proteins suppress nitrate uptake and nitrogen use efficiency. *Plant Physiol.* 171, 1523–1532. doi: 10.1104/pp.15.01731

Ay, N., Raum, U., Balazadeh, S., Seidensticker, T., Fischer, A., Reuter, G., et al. (2014). Regulatory factors of leaf senescence are affected in Arabidopsis overexpressing the histone methyltransferase SUVH2. *Plant J.* 33, 119–136. doi: 10.1007/s00344-013-9384-y

Bailey-Serres, J., Zhai, J., and Seki, M. (2020). The dynamic kaleidoscope of RNA methylation during Arabidopsis seedling development. *Plant Mol. Biol.* 101, 97–113. doi: 10.1007/s11103-019-00945-4

Chakraborty, N., Kanyuka, K., Jaiswal, D. K., Kumar, A., Arora, V., Malik, A., Chakraborty, N., Sharma, P., Kanyuka, K., Pathak, R. R., Choudhury, D., Hooley, R., et al. (2015). G-protein α-subunit (GPα1) regulates stress, nitrate and phosphate response, flavonoid biosynthesis, fruit/seed development and substantially shares GCR1 regulation in *A. thaliana*. *Plant Mol. Biol.* 89, 559–576. doi: 10.1007/s11103-015-0574-2

Chen, J., Zhang, Y., Tan, Y., Zhang, M., Zhu, L., Xu, G., et al. (2016). Agronomic nitrogen-use efficiency of rice can be increased by driving OsNRT2.1 expression with the OsNAR2.1 promoter. *Plant Biotechnol.* J. 14, 1705–1715. doi: 10.1111/pbi.12531

Chen, M., Wang, C., Bao, H., Chen, H., and Wang, Y. (2016). Genome-wide identification and characterization of novel IncRNAs in Populus under nitrogen deficiency. *Mol. Genet. Genomics* 291, 1663–1680. doi: 10.1007/s00438-016-1210-3

Chen, X., Yao, Q., Gao, X., Jiang, C., Harberd, N. P., and Fu, X. (2016). Shoot-to-root mobile transcription factor HY5 coordinates plant carbon and nitrogen acquisition. *Curr. Biol.* 26, 640–646. doi: 10.1016/j.cub.2015.12.066

Cookson, S. J., Williams, L. E., and Miller, A. J. (2005). Light-dark changes in cytosolic nitrate pools depend on nitrate reductase activity in Arabidopsis leaf cells. *Plant Physiol.* 138, 1097–1105. doi: 10.1104/pp.105.062349

Cui, X., Lu, F., Li, Y., Xue, Y., Kang, Y., Zhang, S., et al. (2013). Ubiquitin-specific proteases UBP12 and UBP13 act in circadian clock and photoperiodic flowering regulation in Arabidopsis. *Plant Physiol.* 162, 897–906. doi: 10.1104/pp.111.213009

Du, X. Q., Wang, F. L., Li, H., Jing, S., Yu, M., Li, J., et al. (2019). The transcription factor MYB59 regulates K⁺/NO₃⁻ translocation in the Arabidopsis response to low K⁺ stress. *Plant Cell* 31, 699–714. doi: 10.1105/tpc.18.00674

Fan, X., Wang, F. L., Ma, F. F., Sun, X., and Zheng, C. S. (2019a). Proxemic profiling of root system development proteins in chrysanthemum overexpressing the CmTCP20 gene. *Plant Cell* 28:110175. doi: 10.1105/tpc.2019.110175

Fan, H. M., Sun, C. H., Liu, Z. L., Liu, B. W., Ren, H., Sun, X., et al. (2019b). CmTCP20 plays a key role in nitrate and auxin signaling-regulated lateral root development in Chrysanthemum. *Plant Cell Physiol.* 60, 1581–1594. doi: 10.1093/pcp/pcz061

Fan, S. C., Lin, C. S., Hsu, P. K., Lin, S. H., and Tsay, Y. F. (2009). The Arabidopsis nitrate transporter NRT1.7 expressed in phloem, is responsible for source-to-sink mobilization of nitrate. *Plant Cell* 21, 2750–2761. doi: 10.1105/tpc.109.076703

Fan, X., Nam, M., Fan, X., Xuan, W., Miller, A. I., and Xu, G. (2017). Plant nitrate transporters: from gene function to application. *J. Exp. Bot.* 68, 2463–2475. doi: 10.1093/jxb/erx110

Footitt, S., Douterelo-Soler, I., Clay, H., and Finch-Savage, W. E. (2011). Dormancy cycling in Arabidopsis seeds is controlled by seasonally distinct hormone-signaling pathways. *Proc. Natl. Acad. Sci. U. S. A.* 108, 20236–20241. doi: 10.1073/pnas.1116325108

Footitt, S., Huang, Z., Clay, H. A., Mead, A., and Finch-Savage, W. E. (2013). Temperature, light and nitrate sensing coordinate Arabidopsis seed dormancy cycling, resulting in 47 winter and summer annual phenotypes. *Plant J.* 74, 1003–1015. doi: 10.1111/plj.12186

Forbes, K. P., Addepalli, B., and Hunt, A. G. (2006). An Arabidopsis Fip1 homolog interacts with RNA and provides conceptual links with a number of other polyadenylation factor subunits. *J. Biol. Chem.* 281, 176–186. doi: 10.1007/74fbc

Francozorrilla, J. M., Valli, A., Todesco, M., Mateos, I., Puga, M. I., Rubisomoz, I., et al. (2007). Target mimicry provides a new mechanism for regulation of other polyadenylation factor subunits. *J. Biol. Chem.* 282, 20236–20241. doi: 10.1007/74fbc

Gaudinian, A., Rodriguez-Medina, J., Zhang, L., Olson, A., Liseron-Monfils, C., Bägman, A. M., et al. (2018). Transcriptional regulation of nitrogen-associated metabolism and growth. *Nature* 563, 259–264. doi: 10.1038/s41586-018-0656-3

Gifford, M. L., Dean, A., Gutierrez, R. A., Coruzzi, G. M., and Birnbaum, K. D. (2008). Cells pacify nitrogen responses mediate developmental plasticity. *Proc. Natl. Acad. Sci. U. S A.* 105, 803–808. doi: 10.1073/pnas.0709951105

Girardin, P., Tollenaar, M., and Delour, A. (1985). Effect of temporary N starvation in maize on leaf senescence. *Can. J. Plant Sci.* 65, 819–829. doi: 10.4111/cjps.1985-108

Gris, D. E., Vidal, E. A., Undurraga, S. F., Riveras, E., Moreno, S., Domínguez-Figueroa, J., et al. (2018). SMZ/SNZ and gibberellin signaling are required for maize-elicted delay of flowering time in Arabidopsis thaliana. *J. Exp. Bot.* 69, 619–631. doi: 10.1093/jxb/erx423
GREGERSEN, P. L., CULETIC, A., BOSCHIAN, L., AND KRUPINSKA, K. (2013). Plant senescence and crop productivity. Plant Mol. Biol. 82, 603–622. doi: 10.1007/s11103-013-0018-8

GUAN, P., RIPOLL, J. J., WANG, R., WUANG, L., BAILEY-STEINITZA, L. J., YE, D., ET AL. (2017). Interacting TCP and NLP transcription factors control plant responses to nitrate availability. Proc. Natl. Acad. Sci. U. S. A. 114, 2419–2424. doi: 10.1073/pnas.1615676114

GUAN, P., WANG, R., NACRY, P., BRETON, G., KAY, S. A., PRUNEDA-PAZ, J. L., ET AL. (2014). Nitrate foraging by Arabidopsis roots is mediated by the transcription factor TCP20 through the systemic signaling pathway. Proc. Natl. Acad. Sci. U. S. A. 111, 15267–15272. doi: 10.1073/pnas.1411375111

GUO, Y., CAI, Z., AND GAN, S. (2004). Transcriptome of Arabidopsis leaf senescence. Plant Cell Environ. 27, 521–549. doi: 10.1111/j.1365-3040.2003.01158.x

GUTIÉRREZ, R. A., STOKES, T. L., THUM, K., XU, X., OBERTELLO, M., KATARI, M. S., ET AL. (2008). Systems analysis identifies an organic nitrogen responsive gene network that is regulated by the master clock control gene CCA1. Proc. Natl. Acad. Sci. U. S. A. 105, 4939–4944. doi: 10.1073/pnas.0800211105

GUTIÉRREZ, R. A. (2012). Systems biology for enhanced plant nitrogen nutrition. Frontiers in Plant Science | www.frontiersin.org 8

HUVÁ, M., MARMAGNE, A., CHARDON, F., AND MASCLAUX-DAUBRESSE, C. (2017). Nitrogen remobilization during leaf senescence: lessons from Arabidopsis to crops. J. Exp. Bot. 68, 2513–2529. doi: 10.1093/jxb/erw365

HE, H., LIANG, G., LI, Y., WANG, F., AND YU, D. (2014). Two young microRNAs originating from target duplication mediate nitrogen starvation adaptation via regulation of glucosinolate synthesis in Arabidopsis thaliana. Plant Physiol. 164, 853–865. doi: 10.1104/pp.132.226635

HEO, J. B., AND SUNG, S. (2011). Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science 331, 76–79. doi: 10.1126/science.1217620

HÉVÉ, M., MARMAGNE, A., CHARDON, F., AND MASCLAUX-DAUBRESSE, C. (2017). Nitrogen remobilization during leaf senescence: lessons from Arabidopsis to crops. J. Exp. Bot. 68, 2513–2529. doi: 10.1093/jxb/erw365

HÉVÉ, M., MARMAGNE, A., CHARDON, F., AND MASCLAUX-DAUBRESSE, C. (2017). Nitrogen remobilization during leaf senescence: lessons from Arabidopsis to crops. J. Exp. Bot. 68, 2513–2529. doi: 10.1093/jxb/erw365

JIA, Z., AND VON WIRÉN, N. (2020). Signaling pathways underlying nitrogen-responsive genes in Arabidopsis. Plant J. 60, 112–121. doi: 10.1111/j.1365-313X.2009.03938.x

LAPORTE, P., MERCHANT, F., AMOR, B. B., WIRTH, S., AND CRESPI, M. (2007). Riboregulators in plant development. Biochem. Soc. Trans. 35, 1638–1642. doi: 10.1042/BST0351638

LEE, J., KE, K., STÖLC, V., LEE, H., FIGUERUEA, P., GAO, Y., ET AL. (2007). Analysis of transcription factor HY5 genomic binding sites revealed its hierarchical role in light regulation of development. Plant Cell 19, 731–749. doi: 10.1105/tpc.106.047688

LI, H., HU, B., WANG, W., ZHANG, Z., LIANG, Y., GAO, X., ET AL. (2016). Identification of microRNAs in rice root in response to nitrate and ammonium. J. Genet. Genomics 43:651-661. doi: 10.1016/j.jgg.2015.12.002

LI, H., YU, M., DU, X. Q., WANG, Z. F., WU, W. H., QUINTERO, F. J., ET AL. (2017). NRT1.5/NPF7.3 functions as a proton-coupled H+/K+ antiporter for K⁺ loading into the xylem in Arabidopsis. Plant Cell 29, 2016–2026. doi: 10.1105/tpc.106.1500972

LI, S., TIAN, Y., WU, K., YE, Y., YU, J., ZHANG, J., ET AL. (2018). Modulating plant growth-metabolism coordination for sustainable agriculture. Nature 560, 595–600. doi: 10.1038/s41586-018-0415-5

LI, Y., BROOKS, M., YEOW-WANG, J., MCCOY, R. M., ROCK, T. M., PASQUINO, A., ET AL. (2020). SDG8-mediated histone methylation and RNA processing function in the response to nitrate signaling. Plant Physiol. 182, 215–227. doi: 10.1104/pp.19.00682

LI, Z., WANG, R., GAO, Y., WANG, C., ZHAO, L., XU, N., ET AL. (2017). The Arabidopsis CPSF30-I gene plays an essential role in nitrate signaling and regulates the nitrate transporter gene NRT1.1. N. Phytol. 216, 1205–1222. doi: 10.1111/nph.14743

LIANG, G., AI, Q., AND YU, D. (2015). Uncovering miRNAs involved in crosstalk between nutrient deficiencies in Arabidopsis. Sci. Rep. 5:11813. doi: 10.1038/srep11813

LIANG, G., HE, H., AND YU, D. (2015). Identification of nitrogen-starvation-responsive microRNAs in Arabidopsis thaliana. PLoS One 7:e48951. doi: 10.1371/journal.pone.0048951

LIANG, Y., ZHAO, X., JONES, A. M., AND GAO, Y. (2018). G proteins sculp root architecture in response to nitrogen in rice and Arabidopsis. Plant Cell 274, 129–136. doi: 10.1016/j.plantsci.2018.05.019

LIN, S. H., HUO, H. F., CANIVÉNG, G., LIN, C. S., LEPETIT, M., HSU, P. K., ET AL. (2008). Mutation of the Arabidopsis NRT1.5 nitrate transporter causes defective root-to-shoot nitrate transport. Plant Cell 20, 2514–2528. doi: 10.1105/tpc.108.062044

LIN, Y. L., AND TSAI, Y. F. (2017). Influence of differing nitrate and nitrogen availability on flowering control in Arabidopsis. J. Exp. Bot. 68, 2603–2609. doi: 10.1093/jxb/erx053

LIU, F., XU, Y., CHANG, K., LI, S., LIU, Z., QI, S., ET AL. (2019). The long noncoding RNA T5210 regulates nitrate response and assimilation in Arabidopsis. N. Phytol. 224, 117–131. doi: 10.1111/nph.16038

LIU, J., JUNG, C., XU, J., WANG, H., DENG, S., BERNAUD, L., ET AL. (2012). Genome-wide analysis uncovers regulation of long intergenic noncoding RNAs in Arabidopsis. Plant Cell 24, 4333–4345. doi: 10.1105/tpc.112.102835

LIU, K. H., DIENER, A., LIN, Z., LIU, C., AND SHEEN, J. (2020). Primary nitrate responses mediated by calcium signaling and diverse protein phosphorylation. J. Exp. Bot. 71, 4428–4441. doi: 10.1093/jxb/eraa047

Frontiers in Plant Science | www.frontiersin.org

December 2020 | Volume 11 | Article 574246
Fan et al.

NITRATE REGULATES SENECEENCE AND CIRCADIAN CLOCK

Pathak, R. R., Jangam, A. P., Malik, A., Sharma, N., Jaiswal, D. K., and Raghuram, N. (2020). Transcriptomic and network analyses reveal distinct nitrate responses in light and dark in leaves (Oryza sativa indica var. Panvel1). *Sci. Rep.* 10:12228. doi: 10.1038/s41598-020-68917-z

Peña, P., Quach, T., Sato, S., Ge, Z., Nersesian, N., Changa, T., et al. (2017). Expression of the Maize Dof1 transcription factor in Wheat and Sorghum. *Front. Plant Sci.* 8:434. doi: 10.3389/fpls.2017.00434

Peng, M., Hudson, D., Schofield, A., Tsao, R., Yang, R., Gu, H., et al. (2008). Adaptation of Arabidopsis to nitrogen limitation involves induction of anthocyanin synthesis which is controlled by the NLA gene. *J. Exp. Bot.* 59, 2933–2944. doi: 10.1093/jxb/erh148

Ponting, C. P., Oliver, P. L., and Reik, W. (2009). Evolution and functions of long noncoding RNAs. *Cell* 136, 629–641. doi: 10.1016/j.cell.2009.02.006

Qu, B., He, X., Wang, J., Zhao, Y., Teng, W., Shao, A., et al. (2015). A Wheat CCAAT box-binding transcription factor increases the grain yield of Wheat with less fertilizer input. *Plant Physiol.* 167, 411–423. doi: 10.1104/pp.114.246959

Remans, T., Nacry, P., Pervent, M., Filleur, S., dietloff, E., Mounier, E., et al. (2006). The Arabidopsis NRT1.1 transporter participates in the signaling pathway triggering root colonization of nitrogen-rich patches. *Proc. Natl. Acad. Sci. U S A.* 103, 19206–19211. doi: 10.1073/pnas.0603275103

Riveras, E., Alvarez, J. M., Vidal, E. A., Osés, C., Vega, A., and Gutiérrez, R. A. (2015). The calcium ion is a second messenger in the nitrate signaling pathway of Arabidopsis. *Plant Physiol.* 169, 1397–1404. doi: 10.1104/pp.15.00961

Roundtree, J. A., Evans, M. E., Pan, T., and He, C. (2017). Dynamic RNA modifications in gene expression regulation. *Cell* 169, 1187–1200. doi: 10.1016/j.cell.2017.05.045

Rubin, G., Tohge, T., Matsuda, F., Saito, K., and Scheible, W. R. (2009). Members of the LBD family of transcription factors repress anthocyanin synthesis and affect additional nitrogen responses in Arabidopsis. *Plant Cell* 21, 3567–3584. doi: 10.1105/tpc.109.076041

Rymarquis, L. A., Kastenmayer, J. P., Huttlenhofer, A. G., and Green, P. J. (2008). Diamonds in the rough: mRNA-like non-coding RNAs. *Trends Plant Sci.* 13, 329–334. doi: 10.1016/j.tplants.2008.02.009

Sakuraba, Y., Jeong, J. M., Kim, J., Paek, N. C., and Choi, G. (2014). Phytocrome-interacting transcription factors PIF4 and PIF5 induce leaf senescence in Arabidopsis. *Nat. Commun.* 5:4636. doi: 10.1038/ncomms5636

Schildhauer, J., Wiedemuth, K., and Humbeck, K. (2008). Supply of nitrogen can reverse senescence processes and affect expression of genes coding for plastidic glutamine synthetase and lysine-ketoglutarate reductase/saccharopine dehydrogenase. *Plant Biol.* 1, 76–84. doi: 10.1111/j.1438-8677.2008.00075.x

Seo, J. S., Sun, H. X., Park, B. S., Huang, C. H., Yeh, S. D., Jung, C., et al. (2017). ELF18-INDUCED LONG NONCODING RNA associates with modulator to enhance expression of innate immune response genes in Arabidopsis. *Plant Cell* 29, 1024–1038. doi: 10.1093/plcell/16.08.0086

Sharma, N., Sinha, V. B., Gupta, N., Rajpal, S., Kuchi, S., Sitaramam, V., et al. (2018). Phenotyping for nitrogen use efficiency: rice genotypes differ in N-responsive germination, oxygen consumption, seed urease activities, root growth, crop duration, and yield at low N. *Front. Plant Sci.* 9:1452. doi: 10.3389/fpls.2018.01452

Soltabayeva, A., Srivastava, S., Kurmanbayeva, A., Bekturova, A., Fluhr, R., and Sagi, M. (2018). Early senescence in older leaves of low nitrate-grown Atdxh1 uncovers a role for purine catabolism in N supply. *Plant Physiol.* 178, 1027–1044. doi: 10.1104/pp.17.00795

Song, Y., Yang, C., Gao, S., Zhang, W., Lia, L., and Kuai, B. (2014). Age triggered and dark-induced leaf senescence require the bHLH transcription factors PIF3 and 4, and 5. *Mol. Plant* 7, 1776–1787. doi: 10.1093/mp/pst091

Sun, C. H., Yu, J. Q., Duan, X., Wang, J. H., Zhang, Q. Y., Gu, K. D., et al. (2018a). The MADS transcription factor CmANR1 positively modulates root system development by directly regulating CmPIN2 in chrysanthemum. *Hortic. Res.* 5:52. doi: 10.1038/s41438-018-0061-y

Sun, C. H., Yu, J. Q., Wang, H., Lu, Z., Guo, Y. H., Sun, X., Hao, Y. J., et al. (2018b). Chrysanthemum MADS-box transcription factor CmANR1 modulates lateral root development via homo-/heterodimerization to influence auxin accumulation in Arabidopsis. *Plant Sci.* 266, 27–36. doi: 10.1016/j.plantsci.2017.09.017
Sun, H., Qian, Q., Wu, K., Luo, J., Wang, S., Zhang, C., et al. (2014). HeterotrimERIC G proteins regulate nitrogen-use efficiency in rice. *Nat. Genet.* 46, 652–656. doi: 10.1038/ng.2958

Swieczkiewicz, S., Liu, F., Magusin, A., and Dean, C. (2009). Cold-induced silencing by long antisense transcripts of an Arabidopsis Polycomb target. *Nature* 462, 799–802. doi: 10.1038/nature08618

Tang, W., Ye, J., Yao, X., Zhao, P., Xuan, W., Tian, Y., et al. (2019). Genome-wide associated study identifies NAC42-activated nitrate transporter conferring high nitrogen use efficiency in rice. *Nat. Commun.* 10:5279, doi: 10.1038/s41467-019-13187-1

Teng, Y., Cui, H., Wang, M., and Liu, X. (2017). Nitrate reductase is regulated by CIRCADIAN CLOCK-ASSOCIATED1 in *Arabidopsis thaliana*. *Plant Soil* 416, 477–485. doi: 10.1007/s11104-017-3208-y

Tian, T., Ma, L., Liu, Y., Xu, D., Chen, Q., and Li, G. (2020). *Arabidopsis* FAR-RED ELONGATED HYPOCOTYL3 integrates age and light signals to negatively regulate leaf senescence. *Plant Cell* 32, 1574–1588. doi: 10.1105/tpc.20.00221

Trevisan, S., Nonis, A., Beghelfdo, M., Manoli, A., Palme, K., Caporale, G., et al. (2012). Expression and tissue-specific localization of nitrate-responsive miRNAs in roots of maize seedlings. *Plant Cell Environ.* 35, 1137–1155. doi: 10.1111/j.1365-3040.2011.02478.x

Tucker, D. E., Allen, D. J., and Ort, D. R. (2004). Control of nitrate reductase by circadian and diurnal rhythms in tomato. *Planta* 219, 277–285. doi: 10.1007/s00425-004-1213-x

Van Der Graaff, E., Schwacek, R., Schneider, A., Desimone, M., Flugge, U., and Kunze, R. (2006). Transcription analysis of *Arabidopsis* membrane transporters and hormone pathways during developmental and induced leaf senescence. *Plant Physiol.* 141, 776–792. doi: 10.1104/pp.106.079293

Vidal, E. A., Álvarez, J. M., Araus, V., Riveras, E., Brooks, M. D., Krouk, G., et al. (2020). Nitrate in 2020: thirty years from transport to signaling networks. *Plant Cell* 32, 2094–2119. doi: 10.1105/tpc.20.00748

Vidal, E. A., Álvarez, J. M., and Gutiérrez, R. A. (2014). Nitrate regulation of AF3B and NAC4 gene expression in Arabidopsis roots depends on NRT1.1 nitrate transport function. *Plant Sig. Behav.* 9:e28501, doi: 10.4161/psb.28501

Vidal, E. A., Araus, V., Lu, C., Parry, G., Green, P. J., Coruzzi, G. M., et al. (2010). Nitrate-responsive miR393/AF3B regulatory module controls root system architecture in *Arabidopsis thaliana*. *Proc. Natl. Acad. Sci. U S A.* 107, 4477–4482. doi: 10.1073/pnas.0909571107

Vidal, E. A., Moyano, T. C., Krouk, G., Katari, M. S., Tanurdzic, M., Mccombie, W. R., et al. (2013). Integrated RNA-seq and sRNA-seq analysis identifies novel nitrate-responsive genes in *Arabidopsis thaliana* roots. *BMC Genomics* 14:701, doi: 10.1186/1471-2164-14-701

Wang, C., Zhang, W., Li, Z., Li, Z., Bi, Y., Crawford, N. M., et al. (2018b). FIP1 plays an important role in nitrate signaling and regulates CIPK8 and CIPK23 expression in *Arabidopsis*. *Front. Plant Sci.* 9:593. doi: 10.3389/fpls.2018.00593

Wang, W. H., Köhler, B., Cao, F. Q., Liu, G. W., Gong, Y. Y., Sheng, S., et al. (2012). Rice DUR1 mediates high-affinity urea transport and plays an effective role in nitrogen use efficiency in rice. *Nat. Commun.* 3, 5279. doi: 10.1038/ncomms13179

Xu, Y., Wang, H., Hamara, S., Chen, X., and Fang, R. (2014). miR444a has multiple functions in the rice nitrate-signaling pathway. *Plant J.* 78, 44–55. doi: 10.1111/tpj.12446

Yoh, S. M., Cho, H., Pickle, L., Evans, R. M., and Jones, K. A. (2007). The Spt6 SH2 domain binds Ser2-P RNAPII to direct Iws1-dependent mRNA splicing and export. *Genes Dev.* 21, 160–174. doi: 10.1101/gad.1503107

Yoh, S. M., Lucas, J. S., and Jones, K. A. (2008). The Iws1/Spt6:CTD complex controls cotranscriptional mRNA biosynthesis and HYPB/Se2-mediated histone H3K36 methylation. *Genes Dev.* 22, 3422–3434. doi: 10.1101/gad.172008

Zhu, X., Zhang, Z. W., Zheng, C., Zhao, Z. Y., Wang, Y., Feng, L. Y., et al. (2016). *Arabidopsis* cryptochrome 1 functions in nitrogen regulation of flowering. *Proc. Natl. Acad. Sci. U S A.* 113, 7661–7666. doi: 10.1073/pnas.1602004113

Zhao, M., Ding, H., Zhu, J. K., Zhang, F., and Li, W. X. (2011). Involvement of NRT1.1 nitrate transport and export in maize leaves and roots. *PLoS One* 6:e28009. doi: 10.1371/journal.pone.0028009

Zhang, H., and Forde, B. G. (1998). An Arabidopsis MAD5 box gene that controls nutrient-induced changes in root architecture. *Science* 279, 407–409. doi: 10.1126/science.279.5349.407

Zhang, J., Fengler, K. A., Van Hemert, J. L., Gupta, R., Mongar, N., Sun, J., et al. (2019). Identification and characterization of a novel stay-green QTL that increases yield in maize. *Plant Biotechnol. J.* 17, 1194–1208. doi: 10.1111/pbi.13149

Zhang, L., Fletcher, A. G., Cheung, V., Winston, F., and Stargell, L. A. (2008). Sn1 regulates the recruitment of Sp6 and the Swi/Snf complex during transcriptional activation by RNA polymerase II. *Mol. Cell Biol.* 28, 1393–1403. doi: 10.1128/MCB.01733-07

Zhang, Y., Wang, Y., Wei, H., Li, N., Tian, W., Chong, K., et al. (2018). Circadian evening complex represses jasmonate-induced leaf senescence in *Arabidopsis*. *Mol. Plant* 11, 326–337. doi: 10.1016/j.molp.2017.12.017

Zhao, L., Zhang, W., Yang, Y., Li, Z., Li, N., Qi, S., et al. (2018). The *Arabidopsis* NLP7 gene regulates nitrate signaling via NRT1.1-dependent pathway in the presence of ammonium. *Science* 351, 85–90. doi: 10.1126/science.aad9848

Zhao, M., Ding, H., Zhu, J. K., Zhang, F., and Li, W. X. (2011). Involvement of miR169 in the nitrogen-starvation responses in *Arabidopsis*. *N. Phytol.* 190, 906–915. doi: 10.1093/nph/eix023

Zhao, Y., Xu, Z., Mo, Q., Zou, C., Li, W., Xu, Y., et al. (2013). Combined small RNA and degradome sequencing reveals novel miRNAs and their targets in response to low nitrate availability in maize. *Ann. Bot.* 112, 633–642. doi: 10.1093/ab/mtm133

Zuluaga, D. L., and Sonnante, G. (2019). The use of nitrogen and its regulation in cereals: structural genes, transcription factors, and the role of miRNAs. *Plants* 8:294. doi: 10.3390/plants8080294

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.