Robust spin-orbit torque and spin-galvanic effect at the Fe/GaAs (001) interface at room temperature

L. Chen¹, M. Decker¹, M. Kronseder¹, R. Islinger¹, M. Gmitra², D. Schuh¹, D. Bougeard¹, J. Fabian², D. Weiss¹ & C.H. Back¹

Interfacial spin-orbit torques (SOTs) enable the manipulation of the magnetization through in-plane charge currents, which has drawn increasing attention for spintronic applications. The search for material systems providing efficient SOTs, has been focused on polycrystalline ferromagnetic metal/non-magnetic metal bilayers. In these systems, currents flowing in the non-magnetic layer generate—due to strong spin–orbit interaction—spin currents via the spin Hall effect and induce a torque at the interface to the ferromagnet. Here we report the observation of robust SOT occuring at a single crystalline Fe/GaAs (001) interface at room temperature. We find that the magnitude of the interfacial SOT, caused by the reduced symmetry at the interface, is comparably strong as in ferromagnetic metal/non-magnetic metal systems. The large spin-orbit fields at the interface also enable spin-to-charge current conversion at the interface, known as spin-galvanic effect. The results suggest that single crystalline Fe/GaAs interfaces may enable efficient electrical magnetization manipulation.
n solids with space-inversion asymmetry intrinsic spin-orbit fields (SOFs) emerge. These SOFs can arise from Dresselhaus spin-orbit interaction (SOI) which originates from bulk inversion asymmetry, and/or from Bychkov-Rashba SOI which originates from structure inversion asymmetry. In the limit of small wave vector k near the Γ point, both SOIs can be expressed by k-linear terms in the Hamilton operator; that is, $H_D = \beta (\sigma_x k_y - \sigma_y k_x)$ in case of Dresselhaus SOI and $H_R = \alpha (\sigma_x k_y - \sigma_y k_x)$ in case of Bychkov-Rashba SOI. Here $\sigma_{x,y}$ are Pauli spin matrices and α and β characterize the strength of Rashba and Dresselhaus spin-orbit coupling. Figure 1a,b show the SOFs due to Rashba and Dresselhaus SOI. The most striking property of these SOIs is that spin and carrier momentum are coupled, meaning that a charge current is accompanied by a non-equilibrium spin accumulation. The magnitude and orientation of this spin accumulation is controlled by the charge current. It is convenient to quantify this spin accumulation by an effective SOF (eSOF). On the other hand, the inverse process is also applicable: a non-equilibrium spin accumulation drives a charge current. Making use of SOI is thus a promising pathway for future spintronic applications. In fact, it has been demonstrated that SOI can be used to manipulate the magnetization direction by a local current. Moreover, we show that the strong SOI at the interface converts a pure spin current, generated by spin pumping, into a charge current. It is well established that single crystalline Fe thin films grow epitaxially on GaAs (001) due to the small lattice mismatch between twice the lattice constant of Fe (2.87 Å) and GaAs (5.65 Å). The Fe/GaAs interface has C_{2v} symmetry. For this interface it has been shown recently that there is sizeable Dresselhaus dominated SOF in the Heusler alloy NiMnSb. Furthermore, electric switching in the antiferromagnet CuMnAs by an internal SOF has been demonstrated at room temperature. It is well established that single crystalline Fe thin films grow epitaxially on GaAs (001) due to the small lattice mismatch between twice the lattice constant of Fe (2.87 Å) and GaAs (5.65 Å). The Fe/GaAs interface has C_{2v} symmetry. For this interface it has been shown recently that there is sizeable Dresselhaus dominated SOF. The simple structure of Fe/GaAs (001) spin-orbit interface. Zincblende GaAs exhibits bulk inversion asymmetry (BIA) with D_{2d} symmetry and adding a single crystalline Fe on top of GaAs further lowers the D_{2d} symmetry to C_{2v}. The C_{2v} symmetry results in the Rashba and Dresselhaus SOFs at the Fe/GaAs interface.

The sample used in our study is a 5-nm thick single crystalline Fe film grown by molecular-beam epitaxy (MBE; see Fig. 1c and Methods) on top of a 100 nm thick undoped GaAs buffer layer on a semi-insulating GaAs (001) substrate. Additionally, we grew a polycrystalline Fe reference film on an amorphous SiO$_2$ substrate. Devices of size, 6.4 × 100.0 μm, oriented along different crystallographic directions, are defined by employing electron-beam lithography and ion beam etching. Figure 2c shows a typical V trace (where an offset voltage V_{offset}, due to thermo-electric effect, has been subtracted) of a [100]-orientated stripe measured at room temperature. To fit the characteristic line shape, we introduce a symmetric ($L_{\text{sym}} = \Delta H^2 [(4(H - H_0)^2 + \Delta H^2)]$) and an anti-symmetric Lorentzian ($L_{\text{asym}} = -4\Delta H (H-H_0) [4(H - H_0)^2 + \Delta H^2]$), where H_0 is the magnetic field at FMR, ΔH the line width (full width at half maximum: FWHM), $V - V_{\text{offset}}$ is fitted by a combination of L_{sym} and L_{asym}, $V_{\text{sym}}L_{\text{sym}} + V_{\text{asym}}L_{\text{asym}}$, with V_{sym} (V_{asym}) the magnitude of the symmetric (anti-symmetric) component of the dc voltage. By fitting we obtain values for H_R, ΔH, V_{sym} and V_{asym}. These

Results

Quantifying eSOFs by spin-orbit ferromagnetic resonance. We determine the strength of the interfacial SOFs by using spin-orbit ferromagnetic resonance (SO-FMR) developed previously to quantify SOFs in the ferromagnetic semiconductor (Ga,Mn)As. SO-FMR is similar to the spin-torque ferromagnetic resonance (FMR) technique which is used to quantify the spin Hall effect in ferromagnetic metal/non-magnetic metal bilayers. The mechanism is illustrated in Fig. 2a. An alternating in-plane current $j(t)$ flowing in the Fe stripe generates, due to SOI, a time dependent non-equilibrium spin accumulation at the Fe/GaAs interface. This spin accumulation exerts a torque on the magnetization of the Fe film and can be viewed as a time varying interfacial magnetic field b_{SOI} which excites the magnetization dynamics. The precessing magnetization causes a resistance variation $R(t)$ via the AMR of Fe. Due to mixing of the alternating current and the oscillating resistance, a dc voltage V results. Thus, by measuring this dc voltage for different crystallographic directions we can quantitatively determine the effective spin-orbit fields at the Fe/GaAs interface.

Figure 1 | Spin-orbit coupling at the Fe/GaAs interface. Schematic of Rashba (a) Dresselhaus (b) spin-orbit fields (SOFs) for different crystallographic orientations. Red arrows in a,b denote the direction of spin accumulation induced by a current flow j_x. (c) Atomic structure of the Fe/GaAs (001) spin-orbit interface. Zincblende GaAs exhibits bulk inversion asymmetry (BIA) with D_{2d} symmetry and adding a single crystalline Fe on top of GaAs further lowers the D_{2d} symmetry to C_{2v}. The C_{2v} symmetry results in the Rashba and Dresselhaus SOFs at the Fe/GaAs (001) interface.
The magnetization angle

Since the dc voltage is induced by FMR, the magnitude of $\text{Im}(V)$ from which we obtain the Landé g factor ($g=2.12$), the effective demagnetization field ($\mu_0H_K=1.750\text{ mT}$), the biaxial magnetic anisotropy field ($\mu_0H_B=40\text{ mT}$), the uniaxial magnetic anisotropy field ($\mu_0H_I=48\text{ mT}$), and the damping constant ($\alpha=0.0036$) (see Supplementary Note 3).

For comparison, we also tried to measure dc voltages on polycrystalline Fe films deposited on thermally oxidized Si substrates; however, no characteristic dc voltages can be observed at FMR using the same excitation conditions as for single crystalline films of Fe/GaAs, indicating that the driving force for magnetization dynamics originates from the eSOFs at the interface of single crystalline Fe/GaAs and not from any current induced Oersted field (see Supplementary Note 1).

To quantify the magnitude of the eSOFs, it is necessary to understand the dependence of the dc voltage on ϕ_M. By taking a [100]-oriented stripe as an example, the anti-symmetric and symmetric components can be expressed by (for the derivation of other orientations see Supplementary Note 2 and 3)

$$V_{\text{ asym}}^{[100]} = -\frac{\Delta \rho j}{2M} \left(-h^{[100]} \sin \phi_M + h^{[010]} \cos \phi_M \right) \text{Re}(\chi') \sin 2\phi_M,$$

$$V_{\text{ sym}}^{[100]} = \frac{\Delta \rho j}{2M} h^{[001]} \text{Im}(\chi') \sin 2\phi_M,$$

where $h^{[100]}$, $h^{[010]}$, and $h^{[001]}$ are the eSOFs along the [100], [010], and [001] directions, $\Delta \rho$ is the magnitude of AMR, j the microwave current density, M the magnetization of the Fe film, $\text{Im}(\chi')$ the imaginary part of the off-diagonal component of the magnetic susceptibility due to out-of-plane excitation ($h^{[001]}$), and $\text{Re}(\chi')$ the real part of the diagonal component due to in-plane excitation ($h^{[100]}$ and $h^{[010]}$).

Since the dc voltage is induced by FMR, the magnitude of $\text{Im}(\chi')$ and $\text{Re}(\chi')$ can be calculated by solving the Landau–Lifshitz–Gilbert equation, which is anisotropic due to the in-plane magnetic anisotropy as well as the angular variation of the linewidth (see Supplementary Note 3).

In-plane effective spin-orbit fields. Figure 2d shows the dependence of $V_{\text{ asym}}$ on the magnetization angle ϕ_M for the stripes oriented along the [100] direction. The results can be fitted by a superposition of $\sin 2\phi_M \sin \phi_M$ and $\sin 2\phi_M \cos \phi_M$, indicating that the driving field contains both Dresselhaus and Bychkov-Rashba contributions (see equation (1)). The magnitude of $\mu_0H^{[100]}$ (Dresselhaus) and $\mu_0H^{[010]}$ (Bychkov-Rashba) is determined to be 0.15 and 0.28 mT by using $\mu_0M=1.63\text{ T}$, $\Delta \rho = 7.0 \times 10^{-10}\text{ Om}$, $l = 100.0\mu\text{m}$ and $j = 1.91 \times 10^{11}\text{ Am}^{-2}$. Here M and $\Delta \rho$ have been determined by separate magnetization and dc transport measurements, and the microwave current j is calibrated by thermally shifting the resonance field (see Supplementary Note 5).

For an independent crosscheck, we also show in the Supplementary Note 7 that the Dresselhaus field can be alternatively verified by varying H_K via a dc current.

In Fig. 3a, we show direction and magnitude of the in-plane effective spin-orbit fields obtained for a current density of 10^{11} Am^{-2}.
10^{11} \text{Am}^{-2} \text{ in a polar plot for devices with different orientations. Figure 3a indicates that Bychkov-Rashba is the dominating contribution since the field vectors along [100] and [010] directions align mainly perpendicular to the current direction. For [110] and [100] directions, the spin-orbit fields are perpendicular to the current as expected for both Rashba and Dresselhaus contribution (Fig. 1a,b). Although the current induced Oersted field may also cause a field contribution perpendicular to the current directions, this effect is expected to be small for two reasons: First, the magnitude of the SOF for the [110] direction is \sim 5 times smaller than that for the [110] direction for a similar current density (Fig. 3a and Supplementary Fig. 5b), which indicates that the effect is intrinsically related to SOI. Second, the non-detectable dc voltage in Fe/SiO\textsubscript{2} further excludes a sizeable influence of any Oersted field. The different magnitudes of the eSOFs along the [110] and [110] directions stem from constructive and destructive superposition of Dresselhaus and Bychkov-Rashba fields (see Fig. 1a,b). In Fig. 3b, we show that the amplitudes of \mu_{R} and \mu_{D} in the [010] stripe increase linearly with the current density, indicating that reduction of \Delta M due to Joule heating is negligibly small in the device. From the slope of \Delta M and \Delta \delta, the ratio of \alpha and \beta, (\alpha/\beta)_{plane}, is determined to be \sim 2. We have repeated these measurements for two more sets of devices (eight devices); each set shows similar behaviour.

Out-of-plane effective spin-orbit fields. The presence of the component V_{sym} displayed in Fig. 2c implies a sizeable out-of-plane effective spin-orbit field (see equation (1)). Figure 2d shows
the dependence of V_{sym} on ϕ_M for a current flowing along the [100] direction. The results cannot simply be fitted by $\sin 2\phi_M$ indicating that $h^{[100]}$ depends on ϕ_M. Figure 4a,c show the ϕ_M dependence of $h^{[01]}$ for four crystallographic orientations. Here one can see that $h^{[01]}$ strongly depends on ϕ_M and reaches a value as large as 0.35 mT for a current density of 10^{11} Am$^{-2}$.

We estimate that the magnitude of the SOT in our system is comparable to that observed in ferromagnetic metal/non-magnetic metal bi-layer systems$^{19-22}$ (see Supplementary Note 9).

Note that an additional contribution to the symmetrical part of the dc voltage can in principle arise from spin pumping together with the spin galvanic effect. However, we calculate that this effect is two orders of magnitude smaller than the detected spin-orbit voltage.

To gain insight into the microscopic origin of the interfacial out-of-plane spin-orbit field, we show in Supplementary Note 8 that, within a two-dimensional spin-orbit ferromagnet model32, $h^{[01]}$ is given by

$$h^{[01]} = \frac{e}{2} h_{\text{ex}} \left[\frac{1}{2} \cos \phi_M (E^{[100]} + \sin \phi_M E^{[010]}) \right. - \left. \beta (\cos \phi_M E^{[100]} + \sin \phi_M E^{[010]}) \right],$$

where $E^{[100]}$, $E^{[010]}$ is the electric field along the [100] and [010] directions, e the electronic charge, μ_M the Bohr magneton, and h_{ex} the exchange field. First, we estimate from this equation that the expected magnitude of $h^{[01]}$ agrees well with the experiment (Supplementary Note 8). According to equation (2), the ϕ_M dependence of $h^{[01]}$ can be explained by a combination of $\sin \phi_M$ and $\cos \phi_M$ terms depending on the symmetry of the SOI. The fitting coefficients of the $\sin \phi_M$ and $\cos \phi_M$ terms are shown in Fig. 4b,d (Supplementary Note 8). For the [100] and [010] directions, the $\cos \phi_M$ and $\sin \phi_M$ terms dominate, respectively. This indicates again that the Bychkov-Rashba SOI is the dominating SOI at the Fe/GaAs interface15. Moreover, the fitting coefficients for [110] and [110] directions also agree well with the theoretical model of Bychkov-Rashba dominated SOI. From the fitting coefficients, the ratio of x and β, (x/β), is determined. The value of (x/β) at each device is larger than that of (x/β) at each direction (see Supplementary Note 8). This is due to the different origins between in-plane and out-of-plane induced spin polarization. The in-plane spin polarization is created only at the Fermi level, while the out-of-plane spin polarization is due to the electrical polarization (intrinsic effect) of the whole bands32. Previous work on the ferromagnetic semiconductor (Ga,Mn)As33,35 explains an emerging $h^{[01]}$ by the Kubo formalism, taking into account the presence of Dresselhaus dominated SOI and π-exchange coupling. However, for our system of Fe/GaAs, $h^{[01]}$ results from the broken symmetry at the interface and interfacial exchange coupling, a scenario which is distinctly different from the (Ga,Mn)As case.

Measurement of the SGE. The effective spin-orbit fields stem from charge-to-spin conversion. In the following we demonstrate the inverse process, i.e., spin-to-charge conversion. In ferromagnetic metal/non-magnetic bilayers, spin pumping generates pure spin currents in the ferromagnetic layer. The pure spin current flows within the spin diffusion length into the non-magnetic layer and generates a transverse electrical current due to SOI, which is called ISHE$^{23-25}$.

Figure 5a shows the schematic of the device used in our experiments. Fe/GaAs stripes with different orientations are integrated in the gap between the signal line and the ground plane of a coplanar waveguide. The stripe experiences an out-of-plane Oersted field excitation, which has been demonstrated to be an ideal configuration to study spin pumping and ISHE34,35. Figure 5b shows the measured voltage when the external magnetic field is in the plane but perpendicular to the stripe. For $\phi_M = 135^\circ$, the voltage has the opposite polarity at $\pm B_R$ but differs in magnitude, $|V(\pm B_R)| > |V(\pm H_0)|$. When the external magnetic field is rotated by 180°, the polarity reverses and $|V(\pm B_R)| < |V(\pm H_0)|$ holds. This behaviour26 evidences the ISHE in ferromagnetic/non-magnetic layers, and in our case without the non-magnetic conducting layer, the presence of the SGE. The difference in the absolute magnitude at $\pm B_R$ indicates that a symmetric thermo-electric background37 coexists with the SGE, so that the magnitude of the spin-galvanic voltage V_{SGE} can be obtained by $V_{\text{SGE}} = |V(\pm B_R) - V(H_0)|/2$ (see Supplementary Note 10). The ϕ_M dependence of V_{SGE}, presented in Fig. 5c, can be fitted by $\cos(\phi_M + 45^\circ)$, concordant with the SGE38. Due to the C_{2v} symmetry of the system, the electric current flows always perpendicular to the spin polarization (magnetization)9. The angular dependence suggests that the Rashba SOI dominates the spin-to-charged conversion process. As shown in Fig. 5d, the SGE occurs in each orientation and the magnitude of V_{SGE} takes similar values for different orientations, indicating a similar strength of the Rashba SOI. An anisotropy in V_{SGE} could, in principle, be expected due to anisotropic scattering. However, according to the measurements of anisotropic tunnelling magnetoresistance17 and crystalline AMR18, the anisotropy is smaller than 1%. This should also be case for V_{SGE}, which is beyond our detection limit.

Discussion

We notice that in our system consisting of single crystalline Fe/GaAs, it is difficult to determine the magnitude of the spin current I_S injected into the interface by comparing the damping enhancement as commonly done for ferromagnetic/non-magnetic bilayers38,39 (for example, for Py/Pt bilayers, the damping constant is usually compared with that of Py/SiO$_2$). The enhancement of damping is used to determine the spin mixing conductance and then I_S. Recent experiments26 and microscopic theory40 suggest that the magnitude of I_S can be estimated by $I_S = I_C/\delta_{\text{SGE}}$, where $I_C = I_C/w$ (where w is the width of the stripe) is an areal current density and δ_{SGE} is the effective thickness of the spin-orbit layer. Our previous magneto-transport measurements18 show that the symmetry of AMR changes when the Fe layer reaches a characteristic thickness of ≈ 4 monolayers (0.57 nm). This is evidence for the presence of interfacial SOFs, which gives an upper limit of δ_{SGE}. By using an average I_C of 6.7×10^{-4} Am$^{-1}$, the lower bound of I_S is determined to be 1.2×10^6 Am$^{-2}$. This value is in good agreement with that in ferromagnetic/non-magnetic bilayers26,34,41 for a similar excitation. It should also be noted that at the Fe/GaAs interface both ferromagnetic exchange exists and SOI emerges. The generation of pure spin currents by spin pumping is due to the Fe exchange interaction and the spin-to-charge conversion occurs at the interfacial Fe layer due to SOI. The whole process occurs in one system. This is significantly different from any ferromagnetic/non-magnetic bi-layer ever studied$^{25-27,30,34-39,41}$, where the ferromagnetic and non-magnetic layer is separated and decoupled.

In summary, we have observed mutual conversion between charge and spin current, which is known as the SGE and inverse SGE, at an epitaxial Fe/GaAs interface by SO-FMR and spin pumping at room temperature. The magnitudes of the interfacial SOT in this single crystalline ferromagnetic metal/semiconductor system are found to be comparable to those at ferromagnetic metal/non-magnetic metal interfaces, which could be useful for future spintronic applications. Our findings open a pathway in
search for efficient SOT in various single crystalline ferromagnetic metal/semiconductor interfaces.

Methods

Sample preparation. To guarantee high quality of the interfaces, Fe/GaAs samples are grown by MBE in a MBE cluster with in-situ transfer. First, an undoped GaAs buffer layer (100 nm) is deposited on top of a GaAs (001) semi-insulating substrate at 560 °C. Clear (2 × 4) surface construction pattern has been observed, indicating an As-terminated flat surface. Then, without breaking the vacuum, the sample is transferred to another MBE chamber, where a 5-nm Fe film is deposited on GaAs at a substrate temperature of 75 °C. Reflection high-energy electron diffraction oscillations have been observed during growth, indicating the epilayer growth mode as well as the flat interface between Fe/GaAs. Finally, a 3-nm thick Al capping layer is deposited onto the Fe film to avoid oxidation. The high quality of the Fe films is evidenced by the small damping constant of 0.0036 (see Supplementary Note 3).

Device. For the SO-FMR measurements, 6.4 × 100.0 μm stripes with different orientations are defined by electron-beam lithography and ion beam etching. The contacts are made from 15 nm Ti and 150 nm Au. All stripes have a resistance of ~1.6 kΩ. For spin pumping measurements, 10.0 × 400.0 μm stripes with different orientations are integrated in the gap of the signal and ground lines of a coplanar wave guide. The resistances of the stripes are ~2.6 kΩ. The width of the signal and ground line, which are also made from 15 nm Ti and 150 nm Au, is 50 and 30 μm, respectively.

Measurements. For both SO-FMR and spin pumping measurements, microwave currents with a frequency of 12 GHz are used and the input microwave power is 22 dBm (~158 mW). For SO-FMR measurements, a Bias Tee is used to separate the dc voltage from microwave background, and the driving power acting on the sample is estimated to be 65 mW. Since the skin depth at 12 GHz (~145 nm) is much larger than the Fe thickness (5 nm), the current density in Fe is expected to be spatially uniform. Thus, the Oersted field should not produce torque on Fe itself. All measurements are performed at room temperature.

Data availability. The data that support the findings of this study are available from the corresponding author on request.

References

1. Dresselhaus, G. Spin-orbit coupling effects in zincblende structures. Phys. Rev. 100, 580–586 (1955).
2. Bychkov, Y. A. & Rashba, E. I. Oscillatory effects and the magnetic susceptibility of carriers in inversion layers. J. Phys. C: Solid State Phys. 17, 6039–6045 (1984).
3. Aronov, A. G., Lyanda-Geller, Y. B. & Pikus, G. E. Spin polarization of electrons by an electric current. Sov. Phys. JETP 53, 537–541 (1981).
4. Edelstein, V. M. Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems. Solid State Commun. 73, 233–235 (1990).
5. Sinova, J. et al. Universal intrinsic spin Hall effect. Phys. Rev. Lett. 92, 126603 (2004).
6. Ganichev, S. D. et al. Spin-galvanic effect. Nature 417, 153–156 (2002).
7. Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. H. & Jungwirth, T. Spin Hall effects. Rev. Mod. Phys. 87, 1213–1259 (2015).
8. Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).
9. Liu, L. Q. et al. Spin-torque switching with the giant spin Hall effect of Tantalum. Science 336, 555–558 (2012).
10. Chernyshov, A. et al. Evidence for reversible control of magnetization in a ferromagnetic material by means of spin-orbit magnetic field. Nat. Phys. 5, 656–659 (2009).
11. Endo, M., Matsukura, F. & Ohno, H. Current induced effective magnetic field and magnetization reversal in uniaxial anisotropy (Ga,Mn)As. Appl. Phys. Lett. 97, 222501 (2010).
12. Fang, D. et al. Spin-orbit-driven ferromagnetic resonance. Nat. Nanotech. 6, 413–417 (2011).
13. Kurebayashi, H. et al. An antidamping spin-orbit torque originating from the Berry curvature. Nat. Nanotech. 9, 211–217 (2014).
14. Ciccarelli, C. et al. Room-temperature spin-orbit torque in NiMnSb. Nat. Phys. 12, 855–860 (2016).
15. Wadley, P. et al. Electrical switching of an antiferromagnet. Science 351, 5870 (2016).
16. Gmitra, M., Matos-Abiague, A., Draxl, C. & Fabian, J. Magnetic control of spin-orbit fields: a first-principle study of Fe/GaAs junctions. Phys. Rev. Lett. 111, 036603 (2013).

Acknowledgements

L.C. is grateful for the support from Alexander von Humboldt Foundation. This work is support by the German Science Foundation (DFG) via SFB 689 and SPP 1538.

Author contributions

L.C., C.H.B and D.W. planned the study and wrote the manuscript. M.K., D.S., D.B. did the MBE growth, L.C., R.I. and M.D. fabricated the devices. L.C. collected and analysed the experimental data. J.F. and M.G. developed the theory. All authors discussed the results.

Additional information

Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing financial interests: The authors declare no competing financial interests.
Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

How to cite this article: Chen, L. et al. Robust spin-orbit torque and spin-galvanic effect at the Fe/GaAs (001) interface at room temperature. Nat. Commun. 7, 13802 doi: 10.1038/ncomms13802 (2016).

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.