A New Cadinane Sesquiterpene from the Marine Brown Alga

Dictyopteris divaricata

Wei Wen 1,2, Fang Li 2, Nai-Yun Ji 1*, Xiao-Ming Li 3, Chuan-Ming Cui 3, Xiao-Dong Li 1,2, Li-Na Zhang 1,2, Qin-Zhao Xue 1 and Bin-Gui Wang 3

1 Yantai Institute of Coastal Zone Research for Sustainable Development, Chinese Academy of Sciences, Yantai 264003, China; E-mails: wenwei_500@sina.com (W.W.), Imnli@163.com (X.-D.L.), Zhang.ln@163.com (L.-N.Z.), qzxue@yic.ac.cn (Q.-Z.X.)
2 Qingdao University of Science & Technology, Qingdao 266042, China; E-mail: iceli_2003@126.com (F.L.)
3 Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; E-mails: lixmqd@yahoo.com.cn (X.-M.L.), chuanming-cui@163.com (C.-M.C.), wangbg@ms.qdio.ac.cn (B.-G.W.)

* Author to whom correspondence should be addressed; E-mail: nyji@yic.ac.cn

Received: 25 May 2009, in revised form: 11 June 2009 / Accepted: 23 June 2009 / Published: 24 June 2009

Abstract: A sample of the marine brown alga D. divaricata collected off the coast of Yantai (P.R. China) was dried, powdered, and extracted with the mixture of CHCl₃ and MeOH (1:1, v/v). By a combination of silica gel and Sephadex LH-20 column chromatography and preparative TLC, a new cadinane sesquiterpene 1,4-epoxymuurolan-5β-ol (1) was isolated from this species. Its structure was established by detailed MS and NMR spectroscopic analysis, as well as comparison with literature data.

Keywords: Dictyopteris divaricata; sesquiterpene; cadinane

Introduction

Marine brown algae of the genus Dictyopteris are prolific sources of sesquiterpenes, and cadinane is a main carbon skeleton type [1-8]. In our investigations on the structurally interesting and biologically active terpenes from Chinese marine algae, we examined the chemical constituents of D.
divaricata collected off the coast of Yantai and as a result, a new cadinane sesquiterpene, 1,4-epoxymurolan-5β-ol (1) has been isolated and characterized for the first time. This paper reports the isolation and structural elucidation of compound 1 (Figure 1).

Results and Discussion

The dried and powdered alga D. divaricata was extracted with a mixture of CHCl₃ and MeOH (1:1, v/v). The concentrated extracts were partitioned between H₂O and EtOAc. The EtOAc-soluble fraction was further purified by a combination of silica gel and Sephadex LH-20 column chromatography, as well as preparative TLC, to yield compound 1. Compound 1 was obtained as a colorless oil. The broad IR absorption at νmax 3,452 cm⁻¹ indicated the presence of a hydroxyl group in the molecule. The positive electrospray ionization mass spectrometry (ESIMS) exhibited a characteristic quasi-molecular ion peak at m/z 261 [M+Na]⁺. The molecular formula was determined as C₁₅H₂₆O₂ on the basis of HRESIMS (m/z 261.1829 [M+Na]⁺, calc. for C₁₅H₂₆O₂Na, 261.1830), suggesting three degrees of unsaturation. The ¹H-NMR spectrum of 1 (Table 1) displayed one methyl singlet, three methyl doublets, and one broad singlet, attributed to an oxygenated methine. The ¹³C-NMR spectrum (Table 1), along with the DEPT and HSQC experiments revealed the presence of four methyl, four methylene, five methine, and two quaternary carbon atoms. A detailed comparison of the above spectra data with those reported for 1,4-epoxymurolan-5α-ol revealed that 1 differed from this last compound mainly at C-5 (δC 85.5 d) [9], suggesting that compound 1 may be a C-5 isomer of 1,4-epoxymurolan-5α-ol. The ¹H-¹H COSY correlations as shown in Table 1 and the observed HMBC correlations from H-12 to C-7, C-11, and C-13, from H-13 to C-7, C-11, and C-12, from H-14 to C-1, C-9, and C-10, from H-15 to C-3, C-4, and C-5, and from H-5 to C-3, C-4, C-6, C-7, and C-15 confirmed the planar structure of 1. The relative configuration of 1 was determined by analysis of NOESY spectrum and coupling constants. The NOESY correlations between H-5 and H-7, H-2a indicated H-5, H-7 and C-2 to be located on the same face of the molecule. The same orientation of C-14 and C-2 was suggested on the basis of the NOESY correlation between H-14 and H-2b. H-6 and C-15 were assigned on the same face according to the observed NOESY correlation between H-6 and H-15. H-6 was located on the opposite face of H-7 based on the large coupling constant (11.6 Hz) between them. The above evidence established the structure of 1 to be 1,4-epoxymurolan-5β-ol (Figure 1), the C-5 epimer of 1,4-epoxymurolan-5α-ol [9]. Compound 1 was tested for the toxicity against brine shrimp (Artemia salina) [10]. However, it exhibited no toxicity against brine shrimp at 100 μg/mL.

Figure 1. Structure of compound 1.
Table 1. 1H and 13C-NMR data and 1H-1H COSY correlations of compound 1 (in CDCl$_3$, δ in ppm, J in Hz).

No.	δ_C	δ_H	1H-1H COSY
1	87.1 s	1.42 (ddd, 12.5, 9.6, 5.8)	H-2b, H-3a, H-3b
2a	34.6 t	1.94 (ddd, 12.5, 12.1, 4.0)	H-2a, H-3a, H-3b
2b	1.94 (ddd, 12.5, 12.1, 4.0)	H-2a, H-3a, H-3b	
3a	29.4 t	1.30 (ddd, 12.1, 11.9, 5.8)	H-3b, H-2a, H-2b
3b	2.21 (ddd, 11.9, 9.6, 4.0)	H-3a, H-2a, H-2b	
4	85.7 s		
5	85.5 d	3.46 (br s)	H-6
6	56.0 d	1.26 (d, 11.6)	H-5, H-7
7	47.3 d	1.14 (dddd, 12.1, 11.6, 2.1, 1.6)	H-6, H-8a, H-8b
8a	23.7 t	0.89 (dddd, 12.9, 12.6, 12.1, 2.1)	H-7, H-8b, H-9a, H-9b
8b	1.54 (br dd, 12.9, 3.1)	H-7, H-8a, H-9a, H-9b	
9a	31.7 t	1.23 (m)	H-8a, H-8b, H-9b, H-10
9b	1.62 (m)	H-8a, H-8b, H-9a, H-10	
10	34.9 d	1.59 (m)	H-9a, H-9b, H-14
11	27.3 d	1.80 (hept d, 6.9, 1.6)	H-7, H-12, H-13
12	16.0 q	0.80 (d, 6.9)	H-11
13	21.8 q	0.94 (d, 6.9)	H-11
14	15.3 q	1.01 (d, 6.5)	H-10
15	19.6 q	1.41 (s)	

Experimental

General

NMR spectra were recorded in CDCl$_3$ with TMS as internal standard on a Bruker Avance 500 MHz NMR spectrometer operating at 500 and 125 MHz for 1H and 13C, respectively. Low and high resolution mass spectra were determined on a VG Autospec 3000 mass spectrometer. The IR spectrum was obtained on a JASCO FT/IR-4100 Fourier Transform infrared spectrometer. Optical rotation was measured on a JASCO P-1020 polarimeter. Column chromatography was performed with silica gel (200-300 mesh, Qingdao Haiyang Chemical Co., Qingdao, P.R. China), RP-18 reversed-phase silica gel (YMC), and Sephadex LH-20 (Pharmacia). TLC was carried out with precoated silica gel plates (GF-254, Qingdao Haiyang Chemical Co., Qingdao, P.R. China). All solvents were of analytical grade.

Algal Material

The brown alga Dictyopteris divaricata was collected off the coast of Yantai (lat. 37°31’15”N, long. 121°26’59”E), Shandong Province, P. R. China, in July 2008, and a voucher specimen (MBA0807) has been deposited at the Bio-Resource Laboratory of Yantai Institute of Coastal Zone Research for Sustainable Development, Chinese Academy of Sciences.
Extraction and Isolation

Dried and powdered alga *D. divaricata* (2 kg) was extracted with the mixture of CHCl$_3$ and MeOH (1:1, v/v). The concentrated extract was partitioned between H$_2$O and EtOAc. The EtOAc-soluble fraction (90 g) was fractioned by silica gel column chromatography [petroleum ether (PE)/EtOAc gradient] to give ten fractions, I-X. Fraction VII, eluted with PE/EtOAc 2:1, was further purified by Sephadex LH-20 (CHCl$_3$/CH$_3$OH) and RP-18 (CH$_3$OH/H$_2$O 3:1) column chromatography and preparative TLC (PE/EtOAc 3:1) to afford 1,4-epoxymurolan-5β-ol (1, 9.1 mg) as a colorless oil; $[\alpha]_{D}^{25}$ –29.2° (c=0.33, CHCl$_3$); IR (KBr) cm$^{-1}$: 3,452, 2,962, 2,954, 2,870, 1,458, 1,377, 1,065; 1H-NMR and 13C-NMR: see Table 1; ESIMS m/z: 261 [M+Na]$^+$; HRESIMS m/z: 261.1829 [M+Na]$^+$, calcd. for C$_{15}$H$_{26}$O$_2$Na, 261.1830.

Brine Shrimp Assays

Brine shrimp assays were performed as previously described [10].

Acknowledgements

This work was financially supported by the Foundation of the Chinese Academy of Sciences for President’s Scholarship (awarded to N.-Y. J.), Open Foundation of Shandong Oriental Ocean Sci-Tech Co., Ltd, Chinese Academy of Sciences for Key Topics in Innovation Engineering (kcx2-yw-225), and Key Technology Research and Development Program of Shandong Province (2007GG2QT06020).

References and Notes

1. Song, F.; Xu, X.; Li, S.; Wang, S.; Zhao, J.; Yang, Y.; Fan, X.; Shi, J.; He, L. Minor sesquiterpenes with new carbon skeleton from the brown alga *Dictyopteris divaricata*. *J. Nat. Prod.* **2006**, *69*, 1261-1266.
2. Song, F.; Xu, X.; Li, S.; Wang, S.; Zhao, J.; Cao, P.; Yang, Y.; Fan, X.; Shi, J.; He, L.; Lü, Y. Norsesquiterpenes from the brown alga *Dictyopteris divaricata*. *J. Nat. Prod.* **2005**, *68*, 1309-1313.
3. Song, F.; Fan, X.; Xu, X.; Zhao, J.; Yang, Y.; Shi, J. Cadinane sesquiterpenes from the brown alga *Dictyopteris divaricata*. *J. Nat. Prod.* **2004**, *67*, 1644-1649.
4. König, G.M.; Wright, A.D. Concerted application of a shift reagent and 2D NOESY to the structure determination of new natural products from the tropical brown alga *Dictyopteris delicatula*. *Magn. Reson. Chem.* **1995**, *33*, 178-183.
5. Segawa, M.; Yamano, K.; Shrahama, H. A germacrane-type sesquiterpene from the brown alga *Dictyopteris divaricata*. *Phytochemistry* **1990**, *29*, 973-974.
6. Suzuki, M.; Kowata, N.; Kurosawa, E.; Kobayashi, H.; Tanaka, I. The structure of a germacrane-type sesquiterpene alcohol, a possible precursor of guaiane-type sesquiterpenes from the brown alga *Dictyopteris divaricata*. *Chem. Lett.* **1990**, *19*, 2187-2190.
7. Kajiwara, T.; Hatanaka, A.; Tanaka, Y.; Kawai, T.; Ishihara, M.; Tsuneya, T.; Fujimura, T. Volatile constituents from marine brown algae of Japanese *Dictyopteris*. *Phytochemistry* **1989**, *28*, 636-639.
8. Suzuki, M.; Kowata, N.; Kurosawa, E. Epicubebol and related sesquiterpenoids from the brown alga Dictyopteris divaricata. Bull. Chem. Soc. Jpn. 1981, 54, 2366-2368.

9. Chyu, C.F.; Ke, M.R.; Chang, Y.S.; Chien, S.C.; Kuo, Y.H. New cadinane-type sesquiterpenes from the roots of Taiwania cryptomerioides HAYATA. Helv. Chim. Acta 2007, 90, 1514-1521.

10. Solis, P.N.; Wright, C.W.; Anderson, M.M.; Gupta, M.P.; Phillipson, J.D. A microwell cytotoxicity assay using Artemia salina (Brine shrimp). Planta Med. 1993, 59, 250-252.

Sample Availability: Samples of compound 1 are available from the authors.

© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).