Genetic Characterization of Atypical *Citrobacter freundii*

Gabriela Delgado\(^1\), Valeria Souza\(^2\), Rosario Morales\(^1\), René Cerritos\(^3\), Andrea González-González\(^2\), José Luis Méndez\(^1\), Virginia Vázquez\(^4\),\(^*\), Alejandro Cravioto\(^5\)\(^*\)

\(^1\) Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México City, México, \(^2\) Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), México City, México, \(^3\) Departamento de Cirugía Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México City, México, \(^4\) Instituto Nacional de Pediatría (INP), México City, México, \(^5\) International Vaccine Institute, Seoul, Republic of Korea

Abstract

The ability of a bacterial population to survive in different niches, as well as in stressful and rapidly changing environmental conditions, depends greatly on its genetic content. To survive such fluctuating conditions, bacteria have evolved different mechanisms to modulate phenotypic variations and related strategies to produce high levels of genetic diversity. Laboratories working in microbiological diagnosis have shown that *Citrobacter freundii* is very versatile in its colony morphology, as well as in its biochemical, antigenic and pathogenic behaviours. This phenotypic versatility has made C. freundii difficult to identify and it is frequently confused with both *Salmonella enterica* and *Escherichia coli*. In order to determine the genomic events and to explain the mechanisms involved in this plasticity, six *C. freundii* isolates were selected from a phenotypic variation study. An I-CeuI genomic cleavage map was created and eight housekeeping genes, including 16S rRNA, were sequenced. In general, the results showed a range of both phenotypes and genotypes among the isolates with some revealing a greater similarity to *C. freundii* and some to *S. enterica*, while others were identified as phenotypic and genotypic intermediary states between the two species. The occurrence of these events in natural populations may have important implications for genomic diversification in bacterial evolution, especially when considering bacterial species boundaries. In addition, such events may have a profound impact on medical science in terms of treatment, course and outcomes of infectious diseases, evading the immune response, and understanding host-pathogen interactions.

Citation: Delgado G, Souza V, Morales R, Cerritos R, González-González A, et al. (2013) Genetic Characterization of Atypical *Citrobacter freundii*. PLoS ONE 8(9): e74120. doi:10.1371/journal.pone.0074120

Editor: Mark Alexander Webber, University of Birmingham, United Kingdom

Received: February 28, 2013; **Accepted:** July 29, 2013; **Published:** September 12, 2013

Copyright: © 2013 Delgado et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research project was supported by grants from Dirección General de Apoyo al Personal Académico, UNAM (Papit project IN242602), URL: http://dgapa.unam.mx; and Consejo Nacional de Ciencia y Tecnología (project 100343), URL: http://conacyt.gob.mx. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

\(^*\) E-mail: Alejandro.Cravioto@ivi.int

\(^\dagger\) Deceased

Introduction

The correct identification and determination of bacterial species plays an important role in the diagnosis of infectious diseases, food safety, and epidemiology. Human response to bacterial infection depends on the biological properties of the infecting microorganism, as well as on the natural variation of the species and its potential to change [1]. These variations are the adaptive responses by which bacteria undergo frequent and reversible phenotypic changes resulting from genetic modifications in their genomes [2]. Despite the different molecular mechanisms that mediate and regulate phenotypic variation, these related gene regulatory systems are not sufficient to allow bacteria to manage environmental challenges. To survive, bacteria have evolved assorted strategies to produce high levels of genetic diversity through complex combinations and reshuffling of genetic information [2,3]. This heterogenic response enables a bacterium to utilize different niches within an ecosystem, and even to increase the overall fitness of the species, all of which are reflected in lifestyle differences and physiological versatility [4,5].

Although the chromosomal organization of related bacteria is conserved, a considerable genomic variability and diversification between isolates of the same species has been observed as a result of distinct molecular events involved in the adaptive evolution of the genomes [5]. Point mutations, homologous recombination, deletions, duplications, inversions, and horizontal gene transfer contribute to this variation, and consequently to genome diversification.

The dynamic nature of these bacterial gene pools, and in particular the ability of genes to move between non-related bacterial groups, has complicated the concept of species coherence for such microorganisms. In this respect, species boundary for bacteria continues to be controversial, especially in terms of the mechanisms of bacterial speciation and maintenance in the face of frequent genetic interchange [6]. Some species of the genus *Citrobacter* present this type of behaviour [7] and it is this fact that has made *C. freundii* difficult to identify, since the species is similar to other members of the Enterobacteriaceae family. Although the majority of isolates of *C. freundii* are frequently identified as belonging to typical strains, atypical biotypes also exist, differing from typical biotypes in that they have variable culture, biochemical and antigenic characteristics that resemble those of the genus *Salmonella* and *Escherichia coli* [8]. This plasticity has
prevented a definitive classification of \textit{C. freundii} and has created a
taxonomic problem that has been under discussion for many years,
with classification and nomenclature varying over time according
to the author concerned [9–11].

In addition, the \textit{Citrobacter} genus has a large number of somatic
(O) and flagella (H) antigens typically found in other species of the
Enterobacteriaceae family, in particularly in \textit{Salmonella} [8,9].
Furthermore, studies of lipopolysaccharide (LPS) structures in enteric bacteria have highlighted the structural mimicry of the
somatic antigen of \textit{C. freundii} [12–16].

Other studies of \textit{C. freundii} have identified virulence genes that
are homologous or identical to those described in \textit{E. coli} pathotypes
and \textit{Salmonella} [16–21]. DNA-DNA hybridization [11,22] used
to assess divergence in species of \textit{Citrobacter} and \textit{Citrobacter}-like strains
has also revealed substantial heterogeneity within strains identified as \textit{C. freundii}. Between 1960 and 1990, various laboratories [23–28]
began to isolate strains that could be treated as atypical \textit{C. freundii}
or as strains of lactose-positive \textit{Salmonella enterica} associated with
gastroenteritis. These findings highlighted the close similarity
between some \textit{C. freundii} strains and \textit{Salmonella enterica} and the
confusion that may arise in differentiating between these two
genera.

The availability of a significant number of bacterial genomes
has enabled the phylogenetic relationship among bacterial
populations to be assessed. Such detailed research will allow a
better definition of the different isolates, pathotypes and even
species [29,30].

A number of recent studies have started to shed light on the
dynamic chromosomal organization, genetic content and genetic
diversity of \textit{Citrobacter} [29–31]. The aim of the current study was to
detect the genomic changes presented in atypical \textit{C. freundii} isolates
during biochemical phenotype variation, and to discuss the
implications of such changes with regard to their possible impact
on the boundaries of the species.

\section*{Materials and Methods}

\subsection*{Background of the Bacterial Isolates}

In August 1983, a longitudinal study was initiated to look at the
agents associated with acute diarrhoea in a group of 75 children
living in a rural village in Me´xico [32,33].

Weekly faecal samples were obtained from each child in the
study over a two-year period. Isolation, identification and
classification of the enteric pathogens were carried out as
described by Edwards and Ewing [9,33]. Strains identified as
typical and atypical \textit{C. freundii} were further used for this study.

Atypical \textit{C. freundii} differ mainly in their capacity to ferment
lactose, deoxycarboxylase lysine and utilize potassium cyanide (KCN).
All of the isolated strains were labelled and stored on seeded Dorset
egg slants, in a temperature-controlled environment.

In late 1989, V. Vázquez and A. Cravioto conducted a
phenotypic variation study (data not published) with the \textit{C. freundii}
strains that had been isolated from the previously described
longitudinal survey [32,33]. The bacteriological methods used in
the study included the repeated streaking of single colonies on
\textit{Salmonella-Shigella} agar (SS agar) and their cultivation to avoid the
possibility of both contamination and mixing of the microorganisms,
of all of which led to the selection of pure colonies. A strain
initially identified as atypical \textit{C. freundii} was selected for further
studies by performing subsequent passages under identical
conditions. Briefly, the atypical \textit{C. freundii} isolate was grown
overnight in a sterile liquid media. The resulting culture was
streaked onto SS agar plates and incubated overnight at 37°C.
Following incubation, all of the single colonies showing

\subsection*{I-Cell Cleavage Map of the FMU108327/P and 108327/
A\textsubscript{10} Genome}

Pulsed field gel electrophoresis (PFGE) was used to construct the
ribosome skeleton of the chromosome from the FMU108327/P
and FMU108327/A\textsubscript{10} isolates. Bacterial genomic DNA from \textit{S.}
Typhimurium LT2 cleaved with I-Ceu I was used as a molecular-weight marker. Since the size of these identifying fragments and gene markers had been determined previously [37,38], their inclusion improved the precision of chromosome size estimation.

Preparation and Digestion of Genomic DNA in Agarose Blocks

Genomic DNA of each strain was prepared in agarose blocks using a previously described method [37] with some modifications. Briefly, a second incubation in proteinase K solution was carried out to increase the purity of the DNA. Agarose blocks were pre-incubated in 1× buffer for 30 min at 37°C and then incubated overnight with 100 μl of fresh 1× buffer containing 4 U of I-Ceu I (New England Biolabs) at 37°C to digest DNA in the blocks.

Pulsed Field Gel Electrophoresis (PFGE)

I-Ceu I (hereafter called Ceu I) fragments were separated by a CHEF Mapper electrophoresis system (Bio-Rad). Electrophoresis was performed on a 1% agarose (Seakem Gold agarose, BioWhittaker Molecular Applications) gel and 0.5× TBE (90 mM Tris, 90 mM boric acid, 2 mM EDTA, pH8) buffer at 12°C. Three stage conditions were applied to the electrophoresis process: stage 1: pulse time ramped from 50 s to 2 min over 21 hrs; stage 2:

![Figure 1. Bacterial lineages derived from the phenotypic diversification study.](image)

Shows the lineages A and B derived from the Citrobacter freundii FMU108327/P, each dot represents a selected colony. The pink dots indicate a typical C. freundii biochemical phenotype; yellow dots indicate a “Salmonella-like” biochemical phenotype; the dots in gradient of pink to yellow represent the intermediates biochemical phenotypes. The solid lines indicate the number of colonies selected after each selective round. The parental strain was Citrobacter freundii FMU108327/P, and after the first selection two descendants were generated, which were used to found the next selection, which led to six descendants (in both lineages) being selected, and all of these isolates were used to found the 3rd selection round. This procedure was repeated throughout the 10 selections. The numbered dots P, A1, A10, B1, B2 and B10 indicate the isolates selected for this study.

doi:10.1371/journal.pone.0074120.g001

Table 1. Biochemical test of Citrobacter freundii isolates.

Test	C. freundii NCTC E9750	FMU 108327/P	FMU 108327/A1	FMU 108327/A10	FMU 108327/B1	FMU 108327/B2	FMU 108327/B10	Salmonella enterica
catalase	+	+	+	+	+	+	+	+
NO₃ - NO₂	+	–	–	–	+	+	+	+
H₂S (KIA)	+	+	+	+	+	+	+	+
KIA	A/A	A/A	A/A	Alk/A	A/A	A/A	A/A	Alk/A
Lactose	V+	+	+	–	+	–	–	–
Sucrose	+	+	+	–	+	–	–	–
Adonitol	–	–	–	–	–	–	–	–
Cellobiose	–	–	–	–	–	–	–	–
Dulcitol	–	–	–	–	+	+	+	+
Inositol	–	–	–	–	–	–	–	–
Raffinose	+	+	+	2nd day	+	+	+	–
Salicine	–	–	–	–	–	–	–	–
D-Sorbitol	+	+	+	+	+	+	+	+
D-Xylose	+	+	+	+	+	+	+	+
Indol	–	–	–	–	–	–	–	–
Methyl red	+	+	+	+	+	+	+	+
YP¹	–	–	–	–	–	–	–	–
Citrate²	+	+	+	+	+	+	+	+
Arginine³	+	+	+	+	+	+	+	+
Lysine⁴	–	–	–	–	–	–	–	–
Ornithine⁵	+	–	–	–	+	+	+	+
Urea broth	–	–	–	–	–	–	–	–
Phenylalanine⁶	+	+	+	+	+	+	+	+
Gluconate	–	–	–	–	–	–	–	–
KCN broth⁶	+	+	+	+	+	+	+	+
Malonate²	–	–	–	–	–	–	–	–
ONPG³	+	+	+	+	–	–	–	–
Motility	+	+	+	+	+	+	+	+

Biochemical reaction of C. freundii and S. enterica as they are currently defined and the biochemical reactions of the C. freundii isolates from the phenotypic diversification study.

¹ synaptic reaction if positive.

doi:10.1371/journal.pone.0074120.t001
pulse time ramped from 20 s to 1 min 20 s over 10 hrs; and stage 3: pulse time ramped from 3 s to 12 s over 7 hrs at 4 V/cm. The DNA fragments were then transferred onto Nnylon membrane (Amersham Biosciences) by Southern blotting as described previously [39].

Preparation of DNA Probe and Hybridization

The individual fragments of FMU108327/P and FMU108327/A10 corresponding to those of δ Typhimurium LT2 were determined by probing the Southern blotting membranes with polymerase chain reaction (PCR) products from δ Typhimurium LT2 genes whose location in the chromosome is already known (Figure 2). The genes metB, metC, metE, metH, fliC [40] and gnd were selected according to Liu et al. [37]. These were used as marker genes to identify the individual CadA fragments (metB on CadI fragment E, metC on Cad-D, metE on Cad-G and gnd on Cad-A). The primer sets used to amplify the metB, metC, metE, metH and gnd were genes designed in the laboratory (Table S1) from previously sequenced δ Typhimurium LT2 genome (AE006468) [41] using the Primer Select program of the DNASTAR Lasergene 7 package (DNASTAR, Inc., Madison, WI). Correspondence of Citrobacter fragments Cad-C and Cad-F were determined by probing the isolated DNA from δ Typhimurium LT2 Cad fragments C and F. The PCR products and restriction fragments Cad-C and F were purified and then 32P-labelled using the random primer method of the Megaprime DNA labelling system (Amersham Biosciences). The membrane was incubated in 10 ml hybridization solution (Rapid-hyb buffer) to which 1 x Denhardt’s solution and 0.2 mg/ml of denatured sheared salmon sperm were added. Incubation was carried out at 60°C with constant and gentle shaking for 3 h. The labelled probe was then added to fresh hybridization solution and hybridization was carried out overnight at 60°C with constant and gentle shaking. The membrane was exposed to X-ray film after being washed at high astrangency (64°C).

PCR and Hybridization to Determine rrn Arrangement

The relative chromosomal position of each rnr operon was determined by PCR amplification of the genes adjacent to each operon. These genes are at the opposite ends of each CadI fragment. The sequences of the used primer and their locations relative to proximal rnr operons are shown in Table S1. Primers were designed in the laboratory based on a δ Typhimurium LT2 sequence. The PCR products were purified and then 32P-labelled before being probed onto Southern blots of CadI digested DNA.

Chromosomal DNA Isolation for PCR

Chromosomal DNA was isolated from stationary-phase bacteria taken from cultures grown overnight. DNA was purified by miniprep of bacterial genomic DNA as described previously by Murray and Thompson [42].

Detection of cadA and lacY Genes

The adaptive genes, cadA and lacY that encode lysine decarboxylase and lactose permease, respectively, were amplified in order to detect their presence in the C. freundii E9750 strain, the atypical FMU108327/P isolate and its derivatives, since these genes enhance bacterial fitness and confer survival advantage. The primers used to amplify these gene fragments were designed in the laboratory (Table S1). The PrimerSelect program of the DNASTAR Lasergene 7 package (DNASTAR, Inc., Madison, WI) was used to design cadA primers from previously sequenced E. coli (U00096, AE005174) [43,44] and S. enterica genomes (AE006468, AE014613, AL513382) [45,46,47]. The lacY primer set was designed from the sequenced Citrobacter freundii IafY gene (U13675) [47]. Thermal cycling conditions for both genes were as follows: an initial denaturation cycle at 94°C for 5 min, followed by 30 cycles at 94°C for 1 min, annealing temperature (Table S1) for 1 min and 72°C for 1 min with a final cycle of 72°C for 7 min.}

Amplification and Sequencing Housekeeping Genes and 16S rRNA Gene

Eight housekeeping gene fragments and the 16S rRNA gene were amplified and sequenced for the C. freundii E9750 strain, the atypical FMU108327/P and its derivative isolates. The eight genes referred to here were: adk (U00096), aph (U00096, AE005174, AE006468, and AE014613), gnd (U00096, AE005174, AE006468, and AE014613), gyrB (U00096), icdA (U00096), mdh (U00096), purA (U00096) and recA (U00096). Some of the primers used to amplify these loci were obtained from the E. coli MLST website (http://mlst.ucc.ie/mlst/dbs/Ecoli) [48] while others were designed de novo to target other housekeeping genes (Table S1). The PrimerSelect program of the DNASTAR Lasergene 7 package (DNASTAR, Inc., Madison, WI) was used for primer design from previously sequenced E. coli and S. enterica genomes. PCR protocols to amplify adk, gyrB, mdh, purA and recA were performed according to the procedure specified by Wirth et al. [48] with minor modifications for annealing temperatures (Table S1). Thermal cycling conditions for the aph, icdA and gnd genes were as follows: an initial denaturation cycle at 94°C for 5 min, followed by 30 cycles at 94°C for 1 min, annealing temperature (according to each specific primer set Table S1) for 1 min and 72°C for 1 min with a final cycle of 72°C for 7 min. Platinum Taq DNA polymerase (Invitrogen, life technologies) was used to amplify all genes. PCR products were sequenced by High Throughput Genomics Unit at the University of Washington (http://www. htsseq.org).

Sequence Edition

The sequences were obtained in forward and reverse directions, and electrophenograms for all sequences were visually inspected for consistency between strands, with any ambiguous nucleotides being resolved by re-sequencing. The SeqMan program of the DNASTAR Lasergene 7 package (DNASTAR, Inc., Madison, WI) was used to edit, trim, and assemble each sequence. The ClustalW2 program of Bioedit software version 7.0.9.0 was used to align all the sequences. The coding sequences used for the housekeeping gene fragments were read in-frame.

Accession Numbers

The GenBank IDs for the genes sequenced in this study are as follows: Accession numbers: adk JQ006082, JX001049–JX001414, aph JX001416–JX001422, gnd JX001424–JX001430, gyrB JX001432–JX001438, mdh JX001440–JX001446, purA JX001448–JX001454, recA JX001456–JX001462, icd JQ006022, JX001470–JX001474, and 16S rRNA JX001463–JX001469.

Phylogenetic Analyses

Phylogenies based on both individual and concatenated allele sequences (haplotype) were reconstructed using PhyML software, version 3.0 [49]. ModelTest [50] was used to select the optimal evolutionary model by evaluating the selected parameters using the Akaike Information Criteria (AIC). A corrected version of the AIC (AICc) was used for each locus sequence data set since the sample size (n) was small compared with the
This approach suggested the following models: \textit{adh} (TIM2ef+H), \textit{aph} (TIM2G), \textit{gur} (TIM3ef+H+G), \textit{gyrB} (GTR+I+G), \textit{icdA} (TIM2ef+I+G), \textit{metC} and \textit{metA}. The robustness of nodes was assessed using 1000 bootstrap replicates for each locus separately and for the concatenated data set. This analysis was run using the same version of the PhyML software. Finally, trees were edited using MEGA version 5.01 [51].

In order to assess the role of recombination in the studied strains, the linkage model “\textit{STRUCTURE}” [52] was run assuming a \(K\) value between 2 and 8 (20 replicates per value of \(K\)) populations with a burning of 25,000 iterations and 50,000 MCMC subsequent iterations. The optimal value was \(K=4\) as ascertained by comparing the posterior probabilities of the data given each value of \(K\) from 2 to 8 (Figure S1). Assignment of haplotypes to each ancestral population was performed as described by Wirth et al. [48].

For phylogenetic studies other enterobacteria sequences were also used. The sequences for the following strains were downloaded from the National Center of Biotechnology Information: \textit{Citrobacter freundii} ballerup 7851, \textit{C. freundii} E9750 NCTC; lane 2, FMU108327/P; lane 3, FMU108327/A10 and lane 4; \textit{S. Typhimurium} LT2 ATCC 700720. The results of Southern blotting analysis appear with capital letters. These indicate the \textit{Ceu} individual fragments of \textit{C. freundii} corresponding to those of \textit{S. Typhimurium} LT2: b) chromosome sizes and molecular weights of individual \textit{Ceu} fragments. It also shows the location of every marker gene according to its correspondence in each \textit{Ceu} fragment. The \textit{Ceu-C} and \textit{Ceu-F} fragments of \textit{C. freundii} were determined by probing the isolated DNA from \textit{S. Typhimurium} LT2 \textit{Ceu-C} and \textit{Ceu-F} fragments; c) the gel from panel a were blotted to N-nylon membranes and probed as follows: lanes 1–4 \textit{metH} (Table S1); lanes 5–8 DNA from \textit{C. freundii} fragment \textit{Ceu-H} and lanes 9–12, \textit{metA}. \textit{Ceu} fragments identified by the probes are indicated inside the images with capital letters.

doi:10.1371/journal.pone.0074120.g002

Figure 2. Pulsed-field gel electrophoresis profiles of \textit{I-Ceu} restriction fragments from \textit{C. freundii} isolates. a) Pulsed-field gel shows \textit{Ceu} profiles: line 1, \textit{C. freundii} E9750 NCTC; lane 2, FMU108327/P; lane 3, FMU108327/A10 and lane 4; \textit{S. Typhimurium} LT2 ATCC 700720. The results of Southern blotting analysis appear with capital letters. These indicate the \textit{Ceu} individual fragments of \textit{C. freundii} corresponding to those of \textit{S. Typhimurium} LT2; b) chromosome sizes and molecular weights of individual \textit{Ceu} fragments. It also shows the location of every marker gene according to its correspondence in each \textit{Ceu} fragment. The \textit{Ceu-C} and \textit{Ceu-F} fragments of \textit{C. freundii} were determined by probing the isolated DNA from \textit{S. Typhimurium} LT2 \textit{Ceu-C} and \textit{Ceu-F} fragments; c) the gel from panel a were blotted to N-nylon membranes and probed as follows: lanes 1–4 \textit{metH} (Table S1); lanes 5–8 DNA from \textit{C. freundii} fragment \textit{Ceu-H} and lanes 9–12, \textit{metA}. \textit{Ceu} fragments identified by the probes are indicated inside the images with capital letters.
Results

The isolates used in this study came from a previous study in which the aim was to determine the phenotypic changes suffered by the atypical *C. freundii* FMU108327 isolate systematically (Supporting information). The experimental environment consisted of a serial transfer regime in which the *C. freundii* was subjected to repeated subsequent cultivation followed by the selection of single colonies (Figure 1). The detail can be found in the method section above. Considering the variability in phenotypes, the original atypical *C. freundii* FMU108327/P isolate was selected with five derivative isolates from two different branches (Figure 1).

Table 2. Accession numbers of the chromosome sequences used in this study.

Accession number	Organism and strain	Reference
CACD01000000	Citrobacter freundii ballerup 7851	[29]
ADLG01000000	Citrobacter freundii 4_7_47CFAA	GenBank
AOMS01000000	Citrobacter freundii GTC 09479	GenBank
AOUUE01000000	Citrobacter freundii GTC 09629	GenBank
ANA0V01000000	Citrobacter freundii MTCC1658	[79]
CP0000822	Citrobacter koseri ATCC BAA-895	GenBank
FNS43502	Citrobacter rodentium ICC168	[29]
ACDU01000000	Citrobacter sp. 30_2	GenBank
ABWL02000006	Citrobacter youngae	GenBank
CP000783	Cronobacter sakazakii	[99]
ABWM020000041	Enterobacter cancerogenus	GenBank
CP0000653	Enterobacter sp. 638	GenBank
ABKX01000005	Escherichia albertii	GenBank
CP0000468	Escherichia coli APEC O1	[100]
AE014075	Escherichia coli CFT073	[101]
AAU0X02000011	Escherichia coli B171	GenBank
CP001665	Escherichia coli BL21-Gold(DE3)	GenBank
AE005174	Escherichia coli O157:H7 EDL933	[44]
BA000007	Escherichia coli O157:H7 Sakai	[102]
CP000802	Escherichia coli HS	[103]
U00096	Escherichia coli str. K-12 MG1655	[43]
AP010960	Escherichia coli O111H-	[104]
CU928158	Escherichia fergusonii	GenBank
CP000064	Klebsiella pneumoniae 342	[105]
AP006725	Klebsiella pneumoniae NTUH-K2044	[106]
CP000647	Klebsiella pneumoniae MGH 78578	GenBank
ACZD01000147	Klebsiella pneumoniae subsp. rhinoscleromatis	GenBank
CP000036	Shigella boydii SB227	[107]
AE005674	Shigella flexneri 2a str. 301	[108]
CP000880	Salmonella enterica subsp. Arizonae	GenBank
AM933173	Salmonella enterica subsp. enterica serovar Gallinarum	[60]
ABE01000005	Salmonella enterica subsp. enterica serovar Kentucky	[109]
AE006468	Salmonella enterica subsp. enterica serovar Typhimurium LT2	[41]
CP001113	Salmonella enterica subsp. enterica serovar Newport SL254	[109]
FM200053	Salmonella enterica subsp. enterica serovar Paratyphi A AKU_12601	[110]
ABAM02000001	Salmonella enterica subsp. enterica serovar Saintpaul SARA23	[109]
CP000127	Salmonella enterica subsp. enterica serovar Schwarzengrund CVM19633	[109]
ALS13382	Salmonella enterica subsp. enterica serovar Typhi CT18	[46]
AE014613	Salmonella enterica subsp. enterica serovar Typhi Ty2	[45]
ABFH02000000	Salmonella enterica subsp. enterica serovar Virchow	[109]
CP0001120	Salmonella enterica subsp. enterica serovar Heidelberg SL476	[109]
ABFF01000007	Salmonella enterica subsp. enterica serovar Weltevreden	[109]

doi:10.1371/journal.pone.0074120.t002
Biochemical Variability of Atypical FMU108327 Strain

The six selected isolates and two reference strains were streaked onto both blood agar and SS agar plates and incubated at 37°C. On inspection the following day, the original FMU108327/P (P) strain and its derived isolates, as well as the reference *Citrobacter freundii* E9750 and *Salmonella* Typhimurium LT2 strains produced unique and uniform colonies. Additionally, in SS agar, the strains of *C. freundii* E9750, FMU108327/P, and the isolates FMU108327/A1 and FMU108327/B1 yielded pink colonies indicating that these bacteria did ferment lactose. However, the FMU108327/A10, FMU108327/B2 and FMU108327/B10 isolates produced colourless colonies, indicating that these did not ferment lactose and/or colonies with a black dot indicative of iron sulphide production. Regarding reaction to KCN (potassium cyanide), the *C. freundii* strains and all derivative isolates grew, whereas S. Typhimurium did not. In terms of decarboxylation of lysine, which is the differential biochemical test between *Salmonella* spp. and *Citrobacter* spp., *C. freundii* E9750 and the isolates FMU108327/P and FMU108327/A1 were negative, while FMU108327/A10, FMU108327/B2, FMU108327/B10 and S. Typhimurium were positive. The FMU108327/B1 isolate decarboxylated lysine poorly resulting in a weak positive reaction. The β-galactosidase (ONPG) test helps to differentiate between *Salmonella* and *Citrobacter* cultures, particularly strains that ferment lactose slowly or fail to utilize it. The production of ONPG was positive for *C. freundii* E9750, FMU108327/P, FMU108327/A1 and FMU108327/B1. However, the isolates FMU108327/A10, FMU108327/B2, FMU108327/B10 and S. Typhimurium were all negative for ONPG production. These results confirm those obtained previously (Table 1) (Supporting information).

I-Ceu Restriction Fragments of FMU108327/P and FMU108327/A10 Isolates

The *Ceu* restriction endonuclease recognizes a 26-bp sequence from position 1911 to 1936 of the 23S rRNA gene in *rrn* operons, with the number of *Ceu* fragments usually representing the number of *rrn* operons. The *rrn* skeleton of S. Typhimurium LT2 [37,38] had been previously mapped using chromosome digestion with *Ceu* endonuclease and PFGE. Data from this strain was used to construct *rrn* skeletons of two isolates: FMU108327/P and FMU108327/A10. Initially, the *Ceu* chromosomal profiles of all studied isolates were carried out but the results showed only 2 different profiles among the studied isolates, one of 7 bands and the other of 8 bands. Therefore, only 2 representative isolates of each profile were selected for further analyses.

The DNA digestion of S. Typhimurium LT2 yielded a profile with 7 bands; the molecular weight of each band was the same as that of S. Typhimurium LT2 reported by Liu (Figure 2a, 2b) [54]. *C. freundii* E9750 NCTC strain yielded 8 fragments, indicating that *C. freundii* contains 8 *rrn* operons in its chromosome. The isolate FMU108327/P also yielded 8 fragments while the derivative isolate FMU108327/A10 only yielded 7 fragments: A to G (Figure 2a). The calculated chromosome size was 4,739 kb for *C. freundii* E9750 and 4,572 kb for FMU108327/P, while the derivative isolate FMU108327/A10 had a chromosomal size of 4,520 kb (Figure 2b).

The corresponding individual fragments from the isolate FMU108327/P and the derivative isolate were determined by probing the Southern blotting membranes from PFGE that used PCR products of marker genes from S. Typhimurium LT2 (Table S1), since their location in the chromosome is known. The marker genes were: *metB* gene corresponding to band E, *metC* gene to band B, *metE* gene to band D, *metH* gene to band G, and *fbc* gene to band A (Figure 2).

The results obtained from these hybridizations indicated that *C. freundii* E9750 and FMU108327/P strains presented an extra cleavage that probably divides the 740 kb fragment (G) into smaller fragments, G (154 kb) and H (584 kb). Interestingly, the derivative isolate FMU108327/A10 did not show this additional cleavage site in fragment G, maintaining its size at 740 kb, and its *rrn* skeleton resembling that of *S. enterica* (Figure 2a, 2c).

Chromosomal Arrangement of FMU108327/P and FMU108327/A10 Isolates

PCR was used to determine the order of *Ceu* fragments and the *rrn* arrangements observed in these bacteria. To determine the chromosomal arrangement of the strains, genes adjacent to *rrn* operons were amplified (Table S1). In this way, the PCR assay confirmed the results obtained from hybridization on *Ceu* PFGE and showed the arrangement of the FMU108327/P and FMU108327/A10 isolates.

Regarding isolate FMU108327/A10, the hybridization patterns and PCR gene assays were similar to those observed for *S. enterica* strains. The data also indicated that the order of the *rrn* operons in this strain was BCDEF; the positions of fragments B and G were adjacent to fragment A (Figure 2a) to form a circular chromosome. Meanwhile, atypical FMU108327/P showed some differences. Although the majority of the selected genes hybridized according to expected fragments (Table S1), there were a couple of differences: *yrdA* failed to hybridize in fragment CEF-C, *mobB* did not hybridize in fragment E nor in any other fragment of the profile, although PCR assays on total genomic DNA indicated that the genes were present in the FMU108327/P isolate. These differing hybridization patterns indicate chromosomal rearrangements within the isolates concerned.

Presence of the Adaptive Genes *cadA* and *lacY*

Lactose fermentation, decarboxylation of lysine, and the utilization of potassium cyanide (KCN) are the most important criteria for differentiating *Salmonella* spp. (+, −) respectively) from *C. freundii* (+/−, −/+) respectively (Table 1). Due to the atypical isolates in this study exhibiting changes in some of these biochemical phenotypes, the presence of the *cadA* gene that encodes lysine decarboxylase and the *lacY* gene that encodes lactose permease was investigated using PCR. The results showed the presence of *cadA* in FMU108327/P and in all of its derivatives, as well as in S. Typhimurium LT2, while the *C. freundii* strain E9750 was negative. With regards to the *lacY* gene, *C. freundii* E9750, FMU108327/P and its derivatives were positive while S. Typhimurium LT2 was negative (Figure S2).

Phylogenetic Reconstruction and Mutation Distribution

The phylogenetic analysis of the isolates showed different relationships between isolates depending on the sequenced genes. For example, when *add* and *recA* genes were analysed (Figures 3a, 3b), the FMU108327/B2 and FMU108327/B10 isolates grouped in the *Salmonella* clade, while the FMU108327/P, FMU108327/A1, FMU108327/A10, FMU108327/B1 isolates and *C. freundii* E9750 clustered in the *Citrobacter* clade. For *gyrB* (Figure 3c), all of the isolates were located in the *Citrobacter* clade except for the FMU108327/B2 isolate. In the case of the *icl* gene (Figure 3d), FMU108327/B2, FMU108327/B10 and FMU108327/A10 isolates grouped in the *Salmonella* clade. Considering the *psaA*, *aph* and *gnd* genes (Figure 3e–g), all the isolates (FMU108327/A1, FMU108327/A10, FMU108327/B1, FMU108327/B2 and FMU108327/B10) including the parental strain (FMU108327/P) grouped more closely to *Salmonella*, as did *C. freundii* E9750 when
Citrobacter freundii Diversity
concerning the *purA* and *aph* genes. Finally, with regard to the *mdh* gene (Figure 3h), all of the studied isolates (including the reference species *C. freundii*, *C. youngae* and *Citrobacter* spp.) formed a single cluster that diverged away from the *Salmonella* group.

Although there were alleles that could be clearly assigned to one genus, in the phylogenetic reconstruction using the concatenated sequences, the haplotypes did occupy intermediate positions in the PhyML tree from the *Citrobacter* spp. and the progenitor strain (FMU108327/P) clade to the *Salmonella* spp. clade (Figure 3i). This observation of intermediate clustering in the tree of the concatenated genes is also congruent with the phenotypic variation that the derivative isolates presented.

Amazingly, the 16S rRNA sequences showed the same “undefined” nature that was observed in the tree of concatenated housekeeping genes as they did not form a clear sequence cluster [55]. The FMU108327/A, FMU108327/B, and FMU108327/B10 isolates (haplotypes closer to *Salmonella*) showed 99% similarity to *S. Typhimurium* LT2 (AE006468) [41] and 98% similarity to both *C. koseri* (CP000822) and *C. rodentium* (FN543502) [29]. When the sequence of the FMU108327/P isolate was compared with its derivative isolates, FMU108327/A10, FMU108327/B2 and FMU108327/Bp10 similarity was reduced to 97.6%. Meanwhile, the similarity among the FMU108327/P, FMU108327/A10 and FMU108327/B10 isolates (haplotypes closer to *Citrobacter*) and the *C. freundii* MRB0903 strain (GU126681) was 99.8%. Finally, the sequence similarity between the *C. freundii* MRB0903 strain and the FMU108327/Bp10 isolate was 97.4%.

In order to understand the role of genomic flux in the dynamics of the studied isolates, a more formal species assignment was performed using the linkage model of Bayesian clustering algorithm STRUCTURE (Figure 4) [52]. The 6 isolates in the study formed two groups. In the first group, *C. freundii* E9750 (83%) and P (87%) strains and the A10 (87%) and B10 (69%) isolates had more than 60% identity with the *Citrobacter* genus while the remaining proportion identified with *Salmonella*. *C. freundii* CFAA strain was also included in this group and had 85% identity with *Citrobacter* and 15% with *Enterobacter*/*Klebsiella*. The second group that included the B2 and Bp10 isolates presented 90% identity with the *Salmonella* genus. It is important to highlight that the A10, derivative isolate showed 60% identity with *Citrobacter* spp. and the remaining 39% with *Enterobacter*/*Klebsiella* group. In addition, *C. freundii* ballerup also showed this hybrid nature, this strain presented 62% identity with *Citrobacter* genus and the remaining 32% with *Enterobacter* group (Figure 4).

The nested distribution analysis of the point mutations by region (30 pb sliding window) per gene, between genes and between isolates showed differences at all three levels (Figure 5). The isolates that accumulated more point mutations were FMU108327/B2 and FMU108327/B10, while the FMU108327/A10 isolate accumulated few mutations; in only 2 markers. The molecular marker that accumulated the most mutations of all isolates was the *tdc* gene. The frequency of synonymous against nonsynonymous mutations also differed considerably, with more synonymous mutations being found in all genes and all isolates, suggesting that at the molecular level, most of the variation was neutral (Table S2).

Discussion

Phenotypic variation of many phenotypic markers is a major adaptive strategy of pathogenic and commensal bacteria [2,3]. It has been shown that such variants are produced at high frequencies and in a reversible manner by bistability, bet-hedging, phase variation, large accumulation of mutations or hyper-variable methylation in specific regions of the genome [3,56].

In the phenotypic diversification study (supporting information), atypical *C. freundii* FMU108327/P was shown to undergo frequent and reversible phenotypic changes (colonial morphology, biochemical characteristics) from the parental strain to its derivatives and vice-versa. This on-off molecular mechanism suggests that the changes in phenotypic expression are induced by a fluctuating environment, but surviving under these conditions poses challenges. Hypothetically, a bacterial population under such challenging conditions could produce off-spring with variable phenotypes to ensure that at least one of them, with a new phenotype, will be able to adapt to the new environment and become stable [57,58].

This has been shown previously in some bacterial species, such as *C. jejuni* [59] and *Salmonella enterica* [58,60] or more recently in *Citrobacter rodentium* [30] in which gene flux has been reported due to IS elements and prophage/phages, which are able to insert randomly throughout the chromosome and plasmids. The reshuffle of genes in both species resulted in the significant loss of functional genes associated with virulence and metabolic functions [29,30].

Many questions about genetic, evolutionary, and ecological mechanisms behind phenotypic variation remain unresolved but it is possible that variable phenotypes aid in the survival of the bacteria under adverse conditions or, in pathogenic microorganisms might help them to increase their virulence or evade the immune responses of their hosts. In addition, these variations may serve to balance the benefits and disadvantages of a certain phenotype and in the case of competition, there may be a trade-off between the benefits of the generation of phenotypic variation and genetic diversity [3,57].

There are four bacterial mechanisms that can shape the formation of new genotypes: a) chromosomal rearrangements; b) point mutations; c) homologous and non-homologous recombination; and d) horizontal gene transfer [61].

Concerning the first mechanism, chromosomal rearrangements are common in enterobacteria [62–67]. Frequently, strict host-specific serovars of *S. enterica*, such as serovars Typhi, Pullorum, and Gallinarum, have large-scale genomic rearrangements due to recombination between rRNA (*rrn*) operons [68–71], while generalist serovars from animal and natural sources worldwide have stable genomes at the *rrn* level [72]. Interestingly, similar rearrangements in *rrn* operons have been found in other species, such as *E. coli* and *V. cholerae* among others [73–78].

In the current study, *Cdt* fragment analysis revealed that chromosome sizes and the structure of the included isolates were similar. Nevertheless, the extent of rearrangement in *rrn* regions was unexpected. The chromosome of *C. freundii* FMU108327/P was found to have eight *Cdt* fragments showing a very similar *rrn* profile to that presented by *C. freundii* NGTC E9750 (Figure 2). These data agree with that reported by other authors [31]. Contrary to what had been expected, the chromosome of the derivative isolate FMU108327/A10 was found to have seven *rrn*
operons, and appeared to have lost a CeuI site resulting in a similar profile to that observed in S. enterica serovar Typhimurium [72]. This genetic event could have resulted from the deletion of a segment due to recombination between two rrn operons in the same replicon, thus forming a circular fragment, followed by reinsertion of a deleted segment into another location.

The second bacterial mechanism to form new genotypes, namely point mutation, can cause the loss of endonuclease cleavage sites. In the current study, this mechanism of genotype formation cannot be discarded until full genome sequences can be conducted to determine which bases might have changed in the FMU108327/P isolate and in its derivative FMU108327/A10 that led to one of the CeuI sites no longer being cleavable.

Despite the existence of a hypothesis concerning the order and structure of the chromosome being subject to selective pressure, in enterobacteria it is common to find variation in the distribution of ribosomal operons (rrn). C. freundii is not an exception to these kinds of rearrangements, as shown in the above results and in the data from Kumar et al. [79] regarding the sequence of C. freundii MTCC 1658 that had 10 rRNA operons or in the results from Bai et al. [31] that found in C. freundii CF72 and CF74 8 rRNA operons. Previous studies have shown that genomic changes do occur in natural bacterial populations [80,81]. However, the majority of these are deleterious and as a result, only a very small proportion of the bacterial population undergoing genomic changes may survive under specific natural selection pressure [80,81].

One interesting question that remains unanswered is what triggers such changes in the chromosomal synteny and what is its biological importance. The conclusions from the current study...
Figure 5. Mutation frequencies. Mutation frequencies for each of the 30 positions in 8 genes of 5 strains are shown. The isolates with the greatest number of mutations were B_2 and B_{10}, which presented the most diversified genotype, and the genes with the greatest number of mutations were \(\text{adk} \), \(\text{icd} \) and \(\text{recA} \).

doi:10.1371/journal.pone.0074120.g005
suggest that the bacteria were placed under thermal stress, which acted as a selective pressure, leading to the selection of some mutations that enhanced survival in such a specific environment, which in turn led to genomic diversification and special genomic structure that adapted better to the local environmental setting [90]. Recently, Cia et al. [92] showed the biological importance of this type of genomic rearrangement in S. aureus strains. They demonstrated that a large-scale inversion of the chromosome triggers the bacterial phenotype “on-off switch”, including colony morphology, antibiotic susceptibility, and the expression of dozens of genes.

On analysing the sequences of the eight housekeeping genes from the isolates, an astounding genetic diversity was found from a single clone. Moreover, the majority of the point mutations were synonymous, meaning that most of them did not change the enzyme function. This provided clear evidence of selective constraint on amino acid replacements. However, some of these mutated genes produced diversity in genotypes, some of which are closer (but not equal) to the genotypes of the Salmonella genus. This large quantity of mutations could only be explained by a hyper-mutant genotype induced and maintained by repair systems, such as SOS [83–85] and the DNA mismatch repair system (MMR) [86]. The MMR system is well known for its role in maintaining genetic stability, but defects in this system lead to high mutability. Bacteria having defects in MMR are mutators or hypermutator cells, which have elevated rates of spontaneous mutation and recombination enabling a diversity of mobile DNA to be incorporated into the genome. The MMR system in particular has been widely studied in Salmonella Typhimurium [86–89]. The results show that the conversion of mutL gene between functional and defective alleles through the deletion of one of the three tandem 6 bp repeats within the gene sequence (via slipped-strand mispairing) may act as a genetic switch between genetic stability and a mutability state [87–89]. However, a hyper-mutation state may be temporary, leading to genomic diversification. The repetitive structure within the sequence of mutL enables it to function as a genetic “on-off” switch at a population level by the selection of existing cells possessing the favorable traits, which may allow return to the original wild-type phenotype [87–89]. Additionally, in Salmonella Typhimurium, a hyper-mutability state, as well as prophage/phage flux plays an important role in offspring diversity. Such a state is also related to nutritional function loss, as well as shifts to alternative biochemical pathways and colony morphology diversity [80,89].

All of the genes involved in SOS responses (recA, lexA) and the MMR system (mutS, mutL, mutH) are found in the genomes of Citrobacter species that have been sequenced to date. The information of corresponding genes was compiled from the respective published genome sequences. These data are relevant, since the presence of such systems in C. freundii may explain the rapid and large number of accumulated mutations, as well as diversification within just a few generations.

Diversity in the 16S rRNA gene within a species has already been observed [90–95]. In V. vulnificus [91,92], this heterogeneity can be related to virulence, while in Bacillus [93] the existence of some specific nucleotides in the 16S rRNA gene is related to the capacity to grow at both low and high temperatures. In Aeromonas spp. [94], a range of diversity between 96.7% and 100% has been reported, while in clinical strains of S. anginosus [95], micro-heterogeneity has been related to the phenotypic characteristics and the adaptation of the organism to different niches. Unfortunately, in the current study, it was not possible to relate the observed micro-heterogeneity in the sequences of 16S rRNA of C. freundii and its derivative isolates to any phenotypic characteristic or function.

The phylogenetic analysis of C. freundii showed that although this species was grouped in one cluster, it seemed to be more diverse and dynamic than the Salmonella and E. coli clades. In fact in this clade, C. youngae and Citrobacter sp. clustered too, but C. rodentium and C. koseri did not and were more distantly related. Therefore, these data indicate that Citrobacter is a polyphyletic genus. In general, these results were consistent with those previously reported [29] with some differences in the clonal relationship between C. freundii and Salmonella sp., probably due to the analysis including more C. freundii strains in the current study. In addition, the results from the analyses of Maximum Likelihood of the FMI108327/P and its derivative isolates reveal the hybrid nature of these genotypes (Figure 3). Moreover, in the concatenated tree (Figure 3); even though the haplotypes clustered within the C. freundii branch, they were located in an intermediate gradient between the Citrobacter and Salmonella clades. Finally, and in order to verify the presence of hybrid genotypes among the isolates, these sequences were analysed using the linkage model of Bayesian clustering algorithm “STRUCTURE”. The “STRUCTURE” (Figure 4) analysis also supported the existence of this hybrid group. In general, moving towards the interior of the Citrobacter group, each strain was very heterogeneous, showing that some of their alleles were imported from other species [96]. Thus, this finding could explain the hybrid nature of this genetic pool as a result of convergence with other enterobacteria, a phenomenon that seems to be common in enteric bacteria, which are seen to be dynamic entities [97]. For example, in C. rodentium, E. coli or S. typhi, and S. paratyphi, this phenomenon has been demonstrated in terms of their process of pathogenesis due to the high frequency of genetic interchange, although in all cases an immediate common ancestry does not exist [29,90].

In studies that had analysed phenotypic variation mechanisms, it has been shown that certain bacterial species can shape their phenotype in two or more stable states depending on the environment [2,4]. The results from the current study opens the discussion further and questions if the phenotypic variation mechanisms, chromosomal rearrangements, large accumulation of mutations and genomic flux may enable a bacterial population to overcome the barriers that exists at the species level and generate new genotypes that, due to convergence, are closer to other species. Alternatively, it may be that atypical C. freundii strains exhibit different genotypic varieties of the same species co-existing in a stable way in the same time frame but expressing different phenotypes that are dependent on external environmental factors in which they are living.

Further work is needed to validate some of the hypotheses outlined in this paper. It is necessary to demonstrate the dynamics that the bacteria follow in the diversification study in order to analyse population genetics in a representative sample of the isolates that were obtained in the phenotypic study.

In addition, the genome sequence and a genomic and transcriptomics approximation of some of the lineages from the phenotypic variation study should be carried out. Furthermore, more atypical C. freundii strains should be included in order to determine if these characteristics are specific to the strain or if it is a wider-ranging genus. This would be important for providing details of genetic events to improve understanding of the dynamics and mechanisms that shape the structure of genomes, the processes related to divergence, convergence and diversification, their biological importance, and in particular, in bacterial evolution and species boundaries.

Another important consideration is the clinical implications of isolate C. freundii strains with these genetic rearrangements and
Supporting Information

Figure S1 Posterior probability of the number of genetic pools inferred by \(\text{STRUCTURE} \). The optimal value was \(K = 4 \) by comparing the posterior probabilities of the data given each value of \(K \) from 2 to 8.

(TIFF)

Figure S2 PCR products of the adaptive genes \(cadA \) and \(lacY \). a) PCR products of \(cadA \) gene. Lanes: 1. \(\text{S. Typhimurium LT2} \), 2. \(\text{C. freundii} \) E9750 NCTC, 3. \(\text{FMU108327/A1} \), 4. \(\text{FMU108327/A10} \), 5. DNA ladder 100 bp, 6. \(\text{FMU108327/B1} \), 7. \(\text{FMU108327/B2} \), 8. \(\text{FMU108327/B10} \), 9. \(\text{C. freundii} \) FMU108327/P. b) PCR products of \(lacY \) gene. Lanes: 1 and 9. DNA ladder 100 bp, 2. \(\text{C. freundii} \) FMU108327/P, 3. \(\text{FMU108327/A1} \), 4. \(\text{FMU108327/A10} \), 5. \(\text{FMU108327/B1} \), 6. \(\text{FMU108327/B2} \), 7. \(\text{FMU108327/B10} \), 8. \(\text{C. freundii} \) E9750 NCTC and 10. \(\text{S. Typhimurium LT2} \).

References

1. Retchless AC, Lawrence JG (2007) Temporal fragmentation of speciation in bacteria. Science 317: 1093–1096.
2. Hallet B (2001) Playing Dr Jekyll and Mr Hyde: combined mechanisms of phase variation in bacteria. Curr Opin Microbiol 4: 570–581.
3. Veenin JW, Smits WK, Kuipers OP (2006) Bistability, epigenetics, and bet-hedging in bacteria. Annu Rev Microbiol 60: 193–210.
4. Smits WK, Kuipers OP, Veenin JW (2006) Phenotypic variation in bacteria: the role of feedback regulation. Nat Rev Microbiol 4: 259–271.
5. Dobrindt U, Hacker J (2001) Whole genome plasticity in pathogenic bacteria. Curr Opin Microbiol 4: 550–557.
6. Sheppard SK, McCarthy ND, Falush D, Maiden MCJ (2008) Convergence of Campylobacter species: implications for bacterial evolution. Science 320: 237–239.
7. Farmer JJ III (1981) The genus Citrobacter. In: Starr M, Stolp H, Trüper HG, Balows A, Schlegel HG editors. The prokaryotes. Springer-Verlag, pp. 1140–1147.
8. Gildorith MJR (1995) Enterobacteriaceae: opportunistic pathogens and other genera. In: Murray PR, Baron EJ, Pfaller MA, Tenover FC, Yolken RH editors. Manual of clinical microbiology 6th edition. ASM press. pp. 457–464.
9. Ewing WH (1986) The genus Citrobacter. In: Edwards and Ewing’s Identification of Enterobacteriaceae. Elsevier Science Publishing Co. pp. 341–364.
10. Sedlak J (1973) Present knowledge and aspects of Citrobacter. Curr Top Microbiol Immunol 62: 41–59.
11. Brenner DJ, Grimont PAD, Steigerwalt AG, Fanning GR, Ageron E, et al. (1993) Classification of Citrobacteria by DNA hybridization: designation of Citrobacter freundii sp. nov., Citrobacter youngei sp. nov., Citrobacter braakii sp. nov., Citrobacter wermerianii sp. nov., Citrobacter sedlakii sp. nov., and three unnamed Citrobacter genomospecies. Int J Syst Bacteriol. 43: 645–658.
12. Betterlema KA, Evangelidis H, Pearce JL, Sowers E, Strockbine NA (1993) Isolation of a Citrobacter freundii strain which carries the Escherichia coli O157 antigen. J Clin Microbiol 31: 760–761.
13. Charl H, Willshaw GA, Cheasty T, Rowe B (1993) Structure and antigenic properties of Citrobacter freundii lipopolysaccharides. J Appl Bacteriol 74: 583–587.
14. Vinogradov E, Coulan JW, Perry MB (2000) Serological cross-reaction between the lipopolysaccharide O-poly saccharide antigens of Escherichia coli O137: H7 and strain of Citrobacter freundii and Citrobacter sedlakii. FEMS Microbiol Lett 190: 157–161.
15. Nishihara Y, Dodge M, Hotta H, Kobayashi K (2000) Structure and serologic properties of O-specific polysaccharide from Citrobacter freundii possessing cross-reactivity with Escherichia coli O157: H7. FEMS Immunol Med Microbiol 20: 163–171.
16. Samuel G, Hogbin JP, Wang L, Reeves PR (2004) Relationships of the Escherichia coli O157: O111 and O55 O-antigen gene clusters with those of Salmonella enterica and Citrobacter freundii, which express identical O antigens. J Bacteriol 186: 6536–6543.
17. Ou JT, Baron LS, Rubin FA, Kopecko DJ (1988) Specific insertion and deletion sequence 1-like DNA element causes the reversible expression of the virulence capsular antigen Vi of Citrobacter freundii in Escherichia coli. Proc Natl Acad Sci U S A 85: 4402–4405.
18. Guarino A, Gianella R, Thompson MR (1989) Citrobacter freundii produces an 18-amino-acid heat stable enterotoxin identical to the 18-amino-acid Escherichia coli heat stable enterotoxin (ST-1a). Infect Immun 57: 649–652.
19. Deutscher TL (1999) The role of Citrobacter in clinical disease of children: Review. Clin Infect Dis 28: 304–309.
20. Hess P, Ahlenštíhř A, Khan AS, Daryah N, Kim KS, et al. (2004) A Salmonella fim homologue in Citrobacter freundii mediates invasion in vitro and crossing of the blood-brain barrier in the rat pop model. Infect Immun 72: 5290–5297.
21. Pereira AL, Silva TN, Gomes A, CMM, Araujo AGC, Gaiatlano LG (2010) Diarrhoea-associated biofilm formed by enterotoaggregative Escherichia coli and aggregative Citrobacter freundii: a consortium mediated by putative F pil. BMC Microbiol 10: 57–74. Available: http://www.biomedcentral.com/1471-2180/10-57. Accessed 2013 Aug 5.
22. Cosa JH, Steigervelt AG, Fanning GR, Brenner DJ (1974) Polynucleotide sequence divergence in the genus Citrobacter. J Gen Microbiol 83: 271–282.
23. Bahnash JM, Fulton MD, Jiron J (1965) Lactose and sulfate reactions of an aberrant Salmonella strain. J Bacteriol 89: 239.
24. Kunz LJ, Ewing WH (1965) Laboratory Infection with a lactose-fermenting strain of Salmonella typhii. J Bacteriol 89: 1629.
25. Gonzalez AB (1966) Lactose-Fermenting Salmonella. J Bacteriol 91: 1661–1662.
26. Le Minor L, Goyaauch C, Pesooa G (1974) Plasmid determinants of the atypical “lactose positive” character in “S. typhimurium” and “S. oranienburg” isolates from epidemic in Brazil, 1971–1973. Ann Microbiol (Paris) 125A: 261–285.
27. Garcia MM, Vázquez V (1985) Salmonella lactosa positiva. Acta Pediatr Mex 6: 68–70.
28. Usea MA, Ercheita A, Aladortia A, Blanco MC, Reynundo R, et al. (1996) Intergeneric foodborne salmonellosis outbreak due to powered infant formula contaminated with lactose-fermenting Salmonella Virchow. Eur J Epidemiol 12: 377–381.
29. Petty NK, Belgin R, Cargar VN, Cerdello-Tarraga AM, Schroeder GN, et al. (2010) The Citrobacter rodentium sequence reveals convergent evolution with human pathogenic Escherichia coli. J Bacteriol 192: 525–538.
30. Petty NK, Feltwell T, Pickard D, Clare S, Torobia AL, et al. (2011) Citrobacter rodentium is an unstable pathogen showing evidence of significant genomic flux. PLoS Pathogens 7(4): e1002018. doi:10.1371/journal.ppat.1002018.
31. Bai L, Xia Sh, Lan R, Liu L, Ye Ch, et al. (2012) Isolation and characterization of Citrobacter freundii. PLoS ONE 7(3): e33054. doi:10.1371/journal.pone.0033054.
32. Cravdito A, Reyes RE, Ortega R, Fernandez G, Hernandez R, et al. (1988) Prospective study of diarrheal disease in a cohort of rural Mexican children: incidence and isolated pathogens during the first two years of life. Epidemiol Inf 105: 1–11.
33. Cravdito A, Reyes RE, Trujillo F, Uribe F, Vazquez V, et al. (1990) Risk of diarrheea during the first year of life associated with initial and subsequent colonization by specific enteropathogens. Am J Epidemiol 131: 886–904.
Deceased

34. Gilligan PH, Janda JM, Karchma MA, Miller JM (1992) Laboratory diagnosis of bacterial diarrhea. In: Nofte F Coordinating Editor. Cumitech 12A. ASM Press.

35. Flores M, Gonzalez V, Brom S, Martinez E, Pihueto D, et al. (1987) Reiterated DNA sequences in Rhizobium and Agrobacterium spp. J Bacteriol 169: 5762–5789.

36. Flores M, Gonzalez V, Paro MA, Leija A, Martinez E, et al. (1988) Genomic Instability in Rhizobium phaseoli. J Bacteriol 170: 1191–1196.

37. Liu S, Hessel A, Sanderson KE (1993) Genomic mapping with I-Ceu I, an intron-encoded endonuclease specific for genes for ribosomal RNA, in Salmonella spp., Eichschizia coli, and other bacteria. Proc Natl Acad Sci U S A 90: 6874–6878.

38. Liu SL, Hessel A, Sanderson KE (1995) The Xba-Ins II linkage map of Salmonella typhimurium LT2 determined by double digestion, end labeling, and pulsed gel electrophoresis. J Bacteriol 175: 4101–4120.

39. Sambrook J, Frisch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratop Press. pp. 9.3–9.40.

40. Reid SD, Selandar RK, Whitman TS (1999) Sequence Diversity of flagellin (flaG) alleles in pathogenic Enterobacteriaceae. J Bacteriol 181: 153–160.

41. McClelland M, Sanderson KE, Spieih J, Clifton SW, Latrelle P, et al. (2001) Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413: 582–6.

42. Murray MG, Thompson WF (1994) Miniprep of bacterial genomic DNA. In: Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press. pp. 9.31–9.40.

43. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular evolutionary biology software version 4.0. Mol Biol Evol 24: 1596–1599.

44. Wu KY, Liu GR, Liu WQ, Wang AQ, Zhan A, et al. (2003) The genome of Salmonella enterica serovar Gallinarum: distinct insertions/deletions and rare reassignments. J Bacteriol 185: 4720–4727.

45. Liu SL, Sanderson KE (1996) Highly plastic chromosomal organization in Salmonella enterica serovar Typhi strains isolated from asymptomatic human carriers. MBio 2(3): e00060–11. doi: 10.1128/mBio.00060-11.

46. Helm RA, Lee AG, Christman HD, Maloy S, et al. (2004) Pigment-associated strains of Salmonella enterica serovar Typhi are related to Salmonella Typhi with rRNA operons at rrn D and other rrn loci. Proc Natl Acad Sci U S A 99: 10303–10308.

47. Liu SL, Schryvers AB, Sanderson KE, Johnston RN (1999) Bacterial phylogenetic clusters revealed by genome structure. J Bacteriol 181: 6747–6755.

48. Held RA, Porwikel S, Stanley AE, Maloy S, McClelland M, et al. (2004) PIG-pigment-associated strains of Salmonella enterica serovar Typhi phage type DT2 have genomic reassignments at rRNA operons. Infect Immun 72: 7338–7341.

49. Wu KY, Liu GR, Liu WQ, Wang AQ, Zhan A, et al. (2003) The genome of Salmonella enterica serovar Gallinarum: distinct insertions/deletions and rare reassignments. J Bacteriol 185: 4720–4727.

50. Matthews TB, Radich W, Maley S (2011) Chromosomal rearrangements in Salmonella enterica serovar Typhi strains isolated from asymptomatic human carriers. MBio 2(3): e00060–11. doi: 10.1128/mBio.00060-11.

51. Posada D (2008) jModelTest: Phylogenetic model averaging. Mol Biol Evol 25: 1255–1256.

52. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24: 1596–1599.

53. Wu KY, Liu GR, Liu WQ, Wang AQ, Zhan A, et al. (2003) The genome of Salmonella enterica serovar Gallinarum: distinct insertions/deletions and rare reassignments. J Bacteriol 185: 4720–4727.

54. Wu KY, Liu GR, Liu WQ, Wang AQ, Zhan A, et al. (2003) The genome of Salmonella enterica serovar Gallinarum: distinct insertions/deletions and rare reassignments. J Bacteriol 185: 4720–4727.

55. Wu KY, Liu GR, Liu WQ, Wang AQ, Zhan A, et al. (2003) The genome of Salmonella enterica serovar Gallinarum: distinct insertions/deletions and rare reassignments. J Bacteriol 185: 4720–4727.

56. Bayliss CD (2009) Determinants of phase variation rate and the fitness implications of differing rates for bacterial pathogens and commensals. FEMS Microbiol Lett 295: 257–262.

57. Van der Woude MW (2011) Phase variation: how to create and coordinate large-scale chromosome rearrangements in S. enterica and S. flexneri. FEBS Microbiol Lett 187: 93–98.

58. Holland FR, Packard CG, Reichenbach US, Fitzpatrick DE, et al. (1998) Determinants of phase variation rate and the fitness implications of differing rates for bacterial pathogens and commensals. FEMS Microbiol Lett 187: 93–98.

59. Holland FR, Packard CG, Reichenbach US, Fitzpatrick DE, et al. (1998) Determinants of phase variation rate and the fitness implications of differing rates for bacterial pathogens and commensals. FEMS Microbiol Lett 187: 93–98.

60. Thomson NR, Clayton DJ, Windhorst D, Vernikos G, Davidson S, et al. (2008) Resurgent Vibrio cholerae O139: rearrangements of cholera toxin genetic elements and amplification of mAm operon. Infect Immun 67: 148–154.

61. Hill CW (1999) Large genomic sequence replications in bacteria: lessons from rRNA operons and ribosomal elements. Res Microbiol 150: 465–474.

62. Teyssier C, Marchandin H, De Boochs MS, Ramuz M, Jumas-Bilak E (2003) Anytical 16S rRNA gene copies in Ochrobactrum intermedium reveal a large genomic rearrangements by recombination between mAm copies. J Bacteriol 185: 2901–2906.

63. Yap MN, Barak JD, Charkowski AO (2004) Genomic diversity of Escherichia coli O157:H7. J Bacteriol 186: 503–506.

64. Steinberg GD, Eisenstark A, Johnston RN (2003) Multiple genome rearrangements and possible roles in bacterial adaptation. Genomics 80: 569–574.

65. Wu KY, Liu GR, Liu WQ, Wang AQ, Zhan A, et al. (2003) The genome of Salmonella enterica serovar Gallinarum: distinct insertions/deletions and rare reassignments. J Bacteriol 185: 4720–4727.

66. Wu KY, Liu GR, Liu WQ, Wang AQ, Zhan A, et al. (2003) The genome of Salmonella enterica serovar Gallinarum: distinct insertions/deletions and rare reassignments. J Bacteriol 185: 4720–4727.

67. Wu KY, Liu GR, Liu WQ, Wang AQ, Zhan A, et al. (2003) The genome of Salmonella enterica serovar Gallinarum: distinct insertions/deletions and rare reassignments. J Bacteriol 185: 4720–4727.
93. Prüß BM, Francis KP, von Stetten F, Scherer S (1999) Correlation of 16S ribosomal DNA signature sequences with temperature-dependent growth rates of mesophilic and psychrotolerant strains of *Bacillus cereus* group. J Bacteriol 181: 2624–2630.

94. Alperi A, Figueras MJ, Inza I, Martinez-Murcia AJ (2008) Analysis of 16S rRNA gene mutations in subset of *Aeromonas* strains and their impact in species delineation. Int Microbiol 11: 183–194.

95. Clarke JE 3rd (2004) Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin Microbiol Rev 17: 840–862.

96. den Bakker HC, Didelot X, Nightingale KK, Wiedmann M (2008) Lineage specific recombination rates and microevolution in *Listeria monocytogenes*. BMC Evol Biol 8: 277.

97. Retchless AC, Lawrence JG (2010) Phylogenetic incongruence arising from fragmented speciation in enteric bacteria. Proc Natl Acad Sci U S A 107: 11453–11458.

98. Liu WQ, Feng Y, Wang Y, Zou QH, Chen F, et al. (2009) *Salmonella paratyphi* C: Genetic divergence from *Salmonella choleraesuis* and pathogenic convergence with *Salmonella typhi*. PLoS One 4(2): e4510. doi:10.1371/journal.pone.0004510.

99. Kucerova E, Clifton SW, Xia XQ, Long F (2010) Genome sequence of *Cronobacter sakazakii* BAA-894 and comparative genomic hybridization analysis with other *Cronobacter* species. PLoS One 5(3): e9556. doi: 10.1371/journal.pone.0009556.

100. Johnson TJ, Kariyawasam S, Wannemuehler Y, Mangiamele P, Johnson SJ, et al. (2007) The genome sequence of avian pathogenic *Escherichia coli* strain O1:K1: H7 shares strong similarities with human extraintestinal pathogenic *E. coli* genotypes. J Bacteriol 189: 3228–36.

101. Welch RA, Burland V, Plunkett G 3rd, Redford P, Roesch P, et al. (2002) Extensive mosaic structure revealed by the complete genome sequence of uropathogenic *Escherichia coli* O157: H7. Nucleic Acids Res 30: 4432–41.

102. Makino K, Yokoyama K, Kubota Y, Yutsudo CH, Kimura S, et al. (1999) Complete nucleotide sequence of the prophage VT2-Sakai carrying the verotoxin 2 genes of the enterohemorrhagic *Escherichia coli* O157: H7 derived from the Sakai outbreak. Genes Genet Syst 74(5): 227–39.

103. Rasko DA, Rosovitz MJ, Myers GS, Mongodin EF, Fricker WF, et al. (2008) The pan-genome structure of *Escherichia coli* comparative genomic analysis of *E. coli* commensal and pathogenic isolates J Bacteriol 190(20): 6831–93 doi: 10.1128/JB.00702-08.

104. Ogura Y, Ooka T, Iguchi A, Toh H, Asashigihani M, et al. (2009) Comparative genomics reveal the mechanism of the parallel evolution of O157 and non-O157 enterohemorrhagic *Escherichia coli*. Proc Natl Acad Sci U S A 106: 17939–44. doi: 10.1073/pnas.0903585106.

105. Fouts DE, Tyler HL, DeBoy RT, Daugherty S, Ren Q, et al. (2008) Complete genome sequence of the N2-fixing broad host range endophyte *Klebsiella pneumoniae* 342 and virulence predictions verified in mice. PLoS Genet 4(7): e1000141 doi: 10.1371/journal.pgen.1000141.

106. Wu KM, Li LH, Yan JJ, Tsao N, Liao TL, et al. (2009) Genomic sequencing and comparative analysis of *Klebsiella pneumoniae* NTUH-K2044, a strain causing liver abscess and meningitis. J Bacteriol 191: 4492–501 doi: 10.1128/JB.00315-09.

107. Yang F, Yang J, Zhang X, Chen L, Jiang Y, et al. (2005) Genome dynamics and diversity of *Shigella* species, the etiologic agents of bacillary dysentery. Nucleic Acids Res 33: 6415–50.

108. Jin Q, Yuan Z, Xu J, Wang Y, Shen Y, et al. (2002) Genome sequence of *Shigella flexneri* 2a: insights into pathogenicity through comparison with genomes of *Escherichia coli* K12 and O157. Nucleic Acids Res 30: 4432–41.

109. Fricker WF, Mammel MK, McDermott PF, Tartera C, White DG, et al. (2011) Comparative genomics of 28 *Salmonella enterica* isolates: evidence for CRISPR-mediated adaptive sublineage evolution. J Bacteriol 193: 3556–68. doi: 10.1128/JB.00297-11.

110. Holt KE, Thomson NR, Wain J, Langridge GC, Hasan R, et al. (2009) Pseudogene accumulation in the evolutionary histories of *Salmonella enterica* serovars Paratyphi A and Typhi. BMC Genomics 10: 36. doi: 10.1186/1471-2164-10-36.

111. Catedro I (1989) Estudios de patogenicidad en *Citrobacter ssp.* Bachelor in science thesis. Universidad Nacional Autónoma de México.

112. Selander RK, Caugant DA, Ochman H, Musser JM, Gilmour MN, et al. (1986) Methods of multilocus enzyme electrophoresis for bacterial population genetics and system. Appl Environ Microbiol 51: 873–814.

113. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M, editors. *Nucleic acid techniques in bacterial systematic*. Chichester Wiley pp. 115–175.