Histone deacetylases (HDACs) are essential catalytic components of the transcription silencing machinery and they play important roles in the programming of multicellular development. HDACs are present within multisubunit protein complexes, other components of which govern HDAC target gene specificity by controlling interactions with sequence-specific DNA-binding proteins. Here, I review the different developmental roles of the Sin3, NuRD, CoREST and NCoR/SMRT Class I HDAC complexes. With their distinct subunit composition, these versatile molecular devices function in many different settings, to promote axis specification and tissue patterning, to maintain stem cell pluripotency, facilitate self-renewal, guide lineage commitment and drive cell differentiation.

Introduction
The machinery responsible for determining the transcriptional status of genes during development includes proteins that covalently modify core histones by acetylation or methylation of amino acids in their N-terminal domains. Acetylated histones recruit bromodomain transcription activators, whilst methylated histones recruit a variety of chromatin regulators, including chromodomain and PHD domain proteins. Acetylation marks are removed by histone deacetylases (HDACs), whereas histone demethylases are responsible for removing methyl marks from histones. HDACs can be grouped into structurally distinct Groups I, II, III and IV [1]. This review focuses on the known developmental functions of the closely related Class I HDACs, HDAC1, HDAC2 and HDAC3, all of which are related to the Saccharomyces cerevisiae HDAC Rpd3. HDAC8 is an additional Class I member, but its roles in development remain to be elucidated.
In *Drosophila*, Rpd3/HDAC1 is recruited to segmentation genes by Bicoid and Pair-rule transcription factors. Repression of *hunchback* transcription in the head region by Bicoid is strictly dependent on the SIN3 component SAP18, and maternal-zygotic *sap18* mutant embryos exhibit severe head defects as well as segmentation abnormalities [5]. Recessive mutations in Rpd3/hdac1 are also embryonic lethal when homozygous and maternal-zygotic Rpd3 mutant embryos exhibit a pair-rule segmentation phenotype that is characterised by the variable loss of stripes of engrailed expression in even-numbered segments, consistent with a loss of Eve function [6]. Interestingly, the chick homologue of the pair-rule transcription factor Hairy, Hairy1, interacts with the Sin3 complex through direct binding to SAP18 [7]. Consistent with this finding, all three components of the Hairy1–Sin3–SAP18 complex are expressed in both presomitic mesoderm and newly formed somites, suggesting that the Sin3 complex represses Hairy1 target genes during segmentation of the paraxial mesoderm. Downstream of segmentation, an additional role for the *Drosophila* Sin3-associated Rpd3 in the specification of segmental identity was revealed by experiments demonstrating that the *Fab-7* cis-regulatory element in the Bithorax complex represses the homeotic gene *Abd-B* through interactions between the Sin3–SAP18–Rpd3 complex and the *Fab-7*-bound GAGA factor [8]. Taken together, these studies suggest that Sin3 complexes are involved both in programming gene expression that is dependent on intercellular signalling activities and in maintaining long-term cell fate decisions which are executed downstream or independently of such signals.

Nucleosome remodelling and deacetylase (NuRD) complex

The core components of the NuRD complex are HDAC1, HDAC2, RbAp46, RbAp48, the nucleosome remodelling ATP-ase Mi-2 (CHD-3/4), MBD3 and the SANT-domain-containing proteins MTA-1/2 [1*]. Many of these subunits are highly conserved between *C. elegans* and *D. melanogaster* and are expressed throughout the embryo. The NuRD complex is also conserved in vertebrates, where it is composed of HDAC1, HDAC2, RbAp46, RbAp48, Mi-2 and SANT-domain-containing proteins. The NuRD complex is involved in a variety of cellular processes, including gene expression, chromatin remodelling and cell cycle regulation.

Table 1

Complex	C. elegans	D. melanogaster	Vertebrates
Sin3	HDA-1	RPD3	HDAC1, HDAC2
	RBA-1, p55	RbAp46, RbAp48	
	LIN-53		
SIN-3	Sin3	Sin3A	
MAB-21	mab-21	mab21L1, mab21L2	
	Sds3	Sds3, BRMS1, RBP1	
SAP18	Bin1	SAP18	SAP30, ING1/2
Mi2/NuRD	HDA-1	RPD3	HDAC1, HDAC2
	RBA-1, p55	RbAp46, RbAp48	
LET-418	Mi-2	Mi-2α, Mi-2β	
CHD-3	Atrophin?	MTA1, MTA-2, Atrophin-2?	
MEP-1	MB2/3, p66	MB3	p66α, p66β
	CG1244		
CoREST	HDA-1	RPD3	HDAC1, HDAC2
	SPR-1	CoREST	CoREST
	SPR-5, REST	Hdm	LSD1
	SPR-3,		
	SPR-4		
	DIN-1	Spen	SHARP
			BHCB0
			SIN3
SMRT/NCr	HDAC3	HDAC3	
	SMRTER	SMRT/NCr	
	Ebi	TBL1, TBL1R	
		GPS2	
		JMJD2A	

Putative orthologues without functional data are indicated in italics.

Figure 1

A possible model for DBL-1/BMP-4-induced transcriptional repression. (a) BMP signalling leads to the phosphorylation of Smad1, which complexes with Smad4. (b) Phospho-Smad1–Smad4 dimers bind to MAB-21 in the nucleus and this complex mediates the recruitment of Sin3A/HDAC1 to DNA-bound transcription factors at target genes, resulting in gene repression.
species and functional studies reveal the roles for NuRD in regulating cell fate in a wide range of model organisms.

In C. elegans, NuRD components have important functions in the regulation of vulval development. The phenotypes, interactions and molecular identities of an important class of vulval mutant genes, the synMuv class, indicate that the NuRD complex, along with other chromatin regulatory proteins, regulates the adoption of vulval fate by vulval precursor cells (VPCs) [9]. Vulval fate is induced in VPC by the binding of the anchor-cell (AC)-derived LIN-3/EGF signalling molecule to its receptor on the VPCs that lie close to the AC. Binding of LIN-3/EGF to its receptor activates the EGF/RTK/Ras signalling pathway in VPCs, which causes phosphorylation of the LIN-1/ETS transcription factor and activation/derepression of vulval genes such as lin-39 (Figure 2a). In several different synMuv mutant genotypes, the EGF/RTK/Ras pathway is activated in more than the normal number of VPC, thus leading to a Multivulva phenotype. This ectopic pathway activation is thought to occur, at least partly, via the derepression of LIN-1/ETS target genes such as lin-39 in VPCs [9]. Remarkably, many synMuv mutations lie in genes encoding chromatin regulators, including core NuRD components such as HDAC-1 (hda-1), RbAp48 (lin-53) and Mi-2 (let-418, chd-3) [9-15]. Studies of these genes suggest that NuRD likely acts in VPC to repress targets such as lin-39, in collaboration with the LIN-1/ETS transcription factor [14,15].

Further molecular analysis in C. elegans has also identified other proteins that interact with NuRD in transcriptional repression in VPC, such as MEP-1, a zinc finger protein which binds to LET-418/Mi-2 and HDA-1/Hdac1 [16]. The importance of the MEP-1 DNA-binding protein in NuRD-mediated repression of LIN-3/EGF was revealed by the discovery that LIN-1 is sumoylated and that this modification promotes an interaction with MEP-1, thus stabilising NuRD activity on LIN-1 target promoters [17*] (Figure 2b). Intriguingly, HDAC-1 is sumoylated in C. elegans and both SUMO and the E2 SUMO ligase UBC9 are members of the synMuv group [18**]. Moreover, mammalian HDAC1 is also sumoylated, and sumoylation of the EGF/RTK/Ras-responsive ETS transcription factor Elk-1 confers a Class I-HDAC-dependent transcriptional repressor function to Elk-1 [19]. However, the phosphorylation of Elk-1 or LIN-1 disrupts the transcriptional repressor complex and derepresses cognate target genes (Figure 2c), which, for LIN-1, can account for the LIN-3-inducibility of vulval fate in VPC. Taken together, these parallel observations in worms and mammals suggest that Class I HDACs within the NuRD complex repress EGF/RTK/Ras target genes by a SUMO-regulated mechanism such that the target promoters remain poised for activation by EGF/RTK/Ras signalling.

In vertebrates, the NuRD components MTA-1 and MTA-2 harbour conserved protein motifs known as SANT domains, which are also found in the C. elegans proteins EGL-27 and LIN-40/EGR-1 [20–22], and the members of the Atrophin protein family [23]. The Drosophila orthologue of Atrophin binds to and promotes the activity of HDAC1 and HDAC2 via its SANT domains [24], but it is not known whether other NuRD components also associate with Atrophin. Nevertheless, like NuRD components in the C. elegans vulva, Drosophila Atrophin negatively regulates the EGF/RTK/Ras pathway to control cell fate in the eye and wing imaginal discs, in co-operation with the ETS protein Yan, at least in part.
by repressing the EGF target gene (and Notch Ligand) Delta [25]. The derepression of Delta in Atrophin mutants also parallels the derepression of the C. elegans Notch ligand gene lag-2 observed in hda-1 and other synMuv mutants [13].

In zebrafish, both HDAC1 and Atrophin-2 are required for the development of multiple organs and tissues, including the CNS, optic and otic vesicles, pharyngeal arches, neural-crest-derived melanophores and pectoral fins [26–33]. Atrophin-2 interacts genetically with the FGF signalling pathway in the CNS, mesoderm and endoderm [33]. Hdac1 also functions in the CNS, where it antagonises the Notch and Wnt signalling pathways and promotes responsiveness to Hedgehog signalling, thus facilitating cell-cycle exit of neural progenitors and the specification of differentiated neurons and glia [26,27,29,30]. The similarities between the atrophin-2 and the hdac1 mutant phenotypes suggest that they may be components of the same complexes that play many different roles in zebrafish embryogenesis. However, whilst additional roles for zebrafish hdac1 have also been described in Wnt signalling, in liver and pancreas development, and in the repression of foxd3 downstream of mitfα in specification of neural-crest-derived melanoblasts [31,32,34,35], it is currently unknown whether Atrophin-2 is a component of these particular mechanisms.

In mammals, the developmental functions of NuRD have been deduced from the phenotypes of mouse embryos and ES cells lacking Mbd3 function. Mbd3 is essential for early embryogenesis and in culture, Mbd3 mutant blastocysts fail to proliferate [36*]. However, Mbd3 mutant ES cells are viable but unable to silence genes expressed at preimplantation stages and undergo lineage commitment [37]. Thus, Mbd3/NuRD renders ES cells competent for lineage commitment. A novel NuRD-related complex, NODE, has recently been described which lacks the Mbd3 and RbAp46 subunits but instead binds to the pluripotency-determining transcription factors Nanog and Oct4 [38*]. Intriguingly, unlike the loss of mbd3 function, the knockdown of NODE subunits in ES cells derepressed markers of lineage commitment and induced differentiation, suggesting that through its association with Nanog and Oct4 NODE functions in opposition to Mbd3-containing NuRD complexes to maintain ES cell pluripotency [38*].

An emerging theme from the studies of NuRD and Atrophin functions in C. elegans, Drosophila and mammalian cells is that these SANT-domain-containing protein complexes promote the states of competence that enable cells to respond appropriately to fate-inducing signals, thereby regulating the balance between maintenance of progenitor identity and commitment to differentiation.

CoREST complex

In mammalian ES cells, neural progenitors and differentiated non-neuronal cells, the HDAC1/2-containing CoREST complex is recruited by the REST zinc finger protein to RE1 target sites in the promoters of neuronal genes, where it represses transcription [39]. In this complex, DNA-bound REST interacts with Sin3 and CoREST, each of which bind HDAC1/HDAC2 to repress transcription. Like the MTA components of NuRD, the SANT domains of CoREST stimulate HDAC1/HDAC2 activities. In ES and neural stem cells, the HDAC1/HDAC2/CoREST complex also recruits an H3K4 methyltransferase G9a and the H3K4 demethylase LSD1 to the RE1 sites of target genes, which may render these genes refractory to activation [40*] (Figure 3b).

Remarkably, many of the key components of the CoREST complex were identified by genetic analysis in C. elegans as the repressors of the presenilin gene hop-1. Thus, the blockade of Notch pathway activity in the germ-line, by mutation of the sel-12 presenilin gene, was rescued by mutations in spr-1/CoREST, spr-3/REST, spr-4/REST or spr-5/LSD1, each of which independently derepressed the expression of hop-1 [41,42].

Interactions of Class I HDACs with CSL and TCF complexes

Both the Notch and the Wnt signalling pathways can activate target genes by antagonising the functions of bespoke HDAC-containing complexes that are tailored to fit the functions of signal-interpreting DNA-binding proteins. Notch pathway activity is transmitted to target genes by binding of the activated Notch intracellular domain (NICD) to the CBF1/Suppressor of Hairless/LAG-1 (CSL) DNA-binding protein. In the absence of NICD, CSL functions as a repressor of Notch targets and interacts with co-repressor complexes that include Hairless, Groucho, SHARP/Spen, CtBP and SMRT, many of which interact directly with Class I HDACs [43]. Hairless-dependent activities of CtBP and Groucho function in the Drosophila wing imaginal disc to repress transcription of Notch targets such as E(spl)ma and vestigial [44,45]. Like CtBP and Groucho, the SHARP/Spen co-repressor also binds directly to Class I HDACs [46]. Interestingly, Spen both antagonises Notch activity and potentiates EGF/Ras/RTK signalling during the development of the Drosophila eye [47], but the molecular mechanism of this action is not known. In zebrafish hdac1 mutants, the Notch target herb is expressed in the CNS independently of a requirement for Notch signalling [26], but whether this mutation also causes altered EGF/Ras/RTK signalling is unclear. Similarly, the transcriptional status of Wnt target genes is determined by the balance of β-catenin/co-activator and HDAC/Groucho co-repressor activities that are associated with the TCF proteins bound to cognate cis-regulatory elements [48]. The recent
Identification of mutations in the NuRD component and zinc finger protein gene \(p66 \), which modify Wnt signalling in the *Drosophila* wing, provides support for the idea that TCF also mediates NuRD recruitment to target genes [49], although it remains unclear as to whether such a recruitment requires Groucho.

NCoR/SMRT complexes

The SANT-domain-containing co-repressors SMRT, NCoR and SMRTER interact with Class I HDACs in complexes that are tethered to DNA by transcription factors such as the Notch pathway component CSL and nuclear receptors [43,50]. In the mouse, SMRT and NCoR maintain multipotent neural progenitors and inhibit their differentiation into neurons and astrocytes by a mechanism that involves the repression of an H3K27 histone demethylase [51]. In *Drosophila*, SMRTER interacts with the \(\beta \)-propeller protein Ebi/TBL1, which binds to HDAC3 and deacetylates histones associated with Snail target genes, leading to their transcriptional repression in the embryonic mesoderm [52]. The SMRTER–Ebi complex also acts in association with CSL in the *Drosophila* eye imaginal disc, where, intriguingly, it antagonises Notch-mediated activation of *charlatan*, which encodes a homologue of the REST zinc finger protein [53]. In the wing imaginal disc, by contrast, HDAC3 is required for tissue growth and apoptosis suppression [54], which is reminiscent of the recently described function for zebrafish *hdac3* in promoting liver growth [34].

Concluding remarks

Class I HDACs play a rich variety of roles in many developmental processes. The breadth of this functional diversity is reflected in the examples discussed in this review:

1. As components of the Sin3 complex, Class I HDACs stabilise positional identity by repressing segmentation and homeotic genes.
2. As parts of a Sin3 complex that interacts with BMP-regulated Smads1/4, Class I HDACs promote BMP-induced transcriptional repression, thus attenuating transcription activated by positive effectors of BMP signalling.
3. Class I HDACs can repress target genes in order to poise them for activation by a signal-induced transcription factor. In the Notch pathway, the activation of target genes by CSL is rendered Notch-dependent by co-repressor complexes that can include Class I HDACs. In *C. elegans*, mammalian cells and *Drosophila*, HDAC-containing complexes also confer repressive functions to the LIN-1/ETS/Yan transcription factors that are bound to target genes, and their actions are antagonised by signalling input from the EGF/Ras/RTK pathway.
4. As a subunit of NuRD, HDAC1 is a component of the transcriptional repression machinery whose sumoylation confers a repressive function to LIN-1/ETS, suggesting that signalling inputs via SUMO could modulate the co-repressor activity of NuRD.
5. Class I HDACs maintain pluripotency and promote lineage commitment as components of NuRD and NODE. Developmental decision-making in the early mammalian embryo may thus be achieved by altering the balance between the activities of these two deacetylase complexes.
6. Through interactions with CoREST, HDAC1/HDAC2 repress neuronal genes in neural precursors and differentiated non-neuronal cells. Additional interactions with distinct histone methyltransferases and histone demethylases may allow the CoREST
This paper provides a comprehensive introduction to the molecular and

1. genetic landscape within which developmental decisions

how these proteins create the context for interpreting

2. Class I HDAC function will provide further insights into

ongoing investigation of the molecular mechanisms of

3. Baldessari D, Badaloni A, Longhi R, Zappavigna V, Consalez GG:

4. Mannervik M, Levine M:

5. Azorin F, Espinas ML:

6. Cui M, Han M:

7. Chen Z, Han M: C. elegans Rb, NuRD, and Ras regulate lin-39-mediated vulval cell fusion during vulval fate specification. Curr Biol 2001, 11:1874-1879.

8. Dufourcq P, Victor M, Gay F, Calvo D, Hodgkin J, Shi Y: Functional requirement for histone deacetylase 1 in Caenorhabditis elegans gonadogenesis. Mol Cell Biol 2002, 22:3024-3034.

9. Wagmaister JA, Miley GR, Morris CA, Gleason JE, Miller LM, Kornfeld K, Eisemann DM: Identification of cis-regulatory elements from the C. elegans Hox gene lin-39 required for embryonic expression and for regulation by the transcription factors LIN-1, LIN-31 and LIN-39. Dev Biol 2006, 297:550-565.

10. Guerry F, Marti C-O, Zhang Y, Moroni PS, Jaqueney E, Muller F: The Mi-2 nucleosome-remodeling protein LET-418 is targeted via LIN-1/ETS to the promoter of lin-39/Hox during vulval development in C. elegans. Dev Biol 2006, 306:469-479.

11. Unhavaithaya Y, Shin TH, Miliaras N, Lee J, Oyama T, Mello CC: MEP-1 and a homolog of the NURD complex component Mi-2 act together to maintain germline-soma distinctions in C. elegans. Cell 2002, 111:991-1002.

12. Yang X-J, Seto E: The Rpd3 histone deacetylase is required for embryonic patterning. Dev Biol 2001, 248:252-261.

13. Leighton ER, Glossip D, Kornfeld K: Sumoylation of LIN-1 promotes transcriptional repression and inhibition of vulval cell fates. Development 2005, 132:1047-1056.

14. The authors demonstrate that the ETS-domain transcription factor LIN-1 is sumoylated, which promotes transcriptional repression of LIN-1 targets in association with NuRD during vulval development.

15. Poulin G, Dong Y, Fraser AG, Hopper NA, Ahirnger J: Chromatin regulation and sumoylation in the inhibition of Ras-induced vulval development in Caenorhabditis elegans. EMBO J 2005, 24:2613-2623.

16. The authors demonstrate that the NuRD component HDAC-1 is sumoylated in C. elegans and that the components of the sumoylation machinery are required for NuRD function during vulval development.

17. Yang SH, Sharrocks AD: SUMO promotes HDAC-mediated transcriptional repression. Mol Cell 2004, 13:611-617.

18. Solari F, Bateman A, Ahirnger J: The Caenorhabditis elegans genes egl-27 and egr-1 are similar to MTA1, a member of a chromatin regulatory complex, and are redundantly required for embryonic patterning. Development 1999, 126:2483-2494.

19. Herman RA, Ch’ng QL, Hettenbach SM, Ratliff TM, Kenyon C, Herman RK: EGL-27 is similar to a metastasis-associated factor and controls cell polarity and cell migration in C. elegans. Development 1999, 126:1055-1064.

20. Chen Z, Han M: Role of C. elegans lin-40 MTA in vulva fate specification and morphogenesis. Development 2001, 128:4911-4921.

21. Wang L, Rajan H, Pitman JL, McKeown M, Tsai CC: Histone deacetylase-associating Atrophin proteins are nuclear receptor corepressors. Genes Dev 2006, 20:525-530.

22. Wang L, Charroux B, Kerridge S, Tsai CC: Atrophin recruits HDAC1/2 and G9a to modify histone H3K9 and to determine cell fates. EMBO Rep 2008, 9:555-562.

23. Charroux B, Freeman M, Kerridge S, Baonza A: Atrophin contributes to the negative regulation of epidermal growth factor receptor signaling in Drosophila. Dev Biol 2006, 291:278-290.

24. Cunliffe VT: Histone deacetylase 1 is required to repress Notch target gene expression during zebrafish neurogenesis and to maintain the production of motoneurons in response to hedgehog signalling. Development 2004, 131:2983-2995.

25. Cunliffe VT, Casaccia-Bonnefil P: Histone deacetylase 1 is essential for oligodendrocyte specification in the zebrafish CNS. Mech Dev 2006, 123:24-30.

26. Pillar R, Coverdale LE, Dubey G, Martin CC: Histone deacetylase 1 (HDAC-1) required for the normal formation of craniofacial cartilage and pectoral fins of the zebrafish. Dev Dyn 2004, 231:647-654.

Acknowledgements

I am grateful to Philip Ingham for support and encouragement and to Julie Ahringer for constructive criticism of an earlier draft of the manuscript. Research in my laboratory is funded by the MRC, BBSRC and Wellcome Trust.

References and recommended reading

Papers of particular interest, published within the period of review, have been highlighted as:

• of special interest

•• of outstanding interest

1. Yang X-J, Seto E: The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. Nat Rev Mol Cell Biol 2008, 9:206-218.

This paper provides a comprehensive introduction to the molecular and cell biology of Class I histone deacetylases.

2. Kim D-W, Lassar AB: Smad-dependent recruitment of a histone deacetylase/Sin3A complex modulates the bone morphogenetic protein-dependent transcriptional repressor activity of Nkx3.2. Mol Cell Biol 2003, 23:8704-8717.

3. Choy SW, Wong YM, Ho SH, Chow KL: C. elegans SIN-3 and its associated HDAC corepressor complex act as mediators of male sensory ray development. Biochem Biophys Res Commun 2007, 358:802-807.

4. Baldessari D, Badaloni A, Longhi R, Zappavigna V, Consalez GG: MAB21L2, a vertebrate member of the Male-abnormal family modules BMP signaling and interacts with SMAD1. BMC Dev Biol 2004, 4:48.

5. Singh N, Zhu W, Hanes SD: Sap18 is required for the maternal gene bicoid to direct anterior patterning in Drosophila melanogaster. Dev Biol 2005, 278:242-254.

6. Mannevik M, Levine M: The Rpd3 histone deacetylase is required for segmentation in the Drosophila embryo. Proc Natl Acad Sci U S A 1999, 96:6797-6801.

7. Sheeba CJ, Palmeirim I, Andrade RP: Chick hairy1 protein interacts with Sap18, a component of the Sin3/HDAC transcriptional repressor complex. BMC Dev Biol 2007, 7:83.

8. Canudas S, Perez S, Fanti L, Pimpinelli S, Singh N, Hanes SD, Azorin F, Espinas ML: dSAP18 and dHDAC1 contribute to the functional regulation of the Drosophila Fab-7 element. Nucleic Acids Res 2005, 33:4857-4864.

9. Cui M, Han M: Roles of chromatin factors in C. elegans development. Wormbook: The C. elegans Research Community, Wormbook; 2007.

10. Solari F, Ahringer J: NURD-complex genes antagonise Ras-induced vulval development in Caenorhabditis elegans. Curr Biol 2000, 10:223-226.

11. von Zelowsky T, Palladino F, Brunschwig K, Tobler H, Hajnal A, Muller F: The C. elegans mi-2 chromatin remodelling proteins function in vulval cell fate determination. Development 2000, 127:5277-5294.
This paper demonstrates that the histone lysine demethylase LSD1 represses REST target genes in non-neuronal cells, pointing to a link between histone demethylation and REST function in transcriptional repression of REST targets.

41. Eimer S, Lakowski B, Donhauser R, Baumeister R: Loss of spr-5 by passes the requirement for the C. elegans presenlin sel-12 by derepressing hop-1. EMBO J 2002, 21:5787-5796.

42. Lakowski B, Eimer S, Gobel C, Bottcher A, Wagler B, Baumeister R: Two suppressors of sel-12 encode C2H2 zinc finger proteins that regulate presenlin transcription in Caenorhabditis elegans. Development 2003, 130:2117-2128.

43. Bray S: Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol 2006, 7:678-689.

44. Castro B, Barolo S, Bailey AM, Posakony JW: Lateral inhibition in proneural clusters: cis-regulatory logic and default repression by Suppressor of Hairless. Development 2005, 132:3353-3344.

45. Nagel AC, Krejci A, Tenin G, Bravo-Patino A, Bray S, Maier D, Preiss A: Hairless-mediated repression of Notch target genes requires the combined activity of Groucho and CtBP corepressors. Mol Cell Biol 2005, 25:10433-10441.

46. Oswal F, Winkler M, Cao Y, Astrahantseff K, Bourteulle S, Knochel W, Borggrefe T: RBP-Jc/SHARP recruits CtIP/CtBP corepressors to silence Notch target genes. Mol Cell Biol 2005, 25:10379-10390.

47. Doroquez D, Orr-Weaver T, Rebay I: Split ends antagonizes the Notch and potentiates the EGFR signaling pathways during Drosophila eye development. Mech Dev 2007, 124:792-806.

48. Brantjes H, Roose J, van de Wetering M, Clevers H: All Tcf HMG box transcription factors interact with Groucho-related corepressors. Nucleic Acids Res 2001, 29:1410-1419.

49. Kon C, Cadigan KM, Lopes da Silva S, Nusse R: Developmental roles of the Mi-2/NURD-associated protein p66 in Drosophila. Genetics 2005, 169:2087-2100.

50. Lazar MA: Nuclear receptor corepressors. Nucl Recept Signal 2003, 1:e0001.

51. Jepsen K, Solum D, Zhou T, McEvilly RJ, Kim H-J, Glass CK, Hermanson C, Rosenfeld MG: SMRT-mediated repression of an H3K27 demethylase in progression from neural stem cell to neuron. Nature 2007, 450:415-419.

52. Qi D, Bergman M, Alhara H, Nibu Y, Mannervik M: Drosophila Ebi mediates Snail-dependent transcriptional repression through HDAC3-induced histone deacetylation. EMBO J 2008, 27:896-909.

53. Tsuda L, Kaido M, Lim Y-M, Kato K, Aigaki T, Hayashi S: An NRSF/REST-like repressor downstream of Ebi/SMRTER/Su(H) regulates eye development in Drosophila. EMBO J 2006, 25:3191-3202.

54. Zhu CC, Bornemann DJ, Zhitominsky D, Miller EL, O’Connor MB, Simon JA: Drosophila histone deacetylase-3 controls imaginal disc size through suppression of apoptosis. PLoS Genet 2008, 4:e1000009.