Graphene-gated GaAs OPFET photodetector and oscillator for 5G applications

J V Gaitonde and R B Lohani

Electronics and Telecommunication Department, Goa Engineering College (Goa University/Govt. of Goa), Farmagudi-Ponda-Goa-India, 403401

E-mail : jayagaitonde46@gmail.com & rblohani@gec.ac.in

Abstract: With the advancement of technology, the RF communication bandwidth is switching towards 5G and 6G communications. To relieve the congestion of traffic imposed on RF communication, operating in the optical domain or integrating RF and optical communication is imperative. The core components in this scenario are the oscillators as transmitters and photodetectors as receivers. These devices should be capable of high-speed and high-gain operation simultaneously. In this paper, the potential of graphene-gated GaAs front-illuminated OPFET (Optical Field Effect Transistor) as oscillator and detector towards 5G applications is explored. The OPFET device exhibits an oscillation frequency of 1.63 GHz to 1.8 GHz, tuned with optical illumination. The gain can be varied between 3.94 dB to 4.5 dB at the oscillation frequency. Under photodetection mode of operation, the device exhibits a maximum 3-dB bandwidth of 2.234 GHz, an f_T of 5.33 GHz at the bandwidth frequency, and a responsivity of 3.3×10^6 A/W at a photon flux density of 10^{19} m$^{-2}$s$^{-1}$. A drain bias voltage of 3.94 V and a gate bias voltage of 0 V are applied in both cases. The device responses are contrasted with that of the Au (gold) gated OPFET. The explored devices have great potential for sub-6 GHz 5G applications.

Keywords: Graphene, GaAs, Au, OPFET, photodetector, oscillator, 5G, harsh.

1. INTRODUCTION

Communications based on 5G and 6G technologies cater to mobile and other related telecommunications. The 5G frequencies include (450 MHz to 6 GHz), (24.250 GHz to 52.600 GHz), (5925 to 7150 MHz), (64 GHz to 86 GHz), and also unlicensed spectrum [1]. 6G and higher variants may employ the 95 GHz to 3 THz bands [2]. The advantages of these technologies are high capacity, security, connectivity, and quality links, as well as low latency and low power consumption networks [3]-[5]. But, RF-based communications suffer from regulatory spectrum use, restricted spectrum band, and interference with nearby RF access points [6]. These issues can be resolved by optoelectronic integration with RF electronics or using the optical domain alone. Optical communication can be categorised into wireless or wired communication. Wired communication uses high-speed fibre-based optical links [7], whereas free-space optical communication (FSOC), visible light communication (VLC), light detection and ranging (LiDAR), Light-Fidelity (Li-Fi), and optical camera communication (OCC) are different forms of wireless communication [6].

The core elements of any communication system are the signal sources and the detectors. When operating in the optical domain, these are optoelectronic oscillators and photodetectors, respectively. To suit 5G applications, high-speed and high-gain source/detector characteristics are expected. One
potential candidate inherently possessing these characteristics is the optically-controlled MESFET (Metal-Semiconductor Field Effect Transistor) or OPFET (Optical Field Effect Transistor). This device has been thoroughly investigated across the past few decades towards these applications [8]-[22]. But, none of them explores the detector characteristics of graphene-gated conventional front-illuminated GaAs OPFET and its potential for possible use as an optoelectronic oscillator for 5G applications. In this work, these aspects have been suitably investigated and analysed. To the best of the authors’ knowledge, the present investigation employs an S-parameter characterisation approach to the OPFET device for the first time to analyse the stability condition of the device as an oscillator and to determine the oscillation frequency.

Graphene is an emerging 2-D material with outstanding properties such as high optical transmittance, high mechanical flexibility, high robustness, bias-dependent tunable work function, ultra-high carrier mobility, light weight, high saturation velocity, zero effective mass of carriers, excellent chemical/physical stability etc. Because of the absence in bandgap in monolayer graphene under zero bias conditions, it is considered a semi-metal. It forms an excellent transparent electrode apart from its outstanding resilience to adverse environments such as high temperatures. GaAs is a semiconductor with moderate bandgap, high saturation velocity, high mobility, moderate to high optical absorption coefficients, and short minority carrier lifetime. It also has the potential to withstand certain high temperatures [23]. Thus, the combination of graphene and GaAs as electrode-semiconductor materials certainly have the edge over other commonly used materials under hostile environments like elevated temperatures. These environments are typical of automotive, space, and aeronautics 5G applications.

The rest of the paper includes the following: OPFET model, results and discussion, followed by the conclusion.

2. OPFET MODEL

The conventional front-illuminated OPFET is represented in figure 1 [10]. In figure 1, ‘M’ denotes the metal contact and ‘SI’ means semi-insulating. The active layer and the substrate regions are considered to be n-type and p-type moderately, uniformly doped, respectively. The substrate is rendered slightly p-type semi-insulating by doping with deep level impurity, Cr (chromium). The transparent gate of the device allows the radiation to get absorbed in the channel and substrate regions, creating electron-hole pairs. The holes traverse towards the junctions, whereas the electrons move towards the channel. The electrons constitute a drain-to-source current upon the application of drain-to-source voltage by drifting across the two electrodes, thus, increasing the channel’s conductivity (photoconductive effect). The holes induce a photovoltage across the gate junction upon crossing the junction, which reduces the depletion width and enhances the drain-to-source current (external photovoltaic effect). The photovoltaic effect resulting from induced photovoltage at the active layer-substrate junction will not affect the channel width. This is ascribed to the moderately doped channel and semi-insulating substrate, which cause zero channel depletion and total substrate depletion.

2.1. Device modelling

The electron and hole continuity equations have been solved analytically in the various regions [12]. The solutions are provided below:

2.1.1. Photogenerated hole density in the gate-junction region

\[
p(y) = A_I + \alpha \Phi \tau_{sp} B_i \left[1 - \frac{1}{(1 - \alpha v_f \tau_{sp})} \right] \exp \left(-\frac{y}{v_f \tau_{sp}} \right),
\]

\[
A_I = \frac{\alpha \Phi \tau_{sp} \exp(-\alpha y)}{(1 - \alpha v_f \tau_{sp})}, \quad B_i = \exp \left[-\left(\alpha - \frac{1}{v_f \tau_{sp}} \right) y_d \right].
\]
In equation (1), Φ is the photon flux density, v_y is the saturated hole velocity, α is the semiconductor absorption coefficient, y_{dg} is the gate junction extension of the depletion region measured from the surface, τ_{ac} is the hole lifetime under ac condition, and y is the distance from the surface towards the substrate. Drift and recombination phenomena occur in this region.

In equation (1), the term $(1-\alpha v_y \tau_{ac})$ is to be treated as it is if $(\alpha v_y \tau_{ac}) < 1$ and is to be replaced with a maximum value closer to 1 when it exceeds or equals 1.

![Fig 1. The sketch of the front-illuminated OPFET [10].](image)

2.1.2. Electron density in the channel region

$$n(y) = \alpha \Phi \tau_{ac} A_2 \exp \left(\frac{-y}{L_{ao}} \right) - B_2,$$

where $A_2 = \left[1 + \frac{1}{(\alpha^2 L_{ao}^2 - 1)} \right]$ and $B_2 = \frac{\alpha \Phi \tau_{ac} \exp(-\alpha y)}{(\alpha^2 L_{ao}^2 - 1)}$.

L_{ao} is the ac diffusion length of electrons, given by $L_{ao} = (D_e \tau_{ac})^{1/2}$, D_e is the diffusion coefficient for electrons, and τ_{ac} is the electron lifetime under ac condition. The carrier transport in this region is governed by diffusion and recombination.

2.1.3. Electron density in the depletion region

$$n(y) = \frac{\alpha \Phi \tau_{ac} \exp(-\alpha y)}{(1 + \alpha \nu y_{s1} \tau_{ac})},$$

where νy_{s1} is the electron saturated velocity. Drift and recombination are the transport phenomena in this region.

In equation (3), the factors in the denominator are to be treated similarly as above.

The individual contributions from the doping induced charge under illumination, the photo-induced electron charge from the channel, and the gate and substrate depletion regions constitute the total drain-to-source current.

2.1.4. Drain current

The drain current is computed by [24]:

$$I_d = I_{ds} \tanh (\eta V_{DS}) + V_{ds} / R_{sh},$$

where V_{DS} is the applied drain voltage, η is the ratio of drain-to-source conductance computed at $V_{DS}=0$.

3
to the saturation current, I_{dss} is the drain-to-source saturation current, and R_{sh} is the drain-to-source shunt resistance. Refer to [25] for the modelling of series resistances.

2.1.5. Oscillator Design

The equivalent circuit of common source OPFET is depicted in figure 2, where the symbols being represented have their usual meaning.

From the equivalent circuit, the Y-parameters of the device have been obtained [26]. The Y-parameters are converted to S-parameters under suitable source/load impedances [27]. One important factor which is necessary but not sufficient for oscillation is the Rollett’s stability factor (K-factor). It should be less than unity. It is given by [28]:

$$K = \frac{1 - |S_{11}| - |S_{21}| + |\Delta|^2}{2|S_{12}| |S_{21}|},$$

(5)

where $\Delta = S_{11}S_{22} - S_{12}S_{21}$. The oscillation frequency and the combination of source/load impedances that will produce stable oscillation are determined by the S-parameter characterisation approach. In this approach, the device will produce stable oscillations if the following condition is satisfied [28]:

$$|\Gamma_s||S_{11}| = 1,$$

(6)

where $S_{11} = S_{11} + \frac{S_{12}S_{21}\Gamma_{L}}{1 - S_{12}\Gamma_{L}}$ and $\Gamma_s = \frac{Z_s - Z_0}{Z_s + Z_0}$ (reflection coefficient of the source), $\Gamma_L = \frac{Z_L - Z_0}{Z_L + Z_0}$ (reflection coefficient of the load), Z_s and Z_L are the source and load impedances, respectively, Z_0 is the characteristic impedance of 50 ohms. If the condition given by equation (6) is satisfied implies that its dual condition at the other port is also satisfied:

$$|\Gamma_L||S_{22}| = 1.$$

(7)

The frequency at which the oscillations conditions are satisfied is the resonance or the oscillation frequency, and the source/load impedances are the resonance or tuned circuits.

3. RESULTS AND DISCUSSION

The simulation program has been run in MATLAB software. The device is studied at an operating wavelength of 600 nm. The drain bias is varied between 1.3 V to 25 V. The gate bias is set to 0 V. The photon flux densities used (10^{16}, 10^{19}, and 10^{22} /m2-s) correspond to power densities of 0.33 μW/cm2, 0.33 mW/cm2, and 0.33 W/cm2, respectively. The device dimensions are suitably chosen from scaling rules [29]: 4 μm gate length, 150 μm gate width, 0.3 μm active layer thickness, and
doping concentration of $4 \times 10^{22} / \text{m}^3$. The surface to substrate thickness is 1 μm [13]. The parameters utilised for calculation are provided in table 1. Table 2 presents the estimated performance metrics of the graphene-gated GaAs OPFET photodetector at a drain-to-source bias of 3.94 V.

Table 1. Parameters used in the calculation.

Symbol	Parameter	Value	Ref.	Unit
Φ_B	Schottky Barrier Height (Au/graphene-GaAs)	(0.865/0.795)	[30].	(eV)
μ	Low field electron mobility	(0.52)	[32]	(m2/V.s)
v_{y1}	Saturated electron velocity	$\sim 1.2 \times 10^5$	[13]	(m/s)
v_y	Saturated hole velocity in the y-direction	$\sim 0.9 \times 10^5$		(m/s)
τ_p	Lifetime of holes	10^{-8}	[13]	(s)
τ_n	Lifetime of electrons	10^{-6}	[13]	(s)
ε	Permittivity	1.14×10^{-10}	[32]	(F/m)
α	Absorption Coefficient	4×10^6	[33]	(/m)

Table 2. Characteristics of Graphene-GaAs front-illuminated OPFET

Photon Flux Density ($/\text{m}^2 \cdot \text{s}$)	DC Responsivity (A/W)	3-dB Bandwidth (Hz)	DC Transconductance (S)	DC Gate to Source Capacitance (F)	Unity-gain cut-off frequency (Hz) @ DC/BW freq
10^{16}	2.29 $\times 10^7$	1 GHz	12.3 mS	0.367 pF	5.33/5.5 GHz
10^{19}	3.3 $\times 10^6$	2.234 GHz	14.3 mS	0.51 pF	4.46/5.33 GHz
10^{22}	1.37 $\times 10^6$	1.48 MHz	21.3 mS	0.28 pF	9.42/8.25 GHz

The graphene-gated GaAs front-illuminated OPFET under investigation exhibits photovoltages of (0.45 V, 0.63 V, and 0.81 V) at the corresponding flux densities of (10^{16}, 10^{19}, and 10^{22}/m2-s) as opposed to (0.52 V, 0.7 V, and 0.88 V) in the Au-gated device studied in previous work [34]. The high photovoltages arise from the extra amplification factor of ($\alpha v_y \tau_{op}$) in the equation for hole density (1) over the primary hole density and the decreasing denominator term ($1-\alpha v_y \tau_{op}$) by one order magnitude. Additionally, since the device is illuminated from the surface side, at the optical wavelength of 600 nm, the moderate absorption coefficient of $4 \times 10^6 /\text{m}$ corresponding to an absorption depth of 0.25 μm is sufficient enough to create a significant number of photocarriers in the gate depletion region. The contrasting photovoltages in the graphene- and Au-gated devices are attributed to the higher barrier height in the Au-gated device (0.865 eV) as opposed to graphene-gated OPFET (0.795 eV). This higher barrier height decreases the reverse saturation current density across the Schottky junction, thus, boosting the photovoltage. Due to the high photovoltages in both cases, large photovoltaic currents are generated. The dark current is higher in the graphene-gated device (12 mA) in contrast with Au-gated OPFET (11.3 mA) due to larger depletion width in the Au-gated device arising from the higher barrier height with analogous series resistances in both cases. The drain currents under illumination are equal in both cases (16.7 mA, 18.8 mA, and 39.9 mA). It is known from [14] that when the barrier height apparent to the carriers is lower, the sensitivity of the depletion width to applied photovoltage is more than compared to the higher barrier height device. In the present case, since the device with graphene gate possesses a lower barrier height with a larger dark current, whereas the photovoltages are higher in the Au-gated device, the compensation mechanisms induced by these opposite effects result in equal currents. However, the photocurrents generated by the Au-gated device are higher due to the lower dark current. These larger photocurrents produce wider 3-dB bandwidths in the Au-gated device (1.62 GHz and 3.1 GHz) as compared to (1 GHz and 2.23 GHz) in the graphene-gated device at the lower intensities. At the higher intensity, the photoconductive effects from the gate junction region, the neutral channel region, and the substrate depletion region also contribute significantly with almost equal contributions in both cases. The equal
contributions emanate from the compensation mechanism discussed earlier, which maintains equal depletion widths in both cases, thus, extracting similar photoconductive charges. The minority hole carrier lifetime being of the order of nanoseconds produces 3-dB bandwidths in the GHz range under photovoltaic conditions. The photoconductive lifetime being of the order of microseconds results in MHz range bandwidths (1.6 MHz in the Au-gated device and 1.477 MHz in the graphene-gated OPFET) at the higher intensity. The higher photocurrents also produce higher responsivities in the Au-gated OPFET (2.6×10^9 A/W, 3.7×10^6 A/W, and 1.39×10^4 A/W).

The dc transconductances and gate-to-source capacitances exhibit almost equal values in both the graphene-gated and Au-gated devices. The equal values arise from the compensation phenomena stated earlier. The transconductances increase with optical power (figure 2) due to the increase in photovoltages and the additional contribution from the photoconductivity at the higher intensity. The capacitances show a similar behaviour except at the higher intensity due to the effective de-ionization of the space charge ions by the photogenerated electrons in the junction region since the photogenerated electron density is comparable to the depletion charge density at this power level (figure 3). The moderately high transconductances and moderate capacitances result in moderate unity-gain cut-off frequencies in both cases.

The oscillation performance of the graphene-gated OPFET is shown in table 3 at a drain-to-source bias of 3.94 V after the stability factor (K-factor) for oscillation and other oscillation conditions at the ports have been satisfied. The Au-gated device also shows the same performance since the oscillation parameters are dependent upon the transconductance, gate-to-source, gate-to-drain, and drain-to-source capacitances, the drain-to-source resistance, and the drain-to-source saturation current, which are estimated to be equal in both the devices. This is attributed to the reasons

Photon Flux Density ($/m^2s$)	Source Impedance (ohms)	Load Impedance (ohms)	Oscillation Frequency (Hz)	Gain (S_{21} dB)	Phase (S_{21} degrees)
10^{16}	270 $\Omega/8$ nH	27 $\Omega/17$ nH	(1.47, 1.63, 1.8 GHz)	4.1 dB	144.3°
10^{19}	270 $\Omega/8$ nH	27 $\Omega/17$ nH	1.63 GHz	4.5 dB	137.12°
10^{22}	270 $\Omega/8$ nH	27 $\Omega/17$ nH	1.8 GHz	3.94 dB	115.95°
discussed above. The device exhibits resonance at a source resistance of 270 Ω, source inductance of 8 nH, load resistance of 27 Ω, and load inductance of 17 nH. At the flux density of 10^{16} /m2-s, the OPFET device resonates over a narrow band of frequencies ranging from 1.47 GHz to 1.8 GHz. This is possible when the oscillation conditions are satisfied at a band of frequencies instead of a single frequency. This can be improved by optimisation. As the flux density increases to 10^{19} /m2-s, the oscillation frequency reduces to 1.63 GHz with respect to the highest frequency (1.8 GHz) at the previous flux density. This observation is in line with previous studies [19]-[21]. Since the oscillation frequency is dependent only upon the intrinsic capacitances and is independent of the transconductance and the intrinsic resistances [20], the increase in optical power boosts the capacitances (figure 3 and figure 4) and reduces the resonant frequency. At the higher flux density of 10^{22} /m2-s, there is an increase in the oscillation frequency to 1.8 GHz. Although the dc gate-to-source capacitance undergoes a fall in its value, at the frequency of oscillation, the capacitance increases (figure 3). This is ascribed to the significant reduction in the de-ionization process at high frequencies due to the modulation of electron lifetime with frequency. Additionally, the high photovoltage, although modulated with frequency, is sufficient enough to open many of the depleted regions, thus registering sensitivity. Also, there is a significant boost in the gate-to-drain capacitance at the higher intensity (figure 4). Even though the capacitances increase, the oscillation frequency increases. The reason behind this is still being investigated by the authors.

![Figure 4](image_url)

Fig 4. Gate-to-drain capacitance as a function of modulation frequency at various photon flux densities.

![Figure 5](image_url)

Fig 5. Polar plots of S_{21} at different flux densities.

The oscillator gain initially increases from 4.1 dB to 4.5 dB as the flux density is varied from 10^{16} to 10^{19} /m2-s and then reduces to 3.94 dB at the flux density of 10^{22} /m2-s. The gain, which is directly proportional to transconductance and inversely related to capacitance, exhibits an initial increase due to the significant boost of the transconductance with optical power while the capacitance increases at a slower rate (compare figure 2, 3 and 4). At the higher flux density, the gain falls since the transconductance increases at a slower rate than the capacitances at the oscillation frequency. The significant boost of capacitances is due to the reasons stated earlier. It is further observed that the oscillator phase reduces when the optical power increases. Thus, the oscillation frequency, gain, and phase can be suitably tuned with optical power. Figure 5 presents the simulated polar plots of the device at different radiation flux densities indicating that the gain and phase of the FET can be controlled to a larger extent when the optical power increases. This can have a significant bearing on the oscillator design when performing optimisation. The performance metrics estimated here are in line or close to the basic industrial standards for IoT (Internet of Things), i.e. IEEE802.15.4 based on
Zigbee Technology operating in there frequency bands (868MHz in Europe, 915MHz in the USA, and 2.4 GHz globally) [35], [36]. These standards are further divided into standards such as WirelessHART (2007) and ISA100.11a (2009) for employment in ultra-high reliability and ultra-low power industrial harsh environments. The performance also suits for two of the three frequency bands (183–683 MHz, 1640–2140 MHz, and 2200–2700 MHz) studied in [37] for indoor industrial applications. Further optimisation of the investigated devices will ensure complete compatibility with these standards.

4. CONCLUSION

The detector and oscillator characteristics of the graphene-gated GaAs front-illuminated OPFET towards optically-driven 5G applications were simulated. The performance was compared to that with the Au-gated device studied in previous work. The graphene-gated OPFET delivered the same amplification and oscillation performance as that with the Au-gated device, whereas it showed inferior response with respect to 3-dB detection bandwidth and the responsivity. The results were analysed with respect to the photovoltaic and the photoconductive effects. The device exhibits a maximum oscillation frequency of 1.8 GHz and a minimum of 1.63 GHz, tuned with optical illumination. The gain can be varied between 3.94 dB to 4.5 dB, and the phase can be tuned between 115.95° to 144.3° with a change in the flux density. The device operated as a detector shows a maximum 3-dB bandwidth of 2.234 GHz, a dc responsivity of 3.3×10^6 A/W, and an f_T of 5.33 GHz at the bandwidth frequency at a flux density of 10^{19}/m²-s at a drain-to-source bias of 3.94 V and a gate bias of 0 V. These performance metrics, together with the ability of the graphene and GaAs materials to resist harsh environments such as high temperatures suggest that this device will prove useful in sub-6 GHz harsh environment 5G applications viz. handheld 5G devices and industrial Internet of Things (IoT)-enabled systems in smart cities, automotive, space, and aeronautics applications.

REFERENCES

[1] (arrow.com)https://www.arrow.com/en/research-and events/articles/what-frequency-spectrum will-5g-technology-use-and-how-does-this-compare-to-4g
[2] (venturebeat.com)https://venturebeat.com/2019/03/15/fcc-opens-95ghz-to-3thz-spectrum-for-6g-7g-or-whatever-is-next/
[3] Shafi M, Molisch A F, Smith P J, Haustein T, Zhu P, De Silva P, Tufvesson F, Benjebbour A and Wunder G 2017 5G: A tutorial overview of standards, trials, challenges, deployment, and practice IEEE journal on Selected Areas in Communications 35 (6) 1201-21
[4] Zhang D, Zhou Z, Mumtaz S, Rodriguez J and Sato T 2016 One integrated energy efficiency proposal for 5G IoT communications IEEE Internet of Things Journal 3 (6) 1346-54
[5] Andrews J G, Buzzi S, Choi W, Hanly S V, Lozano A, Soong A C and Zhang J C 2014 What will 5G be? IEEE Journal on Selected Areas in Communications 32 (6) 1065-82
[6] Chowdhury M Z, Hossan M T, Islam A and Jang Y M 2018 A comparative survey of optical wireless technologies: Architectures and applications IEEE Access 6 9819-40
[7] Strinati E C, Barbarossa S, Gonzalez-Jimenez J L, Ktenas D, Cassiau N, Maret L and Dehos C 2019 6G: The next frontier: From holographic messaging to artificial intelligence using subterahertz and visible light communication IEEE Vehicular Technology Magazine 14 (3) 42-50
[8] Baack C, Elze G and Walf G 1977 GaAs MESFET: A high-speed optical detector Electronics Letters 13 (7) 193
[9] De Salles A A 1983 Optical control of GaAs MESFET's IEEE Trans. on Microwave Theory and Techniques 31 (10) 812-20
[10] Mishra S U, Singh V K and Pal B B 1990 The effect of surface recombination on the frequency-dependent characteristics of an ion-implanted GaAs OPFET IEEE Transactions on Electron Devices 37 (4) 942-46
[11] Verma M K and Pal B B 2001 Analysis of buried gate MESFET under dark and illumination IEEE Trans. on Electron Devices 48 (9) 2138-42
[12] Gaitonde J V and Lohani R B 2019 Analysis of wide-bandgap material OPFET UV detectors for high dynamic range imaging and communication applications Communications and Network 11 (4) 83-117

[13] Roy N S and Pal B B 2000 Frequency-dependent OPFET characteristics with improved absorption under back illumination Journal of Lightwave Technology 18 (4) 604-13

[14] Gaitonde J V and Lohani R B 2019 Material, structural optimization and analysis of visible-range back-illuminated OPFET photodetector Advances in Science, Technology and Engineering Systems Journal 4 (4) 485-502

[15] Gaitonde J V and Lohani R B 2020 Structural optimization and analysis of GaAs buried-gate OPFET for visible-light communication Optical and Quantum Electronics 52 (12) 1-37

[16] Gaitonde J V, Rawat S P S and Lohani R B 2018 Comparative analysis of buried-gate GaN OPFET models for UV photodetector applications Proc. of the 5th IEEE Uttar Pradesh Section Int. Conf. on Electrical, Electronics and Computer Engineering (UPCON) (Uttarpradesh-India)

[17] Gaitonde J V and Lohani R B 2019 Visible range characterization of Au/graphene-GaAs Schottky junctions in MESFET JETE Journal of Research 1-11

[18] Gaitonde J V, Lohani R B 2021 Material and illumination model optimization of OPFET for visible light communication Optik 232 (2021) 166519

[19] Sun H J, Gutmann R J and Borrego J M 1981 Photoeffects in common-source and common-drain microwave GaAs MESFET oscillators Solid-State Electronics 24 (10) 935-40

[20] Jit S and Murty N V 2006 Analytical study of the photo-effects on common-source and common-drain microwave oscillators using high pinch-off n-GaAs MESFETs Microelectronics Journal 37 (5) 452-58

[21] Jit S and Pal B B 2004 New optoelectronic integrated device for optically controlled microwave oscillators IEE Proceedings-Optoelectronics 151 (3) 177-82

[22] Blanchflower I D and Seeds A J 1989 Optical control of frequency and phase of GaAs MESFET oscillator Electronics Letters 25 (5) 359-60.

[23] Eun J and Cooper J A Jr 1993 High temperature ohmic contact technology to n-type GaAs ECE Technical Reports (School of Electrical Engineering, Purdue University, West Lafayette, IN 47907) paper 218

[24] Chen T and Shur M S 1985 Analytical models of ion-implanted GaAs FET's IEEE Trans. on Electron Devices 32 (1) 18-28

[25] Byun Y H, Shur M S, Peczalski A and Schuermeyer F L 1988 Gate-voltage dependence of source and drain series resistances and effective gate length in GaAs MESFETs IEEE Transactions on Electron Devices 35 (8) 1241-46

[26] Minasian R A 1977 Simplified GaAs mesfet model to 10 GHz Electronics Letters 13 (18) 549-51.

[27] Frickey D A 1994 Conversions between S, Z, H, ABCD, and T parameters which are valid for complex source and load impedances IEEE Transactions on Microwave Theory and Techniques 42 (2) 205-11

[28] Vendelin G D, Pavio A M and Rohde U L 2005 Microwave Circuit Design using Linear and Nonlinear Techniques (Hoboken, New Jersey- John Wiley & Sons)

[29] Golio J M 1988 Ultimate scaling limits for high-frequency GaAs MESFETs IEEE Transactions on Electron Devices 35 (7) 839-48

[30] Hudait M K and Krupanidhi S B 2001 Doping dependence of the barrier height and ideality factor of Au/n-GaAs Schottky diodes at low temperatures Physica B: Condensed Matter 307 (1-4) 125-37

[31] Tongay S, Lemaitre M, Miao X, Gila B, Appleton B R and Hebard A F 2012 Rectification at graphene-semiconductor interfaces: zero-gap semiconductor-based diodes Physical Review X 2 (1) 011002

[32] Sze S M and Ng K K 2007 Physics of Semiconductor Devices (Hoboken, New Jersey-John Wiley & Sons)
[33] Casey Jr H C, Sell D D and Wecht K W 1975 Concentration dependence of the absorption coefficient for n⁻ and p⁻type GaAs between 1.3 and 1.6 eV Journal of Applied Physics 46 (1) 250-57

[34] Gaitonde J V and Lohani R B 2020 GaAs OPFET for 5G applications Proc. AICTE sponsored Int. Virtual Conf. on Antenna Innovations, 5G Communications and Network Technologies (ICA5NT 2020) (Thiruvallur District-Tamil Nadu, India)

[35] Cheffena M 2012 Industrial wireless sensor networks: channel modeling and performance evaluation EURASIP Journal on Wireless Communications and Networking (1) 1-8

[36] Palattella M R, Dohler M, Greco A, Rizzo G, Torsner J, Engel T and Laid L 2016 Internet of things in the 5G era: Enablers, architecture, and business models IEEE Journal on Selected Areas in Communications 34 (3) 510-27

[37] Coll J F, De Ojeda J D, Stenumgaard P, Romeu S M and Chilo J 2011 Industrial indoor environment characterization-Propagation models Proc. of the 10th Int. Symp. on Electromagnetic Compatibility (York-UK) pp 245-249