A new flea, *Ectinorus (Ectinorus) insignis* n. sp. (Siphonaptera, Rhopalopsyllidae, Parapsyllinae), with notes on the subgenus *Ectinorus* in Chile and comments on unciform sclerotization in the superfamily Malacopsylloidea

Jean-Claude Beaucournu1,2,*, Sorya Belaz1,3, Sebastián Muñoz-Léal4, and Daniel González-Acuna4

1 Laboratoire de Parasitologie et Zoologie appliquée, Faculté de Médecine, 2 avenue du Professeur Léon Bernard, 35043 Rennes Cedex, France
2 Institut de Parasitologie de l’Ouest, Faculté de Médecine, 2 avenue du Professeur Léon Bernard, 35043 Rennes Cedex, France
3 Laboratoire de Parasitologie, Mycologie et Immunologie parasitaire, Centre Hospitalier Régional Universitaire, 2 rue Henri Le Guilloux, 32033 Rennes Cedex, France
4 Facultad de Ciencias Veterinarias, Universidad de Concepción, Casilla 537, Chillán, Chile

Received 6 March 2013, Accepted 10 September 2013, Published online 15 October 2013

Abstract – A list is provided for the species of *Ectinorus sensu stricto* from Chile. *Ectinorus (Ectinorus) insignis* n. sp. is described from Chile: this species is characterized by the male genitalia. In the subgenus *Ectinorus*, the authors report the presence in Chile of *E. pilosus* Beaucournu & Carmen Castro, 2002 described from Argentina and *E. simonsi* (Rothschild, 1904) described from Bolivia but also known from Peru. A female neallotype is designated for *E. ineptus* Johnson, 1957. “Unciform sclerotization” is noted and illustrated for the first time, in all Malacopsylloidea, and a list is given for all studied species.

Key words: Siphonaptera, Malacopsylloidea, Rhopalopsyllidae, Chile, New species.

Résumé – Description d’une puce nouvelle, *Ectinorus (Ectinorus) insignis* n.sp. (Siphonaptera, Rhopalopsylli- dae, Parapsyllinae): notes sur le sous-genre *Ectinorus* au Chili et discussion sur les sclérotisations unciformes dans la super-famille Malacopsylloidea. La liste des *Ectinorus sensu stricto* connus du Chili est donnée et *Ectinorus (Ectinorus) insignis* n. sp. est décrit: l’espèce est caractérisée par la structure des genitalia mâles. Dans le sous-genre *Ectinorus*, les auteurs signalent la présence au Chili de *E. pilosus* Beaucournu & Carmen Castro, 2002, décrit d’Argentine et de *E. simonsi* (Rothschild, 1904) décrit de Bolivie, puis retrouvé au Pérou. Un néallotype femelle est désigné pour *E. ineptus* Johnson, 1957. Une “sclérition unciforme” est notée et illustrée pour la première fois chez tous les Malacopsylloidea, et une liste est donnée pour toutes les espèces étudiées.

Introduction

The interest of the genus *Ectinorus* (and the related genera *Delostichus*, *Tetrapsyllus*, etc.), regardless of its morphological features, is that it is one of the bubonic plague vectors, transmitting *Yersinia pestis* in Chile-Andean subregion (e.g., Macchiavello, 1948) [28]. Admittedly, the importance of plague in the southern cone of South America is of lesser importance than in the Old World (Kazakhstan, Mongolia, China, Vietnam, Republic of Congo, Tanzania, Madagascar), but the potential for disease remains and a knowledge of endemic fleas is important.

*Corresponding author: jc.beaucournu@gmail.com

ZooBank Author ID:
Jean-Claude Beaucournu – urn:lsid:zoobank.org:author:BA6F408D-0C0A-41E5-9DFB-D792B028EF15
Sorya Belaz – urn:lsid:zoobank.org:author:4E5C5295-A4FB-493D-A848-EA6332674633
Sebastián Muñoz-Léal – urn:lsid:zoobank.org:author:565FC990-8EE3-40F0-8181-8B50DACBF5F0
Daniel González-Acuna – urn:lsid:zoobank.org:author:6AA03FF4-6488-4480-8E43-2FEFB9BB5177

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Genus *Ectinorus* Jordan, 1942

The genus *Ectinorus* (*Rhopalopsyllidae: Parapsyllinae*), endemic to the Chile-Andean subregion, includes related sigmodontine rodents fleas. Three subgenera are included in Smit's review (1987) [36]: *Ichyonus* *Ectinorus* stricto and *Ichyonus* *E. curvatus* – *Pulex simonsi*.

One male found in Chile, Chusmiza (19° 40' S–69° 10' W), altitude 3430 m (Tarapaca), on *Ocottonotomys gliroides*, X/15/2011 (D. González-Acuña *rec.*). Identification is obvious for this species (apex of aedeagus, sternum VIII) but in this area on October 9, 1989, we found on the same host, at 2500 m altitude, three male intergrades between *simonsi* and *nomisis* Smit, 1987. These taxa are so close that it is likely that *E. nomisis* is a subspecies of *E. simonsi*.

Ectinorus (Ectinorus) ineptus Johnson, 1957

– *Ectinorus ineptus* Johnson, 1957: description of male holotype (plates 67 to 69) at Picotani (Puno, Peru), on *Phyllotis (Auliscomys) pictus*, IX/14/1941.

– *Ectinorus (Ectinorus) ineptus* Johnson 1957: Smit (1987) illustrated the genitalia of the male holotype (their Figures 189 and 190), from *Auliscomys pictus*.

– *Ectinorus (Ectinorus) ineptus* Johnson, 1957, Beaucournu & Gallardo, 1991, [5]: Parinacota (18° 12' S–69° 16' W), altitude 4000 m, Chile, on *Phyllotis darwini*, IX/30/1989. One male and one female: Short description of the male and the female (Figures 6, 9, 12–14), female explicitly “not designated as neallotype because two other very close taxa have been collected in the same region syntopically with this species (e.g., *E. curvatus n. sp.*)”.

– *Ectinorus (Ectinorus) ineptus* Johnson, 1957: Lake Chungara (18° 15' S–69° 10' W), altitude 4574 m, Chile (Parinacota) on *Auliscomys boliviensis* (Waterhouse, 1846), one male and one female XI/21/2011; Enquegula, altitude 3700 m, Chile (Tarapaca) on *Eligmodontia pueraulus* (Philipi, 1896), one female X/17/2011 (D. González-Acuña *rec.*). (The determinations of all Chilean hosts are after Wilson & Reeder, 2005) [37].

So we have two pairs, each in syntopy on the same individual host and a sole female: therefore, the identity of the female drawn in 1991 is confirmed. Currently males, in Chile, have been collected from two locations close to each other.

We select the 1991 female, as neallotype, because the others have misplaced spermatheca, but are otherwise identical. So the neallotype is from Parinacota (18° 12' S–69° 16' W), altitude 4000 m, Chile (Parinacota) on *Phyllotis darwini*, IX/30/1989.

Ectinorus (Ectinorus) simonsi (Rothschild, 1904)

– *Pulex simonsi* (Rothschild, 1904): two males and one female on *Neocodon simonsi* (= *Ocottonotomys gliroides*) at Challapata (Avaroa, Bolivia), X/11/1901.

– *Rhopalopsyllus simonsi* (Rothschild): Jordan & Rothschild, 1908 [23]: redescription.

– *Dysmicus acheronis* Johnson, 1957 [19]: holotype male, Yuru (Arequipa, Peru) on *Galea museloides*, VIII/8/1939. Smit (1987): *acheronis* synonymized with *simonsi*.

– *Ectinorus (Ectinorus) simonsi* (Rothschild, 1904): drawings of male and female on *Lagidium viscacia* and a new locality is reported: Zudañez, Bolivia (in the Bolivian subregion, province of Jaime Zudañez), IV/19/1955 (Smit, 1987) [36].
of the length of distitarsomere. Apex of tarsomere II; longest seta of tarsomere II extends to half of first tarsomere. Longest seta of this tarsomere extends to least, one long seta. Longest seta of notch VIII extends to apex of eight notches on dorsal margin. Notches II, V and VIII with guard setae long; external half the length of internal. Tibia with setae; spiracle pointed, or shaped as a ''nightcap''. Femoral setae, most dorsal seta curved. Metepimeron with four long setae. Thorax: four anterior setae and posterior row of seven longer setae and principal row of 6 longer setae; 10 pseudosetae. Metepimeron with four long setae, spiracle pointed, or shaped as a “nightcap”. Femoral guard setae long; external half the length of internal. Tibia with eight notches on dorsal margin. Notches II, V and VIII with, at least, one long seta. Longest seta of notch VIII extends to apex of first tarsomere. Longest seta of this tarsomere extends to apex of tarsomere II; longest seta of tarsomere II extends to half of the length of distitarsomere.

Abdominal segments: Tergum I with eight spinelets, four on each side. Tergum II with row of seven long setae, most ventral seta at level of spiracle. Same setation on terga III to VII, but most ventral seta below spiracles; spiracles relatively large and rounded. Tergum VIII (Figure 2) with small area of seven or eight small setae anterior to spiracle; spiracle marginal and verriform. Unciform sclerotization present (see below). Anal stylet (Figure 1) long, conical, with one small seta below insertion of long apical seta. Below ventral anal segment four long marginal setae and 16–18 lateral setae of various lengths and seven to eight thin, small mesal setae. Sternum II with 1 barely discernible striarium and laterally 17 thin lateral setae and 2 small marginal setae. Sternum III with lateral row of six setae and three to four dispersed setae. Sterna IV and V with main row of four or five setae and one isolated seta. Sternum VI with simple row of five setae. Sternum VII (Figure 2) with row of six setae inserted on half of the segment. Margin gently convex. Sternum VIII (Figure 2) large with four to five apical microsetae.

Spermatheca: Bulga angular (Figure 3), slightly wider than long; hilla slightly curved, twice as long as bulga; ductus obturatus and ductus spermathecae of same width, the d. s. twice as long as the d. o. Typically, for this group, ductus bursa appears as a curved “e”.

Dimensions (slide-mounted insects in personal collection): males 2.1–2.8 mm (holotype 2.7), females 2.5–2.8 mm.

Specificity: Auliscomys Osgood, 1915 (Rodentia – Cricetidae – Sigmodontinae) must be the elective type host-genus; it is taxonomically very close to Phyllotis Waterhouse, 1837.

Ectinorus (Ectinorus) insignis Beaucournu & González-Acuña n. sp.

urn:lsid:zoobank.org:act:31EF7F63-C723-4961-8628-7548325BEAB6

Authorship: Note that the authors of the new taxon are different from the authors of this paper; Article 50.1 and Recommendation 50A of International Code of Zoological Nomenclature.

Material examined: Holotype male on Eligmodontia puerculus (Philippi, 1896) (Rodentia – Cricetidae – Sigmodontinae), Toconao (23° 07’ S – 68° 00’ O), altitude 2469 m, (El Loa), Chile, X/11/2011. Allotype female in syntopy with the holotype (D. González-Acuña rec.).

Material deposited: Types in the collection of first author (Collection JCB, currently in Faculty of Medicine, Rennes), for ultimate deposition in Muséum National d’Histoire Naturelle, Paris (MNHN).

Etymology: from the Latin word insignis derived from in signum “showing a particular character”, this in reference to the male genitalia.

Description

Ectinorus insignis n. sp. has a well-developed processus basimor ventralis and belongs to the “hapalus-group” (Smit, 1987) [36]. From a dichotomous view, this character is not chosen by this author who uses the presence or absence of spinelets on tergum I.

Head capsule: frontal tubercle not very prominently situated a short distance from the labial angle. Maxillary and labial palps extend slightly beyond the apex of trochanter. Segments I and II of maxillary palpus are the same length but slightly shorter than II or IV. Labial palpus with eight segments, including basal segment. Pre-antennal setae of male well developed, but very thin and small in female. Three pre-ocular setae, the ventral one longer as typical. Eye pigmented, indented and with sclerotized “bridge” near the gena. One post-ocular seta, three marginal setae and one very small spiniform seta on angle between gena and antennal fossa. three occipital rows with
one, one and four setae in the male but only two rows in the female of one and four setae.

Thorax: prothorax with one marginal row of six well-developed setae and one anterior row of three. Male with single pseudoseta, female with two. Mesothorax with one marginal row of four long setae and anteriorly three to four small ones; one row of pseudoseta, 13 in the male, 12 in the female. Metathorax with one marginal row of four well-developed setae. Metepimeron with four setae and the spiracle shaped like a “nosecap”. Femur I: femoral guard setae very unequal in length (internal seta length and thickness twice that of the external one). Femur III: internal femoral-tibia guard seta four times as long as the external one but only slightly thicker. Tibia III with six dorsal notches bearing setae, the second, fourth and sixth with at least one long slender seta. First tarsomere III with a long apical seta as long as this segment. Second tarsomere III with a tuft of three long setae, the longest extending beyond the apex of the distitarsomere in the male and half that length in the female.

Abdomen (unmodified segments): male tergum I without spinette while the female has one or two small spinettes. Terga II–VII, one principal row of six setae, the most ventral at level of spiracle in the male but below the spiracle in the female. Spiracles practically round in the male whereas shaped like a «nosecap» in the female. One ante-sensillial seta; marginal in the female, as typical. Sensillum typical with 17–18 pits. Sternum II with two thin marginal setae; three thin lateral setae (male) or 16–18 (female). Stiatrium absent. Sterma III and IV with row of three thin setae (male) or two to three (female). Sterna V–VII with one row of two thin setae (male) or respectively three, five and six long, thin and gently curved setae (female).

Abdomen (male genital segments): Sternum VIII (Figure 4) with inferior-distal lobe as in numerous species of Ectinorus. Lobe, circular with two small curved setae on its posterior margin, linked to the segment by a well-sclerotized connection (in lateral aspect). Segment IX (Figure 5) with very long processus basimeris ventralis appears longer due to lack of setae on posterior-margin of basimere.

Processus basimeris or Basimere: anterior and posterior edges subequal. About 10 thin setae on anterior and external borders. Margin of posterior border with one row of nine setae (slightly thicker than the drawing). Below this border, marginal is hyaline and naked. Inferior margin with thin setae. Ventral margin of manubrium forms a straight line visible but not as marked as in E. ineptus. Processus basimeris ventralis narrow, relatively long, with an acuminate apex; apex is anteriorly folded up as in a penknife. External part with three long and six shorter setae on its lateral margin. Internal part with only small setae. Dorsal margin of p.b.v., with two long setae; most anterior seta at base of this process

Processus telomeris (Figure 6) or Telomere, entirely masked by basimere, not extending beyond basimere as in simorsi and nomisis. Telomere longer than broad with triangular apex posterior end forming a short forward process.

Sternum IX (Figure 5): Proximal arm broad basally, narrower ventrally; distal arm narrow, then broader with a pointed apex. One short median seta and seven long curved setae on ventral margin. Tuft of six to seven small thin setae on internal surface.

Phallosome (Figure 7): classical structure for this genus, and subgenus, but apico-ventral lobe particularly broad.

Abdomen (female genital segments): Tergum VIII with four to five small setae above spiracle, spiracle elongated and vermiciform; laterally about 12 small setae. Unciform sclerotization visible above spermatheca, on tergum VIII, shaped like a “horseshoe” and slightly pigmented (Figures 8 and 9).

Sternum VII (Figure 8): posterior margin convex on ventral half with five long setae remote margin; no other seta. Anal stylet (Figure 10) cylindrical with one apical seta long and gently curved, and basally one very small seta. Sternum VIII longer than wide (and very different from E. ineptus in this regard).

Spermatheca (Figure 9): bulga somewhat quadrangular; area cribiformis in the middle of proximal end; hilla broad and subrectangular. Ductus bursae with shape of a cursive e, characteristic of this species-group, for example in ineptus, convexus, hirsutus, etc.

Dimensions (slide-mounted specimens): holotype male 1.9 mm; allotype female 2.7 mm.

Diagnosis

Among the species of Ectinorus sensu stricto, E. ineptus Johnson, 1957 [19], E. hirsutus Hasstriter, 2009 [15] and E. splendidus Smit, 1968 [34] show some similarities with E. insignis n. sp. These species belong to Ectinorus having marginal spinettes on tergum I, they also belong to the hapalus-group having processus basimeris ventralis. This group shares common characters with the former genus Dysmicus and the genus Ectinorus sensu stricto (Smit, 1987) [36].

A non-genital difference is noted for the first time. Ectinorus are split into two groups by Smit [36] with respect to whether or not they have spinettes on the margin of tergum I. As we have stated, E. insignis n. sp. belongs to the hapalus-group, having processus basimeris ventralis, but unlike ineptus and hirsutus the male has no spinette on tergum I and the female has only one or two instead of the more typical, four or six. Indeed, Dysmicus Jordan, 1942 [21] is characterized by no spinette on tergum I, seems to mirror Ectinorus, in this respect.

Segment IX: Basimere has the same general shape as in the taxa previously mentioned. However in insignis it is less compact; the posterior margin and chaetotaxy are also different. E. splendidus, hirsutus and insignis have almost the same processus basimeris ventralis (pbv), but in E. insignis it is straight and not bent at right angles as in E. hirsutus. The pbv is short, massive and inserted at the base of basimere in E. ineptus. Among E. Ectinorus, only E. splendidus and E. insignis share-related shapes of the pbv. Sternum IX is close to that of E. ineptus by its pointed apex. The lobe of sternum VIII is not present in E. splendidus. This lobe is almost circular in E. insignis and in E. ineptus. However it bears only two setae in E. insignis while there are eight or nine in E. ineptus (six or eight in our specimens); E. hirsutus also has a circular ventrally indented lobe. For E. insignis, sternum VII only has
five setae adjacent from the margin, whereas there are 10–11 setae (11 and 12 in our specimens) close to the margin in E. ineptus and E. hirsutus. The sternum of E. splendidus is very different.

Females are very similar to each other (the female of E. splendidus is currently unknown) and always have unciniform sclerotization.

Host specificity:
At this time, Ectinorus insignis n. sp. is only known from Eligmodontia puerulus, a sigmodontine rodent, which is also a secondary host of Ectinorus ineptus, as cited above.

Unciform sclerotization

These are “sclerotised fold (or folds) on the anterior portion of tergum VIII of the female in some fleas, usually situated under sternum VII and near its margin” (Rothschild & Traub, 1971) [31], studied also by Smit (1970) [35] and Peus (1976) [30]. They were first drawn by Jordan (1936) [20] with the description of Ctenophthalmus singularis (presently C. (Ethioctenophthalmus) singularis), then quoted by Smit (1963) [33] in a “Species-group in Ctenophthalmus” and quoted again by Hopkins & Rothschild (1966) [17] in volume IV of “the Catalogue of the Rothschild collection of Fleas (Hystricopsyllidae: Ctenophthalminae)” (now Ctenophthalmidae) and finally thoroughly described by Peus (op. cit.) always in various Ctenophthalmus Kolenati, 1856; as in the subgenera Ethioctenophthalmus Hopkins & Rothschild, 1966 (Figure 11), Euctenophthalmus Wagner, 1940 (Figure 12) and Metactenophthalmus Peus, 1976. Among Ctenophthalmus, on one side, the “sclerotisations”, as spelled by Rothschild & Traub (1971) [31], are rarely described in Ethioctenophthalmus a highly polymorphic subgenus which is undoubtedly polyphyletic, on the other hand, they are obvious in C. (E.) leptodactylus Hubbard, 1963, more discreet in C. (E.) smithersi De Meillon, 1952. However, they are always seen in Euctenophthalmus and their relatives in Metactenophthalmus.

As Peus [30] showed, these sclerotizations are complex. Depending on the species or genus, the structures will be more or less visible. So the large differences noted in forms are not surprising, for example between Ctenophthalmidae and

Figures 4–10. Ectinorus (Ectinorus) insignis Beaucournu & González-Acuña n. sp. Holotype, 4: sternum VIII; 5: segment IX; 6: processus telomeris; 7: phallosome apex – Allotype; 8: sternum VII; 9: unci-form sclerotization, spermatheca and ducti.; 10: anal stylet.
Figures 11–25. Unciforms sclerotizations in various species (the drawing of the outline of the spermathaeca is also included for scale and site of sclerotization) – Ctenophthalmidae, Ctenophthalminae: 11: Ctenophthalmus (Ethioctenophthalmus) eximius Jordan & Rothschild, 1913, Tanzania; 12: C. (Euctenophthalmus) savii calabricus Beaucournu, Valle & Launay, 1981, Italia – Malacopsyllidae: 13: Malacopsylla grossiventris (Weyenbergh, 1879), Argentina; 14: Phthiropsylla agenoris (Rothschild, 1904), Argentina – Rhopalopsyllidae, Parapsyllinae: 15: Delostichus coxalis (Rothschild, 1909), Chile; 16: Tetrapsyllus (Tetrapsyllus) maulinus Beaucournu & Gallardo, 1978, Chile; 17: Tetrapsyllus (Heteropsyllus) satyrus Beaucournu & Torres-Mura, 1986, Chile; 18: Listronius plesiomorphus Beaucournu & Gallardo, 1991, Chile; 19: Parapsyllus senellarti Beaucournu & Rodhain, 1990, Amsterdam Island; 20: Parapsyllus nestoris antickthones Smit, 1979, Antipodes Island – Rhopalopsyllinae: 21: Rhopalopsyllus lugubris lugubris Jordan & Rothschild, 1908, French Guyana; 22: Tiamastus helicis Beaucournu & Carmen Castro, 2003, Argentina; 23: Polygenis (Gephyropsylla) klagesi klagesi (Rothschild, 1904), French Guyana; 24: Polygenis (Polygenis) rimatus (Jordan, 1932), Brasil; 25: Polygenis (Neopolygenis) pradoi (Wagner, 1937), Colombia.
Table 1. Presence or absence of unciform sclerotization in the superfamily Malacopsylloidea.

Family	Subfamily	Genus	Subgenus	Species/subspecies	Presence or absence of unciform sclerotization
Malacopsyllidae		Malacopsylla	Weyenberg, 1881	grossiventris¹ (Weyenberg, 1879) (Figure 13)	Presence Visible in Smit’s drawings (1987) [35]
		Phthiropsylla	Wagner, 1939	agenoritis¹ (Rothschild, 1904) (Figure 14)	Presence or absence undeterminable
Rhopalopsyllidae	Parapsyllinae	Delostichus	Jordan, 1942	ojedoi Beaucournu & Gallardo, 2005 smit Jameson & Fulk, 1977 [18] talus (Jordan, 1936) xenurus (Rothschild, 1914) cova degue Beaucournu, Moreno & González-Acuña, 2011 [10] incisus Beaucournu & Torres-Mura, 1987 [12] octomyos Jordan, 1942 [22] phyllotis Johnson, 1957 [19]	Presence Females not studied or unknown Presence or absence undeterminable Sometimes difficult to see in some cova incisus, but these specimens may have been overcleared
		Tetrapsyllus	Jordan, 1931	Phylliver Smit, 1987 bleptus (Jordan & Rothschild, 1923) Females provisionally assigned to elatus Johnson, 1957	Presence Males not studied
		Tetrapsyllus s. sto	comis Jordan, 1931 contorrix Jameson & Fulk, 1977 femella Johnson, 1957 [19]	plentiful (Jordan & Rothschild, 1923) amplus (Jordan & Rothschild, 1923) corfuld (Rothschild, 1904) maulinus Beaucournu & Gallardo, 1978 (Figure 16) rhombus Smit, 1955 tantillus (Jordan & Rothschild, 1923)	Presence Females not studied Presence or absence undeterminable Sclerotization in T. rhombus is visible in Figure 117 of Smit (1987) [36]
		Heteropsyllus	Beaucaournu, 2002 [1]	incisus¹ Beaucournu & Torres-Mura, 1986 (Figure 17) [11]	Presence

(continued on next page)
Family	Subfamily	Genus	Subgenus	Species/subspecies	Presence or absence of unciform sclerotization	
Rhopalopsyllidae	Parapsyllinae	**Ectinorus**	Jordan, 1942	galeanus (Jordan, 1939)	Absence	
		Panallius	Jordan, 1942			
				Ectinorus s. sto.	Presence	
				berrarai Jordan, 1939	Female of lagidium Beaucournu & Gallardo,	
				chilensis Lewis, 1976 [25]	2005 [8] is unknown	
				cocoï (Rothschild, 1904)	Female of mimacydis Beaucournu & Gallardo,	
				curvatus Beaucournu & Gallardo, 1991	2004 [7] is unknown	
				gallardoi Hastriter, 2001 [14]		
				hirsutus Hastriter, 2009		
				ineptus Johnson, 1957	Presence	
				insignis n. sp. (Figure 10)	Visible in Smit’s drawings (1987) [35]	
				ixanus (Jordan, 1942)		
				levipes (Jordan & Rothschild, 1923)		
				martini Lewis, 1976 [25]		
				nomitis Smit, 1987		
				pilosus Beaucournu & Carmen Castro, 2002		
				setosicornis Jordan, 1942		
				(E. simonsi Rothschild, 1904, not examined but included with nomitis (see above))		
				splendidus Smit, 1968		
				uspallatae Beaucournu & Gallardo, 2002		
				viscachae (Wagner, 1931)		
		Ichyonus	Smit, 1987	onychius (Jordan & Rothschild, 1923)	Presence	
				andricus1 (Jordan, 1939)	Visible in Smit’s drawings (1987) [35]	
				Presence		
		Listronius	Jordan, 1942	foris (Jordan & Rothschild, 1923)	Presence	
				plesiomorphus Beaucournu & Gallardo, 1991 (Figure 18)	Presence	
				robertianus* (Jordan, 1938)		
				ulus (Jordan & Rothschild, 1923)		
				Presence		
		Parapsyllus	Enderlein, 1903	cardinis* Dunnet, 1961	Presence	
				dacanhai De Meillon, 1952	indicate Smit’s drawings (1965, 1979, 1987)	
				heardi De Meillon, 1952	with unciform sclerotization	
				hamboldtii Jordan, 1942	For P. longicornis, note that Christchurch’s	
				jacksont* Smit, 1965	females (from Amsterdam Island) clearly show	
				longicornis* (Enderlein, 1901)	with unciform sclerotization while P. longicornis from	
				lynnae lynnae* Smit, 1965	Isla Magdalena (Southern Chile) do not or barely	
				lynnae alynnae* Smit, 1979	show it.	
				magellanicus magellanicus* Jordan, 1938		
				nestoris nestoris* Smit, 1965		
				nestoris antichtones Smit, 1979 (Figure 20) (cardinis group)		
				senellarti Beaucournu & Rodhain, 1990 (Figure 19)		
				strathophillus Smit, 1979		
				valedictus* Smit, 1979 (longicornis group)		

(continued on next page)
Table 1. Continued.

Family	Subfamily	Genus	Subgenus	Species/subspecies	Presence or absence of unciform sclerotization
Rhopalopsyllidae	Rhopalopsyllinae	*Rhopalopsyllus* Baker, 1905		*australis australis* (Rothschild, 1904)	Presence *indicate a “mancha escura” reported by Linardi & Guimarães (2000) [27]
				australis tamoyus Jordan & Rothschild, 1923	
				lugubris lugubris Jordan & Rothschild, 1908 (Figure 21)*	
				lutzi lutzi (Baker, 1904)*	
				saevus Jordan & Rothschild, 1923 [24]	
				garbei (Guimarães, 1940)	No or little sclerotization
				callens (Jordan & Rothschild, 1923) [24]	Presence *indicate Smit’s drawings (1987) [36] with unciform sclerotization
				cavica (Weyenbergh, 1881)	
				deflatus Smit, 1987*	
				gallarum Beaucournu & Kelt, 1990 [9]	
				helicis Beaucournu & Carmen Castro, 2003 (3) (Figure 22)	
				palpalis (Rothschild, 1911)*	
				pleius Jordan, 1942*	
				subtilis Jordan & Rothschild, 1923) [24]	
				tortuosus Beaucournu & Carmen Castro, 2003 [3]	
		Scolopsyllus Méndez, 1968		*colombianus* Méndez, 1968 [29]	Neither the original description nor Smit show sclerotisation
				nitidus Johnson, 1957	Presence on Figure 190 in Linardi & Guimarães (2000) [27]
				lakoi Guimarães, 1948	
				lopesi Guimarães & Linardi, 1993	
		Hechtiella Barrera, 1952*		*guimaraesi* Linardi, 1978	
				klagesi klagesi (Rothschild, 1904) (Figure 23)	Presence in all taxa studied Smit (op. cit.) [36] shows no sclerotization for any of these species or subspecies Linardi & Guimarães (op. cit.) [27] note a “mancha escura” for: - *P. klagesi* klagesi - *P. adelus* - *P. atopus* And a “*mancha clara escamiforme*” for *P. tripus* These are unciform sclerotizations recognizable on photographs (Figure 171, 211, 302 and 330 in Linardi & Guimarães, 2000) [27]
				klagesi samuelis (Jordan & Rothschild, 1923) [24]	
		Gephyropsylla Barrera, 1952		*thurmanni* Johnson, 1957	
				atopus (Jordan & Rothschild, 1922)	
				dentei Guimarães, 1947	
				frustratus Johnson, 1957	
				massoiat Del Ponte, 1967	
				pradoi (Wagner, 1937) (Figure 25)	
				pygaerus (Wagner, 1937)	

(continued on next page)
Table 1. Continued.

Family	Subfamily	Genus	Subgenus	Species/subspecies	Presence or absence of unciform sclerotization
Rhopalopsyllidae	Rhopalopsyllinae	Polygenis	Jordan, 1939	acodontis (Jordan & Rothschild, 1923) [24]	Presence in all taxa studied
				adelus (Jordan & Rothschild, 1923) [24]	Smit (op. cit.) shows no sclerotization for any of these species or subspecies
				adocetus Traub, 1930	
				axius axius (Jordan & Rothschild, 1923) [25]	
				axius pessoai Guimarães, 1956	
				axius proximus Guimarães, 1948	
				bolhsi bolhsi (Wagner, 1901)	
				bolhsi jordani (Da Costa Lima, 1937)	
				brachinus Jordan, 1950	
				caucensis Méndez, 1977	
				delpointei Méndez, 1977	
				dendrobius (Wagner, 1939)	
				dunnii (Jordan & Rothschild, 1922)	
				floridanus Johnson & Layne, 1961	
				gwyni (Fox, 1914)	
				guimaraesi Linardi, 1978	
				hopkinsi Méndez, 1977	
				impavidus Johnson, 1957	
				litargas (Jordan & Rothschild, 1923) [24]	
				litus (Jordan & Rothschild, 1908)	
				martinezbaez Vargas, 1951	
				occidentalis occidentalis (Cuhna, 1914) [13]	
				occidentalis steganus (Jordan & Rothschild, 1923)	
				odiosus Smit, 1958	
				platensis (Jordan & Rothschild, 1908)	
				peronis (Jordan & Rothschild, 1923)	
				puelche (Del Ponte, 1963)	
				rimates (Jordan, 1932) (Figure 24)	
				roberti beebei (Fox, 1947)	
				roberti roberti (Rothschild, 1905)	
				roberti tripus Vargas, 1948	
				rizeboom Smit, 1987	
				trapidoi mendez Smit, 1987	
				trapidoi trapidoi Méndez, 1977	
				tripus (Jordan, 1933)	
				vazquez Vargas, 1951	

1 Monotypic genus.
2 Taxa not studied.
Malacopsylioidae. This structure is also present in a number of other Families: for instance, sclerotization is visible in two widely distributed species, Leptopsylla segnis (Schönherr, 1811) and Nosopsyllus fasciatus (Bosc d’Antic, 1800), Ceratophyllidae (respectively Leptopsyllinae and Ceratophyllinae) and shows similarities with those of Rhopalopsyllidae (Beaucournu, unpublished).

In the Superfamily Malacopsylioidae, even though they are consistent in a given species, unciform sclerotizations are random with respect to genus or other taxa. Their shape varies from one species or genus to another. In our opinion, the interest is not only in their shape but also their presence or absence. In the genus Ectinorus, Smit (1987) [36] draws an unciform sclerotization, without comment, for some species such as E. levipes (Jordan & Rothschild, 1923), E. viscachae (Wagner, 1937) (e.g., Ectinorus) and E. onychius (Jordan & Rothschild, 1923) (s. g. Icynumus). But, this sclerotization is also visible in Ectinorus barrerae Jordan, 1939, E chilensis Lewis, 1976, E. cocyi (Rothschild, 1940), E. ixamus (Jordan, 1942), E. martini Lewis, 1976 and E. setosicornis Jordan, 1942. However, Smit [36] seems to have overlooked this structure when he studied these taxa. Thereafter, some species with the sclerotization were described after the publication of Smit’s “Monograph”. In E. uspallatae Beaucournu & Gallardo, 2005 [6], for example, reported it as a lacuna, a name proposed by Peus [30] for some of these structures. Conversely, it is lacking in E. (Panallius) galeatus (Jordan, 1939).

Unciform sclerotization exists in other Rhopalopsyllidae. Smit [36] drew it, for example, in various Parapsyllus and in Malacopsyllidae. This family is composed of two monotypic genera, Malacopsylla Weyenberg, 1879 and Phthiropysylla Wagner, 1939. Rhopalopsyllidae are relatives of Malacopsyllidae and form with them the Superfamily Malacopsylloidae.

Smit (1987) [35] and various authors (including Johnson, 1957 [19], Linardi & Guimarães, 1993 [26], 2000 [27]) have drawn them in Rhopalopsyllidae. But the discussion must extend beyond these drawings, because the authors did not seem interested in the structure. However, Linardi & Guimarães (2000) [27] point out “mancha escara” (dark spot) or “mancha clara escamiforme” (scaly bright spot) in several Rhopalopsyllidae. Those are various unciform sclerotizations.

Combining these data and ours, we report unconfused sclerotization for Malacopsyllidae in Table 1.

In conclusion, there is unconfused sclerotization for the two genera of Malacopsyllidae. In Rhopalopsyllidae – Parapsyllinae, it is present for every species of Delostichus, Tetrapsyllus, Ectinorus, Eririnans and Listronius studied. However, curiously, the enigmatic Ectinorus (Panallius) galeanus does not have it. Finally, it seems to be present in all species and subspecies of the subfamily Rhopalopsyllinae in the Rhopalopsyllidae. This structure varies in size and shape depending on the species but its presence can help species classification. We did not aim to search for the sclerotization in all Siphonaptera, but hopefully by this note, we will draw attention to this structure by other researchers. Indeed the structure appears to have taxonomic value in the classification of particular subgenera within the genus Ctenophthalmus. Females, for example in Rhopalopsyllidae, are difficult to identify. Therefore, the presence or absence of sclerotization must be well figured or at least reported to aid in identification.

Acknowledgements. Collection of Chilean fleas was carried out as part as the FONDECYT 1100695 project. Thanks also to authorization of Servicio Agricola y Ganadero and to Corporación Nacional Forestal (CONAF) for the use of their facilities in National parks and reserves.

References

1. Beaucournu J-C. 2002. Heteropsyllus n. subgen. pour Tetrapsyllus satyrus Beaucournu & Torres-Mura, 1986 (Siphon., Rhopalopsyllidae). Bulletin de la Société entomologique de France, 107, 264.
2. Beaucournu J-C, Carmen Castro D del. 2002. Ectinorus pilosus n. sp., nouvelle puce d’Argentine (Siphonaptera, Rhopalopsyllidae). Bulletin de la Société entomologique de France, 107, 367–369.
3. Beaucournu J-C, Carmen Castro D del. 2003. Deux nouveaux Tiamastus Jordan, 1939, d’Argentine (Siphonaptera, Rhopalopsyllidae). Bulletin de la Société entomologique de France, 108, 49–53.
4. Beaucournu J-C, Gallardo MH. 1989. Contribution à la faune du Chili. Puces nouvelles de la moitié nord (Siphonaptera). Bulletin de la Société entomologique de France, 94, 181–188.
5. Beaucournu J-C, Gallardo MH. 1991. Siphonapteres du Chili; description de quatre espèces nouvelles (Siphonaptera). Bulletin de la Société entomologique de France, 96, 185–203.
6. Beaucournu J-C, Gallardo MH. 2005. Deux puces nouvelles (Siphonaptera: Rhopalopsyllidae: Parapsyllinae) d’Argentine, parasites d’Abrocoma uspallata Braun et Mares, 2002 (Rod.: Abrocomidae). Parasite, 12, 39–43.
7. Beaucournu J-C, Gallardo MH, Ménier K. 2004. Deux puces nouvelles du Chili et d’Argentine (Insecta – Siphonaptera: Stephanocircidae et Rhopalopsyllidae) et érection d’un sous-genre chez Plocopsylla Jordan, 1931. Parasite, 11, 249–252.
8. Beaucournu J-C, González D. 2005. Ectinorus (E.) lagidium n. sp., nouveau parasite de la Vischaca, Lagidium viscacia (Molina, 1782) (Rodentia, Chinchillidae), au Chili (Siphonaptera, Rhopalopsyllidae). Bulletin de la Société entomologique de France, 110, 399–401.
9. Beaucournu J-C, Kelt DA. 1990. Contribution à la faune du Chili: puces nouvelles ou peu connues de la partie sud (Insecta, Siphonaptera). Revue suisse de Zoologie, 97, 647–668.
10. Beaucournu J-C, Moreno L, González-Acuña D. 2011. Deux espèces nouvelles de Puces (Siphonaptera: Ctenophthalmidae & Rhopalopsyllidae) du Chili. Parasite, 18, 241–246.
11. Beaucournu J-C, Torres-Mura JC. 1986. Un Tetrapsyllus nouveau du Chili (Siphonaptera, Rhopalopsyllidae). Revue française d’Entomologie, (N. S.), 8, 9–12.
12. Beaucournu J-C, Torres-Mura JC. 1987. Un nouveau Delostichus (Siphonaptera, Rhopalopsyllidae) d’Argentine. Bulletin de la Société Française de Parasitologie, 5, 257–260.
13. Guimarães LR. 1940. Notas sôbre Siphonaptera e redescrição de Polygenis occidentalis (Almeida Cunha, 1914). Arquivos de Zoologia, Sao Paulo, 2, 215–250.
14. Hastriter MW. 2001. Fleas (Siphonaptera: Ctenophthalmidae and Rhopalopsyllidae) from Argentina and Chile with two new
species from the rock rat, Aconaenys fuscus, in Chile. Annals of Carnegie Museum, 70, 169–178.

15. Hasrtrir MW. 2009. A description of four new species of fleas (Insecta, Siphonaptera) from Angola, Ethiopia, Papua New Guinea, and Peru. ZooKeys, 8, 39–61.

16. Hasrtrir MW, Sage RD. 2009. A description of two new species of Ectinorus (Siphonaptera: Rhopalopsyllidae) from Laguna Blanca National Park, Neuquén Province, Argentina. Proceedings of the Entomological Society of Washington, 111, 581–597.

17. Hopkins GHE, Rothschild M. 1966. An illustrated Catalogue of the Rothschild Collection of Fleas. Vol. IV: Hystrichopsyllidae (Ctenophthalminae, Dinopsyllinae, Doratopsyllinae and Listropsyllinae). Trustees of the British Museum (Natural History), London–549 pp.

18. Jameson EW, Fulk GW. 1977. Notes on some fleas (Siphonaptera) from Chile. Journal of Medical Entomology, 14, 401–406.

19. Johnson PT. 1957. A classification of the Siphonaptera of South America, with descriptions of new species. Memoirs of the Entomological Society of Washington, vol. 5, 298 pp.

20. Jordan K. 1936. Siphonaptera from Congo belge. Novitates Zoologicae, 39, 294–299.

21. Jordan K. 1942. On Parapsyllus and some closely related genera of Siphonaptera. Eos. Revista española de Entomología, 18, 7–29.

22. Jordan K. 1942. On the Siphonaptera collected by Dr. J. M. de la Barrera in the provinces of Mendoza during 1939. Revista del Instituto Bacteriologico « Dr. Carlos G. Malbran », 10, 401–460.

23. Jordan K, Rothschild NC. 1908. Revision of the non-combed eyed Siphonaptera. Parasitology, 1, 1–100.

24. Jordan K, Rothschild NC. 1923. On the genera Rhopalopsyllus and Parapsyllus. Ectoparasites, 1, 320–370.

25. Lewis RL. 1976. A review of the South-American flea subgenus Ectinorus Jordan 1942, with descriptions of two new species and a key (Siphonaptera: Rhopalopsyllidae). Journal of Parasitology, 62, 1003–1009.

26. Linardi PM, Guimarães LR. 1993. Systematic review of genera and subgenera of Rhopalopsyllinae (Siphonaptera: Rhopalopsyllidae) by phenetic and cladistic methods. Journal of Medical Entomology, 30, 161–170.

27. Linardi PM, Guimarães LR. 2000. Sifonápteros do Brasil. Museo de Zoologia, USP, FAPESP, São Paulo, vol. 5, 291 pp.

28. Macchiavello A. 1948. Sifonáptera de la Costa Sur-Occidental de America (Primera lista y Distribucion Zoo-Geografica). Boletín de la Oficina Sanitaria Panamericana, 27, 412–460.

29. Méndez E. 1968. Scolopsyllus colombianus, new genus and new species of the family Rhopalopsyllidae (Siphonaptera) from Colombia. Journal of Medical Entomology, 5, 405–410.

30. Peus F. 1976. Flöhe aus Anatolien und anderen Ländern des Nahen Ostens. Abhandlungen der Zoologisch-Botanischen Gesellschaft in Wien, 20, 1–111.

31. Rothschild M, Traub R. 1971. A revised Glossary of terms used in the taxonomy and morphology of Fleas. An Illustrated Catalogue of the Rothschild Collection of Fleas (Siphonaptera) in the British Museum (Natural History), vol. V, pp. 8–85.

32. Rothschild NC. 1904. Further contributions to the knowledge of the Siphonaptera. Novitates Zoologicae, 11, 602–653.

33. Smit FGAM. 1963. Species-groups in Ctenophthalmus (Siphonaptera: Hystrichopsyllidae). Bulletin of the British Museum (Natural History), Entomology, 14, 107–152.

34. Smit FGAM. 1968. Siphonaptera taken from formalin-traps in Chile. Zoologischer Anzeiger, 180, 220–228.

35. Smit FGAM. 1970. Siphonaptera taken from formalin-traps in Chile. Zoologischer Anzeiger, 180, 220–228.

36. Wilson DE, Reeder DM. 2005. Mammal species of the world: a taxonomic and geographic reference, 3rd edn. The Johns Hopkins University Press: Baltimore.