Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Review
Vγ9Vδ2 T cell-mediated non-cytolytic antiviral mechanisms and their potential for cell-based therapy

Fabrizio Pocciaa, Chiara Agratia, Federico Martinia, Gloria Mejia, Marianne Wallace, Miroslav Malkovsky

1. Introduction
In viral infections, both adaptive and innate immune reactions cooperate to protect the host and, whenever it is possible, to eradicate or control the infection. The early synthesis of soluble factors (cytokines, chemokines) influences substantially the subsequent immune response and may, therefore, affect the course of infection. One of the important effectors of natural immunity are γδ T lymphocytes, which display a broad antiviral activity against different viruses such as retroviruses, flaviviruses, paramyxoviruses, orthomyxoviruses, picornaviruses, coronaviruses, rhadoviruses, arenaviruses, herpesviruses, hepadnaviruses, and orthopoxviruses (reviewed in [1]). This broad antiviral activity of γδ T cells is likely to play a crucial defensive role, especially considering that their relatively large numbers (e.g., approximately one out of every 30 adult human peripheral blood lymphocytes is a Vγ9Vδ2 T lymphocyte) can respond very quickly (typically, no antigen processing is required).
is required for the potent major histocompatibility complex (MHC)-unrestricted activities of V9V62 T cells and release soluble antiviral factors.

2. Pharmacological stimulation of γδ T cells

Many natural ligands recognized by human V9V62 T cells are known. Probably the most important representatives of this group are intermediates of isoprenoid biosynthesis [2] (e.g., 3-formyl-1-butyryl-pyroshphate and isopentenyl-pyroshphate) and were first isolated from mycobacteria [3–5]. Other natural and synthetic phospho-ligands [6,7], alkylamines [8] and aminocephosphonates [9] also stimulate V9V62 T cells. Structure-function studies of V9V62-specific ligands suggest that some of these molecules could be readily docked into a putative binding site of the V9V62 TCR [10,11]. Functionally, mature V9V62 T cells express cell-surface inhibitory receptors for MHC class I molecules (NMRs) that may control TCR-mediated reactivities in the antiviral response [12,13].

Phosphostim (phosphobromohydrin) is the first drug that was designed to stimulate selectively V9V62 T cells. Currently, this new drug is in Phase I/Phase II clinical trials in cancer patients. Nitrogen-containing bisphosphonates (N-BPs) have been used to prevent bone demineralization in patients with osteoporosis, multiple myeloma, and certain metastatic cancers (e.g., breast and prostate). Recently, N-BPs have been shown to induce activation of V9V62 T cells accompanied by augmented: (a) cytotoxic activities; (b) cytokine/chemokine production; and (c) DNA synthetic responses in V9V62 T cells. These unexpected activities of N-BPs have opened new possibilities of therapeutic usage for these drugs.

The mechanism of N-BP action appears to include the inhibition of farnesyl pyrophosphate synthase activity (as one of the key enzymes in the mevalonate pathway, farnesyl pyrophosphate synthase catalyzes the sequential head-to-tail condensation of two molecules of isopentenyl pyrophosphate with dimethylallyl pyrophosphate). This leads to an accumulation of isopentenyl pyrophosphate, an essential metabolite that is directly recognized by V9V62 T cells [14]. Interestingly, the mevalonate pathway is critical for protein prenylation, which may be important for viral assembly (Fig. 1). In hepatoma cells exposed to lovastatin (an inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, the enzyme that catalyzes the conversion of HMG-CoA into mevalonate), hepatitis C virus (HCV) RNA replication is impaired due to the dissolution of the HCV replication complex [15]. The lovastatin treatment can also block respiratory syncical virus (RSV) replication and cell-to-cell fusion in vivo and in vitro by inhibiting the isoprenylation of the cellular protein RhoA [16].

Similarly, BZA-5B (an inhibitor of protein prenylation) blocks the production of hepatitis delta virus (HDV) particles in vitro in a dose dependent manner [17]. In particular, the inhibition of large delta antigen prenylation mediated by BZA-5B interferes with the assembly of HDV virions. In addition, the increased concentration of large delta antigen within infected cells may act as a potent trans dominant inhibitor of HDV replication [18].

The block of mevalonate pathway by N-BPs also results in a decreased synthesis of cholesterol. It has been reported that cholesterol is critical for HIV passage through cell membranes and that the ability of Nef protein to increase viral infectivity depends on cholesterol [19]. Specifically, Nef is involved in transporting newly synthesized cholesterol to the site of viral budding and promotes the incorporation of cholesterol into viral particles. These data suggest that an efficient cholesterol synthesis in HIV-infected cells is important for the production of infectious virions [20]. Altogether, these results open a new possibility of using the inhibitors of mevalonate pathway as double-edge swords—that is as antivirals interfering with virion production as well as stimulators of V9V62 T cell cytotoxic and other antiviral effects.

3. Non-cytolytic antiviral immunity mediated by V9V62 T cells

Immune responses to viral infections comprise both cytolytic (i.e., cytotoxicity against virus-infected cells) and...
non-cytolytic activities of V99V82 T cells. The innate non-cytolytic activity encompasses the production and release of several soluble molecules. As shown in Fig. 2, peripheral blood mononuclear cells (PBMCs) stimulated with isopentenyl pyrophosphate (IPP, a classical non-peptidic antigen for V99V82 T cells) release an array of cytokines (e.g., IFN-γ, TNF-α, IL-1α, IL-6, GM-CSF, TPO, OSM) and chemokines (e.g., MIP-1α, RANTES, MCP-1, MCP-3, MDC, ENA-78, GRO, IL-8) with known antiviral and/or immunomodulatory properties. After stimulation and in sharp contrast to many non-γ/δ TCR-expressing lymphoid cells, single V99V82 T lymphocytes produce more than one of these soluble antiviral/immunoregulatory factors (Fig. 3). The innate response is followed by humoral and cellular adaptive immune responses influenced by many of these soluble molecules. In addition, the non-cytolytic antiviral molecules continue to suppress the infectious process in vital organs without destroying important cells and also can boost the antiviral potency of classical γ/δ cytotoxic T lymphocytes (CTLs) [21].

The main factor with known antiviral activities released by γ/δ T cells is IFN-γ—a key molecule in recruiting and activating killer T cells, NK cells and macrophages, and triggering intracellular pathways that suppress viral replication without direct cytolytic effects on host cells [22,23]. In vitro, the non-cytolytic antiviral activity of interferons has been demonstrated in infections with HCV, hepatitis B virus (HBV), herpesviruses, orthopoxviruses, picornaviruses, retroviruses, influenza and other type of viruses (reviewed in [21,24]). In hepatitis B-transgenic mice, IFN-γ released by CD8 T cells is able to diminish the HBV gene expression and replication and activates hepatocytes to clear the virus through a non-cytolytic pathway [25]. In the acute phase of HCV infection, the ability of T cells to produce IFN-γ is associated with virus clearance [26]. Recently, it has been shown that NS3 peptide-stimulated CD8 T cells release IFN-γ and reduce HCV RNA replication activity [27]. Generally, in chimpanzees (Pan troglodytes), the appearance of CD8-positive CTLs is better correlated with protection against HCV than the antibody response [28]. This is compatible with the idea that the production of IFN-γ by CD8-positive T lymphocytes may contribute to the resolution of the infection [28]. Despite the potent interferon effects, the majority of...
Fig. 3. In contrast to αβ T lymphocytes or CD3-negative cells, a substantial proportion of activated Vβ2 T lymphocytes produce multiple cytokines. Human PBMCs were incubated (24 h) in culture medium with 128 μM sodium pamidronate and the IFN-γ and TNF-α intracellular presence was assessed by flow cytometry. During the last 4 h of incubation, brefeldin A (10 μg/ml) was present to block the cytokine release from cells. Polyclonal stimulation with concanavalin A (not shown) generated a very similar pattern—that is large numbers of Vβ2+ CD3+ double producers (in contrast to predominant single producers in the αβ+ CD3+ and Vβ2- CD3-pools) with the exception of substantially larger amounts of single-TNF-α-positive αβ T cells. The cytokine production by the αβ+ CD3+ or Vβ2- CD3-cells in pamidronate-stimulated cultures was inhibited by anti-IFN-γ mAbs suggesting that IFN-γ released by pamidronate-stimulated Vβ9Vβ2 T cells may be an important factor in the induction of cytokine synthesis by the tested non-Vβ9Vβ2 T cell pools.

patients become persistently infected with HCV. This chronic infection is associated with a drastic impairment of IFN-γ production by T cells [29] and a hepatic expansion of HCV-specific CD8-positive T lymphocytes with a regulatory phenotype [30]. Thus, the induction of IFN-γ production by Vβ9Vβ2 T lymphocytes could represent a new strategy to inhibit viral replication and to support the Th1-type immune response.
Interleukin-1α (IL-1α) produced by activated γδ T cells can have either stimulatory or inhibitory effects on HIV infection [31,32]. Also, it has been shown that the cytomegalovirus (CMV) infection is reduced in marrow stromal cells that either secrete IL-1 or are treated with exogenous IL-1 [33]. Stimulated γδ T cells also produce interleukin-6 (IL-6), a potent lymphoid cell growth factor, which affects B-lymphocytes, T-lymphocytes or hybridoma cells, and may influence cytokotic T cells in combination with other factors such as IL-2 and IFN-γ. IL-6 production by skin fibroblasts that support the replication of dengue virus and other flaviviruses in vivo may be an important factor in controlling flavivirus infections [34]. Moreover, IL-6 was shown to strengthen the retinoic acid-mediated suppression of HIV-1 replication in macrophages [32].

The granulocyte-macrophage colony-stimulating factor (GM-CSF) produced by activated γδ T cells is a potent species-specific stimulator of precursors of granulocytes, macrophages and eosinophils. Antiviral effects of GM-CSF have been reported in dengue infections [34]. GM-CSF can boost antiviral humoral immunity to influenza and simian immunodeficiency virus (SIV) [35], increase humoral and cellular immune responses against herpes simplex virus-2 (HSV-2) [36] and improve protection against Epstein-Barr virus (EBV)-induced lymphoproliferative disorders [37]. Also, thrombopoietin (stimulates the proliferation and maturation of megakaryocytes) and oncostatin M (growth regulating cytokine) are secreted by activated γδ T cells, but their effect on viral replication remains unclear.

Chemokines, a superfamily of proinflammatory cytokines, are released by many activated γδ T cells. Chemokines act primarily as chemotaxins and activators of specific types of leukocytes. Some chemokines (such as the β-chemokines MIP-1α, MIP-1β and RANTES) influence directly the rate of HIV replication [38]. The stromal-derived factor (SDF-1) that blocks the entry of CXCR4-dependent (T cell-tropic) HIV-1 isolates [39] has been identified as a ligand for LESTR/fusin [40]. RANTES and MCP-3 inhibit T cell-tropic HIV-1 isolates [41] and the macrophage chemotactic protein (MDC, macrophage-derived chemokine) can also block HIV-1 entry [42]. Other CD8 antiviral factors (e.g., CAF) inhibit HIV-1 transcription [43]. The post-integration mode of action makes CAF distinct from β-chemokines and similar to IL-16 [44]. Importantly, antigen-stimulated Vγ9Vδ2 T cells produce the HIV-inhibitory β-chemokines (MIP-1α, MIP-1β, and RANTES) [45,46] that block both CCR5 co-receptor-dependent (e.g., HIV-1BAL) and CXCR4 co-receptor-dependent (e.g., HIV-1ADA) viral isolates [45]. However, it is likely that additional, not molecularly defined antiviral activities of γδ T cells contribute to the observed antiviral effects.

Antigen-stimulated Vγ9Vδ2 T cells rapidly establish chemostatic gradients that may shape the host inflammatory response against various pathogens including HIV. The activation of Vγ9Vδ2 T cells with IPP induces (within 4–12 h) the production of MIP-1α, MIP-1β, and lymphotactin, but not macrophage chemotaxtract protein-1 (MCP-1) [46]. The induction of MIP-1α and MIP-1β is unaffected by IL-4, IL-10, or INF-γ, but IPP plus IL-12-induced release of MIP-1α, but not MIP-1β, is blocked by TGF-β. Vγ9Vδ2 T cells also express many β-chemokine receptors including CCR1, CCR5, and CCR8 that can be downregulated by activation stimuli. Activating signals for γδ T cells also induce the production of macrophage chemotaxtract protein-2 (MCP-2) and MDC. MCP-2 plays an important role in the inflammatory response of blood monocytes and tissue macrophages and inhibits the replication of HIV-1 via CCR5 [47]. MDC is chemotactic for monocytes, dendritic cells, activated lymphocytes, and NK cells and exhibits anti-HIV-1 activity [48]. Cumulatively, the high levels of proinflammatory cytokotines and chemokines with antiviral properties produced by acti-vated Vγ9Vδ2 T cells may influence the progression of HIV disease.

However, it is likely that additional, not molecularly defined antiviral activities of γδ T cells contribute to the observed antiviral effects.

Another proinflammatory factor released by activated γδ T cells is TNF-α, a potent lymphoid factor with (unlike the molecules described above) cytokotic effects on a wide range of target cells. Beneficial effects of TNF-α in cellular immunity to VSV [52], CMV [53], HSV-1 [54], and vaccinia virus [55] have been noted. TNF-α was shown to enhance HIV-1 replication in chronically infected promonocytic and T-lymphoid cell lines by activation of the nuclear factor NF-κB, which stimulates the long terminal repeat (LTR) of the provirus [31]. In contrast, IFN-γ (an important enhancer of TNF-α production by macrophages) inhibits the HIV-1 growth in primary macrophages [56]. While TNF-α has a protective role in activated CD4+ T cells against R5-tropic viruses, it enhances CXCR4 expression of CD4+ T cells and mediates an increased susceptibility to infection with X4-tropic HIV and SIV strains. Therefore, the role of TNF-α in...
HIV infections is somewhat intricate, and further studies are needed to clarify its effects.

4. Conclusions

Novel synthetic drugs, N-BPs and Phosphostim that can activate V929V2 T cells have been developed recently as well as effective in vivo γT-stimulatory protocols [57]. Some of these molecules are able not only to activate V929V2 T cells, but also can inhibit viral replication through a metabolic pathway that may be required for viral assembly. Thus, N-BPs/Phosphostim-based therapeutic strategies should be considered to enhance the current inadequate armaments for fighting emerging and re-emerging viruses.

References

[1] Poccia F, Agnati C, Mattei F, Capobianchi MR, Wallace M, Malkovsky M. Antiviral reactivities of γT T cells. Microbes Infect 2005;7:514–28.

[2] Altincicek B, Moll J, Campos N, Peerver G, Beck E, Hoeffer JF, Grosdemange-Billard C, Rodriguez-Conception M, Rohmer M, Bosson A, Ebbel M, Jama H. Cutting edge: human γT T cells are activated by intermediates of the 2-C-methyl-d-erythritol-4-phosphate pathway of isoprenoid biosynthesis. J Immunol 2001;166:3650–5.

[3] Belmant C, Espinosa E, Poquet Y, Peyrat MA, Guizard M, Poquet Y, Bonneville M. Fournier J-J. 3-Fumaryl-1-butyl phosphate: A novel mycobacterial metabolite-activating human γT T cells. J Biol Chem 1999;274:32079–84.

[4] Constant P, Davodeau F, Peyrat MA, Puto G, Bonneville M, Fournier J-J. Stimulation of human γT cells by non-peptidic mycobacterial ligands. Science 1994;264:267–70.

[5] Tanaka Y, Morita CT, Tanaka Y, Norvs E, Brenner MB, Bloom BR. Natural and synthetic non-peptidic antigens recognized by human γT T cells. Nature 1995;375:153–8.

[6] Belmant C, Espinosa E, Halady F, Tang Y, Poquet MA, Sicard H, Konikowska A, Barlow R, Poquet Y, Bonneville M, Fournier J-J. A chemical basis for selective recognition of non-peptide antigens by human γT T cells. FASEB J 2000;14:1669–70.

[7] Burk MR, Moni L, De Libero G. Human γT9V2 cells are stimulated in a cross-reactive fashion by a variety of phosphorylated metabolites. Eur J Immunol 1995;25:2052–8.

[8] Bukowska M, Morita CT, Brenner MB. Human γT cells recognize alkyamines derived from microbes, edible plants, and tea: implications for innate immunity. Immunity 1999;86:2336–40.

[9] Kurts von, Baur E, Wilhelm M. Gamma/delta T-cell stimulation by activation of the nuclear factor kappa B. Proc Natl Acad Sci USA 2003;100:15865–70.

[10] Gower TL, Graham BS. Antiviral activity of lovastatin against respiratory syncytial virus in vivo and in vitro. Antimicrob Agents Chemother 2001;45:1237–8.

[11] Glenn JS, Moroies J, Greenberg HB. Use of a prenylation inhibitor as a novel antiviral agent. J Virol 1999;72:9303–6.

[12] Glenn JS, White JM. Trans-dominant inhibition of human leukocyte antigen delta virus genome replication. J Virol 1991;65:2357–61.

[13] Zheng YH, Plemenitas A, Limmen M, Packer OT, Petrinin BM. Nef increases infectivity of HIV via lipid rafts. Curr Biol 2001;11:875–9.

[14] Zheng YH, Plemenitas A, Fielding CJ, Petrinin BM. Nef increases the synthesis of and transports cholesterol to lipid rafts and HIV-1 progeny virions. Proc Natl Acad Sci USA 2001;98:8460–5.

[15] DeVico AL, Gallo RC. Control of HIV-1 infection by soluble factors of the immune response. Nat Rev Microbiol 2004;2:401–3.

[16] Patterson JB, Thomas DC, Hare SL, Samuel CE. Mechanism of interferon action: double-stranded RNA-specific adenine deaminase from human cells is inducible by γ and γ interferons. Virology 1995;210:508–11.

[17] Bovoscona C, Lorni AL, Mantelli B, Camoras R, Novelli F, Biaion P, Puli G. A selective defect of IFN-γ, but not of IFN-α, is induced by I407T pathway in a subset of U937 clones prevents the antiviral effect of IFN-γ against HIV-1. J Immunol 1999;162:3230–8.

[18] Capobianchi MR, Abraitz L, Cappello G, Solonne M. HCV and interferon: viral strategies for evading innate defence mechanisms in the virus-host battle. Cell Death Differ 2003;10:Suppl. 1:S22–4.

[19] Luchet F, Wong DK, Dunbar PR, Chapman R, Chung BT, Dohrenwend P, Robbins G, Phillips R, Kleneman P, Walker BD. Analysis of successful immune responses in persons infected with hepatitis C virus. J Exp Med 2001;194:1499–512.

[20] Liu C, Zhu H, Yu Z, Xu YL, Nelson DR. CD10–Tecl cell interaction with HCV replica cell lines: evidence for both cytokine- and cell-mediated antiviral activity. Hepatology 2003;37:1335–42.

[21] Cooper S, Erickson AL, Adams EJ, Kansopon J, Weiner AJ, Chen DY, Houghton M, Parham P, Walker CM. Analysis of a successful immune response against hepatitis C virus. Immunity 1999;10:439–49.

[22] Francavilla V, Accaputo D, De Salvo M, Rawson P, Cosimi O, Lipu C, Cerino A, Cividina A, Mondelli MU, Barabino V. Subversion of effector CD8 T cell differentiation in acute hepatitis C virus infection: exploring the immunological mechanisms. Eur J Immunol 2004;34:427–37.

[23] Accaputo D, Francavilla V, Rawson P, Cerino A, Cividina A, Mondelli MU, Barabino V. Subversion of effector CD8 T cell differentiation in acute hepatitis C virus infection: the role of the virus. Eur J Immunol 2004;34:4346–46.

[24] Ochon L, Kankan S, Nafeli GI. Tumor necrosis factor alpha and interferon-γ stimulate the human immunodeficiency virus enhancer by activation of the nuclear factor kappa B. Proc Natl Acad Sci USA 1999;96:2336–40.

[25] Brown MQ, Huley TM, Viglianti GA. Interferon-γ and interferon-α potentiate retinoic acid-mediated repression of human immunodeficiency virus type 1 replication in macrophages. AIDS Res Hum Retroviruses 2002;18:469–56.

[26] Randolph-Habecker J, Iwata M, Geballe AP, Jamieson V, Torek-Stob B. Interferon-γ-mediated inhibition of cytomegalovirus replication
is due to increased IFN-γ production. J Interferon Cytokine Res 2002;22:765–72.

[94] Kaneita J, Janus J,埃mms FA. Dengue virus infection of human skin fibroblasts in vitro production of IFN-γ, IL-6 and GM-CSF. Arch Virol 1992;128:21–30.

[95] Lema P, Villerme F, Giavonel L, Miller CI, Rhodes G, Lucic P. Co-immunization of rabbit macaques with plasmid vectors expressing IFN-γ, GM-CSF and BSV antigens enhances anti-viral human immunity but does not affect viroemia after challenge with highly pathogenic virus. Vaccine 2002;20(Suppl. 4):A69–79.

[96] Sin JS, Kim JS, Ugen KE, Ciccarelli RB, Higgins TJ, Weiner Lena P, Villinger F, Giavedoni L, Miller CJ, Rhodes G, Luciv P. Kurane I, Janus J, Ennis FA. Dengue virus infection of human skin fibroblasts in vitro production of IFN-γ, IL-6 and GM-CSF. Arch Virol 1992;128:21–30.

[97] Mackewicz CE, Barker E, Levy JA. Role of β-chemokines in suppressing HIV replication. Science 1996;274:1393–5.

[98] Poccia F, Battistoni L, Cipriani B, Mannino G, Martini F, Gougeon ML, Colizzi V. Phosphatidylinositol-reactive Vγ9Vδ2 T lymphocytes suppress in vitro human immunodeficiency virus type 1 replication by cell Released antiviral factors including CC chemokines. J Infect Dis 1999;180:858–61.

[99] Cipriani B, Borellini G, Poccia F, Pasolli R, Tramonti D, Bach S, Battistoni L, Brossman CF. Activation of C-C beta-chemokines in human peripheral blood y8+ T cells by isopentenyl pyrophosphate and regulation by cytokines. Blood 2000;95:39–47.

[100] Yang OO, Garcia-Zepeda EA, Walker RD, Luster AD. Monocyte chemoattractant protein-2 (CC chemokine ligand 8) inhibits replication of human immunodeficiency virus type 1 via CC chemokine receptor 5. J Infect Dis 2002;185:1174–8.

[101] Strey S, Proost P, Sottrum S, Mantovani A. Wuyts A, De Clercq E, Schols D, Van Damme J. Enhanced anti-HIV-1 activity and altered chemotactic potency of NHEJ-terminally processed macrophage-derived chemokine (MDC) imply an additional MDC receptor. J Immunol 1998;161:2672–5.

[102] Nakashima H, Yamamoto N, Masuda M, Fugi N. Defensins inhibit HIV replication in vitro. AIDS 1997;11:22.

[103] Doherty KA, Selsted ME, Leithe RL. Direct inactivation of viruses by human granulocyte defensins. J Virol 1998;72:1046–7.

[104] Agerberth B, Charo J, Wang J, Olsson B, Iddo F, Lindholm L, Kesidoglu E, Jonval H, Wetzell H, Grundmanish DDl. The human antimicrobial and chemotactic peptides LL-37 and α-defensins are expressed by specific lymphocyte and monocyte populations. Blood 2000;96:3086–93.

[105] Wong GH, Goodell DW. Tumor necrosis factors α and β inhibit virus replication and synergize with interferons. Nature 1986;323:819–22.

[106] Pasie J, Polic B, Crikovic I, Lacic P, Jonjic S, Kuzinoviczki UI. Participation of endogenous tumor necrosis factor α in host resistance to cytomegalovirus infection. J Gen Virol 1991;72(4):1221–23.

[107] Rossell-Vold R, Rosell S, Schatt KH, Corradi E, de Cian W, Falke D. In vitro protective effect of tumour necrosis factor α against experimental infection with herpes simplex virus type 1. J Gen Virol 1991;72(10):2243–47.

[108] Jambor SK, Kohonen-Corish MB, Ramshaw IA. Local production of tumor necrosis factor encoded by recombinant vaccinia virus is effective in controlling viral replication in vivo. Proc Natl Acad Sci USA 1991;88:4025–9.

[109] Meylan PR, Spina CA, Richman DD, Kornbluth RS. In vitro differentiation of monocytoid THP-1 cells affects their permissiveness for HIV strains: a model system for studying the cellular basis of HIV differential tropism. Virology 1993;193:256–67.