Ethnopharmacological review of medicinal plants used to manage diabetes in Morocco

Elhassan Idm’hand*, Fouad Msanda and Khalil Cherifi

Abstract

Diabetes is a chronic metabolic disorder which affects millions of people every year. If diabetes is not controlled, it can cause serious damage and a number of health complications. The aim of this paper was to review published ethnobotanical and ethnopharmacological evidences of Moroccan plants with antidiabetic potentials. Publications describing the medicinal plants used for the treatment of diabetes in Morocco were searched from the databases, including Google Scholar, Elsevier, Medline, Web of Science, SCOPUS and Pubmed. Other literature source was also used including books and theses available in library. About 750 literature references were studied, and only 240 research publications based on data from different Moroccan provinces published until June 2019 were included in this review. In total, 255 plants species belonging to 70 families were reported. Compositae and Lamiaceae were mentioned as the most represented families. The frequently used plant species in the dwellers of most regions of Morocco are Trigonella foenum-graecum, Artemesia herba-alba, Nigella sativa, Olea europaea, Allium cepa and Marrubium vulgare. This review provides useful information and current scientific knowledge on the medicinal plants used to manage diabetes in Morocco. Medicinal plants reported should be submitted to chemical, pharmacological and clinical studies to identify pharmacologically active metabolites and to confirm their antidiabetic activity.

Keywords: Medicinal plants, Diabetes, Ethnobotany, Pharmacology, Toxicology, Morocco

Introduction

Type 2 diabetes mellitus (T2DM), generally termed as diabetes, is one of the major endocrine diseases which affects millions of people in the industrial and developing countries [1, 2]. It is projected that the total number of people with diabetes worldwide is expected to increase to 592 million by 2035 [3]. Diabetes is a metabolic disease characterized by insufficient insulin secretion, impaired cellular action of the insulin or both [2, 4]. The characteristic symptoms of diabetes are pruritus, polydipsia, weight loss, polyphagia, wasting, blurred vision, polyuria, tachycardia and hypotension [5, 6]. Dietary and lifestyle factors (Obesity, weight gain, physical inactivity and low fiber diet with a high glycemic index) play a significant role in the development of diabetes [7]. Prolonged uncontrolled hyperglycemic level causes an increase in oxidative stress activation of the polyol pathway, coronary artery disease, peripheral arterial disease, stroke, diabetic nephropathy, neuropathy, peripheral neuropathy, retinopathy, retinopathy leading to vision loss, chronic kidney disease, urinary problems, sexual dysfunction, and skin infections [3, 8, 9]. The treatment of diabetes mellitus is based on insulin, diet modification and oral hypoglycemic agents. Herbal medicine has developed as an alternative for the treatment of diabetes because oral hypoglycemic agents are expensive and tagged with several side effects (nausea, skin reactions, liver disease, heart failure diarrhea, etc.) [10, 11]. In Morocco, there are numerous medicinal plants described for treatment of diabetes [2, 12–23].

* Correspondence: idmhand-h@hotmail.com

Laboratoire de Biotechnologies et Valorisation des Ressources Naturelles, Faculté des Sciences, B.P. 8106, Cité Dakhla, Agadir, Morocco

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The aim of this review article was to collect data for species well-known for their antidiabetic effect in Morocco.

Method

Three researchers searched Google Scholar, Elsevier, Medline, Web of Science, SCOPUS and Pubmed bibliographic databases from January 2019 to July 2019 to extract all data about the use of plants in folklore medicine for treatment and management of diabetes in Morocco published in the period from January 1980 to June 2019, using English, French and Arabic keywords. The search terms used were “Ethnobotanical survey”, “Moroccan medicinal plants”, “anti-diabetic medicinal plants in Morocco”, “hypoglycemic plants in Morocco”, “diabetes in Morocco”. We reviewed the literature and collected data on the explored regions of Morocco (Beni Mellal region, Rabat, Western Anti-Atlas, Izaren forest, Oriental Morocco, Northwestern Morocco, Sefrou region, Central Middle Atlas, Tizi n’ Test Region, Al Haouz-Rhamna, Tan-Tan, Meknes-Tafilalet and Fez-Boulemane). About 750 literature references were studied, and only 240 ethnobotanical articles and pharmacology papers were included in this review. We did not include articles related to taxonomy, morphological characters, pharmacology, toxicity, ethnobotany, phytochemistry, clinical studies, cultivation, physiological, and anatomical aspects of all the medicinal plants mentioned. We studied in detail only the six plants most used for the treatment of diabetes in Morocco. We also excluded the articles without accessible full text and duplicate articles. Plant taxonomy is confirmed through data available on site (www.theplantlist.org).

Results

Ethnobotanical studies

A total of 255 plant species belonging to 70 families were reported as being used in the treatment and management of diabetes in Morocco (Table 1). Among plant families, Compositae had the highest number of species followed by Lamiaceae, Leguminosae, Apiaceae, Poaceae and Brassicaceae. Compositae was the most frequently cited plant family, which is consistent with the predominance of this plant family in the results of various studies conducted in other countries [3, 27, 28]. Compositae has been designated as the largest plant family of flowering plants worldwide, comprising 23,000 species and 1535 genera, including many with considerable medicinal importance [29, 30]. The traditional medicinal applications of several Compositae species have been recorded in the literature. Several bioactive compounds have been evaluated for their biological activities [31]. A wide use of Compositae family plants in Morocco could be due to the large number of plant species belonging to this family. Further, plants belonging to the Compositae family contain a group of active phytochemical constituents and some bitter-tasting secondary metabolites such as sesquiterpene lactones [8, 30].

Our evaluation of literature showed that indigenous people used 19 plant parts (leaf, aerial part, fruit, leafy stem, seed, root, bark, calyce, flower, stem, clove, gum, inflorescence, bark, pericarp, rhizome, stigma, tuber and young sprout) as herbal therapies for curing diabetes, but with, however, some preference for the leaves. Several procedures modes are used by the population to create medicinal formulations (decoction, cooked, infusion, powder, maceration, juice, raw and cataplasm). However, extractions by decoction, powder or infusion remain the most common processes. Most medicinal formulations were used internally via oral route. The dose used varied considerably according to the patients questioned. The patients did not respect the precision of doses (some diabetics use specific doses, and others use non-specific doses). Often, people use a mixture of plants to treat diabetes. The duration of the use of plants was badly defined ranging from a few days to several years. The majority of people with diabetes have recourse in medicinal plants to treat diabetes. The percentage of use of phytotherapy varies between 51% and 90%, depending on the regions. The use of herbal medicine among certain diabetics was done in combination with their conventional treatment. Women frequently used more medicinal plants than men. Diabetics have discovered the disease by suggestive symptoms or by a screening test.

An ethnobotanical study was conducted out among 400 herbalists from the Beni Mellal region in order to identify the medicinal plants used for the traditional treatment by the diabetic patients. The results identified 45 species belonging to 25 botanical families. The most used species are: *Olea europaea*, *Salvia officinalis*, *Allium sativum* and *Trigonella foenum-graecum*. Leaves and roots are the most used parts [24].

To collect some information about antidiabetic plants used in Rabat (capital city of Morocco), a survey was undertaken from March 1st to April 30th 2018. The investigations revealed 30 species of plants belonging to 18 families. Lamiaceae and Leguminosae were the most commonly reported plant families. Interview results showed that the most frequently used plants were *Trigonella foenum-graecum*, *Salvia officinalis* and *Olea europaea* [25].

A survey was conducted by Barkaoui et al. [2], in Tizin (Western Anti-Atlas), in central Morocco. This study showed the importance of the use of medicinal plants by local population in the treatment of diabetes. Results have identified 48 medicinal plant species, belonging to 25 families and 44 genera, used for treating diabetes in the region. Plants growing in wild are most commonly
Family	Plant species	Vernacular name	Part used	Preparation	Number of citations	References
Aizoaceae	*Mesembryanthemum theurkauffii* (Maire) Maire	Afzu	Leaf and fruit	Decoction and powder	1	[18]
Amaranthaceae	*Arabidopsis arenosa* Moq. & Cos. ex Bunge	Chajra ma yehamekha rh/ selli	Aerial parts	Decoction	3	[17, 18, 21]
Amaranthaceae	*Atriplex halimus* L.	Legtef	Leaf	Powder, decoction and maceration	1	[18]
Amaranthaceae	*Dyphyania ambrosioides* (L.) Mosyakin & Clemants	Mikhinza	Leaf	Infusion	9	[12-14, 16, 18, 19, 22-24]
Amaranthaceae	*Harrania scoparia* (Pomel) Iljin	Assay	Seed	Decoction	1	[2]
Amaranthaceae	*Salsola tetragona* Delle	Laarad	Leaf and fruit	Powder	1	[18]
Amaryllidaceae	*Allium ampeloprasum* L.	Borro	Bulb	Raw	2	[18, 25]
Amaryllidaceae	*Allium ceba* L.	Basla	Bulb	Raw and juice	14	[2, 12-22, 24, 25]
Amaryllidaceae	*Allium sativum* L.	Tiskert / Tourma	Bulb	Raw	9	[12, 13, 17-19, 21-24]
Anacardiaceae	*Pistacia atlantica* Desf.	Btem/ agg/ Droui	Fruit	Decoction	1	[2]
Anacardiaceae	*Pistacia lentiscus* L.	Trou / Tidekt	Leaf, gum and ecorce	Infusion and decoction	3	[13, 14, 17]
Anacardiaceae	*Searsia albida* (Schoulb.) Moffett	Zewaya/ anaffis	Fruit	Raw	1	[18]
Anacardiaceae	*Searsia tripartita* (Ucricia) Moffett	Jdari	Leaf	Powder	1	[18]
Apiaceae	*Ammi visnaga* (L.) Lam.	Bachnikha / Barghanisse	Inflorescence (umbel)	Decoction	11	[12-17, 19-23]
Apiaceae	*Ammodaucus leucochris* Coss.	Kamoun soufi	Seed	Infusion and decoction	3	[12, 17, 18]
Apiaceae	*Apium graveolens* L.	Krafess	Seed	Infusion	1	[12]
Apiaceae	*Carum carvi* L.	Lkarwya	Seed	Decoction	7	[2, 17-21, 24]
Apiaceae	*Coriandrum sativum* L.	Kosbor	Seed	Infusion	6	[12, 15-17, 20, 25]
Apiaceae	*Cumminum cyminum* L.	Kamoun	Seed	Powder	2	[17, 18]
Apiaceae	*Daucus carata* L.	Khiouz	Root	Juice and puree	3	[13, 17, 18]
Apiaceae	*Eryngium ilicifolium* Lam.	Tanannt / Igliffin	Stem and leaf	Decoction and powder	1	[2]
Apiaceae	*Foeniculum vulgare* Mill.	Naøxa	Seed	Decoction	9	[2, 12, 17-22, 24]
Apiaceae	*Fastinga sativa* L.	Left imahfour	Root	Raw	2	[2, 24]
Apiaceae	*Petroselinum crispum* (Mill.) Fuss	Maaxrouss	Seed	Infusion	4	[12, 17, 18, 24]
Apiaceae	*Pimpinella anisum* L.	Harbat ilawa	Seed	Decoction and powder	7	[2, 12, 15, 17, 18, 24, 25]
Apiaceae	*Ptychotis verticillata* Daby	Nounikha	Aerial parts	Infusion	2	[13, 23]
Apiaceae	*Riddia segetum* (L) Moris	Tebch	Seed	Powder	1	[17]
Apocynaceae	*Apteranthus europaea* (Guss.) Murb.	Oukan iddan	Stem	Decoction, infusion, and raw	1	[2]
Apocynaceae	*Calotropis procera* (Alton) Dryand.	Turja	Leaf	Powder	1	[18]
Apocynaceae	*Caralluma europaea* (Guss.) NE Br.	Daghmous	Aerial parts	Maceration	3	[12, 17, 26]
Table 1: Plants used in the treatment of diabetes in Morocco, cited in ethnobotanical studies (Continued)

Family	Plant species	Vernacular name	Part used	Preparation	Number of citations	References
Apocynaceae	Nerium oleander L.	Defla / Alili	Leaf	Fumigation and decoction	13	[2, 12, 14, 15, 17–24, 26]
Apocynaceae	Periploca laevigata subsp. angustifolia (Labill.) Markgr.	Asllif	Fruit	Decoction	2	[2, 26]
Arecaceae	Chamaerops humilis L.	Dum / Tigueden / Ignadd	Root	Raw and cooked	2	[13, 17]
Arecaceae	Hyphaene thebaica (L.) Mart.	Dum / Xarur	Fruit	Powder	1	[18]
Arecaceae	Phoenix dactylifera L.	Tmar	Fruit	Raw and decoction	5	[12, 17, 18, 20, 23]
Aristolochiaceae	Aristolochia baetica L.	Tiswil nigrane / Benten	Root	Powder	1	[26]
Aristolochiaceae	Aristolochia fontanesii Boiss. & Reut.	Berztem	Seed	Decoction	4	[15, 17–19]
Asparagaceae	Agave americana L.	Ssabra / Sayber	Leaf	Decoction	1	[17]
Asparagaceae	Asparagus albus L.	Sekkum / Azzu	Young sprouts	Raw	1	[18]
Berberidaceae	Berberis vulgaris subsp. australis (Boiss.) Heywood	Anghris / Atizar	Leafy stem	Decoction	1	[17]
Brassicaceae	Anastatica hierochuntica L.	Chajarat Maryem / Ikemcha	Stem and leaf	Powder	2	[13, 18]
Brassicaceae	Brassica napus L.	Left	Rhizome	Juice	1	[18]
Brassicaceae	Brassica nigra (L.) Koch.	Elkhadebi	Flower	Powder and infusion	1	[17]
Brassicaceae	Brassica oleracea L.	Krumb mkawan/melluf	Aerial parts and fruit	Raw and maceration	4	[12, 13, 17, 18]
Brassicaceae	Brassica rapa L.	Left beldi	Root and leaf	Decoction	2	[13, 17]
Brassicaceae	Diplotaxis pteridana Maire	Kerkaz / Elharra	Flower	Powder	2	[17, 18]
Brassicaceae	Eruca vesicaria (L.) Cox.	Ljerjir	Aerial parts	Juice	1	[18]
Brassicaceae	Lepidium sativum L.	Hb enzechad	Seed	Maceration, decoction and infusion	7	[12, 17–19, 21, 24, 25]
Brassicaceae	Nasurtium officinale R.Br.	Gernunes	Leafy stem	Maceration	1	[18]
Brassicaceae	Ptilotrichum spinosum (L.) Boiss.	Aguierbaz	Stem and leaf	Decoction	1	[13]
Brassicaceae	Raphanus sativus L.	Lifel	Root	Raw	5	[2, 12, 17, 18, 24]
Buxaceae	Buxa balearica Lam.	Azaezet / Bakoous	Leaf	Decoction	2	[13, 17]
Buxaceae	Buxa sempervirens L.	Lbeks	Leaf	Decoction	1	[19]
Cactaceae	Opuntia ficus indica (L.) Mill.	Lhndia / Aknari	Stem, root and flower	Decoction, juice and powder	10	[2, 12, 13, 15–18, 20, 22, 24]
Capparaceae	Capparis decidua (Forssk.) Edgew.	Ignin	Fruit	Powder	1	[18]
Capparaceae	Capparis spinosa L.	Kabar / Taululut	Aerial parts, fruit and root	Powder, decoction and infusion	11	[13, 14, 16–23, 26]
Capparaceae	Maerua cassifolia Forsk.	Atili / Sedra Ikhdara	Leaf	Powder and decoction	1	[18]
Caryophyllaceae	Herniaria globra L.	Hrasset lefiyer	Aerial parts	Decoction	1	[22]
Caryophyllaceae	Patonchya argentea Lam.	Tahidout n'mksaoum	Leafy stem	Infusion	1	[26]
Caryophyllaceae	Silene vivanii Steud.	Gern lebzal	Steem	Raw	1	[18]
Family	Plant species	Vernacular name	Part used	Preparation	Number of citations	References
----------	--	----------------	--------------------------	-------------	---------------------	------------
Cistaceae	Cistus albidus L. Boutour	Leaf	Decoction	1	[13]	
Cistaceae	Cistus creticus L. Irgel	Leaf and powder	Infusion	3	[2, 17, 26]	
Cistaceae	Cistus laurifolius L. Aguilid	Seed and flower	Powder	2	[17, 26]	
Cistaceae	Cistus salviifolius L. Irgel/Tirgelt	Leaf and seed	Decoction and powder	2	[2, 17]	
Colchicaceae	Androcymbium gramineum (Gav.) J.F.Macbr.	Temsrate leghrab	Infusion	1	[17]	
Compositae	Achillea odorata L. Elqorte	Leaf and flower	Infusion	1	[17]	
Compositae	Anacyclus pyrethrum (L.) Lag. Iguntas/Tagundeicht	Root	Infusion and powder	1	[13]	
Compositae	Antennaria dioica (L.) Gaertn. Ouden elfar	Leaf	Decoction	1	[17]	
Compositae	Anvillea garcinii subsp. radiata (Coss. & Duarte) Anderb.	Negd	Decoction and powder	1	[18]	
Compositae	Artemisia abrotanum L. Chih	Aerial parts	Decoction	1	[17]	
Compositae	Artemisia absinthium L. Chiba	Aerial parts	Infusion	10	[12, 14, 16, 17, 19–26]	
Compositae	Artemisia atlantica Coss. & Durieu Chih ourika	Aerial parts	Infusion	1	[17]	
Compositae	Artemisia heba-alba Asso Izri/Chih dwidi	Steam, leaf and root	Decoction and infusion	15	[2, 12, 14–26]	
Compositae	Artemisia mesatlantica Maire Chih alaflsatt/Chih elkhayssi	Aerial parts	Decoction	1	[17]	
Compositae	Artemisia reptans C.Sm. ex Link Chihya	Leaf	Decoction	1	[18]	
Compositae	Centaurea maroccana Bal Bejjaae nhal/Nogguir	Flower	Infusion	1	[17]	
Compositae	Chamaemelum nobile (L.) All. Babounj	Leaf	Decoction	2	[15, 17]	
Compositae	Cichorium intybus L. Buuggad	Root	Infusion	1	[18]	
Compositae	Cladanthus arabicus (L.) Cass. Taafs	Flower	Infusion	1	[17]	
Compositae	Cladanthus scoriosus (Ball) Oberpr. & Vogt Arzgi	Flower	Decoction	1	[26]	
Compositae	Cynara cardunculus L. Kharchouf	Aerial parts	Decoction	7	[12, 15, 17–20, 22]	
Compositae	Dittrichia viscosa (L.) Greuter Terehla/Bagraman	Leaf	Decoction	3	[13, 17, 26]	
Compositae	Echinops spinosissimus Tuura Tarkra	Flower	Decoction	3	[2, 15, 26]	
Compositae	Inula canya (Griess) DC. Terehla	Root	Decoction	1	[17]	
Compositae	Inula helenium L. Terehla damatiya	Leaf and flower	Decoction and infusion	1	[17]	
Compositae	Launaea arborescens (Batt.) Murb. Iferskel/Moulbna	Stem, leaf, root and flower	Powder, decoction and infusion	3	[2, 17, 18]	
Compositae	Matricaria chamomilla L. Mansania	Leaf and flower	Decoction and infusion	3	[14, 17, 24]	
Compositae	Pallenis spinosa (L.) Cass. Nugd	Aerial parts	Decoction	1	[17]	
Compositae	Scolymus hispanicus L. Gurnina/Taghdiut	Stem and leaf	Raw and decoction	3	[13, 17, 26]	
Compositae	Scorzonera undulata Vahl Tamtla	Flower	Raw	1	[2]	
Family	Plant species	Vernacular name	Part used	Preparation	Number of citations	References
-------------	-------------------------------	----------------	----------	----------------------	---------------------	------------
Compositae	*Sonchus arvensis* L.	Kettan elhench	Leaf	Infusion	1	[15]
Compositae	*Sonchus tenerifanus* L.	Tifaf	Leaf	Decocion	1	[18]
Compositae	*Tanacetum vulgare* L.	Lbalsam	Stem	Infusion	1	[17]
Compositae	*Taraxacum campylodes* G.E.Haglund	Lhandba	Flower and root	Decocion	1	[17]
Compositae	*Watsonia saharae* Bentham ex Benth. & Coss.	Afssas	Leaf	Infusion and powder	2	[2, 18]
Cucurbitaceae	*Citrullus colocynthis* (L.) Schrad.	Aferziz/lhdej	Seed and fruit	Decocion, cataplasm and powder	11	[2, 12, 13, 17–19, 21–23, 25, 26]
Cucurbitaceae	*Cucumis sativas* L.	Likhias	Fruit	Raw	6	[2, 12, 13, 17, 18, 24]
Cucurbitaceae	*Cucurbita maxima* Duchesne	Garra Ihamia	Leaf	Decocion	1	[18]
Cucurbitaceae	*Cucurbita pepo* L.	Takhsait/curjt	Fruit	Decocion and decoction	5	[13, 14, 17, 18, 24]
Cypresaeae	*Juniperus phoenicea* L.	Araar finiqui	Leaf and aerial parts	Powder, decoction and maceration	4	[13, 17–19]
Cypresaeae	*Juniperus thurifera* L.	Tawayt	Leaf	Decocion	1	[13]
Cypresaeae	*Tetraclin. articulata* (Vahl. Mast.)	Araar	Leaf and aerial parts	Infusion and maceration	9	[12–15, 17, 21–24]
Cyno-moraceae	*Cynomortum coccinum* L.	Tertut	Steem	Powder	1	[18]
Cyperaceae	*Bolboschoenus maritimus* (L.) Pallia	Samar	Seed	Decocion	1	[17]
Cyperaceae	*Cyperus rotundus* L.	Tara	Leaf	Powder	1	[18]
Dracaenaceae	*Dracaena draco* subsp. aigal Benabid & Cuzin	Aigal	Stem and leaf	Decocion	1	[2]
Ephedraceae	*Ephedra alata* Decne.	Chhida	Leafy stem	Decocion and powder	1	[18]
Ephedraceae	*Ephedra atissima* Desf.	Tougel argan	Leafy stem and wholeplant	Decocion	2	[2, 24]
Ephedraceae	*Ephedra fragilis* Desf.	Amater	Leafy stem	Decocion	1	[26]
Ericaceae	*Arbutus unedo* L.	Sainsu	Leaf and root	Decocion	5	[13, 14, 22–24]
Euphorbiaceae	*Euphorbia officinarum* subsp. echinus (Hook. f. & Coss.) Vindt	Tikiout/Daghmous/zakour	Fruit, stem and leaf	Maceration, decoction, powder and juice	4	[2, 16–18]
Euphorbiaceae	*Euphorbia officinarum* L.	Tikiout/Daghmous	Stem and leaf	Powder	1	[2]
Euphorbiaceae	*Euphorbia resinifera* O.Berg	Tikiwt	Leaf	A drop latex in a glass of water	4	[13, 19, 24, 26]
Euphorbiaceae	*Mercurialis annua* L.	Humiga elmaissa	Leafy stem	Infusion, decoction and juice	2	[17, 18]
Euphorbiaceae	*Ricinus communis* L.	Awniweer/Lhkarwaa	Seed	Poultice	1	[18]
Fagaceae	*Quercus cocifera* L.	Elgermez	Leaf	Decocion	1	[17]
Gentianaceae	*Centaurium erythraea* Rafn	Qusset elhayya / Ahchaf ntawra	Flowering and aerial parts	Infusion and decoction	4	[13, 14, 17, 22]
Iridaceae	*Crocus sativus* L.	Zaafren lhor	Stigma	Infusion	1	[18]
Juglandaceae	*Juglans regia* L.	Swak / Gargaa	Leaf and bark	Infusion and decoction	6	[13, 17, 18, 22, 23, 26]
Juncaceae	*Juncus maritimus* Lam.	Ssemar	Fruit and stem	Decocion	2	[17, 18]
Table 1 Plants used in the treatment of diabetes in Morocco, cited in ethnobotanical studies (Continued)

Family	Plant species	Vernacular name	Part used	Preparation	Number of citations	References
Lamiaceae	Ajuga iva (L.) Schreb.	Timerna nzenkhad/ Chndkoura	Stem and leaf	Powder and decoction	12	[2, 12–15, 17–19, 22–24, 26]
Lamiaceae	Ballota hirsuta Benth.	Merou elhrami/Merou	Leafy stem	Decoction	1	[17]
Lamiaceae	Clinopodium alpinum (L.) Kuntze	Zitta	Leaf	Decoction	2	[18, 25]
Lamiaceae	Clinopodium nepeta subsp. glandulosum (Req.) Govaerts	Manta	Aerial parts	Infusion and decoction	2	[14, 15]
Lamiaceae	Lavandula angustifolia Mill	Elkhzama zerra/ Elkhzama Fassiya	Aerial parts and leafy stem	Infusion and decoction	1	[17]
Lamiaceae	Lavandula dentata L.	Timzenia/Lakhzama/ Jaada	Stem and leaf	Decoction, powder, infusion and raw	6	[2, 14, 17, 21–23]
Lamiaceae	Lavandula maroccana Murb.	Igazien	Stem and leaf	Decoction	2	[2, 26]
Lamiaceae	Lavandula multifida L.	Khilt Ilkhey/ Kohayla	Leaf	Decoction	1	[18]
Lamiaceae	Lavandula stoechas L.	Imzeria/Tikeni/Te/mina	Leaf	Decoction	5	[2, 12, 13, 17, 18]
Lamiaceae	Marrubium vulgare L.	Mriwit/fizi	Leaf and aerial parts	Decoction and infusion	14	[2, 12–19, 21–25]
Lamiaceae	Mentha pulegium L.	Filou	Leaf and aerial parts	Decoction and infusion	8	[2, 13, 15, 17–19, 21, 23, 25]
Lamiaceae	Mentha spicata L.	Nanaa/Liqama	Leaf and leafy stem	Infusion and decoction	2	[17, 18]
Lamiaceae	Ocimum basilicum L.	Lahbaq	Stem	Infusion	2	[13, 17]
Lamiaceae	Origanum compactum Benth.	Azukenni/Zaaten/ Zaatar tadlawi	Stem and leaf	Decoction and infusion	8	[13–15, 17, 18, 21–23]
Lamiaceae	Origanum elongatum (Bonnet) Emb. & Maire	Zaater	Leaf	Infusion	1	[25]
Lamiaceae	Origanum majorana L.	Berdedouch	Leaf	Powder	1	[13]
Lamiaceae	Origanum vulgare L.	Zaatar	Leaf	Infusion	1	[12]
Lamiaceae	Rosmarinus officinalis L.	Azir	Leaf	Powder, decoction and infusion	11	[2, 13–15, 17–19, 21–23, 25]
Lamiaceae	Salvia officinalis L.	Salmia	Leaf	Decoction and infusion	11	[2, 12, 13, 15–19, 22–24, 26]
Lamiaceae	Teucrium pollium L.	Tawerent/Flooe Ilbou/jaidia	Leaf	Decoction and powder	3	[2, 19, 26]
Lamiaceae	Thymus braunsteini Boiss.	Zietra	Leaf and stem	Infusion and maceration	1	[23]
Lamiaceae	Thymus algeriensis Boiss. & Reut.	Aduchen /Azukin / Zutra	Stem and leaf	Decoction and infusion	1	[13]
Lamiaceae	Thymus munchyanus Boiss. & Reut.	Aduchen /Azukin / Zutra	Stem and leaf	Decoction and infusion	1	[13]
Lamiaceae	Thymus satuvudlesi Coss.	Asserkna/ Zita	Leaf	Infusion, decoction, powder, and maceration	2	[2, 17]
Lamiaceae	Thymus vulgaris L.	Aduchen /Azukin / Zutra	Leaf	Decoction and infusion	3	[2, 13, 17]
Lamiaceae	Thymus zygis L.	Aduchen /Azukin / Zutra	Stem and leaf	Decoction and infusion	1	[13]
Lauraceae	Cinnamomum cassia (L.) JPresl	Qarfa	Bark	Decoction	5	[13, 15, 17, 19, 21]
Lauraceae	Cinnamomum verum JPresl	Dar esimi	Bark	Maceration	3	[17, 18, 25]
Lauraceae	Laurus nobilis L.	Ourak sidna moussia/ Rand	Leaf	Infusion and decoction	2	[12, 17]
Lauraceae	Paeonia americana Mill.	Lavoca	Seed	Powder	4	[16, 18, 19, 25]
Family	Plant species	Vernacular name	Part used	Preparation	Number of citations	References
-------------------	--------------------------------------	---------------------------------------	--	------------------------------------	---------------------	------------
Leguminosae	Acacia nilotica (L.) Delile	Amur/Sllaha	Fruit	Powder	1	[18]
Leguminosae	Acacia senegal (L.) Willd.	Laalek	Gum	Powder	1	[18]
Leguminosae	Acacia tortilis (Forsk.) Hayne	Telt/Tadoute	Root, fruit and leaf	Decoction and powder	2	[17, 18]
Leguminosae	Anagyra foetida L.	Ful gnawa	Powder	1	[18]	
Leguminosae	Arachis hypogaea L.	Lgerta/Kawkaw	Powder	1	[18]	
Leguminosae	Ceratonia silqua L.	Tikida/Ukharoub	Leaf and seed	Decoction, infusion and powder	6	[2, 12, 17, 18, 24, 25]
Leguminosae	Cicer arietinum L.	Lhemmes	Seed	Decoction and powder	2	[18, 24]
Leguminosae	Faidherbia albida (Delile) A.Chev.	Chok/Talh/Mimouza	Root	1	[17]	
Leguminosae	Glycine max (L.) Merr.	Soja	Seed	Maceration and raw	5	[2, 12, 20, 24, 26]
Leguminosae	Glycyrhiza glabra L.	Ark souss	Bark	Infusion	1	[25]
Leguminosae	Lupinus albus L.	Tims/Foul gnawa	Seed	Powder and decoction	3	[2, 17, 26]
Leguminosae	Lupinus angustifolius L.	Ilbawn delkouk	Seed	Powder and decoction	7	[16-19, 21, 24, 22, 24]
Leguminosae	Lupinus luteus L.	Kite/Semqala	Seed	Decoction	1	[17]
Leguminosae	Medicago sativa L.	Fassa	Aerial parts and seed	Infusion, maceration and cooked	5	[12, 13, 17, 18, 24]
Leguminosae	Ononis natrix L.	Hennet reg	Leaf	Decoction	1	[18]
Leguminosae	Ononis tournefortii Cass.	Afezadad	Leaf	Decoction	1	[18]
Leguminosae	Phaseolus vulgaris L.	Lubyia	Fruit	Decoction, powder and Juice	4	[13, 16-18]
Leguminosae	Retama ochraem (Forsk.) Webb	Rtam/Allug	Root and leaf	Decoction	1	[17]
Leguminosae	Retama sphaerocarpa (L.) Boiss.	Rtem	Root	Decoction	1	[20]
Leguminosae	Trigonella foenum-graecum L.	Lhelba/Tifidas	Seed	Decoction, infusion, maceration and powder	16	[2, 12-26]
Leguminosae	Vicia faba L.	Ful	Seed	Powder	1	[18]
Leguminosae	Vicia sativa L.	Ayn larnab	Seed	Powder	1	[18]
Leguminosae	Vigna radiata (L.) R.Wilczek	Soja	Seed	Powder	1	[18]
Leguminosae	Vigna unguiculata (L) Walp	Ful gnawa	Seed	Decoction	1	[17]
Linaceae	Linum usitatissimum L.	Zariat elkattan	Seed	Decoction and powder	7	[2, 13, 15, 17, 18, 21, 25]
Lythraceae	Lawsonia hermis L.	Lhenna	Leaf	Decoction and cataplasme	2	[17, 21]
Lythraceae	Punica granatum L.	Rman	Pericarp	Decoction, infusion, and powder	8	[2, 13, 15, 17-21]
Malvaceae	Abelmoschus esculentus (L) Moench	Lmloukhia	Fruit	Maceration	2	[13, 25]
Malvaceae	Hibiscus sabdarfla L.	Karkad/Bissam	Calyces	Infusion	3	[17, 18, 26]
Molluginaceae	Corrigiola litoralis subsp. telephilia (Pourr.) Briq.	Sarghina / Tawsarghine	Root	Powder	2	[13, 17]
Moraceae	Ficus carica L.	Tazart/Karmous/Karma/chriha/Elbakur	Fruit and leaf	Decoction	8	[2, 13, 15, 17, 20, 22-24]
Family	Plant species	Vernacular name	Part used	Preparation	Number of citations	References
--------------	--------------------------	-----------------	-----------------	----------------------	---------------------	---------------------
Moraceae	Morus alba L.	Tut lbari	Leaf	Infusion	3	[13, 17, 19]
Musaceae	Musa × paradisiaca L.	Banan	Leaf	Decoction	1	[18]
Myrtaceae	Myristica fragrans Houtt.	Lgoua	Seed	Powder	1	[2]
Myrtaceae	Eucalyptus camaldulensis Dehnh.	Calitūs	Leaf	Decoction	1	[18]
Myrtaceae	Eucalyptus globulus Labill.	Calitūs	Leaf and fruit	Decoction	8	[13–15, 17, 21–24]
Myrtaceae	Myrtus communis L.	Rihane	Leaf and fruit	Decoction and infusion	8	[13, 14, 17, 20–24]
Myrtaceae	Syzygium aromaticum (L.) Merr. & L.M.Perry	Kranfal	Fruit and clove	Infusion, decoction, powder and maceration	8	[2, 14, 17–19, 22, 24, 25]
Nitriaceae	Peganum harmala L.	Lharmel	Seed	Infusion and powder	7	[13, 15, 17, 20–23]
Oleaceae	Fraxinus angustifolia Vahl	Touzalt	Leaf	Infusion	2	[13, 23]
Oleaceae	Olea europaea L.	Jbouj/Azmour/Zitoun	Leaf, fruit and flower	Decoction, infusion, maceration and powder	15	[2, 12, 13, 15–26]
Papaveracea	Fumaria officinalis L.	Hochichat assebyane	Root	Decoction	1	[17]
Papaveracea	Papaver rhoeas L.	Belaaman	Seed	Powder	3	[2, 24, 26]
Pedaliaceae	Sesamum indicum L.	Janjān	Seed	Powder, infusion and decoction	7	[2, 14, 18, 20–22, 24]
Plantaginaceae	Globularia dyperm L.	Ayen lernab/ Taselgha	Flower, leaf and stem	Infusion and decoction	10	[13, 15–19, 21–23, 26]
Plantaginaceae	Globularia repens Lam.	Ain lernab	Leaf	Decoction	1	[12]
Plumbaginaceae	Limonium sinuatum (L.) Mill.	Lgara	Leaf	Decoction	1	[18]
Poaceae	Avena sativa L.	Khortal	Seed	Powder, infusion and decoction	2	[13, 17]
Poaceae	Avena sterilis L.	Waskone/ Khortal	Seed	Powder	1	[26]
Poaceae	Castilla tuberculosa (Moris) Bor	Zvan Imkarkeb	Seed	Decoction	1	[17]
Poaceae	Cynodon dactylon (L.) Pers.	Njem	Root	Decoction	1	[18]
Poaceae	Hordeum vulgare L.	Chair/Zraa	Aerial parts and seed	Infusion, powder and maceration	3	[2, 17, 18]
Poaceae	Lolium perenne L.	Ezizwane	Seed	Decoction	1	[26]
Poaceae	Panicum milaceum L.	Taффσout	Seed	Decoction	1	[17]
Poaceae	Panicum turgidum Forssk.	Umm rekba	Stem	Decoction and powder	1	[18]
Poaceae	Pennisetum glaucum (L.) R.Br.	Illan	Seed	Infusion and powder	3	[12, 17, 18]
Poaceae	Phalaris canariensis L.	Zouan	Seed and fruit	Powder, infusion and decoction	6	[2, 13, 14, 15, 17, 24]
Poaceae	Polygonon monspeliensis (L.) Desf.	Tugga	Fruit	Raw	1	[18]
Poaceae	Sorghum bicolor (L.) Moench	Bachna	Seed	Infusion and decoction	3	[13, 15, 23]
Poaceae	Triticum durum Desf.	Zaa	Seed	Decoction	1	[17]
Poaceae	Zea mays L.	Lahyat Adia	Stigmas	Powder	3	[14, 24, 26]
Polygonaceae	Emex spinosa (L.) Campd.	Lhenzab	Leaf and bulb	Powder	1	[18]
Portulacaceae	Portulaca deracea L.	Rejla	Aerial parts	Decoction	3	[12, 17, 26]
Table 1: Plants used in the treatment of diabetes in Morocco, cited in ethnobotanical studies (Continued)

Family	Plant species	Vernacular name	Part used	Preparation	Number of citations	References
Ranunculaceae	Nigella sativa L.	Haba souda /Sanouj	Seed	Infusion, decoction and powder	15	[2, 13–26]
Rhamnaceae	Ziziphus lotus (L.) Lam.	Nbeg/Azouggaissdra	Leaf, fruit and root	Decoction and powder	10	[2, 15, 17–20, 22–24, 26]
Rosaceae	Cydonia oblonga Mill.	Slfjerel	Fruit	Raw	1	[20]
Rosaceae	Chaenomeles sinensis (Dum.Cour.) Koehne	Slfjerel	Root	Decoction	2	[18, 22]
Rosaceae	Eriobotrya japonica (Thunb.) Lindl.	Mzah	Leaf	Infusion	3	[13, 15, 23]
Rosaceae	Fragaria vesca L.	Fraiz bent	Fruit	Juice	1	[22]
Rosaceae	Malus communis (L.) Poir.	Etetah	Fruit	Juice	1	[26]
Rosaceae	Prunus armenica L.	Luz elhar	Seed	Decoction	1	[17]
Rosaceae	Prunus dulcis (Mill.) D.A. Webb	Louz imdizg/ Louz morr	Seed and leaf	Raw and decoction	12	[2, 14, 15, 17, 18, 20–26]
Rosaceae	Rubus vulgaris Weihe & Nees	Laalig	Leaf	Powder	1	[17]
Rubiaceae	Rubia tinctora L.	Fowwa	Root	Powder	1	[18]
Rosaceae	Citrus medica L.	Lhamed belld	Fruit	Juice and infusion	1	[17]
Rutaceae	Citrus paradisi Macfad.	Pambilamus	Fruit	Juice	1	[17]
Rutaceae	Citrus sinensis (L.) Osbeck	Limun	Fruit	Juice, raw and juice	2	[12, 18]
Rutaceae	Citrus × aurantium L.	Larenj/Zenbue/trunj	Leaf, fruit and flower	Juice, infusion and decoction	7	[14, 16–21]
Rutaceae	Ruta graveolens L.	Lfijel	Root	Decoction	2	[17, 18]
Rutaceae	Ruta montana (L.) L.	Lfijel/Awermi	Stem and leaf	Decoction, infusion and powder	7	[13–15, 17, 19, 20, 23]
Salicaceae	Solanum americanum Mill.	Aneb dib	Leaf	Decoction	1	[17]
Salicaceae	Salix alba L.	Salif lma	Leaf	Infusion	1	[15]
Santalaceae	Viscum album L.	Lenjbar	Seed	Decoction, infusion and powder	8	[2, 13, 15–18, 25, 26]
Sapotaceae	Argania spinosa (L.) Skeels	Argan	Seed	Raw and powder	8	[2, 13, 15–18, 25, 26]
Schisandraceae	Illicium verum Hook.f.	Badiara	Fruit	Decoction	1	[17]
Solanaceae	Capsicum annuum L.	Felfel Hârr/ soudania	Fruit	Raw	3	[13, 14, 18]
Solanaceae	Datura stramonium L.	Sdag jmel/Metall	Seed	Decoction	1	[18]
Solanaceae	Lycopersicon esculentum Mill.	Matcha	Fruit	Raw	2	[17, 18]
Solanaceae	Nicotiana tabacum L.	Nefha	Leaf	Decoction	1	[14]
Solanaceae	Solanum americanum Mill.	Aneb dib	Leaf	Infusion	1	[17]
Taxaceae	Taxus baccata L.	Guelguem/Aguelguimt	Root	Decoction	1	[17]
Thaceae	Camellia sinensis (L.) Kuntze	Attay	Leaf	Infusion and decoction	6	[2, 12, 15, 17, 18, 24]
Thymelaceae	Thymelaea hirsuta (L.) Endl.	Metnan	Leafy stem	Powder	2	[17, 23]
Thymelaceae	Thymelaea tartonsaica (L.) All.	Talâazt	Leaf	Decoction	1	[20]
Thymelaceae	Thymelaea veigata (Desf.) Endl.	Metnan	Leafy stem	Decoction	1	[17]
Urticaceae	Urtica dioica L.	Taznagt/Tigzenin/Lhriga	Stem and leaf	Decoction and infusion	8	[2, 14, 15, 17, 19, 23, 24, 26]
Urticaceae	Urtica pilulifera L.	Hurriga / Tirsalmaz	Leaf	Decoction	2	[13, 22]
Table 1 Plants used in the treatment of diabetes in Morocco, cited in ethnobotanical studies (Continued)

Family	Plant species	Vernacular name	Part used	Preparation	Number of citations	References
Verbenaceae	Aloysia citriodora Palau	Alwiza	Leaf	Decoction and infusion	4	[14–16, 18]
Verbenaceae	Verbena officinalis L.	Alwiza	Leaf	Decoction	1	[25]
Vitaceae	Vitis vinifera L.	Dalya/Zbib/Kerma/Adllite	Leaf	Decoction	3	[17, 18, 20]
Xanthorrhoeaceae	Aloe succotrina Lam.	Ssabra/Siber	Leaf	Powder	5	[15, 17, 18, 21, 22]
Xanthorrhoeaceae	Asphodelus microcarpus Salzm. & Viv.	Lberwag/blakuz/Tazia	Tuber	Raw	2	[17, 18]
Xanthorrhoeaceae	Asphodelus tenuifolius Cav.	Lehyat al aatrus/Tazya/Lberiwiga	Leaf	Decoction	1	[17]
Zingiberaceae	Zingiber officinal Roscoee	Sekinjbir	Rhizome	Decoction, infusion, powder and maceration	5	[14, 15, 18, 19, 25]
Zygophyllaceae	Tetraena gætula (Emb. & Maire) Beier & Thulin	Aagaia	Leaf, root and seed	Powder, Infusion and decoction	10	[2, 13, 14, 17–23]
used for medicinal purposes in the study area (32 plant species). According to the authors, *Allium sativum* L., *Salvia officinalis* L., *Marrubium vulgare* L. and *Lavandula dentata* L. were the most frequently used plants to treat diabetes. Six plants were reported for the first time as hypoglycemic plants: *Dracaena draco* subsp. *ajgal*, *Euphorbia officinarum* subsp. *officinarum*, *Eryngium illicifolium* Lam., *Pastinaca sativa* L., *Scorzonera undulata*, *Ephedra altissima* Desf.

In Izarene forest (Northern Morocco), a survey was undertaken in order to inventory the main medicinal plants used in folk medicine to treat diabetes and arterial hypertension. The results obtained allowed an inventory of 40 medicinal plant species used against diabetes. The most cited plants for the treatment of diabetes were: *Trigonella foenum-graecum*, *Artemisia herba-alba*, *Ammi visnaga*, *Centaurium erythraea*, *Myrtus communis*, *Globularia alypum*, *Nigella sativa*, *Tetraena gaetul*, *Olea europaea*, *Rosmarinus officinalis*, *Marrubium vulgare*, *Allium cepa*, *Ajuga iva*, *Salvia officinalis*, *Artemesia absinthium*, *Prunus dulcis*, *Capsicum annuum*, *Origanum compactum*, *Nerium oleander*, and *Urtica dioica* [14].

An ethnobotanical survey by Ziyyat et al. [23] in different areas of Oriental Morocco reported that 34 plant species were used for the treatment of diabetes, of which the most used were *Trigonella foenum-graecum*, *Globularia alypum*, *Artemisia herba-alba*, *Citrus colocythys* and *Tetraclinis articulata*. Also a study was carried out in Oriental Morocco with 279 diabetic patients at the Department of Endocrinology and Metabolism of Mohammed VI University Hospital in Oujda. The results showed that the local population uses medicinal plants for the treatment of diabetes. Fifty plants are reported to be used in the region for the treatment of diabetes. The five most common herbal medicines used were *Salvia officinalis*, *Trigonella foenum-graecum*, *Olea europaea*, *Artemisia herba-alba* and *Origanum vulgare* [15].

A study by Laadim et al. [12] in Sidi Slimane (northwestern Morocco) reported that 59 plant species were cited by 700 diabetic patients for management of diabetes. Five plants, *Trigonella foenum-graecum*, *Oreganum vulgare*, *Salvia officinalis*, *Marrubium vulgare* and *Olea europaea*, were most used. The survey revealed that seeds and leaves are the part of the plant most often used in herbal preparations.

In an ethnobotanical survey by Bousta et al. [16], 22 species of plants belonging to 19 families were reported for the treatment of diabetes in the Middle-Atlas region of Morocco (Sefrou region). The most prominent plants reported were *Olea europaea*, *Salvia officinalis*, *Trigonella foenum-graecum*, *Euphorbia officinarum* subsp. *echinus*, *Globularia alypum*, *Coriandrum sativum*. Respondents said that they inherited the knowledge of their practices from their parents, traditional healers, some books and nowadays from television programs.

Also in the Central Middle Atlas an ethnobotanical study identified 76 medicinal plants, divided into 67 genus and 40 families. Fourteen plants are reported for the first time intraditional treatment of diabetes in Morocco. They are: *Pistacia atlantica*, *Anacyclus pyrethrum*, *Ptilotrichum spinosum*, *Cistus albidus*, *Juniperus thurifera*, *Thymus algeriensis*, *Thymus mumbayanus*, *Thymus zygis*, *Abelmoschus esculentus*, *Frasinus angustifolia*, *Sorghum bicolor* and *Eriobotrya japonica* [13].

To inventory the medicinal plants used in traditional medicine to treat diabetes in the Tizi n’ Test Region (Tarfoudant Province), a survey was carried using semi-structured and structured questionnaires. Thirty-nine plant species belonging to 24 botanical families were recorded for the treatment of diabetes. The most important species were *Artemisia herba-alba*, *Cistus creticus*, *Lavandula maroccana*, *Salvia officinalis* and *Olea europaea*. Leaves were the parts predominantly used and decoction was the most common method to prepare the formulations [26].

Another ethnobotanical survey among the local population in the region of Al Haouz-Rhamna (central Morocco) reported that a total of 150 plant species belonging to 54 families were used for the treatment of diabetes in the area. Among these species recorded 18 are cited for the first time in the region as an antidabetic plants namely: *Chamaeops humilis*, *Cladanthus arabicus*, *Centauraea maroccana*, *Matricaria chamomilla*, *Tanacetum vulgare*, *Diplotaxis pitardiana*, *Berberis vulgaris* subsp. *australis*, *Corrigiola litoralis* subsp. *telephifolia*, *Cistus laurifolius*, *Quercus cocifera*, *Ballota hirsuta*, *Buxus baleareica*, *Lavandula stoechas*, *Ocimum basilicum*, *Thymus statureoides*, *Ruta montana*, *Taxus baccata* and *Thymelaea virgata* [17].

In the region of Tan-Tan (South of Morocco), a survey reported that 129 medicinal species belonging to 53 families were cited by 350 people for the treatment of diabetes with the dominance of the most represented families in the flora of Morocco. Some of the inventoried plant species are endemic to the Sahara such as *Cynomorium coccineum*, *Atriplex halimus* and *Salsola tetragona*, but others are toxic including *Aristolochia fontanesii*, *Euphorbia officinarum* and *Nerium oleander* [18].

In the region of Meknes-Taflalet (North-central Morocco), an ethnobotanical study was undertaken in order to inventory the main medicinal plants used in folk medicine to treat diabetes. In this region, the most frequently used plants include *Allium cepa*, *Artemisia herba-alba* and *Trigonella foenum graecum* [19]. Also in the North central region of Morocco (Fez–Boulemane), an ethnobotanical study reported that 90 medicinal species are used in the treatment of diabetes, hypertension
and renal diseases. Among these species, 9 plants are toxic at high doses. For diabetes, 54 plants were cited, of which the most cited were: Artemisia herba alba, Trigonella foenum-graecum and Tetraena gaetula [22].

In the Errachidia province (South-eastern Morocco), a survey was carried out to catalog the plants traditionally used in the treatment of hypertension and diabetes mellitus. The authors have inventoried 64 species belonging to 33 families, of which 45 plants were used in the treatment of diabetes. The most frequently cited plant species by the local population for management of diabetes are Ajuga iva, Allium cepa, Artemisia herba-alba, Carum carvi, Lepidium sativum, Nigella sativa, Olea europea, Peganum harmala, Phoenix dactylifera, Rosmarinus officinalis, and Tetraena gaetula [20]. Also in south-eastern Morocco (Tafillalet region), an ethnobotanical study identified 92 medicinal plants used in the treatment of diabetes mellitus, hypertension and cardiovascular diseases. The most frequently cited medicinal plants used for their antidiabetic effects were Ammi visnaga, Artemisia herba-alba, Trigonella foeniculum-graecum, Marrubium vulgare, Nigella sativa, Globularia alypum, Allium sativum, Olea europea, Citrullus colocynthis, Aloe succotrina, Artemisia absinthium, Rosmarinus officinalis, Thymus vulgaris, Eucalyptus globulus, Mentha pulegium, Myrtus communis, Linum usitatissimum and Carum carvi [21].

Pharmacological and toxicological studies

Among 255 plant species being used, 120 plants have neither been explored experimentally for antidiabetic activity. They are: Mesembryanthemum theurkauffii, Salsola tetragona, Searsia albida, Searsia tripartita, Eryngium ilicifolium, Pastinaca sativa, Pycnichotis verticillata, Roldofia segetum, Apteranthus europaea, Periplaca laevigata subsp. Angustifolia, Aristolochia fontanesii, Agave americana, Asparagus albus, Achillea odorata, Antennaria dioica, Anvillea garcinii subsp. radiata, Artemisia abrotanum, Artemisia atlantica, Artemisia mesatlantica, Artemisia reptans, Centaurea maroccana, Cladanthus arabicus, Cynara cardunculus, Ditrichia viscosa, Echinops spinosissimus, Inula conyza, Inula heli enium, Launaea arborescens, Pallenis spinosa, Scalymus hispanicus, Scorzonera undulata, Sonchus arvensis, Sonchus tenerrimus, Tanacetum vulgare, Berberis vulgaris subsp. australis, Diplotaxis pitardiana, Erucia vesicaria, Ptilotrichum spinosum, Buxus balearica, Maerua crassfolia, Herniaria glabra, Silene vivianii, Cistus albidus, Cistus creticus, Cistus salviifolius, Androcymbium gramineum, Juniperus thurifera, Tetraclinis articulata, Cynomorium coccineum, Bolboschoenus maritimus, Dra caena draco subsp. ayal, Ephedra alata, Ephedra altissima, Euphorbia officinarum subsp. echinus, Euphorbia officinarum subsp. officinarum, Hammadra scoparia, Euphorbia resinifera, Mercurialis annua, Anagryris fœtida, Ceratonia siliqua, Cicer arietinum, Lupinus angustifolius, Lupinus luteus, Ononis natrix, Ononis tournefortii, Retama sphaeroarpa, Vicia faba, Vicia sativa, Quercus coccifera, Juncus maritimus, Ballota hirsuta, Clinopodium alpinum, Clinopodium nepeta subsp. glandulosum, Lavandula dentata, Lavandula maroccana, Lavandula multifida, Mentha pulegium, Mentha spicata, Origanum compactum, Origanum majorana, Origanum vulgare, Thymus algeriensis, Thymus munitianus, Thymus zygis, Corrigiola litoralis subsp. telephifolia, Fumaria officinalis, Papaver rhoeas, Globularia repens, Limonium sinuatum, Avena sativa, Castellia tuberculosa, Panicum milieaceum, Panicum turgidum, Polygogon monspeliensis, Triticum durum, Emex spinosa, Fragaria vesca, Rubus vulgaris, Rubia tinctorum, Salix alba, Illicium verum, Taxus baccata, Thymelaea tartonaira, Thymelaea virgata, Aloysia citriodora, Aloe succotrina, Asphodelus microcarpus, Mesembryanthemum theurkaufii, Cladanthus scariosus, Paronychia argentea, Ephemera fragilis, Glycerihiza glabra, Origanum elongatum, Thymus broussetii, Avena sterilis, Lolium perenne, Malus communis, Verbena officinalis, Asphodelus tenuifolius and Tetraena gaetula. It is essential to study the effects of unexplored plant species on diabetes in more detail and to identify the active components and especially to study the mechanisms of action of these plant extracts, in order to obtain further data on the pharmacological effects of these plants.

Despite the therapeutic effects of medicinal plants, excessive consumption of some of the inventoried plants might lead to harmful effects which are related to a variety of causes. To avoid danger to patients, prudent use as well as safety precautions is required, such as using lower doses. The main toxic plants are, Citrullus colocynthis [32], Da tura stramonium [33], Euphorbia officinarum [34], Myristica fragrans [35], Artemisia herba alba [36], Peganum harmala [37], Ricinus communis [38], Tetraena gaetula [39], Nigella sativa [40] and Nerium oleander [32]. Despite their toxic properties, patients do not suffer any adverse consequences. This indicates that the patients or the provider of the plants are skilled in recognizing the potential for toxicity and taking the appropriate precautions.

Of all medicinal plants reported in this study, 137 medicinal plants have been documented to demonstrate a potent anti-diabetic effect in vitro or in vivo or in clinical studies. We present in Table 2 pharmacological studies which have investigated directly or indirectly medicinal plants used in Morocco to treat diabetes. Trigonella foenum-graecum, Artemisia herba-alba, Nigella sativa, Olea europea, Allium cepa and Marrubium vulgare were the most frequently used plants to treat diabetes based on number of citations. These plants are discussed in detail below.
Family	Plant species	Vernacular name	Plant extracts used	Dose (s) used	Models used in the study	Results	References
Amaranthaceae	Anabasis aretioides Moq. et Coss. ex Bunge	Chajra ma yeharrekha rith/Vellii	Aqueous extract of aerial part	5 mg/kg BW	Streptozotocin-induced diabetic rats (STZ)	Significant reduction on blood glucose levels in STZ rats ($p < 0.0001$)	[41]
Amaranthaceae	Atriplex halimus L.	Legtef	Aqueous extract of the leaves	200 mg/kg BW	Streptozotocin-induced diabetic rats (STZ)	Aqueous extract produced 54% ($P < 0.001$) decrease in fasting blood glucose levels compared to the initial fasting blood glucose levels prior to the treatment	[42]
Amaranthaceae	Dysphania ambrosioides (L.) Maysia & Clemants Mkhinza	Mikhinza	Crude extract of the leaves	100, 200 and 300 mg/kg BW	Streptozotocin-induced diabetic rats (STZ)	Reduction in blood glucose in case of crude treatment groups, as compared with that of the control group	[43]
Amaranthaceae	Allium ampeloprasum L.	Borro	Essential oils from the green parts	150 mg/kg BW	Streptozotocin-induced diabetic rats (STZ)	The essential oil of A. ampeloprasum decreased the blood glucose level significantly ($P < 0.005$) at the dose of 200 mg/kg.	[44]
Amaranthaceae	Allium cepa L.	Basla	Aqueous extracts of the whole plant	200, 250 or 300 mg/kg BW	Alloxan- induced diabetic rats	A. cepa at 200 mg/kg reduced fasting blood glucose levels by 62.9% (292.3 ± 250 to 108.2 ± 46), at 250 mg/kg it reduced fasting blood glucose levels by 69.7% (296.3 ± 178 to 89.8 ± 43) whereas at 300 mg/kg it reduced it by 75.4% (297.8 ± 375 to 73.4 ± 3.0)	[45]
Amaryllidaceae	Allium sativum L.	Tisket / Touma	Aqueous extract of the bulbs	500 mg / kg BW	Streptozotocin-induced diabetic rats (STZ)	At weeks 2, 5 and 7 of garlic extract treatment, the serum glucose levels of the garlic-treated diabetic rats were reduced by 29%, 68% and 57%, respectively in comparison to control diabetic rats.	[46]
Anacardiaceae	Pistacia atlantica Desf.	Btem/Igg/Drou	N-hexane extract of the seeds	200 mg/kg BW	Streptozotocin-induced diabetic rats (STZ)	The administration of P. atlantica extracts body wt. tended to bring the blood glucose significantly toward normal values from the beginning of the experiment	[47]
Anacardiaceae	Pistacia lentiscus L.	Trou/Tidekt	Crude gum	100 mg / kg BW	Alloxan- induced diabetic rats	After 6 h, there was decreased in blood glucose (280.8 ± 9.0) but after 24 h crude Pistacia gum showed significant decrease(195.2 ± 23.6) as compared to diabetic untreated rats (352.4 ± 23.6)	[48]
Apiaceae	Ammi visnaga (L.) Lam.	Barhanisse	Aqueous extract of fruits	20 mg/kg BW	Streptozotocin-induced diabetic rats (STZ)	Significant decrease of blood glucose in normal rats 6 h after a single oral administration ($P < 0.005$) and 9 days after repeated oral administration ($P < 0.05$).	[49]
Apiaceae	Ammodaucus leucotrichus Coss.	Kamoun soufi	Aqueous extract of fruits	10 mg/kg BW	Streptozotocin-induced diabetic rats (STZ)	Significant reduction in blood glucose levels after four ($p < 0.01$) and 6 h ($p < 0.001$) of treatment. This effect was more pronounced than glibenclamide which caused a significant decrease in blood glucose at the fourth ($p < 0.05$) and sixth ($p < 0.01$) hour after oral administration	[50]
Apiaceae	Apium graveolens L.	Krafliss	Hexane, chloroform and methanol extracts of stalk and leaves	100, 200 and 400 mg/kg BW	Streptozotocin-induced diabetic rats (STZ)	Maximum percentage of blood glucose reduction in normoglycemic mice at 8 h with 400 mg/kg doses of chloroform extract was 37%. However, hexane extract and methanol extract at the same doses produce only a small effect	[51]
Apiaceae	Carum carvi L.	Likanwa	Ethanolic extract of the seeds	0.2, 0.4 and 0.6 g/kg BW	Streptozotocin-induced diabetic rats (STZ)	Significantly decreased serum glucose and insulin in diabetic rats in 3 and 5 h but not in healthy rats.	[52]
Table 2: In vivo and in vitro studies of medicinal plants used in the treatment of diabetes in Morocco (Continued)

Family	Plant species	Vernacular name	Plant extracts used	Dose (s) used	Models used in the study	Results	References
Apiaceae	Coriandrum sativum L.	Kosbor	Aqueous extract of fruits	250 and 500 mg/kg BW	Streptozotocin-induced diabetic rats (STZ)	The aqueous extract of fruits decreased the blood glucose level statistically significant when compared with diabetic control	[53]
Apiaceae	Cuminum cyminum L.	Kamoun	Ethanolic extract of the seeds	250 mg / kg BW	Streptozotocin-induced diabetic rats (STZ)	Around 17.7% and 17.1% decline in blood glucose levels at 0–300 and 0–1440 min, respectively, on streptozotocin-induced diabetic rats	[54]
Apiaceae	Daucus carota L.	Khizou	Alcoholic extract of the seeds	100, 200, 300 mg/kg BW	Streptozotocin-induced diabetic rats (STZ)	The administration of D. carota seeds extract (300 mg/kg) for 3 days decreased glucose serum level \((p < 0.05) \)	[55]
Apiaceae	Foeniculum vulgare Mill.	Nafaa	Essential oil extracted from the whole plant	30 mg/kg BW	Streptozotocin-induced diabetic rats (STZ)	Ingestion of essential oil corrected the hyperglycemia from \((162.5 \pm 3.19 \text{ mg/dl})\) to \((81.97 \pm 1.97 \text{ mg/dl})\) with \(p < 0.05 \)	[56]
Apiaceae	Petroselinum crispum (Mill.)	Maadnouss	Aqueous extract of the leaves	2 g/kg BW	Streptozotocin-induced diabetic rats (STZ)	Diabetic rats showed a gradual reduce in blood glucose levels over days 14—42. Maximum reduction in the blood glucose levels was observed on the day 42, and the reduction was about 50%	[10]
Apiaceae	Pimpinia anisum L.	Habbat hlaawa	Different fractions of methanolic extract (hexane, benzene, ethyl acetate, n-butanol, aqueous)	100, 200, 300, 400 and 500 \(\mu \text{g/ml} \)	\(\alpha \)-amylase and \(\alpha \)-glucosidase inhibition enzyme	At the concentration of 500 \(\mu \text{g/ml} \), the sequence of inhibitory effects on \(\alpha \)-amylase and \(\alpha \)-glucosidase activities respectively had the order as follows: Ethyl acetate \((94\% \text{ and } 87\%)\) > hexane \((93\% \text{ and } 86\%)\) > benzene \((91\% \text{ and } 85\%)\) > methanol \((84\% \text{ and } 83\%)\) > aqueous \((81\% \text{ and } 79\%)\) > n-butanol \((75\% \text{ and } 77\%)\).	[57]
Apocynaceae	Calotropis procera (Alton) Dryand.	Turja	Chloroform extract of leaves and flowers	10, 20 and 50 mg/kg BW	Streptozotocin-induced diabetic rats (STZ)	The reduction in serum glucose levels was better on the 21st and 27th days of treatment	[58]
Apocynaceae	Calotropis procera (Guss.) N.E.Br.	Daghmous	Methanolic extract of the aerial parts	250, 300 mg / kg BW	Alloxan-induced diabetes in mice	The methanolic extract exhibited a continuous marked reduction of blood glucose levels \((p < 0.001)\) particularly \(6–10 \) h after treatment in diabetic mice	[59]
Apocynaceae	Nerium oleander L.	Dejla/Allili	Methanolic extract of the leaves	50 and 200 mg/kg BW	Alloxan-induced diabetes in mice	Glucose level was lowered from \(255.66 \pm 1.52 \text{ mg/dl} \) on day 0 to \(67.00 \pm 6.24 \text{ mg/dl} \) in day 20, accounting for a significant \((p < 0.001)\) \(73.79\% \) decrease	[60]
Arecaceae	Calotropis humilis L.	Dum /Tiguedden / Ignaadd	Aqueous extract of the leaves	10 mg / kg BW	Experimentally induced obesity, hyperglycemia and hyperlipidemia \((\text{OHH})\) in rats	The plasma glucose levels of the \((\text{OHH})\) rats decreased significantly with daily dosing with the plant-extract \((\text{from baseline} 12.04 \pm 0.94 \text{mM/L to} 6.10 \pm 0.27 \text{mM/L} (p < 0.05))\) after 15 days, and to \((4.84 \pm 0.22 \text{mM/L} (p < 0.001))\) after 30 days	[61]
Arecaceae	Hyphaene thebaica (L.) Mart.	Dum/Karur	Aqueous suspension of the pulp	1 g/kg BW	Streptozotocin-induced diabetic rats (STZ)	Significant reduction on blood glucose levels in STZ rats \((p < 0.05)\)	[62]
Arecaceae	Phoenix dactylifera L.	Tmar	Ethanolic extract of the leaves	100, 200 and 400 mg/kg BW	Alloxan- induced diabetic rats	A significant antidiabetic effect at 400 mg/kg was observed starting from the 6th day onwards \((p < 0.05)\), and from 10th days onwards for 200 mg/kg	[63]
Brassicaceae	Anastatica hierochuntica L.	Chajarat	Water extract of the aerial parts	12.5 mg/rat	Streptozotocin-induced diabetic rats (STZ)	The administration of the plant extract induced a hypoglycemic effect in both non-glycemic and diabetic rats. It also caused significant improvement in tissue injury induced by STZ	[64]
Brassicaceae	Brassica napus L.	Left	Hydro-alcoholic extract	16 ml/ kg BW	Alloxan- induced diabetic rats	Significantly decrease of blood glucose compared to diabetic control rats \((p < 0.05)\)	[65]
Brassicaceae	Brassica nigra (L) K.Koch	Elkhardel	Chloroform, acetone, ethanol and aqueous extracts of the seeds	200 mg/kg BW	Streptozotocin-induced diabetic rats (STZ)	The administration of aqueous extract daily once for 1 month brought down fasting serum glucose levels	[66]
Table 2: In vivo and in vitro studies of medicinal plants used in the treatment of diabetes in Morocco (Continued)

Family	Plant species	Vernacular name	Plant extracts used	Dose(s) used	Models used in the study	Results	References
Brassicaceae	Brassica oleracea L.	Krunb, mkawar/melfuf	Different fractions (Petroleum ether, ethyl acetate and chloroform) of ethanolic extract of the leaves	150 mg/kg BW	Alloxan-induced diabetic rats	Significant reduction on blood glucose levels (P < 0.05)	[67]
Brassicaceae	Brassica rapa L.	Left beldi	Aqueous extract of the leaves	200 and 400 mg/kg BW	Alloxan-induced diabetic rats	Both doses significantly decreased (P < 0.001) blood glucose levels in diabetic rats after 28 days of administration	[68]
Brassicaceae	Lepidium sativum L.	Habi errechad	Seed powder	3 g / kg BW	Alloxan-induced diabetic rats	Significant decrease (P ≤ 0.05) in fasting blood glucose levels	[69]
Brassicaceae	Nasturtium officinale R.Br.	Gernunes	Hydroalcoholic extract of the leaves	100 and 200 mg/kg BW	Streptozotocin-induced diabetic rats(STZ)	Treatment of diabetic rats for 4 weeks with Nasturtium officinale extract significantly decreased their serum glucose levels	[70]
Brassicaceae	Raphanus sativus L.	Lfjel	Root juice	100, 200, 300, and 400 mg/kg BW	Streptozotocin-induced diabetic rats(STZ)	Maximum reduction of 15.9% (p < 0.001) in blood glucose level at 3 h in normal rats, whereas the reduction observed was by 23.8 and 28.3% (p < 0.001) in sub- and mild-diabetic rats, respectively	[71]
Buxaceae	Buxus sempervirens L.	Libeis	Aqueous extract of the leaves	5 mg/kg BW	Streptozotocin-induced diabetic rats(STZ)	The aqueous extract reduced the blood glucose of both healthy and diabetic rats. This extract was also able to improve oral glucose tolerance in diabetic rats and it ameliorated hepatic histology	[72]
Cactaceae	Opuntia ficus indica (L.) Mill.	Lhndia/ Aknati	Water extract of the whole plant	100 mg/kg BW	Streptozotocin-induced diabetic rats(STZ)	Significantly decrease of blood glucose compared to diabetic control rats (P < 0.05)	[73]
Capparaceae	Capparis decandra (Forsk.) Edgew.	Ignin	Aqueous and ethanolic extract of the stem	250 and 500 mg/kg BW	Alloxan-induced diabetic rats	The fasting blood glucose level decreases by 58.5, 83.6% (aqueous extract) and 60.2, 98.5% (ethanolic extract) after 21st day in diabetic rats treated with a different doses of 250 mg and 500 mg/kg BW respectively	[74]
Capparaceae	Capparis spinosa L.	Kabar/Tayulut	Hydroalcoholic extract of the root	0.2 and 0.4 g/kg BW	Streptozotocin-induced diabetic rats(STZ)	Glucose levels significantly decreased after treating with plant extract (p = 0.003)	[75]
Cistaceae	Cistus laurifolius L.	Agullid	Aqueous and ethanolic extracts of the leaves	250 and 500 mg/kg BW	Streptozotocin-induced diabetic rats(STZ)	The blood glucose levels of the STZ-induced diabetic rats were decreased by ethanolic extract as compared to control group (16%–34%)	[76]
Compositae	Anacyclus pythium (L.) Lag.	Iguntas/Tagundechte	Aqueous extract of the roots	150 and 300 mg/kg BW	Alloxan-induced diabetic rats	The significant reduction (p < 0.01) of blood glucose was observed at 60 and 120 min of the experiment	[77]
Compositae	Artemisia absinthium L.	Chiba	Ethanol extract of the whole plant	250, 500 and 1000 mg/kg BW	Alloxan-induced diabetic rats	A time-dependent significant hypoglycemic activity in medium dose (500 mg/kg BW, P < 0.01) and high dose (1000 mg/kg BW, P < 0.001), which was clearly after day 10 treatment period	[78]
Compositae	Artemisia herba-alba Asso	Izvi/Chih dwidi	Aqueous extract of the aerial parts	0.39 g/kg BW	Alloxan-induced diabetic rats	The administration of Artemisia herba-alba indicates significant (P < 0.05) reduction of blood glucose concentration and was found to be antidiabetic	[79]
Compositae	Chamæamelium nobil (L.) All.	Babounj	Aqueous extract of the aerial parts	20 mg/kg BW	Streptozotocin-induced diabetic rats(STZ)	The blood glucose levels were decreased from 6.1 ± 0.06 mmol/l to 4.6 ± 0.17 mmol/l (P < 0.01) and from 21.1 ± 1.31 mmol/l to 13.7 ± 0.90 mmol/l (P < 0.01) in normal and STZ diabetic rats, respectively, after 15 days of treatment.	[80]
Compositae	Ochotum intybus L.	Buaggad	Ethanol extract of the whole plant	125 mg / kg BW	Streptozotocin-induced diabetic rats(STZ)	The daily administration for 14 days to diabetic rats attenuated serum glucose by 20%, triglycerides by 91% and total cholesterol by 16%	[81]
Family	Plant species	Vernacular name	Plant extracts used	Dose (s) used	Models used in the study	Results	References
-----------------	-----------------------	-----------------	--------------------------------------	--------------	---	--	------------
Compositae	Lactuca sativa L.	Khes	Lactucaxanthin isolated from Lactuca sativa	6.854 μg	α-Amylase and α-glucosidase assays using streptozotocin-induced diabetic rat models	Lactucaxanthin significantly inhibited (p < 0.05) the activity of α-amylase and α-glucosidase	[82]
Compositae	Matricaria chamomilla L.	Mansania	Aqueous extract of the leaves	200 mg/kg BW	Streptozotocin-induced diabetic rats (STZ)	The administration of Matricaria chamomilla once daily for 21 days reduced the elevated Fasted Blood Glucose by 62.2% (p < 0.001)	[83]
Compositae	Taraxacum campylodes G. Eh Hlg Bund	Lhandba	Aqueous extract and methanol extract of roots, flowers and stems	20, 40, 60, 80 and 100 μg/ml	α-glucosidase and α-amylase enzyme inhibiting activity	The stem showed the highest overall inhibitory effect of both (alpha amylase + alpha glucosidase) as an average of about 87.2%	[84]
Compositae	Watsonia saharea Bentham ex. Benth & Coss.	Afssas	Aqueous extract of the aerial parts	5 mg/kg BW	Streptozotocin-induced diabetic rats (STZ)	The blood glucose levels were decreased in normal and STZ-induced diabetic rats after 15 days of treatment	[85]
Cucurbitaceae	Citrullus colocynthis (L.) Schrad.	Afrersiz/lnde	Chloroform, ethanol and aqueous extracts of the root	200 mg/kg BW	Alloxan- induced diabetic rats	Aqueous extract showed significant reduction in blood sugar level (58.70%) when compared with chloroform (34.72%) and ethanol extracts (36.60%) (p < 0.001)	[86]
Cucurbitaceae	Cucumis sativus L.	Lkhiar	Ethanol extract of the fruit	200 and 400 mg/kg BW	Streptozotocin-induced diabetic rats (STZ)	The hyperglycemia was significantly (P < 0.05) lowered by the administration of 200 mg/kg and 400 mg/kg body weight ethanol extract	[87]
Cucurbitaceae	Cucurbita maxima Duchesne	Garaa Ihamra	Petroleum ether, ethyl acetate and alcohol extract of the seeds	200 mg/kg BW	Streptozotocin-induced diabetic rats (STZ)	The blood glucose concentration was significantly (P < 0.05) decreased compared to control	[88]
Cucurbitaceae	Cucurbita pepo L.	Takhsats/curj	Fruit powder	2 g/kg BW	Alloxan- induced diabetic rats	Significantly decrease of blood glucose compared to diabetic control rats (P < 0.05)	[89]
Cupressaceae	Juniperus phoenicea L.	Araar finiqui	Essential oil, hexane and methanol extracts of the leaves	50, 100 and 200 μg/mL	α-Amylase inhibition assay	The IC50 values of essential oil, hexane and methanol extracts against α-amylase were 35.44, 30.15 and 53.76 μg/mL, respectively, and those against pancreatic lipase were 66.15, 68.47 and 60.22 μg/mL respectively	[90]
Cyperaceae	Cyperus rotundus L.	Tara	Hydro-ethanolic extract of the tubers	200 and 500 mg/kg BW	Alloxan- induced diabetic rats	This hyperglycemia was significantly (P < 0.05) lowered by the administration of Hydro-ethanolic extract	[91]
Ericaceae	Arbutus andro L.	Sasnu	Water extract of the roots	500 mg/kg BW	Oral glucose tolerance test in rats (OGTT)	The water extract produced a decrease of glyceremia at 1 h and 3 h after glucose loading (21.1%, p < 0.05 and 14.1%, p < 0.05, respectively)	[92]
Euphorbiaceae	Ricas communis L.	Awriwe/Likhawa	Ethanolic extract of the root	125, 250, 500, 750, 1000 and 2000 mg/kg BW	Alloxan- induced diabetic rats	Five-hundred milligram per kilogram body weight appeared to be the effective dose as it caused the maximum lowering of the fasting blood glucose	[93]
Leguminosae	Vigna radiata (L.) R.Wilczek	Soja	Raw, boiled, and sprouted mung beans	Not mentioned	α-amylase and α-glucosidase inhibition enzyme	α-amylase and α-glucosidase inhibitory activities were higher (p < 0.05) in sprouted mung compared to raw mung and boiled mung.	[94]
Leguminosae	Vigna unguiculata (L.) Wolp	Ful gnawa	Seed oil	100 and 200 mg/kg BW	Alloxan- induced diabetic rats	Significant reduction in blood glucose level was noted and at the dose of 200 mg/kg.b.wt serum glucose level was found to be very close to the non-diabetic control	[95]
Family	Plant species	Vernacular name	Plant extracts used	Dose (s) used	Models used in the study	Results	References
------------	------------------------	-----------------	--	---------------	--------------------------	---	------------
Gentianaceae	Centaurium etytraeae Rafn	Quset elhayya / Achrif ntawma	Aqueous and butanolic extracts of the aerial parts	0.015 ml / 100 g and 0.66 ml / 100 g BW	Oral glucose tolerance test overload “OGTT”	The administration of extracts has reduced significantly glycaemia compared to controls at 160, 190, 120 and 1180 min	[96]
Iridaceae	Crocus sativus L.	Zaafan Ithor	Ethanol Extract of stigma	20, 40 and 80 mg/kg BW	Alloxan- induced diabetic rats	The dose of 40 mg/kg was found to be more effective dose in intraperitoneally route for decreasing blood glucose level	[97]
Juglandaceae	Juglans regia L.	Swak / Gargaa	Alcoholic extract of the leaves	200 and 400 mg/kg BW	Streptozotocin-induced diabetic rats (STZ)	The extract reduced the hyperglycemia significantly compared to control group (P < 0.05)	[98]
Lamiaceae	Ajuga ka (L.) Schreib.	Timina naenkhah / Chndkoura	Lyophilised aqueous extract of the whole plant	10 mg/kg BW	Streptozotocin-induced diabetic rats (STZ)	Significant reduction in blood glucose level in normal rats as compared to the untreated groups and to the pre-treatment levels (0 h) (793.96 mg/dl at 6 h vs 100.73.34 mg/dl at 0 h, P < 0.01)	[99]
Lamiaceae	Lavandula angustifolia Mill	Elkhzama zeraq / Elkhzama Fassiya	Methanolic extract of the whole plant	125–400 µg/ml	Inhibitory effects on both hormone sensitive lipase (HSL) and pancreatic lipase (PL)	The extract inhibited HSL activity in a dose dependent manner with an IC50 of 175.5 µg/ml	[100]
Lamiaceae	Lavandula stoechas L.	Imizra / Tikenkert / Lhalhal	Essential oil extracted from the aerial parts	50 mg / kg BW	Alloxan- induced diabetic rats	Lavandula stoechas essential oils significantly protected against the increase of blood glucose	[101]
Lamiaceae	Marrubium vulgare L.	Mrriwfis	Methanolic extract of the aerial parts	500 mg/kg BW	Streptozotocin-induced diabetic rats (STZ)	A highly significant reduction in the plasma glucose level starting at the 14th day of treatment, compared to before treatment (day 0)	[102]
Lamiaceae	Ocimum basilicum L.	Lahbaq	Aqueous extract of the leaves	20, 18.2, 16.3 and 14.5 mg/ml	α-amylase and α-glucosidase inhibition enzyme	The aqueous extract showed strong α-glucosidase and α-amylase inhibiting activities	[103]
Lamiaceae	Rosmarinus officinalis L.	Azir	Ethanolic extract of the leaves	50, 100 and 200 mg/kg BW	Alloxan-diabetic rabbits	The highest dose (200 mg/kg) significantly lowered blood glucose level and increased serum insulin concentration in alloxan-diabetic rabbits	[104]
Lamiaceae	Salvia officinalis L.	Salmia	Ethanolic extract of the leaves	0.1, 0.2, and 0.4 mg/kg BW	Streptozotocin-induced diabetic rats (STZ)	The effect of administration of extract and glibenclamide tended to bring serum glucose and insulin towards normal values	[105]
Lamiaceae	Teucrium polium L.	Tawerart / Flyou Ibour / Jaajia	Aqueous decoction of the aerial parts	5 ml (20% w/v)	Streptozotocin-induced diabetic rats (STZ)	Significant reductions in blood glucose concentration 4 h after intravenous administration and 24 h after intraperitoneal administration	[106]
Lamiaceae	Thymus satureioides Coe.	Asserka / Zitla	Aqueous extract of the aerial parts	500 mg/kg BW	Streptozotocin-induced diabetic rats (STZ)	Administration of aqueous extract to diabetic rats for 28 d reduced their fasting blood glucose levels significantly compared to the diabetic control rats	[107]
Lamiaceae	Thymus vulgaris L.	Aduchen / Azulki / Zitla	Methanol, ethanol and aqueous extract of the whole plant	2, 4, 8, 10, 15 µg/ml	α-amylase and α-glucosidase inhibition enzyme	The results of anti-diabetic activity produced by Thymus vulgaris showed that the volatile compounds were effective to α-glucosidase and α-amylase inhibition.	[108]
Lauraceae	Cinnamomum cassia (L.) J.Presl	Qarfa	Aqueous extract of the bark	60 mg/kg BW	Alloxan- induced diabetic rats	A highly significant (P < 0.001) decrease in mean fasting blood glucose level, 203.5 ± 13.47 on 10th and 191.5 ± 12.72 on 15th day as compared to mean fasting blood glucose level	[109]
Family	Plant species	Vernacular name	Plant extracts used	Dose (s) used	Models used in the study	Results	References
--------------	--	-----------------	----------------------------------	---------------	--	---	------------
Lauraceae	Cinnamomum verum J.Presl	Dar essini	Aqueous extract of the bark	200, 400, 600 and 1200 mg/kg BW	Alloxan-induced diabetic rats	After 30 days, the administration of diabetic rats with the lowest dose (200 mg/kg BW) of extracts was the most efficient in affecting significant (P < 0.05) reduction in the levels of fasting blood glucose	[110]
Lauraceae	Laurus nobilis L.	Ourak sidna moussa/Rand	Essential oil and its three main components	0.606 to 1.300 μL/mL	α-glucosidase inhibition enzyme	Essential oil was found to inhibit α-glucosidase over 90%. The IC50-value of the oil was determined to be 1.748 ± 0.021 μL/mL	[111]
Lauraceae	Persa americana Mill.	Lavoca	Aqueous extract of the seeds	20, 30, 40 g/l	Alloxan-induced diabetic rats	The extract possessed a significant hypoglycaemic (P < 0.05) in alloxan-induced diabetic rats, comparable to the effect of glibenclamide	[112]
Leguminosae	Acacia nilotica (L.) Delile	Amur/Silaha	Aqueous methanolic extract of pods	200, 300 and 400 mg/kg BW	Alloxan-induced diabetic rabbits	A dose of 400 mg/kg BW maximally reduced the blood glucose levels as compared to the diabetic group (P < 0.001).	[113]
Leguminosae	Acacia senegal (L.) Willd.	Laalek	Ethyl acetate extract of stem bark	200 and 400 mg/kg BW	Alloxan-induced diabetic rats	In diabetic rats, both the doses (200 mg/kg and 400 mg/kg) of ethyl acetate extract were found to be significantly (P < 0.05) active in comparison to control	[114]
Leguminosae	Acacia tortilis (Forsk.) Hayne	Tellit/ Tadoute	Aqueous extract of the leaves	800 mg/kg BW	Diagnostic kits Spectrophotometrically in rats	The administration of aqueous extract for seven consecutive days caused significant (P < 0.05) decrease in blood glucose	[115]
Leguminosae	Arachis hypogaea L.	Lgerta/Kawkw	Aqueous extract of the seeds	2 ml	Alloxan-induced diabetic rats	The extract caused a significant (P < 0.05) decrease of fasting blood glucose of both normal and alloxan-induced diabetic rats	[116]
Leguminosae	Faidherbia albida (Delile) A.Chev.	Chok/Talhi/Mimouza	Aqueous extract of stem bark	125, 250 and 500 mg/kg BW	Alloxan-induced diabetic rats	The aqueous extract possessed anti-hyperglycemic effect in alloxan induced diabetic rats	[117]
Leguminosae	Glycine max (L.) Merr.	Soja	Petroleum ether, alcoholic and aqueous extract of seeds	100, 200 and 400 mg/kg BW	Alloxan-induced diabetic rats	The antihyperglycemic effect of aqueous extract showed onset at the 2nd h; peak effect at the 4th h and the antihyperglycemic effect was sustained till the 24th h	[118]
Leguminosae	Lupinus abus L.	Tirma/Foulgnawa	Aqueous extract of seed coat	18.4 and 36.8 mg/kg BW	Glucose Resistant Mice	Decrease in blood glucose at 30 min relative to control, but this difference was not significant for either concentration	[119]
Leguminosae	Medicago sativa L.	Fassa	Aqueous extract of seeds	7 mg/100 g BW	Alloxan-induced diabetic rats	The aqueous extract has hypoglycemic effect by increasing insulin level and decreasing insulin resistance	[120]
Leguminosae	Phascolus vulgaris L.	Lubya	Seeds	100, 200 and 300 mg/kg BW	Induction of hyperglycemia in rats by administration of glucose	Seeds of P. vulgaris at a dosage of 300 mg/kg bw is showing maximal blood glucose lowering effect in diabetic rats after third hour	[121]
Leguminosae	Retama rams (Forsk.) Webb	Rtam/Allug	Methanolic extract of the fruits	100, 250 and 500 mg/kg BW	Streptozotocin-induced diabetic rats (STZ)	The extracts at 250 or 500 mg/kg significantly lowered blood glucose levels at the 3rd and 1st week of treatment, respectively	[63]
Leguminosae	Trigonella foenum-graecum L.	Lhelba/Tifidas	Alcoholic extract of the seeds	1, 2, and 4 g	Alloxan-induced diabetic rats	Significant reduction on blood glucose levels was seen with alcoholic extract (743 ± 4.77 to 60.56 ± 1.9 in normal rats and 201.25 ± 7.69 to 121.25 ± 6.25 in diabetic rats) (P < 0.001)	[122]
Linaceae	Unum usitatissimum L.	Zariat elkattan	Ethanolic extract of the seeds	200 and 400 mg/kg BW	Alloxan-induced diabetic rats	The extract significantly reduced serum glucose level. The antihyperglycaemic effects showed onset at 4th h (P < 0.001) and peak effect at 6th h (P < 0.001)	[123]
Lythraceae	Lavandula inermis L.	Lhenna	Ethanolic extract of the whole plant	150, 300 and 500 mg/kg BW	Streptozotocin-induced diabetic rats (STZ)	Significantly decreased level of blood glucose. The effect of dose 0 500 mg/kg BW was found to be better then 150 and 300 mg/kg BW	[124]
Family	Plant species	Vernacular name	Plant extracts used	Dose (s) used	Models used in the study	Results	References
--------------	--------------------------------------	-----------------	--	---------------------	---	--	------------
Lythraceae	Punica granatum L.	Rman	Ethanol extract of the leaves	500 mg/kg BW	Alloxan-induced diabetic rats	Significant decrease (P < 0.01) in blood glucose level in comparison to control group	[125]
Malvaceae	Abelmoschus esculentus (L.) Moench	Lmloukhia	Peel and seed powder	100 and 200 mg/kg BW	Streptozotocin-induced diabetic rats (STZ)	Significant (P < 0.001) reduction in blood glucose level and increase in body weight than diabetic control rats	[126]
Malvaceae	Hibiscus sabdariffa L.	Karkadi/Bissam	Aqueous extracts of the calyces	10-80 μg/mL	α-amylase and α-glucosidase inhibition enzyme	The extracts caused inhibition of α-amylase and α-glucosidase activities in vitro	[127]
Moraceae	Ficus carica	Tazart/Karmous/Karma/chriha/Elbakur	Aqueous extract of the leaves	2.5 g/100 ml	Streptozotocin-induced diabetic rats (STZ)	The extract decreased (p < 0.025) plasma glucose in diabetic (27.9 ± 4.5 mmol/L to 19.6 ± 9.9 mmol/L) while not in normal rats	[128]
Moraceae	Morus alba L.	Tut lbari	Alcohol extract of the root bark	200, 400 and 600 mg/kg BW	Streptozotocin-induced diabetic rats (STZ)	A significant decline in serum glucose level to a value of 155 mg/dl, P < 0.05 as compared to STZ-diabetic rats	[129]
Musaceae	Musa × paradisiaca L.	Banan	Ethanol extracts of leaves, fruit peels, stems and roots	100, 250 and 500 mg/kg BW	Streptozotocin-induced diabetic rats (STZ)	Only leaves and ripe fruit peels showed promising antidiabetic effect	[130]
Myristicaceae	Myristica fragrans Dehnh.	Logouza	Petroleum ether extract of the seeds	100 and 200 mg/kg BW	Streptozotocin-induced diabetic rats (STZ)	A significant decrease in blood glucose level from 56.5 ± 3.19 (0 h) to 49.75 ± 205 mg% (4 h) in normoglycaemic rats	[131]
Myrtaceae	Eucalyptus camaldulensis Dehnh.	Calitus	Essential oil extracted from the leaves	0.10 and 0.25 ml	α-amylase and α-glucosidase inhibition enzyme	Both α-amylase and α-glucosidase were inhibited by a non-competitive mechanism	[132]
Myrtaceae	Eucalyptus globulus Labill.	Calitus	Aqueous extract of the leaves	150 and 300 mg/kg BW	Streptozotocin-induced diabetic rats (STZ)	The aqueous extract exhibited a significant and dose-dependent effect on the blood glucose levels (P < 0.001). The highest dose (300 mg/kg) produced the most pronounced lowering of blood glucose levels	[133]
Myrtaceae	Myrtus communis L.	Rihane	Hydroalcoholic, water, and ethanol extracts of the leaves	2 and g/kg BW	Streptozotocin-induced diabetic rats (STZ)	The ethanolic extract of leaves (2g/kg) had a better hypoglycemic effect in diabetic rats compared with the aqueous extract (p < 0.05)	[134]
Myrtaceae	Syzygium aromaticum (L.) Merr. & LMPerry	Kranfal	Essential oil extracted from the buds and seeds	1 to 100 μg/mL	α-amylase inhibition enzyme	The maximum antidiabetic activity for S. aromaticum essential oils was noted at the highest dose (100μg/mL).	[135]
Nitrariaceae	Peganum harmala L.	Lharmel	Ethanol extract of the seeds	150 and 250 mg/kg BW	Streptozotocin-induced diabetic rats (STZ)	The oral administration of ethanolic extract causes maximum fall of blood glucose level to 22.9% (p < 0.05) and 29.4% (p < 0.01) respectively with the two doses in normal and 30.3% (p < 0.01) and 48.4% (p < 0.001) in diabetic rats	[11]
Oleaceae	Fraxinus angustifolia Vahl	Touzalt	Hydroalcoholic extracts of leaves and bark	25 and 50mg/kg BW	Streptozotocin-induced diabetic rats (STZ)	A considerable hypoglycemic effect was noticed 2 h after the STZ-induction, with a higher efficiency (P < 0.005) for leaf extract (68%) as compared with bark extract (57%)	[136]
Oleaceae	Olea europaea L.	Jbouj/Azmour/Zitoun	Alcohol extract of the leaves	0.1, 0.25 and 0.5 g/kg BW	Streptozotocin-induced diabetic rats (STZ)	The antidiabetic effect of the extract was more effective than that observed with glibenclamide	[137]
Family	Plant species	Vernacular name	Plant extracts used	Dose (s) used	Models used in the study	Results	References
-------------------	-------------------------	-----------------	---------------------	--------------	--------------------------	--	------------
Pedaliaceae	Sesamum indicum L.	Janjlan	Ethanolic extract of the seeds	500 mg/kg BW	Streptozotocin-induced diabetic rats (STZ)	A significant decrease in the elevated blood glucose and increase in the lowered insulin and glycogen levels.	[138]
Plantaginaceae	Globularia azyum L.	Ayen Lerneb/Taseligha	Aqueous extract of the leaves	100 and 20 mg/kg BW	Streptozotocin-induced diabetic rats (STZ)	In the diabetic rats, the blood glucose levels was mostly reduced, due to repeated oral treatment of G. azyum leaves (20 mg/kg; P < 0.001).	[139]
Poaceae	Cynodon dactylon (L.) Pers.	Njem	Aqueous extract of the whole plant	250, 500 and 1000 mg/kg BW	Streptozotocin-induced diabetic rats (STZ)	The dose of 500 mg/kg was identified as the most effective dose. It lowers blood glucose level around 31% after 4 h of administration in normal rats.	[140]
Poaceae	Hordeum vulgare L.	Chair/Zraa	Hydroalcoholic extract of the seeds	0.1, 0.25, 0.5 g/kg	Streptozotocin-induced diabetic rats (STZ)	The extract at doses of 0.25 and 0.5 g/kg, were only effective in detraction blood glucose levels of diabetic rats after 11 days of continued daily therapy.	[141]
Poaceae	Pennisetum glaucum (L.) R.Br.	Illan	Hexane, ethylacetate, methanolic and aqueous extracts of the seeds	250 mg/kg BW	Streptozotocin-induced diabetic rats (STZ)	The aqueous extract has shown maximal blood glucose lowering effect in diabetic rats.	[142]
Poaceae	Phalaris canadinus L.	Zouan	Encrypted peptides released after gastrointestinal digestion of seed proteins	0, 200, 400, 600, 800, 1000, 1200, and 1400 μg/mL	Assay for Inhibitory Activity of Dipeptidyl Peptidase IV	The peptides showed 43.9% inhibition of dipeptidyl peptidase IV.	[143]
Poaceae	Sorghum bicolor (L.) Moench	Bachna	Dried extract of the whole plant	0.4 g/kg BW	Hepatic gluconeogenesis of streptozotocin-induced diabetic rats	The hypoglycemic effect of extract was related to hepatic gluconeogenesis but not the glucose uptake of skeletal muscle, and the effect was similar to that of anti-diabetic medication.	[144]
Poaceae	Zea mays L.	Lahyat Adra	Corn silk aqueous extract	0.25–100 mg/mL, 0.25–80 mg/mL	Assay for Inhibitory Activity of Dipeptidyl Peptidase IV	In vitro analysis of the extract showed that it exhibited potent and moderate inhibitory potential against α-amylase and α-glucosidase, respectively. The inhibition was concentration-dependent with respective half-maximal inhibitory concentration (IC50) values of 5.89 and 0.93 mg/mL.	[145]
Portulacaceae	Portulaca oleracea L.	Rejła	Aqueous extract of the whole plant	200 and 400 mg/kg BW	Alloxan-induced diabetic rats	The hypoglycemic effect of extract became significant following oral administration 1 h, reached the peak at 1.5 h (p < 0.01), and was still significant at 4 h	[6]
Ranunculaceae	Nigella sativa L.	Haba souda/Sanouj	Hydroalcoholic extract of the seeds	5, 10, and 20 mg/kg BW	Streptozotocin-induced diabetic rats (STZ)	5 mg/kg BW is the most effective dose for assessing the anti-hyperglycemic potential of hydroalcoholic extract of N. sativa in diabetic rats.	[146]
Rhamnaceae	Ziziphus lotus (L.) Lam.	Nbeg/Azougar/ssidra	Aqueous extract of leaves and fruits	250 μL 150 μL	α-amylase and α-glucosidase inhibition enzyme	Z. lotus leaves and fruits, demonstrated inhibitory effects against α-amylase (IC50: 20.40–31.91 μg/mL), and α-glucosidase (IC50: 8.66–27.95 μg/mL).	[147]
Rosaceae	Cydonia oblonga Mill.	Sferjel	Aqueous extract of the fruits	80, 160, and 240 mg/kg	Streptozotocin-induced diabetic rats (STZ)	The oral administration of the extract prevented diabetes-induced increase in serum urea and creatinine levels as the markers of renal dysfunction.	[148]
Rosaceae	Chaenomeles sinensis (Dum.Cours.) Koehne	Sferjel	Ethyl acetate fraction from the fruits	50 and 100 mg/kg BW	Streptozotocin-induced diabetic rats (STZ)	The administration of C. sinensis fruits extract (100 mg/kg BW) restored the blood glucose to almost normal level.	[149]
Rosaceae	Erionotrya japonica (Thunb.) Lindl.	Mzah	Alcoholic extract of the leaves	100, 150 and 200 mg/kg	Alloxan-induced diabetic rats	The extract exerted a significant (P < 0.05) hypoglycaemic effect in normal rabbits which was however short-lived. The hypoglycaemic effect was not significant (P > 0.1) in alloxan-treated rabbits.	[150]
Family	Plant species	Vernacular name	Plant extracts used	Dose(s) used	Models used in the study	Results	References
----------	--------------------------------	-----------------	--	--------------	---	--	------------
Rosaceae	Prunus armeniaca L.	Luz elhar	The pomace and the detoxified kernel extract	4, 6 and 8 mg/kg, 3 and 4 mg/kg	Alloxan-induced diabetic rats	Pomace extract showed significant (p ≤ 0.05) antidiabetic activity more prominent than the detoxified kernel extract acutely, subchronically and on longer-terms	[151]
Rosaceae	Prunus dulcis (Mill.) D.A. Webb	Louz imrag/ Louz morr	Ethanol extract, ethyl acetate fraction, hexane fraction, chloroform fraction, n-butanol fraction, water fraction and almond oil	Not mentioned	Protein tyrosine phosphatase-1B (PTP1B) inhibition	The alcoholic extract showed strong anti-diabetic (PTP1B inhibition) activity with an IC_{50} 0.46 μg/mL	[152]
Rutaceae	Citrus medica L.	Lhamed beïdle	Petroleum ether extract of the. Seeds	200 and 400 mg/kg BW	Streptozotocin-induced diabetic rats (STZ)	Significant reduction (p < 0.05) of fasting blood glucose in dose dependent manner after 15 days of drug administration	[153]
Rutaceae	Citrus paradisi Macfad.	Pamblamus	Phenolic extract from grapefruit peels	500 mL, 50 mL	Interaction with α-amylase, α-glucosidase, and angiotensin-1-converting enzyme (ACE)	The phenolic extracts inhibited α-amylase, α-glucosidase and ACE enzyme activities	[154]
Rutaceae	Citrus sinensis (L) Odebeck	Peel ethanolic extract	250 and 500 mg/kg BW	Streptozotocin-induced diabetic rats (STZ)	Diabetic rats treated with 250 and 300 mg/kg of extract showed a significant reduction in blood glucose levels of 11 and 25%, respectively		[155]
Rutaceae	Citrus x aurantium L.	Larenji/Zentbiel/trunj	The alcoholic extract of fruit peel	300 and 500 mg/kg BW	Alloxan-induced diabetic rats	On repeated administration of ethanolic extract for 21 days, a significant (p < 0.001) dose-dependent decrease in blood glucose of the diabetic rats was seen as compared to control group	[156]
Rutaceae	Ruta graveolens L.	Lfijel	Water extract of the whole plant	125 and 50 mg/kg BW	Nicotinamide-streptozotocin-induced (type 2) diabetic albino rats	Significant amelioration of glucose tolerance	[157]
Rutaceae	Ruta montana (L) L.	Lfijel /Iwermi	Aqueous extract of the aerial parts	5 mg/kg BW	Streptozotocin-induced diabetic rats (STZ)	Both single and repeated oral doses produced significant reductions in the blood glucose levels in normal and STZ-induced rats	[158]
Santalaceae	Viscum album L.	Lenjbar	Aqueous extract of the leaves	100 and 200 mg/kg BW	Alloxan-induced diabetic animals	Doses of 200 mg/kg and 400 mg/kg BW produced significant (p < 0.05) lowering of blood sugar in fasted normal white albino rats and alloxanized rabbits respectively	[159]
Sapotaceae	Argania spinosa (L) Skeels	Argan	Aqueous extract of the fruits	10 mg/kg BW	Streptozotocin-induced diabetic rats (STZ)	Single oral administration reduced blood glucose levels 6 h after administration in STZ diabetic rats. Furthermore, blood glucose levels were decreased in STZ diabetic rats after 7 days of treatment	[160]
Solanaceae	Capsicum annum L.	Fellel Ham/ soudania	Water extract of nine types of pepper	500 mL, 50 mL	α-amylase and α-glucosidase inhibition enzyme	Several pepper extracts had high α-glucosidase inhibitory activity. Select extracts such as Green pepper and Long hot pepper had less or no inhibitory effect on the α-amylase activity	[161]
Solanaceae	Datura stramonium L.		Aqueous extract of the leaves	100–1000 μl	α-amylase inhibition enzyme	The assay carried out on alpha-amylase enzyme showed the dose-dependent increase in inhibitory effect with IC_{50} 730 μg	[162]
Solanaceae	Lycopersicon esculentum Mill.	Sdag jmel/Metal	The supernatant (juice fraction)	0 to 0.8 mg/ml	α-amylase and α-glucosidase inhibition enzyme	Stronger inhibition of α-glucosidase than α-amylase activity	[163]
Solanaceae	Nicotiana tabacum L.	Nefha	Acetone, ethanol and water extract of the leaves	250 μL	α-amylase and α-glucosidase inhibition enzyme	The aqueous extract was most effective inhibitor of α-amylase (IC_{50} 5.7 mg/mL) while acetone extract exhibited the best inhibitory potential on α-glucosidase (IC_{50} 4.5 mg/mL)	[164]
Table 2 In vivo and in vitro studies of medicinal plants used in the treatment of diabetes in Morocco (Continued)

Family	Plant species	Vernacular name	Plant extracts used	Dose(s) used	Models used in the study	Results	References
Solanaceae	Solanum americanum Mill.	Aneb dib	Aqueous extract of the leaves	200, 400 mg/kg BW	Alloxan- induced diabetic rats	Significant antihyperglycemic and hypolipidemic effects when compared to diabetic control rats \(p < 0.0001\)	[165]
Theaceae	Camellia sinensis (L.) Kuntze	Attay	Water extract	2 ml/100 g BW	Streptozotocin-induced diabetic rats (STZ)	The inhibitory effect of extract on hyperglycemia induced by STZ was statistically significant	[166]
Thymelaeaceae	Thymelaea hirsuta (L.) Endl.	Metnan	Aqueous extract of the aerial parts	250 mg/kg BW	Streptozotocin-induced diabetic rats (STZ)	In STZ-induced diabetic rats, single oral administration of T. hirsuta produced a significant decrease of blood glucose levels	[167]
Urticaceae	Urtica dioica L.	Taznaght/Tigzen/ Lhriga	Aqueous extract of the aerial parts	500 mg/kg BW	Alloxan- induced diabetic rats	The amount of glucose absorbed in a segment jejunum in situ was 8.05 ±0.68 mg in presence of nettle extract vs. 11.11 ±0.75 mg in control rats during 2 h \(P < 0.05\)	[168]
Urticaceae	Urtica pilulifera L.	Hurriga / Torokta/ Lhriga	Lectin isolated from the seeds	100 mg/kg BW	Streptozotocin-induced diabetic rats (STZ)	Significant hypoglycemic effect was found at the dose of 100 mg/kg after administration for 30 days	[169]
Vitaceae	Vitis vinifera L.	Dalya/Zbib/Kerma/ Adilite	Ethanolic extract of the leaves	250 and 500 mg/kg BW	Streptozotocin-induced diabetic rats (STZ)	The data show that 250 mg/kg of the V. vinifera extract has possessed remarkable effect on blood glucose level as equal as reference drug. (11.8-26.0%)	[170]
Zingiberaceae	Zingiber officinal Roscoe	Sekinjhir	Aqueous extract of the root	500 mg/kg BW	Streptozotocin-induced diabetic rats (STZ)	Raw ginger was significantly effective in lowering serum glucose, cholesterol and triacylglycerol levels in the ginger-treated diabetic rats compared with the control diabetic rats	[171]
Plants used most frequently for the treatment of diabetes in Morocco

Trigonella foenum-graecum L.

Trigonella foenum-graecum L. (Fenugreek), is an annual plant, in the family Leguminosae, extensively cultivated in many countries (Morocco, Egypt, China, India, Ethiopia, Turkey, Ukraine, Greece, etc.) [172]. Apart from the usage as an edible species and spice herb, fenugreek is known for its nutraceutical, medicinal, and pharmaceutical features. It has been reported that fenugreek is a valuable medicinal plant with potential for curing abscesses, wounds, arthritis, bronchitis, digestive disorders, fever and sinusitis. It is cited as used in the treatment of diabetes by Moroccan ethnobotanical studies [2, 12–23]. Fenugreek is known to have several pharmacological effects such as antidiabetic, lactation aid, antibacterial, gastric stimulant, for anorexia, galactagogue, hepatoprotective effect, anticancer, anticarcinogenic, hypocholesterolemic, antioxidant, and immunological activities. Fenugreek is an excellent source of neutral detergent fiber, proteins, vitamins as well as chemical constituents [172–176].

Hypoglycaemic activity of alcoholic extract of seeds of *Trigonella foenum-graecum* was tested in both normal and alloxan-induced diabetic rats. Significant decrease in glycemia was seen with alcoholic extract (74.33 ± 4.77 to 60.56 ± 1.9 in normal rats and 201.25 ± 7.69 to 121.25 ± 6.25 in diabetic rats) (P < 0.001) [122].

Fenugreek water seed extract was found to increase the body weight and decrease the fasting blood glucose in streptozocin-induced diabetic rats [177]. Similar results were obtained in the study done by Abdelatif et al. [178] who found that there was a weight gain in fenugreek treated rabbits as compared to the group that received only alloxan monohydrate. Plasma glucose level was reduced as compared to the alloxan monohydrate induced diabetic rabbits.

Administration of *Trigonella foenum-graecum* seeds (2.5 and 5 g) for 4 weeks to sixty newly diagnosed diabetic patients, improved blood glucose level in dose-dependent. The medium dose (5 g) of fenugreek seeds reduces significantly the glycemia (8.83 vs 6.45, p < 0.05) [179].

An active compound (GII), isolated from water extract of seeds of fenugreek orally administered to the subdiabetic and mild diabetic rabbits, was capable of reduce blood glucose in glucose tolerance test [180].

Artemisia herba-alba Asso

Artemisia herba-alba Asso. (Compositae), known as the desert wormwood (Shih in arabic), is a dwarf, semi shrub, strongly aromatic herb, growing widely in arid and semiarid areas of the Mediterranean basin and in Western Asia spreading into middle east, north-western Himalayas and India [181, 182]. This species is used medicinally to treat various diseases such as hypertension, diarrhoea, diabetes, colds, muscle tensions, coughing, intestinal distress and fever [183, 184]. It is cited as used in the treatment of diabetes in Morocco [2, 12, 14–23].

Numerous scientists have showed various biological and pharmacological effects in *Artemisia herba-alba* essential oils, especially antibacterial, antispasmodic, anti-diabetic, antioxidant, leishmanicidal, and antifungal properties [185–188]. In essential oils, monoterpenes were the major components, essentially α- and β-thujones, camphor, 1,8-cineole and chrysanthenyl derivatives, but sesquiterpenes also were found in some countries [189–192].

Taştekin et al. [79] reported the hypoglycaemic effect of aqueous extract of *Artemisia herba-alba* in alloxan-induced diabetic rats. Aqueous extract of the aerial parts at the dose of 0.39 g/kg BW (body weight) significantly reduced (P < 0.05) blood glucose concentration. Its hypoglycaemic effect was comparable with that of insulin and repaglinide.

In vitro screening of hypoglycemic activity of *Artemisia herba-alba* using α-amylase inhibition technique emphasized its activity in hypoglycemic remedy. The 70% ethyl alcohol extract and mucilage of 70% ethyl alcohol inhibited the activity of α-amylase by 11% and 2% respectively [193].

A dose of 2 g/kg of hydro-alcoholic extracts of *Artemisia herba-alba*, orally administered daily for 18 weeks, to male mice fed high fat diet, significantly decreased the blood glucose level (143.8 ± 23.9 vs. 229.0 ± 20.8 mg/dl, p < 0.05), triglyceride (18.9 ± 11.1 vs. 62.8 ± 18.3 mg/dl, p < 0.05), total cholesterol (1.2 ± 0.1 vs. 1.8 ± 1.1 g/L, p < 0.05) and serum insulin concentrations (1.7 ± 0.7 vs. 3.3 ± 14.3 ng/ml, p < 0.05) [194].

Nigella sativa L.

Nigella sativa L. (Family Ranunculaceae), commonly known as black seed or Kalonji seed, is widely grown medicinal plant throughout the world. Seeds and their oil have many food and medicinal uses [195, 196]. It has received attention for its potential application in the treatment and prevention of a number of diseases, such as fever, asthma, diarrhoea, dyslipidaemia, common cold, headache, warts, stings of scorpions, bites of snake and rheumatic diseases [197–199]. Moreover, a variety of secondary metabolites has been identified in this species, such as fixed oil, protein, alkaloid, saponin, isochinoline alkaloids (nigellimine and nigellimine-N-oxide), pyrazol alcaloids (nigellidin and nigellicin), thymoquinone, p-cymene, pinene, dithymoquinone, thymohydroquinone, carvacrol, carvone, limonene, 4-terpineol and citronellol [195, 196]. It has been reported to possess potent anti-inflammatory, anti-hyperlipidemic, anti-microbial, anti-cancer, anti-oxidant, anti-diabetic, anti-hypertensive, hepatoprotective, antiparasitic, analgesic, anti-noiceptive, anti-ulcer, anti-histaminic and wound healing activities.
Nigella sativa used in Morocco in the treatment of diabetes [2, 13–23].

Alimohammadi et al. [146] reported the hypoglycaemic effect of hydroalcoholic extract of Nigella sativa seeds (5, 10, and 20 mg/kg BW) in streptozotocin-induced diabetic rats (STZ). Nigella sativa at 5 mg/kg reduced blood glucose concentration level from (565.4 ± 30.9 mg/dl) to (323.2 ± 32.2 mg/dl), at 10 mg/kg it reduced blood glucose concentration level from (565.4 ± 30.9 mg/dl) to (513.2 ± 42.7 mg/dl), whereas at 20 mg/kg it reduced it from (565.4 ± 30.9 mg/dl) to (517.6 ± 27.3 mg/dl).

The antidiabetic activity of methanolic crude extract and the commercial oil of Nigella sativa seeds in alloxan-induced diabetic rats was examined by Houcher et al. [201]. Administration of the crude methanolic extract at a dose of 810 mg/kg/day and the oil at a dose of 42.7 mg/dl, respectively [202].

Administration of the volatile oil extracted from Nigella sativa seeds experimentally caused a significant decrease in blood glucose level in alloxan-diabetic rabbits (565.4 ± 30.9 mg/dl) to (323.2 ± 32.2 mg/dl), at 10 mg/kg it reduced blood glucose concentration level from (565.4 ± 30.9 mg/dl) to (513.2 ± 42.7 mg/dl), whereas at 20 mg/kg it reduced it from (565.4 ± 30.9 mg/dl) to (517.6 ± 27.3 mg/dl).

The antidiabetic activity of methanolic crude extract and the commercial oil of Nigella sativa seeds in alloxan-induced diabetic rats was examined by Houcher et al. [201]. Administration of the crude methanolic extract at a dose of 810 mg/kg/day and the oil at a dose of 42.7 mg/dl, respectively [202].

According to traditional medicine experts, Onion is one of the oldest medicinal plants used to relieve several ailments including metabolic disease, wound healer, pneumonia fighters, digestive problems, skin diseases and insect bites, diabetes and asthma [222, 223]. Allium cepa L., commonly known as onion, botanically classified under the Amaryllidaceae family, is a biennial plant widely cultivated around the world. Onion is utilized as both vegetable and flavouring [222, 223].

Allium cepa L.

Allium cepa L. (Olive) belongs to the plant family Oleaceae, is a small tree that produces the olive fruit, cultivated in the coastal areas of the eastern Mediterranean basin, the contiguous coastal areas of southeastern Europe, northern Iran at the south end of the Caspian Sea, western Asia, and northern Africa [203, 204]. Phytochemical investigations on Olea europaea have revealed the presence of various phytochemicals including phenolic compounds (oleuropein, hydroxytyrosol, verbascoside, apigenin-7-glucoside), flavonoids, secoiridoids, triterpenes, biophenols, benzoic acid derivatives, xylitol, sterols, isochromans and sugars [204, 205]. Olea europaea has a variety of medicinal properties and traditional uses. The plant has been used to treat diabetes, high blood pressure, cardiovascular diseases, influenza, chronic fatigue syndrome, to support time of recovery, immune system, stomach and intestinal diseases, common cold, malaria, dengue, severe diarrhoea, respiratory and urinary tract infections, and as mouth cleanser [204, 206]. Various biological activities of Olea europaea have been extensively studied like antihypertensive, analgesic, antimicrobial, anticancer, antihyperglycemic, antidiabetic, anticonvulsant, antioxidant, anti-inflammatory, immunomodulatory, antiviral, antinociceptive, and gastroprotective activities [203, 204]. It is cited in the ethnobotanical surveys that the plant is used in the treatment of diabetes in Morocco [2, 12, 13, 15–23].

Eidi et al. [137] showed the antidiabetic effect of alcohol extract of Olea europaea leaves in normal and streptozotocin-induced diabetic rats. Rats were divided into nine groups, group 1: normal control rats, groups 2, 3, 4: normal rats treated with Olea europaea, group 5: diabetic control rats, group 6, 7, 8: diabetic rats treated with Olea europaea, group 9: diabetic rats treated with glibenclamide. The administration of extract at a dose of 0.1, 0.25 and 0.5 g/kg BW for 14 days significantly decreased the blood glucose in diabetic rats (p < 0.05).

Another study was conducted to check the antidiabetic potential of oleanolic acid (an agonist for TGR5), isolated from Olea europaea leaves in mice fed with a high fat diet. Oleanolic acid cause a decrease in blood glucose concentration and insulin levels and it enhances glucose tolerance [207].

Several other studies demonstrated the antidiabetic effect of Olea europaea in streptozotocin diabetic rats [208–214], in alloxan diabetic rats [215–219], in alloxan diabetic rabbits [215], in human diabetic subjects [209] and in vitro α-amylase and α-glucosidase inhibitory activities [220, 221].
(292.3 ± 29.0 to 108.2 ± 4.6), at 250 mg/kg it reduced fasting blood glucose levels by 69.7 (296.3 ± 37.8 to 89.8 ± 4.3) whereas at 300 mg/kg it reduced it by 75.4% (297.8 ± 37.5 to 73.4 ± 3.0) [45].

Another study showed the hypoglycemic effect of onion juice on alloxan-induced diabetic rats. After 4 week treatment of onion juice (1 ml/100 g body weight), significant anti-hyperglycaemic effect were observed in treated rats [231].

The antidiabetic effect of 200 mg/kg body weight for 60 days of S-methyl cysteine sulfoxide (SMCS) isolated from Allium cepa was studied and compared in alloxan-induced diabetic rats. Results suggested that the administration of SMCS reduced blood glucose level [232].

In another experiment conducted by El-Soud and Khalil [233], they found that treatment with onion essential oil caused a significant decrease in serum lipids, lipid peroxide formation, blood glucose and increase in serum insulin in streptozotocin induced diabetic albino rats.

Marrubium vulgare L. Marrubium vulgare L. is a perennial herb of the Lamiales family, popularly known as white horehound. This aromatic plant is native to the Mediterranean Sea region can be found in many temperate regions of Europe, North of Africa and Asia [234, 235]. It could be used to cure and treat several diseases, such as laryngitis, bronchitis, skin abrasions, wounds, bronchial asthma, non-productive cough, hepatic affections and in phthisis [235, 236]. Marrubium vulgare is rich in phytochemicals like amino acids, polysaccharides, tannins, phenols, flavonoids, alkaloids, steroids, lactones and, in particular, terpenes [237, 238]. The plant is reported to possess hypoglycemic, vasorelaxant, analgesic, antioxidant, anti-erematogenic, anti-inflammatory, vasodilator and anti-hypertensive properties [236, 238]. Horehound used in Morocco in the treatment of diabetes [2, 12–19, 21–23].

Elberry et al. [102] showed that methanolic extract of the aerial parts of Marrubium vulgare can have beneficial effect in diabetes and its complication. They showed on a streptozotocin rat model the antidiabetic effect of a daily single oral dose of 500 mg/kg/day of Marrubium vulgare for 28 days. The methanolic extract produced a significant decrease in blood glucose starting on the second week and a significant increase in plasma insulin and tissue glycogen contents.

The administration of an aqueous extract from aerial parts infusion at dose 100, 200 and 300 mg/kg BW to alloxan-induced diabetic rats decreased significantly the blood glucose level in a dose dependent manner (a decrease by 50% for the dose 100 mg/kg and more than 60% for doses 200 and 300 mg/kg) [239].

The antidiabetic activity of various ethanolic extracts (root, leaf and stem) from Marrubium vulgare on normoglycemic rats was examined by Vergara-Galicia et al. [240]. The intragastric administration of both extracts (root and stem), at 100 mg/kg BW, significantly reduced blood glucose level in healthy rat. Furthermore, the increase in plasma glucose level was significantly suppressed by the ethanolic root extract after substrate oral administration.

Conclusion

Many Moroccan medicinal plants are reported to have blood sugar lowering properties that make them useful for the management of diabetes. We have reported 255 medicinal plants species belonging to 70 families in this study for the treatment of diabetes. Plants from the Compositae family were used most often in Morocco. The role of 135 Moroccan medicinal plants in the treatment of diabetes has been reviewed by several authors. However, 120 medicinal plants that are used for the treatment of diabetes in Morocco have not yet been studied in great detail for their antidiabetic properties. Furthermore, there are very few scientific reports of toxicological properties of these plants which would guarantee the safety of patients. In general, the literature search showed that some users of medicinal plants have only little information about toxic plants. In order to prevent the usage of toxic plants by the greater population, we have reported the major plants that have side effects according to toxicological documentations. Despite the therapeutic effects of medicinal plants they may have a toxicity risk which is related to a variety of causes including, contamination, misidentification, mistaken use of the wrong species, incorrect dosing and errors in use. Another problem, which may occur, is the possibility of adverse interaction between conventional medication and plant remedies. In conclusion, this review provides baseline data for plant species that have the potential antidiabetic activity and their associated knowledge in Morocco. However, many of the plant species mentioned require further pharmacological and clinical studies in order to validate any effective plant remedies to treat diabetes.

Abbreviations

BW: Body weight; DM: Diabetes mellitus; SMCS: S-methyl cysteine sulfoxide; STZ: Streptozotocin-induced diabetic rats

Acknowledgements

Not applicable.

Authors’ contributions

EI Manuscript preparation. FM Manuscript review. KC Supervising the whole work. All authors read and approved the final manuscript.

Funding

There is no funding for review article.

Availability of data and materials

Not applicable.
Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 26 October 2019 Accepted: 25 March 2020
Published online: 31 March 2020

References
1. Yaseen G, Ahmad M, Zafar M, Saltana S, Kayani S, Cetto AA, et al. Traditional management of diabetes mellitus in Pakistan: ethnobotanical investigation from traditional health practitioners. J Ethnopharmacol. 2015;174:91–117.
2. Barkaoui M, Kateri A, Boubaker H, Msmanda F. Ethnobotanical survey of medicinal plants used in the traditional treatment of diabetes in Chottouka Ait Baha and Tiznit (Western anti-atlas, Morocco). J Ethnopharmacol. 2017;196:338–50.
3. Giovannini P, Howes M-JR, Edwards SE. Medicinal plants used in the traditional management of diabetes and its sequelae in Central America: a review. J Ethnopharmacol. 2016;184:58–71.
4. Yayi SM, Yayi AI. Traditional medicinal plants used for the treatment of diabetes in the Sudan: a review. Afr J Pharm Pharmacol. 2018;12(3):27–40.
5. Surya S, Salam AD, Tomy DV, Carla B, Kumar RA, Sunil C. Diabetes mellitus and medicinal plants-a review. Asian Pac J Trop Dis. 2014;4(5):337–47.
6. Gao D, Li Q, Fan Y. Hypoglycemic effects and mechanisms of Portulaca oleracea L. in alloxan-induced diabetic rats. J Med Plant Res. 2010;4(19):1996–2003.
7. Rahati S, Shahrahi M, Arjomand G, Shahrahi T. Food pattern, lifestyle and diabetes mellitus. Int J High Risk Behav Addict. 2014;3(1):e8725.
8. Mahomoodally MF, Mootoosamy A, Wambugu S. Traditional therapies used to manage diabetes and related complications in Mauritius: a comparative ethnoreligious study. Evid Based Complement Alternat Med. 2016;2016:4523828.
9. Nazarian-Samani Z, Sewell RD, Lorigooini Z, Rafieian-Kopaei M. Medicinal plants with multiple effects on diabetes mellitus and its complications: a systematic review. Curr Diab Rep. 2018;18(10):72.
10. Yarandji R, Bolkent Ş, Tabakoglu-Oğuz A, Özoş-Saçan O. Effects of Petroleuminum crispum extract on pancreatic B cells and blood glucose of streptozotocin-induced diabetic rats. Bioll Pharm Bull. 2003;26(8):1206–10.
11. Singh AB, Chaturvedi J, Narender T, Srivastava AK. Preliminary studies on the antidiabetic properties of a plant extract in streptozotocin-induced diabetic rats. J Ethnopharmacol. 2003;86(1):199–206.
12. Al-Yahya M, Al-Farhan A, Adam S. Preliminary toxicity study on the traditional health practitioners. J Ethnopharmacol. 2015;174:91–117.
13. Hachi M, Ouafae B, Hachi T, Imane B, Atmane R, Zidane L. Contribution to ethnobotanical survey of some medicinal plants used in the treatment of diabetes mellitus, hypertension and cardiac diseases in South-Eastern Morocco (Errachidia province). J Ethnopharmacol. 2007;110(1):105–17.
14. Eddouks M, Maghrani M, Lemhadi A, Ouahidi M-L, Jouad H. Ethnopharmacological survey of medicinal plants used for the treatment of diabetes mellitus, hypertension and cardiac diseases in the south-east region of Morocco (Tafilalet). J Ethnopharmacol. 2002;82(2–3):97–103.
15. Jouad H, Haloui M, Rioussi H, El Hilaly J, Eddouks M. Ethnobotanical survey of medicinal plants used for the treatment of diabetes, cardiac and renal diseases in the North Centre region of Morocco (Fez-Boulemane). J Ethnopharmacol. 2001;77(2–3):175–82.
16. Bousta D, Boukhira S, Aafi A, Ghanmi M, El-Mansouri L. Pharmacological study of the hypoglycemic effects of a plant extract in streptozotocin-induced diabetic rats. J Ethnopharmacol. 2018;204:156–61.
17. Ouafae B, Hachi M, Zidane L, Douira A. Usages des plantes médicinales dans le traitement du Diabète au Sahara marocain (Tan-Tan). J Anim Plant Sci. 2013;17(11):2388–411 [French with abstract in English].
64. Rahim TR, El-Ridi MR. Action of Anastatica hierochuntica plant extract on islets of Langerhans in normal and diabetic rats. Egypt J Pharmacol. 2002;24(1):97–104.
65. Allday MM, Alghamdi HA, Ashour OM, Abdel-Naim AB, Ghareib SA, et al. Antidiabetic activities of Foeniculum vulgare mill. Essential oil in streptozotocin-induced diabetic rats. Avicenna J Phytomed. 2015;5(2):148.
66. Anand P, Murali K, Tandon V, Chandra R, Murthy P. Preliminary studies on antihyperglycemic effect of aqueous extract of Brassica nigra (L.) Koch in streptozotocin-induced diabetic rats. Indian J Exp Biol. 2007;45(8):696–701.
67. Asadujaman M, Hossain M, Khan M, Anisuzzaman A, Ahmed M, Islam A. Antihyperglycemic and glycoenzymes effects of different fractions of brassica oleacea in Alloxan induced diabetic rats. Int J Pharm Sci. 2011;2(2):1436.
68. Fard MH, Naseh G, Lori G, Hosseini SM, Hosseini M. Effects of aqueous extract of turnip leaf (Brassica rapa) in alloxan-induced diabetic rats. Avicenna J Phytomed. 2015;5(2):148.
69. Chauhan K, Sharma S, Agarwal N, Chauhan S, Chauhan B A study on potential hypoglycemic and hypoperoxidemic effects of Lepidium Sativum (garden cress) in Alloxan induced diabetic rats. Am J PharmTech Res. 2012; 2522–35.
70. Mousa-Al-Reza Hadjadeh ZR, Moradi R, Ghorbani A. Effects of hydroalcoholic extract of watercress (Nasturtium officinale) leaves on serum glucose and lipid levels in diabetic rats. Indian J Physiol Pharmacol. 2015;59:223–30.
71. Shukla S, Chatterji S, Mehta S, Rai PK, Singh RK, Yadav DK, et al. Antidiabetic effect of Raphanus sativus sativus root juice. Pharm Biol. 2011;49(1):132–7.
72. Ajeibl M, Eddouks M. Buxus sempervirens L. improves Streptozotocin-induced diabetes mellitus in rats. Cardiovasc Hematol Disord Drug Targets. 2019;19(1):1–8.
73. Gutierrez RMP, Juarez VA, Sauceda JV, Sosa IA. In vitro and in vivo antidiabetic and antilipoglycemic properties of Apache gravelers in type 1 and 2 diabetic rats. Int J Pharmaceut. 2014;470(1):368–79.
74. Eidi A, Eidi M, Haeri Rohani A, Basati F. Antidiabetic effect of ethanolic extract of garlic (Allium sativum) in streptozotocin-induced diabetic rats. Int J Diabetes Metab. 2007;15:108–15.
75. Hashemnia M, Nikousefat Z, Yazdani-Rostam M. Antidiabetic effect of n-butanol extract of Lactuca sativa L. root extract in diabetic rats. Ukr J Biochem. 2015;47:37–42.
76. Autori I, Ranjar B. Effect of Daucus carota seeds extract on serum levels of glucose, lipids and lipoproteins in type I diabetic male rats. Iranian J Biol. 2011;42(5):697–70.
77. Shobha R, Rajeshwari C, Andallu B. Anti-peroxidative and anti-diabetic activities of aniseeds (Pimpinella anisum L.) and identification of bioactive compounds. Ann J Phytomed Clin Ther. 2013;15(5):516–27.
78. Rathod NR, Chitme HR, Ichhaya R, Chandra R. Hypoglycemic effect of Caltrops gigantea Linn. Leaves and flowers in streptozotocin-induced diabetic rats. Oman Med J. 2011;26(2):104–8.
79. Shukla S, Chatterji S, Mehta S, Rai PK, Singh RK, Yadav DK, et al. Antidiabetic effect of Raphanus sativus sativus root juice. Pharm Biol. 2011;49(1):132–7.
101. Sebai H, Selmi S, Rtibi K, Souli A, Gharbi N, Sakly M. Lavender (Lavandula officinalis L.) ameliorates hyperglycemia in streptozotocin-induced diabetic rats. Lipids Health Dis. 2013;12(1):68–91.

102. Elberry AA, Harraz FM, Ghareib SA, Gabr SA, Nagy AA, Abdel-Sattar E. Antidiabetic activity of Cinnamomum verum (C. zeylanicum) in alloxan-induced diabetic albino rats. J Med Res. 2015;6(1):83–93.

103. Eidi A, Eidi M. Antidiabetic effects of sage (Salvia officinalis L.) leaves in streptozotocin-induced diabetic rats. J Ethnopharmacol. 2002;80(2):237–42.

104. Liyanage R, Kiramage C, Visvanathan R, Jayathilake C, Weththasinghe P, Sathasivam K. Hypoglycemic activity of seed oil from Ricinus communis L. in streptozotocin-induced diabetic rats. J Ethnopharmacol. 2007;111(3):279–83.

105. Eidi A, Eidi M. Antidiabetic effects of sage (Salvia officinalis L.) leaves in streptozotocin-induced diabetic rats. J Ethnopharmacol. 2002;80(2):237–42.

106. Basak SS, Candan F. Effect of Laurus nobilis L. essential oil and its main components on α-glucosidase and reactive oxygen species scavenging activity. Iran J Pharm Res. 2013;12(2):367–72.

107. Basak SS, Candan F. Effect of Laurus nobilis L. essential oil and its main components on α-glucosidase and reactive oxygen species scavenging activity. Iran J Pharm Res. 2013;12(2):367–72.

108. Eidi A, Eidi M. Antidiabetic effects of sage (Salvia officinalis L.) leaves in streptozotocin-induced diabetic rats. J Ethnopharmacol. 2002;80(2):237–42.

109. Basak SS, Candan F. Effect of Laurus nobilis L. essential oil and its main components on α-glucosidase and reactive oxygen species scavenging activity. Iran J Pharm Res. 2013;12(2):367–72.

110. Basak SS, Candan F. Effect of Laurus nobilis L. essential oil and its main components on α-glucosidase and reactive oxygen species scavenging activity. Iran J Pharm Res. 2013;12(2):367–72.

111. Basak SS, Candan F. Effect of Laurus nobilis L. essential oil and its main components on α-glucosidase and reactive oxygen species scavenging activity. Iran J Pharm Res. 2013;12(2):367–72.
134. Panjeshahir MR, Azadbakt M, Akbari N. Antidiabetic activity of different extracts of Myrtus communis in streptozotocin induced diabetic rats. Rom J Diabetes Nutr Metab Dis. 2016;23(2):183–90.

135. Tahiri HJ, Sarfraz RA, Ashraf A, Adil S. Chemical composition and antidiabetic activity of essential oils obtained from two spices (Syzygium aromaticum and Cuminum cyminum). Int J Food Prop. 2016;19(10):2156–64.

136. Medjahed Z, Atman-Klani D, Fauchonner ML, Richard G, Atmani D. Hepatoprotective and antidiabetic activities of Fraxinus angustifolia Vahl extracts in animal models: characterization by high performance liquid chromatography analysis. Turk J Med Sci. 2016;46(3):910–20.

137. Eidi A, Eidi M, Darzi R. Antidiabetic effect of Olea europaea L. in normal and diabetic rats. Phytother Res. 2002;6(3):347–50.

138. Bhuvaesawari P, Krishnakumari S. Antihyperglycemic potential of Sesamum indicum (Linne) seeds in streptozotocin induced diabetic rats. Int J Pharm Pharm Sci. 2012;4(1):527–31.

139. Joud H, Maghrani M, Eddouks M. Hypoglycaemic effect of Rubus fruticosus L. and Globularia alypum L. in normal and streptozotocin-induced diabetic rats. J Ethnopharmacol. 2002;81(3):351–6.

140. Singh SK, Kesari AN, Gupta RK, Jaiswal D, Natale G. Assessment of antidiabetic potential of Cydonon dactylon extract in streptozotocin diabetic rats. J Ethnopharmacol. 2007;114(2):174–9.

141. Minaiyani M, Ghannadi A, Movahedian A, Hakim-Elahi I. Effect of Hordeum vulgare L. (Barley) on blood glucose levels of normal and STZ-induced diabetic rats. Res Pharm Sci. 2014;9(3):173.

142. Prasad SV, Natava R, Sirasanagandla S, Rao CA. Anti hyperglycemic and antihyperlipidemic effects of Canarium ovolobago SM. Saibu GM, Abooyade OM. In vitro study on the hypoglycemic potential of Nicotiana tabacum leaf extracts. Baroj J Pharmacol. 2014;9(2):140–5.

143. Kavalalıoğlu F, Ashafa A. Kinetics of α-amylase and α-glucosidase inhibitory potential of Zea mays Linnaeus (Poaceae), stigma maydis effects of ethyl acetate fraction of Chaenomeles sinensis (Thouin) Koehne and Vitis vinifera L. leaves in streptozotocin-diabetic rats. J Ethnopharmacol. 2013;144(2):625–9.

144. El Amrani F, Rhallab A, Alaoui T, El Badaoui K, Chakir S. Hypoglycaemic properties and inhibition of key enzymes linked to type-2 diabetes by snake tomato (Tricosanthes cucumerina) and two tomato (Lycopersicon esculentum) varieties. Afr J Pharm Pharmacol. 2013;7(13):2588–65.

145. Aher R, Belge S, Kadam S, Kharade S, Misal A, Yeole P. Therapeutic investigations and evaluation of antidiabetic potential of Prunus dulcis nuts. Fitoterapia. 2003;74(8):677–81.

146. Al-Amin ZM, Thomson M, Al-Qattan KK, Peltonen-Shalaby R, Ali M. Anti-diabetic and antihyperlipidemic activity of alcoholic extract of Citrus aurantium in normal and alloxan-diabetic rats. J Ethnopharmacol. 1995;54(3):223–6.

147. Poongothai K, Ahmed KSZ, Pornurung M, Jayanthi M. Assessment of antidiabetic and antihyperglycaemic potential of Solanum nigrum and Musa paradisiaca in alloxan induced diabetic rats. J Pharm Res. 2010;3(9):2203–5.

148. Gomes A, Vedaraimon J, Das M, Sharma R, Ganguly D. Anti-hyperglycemic activity of black tea (Camellia sinensis) in rat. J Ethnopharmacol. 2015;165:2–9.

149. Brouham M, Mehfir F-Z, Ziyat A, Mekhti H, Aziz M, Legssyer A. Antihyperglycaemic activity of the aqueous extract of Urtica dioica. J Food Biochem. 2003;27:81–91.

150. Wani SA, Kumar P. Fenugreek: a review on its nutraceutical properties and inhibition of key enzymes linked to type-2 diabetes by snake tomato (Tricosanthes cucumerina) and two tomato (Lycopersicon esculentum). J Ethnopharmacol. 2003;84(2-3):177–8.

151. Kavalalıoğlu F, Tuncel H, Göksel S, Hatemi H. Hypoglycemic activity of Urtica pilulifera in streptozotocin-diabetic rats. J Ethnopharmacol. 2003;84(2–3):241–5.

152. Şengoğdu N, Aşlan M, Orhan DD, Ergün F,Yeşilada E. Antidiabetic and antihyperlipidemic effects of Vitis vinifera L. leaves in streptozotocin-diabetic rats. Turkish J Pharm Sci. 2006;31(1):17–18.

153. Al-Amin ZM, Thomson M, Al-Qattan KK, Peltonen-Shalaby R, Ali M. Anti-diabetic and hypolipidemic properties of ginger (Zingiber officinale) in streptozotocin-diabetic rats. Br J Nutr. 2006;96(4):650–6.

154. Aher R, Belge S, Kadam S, Kharade S, Misal A, Yeole P. Therapeutic importance of fenugreek (Trigonella foenum-graecum L.) a review. J Plant Sci Res. 2016;3(1):149.

155. Shashikumar J, Champawat P, Mudgal V, Jain S, Deepak S, Mahesh K. A review: food, medicinal and nutraceutical properties of fenugreek (Trigonella Foenum-Graecum L.). Int J Chem Stud. 2018;6(2):1239–45.

156. Wani SA, Kumar P. Fenugreek: a review on its nutraceutical properties and utilization in various food products. J Saudi Soc Agric Sci. 2018;17(2):97–106.

157. Goyal S, Gupta N, Chatterjee S. Investigating therapeutic potential of Trigonella foenum-graecum L. as our defense mechanism against several human diseases. J Toxicol. 2016;2016:10–1.

158. Pommerloch A, Lampe M, Klinkhammer T, et al. Antidiabetic and hypoglycemic properties of Vitis vinifera L. and Globularia alypum L. in normal and streptozotocin-diabetic rats. Res Pharm Sci. 2012;4(1):527–31.

159. Xue WL, Li XS, Zhang J, Liu YH, Wang ZL, Zhang RJ. Effect of Trigonella foenum-graecum extract on blood glucose, blood lipid and hemorheological properties in streptozotocin-induced diabetic rats. Asian Pac J Clin Nutr. 2007;16(5):422–6.

160. Abdelatif AM, Ibrahim MY, Mahmoud AS. Antidiabetic effects of fenugreek (Trigonella foenum-graecum) seeds in the domestic rabbit (Oryctolagus cuniculus). Res J Med Plant. 2012;6(5):449–55.
229. Pérez-Gregorio RM, García-Falcón MS, Simál-Gándara J, Rodrigues AS, Almeida DP. Identification and quantification of flavonoids in traditional cultivars of red and white onions at harvest. J Food Compos Anal. 2010; 23(6):592–8.

230. Griffiths G, Trueman L, Crowther T, Thomas B, Smith B. Onions—a global benefit to health. Phytother Res. 2002;16(7):693–15.

231. El-Demerdash F, Yousef M, El-Naga NA. Biochemical study on the hypoglycemic effects of onion and garlic in alloxan-induced diabetic rats. Food Chem Toxicol. 2005;43(1):57–63.

232. Kumari K, Augusti K. Antidiabetic and antioxidant effects of S-methyl cysteine sulf oxide isolated from onions (Allium cepa Linn) as compared to standard drugs in alloxan diabetic rats. Indian J Exp Biol. 2002;40(9):1005–9.

233. El-Soud N, Khalil M. Antioxidative effects of Allium cepa essential oil in streptozotocin induced diabetic rats. Maced J Med Sci. 2010;3(4):344–51.

234. Bahammou Y, Tagnamas Z, Lamharrar A, Idlimam A. Thin-layer solar drying characteristics of Moroccan horehound leaves (Marrubium vulgare L.) under natural and forced convection solar drying. Sol Energy. 2019;188:958–69.

235. Zawlak G. The chemical composition of the essential oil of Marrubium vulgare L. from Poland. Farm. 2012;60(2):287–92.

236. Bokaeian M, Saboori E, Saeidi S, Niazi AA, Amini-Borjeni N, Khaje H, et al. Phytochem anal, antibacterial activity of Marrubium vulgare L against Staphylococcus aureus in vitro. Zahedan J Res Med Sci. 2014;16(10):60–4.

237. Paula De Oliveira A, Santin JR, Lemos M, Klein Júnior LC, Couto AG, Meyre Da Silva Bittencourt C, et al. Gastroprotective activity of methanol extract and marrubiin obtained from leaves of Marrubium vulgare L(Lamiaceae). J Pharm Pharmacol. 2011;63(9):1230–7.

238. Amri B, Martino E, Vitulo F, Corana F, Kalb LB-B, Rui M, et al. Marrubium vulgare L. Leaf extract: Phytochemical composition, antioxidant and wound healing properties. Molecules. 2017;22(11):1851.

239. Boudjelal A, Hentchi C, Siracusa L, San M, Rubio G. Compositional analysis and in vivo anti-diabetic activity of wild Algerian Marrubium vulgare L. infusion. Fitoterapia. 2012;83(2):286–92.

240. Vergara-Galicia J, Aguirre-Crespo F, Tun-Suarez A, Aguirre-Crespo A, Estrada-Carrillo M, Jaime-Huerta I, et al. Acute hypoglycemic effect of ethanolic extracts from Marrubium vulgare. Phytopharm. 2012;3(1):54–60.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.