Developing a design framework to facilitate adaptive behaviours

Sepideh Sadat Korsavi a, Azadeh Montazami a, James Brusey b

a Centre for the Built and Natural Environment (BNE), Coventry University, UK
b School of Computing, Electronics and Mathematics, Coventry University, UK

ARTICLE INFO

Article history:
Received 16 April 2018
Revised 3 September 2018
Accepted 8 September 2018
Available online 19 September 2018

Keywords:
Adaptive behaviours
Built environment
Overall comfort
Energy
Framework

ABSTRACT

Adaptive behaviour has a significant impact on the quality of indoor environment, comfort, and energy consumption. Therefore, facilitating positive occupant behaviours will improve these three factors. The aim of this paper is to develop a design framework that can be used as part of the design process to facilitate adaptive behaviours.

This paper reviews studies that focus on reasons behind adaptive behaviours, and implication of these adaptive behaviours on the built environment. This paper highlights that ‘Context’, ‘Occupant’, and ‘Building’ (COB) have the most influence on adaptive behaviours. However, in most cases their influence is not considered holistically. This study also illustrates that adaptive behaviour has implications for the quality of Indoor environment, level of Comfort, and Energy consumption (ICE).

This paper introduces a framework consisting of three stages: (1) Evaluate the relation between COB and ICE factors with adaptive behaviours holistically; (2) Design building’s controls for ‘environmental behaviours’, set-up strategies for ‘personal behaviours’, and find a balance between these two; 3) Monitor the performance of adaptive behaviours through Post Occupancy Evaluation (POE).

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Occupants usually respond to discomfort in two regulative ways: by adapting their environment (environmental adaptive behaviour) or adapting themselves (personal adaptive behaviour) [1–5]. Many studies have referred to the role of adaptive behaviour on improving the occupant’s state of comfort and quality of environment [4–11], and its effect on the occupant’s forgiveness and satisfaction [12–19]. Occupants who can control their environment suffer from fewer building related symptoms [20–22] and report lower degrees of discomfort [9]. Occupant behaviour is a major source of building performance uncertainty [23–25] and is the main reason for the gap between predicted and measured energy performance of the building [24,26–29].

Limited understanding of occupants’ behaviours in buildings results in increased energy consumption, poor indoor quality and discomfort. The relationship between comfort and adaptive behaviours is quite complex, mainly because factors affecting one aspect of comfort also impact on other aspects [30,31]. For example, opening or closing curtains affects both visual and thermal comfort, possibly in an opposing way. State of comfort and energy consumption can also conflict with each other. Occupants’ comfort can affect energy demand significantly [31]; for example, the study by Dubrul [32] suggests that while ventilation rate in housing needs to be minimized to save energy, an adequate supply of ventilation is required to maintain comfortable and healthy conditions for the inhabitants and to avoid damage to the building fabric from pollutants like moisture [32]. It is important to find a balance between different aspects of comfort [33], indoor environment and energy consumption in order to have efficient and comfortable buildings. This balance can be achieved by taking appropriate adaptive behaviours, therefore, it is important to provide opportunities for facilitating and practising adaptive behaviours in buildings. The main contribution of this paper is to develop a design framework that is recommended to be considered as a part of design process to facilitate adaptive behaviours. The results can be used by building designers to design and retrofit buildings that better account for occupant comfort, can provide quality of indoor environment and save energy.

2. Methodology

To develop a design framework to facilitate adaptive behaviours, it is necessary to study factors that affect adaptive behaviours and factors that are affected by adaptive behaviours. For this reason, the inclusion criteria for selecting materials to review are studies that focus on the reasons for occurring or not occurring adaptive behaviours (Group A studies) and studies that examine the implications of adaptive behaviour on the built environment (Group B
3.1. Office buildings

Environmental behaviours

Environmental adaptive behaviours, including the operation of windows and shades, have a direct consequence on energy consumption. Windows and shades are among the controls that can easily and quickly change environmental conditions and are closely connected to thermal comfort, visual comfort [34–37], indoor air quality, acoustic comfort [37], privacy [38–41] and outside views [42]. Studies show that window operation is related to contextual factors, such as temperature and seasonal changes [28–10,43–57], building-related factors, such as previous state of windows [44,52,54], window size [10,43], distance to windows [9], and occupancy patterns [10,45,48,54,57].

The operation of shades is also correlated with COB factors. Firstly, contextual factors such as ‘sun effects’ [50–71], ‘temperature changes’ [52,60,63,68,70,73] and also outside views affect shade operation. There is an evidence that, when there is a pleasant view to the outside, shades are closed less frequently as occupants like to enjoy the outside view [58,39,65,38,71,77,41]. Blinds, as one of the shading devices, are usually closed to avoid direct sunlight and glare [39,38,69–71]. Sun effects influence the Mean Shade Occlusion (MSO)1 in each orientation; in northern hemisphere, higher MSO is observed on south facing façade [58–60,39,61–63,40,64], lower MSO on north façade [58,59,39,61–63,40,64,74] and intermediate results for east or west façades [59,63,40,74]. The frequency of shade adjustment is higher on south [64,65,72] and west façades [72,75], and is lower on north and east façades [72]. Several studies suggest that the ratio of south MSO to north MSO is between 1.4 and 2.6 [58,39,61,40,64,76]. Secondly, shade operation is affected by building related factors such as type of office, interior layout and type of blind. More operation is observed in single occupancy offices than in double-occupancy and open plan offices [64,71,78], which is due to having higher level of control over shades. Shades are opened more when occupants are sitting near the windows [9]. Type of blind affects rate of blinds’ operation

1 Mean Shade Occlusion (MSO) is in each orientation is defined as the average fraction that shades are closed for some group of windows [67].
automated, remotely controlled and motorized blinds show a higher operation rate than manual ones. Thirdly, shade operation is correlated with occupancy patterns (arrival and departure) and occupant’s individual characteristics. Psychologically, occupant’s behaviour on the operation of blinds is affected by long term perception of the environment rather than by short term dynamics [58,63,65,67,69,72]; e.g., the state of blinds remains usually unchanged for weeks or months [58,70,80–82]. Behaviour is also affected by the need for privacy in the workplace [38–41]. Psychologically, blind adjustment is predicted by occupants’ brightness sensitivity [61]; and socially, blind operation is influenced by trying not to upset colleagues in the workplace [60]. Blind operation is also correlated with the occupant’s pattern of arrival and departure, with more operation upon entry or at the end of the work day [39,65,69,83].

Occupants operate artificial light to satisfy their visual needs and comfort [84]. Bordass [78] suggests that limited understanding of occupant behaviour is one of the reasons for uncontrolled levels of lighting in many open-planned offices, even with automatic controls [78]. Studies have shown that operation of lights is correlated with illuminance level and work plane illuminance [66,38,77,85–89], type of office (open-plan or individual) [78,90], access and proximity to controls [75,87,90], control’s ease of use [91], occupant’s physiological elements (e.g. mood, eyestrain and metabolic rate) [86] and occupancy patterns [59,66,38,81,85,87,88,90,92–94]. Lights are switched on when occupants enter offices [59,38,81,85,87,88,90,92–94] and are usually switched off when they leave or are absent for a long time [59,66,85,87,88]. Intermediate ‘switching on’ usually occurs at lower illuminance [62,92,95] or at clearly uncomfortable situations, indicating that switching is usually not an intermediate event [87].

Research on doors, fans and HVAC is not as comprehensive as that on other controls such as windows, shades and lights. Studies illustrate that door operation is connected to indoor temperature [52,53], occupancy patterns and working hours [57], internal noise level [23]. Fan operation is correlated with temperature changes [9,45,52,53,96–98], and frequency of heater use is correlated with temperature [2,96] and type of heating system [99].

- **Personal behaviours:**

 Studies on personal behaviours that make the occupant more comfortable by changing metabolic rate or internal heat are not developed compared to studies on environmental behaviours. Studies highlight that clothing level depends on the variation of temperature [20,45,52,96,100–104]. Drink consumption is also correlated to temperature and seasonal changes [52,101]. However, activity level is either negatively correlated to indoor temperature [105] or not correlated to indoor temperature [103]. COB factors affecting adaptive behaviours and controls in office buildings are presented in Table 1.

3.1.2. Residential buildings

Researches on occupants’ adaptive behaviours in residential buildings are mainly focused on window operation, and then on Air Conditioning (AC) and heating systems. The operation of shades and lighting controls, and personal behaviours are not treated comprehensively, however, their effect on comfort and energy saving is significant. Contextually, studies have shown that window operation is affected by temperature and seasonal changes [32,107–119], CO₂ level [3,4,114,117,120], wind speed [32,110,111], relative humidity [108,111,113,114], solar radiation [32,112], precipitation levels [32], and background noise level [32,112,121]. Building related factors that affect window operation include type of dwelling [32,111], room type [32,108,110], floor area [112], window size and design [32,107] and security [32,121,122]. Occupant related factors that affect window operation are residents’ energy saving concerns [32,121,122], number of residents [3,108,111], resident’s activity and lifestyle [32,108,111,114,115,122] and occupancy patterns [32,111].

Fans and doors are usually operated to provide cross ventilation and to increase air movement [119]. AC operation is correlated with temperature changes [123–129], occupancy patterns and activities [124,126], residents’ health concerns [130] and their energy saving concerns [5]. The operation of heating systems and thermostats in households is correlated with outdoor and indoor temperature [112,117,125,129,131], poor thermal integrity [132], room and house type [133,134], type of heating systems and thermostat [112,135–138], resident’s age [99,139–143], and energy saving concerns [133]. Door operation is also found to be correlated with temperature and seasonal changes [109,116]. COB factors affecting adaptive behaviours and controls in residential buildings are presented in Table 2.

3.1.3. Educational buildings

Adaptive behaviour in educational buildings is important because it affects student’s state of comfort [144] and consequently health and performance [145–147]. There are fewer studies in educational buildings compared to office and residential buildings. Generally, less adaptive behaviours are taken during teaching activities than during breaks as pupils are concentrated on lessons [34,148]. Window operation is influenced by indoor and outdoor temperature [4,34,144,148,149], CO₂ level [149], humidity [119,149], noise level [37] and security [150] in educational buildings. Blinds are adjusted to control glare or sunlight [151,152],

Fig. 2. Research taxonomy of structure and logical flow for the paper.

Table 1.

- **Group A studies:**
 - 3.1. Influencing Factors of adaptive behaviours, COB Factors
 - **Contextual Factors** (Climatic and urban)
 - Occupant-related Factors (Personal elements and Occupancy patterns)
 - Building-related Factors

- **Group B studies:**
 - 3.2. Influenced factors by adaptive behaviours
 - ICE Factors
 - Indoor Quality
 - Comfort
 - Energy Consumption
Table 1
Factors affecting adaptive behaviours and controls in office buildings.

Group	Study	Country	Outcome of the Study	How outcome can facilitate adaptive behaviours
Window operation	C	[43] UK	Window operation is related with T_{out} (76%), solar gain (8%) and wind speed (4%).	Window’s size and number of openings should be designed by considering changes in seasons and outdoor variables (i.e. temperature, solar gain, wind), especially when variables fluctuate significantly during day and night or during different seasons. For example, the operation of windows is less frequent during winter compared to summer, however designing small openings alongside larger openings can provide natural ventilation without significant loss of heat and energy. Window operation will not be limited by factors such as rain, snow, wind and security concerns if window is efficiently and properly designed.
			Few window openings occur when the outdoor temperature is less than 10°C – 15°C, but the percentage increases when the temperature is between 15°C-30°C and is at maximum when temperature is between 25°C-30°C.	
		[49] China		
	B	[10] Germany	Small clerestory windows are opened less frequently, remained open for a longer time and are usually used for night ventilation, however large windows are opened more frequently for a shorter time and are mostly closed during the night.	Windows in different designs and sizes can provide different aspects of comfort (thermal comfort and indoor air quality) and can be kept open/closed for a shorter/longer period. Workstations should provide occupant’s easy access to windows, without locating them in sun patches.
Shade operation	C	[65] UK	Window open is closely connected with thermal sensation of occupants.	Understanding occupants’ thermal sensation (based on age group and activity) and occupancy patterns to design an environment that is positively perceived by them, facilitates their efficient window operation.
			Small windows are usually opened to provide indoor air quality while opening large windows is strongly influenced by outdoor temperature.	
		[43] UK	Window openings are mostly done by occupants sitting near windows (interior layout).	
		[9] UK	Window openings are closely connected with thermal sensation of occupants.	
		[55] Cambridge, UK	Windows are used often by occupants with high perceived control and positive cognition over environment than with low perceived control.	
	O	[9] UK	Windows are more manipulated in the morning, at lunchtime and then in the evening, according to their occupancy schedule.	Understanding occupants’ thermal sensation (based on age group and activity) and occupancy patterns to design an environment that is positively perceived by them, facilitates their efficient window operation.
		[10] Germany	Windows are more manipulated in the morning, at lunchtime and then in the evening, according to their occupancy schedule.	
			Window open is closely connected with thermal sensation of occupants.	Understanding occupants’ thermal sensation (based on age group and activity) and occupancy patterns to design an environment that is positively perceived by them, facilitates their efficient window operation.
		[64] Canada	Shade movement rate is reported 5 times higher for south facing façade than for north facing façade (sun effects).	Careful attention should be paid to the site in which buildings are constructed to provide occupants pleasant outside views and visual comfort. Outside views encourage occupant’s efficient operation on blinds.
		[71] Switzerland	Upper blinds are lowered four times more compared to the other blinds as they do not obstruct occupant’s view when lowered.	Careful attention should be paid to the site in which buildings are constructed to provide occupants pleasant outside views and visual comfort. Outside views encourage occupant’s efficient operation on blinds.
Light operation	B	[64,78] UK, Canada	Blinds are less frequently operated in open-plan office compared to individual office because it limits controls’ adjustment and makes occupants more inactive.	If designing individual or cellular office is not possible, number of occupants sharing an open-plan office should be reduced to have more active occupants. Similarly, if locating blinds close to workstations is not possible, remotely controlled blinds can be designed.
		[9] UK	Blind adjustment is more frequent when occupants are sitting near the windows.	The location and friendly-design of the lighting controls affect frequent and efficient operation of lighting systems because they will be operated when light level is low rather than switching lights on upon arrival and then switching them off on departure. Furthermore, local controls can satisfy visual needs of higher number of occupants.
		[70] France	In similar context, remotely controlled blinds are used three times more than manually controlled blinds.	The location and friendly-design of the lighting controls affect frequent and efficient operation of lighting systems because they will be operated when light level is low rather than switching lights on upon arrival and then switching them off on departure. Furthermore, local controls can satisfy visual needs of higher number of occupants.
			Lights are frequently switched on and off in order to alter lighting levels that reduce the need for frequent operation.	The location and friendly-design of the lighting controls affect frequent and efficient operation of lighting systems because they will be operated when light level is low rather than switching lights on upon arrival and then switching them off on departure. Furthermore, local controls can satisfy visual needs of higher number of occupants.
		[78] UK	Lights are often left on in an open-plan office that limits operation of controls compared to an individual office.	The location and friendly-design of the lighting controls affect frequent and efficient operation of lighting systems because they will be operated when light level is low rather than switching lights on upon arrival and then switching them off on departure. Furthermore, local controls can satisfy visual needs of higher number of occupants.
		[90] Salford, UK	Lights’ switches closer to occupants are turned on more frequently.	The location and friendly-design of the lighting controls affect frequent and efficient operation of lighting systems because they will be operated when light level is low rather than switching lights on upon arrival and then switching them off on departure. Furthermore, local controls can satisfy visual needs of higher number of occupants.
		[75] US	Having access to light dimmers on occupant’s desk results in more dimming adjustment.	The location and friendly-design of the lighting controls affect frequent and efficient operation of lighting systems because they will be operated when light level is low rather than switching lights on upon arrival and then switching them off on departure. Furthermore, local controls can satisfy visual needs of higher number of occupants.
		[91] UK	Lighting controls are not easy to use, occupants choose lighting levels that reduce the need for frequent operation.	The location and friendly-design of the lighting controls affect frequent and efficient operation of lighting systems because they will be operated when light level is low rather than switching lights on upon arrival and then switching them off on departure. Furthermore, local controls can satisfy visual needs of higher number of occupants.
		[87] Switzerland	Lights are switched on and off on arrival/departure as lights are placed close to the door rather than close to occupants’ workplace.	The location and friendly-design of the lighting controls affect frequent and efficient operation of lighting systems because they will be operated when light level is low rather than switching lights on upon arrival and then switching them off on departure. Furthermore, local controls can satisfy visual needs of higher number of occupants.

(continued on next page)
Table 1 (continued)

Group	Study	Country	Outcome of the Study	How outcome can facilitate adaptive behaviours
O	[86]	France	12% of the subjects change electric lighting according to their type of activity.	Number of occupants sharing an open-plan office should be reduced with a good understanding of their activity type to provide them higher levels of control.
	[90]	Salford, UK	Light switch frequency reduces due to high number of occupants in an open office due to social aspect of trying not to upset colleagues.	
Fan/HVAC	C	Pakistan	Proportion using fans and heaters is correlated with T_{in} ($R^2=0.75$) and T_{out} ($R^2=0.8$).	The operation of fans/AC/heating systems is mostly related to climatic conditions in office buildings. However, occupants are less concerned about system’s energy use compared to residents, which suggests designing more energy efficient cooling or heating systems in offices.
	[2]	6 countries (a)	AC application for cooling starts at $T_{out}>25^\circ C$ and for heating stops when $T_{out}>15^\circ C$.	
	[45,52]	More fans are on when $T_{in}>26^\circ C$ in Canada, USA [45] and when T_{in} is 20–25°C in Switzerland [52].		
	[97,98]	6 countries 3	Fans are used when $T_{out}>20^\circ C$, and their use is at Max when $T_{out}>30^\circ C$.	
Personal	C	Pakistan	Clothing worn is correlated with both $T_{in/out}$ ($R^2=0.65$), but it remains constant outside the interval 20°C –30°C as occupants reach limits of acceptable clothing in offices.	The correlation between temperature and clothing level shows how occupants adjust themselves to reach comfort. Therefore, giving occupants the freedom to choose their clothing level without imposing strict uniform policies helps reaching higher levels of comfort without using excessive energy. Similarly, having frequent short breaks in between working hours to change metabolic rate and activity level can help achieving more comfort.
	[100]	UK	Mean Clo values decrease from 0.86Clo to 0.66Clo as mean external temperature increases from 6.7°C to 27.3°C.	
	[102]	Australia, Canada, US	Clothing insulation is correlated with T_{out} ($r=0.45$), T_{in} ($r=0.3$), H_v ($r=0.26$), and has very insignificant correlation with air velocity ($r=0.14$) and metabolic activity ($r=0.12$).	
	[45]	Alameda, CA	Clothing level changes from 0.5–0.6 Clo in the summer to 0.7–0.8 Clo in the winter which is best explained by running mean outdoor temperature.	
	[105]	Australia	Activity level is negatively correlated to indoor temperature as occupants purposely reduce activities as temperature raises.	

(a) UK, Pakistan, Sweden, France, Greece Portugal.

prevent overheating [152], limit outside distractions [152], provide outside views [153] and to darken the room for presentations [151]. Window and doors are operated more when temperature is high [4,149] rather than when indoor air quality is low [154], because air quality is not perceived as temperature due to gradual sensory fatigue or adaptation [155]. Blind’s ease of use [153,156] and window design [153] also affect the operation of blinds. Use of heaters is affected by interior layout; the air flow through the heater battery is reduced to decrease discomfort to the students sitting near the trench [150]. Studying personal behaviours in primary schools in UK shows that the time personal behaviours happens is more related to occupancy patterns and type of activity, but the frequency of personal behaviours is more related to season and outdoor temperature [144]. Students’ clothing level usually follows running mean temperature, sequence of temperature and long term fluctuation in temperature [144]. Students’ clothing level usually follows running mean temperature, sequence of temperature and long term fluctuation in temperature [144]. Students’ clothing level usually follows running mean temperature, sequence of temperature and long term fluctuation in temperature [144].

3.14. Results

The summary of review over Contextual, Occupant and Building related (COB) factors influencing environmental and personal behaviours in different building types is highlighted, and areas that need further development for future studies are discussed.

- To facilitate adaptive behaviours, COB factors should be studied holistically for designing building’s controls or setting up strategies for personal behaviours. Firstly, contextual factors need to be considered to avoid scenarios in which adaptive behaviours are restricted; for example, noisy areas can restrict the operation of windows specifically in educational buildings. Secondly, building related factors need to be examined to measure the degree of personal and environmental behaviours occupants can take based on type and architectural features of the spaces; for example, shared spaces in office buildings can restrict operations on controls. Thirdly, occupant related factors should be studied to discover the effect of personal characteristics of occupants and their occupancy patterns; for example, energy saving concerns of residents can restrict their efficient operation on controls.

- The common factor affecting window operation in buildings is indoor/outdoor temperature and seasonal changes, with 95% of studies in office, 70% of studies in residential and 63% of researches in educational buildings. This study suggests that considering COB factors in window design can secure different aspects of comfort, such as visual, thermal, acoustic and indoor air quality, and can facilitate safe operation of windows without increasing energy use.

- Confirmed by 70% of studies, the most recurring variable on shade operation in office buildings is ‘sun effects and orientation’. Shade operation has not received much attention in residential and educational buildings; however, few studies confirm that blinds are adjusted to control sunlight, heat and to darken the room for presentations in educational buildings. Blinds should be easy to use, accessible and user-friendly for frequent operation to provide more comfort and save energy.

- The most recurring variable on light operation in office buildings is primarily arrival and departure patterns, confirmed by 60% of sampled studies, and then illuminance level. However, not many researches are done in residential and educational buildings. For intermittent operation on lights, local lighting controls can be designed or the number of occupants sharing an office can be reduced, encouraging light operation when light level is low to save energy.

- Studies on doors, fans, air conditioners and heating systems are not as comprehensive as studies on other controls such as windows, blinds and lights. However, most reviewed researches show that their operation is related to indoor/outdoor temperature. Similarly, these controls should be designed and selected based on COB factors and it should be possible to override them, if needed.
Table 2
Factors affecting adaptive behaviours and controls in residential buildings.

Group	Study	Country	Outcome of the study	How facilitating adaptive behaviours	
Windows C	[108]	Wales, UK	Window opening is related to humidity in winter and to mean daily temperature in summer.	Apart from environmental variables, type of room (bedroom, living room or kitchen), security and energy saving concerns of residents should be considered for deciding over window’s size, design and opening to facilitate residents’ efficient window operation. Factors affecting window operation in residential buildings are more varied than those in office buildings because of residents’ more varied occupancy patterns, age range, personal adaptive behaviours, household activities, number of residents in a house, their energy saving and security concerns.	
			[32]	5 countries^a	Windows are operated more at higher temperatures, higher solar radiation, lower precipitation levels and lower wind velocities.
			[109,113,115]	CN, US, KR	Windows are opened more often and stay open longer in summer than in winter (T_{win}).
B	[32]	5 countries^a	Windows in bedrooms are left open for longer periods and the percentage never opened is higher in living rooms. Window design, its frame and how it opens, affects window opening behaviour.		
			[32,108,110]	5 countries^a	Window opening is more common in bedrooms that are the buildings’ main ventilation zones.
O	[32,121,122]	Denmark	Windows are kept closed mainly due to security and energy saving concerns.		
			[32,108,111,114,115,122]	5 countries^a, Korea, US	Windows are operated more in dwellings with smoking behaviour, with more house-keeping, cooking, showering activities and in dwellings that are occupied longer.
			[31,108,111]	UK, US, DE	Windows are operated more in households with larger families.
			[32]	5 countries^a	Window opening is maximum in the morning, stays high in afternoon and decreases gradually until 5 p.m. when another peak happens due to return of work and decreases again during evening.
AC C	[123–126]	Japan	The probability to switch on AC increases when T_{in} overcomes 25–30°C.	Type of room, type of AC and heating systems, residents’ activity and their age range affects temperature set for cooling and heating systems. To provide thermal integrity, the location of these systems should be carefully designed. To save energy and to respond to needs of all residents, energy efficient heating/cooling systems alongside with other controls such as windows should be designed.	
O	[124,126]	China	Turning on AC is frequent before eating and sleeping but tuning it off is more frequent after getting up and when leaving the room.		
			[130]	Japan	AC is not used by half of the respondents due to its harmful effects on health.
Heating/ C	[131]	China	Heating systems are more frequently on when indoor temperature is between 10–14°C.		
thermostats			[134]	US	Different temperatures are chosen for different parts of the houses, with living rooms being about 2°C higher than bedrooms.
			[132]	US	Thermostats are manipulated frequently due to poor thermal integrity to keep T_{in} more tolerable.
			[136–138]	US, UK	Programmable thermostats compared to manual thermostats are less likely to be kept at a constant temperature, with programmable thermostats having higher settings.
O	[99]	Netherlands	Heating systems are on for more hours and ventilation systems are on for less hours in presence of elderly people and children.		
			[139–143]	NL, CN, UK	Higher temperature settings are preferred by older people.
			[133]	Sweden	Residents in detached houses adopt to lower T_{in} than those in apartments to save energy.

^a Belgium, Germany, Switzerland, Netherlands, UK.

- Studies on personal behaviours are not developed compared to studies on environmental behaviours, especially in residential buildings where residents can take different personal behaviours. Changing clothing level as one of the most important personal behaviours is shown to be mostly correlated with outdoor temperature in office buildings and with ‘long term trend in temperature’ or ‘sequence of temperature’ in educational buildings. Changing policies towards personal behaviours within acceptable limits and promoting them can provide higher level of comfort and decrease energy use.

3.2.2.1. Adaptive behaviours and indoor quality
Adaptive Behaviours help occupants feel more comfortable by changing the quality of indoor environment. Several studies have shown that using the means of controls like windows and fans in office buildings can improve air movement and consequently decrease peak operative temperature [8,9,106,162]. Environmental variables in residential buildings also get improved by the operation of window, door [109,119,163] and fans in summer [119], and by heating systems in winter [109]. There is a large difference between ‘basic ventilation’ during un-occupancy with closed windows and doors, and ‘user-influenced ventilation’ during occupancy with operation on windows and doors [130]. Low air exchange rates and consequently high indoor concentrations of air contaminants are found in California homes as 10% of 63 homes did not open their windows/doors at all and only 16% opened their windows with doors being open less than an average of 0.05 m² [121]. In educational buildings, the efficacy of improving indoor air quality by opening windows is significantly influenced by location

3.2. Adaptive behaviours and affected factors (ICE factors)
The second part of this paper, group B studies review the effect of adaptive behaviours on indoor quality, energy consumption and comfort (ICE factors).
Table 3
Factors affecting adaptive behaviours and controls in educational buildings.

B	F	Study	Country	Outcome of the study	How facilitating adaptive behaviours	
C	[149]	Primary schools, UK	Window operation and window intervention (changing window state) is influenced by T_{ins}, H_r, fresh air and CO_2 level. Window closing is influenced by cold draughts and T_{ts}.	Apart from environmental variables, background noise level and security concerns can restrict adaptive behaviours on windows. Appropriate site selection (avoiding noisy areas) and secure operable windows that are designed based on height of children can facilitate adaptive behaviours on windows.		
[34,148]	IT, GR		Window opening and closing can best be predicted by indoor temperature.			
[37]	Primary schools, UK	Windows are closed by teachers and pupils in noisy areas to reduce the effect of noise especially during quiet activities, resulting in overheating and poor air quality.				
B	[150]	Secondary schools/UK	Automatic windows in classroom located on the ground floor are shut due to security reasons and classrooms rely on mechanical ventilations to provide sufficient ventilation.			
C	[151]	USA	Closings blinds is mainly for controlling sunlight (92%) in south facing classrooms and for darkening the classroom for media presentation (81%) in north facing classrooms.	To increase the operation of windows and blinds, dividing windows by light shelves is a good design solution to provide thermal and visual comfort, reduce glare, increase daylight level and provide outside views. Dividing windows into two can also increase natural ventilation. To facilitate efficient operation of blinds, the best orientation for classroom activities and its effect on size and design of windows should be considered. Blinds should be easy to access and use for its frequent operation as it can save lighting energy, reduce glare and provide outside views.		
[152]	UK	Blinds are closed to reduce glare, prevent overheating and limit outside distractions.				
B	[156]	New York, USA	31% of the teachers never operate their blinds, 21% adjust them monthly, 18% adjust on a weekly basis, 17% daily and 13% selected other. Not operating blinds is because blinds are difficult to use or broken after years of use.	To promote intermittent light switching in schools, blinds should be accessible and easy to use to provide as much natural light as possible in the classroom and to block unwanted sunlight and heat.		
[153]	Studio/US	The major factor for not operating blinds is their hard operation.				
[153]	Open-plan studio/US	Blinds are closed less by occupants whose workstations are located within the light shelf zone than those who are in the area with conventional windows. Occupants raise shades more often when they are given full control over the view part of subdivided windows.				
Lights	C	[88]	USA	In intermittently spaces like schools switching activity occurs throughout the day, with a decline in use of artificial light as daylight level increases. The probability of switching on artificial light is correlated to minimum working plane illuminance; illuminance levels less than 100lx lead to significant increase of the switch on probability.		
Personal	C	[157]	England, UK	Children's clothing and their behaviour usually follows running mean temperature or the sequence of temperatures than actual temperature.	Students should be given the freedom to take personal behaviours, such as drinking or changing the combination of their school uniform (socks/shorts, skirts/trousers, trousers/shorts, with or without jumper/cardigan). It is important that students, especially primary and secondary school children, be advised and reminded on personal behaviours, because they sometimes do not think of it or forget it. When temperature causes discomfort, type of activity in the classroom can be changed shortly to provide higher levels of comfort.	
behaviours	[158]	UK	Clothing changes little with short term variation of temperature but more with long term fluctuation in temperature. Clothing weight depends on the room temperature; optimum temperature for students with winter clothing occurs at 18.5 °C for students with heavy clothing occurs at 21.5 °C and for students with light clothing occurs at 24.5 °C.			
[159]	five local primary schools/UK	The number of clothes follows long-term trend of temperature and there is a little change in clothes during the day as students do not think of changing or cannot make any adjustment to the combination.				
O	[161]	UK	Open activities are preferred within activities’ limitation as temperature increases more.			

of the school, climatic conditions, occupants' behaviour towards controls, and classroom's and windows' design [164]. Indoor air quality in primary schools with manual operation of windows is significant, especially during heating seasons [148,165–168], when most of windows are closed to save energy [154]. Therefore, it is important to facilitate adaptive behaviours towards windows during all seasons to provide indoor quality, especially during heating seasons when window operation is lower [169,169]. Studies show that night ventilation, pre-ventilation and cross-ventilation can improve indoor air quality [150,170] and not practising efficient adaptive behaviours can result in poor indoor quality [121,160].

3.2.2. Adaptive behaviours and occupants’ comfort

From the biological perspective, if opportunity is provided human being interacts with the environment to secure and restore their comfort [171]. According to the adaptive approach by Nicol and Humphreys (2002), “if a change occurs such as to produce discomfort, people react in ways which tend to restore their comfort” [11]. Table 5 shows how adaptive behaviours affect comfort in office, residential and educational buildings. Generally, higher levels of comfort and satisfaction are observed when type and level of controls are considered to provide efficient, easy and accessible operations on occupants [20,52,68,41,78,89,172–177] and when occupants can take personal adaptive behaviours [144,157,178]. Thermal and visual comfort are significantly affected by type of windows and shades and their efficient operation. Size and type of windows are key factors for providing thermal comfort for occupants, connecting inside to the outside and maintaining natural ventilation [4]. Occupants usually control shades to improve visual comfort than thermal comfort [67], because visual stimuli like
Table 4
Effect of adaptive behaviours on comfort in office, residential and educational buildings.

Study	Country	Outcome of the study	How facilitating efficient adaptive behaviours
Office	[20,52] CH, US	Occupants’ comfort temperature increases as their control over the environment increases.	Higher level of visual comfort, thermal comfort, indoor air quality and satisfaction is reported by having more access to user-friendly and easy to use controls.
[172] Finland	Low comfort levels are due to low level of control over room temperature, few adaptive opportunities and difficult to use thermostats.	Mode and type of controls are significant factors to achieve comfort and satisfaction among occupants. Automatic controls should be easy to use and occupants should be able to override them if needed.	
[178] France	Thermal comfort is affected by operations on set point temperature, clothing insulation, and blinds.		
[19] US, Canada,	Occupants with and without access to windows show average air quality satisfaction vote of 0.48 and 0.14, respectively. Occupants with access to thermostats show improvement in satisfaction of 0.93.		
Finland	The highest level of comfort is observed in an office with user-friendly windows and the lowest degree in an office with high glazing-to-wall area ratio.		
[55] UK	Satisfaction is higher among occupants who know how to operate automatic blinds.		
[181] USA	Higher levels of visual comfort can be provided by providing outside views.		
[58,69,70] US, JP, FR	Occupant’s state of comfort is influenced by controls’ availability, mode and level of control, dissatisfaction and stress is caused by occupants’ inability to access controls, resulting in light-related health problems such as migraine.		
[68,175] NL, CA	Occupants’ satisfaction over controls is affected by mode of controls, with 85%, 78% and 57% of occupants finding manual, semi-auto and auto mode of lighting comfortable, respectively.		
[40] Washington	Discomfort is reported when automatic systems make sudden and unexpected changes or when occupants are negatively affected by behaviours of others in their environment.		
[89] California, UK	Occupants’ perception of comfort is improved by opening windows, and is affected by CO2 level.		
[174] Belgium	Discomfort is reported due to automatic blinds that operate at wrong time and create conflicting situations by not allowing individual control for each station, resulting in system deactivation.		
[78] UK	Discomfort is reported due to automatic blinds that operate at wrong time and create conflicting situations by not allowing individual control for each station, resulting in system deactivation.		
[176] UK	Occupants prefer to choose their own lighting environment rather than accepting even the ‘better’ lighting level chosen for them.		
[173] France	Most occupants prefer automatic lighting systems but appreciate having control over the system and being able to switch lights on and off.		
[91,177] UK	Occupants are more dissatisfied where many light fixtures are grouped together and automatic controls are difficult to use, resulting in systems being deactivated.		
Residential	Germany	Occupants’ perception of comfort is improved by opening windows, and is affected by CO2 level.	Providing more controls for residents can provide higher levels of comfort and make them more tolerable to uncomfortable situations.
[116] India	Number of uncomfortable residents decreases from 60% to 7% by taking more adaptive behaviours.		
[5] Indonesia	Residents are more tolerant of less comfortable conditions when they can adjust controls.		
Educational	England	Students feel more comfortable if they can change clothing level and metabolic rate (posture and activity). Sometimes constraints on clothing can cause 4 °C departure from the optimum temperature.	Students can reach higher levels of comfort by a short change in type of activity under teacher’s permission, or by changing clothing level within acceptable limits in times of discomfort.
[182] Canada	Satisfaction is higher when students have access to lighting controls. The more important daylight is to them, the more they want to control it.		

glare provokes a more immediate behaviour change than thermal or olfactory stimuli [179]. However, Ne’eman et al. [180] shows that office occupants rate controls over visual comfort among the least important ones and controls over thermal comfort as the most important ones [180]. Studying the effect of personal behaviours on comfort has shown that 27% of students in primary schools in UK could improve their thermal comfort vote by putting on or off their jumper or cardigan [144].

3.2.3. Adaptive behaviours and energy consumption
Calculating and simulating building energy performance without considering occupant behaviour results in error [186]. Careless behaviour can add one-third to the energy consumption of the building [187] while appropriate behaviour can save one-third [188]. Sonderegger [189] shows that 71% of the unexplained variation for space heating in 205 townhouses in Twin Rivers is caused by occupant’s energy consumption patterns [189]. Therefore, to address the issue of energy consumption in housing, residents and their behaviours should be considered in studies [189]. Bourgeois et al. [190] show that active occupants that rely on daylight than the ones who constantly use artificial light reduce overall expenditure on energy by more than 40% [190]. Similarly, Hong and Lin [191] employed building simulations to show that energy saving occupants consume up to 50% less energy while occupants with
wasteful lifestyle consume up to 90% more energy than standard occupants [191]. The study by Masoso and Grobler [192] in six commercial buildings illustrates that more energy is used during non-working hours (56%) than working hours (44%), due to occupants’ behaviour of leaving air conditioning systems, equipment and lights on at the end of day [192]. Another study in Canada shows that 66% increase in lighting energy and 33% increase in total energy are caused by inefficient blind use [193]. Even occupants’ perception toward environmental controls is found to affect energy savings. Barlow and Fiala show that positive impression of the occupants towards opening windows, controlling shading and use of localized switching affects energy consumption [100]. Studying the effect of personal behaviours on energy consumption, Newsham suggests that as clothing flexibility increases, occupants adapt to higher cooling set points and lower heating set points so they save energy without affecting their state of comfort [194]. Generally, total energy saving is increased by allowing user control [176], easy to use controls [41] and efficient design of lights, shadings and windows that provide more daylight [8,32,59,60,62,41,153,178,183,184]. Table 5 shows how adaptive behaviours affect energy consumption across different building usage. The most recurring factors affecting energy consumption in all building use include type and design of controls, occupancy patterns and set point temperatures.

Table 5
Effect of adaptive behaviours on energy consumption in office, residential and educational buildings.

Study	Country	Outcome of the study	How facilitating efficient adaptive behaviours
Office			
[176]	UK	Energy can be saved by installations that allow user control without affecting negatively occupant’s perception of visual environment.	Energy can be saved when occupants have a positive perception over controls and have an ability to operate them easily. Therefore, type and design of controls is significant for energy consumption. Appropriate design of windows and blinds with effective operation, can control the energy needed to maintain thermal and visual comfort by inviting more daylight and controlling solar radiation. Lighting energy can also be reduced by easy-to-access, easy-to use dimmable electric lights and well-programmed occupancy sensors. Mixed-mode ventilation than mechanical ventilation can provide higher levels of comfort and save more energy.
[178]	France	Total energy demand is mostly affected by operations on set point temperature, blinds and lights.	
[8]	UK	Annual heating energy demand can be reduced by adding thermal mass to shading.	
[91]	UK	Where controls are complex to use occupants choose lighting levels that reduce the need for using controls, resulting in increased energy consumption.	
[41]	Indiana, USA	Lighting energy can be decreased by easy-to-access dimmable electric lights and motorized roller shades as daylight utilization is increased.	
[60]	UK	Increased use of electric light is due to over glazed building as blinds are down most of the time.	
[59]	Wisconsin, USA	Energy saving is reduced by 30 percent by relying on occupancy sensors for switching lights off than switching them off immediately after leaving office.	
[62]	Austria	Electrical energy use for lighting can be reduced to 66–71% by using occupancy sensors and day-light-responsive dimming devices.	
[183]	USA	Substantial HVAC energy savings can be provided by using mixed-mode ventilation for core zones.	
Residential			
[184]	Spain	Peaks of energy consumption occur in the morning and at night as occupancy rates are higher and there is no or little sunlight. The peaks can be lowered by using LED technology; replacing 50% and 80% of lamps with LED technology results in 40% and 65% energy reduction, respectively.	
[32]	Footnote 4	Heating demand can be quantified by the effect of window use in uninsulated (5 to 13%), moderately insulated (15 to 31%) and well insulated dwellings (25 to 50%). Heating demand is mostly affected by occupant behaviour toward windows in well insulated buildings (25 to 50%).	
[185]	Greece	The differences towards energy consumption for heating space can be explained by physiological, personal, demographic and economic variables like respondents’ age, family size, dwelling size, occupancy patterns and income.	
[99]	Netherlands	Energy consumption is more affected by the number of hours that the heating system is in operation than by temperature setting.	
Educational			
[153]	An open plan studio, US	More energy can be saved and better daylight conditions can be provided by using a subdivided window than by using unified window design. Approximately, 2 hours less electric light is used per day by using light shelves.	
[152]	UK	Energy consumption is affected by closing blinds as occupants keep artificial light on most of the time to provide adequate amount of light.	
[170]	School in Germany	Energy use depends on the room temperature set-point and occupancy; energy costs for cooling for the next day can be reduced by night ventilation.	Subdivided windows can secure different aspects of comfort, visual, thermal and air quality, and can save energy due to providing more natural light. Night ventilation can reduce cooling costs next day, therefore, designing secure windows for night ventilation is important (Providing windows in different sizes and designs).

3.2.4. Results

Summary of factors that are influenced by adaptive behaviours including indoor environment, comfort and energy consumption (ICE factors) are listed in the following.

- To provide indoor quality, it is important to facilitate adaptive behaviours towards controls in all seasons, especially during heating seasons when windows are less in operation. The efficacy of improving indoor quality is significantly influenced by design of controls and occupants’ behaviour towards controls, therefore, design of controls should provide opportunities for various types of ventilation (e.g. night ventilation, pre-ventilation and cross-ventilation).
- Higher levels of comfort and satisfaction are reported when more personal and environmental adaptive behaviours are provided (i.e. higher level of control). Therefore, individual controls or controls shared by fewer number of people in the space can increase comfort level. Comfort is increased when building’s controls are easy to use, accessible and can be overridden,
if needed. This also saves energy as controls are operated more frequently and efficiently.

- Energy consumption can be explained by environmental variables, building characteristics, efficiency of the systems and occupants’ behaviour. Designing a suitable control system is the most important factor that enables occupants to achieve a higher level of comfort and save energy in all building use. For example, subdivided windows allow occupants to pick and choose which parts of windows need to be opened or closed to maintain thermal comfort, visual comfort and air quality. In fact, instead of opening a whole widow to have fresh air during winter and lose large amounts of heat, only one part of it can be opened for natural ventilation when it is needed.

- Mode, type and design of building’s controls are the most recurring factors affecting adaptive behaviours and consequently indoor quality, energy consumption and comfort.

- The importance of facilitating adaptive behaviours can be explained by its effect on indoor quality, comfort level and energy consumption (ICE factors) and its role on achieving a balance between ICE factors. Better indoor quality, more energy saving and high levels of perceived comfort make occupant's perception toward adaptive behaviours more positive.

- Adaptive behaviours can create balance between ICE factors to design more comfortable spaces for occupants without increasing energy demand.

As a result, besides COB factors that should be studied to design/set up adaptive behaviours, awareness of ICE factors influences occupant’s perception toward adaptive behaviours. In fact, occupant’s positive impression of adaptive behaviours makes them practise adaptive behaviours more effectively.

4. Discussion

This study has reviewed factors relating to adaptive behaviours with the aim of developing a design framework for facilitating occupant’s adaptive behaviour. Developed framework, derived from overviewing selected studies, consists of three stages:

The first stage is to examine the influence of context, occupant and building related factors (COB factors) on adaptive behaviours and study how adaptive behaviours impact on indoor quality, comfort and energy (ICE factors), with relation to each other. This study shows scenarios in which adaptive behaviours happen, change in frequency and time, and are restricted/facilitated with relation to COB factors. On the other hand, adaptive behaviours by affecting ICE factors and improving built environment can encourage occupants in adaptive behaviours. Adaptive behaviour can also be implemented in design process to achieve a balance between ICE factors. Therefore, ICE factors should also be explored to facilitate suitable adaptive behaviours.

The second stage is to design user friendly and efficient buildings’ controls for environmental behaviours and set up strategies
for practising suitable personal adaptive behaviours and find a balance between these two. Designing controls and setting up strategies for personal behaviours should be based on findings from the first stage to find out how adaptive behaviours turn disconcerting conditions to comforting conditions. Balance between personal and environmental behaviours can be achieved by ‘doing more personal behaviours when environmental behaviours are restricted’ and by ‘doing more environmental behaviours when personal behaviours are limited’.

The third stage of the framework is running Post Occupancy Evaluation (POE) to control the performance of proposed adaptive behaviour. Providing opportunities for adaptive behaviours does not guarantee occupant’s efficient adaptive behaviour. POE is required to find out how occupants interact with controls, in what sequence occupants take adaptive behaviours, and to predict how behaviours affect ICE factors. Results of post-occupancy evaluations obtain influential factors on adaptive behaviours, which can again be used in the first stage of framework to design future buildings more efficiently. Post-occupancy evaluations can also educate occupants to interact more efficiently with controls and to take appropriate personal adaptive behaviours. Based on above three stages, a design framework is advised to be considered as part of design process for providing efficient adaptive behaviours, which can be found in Fig 3.

Future studies should focus more on the performance of adaptive behaviours in educational buildings, especially among children, while existing studies are mainly focused on adults in residential and office buildings. Research on adaptive behaviours towards integrated aspects of comfort needs to be expanded as well since different thermal, visual, air quality or acoustic stimuli influence adaptive behaviours differently. Furthermore, the sequence of taking adaptive behaviours can be different in different building use [57, 195] and its sequence can change energy consumption of the buildings [117]; therefore it is also important to find out in what sequence occupants adjust themselves or the environment to reach comfort.

5. Conclusion

This study has reviewed researches on adaptive behaviour of occupants in different building use with the aim of developing a framework that is advised to be considered in design process. The first part of the paper studies the influence of three factors of Context, Occupant and Building (COB factors) on both environmental and personal adaptive behaviours to discover the occurrence and change of the adaptive behaviours. The second part reviews studies on the effect of adaptive behaviours on indoor environmental quality, Comfort and Energy consumption (ICE factors) to find out how the relation between these factors can be balanced by adaptive behaviours and how occupant’s perception of behaviours can be improved. Based on this review, the authors introduce a framework that urge building designers to consider all related factors holistically to facilitate occupants’ behaviour. Therefore, designers should evaluate how adaptive behaviour is influenced by COB factors and impact on ICE factors at the first stage of this framework. According to the factors studied in the first stage, efficient and user-friendly controls are designed for environmental behaviours and strategies are set up for practising personal behaviours in the second stage. Personal and environmental adaptive behaviours complement each other; therefore, one can be exercised more when the other one is restricted. The performance and efficiency of adaptive behaviours are controlled through Post Occupancy Evaluation (POE) in the third stage. This framework can be used as a part of design process by building designers to facilitate adaptive behaviours and create a positive influence on built environment.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi: 10.1016/j.enbuild.2018.09.011.

References

[1] J. Heerwagen, R.C. Diamond. Adaptations and coping: occupant response to discomfort in energy efficient buildings., in: Proceedings of ACEE Summer School on Energy Efficiency in Buildings, 1992, pp. 83–90.
[2] JF. Nicol, M.A. Humphreys, B. Olesen. A stochastic approach to thermal comfort - occupant behavior and energy use in buildings, ASHRAE Trans 110 (2004) 554–568 PART I.
[3] T. Maier, M. Krizacek, J. Tejchman. Comparison of physical performances of the ventilation systems in low-energy residential houses, Energy Build. 41 (3) (2009) 337–353.
[4] V. Fabi, R.V. Andersen, S. Corgnati, B.W. Olesen. Occupant’s window opening behaviour: a literature review of factors influencing occupant behaviour and models, Build. Environ. 58 (2012) 188–198.
[5] H. Feriadi, N.H. Wong, S. Roaf. Thermal comfort for naturally ventilated houses in Indonesia, Energy Build. 36 (7) (2004) 614–626.
[6] F. Nicol, M. Humphreys, S. Roaf. Adaptive thermal comfort: principles and practice, Routledge, 2008.
[7] H.B. Gunay, W. O’Brien, I. Beausoleil-Morrison, A critical review of observation studies, modeling, and simulation of adaptive occupant behaviors in offices, Build. Environ. 70 (2013) 31–47.
[8] H.B. Rijal, P. Tuohey, M.A. Humphreys, J.F. Nicol, A. Samuel, J. Clarke. Using results from field surveys to predict the effect of open windows on thermal comfort and energy use in buildings, Energy Build. 39 (7) (2007) 823–836.
[9] I.A. Raja, J.F. Nicol, K.J. McCartney, M.A. Humphreys. Thermal comfort: use of controls in naturally ventilated buildings, Energy Build. 33 (3) (2001) 235–244.
[10] S. Herkel, U. Knapp, J. Pfaffert, Towards a model of user behaviour regarding the manual control of windows in office buildings, Build. Environ. 43 (4) (2008) 588–600.
[11] J.F. Nicol, M.A. Humphreys. Adaptive thermal comfort and sustainable thermal standards for buildings, Energy Build. 34 (6) (2002) 563–572.
[12] A. Leaman, B. Bordass. Productivity in buildings: the ‘killer’ variables, Build. Res. Inf. 27 (1) (1999) 4–10.
[13] M. Frontczak, P. Wargocki. Literature survey on how different factors influence human comfort in indoor environments, Build. Environ. 46 (4) (2011) 1047–1070.
[14] A. Leaman, B. Bordass, Are users more tolerant of ‘green’ buildings? Build. Res. Inf. 35 (6) (2007) 662–673.
[15] F. Nicol, S. Roaf. Post-occupancy evaluation and field studies of thermal comfort, Build. Res. Inf. 33 (4) (2005) 338–346.
[16] M.A. Humphreys. Quantifying occupant comfort: are combined indices of the indoor environment practicable? Build. Res. Inf. 33 (4) (2005) 317–325.
[17] N. Baker, M. Standeven. A Behavioural Approach To Thermal Comfort Assessment, Int. J. Sol. Energy 19 (1–3) (1997) 21–35.
[18] C.-A. Roulet, Fl. Flourentzou, F. Foradini, P. Bluyssen, C. Cox, C. Axilwood, Multicriteria analysis of health, comfort and energy efficiency in buildings, Build. Res. Inf. 34 (5) (2006) 475–482.
[19] C. Zaghari, S. Abbaszadeh, M.A. Martin, L. Zargari, E. Arens, Air quality and thermal comfort in office buildings: results of a large indoor environmental quality survey, Proc. Heal. Build. III (2006) 393–397.
[20] G.S. Brager, G. Palmara, R. de Dear. Operable windows, personal control, and occupant comfort, ASHRAE Trans. 119 (2) (2004) 17–35.
[21] M. Paciuk, The role of personal control of the environment in thermal comfort and satisfaction at the workplace, in: Proceedings of the 21st Annual Conference Environment Design Research Association, 1990, pp. 303–312.
[22] J. Tofrum, R.V. Andersen, K.L. Jensen, Occupant performance and building energy consumption with different philosophies of determining acceptable thermal conditions, Build. Environ. 44 (10) (2009) 2009–2016.
[23] W. O’Brien, H.B. Gunay. The contextual factors contributing to occupants’ adaptive comfort behaviors in offices - a review and proposed modeling framework, Build. Environ. 77 (2014) 77–88.
[24] M.A. Humphreys, J.F. Nicol, I. Raja, F.J. Nicol, L.A. Raja, Field studies of indoor thermal comfort and the progress of the adaptive approach, Adv. Build. Energy Res. 1 (2007) 55–88 May 2013.
[25] M. Jia, R.S. Srinivasan, A.A. Raheem, From occupancy to occupant behavior: an analytical survey of data acquisition technologies, modeling methodologies and simulation coupling mechanisms for building energy efficiency, Renew. Sustain. Energy Rev. 68 (2017) 525–540.
[26] P. De Wilde, The gap between predicted and measured energy performance of buildings: A framework for investigation, Autom. Constr. 41 (2014) 40–49.
[27] A.C. Meneses, A. Cripps, O. Bouclaghem, R. Buswell. Predicted vs. actual energy performance of non-domestic buildings: using post-occupancy evaluation data to reduce the performance gap, Appl. Energy 97 (2012) 355–364.
[28] G. Branco, B. Lachal, P. Callinelli, W. Weber. Predicted versus observed heat consumption of a low energy multifamily complex in Switzerland based on long-term experimental data, Energy Build. 36 (6) (2004) 543–555.
[29] F. Jia, H. Sun, L. Koh, Global solar photovoltaic industry: an overview and national competitiveness of Taiwan, J. Clean. Prod. 126 (2016) 550–562.
A. Montazami, M. Gaterell, F. Nicol, A comprehensive review of environmental design in UK schools: history, conflicts and solutions, Renew. Sustain. Energy Rev. 46 (2015) 249–264 July 2016.

S. Zomer, G. C. Falcone, L. Pagliaro, Multi-objective optimization of a nearly zero-energy building based on thermal and visual comfort minimization using a non-dominated sorting genetic algorithm (NSGA-II), Energy Build. 104 (2015) 378–394.

T. Durbel, "Inhabitants' Behaviour with Respect to Ventilation - A Summary Report of IEA Annex VIII, IEA* 1988.

L. Vanhoutryhem, G. C. Falcone, J. Skarning, C.A. Hvid, S. Svendsen, Impact of FACT, ADE window design on energy, daylighting and thermal comfort in offices, buildings, Energy Build. 47 (2015) 149–158.

F. Stazi, F. Naspi, M. D’Orazio, Modelling window status in school classrooms. Results from a case study in Italy, Build. Environ. 111 (2017) 24–32.

S.S. Korsavi, Z.S. Zomerodian, M. Tahsildoorost, Visual comfort assessment of daylight and sunshade areas: a longitudinal field survey in classrooms in Kishan, Iran, Energy Build. 128 (2016).

Z.S. Zomerodian, S.S. Korsavi, M. Tahsildoorost, The effect of window configuration on daylight performance in classrooms: a field and simulation study, Int. J. Archit. Eng. Urban Plan 26 (1) (2016) 15–24.

A. Montazami, M. Wilson, F. Nicol, Aircraft noise, overheating and poor air quality in classrooms in London primary schools, Build. Environ. 52 (2012) 234–241.

C.F. Schacht, K. Voss, Monitoring manual control of electric lighting and blinds, Light. Res. Technol. 35 (3) (2003) 243–258.

V. Ikarajarit, Balancing Comfort: Occupants’ Control of Window Blinds in Private Offices, University of California, Berkeley, CA, 2005.

J. van den Heede, J. van Den Wijngaerden, Understanding controls, behav-iors and satisfaction in the daylight perimeter office: a daylight design case study, J. Inter. Des. 37 (1) (2017) 12–34.

S.A. Sadeghi, P. Karava, I. Konstantzos, A. Tsimplékios, Occupant interactions with solar shading and ventilation systems using different control interfaces: a pilot field study, Build. Environ. 97 (2016) 177–195.

S.S. Korsavi, Z.S. Zomerodian, M. Tahsildoorost, Visual comfort assessment of daylight and sunshade areas: a longitudinal field survey in classrooms in Kishan, Iran, Energy Build. 128 (2016) 305–318.

P.R. Warren, L.M. Parkins, Window-opening behaviour in office buildings, Build. Serv. Eng. Res. Technol. 5 (3) (1984) 89–101.

R. Fritzsch, A. Kohler, M. Nygard-Ferguson, J-L. Scartezzini, A stochastic model for predicting ventilation, Build. Environ. 25 (2) (1990) 173–181.

A. Honnerkeri, et al., Use of adaptive actions and thermal comfort in a naturally ventilated office, IndoorAir (2014) 1–8.

P. Barrett, Occupants influencing occupants’ window opening behaviour in a naturally ventilated office building, Build. Environ. 50 (2012) 125–134.

S. Wei, R. Buswell, D. Lovelady, Factors affecting ‘end-of-day’ window position in a non-conditioned office building, Energy Build. 42 (2010) 2613–2621.

S. D’Oca, T. Hong, A data-mining approach to discover patterns of window opening and closing behavior in offices, Build. Environ. 82 (2014) 726–739.

N. Li, J. Li, R. Fan, H. Jia, Probability of occupant operation of windows during transition seasons in office buildings, Renew. Energy 73 (2015) 84–91.

V. Ikarajarit, G. Palagia, Indoor climatic influences on the operation of win-dows in a naturally ventilated building, in: Proceedings of the 21st IEA Conference Eindhoven,, 2004, pp. 19–22. September.

G.C. Yu, K. Steemers, User behaviour regarding window control in offices during summer and winter, in: Proceedings of the CIBSAT International Conference, 2007.

F. Haldi, D. Robinson, On the behaviour and adaptation of office occupants, Build. Environ. 43 (12) (2008) 2163–2176.

H.B. Jun, et al., Development of adaptive algorithms for the operation of win-dows, fans and doors, to predict thermal comfort and energy Use in Pakistani buildings, ASHRAE Trans. 114 (2008) 555–573.

G.C. Yu, K. Steemers, Time-dependent occupant behaviour models of window control in summer, Build. Environ. 43 (9) (2008) 1471–1482.

G.C. Yu, K. Steemers, N. Baker, Natural ventilation in practice: linking facade design, thermal performance, occupant perception and control, Build. Res. Inf. 36 (6) (2008) 668–682.

F. Haldi, D. Robinson, Interactions with window openings by office occupants, Build. Environ. 44 (12) (2009) 2378–2395.

P. Plattforn, H. Serkel, Statistical simulation of user behaviour in low-energy office buildings, Sol. Energy 81 (5) (2007) 676–682.

A.J. Rubín, B.L. Collins, R.L. Tilbott, Window blinds as a potential energy saver—a case study, NBS Build. Sci. Ser. 112 (1978) 89.

S. Pigg, M. Elders, J. Reed, Behavioral aspects of lighting and occupancy sens-sors in private offices—a case study of a university office building, in: Proceed-ings of ACEEE Summer Study, 1996, pp. 161–170.

M. Foster, T. Oresczyn, Occupant control of passive systems: the use of Venetian blinds, Build. Environ. 36 (2) (2001) 145–155.

V. Ikarajarit, Monitoring and modelling of manually-controlled Venetian blinds in private offices: a pilot study, J. Build. Perform. Simul. 1 (2) (2008) 75–88.

M. Mahdavi, A. Mohammad, E. Kabie, L. Lambeva, Occupants’ operation of lighting and shading systems in office buildings, J. Build. Perform. Simul. 1 (2008) 57–65.

Y. Zhang, P. Barrett, Factors influencing occupants’ blind-control behaviour in a naturally ventilated office building, Build. Environ. 54 (2012) 137–147.
China's hot summer – Cold winter climate region, Build. Environ. 101 (2016) 9–18.

J.S. Wehl, P.M. Gladhart, Occupant behavior and successful energy conservation findings and implications of behavioral monitoring, in: Proceedings of the ACEEE Summer Study on Energy Efficiency in Buildings, 2 (1990), pp. 171–180.

A.L. Lindén, A. Carlsson-Kanyama, B. Eriksson, Efficient and ineffectual aspects of residential energy behaviour, what are the policy instruments for change? Energy Policy 34 (4) (2006) 1918–1927.

C.C. Conner, L. Russ, End-use load and consumer assessment program: thermostat related behavior and thermal experiences based on measured data in residences, Pacific Northwest Labor. (1990).

T. Peffer, M. Pritoni, A. Meier, C. Aragon, D. Perry, How do thermostats in homes: a review, Build. Environ. 46 (12) (2011) 2529–2541.

M.J. Nevius, S. Pigg, Programmable thermostats that go berserk? Taking a socio-political perspective on smart heating systems, Proc. ACEEE Summer Study Energy Efficiency Build. 8 (2000) 8.233–8.244.

C. Haid, J. Peterson, Programmable thermostats installed into residential buildings: predicting energy saving using occupant behavior and simulation, J. Build. Eng. 4 (2018) 1–10.

M. Shipworth, S.K. Firth, M.J. Gentry, A.J. Wright, D.T. Shipworth, K.J. Lomas, Central heating thermostat settings and timing: building demographics, Build. Res. Inf. 38 (1) (2010) 59–69.

R. Andersen, in: Occupant Behaviour with Regard to Control of the Indoor Environment, Department of Civil Engineering, Tech. Univ. …, 2009, p. 119.

T. Kane, S.K. Firth, D. Allison, K.N. Irvine, K.J. Lomas, Does the age of the residents influence occupant heating practice in UK domestic buildings, East Midlands Universities Association 2010 Conference – Perspectives in Society, Health, Culture, and the Environment, East Midlands Universities Association, 2010.

O. Guerra Santin, L. Itard, H. Visscher, The effect of occupancy and building characteristics on energy use for space and water heating in Dutch residential stock, Build. Energy 41 (11) (2009) 1223–1232.

T. Oresczyzn, S.H. Dong, I. Ridley, F. Wilkinson, Determinants of winter indoor temperatures in low income households in England, Build. Energy 38 (3) (2006) 245–252.

B. Xu, L. Fu, H. Di, Field investigation on consumer behavior and hydraulic performance of a district heating system in Tianjin, China, Build. Energy. 44 (2) (2009) 249–259.

S.S. Korsavi, A. Montazami, Adaptive behaviours and occupancy patterns in UK primary schools: impacts on comfort and indoor quality, in: Proceedings of the 11th International Conference on Indoor Air Quality and Climate, 2011.

M. Schwerik, F. Haldi, M. Shukuya, D. Robinson, Verification of stochastic models of window opening behaviour for residential buildings, J. Build. Perform. Simul. 5 (2012) 55–74 January 2015.

L.A. Wallace, S.J. Emmerich, C. Howard-Reed, Continuous measurements of air change rates in an occupied house for 1 year: the effect of temperature, wind, fans, and windows, J. Expo. Anal. Environ. Epidemiol. 12 (4) (2002) 296–306.

R. Andersen, V. Fabi, J. Toftum, S.P. Gornati, B.W. Olesen, Window opening behaviour modelled from measurements in Danish dwellings, Build. Environ. 45 (2010) 1501–1507.

F.J. Offermann, J. Robertson, D. Springer, B. Tan, W. Oosen, Window usage, ventilation, and formaldehyde concentrations in New California homes: Summer field sessions, in: Proceedings of the IAQ Conference, 2008.

P.N. Price, M.H. Sherman, Ventilation Behavior and Household Characteristics in New California Homes, Lawrence Berkeley National Lab., 2006.

C. Peng, D. Yan, R. Wu, C. Wang, X. Zhou, Y. Jiang, Quantitative description and simulation of human behavior in residential buildings, Build. Simul. 5 (2013) 85–94.

X. Ren, D. Yan, C. Wang, Air-conditioning usage conditional probability model for residential buildings, Build. Energy. 81 (2014) 172–182.

C. Cae, C. Chun, Research on seasonal indoor thermal environment and residents’ control behavior of cooling and heating systems in Korea, Build. Environ. 44 (11) (2009) 2300–2307.

H. Habaza, R. Yasse, Y. Shimoda, Survey on the occupant behavior relating to windows and air conditioner operation in the residential buildings, Proceedings of the 13th Conference of International Building Performance Simulation Association, 2013, pp. 2007–2013.

W. Kempton, D. Feuermann, A.E. McCarity, ‘I always turn it on super’: user decisions about when and how to operate room air conditioners, Energy Build. 18 (3–4) (1992) 177–191.

J. Tanimoto, A. Hagishima, State transition probability for the Markov Model dealing with on/off cooling schedule in dwellings, Energy Build. 37 (3) (2005) 319–323.

M. Schweiker, M. Shukuya, Comparison of theoretical and statistical models of air-conditioning-unit usage behaviour in a residential setting under Japanese climatic conditions, Build. Environ. 44 (10) (2009) 2137–2149.

E. Iwasha, H. Akaiwa, The effects of human behavior on natural ventilation rate and indoor air environment in summer—a field study in southern Japan., Energy Build. 25 (3) (1997) 195–205.

B. Lin, Z. Wang, Y. Liu, Y. Zhu, Q. Quyang, Investigation of winter indoor environmental and heating demand of urban residential buildings in
[161] L.A. Raja, F. Nicol, A technique for recording and analysis of postural changes associated with thermal comfort [Technical note], Appl. Ergon. 28 (3) (1997) 221–225.

[162] J.U. Pfafferott, S. Herkel, D.E. Kaltz, A. Zeuscher, Comparison of low-energy office buildings in summer using different thermal comfort criteria, Energy Build. 39 (7) (2007) 750–757.

[163] C. Howard-Reed, L.A. Wallace, W.R. Ott, The effect of opening windows on air change rates in two homes, J. Air Waste Manage. Assoc. 52 (2) (2002) 147–159.

[164] A. Heebell, F. Wargocki, J. Toftum, Window and door opening behavior, carbon dioxide concentration, temperature, and energy use during the heating season in classrooms with different ventilation retrofits—ASHRAE RP624, Sci. Technol. Built Environ. 4731 (2018) 1–12.

[165] J. Gao, P. Wargocki, Y. Wang, Ventilation system type, classroom environmental quality and pupils’ perceptions and symptoms, Build. Environ. 75 (2014) 46–57.

[166] D.G. Shendell, R. Prill, W.J. Fisk, M.G. Apte, D. Blake, D. Faulkner, Associations between classroom CO2 concentrations and student attendance in Washington and Idaho, Indoor Air 14 (5) (2004) 335–341.

[167] I. Stabile, M. Dell’Isola, A. Fraitoli, A. Massimo, A. Russi, Effect of natural ventilation and manual airing on indoor air quality in naturally ventilated Italian classrooms, Build. Environ. 98 (2016) 180–189.

[168] J. Toftum, B.U. Kjeldsen, P. Wargocki, H.R. Mené, E.M.N. Hansen, G. Clausen, Association between classroom ventilation mode and learning outcome in Danish schools, Build. Environ. 92 (2015) 494–503.

[169] M. Griffiths, M. Eftekhari, Control of CO2in a naturally ventilated classroom, Energy Build. 40 (4) (2008) 556–560.

[170] Y. Wang, J. Kuckelkorn, F.Y. Zhao, D. Liu, A. Kirschbaum, J.L. Zhang, Evaluation on classroom thermal comfort and energy performance of passive school building by optimizing HVAC control systems, Build. Environ. 89 (2015).

[171] J.F. Nicol, M. Humphreys, Understanding the adaptive approach to thermal comfort, ASHRAE transactions 104 (1998) 991–1004.

[172] S. Kajalainen, Thermal comfort and use of thermostats in Finnish homes and offices, Build. Environ. 44 (6) (2009) 1237–1245.

[173] S. Escuyer, M. Fontynont, Lighting controls: a field study of office workers’ reactions, Light. Res. Technol. 33 (2) (2001) 77–94.

[174] B. Bordass, K. Bromley, A. Leaman, User and Occupant Controls in Office Buildings, in: Proceedings of the International Conference on Building Design Technology Occupant Well-being Temp. Climate. 1993, pp. 12–15. February.

[175] G. Newsham, J. Veitch, C. Arsenault, C. Duval, Effect of dimming control on office worker satisfaction and performance, in: Proceedings of the IESNA annual conference, 2004, pp. 19–41.

[176] T. Moore, D. Carter, A. Slater, User attitudes toward occupant controlled office lighting, Light. Res. Technol. 34 (3) (2002) 207–219.

[177] M.T. Carter, D.J. Slater, A study of occupier-control lighting systems, in: Proceedings of the 24th Session of the Commission Internationale de l’Eclairage, Warsaw, Poland, CIE Central Bureau, Vienna, 1999, pp. 108–110.

[178] M. Bonte, F. Thellier, B. Lartigue, Impact of occupant’s actions on energy building performance and thermal sensation, Energy Build. 76 (2014).

[179] D. Robinson, F. Haldi, An integrated adaptive model for overheating risk prediction, J. Build. Perform. Simul. 1 (786945361) (2008) 43–55.

[180] E. Neeman, G. Swetzer, E. Vine, Office worker response to lighting and daylighting issues in workspace environments: a pilot survey, Energy Build. 6 (2) (1984) 159–171.

[181] J.K. Day, D.E. Gunderson, Understanding high performance buildings: the link between occupant knowledge of passive design systems, corresponding behaviors, occupant comfort and environmental satisfaction, Build. Environ. 84 (2015) 114–124.

[182] J.A. Veitch, D.W. Hine, R. Gifford, End users’ knowledge, beliefs, and preferences for lighting, J. Inter. Des. 19 (2) (1993) 15–26.

[183] L. Wang, S. Greenberg, Window operation and impacts on building energy consumption, Energy Build. 92 (2015).

[184] E.J. Palacios-Garcia, A. Chen, I. Santiago, F.J. Bellido-Outeiro, J.M. Flores-Arias, A. Moreno-Munoz, Stochastic model for lighting’s electricity consumption in the residential sector. Impact of energy saving actions, Energy Build. 89 (2015) 245–259.

[185] E. Sardianou, Estimating space heating determinants: An analysis of Greek households, Energy Build. 40 (6) (2008) 1084–1093.

[186] A. Roetzel, A. Tsangrassoulis, U. Dietrich, S. Busching, A review of occupant control on natural ventilation, Renew. Sustain. Energy Rev. 14 (3) (2010) 1001–1013.

[187] F.A. Nguyen, M. Aiello, Energy intelligent buildings based on user activity: A survey, Energy Build. 56 (2013).

[188] Wbcsd, “Energy Efficiency in Buildings: Transforming the Market,” Wbcsd, pp. 1–67, 2009.

[189] R.C. Sonderegger, Movers and stayers: the resident’s contribution to variation across houses in energy consumption for space heating, Energy Build. 1 (1978) 313–324.

[190] D. Bourgeois, C. Reinhart, I. Macdonald, Adding advanced behavioural models in whole building energy simulation: a study on the total energy impact of manual and automated lighting control, Energy Build. 38 (7) (2006) 814–823.

[191] T. Hong, H.-W. Lin, Occupant behavior: impact on energy use of private offices, in: Proceedings of the ASHRAE 2012 - 1st Asia Conference on International Building Performance Simulation Association, 2013, p. 12.

[192] O.T. Masosa, L.J. Grobler, The dark side of occupants’ behaviour on building energy use, Energy Build. 42 (2) (2010) 173–177.

[193] G.R. Newsham, Manual control of window blinds and electric lighting: implications for comfort and energy consumption, Indoor Environ. 6 (3) (1994) 135–144.

[194] G.R. Newsham, Clothing as a thermal comfort moderator and the effect on energy consumption, Energy Build. 26 (3) (1997) 283–291.

[195] A. Montazami, M. Gaterell, F. Nicol, M. Luney, C. Thoua, Impact of social background and behaviour on children’s thermal comfort, Build. Environ. 122 (2017) 422–434.