Supporting Information

Mutual activation of two radical trapping agents: unusual “win-win synergy” of resveratrol and TEMPO during scavenging of dpph’ radical in methanol.

Adrian Konopko, 1,2 & Grzegorz Litwinienko1,*

1 Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
2 Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, Warsaw, 02-093, Poland

*Corresponding author (GL) e-mail: litwin@chem.uw.edu.pl

SYMBOLS and ABBREVIATIONS

dpph’ 2,2-diphenyl-1-picrylhydrazyl radical
TEMPO’ 2,2,6,6-tetramethylpiperidine-1-oxyl radical
4-OH-TEMPO’ • hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl radical
RSV resveratrol
TEMPO-H 2,2,6,6-tetramethylpiperidin-1-ol
3,5-DHA 3,5-dihydroxybenzyl alcohol
AcOH acetic acid
MeOH methanol

TABLE OF CONTENTS

Figure	Table	Description	Page
S1	S1	Data and kinetic parameters for reaction of dpph’ with excess of TEMPO’ in MeOH, linear fitting.	S-3
S2	S2	Data and kinetic parameters for reaction of dpph’ with excess of 4-OH-TEMPO’ in MeOH, linear fitting.	S-4
S3	S3	Data and kinetic parameters for reaction of dpph’ with excess RSV in MeOH, linear fitting.	S-5
S4	S4	Data and kinetic parameters for reaction of dpph’ with excess of TEMPO’ in EtOAc, linear fitting.	S-6
S5	S5	Data and kinetic parameters for reaction of dpph’ with excess of 4-OH-TEMPO’ in EtOAc, linear fitting.	S-7
S6	S6	Data and kinetic parameters for reaction of dpph’ with excess of RSV in EtOAc, linear fitting.	S-8
S7	S7	Data and kinetic parameters for reaction of dpph’ with excess of RSV and TEMPO’ 1:1 mol/mol in MeOH, linear fitting.	S-9
S8	S8	Data and kinetic parameters for reaction of dpph’ with excess of RSV and TEMPO’ 1:1 mol/mol in EtOAc, linear fitting.	S-10
Figure S9. Table S9.	Data and kinetic parameters for reaction of dpph’ with excess of RSV and 4-OH-TEMPO’ 1:1 mol/mol in MeOH, linear fitting.	S-11	
----------------------	---	------	
Figure S10. Table S10.	Data and kinetic parameters for reaction of dpph’ with excess of RSV and 4-OH-TEMPO’ 1:1 mol/mol in EtOAc, linear fitting.	S-12	
Figure S11. Table S11.	Data and kinetic parameters for reaction of dpph’ with excess 3,5-DHA in MeOH, linear fitting.	S-13	
Figure S12. Table S12.	Data and kinetic parameters for reaction of dpph’ with excess of 3,5-DHA and TEMPO’ 1:1 mol/mol in MeOH, linear fitting.	S-14	
Figure S13. Table S13.	Data and kinetic parameters for reaction of dpph’ with excess of TEMPO’ in acidified MeOH (10mM AcOH), linear fitting.	S-15	
Figure S14. Table S14.	Data and kinetic parameters for reaction of dpph’ with excess of 4-OH-TEMPO’ in acidified MeOH (10mM AcOH), linear fitting.	S-16	
Figure S15. Table S15.	Data and kinetic parameters for reaction of dpph’ with excess of RSV in acidified MeOH (10mM AcOH), linear fitting.	S-17	
Figure S16. Table S16.	Data and kinetic parameters for reaction of dpph’ with excess of TEMPO’ with 10 mM HFIP, linear fitting.	S-18	
Figure S17. Table S17.	Data and kinetic parameters for reaction of dpph’ with excess TEMPO-H in MeOH, linear fitting.	S-19	
Figure S18. Table S18.	Data and kinetic parameters for reaction of dpph’ with excess of TEMPO-H in acidified MeOH (10mM AcOH), linear fitting.	S-20	
Figure S19. Table S19.	Data and kinetic parameters for reaction of dpph’ with excess of TEMPO-H in EtOAc, linear fitting.	S-21	
Figure S20. Table S20.	Data and kinetic parameters for reaction of dpph’ with excess of TEMPO-H and RSV 1:1 mol/mol in MeOH, linear fitting.	S-22	
Figure S21. Table S21.	Data and kinetic parameters for reaction of dpph’ with excess of TEMPO-H and RSV 1:1 mol/mol in EtOAc, linear fitting.	S-23	
Table S22.	Literature values of oxidation and reduction potentials (vs NHE) for TEMPO’, 4-OH-TEMPO’, TEMPOH**, TEMPOinium’, resveratrol and dpph’.	S-24	
Table S1. Pseudo-first-order rate constant (k_{exp}) for reaction of dpph’ (constant initial concentration) with excess of TEMPO’ in MeOH and bimolecular rate constant k^s calculated as a slope from linear dependence of k_{exp} plotted against concentration of nitroide: $k_{exp} = k^s[\text{TEMPO’}] + \text{const}$, with regression coefficient (R^2) and error $\Delta k^s_{90\%}$ calculated as standard deviation for confidential level 90%.

[TEMPO’] / mM	k_{exp} / s$^{-1}$	[TEMPO’] / mM	k_{exp} / s$^{-1}$
12.7	0.52	12.5	0.38
9.53	0.40	9.36	0.33
5.10	0.28	7.02	0.26
3.65	0.24	3.58	0.19
2.43	0.18	2.39	0.13
1.62	0.14	1.59	0.09
0.97	0.11	0.96	0.07

$k^s = 33.28 \text{ M}^{-1}\text{s}^{-1}$
$\Delta k^s_{90\%} = 4.0$
$R^2 = 0.9904$

$k^s = 27.89 \text{ M}^{-1}\text{s}^{-1}$
$\Delta k^s_{90\%} = 3.9$
$R^2 = 0.9781$

$k^{\text{MeOH}} = 30.6 \pm 3.8 \text{ M}^{-1}\text{s}^{-1}$

Figure S1. Plots of k_{exp} versus concentration of TEMPO’ (data taken from Table S1).
Table S2. Pseudo-first-order rate constant \((k_{\text{exp}}) \) for reaction of dpph\(^{\bullet}\) (constant initial concentration) with excess of 4-OH-TEMPO\(^{\bullet}\) in MeOH and bimolecular rate constant \(k^S \) calculated as a slope from linear dependence of \(k_{\text{exp}} \) plotted against concentration of nitroxide: \(k_{\text{exp}} = k^S [\text{4-OH-TEMPO}^{\bullet}] + \text{const} \), with regression coefficient (R\(^2\)) and error \(\Delta k^S_{90\%} \) calculated as standard deviation for confidential level 90%.

Neat MeOH	Neat MeOH		
[4-OH-TEMPO\(^{\bullet}\)] / mM	\(k_{\text{exp}} / \text{s}^{-1} \)	[4-OH-TEMPO\(^{\bullet}\)] / mM	\(k_{\text{exp}} / \text{s}^{-1} \)
12.6	0.17	9.35	0.13
9.78	0.14	7.01	0.09
7.33	0.13	5.26	0.06
5.50	0.09	2.68	0.03
3.93	0.08	1.79	0.02
2.81	0.06	1.19	0.01
1.87	0.05	0.30	0.00
1.25	0.05	0.12	0.00

\(k^S = 11.4 \text{ M}^{-1}\text{s}^{-1} \) \(\Delta k^S_{90\%} = 1.7 \) \(R^2 = 0.9839 \)

\(k^S = 13.8 \text{ M}^{-1}\text{s}^{-1} \) \(\Delta k^S_{90\%} = 0.8 \) \(R^2 = 0.9965 \)

\(k^{\text{MeOH}} = 12.6 \pm 1.7 \text{ M}^{-1}\text{s}^{-1} \)

Figure S2. Plots of \(k_{\text{exp}} \) versus concentration of 4-OH-TEMPO\(^{\bullet}\) (data taken from Table S2).
Table S3 Pseudo-first-order rate constant (k_{exp}) for reaction of dpph• (constant initial concentration) with excess of RSV in MeOH and bimolecular rate constant k^S calculated as a slope from linear dependence of k_{exp} plotted against concentration of phenol: $k_{\text{exp}}=k^S[RSV] + \text{const}$, with regression coefficient (R^2) and error $\Delta k^S_{90\%}$ calculated as standard deviation for confidential level 90%.

Neat MeOH	Neat MeOH		
[RSV] / mM	k_{exp} / s$^{-1}$	[RSV] / mM	k_{exp} / s$^{-1}$
12.3	2.77	12.8	2.91
9.56	2.26	9.97	2.47
7.17	1.92	7.48	1.99
5.38	1.53	5.61	1.69
3.84	1.26	4.00	1.41
2.74	0.87	2.86	1.09
1.83	0.74	1.91	0.95
1.22	0.62	1.27	0.71

$k^S = 196.24 \text{ M}^{-1}\text{s}^{-1}$ \hspace{1cm} $k^S = 187.06 \text{ M}^{-1}\text{s}^{-1}$

$\Delta k^S_{90\%} = 16.8$ \hspace{1cm} $\Delta k^S_{90\%} = 11.3$

$R^2 = 0.9914$ \hspace{1cm} $R^2 = 0.9937$

$k_{\text{MeOH}} = 191.7 \pm 6.5 \text{ M}^{-1}\text{s}^{-1}$

Figure S3. Plots of k_{exp} versus concentration of RSV (data taken from Table S3).
Table S4 Pseudo-first-order rate constant (k_{exp}) for reaction of dppe$^\cdot$ (constant initial concentration) with excess of TEMPO$^\cdot$ in EtOAc and bimolecular rate constant k^s calculated as a slope from linear dependence of k_{exp} plotted against concentration of nitroxide: $k_{\text{exp}}=k^s[\text{TEMPO}^\cdot]+\text{const}$, with regression coefficient (R^2) and error $\Delta k^s_{90\%}$ calculated as standard deviation for confidential level 90%.

Neat EtOAc	Neat EtOAc		
[TEMPO$^\cdot$] / mM	$k_{\text{exp}} \times 10^4$ / s$^{-1}$	[TEMPO$^\cdot$] / mM	$k_{\text{exp}} \times 10^4$ / s$^{-1}$
12.1	6.00	12.2	1.80
9.41	4.73	9.50	1.61
7.06	4.00	7.13	1.21
5.29	3.33	5.35	0.88
3.78	2.75	3.82	0.51
2.70	2.50	2.73	0.39
1.80	2.00	1.82	0.36
1.20	1.47		

$k^s = 0.039 \text{ M}^{-1}\text{s}^{-1}$
$\Delta k^s_{90\%} = 0.003$
$R^2 = 0.9913$

$k^s = 0.015 \text{ M}^{-1}\text{s}^{-1}$
$\Delta k^s_{90\%} = 0.002$
$R^2 = 0.9755$

$K_{\text{EtOAc}} = 0.027 \pm 0.016 \text{ M}^{-1}\text{s}^{-1}$

Figure S4. Plots of k_{exp} versus concentration of TEMPO$^\cdot$ (data taken from Table S4).

S-6
Table S5 Pseudo-first-order rate constant (k_{exp}) for reaction of dpph• (constant initial concentration) with excess of 4-OH-TEMPO• in EtOAc and bimolecular rate constant k^S calculated as a slope from linear dependence of k_{exp} plotted against concentration of nitroxide: $k_{\text{exp}}=k^S[4\text{-OH-TEMPO}•]+\text{const}$, with regression coefficient (R^2) and error $\Delta k^S_{90\%}$ calculated as standard deviation for confidential level 90%.

Neat EtOAc	Neat EtOAc		
[4-OH-TEMPO•] / mM	$k_{\text{exp}} \times 10^4$ / s⁻¹	[4-OH-TEMPO•] / mM	$k_{\text{exp}} \times 10^4$ / s⁻¹
11.6	11.0	10.2	6.9
9.04	9.0	7.93	5.4
5.09	5.2	5.95	4.9
3.63	4.0	4.46	4.3
2.60	3.0	3.19	3.9
1.73	2.0	2.28	3.3
1.15	1.0	1.52	2.6

$k^S = 0.094 \text{ M}^{-1}\text{s}^{-1}$

$\Delta k^S_{90\%} = 0.006$

$R^2 = 0.9913$

$K_{\text{EtOAc}} = 0.07 \pm 0.03 \text{ M}^{-1}\text{s}^{-1}$

$k^S = 0.045 \text{ M}^{-1}\text{s}^{-1}$

$\Delta k^S_{90\%} = 0.006$

$R^2 = 0.9755$

Figure S5. Plots of k_{exp} versus concentration of 4-OH-TEMPO• (data taken from Table S5).
Table S6 Pseudo-first-order rate constant \((k_{\text{exp}})\) for reaction of dpph\(^-\) (constant initial concentration) with excess of RSV in EtOAc and bimolecular rate constant \(k^S\) calculated as a slope from linear dependence of \(k_{\text{exp}}\) plotted against concentration of phenol: \(k_{\text{exp}}=k^S[RSV]+\text{const}\), with regression coefficient \((R^2)\) and error \(\Delta k_{90\%}\) calculated as standard deviation for confidential level 90%.

Neat EtOAc	Neat EtOAc		
[RSV] / mM	\(k_{\text{exp}} \times 10^3 / \text{s}^{-1}\)	[RSV] / mM	\(k_{\text{exp}} \times 10^3 / \text{s}^{-1}\)
12.4	12.2	12.7	13.3
9.66	10.0	9.86	10.6
7.24	7.7	7.39	8.1
5.43	5.9	5.55	6.1
3.88	4.4	3.96	4.8
2.77	3.1	2.83	3.3
1.85	2.1	1.89	2.2
1.23	1.4	1.26	1.6

\[k^S = 0.97 \text{ M}^{-1} \text{s}^{-1}\]

\[\Delta k_{90\%} = 0.04\]

\[R^2 = 0.997\]

\[K_{\text{EtOAc}} = 1.00 \pm 0.04 \text{ M}^{-1} \text{s}^{-1}\]

Figure S6. Plots of \(k_{\text{exp}}\) versus concentration of RSV (data taken from Table S6).
Table S7 Pseudo-first-order rate constant (k_{exp}) for reaction of dpph• (constant initial concentration) with excess of TEMPO• + RSV, 1:1 mol/mol in MeOH and bimolecular rate constant k^s calculated as a slope from linear dependence of k_{exp} plotted against concentration of phenol: $k_{exp} = k^s[RSV] + \text{const}$, with regression coefficient (R^2) and error $\Delta k^s_{90\%}$ calculated as standard deviation for confidential level 90%.

[TEMPO•] / mM	[RSV] / mM	k_{exp} / s-1	[TEMPO•] / mM	[RSV] / mM	k_{exp} / s-1
10.8	10.8	17.7	10.8	7.01	9.4
8.13	8.13	13.5	8.13	5.26	7.7
6.10	6.10	10.7	6.10	3.94	6.4
4.36	4.36	8.3	4.36	2.82	5.1
3.11	3.11	6.1	3.11	2.01	4.1
2.07	2.07	4.4	2.07	1.34	2.9
1.38	1.38	3.0	1.38	0.89	2.4
0.83	0.83	2.1	0.83	0.54	1.8

$k^s = 1543$ M-1s-1 \quad \Delta k^s_{90\%} = 36 \quad R^2 = 0.9977

$k^s = 1179$ M-1s-1 \quad \Delta k^s_{90\%} = 56 \quad R^2 = 0.9905

$k_{MeOH} = 1360 \pm 260$ M-1s-1

Figure S7. Plots of k_{exp} versus concentration of RSV (data taken from Table S7).
Table S8 Pseudo-first-order rate constant (k_{exp}) for reaction of dpph• (constant initial concentration) with excess of TEMPO• + RSV, 1:1 mol/mol in EtOAc and bimolecular rate constant k^S calculated as a slope from linear dependence of k_{exp} plotted against concentration of phenol: $k_{\text{exp}}=k^S[RSV] + \text{const}$, with regression coefficient (R^2) and error $\Delta k^S_{90\%}$ calculated as standard deviation for confidential level 90%.

[TEMPO•] / mM	[RSV] / mM	$k_{\text{exp}} \times 10^3$ / s⁻¹	[TEMPO•] / mM	[RSV] / mM	$k_{\text{exp}} \times 10^3$ / s⁻¹
10.5	10.5	9.5	10.5	1.13	12.7
8.14	8.14	7.7	8.14	8.76	9.8
6.11	6.11	6.1	6.11	6.57	7.1
4.58	4.58	4.5	4.58	4.93	5.3
3.27	3.27	3.8	3.27	3.52	4.7
2.34	2.34	2.6	2.34	2.51	2.9
1.56	1.56	1.4	1.56	1.68	2.6
1.04	1.04	1.4	1.04	1.04	1.04

$k^S = 0.88$ M⁻¹s⁻¹
$\Delta k^S_{90\%} = 0.06$
$R^2 = 0.9918$

$k^S = 1.06$ M⁻¹s⁻¹
$\Delta k^S_{90\%} = 0.09$
$R^2 = 0.9906$

$k_{\text{EtOAc}} = 0.97 \pm 0.13$ M⁻¹s⁻¹

Figure S8. Plots of k_{exp} versus concentration of RSV (data taken from Table S8).
Table S9 Pseudo-first-order rate constant (k_{exp}) for reaction of dpph$^\cdot$ (constant initial concentration) with excess of 4-OH-TEMPO$^\cdot$ + RSV, 1:1 mol/mol in MeOH and bimolecular rate constant k^S calculated as a slope from linear dependence of k_{exp} plotted against concentration of phenol: $k_{\text{exp}} = k^S[RSV] + \text{const}$, with regression coefficient (R^2) and error $\Delta k^S_{90\%}$ calculated as standard deviation for confidential level 90%.

[4-OH-TEMPO$^\cdot$] / mM	[RSV] / mM	k_{exp} / s$^{-1}$	[4-OH-TEMPO$^\cdot$] / mM	[RSV] / mM	k_{exp} / s$^{-1}$
9.13	9.13	5.3	9.73	9.73	5.4
7.10	7.10	4.1	7.57	7.57	4.1
5.33	5.33	2.9	5.68	5.68	3.0
4.00	4.00	2.1	4.26	4.26	2.0
2.85	2.85	1.3	3.04	3.04	1.3
2.04	2.04	1.0	2.17	2.17	1.0
1.36	1.36	0.7	1.45	1.45	0.7
0.91	0.91	0.5	0.97	0.97	0.5

$k^S = 591$ M$^{-1}$s$^{-1}$

$\Delta k^S_{90\%} = 32$

$R^2 = 0.9951$

$k^S = 568$ M$^{-1}$s$^{-1}$

$\Delta k^S_{90\%} = 28$

$R^2 = 0.9959$

$k^\text{MeOH} = 580 \pm 16$ M$^{-1}$s$^{-1}$

Figure S9. Plots of k_{exp} versus concentration of RSV (data taken from Table S9).
Table S10 Pseudo-first-order rate constant (k_{exp}) for reaction of dpbh• (constant initial concentration) with excess of 4-OH-TEMPO• + RSV, 1:1 mol/mol in EtOAc and bimolecular rate constant k^S calculated as a slope from linear dependence of k_{exp} plotted against concentration of phenol: $k_{\text{exp}}=k^S[\text{RSV}]+\text{const}$, with regression coefficient (R^2) and error $\Delta k^S_{90\%}$ calculated as standard deviation for confidential level 90%.

[4-OH-TEMPO•] / mM	[RSV] / mM	$k_{\text{exp}}\times10^3$ / s⁻¹	[4-OH-TEMPO•] / mM	[RSV] / mM	$k_{\text{exp}}\times10^3$ / s⁻¹
10.0	10.0	12.0	9.46	9.46	10.8
7.78	7.78	8.6	7.36	7.36	8.7
5.84	5.84	6.5	5.52	5.52	6.4
4.38	4.38	4.4	4.14	4.14	4.3
3.13	3.13	3.5	2.96	2.96	2.6
2.23	2.23	2.0	1.41	1.41	1.4
1.49	1.49	1.1	0.94	0.94	1.2
0.99	0.99	0.8			

$k^S = 1.23$ M⁻¹s⁻¹
$\Delta k^S_{90\%} = 0.06$
$R^2 = 0.9954$

$k^S = 1.18$ M⁻¹s⁻¹
$\Delta k^S_{90\%} = 0.09$
$R^2 = 0.9913$

$K_{\text{EtOAc}} = 1.21 \pm 0.04$ M⁻¹s⁻¹

Figure S10. Plots of k_{exp} versus concentration of RSV (data taken from Table S10).
Table S11. Pseudo-first-order rate constant \((k_{\text{exp}})\) for reaction of dpnh \(^{-}\) (constant initial concentration) with excess of 3,5-DHA in MeOH and bimolecular rate constant \(k^{S}\) calculated as a slope from linear dependence of \(k_{\text{exp}}\) plotted against concentration of phenol: \(k_{\text{exp}}=k^{S}[3,5\text{-DHA}]+\) const, with regression coefficient \((R^{2})\) and error \(\Delta k^{S}_{90\%}\) calculated as standard deviation for confidential level 90\%.

Neat MeOH	Neat MeOH		
[3,5-DHA] / mM	\(k_{\text{exp}} \times 10^{-2} / \text{s}^{-1}\)	[3,5-DHA] / mM	\(k_{\text{exp}} \times 10^{-2} / \text{s}^{-1}\)
10.2	10.2	13.1	11.2
7.62	8.4	9.82	9.4
5.71	7.1	7.37	8.2
2.91	5.2	5.52	7.3
1.94	4.8	3.95	6.3
1.30	4.2	1.88	4.4

\[k^{S} = 0.67 \text{ M}^{-1}\text{s}^{-1} \]

\[\Delta k^{S}_{90\%} = 0.03 \]

\[R^{2} = 0.9984 \]

\[k^{S} = 0.58 \text{ M}^{-1}\text{s}^{-1} \]

\[\Delta k^{S}_{90\%} = 0.07 \]

\[R^{2} = 0.9781 \]

\[k^{\text{MeOH}} = 0.63 \pm 0.06 \text{ M}^{-1}\text{s}^{-1} \]

Figure S11. Plots of \(k_{\text{exp}}\) versus concentration of 3,5-DHA (data taken from Table S11).
Table S12 Pseudo-first-order rate constant (k_{exp}) for reaction of dpph$^\cdot$ (constant initial concentration) with excess of TEMPO' + 3,5-DHA, 1:1 mol/mol in MeOH and bimolecular rate constant k^S calculated as a slope from linear dependence of k_{exp} plotted against concentration of phenol: $k_{\text{exp}}=k^S[3,5\text{-DHA}]+\text{const}$, with regression coefficient (R^2) and error $\Delta k^S_{90\%}$ calculated as standard deviation for confidential level 90%.

[TEMPO$^\cdot$] / mM	[3,5-DHA] / mM	k_{exp} / s$^{-1}$	[TEMPO$^\cdot$] / mM	[3,5-DHA] / mM	k_{exp} / s$^{-1}$
12.0	12.0	1.50	11.9	11.9	1.42
9.4	9.4	1.11	9.3	9.3	1.12
5.3	5.3	0.73	4.7	4.7	0.75
3.6	3.6	0.55	3.2	3.2	0.54
2.6	2.6	0.46	2.3	2.3	0.42
1.7	1.7	0.38	1.5	1.5	0.31
1.2	1.2	0.23	1.0	1.0	0.22

$k^S = 108.4$ M$^{-1}$ s$^{-1}$
$\Delta k^S_{90\%} = 8.1$
$R^2 = 0.9923$

$k^S = 106.3$ M$^{-1}$ s$^{-1}$
$\Delta k^S_{90\%} = 9.1$
$R^2 = 0.9902$

$k_{\text{MeOH}} = 107.4 \pm 1.5$ M$^{-1}$ s$^{-1}$

Figure S12. Plots of k_{exp} versus concentration of 3,5-DHA (data taken from Table S12).
Table S13. Pseudo-first-order rate constant \((k_{\text{exp}}) \) for reaction of dpph\(^\cdot \) (constant initial concentration) with excess of TEMPO\(^\cdot \) in acidified MeOH and bimolecular rate constant \(k^S \) calculated as a slope from linear dependence of \(k_{\text{exp}} \) plotted against concentration of nitroxide:
\[k_{\text{exp}} = k^S[\text{TEMPO}^\cdot] + \text{const}, \]
with regression coefficient \((R^2) \) and error \(\Delta k^S_{90\%} \) calculated as standard deviation for confidential level 90%.

MeOH / 10 mM AcOH	MeOH / 10 mM AcOH		
[TEMPO\(^\cdot \)] / mM	\(k_{\text{exp}} \) / s\(^{-1} \)	[TEMPO\(^\cdot \)] / mM	\(k_{\text{exp}} \) / s\(^{-1} \)
12.5	1.7	12.3	1.8
9.36	1.4	9.22	1.4
7.02	1.1	6.91	1.1
5.01	0.9	4.94	0.9
3.58	0.7	3.53	0.7
2.39	0.4	2.35	0.5
1.59	0.4	1.57	0.3
0.96	0.3	\(k^S = 130.2 \text{ M}^{-1}\text{s}^{-1} \)	\(k^S = 133.5 \text{ M}^{-1}\text{s}^{-1} \)
\(\Delta k^S_{90\%} = 6.7 \)	\(\Delta k^S_{90\%} = 5.9 \)		
\(R^2 = 0.9955 \)	\(R^2 = 0.9781 \)		

\(k^{\text{MeOH}} = 132 \pm 2 \text{ M}^{-1}\text{s}^{-1} \)

Figure S13. Plots of \(k_{\text{exp}} \) versus concentration of TEMPO\(^\cdot \) (data taken from Table S13).
Table S14. Pseudo-first-order rate constant (k_{exp}) for reaction of dppe$^\bullet$ (constant initial concentration) with excess of 4-OH-TEMPO$^\bullet$ in acidified MeOH and bimolecular rate constant k^s calculated as a slope from linear dependence of k_{exp} plotted against concentration of nitroxide: $k_{exp}=k^s[4$-OH-TEMPO$^\bullet$] + const, with regression coefficient (R^2) and error $\Delta k^s_{90\%}$ calculated as standard deviation for confidential level 90%.

MeOH / 10 mM AcOH	MeOH / 10 mM AcOH		
[4-OH-TEMPO$^\bullet$] / mM	k_{exp} / s$^{-1}$	[4-OH-TEMPO$^\bullet$] / mM	k_{exp} / s$^{-1}$
---------------------	-------------------	---------------------	-------------------
8.90	0.19	12.9	0.23
6.67	0.15	10.1	0.20
5.00	0.13	7.55	0.16
3.57	0.10	5.66	0.14
2.55	0.08	4.05	0.12
1.70	0.06	2.89	0.11
1.22	0.06	1.93	0.09

$k^s = 18.3$ M$^{-1}$s$^{-1}$

$\Delta k^s_{90\%} = 1.1$

$R^2 = 0.9954$

$k_{MeOH} = 15.6 \pm 3.8$ M$^{-1}$s$^{-1}$

Figure S14. Plots of k_{exp} versus concentration of 4-OH-TEMPO$^\bullet$ (data taken from Table S14).
Table S15. Pseudo-first-order rate constant (k_{exp}) for reaction of dpph• (constant initial concentration) with excess of RSV in acidified MeOH and bimolecular rate constant k^S calculated as a slope from linear dependence of k_{exp} plotted against concentration of phenol: k_{exp}=k^S[RSV] + const, with regression coefficient (R^2) and error Δk^S_{90%} calculated as standard deviation for confidential level 90%.

MeOH / 10 mM AcOH	MeOH / 10 mM AcOH		
[RSV] / mM	k_{exp} \times 10^3 / s^-1	[RSV] / mM	k_{exp} \times 10^3 / s^-1
12.2	38.9	12.2	33.0
9.47	31.2	9.52	30.3
7.10	25.8	7.14	24.0
5.33	20.7	3.83	16.7
3.81	17.5	2.73	13.9
2.72	12.8	1.21	10.9
1.81	12.2		
1.21	9.9		

k^S = 2.6 \text{ M}^{-1} \text{s}^{-1} \quad k^S = 2.1 \text{ M}^{-1} \text{s}^{-1}

Δk^S_{90%} = 0.1 \quad Δk^S_{90%} = 0.2

R^2 = 0.9965 \quad R^2 = 0.9877

k^{\text{MeOH}} = 2.4 \pm 0.4 \text{ M}^{-1} \text{s}^{-1}

Figure S15. Plots of k_{exp} versus concentration of RSV (data taken from Table S15).
Table S16. Pseudo-first-order rate constant (k_{exp}) for reaction of dpph$^\cdot$ (constant initial concentration) with excess of TEMPO$^\cdot$ in MeOH with 10 mM HFIP and bimolecular rate constant k^s calculated as a slope from linear dependence of k_{exp} plotted against concentration of nitroxide: $k_{\text{exp}}=k^s[\text{TEMPO}^\cdot]+\text{const}$, with regression coefficient (R^2) and error $\Delta k_{90%}^s$ calculated as standard deviation for confidential level 90%.

MeOH / 10 mM HFIP	MeOH / 10 mM HFIP		
[TEMPO$^\cdot$] / mM	k_{exp} / s$^{-1}$	[TEMPO$^\cdot$] / mM	k_{exp} / s$^{-1}$
11.9	1.07	12.0	1.15
9.3	0.81	9.3	0.89
6.9	0.78	5.2	0.69
5.2	0.60	3.7	0.66
3.7	0.54	2.7	0.56
2.7	0.48	1.8	0.50
1.2	0.35		

$k^s = 63.3$ M$^{-1}$s$^{-1}$ \hspace{1cm} $k^s = 59.3$ M$^{-1}$s$^{-1}$

$\Delta k_{90%}^s = 8.7$ \hspace{1cm} $\Delta k_{90%}^s = 9.2$

$R^2 = 0.9745$ \hspace{1cm} $R^2 = 0.9751$

$k^\text{MeOH} = 61.3 \pm 2.8$ M$^{-1}$s$^{-1}$

Figure S16. Plots of k_{exp} versus concentration of TEMPO$^\cdot$ (data taken from Table S16).
Table S17. Pseudo-first-order rate constant \((k_{\text{exp}})\) for reaction of dpph\(^*\) (constant initial concentration) with excess of TEMPO-H in MeOH and bimolecular rate constant \(k^s\) calculated as a slope from linear dependence of \(k_{\text{exp}}\) plotted against concentration of TEMPO-H: \(k_{\text{exp}} = k^s [\text{TEMPO-H}] + \text{const}\), with regression coefficient \(R^2\) and error \(\Delta k^s_{90\%}\) calculated as standard deviation for confidential level 90%.

Neat MeOH	Neat MeOH		
[TEMPO-H] / mM	\(k_{\text{exp}} / \text{s}^{-1}\)	[TEMPO-H] / mM	\(k_{\text{exp}} / \text{s}^{-1}\)
5.2	0.24	5.2	0.20
4.1	0.19	4.0	0.17
3.1	0.15	3.1	0.14
2.3	0.13	2.3	0.11
1.6	0.11	1.5	0.09
1.2	0.09	1.2	0.08
0.8	0.08	0.8	0.05

\(k^s = 35.0 \text{ M}^{-1}\text{s}^{-1}\) \(\Delta k^s_{90\%} = 2.0\) \(R^2 = 0.9966\)

\(k_{\text{MeOH}} = 34.5 \pm 0.5 \text{ M}^{-1}\text{s}^{-1}\)

Figure S17. Plots of \(k_{\text{exp}}\) versus concentration of TEMPO-H (data taken from Table S17).
Table S18. Pseudo-first-order rate constant (k_{exp}) for reaction of dpph$^\bullet$ (constant initial concentration) with excess of TEMPO-H in acidified MeOH and bimolecular rate constant k^s calculated as a slope from linear dependence of k_{exp} plotted against concentration of TEMPO-H: $k_{\text{exp}}=k^s[\text{TEMPO-H}]+\text{const}$, with regression coefficient (R^2) and error $\Delta k^s_{90\%}$ calculated as standard deviation for confidential level 90%.

MeOH / 10 mM AcOH	MeOH / 10 mM AcOH		
[TEMPO-H] / mM	k_{exp} / s$^{-1}$	[TEMPO-H] / mM	k_{exp} / s$^{-1}$
5.4 mM	0.28	6.5 mM	0.29
4.2 mM	0.23	3.8 mM	0.19
2.4 mM	0.14	2.9 mM	0.15
1.7 mM	0.12	2.0 mM	0.12
1.2 mM	0.09	1.5 mM	0.09
0.8 mM	0.07	1.9 mM	0.07
0.5 mM	0.05	0.6 mM	0.04

$k^s = 46$ M$^{-1}$s$^{-1}$ \hspace{1cm} $k^s = 41$ M$^{-1}$s$^{-1}$
$\Delta k^s_{90\%} = 3.0$ \hspace{1cm} $\Delta k^s_{90\%} = 3.0$
$R^2 = 0.9958$ \hspace{1cm} $R^2 = 0.9908$

$k_{\text{MeOH}} = 43.5 \pm 3.5$ M$^{-1}$s$^{-1}$

Figure S18. Plots of k_{exp} versus concentration of TEMPO-H (data taken from Table S18).
Table S19. Pseudo-first-order rate constant \((k_{\text{exp}})\) for reaction of dpph\(^{\bullet}\) (constant initial concentration) with excess of TEMPO-H in EtOAc and bimolecular rate constant \(k^S\) calculated as a slope from linear dependence of \(k_{\text{exp}}\) plotted against concentration of TEMPO-H: \(k_{\text{exp}} = k^S[\text{TEMPO-H}] + \text{const}\), with regression coefficient \((R^2)\) and error \(\Delta k^S_{90\%}\) calculated as standard deviation for confidential level 90%.

Neat EtOAc	Neat EtOAc
[TEMPO-H] / mM & \(k_{\text{exp}} \times 10^2 / \text{s}^{-1}\)	[TEMPO-H] / mM & \(k_{\text{exp}} \times 10^2 / \text{s}^{-1}\)
4.9 & 4.63 & 5.2 & 3.22	
3.8 & 3.51 & 4.0 & 2.60	
2.9 & 2.71 & 3.0 & 1.89	
2.1 & 2.05 & 2.3 & 1.51	
1.5 & 1.52 & 1.6 & 1.10	
1.1 & 1.14 & 1.2 & 0.82	
0.7 & 0.67 & 0.7 & 0.51	
0.5 & 0.48 & 0.5 & 0.38	

\(k^s = 9.3 \text{ M}^{-1}\text{s}^{-1}\) \(\Delta k^S_{90\%} = 0.3\) \(R^2 = 0.9987\)

\(k^s = 6.1 \text{ M}^{-1}\text{s}^{-1}\) \(\Delta k^S_{90\%} = 0.2\) \(R^2 = 0.9985\)

\(k_{\text{MeOH}} = 7.7 \pm 2.2 \text{ M}^{-1}\text{s}^{-1}\)

Figure S19. Plots of \(k_{\text{exp}}\) versus concentration of TEMPO-H (data taken from Table S19).
Table S20. Pseudo-first-order rate constant (k_{exp}) for reaction of dpph* (constant initial concentration) with excess of RSV + TEMPO-H, 1:1 mol/mol in MeOH and bimolecular rate constant k^S calculated as a slope from linear dependence of k_{exp} plotted against concentration of phenol: $k_{exp}=k^S[RSV]+\text{const}$, with regression coefficient (R^2) and error $\Delta k^S_{90\%}$ calculated as standard deviation for confidential level 90%.

Neat MeOH	Neat MeOH				
[TEMPO-H] / mM	[RSV] / mM	k_{exp} / s$^{-1}$	[TEMPO-H] / mM	[RSV] / mM	k_{exp} / s$^{-1}$
10.4	10.4	20.2	10.1	10.1	21.3
8.1	8.1	16.0	7.9	7.9	16.8
6.1	6.1	11.7	5.9	5.9	12.4
4.6	4.6	8.4	4.4	4.4	9.0
3.3	3.3	5.8	3.2	3.2	6.0
2.3	2.3	3.8	2.3	2.3	4.2
1.6	1.6	2.2	1.5	1.5	2.5
1.0	1.0	1.0	1.0	1.0	1.5

$k^S = 2048$ M$^{-1}$s$^{-1}$

$\Delta k^S_{90\%} = 37$

$R^2 = 0.9994$

$k^S = 2196$ M$^{-1}$s$^{-1}$

$\Delta k^S_{90\%} = 37$

$R^2 = 0.9995$

$K^{MeOH} = 2122 \pm 105$ M$^{-1}$s$^{-1}$

Figure S20. Plots of k_{exp} versus concentration of RSV (data taken from Table S20).
Table S21.
Pseudo-first-order rate constant (k_{exp}) for reaction of dpph• (constant initial concentration) with excess of RSV + TEMPO-H, 1:1 mol/mol in EtOAc and bimolecular rate constant k^S calculated as a slope from linear dependence of k_{exp} plotted against concentration of phenol: $k_{\text{exp}}=k^S[RSV] + \text{const}$, with regression coefficient (R^2) and error $\Delta k^S_{90\%}$ calculated as standard deviation for confidential level 90%.

[TEMPO-H] / mM	[RSV] / mM	$k_{\text{exp}} \times 10^2$ / s⁻¹	[TEMPO-H] / mM	[RSV] / mM	$k_{\text{exp}} \times 10^2$ / s⁻¹
9.8	9.8	7.0	9.6	9.6	10.2
7.6	7.6	5.4	7.5	7.5	7.7
5.7	5.7	3.8	5.6	5.6	5.7
4.3	4.3	2.8	4.2	4.2	4.2
3.1	3.1	2.0	3.0	3.0	2.9
2.2	2.2	1.4	2.2	2.2	2.1
1.5	1.5	0.9	1.4	1.4	1.3
1.0	1.0	0.7	0.9	0.9	0.9

$k^S = 7.3$ M⁻¹s⁻¹
$\Delta k^S_{90\%} = 0.2$
$R^2 = 0.9981$

$K_{\text{EtOAc}} = 9.0 \pm 2.4$ M⁻¹s⁻¹

Figure S21.
Plots of k_{exp} versus concentration of RSV (data taken from Table S21).
Table S22. Literature values of oxidation and reduction potentials (vs NHE) for TEMPO’, 4-OH-TEMPO*, TEMPOH+, TEMPO+ium+, resveratrol and dpph*.

	E_{ox} / mV	E_{red} / mV
TEMPO*	750±5, 734, 864, 730-750 (pH 7)	804 (pH 9.3)
4-OH-TEMPO*	818±806, 830	229, 233
TEMPOH+	955 ± 15	
TEMPO+ium+	750±5, 804 (pH 9.3)	
RSV	849 (pH 3.2), ~650 (pH 7.0)	
dpph*	545, 424	

* In water, pH 7.

b Cyclic voltammetry 0.003 M TEMPO, in MeOH/MeCN (1:1), 0.1 M Bu4NBF4, half-wave potential (620mV vs. SCE), here recalculated to NHE.

c Values collected by Tikhonov et al. 2, 7

*d 560V vs. SCE in t-butanol/water (1:1).

c Reversible half-wave potential of the reduction of TEMPO (or 4-OH-TEMPO) at pH 7 determined experimentally by Kato et al.9

For the resulting half-wave potentials (versus SHE) for one electron oxidation and reduction potentials calculated theoretically by Hodgson et al. 10 of several nitroxides.

g Standard reduction potential for TEMPOH+/TEMPOH$_2$ pair calculated from E_{ox}(TEMPO+ium+/TEMPO+), and equilibrium constant for TEMPOH+/TEMPO+.E_{ox}(TEMPO+ium+/TEMPO+). 1

h -0.65V vs. SCE in t-butanol/water (1:1). 8

i In ethanol/water, measured versus Ag/AgCl and recalculated into NHE. Those potentials correspond to the oxidation of the phenol moiety (the slope is ~45 mV/pH), the oxidation of the resorcinol group occurs at potential ca 200mV higher and the slope is -59 mV/pH.11

j For dpph*/dpph+,H redox pair in water-methanol 1:1 at pH =7.12

k In acetonitrile.13

REFERENCES

1. V. D. Sen and V. A. Golubev, J Phys Org Chem, 2009, 22, 138-143.
2. V. D. Sen’, I. V. Tikhonov, L. I. Borodin, E. M. Pliss, V. A. Golubev, M. A. Syroeshkin and A. I. Rusakov, J. Phys. Org. Chem., 2015, 28, 17-24.
3. T. Yamasaki, Y. Matsuoka, F. Mito, M. Yamato and K. i. Yamada, Asian J. Org. Chem., 2013, 2, 388-391.
4. A. Orita, M. G. Verde, M. Sakai and Y. S. Meng, J. Power Source, 2016, 321, 126-134.
5. J. R. Fish, S. G. Swarts, M. D. Sevilla and T. Malinski, J. Phys. Chem., 1988, 92, 3745-3751.
6. X.-Y. Qian, S.-Q. Li, J. Song and H.-C. Xu, ACS Catalysis, 2017, 7, 2730-2734.
7. I. V. Tikhonov, V. D. Sen’, L. I. Borodin, E. M. Pliss, V. A. Golubev and A. I. Rusakov, J. Phys. Org. Chem., 2014, 27, 114-120.
8. R. A. Green, J. T. Hill-Cousins, R. C. D. Brown, D. Pletcher and S. G. Leach, Electrochim. Acta, 2013, 113, 550-556.
9. Y. Kato, Y. Shimizu, L. Yijing, K. Unoura, H. Utsumi and T. Ogata, Electrochim. Acta, 1995, 40, 2799-2802.
10. J. L. Hodgson, M. Namazian, S. E. Bottle and M. L. Coote, J. Phys. Chem. A, 2007, 111, 13595-13605.
11. O. Corduneanu, P. Janeiro and A. M. O. Brett, Electroanalysis, 2006, 18, 757-762.
12. Q.-k. Zhuang, F. Scholz and F. Pragst, Electrochem. Comm., 1999, 1, 406-410.
13. I. Nakanishi, K. Fukuhara, T. Shimada, K. Ohkubo, Y. Iizuka, K. Inami, M. Mochizuki, S. Urano, S. Itoh and N. Miyata, J. Chem. Soc. Perkin 2, 2002, 1520-1524.