Biological treatment of crop residues as an option for feed improvement in the tropics: A review

Bimrew Asmare*

Department of Animal Production and Technology, College of Agriculture and Environmental Sciences, Bahir Dar University, Ethiopia

Abstract

In tropical countries, roughages feeds are the major diets of ruminant animals which are poor in quality. Hence, improving the nutritive value of feeds of such kind is vital for best utilization for ultimate goal of increased animal production. Animal feeds and feeding practices can be changed by biological catalysts such as fungi with the objective to improve nutritive value and to reduce environmental waste. Biological treatment of such crop residues using white rot fungi can break the lignocellulose structure, liberating free cellulose and thus enhancing their feeding value. Biologically treated roughages have higher digestibility for most of the nutrients with an increase in crude protein content as compared to untreated material, besides ensuring more fermentable substrates in the rumen. In addition, treatment of low-quality animal feeds with white rot fungi species increases the protein and ash contents with a reduction of its fibrous fraction. Moreover, biological treatment roughages feed increases the feed intake, digestibility and eventually livestock production and reproduction. However, the application of biological treatment of roughages is limited by lack of biological agents such as the typical fungi or its products (enzymes) and knowledge of utilization of such agents. The other setback is reduction of weight of the final substrate after the treatment in which case a dry matter loss of substrate can be as high as 40% in prolonged incubation with the fungus. Moreover, there is lack of know how to use such technology in most of tropical Africa including Ethiopia. This review was then organized to create awareness on utilization of biological treatment as remedy for poor quality of roughages, optimizing mechanisms must be sought.

Introduction

Despite large demand of livestock and their products in developing countries [1], the productivity per head of livestock is usually low mainly because of various factors. The most important cause of poor livestock productivity in tropical regions of the world is inadequate nutrition [2,3]. The major feed resources in the tropics including Ethiopia are crop residues such as straws which are high in fiber [4,5]. Moreover, these feed resources are characterized by for animal feeding is their low digestibility, due mainly to non-polysaccharide components such as phenolic acids [6,7]. To improve the nutritional quality of straws and agricultural byproducts, different strategies have been used to disrupt the lignocellulosic substrate of the decomposition to high quality feed for livestock. The objective of this paper was to review role of white rot fungi as a biological treatment of low-quality animal feeds.

The white rot fungi

Microorganisms such as the brown, white and soft-rot fungi have been used to breakdown lignin and hemicellulose crop residues [17]. Attempts had been made to identify species of white-rot fungi for their ability to grow on straws that improved their nutritive value [18]. White rot fungi are known to degrade lignin to a great extent and at a fast pace when compared to any other group of organisms [19]. They are the only fungi that can take the complete lignin mineralization [20]. These organisms are also able of delignifying lignocellulosic substrate selectively, modifying or degrading the lignin and transforming the lignocelluloses substrate of the decomposition to high quality feed for ruminants [21], or utilizing the polysaccharides liberated by hydrolysis and fermentation, in order to produce fuels and other chemicals [22].

Fungi that are active in the biodegradation of wood can be classified into three main groups according to their methods of degrading biomass, specifically white-rot, brown-rot, and soft-rot fungi. White-rot and brown-rot fungi belong to Basidiomycetes, whereas soft-rot fungi belong to Ascomycetes [23]. Brown-rot fungi preferentially...

*Correspondence to: Bimrew Asmare, Department of Animal Production and Technology, College of Agriculture and Environmental Sciences, Bahir Dar University, Ethiopia, E-mail: limasm2009@gmail.com

Key words: biological treatment, Ethiopia, white rot fungi

Received: March 03, 2020; Accepted: March 10, 2020; Published: March 17, 2020
attack cellulose and hemi-cellulose, leaving lignin intact, thus, decaying residue turning brown and causes only limited changes in lignin. These results in lower in vitro digestibility compared to untreated substrate [24]. Soft-rot fungi leave the White-rot fungi, belonging to the wood-decaying basidiomycetes, as lignocellulolytic microorganisms can decompose and metabolize all plant cell constituents (cellulose, hemicellulose and lignin) by their enzymes [25]. Many species of whiterot fungi which are effective lignin degraders have been used to assess their ability to improve the nutritive value of fodder for ruminant nutrition [26] (Figure 1).

Their extracellular lignin-modifying enzymes consist of lignin-peroxidase, manganese-dependent peroxidase laccase (phenol oxidase) and H$_{2}$O$_{2}$-producing oxidase (aryl-alcohol oxidase [27,28]. Some white-rot fungi are able to decompose free phenolic monomers and to break the bonds with which lignin is cross-linked to the polysaccharides in straw thereby enhance digestibility [29]. The bio-conversion of straw is circumscribed to the group of white-rot fungi, which are capable to colonize on cereal straw and liberate water soluble substrates from the polymers during SSF and thus improve the digestibility [30]. Among the edible white-rot fungi, the Pleurotus species have been shown to be more efficient [31]. The potential of Pleurotus fungi such as P. ostreatus and P. eryngii to reduce indigestible cell wall components and increase the dry matter digestibility (DMD) of straw has been reported [32]. The Pleurotus fungi have different ability to grow on straw and decompose its structural carbohydrate because of the variation in culture behaviour and cultivating conditions [33].

Utilization of white rot fungi

Fungal strains can be collected from the surrounding and maintained on solid media (fore example Potato Dextrose Agar, Formedium, Hunstanton- UK) and stored at room temperature. The dose of application of fungus to feeds varies. Montańez-Valdez et al. [34] added 250 g of the Pleurotus djamor strain to a 10 kg of maize stover packed by polyethylene bag. The wheat grain spawn of two Pleurotus fungi including P. florida (PF) and Posttreatus (PO), were used to inoculate the straw, at the rate of 3.5 kg spawn per 100 kg straw fresh weight basis [35]. The nutritive value of low-quality feeds, which has been widely, reported using rape straw [36], wheat straw [37], rice straw [38], and corn Stover and sugarcane bagasse [39].

Effect of fungal treatment on crop residues

Impact on chemical constituents

Fungal cultures used in ruminant diets include yeasts, generally *S. cerevisiae*, and a mold, generally *Aspergillus oryzae*. In adult cattle, dietary addition of yeasts and *Aspergillus oryzae* (AO) extract have been shown to increase feed efficiency and weight gain, and slightly increase milk production in lactating dairy cows. Among ruminal bacteria, two functional groups, the fiber digesting and lactate utilizing bacteria, are stimulated by addition of fungal cultures [40]. One approach that has recently been widely investigated is the application of live microbial preparations, in order to promote digestion and intestinal hygiene, enhance animal performance and reduce usage of antibiotics [41-43]. It is indicated that microbial additives may benefit ruminant nutrition in terms of live weight gain and milk production by a magnitude of 7 to 8% [44]. Yeast cells promote growth of rumen bacteria, and cellulyotic and lactate-utilizing bacteria can be preferentially stimulated [45].

Degradation of Bermuda grass stems was improved by 29-32%, after 6 weeks, using *Ceriporiopsis subvermispora* and by 63-77% using *Cyathus stercoratus* [46]. Masayuki et al. [47] reported three white rot fungi *Pleurotus ostreatus*, *Phanerochaete chrysosporium* and *Trametes versicolor* that cause 41, 21 and 37% lignin loss when grown on rice straw for 60 days at 250°C [48]. reported white rot fungus *Ceriporiopsis subvermispora* caused higher loss of dry weight (32%) in bagasse when incubated for 30 days with 1% inoculum under solid state fermentation. *Strophoria rugosoannulata* and *Pleurotus cornucopiae* degraded wheat straw 60 to 65% *P. florida* degraded 45% and *A. aegerita* degraded wheat straw up to 25% only in 17 weeks at 300c incubation. *Phycomyces sporium* when tested individually caused 26.45% weight loss of the substrate and 28.95% lignin loss when grown on wheat straw for six weeks, where as caused lignin loss up to 36% when combination of *P. chrysosporium* and *D. flavida* were used [49].

Fungal treated straw contained higher CP, EE and ash contents and lower OM, CF, NFE, NDF,ADF, ADL, hemicellulose and cellulose contents than untreated straw. Authors indicated that fungal treatment of straw increased crude protein from 3.20 to 11.62% [50]. Treatment of rice straw by *P. pulmonarius* increases CP contents from 4.50% recorded in the control to 4.60% at day 10, 4.78% at day 20 and 9.36% after forty days of fermentation [51]. Biological treatment of mixed straw (wheat and cotton) by three strains of fungus: Pleurotus Ostreatus, Pleurotus Corniciopla and Pleurotus Salmineos, degraded 52.1%, 59.3% and 39.4% lignin and improved in vitro organic matter digestibility from 33.0% to 60.1%, 51.9% and 50.6%, respectively [52]. Corn stover inoculated with 15% *Trichodermma viride* and incubated for 21 days had increased protein from 6.52% to 10.28%, but decreased NDF from 64.27% to 55.39%, ADF from 44.49% to 37.77%, hemicellulose from 19.78 to 18.02% [53]. Fungal treatment of rice straw decreased crude fibre from 32.89% in control to 19.96% [54]. The crude protein of cacao shell inoculated with *P. chrysosporium* and incubated for 15 days increased from 8.57% to 11.52%, with decreased crude fiber from 44.21% to 29.94%, and increase ash content from 6.79% to 7.12%. The increased protein content was due to bioconversion of organic materials that had been broken down into one of the fungi body components or due to the addition of microbial protein during fermentation process [55]. Bagasse inoculated with *Trichodermma viride* has an increase in protein, cellulose, hemicellulose, and ash content, and decrease in ADF, NDF, and acid detergent lignin (ADL) content [56]. The nutritive value of rice straw treated with *Pleurotusostreatus* (POR), *Pleurotus pulmonarius* (PPR) and *Pleurotus tuber-regium* (PTR) were studied by [57,58] (Table 1).
Table 1. Comparison of composition of fungal treated and untreated straws of different crops (%)

Parameter	Untreated straw	Treated straw	**Untreated**	**Treated**
DM	92	92.6	91.13	93.3
OM	82.5	82.6	83.43	79.19
CP	4.8	4.4	3.2	11.62
NDF	55.9*	47.65*	67.73	61.23
ADF	25.7	27.2	46.77	42.17
C	33.7	32.4	29.88	28.01
HC	29.8*	20.4*	20.96	19.06
Lignin	12.2	11.9	16.89	14.16
Ash	9.4	9.6	16.57	20.81

Source: *[57], [50].

Key: DM=dry matter; OM=organic matter; CP=crude protein; NDF=neutral detergent fiber; ADF=acid detergent fiber; C=cellulose; HC=hemicelluloses.

Effect on performances of animals

Majority of the animal trials on utilization of fungal treated crop residues reported a positive response in terms of nutrient utilization, nitrogen (N) balance as well as gain in body weight [33,65,66] although it is not consistent with all types of white rot fungi. Intake and digestibility of DM and OM was increased by more than 10% in cattle consuming fungal treated wheat straw diet [33] and palm leaves treated with *Pleurotus florida* for sheep [63]. Ramirez-Bribiesca *et al* [60] evaluated the influence of *P. ostreatus* spent corn straw on the performance of feedlot lambs and found that average daily gain (ADG) increased to 17.5% in treatment group which received 9% of pro-farming straw from *Postreastus*. A significantly increased DM intake and growth rates were noted by Akinfemi and Ladipo [67] in West African dwarf lambs fed with biologically treated maize cobs replacing wheat offal in guinea grass (*Panicum maximum*) based diets. Omer *et al* [66] had shown that biologically treated corn stalks (using *Trichoderma resi*) can completely replace clover hay in the ration of growing sheep which was evident by a favourable increase in DM intake, and an improvement in the digestibility of all nutrients with higher ADG. Inclusion of fungal treated straw up to 30% of the total mixed ration in late lactating Holstein cows improved the nutrients digestibility and also noted an increase in fat corrected milk yield by 13% and daily average body weight gain by 2.7 times [32]. Mahesh [65] observed a linear reduction in CH4 (%) from fungal treated wheatstraws which contained lesser fibre fractions (NDF and ADF) than untreated straw. Enteric CH4 emissions are highest when the animal is fed with poor quality forages. Thus, by fungal treatment, an improvement in the forage quality with respect to cell wall digestion and overall enhancement in carbohydrates digestibility as well as increased DM intake will be expected to reduce the CH4 emissions relative to nutrients digestibility, in ruminants [65]. Safa *et al* [64], also reported positive effects of solid state fermentation on rice straw (RS) and corn stalks (CS) by *Trichoderma Viride* in terms of feed intake and body weight gain by sheep. The improvement in daily gain as a result of adding biological treatments may be due to its effect on microbial efficiency and organic matter digestibility.

The study by El-Rahman *et al* [50] studied the effect of Phanerochaete chrysoporium treatment on nutritional value of rice straw in which chopped rice straw was treated with fungi under aerobic condition 14 days as fermentation period. The treated straw were fed to calves with concentrate mixture and found that addition of treated straw in growing calves ration, improved nutrient digestibility, body weight gain and economic efficiency. The DMI as (kg/h/d) of calves was insignificant higher for calves fed treated than those fed untreated rice straw (8.96 vs. 9.10 kg/h/d), respectively. The feed conversion (kg DMI/ kg gain) showed that the fungus treatment of rice straw recorded the best value (6.87) compared to untreated rice straw (7.16). Rice straw that has been fermented using white rot fungi can be used to substitute elephant grass up to 70% in the ration of goats [68]. The average body weights gain of cows fed with fungal (*Pleurotus ostreatus*) treated wheat straw in a total mixed ration was 743 g per day [32].

Factors affecting broader utilization of fungal treatments

The use of fungi and/or their enzymes that metabolize lignocelluloses is a potential biological treatment to improve the nutritional value of straw by selective delignification [69]. Nevertheless, its utilization may be hindered due to difficulties and lack of technology to produce large quantities of fungi or their enzymes to meet the requirements particularly in developing countries. There are also a number of serious problems to consider and overcome. Fungi may produce toxic substances. It is also...
difficult to control the optimal conditions for fungal growth, such as pH, temperature, pressure, O2 and CO2 concentration when treating the fodder. With recent developments in fermentation technology and alternative enzyme production systems, the costs of these materials are expected to decline in the future. Hence, new commercial products could play important roles in future ruminant production systems [70]. The effect of white rot fungi on the lignocellulose matrix is a complex phenomenon controlled by many variables and their interactions.

Inconsistent digestibility and utilization of nutrients

Many studies indicated that the biological treatments tend to increase *in vitro* digestibility of treated materials as [70,71] and *in vivo* digestibility [72-74]. While the insignificant effect in nutrients digestibility recorded in this study may be attributed to that neither untreated rice straw nor treated rice straw was the only roughage source in the animal ration, hence the experimental rations contained about 19% high quality roughage material (clover hay). These results disagree with the findings obtained by many workers [24,32,61,63,66,75] who found that utilization of biological treated crop residues in animal feeding resulted in a positive response in terms of nitrogen balance.

Dry matter loss

Loss of weight of the substrate is one disadvantage of fungal treatments of low-quality feeds. Dry matter (DM) losses varied widely from 6 to 40% depending on the organism used, duration of fermentation, type of substrate and environmental conditions [76]. Jonathan et al. [77] reported that dry matter reduced significantly from 88.74% in control to 86.80% in *Lentinus subnudus* and 86.55% in *Pleurotus tuber-regium* treatments. Weight loss caused by *Oxyporus latemarginatus* and *Rigidoporus vinctus* fungi were reported to be 27.6%, and 13.7% respectively [78]. High degradation rate of wheat straw was observed with the fungus which achieved a 43% loss of dry matter long time incubation period and relatively short period of fermentation time been recommended in order to reduce DM loss [79].

Conclusion

Even though several treatments have been used to improve the degradability and voluntary intake of roughages, such as physical or chemical treatments, the practical use of such applications is limited due to societal and environmental concerns. The biological treatment of roughages is untouched avenue to improve roughage diets if appropriate procedure is applied. One of the biological roughage treatment methods is the use of fungal strains. Using liginolytic fungi, including their enzymes, may be one potential alternative to provide a more practical and environmental-friendly approach for enhancing the nutritive value of roughages. However, there should be a means to identify suitable white-rot species that have no side effects and optimally used to improve the characteristics of crop residues. Moreover, the optimal conditions to incubate crop residues with a fungus have to be well researched and documented for the purpose of achieving optimal feeding quality of the remaining roughage-fungi mixture. As a general remark the application of liginolytic fungi or their enzymes combined with pre-treatments to rice straw may be an alternative way to improve the nutritional quality of crop residues such as straws and enhance livestock productivity in the tropics.

References

1. Thornton PK (2010) Livestock production: Recent trends, future prospects. *Phil Trans R Soc* 365: 2853-2867.
2. MacMillan S (1996) Improving the nutritional status of tropical ruminants. *Biotech Develop Mon* 27: 8-9.
3. Sere C, van der Zijpp A, Penrslay G, Rege E (2008) Dynamics of livestock production systems, drivers of change and prospects for animal genetic resources. *Anim Gen Res Inform* 42: 3-27
4. Van Soest PJ (2006) Rice straw, the role of silica and treatments to improve quality, *Anim Feed Sci Technol* 130: 137-171.
5. McDonald P, Edwards RA, Greenhalgh JFD, Morgan CA, Sinclair LA, et al. (2010) Animal nutrition. Pearson Books.
6. Kuhad RC, Kohar S, Sharma, KK, Shrivastava B (2013) Microorganisms and enzymes involved in lignin degradation vis-a-vis production of nutritionally rich animal feed: An overview. Biotechnology for environmental management and resource recovery. *Springer India*, pp: 3-44.
7. Elghandour MMY, Vázquez Chagoyán JC, Salem AZM, Kholfí AE, Martínez Castañeda JS, et al. (2014) Effects of Saccharomyces cerevisiae at direct addition or pre-incubation in *in vitro* gas production kinetics and degradability of four fibrous feeds. *JAnim Sci* 13: 295-330.
8. Valdés Kl, Salem AZM, Lopez S, Alonso, MU, Rivero N, et al. (2015) Influence of exogenous enzymes in presence of Salix babylonica extract on digestibility, microbial protein synthesis and performance of lambs fed maize silage. *J Agrical Sci* 153: 732-742.
9. Alsehy S, Salem AZM, Borhami BE, Oliavares J, Gado HM, et al. (2015) Effect of Mediterranean saltbush (*Atriplex halimus*) ensiling with two developed enzyme cocktails on feed intake, nutrient digestibility and ruminal fermentation in sheep. *Anim Sci J* 86: 51-58. [Crossref]
10. Liu JX, Orskov ER (2000) Cellulosic treatment of untreated and steam pre-treated rice straw-effect on *in vitro* fermentation characteristics. *Anim Feed Sci Technol* 88: 189-200.
11. Zhu S, Wu Y, Yu Z, Liao J, Zhang Y (2005) Pretreatment by microwave/alkali of rice straw and its enzymic hydrolysis. *Proc Biochem* 40: 3082-3086.
12. Eun JS, Beauchemin KA, Hong SH, Bauer V (2006) Exogenous enzymes added to untreated or ammoniated rice straw: Effects on *in vitro* fermentation characteristics and degradability. *Anim Feed Sci Technol* 131: 86-101.
13. Khattab HM, Gado HM, Kholfí AE, Mansour AM, Kholfí AM (2011) The potential of feeding goats sun dried ruzin contents with or without bacterial inoculums as replacement for berseem clover and the effects on milk production and animal health. *Inter J Dai Sci* 6: 267-277.
14. Sharma RK, Arora DS (2015) Fungal degradation of lignocellulosic residues: An aspect of improved nutritive quality. *Crit Rev Microb* 41: 52-60. [Crossref]
15. Khattab HM, Gado HM, Salem AZM, Camacho LM, El-Sayed MM, et al. (2013) Chemical Composition and in * vitro* digestibility of *Pleurotus ostreatus* spent rice straw. *Anim Nut Feed Tech* 12: 507-516.
16. Kholfí AE, Khattab HM, El-Shewy AA, Salem AZM, Kholfí AM, et al. (2014) Nutrient digestibility, ruminal fermentation activities, serum parameters and milk production and composition of lactating goats fed diets containing rice straw treated with *Pleurotus ostreatus*. *Asian J Anim Sci* 27: 357-364. [Crossref]
17. Seker S, Ilari R, Ozturk M (2006) Evaluation of activated sludge by white rot fungi for decolorization of textile wastewaters. *J World Assoc Soil and Water Conserv* 17: 81-87.
18. Yamakawa M, Abe H, Okamoto M (1992) Effect of incubation with edible mushroom, *Pleurotus ostreatus*, on *in vitro* degradability of rice straw. *Anim Sci Technol* 63: 180-185.
19. De Koker TH, Zhao J, Alloof SP, Janse BJH (2000) Isolation and enzymic characterisation of South African white-rot fungi. *Mycol Res* 104: 820-824.
20. Moore Landecker E (1996) Fundamentals of the fungi. *Prentice Hall*, New Jersey, pp: 574.
21. Chaudhary AS (1998) Chemical and biological procedures to upgrade cereal straws for ruminants. *Nutr Ab & Rev* 68: 319-331.
22. Punja Nik, Singh K (1998) Solid state fermentation of lignocellulosics, in fungi in biotechnology. CBS Publishers, New Delhi. 177-186.
23. Hatakka A (2001) Biodegradation of lignin, In: Biopolymer, Biology, Chemistry, Biotechnology, Applications. Vol.1. Lignin, Humic Substances and Coal, M. Hofrichter and A. Steinbüche l (eds.), Wiley-WCH, 129-180.
24. Mahesh MS, Mohini M (2013) Biological treatment of crop residues for ruminant feeding: A review. *Afri J Biotechnol* 12: 17
25. Erikkson K, Blanchette RA, Ander P (1990) Microbial and enzymatic degradation of wood and wood components. Springer,Berlin, Heidelberg, New York.

Anim Husb Dairy Vet Sci, 2020 doi: 10.15761/AHDVS.1000176 Volume 4: 4-6
Asmare B (2020) Biological treatment of crop residues as an option for feed improvement in the tropics: A review

72. Chen J, Fales SL, Varga GA, Royse DJ (1995) Biodegradation of cell wall components of maize stover colonized by white-rot fungi and resulting impact on in vitro digestibility. J Sci Food Agric 68: 91-98.

73. Akinfemi A, Adu OA, Adebiyi OA (2009) Use of white rot-fungi in upgrading maize straw and, the resulting impact on chemical composition and in-vitro digestibility. Livestock Res Rural Develop 21: 17-19.

74. Arora DS, Sharma RK (2009) Comparative ligninolytic potential of Phlebia species and their role in improvement of in vitro digestibility of wheat straw. J Anim Feed Sci 18: 151-161.

75. Shrivastava B, Nandal P, Sharma A, Jain KK, Khasa YP (2012) Solid state bioconversion of wheat straw into digestible and nutritive ruminant feed by Ganoderma sp. rckk02. Bioresour Technol 107: 347-351. [Crossref]

76. Agosin F, Odier E (1985) Solid state fermentation, lignin degradation and resulting digestibility of wheat straw fermented by selected white rot fungi. Appl Microbiol Biotechnol 21: 397-403

77. Jonathan SG, Okorte AN, Garuba EO, Babayemi OJ (2012) Bioconversion of sorghum stalk and rice straw into value added ruminant feed using pleurotus pulmonarius. Nature Sci 10: 10-16.

78. Mohamed MI (2014) Effect of biological treatments of rice straw on growth performance, digestion and economical efficiency for growing calves. Global Veter 13: 47-54.

79. Owen E, Smith T, Makkar HPS (2012) Successes and failures with animal nutrition practices and technologies in developing countries: A synthesis of an FAO e-conference. Anim Feed Sci Technol 174: 211-226.

Copyright: ©2020 Asmare B. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.