One New Species and Two New Host Records of *Apiospora* from Bamboo and Maize in Northern Thailand with Thirteen New Combinations

Xingguo Tian 1,2,3,4,5, Samantha C. Karunarathna 1,5, Ausana Mapook 3, Itthayakorn Promputtha 6,7, Jianchu Xu 1,5, Danfeng Bao 3,8 and Saowaluck Tibpromma 1,5,*

Abstract: The genus *Apiospora* is known as a cosmopolitan genus, found across various substrates. In this study, four *Apiospora* taxa were obtained from the decaying stems of bamboo and maize in northern Thailand. *Apiospora* collections were compared with known species based on the morphological characteristics and the DNA sequence data of internal transcribed spacer (ITS), the partial large subunit nuclear rDNA (LSU), the translation elongation factor 1-alpha gene (TEF1-α) and beta-tubulins (TUB2). *Apiospora chiangraiense* sp. nov. and two new host records (*Ap. intestini* and *Ap. raskravinandra*) are introduced here based on the morphological characteristics and multi-locus analyses. Additionally, thirteen species previously identified as *Arthrinium* are introduced as new combinations in *Apiospora*, viz., *Ap. acutiapica, Ap. bambusicola, Ap. biseriata, Ap. cordylines, Ap. cyclobalanopsidis, Ap. euphorbiae, Ap. gelatinosa, Ap. locuta-pollinis, Ap. minutispora, Ap. pseudoraskravinandrae, Ap. septate, Ap. setariae* and *Ap. sorghi*.

Keywords: one new species; new combinations; new host records; phylogeny; taxonomy

1. **Introduction**

Apiospora was introduced by Saccardo with *Ap. montagnei* as the type species [1]. The genus was reported in both sexual and asexual morphs. The sexual morphs are characterized by multi-locular perithecial stromata with hyaline ascospores surrounded by a thick gelatinous sheath [2–4]. The asexual morph of *Apiospora* was characterized by basauxic conidiogenesis, with globose to subglobose conidia, which are usually lenticular in the side view, obvoid and pale brown to brown [2,5,6]. Species of *Apiospora* are similar in morphology, thus it is difficult to distinguish them without molecular phylogenetic data. The size, color and shape of conidia and the morphology of conidiophores (e.g., size, shape and septation) should be used together to better identify them. For example, conidiophores of some species reduce to conidiogenous cells (e.g., *Ap. bambusicola, Ap. acutiapicum*), while some species have semi-micronematous to macronematous conidiophores (e.g., *Ap. bambusicola, Ap. intestini*).

Apiospora species have a worldwide distribution and can be found from various hosts [3,7–9]. Most *Apiospora* species are associated with plants as endophytes, pathogens
or saprobes, especially on bamboo [2,3,10,11]. To date, more than 25 species have been found from bamboo [2,3,10,11]. *Apiospora* species can cause leaf necrosis and twig dieback in the olive tree (*Olea europaea*), leaf edge spot of the peach (*Prunus persica*), blight disease of bamboo (*Schizostachyum*), leaf spot of rosemary (*Salvia rosmarinus*), kernel blight of barley (*Hordeum vulgare*) and brown culm streak of *Phyllostachys praecox* [11–17]. Some species have also been isolated from lichens, air, soil and animal tissues, and a few species are human pathogens which can cause cutaneous infections in humans [9,18–23].

The morphological relationships between *Arthrinium* and *Apiospora* have long been debated after Ellis [24], as the morphological characteristics of these two genera are similar and difficult to distinguish based on morphology alone. *Apiospora* was synonymized under *Arthrinium* by Crous et al. [3] as they found that *Apiospora* is the sexual morph of *Arthrinium* and phylogenetic analyses showed that the two genera formed a monophyletic clade. Meanwhile, the phylogenetic analyses results from Pintos et al. [25] showed *Arthrinium* forms a monophyletic clade that separates from all other sequences of *Apiospora* and suggested that *Arthrinium s. str.* could actually be phylogenetically different from *Apiospora*, but this is in need of clarification using the phylogeny of additional species before making a conclusive taxonomic decision on the issue. Recently, Pintos and Alvarado [4] showed that *Apiospora* and *Arthrinium* present independent lineages, thus they separate well into two genera.

Morphologically, the conidia of *Apiospora* are more or less rounded in the face view and lenticular in the side view and conidiophores sometimes develop forming acervuli. Whereas the conidia of *Arthrinium* are variously shaped (angular, curved, fusiform, globose, polygonal, navicular) and the conidiophores of some species have thick blackish septa [14]. Ecologically, *Apiospora* species are mostly reported on Poaceae, while *Arthrinium* species commonly occur on Cyperaceae and Juncaceae. Moreover, *Apiospora* has a worldwide distribution, and species in the genus can be found from tropical and subtropical areas to the Mediterranean, temperate and cold regions, while *Arthrinium* species are rarely found from tropical and subtropical habitats. Hence, Pintos and Alvarado [4] considered that genetic, morphological and ecological differences are sufficient to support the taxonomic separation of the two genera, and accordingly, 55 *Arthrinium* species were transferred to *Apiospora* based on the phylogenetic analyses. Presently, 117 records of *Apiospora* are listed in the Index Fungorum [26].

The aims of this study are to determine the phylogenetic placement of the genus *Apiospora* and describe the three taxa that were isolated from maize and bamboo in Chiang Rai province, Thailand. Based on the morphological characteristics and phylogenetic analyses of a combined dataset of the internal transcribed spacer (ITS), the partial large subunit nuclear rDNA (LSU), the translation elongation factor 1-alpha gene (TEF1-α) and beta-tubulins (TUB2), a new species, *Ap. chiangraiense*, as well as two new host records, *Ap. rasikravindrae* and *Ap. intestini*, are introduced. In addition, thirteen species of *Arthrinium* were synonymized under *Apiospora*.

2. Materials and Methods

2.1. Sample Collection, Isolation and Morphological Characteristic Examination

Fresh specimens of bamboo and maize culms with fungal fruiting bodies were collected from Chiang Rai province, Thailand from September–October 2020. Specimens were brought to the laboratory in plastic Ziploc bags for observation. Senanayake et al. [27] were followed for the morphological observations and single-spore isolation. The morphological characteristics were examined under a stereomicroscope (Motic SMZ-171, Wetzlar, Germany). The conidiomata were observed and photographed using a Nikon ECLIPSE Ni-U compound microscope connected to a Nikon camera series DS-Ri2 (New York, United States). The germinating ascospores were transferred aseptically to fresh potato dextrose agar (PDA) media and incubated at room temperature (25 °C) for 2–4 weeks. The morphological characteristics of cultures were checked and recorded after 30–60 days.
The herbarium specimens have been deposited at the herbarium of Mae Fah Luang University (MFLU) and Kunming Institute of Botany (HKAS), while the living cultures have been deposited at Mae Fah Luang University Culture Collection (MFLUCC). The Faces of Fungi and the Index Fungorum numbers are registered as outlined in Jayasiri et al. [28], and the Index Fungorum [26].

2.2. DNA Extraction, PCR Amplification and Sequencing

The genomic DNA was extracted from living pure cultures using the Biospin Fungus Genomic DNA extraction Kit (BioFlux, P.R. China) following the manufacturer’s protocol. The internal transcribed spacer (ITS) with the primer pair of ITS4/ITS5 [29], the partial large subunit nuclear rDNA (LSU) with the primer pair of LR0R/LR5 [30], the translation elongation factor 1-alpha gene (TEF1-α) with the primers of EF1-728F/EF-2 [31,32] and the TUB2 with primers of bt2a.bt2b [33] were used to amplify the genes ITS, LSU, TEF1-α and TUB2. The polymerase chain reaction (PCR) was carried out under the following protocol: the final volume of 25 µL consisting of 2 µL of DNA template, 1 µL of each forward and reverse primers, 12.5 µL of 2× FastTaq Premix (mixture of Taq DNA polymerase, dNTPs, and a buffer) and 9.5 µL of deionized water. The PCR thermal cycle program was as follows: for ITS and LSU: initial denaturation at 95 °C for 5 min, then 35 cycles of denaturation at 94 °C for 30 s, annealing at 52 °C for 30 s and extension at 72 °C for 1 min and final extension at 72 °C for 10 min; for TEF1-α: initial denaturation at 94 °C for 5 min, then 35 cycles of denaturation at 94 °C for 1 min, annealing at 56 °C for 1 min and extension at 72 °C for 90 s and final extension at 72 °C for 10 min; for TUB2: initial denaturation at 95 °C for 5 min, then 35 cycles of denaturation at 94 °C for 45 s, annealing at 55 °C for 45 s and extension at 72 °C for 1 min and final extension at 72 °C for 10 min. The PCR products were checked in 1% agarose gels and sent to Tsing Ke Biological Technology (Kunming) Co., China for sequencing. The sequence quality was checked, and the sequences were condensed with SeqMan. The sequences derived in this study were deposited in the GenBank, and the accession numbers were obtained (Table 1).
Table 1. Taxa names, strain numbers, host, countries and corresponding GenBank accession numbers of the taxa used in the phylogenetic analyses of this study.

Taxa Names	Strain Numbers	Substrates Lag	Countries Lag	GenBank Accession Numbers			
				ITS	LSU	TUB2	TEF 1-α
Apiospora acutipica	KUMCC 20-0210	Bambusa bambos	China	MT946343	MT946339	MT947366	MT947360
Apiospora aquaticum	S-642	Submerged wood	China	MK828608	MK835806	-	-
Apiospora arundinis	CBS 133509	Aspergillus flavus sclerotium	USA	KF144886	KF144930	KF144976	KF145018
Apiospora arundinis	CBS 449.92	Bamboo	Canada	KF144887	KF144931	KF144977	KF145019
Apiospora aurea	CBS 244.83		Japan	AB200251	KF144935	KF144981	KF145023
Apiospora balearica	CBS 145129	Underdetermined poaceae	Spain	MK014869	MK014836	MK017975	MK017946
Apiospora bambusae	ICPM 6889	Bamboo	New Zealand	MK014874	MK014841	MK017980	MK017951
Apiospora bambusae	CBS 145133	Phyllostachys aurea	Spain	MK014875	MK014842	MK017981	MK017952
Apiospora bambusicolor	MFLUCC20-0144	Schizostachyum brachycladum	Thailand	MW173030	MW173087	-	MW183262
Apiospora biserialis	CGMCC 3.20135	Bamboo	China	MW481708	MW478885	MW522955	MW522938
Apiospora biserialis	GZCC 20_0099	Bamboo	China	MW481709	MW478886	MW522956	MW522939
Apiospora biserialis	GZCC 20_0100	Bamboo	China	MW481710	MW478887	MW522957	MW522940
Apiospora camelliae-sinensis	LC 5007	Camellia sinensis	China	KY494704	KY494780	KY705173	KY705103
Apiospora camelliae-sinensis	LC 8181	Brassica rapa	Thailand	KY494761	KY494837	KY705229	KY705157
Apiospora chromolaenae	MFLUCC17-1505	Chromolaena odorata	Thailand	MT214342	MT214436	-	MT235802
Apiospora chiangraiense	MFLUCC21-0053	Dead culms of bamboo	Thailand	MZ542520	MZ542524	MZ546409	-
Apiospora cordylinae	GUCC 10026	Cordyline fruticosa	China	MT040105	MT040147	MT040126	-
Apiospora cyclobalanopsidis	CGMCC 3.20136	Cyclobalanopsidis gauca	China	MW481713	MW478892	MW522962	MW522945
Apiospora cyclobalanopsidis	CGMCC 20_0103	Cyclobalanopsidis gauca	China	MW481714	MW478893	MW522963	MW522946
Apiospora descalsii	CBS 145130	Ampelodesmos mauritianicus	Spain	MK014870	MK014837	MK017976	MK017947
Apiospora dichotomanthi	LC 4950	Dicotomanthes tristimpanicarpa	China	KY494697	KY494773	KY705167	KY705086
Apiospora dichotomanthi	LC 8175	Dicotomanthes tristimpanicarpa	China	KY494755	KY494831	KY705223	KY705151
Apiospora esporleinsensis	CBS 145136	Phyllostachys aurea	Spain	MK014878	MK014845	MK017983	MK017954
Apiospora euphorbiae	IMI 285638b	Bambusa sp.	Bangladesh	AB220241	AB220335	AB220288	-
Apiospora gaoyouensis	CFCC 52301	Phragmites australis	China	MH197124	-	MH236789	MH236793
Apiospora gaoyouensis	CFCC 52302	Phragmites australis	China	MH197125	-	MH236790	MH236794
Apiospora garethienses	KUMCC 16-0202	Dead culms of bamboo	China	KY356086	KY356091	-	-
Apiospora gelatinosa	KHAS 11962	Bamboo	China	MW481706	MW478888	MW522958	MW522941
Apiospora gelatinosa	GZASAS 20-0107	Bamboo	China	MW481707	MW478889	MW522959	MW522942
Apiospora guizhouensis	LC 5318	Air in karst cave	China	KY494708	KY494784	KY705177	KY705107
Apiospora guizhouensis	LC 5322	Air in karst cave	China	KY494709	KY494785	KY705178	KY705108
Apiospora hispanica	IMI 326877	Beach sand	Spain	AB220242	AB220336	AB220289	-
Taxa Names	Strain Numbers	Substrates	Countries	GenBank Accession Numbers			
--------------------------------	----------------	--------------------------	-----------	--------------------------			
				ITS			
Apiospora hydei	CBS 114990	Bambusa tuloides	China	KF144890 KF144936 KF144982 KF145024			
Apiospora hydei	KUMCC 16-0204	Dead culms of bamboo	China	KY356087 KY356092 - -			
Apiospora hypophodii	MFLUCC15-0003	Bambusa tuloides	China	KRO69110 - - -			
Apiospora hypophodii	KUMCC 16-0201	Culms of bamboo	China	KY356088 KY356093 - -			
Apiospora iberica	CBS 145137	Arundo donax	Portugal	MK014879 MK014846 MK017984 MK017955			
Apiospora intestini	CBS 135835	Gut of a grasshopper	India	KR011352 MIH87777 KR011350 KR011351			
Apiospora intestini	MFLUCC 21-0052	Dead culms of bamboo	Thailand	MZ542521 MZ542525 MZ546410 MZ546406			
Apiospora italica	CBS 145138	Arundo donax	Italy	MK014880 MK014847 MK017985 MK017956			
Apiospora italica	CBS 145139	Phragmites australis	Spain	MK014881 MK014848 MK017986 -			
Apiospora jatrophae	AMH-9557	Jatropha podagrica	India	JQ246355 - - -			
Apiospora jatrophae	AMH-9556	Jatropha podagrica	India	HE981191 - - -			
Apiospora jiangxiensis	LC 4494	Phyllostachys sp.	China	KY494690 KY494766 KY705160 KY705089			
Apiospora jiangxiensis	LC 4577	Maesa sp.	China	KY494693 KY494769 KY705163 KY705092			
Apiospora kogelbergensis	CBS 113332	Cannomois virgata	South Africa	KF144891 KF144937 KF144983 KF145025			
Apiospora kogelbergensis	CBS 113333	Dead culms of Restionaceae	South Africa	KF144892 KF144938 KF144984 KF145026			
Apiospora locuta-pollinis	LC 11688	Bee bread	China	MF939596 MF939623 MF939618			
Apiospora locuta-pollinis	LC 11683	Brassica campestris	China	MF939595 MF939622 MF939616			
Apiospora longistroma	MFLUCC 11-0479	Dead culms of bamboo	Thailand	KU940142 KU863130 - -			
Apiospora longistroma	MFLUCC 11-0481	Dead culms of bamboo	Thailand	KU940141 KU863129 - -			
Apiospora malayasiensis	CBS 102053	Macaranga hululletii	Malaysia	KF144896 KF144942 KF144988 KF145030			
				AB220252 KF144947 KF144993 KF145035			
Apiospora marii	CBS 497.90	Beach sands	Spain	AB220243 AB220337 AB220290 -			
Apiospora marii	DiSSPA_A1	Oleaeuropaea	Italy	MK602320 - - -			
Apiospora mediterranea	IMI 326875	Air	Spain	AB220243 AB220337 AB220290 -			
Apiospora minutispora	I.70E-41	Mountain soil	Korea	LCS17882 - - -			
Apiospora mytilomorpha	DAOM 214595	Andropogon sp.	India	KY494685 - - -			
Apiospora neobambusae	LC 7106	Leaves of bamboo	China	KY494718 KY494794 KY705186 KY806204			
Apiospora neobambusae	LC 7124	Leaves of bamboo	China	KY494727 KY494803 KY705195 KY806206			
Apiospora neochinensis	CFCC 53036	Fargesia sinlingensis	China	MK819291 MK818547 MK818548 MK818546			
Apiospora neochinensis	CFCC 5307	Fargesia sinlingensis	China	MK819292 MK818547 MK818548 MK818546			
Apiospora neogarethjonesii	DQD 2019a	Bamboo	China	MK070897 MK070898 - -			
Apiospora neosubglobosa	JHB 006	Bamboo	China	KY356089 KY356094 - -			
Apiospora neosubglobosa	KUMCC 16-0203	Bamboo	China	KY356090 KY356095 - -			
Taxa Names	Strain Numbers	Substrates	Countries	GenBank Accession Numbers			
----------------------------------	----------------	------------------------------	-------------	---------------------------			
Apiospora obovata	LC 4940	Lithocarpus sp.	China	KY494696 KY494772 KY705166 KY705095			
Apiospora obovata	LC 8177	Lithocarpus sp.	China	KY494757 KY494833 KY705225 KY705153			
Apiospora ovata	CBS 115042	Arundinaria hindsii	China	KF144903 KF144950 KF144995 KF145037			
Apiospora paraphaeosperma	MFLUCC13-0644	Dead culms of bamboo	Thailand	KX822128 KX822124 - -			
Apiospora phragmitis	CPC 18900	Phragmites australis	Italy	KF144909 KF144956 KF145001 KF145043			
Apiospora phyllostachydys	MFLUCC18-1101	Phyllostachys heteroclada	China	MK351842 MH368077 MK291949 MK340918			
Apiospora piptatheri	CBS 145149	Piptatherum miliaceum	Spain	MK014893 MK014860 - MK017969			
Apiospora pseudomarii	GUCC 10228	Aristolochia debilis	China	MT040124 - MT040166 MT040145			
Apiospora pseudoparenchymatica	LC 7234	Leaves of bamboo	China	KY494743 KY494819 KY705211 KY705139			
Apiospora pseudoparenchymatica	LC 8173	Leaves of bamboo	China	KY494753 KY494829 KY705221 KY705149			
Apiospora pseudorakravindrae	KUMCC 20-0208	Bambusa dolichoclada	Thailand	MT946344 - MT947367 MT947361			
Apiospora pseudosinensis	CPC 21546	Leaves of bamboo	Netherlands	KF144910 KF144957 - KF145044			
Apiospora pseudospegazzinii	CBS 102052	Macaranga hulletii	Malaysia	KF144911 KF144958 KF145002 KF145045			
Apiospora pterosperma	CBS 123185	Machaerina sinclatii	New Zealand	KF144912 KF144959 KF145003 -			
Apiospora pterosperma	CPC 20193	Lepidosperma gladiatum	Australia	KF144913 KF144960 KF145004 KF145046			
Apiospora qinlingensis	CFCC 52303	Fargesia qinlingensis	China	MH1197120 - MH236791 MH236795			
Apiospora qinlingensis	CFCC 52304	Fargesia qinlingensis	China	MH1197121 - MH236792 MH236796			
Apiospora rasikravindrae	LC 8179	Brassica rapa	China	KY494759 KY494835 KY705227 KY705155			
Apiospora rasikravindrae	NFCCI 2144	Soil	Norway	JF326454 - - - -			
Apiospora rasikravindrae	MFLUCC 21-0051	Dead culms of bamboo	Thailand	MZ524253 MZ524257 MZ546412 MZ546408			
Apiospora rasikravindrae	MFLUCC 21-0054	Dead culms of Maize	Thailand	MZ524252 MZ524256 MZ546411 MZ546407			
Apiospora sacchari	CBS 372.67	Air	-	KF144918 KF144964 KF145007 KF145049			
Apiospora sacchari	CBS 664.74	Soil under Calluna vulgaris	Netherlands	KF144919 KF144965 KF145008 KF145050			
Apiospora saccharola	CBS 191.73	Air	Netherlands	KF144920 KF144966 KF145009 KF145051			
Apiospora saccharola	CBS 831.71	-	Netherlands	KF144922 KF144969 KF145012 KF145054			
Apiospora septata	CGMCC 3.20134	bamboo	China	MW481717 MW478890 MW522960 MW522943			
Apiospora septata	GZCC 20_0109	bamboo	China	MW481712 MW478891 MW522961 MW522944			
Apiospora serenensis	IMI 326869	bamboo, pharmaceutical	Spain	AB220250 AB220344 AB220297 -			
Apiospora setariae	MT492005	Setaria viridis	China	MT492005 - MT497467 MW118457			
Apiospora setostroma	KUMCC 19-0217	Dead branches of bamboo	China	MN528012 MN528011 - MN527357			
Taxa Names	Strain Numbers	Substrates	Countries	GenBank Accession Numbers			
----------------------------	----------------	-----------------------------	---------------	----------------------------			
		rts					
Apiospora sorghi	URM 93000	Sorghum bicolor	Brazil	MK371706			
Apiospora subglobosa	MFLUCC11-0397	Dead culms of bamboo	Thailand	K069112 - K069113			
Apiospora subrosea	LC 7291	Leaves of bamboo	China	KY494751 - KY494827			
Apiospora subrosea	LC 7292	Leaves of bamboo	China	KY494752 - KY494828			
Apiospora thailandica	MFLUCC 15-0199	Dead culms of bamboo	Thailand	KU940146 - KU863134			
Apiospora thailandica	MFLUCC15-0202	Dead culms of bamboo	Thailand	KU940145 - KU863133			
Apiospora vietnaminensis	IMI 99670	Citrus sinensis	Vietnam	KX986096 - KX986111			
Apiospora xenocordella	CBS 478.86	Soil from roadway	Zimbabwe	KF144925 - KF145013			
Apiospora yunnana	CBS 595.66	Soil	Austria	KF144926 - KF144971			
Apiospora yunnana	DDQ 00281	Phyllostachys nigra	China	KU940148 - KU863136			
Arthrinium austriacum	GZU 345004	Carex pendula	Austria	MW208928 - MW208860			
Arthrinium austriacum	GZU 345006	Carex pendula	Austria	MW208929 - MW208860			
Arthrinium cf. sporophleoides	GZU 345102	Carex firma	Austria	MW208944 - MW208866			
Arthrinium caricola	CBS 145127	Carex ericetorum	China	MK048178 - MK014838			
Arthrinium crenatum	AG 19066	Poaceae, Carex	France	MW208931 - MW208861			
Arthrinium curvatum	AP 25418	Leaves of Carex sp.	China	MK048172 - MK014839			
Arthrinium japonicum	IFO 30500	-	Japan	AB220262 - AB220356			
Arthrinium japonicum	IFO 31098	Leaves of Carex despalata	Japan	AB220264 - AB220358			
Arthrinium luzulae	AP7619-3	Luzula sylvestra	Spain	MW208937 - MW208863			
Arthrinium morthieri	GZU 345043	Cyperaceae carex	Austria	MW208938 - MW208864			
Arthrinium puccinioides	CBS 14317	Leaves of Hordeum vulgare	Iran	KF144906 - KF144953			
Arthrinium phaeospermum	CBS 14318	Leaves of Hordeum vulgare	Iran	KF144907 - KF144954			
Arthrinium spinaferrioides	CBS 549.86	Lepidossperma gladiatum	Germany	AB220253 - AB220347			
Arthrinium sphaerosperrum	AP25619/CBS 146355	Poaceae	Norway	AB220241 - AB220347			
Arthrinium sporophleum	CBS 145135	Dead leaves of juncus sp.	Spain	MK014898 - MK014865			
Arthrinium trachycarpum	CFCC 53038	Trachycarpus fortune	China	KF144908 - KF144954			
Arthrinium urticae	IMI 326344	Trachycarpus fortune	China	KF144909 - KF144954			
Arthrinium trachycarpum	CFCC 53039	Trachycarpus fortune	China	KF144909 - KF144954			
Nigrospora aurantica	CGMCC 3.18130	Nelumbo sp.	China	KX986064 - KX986098			
Nigrospora camelliae-sinensis	CGMCC 3.18125	Camellia sinensis	China	KX985986 - KX986103			
Nigrospora chinensis	CGMCC 3.18127	Machilus breviflora	China	KX986023 - KX986107			
Table 1. Cont.

Taxa Names	Strain Numbers	Substrates	Countries	GenBank Accession Numbers
Nigrospora gorlenkoana	CBS 480.73	Vitis vinifera	Kazakhstan	KX986048 KX986109 KY019456 KY019420
Nigrospora guiliniensis	CGMCC 3.18124	Camellia sinensis	China	KX985983 KX986113 KY019459 KY019292
Nigrospora hainanensis	CGMCC 3.18129	Musa paradisiaca	China	KX986091 KX986112 KY019464 KY019415
Nigrospora lacticolonia	CGMCC 3.18123	Camellia sinensis	China	KX983978 KX986105 KY019458 KY019291
Nigrospora musae	CBS 319.34	Musa sp.	Australia	MH855545 KX986110 KY019455 KY019419
Nigrospora oryzae	LC2693	Neolitsea sp.	China	KX986044 KX986101 KY019471 KY019299
Nigrospora osmanthi	CGMCC 3.18126	Hedera nepalensis	China	KX986010 KX986106 KY019461 KY019421
Nigrospora pyriformis	CGMCC 3.18122	Citrus sinensis	China	KX985940 KX986100 KY019457 KY019290
Nigrospora rubi	LC2698	Rubus sp.	China	KX985948 KX986102 KY019475 KY019302
Nigrospora sphaerica	LC7298	Nelumbo sp.	China	KX985937 KX986097 KY019606 KY019401
Nigrospora vesicularis	CGMCC 3.18128	Musa paradisiaca	China	KX986088 KX986099 KY019463 KY019294
Sporocadus trimorphus	CBS 114203	Rosa canina	Sweden	MH553977 MH554196 MH554636 MH554395

Notes: Newly generated sequences are indicated by ▲ after the species name. Ex-type strains are in bold. - = information not available. Abbreviations: AMH: Ajrekar Mycological Herbarium, Pune, Maharashtra, India; CBS: Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands; CFCC: China Forestry Culture Collection Center, Beijing, China; CPC: Culture collection of Pedro Crous, housed at the Westerdijk Fungal Biodiversity Institute; DAOM: Canadian Collection of Fungal Cultures, Ottawa, Canada; DDQ: D.Q. Dai; GUCC: Guizhou University Culture Collection, Guizhou, China; ICMP: International Collection of Microorganisms from Plants, New Zealand; IFO: Institute for Fermentation, Osaka, Japan; IMI: Culture collection of CABI Europe UK Centre, Egham, UK; JHB: H.B. Jiang; KUMCC: Culture collection of Kunming Institute of Botany, Yunnan, China; LC: Personal culture collection of Lei Cai, housed in the Institute of Microbiology, Chinese Academy of Sciences, China; MFLUCC: Mae Fah Luang University Culture Collection, Chiang Rai, Thailand; NFCCI: National Fungal Culture Collection of India.
2.3. Phylogenetic Analyses

The sequences generated in this study were subjected to a basic local alignment search tool (BLAST) search in the GenBank to identify closely related *Apiospora* taxa to the taxa obtained in this study. The sequences of *Apiospora* were also obtained from recently published data [4,18,34–39]. Consensus sequences were assembled and aligned using BioEdit and MAFFT v.7.110 online program, respectively (http://mafft.cbrc.jp/alignment/server, accessed on 12 August 2021) [40], and manually edited using BioEdit v7.2.3 [41].

The construction of the combined phylogenetic trees was completed using maximum likelihood (ML) and Bayesian inference posterior probabilities (BYPP), with *Sporocadus trimorphus* (CBS 114203) as the outgroup taxon. The models were selected as GTRGAMMA for maximum likelihood, while the best-fit models were selected as GTR + I + G for ITS, LSU and HKY + I + G for TUB2, and TEF1-α for the Bayesian posterior probability analysis. The maximum likelihood (ML) analysis was performed using RAxML-HPC v.8 [42,43] on the XSEDE TeraGrid of the CIPRES Science Gateway (https://www.phylo.org, accessed on 12 August 2021) [44] with a rapid bootstrap analysis, followed by 1000 bootstrap replicates. The final tree was selected amongst the suboptimal trees from each run by comparing the likelihood scores under the GTRGAMMA substitution model. The Bayesian analyses were performed by MrBayes v. 3.2 [45]. Markov chain Monte Carlo (MCMC) was run for 5,000,000 generations, and the trees were sampled every 100th generation. The first 10% of the trees that represented the burn-in phase were discarded, and only the remaining 90% of the trees were used for calculating the posterior probabilities (PP) for the majority rule consensus tree. Phylogenetic trees were visualized with FigTree v. 1.4.2 [46] and modified in Adobe Illustrator CS5 software (Adobe Systems, USA). The newly obtained sequences in this study were deposited in the GenBank.

3. Results

3.1. Phylogeny

The combined ITS, LSU, TEF1-α and TUB2 dataset comprised 138 strains, including four newly sequenced strains, with *Sporocadus trimorphus* (CBS 114203) as the outgroup taxon. Multi-locus sequences were concatenated, which comprised 2820 nucleotide characters, including gaps (ITS: 1–637, LSU: 638–1518, TEF1-α: 1519–1971 and TUB2: 1972–2799). The phylogenic tree from the RAxML analysis had similar topology to the Bayesian analysis. The RAxML analysis of the combined dataset yielded the best scoring tree (Figure 1) with a final ML optimization likelihood value of −27840.652840. The matrix had 1446 distinct alignment patterns, with 27.45% undetermined characters or gaps. The estimated base frequencies were as follows: A = 0.238477, C = 0.253732, G = 0.254209, T = 0.253582; substitution rates AC = 1.244445, AG = 3.021293, AT = 1.211434, CG = 1.060781, CT = 4.719948, GT = 1.000000; gamma distribution shape parameter α = 0.298987.

The phylogenetic trees generated by maximum likelihood and Bayesian show the taxonomic placements of our total strains belong to *Apiospora*. The strains MFLUCC 21-0051 and MFLUCC 21-0054 clustered together with members of *Apiospora* and grouped with *Ap. rasikravindrae* (NFCCCL 2144 and LC 8179). The strain MFLUCC 21-0052 presented as a distinct lineage and sister to *Ap. intestine* (CBS 135835) with significant statistical support (ML/BI = 100/1.00). The strain MFLUCC 21-0053 clustered with *Ap. intestine* (CBS 135835), but in a distinct clade with high support (ML/BI = 100/1.00).
Figure 1. Cont.
3.2. Taxon Treatment

Apiospora chiangraiense X.G. Tian and Tibpromma S., sp. nov. (Figure 2).

Index Fungorum number: IF558492; Faces of Fungi number: FoF 09905.

Etymology: Referring to Chiang Rai Province, Thailand, where the fungus was collected.
Figure 2. *Apiospora chiangraiense* (MFLU 21-0046, holotype). (a–c) Appearance of the fungus on dead culms of bamboo. (d–i) Conidia with conidiophores. (j–l) Conidiogenous cells bearing conidia. (n,o,q) Conidia. (p) Conidia with germ-slit. (m) Germinated conidium. (r,s) Colonies on PDA media (r forward, s reversed). Scale bars: a = 4000 μm, b = 1000 μm, c = 200 μm and d–q = 10 μm.

Saprobic on dead culms of bamboo. **Sexual morph**: undetermined. **Asexual morph**: Colonies on natural substrate are dry, dark brown to black, velvety, dull, consisting of a sterile mycelial outer zone and a round, glistening, abundantly sporulating center, with conidia readily liberated when disturbed. **Mycelium** is superficial, branched, hyaline to dark
brown, septate, smooth-walled and hyphae. **Conidiophores** are reduced to conidiogenous cells, grouped together to form sporodochia. **Conidiogenous cells** are 4–7.5 μm high × 3–4 μm diam. \(\bar{x} = 6 \times 3.5 \mu m^2, n = 30 \), monoblastic or polyblastic, aggregated in clusters on hyphae, hyaline to light brown, smooth and cylindrical to subcylindrical. **Conidia** are aseptate, pale brown to dark brown, in the surface view 6.5–8 × 6–8 μm\(^2\) \(\bar{x} = 7.5 \times 7 \mu m^2, n = 50 \), in the lateral view 6–7.5 × 4–5.5 μm\(^2\) \(\bar{x} = 7 \times 5 \mu m^2, n = 50 \), with a central scar, globose in the surface view, a lenticular inside view, with straight germ slit spore length.

Culture characteristics: Conidia germinating on PDA within 24 h at room temperature (25 °C). On the PDA, the colonies’ surfaces are white, lightly yellow, wooly, flat, spreading, filiform, with abundant aerial mycelia and reverse off-white to yellow.

Material examined: THAILAND, Chiang Rai Province, Muang District, on dead culms of bamboo, 23 October 2020, X.G. Tian bb-4-5, (MFLU 21-0046, holotype); ex-type culture, MFLUCC 21-0053.

Notes: In the phylogenetic analyses, **Apiospora chiangraiense** formed a distinct clade sister to **Ap. intestini** with strong bootstrap support values (ML/BI = 100/1.00). Morphologically, **Ap. chiangraiense** is distinct from **Ap. intestini** by conidiogenous cells, conidiophores and conidia. The conidiophores of **Ap. intestini** are usually hyaline, macronematous, mononematous and transversely septate, while **Ap. chiangraiense** has reduced conidiophores and conidiogenous cells grouped together to form sporodochia. Additionally, **Ap. chiangraiense** has larger conidia compared to **Ap. intestini** (surface view 6.5–8 × 6–8 μm\(^2\), lateral view 6–7.5 × 4–5.5 μm versus surface view 4.5–5.5 (–6) μm diam, side view (2–) 4 (–6) μm diam). Based on pairwise nucleotide comparisons, **Ap. chiangraiense** is different from **Ap. intestini** (CBS 135835) in 27/583 bp (4.63/) of the ITS, 9/814 (1.1%) of the LSU and 61/696 bp (8.76%) of TUB2, but we were unable to compare TEF-α pairwise nucleotides as the amplification of TEF-α was not successful for this species. However, both the phylogenetic analyses and morphological characteristics supported our species as a distinct new species.

Apiospora intestini (Kajale, Sonawane and Rohit Sharma) Pintos and P. Alvarado, Fungal Systematics and Evolution 7: 206 (2021) (Figure 3).

Index Fungorum number: IF 837744.

Saprobic on dead culms of bamboo. **Sexual morph**: undetermined. **Asexual morph**: Colonies are on natural substrate surface, gregarious, powdery, dark brown to black, dull with conidia readily liberated when disturbed. **Conidiophores** are 1.5–2 μm wide (\(\bar{x} = 2 \mu m, n = 40 \)) hyaline, macronematous, mononematous, transversely septate, thick-walled, brown. **Conidiogenous cells** are 6–9.5 × 1.5–2 μm\(^2\) \(\bar{x} = 7.5 \times 2 \mu m^2, n = 30 \), intercalary, cylindrical, hyaline. **Conidia** are 6.5–5 × 6–10 μm\(^2\) \(\bar{x} = 7 \times 5.5 \mu m^2, n = 50 \), borne as bunches on conidiophores, lateral, pale brown to brown, smooth-walled, globose to subglobose or irregularly round, aseptate, with a central scar and without germ slit.

Culture characteristics: Conidia germinating on PDA within 24 h at room temperature. The colonies’ surfaces are white, cottony, flat, spreading, filiform, mycelia not tightly attached to the surface and the reverse lightly pigmented.

Material examined: THAILAND, Chiang Rai Province, Muang District, on dead culms of bamboo, 23 October 2020, X.G. Tian bb-4-2 (MFLU 21-0045, living culture, MFLUCC 21-0052).

Notes: **Apiospora intestini** was introduced by Crous et al. [19] based on the morphology of asexual morph and the phylogenetic analyses. In this paper, our new isolate (MFLUCC 21-0052) clustered with the ex-type strain of **Ap. intestini** with relatively high support (ML/BI = 100/1.00). Morphologically, the conidia of the new isolate (MFLUCC 21-0052) are similar to the holotype **Ap. intestini** (CBS 135835) in having similar size of conidiophores that are borne as bunches, intercalary and terminal, brown, smooth, aseptate and globose to subglobose. Based on nucleotide comparisons, **Ap. intestini** (MFLUCC 21-0052) is slightly different from **Ap. intestini** in 12/580 bp (2.07%) of the ITS, 2/814 (0.24%) of the LSU,
Life 2021, 11, x FOR PEER REVIEW 16 of 24

2/684 bp (0.29%) of TUB2 and 2/610 bp (0.32%) of TEF1-α. Based on both phylogeny and morphology, the new isolate (MFLUCC 21-0052) is identified as Ap. intestini. This is the first report of Ap. intestini (MFLUCC 21-0052) isolated from dead culms of bamboo in Thailand, which was originally isolated from a grasshopper’s gut in India.

Figure 3. Apiospora intestini (MFLU 21-0045). (a–c) Appearance of the fungus on dead culms of bamboo. (d–g) Conidia with conidiophores. (h–j, l, m) Conidiogenous cells bearing conidia. (n–s) Conidia. (k) Germinated conidium. (t, u) Colonies on PDA media (t forward, u reversed). Scale bars: a = 4000 μm, b = 1000 μm, c = 200 μm, d–g = 20 μm, h–m = 10 μm and n–s = 5 μm.

Apiospora rasikravindrae (Shiv M. Singh, L.S. Yadav, P.N. Singh, Rahul Sharma and S.K. Singh) Pintos and P. Alvarado, Fungal Systematics and Evolution 7: 207 (2021) (Figure 4).

Index Fungorum number: IF 837716; Faces of Fungi number: FoF 01994.

Saprobic on dead culms of bamboo. Colonies appear as spotty patches on natural substrate surface. Conidiomata are immersed, pycnidial, scattered, globose to slightly conical, ostiolar, black, coriaceous. Conidiophores are 9–26 × 1–2.5 μm² (x = 17.5 × 2 μm², n = 15), arising mostly from swollen basal cells, micro to semi-macronematous, mononematous, unbranched, straight or flexuous, smooth and thin-walled, hyaline. Conidiogenous cells are basauxic, discrete, hyaline, smooth-walled. Conidia in surface view are 9–11 × 9–10.5 μm² (x = 10 × 10 μm², n = 50), in lateral view 10–11 × 6.5–8 μm² (x = 10.5 × 7.5 μm², n = 20), lenticular, globose to ovoid, occasionally elongated to ellipsoidal, brown to dark brown, smooth-walled, with a longitudinal, thin-walled, with a pale equatorial slit.

Material examined: THAILAND, Chiang Rai Province, Muang District, isolated as Saprobic on dead culms of bamboo, 23 October 2020, X. G. Tian, bb-4-1 (MFLU 21-0044),
living culture, MFLUCC 21-0051; *ibid* decaying maize culms, 11 November 2020, X. G. Tian, corn-1-1 (HKAS 115764), living culture, MFLUCC 21-0054

Figure 4. *Apiospora rasikravindrae* (MFLU 21-0045). (a–c) Appearance of the fungus on dead culms of bamboo. (d–i) Conidia with conidiophores. (j,k,t,u) Conidiogenous cells bearing conidia. (l,m) Conidia with germ-slit. (p–r) Conidia. (n) Germinated conidium. (o,s) Colonies on PDA media (o forward, s reversed). Scale bars: a = 4000 µm, b = 2000 µm, c = 200 µm and d–s = 10 µm.
Notes: The National Center for Biotechnology Information (NCBI) BLAST results of ITS, LSU, TUB2 and TEF1-α sequences of our new isolate (MFLUCC 21-0054) showed high similarities with *Apiospora rasikravindrae* (LC 8179) (100%, 100%, 98.90% and 98.97%, respectively), while the new isolate (MFLUCC 21-0051) also showed high similarities with *Apiospora rasikravindrae* (LC 8179) (99.83%, 100%, 99.61% and 99.51%, respectively). Our phylogenetic analyses showed that the two new isolates clustered with the ex-type strain of *Ap. rasikravindrae* (NFCCI 2144) and *Ap. rasikravindrae* (LC 8179). Morphologically, our new isolate is closely related to the holotype of *Ap. rasikravindrae* in having lenticular, globose to ovoid, occasionally elongated to ellipsoidal, brown to dark brown, smooth-walled, germ-slit conidia and micro-semi-macronematous, mononematous, unbranched, straight or flexuous, smooth and thin-walled and hyaline conidiophores. Hence, the two new isolates are identified as *Ap. rasikravindrae*.

Apiospora rasikravindrae was originally isolated from soil in Norway [47]. *Apiospora rasikravindrae* occurred on *Capsicum*, *Kappaphycus alvarezii*, *Pinus*, *Platanus acerifolia*, rice, *Sargassum thunbergia* and *Triticum aestivum* from Brazil, China, India, Japan, Netherlands, Svalbard and Thailand [3,48]. Dai et al. [3] describe and illustrate both sexual and asexual morphs for *Ap. rasikravindrae* and it was collected on the stems of bamboo. In this study, the isolate MFLUCC 21-0051 was newly collected from bamboo, while the isolate MFLUCC 21-0054 was newly recorded from maize.

3.3. New Combinations

Apiospora acutiapica (Senan. and Cheew) X.G. Tian and Tibpromma S., comb. nov.

Index Fungorum number: IF558499.

Basionym: *Arthrinium acutiapicum* Senan. and Cheew, Frontiers in Microbiology 11. 2020.

Notes: *Arthrinium acutiapicum* was introduced by Senanayake et al. [34] and was collected on dead twigs of *Bambusa bambos* in China. Senanayake et al. [34] mentioned that this species is distinct from *Ar. pseudorasikravindrae*, which is a sister to *Ar. acutiapicum*, by the reduction of conidiophores to conidiogenous cells, cylindrical to ampulliform, pale brown conidiogenous cells with pointed, hyaline apex and brown to dark brown and smooth-walled conidia with a dark equatorial slit [34].

In our phylogenetic analysis based on combined LSU, ITS, TEF1-α and TUB2 sequence data, *Arthrinium acutiapicum* clustered with *Apiospora pseudorasikravindrae (=*Ar. pseudorasikravindrae*) with high support (ML/BI = 95/-). Thus, we propose the transfer of *Ar. acutiapicum* under the new combination *Ap. acutiapica*, based on the morphological and phylogenetic analyses.

Apiospora bambusicola (X. Tang, K.D. Hyde and J.C. Kang) X.G. Tian and Tibpromma S., comb. nov.

Index Fungorum number: IF558493; Faces of Fungi number: FoF 09162.

Basionym: *Arthrinium bambusicola* X. Tang, K.D. Hyde and J.C. Kang, Biodiversity Data Journal 8 (e58755): 11 2020.

Notes: *Arthrinium bambusicola* was introduced by Tang et al. [18] and was collected on dead culms of *Schizostachyum brachycladum* in Thailand. Tang et al. [18] mentioned that *Ar. bambusicola* were retrieved as a sister taxon of *Ar. gutiae* with high support (ML/BI = 83/0.99), but differs from *Ar. gutiae* in having larger conidia and irregularly rounded, guttulate to roughened conidia. Pintos and Alvarado [4] transferred *Ar. gutiae* to *Apiospora* based on the phylogenetic analyses and morphological characters.

In our phylogenetic analyses based on combined LSU, ITS, TEF1-α and TUB2 sequence data, *Arthrinium bambusicola* is a sister to the newly introduced species *Ap. chiangraiense* with high support (ML/BI = 80/0.99). Thus, we propose the transfer of *Ar. bambusicola* under the new combination *Ap. bambusicola*, based on the morphological and phylogenetic analyses.

Apiospora biserialis (Y. Feng and Z.Y. Liu) X.G. Tian and Tibpromma S., comb. nov.
Index Fungorum number: IF558502; Faces of Fungi number: FoF 09569.
Basionym: Arthrinium biseriale Y. Feng, J.K. Liu, C.G. Lin, Y.Y. Chen, M.M. Xiang and Z.Y. Liu, Frontiers in Microbiology 12. 2021.

Notes: Arthrinium biseriale was introduced by Feng et al. [49] from dead culms of bamboo in China. The phylogenetic analysis of Feng et al. [49] showed that Ar. biseriale is closely related to Ar. gelatinosum, but they are phylogenetically distinct and can be recognized as two different species. Morphologically, Ar. biseriale has smaller stromata and the spores of Ar. biseriale are more curved than those of Ar. gelatinosum [49].

In our phylogenetic analyses based on combined LSU, ITS, TEF1-α and TUB2 sequence data, Arthrinium biseriale clustered with Apiospora gelatinosa with high support (ML/BI = 90/0.99). Thus, we propose the transfer of Ar. biseriale under the new combination *Ap. biserialis*, based on the morphological and phylogenetic analyses.

Apiospora cordylines (T.Z. Chen, Yong Wang bis and K.D. Hyde) X.G. Tian and Tibpromma S., comb. nov.

Index Fungorum number: IF558494.
Basionym: Arthrinium cordylines T.Z. Chen, Yong Wang bis and K.D. Hyde, Mycotaxon 136(1): 189 2021.

Notes: Arthrinium cordylines was introduced by Chen et al. [39] from the leaves of Cordyline fruticosa in China. Chen et al. [39] mentioned that Ar. cordylinae formed a well-supported branch with type strains of Ar. aureum (CBS 244.83) and Ar. hydei (CBS 114990). Meanwhile, a base difference comparison also confirmed Ar. cordylinae is a distinct species.

In our phylogenetic analyses, Arthrinium cordylines is a sister to *Ap. hydei* with high support (ML/BI = 96/0.99). Thus, we propose the transfer of Ar. cordylines under the new combination *Ap. cordylines*.

Apiospora cyclobalanopsidis (Y. Feng and Z.Y. Liu) X.G. Tian and Tibpromma S., comb. nov.

Index Fungorum number: IF558503; Faces of Fungi number: FoF 09572.
Basionym: Arthrinium cyclobalanopsidis Y. Feng, J.K. Liu, C.G. Lin, Y.Y. Chen, M.M. Xiang and Z.Y. Liu, Frontiers in Microbiology 12. 2021.

Notes: Arthrinium cyclobalanopsidis was introduced by Feng et al. [49] from a leaf of Cyclobalanopsidis glauca Oerst in China. Feng et al. [49] showed that Ar. cyclobalanopsidis clustered with *Ar. camelliae-sinensis*, but can be distinguished from *Ar. camelliae-sinensis* by conidiogenous cells. Pintos and Alvarado [4] transferred *Ar. camelliae-sinensis* to *Apiospora camelliae-sinensis*, based on the phylogenetic analyses and morphological characteristics.

In our phylogenetic analyses based on combined LSU, ITS, TEF1-α and TUB2 sequence data, Arthrinium cyclobalanopsidis clustered with *Ap. camelliae-sinensis* with high support (ML/BI = 78/1.00). Thus, we propose the transfer of Ar. cyclobalanopsidis under the new combination *Ap. cyclobalanopsidis*, based on the morphological and phylogenetic analyses.

Apiospora euphorbiae (M.B. Ellis) X.G. Tian and Tibpromma S., comb. nov.

Index Fungorum number: IF558495.
Basionym: Arthrinium euphorbiae M.B. Ellis, Mycol. Pap. 103: 6 1965.

Notes: Arthrinium euphorbiae was introduced by Ellis et al. [24] from the dead stems of Euphorbia in Zambia. Tang et al. [18] showed that Ar. euphorbiae is phylogenetically closely related to Ar. malaysianum, Ar. vietnamensis, and Ar. chromolaenae [4,18].

In our phylogenetic analyses, Ar. euphorbiae is a sister to *Ap. malaysiana (=Ar. malaysianum) with strong bootstrap support values (ML/PP = 94/0.99). Thus, we propose the transfer of Ar. euphorbiae under the new combination *Ap. euphorbiae*.

Apiospora gelatinosa (Y. Feng and Z.Y. Liu) X.G. Tian and Tibpromma S., comb. nov.

Index Fungorum number: IF558504; Faces of Fungi number: FoF 09570.
Basionym: Arthrinium gelatinosum Y. Feng, J.K. Liu, C.G. Lin, Y.Y. Chen, M.M. Xiang and Z.Y. Liu, Frontiers in Microbiology 12. 2021.
Notes: *Arthrinium gelatinosum* was introduced by Feng et al. [49] from dead culms of bamboo in China. Feng et al. [49] mentioned that *Ar. gelatinosum* is a sister to *Ar. biseriale* with a well-supported lineage (ML/MP/BI = 93/98/1.00) [49].

In our phylogenetic analyses, *Arthrinium gelatinosum* clustered with *Apiospora biserialis* with high support (ML/BI = 90/0.99). Thus, we propose the transfer of *Ar. gelatinosum* under the new combination *Ap. gelatinosa*.

Apiospora locuta-pollinis (F. Liu and L. Cai) Pintos and P. Alvarado, X.G. Tian and Tibpromma S., comb. nov.

Index Fungorum number: 834523; Faces of Fungi number: FoF05221.

Synonyms: *Arthrinium pseudomarii* T.Z. Chen, Yong Wang bis and K.D. Hyde, Mycotaxon 136(1): 189. 2021.

Basionym: *Arthrinium locutum-pollinis* F. Liu and L. Cai (as ‘locuta- pollinis’), Mycosphere 9: 1094. 2018.

Notes: *Arthrinium pseudomarii* was introduced by Chen et al. [39] from the leaves of *Aristolochia debilis* in China. Chen et al. [39] mentioned that *Ar. pseudomarii* differs from *Ar. hispanicum*, *Ar. marii* and *Ar. mediterranei* by larger, subglobose to ellipsoid conidia and showed a close relationship with three species with high bootstrap support values (ML/MP = 95/93) [39].

In our phylogenetic analyses, *Ar. pseudomarii* (GUCC 10228) is a sister to *Ap. locuta-pollinis* (= *Ar. locuta-pollinis*) with high support of 95% ML. Based on the nucleotide comparisons, *Ar. pseudomarii* is slightly different from *Ap. locuta-pollinis* in 10/582 bp (1.72%) of ITS, but no base pair differences were observed in TUB2 and TEF1-α. Morphologically, the conidia of *Ar. pseudomarii* are similar to the holotype *Ap. locuta-pollinis* (LC 11683) in having similar size, brown with a hyaline equatorial rim, smooth, subglobose to ellipsoid conidia and hyaline to pale brown, smooth, ampulliform to doliiform conidiogenous cells aggregated into clusters on the hyphae. Thus, we identified that they are the same species, and we synonymize *Ar. pseudomarii* under the *Ap. locuta-pollinis*, based on the morphological and phylogenetic analyses.

Apiospora minutispora (K. Das, S.Y. Lee and H.Y. Jung) X.G. Tian and Tibpromma S., comb. nov.

Index Fungorum number: IF558497.

Basionym: *Arthrinium minutisporum* K. Das, S.Y. Lee and H.Y. Jung, Mycobiology 48(6): 453 2020.

Notes: *Arthrinium minutisporum* was introduced by Das et al. [37] from mountain soil in Korea. Morphologically, *Ar. minutisporum* is quite similar to *Ar. phragmites*, *Ar. aureum* and *Ar. Hydei*. However, the conidia of *Ar. minutisporum* are smaller than those of *Ar. phragmites*, *Ar. aureum* and *Ar. Hydei*, and *Ar. minutisporum* produce smaller conidiogenous cells than *Ar. phragmites* [39]. Pintos and Alvarado [4] transferred *Ar. phragmites*, *Ar. aureum* and *Ar. Hydei* to *Apiospora phragmites*, *Ap. aureum* and *Ap. Hydei*, based on the phylogenetic analyses and morphological characteristics. Whereas *Ar. minutisporum* was maintained in *Arthrinium*.

In our phylogenetic analyses, *Arthrinium minutisporum* forms a distinct subclade and is close to *Apiospora aurea*, *Ap. balearica* and *Ap. descalsii* with strong bootstrap support values (ML/PP = 99/1.00) within *Apiospora*. Thus, we propose the transfer of *Ar. minutisporum* under the new combination *Ap. minutispora*.

Apiospora pseudorasikravindrae (Senan. and Cheew) X.G. Tian and Tibpromma S., comb. nov.

Index Fungorum number: IF 558505.

Basionym: *Arthrinium pseudorasikravindrae* Senan. and Cheew, Frontiers in Microbiology 11. 2020.

Notes: *Arthrinium pseudorasikravindrae* was introduced by Senanayake et al. [34] from dead twigs of Bambusa bambos Voss. in China. *Arthrinium pseudorasikravindrae* is morphologically distinct from *Ar. chinense*, *Ar. paraphaeospermum* and *Ar.
rasikravindrae by its thick-walled, finely roughened conidia with a pale, equatorial slit and ampulliform, cylindrical or doliiform, basauxic conidiogenous cells [34]. Pintos and Alvarado [4] transferred Ar. chinense, Ar. paraphaeospermum and Ar. rasikravindrae to Apiospora and synonymized them under Apiospora chinense, Ap. paraphaeospermum and Ap rasikravindrae, respectively, based on the phylogenetic analyses and morphological characteristics.

Our phylogenetic analyses based on combined LSU, ITS, TEF1-α and TUB2 sequence data show Ar. pseudorasikravindrae is a sister to the new combinations Ap. acutiapica (=Ar. acutiapicum) with high support (ML/BI = 77/0.99). Thus, we propose the transfer of Ar. pseudorasikravindrae under the new combination Ap. pseudorasikravindrae.

Apiospora septata (Y. Feng and Jian K. Liu) X.G. Tian and Tibpromma S., comb. nov.

Index Fungorum number: IF558506; Faces of Fungi number: FoF 09571.
Basiolym: Arthrinium septatum Y. Feng, J.K. Liu, C.G. Lin, Y.Y. Chen, M.M. Xiang and Z.Y. Liu, Frontiers in Microbiology 12. 2021.

Notes: *Arthrinium septatum* was introduced by Feng et al. [49] from dead bamboo culms in China. Feng et al. [49] showed that *Arthrinium septatum* forms a well-supported clade and appears to be distinct from other *Arthrinium* species. *Arthrinium septatum* resembles *Ar. biseriale* in having a biseriate, broad fusiform to cylindrical ascospores and cylindrical, clavate asci. However, *Ar. septatum* differs from *Ar. biseriale* by having smaller stromata [49].

In our phylogenetic analyses, *Arthrinium septatum* groups in a well-supported clade with *Ap. pseudospegazzinii* and *Ap. gelatinosa*. Thus, we propose the transfer of *Ar. septatum* under the new combination *Ap. septata*, based on the morphological and phylogenetic analyses.

Apiospora setariae (Jiang, N.; Tian, C.M.) X.G. Tian and Tibpromma S., comb. nov.

Index Fungorum number: IF835609.
Basiolym: Arthrinium setariae JIANG, N.; TIAN, C.M. Phytotaxa 483, 149-159. 2021.

Notes: *Arthrinium setariae* was introduced by Jing et al. [38] from *Setaria viridis* in China. Jing et al. [38] mentioned that this species has larger conidia and is phylogenetically closely related to *Ar. jiangxiense*. Pintos and Alvarado [4] transferred *Ar. jiangxiense* to *Apiospora* and synonymized *Ap. jiangxiensis* based on the phylogenetic analyses and morphological characteristics.

In our phylogenetic analyses based on combined LSU, ITS, TEF1-α and TUB2 sequence data, *Arthrinium setariae* clustered with *Apiospora jiangxiense* with high support (ML/BI = 87/1.00). Thus, we propose the transfer of *Ar. setariae* under the new combination *Ap. setariae*, based on the morphological and phylogenetic analyses.

Apiospora sorghi (J.D.P. Bezerra, C.M Gonçalves and C.M. Souza-Motta) X.G. Tian and Tibpromma S., comb. nov.

Index Fungorum number: IF558498; Faces of Fungi number: FoF 05762.
Basiolym: Arthrinium sorghi J.D.P. Bezerra, C.M Gonçalves and C.M. Souza-Motta, Fungal Diversity: 10.1007, 73 2020.

Notes: *Arthrinium sorghi* was introduced as an endophyte by Bezerra et al. [36] from the leaves of *Sorghum bicolor* in Brazil. Bezerra et al. [36] mentioned that *Ar. sorghi* is treated as a unique lineage within *Arthrinium* based on ITS phylogenetic analysis. Morphologically, *Ar. sorghi* resembles *Ar. pseudosinense*, *Ar. ovatum* and *Ar. phaeospermum*, but differs from them by the culture characteristics, conidiophores and conidia size [36]. Pintos and Alvarado [4] transferred *Ar. pseudosinense*, *Ar. ovatum* and *Ar. phaeospermum* to *Apiospora pseudosinensis*, *Ap. ovata* and *Ap. phaeospermum* based on the phylogenetic analyses and morphological characteristics.

In our phylogenetic analyses based on combined LSU, ITS, TEF1-α and TUB2 sequence data, *Arthrinium sorghi* clustered with *Apiospora bambusucila* with high support (ML/BI = 78.0.99). Thus, we propose the transfer of *Ar. sorghi* under the new combination *Ap. sorghi*, based on the morphological and phylogenetic analyses.
4. Discussion

In this study, the new taxon *Apiospora chiangraiense* and two new host records, viz., *Ap. intestini* and *Ap. rasikravindrae*, are introduced based on the morphological and phylogenetic analyses. In addition, thirteen new combinations are proposed based on the phylogenetic analyses.

Apiospora was previously synonymized under *Arthrinium*, but Pintos et al. [14] re-evaluated the placements of these two genera and transferred 55 species to *Apiospora* based on a phylogenetic analysis. Currently, 117 species of *Apiospora* are listed in the Index Fungorum [33]. Among these 117 species, 55 species have been confirmed in *Apiospora* by phylogenetic analyses [4]; however, the remaining 62 species need to be confirmed, as the sequence data of these species are not available. The morphology of *Apiospora* and *Arthrinium* are quite similar, so it is difficult to distinguish *Apiospora* and *Arthrinium* based only on morphology.

In the phylogenetic analyses, two *Arthrinium* species, viz., *Arthrinium trachycarpum* and *Ar. urticae*, formed a distinct clade out of *Arthrinium*, and this result is consistent with previous studies [18]. However, the morphologies of these two species are not significantly different from *Arthrinium*; thus, more collections are required to clarify the placement of these two species [24,50]. In addition, our phylogenetic analyses showed that *Apiospora sorghi*, *Ap. bambusucila*, *Ap. chiangraiense* and *Ap. intestini* are not clustered together in *Apiospora* major clades (Figure 1). We also compared the LSU sequence of these four species with other *Apiospora* species, but a few base pair differences were found. Moreover, their morphologies fit well within the species concept of *Apiospora*. Thus, further phylogenetic analyses are necessary to confirm whether *Apiospora* is a species complex or not.

Author Contributions: Data curation, X.T.; funding acquisition, S.T.; methodology, X.T.; supervision, S.C.K., A.M. and S.T.; writing—original draft, X.T. and D.B.; Writing—review and editing, X.T., S.C.K., A.M., I.P., J.X., D.B. and S.T. All authors have read and agreed to the published version of the manuscript.

Funding: Saowaluck Tibpromma would like to thank the International Postdoctoral Exchange Fellowship Program (number Y9180822S1), CAS President’s International Fellowship Initiative (PIFI) (number 2020PC0009), China Postdoctoral Science Foundation and the Yunnan Human Resources and Social Security Department Foundation for funding her postdoctoral research. Samantha C. Karunaratna thanks CAS President’s International Fellowship Initiative (PIFI) for funding his postdoctoral research (number 2018PC0006) and the National Science Foundation of China (NSFC) for funding this research work under project code 31750110478. Itthayakorn Promputtha is grateful to Chiang Mai University for partial support of this research. Austin Smith at World Agroforestry (ICRAF), Kunming Institute of Botany, China, is thanked for English editing.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Saccardo, P. Conspectus generum pyrenomycetum italicorum additis speciebus fungorum Venetorum novis vel criticis, systemate carpologico dispositionum. *Atti Soc. Venezia-Trent.-Istriana Sci. Nat.* 1875, 4, 77–100.
2. Dai, D.Q.; Jiang, H.B.; Tang, L.Z.; Bhat, D.J. Two new species of *Arthrinium* (Apiosporaceae, Xylariales) associated with bamboo from Yunnan, China. *Mycosphere* 2016, 7, 1332–1345. [CrossRef]
3. Dai, D.Q.; Phookamsak, R.; Wijayawardene, N.N.; Li, W.J.; Bhat, D.J.; Xu, J.C.; Taylor, J.E.; Hyde, K.D.; Chukeatirote, E. Bambusicolous fungi. *Fungal Divers.* 2017, 82, 1–105. [CrossRef]
4. Pintos, Á.; Alvarado, P. Phylogenetic delimitation of *Apiospora* and *Arthrinium*. *Fungal Syst. Evol.* 2020, 4, 197–221.
5. Kunze, G. Zehn neue Pilzgattungen. *Mykol. Hefte* 1817, 1, 1–18.
6. Hyde, K.; Fröhlich, J.; Taylor, J. Fungi from palms. XXXVI. Reflections on unitunicate ascomycetes with apiospores. *Sydowia* 1998, 50, 21–80.
7. Hyde, K.; Norphanphoun, C.; Maharachchikumbura, S.; Bhat, D.; Jones, E.; Bundhun, D.; Chen, Y.; Bao, D.; Boonmee, S.; Calabon, M. Refined families of Sordariomycetes. *Mycosphere* 2020, 11, 305–1059. [CrossRef]
8. Ramos, H.P.; Braun, G.H.; Pupo, M.T.; Said, S. Antimicrobial activity from endophytic fungi Arthrinium state of *Apiospora montagni* Sacc. and *Papulaspora inmersa*. *Braz. Arch. Biol. Technol.* 2010, 53, 629–632. [CrossRef]
9. Wang, M.; Tan, X.M.; Liu, F.; Cai, L. Eight new *Arthrinium* species from China. *MycoKeys* 2018, 1, 1–24. [CrossRef]
10. Samuels, G.; McKenzie, E.; Buchanan, D.E. Ascomycetes of New Zealand 3. Two new species of *Apiospora* and their *Arthrinium* anamorphs on bamboo. *N. Z. J. Bot.* 1981, 19, 137–149. [CrossRef]
11. Yin, C.; Luo, F.; Zhang, H.; Fang, X.; Zhu, T.; Li, S. First Report of *Arthrinium kogelbergense* Causing Blight Disease of *Bambusa intermedia* in Sichuan Province, China. *Plant Dis.* 2021, 105, 214. [CrossRef]
12. Zhao, Y.; Deng, C.; Chen, X. *Arthrinium phaeospermum* causing dermatomycosis, a new record of China. *Acta Mycol. Sin.* 1990, 9, 232–235.
13. Piccolo, S.L.; Mondello, V.; Giambra, S.; Conigliaro, G.; Torta, L.; Burruruano, S. *Arthrinium phaeospermum*, *Phoma cladinicola* and *Ullocladum consortiale*, New Olive Pathogens in Italy. *J. Phytopathol.* 2014, 162, 258–263. [CrossRef]
14. Li, S.J.; ZHU, T.H. Binding site of toxic protein from *Arthrinium phaeospermum* on plasmalemma of hybrid bamboo. *J. Zhejiang Univ. (Agric. Life Sci.)* 2012, 38, 355–361.
15. Ji, Z.L.; Zhang, S.; Zhu, F.; Wan, B.; Liang, R. First Report of *Arthrinium arundinis* Causing Leaf Edge Spot of Peach in China. *Plant Dis.* 2020, 104, 3077. [CrossRef]
16. Chen, K.; Wu, X.Q.; Huang, M.X.; Han, Y.Y. First report of brown culm streak of *Phyllostachys praecox* caused by *Arthrinium arundinis* in Nanjing, China. *Plant Dis.* 2014, 98, 1274. [CrossRef]
17. Bagherabadi, S.; Zafari, D.; Anvar, F.G. First report of leaf spot caused by *Arthrinium arundinis* on rosemary in Iran. *J. Plant Pathol.* 2014, 96, 4–126.
18. Tang, X.; Goonasekara, I.D.; Jayawardena, R.S.; Jiang, H.B.; Li, J.F.; Hyde, K.D.; Kang, J.C. *Arthrinium bambusicola* (Fungi, *Sordariomycetes*), a new species from *Schizostachyum brachycladum* in northern Thailand. *Biodivers. Data J.* 2020, 8, e58755. [CrossRef]
19. Crous, P.W.; Wingfield, M.J.; Le Roux, J.J.; Richardson, D.M.; Strasberg, D.; Shivus, R.G.; Alvarado, P.; Edwards, J.; Moreno, G.; Sharma, R. Fungal Planet description sheets: 371–399. *Pers. Mol. Phylogeny Evol. Fungi* 2015, 35, 264. [CrossRef]
20. Sharma, R.; Kulkarni, G.; Sonawane, M.S.; Shouche, Y.S. A new endophytic species of *Arthrinium* (*Apiosporaceae*) from *Jatropha podagrica*. *Mycoscience* 2014, 55, 118–123. [CrossRef]
21. Elissawy, A.M.; Ebada, S.S.; Ashour, M.L.; Ozkaya, F.C.; Ebrahim, W.; Singab, A.B.; Proksch, P. Spiroarthrinols A and B, two novel meroterpenoids isolated from the sponge-derived fungus *Arthrinium* sp. *Phytochem. Lett.* 2017, 20, 246–251. [CrossRef]
22. Goodenough, A.E.; Stallwood, B.; Dandy, S.; Nicholson, T.E.; Stubbs, H.; Coker, D.G. Like mother like nest: Similarity in microbial communities of adult female Pied Flycatchers and their nests. *J. Ornithol.* 2017, 158, 233–244. [CrossRef]
23. Wang, H.; Umeokoli, B.O.; Eze, P.; Heering, C.; Janiak, C.; Müller, W.E.; Orfali, R.S.; Hartmann, R.; Dai, H.; Lin, W. Secondary metabolites of the lichen-associated fungus *Apiospora montagnei*. *Mycosphere* 2017, 58, 1702–1705. [CrossRef]
24. Ellis, M.B. Dematiaceous Hyphomycetes. *IV. Mycol. Pap.* 1963, 29, 1–33.
25. Pintos, A.; Alvarado, P.; Planas, J.; Jarling, R. Six new species of *Arthrinium* from Europe and notes about *A. caricola* and other species found in *Carex* spp. *MycoKeys* 2019, 49, 15. [CrossRef]
26. Index Fungorum (2021). Available online: http://www.indexfungorum.org/Names/Names.asp (accessed on 12 August 2021).
27. Senanayake, I.C.; Bhat, J.D.; Cheewangkoon, R.; Xie, N. *Bambusicolous Arthrinium* Species in Guangdong Province, China. *Front. Microbiol.* 2020, 11, 602773. [CrossRef]
35. Gerin, D.; Nigro, F.; Faretra, F.; Pollastro, S. Identification of *Arthrinium marii* as Causal Agent of Olive Tree Dieback in Apulia (Southern Italy). *Plant Dis.* 2020, 104, 694–701. [CrossRef]

36. Yuan, H.S.; Lu, X.; Dai, Y.C.; Hyde, K.D.; Kan, Y.H.; Kušan, I.; He, S.H.; Liu, N.G.; Sarma, V.V.; Zhao, C.L. Fungal diversity notes 1277–1386: Taxonomic and phylogenetic contributions to fungal taxa. *Fungal Divers.* 2020, 104, 1–266. [CrossRef]

37. Das, K.; Lee, S.Y.; Choi, H.W.; Eom, A.H.; Cho, Y.J.; Jung, H.Y. Taxonomy of *Arthrinium minutisporum* sp. nov., *Pezicula neosporulosa*, and *Acrocalymma pterocarpum*: New Records from Soil in Korea. *Mycobiology* 2020, 48, 450–463. [CrossRef]

38. JIANG, N.; TIAN, C.-M. The holomorph of *Arthrinium setariae* sp. nov. (*Apiosporaceae*, *Xylariales*) from China. *Phytotaxa* 2020, 104, 1–266. [CrossRef]

39. Chen, T.Z.; Zhang, Y.; Ming, X.B.; Zhang, Q.; Long, H.; Hyde, K.D.; Li, Y.; Wang, Y. Morphological and phylogenetic resolution of *Arthrinium* from medicinal plants in Yunnan, including *A. cordylines* and *A. pseudomarii* spp. nov. *Mycotaxon* 2021, 136, 183–199. [CrossRef]

40. Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. *Mol. Biol. Evol.* 2013, 30, 772–780. [CrossRef] [PubMed]

41. Hall, T. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In Proceedings of the Nucleic Acids Symposium Series, London, UK, 2–6 September 1999; pp. 95–98.

42. Stamatakis, A.; Hoover, P.; Rougemont, J. A rapid bootstrap algorithm for the RAxML web servers. *Syst. Biol.* 2008, 57, 758–771. [CrossRef]

43. Stamatakis, A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. *Bioinformatics* 2006, 22, 2688–2690. [CrossRef]

44. Miller, M.; Pfeiffer, W.; Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Proceedings of the Gateway Computing Environments Workshop, New Orleans, LA, USA, 14 November 2010; pp. 1–8.

45. Nylander, J.A.A. MrModeltest v2 Program Distributed by the Autho. *Ecol. Biol. Cent. Upps. Univ. Upps. Sweden.* 2004.

46. Rambaut, A. FigTree v1.4: Tree Figure Drawing Tool. Available online: http://tree.bio.ed.ac.uk/software/figtree/ (accessed on 12 August 2021).

47. Singh, S.M.; Yadav, L.S.; Singh, P.N.; Hepat, R.; Sharma, R.; Singh, S.K. *Arthrinium rasikravindrii* sp. nov. from Svalbard, Norway. *Mycotaxon* 2013, 122, 449–460. [CrossRef]

48. Rana, S.; Singh, P.N.; Gaikwad, S.B.; Singh, S.K. Morphology, phylogeny and ex situ conservation of *Arthrinium rasikravindrae* (*Apiosporaceae*: *Xylariales*): A new record from India. *Kavaka* 2017, 49, 1–5.

49. Feng, Y.; Liu, J.K.; Lin, C.G.; Chen, Y.Y.; Xiang, M.M.; Liu, Z.Y. Additions to the genus *Arthrinium* (*Apiosporaceae*) from bamboos in China. *Front. Microbiol.* 2021, 12, 661281. [CrossRef] [PubMed]

50. Yan, H.; Jiang, N.; Liang, L.Y.; Yang, Q.; Tian, C.M. *Arthrinium trachycarpum* sp. nov. from *Trachycarpus fortunei* in China. *Phytotaxa* 2019, 400, 203–210. [CrossRef]