Local Well and Ill Posedness for the Modified KdV Equations in Subcritical Modulation Spaces

Mingjuan Chen∗, Boling Guo
Institute of Applied Physics and Computational Mathematics, Beijing 100088, PR China
Emails: mjchenhappy@pku.edu.cn(M.Chen); gbl@iapcm.ac.cn(B.Guo)

Abstract
We consider the Cauchy problem of the modified KdV equation (mKdV)
\[u_t + u_{xxx} \pm (u^3)_x = 0, \quad u(0, x) = u_0(x). \] (0.1)
Local well-posedness of this problem is obtained in modulation spaces \(M_{2,q}^{1/4}(\mathbb{R}) \) \((2 \leq q \leq \infty)\). Moreover, we show that the data-to-solution map fails to be \(C^3 \) continuous in \(M_{s,2}^{1/4},q(\mathbb{R}) \) when \(s < 1/4 \). It is well-known that \(H^{1/4} \) is a critical Sobolev space of mKdV so that it is well-posed in \(H^s \) for \(s \geq 1/4 \) and ill-posed (in the sense of uniform continuity) in \(H^{s'} \) with \(s' < 1/4 \). Noticing that \(M_{2,q}^{1/4} \subset B_{2,q}^{1/4-1/4} \) is a sharp embedding and \(H^{-1/4} \subset B_{2,q}^{-1/4} \), our results contains all of the subcritical data in \(M_{2,q}^{1/4} \), which contains a class of functions in \(H^{-1/4} \backslash H^{1/4} \).

Keywords: Local well-posedness, Ill-posedness, Modified KdV equations, Modulation spaces.

MSC 2010: 35Q53.

1 Introduction
In this paper we study the Cauchy problem of the modified Korteweg-de Vries (mKdV) equation on the real line \(\mathbb{R} \):
\[u_t + u_{xxx} \pm (u^3)_x = 0, \quad u(0, x) = u_0(x), \quad x \in \mathbb{R}, \] (1.1)
where \(u = u(x, t) \in \mathbb{R} \) with \((x, t) \in \mathbb{R}^{1+1}\).

The scale invariant homogeneous Sobolev space for mKdV is \(\dot{H}^{-1/2} \). That is to say, for any solution \(u(x, t) \) of (1.1) with initial data \(u_0(x) \), the scaling function \(u_\lambda(x, t) := \lambda u(\lambda x, \lambda^3 t) \) is also a solution of (1.1) with initial data \(u_{0,\lambda} := \lambda u_0(\lambda x) \), and satisfies
\[\|u_{0,\lambda}\|_{\dot{H}^{-1/2}} = \|u_0\|_{\dot{H}^{-1/2}}. \] (1.2)

∗Corresponding author.
On the other hand, $H^{1/4}$ is the critical Sobolev space of mKdV so that it is globally well-posed in H^{s} for $s \geq 1/4$ and ill-posed in $H^{s'}$ with $s' < 1/4$. The ill-posed result is in the sense that the data-to-solution map fails to be uniformly continuous on a fixed ball in $H^{s'}$ with $s' < 1/4$. The local well-posed result for $s \geq 1/4$ by using the contraction method and ill-posed result for the focusing equation ($+$ sign in front of the nonlinearity) were proved by Kenig, Ponce and Vega, see [22] and [23], respectively. The local well-posed result was extended to a global one for $s > 1/4$ due to Colliander, Keel, Staffilani, Takaoka and Tao by using I-method, see [10]. The global result for $s = 1/4$ was obtained by Guo in [16]. In addition, the ill-posed result for the defocusing equation ($-$ sign in front of the nonlinearity) was obtained by Christ, Colliander and Tao [6].

Therefore, there is 3/4 derivative gap between $H^{-1/2}$ and $H^{1/4}$ for the well-posedness result of mKdV. In order to discover the behavior of the solution out of $H^{1/4}$, Grünrock brought in the \widehat{H}^{s}_{q} spaces for which the norm is defined by

$$\|u\|_{\widehat{H}^{s}_{q}} := \|\langle \xi \rangle^{s} \hat{u}\|_{L^{q}}, \quad 1/q + 1/q' = 1,$$

and he obtained the local well-posedness of (1.1) for data $u_{0} \in \widehat{H}^{s}_{q}(\mathbb{R}), 2 \leq q < 4, s \geq s(q) := 1/2q$ in [12]. In 2009, Grünrock and Vega broadened the range of q to $2 \leq q < \infty$ by using the trilinear estimates in [13]. From the scaling point, the spaces H^{s}_{q} behave like the Sobolev spaces H^{s}, if $s - 1/2 + 1/q = \sigma$. Thus, they can lower the regularity to $-1/2$ by taking q tending to infinity, but there is no result for $q = \infty$. In this paper we consider the initial data in more general modulation spaces $M^{s}_{2,q}, 2 \leq q \leq \infty$ (Indeed, $\widehat{H}^{s}_{q} \subset M^{s}_{2,q}$).

Modulation space $M^{s}_{p,q}$ was introduced by Feichtinger [14] in 1983 and equivalently defined in the following way (cf. [28] [31] [32] [33]):

$$\|f\|_{M^{s}_{p,q}(\mathbb{R})} = \left(\sum_{k \in \mathbb{Z}} \langle k \rangle^{sq} \|\Box f\|_{L^{p}(\mathbb{R})}^{q} \right)^{1/q}, \quad (1.3)$$

where $\Box = \mathcal{F}^{-1} \chi_{[k-1/2,k+1/2]} \mathcal{F}$, \mathcal{F} (\mathcal{F}^{-1}) denotes the (inverse) Fourier transform on \mathbb{R}, χ_{E} denotes the characteristic function on E and $\langle k \rangle = (1 + |k|^{2})^{1/2}$. From Plancherel theorem and Hölder’s inequality, we know that $\widehat{H}^{s}_{q} \subset M^{s}_{2,q}$ ($2 \leq q \leq \infty$). Moreover, combining the sharp inclusions between Besov and modulation spaces, we have (cf. [28] [32])

$$\widehat{H}^{s}_{1/4} \subset M^{1/4}_{2,q} \subset B^{1/q-1/4}_{2,q}, \quad 2 \leq q \leq \infty,$$

where the inclusions are optimal. Therefore, our result in which the initial data belongs to $M^{1/4}_{2,\infty}$ can be certainly seen as an improvement. Our main theorem is as follows.

Theorem 1.1 Let $2 \leq q \leq \infty$, $u_{0} \in M^{1/4}_{2,q}$. Then there exists a time $T > 0$ such that mKdV (1.1) is locally well posed in $C([0,T]; M^{1/4}_{2,q}) \cap X^{1/4}_{q,A}([0,T]),$ where $X^{1/4}_{q,A}$ is defined in next section. Moreover, the regularity index $1/4$ in $M^{1/4}_{2,q}$ is optimal. Specifically, if $s < 1/4$, the data-to-solution map in $M^{1/4}_{2,q}(\mathbb{R})$ is not C^{3} continuous at origin.
Modulation spaces contain a class of initial data out of the critical Sobolev spaces H^{s_c}, for which the nonlinear PDE is well-posed for $s > s_c$ and ill-posed for $s < s_c$. Therefore, solving the nonlinear PDE in modulation spaces has absorbed some researchers’ attention, see [1, 2, 3, 4, 7, 8, 9, 18, 19, 20, 21, 29, 34]. We will use U^p and V^p spaces in our discussion, since the dual relation and other important properties are ideally to deal with the nonlinearity. U^p and V^p spaces are introduced to solving PDEs by Koch and Tataru, see [5, 17, 25, 26]. Combining U^p, V^p and modulation spaces, Guo, Ren and the second author have considered the cubic and derivative non-linear Schrödinger equation, respectively, see [14, 15].

Let us list some notations. Let $c < 1$, $C > 1$ denote positive universal constants, which can be different at different places; $a \lesssim b$ stands for $a \leq Cb$, $a \sim b$ means that $a \lesssim b$ and $b \lesssim a$; $a \approx b$ means that $a \sim b$ and $b \sim a$; $a \gg b$ means that $a > b + C$; We write $a \wedge b = \min(a, b)$, $a \vee b = \max(a, b)$; p' is the dual number of $p \in [1, \infty]$, i.e., $1/p + 1/p' = 1$.

2 Function spaces

2.1 Definitions

In this subsection, we review some function spaces used to obtain the well-posedness theory for non-linear dispersive equations. U^p spaces were first applied by Koch and Tataru [5, 25, 26, 27], and V^p spaces are due to Wiener [35].

Let Z be the set of finite partitions $-\infty = t_0 < t_1 < \ldots < t_{K-1} < t_K = \infty$. In the following, we consider functions taking values in $L^2 := L^2(\mathbb{R}^d; \mathbb{C})$, but in the general L^2 may be replaced by an arbitrary Hilbert space or general Banach space.

Definition 2.1 Let $1 \leq p < \infty$. For any \(\{t_k\}_{k=0}^{K-1} \in Z \) and \(\{\phi_k\}_{k=0}^{K-1} \subset L^2 \) with $\sum_{k=0}^{K-1} \| \phi_k \|_2^p = 1$, $\phi_0 = 0$. A step function $a : \mathbb{R} \to L^2$ given by

$$a = \sum_{k=1}^{K} \chi_{[t_{k-1},t_k)} \phi_{k-1}$$

is said to be a U^p-atom. All of the U^p atoms is denoted by $\mathcal{A}(U^p)$. The U^p space is

$$U^p := \left\{ u = \sum_{j=1}^{\infty} c_j a_j : a_j \in \mathcal{A}(U^p), \ c_j \in \mathbb{C}, \ \sum_{j=1}^{\infty} |c_j| < \infty \right\}$$

for which the norm is given by

$$\| u \|_{U^p} := \inf \left\{ \sum_{j=1}^{\infty} |c_j| : \ u = \sum_{j=1}^{\infty} c_j a_j, \ a_j \in \mathcal{A}(U^p), \ c_j \in \mathbb{C} \right\}.$$
Definition 2.2 Let \(1 \leq p < \infty \). We define \(V^p \) as the normed space of all functions \(v : \mathbb{R} \to L^2 \) such that \(\lim_{t \to \pm \infty} v(t) \) exist and for which the norm

\[
\|v\|_{V^p} := \sup_{\{t_k\}_{k=1}^K} \left(\sum_{k=1}^K \|v(t_k) - v(t_{k-1})\|_{L^2} \right)^{1/p}
\]

is finite, where we use the convention that \(v(-\infty) = \lim_{t \to -\infty} v(t) \) and \(v(\infty) = 0 \) (here \(v(\infty) \) and \(\lim_{t \to -\infty} v(t) \) are different notations). Likewise, we denote by \(V^p \) the subspace of all \(v \in V^p \) so that \(v(-\infty) = 0 \). Moreover, we define the closed subspace \(V_{rc}^p (V_{-rc}^p) \) as all of the right continuous functions in \(V^p (V_1^p) \).

Definition 2.3 We define

\[
U_A^p := e^{-\partial_x^3} U^p, \quad \|u\|_{U_A^p} = \|e^{i\partial_x^3} u\|_{U^p},
\]

\[
V_A^p := e^{-\partial_x^3} V^p, \quad \|u\|_{V_A^p} = \|e^{i\partial_x^3} u\|_{V^p},
\]

and similarly for the definition of \(V_{rc,A}^p, V_{-A}^p, V_{-rc,A}^p \).

Definition 2.4 Besov type Bourgain’s spaces \(\hat{X}^{s,b,q} \) are defined by

\[
\|u\|_{\hat{X}^{s,b,q}} := \left\| \left| \chi_{[\tau - \xi \in [2^{-s}, 2^s)]} |\xi|^s \tau - \xi^3 |\hat{u}(\tau, \xi)| \right\|_{L^q_x}, \quad \xi \in \mathbb{Z}.
\]

Definition 2.5 The frequency-uniform localized \(U^q \)-spaces \(X_q^s(I) \) and \(V^q \)-spaces \(Y_q^s(I) \) are defined by

\[
\|u\|_{X_q^s} = \left(\sum_{\lambda \in I \cap \mathbb{Z}} (\lambda)^{sq} \|\lambda u\|_{U^2}^q \right)^{1/q}, \quad X_q^s := X_q^s(\mathbb{R}), \quad \text{(2.1)}
\]

\[
\|v\|_{Y_q^s} = \left(\sum_{\lambda \in I \cap \mathbb{Z}} (\lambda)^{sq} \|\lambda v\|_{V^2}^q \right)^{1/q}, \quad Y_q^s := Y_q^s(\mathbb{R}), \quad \text{(2.2)}
\]

\[
\|u\|_{X_{q,A}^s} := \|e^{i\partial_x^3} u\|_{X_q^s}, \quad \|v\|_{Y_{q,A}^s} := \|e^{i\partial_x^3} v\|_{Y_q^s}. \quad \text{(2.3)}
\]

2.2 Known results

The following known results about \(U^p \) and \(V^p \) can be found in \([14, 17, 25, 27]\).

Proposition 2.6 (Embedding) Let \(1 \leq p < q < \infty \). We have the following results.

(i) \(U^p \) and \(V^p, V_{rc}^p, V_{-}^p, V_{rc,-}^p \) are Banach spaces.

(ii) \(U^p \subset V_{rc,-}^p \subset U^q \subset L^\infty(\mathbb{R}, L^2) \). Every \(u \in U^p \) is right continuous on \(t \in \mathbb{R} \).

(iii) \(V^p \subset V^q, V_{rc}^p \subset V_{rc}^q, V_{rc}^p \subset V_{rc}^q, V_{rc,-}^p \subset V_{rc,-}^q \).

(iv) \(\hat{X}^{0,1/2,1} \subset U_{\overline{A}}^2 \subset V_{\overline{A}}^2 \subset \hat{X}^{0,1/2,\infty} \).
Similar to the Schrödinger equation, whose dispersive modulation is $|\tau + \xi^2|$, the mKdV equation’s dispersive modulation is $|\tau - \xi^3|$. By the last inclusion of (iv) in Proposition 2.6, we see that

Lemma 2.7 (Dispersion Modulation Decay) Suppose that the dispersion modulation $|\tau - \xi^3| \gtrsim \mu$ for a function $u \in L^2_{x,t}$, then we have

$$
\|u\|_{L^2_{x,t}} \lesssim \mu^{-1/2} \|u\|_{V^2_x}.
$$

Proposition 2.8 (Interpolation) Let $1 \leq p < q < \infty$. There exists a positive constant $\epsilon(p, q) > 0$, such that for any $u \in V^p$ and $M > 1$, there exists a decomposition $u = u_1 + u_2$ satisfying

$$
\frac{1}{M} \|u_1\|_{U^p} + \epsilon M \|u_2\|_{V^q} \lesssim \|u\|_{V^p}.
$$

Let $I \subset \mathbb{R}$ be an interval with finite length. For the sake of simplicity, we denote

$$
u_\lambda = \Box \nu, \quad u_I = \sum_{\lambda \in I \cap \mathbb{Z}} u_\lambda.
$$

Proposition 2.9 (orthogonality in V^2) Take an interval $I \subset \mathbb{R}$, then for $u \in V^2$ the following orthogonality holds:

$$
\|u_I\|_{V^2} \lesssim \left(\sum_{\lambda \in I \cap \mathbb{Z}} \|u_\lambda\|^2_{V^2} \right)^{1/2}.
$$

Proposition 2.10 (Duality) Let $1 \leq p < \infty$, $1/p + 1/p' = 1$. Then $(U^p)^* = V^{p'}$ in the sense that

$$
T : V^{p'} \to (U^p)^*; \quad T(v) = B(\cdot, v),
$$

is an isometric mapping. The bilinear form $B : U^p \times V^{p'}$ is defined in the following way: For a partition $t := \{t_k\}_{k=0}^K \subset \mathbb{Z}$, we define

$$
B_t(u, v) = \sum_{k=1}^K \langle u(t_{k-1}), v(t_k) - v(t_{k-1}) \rangle.
$$

Here $\langle \cdot, \cdot \rangle$ denotes the inner product on L^2. For any $u \in U^p$, $v \in V^{p'}$, there exists a unique number $B(u, v)$ satisfying the following property. For any $\varepsilon > 0$, there exists a partition t such that

$$
|B(u, v) - B_{t'}(u, v)| < \varepsilon, \quad \forall t' \supset t.
$$

Moreover,

$$
|B(u, v)| \leq \|u\|_{U^p} \|v\|_{V^{p'}}.
$$

In particular, let $u \in V^1$ be absolutely continuous on compact interval, then for any $v \in V^{p'}$,

$$
B(u, v) = \int \langle u'(t), v(t) \rangle dt.
$$
Proposition 2.11 \[15\] (Duality) Let \(1 \leq q < \infty\). Then \((X_q^s)^* = Y_q^{-s}\) in the sense that
\[
T : Y_q^{-s} \to (X_q^s)^*; \quad T(v) = B(\cdot, v),
\]
is an isometric mapping, where the bilinear form \(B(\cdot, \cdot)\) is defined in Proposition 2.10.
Moreover, we have
\[
|B(u, v)| \leq \|u\|_{X_q^s}\|v\|_{Y_q^{-s}}.
\]

3 Basic Estimates

Lemma 3.1 \[24\] (Strichartz Estimates) Let \((p, q)\) satisfy the admissibility condition
\[
\frac{2}{p} + \frac{1}{q} = \frac{1}{2}, \quad 4 \leq p \leq \infty, \quad 2 \leq q \leq \infty.
\]
Then
\[
\|D_x^{1/p}e^{-t\partial_3^3}\phi\|_{L_x^p L_t^q} \lesssim \|\phi\|_{L_x^2}.
\]
In particular, for \(N \geq 1\),
\[
\|P_N e^{-t\partial_3^3}\phi\|_{L_x^p L_t^q} \lesssim \langle N \rangle^{-1/8} \|\phi\|_{L_x^2}.
\]
By testing atoms in \(U_8^A\) space, we obtain
\[
\|P_N u\|_{L_x^p L_t^q} \lesssim \langle N \rangle^{-1/8} \|u\|_{U_8^A}.
\]

Lemma 3.2 (Bilinear Estimate) Suppose that \(\hat{u}_0, \hat{v}_0\) are localized in some compact intervals \(I_1, I_2\) with \(\text{dist}(I_1, I_2) \gtrsim \lambda, \text{dist}(I_1, -I_2) \gtrsim \mu\). Then,
\[
\|e^{-t\partial_3^3}u_0e^{-t\partial_3^3}v_0\|_{L_x^2} \lesssim (\lambda \mu)^{-1/2} \|u_0\|_{L_x^2} \|v_0\|_{L_x^2}.
\]
By testing atoms in \(U_2^A\) space, we obtain
\[
\|uv\|_{L_x^2} \lesssim (\lambda \mu)^{-1/2} \|u\|_{U_2^A} \|v\|_{U_2^A}.
\]

Applying the interpolation in Proposition 2.8, for any \(0 < \varepsilon < 1\) and \(0 < T \leq 1\), we get
\[
\|uv\|_{L_{x,t}^{2,\varepsilon}} \lesssim T^{\varepsilon/4}(\lambda \mu)^{-1/2} \varepsilon \|u\|_{V_4^A} \|v\|_{V_4^A}.
\]

Proof. Taking the Fourier transform in space, we have
\[
\mathcal{F}_x \left(e^{-t\partial_3^3}u_0e^{-t\partial_3^3}v_0 \right) (\xi, t) = \int e^{it(\xi^3 + 3\xi^2\xi_1 - 3\xi\xi_1^2)}\hat{u}_0(\xi - \xi_1)\hat{v}_0(\xi_1)d\xi_1.
\]
Then taking the Fourier transform in time, we obtain
\[
\mathcal{F}_{x,t} \left(e^{-t\partial_3^3}u_0e^{-t\partial_3^3}v_0 \right) (\xi, \tau) = \int \delta(\tau + 3\xi_1 - \xi^3 - 3\xi\xi_1^2)\hat{u}_0(\xi - \xi_1)\hat{v}_0(\xi_1)d\xi_1.
\]
Denote
\[g(\xi_1) = \tau + 3\xi^2\xi_1 - \xi^3 - 3\xi^2, \]
we see that the zeros and the derivative are
\[\xi_1^\pm = \frac{\xi}{2} \pm \sqrt{\frac{\xi^2}{4} - \frac{\xi^3 - \tau}{3\xi}} := \frac{\xi}{2} \pm y, \quad g'(\xi_1) = 3\xi^2 - 6\xi_1. \]

Recall that \(\delta(g(\xi_1)) = \delta(\xi_1 - \xi_1^+)/|g'(\xi_1^+)| + \delta(\xi_1 - \xi_1^-)/|g'(\xi_1^-)| = \delta(\xi_1 - \xi_1^+)/6|\xi|y + \delta(\xi_1 - \xi_1^-)/6|\xi|y, \) we have
\[\mathcal{X}_{x,t}(e^{-\omega t}u_0e^{-\omega t}v_0)(\xi, \tau) = \frac{1}{6|\xi|y}\hat{u}_0\left(\frac{\xi}{2} - y\right)\hat{v}_0\left(\frac{\xi}{2} + y\right) + \frac{1}{6|\xi|y}\hat{u}_0\left(\frac{\xi}{2} + y\right)\hat{v}_0\left(\frac{\xi}{2} - y\right). \quad (3.10) \]

By symmetry, it suffices to estimate the first term in (3.10). Changing of variables \(y = \sqrt{\frac{\xi}{4} - \frac{\xi_1 - \tau}{\xi}} \) and considering \(d\tau = c|\xi|/|y|dy, \) we see that
\[
\left\| e^{-\omega t}u_0e^{-\omega t}v_0 \right\|_{L^2_{x,t}}^2 \lesssim \int_{\mathbb{R}^2} \frac{c}{|\xi||y|} \left| \hat{u}_0\left(\frac{\xi}{2} - y\right) \right|^2 \left| \hat{v}_0\left(\frac{\xi}{2} + y\right) \right|^2 dy d\xi \\
\lesssim \int_{\mathbb{R}^2} \frac{1}{|\xi_1 - \xi_2||\xi_1 + \xi_2|} |\hat{u}_0(\xi_1)|^2|\hat{v}_0(\xi_2)|^2 d\xi_1 d\xi_2 \\
\lesssim \lambda^{-1} \mu^{-1} \int_{\mathbb{R}^2} |\hat{u}_0(\xi_1)|^2|\hat{v}_0(\xi_2)|^2 d\xi_1 d\xi_2 \\
\lesssim \lambda^{-1} \mu^{-1} \left\| u_0 \right\|^2_{L^2_{x,t}} \left\| v_0 \right\|^2_{L^2_{x,t}}, \quad (3.11)
\]
where in the last inequality, we have applied \(\text{dist}(I_1, I_2) \geq \lambda \) and \(\text{dist}(I_1, -I_2) \geq \mu. \)

Lemma 3.3 \((L^4 \text{ Estimates})\) Let \(I \subset [0, +\infty) \) or \((-\infty, 0] \) with \(|I| < \infty. For any \(\theta \in (0, 1), \beta > 0, \) we have
\[
\left\| u_I \right\|^2_{L^4_{x,t}([0,T] \times \mathbb{R})} \lesssim \left(T^{1/4} + T^{(1-\theta)/4}|I|^{2\beta + (1-\theta)/2} \right) \left\| u \right\|^2_{X^{1/4, 0}_{\lambda, A}(I)}. \quad (3.12)
\]

In particular, if \(1 < |I| < \infty, 0 < T < 1, \) then for any \(0 < \varepsilon \ll 1, 4 \leq q \leq \infty \)
\[
\left\| u_I \right\|^2_{L^4_{x,t}([0,T] \times \mathbb{R})} \lesssim T^{\varepsilon/4}|I|^{1/4-1/q+\varepsilon} \max_{\lambda \in I}\lambda^{-3/8} \left\| u \right\|^2_{X^{1/4, 0}_{\lambda, A}(I)}. \quad (3.13)
\]

Proof. Without loss of generality, we assume \(I \subset [0, +\infty). \)
\[
\left\| u_I \right\|^2_{L^4_{x,t}([0,T] \times \mathbb{R})} = \left\| (u_I)^2 \right\|_{L^2([0,T] \times \mathbb{R})} = \left\| \sum_{m,n \in \mathbb{Z}} u_{m,n} \right\|_{L^2([0,T] \times \mathbb{R})} \\
\lesssim \sum_{k \in \mathbb{N}} \sum_{m-n \sim 2^k} \left\| u_{m,n} \right\|_{L^2([0,T] \times \mathbb{R})}. \quad (3.14)
\]
Case $k = 0$, i.e. $m \approx n$:

$$
\left\| \sum_{n \in I \cap \mathbb{Z}} u_n^2 \right\|_{L^2([0,T] \times \mathbb{R})} \lesssim \left(\sum_{n \in I \cap \mathbb{Z}} \| u_n^2 \|_{L^2([0,T] \times \mathbb{R})}^2 \right)^{1/2}
\lesssim \left(\sum_{n \in I \cap \mathbb{Z}} \| u_n \|_{L^4([0,T] \times \mathbb{R})}^4 \right)^{1/2} \lesssim T^{1/4} \left(\sum_{n \in I \cap \mathbb{Z}} \| u_n \|_{L^8([0,T] \times \mathbb{R})}^4 \right)^{1/2}
\lesssim T^{1/4} \sum_{n \in I \cap \mathbb{Z}} \left(\langle n \rangle^{-1/8} \| u_n \|_{L^8} \right) \lesssim T^{1/4} \| u \|_{X^{0,-1/8}}^2,
$$

where the first step is by the orthogonality in L^2 and the last step follows from the Strichartz estimate.

Case $k > 0$: Notice that k is summed for $\ln |I|$ times, we have $\sum_{k \in \mathbb{N}} \lesssim \ln |I|$. We split the other sum as follows

$$
\sum_{m-n \sim 2^k} u_m u_n = \sum_{n \in I \cap \mathbb{Z}} \sum_{m \in I \cap \mathbb{Z}, m-n \sim 2^k} u_m u_n = \sum_{j \in \mathbb{N}^+} \sum_{n \in I \cap \mathbb{Z}, n \sim j 2^k} \sum_{m \in I \cap \mathbb{Z}, m-n \sim 2^k} u_m u_n,
$$

where j is chosen such that $j 2^k, (j + 1) 2^k \in I$. Hence for u_n with $n \sim j 2^k$ and u_m with $m-n \sim 2^k$, we have that the frequency of the function $u_m u_n$ will be close to $(2j + 1) 2^k$, which implies by orthogonality that

$$
\sum_{k \in \mathbb{N}} \left\| \sum_{m-n \sim 2^k} u_m u_n \right\|_{L^2([0,T] \times \mathbb{R})} \lesssim \sum_{k \in \mathbb{N}} \left(\sum_{j \in \mathbb{N}^+} \sum_{n \in I \cap \mathbb{Z}, n \sim j 2^k} \sum_{m \in I \cap \mathbb{Z}, m-n \sim 2^k} \left\| u_m u_n \right\|_{L^2([0,T] \times \mathbb{R})} \right)^{1/2}. \tag{3.14}
$$

Denote $u_{j,k} := \sum_{n \in I, n \sim j 2^k} u_n$, from proposition 2.8 we can write as a sum $u_{j,k} = u_{1,j,k} + u_{2,j,k}$ with the estimate

$$
\frac{1}{|I|^2} \| u_{1,j,k} \|_{L^2}^2 + e^{\| I \|/2} \| u_{2,j,k} \|_{L^2}^2 \lesssim \| u_{j,k} \|_{L^2}^2. \tag{3.15}
$$

Then the estimate (3.14) will be continued by four terms. For the term containing $u_{1,j,k}$ and $u_{1,j+1,k}$, which will be denoted as I_1.

$$
I_1 \lesssim \sum_{k \in \mathbb{N}} \left(\sum_{j \in \mathbb{N}^+} \left\| u_{1,j,k} u_{1,j+1,k} \right\|_{L^2}^2 \left\| u_{1,j,k} u_{1,j+1,k} \right\|_{L^2([0,T] \times \mathbb{R})}^{2(1-\theta)} \right)^{1/2}
\lesssim \sum_{k \in \mathbb{N}} \left(\sum_{j \in \mathbb{N}^+} \left\| u_{1,j,k} u_{1,j+1,k} \right\|_{L^2}^2 \left\| u_{1,j,k} \right\|_{L^2([0,T] \times \mathbb{R})} \left\| u_{1,j+1,k} \right\|_{L^2([0,T] \times \mathbb{R})}^{2(1-\theta)} \right)^{1/2}
$$

8
\[T^{(1-\theta)/4} \sum_{k \in \mathbb{N}} \left(\sum_{j \in \mathbb{N}^+} \left(|j(j+1)|^{-(1-\theta)/4} 2^{-k\theta} \|u_{1,j,k}\|_{L_T^4}^2 \|u_{1,j+1,k}\|_{L_T^4}^2 \right) \right)^{1/2} \text{.} \]

(3.16)

Since \(|m - n| \sim 2^k, |m + n| \sim (2j + 1)2^k\), we have the bilinear estimates

\[\|u_{1,j,k}u_{1,j+1,k}\|_{L^2} \lesssim (j(j+1))^{-1/4} 2^{-k}\|u_{1,j,k}\|_{U^4_A} \|u_{1,j+1,k}\|_{U^4_A}. \]

(3.17)

Combining with Strichartz estimate, (3.16) is dominated by

\[T^{(1-\theta)/4} \sum_{k \in \mathbb{N}} \left(\sum_{j \in \mathbb{N}^+} (j^2 2^{k})^{-(1-\theta)/4} \|u_{1,j,k}\|_{U^8_A} \|u_{1,j+1,k}\|_{U^8_A} \right)^{1/2} \]

\[\lesssim T^{(1-\theta)/4} \sum_{k \in \mathbb{N}} \left(\sum_{j \in \mathbb{N}^+} (j^2 2^{k})^{-(1+\theta)/4} \|u_{1,j,k}\|_{U^8_A} \|u_{1,j+1,k}\|_{U^8_A} \right)^{1/2}. \]

By applying (3.15) and the orthogonality in \(V^2\), it follows that

\[T^{(1-\theta)/4} |I|^{2\beta} \sum_{k \in \mathbb{N}} \left(\sum_{j \in \mathbb{N}^+} (j^2 2^{k})^{-1/4} \|u_{1,j,k}\|_{V^2_A}^2 \|u_{1,j+1,k}\|_{V^2_A}^2 \right)^{1/2} \]

\[\lesssim T^{(1-\theta)/4} |I|^{2\beta} \sum_{k \in \mathbb{N}} \left(\sum_{j \in \mathbb{N}^+} (j^2 2^{k})^{-1/4} \|u_{1,j,k}\|_{V^2_A}^2 \|u_{1,j+1,k}\|_{V^2_A}^2 \right)^{1/2} \]

\[\lesssim T^{(1-\theta)/4} |I|^{2\beta} \sum_{k \in \mathbb{N}} \left(\sum_{j \in \mathbb{N}^+} (j^2 2^{k})^{-1/4} \|u_{1,j,k}\|_{V^2_A}^4 \|u_{1,j+1,k}\|_{V^2_A}^4 \right)^{1/2} \]

\[\lesssim T^{(1-\theta)/4} |I|^{2(\beta + (1-\theta)/2)} \|u\|^2_{X_{\lambda,4}^{1/8}} \]

\[\lesssim T^{(1-\theta)/4} |I|^{2(\beta + (1-\theta)/2)} \|u\|^2_{X_{\lambda,4}^{-\infty}}. \]

(3.18)

where the last inequality is by using \(2^{k(1-\theta)/2} \lesssim |I|^{(1-\theta)/2}\) and Hölder’s inequality. For the rest three terms we will do in a uniform way. We take the term containing \(u_{2,j,k}\) and \(u_{2,j+1,k}\) for example, and denote it as \(I_2\).

\[I_2 \lesssim \sum_{k \in \mathbb{N}} \left(\sum_{j \in \mathbb{N}^+} \|u_{2,j,k}u_{2,j+1,k}\|_{L^2((0,T) \times \mathbb{R})}^2 \right)^{1/2} \]
\[T^{1/4} \sum_{k \in \mathbb{N}} \left(\sum_{j \in \mathbb{N}^+} \|u_{2,j,k}\|_{L^4_x}^2 \|u_{2,j+1,k}\|_{L^4_x}^2 \right)^{1/2} \]
\[\lesssim T^{1/4} \sum_{k \in \mathbb{N}} \left(\sum_{j \in \mathbb{N}^+} (j2^k)^{-1/4} \|u_{2,j,k}\|_{L^4_x}^2 ((j+1)2^k)^{-1/4} \|u_{2,j+1,k}\|_{L^4_x}^2 \right)^{1/2}. \tag{3.19} \]

By applying (3.15) and the orthogonality in \(V^2 \) again, (3.19) follows that

\[\lesssim T^{1/4} e^{-2e|I|/|I|} \sum_{k \in \mathbb{N}} \left(\sum_{j \in \mathbb{N}^+} (j2^k)^{-1/4} \|u_{j,k}\|_{V^2}^2 ((j+1)2^k)^{-1/4} 2^{-k\theta} \|u_{j+1,k}\|_{V^2}^2 \right)^{1/2} \]
\[\lesssim T^{1/4} e^{-2e|I|/|I|} \sum_{k \in \mathbb{N}} \left(\sum_{j \in \mathbb{N}^+} (j2^k)^{-1/4} \left(\sum_{m \in \mathcal{I}, n \sim j2^k} \|u_m\|_{V^2}^2 \right) ((j+1)2^k)^{-1/4} \left(\sum_{m \in \mathcal{I}, m \sim (j+1)2^k} \|u_m\|_{V^2}^2 \right) \right)^{1/2} \]
\[\lesssim T^{1/4} e^{-2e|I|/|I|} |I|^{1/2} \ln |I| \|u\|_{X^{4,q-1/8}_A}^2 \]
\[\lesssim T^{1/4} \|u\|_{X^{4,q-1/8}_A}^2. \tag{3.20} \]

Thus we complete the proof of (3.12). In particular, for \(1 \lesssim |I| < \infty \) and \(0 < T < 1 \), taking \(\beta \) and \(1 - \theta \) small sufficiently, we have

\[\|u_I\|_{L^4_{x,t}([0,T])} \lesssim T^{\varepsilon/4} |I|^{\varepsilon} \|u\|_{X^{4,q-1/8}_A(I)}. \tag{3.21} \]

In the end we can obtain (3.13) by Hölder inequality. \(\square \)

Lemma 3.4 Let \(I \subset \mathbb{R} \) with \(1 \lesssim |I| < \infty \), \(2 \leq q \leq \infty \), we have

\[\|u_I\|_{L^4_{q,v} L^2_{x,v} \cap V^2_A} \lesssim |I|^{1/2 - 1/q} \max_{\lambda \in I} (\lambda)^{-1/4} \|u_{X^{4,q-1/8}_A(I)}\|. \tag{3.22} \]

Proof. Using \(V^2_A \subset L^\infty_{t,v} L^2_x \), the orthogonality in \(V^2 \) and Hölder’s inequality one by one, we have

\[\|u_I\|_{L^\infty_{q,v} L^2_x \cap V^2_A} \lesssim \left(\sum_{\lambda \in I} \|u_{X}^\lambda\|_{V^2_A}^q \right)^{1/2} \lesssim \max_{\lambda \in I} (\lambda)^{-1/4} \left(\sum_{\lambda \in I} (\lambda)^{1/4} \|u_{X}^\lambda\|_{V^2_A}^2 \right)^{1/2} \]
\[\lesssim |I|^{1/2 - 1/q} \max_{\lambda \in I} (\lambda)^{-1/4} \|u\|_{X^{4,q-1/8}_A(I)}. \tag{3.23} \]
4 Trilinear estimates

At first, we apply the duality to the norm calculation (Proposition 2.11) to the inhomogeneous part of the solution of mKdV in $X^{s}_{q,A}$. It is known that (4.1) is equivalent to the following integral equation:

$$u(x, t) = e^{-t\partial_x^3}u_0 - \mathcal{A}((u^3)_x),$$

where

$$e^{-t\partial_x^3} = \mathcal{F}^{-1} e^{it\xi^3} \mathcal{F}, \quad \mathcal{A}(f) = \int_0^t e^{-(t-\tau)\partial_x^3} f(\tau) d\tau.$$

By Propositions 2.10 and 2.11 we see that, for $\text{supp } v \subset \mathbb{R} \times [0, T], 1 \leq q < \infty$,

$$\|\mathcal{A}(f)\|_{X^{1/4}_{q,A}} = \|e^{t\partial_x^3} \mathcal{A}(f)\|_{X^{1/4}_{q}} = \sup \left\{ \left| B \left(\int_0^t e^{t\partial_x^3} f(\tau) d\tau, v \right) \right| : \|v\|_{Y^{-1/4}_{q'}} \leq 1 \right\}$$

$$\leq \sup_{\|v\|_{Y^{-1/4}_{q'}} \leq 1} \left| \int_{[0,T]} (e^{t\partial_x^3} f(t), v(t)) dt \right|$$

$$\leq \sup_{\|v\|_{Y^{-1/4}_{q'}} \leq 1} \left| \int_{[0,T]} (f(t), e^{-t\partial_x^3} v(t)) dt \right|$$

$$\leq \sup_{\|v\|_{Y^{-1/4}_{q',A}} \leq 1} \left| \int_{[0,T]} (f(t), v(t)) dt \right|. \quad (4.2)$$

For $q = \infty$, we have

$$\|\mathcal{A}(f)\|_{X^{1/4}_{\infty,A}} = \|e^{t\partial_x^3} \mathcal{A}(f)\|_{X^{1/4}_{\infty}}$$

$$= \sup_{\lambda \in \mathbb{Z}} \langle \lambda \rangle^{1/4} \left\| \int_0^t e^{t\partial_x^3} f(\tau) d\tau \right\|_{L^2}$$

$$\leq \sup_{\lambda \in \mathbb{Z}} \langle \lambda \rangle^{1/4} \sup_{\|v(\lambda)\|_{\dot{H}^1} \leq 1} \left| \int_{[0,T]} (\Box \lambda e^{t\partial_x^3} f(t), v(\lambda)(t)) dt \right|$$

$$\leq \sup_{\lambda \in \mathbb{Z}} \langle \lambda \rangle^{1/4} \sup_{\|v(\lambda)\|_{\dot{H}^1} \leq 1} \left| \int_{[0,T]} (f(t), \Box \lambda e^{-t\partial_x^3} v(\lambda)(t)) dt \right|$$

$$\leq \sup_{\lambda \in \mathbb{Z}} \langle \lambda \rangle^{1/4} \sup_{\|v(\lambda)\|_A \leq 1} \left| \int_{[0,T]} (f(t), \Box \lambda v(\lambda)(t)) dt \right|. \quad (4.3)$$

To prove Theorem 1.1, we need to control the second term of the integral equation (4.1) in $X^{1/4}_{q,A}(2 \leq q \leq \infty)$. More precisely, we want to prove the following lemma.
Lemma 4.1 For $2 \leq q \leq \infty$, there exists $\varepsilon > 0$ such that
\[
\left\| \int_0^1 e^{-(t-\tau)\partial_\xi^3 (u^3)_{\xi}(\tau)} d\tau \right\|_{X_{q,4}^{1/4}} \lesssim T^\varepsilon \|u\|_{Y_{q,4}^{1/4}}^3. \tag{4.4}
\]

Proof. When $2 \leq q < \infty$, in view of (4.2), it suffices to show that
\[
\left\| \int_{R \times [0,T]} \nabla u^2 \partial_x u \, dxdt \right\| \lesssim T^\varepsilon \|u\|_{X_{q,4}^{1/4}}^3 \|v\|_{Y_{q',4}^{-1/4}}. \tag{4.5}
\]

We perform a uniform decomposition with u, v in the left hand side of (4.5), it suffices to prove that
\[
\sum_{\lambda_0, \ldots, \lambda_3} |\lambda\rangle^{1/4} \int_{[0,T] \times R} \nabla u \lambda_1 u \lambda_2 \partial_x u \lambda_3 \, dxdt \lesssim T^\varepsilon \|u\|_{X_{q,4}^{1/4}}^3 \|v\|_{Y_{q',4}^{-1/4}}. \tag{4.6}
\]

When $q = \infty$, in view of (4.3), it suffices to show that, for any fixed $\lambda \in Z$,
\[
\sum_{\lambda_1, \lambda_2, \lambda_3} |\lambda\rangle^{1/4} \int_{[0,T] \times R} \nabla \lambda u (\lambda) u \lambda_1 u \lambda_2 \partial_x u \lambda_3 \, dxdt \lesssim T^\varepsilon \|u\|_{X_{q,4}^{1/4}}^3 \|v(\lambda)\|_{Y_4^2}. \tag{4.7}
\]

4.1 $q = \infty$, Proof of (4.7).

For convenience, denote λ as λ_0, $\Box \lambda u(\lambda) = v_\lambda = v_{\lambda_0}$. In order to keep the left hand side of (4.7) nonzero, we have the frequency constraint condition (FCC)
\[
\lambda_1 + \lambda_2 + \lambda_3 \approx \lambda_0 \tag{4.8}
\]

and dispersion modulation constraint condition (DMCC)
\[
\max_{0 \leq k \leq 3} |\xi_k^3 - \tau_k| \gtrsim \left(|\xi_0^3 - \tau_0| - \sum_{1 \leq k \leq 3} (|\xi_k^3 - \tau_k|) \right) \gtrsim |(\xi_0 - \xi_1)(\xi_0 - \xi_2)(\xi_0 - \xi_3)|. \tag{4.9}
\]

It suffices to consider the cases that λ_0 is maximal or secondly maximal number in $\lambda_0, \ldots, \lambda_3$ (In the opposite case, one can replace $\lambda_0, \ldots, \lambda_3$ with $-\lambda_0, \ldots, -\lambda_3$).

Step 1. We assume that $\lambda_0 = \max_{0 \leq k \leq 3} |\lambda_k|$. From the frequency constraint condition (FCC) $\lambda_0 \approx \lambda_1 + \lambda_2 + \lambda_3$, we know that the non-trivial case is that $\lambda_0 \gg 0$ (The case $\lambda_0 < 0$ never happens due to the condition (FCC). In addition, the case $|\lambda_0| \lesssim 1$, which leads to $\max_{0 \leq k \leq 3} |\lambda_k| \lesssim 1$, implies that the summation in (4.7) has at most finite terms). Furthermore, in view of $\lambda_0 = \max_{0 \leq k \leq 3} |\lambda_k|$, $\lambda_0 \approx \lambda_1 + \lambda_2 + \lambda_3$, and $\lambda_0 \gg 0$, we see that $\lambda_0 \approx \max_{0 \leq k \leq 3} |\lambda_k| \gg 0$. For convenience, we can take
\[
\lambda_0 = \max_{0 \leq k \leq 3} |\lambda_k| \gg 0. \tag{4.10}
\]
By the symmetry, we can assume \(\lambda_1 \geq \lambda_2 \). Then \(\lambda_0, \ldots, \lambda_3 \) have the following three orders:

- **Order 1**: \(\lambda_0 \geq \lambda_3 \geq \lambda_1 \geq \lambda_2 \);
- **Order 2**: \(\lambda_0 \geq \lambda_1 \geq \lambda_3 \geq \lambda_2 \);
- **Order 3**: \(\lambda_0 \geq \lambda_1 \geq \lambda_2 \geq \lambda_3 \).

We just take Order 1 for example because the other two orders are similar and even more easier (noticing that the derivative located in \(u_{\lambda_3} \)).

Order 1: \(\lambda_0 \geq \lambda_3 \geq \lambda_1 \geq \lambda_2 \). For short, considering the higher and lower frequency of \(\lambda_k \), we use the following notations:

\[
\begin{align*}
\lambda_k \in h \iff & \lambda_k \in [3\lambda_0/4, \lambda_0]; \\
\lambda_k \in h^- \iff & \lambda_k \in [-\lambda_0, -3\lambda_0/4]; \\
\lambda_k \in l \iff & \lambda_k \in [0, 3\lambda_0/4]; \\
\lambda_k \in l^- \iff & \lambda_k \in [-3\lambda_0/4, 0].
\end{align*}
\]

Then we divide Order 1 into several cases.

Case 1: \(\lambda_3 \in h \) and \(\lambda_1 \in h \). In consideration of (FCC), we easily see that \(\lambda_0, \lambda_1, \lambda_2, \lambda_3 \) satisfy the following frequency constraint condition:

\[
\lambda_0 = \lambda_1 + \lambda_2 + \lambda_3 + l, \quad |l| \leq 10.
\]

We know that this case implies that \(\lambda_2 \in [-\lambda_0, -\lambda_0/2-l] \). We do dyadic decomposition for \(u_{\lambda_1}, u_{\lambda_2} \) and \(u_{\lambda_3} \), and keep using uniform decomposition for \(v_{\lambda_0} \). Let us denote \(I_0 = [0, 1), I_j = [2^{j-1}, 2^j), j \geq 1 \). We decompose \(\lambda_1, \lambda_2, \lambda_3 \) by:

\[
\lambda_k \in [3\lambda_0/4, \lambda_0] = \bigcup_{j_k \geq 0} \lambda_0 - I_{j_k}, \quad k = 1, 3; \quad \lambda_2 \in [-\lambda_0, -\lambda_0/2-l] = \bigcup_{j_2 \geq 0} -\lambda_0 + I_{j_2}.
\]

From \(\lambda_3 \geq \lambda_1 \) we know that \(j_3 \leq j_1 \). In view of condition (FCC), we see that \(j_2 \approx j_1 \). It follows that

\[
0 \leq j_3 \leq j_1 \approx j_2 \leq \log_2 \lambda_0.
\]

In the following discussion, we shall omit the condition \(j_k \in [0, \log_2 \lambda_0], k = 1, 2, 3 \), for convenience, but it is always satisfied in Step 1. We denote the left hand side of \([4.7]\) as \(\mathcal{L}_{hhh-}(u, v) \), and divide it into three parts:

\[
\begin{align*}
\mathcal{L}_{hhh-}(u, v) := & \sum_{j_3 \leq j_1 \approx j_2} \langle \lambda_0 \rangle^{1/4} \int_{[0,T] \times \mathbb{R}} \left| \tau_{\lambda_0} u_{\lambda_0 - I_1} u_{-\lambda_0 + I_2} \partial_x u_{\lambda_0 - I_3} \right| dxdt \\
= & \left(\sum_{j_3 \leq j_1 \approx j_2} + \sum_{j_3 \leq 1 \approx j_1 \approx j_2} + \sum_{1 \leq j_3 \leq j_1 \approx j_2} \right) \langle \lambda_0 \rangle^{1/4} \int_{[0,T] \times \mathbb{R}} \left| \tau_{\lambda_0} u_{\lambda_0 - I_1} u_{-\lambda_0 + I_2} \partial_x u_{\lambda_0 - I_3} \right| dxdt.
\end{align*}
\]
It is easy to see that in $L^h_{h\bar{h}h\bar{h}}(u, v)$, $\lambda_0 \approx \lambda_3 \approx \lambda_1 \approx -\lambda_2$ holds. Therefore, by Hölder inequality and Strichartz estimate, we have

$$L^h_{h\bar{h}h\bar{h}}(u, v) \lesssim (\lambda_0)^{5/4} \|\overline{v_0}\|_{L^4_x} \|u_{\lambda_0}\|_{L^2_{x,t}} \|u_{-\lambda_0}\|_{L^2_{x,t}}$$

$$\lesssim T^{1/2} \lambda_0^{1/4} \|\overline{v_0}\|_{L^4_x} \|u_{\lambda_0}\|_{L^2_{x,t} L^2_x} \|u_{-\lambda_0}\|_{L^2_{x,t} L^2_x}$$

$$\lesssim T^{1/2} \lambda_0^{1/4} \|\overline{v_0}\|_{H^2} \|u_{\lambda_0}\|_{H^2_{x,t} L^2_x} \|u_{-\lambda_0}\|_{H^2_{x,t}}$$

$$\lesssim T^{1/2} \lambda_0^{1/4} \|\overline{v_0}\|_{H^2} \|u_{\lambda_0}\|_{H^2_{x,t} L^2_x} \|u_{-\lambda_0}\|_{H^2_{x,t}}$$

$$\lesssim T^{1/2} \|v_0\|_{H^2} \|u\|_{X_{\infty,4}^1}.$$
For $\mathcal{L}_{hhh_h}^h(u, v)$, we can use the bilinear estimate due to $j_2 \gg j_3$. By Hölder’s inequality we have

$$\mathcal{L}_{hhh_h}^h(u, v) \lesssim \sum_{1 \leq j_1 < j_2 \leq j_3} \langle \lambda_0 \rangle^{1/4} \|v_{\lambda_0} - I_{j_1} \|_{L^2_t L^\infty_x} \|u_{\lambda_0 - I_{j_2}} \|_{L^\infty_t L^2_x} \langle 1 \| u_{\lambda_0 + I_{j_3}} - I_{j_1} \|_{L^2_{x,t}} \rangle.$$

Using $\|v_{\lambda_0} \|_{L^\infty_x} \lesssim \|v_{\lambda_0} \|_{L^2_x}$, $V_A^2 \subset L^\infty_t L^2_x$, the dispersion modulation decay (2.4), the bilinear estimate (3.7) and Lemma 3.4 we have

$$\mathcal{L}_{hhh_h}^h(u, v) \lesssim \sum_{1 \leq j_1 < j_2 \leq j_3} \langle \lambda_0 \rangle^{5/4} \langle \lambda_0 \rangle^{-1/2} \langle 2^j \rangle^{-1/2} \langle 2^{2j} \rangle^{-1/2} \|v_{\lambda_0} \|_{V_A^2} \|u_{\lambda_0 - I_{j_1}} \|_{V_A^2}$$

$$\times T^{\varepsilon/4} \langle \lambda_0 \rangle^{-1/2 + \varepsilon} \langle 2^j \rangle^{-1/2 + \varepsilon} \|u_{\lambda_0 + I_{j_3}} - I_{j_1} \|_{V_A^2} \|v_{\lambda_0} \|_{V_A^2}$$

$$\lesssim T^{\varepsilon/4} \sum_{1 \leq j_1 < j_2 \leq j_3} \langle \lambda_0 \rangle^{1/4 + \varepsilon} \langle 2^j \rangle^{-1/2} \langle 2^{2j} \rangle^{-1/2} \langle 2^{3j} \rangle^{-1/2} \|v_{\lambda_0} \|_{V_A^2}$$

$$\times (2^j)^{1/2} (2^{2j})^{1/2} (2^{3j})^{1/2} \langle \lambda_0 \rangle^{-3/4} \|u\|_{X_{\infty,A}^{3/4}}^3.$$

(4.13)

Noticing that $2^{3j} \lesssim \langle \lambda_0 \rangle$ and $2^j \lesssim (2^{2j})^\varepsilon$, we can take $\varepsilon \leq 1/6$ such that

$$\mathcal{L}_{hhh_h}^h(u, v) \lesssim T^{\varepsilon/4} \langle \lambda_0 \rangle^{-1/2 + 3\varepsilon} \|v_{\lambda_0} \|_{V_A^2} \|u\|_{X_{\infty,A}^{3/4}}^3.$$

$$\lesssim T^{\varepsilon/4} \|v_{\lambda_0} \|_{V_A^2} \|u\|_{X_{\infty,A}^{3/4}}^3.$$

For $\mathcal{L}_{hhh_h}^h(u, v)$, by Hölder’s inequality, $\|v_{\lambda_0} \|_{L^\infty_x} \lesssim \|v_{\lambda_0} \|_{L^2_x}$, $V_A^2 \subset L^\infty_t L^2_x$, the dispersion modulation decay (2.4), the L^4 estimate (3.13) and Lemma 3.4 we have

$$\mathcal{L}_{hhh_h}^h(u, v) \lesssim \sum_{1 \leq j_1 < j_2 \leq j_3} \langle \lambda_0 \rangle^{5/4} \|\nabla v_{\lambda_0} - I_{j_1} \|_{L^2_t L^\infty_x} \|u_{\lambda_0 - I_{j_2}} \|_{L^\infty_t L^2_x} \langle 1 \| u_{\lambda_0 + I_{j_3}} - I_{j_1} \|_{L^4_{x,t}} \rangle$$

$$\lesssim \sum_{1 \leq j_1 < j_2 \leq j_3} \langle \lambda_0 \rangle^{5/4} \langle \lambda_0 \rangle^{-1/2} \langle 2^j \rangle^{-1/2} \langle 2^{2j} \rangle^{-1/2} \|v_{\lambda_0} \|_{V_A^2} \|u_{\lambda_0 - I_{j_1}} \|_{V_A^2}$$

$$\times T^{-\varepsilon/4} \langle \lambda_0 \rangle^{-3/4} (2^j)^{1/4 + \varepsilon} (2^{2j})^{1/4 + \varepsilon} \|u\|_{X_{\infty,A}^{3/4}}^2$$

$$\lesssim T^{\varepsilon/2} \sum_{j_1 \leq j_2} \langle \lambda_0 \rangle^{-1/4} (2^j)^{1/4 + \varepsilon} (2^{2j})^{-1/2 + \varepsilon} \|v_{\lambda_0} \|_{V_A^2} \|u\|_{X_{\infty,A}^{3/4}}^3$$

$$\lesssim T^{\varepsilon/2} \|v_{\lambda_0} \|_{V_A^2} \|u\|_{X_{\infty,A}^{3/4}}^3.$$

(4.14)

where the last inequality is by taking $\varepsilon \leq 1/8$.

If $u_{\lambda_0 - I_{j_1}}$ has the highest dispersion modulation, we just take $L^\infty_{x,t}$ and $L^2_{x,t}$ norms to v_{λ_0} and $u_{\lambda_0 - I_{j_1}}$, respectively, then

$$\|\nabla v_{\lambda_0} - I_{j_1} \|_{L^2_{x,t}} \lesssim \|v_{\lambda_0} \|_{V_A^2} \langle \lambda_0 \rangle^{-1/2} \langle 2^j \rangle^{-1/2} \langle 2^{2j} \rangle^{-1/2} \|u_{\lambda_0 - I_{j_1}} \|_{V_A^2}.$$

(4.15)
where we use the fact \(\|v_{\lambda_0}\|_{L^\infty_{x,t}} \lesssim \|v_{\lambda_0}\|_{L^\infty_t L^2_x} \lesssim \|v_{\lambda_0}\|_{V^2_4} \) and the dispersion modulation decay (2.4) to \(u_{\lambda_0-I_3} \). Then this case reduces to the same estimate as that when \(v_{\lambda_0} \) has the highest dispersion modulation.

If \(u_{-\lambda_0+I_2} \) has the highest dispersion modulation, we still divide \(\mathcal{L}_{hhhh}^h(u,v) \) into two parts as (4.12). For \(\mathcal{L}_{hhhh-}^h(u,v) \), we can take \(L^\infty_{x,t}, L^2_{x,t} \) and \(L^2_{x,t} \) norms to \(v_{\lambda_0}, u_{-\lambda_0+I_2} \) and \(u_{\lambda_0-I_3} \), \(\partial_x u_{\lambda_0-I_3} \), respectively. By Hölder’s inequality, the dispersion modulation decay (2.4), the bilinear estimate (3.7) and Lemma 3.4, we have

\[
\mathcal{L}_{hhhh-}^h(u,v) \lesssim \sum_{1 \leq j_3 < j_1 \approx j_2} \langle \lambda_0 \rangle^{1/4} \| v_{\lambda_0} \|_{L^\infty_{x,t}} \| u_{-\lambda_0+I_2} \|_{L^2_{x,t}} \| u_{\lambda_0-I_3} \|_{L^2_{x,t}} \| \partial_x u_{\lambda_0-I_3} \|_{L^2_{x,t}}
\]

\[
\lesssim \sum_{1 \leq j_3 < j_1 \approx j_2} \langle \lambda_0 \rangle^{1/2} \left(\langle 2^{j_3} \rangle \right)^{-1/2} \left(\langle 2^{j_1} \rangle \right)^{-1/2} \| v_{\lambda_0} \|_{V^2_4} \| u_{-\lambda_0+I_2} \|_{V^2_4} \times T^{1/4} \langle \lambda_0 \rangle^{-1/2 + \epsilon} \left(\langle 2^{j_1} \rangle \right)^{-1/2 + \epsilon} \| u_{\lambda_0-I_3} \|_{V^2_4} \| u_{-\lambda_0+I_2} \|_{V^2_4},
\]

which is the same as the right hand side of the first inequality in (4.13) (noticing that \(j_1 \approx j_2 \)).

For \(\mathcal{L}_{hhhh-}^h(u,v) \), we take \(L^\infty_{x,t}, L^2_{x,t}, L^2_{x,t} \) and \(L^4_{x,t} \) norms to \(v_{\lambda_0}, u_{-\lambda_0+I_2}, u_{\lambda_0-I_1} \) and \(u_{\lambda_0-I_3} \), respectively, then

\[
\mathcal{L}_{hhhh-}^h(u,v) \lesssim \sum_{1 \leq j_3 < j_1 \approx j_2} \langle \lambda_0 \rangle^{5/4} \left(\langle 2^{j_3} \rangle \right)^{-1/2} \left(\langle 2^{j_1} \rangle \right)^{-1/2} \| v_{\lambda_0} \|_{V^2_4} \| u_{-\lambda_0+I_2} \|_{V^2_4} \| u_{\lambda_0-I_1} \|_{L^4_{x,t}} \| u_{\lambda_0-I_3} \|_{L^4_{x,t}}
\]

\[
\lesssim \sum_{1 \leq j_3 < j_1 \approx j_2} \langle \lambda_0 \rangle^{5/4} \left(\langle 2^{j_3} \rangle \right)^{-1/2} \left(\langle 2^{j_1} \rangle \right)^{-1/2} \| v_{\lambda_0} \|_{V^2_4} \| u_{-\lambda_0+I_2} \|_{V^2_4} \times T^{1/4} \langle \lambda_0 \rangle^{-3/4} \left(\langle 2^{j_1} \rangle \right)^{1/4 + \epsilon} \left(\langle 2^{j_2} \rangle \right)^{1/4 + \epsilon} \| u \|_{X_{\infty,A}^{1/4}},
\]

which is the same as the right hand side of the second inequality in (4.4).

If \(u_{\lambda_0-I_3} \) has the highest dispersion modulation, we don’t need to divide \(\mathcal{L}_{hhhh-}^h(u,v) \). By Hölder’s inequality, we obtain that

\[
\mathcal{L}_{hhhh-}^h(u,v) \lesssim \sum_{1 \leq j_3 < j_1 \approx j_2} \langle \lambda_0 \rangle^{5/4} \left(\langle 2^{j_3} \rangle \right)^{-1/2} \left(\langle 2^{j_1} \rangle \right)^{-1/2} \| v_{\lambda_0} \|_{V^2_4} \| u_{-\lambda_0+I_2} \|_{V^2_4} \| u_{\lambda_0-I_3} \|_{L^4_{x,t}} \| u_{-\lambda_0+I_2} \|_{L^4_{x,t}}
\]

\[
\lesssim \sum_{1 \leq j_3 < j_1 \approx j_2} \langle \lambda_0 \rangle^{5/4} \left(\langle 2^{j_3} \rangle \right)^{-1/2} \left(\langle 2^{j_1} \rangle \right)^{-1/2} \| v_{\lambda_0} \|_{V^2_4} \| u_{-\lambda_0+I_2} \|_{V^2_4} \times T^{1/2} \langle \lambda_0 \rangle^{-3/4} \left(\langle 2^{j_1} \rangle \right)^{1/4 + \epsilon} \left(\langle 2^{j_2} \rangle \right)^{1/4 + \epsilon} \| u \|_{X_{\infty,A}^{1/4}}
\]

\[
\lesssim T^{1/2} \| v_{\lambda_0} \|_{V^2_4} \| u \|_{X_{\infty,A}^{1/4}},
\]

where the last inequality is by using \(2^{j_1} \lesssim \langle \lambda_0 \rangle, j_1 \lesssim \langle 2^{j_1} \rangle^\epsilon \), and taking \(\epsilon \leq 1/12 \).

Case 2: \(\lambda_3 \in h \) and \(\lambda_1 \in l \). In view of (4.11), we see that \(\lambda_2 \in [-3\lambda_0/4 - l, \lambda_0/4 - l] \), i.e., \(\lambda_2 \in l \) or \(\lambda_2 \in L_- \). We denote by \(\langle \lambda_k \rangle \in hhll \) that all \(\lambda_0, \ldots, \lambda_3 \) satisfy the conditions...
\(\lambda_3 \in h, \quad \lambda_1, \lambda_2 \in l. \)

Taking the similar notations to \(hhll_\cdot \), then we divide Case 2 into two subcases.

Case \(hhll \). We decompose \(\lambda_1, \lambda_2, \lambda_3 \) by:

\[
\lambda_k \in [0, 3\lambda_0/4] = \bigcup_{j_k \geq 0} I_{j_k}, \quad k = 1, 2; \quad \lambda_3 \in [3\lambda_0/4, \lambda_0] = \bigcup_{j_3 \geq 0} \lambda_0 - I_{j_3}, \quad j_1, j_2, j_3 \leq \log_2 \lambda_0.
\]

In view of the condition (FCC) \(\lambda_1 + \lambda_2 + \lambda_3 \approx \lambda_0 \), we see that \(2^{j_3} \approx 2^{j_2} + 2^{j_1} \). Moreover, we can get \(j_1 \geq j_2 \) from \(\lambda_1 \geq \lambda_2 \). Therefore, we know that \(j_3 \approx j_1 \geq j_2 \). It means that we need to estimate

\[
\mathcal{L}_{hhll}(u, v) := \sum_{0 \leq j_2 \leq j_1 \leq j_3 \leq \log_2 \lambda_0} (\lambda_0)^{1/4} \int_{[0, T] \times \mathbb{R}} |v_{\lambda_0} u_{I_{j_1}} u_{I_{j_2}} \partial_x u_{\lambda_0 - I_{j_3}}| \, dx \, dt.
\]

In view of (DMCC) (4.9), we have the highest dispersion modulation

\[
\max_{0 \leq k \leq 3} |\xi_k^3 - \tau_k| \approx (\lambda_0)^{2} \cdot 2^{j_3}.
\]

If \(v_{\lambda_0} \) has the highest dispersion modulation, by Hölder’s inequality we have

\[
\mathcal{L}_{hhll}(u, v) \lesssim \sum_{0 \leq j_2 \leq j_1 \leq j_3 \leq \log_2 \lambda_0} (\lambda_0)^{5/4} \|v_{\lambda_0}\|_{L^\infty_t L^2_x} \|u_{I_{j_1}}\|_{L^\infty_t L^2_x} \|u_{I_{j_2}}\|_{L^4_x} \|u_{\lambda_0 - I_{j_3}}\|_{L^4_x}.
\]

Using \(\|v_{\lambda_0}\|_{L^\infty_t L^2_x} \lesssim \|v_{\lambda_0}\|_{L^2_x} \), \(V_{\lambda_0} \subset L^\infty_t L^2_x \), the dispersion modulation decay (2.4), the \(L^4 \) estimate (3.13) and Lemma 3.3, we have

\[
\mathcal{L}_{hhll}(u, v) \lesssim \sum_{0 \leq j_2 \leq j_1 \leq j_3 \leq \log_2 \lambda_0} (\lambda_0)^{5/4} (\lambda_0)^{-1} (2^{j_3})^{-1/2} \|v_{\lambda_0}\|_{V_{\lambda_0}} \|u_{I_{j_1}}\|_{V_{\lambda_0}}^2 \times \|u\|_{X_{5/4}}^2.
\]

where the last but one inequality is obtained by summarizing over \(j_2, j_1 \) and taking \(\varepsilon < 1/8 \).

If \(u_{I_{j_1}} \) has the highest dispersion modulation, we have

\[
\mathcal{L}_{hhll}(u, v) \lesssim \sum_{0 \leq j_2 \leq j_1 \leq j_3 \leq \log_2 \lambda_0} (\lambda_0)^{5/4} \|v_{\lambda_0}\|_{L^\infty_t L^2_x} \|u_{I_{j_1}}\|_{L^2_x} \|u_{I_{j_2}}\|_{L^4_x} \|u_{\lambda_0 - I_{j_3}}\|_{L^4_x}.
\]

(4.16)
\[\times T^{\varepsilon/2}(2^{j_2})^{-1/8+\varepsilon}(2^{j_1})^{1/4+\varepsilon}(\lambda_0)^{-3/8}\|u\|_{X_{\infty,4}}^2, \]

which is the same as the right hand side of the first inequality in (4.16).

If \(u_{I_{j_2}} \) has the highest dispersion modulation, we take \(L^\infty_{x,t}, L^2_{x,t}, L^4_{x,t} \) and \(L^4_{x,t} \) norms to \(v_{\lambda_0}, u_{I_{j_2}}, u_{I_{j_1}} \) and \(u_{\lambda_0-I_{j_3}} \), respectively. Then applying the dispersion modulation decay (2.4) to \(u_{I_{j_2}} \), we have

\[
\mathcal{L}_{hhll}(u,v) \lesssim \sum_{0<j_2\leq j_1 \approx j_3 \leq \log_2 \lambda_0} (\lambda_0)^{5/4} \|v_{\lambda_0}\|_{L^\infty_{x,t}} \|u_{I_{j_2}}\|_{L^2_{x,t}} \|u_{I_{j_1}}\|_{L^4_{x,t}} \|u_{\lambda_0-I_{j_3}}\|_{L^4_{x,t}} \times T^{\varepsilon/2}(2^{j_2})^{-1/8+\varepsilon}(2^{j_1})^{1/4+\varepsilon}(\lambda_0)^{-3/8}\|u\|_{X_{\infty,4}}^2
\]

\[
\lesssim T^{\varepsilon/2}(\lambda_0)^{-1/8} \sum_{0<j_2\leq j_1 \leq \log_2 \lambda_0} (2^{j_2})^{-3/8+\varepsilon}(2^{j_1})^{1/4}\|v_{\lambda_0}\|_{L^2_{x,t}}^2 \|u\|_{X_{\infty,4}}^3.
\]

Making the summation on \(j_2, j_1 \) in order, and taking \(\varepsilon < 1/16 \), we can obtain the desired estimate.

If \(u_{\lambda_0-I_{j_3}} \) has the highest dispersion modulation, by Hölder’s inequality we have

\[
\mathcal{L}_{hhll}(u,v) \lesssim \sum_{0<j_2\leq j_1 \approx j_3 \leq \log_2 \lambda_0} (\lambda_0)^{5/4} \|v_{\lambda_0}\|_{L^\infty_{x,t}} \|u_{\lambda_0-I_{j_3}}\|_{L^2_{x,t}} \|u_{I_{j_1}}\|_{L^4_{x,t}} \|u_{I_{j_2}}\|_{L^4_{x,t}}
\]

Using \(\|v_{\lambda_0}\|_{L^\infty_{x,t}} \lesssim \|v_{\lambda_0}\|_{L^2_{x,t}}, V^2_{\lambda_0} \subset L^\infty_{x,t}L^2_{x,t} \), the dispersion modulation decay (2.4), the \(L^4 \) estimate (3.14) and Lemma 3.4 we have

\[
\mathcal{L}_{hhll}(u,v) \lesssim \sum_{0<j_2\leq j_1 \approx j_3 \leq \log_2 \lambda_0} (\lambda_0)^{5/4} \|v_{\lambda_0}\|_{L^2_{x,t}}(\lambda_0)^{-1}(2^{j_3})^{-1/2}\|u_{\lambda_0-I_{j_3}}\|_{L^2_{x,t}} \times T^{\varepsilon/2}(2^{j_2})^{-1/8+\varepsilon}(2^{j_1})^{1/4+\varepsilon}\|u\|_{X_{\infty,4}}^2
\]

\[
\lesssim T^{\varepsilon/2}\|v_{\lambda_0}\|_{L^2_{x,t}} \sum_{0<j_2\leq j_1 \leq \log_2 \lambda_0} (2^{j_2})^{-1/8+\varepsilon}(2^{j_1})^{1/4+\varepsilon}\|u\|_{X_{\infty,4}}^2
\]

\[
\lesssim T^{\varepsilon/2}\|v_{\lambda_0}\|_{L^2_{x,t}} \|u\|_{X_{\infty,4}}^3.
\] (4.17)

where the last inequality is by taking \(\varepsilon < 1/8 \).

Case \(hhll_\ldots \). We decompose \(\lambda_1, \lambda_2, \lambda_3 \) by:

\[\lambda_1 \in [0, 3\lambda_0/4] = \bigcup_{j_1 \geq 0} I_{j_1}; \quad \lambda_2 \in [-3\lambda_0/4, 0] = \bigcup_{j_2 \geq 0} -I_{j_2}; \quad \lambda_3 \in [3\lambda_0/4, \lambda_0] = \bigcup_{j_3 \geq 0} \lambda_0 - I_{j_3}. \]

In view of the condition (FCC) \(\lambda_1 + \lambda_2 + \lambda_3 \approx \lambda_0 \), we see that \(2^{j_1} \approx 2^{j_2} + 2^{j_3} \). Thus, we know that \(j_1 \approx j_2 \lor j_3 \). If \(j_1 \approx j_3 \geq j_2 \) or \(j_1 \approx j_2 \approx j_3 \), it is the same as Case \(hhll \) to get the conclusion. So we only need to consider \(j_1 \approx j_2 \gg j_3 \), which means that we need to estimate

\[
\mathcal{L}_{hhll_\ldots}(u,v) := \sum_{j_3 \ll j_2 \approx j_1} (\lambda_0)^{1/4} \int_{[0,T] \times \mathbb{R}} |v_{\lambda_0} u_{I_{j_1}} u_{I_{j_2}} \partial_x u_{\lambda_0-I_{j_3}}| \, dxdt.
\]
In view of (DMCC) (4.13), we have the highest dispersion modulation satisfying
\[
\max_{0 \leq k \leq 3} |\xi_k^3 - \tau_k| \gtrsim (\lambda_0)^2 \cdot 2^{j_3}.
\]

If \(v_{\lambda_0}\) has the highest dispersion modulation, we can easily see that \(|\lambda_0 - 2^{j_3} + 2^{j_2}| \gtrsim (\lambda_0)\) and \(|\lambda_0 - 2^{j_3} - 2^{j_2}| \approx |\lambda_0 - 2^{j_1}| \gtrsim (\lambda_0)\), then we shall use the bilinear estimate to \(u_{-I_{j_2}} u_{\lambda_0 - I_{j_3}}\),
\[
\mathcal{L}_{hll} (u, v) \lesssim \sum_{j_3 < j_2 \leq j_1} \langle \lambda_0 \rangle^{5/4} \|v_{\lambda_0}\|_{L^2_t L_x^\infty} \|u_{I_{j_1}}\|_{L^\infty_t L^2_x} \|u_{-I_{j_2}} u_{\lambda_0 - I_{j_3}}\|_{L^2_t}.
\] (4.18)

Using \(\|v_{\lambda_0}\|_{L^\infty_t L^2_x} \lesssim \|v_{\lambda_0}\|_{L^2_t A^2} A^2 \subset L^\infty_t L^2_x\), the dispersion modulation decay (2.4), the bilinear estimate (3.7) and Lemma 3.4 we have
\[
\mathcal{L}_{hll} (u, v) \lesssim \sum_{j_3 < j_2 \leq j_1} \langle \lambda_0 \rangle^{5/4} \langle \lambda_0 \rangle^{-1} \|v_{\lambda_0}\| V_{\lambda_0}^2 \|u_{I_{j_1}}\| V_{\lambda_0}^2
\]
\[
\times T^{e/4} (\lambda_0)^{-1 + 2\varepsilon} \|u_{-I_{j_2}}\| V_{\lambda_0}^2 \|u_{\lambda_0 - I_{j_3}}\| V_{\lambda_0}^2
\]
\[
\lesssim T^{e/4} \sum_{j_3 < j_2 \leq j_1} \langle \lambda_0 \rangle^{-3/4 + 2\varepsilon} \|v_{\lambda_0}\| V_{\lambda_0}^2 \|u_{I_{j_1}}\| V_{\lambda_0}^2 \|u_{\lambda_0 - I_{j_3}}\| V_{\lambda_0}^2
\]
\[
\lesssim T^{e/4} \sum_{j_3 < j_2 \leq j_1} \langle \lambda_0 \rangle^{-1 + 2\varepsilon} \|v_{\lambda_0}\| V_{\lambda_0}^2 \|u_{I_{j_1}}\| V_{\lambda_0}^2 \|u_{\lambda_0 - I_{j_3}}\| V_{\lambda_0}^2
\]
\[
\lesssim T^{e/4} \|v_{\lambda_0}\| V_{\lambda_0}^2 \|u\| V_{\lambda_0}^{\frac{3}{4}},
\] (4.19)

where the last but one inequality is obtained by taking \(\varepsilon < 1/4\).

If \(u_{I_{j_1}}\) has the highest dispersion modulation, we have
\[
\mathcal{L}_{hll} (u, v) \lesssim \sum_{j_3 < j_2 \leq j_1} \langle \lambda_0 \rangle^{5/4} \|v_{\lambda_0}\|_{L^\infty_t L^2_x} \|u_{I_{j_1}}\|_{L^2_t L_x^\infty} \|u_{-I_{j_2}} u_{\lambda_0 - I_{j_3}}\|_{L^2_t}.
\]
\[
\lesssim \sum_{j_3 < j_2 \leq j_1} \langle \lambda_0 \rangle^{5/4} \|v_{\lambda_0}\| V_{\lambda_0}^2 \langle \lambda_0 \rangle^{-1} \|u_{I_{j_1}}\| V_{\lambda_0}^2
\]
\[
\times T^{e/4} (\lambda_0)^{-1 + 2\varepsilon} \|u_{-I_{j_2}}\| V_{\lambda_0}^2 \|u_{\lambda_0 - I_{j_3}}\| V_{\lambda_0}^2,
\]

which is the same as the right hand side of the first inequality in (4.19).

If \(u_{-I_{j_2}}\) has the highest dispersion modulation, noticing that \(j_1 \approx j_2\), we can take \(L^\infty_t L^2_x\) and \(L^2_t L_x^\infty\) norms to \(v_{\lambda_0}, u_{-I_{j_2}}\) and \(u_{I_{j_1}} u_{\lambda_0 - I_{j_3}}\), respectively. Then we can repeat the above proof to obtain the desired estimates.

If \(u_{\lambda_0 - I_{j_3}}\) has the highest dispersion modulation, comparing with Case \(hll\), the difference is the summation in (4.17) (taking \(\varepsilon < 1/8\))
\[
\sum_{j_3 < j_2 \leq j_1} (2^{j_1})^{-1/8 + \varepsilon} (2^{j_2})^{-1/8 + \varepsilon} \lesssim \sum_{0 \leq j_1 \leq \log_2 \lambda_0} (2^{j_1})^{-1/4 + 2\varepsilon} \times j_1 \lesssim 1.
\] (4.20)
Case 3: $\lambda_3 \in h$ and $\lambda_1 \in l_-$. It is easy to see that $\lambda_2 \in l_-$. We decompose $\lambda_1, \lambda_2, \lambda_3$ by:

$$\lambda_k \in [-c\lambda_0, 0] = \bigcup_{j_k \geq 0} -I_{j_k}, k = 1, 2; \quad \lambda_3 \in [c\lambda_0, \lambda_0] = \bigcup_{j_3 \geq 0} \lambda_0 - I_{j_3}.$$

In view of the condition (FCC) $\lambda_1 + \lambda_2 + \lambda_3 \approx \lambda_0$, we see that $2^{j_1} + 2^{j_2} + 2^{j_3} \approx 0$. It means that $0 \leq j_1, j_2, j_3 \leq 1$. Then using the dispersion modulation decay (2.4), the L^4 estimate (5.13) and Lemma 6.3 and noticing that the summation about j_1, j_2, j_3 is finite, we can get the result and the details are omitted.

Case 4: $\lambda_3 \in l$. This case is easy to estimate because the derivative locate in the low frequency, $\lambda_1, \lambda_2 \in \{l, l_- \}$ and the highest dispersion modulation satisfies

$$\max_{0 \leq k \leq 3} |\xi_k - \tau_k| \gtrsim (\lambda_0)^3.$$

We take Case $\text{hil}\text{l}(\lambda_1, \lambda_2, \lambda_3 \in l)$ as an example. When v_{l_0} attains the highest dispersion modulation, using a similar way as above, we have

$$\mathcal{L}_{\text{hil}}(u, v) \lesssim \sum_{j_1, j_2, j_3} \langle \lambda_0 \rangle^{1/4} 2^{j_3} \|v_{l_0}\|_{L^4_t L^\infty_x} \|u_{I_1}\|_{L^\infty_t L^2_x} \|u_{I_2}\|_{L^4_t L^2_x} \|u_{I_3}\|_{L^4_t L^2_x}$$

$$\lesssim \sum_{j_1, j_2, j_3} \langle \lambda_0 \rangle^{1/2} 2^{j_3} \langle \lambda_0 \rangle^{-3/2} \|v_{l_0}\|_{V^2_A} (2^{j_1})^{1/4} T^{1/2 - 1/8 + \varepsilon} (2^{j_2})^{-1/8 + \varepsilon} \|u\|^3_{L^{1/4}_x A}$$

$$\lesssim T^{1/2} \langle \lambda_0 \rangle^{-5/4} \sum_{j_1, j_2, j_3} (2^{j_1})^{1/4} (2^{j_2})^{-1/8 + \varepsilon} (2^{j_3})^{7/8 + \varepsilon} \|v_{l_0}\|_{V^2_A} \|u\|^3_{L^{1/4}_x A}$$

$$\lesssim \|v_{l_0}\|_{V^2_A} \|u\|^3_{L^{1/4}_x A}.$$

When u_{I_1}, u_{I_2}, or u_{I_3} attains the highest dispersion modulation, we can use an analogous way to get the result. In fact, we just need to take $L^\infty_{x,t}$ norm to $v_{l_0}, L^2_{x,t}$ norm to the item which has the highest dispersion modulation, and $L^4_{x,t}$ norm to the other two items.

Step 2. We consider the case that λ_0 is the secondly maximal integer in $\lambda_0, \ldots, \lambda_3$. By the symmetry, we can assume $\lambda_1 \geq \lambda_2$. Then $\lambda_0, \ldots, \lambda_3$ have the following three orders:

Order 1: $\lambda_3 \geq \lambda_0 \geq \lambda_1 \geq \lambda_2$;

Order 2: $\lambda_1 \geq \lambda_0 \geq \lambda_3 \geq \lambda_2$;

Order 3: $\lambda_1 \geq \lambda_0 \geq \lambda_2 \geq \lambda_3$.

Considering the derivative is located in u_{λ_3}, we take the Order 1 for example in the following proof (the other orders are similar). We divide the proof into three cases $|\lambda_0| \leq 1$, $\lambda_0 \ll 0$ and $\lambda_0 \gg 0$.

Case 1: $|\lambda_0| \leq 1$. We decompose $\lambda_1, \lambda_2, \lambda_3$ by:

$$\lambda_k \in (-\infty, \lambda_0] = \bigcup_{j_k \geq -1} -I_{j_k}, k = 1, 2; \quad \lambda_3 \in [\lambda_0, +\infty) = \bigcup_{j_3 \geq -1} I_{j_3}, \quad I_{-1} = [-|\lambda_0|, 0).$$
In view of $\lambda_0 \approx \lambda_1 + \lambda_2 + \lambda_3$ and $\lambda_1 \geq \lambda_2$, we have $j_3 \approx j_2 \geq j_1 \geq -1$. By DMCC (4.9) the highest dispersion modulation satisfies
\begin{equation}
\max_{\theta \in \mathbb{K} \in \mathbb{L}} |\xi_k^3 - \tau_k| \gtrsim 2^{j_1} \cdot 2^{j_2} \cdot 2^{j_3}.
\end{equation}
(4.21)

If v_{λ_0} gains the highest dispersion modulation, we have
\begin{align*}
\sum_{j_3 \approx j_2 \geq j_1 \geq -1} \langle \lambda_0 \rangle^{1/4} \int_{[0,T] \times \mathbb{R}} |v_{\lambda_0} u_{\lambda_1} u_{\lambda_2} \partial_x u_{\lambda_3}| \, dxdt
&\lesssim \sum_{j_3 \approx j_2 \geq j_1 \geq -1} 2^{j_3} \|v_{\lambda_0}\|_{L^\infty_t L^\infty_x} \|u_{\lambda_1}\|_{L^\infty_t L^2_x} \|u_{\lambda_2}\|_{L^4_x} \|u_{\lambda_3}\|_{L^4_x} \\
&\lesssim \sum_{j_3 \approx j_2 \geq j_1 \geq -1} 2^{j_3} (2^{j_1})^{-1/2} (2^{j_2})^{-1/2} (2^{j_3})^{-1/2} \|v_{\lambda_0}\|_{V^2_A} \|u_{\lambda_1}\|_{V^4_A} \\
&\quad \times T^{\varepsilon/4} (2^{j_2})^{-1/8 + \varepsilon} T^{\varepsilon/4} (2^{j_1})^{-1/8 + \varepsilon} \|u\|^2_{X^{1/4}_{\infty,A}} \\
&\lesssim T^{\varepsilon/2} \sum_{j_3 \approx j_2 \geq j_1 \geq -1} (2^{j_3})^{-1/4 + 2\varepsilon} (2^{j_1})^{-1/4} \|v_{\lambda_0}\|_{V^2_A} \|u\|^3_{X^{1/4}_{\infty,A}} \\
&\lesssim T^{\varepsilon/2} \|v_{\lambda_0}\|_{V^2_A} \|u\|^3_{X^{1/4}_{\infty,A}} .
\end{align*}
(4.22)

If u_{λ_1} has the highest dispersion modulation, we take $L^\infty_t L^2_x$, L^4_x and $L^4_{\infty,t}$ norms to v_{λ_0}, u_{λ_2}, u_{λ_3} and u_{λ_3}, respectively. Then applying the dispersion modulation decay (2.4) and the L^4 estimate Lemma (3.6) we can get the desired conclusion.

If u_{λ_1} has the highest dispersion modulation, we divide the left hand side of (4.7) into two terms.
\begin{align*}
\sum_{j_3 \approx j_2 \geq j_1 \geq -1} \langle \lambda_0 \rangle^{1/4} \int_{[0,T] \times \mathbb{R}} |v_{\lambda_0} u_{\lambda_1} u_{\lambda_2} \partial_x u_{\lambda_3}| \, dxdt
&\leq \left(\sum_{j_3 \approx j_2 \geq j_1 \geq -1} + \sum_{j_3 \approx j_2 \geq j_1 \geq -1} \right) \langle \lambda_0 \rangle^{1/4} \int_{[0,T] \times \mathbb{R}} |v_{\lambda_0} u_{\lambda_1} u_{\lambda_2} \partial_x u_{\lambda_3}| \, dxdt \\
:= & I_1(u,v) + I_2(u,v).
\end{align*}
(4.23)

For $I_1(u,v)$, L^4 estimate (3.13) is enough.
\begin{align*}
I_1(u,v) &\lesssim \sum_{j_3 \approx j_2 \geq j_1 \geq -1} 2^{j_3} \|v_{\lambda_0}\|_{L^\infty_t L^\infty_x} \|u_{\lambda_2}\|_{L^2_x} \|u_{\lambda_1}\|_{L^4_x} \|u_{\lambda_3}\|_{L^4_x} \\
&\lesssim \sum_{j_3 \approx j_2 \geq j_1 \geq -1} 2^{j_3} \|v_{\lambda_0}\|_{V^2_A} (2^{j_1})^{-1/2} (2^{j_2})^{-1/2} (2^{j_3})^{-1/2} (2^{j_3})^{1/4} \|u\|_{X^{1/4}_{\infty,A}} \\
&\quad \times T^{\varepsilon/4} (2^{j_2})^{-1/8 + \varepsilon} T^{\varepsilon/4} (2^{j_1})^{-1/8 + \varepsilon} \|u\|^2_{X^{1/4}_{\infty,A}} \\
&\lesssim T^{\varepsilon/2} \sum_{j_3 \approx j_2 \geq j_1 \geq -1} (2^{j_3})^{-1/4 + 2\varepsilon} (2^{j_1})^{-1/4} \|v_{\lambda_0}\|_{V^2_A} \|u\|^3_{X^{1/4}_{\infty,A}} \\
&\lesssim T^{\varepsilon/2} \|v_{\lambda_0}\|_{V^2_A} \|u\|^3_{X^{1/4}_{\infty,A}} .
\end{align*}
(4.24)
For $I_2(u,v)$, we need to use the bilinear estimate \((3.7)\).

$$I_2(u,v) \lesssim \sum_{j_3 \approx j_2 \gtrsim j_1 \gtrsim -1} 2^{j_3} \|v_{\lambda_0} \|_{L_x^\infty} \left\|u_I \right\|_{L_x^4} \left\|u_{-I_{j_3}^1} \right\|_{L_x^4} \left\|u_{-I_{j_3}^2} \right\|_{L_x^4}$$

$$\lesssim \sum_{j_3 \approx j_2 \gtrsim j_1 \gtrsim -1} 2^{j_3} \left\|v_{\lambda_0} \right\|_{V_\lambda^2} \left((2 j_3)^{-1/2} (2 j_2)^{-1/2} (2 j_3)^{-1/2} (2 j_1)^{-1/2}\right) \left\|u \right\|_{X_{\infty,A}^{1/4}}$$

$$\lesssim T^{\varepsilon/4} \sum_{j_3 \gtrsim j_1 \gtrsim -1} (2 j_3)^{-1/2} (2 j_1)^{-1/2} \left\|v_{\lambda_0} \right\|_{V_\lambda^2} \left\|u \right\|_{X_{\infty,A}^{1/4}}^3$$

$$\lesssim T^{\varepsilon/4} \left\|v_{\lambda_0} \right\|_{V_\lambda^2} \left\|u \right\|_{X_{\infty,A}^{1/4}}^3 \cdot \quad (4.25)$$

If $u_{-I_{j_2}}$ has the highest dispersion modulation, we can get the desired estimate by exchanging the positions of $u_{I_{j_2}}$ and $u_{-I_{j_2}}$ in the above discussion (noticing that $j_2 \approx j_3$).

Case 2: $\lambda_0 \ll 0$. We decompose λ_1 and λ_2 by:

$$\lambda_k \in (-\infty, \lambda_0] = \bigcup_{j_k \gtrsim 0} \lambda_0 - I_{j_k}, \quad k = 1, 2.$$

From the following frequency constraint condition

$$\lambda_0 = \lambda_1 + \lambda_2 + \lambda_3 + l, \quad |l| \leq 10,$$

we can decompose λ_3 as follows.

$$\lambda_3 \in [-\lambda_0 - l, +\infty] = \bigcup_{j_3 \gtrsim -1} -\lambda_0 + I_{j_3}, \quad I_{-1} = [-|l|, 0).$$

In view of $\lambda_0 \approx \lambda_1 + \lambda_2 + \lambda_3$ and $\lambda_1 \gtrsim \lambda_2$, we have $j_3 \approx j_2 \gtrsim j_1$. By DMCC \((4.1)\), we can see that the highest dispersion modulation satisfies

$$\max_{0 \leq k \leq 3} |\xi_k^3 - \tau_k| \gtrsim 2^j \cdot 2^j \cdot ((\lambda_0) + 2^j).$$

If the highest dispersion modulation is located in v_{λ_0}, from the dispersion modulation decay \((4.2)\), L^4 estimate \((5.13)\) and Lemma \((5.4)\) we have

$$\sum_{j_3 \approx j_2 \gtrsim j_1} \langle \lambda_0 \rangle^{1/4} \int_{[0,T] \times \mathbb{R}} \left| \overline{v_{\lambda_0}} \right| u_{\lambda_0 - I_3} u_{\lambda_0 - I_2} \partial_x u_{-\lambda_0 + I_{j_3}} \, dx dt$$

$$\lesssim \sum_{j_3 \approx j_2 \gtrsim j_1} \langle \lambda_0 \rangle^{1/4} \left(\langle \lambda_0 \rangle + 2^j \right) \left\|v_{\lambda_0} \right\|_{L_x^2 L_t^\infty} \left\|u_{\lambda_0 - I_3} \right\|_{L_x^\infty L_t^2} \left\|u_{\lambda_0 - I_2} \right\|_{L_x^\infty L_t^2} \left\|u_{-\lambda_0 + I_{j_3}} \right\|_{L_x^4}$$

$$\lesssim \sum_{j_3 \approx j_2 \gtrsim j_1} \langle \lambda_0 \rangle^{1/4} \left(\langle \lambda_0 \rangle + 2^j \right) \left(2^j \right)^{-1/2} \left(2^j \right)^{-1/2} \left(2^j \right)^{-1/2} \left\|v_{\lambda_0} \right\|_{V_\lambda^2} \left(\langle \lambda_0 \rangle + 2^j \right)^{-1/4}$$

$$\times T^{\varepsilon/4} (2^j)^{-1/4+\varepsilon} \left(\langle \lambda_0 \rangle + 2^j \right)^{-3/8} T^{\varepsilon/4} (2^j)^{1/4+\varepsilon} \left(\langle \lambda_0 \rangle + 2^j \right)^{-3/8} \left\|u \right\|_{X_{\infty,A}^{1/4}}^3$$

$$\lesssim T^{\varepsilon/2} \sum_{j_3 \gtrsim 0} \langle \lambda_0 \rangle^{-1/4} (2^j)^{2\varepsilon} \sum_{0 \leq j_1 \leq j_3} \langle \lambda_0 \rangle^{1/4} \left(\langle \lambda_0 \rangle + 2^j \right)^{-1/4} \left\|v_{\lambda_0} \right\|_{V_\lambda^2} \left\|u \right\|_{X_{\infty,A}^{1/4}}^3 \cdot \quad (4.28)$$
Making the summation on j_1, we see that the summation is controlled by j_3. Then one has that for $0 < \varepsilon < 1/8$,

$$
(4.28) \lesssim T^{\varepsilon/2} \left(\sum_{j_3 \geq 0} (2^{j_3})^{-1/4 + 2\varepsilon} \right) \|v \lambda_0\|_{L_x^\infty} \|u\|_{X_{\infty, A}^{1/4}}^3.
$$

If the highest dispersion modulation is located in $u_\lambda_0 - I_{j_1}$, we take L_x^{∞}, L_x^{3}, $L_x^{4,t}$ norms to v_λ_0, $u_\lambda_0 - I_{j_1}$, $u_\lambda_0 - I_{j_2}$ and $u - \lambda_0 + I_{j_3}$, respectively. Then we can reduce the desired estimate as the above case, so the details are omitted.

If the highest dispersion modulation is located in $u_\lambda_0 - I_{j_2}$, we divide the left hand side of (4.7) into two terms.

$$
\sum_{j_3 \approx j_2 \geq j_1 \geq 0} (\lambda_0)^{1/4} \int_{[0,T] \times \mathbb{R}} |v_\lambda_0 u_{\lambda_0 - I_{j_1}} u_{\lambda_0 - I_{j_2}} \partial_x u - \lambda_0 + I_{j_3}| \, dx dt
\lesssim \left(\sum_{j_3 \approx j_2 \geq j_1 \geq 0} (\lambda_0)^{1/4} \int_{[0,T] \times \mathbb{R}} |v_\lambda_0 u_{\lambda_0 - I_{j_1}} u_{\lambda_0 - I_{j_2}} \partial_x u - \lambda_0 + I_{j_3}| \, dx dt \right) + (4.29)
$$

For $I_1(u, v)$, from the dispersion modulation decay (2.4), L_x^4 estimate (3.13) and Lemma 3.4, we have

$$
I_1(u, v) \lesssim \sum_{j_3 \approx j_2 \geq j_1 \geq 0} (\lambda_0)^{1/4} ((\lambda_0) + 2^{j_3}) \|v_\lambda_0\|_{L_x^\infty} \|u_{\lambda_0 - I_{j_1}}\|_{L_x^3} \|u_{\lambda_0 - I_{j_2}}\|_{L_x^4} \|u - \lambda_0 + I_{j_3}\|_{L_x^4}
\lesssim \sum_{j_3 \approx j_2 \geq j_1 \geq 0} (\lambda_0)^{1/4} ((\lambda_0) + 2^{j_3}) \|v_\lambda_0\|_{L_x^3} \|u_{\lambda_0 - I_{j_1}}\|_{L_x^3} \|u_{\lambda_0 - I_{j_2}}\|_{L_x^4} \|u - \lambda_0 + I_{j_3}\|_{L_x^4}
\lesssim T^{\varepsilon/4} (2^{j_3})^{1/4 + \varepsilon} ((\lambda_0) + 2^{j_3})^{-3/8} T^{\varepsilon/4} (2^{j_3})^{1/4 + \varepsilon} ((\lambda_0) + 2^{j_3})^{-3/8} \|u\|_{X_{\infty, A}^{1/4}}^3
\lesssim T^{\varepsilon/2} \sum_{j_3 \geq 0} (\lambda_0)^{1/4} ((\lambda_0) + 2^{j_3})^{-1/2} (2^{j_3})^{2\varepsilon} \|v_\lambda_0\|_{L_x^3} \|u\|_{X_{\infty, A}^{1/4}}^3. (4.30)
$$

Noticing

$$
(\lambda_0)^{1/4} ((\lambda_0) + 2^{j_3})^{-1/4} \leq 1, \quad ((\lambda_0) + 2^{j_3})^{-1/4} (2^{j_3})^{2\varepsilon} \leq (2^{j_3})^{-1/4 + 2\varepsilon},
$$

for $0 < \varepsilon < 1/8$, (4.30) is dominated by

$$
\lesssim T^{\varepsilon/2} \sum_{j_3 \geq 0} (2^{j_3})^{-1/4 + 2\varepsilon} \|v_\lambda_0\|_{L_x^3} \|u\|_{X_{\infty, A}^{1/4}}^3 \lesssim T^{\varepsilon/2} \|v(\lambda_0)\|_{L_x^3} \|u\|_{X_{\infty, A}^{1/4}}^3.
$$

For $I_2(u, v)$, from the dispersion modulation decay (2.4), the bilinear estimate (3.7) and Lemma 3.4, we have

$$
I_2(u, v) \lesssim \sum_{j_3 \approx j_2 \geq j_1 \geq 0} (\lambda_0)^{1/4} ((\lambda_0) + 2^{j_3}) \|v_\lambda_0\|_{L_x^\infty} \|u_{\lambda_0 - I_{j_1}}\|_{L_x^3} \|u_{\lambda_0 - I_{j_2}}\|_{L_x^4} \|u - \lambda_0 + I_{j_3}\|_{L_x^4}.
$$
We can easily get that the highest dispersion modulation satisfies three subcases:

\[\lambda_{1}\in[-c\lambda_{0},0]\] and \[\lambda_{2}\in[-c\lambda_{0},0]\] or \([0,c\lambda_{0}]\) and \([\lambda_{0},\lambda_{0}+c\lambda_{0}-l]\). From the dispersion modulation decay estimate (4.31), we have

\[\sum_{j_{3}}\langle\lambda_{0}\rangle^{1/4}(2^{j_{3}})^{-1/2}(2^{j_{2}})^{-1/2}\langle\lambda_{0}\rangle^{1/2}(2^{j_{3}})^{1/2}\|v_{\lambda_{0}}\|_{L_{t}^{2}}^{2}\|u_{\lambda_{0}-j_{2}}\|_{V_{\lambda_{0}}^{2}}^{2}\]

\[\times T^{e/4}(\langle\lambda_{0}\rangle^{1/2}(2^{j_{3}})^{-1/2+\varepsilon}(2^{j_{3}})^{-1/2+\varepsilon}\|u_{\lambda_{0}-j_{1}}\|_{V_{\lambda_{0}}^{2}}^{2}\|u_{-\lambda_{0}+I_{j_{3}}}\|_{V_{\lambda_{0}}^{2}}^{2}\]

\[\lesssim T^{e/4}\sum_{j_{3}\gg j_{1}\geq 0}\langle\lambda_{0}\rangle^{1/4}(\langle\lambda_{0}\rangle^{1/2}(2^{j_{3}})^{-1/2+\varepsilon}(2^{j_{3}})^{-1/2+\varepsilon}\|v_{\lambda_{0}}\|_{V_{\lambda_{0}}^{2}}^{2}\|u\|_{X_{\infty,\lambda_{0}}^{1/4}}^{3}\]

\[\lesssim T^{e/4}\|v_{\lambda_{0}}\|_{V_{\lambda_{0}}^{2}}^{2}\|u\|_{X_{\infty,\lambda_{0}}^{1/4}}^{3}\]

If the highest dispersion modulation is located in \(u_{-\lambda_{0}+I_{j_{3}}}\), noticing that \(j_{2}\approx j_{3}\) and \(|-\lambda_{0}+I_{j_{3}}|\approx |\lambda_{0}-I_{j_{2}}|\approx (\langle\lambda_{0}\rangle+2^{j_{3}})|\), we can get the desired estimate by exchanging the positions of \(u_{-\lambda_{0}+I_{j_{3}}}\) and \(u_{\lambda_{0}-j_{2}}\) in the above discussion.

Case 3: \(\lambda_{0}\gg 0\). From the frequency constraint condition \(\lambda_{0}=\lambda_{1}+\lambda_{2}+\lambda_{3}+l, \ |l|\leq 10\), we know that \(\lambda_{2}\) must be less than zero. Furthermore, one can divide this case into three subcases: \(\lambda_{2}\in[-c\lambda_{0},0]\), \(\lambda_{2}\in[-\lambda_{0},-c\lambda_{0}]\) and \(\lambda_{2}\in(-\infty,-\lambda_{0}]\).

Case 3.1: \(\lambda_{2}\in[-c\lambda_{0},0]\). From the frequency constraint condition we find that \(\lambda_{1}\in[-c\lambda_{0},0]\) or \([0,c\lambda_{0}]\) \((\lambda_{1}\in[c\lambda_{0},\lambda_{0}]\) will never happen\), and \(\lambda_{3}\) satisfies Table 1

Case	\(\lambda_{2}\in[-c\lambda_{0},0]\)	\(\lambda_{1}\in[-c\lambda_{0},0]\)	\(\lambda_{3}\in[\lambda_{0},\lambda_{0}+2c\lambda_{0}-l]\)
\(l\ldots h\)	\([-c\lambda_{0},0]\)	\([-c\lambda_{0},0]\)	\([\lambda_{0},\lambda_{0}+2c\lambda_{0}-l]\)

\(|\lambda_{k}|\leq j_{k}, \ k=1,2;\)

\(\lambda_{3}\in[\lambda_{0},(1+2\varepsilon)\lambda_{0}-l]=\bigcup_{j_{3}\geq 0}\lambda_{0}+I_{j_{3}}, \ j_{1},j_{2},j_{3}\ll\log_{2}(\langle\lambda_{0}\rangle)+1.\)

From the frequency constraint condition (4.8), we know

\[2^{j_{1}}+2^{j_{2}}\approx 2^{j_{3}} \Rightarrow j_{3}\approx j_{1} \vee j_{2}.\] (4.31)

We can easily get that the highest dispersion modulation satisfies

\[\max_{0\leq k\leq 3}|\xi_{k}^{3}-\tau_{k}|\gtrsim\langle\lambda_{0}\rangle^{2}cdot 2^{j_{3}}.\] (4.32)

If \(v_{\lambda_{0}}\) attains the highest dispersion modulation, from the dispersion modulation decay (2.4), \(L^{4}\) estimate (3.13) and Lemma 3.4, we have

\[\sum_{j_{3}\approx j_{1} \vee j_{2}}\langle\lambda_{0}\rangle^{1/4}\int_{[0,T]\times \mathbb{R}}|v_{\lambda_{0}}u_{-j_{1}}u_{-j_{2}}\partial_{x}u_{\lambda_{0}+I_{j_{3}}}|dxdt\]
\[
\sum_{j_3 \approx j_1 \lor j_2} (\lambda_0)^{5/4} \| u_{\lambda_0} \|_{L^2 T^0} \| u - I_{j_1} \|_{L^2_t L^\infty_x} \| u - I_{j_2} \|_{L^4_t L^4_x} \| u_{\lambda_0 + I_{j_3}} \|_{L^4_t} \\
\lesssim T^{c/2} \sum_{j_3 \approx j_1 \lor j_2} (\lambda_0)^{-1/8} (2^{j_1})^{-1/4+\varepsilon} (2^{j_2})^{1/4} \| v_{\lambda_0} \|_{L^2} \| u \|^3_{X^{1/4}_{\infty, A}} \\
\lesssim T^{c/2} \| u_{\lambda_0} \|_{L^2} \| u \|^3_{X^{1/4}_{\infty, A}},
\]
where the last but one inequality is gained by summarizing over \(j_2, j_1\) and \(j_3\) in order. One just note that \(j_1 \leq j_3 \leq \log_2 (\lambda_0) + 1\) and take \(\varepsilon < 1/8\).

If \(u - I_{j_1}\) has the highest dispersion modulation, we take \(L^\infty_{x,t}, L^2_{x,t}, L^4_{x,t}\) and \(L^4_t\) norms to \(v_{\lambda_0}, u - I_{j_1}, u - I_{j_2}\) and \(u_{\lambda_0 + I_{j_3}}\), respectively. Then we can get the desired conclusion by the same way as above. If \(u - I_{j_2}\) gains the highest dispersion modulation, one can exchange the positions of \(j_1\) and \(j_2\) to obtain the desired estimate.

If \(u_{\lambda_0 + I_{j_3}}\) has the highest dispersion modulation, we have
\[
\sum_{j_3 \approx j_1 \lor j_2} (\lambda_0)^{1/4} \int_{[0,T] \times \mathbb{R}} \| u_{\lambda_0} u - I_{j_1} u - I_{j_2} \partial_x u_{\lambda_0 + I_{j_3}} \| dx dt \\
\lesssim \sum_{j_3 \approx j_1 \lor j_2} (\lambda_0)^{5/4} \| u_{\lambda_0} \|_{L^\infty_{x,t}} \| u_{\lambda_0 + I_{j_1}} \|_{L^2_{x,t}} \| u_{\lambda_0 + I_{j_3}} \|_{L^4_{x,t}} \| u - I_{j_1} \|_{L^2_{x,t}} \| u - I_{j_2} \|_{L^4_{x,t}} \\
\lesssim T^{c/2} \sum_{j_3 \approx j_1 \lor j_2} (2^{j_1})^{-1/8+\varepsilon} (2^{j_2})^{-1/8+\varepsilon} \| v_{\lambda_0} \|_{L^2} \| u \|^3_{X^{1/4}_{\infty, A}} \\
\lesssim T^{c/2} \| u_{\lambda_0} \|_{L^2} \| u \|^3_{X^{1/4}_{\infty, A}},
\]
(4.33)

Case \(L.1h\). One can use the dyadic decomposition:
\[
\lambda_1 \in [0, c \lambda_0] = \bigcup_{j_1 \geq 0} I_{j_1}, \quad \lambda_2 \in [-c \lambda_0, 0] = \bigcup_{j_2 \geq 0} -I_{j_2}, \\
\lambda_3 \in [\lambda_0, (1 + c) \lambda_0 - l] = \bigcup_{j_3 \geq 0} \lambda_0 + I_{j_3}, \quad j_1, j_2, j_3 \leq \log_2 (\lambda_0).
\]

From the frequency constraint condition (4.8), we get
\[
2^{j_1} + 2^{j_3} \approx 2^{j_2} \Rightarrow j_2 \approx j_1 \lor j_3.
\]
(4.34)

One can get that the highest dispersion modulation satisfies
\[
\max_{0 \leq k \leq 3} | \xi_k^3 - \tau_k | \gtrsim \langle \lambda_0 \rangle^2 2^{j_1}.
\]
(4.35)

If \(v_\lambda\) attains the highest dispersion modulation, from the dispersion modulation decay (2.4), the bilinear estimate and Lemma 3.4, we have
\[
\sum_{j_2 \approx j_1 \lor j_3} (\lambda_0)^{1/4} \int_{[0,T] \times \mathbb{R}} \| u_{\lambda_0} u_{\lambda_0} u_{\lambda_0} \| dx dt
\]

25
Table 2: $\lambda_2 \in [-\lambda_0, -c_\lambda 0]$

$$\leq \sum_{j_2 \approx j_1 \vee j_3} \langle \lambda_0 \rangle^{5/4} \|v_{\lambda_0}\|_{L_t^2 L_x^\infty} \|u_{I_{j_1}}\|_{L_t^\infty L_x^2} \|u_{-I_{j_2}} u_{\lambda_0 + I_{j_3}}\|_{L_t^2 L_x^4}$$

$$\leq T^{e/4} \sum_{j_2 \approx j_1 \vee j_3} \langle \lambda_0 \rangle^{1/4} (2^{j_3})^{-1/2} \|v_{\lambda_0}\|_{V_A^2} \|u_{I_{j_1}}\|_{V_A^2} \langle \lambda_0 \rangle^{-1 + 2e} \|u_{-I_{j_2}}\|_{V_A^2} \|u_{\lambda_0 + I_{j_3}}\|_{V_A^2}$$

$$\leq T^{e/4} \sum_{j_2 \approx j_1 \vee j_3} \langle \lambda_0 \rangle^{-1 + 2e} (2^{j_1})^{1/4} (2^{j_2})^{1/4} \|v_{\lambda_0}\|_{V_A^2} \|u\|_{X_{\infty, A}^3}^3$$

$$\leq T^{e/4} \|v_{\lambda_0}\|_{V_A^2} \|u\|_{X_{\infty, A}^3}^3.$$ If $u_{I_{j_1}}$ has the highest dispersion modulation, we just take L_t^∞, L_x^2 and $L_t^2 L_x^4$ norms to $v_{\lambda_0}, u_{I_{j_1}}$ and $u_{-I_{j_2}} u_{\lambda_0 + I_{j_3}}$, respectively. If $u_{-I_{j_2}}$ attains the highest dispersion modulation, one can further exchange the positions of j_1 and j_2 to obtain the desired estimate. If $u_{\lambda_0 + I_{j_3}}$ has the highest dispersion modulation, we can get the result by the same way as (4.33) in Case L_{-h}.

Case 3.2: $\lambda_2 \in [-\lambda_0, -c_\lambda 0]$. We consider $\lambda_1 \in [c_\lambda 0, \lambda_0], [0, c_\lambda 0], [-c_\lambda 0, 0]$ and $[-\lambda_0, -c_\lambda 0]$, respectively. From the frequency constraint condition we can obtain the corresponding range of λ_3 (see Table 2).

Case h_{-hh}. We decompose $\lambda_1, \lambda_2, \lambda_3$ by:

$$\lambda_1 \in [c_\lambda 0, \lambda_0] = \bigcup_{j_1 \geq 0} \lambda_0 - I_{j_1}, \quad \lambda_2 \in [-\lambda_0, -c_\lambda 0] = \bigcup_{j_2 \geq 0} -\lambda_0 + I_{j_2},$$

$$\lambda_3 \in [\lambda_0, (2 - c_\lambda 0 - l] = \bigcup_{j_3 \geq 0} \lambda_0 + I_{j_3}, \quad j_1, j_2, j_3 \leq \log_2 (\lambda_0).$$

From the frequency constraint condition (4.8), we have

$$2^{j_1} \approx 2^{j_2} + 2^{j_3}. \quad (4.36)$$

It follows that $j_1 \approx j_2 \vee j_3$. When $j_1 \approx j_2 \geq j_3$, we can get the result by using the similar technique as that used in Case 1 of Step 1. When $j_1 \approx j_3 \geq j_2$, we just need to exchange the positions of j_2 and j_3 and use the similar way to obtain our conclusion. We omit the details.

Case h_{-lh}. We decompose $\lambda_1, \lambda_2, \lambda_3$ by:

$$\lambda_1 \in [0, c_\lambda 0] = \bigcup_{j_1 \geq 0} I_{j_1}, \quad \lambda_2 \in [-\lambda_0, -c_\lambda 0] = \bigcup_{j_2 \geq 0} -\lambda_0 + I_{j_2},$$

$$\lambda_3 \in [\lambda_0, (2 - c_\lambda 0 - l] = \bigcup_{j_3 \geq 0} \lambda_0 + I_{j_3}, \quad j_1, j_2, j_3 \leq \log_2 (\lambda_0).$$

26
\[
\lambda_3 \in [\lambda_0, 2\lambda_0 - l] = \bigcup_{j_3 \geq 0} \lambda_0 + I_{j_3}, \quad j_1, j_2, j_3 \leq \log_2(\lambda_0).
\]

From the frequency constraint condition (4.8), we have

\[
2^{j_1} + 2^{j_2} + 2^{j_3} \approx \lambda_0.
\] (4.37)

By DMCC (4.9) the highest dispersion modulation satisfies

\[
\max_{0 \leq k \leq 3} |s_k^3 - \tau_k| \gtrsim (\lambda_0)^2 \cdot 2^{j_1}.
\] (4.38)

If \(v_{\lambda_0}\) has the highest dispersion modulation, we have dispersion modulation decay to \(v_{\lambda_0}\). For \(u_{I_{j_1}}\) and \(u_{\lambda_0 + I_{j_3}}\), we have \(|\lambda_0 + 2^{j_1} + 2^{j_3}| \gtrsim (\lambda_0)\) and \(|\lambda_0 + 2^{j_2} + 2^{j_3}| \gtrsim (\lambda_0)\). Thus we can use bilinear estimate (5.7) to \(u_{I_{j_1}} u_{\lambda_0 + I_{j_3}}\). To be specific, we have

\[
\sum_{j_1, j_2, j_3 \leq \log_2(\lambda_0)} \langle \lambda_0 \rangle^{1/4} \int_{[0,T] \times \mathbb{R}} |\nu_{\lambda_0} u_{I_{j_1}} u_{\lambda_0 + I_{j_2}} \partial_x u_{\lambda_0 + I_{j_3}}| \, dx \, dt
\]
\[
\lesssim \sum_{j_1, j_2, j_3 \leq \log_2(\lambda_0)} \langle \lambda_0 \rangle^{5/4} \|v_{\lambda_0}\|_{L^5_t L^\infty_x} \|u_{\lambda_0 + I_{j_2}}\|_{L^\infty_t L^2_x} \|u_{I_{j_1}} u_{\lambda_0 + I_{j_3}}\|_{L^2_x} \|u_{\lambda_0 + I_{j_2}}\|_{V^2_A}
\]
\[
\lesssim \sum_{j_1, j_2, j_3 \leq \log_2(\lambda_0)} \langle \lambda_0 \rangle^{5/4} \lambda_0^{-1/2} (2^{j_1})^{-1/2} \|v_{\lambda_0}\|_{V^2_A} \|u_{\lambda_0 + I_{j_2}}\|_{V^2_A}
\]
\[
\lesssim T^{k/4} \langle \lambda_0 \rangle^{-1/2 + 2^k} \log_2(\lambda_0) \|v_{\lambda_0}\|_{V^2_A} \|u\|_{X^{1/4}_{\infty, A}}^3.
\] (4.39)

If \(u_{-\lambda_0 + I_{j_2}}\) has the highest dispersion modulation, we take \(L^\infty_t L^2_{x,t}\) and \(L^2_{x,t}\) norms to \(v_{\lambda_0}\), \(u_{-\lambda_0 + I_{j_2}}\), and \(u_{I_{j_1}} u_{\lambda_0 + I_{j_3}}\), respectively. Then applying the dispersion modulation decay estimate (2.3) to \(u_{-\lambda_0 + I_{j_2}}\) and the bilinear estimate (5.7) to \(u_{I_{j_1}} u_{\lambda_0 + I_{j_3}}\), we can get the desired conclusion.

If \(u_{I_{j_1}}\) has the highest dispersion modulation, we have dispersion modulation decay to \(u_{I_{j_1}}\). For \(u_{-\lambda_0 + I_{j_2}}\) and \(u_{\lambda_0 + I_{j_3}}\), we have \(|\lambda_0 + 2^{j_1} - \lambda_0 + 2^{j_2}| \gtrsim (2^{j_1} + 2^{j_2}) \approx \lambda_0 - 2^{j_1} \gtrsim (\lambda_0)\) and \(|\lambda_0 + 2^{j_2} + \lambda_0 - 2^{j_1}| \gtrsim (\lambda_0)\). Thus we can use bilinear estimate (5.7) to \(u_{-\lambda_0 + I_{j_2}} u_{\lambda_0 + I_{j_3}}\). Therefore, we have

\[
\sum_{j_1, j_2, j_3 \leq \log_2(\lambda_0)} \langle \lambda_0 \rangle^{1/4} \int_{[0,T] \times \mathbb{R}} |\nu_{\lambda_0} u_{I_{j_1}} u_{-\lambda_0 + I_{j_2}} \partial_x u_{\lambda_0 + I_{j_3}}| \, dx \, dt
\]
\[
\lesssim \sum_{j_1, j_2, j_3 \leq \log_2(\lambda_0)} \langle \lambda_0 \rangle^{5/4} \|v_{\lambda_0}\|_{L^5_t L^\infty_x} \|u_{I_{j_1}}\|_{L^2_{x,t}} \|u_{-\lambda_0 + I_{j_2}} u_{\lambda_0 + I_{j_3}}\|_{L^2_{x,t}}
\]
\[
\lesssim \sum_{j_1, j_2, j_3 \leq \log_2(\lambda_0)} \langle \lambda_0 \rangle^{5/4} \|v_{\lambda_0}\|_{V^2_A} \langle \lambda_0 \rangle^{-1/2} (2^{j_1})^{-1/2} \|u_{I_{j_1}}\|_{V^2_A}
\]

27
\[\times T^{\varepsilon/4}(\lambda_0)^{-1+2\varepsilon} \| u_{-\lambda_0+I_{j_2}} \|_{V^2_A} \| u_{\lambda_0+I_{j_2}} \|_{V^2_A}, \] (4.40)

which is the same with the third line of (4.39), so we omit the details.

If \(u_{\lambda_0+I_{j_3}} \) has the highest dispersion modulation, from the dispersion modulation decay (4.4) and \(L^4 \) estimate (4.13), we have

\[\sum_{j_1,j_2,j_3 \leq \log_2(\lambda_0)} (\lambda_0)^{1/4} \int_{[0,T] \times \mathbb{R}} |u_{\lambda_0} u_{I_{j_1}} u_{-\lambda_0+I_{j_2}} \partial_x u_{\lambda_0+I_{j_3}}| \, dxdt \]
\[\lesssim \sum_{j_1,j_2,j_3 \leq \log_2(\lambda_0)} (\lambda_0)^{5/4} \| v_{\lambda_0} \|_{L^\infty_T} \| u_{\lambda_0+I_{j_3}} \|_{L^2_{x,t}} \| u_{I_{j_1}} \|_{L^4_{x,t}} \| u_{-\lambda_0+I_{j_2}} \|_{L^4_{x,t}} \]
\[\lesssim \sum_{j_1,j_2,j_3 \leq \log_2(\lambda_0)} (\lambda_0)^{5/4} \| v_{\lambda_0} \|_{V^2_A} (\lambda_0)^{-1/2} (2^{j_1})^{-1/2} (2^{j_2})^{1/2} (\lambda_0)^{-1/4} \| u \|_{X_{1/4,A}} \]
\[\times T^{\varepsilon/4} (2^{j_1})^{-1/8+\varepsilon} T^{\varepsilon/4} (2^{j_2})^{1/4+\varepsilon} (\lambda_0)^{-3/8} \| u \|_{X_{1/4,A}}^2 \]
\[\lesssim T^{\varepsilon/2} \sum_{j_1,j_2,j_3 \leq \log_2(\lambda_0)} (\lambda_0)^{-3/8} (2^{j_1})^{-1/8+\varepsilon} (2^{j_2})^{1/4+\varepsilon} \| v_{\lambda_0} \|_{V^2_A} \| u \|_{X_{1/4,A}}^3. \] (4.41)

Taking \(0 < \varepsilon < 1/8 \), the summation over \(j_1 \) is finite. The summation over \(j_2 \) and \(j_3 \) can be controlled, so (4.41) is continued by

\[\lesssim T^{\varepsilon/2} (\lambda_0)^{-1/8+\varepsilon} \| v_{\lambda_0} \|_{V^2_A} \| u \|_{X_{1/4,A}}^3 \lesssim T^{\varepsilon/2} (\lambda_0)^{3/4} \| u \|_{X_{1/4,A}}^3. \] (4.42)

Case h_{-h}. We decompose \(\lambda_1, \lambda_2, \lambda_3 \) in the following way:

\[\lambda_1 \in [-c\lambda_0, 0] = \bigcup_{j_1 \geq 0} -I_{j_1}, \quad \lambda_2 \in [-\lambda_0, -c\lambda_0] = \bigcup_{j_2 \geq 0} -\lambda_0 + I_{j_2}, \quad \lambda_3 \in [c\lambda_0 - l, 2\lambda_0 + c\lambda_0 - l] = \bigcup_{j_3 \geq \log_2(\lambda_0) - C} \lambda_0 + I_{j_3}, \quad j_3 \leq \log_2(\lambda_0) + 1. \]

From the frequency constraint condition (4.8), we have

\[2^{j_2} + 2^{j_3} \approx \lambda_0 + 2^{j_1}. \] (4.43)

It is easy to see that this case is similar to the above Case h_{-h}, so the details are omitted.

Case h_{-h}. We decompose \(\lambda_1, \lambda_2, \lambda_3 \) as follows:

\[\lambda_k \in [-\lambda_0, -c\lambda_0] = \bigcup_{j_k \geq 0} -\lambda_0 + I_{j_k}, \quad j_k \leq \log_2(\lambda_0), \quad k = 1, 2; \] (4.44)

\[\lambda_3 \in [\lambda_0 + 2c\lambda_0 - l, 3\lambda_0 - l] = \bigcup_{j_3 \geq \log_2(2c\lambda_0 - l)} \lambda_0 + I_{j_3}, \quad j_3 \leq \log_2(\lambda_0) + 1. \] (4.45)

From the dispersion modulation constraint condition (4.9), we know the highest dispersion modulation satisfies

\[\max_{0 \leq k \leq 3} |\epsilon_k^3 - \tau_k^3| \gtrsim (\lambda_0)^2 \cdot 2^{j_1}. \] (4.46)
If \(v_{\lambda_0} \) has the highest dispersion modulation, we take dispersion modulation decay to \(v_{\lambda_0} \). For \(u_{-\lambda_0 + I_j^1} \) and \(u_{\lambda_0 + I_j^1} \), we have \(|\lambda_0 + 2^j_3 - \lambda_0| + 2^j_1 | \gtrsim 2^j_1 \) and \(|\lambda_0 + 2^j_3 + \lambda_0 - 2^j_1| \gtrsim (\lambda_0) \). Thus we can use bilinear estimate (3.7) to \(u_{-\lambda_0 + I_j^1}u_{\lambda_0 + I_j^1} \). Thus we have

\[
\sum_{j_1,j_2,j_3 \in \log_2(\lambda_0)+1} \lambda_0^{1/4} \int_{[0,T]} \langle u_{\lambda_0 + I_j^1}u_{-\lambda_0 + I_j^2} \partial_x u_{\lambda_0 + I_j^3} \rangle \, dx dt \\
\lesssim \sum_{j_1,j_2,j_3 \in \log_2(\lambda_0)+1} \lambda_0^{5/4} \| u_{\lambda_0 + I_j^1} \|_{L^\infty_t L^2_x} \| u_{-\lambda_0 + I_j^2} \|_{L^2_t L^\infty_x}\| u_{-\lambda_0 + I_j^3} \|_{L^2_t L^\infty_x} \\
\lesssim \sum_{j_1,j_2,j_3 \in \log_2(\lambda_0)+1} \lambda_0^{5/4} \langle \lambda_0 \rangle^{-1}(2^j_1)^{-1/2} \| v_{\lambda_0} \|_{V^2_A} \| u_{-\lambda_0 + I_j^2} \|_{V^2_A} \\
\times T^{e/4} \langle \lambda_0 \rangle^{-1/2 + \varepsilon} (2^j_1)^{1/2} \| v_{\lambda_0} \|_{V^2_A} \| u_{\lambda_0 + I_j^1} \|_{V^2_A}^{3/\lambda_{1/4} A} \\
\lesssim T^{e/4} \| u_{\lambda_0}(\lambda_0) \|_{V^2_A} \| u \|_{X_{1/4,1/4}^A}^{3/\lambda_{1/4} A}.
\] (4.47)

If \(u_{-\lambda_0 + I_j^1} \) has the highest dispersion modulation, we take \(L^\infty_{x,t}, L^2_{x,t} \) and \(L^2_{x,t} \) norms to \(v_{\lambda_0} \), \(u_{-\lambda_0 + I_j^2} \), and \(u_{-\lambda_0 + I_j^3} \), respectively. Then we can get the desired estimate by using the analogue technique. If \(u_{-\lambda_0 + I_j^1} \) has the highest dispersion modulation, due to the symmetry between \(u_{-\lambda_0 + I_j^1} \) and \(u_{-\lambda_0 + I_j^2} \), the estimate is similar so we omit the details.

If \(u_{\lambda_0 + I_j^1} \) has the highest dispersion modulation, from the dispersion modulation decay (2.4) and \(L^4 \) estimate (3.13), we have

\[
\sum_{j_1,j_2,j_3 \in \log_2(\lambda_0)+1} \langle \lambda_0 \rangle^{1/4} \int_{[0,T]} \langle u_{\lambda_0 + I_j^1}u_{-\lambda_0 + I_j^2} \partial_x u_{\lambda_0 + I_j^3} \rangle \, dx dt \\
\lesssim \sum_{j_1,j_2,j_3 \in \log_2(\lambda_0)+1} \lambda_0^{5/4} \| u_{\lambda_0 + I_j^1} \|_{L^\infty_t L^2_x} \| u_{-\lambda_0 + I_j^2} \|_{L^2_t L^\infty_x}\| u_{-\lambda_0 + I_j^3} \|_{L^2_t L^\infty_x} \\
\lesssim \sum_{j_1,j_2,j_3 \in \log_2(\lambda_0)+1} \lambda_0^{5/4} \langle \lambda_0 \rangle^{-1} (2^j_3)^{-1/4} \| v_{\lambda_0} \|_{V^2_A} \langle \lambda_0 \rangle^{-1/4} \| u \|_{X_{1/4,1/4}^A} \\
\times T^{e/4}(2^j_1)^{1/4+\varepsilon} \langle \lambda_0 \rangle^{-3/8} T^{e/4}(2^j_2)^{1/4+\varepsilon} \langle \lambda_0 \rangle^{-3/8} \| u \|_{X_{1/4,1/4}^A}^{2} \\
\lesssim T^{e/4} \langle \lambda_0 \rangle^{-3/4} (2^j_3)^{1/4+\varepsilon} (2^j_2)^{1/4+\varepsilon} \| v_{\lambda_0} \|_{V^2_A} \| u \|_{X_{1/4,1/4}^A} \\
\lesssim T^{e/2} \langle \lambda_0 \rangle^{-1/4+2\varepsilon} \log_2(\lambda_0) \| v_{\lambda_0} \|_{V^2_A} \| u \|_{X_{1/4,1/4}^A} \\
\lesssim T^{e/2} \| u_{\lambda_0}(\lambda_0) \|_{V^2_A} \| u \|_{X_{1/4,1/4}^A}^{3/\lambda_{1/4} A}.
\]

Case 3.3: \(\lambda_2 \in (0, -\lambda_0) \). We consider \(\lambda_1 \in [c\lambda_0, \lambda_0], [0, c\lambda_0], [-\lambda_0, 0] \) and \((0, -\lambda_0)\), respectively. From the frequency constraint condition we can obtain the corresponding range of \(\lambda_3 \) (see Table 3).
When \(0 \leq j_1 \leq j_2 \approx j_3 \), the summation in above inequality becomes

\[
\sum_{j_3 \geq 0} (\langle \lambda_0 \rangle + 2^{j_3})^{-1/4} (2^{j_3})^{2\varepsilon} \cdot j_3 \lesssim 1.
\]
When $0 \leq j_2 \leq j_1 \approx j_3$, noticing that $j_1 \leq \log_2 \langle \lambda_0 \rangle$, we can know that the summation satisfies

$$\sum_{0 \leq j_2 \leq j_3 \leq \log_2 \langle \lambda_0 \rangle} (\langle \lambda_0 \rangle)^{-1/4} (2^{j_2})^{-1/4+\varepsilon} (2^{j_3})^{1/4+\varepsilon} \cdot j_3 \lesssim 1.$$ \hspace{1cm} (4.50)

If $u_{\lambda_0-I_{j_1}}$ has the highest dispersion modulation, we take $L_{x,t}^\infty$, $L_{x,t}^2$, $L_{x,t}^4$ and $L_{x,t}^4$ norms to v_{λ_0}, $u_{\lambda_0-I_{j_1}}$, $u_{-\lambda_0-I_{j_2}}$ and $u_{\lambda_0+I_{j_3}}$, respectively. Then we can get the desired estimate by a similar way.

If $u_{-\lambda_0-I_{j_2}}$ has the highest dispersion modulation, we take the dispersion modulation decay estimate to $u_{-\lambda_0-I_{j_2}}$. For $u_{\lambda_0-I_{j_1}}$ and $u_{\lambda_0+I_{j_3}}$, we have $|\lambda_0 + 2^{j_3} - \lambda_0 + 2^{j_1}| \gtrsim 2^{j_3}$ and $|\lambda_0 + 2^{j_3} + \lambda_0 - 2^{j_1}| \gtrsim (\langle \lambda_0 \rangle + 2^{j_3})$. Thus we can use the bilinear estimate \[\text{(3.7)} \] to $u_{\lambda_0-I_{j_1}} u_{\lambda_0+I_{j_3}}$. Thus we have

$$\sum_{j_1, j_2, j_3 \geq 0} (\langle \lambda_0 \rangle)^{1/4} \int_{[0,T] \times R} |\langle \lambda_0 \rangle u_{\lambda_0-I_{j_1}} u_{-\lambda_0-I_{j_2}} \partial_x u_{\lambda_0+I_{j_3}}| \, dx \, dt$$

$$\lesssim \sum_{j_1, j_2, j_3 \geq 0} (\langle \lambda_0 \rangle)^{1/4} \| \langle \lambda_0 \rangle L_{x,t}^\infty L_{x,t}^\infty \| u_{-\lambda_0-I_{j_2}} \| L_{x,t}^2 \| u_{\lambda_0+I_{j_3}} \| L_{x,t}^2$$

$$\lesssim \sum_{j_1, j_2, j_3 \geq 0} (\langle \lambda_0 \rangle)^{1/4} (\langle \lambda_0 \rangle + 2^{j_3})(\langle \lambda_0 \rangle + 2^{j_2})^{-1/2}(2^{j_1})^{-1/2}(2^{j_3})^{-1/2}(2^{j_2})^{-1/2}\| u_{\lambda_0+I_{j_3}} \| L_{x,t}^2$$

$$\times T^{\varepsilon/4} (\langle \lambda_0 \rangle + 2^{j_3})^{-1/2+\varepsilon} (2^{j_2})^{-1/2+\varepsilon} \| u_{\lambda_0-I_{j_1}} \| L_{x,t}^2 \| u_{\lambda_0+I_{j_3}} \| L_{x,t}^2$$

$$\lesssim T^{\varepsilon/4} \sum_{j_1, j_2, j_3 \geq 0} (\langle \lambda_0 \rangle + 2^{j_3})^{1/4+\varepsilon} (\langle \lambda_0 \rangle + 2^{j_2})^{-3/4}(2^{j_1})^{-1/2+\varepsilon} (2^{j_2})^{1/2}\| u_{\lambda_0+I_{j_3}} \| L_{x,t}^2.$$ \hspace{1cm} (4.51)

If $0 \leq j_1 \leq j_2 \approx j_3$, the summation in above inequality becomes

$$\sum_{j_3 \geq 0} (\langle \lambda_0 \rangle + 2^{j_3})^{-1/2+\varepsilon} (2^{j_3})^\varepsilon \cdot j_3 \lesssim 1.$$ \hspace{1cm} (4.52)

If $0 \leq j_2 \leq j_1 \approx j_3$, recalling that $j_1 \leq \log_2 \langle \lambda_0 \rangle$, we can get the summation satisfying

$$\sum_{0 \leq j_2 \leq j_3 \leq \log_2 \langle \lambda_0 \rangle} (\langle \lambda_0 \rangle)^{-1/2+\varepsilon} (2^{j_3})^{-1/2+\varepsilon} (2^{j_2})^{1/2} \cdot j_3 \lesssim 1.$$ \hspace{1cm} (4.53)

If $u_{\lambda_0+I_{j_3}}$ attains the highest dispersion modulation, noticing that for $u_{\lambda_0-I_{j_1}}$ and $u_{-\lambda_0-I_{j_2}}$, we have $|\lambda_0 + 2^{j_2} - \lambda_0 + 2^{j_1}| \gtrsim 2^{j_2}$ and $|\lambda_0 + 2^{j_2} + \lambda_0 - 2^{j_1}| \gtrsim (\langle \lambda_0 \rangle + 2^{j_2})$. We can use the bilinear estimate \[\text{(3.7)} \] to $u_{\lambda_0-I_{j_1}} u_{-\lambda_0-I_{j_2}}$ to get our result by using the same way as above.

Case 2h-th. From (FCC) \[\text{(4.8)} \], we see that $\lambda_2 \in [-\lambda_0 - c\lambda_0 - l, -\lambda_0]$. We decompose $\lambda_1, \lambda_2, \lambda_3$ in a dyadic way:

$$\lambda_1 \in [0, c\lambda_0] = \bigcup_{j_1 \geq 0} I_{j_1}, \quad \lambda_2 \in [-\lambda_0 - c\lambda_0 - l, -\lambda_0] = \bigcup_{j_2 \geq 0} (-\lambda_0 - I_{j_2},$$

$$\lambda_3 \in [2\lambda_0 - c\lambda_0 - l, 2\lambda_0] = \bigcup_{j_3 \geq 0} \lambda_0 + I_{j_3}, \quad j_1, j_2, j_3 \leq \log_2 \langle \lambda_0 \rangle.$$
From the frequency constraint condition (4.8), we have

\[2^{j_1} + 2^{j_3} - 2^{j_2} \approx \lambda_0. \]

By DMCC (4.9) the highest dispersion modulation satisfies

\[
\max_{0 \leq k \leq 3} |\xi_k^3 - \tau_k| \gtrsim (\lambda_0)^2 \cdot 2^{j_1}.
\]

Therefore, the approach to this case is similar to Case \(h_- lh \), and we omit it.

Case 2\(h_- lh2 \). We decompose \(\lambda_1, \lambda_2, \lambda_3 \) in the following way:

\[
\lambda_1 \in [0, c\lambda_0] = \bigcup_{j_1 \geq 0} I_{j_1}, \quad j_1 \leq \log_2 (\lambda_0);
\]

\[
\lambda_2 \in [-\infty, -\lambda_0] = \bigcup_{j_2 \geq 0} -\lambda_0 - I_{j_2}, \quad \lambda_3 \in [2\lambda_0, +\infty] = \bigcup_{j_3 \geq 0} 2\lambda_0 + I_{j_3}.
\]

From the frequency constraint condition (4.8), we have

\[
2^{j_2} \approx 2^{j_1} + 2^{j_3}, \quad \text{i.e.} \quad j_2 \approx j_1 \lor j_3.
\]

By DMCC (4.9) the highest dispersion modulation satisfies

\[
\max_{0 \leq k \leq 3} |\xi_k^3 - \tau_k| \gtrsim (\lambda_0)^2 \cdot (\lambda_0 + 2^{j_2}) \cdot (\lambda_0 + 2^{j_3}).
\]

If \(v_{\lambda_0} \) has the highest dispersion modulation decay to \(v_{\lambda_0} \). For \(u_{I_{j_1}} \) and \(u_{2\lambda_0 + I_{j_3}} \), we have \(|2\lambda_0 + 2^{j_3} \pm 2^{j_1}| \gtrsim (\lambda_0 + 2^{j_3}) \). Thus we can use bilinear estimate (3.7) to \(u_{I_{j_1}} u_{2\lambda_0 + I_{j_3}} \). Specifically, we have

\[
\sum_{j_2 = j_1 \lor j_3} (\lambda_0)^{1/4} \int_{[0,T] \times \mathbb{R}} |\tau_{\lambda_0} u_{I_{j_1}} u_{\lambda_0 - I_{j_2}} \partial_x u_{2\lambda_0 + I_{j_3}}| \, dx dt
\]

\[
\lesssim \sum_{j_2 = j_1 \lor j_3} (\lambda_0)^{1/4} (\lambda_0 + 2^{j_3}) \|\tau_{\lambda_0}\|_{L^2_t L^\infty_x} \|u_{\lambda_0 - I_{j_2}}\|_{L^\infty_t L^2_x} \|u_{I_{j_1}} u_{2\lambda_0 + I_{j_3}}\|_{L^2_t L^2_x}
\]

\[
\lesssim \sum_{j_2 = j_1 \lor j_3} (\lambda_0)^{1/4} (\lambda_0 + 2^{j_3})^{-1/2} (\lambda_0 + 2^{j_3})^{-1/2} \|v_{\lambda_0}\|_{V_D^2} \|u_{\lambda_0 - I_{j_2}}\|_{V_D^2}
\]

\[
\times T^{1/4} (\lambda_0 + 2^{j_3})^{-1+2\varepsilon} \|u_{I_{j_1}}\|_{V_D^3} \|u_{2\lambda_0 + I_{j_3}}\|_{V_D^2}
\]

\[
\lesssim T^{1/4} \sum_{j_2 = j_1 \lor j_3} (\lambda_0)^{-1/4} (\lambda_0 + 2^{j_3})^{-3/4+2\varepsilon} (\lambda_0 + 2^{j_3})^{-3/4}
\]

\[
\times (2^{j_1})^{1/4} (2^{j_3})^{1/2} (2^{j_3})^{1/2} \|v_{\lambda_0}\|_{V_D^2} \|u\|_{X_{\infty,A}^{3/4}}^3
\]

\[
\lesssim T^{1/4} \|v_{\lambda_0}\|_{V_D^2} \|u\|_{X_{\infty,A}^{3/4}}^3,
\]

where the last inequality is by summing over \(j_1, j_2 \) and \(j_3 \). Indeed we have the following estimates:

\[
\sum_{j_1 \leq \log_2 (\lambda_0)} (2^{j_1})^{1/4} \lesssim (\lambda_0)^{1/4}; \quad \sum_{j_2 \geq 0} (\lambda_0 + 2^{j_3})^{-3/4}(2^{j_3})^{1/2} \lesssim \sum_{j_2 \geq 0} (2^{j_3})^{-1/4} \lesssim 1;
\]

32
\[
\sum_{j_3 \geq 0} \left((\lambda_0) + 2^{j_3} \right)^{-3/4 + 2\varepsilon} \left(2^{j_3} \right)^{1/2} \lesssim \sum_{j_3 \geq 0} \left(2^{j_3} \right)^{-1/4 + 2\varepsilon} \lesssim 1, \quad 0 < \varepsilon < 1/8.
\]

If \(u_{-\lambda_0 - I_{j_2}} \) has the highest dispersion modulation, we take \(L^\infty_{x,t}, L^2_{x,t} \) and \(L^2_{x,t} \) norms to \(v_{\lambda_0}, u_{-\lambda_0 - I_{j_2}} \) and \(u_{I_{j_1}} u_{2\lambda_0 + I_{j_3}} \), respectively. Then it will be same with (4.53).

If \(u_{2\lambda_0 + I_{j_3}} \) has the highest dispersion modulation, we take dispersion modulation decay to \(u_{2\lambda_0 + I_{j_3}} \). For \(u_{I_{j_1}} \) and \(u_{-\lambda_0 - I_{j_2}} \), we have \(|\lambda_0 + 2^{j_2} + 2^{j_3}| \gtrsim (\lambda_0) + 2^{j_2} \) and \(|\lambda_0 + 2^{j_2} - 2^{j_3}| \gtrsim 2^{j_2} \). Thus we can use bilinear estimate (3.7) to \(u_{I_{j_1}} u_{-\lambda_0 - I_{j_3}} \). To be specific, we have

\[
\sum_{j_2 \approx j_1 \land j_3} \langle \lambda_0 \rangle^{1/4} \int_{[0, T] \times \mathbb{R}} |v_{\lambda_0} u_{I_{j_1}} u_{-\lambda_0 - I_{j_2}} \partial_x u_{2\lambda_0 + I_{j_3}}| \ dx dt \\
\lesssim \sum_{j_2 \approx j_1 \land j_3} \langle \lambda_0 \rangle^{1/4} (\langle \lambda_0 \rangle + 2^{j_3}) \|v_{\lambda_0}\|_{L^\infty_{x,t}} \|u_{2\lambda_0 + I_{j_3}}\|_{L^2_{x,t}} \|u_{I_{j_1}} u_{-\lambda_0 - I_{j_2}} u_{2\lambda_0 + I_{j_3}}\|_{L^2_{x,t}} \\
\lesssim \sum_{j_2 \approx j_1 \land j_3} \langle \lambda_0 \rangle^{1/4} \|v_{\lambda_0}\|_{L^2_{x,t}} (\langle \lambda_0 \rangle + 2^{j_3})^{-1/2} (\langle \lambda_0 \rangle + 2^{j_2})^{-1/2} (\langle \lambda_0 \rangle + 2^{j_3})^{1/2} \|u_{2\lambda_0 + I_{j_3}}\|_{L^2_{x,t}} \\
\times T^{\varepsilon/4} (\langle \lambda_0 \rangle + 2^{j_2})^{-1/2 + \varepsilon} (2^{j_2})^{-1/2 + \varepsilon} \|u_{I_{j_1}}\|_{L^\infty_{x,t}} \|u_{-\lambda_0 - I_{j_2}}\|_{L^\infty_{x,t}} V_A^2 \\
\lesssim T^{\varepsilon/4} \|v_{\lambda_0}\|_{L^2_{x,t}} \|u\|_{X_{\infty,A}^{1/4}}^3,
\]

where the last inequality is by summing over \(j_1, j_2 \) and \(j_3 \) in order.

If \(u_{I_{j_1}} \) has the highest dispersion modulation, from the dispersion modulation decay (2.4) and \(L^4 \) estimate (3.13), we have

\[
\sum_{j_2 \approx j_1 \land j_3} \langle \lambda_0 \rangle^{1/4} \int_{[0, T] \times \mathbb{R}} |v_{\lambda_0} u_{I_{j_1}} u_{-\lambda_0 - I_{j_2}} \partial_x u_{2\lambda_0 + I_{j_3}}| \ dx dt \\
\lesssim \sum_{j_2 \approx j_1 \land j_3} \langle \lambda_0 \rangle^{1/4} (\langle \lambda_0 \rangle + 2^{j_3}) \|v_{\lambda_0}\|_{L^\infty_{x,t}} \|u_{I_{j_1}}\|_{L^2_{x,t}} \|u_{-\lambda_0 - I_{j_2}}\|_{L^\infty_{x,t}} \|u_{2\lambda_0 + I_{j_3}}\|_{L^2_{x,t}} \\
\lesssim \sum_{j_2 \approx j_1 \land j_3} \langle \lambda_0 \rangle^{1/4} \|v_{\lambda_0}\|_{L^2_{x,t}} (\langle \lambda_0 \rangle + 2^{j_3})^{-1/2} (\langle \lambda_0 \rangle + 2^{j_2})^{-1/2} (\langle \lambda_0 \rangle + 2^{j_3})^{1/2} \|u\|_{X_{\infty,A}^{1/4}} \\
\times T^{\varepsilon/4} (2^{j_2})^{1/4 + \varepsilon} (\langle \lambda_0 \rangle + 2^{j_2})^{-3/8} T^{\varepsilon/4} (2^{j_3})^{1/4 + \varepsilon} (\langle \lambda_0 \rangle + 2^{j_3})^{-3/8} \|u\|_{X_{\infty,A}^{1/4}}^2 \\
\lesssim T^{\varepsilon/2} \sum_{j_2 \approx j_1 \land j_3} \langle \lambda_0 \rangle^{1/4} (\langle \lambda_0 \rangle + 2^{j_2})^{-1/8} (\langle \lambda_0 \rangle + 2^{j_2})^{7/8} \\
\times (2^{j_2})^{1/4 + \varepsilon} (2^{j_3})^{1/4 + \varepsilon} \|v_{\lambda_0}\|_{L^2_{x,t}} \|u\|_{X_{\infty,A}^{1/4}}^3 \\
\lesssim T^{\varepsilon/2} \|v_{\lambda_0}\|_{V_A^2} \|u\|_{X_{\infty,A}^{1/4}}^3,
\]

where the last inequality is by summing over \(j_1, j_2 \) and \(j_3 \) in order and noticing the condition \(j_1 \lesssim \log_2(\langle \lambda_0 \rangle) \), \(j_3 \lesssim j_2 \).
Case 2$h_\ldots h$. We decompose $\lambda_1, \lambda_2, \lambda_3$ as follows:

$$
\lambda_1 \in [-\lambda_0, 0] = \bigcup_{j_1 \geq 0} - I_{j_1}, \quad j_1 \leq \log_2(\lambda_0);
$$

$$
\lambda_2 \in [-\infty, -\lambda_0] = \bigcup_{j_2 > 0} - \lambda_0 - I_{j_2}, \quad \lambda_3 \in [2\lambda_0 - l, +\infty] = \bigcup_{j_3 \geq -1} 2\lambda_0 + I_{j_3}.
$$

From the frequency constraint condition (4.8), we have

$$
2^{j_3} \approx 2^{j_1} + 2^{j_2}, \quad \text{i.e.} \quad j_3 \approx j_1 \lor j_2.
$$

(4.54)

If $j_3 \approx j_2 \geq j_1$, the method of this case will be same with Case 2$h_\ldots h2$. If $j_3 \approx j_1 \geq j_2$, it is to say that $0 \leq j_2 \leq j_3$ holds, which can also ensure the convergence of the summation in Case 2$h_\ldots h2$. Therefore, the details are omitted.

Case 2$h_\ldots h$. We decompose $\lambda_1, \lambda_2, \lambda_3$ in the following way:

$$
\lambda_k \in [-\infty, -\lambda_0] = \bigcup_{j_k \geq 0} - \lambda_0 - I_{j_k}, \quad k = 1, 2; \quad \lambda_3 \in [3\lambda_0 - l, +\infty] = \bigcup_{j_3 \geq -1} 3\lambda_0 + I_{j_3}.
$$

From the frequency constraint condition (4.8) and $\lambda_1 \geq \lambda_2$, we have

$$
2^{j_3} \approx 2^{j_1} + 2^{j_2}, \quad j_1 \leq j_2, \quad \text{i.e.} \quad j_3 \approx j_2 \geq j_1.
$$

(4.55)

By DMCC (4.9) the highest dispersion modulation satisfies

$$
\max_{0 \leq k \leq 3} |\xi_k^3 - \tau_k| \gtrsim (\langle \lambda_0 \rangle + 2^{j_3}) \cdot (\langle \lambda_0 \rangle + 2^{j_3}) \cdot (\langle \lambda_0 \rangle + 2^{j_3}).
$$

(4.56)

If ν_{λ_0} has the highest dispersion modulation, from the dispersion modulation decay (4.4), L^4 estimate (3.11), and Lemma 3.21, we have

$$
\sum_{j_1 \approx j_2 \geq j_1} \langle \lambda_0 \rangle^{1/4} \int_{[0,T] \times \mathbb{R}^d} |\nu_{\lambda_0} u_{\lambda_0 - I_{j_1}} u_{\lambda_0 - I_{j_2}} \partial_x u_{3\lambda_0 + I_{j_3}}| \, dxdt
\lesssim \sum_{j_3 \approx j_2 \geq j_1} \langle \lambda_0 \rangle^{1/4} \langle \lambda_0 \rangle + 2^{j_3} \rangle^{1/4} \|\nu_{\lambda_0} \|_{L^2_t L^\infty_x} \|u_{\lambda_0 - I_{j_1}} \|_{L^\infty_t L^2_x} \|u_{\lambda_0 - I_{j_2}} \|_{L^\infty_t L^2_x} \|u_{3\lambda_0 + I_{j_3}} \|_{L^4_t L^4_x}
\lesssim \sum_{j_3 \approx j_2 \geq j_1} \langle \lambda_0 \rangle^{1/4} \langle \lambda_0 \rangle + 2^{j_3} \rangle^{1/4} \langle \lambda_0 \rangle + 2^{j_3} \rangle^{1/4} \langle \lambda_0 \rangle + 2^{j_3} \rangle^{1/4} \|\nu_{\lambda_0} \|_{L^2(2^{j_3})^{1/2}}
\times (\langle \lambda_0 \rangle + 2^{j_3} \rangle)^{-1/4} T^{\varepsilon/2} (2^{j_3})^{1/4} \langle \lambda_0 \rangle + 2^{j_3} \rangle^{-3/8} (2^{j_3})^{1/4} \langle \lambda_0 \rangle + 2^{j_3} \rangle^{-3/8} \|u\|_{X_{\infty,A}}^{3/4}
\lesssim T^{\varepsilon/2} \sum_{j_3 \approx j_2 \geq j_1} \langle \lambda_0 \rangle^{1/4} \langle \lambda_0 \rangle + 2^{j_3} \rangle^{3/4} (2^{j_3})^{1/2} + \langle \lambda_0 \rangle + 2^{j_3} \rangle^{1/2} \|\nu_{\lambda_0} \|_{L^2} \|u\|_{X_{\infty,A}}^{3/4}
\lesssim T^{\varepsilon/2} \left(\sum_{j_3 \approx j_2 \geq j_1} (2^{j_3})^{1/4} \|\nu_{\lambda_0} \|_{L^2_x} \|u\|_{X_{\infty,A}}^{3/4} \right)
\lesssim T^{\varepsilon/2} \|\nu_{\lambda_0} \|_{L^2} \|u\|_{X_{\infty,A}}^{3/4}.
$$

(4.57)
If \(u_{-\lambda_0-I_j} \) has the highest dispersion modulation, we take \(L^\infty_{x,t}, L^2_{x,t}, L^4_{x,t} \) and \(L^4_{x,t} \) norms to \(v_{\lambda_0}; u_{-\lambda_0-I_j}, u_{-\lambda_0-I_{j_2}} \) and \(u_{3\lambda_0+I_{j_3}} \), respectively. Then it will be same with (4.57).

If \(u_{3\lambda_0+I_{j_3}} \) has the highest dispersion modulation, we divide the left hand side of (4.7) into two terms.

\[
\sum_{j_3 \approx j_2 \gtrsim j_1} \langle \lambda_0 \rangle^{1/4} \int_{[0,T] \times \mathbb{R}} \left| v_{\lambda_0} u_{-\lambda_0-I_j} u_{-\lambda_0-I_{j_2}} \partial_x u_{3\lambda_0+I_{j_3}} \right| \, dx \, dt
\leq \left(\sum_{j_3 \approx j_2 \gtrsim j_1} + \sum_{j_3 \approx j_2 \gtrsim j_1 \gtrsim 0} \right) \langle \lambda_0 \rangle^{1/4} \int_{[0,T] \times \mathbb{R}} \left| v_{\lambda_0} u_{-\lambda_0-I_j} u_{-\lambda_0-I_{j_2}} \partial_x u_{3\lambda_0+I_{j_3}} \right| \, dx \, dt
\]

\[
:= I_1(u, v) + I_2(u, v).
\]

For \(I_1(u, v) \), from the dispersion modulation decay (2.31), \(L^4 \) estimate (3.13) and Lemma 3.4, we have

\[
I_1(u, v) \lesssim \sum_{j_3 \approx j_2 \gtrsim j_1 \gtrsim 0} \langle \lambda_0 \rangle^{1/4} \langle \langle \lambda_0 \rangle + 2^{j_3} \rangle \| v_{\lambda_0} \|_{L^\infty_{x,t}} \| u_{3\lambda_0+I_{j_3}} \|_{L^2_{x,t}} \| u_{-\lambda_0-I_{j_1}} \|_{L^4_{x,t}} \| u_{-\lambda_0-I_{j_2}} \|_{L^4_{x,t}}
\]

\[
\lesssim \sum_{j_3 \approx j_2 \gtrsim j_1 \gtrsim 0} \langle \lambda_0 \rangle^{1/4} \| v_{\lambda_0} \|_{V^2_A} \langle \langle \lambda_0 \rangle + 2^{j_3} \rangle^{-1/2} (\langle \lambda_0 \rangle + 2^{j_3})^{-1/2} (\langle \lambda_0 \rangle + 2^{j_3})^{1/4} (2^{j_3})^{1/2} \times T^{\varepsilon/2} (2^{j_3})^{1/4+\varepsilon} (\langle \lambda_0 \rangle + 2^{j_3})^{-3/8} (2^{j_3})^{1/4+\varepsilon} (\lambda_0) + 2^{j_3})^{-3/8} \| u \|_{X^{14/4}_{\infty,A}}^{3/4}
\]

\[
\lesssim T^{\varepsilon/2} \sum_{j_3 \gtrsim 0} \langle \lambda_0 \rangle^{1/4} \langle \langle \lambda_0 \rangle + 2^{j_3} \rangle^{-3/2} (2^{j_3})^{1/2+2\varepsilon} \| v_{\lambda_0} \|_{V^2_A} \| u \|_{X^{14/4}_{\infty,A}}^{3/4}
\]

\[
\lesssim T^{\varepsilon/2} \| u^{(\lambda_0)} \|_{V^2_A} \| u \|_{X^{14/4}_{\infty,A}}^{3/4}.
\]

For \(I_2(u, v) \), due to \(j_2 \gg j_1 \), we have \(| -\lambda_0 - 2^{j_2} - \lambda_0 - 2^{j_3} | \gtrsim (\langle \lambda_0 \rangle + 2^{j_3}) \) and \(| -\lambda_0 - 2^{j_2} + \lambda_0 + 2^{j_1} | \gtrsim 2^{j_2} \), so we can use bilinear estimate (3.7) to \(u_{-\lambda_0-I_{j_1}} \) and \(u_{-\lambda_0-I_{j_2}} \). To be specific,

\[
I_2(u, v) \lesssim \sum_{j_3 \gtrsim j_2 \gtrsim j_1 \gtrsim 0} \langle \lambda_0 \rangle^{1/4} \langle \langle \lambda_0 \rangle + 2^{j_3} \rangle \| v_{\lambda_0} \|_{V^2_A} \langle \langle \lambda_0 \rangle + 2^{j_3} \rangle^{-1/2} (\langle \lambda_0 \rangle + 2^{j_3})^{-1/2} (\langle \lambda_0 \rangle + 2^{j_3})^{1/2} \times (2^{j_3})^{1/2} (\lambda_0) + 2^{j_3})^{-1/4} | u |_{X^{14/4}_{\infty,A}} T^{\varepsilon/4} (2^{j_3})^{-1/2+\varepsilon} (\langle \lambda_0 \rangle + 2^{j_3})^{-1/2+\varepsilon}
\]

\[
\times (2^{j_3})^{1/2} (\langle \lambda_0 \rangle + 2^{j_3})^{-1/4} (2^{j_2})^{1/2} (\langle \lambda_0 \rangle + 2^{j_2})^{-1/4} | u |_{X^{14/4}_{\infty,A}}^{2}
\]

\[
\lesssim T^{\varepsilon/4} \sum_{j_3 \approx j_2 \gtrsim j_1 \gtrsim 0} \langle \lambda_0 \rangle^{1/4} \langle \langle \lambda_0 \rangle + 2^{j_3} \rangle^{-1+\varepsilon} (2^{j_3})^{1/2+\varepsilon} (\lambda_0) + 2^{j_3})^{-1/4} \| v_{\lambda_0} \|_{V^2_A} \| u \|_{X^{14/4}_{\infty,A}}^{3}
\]

\[
\lesssim T^{\varepsilon/4} \left(\sum_{j_3 \approx j_2 \gtrsim j_1 \gtrsim 0} \langle \lambda_0 \rangle^{-1/2+2\varepsilon} \cdot j_3 \right) \| v_{\lambda_0} \|_{V^2_A} \| u \|_{X^{14/4}_{\infty,A}}^{3}.
\]
If \(u - \lambda_0 - I_{j_2} \) has the highest dispersion modulation, we still divide the left hand side of (4.48) into two terms as (4.58). For \(I_1(u, v) \), because of \(j_3 \approx j_2 \approx j_1 \), the estimate is exactly same with (4.59). For \(I_2(u, v) \), we use the bilinear estimate (3.7) to \(u - \lambda_0 - I_{j_1} \) and \(u \lambda_0 + I_{j_3} \). Noticing \(|3\lambda_0 + 2j_2 \pm (\lambda_0 + 2j_2)| \gtrsim (\lambda_0 + 2j_2) \), we have

\[
I_2(u, v) \lesssim \sum_{j_3 \approx j_2 > j_1 \geq 0} (\lambda_0)^{1/4}(\lambda_0) + 2j_3) \|v\|_\infty \|u - \lambda_0 - I_{j_2}\|_{L^2_{x,t}} \|u - \lambda_0 - I_{j_1} u \lambda_0 + I_{j_3}\|_{L^2_{x,t}}
\]

\[
\lesssim \sum_{j_3 \approx j_2 > j_1 \geq 0} (\lambda_0)^{1/4} v_\lambda \|\lambda_0 + 2j_2\|^{-1/2}(\lambda_0) + 2j_2\|^{-1/2}(\lambda_0) + 2j_2) \|/4\|_{X_{\infty,A}^1} \|u\|_{X_{\infty,A}^1/4}^2
\]

\[
\lesssim T^{\varepsilon/4} \sum_{j_3 \approx j_2 > j_1 \geq 0} (\lambda_0)^{1/4}(\lambda_0) + 2j_3\|^{-3/2 + 2\varepsilon}2j_3(\lambda_0) + 2j_2\|^{-3/4}(2j_2)^{1/2}\|v\|_{V_{\infty,A}^1} \|u\|_{X_{\infty,A}^1/4}^3
\]

\[
\lesssim T^{\varepsilon/4} \sum_{j_3 \approx j_2 > j_1 \geq 0} (\lambda_0)^{1/4} v_\lambda \|v\|_{V_{\infty,A}^1} \|u\|_{X_{\infty,A}^1/4}^3
\]

\[
\lesssim T^{\varepsilon/4} \|v\|_{V_{\infty,A}^1} \|u\|_{X_{\infty,A}^1/4}^3.
\]

4.2 \(q < \infty, \) Proof of (4.6).

This subsection \(q < \infty \) is similar to the last subsection \(q = \infty \), the only difference is to deal with the summation of \(\lambda_0 \). The frequency constraint condition (FCC) and dispersion modulation constraint condition (DMCC) are same. Thus, we can use the exactly same assortment to \(\lambda_0, \ldots, \lambda_3 \). Next we take the Case 1 of Step 1 in last subsection for example.

We just denote the left hand side of (4.6) as \(\mathcal{L}_{hhhh} \), and divide it into three parts like the last subsection. For \(\mathcal{L}^l_{hhhh} \), \(\lambda_0 \approx \lambda_3 \approx \lambda_1 \approx -\lambda_2 \) holds. Thus, From Hölder inequality and Strichartz estimate, we have

\[
\mathcal{L}^l_{hhhh}(u, v) \lesssim \sum_{\lambda_0} (\lambda_0)^{1/4} \|v\|_{V_{\infty,A}^1} \|u\|_{X_{\infty,A}^1/4}^3
\]

\[
\lesssim T^{1/2} \sum_{\lambda_0} (\lambda_0)^{1/4} \|v\|_{X_{\infty,A}^1/4} \|u\|_{X_{\infty,A}^1/4}^3
\]

\[
\lesssim T^{1/2} \sum_{\lambda_0} (\lambda_0)^{1/4} \|v\|_{X_{\infty,A}^1/4} \|u\|_{X_{\infty,A}^1/4}^3
\]

\[
\lesssim T^{1/2} \|v\|_{V_{\infty,A}^1} \|u\|_{X_{\infty,A}^1/4}^3.
\]

For \(\mathcal{L}^m_{hhhh} \), we still use bilinear estimate (3.7), Lemma 3.4 and Hölder’s inequality to obtain that for \(0 < \varepsilon < 1/4q \),

\[
\mathcal{L}^m_{hhhh}(u, v) \lesssim \sum_{\lambda_0, j_3 \leq j_2 < j_1} (\lambda_0)^{1/4} \|v\|_{V_{\infty,A}^1} \|u\|_{X_{\infty,A}^1/4}^3
\]

\[
\lesssim T^{1/2} \|v\|_{V_{\infty,A}^1} \|u\|_{X_{\infty,A}^1/4}^3.
\]
\[\sum_{q,A} \langle \lambda \rangle^{5/4} \langle \lambda \rangle^{-1/2+\varepsilon} \langle 2^j \rangle^{-1/2+\varepsilon} \|v\lambda_0\|_{V}^2 \|u\lambda_0-I_j\|_{L^2_{x,t}}^2 \]
\[\times \langle \lambda \rangle^{-1/2+\varepsilon} \langle 2^j \rangle^{-1/2+\varepsilon} \|u_{\lambda_0-I_1}\|_{V}^2 \|u\lambda_0-I_3\|_{V}^2 \]
\[\lesssim T^{\varepsilon/2} \sum_{\lambda_0,j_1,j_2} \langle \lambda \rangle^{-1/2+2\varepsilon} \langle 2^j \rangle^{-1/2} \|u\lambda_0-I_{j_1}\|_{V}^2 \|u\lambda_0-I_{j_2}\|_{V}^2 \|u\lambda_0-I_{j_3}\|_{V}^2 \]
\[\times \|v\lambda_0\|_{V} \|u\|_{X^{1/4,q}_{q,A}(\lambda_0-I_{j_3})}^2 \|u\|_{X^{1/4,q}_{q,A}}^2. \]

Making the summation on \(j_1, j_2 \), then applying Hölder’s inequality on \(\lambda_0 \), and finally summing on \(j_3 \), we obtain
\[\mathcal{L}^h_{hhhh_+}(u, v) \lesssim T^{\varepsilon/2} \sum_{\lambda_0,j_3} \langle \lambda \rangle^{5/4} \langle \lambda \rangle^{-1/2+\varepsilon} \langle 2^j \rangle^{-1/2+\varepsilon} \|v\lambda_0\|_{V}^2 \|u\lambda_0-I_{j_3}\|_{V}^2 \]
\[\|u\|_{X^{1/4,q}_{q,A}(\lambda_0-I_{j_3})}^2 \|u\|_{X^{1/4,q}_{q,A}}^2. \]

For \(\mathcal{L}^h_{hhhh_+}(u, v) \), we just take the case \(v\lambda_0 \) has the highest dispersion modulation for example and divide \(\mathcal{L}^h_{hhhh_+}(u, v) \) into two parts:
\[\mathcal{L}^h_{hhhh_+}(u, v) = \mathcal{L}^h_{hhhh_+}^{1}(u, v) + \mathcal{L}^h_{hhhh_+}^{2}(u, v) \]
\[:= \left(\sum_{\lambda_0,1 \leq j_3 \leq j_1 \geq j_2} \sum_{\lambda_0,1 \leq j_3 \leq j_1 \geq j_2} \langle \lambda \rangle^{1/4} \int_{[0,T] \times \mathbb{R}} \left| v\lambda_0 u_{\lambda_0-I_{j_1}} u_{\lambda_0-I_{j_2}} \partial_x u_{\lambda_0-I_{j_3}} \right| dx dt. \]

For \(\mathcal{L}^h_{hhhh_+}^{1}(u, v) \), we have for \(0 < \varepsilon < 1/4q \),
\[\mathcal{L}^h_{hhhh_+}^{1}(u, v) \lesssim \sum_{\lambda_0,1 \leq j_3 \leq j_1 \geq j_2} \langle \lambda \rangle^{5/4} \langle \lambda \rangle^{-1/2+(2j_1)^{-1/2}+(2j_3)^{-1/2}} \|v\lambda_0\|_{V}^2 \|u\lambda_0-I_{j_1}\|_{V}^2 \]
\[\times T^{\varepsilon/4} \langle \lambda \rangle^{-1/2+\varepsilon} \langle 2^j \rangle^{-1/2} \|u_{\lambda_0-I_{j_1}}\|_{V}^2 \|u\lambda_0-I_{j_2}\|_{V}^2 \]
\[\lesssim T^{\varepsilon/4} \sum_{\lambda_0,1 \leq j_3 \leq j_1 \geq j_2} \langle \lambda \rangle^{-1/2+\varepsilon} \langle 2^j \rangle^{-1/2} \|u\lambda_0\|_{V}^2 \|u\lambda_0-I_{j_3}\|_{V}^2 \]
\[\|u\|_{X^{1/4,q}_{q,A}(\lambda_0-I_{j_3})}^2 \|u\|_{X^{1/4,q}_{q,A}}^2 \]
\[\lesssim T^{\varepsilon/4} \|v\|_{V} \|u\|_{X^{1/4,q}_{q,A}}^2 \]

For \(\mathcal{L}^h_{hhhh_+}^{2}(u, v) \), we know that for \(0 < \varepsilon < 1/4q \),
\[\mathcal{L}^h_{hhhh_+}^{2}(u, v) \lesssim \sum_{\lambda_0,1 \leq j_3 \leq j_1 \geq j_2} \langle \lambda \rangle^{5/4} \langle \lambda \rangle^{-1/2+(2j_1)^{-1/2}+(2j_3)^{-1/2}} \|v\lambda_0\|_{V}^2 \|u\lambda_0-I_{j_1}\|_{V}^2 \]
\[\times T^{\varepsilon/2} \langle \lambda \rangle^{-3/4+(2j_2)\varepsilon} \langle 2^j \rangle^{-1/4-1/q+\varepsilon} \|u\|_{X^{1/4,q}_{q,A}}^2 \]

37
\[
\lesssim T^{\varepsilon/2} \sum_{\lambda_0, j_1} (2^{j_1})^{\varepsilon - 3/4} \|v_{\lambda_0}\|_V \|u\|_{X_{q,A}^{1/4}} \|u\|_{X_{q,A}^{1/4}}^2
\]
\[
\lesssim T^{\varepsilon/2} \|v\|_V^{\varepsilon} \|v\|_{X_{q,A}^{1/4}}.
\]
Where the last inequality is by applying Hölder’s inequality on \(\lambda_0\). For other cases, we can take the similar calculation to get the desired estimates, thus we omit it.

5 Ill-posedness result

In this section we study the Cauchy problem of the defocusing mKdV equation (the focusing case can also be treated by our method):

\[
u_t + u_{xxx} - (u^3)_x = 0, \quad u(0, x) = \delta u_0.
\]

We have the ill-posedness result as follows.

Theorem 5.1 Let \(s < 1/4\), \(2 \leq q \leq \infty\), \(0 < \delta \ll 1\). Then for the mKdV equation (5.1), the solution map \(\delta u_0 \to u(\delta, t)\) in \(M_{s,q}^2\) is not \(C^3\) continuous at the origin.

Proof. From (4.1) we can define the solution map as follows:

\[
\mathcal{T} : \delta u_0 \to u(\delta, t) = e^{-\partial_3^2} \delta u_0 + \int_0^t e^{-(t-\tau)\partial_3^2} (u^3)_x(\tau) d\tau.
\]

By straightforward calculations, we get

\[
u(\delta, t)|_{\delta=0} = 0; \quad u_1 := \frac{\partial u}{\partial \delta}|_{\delta=0} = e^{-\partial_3^2} u_0; \quad u_2 := \frac{\partial^2 u}{\partial \delta^2}|_{\delta=0} = 0; \quad u_3 := \frac{\partial^3 u}{\partial \delta^3}|_{\delta=0} = 6 \int_0^t e^{-(t-\tau)\partial_3^2} \partial_3 (e^{-\partial_3^2} u_0)^3 d\tau.
\]

It is well known that if the map \(\delta u_0 \to u(\delta)\) is of class \(C^3\) at the origin, the necessary condition is

\[
sup_{t \in [0,T]} \|u_3\|_{M_{s,q}^2} \leq C\|u_0\|_{M_{s,q}^2}^3.
\]

We choose a suitable \(u_0 \in M_{s,q}^2\), \(s < 1/4\) defined by

\[
\hat{u}_0(\xi) = N^{-s+1/4} \left(\chi_{[N,N+\frac{1}{\sqrt{N}}]}(\xi) + \chi_{[-N-\frac{1}{\sqrt{N}},-N]}(\xi) \right).
\]

Note that \(\|u_0\|_{M_{s,q}^2} \sim 1\).

We estimate the Fourier transform of \(u_3\) in (5.4) as follows

\[
\hat{u}_3(\xi) \simeq \int_0^t e^{i(t-\tau)\xi^3}(i\xi) \int_{\mathbb{R}^2} e^{i\xi_1(\xi - \xi_1 - \xi_2)} \hat{u}_0(\xi_1 - \xi_2) e^{i\xi_1 \hat{u}_0(\xi_2)} d\xi_1 d\xi_2 d\tau.
\]
\[\begin{align*}
\zeta e^{\xi^3} (\xi) \int_{\mathbb{R}^2} e^{i\Phi(\xi, \xi_1, \xi_2)} dt_0 (\xi - \xi_1 - \xi_2) \mu(\xi_1) \mu_0(\xi_2) d\xi_1 d\xi_2 \\
\zeta e^{\xi^3} (\xi) \int_{\mathbb{R}^2} e^{i\Phi(\xi, \xi_1, \xi_2)} - \frac{1}{16 \Phi(\xi, \xi_1, \xi_2)} \mu_0(\xi - \xi_1 - \xi_2) \mu(\xi_1) \mu_0(\xi_2) d\xi_1 d\xi_2,
\end{align*}\]

where \(\Phi(\xi, \xi_1, \xi_2) = -3(\xi - \xi_1)(\xi - \xi_2)(\xi_1 + \xi_2)\). Noticing that for \(\xi - \xi_1 - \xi_2, \xi_1, \text{ and } \xi_2\), if one or two items among them are located in \([N, N + 1/\sqrt{N}]\), we have \(|\Phi(\xi, \xi_1, \xi_2)| \lesssim 1\); if all three items are located in \([N, N + 1/\sqrt{N}]\) (or \([-N - 1/\sqrt{N}, -N]\)), we have \(|\Phi(\xi, \xi_1, \xi_2)| \sim N^3\), then \(5.6\) shall be much smaller. Therefore,

\[
\begin{align*}
\tilde{u}_3(\xi) \sim N^{-3s + 3/4} e^{\xi^3} (\xi) \int_{\mathbb{R}^2} e^{i\Phi(\xi, \xi_1, \xi_2)} - \frac{1}{16 \Phi(\xi, \xi_1, \xi_2)} \\
\times \chi_{[N, N + \frac{1}{\sqrt{N}}]}(\xi - \xi_1 - \xi_2) \chi_{[N, N + \frac{1}{\sqrt{N}}]}(\xi_1) \chi_{[-N - \frac{1}{\sqrt{N}}, -N]}(\xi_2) d\xi_1 d\xi_2 \\
\sim N^{-3s + 3/4} e^{\xi^3} (\xi) \int_{N}^{N + \frac{1}{\sqrt{N}}} \int_{-N - \frac{1}{\sqrt{N}}}^{-N} t e^{i\theta} \cdot \chi_{[N, N + \frac{1}{\sqrt{N}}]}(\xi - \xi_1 - \xi_2) d\xi_1 d\xi_2,
\end{align*}\]

where \(\theta \in [0, \Phi]\) or \([\Phi, 0]\), \(|\Phi(\xi, \xi_1, \xi_2)| = O(1), \xi \in [N - 1/\sqrt{N}, N + 2/\sqrt{N}]\). Thus there exists a small and fixed constant \(t\) such that

\[\|u_3\|_{M^2_t} \geq C N^{-2s + 1/2} \quad (2 \leq q \leq \infty).\]

We find that \(5.5\) leads to

\[-2s + 1/2 \leq 0 \quad \text{i.e.} \quad s \geq 1/4.\]

Now we complete the proof. \(\Box\)

Acknowledgments. The author is indebted to Prof. Baoxiang Wang for very helpful discussions, encouragements and supports. This work is supported in part by the National Science Foundation of China, grants 11271023 and 11571254.

References

[1] Á. Bényi; K. A. Okoudjou, Local well-posedness of nonlinear dispersive equations on modulation spaces. Bull. Lond. Math. Soc., 2009, 41(3), 549–558.

[2] Á. Bényi; K. Gröchenig; K. A. Okoudjou; L. G. Rogers, Unimodular Fourier multipliers for modulation spaces. J. Funct. Anal., 2007, 246(2), 366–384.

[3] J. Chen, D. Fan and L. Sun, Asymptotic estimates for unimodular Fourier multipliers on modulation spaces. Discrete Contin. Dyn. Syst., 2012, 32(2), 467–485.

[4] M. J. Chen, B. X. Wang, S. X. Wang, M. W. Wong, On dissipative nonlinear evolutional pseudodifferential equations. Appl. Comput. Harmon. Anal., in press.

[5] M. Christ, J. Holmer, D. Tataru, Low regularity a priori bounds for the modified Korteweg-de Vries equation, Libertas Mathematica, 2012, 1(1), 51-75.

[6] M. Christ, J. Colliander, T. Tao, Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations. Amer. J. Math., 2003, 125(6), 1235-1293.
[7] E. Cordero and F. Nicola, Metaplectic representation on Wiener amalgam spaces and applications to the Schrödinger equation. J. Funct. Anal., 2008, 254(2), 506–534.
[8] E. Cordero and F. Nicola, Some new Strichartz estimates for the Schrödinger equation. J. Differential Equations, 2008, 245(7), 1945–1974.
[9] E. Cordero and F. Nicola, Remarks on Fourier multipliers and applications to the wave equation. J. Math. Anal. Appl., 2009, 353(2), 583–591.
[10] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao, Sharp global well-posedness for KdV and modified KdV on \mathbb{R} and \mathbb{T}. J. Amer. Math. Soc., 2003, 16(3), 705-749.
[11] H. G. Feichtinger, Modulation spaces on locally compact Abelian group, Technical Report, University of Vienna, 1983.
[12] A. Grünrock, An improved local well-posedness result for the modified KdV equation, IMRN, Int. Math. Res. Not., 2004, 61, 3287-3308.
[13] A. Grünrock, L. Vega, Local well-posedness for the modified KdV equation in almost critical \dot{H}^s spaces. Transactions of the American Mathematical Society, 2009, 361(11), 5681-5694.
[14] S. M. Guo, On the 1D cubic nonlinear Schrödinger equation in an almost critical space, J. Fourier Anal. Appl., 2017, 23(1), 91-124.
[15] S. M. Guo, X. F. Ren, B. X. Wang, Local Well-Posedness for the Derivative Nonlinear Schrödinger Equations with L^2 Subcritical Data, arXiv: 1608.03136.
[16] Z. H. Guo, Global well-posedness of Korteweg-de Vries equation in $H^{-3/4}(\mathbb{R})$, J. Math. Pures Appl. (9), 2009, 91(6),583-597.
[17] M. Hadac, S. Herr and H. Koch, Well-posedness and scattering for the KP-II equation in a critical space. Ann. Inst. H. Poincaré Anal. Non Linéaire, 2009, 27(3), 917-941.
[18] T. Iwabuchi, Navier-Stokes equations and nonlinear heat equations in modulation spaces with negative derivative indices. J. Differential Equations, 2010, 248(248), 1972–2002.
[19] K. Kato, M. Kobayashi and S. Ito, Representation on Schrödinger operator of a free partical via short time Fourier transform and its applications. Tohoku Math. J., 2012, 64(2012), 223-231.
[20] K. Kato, M. Kobayashi and S. Ito, Estimates on modulation spaces for Schrödinger evolution operators with quadratic and sub-quadratic potentials. J. Funct. Anal., 2014, 266(2), 733–753.
[21] T. Kato, The global Cauchy problems for the nonlinear dispersive equations on modulation spaces. J. Math. Anal. Appl., 2014, 413(2), 821–840.
[22] C. Kenig, G. Ponce, L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle. Comm. Pure Appl. Math., 1993, 46(4), 527-620.
[23] C. Kenig, G. Ponce, L. Vega, On the ill-posedness of some canonical dispersive equations. Duke Math. J., 2001, 106(3), 617-633.
[24] C. Kenig, G. Ponce, L. Vega, On the (generalized) Korteweg-de Vries equation. Duke Math. J., 1989, 59(3), 585-610.
[25] H. Koch and D. Tataru, Dispersive estimates for principally normal pseudo-differential operators, Comm. Pure Appl. Math., 2005, 58(2), 217–284.
[26] H. Koch and D. Tataru, A priori bounds for the 1D cubic NLS in negative Sobolev spaces, Int. Math. Res. Not., 2007, 16, Art. ID rnm053, 36 pp.
[27] H. Koch and D. Tataru, Energy and local energy bounds for the 1D cubic NLS equation in $H^{1/4}$, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2010, 29(6), 955-988.
[28] M. Sugimoto and N. Tomita, The dilation property of modulation spaces and their inclusion relation with Besov spaces, J. Funct. Anal., 2007, 248(1), 79–106.
[29] B.X. Wang, Globally well and ill posedness for non-elliptic derivative Schrödinger equations with small rough data, J. Funct. Anal., 2013, 265, 3009–3052.

[30] B. X. Wang, L. J. Han and C. Y. Huang, Global Smooth Effects and Well-Posedness for the Derivative Nonlinear Schrödinger Equaton with Small Rough Data, Ann. Inst H. Poincare, AN, 2009, 26(6), 2253–2281.

[31] B. X. Wang and C. Y. Huang, Frequency-uniform decomposition method for the generalized BO, KdV and NLS equations, J. Diff. Equns., 2007, 239(1), 213–250.

[32] B. X. Wang, Z. H. Huo, C. C. Hao and Z. H. Guo, Harmonic Analysis Method for Nonlinear Evolution Equations. I. World Scientific Publishing Co., Pte. Ltd., Hackensack, NJ 2011.

[33] B. X. Wang and H. Hudzik, The global Cauchy problem for the NLS and NLKG with small rough data, J. Diff. Equns., 2007, 232(1), 36-73.

[34] B. X. Wang, L. F. Zhao and B. L. Guo, Isometric decomposition operators, function spaces $E^\lambda_{p,q}$ and applications to nonlinear evolution operators, J. Funct. Anal., 2006, 233(1), 1–39.

[35] N. Wiener, The quadratic variation of a function and its Fourier coefficients, in: P.R.Masani(Ed.), Collected Works with Commentaries. Volume II: Generalized Harmonic Analysis and Tauberian Theory; Classical Harmonic and Complex Analysis, in: Mathematicians of Our Time, vol.15, The MIT Press, Cambridge, MA-London, 1979, 1924, XIII, 969p.