A STUDY ON PREVALENCE OF MALARIA IN KURNOOL DISTRICT

Vijaya Vishnu Gunturu¹, M. A. Mushtaq Pasha², Afsar Fatima³, Isaac Ebenezer⁴

HOW TO CITE THIS ARTICLE:
Vijaya Vishnu Gunturu, M. A. Mushtaq Pasha, Afsar Fatima, Isaac Ebenezer. "A Study on Prevalence of Malaria in Kurnool District". Journal of Evolution of Medical and Dental Sciences 2014; Vol. 3, Issue 35, August 14; Page: 9279-9285, DOI: 10.14260/jemds/2014/3198

ABSTRACT: BACKGROUND: Malaria affects mainly the poor underserved and marginalized population in remote rural areas which are characterized by inadequate control measures and limited access to health care. Malaria continues to pose a major public health threat in India, particularly due to P. falciparum which is prone to complications. OBJECTIVE: Study was conducted to know the prevalence of malaria in Kurnool district by age and sex distribution. METHODOLOGY: A retrospective study. Information was from the year January, 2008 to July, 2013. OBSERVATION: An increasing trend is observed in the prevalence of P. falciparum. And there is declining trend in the prevalence of P. vivax. There is almost ‘zero’ prevalence of infection in infants. There is no change in the prevalence of P. falciparum among 1-5 yr. age group. There is increasing trend in the prevalence of P. falciparum in the age group of 5-14 years from 2008 to 2011. There is no specific trend in P. falciparum in adult population. There is a clear cut decline trend in the number of P.vivax cases in all age groups. This is comparable with the declining trend of all India prevalence of P.vivax cases. The decline may be due to the active anti-malarial measures in the district. Males are affected more than females in both falciparum and vivax malaria cases. DISCUSSION: Increasing trend in the prevalence of P. falciparum is due to dense forest around the district and increasing resistance to Chloroquine and declining trend in the prevalence of P. vivax is due to the active coverage of DDT by 95.6% in urban area and 89.2% of rural area. ‘Zero’ prevalence in infants may be due to under reporting. There is no change in the prevalence of P. falciparum among 1-5 yr. age group and increasing trend in the prevalence of P. falciparum in the age group of 5-14 years from 2008 to 2011 may be due to the children in this age group (5-14) playing outside in the evening period. There is a clear cut decline trend in the number of P.vivax cases in all age groups which is comparable with the declining trend of all India prevalence of P.vivax cases. Males are affected more than females due to the different occupational habits. Males do have more outdoor activities. There is a drastic decline in cases from 2008 to 2012 which supports the national values. API of Kurnool district is less than 2 shows a decline in the disease prevalence. CONCLUSION: In Kurnool district P.vivax is more prevalent than falciparum. Male to female ratio in Kurnool district is 1: 0.76. Male to female ratio in Kurnool district is 1: 0.76. ABER of Kurnool dist. from 2008 to 2012 is 12.47 to 11.72. KEYWORDS: P. falciparum, P.vivax, underserved and marginalized.

INTRODUCTION: Malaria remains one of the most widespread, potentially fatal infectious disease.¹ Each year an estimation of 300-500 million clinical cases of malaria occur, making it one of the most prevalent infectious disease.² Malaria is one of the major health problems of the country. Around 1.5 million laboratory confirmed cases of malaria are annually reported is due to p. falciparum. One of the reasons attributed to rise in proportion of p. falciparum cases is resistance to chloroquine, which was used for a long time as a first line of treatment of malaria cases.
Kurnool district (AP) has a mid-year population of 41,81,052 (2013) with average rain fall of 40-60 cm humidity ranging from 40-60% temperature ranging from 18°- 43°C which all favors vector growth i.e. mosquito.

METHODOLOGY: Study Design: A retrospective study. Information about the total Number of Malaria cases were collected from the office of the District Medical and Health Officer, Kurnool District Information was from the year January, 2008 to July, 2013. Data consisted of Age and sex distribution, total number of slides examined, total number of Malaria positive cases, total number of slides positive for vivax, total number of slides positive for falciparum.

OBSERVATIONS:

Period	Total No. of slides examined among the District Population	Positive for Malaria	Positive for Plasmodium falciparum	Positive for Plasmodium vivax				
YEAR	No.	%	No.	%	No.	%	No.	%
2008	4,87,237	(12.47)	627	(0.13)	147	(23.44)	480	(76.56)
2009	4,85,397	(12.26)	415	(0.09)	84	(20.24)	331	(79.76)
2010	4,48,701	(11.19)	279	(0.06)	89	(31.90)	190	(68.10)
2011	4,56,655	(11.24)	264	(0.06)	106	(40.15)	158	(59.85)
2012	4,83,761	(11.72)	233	(0.05)	126	(54.08)	107	(45.92)
2013 upto July	2,96,434	(7.09)	104	(0.04)	39	(37.50)	65	(62.50)

Table 1: Showing prevalence of malaria

In table 1 it shows that as years are going on the percentage of p. falciparum is increasing whereas P. vivax cases are declining. As years are going on no. of cases are in declining order.

Age	Total	<1 yr.	1-5 yrs.	5-14 yrs.	Above 14 yrs.					
Period (year)	No.	%	No.	%	No.	%	No.	%	No.	%
2008	147	(23.44)	1	(0.7)	5	(3.4)	21	(14.29)	120	(81.6)
2009	84	(20.24)	0	(0.0)	4	(4.8)	28	(33.3)	52	(61.9)
2010	89	(31.90)	0	(0.0)	3	(3.4)	26	(29.2)	60	(67.4)
2011	106	(40.15)	0	(0.0)	6	(5.7)	43	(40.6)	57	(53.8)
2012	126	(54.08)	0	(0.0)	6	(4.8)	39	(31.0)	84	(66.7)
2013 upto July	39	(37.50)	0	(0.0)	2	(5.1)	6	(15.4)	31	(79.5)

Table 2: Age wise prevalence of p.falciparum

Table 2 shows that there is almost 0% percentage of infection in infants. Declining trends in adult population. There is no change in the % of 1-5 & 5-14years age group.
In Table 3, we can see a declining trend in the prevalence of *P. vivax* in all age groups.

Period	No of positives	<1 yr.	1-5 yr.	5-14 yr.	>14 yr.			
Year	No.	%	No.	%	No.	%	No.	%
2008	480	(76.6)	0	(0.0)	16	(3.3)	103	(21.5)
							361	(75.2)
2009	331	(79.8)	0	(0.0)	22	(6.7)	95	(28.7)
							214	(64.7)
2010	190	(68.1)	0	(0.0)	21	(11.1)	77	(40.5)
							92	(48.4)
2011	158	(59.9)	0	(0.0)	8	(5.1)	68	(43.0)
							82	(51.9)
2012	107	(45.9)	0	(0.0)	7	(6.5)	37	(34.6)
							63	(58.9)
2013 up to July	65	(62.5)	0	(0.0)	3	(4.6)	24	(36.9)
							38	(58.5)

Table 3: Age wise prevalence of *P. vivax*

In Table 3, we can see a declining trend in the prevalence of *P. vivax* in all age groups.

Period	Total Positive	Male	Female	
YEAR	No.	%	No.	%
2008	147	(23.4)	85	(57.8)
			62	(42.2)
2009	84	(20.2)	58	(69.0)
			26	(31.0)
2010	89	(31.9)	63	(70.8)
			26	(29.2)
2011	106	(40.1)	59	(55.7)
			47	(44.3)
2012	129	(54.1)	79	(61.2)
			50	(38.8)
2013 up to July	39	(37.5)	27	(69.2)
			12	(30.8)

Table 4: Prevalence of *P. falciparum* - sex wise

In Table 4, we can observe that males are more affected than females in all years.

Period	Total positive	Males	Females	
Year	No.	%	No.	%
2008	480	(76.6)	258	(53.8)
			258	(53.8)
2009	331	(79.8)	162	(48.9)
			162	(48.9)
2010	190	(68.1)	111	(58.4)
			111	(58.4)
2011	158	(59.9)	82	(51.9)
			82	(51.9)
2012	107	(45.9)	63	(58.9)
			63	(58.9)
2013 upto July	65	(62.5)	38	(58.5)
			38	(58.5)

Table 5: Prevalence of *P. vivax* - sex wise

In Table 4 & 5, we can observe that males are more affected than females in all years.

PERIOD	Total no of slides examined	Positive for malaria	API
2008	4,87,237	617	1.27
2009	4,85,397	415	0.86
2010	4,48,701	279	0.62
2011	4,56,665	264	0.58
2012	4,83,761	233	0.48
2013 upto July	2,96,434	104	0.35

Table 6: ANNUAL PARASITE INCIDENCE (API)
In table 6 it clearly shows that the API of Kurnool dist. is declining as years are passing on.

PERIOD (Year)	TOTAL NO. OF SLIDES EXAMINED	Mid-Year Population of Kurnool District	ABER
2008	4,87,237	39,06,984	12.47
2009	4,85,397	39,58,695	12.26
2010	4,48,701	40,10,406	11.19
2011	4,56,665	40,62,117	11.24
2012	4,83,761	41,29,341	11.72
2013 upto July	2,96,434	41,81,052	7.09

Table 7: ANNUAL BLOOD EXAMINATION RATE (ABER)

In table 7 it clearly shows that there is declining trends in ABER as years are passing on.

DISCUSSION: In Kurnool district *P.vivax* is more prevalent than *p.falciparum*. This was in agreement with other previous studies. Where in studies done by Addidabeba, K. Y. Asnakew et.al, D. Sintasath, T. A. Ghebreyesus et.al, K. Karunamoorthi et.al, J. M. Ramos et.al, reported that the most prevalent species was *P. falciparum*, followed by *P. vivax*. As the years are passing on there is declining trends in malaria cases which is seen as same pattern in some region like ethopia. Males were more infected than females, which was statistically significant. This is in line with the other previous studies. Male to female ratio in Kurnool district is 1:0.76.

Whereas studies done by Aswani kumar et.al it is 1:0.56. The actual incidence is definitely far more than presently known. The reason attributed to such gap are deficiencies in coverage, collection and examination of blood smears and reporting system. Male to female ratio in Kurnool district is 1: 0.76.

As supportive in work done by Addis ababa. As per the NVBDCP incidence records, in most of India, the API was <2, whereas 2–5 API was in scattered regions, and regions with >5 API were scattered in the states of Rajasthan, Gujarat, Karnataka, Goa, Southern Madhya Pradesh, Chhattisgarh, Jharkhand, and Orissa and in northeastern state. ABER of Kurnool district from 2008 to 2012 is 12.47 to 11.72. Where as in other studies it showed that the average ABER was 9% in India. In 14 of 29 states, however, it ranged from 1% to 8%, and in the remaining 15 states and union territories, ABER ranged from 10% to 40%.

CONCLUSION: An increasing trend is observed in the prevalence of *P. falciparum*. It may be due to dense forest around the district and increasing resistance to Chloroquine. There is declining trend in the prevalence of *P. vivax*. It may be due to the active coverage of DDT by 95.6% in urban area and 89.2% of rural area. There is almost ‘zero’ prevalence of infection in infants may be due to under reporting, most of the time mother will be beside child which she won't allow mosquito bite and positive impact of Health Education on Malaria.

Prevalence of *P.falciparum* is variable in different age groups. There is no change in the prevalence of *P.falciparum* among 1-5 yr. age group and There is increasing trend in the prevalence of *P.falciparum* in the age group of 5-14 years from 2008 to 2011 may be due to the children in this age group (5-14) playing outside in the evening period; hence mosquito bites are common there is
decline from 2011 onwards may be due to preventive measures awareness. There is no specific trend in P.falciparum in adult population. There is a clear cut decline trend in the number of P.vivax cases in all age groups. This is comparable with the declining trend of all India prevalence of P.vivax cases. The decline may be due to the active anti-malarial measures in the district.

Males are affected more than females in both falciparum and vivax malaria cases due to the different occupational habits. Males do have more outdoor activities and number of working hours will be more when compared to females. There is a drastic decline in cases from 2008 to 2012 which supports the national values. API of Kurnool district is less than 2 during the past 5 years. This shows a decline in the disease prevalence.

REFERENCES:
1. Maxcy- Rasenau- last, Public health and preventive medicine, 15th edition, page no-373, author-Robert B. Wallace, Neal kohatsu.
2. Wagner EK, MartinEez HJ. Basic virology – Malaen, mass; Black well science 1999, page no-64.
3. Aswain Kumar, Neena Valecha, Tanu Jain, Aditya P. Dash Burden of malaria in India: Retrospective and prospective view by. Indian Journal on Public Health, vol.5 article 4 2008.
4. T Solomon, B Yeshambel, T Takele, M Girmay, M Tesfaye, P Beyene. Malaria pattern observed in the highland fringe of Butajira, Southern Ethiopia: a ten-year retrospective analysis from parasitological and metrological data. Malaria World Journal, vol. 3, article 5, 2012.
5. Woyessa, T. Gebre-Michael, A Ali. An indigenous malaria transmission in the outskirts of Addis Ababa, Akaki Town and its environs. Ethiopian Journal of Health Development, vol. 18, pp. 2–7, 2004.
6. Federal Republic of Ethiopia Ministry of Health, National Guide Lines, Federal Republic of Ethiopia ministry of health, Addis Abeba, Ethiopia, 3rd edition, 2012.
7. K Y Asnakew, G Sucharita, T H Afework, O D Dereje, P P Hrishikesh. Spatial analysis of malaria incidence at the village level in areas with unstable transmission in Ethiopia. International Journal of Health Geographics, vol. 8, pp. 5–16, 2009.
8. D Sintasath. National malaria survey (2000-2001). Activity Report 134, The state of Ministry of Health of Eritrea, 2004.
9. T A Ghebreyesus, M Haile, K H Witten et al. Household risk factors for malaria among children in the Ethiopian highlands. Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 94, no. 1, pp. 17–21, 2000. View at Scopus
10. K. Karunamoorthi, M Bekele. Prevalence of malaria from peripheral blood smears examination: a 1-year retrospective study from the Serbo Health Center, KersaWoreda, Ethiopia. Journal of Infection and Public Health, vol. 2, no. 4, pp. 171–176, 2009. View at Publisher · View at Google Scholar · View at Scopus.
11. J M Ramos, F Reyes, A Tesfamariam. Change in epidemiology of malaria infections in a rural area in Ethiopia. Journal of Travel Medicine, vol. 12, no. 3, pp. 155–156, 2005. View at Scopus.
12. FMoH, National Five Year Strategic Plan for Malaria Prevention and Control in Ethiopia, 2006–2010, Ministry of Health, Addis Ababa, Ethiopia, 2006.
13. Abebe, M Dagnachew, M Mikrie, A Meaza, G Melkamu. Ten year trend analysis of malaria prevalence in Kola Diba, North Gondar, Northwest Ethiopia. Parasites and Vectors, vol. 5, article 173, 2012.
14. K. Mandel, E. G. L. Wilkins, E. M. Dunbar, and R. M. White, Lecture Notes on the Infective Disease, Blackwell Scientific Publications, 4th edition, 1984.
15. World Health Organization, World Malaria Report, WHO, Geneva, Switzerland, 2005.
16. Prakash A, Mohapatra PK, Bhattacharyya DR, Doloi P, Mahanta J. Changing malaria endemicity—a village based study in Sonitpur, Assam. J Com Dis. 1997; 29:175–178. [PubMed: 9282520].
17. Dutta P, Khan AM, Mahanta J. Problem of malaria in relation to Socio-cultural diversity in some ethnic communities of Assam and Arunachal Pradesh. J Parasitic Dis. 1999; 23:101–104.
18. Shukla RP, Pandey AC, Mathur A. Investigations of malaria outbreak in Rajasthan. Indian J Malariol. 1995; 32:119–128. [PubMed: 8936294].
19. Dhiman RC, Pillai CR, Subbarao SK. Investigation of malaria outbreak in Bahraich district. Indian J Med Res. 2001; 113:186–191. [PubMed: 11968953]
20. Srivastava HC, Kant R, Bhatt RM, Sharma SK, Sharma VP. Epidemiological observations on malaria in villages of Buhari PHC, Surat, Gujarat. Indian J Malariol. 1995; 32:140–152. [PubMed: 8867060].
21. Sharma VP. Re-emergence of malaria in India. Indian J Med Res. 1996; 103:26–45. [PubMed: 8926025].
22. Ghosh SK, Kumar A, Chand SK, Choudhury DS. A preliminary malaria survey in Bisra PHC, district Sundergarh, Orissa. Indian J Malariol. 1989; 26:167–170. [PubMed: 2635109].
23. Choudhury DS, Sharma VP, Bhatla SC, Agarwal SS, Das SK. Malaria prevalence inpatients attending primary health centers in ten districts of Uttar Pradesh. Indian J Malariol.1987; 24:79–83. [PubMed: 3440496].
24. Malhotra MS, Shukla RP, Sharma VP. Studies on the incidence of malaria in Gadarpur town of terrain, Distt. Nainital, UP. Indian J Malariol. 1985; 22:57–60. [PubMed: 4029459].
25. Gautam AS, Sharma RC, Bhatt RM, Gupta DK. Microscopic diagnosis of malaria in Kheda District of Gujarat. Indian J Malariol. 1992; 29:83–87. [PubMed: 1459309].
26. Gautam AS, Sharma RC, Sharma VP, Sharma GK. Importance of clinical diagnosis of malaria in National Malaria Control Programme. Indian J Malariol. 1991; 28:183–187. [PubMed: 1822457].
AUTHORS:
1. Vijaya Vishnu Gunturu
2. M. A. Mushtaq Pasha
3. Afsar Fatima
4. Isaac Ebenezer

PARTICULARS OF CONTRIBUTORS:
1. Post Graduate, Department of Community Medicine, Santiram Medical College & General Hospital, Nandyal.
2. Professor and HOD, Department of Community Medicine, Santiram Medical College & General Hospital, Nandyal.
3. Professor, Department of Community Medicine, Santiram Medical College & General Hospital, Nandyal.
4. Professor, Department of Community Medicine, Santiram Medical College & General Hospital, Nandyal.

NAME ADDRESS EMAIL ID OF THE CORRESPONDING AUTHOR:
Dr. Vijaya Vishnu G,
S/o G. Satyanarayana (Rtd. DFO),
H. No. 6/41, Sree Nagar Colony,
First Line, North Bye Pass Road,
Ongole-523002, Prakasam District, A.P.
Email: vijayavishnu.gunturu@gmail.com

Date of Submission: 17/07/2014.
Date of Peer Review: 18/07/2014.
Date of Acceptance: 06/08/2014.
Date of Publishing: 14/08/2014.