Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Characterization of a novel live attenuated infectious bronchitis virus vaccine candidate derived from a Korean nephropathogenic strain

Hyun Jeong Lee a, Ha Na Youn a, Ji Sun Kwon a, Youn Jeong Lee b, Jae Hong Kim c, Joong Bok Lee a, Seung Yong Park a, In Soo Choi a, Chang Seon Song a,∗

a Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
b Avian Disease Division, National Veterinary Research and Quarantine Service, Ministry of Agriculture and Forestry, 480 Anyang 6-dong, Anyang, Gyeonggi-do 430-016, Republic of Korea
c Laboratory of Avian Disease, College of Veterinary Medicine, Seoul National University, San 56-1, Shillim-dong, Gwanak-gu, Seoul 151-742, Republic of Korea

Article history:
Received 9 November 2009
Received in revised form 16 January 2010
Accepted 28 January 2010
Available online 11 February 2010

Keywords:
Nephropathogenic IBV
Live attenuated vaccine
K2

1. Introduction

Infectious bronchitis (IB) is a highly contagious disease of the respiratory and urogenital tract of chickens caused by infectious bronchitis virus (IBV). IB causes severe economic losses to the poultry industry because it causes poor weight gain and feed efficiency in broilers and suboptimal egg production and egg quality in laying birds. In addition, high mortality (<30%) sometimes occurs in young chickens due to kidney manifestations of some nephropathogenic strains. The disease process is often complicated by secondary bacterial infections that cause increased mortality of birds and condemnation at processing [1,2].

The existence of many serotypes of IBV that do not confer cross-protection against each other has been observed [1,2]. Cross-protection tends to decrease as the degree of amino acid identity between the spike (S) glycoprotein S1 subunit of two IBV strains decreases [3]. However, some strains occasionally confer broad protection against many heterologous serotypes. The concept of protectotypes [4] has been suggested as a valuable method that should be considered during the development of strategies to control IBV infections, and strains possessing cross-protective ability are generally considered to be useful vaccine candidates. To date, the Massachusetts (Mass) and 4/91 strains have been primarily used as live vaccines due to their epizootic distributions and cross-protective ability [2,5].

Despite the widespread use of vaccines, economic losses caused by IBV infection have occurred continuously worldwide. Indeed, outbreaks related to nephropathogenic strains of different serotypes have increased in many countries [6–8], which have caused mortality related to nephritis and respiratory disease followed by airsacculitis. More recently, the QX-like nephropathogenic strain [9] appears to have become widespread in China [10], Korea [11], Russia [12], and many countries in Europe [13,14], where flocks are commonly vaccinated with Mass or 4/91 vaccines. There-
fore, it has been suggested that there is a need to develop new vaccines against these nephropathogenic strains.

Previous studies have shown that Korean nephropathogenic IBV strains have been genetically stable [15] and possessed a broad-spectrum ability to protect against some heterologous strains [8]. The virulent nephropathogenic field strain K2/01 (K2parent) was passaged 190 times in the allantoic cavity of 9–11-day-old embryonated specific-pathogen-free (SPF) chicken eggs (0.1 ml/egg), and the 170th passage virus (K2p170) was evaluated as live attenuated IBV vaccine candidate. The allantoic fluid was harvested after incubation for 30 h at 37 °C. A dot-immunoblot assay was performed as previously described [16] to detect the virus, and the allantoic fluid was titrated at every 10 passages. For next inoculation, we prepared allantoic fluid with the titers adjusted to 10^5.5 to 10^6.5 EID_{50}/ml, if the undiluted allantoic fluid induced early embryo mortality within 30 h post-inoculation.

2.3. Attenuation

The virulent nephropathogenic field strain K2/01 (K2parent) and K2p170, 5′-CAT AAC TAA CAT AAG GCC AA-3′ [8,15] or IBV-212, 5′-ATA CAA AAT CTG CCA TGG AAA GA-3′ was added and amplification was conducted using the GeneAmp PCR system 9600 (Perkin Elmer, Waltham, MA, USA) according to the manufacturer’s instructions. The PCR products were analyzed on a 1.5% agarose gel and sequenced after cloning into the pGEMT-easy vector (Promega, Madison, WI, USA). The DNA sequence was then determined using the Dye Terminator Cycle Sequencing method and analyzed using an ABI 377 automodeler (Applied Biosystems, Foster City, CA, USA).

2.4. Reverse transcription-polymerase chain reaction (RT-PCR) and sequencing

Viral RNA used in the RT-PCR was extracted from virus-containing allantoic fluid using an RNaseasy minikit (Qiagen, Valencia, CA, USA) according to the manufacturer’s instructions. The first strand was then synthesized following a previously described method using BeauS1R3, 5′-TTT GAA AAC TGA ACA AAA GA-3′ and their tracheas and kidneys were collected, fixed with 10% neutral buffered formalin, and routinely processed in paraffin, after which 5 μm sections were cut for hematoxylin and eosin staining for histological studies. The tracheal lesions scored included epithelial deciliation, proliferation, degeneration, exudate, congestion, and hemorrhage. The renal lesions scored included epithelial

IBV isolates	Year	Tissue tropism	Accession number
Korean group I (respiratory type)			
B4	1986	Trachea	FJ807932
EJ95	1995	Trachea	FJ807933
EY95	1995	Trachea	FJ807935
K620/97	1997	Trachea	FJ807947
K348/99	1997	Trachea	FJ807940
K571/99	1999	Trachea	FJ807942
Korean group II (nephropathogenic type)			
Es90	1990	Kidney	FJ807934
KC90	1990	Kidney	FJ807945
KM91	1991	Kidney	FJ807946
K151/98	1998	Kidney	FJ807937
K152/98	1998	Kidney	FJ807938
K083/98	1998	Kidney	FJ807936
K242/99	1999	Kidney	FJ807939
K451/99	1999	Kidney	FJ807941
K576/99	1999	Kidney	FJ807943
K2/01	2001	Kidney	NS^a
K630/02	2002	Kidney	FJ807925
K1019/03	2003	Kidney	FJ807927
K1255/03	2003	Kidney	FJ807928
K1257/03	2003	Kidney	FJ807929
K1277/03	2003	Kidney	FJ807930
K035/04	2004	Kidney	FJ807920
K283/04	2004	Kidney	FJ807923
K463/04	2004	Kidney	FJ807924
K961/04	2004	Kidney	FJ807926
K1581/04	2004	Kidney	FJ807931
K154/05	2005	Kidney	FJ807922
Massachusetts group			
RB86	1986	Trachea	FJ807947
K110/06	2006	Trachea	FJ807921

^a Not submitted.
Table 2

Virusesa	Clinical signs	Histopathologic lesion scores				
	Mortality (%)	Respiratory signs	Nephritis	Tubulo nephrosis	Intestinal nephritis	Regeneration
K2parent (Korean group II)	10/10	9/10	8/10	8/10	10/10	
K2p170 (Korean group II)	8/10	3/10	1/10	0/10	0/10	
K571/99 (Korean group I)	6/10	0/10	1/10	0/10	1/10	
None	0/10	0/10	0/10	0/10	0/10	

a One-day-old SPF chicks were inoculated with IBV (104.5 EID50/bird) via the intraocular route.

b Scores of histological lesions: 0, normal; 1, extensively focal; 2, multifocal; 3, diffuse.

degeneration, tubulo nephrosis, interstitial nephritis, and regeneration. Lesions were scored as follows: 0 for normal, 1 for extensively focal lesions, 2 for multifocal lesions, and 3 for diffuse lesions. Additionally, we determined tissue tropisms of K2p170 in comparison with K2parent and respiratory strain K571/99 in 1-day-old SPF chickens (Table 3). At 7 days after intraocular challenge with IBV at 104.5 EID50/bird, the trachea, lung, cecal tonsil, kidney, and bursa of Fabricius tissues were collected from the birds and then used for re-isolation of the virus by inoculating 9–11-day-old embryonated SPF chicken eggs to determine the tissue tropism of IBV.

2.6.2. In broiler chickens

To examine the incidence of adverse reactions in commercial broilers after spray administration, 120 one-day-old broiler chicks were divided into 3 groups with 40 chicks in each group (Table 4). Chicks were obtained from a parent flock vaccinated with commercially available IB inactivated combine vaccines comprising Mass and Korean nephropathogenic strain. These birds were housed in separate isolators, and 20 birds in each group were assigned for evaluation of safety, while another 20 birds were assigned for assessment of the weight gain over time. Birds in the experimental group were immunized by K2p170 or H120 at 104.5 ID50/bird using a coarse sprayer (Desvac®), while those in the control group were inoculated with PBS. During the observation of clinical signs for 14 days, 5 birds in each group was euthanized and used to score rale sound, ciliostasis, and histological lesions of the trachea, lung, and kidney at days 4, 8, 11, and 14 post-inoculation. Histopathologic lesion scoring was conducted as described in the safety study in SPF chickens, and lung lesions were assessed for lympho–histiocytic and interstitial pneumonia.

2.6.3. Virulence reversion

To examine the in vivo reversion of virulence of K2p170, 1-day-old SPF chicks were divided into two groups of three chicks. The inoculated group received K2p170 intranasally at 104.5 EID50/bird and were observed twice daily for clinical signs for 5 days. Birds in the control group were inoculated with PBS. At 5 days post-inoculation, the kidneys and tracheas were collected from all birds for virus detection by RT-PCR. After determination of the presence of the inoculated virus, the tissue homogenates were prepared in PBS with antibiotics and subsequently inoculated into the next group of chicks. This experiment was repeated five times. After the fifth chick-passage, 10 one-day-old SPF chicks were inoculated intranasally with 104.5 EID50/bird of tissue homogenates and then observed twice daily for clinical signs for 14 days. Two weeks after challenge, birds were sacrificed, and histopathological scoring of the tracheae and kidneys was conducted as described in the safety study of SPF chickens.

Table 3

Tissues	Virus isolationb		
Trachea	Lung	Cecal tonsil	Kidney
K2parent (Korean group II)	10/10	9/10	8/10
K2p170 (Korean group II)	8/10	3/10	1/10
K571/99 (Korean group I)	6/10	0/10	1/10
None	0/10	0/10	0/10

a One-day-old SPF chicks were inoculated with IBV (104.5 EID50/bird) via the intraocular route.

b Seven days after challenge chicks were sacrificed and tissues were collected for re-isolation of the challenge virus. Data are the number of chicks from which the virus was isolated/number of chicks inoculated with the virus.
Table 4

Days post-exposure	Role soundb	Mean ciliostasis scoresc	Histopathologic lesion scoresd					
	Control	Inoculated	Control	Inoculated	Control	Inoculated	Control	Inoculated
	Control	K2p170	H120	K2p170	H120	K2p170	H120	K2p170
Day 4	0/5	3/5	0	0	0	0	0	0
Day 8	0/5	3/5	0	3.04	2.66	0	2.30	1.85
Day 14	0/5	0/5	0	1.82	1.14	0	1.10	1.10

a One-day-old broiler chicks were inoculated with IBV (104.5 EID50/bird) by coarse spray.
b On days 4, 8, and 11, and 14 post-vaccination, birds were checked individually for tracheal rales (a sound emanating from the bronchi, also detected by vibrations when holding a chick).
c On days 4, 8, 11, and 14 post-vaccination, tracheas were removed from five chickens in each group (the same animals used for histological sampling). Ten tracheal rings per chick were prepared (three upper, four middle, and three lower tracheal rings). The rings were examined under low-power magnification and ciliary activity was scored as follows: 0, no ciliostasis; 1, 25% ciliostasis; 2, 50% ciliostasis; 3, 75% ciliostasis; 4, 100% ciliostasis.
d Histopathology of the trachea, lung, and kidney at 4 days post-challenge with IBV was reported as histopathologic lesion scores.

Table 5

Strain	Passage number	Positiona
K2parent	3	I M H F Q R L D G
K2p170	170	T V Y I P Q V E E

a The deduced amino acid positions in the S1 gene of IBV, starting at the AUG translation start codon.

2.7. Efficacy study

2.7.1. Protection from replication of the challenge virus in the trachea and kidney of SPF chickens

Total 180 three-week-old SPF chickens were divided into 18 groups of 10 chicks. Twelve groups were then immunized intracutaneously with H120 or K2p170 at 103.0 EID50, while the other 6 groups were kept as non-immunized control groups. Three weeks after immunization, all birds were challenged intracutaneously with 104.5 EID50 of three respiratory strains belonged to Mass group (Mass41) and Korean group I (K571/99, and K107/04) and three nephropathogenic strains belonged to Korean group II (K2parent, KM91, and K1277/03) (Table 5 and Fig. 1). Five days after challenge, we re-isolated the challenge virus from the trachea and kidney of birds by inoculating 9–11-day-old embryonated SPF chicken eggs to evaluate the protective efficacy of the vaccines.

2.7.2. Neutralizing index

Sera from chicks of all groups in the efficacy studies were collected at 3 weeks after immunization and inactivated at 56 °C for 30 min prior to use in viral neutralization test [19]. Briefly, the viruses used for immunization were 10-fold serially diluted before mixing with an equal volume of inactivated serum samples. The virus–serum mixtures were placed for 1 h at 25 °C prior to inoculating 10-day-old embryonated SPF eggs (0.1 ml/egg, five eggs per diluents). The inoculated eggs were incubated for 7–8 days at 37 °C, and eggs that died within 24 h were discarded. At the end of the experimental period, the remaining live eggs were examined for IB lesions to determine EID50 of inoculated viruses and the neutralizing index (NI) was calculated.

2.8. Statistical analysis

A one-tailed Fisher’s exact test was used to compare results among groups in the present study. A p-value of <0.05 was considered to be statistically significant.

3. Results

3.1. Phylogenetic analyses of Korean IBV strains

A phylogenetic tree was generated to describe the relationship between nucleotide sequences of the S1 gene of the K2parent and other field isolates in Korea [Fig. 1]. The Korean IBV strains were separated into two distinct genetic groups (Korean group I and Korean group II), except RB86 and K110/06 formed a separate cluster with the Mass group (Table 1 and Fig. 1). Korean group I included all respiratory strains that split into a unique genetic group, while all nephropathogenic strains were included in Korean group II. These results were identical with previous classification of Korean IBV isolates [15] and suggested that tissue tropism of IBV correlated with genotype based on the S gene sequence. However, Korean group II was subsequently divided into two separate subgroups identified as KM91-like subgroup and QX-like subgroup. The IBV isolates detected in the 1990s to the early 2000s in Korea belonged...
to the KM91-like subgroup containing the K2parent, while IBV isolates obtained after 2003 belonged to the QX-like subgroup that included the QX strain, which is a representative Chinese strain related to nephritis [10]. The nucleotide identity of the QX-like subgroup strains with the KM91 was below 90% (84.6–85.2%) in spite of similar renal pathogenicity. The nucleotide sequences of the 28 isolates in the present study have been deposited in GenBank under the accession numbers listed in Table 1.

3.2. Safety of K2p170

3.2.1. Biological and molecular characterization of the vaccine candidate strain

With continuing passages, K2parent became adapted to embryonated eggs showing the typical embryonic changes such as the dwarfing, stunting, or curling of embryos since the 10th passages. The virus initially replicated in embryonated eggs to titers below $10^{6.5}$ EID$_{50}$/ml. After the 160th passages, however, the virus showed high-growth properties, reaching the titers over $10^{7.5}$ EID$_{50}$/ml, and the undiluted virus induced early embryo mortality within 30 h post-inoculation. Therefore, the virus titers were adjusted to $10^{5.5}$ to $10^{6.5}$ EID$_{50}$/ml for next inoculation, and the diluted virus induced embryo mortality starting from 2 or 3 days post-inoculation. The deduced amino acid sequences of the S1 protein of K2p170 were compared with those of K2parent and nine point mutations caused by amino acid substitutions were found (Table 6).

3.2.2. Safety in SPF chickens

When administered intraocularly, K2parent was pathogenic to 1-day-old chicks, inducing 30% mortality as well as moderate nephritis; however, K2p170 was no longer pathogenic for 1-day-old chicks, as demonstrated by the absence of any clinical signs (Table 2). In addition, the histopathologic lesion scores of tracheas from birds inoculated with K2p170 did not differ significantly from those of birds inoculated with the commercial vaccines, H120 and Ma5. In the kidneys, K2p170 and H120 did not induce any histopathologic lesions when compared with the non-vaccinated control. To further examine the pathogenicity of K2p170, we compared the tissue tropism of K2p170 with K2parent and the respiratory strain K571/99. As shown in Table 3, K2parent replicated well in the various organs including the kidneys, whereas replication of K2p170 was confined to the respiratory tract, similar to respiratory strain K571/99.

3.2.3. Safety in broiler chickens

To determine if administration of K2p170 by coarse spray induced severe respiratory reactions, 1-day-old broiler chicks were given $10^{4.5}$ EID$_{50}$/bird of K2p170 or H120. Despite existence of serum maternal antibody specific both to Mass and Korean nephropathogenic strains in chicks, two IBV strains including H120 (Mass strain) and K2p170 (Korean nephropathogenic strain) induced ciliostasis in the tracheal epithelium in both inoculated groups during the period from 8 to 14 days post-inoculation. The mean ciliostasis scores in both inoculated groups peaked at 8 days and subsequently declined as the chicks grew, but there was no significant difference between two groups. Rale sound and histopathologic lesion scores of respiratory organs changed in a similar pattern as ciliostasis, and focal histopathologic lesions were observed only in the upper part of the tracheas. In kidneys, no significant histopathological changes were observed in birds inoculated with K2p170. Indeed, no difference in average body weight was found between the experimental and control groups for 2 weeks after challenge (data not shown).
3.3. Protective efficacy of K2p170

that no virulence reversion of K2p170 occurred in the chickens and H120 (data not shown). These results indicate different from those induced by K2p170 before passage in the with viruses obtained following the fifth passage. However, loss of cilia and epithelial degeneration in chicks inoculated at every passage, but not in control chickens. No clinical signs or deaths were observed upon five passages. Histological exam-

3.2.4. Virulence reversion

3.2.4. Virulence reversion

As shown in Table 6, chickens immunized with K2p170 were challenged with two nephropathogenic strains belonging to the KM91-like subgroup (K2parent and KM91), one nephropathogenic strain belonging to the QX-like subgroup (K1277/03), and three KM91-like subgroup (K2parent and KM91). Conversely, chickens immunized with K2p170 showed significantly higher levels of protection against challenge with all of the viruses except K107/04 (e.g., H52, H120, 4/91 and GA98) are produced by more than 50 serial passages [5,21]. In a previous study, the 120th passage virus of the Mass serotype (the H120 strain) did not induce any mortality in day-old chicks [5]. However, in this study, 120th passage virus of the K2parent did not induce mortality in day-old chicks by intraocular administration, but still induced mortality (<30%) in day-old chicks after coarse spray administration (data not shown). Therefore, we found that nephropathogenic strains required addi-
tional egg passages when compared to Mass strains for complete attenuation. On the other hand, the 170th passage virus (K2p170) was considered to be completely attenuated because it was non-
pathogenic to day-old chicks. To our knowledge, the K2p170 seems to be the most highly egg passaged strain commercial IBV vaccine strains in the world [5].

4. Discussion

Although attenuation of viruses is usually achieved by passage of the virus in a foreign host such as embryonated eggs or tissue culture cells [20], it has been found that IBV, which is a member of the coronavirus family, was not easily attenuated using this method. In fact, long-term passage in embryonated eggs is necessary to reduce the virulence of IBV, and most commercially available IBV vaccines (e.g., H52, H120, 4/91 and GA98) are produced by more than 50 serial passages [5,21]. In a previous study, the 120th passage virus of the Mass serotype (the H120 strain) did not induce any mortality in day-old chicks [5]. However, in this study, 120th passage virus of the K2parent did not induce mortality in day-old chicks by intraocular administration, but still induced mortality (<30%) in day-old chicks after coarse spray administration (data not shown).

The S protein of coronavirus has been shown to be related to the attenuation of virulence and to broadening host ranges or cell types [22,23]. Casais et al. [24] demonstrated that the S protein is a determinant of cell tropism of IBV, and it has been suggested that some amino acid residues contributed to attenuation of IBV [25,26]. However, amino acid changes in the S protein of K2p170 were not identical to these substitutions, even though K2p170 undergo distinct alteration of biological features including restriction in the tracheas and lack of renal pathogenicity. In agreement with previous studies conducted to determine a region that leads to the pathogenic phenotype of IBV [15,27], our findings suggest that the renal tropism and pathogenicity of K2p170 are not related to the S1 gene, but to other genes [28]. Further genetic investigation of K2p170, such as comparison of the entire genome of attenuated IBV strains with its parent strains [29], may provide a better understanding of the pathogenicity related to renal tropism of IBV.
Despite a lack of renal tropism after attenuation, K2p170 was still able to replicate in the tracheas, which induced mild ciliostasis and histological lesions. It is likely that some damage to the tracheal mucosa is necessary for the development of local immunity against IBV[21]. The level of damage was found to be comparable to that of commercial vaccines (H120 and Ma5), and was in agreement with recent studies conducted to determine the attenuation phenotypes of the GA98 serotype vaccine via evaluation of tracheal lesion scores following challenge[21]. Moreover, K2p170 caused limited damage to the respiratory tract and did not affect the growth performance of broilers, even after coarse spray. In addition, no virulence reversion of the K2p170 occurred in SPF chickens, as demonstrated by the absence of clinical signs and mild histological lesions following in vivo back passage. These findings suggest that K2p170 is useful for hatchery spray vaccination, which is a method of mass vaccination for IBV that is used worldwide [2]. On the basis of its safety in day-old chicks demonstrated, delivery of K2p170 in ovo can be further attempted as a novel vaccination route of choice for IB vaccines [30]. Long-term passage may be beneficial for vaccine safety, but it is possible that over-attenuation of the virus leads to poor protection due to insufficient replication [31]. In the present study, the K2p170 induced strong local immunity following replication in the trachea, as evidenced by the complete protection of the tracheas against the homologous K2parent strain. Despite restricted replication in the trachea, neutralizing antibodies to the K2p170 were induced (NI of K2p170 was 4.5), and K2p170 induced complete protection of the

Table A1

Data for reference IBV strains and accession numbers.

Strain	Year	Country	Accession number	Remarks
This study				
K069/01	2001	Korea	AY257061	Korean genogroup II
K281/01	2001	Korea	AY257062	Korean genogroup I
K446/01	2001	Korea	AY257063	Korean genogroup I
K507/01	2001	Korea	AY257063	Korean genogroup I
K748/01	2001	Korea	AY790358	Korean genogroup II
K774/01	2001	Korea	AY257065	Korean genogroup II
K142/02	2002	Korea	AY257060	Korean genogroup II
K203/02	2002	Korea	AY257067	Korean genogroup I
K210/02	2002	Korea	AY790350	Korean genogroup I
LHLJ/95	1995	China	DQ167141	Chinese genotype II
TJ96	1996	China	AF257075	Chinese genotype III
HBN	1996–1998	China	DQ070837	Chinese genotype I
J2	1996–1998	China	AF286303	Chinese genotype VII
QXIBV	1997	China	AF193423	Chinese genotype I
LDL/97	1997	China	DQ068701	Chinese genotype VII
J	1998	China	AF352312	Chinese genotype IV
JX/99	1999	China	AF210735	Chinese genotype III
LX4/99	1999	China	AY189157	Chinese genotype I
LHN/00	2000	China	DQ167143	Chinese genotype VI
LDL/01	2001	China	DQ167130	Chinese genotype VII
LD3/01	2001	China	AY277662	Chinese genotype II
LH2	2001	China	AY180958	Chinese genotype I
LS2/02	2002	China	AY278246	Chinese genotype I
LHN10/03	2003	China	AY273193	Chinese genotype I
LSHH/03	2003	China	DQ167149	Chinese genotype I
LSD/03	2003	China	DQ167148	Chinese genotype I
LCG/03	2003	China	DQ167133	Chinese genotype III
teal/LDT3	2003	China	AY702975	Chinese genotype III
LJI/04	2004	China	DQ167144	Chinese genotype I
LHLJ/04	2004	China	DQ167139	Chinese genotype I
LDL/04	2004	China	DQ167131	Chinese genotype IV
SH2/05	2005	China	DQ075324	Chinese genotype IV
A1171	1992	Taiwan	AF250005	Taiwan group I
A1211	1992	Taiwan	AF250006	Taiwan group I
TW2296/95	1995	Taiwan	AY606321	Taiwan group I
TW2575/98	1998	Taiwan	AY606314	Taiwan group I
TW03/01	2001	Taiwan	AY606315	Taiwan group I
TW07/02	2002	Taiwan	AY606322	Taiwan group II
TW2993/02	2002	Taiwan	AY606316	Taiwan group I
TW3025/02	2002	Taiwan	AY606317	Taiwan group I
TW3051/02	2002	Taiwan	AY606318	Taiwan group I
TW3071/03	2003	Taiwan	AY606319	Taiwan group I
M41	1941	USA	X04722	Mass group
Ark/99	1973	USA	L10384	American group
Gray	–	USA	L18989	American group
HS2	HI2	Netherlands	AF352315	Mass group
H2	H120	Netherlands	EU822341	Mass group
B1648	B1648	Belgium	X87238	B1648 group
SP316/99	SP99/316	Spain	DQ064809	Spanish genotype IV
SP5438/04	SP54/38/04	Spain	DQ386105	Italy 02 group
SP85/05	SP85/05	Spain	DQ386104	Italy 02 group
Italy/02	Italy-02	Italy	AF053794	Italy 02 group
4/91	4/91	Vaccine strain	UK	4/91 group
FRB9313/85	FR-8313-85	France	A618985	4/91 group
FRB9404/94	FR-9404/94	France	A618987	4/91 group
VicS	VicS	Australia	U29519	Australia group
kidneys. These findings indicate that K2p170 is highly immunogenic. As seen in a previous study describing the genetic stability of Korean nephropathogenic strains sharing 96% homology of the S1 gene for 10 years [15], we observed only eight amino acid changes in the S1 protein of K2p170. Interestingly, most altered residues were located outside of the hypervariable region (HVR), which is associated with the neutralizing epitope [1]. Because the S1 protein has been identified as a major inducer of protective immune responses, our findings lead to the conclusion that the genetic stability of K2p170 contributes to maintenance of constant immunogenicity, even after prolonged passage in embryonated eggs. Although K2parent was chosen based on its cross-protective ability [8], it is not clear if the fully attenuated K2p170 still induced cross-protection. In efficacy studies, K2p170 provided almost complete protection against distinct QX-like subgroup strain of Korean group II (K1277/03) and significant protection against heterologous IBV strains belonged to Mass group (Mass41) and Korean group I (K107/04). It has been proposed that the use of a combination of two commercial vaccines, Mass and 4/91, could be partly effective against heterologous IBV strains, including QX-like strains [32]. However, the use of multiple strains of live vaccines should be practiced with caution due to concerns regarding the formation of variant viruses by recombination with field strains resulting from the spread of vaccine strains [33]. Conversely, the results presented here suggest that single administration of the K2p170 is markedly effective and economical due to its cross-protective ability. It will be important to determine the range of cross-protection conferred by K2p170 against other heterologous IBV strains. Mass serotype vaccines have been used worldwide for almost 50 years due to their cross-protective ability. Nevertheless, nephropathogenic strains appear to be the 3rd epizootic strain with 50 years due to their cross-protective ability. Notwithstanding, the attenuation and immunogenicity of the virus were comparable to currently available commercial vaccines, which indicate that K2p170 is suitable for field application to young chicks in hatcheries and farms. Therefore, K2p170 merits consideration as a novel live vaccine candidate for the reduction of economic losses caused by newly evolving nephropathogenic IBV strains and the many IBV variants that have been reported worldwide.

Acknowledgement

This work was supported by grants from Konkuk University (2001-A019-0130).

Appendix A. Appendix

See Table A1.

References

[1] Cavanagh D, Naqi S. Infectious bronchitis virus. In: 11th ed. Ames: Iowa State Press; 2003.
[2] Ignjatovic J, Sapats S. Avian infectious bronchitis virus. Rev Sci Tech 2000;19(August (2)):493–508.
[3] Cavanagh D, Ellis MM, Cook JKA. Relationship between sequence variation in the S1 spike protein of infectious bronchitis virus and the extent of cross-protection in vivo. Avian Pathol 1997;26:63–74.
[4] Dhinakar Raj G, Jones RC. Protectotypic differentiation of avian infectious bronchitis viruses using an in vitro challenge model. Vet Microbiol 1996;53(December (3–4)):239–52.
[5] Bjelenga G, Cook JK, Gelb Jr J, de Wit JJ. Development and use of the H strain of avian infectious bronchitis virus from the Netherlands as a vaccine: a review. Avian Pathol 2004;33(December (6)):550–7.
[6] Bayry J, Goudar MS, Nigoth PK, Khirsagar SG, Ladman BS, Gelb Jr J, et al. Emergence of a nephropathogenic avian infectious bronchitis virus with a novel genotype in India. J Clin Microbiol 2005;43(February (2)):916–8.
[7] Meir R, Rosenblut E, Perl S, Kass N, Ayali G, Perk S, et al. Identification of a novel nephropathogenic infectious bronchitis virus in Israel. Avian Dis 2004;48(September (3)):653–41.
[8] Song CS, Lee YJ, Kim JH, Sung HW, Lee CW, Izumiya Y, et al. Epidemiological classification of infectious bronchitis virus isolated in Korea between 1986 and 1997. Avian Pathol 1998;27:409–16.
[9] Liu S, Kong X. A new genotype of nephropathogenic infectious bronchitis virus circulating in vaccinated and non-vaccinated flocks in China. Avian Pathol 2004;33(June (3)):321–7.
[10] Liu SW, Zhang QX, Chen JD, Han ZX, Liu X, Feng L, et al. Genetic diversity of avian infectious bronchitis coronavirus strains isolated in China between 1995 and 2004. Arch Virol 2006;151(June (6)):1133–46.
[11] Lee EK, Jeon WJ, Lee YJ, Jeong OM, Choi JK, Kwong JH, et al. Genetic diversity of avian infectious bronchitis virus isolates in Korea between 2003 and 2006. Avian Dis 2008;52(June (2)):322–7.
[12] Bochkov YA, Batchenko GV, Shcherbakova LO, Borisov AV, Drygin VV. Molecular epizootiology of avian infectious bronchitis in Russia. Avian Pathol 2006;35(October (5)):379–93.
[13] Worthington KJ, Currie RJ, Jones RC. A reverse transcriptase-polymerase chain reaction survey of infectious bronchitis virus genotypes in Western Europe from 2002 to 2006. Avian Pathol 2008;37(June (3)):247–57.
[14] Gough RE, Cox WJ, De B, Welchman D, Worthington KJ, Jones RC. Chinese QX strain of infectious bronchitis virus isolated in the UK. Vet Rec 2008;162:99–100.
[15] Song CS, Lee YJ. Molecular and epidemiological characteristics of infectious bronchitis virus isolated in Korea. Korean J Poult Sci 2000;27(2):91–8.
[16] Song CS, Kim JH, Lee YJ, Kim SJ, Izumiya Y, Tohya Y, et al. Detection and classification of infectious bronchitis viruses isolated in Korea by dot-immunoblotting assay using monoclonal antibodies. Avian Dis 1998;42(January–March (1)):92–100.
[17] Hall TA, Bioedit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 1999;41:95–8.
[18] Kumar S, Tamura K, Nei M. MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 2004;5(June (2)):150–63.
[19] Gelb Jr J, Wolff JB, Moran CA. Variant serotypes of infectious bronchitis virus isolated from commercial layer andbroiler chickens. Avian Dis 1991;35(January–March (1)):82–7.
[20] Coult RC. Principles of virology. In: Keane DM, editor. Field's virology. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2007. p. 25–58.
[21] Jackwood MW, Hilt DA, Brown TP. Attenuation, safety, and efficacy of an infectious bronchitis virus GAB98 serotype vaccine. Avian Dis 2003;47(July–September (3)):627–32.
[22] Schickl JH, Zelus BD, Wentworth DE, Sawicki SG, Holmes KV. The murine coronavirus mouse hepatitis virus strain A59 from persistently infected mouse cells exhibits an extended host range. J Virol 1997;71(December (12)):4999–507.
[23] Baric RS, Sullivan E, Hensley L, Yount B, Chen W. Persistent infection promotes cross-species transmissibility of mouse hepatitis virus. J Virol 1999;73(January (1)):638–49.
[24] Casais R, Dove B, Cavanagh D, Britton P. Recombinant avian infectious bronchitis virus expressing a heterologous spike gene demonstrates that the spike protein is a determinant of cell tropism. J Virol 2003;77(August (16)):9084–9.
[25] Callison SA, Jackwood MW, Hilt DA. Molecular characterization of infectious bronchitis virus isolates foreign to the United States and comparison with United States isolates. Avian Dis 2001;45(2):492–9.
[26] Liu S, Han Z, Chen J, Liu X, Shao YH, Kong X, et al. S1 gene sequence heterogeneity of a pathogenic infectious bronchitis virus strain and its embryo-passaged, attenuated derivatives. Avian Pathol 2007;36(3):231–41.
[27] Hodgson T, Casais R, Dove B, Britton P, Cavanagh D. Recombinant infectious bronchitis coronavirus Beaudette with the spike protein gene of the pathogenic M41 strain remains attenuated but induces protective immunity. J Virol 2004;78(December (24)):13804–11.
[28] Cavanagh D, Casais R, Armesto M, Hodgson T, Izadikhasti S, Davies M, et al. Manipulation of the infectious bronchitis coronavirus genome for vaccine development and analysis of the accessory proteins. Vaccine 2007;25(July (30)):5558–62.
[29] Huang YP, Wang CH. Sequence changes of infectious bronchitis virus isolates in the 3′ 7.3 kb of the genome after attenuating passage in embryonated eggs. Avian Pathol 2007;36(February (1)):59–67.
[30] Tarpey J, Orbell SJ, Britton P, Casais R, Hodgson T, Lin F, et al. Safety and efficacy of an infectious bronchitis virus used for chicken embryo vaccination. Vaccine 2006;24(November (47–48)):6830–8.
[31] Cavanagh D. Severe acute respiratory syndrome vaccine development: experiences of vaccination against avian infectious bronchitis coronavirus. Avian Pathol 2003;32(December (6)):567–82.
[32] Terregino C, Toffan A, Beato MS, Nardi RD, Vascellari M, Menni A, et al. Pathogenicity of a QX strain of infectious bronchitis virus in specific pathogen free and commercial broiler chickens, and evaluation of protection induced by a vaccination programme based on the Ma5 and 4/91 serotypes. Avian Pathol 2008;37(5):487–93.
[33] Farsang A, Ros C, Rendolmen LH, Baule C, Soos T, Belak S. Molecular epizootiology of infectious bronchitis virus in Sweden indicating the involvement of a vaccine strain. Avian Pathol 2002;31(June (3)):229–36.