Prevalence of *Porphyromonas gingivalis* Four *rag* Locus Genotypes in Patients of Orthodontic Gingivitis and Periodontitis

Yi Liu¹, Yujie Zhang², Lili Wang³, Yang Guo², Shuiqing Xiao²*¹

1 Pediatric Research Institute, Qilu Children’s Hospital of Shandong University, Jinan, Shandong, China, 2 Department of Orthodontic, Jinan Stomatological Hospital, Jinan, Shandong, China, 3 Clinical Laboratory, Jinan Central Hospital of Shandong University, Jinan, Shandong, China

Abstract

Porphyromonas gingivalis is considered as a major etiological agent in periodontal diseases and implied to result in gingival inflammation under orthodontic appliance. *rag* locus is a pathogenicity island found in *Porphyromonas gingivalis*. Four *rag* locus variants are different in pathogenicity of *Porphyromonas gingivalis*. Moreover, there are different racial and geographic differences in distribution of *rag* locus genotypes. In this study, we assessed the prevalence of *Porphyromonas gingivalis* and *rag* locus genotypes in 102 gingival crevicular fluid samples from 57 cases of gingivitis patients with orthodontic appliances, 25 cases of periodontitis patients and 20 cases of periodontally healthy people through a 16S rRNA-based PCR and a multiplex PCR. The correlations between *Porphyromonas gingivalis*/*rag* locus and clinical indices were analyzed. The prevalence of *Porphyromonas gingivalis* and *rag* locus genes in periodontitis group was the highest among three groups and higher in orthodontic gingivitis than healthy people (p<0.01). An obviously positive correlation was observed between the prevalence of *Porphyromonas gingivalis*/*rag* locus and gingival index. *rag*-3 and *rag*-4 were the predominant genotypes in the patients of orthodontic gingivitis and mild-to-moderate periodontitis in Shandong. *Porphyromonas gingivalis* carrying *rag*-1 has the strong virulence and could be associated with severe periodontitis.

Introduction

Malocclusion is one of the most common oral-maxillofacial diseases that bring some negative effects on facial aesthetics, oral physical function and health as well. In China, morbidity of malocclusion in teenagers is as high as 67.82% [1]. Orthodontic treatment is currently the preferred and most common method for the reason of solving above the problems, but it also holds some potentials of harming teeth and periodontal tissues due to plaque accumulation and gingival inflammation that are induced by the changes of oral internal environment after wearing fixed orthodontic appliance, therefore lead to changing of host physiology and the composition of the oral microflora [2,3]. The inflammatory reaction of gingival tissue can often be detected in patients wearing fixed orthodontic appliances. The overall morbidity of gingivitis was higher as 56.8% and 34.4% in adolescent group and adult group respectively during fixed orthodontic treatment in China [4]. Primary pathogenic microorganisms strongly implicated in gingival inflammation and posterior periodontal destruction, such as *Porphyromonas gingivalis*, *Prevotella intermedia*/*ingens*, *Aggregatibacter actinomycetemcomitans*, *Tannerella forsythia*, *Treponema denticola*, and *Fusobacterium* species have been found elevated in patients after bracket placement [5–7]. Our previous research showed that the percentage of *bacilli*, esp. *Porphyromonas gingivalis*, *Aggregatibacter actinomycetemcomitans*, *Fusobacterium nucleatum* increased significantly after wearing orthodontic appliance and the increase of those pathogens was significantly related with the development of gingivitis in orthodontic treatment [8–9].

Porphyromonas gingivalis is a gram-negative oral anaerobe and considered as a major etiological agent in periodontal diseases by producing a number of virulence factors and extracellular proteases, such as lipopolysaccharide, capsule, gingipain, fimbria and so on, resulting in the destruction of periodontal tissues [10–13]. The pathogenicity of *P. gingivalis* has been investigated in a variety of experimental animal models, such as rat [14–15], mouse [16–17], rabbit [18], drosophila [19], and cell models [20–25], showing complicated mechanisms of *P. gingivalis*-host interactions in development of periodontal diseases. Three gingipains referred to be the important virulence factors, Arg-x-specific proteinase and adhesins (RgpA), Arg-x-specific proteinase (RgpB), and Lys-x-specific proteinase and adhesins (Kgp) have been well known and studied in details with properties of activating and/or degrading a wide range of host proteins through different mechanisms [20–25].

Pathogenicity island is a large unstable chromosome DNA region encoding virulence determinants of pathogenic bacteria and was first described in human pathogens of the species *Escherichia coli* by Hacker et al.[24]. The island has been also detected in other pathogens, such as *Klebsiella pneumoniae*, *Enterobacter aerogenes*, and *Citrobacter koseri* isolates with high conservative property among these species and is in association with the
Porphyromonas gingivalis Four rag Locus Genotypes

Yersinia interauctin determinant [25]. In 1999, Curtis et al [26] found a novel pathogenicity island in a proportion of *P. gingivalis* strains named rag locus and it was more frequently detected in deep periodontal pockets in periodontal patients. It was reported that the rag locus of *P. gingivalis* might arise from *Bacteroides* via horizontal gene transfer and encodes *RagA* and *RagB*. *RagA* is a 115-kDa TonB-dependent outer membrane receptor, and *RagB* is a 55-kDa lipoprotein constituting an immunodominant outer antigen. Both proteins of *RagA* and *RagB* constitute a membrane transporter system. Further study demonstrated that four rag locus variants with different pathogenicity were detected from clinical isolates of *P. gingivalis* [26–28]. A significant correlation was observed between prevalence of rag-1 allele and a highly virulent phenotype in a murine model of soft tissue destruction [29]. In addition, there are different racial and geographic differences in distribution of rag locus genotypes [20]. Wang et al [30] investigated the distribution of rag genotypes in chronic periodontitis patients in Northeast of China and found *P. gingivalis* carrying rag-1, rag-3 was more predominant in chronic periodontitis so that might be associated with the development of periodontitis.

There have been investigations about the association between prevalence of *P. gingivalis* and gingival inflammation during orthodontic treatment [31–35]. Our previous research showed that the prevalence of *P. gingivalis* was higher at 40.62% two months after orthodontics detected by using traditional anaerobic culture [9]. While there have been no investigations about the correlation between *P. gingivalis* rag locus and periodontal health status in orthodontic gingivitis patients. Therefore, we assessed the prevalence of *P. gingivalis* and rag locus genotypes in gingival crevicular fluid samples from the gingivitis lesions of orthodontic patients and compared them with periodontitis patients as well as periodontally healthy people who showed healthy periodontal tissues before wearing orthodontic appliances.

Materials and Methods

Subjects

The study subjects consisted of three groups who visited Jinan Stomatological hospital for orthodontic or periodontitis treatment from 2010 to 2011. Of three groups, orthodontic group (OG) included 57 patients, 38 females and 19 males, aged between 10 and 30 years (mean 16.3) who got gingival inflammation during orthodontic treatment; control group (CG) contained 20 periodontitis patients, 10 females and 15 males, aged from 20 to 60 years (mean 25) who came to hospital for periodontitis treatment. The patients who are having any systemic diseases, antibiotics therapy within the last 3 months and pregnant or lactating females were excluded.

Ethics statement

This work was approved by the Medical Ethics Committee of the Jinan Stomatological Hospital. All patients or their parents gave their verbal followed by written informed consent before the examination was performed. The relevant regulations and institutional policies were followed strictly.

Bacteria strains

The reference strains of *P. gingivalis* ATCC33277, *F./nucleatum* ATCC25586 and *A. actinomycetemcomitans* ATCC29522 were from the West-China Dental School of Sichun University and *P. gingivalis* W83 was from Beijing Oral Research Institute of Capital Medical University.

Clinical examination

We selected the gingivitis or periodontal sites that exhibited the deepest pocket depth of every subject. The clinical parameters included gingival index (GI), plaque index (PI), sulcus bleeding index (SBI) and probing depth (PD) of each person were examined and recorded. All clinical examinations were carried out by the same dentist.

Sample collection and DNA extraction

Gingival crevicular fluid (GCF) was obtained from the two deepest periodontal pockets in the maxilla according to Ruidin et al [36]. In brief, before collecting, saline solution was used to rinse out food debris and then each site was cleaned by cotton rolls. Sterile filter paper strips were placed for 30 seconds into the packet until a minimum of resistance. The paper points were placed into a sterile microcentrifuge tube containing 0.5 ml of 1× PBS immediately. The tubes were mixed thoroughly and stored at −20°C until analyzed. The bacterial DNA was extracted by the boiling method [37]. In short, a 10 μl aliquot of each stored sample was added to 10 μl of 2× lysis buffer (2 mM EDTA, 1% X-100). The mixture was boiled for 10 minutes and then placed on ice. The supernatant was used as the template for PCR amplification.

The 16S rRNA-based PCR and multiplex PCR amplification

The 16S rRNA gene specific primers were used to determine the prevalence of *P. gingivalis* in GCF, while four different rag locus variants primers were utilized to amplify the rag locus variants genes from GCF samples containing *P. gingivalis*. The 16S rRNA-based PCR was first performed on DNA extracts from GCF samples using primers of 16S rRNA-F (5'-AGG CAG CTT GCC ATC CTG CG-3') and 16S rRNA-R (5'-ACT GTT AGC AAC TAC CGA TGT-3') that amplify a 404-bp region of the 16S rRNA gene [38]. The specificity of this PCR was confirmed by sequencing and amplifying *P. gingivalis* ATCC32977, W83, as well as unrelated pathogens *F. nucleatum* ATCC25586 and *A. actinomycetemcomitans* ATCC29522. Then the multiplex PCR was utilized to amplify rag locus genes from the positive *P. gingivalis* samples. Amplification reaction was run in a Tetrad Thermal Cycler (MJ Research, South San Francisco, USA) in a 25 μl reaction mixture containing 4.5 μl 10×PCR buffer (100 mM Tris-HCl, 500 mM KCl, and 15 mM MgCl2), 0.25 mM of each deoxynucleoside triphosphate (dNTP), 10 μM of each primers, 5 μl of DNA extracts from GCF samples, and 1.5 units of Taq DNA polymerase.

Table 1. Primers of rag locus genotypes used for PCR.

Primers	Sequences(5’→3’)	Sizes (bp)
rag-1F	5'-CCCGGCCCCGAGGAGAAATT-3’	628
rag-1R	5'-CACCGTCACATAAAGAACGCT-3’	
rag-2F	5'-GCTTTGCGCTTGACTGG-3’	979
rag-2R	5'-CCACCGTCACCTGCACTCC-3’	
rag-3F	5'-CCGGAGATAAGGCAAAGAAGA-3’	423
rag-3R	5'-AGCCCAATTCGCCGAAGACT-3’	
rag-4F	5'-CCGGATGGAATGATGAGAACAGA-3’	739
rag-4R	5'-CCGGTAACCTCACGCAATT-3’	

doi:10.1371/journal.pone.0061028.t001
polymerase (Transgen Biotech, Beijing) for 5 min at 94°C and 33 cycles, with each cycle consisting of denaturation at 94°C for 30 sec, annealing at 57°C for 30 sec, extension at 72°C for 1 min, and final extension for 10 min. Nucleotide sequences of the forward and reverse primers for rag locus genes were listed in Table 1 [39].

The amplified PCR products were then electrophoresed on 1.5% agarose gel in Tris-acetate buffer (40 mM Tris acetate, 1 mM EDTA, pH 8.0). The products were visualized with ethidium bromide by UV transillumination.

Statistical analysis

The differences in the prevalence of rag locus genes were analyzed using the Chi square test. The Spearman Correlation Test was utilized to analyze the correlation between prevalence of P.gingivalis/rag locus genes and clinical indices in three research groups. All statistical analyses were done by using a statistical software package (SPSS for Windows 13.0).

Results

Detection and confirmation of 16S rRNA-based PCR for P.gingivalis

The reference stains were first amplified by the 16S rRNA-based PCR to evaluate the specificity of it. The positive product appeared only from P.gingivalis ATCC33277 and W83, not from F.nucleatum ATCC25586 and A.actinomycetemcomitans ATCC29522.

Sixty-five P.gingivalis was detected in 65 (63.73%) cases of GCF samples from 102 cases of three groups, thirty-five (61.40%) from orthodontic group (OG), Seven (35%) from control group (CG), and 23 (92%) from periodontitis group (PG). Prevalence of

Groups	Cases (n)	P.gingivalis counts	P.gingivalis (%)
OG	57	35	61.40*
CG	20	7	35.00
PG	25	23	92.00**
Total	102	65	63.73

P<0.01 between PG and CG; * P<0.05 between OG and CG (Chi-squared test).

![Figure 1](https://example.com/figure1.png)

Figure 1. Detection and distribution of rag locus genes. a. Detection of rag locus genes in clinical GCF samples. M DNA Marker; Lane1 positive control of P.gingivalis W83; Lane 2–7 clinical GCF samples, showing rag-1 (lane 2), rag-2 (lane3), rag-1 combined with rag-4 (lane4), rag-3 (lane5), rag-4 (lane6), and negative (lane 7). b. The prevalence of rag locus genes in clinical GCF samples of three groups. ** P<0.01 between OG/PG and CG (Chi-squared test). c. Distribution of four rag locus genes among three groups.

![Distribution of four rag locus genes among three groups](https://example.com/figure2.png)

Table 2. Prevalence of P.gingivalis among three groups.

Groups	Cases (n)	P.gingivalis counts	P.gingivalis (%)
OG	57	35	61.40*
CG	20	7	35.00
PG	25	23	92.00**
Total	102	65	63.73

P<0.01 between PG and CG; * P<0.05 between OG and CG (Chi-squared test).

doi:10.1371/journal.pone.0061028.t002
Porphyromonas gingivalis was found significantly different in three groups: *P. gingivalis* was the highest prevalence in PG (*P* <0.01) and higher level in OG than CG (*P* <0.05) (Table 2). Of 65 *P. gingivalis* positive samples, 10 were randomly sequenced by a 3730 DNA sequencer in Invitrogen Company (Invitrogen, Shanghai) and confirmed the validity of the 16S rRNA-based PCR for clinical GCF samples (date were not showed).

The correlation of patients’ age and prevalence of *P. gingivalis* was analyzed. The average age of patients with positive *P. gingivalis* in GCF was 25.54 years, while patients with negative *P. gingivalis* was 16.19 years, and there was statistical difference between the patients’ ages of both positive and negative *P. gingivalis* (*P* <0.05).

Multiplex-PCR amplification of *rag* locus genes

Multiplex-PCR was firstly used to detect *rag* locus genes from the high virulent *P. gingivalis* W83 and low virulent *P. gingivalis* ATCC33277. It showed that *rag-1* gene was amplified from *P. gingivalis* W83 and *rag-4* was from ATCC33277, which were consistent with previous documents [40,41].

There were 52 (80%) positive *rag* locus genes detected from the 65 GCF samples which were *P. gingivalis* positive, twenty-nine (82.86%) from those in OG, 22 (95.65%) from those in PG, only one case (14.29%) from healthy people. The prevalence of *rag* locus was significantly higher in PG and OG than in CG (*P* <0.01), while no significant difference between PG and OG (*P* >0.05) (Fig. 1).

Among *P. gingivalis*-positive GCF samples from three groups, the most prevalent *rag* gene was *rag-3* (51.92%), followed by *rag-4* (38.26%) and *rag-1* (26.92%). While in those of PG, *rag-3* (60.87%), *rag-4* (39.13%), *rag-1* (30.43%) were much higher than those in CG (only *rag-2* positive); Similar to those of periodontitis group, in those of OG, the proportion of *rag* genotypes were: *rag-3* 44.83%, *rag-4* 37.93%, *rag-2* 20.69%; but in CG: only one case of *rag-2* (14.29%) was detected.

Correlation of *rag* locus genes and clinical indices

It was noticed that clinical indices were all higher in OG and PG than CG (*P* <0.05). The prevalence of *rag* locus genes, except *rag-2*, elevated directly with increases of GI values in both OG and PG. The significant positive correlation between *rag* locus and GI was showed by using Spearman Correlation Test (*P* <0.01) (Fig. 2). However, there were no statistical difference between *rag* locus and PD/PI/SBI, while we detected the increase of *rag* locus in OG and PG with higher GI and higher PD/PI/SBI. *rag-1* often appeared from the deeper periodontal pocket with higher PD/PI/SBI values.

Table 3. Prevalence of *rag* locus under different gingival index (GI) among three groups.

Groups	GI (n)	*rag* locus (%)	*rag-1 (%)	*rag-2 (%)	*rag-3 (%)	*rag-4 (%)
OG	0 (16)	8.57	2.86	2.86	0	2.86
	1 (20)	25.72*	5.72	2.86	14.29	11.43
	2 (21)	48.57**	11.43	11.43	22.86	17.14
CG	0 (20)	14.29	0	14.29	0	0
PG	1 (10)	30.43*	4.35	13.04	17.39	8.70
	2 (15)	65.22**	26.09	0	43.48*	38.46

P <0.01 between GI 2 and GI 0; *P* <0.05 between GI 1 and GI 0,

#Figure 2. Correlation of *rag* locus genes and gingival indices (GI).** P <0.01 between GI 2 and GI 0; * P <0.05 between GI 1 and GI 0,

P <0.05 between GI 2 and GI 1 in PG (Chi-squared test).

doi:10.1371/journal.pone.0061028.t003
and 10/14 of rag-1 positive cases accompanied with rag-3 and/or rag-4. Interestingly, an exception was found that one case of rag-1 gene was from a patient of GI 0 level in orthodontic group, so further research would be done for the possible variation of rag-1 gene. The prevalence of four rag locus genes among three groups showed in table 3.

Discussion

Porphyromonas gingivalis has been known to be a risk factor for periodontal diseases though the exact roles of it in the initiation and progression of the oral diseases remain unclear. Mouse model tests have indicated difference in the virulence of *Porphyromonas gingivalis* with and without rag locus [28,29]. Shi et al. mutated rag locus genes in *Porphyromonas gingivalis* by using an allele replacement strategy and clearly showed that inactivation of the rag locus reduced the virulence of *Porphyromonas gingivalis* in a mouse model of soft tissue destruction [29]. In a collection of 168 isolates of *Porphyromonas gingivalis* from western European countries, including the Netherlands, Romania, Sweden, the United Kindom, Kenya and Germany, Hall et al. found different prevalence and geographic differences in distribution of four rag alleles [28]. In this case, we detected prevalence of *Porphyromonas gingivalis* and rag locus genotypes in local patients of orthodontic gingivitis, periodontitis and periodontally healthy people to evaluate the distribution of *Porphyromonas gingivalis* and predominant genotypes of rag locus in different periodontal health statuses, then further deduce the pathogenicity of *Porphyromonas gingivalis* carrying different rag locus during orthodontic treatment.

In periodontal disease, gingival crevicular fluid (GCF) is an inflammatory exudate. GCF contains substances from supra-and subgingival located bacteria. Analysis of microflora in GCF becomes more and more important in diagnosis and therapy of periodontal diseases. There are a large number of periodontopathic bacteria including *Porphyromonas gingivalis* in GCF [42]. Considering the method of filter paper strips is recommended to collect the microflora from GCF for microbiological analysis in dental practice [35]. With sterile filter paper strips, we collected GCF samples divided into orthodontic gingivitis, periodontally healthy control and periodontitis groups from 102 patients to investigate the prevalence of *Porphyromonas gingivalis* in above three groups. The occurrence of *Porphyromonas gingivalis* was 61.40% in OG, 35% in CG, and 92% in PG, respectively. There was a statistically higher prevalence of *Porphyromonas gingivalis* in PG followed by OG than CG. Furthermore, a significantly strong positive correlation was observed between the prevalence of *Porphyromonas gingivalis* and GI by Spearman Correlation Test (P < 0.01), which was consistent with previous reports [31–33,43]. While once wearing fixed appliance, oral hygiene will turns bad if teeth cleaning can not be paid special attention, as a result, dental plaque will accumulate and gingival inflammation will happen. By then, one side, anaerobic environment will be created due to swollen gum, deeper gingival sulcus, and pseudo periodontal pocket; on the other side, the gum will be susceptible to bleeding and therefore it will be more conducive for periodontal anaerobic *Porphyromonas gingivalis* to survive. *Porphyromonas gingivalis* may play a similar role in orthodontic gingivitis and periodontitis.

Porphyromonas gingivalis has been reported to be related with adult periodontitis [10,12]. In this study, we analyzed correlation of patients’ age and occurrence of *Porphyromonas gingivalis* and found the age of both *Porphyromonas gingivalis* positive and negative was statistically different; implying the prevalence of *Porphyromonas gingivalis* may increase as patients’ age increased.

In order to further explore whether the *Porphyromonas gingivalis* rag locus was associated with gingival inflammation under orthodontic appliance, we detected the distribution of rag locus in three groups and discovered 52 (80%) of positive rag locus genes from 65 *Porphyromonas gingivalis*-positive GCFs. The prevalence of rag locus was higher in those of PG and OG than those of CG. The *Porphyromonas gingivalis* without rag locus was mostly detected from periodontally healthy control and GI 0 level OG patients, demonstrating that they present the avirulent or weak virulence genotype of *Porphyromonas gingivalis*. A clear positive correlation was indicated between the gingival index and rag locus genes, implying rag locus genes may play a pathogenic and similar role in the development of gum inflammation during orthodontic in comparison with periodontitis.

The prevalence of rag-3 (27 cases) was the most detected followed by rag-4 (20 cases) and rag-1 (14 cases); the lowest occurrence was rag-2 (10 cases) with lower GI and PD/PI/SBI values, showing the rag-3 and rag-4 locus genes might be the predominant genotypes in the patients of orthodontic gingivitis and mild-to-moderate periodontitis in the populations of Shandong region. Besides, we found rag-1 was detected from 14 cases, mostly with higher GI and PD/PI/SBI, and often combined with rag-3 and/or rag-4, suggesting the *Porphyromonas gingivalis* carrying rag-1 is the strong virulent genotype and can be closely associated with severe periodontitis, which is consistent with Hanley et al[44].

In summary, *Porphyromonas gingivalis* carrying rag-3, rag-4 locus is one of the risk factors that are responsible for gingivitis during orthodontic treatment. Thus monitoring *Porphyromonas gingivalis* is highly recommended following the placement of orthodontic appliances. In addition, appropriate oral hygiene is necessary to reduce invasion of pathogens and exerts a beneficial effect to oral tissues.

Author Contributions

Conceived and designed the experiments: YL SX. Performed the experiments: YZ LW YG. Analyzed the data: YZ SX. Contributed reagents/materials/analysis tools: YZ SX. Wrote the paper: YL SX.
12. Hayashi F, Okada M, Oda Y, Kojima T, Kozai K (2012) Prevalence of Porphyromonas gingivalis fimA genotypes in Japanese children. J Oral Sci 54(1):77-83.

13. Perez-Chaparro PJ, Lafaurie GL, Gracieux P, Meurin V, Tamanini-Shacozi Z, et al. (2009) Distribution of Porphyromonas gingivalis fimA genotypes in isolates from subgingival plaque and blood sample during bacteremia. Biomedica 29(2):298-306.

14. Evans RT, Klaassen B, Ramamurthy NS, Golub LM, Sfintescu C, et al. (1992) Periodontopathic potential of two strains of Porphyromonas gingivalis in gnotobiotic rats. Arch Oral Biol 37(10):813-819.

15. Katz J, Ward DC, Michalek SM (1996) Effect of host responses on the pathogenesis of strains of Porphyromonas gingivalis. Oral Microbiol Immunol 11(3):309-318.

16. O'Brien-Simpson NM, Paolinii RA (2001) Hoffmann B, Slakeski N, Daslper SG, Reynolds EC. Role of RgaA, RgpB, and Kgp proteinases in virulence of Porphyromonas gingivalis W50 in a murine lesion model. Infect Immun 69(12):7527-7534.

17. Gibson FC, 3rd, Genco CA (2001) Prevention of Porphyromonas gingivalis-induced oral bone loss following immunization with gingipain R1. Infect Immun 69(12):7959-7963.

18. Hasturk H, Jones VL, Andrey C, Kantarcı A (2007) 1-Tetradecanol complex reduces progression of Porphyromonas gingivalis-induced experimental periodontitis in rabbits. J Periodontol 78(5):924-932.

19. Igboin CO, MoeBschberger ML, Griffith AL, eys J (2011) Porphyromonas gingivalis virulence in a Drosophila melanogaster model. Infect Immun 79(1):439-448.

20. Sheets SM, Potempa J, Travis J, Casiano CA, Fletcher HM (2005) Gingipains from porphyromonas gingivalis W83 induce cell adhesion molecule cleavage and apoptosis in endothelial cells. Infect Immun 73(3):1534-1543.

21. Fitzpatrick RE, Aprico A, Wijeyewickrema LC, Pagel CN, Wong DM, et al. (2005) Gingipains from Porphyromonas gingivalis: a novel pathogenicity island. J Periodontal Res 34(7):400-405.

22. Hall LM, Fawell SC, Shi X, Faray-Kele MC, Aduse-Opoku J, et al. (2005) Sequence diversity and antigenic variation at the rag locus of Porphyromonas gingivalis. Infect Immun 73(7):4253-4262.

23. Shi X, Hanley SA, Faray-Kele MC, Fawell SC, Aduse-Opoku J, et al. (2007) The rag locus of Porphyromonas gingivalis contributes to virulence in a murine model of soft tissue destruction. Infect Immun 75(4):2071-2074.

24. Wang GH, Zhang DM, Pan YP (2009) Distribution of rag genotypes of Porphyromonas gingivalis in patients with chronic periodontitis. Hua Xi Kou Qiang Yi Xue Za Zhi 27(2):168-171.

25. Sallum EJ, Neuer DF, Klein MI, Goncalves RB, Machion L, et al. (2004) Clinical and microbiologic changes after removal of orthodontic appliances. Am J Orthod Dentofacial Orthop 126(5):563-566.

26. Naranjo AA, Trivino ML, Jaramillo A, Betancourth M, Botero JE. (2006) Changes in the subgingival microbiota and periodontal parameters before and 3 months after bracket placement. Am J Orthod Dentofacial Orthop 130(2):273.

27. Liu H, Sun J, Dong Y, Lu H, Zhou H, et al. (2011) Periodontal health and relative quantity of subgingival Porphyromonas gingivalis during orthodontic treatment. Angle Orthod 81(4):609-615.

28. Hall LM, Fawell SC, Shi X, Faray-Kele MC, Aduse-Opoku J, et al. (2005) Comparison of gingipain crevicular fluid sampling methods in patients with severe chronic periodontitis. J Periodontol 82(7):1051-1060.

29. Rudin HJ, Overdahl HF, Ratnawisak KH (1970) Correlation between sulcus fluid rate and clinical rate and clinical and histologic inflammation of the marginal gingival. Helb Odontol Acta 14(1):21-26.

30. Lee SM, Yoo SY, Kim HS, Kim KW, Yoon YJ, et al. (2005) Prevalence of putative periodontopathogens in subgingival dental plaques from gingivitis lesions in Korean orthodontic patients. J Microbiol 43(3):260-263.

31. Ashimoto A, Chen C, Bakker I, Slots J (1996) Polymerase chain reaction detection of 8 putative periodontal pathogens in subgingival plaque of gingivitis and advanced periodontitis lesions. Oral Microbiol Immunol 11(4):266-273.

32. Hall LM, Fawell SC, Shi X, Faray-Kele MC, Aduse-Opoku J, et al. (2005) Sequence diversity and antigenic variation at the rag locus of Porphyromonas gingivalis. Infect Immun 73(7):4253-4262.

33. Lin L, Liu C, Lin J, Zhang D, Zhao J, et al. (2009) Virulence genes of Porphyromonas gingivalis W83 in chronic periodontitis. Acta Odontol Scand 67(5):250-264.

34. Lin L, Pan Y, Li C. (2006) Comparison between genes of highly toxic strain and minimally toxic strain of porphyromonas gingivalis. Chin J Stomatol 41(12):73-79.

35. Lopez N (2000) Occurrence of Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, and prevotella intermedia in progressive adult periodontitis. J Periodontol 71(6):940-954.

36. Klein MI, Goncalves RB (2003) Detection of Tannerella forsythensis (Bacteriodes forsythus) and porphyromonas gingivalis by polymerase chain reaction in subjects with different periodontal status. J Periodontol 74(8):808-820.

37. Hanley SA, Aduse-Opoku J, Curtis MA (1999) A 55-kilodalton immunodominant antigen of Porphyromonas gingivalis W30 has arisen via horizontal gene transfer. Infect Immun 67(3):1137-1171.