Title
Subclinical hypothyroidism after radioiodine exposure: Ukrainian-American cohort study of thyroid cancer and other thyroid diseases after the Chornobyl accident (1998-2000).

Permalink
https://escholarship.org/uc/item/0m25n99w

Journal
Environmental health perspectives, 117(5)

ISSN
0091-6765

Authors
Ostroumova, Evgenia
Brenner, Alina
Oliynyk, Valery
et al.

Publication Date
2009-05-01

DOI
10.1289/ehp.0800184

Peer reviewed
Subclinical Hypothyroidism after Radioiodine Exposure: Ukrainian–American Cohort Study of Thyroid Cancer and Other Thyroid Diseases after the Chornobyl Accident (1998–2000)

Evgenia Ostromova,1 Alina Brenner,1 Valery Olynyk,2 Robert McConnell,3 Jacob Robbins,4 Galina Terekhova,2 Lydia Zablotska,5 Ilya Likhtarev,6 Andre Bouville,1 Viktor Shpak,2 Valentin Markov,2 Ihor Masnyk,1 Elaine Ron,1 Mykola Tronko,2 and Maureen Hatch1

1Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA; 2Institute of Endocrinology and Metabolism, Kyiv, Ukraine; 3Department of Medicine, The Thyroid Clinic, College of Physicians and Surgeons, Columbia University, New York, New York, USA; 4Clinical Endocrinology Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA; 5Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, USA; 6Scientific Center for Radiation Medicine, Academy of Medical Science, Kyiv, Ukraine

BACKGROUND: Hypothyroidism is the most common thyroid abnormality in patients treated with high doses of iodine-131 (131I). Data on risk of hypothyroidism from low to moderate 131I thyroid doses are limited and inconsistent.

OBJECTIVE: This study was conducted to quantify the risk of hypothyroidism prevalence in relation to 131I doses received because of the Chornobyl accident.

METHODS: This is a cross-sectional (1998–2000) screening study of thyroid diseases in a cohort of 11,853 individuals < 18 years of age at the time of the accident, with individual thyroid radioactivity measurements taken within 2 months of the accident. We measured thyroid-stimulating hormone (TSH), free thyroxine, and antibodies to thyroid peroxidase (ATPO) in serum.

RESULTS: Mean age at examination of the analysis cohort was 21.6 years (range, 12.2–32.5 years), with 49% females. Mean 131I thyroid dose was 0.79 Gy (range, 0–40.7 Gy). There were 719 cases with hypothyroidism (TSH > 4 mIU/L), including 14 with overt hypothyroidism. We found a significant, small association between 131I thyroid doses and prevalent hypothyroidism, with the excess odds ratio (EOR) per gray of 0.10 (95% confidence interval, 0.03–0.21). EOR per gray was higher in individuals with ATPO ≤ 60 U/mL compared with individuals with ATPO > 60 U/mL (p < 0.001).

CONCLUSIONS: This is the first study to find a significant relationship between prevalence of hypothyroidism and individual 131I thyroid doses due to environmental exposure. The radiation increase in hypothyroidism was small (10% per Gy) and limited largely to subclinical hypothyroidism. Prospective data are needed to evaluate the dynamics of radiation-related hypothyroidism and clarify the role of antithyroid antibodies.

KEY WORDS: Chernobyl nuclear accident, Chornobyl, dose–response relationship, hypothyroidism, ionizing radiation. Environ Health Perspect 117:745–750 (2009). doi:10.1289/ehp.0800184 available via http://dx.doi.org/ [Online 15 December 2008]

The 26 April 1986 accident at the Chornobyl (Chernobyl) nuclear power plant contaminated large areas of northern Ukraine as well as parts of Belarus and the Russian Federation. The environmental fallout included radionuclides of iodine, primarily iodine-131 (131I), which concentrates in the thyroid gland (United Nations Scientific Committee on the Effects of Atomic Radiation 2000). The scientific evidence accumulated since the accident points clearly to a substantial increase in thyroid cancer among those exposed as children (Cardis et al. 2005; Ivanov et al. 2006; Jacob et al. 1999; Likhtarov et al. 2006; Tronko et al. 2006b). However, research into possible effects of exposure on thyroid function has been limited, and the results have been inconsistent, largely because of issues in study design and lack of individual dose estimates (Èheman et al. 2003; Goldsmith et al. 1999; Kasatkina et al. 1997; Pacini et al. 1998; Quastel et al. 1997; Saiko et al. 1997; Vermiglio et al. 1999; Vykhoveranets et al. 1997). A significant upward shift in thyroid-stimulating hormone (TSH) levels and increased rates of juvenile hypothyroidism in children exposed in Belarus and Ukraine because of the Chornobyl accident have been reported in some ecologic studies (Goldsmith et al. 1999; Quastel et al. 1997; Vykhoveranets et al. 1997), but not in others (Kasatkina et al. 1997; Pacini et al. 1998; Saiko et al. 1997; Vermiglio et al. 1999). Several studies, including ours (Tronko et al. 2006a), suggested effects on thyroid autoimmunity (Pacini et al. 1998; Vermiglio et al. 1999; Vykhoveranets et al. 1997). We have assessed the prevalence of autoimmune thyroiditis (AIT) and elevated antibodies to thyroid peroxidase (ATPO) in a cohort of 12,240 individuals from Ukraine who were < 18 years of age at the time of the Chornobyl accident, with individual thyroid radioactivity measurements taken shortly after the accident (Tronko et al. 2006a). We found a significant dose–response relationship for the prevalence of elevated ATPO alone, but not for AIT.

Here, we extend analyses in this cohort to test the hypothesis that the prevalence of hypothyroidism is associated with individual 131I thyroid dose estimates and/or that this relationship varies according to ATPO levels. Clarifying the relationship of hypothyroidism with radioiodines is important because of the widespread use of 131I in medical practice and concerns about health risks associated with the potential release of radioiodines from nuclear reactors.

Materials and Methods

Study population. A detailed description of the study design and methods was published previously (Stezhko et al. 2004). In brief, the cohort consists of individuals with direct measurements of thyroid radioactivity made in May or June 1986 who were < 18 years of age on the day of the accident (26 April 1986) and who resided in adjacent Chernihiv, Zhytomyr, or Kyiv oblasts (an oblast is an administrative territorial unit) in May or June 1986. Women are represented in this cohort as a result of higher thyroid dose estimates among women compared with men. This is a critical consideration because of the higher prevalence of hypothyroidism among women (Anderson et al. 2004). We included only those exposed as children, defined as being age 18 years or younger on the day of the accident. These criteria were selected to obtain a consistent exposure group with the largest number of exposed individuals. The study population included approximately 16,000 individuals who met the age and residence criteria, of whom 11,853 were available for analysis. Individuals with thyroid disease at the time of the accident were excluded (Tronko et al. 2006). The study design and methods was published previously (Stezhko et al. 2004). In brief, the cohort consists of individuals with direct measurements of thyroid radioactivity made in May or June 1986 who were < 18 years of age on the day of the accident (26 April 1986) and who resided in adjacent Chernihiv, Zhytomyr, or Kyiv oblasts (an oblast is an administrative territorial unit) in May or June 1986. There were 719 cases with hypothyroidism (TSH > 4 mIU/L), including 14 with overt hypothyroidism. We found a significant, small association between 131I thyroid doses and prevalent hypothyroidism, with the excess odds ratio (EOR) per gray of 0.10 (95% confidence interval, 0.03–0.21). EOR per gray was higher in individuals with ATPO ≤ 60 U/mL compared with individuals with ATPO > 60 U/mL (p < 0.001).

Conclusions: This is the first study to find a significant relationship between prevalence of hypothyroidism and individual 131I thyroid doses due to environmental exposure. The radiation increase in hypothyroidism was small (10% per Gy) and limited largely to subclinical hypothyroidism. Prospective data are needed to evaluate the dynamics of radiation-related hypothyroidism and clarify the role of antithyroid antibodies.

Key words: Chernobyl nuclear accident, Chornobyl, dose–response relationship, hypothyroidism, ionizing radiation. Environ Health Perspect 117:745–750 (2009). doi:10.1289/ehp.0800184 available via http://dx.doi.org/ [Online 15 December 2008]

Acknowledgments: This research was supported by the Intramural Research Program of the U.S. National Institutes of Health, the U.S. National Cancer Institute, and the U.S. Department of Energy. The U.S. Nuclear Regulatory Commission provided the initial funds for purchase of equipment. The funding agencies had no influence on study design, conduct, or reporting. The authors declare they have no competing financial interests.

Received 12 September 2008; accepted 15 December 2008.
administrative area similar in size to a state or province) or in the city of Kyiv, Ukraine, at the beginning of the study (Stezhko et al. 2004). We based the present analysis on the data collected during the first screening examination conducted between 1998 and 2000. Figure 1 summarizes individuals who originally selected, traced, and screened (Stezhko et al. 2004), or excluded from the analysis. To assure that TSH measurements at first examination reflect spontaneous levels, we excluded from the analysis individuals who reported thyroid disease (\(n = 815 \); 90% with simple diffuse goiter) or thyroid surgery (\(n = 46 \)) or intake of thyroid hormones (\(n = 27 \)) before the first screening examination. We also excluded individuals without TSH or ATPO measurements (\(n = 146 \)), mainly due to refusal to provide a serum sample, and those with measurements performed using the Amerlite assay at the beginning of the study before the Brahms assay became available (\(n = 272 \)).

The study was reviewed and approved by the institutional review boards of the participating organizations in Ukraine and the United States, and all subjects gave written informed consent.

Screening examination. Individuals were screened either by a mobile medical team visiting the local area or at the Research Institute and performed ultrasound examination and palpation by an endocrinologist; a serum sample and a spot urine sample were collected. A series of structured questionnaires eliciting information on demographics, individual and family medical history, and items relevant to thyroid dose estimation, such as residential history, milk and leafy vegetable consumption, and iodine prophylaxis in May–June 1986, were administered by study personnel (Stezhko et al. 2004).

Ultrasound examination. The thyroid was examined using a 7.5-MHz linear transducer (Toshiba 240; Toshiba Corp., Tokyo, Japan) with the subject supine and neck extended. The thyroid volume was calculated based on the volume of an ellipsoid (length × width × depth × 0.479) as described elsewhere (Brunn et al. 1981).

Serum assays. We measured TSH, ATPO, and free thyroxine (FT\(_4\)) in serum samples with LUMitest immunochemiluminescence assays (Brahms Diagnostica GMBH, Henningsdorf, Germany) using a Berthold 953 luminometer (Berthold Technologies, GmbH & Co. KG, Bad Wildbad, Germany). We performed TSH and ATPO measurements for everyone with a sufficient serum sample (99% of the cohort), and ATPO concentrations for everyone with a sufficient serum sample (99% of the cohort), and performed FT\(_4\) measurements only for those whose TSH result was outside the reference range. We conducted all assays according to the manufacturer’s instructions. Intraassay coefficients of variation (CVs) for the TSH assay at 0.03 and 2.0 mIU/L were 3.0% and 2.2%, respectively, and the interassay CVs were 10.9% and 2.8%, respectively. Intraassay CVs for the ATPO assay at 84 and 375 U/mL were 8.1% and 6.5%, respectively, and the interassay CVs were 11.4% and 7.7%, respectively. Intraassay CVs for the FT\(_4\) assay at 7.4 and 33.3 pmol/L were 5.6% and 2.8%, respectively, and the interassay CVs at 6.7 and 53.9 pmol/L were 9.0% and 7.3%, respectively.

Based on evaluation of the range of values in a sample from our cohort, we set reference limits for TSH between 0.3 and 4.0 mIU/L. We considered ATPO > 60 U/mL to be elevated or positive, consistent with Brahms. We set reference limits for FT\(_4\) between 10.0 and 25.0 pmol/L, consistent with Brahms’s recommendation.

Iodine determination. We measured urinary iodine content, expressed in micrograms per liter, in spot urine samples using the Sandell–Kolthoff reaction (Tronko et al. 2005). The analytic sensitivity of the assay was 6 µg/L.

Outcome definition. We defined hypothyroidism as serum TSH concentration > 4.0 mIU/L, the upper limit of the reference range. We limited overt hypothyroidism to cases of hypothyroidism with serum FT\(_4\) concentration < 10 pmol/L, the lower limit of the reference range.

Dosimetry. Details of dosimetric methods have been published elsewhere (Likhtarev et al. 2003, 2006; Likhtarov et al. 2005, 2006). The unique feature of our study is that doses were primarily based on thyroid radioactivity measurements taken within 8 weeks of the accident. Using these measurements, data on dietary and lifestyle habits, and environmental transfer models, we estimated individual \(^{131}\)I thyroid doses and their uncertainties. The distributions of 1,000 individual thyroid dose estimates, obtained using a Monte Carlo procedure, were approximately lognormal (Likhtarev et al. 2003). For the present analyses, we used the arithmetic means of the 1,000 individual \(^{131}\)I dose realizations after adjustment for the typical thyroid masses of the Ukrainian population, which were measured by the Sasakawa Memorial Health Foundation for children 5–16 years of age and by the Ukrainian Radiation Protection Institute for children < 5 years of age (Likhtarov I, personal communication). The arithmetic mean and the median of the individual \(^{131}\)I arithmetic means in the cohort were 0.79 and 0.26 Gy, respectively. The dose estimates are for \(^{131}\)I, which typically accounts for more than 90% of the total thyroid dose (Stezhko et al. 2004). We did not take into account the remaining portions of thyroid dose from external exposure and from internal exposure to cesium and other isotopes of iodine.

Statistical analysis. To estimate odds ratios (ORs) and compute the corresponding 95% confidence intervals (CIs), we conducted

Figure 1. Study flow diagram.
The analysis cohort was 49% female. At the time of the accident, the mean ± SD age of cohort members was 8 ± 4.7 years, with a mean age at examination (1998–2000) of 21.6 ± 4.9 years. The mean (median) 131I thyroid dose was 0.79 (0.26) Gy.

Background prevalence of hypothyroidism. Table 1 summarizes selected associations for background prevalence of hypothyroidism. The prevalence of hypothyroidism was somewhat lower in females than males (p = 0.07). Residents of Kyiv and Chernihiv oblasts had 20% lower risk compared with residents of Zhytomyr Oblast (p = 0.02). We found no difference in prevalence between rural and urban residents (p = 0.48, not shown). Current smokers had lower risk of hypothyroidism prevalence compared with nonsmokers (p < 0.001). Individuals who reported intake of multivitamins had lower risk of hypothyroidism than did those who did not (p = 0.04). Presence of any thyroid disease in at least one relative somewhat increased risk of hypothyroidism (p = 0.12). Individuals examined in 1998 or 2000 had lower risk of hypothyroidism than those examined in 1999 (p < 0.001). There was a suggestion that risk of hypothyroidism was lower among individuals examined in spring or summer compared with those examined in the winter (p = 0.08). Individuals with ATPO > 60 U/mL had almost twice the risk of hypothyroidism compared with those with ATPO ≤ 60 U/mL (p = 0.001). We found no evidence that the risk of hypothyroidism varied with iodine intake, using several indicators: levels of urinary iodine (p = 0.89), presence of...
diffuse goiter ($p = 0.56$; data not shown), or large thyroid volume (≥ 15 mL) at ultrasound ($p = 0.20$; data not shown).

Table 2 shows associations for background prevalence of hypothyroidism with age at examination, by sex. Although the risk of hypothyroidism decreased with age for both sexes, the decrease was more pronounced and gradual in males than in females ($p < 0.001$).

Radiation effects. Table 3 shows adjusted thyroid dose category-specific ORs for hypothyroidism. We chose these categories to assure reasonably even proportional increment in 131I dose. The ORs increased with dose over the entire range ($p = 0.004$). Based on the simple linear EOR model, we found a highly significant dose–response ($p = 0.003$) with an estimated EOR/Gy of 0.10 (95% CI, 0.03–0.21). Figure 2 presents the category-specific ORs and fitted linear dose response. We found little evidence of nonlinearity in the dose response when we compared the linear fit with a linear-quadratic model ($p = 0.89$) or a linear-exponential model ($p = 0.87$). The linear dose–response trend was significant at doses < 5 Gy, with an estimated EOR/Gy of 0.16 (95% CI, 0.02 to 0.34), and there were positive, although not significant, linear trends at dose ranges < 3 Gy and < 2 Gy with estimated EOR/Gy of 0.13 (95% CI, −0.04 to 0.36) and 0.15 (95% CI, −0.07 to 0.45), respectively.

If we defined subclinical hypothyroidism as TSH > 3.0 mIU/L, the magnitude of the dose response was similar, with an estimated EOR/Gy of 0.08 (95% CI, 0.03 to 0.15) over the entire dose range. Similarly, when we repeated the dose–response analyses including individuals with a history of thyroid disease or intake of thyroid hormones before the first screening, the EOR/Gy was 0.09 (95% CI, 0.03 to 0.17).

Table 4 summarizes variation in the dose–response slope according to selected characteristics. EOR per gray did not vary significantly by sex ($p = 0.36$), age at exposure ($p = 0.56$), current smoking status ($p = 0.46$), family history of thyroid disease ($p = 0.79$; data not shown), oblast of residency ($p = 0.16$; data not shown), year of examination ($p = 0.83$; data not shown), or levels of urinary iodine ($p = 0.92$). We observed highly significant variation of the dose–response according to ATPO levels ($p < 0.001$). Individuals with ATPO ≤ 60 U/mL had a higher EOR per gray compared with individuals with ATPO > 60 U/mL, for whom the EOR per gray did not significantly differ from zero, as evidenced by CIs.

Discussion

We found a significant linear dose–response relationship between low to moderate 131I doses to the thyroid and prevalence of subclinical hypothyroidism among individuals who were children or adolescents at the time of the Chernobyl accident and underwent an in-depth thyroid examination 12–14 years later. After controlling for a variety of potential confounders, the overall estimated EOR per gray was 0.10 (95% CI, 0.03 to 0.21). EOR per gray was higher in individuals with ATPO levels ≤ 60 U/mL compared with those with ATPO > 60 U/mL.

We do not believe that the results of our study could be attributed to selection bias, even though we screened 40.9% of those selected from the file of thyroid activity measurements, representing 67.5% of those invited to participate, because distribution of measured thyroid radioactivity was similar among participants ($n = 13,243$) and nonparticipants ($n = 19,142$) (Shestko et al. 2004). Further, we adjusted our analyses for a variety of possible confounders and effect modifiers to avoid any potential effects of differential distribution of such variables among participants and nonparticipants. Additional exclusion of individuals with self-reported history of thyroid disease or intake of thyroid hormones before the first screening is unlikely to have introduced bias because the results of analyses including and excluding these individuals were similar.

We did not take into account the impact of uncertainties in dose estimates in our analysis aimed at providing initial evidence on the relationship between prevalent hypothyroidism and environmental 131I exposure. We previously reported that uncertainties in dose based on linear EOR model. The ORs increased with dose over the entire range ($p = 0.89$) or a linear-exponential model ($p = 0.87$). The linear dose–response trend was significant at doses < 5 Gy, with an estimated EOR/Gy of 0.16 (95% CI, 0.02 to 0.34), and there were positive, although not significant, linear trends at dose ranges < 3 Gy and < 2 Gy with estimated EOR/Gy of 0.13 (95% CI, −0.04 to 0.36) and 0.15 (95% CI, −0.07 to 0.45), respectively. If we defined subclinical hypothyroidism as TSH > 3.0 mIU/L, the magnitude of the dose response was similar, with an estimated EOR/Gy of 0.08 (95% CI, 0.03 to 0.15) over the entire dose range. Similarly, when we repeated the dose–response analyses including individuals with a history of thyroid disease or intake of thyroid hormones before the first screening, the EOR/Gy was 0.09 (95% CI, 0.03 to 0.17).

Table 4 summarizes variation in the dose–response slope according to selected characteristics. EOR per gray did not vary significantly by sex ($p = 0.36$), age at exposure ($p = 0.56$), current smoking status ($p = 0.46$), family history of thyroid disease ($p = 0.79$; data not shown), oblast of residency ($p = 0.16$; data not shown), year of examination ($p = 0.83$; data not shown), or levels of urinary iodine ($p = 0.92$). We observed highly significant variation of the dose–response according to ATPO levels ($p < 0.001$). Individuals with ATPO ≤ 60 U/mL had a higher EOR per gray compared with individuals with ATPO > 60 U/mL, for whom the EOR per gray did not significantly differ from zero, as evidenced by CIs.

Table 2. Sex- and age-specific ORs and 95% CIs for background prevalence of hypothyroidism (TSH > 4 mIU/L) among individuals exposed to 131I from the Chernobyl accident.

Age at examination (years)	Male	Female						
	Cases [n]	Noncases [n]	Rate per 1,000	OR (95% CI)*	Cases [n]	Noncases [n]	Rate per 1,000	OR (95% CI)*
12–14	59	566	94.40	1.0 (Referent)	54	567	86.96	1.0 (Referent)
15–19	143	1,623	90.97	0.83 (0.59–1.17)	106	1,639	60.74	0.80 (0.42–0.86)
20–24	83	1,802	44.03	0.46 (0.31–0.67)	95	1,662	54.07	0.53 (0.36–0.78)
25–32	78	1,732	43.09	0.43 (0.29–0.64)	101	1,543	61.43	0.59 (0.40–0.85)

*p-Value homogeneity < 0.001, df = 3

p-Value homogeneity	< 0.001, df = 3

*Analysis performed with adjustment for place of residency, current smoking status, vitamin consumption, family history of thyroid disease, year and season of examination, ATPO level, and 131I thyroid dose based on linear EOR model.
Hanford nuclear facility (Washington State, USA) found no association between hypothyroidism, based on various outcome definitions, and ^{131}I dose estimates [mean (median) thyroid dose, 0.20 (0.10) Gy] (Davis et al. 2004). Reevaluation of thyroid disease risk in relation to exposure from the Nevada nuclear test site suggested that risk ofAIT with hypothyroidism may increase with thyroid dose ($p = 0.18$), but this finding was based on only 35 cases (Lyon et al. 2006). The data from atomic bomb survivors exposed to external high-dose-rate gamma irradiation in a range from 0 to 4 Gy are also inconsistent (Imaizumi et al. 2006; Nagataki et al. 1994). Although in an earlier study a significant bell-shaped dose-response curve for antibody-positive hypothyroidism was reported (Nagataki et al. 1994), it was not confirmed in a later study (Imaizumi et al. 2006). Inconsistent findings in all these studies may reflect the unique circumstances of population exposure, including different types of radiation or mix of radionuclides, dose rates, age at exposure, or time since exposure, assuming that radiation risk for hypothyroidism varies by these factors.

Comparison of our study with others conducted in populations exposed to the Chornobyl fallout during childhood is generally difficult because previous research lacked individual dose estimates. In several studies conducted in Belarus and Ukraine, a significant upward shift in TSH levels and increased rates of juvenile hypothyroidism were reported in children living in radionuclide-contaminated areas compared with children from uncontaminated areas (Goldsmith et al. 1999; Quastel et al. 1997; Vykhovanets et al. 1997). The remaining ecologic studies were essentially negative (Kasatkina et al. 1997; Pacini et al. 1998; Saiko et al. 1997; Vermiglio et al. 1999).

The observed association between the prevalence of subclinical hypothyroidism and ^{131}I dose in our study, although highly significant ($p = 0.003$), is small, with an estimated 0.10 EOR/Gy. Nevertheless, this association appears to be robust and unlikely to be attributable to confounding because adjustment for a variety of important factors had no meaningful effect on the estimate. We found little evidence of a departure of the dose response from linearity based on several alternative models. When we excluded from the analysis individuals with doses ≥ 2 Gy, the EOR per gray, although not statistically significant, did not change materially (EOR/Gy = 0.15), supporting linearity of the dose response even at lower dose levels. If the true relationship between hypothyroidism prevalence and ^{131}I thyroid dose is close to what we observed, most previous studies would have had low statistical power to detect a relationship.

After controlling for the effect of ^{131}I, the relationships with other risk factors for hypothyroidism in our study were similar to those reported in nonirradiated populations: a doubling in risk with elevated ATPO levels (BJoro et al. 2000; Hollowell et al. 2002; Hoogendoorn et al. 2006; Knudsen et al. 1999; O’Leary et al. 2006; Pedersen et al. 2003; Vanderpump et al. 1995), somewhat increased risk with family history of thyroid disease (Surks et al. 2004), decreased risk with current smoking (Avold et al. 2007; Belin et al. 2004; Jorde and Sundsbjord 2006), decreased risk with intake of vitamins (Zimmermann et al. 2004), and variation in risk according to geographical area (Flynn et al. 2004) and season of blood draw (Andersen et al. 2003). The age-related decrease in risk of background prevalence of hypothyroidism for both sexes was also in agreement with the decline reported in other populations of comparable age (Marwaha et al. 2008; Zurakowski et al. 1999).

The relationship among serum ATPO, ^{131}I, and risk of hypothyroidism in our study was complex. When included in the same model simultaneously, the associations of risk with ^{131}I and ATPO were comparable with the respective associations when these factors were included individually. This observation does not support the idea that the radiation-related increase in prevalence of subclinical hypothyroidism could be attributed to the radiation-related increase in prevalence of ATPO that we reported previously (Tronko et al. 2006a). In fact, we found a significant interaction between ^{131}I and ATPO level in the prevalence of subclinical hypothyroidism, suggesting that the effects of ^{131}I and ATPO were not statistically independent.

Specifically, individuals with ATPO ≤ 60 U/mL had a stronger dose–response relationship than did individuals with ATPO > 60 U/mL. Today, little is known about biological and clinical consequences of low doses of ^{131}I on the thyroid gland and whether they cause sufficient direct or indirect thyroid damage that could result in subclinical hypothyroidism. It has been hypothesized that the ^{131}I-related increase, at least for ATPO antibodies, may be dose–response, because of the potential for increased cell turnover in the thyroid gland and whether they cause sufficient direct or indirect thyroid damage that could result in subclinical hypothyroidism.

Figure 2. Association between prevalence of subclinical hypothyroidism and ^{131}I thyroid dose estimates: Ukrainian–American cohort study of thyroid cancer and other thyroid diseases after the Chornobyl accident, 1998–2000. Dose–response line was adjusted to pass through the lowest ^{131}I dose category. Data points are ^{131}I dose–category-specific ORs with 95% CIs. Line represents fitted ORs based on linear EOR model.

Table 4. EORs/Gy and 95% CIs for prevalence of hypothyroidism (TSH > 4 mIU/L) according to selected characteristics among individuals exposed to ^{131}I because of the Chornobyl accident.

Characteristic	EOR/Gy (95% CI)*	p-Value homogeneity^b	Age at exposure, years	p-Value homogeneity^b	Current smoking status	p-Value homogeneity^b	Urinary iodine (µg/L)	p-Value homogeneity^b	
Sex					No				
Male	0.14 (0.03 to 0.33)	0.36, df = 1	< 1	0.11 (0.01 to 0.32)	No	0.08 (0.01 to 0.20)		0.46, df = 1	
Female	0.07 (0.01 to 0.19)		1–4	0.06 (0.02 to 0.19)	Yes	0.17 (0.032 to 0.47)		0.12, df = 1	
p-Value homogeneity			5–9	0.12 (0.02 to 0.36)	p-Value homogeneity	0.56, df = 4		p-Value homogeneity	0.46, df = 1
			10–14	0.11 (0.06 to 0.41)					
			15–18	0.51 (0.01 to 1.42)					

*After adjustment for effects of sex, age at examination by sex, obstet of residency, current smoking status, vitamin consumption, history of thyroid disease in relatives, year and season of examination, and ATPO level.

^bAdjusted for effects of sex, age at examination by sex, obstet of residency, current smoking status, vitamin consumption, history of thyroid disease in relatives, year and season of examination, and ATPO level. p-Value based on maximum likelihood ratio test.

Table 3. ORs and 95% CIs with thyroid dose for prevalence of hypothyroidism (TSH > 4 mIU/L) among individuals exposed to ^{131}I from the Chornobyl accident.

Thyroid dose range (Gy)	Mean dose (Gy)	Cases (n = 719)	Noncases (n = 11,134)	Rate per 1,000	OR^a (95% CI)
0.00–0.099	0.05	182	3,571	48.49	1.00 (Referent)
0.10–0.249	0.16	167	2,620	59.92	1.11 (0.89–1.39)
0.25–0.49	0.35	121	1,878	60.53	1.08 (0.83–1.39)
0.50–0.99	0.71	105	1,349	72.21	1.31 (1.00–1.72)
1.00–2.49	1.54	86	1,153	69.41	1.27 (0.94–1.71)
2.50–4.99	2.49	36	370	88.67	1.67 (1.08–2.60)
≥ 5.00	5.63	22	193	102.32	1.83 (1.07–3.00)

p-Value for trend = 0.004, df = 1

Subclinical hypothyroidism after environmental radioiodine exposure
transitory (Agate et al. 2008). Given the fact that our analysis is cross-sectional in nature and that findings from clinical studies concerning the role of antibodies in the development of hypothyroidism after 131I therapy are conflicting (Cecarelli et al. 2005; Chiocca et al. 1998; Mariotti et al. 1986), prospective data are needed to characterize the dynamic of radiation-related risk of hypothyroidism and to confirm its relation with ATPO.

In summary, this is the first study to find a significant relationship between prevalence of hypothyroidism and individual 131I thyroid doses due to environmental exposure. The radiation effect was small, a 10% increase per gray, and was largely limited to subclinical hypothyroidism. Additional data from prospective studies is required to understand the extent of the long-term consequences of 131I exposure on thyroid function and to clarify what role antithyroid antibodies have in this process.

References

Agate L, Mariotti S, Elisei R, Mossa P, Pacini F, Molinaro E, et al. 2008. Thyroid autoantibodies and thyroid function in subjects exposed to Chernobyl fallout during childhood: evidence for a transient radiation-induced elevation of serum thyroid antibodies without an increase in thyroid autoimmune disease. J Clin Endocrinol Metab 93:2729–2736.

Andersen S, Bruun NH, Pedersen KM, Lauberg P. 2003. Biologic variation indices for interpretation of thyroid function tests. Thyroid 13:1098–1107.

Åsvoid BO, Bjøro T, Nilsen TI, Vatten LJ. 2007. Tobacco smoking and thyroid function: a population-based study. Arch Intern Med 167:1428–1432.

Belin RM, Astor BC, Powe NR, Ladenson PW. 2004. Smoke cessation related to thyroid autoantibodies in a population with borderline sufficient iodine intake: influences of age and sex. Clin Chem 50:119–121.

Imaizumi M, Usa T, Tomura Y, Niireishi K, Akahoshi M, Nakashima E, et al. 2006. Radiation dose–response relationships for thyroid nodules and autoimmune thyroid diseases in Hiroshima and Nagasaki atomic bomb survivors 55–58 years after radiation exposure. JAMA 295:1012–1022.

Ivanov VK, Gorski MA, Tsunoda T, Gavrilov NA, Vlasov OK. 2006. Radiation–epidemiological studies of thyroid cancer incidence among children and adolescents in the Byansk oblast of Russia after the Chernobyl accident (1986–2001 follow-up period). Radiat Environ Biophys 45:9–16.

Jacob P, Kenisberg Y, Zvonova I, Gouili K, Bugllova E, Heidreich WF, et al. 1999. Childhood exposure due to the Chernobyl accident and thyroid cancer risk in contaminated areas of Belarus and Russia. Br J Cancer 80:1461–1469.

Jereczek-Fossa BA, Alterio D, Jassem J, Bigioli T, Badia N, D’Orecchia R, et al. 2008. Inflammatory thyroid disease. Cancer Treat Rev 34:369–394.

Rorde J, Sundsfjord J. 2008. Serum TSH levels in smokers and non-smokers. The Tromsø Study. Exp Clin Endocrinol Diabetes 116:343–347.

Kasatkina EP, Shilin DE, Rosenblom AI, Pykov MS, Ibragimova GV, Sokolovskaya VN, et al. 1997. Effect of low level radiation from the Chernobyl accident on thyroid function with iodine deficiency. Eur J Pediatr 156:916–920.

Knudsen N, Jørgensen T, Rasmussen S, Christiansen E, Perrild H. 1999. The prevalence of thyroid dysfunction in a population with borderline iodine deficiency. Clin Endocrinol (Oxf) 51:361–367.

Larsen PR, Conard RA, Knudsen KD, Robbins J, Wolf J, Rall JE, et al. 1982. Thyroid hypofunction after exposure to a hydrogen bomb explosion. JAMA 247:1571–1579.

Lityk RV, Dzudzarova K, Kovgan L, Luckyanov N, Vaqueiro P, Chernyshov VP, et al. 2006. Questionnaire–measurement–based individual thyroid doses in Ukraine resulting from the Chernobyl nuclear reactor accident. Radiat Res 166:271–286.

Likhovtsev I, Minenko V, Khrouch V, Bobrove A. 2003. Uncertainties in thyroid dose reconstruction after Chernobyl. Radiat Prot Dosimetry 105:601–608.

Likhovtsev I, Kogvan L, Lavshiv V, Chepurny M, Bobrove A, Luckyanov N, et al. 2005. Post-Chernobyl thyroid cancers in Ukraine. Report 1: estimation of thyroid cancer risk from exposure to iodine 131 in the Ukrainian cohort study of thyroid cancer and other thyroid diseases after the Chernobyl accident: results from the first screening cycle 1999–2000. J Clin Endocrinol Metab 91:4344–4351.

Tronko MD, Howe GR, Bogdanova TI, Bouvée AC, Epstein OV, Brill AB, et al. 2006b. A cohort study of thyroid cancer and other thyroid diseases after the Chernobyl accident: thyroid cancer in Ukraine detected during first screening. I J Natl Cancer Inst 98:897–903.

Tronko M, Kravchenko V, Fink D, Hatch M, Turkchin V, Wellard R, et al. 2005. Iodine excess in regions of Ukraine affected by the Chernobyl accident: the Ukrainian-American cohort study of thyroid cancer and other thyroid diseases. Thyroid 15:1291–1297.

United Nations Scientific Committee on the Effects of Atomic Radiation. 2000. Sources and Effects of Ionizing Radiation. New York:United Nations.

Vanderpump MP, Tunbridge WM, French JM, Appleton D, Bates D, Clark F, et al. 1995. The incidence of thyroid disorders in the community: a twenty-year follow-up of the Whickham Survey. Clin Endocrinol (Oxf) 43:55–68.

Vermiglio F, Castagna MG, Verità P, Moleti M, Mialaias V, et al. 1999. Post-Chernobyl increased prevalence of humoral thyroid autoimmune in children and adolescents from a moderately iodine-deficient area in Russia. Thyroid 9:701–788.

Vykhoverkas EV, Chernyshev PV, Slukvin II, Antipkin YG, Yurasov KN, Klimenko HF, et al. 1997. 131I dosimetric-dependent thyroid autoimmune disorders in children living around Chernobyl. Clin Immunol Immunopathol 84:251–259.

Zimmermann MB, Wegmüller R, Zeder C, Chaouki N, Torresani T. 2006. The effects of vitamin A deficiency and vitamin A supplementation on thyroid function in goitrous children. J Clin Endocrinol Metab 91:5441–5447.

Zurawikowski D, Di Canzio J, Maziauz MA. 1999. Pediatric reference intervals for serum thyrotropin, thyroid-stimulating hormone, thyrotropin and free thyroxine. Clin Chem 45:1087–1091.