How the Aggregates Determine Bound Rubber Models in Silicone Rubber? A Contrast Matching Neutron Scattering Study

Li-Zhao Huang,a,b Yue Shui,b Wei Chen,b Zhong-Ming Li,c Hong-Tao Song,a Guang-Ai Sun,b,c Jia-Zhuang Xu,c Gan-Ji Zhong,c and Dong Liu*a

a Key Laboratory of Neutron Physics and Institute of Nuclear Physics and Chemistry (INPC), China Academy of Engineering Physics (CAEP), Mianyang 621999, China
b National Synchrotron Radiation Lab, CAS Key Laboratory of Soft Matter Chemistry, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, University of Science and Technology of China, Hefei 230026, China
c College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China

Abstract The correlation between aggregates and bound rubber structures in silicone rubbers (S(phr)) with various silica fractions (ΦSi) has been investigated by contrast matching small-angle neutron scattering (SANS), swelling kinetics, and low-field nuclear magnetic resonance (NMR). Mixed solvents with deuterated cyclohexane fractions of 4.9% and 53.7% were chosen to match the scattering length densities of the matrix (SM(pHr)) and the filler (SF(pHr)), respectively. All the data consistently suggest that: (i) There is a critical threshold Φc below 10 and 30 phr; below Φc, the isolated aggregates are dominant, while beyond Φc, some rubber fraction is trapped among the agglomerate; (ii) Φc, independent thicknesses around 7.5 nm (NMR) and 8.6 nm (SANS) suggest that the bound rubber formation is determined by inherent properties of the components, and the power-law around 4.2 suggests an exponential changed gradient density of the bound rubber; (iii) Φc presents a bicontinuous bound rubber with three characteristic lengths of 41, 100, and 234 nm. The expanded correlation length, a 20 nm smaller aggregate sizes suggest that such existent bicontinuous network in dry samples with less Φc is kind of impacted by swelling. With the obtained bound rubber models, the reinforcing mechanism of filled silicone rubber is elucidated.

Keywords Silicone rubber; Bound rubber structures; Small-angle neutron scattering (SANS); Nuclear magnetic resonance (NMR)

INTRODUCTION

Over the past several decades, silica-filled silicone rubber, as one of the widely used polymer nanocomposites, has drawn extensive interests due to its outstanding characters, such as excellent mechanical properties, thermal stability, oxidation resistance, radiation resistance, weather resistance.[11−13] Silica is highly polar and extensively used as filler for reinforcing polysiloxanes, since the mechanical properties of the neat polar elastomers are extremely poor.[8] Due to the strong filler-rubber interaction, the filler will adsorb the polymer chain to form an interface layer called bound rubber, in which the mobility of chain segments is reduced, and the glass transition temperature (Tg) is increased.[9] Bound rubber, also defined as the residual gel after a prolonged extraction,[8] is the transition phase as a dispersed soft shell to bridge the hard filler aggregates and the even softer polymer matrix. Essentially, it is the filler induced slowed-down of the polymer chains dynamics in the vicinity of the solid particles.[9,10]

In order to investigate the reinforcing mechanisms of silicone rubber, especially the effect of bound rubber layer, researchers have made great efforts via different methods.[11−13] Typically, structure parameters such as the size, shape, dispersions of fillers, and modification of fillers can be easily conceived to design various products.[14] On the other hand, processing parameters such as temperature, strain and strain rate during the mixing processes, storage time, etc. also attract reasonable attention to tune the properties of the materials. Researchers have made extensive endeavors to establish the correlation between the hierarchical structures and the macrosopic properties of the composites.[15−17] To date, descriptions of the filler structures and their aggregates are relatively well-developed. However, structures and mechanisms of the bound rubber are relatively lacking. For designing high-performance silicone rubbers with desired properties, a clear understanding of the bound rubber is the cornerstone to unveil the inherent mechanism of reinforcement. Nuclear magnetic
resonance (NMR) is extensively used to give access to the amount of immobilized polymer and discern chain dynamics difference to acquire network distribution under various conditions by residual dipole coupling of polymer chain.[18–23] By using 1H double-quantum (DQ) NMR, Sawvel et al. presented a significant and quantifiable non-ideal silicone network topology.[24] Papon et al. proposed that there exists a gradient of T_g in the vicinity of the solid particles with the intermediate and elastomer components by NMR investigations.[25] For the community of small-angle scattering (SAS), different incident beams (X-ray or neutron) or the combination have been utilized to gain deep insight into the hierarchical structures of polymeric materials and nanocomposites.[26–27] Moreover, benefiting from the enormously different neutron scattering length density (SLD) of hydrogen (H) and deuterium (D), the contrast among components in the composites can be tuned, and the small-angle neutron scattering (SANS) is a powerful tool to distinguish such variation of contrast.[28–30] Specifically, the contrast matching SANS (CM-SANS) method allows people to directly mask unwanted structural information or simplify complex multi-domain soft-matters via H/D exchange.[31] Recently, we conducted a contrast variation SANS (CV-SANS) method to analyze the microstructures of silicone rubber, and the existence of a ca. 8.5 nm thickness bound rubber layer was presented.[32] Most recently, a series of silicone rubbers were prepared with various filler fraction (Φ_si) and investigated, different reinforcement effects and filler morphology were found for the high and low Φ_si, respectively.[33]

In current work, special attention was paid to describing different microstructures of bound rubber models in the silica-filled silicone rubbers with various Φ_si. CM-SANS measurements were conducted with the swelling techniques. The contrast matching points were fulfilled by mixing the hydrogenated and deuterated solvent with specific ratios. In this way, the microstructures of bound rubber with various Φ_si were extracted. Moreover, the content of bound rubber and matrix network distribution of the composite were estimated with NMR measurements for both dry and swollen samples. Furthermore, the swelling is treated as a scenario to mimic the mechanical deformation on the samples. Accordingly, combined with mechanical measurement of previous work,[33] the effects of filler fraction on the diversity of bound rubber structures, as well as on the difference of inherent mechanism of reinforcement are discussed.

EXPERIMENTAL

Samples

Silica-filled silicone rubbers used in the current work has been described previously.[33] The rubber matrix is polyvinylsiloxane (PMVS, type: 110-2), with a number-average molecular weight and a polydispersity of about 6.0x105 g/mol and 2.6, respectively. The vinyl content is 0.16 mol%. Precipitated silica (type: 36-5) with an average primary particle size of about 25 nm was used as the filler, the specific area is in the range of 170–210 m2/g. High molecular weight hydroxyl silicone oil (HMWHSO, 3 phr (parts per hundred rubber)) was added to improve the compatibility between filler and polymer. The M_w is around 5x104–2x105 g/mol, the hydroxyl content is about 13%–15%. Triallyl isocyanurate (TAIC, 4 phr) as the radiosensitization agent was added to accelerate the irradiation crosslinking. Composites with various filler fractions (Φ_si) from 5 phr to 80 phr were mixed for 10 min under room temperature and screw speed of 600–800 r/min. The mixtures were kept under quiescent condition for 36 h. After remixed, the composites were molded to plates under pressure of 10–15 MPa. Then the molded plates were irradiated with γ-ray from a 60Co source. The total dose and dose rate were 50 kGy and 100 Gy/min, respectively.

Swelling Experiment

Swelling kinetics of silicone rubbers in hydrogenated cyclohexane (C_6H_{12}) were obtained with gravimetric measurement. The C_6H_{12} (analytical reagent) was purchased from Chengdu Kelong Chemical Reagent Industry, China. The ambient temperature was set to be 25 °C. Weight of dry samples (W_0), during the swelling (W) at suitable intervals and under equilibrium (W_e) were recorded.

Small-angle Neutron Scattering (SANS)

The specimens were swollen by a mixture of C_6H_{12} and deuterated cyclohexane (C_6D_{12}) at 25 °C in the quartz cell. The C_6D_{12} (D: 99.5%) was purchased from Cambridge Isotope Laboratories, Inc. Table 1 depicts the scattering length density (SLD) for each component. Three different C_6D_{12} fractions of 4.9%, 53.7%, and 100% were chosen to tune the SLD of solvent matrix. 4.9% and 53.7% are the matching point of PMVS and filler silica. For the sake of briefness, the dry sample set and the three sample sets are hereafter referred to as series S(phr), S_{MP}(phr), S_{MS}(phr), and S_{D} (phr), respectively. After the specimens reaching their equilibrium state, SANS measurements were conducted at the China Mianyang Research Reactor (CMRR), on the SANS-Suanni spectrometer.[34–38] Four different setups with sample-to-detector distance SDD=1.1 m, 4.3 m, and 10.3 m for wavelength λ=0.53 nm, and SDD=10.3 m for λ=1.3 nm were used, resulting in a q range of 0.02 nm$^{-1}$ to 3.0 nm$^{-1}$, q is the magnitude of the scattering vector defined by $q = (4\pi/\lambda) \sin(\theta/2)$, where θ is the scattering angle. The current wavelength spread (Δ/λ) is ~18%.

Sample	Density (g/cm3)	SLD (cm$^{-2}$)
Silica	2.2	3.47x10$^{-10}$
Silicone rubber (100% 2Me)	0.99	6.51x10$^{-10}$
H-cyclohexane (C_6H_{12})	0.779	-2.78x10$^{-6}$
D-cyclohexane (C_6D_{12})	0.893	6.70x10$^{-10}$
S_{MP}(phr) (53.7 vol% C_6D_{12})	0.840	3.47x10$^{-10}$
S_{MS}(phr) (4.9 vol% C_6D_{12})	0.785	6.51x10$^{-8}$

Low Field 1H-NMR

Two different pulse sequences were employed to obtain magic-sandwich echo-free induction decay (MSE-FID) and double quantum (DQ) curve on the benchtop Bruker Minispec mq 20 with 1H-Larmor frequency of 19.95 MHz. The (m)/2 and (m) pulses were 2.60 and 5.20 μs, respectively. The pulse length (T_{ν}) was set to be 2.6 μs with a recycle delay of 5 s. In current work, 40 time points (t_{DQ}) were used to measure the DQ build up curve with more time points chosen at earlier t_{DQ} time to increase the reliability of the fitting procedures. And the free induction decay (FID) with magic-sandwich echo (MSE) (to avoid "dead-

https://doi.org/10.1007/s10118-020-2485-8
Swelling with Fully Deuterated Solvent ($S_{D2}(\text{phr})$)

First, SANS profiles of series silicone rubber are measured in swollen state in 100% C_8D_{12}. Fig. 2 shows that the q dependence, the slopes, and the breaks in slope of each curve for series $S_{D2}(\text{phr})$ are distinctly different from each other. Interestingly, there is a cross-point around 0.2 nm$^{-1}$. In the high-q region, the intensity decreases with increasing Φ_{Si}, which suggests that intensity from the polymer network swollen in the C_8D_{12} solvent is dominant. While in the medium-q region, the intensity upturns and increases with increasing the Φ_{Si}, which suggests that the filler aggregates and the bound rubber might contribute more to the intensity. $S_{D2}(60)$ and $S_{D2}(80)$ show the intensity decreasing behavior in the low-q region, which might be caused by the repulsive interaction between aggregates and the likely decreasing in aggregates mass. In a word, it seems that the multi-component systems $S_{D2}(\text{phr})$ contribute to complicated q-dependences, suggesting the necessity for distinguishing each component of the composites.

Matching the Polymer Matrix ($S_{MP}(\text{phr})$)

In order to decompose the hierarchical structures of the sample systems and gain more insight into the materials, especially the bound rubber region, the CM-SANS technique is utilized. First, the mixed solvent with C_8D_{12} fraction of 4.9% (series $S_{MP}(\text{phr})$) is used to tune the SLD exactly the same as that of the polymer matrix (Table 1). In this way, the information of bound rubber can be masked. Clean morphology of filler network under swollen state can be exclusively highlighted. Comparing the SANS profiles of series $S_{MP}(\text{phr})$ in Fig. 3(a) with the previous SANS data of dry samples (S(phr)), there are some discrepancies of the q-dependence, the absolute intensity and the q positions of breaks in slope, which might be caused by some form factor and structure factor changes induced by swelling. The $q^2I(q)$-q curves of $S_{MP}(\text{phr})$ are presented in Fig. 3(b). Utilizing the decomposition procedure as previously depicted, three overlapping maxima of each curve in Fig. 3(b) have been fitted using sum of three functions M_i, M_{agg}, and M_{CL}:

\begin{equation}
M_i(q) = \frac{A_i}{\sqrt{2\pi}\sigma_i q} \exp\left(-\frac{\ln^2 \left(\frac{q}{\langle q\rangle_i}\right)}{2\sigma_i^2}\right) \quad (1)
\end{equation}

\begin{equation}
M(q) = M_{S_i}(q) + M_{agg}(q) + M_{CL}(q) \quad (2)
\end{equation}

RESULTS

Swelling Kinetics

The swelling behaviors of silicone rubbers were evaluated via the gravimetric measurement. Fig. 1(a) depicts the swelling ratio $Q = V_s/V_0$ of samples in cyclohexane as a function of time, where V_s and V_0 are the volumes of dry and swollen samples under equilibrium, respectively. The swelling ratio rises sharply in the initial stage. Fig. 1(b) depicts that the swelling ratio decreases monotonically from 6.6 to 2.9 with increasing the Φ_{Si} from 5 phr to 80 phr. With further increasing the Φ_{Si} to 80 phr, the $t_{1/2}$ decreases sharply again.

Fig. 1 (a) Swelling kinetics of the silicone rubber in cyclohexane, monitored by gravimetric measurement. (b) Final swelling ratio and half time of the swelling processes versus filler fraction (Φ_{Si}).

Fig. 2 SANS profiles of silicone rubber swollen by 100% C_8D_{12}.
Each function describes a log-normal function of position q, amplitude A, and width q_0. (The subscript l = Si, agg, and CL represent silica, aggregate, and correlation length, respectively). Figs. 3(c) and 3(d) summarize the aggregate sizes ($<2R_{agg}$) and correlation length (L_c), respectively, determined from the peaks of Kratky-plot, with the expressions of $q_{LL} = 2\pi/L_c$ and $q_{agg} = 2\pi/<2R_{agg}>$. Similar behavior related to the Φ_{Si} shows that with increasing the Φ_{Si}, both $<2R_{agg}>$ and L_c decrease monotonically. However, as depicted in Figs. 3(c) and 3(d), compared with the dry samples, the swollen samples have relatively small $<2R_{agg}>$ and large L_c. All the $<2R_{agg}>$ in swollen state are about 20 nm smaller than the corresponding dry samples. However, L_c expands within a range from 20 nm to 30 nm. Series S_{MP}(phr) help us to get the information of the filler structure under swollen state exclusively, and as an instruction for further investigation of the bound rubber formation via series S_{MS}(phr).

Matching the Filler Silica (S_{MS}(phr))

Further, aiming to investigate the bound rubber models with various Φ_{Si}, the mixed solvent with a $C_{6}D_{12}$ fraction of 63.7% was used to match the filler silica. Fig. 4(a) presents SANS profiles of series S_{MS}(phr), whose q-dependence is entirely different comparing with that of series S_{SP}(phr) and S_{D}(phr). First, the absolute intensity decreases obviously. Second, the intensity in the medium-q region declines distinctly, which might be caused by the matching of the main scatterers silica. Guinier-Porod model is employed to acquire the radius of gyration (R_g) and Power law by:

$$I(q) = \frac{G}{q^4} \exp \left(-\frac{q^2 R_g^2}{3} \right)$$ \hspace{1cm} (3)

$$I(q) = \frac{D}{q^2}$$ \hspace{1cm} (4)

where q is the scattering variable, d the Porod exponent, s the dimension variable, G the Guinier scale factor, and D the Porod scale factors. q_1 can be calculated by:

$$q_1 = \left(\frac{3d}{2s} \right)^{1/2}$$ \hspace{1cm} (5)

Two Guinier-Porod model was employed to obtain the R_g and d of bound rubber for series S_{MS}(phr). All the experimental data are well fitted with two Guinier-Porod model. S_{MS}(40) in Fig. 4(b) is presented as an example. The Porod exponent and the R_g are the main parameters yielded in region I and region II, respectively. For S_{MS}(10) to S_{MS}(60), s in region II is constant as 2.0, which suggests a lamellar structure. R_g is in the range of 2.3 nm to 2.6 nm. According to the relationship between R_g and a randomly oriented lamella of
The calculated thicknesses of bound rubber are given in Fig. 4(d), which is \(\Phi_{Si} \)-independent and around 8.0−9.0 nm. The Kratky representation of \(S_{MS}(phr) \) is given in Fig. S1 (in the electronic supplementary information, ESI). Interestingly, \(S_{MS}(80) \) curve is significantly different, as there are three peaks of \(S_{MS}(80) \) at 0.153, 0.0628, and 0.0268 nm\(^{-1} \) fitted by sum of log-normal functions, as indicated in Fig. 4(c), corresponding to three character lengths of 41, 100, and 234 nm, respectively.

The three dimensional (3D) structures can be investigated by using the fractal approach on SAS.\[9,40\] Note that for power-law dependence, \(q \) ranges should be carefully chosen to fall in the windows of \(2\pi/D < q < 2\pi/d \), where \(D \) is the upper limit for the mass fractal structure and \(d \) is the primary unit of the structure. The model-independent power-law equation of \(I = Aq^{-\alpha} + B \) is used to fit suitable fractions of the SANS curves. For series \(S_{MP}(phr) \), \(q \) ranges are chosen between the two breaks in slope which correspond to the size of primary particle and the aggregates (indicated in Fig. 3a). All the \(\alpha \) values of series \(S_{MP}(phr) \) are in the range of 2 to 3 as presented in Fig. 5, suggesting a mass fractal character of the aggregates, and the fractal dimension is independent of \(\Phi_{Si} \). The results are in accordance with the dry sample as previously discussed.\[35,41\] For series \(S_{MS}(phr) \), the aggregates are larger than 50 nm as provided by Fig. 3(c). In addition to the bound rubber thickness, the characteristic size is relatively large, and accordingly, the restriction of \(q >> 1/D \) is referred. Moreover, breaks in slope in relatively low-\(q \) region are avoided, as indic-
Estimation of Rigid Component and Bound Rubber by MSE-FID

The proton free induction decay (FID) curve is closely related to the chain mobility of rubber matrix. The constraint segmental motion within filler-rubber interface leads to the faster decay of FID, compared with that of near rubber matrix. However, suffering from the inevitable dead time, the signal of the interface might be largely lost, resulting in the underestimation of bound rubber fraction. The magic-sandwich echo (MSE) sequence is added before detection to recover the lost signal, which fully captures the FID signal of the whole sample.\(^\text{(16,44)}\)
The detail of MSE-FID pulse sequence is given in Fig. S2 (in ESI).

Fig. 7(a) presents MSE-FID curves of the dry series S(phr). The normalized curves show a clear tendency that increasing \(\Phi_v\) leads to faster decay of the intensity, which suggests the slowing down of chain mobility. As demonstrated with S(80) in Fig. 7(b), the experimental curves are fitted by two-component fitting:\(^\text{(18)}\)

\[
I_0 = I_{0m} e^{-t/\tau_{mobile}} + I_{0r} e^{-t/\tau_{rigid}}
\]

where \(I_0\) is an amplitude factor, \(I_{0m}\) and \(I_{0r}\) are the fraction of the mobile and rigid component, respectively. \(I_{0m} + I_{0r} = 1\) since the composites are treated as a two components system containing the mobile and rigid fractions. The fitting parameters with the fitting residual errors are summarized in Table 2. The results of S(5) and S(10) are absent since a two-component fitting is hard to convergence for the relatively low \(\Phi_v\). The \(A_r\) is regard as an estimated ratio of rigid component.\(^\text{(48)}\) \(A_r\) increases with increasing \(\Phi_v\) while \(\tau_{rigid}\) is constant. Interestingly, normalized with silica volume fraction/surface, \(A_r/\Phi_v\) gives a \(\Phi_v\)-independent constant value of all the dry samples. Moreover, Saalwächter et al.\(^\text{(45,46)}\) proposed a function to estimate bound rubber thickness by NMR, as:

\[
T = \frac{d}{2} \left(\frac{A_r}{\Phi_v^{S_{silica}}} + 1 \right)^{1/3} - 1
\]

where \(d\) is the silica diameter and \(\Phi_v^{S_{silica}}\) is the silica volume fraction. According to current NMR results, the thicknesses of S(phr) samples are constant around 7.5 nm, as also given in Table 2.

Rubber Matrix Indicated by \(^1\text{H} \text{DQ NMR}\)

The \(^1\text{H} \text{DQ NMR}\) for \(^1\text{H} \text{DQ NMR}\) pulse sequences, please see Fig. S3 in ESI) method allows the quantification of dipolar coupling interactions between neighboring protons on polymer chains. Due to topological constraints, homonuclear (\(^1\text{H}-\text{H}\)) dipolar was incomplete motional averaging, which is called dipolar coupling interactions. The dipolar coupling interactions that persist are termed as residual dipolar couplings. The

![Fig. 6](https://doi.org/10.1007/s10118-020-2485-8)
residual dipolar couplings is inversely proportional to M_c that indicates the molecular weight between two cross-linked points of silicone rubber chain.\(^{47}\) With appropriate distribution function (Gaussian or Gamma), the distribution of D_{res} can be obtained. D_{res} represents the structure of rubber matrix. Demonstrated with S(40) as the representative in Fig. 8(a), an original signal containing DQ signal I_{DQ} and a reference signal I_{ref} should translate into a build-up signal I_{DQ} through\(^{48}\)

$$I_{DQ} = f \times \exp \left(-2T_{DQ}/T_s \right)$$ \hspace{1cm} (11)

$$I_{MQ} = I_{ref} + I_{DQ} - I_{tail}$$ \hspace{1cm} (12)

$$I_{DQ} = I_{DQ}/I_{MQ}$$ \hspace{1cm} (13)

where T_s is the spin-spin relaxation time of the system, T_{DQ} the double quantum (DQ) excitation time, I_{tail} the signal of monomer or free chain. I_{MQ} is used to normalize the DQ-filtered intensity and remove the influence of relaxations. An assumption that the residual couplings of series S(phr) and S(40) obey the Gaussian and Gamma distribution, respectively, is employed to put into the “Abragam-like” function:\(^{49}\)

$$l_{DQ} = l_{DQ}/D_{res} = 0.5 \left(1 - \exp \left(-0.378D_{res}/T_{DQ} \right)^{1.5} \left(\cos \left[0.583D_{res}/T_{DQ} \right] \right) \right)$$ \hspace{1cm} (14)

Fig. 8(b) compares the DQ build-up curve of representative dry (S(40)) and swollen (S(40)Sic) samples. Intuitively, S(40) shows a clear maximum, while $S_{FD}(40)$ shows a monotonic increase of the DQ intensity to the plateau value of 0.5, indicating a more homogeneous structure of the dry sample. Considering the different matrix network homogeneities between the dry and the swollen samples, two different fitting functions are used to get access of the D_{res} distribution. For the dry samples, relatively symmetrical rubber chains in matrix obey the Gaussian distribution. However, the asymmetry of chains caused by swelling makes fitting with the Gaussian function no longer convergent. Thereby, the Gamma distribution is employed to fit the swollen samples.\(^{50}\) Fig. 8(c) presents the yielded residual dipole coupling $D_{res}/2\pi$ of the swollen (series $S_{FD}(phr)$) and dry (series S(phr)) samples as a function of Φ_{vSi}. There is a critical threshold (Φ_{vSi}) between 10 and 30 phr, and the significant difference appears with Φ_{vSi} lower than 10 phr and higher than 30 phr. Moreover, the $D_{res}/2\pi$ values in each Φ_{vSi} region are similar in series S(phr), as indicated by the red dash lines in Fig. 8(c). For series S(phr) samples with Φ_{vSi} below and above Φ_{vSi}, the $D_{res}/2\pi$ values are around 128 and 145 Hz, respectively. It suggests that the formation mechanisms of crosslinking density for the samples on the two sides of the critical threshold might be different. However, for series $S_{FD}(phr)$, the $D_{res}/2\pi$ increases from 277 Hz to 345 Hz with increasing the Φ_{vSi} from 30 phr to 80 phr. Interestingly, the $D_{res}/2\pi$ of $S_{FD}(80)$ is significantly higher than that of other $S_{FD}(phr)$ samples. The $D_{res}/2\pi$ values of series $S_{FD}(phr)$ are constantly higher than that of series S(phr). Moreover, the distinct gap of $D_{res}/2\pi$ between two sides of Φ_{vSi} in series S(phr) is declined in series S(40). It should be noted that the residual dipole coupling includes the chemical crosslink and physical entanglements. Thus, σ/D_{res} is frequently utilized to represent the inhomogeneity of crosslinked network matrix, where σ is the standard deviation of Gaussian distribution.\(^{47}\) Fig. 8(d) shows that after surpassing Φ_{vSi}, σ/D_{res} of series S(phr) increases monotonically from 0.25 to 0.45 with increasing the Φ_{vSi} from 30 phr to 80 phr. For more intuitively describing the dipolar coupling distribution, a series of Gaussian distribution of $S_{FD}(phr)$ and $S_{FD}(0)$ are graphically depicted in Fig. 8(e). The width of the measured dipolar coupling distribution curves broadens with increasing Φ_{vSi} suggesting that the asymmetry of polymer network is increased. In order to compare the Gaussian distribution of series $S_{FD}(phr)$ and Gamma distribution of series

\[\text{Table 2 Fitting parameters of MSE-FID.}^a\]

Sample	ϕ_{vSi} (phr)	ϕ_{vSi} (%)	A_{σ} (%)	A_{σ}/I_{MQ}	l_{rigid} (ms)	l_{mobile} (ms)	l_{rigid} (ms)	\bar{I} (nm)
S(30)	30	11.9	97.978(56)	2.1902(22)	0.00184	3.723795(5)	0.090512(56)	7.62
S(40)	40	15.3	97.226(23)	2.7803(28)	0.00181	3.52437(6)	0.091353(49)	7.52
S(50)	50	18.4	96.946(28)	3.3132(23)	0.00188	3.52386(6)	0.092567(62)	7.45
S(60)	60	21.3	96.256(17)	3.7660(19)	0.00176	3.04678(5)	0.094024(45)	7.31
S(80)	80	26.3	95.309(23)	4.6972(21)	0.00177	2.36139(23)	0.098323(35)	7.33

aThe fitting residual error of the parameters A_{σ}, A_{σ}/I_{MQ}, l_{rigid}, and l_{mobile} are provided. $A_{\sigma} + A_{\sigma}/I_{MQ} = 1$ is restricted during the fitting procedures.

Fig. 7 (a) The MSE-FID curve of each sample, and (b) the representative MSE-FID fitting with S(80) as an example.

https://doi.org/10.1007/s10118-020-2485-8
S(phr), normalized D_{res} distribution curves with respect to their maximum amplitude are shown in Fig. 8(f). The network inhomogeneity of series S_{FD}(phr) monotonically increases from 10 phr to 80 phr, indicated by the broadened D_{res} distribution. Obviously, swelling has a significant effect on the D_{res}/2\pi distribution. Broadened distribution after swelling indicates that swelling could magnify inhomogeneous of the network.[22]

DISCUSSION

Based on the CM-SANS, swelling kinetics, and low field ¹H-NMR results discussed above, several issues concerning different models of bound rubber related to filler fraction (\(\Phi_{Si}\)) and filler structures can be clarified. A schematic illustration corresponding to these issues is drawn in Fig. 9. First of all, both the CM-SANS of series S_{FD}(phr) and NMR data consistently...
lead to a critical threshold $\Phi_S^{c'}$ between 10 and 30 phr, which is also in accordance with our previous work on Φ_S(phr)\cite{35} and the reported percolating threshold\cite{35,52}. When the Φ_S is below $\Phi_S^{c'}$, the correlation length cannot be detected in current observation scope, suggesting the isolated aggregates are dominant, as depicted in Fig. 9(a). With increasing the Φ_S beyond $\Phi_S^{c'}$, some portion of rubber is trapped among the aggregates formed agglomerate,\cite{39} as drawn in Fig. 9(b). The abnormal upturn of the half time of the swelling process ($t_{1/2}$) for samples from S(40) to S(60) in Fig. 1(b) suggests the existence of such trapped rubber. The swelling process leads to the break of the aggregated structures. Subsequently, the trapped rubber becomes ‘free’ again and restarts the swelling process for these rubber portions, which postpone the entire swelling process. The structural evolution during the swelling is demonstrated in the process from Fig. 9(b) to Fig. 9(b'). This can also be indicated by the expanded L_c of the swollen sample in Fig. 9(b') comparing with the dry samples in Fig. 9b (Fig. 3d). The significant different D_{res} extracted from NMR data in Fig. 8 suggests inherently different network textures exist in the rubber matrix below and above $\Phi_S^{c'}$. Such diversity might originate from the different aggregate structures. Below the $\Phi_S^{c'}$, the isolated aggregates can hardly form bound rubber network with any firm connection, as shown in Fig. 9(a'), while above the $\Phi_S^{c'}$, the aggregates are more likely to be bounded with the percolating bound rubber network as the efficient bridges. Swelling process provides the driving force to influence connectivity of the filler network, thus, the gap of D_{res} between 10 and 30 phr is smeared out. The increased α/D_{res} of Φ_S(phr) and broadened D_{res} distribution of Φ_S(phr) in NMR data as a function of Φ_S after surpassing $\Phi_S^{c'}$ (Fig. 8d) suggests the increased asymmetry of polymer network. As increasing the Φ_S more complicated filler network with various branching structures might induce more complicated and asymmetrical rubber matrix, which includes various occluded, trapped rubber. In addition, a monotonically rising $D_{res}/2\pi r$ of series $S_{D_{res}}$(phr) after surpassing $\Phi_S^{c'}$ implies an likely increasing in the extent of chain stretching, which contributes to the increasing of inhomogeneity.

Secondly, the Φ_S-independent thickness around 8.6 nm found in the series $S_{D_{res}}$(phr) of CM-SANS data (Fig. 4) suggests that the formation of the bound rubber is determined by the inherent chemical and physic properties of the filler surface and the rubber chain. Interestingly, MSE-FID results (Table 2) also confirm such inherent character. It provides a Φ_S-independent $A_1/\Phi_S^{c'}$, suggesting a normalized content of rigid component in the composite. Moreover, according to the model proposed by Saalwächter et al.,\cite{45,46} the thicknesses of bound rubber for Φ_S(phr) yielded from NMR data are constant around 7.5 nm. On the other hand, the power-law around 4.2 in series $S_{D_{res}}$(phr) (Fig. 5) unveils that the bound rubber layer has exponential changed gradient density (Fig. 6), as schematically illustrated in Fig. 9(a'). Note that all the bound rubber layers are gradient and should be drawn as that of in Fig. 9(a'), however, for the sake of clarity, the gradient bound rubber in Figs. 9(b'), 9(c'), and 9(c'') are simplified to be the white regions. Rubber chains which are closest to the filler aggregates are the stiffest and are relatively hard to be swelling.\cite{39} The bound rubber gradient found within series $S_{D_{res}}$(phr) is in accordance with the descriptions of Papon et al.,\cite{116} Current NMR data in Fig. 8 also suggest that the asymmetry of the rubber network is increased with increasing the Φ_S after surpassing $\Phi_S^{c'}$, which might come from the increased gradient structure and larger trapped rubber fraction. It should be kept in mind that 53.7% C_2D_{12} might not be the strict matching point of silica, since the swelling state of either polymer matrix or the bound rubber region is composed of both mixed solvent and polymer network. However, the experimental matching point (40%–60% Φ_S toluene) for silicone rubber in most q fractions is close to the calculated fractions of Φ_S toluene $=53.6%$\cite{134}. It suggests that the bound rubber regions are the reliable main contributor for the SANS intensity of series $S_{D_{res}}$(phr). Thus, the present analysis and the corresponding conclusion are valid.

https://doi.org/10.1007/s10118-020-2485-8
Thirdly, three character lengths of 41, 100, and 234 nm are found in \(S_{\text{MS}}(80) \) (Fig. 4c). Combining with the exception power law of 2.4 of \(S_{\text{MS}}(80) \), it suggests that a hierarchical structure of both the filler network and the polymer network is interpenetrated with each other. The bound rubber structure found in \(S_{\text{MS}}(80) \) is likely a bicontinuous phase, as indicated in Fig. 9(c). Three character lengths can be associated to the diameter and the length of the cylindrical tube filled with filler aggregates, and the inter-correlation length among the tubes, respectively. The absence of the peak set in the rest \(S_{\text{MS}}(\text{phr}) \) samples might be due to the relatively large aggregate sizes (Fig. 3c) and broad distribution, which are indicated by the intense intensity in the low-\(q \)-region of series \(S_{\text{MS}}(\text{phr}) \), as well as the diversity of the Kratky representation of previous dry sample \(S(\text{phr}) \) and current series \(S_{\text{MP}}(\text{phr}) \) (please see Fig. S1 in ES1). It suggests that the swelling process might somehow destroy the regularity of the filler network. Smaller aggregate size under swollen state in Fig. 3(c) confirms the above discussed swelling effect. It unveils that there are at least two kinds of filler-filler interactions in the aggregates. One is depending on the chemical interactions among the filler particle surfaces and physical interactions such as van der Waals forces and hydrogen bonding. Such filler-filler interaction is firm enough to sustain the swelling energy. The other is that aggregates just be adjacent to each other and weakly bonded. Such ‘large’ aggregates can be destroyed to ‘smaller’ portions by the outside field. However, the bound rubber network of \(S(80) \) might be dense and strong enough to resist destruction by swelling, as stronger chain stretching is suggested by NMR data. Figs. 9(a)–9(c) to Figs. 9(a)–9(c) demonstrate the separation of such weakly contacted filler aggregates caused by swelling. The NMR results of series \(S_{\text{MP}}(\text{phr}) \) (Fig. 8f) also suggest that some topologically frozen inhomogeneities existing in series \(S(\text{phr}) \) would turn visible and amplified upon swelling.

Armed with the above information and previous work, the correlation between mechanical properties and hierarchical structures of the composites can be discussed. The swelling process could be treated as a good scenario to mimic the mechanical deformation on the samples. It is anticipated that swelling of filled rubbers is inhomogeneous due to the complicated distribution of rubber network. On the one hand, trapped rubber, the weak filler-filler interactions, and the outer layer of bound rubber can sustain the deformation and dissipate energy with the ability to recover, which ensures the performance of the composites. On the other hand, with the existence of strong filler-filler interactions, inner layer of the bound rubber shells remains throughout the aggregates, bridging of the bound rubber leads to a higher bound rubber fraction, and eventually an outer layer of occluded rubber is formed, contributing to the relatively high modulus. However, though \(S_{\text{MS}}(80) \) presents the bicontinuous structure under swollen state, the aggregates are too close. Around the stiff filler network is still a relatively rigid rubber matrix dominated by the bound rubber layer and its gradient, causing the higher modulus while lower fracture strain. It means that the filler induced rubber chain dynamics modification at longer range is also sensitive to the mechanical behavior of the composites. The bicontinuous structure found in \(S_{\text{MS}}(80) \) should also exist in the dry sample of \(S(40) \) to \(S(60) \), which, however, is not clearly found in other \(S_{\text{MS}}(\text{phr}) \) samples. It might be caused by the destruction of bicontinuous structure during swelling process and by the high polydispersity of the structure. In fact, the polydispersity might also be the origin of the optimized flexibility compromising with the modulus.

In summary, we describe various bound rubber models associated with filler network structures with CM-SANS and low-field \(^1\text{H}-\text{NMR} \) technique, with which the inherent reinforcing mechanisms are discussed. To optimize and balance the stiffness and flexibility of the composites is one of the most critical issues in the rubber community. In the past several decades, abundant studies indicate how sensitive the bound rubber is to various conditions, such as filler loading, additive, structure of aggregate, specific surface area, macromolecular parameters, processing conditions, etc. For this concern, aiming to use various bound rubber models to explain reinforcing mechanisms of the filled rubbers, the detailed description for bound rubber formation is of critical importance and needs continuous investigations.

CONCLUSIONS

Current work is aiming to investigate the correlation between bound rubber models and aggregate structures with various filler fractions \(\Phi_{\text{f}} \) in silicone rubber, combining contrast matching SANS, swelling kinetics, and low-field \(^1\text{H}-\text{NMR} \) measurements. Three different \(C_pD_1 \) fractions of 4.9%, 53.7%, and 100% were chosen to tune the neutron SLD of the solvent matrix, 4.9% \((S_{\text{MP}}(\text{phr})) \) and 53.7% \((S_{\text{MS}}(\text{phr})) \) are the matching points of PMVS and filler silica, respectively. The results support the variety of bound rubber models. (i) All the data consistently lead to a critical threshold \(\Phi_{\text{f}}^c \) between 10 and 30 phr. When the \(\Phi_{\text{f}} \) is below \(\Phi_{\text{f}}^c \), the isolated aggregates are dominant. With increasing the \(\Phi_{\text{f}} \) to surpass \(\Phi_{\text{f}}^c \), some portion of rubber is trapped among the aggregates formed agglomerate. The significantly different \(D_{\text{cor}} \) extracted from NMR data suggests different network structures exist in the rubber matrix below and above \(\Phi_{\text{f}}^c \). The increased \(\alpha/D_{\text{cor}} \) in NMR data as a function of \(\Phi_{\text{f}} \) after surpassing \(\Phi_{\text{f}}^c \) suggests the increased asymmetry of crosslink points. (ii) \(S_{\text{MS}}(\text{phr}) \) suggests a \(\Phi_{\text{f}} \)-independent bound rubber thickness around 8.6 nm. The NMR results also give an estimation of bound rubber thickness around 7.5 nm for all the \(S(\text{phr}) \) samples and provide a \(\Phi_{\text{f}} \)-independent \(A_1/\Phi_{\text{f}} \) suggesting a normalized content of rigid component of the composite. Both data imply that the formation of the bound rubber is determined by the inherently chemical and physic properties of the filler surface and the rubber chain. Moreover, the power-law around 4.2 unveils that the bound rubber layer has exponentially changed gradient density. (iii) Three character lengths of 41, 100, and 234 nm are found in \(S_{\text{MS}}(80) \), associated to diameter, length, and inter-correlation length of the tube, respectively. It suggests a hierarchical structure of both the filler network and the polymer network is interpenetrated. Accordingly, the inherent reinforcing mechanisms, as how the hierarchical structures, which include aggregates with both weak and strong filler-filler interactions, exponentially changed gradient bound rubber, trapped rubber, two kinds of filler-filler interactions, and asymmetrical rubber network, contribute harmonically to a
compromised strength and flexibility of the nanocomposites mechanical properties, are presented.

Electronic Supplementary Information
Electronic supplementary information (ESI) is available free of charge in the online version of this article at https://doi.org/10.1007/s10118-019-2293-1.

ACKNOWLEDGMENTS
This work was financially supported by the National Key R&D Program of China (No. 2018YFB0704200), the National Natural Science Foundation of China (Nos. 11605171 and 11705173), and the Foundation of President of CAEP (No. YZJJLX2018004).

REFERENCES
1 Chen, L.; Lu, L.; Wu, D.; Chen, G. Silicone rubber/graphite nanosheet electrically conducting nanocomposite with a low percolation threshold. *Compos. Polym.* 2007, 28, 493–498.
2 Hanu, L.; Simon, G.; Cheng, Y. Preferential orientation of muscovite in ceramicifiable silicone composites. *Mater. Sci. Eng. A* 2005, 398, 180–187.
3 Genovese, A.; Shanks, R. A. Fire performance of poly(dimethyl siloxane) composites evaluated by cone calorimetry. *Compos. Part A* 2008, 39, 398–405.
4 Yang, B.; Zhang, S. H.; Zou, Y. F.; Ma, W. S.; Huang, G. J.; Li, M. D. Improving the thermal conductivity and mechanical properties of two-component room temperature vulcanized silicone rubber by filling with hydrophobically modified SiO2-graphene nanohybrids. *Chinese J. Polym. Sci.* 2019, 37, 189–196.
5 Iwashima, W.; Usuda, E. D.; Paixão, L. S.; Bom, N. M.; Gomes, A. M.; Carvalho, A. M. G. Superparamagnetic barocyclic effects in acetoxy silicone rubber over a wide temperature range: great potential for solid-state cooling. *Chinese J. Polym. Sci.* 2020.
6 Shinohara, Y.; Kishimoto, H.; Yagi, N.; Anemiyama, Y. Microscopic observation of aging of silica particles in unvulcanized rubber. *Macromolecules* 2010, 43, 9480–9487.
7 Levresse, P.; Feke, D. L.; Manas-Zloczower, I. Analysis of the formation of bound poly(dimethylsiloxane) on silica. *Polymer* 1998, 39, 3919–3924.
8 Litvinov, V. M.; Orza, R. A.; Klüppel, M.; van Duin, M.; Magusin, P. C. M. Rubber-filler interactions and network structure in relation to stress-strain behavior of vulcanized, carbon black filled EPDM. *Macromolecules* 2011, 44, 4887–4900.
9 Kohls, D.; Beaucage, G. Rational design of reinforced rubber. *Curr. Opin. Solid State Mater. Sci.* 2002, 6, 183–194.
10 Wang, M. Effect of polymer-filler and filler-filler reciprocity to dynamic mechanics performance of filling-vulcanization rubber. *Rubber Chem. Technol.* 1998, 71, 520–589.
11 Li, Y.; Ren, M.; Lv, P.; Liu, Y.; Shao, H.; Wang, C.; Tang, C.; Zhou, Y.; Shuai, M. A robust and flexible bulk superhydrophobic material from silicone rubber/silica gel prepared by thiol-ene photopolymerization. *J. Mater. Chem. A* 2019, 7, 7242–7255.
12 Song, L.; Wang, Z.; Tang, X.; Chen, L.; Chen, P.; Yuan, Q.; Li, L. Visualizing the toughening mechanism of nanofiller with 3D X-ray nano-CT: stress-induced phase separation of silica nanofiller and silicone polymer double networks. *Macromolecules* 2017, 50, 7249–7257.
13 Wei, C. S.; Lu, A.; Sun, S. M.; Wei, X. W.; Zhou, X. Y.; Sun, J. Establishment of constitutive model of silicone rubber foams based on statistical theory of rubber elasticity. *Chinese J. Polym. Sci.* 2018, 36, 1077–1083.
14 Kang, X. W.; Liu, D.; Zhang, P.; Kang, M.; Chen, F.; Yuan, Q. X.; Zhao, X. L.; Song, Y. Z.; Song, L. X. Revisiting silica networks by small-angle neutron scattering and synchrotron radiation X-ray imaging techniques. *Chinese J. Polym. Sci.* 2020, 38, 1006–1014.
15 Baeza, G. P.; Genix, A. C.; Degrandcourt, C.; Petitjean, L.; Gummel, J.; Coutey, M.; Oberdisse, J. Multiscale filler structure in simplified industrial nanocomposite silica/SBR systems studied by SAXS and TEM. *Macromolecules* 2013, 46, 317–329.
16 Papon, A.; Montes, H.; Lequeux, F.; Oberdisse, J.; Saalwächter, K.; Guy, L. Solid particles in an elastomer matrix: impact of colloid dispersion and polymer mobility modification on the mechanical properties. *Soft Matter* 2012, 8, 4090–4096.
17 Rishi, K.; Beaucage, G.; Kuppa, V.; Mulderig, A.; Narayanan, V.; McGlasson, A.; Rackaitis, M.; Ilavsky, J. Impact of an emergent hierarchical filler network on nanocomposite dynamics. *Macromolecules* 2018, 51, 7893–7904.
18 Kim, S. Y.; Meyer, H. W.; Saalwächter, K.; Zukoski, C. F. Polymer dynamics in PEG-silica nanocomposites: effects of polymer molecular weight, temperature and solvent dilution. *Macromolecules* 2012, 45, 4225–4237.
19 Papon, A.; Saalwächter, K.; Schäler, K.; Guy, L.; Lequeux, F.; Montes, H. Low-field NMR investigations of nanocomposites: polymer dynamics and network effects. *Macromolecules* 2011, 44, 913–922.
20 Papon, A.; Montes, H.; Hanafi, M.; Lequeux, F.; Guy, L.; Saalwächter, K. Glass-transition temperature gradient in nanocomposites: evidence from nuclear magnetic resonance and differential scanning calorimetry. *Phys. Rev. Lett.* 2012, 108, 065702.
21 Sawwel, A. M.; Chinn, S. C.; Gee, M.; Loeb, C. K.; Maiti, A.; Mason, H. E.; Maxwell, R. S.; Lewicki, J. P. Nonideality in silicone network formation via solvent swelling and 1H double-quantum NMR. *Macromolecules* 2019, 52, 410–419.
22 Saalwächter, K. Detection of heterogeneities in dry and swollen polymer networks by proton low-field NMR spectroscopy. *J. Am. Chem. Soc.* 2003, 125, 14684–14685.
23 Chassé, W.; Schlögl, S.; Riess, G.; Saalwächter, K. Inhomogeneities and local chain stretching in partially swollen networks. *Soft Matter* 2013, 9, 6943–6954.
24 Chen, W.; Liu, D.; Li, L. Multiscale characterization of semicrystalline polymeric materials by synchrotron radiation X-ray and neutron scattering. *Polym. Crystal.* 2019, 2, 10043.
25 Liu, D.; Li, X.; Song, H.; Wang, P.; Chen, J.; Tian, Q.; Sun, L.; Chen, L.; Chen, B.; Gong, J.; Sun, G. Hierarchical structure of MWCNT reinforced semicrystalline HDPE composites: a contrast matching study by neutron and X-ray scattering. *Eur. Polym. J.* 2018, 99, 18–26.
26 Li, L. B. In situ synchrotron radiation techniques: watching deformation-induced structural evolutions of polymers. *Chinese J. Polym. Sci.* 2018, 36, 1093–1102.
27 Liu, H.; Huang, G.; Wei, L.; Zeng, J.; Fu, X.; Huang, C.; Wu, J. Inhomogeneous natural network promoting strain-induced crystallization: a mesoscale model of natural rubber. *Chinese J. Polym. Sci.* 2019, 37, 1142–1151.
28 Yang, H.; Liu, D.; Ju, J.; Li, J.; Wang, Z.; Yan, G.; Ji, Y.; Zhang, W.; Sun, G.; Li, L. Chain deformation on the formation of shish nuclei under extension flow: an in situ SAXS and SANS study. *Macromolecules* 2016, 49, 9080–9088.
29 López-Barrón, C. R.; Zeng, Y.; Schaef er, J. J.; Eberle, A. P.; Lodge, T. P.; Bates, F. S. Molecular alignment in polyethylene during cold drawing using in-situ SAXS and raman spectroscopy. *Macromolecules* 2017, 50, 3627–3636.
30 Banc, A.; Genix, A. C.; Dupas, C.; Sztucki, M.; Schweins, R;
Appavou, M. S.; Oberdisse, J. Origin of small-angle scattering from contrast-matched nanoparticles: a study of chain and filler structure in polymer nanocomposites. Macromolecules 2015, 48, 6596−6605.

31 Richards, J. J.; Whittle, C. L.; Shao, G.; Pozzo, L. D. Correlating structure and photovoltage for composite semiconducting nanoparticles with contrast variation small-angle neutron scattering and photoconductive atomic force microscopy. ACS Nano 2014, 8, 4313−4324.

32 Wang, T.; Tian, N.; Chen, J.; Huang, L.; Sun, G.; Gong, J.; Liu, D. Revisiting flow-induced crystallization of polyethylene inversely: an in situ swelling SDS study. Polymer 2019, 184, 121934.

33 Sonntag, M.; Jagtap, P. K. A.; Simon, B.; Appavou, M. S.; Geerlof, A.; Stehle, R.; Gabel, F.; Hennig, J.; Sattler, M. Domain-selective perdeuteriation and small-angle neutron scattering for structural analysis of multi-domain proteins. Angew. Chem. Int. Ed. 2017, 56, 9322−9325.

34 Liu, D.; Chen, J.; Song, L.; Lu, A.; Wang, Y.; Sun, G. Parameterization of silica-filled silicone rubber morphology: a contrast variation SANS and TEM study. Polymer 2017, 120, 155−163.

35 Liu, D.; Song, L.; Song, H.; Chen, J.; Tian, Q.; Chen, L.; Sun, L.; Lu, A.; Huang, C.; Sun, G. Correlation between mechanical properties and microscopic structures of an optimized silica fraction in silicone rubber. Compos. Sci. Technol. 2018, 165, 373−379.

36 Peng, M.; Sun, L.; Chen, L.; Sun, G.; Chen, B.; Xie, C.; Xia, Q.; Yan, G.; Tian, Q.; Huang, C. A new small-angle neutron scattering spectrometer at china mianyang research reactor. Nucl. Instrum. Methods Phys. Res., Sect. A 2016, 810, 63−67.

37 Chen, L.; Sun, L.; Tian, Q.; Wang, T.; Chen, J.; Sun, G.; Huang, C.; Liu, D. Upgrade of a small-angle neutron scattering spectrometer suanni of China Mianyang research reactor. J. Instrum. 2018, 13, P08025.

38 Tian, Q.; Yan, G.; Bai, L.; Chen, J.; Liu, D.; Chen, L.; Sun, L.; Huang, C.; Chen, B.; Nagy, G. Calibration of the suanni small-angle neutron scattering instrument at the China Mianyang research reactor. J. Appl. Crystallogr. 2018, 51, 1662−1670.

39 Ehbrurgerdolle, F.; Hindermannbischoff, M.; Livet, F.; Bley, F.; Rochas, A. C.; Geisser, E. Anisotropic ultra-small-angle X-ray scattering in carbon black filled polymers. Langmuir 2001, 17, 329−334.

40 Schmidt, P. W. Small-angle scattering studies of disordered, porous and fractal systems. J. Appl. Crystallogr. 1991, 24, 414−435.

41 Beaucage, G.; Schaefer, D. W. Structural studies of complex systems using small-angle scattering: a unified guinier/power-law approach. J. Non-Cryst. Solids 1994, 172, 797−805.

42 Ruland, W. Small-angle scattering of two-phase systems: determination and significance of systematic deviations from Porod’s law. J. Appl. Crystallogr. 1971, 4, 70−73.

43 Schmidt, P. W.; Avnir, D.; Levy, D.; Höhr, A.; Steiner, M.; Roll, A. Small-angle X-ray scattering from the surfaces of reversed-phase silicas: power-law scattering exponents of magnitudes greater than four. J. Chem. Phys. 1991, 94, 1474−1479.

44 Mujtaba, A.; Keller, M.; Ilish, S.; Radusch, H. J.; Beiner, M.; Thum-Albrecht, T.; Saalwächter, K. Detection of surface-immobilized components and their role in viscoelastic reinforcement of rubber-silica nanocomposites. ACS Macro Lett. 2014, 3, 481−485.

45 Gollitsyn, Y.; Schneider, G. J.; Saalwächter, K. Reduced-mobility layers with high internal mobility in poly(ethylene oxide)-silica nanocomposites. J. Chem. Phys. 2017, 146, 203303.

46 Oh, S. M.; Abbasi, M.; Shin, T. J.; Saalwächter, K.; Kim, S. Y. Initial solvent-driven nonequilibrium effect on structure, properties, and dynamics of polymer nanocomposites. Phys. Rev. Lett. 2019, 123, 167801.

47 Chassé, W.; Lang, M.; Sommer, J. U.; Saalwächter, K. Cross-link density estimation of PDMS networks with precise consideration of networks defects. Macromolecules 2012, 45, 899−912.

48 Valentín, J. L.; Posadas, P.; Fernández-Torres, A.; Malmierca, M. A.; González, L.; Chassé, W.; Saalwächter, K. Inhomogeneities and chain dynamics in diene rubbers vulcanized with different cure systems. Macromolecules 2010, 43, 4210−4222.

49 Mordvininkin, A.; Saalwächter, K. Microscopic observation of the segmental orientation autocorrelation function for entangled and constrained polymer chains. J. Chem. Phys. 2017, 146, 094902.

50 Chassé, W.; Valentín, J. L.; Genesky, G. D.; Cohen, C.; Saalwächter, K. Precise dipolar coupling constant distribution analysis in proton multiple-quantum NMR of elastomers. J. Chem. Phys. 2011, 134, 044907.

51 Schneider, G. J.; Volinhalvs, V.; Brandt, K.; Roth, S. V.; Göröz, D. Correlation of mass fractal dimension and cluster size of silica in styrene butadiene rubber composites. J. Chem. Phys. 2010, 133, 094902.

52 Kato, A.; Ikeda, Y.; Kasahara, Y.; Shimanuki, J.; Suda, T.; Hasegawa, T.; Sawabe, H.; Kohjiya, S. Optical transparency and silica network structure in cross-linked natural rubber as revealed by spectroscopic and three-dimensional transmission electron microscopy techniques. J. Opt. Soc. Am. B 2008, 25, 1602−1615.