A Walk Through the Maze of Secondary Metabolism in Orchids: A Transcriptomic Approach

Devina Ghai1, Arshpreet Kaur1, Parvinderdeep S. Kahlon2, Sandip V. Pawar3 and Jaspreet K. Sembi1*

1Department of Botany, Panjab University, Chandigarh, India, 2Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany, 3University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India

Orchids have a huge reservoir of secondary metabolites making these plants of immense therapeutic importance. Their potential as curatives has been realized since times immemorial and are extensively studied for their medicinal properties. Secondary metabolism is under stringent genetic control in plants and several molecular factors are involved in regulating the production of the metabolites. However, due to the complex molecular networks, a complete understanding of the specific molecular cues is lacking. High-throughput omics technologies have the potential to fill up this lacuna. The present study deals with comparative analysis of high-throughput transcript data involving gene identification, functional annotation, and differential expression in more than 30 orchid transcriptome data sets, with a focus to elucidate the role of various factors in alkaloid and flavonoid biosynthesis. Comprehensive analysis of the mevalonate (MVA) pathway, methyl-d-erythritol 4-phosphate (MEP) pathway, and phenylpropanoid pathway provide specific insights to the potential gene targets for drug discovery. It is envisaged that a positive stimulation of these pathways through regulation of pivotal genes and alteration of specific gene expression, could facilitate the production of secondary metabolites and enable efficient tapping of the therapeutic potential of orchids. This further would lay the foundation for developing strategies for genetic and epigenetic improvement of these plants for development of therapeutic products.

Keywords: secondary metabolism, transcriptome, orchids, alkaloids, flavonoids

INTRODUCTION

Orchids are members of one of the most advanced plant families, the Orchidaceae with their unique morphology (labellum, gynostemium), functional characteristics, and ecological adaptations (mycorrhizal association, and velamen) that are not found in model plants. Though popular as affluent ornamentals, orchids were first discovered for their therapeutic properties. The restorative properties of orchids have been well documented since times immemorial, Theophrastus in his book named “Enquiry into Plants” reported the use of orchids as therapeutics. These plants have also found reference in Indian and Chinese traditional pharmacopeia. In Indian Ayurvedic system of medicine, “Ashtavarga” is an important formulation, consisting of eight herbs, out of which four are orchids, that is, Habenaria edgeworthii (vriddhi), Habenaria
intermedia (riddhi), Malaxis acuminata (jeevaka), and Malaxis muscifera (rishibhak). Similarly, in Chinese medicine, Anoectochilus roxburghii has been promoted as “King medicine” to treat snake bites, lung and liver disease, and hypertension (He et al., 2006). “Shi-Hu,” an orchid-based therapeutic formulation, prepared from Dendrobium nobile and allied species, is prized as a tonic because of its efficiency in treating lung, kidney, and stomach diseases, hyperglycemia, and diabetes (Bulpitt et al., 2007). “Tian-Ma” derived from tubers of Gastrodia elata is effectively used in the treatment of headaches, migraines, epilepsy, high blood pressure, rheumatism, fever, and nervous problems (Kong et al., 2003). In addition to their use as therapeutics, these plants have also been widely used as tonics and restoratives. The most important example is Dactylorhiza hatagirea which is used as an aphrodisiac (Lawler, 1984). Several orchids, such as Shwethuli (Zeuxine strateumatica) and Salabmisri (Eulophia dabia), Vanda testacea, and Rhynchostylis retusa, are used as aphrodisiacs, blood purifiers, general restorative tonics, and for treating rheumatism, piles, bronchitis, and inflammations (Chauhan, 1990; Vij et al., 2013; Hossain et al., 2020; Figure 1). These healing and restorative properties are due to the presence of a rich diversity of phytochemicals which are bioactive and are responsible for the pharmacognostic potential of these plants (Teoh, 2016).

![Figure 1](image_url)

FIGURE 1 | Some therapeutically important orchid species. (A), Eulophia dabia (D.Don) Hoeh.; (B), Zeuxine strateumatica (L.) Schltr.; (C), Dactylorhiza hatagirea (D.Don) Soó; (D), Malaxis muscifera (Lindl.) Kuntze; (E), Habenaria intermedia D.Don; (F), Habenariapectinata D.Don; (G), Vanda testacea (Lindl.) Pichř.; (H), Platanthera edgeworthii (Hook.f. ex Collett) R.K.Gupta; (I), Crepidium acuminatum (D.Don) Szlach.

The integration of traditional knowledge with modern research can pave a way as promising leads for the discovery of novel drugs with greater therapeutic potential than synthetic medicine offering new horizons in the field of therapeutics and drug discovery. However, the studies in this direction are not commensurate with the immense potential of these plants. This is mainly due to lack of complete understanding of the spectrum of molecular networks of secondary metabolism. Even though there have been a number of studies on the phytochemical profiling and the biological activity, there is limited information about the regulating molecular cues and the alternate biosynthetic routes which are utilized in these plants as a survival strategy in harsh and dynamic climatic conditions. Various omics approaches can be instrumental to understand and elucidate these complex mazes and help in utilization of these plants as therapeutics to their fullest potential.

Recent times have revolutionized the process of deciphering the genetic identity of the germplasm by using minimal amount of tissues to generate humongous volume of data using transcriptomic approach. Genome editing with the help of transcriptomic sequencing provide extra choices for genetic improvement in orchids. For techniques like CRISPR/Cas9, the sequence of the genome of the host can ascertain the specific and accurate target sites to increase the efficiency of the genome editing process (Kui et al., 2017) and can be highly beneficial for overall improvement of the germplasm. Transcriptomic sequencing has also helped in increasing the pace for the development of Simple Sequence Repeats (SSR), which are the microsatellite markers with random tandem repeats of 2–6 nucleotides. These markers are widely used because of their reproducibility, co-dominant nature, extreme polymorphism, simplicity, abundance, and easy amplification. The development of SSR markers in these medicinally important orchids can help in germplasm breeding, marker-assisted selection, parentage analysis, and genetic diversity studies. The SSR markers identified can help in evaluating and understanding genetic relationships quantitatively and qualitatively (Li et al., 2014) and help in constructing genetic maps of these plants which will further help in taxonomy, genetics, and genomic studies.

The reference genome of many medicinal non-model plants is not available. Transcriptomic approach provides an alternative way for collecting high-throughput data for gene identification, expression analysis, and putative functional characterization using metabolic profiling data (Gongora-Castillo and Buell, 2013). Whole transcriptome shotgun sequencing (WTSS) makes it possible to probe the genes of various metabolite biosynthesis processes and the relationship between the genes and plant metabolites. Another approach, termed as the Phytochemical genomics approach, involves sequence data sets combined with metabolomic data sets to elucidate the complete profile of secondary metabolites. In Digital gene expression analysis, differential expression of genes which are involved in secondary metabolism is studied to decipher the genetic variability and help in the drug discovery. The development of single-cell transcriptomics will aid in identifying networks and pathways and further facilitate drug discovery and development. The
The present study is an exhaustive review of the omics research on secondary metabolism in orchids, primarily focusing on the use of transcriptomic data for the analysis of genes and pathways associated with the synthesis of secondary metabolites and could be further be used for establishing the therapeutic potential of the orchids.

ESTABLISHMENT OF ORCHIDS AS THERAPEUTIC AGENTS

The therapeutic potential of orchids has been reported since times immemorial. In 1579, Langham (1579) reported the antipyretic and anti-diarrheal properties of orchids. A Caribbean folklore mentions the use of Vanilla clavicularata for treating wounds and syphilis (Griffith, 1847) while the flowers of Vanilla griffithii (Burkill, 1935) and leaf paste of Vanda roxburghii were used in treating fever (Chawla et al., 1992). Dendrobium huoshanense stems are reported to be beneficial for the eye, stomach, and liver ailments (Hsieh et al., 2008; Luo et al., 2008) while those of Dendrobium moniliforme are reported to be antipyretic (Zhao et al., 2003). Oil-based extracts of stems and leaves of Anoectochilus formosus are effective for the treatment of hypertension, impotency, liver spleen disorders, and chest and abdominal pains (Satish et al., 2003). Leaf decoction of Dendrobium candidum is used for treating diabetes (Wu et al., 2004). Traditional usage of orchids as restoratives and tonics have been widely and commonly reported. The tubers of Dactylorhiza hatagirea have been used for the preparation of "Salep" which possess healing qualities (Lawler, 1984). Similar preparations like “dbang lag” have been used to provide sustenance for Tibetan monks practicing in remote caves (Teoh, 1991). Such studies coupled with ethnobotanical knowledge formed basis of many systematic reviews on utilization of orchids as therapeutic agents (Lawler, 1984).

Due to the significant role of orchids in the traditional medicine system, it has become imperative that these traditional remedies should be utilized for the discovery of new therapeutics. A plethora of studies has been reported ever since, to investigate the role of orchids as promising source of bioactive agents. A number of reports on the antioxidant and anti-inflammatory potential of various orchids like Phalaenopsis hybrids (Minh et al., 2016) and Dendrobium officinale (Zhang et al., 2017) have come up. Cytotoxic and apoptotic effects have also been reported in Dendrobium crepidatum and D. chrysanthum (Prasad and Koch, 2016). Antimicrobial activity has also been documented in Dendrobium moniliforme (Paudel et al., 2018). Antihyperglycemic (Dactylorhiza hatagirea; Choukarrya et al., 2019), anti-diabetic and hepatoprotective activity (Galanthe fimбриата; Peng et al., 2019) have been reported.

To provide a sound scientific scaffolding for development of potential therapeutic products, efforts have been also directed to isolate and profile the phytochemicals from plant extracts. Various classes of secondary metabolites have been isolated from different plant parts and evaluated for biological activity. Phenanthrenes, like denbinobin, from Dendrobium nobile, showed potential cytotoxic activity (Lee et al., 1995), prevented metastatic gastric cancer, and showed potent therapeutic activity against hepatic fibrosis (Yang et al., 2007; Song et al., 2012). Similarly, kinsenoside from Anoectochilus roxburghii showed antihyperglycemic activity (Zhang et al., 2007). Cymbidium A from Cymbidium goeringii is responsible for the hypotensive and diuretic activity (Watanabe et al., 2007). Flavones C-glycosides and anthocyanins from red Phalaenopsis hybrids exhibited antioxidant activity (Kuo et al., 2010). Polysaccharides from Dendrobium officinale (Liu et al., 2011) and Gastrodia elata (Bao et al., 2017) have exhibited immune-enhancing potential. Galactoxyloglucan (GXG), a purified polysaccharide from Dendrobium huoshanense, improved insulin sensitivity, thus preventing hyperglycemia (Wang et al., 2019). Role of flavonoids especially rutin, in imparting antioxidant potential have also been highlighted in Dendrobium officinale (Zhang et al., 2017). Flavonoids of Dactylorhiza hatagirea also exhibited antihyperglycemic activity (Choukarrya et al., 2019). Sesquiterpenoids from Dendrobium nobile exhibited neuroprotective activity (Ma et al., 2019b), while bibenzyl compounds from Dendrobium officinale showed cytotoxic activity (Ren et al., 2020). A group of compounds (phenanthrenes, bibenzyls, glucosyloxybenzyl succinate derivatives, flavonoids, lignans, terpenoids, etc.) isolated from Pleione, showed antitumor, anti-neurodegenerative, and anti-inflammatory biological activities (Wu et al., 2019). Despite a large number of reports on the phytochemical profiling in orchids, the studies are not commensurate with the immense potential of orchids as therapeutic agents. Omics techniques offer a great opportunity to provide an alternate and efficient method to study and characterize specific phytochemicals. Transcriptomic approaches can generate insights to the secondary metabolite biosynthetic pathways and can aid in functional characterization of their key regulatory genes.

TRANSCRIPTOMIC DATASETS IN ORCHIDS

Undeterred by the peculiarity in their unique characteristics, orchids are depreciated with respect to understanding their molecular complexities. A complete understanding of the spectrum of the molecular networks by isolated analyses of gene families is not plausible due to the limited availability of orchid genomes. On the other hand, transcriptome-wide analyses can help resolve complex metabolic pathways which are at play in these plants. Transcriptome is a complete set of mRNA and non-coding RNA produced by a cell or organism at a particular point of time. It generates large-scale transcripts that could help in analyzing different gene families all at once and could also guide toward understanding cross-links in mechanisms involved. The analysis begins with the collection of the desired tissue and subsequent isolation of RNA from the collected sample. The isolated RNA is used for the synthesis of complementary DNA which is eventually utilized for the construction of libraries after sequencing. There are large numbers of sequencing techniques that are prevalent nowadays, such as Roche/454, Illumina, Applied Biosystems SOLiD, and
Helicos HeliScope (Magi et al., 2010). Even though these techniques produce abundant short reads at a much higher throughput than any Sanger sequencer but data presented after such analysis is a set of short reads composed of several hundred base pairs. The reads, thus, obtained are curated as raw reads. These read are first filtered and adjusted based on the quality control measures. Then the filtered reads are first either reconstructed using de novo assembly in absence of reference genome or assembled by alignment to the reference genome (Wolf, 2013). The assembly of the reads can be performed with tools like Trinity (Grabherr et al., 2011), Velvet (Zerbino and Birney, 2008), SPAdes (Bankevich et al., 2012), or SOAPdenovo-Trans (Xie et al., 2014). The assembled reads form contigs or singletons; both of these are part of unigenes. The functional annotation of the unigenes or transcripts is completed using various databases, such as NCBI,\(^1\) KEGG,\(^2\) and SwissProt.\(^3\) Additionally, the number of reads for a transcript provides the level of its abundance, thus serving as the starting point for biological inference of spatiotemporal gene expression (Wolf, 2013; Ma et al., 2019a). Transcriptome helps in identification of transcripts involved in primary and secondary metabolism and their splice variants (Wang et al., 2009). Comparing the levels of differentially expressed genes at different developmental stages or environmental conditions, provide insights into the physiological status of the tissue at a specific time. These data sets also contain information of small RNAs, long non-coding RNAs, and molecular repeats etc., and provide a tentative framework for functional assertion for putative annotations. These data can serve as an important lead for modern pharmaceutical industry toward development of herbal-based medicines.

High-throughput transcriptomic approaches produce extensive data sets that can be applied to identify candidate key genes in specific physiological processes using co-expression networks analysis (Carrera et al., 2009; Windram et al., 2014). On the other hand, targeted sequencing using degenerate primers proves to be economical and enables exhaustive analysis of specific genes. Specific genes exhibiting significant sequence similarity with genes involved in similar biological processes can be amplified by degenerate primers in related organisms (Wei et al., 2003). Functional validation of putative genes using metabolic profiling of flavonoids using gene-insertion mutants and transgenic plants with overexpressing genes could be used to understand the role genes in secondary metabolism. Further, recombinant proteins and in vitro biochemical assays could be used to decipher catalytic activity of the proteins. This “reverse genetics” approach for gene identification is very promising where bioinformatic prediction of candidate genes preceded the experimental analysis.

There have been a limited number of transcriptome-wide studies in orchids to explore and elucidate different aspects of orchid development (Table 1), however, the efforts are not in line with the immense advantage of using transcriptomic techniques to decipher various molecular networks. The therapeutic potential of orchids is closely associated with the intricate maze of secondary metabolism pathways and their by-products is mainly responsible for their diverse therapeutic properties. These pathways are, in turn, under strict control of an array of molecular factors which regulate the synthesis of phytochemicals. A large number of gene families are specifically associated with various biosynthetic pathways. Transcriptomic data emerging from various studies conducted in orchids have been tabulated in Table 1 and it is evident that Illumina sequencing was the most commonly used sequencing method and Trinity was the most common assembler software used. A maximum number of final reads were obtained in Dendrobium officinale (81,284,898; Yuan et al., 2020) and highest number of unigenes were identified in Dendrobium huoshanense (499,190, Zhou et al., 2020). A huge variation was noticed in the total number of unigenes as reported in different plant parts using different techniques. In Dendrobium officinale, the range in the number of unigenes was observed from 2,99,107 (Shen et al., 2017) to 23,131 (Adejobi et al., 2021) as reported from various tissues. Similarly, in Dendrobium catenatum, 23,139 unigenes were reported from stem tissue (Lei et al., 2018) and the number drastically increased to 478,361 in Dendrobium huoshanense when roots and leaves were also included for analysis (Yuan et al., 2018). This can be attributed to specific gene expression in tissues at various stages of growth and development and environmental conditions. In Phalaenopsis amabilis, a comparative number of unigenes were reported, 37,723 and 34,020, from petals and labellum, respectively (Yang et al., 2014), indicating that a similar genetic profile can be seen in tissues at comparable physiological stages. In Anoectochilus roxburghii, 186,865 unigenes were reported from root, stem, and leaves (Chen et al., 2020). Interestingly, different techniques and platforms used for sequencing analysis can also play a role in this variation. Root, stem, and leaf tissues of Dendrobium huoshanense reported 4,99,190 unigenes when the Illumina HiSeq2000 platform was used (Zhou et al., 2020) while 4,78,361 unigenes were identified when Illumina Hiseq 2500 platform was used (Yuan et al., 2018). Hence, it can be concluded that a lot of variation is observed in the transcriptomic data, and hence, the analysis needs to be supported with substantial functional studies.

FUNCTIONAL ANNOTATION OF SECONDARY METABOLISM SPECIFIC GENES

Transcriptomic data can provide a basic lead for functional studies if a unified, systematic, and statistically significant approach is adopted for its assembly and characterization. To scrutinize the functionality of the unigenes identified from the transcriptomic data set, their assessment was carried out against different databases like KEGG, Swissprot, and non-redundant database (Nr; Table 2). The highest similarity of the unigenes was found against the Nr database except in

\(^1\)https://www.ncbi.nlm.nih.gov/
\(^2\)https://www.genome.jp/kegg/
\(^3\)https://www.expasy.org/resources/uniprotkb-swiss-prot
Plant name	Sequencing platform	Assembly	Plant part	Raw reads	Final reads	Total unigenes	References		
Anoectochilus roxburghii	Illumina HiSeq X Ten	Trinity	Roots, Stems, and Leaves	61,226,728	60,425,910	67,559,786	Chen et al., 2020		
	Illumina HiSeq 2000	Trinity v.2.0.6 software	Non-mycorrhizal plant (NM)	65,007,376	64,859,884	66,965,132	Zhang et al., 2020a		
Bletilla striata	Illumina HiSeq 4000	Trinity	Leaves, tubers and roots	270,734,628	–	–	Ma et al., 2021		
Bletilla striata (Thunb.) Reichb. f. varieties	Illumina HiSeq 2000 platform	Trinity	Pseudobulbs	55,632,192	55,492,010	65,007,376	64,859,884	66,965,132	Chen et al., 2021
Calanthe tsoongiana	Illumina HiSeq X Ten	Trinity	Four transitional stages from seed to seedling	592,645,857	577,527,375	73,528	Jiang et al., 2021a		
Cymbidium goeringii	Illumina HiSeq™ 2000 platform	Trinity	Floral bud, Half-flowering, Full flowering stage	161,763,530	159,616,374	85,868	Ramya et al., 2019		
Cymbidium kanran	Illumina HiSeq™ 2,500	Trinity	Buds and flowers	359,645,857	577,527,375	73,528	Jiang et al., 2021a		
Cymbidium longibracteatum	Illumina HiSeq 2000 platform	Trinity	Yellow leaves (YL)	39,557,830	38,356,724	5,536,274	5,503,245,825	Zhou et al., 2018	
			Green leaves (GL)	39,557,830	38,356,724	5,536,274	5,503,245,825	Zhou et al., 2018	
Cymbidium tortisepalum var. longibracteatum cultivars	Illumina HiSeq 2000 platform	Trinity	Green Rhizome (GR)	39,557,830	38,356,724	5,536,274	5,503,245,825	Zhou et al., 2018	
			Yellow Rhizome (YR)	39,557,830	38,356,724	5,536,274	5,503,245,825	Zhou et al., 2018	
Dactylorhiza hatagirea	Illumina GA IIx platform	SOAP denovo-Trans	Leaves (L)	22,009,740	21,263,988	15,917,274	15,456,424	26,868,355	Dhiman et al., 2019
			Shoots (S)	22,009,740	21,263,988	15,917,274	15,456,424	26,868,355	Dhiman et al., 2019
			Tubers (T)	22,009,740	21,263,988	15,917,274	15,456,424	26,868,355	Dhiman et al., 2019
			Stems	22,009,740	21,263,988	15,917,274	15,456,424	26,868,355	Dhiman et al., 2019
Dendrobium catenatum	Illumina HiSeq™ 4000 platform	Trinity	Roots, Stems, and Leaves	476,746,678	444,999,698	499,190	Zhou et al., 2020		
Dendrobium huoshanense	Illumina HiSeq 2000 platform	Trinity	Roots, Stems, and Leaves	736,904,076	716,634,006	478,361	Yuan et al., 2018		
Dendrobium Nestor (Dendrobium parishii × D. anosmum)	Illumina HiSeq™ 4000 platform	Trinity	Flower bud stage (F)	50,047,108	48,759,280	48,759,280	47,538,849	161,228	Cui et al., 2021
			Half bloom stage (H)	50,047,108	48,759,280	48,759,280	47,538,849	161,228	Cui et al., 2021
			Full bloom stage (B)	50,047,108	48,759,280	48,759,280	47,538,849	161,228	Cui et al., 2021
			Stems	50,047,108	48,759,280	48,759,280	47,538,849	161,228	Cui et al., 2021
Dendrobium nobile	Illumina HiSeq 4000 platform	Trinity	–	–	–	–	–		

(Continued)
TABLE 1 | Continued

Plant name	Sequencing platform	Assembly	Plant part	Raw reads	Final reads	Total unigenes	References		
Dendrobium officinale	HiSeq™ 2500 Illumina	–	Roots Control (CK)	83, 206, 690	CK	81,284,898	23,131	Adejobi et al., 2021	
		MeJa treated (MeJa)	82,623,796	MeJa	81,047,188				
		Leaves	–	–	–				
	BGISEQ-500 Trinity		Protocorm like bodies and Leaves	771,499,974	747,574,430	24,927			
	Illumina 4000 platform		Roots, Stems, and Leaves	771,499,974	747,574,430	24,927			
	Illumina HiSeq platform 4000	Trinity 2.4.0	Leaves	–	269,267,462	60,597			
	Illumina HiSeq 2500 platform	Trinity	Roots (R)	R	54,469,054, 71,462,678	54,433,348, 71,35,890	299,107	Shen et al., 2017	
		Stems (S)	S	50,076,260, 64,920,086	50,076,260, 64,826,004				
		Leaves (L)	L	73,647,052, 53,904,216	73,534,024, 53,862,708				
		Flowers (F)	F	38,776,952, 38,669,310	38,736,660, 38,602,508				
454 GS FLX Titanium platform			Stems	553,084	518,223	36,407	Guo et al., 2013		
	Illumina HiSeq™ 2000	Trinity	Leaves and Pseudobulbs	568,756,484	583,154,602	72,797	Zhang et al., 2021		
Gastrodia elata hybrid (Gastrodia elata Bl.f.elata × Gastrodia elata Bl.f.pilifera)	Illumina HiSeq™ 2000		Tuber	20,611,556	20,237,474	34,323	Wang et al., 2020		
Gastrodia elata	BGISEQ-500 platform	Trinity	tuber, stem and flowers	–	–	113,067	Shan et al., 2021		
	454 and Solexa, Sanger sequencing			–	–	121,917	Sedeeek et al., 2013		
Ophrys exaltata, O. sibogodes and O. garganica									
Paphiopedilum armeniacum	Illumina HiSeq™ 2000	Trinity v2.4.0	Capsules	–	–	183,737	Fang et al., 2020		
Paphiopedilum hirsutissimum	Illumina HiSeq™ 2000	Trinity (version: v2.9.0)	Flowers	–	18,236,750–21,697,775	28,805–34,806	Li et al., 2021b		
Phalaenopsis amabilis white cultivar (Baiyuzan)	Illumina HiSeq™ 2500 platform	Trinity	Petals of White (WP)	WP	50,282,202	19,744,124	114,293	Meng et al., 2019	
			cultivar	47,998,340	28,738,568				
			Petals of Purple (PP)	PP	49,944,218	49,091,862			
			cultivar	50,589,170	49,558,168				
			41,232,748	40,475,996					
Phalaenopsis amabilis	Illumina HiSeq™ 2000 system	Trinity	Petals (P)	P	10,734,813	37,723	Yang et al., 2014		
		Labellum (L)	L	16,224,038	34,020				
the case of *Dendrobium huoshanense* where the SwissProt similarity of unigenes was the highest (Zhou et al., 2020). Out of 186,865 unigenes identified in *Anoectochilus roxburghii*, approximately 35, 32, and 47% were annotated using KEGG, SwissProt, and Nr database (Chen et al., 2020). However, only 9,946 out of 73,528 unigenes were annotated by KEGG in *Calanthe tsoongiana* (Jiang et al., 2021a). In *Dendrobium officinale*, the unigenes characterized using SwissProt varied from 12,877 genes (Chen et al., 2019) to 62,695 unigenes (Wang et al., 2021). The variation could be due to the use of different platforms used for sequencing or assembly and due to the type of tissue used in different studies.

TABLE 1 | Continued

Plant name	Sequencing platform	Assembly	Plant part	Raw reads	Final reads	Total unigenes	References		
Red *Phalaenopsis* Dtps. Jiuhbao Red Rose	Illumina HiSeq™ 2000	Trinity software (version trinymaseq,r2012-03-17)	Bud (RB)	–	RB	8,889,080	51,771	Gao et al., 2016	
Yellow *Phalaenopsis* Dtps. Fuller’s Sunset									
Phalaenopsis hybrid: Konggangjini	Illumina HiSeq2000	Trinity	Leaf	118,996,000	79,434,350	21,348 genes	31,708 isoforms	80,525	Xu et al., 2015
Pleione limprichtii	Illumina HiSeq™ 4,000	Trinity	Flower petals and Lips	–	–	4,955,918	–	Mohd-Hairul et al., 2020	
Vanilla planifolia	MiSeq Desktop Sequencer (Illumina)	CLC Genomic Workbench software (Version 6.0)	Tepals	4,955,918	4,826,959	1,678,293	301,459 contigs	Rao et al., 2014	

TABLE 2 | Functional Annotation using KEGG, SwissProt, and non-redundant (Nr) database.

Plant name	KEGG	SwissProt	Nr database	References
Anoectochilus roxburghii	66,542 unigenes	59,736 unigenes	87,781 unigenes	Chen et al., 2020
Calanthe tsoongiana	9,946 unigenes	25,124 unigenes	35,368 unigenes	Jiang et al., 2021a
Cymbidium goeringii	33,417 unigenes	36,911 unigenes	54,640 unigenes	Ramya et al., 2019
Cymbidium longibracteatum	10,723 unigenes	21,297 unigenes	33,487 unigenes	Jiang et al., 2018
Cymbidium tortisepalum var. *longibracteatum*	44,141	44,577	70,576	Jiang et al., 2021b
Dactylorhiza hatagirea	9,130 transcripts	–	–	Dhiman et al., 2019
Dendrobium catenatum	4,203 unigenes	–	–	Lei et al., 2018
Dendrobium huoshanense	112,603 unigenes	225,288 unigenes	140,919 unigenes	Zhou et al., 2020
Dendrobium nobile	108,417 unigenes	101,132 unigenes	196,739 unigenes	Yuan et al., 2018
Dendrobium officinale	18,911 unigenes	48,431 unigenes	56,378 unigenes	Li et al., 2017
Gastrodia elata hybrid (Gastrodia elata *Bl.f.elata* × Gastrodia elata *Bl.f.pilifera*)	8,364 unigenes	19,028 unigenes	24,230 unigenes	Wang et al., 2020
Gastrodia elata	56,585	52,164	71,069	Shan et al., 2021
Ophrys exaltata, O. sphegodes and O. garganica	7,394 transcripts	–	–	Sedeek et al., 2013
Paphiopedilum amnicum	12,141 unigenes	44,893 unigenes	89,289 unigenes	Fang et al., 2020
Phalaenopsis amabilis white cultivar (Ba'iyuzuan)	16,777 unigenes	–	48,071 unigenes	Meng et al., 2019
Red Phalaenopsis Yellow Phalaenopsis hybrid: Konggangjini	5,446 unigenes	19,446 unigenes	27,084 unigenes	Gao et al., 2016
Pleione limprichtii	14,099 unigenes	–	–	Xu et al., 2015
Vanilla planifolia	11,067 unigenes	21,177 unigenes	33,459 unigenes	Zhang et al., 2020b

In *Phalaenopsis* hybrid, the use of different platforms and tissue types could also contribute to the variation in the number of annotated unigenes.
The annotation of genes or transcripts obtained using various servers helped in the characterization of genes based on their functional roles. The KEGG analysis of different studies in association with pathways of secondary metabolism has been summarized in Table 3. KEGG analysis of stem, leaves, and roots revealed the presence of cyanoamino acid metabolism, phenylpropanoid biosynthesis, diterpenoid biosynthesis, flavonoid and flavonol biosynthesis, steroid biosynthesis, and isoflavonoid biosynthesis pathways in A. roxburghii (Chen et al., 2020b). In B. catenatum, related to the MEP pathway through decarboxylation reaction and is regulated by feedback mechanism at both transcriptional and post-translational levels (Hinson et al., 1997) suggested stem-specific accumulation of alkaloids and terpenoids. These secondary metabolites can be grouped into various classes like alkaloids, terpenoids, polyphenols, phenanthrene, benzyln derivatives, etc. Therapeutic effects of different alkaloids especially terpenoid alkaloids have been widely reported in orchids (Sut et al., 2017; Gantait et al., 2021; Ghai et al., 2021). These terpenes alkaloids are formed through the mevalonate (MVA) pathway and methyl-D-erythritol 4-phosphate (MEP) pathway (Figure 2). MVA pathway initiates with acetyl-CoA as a precursor. Acetyl-CoA undergoes a series of catalyization reactions to produce isopentyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP). These IPP units are further processed to form sesquiterpenoids. Meanwhile, the MEP pathway begins with the condensation of pyruvate and D-glyceraldehyde-3-phosphate by 1-Deoxy-D-xylulose-5-phosphate (MEP) pathway (Hinson et al., 1997). The isopentyl pyrophosphate (IPP) units are isomerized into dimethylallyl pyrophosphate (DMAPP) by IPP isomerase which is the initiating molecule in terpenoid biosynthesis. The enzyme, 1-deoxy-D-xylulose-5-phosphate synthase (DXS), is key player in controlling influx into the MEP pathway through decarboxylation reaction and is regulated by feedback mechanism through IPP and DMAPP (Banerjee et al., 2013). This can be corroborated by the higher expression of DXS and the terpenoid enzymes in the inflorescences in Arabidopsis (Carretero-Paulet et al., 2002). This process proceeds to form IPP and DMAPP via multistep reactions catalyzed by a series of enzymes. The MEP and MVA pathways are both linked by an intermediary precursor isopentenyl pyrophosphate. Subsequently, the pathways result in the formation of monoterprenoids, diterpenoids, carotenoids, sesquiterpenoids, and some other metabolites. Sesquiterpene alkaloids are the most abundant types of alkaloids of Dendrobium (Chen et al., 2019). Hsiao et al. (2011) reported the identification of 50 unigenes of the MEP and MVA pathways in Phalaenopsis while in Cymbidium goeringii, 32 unigenes of MVA and 38 unigenes of MEP pathway were identified (Ramya et al., 2019). Forty-six unigenes in Dendrobium huoshanense (Yuan et al., 2018) and 36 in Dendrobium officinale (Shen et al., 2017) related to the MEP and MVA pathway were identified. According to Li et al. (2017), isoprene units obtained through the MEP pathway were responsible for the biosynthesis of dendrobine in Dendrobium nobile. The expression of acetyl-CoA acetyltransferase (AACT), mevalonate diphosphate decarboxylase (MVD), phosphomevalonate kinase (PMK), and Alpha-humulene synthase (TPS21) changes upon inoculation of the orchid with MF23 (Mycena sp.) which results in induction of pathway leading to dendrobine biosynthesis (Li et al., 2017). Besides fungal stimulation, methyl jasmionate (MeJA) treatment of D. officinale also results in increased expression of genes associated with MEP and MVA pathway (Chen et al., 2019). Toh et al. (2017) also studied the fragrant sites in Vanda Mimi Palmer which indirectly points toward the sites of high monoterpenoid production. Higher expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) and 1-deoxysphingolose-5-phosphate synthetase (DXS) was observed in root than in leaf but DXS and 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) were abundant mainly in stems of Dendrobium huoshanense (Yuan et al., 2018). Yuan et al. (2018) suggested stem-specific accumulation of alkaloids in D. huoshanense but leaf-specific accumulation is observed in D. officinale (Shen et al., 2017). A series of enzymes associated with strictosidine were also identified in a study on Dendrobium officinale (Shen et al., 2017). Accumulation of dendrobine, a sesquiterpene alkaloid, was consistently more when the expression of PMK and MVD was high but got reduced as the expression of the aforementioned genes decreased in MF23 infected Dendrobium nobile orchid plant (Li et al., 2017). In the same study, the dendrobine pathway was negatively correlated with the expression of TPS21 but no relation with genes of MEP was observed (Li et al., 2017). Secologanin synthase (SCS) which is essential for the synthesis of secologanin has also been reported to be involved in alkaloid biosynthesis (Guo et al., 2013). Different terpenes are synthesized from isopentenyl diphosphate through two pathways mevalonate pathway and methylerthythritol phosphate pathway. Hsiao et al. (2006) analyzed transcriptomes of Phalaenopsis bellina and Phalaenopsis equestris where genes related to the DXP-geraniol linalool pathway were identified by data mining. In another study, regulation of monoterpene biosynthesis by PbbHLH4 in Phalaenopsis orchid was provided (Chuang et al., 2018). Terpene synthases (TPSs) are responsible for the structure diversity of terpene while cytochromes P450 (CYPs) further modifies the products from TPSs which provide further diversification of terpenes (Tsai et al., 2017).
TABLE 3 | KEGG pathway analysis of secondary metabolism.

Plant name (Reference)	Unigenes/transcripts	Secondary metabolism	Unigenes/transcripts
Pathway	**Unigenes/transcripts**		**Unigenes/transcripts**
Anoectochilus roxburghii (Chen et al., 2020)	66,542 unigenes	Biosynthesis of other secondary metabolites	Root 3,369 unigenes
			Stem 3,302 unigenes
			Leaf 3,280 unigenes
Calanthe tsongiana (Jiang et al., 2021a)	9,946 unigenes in 25 pathways	Anthocyanin biosynthesis 9 unigenes	
		Indole alkaloid biosynthesis 21 unigenes	
		Isoflavonoid biosynthesis 36 unigenes	
		Tropane, piperidine and pyridine alkaloid biosynthesis 50 unigenes	
		Isoquinoline alkaloid biosynthesis 51 unigenes	
		Monoterpenoid biosynthesis 56 unigenes	
		Sesquiterpenoid and triterpenoid biosynthesis 75 unigenes	
		Flavone and flavonol biosynthesis 134 unigenes	
		Diterpenoid biosynthesis 172 unigenes	
		Terpenoid backbone biosynthesis 197 unigenes	
		Flavonoid biosynthesis 236 unigenes	
		Phenylpropanoid biosynthesis 466 unigenes	
		Biosynthesis of secondary metabolites 3,197 unigenes	
		Flavonoid biosynthesis 31 unigenes	
Calanthe tsoongiana	9,946 unigenes in 25 pathways	Biosynthesis of other secondary metabolites	290 unigenes
Cymbidium goeringii (Ramya et al., 2019)	33,417 unigenes	Anthocyanin biosynthesis 9 unigenes	
		Indole alkaloid biosynthesis 21 unigenes	
		Isoflavonoid biosynthesis 36 unigenes	
		Tropane, piperidine and pyridine alkaloid biosynthesis 50 unigenes	
		Isoquinoline alkaloid biosynthesis 51 unigenes	
		Monoterpenoid biosynthesis 56 unigenes	
		Sesquiterpenoid and triterpenoid biosynthesis 75 unigenes	
		Flavone and flavonol biosynthesis 134 unigenes	
		Diterpenoid biosynthesis 172 unigenes	
		Terpenoid backbone biosynthesis 197 unigenes	
		Flavonoid biosynthesis 236 unigenes	
		Phenylpropanoid biosynthesis 466 unigenes	
		Biosynthesis of secondary metabolites 3,197 unigenes	
Dendrobium catenatum (Lai et al., 2018)	4,203 unigenes	Biosynthesis of other secondary metabolites	2,237 unigenes
Dendrobium huoshanense (Zhou et al., 2020)	112,803 unigenes annotated in 131 pathways	Phenylpropanoid biosynthesis 92 unigenes	
	108,417 unigenes annotated to 33 pathways	Flavonoid biosynthesis 39 unigenes	
	18,911 unigenes assigned to 131 pathways	Flavone and flavonol biosynthesis 18 unigenes	
	12,877 genes grouped into 19 secondary level pathways	Anthocyanin biosynthesis 7 genes	
	20,274 unigenes	Biosynthesis of other secondary metabolites	5 unigenes
Dendrobium officinale (Chen et al., 2019)	8,364 unigenes	Phenylpropanoid biosynthesis 92 unigenes	
		Flavonoid biosynthesis 39 unigenes	
		Flavone and flavonol biosynthesis 18 unigenes	
		Tropane, piperidine and pyridine alkaloid biosynthesis 13 unigenes	
		Isoquinoline alkaloid biosynthesis 8 unigenes	
		Anthocyanin biosynthesis 1 unigene	
		Biosynthesis of other secondary metabolites	252 transcripts
Dendrobium officinale (Guo et al., 2013)	7,394 transcripts	Biosynthesis of other secondary metabolites	5 unigenes
Gastrodia elata hybrid (Gastrodia elata Bl.f.elata ×Gastrodia elata Bl.f.pilifera) (Wang et al., 2020)	16,777 unigenes assigned to 129 pathways	Phenylpropanoid synthesis 168 genes	
	16,777 unigenes assigned to 129 pathways	Flavonoid synthesis 39 genes	
	16,777 unigenes assigned to 129 pathways	Flavone and flavonol synthesis 19 genes	
	16,777 unigenes assigned to 129 pathways	Anthocyanin synthesis 7 genes	
	16,777 unigenes assigned to 129 pathways	Biosynthesis of other secondary metabolites	328 genes
Gastrodia elata hybrid (Gastrodia elata Bl.f.elata ×Gastrodia elata Bl.f.pilifera) (Wang et al., 2020)	8,364 unigenes	Phenylpropanoid biosynthesis 92 unigenes	
	8,364 unigenes	Flavonoid biosynthesis 39 unigenes	
	8,364 unigenes	Flavone and flavonol biosynthesis 18 unigenes	
	8,364 unigenes	Anthocyanin biosynthesis 1 unigene	
	8,364 unigenes	Biosynthesis of other secondary metabolites	252 transcripts
Ophrys exaltata	7,394 transcripts	Flavone and Flavonol biosynthesis 13 genes	
O. sphegodes	7,394 transcripts	Isoquinoline alkaloid biosynthesis 11 genes	
O. garganica (Sadeek et al., 2013)	7,394 transcripts	Phenylpropanoid biosynthesis 49 genes	
Ophrys exaltata	7,394 transcripts	Flavonoid biosynthesis 21 genes	
O. sphegodes	7,394 transcripts	Anthocyanin biosynthesis 1 gene	
O. garganica (Sadeek et al., 2013)	7,394 transcripts	Flavone and Flavonol biosynthesis 13 genes	
Phalaenopsis amabilis white cultivar (Baiyuzan)	5,446 unigenes	Isoquinoline alkaloid biosynthesis 11 genes	
Phalaenopsis amabilis purple cultivar (Baolonghuanghou) (Meng et al., 2019)	5,446 unigenes	Phenylpropanoid biosynthesis 49 genes	
Phalaenopsis amabilis white cultivar (Baiyuzan)	5,446 unigenes	Flavonoid biosynthesis 21 genes	
Phalaenopsis amabilis purple cultivar (Baolonghuanghou) (Meng et al., 2019)	5,446 unigenes	Anthocyanin biosynthesis 1 gene	
Phalaenopsis amabilis white cultivar (Baiyuzan)	5,446 unigenes	Flavone and Flavonol biosynthesis 13 genes	
Phalaenopsis amabilis purple cultivar (Baolonghuanghou) (Meng et al., 2019)	5,446 unigenes	Isoquinoline alkaloid biosynthesis 11 genes	
(Continued)
TABLE 3 | Continued

Plant name (Reference)	Unigenes/transcripts	Secondary metabolism
Phalaenopsis hybrid: Konggangjinti (Xu et al., 2015)	14,099 unigenes assigned to 123 pathways	Biosynthesis of secondary metabolites 791 unigenes Terpenoid backbone biosynthesis 55 unigenes Indole alkaloid biosynthesis 1 unigene Monoterpenoid biosynthesis 1 unigene Diterpenoid biosynthesis 20 unigenes Sesquiterpenoid and triterpenoid biosynthesis 4 unigenes Phenylpropanoid biosynthesis 75 unigenes Flavonoid biosynthesis 34 unigenes Flavone and flavonol biosynthesis 15 unigenes Isoquoinoline alkaloid biosynthesis 9 unigenes Tropane, piperidine and pyridine alkaloid biosynthesis 20 unigenes
Pleione limprichtii (Zhang et al, 2020b)	11,067 unigenes mapped onto 131 pathways	Biosynthesis of secondary metabolites 1,294 unigenes Phenylpropanoid biosynthesis 167 unigenes Terpenoid backbone biosynthesis 53 unigenes Flavonoid biosynthesis 36 unigenes Diterpenoid biosynthesis 35 unigenes Isoquoinoline alkaloid biosynthesis 28 unigenes Tropane, piperidine and pyridine alkaloid biosynthesis 24 unigenes Flavone and flavonol biosynthesis 7 unigenes Sesquiterpenoid and triterpenoid biosynthesis 5 unigenes Anthocyanin biosynthesis 1 unigene

D. huoshanense, 229 unigenes of the P450 superfamily were identified (Yuan et al., 2018) but in *D. officinale*, 236 unigenes associated with P450 were mined (Shen et al., 2017). Strictosidine synthase had higher expression levels in protocorm like bodies (PLBs) than in leaves suggesting the higher content of total alkaloid is related to the higher amount of precursor strictosidine produced in *D. officinale* (Wang et al., 2021). The positive stimulation of either MEP or MVA pathway could eventually lead to an increase in the production of alkaloids which could eventually increase the therapeutic potential of the orchid plant.

Besides alkaloids, the role of flavonoids as antioxidant, anti-cancer, and anti-aging agents has also been highlighted (Middleton et al., 2000). The flavonoids are compounds with bridged phenyl rings which are synthesized through the phenylpropanoid pathway. Flavonoid also provides resistance against disease and insects in plants and enable the plant for adapting to adverse environmental conditions with the help of increased production in secondary metabolites (Campos and Hamm, 2000; Yuan et al., 2020). *Anoectochilus roxburghii* is rich in flavonoid compounds, such as dihydroquercetin, quercetin, kaempferol, and myricetin (Ye et al., 2017), which are responsible for the drug activity of this orchid plant (Chen et al., 2020). Lei et al. (2018) reported about C-glycosides type flavonoids are more abundant than O-glycosides in *Dendrobium*. The metabolic analysis of *Anoectochilus roxburghii* revealed an abundance of flavonoids in leaves than in roots or stems (Chen et al., 2020). The by-products of the shikimate pathway are the precursor for a large assortment of secondary metabolites (Tzn et al., 2012; Takayuki et al., 2013). It is a multistep process that starts with the condensation of phosphoenolpyruvate (PEP) and erythrose 4-phosphate (E4P; Figure 3). The intermediate chorismite after further processing leads to the independent formation of aromatic amino acids, tryptophan, tyrosine, phenylalanine. Phenylalanine is the precursor for the Phenylpropanoid pathway which ultimately results in the synthesis of flavonoids. PAL is the most important rate limiting fulcram enzyme that links primary metabolism with secondary metabolism (Vogt, 2010; Fraser and Chapple, 2011). A positive correlation between the PAL enzyme activity and accumulation of phenylpropanoid compounds have been widely reported (Bate et al., 1994; Vogt, 2010). Carbon flux into different branches of flavonoid synthesis is regulated by flavonol synthase (FLS; Davies et al., 2003). In *Arabidopsis*, activity of hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferase (HCT) led to maneuvering of the metabolic flux into flavonoids through Chalcone synthase (CHS) activity (Besseau et al., 2007). Additionally, there are several transcription factors that regulate the gene expression which ultimately controls the metabolic flux. The expression of regulatory molecules like MYB is inversely proportional to lignin production, thus facilitating the metabolic flux toward flavonoid production (Fornale et al., 2010). Similarly, elicitors like salicylic acid and methyl jasmonate positively diverts the metabolic flux toward increased production of secondary metabolites (Creelman and Mullet, 1997; Kessler and Baldwin, 2002). Phenylalanine is catalyzed by phenylalanine ammonia lyase (PAL) to form cinnamate which is converted to p-coumaroyl-CoA by transcinnamate 4-monoxygenase (C4H) and 4-coumaroyl-CoA.
synthase (4CL). *p*-coumaroyl-CoA is further processed by series of different enzymes to form flavonoids, flavonols, flavanones, and anthocyanins.

A total of 15 unigenes encoding seven enzymes of the flavonoid pathway were identified from *D. huoshanense* (Zhou et al., 2020) while 31 and 19 unigenes in *D. catenatum* (Lei et al., 2018) and *Pleione limprichtii* (Zhang et al., 2020b). In a study on *Anoectochilus roxburghii*, inoculation with *Ceratobasidium* sp. AR2 increases the flavonoid content of the plant by upregulating PAL, *chalcone synthase* (*CHS*), 4CL and downregulating of *cinnamate 4-hydroxylase* (*C4H*), and *chalcone isomerase* (*CHI*) genes (Zhang et al., 2020a). In a new cultivar of *Cymbidium longibracteatum* with yellow leaves and tubers, seven unigenes related to flavonoid biosynthesis were upregulated (Jiang et al., 2018). Similarly, expression levels of *CHS*, *CHI*, *dihydroflavonol 4-reductase* (*DFR*), *anthocyanidin synthase*
ANS1, and UDP-glucose: flavonoid-3-O-glucosyltransferase (UFGT) were comparatively higher in red, corroborating with higher anthocyanin content in the red stems of D. candidum (Jia et al., 2021). Similarly, most of the genes involved in anthocyanin biosynthesis were upregulated during floral development of Dendrobium nestor (Cui et al., 2021). Expression of PAL and HMG-CoA reductase was upregulated in the abaxial surface of the tissue of Vanda Mimi Palmer (Toh et al., 2017). The rate of flavonoid production in plants was reported to be controlled by CHS with associated CHI. The higher expression levels of CHS, CHI, flavonol synthase (FLS), DFR, and Anthocyanidin reductase (ANR) in roots than in stems and leaves of A. roxburghii were reported as well (Chen et al., 2020). Upregulation of LAR1, DFR3, flavanone 3-hydroxylase (F3H), CHS1, and CHS2 in leaves facilitates the copious accumulation of flavonoids in leaves of Dendrobium officinale (Yuan et al., 2020). In the same study, Dihydroflavonol reductase (DFR), which is responsible for the conversion of flavonoids into anthocyanin biosynthesis, has higher expression in stems and leaves. MeJA treatment in D. officinale lead to the accumulation of bibenzyl (erianin and gigantol) increased due to upregulation of PAL, 4CL, C4H, and CYP450 (Adejobi et al., 2021). During explant browning in Phalaenopsis sp., higher expression of PhPAL, PhCHS, and Ph4CL was observed which suggest the role of anthocyanin in the early stages of tissue browning (Xu et al., 2015). Similarly, upregulated expression of Pa4CL, PaANS, PaF3H, and PaDFR was detected in purple petal cultivar of Phalaenopsis amabilis (Meng et al., 2019). The study on Phalaenopsis did not identify any DEGs related to CHS, ANS, DFR, and flavonoid-3′-hydroxylase (F3′H) in white petals which could be due to either technical limitations or due to absence of anthocyanin pathway (Yang et al., 2014). Similarly, no transcript of flavonoid-3′,5′-hydroxylase (F3′5′H) was identified from the transcriptome of Ophrys even though 61 transcripts of anthocyanins pathway were mined (Sedeek et al., 2013). Expression of PlCHS, PlCHI, and PlFLS was upregulated in white petals but colored petals had higher expression of PlF3′H, PlDFR, and PlANS in Pleione limprichtii (Zhang et al., 2020b). PAL, 4CL, and C4H were upregulated in 8 and 10 weeks old seeds of Vanilla planifolia (Rao et al., 2014). Expression of trans-resveratrol-di-O-methyltransferase-like (ROMT) encoding gene, responsible for resveratrol biosynthesis, was high in tubers of Dactylorhiza hatagirea (Dhiman et al., 2019). It positively correlates with the fact that tubers of this plant are used as anti-inflammatory, anticarcinogenic, and as a cardioprotective agent. Higher expression of ROMT correlated with the abundant quantity of resveratrol and stilbenes (Dhiman et al., 2019). The role of caffeic acid, coumaric acid, and Caffeoyl...
CoA in the synthesis of resveratrol and stilbenes has also been pointed out in the same study. Genes associated with flavonoid pathways were reported to be regulated by UDP-glycosyltransferase and cytochrome P450 (Liu et al., 2013). DcDT8, a bHLH transcription factor in D. candidum, regulated the anthocyanin production by binding to the promoter region of DcF3′H and DcUFGT (Jia et al., 2021). The above review asserts that transcriptomic approaches can serve as a boon for gene discovery, functional annotation, and expression profiling in non-model organisms.

CONCLUSION

Orchids grow in a variety of habits and habitats mainly owing to the presence of an array of unique secondary metabolites which help these plants sustain the stressful conditions. Therefore, these plants have emerged as important source for bioprospecting following traditional approaches. Omics technology, on the other hand, offer great potential for analysis of the complete metabolic pathways and provides detailed insights to gene function for drug discovery and other therapeutic interventions. The present study is a comprehensive analysis of transcriptomes more than 30 orchids mainly focusing on the alkaloids and flavonoids pathways. It can form the basis of an effective resource for the functional studies on tapping the immense potential of unique orchid secondary metabolites to facilitate development of novel therapeutic products from these plants.

AUTHOR CONTRIBUTIONS

JS conceptualized the work. DG and AK performed the analysis and prepared the original draft. PK, SP, and JS critically reviewed and edited the draft. All the authors have read and approved the final version.

ACKNOWLEDGMENTS

DG is grateful to Council of Scientific and Industrial Research for Senior Research Fellowship (File No. 09/135(0809)/2018-EMR-I). AK is thankful to Department of Science and Technology (DST) for INSPIRE Fellowship for Research Students (File No. DST/INSPIRE/03/2021/002638). JS is thankful for partial financial support received from Department of Science and Technology, Government of India under Promotion of University Research and Scientific Excellence (PURSE) grant scheme. Authors are thankful to Jagdeep Verma for the photographs of orchid plants.

REFERENCES

Adejobi, O. I. I., Guan, J., Yang, L., Hu, J. M., Yu, A., Muraguri, S., et al. (2021). Transcriptomic analyses shed light on critical genes associated with benzyl biosynthesis in Dendrobium officinale. Plan. Theory 10:633. doi: 10.3390/plants10040633
Banerjee, A., Wu, Y., Banerjee, R., Li, Y., Yan, H., and Sharkey, T. D. (2013). Feedback inhibition of deoxy-d-xylulose-5-phosphate synthase regulates the methylenecyclopropane 4-phosphate pathway. J. Biol. Chem. 288, 16926–16936. doi: 10.1074/jbc.M113.464636
Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., et al. (2012). SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477. doi: 10.1089/cmb.2012.0021
Bao, Q., Qian, L., Gong, C., and Shen, X. (2017). Immune-enhancing activity of polysaccharides from Gastrodia elata. J. Food Process. Preserv. 41:e13016. doi: 10.1111/jfpp.13016
Bate, N. J., Orr, J., Ni, W., Meromi, A., Nadler-Hassar, T., Doerner, P. W., et al. (1994). Quantitative relationship between phenylalanine ammonia-lyase levels and phenylpropanoid accumulation in transgenic tobacco identifies a rate-determining step in natural product synthesis. Proc. Natl. Acad. Sci. U. S. A. 91, 7608–7612. doi: 10.1073/pnas.91.16.7608
Besseau, S., Hoffmann, L., Geoffroy, P., Lapierre, C., Pollet, B., and Legrand, M. (2007). Flavonoid accumulation in Arabidopsis repressed in lignin synthesis affects asexual transport and plant growth. Plant Cell 19, 148–162. doi: 10.1105/tpc.106.044495
Bulpitt, C. J., Li, Y., Bulpitt, P. F., and Wang, J. J. (2007). The use of orchids in Chinese medicine. J. R. Soc. Med. 100, 558–563. doi: 10.1177/01407600710012014
Burkill, I. H. (1935). A Dictionary of the Economic Products of the Malay Peninsula, Vol. II. London: Crown Agents.
Campos, E. G., and Hamdan, F. E. (2000). Cloning of the chaperolin t-complex polypeptide 1 gene from Schistosoma mansoni and studies of its expression levels under heat shock and oxidative stress. Parasitol. Res. 86, 253–258. doi: 10.1007/s004360050039
Carrera, J., Rodrigo, G., Jaramillo, A., and Elena, S. F. (2009). Reverse-engineering the Arabidopsis thaliana transcriptional network under changing environmental conditions. Genome Biol. 10, R96–R15. doi: 10.1186/gb-2009-10-9-96
Carretero-Paulet, L., Ahumada, I., Cunillera, N., Rodriguez-Concepcion, M., Ferrer, A., Boronat, A., et al. (2002). Expression and molecular analysis of the Arabidopsis DXR gene encoding 1-deoxy-D-xylulose 5-phosphate reductoisomerase, the first committed enzyme of the 2-C-methyl-D-erythritol 4-phosphate pathway. Plant Physiol. 129, 1581–1591. doi: 10.1104/pp.003798
Chauhan, N. S. (1990). Medicinal orchids of Himachal Pradesh. J. Orchid Soc. India. 4, 99–105.
Chawla, A. S., Sharma, A. K., Handa, S. S., and Dhar, K. L. (1992). Chemical studies and anti-inflammatory activity of Vanda roxburghii roots. Indian J. Pharm. Sci. 54, 159–161.
Chen, Y., Pan, W., Jin, S., and Lin, S. (2020). Combined metabolomic and transcriptomic analysis reveals key candidate genes involved in the regulation of flavonoid accumulation in Anoectochilus roxburghii. Process Biochem. 101, 339–351. doi: 10.1016/j.procbio.2020.01.004
Chen, Y., Wang, Y., Lyu, P., Chen, L., Shen, C., and Sun, C. (2019). Comparative transcriptomic analysis reveal the regulation mechanism underlying MeJA-induced accumulation of alkaloids in Dendrobium officinale. J. Plant Res. 132, 419–429. doi: 10.1007/s10265-019-01099-6
Chen, J., Zhu, F., Liu, L., Yi, L., Dai, Y., Chen, S., et al. (2021). Integrative analyses of transcriptome and metabolome shed light on the regulation of secondary metabolites in pseudobulbs of two Bletilla striata (Thunb.) Reichb. f. varieties. J. Appl. Res. Med. Aromat. Plants 293:110738. doi: 10.1016/j.aprmat.2021.110738
Choukarya, R., Choursia, A., and Rathi, J. (2019). In vivo and in vitro antioxidant activity of hydroalcoholic extract of Dactylorhiza hatagirea roots: an evaluation of possible phytoconstituents. J. Drug Deliv. Ther. 9, 76–81. doi: 10.22270/jddt.v9i6.s3752
Chuang, Y., Huang, H., Tsai, W., Chen, W., and Chen, H. (2018). PbHHL4 regulates floral monoterpane biosynthesis in Phalaenopsis orchids. J. Exp. Bot. 69, 4363–4377. doi: 10.1093/jxb/ery246
Creelman, R. A., and Mullet, J. E. (1997). Biosynthesis and action of jasmonates in Arabidopsis thaliana. Annu. Rev. Plant Biol. 48, 355–381. doi: 10.1146/annurev.arplant.48.1.355
Ghai et al. Comparative Transcriptome Analysis in Orchids... DOI: http://dx.doi.org/10.1007/s12870-021-03288-9

Song, J. L., Kang, J. Y., Yong, H., Kim, Y. C., and Moon, A. (2012). Denbinobin, a phenanthrene from Dendrobium nobile, inhibits invasion and induces apoptosis in SNU-484 human gastric cancer cells. Oncol. Rep. 27, 813–818. DOI: 10.3892/or.2011.1551

Sut, S., Maggi, F., and DallAcqua, S. (2017). Bioactive secondary metabolites from orchids (Orchidaceae). Chem. Biodivers. 14, 1700172. DOI: 10.1002/cbdv.201700172

Takayuki, T., Mutsuimi, W., Rainer, H., and Fernie, A. R. (2013). Shikimate and phenylalanine biosynthesis in the green lineage. Front. Plant Sci. 4:62. DOI: 10.3389/fpls.2013.00062

Teoh, E. S. (2016). Medicinal Orchids of Asia. Cham: Springer.

Teoh, E. S. (2019). Orchids as Aphrodisiac, Medicine or Food. Cham: Springer.

Toh, C., Mohd-Hairul, A. R., Ain, N. M., Nasamivayam, P. G., Ro, G., Abdullah, N. A. P., et al. (2017). Floral morphomicroscopy and transcriptome analyses of a fragrant Vandaceous orchid, Vanda Mimi palmer, for its fragrance production sites. BMC. Res. Notes 10:554. DOI: 10.1186/s13104-017-2872-6

Tsi, W. C., Dievart, A., Hsu, C. C., Hsiao, Y. Y., Chou, S. Y., Huang, H., et al. (2017). Post genomics era for orchid research. Bot. Stud. 22, 1–22. DOI: 10.3390/jims22136947

Tzin, V., Malikys, S., Zvi, M. M. B., Bedair, M., Sumner, L., Aharoni, A., et al. (2012). Expression of a bacterial feedback-inhibitive 3-deoxy-d-arabinoheptulosonate 7-phosphate synthase of the shikimate pathway in Arabidopsis elucidates potential metabolic bottlenecks between primary and secondary metabolism. New Phytol. 194, 430–439. DOI: 10.1111/nph.12052.x

Vij, S. P., Verma, J., and Kumar, S. C. (2013). Orchids of Himalach Pradesh. Blishen Singh Mahendra Pal Singh. Dhradun.
Yang, Y., Wang, J., Ma, Z., Sun, G., and Zhang, C. (2014). De novo sequencing and comparative transcriptome analysis of white petals and red labella in *Phalaenopsis* for discovery of genes related to flower color and floral differentiation. *Acta Soc. Bot. Pol.* 83, 191–199. doi: 10.5586/asbp.2014.023

Ye, S., Zhao, Q., and Zhang, A. (2017). *Anoectochilus roxburghii*: a review of its phytochemistry, pharmacology, and clinical applications. *J. Ethnopharmacol.* 209, 184–202. doi: 10.1016/j.jep.2017.07.032

Yuan, Y., Yu, M., Jia, Z., Song, X., Liang, Y., and Zhang, J. (2018). Analysis of *Dendrobium huoshanense* transcriptome unveils putative genes associated with active ingredients synthesis. *BMC Genomics* 19:978. doi: 10.1186/s12864-018-5305-6

Zhebino, D. R., and Birney, E. (2008). Velvet: algorithms for de novo short read assembly using de Bruijn graphs. *Genome Res.* 18, 821–829. doi: 10.1101/gr.074492.107

Zhang, Y., Cai, J., Ruan, H., Pi, H., and Wu, J. (2007). Antihyperglycemic activity of kinsenoside, a high yielding constituent from *Anoectochilus roxburghii* in streptozotocin diabetic rats. *J. Ethnopharmacol.* 114, 141–145. doi: 10.1016/j.jep.2007.05.022

Zhang, C., Chen, J., Huang, W., Song, X., and Niu, J. (2021a). Transcriptomics and metabolomics reveal purine and phenylpropanoid metabolism response to drought stress in *Dendrobium sinense*, an endemic orchid species in Hainan Island. *Front. Physiol.* 12:692702. doi: 10.3389/fphys.2021.692702

Zhang, Y., Li, Y., Chen, X., Meng, Z., and Guo, S. (2020a). Combined metabolome and transcriptome analyses reveal the effects of mycorrhizal fungus *Ceratobasidium* sp. AR2 on the flavonoid accumulation in *Anoectochilus roxburghii* during different growth stages. *Int. J. Mol. Sci.* 21:564. doi: 10.3390/ijms21020564

Zhang, M., Yu, Z., Zeng, D., Si, C., Zhao, C., Wang, H., et al. (2021b). Transcriptome and metabolome reveal salt-stress responses of leaf tissues from *Dendrobium officinale*. *Biomol. Ther.* 11:736. doi: 10.3390/biom11050736

Zhang, Y., Zhang, L., Liu, J., Liang, J., Si, J., and Wu, S. (2017). *Dendrobium officinale* leaves as a new antioxidant source. *J. Funct. Foods* 37, 400–415. doi: 10.1016/j.jff.2017.08.006

Zhang, Y., Zhou, T., Dai, Z., Dai, X., Li, W., Cao, M., et al. (2020b). Comparative transcriptomics provides insight into floral color polymorphism in a *Pleione limprichtii* orchid population. *Int. J. Mol. Sci.* 21:247, doi: 10.3390/ijms21010247

Zhang, C., Liu, Q., Halaweish, F., Shao, B., Ye, Y., and Zhao, W. (2003). Copacamphe, picrotoxane, and alloaromadendrane sesquiterpene glycosides and phenolic glycosides from *Dendrobium moniliforme*. *J. Nat. Prod.* 66, 1140–1143. doi: 10.1021/np0301801

Zhou, P., Pu, T., Gui, C., Zhang, X., and Gong, L. (2020). Transcriptome analysis reveals biosynthesis of important bioactive constituents and mechanism of stem formation of *Dendrobium huoshanense*. *Sci. Rep.* 10:2857. doi: 10.1038/s41598-020-59737-2

Zhou, Z., Ying, Z., Wu, Z., Yang, Y., Fu, S., Xu, W., et al. (2021). Anthocyanin genes involved in the flower coloration mechanisms of *cymbidium kanran*. *Front. Plant Sci.* 12:737815. doi: 10.3389/fpls.2021.737815

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Ghai, Kaur, Kahlon, Pawar and Sembi. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.