Measurement of the radiative neutron capture cross section of 206Pb and its astrophysical implications

C. Domingo-Pardo,1,2,3 U. Abbondanno,3 G. Aerts,4 H. Álvarez,5 F. Alvarez-Velarde,6 S. Andriamonje,4 J. Andrzejewski,7 P. Assimakopoulos,8 L. Audouin,9 G. Badurek,9 P. Baumann,10 F. Becvář,11 E. Berthoumieux,4 S. Bisterzo,12,1 F. Calviño,13 M. Calvi,14 D. Cano-Ott,6 R. Capote,15,16 C. Carrapiço,17 P. Cenni,18 V. Chepel,19 E. Chiaveri,19 N. Colonna,20 G. Cortes,13 A. Couture,21 J. Cox,21 M. Dahlflors,18 S. David,10 I. Dillman,1 R. Dolfini,22 W. Dridi,23 I. Duran,5 C. Eleftheriadis,23 M. Embid-Segura,6 L. Ferrant,24 A. Ferrari,18 R. Ferreira-Marques,19 L. Fitzpatrick,18 H. Frais-Koelbl,25 K. Fuji,3 W. Furman,26 R. Gallino,12 I. Gonzalez-Romero,6 A. Goverdovskii,27 F. Gramegna,14 E. Griesmayer,25 C. Guerrero,6 F. Guinea,4 B. Haas,28 R. Haight,29 M. Hei,3 A. Herrera-Martinez,18 M. Ishiguro,30 M. Isac,24 E. Jericha,9 F. Käppeler,1 Y. Kadi,18 D. Karadimos,8 D. Karamanis,8 M. Kerveno,10 V. Kletserov,27,18 P. Koehler,31 V. Konovalov,26,18 E. Kossionides,32 M. Krtíčka,19 C. Lamboudis,23 H. Lee,9 A. Lindote,19 I. Lopes,19 M. Lozano,16 S. Lukic,10 J. Marganiec,7 S. Marrone,20 C. Massimi,33 P. Mastinu,14 A. Mengoni,34,18 P.M. Milazzo,3 C. Moreau,3 M. Mosconi,1 F. Neves,19 H. Oberhummer,9 M. Oshima,35 S. O'Brien,21 J. Pancin,4 C. Papachristodoulou,8 C. Papadopoulos,36 C. Paradela,5 N. Patronis,8 A. Pavlik,37 P. Pavlopoulos,38 L. Perrot,4 R. Plag,1 A. Plompen,39 A. Plompen,39 A. Poch,13 C. Pretel,13 J. Quesada,10 J. Rauscher,29 M. Rosetti,21 C. Ruíz,22 G. Rudolf,10 P. Rullhusen,23 J. Salgado,17 L. Sarchiapone,26 C. Sarti,36 C. Shen,19 I. Sostero,23 C. Stephan,24 G. Tagliente,20 J.L. Tain,2 L. Tassan-Got,24 L. Tavora,17 R. Terlizzi,20 G. Vannini,33 P. Vaz,17 A. Ventura,41 D. Villamarín,9 M.C. Vincente,6 V. Vlachoudis,18 R. Vlastou,36 F. Voss,1 S. Walter,1 H. Wendler,18 M. Wiescher,21 and K. Wissink1

The n_TOF Collaboration

1Forschungszentrum Karlsruhe GmbH (FZK), Institut für Kernphysik, Germany
2Instituto de Física Corpuscular, CSIC-Universidad de Valencia, Spain
3Istituto Nazionale di Fisica Nucleare (INFN), Trieste, Italy
4CEA/Saclay - DSM/DAPNIA, Gif-sur-Yvette, France
5Universidade de Santiago de Compostela, Spain
6Centro de Investigaciones Energéticas Medioambientales y Tecnologicas, Madrid, Spain
7University of Lodz, Lodz, Poland
8University of Ioannina, Greece
9Atominstitut der Österreichischen Universitäten, Technische Universität Wien, Austria
10Centre National de la Recherche Scientifique/IN2P3 - IReS, Strasbourg, France
11Charles University, Prague, Czech Republic
12Dipartimento di Fisica Generale, Università di Torino, Italy
13Universitat Politècnica de Catalunya, Barcelona, Spain
14Istituto Nazionale di Fisica Nucleare (INFN), Laboratori Nazionali di Legnaro, Italy
15International Atomic Energy Agency, NAPC/Nuclear Data Section, Vienna, Austria
16Universidad de Sevilla, Spain
17Istituto Tecnológico e Nuclear (ITN), Lisbon, Portugal
18CERN, Geneva, Switzerland
19LIP - Coimbra & Departamento de Física da Universidade de Coimbra, Portugal
20Istituto Nazionale di Fisica Nucleare (INFN), Bari, Italy
21University of Notre Dame, Notre Dame, USA
22Universidad de los Andes, Bogotá, Colombia
23Aristotle University of Thessaloniki, Greece
24Centre National de la Recherche Scientifique/IN2P3 - IPN, Orsay, France
25Fachhochschule Wiener Neustadt, Wiener Neustadt, Austria
26Joint Institute for Nuclear Research, Frank Laboratory of Neutron Physics, Dubna, Russia
27Institute of Physics and Power Engineering, Kaluga region, Obninsk, Russia
28Centre National de la Recherche Scientifique/IN2P3 - CENBG, Bordeaux, France
29Los Alamos National Laboratory, New Mexico, USA
30Tokyo Institute of Technology, Tokyo, Japan
31Oak Ridge National Laboratory, Physics Division, Oak Ridge, USA
32NCSR, Athens, Greece
33Dipartimento di Fisica, Università di Bologna, and Sezione INFN di Bologna, Italy
34International Atomic Energy Agency (IAEA), NAPC/Nuclear Data Section, Vienna, Austria
35Japan Atomic Energy Research Institute, Tokai-mura, Japan
36National Technical University of Athens, Greece
37Institut für Isotopenforschung und Kernphysik, Universität Wien, Austria
38Pôle Universitaire Léonard de Vinci, Paris La Défense, France

APS/123-QED
The (n,γ) cross section of ^{206}Pb has been measured at the CERN n_TOF facility with high resolution in the energy range from 1 eV to 620 keV by using two optimized C$_6$D$_6$ detectors. In the investigated energy interval about 130 resonances could be observed, from which 61 had enough statistics to be reliably analyzed via the R-matrix analysis code SAMMY. Experimental uncertainties were minimized, in particular with respect to (i) angular distribution effects of the prompt capture γ-rays, and to (ii) the TOF-dependent background due to sample-scattered neutrons. Other background components were addressed by background measurements with an enriched ^{208}Pb sample. The effect of the lower energy cutoff in the pulse height spectra of the C$_6$D$_6$ detectors was carefully corrected via Monte Carlo simulations. Compared to previous ^{206}Pb values, the Maxwellian averaged capture cross sections derived from these data are about 20% and 9% lower at thermal energies of 5 keV and 30 keV, respectively. These new results have a direct impact on the s-process abundance of ^{206}Pb, which represents an important test for the interpretation of the cosmic clock based on the decay of ^{238}U.

PACS numbers: 25.40.Lw, 27.80.+w, 97.10.Cv

Keywords: Neutron capture cross sections; Nuclear astrophysics; Pulse height weighting technique; C$_6$D$_6$ scintillation detectors; Monte Carlo simulations

I. INTRODUCTION

Similar to the majority of the stable isotopes beyond iron, $^{206,207,208}\text{Pb}$ and ^{209}Bi are synthesized by the rapid (r-) and slow (s-) neutron capture processes. However, this mass region is particularly interesting because the r-process abundances are dominated by the decay of the short lived α-unstable transbismuth isotopes ^{210}Bi [1]. This feature provides an important consistency check for the r-process abundance calculations in the actinide region, since the integrated r residuals are constrained by the difference between the solar abundance values and the respective s-process components. Reliable r-process calculations are required for the interpretation of the observed Th and U abundances in the ultra metal-poor (UMP) stars of the Galactic halo. Since these stars are considered to be as old as the Galaxy, the observed Th and U abundances can be used as cosmo-chronometers, provided the original Th and U abundances are inferred from r-process models. This dating mechanism has the advantage of being independent of the yet uncertain r-process site $^{[1,2,3]}$.

Apart from its relevance for establishing the basic constraints for the r-process chronometry in general, ^{206}Pb contains also dating information in itself. The $^{206}\text{Pb}/^{238}\text{U}$ cosmochronometer was first introduced by Clayton in 1964 [4]. The ^{238}U produced by the r-process decays with a half life of $t_{1/2} = 4.5 \times 10^9$ yr over a chain of α and β decays ending at ^{206}Pb. Therefore, its radiogenic abundance component, N^{206}_{c}, can be used to constrain the age of the parent isotope ^{238}U, and hence the age (Δr) of the r-process. Unlike the more direct r-process abundance predictions derived from the Th and U abundances in UMP stars, this procedure requires a Galactic evolution model, which describes the supernova rate or the frequency of the r-process events $^{[4]}$. The drawback of this clock arises from the difficulty to isolate the cosmo-radiogenic component of ^{206}Pb accurately enough from the additional abundance components.

Apart from these astrophysical aspects, the neutron capture cross section of ^{206}Pb is also of importance for the design of fast reactor systems based on a Pb/Bi spallation source. Because 24.1% of natural lead consists of ^{206}Pb, its (n,γ) cross section influences the neutron balance of the reactor $^{[5]}$.

There have been several measurements of the $^{206}\text{Pb}(n,\gamma)$ cross section, which show discrepancies that are difficult to understand (see Sec. IV A). The aim of this work is to perform a new independent measurement with higher accuracy and in this way to determine the s-process contribution to the ^{206}Pb abundance, N^{206}_s, more reliably.

In fact, the s-process abundance of this isotope is almost completely determined by the stellar (n,γ) cross section, nearly independent of the stellar model used $^{[6]}$. Therefore, the uncertainty of N^{206}_s arises mostly from the cross section uncertainty.

Potential sources of systematic error have been substantially reduced in the present measurement, which was performed at the CERN n_TOF installation. The new setup, and in particular the detectors themselves, were optimized for very low neutron sensitivity. Furthermore, the detectors were mounted at $\sim 125^\circ$ with respect to the incident neutron beam in order to minimize the correction for angular distribution effects. The experimental details are presented in Sec. IIII followed by the adopted data analysis procedures and an evaluation of the various systematic uncertainties in Sec. IIII. The deduced resonance parameters and the corresponding Maxwellian averaged capture cross sections in the stellar temperature

*Corresponding author. E-mail: cesar.domingo.pardo@cern.ch
regime are presented in Sec. IV. Based on these new data, first astrophysical implications for the s-process abundance of ^{206}Pb are discussed in Sec. V.

II. MEASUREMENT

The time-of-flight (TOF) measurement was performed at the CERN α-TOF installation [8] using a set of two C$_6$D$_6$ detectors. Neutrons were produced by a 20 GeV proton beam on a lead spallation target. The spallation source was surrounded by a 6 cm thick water layer, which served as a coolant and as a moderator for the initially fast neutron spectrum. The beam was characterized by intense bunches of (3 to 7)$\times 10^{12}$ protons, a width of 6 ns (rms), and a repetition rate of only 0.4 Hz. This extremely low duty-cycle allows one to perform (n, γ) measurements over a broad neutron energy interval from 1 eV up to 1 MeV and to achieve favorable background conditions. Data were recorded by means of an advanced acquisition system with zero dead time, based on 8 bit Flash-Analog-to-Digital Converters (FADC), with 500 MHz sampling rate and 8 MB buffer memory [9].

The measurement was performed with an enriched metal sample 8.123 g in mass and 20 mm in diameter. The sample was enriched to 99.76% in ^{206}Pb with small impurities of ^{207}Pb (0.21%) and ^{208}Pb (0.03%).

Capture events were registered with two C$_6$D$_6$ γ-ray detectors optimized for very low neutron sensitivity [10]. A sketch of the experimental setup is shown in Fig. 2 of Ref. [11]. The absolute value of the neutron fluence was determined by regular calibration measurements with an 0.5 mm thick gold sample and by using the saturated resonance technique [12] for the first gold resonance at 0.5 mm thick gold sample and by using the saturated

determined by regular calibration measurements with an

Ref. [11]. The absolute value of the neutron fluence was determined by regular calibration measurements with an 0.5 mm thick gold sample and by using the saturated resonance technique [12] for the first gold resonance at 0.5 mm thick gold sample.

The measurement was performed with an enriched metal sample 8.123 g in mass and 20 mm in diameter. The sample was enriched to 99.76% in ^{206}Pb with small impurities of ^{207}Pb (0.21%) and ^{208}Pb (0.03%).

Capture events were registered with two C$_6$D$_6$ γ-ray detectors optimized for very low neutron sensitivity [10]. A sketch of the experimental setup is shown in Fig. 2 of Ref. [11]. The absolute value of the neutron fluence was determined by regular calibration measurements with an 0.5 mm thick gold sample and by using the saturated resonance technique [12] for the first gold resonance at 0.5 mm thick gold sample.

The measurement was performed with an enriched metal sample 8.123 g in mass and 20 mm in diameter. The sample was enriched to 99.76% in ^{206}Pb with small impurities of ^{207}Pb (0.21%) and ^{208}Pb (0.03%).

Capture events were registered with two C$_6$D$_6$ γ-ray detectors optimized for very low neutron sensitivity [10].

The sample was enriched to 99.76% in ^{206}Pb with small impurities of ^{207}Pb (0.21%) and ^{208}Pb (0.03%).

Capture events were registered with two C$_6$D$_6$ γ-ray detectors optimized for very low neutron sensitivity [10].

A. Backgrounds

A major source of background is due to in-beam γ-rays, predominantly from neutron captures in the water moderator, which travel along the neutron flight tube and are scattered in the ^{206}Pb sample. This background exhibits a smooth dependence on neutron energy, with a broad maximum around $E_\text{n} \approx 10$ keV. The shape of this background was determined from the spectrum measured with an isotopically pure ^{208}Pb sample, which contains practically no resonances in the investigated neutron energy range. This spectrum was properly scaled and used as a point-wise numerical function in the R-matrix analysis of the ^{206}Pb capture yield (see Sec. IV).

Another type of background arises in the analysis of resonances with a dominant neutron scattering channel, $\Gamma_\gamma > > \Gamma_\text{n}$. In such cases, there are about $\Gamma_\gamma/\Gamma_\text{n}$ scattered neutrons per capture event. These scattered neutrons can be captured in the detectors or in surrounding materials, thus mimicking true capture events. This effect was estimated to be negligible for all the resonances listed in Table II.

III. CAPTURE DATA ANALYSIS

The response function of the C$_6$D$_6$ detectors needs to be modified such that the detection probability for capture cascades becomes independent of the cascade multipolarity. This was accomplished by application of the Pulse Height Weighting Technique (PHWT) [17]. Based on previous experience [11, 18, 19], the weighting functions (WFs) for the gold and lead samples were obtained by means of Monte Carlo calculations. The accuracy of the WFs was verified with the method described in Ref. [18], by which the calculated WFs were applied to Monte Carlo simulated capture γ-ray spectra. Using this procedure, the uncertainty of the WFs was estimated to be smaller than 0.5% for the samples used in the present experiment.

The weighted count rate N^w is then transformed into an experimental yield,

$$Y^{\text{exp}} = f^{\text{sat}} \frac{N^w}{N_\text{n}E_c},$$

where the yield-normalization factor f^{sat} is determined by calibration measurements using the saturated 4.9 eV resonance in gold. N_n denotes the neutron flux and E_c the effective binding energy.

The yield in Eq. (1) is still subject to several corrections. The common effects of the background and of the low energy cutoff in the pulse height spectra of the γ detectors are described in Secs. III A and III B, respectively. The measurement on ^{206}Pb is particularly sensitive to the angular distribution of the prompt capture γ-rays. The impact of this effect is described in Sec. III C.

A. Backgrounds

A major source of background is due to in-beam γ-rays, predominantly from neutron captures in the water moderator, which travel along the neutron flight tube and are scattered in the ^{206}Pb sample. This background exhibits a smooth dependence on neutron energy, with a broad maximum around $E_\text{n} \approx 10$ keV. The shape of this background was determined from the spectrum measured with an isotopically pure ^{208}Pb sample, which contains practically no resonances in the investigated neutron energy range. This spectrum was properly scaled and used as a point-wise numerical function in the R-matrix analysis of the ^{206}Pb capture yield (see Sec. IV).

Another type of background arises in the analysis of resonances with a dominant neutron scattering channel, $\Gamma_\gamma > > \Gamma_\text{n}$. In such cases, there are about $\Gamma_\gamma/\Gamma_\text{n}$ scattered neutrons per capture event. These scattered neutrons can be captured in the detectors or in surrounding materials, thus mimicking true capture events. This effect was estimated to be negligible for all the resonances listed in Table II.
B. Digital threshold

As mentioned in Sec. II, FADCs were used for recording directly the analog output signals of the C₆D₆ detectors. Without any further discrimination, 8 MB of data would have been acquired per proton pulse in each detector. Depending on the sample, this enormous amount of data could be reduced by factors of 20 to 100 by using a zero suppression algorithm (see Ref. 9 for details). By this method events below a certain pulse-height are discriminated by a constant digital threshold analogous to conventional data acquisition systems, where an electronic threshold is used to reduce backgrounds and dead time effects.

Due to this threshold, the pulse height spectra of the C₆D₆ detectors exhibit a low energy cutoff at a certain value of the signal amplitude (see Fig. 1). In this experiment the threshold was set at a γ-ray energy of 320 keV. If the pulse height spectra of the ²⁰⁶Pb sample and of the gold sample used for normalization would have the same shape, the fraction of weighted counts below this threshold would nearly cancel out in the expression for the yield,

\[
Y_{\text{exp}} \propto \sum_{320 \text{ keV}} W_{\text{ Pb}} R_{\text{ Pb}} + \sum_{320 \text{ keV}} E_{\gamma} W_{\text{ Pb}} R_{\text{ Pb}}
\]

This effect has been taken into account in the determination of the experimental capture yield by simulating the capture cascades of each isotope as described in detail in Refs. 11, 18, 19. Fig. 1 shows that the experimental spectra above the digital threshold are well reproduced by the simulations. With this correction the experimental yield becomes

\[
Y_{\text{exp}} \propto \frac{f^{t}_{\text{ Pb}}}{f^{t}_{\text{ Au}}} \sum_{320 \text{ keV}} E_{\gamma} W_{\text{ Pb}} R_{\text{ Pb}}
\]

For the adopted digital threshold the yield of the 4.9 eV resonance in ¹⁹⁷Au needs to be scaled by a factor \(f^{t}_{\text{ Au}} = 1.071(3)\), whereas the yield of the resonances in ²⁰⁶Pb required a correction of \(f^{t}_{\text{ Pb}} = 1.021(5)\) due to their harder spectrum. Hence, the correction factor of the final experimental yield was \(f^{c} = f^{t}_{\text{ Pb}}/f^{t}_{\text{ Au}} = 0.952(4)\).

![FIG. 1: Pulse height spectra for the 4.9 eV resonance in gold (grey) and for the 3.3 keV resonance in ²⁰⁶Pb (black), arbitrarily scaled. The dashed lines are the MC-calculated γ-ray spectra for the two resonances. The linear scale used in the inset illustrates the large difference between the simulated spectra below a threshold of 300 keV.](image)

C. Angular distribution effects

Neutron capture with orbital angular momentum \(l > 0\) leads to an aligned state in the compound nucleus, perpendicular to the direction of the incident neutron. Given the small multiplicity \((m = 1 \text{ to } 2)\) of the capture cascades in ²⁰⁶Pb, most of the prompt γ-rays registered with the C₆D₆ detectors still carry this anisotropy, which affects the measured yield. The angular distribution is in general given by,

\[
W(\theta) = \sum_{k} A_{k} P_{k}(\cos \theta) = 1 + A_{2} P_{2}(\cos \theta) + A_{4} P_{4}(\cos \theta) + A_{6} P_{6}(\cos \theta),
\]

where \(P_{k}(\cos \theta)\) are the Legendre polynomials of order \(k\) and \(A_{k}\) are coefficients, which depend on the initial \((J)\) and final \((J')\) spin values, on the multipolarity \((l)\) of the transition, and on the degree of alignment. The angular distribution effects in the capture yield are minimized (although not avoided) by setting the detectors at 125°. Since each C₆D₆ detector covers a substantial solid angle, capture γ-rays are registered around 125° ± Δθ. For the actual setup of the present measurement one finds Δθ ≈ 28°.

1. Resonances with spin \(J = 1/2\)

For resonances with \(J = 1/2\) it can be assumed that they decay directly to the ground state \((J^{\pi} = 1/2^-)\) or to the first or second excited states with \(J^{\pi} = 5/2^-\) and \(J^{\pi} = 3/2^-\), respectively (see also Fig. 2). In these cases, one finds that \(A_{2} = A_{4} = A_{6} = 0\). Therefore, only resonances with spin \(J > 1/2\) may be affected by angular distribution effects.
The systematic uncertainty in the yield of each resonance due to the angular distribution of the involved transitions are given in the last column.

E_0 (keV)	Intensity I_0 (%)	$\sigma^{3/2-}\gamma$	
6737.9	6618.6	5840.8	4114.5

For the first resonance at 3.36 keV, fair agreement has been found between the relative intensities of Ref. [14] and the rather coarse values deduced from the experimental pulse height spectrum (Table I. and Fig. 1), which suffer from uncertainties due to background subtraction, limited counting statistics and poor energy resolution of the C_6D_6 detectors. Therefore, an uncertainty of about 20% has to be ascribed to the quoted γ-ray intensities.

The estimated effect of the angular distribution on the capture yield ($\sigma^{3/2-}\gamma$) is given in the last column of Table I. These values were obtained via Monte Carlo simulations of the experimental setup, using the energies and intensities listed in Table I. and the prescription of Ref. [20]. The main uncertainty in the calculation of the angular distribution effects arises from the unknown admixtures of different multipolarities (M1+E2) for the transitions connecting the original excited state $J^\pi = 3/2^-$ with any of the three lowest states (paths (a), (b) and (c) in Fig. 2). As shown in Table I the decay pattern and the corresponding effect on the capture yield $\sigma^{3/2-}\gamma$ vary abruptly from one resonance to another. It is therefore difficult to assess a common systematic uncertainty for the remaining $3/2^-$ resonances. Assuming that the four resonances listed in Table I constitute a representative sample, one may consider their standard deviation of $\sigma = 4\%$ as a realistic estimate of the systematic uncertainty due to angular distribution effects.

Resonances with $J^\pi = 3/2^+$ can be assumed to decay directly to the ground state through an E1 transition. In this case we have estimated an effect of 10% in the capture yield with respect to the isotropic case. However, since $3/2^+$ resonances appear at a relatively high neutron energy, the final effect in the MACS is practically negligible (see below Sec. IV B).

3. Resonances with spin $J = 5/2$

For resonances in 207Pb with $J^\pi = 5/2^+$ the most probable decay would be through an electric dipole transition to the first excited state with $J^\pi = 5/2^-$ and/or to the second excited state with $J^\pi = 3/2^-$ (paths (b) and (c) in Fig. 2). Under these assumptions, the effect on the capture yield would be -12% for path (b) and 9% for path (c). However, mixtures of both decay paths would partly compensate the correction for angular distribution effects. Adopting one standard deviation of the two extreme cases $\sigma^{5/2+}/\sigma^{5/2-}\gamma \simeq 10\%$ would, therefore, represent a rather conservative estimate of the corresponding uncertainty. Nevertheless, even such a relatively large uncertainty for the cross section of $J^\pi = 5/2^+$ resonances would have negligible consequences for the Maxwellian averaged cross section because these resonances contribute very little to the total capture cross section (see Sec. IV B).

D. Summary of uncertainties

With the WFs calculated via the Monte Carlo technique, the accuracy of the PHWT has been investigated in detail by the n_TOF collaboration [18]. It has been shown that the capture yield can be determined from the measured raw data with an accuracy better than 2%.

Other sources of systematic uncertainty pertaining to this measurement are due to the energy dependence of the neutron flux (±2%) and to the background due to in-beam γ-rays (±1%). In the particular case of the (n, γ) cross section of 206Pb, the uncertainty introduced by the angular distribution of the capture γ-rays has to be considered as well. This effect has been estimated to
contribute an uncertainty of ±4% for resonances with $J^\pi = 3/2^-$ and less than ±10% for resonances with $J^\pi = 3/2^+, 5/2^+$.

IV. RESULTS

A total of 61 capture levels were analyzed in the neutron energy range from 3 keV up to 570 keV using the R-matrix code SAMMY [21]. In the analysis, the orbital angular momenta l and the resonance spins J were adopted from Ref. [22]. Some of the l and J parameters listed in Table II are tentative or arbitrary if missing in Ref. [22]. We list all the parameters used in our analysis so that the final values can be recalculated if necessary. The capture yield $Y(E_0, \Gamma_n, \Gamma_\gamma)$ was parameterized with the Reich-Moore formalism, and a channel radius of 9.5 fm was used for all partial waves. This parameterized yield was fitted to the corrected experimental yield by variation of the capture width Γ_γ and/or neutron width Γ_n.

$$f^t \times Y^{exp} = B + Y(E_0, \Gamma_n, \Gamma_\gamma),$$

(5)

where f^t is the global yield correction factor given in Sec. III B. The term B describing the background was parameterized as an analytical function of the neutron energy in the range between 1 eV and 30 keV. Beyond 30 keV, B was best described by means of a numerical function (pointwise) determined from the measurement of the ^{208}Pb sample (see Ref. [23] for details). The uncertainties quoted for the energy of each resonance are only the statistical errors obtained from the fits of the capture data performed with SAMMY.

E_0 (eV)	l	J	Γ_γ (meV)	$\Delta \Gamma_\gamma$ (%)	Γ_n (meV)	$\Delta \Gamma_n$ (%)	K_γ	ΔK_γ
3357.93(0.04)	1	3/2	78.1	3	235	117	2	
10865.0(0.4)	1	3/2	64.9	9	44.1	8	52.5	6
11296.0(0.5)	(1)	(1/2)	455	44.6	7	40.6	7	
14220.0(0.6)	1	(1/2)	152	6	1560	5	662	5
16428.0(0.4)	0	1/2	2268	9	936	5	662	5
19744.0(1.3)	1	(1/2)	156	7	2581	147	6	
19809.0(0.9)	1	(3/2)	295	71.6	8	115	6	
21885.0(0.9)	1	3/2	121	6	875	212	5	
25112.0(0.9)	1	3/2	438	9	326	8	374	6
25428(5)	1	1/2	254	7	48901	253	7	
36200(6)	1	1/2	312	14	35700	309	13	
37480.0(1.9)	1	(3/2)	151	15	890	258	13	
39028(2)	1	(1/2)	346	93.0	36	73.3	28	
40647(2)	1	(1/2)	163	23	884	138	19	
42083.0(1.7)	1	(3/2)	419	21	1419	91	647	26
47534(2)	(1)	(1/2)	184	34	1000	155	29	
59233.0(0.2)	(2)	(3/2)	322	16	1000	487	12	
63976(3)	(2)	5/2	151	17	1110	400	15	
66590(6)	1	3/2	198	19	82200	1169	9	
70352(7)	1	1/2	163	34	10780	161	34	
80388(4)	2	3/2	1490	8	7005	2457	6	
83699(6)	(2)	(3/2)	351	16	8000	673	15	
88509(6)	2	5/2	375	13	7996	1076	12	
91740(4)	(1)	(3/2)	298	25	1000	460	19	
92620(13)	0	1/2	991	15	32000	961	15	
93561(6)	2	3/2	125	37	7001	246	37	
94743(7)	2	(3/2)	241	20	7000	465	20	
101220(7)	2	(5/2)	119	26	8000	351	25	
114380(5)	1	(3/2)	655	24	2500	1037	19	
114692(6)	2	(5/2)	366	19	5600	1030	18	
118100(6)	2	(5/2)	390	16	5100	1087	15	
124753(47)	1	3/2	2972	9	30000	5886	9	
125312(7)	2	(3/2)	2753	10	21005	4915	9	
126138(38)	(1)	(3/2)	319	32	100000	635	32	
140570(23)	2	3/2	1387	11	103000	2736	11	
145201(6)	(2)	(3/2)	518	30	3100	888	26	
146419(24)	0	1/2	6092	8	176000	5888	8	
A. Comparison to previous work

The radiative neutron capture cross section of 206Pb has been measured at ORNL [14, 15, 24], at RPI [25] and at IRMM [26]. As representative examples of these measurements we consider in this section two measurements made at ORELA [14, 15], a more complete analysis [27] of the ORELA capture data [15] made in combination with transmission data [28] and the recent experiment made at IRMM [26]. In order to compare these four data sets with the present results (Table II), the ratio of the capture kernels are shown in Fig. 3.

The values reported in Ref. [15] show a relatively good agreement with our results, except for the first two resonances at 3.3 keV and 14.25 keV, which are lower by $\sim 50\%$ (see Fig. 3). However, these two resonances and the resonance at 16.428 keV are important because of their dominant contribution to the MACS in the energy range between 5 keV and 20 keV. It is difficult to determine the source of discrepancy, thus no correlation has been found between the discrepancies and the spins of the resonances. The latter could probably help to determine if there is any effect related to the angular distribution of the prompt capture γ-rays or to the WF used in the previous measurement.

In the second measurement at ORELA [14] the discrepancies versus our present results are smaller (see Fig. 3), but the capture kernels are systematically larger, on average 20\%\,±\,5\% higher. This could probably reflect that the WF used in Ref. [14] is overweighting the relatively hard pulse height spectrum of 207Pb. Indeed, similar discrepancies have been found in the past for 56Fe [29], where the pulse height spectrum is also considerably harder than that of the 197Au sample used for yield normalization.

The posterior analysis [27] of the ORELA capture data [15] in combination with transmission [28] shows, on average, better agreement with the capture areas reported here (see Fig. 3).

Finally, the results reported in the measurement at IRMM [26] show the best agreement with the capture kernels of n TOF (see Fig. 3). At $E_n \leq 40$ keV both measurements agree within a few percent. At higher en-
ergy the fluctuations are larger, but the agreement is still good within the quoted error bars.

As an illustrative example, the capture yield measured at n_TOF for the first resonance at 3.3 keV is compared in the top panel of Fig. 4 versus the yield calculated from the resonance parameters reported in Refs. [14, 22, 26]. Obviously, the IRMM and n_TOF results show good agreement in both the capture area and the resonance energy.

![Graph of capture yield](image)

FIG. 4: (Color online) (Top figure) The bold red line represents an R-matrix fit to our experimental capture yield starting from the initial parameters (solid green line) in Ref. 22. The dashed and dott-dashed curves correspond to the capture yields determined in Ref. 26 and Ref. 14, respectively. (Bottom figure) The fitted capture yield in the 10-30 keV energy range (thin red line).

B. Maxwellian averaged capture cross section

The Maxwellian averaged cross section (MACS) was determined using the SAMMY code in the range of thermal energies relevant for stellar nucleosynthesis, i.e. from $kT=5$ keV up to $kT=50$ keV. As discussed in the previous section, our results agree best with the values reported in Ref. [26]. The latter data set seems also to be the most complete in terms of number of analyzed resonances, with about 283 levels. Therefore our results were complemented with resonances from Ref. [26] in order to avoid any discrepancy due to resonances missing in Table I. The contribution of these supplementary resonances to the MACS is < 0.1% at $kT = 5$ keV and 6% at $kT = 25$ keV. The fact that this correction starts to be significant towards $kT ≳ 25$ keV is not relevant for the study of the nucleosynthesis of 206Pb. Indeed, as it is discussed below in Sec. V 206Pb is mostly synthesized between the He-shell flashes of the asymptotic giant branch stars. These intervals between pulses provide about 95% of the neutron exposure via the 13C(α, n)16O reaction, which operates at a thermal energy of $kT = 8$ keV. At this stellar temperature less than 0.5% of the MACS is due to the supplemented resonances.

![Graph of MACS](image)

FIG. 5: (Color online) Maxwellian averaged (n,γ) cross sections for 206Pb from the resonance parameters of this work (bold red) compared to the IRMM measurement [26] (dashed), to the recommended data of Ref. [30] (grey) and to the compiled data of Ref. [22] (solid green).

The uncertainties shown in Fig. 5 are only statistical. The systematic uncertainties of the MACS quoted in Table III include all contributions discussed in Sec. III D.

Thermal energy kT (keV)	MACS (mbarn)	σ_{stat} (%)	σ_{sys} (%)
5	21.3	1.8	5
8	20.4	1.8	3
10	19.4	1.9	3
12	18.4	2.0	3
15	17.1	2.1	3
20	15.6	2.2	3
25	14.7	2.3	3
30	14.2	2.3	4
40	13.5	2.2	4
50	12.8	2.1	4

Assuming systematic uncertainties of 4% and 10% for
3/2^- and 5/2^- resonances, respectively, the final uncertainties are completely dominated by the 4% uncertainty of the 3/2^- resonances. A change of 10% in the cross section of the fewer 5/2^+ resonances has a negligible influence on the MACS at $kT = 5 \text{ keV}$, it contributes only 0.5% at $kT = 25 \text{ keV}$ and increases linearly up to 1% at $kT = 50 \text{ keV}$. An effect of 10% in the capture yield of the 3/2^+ resonances makes only a 1% difference in the MACS at $kT = 25 \text{ keV}$ and it becomes also negligible towards lower stellar temperatures. The 3% systematic uncertainty of the experimental method itself originates from the PHWT, the neutron flux shape, and the use of the saturated resonance technique.

In summary, the MACS of 206Pb can now be given with total uncertainties of 5% and 4% at the stellar temperatures corresponding to 5 keV and 25 keV thermal energies, respectively. This improvement with respect to the previously recommended values of Ref. [30] becomes particularly important for determining the s-process contribution to the production of lead and bismuth in the Galaxy.

V. THE s-PROCESS ABUNDANCE OF 206Pb AS A CONSTRAINT FOR THE U/TH CLOCK

The s-process production of 206Pb takes place in low mass asymptotic giant branch (AGB) stars of low metallicity [31], where about 95% of the neutron exposure is provided by the 13C(α,n)16O reaction at a thermal energy of $kT \approx 8 \text{ keV}$. At this stellar temperature the present MACS is about 20% lower and two times more accurate (see Fig. 5) than the values from Ref. [30], which have been commonly used so far for stellar nucleosynthesis calculations. The additional neutron irradiation provided by the 22Ne(α,n)25Mg reaction at the higher thermal energy of $kT = 23 \text{ keV}$ during the He shell flash is rather weak.

With the new MACS the s-process abundance of 206Pb has been re-determined more accurately. A model calculation was carried out for thermally pulsing AGB stars of 1.5 and 3 M_\odot and a metallicity of [Fe/H] = −0.3. The abundance of 206Pb is well described by the average of the two stellar models, which represent the so-called main component [32]. Since the contribution of 206Pb by the strong component is only 2%, the main component can be used to approximate the effective production of 206Pb during Galactic chemical evolution (GCE) [31, 32, 33]. This approach yields an s-process abundance of 206Pb, which represents 70(6)% of the solar abundance value $N_s^{206} = 0.601(47)/10^8\text{Si}$ [33]. The same calculation made with the older MACS recommended by Bao et al. [30] yields 64%. The uncertainty on the calculated s-process abundance is mostly due to the uncertainty on the solar abundance of lead (7.8%) [32]. The contribution from the uncertainty on the MACS at 8 keV is less than 2%. Finally, the contribution from the s-process model is ±3%. The latter corresponds to the mean root square deviation between observed and calculated abundances for s-process only isotopes [32]. This uncertainty is justified for 206Pb because its nucleosynthesis is dominated by the main component and it is only marginally affected (~2%) by the strong component [31, 32, 33, 34]. Furthermore, because of the much lower cross sections of 208Pb and 209Bi, the synthesis of 206Pb remains practically unaffected by the α-recycling after 209Bi [7]. This lends further confidence that the production of 206Pb, and hence its uncertainty, follows the same trend as the main s-process component.

In order to estimate a constraint for the r-process abundance of 206Pb one needs to take into account its radiogenic contribution, N_r^{206}, due to the decay of 238U. As it is shown in the following, this component is relatively small but can not be neglected. Based on the schematic model of Fowler, which assumes an exponential decrease of the r-process yield during GCE [4] (supernova rate $\Lambda = (0.43%)^{-1}\text{Gyr}^{-1}$) and using the current best estimates for the age of the Universe $t_U = 13.7 \pm 0.2 \text{ Gyr}$ [37], one obtains $N_r^{206} = 0.027(2)/10^8\text{Si}$ (see Fig. 6 and Table IV). This number, combined with our result for N_s^{206}, yields an r-process residual,

$$N_r^{206} = N_s^{206} - N_s^{206} - N_c^{206} = 0.153 \pm 0.063. \quad (6)$$

The uncertainty in this result includes contributions of 8.4% from N_c^{206} (corresponding to the uncertainty on the solar abundance of 238U [36]), 7.8% from the total solar abundance of 206Pb, N_c^{206} [35, 36], and 8.6% from the determination of N_s^{206} as discussed above. This means that, apart from the uncertainties related with the simplified assumptions in the GCE model of Fowler, the r-process abundance can be reliably constrained between 16% and 36% of the solar 206Pb.

The r-process residuals derived here are consistent with r-process model calculations available in the liter-
TABLE IV: Radiogenic abundance of 206Pb, N_{c206}^{206} (Si=106), derived from the model of Fowler and the age of the Universe (see Fig. 6). r-Process residuals obtained via eq. 6.

GCE	$N_{c206}^{206} = RN_{208}^{106}$Si	$N_{c206}^{206} = N_{c206}^{106} - N_{s206}^{206} - N_{c206}^{206}$	$N_{c206}^{206}/N_{c206}^{206} (%)$
43% SN rate	0.097(2)	0.15(6)	26(10)
Sudden	0.058(5)	0.12(6)	20(10)
Uniform	0.0161(14)	0.16(6)	27(10)

TABLE V: Radiogenic abundance of 207Pb, N_{c207}^{207} (Si=106), derived from the model of Fowler and the age of the Universe. r-Process residuals obtained via eq. 6.

GCE	$N_{c207}^{207} = RN_{235}^{106}$Si	$N_{c207}^{207} = N_{c207}^{106} - N_{s207}^{207} - N_{c207}^{207}$	$N_{c207}^{207}/N_{c207}^{207} (%)$
43% SN rate	0.150(13)	0.003(73)	0(11)
90% SN rate	0.089(7)	0.073(72)	11(11)
Uniform	0.047(4)	0.106(72)	16(11)

The situation is rather different for the correspond- ing 207Pb/235U ratio, which has been investigated as a potential clock in the past. More recent calculations yield N_{c207}^{207} values between 27% and 35%. One can also derive hard limits for the r-process abundance, considering the two extreme cases of sudden nucleosynthesis ($\Lambda \rightarrow \infty$) and uniform nucleosynthesis ($\Lambda \rightarrow 0$). This yields constraints between 10% and 37% of solar 206Pb (see Table IV). The situation is rather different for the corresponding 207Pb/235U ratio, which has been investigated as a potential clock in the past. In this case, the s-process abundance of 207Pb was recently determined to be $N_{c207}^{207} = 77(8)%$ 19. A similar calculation to that shown in Fig. 6 gives $N_{c207}^{207} = 0.150(13)$ (see Table IV). The latter value reflects the large relative radiogenic abundance of 207Pb, $N_{c207}^{207}/N_{c207}^{207} = 22%$, due to the much shorter half-life of 235U. From the total solar abundance of 207Pb 32 and the N_{c207} and N_{c207} values quoted above, the r-process residual becomes $N_{c207}^{207} = 0.003 \pm 0.073$, which means that N_{c207}^{207} cannot be larger than 11% of the 207Pb abundance in the solar system, $N_{c207}^{207} = 0.665(52)$ 32 (Table IV).

This result is in contrast with r-process model calculations, which yield values between 22.7% and 25.3%, with a relative uncertainty of 15-20% 1,3. The s-process abundances of 206,207Pb are rather reliable and not very sensitive to details of the stellar models 7,52. Therefore, this discrepancy indicates that r-process abundances might have been overestimated, possibly because the odd-even effect is not properly reproduced by the ETFSI-Q mass model implemented in the r-process cal-

at, i.e., $N_{c206}^{206} = 26.6%$ 1. More recent calculations yield N_{c206}^{206} values between 27% and 35% 3. One can also derive hard limits for the r-process abundance, considering the two extreme cases of sudden nucleosynthesis ($\Lambda \rightarrow \infty$) and uniform nucleosynthesis ($\Lambda \rightarrow 0$). This yields constraints between 10% and 37% of solar 206Pb (see Table IV).

VI. SUMMARY

The neutron capture cross section of 206Pb as a function of the neutron energy has been measured with high resolution at the CERN n$_{TOF}$ installation using two Cd$_2$ detectors. Capture widths and/or radiative kernels could be determined for 131 resonances in the neutron energy interval from 3 keV up to 620 keV. Systematic uncertainties of 3%, 5%, and $\lesssim 10%$ were obtained for resonances with spin-parities of 1/2$^+$, 3/2$^-$ and 5/2$^+$, respectively. The Maxwellian averaged cross sections were found to be significantly smaller by 10% to 20% compared to values reported earlier 30, resulting in a correspondingly enhanced s-process production of 206Pb. First calculations with a standard AGB model yield an s-process component of 70(6)% for the 206Pb abundance. Combined with an estimate of the radiogenic production of 206Pb, the r-process abundance is constrained between 16% and 36% of the solar 206Pb abundance, well in agreement with r-process model calculations reported in the literature 1,2. A similar analysis for 207Pb shows agreement only with most recent r-process model calculations 40.

[1] J. J. Cowan, B. Pfeiffer, K.-L. Kratz, F.-K. Thielemann, C. Sneden, S. Burles, D. Tytler, and T. C. Beers, Astrophys. J. 521, 194 (1999).

[2] H. Schatz, R. Toenjes, B. Pfeiffer, T. C. Beers, J. J. Cowan, V. Hill, and K.-L. Kratz, Astrophys. J. 579, 626 (2002).
[3] K.-L. Kratz, B. Pfeiffer, J. J. Cowan, and C. Sneden, New Astronomy Review 48, 105 (2004).
[4] D. D. Clayton, Astrophys. J. 139, 637 (1964).
[5] W. A. Fowler and F. Hoyle, Astrophys. J. 65, 345 (1960).
[6] A. Herrera et al., in Workshop on Nuclear Data for the Transmutation of Nuclear Waste, edited by A. Kelic and K. Schmidt (2003), GSI-Darmstadt, Germany. ISBN 3-00-012276-1.
[7] W. A. Fowler and F. Hoyle, Astrophys. J. 65, 345 (1960).
[8] A. Herrera et al., in Workshop on Nuclear Data for the Transmutation of Nuclear Waste, edited by A. Kelic and K. Schmidt (2003), GSI-Darmstadt, Germany. ISBN 3-00-012276-1.
[9] U. Ratzel, C. Arlandini, F. K"appler, A. Couture, M. Wiescher, R. Reifarth, R. Gallino, A. Mengoni, and C. Travaglio, Phys. Rev. C 70, 065803 (2004).
[10] U. Abbondanno et al., Nuclear Instruments and Meth-ods in Physics Research A 496, 425 (2003).
[11] C. Domingo-Pardo et al., Phys. Rev. C 74, 025807 (2006).
[12] R. Macklin, J. Halperin, and R. Winters, Nuclear Instruments and Methods in Physics Research A 164, 213 (1979).
[13] C. Borcea et al., Nuclear Instruments and Methods in Physics Research A 513, 524 (2003).
[14] M. Mizumoto, S. Raman, R. L. Macklin, G. G. Slaughter, J. A. Harvey, and J. H. Hamilton, Phys. Rev. C 19, 335 (1979).
[15] B. Allen, R. Macklin, R. Winters, and C. Fu, Phys. Rev. C 8, 1504 (1973).
[16] U. Abbondanno et al. (2003), Tech. Rep. CERN-SL-2002-053 ECT.
[17] R. L. Macklin and J. H. Gibbons, Phys. Rev. 159, 1007 (1967).
[18] U. Abbondanno et al., Nuclear Instruments and Methods in Physics Research A 521, 454 (2004).
[19] C. Domingo-Pardo et al., Phys. Rev. C 74, 055802 (2006).
[20] A. J. Ferguson, Angular correlation methods in gamma-ray spectroscopy (North-Holland Publishing Company-Amsterdam, 1965).
[21] N. M. Larson (2006), "Updated users' guide for SAMMY: Multilevel R-matrix fits to neutron data using Bayes' equations", SAMMY, computer code Report ORNL/TM-9179/R7, Oak Ridge National Laboratory.
[22] S. F. Mughabghab (2006), Neutron Cross Sections: Neutron Resonance Parameters and Thermal Cross Sections, Academic press.
[23] C. Domingo-Pardo, U. Abbondanno, G. Aerts, H. Álvarez-Pol, F. Alvarez-Velarde, S. Andriamonje, J. Andrzejewski, P. Assimakopoulos, L. Audouin, G. Badurek, et al., Phys. Rev. C 75, 015806 (2007), arXiv:nucl-ex/0610033.
[24] R. L. Macklin, P. J. Pasma, and J. H. Gibbons, Physical Review 136, 695 (1964).
[25] Z. M. Bartolome et al., Progress Report, Rensselaer Poly-technic Institute (1969), RPI-328-160,7,69.
[26] A. Borella, F. Gunsing, M. Moxon, P. Schillebeeckx, and P. Siegler, Phys. Rev. C 76, 014605 (2007).
[27] B. J. Allen, A. R. D. Musgrove, J. W. Boldeman, M. J. Kenny, and R. L. Macklin, Progress Report 46 (1980), australian AEC Progress report.
[28] D. J. Horen, J. A. Harvey, and N. W. Hill, Phys. Rev. C 20, 478 (1979).
[29] R. Macklin, Nucl. Sci. Eng. 95, 200 (1987).
[30] Z. Y. Bao, H. Beer, F. K"appler, F. Voss, K. Wisshak, and T. Rauser, Atomic Data and Nuclear Data Tables 76, 70 (2000).
[31] C. Travaglio, R. Gallino, M. Busso, and R. Gratton, Astrophys. J. 549, 346 (2001).
[32] C. Arlandini, F. K"appler, K. Wisshak, R. Gallino, M. Lugaro, M. Busso, and O. Straniero, Astrophys. J. 525, 886 (1999).
[33] C. Travaglio, D. Galli, R. Gallino, M. Busso, F. Ferrini, and O. Straniero, Astrophys. J. 521, 691 (1999).
[34] R. Gallino, C. Arlandini, M. Busso, M. Lugaro, C. Travaglio, O. Straniero, A. Chieffi, and M. Limongi, Astrophys. J. 497, 388 (1998).
[35] K. Lodders, Astrophys. J. 591, 1220 (2003).
[36] N. Grevesse and E. Anders, in AIP Conf. Proc. 183: Cosmic Abundances of Matter, edited by C. J. Waddington (1989), pp. 1-8.
[37] C. L. Bennett, M. Halpern, G. Hinshaw, N. Jarosik, A. Kogut, M. Limon, S. S. Meyer, L. Page, D. N. Spergel, G. S. Tucker, et al., Astrophys. J. 148, 1 (2003).
[38] H. Beer and R. L. Macklin, Phys. Rev. C 32, 738 (1985).
[39] C. Domingo-Pardo, Ph.D. thesis, CSIC-University of Valencia (2005).
[40] K.-L. Kratz (2007), "FRANZ Workshop on experimental opportunities for nuclear astrophysics at the Frankfurt neutron source of the Stern-Gerlach-Zentrum".
[41] S. Bisterzo, R. Gallino, F. K"appler, and C. Domingo-Pardo, Astrophys. J. (in preparation).