A VARIANT OF DAI-YUAN CONJUGATE GRADIENT METHOD FOR UNCONSTRAINED OPTIMIZATION AND ITS APPLICATION IN PORTFOLIO SELECTION

BASIM A. HASSAN1, MAULANA MALIK2,∗, IBRAHIM MOHAMMED SULAIMAN3

1Department of Mathematics, University of Mosul, Mosul 41002, Iraq
2Department of Mathematics, Universitas Indonesia, Depok 16424, Indonesia
3Faculty of Informatics and Computing, Universiti Sultan Zainal Abidin, Terengganu 22200, Malaysia

Abstract. The quasi-Newton (QN) method are among the efficient variants of conjugate gradient (CG) method for solving unconstrained optimization problems. The QN method utilizes the gradients of the function while ignoring the available value information at every iteration. In this paper, we extended the Dai-Yuan [39] coefficient in designing a new CG method for large-scale unconstrained optimization problems. An interesting feature of our method is that its algorithm not only uses the available gradient value, but also consider the function value information. The global convergence of the proposed method was established under some suitable Wolfe conditions. Extensive numerical computation have been carried out which show that the average performance of this new algorithm is efficient and promising. In addition, the proposed method was extended to solve practical application problem of portfolio selection.

Keywords: conjugate gradient parameter; convergence analysis; optimization models; line search procedures.

2010 AMS Subject Classification: 65K10, 49M37, 90C06.

*Corresponding author
E-mail address: m.malik@sci.ui.ac.id
Received April 1, 2021
1. Introduction

The nonlinear conjugate gradient (CG) algorithms are among the efficient numerical algorithms for solving unconstrained optimization problems, especially, when the problems are of large dimension. The CG method are very popular among mathematicians, engineers, and many more because of its robustness and ability to solve large-scale optimization problems [22]. Consider an unconstrained optimization model

\[
\min_{x \in \mathbb{R}^n} f(x),
\]

where \(f : \mathbb{R}^n \rightarrow \mathbb{R} \) is a smooth function and \(g \) denotes the gradient of \(f \). The CG algorithm generate a sequence of iterate \(\{x_k\} \) via the following recurrence formula:

\[
x_{k+1} = x_k + s_k,
\]

where \(k \geq 0, s_k = \alpha_k d_k \) [23]. The parameter \(\alpha_k > 0 \) is known as the step-size which is often computed along the search direction \(d_k \) with formula defined as

\[
d_k := \begin{cases}
- g_k, & k = 0 \\
- g_k + \beta_k d_{k-1}, & k \geq 1
\end{cases},
\]

where \(\beta_k \) represent the conjugate gradient parameter that characterize different CG methods. The classical formula for \(\beta_k \) are group into two. The first group include HS method [27], PRP method [9, 11], and LS method [37] with formula given as:

\[
\beta_{k}^{HS} = \frac{g_k^T(g_k - g_{k-1})}{d_{k-1}^T(g_k - g_{k-1})},
\]

\[
\beta_{k}^{PRP} = \frac{g_k^T(g_k - g_{k-1})}{\|g_{k-1}\|^2},
\]

\[
\beta_{k}^{LS} = -\frac{g_k^T(g_k - g_{k-1})}{d_{k-1}^T g_{k-1}}.
\]

This group is characterize by their restart properties and efficient numerical performance [21, 38]. Restart strategy is usually employed in conjugate gradient algorithms to improve their computational efficiency. However, the convergence of most of these methods are yet to be established under some line search conditions [24, 35]. The second group include the FR method [31], the CD method [30], and the DY method [39] with formula given as:
On the other hand, these methods FR, CD, and DY do not possess the restart strategy and thus perform poorly due to jamming phenomenon [3]. However, the convergence of these methods have been established under various line search methods [24, 35]. One of the most frequent used line search method is the inexact line search, particularly the Wolfe line search method [18]. For the Wolfe line search, the step-size α_k is computed such that:

\begin{align}
 f(x_k + \alpha_k d_k) &\leq f(x_k) + \phi \alpha_k g_k^T d_k, \\
 g(x_k + \alpha_k d_k)^T d_k &\geq \sigma g_k^T d_k,
\end{align}

where $0 < \phi < \sigma < 1$ [32]. Numerous researcher have studied the conjugate gradient method under the strong Wolfe line search [16]. For more references on advances in conjugate gradient method (see, [1, 4, 5, 6, 7, 8, 15, 17, 25, 26, 36]).

Motivated by the method of Dai and Yuan [39], we propose a modification of the conjugate gradient coefficient for solving unconstrained optimization models. The global convergence of the method is established under some mild conditions. Furthermore, the method was extended to solve practical application problem of portfolio selection.

The rest sections of this paper is structured as follows: In section 2, we present the derivation process of the new our method and its algorithm. The convergence result of the proposed method is discussed in section 3. We report preliminary results of the numerical computation carried out on some benchmark test problems in section 4. An application problem of portfolio selection was discussed in section 5. Lastly, section 6 present the conclusion of the paper.
2. A NEW CONJUGATE GRADIENT METHOD

Ataee et al. [34] a unified quasi-Newton equations those presented by several authors (see [12, 19, 41]), as follows:

\[B_{k+1}s_k = y_k + \vartheta \frac{2(f_k - f_{k+1}) + (g_{k+1} + g_k)^T s_k}{s_k^T \mu_k} \mu_k, \]

where \(\vartheta \in [0, 1, 2, 3] \) and \(\mu_k \) is any vector satisfying \(s_k^T \mu_k \neq 0 \).

Recently, Razieh et al. [29] defined the relation as:

\[f_{k+1} - f_k = \int_0^1 \nabla f(x_k + ts_k) dt s_k \approx s_k^T g_k, \]

from inspired if \(||s_k|| \) is small.

By using the unified quasi-Newton equation and above relation we derive a new coefficient conjugate gradient.

Multiplying both side equation (2) by \(s_k^T \), we have:

\[
\begin{align*}
 s_k^T B_{k+1} s_k &= s_k^T y_k + \vartheta 2(f_k - f_{k+1}) + \vartheta (g_{k+1} + g_k)^T s_k \\
 &= s_k^T y_k - \vartheta 2s_k^T g_k + \vartheta (g_{k+1} + g_k)^T s_k \\
 &= s_k^T y_k - \vartheta 2s_k^T g_k + \vartheta s_k^T g_{k+1} + \vartheta s_k^T g_k \\
 &= s_k^T y_k + \vartheta s_k^T g_{k+1} - \vartheta s_k^T g_k \\
 &= s_k^T y_k + \vartheta s_k^T y_k.
\end{align*}
\]

From above equation, we get:

\[d_k^T B_{k+1} s_k = d_k^T y_k + \vartheta d_k^T y_k = (1 + \vartheta) d_k^T y_k \]

On the other hand, by using conjugacy condition, we obtain:

\[d_k^T Gd_k = (-g_{k+1} + \beta_k d_k)^T Gd_k = -g_{k+1}^T Gd_k + \beta_k d_k^T Gd_k = 0, \]

where \(G \) is Hessian matrix. As a result,

\[\beta_k = \frac{g_{k+1}^T Gs_k}{d_k^T Gs_k}. \]
Putting (5) in (6), which yields:

$$
\beta_k = \frac{y_k^T g_{k+1}}{(1 + \vartheta)d_k^Ty_k}.
$$

To create algorithms that have global convergence properties, we modify the above formula as follows:

$$
\beta_{BMS}^k = \frac{\|g_{k+1}\|^2}{(1 + \vartheta)d_k^Ty_k},
$$

where $\vartheta \in [0, 1, 2, 3]$ and $y_k = g_{k+1} - g_k$.

A complete algorithm of BMS method could be generated as follows:

Algorithm 2.1. (BMS Method)

1. Given an initial point $x_0 \in \mathbb{R}^n$, stopping criteria $\varepsilon = 10^{-6}$, parameter $\sigma = 0.001, \varphi = 0.0001$ and $\vartheta = 1$.
2. Calculate $\|g_k\|$, if $\|g_k\| \leq \varepsilon$ then stop, x_k is optimal point. Else, go to Step 3.
3. Calculate β_k using (7).
4. Calculate search direction d_k (2).
5. Calculate step length α_k using the Wolfe line search (3) and (4).
6. Set $k := k + 1$, calculate the next iteration x_{k+1} using (1), and go to Step 2.

3. Convergence Analysis

This section, we prove the global convergence of new Algorithm under the following assumption, which has often been used in the convergence analysis of conjugate gradient methods.

Assumption 3.1. (A1) The level set $L = \{x \in \mathbb{R}^n | f(x) \leq f(x_0)\}$ is bounded. (A2) In some neighborhood U of L, $f(x)$ is continuously differentiable and its gradient is Lipschitz continuous, namely, there exists a constant $L > 0$ such that

$$
\|g(x_{k+1}) - g(x_k)\| \leq L\|x_{k+1} - x_k\|, \forall x_{k+1}, x_k \in U
$$

Theorem 3.2. Let $\{x_{k+1}\}$ is obtained as new Algorithm, then, we have $d^T_{k+1}g_{k+1} \leq 0$ for all $k.$
Proof. Since \(d_0 = -g_0 \), we obtained \(g_0^T d_0 = -\|g_0\|^2 \leq 0 \). Suppose that \(d_k^T g_k < 0 \). In [39], it follows from the definition of the direction generated by the Dai-Yuan (DY) method as:

\[
\beta_{k}^{DY} = \frac{g_{k+1}^T d_{k+1}}{g_k^T d_k}.
\]

By the using the new formula, we have:

\[
\beta_{k}^{BMS} = \frac{\|g_{k+1}\|^2}{(1 + \vartheta)d_k^T y_k} = \frac{1}{1 + \vartheta} \beta_{k}^{DY}.
\]

From (9) and (10), we obtained:

\[
\beta_{k}^{BMS} = \frac{1}{1 + \vartheta} \frac{g_{k+1}^T d_{k+1}}{g_k^T d_k}.
\]

The above relation can be rewritten as:

\[
g_{k+1}^T d_{k+1} = (1 + \vartheta) \beta_{k}^{BMS} g_k^T d_k
\]

Since \((1 + \vartheta)\) and \(\beta_{k}^{DY} \) are positive then \(\beta_{k}^{BMS} \) is always positive, now (11), this yields :

\[
g_{k+1}^T d_{k+1} = (1 + \vartheta) \beta_{k}^{BMS} g_k^T d_k < 0.
\]

This finishes the proof. \(\square \)

The formula (10) is very important in our convergence analysis. Due to playing an important role in analyzing the convergence property for conjugate gradient, Zoutendijk’s condition [13] will be proved to be a part of the proposed Algorithm in this study.

Lemma 3.3. Let that \(d_{k+1} \) is generated by (2) and step size \(\alpha_K \) fulfills (3) and (4), if \(f(x) \) satisfies the Assumption 3.1, then :

\[
\sum_{k=1}^{\infty} \frac{(g_{k+1}^T d_{k+1})^2}{\|d_{k+1}\|^2} < \infty
\]

holds.

Theorem 3.4. Suppose that assumptions holes. Let \(\{x_k\} \) be generated by Algorithm, where the step length satisfies the Wolfe line search conditions. Then :

\[
\lim_{k \to \infty} \inf \|g_k\| = 0.
\]
Proof. By contradiction, we suppose that the conclusion is not true. Then there exists a constant \(\xi > 0 \) such that \(\|g_{k+1}\|^2 \geq \xi^2 \). From search direction, it follows that \(d_{k+1} + g_{k+1} = \beta_k d_k \). Implies that:

\[
\|d_{k+1}\|^2 + \|g_{k+1}\|^2 + 2d_{k+1}^Tg_{k+1} = (\beta_k)^2 \|d_k\|^2
\]

Dividing both sides of this inequality by \((d_{k+1}^Tg_{k+1})^2 \), that:

\[
\frac{\|d_{k+1}\|^2}{(d_{k+1}^Tg_{k+1})^2} = -\frac{2}{d_{k+1}^Tg_{k+1}} - \|g_{k+1}\|^2 + (\beta_k)^2 \|d_k\|^2 \\
= -\left(\|g_{k+1}\| + \frac{1}{\|g_{k+1}\|} \right)^2 + \frac{1}{\|g_{k+1}\|^2} + \frac{1}{(1 + \vartheta)} \left(\frac{d_{k+1}^Tg_{k+1}}{d_k^Tg_k} \right)^2 \\
\leq \frac{1}{\|g_{k+1}\|^2} + \frac{1}{(1 + \vartheta)} \left(\frac{d_{k+1}^Tg_{k+1}}{d_k^Tg_k} \right)^2
\]

Since \(\vartheta \in [0, 1, 2, 3] \), then \(\frac{1}{1 + \vartheta} < 1 \). Hence, we obtain:

\[
\frac{\|d_{k+1}\|^2}{(d_{k+1}^Tg_{k+1})^2} \leq \frac{1}{\|g_{k+1}\|^2} + \frac{\|d_k\|^2}{(d_k^Tg_k)^2}.
\]

The above inequality implies

\[
\frac{\|d_{k+1}\|^2}{(d_{k+1}^Tg_{k+1})^2} \leq \sum_{i=1}^{k+1} \frac{1}{\|g_k\|^2}
\]

Thus,

\[
\frac{\|d_{k+1}\|^2}{(d_{k+1}^Tg_{k+1})^2} < \frac{k+1}{\xi^2}
\]

this implies that

\[
\sum_{k=1}^{\infty} \frac{(g_k^Td_k)^2}{\|d_k\|^2} = \infty.
\]

This contradicts Lemma 3.3. Therefore, (13) holds. \(\square \)

4. Numerical Experiments

In this section, we report the numerical results of a comparison between the proposed method (denoted by BMS) and RMIL+ method [40]. Our experiments have been used 49 test functions selected from Andrei [28] and Jamil-Yang [20], as listed in Table 1, with variation dimensions from 2 to 50,000. Attempts to complete each test function are limited to the termination criterion \(\|g_k\| \leq 10^{-6} \) or to a maximum of 10,000 iterations. All the algorithms are coded in
MATLAB R2019a by using a personal laptop with specifications; processor Intel Core i7, 16 GB RAM, Windows 10 Pro 64 bit and the algorithms implemented the Wolfe line search conditions with $\sigma = 0.001$ and $\varphi = 0.0001$.

Table 1. List of Test Functions.

No	Function	No	Function
F1	Extended White & Holst	F26	POWER
F2	Extended Rosenbrock	F27	Quadratic QF1
F3	Extended Freudenstein & Roth	F28	Quartic
F4	Extended Beale	F29	Matyas
F5	Raydan 1	F30	Colville
F6	Extended Tridiagonal 1	F31	Dixon and Price
F7	Diagonal 4	F32	Sphere
F8	Extended Himmelblau	F33	Sum Squares
F9	FLETCHCR	F34	DENSCHNA
F10	NONSCOMP	F35	DENSCHNF
F11	DENSCHNB	F36	Staircase S1
F12	Extended Penalty	F37	Staircase S2
F13	Hager	F38	Staircase S3
F14	BIGGSB1	F39	Extended Block-Diagonal BD1
F15	Extended Maratos	F40	HIMMELBH
F16	Six Hump Camel	F41	Tridiagonal White and Holst
F17	Three Hump Camel	F42	ENGVAL1
F18	Booth	F43	Linear Perturbed
F19	Trecanni	F44	QUARTICCM
F20	Zettl	F45	Brent
F21	Shallow	F46	Deckkers-Aarts
F22	Generalized Quartic	F47	El-Attar-Vidyasagar-Dutta

(Continued on next page)
Table 1 – Continued

No	Function	No	Function
F23	Quadratic QF2	F48	Rotated Ellipse 2
F24	Generalized Tridiagonal 1	F49	Zirilli or Aluffi-Pentini’s
F25	Generalized Tridiagonal 2		

TABLE 2. Numerical Results.

Functions	Dimensions	Initial Points	BMS	RMIL+				
			NoI	NOF	CPU			
F1	1,000	(-1.2,1,-1.2,1)	-	-	16	102 0.0582		
F1	10,000	(-1.2,1,-1.2,1)	-	-	16	102 0.3839		
F2	1,000	(-1.2,1,-1.2,1)	6574	20205	5.0919	27	176 0.0401	
F2	10,000	(-1.2,1,-1.2,1)	7056	21651	51.639	32	192 0.3618	
F3	10	(0.5,2,0.5,-2)	-	-	12	62 0.0155		
F3	100	(0.5,-2,0.5,-2)	-	-	-	-		
F4	1,000	(1,0.8,1,0.8)	425	1326	0.6103	52	191 0.0889	
F4	10,000	(1,0.8,1,0.8)	458	1425	6.4805	54	199 1.0128	
F5	10	(1,....1)	31	143	0.0318	27	105 0.0027	
F5	100	(1,....1)	218	1211	0.0549	102	629 0.0331	
F6	500	(2,...,2)	9883	23068	6.1981	6	37 0.0117	
F6	1,000	(2,...,2)	-	-	7	40 0.0364		
F7	500	(1,...,1)	187	560	0.1136	-	-	
F7	1,000	(1,...,1)	193	578	0.1435	-	-	
F8	1,000	(1,...,1)	21	74	0.0318	11	44 0.015	
F8	10,000	(1,...,1)	22	77	0.1625	12	47 0.1184	
F9	10	(0,...,0)	142	525	0.1252	72	311 0.0052	
F9	100	(0,...,0)	7508	23301	1.0162	3030	9841	0.4331
F10	5	(3,...,3)	226	693	0.0167	-	-	
F10	9	(3,...,3)	-	-	-	-	-	
F11	1,000	(10,...,10)	16	67	0.0154	8	37 0.0145	
F11	10,000	(10,10)	16	67	0.1473	7	34 0.0887	
F12	10	(1,...,10)	50	168	0.0049	27	112 0.0047	
F12	100	(1,...,100)	279	938	0.0455	30	137 0.0236	
F13	50	(1,...,1)	28	128	0.0297	20	91 0.0052	
F13	100	(1,...,1)	37	217	0.1116	25	138 0.0142	
F14	3	(0.1,...,0.1)	1	3	0.002	1	3 0.0117	
F14	3	(1,...,1)	0	0	2.79E-04	0	0 0.0053	
F15	10	(1.1,0.1,1.1,0.1)	1773	5628	0.0853	207	923 0.0204	
F15	50	(1.1,0.1,1.1,0.1)	-	-	48	292 0.0163		
F16	2	(-1,2)	12	48	0.0014	8	36 8.67E-04	

(Continued on next page)
Table 2 – Continued

Functions	Dimensions	Initial Points	NOI	NOF	CPU	NOI	NOF	CPU
F16	2	(-5,10)	9	46	5.56E-04	11	66	0.0068
F17	2	(0.5,0.5)	21	398	0.0039	-	-	-
F17	2	(0.5,0)	23	434	0.0049	-	-	-
F18	2	(5.5)	16	48	0.0016	2	6	1.99E-04
F18	2	(10,10)	7	21	3.18E-04	2	6	0.0026
F19	2	(-1,0.5)	1	3	4.52E-04	1	3	1.15E-04
F19	2	(-5,10)	9	36	8.78E-04	5	23	0.0086
F20	2	(-1.2)	84	262	0.0071	16	69	0.0038
F20	2	(10,10)	43	134	0.0033	-	-	-
F21	1,000	(2,...,2)	99	307	0.2032	8	39	0.0146
F21	5,000	(2,...,2)	104	322	0.2904	8	39	0.0535
F22	1,000	(-0.5,...,-0.5)	507	8992	1.3872	-	-	-
F22	7,000	(-0.5,...,-0.5)	-	-	-	-	-	-
F23	50	(0.5,...,0.5)	157	536	0.0234	78	280	0.0148
F23	500	(0.5,...,0.5)	1391	4695	0.6698	581	2031	0.2735
F24	10	(2,...,2)	31	102	0.0065	22	74	0.0031
F24	100	(2,...,2)	32	116	0.0136	23	78	0.0162
F25	4	(1,...,1)	14	38	0.0035	7	21	0.001
F25	500	(1,...,1)	59	350	0.054	34	190	0.047
F26	10	(1,...,1)	278	834	0.0137	123	369	0.0114
F26	100	(1,...,1)	-	-	-	-	-	-
F27	50	(1,...,1)	143	429	0.0148	69	207	0.0065
F27	500	(1,...,1)	1241	3723	0.4803	447	1341	0.1815
F28	4	(20,20,20,20)	2404	8112	0.3912	803	2809	0.0523
F28	4	(1,1,1,1)	2372	7827	0.1092	766	2532	0.0679
F29	2	(1,1)	7	49	8.77E-04	-	-	-
F29	2	(20,20)	9	63	0.0011	-	-	-
F30	4	(2,2,2,2)	3845	12774	0.1636	1032	4339	0.0562
F30	4	(10,10,10,10)	5991	21091	0.2244	669	2819	0.1592
F31	3	(1,1,1)	73	232	0.0057	-	-	-
F31	3	(2,2,2)	96	329	0.0388	-	-	-
F32	100	(1,...,1)	1	3	3.15E-04	1	3	7.10E-04
F32	5,000	(1,...,1)	1	3	0.0061	1	3	0.0123
F33	50	(0,1,0,1)	128	384	0.6765	46	138	0.0111
F33	5,000	(0,1,0,1)	-	-	-	2659	7977	6.8666
F34	10,000	(7,...,7)	52	345	1.4298	12	66	0.2259
F34	50,000	(7,...,7)	54	351	5.3625	12	66	0.9863
F35	5,000	(100,-100)	24	140	0.12	11	91	0.0832
F35	10,000	(100,-100)	24	140	0.4653	11	91	0.197
F36	2	(1,1)	4	207	9.59E-04	4	208	0.0019
F36	2	(-1,-1)	4	208	0.0049	4	208	0.0086

(Continued on next page)
Numerical results are provided in Table 2 in the form number of iterations (NOI), number of function evaluations (NOF), and central processing unit (CPU) time. We symbolizes '-' if the NOI of methods exceeds 10,000 or never reaches the optimal value. We also use a performance profile suggested by Dolan and Moré [10], to describe the performance profile of the BMS and RMIL+ methods on NOI, NOF and CPU time. Suppose that V is a set of solvers with n_s solvers and M is a set of problems set with n_m test problems. For each problem $m \in M$ and solver $s \in V$, we denotes $c_{m,s}$ as NOI or NOF or CPU required to solve problem $m \in M$ by solver $v \in V$. Then comparison of the solvers is defined as follows:

$$z_{m,s} = \frac{c_{m,s}}{\min\{c_{m,s} : m \in M \text{ and } s \in V\}}.$$
Thus, the overall performance appraisal of the solver is obtained from the performance profile function given by

$$\rho_s(\tau) = \frac{1}{n_m} \text{size}\{m : 1 \leq m \leq n_m, \log_2 z_{m,s} \leq \tau\},$$

where $\tau \geq 0$.

Figure 1. Performance profiles based on NOI.

Figure 2. Performance profiles based on NOF.
According to performance profiles are plotted in Figs. 1-3, where Fig. 1 shows the performance profiles based on NOI, Fig. 2 shows the performance profiles based on NOF and lastly Fig. 3 is the performance profiles based on CPU time. From the all figures we can see that the BMS method is very competitive with RMIL+ conjugate gradient method.

5. **APPLICATION IN PORTFOLIO SELECTION**

Portfolio selection plays an important role in financial mathematics, risk management and economics. Portfolio selection is useful for assessing the combination of available alternative securities. It aims to maximize the investment return of investors which can be done by maximizing return or minimizing risk [14].

In this article, we only consider a securities of stock and choose four blue chip stocks in Indonesia, namely, PT Bank Central Asia Tbk (BBCA.JK), PT Ace Hardware Indonesia Tbk (ACES.JK), PT Adaro Energy Tbk (ADRO.JK) and PT Gudang Garam Tbk (GGRM.JK). We use the weekly closing price which taken from http://finance.yahoo.com, with a period of three years (Jan 1, 2018-Dec 31, 2020). For return (T_i), expected of return ($E(T_i)$), and variance of
TABLE 3. Mean and variance of return for four Stocks

Stocks	BBCA	ACES	ADRO	GGRM
Mean	-0.00204	-0.00072	0.00497	0.00577
Variance	0.00134	0.00264	0.00594	0.00222

TABLE 4. Covariance of return for four stocks

Covariance	BBCA	ACES	ADRO	GGRM
BBCA	0.00134	0.00071	0.00132	0.00064
ACES	0.00071	0.00266	0.00115	0.00051
ADRO	0.00132	0.00115	0.00597	0.00103
GGRM	0.00064	0.00051	0.00103	0.00224

The return (σ_i^2) of each stock can be obtained by formula as follows:

\[T_t = \frac{I_t - I_{t-1}}{I_{t-1}}, \]
\[E(T_i) = \frac{\sum_{t=1}^{n} T_t}{n}, \]
\[\sigma_i^2 = Var(T_i) = \frac{\sum_{t=1}^{n} (T_t - E(T_i))^2}{n-1}, \]

where T_t is a stock return in period t, I_t is a closing stock price in period t, I_{t-1} is a closing stock price one period before t and N is number of observation periods.

By using data in http://finance.yahoo.com, (15), (16) and (17), we get the mean, variance and covariance of each return stock as in Tables 3 and 4.
Since our portfolio consists four stocks then we have formula for expected of return and variance of return of portfolio as follows [33]:

\[\mu = E \left(\sum_{i=1}^{4} b_i T_i \right) = \sum_{i=1}^{4} b_i E(T_i), \]

\[\sigma^2 = \text{Var} \left(\sum_{i=1}^{4} b_i T_i \right) = \sum_{i=1}^{4} \sum_{j=1}^{4} b_i b_j \text{Cov}(T_i, T_j), \]

where \(b_1, b_2, b_3, b_4 \) are proportion of the BBCA, ACES, ADRO and GGRM stocks respectively and \(\text{Cov}(T_i, T_j) \) is the covariance of return between two stocks. Since what we want here is risk avoidance, therefore, we want a small variance of the return (i.e. low risk), so that our problem about portfolio selection can be written by

\[
\begin{aligned}
\text{minimize} : \sigma^2 &= \sum_{i=1}^{4} \sum_{j=1}^{4} b_i b_j \text{Cov}(T_i, T_j). \\
\text{subject to} : \sum_{i=1}^{4} b_i &= 1.
\end{aligned}
\]

Suppose \(b_4 = 1 - b_1 - b_2 - b_3 \) and by using values in Table 4 then the problem (20) will become an unconstrained optimization problem as follows:

\[
\min_{(b_1, b_2, b_3) \in \mathbb{R}^3} \left[(0.70e - 3b_1 + 0.7e - 4b_2 + 0.68e - 3b_3 + 0.64e - 3)b_1 + (0.20e - 3b_1 \\
+ 0.215e - 2b_2 + 0.64e - 3b_3 + 0.51e - 3)b_2 + (0.29e - 3b_1 + 0.12e - 3b_2 \\
+ 0.494e - 2b_3 + 0.103e - 2)b_3 + (-0.160e - 2b_1 - 0.173e - 2b_2 \\
- 0.121e - 2b_3 + 0.224e - 2)(1 - b_1 - b_2 - b_3) \right]
\]

The next step we solve the above problem by using BMS method with randomly initial point \((b_1, b_2, b_3) = (0.3, 0.3, 0.4) \), thus we will get \(b_1 = 0.57, b_2 = 0.19, b_3 = -0.03 \) and \(b_4 = 0.27 \).

Furthermore, based on Table 3, Table 4, (18) and (19), we have \(\mu = 0.0001 \) and \(\sigma^2 = 0.001 \). Hence, the weight of the proportion of each stock that makes up the optimal portfolio with minimal risk is 57% for BBCA, 19% ACES, −3% ADRO and 27% GGRM with expected portfolio return is 0.0001 and the portfolio risk is 0.001. In this case, investor is allowed to do short selling as in ADRO stock. Another consideration regarding the application of the CG method in portfolio selection can be seen in [2].
6. Conclusion

The conjugate gradient methods have recently been explored by many researchers. This is due to their nice convergence properties, low memory requirement, efficient numerical result, in addition to real-life practical application. In this paper, we have derive a new conjugate gradient parameter for unconstrained optimization problems. The global convergence properties of the proposed method is established under some mild conditions. An interesting feature of our method is the ability to reduce to the classical DY method. Numerical results have been presented to illustrate the performance of the method especially for the large-scale problems. The proposed method was further extended to solve real-life application problem of portfolio selection.

Conflict of Interests

The author(s) declare that there is no conflict of interests.

References

[1] A.B. Abubakar, P. Kumam, H. Mohammad, A.M. Awwal, An efficient conjugate gradient method for convex constrained monotone nonlinear equations with applications, Mathematics, 7 (9) (2019), 767.

[2] A.B. Abubakar, P. Kumam, M. Malik, P. Chaipunya, A.H. Ibrahim, A hybrid FR-DY conjugate gradient algorithm for unconstrained optimization with application in portfolio selection, AIMS Math. 6 (6) (2021), 6506-6527.

[3] A.O. Umar, I.M. Sulaiman, M. Mamat, M.Y. Waziri, H.M. Foziah, A.J. Rindengan, D.T. Salaki, New hybrid conjugate gradient method for solving fuzzy nonlinear equations, J. Adv. Res. Dyn. Control Syst. 12 (2) (2020), 1585-590.

[4] B.A. Hassan, A modified quasi-Newton methods for unconstrained Optimization, J. Pure Appl. Math. 2019 (42) (2019), 504-511.

[5] B.A. Hassan, A new type of quasi-newton updating formulas based on the new quasi-newton equation, Numer. Algebra Control Optim. 10 (2020), 227–235.

[6] B.A. Hassan, H.N. Jabbar, A New Transformed Biggs ’s Self-Scaling Quasi-Newton Method for Optimization, ZANCO J. Pure Appl. Sci. 31 (2018), 1-5.

[7] B. A. Hassan, W.T. Mohammed, A New Variants of Quasi-Newton Equation Based on the Quadratic Function for Unconstrained Optimization, Indonesian J. Electric. Eng. Computer Sci. 19 (2) (2020), 701-708.
[8] B. Baluch, Z. Salleh, A. Alhawarat, U.A.M. Roslan, A new modified three-term conjugate gradient method with sufficient descent property and its global convergence, J. Math. 2017 (2017), 2715854.

[9] B.T. Polyak, The conjugate gradient method in extremal problems, USSR Comput. Math. Math. Phys. 9 (4) (1969), 94-112.

[10] E.D. Dolan, J.J. Moré, Benchmarking optimization software with performance profiles, Math. Program. 91 (2) (2002), 201-213.

[11] E. Polak, G. Ribiere, Note sur la convergence de méthodes de directions conjuguées, ESAIM: Math. Model. Numer. Anal.-Mod. Math. Anal. Numér. 3 (R1) (1969), 35-43.

[12] F. Biglari, M.A. Hassan, W.J. Leong, New quasi-Newton methods via higher order tensor models, J. Comput. Appl. Math. 235 (8) (2011), 2412-2422.

[13] G. Zoutendijk, Nonlinear programming, computational methods, in: Integer and Nonlinear Programming, ed. J. Abadie North-Holland, Amsterdam, (1970), pp. 37–86.

[14] H.M. Markowitz, Portfolio selection, J. Finance, 7 (1) (1952), 77-91.

[15] I.M. Sulaiman, M. Mamat, M.Y. Waziri, U.A. Yakubu, M. Malik, The performance analysis of a new modification of conjugate gradient parameter for unconstrained optimization models, Math. Stat. 9 (1) (2021), 16-23.

[16] I.M. Sulaiman, M. Mamat, A.E. Owoyemi, P.L. Ghazali, M. Rivaie, M. Malik, The convergence properties of some descent conjugate gradient algorithms for optimization models, J. Math. Computer Sci. 22 (3) (2020), 204-215.

[17] J.K. Liu, Y.X. Zhao, X.L. Wu, Some three-term conjugate gradient methods with the new direction structure, Appl. Numer. Math. 150 (2020), 433-443.

[18] J. Nocedal, S.J. Wright, Numerical optimization, Springer Science & Business Media, New York, 2006.

[19] L.H. Chen, N.Y. Deng, J.Z. Zhang, A modified quasi-Newton method for structured optimization with partial information on the Hessian, Comput. Optim. Appl. 35 (1) (2006), 5-18.

[20] M. Jamil, X-S. Yang A literature survey of benchmark functions for global optimisation problems, Int. J. Math. Model. Numer. Optim. 4 (2) (2013), 150-194.

[21] M.J.D. Powell, Restart procedures for the conjugate gradient method, Math. Program. 12 (1977), 241-254.

[22] M. Malik, M. Mamat, S.S. Abas, I.M. Sulaiman, Sukono, A new coefficient of the conjugate gradient method with the sufficient descent condition and global convergence properties, Eng. Lett. 28 (3) (2020), 704-714.

[23] M. Malik, M. Mamat, S.S. Abas, I.M. Sulaiman, Sukono, A new spectral conjugate gradient method with descent condition and global convergence property for unconstrained optimization, J. Math. Comput. Sci. 10 (5) (2020), 2053-2069.

[24] M. Malik, S.S. Abas, M. Mamat, Sukono, I.M. Sulaiman, A new hybrid conjugate gradient method with global convergence properties, Int. J. Adv. Sci. Technol. 29 (5) (2020), 199-210.
[25] M. Malik, M. Mamat, S.S. Abas, I.M. Sulaiman, Sukono, Performance analysis of new spectral and hybrid conjugate gradient methods for solving unconstrained optimization problems, IAENG Int. J. Computer Sci. 48 (1) (2021), 66-79.

[26] M. Mamat, I.M. Sulaiman, M. Malik, Z.A. Zakaria, An efficient spectral conjugate gradient parameter with descent condition for unconstrained optimization, J. Adv. Res. Dyn. Control Syst. 12 (2) (2020), 2487-2493.

[27] M.R. Hestenes, E. Stiefel, Methods of conjugate gradients for solving linear systems, J. Res. Nat. Bureau Standards, 49 (6) (1952), 409-436.

[28] N. Andrei, Nonlinear conjugate gradient methods for unconstrained optimization, Springer International Publishing, 2020.

[29] R. Dehghani, N. Bidabadi, M.M. Hosseini, A new modified BFGS method for solving systems of nonlinear equations, J. Interdiscip. Math. 22 (1) (2019), 75-89.

[30] R. Fletcher, Practical methods of optimization, John Wiley and Sons, New York, 2013.

[31] R. Fletcher, C.M. Reeves, Function minimization by conjugate gradients, Computer J. 7 (2) (1964), 149-154.

[32] R. Pytlak, Conjugate gradient algorithms in nonconvex optimization, Springer, New York, 2008.

[33] S. Roman, Introduction to the mathematics of finance: from risk management to options pricing, Springer, New York, 2004.

[34] Tarzanagh, D. Ataee, M. Reza Peyghami, A new regularized limited memory BFGS-type method based on modified secant conditions for unconstrained optimization problems, J. Glob. Optim. 63 (4) (2015), 709-728.

[35] U.A. Yakubu, I.M. Sulaiman, M. Mamat, P.L. Ghazali, K. Khalid, The global convergence properties of a descent conjugate gradient method, J. Adv. Res. Dyn. Control Syst. 12 (2) (2020), 1011-1016.

[36] W. W. Hager, H. Zhang, A new conjugate gradient method with guaranteed descent and an efficient line search, SIAM J. Optim. 16 (1) (2005), 170-192.

[37] Y. Liu, C. Storey, Efficient generalized conjugate gradient algorithms, Part 1: theory, J. Optim. Theory Appl. 69 (1) (1991), 129-137.

[38] Y.H. Dai, L.Z. Liao, D. Li, On Restart procedures for the conjugate gradient method, Numer. Algorithms, 35 (2004), 249-260.

[39] Y.H. Dai, Y. Yuan, A nonlinear conjugate gradient method with a strong global convergence property, SIAM J. Optim. 10 (1) (1999), 177-182.

[40] Z. Dai, Comments on a new class of nonlinear conjugate gradient coefficients with global convergence properties, Appl. Math. Comput. 276 (2016), 297-300.

[41] Z. Wei, G. Li, L. Qi, New quasi-Newton methods for unconstrained optimization problems, Appl. Math. Comput. 175 (2) (2006), 1156-1188.