A Conserved Family of Nuclear Phosphoproteins Localized to Sites of Polymerase II Transcription

Mark B. Roth, Alan M. Zahler, and John A. Stolk
Fred Hutchinson Cancer Research Center, Seattle, Washington 98104

Abstract. An antibody was identified previously that recognizes sites of polymerase II transcription on lampbrush chromosomes, puffs on polytene chromosomes, and many small granules in the nucleoplasm of all cells tested. This antibody binds a conserved family of phosphorylated polypeptides in vertebrate and invertebrate cells. We developed a method for purifying these proteins that involves differential solubility in MgCl₂. We isolated a Drosophila cDNA encoding one of the proteins using information obtained from microsequencing. In vivo expression studies show that this protein is concentrated on sites of polymerase II transcription and that it is highly phosphorylated. The protein shares a high degree of homology with proteins involved in alternative splicing of pre-mRNA suggesting the possibility that this protein plays a role in pre-mRNA splicing.

Materials and Methods
Antibodies

We used three mouse mAbs in this work. Antibody 104 (mAb104) is an IgM produced by Roth et al. (1990). Antibody 9E10 (mAb9E10) is an IgG produced by Evan et al. (1985). mAb9E10 binds to a 12 amino acid sequence contained in the human c-myc protein; the single letter amino acid designation of the minimal sequence defined that contains this epitope is MEQKLISEEDL. The third mAb, mAbK121, is an IgG that recognizes the 5’ trimethylguanosine cap found on most U-snRNAs (Krainer, 1988).

Protein Purification and Microsequencing

Approximately 1 × 10⁶ Drosophila (Schneider or Kc), or human (HeLa) cultured cells, or immature Xenopus ovary was washed and resuspended in 10 ml of lysis buffer (65 mM KCl, 15 mM NaCl, 10 mM MOPS, pH 7.5, 10 mM EDTA, 5 mM β-glycerophosphate, 5 mM DTT, 5 mM KF, and 200 μM PMSF). Cells were lysed by several passes through a Dounce homogenizer and the lysate spun at 70,000g for 1h. A 60 to 90% ammonium sulfate precipitate was prepared and the resulting precipitate resuspended in and dialyzed extensively against lysis buffer containing 1 mM EDTA. The dialysate was centrifuged at 13,000g for 20 min to remove insoluble protein and then adjusted to 20 mM MgCl₂ with 100 mM MgCl₂. After 30 min the suspension was centrifuged at 13,000g for 20 min to recover the precipitated proteins.

After SDS-PAGE, and electrotransfer to PVDF membrane (Matsudaira, 1987) the intact protein was sequenced from the amino terminus by Edman degradation (model 477A; Applied Biosystems Inc., Forest City, CA), followed by amino acid analysis using a reverse phase C18 column (model 120A; Applied Biosystems Inc.). Protein sequence obtained from internal fragments generated by tryptic cleavage of the protein, separa-
tion of these fragments, and microsequencing was done by Harvard Microchemistry.

PCR Amplification, Cloning, Sequencing, and In Situ Hybridization to Polytenic Chromosomes

Degenerate 14-base oligonucleotides corresponding to short stretches of amino acids on either end of fragment C, not including the central seven nucleotides, were used to amplify the genomic DNA sequence encoding the protein (Gil et al., 1988). The reactions contained 0.1 μg of each oligonucleotide (one of two was labeled at the 5' end with [3P]dATP, 1 μg of Drosophila genomic DNA, 50 mM KCl, 10 mM Tris, pH 8.3, 1.5 mM MgCl₂, 200 μM each of dATP, dTTP, dCTP, and dGTP, and 2.5 U of AmpliTaq polymerase (United States Biochemical) in a total volume of 25 μl. After initial denaturation at 94°C for 4 min the reaction was carried out for 30 cycles at 94°C for 1 min, 50°C for 2 min, and 70°C for 1 min. The reaction products were separated on a 18% denaturing polyacrylamide gel. The expected 35-bp band was excised and used in a second round of amplification. The second round products yielded sufficient amounts of each strand to use in Maxim-Gilbert sequencing (Benicelli et al., 1984).

Two 34-base oligonucleotide generated using the PCR sequence information was used to screen 1.5 x 10⁹ plaques from an EcoRI linker oligo dT primed embryo cDNA library in the vector lambda ZAP (Stratagene, La Jolla, CA). Filters were washed using tetramethylammonium chloride (Wood et al., 1985). Seven positive plaques were plaque purified, the inserts transferred to Bluescript, and sized after EcoRI digestion. The largest cDNA (1,380 bp) was sequenced on both ends and found to contain a short poly A sequence of 19 residues on one end and an open reading frame on the other that could encode amino acid sequences obtained from microsequence analysis of the intact protein.

The sequence of this cDNA was obtained on both strands using sequence (United States Biochemical, Cleveland, OH) and several deletions were obtained by exonuclease III and Sl nuclease. Protein sequences similarity was determined by BLAST analysis of the intact protein.

Expression and Analysis of Tagged Proteins in Xenopus oocytes

Capped run-off in vitro transcripts encoding fusion proteins were prepared according to previously described methods (Roth and Gall, 1989). Injection of synthetic mRNAs was done by methods described by Gurdon et al. (1971). Phosphatase treatment and Western binding analysis of pools of 20 to 30 hand isolated germinal vesicles 48 h after injection of RNA with or without 25 nCi of [γ-³²P]ATP was done according to Roth et al. (1990). Radioactively labeled proteins were detected by autoradiography after the proteins were separated by SDS-10% PAGE, and electrophoretically transferred to nitrocellulose. Xenopus lampbrush chromosomes were prepared according to Callan et al. (1987); indirect immunofluorescence staining was done according to Roth and Gall (1987).

In Vivo ³²P-labeling of Drosophila Tissue Culture Cells

Drosophila Kc tissue culture cells were grown in D22 media (Sigma Chemical Co., St. Louis, MO). *Drosophila* SL2 tissue culture cells were grown in Schneider's media (Sigma Chemical Co.) supplemented with 10% FBS (Gibco Laboratories, Grand Island, NY). Cells were grown to a density of 5 x 10⁶/ml. Cells were washed three times with TBS and then resuspended at 5 x 10⁶/ml in phosphate free media supplemented with 3% FBS. ³²P orthophosphate was added to 0.4 μCi/ml and cells were grown at room temperature for 1 to 4 h. Cells were harvested by centrifugation followed by three washes with TBS.

Immunoprecipitation of SRp55 from ³²P-labeled Cells

³²P-labeled tissue culture cell pellets were resuspended in Net-2 buffer (50 mM Tris, pH 7.5, 150 mM NaCl, 0.05% NP-40) which also contained 20 mM β-mercaptoethanol and 500 U/ml ribonuclease inhibitor (Promega Biotech, Madison, WI). Cells were lysed by sonication in a cephorn sonicator and insoluble material was removed by centrifugation. Cell lysates were then added to protein G sepharose beads (Pharmacia Fine Chemicals, Piscataway, NJ) which had antibodies bound to them, and these were incubated at 4°C with shaking for 1 h.

mAb104 is an IgM and does not bind to protein G. A goat anti-mouse IgM antibody was used to link mAb104 to protein G sepharose. Protein G sepharose beads were incubated with goat anti-mouse IgM (Tago Inc., Burlingame, CA) in Net-2 buffer on a shaker at room temperature for 30 min. Beads were washed three times in Net-2 buffer and then resuspended in Net-2. mAb104 from ascites fluid was added to the beads, and these were incubated for 30 min with shaking at room temperature. Beads were then washed three times with Net-2 buffer and cell lysate was added to the bead pellet.

After a 1-h incubation with shaking at 4°C, beads were washed three times with Net-2 buffer. For protein immunoprecipitation studies, beads were resuspended in SDS protein sample buffer and separated by SDS-PAGE. For RNA coprecipitation studies, beads were resuspended in 300 μl of Net-2. Then, 2 μl of 1 mg/ml Esherichia coli rRNA, 30 μl of 10% SDS, 150 μl phenol, and 150 μl of chloroform were added to each tube. Tubes were vortexed and incubated at 37°C for 15 min. Tubes were centrifuged, the aqueous layer moved to a new tube, and the nucleic acids in this tube were ethanol precipitated. Nucleic acids were resuspended in formamide loading buffer and the samples were loaded onto a 5% acrylamide gel. "P-labeled tissue culture cell pellets were resuspended in 0.4 μCi/ml RNAse A or oxidized RNAse A in Net-2 buffer for 15 min at 15°C.

Results

mAb104 Bounds A Conserved Family of Nuclear Phosphoproteins

It has been demonstrated that mAb104 shows punctate nuclear staining in cells from all metazoans tests, including: human (HeLa), African green monkey (Vero), mouse (3T3 and L), *Drosophila* (Schneider), and Xenopus (Xla) tissue culture cells, and tissues from nematode (Caenorhabditis), earthworm, grasshopper (Melanoplus), mouse, and amphibians (Rana and Plethodon) (Roth et al., 1990). It was also shown previously that mAb104 binding on immunoblots, and fixed cytological preparations could be eliminated by phosphatase. The action of phosphatase to eliminate mAb104 binding could be suppressed if the proteins were incubated with beta glycerophosphate. These results demonstrated that mAb104 antigens are phosphorylated, and that the epitope recognized by mAb104 involves phosphate (Roth et al., 1990).

To further characterize the antigens recognized by mAb-
For immunoblotting studies of proteins from human (HeLa), African Green Monkey (Vero), Xenopus (Xla), and Drosophila (Kc) tissue culture cells. Live cells were washed in isotonic medium and placed directly into protein sample buffer containing SDS. The results showed that mAb104 binds several different proteins; the staining, however, is barely detectable even when large amounts of protein are used (data not shown). We found the same proteins can be detected much more easily if they are first purified from whole cell extracts. The purification scheme was based on three observations. First, all mAb104 immunoreactive proteins are soluble in magnesium-free solutions containing 60% of saturation ammonium sulfate even after centrifugation at 70,000 g for 1 h. Second, all mAb104 immunoreactive proteins are insoluble in solutions containing 90% of saturation ammonium sulfate. These observations suggest that mAb104-binding proteins are very hydrophilic. The third observation is that all mAb104 immunoreactive proteins precipitate and pellet if centrifuged at 10,000 g for 20 min in buffer containing 20 mM MgCl$_2$. Insolubility in MgCl$_2$ remains a characteristic of these proteins even after they are purified by SDS-PAGE and eluted from the polyacrylamide. This suggests that differential solubility in MgCl$_2$ is intrinsic to these proteins and not a consequence of noncovalent interactions with RNA or other macromolecules.

Fig. 1, lanes 1, 2, and 3 show immunoblotting of mAb104 to ammonium sulfate and magnesium chloride precipitated proteins from Drosophila (Kc) and Human (HeLa) tissue culture cells, and Xenopus immature ovary, respectively. Several proteins with apparent molecular sizes of ~28–30, 40, 55, 70, and 180 kD are observable. All three samples contain bands of 28 and/or 30, and 40 kD. Xenopus immature ovary has broad weak staining between 100 and 130 kD and no detectable 55- and 70-kD proteins. The 180-kD protein is only detectable in Drosophila cells. The bands just below the Drosophila 55-kD protein are not consistently observed. The relative intensity of staining in any one sample is reproducible; the 55-, 30-, and 43-kD proteins are the most abundant in Kc, HeLa, and immature ovary, respectively. We estimate the relative degree of purification achieved using this method is well over several hundredfold and that the percentage recovery is near quantitative. mAb104 binding to all proteins shown in Fig. 1 can be eliminated by phosphatase treatment, and the action of phosphatase can be suppressed by incubation with beta glycerophosphate (data not shown), therefore, they are all phosphoproteins.

Purification of Drosophila SRp55

To begin to characterize the molecular structure of the epitope recognized by mAb104 as well as the function of the phosphoproteins recognized by the antibody, we purified a mAb104 immunoreactive protein to homogeneity. This was accomplished using the method just described with Drosophila (Kc) and Human (HeLa) tissue culture cells, and Xenopus immature ovary, respectively. Several proteins with apparent molecular sizes of ~28–30, 40, 55, 70, and 180 kD are observable. All three samples contain bands of 28 and/or 30, and 40 kD. Xenopus immature ovary has broad weak staining between 100 and 130 kD and no detectable 55- and 70-kD proteins. The 180-kD protein is only detectable in Drosophila cells. The bands just below the Drosophila 55-kD protein are not consistently observed. The relative intensity of staining in any one sample is reproducible; the 55-, 30-, and 43-kD proteins are the most abundant in Kc, HeLa, and immature ovary, respectively. We estimate the relative degree of purification achieved using this method is well over several hundredfold and that the percentage recovery is near quantitative. mAb104 binding to all proteins shown in Fig. 1 can be eliminated by phosphatase treatment, and the action of phosphatase can be suppressed by incubation with beta glycerophosphate (data not shown), therefore, they are all phosphoproteins.

Figure 1. Western binding of mAb104 to purified cell proteins. Because mAb104 antigens are relatively rare, they were first purified by ammonium sulfate and magnesium precipitation (see Materials and Methods). Lanes 1, 2, and 3 contain purified proteins from Drosophila (Kc), human (HeLa), and Xenopus immature ovary, respectively. The proteins were separated by SDS-PAGE, transferred to nitrocellulose, and stained with mAb104. Several bands with approximate molecular sizes of 28–30, 40, 55, 70, and 75 kD are common to Kc and HeLa cells. A 180-kD band is present only in Kc cells. Xenopus immature ovary has broad weak staining between 100 and 130 kD. The series of bands below the 55-kD band in Kc cells is not consistently observed.

Based on the predicted protein sequence of the purified protein we refer to it hereafter as SRp55: the S and R stand for serine and arginine, the two most abundant amino acids in the protein; p55 denotes the apparent molecular size. The gene designation we use is SR55.

Isolation of the Gene Encoding SRp55

Because mAb104 does not recognize the dephosphorylated form of the antigen (Roth et al., 1990) we were unable to use it to screen an expression library. As an alternative, we microsequenced several peptides from SRp55 by sequencing either the purified protein (Fig. 2, line A), or by sequencing.
isolated fragments obtained after digestion with trypsin (Fig. 2, lines B and C). We found that for the intact protein the amino acid identified in the first Edman cycle was valine at position 2, followed by serine and glycine at positions 3 and 4. We did not obtain a signal at Edman cycle 4. Cycles 5 through 14 revealed the remainder of peptide A. Oligonucleotides were synthesized that could encode either the first five or the reverse complement of the last five amino acids from peptide C. Because of degeneracy of the genetic code, these were both mixtures of 64 oligonucleotides. These oligonu-
In vivo formation of mAb104 epitope on SRp55 expressed in Xenopus oocytes. Oocytes were injected with transcripts encoding tagged SRp55 (MTI/SRp55) or a control tagged protein SE5 (MTI/SE5), and germinal vesicles dissected from them after 48 h. These nuclear proteins were separated by SDS-PAGE, transferred to nitrocellulose and stained with either mAb104 (A and D) or an antibody specific for the tag, mAb9E10 (B). Lane 1 in each panel contains germinal vesicle proteins obtained after injection of oocytes with synthetic transcripts encoding MTI/SE5. Lane 2 in each panel contains germinal vesicle proteins from oocytes injected with MTI/SRp55. Lanes 3 contain germinal vesicle proteins from uninjected oocytes. A, lane 2 shows a 55-kD band detectable with mAb104 that is not detectable in MTI/SE5 injected or uninjected oocytes (A, lanes 1 and 3). To be certain the staining of the 55-kD band in lane 2 was above the background of endogenous bands detectable with mAb104 we stained a filter identical to A, lanes 1 and 2 for a longer time (D, lanes 1 and 2). B, lane 2 shows a band detectable with the tag antibody (mAb9E10) that comigrates with the 55-kD band in A, lane 2. The 70-kD band B, lane 1 is the tagged protein expressed from MTI/SE5 transcript. As expected, germinal vesicle proteins from uninjected oocytes do not stain with the tag antibody (B, lane 3). In a parallel experiment oocytes were injected with gamma 32P ATP and transcripts. Radioactive proteins were detected by autoradiography. Lanes 1 and 2 in C contain germinal vesicle proteins from oocytes injected with the same transcripts as those in A and B. An enhanced labeling is detectable at a position of 55-kD (C, lane 2) that is reduced in either control MTI/SE5 or buffer-injected oocytes (lanes 1 and 3).

nucleotide pools and Drosophila genomic DNA were used in a polymerase chain reaction to amplify the 36-bp genomic sequence. Both strands of the amplified DNA were sequenced and found to contain a unique sequence that could encode the entire C peptide.

Two 35-base oligonucleotides corresponding to these two strands of unique sequence were used to screen 1 x 10^6 clones from a lambda library of Drosophila cDNAs. Approximately 80 positive clones were obtained, several were plaque purified, and one was completely sequenced. This 1380-bp clone (SR55) contains the coding sequence for SRp55 because conceptual translation reveals all three peptides obtained from microsequencing (Fig. 2).

Sequence Analysis of SR55 and In Situ Hybridization to Salivary Polytene Chromosomes

Analysis of the 39-kD open reading frame revealed two obvious domains in the protein SRp55. Amino acids 1-45 contain a sequence highly similar to proteins that interact with RNA. The RNA binding consensus sequence can be split into two short blocks, termed RNP-1 and RNP-2 (Bandziulis et al., 1989). By searching the 17,000 member SWISS-PROT data base (version 15) together with SRp55, we found that all known RNA binding proteins and SRp55 scored in the top 35 when either of the two blocks was used. The identified RNP-2 and RNP-1 sequences have the appropriate orientation in SRp55 (Fig. 2). The spacing between RNP-2 and RNP-1 in 32 known RNA-binding proteins ranges between 26 and 34 amino acids; the spacing between RNP-2 and RNP-1 in SRp55 is 25 amino acids.

A second domain present in SRp55 is a long stretch of alternating arginine and serine residues in the carboxy terminal half of the protein. Over this 131 amino acid sequence 42% are arginine and 31% are serine. In some positions lysine—and in one case, histidine—is found instead of arginine, suggesting that an important feature of this sequence may be alternating basic/serine amino acids.

In situ hybridization of the SR55 cDNA to Drosophila polytene chromosomes showed binding to one locus on chro...
mosome 3R. The specific map position was between 87F4 and 87F11 (data not shown).

In Vivo Reconstitution of the mAb104 Phosphorylated Epitope

To show that DNA clone SR55 can encode a protein that contains the mAb104 phosphorylated epitope, we expressed SRp55 protein in Xenopus oocytes. We distinguished newly synthesized protein from endogenous mAb104 immunoreactive proteins by fusing a piece (12 amino acid) of the myc gene to the 5' end of the SR55 open reading frame. In this construction we changed the SR55 start methionine codon to alanine. This fusion protein was detected using an antibody (mAb9E10) specific for the 12 amino acid myc sequence. In vitro synthesized transcripts encoding myc-tagged SRp55 (MTI/SRp55) and another nuclear localized tagged protein, MTI/SE5 (Roth and Gall, 1989), were injected into stage V-VI oocytes. Germinal vesicle nuclei were hand dissected from the oocytes after 48 h.

Fig. 3 shows the results of staining of germinal vesicle proteins with either mAb104 (A and D) or mAb9E10 (B). Each lane in all experiments contains ~25 germinal vesicles. Lanes 3 in A and B contain nuclei from uninjected oocytes. As expected, Xenopus nuclear proteins are detectable with mAb104 (A, lanes 1 and 3, and D, lane 1), but not with mAb9E10 (B, lane 3). Lanes 1 in A and B contain nuclei from MTI/SE5 transcript-injected oocytes. MTI/SE5 encodes a 70-kD nuclear localized protein detectable with mAb9E10 (B, lane 1), but not mAb104 (A, lane 1). Lanes 2 in A and B contain nuclei from MTI/SRp55 injected oocytes. Both 9E10 and 104 antibodies detect a protein with an apparent molecular size of 55 kD. D is the same as lanes 1 and 2 of A except it was stained for a longer period of time. Although mAb104 binds many different phosphoproteins (D, lane 1), SRp55 is easily detectable above this background (D, lane 2). These results demonstrate that transcripts of clone MTI/SRp55 encode a protein in Xenopus oocytes that contains the mAb104 epitope.

To analyze the structure of the epitope on SRp55 that is recognized by mAb104, we injected gamma 32P-labeled ATP and transcripts into oocytes. Fig. 3 C shows an autoradiograph of an SDS protein gel after electrophoresis of hand dissected nuclei from these labeled oocytes. Both MTI/SE5 injected (C, lane 1) and control nuclei (C, lane 3) show the same pattern of labeled proteins; however, after injection of MTI/SRp55 transcripts (C, lane 2), a 55-kD protein is detectable. Densitometric comparison of the band which migrates slightly slower than SRp55 in lanes 1 or 3 with the 55-kD MTI/SRp55 protein shows that there was five times more radioactivity in the 55-kD band in C, lane 2 than in corresponding regions of lanes 1 or 3. These results suggest that SRp55 is phosphorylated.

Further evidence that the MTI/SRp55 protein contains phosphate is shown in Fig. 4. Nuclei from oocytes injected with MTI/SRp55 transcripts were untreated (A and B, lanes 1), treated with phosphatase (A and B, lanes 2), or treated with phosphatase and β-glycerophosphate (A and B, lanes 3). The proteins were separated by SDS-PAGE, transferred to nitrocellulose, and stained with either mAb104 (A), or mAb9E10 (B). A, lane 2 shows that pretreatment with phosphatase eliminates the ability to detect all proteins containing the mAb104 phosphorylated epitope, including the 55-kD protein encoded by MTI/SRp55. B, lane 2 shows that phosphatase treated MTI/SRp55 protein has an increased mobility; the new molecular size is near 39 kD (the expected molecular size of the unphosphorylated protein) β-glycerophosphate, a strong competitive inhibitor of phosphatase, prevents the loss of antigen recognition (A and B, lanes 3).

In Vivo Targeting of SRp55 Expressed Protein to Polymerase II Transcription Units

Indirect immunofluorescent staining shows that mAb104 labels the lateral loops of lampbrush chromosomes. A lateral loop contains one or more transcription units (reviewed by Callan, 1986). This labeling pattern suggests that phosphoproteins recognized by mAb104 interact with the nascent transcripts being produced at these loci by RNA polymerase II. In addition to staining the lateral loops, mAb104 also stains thousands of small (1-4 μm) granules, referred to as B granules (Roth et al., 1990; Wu et al., 1991), that are present throughout the nucleus.

To begin to define the molecular interactions that the phosphoprotein SRp55 makes in vivo with lateral loops and B granules, we studied the subnuclear distribution of SRp55 in oocytes injected with MTI/SRp55 transcripts. As described above, we used mAb9E10 to distinguish MTI/SRp55 tagged protein from the endogenous mAb104-detectable protein. Initially, we found that even after injecting large amounts of synthetic RNA (200 nanograms per oocyte) and incubating
Figure 5. Spread nuclear preparations stained with mAb9E10. Phase contrast image (left) and immunofluorescence image (right) from oocytes injected with MT1/SRp55 containing only one tag (A and B), MT6/SRp55 containing a concatemer of six tags (C and D), and MT6/164 encoding a nucleolar localized protein with six tags (E and F). Note that the fusion protein containing six tags and SRp55 is localized to the lateral loops. This is particularly evident in the loops shown in the lower left corner of C and D. Tags do not appear to influence protein localization because a nucleolar protein fused to the same six tags was localized to nucleoli (E and F). Bar, 40 μM.

For 48 h we were unable to detect the MT1/SRp55 tagged fusion protein by indirect immunofluorescence (Fig. 5, A and B).

Because MT1/SRp55 is expressed and localized to the nucleolus, we reasoned that our inability to detect the protein was because of a lack of sensitivity of detection. As an alternative, we used synthetic oligonucleotides to generate in-frame amino terminal concatemers of the 13 amino acid myc epi-
Coprecipitation of RNA with mAbl04

In an attempt to understand the function of the family of phosphoproteins recognized by mAbl04, we began to analyze the macromolecules that interact with these proteins. We suspected that SRp55—and possibly other mAbl04 antigens—bind RNA because mAbl04 stains the lateral loops on lampbrush chromosomes, the predicted protein sequence contains conserved RNA binding sequences RNP2 and RNP1, and MT6/SRp55 is localized on the lateral loops. To test this possibility we attempted to precipitate RNA with mAbl04. mAbl04 does not bind RNA directly, therefore, if mAbl04 could precipitate RNA it would indicate a direct or indirect association of mAbl04 antigens with RNA. Drosophila (Kc) cell extracts labeled with [32P]orthophosphate were prepared and used for immunoprecipitation. Because mAbl04 is an IgM and does not bind directly to protein G, we incubated protein G sepharose with goat anti-mouse IgM antibodies and then incubated the bound sepharose with mAbl04. We found that excess mAbl04 bound beads can clear an extract of the Kc cell antigens (data not shown).

The labeled nucleic acids that co-precipitated with the mAbl04 antigens were separated on polyacrylamide and observed by autoradiography (Fig. 6). Lane 1 contains whole extract before precipitation. Nucleic acids recovered from precipitates of equivalent amounts of extract are shown in lanes 2, 3, and 4. The sample in lane 4 was recovered from extract precipitated with mAbl04 bound beads; lanes 2 and 3 served as negative controls and had either beads and anti-IgM antibody, or beads and mAbl04. Lane 4 contains approximately tenfold more radioactive material than either of the two control lanes (2 and 3), suggesting that mAbl04 precipitated nucleic acids. Several bands that run between the 309 and 622 base markers are enriched relative to 5S and tRNA in the whole extract (lane I). Lane 8 shows immunoprecipitation with a mAb against the trimethylguanosine cap found on the 5' ends of all abundant snRNAs except U6. None of these known small nuclear RNAs is enriched in lane 4. The mAbl04 precipitated nucleic acid was sensitive to RNase treatment (lane 7), but not to oxidized RNase (lane 6) suggesting that mAbl04 binding proteins interact directly or indirectly with RNA.

Discussion

mAbl04 was first identified because it bound to active sites of polymerase II transcription and to small B granules in the nucleoplasm of the amphibian germinal vesicle. Indirect immunofluorescence studies of several tissue culture cells and tissues from various organisms showed that proteins recognized by this antibody are located in small granules in the nucleus. It was difficult, however, to characterize the antigens on immunoblots, presumably because of the low abundance of these phosphoproteins. Making use of the unusual solubility in ammonium sulfate and magnesium, it is now possible to detect the antigens in immunoblots of vertebrate.
and invertebrate cell proteins. The molecular sizes of several
of the proteins (30, 40, 55, and 75 kD) are apparently identi-
cally between vertebrates and invertebrates suggesting a high
degree of conservation.

All family members are highly soluble in ammonium sul-
fate and insoluble in magnesium, raising the possibility that
the mAb104 epitope itself (or some other shared structural
feature) is important for their unusual biochemical proper-
ies. SDS-PAGE purified protein can form aggregates, sug-
gesting the ability to precipitate in magnesium is an intrinsic
property of these phosphoproteins. The mAb104 epitope
probably includes a phosphate residue, therefore, it is pos-
sible that phosphopeptides on these proteins interact with
magnesium ions to form large insoluble aggregates. By
analyzing the amount of MgCl\(_2\) required to sediment mAb-
104 antigens we found that as little as 1 mM can be used.
Because earlier studies of mAb104 antigen containing B
granules show that they are stabilized by the same concen-
trations of MgCl\(_2\) that are required to form the insoluble
aggregates in vitro, we hypothesize that MgCl\(_2\) aggregates
of mAb104 antigens may form in vivo and that this con-
tributes to the formation and stability of B granules.

Possible explanations for the biochemical properties of
SRp55 are suggested from analysis of the cDNA sequence.
The protein contains over 41% charged residues which, in
part, accounts for its hydrophilicity. Another factor that con-
tributes to this property is phosphorylation. Two results sug-
gest that the phosphorylation level is high. First, co-injection
of synthetic SR55 transcripts with gamma-\(^{32}\text{P}\) ATP results
in labeled SRp55. The degree of phosphorylation of SRp55
during the synthesis period is comparable to nucleoplasm
(30 kD), the most abundant germlinal vesicle protein. Al-
though it has been shown that nucleoplasm incorporates
more \(^{32}\text{P}\) than any other germlinal vesicle protein, quantita-
tive data concerning the number of phosphates incorporated
per molecule are not available (Krohne and Francke, 1980).
Second, there is approximately a 15 kD (27%) decrease in
the apparent molecular size on SDS-PAGE of MTI/SRp55
protein after treatment with calf intestine alkaline phospha-
tase. Altered mobility of phosphoproteins after phosphatase
treatment is not uncommon. Modified forms of the large
subunit of polymerase II (Dahmus, 1981), and f\(os\) on-
coprotein (Barber and Verma, 1987) both show a 25% de-
crease in apparent molecular size after phosphatase treat-
ment, and both have been shown to contain multiple sites of
phosphorylation. We know of no examples of single sites of
phosphorylation causing such large changes in apparent mol-
ecular size. There is a long sequence of alternating basic and
serine residues in the COOH-terminal half of SRp55. From
position 202 to 333, 40% of the amino acids are serine, and
52% are basic (30% arginine, 10% lysine, and 2% histi-
dine). Phosphoamino acid analysis shows that this protein
contains only phosphoserine (no phosphothreonine or phos-
phothreonine) (data not shown). We favor the possibility
that mAb104 binds the phosphorylated form of the basic-serine
domain, however, it is conceivable that the antibody binds
elsewhere. We have expressed subfragments of \(m\)vc-tagged
SRp55 to map this epitope but have not been able to detect
mAb104 binding. Further work will be required to resolve
this issue. Another domain in the amino terminus is a con-
sensus sequence common to several RNA-binding proteins
(Bandziulis et al., 1989). This sequence has been shown to
fold into an RNA-binding domain and may account for the
RNA coprecipitation with mAb104, and for the accumula-
tion of these antigens on lateral loops of amphibian lamp-
brush chromosomes, and puffs on Drosophila polytene chro-
mosomes.

SRp55 is similar in structure to three Drosophila proteins:
transformer (Boggs et al., 1987), transformer-2 (Goralski et
al., 1989), and suppressor of white apricot (Chou et al.,
1987). They contain sequences of alternating arginine and
serine, and transformer-2 and suppressor of white apricot
have consensus binding sites for RNA. Analysis of these
gene products suggest that they are important in regulating
gene expression by alternative splicing.

SRp55 also shares a high degree of sequence homology
throughout its entire length with SF2; an essential pre-
mRNA splicing factor isolated from HeLa cell nuclear ex-
tracts (Krainer et al., 1991). SF2 has also been shown to be
involved in alternative splicing; the concentration of this
protein can affect 5'splice site selection (Krainer and Maniatis,
1985; Krainer et al., 1990a, b). Purified SF2 contains two
closely spaced bands of \(~33\) kD; similar in apparent mole-
cular size to two HeLa cell proteins that are immunoreactive
with mAb104. The purification of SF2 and all mAb104 im-
ummuneactive proteins begins with a similar ammonium sul-
phate precipitation; 50–80% for SF2, and 60–90% for pro-
teins that bind mAb104. Furthermore, extracts depleted in
SF2 activity are prepared by spinning protein extracts con-
taining \(~4.5\) mM MgCl\(_2\) at 100 \(g\) for 1 h. This would quan-
titatively precipitate SRp55, as well as all antigens recog-
nized by mAb104. Finally, Krainer et al. (1990a) note that
while optimizing the purification of SF2 (33 kD) they ob-
erved a 55-kD polypeptide that co-purifies with the 33-kD
polypeptides. Based on the expression studies of tagged
SRp55 and the sequence similarity with other proteins in-
volved in pre-mRNA splicing we hypothesize that mAb104
recognizes a family of nuclear phosphoproteins involved in
pre-mRNA splicing, and that SF2 and SRp55 are members of
this family.

We thank Steve Henikoff for sequence analysis of SRp55. We thank Jon
Cooper, Harvey Eisen, Bob Eisenman, Joe Gall, and Jim Priess for com-
ments about the manuscript. We thank Bernard Luscher and Steve Kussick
for assistance in labeling tissue culture cells. We thank Bill Lane for
microsequencing SRp55.

This work was supported by grant 42786-02 to M. B. Roth from the Na-
tional Institute of General Medical Sciences. A. M. Zahler was supported
by a postdoctoral research training grant P32-CA09437 from the National
Institutes of Health.

Received for publication 19 March 1991 and in revised form 16 July 1991.

References

Bandzisnius, R., M. S. Swanson, and G. Dreyfuss. 1989. RNA binding proteins
as developmental regulators. Genes Dev. 3:431–437.

Barber, J. R., and I. M. Verma. 1979. Modification of fos proteins: phosphory-
lolation of c-fos, but not v-fos, is stimulated by 12-tetradecanoyl-phorbol-13-
acetate and serum. Mol. Cell Biol. 7:2201–2211.

Bencini, D. A., G. A. O'Donovan, and J. R. Wild. 1977. Rapid chemical degra-
dation sequencing. Biotechniques. 2:4–5.

Beyer, A. L., M. E. Christensen, B. W. Walker, and W. M. LeStourgen. 1977.
Identification and characterization of the packaging proteins of core 40S
hnRNP particles. Cell. 11:127–138.

Boggs, R. T., P. Gregor, S. Idriss, J. Belote, and M. McKeown. 1987. Regulation
of sexual differentiation in D. melanogaster via alternative splicing of
RNA from the transformer gene. Cell. 50:739–747.

Callan, H. G. 1985. Lampbrush Chromosomes. In Molecular Biology, Bio-
chemistry and Biophysics. M. Solioz, editor. Springer Verlag, Berlin,
