Review

Tectona grandis L.f: A comprehensive review on its patents, chemical constituents, and biological activities

Syed Mohammed Basheeruddin Asdaqa,⇑ Naira Nayeemb, Abida b, Md. Tauquir Alam b, Saleh I. Alaqel b, Mohd. Imran b, El-Waleed Elamin Hassanc, Syed Imam Rabbanid

a Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Dariyah, Riyadh 13713, Saudi Arabia
b Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha, Saudi Arabia
c Department of Phytochemistry & Natural Products, Faculty of Pharmacy, Northern Border University, Rafha, Saudi Arabia
dDepartment of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia

Abstract

Tectona grandis L.f is a timber plant that is commonly referred to as teak. Its wide use as a medicine in the various indigenous systems makes it a plant of importance. A wide gamut of phytoconstituents like alkaloids, phenolic glycosides, steroids, etc. has been reported. A renewed interest in this plant has resulted in scientific investigations by various researchers towards the isolation and identification of active constituents along with scientific proof of its biological activities. The different parts of the plant have been scientifically evaluated for their antioxidant, antipyretic, analgesic, hypoglycemic, wound healing, cytotoxic, and many more biological activities. Documentation of this scientific knowledge is of importance to have consolidated precise information encompassing the various aspects of this plant, which could provide a base for future studies. This review is a compilation of the salient reports on these investigations concerning phytochemistry, the methods used to identify and quantify the constituents, the evaluation methods of the biological activity, toxicological studies, allergies and the patent/patent applications. This will further help researchers to find an area of the gap for future studies.

Keywords: Tectona grandis L.f Phytochemical profile Biological activities Patents

© 2021 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Plants are indispensable sources of medicine. Research on products obtained from nature is usually aimed to determine the medicinal values by exploring the available scientific knowledge and traditional uses. The phytochemicals isolated from these plants can be used as templates for further optimization of the lead molecules. It has been reported that in developing countries, 25% of the drugs are based on plants and their derivatives (Ramesh et al., 2013; Nahida et al., 2012). Several plants have been investigated for their phytochemical and pharmacological activities by various groups of researchers. One such plant of interest is *Tectona grandis* L.f (TG). It belongs to the family Verbenaceae. It is commonly referred to as teak. It is a large deciduous tree and may reach a height of 30–40 m with fluting and buttresses found at the base of older trees. The color of the bark is light grayish-brown. The leaves are large, shiny, opposite, and elliptic. The lower surface of the leaf is gray and covered with glandulous hairs. The flowers are small, white in color, and bisexual, appearing as large panicles. The fruit is a green, hairy, woody, irregularly rounded drupe (Nilesh et al., 2017). The tree can be found in several regions of south Asian countries and its parts such as root, bark, flowers, wood and oil are reported to be an important source of medical properties. The various parts of the plant have been used traditionally and ethnopharmacologically for the treatment of common cold, headache, in wound healing, bronchitis scabies, as a laxative, diuretic, antidiabetic, anti-inflammatory, antioxidant, lipid disorders, constipation, and diuretic (Kruger and Schulz, 2007). These pharmacological activities were found to be augmented when combined with other extracts. The unique combinations of such natural ingredients have been filed for patents. This review intended to compile the phytoconstituents identified along with the part and the solvent used for the extract and methods utilized for quantifying these compounds, listing the biological activities along with the methods applied, the extracts used, a brief account of toxicological evaluation, allergic manifestations and also the list of important information regarding patents/patent applications that have been filed concerning this plant.

1.1. Search strategy, inclusion and exclusion criteria

The search engines used for retrieving published data include databases that are universally recognized, specially Scopus, PubMed, Science Direct, Web of Science and Google Scholar. The
various search terms used as key words were Tectona grandis L.f, phytochemical, biological activities, toxicology, allergy, phytoconstituents, HPLC, UV, IR, GC–MS. The related articles were identified and screened for the title and abstract. Data extracted included the title, author(s), journal and year of publication. Related articles were retrieved in full text and validated for including them in the review. This study focused on all the major aspects of the plant under consideration. Papers that reported the pharmacology, phytoconstituents, allergy, toxicological were included in this study. Dissertations were also included. The studies included in this review were in English language. Inappropriate articles were excluded for the following reasons i.e. unrelated topic, insufficient data, duplication and unavailability of the abstract or full-text. The qualification of each paper was assessed by reading the full-text. There was no limitation in the search period. In the systematic review, articles were included from the available databases from 1986 to 2021.

2. Phytochemical profile of Tectona grandis

Several instrumental methods are available for identifying and quantifying the phytoconstituents in plants. The literature review describes the use of classical techniques such as high-performance liquid chromatography (HPLC), high-performance thin-layer chromatography (HPTLC), gas chromatography-mass spectrometry [GC–MS], and various other methods in the field of medicinal and aromatic plants (Kruger and Schulz, 2007). Researchers have reported a wide gamut of phytoconstituents. The preliminary investigation of the different parts of the plant, such as bark, wood, leaves, flowers, fruits, etc. has revealed the presence of flavonoids, phenolics, alkaloids, and certain glycosides (Nayeem and Karvekar, 2011a). Several methods have been reported for quantifying the secondary metabolites found in the various parts of TG following the ICH guidelines.

The chemical structures of the different constituents of TG are provided in earlier publications (Neha and Sangeetha, 2013; Vyas et al., 2019; Goswami et al., 2009). The chemical structures of some important constituents of TG are provided below.

Some phytoconstituent, along with their techniques of identification/quantification, are listed in the following Table 1.

3. Biological activities of Tectona grandis L.f (non-patent literature)

The plant has been used by traditional healers from time immemorial. Some of the mentioned traditional used in the literature are laxative, sedative, in treatment of piles, dysentery, leukoderma, anti-inflammatory, in bronchitis, urinary and liver related troubles, as hair promoter and useful in scabies (Deepali et al., 2010a; Kruger and Schulz, 2007; Nayeem and Karvekar, 2011a, 2011b). Review reports several in vitro and in vivo biological activities of the plant of interest (Singh et al., 1996; Ramesh and Mahalakshmi, 2014). Extracts isolated from different parts of the plant is used either alone or in combination with other extracts for various diseased conditions. Some of the active constituents
identified for the therapeutic activities include; 5-hydroxy-1,4-naphthalenedione (antibacterial), 4-hydroxy lapachol (cytotoxic), naphthaquinone (anti-ulcerogenic), benzene-1-carboxylic acid-2-hexadecanate (antiviral), lapachol (anti-tumor), 4-naphthaquinone (anti-plasmodic) (Vyas et al., 2019; Goswami et al., 2021). Some of the pharmacological activities reported are compiled in Table 2.

4. Toxicological studies

Acute toxicity studies are designed so as to determine the dose that will produce death or serious toxicological manifestations when the dose is given once or over a few administrations. These studies are significant in determining the margin of safety of a drug. Several reports are available for the toxicological screening of the different parts of TG. Review reveals that various parts were evaluated for their toxicity in a dose ranging from 1000 mg/kg to 5000 mg/kg body weight. The solvents used for the preparation of the extracts were water, methanol and ethanol. The extract of the different parts of TG. Review reveals that various parts were evaluated for their toxicity in a dose ranging from 1000 mg/kg to 5000 mg/kg. However the maximum dose used in most of the studies was found to show no signs of toxicity even at a dose of 5000 mg/kg. The following table depicts some of the toxicological studies conducted on the plant along with the part, solvent and animal used.

5. Teak allergy

Plants are one of the major causes of contact dermatitis (Verma et al., 2001). Dust from tropical hardwoods such as teak can cause
Teak is a fairly potent sensitizer it contains primary irritants and both irritant contact dermatitis and allergic contact dermatitis. It has been confirmed by various studies (Rao and Balachandran, 2010; Estlander et al., 2001). The main allergens that have been identified are polyphenols, naphthoquinones, their dimers, lapachol and are polyphenols, naphthoquinones, their dimers, lapachol and

S. No.	Part (Solvent)	Activity	Animal/Microorganism/Other	Method of evaluation	Ref.	
1	Leaf (Hydroalcoholic extract)	Wound healing	Sprague Dawley rat	Burn wound, Excision wound, incision wound, dead space wound	Nayeem and Karvekar, 2011a, 2011b	
2	Bark, fruit (Methanol, Ethanol)	Anti-bacterial	Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia, Escherichia aerogenes	Disc diffusion, Broth micro-dilution method	Neamatallah et al., 2005; Lanka and Parimala, 2017; Ramath and Shabary, 2020	
3	Bark (Ethyl acetate, Petroleum, Ethanol, Water)	Anti-asthmatic	Swiss albino mice	Clonidine induced catelepsy, haloperidol-induced catelepsy, milk induced leucocytosis, in vivo animal models like mast cell degranulation and capillary permeability	Goswami et al., 2010a; Goswami et al., 2010b	
4	Heartwood, Stem bark, leaves (Petroleum ether, Methanol)	Anti-tumor	Artemia salina	Brine shrimp assay	Pathak et al., 1988; Ghareeb et al., 2014	
5	Heartwood, Sawdust (Dichloromethane)	Antifungal	Aspergillus niger, Phanerochaete chrysosporium Pheritima posthumaas	Disc diffusion	Florence et al., 2012; Sumthong et al., 2006; Bhat et al., 2010	
6	Leaves, Fruits (Ethanol)	Anthelmintic	Time of paralysis and time of death	Gururaj et al., 2011; Akshay et al., 2019		
7	Bark (Petroleum ether, Chloroform, Ethanol, Water)	Anticonvulsant	Male Wistar rats	Maximal electroshock induced seizures and pentyletenetetazole induced seizures	Azzah et al., 2017	
8	Seeds (Methanol)	Hepatoprotective	Rats	CCl4 and Ranitidine induced hepatotoxicity model	Rawal and Patil, 2017; Jangame et al., 2017; Jangme et al., 2017	
9	Fruit (Chloroform, Acetone, Methanol, Water)	Anti-urelothelial	Calcium oxalate crystals	In vitro dissolution calcium oxalate crystals	Dudulkar et al., 2016	
10	Leaves, Flowers (Petroleum ether, Chloroform, Ethanol, n-Butanol, Ethanol, Water)	Antidiabetic	Rats	Alloxan-induced diabetes	Pradeep et al., 2012; Ramachandran and Rajasekaran, 2014; Shukla et al., 2010	
11	Stem, Flowers (Methanol)	Analgesic and anti-inflammatory	Albino rats, mice	Radiant heat method, Writhing test Carragenenan of rat paw, Acetic acid, Hot plate	Giri and Varma, 2015; Ramachandran et al., 2011; Nayeem and Karvekar, 2010a, Nayeem and Karvekar, 2010b	Nayeem and Karvekar, 2012
12	Roots (Methanol, Water)	Antitussive	Rats	Cough model induced by sulfur dioxide gas	Kaushik et al., 2011	
13	Plant (Ethanol)	Gastroprotective	Rats	Cold restraint and pyloric ligation induced gastric ulcer models	Singh et al., 2010	
14	Roots (Not mentioned)	Anti-ulcerogenic	Rats and guinea pigs	Experimentally induced ulcers	Goel et al., 1987	
15	Stem bark (Ethanol)	Antioxidant	In vitro studies	DPPH, FRAP, H2O2 scavenging assay	Ghaisas et al., 2008; Sahay and Sharma, 2015	
16	Plant (Aqueous)	Diuretic	Wistar rats	Hydrochlorothiazide induced	Kore et al., 2011	
17	Roots (Methanol)	Hypoglycemic	Albino rats	Alloxan induced, Dexamethasone induced	Mahesh et al., 2009; Pooja et al., 2011	
18	Leaves (Ethanol)	Anti-hemolytic anemia.	Rats	Induced by intraperitoneal injection of phenylhydrazine	Diallo et al., 2008	
19	Root, heartwood (Petroleum ether)	Cytotoxic activity.	Artemis	Brine shrimps’ assay	Rafullah and Suleiman, 1999	
20	Seeds (Petroleum ether)	Hair growth activity	Albino mice	Shaved demed skin of albino mice	Deepali et al., 2010b	
21	Leaves (Methanol)	Antiplasmoidal	P. falciiparam	In vitro	Osman and Hadiani, 2018	
22	Leaves (Ethanol)	Anti-hypertensive	Wistar rats	Renal artery occluded hypertensive rats	Ajayi et al., 2011	
23	Leaves (Methanol)	Antifungal	Arthrinium phaeospermum, Aspergillus fumigatus, Aspergillus flavus	Well diffusion method, Agar slant double dilution tubes method	Astiti and Suprapti, 2012; Kouassi et al., 2014	
24	Stem extract (Not mentioned)	Uterine relaxant activity.	Female albino Wistar rats	Estradiol benzoate injected uterus	Deepali et al., 2010a	
25	Leaves	Hepato protective	Mice	CCI4 induced liver injury	Somayya et al., 2021	
26	Seeds	Antipyretic activity.	Adult Wistar rats	Yeast induced antipyretic model	Jhansi and Lakshmi, 2021	
Table 3
Toxicity studies of TG.

No.	Part	Solvent	Animal used	Lethal dose (DL50)	Reference
1	Leaves	Aqueous	Wistar albino rats	No signs of toxicity, even at a dose of 5000 mg/kg in a single administration.	Kamsu et al., 2021
2	Leaves	Ethanol	Wistar rat	No physiological changes or toxicity, even at a dose of 5000 mg/kg	Hanidin et al., 2019
3	Seed	Methanol	Albino mice	No mortality up to 1000 mg/kg	Dokuparthi et al., 2017
4	Stem bark	Ethanol and water	Wistar rats	No toxicity up to 2000 mg/kg	Asil, 2011
5	Seeds	Methanol, petroleum ether	Male albino rats	No toxicity up to 2000 mg/kg	Jangme et al., 2017
6	Root	Methanol	Albino rats	No toxicity up to 3000 mg/kg	Pooja et al., 2011
7	Seed	Methanol	Mice	No mortality up to 1000 mg/kg	Jhansi and Lakshmi, 2019
8	Leaves	Methanol	Male Wistar rats	No mortality up to 2000 mg/kg	Nayeem and Karvekar, 2012
9	Leaves	Methanol	Sprague Dawley strain	No mortality up to 2000 mg/kg	Kushwah et al., 2018

Table 4
Patent Literature of TG.

S. No.	Patent / Patent Application Number (Publication Date)	Assignee/Name of the First inventor	Short Description	Ref.
1	CN108938948A (December 7, 2018)	Wang Dengsheng	It discloses an incense coil containing a specified amount of teak wood, cypress seed, hehuangpi, lavender, lemongrass, Lingzhi, lounge, starch, and CM-cellulose for tranquilizing the nerves and aiding in sleep	Dengsheng, 2018
2	CN106822380A (June 13, 2017)	Jinan Haoyu Qingtian Medical Technology Co., Ltd. (China) (JHQMTCL)	It discloses a pharmaceutical composition comprising TG, Trigonella rutherica, Pedicularis longiflora, maritimitin, and Lindera obtusiloba for the prevention and treatment of optic atrophy	Jinan Medical Technology Company, 2017a
3	CN106728432A (May 31, 2017)	JHQMTCL	It discloses a pharmaceutical composition comprising TG, Plagiozia distinctissima, jujube, B, Lysimachia heterogeneus, and Centaurium pulchellum for treating/preventing pneumonia	Jinan Medical Technology Company, 2017b
4	CN106728431A (May 31, 2017)	JHQMTCL	A pharmaceutical composition for the treatment of synovitis of the knee comprising TG, Petrospermum minor, aceroline, and neroelaid as crude drugs	Jinan Medical Technology Company, 2017c
5	CN106728433A (May 31, 2017)	JHQMTCL	A pharmaceutical composition for the prevention and treatment of insomnia comprising TG, Doryogteris concolor, Lonicera caerulea, saikosaponin C and Sinn suave as crude drugs	Jinan Medical Technology Company, 2017d
6	CN10668346A (May 17, 2017)	JHQMTCL	A pharmaceutical composition for the prevention and treatment of thyroid diseases comprising TG, Parthenocissus himalayana, Dalbergia hancei, caparapine, and xilopine as a crude drug	Jinan Medical Technology Company, 2017e
7	CN106683137A (May 17, 2017)	JHQMTCL	A pharmaceutical composition for the treatment of optic atrophy comprising TG, trifloruhizin, and Lindera obtusiloba as a crude drug	Jinan Medical Technology Company, 2017f
8	CN106683263A (May 17, 2017)	JHQMTCL	A pharmaceutical composition for the treatment of otitis media comprising TG, Myriophyllum spicatum, asiatic acid, Euonymus myrianthus, and Ulva conglobata as a crude drug	Jinan Medical Technology Company, 2017g
9	CN106540004A (March 29, 2017)	JHQMTCL	A pharmaceutical composition for the treatment of diabetic retinopathy comprising TG, rose apple, esculentoside B, Parthenocissus himalayana, and globe amaranth as bulk drugs	Jinan Medical Technology Company, 2017h
10	CN106138463A (November 23, 2016)	JHQMTCL	A pharmaceutical composition for treating advanced bladder cancer comprising TG, Limnaea, β-amyrin acetate, mesembrine, and dryocorsisin	Jinan Medical Technology Company, 2016a
11	CN106138462A (November 23, 2016)	JHQMTCL	A pharmaceutical composition for treating advanced colon cancer comprising TG, Diplazium donianum, and Notobasymnymus japonicum	Jinan Medical Technology Company, 2016b
12	CN106074957A (November 9, 2016)	Yantai Ruizhi Biomedical Technology Co., Ltd. (China)	The invention relates to a traditional Chinese medicine composition for treating liver and stomach disfunction by esophageal hiatus hernia comprising TG, Tetrapanax papyrius, Mangifera indica, Citrus meja, Citrus ilicifolia, Aamuam tosko, Lithocarpus polytachys, Pyropilum adammantium, Kadsura coccine, Microsorum dilatatum, Scirpus triqueter, Croenadodium lilae, Requus multif, Rosa bracteae, coriander fruits, Actinidia arguta, and Glycyrrhiza sp. Roots	Yantai Biomedical Technology company, 2016
13	IN3267/CHE/2014A (February 12, 2016)	Rajarajan Swaminathan	A method for preparing a lyophilized extract from TG for treating the Asian and East Central South African genotype of Chikungunya virus.	Rajarajan et al., 2016
14	CN103356878B (November 25, 2015)	Cheng Yueyin	A traditional Chinese medicine powder for treating pediatric eczema comprising TG, Arangeltia leuvenia, penny, celasalins leaves, Aspergillus brachyphyllus, pine bark, Corea lanceolata, Vaccinium fragile, Cudrania tricuspidata, and talc	Yueyin, 2015
15	WO2006075336A1 (July 20, 2006)	Katkar Rama Dhondiba	Herbal composition for treatment of blood and heart/skin related diseases comprising TG, Muraya Paniculata, Latane camara, Terminalia, Todalia asiatica, and Chawat	Dhondiba, 2006

(continued on next page)
deoxylapachol. The presence of these constituents explains the allergenic properties of this plant species. Lapachol is less potent than deoxylapachol as sensitizer (Christensen, 2018; Carrieri et al., 2014). The most common reactions are eye, skin, and respiratory irritation and nausea.

6. Patent literature of *Tectona grandis* Lf

The patents for plants were filed in diversified areas taking into consideration the cultivation, harvesting, drying, extraction, standardization, formulation methods, the devices used, etc (Pennyroyal et al., 2011). The patent literature of TG was collected by performing the Keyword search (*Tectona grandis* and teak wood) in the Espacenet Patent Search database (https://worldwide.espacenet.com/patent/search). The claims of the obtained patents/patent applications were reviewed. The patents/patent applications mentioning the name of TG or teak wood along with pharmaceutical use were segregated. Authors independently analyzed the language, content and description mentioned in the patents. The important data from the selected patent applications are mentioned in Table 3.

It is evident from the data of Table 4 that TG is present as an ingredient in many pharmaceutical compositions, which are claimed to have different therapeutic uses. These uses include treatment/prevention of optic atrophy, pneumonia, synovitis, insomnia, thyroid diseases, otitis media, diabetic retinopathy, bladder cancer, colon cancer, esophageal hiatus hernia, Chikungunya, insomnia, thyroid diseases, otitis media, diabetic retinopathy, bladder cancer, colon cancer, esophageal hiatus hernia, Chikungunya, insomnia, thyroid diseases, otitis media, diabetic retinopathy, bladder cancer, colon cancer, esophageal hiatus hernia, Chikungunya, insomnia, thyroid diseases, otitis media, diabetic retinopathy, bladder cancer, colon cancer, esophageal hiatus hernia.

S. No.	Patent / Patent Application Number (Publication Date)	Assignee/Name of the First Inventor	Short Description	Ref.
16	JP2013224318A (October 31, 2013)	Kawabata Aya	It claims an active oxygen scavenger comprising the extracts of TG, *Anacampsis pyrethrum*, *Anacampsis pyrethrum*, *Oclacarpus longifolius*, and *Aganosma marginata*.	Aya and Misao, 2010
17	JP2010018545A (January 28, 2010)	Kawabata Aya	A reactive oxygen scavenger comprising extracts of TG, *Parkia speciosa*, *Anachomus pyrethrum*, *Ochrocarpus longifolius*, *Wrightia tomentosa*, *Dispyros rhodolocarpus*, and *Burmannia Griff*.	Aya and Misao, 2010
18	JP2006176445A (July 6, 2006)	Ikeda Naosuke	It relates to a composition comprising about 10 herbal drugs including TG that is effective for health promotion and nutrition.	Naosuke, 2006
19	JP2006166803A (June 29, 2006)	Nobashi Kenzou	A shelf life-improving composition comprising an organic acid and an acetone extract of TG.	Kenzou, 2006

7. Conclusion

Herbs are widely used for the treatment of various diseases. This review highlights the importance of phytochemistry, biological activity, and the patents of *Tectona grandis*. The result of the phytochemical study shows that it contains compounds with diverse structures. The different parts of the plant possess various activities like antioxidants, wound healing, analgesic, anti-inflammatory, anti-platelet, etc. However, it has come to the notice that very few patents have been filed concerning this plant, thereby paving the way for more studies and applications of patents in the future.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

The authors are thankful to AlMaarefa University, Riyadh for providing support to do this review article.

References

Ajayi, G.O., Oloue, J.A., Ajuluichikwu, J.N., 2011. Tectona grandis Linn. (Verbenaceae) leaf ethanol extract in renal artery occluded hypertensive rats. Planta Med. 77, 81–89.

Akshay, J., Shaikh, H., Sargar, M., Survanshi, H., Rathod, M., 2019. In-vitro anti-inflammatory and anthelmintic activity of Tectona grandis leaves extract. Int. J. Herb Med. 7 (3), 36–40.

Alali, K., Oyeku, T., 2017. The Chemical Constituents Extractable From Teak Tree (*Tectona grandis* Linn) Obtained From Fountain University. Osogbo. Nigerian J. Basic Appl. Sci. 25 (1), 73–80.

Araf, M., 2011. In vivo anti-inflammatory and anti-inflammatory effects of Tectona grandis Linn. stem bark extracts. Mal. J. Pharma. Sci. 9 (1), 1–11.

Asti, N.P.A., Suprapti, D.N., 2012. Antifungal activity of teak (*Tectona grandis* L.F) leaf extract against *Arthrinium phaeospermum* (corda) M.B. Ellis, the cause of wood decay on *Albizia falcataria* (L.). Foresty. J. Int. Soc. South East Agr. Sci. 18 (1), 62–69.

Aya, K., Misao, Y., 2010. Active oxygen scavenger and skin care preparation for external use, composition for oral cavity and food. Japanese Patent Application Number JP2010018545A, January 28, 2010.

Aya, K., Misao, Y., 2013. Active oxygen scavenger, skin care preparation, composition for oral cavity and food product. Japanese Patent Application Number JP2013224318A, October 31, 2013.

Azizah, A., Suselo, Y.H., Mathmainhain, M., Indarto, D., 2017. A new candidate of calcium channel blocker in silico from *Tectona grandis* for treatment of gestational hypertension. In: 1st International Conference on Science, Mathematics, Environ. Edu. 12054, pp. 1–9.

Bachheti, R.K., Sharma, A., Rai, L., Joshi, A., Mamgain, R., 2012. Fatty acid composition and elemental analysis of seed oil of *Tectona grandis* collected from Dehradun, Uttarakhand. India. Int. J. Chem. Tech. Res. 4 (3), 119–123.

Bhat, I.H., Abdul-Khalil, H.P.S., Shuh, N.S., Noor, A.M., 2010. Antifungal activity of heartwood extracts and their constituents from cultivated *Tectona grandis* against *panerochaete chrysosporum*. Wood Res. 55 (4), 59–66.

Carriera, M., Bartolucci, G.B., Lee, T., Barbero, A., Harper, M., 2014. Chemical Markers of Occupational Exposure to Toak Wood Dust. The Annals Occu Hyg. 58 (5), 566–578.

Christensen, L.P., 2018. Polyphenols and Polyphenol-Derived Compositions From Plants and Contact Dermatitis. Polyphenols: Prevention and Treatment of Human Disease (Second Edition) Chap 20, vol. 2, pp. 349–384.

Deepali, J., Varma, S., Gagne, N., Bonde, V., Gite, A., 2010a. Effect of *Tectona grandis* stem extract on esiriodial benzole injected uterus of female albino wistar rats. Asian J. Pharm. Clin. Res. 3 (2), 123–125.

Deepali, J., Varma, S., Gagne, N., Bonde, V., Gite, A., Bhose, D., 2010b. Effect of *Tectona grandis* Linn. Seeds on hair growth activity of albino mice. Int. J. Ayurveda Res. 1 (4), 211–215.

Dengsheng, W., 2018. Incense coil effects with soothing nerves and helping sleep. Chinese Patent Application Number CN10823884A, December 7, 2018.

Dhondiba, K.R., 2006. An herbal composition for treatment for blood and heart/skin related diseases and process of preparing thereof. PCT Publication Number WO2006075336A1, July 20, 2006.

Diallo, A., Gheasor, M., Voyer, A., 2008. Effect of *Tectona grandis* on phylophyllindene-induced anaemia in rats. Fitofer. 79 (5), 332–336.

Dokuparthi, S.K., Khan, A., Anusha, A., Mashma, B., Shailaz, Shahjabe, et al., 2017. Acute oral toxicity study of *Tectona grandis* Linn. medicinal seed extract in albino mice. J. Phytopharmacol. 6 (3), 183–185.

Emmanuel, N.K., Paul, L., Emmanuelle, M., Felix, A.A., 2016. Identification and characterization of polyphenols from aqueous extract of *Tectona grandis* Linn leaves obtained at pilot plant scale. In: 2nd International congress green
Pooja, Vipin, S., Samanta, K.C., 2011. Hypoglycemic activity of methanolic extract of Tectona grandis Linn. Root in alloxan induced diabetic rats. J. Appl Pharm. Sci. 1 (04), 108–109.

Pradeep, G., Reddy, V.R., Reddy, G.N., Narayana, T.V., Vijayakumar, G., Ramanjaneyulu, J., 2012. Anti-microbial and antioxidant activity of Tectona grandis extract against alloxan-induced diabetic rats. Int. J. Res. Pharm. Nano Sci. 1 (2), 139–146.

Qiu, H., Liu, R., Long, L., 2019. Analysis of Chemical Composition of Extractives by Acetone and the Chromatic Aberration of Teak (Tectona grandis L.F.) from China. Molecules. 24 (10), 1989.

Rafullah, M.K., Suleiman, M.M., 1999. 5-Hydroxylapachol: a cytotoxic agent from Tectona grandis. Phytochem. 50, 439–442.

Rajarajan, Swaminathan, Kothandan, Sangeetha, 2016. Novel antiviral combination for treating Asian and East Central South African genotypes of chikungunya virus and method for producing the same. Indian Patent Application Number IN3267/CHE/2014A, February 12, 2016.

Ramachandran, S., Rajasekaran, A., 2014. Blood glucose-lowering effect of Tectona grandis flowers in type 2 diabetic rats: A study on identification of active constituents and mechanisms for antidiabetic. J. Diabetes. 6 (5), 427–437.

Ramachandran, S., Rajini kanth, B., Rajasekaran, A., Manisenthil, K., 2011. Evaluation of anti–inflammatory and analgesic potential of methanol extract of Tectona grandis flowers. Asian Pac. J. Trop. Biomed. 1 (2), S155–S158.

Ramesh, B.N., Mahalakshmi, A.M., Mallappa, S.H., 2013. Towards a Better Understanding of an Updated Ethnopharmacology of Celaosia argentea Lint. Int. J. Pharm PharmSci. 5 (3), 54–59.

Rao, Raghavendra, Balachandran, C., 2010. Occupational allergic contact dermatitis due to teak wood. Indian. J. Dermatol. Venereol. Leprol. 76 (3), 287. https://doi.org/10.4103/0378-6323.62980.

Singh, J., Bhuyan, T.C., Ahmed, A., 1996. Enthnobotanical studies on the Mishing tribes of Assam with special reference to food and medicinal plants. J. Econ. Taxon. Bot. 12, 350–356.

Sumthong, P., Damveld, R.A., Choi, Y.H., Arentshorst, M., Ram, A.F., Van den Hondel, C.A., Verpoorte, R., 2006. Activity of quinones from teak (Tectona grandis) on fungal cell wall stress. Planta Med. 72 (10), 943–944.

Vyas, P., Yadav, D.K., Khandelwal, P., 2019. Traditional Chinese medicine powder for treating infantile eczema via inhibiting proton pump activity. Fitoter. 81 (7), 755–761.

Yueyin, C., 2015. Traditional Chinese medicine composition for treating liver–stomach disharmony type hiatus hernia. Chinese Patent Application Number CN106074957A, November 9, 2016.

Yueyin, C., 2015. Traditional Chinese medicine powder for treating infantile eczema and preparation method thereof. Chinese Patent Number CN103356878B, November 25, 2015.