CORRESPONDENCE

Comparing Nasopharyngeal and BAL SARS-CoV-2 Assays in Respiratory Failure

To the Editor:

Patients with acute respiratory failure concerning coronavirus disease (COVID-19) require a prompt, accurate diagnosis for appropriate triage and management. PCR assays for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA can be performed on upper or lower respiratory samples. Nasopharyngeal (NP) and BAL have generally good concordance for viral respiratory infections (1). However, reports have described patients diagnosed with SARS-CoV-2 by BAL after initial negative NP testing (2). We studied a series of patients who were critically ill with a clinical concern for COVID-19, who had NP and BAL PCR testing to determine NP and BAL test characteristics and accuracy.

Methods

We retrospectively reviewed adult patients intubated for acute hypoxic respiratory failure with a clinical concern for COVID-19 who were tested with both NP and BAL PCR assays for SARS-CoV-2 RNA. We included patients who had BAL assays performed within 5 days after an NP assay, and BAL was considered the definitive diagnostic assay. Statistical analyses were performed with Microsoft Excel version 15.39 for macOS (Microsoft) and in GraphPad PRISM 8 (version 8.4.3 for macOS). Mann-Whitney tests were used to compare nonparametric groups. The study was approved by our institutional review board (STU00212283).

Results

We reviewed 123 patients intubated for acute hypoxic respiratory failure and tested for SARS-CoV-2 with a BAL test within 5 days after an NP test. The median duration between an NP and a BAL swab was 1 day (interquartile range, 1–2.75 d). The NP tests were run on the following platforms: 52 Abbott ID NOW, 5 Becton-Dickinson, 28 Cepheid, 33 in-house, and 5 not listed. The BAL tests were run on the following platforms: 0 Abbott ID NOW, 10 Becton-Dickinson, 84 Cepheid, and 29 in-house. The median age was 63 (interquartile range, 46–70) years, and 39 (31.7%) were female. Overall, 79/123 (64.2%) patients ended up having COVID-19.

Seventy cases had both NP and BAL tests positive; 39 cases had both NP and BAL tests negative; 5 cases had positive NP and negative BAL; and 9 cases had negative NP and positive BAL (Table 1). In comparison with BAL, sensitivity of an NP assay was 88.6%, specificity was 88.6%, positive predictive value was 93.3%, negative predictive value was 81.3%, and accuracy was 88.6%. Of the 14 discordant NP and BAL cases, the NP tests were performed on 6 Abbott ID NOW, 2 Becton-Dickinson, 4 Cepheid, and 2 in-house–developed PCR platforms, whereas the BAL tests were performed on 2 Becton-Dickinson, 11 Cepheid, and 2 in-house platforms. Of the subset of 57 patients who had

Author disclosures are available with the text of this letter at www.nature.com.

References

1. van der Poll T, van de Veerdonk FL, Scicluna BP, Netea MG. The immunopathology of sepsis and potential therapeutic targets. Nat Rev Immunol 2017;17:407–420.

2. Wiersinga WJ, Rhodes A, Cheng AC, Peacock SJ, Prescott HC. Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19): a review. JAMA 2020;324:782–793.

3. Stanski NL, Wong HR. Prognostic and predictive enrichment in sepsis. Nat Rev Nephrol 2020;16:20–31.

4. Sweeney TE, Azad TD, Donato M, Haynes WA, Perumal TM, Henao R, et al. Unsupervised analysis of transcriptomics in bacterial sepsis across multiple datasets reveals three robust clusters. Front Immunol 2020;11:1636.

5. Gardinassi LG, Souza COS, Sales-Campos H, Fonseca SG. Immune and metabolic signatures of COVID-19 revealed by transcriptomics data reuse. Front Immunol 2020;11:1636.

6. Marshall JC, Vincent JL, Guyatt G, Angus DC, Abraham E, Bernard G, et al. Outcome measures for clinical research in sepsis: a report of the 2nd cambridge colloquium of the international sepsis forum. Crit Care Med 2005;33:1708–1716.

7. Marshall JC, Murthy S, Diaz J, et al.; WHO Working Group on the Clinical Characterisation and Management of COVID-19 infection. A minimal common outcome measure set for COVID-19 clinical research. Lancet Infect Dis 2020;20:e192–e197.

8. Zhao YM, Shang YM, Song WB, Li QQ, Xie H, Xu QF, et al. Follow-up study of the pulmonary function and related physiological characteristics of COVID-19 survivors three months after recovery. EClinicalMedicine 2020;25:100463.

9. World Health Organization. A coordinated global research roadmap: 2019 novel coronavirus, 2020 [accessed 2020 Nov 17]. Available from: https://www.who.int/blueprint/priority-diseases/key-action/Coronavirus_Roadmap_V9.pdf.

10. Kupferschmidt K. ‘A completely new culture of doing research.’ Coronavirus outbreak changes how scientists communicate. Science [online ahead of print] 26 Feb 2020; DOI: 10.1126/science.abb4761.

Copyright © 2021 by the American Thoracic Society
Table 1. Nasopharyngeal and BAL SARS-CoV-2 Results for Patients Intubated for Respiratory Failure Who Had Tests Done within 5 Days of Each Other

	BAL Positive	BAL Negative
NP positive	70	5
NP negative	9	39

Statistic	Value	95% CI
Sensitivity	88.6%	79.5–94.7%
Specificity	88.7%	75.4–96.2%
Positive predictive value	93.3%	85.9–97.0%
Negative predictive value	81.3%	69.9–89.0%
Accuracy	88.6%	81.4–93.6%

Definition of abbreviations: CI = confidence interval; NP = nasopharyngeal; SARS-CoV-2 = severe acute respiratory syndrome coronavirus 2. Discordant tests: NP tests included 6 Abbott ID NOW, 2 Becton-Dickinson, 4 Cepheid, and 2 in-house platforms. BAL tests had 2 Becton-Dickinson, 10 Cepheid, and 2 in-house platforms.

NP and BALs run on the same platform, 29 had both NP and BAL tests positive, 22 had both NP and BAL tests negative, 2 had positive NP and negative BAL, and 4 had negative NP and positive BAL results (sensitivity, 87.9%; specificity, 91.7%; positive predicted value, 93.4%; negative predicted value, 84.6%).

BALs identified concurrent bacterial pneumonia in 42 (34%) patients; there were more bacterial coinfections found in the group without COVID-19 (24/44, 54.5%) than in the group with COVID-19 (18/79, 22.8%; P < 0.001) (Table 2). All-cause mortality in the cohort was 20 out of 123 (16.3%); mortality was 11/79 (13.9%) in the group with COVID-19 and 9/44 (20.5%) in the group without COVID-19.

Discussion

In patients who are critically ill and intubated for acute hypoxic respiratory failure, NP assays for SARS-CoV-2 RNA have good test characteristics and accuracy compared with BAL assays. NP specimens are less invasive, easier, and potentially safer to collect than BAL specimens, especially in centers in which bronchoscopy is not routinely performed for patients with suspected COVID-19.

However, patients with negative NP but positive BAL assays are reported (2). Wang and colleagues found SARS-CoV-2 RNA in 14 out of 15 (93%) BAL samples but in only 126 out of 398 (32%) pharyngeal swabs from patients with COVID-19 (3). These generated concerns that an NP assay may be insufficient to exclude COVID-19 and that BAL would be necessary for definitive diagnosis. Our data suggest that NP assays can reasonably diagnose intubated patients with suspected COVID-19. We suspect that patients who are critically ill may have a higher viral load in the nasopharynx, making an NP assay perhaps more sensitive than in patients with a less severe disease. Sampling error may create false-negative results, especially from the nasopharynx. Although we cannot control for this possibility in our cohort, we had institutional quality-control measures in place to optimize sample collection. There may also be biologic differences between upper- and lower-airway SARS-CoV-2 RNA expression, as not all patients with COVID-19 develop lower respiratory symptoms. Nevertheless, in this cohort of patients with acute hypoxia requiring intubation, we suspect that upper- and lower-airway SARS-CoV-2 RNA expression would be similar.

Our pathology department used several different test platforms for SARS-CoV-2 detection, including Abbott ID NOW, Becton-Dickinson, Cepheid, and an in-house testing platform. Most BAL samples were run using Cepheid tests based on early in-house validation of this platform for BAL samples. However, attribution of discordant results to the assay platform is difficult, as BAL returns a deeper respiratory tract sample, and happened later in the clinical course (though here we only included those that occurred within 5 days of the NP swab). Newer methods of SARS-CoV-2 sampling, such as through saliva (4), have recently shown robust test characteristics; it will be interesting to see in future studies how saliva results may compare with BAL samples.

Although the data suggest good overall correlation between NP and BAL assay results, a striking number of discordant results remain. For a patient who is critically ill with suspected COVID-19, a negative NP assay is reassuring but not a definitive exclusion of the disease. These false negatives have important implications for use of personal protective equipment and cohorts. BAL has the added benefit of finding concurrent bacterial infection in patients. A recent study of 79 patients with concern for COVID-19 who had BAL performed detected SARS-CoV-2 RNA in two patients who had multiple negative NP swabs (5). They identified 22 “alternative etiologic agents” in 22 patients. We perform BAL for confirmation if the NP test is negative in a ventilated patient with high clinical suspicion for COVID-19; we furthermore find BAL helpful even in patients with positive NP swabs, as it can identify bacterial superinfection and help target treatment (detailed manuscript in progress) or rule out bacterial superinfection, thereby encouraging deescalation of antibiotic therapy. We implemented an aerosol-minimizing protocol at our institution and have found the procedure to have reassuringly low infectious risk to operators (6).

Overall, we find that NP and BAL SARS-CoV-2 tests have reasonably high concordance in patients with respiratory failure when tested within 5 days of each other but still with some discordance. We also found a high rate of bacterial coinfection in the patients with COVID-19. It may be reasonable to consider performing BAL in patients with suspected COVID-19 infection after negative NP swabs, and even in those with positive NP swabs, to evaluate for presence or absence of bacterial superinfection.

Table 2. Patient Demographics for Cohort

	Female	Age [Median (IQR)]	Bacterial Coinfection	Mortality
All	39/123 (32%)	63 (46–70)	42/123 (34.1%)	20/123 (16.2%)
COVID-19	25/79 (31.5%)	62 (45–70)	18/79 (22.8%)	11/79 (13.9%)
Non–COVID-19	14/44 (31.8%)	65 (50–70)	24/44 (54.5%)	9/44 (20.5%)
P value	NS	NS	P < 0.001	NS

Definition of abbreviations: COVID-19 = coronavirus disease; IQR = interquartile range; NS = nonsignificant.
CORRESPONDENCE

Author disclosures are available with the text of this letter at www.atsjournals.org.

Acknowledgment: The authors thank the many individuals who took care of the patients with coronavirus disease (COVID-19); this list of physicians and Advanced Practice Providers is recognized by their inclusion in the Northwestern University COVID Investigators. We thank all the nurses, respiratory therapists, social workers, physical therapists, and providers who cared for these patients.

Catherine A. Gao, M.D.*
Michael J. Cuttica, M.D.
Elizabeth S. Malsin, M.D.
A. Christine Argento, M.D.
Richard G. Wunderink, M.D.
Sean B. Smith, M.D.

NU COVID Investigators
Northwestern University
Chicago, Illinois

ORCID IDs: 0000-0001-5576-3943 (C.A.G.); 0000-0002-8527-4195 (R.G.W.).

∗Corresponding author (e-mail: catherine.gao@northwestern.edu).

NU COVID Investigators: A. Christine Argento, Division of Pulmonary and Critical Care Medicine; Ajay A. Vagh, Division of Pulmonary and Critical Care Medicine, University of Chicago; Alexandra C. McQuattle-Pimentel, Division of Pulmonary and Critical Care Medicine; Ayesha Rose Wolfe, Division of Pulmonary and Critical Care Medicine; Ankit Bharat, Division of Thoracic Surgery and Division of Pulmonary and Critical Care Medicine; Ann R. Leverson, Division of Pulmonary and Critical Care Medicine; Anthony M. Joudi, Division of Pulmonary and Critical Care Medicine; Ayun Sinha, Division of Cardiology; Ashley N. Budd, Department of Anesthesiology; Benjamin D. Singer, Division of Pulmonary and Critical Care Medicine and Department of Biochemistry and Molecular Genetics; Betty Tran, Division of Pulmonary and Critical Care Medicine; Catherine A. Gao, Division of Pulmonary and Critical Care Medicine; Chiagozie O. Pickens, Division of Pulmonary and Critical Care Medicine; Chitrara Kurihara, Division of Thoracic Surgery; Christopher J. Soriano, Division of Organ Transplantation; Clara J. Schroedi, Division of Pulmonary and Critical Care Medicine; Daniel Meza, Division of Pulmonary and Critical Care Medicine; David Alexander Kidd, Division of Pulmonary and Critical Care Medicine; David W. Kamp, Division of Pulmonary and Critical Care Medicine; Elizabeth S. Malsin, Division of Pulmonary and Critical Care Medicine; Emily M. Laibeenguth, Division of Pulmonary and Critical Care Medicine; Eric P. Cantley, Division of Cardiology; Gabrielle Y. Liu, Division of Pulmonary and Critical Care Medicine; Giang T. Quach, Division of Trauma and Surgical Critical Care; G. R. Scott Budinger, Division of Pulmonary and Critical Care Medicine; Jacqueline M. Kruiser, Division of Pulmonary and Critical Care Medicine; James M. Walter, Division of Pulmonary and Critical Care Medicine; Jane E. Dernette, Division of Pulmonary and Critical Care Medicine; Jessica A. Bonomo, Division of Cardiology; John M. Coleman, Division of Pulmonary and Critical Care Medicine; Joseph Isaac Bailey, Division of Pulmonary and Critical Care Medicine; Joseph S. Deters, Division of Pulmonary and Critical Care Medicine; Joseph Sun, Department of Anesthesiology; Justin A. Flaita, Division of Pulmonary and Critical Care Medicine; Kaitlyn Vitale, Division of Pulmonary and Critical Care Medicine; Kira M. Joseph, Department of Anesthesiology; Katherine Secunda, Division of Pulmonary and Critical Care Medicine; Khaliha L. Gates, Division of Pulmonary and Critical Care Medicine; Kristy Todd, Division of Pulmonary and Critical Care Medicine; Lindsey D. Gradone, Division of Pulmonary and Critical Care Medicine; Lindsey N. Textor, Division of Pulmonary and Critical Care Medicine; Lisa F. Wolfe, Division of Pulmonary and Critical Care Medicine; Luisa Morales-Nabreda, Division of Pulmonary and Critical Care Medicine; Madeline L. Rosenberg, Division of Pulmonary and Critical Care Medicine; Manu Jain, Division of Pulmonary and Critical Care Medicine; Marc A. Sala, Division of Pulmonary and Critical Care Medicine; Mark Saine, Division of Thoracic Surgery; Marysa V. Loya, Division of Cardiology; Michael J. Alexander, Division of Pulmonary and Critical Care Medicine; Michael J. Cuttica, Division of Pulmonary and Critical Care Medicine; Michelle Hirsch Prok Gott, Division of Pulmonary and Critical Care Medicine; Natalie Jenaema, Department of Medicine; Paul A. Reyfman, Division of Pulmonary and Critical Care Medicine; Peter H. Sporn, Division of Pulmonary and Critical Care Medicine and Medical Service, Jesse Brown Veterans Affairs Medical Center; Rachel B. Kadar, Section of Critical Care Medicine, Department of Anesthesiology; Rachel M. Kaplan, Division of Cardiology, Radio Tonic, Division of Pulmonary and Critical Care Medicine; Radhika Patel, Division of Pulmonary and Critical Care Medicine; Rafael Garza-Castillon, Division of Thoracic Surgery; Ravi Kalhan, Division of Pulmonary and Critical Care Medicine; Ravi G. Wunderink, Division of Pulmonary and Critical Care Medicine; Romy Lawrence, Division of Pulmonary and Critical Care Medicine; Ruben J. Myint-Amaran, Division of Pulmonary and Critical Care Medicine; Samuel S. Kim, Division of Thoracic Surgery; Sandeep Thakkar, Division of Thoracic Surgery; Sean B. Smith, Division of Pulmonary and Critical Care Medicine; Seung Hye Han, Division of Pulmonary and Critical Care Medicine; Sharon R. Rosenberg, Division of Pulmonary and Critical Care Medicine; Susan R. Russell, Division of Pulmonary and Critical Care Medicine; Sydney M. Hyder, Division of Pulmonary and Critical Care Medicine; Taylor A. Poor, Division of Pulmonary and Critical Care Medicine; and Theressa A. Lombardo, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois.

References

1. Hakki M, Strasfeld LM, Townes JM. Predictive value of testing nasopharyngeal samples for respiratory viruses in the setting of lower respiratory tract disease. J Clin Microbiol 2014;52:4020–4022.
2. Winichakoon P, Chaiwarith R, Lursrisakun C, Salee P, Gocarna A, Limusakon A, et al. Negative nasopharyngeal and oropharyngeal swab tests do not rule out COVID-19. J Clin Microbiol 2020;58:e00297–20.
3. Wang W, Xu Y, Gao R, Lu R, Han K, Wu G, et al. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA 2020;323:1843–1844.
4. Wyllie AL, Fournier J, Casanovas-Massana A, Campbell M, Tokuyama M, Vijayakumar P, et al. Saliva or nasopharyngeal swab specimens for detection of SARS-CoV-2. N Engl J Med 2020;383:1283–1286.
5. Geri P, Salton F, Zuccatosta L, Tamburini M, Biolo M, Busca A, et al. Limited role for bronchoalveolar lavage to exclude COVID-19 after negative upper respiratory tract swabs: a multicentre study. Eur Respir J 2020;56:2001733.
6. Gao CA, Bailey JJ, Walter JM, Coleman JM, Malsin ES, Gao CA, et al. Bronchoscopy on intubated COVID-19 patients is associated with low infectious risk to operators at a high-volume center using an aerosol-minimizing protocol (preprint). medRxiv 2020 [accessed 2020 Sep 25]. Available from: https://pubmed.ncbi.nlm.nih.gov/323909012.

Copyright © 2021 by the American Thoracic Society

Lung DNA Methylation in Chronic Obstructive Pulmonary Disease: Relationship with Smoking Status and Airflow Limitation Severity

To the Editor:

Tobacco smoking is the main environmental risk factor of chronic obstructive pulmonary disease (COPD) (1). Yet, despite that it induces marked transcriptomic and epigenetic changes (2), not all smokers develop the disease (1) because of reasons that are still unclear (3). DNA methylation, which involves the addition of a methyl group to a cytosine

Supported in part by unrestricted grants from AstraZeneca, Instituto de Salud Carlos III (PI17/00379, PI18/00018), and Sociedad Española de Neumología y Cirugía Torácica (SEPAR) (068/2015). R.F. is a recipient of a Miguel Servet Research Program Contract (Fondo Europeo de Desarrollo Regional [FEDER], CP16/000039), and S.C.-R. is a recipient of a contrato predoctoral de formación en investigación en salud (P-FIS) (2018) grant.

Author Contributions: Study conception and design: A.A. and R.F. Data acquisition: S.C.-R., N.M., A.L.-G., T.G., and A.G. Data analysis: S.C.-R., G.N., A.A., and R.F. Manuscript preparation: S.C.-R., A.A., and R.F. Manuscript revision: All authors.

Originally Published in Press as DOI: 10.1164/rcrm.201912-2420LE on August 21, 2020

Correspondence