Spectrum of Dirichlet Laplacian in a conical layer

Pavel Exner and Miloš Tater

Doppler Institute for Mathematical Physics and Applied Mathematics, Břehová 7, 11519 Prague, and Nuclear Physics Institute ASCR, 25068 Řež near Prague, Czech Republic

E-mail: exner@ujf.cas.cz and tater@ujf.cas.cz

Received 1 June 2010, in final form 27 August 2010
Published 9 November 2010
Online at stacks.iop.org/JPhysA/43/474023

Abstract
We study the spectral properties of Dirichlet Laplacian on the conical layer of the opening angle \(\pi - 2\theta \) and thickness equal to \(\pi \). We demonstrate that below the continuum threshold, which is equal to 1, there is an infinite sequence of isolated eigenvalues and analyse properties of these geometrically induced bound states. By numerical computation we find examples of the eigenfunctions.

PACS number: 03.65.Ge
Mathematics Subject Classification: 81Q10, 35F15

1. Introduction

Geometrically induced bound states in infinitely stretched regions with a hard-wall (or Dirichlet) boundary attracted a lot attention in recent years, in particular, because they represent a purely quantum effect which cannot be approached from the usual semiclassical point of view. The attention was first paid to tubes where the effective attraction is caused by bending [EŠ89, GJ92, DE95], later the analogous question was addressed with one dimension added, in curved layers [DEK01, CEK04]. This question is more complicated and to date we do not have a full analogue of the result stating that any local bending of an asymptotically straight tube exhibits such bound states. One reason is that geometry of surfaces is more complicated than that of curves, and global properties play a more important role.

However, this is not the only difference between tubes and layers. In the case of the former we have various solvable examples. They often correspond to tubes with a non-smooth boundary being thus beyond the assumptions under which the general results are proved, illustrating the robustness of the effect; on the other hand they can be composed of simple building blocks which facilitate their solvability. In fact, some examples came before the general theory [EŠŠ89, SRW89, LLM86] and others were found in parallel with it—see, e.g. [LCM99] for a review.
This is in contrast with our state of knowledge concerning the layers. We have reasonably strong and general existence results [CEK04, DEK01], later even extended to layers in higher dimensions [LL07], as well a particular ‘weak coupling’ result [EK01], but to date no solvable example is known\(^1\). The goal of this work is to discuss such an example in a geometrical situation which is particularly simple—apart from a trivial scaling the model depends on a single parameter.

The layer to consider is the region bordered by two conical surfaces shifted mutually along the cone axis by \(\pi \csc \theta\). Using a natural separation of variables the angular component can be separated and the problem can be in each partial wave reduced to the analysis of an appropriate operator on a skewed semi-infinite strip. This will be demonstrated in the next section and used in section 3 to derive some properties of the corresponding discrete spectrum. To illustrate these results and to provide further insights into this binding mechanism, we present in the following section a numerical analysis of the problem; we calculate the eigenvalue dependence on the cone opening angle and present examples of eigenfunctions.

2. The Hamiltonian

2.1. Basic definitions

As we have said, the object of our study is the Hamiltonian of a quantum particle confined to a hard-wall conical layer of the opening angle \(\pi - 2\theta\) for a fixed \(\theta \in (0, \frac{1}{2}\pi)\), i.e.

\[
\Sigma_\theta := \{(r, \phi, z) \in \mathbb{R}^3 : (r, z) \in \Omega_\theta, \phi \in [0, 2\pi)\},
\]

(2.1)

where

\[
\Omega_\theta := \{(r, z) \in \mathbb{R}^2 : r \geq 0, 0 < z - r \sin \theta < \pi \csc \theta\}.
\]

(2.2)

Without loss of generality we may assume that the layer width is \(\pi\), the result for other widths being obtained by a trivial scaling. Similarly we neglect values of physical constants and identify the Hamiltonian \(H_\theta\) with the Dirichlet Laplacian \(-\Delta_{\Sigma_\theta}\) on the Hilbert space \(\mathcal{H} = \mathcal{L}^2(\Sigma_\theta, r dr d\phi dz)\). Using the cylindrical coordinates we can write the operator action explicitly:

\[
\begin{align*}
H_\theta \psi &= \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial \psi}{\partial r} \right) - \frac{1}{r^2} \frac{\partial^2 \psi}{\partial \phi^2} - \frac{\partial^2 \psi}{\partial z^2},
\end{align*}
\]

(2.3)

with the domain consisting of all functions \(\psi \in W^{1,2}_{\text{loc}}(\Sigma_\theta)\) such that \(\psi(\bar{x}) = 0\) for \(\bar{x} = (r, \phi, z) \in \partial \Sigma_\theta\) and \(H \psi \in \mathcal{L}^2\). The operator is associated with the quadratic form

\[
Q^\theta[\psi] = \int_{\Sigma_\theta} \left[\frac{\partial \psi}{\partial r} \right]^2 + \frac{1}{r^2} \left[\frac{\partial \psi}{\partial \phi} \right]^2 + \left[\frac{\partial \psi}{\partial z} \right]^2 \right] (r, \phi, z) r dr d\phi dz
\]

(2.4)

defined on functions \(\psi \in W^{1,1}_{\text{loc}}(\Sigma_\theta)\) vanishing at the boundary layer, such that \(Q^\theta[\psi] < \infty\). It is well known [RS78, section XIII.15] that the operator \(H\) is self-adjoint and positive, \(\sigma(H) \subset [0, \infty)\).

\(^1\) By solvability we do not mean finding the eigenvalues and eigenfunctions analytically, of course, this is beyond reach even in the tubes case. What we have in mind is the possibility of bringing the analysis to the state when one can find these quantities numerically and study their dependence on the parameters of the model.
2.2. Partial wave decomposition

Using the cylindrical symmetry of the system we write state Hilbert space as

\[\mathcal{H} = L^2(\Omega_0, \ r \, dr \, dz) \otimes L^2(S_1) = \bigoplus_{m \in \mathbb{Z}} L^2(\Omega_0, \ r \, dr \, dz), \]

(2.5)

where \(L^2(S_1) \) refers conventionally to functions on the unit circle with the orthonormal basis \(\{ \frac{1}{2\pi} e^{im\phi} : m \in \mathbb{Z} \} \). The operator \(\hat{H}^0 \) decomposes accordingly as

\[\hat{H}^0 = \bigoplus_{m \in \mathbb{Z}} \hat{H}^0_m, \quad \hat{H}^0_m \psi = -\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial \psi}{\partial r} \right) - \frac{\partial^2 \psi}{\partial z^2} + \frac{m^2}{r^2} \psi, \]

(2.6)

with the domain consisting of \(\psi \in W^{1,1}_{\text{loc}}(\Omega_0) \) satisfying the requirement \(\psi(r, r \sin \theta) = \psi(r, r \sin \theta + \pi \tan \theta) = 0 \) and such that \(H_m \psi \in L^2 \). Under these conditions the operators \(\hat{H}^0_m, m \neq 0, \) are self-adjoint while for \(m = 0 \) one has to demand additionally that \(\frac{\partial^2 \psi}{\partial r^2} \bigg|_{r=0} = 0 \).

All the boundary values here are understood as the appropriate limits. The quadratic forms associated with the partial wave components of the Hamiltonian are

\[Q^\theta_m[\psi] = \int_{\Sigma_1} \left[\frac{\partial \psi}{\partial r}^2 + \frac{\partial \psi}{\partial \theta}^2 + \frac{m^2}{r^2} |\psi|^2 \right] \,(r, z)\,dr \,dz, \]

(2.7)

being defined on all \(\psi \in W^{1,1}_{\text{loc}}(\Omega_0) \) satisfying \(\psi(r, r \sin \theta) = \psi(r, r \sin \theta + \pi \csc \theta) = 0 \) and such that \(Q^\theta_m[\psi] < \infty \).

As usual we can pass to unitarily equivalent operators by means of the transformation \(U : L^2(\Omega_0, \ r \, dr \, dz) \rightarrow L^2(\Omega_0) \) defined by \((U \psi)(r, z) := \psi^2(r, z) \equiv \tilde{\psi}(r, z) \equiv \psi(r, z) \) and an analogous map \(L^2(\Sigma_0, \ r \, d\phi \, dz) \rightarrow L^2(\Sigma_0) \). In particular, the operator \(\tilde{H}^0_m := U \hat{H}^0_m U^{-1} \) acts as

\[\tilde{H}^0_m \tilde{\psi} = -\frac{\partial^2 \tilde{\psi}}{\partial r^2} - \frac{\partial^2 \tilde{\psi}}{\partial z^2} + \frac{1}{r^2} \left(m^2 - \frac{1}{4} \right) \tilde{\psi}, \]

(2.8)

on functions \(\tilde{\psi} \in W^{1,2}_{\text{loc}}(\Omega_0) \) such that \(\tilde{H}^0_m \tilde{\psi} \in L^2 \) satisfying the Dirichlet boundary condition at the boundary of \(\Omega_0 \); the associated quadratic form is

\[\tilde{Q}^\theta_m[\tilde{\psi}] = \int_{\Sigma_1} \left[\frac{\partial \tilde{\psi}}{\partial r}^2 + \frac{\partial \tilde{\psi}}{\partial z}^2 + \frac{1}{r^2} \left(m^2 - \frac{1}{4} \right) |\tilde{\psi}|^2 \right] \,(r, z)\,dr \,dz, \]

(2.9)

with the domain of all \(\tilde{\psi} \in W^{1,1}_{\text{loc}}(\Omega_0) \) satisfying the Dirichlet condition at \(\partial \Omega_0 \) and such that \(Q^\theta_m[\tilde{\psi}] < \infty \).

2.3. Alternative expressions

There are other ways to express the action of our Hamiltonian. For instance, one can use rotated coordinates in the radial cross section plane according to figure 1:

\[s = r \cos \theta + z \sin \theta, \quad u = -r \sin \theta + z \cos \theta, \]

(2.10)

in which we have

\[\Omega_0 := \{(s, u) \in \mathbb{R}^2 : s \geq 0, \ 0 < u < \min(\pi, s \cot \theta)\}. \]

(2.11)

The partial wave operators act now as

\[\tilde{H}^0_m \tilde{\psi} = -\frac{\partial^2 \tilde{\psi}}{\partial s^2} - \frac{\partial^2 \tilde{\psi}}{\partial u^2} + \frac{4m^2 - 1}{4(s \cos \theta - u \sin \theta)^2} \tilde{\psi}, \]

(2.12)
with the domain being the same as above; the associated quadratic form takes in these coordinates the shape
\[\tilde{Q}_m^{\theta}[\tilde{\psi}] = \int_{\Sigma_{\theta}} \left[|\frac{\partial \tilde{\psi}}{\partial s}|^2 + |\frac{\partial \tilde{\psi}}{\partial u}|^2 + \frac{4m^2 - 1}{4(s\cos \theta - u\sin \theta)^2} |\tilde{\psi}|^2 \right] (s, u) \, ds \, du. \] (2.13)

One can also use skew coordinates,
\[y = s - u \tan \theta, \quad v = u, \] (2.14)
in which expression (2.13) acquires the form
\[\tilde{Q}_m^{\theta}[\tilde{\psi}] = \int_0^\infty dy \int_0^\pi dv \left[\frac{1}{\cos^2 \theta} \left| \frac{\partial \tilde{\psi}}{\partial y} \right|^2 + \left| \frac{\partial \tilde{\psi}}{\partial v} \right|^2 \right]
+ 2\tan \theta \Re \left(\frac{\partial \tilde{\psi}}{\partial y} \frac{\partial \tilde{\psi}}{\partial v} \right) + \frac{4m^2 - 1}{4y^2 \cos^2 \theta} |\tilde{\psi}|^2 \right] (y, v). \] (2.15)

3. Properties of the spectrum

Since the conical layer is built over a surface with a cylindrical end its basic spectral properties follow from the theory developed in [CEK04, DEK01].

Theorem 3.1. For any fixed \(\theta \in (0, \frac{1}{2}\pi) \) we have \(\sigma_{\text{ess}}(H^{\theta}) = [1, \infty) \), while the discrete spectrum of the operator is non-empty with \(\dim \sigma_{\text{disc}}(H^{\theta}) = \infty \).

Proof. For most part of the argument we can refer to the papers quoted above. In particular, we proved there that \(\inf \sigma_{\text{ess}}(H^{\theta}) = 1 \). In order to check that any \(k^2 + 1 \) belongs to the spectrum one has to construct a suitable Weyl sequence. Consider three-dimensional Cartesian coordinates \(s, t, u \) and take the family of functions
\[g_n(s, t, u) := \frac{2n}{n^2 - 2} e^{ikt} f(ns, nt) \cos \frac{\pi nu}{n^2 - 2}, \]
where \(|u| \leq \frac{n - 1}{2} \) and \(f \in C_0^\infty(\mathbb{R}^2) \) has the support in \((-1, 1)^2\). By construction \(\|(-\Delta - k^2 - 1)g_n\| \to 0 \) as \(n \to \infty \), and since the vanishing quantity is invariant w.r.t. Euclidean transformations we can find a family of functions \(\tilde{g}_n \) supported by rectangular blocks of the size \(2n \times 2n \times (1 - \frac{1}{n^2}) \), each of them contained in \(\Sigma_{\theta} \) being naturally farther and farther from the layer tip as \(n \) grows, which proves the claim.
The existence of the discrete spectrum was proven in [CEK04, DEK01]. While it is not stated explicitly there that the number of the eigenvalues in (0, 1) is infinite, it is clear from the proof in which one constructs a sequence of trial functions supported by mutually disjoint ring-shaped domains of the conical layer, and thus orthogonal to each other; for large enough indices they give the value of the energy functional below the essential spectrum threshold. □

After demonstrating the existence of the discrete spectrum let us look at its properties in more detail. First we note that all the geometrically induced bound states in the layer belong to the s-wave sector.

Proposition 3.1. $\sigma_{\text{disc}}(H^\theta_m) = \emptyset$ holds if $m \neq 0$.

Proof. The claim is equivalent to $\sigma_{\text{disc}}(\tilde{H}^\theta_m) = \emptyset$. For any higher partial wave, $m \neq 0$, we have $\tilde{Q}^\theta_m[\tilde{\psi}] \geq \int_{\Omega_\theta} |\nabla \tilde{\psi}|^2(r, z) \, dr \, dz$ which means that $\tilde{H}^\theta_m \geq -\Delta^\theta_m$ in the form sense where the rhs acts according to [RS78, section XIII.15] on functions $\psi \in W^{1,2}_0(\Omega_\theta)$ such that $\psi(\tilde{x}) = 0$ for $\tilde{x} = (r, z) \in \partial_\theta \Omega$ and $-\Delta \psi \in L^2$. The result then follows by minmax principle because $\sigma(-\Delta^\theta_m) = \sigma_{\text{ess}}(-\Delta^\theta_m) = [1, \infty)$. □

This does not mean, of course, that the cylindrically asymmetric part of the problem is trivial, it can exhibit, for instance, an interesting scattering behaviour. Since we are dealing with the discrete spectrum here, however, we consider from now on only functions independent of the angular variable ϕ and drop the index m in the quadratic form expressions. By theorem 3.1 the operator H^θ has a sequence of eigenvalues,

$$\lambda_1(\theta) < \lambda_2(\theta) \leq \lambda_3(\theta) \leq \cdots,$$

labelled in the ascending order; the corresponding eigenfunctions will be denoted as $\psi^{(j)} \in L^2(\Sigma_\theta)$, $j = 1, 2, \ldots$; with the symmetry in mind we use the same symbols for their radial cuts $\psi^{(j)} \in L^2(\Omega_\theta, r \, dr \, dz)$ and $\tilde{\psi}^{(j)}$ for their counterparts in $L^2(\Omega_\theta)$.

The main question is about the dependence of the spectrum on the cone opening angle. Let us start with demonstrating that the eigenvalues (3.16) are smooth functions of θ. To this aim we compare the cross sections (2.11) for two different values of the angle, θ and θ'. They can be mapped onto each other by a longitudinal scaling, $s \cot \theta = s' \cot \theta'$; then we can express the form (2.13) referring to the angle θ' as

$$\tilde{Q}^{\theta'}[\tilde{\psi}] = \int_{\Sigma_\theta} \left[\frac{\tan \theta}{\tan \theta'} \left| \frac{\partial \tilde{\psi}}{\partial s} \right|^2 + \frac{\tan \theta'}{\tan \theta} \left| \frac{\partial \tilde{\psi}}{\partial u} \right|^2 \right] + \frac{\sin 2\theta}{\sin 2\theta'} \frac{|\tilde{\psi}|^2}{4(s \cos \theta - u \sin \theta)^2} \, (s, u) \, ds \, du. \quad (3.17)$$

The integration is thus taken over the same domain and the angle dependence is moved to the coefficients of the operator.

Proposition 3.2. The functions $\lambda_j(\cdot)$, $j = 1, 2, \ldots$, are C^1 on $(0, \frac{\pi}{2})$.

Proof. To find the derivative of $\lambda_j(\cdot)$ we have Feynman–Hellmann theorem differentiate (3.17) with respect to θ' at $\theta' = \theta$. It yields

$$\lambda_j'(\theta) = \int_{\Sigma_\theta} \left[-\frac{2}{\sin 2\theta} \left| \frac{\partial \tilde{\psi}^{(j)}}{\partial s} \right|^2 + \frac{2}{\sin 2\theta} \left| \frac{\partial \tilde{\psi}^{(j)}}{\partial u} \right|^2 + \frac{|\tilde{\psi}^{(j)}|^2 \cot 2\theta}{2(s \cos \theta - u \sin \theta)^2} \right] \, (s, u) \, ds \, du.$$
Since $\tilde{\psi}(j) \in W^{1,1}_{loc}(\Omega_0)$—in fact, it belongs to $W^{1,2}_{loc}$—the first two contributions to the integral are finite. Combining this with the fact that $Q^0_{m} [\tilde{\psi}(j)] < \infty$ we infer that also the last contribution to the integral is finite, so the derivative exists. Using then the integrand continuity with respect to θ and the dominated convergence theorem, we arrive at the result.

Note that the terms appearing in the last expression have different signs so it is not a priori clear whether the eigenvalue behave monotonically as the angle changes. Nevertheless, the geometrically induced binding becomes stronger as θ increases, in particular, we have the following result.

Proposition 3.3. Set \(\lambda_0 := \pi - 2j_{0,1}^2 \approx 0.58596 \), where \(j_{0,1} \) is the first zero of Bessel function \(J_0 \). To any \(N \in \mathbb{N} \) and \(\bar{\lambda} \in (\lambda_0, 1) \) there is a \(\theta_0 \) such that \(H^{\theta} \) has at least \(N \) eigenvalues below \(\bar{\lambda} \) for any \(\theta \in (\theta_0, \frac{1}{2}\pi) \).

Proof. By Dirichlet bracketing [RS78, section XIII.15] it is sufficient to find a region \(\Sigma \subset \Sigma_\theta \) such that \(-\Delta_{D}^{\Sigma} \) has this property. Consider a cylinder of radius \(R < \pi \) and length \(L \). The eigenvalues of the corresponding Dirichlet Laplacian are easily found; it yields the condition

\[
\lambda_0 \left(\frac{\pi}{R} \right)^2 + \left(\frac{\pi N}{L} \right)^2 < \bar{\lambda}.
\]

We embed the cylinder axially into \(\Sigma_\theta \) with one lid touching the tip of the inner surface; when \(\theta \) becomes close enough to \(\frac{1}{2}\pi \) we can chose \(R \) close to \(\pi \) and \(L \) large so that the above condition is satisfied.

\[\square\]

4. Numerical results

In order to get a more detailed information and a better insight let us study next the spectrum numerically. As a consequence of proposition 3.1, we may limit ourselves to the two-dimensional geometry, i.e. to consider the spectrum of (2.6) for \(m = 0 \). Recall that the corresponding eigenfunctions are independent of the angular variable \(\phi \) so we can choose \(\phi = 0 \) arriving at the two-dimensional problem depicted in figure 1. Note also that the alternative formulation (2.12) leads to the same results.

The first difficulty we meet is the absence of reliable estimates concerning the span of eigenfunctions. The knowledge of the region where the eigenfunctions are negligible is important. We have to carry out integration over an infinite region and we need to cut the integration somewhere, unless we transform the problem to a finite region. This, however, bring problems of other kinds ruling out, in particular, use of the mode-matching approach.

From general considerations we know that the smaller the gap between the eigenvalue and the continuum threshold, of course, the farther is the wavefunction stretched. Also, for small opening angles eigenfunctions spread farther. This rule of thumb may be of help as a rough estimate of the integration region.

4.1. The method used

We must admit that we have not found a method which would be efficient enough and intuitive at the same time. To summarize our experience we prefer finite element methods. In view of the absence of knowledge of a practical span of configuration space mentioned above even this approach requires separate treating of respective levels. In order to minimize the number of elements we took further advantage of symmetry and limited the problem to the region shown
in the left part of figure 2 with the appropriate boundary conditions. The sought eigenvalues of the conical layer are then eigenvalues of operator (2.6) with \(m = 0 \) on this region.

We used second-order elements. The total number of degrees of freedom ranged from 50 000 to about 300 000 depending on the eigenfunction extent. All runs for small \(\theta \) (most demanding) took less than 1 min each on an Intel Core 2 (1.86 GHz).

We have also tried to employ the Galerkin method. The idea was to choose a set of test functions satisfying the boundary conditions. This, however, leaves still leeway in representing the subspace to which the problem is projected, i.e. how to choose the particular form of the test functions. The choices we attempted led to substantially more time consuming calculation than FEM, so fitting test functions are to be found yet.

4.2. The results

The first question concerns the dependence of eigenvalues on the opening angle illustrated on figure 2 in the interval between 1 and 15 degrees. It agrees well with the general picture; the planar layer, \(2\theta = \pi \), does not support any eigenvalue below the threshold, while for any \(\theta < \pi /2 \) there are by theorem 3.1 infinitely many such isolated eigenvalues, albeit all are weakly bound for sufficiently open conical layers. As the opening angle becomes more acute the low-lying states become gradually more strongly bound. The numerical results show no degeneracies.

As we move away from the ground state, structure of the eigenfunctions acquires more and more a one-dimensional character. This is demonstrated in figure 3 when the seven lowest eigenfunctions for the angle \(\theta = 2.5^\circ \) are calculated. As expected, the ground-state eigenfunction can be chosen positive. On the other hand, the excited states display a number of nodal lines (nodal surfaces of the full problem) that is in a one-to-one correspondence with the eigenvalue index of the sequence \(\{ \lambda_i(\theta) \} \), in an analogy with the classical oscillation theorem. Note also that the node distances are increasing with the distance of the cone tip.
Figure 3. The contour plot of the first seven eigenfunctions for $\theta = 2.5^\circ$. In view of the axial symmetry, we show only one-half of $\psi(r, z)$. The r- and z-scales are different, the vertical axis being scaled by factor 5: the transversal width is π, and z ranges from 0 to 225. Nodal lines are indicated in black colour; higher eigenfunctions have clearly a quasi-one-dimensional character.
Figure 4. Side view (i.e. with the zero elevation angle) of $|\psi|^2$ for the same situation as in figure 3. All the eigenfunctions are normalized to the same constant, so that relative height ratios reflect the true situation (not distorted by different normalization of individual functions). There are two areas with higher probability, one in the vicinity of the inner tip and the other one at the ‘far end’ of the function extent. The latter moves away from the vertex as the eigenvalue number increases.
This behaviour has to be associated with the fact that the effective curvature-induced potential in (2.12) is proportional to s^{-2} having thus the same scaling behaviour as the kinetic part of the Hamiltonian.

Another observation worth commenting is shown in figure 4, where we have plotted (a side view of the) squared eigenfunctions $|\psi_i|^2$ with $i = 1, \ldots, 7$ for the same opening angle θ as above. As the index i grows, dominant regions lie around the inner tip and at the ‘far end’ of eigenfunction extent, more exactly, between the last two nodal lines. Consequently, location of the regions with the largest probability of finding the particle in the conical layer depends on the eigenvalue number in this way.

5. Concluding remarks

Our discussion has not exhausted by far all open questions concerning spectra of conical layers. We have also mentioned the eigenvalue monotonicity which is expected to hold and supported by the above numerical result. A related question concerns the simplicity of the spectrum. It is again seen in the numerical example and its validity is strongly supported by the quasi-one-dimensional character of the higher eigenfunctions, but these considerations cannot replace a rigorous proof.

Other open questions are associated with the behaviour for extreme values of θ which we left out in the previous section because these cases are numerically demanding. For small values of θ the density of eigenvalues above $\lambda_0 \approx 0.58596$ should grow in accordance with proposition 3.3. What we see nevertheless is that already for $\theta = 2.5^\circ$ the excited states have nodal lines (or nodal surfaces of the full problem) inside the cone ‘cap’; one can ask about critical values of θ for which one of those touches the inner tip. On the other hand, one can ask about the spectral asymptotics as $\theta \to \frac{1}{2}\pi -$. In contrast to [EK01] the geometric perturbation is not compactly supported for conical layers and the effective potential is on the borderline between short- and long-range cases, so it is not a priori clear what the asymptotic expansion could be.

Of interest is also the continuous spectrum of conical layers, both from the point of view of scattering—existence of wave operators and their asymptotic completeness—as well as of resonances. Being bound by the deadline of this issue, we leave all these questions to a later investigation.

Acknowledgments

We dedicate this paper to the memory of Pierre Duclos, a longtime friend and collaborator, who was always interested in geometrically induced spectral effects. We thank the referees for the remarks which helped us to improve the text. The research was supported by the Czech Ministry of Education, Youth and Sports within the project LC06002.

References

[CEK04] Carron G, Exner P and Krejčiřík D 2004 Topologically non-trivial quantum layers J. Math. Phys. 45 774–84
[DE95] Duclos P and Exner P 1995 Curvature-induced bound states in quantum waveguides in two and three dimensions Rev. Math. Phys. 7 73–102
[DEK01] Duclos P, Exner P and Krejčiřík D 2001 Bound states in curved quantum layers Commun. Math. Phys. 223 13–28
[EK01] Exner P and Krejčiřík D 2001 Bound states in mildly curved layers J. Phys. A: Math. Gen. 34 5969–85
[ES89] Exner P and Šeba P 1989 Bound states in curved quantum waveguides J. Math. Phys. 30 2574–80
Exner P, Šeba P and Šťovíček P 1989 On existence of a bound state in an L-shaped waveguide Czech. J.
Phys. B 39 1181–91
Goldstone J and Jaffe R L 1992 Bound states in twisting tubes Phys. Rev. B 45 14100–14107
Lenz F, Londergan J T, Moniz R J, Rosenthaler R, Stingl M and Yazaki K 1986 Quark confinement and
hadronic interactions Ann. Phys. 170 65–254
Lin C and Lu Z Q 2007 Existence of bound states for layers built over hypersurfaces in \mathbb{R}^{n+1} J. Funct.
Anal. 244 1–25
Londergan J T, Carini J P and Murdock D P 1999 Binding and Scattering in Two-Dimensional Systems.
Applications to Quantum Wires, Waveguides and Photonic Crystals (Berlin: Springer)
Reed M and Simon B 1978 Analysis of Operators (Methods of Modern Mathematical Physics vol 4) (New
York: Academic)
Schult R L, Ravenhall D G and Wyld H W 1989 Quantum bound states in a classically unbounded system
of crossed wires Phys. Rev. B 39 5476–5479