Breath-held high-resolution cardiac T$_2$ mapping with SKRATCH

Emeline Lugand1,*, Jérôme Yerly1,2, Hélène Feliciano1, Jérôme Chaptinel1, Matthias Stuber1,2, Ruud B van Heeswijk1

From 19th Annual SCMR Scientific Sessions
Los Angeles, CA, USA. 27-30 January 2016

Background
Several cardiac T$_2$ mapping techniques with varying T$_2$ preparation (T$_2$Prep) times have been proposed for the quantification of cardiac edema [1-3]. Among these, radial T$_2$ mapping, which is robust to motion artifacts, suffers from a low signal-to-noise ratio (SNR) caused by the undersampling of the k-space periphery and by its density compensation function (DCF) (Fig. 1a). However, since the contrast of an image is mainly determined by the center of its k-space, the T$_2$-weighted images can share their k-space periphery using the KWIC (K-space Weighted Image Contrast) filter (Fig. 1b) to reduce undersampling artifacts [4]. This allows for higher undersampling (Fig. 1c) and thus for a decrease in acquisition time [5].

We demonstrated that navigator-gated KWIC-filtered cardiac T$_2$ mapping (Shared K-space RAdial T$_2$ Characterization of the Heart, SKRATCH) enables a considerable decrease in acquisition time while maintaining the T$_2$ precision [5]. The goal of this study was to extend this approach to a short breath-held high-resolution T$_2$ map acquisition and to compare its performance to navigator-gated T$_2$ mapping.

![Figure 1 Schematic overview of the KWIC filter](image)

*University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
Full list of author information is available at the end of the article

© 2016 Lugand et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Methods
The novel breath-held SKRATCH protocol consisted of a GRE sequence with a continuously increasing golden-angle radial acquisition. This ensured a unique k-space trajectory for all 64 lines of each of the 4 T_2 Prep durations (0/30/45/60 ms), pixel size of $1.2 \times 1.2 \times 8$ mm3 and a total duration of 7 heartbeats. As reference, a navigator-gated radial cardiac T_2 mapping GRE sequence was acquired with 3 T_2 Prep durations (0/30/60 ms), 308 lines/image and a pixel size of $1.25 \times 1.25 \times 5$ mm3 [3]. Images were acquired at 3T (Magnetom Prisma, Siemens Healthcare) in 17 healthy volunteers at the same midventricular short-axis orientation with both protocols. The T_2 maps were segmented according to the AHA guidelines [6]. The mean T_2 value (μ_{T_2}) and the relative standard deviation ($\sigma_R = \text{standard deviation} / \mu_{T_2}$) of each segment as well as the myocardial area were calculated and tested for significant differences. The SKRATCH T_2 map was acquired twice in 11 of the volunteers for Bland-Altman reproducibility analysis.

Results
The SKRATCH T_2 maps had average values of 39.9 ± 4.4 ms, while those of the reference T_2 maps were 39.1 ± 3.1 ms ($p = 0.04$, Fig. 2a-c). σ_R increased from $8 \pm 2\%$ for the standard T_2 maps to $11 \pm 2\%$ for the SKRATCH T_2 maps ($p < 0.001$). The myocardial area decreased from 643 ± 155 to 585 ± 121 pixels for the SKRATCH T_2 maps (a 10% decrease, $p = 0.008$). The repeatability analysis resulted in a confidence interval of ± 3.09 ms (Fig. 2d).

Conclusions
The SKRATCH T_2 maps were highly similar to the reference high-resolution T_2 maps, while the shortening to breath-hold duration came at the cost of an acceptably small increase in standard deviation and decrease in

Figure 2 A comparison of navigator-gated and breath-held high-resolution T_2 maps in healthy volunteers. a,b The standard navigator-gated T_2 map and breath-held SKRATCH T_2 map respectively. Note that the maps are homogeneous and have similar myocardial surface available for analysis. The color bar indicates the T_2 relaxation time in ms. c The mean T_2 values and standard deviations of the 17 healthy volunteers show a slight increase in standard deviation for the breath-held SKRATCH acquisition. d The Bland-Altman analysis of the difference in mean T_2 values for 11 volunteers. The dotted line represents the mean with a bias of 0.28, while the continuous lines represent the 95% confidence interval ($1.96 \times \text{standard deviation}$).
myocardial area. These encouraging results will need to be validated in future high-resolution studies in patients.

Authors’ details
1University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland. 2Center for Biomedical Imaging (CIBM), Lausanne and Geneva, Switzerland.

Published: 27 January 2016

References
1. Foltz, et al: MRM 2003.
2. Giri, et al: JCMR 2009.
3. van Heeswijk, et al: JACC Imaging 2012.
4. Song, et al: MRM 2000.
5. Lugand, et al: ISMRM 2015, 23-P28.
6. Cerqueira, et al: Cir 2002.

doi:10.1186/1532-429X-18-S1-P27
Cite this article as: Lugand et al: Breath-held high-resolution cardiac T2 mapping with SKRATCH. Journal of Cardiovascular Magnetic Resonance 2016, 18(Suppl 1):P27.