Human infertility: are endocrine disruptors to blame?

André Marques-Pinto¹ and Davide Carvalho¹,²

¹Serviço de Endocrinologia, Faculdade de Medicina da Universidade do Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
²Departamento de Endocrinologia, Diabetes e Metabolismo, Centro Hospitalar de São João, Porto, Portugal

Correspondence should be addressed to A Marques-Pinto
Email andre.fmpinto@gmail.com

Abstract

Over recent decades, epidemiological studies have been reporting worrisome trends in the incidence of human infertility rates. Extensive detection of industrial chemicals in human serum, seminal plasma and follicular fluid has led the scientific community to hypothesise that these compounds may disrupt hormonal homoeostasis, leading to a vast array of physiological impairments. Numerous synthetic and natural substances have endocrine-disruptive effects, acting through several mechanisms. The main route of exposure to these chemicals is the ingestion of contaminated food and water. They may disturb intrauterine development, resulting in irreversible effects and may also induce transgenerational effects. This review aims to summarise the major scientific developments on the topic of human infertility associated with exposure to endocrine disruptors (EDs), integrating epidemiological and experimental evidence. Current data suggest that environmental levels of EDs may affect the development and functioning of the reproductive system in both sexes, particularly in foetuses, causing developmental and reproductive disorders, including infertility. EDs may be blamed for the rising incidence of human reproductive disorders. This constitutes a serious public health issue that should not be overlooked. The exposure of pregnant women and infants to EDs is of great concern. Therefore, precautionary avoidance of exposure to EDs is a prudent attitude in order to protect humans and wildlife from permanent harmful effects on fertility.

Key Words
- endocrine disruptors
- reproduction
- infertility
- male
- female

Introduction

Infertility, which is defined as the inability to conceive after 1 year of unprotected intercourse, has a global prevalence of 9% (1). Among infertile couples, it is estimated that the cause is predominantly feminine in 38% and primarily masculine in 20%, while 27% have both male and female abnormalities, and no evident cause is identified as for the remaining 15% (2).

Since the mid-20th century, numerous studies have reported an increasing incidence of human reproductive diseases and a consequent decline in reproductive function worldwide (3). Given the short time frame, genetic changes cannot explain it. Thus, environmental substances may be accountable for the observed trends (4, 5). Indeed, both humans and wildlife are exposed to copious potentially hazardous chemicals that are released into the environment at an alarming rate (6).

One of the most significant landmarks in endocrinology over the past century was the recognition that
some of these chemicals are able to disrupt the closed feedback loops of the hormonal and homeostatic systems, thus being named endocrine disruptors (EDs) (7). The group of known ED is extremely heterogeneous. It embraces ubiquitous synthetic substances used as industrial lubricants and solvents, and their by-products: polychlorinated biphenyls (PCB) (8), polybrominated diphenyl ethers (PBDE) (9) and dioxins such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (10); plastics: bisphenol A (BPA) (11) and bisphenol S (BPS) (12); plasticisers: phthalates (13); pesticides: atrazine (14), cypermethrin (15), dichlorodiphenyltrichloroethane (DDT) (16), dieldrin (17), methoxychlor (MXC) (16) and vinclozolin (VCZ) (18); and drugs: diethylstilbestrol (DES) (19) and ethinyl oestradiol (EE) (20), as well as non-steroidal anti-inflammatory drugs (NSAID) and acetaminophen (21). Natural chemicals such as genistein, a phytoestrogen (22) and heavy metals (23) can also have endocrine-disruptive effects.

Consistent detection of ED residues in human serum, seminal plasma and follicular fluid has raised concern that environmental exposure to ED is affecting human fertility (24). Though ED are not considered major teratogens, reproductive function – from gamete production through to intrauterine development of the offspring – is believed to be particularly susceptible to endocrine disruption, triggering morphological and functional abnormalities (25, 26, 27).

The main purpose of this paper is to review and summarise the major scientific developments on the topic of human infertility associated with ED exposure, integrating evidence from epidemiological and experimental studies. Examples of well-known and hypothetical ED are selected to highlight the potential effects of ED on human fertility, identifying future research directions.

Methods

The PubMed database was used to search for articles published up to 31st May 2013, using the following MeSH keywords: endocrine disruptors, fertility and infertility. Only studies using the English language were considered. Altogether, 368 papers were retrieved. The abstract of every article was read. The leading review criterion was human epidemiological studies in which a link between ED exposure and infertility was evaluated. Moreover, as the interpretation of the scarce epidemiological data may be biased by many confounding factors, supporting experimental research in animal models was also considered. Although there has been an effort to list and rank all possible ED (28, 29), the number of evaluated chemicals remains limited. The full texts of 225 selected articles were retrieved and read. Furthermore, the bibliographies from 41 selected review articles were analysed, and 153 further papers were read. Overall, 198 articles were deemed relevant and included in this review.

Endocrine disruptors

Mechanisms of action

Given the complexity of the endocrine system, the mechanisms of action of ED are difficult to unravel. So far, most EDs are known to act as imperfect ligands (either agonists or antagonists) to nuclear and membrane receptors (for both steroidal and non-steroidal hormones, and also for orphan receptors), thus interfering with hormone-regulated cell signalling pathways and gene expression (30). The relative importance of these types of receptors on the magnitude of the effects of ED remains unclear. Of note, while exogenous hormonally active agents are considered harmful in healthy individuals, they are the basis for hormonal therapy in some endocrinological diseases and hormone-dependent cancers (31). Thus, in those circumstances, they are not considered ED.

Most EDs are supposed to act through several mechanisms, which may have synergistic or antagonistic outcomes (32). Many are substances with oestrogenic/anti-androgenic activity that act by interfering with the oestrogen receptors (ER) or the androgen receptor (AR) (see Table 1).

Apart from ER and AR, the aryl hydrocarbon receptor (AhR) is the protein most studied regarding its interaction with ED. This orphan receptor acts as a transcription factor for detoxifying enzymes (43). Dioxins and some PCB exert their endocrine-disruptive effects through binding to AhR and impairing the usual gene transcription response (44). AhR ligands enhance the degradation of sex steroid receptors (45).

Some EDs are also capable of modifying hormone bioavailability by interfering with its secretion and transport or disrupting the enzymatic pathways involved in hormone synthesis and metabolism (46, 47). For instance, in either sex, androgens give rise to oestrogens, through aromatase, so together they play a vital role in homoeostasis (48, 49). EDs that interfere with aromatase (BPA (50) and atrazine (51) stimulate its activity, while DDT and phthalates (47) inhibit it) disrupt the delicate androgen–oestrogen balance required for proper reproductive function. Recently, many anti-virilising EDs (e.g. phthalates and BPA) have been found to be...
Reliable evidence of both non-monotonic curves and low-dose detrimental effects has been gathered for BPA, many pesticides (54) and phthalates as well (59). Therefore, a threshold dose cannot be presumed, neither can low-dose effects be predicted from high-dose effects (30). However, assuming equivalent exposures, the incidence of detrimental reproductive effects of some ED may be significantly higher in vulnerable individuals, owing to several factors such as the genetic background, window of exposure and pre-existing disease. Nonetheless, these issues remain controversial (60).

Human exposure

Populations are exposed to ED in air, water, food and in a variety of industrial products, including personal care goods. The mixture of ED that leaches into the soil and waterbodies (e.g. pesticides, contraceptive pills and other chemicals from urban and agricultural waste) accumulates in the environment and in animals higher up on the food chain (6, 7). Indeed, some EDs that were banned decades ago, namely DDT and PCB, are still found in human serum (24). This is due to their lipophilicity and resistance to biodegradation (61).

Although there is chronic exposure to ED through inhalation and skin contact (62), the major route of human exposure is ingestion of food (e.g. meat, fish, dairy products and vegetables), as well as plain water and other beverages. ED-contaminated food and water may contain environmental pollutants such as pesticide residues (63) and heavy metals (23), in addiction to processing aids and anabolic steroids used in food production. Most individuals have traceable amounts of these substances in their serum or urine (3, 64).

Recent studies have concluded that plastic packaging is an important source of ED in the average human diet (65). Repeated exposure of food-contact materials to u.v. light, heat and acidic/alkaline contents may cause polymers to breakdown into monomers as phthalates and BPA, which then leach into food and beverages (66). Thus, there is chronic intake of ED even from bottled water (67). Some of these EDs are being replaced by heat-stable analogues: many ‘BPA-free’ products contain BPS instead, which also exerts both genomic and non-genomic endocrine-disruptive effects at environmental concentrations as low as picomolar, leading to concerns regarding its safety (12, 38).

The average diet also contains natural ED such as phytoestrogens, which are compounds possessing strong oestrogen-like activity (22, 36). The eventual health

Table 1

ED	ER agonism	ER antagonism	AR agonism	AR antagonism
PCB	(33)		(34)	(33)
PBBDE	(35)	(35)	(37)	
BPA	(36)		(37)	
BPS	(38)			
Phthalates	(39)			
Cypermethrin	(40)			
DDT	(36)	(40, 41)	(41)	
Dieldrin	(40, 41)		(40, 42)	
MXC	(40, 41)		(40, 42)	
VCC	(41)			
DES	(36)			
Phytoestrogens	(36)			

AR, androgen receptor; BPA, bisphenol A; BPS, bisphenol S; DDT, dichlorodiphenyltrichloroethane; DES, diethylstilbestrol; ED, endocrine disruptor; ER, oestrogen receptors; MXC, methoxychlor; PBBDE, polybrominated diphenyl ethers; PCB, polychlorinated biphenyls; VCC, vinclozolin.
benefits of phytoestrogens on cardiovascular and menopause-related disorders (68) and the apparent absence of major long-term adverse effects have led to an increased consumption of these substances, mainly through soy-based food (69). However, effective but harmless doses have yet to be established. Studies have revealed that infants ingesting soy-based formulas may have a phytoestrogen serum concentration 13 000–22 000 times higher than endogenous oestrogen levels (70), leading to concerns about its possible adverse effects on brain and reproductive organ morphological and functional development and, ultimately, on fertility (71).

Windows of susceptibility

Human susceptibility to disruption during development has been proven (72, 73). Intrauterine exposure to ED may result in long-lasting changes. These may lead to immediate or deferred adverse outcomes on development and reproduction (74). The timing of exposure may explain this difference (75). If it occurs during critical windows, adverse effects may be very drastic and irreversible, including congenital abnormalities. On the contrary, if it happens during sensitive, non-critical windows, detrimental outcomes may still arise, such as mild functional deficits and adult-onset diseases.

Developmental programming ► The prenatal period has become a significant research topic regarding ED exposure because the placenta causes accumulation of ED in the foetus (76). BPA and other ED have low binding affinity to the sex hormone-binding globulin and a-fetoprotein, which prevent maternal sex hormones from crossing the placenta (77). Furthermore, detoxifying metabolic pathways only mature after birth (78). ED may therefore reach hormone-sensitive foetal tissues (e.g. the urogenital sinus and brain) and disrupt their proper development (see below). As programming of the hypothalamus–pituitary–gonadal (HPG) axis occurs during this period, ED exposure may determine fertility in the adulthood (79).

Epigenetic modifications may have an important role in the observed ED effects in gametogenesis and foetal development (see below). The epigenome refers to changes made in gene expression by altering DNA structure through DNA methylation and microRNA, among other mechanisms, without changing the actual genomic sequence (80). BPA, phthalates and VCZ can alter the gene expression and imprinting patterns in mouse embryos (81). Very recently, intrauterine BPA exposure at environmental doses was shown to impair steroidogenesis in sheep by down-regulating gonadal microRNA (82). These findings may partially explain the biological relevance of ED on gonadal differentiation.

Multi- and transgenerational effects ► EDs have been shown to disrupt the development of the human reproductive system, impairing fertility not only in directly exposed offspring but also in subsequent generations. A vast array of reproductive abnormalities has been reported in the offspring of women treated with DES during the mid-20th century, for miscarriage prevention (19, 83). Recently, a French epidemiologic study has shown that the grandchildren of DES-exposed women have a higher incidence of genital malformations, which may be explained by epigenetic changes of the AR gene transmitted through the female germ line (84).

Other ED have multigenerational effects: the offspring of TCDD-exposed mice show fertility disorders up to the third generation (85); the third generation of mice exposed in utero to environmental levels of PCB presented morphological reproductive abnormalities and impaired gamete quality (8).

Male germ cells are considered as the most vulnerable cells, as they have distinctive methylation patterns and epigenetic markers (80). Transient developmental exposure of male rats to VCZ and MXC during the epigenetic-reprogramming stage induces poor semen quality up to the fourth generation (86).

ED exposure in pregnant females can directly cause detrimental effects in the next two generations through the foetus and its germline, which is already formed. Only adverse effects in the third generation and beyond are considered truly transgenerational, as they are transmitted solely through the germine (87).

As current assisted reproduction techniques do not necessarily address the underlying infertility problem, their escalating use may accidentally convey serious genetic and epigenetic anomalies (27).

Susceptible population groups ► Millions of children are conceived by women while on contraceptive pills containing EE. Albeit most do not show conspicuous congenital abnormalities, long-term reproductive consequences may ensue in adulthood (88). Breastfeeding is another significant period of exposure to ED (89). As many ED accumulate in fat-rich tissues such as the breast, both mother and foetus are exposed to relatively high levels of these substances (90, 91). For these reasons, women of childbearing age, specifically those who are...
pregnant/breastfeeding, constitute a population of utmost importance regarding ED exposure. Likewise, newborns and children deserve special consideration, as they have proportionally higher food and water intakes than adults, leading to a potentially higher body burden of such chemicals (92).

Effects of ED mixtures

ED may act synergistically to produce adverse effects at doses far below individual LOAEL, if there is enough overall exposure (93). Indeed, a combination of estrogenic ED at environmentally relevant doses was shown to lead to greater cellular disruption than single ED exposure (94). Furthermore, a study addressing the effects of developmental exposure of rats to a mixture of diverse-acting anti-androgenic ED has shown synergistic effects regarding the incidence of reproductive tract anomalies (95). In view of recent evidence, a number of brief intrauterine exposures to therapeutic doses of NSAID or acetaminophen (21, 96) adding to the potential long-lasting inhibition of prostaglandin synthesis by other ED could seriously impact human reproductive health by decreasing steroidogenesis.

Additionally, it is hypothesised that phytooestrogens, among other EDs, may be capable of altering cell responsiveness to endogenous hormones and other ED, thereby inducing wider negative effects when there is concomitant exposure (97). Two studies in rats have suggested that the effects of chronic ingestion of a low-dose genistein and VCZ mixture (at 1 mg/kg BW per day) diverge from those arising from exposure to each substance individually: genistein may potentiate the detrimental effects of VCZ when exposure occurs through-concomitant exposure (98) or ease them if exposure stops at adulthood (99). ED mixtures most likely produce very complex dose–response curves due to overlapping additive/synergistic effects, and may lead to more severe consequences than previously ascertained. Conversely, their effects may be antagonistic, and thus reciprocally annulled.

ED and the male reproductive system

Trends in semen quality

Over the last decades, epidemiological studies have reported an ominous growth in the incidence of male infertility, accompanied by decreasing sperm quality, thus reflecting impaired spermatogenesis (100). A large review of international studies showed that, over 50 years, the global average sperm count dropped by half (from 113 to 66 million/ml), reflecting an average yearly decrease of 1%, and sperm morphology/motility abnormalities significantly increased (101). A subsequent larger study confirmed the declining sperm concentration at a yearly rate of 1.5–3% (102). However, some consider those results are biased (103).

Studies comparing male reproductive disorders in the Nordic–Baltic countries have reported an East–West gradient showing higher reproductive tract abnormalities and infertility rates in Denmark compared with Finland (104, 105). ED may explain these differences because the Danish seem to have higher ED body burdens than the Finnish (90).

Actually, several epidemiological studies have found an association between inferior semen quality parameters and increased urinary and serum levels of phthalates (106), PCB (107), PBDE (108, 109) and BPA (110). ED may disrupt spermatogenesis by interfering with germ cells and spermatogenesis-supporting cells (111) (see Table 2). Interestingly, it has been shown that intrauterine exposure to BPA disrupts the blood–testis barrier, which may lead to infertility in adulthood through germ cell loss via immunological activity (79, 115).

The testicular dysgenesis syndrome

There is an epidemiological correspondence between lower semen quality and higher incidences of cryptorchidism, hypospadias and testicular cancer (116). These disorders have been regrouped as the testicular dysgenesis syndrome (TDS) (117), as they probably arise from intrauterine disruption of proper testicular development and function (118) under ED exposure (119). Impaired Leydig cells function is the main cellular trait of TDS (120, 121). In mild cases, men have low testosterone levels, slightly decreased penile/testicular volumes and poor semen quality, while in the more severe cases there is

Table 2 Cellular effects of ED on the testicle.

Cellular effect	ED
Germ cell apoptosis	Phthalates (112), DES and EE (113)
Reduced steroidogenesis in Leydig cells	PCB (114), phthalates (73), cypermethrin (15), dieldrin (14) and EE (20)

DES, diethylstilbestrol; ED, endocrine disruptor; EE, ethinyl oestradiol; PCB, polychlorinated biphenyls.
also hypospadias or cryptorchidism and an increased risk of testicular cancer (122). ED exposure has been suggested to have triggered the escalation of milder TDS cases, and it may explain a number of idiopathic infertility cases (123), which constitute half the men presenting at infertility clinics (124).

Epidemiological data suggest that human developmental exposure to environmental levels of ED (e.g. phthalates, PCB and pesticides) is indeed connected to an increased risk of TDS features such as hypospadias and cryptorchidism (91, 125, 126, 127).

Assuming the same circumstances of exposure, deleterious effects of ED may be more severe in individuals with genetic susceptibility. There are AR and ER-α genetic polymorphisms that cause mild functional impairments (128, 129). They can be expected to bring about manifest forms of TDS, when combined with ED exposure (119). Indeed, among men exposed to PCB and DDT, those having particular AR polymorphisms were found to have significantly inferior sperm quality (130). Furthermore, a correlation has been reported between cryptorchidism and ED-vulnerable ER-α polymorphisms (131).

Hypospadias
Hypospadias, a condition in which the urethral meatus is on the ventral side of the penis, affects about 0.4% of males at birth and has been reported to have increased significantly over recent decades (132). EDs are regarded as a contributing factor, as VCZ (133) and phthalates (134) consistently induce hypospadias in the laboratory animals.

Cryptorchidism
Cryptorchidism is defined as the failure of one or both testicles to descend into the scrotal sac and is the most common congenital abnormality in male children, affecting 2–4% of full-term males (104). Epidemiological studies suggest that the incidence of cryptorchidism is rising (135). It is currently the best characterised risk factor for infertility and testicular cancer in adulthood (97).

Testicular migration is a complex process involving a transabdominal stage and a transinguinal one. Developmental exposure to ED may act on Leydig cells thus disrupting both stages by i) reducing insulin-like factor 3 expression (136) and ii) impairing steroidogenesis (resulting in relative testosterone deficiency) respectively (119). Exposure to some ED, such as PBDE, through breastfeeding has been correlated with cryptorchidism in new borns (76). In a recent epidemiological study, NSAID or acetaminophen consumption during pregnancy has been shown to be directly related to a higher risk of cryptorchidism in male infants, if intake had taken place for longer than one week or if there had been simultaneous ingestion of more than one of those drugs (21).

The differentiation of the male reproductive system

The differentiation of the male reproductive system is entirely dependent on foetal testicular androgen production (137). Thus, disruption of androgen activity by ED during the virilisation period (around 8–14 weeks into human foetal development) will perhaps cause TDS (138). Moreover, disproportionate oestrogenic exposure at this point may disturb the delicate androgen–oestrogen balance, leading to adverse consequences (139).

A recent study including a thousand new borns has found a linear correlation between maternal exposure to ED (e.g. pesticides and phytoestrogens) and lower testosterone levels, smaller penile length and higher incidences of reproductive anomalies including hypospadias (140).

In animal models, pregnant mice orally exposed to phthalates at doses as low as 1 μg/kg BW per day consistently gave birth to male offspring presenting a syndrome of reproductive anomalies including cryptorchidism, testicular injury, reproductive tract malformations and shorter anogenital distance (AGD) (59, 134), reflecting ineffective perineal virilisation (141). This pattern of effects parallels TDS (142). Actually, developmental exposure to phthalates at environmental doses seems to cause reduced AGD in male infants (143).

Similarly to rodents, human male infants exhibit twice as long an AGD than females (144). Reduced male AGD may be considered a predictor of infertility as it correlates with poorer sperm quality parameters in otherwise normal men (145). Furthermore, hypospadias and cryptorchidism are also associated with shorter AGD (146).

Other anti-androgenic ED can induce TDS in animals: rats exposed to 150 mg/kg BW per day of acetaminophen during foetal development had AGD reductions comparable to those induced by phthalates (21). Additionally, intrauterine exposure to VCZ produces a wide spectrum of reproductive disorders (147). In a study, all male rats exposed in utero to 20–100 mg/kg BW per day of VCZ showed hypospadias and minute sperm counts (133). Though average human ED exposure levels may be lower than those customarily used in animal studies, certain population clusters may be exposed to higher levels. Actually, occupational pesticide exposure has been connected to male infertility (125, 148, 149, 150).
ED and the female reproductive system

The ovarian dysgenesis syndrome

Data concerning ED effects on the female reproductive system and fertility are scant. Still, a correlation between developmental ED exposure and long-term effects is suggested (151). There is a significantly higher risk of infertility in women who have high serum concentration of BPA (152, 153), as well as in those whose mothers had high maternal serum concentrations of DDT during pregnancy (154). Moreover, occupational exposure to ED such as pesticides and plastics is a risk factor for female infertility (155).

The array of female reproductive disorders where ED have been implicated includes endometriosis, disorders of the uterus and disorders of the ovary, such as premature ovarian failure (POF) and polycystic ovary syndrome (PCOS) (26). The incidence of these conditions is growing (72). As they may arise from impaired ovarian development and function, the ovarian dysgenesis syndrome has recently been suggested as the female form of TDS (156).

Endometriosis ▶ Endometriosis affects up to 10% of women of childbearing age, causing infertility in about half those women (157). Recently, EDs have been proposed as a possible contributing factor for its development and exacerbation (158). Indeed, a significantly higher BPA (159) and phthalate (160) serum concentration has been found in women with this condition. Furthermore, women exposed to DES in utero may have an 80% higher risk of endometriosis than unexposed women (161).

Experimental studies support this hypothesis, as intrauterine exposure of mice to BPA (162) or TCDD (85) produces an endometriosis-like adult uterine phenotype. A recent study has shown that women with endometriosis have significantly higher concentrations of TCDD and PCB in the peritoneal fluid (163), possibly leading to chronic inflammation, which may result in the stimulation of endometrial cells derived from retrograde menstruation (164).

Ovarian pathology ▶ There are growing concerns about the reproductive outcomes of ovarian exposure to ED during foetal development and after birth (165). Female germ cells are a fixed population, unlike male germ cells. Therefore, exposure of hormone-responsive, primordial and preantral follicles to ED may impair folliculogenesis, inducing meiotic aberrations (e.g. aneuploidy and multiple oocyte follicles) or even follicular atresia (see Table 3). Ultimately, ED may lead to depletion of follicular reserves, resulting in POF (176). This is a syndrome consequent to impaired ovarian function before the age of 40 years, affecting about 1% of women (177).

Granulosa and theca cells, which are crucial for ovarian steroidogenesis and oocyte development, are also a target for ED (48). Chronic exposure to TCDD at environmental levels (lower than 1 ng/kg BW per day) induces ovarian insufficiency in rats by reducing steroidogenesis (10).

PCOS, consisting of hyperandrogenemia and chronic anovulation, affects 5–8% of women of childbearing age often leading to infertility (178). Higher serum BPA levels have been reported in women with PCOS compared with healthy women (153, 179).

The differentiation of the female reproductive system

Proper differentiation of the female reproductive system is regulated by oestrogens, but it proceeds even in their absence – it is the default developmental pathway (180). Nevertheless, oestrogenic overstimulation is known to result in irreversible abnormalities (19, 181).

The development of the female reproductive system is regulated by the differential expression of HOX genes in the Müllerian duct (182). Disruption of the precise chronological regulation of HOXA10 by ED that either up-regulate (e.g. BPA) or down-regulate (e.g. DES and MXC) its expression has been shown to lead to uterine abnormalities and infertility (183). DES has also been found to contribute to uterine abnormalities by reducing the expression of other developmental genes such as the WNT7 or MSX2 genes (184).

Central actions of ED

Regulation of gonadotropin secretion

ED may modify steroidogenesis both locally and through the HPG axis (7). The human HPG axis is active in utero and

Table 3	Cellular effects of ED on the ovary.
Cellular effect	**ED**
Impaired folliculogenesis	PCB (8), phthalates (166), atrazine (167), MXC (168) and genistein (169)
Follicular atresia	BPA (170), BPA (171), DES (172) and genistein (173)
Meiosis disruption	TCDD (174), DDT and MXC (175)
Reduced steroidogenesis in granulosa/theca cells	BPA, bisphenol A; DDT, dichlorodiphenyltrichloroethane; DES, diethylstilbestrol; ED, endocrine disruptor; MXC, methoxychlor; PCB, polychlorinated biphenyls; TCDD, 2,3,7,8-tetrachlorodibenzo-p-dioxin.

This work is licensed under a Creative Commons Attribution 3.0 Unported License.
during the first year of life (185). Afterwards, gonadotropin secretion is reduced until puberty, when sequential endocrine changes set in motion the development of secondary sexual characteristics that will lead to sexual maturation (186).

Kisspeptin is broadly recognised as a fundamental activator of the HPG axis, at the onset of puberty (187). In rats, neonatal exposure to oestrogenic ED, such as BPA and genistein, suppresses kisspeptin secretion (188, 189).

Some PCBs have been shown to alter gonadotropin-releasing hormone (GnRH) synthesis (190) and to decrease GnRH release (191). Conversely, DDT and BPA stimulate it (192). In rats, perinatal exposure to environmental BPA doses, below the current LOAEL, induced defective GnRH pulses up to adulthood, leading to infertility (193).

The primary target of developmental ED exposure might be the hypothalamus and the pituitary gland rather than the gonads themselves (195).

Sex steroids have prominent roles in the differentiation of several sexually dimorphic neural circuits (195, 196). ED may cross the immature blood–brain barrier (11) and thereby reverse the neurochemical phenotype of these areas. Actually, developmental exposure to BPA, MXC and VCZ has been shown to produce gender-inadequate adult behaviours (197), possibly by disrupting specific neural pathways (e.g. nitrergic fibres) that influence complex functions and behaviours such as those related to reproduction (198).

Conclusion

This paper has reviewed the existing evidence regarding ED and the rising rates of human infertility. Although the number of ED mentioned is not comprehensive, an adequate amount of data has accumulated demonstrating that EDs may have deleterious effects on human reproduction via numerous mechanisms. ED may be blamed for the rising incidence of human reproductive disorders, and may also explain some idiopathic infertility cases, both in men and women.

Endocrine disruption is a serious public health problem that must not be ignored. Authorities should endorse preventive measures regarding exposure to EDs, such as limiting their production in industry worldwide, as the removal of these substances from the environment is neither simple nor cheap.

Meanwhile, the general population might reduce ED exposure by following some simple yet important advice such as i) choose glass over plastics, ii) avoid using plastic containers repeatedly or plastic wrapping to microwave food, iii) reduce consumption of fatty animal products, iv) avoid excessive utilisation of cosmetics and other personal care items, particularly during pregnancy. As ED exposure at any dose may impair human development and reproduction, precautionary avoidance of exposure to well-known and putative ED is a prudent attitude.

Further research is needed to improve current knowledge about known ED, and to identify potential endocrine disruptive activity by other chemicals, especially those replacing current ED before they are widely distributed. Dose–effect curves should be thoroughly studied, even at minute concentrations, as all EDs are likely to show non-monotonic responses and low-dose effects, resembling those elicited by endogenous hormones. Also, the impact of exposure to low doses of complex mixtures of ED and the prospective transgenerational effects should be evaluated, specifically concerning genetic polymorphisms, especially during gametogenesis and foetal development. It would be important to examine adult fertility and hormonal parameters of infants inadvertently exposed to contraceptive hormones during pregnancy and of infants fed cow milk/soy-based formula using baby bottles made of different substances, as opposed to breastfed infants. Clinical and labatorial research on ED is essential, in order to protect wildlife and humans, particularly developing foetuses and children, from permanent effects on fertility.

Declaration of interest

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the review reported.

Funding

This review did not receive any specific grant from any funding agency in the public, commercial or not-for-profit sector.

http://www.endocrineconnections.org

DOI: 10.1530/EC-13-0036

© 2013 The authors

Published by Bioscientifica Ltd

This work is licensed under a Creative Commons Attribution 3.0 Unported License.
References

1. Boivin J, Bunten L, Collins JA & Nygren KG. International estimates of infertility prevalence and treatment-seeking: potential need and demand for infertility medical care. Human Reproduction 2007 22 1506–1512. (doi:10.1093/humrep/dem046)

2. Bretveld R, Brouwers M, Ehsis I & Roeleveld N. Influence of pesticides on male fertility. Scandinavian Journal of Work, Environment & Health 2007 33 13–26. (doi:10.1515/sweh.1060)

3. Woodruff TJ. Bridging epidemiology and model organisms to increase understanding of endocrine disrupting chemicals and human health effects. Journal of Steroid Biochemistry and Molecular Biology 2011 127 108–117. (doi:10.1016/j.jsbmb.2010.11.007)

4. Balabanic D, Rupnik M & Klemenic AK. Negative impact of endocrine-disrupting compounds on human reproductive health. Reproduction, Fertility, and Development 2011 23 403–416. (doi:10.1071/RD09300)

5. Woodruff TJ, Carlson A, Schwartz JM & Giudice LC. Proceedings of the summit on environmental challenges to reproductive health and fertility: executive summary. Fertility and Sterility 2008 89 281–300. (doi:10.1016/j.fertnstert.2007.10.002)

6. Letcher RJ, Bustnes JO, Dietz R, Jenssen BM, Jorgensen EH, Sonne C, Verreet A, Vijayan MM & Gabrielsen GW. Exposure and effects assessment of persistent organohalogen contaminants in arctic wildlife and plants. Science of the Total Environment 2010 408 2995–3043. (doi:10.1016/j.scitotenv.2009.10.038)

7. Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, Hauser R, Prins GS, Soto AM, Zoeller RT & Gore AC. Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocrine Reviews 2009 30 293–342. (doi:10.1210/er.2009-00002)

8. Pocar P, Fiandanese N, Secchi C, Berrini A, Fischer B, Schmidt JS, Sikka SC & Wang R. Endocrine disruptors and estrogenic effects on trophoblast cell functions. Environmental Health Perspectives 2013 121 352–358. (doi:10.1289/ehp.1205826)

9. Darnerud PO. Brominated flame retardants as possible endocrine disruptors. International Journal of Andrology 2008 31 152–160. (doi:10.1111/j.1745-7262.2008.00869.x)

10. Shi Z, Valdez KE, Ting AY, Franczek A, Garm SI & Petroff BK. Al-Qahtani A, Murray TJ & Lea RG. Human fetal testis Leydig cell disruption by exposure to the pesticide Dieldrin at low concentrations. Human Reproduction 2007 22 2919–2927. (doi:10.1093/humrep/dem256)

11. Fowler PA, Abramovich DR, Haitez NE, Cash P, Groome NP, Al-Qahtani A, Murray TJ & Lea RG. Human fetal testis Leydig cell disruption by exposure to the pesticide Dieldrin at low concentrations. Human Reproduction 2007 22 2919–2927. (doi:10.1093/humrep/dem256)

12. Kavlock R & Cummings A. Mode of action: inhibition of androgen receptor function–vinclozolin-induced malformations in reproductive development. Critical Reviews in Toxicology 2005 35 721–726. (doi:10.1080/10408440591007377)

13. Herbst AL, Ulfelder H & Poskanzer DC. Adenocarcinoma of the vagina. Association of maternal stilbestrol therapy with tumor appearance in young women. New England Journal of Medicine 1971 284 878–881. (doi:10.1056/NEJM197104222841604)

14. Hogan NS, Currie S, LeBlanc S, Hewitt LM & MacLatchy DL. Demodulation of steroidalgesis and estrogen signalling in the extraseine killifish (Fundulus heteroclitus) exposed to ethinylestradiol. Aquatic Toxicology 2010 98 148–156. (doi:10.1016/j.aquatox.2010.02.002)

15. Kristensen DM, Hass U, Lesne I, Lottrup G, Jacobsen PR, Desdoits-Lethimonier C, Boberg J, Petersen JH, Toppaji J, Jensen TK et al. Intrauterine exposure to mild analgesics is a risk factor for development of male reproductive disorders in human and rat. Human Reproduction 2011 26 235–243. (doi:10.1093/humrep/der093)

16. Cederroth CR, Zimmermann C & Nel S. Phyoestrogen and maternal offspring effects of maternal androgen and estrogen in utero during male androgen and estrogen in utero. Molecular and Cellular Endocrinology 2011 335 192–200. (doi:10.1016/j.mce.2011.05.049)

17. Iavicoli I, Fontana I & Bergamaschi A. The effects of metals as endocrine disruptors. Journal of Toxicology and Environmental Health. Part B, Critical Reviews 2009 12 206–223. (doi:10.1080/10408440902920622)

18. Younglai EV, Foster WG, Hughes EG, Trim K & Jarrell JE. Levels of environmental contaminants in human follicular fluid, serum, and seminal plasma of couples undergoing in vitro fertilization. Archives of Environmental Contamination and Toxicology 2002 43 121–126. (doi:10.1007/s00244-001-0048-8)

19. Diamanti-Kandarakis E, Falourea F, Kandarakis S & Koutsiliotis M. The impact of endocrine disruptors on endocrine targets. Hormone and Metabolic Research 2010 42 54–552. (doi:10.1515/0030-1252034)

20. Caserta D, Mantovani A, Marcì R, Fazi A, Ciardo F, La Rocca C, Maranghi F & Moscarini M. Environment and women’s reproductive health. Human Reproduction Update 2011 17 418–433. (doi:10.1093/humupd/dmq061)

21. Sikka SC & Wang R. Endocrine disruptors and estrogenic effects on male reproductive axis. Asian Journal of Andrology 2008 10 134–145. (doi:10.1111/j.1743-7674.2008.00671.x)

22. Pazos P, Pellizzer C, Stummann TC, Hareng L & Bremer S. The testis as a target organ for androgenic effects of endocrine disruptors. Science of the Total Environment 2008 392 28–35. (doi:10.1016/j.scitotenv.2007.07.002)

23. Maranghi F & Moscarini M. Environment and women’s reproductive health. Endocrine Reviews 2008 29 316–326. (doi:10.1210/jc.2007-1999)

24. McPhee SJ, Brinton LA, Faust LA & Saag KG. Complex influences of environmental endocrine disrupting chemicals on human health. Environmental Toxicology and Water Quality 2009 24 9–22. (doi:10.1111/j.1744-1107.2009.00262.x)

25. Hill AJ & Aggarwal A. Pharmaceuticals, personal care products and endocrine-disrupting chemicals in U.S. surface and finished drinking waters: a proposed ranking system. Science of the Total Environment 2010 408 5972–5989. (doi:10.1016/j.scitotenv.2010.08.048)

26. Zoeller RT, Brown TR, Doan LL, Gore AC, Skakkebaek NE, Soto AM, Woodruff TJ & vom Saal FS. Endocrine-disrupting chemicals and public health protection: a statement of principles from The Endocrine Society. Endocrinology 2012 153 4097–4110. (doi:10.1210/en.2012-1421)

27. Hoffman J & Sommer A. Steroid hormone receptors as targets for the therapy of breast and prostate cancer – recent advances, mechanisms of resistance, and new approaches. Journal of Steroid Biochemistry and Molecular Biology 2005 93 191–200. (doi:10.1016/j.jsbmb.2004.12.002)

28. De Coster S & van Larebeke N. Endocrine-disrupting chemicals: associated disorders and mechanisms of action. Journal of Endocrine Connections

http://www.endocrinologyconnections.org
DOI: 10.1538/EC-13-0036
© 2013 The authors
Published by Bioscientifica Ltd

This work is licensed under a Creative Commons Attribution 3.0 Unported License.
Environmental and Public Health 2012 2012 713696. (doi:10.1155/2012/713696)

33 Takesuchi S, Shihaishi F, Kitamura S, Kuroki H, Jin K & Kojima I. Characterization of steroid hormone receptor activities in 100 hydroxylated polychlorinated biphenyls, including congeners identified in humans. Toxicology 2011 289 112–121. (doi:10.1016/j.toxicon.2011.08.001)

34 Svebodova K, Plackova M, Novotna V & Catihaml T. Estrogenic and androgenic activity of PCBs, their chlorinated metabolites and other endocrine disruptors estimated with two in vitro yeast assays. Science of the Total Environment 2009 407 5921–5925. (doi:10.1016/j.scitotenv.2009.08.011)

35 Hamers T, Kamstra JH, Sonneveld E, Murk AJ, Kester MH. A study on the agonistic and antagonistic activities of bisphenol-S and other bisphenol-A congeners and antagonists via nuclear receptors. Toxicology and Applied Pharmacology 2013 272 127–136. (doi:10.1016/j.taap.2013.05.015)

36 Kuiper GG, Lemmen JG, Carlsson B, Cortes JC, Safe SH, van der Saag PT, van der Burg R & Gustafsson JA. Interaction of estrogenic chemicals and phytostrogens with estrogen receptor beta. Endocrinology 1998 139 4252–4261. (doi:10.1210/en.139.10.4252)

37 Fang H, Tong W, Branham WS, Moland CL, Dial SL, Hong H, Xie Q, Perkins R, Owens W & Sheehan DM. Study of 202 natural, synthetic, and environmental chemicals for binding to the androgen receptor. Chemical Research in Toxicology 2003 16 1338–1358. (doi:10.1021/tx030011g)

38 Molina-Molina JM, Amaya E, Grimaldi M, Saenz JM, Reul M, Fernandez MF, Balaguer P & Olea N. In vitro study on the agonistic and antagonistic activities of bisphenol-S and other bisphenol-A congeners and antagonists via nuclear receptors. Toxicology and Applied Pharmacology 2013 272 127–136. (doi:10.1016/j.taap.2013.05.015)

39 Jobling S, Reynolds T, White R, Parker MG & Sumpter JP. A variety of environmentally persistent chemicals, including some phthalate plasticizers, are weakly estrogenic. Environmental Health Perspectives 1995 103 582–587. (doi:10.1289/ehp.95103582)

40 Kojima H, Katsura E, Takeuchi S, Niiyama K & Kobayashi K. Screening in vitro reporter gene assays using Chinese hamster ovary cells. Environmental Health Perspectives 2004 112 524–531. (doi:10.1289/ehp.7211399)

41 Lemaire G, Mniif W, Mauvais P, Balaguer P & Rahmani R. Activation of α- and β-estrogen receptors by persistent pesticides in reporter cell lines. Life Sciences 2006 79 1160–1169. (doi:10.1016/j.lfs.2006.03.023)

42 Lemaire G, Terouanne B, Mauvais P, Michel S & Rahmani R. Effect of organochlorine pesticides on human androgen receptor activation in vitro. Toxicology and Applied Pharmacology 2004 196 235–246. (doi:10.1016/j.taap.2003.12.011)

43 Yoshioka W, Peterson RE & Tohyama C. Molecular targets that link dioxin exposure to toxicity phenotypes. Journal of Steroid Biochemistry and Molecular Biology 2011 127 96–101. (doi:10.1016/j.jsbmb.2011.12.005)

44 Beichelag LV, Luís Morales J, Hollingshead BD & Perdew GH. The aryl hydrocarbon receptor complex and the control of gene expression. Critical Reviews in Eukaryotic Gene Expression 2008 18 207–250. (doi:10.1615/CritRevEukarGeneExpr.v18.i3.20)

45 Ohtake F, Fujii-Kuriyama Y, Kawajiri K & Kato S. Cross-talk of dioxin hydrocarbon receptor complex and the control of gene expression. Journal of Toxicology and Environmental Health. Part B, Critical Reviews 2008 11 322–344. (doi:10.1080/1097400701876194)

46 Phillips KP & Foster WG. Key developments in endocrine disrupter research and human health. Journal of Toxicology and Environmental Health. Part B, Critical Reviews 2008 11 322–344. (doi:10.1080/1097400701876194)

47 Whitehead SA & Rice S. Endocrine-disrupting chemicals as modulators of sex steroid synthesis. Best Practice & Research. Clinical Endocrinology & Metabolism 2006 20 45–61. (doi:10.1016/j.beem.2005.09.003)

48 Craig ZR, Wang W & Flaws JA. Endocrine-disrupting chemicals in ovarian function: effects on steroidogenesis, metabolism and nuclear receptor signaling. Reproduction 2011 142 633–646. (doi:10.1530/REP-11-0136)

49 Boukari K, Ciampi ML, Guiochon-Mantel A, Young J, Lombs M & Meduri G. Human fetal testis: source of estrogen and target of estrogen action. Human Reproduction 2007 22 1885–1892. (doi:10.1093/humrep/dem91)

50 Arase S, Ishii K, Igarashi K, Aisaki K, Yoshio Y, Matsuhashi A, Shimohigashi Y, Arima K, Kanno J, Sugimura Y et al. Endocrine disrupter bisphenol A increases in situ estrogen production in the mouse urogenital sinus. Biology of Reproduction 2011 84 734–742. (doi:10.1095/biolreprod.110.087502)

51 Holloway AC, Anger DA, Cranikshaw DJ, Wu M & Foster WG. Atrazine-induced changes in aromatase activity in estrogen sensitive target tissues. Journal of Applied Toxicology 2008 28 260–270. (doi:10.1002/jat.1725)

52 Kristensen DM, Skalkam ML, Audouze K, Lens E, Desdoits-Lethimonier C, Frederiksen H, Brunak S, Skakkebaek NE, Jegou B, Hansen JB et al. Many putative endocrine disruptors inhibit prostaglandin synthesis. Environmental Health Perspectives 2011 119 534–541. (doi:10.1289/ehp.100265)

53 Foster WG, Neal MS, Han MS & Dominguez MM. Environmental contaminants and human infertility: hypothesis or cause for concern? Journal of Toxicology and Environmental Health. Part B, Critical Reviews 2008 11 162–176. (doi:10.1080/10974570701873274)

54 Vandenberg LN, Colborn T, Hayes TB, Heindel JI, Jacobs DR Jr, Lee DH, Shioda T, Soto AM, vom Saal FS, Welschon WV et al. Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocrine Reviews 2012 33 378–455. (doi:10.1210/er.2011-1050)

55 Newbold RR, Jefferson WN & Padilla-Banks E. Prenatal exposure to bisphenol at environmentally relevant doses adversely affects the murine female reproductive tract later in life. Environmental Health Perspectives 2009 117 879–885. (doi:10.1289/ehp.0800045)

56 vom Saal FS, Akingbemi BT, Belcher SM, Crain DA, Crews D, Guidice LC, Hunt PA, Leranth C, Myers JP, Nadal A et al. Flawed experimental design reveals the need for guidelines requiring appropriate positive controls in endocrine disruption research. Toxicological Sciences 2010 115 612–613 (author reply 614–620). (doi:10.1093/toxsci/kfq048)

57 Schug TT, Janesick A, Blumberg B & Heindel JJ. Endocrine disrupting chemicals and disease susceptibility. Journal of Steroid Biochemistry and Molecular Biology 2011 127 204–215. (doi:10.1016/j.jsbmb.2011.08.007)

58 Watson CS, Jeng YJ & Gupta J. Endocrine disruption via estrogen receptors that participate in nongenomic signaling pathways. Journal of Steroid Biochemistry and Molecular Biology 2011 127 44–50. (doi:10.1016/j.jsbmb.2011.01.015)

59 Do RP, Stahlhut RW, Ponzi D, vom Saal FS & Taylor JA. Non-monotonic dose effects of in utero exposure to di(2-ethylhexyl) phthalate (DEHP) on testicular and serum testosterone and anogenital distance in male mouse fetuses. Reproductive Toxicology 2012 34 614–621. (doi:10.1016/j.reprotox.2012.09.006)

60 Rhomberg LR & Goodman JE. Low-dose effects and nonmonotonic dose-responses of endocrine disrupting chemicals: has the case been made? Regulatory Toxicology and Pharmacology 2012 64 130–133. (doi:10.1016/j.yrtph.2012.06.015)

61 Darnaud PO & Risberg S. Tissue localisation of tetra- and pentabromodiphenyl ether congeners (BDE-47, -85 and -99) in perinatal and adult C57BL mice. Chemosphere 2006 62 485–493. (doi:10.1016/j.chemosphere.2005.04.004)

62 Stahlhut RW, Welschon WV & Swan SH. Bisphenol A data in NHANES suggest longer than expected half-life, substantial nonfood exposure, or both. Environmental Health Perspectives 2009 117 784–789. (doi:10.1289/ehp.0800376)
Endocrine Connections

Schilirò T, Gorras I, Longo A, Coluccia S & Gilli G. Endocrine disrupting activity in fruits and vegetables evaluated in a screening assay in relation to pesticide residues. *Journal of Steroid Biochemistry and Molecular Biology* 2011 127 139–146. (doi:10.1016/j.jsbmb.2011.03.002)

Calafat AM, Ye X, Wong LY, Reidy JA & Needham LL. Exposure of the U.S. population to bisphenol A and 4-tertiary-phenol. *Environmental Health Perspectives* 2008 116 39–44. (doi:10.1289/ehp.10753)

Muncke J. Endocrine disrupting chemicals and other substances of concern in food contact materials: an updated review of exposure, effect and risk assessment. *Journal of Steroid Biochemistry and Molecular Biology* 2011 127 118–127. (doi:10.1016/j.jsbmb.2010.10.004)

Mercea P. Physicochemical processes involved in migration of bisphenol A from polycarbonate. *Applied Polymer Science* 2009 112 579–593. (doi:10.1002/app.29242)

Wagner M & Oehlmann J. Endocrine disruptors in bottled mineral water: estrogenic activity in the E-screen. *Journal of Steroid Biochemistry and Molecular Biology* 2011 127 128–135. (doi:10.1016/j.jsbmb.2010.10.007)

Stark A & Madar Z. Phytoestrogens: a review of recent findings. *Journal of Pediatric Endocrinology & Metabolism* 2002 15 561–572. (doi:10.1515/JPEM.2002.15.3.561)

Bhatia J, Greer F & American Academy of Pediatrics Committee on Nutrition. Use of soy protein-based formulas in infant feeding. *Pediatrics* 2008 121 1062–1068. (doi:10.1542/peds.2008-0564)

Setchell KD, Zimmer-Nechemias L, Cai J & Heubi JE. Isoflavones in breast milk. *Reproductive Toxicology* 2009 285–293. (doi:10.1093/ije/31.2.285)

Barker DJ. The developmental origins of adult disease. *Environment Health Perspectives* 1998 106 153–158. (doi:10.1289/ehp.9810602)

Taylor JA, Richter CA, Ruhlen RL & vom Saal FS. Estrogenic activity in fruits and vegetables evaluated with the E-screen. *International Journal of Andrology* 2009 32 139–177. (doi:10.1111/j.1365-2605.2007.00471.x)

Anway MD, Capp S, Uzumcu M & Skinner MK. Epigenetic transgenerational actions of endocrine disruptors and male fertility. *Science* 2005 308 1466–1469. (doi:10.1126/science.1108190)

Skinner MK. Role of epigenetics in developmental biology and transgenerational inheritance. *Birth Defects Research Part C, Embryo Today: Reviews* 2011 93 51–55. (doi:10.1002/bdrc.201999)

Barker DR. Developmental programming: gestational bisphenol-A treatment alters trajectory of fetal ovarian gene expression. *Endocrinology* 2013 154 1873–1884. (doi:10.1210/en.2012-2129)

Veiga-Lopez A, Luense LI, Christenson LK & Padmanabhan V. Developmental programming: gestational bisphenol-A treatment alters trajectory of fetal ovarian gene expression. *Endocrinology* 2013 154 1873–1884. (doi:10.1210/en.2012-2129)

Newbold RR. Lessons learned from perinatal exposure to diethylstilbestrol. *Toxicology and Applied Pharmacology* 2004 199 142–150. (doi:10.1016/j.taap.2003.11.033)

Kalfa N, Paris F, Soyer-Gobillard MO, Daures JP & Sultan C. Prevalence of hypospadias in grandsons of women exposed to diethylstilbestrol during pregnancy: a multigenerational national cohort study. *Fertility and Sterility* 2011 95 2574–2577. (doi:10.1016/j.fertnstert.2011.02.047)

Nayyar T, Bruner-Tran KL, Piestrzeniewicz-Ulanska D & Osteen KG. Developmental exposure of mice to TCDD elicits a similar uterine phenotype in adult animals as observed in women with endometriosis. *Reproductive Toxicology* 2007 23 326–336. (doi:10.1016/j.reprotox.2006.09.007)

Vandenberg LN, Hauser R, Marcus M, Olea N & Weshons WV. Human exposure to bisphenol A (BPA). *Reproductive Toxicology* 2007 24 139–177. (doi:10.1016/j.reprotox.2007.07.010)

Krysiak-Baltyn K, Toppuri J, Skakkebaek NE, Jensen TS, Virtanen HE, Schramm KW, Shen H, Vattinnai T, Kiviranta H, Taboureau O et al. Country-specific chemical signatures of persistent environmental compounds in breast milk. *International Journal of Andrology* 2010 33 270–278. (doi:10.1111/j.1165-2605.2009.00996.x)

Damgaard IN, Skakkebaek NE, Toppuri J, Virtanen HE, Shen H, Schramm KW, Petersen JH, Jensen TK & Main KM. Persistent pesticides in human breast milk and cryopreservation. *Environmental Health Perspectives* 2006 114 113–118. (doi:10.1289/ehp.87414)

Frederiksen K, Grønfeldt M, Ahrens G, Olesen C, Stoltmann M, Kaufmann W, Bolt HM, Greim H, von Keutz E & Gelbke HP. Children as a sensitive subgroup and their role in regulatory toxicology: DGPT workshop report. *Archives of Toxicology* 2003 77 2–6. (doi:10.1007/s00204-002-0416-9)

Kortenkamp A. Low dose mixture effects of endocrine disruptors: implications for risk assessment and epidemiology. *International Journal of Andrology* 2008 31 233–240. (doi:10.1111/j.1165-2605.2007.00862.x)

Vinas R & Watson CS. Mixtures of xenosterogens disrupt estradiol-induced non-genomic signaling and downstream functions in pituitary cells. *Environmental Health* 2013 12 26. (doi:10.1186/1476-069X-12-26)

Rider CV, Furr JR, Wilson VS & Gray LE Jr. Cumulative effects of in utero administration of mixtures of reproductive toxins that disrupt common target tissues via diverse mechanisms of toxicity. *International Journal of Andrology* 2010 33 443–462. (doi:10.1111/j.1365-2605.2009.01049.x)

Kristensen DM, Lesne I, Le Fol V, Desdoits-Lethimonier C, Dejaucq-Rainsford N, Leffers H & Jegou B. Paracetamol
Endocrine Connections

A Marques-Pinto and D Carvalho

Human infertility: are endocrine disruptors to blame?

R26–R29

2:26

(acetaminophen), aspirin (acetylsalicylic acid) and indomethacin are anti-androgens in the rat foetal testis. International Journal of Andrology 2012 35 377–384. (doi:10.1111/j.1365-2605.2012.02828.x)

Foresta C, Zuccarello D, Garolla A & Ferlin A. Role of hormones, genes, and environment in human cryptorchidism. Endocrine Reviews 2008 29 560–580. (doi:10.1210/er.2007-0042)

Eustache F, Mondon F, Canivenc-Lavier MC, Lesaffre C, Fulla Y, Carlsen E, Giwercman A, Keiding N & Skakkebaek NE. Evidence for a low-dose mixture of genistein and vinclozolin modifies the reproductive axis, testis transcriptome, and fertility. Environmental Health Perspectives 2009 117 1272–1279.

Lehraiki A, Messiaen S, Berges R, Canivenc-Lavier MC, Auger J, Habert R & Levacher C. Antagonistic effects of gestational dietary exposure to low-dose vinclozolin and genistein on rat fetal germ cell development. Reproductive Toxicology 2011 31 424–430. (doi:10.1016/j.reprotox.2010.12.005)

Berman T, Levine H, Gamzu R & Grotto I. Trends in reproductive health in Israel: implications for environmental health policy. Israel Journal of Health Policy Research 2012 1 34. (doi:10.1186/2045-4015-1-34)

Carlseñ E, Giwercman A, Keiding N & Skakkebaek NE. Evidence for decreasing quality of semen during past 50 years. BMJ 1992 305 609–613. (doi:10.1136/bmj.305.6854.609)

Swan SH, Deringer JN & Fenster L. The question of declining sperm density revisited: an analysis of 101 studies published 1934–1996. Environmental Health Perspectives 2000 108 961–966. (doi:10.1289/ehp.00108961)

Merzenich H, Zeeh B & Blettner M. Decreasing sperm quality: a global problem? BMC Public Health 2010 10 24. (doi:10.1186/1471-2458-10-24)

Boisen KA, Kaleva M, Main KM, Virmanen HE, Haavisto AM, Schmidt IM, Chellakooty M, Damgaard IN, Mau C, Reunanen M & Hauser R. Semen quality and sperm DNA damage in relation to urinary concentrations of phthalate monoester and environment in human cryptorchidism. Environmental Health Perspectives 2009 117 32–37. (doi:10.1289/ehp.1174c32)

Lassuergue J, Léva M, Habert R & Jego B. Time- and dose-related effects of estradiol and diethylstilbestrol on the morphology and function of the fetal rat testes in culture. Toxicological Sciences 2003 73 160–169. (doi:10.1086/509655)

Murugesan P, Mathussamy T, Balashubramanian K & Arunakaran A. Polychlorinated biphenyl (Aroclor 1254) inhibits testosterone biosynthesis and antioxidant enzymes in cultured rat Leydig cells. Reproductive Toxicology 2008 25 447–454. (doi:10.1016/j.reprotox.2008.04.003)

Salian S, Doshi T & Vangalee N. Neonatal exposure of male rats to bifenthrin A impairs fertility and expression of Sertoli cell junctional proteins in the testis. Toxicology 2009 265 56–67. (doi:10.1016/j.tox.2009.09.012)

Nordkap L, Joensen UN, Blomberg Jensen M & Jorgensen N. Regional differences and temporal trends in male reproductive health disorders: semen quality may be a sensitive marker of environmental exposures. Molecular and Cellular Endocrinology 2012 355 221–230. (doi:10.1016/j.mce.2011.05.048)

Skakkebaek NE, Rajpert-De Meyts E & Main KM. Testicular dysgenesis syndrome: an increasingly common developmental disorder with environmental aspects. Human Reproduction 2001 16 972–978. (doi:10.1093/humrep/16.5.972)

Vega A, Baptissart M, Caira F, Brugnon F, Lobacaro JM & Volle DH. Epigenetic: a molecular link between testicular cancer and environmental exposures. Frontiers in Endocrinology 2012 3 150. (doi:10.3389/fendo.2012.00150)

Massart F & Saggese G. Sex steroid targets & genetic susceptibility to idiopathic cryptorchidism. Pediatric Endocrinology Reviews 2009 6 481–490.

Joensen UN, Jorgensen N, Rajpert-De Meyts E & Skakkebaek NE. Testicular dysgenesis syndrome and Leydig cell function. Basic Clinical Pharmacology & Toxicology 2008 102 155–161. (doi:10.1111/j.1742-7843.2007.00197.x)

Andersson JM, Jorgensen N, Frydendal-Larsen L, Rajpert-De Meyts E & Skakkebaek NE. Impaired Leydig cell function in infertile men: a study of 357 idiopathic infertile men and 318 proven fertile controls. Journal of Clinical Endocrinology and Metabolism 2004 89 3161–3167. (doi:10.1210/jc.2003-031786)

Olesen IA, Somme SB, Høi-Hansen CE, Rajpert-De Meyts E & Skakkebaek NE. Environment, testicular dysgenesis and carcinoma in situ testis. Best Practice & Research. Clinical. Endocrinology & Metabolism 2007 21 462–478. (doi:10.1016/j.beem.2007.04.002)

Chen M, Tang R, Gu F, Xu B, Zhu P, Qiao S, Chen X, Xu B, Qin Y, Lu C et al. Association of exposure to phthalns and idiopathic male infertility. Journal of Hazardous Materials 2013 250–251 115–121. (doi:10.1016/j.jhazmat.2013.01.061)

Dohle GR, Colpi GM, Hargrave TB, Papp GK, Jungwirth A, Weidner W & infertility EUWGoM . EAU guidelines on male infertility. European Urology 2005 48 703–711. (doi:10.1016/j.eururo.2005.06.002)

Andersen HR, Schmidt IM, Grande J, Jensen TK, Bødtker-Jorgensen E, Kjaerstad MB, Baelum J, Nielsen JB, Skakkebaek NE & Main KM. Impaired reproductive development in sons of women occupationally exposed to pesticides during pregnancy. Environmental Health Perspectives 2009 117 566–572. (doi:10.1289/ehp.10790)

Brucker-Davis F, Wagner-Mahler K, Delattre I, Ducot B, Ferrari P, Bongain A, Kurzenne JY, Mas JC, Fenichel P & Cryptorchid Study Group from Nice A. Cryptorchidism at birth in Nice area (France) is associated with higher prenatal exposure to PCBs and DDE, as assessed by colostrom concentrations. Human Reproduction 2008 23 1708–1718. (doi:10.1093/humrep/den186)
127 Fernandez MF, Olmos B, Granada A, Lopez-Espinosa MJ, Molina-Molina JM, Fernandez JM, Cruz M, Olea-Serrano F & Olea N. Human exposure to endocrine-disrupting chemicals and prenatal risk factors for cryptorchidism and hypospadias: a nested case-control study. Environmental Health Perspectives 2007 115 Suppl 1 8–14. (doi:10.1289/ehp.9351)

128 Kukuvitis A, Georgiou I, Bouha J, Tsirka A, Giannouli CH, Yapijakis C, Tarlatzis B, Bontis J, Lolis D, Sofkítis N et al. Association of oestrogen receptor α polymorphisms and androgen receptor CAG trinucleotide repeats with male infertility: a study in 109 Greek infertile men. International Journal of Andrology 2002 25 149–152. (doi:10.1046/j.1365-2605.2002.00339.x)

129 McLachlan JA. Environmental signaling: what embryos and evolution teach us about endocrine disrupting chemicals. Endocrine Reviews 2001 22 319–341. (doi:10.1210/er.22.3.319)

130 Giwercman A, Rylander L, Rignell-Hydbom A, Jonsson BA, Watanabe M, Yoshida R, Ueoka K, Aoki K, Sasagawa I, Hasegawa T, Parks LG, Ostby JS, Lambright CR, Abbott BD, Klinefelter GR. Estrogens and phytoestrogens in male infertility. Endocrinology 2006 147 647–653. (doi:10.1210/jc.2005-1471)

131 Nassar N, Bower C & Barker A. Increasing prevalence of hypospadias in Western Australia, 1980–2000. Archives of Disease in Childhood 2007 92 580–584. (doi:10.1136/adc.2006.112862)

132 Schneider S, Kaufmann W, Strauss V & von Ravenzwaay B. Vinclozolin: a feasibility and sensitivity study of the ILSI–HESI F1-extended one-generation rat reproduction protocol. Regulatory Toxicology and Pharmacology 2011 59 91–100. (doi:10.1016/j.yrtph.2010.09.010)

133 Mylčreest E, Wallace DG, Catley RC & Foster PM. Dose-dependent alterations in androgen-regulated male reproductive development in rats exposed to (di-n-butyl) phthalate during late gestation. Toxicological Sciences 2000 55 143–151. (doi:10.1093/toxsci/55.1.143)

134 Vrtnan HE & Toppari J. Epidemiology and pathogenesis of cryptorchidism. Human Reproduction Update 2008 14 49–58. (doi:10.1093/humupd/dmm027)

135 Emmen JM, McLuskey A, Adlam IM, Engel W, Verhoef-Poot M, Themmen AP, Grootegoed JA & Brinkmann AO. Involvement of insulin-like factor 3 (Insl3) in diethylstilbestrol-induced cryptorchidism. Endocrinology 2004 141 846–849. (doi:10.1210/endo.2003-0846)

136 Hughes IA, Davies JD, Bunch TL, Pasterski V, Mastroiannopoulos K & MacDougall J. Androgen insensitivity syndrome. Current Urology Reports 2011 12 25–35. (doi:10.1007/s11934-010-0046-5)

137 Welsh M, Saunders PT, Fisken M, Scott HM, Hutchison GR, Smith LB & Sharpe RM. Identification in rats of a programming window for abnormalities of reproductive tract masculinization, disruption of which leads to hypospadias and cryptorchidism. Journal of Clinical Investigation 2008 118 1479–1490. (doi:10.1172/JCI34241)

138 Giwercman A. Estrogens and phytoestrogens in male infertility. Current Opinion in Urology 2011 21 519–526. (doi:10.1097/MOU.0b013e3283eb7e7c)

139 Elkoly M, Hamza RT, Saleh M & Elsedfy H. Penile length and genital abnormalities in Egyptian male newborns: epidemiology and influence of endocrine disruptors. Journal of Pediatric Endocrinology & Metabolism 2013 26 509–513. (doi:10.1515/jpem-2012-0350)

140 Parks LG, Ostby JS, Lambright CR, Abbott BD, Klinefelter GR. The impact of pesticides on male fertility. Current Opinion in Obstetrics & Gynecology 2008 20 229–233. (doi:10.1097/GCO.0b013e3282f3c334)

141 Moscarini M. Impact of endocrine disruptor chemicals in gynaecological endocrine disorders. Human Reproduction Update 2008 2008 24 847–853. (doi:10.1186/1476-069X-3-8)

142 Caserta D, Bordi G, Ciardo F, Marci R, La Rocca C, Tait S, Bergamasco B, Stecca L, Mantovani A, Guerranti C et al. The influence of endocrine disruptors in a selected population of infertile women. Gynecological Endocrinology 2003 19 147–148. (doi:10.1080/09513590.2002.1176177)

143 Takeuchi T, Tsutsui O, Ikekuzi Y, Takai Y & Taketani Y. Positive control study in newborn boys. Environmental Health Perspectives 2004 112 1570–1576. (doi:10.1289/ehp.7243)

144 Swan SH, Kruse RL, Liu F, Barr DB, Dobniz ES, Redmon JB, Wang C, Brazil C & Overstreet JW. Semen quality in relation to biomarkers of pesticide exposure. Environmental Health Perspectives 2003 111 1478–1484. (doi:10.1289/ehp.6147)

145 Massé J, Watrin T, Laurent A, Deschamps S, Guerrier D & Pellerin I. The developing female genital tract: from genetics to epigenetics. International Journal of Developmental Biology 2009 53 411–424. (doi:10.1387/ijdb.082680jm)

146 Redcleveld N & Breetveld R. The impact of pesticides on male fertility. Environmental Health Perspectives 2008 2008 2008 24 847–853. (doi:10.1186/1476-069X-3-8)

147 Cohn BA, Cirillo PM, Wolff MS, Schwingl PJ, Cohen RD, Sholtz RI, Ferrara A, Christianson RE, van den Berg BJ & Sitter PK. DDT and DDE exposure in mothers and time to pregnancy in daughters. Lancet 2003 261 2205–2206. (doi:10.1016/S0140-6736(03)17762-6)

148 Rice HR & Baker BA. Workplace hazards to women’s reproductive health. Minnesota Medicine 2007 90 44–47.

149 Buck Louis GM, Cooney MA & Peterson CM. The ovarian dysgenesis syndrome. Journal of Developmental Origins of Health and Disease 2011 2 25–35. (doi:10.1007/s12977-010-0009-5)

150 Holoch KJ & Lessey BA. Endometriosis and infertility. Clinical Obstetrics and Gynecology 2010 53 429–438. (doi:10.1016/j.cog.2009.10.011)

151 Fernandez JM, Marchetti N & Sharpe RM. Human ‘testicular dysgenesis syndrome’: a possible model using in-utero exposure of the rat to dibutyl phthalate. Human Reproduction 2003 18 1383–1394. (doi:10.1093/humrep/deg273)

152 Manicardi GC, Bontis J, Lolis D, Sofikitis N & Sharpe RM. Identification in rats of a programming window for reproductive tract masculinization, disruption of which leads to hypospadias and cryptorchidism. Journal of Clinical Investigation 2008 118 339–349. (doi:10.1093/jci/jxs339)

153 Takeuchi T, Tsutsui O, Ikezuki Y, Takai Y & Taketani Y. Positive relationship between androgen and the endocrine disruptor, bisphenol A, in normal women and women with ovarian dysfunction. Scandinavian Journal of Clinical & Laboratory Investigation 2004 2008 2008 24 847–853. (doi:10.1186/1476-069X-3-8)

154 Cohn BA, Cirillo PM, Wolff MS, Schwingl PJ, Cohen RD, Sholtz RJ, Ferrara A, Christianson RE, van den Berg BJ & Sitter PK. DDT and DDE exposure in mothers and time to pregnancy in daughters. Lancet 2003 261 2205–2206. (doi:10.1016/S0140-6736(03)17762-6)

155 Taylor NJ & Gray LE Jr. The plasticizer diethylhexyl phthalate induces malformations by decreasing fetal testosterone synthesis during sexual differentiation in the male rat. Toxicological Sciences 2000 58 339–349. (doi:10.1093/toxsci/58.2.339)
159 Cobellis L, Colacurci N, Trabucco E, Carpenterio C & Grumetto L. Measurement of bisphenol A and bisphenol B levels in human blood sera from healthy and infertile women. *Biomedical Chromatography* 2009 23 1186–1190. (doi:10.1002/bmc.1241)

160 Reddy BS, Rozati R, Reddy BV & Raman NV. Association of phthalate esters with endometriosis in Indian women. *BJOG: an International Journal of Obstetrics and Gynaecology* 2006 113 515–520. (doi:10.1111/j.1471-0528.2006.09925.x)

161 Missmer SA, Hankinson SE, Spiegelman DB, Barbieri RL, Michels KB & Hunter DJ. In utero exposures and the incidence of endometriosis. *Fertility and Sterility* 2004 82 1501–1508. (doi:10.1016/j.fertstert.2004.04.065)

162 Signorile PG, Spugnini EP, Mita L, Mellone P, D’Avino A, Bianco M, Diano N, Caputo I, Rea F, Viceconte R et al. Pre-natal exposure of mice to bisphenol A elicits an endometriosis-like phenotype in female offspring. *General and Comparative Endocrinology* 2010 168 318–325. (doi:10.1016/j.ygcen.2010.05.030)

163 Cai LY, Isuzi S, Suzuki T, Goya K, Nakamura E, Sugiyama T & Kobayashi H. Dioxins in ascites and serum of women with endometriosis: a pilot study. *Human Reproduction* 2011 26 117–126. (doi:10.1093/humrep/deq312)

164 Rier SE. Environmental immune disruption: a comorbidity factor for endometriosis? *Journal of Endocrinology* 2008 and immunocytochemical labeling of 90 kDa heat shock protein. *Biology of Reproduction* 2010.11.008)

165 Mark-Kappeler CJ, Hoyer PB & Devine PJ. Xenobiotic effects on mono-(2-ethylhexyl) phthalate induces oxidative stress and inhibits reproduction? *Endocrine Reviews* 2004 25 152. (doi:10.1210/endo.2003-03246)

166 Wang W, Craig ZR, Basavarajappa MS, Hafner KS & Faws JA. Mono-(2-ethylhexyl) phthalate induces oxidative stress and inhibits growth of mouse ovarian antral follicles. *Biology of Reproduction* 2012 87 152. (doi:10.1095/biolreprod.111.091173)

167 Juliani CC, Silva-Zacarín EC, Santos DC & Boer PA. Effects of atrazen on female Wistar rats: morphological alterations in ovarian follicles and immunocytochemical labeling of 90 kDa heat shock protein. *Micron* 2008 39 607–616. (doi:10.1016/j.micron.2007.04.006)

168 Uzumcu M, Kuhn PE, Marano JE, Armenti AE & Passantino L. Early exposure to environmental immunity. *Endocrine Reviews* 2011 32–37. (doi:10.1095/biolreprod.109.091173)

169 Susiarjo M, Hassold TJ, Freeman E & Hunt PA. Bisphenol A exposure and immunocytochemical labeling of 90 kDa heat shock protein. *Human Reproduction* 2010 23 871–883. (doi:10.1095/biolreprod.111.091173)

170 Abaci A, Demir K, Bober E & Buyukgebiz A. Endocrine disrupters – adverse effects of bisphenol A on female reproduction. *Journal of Obstetrics and Gynaecology* 2010 30 844–849. (doi:10.1080/09513590.2010.504732)

171 Fujimoto VY, Kim D, vom Saal FS, Lamb JD, Taylor JA & Bloom MS. Effects of genistein treatment alters ovarian differentiation in the mouse: late establishment and persistent adult expression of the Hoxa cluster genes. *Biology of Reproduction* 1997 57 1338–1345. (doi:10.1210/biolreprod.57.6.1338)

172 Hunter DJ. Kisspeptin/GPR54 system as potential target for endocrine disruption of reproductive development and function. *International Journal of Andrology* 2010 33 360–368. (doi:10.1111/).

173 Smith JT, Clifton DK & Steiner RA. Regulation of the neuroendocrine reproductive axis by kisspeptin–GPR54 signaling. *Endocrine Reviews* 2006 27 85–98. (doi:10.1210/endo.2003-03246)

174 Taylor HS, Vanden Heuvel GB & Igarashi P. A conserved Hox axis in the mouse and human female reproductive system: late establishment and persistent adult expression of the Hoxa cluster genes. *Human Reproduction* 2011 26 117–126. (doi:10.1093/humrep/deq312)

175 Tena-Sempere M. Kisspeptin/GPR54 system as potential target for endocrine disruption of reproductive development and function. *Journal of Clinical Endocrinology and Metabolism* 2011 96 117–126. (doi:10.1210/jc.2010-1658)

176 Uzumcu M & Zachow R. Developmental exposure to environmental endocrine disruptors: consequences within the ovary and on female reproductive function. *Reproductive Toxicology* 2007 23 337–352. (doi:10.1016/j.reprotox.2006.10.006)

177 Kokcu A. Premature ovarian failure from current perspective. *Gynecological Endocrinology* 2010 26 555–562. (doi:10.3109/09513590.2010.488773)

178 Azizi R, Woods KS, Reyna R, Key TJ, Knochenhauer ES & Yildiz BO. The prevalence and features of the polycystic ovary syndrome in an unselected population. *Journal of Clinical Endocrinology and Metabolism* 2004 89 2745–2749. (doi:10.1210/jc.2003-03246)

179 Kandaraki E, Chatzigiogeiou A, Livadas S, Palioura E, Economou F, Koutsilieris M, Palermi S, Panidis D & Diamanti-Kandarakis E. Endocrine disruptors and polycystic ovary syndrome (PCOS): elevated levels of bisphenol A in women with PCOS. *Journal of Clinical Endocrinology and Metabolism* 2011 96 1480–E484. (doi:10.1210/jc.2010-1658)

180 Couse JF & Korach KS. Estrogen receptor null mice: what have we learned and where will they lead us? *Endocrine Reviews* 1999 20 358–417. (doi:10.1210/er.20.3.358)

181 Nikaido Y, Yoshizawa K, Danbara N, Tsuijia-Kyutoku M, Yumi T, Uehara N & Tsuara A. Effects of maternal xenooestrogen exposure on development of the reproductive tract and mammary gland in female CD-1 mouse offspring. *Reproductive Toxicology* 2004 18 803–811. (doi:10.1016/j.reprotox.2004.05.002)

182 Taylor HS, Vanden Heuvel GB & Igarashi P. A conserved Hox axis in the mouse and human female reproductive system: late establishment and persistent adult expression of the Hoxa cluster genes. *Biology of Reproduction* 1997 57 1338–1345. (doi:10.1210/biolreprod.57.6.1338)

183 Block K, Kardana A, Igarashi P & Taylor HS. In utero diethylstilbestrol (DES) exposure alters Hox gene expression in the developing Mullerian system. *FASEB Journal* 2000 14 1101–1108.

184 Diano N, Caputo L, Rea F, Viceconte R et al. Measurement of bisphenol A and bisphenol B levels in human blood sera from healthy and endometriotic women. *Biomedical Chromatography* 2009 23 644–675. (doi:10.1002/bmc.1241)

185 Tena-Sempere M. Kisspeptin/GPR54 system as potential target for endocrine disruption of reproductive development and function. *International Journal of Andrology* 2010 33 360–368. (doi:10.1111/).
192 Rasier G, Parent AS, Gerard A, Denooz R, Lebrethon MC, Charlier C & Bourguignon JP. Mechanisms of interaction of endocrine-disrupting chemicals with glutamate-evoked secretion of gonadotropin-releasing hormone. *Toxicological Sciences* 2008 **102** 33–41. (doi:10.1093/toxsci/kfm285)

193 Fernandez M, Bianchi M, Lux-Lantos V & Libertun C. Neonatal exposure to bisphenol A alters reproductive parameters and gonadotropin releasing hormone signaling in female rats. *Environmental Health Perspectives* 2009 **117** 757–762. (doi:10.1289/ehp.0800267)

194 Warita K, Okamoto K, Mutoh K, Hasegawa Y, Yue ZP, Yokoyama T, Matsumoto Y, Miki T, Takeuchi Y, Kitagawa H et al. Activin A and equine chorionic gonadotropin recover reproductive dysfunction induced by neonatal exposure to an estrogenic endocrine disruptor in adult male mice. *Biology of Reproduction* 2008 **78** 59–67. (doi:10.1095/biolreprod.106.059857)

195 Gore AC. Neuroendocrine targets of endocrine disruptors. *Hormones* 2010 **9** 16–27.

196 McCarthy MM, Wright CL & Schwarz JM. New tricks by an old dogma: mechanisms of the Organizational/Activational Hypothesis of steroid-mediated sexual differentiation of brain and behavior. *Hormones and Behavior* 2009 **55** 655–665. (doi:10.1016/j.yhbeh.2009.02.012)

197 Weiss B. Endocrine disruptors as a threat to neurological function. *Journal of Neurological Sciences* 2011 **305** 11–21. (doi:10.1016/j.jns.2011.03.014)

198 Martini M, Miceli D, Gotti S, Viglietti-Panzica C, Fissore E, Palanza P & Panzica G. Effects of perinatal administration of bisphenol A on the neuronal nitric oxide synthase expressing system in the hypothalamus and limbic system of CD1 mice. *Journal of Neuroendocrinology* 2010 **22** 1004–1012. (doi:10.1111/j.1365-2826.2010.02043.x)

Received in final form 22 July 2013
Accepted 27 August 2013