Combined inhibition of β-catenin and Bcr–Abl synergistically targets tyrosine kinase inhibitor-resistant blast crisis chronic myeloid leukemia blasts and progenitors in vitro and in vivo

H Zhou1,2, PY Mak1, H Mu1, DH Mak1, Z Zeng1, J Cortes3, Q Liu2, M Andreeff1 and BZ Carter1

Tyrosine kinase inhibitor (TKI) resistance and progression to blast crisis (BC), both related to persistent β-catenin activation, remain formidable challenges for chronic myeloid leukemia (CML). We observed overexpression of β-catenin in BC-CML stem/progenitor cells, particularly in granulocyte–macrophage progenitors, and highest among a novel CD34+CD38+CD123hiTim-3hi subset as determined by CyTOF analysis. Co-culture with mesenchymal stromal cells (MSCs) induced the expression of β-catenin and its target CD44 in CML cells. A novel Wnt/β-catenin signaling modulator, C82, and nilotinib synergistically killed K5625315 and TKI-resistant primary BC-CML cells with or without BCR–ABL kinase mutations even under leukemia/MSC co-culture conditions. Silencing of β-catenin by short interfering RNA restored sensitivity of primary BCR–ABL315I/E255V BC-CML cells to nilotinib. Combining the C82 pro-drug, PRI-724, with nilotinib significantly prolonged the survival of NOD/SCID/IL2Rγ null mice injected with primary BCR–ABL315I/E255V BC-CML cells. The combined treatment selectively targeted CML progenitors and inhibited CD44, c-Myc, survivin, p-CRKL and p-STAT5 expression. In addition, pretreating primary BC-CML cells with C82, or the combination, but not with nilotinib alone, significantly impaired their engraftment potential in NOD/SCID/IL2Rγ-null-GM/SF mice and significantly prolonged survival. Our data suggest potential benefit of concomitant β-catenin and Bcr–Abl inhibition to prevent or overcome Bcr–Abl kinase-dependent or -independent TKI resistance in BC-CML.

INTRODUCTION

Chronic myeloid leukemia (CML) is a myeloproliferative neoplasia, initiated by a reciprocal chromosomes 9 and 22 translocation resulting in the generation of a Bcr–Abl fusion protein.1,2 The development of Bcr–Abl tyrosine kinase inhibitors (TKIs) is the most successful targeted cancer therapy to date.3,4 Imatinib and other TKIs have revolutionized CML therapy and markedly improved treatment outcome for CML patients.5–7 Unfortunately, TKIs cannot eliminate the disease-initiating leukemic stem cell (LSC) in the bone marrow (BM) niche in majority of patients,2 supported by results from multiple prospective trials, including STIM, STOP 2G-TKI, ENESTFreedom and EURO-SKI, showing that 38–61% of patients who achieved and maintained a deep molecular response for at least 2 years after TKI discontinuation ultimately relapsed.5,6 Furthermore, in the context of the development of TKI resistance and blast crisis (BC)-CML, formidable challenges remain.4,8 Approximately 10–15% of patients present beyond chronic phase and 7% of chronic-phase CML cases continue to progress to accelerated phase or BC-CML even on TKI therapy. The frequency of transformation is recorded at 3–5% within the first few years of TKI therapy and drops to ~1% per year thereafter.8

The Wnt signaling cascade is known to be involved in virtually every aspect of development and homeostatic self-renewal of adult tissues. Its persistent activation is pivotal for tumorigenesis.9–11 Self-renewal is a key characteristic for both hematopoietic stem cells (HSCs) and LSCs.12–15 Emerging evidence indicates that β-catenin, the canonical Wnt pathway’s central effector, is required for the development and maintenance of LSCs in both acute myeloid leukemia and CML.16–25 Recent studies have demonstrated the impact of aberrant Wnt/β-catenin activity in the development of Bcr–Abl-induced myeloproliferative neoplasms in CML murine models.17,18 Genetic and pharmacologic inhibition of β-catenin can target imatinib-resistant CML LSCs in mice. Importantly, β-catenin seems dispensable in fully developed adult HSCs.18 In BC-CML, activation of β-catenin in Lin−CD34−CD133−/Lin−CD34−γ−null-3/GM/SF mice and significantly prolonged survival. Our data suggest potential benefit of concomitant β-catenin and Bcr–Abl inhibition to prevent or overcome Bcr–Abl kinase-dependent or -independent TKI resistance in BC-CML.

C82, an ICG-001-related compound but with higher specificity and potency, selectively binds to CREB-binding protein and prevents its interaction with β-catenin, thereby suppressing the expression of subsets of Wnt/β-catenin-driven genes that are required for cell proliferation and self-renewal.26–29 We hypothesized that the combination of β-catenin and Bcr–Abl inhibition could serve as a novel approach to overcome TKI resistance and target BC-CML progenitors. We investigated, in TKI-resistant BC-CML, the activity of nilotinib alone and in combination with C82 in vitro, followed by investigation of combined C82 pro-drug
PRI-724 with nilotinib in a murine CML xenograft model. Aided by a single-cell cytometry by time-of-flight (CyTOF) mass cytometry and subsequent data analysis with spanning-tree progression analysis of density-normalized events (SPADE), we demonstrate that β-catenin inhibition reverses TKI resistance in BC-CML cells with or without BCR-ABL kinase domain mutations and synergizes with nilotinib in vitro and in vivo. Our data suggest that this combinatorial strategy may have broad clinical utility in the therapy of CML, particularly in TKI-resistant BC-CML.

MATERIALS AND METHODS

Cells, cell culture and methods

K562 was purchased from American Type Culture Collection (Rockville, MD, USA). KBMs and KBM5 were established from a BC-CML patient sample as previously described.32,33 Primary samples were acquired from patients and healthy donors using Institutional Review Board (IRB)-approved protocols after informed consent according to institutional guidelines. All patients (Table 1) were resistant to TKIs. Patients (nos 1–4) harbored BCR–ABL kinase domain mutations, including three with T315I/E255K or T315I/E255V compound mutations, whereas the others (nos 5–8) did not. Mononuclear cells from these samples were cultured in α-minimum essential medium supplemented with 10% heat-inactivated fetal bovine serum, 2 μM l-glutamine, 100 U/ml penicillin and 100 μg/ml streptomycin. BM-derived mesenchymal stromal cells (MSCs) obtained from healthy donors as described previously34,35 were cultured (5000–6000 cells per cm²) in the same medium. Proliferating and quiescent progenitors were identified by staining patient mononuclear cells with 5-(and 6-) carboxyfluorescein diacetate succinimidyld ester (CFSE) and cultured with human BM-derived MSCs as described previously.36,37 Cells were treated with C82, nilotinib or both with or without MSC co-culture (leukemia:MSC = 4:1).

CyTOF

Primary BC-CML cells with or without in vitro treatments and BM cells from NOD/SCID/IL2Rγ-null mice (NSG, Jackson Laboratories, Bar Harbor, ME, USA) xenografted with cells from a BCR–ABL T315I/E255V BC-CML patient after 4-week treatment were stained with metal-labeled antibodies against cell surface markers, followed with antibodies against intracellular proteins (Table 2) and subjected to CyTOF analysis as previously described38,39 with a CyTOF 2 mass cytometer (Fluidigm, San Francisco, CA, USA). The bead signature was routinely applied to normalize the raw CyTOF data before analysis using a previously reported method.39,40 Protein expression determined by SPADE quantification was expressed as nonlinear ArcSinh units transformed from raw CyTOF counts or as percentage to the control.

Knockdown of β-catenin expression by short interfering RNA

Primary BC-CML cells with BCR–ABL T315I/E255V mutations (no. 2, Table 1) were electroporated with 750 nmol CTNB1 ON-TARGET plus short interfering RNA (Dharmacon, Lafayette, CO, USA) using an Amaxa apparatus (Solution V, program K-17; Lonza, Walkersville, MD, USA), following the manufacturer’s instructions. Twenty-four hours after short interfering RNA transfection, cells (0.5 × 10⁶/ml) were treated with nilotinib for 48 h. Apoptosis and cell counts were determined by flow cytometry as described below.

Western blot

Protein levels were determined by western blot analysis as previously described.41 Antibodies against β-catenin (#8480), CD44 (#5640) and p-CKL (#3181) were purchased from Cell Signaling Technology (Danvers, MA, USA), and survivin (AF886) from R&D Systems (Minneapolis, MN, USA). β-Actin was used as a loading control. Proteins were visualized with Odyssey infrared imaging system and quantitated using the Odyssey software program (version 3.0; LI-COR Biotechnology, Lincoln, NE, USA).

Cell viability assay

Apoptosis was determined by flow cytometry in cell lines, CD45⁺ leukemia bulk, CD34⁺, CD34⁺CD38⁺, and CD34⁺CD38⁻ healthy donor BM cells after staining cells with annexin V (BD Biosciences, San Jose, CA, USA), and in CD34⁺ proliferating (CD34⁺CFSI⁺) and quiescent (CD34⁺CFSI⁻) BC-CML cells after annexin V staining in the presence of 7- amino-actinomycin D (Sigma-Aldrich, St Louis, MO, USA) using LSR II (BD Biosciences). For co-cultures, leukemia cells were collected by combining cells in the supernatant and after two washes with phosphate-buffered saline. Apoptotic cells were defined as annexin V-positive CD45⁺ cells. The extent of drug-induced specific apoptosis was assessed by the formula:

\[
\% \text{ of apoptosis in treated cells} - \% \text{ of apoptosis in untreated cells} \times 100 \%
\]

Viable cell counts were determined by flow cytometry in the presence of 7-amino-actinomycin D and CountBright absolute counting beads (ThermoFisher, Waltham, MA, USA).

In vivo study

In vivo experiments were conducted following the Institution Animal Care and Use Committee-approved protocols. Female NSG mice (8-week-old) were administered with CyTOF antibody panel

Table 2. CyTOF antibody panel

Label	Targets	Vendor	Clone	Catalog no.
I127	IdU	Sigma-Aldrich		I7125
Nd143	p-CRKL	Fluidigm	polyclonal	3143005A
Nd144	p-Tyr	Fluidigm	p-Tyr-10	3144003A
Sm147	β-catenin	Fluidigm	D10A8	3147005A
Nd148	CD34	eBioscience	4H11	14-0349-82
Nd150	p-STAT5	Fluidigm	47	3150005A
Eu151	CD123	Fluidigm	6H6	3151001B
Sm152	p-STAT3	Cell Signaling	M9C6	41138B
Sm154	CD45	Fluidigm	H30	3154001B
Gd156	Tim-3	BioLegend	F38-2E2	345002
Yb159	p-AKT	BD Biosciences	M99-61	560397
Er166	CD44	Fluidigm	BJ18	3166001B
Er167	c-Myc	Cell Signaling	DB4C12	56058F
Er168	CD38	BioLegend	HT2	303502
Yb173	CD11b	BioLegend	ICF44	301302
Yb176	Ki-67	BioLegend	Ki-67	350502
cisplatin	Proteins	Fluidigm		201064

Abbreviations: BM, bone marrow; DAS, dasatinib; IM, imatinib; NIL, nilotinib; No., number; P/Q, apoptosis in proliferating and quiescent cells; PB, peripheral blood; TKI, tyrosine kinase inhibitor.

Table 1. Characteristics of primary BC-CML patients

No.	Source	Blast (%)	BCR–ABL status	Treatment response	In vitro/in vivo
1	PB	91	T315I, E255K	Resistant to IM, DAS	P/Q
2	PB	62/89/75	T315I, E255V	Resistant to IM, NIL, DAS	P/Q
3	PB	83	H396R	Resistant to IM, NIL, DAS	P/Q
4	PB	89	T315I, E255V	Resistant to IM, NIL, DAS	P/Q
5	PB	80	No mutations	Resistant to IM, DAS	P/Q
6	BM	93	No mutations	Resistant to IM, NIL	P/Q
7	BM	84	No mutations	Resistant to IM, NIL	P/Q
8	PB	24	No mutations	Resistant to IM, DAS	P/Q

Abbreviations: BM, bone marrow; DAS, dasatinib; IM, imatinib; NIL, nilotinib; No., number; P/Q, apoptosis in proliferating and quiescent cells; PB, peripheral blood; TKI, tyrosine kinase inhibitor.

Leukemia (2017) 2065 - 2074 © 2017 Macmillan Publishers Limited, part of Springer Nature.
Figure 1. BC-CML stem/progenitor cells overexpress β-catenin and survival/proliferating signaling molecules, and β-catenin expression is induced by MSCs. (a) SPADE tree map, generated using all surface markers of a representative BC-CML sample (no. 2, Table 1) showing cell populations, and the expression of β-catenin and survival/proliferating signaling proteins in various cell populations. The boxed notes were identified by the expression of CD34, CD38, CD123 and Tim-3 markers. ArcSinh transformed counts for each protein were exported and quantified in each cell population. (b) Left: BC-CML populations and stem/progenitor subsets (CD45+, CD34+, CD34+CD38+, CD34+CD38−, CD34+CD38+CD123hi and CD34+CD38+CD123hiTim-3hi) were located in SPADE tree according to its colored versions based on (bars highlighted by red boxes) surface markers. Right: SPADE quantification analysis demonstrating that CD34+CD38+CD123hiTim-3hi BC-CML stem/progenitor subset has the highest expression of β-catenin and proteins for survival/proliferating pathways, including CD44, c-Myc, p-CRKL, p-STAT5, p-STAT3, p-Tyr and p-AKT. Data are presented as ArcSinh expression (n = 3; nos 1, 2 and 7; Table 1). (c) Western blot showing that MSC co-culture induced β-catenin and CD44 expression in KBM5T315I cells.
were irradiated (250 cGy) and injected with cells (2 × 10^6 per mouse) from a primary BC-CML patient (no. 2, Table 1). After engraftment was confirmed by flow cytometry, mice were randomized and treated with vehicle control, PRI-724 (continuous administration, 30 mg/kg per day) by osmotic pump (ALZET, model 1004, Cupertino, CA, USA), nilotinib (oral gavage, 50 mg/kg per day), or the combination (PRI-724, nilotinib (0.5 μM)) or both for 48 h (Figure 2, boxed). SPDE quantification analysis showed overexpression of β-catenin in BC-CML CD45^+ (P = 0.0016), CD44^+ (P = 0.0041) and CD34^+CD38^− (P = 0.0383) progenitors compared to CD45^+ bulk leukemia (Figure 1b), consistent with previous reports. Interestingly, among CD34^+CD38^− GMP BC-CML progenitors, β-catenin expression was even higher in the CD34^+CD38^−CD123^hiTim-3^hi subset (P = 0.0432) and highest in CD34^+CD38^−CD123^hiTim-3^hiTim-3^−GMP (P = 0.0099; Figure 1b). High β-catenin-expressing cells also expressed high levels of CD44 and c-Myc, known β-catenin targets. High expression of β-catenin in BC-CML progenitors was associated with high expression of p-CRKL, p-STAT5, p-STAT3, p-Tyr and p-ATK (Figure 1b), suggesting high Bcr–Abl signaling in these cells. To mimic the BM microenvironment, we co-cultured BC-CML cells with MSCs. Co-culture induced β-catenin and CD44 expression in the leukemia cells (Figure 1c). These data suggest that β-catenin is overexpressed in BC-CML stem/progenitor cells, and can be induced by BM stromal cells.

β-Catenin contributes to TKI resistance in BCR–ABL^T315I^ BC-CML cells
To assess the effect of β-catenin inhibition in BC-CML, we first treated CML cell lines KBM5, KBM5^T315I^ and K562 with C82, nilotinib and both. The combination synergistically induced apoptosis and reduced viable cells not only in TKI-sensitive KBM5 and K562, but also TKI-resistant KBM5^T315I^ cells, regardless of MSC co-culture (Supplementary Figure 1a) and decreased β-catenin targets CD44 and survivin, and Bcr–Abl target p-CRKL (Supplementary Figure 1b). It was reported that β-catenin is required for Bcr–Abl-independent TKI resistance. These data.
suggested that β-catenin also contributed to Bcr-Abl-dependent TKI resistance in CML.

To further investigate the role of β-catenin in TKI resistance, especially in BC-CML cells with mutations in the BCR–ABL gene, we knocked down β-catenin in primary BCR–ABL T315I/E255V BC-CML cells (no. 2, Table 1). After 24 h short interfering RNA transfection, cells were treated with nilotinib for 48 h. Interestingly, β-catenin knockdown significantly re-sensitized primary BCR–ABL T315I/E255V BC-CML cells to nilotinib regardless of MSC co-culture, not only in CD45+ leukemia bulk cells but also in CD34+CD38+ and CD34+CD38− cell populations (Figure 2), implicating that β-catenin contributes, at least in part, to Bcr–Abl-dependent TKI resistance in BC-CML cells.

We next determined the effects of C82, nilotinib and the combination in samples from extensively treated and resistant primary BC-CML patients (Table 1). The combination synergistically induced apoptosis not only in CD45+ bulk leukemia cells but also in CD34+CD38− and CD34+CD38+ stem/progenitor subsets (Figure 3a, n = 5). This was also observed in the CD34+CFSEdim quiescent population, and more importantly in the CD34+CFSEbright quiescent population (Figure 3b, n = 6). The synergy occurred in TKI-resistant BC-CML cells without or with BCR–ABL kinase domain mutations (Figures 3a and b, Table 1). These data

Figure 3. Combination of C82 and nilotinib synergistically decreases viability of TKI-resistant BC-CML cells with or without BCR–ABL kinase mutations in vitro. Cells from primary TKI-resistant BC-CML patients were treated with C82, nilotinib or both for 48 h with or without MSC co-culture. The combination synergistically decreased viability in (a) leukemia bulk and stem/progenitor subsets (n = 5), and (b) primitive proliferating (CD34+CFSEdim) and quiescent stem/progenitor cells (CD34+CFSEbright; n = 6). (c) CyTOF/SPADE analysis showing that the combination significantly eliminated BC-CML stem/progenitor subsets (n = 3, Table 1). CON, control; COM, combination; M, million.

Co-inhibition of β-catenin and Bcr–Abl synergistically targets TKI-resistant BC-CML progenitors, including CD34+ quiescent progenitors in vitro

We next determined the effects of C82, nilotinib and the combination in samples from extensively treated and resistant primary BC-CML patients (Table 1). The combination synergistically induced apoptosis not only in CD45+ bulk leukemia cells but also in CD34+CD38− and CD34+CD38+ stem/progenitor subsets (Figure 3a, n = 5). This was also observed in the CD34+CFSEdim quiescent population, and more importantly in the CD34+CFSEbright quiescent population (Figure 3b, n = 6). The synergy occurred in TKI-resistant BC-CML cells without or with BCR–ABL kinase domain mutations (Figures 3a and b, Table 1). These data
indicated that β-catenin inhibition could reverse both BCR-ABL kinase-dependent and-independent TKI resistance. Similar results were obtained when cells were co-cultured with MSCs (Figures 3a and b), implying that the combination could overcome MSC-mediated CML microenvironmental protection. No cytotoxic effect was observed in normal CD34+ progenitor cells exposed to the same agents (Supplementary Figure 2).

To determine responses in phenotypically defined subpopulations, we treated primary BC-CML samples (n = 3, Table 1) with C82, nilotinib or the combination for 48 h, stained cells with the same panel of antibodies for cell surface markers as described above (Table 2), and performed CyTOF/SPADE analysis. As expected, nilotinib alone had no effect. C82 alone inhibited various subpopulations and the combination significantly decreased various BC-CML progenitor subpopulations, including the β-catenin highest CD34+CD38+CD123hiTim-3hi subset compared to control or nilotinib alone (Figure 3c). The combination reduced CD44, p-CRKL and survivin expression in these samples (Supplementary Figure 3). These results indicated that co-inhibition of β-catenin and Bcr–Abl could synergistically target TKI-resistant BC-CML stem/progenitor cells.

Combined inhibition of β-catenin and Bcr–Abl synergistically targets TKI-resistant BC-CML progenitors in vivo and prolongs survival of BC-CML-bearing NSG mice

We next examined the effect of PRI-724, a C82 pro-drug, and nilotinib combination in NSG mice engrafted with cells from a BCR–ABL T315I/E255V BC-CML patient sample (no. 2, Table 1; Figure 4a). We collected BM cells (n = 3 per group) after 4-week treatment and performed CyTOF/SPADE analysis. We discovered that while nilotinib alone was inactive, PRI-724 and its combination with nilotinib significantly decreased various BC-CML stem/progenitor subsets, particularly CD34+CD38+CD123hi and most effectively Tim-3hi GMPs (Figure 4b), which were further confirmed by conventional flow cytometry in blood samples (Supplementary Figure 4), indicating that the combination also synergistically targeted BC-CML progenitor cells with mutations in BCR–ABL gene in vivo. As shown in Figure 4c, PRI-724 alone (median, 38.5 days) significantly improved the overall survival of the leukemia-bearing NSG mice compared to controls (median 34.5 days, P = 0.0281). The combination further prolonged survival (median, 43.5 days) compared to PRI-724 (P = 0.0368), nilotinib (median, 35.5 days; P = 0.0044) and control

Figure 4. Co-inhibition of β-catenin by PRI-724 and Bcr–Abl by nilotinib targets BC-CML stem/progenitor cells and significantly improves survival of BC-CML-bearing NSG mice. (a) Schematic diagram of the in vivo study. Engraftment was confirmed by flow cytometry and defined as huCD45+ cells >1% in mouse blood (n = 11 per group). (b) CyTOF/SPADE analysis revealed that 4-week combination treatment significantly reduced BC-CML stem/progenitor subsets in mouse BM (n = 3). (c) Survival curves (n = 8 per group). PRI, PRI-724; hu, human.
Combination of PRI-724 and nilotinib inhibits CD44, c-Myc, p-STAT5 and survivin expression in BC-CML progenitors in vivo. PRI-724 and the combination reduced the expression of CD44 and c-Myc (a), and p-CRKL and p-STAT5 (b) in various BC-CML stem/progenitor subsets in BM cells by CyTOF/SPADE analysis and survivin by western blot (the right panel, quantification) in spleen cells (c) from human BC-CML xenograft NSG mice after 4 weeks in vivo treatment (n = 3 per group). *P < 0.05, **P < 0.01 and ***P < 0.001.

Figure 5. Combination of PRI-724 and nilotinib inhibits the expression of CD44, c-Myc, p-STAT5 and survivin in BC-CML cells in vivo. PRI-724 and the combination reduced the expression of CD44 and c-Myc (a), and p-CRKL and p-STAT5 (b) in various BC-CML stem/progenitor subsets in BM cells by CyTOF/SPADE analysis and survivin by western blot (the right panel, quantification) in spleen cells (c) from human BC-CML xenograft NSG mice after 4 weeks in vivo treatment (n = 3 per group). *P < 0.05, **P < 0.01 and ***P < 0.001.
In mediating LSC-BM niche interactions. Furthermore, PRI-724 and its combination with nilotinib decreased p-CRKL and p-STAT5 levels in high β-catenin-expressing stem/progenitor subsets (Figure 5b) and significantly inhibited survivin expression in spleen cells obtained from the treated NSG mice (Figure 5c), implicating potential roles of these proteins in TKI resistance.

Prior exposure to C82 or the combination with nilotinib impairs engraftment potential of BC-CML cells and prolongs survival in NSGS mice.

After ex vivo treatment with C82, nilotinib or both for 48 h, BC-CML patient cells from untreated and each treatment group were injected into NSGS mice. Although not affected by nilotinib as expected, engraftment abilities of C82- and the combination-treated cells were significantly abolished (4 weeks after transplant, Figure 6a). Furthermore, mice transplanted with C82- or the combination-treated cells had significantly less BC-CML stem/progenitor subsets, including CD34+CD38+CD123+ cells expressing Tim-3 (5 weeks after transplant, Figure 6b). Importantly, mice transplanted with C82-treated cells survived markedly longer (median, 47 days) than with nilotinib-treated cells (median, 41 days; **P = 0.0028) and the untreated controls (median, 41 days; **P = 0.0054), and mice injected with the combination-treated cells had significantly longer survival (median, 63 days) than with C82-treated cells (*P = 0.026; Figure 6c). Collectively, these data indicate that inhibition of β-catenin targets BC-CML stem/progenitor cells and impairs leukemia stem cell function, and this effect is further enhanced by TKIs.

DISCUSSION

TKI resistance and progression to BC are major challenges in CML therapy in the TKI era. Although the mechanism is not well understood, the self-renewal capacity of LSC has been implicated. β-Catenin is involved in several critical aspects of CML biology, including promoting disease progression, contributing to BCR–ABL kinase-independent resistance and LSC self-renewal.

TKI resistance consists of Bcr–Abl kinase-dependent and -independent mechanisms in CML. Bcr–Abl kinase-independent resistance may develop intrinsically by the activation of alternative signaling pathways or through extrinsic BM microenvironmental factors. Bcr–Abl-dependent resistance occurs through point mutations in BCR–ABL kinase domain that could impair or even totally abrogate TKI binding, thus allow the reactivation of kinase activity. Using a stochastic mathematical model, scientists presumed that progenitors, which acquire a mutation conferring self-renewal, are the most likely cells of origin of myeloid malignancies. Furthermore, it was reported that T315I-mutated BCR–ABL is functional at the stem cell level, conferring leukemic cells self-renewal capacity in murine embryonic stem cell model. As a critical signaling in the regulation of LSC self-renewal, β-catenin is required for Bcr–Abl-independent TKI resistance. However, its role in BCR–ABL gene mutation-mediated TKI resistance is not yet understood.

We investigated the effect of combined inhibition of β-catenin and Bcr–Abl on BC-CML cells. Synergy was observed in TKI-resistant BC-CML cells. This effect was further confirmed by β-catenin silencing in TKI-resistant primary BCR–ABL T315I/E255V cells and by combination treatment of primary TKI-resistant BC-CML cells with BCR–ABL kinase domain

Figure 6. Pretreatment with C82 or the combination significantly impairs BC-CML cell engraftment potential and prolongs mouse survival. BC-CML cells (no. 2, Table 1) were untreated, treated with nilotinib, C82 or both for 48 h, then injected into irradiated NSGS mice. Flow cytometry analysis of (a) engraftment (4 weeks) and (b) BC-CML cell populations (5 weeks) after transplant. (c) Survival curves.
mutations in vitro and in vivo. These data provide evidence that β-catenin inhibition restores sensitivity to nilotinib in otherwise TKI-resistant BCR–ABL gene-mutated CML cells. We also show, for the first time, that β-catenin contributes to BCR–ABL kinase-dependent TKI resistance. The mechanism of this regulation is currently unclear, and the regulation between β-catenin and Bcr–Abl remains controversial. Reduced Bcr–Abl protein levels were found in β-catenin-deficient CML mice, implicating β-catenin upstream of BCR–ABL. Conversely, Bcr–Abl was reported to regulate β-catenin in CML by phosphorylating and stabilizing it. We found that inhibition of β-catenin and more so the combination reduced Bcr–Abl targets p-STAT5 and p-STAT expression and synergistically induced apoptosis in BCR–ABL

REFERENCES

1. De Klein A, van Kessel AG, Grosveld G, Bartram CR, Hagemeijer A, Bootma D et al. A cellular oncogene is translocated to the Philadelphia chromosome in chronic myelocytic leukaemia. Nature 1982; 300: 765–767.
2. Apperley JF. Chronic myeloid leukemia. Lancet 2015; 385: 1447–1459.
3. Goldman JM, Melo JV. Targeting the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 2001; 344: 1084–1086.
4. Hochhaus A, Kantarjian HM, Baccarani M, Lipton JH, Apperley JF, Druker BJ et al. Dasatinib induces notable hematologic and cytogenetic responses in chronic-phase chronic myeloid leukemia after failure of imatinib therapy. Blood 2007; 109: 2303–2309.
5. Mahon FX, Réa D, Guilhot J, Guilhot F, Huguet F, Nicolini F et al. Discontinuation of imatinib in patients with chronic myeloid leukemia who have maintained complete molecular remission for at least 2 years: the prospective, multicentre Stop Imatinib (STIM) trial. Lancet Oncol 2010; 11: 1029–1035.
6. Saulele S, Richter J, Hochhaus A, Mahon FX. The concept of treatment-free remission in chronic myeloid leukemia. Leukemia 2010; 36: 1638–1647.
7. Druker BJ, Guilhot F, O’Brien SG, Gathmann I, Kantarjian H, Gattermann N et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med 2006; 355: 2408–2417.
8. Schemionek M, Elling C, Steidl U, Bäumer N, Hamilton A, Spieker T et al. BCR-ABL enhances differentiation of long-term repopulating hematopoietic stem cells. Blood 2010; 115: 3185–3195.
9. Clevers H. Wnt/beta-catenin signaling in development and disease. Cell 2006; 127: 469–480.
10. MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 2009; 17: 9–26.
11. Moon RT, Bowerman B, Boutros M, Perrimon N. The promise and perils of Wnt signaling. Science 2002; 296: 1644–1646.
12. Rey A, Duncan AW, Allés L, Domen J, Scherer DC, Willett K et al. A role for Wnt signaling in self-renewal of haematopoietic stem cells. Nature 2003; 423: 409–414.
13. Scheller M, Huebken J, Rensenbauer F, Takeda MM, Birchmeier W, Tenen DG et al. Hematopoietic stem cell and multilineage defects generated by constitutive beta-catenin activation. Nat Immunol 2006; 7: 1037–1047.
14. Jeannot G, Scheller M, Scarpellino L, Duboux S, Gardiol N, Back J et al. Long-term, multilineage hematopoiesis occurs in the combined absence of beta-catenin and gamma-catenin. Blood 2008; 111: 142–149.
15. Abramsson AE, Gerom I, Gotlib J, Diao KH, Barroga CF, Newton IG et al. Glycogen synthase kinase 3beta missplicing contributes to leukemia stem cell generation. Proc Natl Acad Sci USA 2009; 106: 3925–3929.
16. Wang Y, Kivitsov AV, Sinha AU, North TE, Goessling W, Feng Z et al. The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML. Science 2010; 327: 1650–1653.
17. Zhao C, Blum J, Chen A, Kwon HY, Jung SH, Cook JM et al. Loss of beta-catenin impairs the renewal of normal and CML stem cells in vivo. Cancer Cell 2007; 12: 528–541.
18. Heidel FH, Bullinger L, Feng Z, Wang Z, Neff TA, Stein L et al. Genetic and pharmacologic inhibition of beta-catenin targets imatinib-resistant leukemia stem cells in CML. Cell Stem Cell 2010; 12: 412–424.
19. Hamilton A, Helgason GV, Schemionek M, Zhang B, Mysins A, Allan EK et al. Chronic myeloid leukemia stem cells are not dependent on Bcr-Abl kinase activity for their survival. Blood 2012; 119: 1501–1510.
20. Kavalechik E, Goff D, Jamieson CH. Chronic myeloid leukemia stem cells. J Clin Oncol 2008; 26: 2911–2915.
Inhibition of β-catenin targets TKI-resistant BC-CML cells

H Zhou et al

2074

21 Perrotti D, Jamieson C, Goldman J, Skorski T. Chronic myeloid leukemia: mechanisms of blastic transformation. J Clin Invest 2010; 120: 2254–2264.

22 Jamieson CH, Ailles LE, Dylla SJ, Majiutins M, Jones C, Zehnder JL et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast crisis. N Engl J Med 2004; 351: 657–667.

23 Minami Y, Stuart SA, Ikawa T, Jiang Y, Banno A, Hunton IC et al. BCR-ABL-transformed GMP as myeloid leukemic stem cells. Proc Natl Acad Sci USA 2008; 105: 17967–17972.

24 Giotopoulos G, van der Weyden L, Osaki H, Rust AG, Gallipoli P, Meduri E et al. A novel mouse model identifies cooperating mutations and therapeutic targets critical for chronic myeloid leukemia progression. J Exp Med 2015; 212: 1551–1569.

25 Neviani P, Harb JG, Oaks JJ, Santhanan R, Walker CJ, Ellis JJ et al. PTPA-activating drugs selectively eradicate TKI-resistant chronic myeloid leukemic stem cells. J Clin Invest 2013; 123: 4144–4157.

26 Zhang B, Li M, McDonald T, Holyoake TL, Moon RT, Campana D et al. Micro-environmental protection of CML stem cells: does it matter and how do we eliminate it? Semin Hematol 2010; 47: 362–370.

27 Burchert A. Roots of imatinib resistance: a question of self-renewal? Drug Resist Upd 2007; 10: 152–161.

28 El-Khoury AB, Ning Y, Yang D, Cole S, Kahn M, Zoghbi M et al. A phase I first-in-human study of PRI-724 in patients with advanced solid tumors. J Clin Oncol 2013; 31(Suppl; Abstract 2501).

29 Lughi M, Simonds EF, Qi J, Morin RD, Finck R et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 2011; 332: 687–696.

30 Qi P, Simonds EF, Bendall SC, Gibbs Jr KD, Brugnner RV, Linderman MD et al. Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nat Biotechnol 2011; 29: 886–891.

31 Beran M, Pisa P, O’Brien S, Kurzrock R, Siciliano M, Cork A et al. Biological properties and growth in SCID mice of a new myelogenous leukemia cell line (KBM-5) derived from chronic myelogenous leukemia cells in the blastic phase. Cancer Res 1993; 53: 3603–3610.

32 Ricci C, Scappini B, Divoky V, Gatto S, Onida F, Verstovsek S et al. Mutation in the ATP-binding pocket of the ABL kinase domain in an STS517-resistant BCR/ABL-positive cell line. Cancer Res 2002; 62: 5995–5998.

33 Studeny M, Marini FC, Champin RE, Zompetta C, Fidler IJ, Andreeff M. Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res 2002; 62: 3603–3608.

34 Konopleva M, Konoplev S, Hu W, Zaitsevy K, Afanasiev BV, Andreeff M. Stromal cells prevent apoptosis of AML cells by up-regulation of anti-apoptotic proteins. Leukemia 2002; 16: 1713–1724.

35 Holtz MS, Slovák ML, Zhang F, Sawyers CL, Forman SJ, Bhatia R. Imatinib mesylate (STI571) inhibits growth of primitive malignant progenitors in chronic myelogenous leukemia through reversal of abnormally increased proliferation. Blood 2002; 99: 3792–3800.

36 Mak DH, Schober WD, Chen W, Konopleva M, Cortes J, Kantarjian HM et al. Triptolide induces cell death independent of cellular responses to imatinib in blast crisis chronic myelogenous leukemia cells including quiescent CD34+ primitive progenitor cells. Mol Cancer Ther 2009; 8: 2509–2516.

37 Han L, Qi J, Zeng Z, Jorgensen JL, Mak DH, Burbks JR et al. Single-cell mass cytometry reveals intracellular survival/proliferative signaling in FLT3-ITD-mutated AML stem/progenitor cells. Cytometry A 2015; 87: 346–356.

38 Carter BZ, Mak PY, Hu H, Zhou HS, Mak DH, Schober W et al. Combined targeting of BCL-2 and BCR-ABL tyrosine kinase eradicates chronic myeloid leukemia stem cells. Sci Transl Med 2016; 8: 355ra117.

39 Chou TC, Talalay P. Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 1984; 22: 27–55.

40 Eiring AM, Khorashad JS, Anderson DJ, Yu F, Redwine HM, Mason CC et al. β-Catenin is required for intrinsic but not extrinsic BCR-ABL1 kinase-independent resistance to tyrosine kinase inhibitors in chronic myeloid leukemia. Leukemia 2015; 29: 2328–2337.

41 Krause DS, Lazarides K, von Andrian UH, Van Etten RA. Requirement for CD44 in homing and engraftment of BCR-ABL-expressing leukemic stem cells. Nat Med 2006; 12: 1175–1180.

42 Holm FL, Hellquist E, Mason C. The niche specific role of CD44 splice isoform expression in blast crisis leukemia stem cell generation. Cancer Res 2014; 74(19 Suppl; Abstract 4798).

43 Coluccia AM, Vacca A, Duñach M, Mologni L, Redaelli S, Bustos VH et al. Bcr-Abl stabilizes beta-catenin in chronic myeloid leukemia through its tyrosine phosphorylation. EMBO J 2007; 26: 1456–1466.

44 McBreyre JA, Steelman LS, Bertrand FE, Davis NM, Abrams SL, Montalvo G et al. Multifaceted roles of GSK-3 and Wnt/β-catenin in hematopoiesis and leukaemogenesis: opportunities for therapeutic intervention. Leukemia 2014; 28: 15–33.

45 Raaijmakers MH, Mukherjee S, Guo S, Zhang S, Kobayashi T, Schoonmaker JA et al. Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature 2010; 464: 852–857.

46 Kode A, Manavalan JS, Mosialou I, Bhagat G, Rathinam CV, Luo N et al. Leukaemogenesis induced by an activating β-catenin mutation in osteoblasts. Nature 2014; 506: 240–244.

47 Eaves CJ, Humphries RK. Acute myeloid leukemia and the Wnt pathway. N Engl J Med 2010; 362: 2326–2337.

48 Omatsky O, Bandura D, Baranov V, Nitz M, Winnik MA, Tanner S. Highly multiparametric analysis by mass cytometry. J Immunol Methods 2010; 361: 1–20.

49 Kikushige Y, Yuda J, Shima T, Miyamoto T, Akashi K. TIM-3 and its ligand, Galectin-9, cooperate to maintain hematopoietic stem cells. Blood 2014; 123: 1466–1475.

50 Kikushige Y, Miyamoto T, Yuda J, Akashi K, Shima T, Takayanagi S et al. TIM-3 and Galectin-9 are required for self-renewal of human hematopoietic stem cells. J Exp Med 2015; 206: 1086–1094.

Supplementary Information accompanies this paper on the Leukemia website (http://www.nature.com/leu)