Astrochemical model to study the abundances of branched carbon-chain molecules in a hot molecular core with realistic binding energies

Satyam Srivastav,¹ Milan Sil,² Prasanta Gorai,³ Amit Pathak,¹ Bhalamurugan Sivaraman⁴ and Ankan Das*⁵

¹ Department of Physics, Institute Of Science, Banaras Hindu University, Varanasi, 221005, India
² Department of Astrophysics and High Energy Physics, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India
³ Department of Space, Earth & Environment, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
⁴ Physical Research Laboratory, Navrangpura, Ahmedabad 380009, India
⁵ Institute of Astronomy Space and Earth Science, AJ 316, Salt Lake, Sector II, Kolkata 700091, India

Accepted XXX. Received YYY; in original form ZZZ.

ABSTRACT

Straight-chain (normal-propyl cyanide, n-C$_3$H$_7$CN) and branched-chain (iso-propyl cyanide, i-C$_3$H$_7$CN) alkyl cyanides are recently identified in the massive star-forming regions (Sgr B2(N) and Orion). These branched-chain molecules indicate that the key amino acids (side-chain structures) may also be present in a similar region. The process by which this branching could propagate towards the higher-order (butyl cyanide, C$_4$H$_9$CN) is an active field of research. Since the grain catalysis process could have formed a major portion of these species, considering a realistic set of binding energies are indeed essential. We employ quantum chemical calculations to estimate the binding energy of these species considering water as a substrate because water is the principal constituent of this interstellar ice. We find significantly lower binding energy values for these species than were previously used. It is noticed that the use of realistic binding energy values can significantly change the abundance of these species. The branching is more favorable for the higher-order alkyl cyanides with the new binding energies. With the inclusion of our new binding energy values and one essential destruction reaction (i-C$_3$H$_7$CN + H → CH$_3$C(CH$_3$)CN + H$_2$, having an activation barrier of 947 K), abundances of t-C$_4$H$_9$CN dramatically increased.

Key words: astrochemistry – ISM: Molecules – molecular processes – ISM: abundances – ISM: evolution

1 INTRODUCTION

About 270 molecules comprising 17 different elements have been detected in the interstellar medium (ISM) and circumstellar shells.¹ H$_2$ is the most abundant molecule in the ISM, whereas CO is second (Wilson et al. 1970). The protonated form of H$_2$, H$_3^+$, is also very plentiful. Despite this, numerous positively (e.g., HCO$^+$, CF$^+$) and negatively (e.g., CN$^-$, C$_2$N$^-$, C$_3$H$^-$) charged radicals, isomers (e.g., HNC, HCN), and isotopes (e.g., deuterium, H$_2$O, D$_2$O, ²⁹Si) were also found. The condensed regions of molecular clouds carry grains, which uphold some simple and complex molecules like H$_2$O, CO, CO$_2$, CH$_3$OH, H$_2$CO, NH$_3$, HCOOH, CH$_4$, etc. (Boogert et al. 2015; Gorai et al. 2020a). In the slightly warmer region, radicals become mobile and could produce various complex organic molecules (COMs; Das et al. 2008, 2010; Das & Chakrabarti 2011; Das et al. 2016). The major portion of the observed complex molecules in the ISM is organic, showing the active participation of the C atom in large molecules detected in space. The presence of larger PAHs (C$_{n}H_{m}$) (Tielens 2008) and fullerenes (C$_{60}$, C$_{70}$) (Camí et al. 2010) in space was obtained.

The presence of complex organics indicates the existence of amino acids in the ISM (Sil et al. 2018; Gorai et al. 2020b). Amino acids (building blocks of protein) are found in carbon chondrites and comets. For example, a carbonaceous meteorite, Murchison, provides more than 70 extraterrestrial amino acids (Botta & Bada 2002). Detected organic molecules carry the aliphatic nature in a simple straight-chain structure (with less than three C atoms). In contrast, a branched carbon-chain structure also exists with four or more C atoms.

Several complex species of the prebiotic interest were recently identified. Some of them are benzonitrile (McGuire et al. 2018), propargylamine (Bizzocchi et al. 2020), ethanolamine (Rivilla et al. 2021), glycolonitrile (Zeng et al. 2019), ethynyl cyclopropenylidene, cyclopentadiene (Cernicharo et al. 2021a), indene (Burkhardt et al. 2021; Cernicharo et al. 2021a), ethynyl cyclopentadiene (Cernicharo et al. 2021b) 1-cyanocyclopentadiene (Lee et al. 2021; McCarthy et al. 2021), 1/2-cyanonaphthalene (McGuire et al. 2021), propylene oxide (McGuire et al. 2016, chiral molecule).

Iso-butyronitrile or iso-propyl cyanide (i-C$_3$H$_7$CN) is the first branched carbon-chain molecule (BCM), which has been observed in the high-mass star-forming regions (HMSFRs), Sagittarius B2 (Sgr B2; Belloche et al. 2014). Pagani et al. (2017) also detected n/i – C$_4$H$_9$CN for the first time in Orion. The first detection of this kind of molecule has increased the curiosity of other BCMS in the HMSFRs. Belloche et al. (2014) differentiated the mechanism of the
formation of both conformers of C$_2$H$_7$CN and proposed their reaction pathways. They suggested the formation of i – C$_2$H$_7$CN via the addition of cyanide radical (–CN) at the secondary carbon in the chain.

Etim et al. (2017) considered various isomers from the C$_3$H$_9$N isomeric group. Butyl cyanide (C$_3$H$_9$CN) belongs to this isomeric group having four forms: the straight-chain normal-butyl cyanide (n – C$_3$H$_9$CN), iso-butyl cyanide (i – C$_3$H$_9$CN), sec-butyl cyanide (s – C$_3$H$_9$CN), and tert-butyl cyanide (t – C$_3$H$_9$CN). According to the expected rotational interaction ratio and considering equal abundances of these species, Etim et al. (2017) found that t – C$_4$H$_9$CN is the most favourable candidate among the C$_3$H$_9$N isomeric group for the future astronomical detection. However, interstellar chemistry is far from equilibrium, and reaction pathways for the formation of these species are very different. Garrod et al. (2017) performed astrochemical modeling to decode how gas and grain are responsible for producing these species. They considered a transformation of species from the surface to the mantle and vice versa. They found s – C$_4$H$_9$CN with high abundance while t – C$_4$H$_9$CN with lesser abundance and proposed s – C$_4$H$_9$CN as future detectable BCM. They implemented some educated guesses of binding energies (BE) to estimate their abundances. Here, in this work, our primary motivation is to study the fate of these species with realistic BEs. Since in the densest region, ∼ 70% of the grain mantle is covered with water, we consider water as a substrate for the computation of the BEs of these species. Computed BEs are then used in our astrochemical model to refrain the abundances of these species.

This paper is organized as follows. Firstly, in Section 2, computational details, methodology, and reaction pathways are presented. Then, results and discussions are presented in Section 3. Finally, in Section 4, we conclude.

2 COMPUTATIONAL DETAILS AND METHODOLOGY

2.1 Binding Energy

Merely a hundred years ago, the vast existence of anything but atoms and obscuring tiny dust grains in the ISM was unimaginable. The existence of interstellar dust grains confirmed by Trumpler (1930) directed to exploring the presence of organic species on dust grains. Species on grain surfaces generally undergo four different mechanisms: a) Accretion (adsorption) onto the surface, b) Desorption from the surface, c) Diffusion across the surface or on/within the ice-mantle, and d) Reaction. Ice mantles are further processed when it is exposed to various interstellar radiations.

The adsorption energy or BE is the surface energy due to electrostatic interaction. It is the energy with which different particles or surfaces incline to attach. For example, it creates a film between the surface of species (adsorbate) and dust grain (adsorbent). We calculate the BE of a species as follows:

\[BE = (E_{\text{surface}} + E_{\text{species}}) - E_{ss} \]

where \(E_{ss} \) is the optimized energy of a species placed on the grain surface by a weak van der Waals interaction. \(E_{\text{surface}} \) and \(E_{\text{species}} \) are the optimized energies of the substrate and target species, respectively. Quantum chemical calculations are used to estimate the optimized energies of adsorbate and adsorbent. Since water molecules dominate the dense part of the interstellar ices (Keane et al. 2001; Das et al. 2010; Das & Chakrabarti 2011), we consider it as a substrate.

All the quantum chemical calculations are performed using the Gaussian 09 suite of programs (Frisch et al. 2013). We employ the second-order Møller-Plesset (MP2) method to optimize the geometries with the aug-cc-pVDZ basis set. Das et al. (2018) carried out some benchmarking calculations for 16 stable species by considering ZPVE and BSSE corrections. Their computed values better agree with the experiments when ZPVE and BSSE corrections were not included. Here also, we do not consider ZPVE and BSSE corrections into account. The fully optimized structure of the species is further verified by checking the real harmonic vibrational frequencies.

Table 1 reports the computed BE of some species related to the formation of BCMs. The ground-state spin multiplicity of these species is also noted for clarity. Das et al. (2018) estimated BE of ~ 100 interstellar species. They proposed a scaling factor of 1.416 and 1.188 for water monomer and tetramer structure. Here, we use water monomer as a binding substrate for all species noted in Table 1. But, sometimes, the size of the water monomer is minimal compared to the target species acting as an adsorbate. It may lead to some misleading estimations of BEs. For the betterment, we further use water tetramer as a substrate to estimate BEs of some species reported here. Das et al. (2018, 2021) noted that computed BEs are dependent on the chosen adsorption site. Here, for some key species, we calculate BEs at multiple binding sites and noted in Table 1. For the modeling purpose, we use the average scaled value. The BE values used by Garrod et al. (2017) are also noted for comparison.

2.2 Other chemical parameters

The enthalpies of formation are calculated at 298 K. The calculated enthalpies of formation are subsequently noted in Table 1 and compared with those indicated in Garrod et al. (2017). They noted these values from the NIST WebBook database and estimated where not available in the literature. The polarizability and dipole moment of these species are also calculated and compared (if available at the NIST WebBook database) in Table B1. These polarizabilities and dipole moments are further used in our model to obtain the destruction of these species by ion-neutral reactions (Su & Chesnavich 1982; Woon & Herbst 2009).

2.3 Reaction rates

Here, we prepare a reaction network to study the abundance of some BCMs. Most of the reaction rates of the formation BCMs are taken from Garrod et al. (2017). Here, we carry out transition state (TS) calculations with the Density Functional Theory (DFT) for some specific reactions. The ice-phase geometries of products, reactants, and TSs are optimized with the QST2 method and DFT-B3LYP/6-31+G(d,p) level of theory. Similarly, the gas-phase geometries of products, reactants, and TSs are optimized using the B3LYP/6-31+G(d,p) and 6-311++G(2d,p) level of theories. All TSs have a single imaginary frequency. The legitimacy of each calculated TS is verified by visually examining the vibrational mode corresponding to the single imaginary vibrational frequency and applying the criterion that it correctly connects the reactants and products through intrinsic reaction coordinate (IRC) paths. Finally, energy barriers are calculated using the TS theory. Formation pathways of the target molecules (vinyl, ethyl, i/n-propyl, i/n/s/t-butyl cyanide) are discussed in Section 2.3.1-2.3.3.

2.3.1 Vinyl and ethyl cyanide

Around the low-temperature regime, ice-phase formation of vinyl cyanide (CH$_2$CHCN) could process by the successive hydrogen ad-
Furthermore, we explore one hydrogenation abstraction reaction in the warmer region, where the ice-phase formation of C\(_2\)H\(_2\)CN (reaction 4) could contribute to the formation of CH\(_2\)CHCN beyond 100 K. In the UMIST database (McElroy et al. 2013), this reaction is allowed only beyond 300 K with the three constants of the reaction: \(\alpha = 1.25 \times 10^{-10}, \beta = 0.7,\) and \(\gamma = 30.0.\) However, the KIDA database (Wakelam et al. 2012) consider this reaction at the low temperature as well. For the lower limit of the temperature 10 K, they noted \(\alpha = 2.67 \times 10^{-10},\) whereas for 50 K, it is \(5.31 \times 10^{-11}\) along with \(\beta = 0.69,\) and \(\gamma = 31.0.\)

CH\(_2\)CHCN is further channeled to form ethyl cyanide (C\(_2\)H\(_2\)CN) by successive hydrogenations in the ice phase (reactions 5–8). Garrod et al. (2017) used an activation barrier of 619 K for the H-addition to the first carbon atom of CH\(_2\)CHCN (reaction 5) and 1320 K for the H-addition to the second carbon atom of CH\(_2\)CHCN (reaction 6). Garrod et al. (2017) adopted these activation barriers based on equivalent hydrogenation of C\(_2\)H\(_4\). Our TS calculations find an activation barrier of 158 K and 1603 K for reactions 5 and 6, respectively (see Fig. A1). For our chemical model, we use our calculated values for reactions 5 and 6. At the same time, reactions 7 and 8 are considered barrierless.

In the warmer region, ice-phase formation of C\(_2\)H\(_2\)CN can follow the radical-radical reaction (reaction 9), C\(_2\)H\(_2\)CN further hydrogenates to form C\(_2\)H\(_4\)CNH (reaction 10, with an activation barrier of 2712 K) which was considered in Sil et al. (2018).

Furthermore, we explore one hydrogenation abstraction reaction of C\(_2\)H\(_2\)CN (reaction 11). The reaction enthalpy of this reaction is \(-3.38\) kcal/mol (DF). We obtain an activation barrier of 3472 K for this reaction in the gas phase. However, the potential energy surface diagram of gas-phase reaction 11 shown in Fig. A2 depicts that the energy of the products is less than that of reactants and TS does not converge in the ice phase. Due to these reasons, we do not include this reaction in our network.
2.3.2 *Propyl cyanide*

Two isomeric forms of propyl cyanide (n - C$_3$H$_7$CN and i - C$_3$H$_7$CN) are considered in our model. The formation pathways of these two isomeric forms are taken from Garrod et al. (2017). The n - C$_3$H$_7$CN and i - C$_3$H$_7$CN formation in the ice phase could be processed by reactions 12 - 17 and 18 - 21, respectively, noted in Table 3. For the destruction of ice-phase i - C$_3$H$_7$CN, we consider a hydrogen abstraction reaction (reaction 22). However, we could not converge the TS of reaction 22 in the ice phase, so here we use it in the gas phase. The potential energy surface diagram of this reaction is shown in Fig. A3. We obtain an activation energy barrier of 947 K for this abstraction reaction. The product of reaction 22 is again utilized in reaction 19 to form i - C$_3$H$_7$CN again. Reaction 22 is not considered as default in our network unless otherwise stated.

2.3.3 *Butyl cyanide*

Here, for the formation of the BCMs belonging to the C$_3$H$_7$N isomeric group, we consider the reaction pathways adopted in Belloche et al. (2014); Garrod et al. (2017). They found that the radicals take a decisive part in their formation. These radicals were either produced by hydrogenations with carbon double bond or by hydrogen abstraction of a saturated carbon chain by the radicals like OH, NH$_2$, CH$_2$O, CH$_3$OH, etc. Normally, for the computation of the ice-phase reaction rates, the method proposed by Hasegawa et al. (1992) is used. However, for the hydrogen abstraction reaction, this method would underestimate the rate. To avoid this issue, in the context of hydrogen abstraction reactions, we use the mass of the hydrogen atom instead of the reduced mass of the reactants (Belloche et al. 2014; Garrod et al. 2017). Following Gannon et al. (2007); Garrod et al. (2017), here also we consider low and high both the activation barriers for the reaction of C$_2$H$_4$, C$_2$H$_4$, C$_2$H$_2$, and C$_2$H$_3$ with the CN radical. Unless otherwise stated, we always use low barriers.

For the formation of four isomeric forms of C$_3$H$_7$CN, our considered reactions are noted in Table 4. Interestingly, reaction 36 uses CH$_3$C(CH$_3$)CN as a reactant, which can be produced by our newly proposed hydrogen abstraction reaction of i - C$_3$H$_7$CN by reaction 22.

Table 3. Ice-phase reactions considered for C$_3$H$_7$CN isomers.

Reaction Number (Type)	Reactions	Activation Barrier (K)
12 (RR)	H + CH$_2$C$_2$H$_2$CN → n - C$_3$H$_7$CN	—
13 (RR)	H + CH$_2$C$_2$H$_2$CN → n - C$_3$H$_7$CN	—
14 (RR)	H + CH$_2$C$_2$H$_2$CN → n - C$_3$H$_7$CN	—
15 (RR)	CH$_2$C$_2$H$_2$CN + H → i - C$_3$H$_7$CN	947a
16 (RR)	CH$_2$C$_2$H$_2$CN + H → i - C$_3$H$_7$CN	—
17 (RR)	CH$_2$CH$_2$CH$_3$CN + H → i - C$_3$H$_7$CN	—

Notes: RR and RR refer to neutral-radical and barrierless radical-radical reactions, respectively.

a This work (gas-phase).

Table 4. Ice-phase reactions considered for C$_4$H$_9$CN isomers.

Reaction Number (Type)	Reactions	Activation Barrier (K)
23 (RR)	CH$_3$ + CH$_3$C$_2$H$_2$CN → n - C$_4$H$_9$CN	—
24 (RR)	CH$_3$ + CH$_3$C$_2$H$_2$CN → n - C$_4$H$_9$CN	—
25 (RR)	CH$_3$C$_2$H$_2$ + CH$_3$CN → n - C$_4$H$_9$CN	—
26 (RR)	CH$_3$C$_2$H$_2$ + CH$_3$CN → n - C$_4$H$_9$CN	—
27 (RR)	H + CH$_3$C$_2$H$_2$CH$_2$CN → n - C$_4$H$_9$CN	—

Notes: RR refers to barrierless radical-radical reactions.

2.4 *Physical condition*

We consider a free-fall collapsing cloud followed by a warm-up and post-warm-up phases for our physical model (Garrod 2013; Gorai et al. 2020b; Das et al. 2021; Sil et al. 2021). During the collapsing phase (t_{coll}), total hydrogen density (n_H) can evolve from a low density (3×10^5 cm$^{-3}$) to a higher density (2×10^8 cm$^{-3}$). The highest density attained at the collapsing phase is kept constant throughout the warm-up and post-warm-up phases. The choice of our highest density is consistent with the density derived from the C$_3$H$_7$CN emission from the core N2 of Sgr B2 (Belloche et al. 2014). Following Garrod (2008), we consider that the density and visual extinction parameter (A_V) is coupled by $A_V = A_{V0}(n_H/n_{H0})^{2/3}$. Here, $A_{V0} = 2$ and $n_{H0} = 3 \times 10^5$ cm$^{-3}$ is the minimum visual extinction and total hydrogen density considered in our model. Using the highest density ($n_H = 2 \times 10^8$ cm$^{-3}$), in our case, A_V could reach a value as high as 3288. The dust temperature (T_{dust}) is derived by the relation provided by Zucconi et al. (2001) and modified by Garrod (2008).

$$T_{dust} = 18.67 - 1.637A_V + 0.07518A_V^2 - 0.001492A_V^3$$

The above relation holds for $A_V = 2 - 10$. For $A_V = 2$, it yields $T_{dust} \sim 16$ K. The dust temperature further decreases as the visual extinction increases. Here, we restrict T_{dust} to fall below 8 K. At this phase, the gas temperature (T_{gas}) is kept constant at 10 K. In the warm-up phase, T_{dust} is allowed to increase to 200 K in t_{warm} years. Furthermore, to follow the further evolution, the dust temperature is allowed to increase up to 400 K in another t_{warm2} years. Once the dust temperature crosses the gas temperature, gas temperature follows the dust temperature because of the good coupling between the gas and dust at a higher density. Very similar warm-up time scales were considered in Garrod (2013); Garrod et al. (2017). In the post-warm-up phase (for t_{post} years), all the physical parameters are kept constant at their respective highest values.

The collapsing and warm-up time will differ between the high mass and low-mass stars. A shorter collapsing time is expected for a high-mass star, whereas relatively longer for a low-mass star. Here, we construct models to explain the abundances observed in Sgr B2. Based on these time scales, we consider two models (Model A and...
Model B) to explain the observed results. The time scales considered in each model are shown in Table 5. In Model A, the first warm-up time scale (t_{warm1}) is varied, whereas, in Model B, the collapsing time is varied by keeping all other time scales at the fixed value. Fig. 1 represents the time evolution of all the physical parameters considered in this simulation for Model A only. For all the models, we consider a standard cosmic ray ionization rate of 1.3×10^{-17} s$^{-1}$.

Table 5. Adopted models based on various time scale.

Time	Model A	Model B
t_{cell}	10^6	$10^5 - 10^6$
t_{warm1}	$10^3 - 10^6$	5×10^5
t_{warm2}	4.3×10^5	2.12×10^4
t_{PV}	10^5	10^5
Total Time	$(1.63 - 2.53) \times 10^5$	$(0.72 - 1.62) \times 10^6$

3 CHEMICAL MODEL RESULTS AND DISCUSSION

Here, we use our CMMC (Chemical Model of Molecular Cloud) code (Das et al. 2015b,a, 2019, 2021; Gorai et al. 2017b,a, 2020b; Sil et al. 2018, 2021; Ghosh et al. 2022) to study the formation of BCMs in Sgr B2(N). Three sets of BE values are used. For all sets, we consider the ratio between the energy for diffusion and energy for desorption (E_D/E_b) at 0.5. The set 1 is constructed with the BE values used in Garrod et al. (2017); Belloche et al. (2014). The enthalpies of formation of CH$_2$CHCN, C$_2$H$_2$CN, C$_2$H$_4$CN, C$_2$H$_5$CN, and their related precursors are also used from Garrod et al. (2017); Belloche et al. (2014). Set 2 is constructed with the same BE values used in set 1 except those are reported in Table 1. Whenever we use set 2 BE, we also use our calculated enthalpy of formation values reported in Table 1. Table 1 shows the BE of 30 relevant species with the monomer water configuration. However, for the eight species (CH$_2$CHCN, C$_2$H$_2$CN, n/i - C$_2$H$_3$CN, n/i/s/t - C$_4$H$_4$CN), we note the BE values with the tetramer configuration of water. Where monomer structure is used, we use a scaling factor of 1.416, and for the tetramer structure, a scale factor of 1.188 is used (Das et al. 2018). Finally, in set 3, we keep the BEs and enthalpies of formation of these 30 species (noted in Table 1) same as set 2, but for the rest of the species, we use the BEs from the KIDA database. Several differences exist between the BE used in set 2 and set 3. But the significant difference which could alter the abundances of the saturated species on the grain surface is the usage of the slow diffusion rate of the H atom in set 3 ($E_D = 650$ K) compared to set 2 ($E_D = 450$ K).

3.1 Vinyl and ethyl cyanide

Table 2 shows the reactions leading to the formation of CH$_2$CHCN and C$_2$H$_2$CN in the interstellar condition. Set 1 is constructed with the BE used in Garrod et al. (2017); Belloche et al. (2016). They used higher BE of C$_2$H$_4$CN (5537 K) than CH$_2$CHCN (4637 K). We also obtain a higher BE of C$_2$H$_4$CN (4059 K) with the water monomer than CH$_2$CHCN (3948 K). However, the water monomer configuration is relatively smaller (3 atoms) than the adsorbed species (7 atoms for CH$_2$CHCN and 9 atoms for C$_2$H$_4$CN), which could induce some errors on the estimated BEs. Das et al. (2018) reported that the BE estimation tends to more realistic values as the size of the computed substrate is increased. To check the effect of BEs on the larger substrate, we further use a tetramer water structure (consisting of 12 atoms). As like the monomer configuration, here also, we found that the BE of C$_2$H$_4$CN (scaled value ~ 4886 K) is greater than CH$_2$CHCN (scaled value ~ 3540 K). We notice our estimated BE values with the tetramer configuration of water are lower by several hundreds of Kelvin than that of Garrod et al. (2017) for both the species. Set 2 and 3 consider these BE values and enthalpy of formation noted in Table 1 for our simulation.

Fig. 2 shows the time evolution of CH$_2$CHCN and C$_2$H$_2$CN in the warm-up and post-warm-up phase for set 1 and set 3 BEs. The solid lines represent the gas-phase abundances, whereas the dashed lines represent the ice-phase abundances. Model A with $t_{\text{warm1}} = 3.5 \times 10^5$ years is used for Fig. 2. The gas-phase peak abundances (beyond the collapsing time) obtained with various sets of BEs are noted in Table 6. We obtain a higher peak abundance of C$_2$H$_3$CN than CH$_2$CHCN for all the cases. C$_2$H$_3$CN was mainly produced in the ice phase by the successive hydrogenations of CH$_2$CHCN (reactions 5 – 8) and by the radical-radical reaction between CH$_2$CH$_2$CN and CN (reaction 9). With the set 1 BE, a peak abundance of C$_2$H$_3$CN is obtained at 116 K, whereas, with similar BEs, Garrod et al. (2017) got the peak abundance at 129 K (they used $t_{\text{warm1}} = 10^7$ years). For the set 2 and set 3, it varies in the range 100 – 102 K for $t_{\text{warm1}} = 3.5 \times 10^5$ years.

The peak abundance of CH$_2$CHCN for set 1 is obtained at 156 K (Garrod et al. 2017, got this at 167 K). We notice a substantial effect of reaction 4 on CH$_2$CHCN. According to the UMIST Database for Astrochemistry 2012 (McElroy et al. 2013), this reaction is valid beyond 300 K. However, following KIDA database (Wakelam et al. 2012), we consider that this reaction may process beyond 10 K. The α, β, and γ noted in the UMIST database is used as the rate constants of this reaction. The gas-phase abundance profile of CH$_2$CHCN by utilizing the temperature restriction is shown in Fig. 2 with the solid brown curve. It clearly shows that with the temperature restriction of this reaction, gas-phase peak CH$_2$CHCN abundance drops from 1.8×10^{-9} (not considering the temperature limit) to 4.12×10^{-11} (considering the temperature limit). The abundance of CH$_2$CHCN and C$_2$H$_3$CN in Table 6 shows a very minor change between the usage of low/high barrier for the CN addition to C$_2$H$_3$, C$_2$H$_4$, C$_3$H$_5$, and C$_3$H$_6$).

Belloche et al. (2014) derived a peak H$_2$ column density of 4.2×10^{18} cm$^{-2}$. Furthermore, they extrapolated their obtained column density to a more compact region (~ 100) where the CH$_2$CN emission originated. With this consideration, they estimated an average H$_2$ column density of 5.6×10^{15} cm$^{-2}$. They identified 154 transitions of C$_2$H$_3$CN and 44 transitions of CH$_2$CHCN. They estimated a column density of C$_2$H$_3$CN and CH$_2$CHCN of 6.2×10^{18} and 4.2×10^{17}, respectively. Transforming into the abundances, it yields the abundances of 1.1×10^{-6} and 7.5×10^{-8} for C$_2$H$_3$CN and CH$_2$CHCN, respectively. Fig. 3 shows the variation of gas-phase peak abundances (obtained beyond the collapsing time) of CH$_2$CHCN and C$_2$H$_3$CN with the changes in warm-up time scale (Model A, left panel) and collapsing time (Model B, right panel). Interestingly, in most cases, the peak abundance of C$_2$H$_3$CN is greater than that of the CH$_2$CHCN with Model A and Model B with various BEs. With the set 1 BEs (red solid curve in the right panel of Fig. 3), the gas-phase peak abundance of CH$_2$CHCN and C$_2$H$_3$CN varies in the range 1.42×10^{-9} – 1.48×10^{-8} and 5.19×10^{-11} – 1.19×10^{-12}, respectively. Only for the lowest warm-up time ($t_{\text{warm1}} = 10^7$ years) and set 1, we obtain VC-EC. None of our models (with set 2 and set 3 BEs) can reproduce the observed abundance of C$_2$H$_3$CN (1.1 $\times 10^{-6}$) and CH$_2$CHCN (7.5 $\times 10^{-8}$) in Sgr B2(N2). From the various models (fast, medium, and slow warm-up along with the low and high activation barriers), Garrod et al. (2017) also obtained a
comparatively lower abundance of C$_2$H$_2$CN (1.2 \times 10^{-8} – 1.1 \times 10^{-7}) and CH$_2$CHCN (1.6 \times 10^{-9} – 1.7 \times 10^{-8}) than observations.

An exciting trend for CH$_2$CHCN is obtained when we vary the warm-up time of Model A. We notice that the peak abundance value of CH$_2$CHCN is gradually shifted towards the higher temperature with the decrease in the warm-up time scale. For example, for set 1, with $t_{\text{warm1}} = 10^6$ years, we get a peak abundance at 146 K (117 K for set 2 and 145 K for set 3), which is shifted to 197 K (143 K for set 2 and 161 K for set 3) with $t_{\text{warm1}} = 10^5$ years. Fig. 2 shows that the ice-phase abundance of CH$_2$CHCN declines around 70 K. However, its peak abundance appears at a much higher temperature.

It is because of the involvement of the gas phase pathways for the formation of CH$_2$CHCN. In the C$_2$H$_2$CN, the peak abundance obtained remains roughly invariant with the variation of the warm-up time scale (varies in the range 108 – 117 K for set 1, 99 – 101 K for set 2, and 95 – 103 K for set 3). Garrod et al. (2017) obtained 129 – 131 K for the different warm-up time scales.

Belloche et al. (2016) obtained an abundance ratio between C$_2$H$_2$CN and CH$_2$CHCN of ~ 15 in Sgr B2(N2). The obtained ratio from our various models and various sets of BEs are noted in Table 7. The peak abundance of C$_2$H$_2$CN and CH$_2$CHCN does not appear simultaneously, but we consider their peak values in deriv-
ing this ratio. So, there should be some uncertainty in the derived molecular ratio. For set 1 BE, the values noted in Table 6, show a ratio between the peak abundance of C$_2$H$_3$CN to CH$_3$CHCN as 7.2. For more higher warm-up time scale ($t_{\text{warm1}} = 5 \times 10^5$ years), it can goes up to ~ 9 (see Fig. 4). The right panel of Fig. 4 shows the ratio obtained by varying the collapsing time (Model B). Overall, with the variation of warm-up ($t_{\text{warm1}} = 2 \times 10^5$ – 10^6 years) and collapsing time ($t_{\text{col}} = 10^5$ – 10^6 years) shown in Fig. 4, we obtain a ratio of 3.8 – 23.4 for set 1. For the similar time scales, this ratio varies in the range of 1.56 – 72 and 0.8 – 9.3 for set 2 and set 3, respectively. We notice a abrupt decrease in ratio for set 2 and set 2 for a shorter warm-up time scale ($t_{\text{warm1}} = 10^5$ years). It is 0.033 and 0.00014 for set 1 and 2, respectively. A vast difference between the ratio of sets 2 and 3 is observed in both panels of Fig. 4. It happens mainly because of the changes in the adsorption energies of the H atom. For set 3, due to the higher adsorption energy of the H atom, it has a longer residence time on the grain, which eventually might helps in the formation of more saturated species.

3.2 Propyl cyanides

Formation pathways of i/n = C$_2$H$_3$CN are discussed in section 2.3.2. Garrod et al. (2017) considered the BE of both the isomers the same (7237 K). We obtain relatively lower BE values of these two species with the monomer and tetramer configuration. With the monomer substrate, a higher BE for i = C$_2$H$_3$CN (3279 K) than n = C$_3$H$_7$CN (2991 K) is obtained. On the contrary, with the tetramer configuration, we obtain an opposite trend (4970 K for i = C$_2$H$_3$CN and 5567
Figure 4. Peak abundance ratio between C$_2$H$_5$CN and CH$_2$CHCN for various BE sets. The left panel shows results for Model A and right panel for Model B. The observed ratio is shown with the horizontal solid red line.

Figure 5. Time evolution of n–C$_3$H$_7$CN and i–C$_3$H$_7$CN in the warm-up phase for set 1 and set 3 BEs. Solid curves represent the gas-phase abundance, whereas the dashed curves represent the abundance of ice-phase species.

Figure 6. Peak abundance of n–C$_3$H$_7$CN (n-PC) and i–C$_3$H$_7$CN (i-PC) for various BE sets. The left panel shows results for Model A and right panel for Model B. Observed peak abundances of n-PC and i-PC in Sgr B2(N) are also shown with the horizontal solid lines.
K for $n - C_3H_7CN$), which are much lower than the values used in Garrod et al. (2017).

Fig. 5 shows the time evolution of the two forms of C_3H_7CN (i and n) by considering $t_{\text{warm}} = 2 \times 10^5$ years and $t_{\text{warm}} = 3.5 \times 10^5$ years, respectively with Model A (with set 1 and set 2 BEs). With the warm-up time scales, we notice a significant difference in the abundance of C_3H_7CN. In general, a shorter warm-up time yields a larger peak abundance (see the left panel of Fig. 6). For $t_{\text{warm}} > 6 \times 10^5$ years, we obtain i<n, whereas the opposite is valid for a shorter warm-up time scale for set 1. For the set 2 BE, we always see i>n. For set 3 also, we obtain i>n except for the shortest warm-up time (10^5 years). The right panel of Fig. 6 shows the peak abundances of n and i C_3H_7CN for the variation in the collapsing time for set 1, set 2, set 3. It shows that for set 3, peak gas-phase abundance of i$-C_3H_7CN$ is always greater ($2.97 \times 10^{-9} - 1.65 \times 10^{-8}$) than n$-C_3H_7CN$ ($2.86 \times 10^{-9} - 1.36 \times 10^{-8}$). For set 2, we always have obtained a high abundance of i$-C_3H_7CN$ than n$-C_3H_7CN$. For set 3, i<n is obtained when $t_{\text{coll}} > 5 \times 10^5$ years and i<n for the shorter t_{coll}. From various models (high/low) barriers and with various warm-up time scales, Garrod et al. (2017) obtained the abun-
Figure 10. Time evolution of n – C₄H₉CN, i – C₄H₉CN, s – C₄H₉CN, and t – C₄H₉CN during the warm-up phase for various BE sets. Solid curves represent the gas-phase abundance, whereas the dashed curves represent the abundance of ice-phase species.

In section 2.3.2, reactions related to the formation of C₄H₉CN are discussed. The TS calculation of reaction 22 reveals an activation barrier of 947 K. So far, we do not consider the destruction of i – C₄H₉CN by any hydrogenation reaction in our network. By considering reaction 22, we observe a few changes in the abundances of i – C₄H₉CN because of the formation by reaction 19 again. However, its effect on C₄H₉CN is vital and discussed in the latter portion. The dot-dashed curve represents the peak abundance ratio between i and n C₄H₉CN (low barrier) in Fig. 7. No significant changes in the abundance of i – C₄H₉CN are seen with the inclusion of reaction 22. It is because a substantial part of the product of reaction 22 (CH₃(C)CH₃CN) hydrogenate to form i – C₄H₉CN by reaction 19 again.

3.3 Butyl cyanide

For the formation of various forms of C₄H₉CN, we consider ice phase reactions 23 – 36 of section 2.3.3. Fig. 10 shows the time evolution of n/i/s/t-C₄H₉CN for various BEs. Garrod et al. (2017) used the BE of these four species as 8937 K. We obtain significantly lower BE values with our calculations. With the monomer configuration, we obtain a higher BE (scaled by 1.416) for n (6320 K) followed by t (4574 K), i (4422 K), and s (2635 K). However, with the larger substrate (tetramer), we obtain the highest BE (scaled by 1.188) for s (5313 K), followed by i (5151 K), t (5148 K), and n (4388 K). With the set 1 BE, we obtain the peak values of these species at 175 K. With the tetramer structure (set 2 and set 3), due to lower BEs, the set 1 BE, we obtain the peak values of these species at 100 – 105 K.

Fig. 11 shows the effect on the peak abundances of various forms of C₄H₉CN for the variation of warm-up time (top) and collapsing time (bottom).
\textbf{Figure 11.} Peak abundances of C$_4$H$_9$CN (n, i, s, and t) for various BE sets. The upper panel shows results for Model A and lower panel for Model B.

\textbf{Figure 12.} Peak abundance ratio between n – C$_4$H$_9$CN and n – C$_3$H$_7$CN for various BE sets. The left panel shows results for Model A and right panel for Model B. Derived upper-limit of this ratio (0.59, Garrod et al. 2017) is shown with the red horizontal line.
ing time (bottom). In general, it seems that the shorter collapsing time and shorter warm-up time increase the production of all these species. Garrod et al. (2017) used the set 1 BE values with \(t_{\text{coll}} = 10^8 \) years. With the shortest warm-up time (\(\sim 5 \times 10^5 \) years with low and high barriers), they obtained the highest peak abundance of \(s \), followed by \(n \), \(i \), and \(t \), and with the largest warm-up time (\(\sim 10^8 \) years), they obtained the highest peak abundance of \(i \), followed by \(s \), \(n \), and \(t \). So, in all the cases, they got the lowest abundance of \(t \). In our set 1 model (with a low barrier and \(t_{\text{coll}} = 10^8 \) years) for most of the warm-up time scale, the sequence is \(s, n, i, \) and \(t \).

We obtain a dramatic change in the abundances with set 2 and set 3 BE values. For set 3, where the most updated BE values are used, we obtain a peak abundance sequence (with \(t_{\text{coll}} = 10^8 \) years) of \(i, s, t, \) and \(n \) for most of the warm-up time (see at the top of Fig. 11). For the shorter warm-up time (\(\sim 10^5 \) years), \(t \) and \(n \) interchange their position. This model has considered \(t_{\text{coll}} = 10^6 \) years. For the shorter collapsing time, \(s \) has the maximum abundance, whereas \(t \) has the minimum abundance.

With the consideration of the reaction 22, scenario has changed dramatically. With \(t_{\text{coll}} = 10^8 \) years, when we consider reaction 22, for low barrier case, we have an abrupt increase in the abundance of the \(t - \text{C}_2\text{H}_9\text{CN} \) (last panel of the top of Fig. 11). For example, Table 6 shows the abundance of \(t - \text{C}_2\text{H}_9\text{CN} \) (with \(t_{\text{coll}} = 10^8 \) years and \(t_{\text{warm}} = 3.5 \times 10^5 \) years) is \(7.37 \times 10^{-11} \) when reaction 22 is not considered. On the contrary, with reaction 22, we have its abundance \(1.29 \times 10^{-9} \). So, an increase of two orders of magnitude is obtained. It happens due to the production of \(\text{CH}_3(\text{C})\text{CH}_3\text{CN} \) by reaction 22, which is further used in reaction 36 for the formation of \(t - \text{C}_2\text{H}_9\text{CN} \). For the shorter collapsing time, we always get a lower abundance of \(t \), the same as that obtained by avoiding reaction 22 with set 3.

Garrod et al. (2017) derived an upper limit of 0.59 for the peak abundance ratio between \(n - \text{C}_2\text{H}_9\text{CN} \) and \(n - \text{C}_2\text{H}_9\text{CN} \). Fig. 12 shows this ratio with the warm-up time scale (left) and collapsing time scale (right). The upper limit is shown with the red horizontal line. Modelled peak ratio is less than the derived upper limit for most of the cases, except for set 2 and shorter collapsing time (\(t_{\text{coll}} < 5 \times 10^5 \) years).

It was interesting to see whether the observed ratio between the \(i \) and \(n \) \(\text{C}_2\text{H}_9\text{CN} \) is also sustained between the \(i \) and \(n \) of \(\text{C}_2\text{H}_9\text{CN} \) or gets amplified or reduced. Fig. 13 shows the \(i/n \) ratio of \(\text{C}_2\text{H}_9\text{CN} \) for different warm-up (left) and collapsing time (right) scale. For set 1, the \(i/n \) ratio for \(\text{C}_2\text{H}_9\text{CN} \) varies in the range 0.8 – 1.4, whereas for \(\text{C}_2\text{H}_9\text{CN} \), it is 0.69 – 2.37. With the same BE value, various warming times, and two types of activation barriers, Garrod et al. (2017) obtained an \(i/n \) ratio in the range of 0.6 – 2.2, which is in excellent agreement with our model. With the set 2 and 3 BEs, the \(i/n \) ratio of \(\text{C}_2\text{H}_9\text{CN} \) is significantly changed. Comparing Fig. 13 (\(i/n \) ratio of \(\text{C}_2\text{H}_9\text{CN} \) and Fig. 7 (\(i/n \) ratio of \(\text{C}_2\text{H}_9\text{CN} \)), it is clear that the branching is more favourable for the higher-order alkyl cyanides with the realistic BE sets.

Garrod et al. (2017) obtained a \(s/n, t/n, \) and \((i++t)/n \) ratio of \(\text{C}_2\text{H}_9\text{CN} \) in the range 1.7 – 4.3, 0.015 – 0.1, and 3.0 – 5.8, respectively. With the set 1, we obtain these ratios 2.23 – 3.03, 0.19 – 1.52, and 3.2 – 6.38, respectively (see Table 7). All these ratios obtained with the set 2 and set 3 BEs are also noted in Table 7 and compared with previous observations and modeling results.

In general, there are no systematic differences between the results predicted by our models and Garrod et al. (2017). However, with our more realistic BE sets, set 3 (low BEs compared to that used in Garrod et al. 2017), we find that the branching is more favourable. Furthermore, a major difference is obtained when one hydrogen abstraction reaction (reaction 22) of \(i - \text{C}_2\text{H}_9\text{CN} \) is included. It yields a high abundance of \(t - \text{C}_2\text{H}_9\text{CN} \). Due to the exceptional environments of the galactic centre region, none of our models and models of Garrod et al. (2017) could possibly explain the observed high abundance of some of the BCMs (Bonfand et al. 2019; Willis et al. 2020). The BEs used by Garrod et al. (2017) were some educated estimations. So, we would refer to using our set 3 BEs obtained with the tetramer water substrate for future modeling. We notice a huge impact of collapsing (Model A) and warm-up (Model B) time scales in the abundances of these species. Based on the obtained results, we recommend using relatively moderate collapsing and warm-up time scales (\(t_{\text{coll}}=t_{\text{warm}} \sim 3 – 5 \times 10^5 \) years).

4 CONCLUSIONS

We carry out an extensive study on the formation of various BCMs. Some of our significant findings from this work are:

- One of the critical parameters for astrochemical modeling is the BE of species. Here, we provide a realistic estimation of the BEs for some BCM-related species for the first time. Noticeably lower BE values (as compared to previously used Garrod et al. 2017) for \(\text{CH}_3\text{CHCN} \) (3540 K), \(\text{C}_2\text{H}_9\text{CN} \) (4886 K), \(\text{C}_2\text{H}_9\text{CN} \) (5567 K, 4970 K for \(n \) and \(i \) \(\text{C}_2\text{H}_9\text{CN} \), respectively), and \(\text{C}_2\text{H}_9\text{CN} \) (4388 K, 5151 K, 5313 K, and 5148 K for \(n, i, s, \) and \(t \) – \(\text{C}_2\text{H}_9\text{CN} \), respectively) are obtained.

- The enthalpies of formation, polarizabilities, dipole moments, and activation barriers through TS calculations are calculated.
quantum chemically to better estimate the modeling results.

- Belloche et al. (2014) observed i-PC/n-PC ratio of ~ 0.4 ± 0.06. With set 3, we obtain i-PC/n-PC ~ 0.7 when a shorter warmup \(t_{\text{warm}} = 10^5 \) years for Model A) and shorter collapsing time \(t_{\text{coll}} = 3 \times 10^5 \) years for Model B) are used. With the set 2 and set 3, it is observed that the abundances of these species are greatly affected. Compared to the modeled i/n ratio of C\(_2\)H\(_2\)CN (varies in the range 0.7 ~ 3.4 for set 2 and 3 noted in Table 7), the i/n ratio of C\(_2\)H\(_2\)CN is greatly enhanced (0.12 ~ 67 shown in Table 7). Thus, the branching is more favourable for the higher-order alkyl cyanides. It is also noticed that with the increase in the warm-up and collapsing time, in general, for set 3 (consisting of most updated BEs) ratio of the i/n increases.

- Here, for the destruction of i − C\(_2\)H\(_2\)CN, we propose one hydrogen abstraction reaction (reaction 22). The TS calculation of this reaction yields an activation barrier of 947 K. Inclusion of this reaction drastically increases the abundance of i − C\(_2\)H\(_2\)CN by the CH\(_3\) addition of CH\(_3\)(C/CH\(_3\))CN (reaction 36). Furthermore, we found that the formation of i − C\(_2\)H\(_2\)CN is favourable when a longer collapsing time is used along with reaction 22.

ACKNOWLEDGEMENTS

S.S. acknowledges Banaras Hindu University and UGC, New Delhi, India, for providing a fellowship. M.S. would like to acknowledge the financial support from S. N. Bose National Centre for Basic Sciences, Salt Lake, Kolkata under the Department of Science and Technology (DST), Government of India. P.G. acknowledges support from a Chalmers Cosmic Origins postdoctoral fellowship. A.P. acknowledges financial support from the IoE grant of Banaras Hindu University (R/Dev/IoE/Incentive/2021-22/32439) and financial support through the Core Research Grant of SERB, New Delhi (CRG/2021/000907). AD would like to acknowledge ICSP for support.

DATA AVAILABILITY

The data underlying this article will be shared on reasonable request to the corresponding author.

REFERENCES

Belloche A., Garrod R. T., Müller H. S. P., Menten K. M., 2014, *Science*, 345, 1584
Belloche A., Müller H. S. P., Garrod R. T., Menten K. M., 2016, *A&A*, 587, A91
Bizzocchi L., et al., 2020, *A&A*, 640, A98
Bonfand M., Belloche A., Garrod R. T., Menten K. M., Willis E., Stéphan G., Müller H. S. P., 2019, *A&A*, 628, A27
Boogert A. C. A., Gerakines P. A., Whittet D. C. B., 2015, *Annual Review of Astronomy and Astrophysics*, 53, 541
Botta O., Bada J. L., 2002, *Surveys in Geophysics*, 23, 411
Burkhart A. M., et al., 2021, *ApJ*, 913, L18
Camie J., Bernard-Salas J., Peeters E., Malek S. E., 2010, *Science*, 329, 1180
Cernicharo J., Agúndez M., Cabezas C., Tercero B., Marcelino N., Pardo J. R., de Vicente P., 2021a, *A&A*, 649, L15
Cernicharo J., Agúndez M., Kaiser R. I., Cabezas C., Tercero B., Marcelino N., Pardo J. R., de Vicente P., 2021b, *A&A*, 655, L1
Das A., Chakrabarti S. K., 2011, *MNRAS*, 418, 545
Das A., Acharyya K., Chakrabarti S., Chakrabarti S. K., 2008, *A&A*, 486, 209
Das A., Acharyya K., Chakrabarti S. K., 2010, *MNRAS*, 409, 789
Das A., Majumdar L., Chakrabarti S. K., Sahu D., 2015a, *New Astron.*, 35, 53
Das A., Majumdar L., Sahu D., Gorai P., Sivaraman B., Chakrabarti S. K., 2015b, *ApJ*, 808, 21
Das A., Sahu D., Majumdar L., Chakrabarti S. K., 2016, *MNRAS*, 455, 540
Das A., Sil M., Gorai P., Chakrabarti S. i. K., Loison J. C., 2018, *ApJS*, 237, 9
Das A., Gorai P., Chakrabarti S. K., 2019, *A&A*, 628, A73
Das A., Sil M., Ghosh R., Gorai P., Adak S., Samanta S., Chakrabarti S. K., 2021, *Frontiers in Astronomy and Space Sciences*, 8, 78
Etim E. E., Gorai P., Das A., Arunan E., 2017, *European Physical Journal D*, 71, 86
Frisch M. J., et al., 2013, *Gaussian 09 Revision D.01
Gannon K. L., Glowacki D. R., Blitz M. A., Hughes K. J., Pilling M. J., Seakins P. W., 2007, *Journal of Physical Chemistry A*, 111, 6679
Garrod R. T., 2008, *A&A*, 491, 239
Garrod R. T., 2013, *ApJ*, 765, 60
Garrod R. T., Belloche A., Müller H. S. P., Menten K. M., 2017, *A&A*, 601, A48
Ghosh R., Sil M., Mondal S. K., Gorai P., Sahu D., Kushwaha R. K., Sivaraman B., Das A., 2022, *Research in Astronomy and Astrophysics*, 22, 065021
Gorai P., Das A., Majumdar L., Chakrabarti S. K., Sivaraman B., Herbst E., 2017a, *Molecular Astrophysics*, 6, 36
Gorai P., Das A., Sivaraman B., Etim E. E., Chakrabarti S. i. K., 2017b, *ApJ*, 836, 70
Gorai P., et al., 2020a, *ACS Earth and Space Chemistry*, 4, 920
Gorai P., Bhattacharjee R., Mondal S. K., Ghosh R., Chakrabarti S. K., Das A., 2020b, *ApJ*, 895, 86
Hasegawa T. I., Herbst E., Leung C. M., 1992, *ApJS*, 82, 167
Keane J. V., Tielens A. G. G. M., Boogert A. C. A., Schutte W. A., Whittet D. C. B., 2001, *A&A*, 376, 254
Lee K. L. K., et al., 2021, *ApJ*, 910, L2
McCarthy M. C., et al., 2021, *Science Astronomy*, 5, 176
McElroy D., Walsh C., Markwick A. J., Cordiner M. A., Smith K., Millar T. J., 2013, *A&A*, 550, A36
McGuire B. A., Carroll P. B., Loomis R. A., Finneran I. A., Jewell P. R., Remijan A. J., Blake G. A., 2016, *Science*, 352, 1449
McGuire B. A., Burkhardt A. M., Kalenskii S., Shingledeker C. N., Remijan A. J., Herbst E., McCarthy M. C., 2018, *Science Astronomy*, 359, 202
McGuire B. A., et al., 2021, *Science*, 371, 1265
Pagni L., Favre C., Goldsmith P. F., Bergin E. A., Snell R. E., Minnick G., 2017, *MNRAS*, 464, A32
Rivilla V. M., et al., 2021, *Proceedings of the National Academy of Sciences*, 118, e2101314118
Sil M., Gorai P., Das A., Bhat B., Etim E. E., Chakrabarti S. K., 2018, *ApJ*, 853, 139
Sil M., et al., 2021, *AJ*, 162, 119
Su T., Chesnavich W. J., 1982, *J. Chem. Phys.*, 76, 5183
Tielens A. G. G. M., 2008, *ARA&A*, 46, 46
Trumpler R. J., 1930, *Publications of the Astronomical Society of the Pacific*, 42, 214
Wakelam V., et al., 2012, *ApJS*, 199, 21
Willis E. R., Garrod R. T., Belloche A., Müller H. S. P., Barger C. J., Bonfand M., Menten K. M., 2020, *A&A*, 636, A29
Wilson R. W., Jefferts K. B., Penzias A. A., 1970, *ApJ*, 161, L43
Woon D. E., Herbst E., 2009, *ApJS*, 185, 273
Zeng S., Quénard D., Jiménez-Serra I., Martin-Pintado J., Rivilla V. M., Testi L., Martin-Doménech R., 2019, *MNRAS*, 484, L43
Zucconi A., Walmsley C. M., Galli D., 2001, *A&A*, 376, 650
APPENDIX A: POTENTIAL ENERGY SURFACES

Potential energy surface diagrams of the ice-phase chemical reactions 5, 6, 11, and 22 noted in Tables 2 and 3 are shown in Figs. A1, A2, and A3, respectively.
Figure A1. Potential energy surfaces for reactions 5 and 6.

Figure A2. Potential energy surface for reaction 11.

Figure A3. Potential energy surface for reaction 22.
APPENDIX B: POLARIZABILITY AND DIPOLE MOMENT

We quantum chemically calculate the polarizability and total dipole moment of BCM-related species noted in Table B1 using the Gaussian 09 suite. For these calculations, we use the DFT-B3LYP/6-31G(d,p) level of theory. Our calculated values are compared with the existing experimental values (if available in the NIST WebBook database).

This paper has been typeset from a \TeX/LaTeX file prepared by the author.
Table B1. Calculated polarizability and total dipole moment of some BCM-related species.

Serial	Species	Polarizability (Å^3)	Total dipole moment (D)
		This Work	This Work
		DFT-B3LYP 6-31G(d,p)	DFT-B3LYP 6-31G(d,p)
1	CH$_3$CN	3.4378	4.280
2	C$_2$H$_3$CN	4.6441	3.2203
3	CH$_2$CHCN	4.9597	3.8772
4	CH$_2$CH$_2$CN	4.7300	3.6998
5	CH$_3$CCHCN	5.1242	3.8985
6	C$_2$H$_5$CN	5.0442	3.9198
7	CH$_2$CH$_2$CH$_2$CN	6.3156	3.8116
8	CH$_2$CH$_2$CH$_2$CN	6.4000	3.7363
9	CH$_2$CH$_2$CHCN	6.8268	4.0005
10	n – C$_3$H$_4$-	6.6846	4.0836
11	CH$_3$CH(CH$_3$)CN	6.3615	3.9399
12	CH$_3$CH(CH$_2$)CN	6.8268	4.1409
13	i – C$_3$H$_4$-	6.6327	3.9515
14	CH$_3$CH$_2$CH$_2$CN	8.0019	3.8328
15	n – C$_4$H$_8$-	8.3264	4.1066
16	i – C$_4$H$_8$-	8.2272	3.9850
17	s – C$_4$H$_8$-	8.2123	3.9019
18	t – C$_4$H$_8$-	8.1946	3.9600
19	CH$_3$CH$_2$CH$_3$	4.7330	0.2533
20	CH$_3$CHCH$_3$	4.8263	0.2042
21	C$_3$H$_5$	5.0471	0.0491
22	CH$_2$CH$_2$CH$_2$CH$_3$	6.3082	0.2525
23	CH$_3$CHCH$_2$CH$_3$	6.4519	0.2163
24	n – CH$_3$H$_{10}$	6.6466	0.0000
25	CH$_2$CH(CH$_3$)CH$_3$	6.333	0.1989
26	CH$_3$C(CH$_2$)CH$_3$	6.5201	0.1990
27	i – C$_4$H$_{10}$	6.6105	0.0765
28	n – C$_4$H$_{12}$	8.2598	0.0477
29	i – C$_4$H$_{12}$	8.1768	0.0542
30	neo – C$_5$H$_{12}$	8.1427	0.0001

*https://cccbdb.nist.gov/xp1.asp?prop=9

*https://cccbdb.nist.gov/xp1.asp?prop=7