Bleeding risk factors in patients with acute coronary syndrome: data from observational studies ORACUL II

Brazhnik V. A., Minushkina L. O., Guliev R. R., Averkova A. O., Rogozhina A. A., Koroleva O. S., Zubova E. A., Karmanchikova E. A., Khasanov N. R., Chichkova M. A., Boeva O. I., Galyavich A. S., Zateyshchikov D. A.*

Aim. To identify the risk factors for bleeding of BARC scale 2-5 types in patients after acute coronary syndrome (ACS).

Material and methods. The data of 1502 patients from the open multicenter study, ORACUL II, were used — 894 men (59.5%) and 608 women (40.5%), mean age — 65.7±12.9 years. Five hundred sixty (37.3%) patients had ACS with ST-segment elevation and 942 (62.7%) — ACS without ST-segment elevation. Bleeding was recorded in 164 patients (10.9%), including index admission — in 39 (2.6%) patients, of which severe (types 3-5) — 0.5%, significant — 1.7% (types 2-5).

Results. Within a year after discharge, bleeding was observed in 126 (8.4%) patients, large — 0.8%, significant — 2.4%. The development of bleeding type 2-5 was associated with the presence of gastric ulcer and duodenal ulcer, gastrointestinal bleeding in history, decreased creatinine, hemoglobin clearance, age of patients, the use of anticoagulants in the composition of triple or double antithrombotic therapy, conducting of percutaneous interventional procedures, the presence of heart failure 2-4 Killip class at admission. ROC analysis showed that the predictive value of the ORACLE bleeding risk scale is 0.762, sensitivity — 62%, specificity — 78%.

Conclusion. Thus, we based on routine clinical practice have created a simple scale for assessing the risk of bleeding in patients with ACS.

Key words: acute coronary syndrome, bleeding, BARC, mortality, ORACLE risk scale. Conflicts of Interest: nothing to declare.

*Central State Medical Academy of the Presidential Administration of the Russian Federation, Moscow; City Clinical Hospital № 51, Moscow; Institute for Biochemical Physics, Moscow; Stavropol Regional Clinical Psychiatric Hospital № 1, Stavropol; Kazan State Medical University, Kazan; City Clinical Hospital № 17, Moscow; Stavropol State Medical University, Stavropol, Russia.

Brazhnik V.A. ORCID: 0000-0003-4144-4719, Minushkina L.O.* ORCID: 0000-0002- 4203-3586, Guliev R.R. ORCID: 0000-0001-8910-4137, Averkova A.O. ORCID: 0000-0002- 8867-117X, Rogozhina A.A. ORCID: 0000-0002-9742-359X, Koroleva O.S. ORCID: 0000-0001-5292-1336, Zubova E.A. ORCID: 0000-0001-8377-1350, Karmanchikova E.A. ORCID: 0000-0002-3991-2547, Khasanov N.R. ORCID: 0000-0001- 8582-708X, Chichkova M.A. ORCID: 0000-0002-6962-3260, Boeva O.I. ORCID: 0000-0002-1816-8309, Galyavich A.S. ORCID: 0000-0002-4510-6197, Zateyshchikov D.A. ORCID: 0000-0001-7065-2045.

*Corresponding author: minushkina@mail.ru

Received: 11.02.2019
Revision Received: 17.02.2019
Accepted: 25.02.2019
Large-scale implementation of interventional management for acute coronary syndrome (ACS) and the widespread use of modern antithrombotic therapy (ATT) have made safety an urgent problem. Every 10th patient after an ACS episode develops bleeding within 2 years; up to 4% suffers it during initial hospitalization [1-3]. According to some reports, over the past 10 years, the risk of in-hospital bleeding in such patients has increased 1.8 times. At the same time, those who suffered serious bleeding in a hospital have a higher risk of ischemic events, including fatal ones, at least during the next year [4]. The listed facts provided the basis for the concept of “avoiding” the bleeding risk. However, it has not been widely used in clinical practice. An essential part of this concept is the bleeding risk management, and therefore research in this area is still relevant.

The aim of this study was to identify risk factors associated with the development of bleeding in ACS patients in actual clinical practice.

Material and methods

The present analysis is based on data obtained in the open-label observational multicenter study ORACUL II. The selection of patients was carried out in the period from 2014 to 2017. The inclusion criteria are described in detail in previous publications [5]. The rationale for inclusion in the study was the indications for percutaneous coronary interventions (PCI) in ACS patient, regardless of whether PCI was performed or not.

The presented analysis included data on 1502 patients who had at least 1 follow-up visit after discharge from the hospital. The exclusion criteria were no patient consent to take part in research or inability to contact the patient after discharge. The clinical characteristics of patients are presented in Table 1.

All patients received standard therapy based on current guidelines.

At follow-up visits (when discharged from the hospital, on day 25, 90, 180 and 360 from the inclusion), all cases of bleeding were recorded with a description of their nature, source, severity, management and classification according to the Bleeding Academic Research Consortium (BARC) scale [6]. Adverse outcomes were also recorded (death and its cause, repeated episodes of ACS, re-vascularization after discharge from the hospital, strokes and cases of complicated atherosclerosis). Pharmacological class, name and dose of drugs were also recorded.

The study was approved by the local ethics committees of the organizations participating in the study. All participants completed the informed consent.

Statistical data processing was performed using SPSS 23.0 and MedCalc 18.5 software. An analysis of the distribution and its normality was carried out. Mean values and standard deviation values (M±SD) were calculated. If the distribution was considered normal, Student’s t-test was used to analyze the

Parameter	All patients (n=1502)
Men/Women (n, %)	894 (59.5%)/608 (40.5%)
Age, years	65.7±12.9
BMI, kg/m²	28.3±4.99
STE-ACS/ NSTE-ACS, (n, %)	560 (37.3%)/942 (62.7%)
History of CAD, (n, %)	1132 (74.7%)
History of MI, (n, %)	466 (31.5%)
History of HTN, (n, %)	1320 (87.9%)
History of stroke, (n, %)	164 (12.6%)
HF before current hospitalization, (n, %)	769 (51.2%)
Class 2-4 by Killip, n (%)	297
Peripheral artery disease, (n, %)	401 (26.8%)
Diabetes, (n, %)	354 (23.6%)
COPD, (n, %)	66 (4.3%)
Asthma, (n, %)	36 (2.3%)
Sleep Apnea, (n, %)	30 (2.0%)
Gastroduodenal ulcer, (n, %)	216 (14.3%)
History of GIB, (n, %)	26 (1.7%)
Hepatic disorders, (n, %)	95 (6.3%)
Thyroid disorders, (n, %)	178 (11.8%)
History of anemia, (n, %)	131 (8.7%)
History of kidney disease, (n, %)	584 (38.8%)
History of cancer, (n, %)	131 (8.7%)
Alcohol consumption, (n, %)	672 (44.7%)
Smoking, (n, %)	405 (26.9%)
History of CVD, (n, %)	553 (36.8%)

Abbreviations: BMI — body mass index, STE-ACS — ST segment elevation ACS, NSTE-ACS — non-ST segment elevation ACS, CAD — coronary artery disease, MI — myocardial infarction, HTN — hypertension, HF — heart failure, COPD — chronic obstructive pulmonary disease, GIB — gastrointestinal bleeding, CVD — cardiovascular disease.
The source and severity of bleeding recorded at different follow-up visits

	Discharge	Day 25	Day 90	Day 180	Day 360
Number of patients with bleeding	39	39	31	41	45

Source

Source					
GIB	8	7	4	4	8
Hemorrhoids	1	4	1	1	2
Paracentesis-induced bleeding	19	1	(CABG)		
Spontaneous subcutaneous hematomas	2	1	1	1	2
Hematuria	3	1	3	5	2
Nosebleeds	1	20	15	20	22
Uterine bleeding	1	1	1	1	1
Bleeding gums	2	1	1	7	6
Hemopericardium	1				
Aortic dissection	1				
Intracranial bleeding	1				
Postoperative bleeding	1	(CABG)	1		
Hemoptysis	1				
Unspecified source	3	2	1	2	

Severity by BARC classification

Type					
Type 1	12	30	19	34	36
Type 2	18	5	8	6	5
Type 3	8	3	1	1	2
Type 4	1	1	1	1	2
Type 5	1				

Abbreviations: GIB — gastrointestinal bleeding, BARC — Bleeding Academic Research Consortium.

To assess the bleeding incidence in comparison with literature data, a meta-analysis of research data published in 2015-2018 was carried out. A literature search was conducted using PubMed with the key-

significance of differences; non-parametric methods were used in cases of non-normal distribution. Discrete values were compared by Pearson’s chi-squared test.
Fig. 2. The severity of bleeding during the index hospitalization and one-year out-of-hospital follow-up.

Fig. 3. Sources of bleeding during the index hospitalization and one-year out-of-hospital follow-up.

words “acute coronary syndrome”, “bleeding”, “BARC”. The meta-analysis included studies with follow-up periods comparable to the ORACUL study. The meta-analysis of proportions was carried out using the MedCalc statistical software with the Freeman–Tukey’s transformation. The heterogeneity of the model was evaluated by the Q and I² tests.

Logistic regression was used to assess the independence of the effects of clinical factors on the bleeding risk. Parameters that demonstrated statistical significance in a univariate model were included in a multivariate analysis. The coefficients for forecast formula were calculated by linear regression analysis. Internal validation was performed using
Table 3

Clinical characteristics of patients with ACS depending on the presence of clinically significant bleeding

Parameter	Patients without bleeding or with type 1 bleeding 1 (by BARC classification) (n = 1443)	Patients with type 2-5 bleeding (by BARC) (n = 59)	p
Men/Women (n, %)	863 (59,7%)/580 (40,1%)	32 (54,2%)/27 (45,8%)	0,648
Age, years	65,6±12,91	70,8±12,70	0,002
BMI, kg/m²	28,3±5,01	28,0±4,49	0,477
STE-ACS/NSTE-ACS, (n, %)	541 (37,4%)/902 (62,6%)	19 (32,0%)/40 (68,0%)	0,233
History of CAD, (n, %)	1075 (74,4%)	47 (76,7%)	0,789
History of MI, (n, %)	441 (31,0%)	25 (42,4%)	0,066
History of HTN, (n, %)	1270 (88,0%)	50 (84,7%)	0,239
History of AF, (n, %)	267 (18,5%)	16 (37,1%)	0,102
History of stroke, (n, %)	160 (10,2%)	4 (6,9%)	0,145
HF before current hospitalization, (n, %)	737 (51,1%)	32 (54,2%)	0,666
Class 2-4 by Killip, (n, %)	280 (19,1%)	17 (28,1%)	0,050
Peripheral artery disease, (n, %)	388 (27,0%)	13 (22,0)	0,671
COPD, (n, %)	63 (4,4%)	3 (5,1%)	0,781
Asthma, (n, %)	32 (2,2%)	4 (6,8%)	0,052
Sleep apnea, (n, %)	29 (2,0%)	1 (1,7%)	0,844
Gastroduodenal ulcer, (n, %)	202 (14,1%)	14 (23,7%)	0,038
History of GIB, (n, %)	21 (1,5%)	5 (8,9%)	0,003
Hepatic disorders, (n, %)	91 (6,3%)	4 (6,8%)	0,792
Thyroid disorders, (n, %)	168 (11,7)	10 (16,9%)	0,482
History of anemia, (n, %)	119 (8,6%)	12 (20,7%)	0,010
History of kidney disease, (n, %)	556 (38,7%)	28 (44,1%)	0,759
History of cancer, (n, %)	124 (8,6%)	7 (12,1%)	0,673

Fig. 4. Distribution of ORACUL whole-numbered risk score and the probability of clinically significant bleeding (type 2-5 by BARC classification) within 1 year after ACS.
Russia). The authors do not declare conflicts of interest.

Results

During the follow-up period, bleeding was noted in only 164 out of 1502 patients (10.9%), during the index hospitalization — in 39 (2.6%), within year after the index hospitalization — in 126 (8.4%); repeated bleedings on several visits was recorded in 19 (1.2%) patients. The incidence of major bleeding (types 3-5 by BARC) during hospitalization was 0.5%, significant bleeding — 1.7% (types 2-5 by BARC). For bleeding that developed after discharge from the hospital, the incidence was 0.8%, for significant — 2.4%. The severity and sources of bleeding are described in Table 2.

Fig. 1 shows the results of meta-analysis of bleeding incidence in ACS patients according to studies published in 2015-2018 [7-18]. Meta-analysis contains only those studies where the bleeding severity was assessed according to BARC criteria. The incidence of bleeding in hospitalization and within 1 year after an ACS episode was analyzed. It should be noted that the data are very heteroge-
neous both for the in- and out-of-hospital bleeding (Q-test 319.62 and 820.53, respectively). Funnel analysis for in-hospital bleeding incidence shows symmetrical distribution, and for out-of-hospital bleeding, asymmetrical distribution, which indicates a greater variety of influencing factors. In both cases, the ORACUL study data were within the 95% confidence interval.

During the index hospitalization, bleeding associated with coronary angiography (CAG) and revascularization were the most frequent — 49%; gastrointestinal bleeding (GIB) were in the second place — 23%. One of the bleeding was fatal (aortic dissection) (Fig. 2). After discharge from the hospital, nasal, gingival, urological and some other hemorrhages were most common (76%); GIB were in the second place (20%). Periprocedural (1%) and unspecified (3%) bleeding were rare (Fig. 3). During the index hospitalization, the severity of bleeding corresponded to type 2 (40%) and type 3 (22%) by BARC classification; there was 1 case of fatal bleeding (3%) (type 5). After discharge from the hospital, nuisance bleeding was more often observed (type 1) (76%). Two cases of bleeding associated with coronary artery bypass grafting (CABG) (type 4) and 3 cases of fatal bleeding (type 5) were noted. In general, type 2-5 bleeding (minor, major, CABG-related and fatal) was noted in 64 patients (37.6%).

Given the absolute number of bleeding and the significance of types 2-5 bleeding, they were combined to calculate the risk. It was revealed that the development of type 2-5 bleeding is associated with a gastric and duodenal ulcers, a history of GIB, kidney diseases and creatinine clearance decrease, a history of anemia and levels of hemoglobin and hematocrit upon admission. It was also associated with age, anticoagulants as part of a triple or dual ATT, PCI during index hospitalization and class 2-4 by Killip upon admission (Table 3).

According to the regression analysis, the following factors were independently associated with bleeding: age, hemoglobin and creatinine clearance decrease, PCI in index hospitalization, the use of oral anticoagulants, class 2-4 by Killip, and a history of peptic ulcer disease (Table 4). These factors were included in the ORACUL risk assessment model. For computational convenience, the coefficients obtained in the regression analysis were converted to whole numbers (points). For each continuous variable, cut-off points were created at which the ratio between the variable and the bleeding risk became flat and clinically significant (Table 5). The point total for each patient was compared with the risk of bleeding (Fig. 4). With the internal validation, the following classification intervals were obtained: with a total of up to 67 points, the bleeding risk is low (<1.5%), 68-107 points — moderate (2.8%), 108-133 points — high (5.1%), over 134 points — very high — 11.7% (Table 6). Moreover, in the lower classification

Table 4
Independent predictors of type 2-5 bleeding by BARC classification

Factors	Type 2-5 bleeding by BARC classification	Univariate analysis	Multivariate analysis	
OR (CI 95%)	p	OR (CI 95%)	p	
Age, quartiles	2.58 [1.59-4.18]	0.001	2.66 [1.19-2.31]	0.003
Class 2-4 by Killip upon admission	2.16 [1.51-3.11]	0.017	2.01 [1.17-2.96]	0.033
Gastroduodenal ulcer	1.91 [1.03-3.55]	0.04	5.00 [1.154-1.71]	0.031
History of GIB	6.23 [2.26-17.19]	0.001	0.95 [0.68-1.32]	0.799
History of anemia	2.55 [1.32-4.93]	0.005	1.13 [0.63-1.68]	0.754
Anticoagulants as part of a triple or dual ATT	2.24 [1.07-4.72]	0.032	1.74 [1.01-2.47]	0.047
PCI in index hospitalization	2.31 [1.25-4.28]	0.007	3.03 [1.44-6.37]	0.003
Hb, quartiles	2.29 [1.59-3.33]	0.0001	1.97 [1.06-2.87]	0.045
Hematocrit, quartiles	1.94 [1.08-2.76]	0.03	0.99 [0.67-1.38]	0.899
CrCL by Cockcroft-Gault equation, ml/min, quartiles	1.60 [1.13-2.28]	0.008	2.12 [1.43-2.86]	0.02

Abbreviations: GIB — gastrointestinal bleeding, ATT — antithrombotic therapy, PCI — percutaneous coronary intervention, Hb — hemoglobin, CrCl — creatinine clearance.
interval, the risk of bleeding was lower than expected, and in the intervals of 68 points or more — higher than expected.

The risk classification by the ordered score was adequate — $p=0.576$ by the Hosmer-Lemeshev test, and the prognostic value was high (ROC-curve — 0.762) (Fig. 5). The sensitivity of the model was 62%, specificity — 78%.

Discussion

Bleeding events in patients with ACS can be one of the most important unfavorable prognostic factors. For the first time, the effect of bleeding on the prognosis of ACS patients was shown in meta-analysis with 24 thousand patients of 3 studies — GUSTO IIb, PURSUIT and PARAGON B. Meta-analysis showed that patients who received a blood transfusion during hospitalization due to ACS have a significantly higher mortality rate and recurrent myocardial infarction (MI) during the first 30 days after ACS [19]. In the OASIS-5 study, fondaparinux was significantly safer than enoxaparin with similar efficacy during treatment. During follow-up after treatment, ischemic events were also significantly less common in the fondaparinux group, which suggests that every sixth death recorded in ACS patients in the first 30 days from the destabilization occurred in patients with bleeding during hospitalization [20]. A subanalysis of the PLATO study also showed that the increased risk of adverse outcome after early spontaneous ischemic events and after episodes of major bleeding is comparable. Moreover, bleeding often precede recurrent ischemic events [21]. A similar correlation of hemorrhagic and ischemic events was revealed in the Swiss cohort of patients with ACS, including 1901 patients. The risk assessment scale, which includes only 3 parameters (age, ejection fraction and creatinine level), made it possible to predict the risk of coronary events, death and strokes. At the same time, the severity of bleeding, evaluated by the TIMI and GUSTO scales, correlated with an increase in the number of points of the coronary risk [22]. ACS patients commonly (10-40% of cases) are diagnosed with anemia, which can also be a symptom of

Table 5

Parameters	ORACUL score
Age up to 55 years old	0 points
56-65 years old	8 points
66-75 years old	16 points
Over 75 years old	24 points
Hemoglobin upon admission >125 g/L	0 points
100-125 g/L	48 points
<100 g/L	96 points
Killip class upon admission	
Class 1	0 points
Class 2-4	17 points
Creatinine clearance	
≥90 ml/min	0 points
60-89 ml/min	6 points
<60 ml/min	12 points
History of gastroduodenal ulcer	20 points
Anticoagulant+ antiplatelet agents after ACS	36 points
(dual or triple therapy)	
PCI in index hospitalization	38 points

Abbreviations: ACS — acute coronary syndrome, PCI — percutaneous coronary intervention.

Table 6

Internal	% adverse outcome	The ratio of the probability to the expected	95% CI
0-67	1,5%	0,555	0,388-0,792
68-107	2,8%	1,269	0,783-2,054
108-133	5,1%	1,987	1,021-3,868
134-250	11,7%	6,831	3,562-13,099

Fig. 5. ROC-curve for the ORACUL score.
severe concomitant diseases. In some patients, a hemoglobin decrease occurs during treatment in a hospital and is associated with active antithrombotic therapy and bleeding. As a rule, in-hospital bleeding and a hemoglobin decrease correlate with an unfavorable prognosis of coronary artery disease and an increased risk of thrombotic complications [23]. Such data emphasize the need for prediction and possible prevention of bleeding in ACS patients, as well as maintaining a balance of thrombotic and bleeding risks during therapy.

When using the BARC bleeding classification [6], it was shown that the increased risk of recurrent ischemic events in ACS patients is typical for type 2-5 bleeding; type 1 (nuisance) bleeding does not significantly affect the risk of adverse outcomes [24]. Prognostic value of class 3b hemorrhages was comparable with repeated MI. The mortality rate after recurrent MI was significantly lower than after class 3c bleeding [25].

In our paper, the incidence of significant bleeding was lower than in most previously published studies. Our meta-analysis showed a high heterogeneity of data on the bleeding incidence, which may be associated with ATT. At the same time, in-hospital bleeding during index hospitalization demonstrates a greater homogeneity of data. The large scatter of data requires additional analysis of methods for assessing the bleeding severity, and also indicates the need to improve forecast models.

In the BleeMACS register, the incidence of major bleeding (3-5 types by BARC) in the first year after PCI was 3.2% per year (in our study — 2.3%). It is worth noting that these patients are close to those included in our study by their main clinical characteristics. Also, the factors used in BleeMACS bleeding risk score was close to those from ORACUL study [26]. Both models include factors such as age, creatinine and hemoglobin levels. In our risk assessment model, a history of peptic ulcer was more significant factor than a bleeding history (as in BleeMACS). The history of cancer did not significantly affect the prognosis. It should be noted that factors such as age, hemoglobin level (or anemia history), decreased renal function are included in most risk assessment models for bleeding [27, 28]. A decrease in creatinine clearance below 60 ml/min is used as an independent factor in the PARIS score [29]. In our register, glomerular filtration rate (GFR) was not used. The American register of ACS patients, including 1699 patients from 3 centers, compared the prognostic value of GFR using the MDRD and CKD-EPI formulas and creatinine clearance using Cockcroft-Gault formula regarding the risk of hemorrhagic and thrombotic events. It showed that creatinine clearance had higher diagnostic value in assessing the risk of coronary events and overall mortality compared with MDRD GFR and risk of bleeding compared with CKD-EPI GFR [30].

In the PARIS score, one of the prognostic factors is the anticoagulant as a part of a triple ATT; in our risk score, any use of anticoagulants was a predictor of a high bleeding risk.

Heart failure upon admission to the hospital was another independent risk factor for bleeding in our study. Heart failure is also used in the ACTION and CRUSADE scores [31, 32]. In one study, a reduced ejection fraction was used as an independent risk factor for bleeding [33].

The management of patients was also significant in our study — patients after PCI had a 3 times higher risk of bleeding. This is consistent with the ACCOAST study, where PCI increased the risk of bleeding by 2.2 times [33].

Thus, the ORACUL score showed high prognostic value for assessing the risk of all significant bleeding within 1 year after ACS. The score is easy to use and predicts bleeding in actual clinical practice. These factors allow for the implementation of the score in practice.

Conflicts of Interest: nothing to declare.

References

1. Voss WB, Lee M, Devlin GP, Kerr AJ. Incidence and type of bleeding complications early and late after acute coronary syndrome admission in a New Zealand cohort (ANZACS-QI-7). NZ Med J. 2016 Jul 1;129(1437):27-38.
2. Castini D, Centola M, Ferrante G, et al. Comparison of CRUSADE and ACUITY-HORIZONS Bleeding Risk Scores in Patients with Acute Coronary Syndromes. Heart, lung & circulation 2018. doi:10.1016/j.ijcard.2018.03.116.
3. Zocca P, Kok MM, van der Heijden LC, et al. High bleeding risk patients with acute coronary syndromes treated with contemporary drug-eluting stents and Clopidogrel or Ticagrelor: Insights from CHANGE DAPT. International journal of cardiology. 2018;268. doi:10.1016/j.ijcard.2018.03.116.
4. Sabbag A, Guetta V, Fefer P, et al. Temporal Trends and Outcomes Associated with Major Bleeding in Acute Coronary Syndromes: A Decade-Long Perspective from the Acute Coronary Syndrome Israeli Surveys 2000-2010. Cardiology. 2015;132(3):163-71.
5. Averkova AO, Brazhnik VA, Koroleva OS, et al. Acute coronary syndrome in young patients with familial hypercholesterolemia based on the results of ORACUL II observation trial. Medical news of North Caucasus. 2017;12(1):5-8. (In Russ.)
6. Mehran R, Rao SV, Bhatt DL, et al. Standardized Bleeding Definitions for Cardiovascular Clinical Trials. A Consensus Report From the Bleeding Academic Research Consortium. 2011;123(23):2736-47.

7. Guerrero C, Garay A, Ariza-Solé A, et al. Anemia in patients with acute coronary syndromes treated with prasugrel or ticagrelor: Insights from the REMINI registry. Thromb Res. 2018 May 22;167:142-8. doi:10.1016/j.thromres.2018.05.024.

8. Amin AP, Wang TY, McCoy L, et al. Impact of Bleeding on Quality of Life in Patients on DAPT. Insights From TRANSLATE-ACS. J Am Coll Cardiol. 2016 Jan 5;67(1):59-65. doi:10.1016/j.jacc.2015.10.034.

9. Vaduganathan M, Harrington RA, Stone GW, et al. Short- and long-term mortality following bleeding events in patients undergoing percutaneous coronary intervention: insights from four validated bleeding scales in the CHAMPION trials. EuroIntervention. 2018 Feb 2;13(15):e1841-e1849. doi:10.4244/EIJ-17-00723.

10. Manzano-Fernández S, Sánchez-Martínez M, Flores-Blanco PJ, et al. Comparison of the Global Registry of Acute Coronary Events Risk Score Versus the Can Rapid Risk Stratification of Unstable Angina Patients Suppress Adverse Outcomes With Early Implementation of the ACC/AHA Guidelines Risk Score to Predict In-Hospital Mortality and Major Bleeding in Acute Coronary Syndromes. Am J Cardiol. 2016 Apr 1;117(7):1047-54. doi:10.1016/j.amjcard.2015.12.048.

11. Abu-Assi E, Raposeiras-Roubin S, Cobas-Paz R, et al. Assessing the performance of the PRECISE-DAPT and PARIS risk scores for predicting one-year out-of-hospital bleeding in acute coronary syndrome patients. EuroIntervention. 2018 Mar 20;13(16):1914-22. doi:10.4244/EIJ-D-17-00550.

12. Song L, Guan C, Yan H, et al. Validation of contemporary risk scores in predicting coronary thrombotic events and major bleeding in patients with acute coronary syndrome after drug-eluting stent implantations. Catheter Cardiovasc Interv. 2018 Feb 15;91(1):573-81. doi:10.1002/ccd.27486.

13. Godino C, Chiarito M, Donahue M, et al. Midterm and one-year outcome of amphilimus polymer free drug eluting stent in patients needing short dual antiplatelet therapy. Insight from the ASTUTE registry (Amphilimus™ Italian multicenter registry). Int J Cardiol. 2017 Mar 15;231:54-60. doi:10.1016/j.ijcard.2017.01.023.

14. Sharma PK, Chhatriviala AK, Cohen DJ, et al. Predicting long-term bleeding after percutaneous coronary intervention. Catheter Cardiovasc Interv. 2017 Feb 1;89(2):199-206. doi:10.1002/ccd.26529.

15. Sibbing D, Aradi D, Jacobshagen C, et al. TROPICAL-ACS Investigators. Guided de-escalation of antiplatelet treatment in patients with acute coronary syndrome undergoing percutaneous coronary intervention (TROPICAL-ACS): a randomised, open-label, multicentre trial. Lancet. 2017 Oct 14;390(10104):1747-57. doi:10.1016/S0140-6736(17)32155-4.

16. Hamilos M, Petoussis S, Xanthopoulos I, et al. Antiplatelet treatment in diabetic patients with acute coronary syndrome undergoing percutaneous coronary intervention: a Greek AntiPlatelet registry substudy. Coron Artery Dis. 2018 Jan;29(1):53-9. doi:10.1097/MCA.0000000000000547.

17. Vranckx P, White HD, Huang Z, et al. Validation of BARC Bleeding Criteria in Patients With Acute Coronary Syndromes: The TRACER Trial. J Am Coll Cardiol. 2016 May 10;67(18):2135-44. doi:10.1016/j.jacc.2016.02.056.

18. Biscaglia S, Campo G, Pavasini R, et al. Occurrence, causes, and outcome after switching from ticagrelor to clopidogrel in a real-life scenario: data from a prospective registry. Platelets. 2016 Jul;27(5):484-7. doi:10.3109/09537104.2015.1198157.

19. Rao SV, Jollis JG, Harrington RA, et al. Relationship of blood transfusion and clinical outcomes in patients with acute coronary syndromes. JAMA 2004, 292(13):1555-62.

20. Budaj A, Eikelboom JW, Mehta SR, et al. Improving clinical outcomes by reducing bleeding in patients with non-ST-elevation acute coronary syndromes. European heart journal. 2009;30(6):655-61.

21. Ducrocq G, Schulte PJ, Budaj A, et al. Balancing the risk of spontaneous ischemic and major bleeding events in acute coronary syndromes. American heart journal. 2017;186:91-9.

22. Stathil BE, Wischnerneus MB, Jakob P, et al. Predictive value of the age, creatinine, and ejection fraction (ACEF) score in patients with acute coronary syndromes. International journal of cardiology 2018. doi:10.1016/j.ijcard.2018.05.134.

23. Stucchi M, Cantonis S, Piccinelli E, et al. Anemia and acute coronary syndrome: current perspectives. Vascular health and risk management. 2018;14:109-18.

24. Valgimigli M, Costa F, Lokhrygyna Y, et al. Trade-off of myocardial infarction vs. bleeding types on mortality after acute coronary syndrome: lessons from the Thrombin Receptor Antagonist for Clinical Event Reduction in Acute Coronary Syndrome (TRACER) randomized trial. European heart journal. 2017;38(11):804-10.

25. Caneiro-Queija B, Abu-Assi E, Raposeiras-Roubin S, et al. Differential Prognostic Impact on Mortality of Myocardial Infarction Compared With Bleeding Severity in Contemporary Acute Coronary Syndrome Patients. Rev Esp Cardiol. 2018;71:782-6.

26. Raposeiras-Roubin S, Faxen J, Iniguez-Romo A, et al. Development and external validation of a post-discharge bleeding risk score in patients with acute coronary syndrome: The BleedMACS score. International journal of cardiology 2018;254:10-5.

27. Alraies MC, Lee SY, Lipinski MJ, et al. Effect of Bleeding Risk on Type of Stent Used in Patients Presenting With Acute Coronary Syndrome. The American journal of cardiology. 2017;120(8):1272-8.

28. Alfredsson J, Neely B, Neely ML, et al. Predicting the risk of bleeding during dual antiplatelet therapy after acute coronary syndromes. Heart (British Cardiac Society) 2017, 103(15):1168-76.

29. Baber U, Mehran R, Giustino G, et al. Coronary Thrombosis and Major Bleeding After PCI With Drug-Eluting Stents: Risk Scores Compared With Bleeding Severity in Contemporary Acute Coronary Syndrome Patients. J Am Heart Assoc. 2018;7:1062.

30. Baber U, Mehran R, Giustino G, et al. Coronary Thrombosis and Major Bleeding After PCI With Drug-Eluting Stents: Risk Scores Compared With Bleeding Severity in Contemporary Acute Coronary Syndrome Patients. Rev Esp Cardiol. 2018;71:782-6.

31. Baber U, Mehran R, Giustino G, et al. Coronary Thrombosis and Major Bleeding After PCI With Drug-Eluting Stents: Risk Scores Compared With Bleeding Severity in Contemporary Acute Coronary Syndrome Patients. Rev Esp Cardiol. 2018;71:782-6.

32. Mathews R, Peterson ED, Chen AY, et al. In-hospital major bleeding in patients with acute coronary syndromes treated with prasugrel or ticagrelor: Insights from the ASTUTE registry (Amphilimus™ Italian multicenter registry). Int J Cardiol. 2017 Mar 15;231:54-60. doi:10.1016/j.ijcard.2017.01.023.

33. Mathews R, Peterson ED, Chen AY, et al. In-hospital major bleeding in patients with acute coronary syndromes treated with prasugrel or ticagrelor: Insights from the ASTUTE registry (Amphilimus™ Italian multicenter registry). Int J Cardiol. 2017 Mar 15;231:54-60. doi:10.1016/j.ijcard.2017.01.023.