Data Article

Data on removal kinetics of pharmaceutical compounds, artificial sweeteners, and perfluoroalkyl substances from water using a passive treatment system containing zero-valent iron and biochar

YingYing Liu, David W. Blowes, Carol J. Ptacek

Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

A R T I C L E I N F O

Article history:
Received 29 June 2019
Received in revised form 9 September 2019
Accepted 19 September 2019
Available online 26 September 2019

Keywords:
Removal kinetics
Pharmaceutical compounds
Artificial sweeteners
Perfluoroalkyl substances
Passive treatment system
Zero-valent iron
Biochar

A B S T R A C T

The data presented in this paper relate to the research paper “Removal of pharmaceutical compounds, artificial sweeteners, and perfluoroalkyl substances from water using a passive treatment system containing zero-valent iron and biochar” [1]. Four columns packed with different ratios of reactive media, including silica sand (SS), zero-valent iron (ZVI), and biochar (BC), were evaluated for simultaneous removal of 14 emerging contaminants from water. The target emerging contaminants included eight pharmaceuticals (carbamazepine, caffeine, sulfamethoxazole, 3,4-methylenedioxymethylamphetamine, 3,4-methylenedioxymethamphetamine, ibuprofen, gemfibrozil, and naproxen), four artificial sweeteners (acesulfame-K, sucralose, saccharin, and cyclamate), and two perfluoroalkyl substances (perfluorooctanoic acid and perfluorooctane sulfonic acid). The samples for target contaminant analysis were collected from the influent, effluent, and profile (along the flow direction) ports of each column. The removal data (concentration vs. residence time) for each target contaminant were fitted to the first-order (exponential decay equation) or zero-order (linear equation) model using SigmaPlot. The removal rate, removal rate constant (k_{obs}), mass normalized rate constant (k_M), surface area...
normalized rate constant \(k_{SA}\), specific reaction rate constant), and half-life \(t_{0.5}\) of target contaminants in Columns ZVI, BC, and \((ZVI + BC)\) were calculated and summarized in this dataset.

© 2019 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Specifications Table

Subject	Chemistry
Specific subject area	Organic chemistry, removal kinetics
Type of data	Table
How data were acquired	Software SigmaPlot
Data format	Analyzed
Parameters for data collection	The first-order kinetic data were obtained through the exponential decay fitting in the Regression Wizard in SigmaPlot; the zero-order kinetic data were obtained through the linear fitting in Regression Wizard in SigmaPlot.
Description of data collection	The removal kinetic data were collected through the data analysis (Regression Wizard) in SigmaPlot.
Data source location	University of Waterloo, Waterloo, Ontario, Canada
Data accessibility	Data are available in this article
Related research article	YingYing Liu, David W. Blowes, Carol J. Ptacek, and Laura G. Groza
	Removal of pharmaceutical compounds, artificial sweeteners, and perfluoroalkyl substances from water using a passive treatment system containing zero-valent iron and biochar
	Science of the Total Environment
	https://doi.org/10.1016/j.scitotenv.2019.06.450

Value of the Data

- The data in this article provide important information on degradation kinetics such as removal rates and half-lives for 14 emerging contaminants treated by zero-valent iron (ZVI) and biochar (BC).
- Researchers working in the field of remediation of emerging contaminants in water can benefit from the data in this article.
- The data present in this article can provide useful information and guidelines for selecting the appropriate types of reactive media to remove specific emerging contaminants.
- The removal kinetic data (removal rate and half-life) can be used to design reactors or permeable reactive barriers (PRBs) for future large-scale field applications.

1. Data

The dataset showed the removal kinetic parameters, including removal rate constant \(k_{obs}\), mass normalized rate constant \(k_M\), surface area normalized rate constant \(k_{SA}\), specific reaction rate constant), and half-life \(t_{0.5}\), for 14 target emerging contaminants in Column ZVI, Column BC, and Column \((ZVI + BC)\). The kinetic parameters for each contaminant are summarized in separate tables (Tables 1–14). The raw data (concentration vs. residence time) of each contaminant can be found in the related research article [1].

2. Experimental design, materials, and methods

2.1. Materials

The native analyte compounds carbamazepine (CBZ), caffeine (CAF), sulfamethoxazole (SMX), ibuprofen (IBU), gemfibrozil (GEM), naproxen (NAP), cyclamate (CYC), and saccharin (SAC) for calibration standards and input stock solution were obtained from Sigma-Aldrich (Oakville, ON, Canada).
Table 1
First-order removal rate constant (k_{obs}), mass normalized rate constant (k_M), surface area normalized rate constant (k_{SA}, specific reaction rate constant), and half-life ($t_{0.5}$) of pharmaceutical carbamazepine in Column ZVI, Column BC, and Column (ZVI + BC). k_{obs} is calculated using least-squares regression during two experimental stages. C is the carbamazepine concentration.

Column	Stage	PV	Removal rate, μmol L$^{-1}$ d$^{-1}$	k_{obs}, d$^{-1}$	k_M, L g$^{-1}$ d$^{-1}$	k_{SA}, L m$^{-2}$ d$^{-1}$	$t_{0.5}$, d	R^2
Column 2 (ZVI)	1	1	1.1E+01	1.1E+01	2.6E-03	2.8E-04	0.06	0.999
		13	4.9 × C	4.9	1.1E-03	1.2E-04	0.14	0.975
		25	4.4 × C	4.4	1.0E-03	1.1E-04	0.16	0.965
	2	53	1.2 × C	1.2	2.9E-04	3.0E-05	0.56	0.931
Column 3 (BC)	1	1	5.4 × C	5.4	1.2E-02	1.8E-04	0.19	0.998
		13	2.5 × C	2.5	5.3E-03	8.2E-05	0.28	0.998
		25	1.9 × C	1.9	4.2E-03	6.4E-05	0.36	0.996
	2	53	0.7 × C	0.7	1.5E-03	2.3E-05	1.0	0.970
Column 4 (ZVI + BC)	1	1	8.2 × C	8.2	7.2E-03	2.1E-04	0.09	0.999
		13	4.5 × C	4.5	3.9E-03	1.2E-04	0.16	0.966
		25	4.0 × C	4.0	3.5E-03	1.0E-04	0.17	0.970
	2	53	1.3 × C	1.3	1.1E-03	3.3E-05	0.55	0.992

Table 2
First-order removal rate constant (k_{obs}), mass normalized rate constant (k_M), surface area normalized rate constant (k_{SA}, specific reaction rate constant), and half-life ($t_{0.5}$) of pharmaceutical caffeine in Column ZVI, Column BC, and Column (ZVI + BC). k_{obs} is calculated using least-squares regression during two experimental stages. C is the caffeine concentration.

Column	Stage	PV	Removal rate, μmol L$^{-1}$ d$^{-1}$	k_{obs}, d$^{-1}$	k_M, L g$^{-1}$ d$^{-1}$	k_{SA}, L m$^{-2}$ d$^{-1}$	$t_{0.5}$, d	R^2
Column 2 (ZVI)	1	1	1.6E+01	1.6E+01	3.7E-03	3.9E-04	0.04	0.999
		13	7.2 × C	7.2	1.7E-03	1.8E-04	0.10	0.998
		25	5.1 × C	5.1	1.2E-03	1.2E-04	0.14	0.982
	2	53	1.5 × C	1.5	3.5E-04	3.6E-05	0.47	0.961
Column 3 (BC)	1	1	4.8 × C	4.8	1.0E-02	1.6E-04	0.14	0.999
		13	2.8 × C	2.8	6.0E-03	9.4E-05	0.25	0.999
		25	2.2 × C	2.2	4.8E-03	7.4E-05	0.31	0.996
	2	53	1.0 × C	1.0	2.1E-03	3.3E-05	0.70	0.973
Column 4 (ZVI + BC)	1	1	6.9 × C	6.9	6.0E-03	1.8E-04	0.10	0.996
		13	5.5 × C	5.5	4.8E-03	1.4E-04	0.13	0.989
		25	4.5 × C	4.5	3.9E-03	1.2E-04	0.15	0.973
	2	53	1.7 × C	1.7	1.5E-03	4.5E-05	0.40	0.996

Table 3
First-order removal rate constant (k_{obs}), mass normalized rate constant (k_M), surface area normalized rate constant (k_{SA}, specific reaction rate constant), and half-life ($t_{0.5}$) of pharmaceutical sulfamethoxazole in Column ZVI, Column BC, and Column (ZVI + BC). k_{obs} is calculated using least-squares regression during two experimental stages. C is the sulfamethoxazole concentration. "---" represents not applicable.

Column	Stage	PV	Removal rate, μmol L$^{-1}$ d$^{-1}$	k_{obs}, d$^{-1}$	k_M, L g$^{-1}$ d$^{-1}$	k_{SA}, L m$^{-2}$ d$^{-1}$	$t_{0.5}$, d	R^2
Column 1 (Control)	1	25	0.2 × C	0.2	---	---	3.6	0.877
		53	0.4 × C	0.4	---	---	1.8	0.984
Column 2 (ZVI)	1	1	4.5E+02	4.5E+02	1.1E-01	1.1E-02	0.002	1.000
		13	4.7E+02	4.7E+02	1.1E-01	1.1E-02	0.001	1.000
		25	4.6E+02	4.6E+02	1.1E-01	1.1E-02	0.001	1.000
	2	53	1.5E+02	1.5E+02	3.5E-02	3.7E-03	0.005	1.000
Column 3 (BC)	1	1	1.6 × C	1.6	3.5E-03	5.4E-05	0.43	0.999
		13	1.2 × C	1.2	2.5E-03	3.8E-05	0.60	0.999
		25	1.1 × C	1.1	2.4E-03	3.8E-05	0.61	0.993
	2	53	0.5 × C	0.5	1.1E-03	1.7E-05	1.4	0.991
Column 4 (ZVI + BC)	1	1	4.5E+02	4.5E+02	4.0E-01	1.2E-02	0.002	1.000
		13	4.7E+02	4.7E+02	4.1E-01	1.2E-02	0.001	1.000
		25	4.6E+02	4.6E+02	4.1E-01	1.2E-02	0.001	1.000
	2	53	1.5E+02	1.5E+02	1.3E-01	3.9E-03	0.005	1.000
Table 4
First-order removal rate constant (k_{obs}), mass normalized rate constant (k_M), surface area normalized rate constant (k_{SA}, specific reaction rate constant), and half-life ($t_{0.5}$) of pharmaceutical 3,4-methylenedioxymethamphetamine (MDA) in Column ZVI, Column BC, and Column (ZVI + BC). k_{obs} is calculated using least-squares regression during two experimental stages. ^c is the MDA concentration.

Column	Stage	PV	Removal ratea, (μmol L$^{-1}$ d$^{-1}$)	k_{obs}, d$^{-1}$	k_M, L g$^{-1}$ d$^{-1}$	k_{SA}, L m$^{-2}$ d$^{-1}$	$t_{0.5}$, d	R^2
Column 2 (ZVI)	1	1	1.9E+02 × C	1.9E+02	4.3E-02	4.6E-03	0.004	1.000
Column 2 (ZVI)	13	1.3E+01 × C	1.3E+01	3.0E-03	3.1E-04	0.06	0.999	
Column 2 (ZVI)	25	7.8 × C	7.8	1.8E-03	1.9E-04	0.09	0.998	
Column 3 (BC)	2	53	2.4 × C	2.4	5.5E-04	5.8E-05	0.29	0.996
Column 4 (ZVI + BC)	1	1	2.0E+01 × C	2.0E+01	1.8E-02	5.3E-04	0.03	1.000
Column 4 (ZVI + BC)	13	1.2E+01 × C	1.2E+01	1.0E-02	3.0E-04	0.06	0.999	
Column 4 (ZVI + BC)	25	8.7 × C	8.7	7.6E-03	2.3E-04	0.08	0.999	

Table 5
First-order removal rate constant (k_{obs}), mass normalized rate constant (k_M), surface area normalized rate constant (k_{SA}, specific reaction rate constant), and half-life ($t_{0.5}$) of pharmaceutical 3,4-methylenedioxymethamphetamine (MDMA) in Column ZVI, Column BC, and Column (ZVI + BC). k_{obs} is calculated using least-squares regression during two experimental stages. ^c is the MDMA concentration.

Column	Stage	PV	Removal ratea, (μmol L$^{-1}$ d$^{-1}$)	k_{obs}, d$^{-1}$	k_M, L g$^{-1}$ d$^{-1}$	k_{SA}, L m$^{-2}$ d$^{-1}$	$t_{0.5}$, d	R^2
Column 2 (ZVI)	1	1	3.0E+02 × C	3.0E+02	6.9E-02	7.3E-03	0.002	1.000
Column 2 (ZVI)	13	3.5E+02 × C	3.5E+02	8.2E-02	8.7E-03	0.002	1.000	
Column 2 (ZVI)	25	1.4E+01 × C	1.4E+01	3.2E-03	3.4E-04	0.05	1.000	
Column 3 (BC)	2	53	4.0 × C	4.0	9.3E-04	9.8E-05	0.17	1.000
Column 3 (BC)	1	1	1.1E+01 × C	1.1E+01	2.3E-02	3.6E-04	0.07	0.999
Column 3 (BC)	13	7.7 × C	7.7	1.7E-02	2.6E-04	0.09	0.998	
Column 3 (BC)	25	5.2 × C	5.2	1.1E-02	1.7E-04	0.13	0.997	
Column 4 (ZVI + BC)	1	1	2.3E+01 × C	2.3E+01	2.2E-02	6.6E-04	0.03	1.000
Column 4 (ZVI + BC)	13	1.6E+01 × C	1.6E+01	1.4E-02	4.1E-04	0.04	1.000	
Column 4 (ZVI + BC)	25	1.0E+01 × C	1.0E+01	9.0E-03	2.7E-04	0.07	0.999	
Column 4 (ZVI + BC)	2	53	4.3 × C	4.3	3.8E-03	1.1E-04	0.16	1.000

Table 6
First-order removal rate constant (k_{obs}), mass normalized rate constant (k_M), surface area normalized rate constant (k_{SA}, specific reaction rate constant), and half-life ($t_{0.5}$) of pharmaceutical ibuprofen in Column ZVI, Column BC, and Column (ZVI + BC). k_{obs} is calculated using least-squares regression during two experimental stages. ^c is the ibuprofen concentration.

Column	Stage	PV	Removal ratea, (μmol L$^{-1}$ d$^{-1}$)	k_{obs}, d$^{-1}$	k_M, L g$^{-1}$ d$^{-1}$	k_{SA}, L m$^{-2}$ d$^{-1}$	$t_{0.5}$, d	R^2
Column 2 (ZVI)	1	1	2.6 × C	2.6	6.0E-04	6.3E-05	0.27	0.943
Column 2 (ZVI)	13	1.2 × C	1.2	2.9E-04	3.0E-05	0.56	0.926	
Column 2 (ZVI)	25	0.9 × C	0.9	2.2E-04	2.3E-05	0.74	0.932	
Column 3 (BC)	2	53	0.2 × C	0.2	4.7E-05	4.9E-06	3.5	0.864
Column 3 (BC)	1	1	1.9 × C	1.9	4.2E-03	6.5E-05	0.36	0.992
Column 3 (BC)	13	1.2 × C	1.2	2.6E-03	4.0E-05	0.57	0.997	
Column 3 (BC)	25	1.1 × C	1.1	2.4E-03	3.7E-05	0.63	0.996	
Column 4 (ZVI + BC)	2	53	0.4 × C	0.4	8.9E-04	1.4E-05	1.7	0.992
Column 4 (ZVI + BC)	1	1	2.9 × C	2.9	2.5E-03	7.6E-05	0.24	0.978
Column 4 (ZVI + BC)	13	1.7 × C	1.7	1.5E-03	4.5E-05	0.41	0.958	
Column 4 (ZVI + BC)	25	1.6 × C	1.6	1.4E-03	4.1E-05	0.44	0.952	
Column 4 (ZVI + BC)	2	53	0.5 × C	0.5	4.0E-04	1.2E-05	1.5	0.941
USA). The native analytes per isotope-labeled MDA-d5 and MDMA-d5 were obtained from Cerilliant Corporation (Round Rock, TX, USA). 3,4-methylenedioxyamphetamine (MDA), 3,4-methylenedioxymethamphetamine (MDMA), and their isotope-labeled standards SMX-d4, CYC-d11, SAC-13C6, ACE-K-d4, and SCL-d6 were obtained from Toronto Research Chemicals Inc. (Toronto, ON, Canada). The native analytes acesulfame-K (ACE-K), sucralose (SCL), and the isotope-labeled standards CBZ-d10, CAF-d3, IBU-d3, GEM-d6, and [13C]-NAP were obtained from Cambridge Isotope Laboratory Inc. (Tewksbury, MA, USA). The isotope-labeled standards [13C]-PFOA and [13C]-PFOS were obtained from Wellington Laboratories Inc. (Guelph, ON, Canada). The analytes PFOA and PFOS as dry powder for preparation of the input stock solution were obtained from Sigma-Aldrich, Canada. The silica sand (SS; 0.6–0.8 mm) was obtained from US Silica Company Inc. (Ottawa, IL, USA). The biochar (BC; oak hard wood; 0.50–2.26 mm) was obtained from Cowboy Charcoal Co. (Brentwood, TN, USA).

2.2. Column experimental design

Four acrylic columns were used, each column was 30 cm in length and 5 cm inner diameter. Influent and effluent ports were installed on the bottom and top of each column, respectively, for introducing...
Table 9
Zero- or first-order removal rate constant (k_{obs}), mass normalized rate constant (k_M), surface area normalized rate constant (k_{SA}), specific reaction rate constant, and half-life ($t_{0.5}$) of artificial sweetener acesulfame-K in Column ZVI, Column BC, and Column (ZVI + BC). Removal rate constant k_{obs} is calculated using least-squares regression during two experimental stages. "--" represents no removal of acesulfame-K was observed.

Column	Stage	PV	k_{obs}	k_M	k_{SA}	$t_{0.5}$	R^2		
Column 2 (ZVI)	1	1	2.3E-01 x C	2.3E-01	5.3E-05	5.6E-06	3.1	0.749	
	13		1.0E-01 x C	1.0E-01	2.4E-04	2.6E-04	6.6	0.906	
	25		9.8E-02 x C	9.8E-02	2.3E-04	2.4E-04	7.0	0.874	
	2	53	1.1E-01 x C	1.1E-01	2.7E-04	2.8E-04	6.1	0.870	
Column 3 (BC)	1	1	1.6 E+01	1.6 E+01	3.4E-02	5.3E-04	3.2	0.864	
	13		--	--	--	--	--		
	25		--	--	--	--	--		
	2	53	--	--	--	--	--		
Column 4 (ZVI + BC)	1	1	5.9	5.8	5.1E-03	1.5E-04	8.3	0.976	
	13		4.2	4.2	3.7E-03	1.1E-04	12	0.634	
	25		4.9	4.9	3.3E-03	1.3E-04	10	0.835	
	2	53		3.2	3.2	2.8E-03	8.3E-05	17	0.866

a Removal of acesulfame-K followed a first-order reaction rate, unit of k_{obs} is d$^{-1}$, unit of k_M is L g$^{-1}$ d$^{-1}$, unit of k_{SA} is L m$^{-2}$ d$^{-1}$.

b Removal of acesulfame-K followed a zero-order reaction rate, unit of k_{obs} is µmol acesulfame-K L$^{-1}$ d$^{-1}$ (µg acesulfame-K L$^{-1}$ d$^{-1}$), unit of k_M is µmol acesulfame-K d$^{-1}$ g$^{-1}$ (µg acesulfame-K d$^{-1}$ g$^{-1}$), unit of k_{SA} is µmol acesulfame-K d$^{-1}$ m$^{-2}$ (µg acesulfame-K d$^{-1}$ m$^{-2}$).

input solution and discharging effluent. Seven sampling ports were installed along the length of each column at 3.75-cm intervals for profile sampling. Column Control was packed with 100% SS. Column ZVI and Column BC were packed with 50% (vol%) of ZVI and BC, respectively, and balanced with SS. Column (ZVI + BC) was packed with 10% (vol%) of ZVI, 40% (vol%) of BC, and balanced with SS.

Input solution contained 10 µg L$^{-1}$ of pharmaceuticals CBZ, CAF, SMX, MDA, MDMA, IBU, GEM, and NAP; 100 µg L$^{-1}$ of artificial sweeteners ACE-K, CYC, SAC, and SCL; and 50 µg L$^{-1}$ of PFOA and 20–100 µg L$^{-1}$ of PFOS. The input solution was pumped through four columns from bottom to top at a flow rate of 0.3 pore volume (PV) d$^{-1}$ before 50 PV during the first stage of the experiment; the flow rate was decreased to 0.1 PV d$^{-1}$ after 50 PV during the second stage of the experiment. Three profile samplings (along the length of the columns) were performed during the first stage of the experiment after 1, 13, and 25 PV of flow through the columns; one profile sampling was conducted during the second stage of the experiment after 53 PV of flow.

All the emerging contaminant samples were spiked with isotopically-labeled internal standards before analysis. The pharmaceutical, PFOA, and PFOS samples were then concentrated through a solid phase extraction (SPE) process; their concentrations were determined using liquid chromatography (LC) followed by tandem mass spectrometry (MS). The concentrations of artificial sweeteners were directly analyzed by ion chromatography (IC) followed by MS without SPE. Detailed information on column experimental setup and analytical procedures for target emerging contaminants are summarized by Liu et al. [1].

2.3. Removal kinetics of target emerging contaminants by ZVI, BC, and (ZVI + BC)

The removal rates (k_{obs}) for target emerging contaminants during two experimental stages were calculated using least-squares regression in SigmaPlot. The removal of target pharmaceuticals within Columns ZVI, BC, and (ZVI + BC) followed a first-order rate model reported by Liu et al. [1] that can be described by equation (1). k_M and k_{SA} were calculated according to equations (2) and (3) which are defined by Johnson et al. [2]. The half-life ($t_{0.5}$) of the first-order rate for target pharmaceuticals was calculated following equation (4).

$$- \frac{dC}{dt} = k_{obs} \ C$$

(1)
Table 10
Zero-order removal rate constant (k_{obs}), mass normalized rate constant (k_{M}), surface area normalized rate constant (k_{SA}, specific reaction rate constant), and half-life ($t_{0.5}$) of artificial sweetener cyclamate in Column ZVI, Column BC, and Column (ZVI + BC). Removal rate constant k_{obs} is calculated using least-squares regression during two experimental stages. "-" represents no removal of cyclamate was observed.

Column	Stage	PV	Removal rate, µmol L$^{-1}$ d$^{-1}$ (µg L$^{-1}$ d$^{-1}$)	k_{obs}, µmol L$^{-1}$ d$^{-1}$ (µg L$^{-1}$ d$^{-1}$)	k_{M}, µmol g$^{-1}$ d$^{-1}$ (µg g$^{-1}$ d$^{-1}$)	k_{SA}, µmol m$^{-2}$ d$^{-1}$ (µg m$^{-2}$ d$^{-1}$)	$t_{0.5}$, d	R^2
Column 2 (ZVI)	1	1	1.5E+01	1.5E+01	3.6E-03	3.8E-04	3.3	0.697
	13		-	-	-	-	-	-
	25		-	-	-	-	-	-
	2	53	-	-	-	-	-	-
Column 3 (BC)	1	1	8.4	8.4	1.8E-02	2.8E-04	5.8	0.839
	13		-	-	-	-	-	-
	25		-	-	-	-	-	-
	2	53	-	-	-	-	-	-
Column 4 (ZVI + BC)	1	1	2.0	2.0	1.8E-03	5.2E-05	23	0.624
	13		-	-	-	-	-	-
	25		-	-	-	-	-	-
	2	53	-	-	-	-	-	-

Note: The poor R^2 values at 1 PV in this table are likely due to little removal of cyclamate in the three treatment columns.
Table 11
Zero- or first-order removal constant (k_{obs}), mass normalized rate constant (k_M), surface area normalized rate constant (k_{SA}), specific reaction rate constant, and half-life ($t_{0.5}$) of artificial sweetener saccharin in Column ZVI, Column BC, and Column (ZVI + BC). Removal rate constant k_{obs} is calculated using least-squares regression during two experimental stages. a is the saccharin concentration. c is zero removal of saccharin was observed.

Column 2 (ZVI)	Stage	PV	k_{obs}	k_M	k_{SA}	$t_{0.5}$	R^2
1	1	3.5E+01	8.1E-03	8.6E-04	1.5	0.898	
13	4.7	1.1E-03	1.2E-04	9.3	0.804		
25	1.3	3.9E-04	4.1E-05	32	0.583		
2	53	2.4E+01	5.2E-02	2.2	0.983		
2	53	2.6	5.6E-03	21	0.828		
2	53	3.4E+01	3.0E-02	1.3	0.969		
13	1.4E+01	1.2E-02	3.4E-04	3.1	0.960		
25	1.1E+01	9.4E-03	2.8E-04	4.9	0.845		
2	53	2.1	1.9E-03	25	0.701		

a Removal of saccharin followed a first-order reaction rate, unit of k_{obs} is d^{-1}, unit of k_M is $Lg^{-1}d^{-1}$, unit of k_{SA} is $Lm^{-2}d^{-1}$.

b Removal of saccharin followed a zero-order reaction rate, unit of k_{obs} is mol saccharin $L^{-1} d^{-1}$ (mg saccharin $L^{-1} d^{-1}$), unit of k_M is mol saccharin $d^{-1} g^{-1}$ (mg saccharin $d^{-1} g^{-1}$), unit of k_{SA} is mol saccharin $d^{-1} m^{-2}$ (mg saccharin $d^{-1} m^{-2}$).

Table 12
Zero- or first-order removal constant (k_{obs}), mass normalized rate constant (k_M), surface area normalized rate constant (k_{SA}), specific reaction rate constant, and half-life ($t_{0.5}$) of artificial sweetener sucralose in Column ZVI, Column BC, and Column (ZVI + BC). Removal rate constant k_{obs} is calculated using least-squares regression during two experimental stages. c is the sucralose concentration.

Column 2 (ZVI)	Stage	PV	k_{obs}	k_M	k_{SA}	$t_{0.5}$	R^2
1	1	2.1E+01	4.8E-04	5.1E-05	0.3	0.922	
13	1.3E+01	2.4E-04	2.5E-05	0.7	0.927		
25	4.4E+01	1.0E-02	1.1E-03	1.4	0.963		
2	53	1.2E+01	2.8E-03	2.9E-04	4.9	0.995	
1	1	1.3E+01	2.7E-03	4.2E-05	0.5	0.999	
13	0.9E+01	1.9E-03	2.9E-05	0.8	0.983		
25	0.7E+01	1.4E-03	2.2E-05	1.1	0.983		
2	53	0.2E+01	4.3E-04	6.6E-06	3.5	0.981	
1	1	1.6E+01	1.4E-03	4.2E-05	0.4	0.948	
13	0.9E+01	8.1E-04	2.4E-05	0.8	0.961		
25	0.7E+01	6.4E-04	1.9E-05	1.0	0.942		
2	53	0.2E+01	1.6E-04	4.7E-06	3.9	0.995	

a Removal of sucralose followed a first-order reaction rate, unit of k_{obs} is d^{-1}, unit of k_M is $Lg^{-1}d^{-1}$, unit of k_{SA} is $Lm^{-2}d^{-1}$.

b Removal of sucralose followed a zero-order reaction rate, unit of k_{obs} is mol sucralose $L^{-1} d^{-1}$ (mg sucralose $L^{-1} d^{-1}$), unit of k_M is mol sucralose $d^{-1} g^{-1}$ (mg sucralose $d^{-1} g^{-1}$), unit of k_{SA} is mol sucralose $d^{-1} m^{-2}$ (mg sucralose $d^{-1} m^{-2}$).

\[
k_M = \frac{k_{obs}}{\rho_m}
\]

\[
k_{SA} = \frac{k_{obs}}{\rho_a} = \frac{k_M}{a_s}
\]

\[
t_{0.5} = \frac{0.693}{k_{obs}}
\]
Table 13
Zero- or first-order removal constant (kobs), mass normalized rate constant (kM), surface area normalized rate constant (kSA, specific reaction rate constant), and half-life (t0.5) of perfluorooctanoic acid (PFOA) in Column ZVI, Column BC, and Column (ZVI + BC). Removal rate constant kobs is calculated using least-squares regression during two experimental stages. 0.7 is the PFOA concentration. “—” represents no removal of PFOA was observed.

Column	Stage	PV	Removal rate1, μmol L−1 d−1 (μg L−1 d−1)	kobs	kM	kSA	t0.5, d	R²
Column 2 (ZVI)	1	1	2.2E+01b	2.2E+01b	5.5E-04b		1.3	0.821
	13		—	—	—		—	—
	25		—	—	—		—	—
	2	53	—	—	—		—	—
Column 3 (BC)	1	1	1.0 × C1a	1.0a	2.1E-03a	3.3E-05a	0.7	0.980
	13		0.5 × C1a	0.5a	1.1E-03a	1.8E-05a	1.3	0.987
	25		1.2E+01b	1.2E+01b	2.5E-02b	3.9E-04b	2.3	0.956
	2	53	0.9b	0.9b	1.9E-03b	3.0E-05b	25	0.780
Column 4 (ZVI + BC)	1	1	2.0E+01b	2.0E+01b	1.8E-02b	5.3E-04b	1.3	0.935
	13		7.7b	7.7b	6.7E-03b	2.0E-04b	3.3	0.933
	25		2.0b	2.0b	1.7E-03b	1.5E-05b	13	0.725
	2	53	—	—	—		—	—

a Removal of PFOA followed a first-order reaction rate, unit of kobs is d−1, unit of kM is L g−1 d−1, unit of kSA is L m−2 d−1.
b Removal of PFOA followed a zero-order reaction rate, unit of kobs is μmol PFOA L−1 d−1 (μg PFOA L−1 d−1), unit of kM is μmol PFOA d−1 g−1 (μg PFOA d−1 g−1), unit of kSA is μmol PFOA d−1 m−2 (μg PFOA d−1 m−2).

Table 14
Zero- or first-order removal constant (kobs), mass normalized rate constant (kM), surface area normalized rate constant (kSA, specific reaction rate constant), and half-life (t0.5) of perfluorooctane sulfonic acid (PFOS) in Column ZVI, Column BC, and Column (ZVI + BC). Removal rate constant kobs is calculated using least-squares regression during two experimental stages. 0.7 is the PFOS concentration.

Column	Stage	PV	Removal rate1, μmol L−1 d−1 (μg L−1 d−1)	kobs	kM	kSA	t0.5, d	R²
Column 2 (ZVI)	1	1	2.0 × C1a	2.0a	4.6E-04a	4.9E-05a	0.4	0.911
	13		0.9 × C1a	0.9a	2.1E-04a	2.3E-05a	0.8	0.834
	25		2.2E+01b	2.2E+01b	5.1E-03b	5.4E-04b	1.5	0.929
	2	53	2.6b	2.6b	6.2E-04b	6.5E-05b	16	0.734
Column 3 (BC)	1	1	1.8 × C1a	1.8a	3.9E-03a	6.0E-04a	0.4	0.989
	13		0.5 × C1a	0.5a	1.2E-03a	1.8E-05a	1.3	0.511
	25		0.9 × C1a	0.9a	1.8E-03a	2.8E-05a	0.8	0.961
	2	53	0.2 × C1a	0.2a	4.6E-04a	7.2E-06a	3.2	0.967
Column 4 (ZVI + BC)	1	1	2.2 × C1a	2.2a	1.9E-03a	5.7E-05a	0.3	0.974
	13		0.7 × C1a	0.7a	5.8E-04a	1.7E-05a	1.1	0.881
	25		1.1 × C1a	1.1a	9.6E-04a	2.9E-05a	0.6	0.962
	2	53	7.0b	7.0E+01b	6.1E-03b	1.8E-04b	5.9	0.966

a Removal of PFOS followed a first-order reaction rate, unit of kobs is d−1, unit of kM is L g−1 d−1, unit of kSA is L m−2 d−1.
b Removal of PFOS followed a zero-order reaction rate, unit of kobs is μmol PFOS L−1 d−1 (μg PFOS L−1 d−1), unit of kM is μmol PFOS d−1 g−1 (μg PFOS d−1 g−1), unit of kSA is μmol PFOS d−1 m−2 (μg PFOS d−1 m−2).

where C is the contaminant concentration (μmol L−1 or μg L−1), kobs is the first-order removal rate constant (d−1), kM is the mass normalized first-order rate constant (L g−1 d−1), kSA is the specific first-order reaction rate constant or surface area normalized first-order rate constant (L m−2 d−1), ρs is the mass concentration of reactive media (g L−1 of solution), ρs is the surface area concentration of reactive media (m² L−1 of solution), αs is the specific surface area of reactive media (m² g−1), and t0.5 is the half-life of contaminant (d). The specific surface areas of the reactive media ZVI, BC, and (ZVI + BC) used are 9.5, 64.5, and 33.6 m² g−1 which are reported previously [3,4].

The removal of artificial sweeteners, PFOA, and PFOS within three treatment columns followed a first- or zero-order rate model or followed a first-order rate in the early stage of the experiment followed by a zero-order rate in the late stage of the experiment [1]. The kobs, kM, kSA, and t0.5 for the first-order rate of artificial sweeteners, PFOA, and PFOS were calculated following the equations (1)–(4). The
zero-order rate model can be described by equation (5). \(k_M \) and \(k_{SA} \) for the zero-order reaction can also be calculated according to equations (2) and (3). However, the half-life \(t_{0.5} \) of the zero-order reaction for target artificial sweeteners, PFOA, and PFOS was calculated following equation (6).

\[
\frac{dC}{dt} = k_{obs} \tag{5}
\]

\[
t_{0.5} = \frac{C_0}{2k_{obs}} \tag{6}
\]

where \(C_0 \) is the initial contaminant concentration (\(\mu \text{mol} \text{ L}^{-1} \) or \(\mu \text{g} \text{ L}^{-1} \)). The units of \(k_{obs} \), \(k_M \), and \(k_{SA} \) for the zero-order rate were different from that for the first order rate. For the zero-order rate, the unit of \(k_{obs} \) is \(\mu \text{mol contaminant} \text{ L}^{-1} \text{ d}^{-1} \) (\(\mu \text{g contaminant} \text{ L}^{-1} \text{ d}^{-1} \)), the unit of \(k_M \) is \(\mu \text{mol contaminant} \text{ d}^{-1} \text{ g}^{-1} \) (\(\mu \text{g contaminant} \text{ d}^{-1} \text{ g}^{-1} \)), and the unit of \(k_{SA} \) is \(\mu \text{mol contaminant} \text{ d}^{-1} \text{ m}^{-2} \) (\(\mu \text{g contaminant} \text{ d}^{-1} \text{ m}^{-2} \)).

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this article.

Acknowledgments

The authors thank the Natural Sciences and Engineering Research Council of Canada for providing funding for this article through a Discovery Grant awarded to C. Ptacek.

References

[1] Y. Liu, C.J. Ptacek, D.W. Blowes, L.G. Groza, Removal of pharmaceutical compounds, artificial sweeteners, and perfluoroalkyl substances from water using a passive treatment system containing zero-valent iron and biochar, Sci. Total Environ. 691 (2019) 165–177. https://doi.org/10.1016/j.scitotenv.2019.06.450.

[2] T.L. Johnson, M.M. Scherer, P.G. Tratnyek, Kinetics of halogenated organic compound degradation by iron metal, Environ. Sci. Technol. 30 (8) (1996) 2634–2640. https://doi.org/10.1021/es9600901.

[3] J.H. Jamieson-Hanes, Characterizing Chromium Isotope Fractionation during Reduction of Cr(VI): Batch and Column Experiments, MSc Thesis, University of Waterloo, Waterloo, Ontario, Canada, 2012.

[4] P. Liu, C.J. Ptacek, D.W. Blowes, Release of nutrients and trace elements from wood, agricultural residue and manure-based biochars, Int. J. Environ. Res. 13 (4) (2019) 747–758. https://doi.org/10.1007/s41742-019-00209-5.