Intriguing magnetoelectric effect in two-dimensional ferromagnetic/perovskite oxide ferroelectric heterostructure

Ping Li1,2, Xue-Song Zhou1 and Zhi-Xin Guo1,3✉

Two-dimensional (2D) magnets have broad application prospects in the spintronics, but how to effectively control them with a small electric field is still an issue. Here we propose that 2D magnets can be efficiently controlled in a multiferroic heterostructure composed of 2D magnetic material and perovskite oxide ferroelectric (POF) whose dielectric polarization is easily flipped under a small electric field. We illustrate the feasibility of such strategy in the bilayer CrI3/BiFeO3(001) heterostructure by using the first-principles calculations. Different from the traditional POF multiferroic heterostructures which have strong interface interactions, we find that the interface interaction between CrI3 and BiFeO3(001) is van der Waals type. Whereas, the heterostructure has particular strong magnetoelectric coupling where the bilayer CrI3 can be efficiently switched between ferromagnetic and antiferromagnetic types by the polarized states P↑ and P↓ of BiFeO3(001). We also discover the competing effect between electron doping and the additional electric field on the interlayer exchange coupling interaction of CrI3, which is responsible to the magnetic phase transition. Our results provide a avenue for the tuning of 2D magnets with a small electric field.

ARTICLE

INTRODUCTION

In the past two decades, the multiferroic heterostructure composed of traditional magnetic material (such as iron, cobalt, and their alloys) and perovskite oxide ferroelectric (POF) has been widely studied1,2, due to its great potential in realizing large magnetoelectric coupling at room temperature. However, the large number of dangling bonds at the interface easily induces significant orbital hybridizations and even the ion migration between the magnetic material and the ferroelectric oxide (strong interface interaction)3,4. Such strong interface interaction usually leads to the irreversible destruction of the interface magnetic structure, and ultimately reduces the cycle life of the spintronic devices5–9.

Recently, the van de Waals (vdW) heterostructures engineering, via the stacking of layered systems with different properties, has provided a way to realize intriguing physical properties10–14. For example, group-IV monolayers5–7,15–17, 1T transition metal dichalcogenides 18, and transition metal halides/oxides19–22 had been reported to be topological materials. Simultaneously, SnTe23, In2Se324, and CuInP2S625 had been experimentally demonstrated to be two-dimensional ferroelectric (2DFE) materials. Meanwhile, two-dimensional ferromagnetic (2DFM) materials, such as CrI326, Cr2Ge2Te627, Fe3GeTe228, and VSe229 had been successfully fabricated. Constructing heterostructures of 2DFE and 2DFM potentially provides a generally applicable route to create 2D multiferroics and magnetoelectric couplings. Such heterostructure is expected to have vdW interface interaction due to the lack of dangling bonds, which is particular suitable for the infinite cycle life spintronic devices. While, a fundamental question is whether the vdW interlayer can induce the strong magnetoelectric coupling.

Up to now, several theoretical investigations have been performed to realize the magnetic phase transition (MPT) by manually changing the direction of dielectric polarization in the 2DFM/2DFE heterostructures, e.g., Cr2Ge2Te6/In2Se330, CrI3/Sc2CO231,32, and MnCl3/CuInP2S633. It had been verified that the magnetic ground state transition can be achieved even in the framework of vdW interface interaction30–33, because the electronic structure of the 2DFM is very sensitive to the charge transfer or electric field from the 2DFE33. However, a much larger external electric field is required to realize MPT in the 2DFM/2DFE heterostructure, due to the nature of weak ferroelectricity of 2DFE compared to POF materials.

Here by means of density functional theory (DFT) calculations (Methods are shown in Supplementary Materials), we propose a strategy for a small electric field controlling of MPT in the 2D magnets, i.e., 2DFM/POF heterostructures. We illustrate the feasibility of such strategy in the bilayer CrI3/BiFeO3(001) heterostructure, where BiFeO3 has much stronger electrical polarization to the 2DFM which can be flipped under a small electric field. Interestingly, we find the interface interaction between CrI3 and BiFeO3 is also vdW type, and the interlayer magnetic coupling of bilayer CrI3 can be efficiently switched between FM and antiferromagnetic (AFM) types by flipping the dielectric polarization. Additionally, we reveal the competing effect on the MPT between electron doping and the electric field induced by the BiFeO3.

RESULTS

CrI3/BiFeO3 multiferroic heterostructures

We chose bilayer CrI3 with the monoclinic lattice and C2/m space group symmetry (the HT phase) as the 2DFM material34, which exhibits the FM intralayer and AFM interlayer magnetic exchange couplings that are reported by Xu’s group35. On the other hand, the R3c BiFeO3 is chosen as the POF material due to its room temperature reversible ferroelectricity and large electric polarization. The multiferroic heterostructure was constructed by stacking
The magnetic phase transition was induced by polarization reversal. a Top views of the 2 × 2 CrI3 and $\sqrt[7]{\sqrt[7]{7}}$ BiFeO3(001), b, c Side views of CrI3/BiFeO3 heterostructures with the top layer O/Bi atom of BiFeO3 (denoted as O-terminal and Bi-terminal), respectively. The red and magenta arrows in bilayer CrI3 denote the spin directions. The blue and green arrows denotes the direction of the out-of-plane electric polarization in BiFeO3(001), respectively.

Table 1. Calculated total energies of CrI3/BiFeO3(001) heterostructure with CrI3 in FM (E_{FM}) and AFM (E_{AFM}) interlayer-coupling phases.

	Bridge	Hollow	Top
Bi-terminal			
E_{FM} (meV)	25.49	0.00	14.18
E_{AFM} (meV)	35.66	20.56	28.30
ΔE (meV)	-10.17	-20.56	-14.12
l (Å)	3.75	3.79	3.76
E_{FM} (meV)	9.17	833.09	870.44
E_{AFM} (meV)	0.00	822.49	858.40
O-terminal			
E_{FM} (meV)	9.17	10.60	12.04
E_{AFM} (meV)	0.51	0.36	0.37
l (Å)	3.18	3.30	3.31

The total energies are defined relative to that of FM phase in hollow configuration for CrI3 on Bi-terminal BiFeO3(001) and AFM phase in bridge configuration for CrI3 on O-terminal BiFeO3(001), respectively. ΔE is defined as $E_{FM} - E_{AFM}$, and l is the average bond length between Bi and I atoms of the interface for Bi-terminal and O atoms of the interface for O-terminal.

Considering that the atomic radii of I, O and Bi atoms are 1.40 Å, 0.66 Å, and 1.56 Å, respectively, this result confirms the non-bonded interface interactions. We have additionally calculated charge density distributions of the CrI3/BiFeO3(001) heterostructure (Supplementary Fig. 2) and found there is little charge density overlap at the interface. Therefore, one can conclude that the interface interaction between CrI3 and BiFeO3 is vdW type, where the migration of ions from BiFeO3 to CrI3 during the ferroelectric polarization inversion hardly occurs. Such multiferroic heterostructure is expected to be free of the flipping cycle-life issue.

Tunable interlayer coupling of bilayer CrI3 and mechanism for interfacial multiferroicity

The total energy calculations further show that BiFeO3(001) can significantly affect the magnetic interlayer coupling of bilayer CrI3. As shown in Fig. 1, both the FM and AFM interlayer magnetic configurations of bilayer CrI3 had been considered. It is found that the total energies of their obviously depend on the dielectric polarized directions of BiFeO3(001), i.e., P⊥ polarization when the O atoms move up along [001] direction (O-terminal, Fig. 1b), and P∥ polarization on the contrary (Bi-terminal, Fig. 1c). As shown in Table 1, among all the stacking configurations (bridge/hollow/top) the FM (AFM) interlayer-coupling phase of bilayer CrI3 always has the lowest total energy when BiFeO3(001) is in the P∥ (P⊥) state. This feature shows that the magnetic phase of bilayer CrI3 can be well switched by flipping the dielectric polarized directions of BiFeO3(001), which is easily realized under a small electric field. Note that the energy differences ΔE between FM and AFM states in both the P∥ (P⊥) states are in range of 9.2–20.6 meV. The distinguish energy differences of FM and AFM states with ferroelectric polarization flipping indicate that the system has a strong magnetoelectric coupling.

It is desirable to understand the origin of MPT from AFM to FM for CrI3 on BiFeO3(001). In general, three combined factors induced by the BiFeO3 substrate can be responsible to the MPT: (1) structure reconstruction (deformation) of CrI3 induced by BiFeO3, (2) charge transfer effect from BiFeO3, and (3) electric field (electric polarization) effect from BiFeO3. In the following, we will distinguish the roles of these factors on the MPT via studying the bilayer CrI3 detached from BiFeO3. The DFT calculations show that the vdW interaction from BiFeO3 gives rise to the structure reconstruction of bottom CrI3 layer to a certain extent (see Fig. 1c). In order to clarify the influence of structure reconstruction to interlayer magnetic coupling, we calculated the total energy differences between FM and AFM phases of bilayer CrI3 detached...
from BiFeO$_3$(001). As shown in Table 2, the energy differences ($\Delta E = E_{\text{FM}} - E_{\text{AFM}}$) of all the CrI$_3$ in different configurations are positive. This feature means that the MPT in bilayer CrI$_3$ is not attributed to the structure reconstruction. In addition, we have calculated the most stable phase of unrelaxed bilayer CrI$_3$ structures, and found it has the same magnetic ground state, i.e., AFM state, as that of the relaxed one (see Supplementary Table 1). This result confirms that the geometry distortion of bilayer CrI$_3$ induced by surface as well as other effects do not change the magnetic ground state.

	Bridge	Hollow	Top	
Bi-terminal	E_{FM} (meV)	12.27	96.40	17.38
	E_{AFM} (meV)	0.00	78.00	3.69
	ΔE (meV)	12.27	18.40	13.69
O-terminal	E_{FM} (meV)	316.78	17.17	38.44
	E_{AFM} (meV)	300.23	0.00	21.32
	ΔE (meV)	16.55	17.17	17.12

![Fig. 2](image)

Fig. 2 2D charge density difference of CrI$_3$/BiFeO$_3$(001) heterostructure in hollow configuration, a O-terminal (P^1 polarization) and b Bi-terminal (P^1 polarization), respectively. The red and blue areas indicate gain and loss electrons, respectively. The isosurface value of charge density difference is 0.001 e Bohr$^{-3}$.

are saturated by Bi atoms (see Fig. 1), which induces the band gap for the interface state and thus allows the HSE investigations. As shown in Supplementary Figure 3(f), the valence-band maximum of BiFeO$_3$(001) overlaps with the conduction-band minimum (CBM) of CrI$_3$, which corresponds to a type III band alignment. Such phenomenon is attributed to the electron transfer from BiFeO$_3$ to CrI$_3$, which results in the upshift (downshift) of CBM energy level of BiFeO$_3$(CrI$_3$) in the heterostructure in comparison with the isolated ones [see Supplementary Fig. 3(d–f)].

To further clarify the mechanism of electron doping on MPT of bilayer CrI$_3$, we have systematically calculated the electron doping concentration (n) dependence of total energy differences between FM and AFM phases (ΔE) for bilayer CrI$_3$ detached from Bi-terminal BiFeO$_3$(001) with hollow configuration. Here we simulated the electron-doping effect through doping H atom in the hollow position of the first CrI$_3$ (see Supplementary Fig. 4). As shown in Fig. 3a, ΔE monotonically decreases with doping concentration increases, where the MPT from AFM to FM appears when $n > 0.5$ e per supercell. This value is much smaller than that transferred from BiFeO$_3$ to CrI$_3$ (1.63 e per supercell), thus the charge transfer is expected to be a dominating factor to the MPT of bilayer CrI$_3$.

To further clarify the mechanism of charge transfer and the additional electric field effect on MPT of bilayer CrI$_3$, we have investigated the total energy difference ΔE of bilayer CrI$_3$ detached from BiFeO$_3$(001) in three cases, i.e., Case 1 without electric field and electron doping (only structure reconstruction effect is considered), Case 2 with only electron doping (1.5 e), and Case 3 with electron doping (1.5 e) and the additional electric field (0.5 V Å$^{-1}$). As shown in Table 3, ΔE significantly decreases from 18.40 meV (Case 1) to -54.09 meV (Case 2) with only electron doping, whereas it increases to -3.63 meV (Case 3) with the additional electric field 0.5 V Å$^{-1}$. This result shows that the electric field from BiFeO$_3$ has minor effect on the MPT of bilayer CrI$_3$.

To reveal the underlying mechanism of charge transfer and electric field on the MPT of bilayer CrI$_3$, we explored the interlayer exchange interactions between Cr atoms with both FM and AFM spin configurations. As indicated in Fig. 4a, the hopping between t_{2g} and t_{2g} orbitals is allowed for the AFM spin configuration but prohibited for the FM spin configuration according to the Pauli

![Fig. 3](image)

Fig. 3 Electric field and electron doping tune the magnetic phase transition of bilayer CrI$_3$. Energy differences between FM and AFM phases for bilayer CrI$_3$ in hollow configuration detached from Bi-terminal BiFeO$_3$(001) under (a) electron doping and (b) electric field.
interlayer t_{2g}-t_{2g} orbitals have strong hybridization without electron doping and electric field (Case 1), in agreement with the AFM spin-exchange model in the upper panel of Fig. 4a. When only electron doping is applied to bilayer CrI$_3$ (Case 2), the t_{2g}-t_{2g} orbital hybridization becomes much weaker, whereas the t_{2g}-e_g hybridization becomes obviously stronger due to the downshift of e_g energy levels (the exchange interaction strength between e_g and t_{2g} orbitals is inversely proportional to the virtual exchange gap (G_{ex}), Fig. 4c). This characteristic is consistent with the FM spin-exchange model in the under panel of Fig. 4a. When the electric field is additionally applied to the electron-doped CrI$_3$ (Case 3), G_{ex} significantly increases (under panel of Fig. 4d), indicating that the t_{2g}-e_g orbitals hybridization becomes weaker. This feature explains why the electric field in the electron doping environment can weaken the FM phase discussed above.

To quantitatively investigate the effects of electron doping and the additional electric field on the interlayer exchange coupling of bilayer CrI$_3$, we constructed a Heisenberg model for the bilayer CrI$_3$ detached from Bi-terminal BiFeO$_3$(001) (hollow configuration) with the Hamiltonian as

\[H = E_0 + \sum_{ijkl} J_{ijkl} \mathbf{S}_i \cdot \mathbf{S}_j + \sum_{k} J_{xk} S_0 \cdot S_k + \sum_{k} J_{y} S_i \cdot S_k, \]

where E_0 is the ground state energy independent of the spin configurations. S_i, S_j, S_k, S_l and S_0 represent the magnetic moments at sites i, j, k, l and 0, respectively. J_{ijkl} and J_{xk} denote the intralayer and interlayer exchange interactions, respectively. We adopt J_{ijkl} and J_{xk} to denote the nearest-neighbor intralayer Cr-Cr exchange interaction of the first and second CrI$_3$ layer, respectively. J_{i1} and J_{i2} are the nearest-neighbor and second-neighbor interlayer Cr-Cr exchange interactions [Supplementary Fig. 5(a)], respectively. The details for the calculation of exchange parameters based on the above Hamiltonian and total energy calculations using DFT are shown in the Supplementary material (see Supplementary Fig. 5 and Supplementary Table 2).

The obtained results for Cases 1–3 are summarized in Table 3. As one can seen, in all cases $J_{11} > 0$ (contributes to AFM phase) and $J_{12} < 0$ (contributes to FM phase). This feature shows that J_{11} is dominated by exchange interaction between Cr half-filled t_{2g} orbitals which induces an AFM coupling, while J_{12} is dominated by a virtual excitation between the Cr half-filled t_{2g} orbitals and the empty e_g orbitals which leads to a FM coupling. Therefore, the ground state of bilayer CrI$_3$ is determined by the competition between nearest-neighbor and second-neighbor interlayer Cr-Cr exchange interactions. Considering that the number of nearest-neighbor and second-neighbor interlayer Cr-Cr interaction pairs are the same all the three cases, the MPT of CrI$_3$ can be predicted by the value of $J = J_{11} + J_{12}$. In case without electric field and electron doping (Case 1), $J = 0.26$ meV, indicating the AFM ground state from the Heisenberg model which agrees well with the direct DFT calculations38. When the electron doping is applied (Case 2), the J_{11} decreases little whereas J_{12} nearly has a double enhancement (-1.09 to -2.08 meV), leading to a strong FM ground state ($\theta = -0.75$ meV). Additionally, when both the electron doping and the electric field are applied (Case 3), J_{12} significantly changes from -2.08 to -1.22 meV but J_{11} only decreases a little, resulting a weak FM ground state ($\theta = -0.05$ meV). These results reveal that electron doping and the additional applied electric field have significant but opposite influence on the second-neighbor interlayer Cr-Cr exchange interaction, the variation of which is the origin of MPT in bilayer CrI$_3$. We have also calculated the exchange parameters in the three cases for the bilayer CrI$_3$ without geometry reconstruction, and obtained the similar results (see Supplementary Table 3 and 4), which confirms the intrinsic nature of competition between electron doping and the additional electric field on the interlayer exchange coupling of bilayer CrI$_3$.
We have also explored the influence of spin-orbit coupling (SOC) on the magnetic ground state of CrI$_3$ in the heterostructure, where the hollow configuration under different electrical polarizations was considered. The calculated results are summarized in Supplementary Table 5. It is seen that the FM state has the lowest total energy in the Bi-terminal configuration, and the AFM interlayer coupling becomes the ground state in the O-terminal configuration. This result is qualitatively consistent with that obtained without SOC, implying that SOC effect does not change the conclusion in our investigation.

Additionally, considering that there is also possibility for CrI$_3$ laying on Fe-terminal BiFeO$_3$, we have further explored the switching of magnetic configurations in such heterostructure (Supplementary Figure 6). As shown in Supplementary Table 6, the FM (AFM) interlayer-coupling phase of bilayer CrI$_3$ has lower total energy when the BiFeO$_3$(001) is in the P \uparrow (P \downarrow) state, showing the effective switching of magnetic states with ferroelectric polarization. This result is consistent with that of CrI$_3$ on O/Bi-terminal BiFeO$_3$(001) discussed above.

DISCUSSION

Before closing, we discuss the potential applications of 2DFM/POF multiferroic heterostructure in the non-volatile spintronic devices, i.e., spin valve. The traditional spin valve comprises of two magnetic materials separated by a nonmagnetic spacer, where the low electronic resistance (R_1) appears when their spin directions are parallel, whereas the high electronic resistance (R_2) appears when their spin directions are antiparallel. The resistance change is a result of the giant magnetoresistance41 or tunnel magnetoresistance42 effect. The relative spin directions of the two magnetic materials are generally controlled by external magnetic field or spin torques (STT43, SOT44) induced by the electron current in the chip, which significantly limits the performance of spin valves owning to the Joule heating effect. Here we propose that an electron-current free spin valve can be achieved by using the 2DFM (CrI$_3$)/POF (BiFeO$_3$) heterostructure, where the nonmagnetic spacer is the vacuum layer induced by the vdW interaction between two magnetic layers of 2DFM (Fig. 5). As shown in Fig. 5, Gate 1 and Gate 2 are the bias electrodes to read the electronic resistance, which is mainly contributed by R_1 and R_2. Gate 3 is the gating electrode to control electron polarization of POF with a small electric field, which in turn effectively controls the relative spin directions of 2DFM and thus the electronic resistance. Note that the switching between R_1 or R_2 is achieved only by flipping the direction of electric field in Gate 3, where little charge current and Joule heat is produced. In addition to the room temperature ferroelectricity of POF, a high-performance non-volatile spin valve composed of 2DFM/POF heterostructure is likely to be achieved.

METHODS

First, we used the Device Studio to build structure and the RESCU to roughly optimize the structure45. Then, we implemented the Vienna Abinitio Simulation Package46,47 for the first-principles calculations based on DFT. The electron exchange-correlation functional was described by the generalized gradient approximation of the Perdew-Burke-Ernzerhof functional48. The vdW density functional (optB86b-vdW) which was capable of treating the dispersion force, was adopted for the exchange-correlation functional49,50. The plane-wave basis set with a kinetic energy cutoff of 450 eV was employed. The 3 × 3 × 1 Γ-centered k meshes were adopted for the structural optimization. The geometry optimization was performed until the remaining Hellmann–Feynman forces become less than 0.01 eV/Å to obtain the final structures. The electronic structures and magnetic properties were calculated using 6 × 6 × 1 Γ-centered k meshes. Moreover, to describe the strongly correlated 3d orbitals of the Fe and Cr atoms, the GGA+U method was used51. The onsite Coulomb interaction was considered for Fe and Cr 3d orbitals by setting effective Hubbard U to 3.8 eV and 2 eV, respectively. The BiFeO$_3$ surface was simulated by a repeating slab model consisting of a four-BiFeO$_3$-layer slab cleaved from the R3c BiFeO$_3$(001). The BiFeO$_3$ slab was separated from its images by the 20 Å vacuum layer with bilayer CrI$_3$ placed on top. The CrI$_3$ with 2 × 2 periodicity were deposited on the $\sqrt{7}\times\sqrt{7}$ BiFeO$_3$(001) surface in the simulation. Moreover, the linear alignment of spin polarization of Fe atoms in BiFeO$_3$ had been considered, where the same initial magnetic momentum was adopted for all the Fe atoms in the same layer and adjacent layers are oppositely magnetized.

In addition, we simulated the electron doping effect through doping H atoms in the hollow position of the first CrI$_3$ layer, where the bilayer CrI$_3$ was attached from Bi-terminal BiFeO$_3$ (hollow configuration). The electron doping concentration was controlled via changing the number of H atoms and the number of electron per H atom in the bilayer CrI$_3$ supercell. Supplementary Figure 4 further illustrates the structure of bilayer CrI$_3$ with 2 H atoms doped and the number of electron per H atom is 0.75 e, which corresponds to a 1.5 e per supercell doping concentration in the main text.

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author upon reasonable request.

CODE AVAILABILITY

The codes are available from the corresponding author upon reasonable request.

Received: 27 August 2021; Accepted: 7 January 2022; Published online: 27 January 2022
REFERENCES

1. Heron, J. T. et al. Electric-field-induced magnetization reversal in a ferromagnet-multiferroic heterostructure. Phys. Rev. Lett. 107, 217202 (2011).
2. Zhang, S. et al. Electric-field control of nonvolatile magnetization in Co_{6}Fe_{2}B_{4}Bi_{3}P_{12}Ni_{0.5}Nb_{0.5}Ta_{0.5}O_{3.5} structure at room temperature. Phys. Rev. Lett. 108, 137203 (2012).
3. Olenin, I. I., Tsymskal, E. Y. & Pettifor, D. G. Atomic and electronic structure of Co/STiO_{3}/Co magnetic tunnel junctions. Phys. Rev. B 65, 020401(R) (2001).
4. Duan, C. G., Jaswal, S. S. & Tsymskal, E. Y. Predicted magnetoelectric effect in Fe/BaTiO_{3} multilayers: ferroelectric control of magnetism. Phys. Rev. Lett. 97, 047201 (2006).
5. Heron, J. T. et al. Deterministic switching of ferromagnetism at room temperature using an electric field. Nature 516, 370 (2014).
6. Zhou, Y. et al. Out-of-plane piezoelectricity and ferroelectricity in layered van der Waals heterostructures. Adv. Mater. 26, 7091 (2014).
7. Li, P. et al. Electric field manipulation of magnetization rotation and tunneling magnetoresistance of magnetic tunnel junctions at room temperature. Adv. Mater. 26, 4320 (2014).
8. Waldrop, M. M. More than Moore. Nature 530, 144 (2016).
9. Li, P., Guo, Z. X. & Cao, J. X. A new approach for fabricating germanium with Dirac electrons preserved: a first principles study. J. Mater. Chem. C 4, 1736 (2016).
10. Li, P. et al. Topological Dirac states beyond n-orbitals for silicene on SiC(0001) surface. Nano Lett. 17, 6195 (2017).
11. Duan, C., Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science 363, 706 (2019).
12. Liu, N., Zhou, S. & Zhao, J. High-Curie-temperature ferromagnetism in bilayer CrI_{3}. Phys. Rev. B 100, 195135 (2019).
13. Zhao, Y., Zhang, J. J., Yuan, S. & Chen, Z. Nonvolatile electrical control and magnetism in the layered, ferromagnetic insulator CrI_{3}. Chem. Mater. 27, 612 (2015).
14. Guo, Z. X., Furuya, S., Iwata, J. I. & Oshiyama, A. Absence and presence of Dirac electrons in silicon on substrates. Phys. Rev. B 87, 235435 (2013).
15. Goodenough, J. B. Theory of the role of covalence in the perovskite-type manganites [La, MII]MnO_{3}. Phys. Rev. 100, 564 (1955).
16. Bonilla, M. et al. Strong room-temperature ferromagnetism in VSe_{2} monolayers from ab initio theory. ACS Appl. Mater. Interfaces 9, 3168 (2017).
17. Dai, J. Q., Xu, J. W. & Zhu, J. H. First-principles study on the multiferroic BiFeO_{3}(0001) polar surfaces. Appl. Surf. Sci. 392, 135 (2017).
18. Dai, J. Q., Xu, J. W. & Zhu, J. H. First-principles study on the multiferroic BiFeO_{3}(0001) polar surfaces. Appl. Surf. Sci. 392, 135 (2017).
19. Bai, L. N. et al. Giant magnetoresistance of [001]Fe/(001)Cr multiferroic superlattices. Phys. Rev. Lett. 90, 247201 (2003).
20. Moodera, J. S., Kinder, L. R., Wong, T. M. & Meservey, R. Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett. 74, 1273 (1995).
21. Diao, Z. et al. Spin-transfer torque switching in magnetic tunnel junctions and spin-transfer torque random access memory. J. Phys. Condens. Matter 19, 165209 (2007).
22. Liu, Y. C., Betto, D., Rode, K., Coey, J. M. D. & Stamenov, P. Spin-orbit torque switching without an external field using interlayer exchange coupling. Nat. Nanotechnol. 11, 758 (2016).
23. Michel-Droux, V., Zhang, L. & Guo, H. RESCU: a real space electronic structure method. J. Comput. Phys. 307, 593 (2016).
24. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 5588 (1993).
25. Moodera, J. S., Kinder, L. R., Wong, T. M. & Meservey, R. Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett. 74, 1273 (1995).
26. Diao, Z. et al. Spin-transfer torque switching in magnetic tunnel junctions and spin-transfer torque random access memory. J. Phys. Condens. Matter 19, 165209 (2007).
27. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).
28. Dervad, S. L., Botton, G. A., Savasaki, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural instability of nickel oxide: an LSDA + U study. Phys. Rev. B 57, 1505 (1998).

ACKNOWLEDGEMENTS

This work is supported by National Natural Science Foundation of China (Nos. 12074301 and 12004295), National Key R&D Program of China (2018YFB0407600), the Science Fund for Distinguished Young Scholars of Hunan Province (No. 2018JJ1022). P.L. thanks China’s Postdoctoral Science Foundation funded project (No. 2020M673364) and the Open Project of the Key Laboratory of Computational Physical Sciences (Ministry of Education). Z.X.G. thanks the Fundamental Research Funds for Central Universities (No. xzy2019062) and Open Research Fund of Key Laboratory of Polar Materials and Devices, Ministry of Education. We gratefully acknowledge HZWTECH for providing computation facilities and the computational resources provided by the HPCC platform of Xi’an Jiaotong University.

AUTHOR CONTRIBUTIONS

Z.X.G. conceived the idea. P.L. performed the theoretical calculation and numerical simulation. P.L. and X.S.Z. prepared the figures. P.L. and Z.X.G. did data analysis and wrote the paper.

COMPETING INTERESTS

The authors declare no competing interests.

ADDITIONAL INFORMATION

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41524-022-00706-w.

Correspondence and requests for materials should be addressed to Zhi-Xin Guo.
