Function and biotechnology of extremophilic enzymes in low water activity

Ram Karan1,2, Melinda D Capes1,2 and Shiladitya DasSarma1,2*

Abstract
Enzymes from extremophilic microorganisms usually catalyze chemical reactions in non-standard conditions. Such conditions promote aggregation, precipitation, and denaturation, reducing the activity of most non-extremophilic enzymes, frequently due to the absence of sufficient hydration. Some extremophilic enzymes maintain a tight hydration shell and remain active in solution even when liquid water is limiting, e.g. in the presence of high ionic concentrations, or at cold temperature when water is close to the freezing point. Extremophilic enzymes are able to compete for hydration via alterations especially to their surface through greater surface charges and increased molecular motion. These properties have enabled some extremophilic enzymes to function in the presence of non-aqueous organic solvents, with potential for design of useful catalysts. In this review, we summarize the current state of knowledge of extremophilic enzymes functioning in high salinity and cold temperatures, focusing on their strategy for function at low water activity. We discuss how the understanding of extremophilic enzyme function is leading to the design of a new generation of enzyme catalysts and their applications to biotechnology.

Keywords: Extremophile, Extremozymes, Protein stability, Halophiles, Psychrophile, Cold activity, Organic solvent, Low temperature, High salinity, Biofuel, Bioenergy

Introduction
Enzymes are nature’s biocatalysts endowed with high catalytic power, remarkable substrate specificity, and ability to work under mild reaction conditions. These unique features led to enzyme applications in competitive bioprocesses as one of the foremost areas of biotechnology research. Most enzymes are active within a defined set of standard conditions close to what is considered normal for mesophilic terrestrial organisms. However, much of the biosphere is extreme by comparison (e.g. cold oceans and dry, salty deserts). Not surprisingly, the biosphere contains a very large number of extremophilic microorganisms with enzymes capable of functioning in unusual conditions [1,2].

The discovery of thermostable DNA polymerases and their impact on research, medicine, and industry has underscored the potential benefits of enzymes from extreme environments [3]. Since that time, the biotechnological and industrial demand for stable enzymes functioning in harsh operational conditions has surged. A great deal of current effort is aimed at screening for new sources of novel enzymes capable of functioning in extreme conditions. The parallel development of sophisticated molecular biology tools has also enabled engineering of enzymes with novel properties using techniques such as site-directed mutagenesis, gene shuffling, directed evolution, chemical modifications and immobilization [4-6].

Microorganisms which grow in extreme conditions have been an important source of stable and valuable enzymes [1,7,8]. Their enzymes, sometimes called “extremozymes”, perform the same enzymatic functions as their non-extreme counterparts, but they can catalyze such reactions in conditions which inhibit or denature the less extreme forms. Interestingly, some of the enzymes derived from extremophiles display polyextremophlicity, i.e. stability and activity in more than one extreme condition, including high salt, alkaline pH, low temperature, and non-aqueous medium [2,9-11]. A basic understanding of the stability and function of extremozymes under extreme conditions is important for innovations in biotechnology.
One of the underlying reasons for limited enzyme activity in extreme conditions is their effects on water structure and dynamics. When water activity is perturbed by extreme temperatures, high salinity, or other extreme conditions, normally structured liquid water may become limiting to enzymes, with deleterious consequences to enzyme structure and/or function. For example, at high salinity, water is sequestered in hydrated ionic structures, limiting the availability of free water molecules for protein hydration [12,13]. An analogous effect is felt by enzymes in cold temperatures due to the freezing of water molecules, forming structured ice-like lattices that are less available to interact with proteins [14]. Therefore, improved hydration characteristics in some extremozymes are critical for their function in their natural conditions. An interesting and potentially useful consequence of the hydration properties of such enzymes may be in extending their range of function to non-aqueous environments [5]. Enzymes capable of functioning in the presence of organic solvents may permit their use in some specialized applications, such as for catalysis of reactions using novel vents. As a result, a better understanding of molecular mechanisms used by such extremozymes for improved solubility and hydration is of substantial biotechnological interest.

Salt adapted enzymes

Water molecules are known to play a critical role in biological functions of proteins by binding to the surface and incorporating into the interior of protein molecules [15-18]. Water has a tendency to form ordered cages around hydrophobic groups on the protein surface [19]. Salt ions are known to disrupt the local water structure, diminishing the number of intermolecular hydrogen bonds [20-22]. High salt concentrations critically affect the solubility, binding, stability, and crystallization of proteins [23]. The interactions between proteins and protein subunits in solution are also altered by salts. The electrostatic interactions between charged amino acids are also perturbed with significant consequences for protein structure and function [24]. The effects depend on the chemical nature of the salts, generally following the position of ions in the Hofmeister series [25,26].

Water is necessary for native structure, proper function, and to prevent aggregation of proteins. As salt ions inside the cell increases, water is removed from hydrophobic regions of protein surfaces, until proteins are no longer sufficiently hydrated [17,18,27] (Figure 1). Non-halophilic proteins are generally less able to compete with salts and lose their structure and activity at relatively lower ionic concentration. However, halophilic proteins are able to successfully compete with salt ions for hydration and maintain their functional conformation in the presence of high ionic concentration [28-30]. This is especially true for proteins from halophilic microorganisms which use the salt-in mechanism for osmotic stabilization (e.g. halophilic archaea and some halophilic bacteria) [8]. Such halophilic proteins have evolved a specific set of molecular features that help them to compete with ions for water and maintain a stable hydration shell. In fact, in comparison to non-halophilic enzymes, halophilic enzymes are found to have multilayered hydration shells that are of considerably greater size and order (Figure 1).

In order to enhance activity in high salt concentrations, an increase in the number of charged amino acids, especially acidic residues at the protein surface, is observed in halophilic proteins [31-35] (Figure 2). Bioinformatic studies of the extreme halophile Halobacterium sp. NRC-1 and other species have shown that an increase in the number of acidic (glutamic acid, and to a lesser extent, aspartic acid) over basic residues is a general property of proteins predicted from the genomes of halophilic microorganisms [13,27] (Figure 2). Glutamate residues have superior water binding capacity over all other amino acids and are generally found in excess on the surface of halophilic proteins [15,16,28,30]. Acidic amino acids can constitute a high fraction of an individual protein, with up to 20-23% having been reported [36,37]. The negatively charged amino acids in halophilic proteins bind hydrated cations and help maintain a surface hydration layer, reducing their surface hydrophobicity, and contributing to mutual electrostatic repulsion [29,35,38]. These properties prevent aggregation at high salt concentrations [39].
Name	Organism(s)	Method(s)	Reference
Salt adapted			
α-amylase	Halothermothrix sp.	CD spectroscopy, sedimentation velocity, crystal structure	[59]
α-amylase	Pseudoalteromonas sp.	CD and fluorescence spectroscopy	[53]
Carboxylic anhydrase	Dunaliella sp.	Crystal structure	[125]
Cysteinyl tRNA synthetase	Halobacterium sp.	Mutagenesis	[126]
Dihydroxyolamine reductase	Halobacterium sp.	Homology modeling	[127]
Dihydroxyolamine reductase	Haloferax sp.	Crystal structure	[41]
Dihydroxyolamine reductase	Halobacterium sp., Haloaquadatum sp., Natrosomonas sp.	Homology modeling	[38]
Dihydroxyolamine dehydrogenase	Haloferax sp.	Homology modeling, site-directed mutagenesis	[50]
DNA ligase	Haloferax sp.	Mutagenesis	[128]
DNA ligase	Haloferax sp.	Site-directed mutagenesis, CD, fluorescence and NMR spectroscopy	[35]
DNA ligase	Haloferax sp.	Homology modeling, CD spectroscopy	[26]
Esterase	Haloarcula sp.	Homology modeling, CD spectroscopy	[43]
Ferredoxin [2Fe-2S]	Haloarcula sp.	Crystal structure	[29]
Ferredoxin [2Fe-2S]	Halobacterium sp.	Fluorescence and CD spectroscopy	[48,129]
Glutamate dehydrogenase	Halobacterium sp.	Homology modeling	[130]
Glucose dehydrogenase	Haloferax sp.	Crystal structure	[30]
Glutaminase	Micrococcus sp.	Crystallization and X-ray crystallography	[131]
Malate dehydrogenase	Halobacterium sp.	Fluorescence spectroscopy	[132]
Malate dehydrogenase	Halobacterium sp.	Neutron scattering, ultracentrifugation and quasi-elastic light-scattering	[46]
Malate dehydrogenase	Haloarcula sp.	Densitometry and neutron scattering	[133]
Malate dehydrogenase	Haloarcula sp.	X-ray crystallography	[28]
Malate dehydrogenase	Haloarcula sp.	Site-directed mutagenesis	[134]
Malate dehydrogenase	Haloarcula sp.	Mutagenesis, crystal structure	[135]
Malate dehydrogenase	Haloarcula sp.	Crystal structure, neutron scattering	[23]
Malate dehydrogenase	Salinibacter sp.	Analytical centrifugation, CD spectroscopy	[136]
Malate dehydrogenase	Haloarcula sp.	Neutron diffraction, CD and neutron spectroscopy	[19]
Malate dehydrogenase	Haloarcula sp.	Neutron spectroscopy	[137]
Nucleoside diphosphate kinase	Haloarcula sp.	CD spectroscopy, crystal structure	[52]
Proliferating cell nuclear antigen	Haloferax sp.	Crystal structure	[42]
Protease	Halobacillus sp.	Fluorescence resonance energy transfer	[51]
TATA-box binding protein	Pyrococcus sp.	Analytical ultracentrifugation, isothermal titration calorimetry	[54]
TATA-box binding protein	Pyrococcus sp.	Site-directed mutagenesis, isothermal titration calorimetry	[55-57]
Xylanase	Bacillus sp.	Crystal structure	[138]
Cold active			
Adenylate kinase	Bacillus sp.	Crystal structure	[85]
Adenylate kinase	Marinibacillus sp.	Crystal structure, CD spectroscopy	[139]
Alkaline phosphatase	Gadus sp.	Fluorescence spectroscopy	[140]
Alkaline phosphatase	Antarctic strain TAB5	Site-directed mutagenesis	[84,141]
Alkaline phosphatase	Vibrio sp.	Mutagenesis, CD spectroscopy	[142]
Aminopeptidase	Colwellia sp.	Crystal structure	[143]
Enzyme	Organism	Methods	Reference
---	----------------------	---	-----------
Aminopeptidase	Colwellia sp.	Differential scanning calorimetry, fluorescence spectroscopy	[144]
α-amylase	Alteromonas sp.	Crystal structure	[86]
α-amylase	Pseudoalteromonas sp.	Mutagenesis, differential scanning calorimetry, fluorescence spectroscopy	[145]
α-amylase	Pseudoalteromonas sp.	Differential scanning calorimetry, fluorescence spectroscopy	[79]
α-amylase	Alteromonas sp.	Mutagenesis, crystal structure, molecular dynamics simulations	[147]
Aspartate aminotransferase	Pseudoalteromonas sp.	Homology modeling, CD and fluorescence spectroscopy	[148]
β-galactosidase	Arthrobacter sp.	Crystal structure	[149]
β-lactamase	Pseudomonas sp.	Crystal structure	[87]
Catalase	Vibrio sp.	Differential scanning calorimetry, fluorescence spectroscopy	[150]
Catalase	Vibrio sp.	Crystal structure	[151]
Chitinase	Arthrobacter sp.	Homology-modeling, mutagenesis, fluorescence spectroscopy	[77]
Chitobiase	Arthrobacter sp.	Differential scanning calorimetry	[152]
Citrate synthase	Antarctic bacterium DS2-3R	Crystal structure	[153]
Citrate synthase	Arthrobacter sp.	Site-directed mutagenesis	[154]
Citrate synthase	Sulfolobus sp.	Crystal structure	[155]
Citrate synthase	Archaeobacter sp., Pyrococcus sp.	Homology modeling	[156]
Endonuclease I	Vibrio sp.	Crystal structure	[59]
Esterase	Pseudoalteromonas sp.	Fourier transform infrared spectroscopy, molecular dynamics simulation	[78]
Iron superoxide	Pseudoalteromonas sp.	Crystal structure, CD and fluorescence spectroscopy	[75]
Lipase	Photobacterium sp.	Crystal structure	[157]
Malate dehydrogenase	Aquaspirillum sp.	Crystal structure	[88]
Nitrate reductase	Shewanella sp.	Homology modeling	[158]
Pepsin	Trematonus sp.	Homology modeling	[159]
Protease	Bacillus sp.	Homology modeling, mutagenesis, CD spectroscopy	[160]
Protease	Pseudomonas sp.	Crystal structure	[161]
Protease	Pseudoalteromonas sp.	Homology modeling, CD, fluorescence spectroscopy	[162]
Protease	Bacillus sp.	Homology modeling, mutagenesis	[163]
Protease	Vibrio sp.	Site-directed mutagenesis	[164]
Protease	Bacillus sp.	Crystal structure	[165]
Protease	Geomicrobium sp.	Homology modeling, CD and fluorescence spectroscopy	[166,167]
Ribonuclease	Shewanella sp.	Site-directed mutagenesis, CD spectroscopy	[168]
Superoxide dismutase	Aliivibrio sp.	Crystal structure, differential scanning calorimetry	[93]
Subtilisin	Bacillus sp.	Site-directed mutagenesis	[169]
Triose phosphate isomerase	Vibrio sp.	Crystal structures, calorimetry	[98]

Organic solvent active

Enzyme	Organism	Methods	Reference
Alcohol dehydrogenase	Rhodococcus sp.	Crystal structure	[119]
Protease	Pseudomonas sp.	Site-directed and random mutagenesis	[116,117]
Protease	Pseudomonas sp.	Homology modeling	[118]
An interesting finding also apparent from the genome-wide bioinformatic analysis of predicted proteins was the deficit of protein surface lysine residues in halophilic proteins [13,27,33]. This observation is consistent with the reduction in hydrophobic surfaces in halophilic proteins, resulting in increased hydration at the protein surface. This prediction was confirmed directly via the structure of glucose dehydrogenase from the extreme halophile _H. mediterranei_ solved by Britton _et al._ [30], where lysine residues on the enzyme surface have their side chains buried and better ordered than those from non-halophiles (Figure 3). In halophilic proteins, lysine residues are often replaced by arginines, likely due to the greater hydrophilicity of the guanidinyl side chain, with a substantial role in maintaining the active protein structure [11,30,35,38,44].

Halophilic proteins have also been found to contain a low content of bulky hydrophobic side chains on their surface, compared to non-halophilic proteins. The number of larger hydrophobic amino acid residues (phenylalanine, isoleucine, and leucine) is reduced compared to small (glycine and alanine) and borderline hydrophobic (serine and threonine) amino acid residues [27,31-34,38,45]. These findings are also consistent with increased flexibility, increased surface hydration, and reduced surface hydrophobicity of halophilic proteins.

In halophilic proteins, oppositely charged neighboring residues often interact to form salt bridges and these salt bridges play significant roles in protein folding, structure, and oligomerization (Figure 3). For example, the crystal structure of malate dehydrogenase from _H. marismortui_ showed an increase in the number of salt bridges compared with the non-halophilic homologs, which enhanced enzyme stability at high salt concentrations [28]. This enzyme exists as a tetramer at high salt concentrations and dissociates into monomers as the salinity is reduced [46]. Similarly Madern _et al._ [47] have shown that isocitrate dehydrogenase from the halophilic archaeon _H. volcanii_ exists as a dimer at high salt concentration but at low salt concentration it is irreversibly deactivated, due to dissociation of the dimer towards an inactive, partially folded monomeric species. *Halobacterium* sp. ferredoxin studied using CD and fluorescence techniques showed that the increase in salt concentration decreased electrostatic repulsion by ion binding, likely stabilizing oligomerization necessary for catalytic activity [48].

High salt concentrations generally enhance native conformation and functionality in halophilic proteins [31,49,50]. Salt concentrations may significantly affect the folding, conformation, subunit structure, and kinetics of halophilic proteins. Withdrawal of salt generally results in the gradual loss of protein structure and unfolding of halophilic proteins. Okamoto _et al._ [51]...
Figure 3 Structural features of an extremophilic glucose dehydrogenase. The protein structure (PDB ID:2B5V) [30] was downloaded from RCSB Protein Data Bank [123] and illustrated using DeepView Swiss-PdbViewer [124]. (A) Ribbon structure is shown with one subunit colored light gray and one subunit colored dark gray. Boxed region encompassing three α-helices of one subunit and two partial α-helices of the other subunit are shown in detail in part B. Acidic residues (aspartic acid and glutamic acid) are colored red and pink respectively, and basic residues (arginine and lysine) are colored dark blue and medium blue, respectively. Water molecules are colored light purple. (B) Expanded region showing a portion with side chains of exposed acidic residues and buried basic residues. Asterisk indicates residues of the dark gray subunit. An inter-subunit ion pair between Arg289 of one subunit and Asp277 of the other subunit is shown by a line labeled 2.62 Å, the distance between interacting atoms of the two residues.
studied the role of salt on the kinetics of a high salt-active extracellular protease from the moderately halophilic bacterium *Halobacillus* sp. with fluorescence resonance energy transfer (FRET) and found that NaCl and other kosmotropic salts have a positive effect on catalytic activity of the enzyme. Their results suggested that these salts are excluded from the solvation shell of proteins because they have higher affinity for water than for the protein surface. Using far-ultraviolet circular dichroism (farUV-CD), Müller-Santos et al. [43] showed that in salt-free medium, an esterase from *H. marismortui* was completely unfolded and secondary structures appeared only in the presence of high concentrations of salt. The salt-dependent activity profiles of nucleoside diphosphate kinases from extremely halophilic archaea *Halofarcula quadriata* and *H. sinaiensis*, have also been studied by far-UV-CD spectroscopy, with salt-dependent oligomerization observed only for the latter [52]. Sirimathi et al. [53] investigated a cold adapted amylase from the psychrophile *Pseudoalteromonas haloplanktis* by CD and fluorescence techniques. This cold-active amylase showed increased activity and improved folding at higher concentrations of salt similar to halophilic enzymes, indicating similar mechanisms of enhanced activity in both high salt and low temperature conditions.

Salt is also known to play a critical role in protein-DNA interactions. O’Brien et al. [54] studied the effect of salt on the thermodynamic-structural relationship of the binding of TATA box-binding protein (TBP) from *Pyrococcus woesei*, a moderately halophilic and hyperthermophilic organism, to its DNA binding site. This group hypothesized that uptake of cations and discharge of water accompanies protein-DNA complex formation. Subsequently Bergqvist et al. [55] used site-directed mutagenesis to change cation binding sites, i.e. negatively charged, acidic glutamate residues on the protein surface. Consistent with the hypothesis, they found that some of the mutants were able to convert the halophilic, relatively salt insensitive TBP into non-halophilic, salt sensitive variants [56,57].

While the underlying molecular mechanisms of halophilic protein function are still not fully understood, available studies have begun to shed considerable light on their strategies for adaptation to high salinity and relatively low water activity. Based on the many available studies, clustered surface negative charges, decreased hydrophobicity at the surface of the protein, and enrichment of salt bridges appear to be general strategies for improving the function of halophilic proteins in high salt, low water conditions. However, these mechanisms may not be universal [58,59], and additional research will continue to provide further insights into their function and activity. It is clear, however, that enzymes isolated from halophiles possess extraordinary structural and catalytic properties that allow function at low water activity. These exceptional biomolecules have great potential for applications to many biotechnological and industrial processes (Table 2).

Cold active enzymes

Like high salinity, cold temperatures also critically affect the properties and structures of enzymes as well as the surrounding water. Cold temperatures affect the dynamic activity of bulk water as well as the spheres of hydration surrounding the protein surface [60]. Since water acts as a lubricant, easing the essential peptide amide-carbonyl hydrogen bonding dynamic, the effects of water are highly dependent on the temperature [61-63]. Dependence of the strength of aqueous hydrogen bonds on temperature is neither linear nor monotonic but unimodal, with the maximum density for pure water at approximately 4°C. Broken hydrogen bonds are found in high-density water while strong networks of hydrogen bonds are found in low-density water [63]. Deficiency or disturbance of hydrogen bonds and water networks around the protein may be linked to the loss of biological activity and protein denaturation at low temperatures [64].

As temperature decreases, the water molecules surrounding the protein surface become more ordered and thereby less associated with the protein, eventually pushing the system equilibrium toward the unfolded or denatured state. This change in protein structure is driven by an increase in hydration energies of non-polar groups at lower temperature [65,66]. The hydration energies of cold-active enzymes are generally less affected by lower temperature, and their lower inherent surface hydrophobicity is less sensitive than mesophilic proteins, keeping their structures more intact [67]. In effect, cold active proteins are able to hold on more tightly to the available water, similar to salt adapted proteins.

Temperature and viscosity of the medium are inversely related, with viscosity halved when the temperature is reduced from 37°C to 0°C [68]. Low temperatures therefore reduce the speed of reactions at least in part due to the strong effect of temperature on viscosity of the medium [68-71]. Based on biophysical considerations, reaction rates are predicted to decrease 2-3 fold for every 10°C decrease in temperature, according to the Arrhenius equation [72]. As a result, the effect of reduced temperature on enzyme activity is very significant, and the design of cold-active enzymes must have some structural adaptations to maintain the level of ‘breathing’ necessary for catalysis [73,74].

Studies of cold active enzymes have suggested that both an increase in interactions with the solvent and an
Table 2 Extremophilic enzymes in biotechnology

Name	Organism	Activity	Application(s)	Reference(s)
Amylase	*Pseudoalteromonas* sp.	+	*Saccharification of marine microalgae, saccharification of marine microalgae producing ethanol	[170]
Amylase	*Halococcus* sp.	+	Starch hydrolysis in industrial processes in saline and organic solvent medium	[171]
Amylase	*Streptomyces* sp.	+	Detergent formulations	[172]
Alcohol dehydrogenase	*Rhodococcus* sp.	+	*Enantioselective oxidation of sec-alcohol and the asymmetric reduction of ketones	[173]
Alkaline phosphatase	Antarctic bacteria strain HK47	+	*Radioactive end-labeling of nucleic acids	[174]
Amylase	*Streptomyces* sp.	+	Detergent formulations	[172]
Amylase	*Halococcus* sp.	+	Starch hydrolysis in industrial processes in saline and organic solvent medium	[171]
Amylase	*Pseudoalteromonas* sp.	+	*Saccharification of marine microalgae, saccharification of marine microalgae producing ethanol	[170]
β-galactosidase	*Pseudoalteromonas* sp.	+	*Lactose hydrolysis	[175]
β-galactosidase	*Kluyveromyces* sp.	+	*Synthesis of galacto-oligosaccharides from lactose	[176]
β-galactosidase	*Anthrobacter* sp.	+	Lactose hydrolysis at low temperature, production of ethanol from lactose-based feedstock	[177]
β-galactosidase	*Bacillus* sp.	+	*Synthesis of N-acetyl-lactosamine	[178]
Chitinase	*Halobacterium* sp.	+	Oligosaccharide synthesis	[179]
Chitinase	*Virgibacillus* sp.	+	Bioconversion of chitin from fish, crab or shrimp; treatment of chitinous waste	[180]
Cholesterol oxidase	*Pseudomonas* sp.	+	Organic synthesis	[181]
Glutaminase	*Micrococcus* sp.	+	Flavor-enhancing in food industries, antileukaemic agent	[182]
Esterase	*Pyrobaculum* sp.	+	Organic synthesis	[183]
Esterase	*Pseudoalteromonas* sp.	+	Hydrolyzing esters of medical relevance	[184]
Lipase	*Candida* sp.	+	*Organic synthesis related to food/feed processing, pharmaceuticals or cosmetics	[185]
Lipase	*Rhizopus* sp., *Candida* sp.	+	Biodiesel production	[101-103]
Lipase	*Candida* sp.	+	Biodiesel production	[104,105]
Lipase	*Pseudoalteromonas* sp., *Psychrobacter* sp., *Vibrio* sp.	+ +	Detergent formulations and bioremediation of fat-contaminated aqueous systems	[186]
Lipase	*Staphylococcus* sp.	+	Detergent formulations	[187]
Lipase	*Psuedomonas* sp.	+	Biodiesel production	[106,107]
Lipase	*Salinivibrio* sp.	+	Detergent formulations and fatty acid degradations	[188]
Lipase	*Psuedomonas* sp.	+	Solvent bioremediation, biotransformations and detergent formulations	[189]
Lipase	*Marinobacter* sp.	+	*Hydrolysis of fish oil into free eicosapentaenoic acid	[190]
Nuclease	*Micrococcus* sp.	+	*Production of the flavoring agent S'-guanylic acid	[191]
Pectinase	*Pseudoalteromonas* sp.	+	Enhancing extraction yield, clarification, and taste of fruit juices	[192]
Protease	*Halobacterium* sp.	+	*Peptide synthesis	[193,194]
Protease	*Pseudomonas* sp.	+	*Synthesis of N-carbonyx-L-arginine-L-leucine amide, N-carbonyx-L-alanine-L-leucine amide and aspartame precursor	[195,196]
Protease	*Pseudomonas* sp.	+	Peptide synthesis	[197]
Protease	*Bacillus* sp.	+	*Cleansing of contact lenses	[198]
Protease	*Natralba* sp.	+	*Synthesis of tripeptide Ac-Phe-Gly-Phe-NH₂	[199]
Protease	*Halobacterium* sp.	+	*Fish sauce preparation	[200]
Protease	*Geomicrobium* sp.	+	Peptide synthesis, detergent formulations	[201,202]
Xylanase	*Pseudoalteromonas* sp.	+	*Baking industry for increasing loaf volume	[203,204]
Xylanase	*Bacillus* sp.	+	Xylan biodegradation in pulp and paper industry	[205,206]

* applications established in laboratory and/or industry
increase in structural flexibility contribute to maintaining catalytic activity at lower temperatures [14,73,75-83] (Table 1). Aurilia et al. [78] used Fourier transform infrared spectroscopy (FTIR) and molecular dynamics simulations to investigate a cold active esterase from \textit{P. haloplanktis} and found that the flexibility of the protein loop near the active site plays a crucial role in its function. An α-amylase from the same organism was investigated by D’Amico et al. [79] and shown using differential scanning calorimetry and fluorescence spectroscopy to have high conformational flexibility and electrostatic potential at the protein surface, which lowers activation energy for hydrolysis. The temperature dependence of alkaline phosphatase from the Antarctic strain TAB5 was studied by selection of thermostable and thermolabile variants. The study showed that cold activity is sensitive to slight changes in the protein sequence, particularly in residues located within or close to the active site of the enzyme [84].

There are relatively few solved three-dimensional structures of cold-active proteins compared to mesophilic or thermophilic proteins. While overall structures of cold adapted proteins are generally almost identical to mesophilic and thermophilic homologs [76], variations that are observed confirm an overall increase in protein flexibility and solvent interactions. For example, the crystal structures of cold active superoxide dismutase from \textit{P. haloplanktis} and \textit{Aliivibrio salmonicida} were compared with the mesophilic homolog from \textit{E. coli}. Both cold-active superoxide dismutases showed an increased flexibility of the active site residues with respect to their mesophilic homologue [75]. Bae and Phillips [85] compared the crystal structures of adenylation kinases from the psychrophile \textit{B. globisporus} and the mesophile \textit{B. subtilis} with the thermophilic \textit{B. stearo-thermophilus} enzyme. They concluded that the maintenance of proper flexibility is critical for the cold active proteins to function at their environmental temperatures. Similarly the crystal structure of \textit{Alteromonas haloplanktis} α-amylase and \textit{Pseudomonas fluorescens} β-lactamase showed a decrease in the number of hydrogen-bonds favoring more flexibility in these cold-active enzymes [86,87]. The crystal structure of a cold active malate dehydrogenase from \textit{Aquaspirillum arcticum} showed similar features to be responsible for cold activity, including an increased flexibility around the active site region, more favorable surface charge distribution for substrate and cofactor interactions, and reduced intersubunit ion pair interactions [88].

A bioinformatic study of amino acid contacts that differ between proteins adapted to different temperatures, which included nearly 400 psychrophilic proteins, found that interactions with the solvent at the protein surface play an important role in temperature adaptation [89]. Additional bioinformatic and experimental studies have also suggested that the temperature-dependent activity of cold active enzymes may be altered by changing the amino acid composition, especially the overall protein charge, decreasing the hydrophobicity in the core of the enzyme, or decreasing the number of hydrogen bonds, salt bridges, or bound ions at the surface [72,90-92].

Amino acids present on the protein surface of cold active enzymes have been shown to play critical roles in both activity in cold and in high salinity, with increased activity and improved folding at higher concentrations of salt [53,59]. Moreover, the crystal structure of a cold-active iron superoxide dismutase from the \textit{A. salmonicida} also showed an increase in the net negative charge on the surface of cold-active iron superoxide dismutase [93]. These findings and others [94-97] suggest that solvent interactions of cold active enzymes display remarkable similarity to salt adapted enzymes.

While the adaptive mechanisms of cold active proteins are still under investigation, the best understood mechanisms include increased conformational flexibility at the expense of stability and enhanced interactions with the solvent. To increase flexibility, many structural modifications and the disappearance of discrete stabilizing interactions (electrostatic interactions and an improved interaction of surface side chains with the solvent) have been observed. While nearly all cold active enzymes studied to date have shown these tendencies, there are examples of unusual enzymes, e.g. enzymes displaying rapid kinetics, which display temperature independent characteristics. Triosephosphate isomerase from \textit{Vibrio marinus} is an example of a temperature independent enzyme [98]. The number of cold active proteins studied is expanding and additional future research including comparisons with closely related mesophilic homologs will provide further insights into enzymology at low temperature. The novel properties of cold active enzymes are likely to be valuable for a variety of applications in biotechnology and industry [99].

Enzyme function in organic solvents

One of the most useful outcomes of a better understanding of enzyme-solvent interactions is the potential engineering of new and more effective catalysts functioning in non-aqueous environments. Such enzymes may be useful for both biofuel and bioenergy applications, where large quantity of ethanol or other organic solvents are produced [100-107], and for synthetic chemistry, especially when catalysis of desired chemical reactions requires the presence of organic solvents [108,109]. Organic solvents in the reaction mixture increase the solubility of hydrophobic substrates, and have the potential to improve the kinetic equilibrium and increase the yield and specificity of the product.
However, limiting the disruption of molecular interactions in enzymes by organic solvents and the concomitant loss of activity remains a significant challenge.

A main factor responsible for loss of enzyme activity in organic solvents is the loss of crucial water molecules [109,110]. The low water content restrains protein conformation mobility and affects K_m and V_{max} values [111]. This rigidity increases resistance to thermal vibrations and reduces the enzyme-substrate interactions, leading to a reduced catalytic rate [112,113]. Loss of water can also disrupt hydrogen bond formation between protein subunits on the exterior surface and active site interactions in the interior of proteins may be weakened. The presence of organic solvents can cause disruption of the forces important to the hydrophobic core due to the increased hydrophobicity of the medium. Low water activity may limit diffusion of substrates and stabilize the ground state of the enzyme or change the enzyme conformation altogether. Enzymes in non-aqueous systems can be active provided that the enzyme surface and the active site region are well hydrated [114].

The polarity of organic solvents is the most important factor in the balance between stabilization and inactivation of enzymes. Co-solvents systems (water plus water-miscible organic solvents), organic aqueous biphasic systems (water plus water-immiscible organic solvents), nearly anhydrous systems, and reverse micelles may be the result of addition of organic solvents with water. The relative proportion of organic solvent and water depends on the miscibility of the components [109-115]. Highly polar, miscible organic solvents may strip the hydration layer from the enzyme surface, affecting enzyme flexibility and catalytic activity. Hydrophobic solvents, in contrast, may form a two-phase non-homogeneous system, leaving the hydration shell of the protein intact. However, they may sequester substrate away from the enzyme, depending on solubility and partitioning between phases. For improved activity in two-phase systems, a microenvironment or surface where favorable conditions (high enzyme activity, high substrate concentration, and low product solubility) driving high reaction rates may be desirable.

Published studies of the mechanism of adaptation of enzymes to function in organic solvent are relatively few. Ogino et al. [116,117] investigated the mechanism of organic solvent tolerance in a *Pseudomonas aeruginosa* PST-01 protease by site-directed and random mutagenesis. They reported that the disulfide bonds and amino acid residues located on the surface of the molecule play important roles in organic solvent stability of the enzymes. The structural analysis of organic solvent effects on a protease from a similar *P. aeruginosa* strain also identified two disulfide bonds as well as a number of hydrophobic clusters at the protein surface. These hydrophobic patches and disulfide bonds were proposed to be responsible for the solvent-stable nature of the enzyme [118]. Recently, Karabec et al. [119] solved the crystal structure of alcohol dehydrogenase from *Rhodococcus ruber* DSM 44541 and suggested that salt-bridges play a significant role in the stability of this enzyme in non-aqueous media.

Organic solvent mediated enzymatic reactions have many advantages over aqueous enzymatic reactions: (i) increased solubility of apolar substrate and alteration in substrate specificity, (ii) enhanced regio-and stereoselectivity, (iii) absence of racemization, (iv) lack of requirement of side chain protection, (v) reduced water activity altering the hydrolytic equilibrium, (vi) elimination of microbial contamination, and (vii) suppression of unwanted water-dependent side reactions [108,109,114,115]. Additionally, enzymes in organic solvents tend to be more rigid than in water (due to increased electrostatic and hydrogen bonding interactions among the surface residues of enzyme) and provide the possibility of techniques such as molecular imprinting [109]. In molecular imprinting, the enzyme solution is freeze-dried with a ligand ("imprinter") that locks the enzymes into a catalysis favorable condition during lyophilization and enhances the enzyme activity in organic solvents [120]. In some cases, it has been found that molecular imprinting increases enzyme activity in organic solvents when co-lyophilized with an inorganic salt such as KCl. KCl prevents the reversible denaturation of proteins and produces a strong additive activation effect during the drying process [121]. Among the disadvantages of non-aqueous organic enzyme catalysis, the loss of catalytic activity is the most common. Many enzymatic reactions are also susceptible to substrate and/or product inhibition, and expensive natural cofactors for enzyme activity may be required for full activity. Finally, labor and cost-intensive preparation of biocatalysts and enzymes may require narrow operation parameters, limiting the value of some enzymes that may be active in the presence of organic solvents [109,122]. However, the potential for organic solvent mediated enzyme catalysis to enable desirable biotechnological aims remains a major motivating factor for additional research.

Conclusion

Extremophilic salt adapted and cold active enzymes have expanded our understanding of enzyme stability and activity mechanisms, protein structure-function relationships, and enzyme engineering and evolution. The still emerging understanding of protein-solvent interactions are likely to aid in development of new catalysts for use in novel synthetic applications, including enzymes...
operating in low water activity and organic solvents, and in the development of efficient catalytic systems active in organic solvents for applications in bioenergy and biotechnology.

Acknowledgements
This work was funded by NSF grant MCB-0450695, Henny M Jackson Foundation grant HU0001-09-1-0002-660883, and the National Aeronautics and Space Administration grant NNX10AP47G to SD. RK was partially supported by an ASM International Fellowship for Asia.

Author details
1Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA. 2Institute of Marine and Environmental Technology, University System of Maryland, Baltimore, MD, USA.

Authors' contributions
The manuscript was drafted by RK and revised and finalized together with MDC and SD. All authors have read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 14 November 2011 Accepted: 2 February 2012

References
1. Hough DW, Danson MJ: Extremozymes. Curr Opin Chem Biol 1999, 3:39-46.
2. Gomes J, Steiner W: The biocatalytic potential of extremophiles and extremozymes. Food Technol Biotechnol 2004, 42:223-235.
3. Vieille C, Zikus GQ: Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 2001, 65:1-43.
4. Bull AT, Ward AC, Goodfellow M: Search and discovery strategies for biotechnology: the paradigm shift. Microbiol Mol Biol Rev 2000, 63:573-606.
5. Iyer PV, Ananthanarasyan L: Enzyme stability and stabilization-aqueous and non-aqueous environment. Process Biochem 2008, 43:1019-1032.
6. Kaul P, Arano Y: Strategies for discovery and improvement of enzyme function: state of the art and opportunities. Microb Technol 2011, 1011111/j.1751-7915.2011.00280.x.
7. Adams MWW, Perler FB, Kelly RM: Extremozymes: Expanding the limits of biocatalysis. Nat Biotechnol 1995, 13:662-668.
8. DasSarma P, Coker JA, Huse V, DasSarma S: Halophiles, Biotechnology. In Encyclopedia of Industrial Biotechnology, Bioprocess, Biopreservation and Cell Technology. Edited by: Flickinger MC, Hoboken, NJ: John Wiley and Sons; 2010:1269-2777.
9. Bowren KJ, Mesbah NM, Wiegel J: Biodiversity of poly-extremophilic bacteria: Does combining the extremes of high salt, alkaline pH and elevated temperature approach a physico-chemical boundary for life? Saline Sys 2009, 5:9-17.
10. Marhuenda-Egea FC, Bonete MJ: Extreme halophilic enzymes in organic solvents. Curr Opin Biotechnol 2002, 13:385-389.
11. Pire C, Marhuenda-egea FC, Sánchez J, Alcaraz L, Ferrer J, Bonete MJ: Stability and enzymatic studies of glucose dehydrogenase from the Archaeon Haloferax mediterranei in reverse micelles. Biocatal Biotransform 2004, 22:17-23.
12. Danson MJ, Hough DW: The structural basis of protein halophilicity. Comp Biochem Physiol Physiol 1997, 117:307-312.
13. Kennedy SP, Ng WW, Saleberg SL, Hood L, DasSarma S: Understanding the adaptation of Halobacterium species NRC-1 to its extreme environment through computational analysis of its genome sequence. Genome Res 2001, 11:1641-1650.
14. Siddiqui KS, Cavichioi R: Cold-adapted enzymes. Annu Rev Biochem 2006, 75:403-433.
15. Kuntz ID: Hydration of macromolecules IV Poly peptide conformation in frozen solutions. J Am Chem Soc 1971, 93:516-518.
16. Saenger W: Structure and dynamics of water surrounding biomolecules. Annu Rev Biophys Biophys Chem 1987, 16:93-114.
17. Persson E, Halle B: Cell water dynamics on multiple time scales. Proc Natl Acad Sci USA 2008, 105:6266-6271.
18. Spitzer J: From water and ions to crowded biomacromolecules: In vivo structuring of a prokaryotic cell. Microbiol Mol Biol Rev 2011, 75:491-506.
19. Zaccai G: The effect of water on protein dynamics. Philos Trans R Soc Lond B Biol Sci 2004, 359:1269-1276.
20. Mountain RD, Thirumalai D: Alterations in water structure induced by guanidinium and sodium ions. J Phys Chem 2004, 108:19711-19716.
21. Mancinelli R, Botti A, Bruni F, Ricci MA, Saper AK: Hydration of sodium, potassium, and chloride ions in solution and the concept of structure maker/breaker. Phys Chem 2007, 111:13570-13577.
22. Bakker HJ: Water dynamics: Ion-ing out the details. Nature Chemistry 2009, 1:24-25.
23. Irina A, Ebel C, Madern D, Richard SB, Cosenza LW, Zaccai G, Vellevisium M: The oligomeric states of Halococcus marismortui malate dehydrogenase are modulated by solvent components as shown by crystallographic and biochemical studies. J Mol Biol 2003, 327:659-673.
24. Dennis PP, Shinnm CC: Evolutionary divergence and salinity-mediated selection in halophilic archaea. Microbiol Mol Biol Rev 1997, 61:90-104.
25. Seldàk E, Stagg L, Wittung-Stafshede P: Role of cations in stability of acidic protein Desulfovibrio desulfuricans apoflavodoxin. Arch Biochem Biophys 2008, 47:128-135.
26. Ortega G, Laín A, Tadeo X, López-Méndez B, Castaño D, Millet O: Halophilic enzyme activation induced by salts. Scientific Reports 2011, 1:6.
27. Paul S, Bag SK, Das S, Harvil ET, Dutta C: Molecular signature of hypersaline adaptation: Insights from genome and proteome composition of halophilic prokaryotes. Genome Biol 2006, 9:R70.
28. Dym O, Mevarech M, Sussman JL: Structural features that stabilize halophilic malate dehydrogenase from an archaeabacterium. Science 1995, 267:1344-1346.
29. Frolow F, Harel M, Sussman JL, Mevarech M, Shoham M: Insights into protein adaptation to a saturated salt environment from the crystal structure of a halophilic 2Fe-2S ferredoxin. Nature Struct Biol 1996, 3:452-458.
30. Britton KL, Baker PJ, Fisher M, Ruzheinkavski S, Gilmour DJ, Bonete MJ, Ferrer J, Pire C, Esclapez J, Rice DW: Analysis of protein solvent interactions in glucose dehydrogenase from the extreme halophile Haloferax mediterranei, Proc Natl Acad Sci USA 2006, 103:4846-4851.
31. Lanyi JK: Salt dependent properties of proteins from extremely halophilic bacteria. Bacteriol Rev 1974, 38:272-290.
32. Madern D, Ebel C, Zaccai G: Halophilic adaptation of enzymes. Extremophiles 2000, 4:91-98.
33. Fukuchi S, Yoshimune K, Wakayama M, Moriguichi M, Nishikawa K: Unique amino acid composition of proteins in halophilic bacteria. J Mol Biol 2003, 327:347-357.
34. Bolhuis A, Kwan D, Thomas JR: Halophilic adaptations of proteins. In Protein adaptation in extremophiles. Edited by: Siddiqui KS, Thomas T. New York: Nova Science Publishers Inc USA; 2008:71-110.
35. Tadeo X, López-Méndez B, Tiraqueros T, Lain A, Cañedo D, Millet O: Structural basis for the amino acid composition of proteins from halophilic archaea. PLoS Biol 2009, 7:e1000257.
36. Ishitahi M, Tokunaga H, Hiratsuka K, Yoneda T, Tsurumaru H, Arakawa T, Tokunaga M: NaCl-activated nucleoside diphosphate kinase from extremely halophilic archaeean, Halobacterium salinarum, maintains native conformation without salt. FEBS Lett 2001, 493:134-138.
37. De Castro RE, Ruiz DM, Gimenez M, Silveira MA, Paggi RA, Maipun-Furlow JA: Gene cloning and heterologous synthesis of a halophilic alkaliphilic extracellular protease of Natrithiol magadii (Nep). Extremophiles 2008, 5:681.
38. Karlinis PL, Panandetrou NC, Hamodrakas SJ: Halodaptation: insights from comparative modeling studies of halophilic archaeal DHFRs. Int J Biol Macromol 2007, 41:447-453.
39. Ellcock AH, McCammon JA: Electrostatic contributions to the stability of halophilic proteins. J Mol Biol 1998, 4:731-748.
40. Mevarech M, Frolow F, Ghosh MV: Halophilic enzymes: Proteins with a grain of salt. Biochem Biophys 2000, 86:155-164.
41. Pierer U, Kapadia G, Mevarech M, Herzberg O: Structural features of halophilicity derived from the crystal structure of dihydrofolate reductase from the Dead Sea halophilic archaeeon, Haloferax volcanii. Structure 1998, 6:75-88.
42. Winter JA, Christofi P, Morroll S, Bunting KA: The crystal structure of
Haloflexon oxalaci proliferating cell nuclear antigen reveals unique
surface charge characteristics due to halophilic adaptation. BMC Struct
Biol 2009, 9:15.

44. Esclapez J, Pire C, Bautista V, Martínez-Espinosa RM, Ferrer J, Bonete MJ:
Analysis of acidic surface of Haloflexon mediterranei glucose
dehydrogenase by site-directed mutagenesis. FEBS Lett 2007, 581:837-842.

48. Zaccai G, Cendrin F, Haik Y, Borochov N, Eisenberg H:
Biological water: A critique. Biophys J 2001, 79:501-510.

49. Rao JKM, Argos P:
Enzyme hydration, activity and flexibility: A neutron scattering approach.
J Biomol Struct Dyn 2009, 27:601-611.

50. Zhong D, Pal SK, Zewail AH:
Crystalline ribonuclease: A molecular basis of strong superoxide dismutases: the case of the enzyme isolated from
Pseudoalteromonas haloplanktis. J Struct Biol 2010, 172:543-552.

51. Okamoto DN, Kondo MY, Santos JA, Nakajima S, Hiraga K, Oda K,
Srimathi S, Jayaraman G, Feller G, Danielsson B, Narayanan PR:
Yamamura A, Ichimura T, Kamekura M, Mizuki T, Usami R, Makino T,
Fernández A, Scheraga HA:
Insufficiently dehydrated hydrogen bonds as a mechanism of distinct salt-dependent enzyme activity of two halophilic
archaeon Haloflexon oxalaci. Extremophiles 2004, 8:377-384.

52. Maden D, Camacho M, Rodríguez-Arnedo A, Bonete MJ, Zaccardi GA:
Salt-dependent studies of NAPD-dependent isocitrate dehydrogenase from the
halophilic archaeon Haloflexon oxalaci. Biochemistry 2004, 12:358.

53. Zaccai G, Cendrin F, Haik Y, Borochov N, Eisenberg H:
Structure and
activity of a halophilic esterase under high salt concentration. PLoS One 2009, 4:e96380.

54. Rasmussen BF, Stock AM, Ringe D, Petsko GA:
Salt-factors).
Biophys Chem 2007, 113:266-272.

55. Bergqvist S, Omeje ED:
Reversal of halophilicity in Haloferax volcanii proliferating cell nuclear antigen reveals unique
surface charge characteristics due to halophilic adaptation. J Appl Cryst 2009, 42:629-637.

56. Bergqvist S, Williams MA, Omeje ED:
Enzymes from psychrophilic organisms. Environ Technol 2010, 31:835-844.

57. Mavromatis K, Feller G, Kokkinidis M, Bouriotis V: Cold adaptation of a
protein-DNA interaction by limited mutation strategy. Biochem Soc Trans 2009, 37:497-503.

58. Aurilia V, Rioux-Dubé JF, Marabotti M, D'Auria S: Structure and
dynamics of cold-adapted enzymes as investigated by FT-IR spectroscopy and MD. The case of an esterase from
Pseudoalteromonas haloplanktis. J Phys Chem B 2010, 114:10916-10926.

59.-directing factors).
Biophys Chem 2007, 113:266-272.

60. Bergqvist S, Williams MA:
Cold-adapted enzymes: Insights from normalized atomic displacement parameters (B-factors). Biophys Chem 2010, 153:104-114.

61. Rasmussen BF, Stock AM, Ringe D, Petsko GA:
Crystalline ribonuclease: A loss function below the dynamical transition at 220 K. Nature 1992, 357:423-424.

62. Esclapez J, Pire C, Bautista V, Martínez-Espinosa RM, Ferrer J, Bonete MJ:
Analysis of acidic surface of Haloflexon mediterranei glucose
dehydrogenase by site-directed mutagenesis. FEBS Lett 2007, 581:837-842.

63. Zaccai G, Cendrin F, Haik Y, Borochov N, Eisenberg H:
Stabilization of halophilic malate dehydrogenase. J Mol Biol 1989, 208:491-500.

64. Bandyopadhyay AK, Sonawat HM:
Halophilic malate dehydrogenase. J Mol Biol 1989, 208:491-500.

65. Okamoto DN, Kondo MY, Santos JA, Nakajima S, Hiraga K, Oda K,
Srimathi S, Jayaraman G, Feller G, Danielsson B, Narayanan PR:
Yamamura A, Ichimura T, Kamekura M, Mizuki T, Usami R, Makino T,
Ohtsuka J, Miyazono K, Oka M, Nagata K, Tanokura M: Molecular
mechanism of distinct salt-dependent activity of two halophilic
nucleoside diphosphate kinases. Biochem J 2009, 4692-4700.

66. Srinath S, Jayaraman G, Feller G, Danielsson B, Narayanan PR: Intrinsic
alotolerance of the psychrophilic alpha-amylase from
Pseudoalteromonas haloplanktis. Extremophiles 2007, 11:505-515.

67. O'Brien R, DeBecker D, Fleming K, Sigler PB, Ladbury JE: The effects of salt
on the TATA binding protein-DNA interaction from a hyperthermophilic
archaeon. J Mol Biol 1997, 279:117-125.

68. Bergqvist S, O'Brien R, Ladbury JE: Site-specific cation binding mediates
TATA binding protein-DNA interaction from a hyperthermophilic
archaeon. Biochemistry 2001, 40:2419-2425.

69. Bergqvist S, Williams MA, O'Brien R, Ladbury JE: Reversal of halophilicity in a
protein-DNA interaction by limited mutation strategy. Structure 2002, 10:629-637.

70. Bergqvist S, Williams MA, O'Brien R, Ladbury JE: Halophilic adaptation of
protein-DNA interactions. Biochem Soc Trans 2003, 31:677-680.

71. Sivakumar N, Li N, Tang JW, Patel BK, Swaminathan K: Crystal structure of
AmyA lacks acidic surface and provide insights into protein stability at
extrreme condition. FEBS Lett 2006, 581:837-842.

72. Zhong D, Pal SK, Zewail AH: Biological water: A critique. Chem Phys Lett
2010, 503:1-11.

73. Winter JA, Christofi P, Morroll S, Bunting KA: The crystal structure of
Haloflexon oxalaci proliferating cell nuclear antigen reveals unique
surface charge characteristics due to halophilic adaptation. BMC Struct
Biol 2009, 9:15.

74. kodama m, dozaou em, pedrosa ede o, mitchell da, longhi s,
carrérre f, canaan s, krieger n: First evidence for the salt-dependent
and activity of an esterase from the halophilic archaea
Halocarcia marismortui. Biochim Biophys Acta 2009, 1791:719-729.

75. Esclapez J, Pire C, Bautista V, Martinez-Espinosa RM, Ferrer J, Bonete MJ:
Analysis of acidic surface of Haloflexon mediterranei glucose
dehydrogenase by site-directed mutagenesis. FEBS Lett 2007, 581:837-842.

76. Zaccai G, Cendrin F, Haik Y, Borochov N, Eisenberg H:
Stabilization of halophilic malate dehydrogenase. J Mol Biol 1989, 208:491-500.

77. Maden D, Camacho M, Rodríguez-Arnedo A, Bonete MJ, Zaccardi GA:
Salt-dependent studies of NADP-dependent isocitrate dehydrogenase from the
halophilic archaeon Haloflexon oxalaci. Biochemistry 2004, 8:377-384.
The first structure of a cold-adapted superoxide dismutase (SOD): biochemical and structural characterization of iron SOD from Allivibrio salmonicida. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009, 2:84-92.

Davall S, Feller G, Narinx E, Gerday C. Cold adaptation of proteins. Purification, characterization, and sequence of the heat-labile subtilisin Bacillus TA41. J Biol Chem 1994, 269:17448-17453.

Feller G, Zehhnini Z, Lamotte-Brasseur J, Gerday C. Enzymes from cold-adapted microorganisms. The class B beta-lactamase from the Antarctic psychrophobe Psychrobacter immobilis AS. Eur J Biochem 1997, 1:186-191.

Russell RJ, Genik U, Danson MJ, Hough DW, Taylor GL. Structural adaptations of the cold-active citrate synthase from an Antarctic bacterium. Structure 1998, 3:351-361.

Feller G, D’Amico D, Gerday C. Thermodynamic stability of a cold-active alpha-amylase from the Antarctic bacterium Alteromonas haloplanctis. Biochemistry 1999, 14:4613-4619.

Alvarez M, Zeelen JP, Mainfrad V, Rentier-Deluze F, Martial JA, Wyns L, Wierenga RK, Mael D. Triose-phosphate isomerase (TIM) of the psychrophilic bacterium Vibrio marinus kinetic and structural properties. J Biol Chem 1998, 273:1199-206.

Cavicchio R, Charlton T, Ertan H, Ishimi K, Ishimi H. Effect of exchange amino acid residues of the surface region of the PST-01 protease on its organic solvent-stable. In Enzymes in Nonaqueous Media. Edited by: Vulfson J, Halling PJ, Holland HL. Humana Press: Totowa, NJ, 2000.

Rich JO, Mozhaev VV, Dordick JS, Clark DS, Khmelnitsky YL. Molecular imprinting of enzymes with water-insoluble ligands for nonaqueous biocatalysis. J Am Chem Soc 2002, 124:5254-5255.

Khmelnitsky YL. Biotransformations in organic chemistry A textbook; third edition, by Faber K, Springer-Verlag, Berlin, 1997.

Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. The Protein Data Bank. Nucleic Acids Res 2000, 28:235-242.

Gues N, Peitsch MC. SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis 1997, 18:2714-2723.
135. Richard SB, Maden D, Garcin E, Zaccaci G. Halophilic adaptation: novel solvent protein interactions observed in the 2.9 and 2.6 Å resolution structures of the wild type and a mutant of malate dehydrogenase from Halobacterium marismortui. Biochemistry 2000, 39:892-1000.

136. Maden D, Zaccaci G. Molecular adaptation: the malate dehydrogenase from the extreme halophilic bacterium Saltimicrobacter ruber behaves like a non-halophilic protein. Biochimie 2004, 86:295-303.

137. Tehei M, Zaccaci G. Adaptation to extreme environments: macromolecular dynamics in complex systems. Biochim Biophys Acta 2003, 1640:401-410.

138. Manikandan K, Bhardwaj A, Gupta N, Lokanath NK, Ghosh A, Reddy VS, Ramakumar S. Crystal structures of native and xyllosaccharide-bound alkali thermostable xylanase from an alkalophilic Bacillus sp. NG-27: structural insights into alkali tolerance and implications for adaptation to polyeextreme conditions. Protein Sci 2006, 15:1951-1960.

139. Davleva M, Shmoo Y. Structure and biochemical characterization of an adenylyl kinase originating from the psychrophilic organism Marinobacter marinus. Acta Crystallogr Sect F Struct Biol Crystal Commun 2009, 65:751-756.

140. Asgerinsson B, Hauksson JB, Gunnarsson GH. Dissociation and unfolding of cold-active alkaline phosphatase from atlantic cod in the presence of guanidinium chloride. Eur J Biochem 2000, 21:6043-6412.

141. Togas I, Mavromatis K, Tranlandalaki M, Pozidis C, Kokkinidis M. Bourouis V. Crystallographic properties of a cold-active enzyme through rational redesign of the active site. Eur J Biochem 2001, 268:5074-5080.

142. Gudjónsdóttir K, Asgeirsson B. Effects of replacing active site residues in a cold-active alkaline phosphatase with those found in its mesophilic counterpart from Escherichia coli. FEBS J 2008, 11:117-127.

143. Bavois C, Jacquemart L, Huston AL, Borel F, Feller G, Ferrer JL. Crystal structure of the cold-active aminopeptidase from Colwellia psychroflexa, a close structural homologue of the human bifunctional leukotriene A4 hydrolase. J Biol Chem 2008, 33:23315-23325.

144. Huston AL, Haeggstrom JZ, Feller G. Cold adaptation of enzymes: structural, kinetic and microcalorimetric characterizations of an aminopeptidase from the Arctic psychrophile Colwellia psychroflexa and of human leukotriene A(4) hydrolase. Biochim Biophys Acta 2008, 177:1165-1172.

145. D’Amico S, Gerdag C, Feller G. Structural determinants of cold adaptation and stability in a large protein. J Biol Chem 2001, 276:25791-25796.

146. Siddiqui KS, Poljak A, Guilhuais M, Feller G, D’Amico S, Gerdag C, Cavicchioli R. Role of disulfide bridges in the activity and stability of a cold-active alpha-amylase. J Bacteriol 2001, 269:6206-6212.

147. Papaleo E, Pasz M, Tiberi M, De Gioia L. Molecular dynamics of mesophilic-like mutants of a cold-adapted enzyme: insights into distal effects induced by the mutations. PLoS One 2011, 9:e24214.

148. Birolo L, Tutino ML, Fontanella B, Gerdag C, Mainolli K, Pascarella S, Sannia G, Vino F, Marino G. Aspartate aminotransferase from the Antarctic bacterium Psychrobacter marinus halophilus TAC TAC. 125. Cloning, expression, properties, and molecular modelling. Eur J Biochem 2000, 29:2790-2802.

149. Skálová T, Dohnálek J, Spiwok V, Lipovová P, Vondrácková E, Petroková H, Karan R, Singh RK, Kapoor S, Khare SK, Karan R, Singh RK, Kapoor S, Khare SK. Gene identification and molecular characterization of solvent stable protease from a moderately halophilic bacterial, Halobacterium sp. EM82. J Microbial Biotechnol 2011, 2:129-135.

150. Ohtani N, Haruki M, Morikawa M, Kanaya S. The crystal structures of the psychrophilic subtilisin from Vibrio salmonicida strain S-1. J Mol Biol 2000, 292:282-294.

151. Lorentzen MS, Meo E, Amoog Q, Gonzalez A, Godin N, de Leeuw M, Mekel MJ, Klein D, Braun S, Shoham G, Walter RL. The crystal structures of the psychrophilic subtilisin S41 and the mesophilic subtilisin Sph reveal the same calcium-loaded state. Proteins 2009, 78:267-276.

152. Madern D, Zaccai G. Different roles of electrostatics in heat and in cold: Toleration of halophilic enzyme to cold. Biochim Biophys Acta 2005, 1713:280-290.

153. Kim SJ. Cold adaptation of the mononuclear molybdoenzyme periplasmic nitrate reductase from the Antarctic bacterium Shewanella gelidimarina. Biochim Biophys Acta Res Commun 2011, 4783-4786.

154. Karan R, Singh RK, Kapor S, Khare SK. Halophilic adaptation: novel stability properties observed in a cold-active alkaline phosphatase from an alkalophilic bacterium, Salinibacter ruber. J Mol Biol 2009, 297:1015-1026.

155. Hohaly A, Jennes L, Dubois P, Genicot S, Dubois F, François JMP, Baeke E, Feller G, Gerdag C. Cold-adapted beta-galactosidase from the Antarctic psychrophile to hyperthermophile. Eur J Biochem 2002, 269:6250-6260.

156. Kumar S, Nussinov R. Different roles of electrostatics in heat and in cold: Adaptation by citrate synthase. Chem Bio Chem 2004, 5:280-290.

157. Jung SK, Jeong DG, Lee MS, Lee J, Kim HK, Ryu SE, Park BC, Kim JH, Kim SJ. Structural basis for the cold adaptation of psychrophilic M37 lipase from photobacterium lipolyticum. Proteins 2008, 71:476-484.

158. Simpson PJ, Codd R. Cold adaptation of the mononuclear molybdoenzyme periplasmic nitrate reductase from the Antarctic bacterium Shewanella gelidimarina. Biochim Biophys Acta Res Commun 2011, 4783-4786.

159. Almog O, González A, Godin N, de Leeuw M, Mekel MJ, Klein D, Braun S, Shoham G, Walter RL. The crystal structures of the psychrophilic subtilisin S41 and the mesophilic subtilisin Sph reveal the same calcium-loaded state. Proteins 2009, 78:267-276.

160. Madern D, Zaccai G. Different roles of electrostatics in heat and in cold: Toleration of halophilic enzyme to cold. Biochim Biophys Acta 2005, 1713:280-290.

161. Madern D, Zaccai G. Different roles of electrostatics in heat and in cold: Toleration of halophilic enzyme to cold. Biochim Biophys Acta 2005, 1713:280-290.

162. Madern D, Zaccai G. Different roles of electrostatics in heat and in cold: Toleration of halophilic enzyme to cold. Biochim Biophys Acta 2005, 1713:280-290.
psychrophile Pseudolalteromonas haloplanckis. Appl Environ Microbiol 2001, 67:1529-1535.

176. Maugard T, Daout D, Legoy MD, Besson T: Microwave-assisted synthesis of galacto-oligosaccharides from lactose with immobilized beta-galactosidase from Kluyveromyces lactis. Biotechnol Lett 2003, 25:623-629.

177. Hildebrandt P, Waranca M, Kur J: A new cold-adapted beta-galactosidase from the Antarctic Arthrobacter sp. 32c- gene cloning, overexpression, purification and properties. BMC Biotechnology 2009, 9:151.

178. Bridau N, Issaoui N, Maugard T: The effects of organic solvents on the efficiency and regioselectivity of N-acetyl-lactosamine synthesis, using the beta-galactosidase from Bacillus circulans in hydro-organic media. Biotechnol Prog 2010, 26:1278-1289.

179. Hatari Y, Sato M, Onishikoro K, Yatsunari R, Endo K, Fukui T, Nakamura S: Characterization of recombinant family 18 chitinase from extremely halophilic archaeon Halobacterium salinarum strain NRC-1. Chin Chitinosan Res 2006, 12:121.

180. Essghaier B, Hedi A, Bejji M, Jijakli H, Boudabous A, Sadfi-Zouaoui N: Characterization of a novel chitinase from a moderately halophilic bacterium, Vibibacillus marismortui strain M3-23. Annal Microbiol 2011, DOI: 10.1007/s11274-011-0324-4.

181. Doukyu N, Aono R: Purification of extracellular cholesterol oxidase with high activity in the presence of organic solvents from Pseudomonas sp. ST-260. Appl Environ Microbiol 1998, 64:1029-1032.

182. Yoshimine K, Shirakihara Y, Wakayama M, Yumoto I: Characterization of an extracellular thermohalophilic lipase from a moderately halophilic bacterium, Micrococcus varians 2006. Enzym Microb Technol 2006, 43:1040-1046.

183. Khudary RA, Venkatachalam R, Katzer M, Elleuche S, Antranikian G: Purification and characterization of a solvent stable extracellular cholesterol oxidase with high activity in the presence of organic solvents from Halobacterium salinarum strain NRC-1. Biotechnol Prog 2008, 24:676-681.

184. Khudary RA, Venkatachalam R, Katzer M, Elleuche S, Antranikian G: Purification and characterization of a solvent stable extracellular cholesterol oxidase with high activity in the presence of organic solvents from Halobacterium salinarum strain NRC-1. Biotechnol Prog 2008, 24:676-681.

185. Amoozegar MA, Salehghamani E, Khaej H, Kabini M, Nadjar M: Production of an extracellular thermostable lipase from a moderately halophilic bacterium, Salinivibrio sp. strain SA-2. J Basic Microbiol 2008, 48:160-167.

186. Gaur R, Gupta A, Khare SK: Purification and characterization of lipase from soluble tolerant Pseudomonas aeruginosa PaseA. Process Biochem 2008, 43:1040-1046.

187. Pérez O, Martín S, Fernández-Lorente G, Filice M, Guisán JM, Ventosa A, García MT, Mellado E: A novel halophilic lipase, LipBL, showing high efficiency in the production of eicosapentaenoic acid (EPA). PLoS ONE 2011, 6:23525.

188. Kamekura H, Hamakawa T, Onishi H: Application of halophilic nuclease H of Micrococcus varians subsp. halophilus to commercial production of flavoring agent S'-GMP. Appl Environ Microbiol 1982, 44:994-995.

189. Truong LV, Tuyen H, Helmi E, Binh LT, Schweder T: Cloning of two pectate lyase genes from the marine Antarctic bacterium PseA01letosorahaloplankis strain ANT/505 and characterization of the enzymes. Extremophiles 2001, 5:33-44.

190. Byu K, Kim J, Jurdick JS: Catalytic properties and potential of an extracellular protease from an extreme halophile. Enzym Microb Technol 1994, 16:266-275.

191. Kim J, Jurdick JS: Unusual salt and solvent dependence of a protease from an extreme halophile. Biotechnol Bioeng 1997, 55:471-479.

192. Bobe JM, Abdelmouz W, Ogino H, Yasuda M, Ishimi K, Ishikawa H: Kinetics and mechanism of a reaction catalyzed by PSE-01 protein from Pseudomonas aeruginosa PST-01. Biotechnol Bioeng 2004, 86:365-373.

193. Tsuchiyama S, Doukyu N, Yasuda M, Ishimi K, Ogino H: Peptide synthesis of aspartame precusor using organic solvent-stable PST-01 protease in monophasic aqueous organic solvent systems. Biotechnol Prog 2007, 23:620-623.

194. Gupta A, Roy I, Khare SK, Gupta MN: Purification and characterization of a solvent stable protease from Pseudomonas aeruginosa PseA. J Chrom A 2005, 1069:155-161.

195. Pawar R, Zambare V, Barve S, Paratkar G: Application of protease isolated from Bacillus sp. in enzymatic cleansing of contact lenses. Biotechnol Bioeng 2009, 8:276-280.

196. Ruiz DM, Iannucci NB, Cascone O, De Castro RE: Peptide synthesis catalysed by a haloalkaliphilic serine protease from the archaeon Natrathalia magadii (Nep), Lett Appl Microbiol 2010, 51:691-696.

197. Akolkar AV, Dural D, Desai AJ: Halobacterium sp. sp. EMB2 (MTCC 10310): production optimization by response surface methodology, N Biotechnol 2011, 2:136-145.

198. Collins T, Hoyaux A, Dutron A, Georis J, Genot B, Dauvin T, Arnaut F, Gerdal C, Feller G: Use of glycoside hydrodase family 8 xylanases in baking. J Cereal Sci 2006, 43:708-94.

199. Domene E, Vejrals P, Arnaud F, Delcour JA, Courtin CM: Use of psychrophilic xylanases provides insight into the xylanase functionality in bread making. J Agric Food Chem 2011, 59:9553-9562.

200. Wang K, Li G, Yu SJ, Zhang CT, Liu YH: A novel metagenome-derived beta-galactosidase: gene cloning, overexpression, purification and characterization. Appl Microbiol Biotechnol 2010, 88:155-165.

201. Prakash P, Jayakrishna SK, Prakash B, Rubul M, Sreeramulu K: Production of alkaliphilic, halotolerant, thermostable cellulase free xylanase by Bacillus halodurus PPKS-2 using agro waste: single step purification and characterization. World J Biotechnol Microbiol 2011, DOI: 10.1007/s11274-011-0807-2.

Cite this article as: Karan et al.: Function and biotechnology of extremophilic enzymes in low water activity. Aquatic Biosystems 2012 8:4.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit