Problem-based learning model on students' critical-thinking skills: A meta-analysis study

Dhea Yusma Bonafide1*, Yuberti1, Antomi Saregar1, Muhammad Iqbal Fasa1

1Raden Intan State Islamic University, Lampung, Indonesia

*Corresponding author: antomisaregar@radenintan.ac.id

Abstract. The Problem-based Learning model is increasingly popular in physics learning since it encourages students to think openly, actively, and reflectively. Thus, it affects students' critical-thinking skills. Through the meta-analysis, this study discussed how Problem-based Learning improved students' critical-thinking skills. In this study, the researchers employed the experimental design with a meta-analysis technique. The research had been conducted by collecting articles from Google Scholar, Scopus, and ERIC (Education Resources Information Center). A total of 122 articles had been obtained which then 15 articles were selected and analyzed through 5 stages, namely (1) Orientation, (2) Conceptualization, (3) Investigation, (4) Discussion, and (5) Conclusion. The results of this study indicated that the Problem-based Learning model was able to improve students' critical-thinking processes from the elementary level to the tertiary level. However, research on the Problem-based Learning model toward students' critical-thinking skills has not been done much in the field of physics-based on levels and dependent variables.

Keywords: Critical-thinking, Meta-analysis, Problem-based Learning

1. Introduction

Education in the 21st-century has experienced significant development [1,2]. The speed of this development cannot be separated from the results of research, both basic and applied research [3]. Education is an effort to increase the potential and quality of each individual [4,5]. In other words, the development of education is very important, especially in the current era of globalization. It requires students' skills in critical thinking to be developed in learning. These skills are applied during the learning process as well as in everyday life [6]. The characteristics of a critical thinker are solving a problem with a specific goal, analyzing, announcing, grouping ideas according to facts, and concluding a reference for solving problems using correct arguments [7,8]. Critical thinking is considered as a process that starts with a problem, ends with a solution, and self-interpretation [9–11]. If students are accustomed to thinking using critical-thinking patterns to solve a problem in everyday life, they will get used to forming their thought patterns.

One learning model that can improve students' critical-thinking skills is the Problem-based Learning model [12]. The problem-based learning model begins with a problem where students are given time to think together to find information and develop problem-solving strategies [13]. The problem-based learning model can be an efficient learning strategy, has a positive effect on teaching, and provides problem-solving skills [14].
The Problem-based Learning model towards students' critical-thinking skills has been widely researched and discussed, among others in the field of mathematics [15,16], counselling [17], arts [18], literature [19], biology [20], chemistry [21], and religion [22]. However, research that only focuses on physics learning is still lacking. There are only fifteen articles that discuss the Problem-based Learning model in physics learning. This indicates that research on Problem-based Learning model is rarely studied in physics learning, especially in improving students' thinking skills. Therefore, there was an opportunity to study the Problem-based Learning model in physics learning, especially in improving students' thinking skills and other dependent variables.

2. Method
This study employed the meta-analysis research with quantitative-descriptive methods. The electronic search found a total of one hundred and twenty-two articles in the Google Scholar, Scopus and ERIC databases searched using the keyword “Problem-based Learning model and students' critical-thinking skills” because the researcher focused this research on analyzing the effect Problem-based Learning model (PBL) on students' critical-thinking skills. Finally, the fifteen selected articles were analyzed through 5 stages, namely orientation, conceptualization, investigation, discussion, and conclusion. The stages and steps of this research are shown in Figures 1 and 2.

![Figure 1. Stages of Analysis](image)

![Figure 2. Steps of Research](image)
The third step of this study was to calculate the effect size. The calculation had been performed using the following formula:

\[
\text{Effect Size} = \frac{\text{Post Test Score} - \text{Pre Test Score}}{\text{Standard Deviation}}
\]

Table 1. The Effect Size Interpretation Criteria

Size	Interpretation
0-0.20	Weak Effect
0.21-0.50	Modest Effect
0.51-1.00	Moderate Effect
> 1.00	Strong Effect

3. Result dan Discussion
Fifteen articles related to the Problem-based Learning model on students’ critical-thinking skills had been obtained. The article data was processed by analyzing and determining the results of the research. Then, the data was presented qualitatively and quantitatively. The data of the searched articles can be seen in table 2.

Table 2. Search Result

Code	Name	Independent Variable	Dependent Variable	Design
A1	Zuryanti, et.al.	problem-based learning model	Critical-thinking	Posttest only
				One group
A2	Muslim, M.I Hakim, and R. Meidawati	problem-based learning model	Critical-thinking	Pretest-Posttest
				One Group
A3	Widodo Budhi and Siti Suwarni	problem-based learning model	Critical-thinking	Posttest only
				Two Groups
A4	Sijanem et.al.	Problem-Based Learning Model	Critical-Thinking	Pretest-Posttest
				One Group
A5	M. Serungke, Muhibbudin, and Suhrawardi	Problem-Based Learning Model	Critical-Thinking and Achievement	Pretest- Posttest
				Two Groups
A6	U. Setyorini, S.E Sukiswo, and B. Subali	Problem-Based Learning Model	Critical-Thinking	Pretest- Posttest
				One Group
A7	Pricilla Anindyta, and Suwarjo	Problem-Based Learning Model	Critical-Thinking	Pretest- Posttest
				Two Groups
A8	Ahmad Farisi, Abdul Hamid, and Melvina	Problem-Based Learning Model	Critical-Thinking	Posttest only
				Two Groups
A9	P. Dwijananti and D. Yulianti	Problem-Based Learning Model	Critical-Thinking	Pretest- Posttest
				One Group
A10	L. Yulianti, R Fauziah, and A. Hidayat	Problem-Based Learning Model	Critical-Thinking	Pretest- Posttest
				One Group
A11	I Made Astra, Raharjo Nur	Problem-Based Learning Model	Critical-Thinking	Pretest- Posttest
				Two Groups
After the treatments had been conducted, then the pretest and posttest was administered. The pretest was carried out before the application of the Problem-based Learning model method and the posttest was carried out after the application of the Problem-based Learning model method. Based on the results of the pretest and posttest, the researchers found that there was an increase in the critical-thinking skills at each level of educational research as described in table 3.

Table 3. The Percentage of Improvement of Students’ Critical-Thinking Ability

No	Code	Level	Pretest Score	Posttest Score	Critical-Thinking Improvement
1	A1	Elementary School	67.71	94.28	26.57
2	A2	Junior High School	42.6	78.9	36.3
3	A3	Elementary School	-	22.73	22.73
4	A4	Senior High School	27.86	80.9	53.04
5	A5	University	45.40	79	33.6
6	A6	Junior High School	47.35	66.1	18.75
7	A7	Elementary School	73.015	76.725	3.71
8	A8	Junior High School	-	32.57	32.57
9	A9	University	63.10	79.80	16.7
10	A10	Senior High School	28.86	80.9	52.04
11	A11	Senior High School	41	91	50
12	A12	Senior High School	-	0.62	0.62
13	A13	Senior High School	-	72.91	72.91
Table 3 shows that the Problem-based Learning model can improve students' critical-thinking skills from the elementary school level to the university level. The critical-thinking skills of students increased significantly. The average percentages of students’ critical-thinking improvements from the lowest to the highest were 0.62% and 72.91% with an average of 35.10%. The average value of students' critical-thinking before the application of Problem-based Learning model was 31.56% which then increased to 66.671%. The critical-thinking skills increased significantly by 35.10%. The percentage of the results of students' critical-thinking improvement varied. the researchers found that the difference in the percentage was caused by two factors, namely external and internal factors. Internal factors are factors that come from within (interest, talent, health) while the external factors are factors that come from outside (family, school, and environmental factors).

Besides knowing the percentage of students' critical-thinking improvement before and after the application of the Problem-based Learning model, the researcher also calculated the effect size. The effect size was used to determine the influence of the Problem-based Learning model on students' critical-thinking skills. The result is presented in Table 4.

Table 4. Effect Size Analysis

No	Code	Effect Size Analysis Results	Category
1	A1	0.265	Modest Effect
2	A2	0.363	Modest Effect
3	A3	0.227	Modest Effect
4	A4	0.530	Moderate Effect
5	A5	0.336	Modest Effect
6	A6	0.1875	Weak Effect
7	A7	0.037	Weak Effect
8	A8	0.325	Modest Effect
9	A9	0.167	Weak Effect
10	A10	0.520	Moderate Effect
11	A11	0.500	Modest Effect
12	A12	0.062	Weak Effect
13	A13	0.729	Moderate Effect
14	A14	1.2	Strong Effect
15	A15	0.368	Modest Effect

Table 4 shows the analysis results obtained from the effect size formula. The Problem-based Learning model showed a high influence on students' critical-thinking skills because the students did not only focus on learning the concepts, but also learning other methods to solve problems.

Furthermore, based on the reviewed articles, there were open opportunities for Problem-based Learning model research in the field of physics to be analyzed through meta-analysis. There was only one Scopus indexed article that discussed the effect of the problem-based learning model on students’
critical-thinking skills. Moreover, in the field of mathematics, there has been no meta-analysis study of the effect of the problem-based learning model on students’ critical-thinking skills in physics. Also, research related to the Problem-based Learning model has high opportunities for other variables. Through the meta-analysis study, this article discussed how the Problem-based Learning model can improve students’ critical-thinking skills. This article also presents data on the percentage of increase before and after the application of the Problem-based Learning model at each level of educational research.

4. Conclusion
Based on the research results, the researcher concluded that the Problem-based Learning model was effective in improving students' critical-thinking skills. However, research on the Problem-based Learning model has been rarely carried out in physics learning since there were only 15 articles that discussed the Problem-based learning model in physics learning. This indicated that research on Problem-based Learning model was lacking, especially on students’ thinking skills variable. However, in other subjects, the Problem-based Learning model has been discussed quite a lot, even in each dependent variable. Therefore, there is an opportunity to study the Problem-based Learning model in physics learning at each level of education and the dependent variable.

References
[1] Grayson D J 2020 Physics education for 21st century graduates J. Phys. Conf. Ser.
[2] Muhammad A E 2020 The 21st century learning as a knowledge age: the effects on teacher’s transforming teacher’s knowledge in technology -rich environment in social studies education 7 286–94
[3] Pellegrino J W 2014 Psicología Educativa approach to progress Psicol. Educ. 20 65–77
[4] Handoko H priyo 2019 Psikologi pendidikan dalam peningkatan mutu pendidikan VIII 185–98
[5] Maskur R, Sumarno, Rahmawati Y, Pradana K, Syazali M, Septian A and Palupi E K 2013 European Journal of Educational Research 9 375–83
[6] Amin S, Utaya S, Bachri S and Susilo S 2020 Effect of problem-based learning on critical thinking skills and environmental attitude 8 743–55
[7] Maulidiya M and Nurlaelah E 2019 The effect of problem based learning on critical thinking ability in mathematics education
[8] Budhi W and Suwarni S 2019 Effect of problem based learning on critical thinking ability on science Effect of problem based learning on critical thinking ability on science
[9] Alsaleh N J 2020 Teaching Critical Thinking Skills: Literature Review 19 21–39
[10] Perdana R, Riwayani R, Jumadi J, Rosana D and Soeharto S 2019 Specific open-ended assessment: Assessing students’ critical thinking skill on kinetic theory of gases J. Ilm. Pendidik. Fis. Al-Biruni 8 127–40
[11] Wartono W, Alfroni Y F, Batlolona J R and Mahapoonyanont N 2019 Inquiry-scaffolding learning model: Its effect on critical thinking skills and conceptual understanding J. Ilm. Pendidik. Fis. Al-Biruni 8 245–55
[12] Apriliasar R N, Wilujeng I and Kuswanto H 2019 The Effect of Web-Assisted Problem Based Learning Model Towards Physics Problem Solving Ability of Class X Students The Effect of Web-Assisted Problem Based Learning Model Towards Physics Problem Solving Ability of Class X Students
[13] Akinoglu O & R O T 2007 The Effects Of Problem-Based Active Learning In Science Education On Students’ Academic Achievement, Attitude And Concept Learning Eurasia J. Math. Sci. Technol. Educ. III 71–81
[14] Lapuz A M E and Fulgencio M N 2020 Improving the Critical Thinking Skills of Secondary School Students using Problem-Based Learning 4 1–7
[15] Aini1 N R, Syafril1 S, Netriwati1 N, Pahrudin1 A, Rahayu2 T and Puspasari V 2019 Problem-Based Learning for Critical Thinking Skills in Mathematics Problem-Based Learning for
Critical Thinking Skills in Mathematics

[16] Agustina R, Farida N, Wicaksono S, Rahmawati Y, Istiani A and Arnidha Y 2020 Experimentation of Problem-Based Learning Model on Critical Thinking Ability in Learning Number Theory

[17] Zamroni E, Lasan B B and Hidayah N 2020 Blended Learning based on Problem Based Learning to Improve Critical Thinking Ability of Prospective Counselors

[18] Ulger K 2018 The Effect of Problem-Based Learning on the Creative Thinking and Critical Thinking Disposition of Students in Visual Arts Education

[19] Markušić J and Sabljić J 2019 Problem-Based Teaching of Literature

[20] Priyadi A A and Suyanto S 2019 The Effectiveness of Problem Based Learning in Biology with Fishbone Diagram on Critical Thinking Skill of Senior High School Students

[21] Laksono E W 2018 Problem-based learning implementation to develop critical thinking and science process skills of madrasah Aliyah students in Yogyakarta

[22] Haryani F Y, Hidayatullah M F, Yusuf M and Asrowi 2019 Problem-based learning for teaching Fiqh: An overview of its impact on critical thinking skill