Ridge Penalization-based weighting approach for Eco-Efficiency assessment: The case in the food industry in the United States

Adeeb A Kutty, Galal M Abdella and Murat Kucukvar

Department of Mechanical and Industrial Engineering, Qatar University, Qatar

aa1704810@qu.edu.qa, gmg5005@qu.edu.qa, mkucukvar@qu.edu.qa

Abstract. Eco-efficiency assessment is of great importance for monitoring and managing environmental and economic aspects of sustainable development. The eco-efficiency indicators are required to assess and measure the impact of multiple environmental aspects per unit of economic value-added. The aggregation of multiple environmental impacts in the presence of high correlation is a critical challenge to sustainability practitioners. This study presents a weighting approach using ridge penalization-based regression to overcoming the consequence of the high correlation among the environmental aspects and hence providing accurate weighting values. The performance of the proposed approach is assessed using economic and environmental footprints of 20 food industries in the United States. The new weighting approach is expected to provide decision-makers with a quantitative management tool for monitoring and controlling core operational functions associated with the sustainable development and management.

1. Introduction

The eco-efficiency assessment is widely recognized as a powerful management tool for managing environmental sustainability aspects and enhancing the opportunities of the well-being of future generations [1]-[6]. The alignment with the sustainable development goals of the United Nations has recently become the focus of governmental and business organizations at both national and international levels [7]. The eco-efficiency assessment with high dimensional space of environmental impacts imposes a critical challenge to sustainability practitioners in specifying the weight of each environmental indicator to the eco-efficiency value [8],[9].

Several weighting techniques have been proposed and examined in literature, for instance, not limited to, linear programming [10],[11], Principal Component Analysis (PCA), Data Envelopment Analysis (DEA), and Factor Analysis (FA) [12]-[14], Regression Analysis [15]. The equal weighting (EW) is the most common among the existing methods [16]-[18]. Despite the distinctive advantage of mathematical and operational properties, this method has been extensively criticized for the lack of considering the double-counting when multiple indicators measure the same behavior [19].

The extension of statistical methods to the sustainability assessment context has received increasing attention over the recent years; see, for instance [20],[21]. The PCA, DEA, and FA are widely recognized for their ability to accommodate high dimensional space of sustainability indicators. Moreover, these methods are independent of subjective opinions [4]. The PCA is mainly based on the development of the Principal Components (PCs) as a linear combination of the corresponding sustainability indicators, then use their associated weight to complete the aggregation step in order to obtain a single value representing the overall environmental impact of these indicators [22].
The collinearity among two or more of the sustainability indicators describes the extent of linear correlation between the variables [23] thus, critical to the outcome of several of the existing weighting methods. The PCA is extensively used in literatures due to its capability in effectively handling the collinearity among the sustainability indicators [3],[24],[25]. Despite the merits, PCA lacks in interpreting the results of the dimension reduction analysis.

The PCs are linear combinations of all original indicators. A large number of independent variables can result in numerous significant coefficients in the first few PCs. The matter makes these PCs difficult to explicate [23],[26],[27]. Moreover, despite that the PCA is preferred for not relying on subjective and arbitrary opinions, it can be criticized for ignoring the relationship between the independent and dependent variables, especially as a weighting method. The inclusion of this relationship would provide a second criterion, in addition to the variation of the data matrix, to precisely quantify the individual weight of each of the sustainability indicators.

The PCA assigns a high amount of variance to the PC with the largest scale, the matter that results in undesirable skewness in the outcome. The normalization is a very well-known step to overcoming this issue. A difficulty that may result due to the normalization of the data matrix is that the number of PCs increases leading to difficulties in interpreting the results.

In accordance with the above, this paper presents a systematic methodology for eco-efficiency assessment using the ridge penalized regression to overcome the multicollinearity among the sustainability indicators. The ridge penalized regression is widely recognized in statistic for its effectiveness in overcoming the effect of multicollinearity on the accuracy and stability of the regression model. This study uses a dataset that represents the environmental impact of 20 food industries in the United States.

2. Methods

2.1. Input-Output (I-O) Model

The single region industry-by-industry I-O model is used here based on the Eora database that is connected with the UN’s System of National Accounts and COMTRADE databases [21],[28]. In this study, the domestic supply and use tables (SUTs) of the U.S. economy were combined with several sustainability indicators. Then, the I-O model is used to quantify the economic (value-added), and environmental impacts of 15 food consumption industries in US; see Table 1.

No.	Industrial Category	Symbol
1	Beet sugar manufacturing	S1-BSM
2	Breakfast cereal manufacturing	S2-BCM
3	Cheese manufacturing	S3-CM
4	Coffee and tea manufacturing	S4-CTM
5	Dog and cat food manufacturing	S5-DCFIM
6	Fats and oils	S6-FAO
7	Flour milling and malt	S7-FMM
8	Frozen food manufacturing	S8-FFM
9	Poultry processing	S9-PP
10	Seafood product	S10-SP
11	Snack food manufacturing	S11-SFM
Table 1. Food industrial sectors (Cont.)

No.	Industrial Category	Symbol
12	Soft drink and ice manufacturing	S12-SDIM
13	Sugar mills and refining	S13-SMR
14	Tortilla manufacturing	S14-TM
15	Wet corn milling	S15-WCM

2.2. Ridge Penalization-based Regression

The multiple regression analysis has been widely recognized in the literature as an effective tool to overcome the collinearity; see, for instance, [29]-[32]. The collinearity refers to the extent to which the indicators are linearly correlated to each other [33]. The multiple regression estimates the weights or relative-importance based on the extent to which each of the sustainability indicators significantly contributes to explaining the variability around the response variable. The penalization-based regression, in particular, has received notable attention as a weighting method; see [34],[35].

This paper uses a ridge penalization-based regression as a weighting method to overcome the multicollinearity phenomenon among the sustainability indicators. The error term \(\varepsilon \), in the generalized linear relationship between response variable \(y \) and predictor variable \(x \) as shown in eq (1), is assumed to have a normal random distribution.

\[
y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \cdots + \beta_p x_{ip} + \varepsilon_i \quad ; i = 1,2,\ldots \quad (1)
\]

where \(\beta_j \) is the coefficient estimate associated with the \(j \)-th indicator, and \(p \) is the number of indicators. The ridge-penalized regression is commonly formulated as a minimization problem of the squared errors when the problem is solved using the Ordinary Least Squared (OLS), Weighted Least Squared (WLS), or Maximum Likelihood Estimation (MLE) methods. The OLS and WLS are easier in practice than the MLE were the decision of selection depends on the practitioner. The ridge-based OLS formulation is as follows:

\[
\hat{\beta}_{\text{Ridge}} = \arg \max_{\hat{\beta} \in \mathbb{R}^p} \left\{ \sum_{i=1}^{n} \left(y_i - \hat{\beta}_0 - \sum_{j=1}^{p} x_{ij} \hat{\beta}_j \right)^2 + \lambda \sum_{j=1}^{p} \hat{\beta}_j^2 \right\} \quad (2)
\]

where \(\hat{\beta} \) is a vector that contains the estimated values of the regression coefficients, \(n \) is the number of observations, and \(\lambda \) is the tuning or shrinkage parameter, and its value is usually specified by K-fold cross-validation. Several computer packages available in the CRAN library and packages such as SPSS and Solver-Excel, can be used to solve the ridge-based OLS formulation, shown in (2). However, Figure 1 shows the outlines of the proposed methodology.

3. Case study

3.1. Data generation and distribution
This study uses five sustainability indicators related to the food and beverage industry in U.S. These are: (1) CO$_2$ (Kt), (2) CO (Kt), (3) HFC-143a (Kt), (4) PM$_{10}$ (Kt), (5) N$_2$O (Kt), and (6) SO$_2$ (Kt). The sustainability impacts of these indicators were estimated by using the Eora database-based economic input-output framework developed by [27] using the latest and high-resolution I-O tables of the U.S. economy; see also [36]. The household consumption (HC) under each food industrial category were calculated and used as the response variable. Figure 2 illustrates the distribution of the highest three impacts under each of the sustainability indicators.

3.2. Measuring Collinearity

This section is dedicated to measuring the level of collinearity among the sustainability indicators. The correlation of determination (R^2) is the most widely used method to measure the collinearity. Normalization step is neglected here due to the usage of same units for the selected indicators. In this study, R^2 explains the percentage of variation in one of the sustainability indicators that is predictable from the other indicators. The magnitude of the R^2 measure is limited between “0” and “1”. The value “0” refers to a “very-poor” linear relationship, while the value “1” to a “very-strong” linear relationship.

![Figure 2. Distribution of the highest three-environmental sustainability impacts](image)

The pairwise correlations among all the potential pairs of the sustainability indicators can be seen in Table 2.

	CO$_2$	CO	HFC	PM$_{10}$	N$_2$O	SO$_2$
CO$_2$	**1.000**	0.979	0.874	0.937	0.888	0.942
CO	0.979	**1.000**	0.830	0.975	0.957	0.866
HFC	0.874	0.830	**1.000**	0.829	0.754	0.922
PM$_{10}$	0.937	0.975	0.829	**1.000**	0.986	0.820
N$_2$O	0.888	0.957	0.754	0.986	**1.000**	0.726
SO$_2$	0.942	0.866	0.922	0.820	0.726	**1.000**

The correlation matrix shows a moderate to strong positive correlations ranging from 0.726 to 0.986. This finding would justify the need for ridge-penalization based regression.
3.3. Weighting sustainability indicators

To initiate the ridge-penalized regression, we used the Trace-Plotting method, proposed by [25], to determine the optimal value of \(\lambda \). This method has been widely used under different research contexts; see, for instance, [22],[26]. Initially, the ridge regression coefficients are plotted over a wide range of \(\lambda \). Secondly, we define the range of \(\lambda \) that exhibits better stability of the fitted regression coefficients. Finally, we select a single value of \(\lambda \) providing a better criterion of selection. However, The Mean Square Error (MSE), is used as a criterion for the selection of the optimal \(\lambda \). Figure 3 shows the distribution of the ridge regression coefficients over a wide range of the tuning parameter \(\lambda \). From Figure 3, one can easily notice the stability in the changes of the regression coefficients, namely the CO\(_2\), SO\(_2\), HFC-143a, and NO\(_2\), around the optimal \(\lambda \). The best stability can be achieved when the \(\lambda \) value equals 0.014 to 1.4. The MSE at several values of \(\lambda \) has been estimated and the optimal value of \(\lambda \) is found to be 0.090 (MSE = 0.00092).

![Figure 3. Changes of regression coefficients versus the tuning parameter](image)

Table 3. ANOVA Calculation

Source of Variation	d.f.	SS	MS	F	p-value
Regression	6	13.86	2.310	153.3	1.53E-08
Residual	9	0.135	0.015		
Total	15	14			

Table 4. Ridge Regression outcome

	CO\(_2\)	CO	HFC	PM\(_{10}\)	N\(_2\)O	SO\(_2\)
\(\beta \)	0.46	0.11	0.152	-0.081	-0.181	0.519
\(R^2 \)	0.995					
Adjusted \(R^2 \)	0.983					
Standard Error	0.122					
MSE	0.000092					

In this study, we replace the individual weight of the sustainability indicator by their associated relative weight (RW). The RW represents the importance of a specific indicator with regard to the other indicators. The RW is found as the absolute value of the individual weight divided by the sum of
the absolute values of the individual weight of all the sustainability indicators. Table 5 reports the calculations of the weighting step.

Table 5. Weight Calculation
CO₂

Absolute weight
Initial Rank
Relative Weight

3.4. Eco-Efficiency score calculation

The eco-efficiency is often calculated as the ratio between the economic value-added and the aggregation of the weighted impacts of the environmental indicators. Using the RW values reported in Table 4, we calculated the eco-efficiency scores for all the industrial categories and reported these scores in Figure 4.

![Figure 4. Eco-efficiency score distribution of the food and beverage industry](image)

From Figure 4, S2-BCM has the highest eco-efficiency score, while the S1-BSM is the lowest. Several of the food and beverage industries have scored high scores, such as S14-TM, S11-SFM, and S5-DCFM. The eco-efficiency ratio or score, calculated can be referred to as the “higher the better” performance measure. This matter makes the comparison between the eco-efficiency performances of the industrial sectors difficult. However, in this paper, we use the average score of the eco-efficiency as a threshold between the “Below-Average,” “On-Average” and “Above-Average” performance and specify the category of each industry based on its location with respect to the threshold value (5.26); see Table 6.
Table 6. Eco-Efficiency categories

Category	Above-Average	On-Average	Below-Average
Industry	S2-BCM		S1-BSM
	S4-CTM		S3-CM
	S5-DCF M		S6-FAO
	S10-SP	---	S7-FMM
	S11-SFM		S8-FFM
	S12-SDIM		S9-PP
	S14-TM		S13-SMR
			S15-WCM

The results in Table 5 show that 53.34% of the food industries are classified as “Above-Average” performance, while the rest are “Below-Average” performance. The results also show that none of the industrial categories is classified as “On-Average” performance.

4. Conclusion and Remarks
This research work introduced a penalization-based approach for estimating weights of sustainability indicators. Here, the importance of the penalization in reducing the impact of multicollinearity among the sustainability indicators during the aggregation step is emphasized. The results have shown that more than 50% of the food industries in the US are performing well in terms of eco-efficiency performance. The (BCM) has the best eco-efficiency performance, while the (BSM) has the worst performance comparing with the other indicators. However, in terms of the individual eco-efficiency performance, all the food and beverage industries have scored a value that is greater than 1.

For future research, variable selection methods, such as stepwise regression, can be used to identify the most significant indicators to be included in the weighting process [38]-[40]. The authors also suggest the extension of the adaptive LASSO-based thresholding to enhance the estimation of variance-covariance matrix of the PCA method. The new approach will be used later for developing of a composite indicator of eco-efficiency assessment, further details of the adaptive LASSO can be found in [41],[42]. For future research, the authors also suggest the use of hybrid life cycle sustainability assessment methods [40]-[55]; ecological footprint analysis [56]-[58]; and economic input-output analysis [59], combined with other decision making models such as fuzzy multi criteria decision making [60], forecasting [61], agent based modelling [62],[63], and system dynamic modelling [64]-[68] considering Triple Bottom Line (TBL) approach. Finally, the multivariate regression is another suggested approach [69]-[70] to complete the aggregation step and develop a single composite indicator for the sustainability assessment, ruling out the difficulty in finding an appropriate response variable.

References

[1] Brundtland Commission 1987 “Our Common Future”
[2] Garvare R and Isaksson R 2001 “Sustainable development: Extending the scope of business excellence models” Meas. Bus. Excell. 5 pp 11–15
[3] Park Y S, Egilmez G and Kucukvar M 2015 “A Novel Life Cycle-based Principal Component Analysis Framework for Eco-efficiency Analysis: Case of the United States Manufacturing and Transportation Nexus” J. Clean. Prod. 92 pp 327–42
[4] Onat N C, Kucukvar M and Afshar S 2019 “Eco-efficiency of electric vehicles in the United States: A life cycle assessment based principal component analysis” J. Clean. Prod. 212 pp 515–26
[5] Tatari O and Kucukvar M 2012 “Eco-Efficiency of Construction Materials: A Data Envelopment Analysis” J. Constr. Eng. Manag. 138 pp 733–41
[6] Egilmez G, Gumus G, Kucukvar M and Tatari O 2016 “A fuzzy data envelopment analysis framework for dealing with uncertainty impacts of input–output life cycle assessment models
on eco-efficiency assessment” *J. Clean. Prod.* **129** pp 622–36

[7] Onat N C, Kucukvar M, Halog A and Cloutier S 2017 “Systems Thinking for Life Cycle Sustainability Assessment: A Review of Recent Developments, Applications, and Future Perspectives,” *Sustain. 9*, p 706

[8] Abdella G M, Kucukvar M, Onat N C, Al-Yafay H M and Bulak M E 2020 “Sustainability assessment and modeling based on supervised machine learning techniques: The case for food consumption” *J. Clean. Prod. 251*

[9] Park Y S, Egilmez G and Kucukvar M 2016 “Emergy and end-point impact assessment of agricultural and food production in the United States: A supply chain-linked Ecologically-based Life Cycle Assessment” *Ecol. Indic.* **62** pp 117–37

[10] Egilmez G, Kucukvar M, Tatari O and Bhutta M K S 2014 “Supply chain sustainability assessment of the U.S. food manufacturing sectors: A life cycle-based frontier approach,” *Resour. Conserv. Recycl. 82* pp 8–20

[11] Onat N C 2015 “Integrated sustainability assessment framework for the U.S. transportation,” University of Central Florida

[12] Mouron P, Scholz R W, Nemecek T and Weber O 2006 “Life cycle management on Swiss fruit farms: Relating environmental and income indicators for apple-growing,” *Ecol. Econ.* **58** pp 561–78

[13] Soler Rovira J and Soler Rovira P 2009 “Assessment of aggregated indicators of sustainability using PCA: the case of apple trade in Spain,” in *6th ICLCA-AFS Towards a sustainable management of the food chain*

[14] Tatari O and Kucukvar M 2012 “Eco-Efficiency of Construction Materials: Data Envelopment Analysis,” *J. Constr. Eng. Manag.* **138** pp 733–41

[15] Becker W, Saisana M, Paruolo P and Vandecasteele I 2017 “Weights and importance in composite indicators: Closing the gap,” *Ecol. Indic.* **80** pp 12–22

[16] Egilmez G, Kucukvar M and Park Y S 2016 “Supply chain-linked sustainability assessment of the US manufacturing: An ecosystem perspective,” *Sustain. Prod. Consum.* **5** pp 65-81

[17] Gumus S, Egilmez G, Kucukvar M and Park Y S 2016 “Integrating expert weighting and multicriteria decision making into eco-efficiency analysis: the case of US manufacturing,” *J. Oper. Res. Soc.* **67** pp 616–28

[18] Onat N C, Gumus S, Kucukvar M and Tatari O 2016 “Application of the TOPSIS and intuitionistic fuzzy set approaches for ranking the life cycle sustainability performance of alternative vehicle technologies,” *Sustain. Prod. Consum.* **6**

[19] Reisi M, Aye L, Rajabifard A and Ngo T 2014 “Transport sustainability index: Melbourne case study,” *Ecol. Indic.* **43** pp 288–96

[20] Yang L, Ouyang H, Fang K, Ye L and Zhang J 2015 “Evaluation of regional environmental efficiencies in China based on super-efficiency-DEA” *Ecol. Indic.* **51** pp 13–19

[21] Kucukvar M, Onat N C, Abdella G M and Tatari O 2019 “Assessing regional and global environmental footprints and value added of the largest food producers in the world,” *Resour. Conserv. Recycl.* **144** pp 187–97

[22] Saisana M and Tarantola S 2002 “State-of-the-art Report on Current Methodologies and Practices for Composite Indicator Development,”

[23] Gan X et al. 2017 “When to use what: Methods for weighting and aggregating sustainability indicators” *Ecol. Indic.* **81** pp. 491–502

[24] Jiang Q et al. 2018 “A principal component analysis based three-dimensional sustainability assessment model to evaluate corporate sustainable performance,” *J. Clean. Prod.* **187**, pp 625–37

[25] Iribarren D, Vázquez-Rowe I, Moreira M T and Feijoo G 2010 “Further potentials in the joint implementation of life cycle assessment and data envelopment analysis,” *Sci. Total Environ.* **408** pp 5265–72
[26] Jollife I T and Cadima J 2016 “Principal component analysis: A review and recent developments,” *Phil. Trans. Roy. Soc. A: Math., Phy. Eng. Sci.* **374** no. 2065. Royal Society of London

[27] Sen B, Kucukvar M, Onat N C, and Tatari O 2019 “Life cycle sustainability assessment of autonomous heavy-duty trucks” *J. Ind. Ecol.*

[28] Onat N C, Kucukvar M, Halog A and Cloutier S 2017 “Systems thinking for life cycle sustainability assessment: A review of recent developments, applications, and future perspectives,” *Sustain.* **9**

[29] Kim J, Abdella G M, Kim S, Al-Khalifa K N and Hamouda A M S 2019 “Control charts for variability monitoring in high-dimensional processes,” *Comput. Ind. Eng.* **130** pp 309–16

[30] Abdella G M, Al-Khalifa K N, Tayseer M A and Hamouda A M S 2019 “Modelling trends in road crash frequency in Qatar State,” *Int. J. Oper. Res.*

[31] Al Sheeb B, Abdella G M, Hamouda A M S and Abdulwahed M S 2019 “Predictive modeling of first-year student performance in engineering education using sequential penalization-based regression,” *J. Stat. Manag. Syst.* **22** pp 31–50

[32] Abdella G M, Alhajyaseen W, Al-Khalifa K N and Hamouda A M S 2017 “Usage of nonlinear regression for modeling the behavior of motor vehicle crash fatality (MVF) rate”. In: The Proceedings of the International Conference on Industrial Engineering and Operations Management, Rabat, Morocco, pp 1827–34

[33] Abdella G M, Kim J, Al-Khalifa K N and Hamouda A M S 2019 “Penalized Conway-Maxwell-Poisson regression for modelling dispersed discrete data: The case study of motor vehicle crash frequency,” *Saf. Sci.* **120**, pp 157–63

[34] Azzurra A, Massimiliano A and Angela M 2019 “Measuring sustainable food consumption: A case study on organic food,” *Sustain. Prod. Consum.* **17** pp 95–107

[35] Abdur Rouf K B, Abdella G M, Al-Khalifa K N and Alhajyaseen W 2018 “Ridge penalization-based generalized linear model (GzLM) for predicting risky-driving index”. In the Proceedings of the International Conference on Industrial Engineering and Operations Management, Washington DC, USA pp. 1462–73

[36] Bennbea S, Wazwaz A, Abujarbou A, Abdella G M and Musharavati F 2018 “Towards Sustainable Society: Design of Food Waste Recycling Machine”. In the Proceedings of the International Conference on Industrial Engineering and Operations Management, Bandung, Indonesia, March 6-8, pp. 2495–2508

[37] Saisana M and Philippas D 2012 Sustainable Society Index (SSI): Taking societies’ pulse along social, environmental and economic issues.

[38] Abdella G M, Al-Khalifa K N, Kim S, Jeong M K, Elsayed E A and Hamouda A M S 2017 “Variable Selection-based Multivariate Cumulative Sum Control Chart,” *Qual. Reliab. Eng. Int.* **33** pp. 565–78

[39] Wang K and Jiang W 2009 “High-dimensional process monitoring and fault isolation via variable selection,” *J. Qual. Technol.* **41** pp 247–58

[40] Jiang W, Wang K and Tsung F 2012 “A variable-selection-based multivariate EWMA chart for process monitoring and diagnosis,” *J. Qual. Technol.* **44** pp 209–30

[41] Abdella G M, Kim J, Kim S, Al-Khalifa K N, Jeong M K, Hamouda A M S and Elsayed E A 2019 “An adaptive thresholding-based process variability monitoring,” *J. Qual. Technol.* **51** pp. 242–56

[42] Cai T and Liu W 2011 “Adaptive thresholding for sparse covariance matrix estimation,” *J. Am. Stat. Assoc.* **106** pp 672–84

[43] Kucukvar M, Onat N C and Haider M A 2018 “Material dependence of national energy development plans: The case for Turkey and United Kingdom,” *J. Clean. Prod.* **200** pp 490–500

[44] Sen B, Onat N C, Kucukvar M and Tatari O 2019 “Material footprint of electric vehicles: A
multiregional life cycle assessment,” *J. Clean. Prod.* **209** pp 1033–43

[45] Onat N C, Kucukvar M, Aboushaqrah N N M and Jabbar R 2019 “How sustainable is electric mobility? A comprehensive sustainability assessment approach for the case of Qatar,” *Appl. Energy.* **250** pp 461–77

[46] Cloutier S et al. 2017 “Measures of a sustainable commute as a predictor of happiness,” *Sustain.* 9

[47] Onat N C, Kucukvar M and Tatari O 2015 “Conventional, hybrid, plug-in hybrid or electric vehicles? State-based comparative carbon and energy footprint analysis in the United States,” *Appl. Energy.* **150** pp 36–49

[48] Onat N C, Kucukvar M and Tatari O 2014, “Integrating triple bottom line input-output analysis into life cycle sustainability assessment framework: The case for US buildings,” *Int. J. Life Cycle Assess.* **19** pp 1488–1505

[49] Onat N C, Kucukvar M and O Tatari 2014 “Towards life cycle sustainability assessment of alternative passenger vehicles,” *Sustain.* 6

[50] Tatari O and Kucukvar M 2012 “Sustainability assessment of US construction sectors: ecosystems perspective” *J. Const. Eng. Manag.* **138**. pp 918-922.

[51] Kucukvar M and Tatari O 2012 “Ecologically based hybrid life cycle analysis of continuously reinforced concrete and hot-mix asphalt pavements” *Trans. Res. Part D: Tran. Env.* **17**. pp 86-90

[52] Kucukvar M, Egilmez G and Tatari O 2016 “Life cycle assessment and optimization-based decision analysis of construction waste recycling for a LEED-certified university building” *Sust.* 8. p 89

[53] Kucukvar M and Samadi H 2015 “Linking national food production to global supply chain impacts for the energy-climate challenge: the cases of the EU-27 and Turkey” *J. Clean. Prod.* **108** pp 395-408

[54] Park Y S, Egilmez G and Kucukvar M 2017 “Cradle-to-gate Life Cycle Analysis of Agricultural and Food Production in the US: A TRACI Impact Assessment” **274. Sust. Agrofood Sec.**

[55] Kucukvar M, Cansev B, Egilmez G, Onat N C and Samadi H 2016 “Energy-climate-manufacturing nexus: New insights from the regional and global supply chains of manufacturing industries” *Appl. Energy* **184**. pp 889-904

[56] Kucukvar M, Onat N C, Abdella G M and Tatari O 2019 “Assessing regional and global environmental footprints and value added of the largest food producers in the world” *Res. Conserv. Recycl.* **144**. pp 187-197

[57] Kucukvar M, Ismaen R, Onat N C, Al-Hajri A, Al-Yafay H and Al-Darwish A 2019 “Exploring the social, economic and environmental footprint of food consumption: a supply chain-linked sustainability assessment” In 2019 *IEEE 6th International Conference on Industrial Engineering and Applications (ICIEA)* pp 733-742

[58] Kucukvar M, Haider M A and Onat N C 2017 “Exploring the material footprints of national electricity production scenarios until 2050: the case for Turkey and UK” *Res. Conserv. Recycl.* **125**. pp 251-263

[59] Egilmez G, Kucukvar M and Tatari O 2013 “Sustainability assessment of US manufacturing sectors: an economic input output-based frontier approach” *J. Clean. Prod.* **53**. pp 91-102

[60] Onat N C, Kucukvar M, O Tatari and Zheng Q P 2016 “Combined application of multi-criteria optimization and life-cycle sustainability assessment for optimal distribution of alternative passenger cars in U.S.,” *J. Clean. Prod.* **112** pp 291–307

[61] Shaikh M A, Kucukvar M, Onat N C and Kirkil G 2017 “A framework for water and carbon footprint analysis of national electricity production scenarios,” *Energy.* **139**

[62] Onat N C, Noori M, Kucukvar M, Zhao Y, Tatari O and Chester M 2017 “Exploring the suitability of electric vehicles in the United States,” *Energy.* **121**
[63] Noori M, Zhao Y, Onat N C, Gardner S and Tatari O 2016 “Light-duty electric vehicles to improve the integrity of the electricity grid through Vehicle-to-Grid technology: Analysis of regional net revenue and emissions savings,” Appl. Energy. 168 pp 146–58

[64] Alirezaei M, Onat N C, Tatari O and Abdel-Aty M 2017 “The Climate Change-Road Safety-Economy Nexus: A System Dynamics Approach to Understanding Complex Interdependencies,” Systems. 5 p 6

[65] Kelly C, Onat N C and Tatari O 2019 “Water and carbon footprint reduction potential of renewable energy in the United States: A policy analysis using system dynamics,” J. Clean. Prod. 228 pp 910–26

[66] Ercan T, Onat N C and Tatari O 2016 “Investigating carbon footprint reduction potential of public transportation in United States: A system dynamics approach,” J. Clean. Prod. 133

[67] Onat N C, Kucukvar M and Tatari O 2016 “Uncertainty-embedded dynamic life cycle sustainability assessment framework: An ex-ante perspective on the impacts of alternative vehicle options,” Energy. 112 pp 715–28

[68] Onat N C, Kucukvar M, Tatari O and Egilmez G 2016 “Integration of system dynamics approach toward deepening and broadening the life cycle sustainability assessment framework: a case for electric vehicles,” Int. J. Life Cycle Assess. 21

[69] Abdella G M, Yang K and Alaeddinin A 2014 “Multivariate adaptive approach for monitoring simple linear profiles,” Int. J. Data Analysis Techniques and Strategies 6

[70] Abdella G M, Kim J, Al-Khalifa K N and Hamouda A M S 2016 “Double EWMA-based polynomial profile monitoring” Int. J. Quality and Reliability 32 pp 2639–52