Siegel modular flavor group and CP from string theory

Alexander Baura,c, Moritz Kadea, Hans Peter Nillesb, Saúl Ramos–Sánchezc, Patrick K.S. Vaudrevangea

aPhysik Department T75, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
bBethe Center for Theoretical Physics and Physikalisches Institut der Universität Bonn, Nussallee 12, 53115 Bonn, Germany
cInstituto de Física, Universidad Nacional Autónoma de México, POB 20-364, Cd.Mx. 01000, México

Abstract

We derive the potential modular symmetries of heterotic string theory. For a toroidal compactification with Wilson line modulus, we obtain the Siegel modular group $Sp(4, \mathbb{Z})$ that includes the modular symmetries $SL(2, \mathbb{Z})_T$ and $SL(2, \mathbb{Z})_U$ (of the “geometric” moduli T and U) as well as mirror symmetry. In addition, string theory provides a candidate for a CP-like symmetry that enhances the Siegel modular group to GSp(4, \mathbb{Z}).
1 Introduction

Modular symmetries might play an important role for a description of the flavor structure in particle physics \[1\]. In string theory, modular transformations appear as the exchange of winding and momentum (Kaluza-Klein) modes in compactified extra dimensions, combined with a nontrivial transformation of the moduli. In the application to flavor symmetries, these moduli play the role of flavon fields that are responsible for the spontaneous breakdown of flavor and CP symmetries. While string theory requires six compact space dimensions with many moduli, the explicit discussion in flavor physics has, up to now, mainly concentrated on two compact extra dimensions and few geometric moduli (see e.g. ref. \[2\]). In the top-down discussion, this included i) the $\mathbb{T}^2/\mathbb{Z}_3$ orbifold with Kähler modulus T (and frozen complex structure modulus U) \[3–5\] subject to the modular group $\text{SL}(2,\mathbb{Z})_T$ and ii) the $\mathbb{T}^2/\mathbb{Z}_2$ orbifold with T and U moduli with a corresponding modular group $\text{SL}(2,\mathbb{Z})_T \times \text{SL}(2,\mathbb{Z})_U$ combined with a mirror symmetry that interchanges T and U \[6\].

The present paper performs a next step towards a more exhaustive discussion of the “many-moduli-case”. Our results are based on the observation that string theory includes more moduli beyond the (geometric) T- and U-moduli in form of Wilson lines connected to gauge symmetries in extra dimensions. Modular transformations act nontrivially on these Wilson lines and require a modified geometric interpretation. In the present paper, we illustrate this situation for compactifications on two-tori and the corresponding transformation of the Narain lattice in heterotic string theory. Our main results are:

- Wilson line moduli lead to an enhancement of modular flavor symmetries,
- for the case of two compactified dimensions, this leads to the appearance of the Siegel modular group $\text{Sp}(4,\mathbb{Z})$, which includes $\text{SL}(2,\mathbb{Z})_T \times \text{SL}(2,\mathbb{Z})_U$ as well as mirror symmetry,
- a generalized geometric interpretation of the origin of these symmetries is given through an auxiliary Riemann surface of genus 2 (see figure \[1\]) that combines the metric and gauge moduli in a common setting\[1\] and
- a candidate CP-like symmetry naturally appears in string models with two compact dimensions; interestingly, this symmetry also arises in a bottom-up discussion as an outer automorphism of the Siegel modular group, extending it to $\text{GSp}(4,\mathbb{Z})$.

The paper is organized as follows. In section \[2\] we introduce the Siegel modular group $\text{Sp}(2g,\mathbb{Z})$. Specific properties and subgroups are illustrated for the genus 2 case $\text{Sp}(4,\mathbb{Z})$, where the subgroups include $\text{SL}(2,\mathbb{Z})_T \times \text{SL}(2,\mathbb{Z})_U$ and mirror symmetry. Besides the T- and U-moduli, the Siegel modular group acts on a third modulus Z. In section \[3\] we relate this third modulus to Wilson lines in heterotic string theory. We introduce the $2D+16$-dimensional Narain lattice and its outer automorphism $O_\hat{\eta}(D, D+16, \mathbb{Z})$ and then specialize on $D = 2$ with

\[\text{1This interpretation was first anticipated in the discussion of gauge threshold corrections in heterotic string theory.}\]
a nontrivial Wilson line. The subgroup \(O_\eta(2, 3, \mathbb{Z}) \) of \(O_\eta(2, 2+16, \mathbb{Z}) \) can be mapped to \(\text{Sp}(4, \mathbb{Z}) \) as given explicitly in table 1. This allows for a connection to the recent bottom-up approach of Ding, Feruglio and Liu [8]. Their “third” modulus can thus be realized as a Wilson line in heterotic string theory. In addition, string constructions admit a \(\mathbb{CP} \)-like symmetry, which appears at the same footing as all discrete (traditional and modular) symmetries. In section 4 we show that this \(\mathbb{CP} \)-like symmetry also appears naturally from a bottom-up perspective: It corresponds to an outer automorphism of the Siegel modular group extending it to the general symplectic group \(\text{GSp}(4, \mathbb{Z}) \). Conclusions and outlook are given in section 5. Finally, some technical details are discussed in two appendices.

2 The Siegel modular group \(\text{Sp}(2g, \mathbb{Z}) \)

The symplectic group over the integers \(\text{Sp}(2g, \mathbb{Z}) \) (also called the Siegel modular group of genus \(g \)) is the group of linear transformations \(M \) which preserve a skew-symmetric bilinear form \(J \), i.e.

\[
\text{Sp}(2g, \mathbb{Z}) := \{ M \in \mathbb{Z}^{2g \times 2g} \mid M^T J M = J \}.
\]

(1)

Here, \(J \) is given as

\[
J := \begin{pmatrix} 0 & \mathbb{1}_g \\ -\mathbb{1}_g & 0 \end{pmatrix},
\]

(2)

and \(\mathbb{1}_g \) is the \(g \)-dimensional identity matrix.

As reviewed in appendix A, there exists a natural action of \(\text{Sp}(2g, \mathbb{Z}) \) on a symmetric \(g \times g \)-dimensional matrix called \(\Omega \in \mathbb{H}_g \), where the Siegel upper half plane \(\mathbb{H}_g \) is defined as

\[
\mathbb{H}_g := \{ \Omega \in \mathbb{C}^{g \times g} \mid \Omega^T = \Omega, \text{Im}\, \Omega > 0 \}.
\]

(3)

Hence, \(\Omega \) contains \(g \times (g + 1)/2 \) complex numbers that are called moduli. In more detail, one splits \(M \in \text{Sp}(2g, \mathbb{Z}) \) into \(g \times g \)-dimensional blocks \(A, B, C, \) and \(D \) as follows

\[
M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \text{Sp}(2g, \mathbb{Z}).
\]

(4)

Then, \(M \) acts on \(\Omega \) as

\[
\Omega \xrightarrow{M} (A \Omega + B)(C \Omega + D)^{-1}.
\]

(5)

Note that \(\pm M \in \text{Sp}(2g, \mathbb{Z}) \) yield the same transformation eq. (5) of \(\Omega \).

In the following, we focus on \(g = 2 \). In this case, the moduli are encoded in a symmetric \(2 \times 2 \) matrix \(\Omega \) whose components are denoted as

\[
\Omega = \begin{pmatrix} U & Z \\ Z & T \end{pmatrix}.
\]

(6)

As we will see explicitly in the following, \(T \) and \(U \) are two moduli associated with the modular group \(\text{SL}(2, \mathbb{Z})_T \times \text{SL}(2, \mathbb{Z})_U \), while \(Z \) is a new modulus that interrelates the two \(\text{SL}(2, \mathbb{Z}) \) factors.
2.1 Subgroups of the Siegel modular group $\text{Sp}(4, \mathbb{Z})$

The Siegel modular group $\text{Sp}(4, \mathbb{Z})$ contains two factors of $\text{SL}(2, \mathbb{Z})$, i.e.

$$M(\gamma_T, \gamma_U) := \begin{pmatrix} a_U & 0 & b_U & 0 \\ 0 & a_T & 0 & b_T \\ c_U & 0 & d_U & 0 \\ 0 & c_T & 0 & d_T \end{pmatrix} \in \text{Sp}(4, \mathbb{Z}),$$

(7)

where $a_T d_T - b_T c_T = a_U d_U - b_U c_U = 1$. Hence,

$$\gamma_T := \begin{pmatrix} a_T & b_T \\ c_T & d_T \end{pmatrix} \in \text{SL}(2, \mathbb{Z})_T$$

and

$$\gamma_U := \begin{pmatrix} a_U & b_U \\ c_U & d_U \end{pmatrix} \in \text{SL}(2, \mathbb{Z})_U.$$

(8)

Here, $\text{SL}(2, \mathbb{Z})$ denotes the modular group generated by

$$S := \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \text{ and } \quad T := \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

(9)

In detail, $\text{SL}(2, \mathbb{Z})_U$ is contained in $\text{Sp}(4, \mathbb{Z})$ because

$$M(1_2, \gamma_U) = \begin{pmatrix} a_U & 0 & b_U & 0 \\ 0 & 1 & 0 & 0 \\ c_U & 0 & d_U & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \in \text{Sp}(4, \mathbb{Z})$$

as long as $\gamma_U = \begin{pmatrix} a_U & b_U \\ c_U & d_U \end{pmatrix} \in \text{SL}(2, \mathbb{Z})_U$,

(10)

due to the defining condition $M(1_2, \gamma_U)^T J M(1_2, \gamma_U) = J$ of $\text{Sp}(4, \mathbb{Z})$, see eq. (1). Then, we use eq. (5) and find that the moduli transform as

$$T \rightarrow T - \frac{c_U Z^2}{c_U U + d_U},$$

(11a)

$$U \rightarrow a_U U + b_U,$$

(11b)

$$Z \rightarrow \frac{Z}{c_U U + d_U},$$

(11c)

Note that for $Z = 0$ we see that T and Z are invariant under $\text{SL}(2, \mathbb{Z})_U$ modular transformations, while U transforms as expected from $\text{SL}(2, \mathbb{Z})_U$. Similarly, we can embed $\text{SL}(2, \mathbb{Z})_T$ into $\text{Sp}(4, \mathbb{Z})$ via

$$M(\gamma_T, 1_2) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & a_T & 0 & b_T \\ 0 & 0 & 1 & 0 \\ 0 & c_T & 0 & d_T \end{pmatrix} \in \text{Sp}(4, \mathbb{Z})$$

while $\gamma_T = \begin{pmatrix} a_T & b_T \\ c_T & d_T \end{pmatrix} \in \text{SL}(2, \mathbb{Z})_T$,

(12)

such that the moduli transform as

$$T \rightarrow a_T T + b_T,$$

(13a)

$$U \rightarrow U - \frac{c_T Z^2}{c_T T + d_T},$$

(13b)

$$Z \rightarrow \frac{Z}{c_T T + d_T},$$

(13c)
using eq. (5). Let us remark that the modular S^2 transformations from $\text{SL}(2,\mathbb{Z})_T$ and $\text{SL}(2,\mathbb{Z})_U$ are related in $\text{Sp}(4,\mathbb{Z})$, i.e. $M_{(S^2,1_2)} = -M_{(1_2,S^2)}$ and the moduli transform as

$$
T \xrightarrow{M} T, \\
U \xrightarrow{M} U, \\
Z \xrightarrow{M} -Z,
$$

for $M \in \{M_{(S^2,1_2)}, M_{(1_2,S^2)}\}$.

In addition, $\text{Sp}(4,\mathbb{Z})$ contains a \mathbb{Z}_2 mirror transformation

$$
M_\times := \begin{pmatrix}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{pmatrix} \in \text{Sp}(4,\mathbb{Z}) \quad \text{with} \quad (M_\times)^2 = 1_4.
$$

As the name suggests, a mirror transformation interchanges T and U, i.e. using eq. (5) one can verify easily that

$$
T \xrightarrow{M_\times} U, \\
U \xrightarrow{M_\times} T, \\
Z \xrightarrow{M_\times} Z.
$$

Finally, $\text{Sp}(4,\mathbb{Z})$ contains elements $M(\Delta)$ with $\Delta \in \mathbb{Z}^2$. These elements are intrinsically tied to the modulus Z. They can be defined as

$$
M(\Delta) := \begin{pmatrix}
1 & 0 & 0 & -\ell \\
m & 1 & -\ell & 0 \\
0 & 0 & 1 & -m \\
0 & 0 & 0 & 1
\end{pmatrix} \in \text{Sp}(4,\mathbb{Z}) \quad \text{for} \quad \Delta := \begin{pmatrix}
\ell \\
m
\end{pmatrix} \in \mathbb{Z}^2.
$$

Then, eq. (5) yields

$$
T \xrightarrow{M(\Delta)} T + m(U + 2Z - \ell), \\
U \xrightarrow{M(\Delta)} U, \\
Z \xrightarrow{M(\Delta)} Z + mU - \ell.
$$
3 The origin of the Sp(4, \mathbb{Z}) Siegel modular group from strings

It is well-known that compactifications of heterotic string theory on tori (and toroidal orbifolds) are naturally described in the Narain formulation \cite{9,11}. There, one considers D right- and $D+16$ left-moving (bosonic) string modes (y_R, y_L) to be compactified as

$$ Y \sim Y + E \hat{N}, \quad \text{where} \quad Y := \begin{pmatrix} y_R \\ y_L \end{pmatrix}, $$

i.e. on an auxiliary torus of dimension $2D + 16$. The 16 extra left-moving degrees of freedom give rise to an $E_8 \times E_8$ (or SO(32)) gauge symmetry of the heterotic string. In more detail, the auxiliary torus corresponding to the identification (19) can be defined by the so-called Narain lattice

$$ \Gamma := \left\{ E \hat{N} \mid \hat{N} = \begin{pmatrix} n \\ m \\ p \end{pmatrix} \in \mathbb{Z}^{2D+16} \right\} $$

(20)

that is spanned by the Narain vielbein E, a matrix of dimension $(2D + 16) \times (2D + 16)$. Here, $n \in \mathbb{Z}^D$ gives the winding numbers, $m \in \mathbb{Z}^D$ the Kaluza–Klein numbers and $p \in \mathbb{Z}^{16}$ the gauge quantum numbers. As the one-loop partition function of the string worldsheet has to be modular invariant, the Narain lattice Γ has to be an even, integer and self-dual lattice with a metric η of signature $(D, D + 16)$. This condition on Γ holds if the Narain vielbein E satisfies

$$ \hat{\eta} := E^T \eta E = \begin{pmatrix} 0 & \mathbb{1}_D & 0 \\ \mathbb{1}_D & 0 & 0 \\ 0 & 0 & g \end{pmatrix}, \quad \text{where} \quad \eta := \begin{pmatrix} -\mathbb{1}_D & 0 & 0 \\ 0 & \mathbb{1}_D & 0 \\ 0 & 0 & 1_{16} \end{pmatrix}. $$

(21)

Here, $g := \alpha_g^T \alpha_g$ is the Cartan matrix of the $E_8 \times E_8$ gauge symmetry and α_g denotes a matrix whose columns are the simple roots of $E_8 \times E_8$ (or in the case of an SO(32) gauge symmetry, α_g is a basis of the $\text{Spin}(32)/\mathbb{Z}_2$ weight lattice).

It is convenient to define the so-called generalized metric of the Narain lattice in terms of the metric $G := e^T e$ (of the D-dimensional torus spanned by the geometrical vielbein e), the anti-symmetric B-field B and the Wilson lines A,

$$ \mathcal{H} := E^T E := \begin{pmatrix} \frac{1}{\alpha} (G + \alpha' A^T A + C^T G^{-1} C) & -C^T G^{-1} A^T \alpha_g \\ -G^{-1} C & \alpha' G^{-1} \alpha_g \\ \alpha_g^T A (1_2 + G^{-1} C) & -\alpha' \alpha_g^T A G^{-1} \alpha_g \\ \alpha_g^T (1_2 + \alpha' A G^{-1} A^T) \alpha_g \end{pmatrix}, $$

(22)

where $C := B + \frac{\alpha'}{\alpha^2} A^T A$ and we use conventions similar to those of refs. \cite{12,13}, but replacing C by C^T for later convenience. Note that due to eq. \cite{21}, the generalized metric \mathcal{H} satisfies the condition

$$ (\mathcal{H} \hat{\eta}^{-1})^2 = \mathbb{1}_{2D+16}. $$

(23)

The outer automorphisms of the Narain lattice are given by “rotational” transformations

$$ O_\hat{\eta}(D, D + 16, \mathbb{Z}) := \left\{ \hat{\Sigma} \mid \hat{\Sigma} \in \text{GL}(2D + 16, \mathbb{Z}) \quad \text{with} \quad \hat{\Sigma}^T \hat{\eta} \hat{\Sigma} = \hat{\eta} \right\}. $$

(24)
This is the general modular group of a toroidal compactification of the heterotic string. Elements \(\hat{\Sigma} \) of \(\hat{O}_\eta(D, D + 16, \mathbb{Z}) \) act on the Narain vielbein \(E \) as

\[
E \rightarrow \hat{\Sigma}E\hat{\Sigma}^{-1},
\]

such that the Narain scalar product \(\lambda_1^T \eta \lambda_2 \) is invariant for \(\lambda_i \in \Gamma, \ i \in \{1, 2\} \).

In the following we take \(D = 2 \). Moreover, the (continuous) Wilson lines are chosen as \(A_i = (a_i, -a_i, 0)^T \) for \(i \in \{1, 2\} \), where \(A_i \) denote the two columns of \(A \). Thus, we allow for continuous Wilson lines \(a_i \) in the direction of the simple root \((1, -1, 0)^T \) of \(E_8 \times E_8 \) (or \(SO(32) \)) for both directions \(e_i \) of the geometrical two-torus. Then, we define moduli \((T, U, Z) \) of the two-torus with \(B \)-field

\[
B := \alpha' b \epsilon, \quad \text{where} \quad \epsilon := \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right),
\]

and Wilson lines background fields \(A \) as

\[
T := \frac{1}{\epsilon^\alpha} \left(B_{12} + i \sqrt{\det G} \right) + a_1 (-a_2 + U a_1),
\]

\[
U := \frac{1}{G_{11}} \left(G_{12} + i \sqrt{\det G} \right) = \frac{|e_2|}{|e_1|} e^{i \phi},
\]

\[
Z := -a_2 + U a_1,
\]

cf. ref. [7]. Moreover, \(e_1 \) and \(e_2 \) are the two columns of the geometrical vielbein \(e \), and \(\phi \) denotes the angle enclosed by them. Note that the continuous Wilson lines \(a_1 \) and \(a_2 \) not only yield a new “Wilson line modulus” called \(Z \) but they also alter the definition of the Kähler modulus \(T \). In contrast, the complex structure modulus \(U \) remains unchanged in the presence of Wilson lines.

In what follows, it will be important to compute the transformation of the moduli \((T, U, Z) \) under general modular transformations from \(\hat{O}_\eta(2, 3, \mathbb{Z}) \subset \hat{O}_\eta(2, 2 + 16, \mathbb{Z}) \). To do so, the generalized metric \(\mathcal{H} = E^T E \) and eq. (25) can be used to obtain

\[
\mathcal{H}(T, U, Z) \rightarrow \hat{\Sigma}^{-T} \mathcal{H}(T, U, Z) \hat{\Sigma}^{-1} =: \mathcal{H}(T', U', Z'),
\]

for a general modular transformation \(\hat{\Sigma} \in \hat{O}_\eta(2, 3, \mathbb{Z}) \).

3.1 Mapping between \(\hat{O}_\eta(2, 3, \mathbb{Z}) \) of the Narain lattice and \(Sp(4, \mathbb{Z}) \)

In this section, we discuss various subgroups and generators of \(\hat{O}_\eta(2, 3, \mathbb{Z}) \subset \hat{O}_\eta(2, 2 + 16, \mathbb{Z}) \), derive their actions on the moduli \((T, U, Z) \) and compare them to the Siegel modular group \(Sp(4, \mathbb{Z}) \). By doing so, we will show explicitly that the Siegel modular group \(Sp(4, \mathbb{Z}) \) appears naturally in toroidal compactifications of the heterotic string, see also refs. [14–18]. The main results are summarized in table [4] at the end of this section.
Mirror transformation. We define a so-called mirror transformation

\[\hat{M} := \begin{pmatrix} 0 & 0 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \in O_\eta(2, 2 + 16, \mathbb{Z}), \quad (29) \]

where we have to change the conventions compared to refs. \cite{3,4} due to the presence of Wilson lines and the resulting changes in the generalized metric eq. \cite{22}. Using eq. \cite{28} we obtain

\[T \leftrightarrow U \quad \text{and} \quad Z \leftrightarrow Z, \quad (30) \]

as expected for a mirror transformation, see eq. \cite{16} for the corresponding case in Sp(4,\mathbb{Z}).

Modular group of the complex structure modulus. The general modular group O_\eta(2, 2 + 16, \mathbb{Z}) contains a modular group SL(2,\mathbb{Z})_U associated with the complex structure modulus U. It can be generated by

\[\hat{C}_S := \hat{M} \hat{C}_S \hat{M}^{-1} = \begin{pmatrix} 0 & -1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \quad \text{and} \quad \hat{C}_T := \begin{pmatrix} 1 & -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}. \quad (31) \]

Then, we use eq. \cite{28} in order to verify the Sp(4,\mathbb{Z}) transformations of the moduli (T, U, Z) given in eq. \cite{11}.

Modular group of the Kähler modulus. In addition to SL(2,\mathbb{Z})_U, due to mirror symmetry eq. \cite{29} there exists a modular group SL(2,\mathbb{Z})_T associated with the Kähler modulus T. It can be defined by

\[\hat{K}_S := \hat{M} \hat{C}_S \hat{M}^{-1} = \begin{pmatrix} 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \quad \text{and} \quad (32a) \]

\[\hat{K}_T := \hat{M} \hat{C}_T \hat{M}^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ -1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}. \quad (32b) \]

These transformations reproduce the Sp(4,\mathbb{Z}) transformations eq. \cite{13} of (T, U, Z), as can be seen explicitly using eq. \cite{28}.
Wilson line shifts. Due to the 16 extra left-moving degrees of freedom of the heterotic string, the general modular group $O_\eta(2,2+16,\mathbb{Z})$ has additional elements called “Wilson line shifts”. They are defined as

$$\hat{W}(\Delta A) := \begin{pmatrix}
1_2 & 0 & 0 \\
-\frac{1}{2}\Delta A^T g \Delta A & 1_2 & \Delta A^T g \\
-\Delta A & 0 & 1_{16}
\end{pmatrix} \in O_\eta(2,2+16,\mathbb{Z}),$$

(33)

where ΔA is a 16×2-dimensional matrix with integer entries. Since g is the Cartan matrix of an even lattice (of $E_8 \times E_8$ or $\text{Spin}(32)/\mathbb{Z}_2$), the 2×2 matrix $\frac{1}{2}\Delta A^T g \Delta A$ is integer. We focus on shifts ΔA in the directions of a_1 and a_2. Hence, we define

$$\hat{W}(\ell m) := \hat{W}(\Delta A) \text{ for } \Delta A := \begin{pmatrix}
m \\
0 \\
0 \\
\vdots \\
0
\end{pmatrix},$$

(34)

for $\ell, m \in \mathbb{Z}$. By doing so, we will focus in what follows on a subgroup $O_\eta(2,3,\mathbb{Z})$ of $O_\eta(2,2+16,\mathbb{Z})$. Then, using the transformation [28] of the generalized metric, we obtain

$$a_1 \xrightarrow{\hat{W}(\ell m)} a_1 + m, \quad a_2 \xrightarrow{\hat{W}(\ell m)} a_2 + \ell \quad \text{and} \quad b \xrightarrow{\hat{W}(\ell m)} b + a_1 \ell - a_2 m,$$

(35)

while the metric G is invariant. Translated to the moduli (T,U,Z) defined in eq. (27), this reproduces the $\text{Sp}(4,\mathbb{Z})$ transformations given in eq. (18).

\mathcal{CP}-like transformation. Finally, as discussed in ref. [4], a \mathcal{CP}-like generator has to act not only on the $(2+2)$-dimensional Narain coordinates of the geometrical two-torus but also on the 16 extra left-moving degrees of freedom, i.e.

$$\hat{\Sigma}_* := \begin{pmatrix}
-1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & -1_{16}
\end{pmatrix} \in O_\eta(2,2+16,\mathbb{Z}).$$

(36)

Applying eq. [28] to $\hat{\Sigma}_*$ gives rise to a \mathcal{CP}-like transformation

$$T \xrightarrow{\hat{\Sigma}_*} -T, \quad U \xrightarrow{\hat{\Sigma}_*} -U \quad \text{and} \quad Z \xrightarrow{\hat{\Sigma}_*} -Z,$$

(37)

of the moduli. This string result on \mathcal{CP} can also be understood from a bottom-up perspective as we will see in section [4].

As a remark, there exist further $O_\eta(2,2+16,\mathbb{Z})$ transformations not present in $\text{Sp}(4,\mathbb{Z})$: One can perform Weyl reflections in the 16-dimensional lattice of $E_8 \times E_8$ (or $\text{Spin}(32)/\mathbb{Z}_2$), see for example $\hat{M}_W(\Delta W)$ in ref. [12].
symmetry	\(\text{Sp}(4, \mathbb{Z}) \)	\(\text{O}_h(2,3,\mathbb{Z}) \)	transformation of moduli
\(\text{SL}(2, \mathbb{Z})_T \)	\(M_{(S,12)} \)	\(\hat{K}_S \)	\(T \rightarrow -\frac{1}{T} \) \(U \rightarrow U - \frac{Z^2}{T} \) \(Z \rightarrow -\frac{Z}{T} \)
\(\text{SL}(2, \mathbb{Z})_T \)	\(M_{(T,12)} \)	\(\hat{K}_T \)	\(T \rightarrow T + 1 \) \(U \rightarrow U \) \(Z \rightarrow Z \)
\(\text{SL}(2, \mathbb{Z})_U \)	\(M_{(1,2,S)} \)	\(\hat{C}_S \)	\(T \rightarrow T - \frac{Z^2}{U} \) \(U \rightarrow -\frac{1}{T} \) \(Z \rightarrow -\frac{Z}{T} \)
\(\text{SL}(2, \mathbb{Z})_U \)	\(M_{(1,2,T)} \)	\(\hat{C}_T \)	\(T \rightarrow T \) \(U \rightarrow U + 1 \) \(Z \rightarrow Z \)
Mirror	\(M_\times \)	\(\hat{M} \)	\(T \rightarrow U \) \(U \rightarrow T \) \(Z \rightarrow Z \)
Wilson line shift	\(M_{(\ell,m)} \)	\(\hat{W}_{(\ell,m)} \)	\(T \rightarrow T + m (mU + 2Z - \ell) \) \(U \rightarrow U \) \(Z \rightarrow Z + mU - \ell \)
\(\mathcal{C}\mathcal{P} \)-like	\(M_* \in \text{GSp}(4, \mathbb{Z}) \)	\(\hat{\Sigma}_* \)	\(T \rightarrow -T \) \(U \rightarrow -U \) \(Z \rightarrow -Z \)

Table 1: We list the generators of the Siegel modular group \(\text{Sp}(4, \mathbb{Z}) \) and their corresponding elements in the subgroup \(\text{O}_h(2,3,\mathbb{Z}) \) of the general modular group \(\text{O}_h(2,2+16,\mathbb{Z}) \) constructed explicitly in section 3 in the Narain formulation of the heterotic string. In the last column we list the transformation of the moduli, computed in two ways: i) using eq. (5) for \(\text{Sp}(4, \mathbb{Z}) \), and independently ii) using eq. (28) for \(\text{O}_h(2,3,\mathbb{Z}) \). The \(\mathcal{C}\mathcal{P} \)-like transformation \(M_* \) will be defined in section 4.

4 \(\mathcal{C}\mathcal{P} \) as an outer automorphism of \(\text{Sp}(4, \mathbb{Z}) \)

We have seen in the previous section that a \(\mathcal{C}\mathcal{P} \)-like transformation appears naturally in (toroidal) string compactifications. As we shall see in this section in a bottom-up discussion, this transformation does not belong to \(\text{Sp}(4, \mathbb{Z}) \) but corresponds to an outer automorphism of \(\text{Sp}(4, \mathbb{Z}) \) that, once included, enhances \(\text{Sp}(4, \mathbb{Z}) \) to the general symplectic group \(\text{GSp}(4, \mathbb{Z}) \).

We define a transformation

\[
M \xrightarrow{M_*} M' := M_*^{-1}MM_* \quad \text{for all} \quad M \in \text{Sp}(4, \mathbb{Z}) ,
\]
Then, it is easy to see that
\[M = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \]
satisfying \(M^T J M = -J \). (39)

Hence, \(M \notin \text{Sp}(4,\mathbb{Z}) \). Rather it lies in the general symplectic group
\[\text{GSp}(4,\mathbb{Z}) := \{ M \in \mathbb{Z}^{4 \times 4} \mid M^T J M = \pm J \} \]. (40)
Then, it is easy to see that \(M' \) defined in eq. (38) is an element from \(\text{Sp}(4,\mathbb{Z}) \) for all \(M \in \text{Sp}(4,\mathbb{Z}) \), i.e.
\[(M')^T J M' = M_1^T M_1 T M_1^{-T} J M_1^{-1} M_1 M_1 = -M_1^T J M_1 M_1 = +J \]. (41)

Hence, eq. (38) defines an automorphism of \(\text{Sp}(4,\mathbb{Z}) \). It is outer because \(M \notin \text{Sp}(4,\mathbb{Z}) \), as seen in eq. (39).

In order to see the physical meaning of \(M_\ell \), we apply eq. (38) to various elements of \(\text{Sp}(4,\mathbb{Z}) \):
\[
\begin{align*}
M_{(S,1,2)} & \xrightarrow{M_\ell} M_{(S,1,2)}^{-1} M_{(S,1,2)} M_\ell = (M_{(S,1,2)})^{-1}, \\
M_{(T,1,2)} & \xrightarrow{M_\ell} M_{(T,1,2)}^{-1} M_{(T,1,2)} M_\ell = (M_{(T,1,2)})^{-1}, \\
M_{(1,2,S)} & \xrightarrow{M_\ell} M_{(1,2,S)}^{-1} M_{(1,2,S)} M_\ell = (M_{(1,2,S)})^{-1}, \\
M_{(1,2,T)} & \xrightarrow{M_\ell} M_{(1,2,T)}^{-1} M_{(1,2,T)} M_\ell = (M_{(1,2,T)})^{-1}, \\
M_{(m)} & \xrightarrow{M_\ell} M_{(m)}^{-1} M_{(m)} M_\ell = (M_{(m)})^{-1} = M_{(m)}, \\
M_{(\ell,m)} & \xrightarrow{M_\ell} M_{(\ell,m)}^{-1} M_{(\ell,m)} M_\ell = M_{(\ell,m)}. \\
\end{align*}
\]
Let us analyze eq. (42f) in more detail: For each choice of \(\ell, m \), one can find an \(M \in \text{Sp}(4,\mathbb{Z}) \), such that \(MM_{(m)} M_{(m)}^{-1} = M_{(m)} \), which implies that \(M_{(m)} \) is mapped by \(M_\ell \) to the conjugacy class of its inverse \(M_{(m)}^{-1} \). Motivated by eqs. (42), we consider \(M_\ell \) a \(\mathbb{C}P \)-like transformation, see refs. [19,20]. Indeed, as explained in appendix A, the action of \(\text{GSp}(4,\mathbb{Z}) \) on \(\Omega \) can be defined in analogy to the action of \(\text{GL}(2,\mathbb{Z}) \) on one modulus, cf. ref. [3,21] and ref. [22]. Explicitly, for an element of the general symplectic group
\[
M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \text{GSp}(4,\mathbb{Z})
\]
we find the transformation rules
\[
\begin{align*}
\Omega & \xrightarrow{M} (A \overline{\Omega} + B) (C \overline{\Omega} + D)^{-1} \quad \text{if} \quad M^T J M = -J, \\
\Omega & \xrightarrow{M} (A \overline{\Omega} + B) (C \overline{\Omega} + D)^{-1} \quad \text{if} \quad M^T J M = +J,
\end{align*}
\]
where \(\overline{\Omega} \) denotes the complex conjugate of \(\Omega \). Consequently, the moduli transform under \(M_\ell \) as
\[
T \xrightarrow{M_\ell} -\overline{T}, \quad U \xrightarrow{M_\ell} -\overline{U}, \quad Z \xrightarrow{M_\ell} -\overline{Z},
\]
which confirms our expectation for a \(\mathbb{C}P \)-like transformation.
5 Conclusions and Outlook

The potential (traditional and modular) flavor symmetries of string theory compactifications are determined through the outer automorphisms of the Narain lattice. For the heterotic string, the modular symmetries are a subgroup of $O_\text{g}(D, D + 16, \mathbb{Z})$, where D is the dimension of the relevant compact space, i.e. $D \leq 6$. As a starting point, we have concentrated in this paper on a $D = 2$ sublattice of compact six-dimensional space. Apart from the Kähler and complex structure moduli T and U, we include a Wilson line modulus Z and arrive at the modular symmetry group $O_\text{g}(2, 3, \mathbb{Z})$. We show that this group is closely related to the Siegel modular group $\text{Sp}(4, \mathbb{Z})$, which has been studied intensively in the mathematical literature. The (complex) three-dimensional moduli space of $\text{Sp}(4, \mathbb{Z})$ can be visualized through an auxiliary Riemann surface of genus 2 (see figure [1]). Our top-down construction allows for a physical interpretation of the recent bottom-up discussion of ref. [8]: Their “third” modulus τ_3 (apart from $\tau_1 = U$ and $\tau_2 = T$) can be understood as a Wilson line modulus Z of compactified (heterotic) string theory.

Beyond these results, an important open task is to make contact with realistic models of “flavor” including chiral fermions. With this purpose, the \mathbb{T}^2 toroidal compactification can be altered by a \mathbb{Z}_K orbifolding, i.e. $\mathbb{T}^2/\mathbb{Z}_K$. This orbifolding results in the appearance of finite Siegel modular groups, where chiral matter transforms in representations thereof. In addition, a \mathbb{Z}_K orbifolding can break the Siegel modular group $\text{Sp}(4, \mathbb{Z})$: The geometrical \mathbb{Z}_K rotation that acts on the two-torus has to be embedded into the 16 degrees of freedom of the gauge symmetry due to worldsheet modular invariance of the string partition function. It is known that a shift embedding yields discrete Wilson lines [24], such that the Wilson line modulus Z is frozen at some discrete value. In this case, the Siegel modular group $\text{Sp}(4, \mathbb{Z})$ is broken. For a \mathbb{Z}_K orbifold with $K \neq 2$ the unbroken subgroup from $\text{Sp}(4, \mathbb{Z})$ is the modular group $\text{SL}(2, \mathbb{Z})_T \times \text{SL}(2, \mathbb{Z})_U$ combined with a mirror symmetry that interchanges T and U, see ref. [6]. On the other hand, a rotational embedding into the 16 gauge degrees of freedom gives rise to continuous Wilson lines [25,26], where the Wilson line modulus Z remains as a free modulus. Hence, one expects that a two-dimensional \mathbb{Z}_2 orbifold with rotational embedding yields the full $\text{Sp}(4, \mathbb{Z})$ Siegel modular group.

Discrete modular flavor symmetries correspond to the finite Siegel modular groups $\Gamma_{g,n}$ (here, of genus $g = 2$). For the \mathbb{Z}_2 orbifold we have $n = 2$ and $\Gamma_{2,2}$ is isomorphic to S_6, the permutation group of six elements [8]. This includes the finite modular group $S_3 \times S_3$ as well as mirror symmetry obtained in ref. [6], where only the moduli T and U associated with $\text{SL}(2, \mathbb{Z})_T \times \text{SL}(2, \mathbb{Z})_U$ had been considered and the Wilson line modulus was set to $Z = 0$. Finally, we have shown in a general study that, in addition to these modular flavor symmetries, there is a natural appearance of a CP-like transformation predicted in string theory. As discussed in sec. [4] from a bottom-up perspective, it can be understood as an outer automorphism of the Siegel modular group extending it to $G\text{Sp}(4, \mathbb{Z})$. A full discussion of the symmetries of the \mathbb{Z}_2 orbifold, including $G\text{CP}$, will be subject of a future publication [27].
follows: The genus-
be defined by considering an auxiliary genus-
g transformations (see e.g. [28, 29] for further details). The symplectic group Sp(2
Let us review some aspects of the symplectic group Sp(2
H
homology group
1
A Symplectic groups Sp(2
of S.R.-S. was partly supported by CONACyT grant F-252167.
A.B. and P.V. are supported by the Deutsche Forschungsgemeinschaft (SFB1258). The work
Acknowledgments
This amounts to demanding that
\[J_{M} \rightarrow J_{M}^{T} \text{ for } M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \mathbb{Z}^{g \times g}. \] (46)
The new 1-cycles \(\left(\frac{\beta}{\alpha} \right) \) also form a basis of \(H_{1}(T,g,\mathbb{Z}) \) if \(M \in \text{GL}(2g,\mathbb{Z}) \). Moreover, we have to require that the intersection numbers and, hence, \(J \) be invariant under the transformation (46). This amounts to demanding that \(M J M^{T} = J \). By taking the inverse transpose of this equation we get \(M^{-T} J^{-T} M^{-1} = J^{-T} \). Then, using \(J^{-T} = J \) we obtain the condition \(M^{T} J M = J \), i.e. \(M \in \text{Sp}(2g,\mathbb{Z}) \).

A consequence of the Torelli theorem for Riemann surfaces is that the genus-
T
is determined by the complex \(g \)-dimensional torus, which can be defined as the quotient of \(\mathbb{C}^{g} \)
divided by a complex lattice. This lattice is given by the columns of the \(g \times 2g \) period matrix of \(T_{g} \),
\[\Pi_{g} := \begin{pmatrix} \int_{\alpha_{1}} \omega_{1} & \ldots & \int_{\alpha_{1}} \omega_{g} \\ \vdots & \ddots & \vdots \\ \int_{\alpha_{g}} \omega_{1} & \ldots & \int_{\alpha_{g}} \omega_{g} \end{pmatrix}. \] (47)
By choosing a basis in which \(\int_{\alpha_{j}} \omega_{i} = \delta_{ij} \), one can always rewrite \(\Pi_{g} \), such that
\[\Pi_{g} = (\mathbb{I}_{g},\Omega), \] (48)
where we have defined the \(g \times g \) complex modulus matrix \(\Omega \), such that \(\Omega^{T} = \Omega \). Clearly, the transformations \(\left(\frac{\beta}{\alpha} \right) \rightarrow M \left(\frac{\beta}{\alpha} \right) \) induce transformations on the modulus matrix \(\Omega \) in eq. (47). Restricting further to \(\text{Im} \Omega > 0 \), we arrive at the modular space of the genus-
g compact surface \(T_{g} \),
\[\mathbb{H}_{g} = \{ \Omega \in \mathbb{C}^{g \times g} \mid \Omega^{T} = \Omega, \text{Im} \Omega > 0 \} . \] (49)

A
Symplectic groups Sp(2g,\mathbb{Z}) and modular transformations
Let us review some aspects of the symplectic group Sp(2g,\mathbb{Z}) and its relation to modular transformations (see e.g. [28, 29] for further details). The symplectic group Sp(2g,\mathbb{Z}) can be defined by considering an auxiliary genus-
g Riemann surface \(T_{g} \) and its symmetries as follows: The genus-
g surface has 2g nontrivial 1-cycles denoted by \((\beta_{i},\alpha_{j}) \) for \(i,j \in \{1,\ldots,g\} \), see figure 1 for the cases \(g = 1 \) and \(g = 2 \). These cycles form the canonical basis of the homology group \(H_{1}(T_{g},\mathbb{Z}) \cong \mathbb{Z}^{2g} \). The holomorphic 1-forms \(\omega_{i} \) build the dual cohomology basis, which one can choose to satisfy \(\int_{\alpha_{j}} \omega_{i} = \delta_{ij} \) and \(\int_{\beta_{j}} \omega_{i} = \int_{\beta_{j}} \omega_{j} \). In these terms, the skew-symmetric form \(J \) in eq. (1) is interpreted as the intersection numbers \((\frac{\beta}{\alpha}) \) of the 2g-dimensional vectors of 1-cycles \(\left(\frac{\beta}{\alpha} \right) = (\beta_{1},\ldots,\beta_{g},\alpha_{1},\ldots,\alpha_{g})^{T} \), such that \(\alpha_{i} \cap \alpha_{j} = \beta_{i} \cap \beta_{j} = 0 \) and \(-\alpha_{i} \cap \beta_{j} = \beta_{i} \cap \alpha_{j} = \delta_{ij} \). Now, one transforms the 1-cycles \(\left(\frac{\beta}{\alpha} \right) \)
\[\left(\frac{\beta}{\alpha} \right) \rightarrow \left(\frac{\beta'}{\alpha'} \right) := \left(\begin{array}{cc} A & B \\ C & D \end{array} \right) \left(\frac{\beta}{\alpha} \right) = \left(\begin{array}{cc} A\beta + B\alpha \\ C\beta + D\alpha \end{array} \right) \text{ for } M = \left(\begin{array}{cc} A & B \\ C & D \end{array} \right) \in \mathbb{Z}^{g \times g}. \] (46)

\[\Pi_{g} := \begin{pmatrix} \int_{\alpha_{1}} \omega_{1} & \ldots & \int_{\alpha_{1}} \omega_{g} \\ \vdots & \ddots & \vdots \\ \int_{\alpha_{g}} \omega_{1} & \ldots & \int_{\alpha_{g}} \omega_{g} \end{pmatrix}. \] (47)
This allows us to identify the standard modular transformation readily show that, by demanding that $\text{Sp}(4, \mathbb{Z})$ for the transformed period matrix Ω given in eq. (6), satisfying $\Omega = \Omega'$, where in the last relation we have chosen ω, α, β, ω', α', β' are 2 integer matrices with unit determinant, i.e. they describe the modular group $\text{Sp}(2, \mathbb{Z})$. Given the holomorphic 1-form $\omega = dz$ and the nontrivial 1-cycles α and β, shown in figure (4a), the period matrix of \mathbb{T}^2 is given by

$$\Pi_1 = \left(\int_\alpha \omega, \int_\beta \omega \right) = (1, \tau), \quad \tau \in \mathbb{C}, \quad \text{Im} \tau > 0.$$ \hfill (50)

The last equation arises from the choice $\int_\alpha \omega = 1$ and the definition of the modulus $\tau := \int_\beta \omega$. We now let the $\text{SL}(2, \mathbb{Z})$ element $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ act on the 1-cycle vector $(\beta, \alpha)^T$. This implies that the period matrix transforms as

$$\Pi_1 \rightarrow \Pi_1' = \left(\int_{\beta + d \alpha} \omega', \int_{\alpha + b \alpha} \omega' \right) = \left(c \int_\beta \omega' + d \int_\alpha \omega', a \int_\beta \omega' + b \int_\alpha \omega' \right). \hfill (51)$$

By demanding that the holomorphic 1-form transforms under M as $\omega' = \omega(c \tau + d)^{-1}$, we normalize the transformed period matrix, which then becomes

$$\Pi_1' = \left(1, (a \tau + b)(c \tau + d)^{-1} \right). \hfill (52)$$

This allows us to identify the standard modular transformation $\tau \rightarrow (a \tau + b)(c \tau + d)^{-1}$.

The same discussion can be conducted for the more interesting case $g = 2$, which leads to the Siegel modular group $\text{Sp}(4, \mathbb{Z})$. The Riemann surface \mathcal{T}_2 has the holomorphic 1-form basis (ω_1, ω_2) and the nontrivial 1-cycles (β), (β') (illustrated in figure 1b). Thus, its 2 × 4 period matrix reads

$$\Pi_2 = \begin{pmatrix} \int_{\alpha_1} \omega_1 & \int_{\alpha_1} \omega_2 & \int_{\beta_1} \omega_1 & \int_{\beta_1} \omega_2 \\ \int_{\alpha_2} \omega_1 & \int_{\alpha_2} \omega_2 & \int_{\beta_2} \omega_1 & \int_{\beta_2} \omega_2 \end{pmatrix} = (1_2, \Omega), \hfill (53)$$

where in the last relation we have chosen $\int_{\alpha_j} \omega_i = \delta_{ij}$ and defined the modular matrix Ω, as given in eq. (6), satisfying $\Omega = \Omega^T$ and $\text{Im} \Omega > 0$. Next, we perform an $\text{Sp}(4, \mathbb{Z})$ transformation M, where $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ and A, B, C, D are 2 × 2 integer matrices. Although the expression for the transformed period matrix Π_2' is more complicated than in the case $g = 1$, one can readily show that, by demanding that $\text{Sp}(4, \mathbb{Z})$ transformations on the 1-forms act as $(\omega_1', \omega_2') = (\omega_1, \omega_2)(C \Omega + D)^{-1}$, one arrives at

$$\Pi_2 \rightarrow \Pi_2' = \left(1_2, (A \Omega + B)(C \Omega + D)^{-1} \right). \hfill (54)$$

Consider the $g = 1$ case. We observe that M are 2 × 2 integer matrices with unit determinant, i.e. they describe the modular group $\text{Sp}(2, \mathbb{Z}) \cong \text{SL}(2, \mathbb{Z})$ of a \mathbb{T}^2 torus. Given the holomorphic 1-form $\omega = dz$ and the nontrivial 1-cycles α and β, shown in figure 1a), the period matrix of \mathbb{T}^2 is given by

$$\Pi_1 = \left(\int_\alpha \omega, \int_\beta \omega \right) = (1, \tau), \quad \tau \in \mathbb{C}, \quad \text{Im} \tau > 0.$$ \hfill (50)

The last equation arises from the choice $\int_\alpha \omega = 1$ and the definition of the modulus $\tau := \int_\beta \omega$. We now let the $\text{SL}(2, \mathbb{Z})$ element $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ act on the 1-cycle vector $(\beta, \alpha)^T$. This implies that the period matrix transforms as

$$\Pi_1 \rightarrow \Pi_1' = \left(\int_{\beta + d \alpha} \omega', \int_{\alpha + b \alpha} \omega' \right) = \left(c \int_\beta \omega' + d \int_\alpha \omega', a \int_\beta \omega' + b \int_\alpha \omega' \right). \hfill (51)$$

By demanding that the holomorphic 1-form transforms under M as $\omega' = \omega(c \tau + d)^{-1}$, we normalize the transformed period matrix, which then becomes

$$\Pi_1' = \left(1, (a \tau + b)(c \tau + d)^{-1} \right). \hfill (52)$$

This allows us to identify the standard modular transformation $\tau \rightarrow (a \tau + b)(c \tau + d)^{-1}$.

The Riemann surface \mathcal{T}_2 has the holomorphic 1-form basis (ω_1, ω_2) and the nontrivial 1-cycles (β) (illustrated in figure 1b). Thus, its 2 × 4 period matrix reads

$$\Pi_2 = \begin{pmatrix} \int_{\alpha_1} \omega_1 & \int_{\alpha_1} \omega_2 & \int_{\beta_1} \omega_1 & \int_{\beta_1} \omega_2 \\ \int_{\alpha_2} \omega_1 & \int_{\alpha_2} \omega_2 & \int_{\beta_2} \omega_1 & \int_{\beta_2} \omega_2 \end{pmatrix} = (1_2, \Omega), \hfill (53)$$

where in the last relation we have chosen $\int_{\alpha_j} \omega_i = \delta_{ij}$ and defined the modular matrix Ω, as given in eq. (6), satisfying $\Omega = \Omega^T$ and $\text{Im} \Omega > 0$. Next, we perform an $\text{Sp}(4, \mathbb{Z})$ transformation M, where $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ and A, B, C, D are 2 × 2 integer matrices. Although the expression for the transformed period matrix Π_2' is more complicated than in the case $g = 1$, one can readily show that, by demanding that $\text{Sp}(4, \mathbb{Z})$ transformations on the 1-forms act as $(\omega_1', \omega_2') = (\omega_1, \omega_2)(C \Omega + D)^{-1}$, one arrives at

$$\Pi_2 \rightarrow \Pi_2' = \left(1_2, (A \Omega + B)(C \Omega + D)^{-1} \right). \hfill (54)$$

This allows us to identify the standard modular transformation $\tau \rightarrow (a \tau + b)(c \tau + d)^{-1}$.
We find thus that \(\text{Sp}(4, \mathbb{Z}) \) transformations act on the modular matrix \(\Omega \) as

\[
\Omega \overset{M}{\longrightarrow} (A\Omega + B)(C\Omega + D)^{-1} . \tag{55}
\]

We can also consider a \(\text{GSp}(4, \mathbb{Z}) \) transformation, where we are interested in the transformation of \(\Omega \) under those \(M \in \text{GSp}(4, \mathbb{Z}) \) with \(M^T J M = -J \) (since for the case with \(M^T J M = +J \) the result is already given in eq. (55)). In section \([\ref{sec:mirror}]\) we have defined a special element \(M_* \in \text{GSp}(4, \mathbb{Z}) \) with \(M_*^T J M_* = -J \). Then, the combined transformation \(M := \tilde{M} M_* \) satisfies \(M^T J M = +J \), so \(M \in \text{Sp}(4, \mathbb{Z}) \). Since we know the transformation of \(\Omega \) for \(M \in \text{Sp}(4, \mathbb{Z}) \), we only need to know the transformation of \(\Omega \) for our special element \(M_* \). Under \(M_* \) the 1-cycles \((\beta_\alpha)^*\) transform as

\[
(\beta_\alpha)^* \overset{M_*}{\longrightarrow} \left(\begin{smallmatrix} -1 & 2 \\ 0 & 1 \end{smallmatrix} \right) (\beta_\alpha)^* = (\beta_\alpha), \tag{56}
\]

cf. eq. (46). As can be seen in figure \([\ref{fig:mirror}]\) this transformation corresponds to a geometrical mirror transformation at a horizontal plane. By choosing appropriate complex coordinates on the surface \(T_2 \) (i.e. in each chart) this mirror transformation acts by complex conjugation. Consequently, it is conceivable that \(M_* \) has to map the 1-forms \(\omega_i \) to \(\bar{\omega}_i \). For the period matrix, this amounts to

\[
\Pi_2 = \left(1_2, \Omega \right) \overset{M_*}{\longrightarrow} \left(\begin{smallmatrix} \int_{\alpha_1} \bar{\omega}_1 & \int_{\alpha_1} \bar{\omega}_2 \\ \int_{\alpha_2} \bar{\omega}_1 & \int_{\alpha_2} \bar{\omega}_2 \end{smallmatrix} \right) = \left(1_2, -\Omega \right) . \tag{57}
\]

This proves eq. (45) that we have also found independently in the string setup, see eq. (37). Furthermore, this discussion can be generalized easily to the case \(\text{GSp}(2g, \mathbb{Z}) \) for \(T_g \) with general genus \(g \). This is particularly easy for \(g = 1 \), where the basis 1-form is \(\omega = dz \). Considering the \(\mathbb{C}P \)-like transformation \(\left(\begin{smallmatrix} 1 & 0 \\ 0 & 1 \end{smallmatrix} \right) \) (using e.g. eqs. (66) and (144) of ref. \([30]\)) we get \((\text{Im} dz, \text{Re} dz) \overset{M_*}{\longrightarrow} (\text{Re} dz, \text{Im} dz) \). Consequently, we see that \(dz \overset{M_*}{\longrightarrow} d\bar{z} \). It then follows for the period matrix that \(\Pi_1 = (1, \tau) \overset{M_*}{\longrightarrow} (\int_\alpha \bar{\omega}, \int_\beta \bar{\omega}) = (1, -\tau) \), choosing \(\tau = \int_\beta \omega \) and \(\int_\alpha \omega = 1 \), as before. This confirms the well-known \(\mathbb{C}P \)-like transformation of the modulus \(\tau \), which promotes the modular symmetry \(\text{Sp}(2, \mathbb{Z}) \cong \text{SL}(2, \mathbb{Z}) \) to \(\text{GSp}(2, \mathbb{Z}) \cong \text{GL}(2, \mathbb{Z}) \).

B Relations between elements of \(\text{Sp}(4, \mathbb{Z}) \)

In this appendix, we state several relations between elements of the Siegel modular group \(\text{Sp}(4, \mathbb{Z}) \). We have verified that they also hold in \(\text{O}_q(2, 2 + 16, \mathbb{Z}) \) using the dictionary given in table \([\ref{tab:dictionary}]\). This gives a further non-trivial proof that \(\text{Sp}(4, \mathbb{Z}) \) and \(\text{O}_q(2, 2 + 16, \mathbb{Z}) \) are related.

Elements \(M_{(\gamma_T, \gamma_U)} \) of \(\text{SL}(2, \mathbb{Z})_T \times \text{SL}(2, \mathbb{Z})_U \subset \text{Sp}(4, \mathbb{Z}) \) get multiplied as

\[
M_{(\gamma_1, \gamma_2)} M_{(\delta_1, \delta_2)} = M_{(\gamma_1 \delta_1, \gamma_2 \delta_2)} , \tag{58}
\]
as might have been expected. Thus, the elements \(M_{(\gamma_T, \gamma_U)} \) form a subgroup of \(\text{Sp}(4, \mathbb{Z}) \).
On the other hand, the set of elements $M(\Delta) \in \text{Sp}(4, \mathbb{Z})$ does not form a subgroup of $\text{Sp}(4, \mathbb{Z})$ on its own as one can see from the relation

$$M(\Delta_1) M(\Delta_2) = M(\Delta_1 + \Delta_2) \left(M(T_{12}) \right)^{\Delta_1 \cdot \Delta_2},$$

for $\Delta_1, \Delta_2 \in \mathbb{Z}^2$. However, elements of the form $M(\ell_0)$ and $M(0_m)$ build two independent subgroups of $\text{Sp}(4, \mathbb{Z})$ because

$$M(\ell_0) M(\ell_0) = M(\ell_0 + \ell_0),$$

$$M(0_m) M(0_m) = M(0_m + 0_m).$$

Next, we consider the action of $\gamma \in \text{SL}(2, \mathbb{Z})$ on $M(\Delta)$. It is given by

$$M(\Delta) M(\ell m) = M(\gamma \Delta) M(\ell m),$$

such that for $\Delta = (\ell, m)^T$ we obtain

$$M_{12,S} M(\ell m) = M(\ell m) M_{12,S},$$

$$M_{12,T} M(\ell m) = M(\ell m + m) M_{12,T}.$$
References

[1] F. Feruglio, Are neutrino masses modular forms?, From My Vast Repertoire ...: Guido Altarelli’s Legacy (2019), 227–266, arXiv:1706.08749 [hep-ph].

[2] I. de Medeiros Varzielas, S. F. King, and Y.-L. Zhou, Multiple modular symmetries as the origin of flavor, Phys. Rev. D 101 (2020), no. 5, 055033, arXiv:1906.02208 [hep-ph].

[3] A. Baur, H. P. Nilles, A. Trautner, and P. K. S. Vaudrevange, Unification of Flavor, CP, and Modular Symmetries, Phys. Lett. B 795 (2019), 7–14, arXiv:1901.03251 [hep-th].

[4] A. Baur, H. P. Nilles, A. Trautner, and P. K. S. Vaudrevange, A String Theory of Flavor and CP, Nucl. Phys. B 947 (2019), 114737, arXiv:1908.00805 [hep-th].

[5] H. P. Nilles, S. Ramos-Sánchez, and P. K. S. Vaudrevange, Lessons from eclectic flavor symmetries, Nucl. Phys. B 957 (2020), 115098, arXiv:2004.05200 [hep-ph].

[6] A. Baur, M. Kade, H. P. Nilles, S. Ramos-Sánchez, and P. K. S. Vaudrevange, The eclectic flavor symmetry of the \mathbb{Z}_2 orbifold, (2020), arXiv:2008.07534 [hep-th].

[7] P. Mayr and S. Stieberger, Moduli dependence of one loop gauge couplings in (0,2) compactifications, Phys. Lett. B 355 (1995), 107–116, hep-th/9504129.

[8] G.-J. Ding, F. Feruglio, and X.-G. Liu, Automorphic Forms and Fermion Masses, (2020), arXiv:2010.07952 [hep-th].

[9] K. S. Narain, New Heterotic String Theories in Uncompactified Dimensions < 10, Phys. Lett. 169B (1986), 41–46.

[10] K. S. Narain, M. H. Sarmadi, and E. Witten, A Note on Toroidal Compactification of Heterotic String Theory, Nucl. Phys. B279 (1987), 369–379.

[11] K. S. Narain, M. H. Sarmadi, and C. Vafa, Asymmetric Orbifolds, Nucl. Phys. B288 (1987), 551.

[12] S. Groot Nibbelink and P. K. S. Vaudrevange, T-duality orbifolds of heterotic Narain compactifications, JHEP 04 (2017), 030, arXiv:1703.05323 [hep-th].

[13] S. Groot Nibbelink, A Worldsheet Perspective on Heterotic T-Duality Orbifolds, (2020), arXiv:2012.02778 [hep-th].

[14] G. Lopes Cardoso, D. Lüst, and T. Mohaupt, Moduli spaces and target space duality symmetries in (0,2) $\mathbb{Z}(N)$ orbifold theories with continuous Wilson lines, Nucl. Phys. B 432 (1994), 68–108, hep-th/9405002.

[15] D. Bailin, G. Kraniotis, and A. Love, The Effect of Wilson line moduli on CP violation by soft supersymmetry breaking terms, Phys. Lett. B 432 (1998), 343–352, hep-th/9804135.
[16] A. Malmendier and D. R. Morrison, *K3 surfaces, modular forms, and non-geometric heterotic compactifications*, Lett. Math. Phys. **105** (2015), no. 8, 1085–1118, arXiv:1406.4873 [hep-th].

[17] A. Font, I. García-Etxebarria, D. Lüst, S. Massai, and C. Mayrhofer, *Heterotic T-fects, 6D SCFTs, and F-Theory*, JHEP **08** (2016), 175, arXiv:1603.09361 [hep-th].

[18] A. Font, B. Fraiman, M. Graña, C. A. Núñez, and H. P. De Freitas, *Exploring the landscape of heterotic strings on T^d*, JHEP **10** (2020), 194, arXiv:2007.10358 [hep-th].

[19] M. Holthausen, M. Lindner, and M. A. Schmidt, *CP and Discrete Flavour Symmetries*, JHEP **04** (2013), 122, arXiv:1211.6953 [hep-ph].

[20] M.-C. Chen, M. Fallbacher, K. Mahanthappa, M. Ratz, and A. Trautner, *CP Violation from Finite Groups*, Nucl. Phys. B **883** (2014), 267–305, arXiv:1402.0507 [hep-ph].

[21] T. Dent, *CP violation and modular symmetries*, Phys. Rev. **D64** (2001), 056005, arXiv:hep-ph/0105285 [hep-ph].

[22] P. P. Novichkov, J. T. Penedo, S. T. Petcov, and A. V. Titov, *Generalised CP Symmetry in Modular-Invariant Models of Flavour*, JHEP **07** (2019), 165, arXiv:1905.11970 [hep-ph].

[23] K. Ishiguro, T. Kobayashi, and H. Otsuka, *Spontaneous CP violation and symplectic modular symmetry in Calabi-Yau compactifications*, (2020), arXiv:2010.10782 [hep-th].

[24] L. E. Ibáñez, H. P. Nilles, and F. Quevedo, *Orbifolds and Wilson Lines*, Phys. Lett. B **187** (1987), 25–32.

[25] L. E. Ibáñez, H. P. Nilles, and F. Quevedo, *Reducing the Rank of the Gauge Group in Orbifold Compactifications of the Heterotic String*, Phys. Lett. B **192** (1987), 332–338.

[26] S. Förste, H. P. Nilles, and A. Wingerter, *Geometry of rank reduction*, Phys. Rev. D **72** (2005), 026001, hep-th/0504117.

[27] A. Baur, M. Kade, H. P. Nilles, S. Ramos-Sánchez, and P. K. S. Vaudrevange, *In preparation*, (2021).

[28] A. Brownstein and R. Lee, *Cohomology of the symplectic group $Sp_4(Z)$ part I: The odd torsion case*, Transactions of the American Mathematical Society **334** (1992), no. 2, 575–596, http://www.jstor.org/stable/2154473.

[29] S. Perna, *Siegel modular forms: some geometric applications*, Phd thesis, 2016.

[30] H. P. Nilles, S. Ramos-Sánchez, and P. K. S. Vaudrevange, *Eclectic flavor scheme from ten-dimensional string theory – II. Detailed technical analysis*, (2020), arXiv:2010.13798 [hep-th].