Elliptic operators associated with groups of quantized canonical transformations

A. Yu. Savin, B. Yu. Sternin, and E. Schrohe

1. Let M be a compact closed smooth manifold and G a discrete group. A G-operator on M is an operator given by a finite sum

$$D = \sum_{g \in G} D_g \Phi_g : H^s(M) \to H^{s-m}(M),$$

(1)

where the D_g are (pseudo)differential operators of order m on M, and $g \mapsto \Phi_g$ defines a representation of G in the operators acting on functions on M. G-operators arise naturally, for example, when G acts on M and the operators Φ_g are shift operators along the orbits of the group action: $\Phi_g u(x) = u(g^{-1}(x))$. Such operators have been studied successfully in the literature (for instance, see [1], [2], [4] and the references cited there), and they have interesting applications in non-commutative geometry, non-local problems of mathematical physics, and other areas of mathematics.

The aim of this paper is to study a new class of elliptic G-operators associated with representations of groups G by quantized canonical transformations Φ_g (see [3], for instance). Such operators have arisen in several recent problems in index theory and non-commutative geometry. We note also that in the simplest case, where $D = \Phi_g$ is a single quantized canonical transformation, we recover the well-known Atiyah–Weinstein index problem.

Now we define the symbol of G-operators and state a Fredholm theorem. We apply methods of the theory of C^*-algebras and crossed products of them, and therefore we assume that in (1) we have $s = m = 0$ (that is, we consider operators acting in $L^2(M)$) and that the Φ_g are unitary operators. The general case can be reduced to this situation in a standard way.

For a G-operator (1), its coefficients D_g are pseudodifferential operators, and hence their symbols, denoted by $\sigma(D_g)$, are smooth functions on the cosphere bundle $S^*M = T_0^*M/\mathbb{R}_+$ of the manifold, where T_0^*M stands for the cotangent bundle with zero section deleted. The symbol of the G-operator (1) is the element

$$\sigma(D) = \{\sigma(D_g)\} \in C(S^*M) \rtimes G$$

(2)

of the maximal C^*-crossed product $C(S^*M) \rtimes G$ of the algebra $C(S^*M)$ of continuous functions on the cosphere bundle and the group G, acting on this algebra by automorphisms defined by canonical transformations $g: S^*M \to S^*M$.

We say that D is elliptic if its symbol is invertible.

This research was supported by DGF (grant no. SCHR 319 8-1), the Russian Foundation for Basic Research (grant nos. 15-01-08392 and 16-01-00373) and the RUDN University programme “5-100”.

AMS 2010 Mathematics Subject Classification. Primary 58G15, 70H15.

© 2018 Russian Academy of Sciences (DoM), London Mathematical Society, Turpion Ltd.
Theorem 1. Elliptic G-operators are Fredholm operators.

Note that Theorem 1 is also valid under the weaker assumption that the correspondence $g \mapsto \Phi_g$ is an almost-representation, that is, a representation modulo compact operators.

2. From now on let G be a Lie group of positive dimension and let $g \mapsto \Phi_g$ be its unitary representation in the quantized canonical representations on $L^2(M)$, which is continuous in the following sense: we are given a smooth action of G on $T^*_0 M$ by homogeneous canonical transformations and a smooth family of amplitudes $\{a_g\}_{g \in G} \subset C^\infty_c(G \times S^* M)$, such that we have a decomposition $\Phi_g = \Phi(g, a_g) + K_g$, where $\Phi(g, a_g)$ is a fixed quantization of g and a_g, while K_g is a norm-continuous family of compact operators. One can show that under this continuity assumption the G-operator $D = \int_G D_g \Phi_g \, dg : L^2(M) \to L^2(M)$ (3) is a well-defined bounded operator provided that $\{D_g\}_{g \in G}$ is a compactly supported norm-continuous function on G with values in the C^*-algebra of zero-order pseudodifferential operators with continuous symbols.

It turns out that G-operators for Lie groups are not Fredholm as a rule. For example, G-operators associated with group actions on M are smoothing along the orbits. One therefore has to introduce the notion of symbol on the space transversal to the orbits. Let us define this space. Note that an element H of the Lie algebra G of G defines a Hamiltonian vector field on $T^* M$, and we denote by $H(x, p)$ the corresponding Hamiltonian function on $T^*_0 M$. Then with the action of G on $T^*_0 M$ by homogeneous canonical transformations we associate the following closed conical G-invariant subset of $T^*_0 M$:

$$T^*_G M = \{(x, p) \in T^*_0 M \mid H(x, p) = 0 \text{ for all } H \in \mathcal{G}\}.$$ (4)

Similarly to (2) we define the symbol of the G-operator (3) to be the element $\sigma(D) \in C(S^*_G M) \rtimes G$ of the maximal crossed product, where $S^*_G M = T^*_G M/\mathbb{R}_+$. The following theorem is the main result of this paper.

Theorem 2. Suppose that the G-operator $1 + D : L^2(M) \to L^2(M)$ is elliptic, that is, its symbol $1 + \sigma(D) \in (C(S^*_G M) \rtimes G)^+$ is invertible in the crossed product with adjoined unit. Then this G-operator is a Fredholm operator.

The authors are grateful to Yu. A. Kordyukov, V. E. Nazaikinskii, and R. Nest for useful remarks.

Bibliography

[1] A. Antonevich and A. Lebedev, Functional-differential equations. I. C^*-theory, Pitman Monogr. Surveys Pure Appl. Math., vol. 70, Longman Scientific & Technical, Harlow 1994, viii+504 pp.

[2] A. Connes, C. R. Acad. Sci. Paris Sér. A-B 290:13 (1980), A599–A604.

[3] В. Е. Назайкинский, В. Г. Ошмян, Б. Ю. Стернин, В. Е. Шаталов, УМН 36:2(218) (1981), 81–140; English transl., V. Nazaikinskii, V. Oshmyan, B. Sternin, and V. Shatalov, Russian Math. Surveys 36:2 (1981), 93–161.
[4] V. E. Nazaikinskii, A. Yu. Savin, and B. Yu. Sternin, *Elliptic theory and noncommutative geometry. Nonlocal elliptic operators*, Oper. Theory Adv. Appl., vol. 183, Birkhäuser Verlag, Basel 2008, xii+224 pp.

Anton Yu. Savin
RUDN University
E-mail: a.yu.savin@gmail.com

Boris Yu. Sternin
RUDN University
E-mail: sternin@mail.ru

Elmar Schrohe
Leibniz University Hannover
E-mail: schrohe@math.uni-hannover.de

Presented by M.I. Zelikin
Accepted 10/APR/18
Translated by THE AUTHORS