Passive acoustic sampling data of the Colección de Sonidos Ambientales Mauricio Álvarez-Rebolledo - Instituto Humboldt (IAvH-CSA) during 2018 and 2019 in Colombia

Orlando Acevedo-Charrya,b,c,*, Daniela Murillo-Bedoyaa, Alexandra Buitrago-Cardonaa,b, Ana María Ospina-La, Claudia A. Medina-Uribea, Zuania Colón-Piñeirob,c,#, Bibiana Gómez-Valenciad, Yenifer Herrera-Varónd, Jose Manuel Ochoa-Quinterod

a Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Carrera 8 # 15-08, Villa de Leyva, Boyacá, Colombia
b Asociación Colombiana de Ornitología, Bogotá, Colombia
c Reserva Natural Los Yátaros, Vereda La Caja, Gachantivá, Boyacá, Colombia
d Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Venado de Oro - Avenida Paseo Bolivar 16-20, Bogotá, D.C., Colombia

Article history:
Received 7 October 2020
Revised 4 December 2020
Accepted 8 December 2020
Available online 11 December 2020

Keywords:
Audible spectrum
Acoustic signals
National natural parks
Passive acoustic monitoring
Regional reserves

Abstract

We present the dataset of passive acoustic sampling events deposited in the Colección de Sonidos Ambientales Mauricio Álvarez-Rebolledo at the Humboldt Institute (IAvH-CSA) during the years 2018–2019. The acoustic sampling events were generated from different projects, including Colombia Bio, Santander Bio, Boyacá Bio, Lisama, Riqueza Natural, and occasional events collected during this time. In total, 44,704 sampling events are deposited in the collection, corresponding to 1 minute of automatic recording sampled at a 44.1 kHz sampling rate and 16-bit resolution. The recording schedules correspond to 1 minute every 5, 10, or 30 min throughout.

* Corresponding author.
E-mail address: acevedocharry@gmail.com (O. Acevedo-Charry).
Social media: \footnotesize{\textsupersize{\#}} (O. Acevedo-Charry), \footnotesize{\textsupersize{\#}} (A. Buitrago-Cardona), \footnotesize{\textsupersize{\#}} (A.M. Ospina-L), \footnotesize{\textsupersize{\#}} (Z. Colón-Piñeiro), \footnotesize{\textsupersize{\#}} (B. Gómez-Valencia), \footnotesize{\textsupersize{\#}} (Y. Herrera-Varón), \footnotesize{\textsupersize{\#}} (J.M. Ochoa-Quintero)

\# Current address: Department of Biology, University of Florida, Gainesville, FL, 32611, USA.

https://doi.org/10.1016/j.dib.2020.106648
2352-3409/© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
the day, during 1 to 20 sampling days, across 79 localities in Colombia. The geographical coverage includes the departments of Bolívar, Boyacá, Caquetá, Cundinamarca, Meta, Santander, and Sucre. The present information was collected within the framework of the passive monitoring methodology established by the Humboldt Institute.

© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

Specifications Table

Subject	Agricultural and Biological Sciences
Specific subject area	Ecology, Evolution, Behaviour and Systematics.
Type of data	Table
How data were acquired	Field surveys
Data format	Table with raw data and figures
Parameters for data collection	Data considered corresponds to automatic recordings under passive acoustic monitoring samples, obtained from different places of Colombia. Here we provide geographic coordinates in decimal degrees. Each digital record is associated with a unique ID number to allow individual recognition and avoid duplicates. The dataset included collecting events from February 2018 to December 2019
Description of data collection	We collected digital records automatically by using acoustic sensors provided by the ARBIMON project of Sieve Analytics Inc, which were Motorola MotoG cellphone inside a protective case, with an external microphone attached, and the Arbimon Touch app for Android installed. We established a 1-minute recording within an interval of 5, 10, or 30 minutes of silence period, according to the sampling method for each sampling site.
Data source location	We obtained data from 79 localities across Colombia. We carried out the event samples in seven of 32 departments (22%): Bolívar, Boyacá, Caquetá, Cundinamarca, Meta, Santander, and Sucre. Our aim was to include part of the ecosystem, elevation and landscape gradient of Colombia [8], mainly in wilderness areas away of human settlements. Geographic coordinates presented in decimal degrees and reference datum WGS84: latitude: 0.56 and 10.029 min and max, respectively; longitude: −75.36 and −72.256, min and max, respectively. Elevation: 75 - 3425 m.
Data accessibility	Data available with this article and in [1]. https://ipt.biodiversidad.co/iavh/resource?r=sonidos_iavh-csa

Value of the Data

- The dataset we present provides information on the acoustic print from several localities in Colombia between 2018 and 2019. Our contribution increases the acoustic knowledge of tropical biodiversity at the local and global levels; researchers often use these data to complement biodiversity studies.
- Information provided constitutes a basis for researchers interested in testing hypotheses related to species acoustic phenotypic traits or ecosystem acoustic signals. Decision-makers involved in environmental agendas, including protected areas management and land use planning strategies in Colombia, could also use our data.
- Passive sampling with acoustic sensors allows testing of questions about the different components of an acoustic system that characterize a particular ecosystem or species. Acoustic information can be potentially useful in developing conservation management initiatives [2], elucidating the effects of anthropic activities on the soundscapes [3], monitoring biodiversity...
(acoustic) responses in production systems [4]. Also, addressing basic research in species-specific processes by using novel methodologies like occupancy models [5] and automated identification to relate acoustic activity patterns with weather features [6].

1. Data Description

The dataset we report is a compilation of 44704 audio records obtained from passive sampling with acoustic sensors (Supplementary File 1). It includes digital specimens of 1 minute of recording, deposited in the Colección de Sonidos Ambientales Mauricio Álvarez-Rebolledo at the Humboldt Institute (IAvH-CSA). The access to this is in IPT of Instituto Humboldt [1], which is replicated in SIB Colombia (https://datos.biodiversidad.co/dataset/e98d3337-f7d7-454a-abae-c82d2d6010a9) and GBIF portals (https://www.gbif.org/dataset/e98d3337-f7d7-454a-abae-c82d2d6010a9).

Our dataset provides information on the acoustic print of 79 localities from northern, southern, and eastern Colombia (Fig. 1). We represent the geographical distribution of all sampling records in Fig. 1; grouped by selections determined by closeness in the map and marked by colours representing the density of records (halo) per site and the recording scheme. The recordings were mostly concentrated in the departments of Santander (21998) and Boyacá (12099) (Supplementary File 1). The recording scheme established for the recorder device was different among places (Fig. 2). We selected three schemes that vary in time of the silence period: 1 minute of record and 5, 10, or 30 minutes of not recording (Fig. 2). The number of records is

![Fig. 1. The geographical location of the 79 sites that include passive sampling with acoustic sensors by the Colección de Sonidos Ambientales Mauricio Álvarez-Rebolledo– Instituto Humboldt (IAvH-CSA) during 2018-2019. The 79 sites are presented in 8 selections on the map identified with white numbers. The color of the dot identifies the recording scheme. The halo around the points indicates the density of recordings, a number that changes regarding the scale. Right small-scale map includes the rectangles presented at the left maps.](image-url)
Fig. 2. The number of recordings concerning date and elevation. (a) Each dot reflects the number of recordings per site per day, the horizontal lines represent the maximum number of recordings per day for each recording scheme (1 minute recording every 5 minutes: 288 recordings; every 10 minutes: 144; every 30 minutes: 48); Full days of recording are identified by matching dots with lines in the same color. (b) Each point reflects the number of recordings per site along an elevation gradient (see Fig. 1 for the location of the 79 sampled sites).

presented per day (Fig. 2a) and in an elevational gradient (Fig. 2b) and is discriminated using a different colour according to the recording scheme.

2. Experimental Design, Materials and Methods

2.1. Study area

We have records from 79 localities across Colombia (Fig. 1), corresponding to seven departments and representing different ecosystems. Our sites include specific ecosystems or protected areas representative of Colombian landscape: paramos of Sumapaz, El Valle, and Ocetá; dry forests of Montes de María and the middle Chicamocha river valley; buffer zone of Serranía de Los Yariguíes and Chingaza Natural National Parks [7]; Natural Reserve Los Yátaros; Muinane indigenous territory of Yarlí River and Lizama stream. The municipalities location in the
surveys are in three zones within the country, and they cover an elevational gradient from low to high areas. In the northern, San Jacinto and San Juan Nepomuceno, Bolívar (240–443 m); Chalán and Coloso, Sucre (174–576 m); in the eastern, Barrancabermeja, Bolívar, Cimitarra, El Carmen de Chucurí, San Vicente de Chucurí, and Santa Bárbara, Santander (98–3004 m); Aracabuco, Cómbita, Gachantivá, Monguí and Socha, Boyacá (2157–3420 m); San Juanito, Meta (2216–2270 m); Cabrera, Cundinamarca (3339–3345 m); and in the southern, Solano, Caquetá (155–176 m, accessing by Puerto Santander, Amazonas). We attempt to include a variety of ecosystems, environment, or landscapes gradients of Colombia.

2.2. Data collection

To collect data, we used automatic recorders assembled by the ARBIMON project of Sieve Analytics Inc [2,3], for the period between February 2018 and December 2019. The recorders consist of a Motorola MotoG cellphone inside a protective case, with an external microphone attached [2,3]. Recorders had installed the Arbimon Touch app for Android, which allows us to select different recording schemes. According to each project, we choose among three recording schemes of a 1 min sound varying the silence period to 5, 10, or 30 min. Researchers selected each sampling point by following its own criteria but trying to include at least 50 to 100 m of the same coverage to capture the acoustic habitat footprint and assuming independence of each point. Each site was as away as possible to human settlement. Although environmental barriers may influence this type of recorder, it captures sounds about 50 m around [5]. Recorders lasted in the field for periods of 1 to 20 days.

We verify each recorder operation by checking that time and date were correct, as well as the battery level at 100% and storage empty. We assigned a unique name to each sampling point to track each data collection event. We discarded three sites where the recorder was not correctly installed (date and time failed) within the quality control process. The final matrix obtained was verified by the Infraestructura Institucional de Datos (I2D) personal of the Humboldt Institute.

We provide an organized dataset with the metadata that constitutes a useful source of information, but the visualization and analysis are still a challenge of a dynamic in Colombian and Neotropical ecoacoustics [8]. We hope in the near future, the Colombian ecoacoustic community will have an interactive platform for storage, visualization, and modular analysis (e.g., [9]), that allows the integration of different approximations in this topic. Links presented for each file in our dataset may serve as a supply to create a platform with those characteristics.

Ethics Statement

Some of the recordings could include voices of humans, the most likely source are the voices of the person that installed or removed the devices in the field. The probability of recording other human voices is very low given that we deployed each acoustic sensor in wilderness areas away of human settlements; we tried to preclude linking any recorded voices to individuals.

Declaration of Competing Interest

No potential competing interests were declared by the authors.

Acknowledgments

This work was supported by different funding sources, including the projects Boyacá Bio (special cooperation agreement number 17-170); Santander Bio (17-199); Riqueza Natural (NW-IQS-17-002); Colombia Bio (16-062); Lisama Ecopetrol (18-058); and “Impactos de la agricultura
tropical en la biodiversidad a través de diferentes escalas espaciales”, supported by the Norway Council. We thank Helena Olaya, Marjorie Pinzón, Iván González, Felipe Santodomingo, Rafael Mauricio Torres, Pablo Forero, and Fernando Forero for their help and support in logistic issues in the field; to Andrea Carolina Castro of 12D for her support with the dataset; and especially to the local communities and guides that allowed acoustic field surveys.

Supplementary Materials

Supplementary material associated with this article can be found in the online version at doi:10.1016/j.dib.2020.106648.

References

[1] Instituto de Investigación de Recursos Biológicos Alexander von HumboldtMuestreo pasivo con sensores acústicos de la Colección de Sonidos Ambientales del Instituto Humboldt (IAvH-CSA) realizado entre el 2018 y 2019 en Colombia. 44704 events, 2020, doi:10.15472/ocpi3r.
[2] M.I. Herrera-Montes, Protected area zoning as a strategy to preserve natural soundscapes, reduce anthropogenic noise intrusion, and conserve biodiversity, Trop. Conserv. Sci. 11 (2018) 1940082918804343, doi:10.1177/1940082918804344.
[3] J.L. Deichmann, A. Hernández-Serna, J.A. Delgado C., M. Campos-Cerqueira, T.M. Aide, Soundscape analysis and acoustic monitoring document impacts of natural gas exploration on biodiversity in a tropical forest, Ecol. Indic. 74 (2017) 39–48, doi:10.1016/j.ecolind.2016.11.002.
[4] P.R. Furumo, T. Mitchell Aide, Using soundscapes to assess biodiversity in Neotropical oil palm landscapes, Landsc. Ecol. 34 (2019) 911–923, doi:10.1007/s10980-019-00815-w.
[5] M. Campos-Cerqueira, T.M. Aide, Improving distribution data of threatened species by combining acoustic monitoring and occupancy modelling, Methods Ecol. Evol. 7 (2016) 1340–1348, doi:10.1111/2041-210X.12599.
[6] M. Ducrettet, P.-M. Forget, J.S. Ulloa, B. Yguel, P. Gaucher, K. Princé, S. Haupert, J. Sueur, Monitoring canopy bird activity in disturbed landscapes with automatic recorders: A case study in the tropics, Biol. Conserv. 245 (2020) 108574, doi:10.1016/j.bjbioc.2020.108574.
[7] L.G. Linares-Romero, L.O. Acevedo-Charry, F. Avellaneda, O. Cortés-Herrera, A.M. Cuervo, R. Galindo-T, D. Hernández, S. Pérez-Peña, A.R. Pulido, P. Pulido-Santacruz, D. Santana, G.F. Seeholzer, M.S. Sierra-Buitrago, J. Soto-Patiño, O. Laverde-R, Aves del Parque Nacional Natural Chingaza y zona de amortiguación, Cordillera Oriental de Colombia, Biota Colomb 21 (2020) 117–129, doi:10.21068/c2020.v21n01a09.
[8] S. Rodríguez-Buritica, D. Savage, P. Caycedo, O. Acevedo-Charry, C. Isaza, J.M. Daza, J. Almeira, J.S. Ulloa, M. Orozco-Alzate, N. Villamizar, J.F. Ruiz, A. Lopera, B. Olivier, O. Laverde-R., B. Pijanowski and Red Ecoacústica Colombiana, Paisajes sonoros de Colombia: La otra dimensión de la biodiversidad, In Reporte de estado y tendencia de la biodiversidad continental de Colombia 2018 Ficha 103, 2019, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá D.C., Disponible en http://reporte.humboldt.org.co/biodiversidad/2018/cap1/103/
[9] J.M. Kass, B. Vilela, M.E. Aiello-Lammens, R. Muscarella, C. Merow, R.P. Anderson, Wallace: a flexible platform for reproducible modeling of species niches and distributions built for community expansion, Methods Ecol. Evol. 9 (2018) 1151–1156, doi:10.1111/2041-210X.12945.