EVENT-BASED FAULT DETECTION FOR INTERVAL TYPE-2 FUZZY SYSTEMS WITH MEASUREMENT OUTLIERS

Qi Li
College of Engineering, Bohai University
Jinzhou 121013, Liaoning, China

Hong Xue* and Changxin Lu
School of Mathematics and Physics, Bohai University
Jinzhou 121013, Liaoning, China
College of Engineering, Bohai University
Jinzhou 121013, Liaoning, China

Abstract. This paper investigates the event-based fault detection (FD) problem for a category of discrete-time interval type-2 fuzzy systems with measurement outliers. For the sake of decreasing the utilization of limited communication bandwidth, an event-based mechanism is introduced. Based on the saturation function technique, a novel event-based FD observer is first designed to reduce the influence of outliers in the dynamic systems. Then, on the basis of Lyapunov stability theory, sufficient conditions are provided to ensure that the error system satisfies the \mathcal{H}_∞ performance and the \mathcal{H}_∞ fault performance in different cases, respectively. In contrast to the existing event-based FD results, the false alarm, which is induced by measurement outliers, can be effectively avoided by the designed FD observer with saturation function. Lastly, some simulation results are given to verify the effectiveness of the method presented in this paper.

1. Introduction. Due to the evolution of industrial engineering, many systems become the nonlinear versions, and the existing linear control approaches cannot directly cope with the nonlinear systems [13, 14, 25, 32, 37, 39, 45]. Takagi-Sugeno (T-S) fuzzy model [15, 22], which can approximate the nonlinear systems by means of its precise approximation ability, has been widely applied in many significant results [5, 31]. In [31], a new fuzzy tracking control design method was presented on the basis of T-S fuzzy model. Considering the intermittent measurements, an \mathcal{H}_∞ fuzzy filtering problem for a class of nonlinear systems was studied in [5]. However, the uncertainties, which usually exist in most physical systems, cannot be captured by the T-S fuzzy model with determinate membership functions [5, 31]. To this end, an interval type-2 fuzzy logic system was proposed in [21], and then, an interval type-2 (IT2) T-S fuzzy model was constructed in [12, 44] to cope with the uncertainties by using the lower and upper membership functions and relevant tradeoff coefficients. Inspired by the important technique in [12], significant strategy has been proposed on the basis of IT2 fuzzy dynamic systems [11]. Although the results in [11, 12, 44]...
have the ability to capture uncertainties existing in the considered systems, the sensor/actuator faults, which may influence the system stability, have not been considered.

Owing to the increasing demands of safety and higher performance in engineering, the FD problem has attracted a growing number of attentions in some automatic control fields, and fruitful significant results about the FD issue by the IT2 T-S fuzzy approach have been published. In [40], an FD filter was constructed as a residual generator to guarantee prescribed \mathcal{H}_∞ performance. The FD problem was handled by a distributed filtering scheme proposed in [6]. However, in the aforementioned work [6], the FD approach is based on time-triggered condition, even the systems achieve the desired performance without the maintaining of control signals, abundant communication data are still transmitted into systems, which causes the waste of communication resources. Recently, an event-based scheme, which can determine the signal transmission by setting a triggered criterion, is developed to economize limited communication resources in [29]. Up to now, the event-based control condition has received remarkable attentions [3,18,28,29,41,42,46,47]. The event-based result in [29] was first extended to discrete-time T-S fuzzy dynamic models [28]. The authors in [41] developed a novel adaptive event-based scheme to decrease unnecessary signal communications. In [42], an \mathcal{H}_∞ event-based filter was designed for a class of T-S fuzzy systems. Nevertheless, the problem of FD was neglected under the situation of introducing event-based mechanism in [28,29,41,42]. More recently, the authors in [24] designed an adaptive event-based FD filter for fuzzy stochastic models with missing measurements. Considering the uncertainties existing in the systems, in [26], an FD filter was designed by using the IT2 T-S fuzzy model, and event-based communication mechanism was introduced to save the utilization of limited communication bandwidth. In addition, the event-driven FD problem for discrete-time IT2 fuzzy networked control systems with nonlinear perturbations was studied in [27]. It is noteworthy that the above FD results cannot be employed to deal with the problem of false alarms which caused by measurement outliers.

Outliers usually appear in considerable systems and may produce unpredictable oscillatory of the dynamic systems. Therefore, measurement outliers issue has attracted much attentions and many results on outliers have been published. In [1], the authors designed a stubborn observer to estimate the states of linear time-variant systems subject to measurement outliers, and the influences of abnormal and isolated measurement noise were reduced. A novel robust Kalman filter, which can detect and restrict the effect of outliers in discrete linear systems, was constructed in [8]. The authors in [2] provided a method to handle state estimation issue for a class of discrete-time linear time-invariant systems in the case of outliers existing in considered systems. However, these important results only consider the problem of estimating the linear systems state subject to outliers. How to design a novel fuzzy FD strategy in the framework of IT2 T-S fuzzy model with outliers to avoid false alarms and decrease unnecessary utilization of transmission data? There are few attempts have been made to solve such a challenging problem, which motivates the current work.

This paper develops an event-based FD problem in the framework of IT2 T-S fuzzy model. In the design procedure, outliers are taken into account. The major contributions of this paper are summarized as follows:
1. Considering measurement outliers existing in the error systems, a new FD observer with event-based mechanism and saturation function is designed in this paper for the first time. The designed observer can reduce the effect of measurement outliers on the residual signals while reduce unnecessary signal transmissions.

2. This paper extends the method in [33] to a class of discrete-time fuzzy systems with uncertain parameters. Moreover, in the procedure of designing the FD observer, less network resources are utilized than [33] by introducing an event-based mechanism. Meanwhile, the mismatched membership functions can be handled by introducing a slack matrix technique.

3. In contrast to the existing event-based FD results of IT2 dynamic models [26, 27], this paper designs a novel FD observer with adaptive saturation on the output injection. On the basis of the designed method, the fault can be detected effectively and the false alarms can be also avoided. Furthermore, sufficient conditions are presented to sustain both the H_∞ performance and H_∞ fault performance for the error systems.

Lastly, some simulation results are given to identify the usefulness of the advanced approach.

2. Problem formulation.

2.1. IT2 T-S fuzzy model. In this subsection, the IT2 T-S fuzzy model is utilized to model the nonlinear discrete-time system.

Plant Rule i: IF $\ell_1(\varphi(k))$ is N_{i1}, and $\ell_2(\varphi(k))$ is N_{i2} and ... and $\ell_ı(\varphi(k))$ is $N_{iı}$, THEN

$$x(k+1) = A_i x(k) + B_i w(k) + B_{i1} f(k),$$
$$y(k) = C x(k),$$

(1)

where $\ell(\varphi(k)) = [\ell_1(\varphi(k)) \ \ell_2(\varphi(k)) \ \ldots \ \ell_ı(\varphi(k))]^T$ is the premise variable, $N_{iı}$ denotes the fuzzy set, $ı$ represents the amount of the fuzzy sets. $x(k) \in \mathbb{R}^n$ stands for the state vector, $y(k) \in \mathbb{R}^m$ refers to the measured output, $w(k) \in \mathbb{R}^w$ denotes the external interference which belongs to $\ell_2 [0, \infty)$, $f(k) \in \mathbb{R}^p$ stands for the fault signal. A_i, B_i, C and B_{i1} are system matrices with appropriate dimensions, $ı = 1, \ldots, r$, and r refers to the amount of fuzzy rules.

Define

$$m_ı(\varphi(k)) = \prod_{p=1}^i u_{N_{ıp}}(\ell_p(\varphi(k))) \geq 0,$$
$$\bar{m}_ı(\varphi(k)) = \prod_{p=1}^i \bar{u}_{N_{ıp}}(\ell_p(\varphi(k))) \geq 0,$$
$$\bar{u}_{N_{ıp}}(\ell_p(\varphi(k))) \geq u_{N_{ıp}}(\ell_p(\varphi(k))) \geq 0,$$
$$\bar{m}_ı(\varphi(k)) \geq m_ı(\varphi(k)) \geq 0,$$

in which $u_{N_{ıp}}(\ell_p(\varphi(k)))$, $\bar{u}_{N_{ıp}}(\ell_p(\varphi(k)))$, $m_ı(\varphi(k))$ and $\bar{m}_ı(\varphi(k))$ stand for lower membership function, upper membership function, lower grade of membership and upper grade of membership, respectively.
Whereafter, the overall dynamic of (1) is described as the following form:

\[x(k + 1) = \sum_{i=1}^{r} m_i(\phi(k))[A_i x(k) + B_i w(k) + B_{1i} f(k)], \]

\[y(k) = C x(k), \]

where

\[m_i(\phi(k)) = \frac{\alpha_i(\phi(k)) m_i(\phi(k)) + \bar{\alpha}_i(\phi(k)) \bar{m}_i(\phi(k))}{\sum_{d=1}^{r} [\alpha_d(\phi(k)) m_d(\phi(k)) + \bar{\alpha}_d(\phi(k)) \bar{m}_d(\phi(k))]}, \]

\[0 \leq \alpha_i(\phi(k)) \leq 1, 0 \leq \bar{\alpha}_i(\phi(k)) \leq 1, \]

\[m_i(\phi(k)) \geq 0, \]

\[\sum_{i=1}^{r} m_i(\phi(k)) = 1, \alpha_i(\phi(k)) + \bar{\alpha}_i(\phi(k)) = 1, \]

in which \(m_i(\phi(k)) \) is the grade of membership, \(\alpha_i(\phi(k)) \) and \(\bar{\alpha}_i(\phi(k)) \) denote weighting coefficients.

2.2. Event-based transmission mechanism. An event-based mechanism is introduced in this subsection to decrease unnecessary signal communications. The current measurement signal is represented by \(y(k) \), and \(y(i_k) \) denotes the last transmitted signal at the moment \(i_k \). The next triggered instant is provided as follows:

\[i_{k+1} = \inf_{i_k} \{ k > i_k | [y(k) - y(i_k)]^T Q [y(k) - y(i_k)] \geq \varepsilon y^T(i_k) Q y(i_k) \}, \]

in which \(Q > 0 \) is a weighting matrix which should be determined, \(\varepsilon \in [0, 1) \) refers to the event-based threshold. The current data \(y(k) \) will be transmitted into the observer if it satisfies condition (3). If \(y(i_{k+1}) = y(i_k) \), it proves that the current signal will not be transmitted and the last released signal will not change.

Defining the difference between \(y(k) \) and \(y(i_k) \) as follows:

\[\delta(k) = y(k) - y(i_k). \]

For sake of economizing limited resources in information communication, the signals will be released only when the current measurement \(y(k) \) satisfies the following condition:

\[\delta^T(k) Q \delta(k) \geq \varepsilon y^T(i_k) Q y(i_k). \]

2.3. Fault detection observer. For the sake of improving the flexibility of observer design, the premise variables of observer model are not the same as the system model. Meanwhile, we construct the following fuzzy FD observer with saturation function to avoid false alarms which brought by outliers.

\[\textbf{Observer Rule j:} \text{ IF } \eta_1(\hat{x}(k)) \text{ is } \mathcal{O}_{j1}, \text{ and } \eta_2(\hat{x}(k)) \text{ is } \mathcal{O}_{j2}, \text{ and } \ldots, \text{ and } \eta_{\nu}(\hat{x}(k)) \text{ is } \mathcal{O}_{j\nu}, \text{ THEN} \]

\[\begin{cases} \dot{x}(k + 1) = A_j \hat{x}(k) + L_j \text{sat}_\sigma(y(i_k) - \hat{y}(k)), \\ \hat{y}(k) = C \hat{x}(k), \\ r(k) = \text{sat}_\sigma(y(i_k) - \hat{y}(k)), \end{cases} \]

where \(\mathcal{O}_{j\nu} \) means the fuzzy set of the designed observer, \(\hat{x}(k) \in \mathbb{R}^n \) is the estimation of the \(x(k) \), \(\hat{y}(k) \in \mathbb{R}^m \) represents the estimation of the output, \(r(k) \in \mathbb{R}^m \) stands
for the residual signal, \mathcal{L}_j ($j = 1, \ldots, r$) refer to the gains of FD observer to be determined.

Define

$$
\begin{align*}
& w_j(\hat{x}(k)) = \prod_{q=1}^{\nu} \tilde{u}_{\sigma_q}(\eta_q(\hat{x}(k))) \geq 0, \\
& \bar{w}_j(\hat{x}(k)) = \prod_{q=1}^{\nu} \tilde{u}_{\sigma_q}(\eta_q(\hat{x}(k))) \geq 0, \\
& \tilde{u}_{\sigma_q}(\eta_q(\hat{x}(k))) \geq \bar{u}_{\sigma_q}(\eta_q(\hat{x}(k))) \geq 0,
\end{align*}
$$

in which $w_j(\hat{x}(k))$ and $\bar{w}_j(\hat{x}(k))$ stand for lower grade of membership and upper grade of membership, respectively. The overall FD observer is depicted as follows:

$$
\begin{align*}
\dot{x}(k + 1) &= \sum_{j=1}^{r} w_j(\hat{x}(k))[A_j\hat{x}(k) + \mathcal{L}_j s_{\sigma}(y(i_k) - \hat{y}(k))], \\
\dot{\hat{y}}(k) &= C\hat{x}(k), \\
r(k) &= s_{\sigma}(y(i_k) - \hat{y}(k)), \\
\end{align*}
$$

where

$$
\begin{align*}
& w_j(\hat{x}(k)) = \frac{b_j(\hat{x}(k))w_j(\hat{x}(k)) + \bar{b}_j(\hat{x}(k))\bar{w}_j(\hat{x}(k))}{\sum_{i=1}^{r} [b_i(\hat{x}(k))w_i(\hat{x}(k)) + \bar{b}_i(\hat{x}(k))\bar{w}_i(\hat{x}(k))]}, \\
& 0 \leq b_j(\hat{x}(k)) \leq 1, \quad 0 \leq \bar{b}_j(\hat{x}(k)) \leq 1, \\
& w_j(\hat{x}(k)) \geq 0, \\
& \sum_{i=1}^{r} w_j(\hat{x}(k)) = 1, \quad b_j(\hat{x}(k)) + \bar{b}_j(\hat{x}(k)) = 1,
\end{align*}
$$

in which $w_j(\hat{x}(k))$ denotes the grade of membership, $b_j(\hat{x}(k))$ and $\bar{b}_j(\hat{x}(k))$ represent weighting coefficients. For conciseness, define $m_i = m_i(\eta(k))$, $w_j = w_j(\hat{x}(k))$.

Let $\delta(k) = [\delta_1(k) \ldots \delta_m(k)]^T$. In the observer (5), $s_{\sigma}(v)$ is a symmetric vector saturation function, for each $v = [v_1 \ v_2 \ \ldots \ v_m]^T \in \mathbb{R}^m \geq 0$, the saturation restrictions $\sigma = [\sigma_1 \ \sigma_2 \ \ldots \ \sigma_m]^T \in \mathbb{R}^m \geq 0$ are defined as follows:

$$
\begin{align*}
\sigma = \left[\begin{array}{c}
\sigma_{\sigma_1}(v_1) \\
\sigma_{\sigma_2}(v_2) \\
\vdots \\
\sigma_{\sigma_m}(v_m)
\end{array} \right],
\end{align*}
$$

where $\sigma_{\sigma_l}(v_l) = \max\{-\sigma_l(k), \min\{\sigma_l(k), v_l + \delta_l(k)\}\}$ ($l = 1, 2, \ldots, m$) denotes the standard scalar symmetric saturation function. The saturation limitation dynamic of $\sigma(k)$ is shown as

$$
\bar{\sigma}(k + 1) = \lambda \bar{\sigma}(k) + (y(i_k) - \hat{y}(k))^T \mathcal{R}(y(i_k) - \hat{y}(k)), \\
\sigma_l(k) = \sqrt{\bar{\sigma}(k)/\omega_l}, \quad l = 1, 2, \ldots, m,
$$

where $\lambda \in [0, 1]$, $\mathcal{R} = \mathcal{R}^T > 0$, $\bar{\sigma}(k) \in \mathbb{R} \geq 0$ and $\omega_l > 0$ ($l = 1, 2, \ldots, m$) are the parameters with suitable dimensions, and $\omega_l > 0$ is the l-th diagonal element of \mathcal{W}, where \mathcal{R} and \mathcal{W} are matrices to be determined. Furthermore, the expression (7) is always established based on $\bar{\sigma}(k) \in \mathbb{R} \geq 0$.
Remark 1. For sake of detecting the system faults, a fuzzy FD observer with saturation function (5) is constructed. In the procedure of signal transmission, it is inevitable that the existence of outliers may effect the error dynamic and residual output directly. Accordingly, the adaptive saturation which exists in (5) can avoid the occurrence of this phenomenon. From these, the FD observer with this form can reduce the influence of outliers on the system performance, while false alarms which exist in the FD procedure can be avoided effectively.

Let $\tilde{x}(k) = x(k) - \hat{x}(k), e(k) = [x^T(k) \hat{x}^T(k)]^T$, and the fault estimation error $\bar{r}(k) = r(k) - Mf(k)$, in which $M = [I \ldots I]_{m \times p}$. Then, the error system is inferred below

$$e(k + 1) = \sum_{i=1}^{r} \sum_{j=1}^{r} m_{ij} w_{ij} [\bar{A}_{ij} e(k) + \bar{B}_{ij} w(k) + \bar{B}_{1ij} f(k) + \bar{D}_{ij} q(k)]$$

$$\bar{r}(k) = \bar{C} e(k) - q(k) - Mf(k),$$

$$\bar{\sigma}(k + 1) = \lambda \bar{\sigma}(k) - [\bar{D} \bar{\sigma}(k) [\bar{C} e(k) - \delta(k)],$$

where

$$\bar{A}_{ij} = \begin{bmatrix} A_i & 0 \\ A_i - A_j & A_j - L_j C \end{bmatrix}, \bar{B}_{ij} = \begin{bmatrix} B_{ij} \\ B_{ij} \end{bmatrix}, \bar{C} = \begin{bmatrix} 0 & C \end{bmatrix}.$$

The residual evaluation function $J(k)$ and the threshold J_{th} are evaluated by the following equations:

$$J(k) = \left(\sum_{k=t_0}^{t_0+T} \bar{r}^T(k) \bar{r}(k) \right)^{\frac{1}{2}},$$

$$J_{th} = \sup_{0 \neq w(k) \in L_2, f(k) = 0} J(k).$$

The following strategy can detect the occurrence of faults:

$$J(k) > J_{th} \Rightarrow \text{with faults} \Rightarrow \text{alarm},$$

$$J(k) \leq J_{th} \Rightarrow \text{no faults}.$$

In addition, the FD observer which is designed in this paper satisfies the H_∞ performance and the H_∞ fault performance in different conditions, respectively.

- H_∞ performance: the system (8) satisfies the H_∞ performance if the condition (11) holds.

$$\|\bar{r}(k)\|_2 < \gamma \|w(k)\|_2.$$

- H_∞ fault performance: if the system (8) satisfies the condition (12), the H_∞ fault performance is guaranteed.

$$\|\bar{r}(k)\|_2 < \gamma \|f(k)\|_2.$$
3. Main results.

3.1. \mathcal{H}_∞ performance analysis. In this subsection, sufficient criteria are given for the system (8) with $f(k) = 0$ to guarantee the \mathcal{H}_∞ performance. Rewriting the system (8) as follows:

$$e(k + 1) = \sum_{i=1}^{r} \sum_{j=1}^{r} m_{ij} w_{ij}[\bar{A}_{ij} e(k) + \bar{B}_{ij} w(k) + \bar{D}_{ij} q(k)],$$

$$\bar{r}(k) = \bar{C} e(k) - q(k),$$

$$\bar{\sigma}(k + 1) = \lambda \bar{\sigma}(k) + [\bar{C} e(k) - \delta(k)]^T R[\bar{C} e(k) - \delta(k)],$$

$$q(k) = d z_{\sigma(k)}(\bar{C} e(k))$$

$$= \bar{C} e(k) - \text{sat}_{\sigma(k)}(\bar{C} e(k)) - \delta(k).$$

(13)

Theorem 3.1. Given FD observer gains \mathcal{L}_j ($j = 1, \ldots, r$), the constants $\lambda \in [0, 1)$, $\gamma > 0$, $\varepsilon \in [0, 1)$, and considering $w_{ij} - \mu_j m_{ij} \geq 0$, the \mathcal{H}_∞ performance can be guaranteed for the system (13) if there exist matrices $P > 0$, $W > 0$, $U > 0$, $R > 0$, $Q > 0$ make the following conditions hold:

$$\begin{bmatrix} -P & \mathcal{J}_i^T \\ \star & -\omega_i \end{bmatrix} < 0,$$

(14)

$$F_{ij} - \Gamma < 0,$$

(15)

$$\Phi_{ij} - \Lambda < 0,$$

(16)

$$\mu_i \bar{\Phi}_{ii} - \mu_i \Gamma + \Gamma < 0,$$

(17)

$$\rho_i \bar{\Phi}_{ii} - \rho_i \Lambda + \Lambda < 0,$$

(18)

$$\mu_j \bar{\Phi}_{ij} - \mu_j \Gamma + \mu_j \Gamma + 2\Gamma < 0,$$

(19)

$$\rho_j \bar{\Phi}_{ij} - \rho_j \Lambda + \rho_j \Phi_{ji} - \rho_i \Lambda + 2\Lambda < 0,$$

(20)

where

$$\bar{F}_{ij} = F_{ij} + F'_{ij}, \bar{\Phi}_{ij} = \Phi_{ij} + \Phi''_{ij},$$

$$F_{ij} = \begin{bmatrix} F_{1ij} & F_{2ij} \\ \star & F_{3ij} \end{bmatrix},$$

$$F_{1ij} = A_{ij}^T P A_{ij} + \bar{C}^T \bar{R} + \varepsilon \bar{C}^T Q A_{ij}^T P \bar{B}_{ij},$$

$$F_{2ij} = A_{ij}^T P D_{ij} - \bar{C}^T F_{3ij} = \bar{D}_{ij}^T P D_{ij} + I,$$

$$F_{3ij} = \bar{B}_{ij}^T P \bar{B}_{ij} - \gamma^2 I, \bar{C} = [C \ 0],$$

$$\bar{F}''_{ij} = \begin{bmatrix} 0 & \bar{C}^T W^T + H^T W^T \\ \star & -W - W^T \end{bmatrix},$$

$$\bar{\Phi}''_{ij} = \begin{bmatrix} 0 & \bar{C}^T U^T \\ \star & -U - U^T \end{bmatrix}. $$
Proof. Consider the Lyapunov function as the following form:

\[V(e(k), \dot{\sigma}(k)) = V_1(e(k), \dot{\sigma}(k)) + \eta V_2(e(k), \dot{\sigma}(k)) \tag{21} \]

where

\[V_1(e(k), \dot{\sigma}(k)) = e^T(k) P e(k) + \dot{\sigma}(k), \]

\[V_2(e(k), \dot{\sigma}(k)) = \max \{ e^T(k) P e(k) - \dot{\sigma}(k), 0 \}. \]

Due to that the value of \(V_2(e(k), \dot{\sigma}(k)) \) is uncertain, two cases are taken into account below.

Case 1: \(e^T(k) P e(k) < \dot{\sigma}(k) \)

Firstly, define \(\mathcal{H} = W^{-1} \mathcal{V} \). Then, utilizing the Schur complement and multiplying \(e^T(k) \) and its transposition in (14), then, we can obtain that \(\varpi e^T(k) \mathcal{H} e(k) - e^T(k) P e(k) \leq 0 \). Under the condition of \(e^T(k) P e(k) < \dot{\sigma}(k) \), we can get

\[\varpi \| \mathcal{H} e(k) \|^2 \leq e^T(k) P e(k) < \dot{\sigma}(k) = \varpi \dot{\sigma}_1^2(k). \]

By the saturation function \(sat_{\sigma_i}(\mathcal{H} e(k) - \delta_i(k)) = \mathcal{H} e(k) \), we can known that \(dz_{\sigma_i}(\mathcal{H} e(k)) = 0 \) for all \(i \in \{1, 2, \ldots, m\} \), which implies that \(dz_{\sigma}(\mathcal{H} e(k)) = 0 \). Based on [1], the following sector condition can be inferred:

\[q^T(k) \mathcal{V}(\dot{C} e(k) + \mathcal{H} e(k) - q(k)) \geq 0. \tag{22} \]

Define

\[J_1 = \Delta \mathcal{V}(e(k), \dot{\sigma}(k)) + \dot{r}(k) \dot{r}(k) - \gamma^2 w^T(k) w(k), \]

it follows that

\[
J_1 = \Delta V_1(e(k), \dot{\sigma}(k)) + \dot{r}(k) \dot{r}(k) - \gamma^2 w^T(k) w(k) \\
\leq \sum_{i=1}^r \sum_{j=1}^r m_i w_j [\bar{A}_{ij} e(k) + \bar{B}_{ij} w(k) + \bar{D}_{ij} q(k)]^T P \\
\times [\bar{A}_{ij} e(k) + \bar{B}_{ij} w(k) + \bar{D}_{ij} q(k)] - e^T(k) P e(k) \\
\times P e(k) + [\bar{C} e(k) - \delta(k)]^T R [\bar{C} e(k) - \delta(k)] \\
+ (\lambda - 1) \dot{\sigma}(k) + [\bar{C} e(k) - q(k)]^T [\bar{C} e(k) - q(k)] \\
- \gamma^2 w^T(k) w(k) \\
\leq \sum_{i=1}^r \sum_{j=1}^r m_i w_j \xi^T(k) \xi(k) + (\lambda - 1) \dot{\sigma}(k),
\]

\[(\lambda - 1) \dot{\sigma}(k). \]
where $\xi^T(k) = [e^T(k) \; q^T(k) \; \delta^T(k) \; w^T(k)]$. Owing to $2q^T(k)\mathcal{W}(\hat{c}e(k) + \mathcal{H}e(k) - q(k)) \geq 0$, we have

$$J_1 = \Delta V_1(e(k), \bar{\sigma}(k)) + \dot{\xi}^T(k)\dot{\xi}(k) - \gamma^2 w^T(k)w(k)$$

$$\leq \sum_{i=1}^{r} \sum_{j=1}^{r} m_i w_j \xi^T(k)\mathcal{F}_{ij} \xi(k) + (\lambda - 1)\bar{\sigma}(k).$$

For reducing the conservatism, the following slack matrix is introduced:

$$\sum_{i=1}^{r} \sum_{j=1}^{r} m_i (m_j - w_j)\Gamma = 0.$$

Thereby, the following expression is obtained:

$$\sum_{i=1}^{r} \sum_{j=1}^{r} m_i w_j \mathcal{F}_{ij}$$

$$= \sum_{i=1}^{r} m_i^2 (\mu_i \mathcal{F}_{ii} - \mu_i \Gamma + \Gamma) + \sum_{i=1}^{r-1} \sum_{j=i}^{r} m_i m_j (\mu_j \mathcal{F}_{ij})$$

$$- \mu_j \Gamma + \mu_j \mathcal{F}_{ji} - \mu_i \Gamma + 2\Gamma) + \sum_{i=1}^{r} \sum_{j=1}^{r} m_i (w_j)$$

$$- \mu_j m_j) (\mathcal{F}_{ij} - \Gamma).$$

Based on (15), (17) and (19), we can obtain that $\sum_{i=1}^{r} \sum_{j=1}^{r} m_i w_j \mathcal{F}_{ij} < 0$. As stated in [1], there must be a small enough scalar $\epsilon > 0$ such that the following inequality holds:

$$\sum_{i=1}^{r} \sum_{j=1}^{r} m_i w_j \mathcal{F}_{ij} < -2\epsilon \mathcal{I}. \quad (23)$$

Multiplying $\xi^T(k)$ and its transposition in left and right sides to (23), one gets

$$\sum_{i=1}^{r} \sum_{j=1}^{r} m_i w_j \xi^T(k)\mathcal{F}_{ij} \xi(k)$$

$$< -2\epsilon |e(k)|^2 - 2\epsilon |q(k)|^2 - 2\epsilon |\delta(k)|^2 - 2\epsilon |w(k)|^2.$$

As a result, the following inequality can be derived:

$$J_1 \leq -2\epsilon |e(k)|^2 - 2\epsilon |q(k)|^2 - 2\epsilon |\delta(k)|^2$$

$$- 2\epsilon |w(k)|^2 + (\lambda - 1)\bar{\sigma}(k) < 0.$$

Thereby, one can get $\|\dot{\xi}(k)\|_2 < \gamma^2 \|w(k)\|_2$, it means that the \mathcal{H}_∞ performance is guaranteed for the system (13).

Case 2: $e^T(k)\mathcal{P}e(k) > \bar{\sigma}(k)$

In this case, the Lyapunov function becomes the following form:

$$\mathcal{V}(e(k), \bar{\sigma}(k)) = e^T(k)\mathcal{P}e(k) + \bar{\sigma}(k)$$

$$+ \eta(e^T(k)\mathcal{P}e(k) - \bar{\sigma}(k)).$$
Define
\[J_2 = \Delta V_2(e(k), \bar{\sigma}(k)) + \bar{r}^T(k) \bar{r}(k) - \gamma^2 w^T(k)w(k) \]
\[
\leq \sum_{i=1}^{r} \sum_{j=1}^{r} m_i w_j \left[\bar{A}_{ij} e(k) + \bar{B}_{ij} w(k) + \bar{D}_{ij} q(k) \right]^T \mathcal{P} \\
\times \left[\bar{A}_{ij} e(k) + \bar{B}_{ij} w(k) + \bar{D}_{ij} q(k) \right] - e^T(k) \mathcal{P} e(k) \\
- \gamma^2 w^T(k)w(k) \\
\leq \sum_{i=1}^{r} \sum_{j=1}^{r} m_i w_j \xi^T(k) \bar{\Phi}_{ij} \xi(k).
\]

Since \(dz_\sigma(0) = 0 \), we reuse (22) with \(\mathcal{W} = \mathcal{U} \) and \(\mathcal{H} = 0 \), then, the following condition can be derived:
\[J_2 \leq \sum_{i=1}^{r} \sum_{j=1}^{r} m_i w_j \xi^T(k) \bar{\Phi}_{ij} \xi(k). \]

In the same way, a slack matrix is also utilized in this case
\[\sum_{i=1}^{r} \sum_{j=1}^{r} m_i (m_j - w_j) \Lambda = 0. \]

Then, one gets
\[
\sum_{i=1}^{r} \sum_{j=1}^{r} m_i w_j \bar{\Phi}_{ij} \\
= \sum_{i=1}^{r} m_i^2 (\rho_i \bar{\Phi}_{ij} - \rho_i \Lambda + \Lambda) + \sum_{i=1}^{r} \sum_{i<j} m_i w_j (\rho_j \bar{\Phi}_{ij} - \rho_j \Lambda + 2 \Lambda) + \sum_{i=1}^{r} \sum_{j=1}^{r} m_i (w_j - \mu_j m_j) (\bar{\Phi}_{ij} - \Lambda).
\]

Based on (16), (18) and (20), one has
\[\sum_{i=1}^{r} \sum_{j=1}^{r} m_i w_j \bar{\Phi}_{ij} < -2 \epsilon \mathcal{I}. \tag{24} \]

Multiplying \(\xi^T(k) \) and its transposition in left and right sides to (24), one gets
\[
\sum_{i=1}^{r} \sum_{j=1}^{r} m_i w_j \xi^T(k) \bar{\Phi}_{ij} \xi(k) \\
< -2 \epsilon |e(k)|^2 - 2 \epsilon |q(k)|^2 - 2 \epsilon |\delta(k)|^2 - 2 \epsilon |w(k)|^2.
\]

Hence, the following inequality is derived:
\[J_2 \leq -2 \epsilon |e(k)|^2 - 2 \epsilon |q(k)|^2 - 2 \epsilon |\delta(k)|^2 - 2 \epsilon |w(k)|^2. \]
Defining $\eta = \frac{1}{2\pi}$, one can have $J = J_1 + \frac{1}{2\pi} J_2$, and

$$J = \Delta V(k) + 2\gamma^T(k)\tilde{r}(k) - 2\gamma^Tw^T(k)w(k) \leq -\varepsilon |e(k)|^2 - \varepsilon |q(k)|^2 - \varepsilon |\delta(k)|^2 - \varepsilon |w(k)|^2 + (\lambda - 1)\sigma(k).$$

It can be obtained that $J < 0$, which refers to that the system (13) satisfies the \mathcal{H}_∞ performance. In addition, according to Theorem 1, we can get that $\Delta V(k) < 0$ with $w(k) = 0$, which implies that the system (13) is exponentially stable. \hfill \square

Remark 2. The conditions of observer design cannot be derived directly by the existing result [33] when the mismatched membership functions of the error system are introduced. A slack matrix, which has the membership functions information of both the system model and observer, is introduced in the design procedure to reduce the conservativeness.

3.2. \mathcal{H}_∞ fault performance.

In this subsection, sufficient conditions are provided to ensure the \mathcal{H}_∞ fault performance for the system (8). With the influence of the fault, the system is rewritten as follows:

$$e(k + 1) = \sum_{i=1}^{r} \sum_{j=1}^{r} m_i w_j [\bar{A}_{ij} e(k) + \bar{B}_{1ij} f(k) + \bar{D}_{ij} q(k)],$$

$$\bar{r}(k) = \bar{C}_{e}(k) - q(k) - M f(k),$$

$$\bar{\sigma}(k + 1) = \lambda \bar{\sigma}(k) + [\bar{C}_{e}(k) - \delta(k)]^T \bar{R} [\bar{C}_{e}(k) - \delta(k)],$$

$$q(k) = dz_{\bar{\sigma}}(k) (\bar{C}_{e}(k))$$

$$= \bar{C}_{e}(k) - \text{sat}_{\bar{\sigma}(k)}(\bar{C}_{e}(k) - \delta(k)).$$

Theorem 3.2. Given the constants $\lambda \in [0,1]$, $\varepsilon \in [0,1]$, $\gamma > 0$, and observer gains L_j, under $w_j - \bar{\mu}_j m_j \geq 0$ if there exist matrices $P > 0$, $W > 0$, $U > 0$, $\mathcal{R} > 0$, $Q > 0$, $M > 0$ such that the following conditions are satisfied:

$$\begin{bmatrix} -P & V_i^T \\ * & -\varepsilon \omega_i \end{bmatrix} < 0, \quad (26)$$

$$\bar{\Psi}_{ij} - \bar{\Gamma} < 0, \quad (27)$$

$$\bar{\Omega}_{ij} - \bar{\Lambda} < 0, \quad (28)$$

$$\bar{\mu}_i \bar{\Psi}_{ii} - \bar{\mu}_i \bar{\Gamma} + \bar{\Gamma} < 0, \quad (29)$$

$$\bar{\rho}_j \bar{\Omega}_{ii} - \bar{\rho}_j \bar{\Lambda} + \bar{\Lambda} < 0, \quad (30)$$

$$\bar{\mu}_j \bar{\Psi}_{jj} - \bar{\mu}_j \bar{\Gamma} + \bar{\mu}_i \bar{\Psi}_{ji} - \bar{\mu}_i \bar{\Gamma} + 2 \bar{\Gamma} < 0, \quad (31)$$

$$\bar{\rho}_j \bar{\Omega}_{ij} - \bar{\rho}_j \bar{\Lambda} + \bar{\rho}_i \bar{\Omega}_{ji} - \bar{\rho}_i \bar{\Lambda} + 2 \bar{\Lambda} < 0, \quad (32)$$

where

$$\bar{\Psi}_{ij} = \Psi_{ij} + \Theta, \quad \bar{\Omega}_{ij} = \Omega_{ij} + \Xi,$$

$$\Psi_{ij} = \begin{bmatrix} \Psi_{11ij} & \Psi_{21ij} & -\bar{C}^T \mathcal{R} - \varepsilon \bar{C}^T Q & \Psi_{41ij} \\ * & \Psi_{31ij} & 0 & \Psi_{51ij} \\ * & * & \mathcal{R} + (\varepsilon - 1) Q & 0 \\ * & * & * & \Psi_{61ij} \end{bmatrix},$$

$$\Psi_{11ij} = A_{11}^T P \bar{A}_{ij} + \bar{C}^T \mathcal{R} \bar{C} + \bar{C}^T \bar{C} + \varepsilon \bar{C}^T Q \bar{C} - P,$$
Consider the following Lyapunov function:

\[V_k = \Psi_{2ij} \bar{P} \bar{D}_{ij} - \bar{C}^T \bar{V}_k, \]
\[\forall k \in \mathbb{N}, \]
\[\text{s.t.} \quad \Psi_{3ij} = \bar{D}_{ij} \bar{P} \bar{D}_{ij} + I, \]

where \(\Psi_{6ij} = \bar{B}_{1ij} \bar{P} \bar{B}_{1ij} - \gamma^2 I + M^T M, \)

\[
\begin{bmatrix}
0 & \bar{C}^T \bar{W}^T + H^T \bar{V}_k & 0 & 0 \\
* & -W - W^T & 0 & 0 \\
* & * & 0 & 0 \\
* & * & * & 0
\end{bmatrix},
\]

\[
\Theta = \begin{bmatrix}
\Omega_{1ij} & \Omega_{2ij} & -\bar{C}^T \bar{R} & \bar{A}_j^T \bar{P} \bar{B}_{1ij} - \bar{C}^T M \\
* & \Omega_{3ij} & 0 & \bar{D}^T \bar{P} \bar{B}_{1ij} + M \\
* & * & -R & 0 \\
* & * & * & \Omega_{4ij}
\end{bmatrix},
\]

\[
\Omega_{1ij} = \bar{A}_{ij}^T \bar{P} \bar{A}_{ij} - \bar{C}^T \bar{R} \bar{C} + \bar{C}^T \bar{C} - \lambda \bar{P},
\]

\[
\Omega_{2ij} = \bar{A}_{ij}^T \bar{P} \bar{D}_{ij} - \bar{C}^T \frac{1}{e} \Omega_{3ij} = \bar{D}_{ij} \bar{P} \bar{D}_{ij} + I,
\]

\[
\Omega_{4ij} = \bar{B}_{1ij} \bar{P} \bar{B}_{1ij} - \gamma^2 I + M^T M,
\]

\[
\Xi = \begin{bmatrix}
0 & \bar{C}^T \bar{U}^T & 0 & 0 \\
* & -U - U^T & 0 & 0 \\
* & * & 0 & 0 \\
* & * & * & 0
\end{bmatrix},
\]

then, the \(H_\infty \) fault performance can be ensured for the system (25).

Proof. Consider the following Lyapunov function:

\[
V(e(k), \bar{\sigma}(k)) = V_1(e(k), \bar{\sigma}(k)) + \eta V_2(e(k), \bar{\sigma}(k))
\]

where

\[
V_1(e(k), \bar{\sigma}(k)) = e^T(k) \bar{P} e(k) + \bar{\sigma}(k),
\]

\[
V_2(e(k), \bar{\sigma}(k)) = \max\{e^T(k) \bar{P} e(k) - \bar{\sigma}(k), 0\}.
\]

Similarity, two cases are also considered.

Case 1: \(e^T(k) \bar{P} e(k) < \bar{\sigma}(k) \)

Define

\[
J^f_k = \Delta V_1(e(k), \bar{\sigma}(k)) + \bar{\tau}^T(k) \bar{\tau}(k) - \gamma^2 f^T(k) f(k)
\]

\[
\leq \sum_{i=1}^{r} \sum_{j=1}^{r} m_i w_j [\bar{A}_{ij} e(k) + \bar{B}_{1ij} f(k) + \bar{D}_{ij} q(k)] T \bar{P}
\]

\[
\times [\bar{A}_{ij} e(k) + \bar{B}_{1ij} f(k) + \bar{D}_{ij} q(k)] - e^T(k) \bar{P} e(k) + [\bar{C} e(k) - \delta(k)] T \bar{R} [\bar{C} e(k) - \delta(k)]
\]

\[
+ (\lambda - 1) \bar{\sigma}(k) + [\bar{C} e(k) - q(k) - M f(k)] T + [\bar{C} e(k) - q(k) - M f(k)] - \gamma^2 f^T(k) f(k)
\]

\[
\leq \sum_{i=1}^{r} \sum_{j=1}^{r} m_i w_j \xi^T(k) \bar{\xi}(k) + (\lambda - 1) \bar{\sigma}(k),
\]

(34)
where $\xi^T(k) = [e^T(k) \ q^T(k) \ \delta^T(k) \ f^T(k)]$. Based on $2q^T(k)\mathcal{W}(\bar{c}e(k) + \mathcal{H}e(k) - q(k)) \geq 0$, which has been validated in Theorem 1, we know that

$$J_1^f = \Delta \mathcal{V}_1(e(k), \bar{\sigma}(k)) + \bar{r}^T(k) \bar{r}(k) - \gamma^2 f^T(k)f(k)$$

$$\leq \sum_{i=1}^{r} \sum_{j=1}^{r} m_i w_j \xi^T(k) \tilde{\Psi}_{ij} \xi(k) + (\lambda - 1) \bar{\sigma}(k).$$

Similar to Theorem 1, the slack matrix is introduced

$$\sum_{i=1}^{r} \sum_{j=1}^{r} m_i \bar{w}_j = 0.$$

Then, we can obtain

$$\sum_{i=1}^{r} \sum_{j=1}^{r} m_i w_j \tilde{\Psi}_{ij} = \sum_{i=1}^{r} m_i^2 (\bar{\mu}_i \bar{\Psi}_{ii} - \bar{\mu}_i \bar{\Gamma}) + \sum_{i=1}^{r} \sum_{i<j} m_i m_j (\bar{\mu}_j \bar{\Psi}_{ij}$$

$$- \bar{\mu}_j \bar{\Gamma} + \bar{\mu}_i \bar{\Psi}_{ji} - \bar{\mu}_i \bar{\Gamma} + 2\bar{\Gamma}) + \sum_{i=1}^{r} \sum_{j=1}^{r} m_i (w_j$$

$$- \mu_j m_j)(\bar{\Psi}_{ij} - \bar{\Gamma}).$$

Thus, we can get that $\sum_{i=1}^{r} \sum_{j=1}^{r} m_i w_j \tilde{\Psi}_{ij} < 0$ under the conditions of (27), (29) and (31), thus the following inequality holds:

$$\sum_{i=1}^{r} \sum_{j=1}^{r} m_i w_j \tilde{\Psi}_{ij} < -2\epsilon \mathcal{I}. \quad (35)$$

Multiplying $\xi^T(k)$ and its transposition in left and right sides to (35), one has

$$\sum_{i=1}^{r} \sum_{j=1}^{r} m_i w_j \xi^T(k) \tilde{\Psi}_{ij} \xi(k)$$

$$< -2\epsilon |e(k)|^2 - 2\epsilon |q(k)|^2 - 2\epsilon |\delta(k)|^2 - 2\epsilon |f(k)|^2.$$

Whereafter, by calculating (34), one can obtain

$$J_1^f \leq -2\epsilon |e(k)|^2 - 2\epsilon |q(k)|^2 - 2\epsilon |\delta(k)|^2$$

$$- 2\epsilon |f(k)|^2 + (\lambda - 1) \bar{\sigma}(k) < 0.$$

Therefore, condition $\|\bar{r}(k)\|_2 < \gamma^2 \|f(k)\|_2$ is guaranteed for the system (25).

Case 2: $e^T(k)\mathcal{P}e(k) > \bar{\sigma}(k)$

In this case, the Lyapunov function becomes the following form:

$$\mathcal{V}(e(k), \bar{\sigma}(k)) = e^T(k)\mathcal{P}e(k) + \bar{\sigma}(k)$$

$$+ \eta(e^T(k)\mathcal{P}e(k) - \bar{\sigma}(k)).$$

Define

$$J_2^f = \Delta \mathcal{V}_2(e(k), \bar{\sigma}(k)) + \bar{r}^T(k) \bar{r}(k) - \gamma^2 f^T(k)f(k)$$

$$\leq \sum_{i=1}^{r} \sum_{j=1}^{r} m_i \bar{w}_j \xi^T(k) \Omega_{ij} \xi(k). \quad (36)$$
Substituting condition (22) with $W = U$ and $H = 0$ into (36) and introducing a slack matrix, one has

$$J_f^2 \leq \sum_{i=1}^{r} \sum_{j=1}^{r} m_i w_j \Omega_{ij}$$

$$= \sum_{i=1}^{r} m_i^2 (\overline{\rho_i} \overline{\Omega_{ii}} - \overline{\rho_i} \overline{\Lambda} + \overline{\Lambda}) + \sum_{i=1}^{r-1} \sum_{j<i}^{r} m_i m_j (\overline{\rho_j} \overline{\Omega_{ij}} - \overline{\rho_j} \overline{\Lambda} + \overline{\rho_i} \overline{\Lambda} - \overline{\Lambda}) + \sum_{i=1}^{r} m_i (w_j - \mu_j m_j)(\overline{\Omega_{ij}} - \overline{\Lambda}).$$

On the basis of (28), (30) and (32), \(\sum_{i=1}^{r} \sum_{j=1}^{r} m_i w_j \Omega_{ij} < 0\) is derived. The following inequality holds if there exists a small enough \(\epsilon > 0\):

$$\sum_{i=1}^{r} \sum_{j=1}^{r} m_i w_j \Omega_{ij} < -2\epsilon I. \quad (37)$$

Multiplying \(\xi^T(k)\) and its transposition in left and right sides to (37), one can get

$$\sum_{i=1}^{r} \sum_{j=1}^{r} m_i w_j \xi^T(k) \overline{\Omega_{ij}} \xi(k) < -2\epsilon |e(k)|^2 - 2\epsilon |q(k)|^2 - 2\epsilon |\delta(k)|^2 - 2\epsilon |f(k)|^2.$$

Accordingly, \(J_f^2\) is calculated as follows:

$$J_f^2 \leq -2\epsilon |e(k)|^2 - 2\epsilon |q(k)|^2 - 2\epsilon |\delta(k)|^2 - 2\epsilon |f(k)|^2.$$

Selecting \(\eta = \frac{1}{2\epsilon}\), one has \(J_f = J_1^f + \frac{1}{2\epsilon} J_2^f\), and

$$J_f \leq -\epsilon |e(k)|^2 - \epsilon |q(k)|^2 - \epsilon |\delta(k)|^2 - \epsilon |f(k)|^2 + (\lambda - 1)\overline{\delta}(k).$$

Hence, the system (25) satisfies the H_∞ fault performance. Moreover, when \(f(k) = 0\), it can be derived that \(\Delta V(k) < 0\). \(\Box\)

Remark 3. In contrast with the existing results [1] and [33], an event-based mechanism is introduced in this paper to decrease unnecessary signal communications. Besides, the adaptive saturation function which exists in above results cannot effectively deal with triggered signals. In this paper, we design a new adaptive saturation function to cope with this problem.

3.3. FD observer design

The method of the FD observer design is given in this subsection.

Theorem 3.3. For known scalars \(\lambda \in [0, 1), \epsilon \in [0, 1)\) and \(\gamma > 0\), the H_∞ performance and H_∞ fault performance are guaranteed if there exist matrices \(P, Q, W, U, R, X, S > 0\), symmetric matrices \(\Gamma, \Lambda, \overline{\Gamma}, \overline{\Lambda}\) and FD observer gains \(L_j\),
j = 1, \ldots, r \text{ such that the following conditions are satisfied:}

$$
\begin{align*}
\begin{bmatrix}
\Delta_{ii} & \Upsilon_{ii} \\
\ast & f_{ii}
\end{bmatrix} & < 0, \\
\begin{bmatrix}
\Delta_{ij} & \Upsilon_{ij} \\
\ast & f_{ij}
\end{bmatrix} & < 0,
\end{align*}
$$

(38)

$$
\begin{align*}
\begin{bmatrix}
\tilde{\Delta}_{ii} & \tilde{\Upsilon}_{ii} \\
\ast & \tilde{f}_{ii}
\end{bmatrix} & < 0, \\
\begin{bmatrix}
\tilde{\Delta}_{ij} & \tilde{\Upsilon}_{ij} \\
\ast & \tilde{f}_{ij}
\end{bmatrix} & < 0,
\end{align*}
$$

(41)

$$
\begin{align*}
\begin{bmatrix}
\tilde{\Delta}_{ij} & \tilde{\Upsilon}_{ij} \\
\ast & \tilde{f}_{ij}
\end{bmatrix} +
\begin{bmatrix}
\tilde{\Delta}_{ji} & \tilde{\Upsilon}_{ji} \\
\ast & \tilde{f}_{ji}
\end{bmatrix} & < 0,
\end{align*}
$$

(42)

where

$$
\begin{align*}
\Delta_{ij} & =
\begin{bmatrix}
\Delta_{11} & \Delta_{12} \\
\ast & \Delta_{13}
\end{bmatrix},
\Delta_{11} & =
\begin{bmatrix}
\Delta_{111} & \Delta_{112} \\
\ast & \Delta_{113}
\end{bmatrix},
\end{align*}
$$

\begin{align*}
\Delta_{111} & = -\mu_i \mathcal{P}_1 - \mu_i \Gamma_{111} + \Gamma_{111}, \\
\Delta_{112} & = -\mu_i \mathcal{P}_2 - \mu_i \Gamma_{112} + \Gamma_{112}, \\
\Delta_{113} & = -\mu_i \mathcal{P}_3 - \mu_i \Gamma_{122} + \Gamma_{122} + \mu_i \mathcal{C}^T \mathcal{C} + \mu_i \mathcal{C}^T \mathcal{R} \mathcal{C}, \\
\Delta_{12} & =
\begin{bmatrix}
\Delta_{121} & \Delta_{122} & \Delta_{123} \\
\Delta_{124} & \Delta_{125} & \Delta_{126}
\end{bmatrix},
\Delta_{121} & = \mu_i \mathcal{J}_1^T - \mu_i \Gamma_{211} + \Gamma_{211}, \Delta_{123} = -\mu_i \Gamma_{411} + \Gamma_{411}, \\
\Delta_{122} & = -\mu_i \mathcal{C}^T \mathcal{Q} - \mu_i \Gamma_{311} + \Gamma_{311}, \\
\Delta_{124} & = -\mu_i \mathcal{C}^T + \mu_i \mathcal{C}^T \mathcal{W}^T + \mu_i \mathcal{J}_2^T - \mu_i \Gamma_{221} + \Gamma_{221}, \\
\Delta_{125} & = -\mu_i \mathcal{C}^T \mathcal{R} - \mu_i \Gamma_{321} + \Gamma_{321}, \Delta_{126} = -\mu_i \Gamma_{421} + \Gamma_{421},
\end{align*}
$$
\[
\Delta_{131} = -\mu_iI - \mu_iW - \mu_iW^T - \mu_i\Gamma_5 + \Gamma_5,
\]
\[
\Delta_{132} = -\mu_i\Gamma_6 + \Gamma_6, \Delta_{133} = -\mu_i\Gamma_7 + \Gamma_7,
\]
\[
\Delta_{134} = \mu_iR + \mu_i(\varepsilon - 1)Q - \mu_i\Gamma_8 + \Gamma_8,
\]
\[
\Delta_{135} = -\mu_i\Gamma_9 + \Gamma_9, \Delta_{136} = -\mu_i\gamma^2I - \mu_i\Gamma_{10} + \Gamma_{10},
\]
\[
\eta_{ij} = \begin{bmatrix}
\frac{A_i^T}{D_{ij}^T} & \frac{A_i^T}{D_{ij}^T} & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}, \Delta_{13} = \begin{bmatrix}
\Delta_{131} & \Delta_{132} & \Delta_{133} \\
* & \Delta_{134} & \Delta_{135} \\
* & * & \Delta_{136}
\end{bmatrix},
\]
\[
F_{ij} = \begin{bmatrix}
-\mu_i^{-1}\chi & 0 \\
* & -\mu_i^{-1}\varepsilon^{-1}S
\end{bmatrix},
\]
\[
\hat{\Delta}_{ij} = \begin{bmatrix}
\hat{\Delta}_{11} & \hat{\Delta}_{12} \\
* & \hat{\Delta}_{13}
\end{bmatrix}, \hat{\Delta}_{12} = \begin{bmatrix}
\hat{\Delta}_{121} & \hat{\Delta}_{122} & -\Gamma_{411} \\
* & \hat{\Delta}_{123} & \hat{\Delta}_{124} & -\Gamma_{421}
\end{bmatrix},
\]
\[
\hat{\Delta}_{11} = \begin{bmatrix}
-\rho_1 - \Gamma_{111} & -\rho_2 - \Gamma_{112} \\
* & -\rho_3 + C^T C + C^T R C - \Gamma_{122}
\end{bmatrix},
\]
\[
\hat{\Delta}_{121} = \gamma_i^T - \Gamma_{211}, \hat{\Delta}_{122} = -\varepsilon C^T Q - \Gamma_{311},
\]
\[
\hat{\Delta}_{123} = -C^T + C^T W + \gamma_i^2 - \Gamma_{221}, \hat{\Delta}_{124} = -C^T R - \Gamma_{321},
\]
\[
\hat{\Delta}_{13} = \begin{bmatrix}
\hat{\Delta}_{131} & -\Gamma_6 & -\Gamma_7 \\
* & \hat{\Delta}_{132} & -\Gamma_9 \\
* & * & \hat{\Delta}_{136}
\end{bmatrix},
\]
\[
\hat{\Delta}_{131} = -I - W - W^T - \Gamma_5, \hat{\Delta}_{132} = \mathcal{R} + (\varepsilon - 1)Q - \Gamma_8,
\]
\[
\hat{f}_{ij} = \begin{bmatrix}
-\chi & 0 \\
* & -\varepsilon^{-1}S
\end{bmatrix}, \hat{\eta}_{ij} = \begin{bmatrix}
\hat{\Delta}_{11} & \hat{\Delta}_{12} \\
* & \hat{\Delta}_{13}
\end{bmatrix},
\]
\[
\hat{\Delta}_{11} = \begin{bmatrix}
\hat{\Delta}_{111} & \hat{\Delta}_{112} \\
* & \hat{\Delta}_{113}
\end{bmatrix}, \hat{\Delta}_{12} = \begin{bmatrix}
\hat{\Delta}_{121} & \hat{\Delta}_{122} & \hat{\Delta}_{123} \\
* & \hat{\Delta}_{124} & \hat{\Delta}_{125} & \hat{\Delta}_{126}
\end{bmatrix},
\]
\[
\hat{\Delta}_{111} = -\lambda_i\rho_1 P_1 - \rho_i\Lambda_{111} + \Lambda_{111}, \hat{\Delta}_{112} = -\lambda_i\rho_2 P_2 - \rho_i\Lambda_{112} + \Lambda_{112},
\]
\[
\hat{\Delta}_{113} = -\lambda_i\rho_3 + \rho_iC^T C - \rho_iC^T R C - \rho_i\Lambda_{112} + \Lambda_{112},
\]
\[
\hat{\Delta}_{121} = -\rho_i\Lambda_{211} + \Lambda_{211}, \hat{\Delta}_{122} = -\rho_i\Lambda_{311} + \Lambda_{311},
\]
\[
\hat{\Delta}_{123} = -\rho_i\Lambda_{411} + \Lambda_{411}, \hat{\Delta}_{124} = -\rho_i\Lambda_{421} + \Lambda_{421},
\]
\[
\hat{\Delta}_{124} = -\rho_iC^T + \rho_iC^T U^T - \rho_i\Lambda_{221} + \Lambda_{221}, \hat{\Delta}_{125} = -\rho_iC^T R - \rho_i\Lambda_{321} + \Lambda_{321},
\]
\[
\hat{\Delta}_{13} = \begin{bmatrix}
\hat{\Delta}_{131} & \hat{\Delta}_{132} & -\rho_i\Lambda_7 + \Lambda_7 \\
* & \hat{\Delta}_{133} & -\rho_i\Lambda_9 + \Lambda_9 \\
* & * & -\rho_i\gamma^2 I - \rho_i\Lambda_{10} + \Lambda_{10}
\end{bmatrix},
\]
\[
\hat{\Delta}_{131} = \rho_iI - \rho_iU - \rho_iU^T - \rho_i\Lambda_5 + \Lambda_5, \hat{\Delta}_{132} = -\rho_i\Lambda_6 + \Lambda_6,
\]
\[
\tilde{\eta}_{ij} = \begin{bmatrix}
\tilde{A}_{ij}^T \\
\tilde{D}_{ij}^T \\
0
\end{bmatrix}, \tilde{f}_{ij} = -\rho_i^{-1}\chi, \tilde{\eta}_{133} = -\rho_i\mathcal{R} - \rho_i\Lambda_8 + \Lambda_8,
\]
\[
\tilde{\eta}_{ij} = \begin{bmatrix}
\tilde{\Delta}_{11} & \tilde{\Delta}_{12} \\
* & \tilde{\Delta}_{13}
\end{bmatrix}, \tilde{f}_{ij} = -\chi, \tilde{\Delta}_{124} = -C^T + C^T U^T - \Lambda_{221},
\]
\[
\tilde{\Delta}_{11} = \begin{bmatrix}
-\lambda_iP_1 - \Lambda_{111} & -\lambda_iP_2 - \Lambda_{112} \\
* & \tilde{\Delta}_{111}
\end{bmatrix},
\]
\[
\tilde{\Delta}_{111} = -\lambda_i\rho_3 + C^T C - C^T R C - \Lambda_{112}, \tilde{\Delta}_{131} = I - U - U^T - \Lambda_5,
\]
\[
\begin{align*}
\hat{\Delta}_{12} &= \begin{bmatrix}
-\Lambda_{211} & -\Lambda_{311} & -\Lambda_{411} \\
-\Lambda_{124} & C^T R - \Lambda_{321} & -\Lambda_{421}
\end{bmatrix}, \\
\hat{\Delta}_{13} &= \begin{bmatrix}
\hat{\Delta}_{131} & -\Lambda_6 & -\Lambda_7 \\
* & -R - \Lambda_8 & -\Lambda_9 \\
* & * & -\gamma^2 I - \Lambda_{10}
\end{bmatrix}, \\
\mathcal{G}_{ij} &= \begin{bmatrix}
G_{11} & G_{12} \\
* & G_{13}
\end{bmatrix}, \quad \mathcal{G}_{11} = \begin{bmatrix}
G_{111} & G_{112} \\
* & G_{113}
\end{bmatrix}, \\
G_{111} &= -\hat{\mu}_i R_1 - \hat{\mu}_i \hat{\Gamma}_{111} + \hat{\Gamma}_{111}, \quad G_{112} = -\hat{\mu}_i R_2 - \hat{\mu}_i \hat{\Gamma}_{112} + \hat{\Gamma}_{112}, \\
G_{113} &= -\hat{\mu}_i R_3 + \hat{\mu}_i C^T R C + \hat{\mu}_i C^T C - \hat{\mu}_i \hat{\Gamma}_{112} + \hat{\Gamma}_{112}, \\
G_{12} &= \begin{bmatrix}
G_{121} & G_{122} \\
G_{124} & G_{125} \\
G_{126}
\end{bmatrix}, \quad G_{123} = -\hat{\mu}_i \hat{\Gamma}_{411} + \hat{\Gamma}_{411}, \\
G_{121} &= \hat{\mu}_i Y^T - \hat{\mu}_i \hat{\Gamma}_{211} + \hat{\Gamma}_{211}, \quad G_{122} = -\hat{\mu}_i C^T Q - \hat{\mu}_i \hat{\Gamma}_{311} + \hat{\Gamma}_{311}, \\
G_{124} &= -\hat{\mu}_i C^T + \hat{\mu}_i C^T W^T + \hat{\mu}_i Y^T - \hat{\mu}_i \hat{\Gamma}_{221} + \hat{\Gamma}_{221}, \\
G_{125} &= -\hat{\mu}_i C^T R - \hat{\mu}_i \hat{\Gamma}_{321} + \hat{\Gamma}_{321}, \quad G_{126} = \hat{\mu}_i C^T M - \hat{\mu}_i \hat{\Gamma}_{421} + \hat{\Gamma}_{421}, \\
G_{13} &= \begin{bmatrix}
G_{131} & G_{132} & G_{133} \\
* & G_{134} & G_{135} \\
* & * & G_{136}
\end{bmatrix}, \quad G_{132} = -\hat{\mu}_i \hat{\Gamma}_6 + \hat{\Gamma}_6, \\
G_{131} &= \hat{\mu}_i I - \hat{\mu}_i W - \hat{\mu}_i W^T - \hat{\mu}_i \hat{\Gamma}_5 + \hat{\Gamma}_5, \\
G_{133} &= \hat{\mu}_i M - \hat{\mu}_i \hat{\Gamma}_7 + \hat{\Gamma}_7, \quad G_{135} = -\hat{\mu}_i \hat{\Gamma}_9 + \hat{\Gamma}_9, \\
G_{134} &= \hat{\mu}_i R + \hat{\mu}_i (\varepsilon - 1) Q - \hat{\mu}_i \hat{\Gamma}_8 + \hat{\Gamma}_8, \\
G_{136} &= -\hat{\mu}_i \gamma^2 I + \hat{\mu}_i M^T M - \hat{\mu}_i \hat{\Gamma}_{10} + \hat{\Gamma}_{10}, \\
\dot{\mathcal{G}}_{ij} &= \begin{bmatrix}
-\hat{\mu}_i^{-1} \mathcal{X} & 0 \\
* & -\hat{\mu}_i^{-1} \varepsilon^{-1} Q^{-1}
\end{bmatrix}, \quad \dot{\mathcal{G}}_{13} = \begin{bmatrix}
\dot{\mathcal{G}}_{131} & -\dot{\Gamma}_6 & M - \dot{\Gamma}_7 \\
* & \dot{\mathcal{G}}_{132} & -\dot{\Gamma}_9 \end{bmatrix}, \\
\dot{\mathcal{G}}_{ij} &= \Bigg[\begin{bmatrix}
\dot{G}_{11} & \dot{G}_{12} \\
* & \dot{G}_{13}
\end{bmatrix}, \quad \dot{\mathcal{G}}_{12} = \begin{bmatrix}
\dot{G}_{121} & \dot{G}_{122} & -\dot{\Gamma}_{411} \\
\dot{G}_{123} & \dot{G}_{124} & \dot{G}_{125}
\end{bmatrix}, \\
\dot{\mathcal{G}}_{11} &= \begin{bmatrix}
\dot{G}_{111} & \dot{G}_{112} \\
* & \dot{G}_{113}
\end{bmatrix}, \quad \dot{\mathcal{G}}_{12} = \begin{bmatrix}
\dot{G}_{121} & \dot{G}_{122} & \dot{G}_{123} \\
\dot{G}_{124} & \dot{G}_{125} & \dot{G}_{126}
\end{bmatrix}, \\
\dot{G}_{11} &= \begin{bmatrix}
\dot{G}_{111} & \dot{G}_{112} \\
* & \dot{G}_{113}
\end{bmatrix}, \quad \dot{G}_{12} = \begin{bmatrix}
\dot{G}_{121} & \dot{G}_{122} & \dot{G}_{123} \\
\dot{G}_{124} & \dot{G}_{125} & \dot{G}_{126}
\end{bmatrix}, \\
\dot{G}_{111} &= -\hat{\rho}_i \lambda P_1 - \hat{\rho}_i \hat{\Lambda}_{111} + \hat{\Lambda}_{111}, \quad \dot{G}_{112} = -\hat{\rho}_i \lambda P_2 - \hat{\rho}_i \hat{\Lambda}_{112} + \hat{\Lambda}_{112}, \\
\dot{G}_{113} &= -\hat{\rho}_i \lambda P_3 + \hat{\rho}_i C^T C - \hat{\rho}_i C^T R C - \hat{\rho}_i \hat{\Lambda}_{112} + \hat{\Lambda}_{112}, \\
\dot{G}_{121} &= -\hat{\rho}_i \hat{\Lambda}_{211} + \hat{\Lambda}_{211}, \quad \dot{G}_{122} = -\hat{\rho}_i \hat{\Lambda}_{311} + \hat{\Lambda}_{311}, \\
\dot{G}_{123} &= -\hat{\rho}_i \hat{\Lambda}_{411} + \hat{\Lambda}_{411}, \quad \dot{G}_{125} = \hat{\rho}_i C^T R - \hat{\rho}_i \hat{\Lambda}_{321} + \hat{\Lambda}_{321}, \\
\dot{G}_{124} &= -\hat{\rho}_i C^T + \hat{\rho}_i C^T U^T - \hat{\rho}_i \hat{\Lambda}_{221} + \hat{\Lambda}_{221}, \\
\dot{G}_{126} &= -\hat{\rho}_i C^T M - \hat{\rho}_i \hat{\Lambda}_{421} + \hat{\Lambda}_{421}, \quad \dot{G}_{134} = -\hat{\rho}_i R - \hat{\rho}_i \hat{\Lambda}_8 + \hat{\Lambda}_8,
\end{align*}
\]
\[
\begin{align*}
\hat{G}_{13} &= \begin{bmatrix} \hat{G}_{131} & \hat{G}_{132} & \hat{G}_{133} \\ \ast & \hat{G}_{134} & \hat{G}_{135} \\ \ast & \ast & \hat{G}_{136} \end{bmatrix}, \quad \hat{v}_{ij} = -\hat{p}_i \lambda', \quad \hat{G}_{132} = -\hat{p}_i \hat{\lambda}_6 + \hat{\lambda}_6, \\
\hat{G}_{131} &= \hat{\rho}_i \mathcal{I} - \hat{\rho}_i \mathcal{U} - \hat{\rho}_i \mathcal{U}^T - \hat{\rho}_i \hat{\lambda}_5 + \hat{\lambda}_5, \quad \hat{G}_{133} = \hat{\rho}_i \mathcal{M} - \hat{\rho}_i \hat{\lambda}_7 + \hat{\lambda}_7, \\
\hat{G}_{135} &= -\hat{\rho}_i \hat{\lambda}_9 + \hat{\lambda}_9, \quad \hat{G}_{136} = -\hat{\rho}_i \gamma^2 \mathcal{I} + \hat{\rho}_i \mathcal{M}^T \mathcal{M} - \hat{\rho}_i \hat{\lambda}_{10} + \hat{\lambda}_{10}, \\
\hat{G}_{ij} &= \begin{bmatrix} \hat{G}_{111} & \hat{G}_{112} & \hat{G}_{113} \\ \ast & \hat{G}_{12} & \hat{G}_{13} \\ \ast & \ast & \hat{G}_{131} \end{bmatrix}, \\
\hat{g}_{111} &= -\lambda \hat{\rho}_1 - \hat{\lambda}_{111}, \quad \hat{g}_{112} = -\lambda \hat{\rho}_2 - \hat{\lambda}_{112}, \\
\hat{g}_{113} &= -\lambda \hat{\rho}_3 + \hat{\lambda}_{111} \mathcal{C} - \hat{\lambda}_{111} \mathcal{C}^T \mathcal{R} - \hat{\lambda}_{111}, \quad \hat{g}_{121} = -\hat{\lambda}^T + \hat{\lambda} \mathcal{U}^T - \hat{\lambda}_{221}, \\
\hat{g}_{12} &= \begin{bmatrix} -\hat{\lambda}_{211} & -\hat{\lambda}_{311} \\ -\hat{\lambda}_{121} & \hat{\lambda}_{321} \end{bmatrix}, \\
\hat{g}_{13} &= \begin{bmatrix} \hat{\lambda}_6 & \mathcal{M} - \hat{\lambda}_{311} \\ \ast & \hat{\lambda}_8 - \hat{\lambda}_{131} \\ \ast & \ast & \hat{\lambda}_{132} \end{bmatrix}, \\
\hat{g}_{131} &= \mathcal{I} - \mathcal{U} - \mathcal{U}^T - \hat{\lambda}_5, \quad \hat{g}_{132} = \mathcal{M}^T \mathcal{M} - \gamma^2 \mathcal{I} - \hat{\lambda}_{10}.
\end{align*}
\]

Proof. According to the conditions (50) and (51), we can obtain that \(\lambda' = \mathcal{P}^{-1}, \ S = \mathcal{Q}^{-1} \). By utilizing Schur complement, (38), (39) and (40) can be converted into (17), (15) and (19), (18), (16) and (20) can be derived from (41), (42) and (43), (44), (45) and (46) can be changed into (29), (27) and (31), (47), (48) and (49) can be transformed into (30), (28) and (32), respectively.

Because of the existence of bilinear terms, the conditions in Theorem 3 cannot be handled by MATLAB LMI Toolbox directly. A cone complementarity linearization algorithm [7] is an effective approach to solve such a problem. The detailed operations are shown below

Algorithm 1:

Step 1: Provide a group of initial solution

\[
\left(\mathcal{P}^{(0)}, \lambda^{(0)}, \mathcal{Q}^{(0)}, \mathcal{S}^{(0)} \right),
\]

so that (38)-(49) and the following conditions are satisfied:

\[
\begin{bmatrix} \mathcal{P} & \mathcal{I} & \lambda' \\ \mathcal{I} & \mathcal{I} & \mathcal{S} \end{bmatrix} \geq 0, \begin{bmatrix} \mathcal{Q} & \mathcal{I} & \mathcal{S} \end{bmatrix} \geq 0.
\]

Set \(t = 0 \).

Step 2: Define the optimal issue as follows:

\[
\begin{aligned}
\min \operatorname{tr} \left(\mathcal{P} \lambda^{(t)} + \mathcal{P}^{(t)} \lambda' + \mathcal{Q} \mathcal{S}^{(t)} + \mathcal{Q}^{(t)} \mathcal{S} \right),
\end{aligned}
\]

subject to (38)-(49) and

\[
\begin{bmatrix} \mathcal{P} & \mathcal{I} & \lambda' \\ \mathcal{I} & \mathcal{I} & \mathcal{S} \end{bmatrix} \geq 0, \begin{bmatrix} \mathcal{Q} & \mathcal{I} & \mathcal{S} \end{bmatrix} \geq 0.
\]

Step 3: Substituting the derived matrix variables (\(\mathcal{P}, \lambda' \)) into (15)-(20) and (27)-(32). If (15)-(20) and (27)-(32) satisfy the following form:

\[
|\operatorname{tr}(\mathcal{P} \lambda'+ \mathcal{Q} \mathcal{S}) - r\kappa| < \kappa,
\]

for a sufficient small scalar \(\kappa > 0 \), and (\(\mathcal{P}, \lambda', \mathcal{Q}, \mathcal{S} \)) are practicable, and then, output the practicable solutions. EXIT.
Step 4: If $K > E$, in which K and E, respectively, stand for the number of iterations and the maximum number iterations. EXIT.

Step 5: Let $t = t + 1$, $(P^{(t)}, X^{(t)}, Q^{(t)}, S^{(t)}) = (P, X, Q, S)$. Then, return to Step 2.

4. Demonstrative examples. Two examples are given to confirm the usefulness of the method put forward in this paper.

Example 1. A numerical example is provided with two fuzzy rules in this subsection. The corresponding parameters are given as follows:

$$
A_1 = \begin{bmatrix} -0.6889 & -0.3035 \\ 1.1002 & -0.5989 \end{bmatrix}, \quad B_1 = \begin{bmatrix} 0.2001 \\ 0.1012 \end{bmatrix},
$$
$$
B_{11} = \begin{bmatrix} 0.1038 \\ 0.4852 \end{bmatrix}, \quad C_1 = \begin{bmatrix} 0.4064 \\ -0.0933 \end{bmatrix},
$$
$$
C = \begin{bmatrix} 0.1019 \\ 0.0986 \end{bmatrix},
$$
$$
A_2 = \begin{bmatrix} 0.2012 \\ -0.3015 \end{bmatrix}, \quad B_2 = \begin{bmatrix} 1.3991 \\ 0.8124 \end{bmatrix},
$$
$$
B_{12} = \begin{bmatrix} 0.0102 \\ -0.0826 \end{bmatrix}, \quad C_2 = \begin{bmatrix} 0.1110 \\ -2016 \end{bmatrix}.
$$

Tables 1 and 2 present the lower and upper membership functions of the system and FD observer, respectively.

Table 1. Lower and upper membership functions of the system

$u_{L1}(x_1)$	$1 - e^{-\frac{x_1}{15}}$	$\bar{u}_{L1}(x_1)$	$1 - e^{-\frac{x_1}{12}}$
$u_{L21}(x_1)$	$1 - \bar{u}_{L1}(x_1)$	$\bar{u}_{L21}(x_1)$	$1 - \bar{u}_{L1}(x_1)$

Table 2. Lower and upper membership functions of the observer

$u_{V11}(x_1)$	$e^{-\frac{x_1}{14}}$	$\bar{u}_{V11}(x_1)$	$e^{-\frac{x_1}{12}}$
$u_{V21}(x_1)$	$1 - u_{V11}(x_1)$	$\bar{u}_{V21}(x_1)$	$1 - \bar{u}_{V11}(x_1)$

Define the weighting coefficients as follows:

$$
\alpha_i(x_1(k)) = \sin^2(x_1(k)), \quad \bar{\alpha}_i(x_1(k)) = 1 - \alpha_i(x_1(k)),
$$
$$
\beta_i(x_1(k)) = \cos^2(x_1(k)), \quad \bar{\beta}_i(x_1(k)) = 1 - \beta_i(x_1(k)).
$$

By addressing conditions (38)-(51), the weighting matrix is obtained as $Q = 1.4913$, and the observer gains are shown as follows:

$$
L_1 = \begin{bmatrix} 2.8825 \\ 3.1942 \end{bmatrix}, \quad L_2 = \begin{bmatrix} 7.0949 \\ 3.0144 \end{bmatrix},
$$
$$
W = 18.1808, \quad \mathcal{R} = 0.4159.
$$

For the sake of verifying the advantage of the presented approach in this paper, three cases are given as follows:

Case 1: In this case, the H_∞ performance of the error system is testified with $f(t) = 0$ and $w(k) = 0.4 \sin(0.5k)(1 < k < 20)$. Fig. 1 is the state estimation errors of the system, it means that interference signal can be suppressed effectively. Fig.
20 QI LI, HONG XUE AND CHANGXIN LU

Figure 1. Estimation errors of the system.

Figure 2. Trajectory of $\bar{\sigma}(k)$.

Figure 3. Event-based release instants and release interval.

2 stands for the trajectory of $\bar{\sigma}(k)$. From Fig. 2, we can see that $\bar{\sigma}(k)$ can grow fast enough when the errors change quickly. At the same time, it can be seen that $\bar{\sigma}(k)$ will converge to zero under the situations of $w(k) = 0$ and the errors converge
to zero. Fig. 3 displays the event-based release instants and release interval. From Fig. 3, we can see that only 63% communication resource is used.
Case 2: Assuming \(f(k) = 0.1(14 < k < 100) \) and \(w(k) = 0.4\sin(0.5k)(0 < k < 100) \), and in this case, the threshold \(J_{th} \) and the evaluation function \(J(k) \) are given in Fig. 4. From Fig. 4, we can know that the fault is detected.

Case 3: Suppose that outliers exist in the measurement and happen at \(22 < k < 25 \), fault signal satisfies \(f(k) = 0 \) and interference signal satisfies \(w(k) = 0.4\sin(0.5k)(0 < k < 25) \). Then, the threshold \(J_{th} \) and the evaluation function \(J(k) \) are shown in Fig. 5. From Fig. 5, it can be obtained that when outliers exist in the error system, false alarms are not generated by the proposed method in this paper. Fig. 6 displays the threshold \(J_{th} \) and the evaluation function \(J(k) \) by using the general observer [27] without adaptive saturation. We can see that in Fig. 6, the system generates the false alarms when outliers exist in the measurement. According to this phenomenon, the usefulness of the proposed approach can be identified.

Example 2. A tunnel diode circuit is introduced for sake of further explaining the feasibility of the method which developed in this paper. According to the circuit knowledge, the following equation can be derived:

\[
\begin{align*}
i_D(t) &= 0.002v_D(t) + \partial v_D^3(t),
\end{align*}
\]

where \(\partial \) is a parameter which is uncertain and belongs to \([0.01, 0.03]\).

Letting \(x_1(t) = v_C(t) \), \(x_2(t) = i_L(t) \) and \(\bar{v} = 0.002 + \partial v_D^3(t) \), one gets

\[
\begin{align*}
C \dot{x}_1(t) &= -\bar{e}x_1(t) + x_2(t), \\
L \dot{x}_2(t) &= -x_1(t) - R x_2(t) + w(t),
\end{align*}
\]

in which \(C = 20mF \), \(L = 1000mH \), \(R = 10\Omega \). Assume that \(x_1(t) \in [-2, 2] \), the following IT2 T-S fuzzy model is get:

\[
x(k + 1) = \sum_{i=1}^{2} m_i(\varrho(k))[A_i x(k) + B_i w(k)],
\]

where

\[
A_1 = \begin{bmatrix} -\bar{e}_{\min} & 50 \\ -1 & -10 \end{bmatrix}, \quad B_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad A_2 = \begin{bmatrix} -\bar{e}_{\max} \\ -1 \end{bmatrix}, \quad B_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.
\]

Figure 7. Tunnel diode circuit.
The weighting coefficients are the same as that of Example 1. Tables 3 and 4, respectively, refer to the lower and upper membership functions of the system and FD observer.

Table 3. Lower and upper membership functions of the system

Function	Lower Bound	Upper Bound
$u_{c11}(x_1)$	$e_{\max} - e_{\min}$, $\partial = 0.03$	$e_{\max} - e_{\min}$, $\partial = 0.01$
$u_{c21}(x_1)$	e_{\min}, $\partial = 0.01$	e_{\min}, $\partial = 0.03$

Table 4. Lower and upper membership functions of the observer

Function	Lower Bound	Upper Bound
$u_{v11}(x_1)$	$0.4e^{-\frac{x_1}{T}}$	$0.4e^{-\frac{x_1}{T}}$
$u_{v21}(x_1)$	$1 - u_{v11}(x_1)$	$1 - u_{v11}(x_1)$

Given the sampling period $T = 0.06 s$, matrices can be derived as follows:

$$A_1 = \begin{bmatrix} 0.9210 & 2.1821 \\ -0.0436 & 0.4889 \end{bmatrix}, B_1 = \begin{bmatrix} 0.0732 \\ 0.0438 \end{bmatrix},$$

$$A_2 = \begin{bmatrix} 0.4000 & 1.4368 \\ -0.0287 & 0.5035 \end{bmatrix}, B_2 = \begin{bmatrix} 0.0562 \\ 0.0440 \end{bmatrix}.$$

Define remaining matrices as follows:

$$B_{11} = \begin{bmatrix} 0.2019 \\ 0.3987 \end{bmatrix}, C_1 = \begin{bmatrix} 0.1934 & 0.1012 \end{bmatrix},$$

$$C = \begin{bmatrix} 0.8019 & 0.9986 \end{bmatrix},$$

$$B_{12} = \begin{bmatrix} 0.4988 \\ 0.3987 \end{bmatrix}, C_2 = \begin{bmatrix} 0.3058 & 0.2315 \end{bmatrix}.$$

Figure 8. Estimation errors of the system.

Select $\lambda = 0.8$, $\gamma = 1.7$, $\mu_1 = 0.2$, $\mu_2 = 0.4$, $\rho_1 = 0.3$, $\rho_2 = 0.6$, $\bar{\mu}_1 = 0.3$, $\bar{\mu}_2 = 0.2$, $\bar{\rho}_1 = 0.8$, $\bar{\rho}_2 = 0.2$, $\varepsilon = 0.34$. According to the conditions (38)-(49), the
weighting matrix can be got as $Q = 0.8729$, and then, we can get that the following
observer gains:

\[
\mathcal{L}_1 = \begin{bmatrix} 1.9069 \\ 0.3511 \end{bmatrix}, \quad \mathcal{L}_2 = \begin{bmatrix} 0.8610 \\ 0.3538 \end{bmatrix}, \quad \mathcal{W} = 25.3221, \quad R = 0.2647.
\]

Similar to Example 1, three cases are given to identify the effectiveness of the presented method in this paper.

Case 1: Assuming \(f(t) = 0 \) and the disturbance signal as \(w(k) = 0.5 \sin(0.48k) \) \((0 < k < 14)\). Fig. 8 refers to the state estimation error of the fuzzy system, and it can be seen that the interference signal is effective suppressed by the presented approach. The trajectory of \(\hat{\sigma}(k) \) is shown in Fig. 9, it can be derived that \(\hat{\sigma}(k) \) can react fast enough when the errors alter quickly. With Fig. 10, we can see that only 43% communication resource is used, therefore, the effectiveness of the method which presented in this paper is verified.

Case 2: In this case, we suppose that the fault signal satisfies \(f(k) = 0.1(14 < k < 100) \) and disturbance signal satisfies \(w(k) = 0.5 \sin(0.48k) (0 < k < 100) \). Fig. 11 displays the FD threshold \(J_{th} \) and evaluation function \(J_k \), and by Fig. 11, the fault is detected.
Case 3: For the sake of illustrating the effectiveness of the presented approach, it is supposed that the outliers exist in the measurement and occur at $25 < k < 27$. Defining $f(k) = 0$, $w(k) = 0.5 \sin(0.48k)(0 < k < 26)$, then the evaluation function J_k and FD threshold J_{th} can be depicted in Fig. 12. As can be seen from Fig. 12, the false alarms are not produced when outliers exist in the measurement by applying the proposed approach in this paper. Fig. 13 shows the evaluation function J_k and FD threshold J_{th}, and it can be found that false alarm is presented by utilizing the observer [27] when outliers exist in the measurement. Based on above analysis, the effectiveness of the method which presented in this paper is identified.

5. **Conclusion.** This paper has focused on the FD observer design problem for a category of nonlinear systems subject to outliers. For the sake of avoiding false alarms which caused by outliers, an FD observer that has the saturated limit scheme has been constructed in this paper. In addition, an event-based mechanism has been introduced to decrease unnecessary signal communications. Sufficient criteria have been given so that both the H_∞ performance and the H_∞ fault performance can be guaranteed, respectively. At last, according to simulation results, the effectiveness of the advanced method has been verified. In future work, we will utilize the FD method to impulsive control [16], sliding mode control [23,36], tracking control [30], a class of Convolutional Broad Network [43] and neural networks [20, 34, 35], and meanwhile, we will apply the FD method for switched systems [38] and multi-agent systems [19,48] under the condition of considering the impulsive effects [17]. In addition, optimal control technique [4,9,10] will be attempted to solve the parameters.

REFERENCES

[1] A. Alessandri and L. Zaccarian, Stubborn state observers for linear time-invariant systems, *Automatica*, 88 (2018), 1–9.
[2] A. Alessandri and M. Awawdeh, Moving-horizon estimation with guaranteed robustness for discrete-time linear systems and measurements subject to outliers, *Automatica*, 67 (2016), 85–93.
[3] Z. Chen, Q.-L. Han, Y. Yan and Z.-G. Wu, How often should one update control and estimation: Review of networked triggering techniques, *Science China Information Sciences*, 63 (2020), Paper No. 150201.
[4] S. Court, K. Kunisch and L. Pfeiffer, Hybrid optimal control problems for a class of semilinear parabolic equations, *Discrete & Continuous Dynamical Systems-S*, 11 (2018), 1031–1060.
[5] H. Gao, Y. Zhao, J. Lam and K. Chen, H_∞ fuzzy filtering of nonlinear systems with intermittent measurements, *IEEE Transactions on Fuzzy Systems*, 17 (2008), 291–300.
[6] Y. Gao, F. Xiao, J. Liu, and R. Wang, Distributed soft fault detection for interval type-2 fuzzy-model-based stochastic systems with wireless sensor networks, *IEEE Transactions on Industrial Informatics*, 15 (2018), 334–347.
[7] H. Gao and C. Wang, Comments and further results on “A descriptor system approach to H_∞ control of linear time-delay systems”, *IEEE Transactions on Automatic Control*, 48 (2003), 520–525.
[8] M. A. Gandhi and L. Mili, Robust kalman filter based on a generalized maximum-likelihood-type estimator, *IEEE Transactions on Signal Processing*, 58 (2010), 2509–2520.
[9] E. Grigorieva and E. Khailov, Determination of the optimal controls for an ebola epidemic model, *Discrete & Continuous Dynamical Systems-S*, 11 (2018), 1071–1101.
[10] N. Hayek, Infinite-horizon multiobjective optimal control problems for bounded processes, *Discrete & Continuous Dynamical Systems-S*, 11 (2018), 1121–1141.
[11] H. Hassani, J. Zarei, M. Chadli and J. Qiu, Unknown input observer design for interval type-2 T–S fuzzy systems with immeasurable premise variables, *IEEE Transactions on Cybernetics*, 47 (2017), 2639–2650.
[12] H. K. Lam and L. D. Seneviratne, Stability analysis of interval type-2 fuzzy-model-based control systems, *IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)*, 38 (2008), 617–628.

[13] X. Li, X. Zhang and S. Song, Effect of delayed impulses on input-to-state stability of nonlinear systems, *Automatica*, 76 (2017), 378–382.

[14] Z. Li, L. Gao, W. Chen and Y. Xu, Distributed adaptive cooperative tracking of uncertain nonlinear fractional-order multi-agent systems, *IEEE/CAA Journal of Automatica Sinica*, 7 (2020), 292–300.

[15] H. Li, J. Yu, C. Hilton and H. Liu, Adaptive sliding-mode control for nonlinear active suspension vehicle systems using T–S fuzzy approach, *IEEE Transactions on Industrial Electronics*, 60 (2013), 3328–3338.

[16] X. Li, X. Yang and T. Huang, Persistence of delayed cooperative models: Impulsive control method, *Applied Mathematics and Computation*, 342 (2019), 130–146.

[17] X. Li, J. Shen and R. Rakkiyappan, Persistent impulsive effects on stability of functional differential equations with finite or infinite delay, *Applied Mathematics and Computation*, 329 (2018), 14–22.

[18] H. Liang, X. Guo, Y. Pan and T. Huang, Event-triggered fuzzy bipartite tracking control for network systems based on distributed reduced-order observers, *IEEE Transactions on Fuzzy Systems*, 2020, 1–1.

[19] H. Liang, L. Zhang, Y. Sun and T. Huang, Containment control of semi-Markovian multiagent systems with switching topologies, *IEEE Transactions on Systems, Man, and Cybernetics: Systems*, 2019, 1–11.

[20] R. Lu, W. Yu, J. Li and A. Xue, Synchronization on complex networks of networks, *IEEE Transactions on Neural Networks and Learning Systems*, 25 (2014), 2110–2118.

[21] J. M. Mendel, R. I. John and F. Liu, Interval type-2 fuzzy logic systems made simple, *IEEE Transactions on Fuzzy Systems*, 14 (2006), 808–821.

[22] J. Na, Y. Huang, X. Wu, S.-F. Su and G. Li, Adaptive finite-time fuzzy control of nonlinear active suspension systems with input delay, *IEEE Transactions on Cybernetics*, 50 (2020), 2639–2650.

[23] J. Na, B. Jing, Y. Huang, G. Gao and C. Zhang, Unknown system dynamics estimator for motion control of nonlinear robotic systems, *IEEE Transactions on Industrial Electronics*, 67 (2020), 3850–3859.

[24] Z. Ning, J. Yu, Y. Pan and H. Li, Adaptive event-triggered fault detection for fuzzy stochastic systems with missing measurements, *IEEE Transactions on Fuzzy Systems*, 26 (2018), 2201–2212.

[25] Y. Pan, P. Du, H. Xue and H. K. Lam, Singularity-free fixed-time fuzzy control for robotic systems with user-defined performance, *IEEE Transactions on Fuzzy Systems*, 2020, 1–1.

[26] Y. Pan and G. H. Yang, Event-triggered fault detection filter design for nonlinear networked systems, *IEEE Transactions on Systems, Man, and Cybernetics: Systems*, 48 (2017), 1851–1862.

[27] Y. Pan and G. H. Yong, Event-driven fault detection for discrete-time interval type-2 fuzzy systems, *IEEE Transactions on Systems, Man, and Cybernetics: Systems*, 2019, 1–2.

[28] C. Peng, Q. L. Han and D. Yue, To transmit or not to transmit: A discrete event-triggered communication scheme for networked Takagi–Sugeno fuzzy systems, *IEEE Transactions on Fuzzy Systems*, 21 (2013), 164–170.

[29] P. Tabuada, Event-triggered real-time scheduling of stabilizing control tasks, *IEEE Transactions on Automatic Control*, 52 (2007), 1680–1685.

[30] M. Tong, W. Lin, X. Huo, Z. Jin and C. Miao, A model-free fuzzy adaptive trajectory tracking control algorithm based on dynamic surface control, *International Journal of Advanced Robotic Systems*, 17 (2020), 1729881419894417.

[31] C. S. Tseng, B. S. Chen and H. J. Uang, Fuzzy tracking control design for nonlinear dynamic systems via T-S fuzzy model, *IEEE Transactions on Fuzzy Systems*, 9 (2001), 381–392.

[32] W. Wang, H. Liang, Y. Pan and T. Li, Prescribed performance adaptive fuzzy containment control for nonlinear multi-agent systems using disturbance observer, *IEEE Transactions on Cybernetics*, 2020, 1–13.

[33] X. L. Wang and G. H. Yang, Observer-based fault detection for T-S fuzzy systems subject to measurement outliers, *Neurocomputing*, 335 (2019), 21–36.

[34] Z. Wang and D. Liu, Data-based controllability and observability analysis of linear discrete-time systems, *IEEE Transactions on Neural Networks*, 22 (2011), 2389–2392.
[35] Z. Wang, Y. Xu, R. Lu and H. Peng, Finite-time state estimation for coupled Markovian neural networks with sensor nonlinearities, *IEEE Transactions on Neural Networks and Learning Systems*, **28** (2017), 630–638.

[36] C. Wu, L. Wu, J. Liu and Z.-P. Jiang, Active defense-based resilient sliding mode control under denial-of-service attacks, *IEEE Transactions on Information Forensics and Security*, **15** (2019), 237–249.

[37] D. Yao, H. Li, R. Lu and Y. Shi, Distributed sliding mode tracking control of second-order nonlinear multi-agent systems: An event-triggered approach, *IEEE Transactions on Cybernetics*, 2020, 1–11.

[38] D. Yang, X. Li and J. Qiu, Output tracking control of delayed switched systems via state-dependent switching and dynamic output feedback, *Nonlinear Analysis: Hybrid Systems*, **32** (2019), 294–305.

[39] T. Zhang, C. P. Chen, L. Chen, X. Xu and B. Hu, Design of highly nonlinear substitution boxes based on I-Ching operators, *IEEE Transactions on Cybernetics*, **48** (2018), 3349–3358.

[40] L. Zhang, H.-K. Lam, Y. Sun and H. Liang, Fault detection for fuzzy semi-Markov jump systems based on interval type-2 fuzzy approach, *IEEE Transactions on Fuzzy Systems*, 2019, 1–1.

[41] Z. Zhang, H. Liang, C. Wu and C. K. Ahn, Adaptive event-triggered output feedback fuzzy control for nonlinear networked systems with packet dropouts and actuator failure, *IEEE Transactions on Fuzzy Systems*, **27** (2019), 1793–1806.

[42] C. Zhang, J. Hu, J. Qiu and Q. Chen, Event-triggered nonsynchronized \(H_\infty \) filtering for discrete-time T–S fuzzy systems based on piecewise Lyapunov functions, *IEEE Transactions on Systems, Man, and Cybernetics: Systems*, **47** (2017), 2330–2341.

[43] T. Zhang, X. Wang, X. Xu and C. P. Chen, GCB-net: Graph convolutional broad network and its application in emotion recognition, *IEEE Transactions on Affective Computing*, 2019, 1–1.

[44] X. Zhao, H. Mo, K. Yan and L. Li, Type-2 fuzzy control for driving state and behavioral decisions of unmanned vehicle, *IEEE/CAA Journal of Automatica Sinica*, **7** (2020), 178–186.

[45] Q. Zhou, W. Wang, H. Ma and H. Li, Event-triggered fuzzy adaptive containment control for nonlinear multi-agent systems with unknown Bouc-Wen hysteresis input, *IEEE Transactions on Fuzzy Systems*, 2019, 1–1.

[46] S. Zhu, Y. Liu, Y. Lou and J. Cao, Stabilization of logical control networks: An event-triggered control approach, *Science China Information Sciences*, **63** (2020), 112203, 11 pp.

[47] Z. Zhu, Y. Pan, Q. Zhou and C. Lu, Event-triggered adaptive fuzzy control for stochastic nonlinear systems with unmeasured states and unknown backlash-like hysteresis, *IEEE Transactions on Fuzzy Systems*, 2020, 1–1.

[48] Q. Zhou, W. Wang, H. Liang, M. Basin and B. Wang, Observer-based event-triggered fuzzy adaptive bipartite containment control of multi-agent systems with input quantization, *IEEE Transactions on Fuzzy Systems*, 2019, 1–1.

Received January 2020; revised April 2020.

E-mail address: liqibhu@163.com
E-mail address: xuehong19870101@163.com
E-mail address: luchangxin2018@gmail.com