STAT5-mediated self-renewal of normal hematopoietic and leukemic stem cells

Hein Schepers,1,2 Albertus T.J. Wierenga,1,3 Edo Vellenga1 and Jan Jacob Schuringa1,*

1Department of Experimental Hematology; University Medical Center Groningen; Groningen, The Netherlands; 2Department of Stem Cell Biology; University Medical Center Groningen; Groningen, The Netherlands; 3Department of Laboratory Medicine; University Medical Center Groningen; Groningen, The Netherlands

The level of transcription factor activity critically regulates cell fate decisions such as hematopoietic stem cell self-renewal and differentiation. The balance between hematopoietic stem cell self-renewal and differentiation needs to be tightly controlled, as a shift toward differentiation might exhaust the stem cell pool, while a shift toward self-renewal might mark the onset of leukemic transformation. A number of transcription factors have been proposed to be critically involved in governing stem cell fate and lineage commitment, such as Hox transcription factors, C-Myc, Notch1, β-Catenin, C/ebpα, Pu.1 and STAT5. It is therefore no surprise that dysregulation of these transcription factors can also contribute to the development of leukemias. This review will discuss the role of STAT5 in both normal and leukemic hematopoietic stem cells as well as mechanisms by which STAT5 might contribute to the development of human leukemias.

Introduction

Signal Transducer and Activator of Transcription 5 (STAT5) is widely expressed throughout the hematopoietic system, both in stem and progenitor cells as well as in committed erythroid, myeloid and lymphoid cells.1-3 Indeed, it is not surprising that STAT5 can be activated by a wide variety of cytokines and growth factors.3-5 These include cytokines and growth factors that can signal through the Interleukin 3 (IL3)-receptor family [IL3, IL5, Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF)], through the common γ-chain receptor family (IL2, IL7, IL9, IL12, IL15), through single chain receptors [Erythropoietin (EPO), Thrombopoietin (TPO), Growth Hormone (GH), prolactin, Granulocyte-Colony Stimulating Factor (G-CSF)], through class II receptors [Interferon α (IFNα), IFNγ, IL22] or through tyrosine kinase receptors [Stem Cell Factor (SCF), Platelet Derived Growth Factor (PDGF), Epidermal growth Factor (EGF)] (Fig. 1). In most cases, Janus Kinase (JAK) tyrosine kinase activity mediates STAT5 tyrosine phosphorylation, and STAT5 can be activated by Jak1, 2, or 3, depending on the cytokine-activated receptor complex. Alternatively, the tyrosine kinase receptor family can also induce STAT5 phosphorylation in a JAK-independent manner. While STAT5 is expressed in the majority of hematopoietic cell types, the cytokine receptor expression is much more tissue-specific. Thus, specific cytokines are able to induce STAT5 activity in subsets of cell types only.6 For example, cytokines that activate STAT5 in the most immature human hematopoietic stem compartment include SCF7 and TPO.8 These cytokines have been shown to promote long-term hematopoiesis in vitro,9 and hypersensitivity to TPO in Lnk−/− mice resulted in elevated stem cell self-renewal, which coincided with increased levels of STAT5 activity.10 Within the erythroid compartment, STAT5 is activated by EPO,11 where STAT5 fulfills an important anti-apoptotic role by upregulating Bcl-xL,12-13 although a more direct role in initiating erythroid commitment might exist as well.14-16 In myeloid cells, STAT5 can be activated by a variety of cytokines, including IL3, IL5, GM-CSF and CSF1 (reviewed in ref. 3). Although initially in STAT5AB+/−/− mice myelopoiesis appeared to be relatively unaffected,17 it is likely that in myeloid cells many of the signals initiated by e.g., IL-3 and GM-CSF are, at least in part, mediated by STAT5,18 thereby regulating myeloproliferation or anti-apoptosis.22-24 During myelosuppression, mice completely deficient of STAT5AB failed to produce enhanced levels of neutrophils and were unable to respond to GM-CSF.25 IL5-induced STAT5 activation is required for the induction of eosinophil differentiation.36 Lymphoid development is severely impaired in STAT5−/− mice.37 STAT5 activation is required for IL2-induced T cell proliferation and the production of NK cells.28,29 or for IL7-mediated B cell expansion.30

As summarized in Table 1 and Figure 1B, a wide variety of genetic defects in myeloid leukemias and myeloproliferative diseases (MPDs) result in activation of the STAT5 pathway, including mutations in Flt3 and cKit receptors, JAK2 mutations, translocations such as TEL-PDGFRα, and Bcr-Abl, but also as a result of increased cytokine signaling. Numerous functional studies have indicated that aberrant activation of STAT5 can contribute to the process of leukemic transformation. Downstream of Flt3-ITD (Internal Tandem Duplication) mutations, STAT5 is strongly activated via two tyrosine residues within the Flt3 receptor, Y589 and Y592 that act as docking sites for the SH2 domain of STAT5 molecules.31 Mutation of these residues into phenylalanines completely abrogated activation of STAT5, and importantly completely impaired induction of a myeloproliferative disease in vivo in a murine transplantation model.31 Thus, it is likely that STAT5 signaling is essential for the transforming potential of Flt3-ITD.

Although in human cells introduction of Flt3-ITD did not result in a myeloproliferative disease in transplanted NOD-SCID mice, the activated stem cell phenotype imposed on CB CD34+ cells, as revealed by the formation of early cobblestone area
forming cells (CAFCs), was impaired by coexpression of a dominant negative STAT5A (Y694F) mutant, suggesting that also in human cells STAT5 is an important mediator of Flt3-ITD-induced signaling. In studies in which STAT5 expression was targeted in primary acute myeloid leukemia (AML) CD34+ cells using a lentiviral approach, it was observed that long-term expansion and the formation of leukemic CAFCs was strongly impaired by downmodulation of STAT5. Although the presence of Flt3-ITDs was not the exclusive genetic mutation that induced constitutive STAT5 signaling in the samples that were studied, these data clearly underscore the important role that STAT5 fulfills in long-term expansion and self-renewal of primary AML stem/progenitor cells as well.

In chronic myeloid leukemia (CML) induced by Bcr-Abl, it has been convincingly demonstrated that STAT5 also plays an important role. A number of studies have shown that STAT5 is efficiently activated downstream of Bcr-Abl, and interference with STAT5 activation negatively impacts the survival and proliferation of Bcr-Abl-expressing cells. In primary human CML cells, it was demonstrated that downmodulation of STAT5 expression by RNAi impaired Bcr-Abl-dependent proliferation and also reduced colony formation in methylcellulose. Inhibition of STAT5 by pimozide reduced colony formation of CML CD34+ cells, also in tyrosine kinase-resistant patient samples.

In myeloproliferative diseases it has been demonstrated in mouse models that bone marrow (BM)-transduced with TEL-JAK2 no longer induced disease in recipient mice when the oncogene was introduced in a STAT5DN background. Similarly, MPD induced by TEL-PDGFRα depended on STAT5 activity. Finally, enhanced STAT5 activity has been observed in Polycythemia Vera (PV), caused by the activating JAK2 V617F mutation. Inhibition of JAK2 kinase activity abrogated the activation of STAT5, which coincided with a suppression of erythropoiesis in vitro and in vivo.

The most direct evidence for STAT5 acting as an oncogene arises from murine BM transplantation studies in which constitutively activated STAT5 (S711F) mutants were overexpressed. Lethally irradiated recipients receiving activated STAT5-transduced BM died within 6 weeks after transplantation of a multilineage leukemia. It was demonstrated that a tryptophan residue in the N-terminal region of STAT5 is required for tetramerization of STAT5 dimers, and tetramer-deficient STAT5 mutants were unable to induce leukemia in mice. Another activating mutant of STAT5, STAT5A(1*6) that contains two point mutations (H299R and S711F) was earlier shown to induce myeloid hyperproliferation, but not leukemia, in a murine background.

Figure 1. STAT5 signaling in normal and leukemic cells. (A) Normal cytokine-induced STAT5 signaling. (B) Constitutive STAT5 signaling in hematological malignancies.
retroviral overexpression model. This was later confirmed by others, and a fatal MPD was observed by overexpression of these STAT5 mutants, but only when the most primitive CD34+ Lin− cKit+Sca1+ (LSK) population was transduced and used for transplantation to irradiated recipients, suggesting that the stem cell, but not a committed progenitor is the target cell for transformation induced by activated STAT5. Intriguingly, while these examples clearly demonstrate that STAT5 can transform murine hematopoietic stem cells (HSCs), no in vivo STAT5-induced transformation has been reported in human cell populations. While enhanced self-renewal and long-term stem cell maintenance can be achieved by introduction of activated STAT5 in human CD34+ cells, a myeloproliferative disease or leukemia does not occur in non-obese diabetic/severe combined immunodeficiency (NOD-SCID) transplantations models. It is plausible that the NOD-SCID xenograft model is not suitable to completely recapitulate human disease, or alternatively it is possible that species-specific differences in STAT5 signaling exist. In line with these observations, introduction of Bcr-Abl in murine BM resulted in a rapid and lethal MPD whereby recipients die within 3 weeks after transplantation. Introduction of Bcr-Abl in human CD34+ cells does not result in a rapid leukemia or MPD in engrafted NOD-SCID mice, and only after 5 mo progression to an early stage disease was observed in some animals. Collectively, these data indicate that STAT5 is frequently activated in various hematological malignancies, whereby it strongly affects processes such as self-renewal and lineage fate determination. Whether STAT5 target genes in normal and leukemic stem cells are identical, or whether leukemic stem cell-specific STAT5 target genes exist remains to be determined. Also, it will be informative to study how STAT5 might cooperate with additional leukemic oncogenes in a multi-hit approach to model the development of human leukemias.

STAT5 as a Stem Cell Self-Renewal Factor

Loss-of-function and gain-of-function experiments have revealed critical roles for STAT5 in the hematopoietic stem/progenitor compartment. STAT5AB−/− mice have been used to assess stem cell function in the absence of wt STAT5 signaling. These mice were characterized by normal HSC numbers and stem cells isolated from the bone marrow or fetal liver were capable of engrafting irradiated recipients. Yet, competitive repopulating capacity of STAT5AB−/− HSCs was severely impaired. The underlying mechanisms are not fully elucidated yet, but it has been observed that the responsiveness of STAT5AB−/− HSCs to early-acting cytokines such as IL3 and SCF was reduced, while the sensitivity to 5-fluorocil was enhanced. Loss of protection against apoptosis most likely does not explain the STAT5AB−/− HSCs phenotypes, as overexpression of Bcl2 was not sufficient to rescue repopulating defects. Although homing of STAT5AB−/− BM cells to lethally irradiated recipients was not impaired, retention in the bone marrow was reduced under non-myeloablative conditions, leaving open the possibility that competition for the niche might play a role. Mice completely devoid of STAT5 display severely impaired hematopoiesis.

In order to study STAT5 signaling in human hematopoietic stem/progenitor cells, we have used a lentiviral shRNA approach in cord blood (CB) CD34+ cells. Downmodulation of STAT5 to about 30% of the endogenous levels reduced progenitor frequencies as determined by Colony Forming Cell (CFC) assays in methylcellulose as well as stem cell frequencies as determined by Long-Term Culture-Initiating Cell (LTC-IC) assays in limiting dilution. This resulted in reduced long-term expansion on MS5 bone marrow stroma upon downmodulation of STAT5 expression, whereby the myeloid and erythroid differentiation were unaffected. Single-cell assays using transduced CD34+/ CD38− cells revealed that cell cycle progression induced by early-acting cytokines SCF and TPO was impaired by STAT5 downmodulation.

Reversely, activating mutants of STAT5 have been introduced in murine CD34 LSK cells and the effects on stem and progenitor cells were assessed in vitro and in vivo. Introduction of STAT5A(1*6) or STAT5A(1*7) mutants resulted in a strong ex vivo expansion of immature CFU-nmEM progenitors, without affecting the symmetry of stem cell divisions as determined in paired-daughter cell assays. Importantly, long-term repopulating HSCs could be maintained under ex vivo culture conditions as CD34 LSK cells expressing activated STAT5 had a strong competitive repopulating advantage over wild type cells after 7 d and 10 d ex vivo culturing in the presence of SCF or SCF and TPO. Activating mutants of STAT5 have also been introduced in human CD34+ cells. Overexpression of STAT5A(1*6) in human CD34+ cord blood cells resulted in enhanced stem cell self-renewal. This enhanced self-renewal was only observed in bone marrow stromal cocultures, but not in cytokine-driven liquid culture conditions. These data argued that STAT5-induced HSC cell self-renewal depends on the presence of a bone marrow microenvironment, and it was indeed observed that STAT5A(1*6)-expressing CD34+ cells have a strongly enhanced interaction
with bone marrow stromal cells, resulting in the appearance of early CAFCs underneath the stroma within 1 week after plating. These CAFCs contained self-renewal potential as demonstrated by their capacity to give rise to second CAFCs upon harvest and replating onto new stroma, as well as by their capacity to engrain in sublethally irradiated NOD-SCID mice. Upon serial replating, long-term cultures could be established by overexpression of activated STAT5 for over 20 weeks, giving rise to new CAFCs upon each replating as well as to progeny in suspension. Hematopoietic progenitors could be maintained long-term in these culture conditions and the suspension cells retained an immature blast-like morphology.

When STAT5A(1*6) mutants were expressed in murine embryonic stem (ES) cells, the generation of hematopoietic stem cells was greatly facilitated as studied on OP9 bone marrow stromal cells. The generation of hematopoietic CAFCs was strongly enhanced by activated STAT5. Importantly, these CAFCs could be serially passaged onto new OP9 stroma, giving rise to second and third CAFCs that were able to sustain long-term hematopoiesis and generate high numbers hematopoietic progenitors, indicative of HSC self-renewal in vitro. Also, the CAFCs generated by activation of STAT5 could engrain sublethally irradiated NOD-SCID mice, indicating that STAT5 facilitates the generation of ES-derived HSCs that can contribute to hematopoiesis in vivo as well.

Mechanisms Involved in STAT5-Induced HSC Self-Renewal

Although various STAT5 target genes have been identified, the mechanisms by which STAT5 acts on HSCs remain to be elucidated. Using cell lines or heterogeneous stem/progenitor cell populations, enhanced cell growth is one of the most dominant phenotypes that is frequently observed in various studies, and several genes that are regulated by STAT5 associate with cell proliferation and cell cycle progression, including Cyclin D1, Pim1, and c-Myc. When STAT5 is activated, coinciding with a Hif2α-dependent upregulation glucose metabolism genes, suggesting that pathways normally active under hypoxia might be utilized by STAT5 under normoxic conditions as well to maintain stem cell properties.

The phenotype imposed on cells by STAT5 might well depend on the actual level of STAT5 activity that is induced. Using a 4-hydroxytamoxifen inducible system that allowed titration of activated STAT5, coinciding with a Hif2α-dependent upregulation glucose metabolism genes, suggesting that pathways normally active under hypoxia might be utilized by STAT5 under normoxic conditions as well to maintain stem cell properties.

It is remarkable that the effects of STAT5 on HSC self-renewal are confined to intermediate STAT5 activation levels. This dosages effect of STAT5 on self-renewal is consistent with the observed constitutive activation of STAT5 in AML samples, which is typically lower than cytokine-induced STAT5 activation. Such a dosage effect of transcription factors is at present not well understood, but besides STAT5 this has also been observed for the myeloid transcription factor Pu.1, which at 20% expression gives rise to self-renewing murine myeloid leukemias, whereas 50% or 100% reduction in expression do not have such a dramatic effect. Recently, also for Wnt signaling it was demonstrated that intermediate activation levels enhance STAT5 and is required to prevent apoptosis during terminal differentiation of myeloid cells. Whether prevention of apoptosis contributes to STAT5-induced HSC self-renewal is currently unclear, but Bcl2 overexpression was not sufficient to rescue the repopulation defects of STAT5ABN/AN HSCs, suggesting that protection against apoptosis is not the main role of STAT5 signaling in HSCs. In our co-cultures, despite strong reductions in LTC-IC and CFC frequencies, we also did not detect an increased rate of apoptosis in STAT5 RNAi-transduced CD34+ CB cells, and no decreased expression of the Bcl-xL gene was observed. The basic helix-loop-helix transcriptional inhibitor ID1 is also upregulated by STAT5, and ID1-deficient HSCs fail to self-renew, leading to low steady-state HSC numbers and premature HSC exhaustion. Little evidence exists that STAT5 affects the expression of other known HSC self-renewal regulators such as Bmi1 or HoxB4. Recently, we observed that STAT5 binds to and activates the promoter of Hypoxia Induced Factor 2α (Hif2α) in human CD34+/CD38− HSCs. Functional studies indicated that STAT5-induced long-term expansion and elevated LTC-IC and CFC frequencies were reduced upon downmodulation of Hif2α. Glucose uptake was enhanced in cells expression activated STAT5, coinciding with a Hif2α-dependent upregulation glucose metabolism genes, suggesting that pathways normally active under hypoxia might be utilized by STAT5 under normoxic conditions as well to maintain stem cell properties.

The phenotype imposed on cells by STAT5 might well depend on the actual level of STAT5 activity that is induced. Using a 4-hydroxytamoxifen inducible system that allowed titration of activated STAT5, coinciding with a Hif2α-dependent upregulation glucose metabolism genes, suggesting that pathways normally active under hypoxia might be utilized by STAT5 under normoxic conditions as well to maintain stem cell properties.

It is remarkable that the effects of STAT5 on HSC self-renewal are confined to intermediate STAT5 activation levels. This dosages effect of STAT5 on self-renewal is consistent with the observed constitutive activation of STAT5 in AML samples, which is typically lower than cytokine-induced STAT5 activation. Such a dosage effect of transcription factors is at present not well understood, but besides STAT5 this has also been observed for the myeloid transcription factor Pu.1, which at 20% expression gives rise to self-renewing murine myeloid leukemias, whereas 50% or 100% reduction in expression do not have such a dramatic effect. Recently, also for Wnt signaling it was demonstrated that intermediate activation levels enhance STAT5 and is required to prevent apoptosis during terminal differentiation of myeloid cells. Whether prevention of apoptosis contributes to STAT5-induced HSC self-renewal is currently unclear, but Bcl2 overexpression was not sufficient to rescue the repopulation defects of STAT5ABN/AN HSCs, suggesting that protection against apoptosis is not the main role of STAT5 signaling in HSCs. In our co-cultures, despite strong reductions in LTC-IC and CFC frequencies, we also did not detect an increased rate of apoptosis in STAT5 RNAi-transduced CD34+ CB cells, and no decreased expression of the Bcl-xL gene was observed. The basic helix-loop-helix transcriptional inhibitor ID1 is also upregulated by STAT5, and ID1-deficient HSCs fail to self-renew, leading to low steady-state HSC numbers and premature HSC exhaustion. Little evidence exists that STAT5 affects the expression of other known HSC self-renewal regulators such as Bmi1 or HoxB4. Recently, we observed that STAT5 binds to and activates the promoter of Hypoxia Induced Factor 2α (Hif2α) in human CD34+/CD38− HSCs. Functional studies indicated that STAT5-induced long-term expansion and elevated LTC-IC and CFC frequencies were reduced upon downmodulation of Hif2α. Glucose uptake was enhanced in cells expression activated STAT5, coinciding with a Hif2α-dependent upregulation glucose metabolism genes, suggesting that pathways normally active under hypoxia might be utilized by STAT5 under normoxic conditions as well to maintain stem cell properties.

The phenotype imposed on cells by STAT5 might well depend on the actual level of STAT5 activity that is induced. Using a 4-hydroxytamoxifen inducible system that allowed titration of activated STAT5, coinciding with a Hif2α-dependent upregulation glucose metabolism genes, suggesting that pathways normally active under hypoxia might be utilized by STAT5 under normoxic conditions as well to maintain stem cell properties.

It is remarkable that the effects of STAT5 on HSC self-renewal are confined to intermediate STAT5 activation levels. This dosages effect of STAT5 on self-renewal is consistent with the observed constitutive activation of STAT5 in AML samples, which is typically lower than cytokine-induced STAT5 activation. Such a dosage effect of transcription factors is at present not well understood, but besides STAT5 this has also been observed for the myeloid transcription factor Pu.1, which at 20% expression gives rise to self-renewing murine myeloid leukemias, whereas 50% or 100% reduction in expression do not have such a dramatic effect. Recently, also for Wnt signaling it was demonstrated that intermediate activation levels enhance.
self-renewal of HSCs. Collectively, these examples clearly underscore the role of transcription factor dosage in regulating HSC self-renewal.

Cell Type-Specific STAT5 Signaling: Differential Role of STAT5 in Hematopoietic Stem and Progenitor Cells?

The observation that STAT5 drives cell cycle progression in various cell types and anti-apoptosis in others, while STAT5 is also required to maintain quiescence of hematopoietic stem cells, suggests that the cell-biological consequences of STAT5 signaling might be highly cell type-specific. We have addressed this issue by introducing a 4-hydroxytamoxifen (4OHT)-inducible STAT5-ER fusion in human stem and progenitor cells. Activation of STAT5 specifically in HSC, common myeloid (CMP), granulocyte-macrophage (GMP) or megakaryocyte-erythroid progenitor (MEP) populations resulted in rather distinct phenotypes. Long-term self-renewal and enhanced cobblestone formation could only be imposed on HSCs, but not on committed progenitor subpopulations. Erythroid differentiation could be induced in HSC, CMP and MEP populations, but not in GMPs. Gene expression profiling revealed that rather distinct gene expression profiles were induced in HSC as compared with more committed progenitor subpopulations. For instance, Tubb1, Hif2α, Sod2, IL8 and also the cell cycle inhibitor Cdkn1a/p21 were particularly upregulated in HSCs but not in committed progenitors (Fig. 2). In contrast, Osm, Pim1 and the negative feedback regulators CISH and Socs2 were upregulated both in HSCs and MPPs. The underlying mechanisms are currently unclear, but a number of possibilities might be hypothesized. First, it has been shown that several cofactors such as p300/Cbp, but also interactions with other transcription factors such as Foxo3a, can modulate and fine-tune the STAT5 response. Cell type-specific interaction with such cofactors would then dictate a cell type-specific STAT5 activation pattern of target genes. Seen from this perspective, the modulation of STAT5 signaling by p300/Cbp could add to a stem vs. progenitor-specific component of STAT5. It has been observed that, unlike p300, Cbp is essential for HSC self-renewal maintenance, while p300 is suggested to play a role in differentiation. Interaction of various transcription factors with p300/Cbp is facilitated by the p300/Cbp interacting protein Cited2 which has been shown to be a target gene of STAT5 and has differential expression and functions in hematopoietic stem and progenitor cells.

Figure 2. Cell type-specific STAT5 signaling in hematopoietic stem and progenitor cells. (1) Expression/activation of cofactors: complex composition. (2) Epigenetic factors that influence STAT5 DNA binding. (3) Expression of receptors and ligands. (4) Niche interactions.
stem vs. progenitor cells117 (and our own observations). In part, such interactions can be mediated by posttranslational modifications such as serine phosphorylation or glycosylation of STAT5.112 Thus, besides the induction of STAT5 tyrosine phosphorylation required for dimerization, nuclear translocation and DNA binding, the simultaneous activation of pathways that mediate STAT5 serine phosphorylation or glycosylation would be required.

Furthermore, the epigenetic status of the cell might play an important role. Hypermethylation of specific promoters or polycomb-mediated condensation of chromatin might prevent STAT5 association with regulatory promoter elements and thus transactivation of certain genes. Clearly, such differences in epigenetic status and cofactor expression might also be dictated by different responses to extracellular stimuli. Thus, the repertoire of specific cytokine and growth factor receptors that is expressed on a cell, as well as direct interactions between hematopoietic stem cells and their bone marrow niche, might ultimately determine the specific STAT5 response (Fig. 2).

Single cell tyrosine phospho-STAT5 analysis revealed that within the normal hematopoietic stem cell and progenitor compartment highly distinct cytokine-induced STAT5 activation patterns are observed.6 Also in primary AML patient samples, rather heterogeneous responses toward a series of cytokines were observed, not directly linked to whether or not the cognate receptor was expressed.8 There was clear heterogeneity between different patient samples, but also different responses could be observed within distinct cellular compartments within a single patient.6,118 For instance, in some patient samples strong IL3 and GM-CSF responses were observed, but only in the CD34+ subpopulation, while in other cases strong TPO responses were observed within CD34−/CD38− and CD34−/CD38+ compartments. These observations clearly indicate that strong differences exist in how cytokine and growth factor signals are mediated within a certain cell type, both normal as well as leukemic.

Although elucidation of molecular mechanisms by which cell type specific STAT5 signaling is orchestrated needs further studies, cell type-specific STAT5 target genes clearly do exist. The observation that p21 is upregulated by STAT5, particularly in HSCs, is remarkable (our unpublished observations and ref. 101). It will be interesting to analyze whether the enhanced long-term self-renewal that is observed upon activation of STAT5 in hematopoietic stem cells involves improved stem cell maintenance by keeping the HSCs pool in a relatively quiescent state via upregulation of p21. Knockout studies in mice have indicated that p21 is required during stress hematopoiesis,119 and although p21 was also initially downregulated in STAT5 depleted LSK cells, this downmodulation was not maintained.88 On the other hand, in murine embryonic fibroblasts it has also been shown that STAT5 can negatively regulate cell cycle progression through activation of p21.120 Inhibition of JAK2/STAT5 signaling by the specific Jak2 inhibitor AZ960 stimulated cell cycling in CD34+/CD38− cells in conjunction with downregulation of p21.118 Further, activation of p21 has been shown to be critical in preventing excess DNA-damage accumulation and functional exhaustion of leukemic stem cells,121 and it will be interesting to further reveal its role downstream of STAT5 in HSCs.

Furthermore, HIF2\textgreekalpha was upregulated in HSCs and CMPs by STAT5, but not in MEPs and GMPs.101 Under normoxic conditions, proline residues of Hypoxia-Induced Factor 2 are hydroxylated resulting in a reduction in protein levels via VHL-mediated proteasomal degradation. Under hypoxic conditions, such as in the presumed endosteal quiescent stem cell niche, Hifs are stabilized and act as transcription factors.122 It is currently unknown whether and which Hif-induced target genes are essential to maintain stemness of normal HSCs, but it was recently shown that in Hif1\textgreekalpha/\textgreekbeta mice HSCs numbers decrease during stress which was associated with a loss of HSC quiescence.123 Another report indicated that HSCs in the quiescence niche utilize glycolysis for their energy demands, which depended on a Meis1-induced Hif1\textgreekalpha signaling network.124 Whether Hif1\textgreekalpha and Hif2\textgreekalpha display similar or distinct functions in HSCs remains to be established.

Our understanding of the mechanisms that determine whether, where and when a stem cell will self-renew or differentiate is still limited, but recent advances have indicated that the stem cell microenvironment provides essential cues that direct these cell fate decisions.125-128 It is remarkable that STAT5-induced long-term self-renewal is typically observed when cells are cultured in direct contact with stromal cells,129 in contrast to e.g., Bmi1-induced self-renewal which occurred in a more microenvironment-independent manner.129 Thus, altered interactions with the stem cells niche might also underlie the enhanced self-renewal properties imposed on HSCs by activated STAT5. Although the mechanisms by which the interaction with the microenvironment of STAT5A(1\textgreekalpha6)-expressing CD34+ cells are still unclear, our ongoing studies in which gene-expression profiling was performed in HSCs and progenitor subsets revealed that the list of STAT5-targets is significantly enriched for membrane (\textgreekgamma-associated) proteins.102 One of the STAT5 targets that has been identified is MUC1130 which is a (proto)oncogene involved in adhesion and transendothelial migration, and has been associated with initiation of various intracellular signal transduction pathways including \beta-Catenin, p53 and NF\textkappaB pathways.131-136 Also, MUC1 has been shown to mediate an oscillatory calcium signal upon binding to ICAM1.137 Within the endosteal region of the bone marrow where stem cells are thought to reside, Ca2+ levels are high, and HSC retention within the niche depends on the Calcium-Sensing receptor (CaR).138 Thus, STAT5 might exert its phenotype, at least in part, by influencing interactions between HSCs and their niche.

Conclusions and Future Perspectives

In both murine and human model systems it has been convincingly shown that STAT5 fulfills an important role in hematopoietic stem cell self-renewal. Although the precise mechanisms by which HSC self-renewal is orchestrated by STAT5 remain elusive till date, an increasing number of STAT5 target genes have been identified that are currently under investigation. In myeloproliferative diseases and leukemias, a number of oncogenes have been identified that are capable of inducing STAT5 activity, and accumulating evidence has...
indicated that STAT5 participates in self-renewal of leukemic stem cells as well. Thus, it appears likely that STAT5 will become an important diagnostic marker in the near future, and specific targeting of STAT5 should be focus of therapeutic intervention strategies to improve treatment of hematological malignancies.

References

1. Bunting KD. STAT5 signaling in normal and pathologic hematopoiesis. Front Biosci 2007; 12:2807-20; PMID: 17485261; http://dx.doi.org/10.2741/2227
2. Paukku K, Svennoinnen O. STATs as critical mediators of signal transduction and transcription: lessons learned from STAT5. Cytokine Growth Factor Rev 2004; 15:435-55; PMID:15561601; http://dx.doi.org/10.1016/j.cytofgfr.2004.09.001
3. Schindler C, Darnell JE, Jr. Transcriptional responses to polypeptide ligands: the JAK-STAT pathway. Annu Rev Biochem 1995; 64:621-52; PMID:7734495; http://dx.doi.org/10.1146/annurev.bio.64.070195.003201
4. Ille JN. The Stat family in cytoine signaling. Curr Opin Cell Biol 2001; 13:211-7; PMID:11248555; http://dx.doi.org/10.1016/S0952-0622(00)00199-X
5. Hennighausen L, Robinson GW. Interpretation of cytoine signaling through the transcription factors STAT5A and STAT5B. Genes Dev 2008; 22:711-21; PMID:18347099; http://dx.doi.org/10.1101/gad.1643908
6. Han L, Wierenga AT, Rozenfeld-Gesgian M, van de Lande K, Vellenga E, Schuringa JI. Single-cell STAT5 signal transcription profiling in normal and leukemic stem and progenitor cell populations reveals highly distinct cytoine responses. PLoS One 2009; 4:e7989; PMID:19956772; http://dx.doi.org/10.1371/journal.pone.0007989
7. Ryan JJ, Huang H, McReynolds JJ, Shurburne C, Hu L, Huff TF, et al. Stem cell factor activates STAT5 DNA binding in IL-3-derived bone marrow mast cells. Exp Hematol 1997; 25:357-62; PMID:9131012
8. Pallard C, Gouilleux F, Benet L, Cocrault L, Souyri M, Levy D, et al. Thrombospondin activates a STAT5-like factor in hematopoietic cells. EMBO J 1995; 14:2847-56; PMID:7786111
9. Feugier P, Li N, Dy J, Sheh JH, McKenna KL, Leseye JF, et al. Oreopetoeitic myelo asthma with thrombocytopenia, c-kit ligand, and flk-2 ligand supports long-term mobilized CD34+ hematopoiesis in vitro. Stem Cells Dev 2005; 14:505-16; PMID:16305336; http://dx.doi.org/10.1089/scd.2005.14.505
10. Seita J, Emi H, Ochoera J, Yamazaki M, Takaoka T, Miyazaki T, et al. Isolation of a highly enriched Stat5a-/-5b-/- mice: a direct role for Stat5a in long-term mobilized CD34+ hematopoiesis in vitro. Stem Cells Dev 2007; 16:735-41; PMID:17727007
11. Pallard C, Gouilleux F, Charon M, Gouilleux F, Bénit L, Cocault L, Souyri M, et al. Interleukin-3, erythropoiesis in the absence of EpoR and Jak2. Blood 2008; 111:211-22; PMID:18328098; http://dx.doi.org/10.1182/blood-2007-07-102848
12. Li G, Wang Z, Zhang Y, Kang Z, Haverminkova E, Cui Y, et al. STAT5 regulates the N domain to maintain hematopoietic stem cell repopulating function and appropriate lymphoid-myeloid lineage output. Exp Hematol 2007; 35:1684-94; PMID:17976521; http://dx.doi.org/10.1016/j.exphem.2007.08.026
13. Moriggl R, Sexl V, Piekorz R, Topham D, Ihle JN. The Jak-STAT pathway: mediators of signal transduction and transcription 5a (STAT5a) is required for eosinophil development. Genes Dev 2000; 14:232-44; PMID:10652277
14. Coutrot JP, Kondremann L, de Groot RP. The role of STAT5 in myelod differentiation and leukemia. Oncogene 2000; 19:2511-22; PMID:10851050; http://dx.doi.org/10.1038/sj.onc.1203479
15. Kishinger M, Wolfdien I, Moerig R, Hoffman J, marine IC, Ille JN, et al. Antiproliferative activity of Stat5 required during terminal stages of myeloid differentiat. Genes Dev 2000; 14:232-44; PMID:10625227
16. Xiao W, Hong H, Wakiwami J, Lowell CA, Wakiwami J, Tateno K. Regulation of myeloproliferation and M2 macrophage differentiation by Stat5. Proc Natl Acad Sci U S A 2007; 104:2349-54; PMID:17284614; http://dx.doi.org/10.1073/pnas.0606284104
17. Schuringa JJ, Schuringa J, Wong B, Dorn DC, Moore MA. Enforced expression of a Flt3 internal tandem duplication in human CD34+ cells confers properties of self-renewal and enhanced erythropoiesis. Blood 2005; 105:77-84; PMID:15242879; http://dx.doi.org/10.1182/blood-2003-12-4445
18. Schuringa JI, Weng J, Borghardt DM, Simonyi ME, Simon M, et al. STAT5 and growth factor signaling in peripheral T cells. J Immunol 2001; 167:1068-72; PMID:11671599
19. Rucinski JL, Okafe R, Yu JC, Lee BH, Giese N, Schenken DP, et al. Roles of ronin-589 and 591 in STAT5 activation and transformation mediated by FLt-3/ITD. Blood 2006; 108:1339-45; PMID:16627279; http://dx.doi.org/10.1182/blood-2005-11-014429
20. Chang KY, Morrone G, Schuringa JI, Wong B, Dorn DC, Moore MA. Enforced expression of a Flt3 internal tandem duplication in human CD34+ cells confers properties of self-renewal and enhanced erythropoiesis. Blood 2005; 105:77-84; PMID:15242879; http://dx.doi.org/10.1182/blood-2003-12-4445
21. Schuringa J, Schadwell J, Tickenbrook L, Sargin B, Ueker A, et al. Activation mechanisms of STAT5 by oncogenic Flt3-ITD. Blood 2007; 110:370-4; PMID:17356313; http://dx.doi.org/10.1182/blood-2006-05-024018
22. Schadwell J, Schadell J, Tickenbrook L, Sargin B, Kiderle T, et al. AML-associated Flt3 kinase domain mutations show signal transduction differences compared with Flt3 ITD mutations. Blood 2005; 106:265-3; PMID:15376997; http://dx.doi.org/10.1182/blood-2004-07-1924
23. Kayo H, Ohino R, Ueda R, Saito H, Naoe T. Mechanism of constitutive activation of FL3 with internal tandem duplication in the juxtanembranous domain. Oncogene 2002; 21:2353-63; PMID:12007417; http://dx.doi.org/10.1038/sj.onc.1205352
24. Birkenkamp KJ, Gueugn M, Lemmin HK, Kruijer W, Vellenga E. Regulation of constitutive STAT5 phosphorylation in acute myloid leukemia blasts. Leukemia 2001; 15:1923-31; PMID:11753614; http://dx.doi.org/10.1038/sj.leu.2402317
25. Minuki M, Feniuk R, Halder H, Matsumura I, Schmidt R, Muller C, et al. Flt3 mutations from patients with acute myeloid leukemia induce transformation of 32D cells mediated by the Ras and STAT3 pathways. Blood 2000; 96:3967-14; PMID:10690077
26. Abu-Duhier FM, Goodeve AC, Wilson GA, Caris RS, Peake IR. Identification of novel FLT3 Asp385 mutations in adult acute myloid leukemia. Br J Haematol 2001; 113:98-3; PMID:11444293; http://dx.doi.org/10.1046/j.1365-2141.2001.02850.x
27. Schwaller J, Pargana E, Wang D, Cain D, Auer JC, Williams IR, et al. Stat5 is essential for the myeloid-lymphoproliferative disease induced by TEL/JAK2. Mol Cell 2006; 6:693-704; PMID:17103348; http://dx.doi.org/10.1016/j.cytogfr.2007.01.008; 10.1006/ltkm.2001.0305
28. Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S, et al & Cancer Genome Project. Acquisition of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 2005; 365:1054-61; PMID:15781101
56. Heath C, Cross NC. Critical role of STAT5 activation

55. Danial NN, Pernis A, Rothman PB. Jak-STAT

54. Cools J, Stover EH, Gilliland DG. Detection of the

53. Buitenhuis M, Verhagen LP, Cools J, Coffer PJ.

52. Sternberg DW, Tomasson MH, Carroll M, Curley

51. Cain JA, Xiang Z, O’Hare T, Tyner JW, Loriaux M, et al. Activating allies of JAK3 in acute megakaryoblastic leukemia. Cancer Cell 2006; 10:65-75; PMID:16684366; http://dx.doi.org/10.1016/j.cjc.2006.06.002

50. Brizzi MF, Dentelli P, Rosso A, Yarden Y, Pegoraro L. FIP1L1-PDGFRA fusion in idiopathic hypereosinophilia. Blood 2006; 107:3279-87; PMID:16278304; http://dx.doi.org/10.1182/blood-2005-08-3087

49. Corbacioglu S, Kilic M, Westhoff MA, Reinhardt D, Sillaber C, Gesbert F, Frank DA, Sattler M, Griffin JD. STAT5 expression in non-CML chronic myeloproliferative disorders conveys a JAK2V617F mutation that promotes cell proliferation. Mol Cell Biol 1998; 18:3871-9; PMID:9563277

48. Beghini A, Larizza L, Cairoli R, Morra E. c-kit activating mutation in myeloproliferative disorders. N Engl J Med 2007; 352:1779-90; PMID:18588178; http://dx.doi.org/10.1056/NEJMoa051113

47. Beghini A, Larizza L, Cairoli R, Morra E. c-kit activating mutation in the tyrosine kinase JAK2 in polycythaemia vera, essential thrombocythaemia, and myelodysplasia with myelofibrosis. Blood 2010; 116:4621-30; PMID:20724541; http://dx.doi.org/10.1182/blood-2010-07-306355

46. Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythaemia, and myeloid metaplasia with myelofibrosis. N Engl J Med 2005; 352:1779-90; PMID:18588178; http://dx.doi.org/10.1056/NEJMoa051113

45. Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythaemia, and myeloid metaplasia with myelofibrosis. N Engl J Med 2005; 352:1779-90; PMID:18588178; http://dx.doi.org/10.1056/NEJMoa051113

44. Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythaemia, and myeloid metaplasia with myelofibrosis. N Engl J Med 2005; 352:1779-90; PMID:18588178; http://dx.doi.org/10.1056/NEJMoa051113

43. Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Delhommeau F, Lacout C, et al. A unique clonal population of BCR-ABL-positive leukemia cells resistant to kinase inhibitors. Blood 2011; 117:3421-9; PMID:21233333; http://dx.doi.org/10.1182/blood-2009-11-255232

42. James C, Ugo V, Le Couédic JP, Staerk J, Thanopoulou E, Eaves A, et al. BCR-ABL-transduced human cord blood cells produce abnormal populations in immunodeficient mice. Leukemia 2005; 19:3871-9; PMID:15998795; http://dx.doi.org/10.1038/sj.bj.6905430

41. Nelson EA, Walker SR, Weisberg E, Bar-Natan M, Barrett R, Gashin LB, et al. The STAT5 inhibitor pimozide decreases survival of chronic myelogenous leukemia cells resistant to kinase inhibitors. Blood 2011; 117:3421-9; PMID:21233333; http://dx.doi.org/10.1182/blood-2009-11-255232

40. Ilaria RL, Jr., Van Etten RA. P210 and P190(BCR/ ABL) induce the tyrosine phosphorylation and DNA binding activity of specific STAT family members. Blood 1996; 102:1108-12; PMID:8749095; http://dx.doi.org/10.1182/blood-1996-02-31691

39. Shuai K, Halpern J, ten Hoeve J, Rao X, Sawyer CL, McMahon M, et al. Identification and characterization of a constitutively active STAT5 mutant that promotes cell proliferation. Mol Cell Biol 1998; 18:3871-9; PMID:9563277

38. Moriggl R, Sexl V, Kenner L, Duncscht, Stangl K, Gingras S, et al. Stat5 retnamer formation is associated with leukemogenesis. Cancer Cell 2005; 7:87-99; PMID:15632752; http://dx.doi.org/10.1016/j.ccr.2004.12.010

37. Kato Y, Iwama A, Tadokoro Y, Shimoda K, Minoguchi M, Akira S, et al. Selective activation of STAT5 unrolls its role in stem cell self-renewal in normal and leukemic hematopoiesis. J Exp Med 2005; 202:1605-79; PMID:15998795; http://dx.doi.org/10.1084/jem.20042541

36. Thlavedo Y, Krijgenhoek J, Askar O, Sato H, Kinoshita H, Moriggl R, Sexl V, Kenner L, Duncscht, Stangl K, Gingras S, et al. Stat5 retnamer formation is associated with leukemogenesis. Cancer Cell 2005; 7:87-99; PMID:15632752; http://dx.doi.org/10.1016/j.ccr.2004.12.010

35. Ilaria RL, Jr., Van Etten RA. P210 and P190(BCR/ ABL) induce the tyrosine phosphorylation and DNA binding activity of specific STAT family members. Blood 1996; 102:1108-12; PMID:8749095; http://dx.doi.org/10.1182/blood-1996-02-31691

34. Ilaria RL, Jr., Van Etten RA. P210 and P190(BCR/ ABL) induce the tyrosine phosphorylation and DNA binding activity of specific STAT family members. Blood 1996; 102:1108-12; PMID:8749095; http://dx.doi.org/10.1182/blood-1996-02-31691

33. James C, Ugo V, Le Couédic JP, Staerk J, Thanopoulou E, Eaves A, et al. BCR-ABL-transduced human cord blood cells produce abnormal populations in immunodeficient mice. Leukemia 2005; 19:44-2; PMID:15674417; http://dx.doi.org/10.1038/sj.bj.6905430

32. Riau A, Horton SJ, Oltshof S, Donte B, Ausema A, van Os R, et al. BM11 collaborates with BCR-ABL in leukemic transformation of human CD34+ cells. Blood 2010; 116:4621-30; PMID:20724541; http://dx.doi.org/10.1182/blood-2008-02-276660

31. Bunting KD, Bradley HL, Hawley TS, Morrigl R, Sorrentino BP, Ile N. Reduced lymphomyeloid repopulating activity from adult bone marrow and fetal liver of mice lacking expression of STAT5. Blood 2005; 100:9478-87; PMID:157181228; http://dx.doi.org/10.1182/blood-V99.2.479

30. Bradley HL, Hawley TS, Bunting KD. Cell intrinsic defects in cytokine responsiveness of STAT5-deficient hematopoietic stem cells. Blood 2002; 100:3983-9; PMID:12393407; http://dx.doi.org/10.1182/blood-2002-05-1602

29. Bradley HL, Coulledge C, Bunting KD. Hematopoietic-repopulating defects from STAT5-deficient bone marrow are not fully accounted for by loss of thrombopoietin responsiveness. Blood 2004; 103:2965-72; PMID:15070672; http://dx.doi.org/10.1182/blood-2003-08-2963
the oncogenic serine/threonine kinase PIM kinases display reduced body size and impaired responses to hematopoietic growth factors. Mol Cell Biol 2004; 24:6104-15; PMID:15199914; http://dx.doi.org/10.1128/MCB.01662-06.

Bakker WJ, van Dijk TB, Ploegh LE, Szalay AM, Cheng XW, et al. Hematopoietic stem cell quiescence is regulated by the inhibitor of DNA damage and maintains self-renewal of leukaemia-initiating cells. Exp Hematol 2002; 30:262-71; PMID:11882364; http://dx.doi.org/10.1016/s0301-472x(01)00787-1.

Heath V, Suh HC, Holman M, Renn K, Gooya JM, et al. C/EBPalpha deficiency results in hyperproliferation of hematopoietic progenitor cells and disrupts macrophage development in vivo and in vitro. Blood 2008; 104:1639-47; PMID:18779318; http://dx.doi.org/10.1182/blood-2008-08-196690.

Kutok JL, et al. Lymphoid cell growth and transformation are suppressed by a key regulatory element of the gene encoding PU.1. Nat Genet 2006; 38:27-37; PMID:16311598; http://dx.doi.org/10.1038/ng1679.

Rosenbauer F, Owens BM, Yu L, Tumang JR, Steidl U, Kunot J, et al. Lymphoid cell growth and transformation are suppressed by a key regulatory element of the gene encoding PU.1. Nat Genet 2006; 38:27-37; PMID:16311598; http://dx.doi.org/10.1038/ng1679.

Bakker WJ, van Dijk TB, Ploegh LE, Szalay AM, Cheng XW, et al. Hematopoietic stem cell quiescence is regulated by the inhibitor of DNA damage and maintains self-renewal of leukaemia-initiating cells. Exp Hematol 2002; 30:262-71; PMID:11882364; http://dx.doi.org/10.1016/s0301-472x(01)00787-1.

Heath V, Suh HC, Holman M, Renn K, Gooya JM, et al. C/EBPalpha deficiency results in hyperproliferation of hematopoietic progenitor cells and disrupts macrophage development in vivo and in vitro. Blood 2008; 104:1639-47; PMID:18779318; http://dx.doi.org/10.1182/blood-2008-08-196690.

Kutok JL, et al. Lymphoid cell growth and transformation are suppressed by a key regulatory element of the gene encoding PU.1. Nat Genet 2006; 38:27-37; PMID:16311598; http://dx.doi.org/10.1038/ng1679.

Rosenbauer F, Owens BM, Yu L, Tumang JR, Steidl U, Kunot J, et al. Lymphoid cell growth and transformation are suppressed by a key regulatory element of the gene encoding PU.1. Nat Genet 2006; 38:27-37; PMID:16311598; http://dx.doi.org/10.1038/ng1679.
122. Kaluz S, Kaluzová M, Stanbridge EJ. Regulation of gene expression by hypoxia: integration of the HIF-transduced hypoxic signal at the hypoxia-responsive element. Clin Chim Acta 2008; 395:6-13; PMID:18505681; http://dx.doi.org/10.1016/j.cca.2008.05.002

123. Takubo K, Goda N, Yamada W, Iritwashima H, Ikeda E, Kubota Y, et al. Regulation of the HIF-1alpha level is essential for hematopoietic stem cells. Cell Stem Cell 2010; 7:391-402; PMID:20804974; http://dx.doi.org/10.1016/j.stem.2010.06.020

124. Simsek T, Kocaba F, Zheng J, Deberardinis RJ, Mahmoud AI, Olson EN, et al. The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell 2010; 7:380-90; PMID:20804973; http://dx.doi.org/10.1016/j.stem.2010.07.011

125. Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC, et al. Osteoblastic cells regulate the hematopoietic stem cell niche. Nature 2003; 425:841-6; PMID:14574413; http://dx.doi.org/10.1038/nature02040

126. Rizo A, Vellenga E, de Haan G, Schuringa JJ. Long-term maintenance of human hematopoietic stem/progenitor cells by expression of BMI1. Blood 2008; 111:2621-30; PMID:18156489; http://dx.doi.org/10.1182/blood-2007-08-106666

127. Schofield R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 1978; 4:7-25; PMID:767780

128. Zhang J, Niu C, Ye L, Huang H, He X, Tong WG, et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 2003; 425:836-41; PMID:14574412; http://dx.doi.org/10.1038/nature02041

129. Rizo A, Donrje B, Vellenga E, de Haan G, Schuringa JJ. Long-term maintenance of human hematopoietic stem/progenitor cells by expression of BMI1. Blood 2008; 111:2621-30; PMID:18156489; http://dx.doi.org/10.1182/blood-2007-08-106666

130. Fatrai S, Schepers H, Tadema H, Vellenga E, Daenen SM, Schuringa JJ. Mucin1 expression is enriched in the human stem cell fraction of cord blood and is upregulated in majority of the AML cases. Exp Hematol 2008; 36:1254-65; PMID:18640764; http://dx.doi.org/10.1016/j.exphem.2008.04.015

131. Ahmad R, Raina D, Trivedi V, Ren J, Rajabi H, Kharbanda S, et al. MUC1 oncoprotein regulates the IKKbeta kinase beta complex and constitutive NF-kappaB signalling. Nat Cell Biol 2007; 9:1419-27; PMID:18037881; http://dx.doi.org/10.1038/ncli.1661

132. Huang L, Ren J, Chen D, Li Y, Kharbanda S, Kufe D. MUC1 cytoplasmic domain coactivates Wnt target gene transcription and confers transformation. Cancer Biol Ther 2003; 2:700-4; PMID:14688481; http://dx.doi.org/10.4161/cbt.2.6.610

133. Huang L, Chen D, Liu D, Yin L, Kharbanda S, Kufe D. MUC1 oncoprotein blocks glycogen synthase kinase beta-mediated phosphorylation and degradation of beta-catenin. Cancer Res 2005; 65:10413-22; PMID:16288032; http://dx.doi.org/10.1158/0008-5472.CAN-05-2474

134. Wen Y, Gaffrey TC, Wheelock MJ, Johnson KR, Hollingsworth MA. Nuclear association of the cytoplasmic tail of MUC1 and beta-catenin. J Biol Chem 2003; 278:38029-39; PMID:12832415; http://dx.doi.org/10.1074/jbc.M304333200

135. Wei X, Xu H, Kufe D. Human MUC1 oncoprotein regulates p53-responsive gene transcription in the genotoxic stress response. Cancer Cell 2005; 7:167-78; PMID:157510329; http://dx.doi.org/10.1016/j.ccr.2005.01.008

136. Rahn JJ, Chow JW, Horne GJ, Mah BK, Emerman JT, Hoffman P, et al. MUC1 mediates transendothelial migration in vitro by ligating endothelial cell ICAM-1. Clin Exp Metastasis 2005; 22:475-83; PMID:16320110; http://dx.doi.org/10.1007/s10585-005-3098-x

137. Rahn JJ, Shen Q, Mah BK, Hugh JC. MUC1 initiates a calcium signal after ligation by intercellular adhesion molecule-1. J Biol Chem 2004; 279:27986-90; PMID:15169768; http://dx.doi.org/10.1074/jbc.C400102200

138. Adams GB, Chabner KT, Alley IR, Olson DP, Szczepiorkowski ZM, Pozansky MC, et al. Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor. Nature 2006; 439:599-603; PMID:16582241; http://dx.doi.org/10.1038/nature04247