RESEARCH ARTICLE

BIOFILM FORMATION AND ANTIFUNGAL SUSCEPTIBILITY OF CANDIDA ISOLATES FROM ORAL CAVITY AFTER THE INTRODUCTION OF FIXED ORTHODONTIC APPLIANCES

Abdalhaq Hussein Alhasani¹, Ameen Abdullah Yahya Al-Akwa², Hassan Abdul Wahab Al-Shamahy³, Hussein Mohammad Shoga Al-deen⁴, Mohammed A Al-labani⁵

¹Orthodontics, Pedodontics and Prevention Department Faculty of Dentistry, Ibb University, Yemen.
²Orthodontics, Pedodontics and Prevention Department Faculty of Dentistry, Sana’a University, Yemen.
³Department of Basic Sciences, Faculty of Dentistry, Sana’a University, Republic of Yemen.

ABSTRACT

Background and aims: Fixed Orthodontic Appliances (FOA) act as diverse impact zones and modify microbial adherence and colonization, acting as unfamiliar reserves and potential sources of infection. This study was conducted to inspect the effect of the introduction of fixed orthodontic appliances on the growth and adherence (biofilm formation) of Candida species. And also to reveal the species distribution and antifungal sensitivity to isolated Candida species.

Material and methods: The trial group was chosen from orthodontic patients whom were inspected clinically as soon as to get baseline information prior to active treatment. The group included 210 patients; 165 females, and 45 males, (mean age 21.6 ± 4.5 years). Clinical, demographic, and risk factor data were collected in a standard questionnaire and then each individual was directed to perform an oral rinse with phosphate-buffered saline, which was expectorated and processed proposed for the isolation and identification of Candida species by standard methods. After that, the isolated Candida species were tested for biofilm production by the phenotypic method i.e. Tissue culture palate methods (TCPM). Finally, antibiogram susceptibility pattern of oral Candida species were done by Kirby-Bauer disc diffusion method for amphotericin B, ketoconazole, and fluconazole.

Results: The most common yeast colonized oral cavity after the introduction of FOA was C. albicans (72.5%), followed by C. glabrata and C. tropicalis (12.5%), while Candida parapsilosis only was 2.5%. The rate of formation of biofilms was 52.5% for all types of Candida, and it was found that biofilm formation occurs more frequently among C. tropicalis and C. glabrata (60%) than C. albicans (48.3%). All Candida species isolates were sensitive to amphotericin B and ketoconazole while resistance to fluconazole was found in 40% of C. tropicalis and 20% in C. glabrata and 13.8% in C. albicans.

Conclusion: The present study proved that C. albicans is still the major isolate from the oral cavity after the introduction of FOA, but non-albicans species colonization is raised and FOA might be a factor for biofilm formation. The C. tropicalis and C. glabrata were more– biofilm-producers compared to C. albicans. The isolated species in the current study are less susceptible to fluconazole and drug resistant factor in the Candida species isolates was found to be associated with biofilm formation.

Keywords: Antifungal resistance, biofilm formation, Candida species, Candida albicans, Fixed Orthodontic Appliances (FOA), non-albicans species, oral cavity.

INTRODUCTION

For a long time, the conventional orthodontic patient was regarded as a low-risk patient and the orthodontic procedure was regarded as non-invasive¹. Nevertheless, these devices can be related with difficulty cleaning. During treatment, festive areas have formed that favor the accumulation of biofilms and bacterial and fungal growth². One of the biggest challenges in orthodontics is to maintain proper oral hygiene during treatment, bands and other accessories further exacerbate these conditions by maintaining the dental plaque, which can lead to gingivitis and enamel demineralization, causing white spots, caries and Candida stomatitis³,⁴. Microbiological studies have proven that after setting a fixed orthodontic appliance, the number of microorganisms increases extensively, especially
Streptococci, Lactobacilli, and Candida, exposing the oral environment to an imbalance and allowing the emergence of diseases. Even though dental biofilms are made up of many types of microorganisms, yeast and bacteria are believed to be involved in the early development of oral and dental lesions. Therefore, the success of orthodontic treatment lies in correcting the occlusion in the best possible way, in spite of this, without affecting the health of the teeth and the supporting tissues; unless, the benefits of treatment can be questioned. The practice of orthodontics is undergoing continuous progress using new methods and materials that assist both patients and practitioners. Emphasis has been placed on attempts to prevent the development of carious lesions or oral infections in orthodontic patients on controlling bacterial and yeast biofilms around the arcs. During treatment, orthodontists are also responsible for preventing caries and preventing other mouth infections. The orthodontic appliance acts as a different site for the formation of biofilms. In a study by Eliades et al., it can be expected that stainless steel wires above critical surface tension have a higher plaque retention capacity. Also, metal orthodontic brackets have been found to stimulate specific changes in the oral environment such as low pH levels and the affinity of microorganisms to a metal surface due to electrostatic reactions, increased plaque buildup, and colonization of organisms increased. However, other studies on potential differences in initial convergence and adherence to microorganisms on metal, ceramic and plastic brackets over time were inconclusive. Thus, it is difficult to make a clear assessment that metal braces have a less carcinogenic effect on the teeth or reduce colonization of the mucous membrane than plastic or ceramic braces. Inserting the orthodontic wire tends to create new surfaces available to form plaques and thereby amplify the level of microorganisms in the oral cavity. It has long been suggested that orthodontic bands and wires lead to increased plaque buildup and elevated levels of Streptococci, Lactobacilli, and yeast. Additionally, orthodontic patients with fixed devices often offer an abundance of S. mutans per plaque compared to untreated orthodontic patients. As a result, preventing microbial attachment to orthodontic wires is a major concern for orthodontists. Candida species are most often recovered in the mouth, equal to 50% in young adults. Candida albicans is the common species; on the other hand other species such as C. parapsilosis, C. dubliniensis, C. krusei, C. tropicalis, and C. glabrata have increased in occurrence with restricted drugs sensitive to them including allylamines, polyenes, azoles and echinocandins classes due to the development of drug resistance promptly to Candida species. The yeast of the genus Candida, albicans species, has been analyzed because it is most common in oral mucosa. It has been proven that this yeast colonizes cement, enamel and dentine, and serves as a reservoir for the spread of infection. However, the ability of yeast to remain on inactive surfaces needs further clarification in order to realize its virulence and dissemination routes. This study was conducted to investigate the effect of fixed orthodontic appliances introduction on the growth and adherene (biofilm formation) of Candida species. And also determine the species distribution and antifungal sensitivity to isolated Candida.

Subjects and Laboratory Methods

Subject Selection

A total of two hundred and ten people were included, during FOA treatment, who were randomly selected from Al-Thawra Hospital, Al-Gomhoria Hospital, Faculty of dentistry Sana’a and IBB University clinics and Dental Centers in Sana’a and IBB; including Alhasani clinic and Dental Center in IBB City, Yemen. The duration of the study was six months, beginning in August 2019 and ending in February 2020. The inclusion criteria for subject selection were healthy individuals with no clinical signs of Candida infection and no systemic disease. In addition, individuals who are currently taking antifungals, steroids, antibiotics, or immunosuppressive drugs in the past six months were excluded.

Collection and identification of samples: Saliva samples were collected using the oral rinse technique. In summary, each subject was required to rinse the mouth for 60 seconds using 10 ml of a phosphate sterile saline (PBS, 0.01M phosphate buffered saline, pH 7.2) and eject the rinse into a sterile 15 ml container. The samples were immediately transported on ice to the microbiology laboratory. Each oral rinse was centrifuged at 3500 rpm for 10 minutes, and then the supernatant was discarded. The pellet was suspended in 1ml sterile PBS. One hundred µL of the concentrated oral rinse was inoculated onto Sabouraud’s dextrose agar and incubated at 37°C for 48 hours. The lasting samples were stored at -20°C. If Candida colonies appeared on the Sabouraud’s dextrose agar, then chromogenic Candida agar was inoculated using 100µl of the oral rinse supernatant and incubated for 48 hours for colonies study. Candida species were identified by the color of the colonies using the color reference guide supplied by the manufacturer. When color identification was unclear, fermentation assay of sucrose, maltose, glucose, lactose, and galactose was done. The Candida species were also identified by the ability to produce chlamydo-spires on glutinous rice agar.

Antifungal Susceptibility Testing

The in vitro activity of antifungal agents (20 µg amphotericin B, 10 µg ketoconazole, and 25 µg fluconazole) was measured by disk diffusion method according to the procedure described in the clinical and laboratory standard institute. The plates were incubated at 35°C, and inhibition zone diameters (dz) were measured after 24 and 48 h particularly for C. glabrata. The interpretive criteria for the disk test were as follow: amphotericin B: dz ≥15mm, susceptible; 14≤dz≥10mm, susceptible dose dependent and dz≤9mm, resistant. Fluconazole: dz≥19mm, susceptible; 15≤dz≤18mm, susceptible dose dependent and dz≤14mm, resistant. As for ketoconazole: dz≥20mm, susceptible; 10≤dz< susceptible dose dependent and dz≤10mm, resistant.
Biofilm production detection

The detection of biofilm was done by tissue culture method/microtiter plate method (TCP)24,25. The yeast isolates from fresh agar plates were inoculated in 2 ml of Brain heart infusion (BHI) broth and incubated for 24 h at 37°C. The cultures were then diluted 1:40 with fresh medium (BHI broth supplemented with 1% glucose); 200 μl of the sample was dispensed in the individual microtitration plate and incubated further 24 h at 37°C. With a gentle tapping, the content was removed further with a subsequent washing with phosphate buffer saline (pH 7.2) three times to remove free floating sessile Candida. The adherent yeast, biofilm producer, were fixed with sodium acetate (2%) and stained with crystal violet (0.1% w/v) for 10–15 min. The unbound crystal violet solution was removed with a triplicate washing with PBS, and the plate, then, was kept for drying. Finally, all wells were filled with 200 μl of ethanol (95%) to release dye from the well and Optical Density (OD) was performed at the wavelength of 630 nm. OD value of each test strain and negative control were calculated, and OD cutoff values (ODc) were assessed as described previously25.

Data analysis

The results were expressed as percentages for the description of Candida isolates according to species and various clinical samples. Data were statistically analyzed using the chi-squared test. A value of $p < 0.05$ was considered significant.

Ethical approval

We obtained written consent from all cases. The study proposal was evaluated and approved by the Ethics Committee of Faculty of Medicine and Health Sciences, Sana’a University.

Table 1: The age and sex distribution of patients with fixed orthodontics at a selected dental clinic in the city of Sana’a and Ibb.

Characters	Number	Percentage
Sex		
Male	45	21.4
Female	165	78.6
Age groups		
≤15 years	12	5.7
16-20 years	61	29
21-25 years	117	55.7
>25 years	20	9.5
Total	210	100

Table 2: Distribution of different types of Candida species among Fixed Orthodontic patients.

Candida species	Number	Rate from Total n=210	Rate from total isolates n=40
Candida albicans	29	13.8	72.5
Candida glabrata	5	2.4	12.5
Candida tropicalis	5	2.4	12.5
Candida parapsilosis	1	0.5	2.5
Total Candida species	40	19	100

RESULTS

Table 1 shows the age and gender distribution of patients with fixed orthodontics at a selected dental clinic in Sana’a. 78.6% of the participants are female and only 21.4% are male. The age average ± SD for participants was 21.6±4.5 years. Most of the subjects covered were in the age group 21-25 years (55.7%) followed by 16-20 years (29%). Table 2 shows the distribution of different types of Candida species among Fixed Orthodontic patients. The predominant isolated Candida species were C. albicans with a significantly improved oral Candida albicans colonization (OCAC) rate of 13.8% after the introduction of FOA. Also the rate of C. glabrata and C. tropicalis was 2.4% after the introduction of FOA; and C. parapsilosis isolated from 1 patient (0.5%). Out of 40 Candida species tested, 21 (52.5%) were found to be biofilm producers. Maximum biofilm production was observed in the current study in C. tropicalis and C. glabrata where 3 out of 5 isolates (60%) showed biofilm production followed by C. albicans (48.3%). In the present study the degree of biofilm was divided from high and moderate to non or weak; C. tropicalis showed 40% ability to produce a high level of biofilm formation, while only 17.2% of C. albicans showed that (Table 3). In vitro antifungal susceptibilities of various Candida species; showed in current study that all isolates were susceptible to amphotericin B and ketoconazole. Fluconazole resistance was found in 13.8% of Candida albicans, 40% in C. tropicalis and 20% in C. glabrata (Table 4). Biofilm strains showed relatively high resistance against Fluconazole 19% compared to non-producing biofilm strains 5.2% (Table 5).

Table 3: Biofilm detection by TCP method for different oral Candida species isolates.

Candida species	Biofilm detection by TCP	Total biofilm positive									
	High*	Moderate*	Non/weak*	No.	%	No.	%	No.	%	No.	%
Candida albicans n=29	5	17.2	9	31	15	51.7	14	48.3			
Candida glabrata n=5	1	20	2	40	2	40	3	60			
Candida tropicalis n=5	2	40	1	20	2	40	3	60			
Candida parapsilosis n=1	8	0	1	100	0	0	1	100			
Total n=40	8	0	1	100	0	0	1	100			

TCP-*High-O.D(>0.240), *Moderate-O.D (0.120-0.240), *Weak/Non-O.D (<0.120).
DISCUSSION

The current study, explored OCAC rate through fixed orthodontic treatment, reveals that the wearing of such appliances leads to an enhanced carriage and extensive alterations in the oral microorganism population, probably due to the appliance-induced ecological alterations within the oral cavity. The OCAC primary absence of the baseline patient cluster was not unexpected, as applicants were requested to ascertain good oral hygiene prior to the trial. On the other hand, after the introduction of FOA, a 13.8% increase in the OCAC rate was observed in the test group. The incidence of orthodontic attachments on the labial and lingual surfaces of these teeth is likely to be the cause for this observation, as they interfere with thorough brushing of the gingival area. Comparable changes in OCAC rate during orthodontic treatment with removable and fixed appliances have been reported by several authors. Furthermore, the presence of rough-surfaced bonding material in FOA or dentures acting as a C. albicans trap and a gingival irritation may have played a causative role. Thus, a significant increase in the OCAC rate after the introduction of FOA in the current study may be partly due to the patient's attitude and behavior, in addition to the presence of FOA which made it difficult to maintain dental hygiene. Knowing the growth and adhesion of cariogenic streptococci and C. albicans to orthodontics will highlight a better way to prevent the enamel demineralization and the formation of white spots. Biofilms are recognized for their composition on many implanted medical devices, including catheters, pacemakers, heart valves, dentures, and artificial joints, which provide a surface and safe haven for the growth of biofilms. The human health consequences of device-related infection can be severe and very life-threatening. In the present study, there was a considerable oral carriage rate for C. albicans, among FOA patients (13.8%). Also, out of 40 Candida species 21 (52.5%) were found to be biofilm producers. This high rate of colonization and biofilm production of Candida species in FOA patients may lead to oral infections in our individuals or move to the respiratory and digestive systems. This suggestion can be confirmed by NHI analysis that indicates that biofilms in general (including bacterial and fungal biofilms) are responsible for more than 80% of all microbial infections. For structural and physiological reasons, the biofilms are inherently resistant to antimicrobial therapy and immune defenses of the host. Biofilms cause many infections, ranging from infections of the superficial mucosa to severe, diffuse bloodstream infections. These infections are most frequently started from biofilms formed on mucosal surfaces or implanted medical devices, such as FOA. Current study showed that among the non-albicans species, the biofilm positivity occurred most frequently among isolates of C. tropicalis (60%), also C. tropicalis showed the highest score of biofilm intensity 40%. This result is similar to several published studies in which C. tropicalis was recognized as strong slime producers. However, Kuhn et al. showed that C. albicans produces quantitatively more biofilm than other Candida species, but in that study the assessment of biofilm was based on quantization and fluorescent microscopic examination proving that the biofilm formed by pathogenic C. albicans was a complex phenomenon composed of blastospore layer coved by a thick biphasic matrix, consisting of a dense extracellular component comprised of cell wall-like compounds and abundant hyphal elements composed of polysaccharide elements. In the current study, in vitro antifungal sensitivity to various Candida species showed that all isolates were sensitive to amphotericin B and ketoconazole. However, resistance to fluconazole was found in 13.8% of Candida albicans, 40% in C. tropicalis; and 20% in C. glabrata (Table 4). Also, biofilm strains displayed relatively high resistance against tested fluconazole 19% than non-biofilm producers 5.2% (Table 5). This result can be explained by the facts that Candida biofilms are resistant to standard antifungal medications due to the availability of biofilms that are considered physical protection of fungi from medications, as well as cells in biofilms become essentially resistant to drugs due to their changed metabolic states and their constitutive up regulation of drug pumps. C. albicans biofilm development in vitro can be divided into four phases: (1) attachment and colonization of round yeast cells to a surface; (2) growth and proliferation of yeast cells

Table 4: In-vitro antifungal susceptibility of oral Candida species isolated from Fixed Orthodontic patients.

Organisms	Fluconazole S (%)	R (%)	Ketoconazole S (%)	R (%)	Amphotacrin S (%)	R (%)
Candida albicans	25 (86.2)	4 (13.8)	29 (100)	0 (0)	29(100)	0 (0)
Candida glabrata	4 (80)	1 (20)	5 (100)	0 (0)	4 (100)	0 (0)
Candida tropicalis	3 (60)	2 (40)	5 (100)	0 (0)	5 (100)	0 (0)
Candida parapsilosis	1 (100)	0 (0)	1 (100)	0 (0)	1 (100)	0 (0)
Total n=40	33 (82.5)	7 (17.5)	40 (100)	0 (0)	40 (100)	0 (0)

R= resistant, S= sensitive

Table 5: Antifungal resistance pattern of Candida species associated with biofilm formation in oral Candida species isolated from FOA patients.

Antimicrobial agents	Biofilm producing Candida species n=21	Non-biofilm producing Candida species, n=19	P value
0.01	1 (5.2%)	4 (19%)	Fluconazole
1.0	0 (0%)	0 (0%)	Ketoconazole
1.0	0 (0%)	0 (0%)	Amphotacrin B

CODEN (USA): UJPRA3
creating a basal layer of anchoring cells; (3) growth of pseudohyphae (oval yeast cells joined end to end) and hyphae (long cylindrical cells) accompanying the production of the extracellular matrix and; (4) dispersal of cells from the biofilm to find new sites to colonize. Current study showed that C. albicans was the principal species recovered from the oral cavity of FOA patients.

These findings are consistent with those previously reported by other researchers. C. albicans was reported as the major agents of stomatitis. Current data provide evidence that the majority of Candida species recovered from the FOA (biomaterials) have higher capacity to produce biofilm. Similar results were obtained by other studies. Kuhn et al. reported that invasive C. albicans isolates form more biofilm than noninvasive isolates. Candida species are frequently found in the normal microbial flora of humans, which facilitates their encounter through implanted biomaterials and host surfaces. In this study, the resistance of all the isolated Candida species to fluconazole was 17.5%. The study by Nemati et al., and Mohamed and Al-Ahmadey reported that the rate of resistance to fluconazole among Candida species ranged from null to the 15%. Furthermore, current data on the fluconazole against C. albicans, discovered that 95% of tested strains were susceptible. This sensitivity rate is more or less comparable with those rates of 95%, 87.5% and 89.5% previously reported by Mohamed and Al-Ahmadey, Citak et al., and Badioee and Alborzi, respectively. Compatible with the study of Mohamed and Al-Ahmadey and Sabatelli et al., most of the detected resistant strains belong to non-albicans species (25%), emphasizing, its greatest potential to acquire resistance to fluconazole. Also, in accord with the finding of Ng et al., who reported, amphotericin B and ketoconazole susceptibility data and showed that all yeast isolates were susceptible. The possibility of an increase in the percentage of the resistance to antifungal agents among Candida species might be due to widespread use of antifungal drugs, long-term use of suppressive azoles, and the use of short courses of antifungal drugs.

CONCLUSION

The present study proved that C. albicans is still the major isolate from the oral cavity of after introducing FOA, but non-albicans species colonization is raised; FOA was a factor for oral colonization of Candida species, and biofilm formation. The C. tropicalis were more biofilm - producers compared to C. albicans. The species isolated in the current study are less susceptible to fluconazole and drug resistant factor in the Candida species isolates was found to be associated with Candidal biofilm formation.

AUTHOR’S CONTRIBUTION

This research work is part of a Master’s thesis. The candidate is Manal Ahmad Saleh AL-amri to conduct laboratory, field work and thesis. Corresponding author (HAA), first author (AHA), second author (AAA), third author (HSA), and last author (MAA) supervised the work, revised and edited the thesis draft and the manuscript.

ACKNOWLEDGMENTS

Authors acknowledge the financial support of Sana’a University, and Alhasani clinic and Dental Center in IBB City, Yemen.

CONFLICT OF INTEREST

No conflict of interest associated with this work.

REFERENCES

1. Brusca MI, Chara O, Sterin-Borda L, Rosa AC. Influence of different orthodontic brackets on adherence of microorganisms in vitro. Angle Orthod 2007;77:331-336. https://doi.org/10.2319/0003-3219/20070770331;jodob020.0.CO;2
2. Lee SJ, Kho HS, Lee SW, Jang WS. Experimental salivary pellicles on the surface of orthodontic materials. Am J Orthod Dentofacial Orthop 2001; 119:59–66. https://doi.org/10.1067/mod.2001.110583
3. Shoga Al-deen HM, Ahmed Ali O, Al-Shamahy HA, et al. Oral Candida albicans colonization rate in fixed orthodontics patients. Universal J Pharm Res 2020; 5(2):1-5. https://doi.org/10.22270/uipjr.v5i2.280
4. Al-Kebsi OM, Othman MO. Al-Shamahy HA, et al. Oral C. albicans colonization and non-candida albicans candida colonization among university students. Yemen. Universal J Pharm Res 2017; 2(5):5-11. http://doi.org/10.22270/uipjr.v2i5.R2
5. Al-Sanabani NF, Al-Kebsi AM, Al-Shamahy HA, Abbass AKM. Etiology and risk factors of stomatitis among Yemeni denture wearers. Universal J Pharm Res 2018; 3 (1):69–73. https://doi.org/10.22270/uipjr.v3i1.R9
6. Al-Dossary OAEE, Hassan A Al-Shamahy. Oral Candida albicans colonization in dental prosthesis patients and individuals with natural Teeth, Sana’a City, Yemen. Biomed J Sci and Tech Res 2018; 11(2):1-7. https://doi.org/10.5817/bjstr.2018.11.002072
7. Pettersson LG, Maki Y, Twetman S, Edwardsson S. Mutans streptococci in saliva and interdental spaces after topical applications of an antibacterial varnish in schoolchildren. Oral Microbiol Immunol 1991; 6:284–287. https://doi.org/10.1111/j.1399-0202.1991.tb00493.x
8. Zimmer BW, Rottwinkel Y. Assessing patient-specific decalcification risk in fixed orthodontic treatment and its impact on prophylactic procedures. Am J Orthod Dentofacial Orthop 2004; 126:318–324. https://doi.org/10.1016/j.ajodo.2003.09.031
9. Bishara SE, Damon PL, Olsen ME, Jakobsen JR. Effect of applying chlorhexidine antibacterial agent on the shear bond strength of orthodontic brackets. Angle Orthod 1996; 66:313-316. https://doi.org/10.1043/0003-3219/1996/066<0313:EOACAA>2.3.CO;2
10. Van Gastel J, Quirynen M, Teughels W, Pauwels M, Coucke W, Carels C. Microbial adhesion on different bracket types in vitro. Angle Orthod. 2007;79:915-921. https://doi.org/10.2319/092908-507.1
11. Eliades T, Eliades G, Brantley WA. Microbial attachment on orthodontic appliances: I. Wettability and early pellicle formation on bracket materials. Am J Orthod Dentofacial Orthop 1995; 108:351–360. https://doi.org/10.1016/j.orthon.2003.08.002
12. Mitchell L. Decalcification during orthodontic treatment with fixed appliances—an overview. Br J Orthod 1992; 19:199–205. https://doi.org/10.1179/bjo.19.3.199
13. Fournier A, Payant L, Boucin R. Adherence of Streptococcus mutans to orthodontic brackets. Am J Orthod Dentofacial Orthop 1998; 114:414–7. https://doi.org/10.1016/j.orpho.1998.07.0186-6
14. Ahn SJ, Kho HS, Lee SW, Nahm DS. Roles of salivary proteins in the adherence of oral streptococci to various orthodontic brackets. J Dent Res 2002;81:411–415. https://doi.org/10.1177/154085910208100611

15. Corbet, Browne LR, Kenne HJ, Horton IM. Comparison of Streptococcus mutans concentrations in non-banded and banded orthodontic patients. J Dent Res 1981; 60:1936–1942. https://doi.org/10.1177/00220345810600120301

16. Al-Shamahy HA, Abbas AMA, Mahdie Mohammed AM, Alsameai AM. Bacterial and fungal oral infections among patients attending dental clinics in Sana’a city-Yemen. On J Dent Oral Health 2018; 4(1): 1–8. PMCID:6179880

17. Al-Haddad KA, Al-dossary OAE, Al-Shamahy HA. Prevalence and associated factors of oral non-Candida albicans Candida carriage in denture wearers in Sana’a city-Yemen. Universal J Pharm Res 2018; 3(4): 7–11. https://doi.org/10.14260/jemds/2020/2051X.1985.tb00926.x

18. Sen BH, Safavi KE, Spangberg LS. Colonization of Candida albicans on cleaned human dental hard tissues. Arch Oral Biol 1997; 42:513–520. https://doi.org/10.1016/S0003-9969(97)00026-5

19. Traore O, Springthorpe VS, Sattar SA. A quantitative study of the survival of two species of Candida on porous and non-porous environmental surfaces and hands. J Appl Microbiol 2002; 92:549–555. https://doi.org/10.1046/j.1365-2672.2002.01560.x

20. Moudgal V, Little T, Boikov D, Vazquez JM. Multiechinocandin- and multizazole-resistant Candida parapsilosis isolates serially obtained during therapy for prosthetic valve endocarditis. Multiechinocandin- and multizazole-resistant Candida parapsilosis isolates serially obtained during therapy for prosthetic valve endocarditis. Antimicrob Agents Chemother 2005; 49:767-769. https://doi.org/10.1128/AAC.49.2.767-769.2005

21. Sullivan DJ, Moran GP, Pinjon E, Al-Mosaid A, Stokes C, Vaughan C, et al. Comparison of the epidemiology, drug resistance mechanisms, virulence of Candida dubliniensis, Candida albicans. FEMS Yeast Res 2004; 4:369-376. https://doi.org/10.1016/j.yjev.2004.09.011

22. CLSI. Clinical and Laboratory Standards Institute. Method for antifungal disk diffusion susceptibility testing of yeasts: Approved guideline M44-A. Clinical and Laboratory Standards Institute, Wayne, PA, USA. 2004:65-74.

23. Ng KP, Saw TL, Na SL, Sso-Hoo TS. Systemic Candida infection of University Hospital 1997-1999: fate of the distribution of Candida biotypes and antifungal susceptibility patterns. Mycopathologia 2000; 149(3):141-146. https://doi.org/10.1023/a:1007283211220

24. Christensen GD, Simpson WA, Bisno AL, Beachley EH. Adherence of slim-producing strains of staphylococcus epidermidis to smooth surfaces. Infect Immun 1982; 37(1):318–326. PMID:678980

25. Stepanovic S, Vukovic D, Hola V, et al. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by Staphylococci. Acta Patho Microbiol 2007; 115(8):891–899. https://doi.org/10.1111/j.1600-0462.2007.00630.x

26. Saloom HF, Mohammad-Salih HS, Rashied SF. The influence of different types of fixed orthodontic appliance on the growth and adherence of microorganisms (in vitro study). J Clin Exp Dent 2013; 5(1): e36–e41. https://doi.org/10.4317/jced.50988

27. Arendorf T, Addy M. Candidal carriage and plaque distribution before, during and after removable orthodontic appliance therapy. J Clin Periodontol 1985; 12(5): 360–368. https://doi.org/10.1111/j.1600-051x.1985.tb00926.x

28. Saloom Hyder F, Mohammad-Salih Harraa S, and Rashied Shayamma F. The influence of different types of fixed orthodontic appliance on the growth and adherence of microorganisms (in vitro study). J Clin Exp Dent. 2013; 5(1): e36–e41. https://doi.org/10.4317/jced.50988

29. Alhamadi W, Al-Saigh RJ, Al-Dabagh NH, et al. Oral Candida in patients with fixed orthodontic appliance: in vitro combination therapy. Int J Med Res Rev 2017; 2017: 8-16. https://doi.org/10.1151/IJMR.282785

30. Erdogan A, Rao SS. Small intestinal fungal overgrowth. Curr Gastroenterol Rep 2015; 17 (4): 16. https://doi.org/10.1007/s11894-015-0436-2

31. Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 2002; 15:167–93; PMID:11932229; http://dx.doi.org/10.1128/CMR.15.2,167-193.2002

32. Donlan RM. Biofilm formation: a clinically relevant microbiological process. Clin Infect Dis 2001; 33:1387-92. https://doi.org/10.1086/322972

33. Emily P; Fox; Clarissa J. Nobile. A sticky situation, Transcription 2013; 5:361-322. https://doi.org/10.4161/trns.22281

34. Mohandas V, Ballal M. Distribution of Candida species in different clinical samples and their virulence: biofilm formation, proteinase and phospholipase production: a study on hospitalized patients in southern India. J Glob Infect Dis 2011; 3(1):4-8. https://doi.org/10.4103/0974-777X.77288

35. Dag I, Kiraz N, Yasemin E. Evaluation of different detection methods of biofilm formation in clinical Candida isolates. Afr J Microbiol Res 2010; 4(24):2763-2768. https://doi.org/10.5897/AMJR.9000302

36. Mohandas V, Ballal M. Proteinase and phospholipase as virulence factors in Candida isolated from blood. Rev Iberoam Microl 2008; 25:208-210. https://doi.org/10.4103/0974-842X(08)07050-0

37. Kuhn DM, Chandra J, Ghannou MA. Comparison of biofilms formed by Candida albicans and Candida parapsilosis on bioprosthetic surfaces. Infect Immun 2002; 70(2):878–888.

38. Douglas LJ. Candida biofilms and their role in infection. Trends Microbiol 2003; 11:30-6; PMID:12526852; http://dx.doi.org/10.1016/s0928-8977(02)00002-1

39. Hawser SP, Douglas LJ. Biofilm formation by Candida species on the surface of catheter materials in vitro. Infect Immun 1994; 62:915-21. https://doi.org/10.1128/IAI.62.3.915-921.1994

40. Baillie GS, Douglas LJ. Role of dimorphism in the development of Candida albicans biofilms. J Med Microbiol 1999; 48:671-9. https://doi.org/10.1099/00222625-48-7-671

41. Chandra J, Kuhn DM, Mukherjee PK, Hoyer LL, McCormick T, Ghannou MA. Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J Bacteriol 2001; 183:5385-94. https://doi.org/10.1128/jb.183.15.5385-5394.2001

42. Nobile CJ, Mitchell AP. Regulation of cell-surface genes and biofilm formation by the C. albicans transcription factor Bcr1p. Curr Biol 2005; 15:1150–5. http://dx.doi.org/10.1016/j.cub.2005.05.047

43. Uppuluri P, Chaturvedi AK, Srinivasan A, Banerjee M, Ramasubramaniam AK, Köhler JR, et al. Dispersion as an important step in the Candida albicans biofilm developmental cycle. PLoS Pathog 2010; 6:e1000828; http://dx.doi.org/10.1371/journal.ppat.1000828

44. Da Costa SC, De Resende MA, Lyon JP, Totti VMG, Munhoz MF. Predisposing conditions for Candida spp. carriage in the oral cavity of denture wearers individuals with natural teeth. Can J Microbiol 2006; 52:462-467. http://dx.doi.org/10.1139/j05-0148

45. Golia S, Hittinahalli V, Sangeetha KT, Vasudha LS. Study of biofilm formation as a virulence marker in candida species isolated from various clinical specimens. J Ecol Med Dent Sci 2011; 1:1238-1246. https://doi.org/10.14260/jemsd/202
46. Singhai M, Malik A, Shahid M, Malik MA, Rowat V. Colonization of peripheral intravascular catheters with biofilm producing microbes: Evaluation of risk factors. Niger Med J 2012; 53(1):37–41. https://doi.org/10.4103/0300-1652.99830
47. Dominic RM, Shenoy S, Baliga S. Candida biofilms in medical devices. Evolving. trends. Kath Univ Medical J 2007;5(3):431-436. PMID: 18604070
48. Nemati SL, Shams-Ghifarokhi M, Yadegari MH. Evaluation of disk diffusion and microdilution methods for Fluconazole susceptibility testing in one group of Candida spp. in Tehran. Daneshvar Med 2008; 15:51-58.
49. Ali MS, Zakey AAZ. Biofilm formation and antifungal susceptibility of Candida isolates from various clinical specimens. British Microbiol Res J 2013; 3(4): 590-601. https://doi.org/10.9734/BMRJ/2013/5028
50. Citak S, Ozcelik B, Cesur S and Abbasoglu U. In vitro susceptibility of Candida species isolated from blood culture to some antifungal agents. Jpn J Infect Dis 2005; 58(1):44-6. PMID: 15728993
51. Badiee P, Alborzi A. Susceptibility of clinical Candida species isolates to antifungal agents by E-test, Southern Iran: A five year study. Iran J Microbiol 2011;3(4):183-8. PMID: 22530086
52. Sabatelli F, Patel R, Mann PA, Mendrick CA, Norris CC, Hare R, Loebenberg D, Black TA, McNicholas PM. In vitro activities of Posaconazole, Fluconazole, Itraconazole, Voriconazole, and Amphotericin B against a large collection of clinically important moulds and yeasts. Antimicrob Agents Chemother 2006; 50(6):2009-2015. https://doi.org/10.1128/AAC.00163-06