Non-Small Cell Lung Cancer in a Very Young Woman: A Case Report and Critical Review of the Literature

Valentina Polo
Giulia Zago
Stefano Frega
Fabio Canova
Laura Bonanno
Adolfo Favaretto
Laura Bonaldi
Roberta Bertorelle
PierFranco Conte

Corresponding Author: Giulia Pasello, e-mail: giulia.pasello@ioveneto.it

Conflict of interest: None declared

Patient: Female, 19
Final Diagnosis: Lung adenocarcinoma
Symptoms: Chest pain
Medication: —
Clinical Procedure: Ct scan and pet-ct
Specialty: Oncology

Objective: Unusual clinical course

Background: Lung cancer in young patients is quite uncommon; clinical presentation and outcome in this population compared to the older group are not yet well defined and data about this setting are mostly single-institutional retrospective analyses.

Case Report: We report here a case of a very young woman with diagnosis of early-stage lung adenocarcinoma harboring EML4-ALK rearrangement; she underwent radical surgery and adjuvant chemotherapy according to the pathological stage. Potential risk factors for lung cancer in our patient are discussed and clinico-pathologic features and outcomes of lung cancer in the young population compared to the elderly are reviewed through discussing studies with sample sizes larger than 100 patients.

Conclusions: A wide clinical overview should be performed when lung cancer is diagnosed in a young patient. Large-population studies are required to define the molecular signature and clinical behavior of lung cancer in young patients.

MeSH Keywords: Lung Neoplasms • Patient Outcome Assessment • Risk Factors • Young Adult

Abbreviations: SEER – Surveillance, Epidemiology, and End Results Program; LC – lung cancer; CT – computed tomography; PET/CT – positron emission tomography/computerized tomography; VATS – video-assisted thoracic surgery; FISH – fluorescent in situ hybridization; ECOG – eastern cooperative oncology group; GGT – gamma-glutamyl-transpeptidase; CMV – cytomegalovirus; Ig – immunoglobulin; EBV – Epstein-Barr virus; SLE – systemic lupus erythematosus; HIV – Human Immunodeficiency Virus; HPV – Human papilloma virus

Full-text PDF: http://www.amjcaserep.com/abstract/index/idArt/894426
Background

According to the Surveillance, Epidemiology, and End Results Program (SEER) registry based on 2007–2011 new cases, lung cancer (LC) is more frequently diagnosed among people aged 65–74 with only 1.6% of all cases occurring in patients younger than 45 years [1]. Most published data about LC in young populations are single-institutional retrospective analyses and few report on very young patients specifically. Previous data suggest that LC in young adults may be an entity with distinctive characteristics compared to LC in older patients; however, data are not always consistent among all series [2–11]. In addition, age limits ranging from 40 to 50 years have been variably chosen by different authors to define younger cohorts of patients. We report a case of a young woman with early-stage EML4-ALK rearranged lung adenocarcinoma who underwent surgery followed by adjuvant chemotherapy. We also consider possible susceptibility factors for LC in our patient and review the majority of clinical studies with a sample size larger than 100 patients, in order to highlight and discuss LC patterns in young versus old patients [2–11].

Case Report

In January 2014, a 19-year-old white, never-smoker woman experienced chest pain; a chest X-ray and a computed tomography (CT)-scan showed a cavitating right lung lesion in the upper lobe without enlargement of mediastinal lymph nodes (Figure 1A). A bronchoscopy was performed and the evaluation of cell block prepared from bronchial brushings led to the diagnosis of adenocarcinoma. A positron emission tomography/computerized tomography (PET/CT) scan excluded additional disease localizations (Figure 1B). In March 2014 the patient underwent right upper lobectomy with systematic lymphadenectomy by video-assisted thoracic surgery (VATS); a diagnosis of primary pulmonary adenocarcinoma with papillary predominant pattern was made. Immunohistochemistry

Figure 1. Computed tomography (CT) scan at diagnosis and positron emission tomography and CT-scan (PET/CT) at diagnosis, before surgery (A, B). CT scan after surgery at last follow-up visit (C).
showed that tumor cells were positive for TTF-1 and negative for p63; Ki67 was 70%. Molecular analysis showed no EGFR, KRAS, and BRAF gene mutations by Sanger’s direct sequencing, whereas fluorescent in situ hybridization (FISH) showed the presence of EML4-ALK rearrangement in 57% of cells (Figure 2). The patient was then referred to our Institution in April 2014. Clinical examination showed Eastern Cooperative Oncology Group (ECOG) performance status 0, and no additional findings. As previous medical history, the patient referred a general discomfort occurring between May and October 2013, characterized by nausea, vomiting, diarrhea, and skin rash. Blood test results are reported in Table 1. In November 2013, the patient underwent an esophagogastroduodenoscopy with multiple biopsies, leading to the diagnosis of celiac disease. A gluten-free diet induced symptoms regression. The cancer family history revealed that the patient’s father died of renal cell carcinoma in 2007. A genetic test on a blood sample was isolated red signal. The predominant ALK-positive FISH pattern observed in the sample was isolated red signal.

Discussion

Occurrence of LC in young adults is quite uncommon and is characterized by peculiar epidemiological, clinical, and prognostic features. To date, the pathogenesis of this disease in young people is still very unclear. None of the known risk factors for LC could explain the early onset of the malignancy and no specific genomic alteration has been detected in this subgroup of patients.

According to the SEER registry, the proportion of African-Americans, Asian, and Pacific Islanders was higher among younger than older patients [1]. This epidemiologic discrepancy may be due to differences in carcinogens exposure or to biologic differences such as inefficient cell cycle arrest and DNA damage accumulation or cytotochrome polymorphisms [9,12,13]. Regarding the clinico-pathologic features of LC in the young population, most retrospective series with sample sizes of more than 100 patients (Table 2) reported a higher proportion of women and adenocarcinoma in younger groups compared to older patients [3,4,6–11], but some cases of very young patients with squamous cell LC have also been reported in recent years [14–16]. Data on the proportion of asymptomatic patients at diagnosis in young and old groups are discordant. However, chest pain is definitively the most frequent symptom of younger patients in comparative analysis [6,8], such as in our patient. Finally, lower occurrence of early-stage disease in young people, described in most of the retrospective series, could be due to more aggressive disease or a delayed diagnosis due to a low degree of suspicion of cancer in young patients [4,9–11].

Our patient’s tumor sample tested positive for EML4-ALK rearrangement. To date, only a few studies have investigated molecular alterations in younger patients, with controversial results. Higher frequency of EML4-ALK rearrangement (11.6%) and EGFR mutation (20%) were shown in 53 non-small cell LC patients ≤50 years old compared with patients of all ages [17]. In contrast, Ye et al. showed no difference in terms of oncogenic mutations (P=0.396), but a higher prevalence of TP53 mutations (P<0.001) in 36 resected lung adenocarcinoma from patients younger than 40 years compared to their older counterparts [18]; similarly, Kim et al. did not find a statistically significant difference in EGFR and EML4-ALK status between young and old patients [19]. Further investigation is needed to address the issue of genetic derangements in young patients with LC.

Risk factors for the onset of LC specifically in young adults are still unknown. The increased frequency of adenocarcinoma and the long latency time between smoking exposure and cancer appearance suggest that LC among young people does not require as much carcinogen exposure, but rather genetic
derangements. However, the smoking status is similar between younger and older patients in a few series collecting these data, with approximately 75–95% of young patients reporting smoking sometime. Whether the number of cigarettes smoked per day or the age at which smoking began lead to an early onset of LC is still unclear. These patients might have genetic susceptibility to develop LC or inherited sensitivity to smoking-related carcinogenesis. Recently, case-control studies have showed that gene mutations or polymorphisms involving xenobiotic metabolizing enzymes and DNA repair pathways are associated with increased risk of early-onset LC [20–23].

Our patient was a never-smoker female, and she did not report previous exposure to carcinogens; thus, when we investigated possible risk factors for LC, we focused on genetic, immunological, and/or infective predisposition. The hypothesis of
Table 2. Studies comparing young lung cancer patients to older patients with sample size of more of 100 patients: data about clinico-pathologic features.

N (% of total)	Country, Year	Age cut-off	Smoking status*	Cancer cases in family	% of females	Histological type	Stage					
N: 155 (10%)	Italy, 1967–1980 years	c<45 Smokers	NA	NA	8%	NR	NS	AC	Stage I–III	NS		
N: 187 (7%)	Saskatchewan, 1979–1986	c<50 Smokers	NA	NA	40%	31%	NA	AC	P<0.001	NR	P<0.005	NA
N: 251	Germany, 1990–1996 years	c<45 Smokers	NA	NA	27%	15%	NA	AC	P=0.3	NA	NA	NA
N: 127 (2%)	Taiwan, 1987–1996 years	c<45 Smokers	NA	NA	52%	NR	NA	AC	P=0.0004	9%	15%	Stage IV
N: 752 (14%)	Poland, 18–39 years	c<50 Smokers	P=0.349 Cancer cases in family (mother and father)	24%	12%	AC	P=0.001	13%	8%	24%	23%	Stage IV
N: 115 (6%)	Greece, 1989–2004 years	c<45 Smokers	NA	NA	18%	12%	P=0.071	AC	49%	43%	12%	Stage IV
N: 2775	SEER registry, 1988–2003	c<40 Smokers	NA	NA	49%	42%	P=0.0001	AC	58%	45%	12%	Stage IV
N: 2004 (6%)	Japan, c<45 years	c<45 Smokers	NA	NA	47%	37%	P=0.001	79%	67%	64%	65%	Stage I
N: 651 (0.4%)	England, 18–39 years	c<45 Smokers	NA	NA	48%	33%	9%	AC	Stage	14%	Stage	

* Smokers (current smokers and exsmokers) versus Nonsmokers. NA – not assessed; NS – not significant; NR – not reported; LC – lung cancer; SEER – surveillance, epidemiology, and end results; AC – adenocarcinoma; SQ – squamous cell carcinoma

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License
a genetic component in the early onset of LC is also supported by a few series showing an increased family history among young patients. In a case-control study, the authors demonstrated the greatest contribution to LC risk (7-fold increase) among 40- to 59-year-old non-smoker subjects with a first-degree relative affected by LC [24]. Our patient did not report family history of LC among her first-degree relatives. Her father died because of a kidney cancer, which is not included in any genetic syndrome involving LC; moreover, germline mutations of TP53 gene or constitutional karyotype alterations were not observed. Hereditary LC syndromes are rare, and, while germline EGFR T790M mutation has been reported as a predisposing genetic feature, especially in non-smoker patients [25], no evidence of germline EML4-ALK rearrangement has been reported in LC.

The medical history of the patient included the diagnosis of celiac disease, which is associated with an increased risk of lymphoma. In a study from a large Swedish cohort, the authors found a neutral risk of LC in celiac disease, with a hazard ratio of 1.00 beyond the first year of follow-up after celiac diagnosis [26]. More recently, a large-population cohort study in Finland showed a decreased risk of LC among 32 439 celiac patients [27].

Table 3. Studies comparing young lung cancer patients to older patients with sample size of more of 100 patients: data about patients’ outcome.

Study (Year)	Sample	1-year OS rate	5-year OS rate	OS	P	
Roviaro, 1985 [2]	NA	21%	25%	NS	NA	
Ramalingam, 1998 [4]	NA	16%	13%	P<0.001	NA	
Kuo, 2000 [6]	NA	NA	9 months	8 months	4 months	P<0.0001
Radzikowska, 2001 [7]	33%	29%	P<0.049	NA	NR	P=0.01107
Mauri, 2006 [8]	NA	NA	12 months	NA	11.5 months	P=0.277
Subramanian, 2010 [9]	NA	NA	Younger patients had better stage-wise overall and disease-specific survival than older patients	P<0.0001		
Inoue, 2014 [10]	NA	79%	69%	P<0.001	NA	
Rich, 2015 [11]	NA	NA	Younger patients had a lower overall mortality than older patients (62% vs. 86%, respectively)	P<0.001		

OS – overall survival; NA – not assessed; NS – not significant; NR – not reported.

OS genetic component in the early onset of LC is also supported by a few series showing an increased family history among young patients. In a case-control study, the authors demonstrated the greatest contribution to LC risk (7-fold increase) among 40- to 59-year-old non-smoker subjects with a first-degree relative affected by LC [24]. Our patient did not report family history of LC among her first-degree relatives. Her father died because of a kidney cancer, which is not included in any genetic syndrome involving LC; moreover, germline mutations of TP53 gene or constitutional karyotype alterations were not observed. Hereditary LC syndromes are rare, and, while germline EGFR T790M mutation has been reported as a predisposing genetic feature, especially in non-smoker patients [25], no evidence of germline EML4-ALK rearrangement has been reported in LC.

The medical history of the patient included the diagnosis of celiac disease, which is associated with an increased risk of lymphoma. In a study from a large Swedish cohort, the authors found a neutral risk of LC in celiac disease, with a hazard ratio of 1.00 beyond the first year of follow-up after celiac diagnosis [26]. More recently, a large-population cohort study in Finland showed a decreased risk of LC among 32 439 celiac patients [27].

Additional significant findings in our case were the recent diagnosis of autoimmune hepatitis, anti-cytomegalovirus (CMV), immunoglobulin (Ig) G, and anti-Epstein-Barr virus (EBV) IgG and IgM positivity. Subsequent examinations excluded the positivity of CMV and EBV DNA and of all hepatitis viruses. The association between solid cancer and autoimmune systemic disease is uncommon and especially involves scleroderma and LC [28], even though increased risk for LC has also been reported in systemic lupus erythematosus (SLE) patients [29]. In a recent paper, a 4-fold risk of LC in patients with systemic sclerosis, discoid lupus erythematosus, and polymyositis/dermatomyositis has been described [30]. However, there are no data about a possible link between autoimmune hepatitis and risk of LC. Similarly, EBV and CMV infections seem to have a role in the pathogenesis of solid tumors, such as lymphoepithelioma-like carcinoma and glioblastoma, respectively, but no involvement in LC risk has been reported. Indeed, microRNA studies in LC did not support any role of EBV in LC [31]. To date, the only virus infections associated with LC are human immunodeficiency virus (HIV) and human papilloma virus (HPV) infections [32,33]. Thus, we have no data to support the hypothesis that LC risk in our patient had a genetic, immunological, or infective basis.
Data regarding clinical outcome of young LC patients have been presented in only a few retrospective studies [2,4,6–11] (Table 3). According to Roviaro GC et al., no significant statistical differences were observed in terms of survival between patients younger or older than 45 years, in the whole population and according to type of treatment or disease [2]. This was also confirmed by another series in which the majority of examined patients were included in clinical trials, thus making the 2 groups well balanced in comorbidty patterns and treatment modalities [8]. On the other hand, other studies showed a longer survival in the young group, despite the higher frequency of advanced disease. This finding could be explained by the higher chance of receiving more aggressive treatments, including multimodality treatments and further lines of chemotherapy, due to the lower prevalence of comorbidities [4,6,7,9–11].

In case of disease relapse, our patient could benefit from a first-generation ALK inhibitor, which has demonstrated remarkable clinical outcomes including better response rate and prolonged survival compared to standard chemotherapy [34,35]. However, despite an initial improvement, ALK-positive tumors inevitably develop several resistance mechanisms to the targeted drug, resulting in progression of the disease. Other strategies, including the development of new-generation ALK inhibitors, are currently under clinical evaluation to overcome the acquired resistance in these patients [36].

Conclusions

Despite a comprehensive review of the patient’s medical and family history, we did not identify any underlying risk factor for LC. Larger prospective studies are needed to define the molecular signature and clinical behavior of LC in young patients. To collect evidence of no-smoking related pathways involved in cancer risk, a wide clinical overview should be performed when LC diagnosis occurs in a young patient. Given the rarity of the disease in this setting, only an international multi-center study could address this issue.

References:

1. SEER Stat Fact Sheets: Lung and Bronchus Cancer. Available at http://seer.cancer.gov/statfacts/html/lungb1.html. Accessed March 03, 2015
2. Roviaro GC, Varoli F, Zannini P et al: Lung cancer in the young. Chest, 1985; 87: 456–59
3. McDuffie HH, Kaasser DJ, Dosman JA: Characteristics of patients with primary lung cancer diagnosed at age of 50 years or younger. Chest, 1989; 96: 1298–301
4. Ramalingam S, Pawlish K, Gadgeel S et al: Lung cancer in young patients: analysis of a surveillance, epidemiology, and end results database. J Clin Oncol, 1998; 16: 651–57
5. Kreuzer M, Kreienbrock L, Gerken M et al: Risk factors for lung cancer in young adults. Am J Epidemiol, 1998; 147: 1028–37
6. Kuo CW, Chen YM, Chao JY et al: Non-small cell lung cancer in very young and very old patients. Chest, 2000; 117: 354–57
7. Radzikowska E, Roszkowski K, Glaz P: Lung cancer in patients under 50 years old. Lung Cancer, 2001; 33: 203–11
8. Mauri D, Pentheroudakis G, Bafaloukos D et al: Non-small cell lung cancer in the young: a retrospective analysis of diagnosis, management and outcome data. Anticancer Res, 2006; 26: 3175–81
9. Subramanian J, Morgenstern D, Goodgame B et al: Distinctive characteristics of non-small cell lung cancer (NSCLC) in the young: a surveillance, epidemiology, and end results (SEER) analysis. J Thorac Oncol, 2010; 5: 23–28
10. Inoue M, Okumura M, Sawabata N et al: Clinicopathological characteristics and surgical results of lung cancer patients aged up to 50 years: the Japanese Lung Cancer Registry Study 2004. Lung Cancer, 2014; 83: 246–51
11. Rich AL, Khakwani A, Free CM et al: Non-small cell lung cancer in young adults: presentation and survival in the English National Lung Cancer Audit. QIM, 2015 [Epub ahead of print]
12. Zheng YL, Loffredo CA, Alberg AJ et al: Less efficient g2-m checkpoint is associated with an increased risk of lung cancer in African Americans. Cancer Res, 2005; 65: 9566–73
13. Raz DJ, Gomez SL, Chang ET et al: Epidemiology of non-small cell lung cancer in Asian Americans: incidence patterns among six subgroups by nativity. J Thorac Oncol, 2008; 3: 1391–97
14. Emori Y, Kiura K, Yoshino T et al: Very young patient with peculiar squamous cell carcinoma of the lung. Intern Med, 1999; 38: 979–93
15. Katsuragi N, Shiraiishi Y, Kita H et al: A 21-year-old man with squamous cell carcinoma of the lung. Kyobu Geka, 2007; 60: 529–32
16. Tajiri T, Suits A, Shono K et al: Lung cancer in a child with a substantial family history of cancer. Eur J Pediatr Surg, 1999; 9: 409–12
17. Vanden Bussche CL, Illei PB, Lin MT et al: Molecular alterations in non-small cell lung carcinomas of the young. Hum Pathol, 2014; 45: 2379–87
18. Ye T, Pan Y, Wang R et al: Analysis of the molecular and clinicopathologic features of surgically resected adenocarcinoma in patients under 40 years old. J Thorac Dis, 2014; 6: 1396–402
19. Kim L, Kim KH, Yoon YH et al: Clinicopathologic and molecular characteristics of lung adenocarcinoma arising in young patients. J Korean Med Sci, 2012; 27: 1027–36
20. Miller DP, Liu G, De Vivo I et al: Combinations of the variant genotypes of GSTP1, GSTM1, and p53 are associated with an increased lung cancer risk. Cancer Res, 2002; 62: 2819–23
21. Cote ML, Kardia SL, Weenstall AS et al: Combination of glutathione S-transferase genotypes and risk of early-onset lung cancer in Caucasians and African Americans: a population-based study. Carcinogenesis, 2005; 26: 811–19
22. Landi S, Gemignani F, Canzian F et al: DNA repair and cell cycle control genes and the risk of young-onset lung cancer. Cancer Res, 2006; 66: 11062–69
23. Gemignani F, Landi S, Szeszenia-Dabrowska N et al: Development of lung cancer before the age of 50: the role of xenobiotic metabolizing genes. Carcinogenesis, 2007; 28: 1287–93
24. Schwartz AG, Yang P, Swanson GM: Familial risk of lung cancer among non-smokers and their relatives. Am J Epidemiol, 1996; 144: 554–62
25. Gazdar A, Robinson L, Oliver D et al: Hereditary lung cancer syndrome targets never smokers with germline EGFR gene T790M mutations. J Thorac Oncol, 2014; 9: 456–63
26. Ludvigsson JF, West J, Hubbard R, Card T: Neutral risk of lung cancer in adults with celiac disease - nationwide cohort study. Lung Cancer, 2012; 78: 179–84
27. Ilius T, Kaukinen K, Virta LJ et al: Incidence of malignancies in diagnosed celiac patients: a population-based estimate. Am J Gastroenterol, 2014; 109: 1471–77
28. Zhang JQ, Wan YN, Peng WJ et al: The risk of cancer development in systemic lupus erythematosus: evidence from a meta-analysis. Lupus, 2014; 23: 284–92
30. Hemminki K, Liu X, Ji J et al: Subsequent COPD and lung cancer in patients with autoimmune disease. Eur Respir J, 2011; 37: 463–65
31. Koshiol J, Gulley ML, Zhao Y et al: Epstein-Barr virus microRNAs and lung cancer. Br J Cancer, 2011; 105: 320–26
32. Hasegawa Y, Ando M, Kubo A et al: Human papilloma virus in non-small cell lung cancer in never smokers: a systematic review of the literature. Lung Cancer, 2014; 83: 8–13
33. Okuma Y, Hosomi Y, Imamura A: Lung cancer patients harbouring epidermal growth factor receptor mutation among those infected by human immunodeficiency virus. Onco Targets Ther, 2014; 8: 111–15
34. Shaw AT, Kim DW, Nakagawa K et al: Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med, 2013; 368: 2385–94
35. Solomon BJ, Mok T, Kim DW et al: First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N Engl J Med, 2014; 371: 2167–77
36. Katayama R, Lovly CM, Shaw AT: Therapeutic targeting of anaplastic lymphoma kinase in lung cancer: a paradigm for precision cancer medicine. Clin Cancer Res, 2015; 21: 2227–35