Valuation domains with a maximal immediate extension of finite rank
Francois Couchot

To cite this version:
Francois Couchot. Valuation domains with a maximal immediate extension of finite rank. Journal of Algebra, Elsevier, 2010, 323 (1), pp.32-41. <hal-00352347>
VALUATION DOMAINS WITH A MAXIMAL IMMEDIATE EXTENSION OF FINITE RANK.

FRANÇOIS COUCHOT

Abstract. If R is a valuation domain of maximal ideal P with a maximal immediate extension of finite rank it is proven that there exists a finite sequence of prime ideals $P = L_0 \supset L_1 \supset \cdots \supset L_m \supset 0$ such that R_{L_i}/L_{i+1} is almost maximal for each j, $0 \leq j \leq m - 1$ and R_{L_m} is maximal if $L_m \neq 0$. Then we suppose that there is an integer $n \geq 1$ such that each torsion-free R-module of finite rank is a direct sum of modules of rank at most n. By adapting Lady’s methods, it is shown that $n \leq 3$ if R is almost maximal, and the converse holds if R has a maximal immediate extension of rank ≤ 2.

Let R be a valuation domain of maximal ideal P, \hat{R} a maximal immediate extension of R, \hat{R} the completion of R in the R-topology, and Q, \hat{Q}, \tilde{Q} their respective fields of quotients. If L is a prime ideal of R, as in [5], we define the total defect at L, $d_R(L)$, the completion defect at L, $c_R(L)$, as the rank of the torsion-free R/L-module \hat{R}(R/L) and the rank of the torsion-free R/L-module (\hat{R}/L), respectively. Recall that a local ring R is Henselian if each indecomposable module-finite R-algebra is local and a valuation domain is strongly discrete if it has no non-zero idempotent prime ideal. The aim of this paper is to study valuation domains R for which $d_R(0) < \infty$. The first example of such a valuation domain was given by Nagata [11]; it is a Henselian rank-one discrete valuation domain of characteristic $p > 0$ for which $d_R(0) = p$. By using a generalization of Nagata’s idea, Facchini and Zanardo gave other examples of characteristic $p > 0$, which are Henselian and strongly discrete. More precisely:

Example 0.1. [5, Example 6] For each prime integer p and for each finite sequence of integers $\ell(0) = 1$, $\ell(1), \ldots, \ell(m)$ there exists a strongly discrete valuation domain R with prime ideals $P = L_0 \supset L_1 \supset \cdots \supset L_m = 0$ such that $c_R(L_i) = p^{\ell(i)}$, $\forall i$, $1 \leq i \leq m$.

So, $d_R(0) = p^{\sum_{i=0}^{\infty} \ell(i)}$ by [5, Corollary 4].

Theorem 0.2. [5, Theorem 8] Let α be an ordinal number, $\ell : \alpha + 1 \to \mathbb{N} \cup \{\infty\}$ a mapping with $\ell(0) = 1$ and p a prime integer. Then there exists a strongly discrete valuation domain R and an antiisomorphism $\alpha + 1 \to \text{Spec}(R)$, $\lambda \mapsto L_\lambda$, such that $c_R(L_\lambda) = p^{\ell(\lambda)}$, $\forall \lambda \leq \alpha$.

So, if $\ell(\lambda) = 0$, $\forall \lambda \leq \alpha$, except for a finite subset, then $d_R(0) < \infty$ by [5, Corollary 4].

2000 Mathematics Subject Classification. Primary 13F30, 13C11.

Key words and phrases. torsion-free module, valuation domain, strongly flat module, content module.
In 1990, Vámos gave a complete characterization of non-Henselian valuation domains with a finite total defect, and examples of such rings. His results are summarized in the following:

Theorem 0.3. [12, Theorem 5] Let R be a non-Henselian valuation domain and assume that $d_R(0) < \infty$. Then one of the following holds:

1. $d_R(0) = 2$. R has characteristic zero, \hat{Q} is algebraically closed and its cardinality $|\hat{Q}|^\omega = |\hat{Q}|$. Further, Q is real-closed, the valuation on Q has exactly two extensions to \hat{Q} and R is almost maximal.
2. There is a non-zero prime ideal L of R such that R_L is a maximal valuation ring, and R/P and its field of quotients satisfy (rc).

As Vámos, if R is a domain, we say that $fr(R) \leq n$ (respectively $fr^n(R) \leq n$) if every torsion-free module (respectively every submodule of a free module) of finite rank is a direct sum of modules of rank at most n. By [12, Theorem 3] $fr(R) \geq d_R(0)$ if R is a valuation domain. So, the study of valuation domains R for which $d_R(0) < \infty$ is motivated by the problem of the characterization of valuation domains R for which $fr(R) < \infty$.

When R is a valuation domain which is a Q-algebra or not Henselian, then $fr(R) < \infty$ if and only if $fr(R) = d_R(0) \leq 2$ by [12, Theorem 10]. Moreover, if $fr(R) = 2$, either R is of type (rc) and $fr^2(R) = 1$ or R is of type (y) and $fr^2(R) = 2$. When R is a rank-one discrete valuation domain, then $fr(R) < \infty$ if and only if $fr(R) = d_R(0) \leq 3$ by [13, Theorem 8] and [1, Theorem 2.6].

In this paper we complete Vámos’s results. In Section 1, a description of valuation domains with a finite total defect is given by Theorem 1.7 and Proposition 1.8. In Section 2 we give some precisions on the structure of torsion-free R-modules of finite rank when R satisfies a condition weaker than $d_R(0) < \infty$. In Section 3 we extend to every almost maximal valuation domain the methods used by Lady in [8] to study torsion-free modules over rank-one discrete valuation domains. If R is an almost maximal valuation domain, we prove that $d_R(0) \leq 3$ if $fr(R) < \infty$ and that $fr(R) = d_R(0)$ if $d_R(0) \leq 2$.

For definitions and general facts about valuation rings and their modules we refer to the books by Fuchs and Salce [3] and [5].

1. **Maximal Immediate Extension of Finite Rank**

We recall some preliminary results needed to prove Theorem 1.7 which gives a description of valuation domains with a finite total defect.

Let M be a non-zero module over a valuation domain R. As in [7, p.338] we set $M^2 = \{s \in R \mid sM \subseteq M\}$. Then M^2 is a prime ideal of R and is called the **top prime ideal** associated with M.

Proposition 1.1. Let A be a proper ideal of R and let L be a prime ideal such that $A^2 \subseteq L$ and A is not isomorphic to L. Then R/A is complete in its ideal topology if and only if R_L/A is also complete in its ideal topology.

Proof. Let $(a_i + A_i)_{i \in I}$ be a family of cosets of R_L such that $a_i \in A_j + A_j$ if $A_i \subseteq A_j$ and such that $A = \cap_{i \in I} A_i$. We may assume that $A_i \subseteq L$, $\forall i \in I$. So, $a_i + L = a_j + L$, $\forall i, j \in I$. Let $b \in a_i + L$, $\forall i \in I$. It follows that $a_i - b \in L$, $\forall i \in I$. If R/A is complete in the R/A-topology, $\exists c \in R$ such that $c + b - a_i \in A_i$, $\forall i \in I$. Hence R_L/A is complete in the R_L/A-topology too.
Conversely let \((a_i + A_j)_{i \in I}\) be a family of cosets of \(R\) such that \(a_i \in a_j + A_j\) if \(A_i \subseteq A_j\) and such that \(A = \cap_{i \in I} A_i\). We may assume that \(A \subseteq A_i \subseteq L\), \(\forall \ i \in I\). We put \(A'_i = (A_i)/L\). We know that \(A = \cap_{a \in A} La\). Consequently, if \(a \notin A\), there exists \(i \in I\) such that \(A_i \subseteq L \setminus a\), whence \(A' \subseteq L\). It follows that \(A = \cap_{i \in I} A'_i\). Similarly, \(a \in a_i + A'_i\) if \(A'_i \subseteq A'_j\). Then there exists \(c \in R/L\) such that \(c \in a_i + A'_i\), \(\forall i \in I\). Since \(A'_i \subseteq R\), \(\forall i \in I\), \(c \in R\). From \(A = \cap_{i \in I} A'_i\) and \(A \subseteq A_i\), \(\forall i \in I\) we deduce that \(\forall i \in I\), \(\exists j \in I\) such that \(A'_j \subseteq A_i\). We get that \(c \in a_i + A_i\) because \(c - a_j \in A'_j \subseteq A_i\) and \(a_j - a_i \in A_i\). So, \(R/A\) is complete in the \(R/A\)-topology.

Proposition 1.2. Exercise II.6.4] Let \(R\) be a valuation ring and let \(L\) be a non-zero prime ideal. Then \(R\) is (almost) maximal if and only if \(R/L\) is maximal and \(R_L\) is (almost) maximal.

Proof. If \(R\) is (almost) maximal, it is obvious that \(R/L\) is maximal and by Proposition 1.1 \(R_L\) is (almost) maximal. Conversely let \(A\) be a non-zero ideal and \(J = A^\perp R\). Suppose that either \(J \subseteq L\) or \(J = L\) and \(A\) is not isomorphic to \(L\). Since \(R_L\) is (almost) maximal it follows that \(R_L/A\) is complete in its ideal topology. From Proposition 1.3 we deduce that \(R/A\) is complete in its ideal topology. Now, suppose that \(L \subseteq J\). If \(A \subseteq L\) let \(i \in J \setminus L\). Thus \(A \subseteq t^{-1}A\). Let \(s \in t^{-1}A\), \(A\). Therefore \(L \subseteq \{d\} \subseteq s^{-1}A\). So, \(R/s^{-1}A\) is complete in its ideal topology because \(R/L\) is maximal, whence \(R/A\) is complete too. Finally if \(A \cong L\) the result is obvious.

Proposition 1.3. Let \((L_\lambda)_{\lambda \in \Lambda}\) be a non-empty family of prime ideals of \(R\) and let \(L = \cup \lambda \in \Lambda L_\lambda\). Then \(L\) is prime, \(R_L = \cap_{\lambda \in \Lambda} R_{L_\lambda}\) and \(R_L\) is maximal if and only if \(R_{L_\lambda}\) is maximal \(\forall \lambda \in \Lambda\).

Proof. It is obvious that \(L\) is prime. Let \(Q\) be the field of fractions of \(R\). If \(x \in Q \setminus R_L\) then \(x = \frac{1}{s}\) where \(s \in L\). Since \(L = \cup_{\lambda \in \Lambda} L_\lambda\), \(\exists \mu \in \Lambda\) such that \(s \in L_\mu\). We deduce that \(x \notin R_{L_\mu}\) and \(R_L = \cap_{\lambda \in \Lambda} R_{L_\lambda}\).

If \(R_L\) is maximal, we deduce that \(R_{L_\lambda}\) is maximal \(\forall \lambda \in \Lambda\) by Proposition 1.1. Conversely, by Proposition 4 \(R_L\) is linearly compact in the inverse limit topology. Since \(R_L\) is Hausdorff in this linear topology then every nonzero ideal is open and also closed. Hence \(R_L\) is linearly compact in the discrete topology.

Recall that a valuation domain \(R\) is Archimedean if its maximal \(P\) is the only non-zero prime ideal and an ideal \(A\) is Archimedean if \(A^\perp = P\).

Proposition 1.4. Corollary 9] Let \(R\) be an Archimedean valuation domain. If \(d_R(0) < \infty\), then \(R\) is almost maximal.

From Propositions 1.1, 1.2, 1.3 and 1.4 we deduce the following:

Proposition 1.5. Let \(R\) be a valuation domain such that \(d_R(0) < \infty\) and \(R/A\) is Hausdorff and complete in its ideal topology for each non-zero non-Archimedean ideal \(A\). Then \(R\) is almost maximal.

Proof. Let \(L, L'\) be prime ideals such that \(L' \subseteq L\). Since \((R_L)\) is a summand of \((R)\) we have \(d_{R_L}(0) \leq d_R(0)\). On the other hand, by tensoring a pure-composition series of \((R_L)\) with \(R_L/L'\) we get a pure-composition series of \((R_L/L')\). So, \(d_{R_L}(L') \leq d_R(0)\).
If \(R \) is Archimedean the result follows from Proposition 4. Suppose that \(R \) is not Archimedean, let \(J \) be a non-zero ideal and let \((L_\Lambda)_{\Lambda \in \Lambda}\) be the family of prime ideals properly containing \(J \) and properly contained in \(P \). If \(\Lambda = \emptyset \) we get that \(R \) is almost maximal by applying Propositions 1.4 and 1.2. Else, let \(L' = \bigcup_{\Lambda \in \Lambda} L_\Lambda \). By Proposition 1.4, \(R_{L'}/J \) is maximal for each non-zero prime \(J \). If \(L' \neq P \) then \(R/L' \) is maximal by Proposition 1.4 and it follows that \(R/J \) is maximal by Proposition 1.2. If the intersection \(K \) of all non-zero primes is zero then \(R \) is almost maximal. If \(K \neq 0 \) then \(R_K \) is Archimedean. We conclude by using Propositions 1.4 and 1.2.

Given a ring \(R \), an \(R \)-module \(M \) and \(x \in M \), the content ideal \(c(x) \) of \(x \) in \(M \), is the intersection of all ideals \(A \) for which \(x \in AM \). We say that \(M \) is a content module if \(x \in c(x)M \), \(\forall x \in M \).

Lemma 1.6. Let \(U \) be a torsion-free module such that \(U = PU \). Then:

1. \(\forall x \in U, \; x \neq 0, \; x \notin c(x)U \);
2. let \(0 \neq x, y \in U \) and \(t \in R \) such that \(x = ty \). Then \(c(y) = t^{-1}c(x) \);
3. if \(U \) is uniserial then, for each \(x \in U, \; x \neq 0, \; c(x)^{\sharp} = U^{\sharp} \).

Proof. (1). If \(x \in c(x)U \), there exist \(a \in R \) and \(z \in U \) such that \(x = az \) and \(c(x) = Ra \). But, since \(z \in PU \), we get a contradiction.

(2). Let \(0 \neq x, y \in U \) such that \(x = ty \). If \(s \notin c(y) \) then \(x = tsz \) for some \(z \in U \) and \(st \notin c(x) \). So, \(st \notin t^{-1}c(x) \). Conversely, if \(s \notin t^{-1}c(x) \) then \(st \notin c(x) \). We have \(x = stz \) for some \(z \in U \). We get that \(y = sz \). So, \(s \notin c(y) \).

(3). We put \(A = c(x) \) and \(L = A^\sharp \). Let \(s \notin L \) and \(y \in U \) such that \(x = ty \) for some \(t \in R \). Then \(c(y) = t^{-1}A \) and \(t \notin A \). So, \(t^{-1}A \subseteq L \). Consequently \(y \in sU \). Let \(s \in L \). If \(s \notin A \) then \(x \notin sU \). If \(s \in L \setminus A \) let \(t \in s^{-1}A \setminus A \). There exists \(y \in U \) such that \(x = ty \). Since \(c(y) = t^{-1}A \) and \(s \in t^{-1}A \) we deduce that \(y \notin sU \).

This lemma and the previous proposition allow us to show the following theorem.

Theorem 1.7. Let \(R \) be a valuation domain such that \(d_R(0) < \infty \). Then there exists a finite family of prime ideals \(P = L_0 \supset L_1 \supset \cdots \supset L_{m-1} \supset L_m \supset 0 \) such that \(R_{L_k}/L_{k+1} \) is almost maximal, \(\forall k, \; 0 \leq k \leq m-1 \) and \(R_{L_m} \) is maximal if \(L_m \neq 0 \) (or equivalently, for each proper ideal \(A \nsubseteq L_k \), \(\forall k, \; 0 \leq k \leq m, \; R/A \) is Hausdorff and complete in its ideal topology). Moreover, \(d_R(0) = \prod_{k=1}^m c_R(L_k) \).

Proof. Let \(n = d_R(0) \). Then \(\widehat{R} \) has a pure-composition series

\[
0 = G_0 \subset R = G_1 \subset \cdots \subset G_{n-1} \subset G_n = \widehat{R}
\]

such that, \(\forall k, \; 1 \leq k \leq n, \; U_k = G_k/G_{k-1} \) is a uniserial torsion-free module. The family \((L_0, \ldots, L_m) \) is defined in the following way: \(\forall j, \; 0 \leq j \leq m, \) there exists \(k, \; 1 \leq k \leq n \) such that \(L_j = U_k^\sharp \).

Now, let \(A \) be a proper ideal such that \(R/A \) is Hausdorff and non-complete in its ideal topology. By Lemma V.6.1] there exists \(x \in \widehat{R} \setminus R \) such that \(A = c(x + R) \) (Clearly \(c(x + R) = B(x) \), the breadth ideal of \(x \)). Let \(U \) be a pure uniserial submodule of \(\widehat{R}/R \) containing \(x + R \) and let \(M \) be the inverse image of \(U \) by the natural map \(\widehat{R} \to \widehat{R}/R \). From the pure-composition series of \(M \) with factors \(R \) and \(U \), and a pure-composition series of \(\widehat{R}/M \) we get a pure-composition series...
of \(\tilde{R} \). Since each pure composition series has isomorphic uniserial factors by \(\tilde{R} \) Theorem XV.1.7], it follows that \(U \cong U_k \) for some \(k, \ 2 \leq k \leq n \). So, by Lemma \[4 \]
\[A^j = U^j = U^j_k \]

We apply Proposition \[1,3 \] and deduce that \(R_{L_k}/L_{k+1} \) is almost maximal \(\forall k, \ 0 \leq k \leq m - 1 \) and \(R_{L_m} \) is maximal if \(L_m \neq 0 \).

To prove the last assertion we apply \[3 \] Lemma 2] (The conclusion of this lemma holds if \(R_L/L' \) is almost maximal, where \(L \) and \(L' \) are prime ideals, \(L' \subset L \)). \(\square \)

The following completes the previous theorem.

Proposition 1.8. Let \(R \) be a valuation domain such that \(d_R(0) < \infty \), let \((U_k)_{1 \leq k \leq n} \) be the family of uniserial factors of all pure-composition series of \(\tilde{R} \) and let \((L_j)_{0 \leq j \leq n} \) be the family of prime ideals defined in Theorem \[1,3 \]. Then:

1. \(\forall k, \ 1 \leq k \leq n, \ U_k \cong R_{U_k} \)
2. \(\tilde{R} \) has a pure-composition series

\[0 = F_0 \subset R = F_1 \subset \cdots \subset F_{m-1} \subset F_m = \tilde{R} \]

where \(F_j+1/F_j \) is a free \(R_{L_j} \)-module of finite rank, \(\forall j, \ 0 \leq j \leq m - 1 \).

Proof. (1). Let \(A \) be an ideal such that \(\exists j, \ 0 \leq j \leq m, \ A^j = L_j \) and \(A \not\cong L_j \). In the sequel we put \(L_{m+1} = 0 \) if \(L_m \neq 0 \).

First, for each uniserial torsion-free module \(U \), we will show that each family \((x_r + rU)_{r \in R \setminus A} \) has a non-empty intersection if \(x_r \in x_r + tU, \forall r, t \in R \setminus A, \ r \in tR \).

As in the proof of Proposition \[1,2 \] we may assume that \(L_{j+1} \subset A \). Since \(R_{L_j}/L_{j+1} \) is almost maximal and \(A \) is an ideal of \(R_{L_j} \) the family \((x_r + rU_{L_j})_{r \in R \setminus A} \) has a non-empty intersection. If \(r \in L_j \setminus A \), we have \(r^{-1}A \subset L_j \). So, if \(t \in L_j \setminus r^{-1}A \) then \(rt \not\in A \) and \(rtU_{L_j} \subseteq rU \). It follows that we can do as in the proof of Proposition \[1,3 \] to show that the family \((x_r + rU)_{r \in R \setminus A} \) has a non-empty intersection.

Let \(0 = G_0 \subset R = G_1 \subset \cdots \subset G_{n-1} \subset G_n = \tilde{R} \) be a pure-composition series of \(\tilde{R} \) whose factors are the \(U_k \), \(1 \leq k \leq n \). By induction on \(k \) and by using the pure-exact sequence \(0 \to G_{k-1} \to G_k \to U_k \to 0 \), we get that each family \((x_r + rG_k)_{r \in R \setminus A} \) for which \(x_r \in x_r + tG_k, \forall r, t \in R \setminus A, \ r \in tR \), has a non-empty intersection.

Let \(k, \ 2 \leq k \leq n, \) be an integer, let \(0 \neq x \in G_k \setminus G_{k-1} \) and let \(A = c(x + G_{k-1}) \). Then \(A^j = U^j_k = L_j \) for some \(j, \ 1 \leq j \leq m \). We shall prove that \(A \cong L_j \). For each \(r \in R \setminus A, \ x = gr + r y_r \) for some \(y_r \in G_{k-1} \) and \(y_r \in G_k \). Let \(r, t \in R \setminus A \) such that \(r \in tR \). Then we get that \(y_r \in y_r + tG_{k-1} \cap G_{k-1} = y_r + tG_{k-1} \) since \(G_{k-1} \) is a pure submodule. If \(A \not\cong L_j \) the family \((y_r + rG_{k-1})_{r \in R \setminus A} \) has a non-empty intersection. Let \(y_r \in y_r + rG_{k-1}, \forall r \in R \setminus A \). Then \((x - y) \in rG_k, \forall r \in R \setminus A \). Since \(G_k \) is a pure-essential extension of a free module, \(G_k \) is a content module by \[4 \] Proposition 23]. It follows that \((x - y) \in AG_k \). So \(x + G_{k-1} \in AU_k \). But, since \(k \geq 2, \ U_k = PU_k \) because \(\tilde{R}/PR \cong R/PR \). So, \(x + G_{k-1} \not\subseteq AU_k \). From this contradiction we get that \(A = L_j \) for some \(0 \neq s \in R \). If \(sL_j \neq L_j \) then \(x + G_{k-1} = sy + G_{k-1} \) for some \(y \in G_k \) because \(s \notin A \). If follows that \(c(y + G_{k-1}) = L_j \). We put \(y' = y + G_{k-1} \). Then, for each \(z \in U_k \setminus R_{L_j} \) there exists \(t \in R \setminus L_j \) such that \(y' = tz \). We get that \(U_k = L_{L_j}y' \).

2. Let \(M = \tilde{R}/R \). Then \(L_1 = M^2 \). From above we get that \(M/L_1M \neq 0 \). By \[4 \] Proposition 21] \(M \) contains a pure free \(R_{L_1} \)-submodule \(N \) such that \(N/L_1N \cong \tilde{R} \). \(\square \)
M/L_1M. It follows that $(M/N)^1 = L_2$. We set E_2 the inverse image of N by the natural map $\bar{R} \to M$. We complete the proof by induction on j. \hfill \square

2. Torsion-free modules of finite rank.

In this section we give some precisions on the structure of torsion-free R-modules of finite rank when R satisfies a condition weaker than $d_R(0) < \infty$. The following lemmas are needed.

Lemma 2.1. Let R be a valuation ring (possibly with zerodivisors), let U be a uniserial module and let L be a prime ideal such that $L \subset U\!^2$. Then U_L is a cyclic R_L-module.

Proof. Let $s \in U\!^2 \setminus L$ and let $x \in U \setminus sU$. Let $y \in U \setminus Rx$. There exists $t \in P$ such that $x = ty$. Then $t \notin Rs$, whence $t \notin L$. It follows that $U_L = R_Lx$. \hfill \square

Lemma 2.2. Let R be a valuation ring (possibly with zerodivisors), let U and V be uniserial modules such that $V^2 \subset U^2$. Assume that U_L is a faithful R_L-module, where $L = V^2$. Then $\text{Ext}^1_R(U, V) = 0$.

Proof. Let M be an extension of V by U. By lemma 2.1 U_L is a free cyclic R_L-module. Since V is a module over R_L, it follows that V is a summand of M_L. We deduce that V is a summand of M too. \hfill \square

Lemma 2.3. Let R be a valuation domain for which there exists a prime ideal $L \neq P$ such that R/L is almost maximal. Then $\text{Ext}^1_R(U, V) = 0$ for each pair of ideals U and V such that $L \subset U\!^2 \cap V\!^2$.

Proof. Let M be an extension of V by U. It is easy to check that U/LU and V/LV are non-zero and non divisible R/L-modules. Since R/L is almost maximal $M/LM \cong U/LU \oplus V/LV$ by \[3\] Proposition VI.5.4. If $L \neq 0$, it follows that there exist two submodules H_1 and H_2 of M, containing LM, such that $H_1/LM \cong U/LU$ and $H_2/LM \cong V/LV$. For $i = 1, 2$ let $x_i \in H_i \setminus LM$ and let A_i be the submodule of H_i such that A_i/Rx_i is the torsion submodule of H_i/Rx_i. Then $A_i + LM/LM$ is a non-zero pure submodule of H_i/LM which is of rank one over R/L. It follows that $H_i = A_i + LM$. By Lemma 2.1 $LM \cong V_L \oplus U_L$. We deduce that $LM \cong LM_L$ is a direct sum of uniserial modules. Since $A_i \cap LM$ is a non-zero pure submodule of LM there exists a submodule C_i of LM such that $LM = (A_i \cap LM) \oplus C_i$ by \[6\] Theorem XII.2.2. It is easy to check that $H_i = A_i \oplus C_i$. From $M = H_1 + H_2$ and $LM = H_1 \cap H_2$ we deduce that the following sequence is pure exact:

$$0 \to LM \to H_1 \oplus H_2 \to M \to 0,$$

where the homomorphism from LM is given by $x \mapsto (x, -x)$, $x \in LM$, and the one onto M by $(x, y) \mapsto x + y$ if $x \in H_1$, $y \in H_2$. Since $H_1 \oplus H_2$ is a direct sum of uniserial modules, so is M by \[6\] Theorem XII.2.2. Consequently $M \cong V \oplus U$. \hfill \square

Proposition 2.4. Let R be a valuation domain. Let G be a torsion-free R-module of finite rank. Then G has a pure-composition series with uniserial factors $(U_k)_{1 \leq k \leq n}$ such that $U_k^2 \subset U_{k+1}^2$, $\forall k$, $1 \leq k \leq n - 1$.

Proof. G has a pure-composition series

$$0 = H_0 \subset H_1 \subset \cdots \subset H_{n-1} \subset H_n = G$$
Proposition 2.5. Let \square be a valuation domain. Assume that there exists a finite family of prime ideals $P = L_0 \supset L_1 \supset \cdots \supset L_m = 0$ such that R_{L_j}/L_{j+1} is almost maximal $\forall k$, $0 \leq k \leq m - 1$. Let G be a torsion-free R-module of finite rank. Then G has a pure-composition series

$$0 = G_0 \subseteq G_1 \subseteq \cdots \subseteq G_m \subseteq G_{m+1} = G$$

where G_{j+1}/G_j is a finite direct sum of ideals of R_{L_j}, $\forall j$, $0 \leq j \leq m$.

Proof. By Proposition 2.4 G has a pure-composition series

$$0 = H_0 \subseteq H_1 \subseteq \cdots \subseteq H_n = G$$

such that, $\forall k$, $1 \leq k \leq n$, $U_k = H_k/H_{k-1}$ is a uniserial torsion-free module and $U_k^r \supseteq U_{k+1}^r$, $\forall k$, $1 \leq k \leq n - 1$. Now, for each j, $1 \leq j \leq m$, let k_j be the greatest index such that $L_j \subseteq U_{k_j}^r$. We put $G_j = H_{k_j}$. Then G_{j+1}/G_j is an R_{L_j}-module which is a direct sum of ideals by Lemma 2.3. □

3. Valuation domains R with $fr(R) < \infty$.

First we extend to every almost maximal valuation domain the methods used by Lady in [8] to study torsion-free modules over rank-one discrete valuation domains. So, except in Theorem 3.4, we assume that R is an almost maximal valuation ring. We put $K = Q/\overline{R}$. For each R-module M, $d(M)$ is the divisible submodule of M which is the union of all divisible submodules and M is said to be reduced if $d(M) = 0$. We denote by \overline{M} the pure-injective hull of M (see [5, chapter XIII]). If U is a uniserial module then $\overline{U} \cong \overline{\overline{U}}$ because \overline{R} is almost maximal. Let G be a torsion-free module of finite rank r. By Proposition 2.3 G contains a submodule B which is a direct sum of ideals and such that G/B is a Q-vector space. We put $\text{corank } G = \text{rank } G/B$. Now, it is easy to prove the following.

Proposition 3.1. Let G be a torsion-free R-module of rank r and corank c. Then:

1. G contains a pure direct sum B of ideals, of rank $r - c$, such that G/B is a Q-vector space of dimension c.
2. G contains a pure direct sum B' of ideals, of rank r such that G/B' is isomorphic to a quotient of K^c.

An element of $Q \otimes_R \text{Hom}_R(G, H)$ is called a quasi-homomorphism from G to H, where G and H are R-modules. Let C_{ab} be the category having weakly polserial R-modules (i.e modules with composition series whose factors are uniserial) as objects and quasi-homomorphisms as morphisms and let C be full subcategory of C_{ab} having torsion-free R-modules of finite rank as objects. Then C_{ab} is abelian by [4, Lemma XII.1.1]. If G and H are torsion-free of finite rank, then the quasi-homomorphisms from G to H can be identified with the Q-linear maps $\phi : Q \otimes_R G \to Q \otimes_R H$ such that $r\phi(G) \subseteq H$ for some $0 \neq r \in R$. We say that G and
H are quasi-isomorphic if they are isomorphic objects of C. A torsion-free module of finite rank is said to be strongly indecomposable if it is an indecomposable object of C.

Lemma 3.2. Let $\phi : Q \otimes_R G \to Q \otimes_R H$ be a Q-linear map. Then ϕ is a quasi-homomorphism if and only if $(\hat{R} \otimes_R \phi)(d(\hat{R} \otimes_R G)) \subseteq d(\hat{R} \otimes_R H)$.

Proof. Assume that ϕ is a quasi-homomorphism. There exists $0 \neq r \in R$ such that $r\phi(G) \subseteq H$. It successively follows that $r(\hat{R} \otimes_R \phi)(\hat{R} \otimes_R G) \subseteq \hat{R} \otimes_R H$ and $(\hat{R} \otimes_R \phi)(d(\hat{R} \otimes_R G)) \subseteq d(\hat{R} \otimes_R H)$.

Conversely, let B be a finite direct sum of ideals which satisfies that G/B is a Q-vector space. There exists a free submodule F of $Q \otimes_R G$ such that $B \subseteq F$. So, $\exists \neq r \in R$ such that $r\phi(B) \subseteq r\phi(F) \subseteq H$. Since $\hat{R} \otimes_R G = (\hat{R} \otimes_R B) \oplus (d(\hat{R} \otimes_R G))$, it follows that $r(\hat{R} \otimes_R \phi)(\hat{R} \otimes_R G) \subseteq (\hat{R} \otimes_R H)$. We deduce that $r\phi(G) \subseteq (\hat{R} \otimes_R H) \cap (Q \otimes_R H) = H$. □

Proposition 3.3. Let G be a torsion-free R-module of rank r and corank c.

1. If G has no summand isomorphic to an ideal, then $\text{End}(G)$ can be embedded in the ring of $c \times c$ matrices over \hat{Q}. In particular if $c = 1$, $\text{End}(G)$ is a commutative integral domain.

2. If G is reduced, then $\text{End}(G)$ can be embedded in the ring of $(r-c) \times (r-c)$ matrices over \hat{R}. In particular if $c = r - 1$, $\text{End}(G)$ is a commutative integral domain.

Proof. See the proof of [Reference Theorem 3.1]. □

In the sequel we assume that $n = c_R(0) < \infty$. So, there are $n - 1$ units π_2, \ldots, π_n in $\hat{R} \setminus R$ such that $1, \pi_2, \ldots, \pi_n$ is a basis of \hat{Q} over Q. By [Reference Theorem XV.6.3] there exists an indecomposable torsion-free R-module \hat{E} with rank n and corank 1. We can define E in the following way: if $(e_k)_{2 \leq k \leq n}$ is the canonical basis of \hat{R}^{n-1}, if $e_1 = \sum_{k=2}^{n} \pi_k e_k$ and V is the Q-vector subspace of \hat{Q}^{n-1} generated by $(e_k)_{1 \leq k \leq n}$, then $E = V \cap \hat{R}^{n-1}$. Then a basis element for $d(\hat{R} \otimes E)$ can be written $u_1 + \pi_2 u_2 + \cdots + \pi_n u_n$, where $u_1, \ldots, u_n \in E$. Since E is indecomposable it follows that u_1, \ldots, u_n is a basis for $Q \otimes E \cong V$.

Theorem 3.4. Let G be a torsion-free R-module of rank r and corank c. Then the following assertions hold:

1. The reduced quotient of G is isomorphic to a pure submodule of \hat{B} where B is a direct sum of $(r-c)$ ideals.

2. G is the direct sum of ideals of R with a quasi-homomorphic image of E^c.

Proof. (1) can be shown as the implication (1) \Rightarrow (2) of [Reference Theorem 4.1] and (2) as the implication (1) \Rightarrow (3) of [Reference Theorem 4.1]. □

Corollary 3.5. Let G be a torsion-free R-module of rank r and corank c. Then:

1. If G has no summand isomorphic to an ideal, then $r \leq nc$.

2. If G is reduced, then $nc \leq (n-1)r$.

Proof. This corollary is a consequence of Theorem 3.4 and can be shown as [Reference Corollary 4.2]. □
Theorem 3.6. Let R be a valuation domain such that $d_R(0) = 2$. Then $fr(R) = 2$. Moreover $fr^a(R) = 1$ if $c_R(0) = 2$ and $fr^a(R) = 2$ if $c_R(0) = 1$.

Proof. First suppose that $c_R(0) = 2$. So, R is almost maximal and $fr^a(R) = 1$. Let G be an indecomposable torsion-free module with rank r and corank c which is not isomorphic to Q and to an ideal. Then G is reduced and has no summand isomorphic to an ideal of R. From Corollary 3.5 we deduce that $r = 2c$. By Theorem 3.4 G is isomorphic to a pure submodule of B where B is a direct sum of c ideals. Since rank $B = 2c$ it follows that $G \cong B$. So, $c = 1$ and $G \cong \hat{A}$ for a non-zero ideal A.

If $c_R(0) = 1$ let L be the non-zero prime ideal such that $c_R(L) = d_{R/L}(0) = 2$. Then $fr(R/L) = 2$. Since R_L is maximal it follows that $fr(R) = fr^a(R) = 2$ by Lemma 9 and Lemma 4.

Lemma 3.7. Every proper subobject of E in \mathcal{C} is a direct sum of ideals.

Proof. Let G be a proper object of E in \mathcal{C} and let H be the pure submodule of E such that H/G is the torsion submodule of E/G. Since E is indecomposable, E has no summand isomorphic to a direct sum of ideals. So, corank $E/H = 1$ and corank $H = 0$. As corank $H \geq$ corank G we get that G is a direct sum of ideals.

Proposition 3.8. E is an indecomposable projective object of \mathcal{C}.

Proof. Let $\phi : H \to E$ be a quasi-epimorphism where H is a torsion-free module of finite rank. Suppose that $H = F \oplus G$ where F is a direct sum of ideals. By Lemma 5.5, $\phi(G)$ is quasi-isomorphic to E. So, we may assume that H has no summand isomorphic to an ideal. By Theorem 5.4 there is a quasi-epimorphism $\psi : E^c \to H$ where $c = \text{corank } H$. It is sufficient to see that $\phi \circ \psi$ is a split epimorphism in \mathcal{C}. But by Proposition 3.3(1), $Q \otimes \text{End}(E)$ is a subfield of \hat{Q}, so every quasi-homomorphism $E \to E$ is either a quasi-isomorphism or trivial and the splitting follows immediately.

In the sequel, $Q \otimes_R \text{Hom}_R(R \oplus E, M)$ is denoted by \hat{M} for each R-module M and the ring $Q \otimes_R \text{End}_R(R \oplus E)$ by Λ.

Theorem 3.9. The functor $Q \otimes_R \text{Hom}_R(R \oplus E, \cdot)$ is an exact fully faithful functor from \mathcal{C} into mod-Λ, the category of finitely generated right Λ-modules.

Proof. By Theorem 5.4 and Proposition 5.5, $R \oplus E$ is a progenerator of \mathcal{C}. For each finite rank torsion-free R-module H, the natural map $Q \otimes_R \text{Hom}_R(R \oplus E, H) \to \text{Hom}_\Lambda(\hat{R} \oplus \hat{E}, \hat{H})$ is an isomorphism because $\Lambda = \hat{R} \oplus \hat{E}$. Thus $Q \otimes_R \text{Hom}_R(F, H) \to \text{Hom}_\Lambda(\hat{F}, \hat{H})$ is an isomorphism if F is a summand of a finite direct sum of modules isomorphic to $R \oplus E$. Let G be a finite rank torsion-free R-module. We may assume that G has no summand isomorphic to an ideal of R. By Proposition 5.5 and Lemma 5.7 there is an exact sequence $0 \to R^{nc-r} \to E^c \to G \to 0$ in \mathcal{C}. Since both functors are left exact, we get that $Q \otimes_R \text{Hom}_R(G, H) \cong \text{Hom}_\Lambda(\hat{G}, \hat{H})$.

Lemma 3.10. If M is a right Λ-module and $M \subseteq \hat{G}$ for some finite rank torsion-free R-module G, then $M \cong \hat{H}$ for some torsion-free R-module H.

Proof. See the proof of [8, Lemma 5.2].
Proposition 3.11. The ring Λ is a hereditary Artinian Q-algebra such that $(\text{rad } \Lambda)^2 = 0$. There are two simple right Λ-modules, \tilde{R} which is projective and \tilde{K} which is injective.

Proof. See the proof of [8, Proposition 5.3]. \square

Proposition 3.12. \tilde{Q} is an injective hull for \tilde{R} and \tilde{E} is a projective cover for \tilde{K}.

Proof. See the proof of [8, Proposition 5.4]. \square

Theorem 3.13. The image of C under the functor $Q \otimes_R \text{Hom}_R(R \oplus E, \cdot)$ is the full subcategory of $\text{mod} - \Lambda$ consisting of modules with no summand isomorphic to \tilde{K}.

Proof. See the proof of [8, Theorem 5.5]. \square

Let M be a finitely generated (i.e., finite length) right Λ-module. We define rank M to be the number of factors in a composition series for M isomorphic to \tilde{R} and corank M to be the number of composition factors isomorphic to \tilde{K}.

Proposition 3.14. The foncteur $Q \otimes_R \text{Hom}_R(R \oplus E, \cdot)$ preserves rank and corank.

Proof. See the proof of [8, Proposition 5.6]. \square

We now consider the functors $D = \text{Hom}_R(\cdot, Q)$ and $\text{Tr} = \text{Ext}_\Lambda(\cdot, \Lambda)$ which take right Λ-modules to left Λ-modules and conversely. It is well known that D is an exact contravariant length preserving functor taking projectives to injectives and conversely, and that D^2 is the identity for finitely generated Λ-modules. Since Λ is hereditary, Tr is right exact and $\text{Tr}^2 M \cong M$ if M has no projective summand, $\text{Tr} M = 0$ if M is projective. We consider the Coxeter functors $C^+ = D\text{Tr}$ and $C^- = \text{Tr}D$. Thus $C^+ : \text{mod} - \Lambda \rightarrow \text{mod} - \Lambda$ is left exact and $C^- : \text{mod} - \Lambda \rightarrow \text{mod} - \Lambda$ is right exact. If M has no projective (respectively injective) summand, it is easy to check that M is indecomposable if and only if $C^+ M$ (respectively $C^- M$) is indecomposable.

Proposition 3.15. Let M be a right Λ-module with rank r and corank c.

1. If M has no projective summand, then corank $C^+ M = (n - 1)c - r$ and rank $C^+ M = nc - r$.
2. If M has no injective summand, then rank $C^- M = (n - 1)r - nc$ and corank $C^- M = r - c$.

Proof. See the proof of [8, Proposition 5.7]. \square

Theorem 3.16. The following assertions hold:

1. If $n = 3$, then, up to quasi-homomorphism, the strongly indecomposable torsion-free R-modules are R, Q, E, \tilde{R} and an R-module with rank 2 and corank 1 (corresponding to $C^+ \tilde{Q} = C^- \tilde{R}$).
2. If $n \geq 4$, there are strongly indecomposable torsion-free R-modules with arbitrarily large rank.

Proof. We show (1) and (2) as Lady in the proof of [8, Theorem 5.11] by using Proposition 3.15 and [10, Theorem 2]. \square
4. Some other results and open questions.

Let G be a finite rank torsion-free module over an almost maximal valuation domain R. A splitting field for G is a subfield Q' of \hat{Q} containing Q such that $(Q' \cap \hat{R}) \otimes_R G$ is a completely decomposable $(Q' \cap \hat{R})$-module (i.e. a direct sum of rank one modules). If Q' is a splitting field for G, G is called Q'-decomposable. By [9, Theorem 7], each finite rank torsion-free module G has a unique minimal splitting field Q' such that $[Q' : Q] < \infty$. So, Lady’s results on splitting fields of torsion-free modules of finite rank over rank one discrete valuation domains can be extended to almost maximal valuation domains by replacing \hat{Q} by Q' in the previous section and by taking C to be the category whose objects are the finite rank torsion-free Q'-decomposable modules.

Now, R is a valuation domain which is not necessarily almost maximal. We say that an R-module G is strongly flat if it is an extension of a free module by a divisible torsion-free module (see [2]). By [6, Lemma V.1.1 and Proposition V.1.2] \hat{Q} is a splitting field for each finite rank strongly flat module. So, each finite rank strongly flat module G has a unique minimal splitting field $Q' \subseteq \hat{Q}$ and $[Q' : Q] < \infty$. We also can extended Lady’s results. In particular:

Theorem 4.1. Let R be a valuation domain. We consider the following conditions:

1. $\exists l \geq 1$ such that each finite rank strongly flat module is a direct sum of modules of rank at most l;
2. $c_R(0) \leq 3$.

Then (1) \Rightarrow (2). If $c_R(0) \leq 2$ then (1) holds and $l = c_R(0)$.

If $c_R(0) = 3$, it is possible that the proof of [1] Theorem 2.6 should be generalized.

Proof. (1) \Rightarrow (2). We show that $c_R(0) \leq \infty$ in the same way that the condition (a) of [12, Theorem 3] is proven. Then, as above, we use Lady’s methods to get $c_R(0) \leq 3$.

If $c_R(0) = 2$ we do as in the proof of Theorem 3.6. \square

Some open questions:

1. Does henselian valuation domains with finite total defect, which are not strongly discrete, exist?
2. For a valuation domain R, does the condition $d_R(0) = 3$ imply $fr(R) = 3$ or $< \infty$? It is possible that the proof of [1] Theorem 2.6 should be generalized.
3. For a valuation domain R with finite total defect, does the condition $c_R(L_i) = p$, $\forall i$, $1 \leq i \leq m$, where $p = 2$ or 3 and $(L_i)_{1 \leq i \leq m}$ is the family of prime ideals defined in Theorem 3.7, imply $fr(R) < \infty$ for some $m > 1$? (If $m > 1$, by [12, Theorem 10], R is Henselian and p is the characteristic of its residue field.)

References

[1] D. Arnold and M. Dugas. Indecomposable modules over Nagata valuation domains. *Proc. Amer. Math. Soc.*, 122(3):689–696, (1993).

[2] S. Bazzoni and L. Salce. On strongly flat modules over integral domains. *Rocky Mountain J. Math.*, 34(2):417–439, (2004).
[3] F. Couchot. Local rings of bounded module type are almost maximal valuation rings. *Comm. Algebra*, 33(8):2851–2855, (2005).
[4] F. Couchot. Flat modules over valuation rings. *J. Pure Appl. Algebra*, 211:235–247, (2007).
[5] A. Facchini and P. Zanardo. Discrete valuation domains and ranks of their maximal extensions. *Rend. Sem. Mat. Univ. Padova*, 75:143–156, (1986).
[6] L. Fuchs and L. Salce. *Modules over valuation domains*, volume 97 of *Lecture Notes in Pure and Appl. Math.* Marcel Dekker, New York, (1986).
[7] L. Fuchs and L. Salce. *Modules over Non-Noetherian Domains*. Number 84 in Mathematical Surveys and Monographs. American Mathematical Society, Providence, (2001).
[8] E.L. Lady. Splitting fields for torsion-free modules over discrete valuation rings, i. *J. Algebra*, 49:261–275, (1977).
[9] A. Menini. The minimal splitting field for a finite rank torsion free module over an almost maximal valuation domain. *Comm. Algebra*, 11(16):1803–1815, (1983).
[10] W. Muller. On Artin rings of finite representation type. In *Proceedings of the International Conference on Representations of Algebras*, volume 488 of *Lect. Notes in Mathematics*, pages 236–243. Springer-Verlag, (1974).
[11] M. Nagata. *Local rings*. Intersciences Publishers, New York and London, (1962).
[12] P. Vámos. Decomposition problems for modules over valuation domains. *J. London Math. Soc.*, 41:10–26, (1990).
[13] P. Zanardo. Kurosch invariants for torsion-free modules over Nagata valuation domains. *J. Pure Appl. Algebra*, 82:195–209, (1992).
[14] D. Zelinsky. Linearly compact modules and rings. *Amer. J. Math.*, 75:79–90, (1953).

Laboratoire de Mathématiques Nicolas Oresme, CNRS UMR 6139, Département de mathématiques et mécanique, 14032 Caen cedex, France
E-mail address: couchot@math.unicaen.fr