Ultracold RbSr molecules can be formed by magnetoassociation

Piotr S. Żuchowski, J. Aldegunde, and Jeremy M. Hutson

1Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, United Kingdom
2Departamento de Química Física, Facultad de Ciencias Químicas, Universidad de Salamanca, 37008, Salamanca, Spain

(Dated: June 16, 2010)

We investigate the interactions between ultracold alkali metal atoms and closed-shell atoms using electronic structure calculations on the prototype system Rb+Sr. There are molecular bound states that can be tuned across atomic thresholds with magnetic field, and there are previously neglected terms in the collision Hamiltonian that can produce zero-energy Feshbach resonances with significant widths. The largest effect comes from the interaction-induced variation of the Rb hyperfine coupling. The resonances may be used to form paramagnetic polar molecules if the magnetic field can be controlled precisely enough.

PACS numbers: 34.50.Cx, 37.10.Pq, 67.85.-d

There have been enormous advances in ultracold molecule formation in the last few years. Alkali metal dimers have been formed both by photoassociation and by magnetic tuning across zero-energy Feshbach resonances (magnetoassociation). In both approaches the molecules are initially formed in very high-lying vibrational states, but methods are now emerging to transfer the molecules to low-lying vibrational states [1–8]. For KRb and Cs$_2$, molecules in the rovibrionic ground state have been formed coherently from ultracold atoms by magnetoassociation followed by stimulated Raman adiabatic passage (STIRAP) [2, 9]. The availability of samples of polar ultracold molecules opens up new possibilities for exploring polar quantum gases, for developing quantum simulators, and for studies of controlled ultracold chemistry [10].

Alkali metal dimers have singlet ground states, which cannot be tuned magnetically except through the very small magnetic moments of the constituent nuclei. Although the molecules can be formed in excited triplet states, the triplet dimers are likely to be subject to trap loss due to fast inelastic and reactive collisions. There is therefore great interest in forming ultracold molecules that have ground states with unpaired electron spin. Molecules that have both electric and magnetic dipoles are particularly interesting, because they may be used to create topologically ordered states and may have novel applications in quantum information storage [11].

A very promising class of molecules are those formed from an alkali metal atom, with a 2S ground state, and a closed-shell species such as an alkaline earth atom or a Yb atom, with a 3S ground state. However, the collision Hamiltonian that is usually used for ultracold atom collisions does not couple the atomic and molecular states in such systems, and it is commonly believed that they will not exhibit magnetically tunable Feshbach resonances that can be used for ultracold molecule formation. The purpose of the present paper is to show that this is not in fact true: there are terms in the Hamiltonian that have previously been neglected, which can give rise to magnetically tunable Feshbach resonances. If precise enough control of magnetic fields can be achieved, these resonances may be used for molecule formation in these important systems.

We consider the prototype system RbSr. This is particularly topical because Bose-Einstein condensation has recently been achieved for 87Sr [12, 13] and 88Sr [14] and Fermi degeneracy for 87Sr [15]. Both 87Rb and 88Rb are readily condensed. However, our general conclusions apply to any system made up of an alkali metal atom and a closed-shell species.

The collision Hamiltonian for a pair of atoms a and b is

$$\frac{\hbar^2}{2\mu} \left(-\frac{1}{r} \frac{d^2}{dr^2} + \frac{\hat{L}^2}{r^2} \right) + \hat{H}_a + \hat{H}_b + \hat{V}(r),$$

where r is the internuclear distance, \hat{L}^2 is the angular momentum operator for mechanical rotation of the atoms about one another, \hat{H}_a and \hat{H}_b are the Hamiltonians for the free atoms (in an applied field) and $\hat{V}(r)$ is the interaction operator. For collision of a pair of alkali metal atoms, \hat{H}_a and \hat{H}_b are

$$\hat{H}_a = \zeta_\alpha \hat{i}_\alpha \cdot \hat{s}_\alpha + \left(g^a_\alpha \mu_B \delta_{\alpha z} + g^{\text{nuc}}_\alpha \mu_S \hat{n}_\alpha \right) B,$$

where ζ_α is the hyperfine coupling constant for atom α, \hat{s}_α and i_α are the corresponding electron and nuclear spin operators, g^a_α and g^{nuc}_α are the g-factors, and B is the magnetic field, whose direction defines the z-axis. The interaction operator is usually represented

$$\hat{V}(r) = \sum_{S \in |S|} \frac{|S\rangle\langle S|}{|S|} \frac{1}{|S|} + \hat{V}^{\text{d}}(r),$$

where for a pair of alkali metal atoms $V_0(r) = \langle 0 | \hat{V}(r) | 0 \rangle$ and $V_1(r) = \langle 1 | \hat{V}(r) | 1 \rangle$ are the potential curves for the
singlet and triplet states and $\hat{V}^d(r)$ is a spin-spin term that represents the magnetic dipole interaction between the electron spins on the two atoms (and may incorporate short-range terms due to second-order spin-orbit interaction).

The molecular wavefunctions are conveniently expanded in an unoccupied basis set \(|s_\alpha m_\alpha i_\alpha m_\alpha a_\alpha i_\alpha a_\alpha b_\alpha b_\beta \rangle |M_{\text{tot}} = M_F + M_L, \) where \(M_F = m_\alpha + m_\beta + m_\alpha + m_\beta \). The only term in the Hamiltonian that has matrix elements off-diagonal in \(L\) is the spin-spin term. However, for a pair of alkali-metal atoms, the singlet potential is substantially different from the triplet potential (typically a factor of 10 to 20 deeper), and the difference produces strong couplings between states with the same \(L\) and the same \(M_F\). The resulting molecular states typically have magnetic moments different from the atomic states, and may cross them as a function of magnetic field. The molecular states are coupled to the atomic states by either \(V_1(r) - V_0(r)\) (when the atomic and molecular states have the same values of \(L\) and \(M_F\)) or \(V^d(r)\) (when the \(L\) or \(M_F\) values are different). This produces magnetically tunable Feshbach resonances that may be used for molecule formation.

The situation is different when one of the atoms is in an \(1^1S\) state. When \(s_\alpha = 0\), there is no spin-spin interaction. There is also only one interaction potential, corresponding to \(S = s_\alpha\) (a doublet, with \(S = \frac{1}{2}\), for RbSr). The quantum number \(F = f_\alpha = i_\alpha \pm \frac{1}{2}\) is well-defined only at zero field, but even at finite field the molecular states have almost exactly the same mixture of \(F\) values as the atomic states. For the stable isotopes \(^{84}\text{Sr},^{86}\text{Sr}\) and \(^{88}\text{Sr}\), which all have zero nuclear spin, the molecular states have almost exactly the same magnetic moment as their parent atomic states, so are closely parallel to them as a function of magnetic field. Even for \(^{87}\text{Sr}\), with \(i_\beta = 9/2\), the nuclear Zeeman effect is a small perturbation.

If the interaction operator was really represented by Eq. (3), with only \(S = \frac{1}{2}\) and no \(V^d(r)\), there would be no coupling between the atomic and molecular states. Although there would still be crossings between atomic states and molecular bound states as a function of magnetic field, there would be no coupling between them; the resulting Feshbach resonances would have zero width and it would be impossible to tune across them adiabatically, as required for molecule formation. However, Eq. (3) is in reality an approximation, and there are several additional ways in which the colliding species interact with one another. For RbSr, these additional terms have a profound effect.

The most important additional interaction term comes from the fact that the Rb hyperfine coupling constant \(\zeta\) is modified when another atom is nearby. We may write \(\zeta(r) = \zeta_{\text{Rb}} + \Delta \zeta(r)\). The term \(\Delta \zeta(r) i_\alpha \cdot s_\alpha\) is most appropriately considered to be part of the interaction operator \(\hat{V}(r)\). In addition, there are short-range contributions to \(\hat{V}(r)\) from smaller terms such as (i) the interaction of nuclear quadrupole moment of Rb and the field gradient at the Rb nucleus caused by the distortion of the electron density by Sr; (ii) the dipolar interactions between the electron spin and the Rb nuclear spin; (iii) the spin-rotation interactions between \(L\) and the Rb electron and nuclear spins. However, the modification of \(\zeta_{\text{Rb}}\) is by far the largest effect, as discussed below.

We have carried out high-level electronic structure calculations of the interaction potential and dipole moment of RbSr and the modification of \(\zeta_{\text{Rb}}\) by Sr. The results are summarized in Fig. 1. The short-range potential (from 3 to 10 Å) was calculated using the spin-restricted coupled-cluster method with single, double and approximate triple excitations (CCSD(T)), with the relativistic small-core ECP28MDM effective core potentials and uncontracted basis sets of Lim et al. [15, 17] augmented by 3s3p2d functions at the bond midpoint. For \(R > 10\) Å, we extrapolate using the long-range form \(V(r) = -C_0 r^{-6} - C_8 r^{-8}\), with semiempirical coefficients [18] \(C_0 = 3.762 \times 10^4\ E_h a_0^6\) and \(C_8 = 4.62 \times 10^5 E_h a_0^8\). The short- and long-range parts of the potential were smoothly connected with the switching function used by Janssen et al. [19]. The quantities \(\zeta(r)\) and \(eQq(r)\) were calculated with the relativistic density-functional theory (DFT) approach [20] implemented in the ADF program [21], using the PBE0 functional [22]. The asymptotic value of \(\zeta_{\text{Rb}}\) was underestimated by 6% in the DFT calculations, so we scaled \(\zeta(r)\) to reproduce the experimental atomic value. The quantity \(\Delta \zeta(r)\) was fitted to the Gaussian form \(\zeta_0 e^{-a(r-r_c)^2}\), giving parameters \(a = 0.23\) Å\(^{-2}\) and \(r_c = 4.06\) Å, with \(\zeta_0 = -687\) MHz for \(^{87}\text{Rb}\) and \(-229\) MHz for \(^{85}\text{Rb}\). This corresponds to a 20%
maximum reduction in ζ. We also evaluated the dipole moment $\mu(r)$ using a variety of approaches. The most reliable is a finite-field CCSD(T) calculation with the approach described above, which gives $\mu = 1.36$ D at the equilibrium distance $r_e = 4.67$ Å. However, the precise value is sensitive to the level of correlation treatment.

We have also investigated the smaller additional couplings described above, in order to verify that they are much less important than $\Delta \zeta(r)$. All these can couple states with $\Delta M_F \neq 0$ when $L > 0$. The nuclear quadrupole coupling and the dipolar coupling between s_a and i_a can also couple channels with $\Delta L \neq 0$ and can thus mediate Feshbach resonances in s-wave scattering for bound states with $L \neq 0$. Our DFT calculations give values for the nuclear quadrupole coupling coupling constant $\epsilon Q q(r_e) = 8$ MHz and 3.7 MHz for $^{85}\text{RbSr}$ and $^{87}\text{RbSr}$ respectively, reducing rapidly to zero as the RbSr distance increases beyond r_e. The coupling constant for the dipolar interaction between s_a and i_a is of the order of 1 MHz near r_e. The electronic spin-rotation coupling constant can be estimated in terms of the rotational constant b and the anisotropy g_{aniso} of the electronic g-factor as $2b g_{aniso}$ [23], which is approximately 20 MHz near r_e. The nuclear spin-rotation interaction will be a factor of 10^3 smaller because of the ratio of the nuclear and Bohr magnetons. A 20 MHz coupling is potentially significant, but neither the electronic nor the nuclear spin-rotation interaction has matrix elements that affect s-wave scattering. All these smaller coupling terms, and couplings involving the nuclear spin of ^{87}Sr, are neglected in the scattering calculations described below.

Since the M_F-changing terms in the collision Hamiltonian are so small, crossings between thresholds and bound states with different M_F will not produce Feshbach resonances wide enough to be measured with current experimental methods. However, if the Rb atom is initially in a state that correlates at zero field with $F = i_a - \frac{1}{2}$, then the threshold is crossed by bound states with the same M_F but correlating with $F = i_a + \frac{1}{2}$. The operator $\Delta \zeta(r) \hat{b} \cdot \hat{s}_a$ is not diagonal in the field-dressed atomic eigenstates, so it can produce Feshbach resonances at these crossings. The pattern of bound states and the crossings that produce Feshbach resonances are shown in Fig. 2 for ^{85}Rb and ^{87}Rb with all the stable isotopes of Sr. Since the hyperfine splittings are a few GHz, the bound states responsible for the crossings are bound by energies of a few GHz. For RbSr these are states with vibrational quantum numbers $v = -3, -4$ (relative to threshold) for magnetic fields up to 0.5 T.

We next investigated the widths of the resonances produced in this way. To locate them, we first carried out bound-state calculations as a function of magnetic field using the BOUND package [24] to determine precisely the magnetic field at which the crossings occur. We then used the MOLSCAT program [25], modified to handle collisions of atoms in magnetic fields [20], to calculate the scattering length $a(B)$ as a function of magnetic field near the crossing at a near-zero collision energy (10^{-8} K). This was then fitted to the functional form $a(B) = a_{bg} \left[1 + \Delta/(B - B_{res}) \right]$ to extract the resonance position B_{res}, the width Δ, and the background scattering length a_{bg}.

The parameters of selected Feshbach resonances are given in Table I. It should be noted that our calculated interaction potential is not accurate enough to predict the positions of the highest bound states (or the scattering length) correctly for a specific isotope. However, there are enough different isotopes of Sr available that one of them is likely to display crossings of each of the types shown in Fig. 2. A measurement of the scattering length or the binding energy of one of the near-dissociation states for any isotopic species will allow reliable calculations of the resonance positions for all isotopic combinations.

States with $M_F < 0$ (except $M_F = -i_a - \frac{1}{2}$) have energy maxima or minima at $B_{turn} = -\zeta M_F/|g_{eB}|$, where they are separated by $d = \zeta \left[(i_a + \frac{1}{2})^2 - M_F^2 \right]^{1/2}$. For levels with binding energies $|E_v|$ in the range $d <
TABLE I: Calculated properties of RbSr Feshbach resonances at $F = i_a - \frac{1}{2}$ thresholds arising from bound states supported by the $F = i_a + \frac{1}{2}$ thresholds.

System	B_{res} (G)	a_{bg} (Å)	Δ (mG)	M_F
85Rb85Sr	632	19.5	-0.0560	+2
840	19.5	-0.292	+1	
1145	19.5	-0.636	0	
1562	19.5	-0.987	-1	
2076	19.4	-0.636	-2	
85Rb86Sr	1383	815.7	-1.83	+2
1649	813.9	-4.34	+1	
1977	814.1	-7.14	0	
2371	814.1	-8.85	-1	
2827	814.1	-7.50	-2	
85Rb87Sr	336	95.1	0.0545	-2
1108	95.1	-0.586	-2	
1797	95.1	-0.163	+2	
2079	95.1	-0.347	+1	
2413	95.1	-0.532	0	
2800	95.1	-0.664	-1	
3240	95.0	-0.499	-2	
85Rb88Sr	37	56.2	-0.000277	+2
70	56.2	-0.00239	+1	
235	56.2	-0.0397	0	
792	56.2	-0.270	-1	
1481	56.2	-0.311	-2	
2237	56.2	-0.124	+2	
2531	56.2	-0.276	+1	
2869	56.2	-0.402	0	
3253	56.2	-0.485	-1	
3680	56.2	-0.350	-2	
87Rb84Sr	477	1715.0	7.41	-1
1959	1700.3	-122	-1	
87Rb86Sr	1036	55.0	-0.209	+1
1896	55.0	-1.08	0	
3472	55.0	-2.29	-1	
87Rb87Sr	1660	31.5	-0.636	+1
2608	31.5	-2.27	0	
4096	31.5	-3.79	-1	
87Rb88Sr	2281	1.6	-33.6	+1
3280	1.6	-101	0	
4716	1.5	-153	-1	

$E_v < (i_a + \frac{1}{2})\zeta$, there are two crossings with the lower threshold: one between 0 and B_{turn} and the second between B_{turn} and $2B_{\text{turn}}$. Conversely, for levels with binding energies $|E_v| > (i_a + \frac{1}{2})\zeta$, there is only one crossing, at a field $B > 2B_{\text{turn}}$. For levels with $M_F \geq 0$, there is only one crossing for each vibrational state with binding energy larger than $(i_a + 1/2)\zeta$.

The resonance width is proportional to the square of a bound-continuum matrix element $\langle \psi | \Delta\zeta(r)\hat{s}_a \cdot \hat{s}_a | \psi \rangle$ (continuum). The radial part of this is proportional to the amplitude of the bound-state wavefunction at short range, which varies as $|E_v|^{(n+2)/4n}$, where $n = 6$ is the power of the leading term in the long-range potential. Since $\Delta\zeta(r)$ is itself roughly proportional to ζ, the widths of the low-field resonances may generally be expected to increase with ζ approximately as $\zeta^{8/3}$. Because of this, the widths observed for 87Rb in Table I are generally larger than those for 85Rb. However, there are other factors involved such as the likelihood of obtaining low-field resonances at all (which decreases with ζ) and the magnitude of the off-diagonal matrix element of \hat{s}_a, which increases linearly with B at low field and then levels off above B_{turn} to a value proportional to $(|i_a + \frac{1}{2}|^2 - M_F^2)^{1/2}$. Because of this, the lowest-field resonances in Table I are all very narrow. Resonance widths are also enhanced in cases where the background scattering length is large.

The widest and most promising resonances for molecule production are of two types. The first are those that occur for $M_F < 0$ states that cross the lower threshold twice, as occurs for $v = -3$ for 85Rb87Sr and $v = -4$ for 87Rb84Sr. The higher-field resonance is always the wider of the pair because of the $\hat{s}_a \cdot \hat{s}_a$ matrix element discussed above. The second are those for which the background scattering length is large, as for 85Rb86Sr and 87Rb84Sr on the current potential. These two effects combine for the 1959 G resonance for 87Rb84Sr in Table II to give a width as high as 122 mG.

In conclusion, we have investigated the interactions between Rb and Sr atoms and have identified a new mechanism that can produce magnetically tunable Feshbach resonances in collisions of ultracold molecules. These Feshbach resonances could be used to produce ultracold molecules that would have both electric and magnetic dipole moments in their ground states. The resonances arise from the modification of the Rb hyperfine coupling by the presence of another atom. The mechanism is general and may produce magnetically tunable Feshbach resonances in any system in which an atom with electron spin collides with a closed-shell atom.

This work is supported by EPSRC under collaborative projects CoPoMol and QuDipMol of the ESF EUROCORES Programme EuroQUAM.

[1] J. M. Sage, S. Sainis, T. Bergeman, and D. DeMille, Phys. Rev. Lett. 94, 203001 (2005).
[2] K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Pe’er, B. Neyenhuis, J. J. Zirbel, S. Kotochigova, P. S. Julienne,
D. S. Jin, and J. Ye, Science 322, 231 (2008).
[3] F. Lang, K. Winkler, C. Strauss, R. Grimm, and J. Hecker Denschlag, Phys. Rev. Lett. 101, 133005 (2008).
[4] J. G. Danzl, E. Haller, M. Gustavsson, M. J. Mark, R. Hart, N. Bouloufa, O. Dulieu, H. Ritsch, and H.-C. Nägerl, Science 321, 1062 (2008).
[5] M. Viteau, A. Chotia, M. Allegrini, N. Bouloufa, O. Dulieu, D. Comparat, and P. Pillet, Science 321, 232 (2008).
[6] J. Deiglmayr, A. Grochola, M. Repp, K. Mörtlbauner, C. Glück, J. Lange, O. Dulieu, R. Wester, and M. Weidmüller, Phys. Rev. Lett. 101, 133004 (2008).
[7] M. J. Mark, J. G. Danzl, E. Haller, M. Gustavsson, N. Bouloufa, O. Dulieu, H. Salami, T. Bergeman, H. Ritsch, R. Hart, et al., Appl. Phys. B 95, 219 (2009).
[8] C. Haimberger, J. Kleinert, P. Zabawa, A. Wakin, and N. P. Bigelow, New J. Phys. 11, 055042 (2009).
[9] J. G. Danzl, M. J. Mark, E. Haller, M. Gustavsson, R. Hart, J. Aldegunde, J. M. Hutson, and H.-C. Nägerl, Nature Physics 6, 265 (2010).
[10] L. D. Carr, D. DeMille, R. V. Krems, and J. Ye, New J. Phys. 11, 055049 (2009).
[11] A. Micheli, G. K. Brennen, and P. Zoller, Nature Physics 2, 341 (2006).
[12] S. Stellmer, M. K. Tey, B. Huang, R. Grimm, and F. Schreck, Phys. Rev. Lett. 103, 200401 (2009).
[13] Y. N. Martinez de Escobar, P. G. Mickelson, M. Yan, B. J. DeSalvo, S. B. Nagel, and T. C. Killian, Phys. Rev. Lett. 103, 200402 (2009).
[14] P. G. Mickelson, Y. N. Martinez de Escobar, M. Yan, B. J. DeSalvo, and T. C. Killian, arXiv:1003.3867 (2010).
[15] B. J. DeSalvo, M. Yan, P. G. Mickelson, Y. N. Martinez de Escobar, and T. C. Killian, arXiv:1005.0668 (2010).
[16] I. S. Lim, H. Stoll, and P. Schwerdtfeger, J. Chem. Phys. 124, 034107 (2006).
[17] I. S. Lim, P. Schwerdtfeger, B. Metz, and H. Stoll, J. Chem. Phys. 122, 104103 (2005).
[18] J. Mitroy and M. W. J. Bromley, Phys. Rev. A 68, 052714 (2003).
[19] L. M. C. Janssen, G. C. Groenenboom, A. van der Avoird, P. S. Zuchowski, and R. Podeszwa, J. Chem. Phys. 131, 224314 (2009).
[20] E. van Lenthe, E. J. Baerends, and J. G. Snijders, J. Chem. Phys. 101, 9783 (1994).
[21] G. te Velde, F. M. Bickelhaupt, S. J. A. van Gisbergen, C. Fonseca Guerra, E. J. Baerends, J. G. Snijders, and T. Ziegler, J. Comput. Chem. 22, 931 (2001).
[22] C. Adamo and V. Barone, J. Chem. Phys. 110, 6158 (1999).
[23] R. F. Curl Jr., Mol. Phys. 9, 585 (1965).
[24] J. M. Hutson, E. Tiesinga, and P. S. Julienne, Phys. Rev. A 78, 052703 (2008).
[25] J. M. Hutson and S. Green, MOLSCAT computer program, version 14, distributed by Collaborative Computational Project No. 6 of the UK Engineering and Physical Sciences Research Council (1994).
[26] M. L. González-Martínez and J. M. Hutson, Phys. Rev. A 75, 022702 (2007).