A New Numerical Method of Estimates of Temperatures along a Thick Steel Slab and Concentrations of Alcohol along a Hollow Tube

Odekunle MR1 and Babuba S2∗

1Department of Mathematics, Modibbo Adama University of Technology, Yola, Nigeria
2Department of Mathematics, Federal University Dutse, Jigawa, Nigeria

Abstract

A new continuous numerical method based on the approximation of polynomials is here proposed for solving the equation arising from heat transfer along a thick steel slab and a hollow tube subject to initial and boundary conditions. The method results from discretization of the heat equation which leads to the production of a system of algebraic equations. By solving the system of algebraic equations we obtain the problem approximate solutions.

Keywords: Polynomials; Interpolation; Multistep collocation; Heat conduction

Introduction

The development of numerical techniques for solving heat conduction equation in science and engineering subject to initial and boundary conditions is a subject of considerable interest. In this paper, we develop a new continuous numerical method which is based on interpolation and collocation at some point along the coordinates (Odekunle, 2008). To do this we set U(x,t) represents the temperature at any point in the slab and the tube. Heat is flowing from one end to another under the influence of the temperature gradient ∂U/∂x. To set up the solution method we select an integer \(N > 0 \) such that \(N \) is the number of interpolation points along the space axis and \(k > 0 \) the number of interpolation points along the time axis.

The new method strives to provide solutions to the heat flow eqns. arising from heat transfer along a thick steel slab and a hollow tube subject to initial and boundary conditions. The method results from discretization of the heat equation which leads to the production of a system of algebraic equations. By solving the system of algebraic equations we obtain the problem approximate solutions.

Keywords: Polynomials; Interpolation; Multistep collocation; Heat conduction

Introduction

The development of numerical techniques for solving heat conduction equation in science and engineering subject to initial and boundary conditions is a subject of considerable interest. In this paper, we develop a new continuous numerical method which is based on interpolation and collocation at some point along the coordinates (Odekunle, 2008). To do this we set U(x,t) represents the temperature at any point in the slab and the tube. Heat is flowing from one end to another under the influence of the temperature gradient ∂U/∂x. To set up the solution method we select an integer \(N > 0 \) such that \(N \) is the number of interpolation points along the space axis and \(k > 0 \) the number of interpolation points along the time axis.

The new method strives to provide solutions to the heat flow eqns. arising from heat transfer along a thick steel slab and a hollow tube subject to initial and boundary conditions. The method results from discretization of the heat equation which leads to the production of a system of algebraic equations. By solving the system of algebraic equations we obtain the problem approximate solutions.

Keywords: Polynomials; Interpolation; Multistep collocation; Heat conduction

Introduction

The development of numerical techniques for solving heat conduction equation in science and engineering subject to initial and boundary conditions is a subject of considerable interest. In this paper, we develop a new continuous numerical method which is based on interpolation and collocation at some point along the coordinates (Odekunle, 2008). To do this we set U(x,t) represents the temperature at any point in the slab and the tube. Heat is flowing from one end to another under the influence of the temperature gradient ∂U/∂x. To set up the solution method we select an integer \(N > 0 \) such that \(N \) is the number of interpolation points along the space axis and \(k > 0 \) the number of interpolation points along the time axis.

The new method strives to provide solutions to the heat flow eqns. arising from heat transfer along a thick steel slab and a hollow tube subject to initial and boundary conditions. The method results from discretization of the heat equation which leads to the production of a system of algebraic equations. By solving the system of algebraic equations we obtain the problem approximate solutions.

Keywords: Polynomials; Interpolation; Multistep collocation; Heat conduction

Introduction

The development of numerical techniques for solving heat conduction equation in science and engineering subject to initial and boundary conditions is a subject of considerable interest. In this paper, we develop a new continuous numerical method which is based on interpolation and collocation at some point along the coordinates (Odekunle, 2008). To do this we set U(x,t) represents the temperature at any point in the slab and the tube. Heat is flowing from one end to another under the influence of the temperature gradient ∂U/∂x. To set up the solution method we select an integer \(N > 0 \) such that \(N \) is the number of interpolation points along the space axis and \(k > 0 \) the number of interpolation points along the time axis.

The new method strives to provide solutions to the heat flow eqns. arising from heat transfer along a thick steel slab and a hollow tube subject to initial and boundary conditions. The method results from discretization of the heat equation which leads to the production of a system of algebraic equations. By solving the system of algebraic equations we obtain the problem approximate solutions.

Keywords: Polynomials; Interpolation; Multistep collocation; Heat conduction

Introduction

The development of numerical techniques for solving heat conduction equation in science and engineering subject to initial and boundary conditions is a subject of considerable interest. In this paper, we develop a new continuous numerical method which is based on interpolation and collocation at some point along the coordinates (Odekunle, 2008). To do this we set U(x,t) represents the temperature at any point in the slab and the tube. Heat is flowing from one end to another under the influence of the temperature gradient ∂U/∂x. To set up the solution method we select an integer \(N > 0 \) such that \(N \) is the number of interpolation points along the space axis and \(k > 0 \) the number of interpolation points along the time axis.

The new method strives to provide solutions to the heat flow eqns. arising from heat transfer along a thick steel slab and a hollow tube subject to initial and boundary conditions. The method results from discretization of the heat equation which leads to the production of a system of algebraic equations. By solving the system of algebraic equations we obtain the problem approximate solutions.
Where \(z = i + \frac{\beta - 1}{\rho} \) and \(W^{-1} \) exists (Odekunle, 2008). Hence, by equation (2.2) we obtain
\[
a = \bar{a}E, \quad \bar{a} = W^{-1}
\]
(2.3)
The vector \(\bar{a} = (a_0, \ldots, a_{p-1})^\top \) is now determined in terms of known parameters in \(\bar{a}E \). If \(\bar{a}_{r,i} \) is the \((r, i)^{th}\) row of \(\bar{a} \) then
\[
a_r = \bar{a}_{r,1}E
\]
(2.4)
Eqn. (2.4) determines the values [8-17]. Let us take first and second derivatives of eqn. (2.0) with respect to \(x \),
\[
\tilde{U}'(x,t) = \sum_{r=0}^{n-1} a_r \left[Q'_r(x,t) \right]
\]
(2.5)
Substituting eqn. (2.4) into eqn. (2.5), we obtain
\[
\tilde{U}'(x,t) = \sum_{r=0}^{n-1} a_r \left[Q''_r(x,t) \right]
\]
(2.6)
We reverse the roles of \(x \) and \(t \) in eqn. (2.1) and we arbitrarily set \(k = 0 \left[1 - \frac{b}{a} \right] \) and \(h = 0 \), by Crammer’s rule eqn. (2.1) becomes
\[
Y a = E, \quad E = \left[\begin{array}{cccc}
\tilde{U}_0(x_j), & \tilde{U}_1(x_j), & \ldots, & \tilde{U}_{n-1}(x_j)
\end{array} \right]^\top
\]
(2.7)
and [18-20]
\[
\begin{bmatrix}
Q_0(x_i, t_j),& Q_1(x_i, t_j),& \ldots, & Q_{p-1}(x_i, t_j) \\
\vdots, & \vdots, & \ddots, & \vdots \\
Q_0(x_i, t_j),& Q_1(x_i, t_j),& \ldots, & Q_{p-1}(x_i, t_j)
\end{bmatrix}
\]
(2.8)
Where \(\eta = j + \frac{1}{4} \), \(\gamma = j + b \left(\frac{a_0 - 1}{a} \right) \), and \(Y^{-1} \) exists (Odekunle, 2008).
\[
a = LE, \quad L = Y^{-1}
\]
(2.9)
The vector \(a = (a_0, \ldots, a_{p-1})^\top \) is now determined in terms of known parameters in \(LE \). If \(L_{r,i} \) is the \((r, i)^{th}\) row of \(L \) then
\[
a_r = L_{r,1}E
\]
(2.10)
Also, eqn. (2.9) determines the values of \(a_r \). Taking the first derivatives of eqn. (2.0) with respect to \(t \), we obtain
\[
\tilde{U}'(x,t) = \sum_{r=0}^{n-1} a_r \left[Q'_r(x,t) \right]
\]
(2.11)
But by eqn. (1.0) or (1.1) it is obvious that eqn. (2.11) is equal to eqn. (2.6), therefore,
\[
\sum_{r=0}^{n-1} L_{r,1} E \left[Q'_r(x,t) \right] - \sum_{r=0}^{n-1} L_{r,1} E \left[Q''_r(x,t) \right] = 0
\]
(2.12)
Collocating eqn. (2.12) at \(x=x_i \) and \(t=t_j \) we obtain a new numerical scheme that solves eqns. (1.0) and (1.1) explicitly.

Numerical Examples

In this section we give some numerical examples to compute approximate solutions for equations (1.0) and (1.1) by the method discussed in this paper [5]. This is in order to test the numerical accuracy of the new method. To achieve this, we truncate the Taylor’s polynomial after second degree and use it as the basis function in the computation. The resultant scheme is used to solve the following two problems.

Example 1 (Eyaya, 2010)

Given a 2 cm thick steel slab, solve for the temperatures as a function of \(x \) and \(t \) at \(t=2.062 \) seconds if the initial temperatures are given by the relation [24-26]. \(U(x,0) = 100 \sin \left(\frac{\pi x}{4} \right) \) where \(k \) for steel is 0.13 cal/sec °cm, \(c=0.11 \) cal/g°C and \(p=7.8 \) g/cm³.

Solution

By simplification eqn. (1.0) becomes \(\frac{\partial^2 U}{\partial x^2} = cp \frac{\partial U}{\partial t} \). To solve this equation we take \(\Delta x=0.25 \) cm, then we find \(\Delta t \) by the relation \(k \Delta t = \frac{\pi}{4} \), \(\Delta t = 0.825 \) sec. We let \(\beta=4, a=64 \) arbitrarily which implies that \(\gamma = \frac{1}{4} \). Taking two interpolation points along space coordinates and one along time implies that \(g=2, b=1, p=3 \) and for \(i = 1, 4, 7, \ldots, and j = 1, 2, \ldots \), we obtain \(h = \frac{1}{4}, 0, -\frac{1}{4} \), then the calculated temperatures are tabulated as shown in Table 1 [27].

Example 2 (Eyaya, 2010)

A hollow tube 25 cm long is initially filled with air containing 2% of ethyl alcohol vapors. At the bottom of the tube is a pool of alcohol which evaporates in to the stagnant gas above [6]. (Heat transfers to the alcohol from the surroundings to maintain a constant temperature of, 30°C at which temperature the vapor pressure is 0.1 atm.). At the upper end of the tube, the alcohol vapors dissipate to the outside air, so the concentration is essentially zero. Considering only the effects of molecular diffusion, determine the concentration of alcohol as a function of time and distance measured from the top of the tube.

Solution
Table 2: Concentrations of alcohol.

T	x=0	x=5	x=10	x=15	x=20	x=25
0	0	3.00	3.00	3.00	3.00	15
21.11	0	2.63	3.00	3.00	4.50	15
42.22	0	2.35	2.95	3.19	5.63	15
63.33	0	2.13	2.91	3.47	6.50	15
84.44	0	1.96	2.88	3.78	7.18	15
105.55	0	1.83	2.88	4.09	7.73	15
126.66	0	1.73	2.90	4.39	8.19	15
147.77	0	1.66	2.94	4.68	8.56	15
168.88	0	1.61	2.99	4.95	8.88	15

Molecular diffusion follows the law \(\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2} \) where \(D \) is the diffusion coefficient, with units in \(\text{cm}^2/\text{sec} \). For ethyl alcohol \(D=0.111 \text{ cm}^2/\text{sec} \) at \(30^\circ \text{C} \), and the vapor pressure is such that 10 volume percent alcohol in air is present at the surface [7].

If we take \(\beta=4 \), \(\alpha=3 \) arbitrarily then \(\nu = i - \frac{1}{4} \), \(z = i + \frac{1}{3} \) and \(\eta = \gamma = i + \frac{1}{3} \). Taking two interpolation points along space coordinates and one along time implies that \(g=2 \), \(b=1 \), implies that \(p=3 \) and for \(i = \frac{1}{4} \), \(j = \frac{3}{8} \), we obtain \(h = -\frac{1}{4} \), \(k = 0 \), then the calculated concentrations of alcohol are tabulated as shown in Table 2.

References

1. Adam A, David R (2002) One dimensional heat equation.
2. Awoyemi DO (2002) An Algorithmic collocation approach for direct solution of special fourth-order initial value problems of ordinary differential equations. Journal of the Nigerian Association of Mathematical Physics 6: 271-284.
3. Awoyemi DO (2003) Ap-stable linear multistep method for solving general third order Ordinary differential equations. Int J Computer Math 80: 987-993.
4. Bao W, Jaksh P, Markowich PA (2003) Numerical solution of the Gross- Pitaevskii equation for Bose-Einstein condensation. J Compt Phys 187: 318-342.
5. Benner P, Mena H (2004) BDF methods for large scale differential Riccati equations in proc. of mathematical theory of network and systems, MTNS.
6. Bensoussan A, Da Prato G, Delfour M, Mitter S (2007) Representation and control of infinite dimensional systems. Sys Cont Found Appl 2:576.
7. Biazar J, Ebrahimi H (2005) An approximation to the solution of hyperbolic equation by a domain decomposition method and comparison with characteristics method. Appl Math Comput 163: 633-638.
8. Brown PLT (1979) A transient heat conduction problem. AICHE Journal 16: 207-215.
9. Chowla MM, Katti CP (1979) Finite difference methods for two-point boundary value problems involving high-order differential equations. BIT: 27:33.
10. Cook RD (1974) Concepts and Application of Finite Element Analysis. NY: Wiley Eastern Limited.
11. Crandall SH (1955) An optimum implicit recurrence formula for the heat conduction equation. JACM 13:318-320.
12. Crane RL, Klopfenstein RW (1965) A predictor-corrector algorithm with increased range of absolute stability. JACM 12: 227-241.
13. Crank J, Nicolson P (1947) A practical method for numerical evaluation of solutions of partial differential equations of heat conduction type. Proc Camb Phil Soc 6: 32-50.
14. Dahlquist G, Bjorck A (1974) Numerical methods. NY: Prentice Hall.
15. Dehghan M (2003) Numerical solution of a parabolic equation with non-local boundary specification. Appl Math Comput 145: 185-194.
16. Dieci L (1992) Numerical analysis. SIAM Journal 29: 781-815.
17. Douglas J (1961) A Survey of Numerical Methods for Parabolic Differential Equations in advances in computer II. Academic press.
18. D’Yakovon Ye G (1963) On the application of disintegrating difference operators. Z Vycist Mat I Mat Fiz. 3: 385-388.
19. Eyaya BE (2010) Computation of the matrix exponential with application to linear parabolic PDEs.
20. Fox L (1962) Numerical Solution of Ordinary and Partial Differential Equation.
21. Penzl T (2000) Matrix analysis. SIAM J 21: 1401-1418.
22. Pierre J (2008) Numerical solution of the dirichlet problem for elliptic parabolic equations. SIAM J. Soc. Indust Appl Math 6: 458-466.
23. Richard LB Albert C (1981) Numerical analysis. Berlin: Prindle, Weber and Schmidt Inc.
24. Richard L, Burde J, Douglas F (2001) Numerical analysis. (7th edn.), Berlin: Thomson Learning Academic Resource Center.
25. Saumaya B, Neela N, Amiya YY (2012) Semi discrete Galerkin method for equations of motion arising in Kelvin-Volght model of visco-elastic fluid flow. Journal of Pure and Applied Science 3: 321-343.
26. Yildiz B, Subasi M (2001) On the optimal control problem for linear Schrodinger equation. Appl Math and Comput121: 373-381.
27. Zheyn HR, Qiang X (2012) An approximation of incompressible miscible displacement in porous media by mixed finite elements and symmetric finite volume element method of characteristics. Appl Mathe Compus Else 143: 654-672.