DK-MICROAGGREGATION: ANONYMIZING GRAPHS WITH DIFFERENTIAL PRIVACY GUARANTEES

Masooma Iftikhar
Qing Wang
Yu Lin

Research School of Computer Science
The Australian National University

May 13, 2020
OUTLINE

- Introduction
- Problem Formulation
- dK-Microaggregation Framework
- Proposed Algorithm
- Experiments and Results
- Conclusion and Future Work
INTRODUCTION
Graph data analysis has been widely performed in real-life applications. For instance,

- online social networks are explored to analyze human social relationships;
- election networks are studied to discover different opinions in a community.

However, such networks often contain sensitive or personally identifiable information, such as social contacts, personal opinions and private communication records.

Publishing graph data can thus pose a privacy threat.
Graph Data Release Process

Figure 1: Graph Data Release Process (e.g. online social network)
Aims and Challenges

■ **Aim:** To generate anonymized graphs with ε-differential privacy guarantee for improving utility of anonymized graphs being published.

■ **Key Challenges:**
 - To preserve topological structures of an original graph at different levels of granularity.
 - To enhance utility of graph data by reducing the magnitude of noise needed to achieve ε-differential privacy through adding controlled perturbation to its edges (i.e., edge privacy).

■ **Key Observation:** We observe that the dK-graph model [5] for analyzing network topologies can serve as a good basis for generating structure-preserving anonymized graphs.
Problem Formulation
The dK-graph model [5] provides a systematic way of extracting subgraph degree distributions from a given graph, i.e. *dK-distributions*.

A *dK-distribution* $dK(G)$ over a graph G is the probability distribution on the connected subgraphs of size d in G.

Specifically, *1K-distribution* captures a degree distribution, and *2K-distribution* captures a joint degree distribution. When $d = |V|$, dK-distribution specifies the entire graph.

A *dK-distribution* is extracted from a graph, by using *dK function* (s.t. $\gamma^{dK}(G) = dK(G)$).
We define dK-graph as a graph that can be constructed through reproducing the corresponding dK-distribution.

A dK-graph over $dK(G)$ is a graph in which connected subgraphs of size d satisfy the probability distribution in $dK(G)$.

Conceptually, a dK-graph is considered as an anonymized version of an original graph G that retains certain topological properties of G at a chosen level of granularity.

We aim to generate dK-graphs with ε-differential privacy guarantee for preserving privacy of structural information between nodes of a graph (edge privacy).
Problem Statement

- Two graphs $G = (V, E)$ and $G' = (V', E')$ are said to be **neighboring graphs**, denoted as $G \sim G'$, iff $V = V'$, $E \subseteq E'$ and $|E| + 1 = |E'|$.

Differentially private dK-graphs

A randomized mechanism \mathcal{K} provides ε-differentially private dK-graphs, if for each pair of neighboring graphs $G \sim G'$ and all possible outputs $G \subseteq \text{range}(\mathcal{K})$, the following holds

$$
\Pr[\mathcal{K}(G) \in G] \leq e^{\varepsilon} \times \Pr[\mathcal{K}(G') \in G].
$$

- \mathcal{G} is a family of dK-graphs, and $\varepsilon > 0$ is the **differential privacy parameter**. Smaller values of ε provide stronger privacy guarantees.
dK-Microaggregation Framework
We incorporate microaggregation techniques [1] into the dK-graph model [5] to reduce the amount of random noise without compromising ε-differential privacy.

Generally, dK-microaggregation works in the following steps:

1. Extracts a dK-distribution from each neighboring graph.
2. Microaggregates the dK-distribution and perturbs the microaggregated dK-distribution to generate ε-differentially private dK-distribution.
3. Generates ε-differentially private dK-graphs using a dK-graph generator [4, 5].
Figure 2: A high-level overview of the proposed framework (dK-Microaggregation).
PROPOSED ALGORITHM
A microaggregation algorithm for dK-distributions $M = (C, A)$ consists of two phases:

(a) **Partition** - similar tuples in a dK-distribution are partitioned into the same cluster;

(b) **Aggregation** - the frequency values of tuples in the same cluster are aggregated.

Figure 3: An illustration of our proposed algorithms.
Proposed Microaggregation Algorithms

- **MDAV-dK algorithm**: We use a simple microaggregation heuristic, called *Maximum Distance to Average Vector (MDAV)* [1], which can generate clusters of the same size k, except one cluster of size between k and $2k - 1$. Then unlike MDAV, we aggregate frequency values of tuples in each cluster. However, **MDAV-dK** would suffer significant information loss when evenly partitioning a highly skewed dK- distribution into clusters of the same size.

- **MPDC-dK algorithm**: To address this issue, we propose *Maximum Pairwise Distance Constraint (MPDC-dK)*, which aims to partition a dK-distribution into a minimum number of clusters in which every pair of tuples from the same cluster satisfies a distance constraint τ.
EXPERIMENTS AND RESULTS
Experimental Setup

Three network datasets:

1. *polbooks* contains 105 nodes and 441 edges.
2. *ca-GrQc* contains 5,242 nodes and 14,496 edges.
3. *ca-HepTh* contains 9,877 nodes and 25,998 edges.

Two measures:

- **Euclidean distance** [6] measures network structural error between original and perturbed dK-distributions.
- **Sum of absolute error** [2] measures within-cluster homogeneity of clustering algorithms, defined as:

 \[
 SAE = \sum_{i=1}^{N} \sum_{\forall x_j \in c_i} |x_j - \mu_i|,
 \]

 where \(c_i \) is the set of tuples in cluster \(i \) and \(\mu_i \) is the mean of cluster \(i \).
To verify the utility, we compare the structural error between original and perturbed dK-distributions generated by MDAV-dK, MPDC-dK and the baseline method ε-DP. Our proposed algorithms MDAV-dK and MPDC-dK lead to less structural error for every value of ε as compared to ε-DP.
We compare the quality of clusters, in terms of within-cluster homogeneity, generated by MDAV-dK and MPDC-dK. MPDC-dK outperforms MDAV-dK by producing clusters with less SAE over all three datasets.

Table 1. Performance of MDAV-dK under different values of k.

Datasets	Measures	$k=1$	$k=3$	$k=5$	$k=7$	$k=9$	$k=11$	$k=13$	$k=15$
polbooks	SAE	0	144.6	184.67	224.84	273.6	292.21	299.15	334.25
	# Clusters	161	53	32	23	17	14	12	10
ca-GrQc	SAE	0	1073.3	1476	1810.5	2166.8	2313.7	2555.5	2730
	# Clusters	1233	411	246	176	137	112	94	82
ca-HepTh	SAE	0	968.72	1304	1599.8	1893.9	2063	2232.9	2389.7
	# Clusters	1295	431	259	185	143	117	99	86

Table 2. Performance of MPDC-dK under different values of τ.

Datasets	Measures	$\tau=1$	$\tau=3$	$\tau=5$	$\tau=7$	$\tau=9$	$\tau=11$	$\tau=13$	$\tau=15$
polbooks	SAE	90.72	192.15	328.96	424.2	563.73	617.63	723.06	795.77
	# Clusters	68	25	13	8	7	5	3	3
ca-GrQc	SAE	725.38	1732.1	2630.6	3470.6	4262.9	5176.7	6170.1	7037.7
	# Clusters	483	178	98	61	42	35	26	20
ca-HepTh	SAE	841.87	1761.8	2773.3	3721.4	4719.2	5623.8	6402.6	7034.2
	# Clusters	412	140	73	37	34	24	19	15
CONCLUSION AND FUTURE WORK
Conclusion:

► We present a novel framework, called *dK-microaggregation*, that can leverage a series of network topology properties to generate \(\varepsilon \)-differentially private anonymized graphs.

► We propose a *distance constrained algorithm* for approximating dK-distributions of a graph via microaggregation within the proposed framework, which can reduce the amount of noise being added into \(\varepsilon \)-differentially private anonymized graphs.

► The effectiveness of our proposed framework has been empirically verified over three real-world network.

Future work: To this work will consider zero knowledge privacy (ZKP) [3], to release statistics about social groups in a network while protecting privacy of individuals.
REFERENCES

Josep Domingo-Ferrer and Vicenç Torra.
Ordinal, continuous and heterogeneous k-anonymity through microaggregation.
Data Mining and Knowledge Discovery, 11(2):195–212, 2005.

Vladimir Estivill-Castro and Jianhua Yang.
Fast and robust general purpose clustering algorithms.
In PRICAI, pages 208–218, 2000.

Johannes Gehrke, Edward Lui, and Rafael Pass.
Towards privacy for social networks: A zero-knowledge based definition of privacy.
In TCC, pages 432–449, 2011.

Priya Mahadevan, Calvin Hubble, Dmitri Krioukov, Bradley Huffaker, and Amin Vahdat.
Orbis: Rescaling degree correlations to generate annotated Internet topologies.
In SIGCOMM, pages 325–336, 2007.

Priya Mahadevan, Dmitri Krioukov, Kevin Fall, and Amin Vahdat.
Systematic topology analysis and generation using degree correlations.
In SIGCOMM, pages 135–146, 2006.

Alessandra Sala, Xiaohan Zhao, Christo Wilson, Haitao Zheng, and Ben Y Zhao.
Sharing graphs using differentially private graph models.
In SIGCOMM, pages 81–98, 2011.
Thanks for your attention!

Any questions?