Effect of traditionally used herb *Pedalium murex* L. and its active compound pedalitin on urease expression – For the management of kidney stone

S. Ramadevi a, B. Kaleeswaran b,*, S. Ilavenil c, Akilesh Upadhye d, D. Tamilvendan e, R. Rajakrishnan f, A.H. Alfarhan f, Y.-O. Kim g, H.-J. Kim h,n

aDepartment of Biotechnology, Bon Secours College of Education for Women, Vilar, Bypass Road, Thanjavur, Tamil Nadu, India
bDepartment of Zoology and Biotechnology, A.V.V.M. Sri Pushpam College (Autonomous), Poondi, Thanjavur, Tamil Nadu, India
cGrassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan, Republic of Korea
dDepartment of Microbiology, Shree N and N Virani Science College (Autonomous), Rajkot, Gujarat 360005, India
eDepartment of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India
fDepartment of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, Saudi Arabia
gDepartment of Bio-Environmental Chemistry, College of Agriculture and Life Sciences, Chungnam National University, 99 Daehak-Ro, Yuseung-Gu, Daejeon 34134, Republic of Korea
hDepartment of Clinical Pharmacology, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea

ABSTRACT

Pedalium murex L. is a medicinal herb that has been used for the treatment of diseases related to kidney in the traditional system of medicine. The current study aims to study the effect of ethyl acetate extract of *P. murex* (EAEP) and its fractionated compound pedalitin against urease production and *UreC* gene expression in *Proteus mirabilis*. The selected reference strain *Proteus mirabilis* (MTCC 425) and the isolates culture of *Proteus mirabilis* were subjected to study the antibacterial efficacy of *P. murex*. Expression analysis of *P. mirabilis* urease gene was successfully done by QPCR. The ethyl acetate extract effectively inhibit the reference *Proteus mirabilis* and bacterial isolates of *Proteus mirabilis* in the clinical samples studied. EAEP has showed more potent activity (56.7%) against urease enzyme and pedalitin also exhibited potent activity (30.1%). Using qPCR, the expression of *UreC* gene of *P. mirabilis* was controlled by EAEP and also its bioactive compound pedalitin. The present study clearly demonstrated the potency of *P. murex* in controlling the growth of pathogenic *P. mirabilis* and to control the expression of urease enzyme production as well as to restrict the urease gene expression in *P. mirabilis*.

© 2020 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Urinary tract infection (UTI) is a severe health disease with high complication because it is related to antibiotic resistance and threatening to health throughout lifetime (Thulasi and Amsaveni, 2012). According to the World Health Organization (WHO), urinary diseases cause death of almost 85,000 people in the world per year.

Among different types of kidney stones, struvite stone is the second major type of stone and is referred as an infection stone which is composed of Magnesium Hydrogen Phosphate Tetrahydrate - \([\text{MgHPO}_4 \cdot 3\text{H}_2\text{O}]\) and Ammonium Magnesium Phosphate Hexahydrate (AMPH) - \([\text{NH}_4\text{MgPO}_4 \cdot 6\text{H}_2\text{O}]\). Struvite stone may raised by increasing super-saturation of different elements present in the urine that would cause the stone formation (Worcester and Coe, 2010). The stone formation occurs mainly based on mineral accumulation followed by nucleation, growth of crystal, crystal aggregation as well as crystal retention (Kaleeswaran et al., 2019). Some uropathogens such as *Proteus mirabilis*, *Staphylococcus aureus*, *Klebsiella pneumoniae*, *Escherichia coli* and *Mycoplasma* species are also involved. If it is untreated, it can damage the kidneys and can become end-stage renal disease (ERD). Current management of kidney stone, creates side effects or recurrence of stone because of the high risk factors; we look back for lesser or without side effects treatment with a herbal medicinal plant.
Indian system of medicine recommends medicinal plants as alternative medicine for the treatment of kidney stone and several diseases. Based on traditional healers, the plant Pedalium murex L. was used for the dissolution and prevention of kidney stone formation. Further, it is used for the treatment ailments like incontinence of urine, gonorrhoea, promote lochial discharge, antibilious agent, dysuria and control white discharge. Moreover, the whole plant parts could be used for the treatment of urinary problem, diuretic, male fertility disorder and leukorrhoea. Likewise, fruit and dried fruit were used to recover the diseases such as diabetes, demulcent, gonorrhoea, aphrodisiac, antispasmodic property and incontinence of urine, stranguary and urinary calculi.

Some diseases like ulcer, dysuria, splenic enlargement and diarrhea, gonorrhoeal rheumatism, aphrodisiac and demulcent were treated by using leaves (Al-Dhabi et al., 2015; Barathikannan et al., 2016; Al-Dhabi and Arasu, 2016). The seed of this plant was used as a treatment of leukorrhoea, urinary tract disorder, joint pain, lumbago, bladder troubles and gonorrhoea (Cuong et al., 2017; Elango et al., 2017, 2016a, 2016b). By using, stem part of P. murex used for the treatment of spermatorrhea, dysuria, ardour urinae and gonorrhoea (Imran et al., 2015; Glorybai et al., 2015; Fowsiya et al., 2016; Haritha et al., 2016). It has been also used for the veterinary disease treatment. Each plant parts were used as medicine for the curable of various diseases (Table 1). Thus, the plant has lot of active constituents but none of the work has been implemented for treating the struvite stone (see Table 2).

Instead of using allopathic medicine, researchers isolate the active components from medicinal plants for disease treatment (Rahmanet al., 2011; Islam et al., 2015; Helan et al., 2016; Ilaenjil et al., 2017; Park et al., 2016a, 2016b). In our research, based on the evidence of previous literature, the extracted bioactive compound could be selected by the colour and its melting point, which we have selected the active compound, it may be as pedalitin (Park et al., 2017) Further, the characterization of bioactive compound is still in laboratory testing for the confirmation as pedalitin. With the assumption and identification of the compound pedalitin, further were used for the inhibitory activity against virulence factor urease and its gene of expression especially Urec gene in P. mirabilis by biochemical method, gene expression and molecular docking studies.

Among several microbes, Proteus mirabilis is an extremely pathogenic bacteria and it is the main reason for most complicated UTI such as the development of staghorn stone in kidney and blockage of urinary tract (Al-Duliiami et al., 2011; Surendra et al., 2016a, 2016b, 2016c). It forms infection in the upper urinary tract, sequentially it can causes diseases like ureolithiasis, cystitis and acute pyelonephritis and occasionally found in wound infections, bacteremia, septicemia, neonates or infants meningitis and rheumatoid arthritis (Hasan and Al-Azawi, 2011).

Proteus mirabilis has several virulence factors like adhesions, hemolysin, urease, lipopolysaccharide endotoxins, swarming motility and proteases (Armbuster and Mobley, 2012; Gurusamy et al., 2019; Rajkumari et al., 2019). Among these virulence factor, Urease is the main factor and it is the main reason for the development of urinary stone by the pathogeneticity of P. mirabilis. This enzyme highly mediates the formation of ammonia and carbon dioxide from urea which in turn, increases the urine pH to deposit the crystalline minerals in the urinary tract that develops into kidney stone (Fig. 1). It is a multimeric nickel-metalloenzyme, which is programmed by urease gene cluster (UreDABCEFG) called as urea-inducible genes. Among this gene cluster, Urec is the main reason for the high pathogenicity of P. mirabilis, because it yields high amount of urease. Our aim is to suppress the Urec gene expression using P. murex plant extract and its bioactive compound pedalitin.

2. Materials and methods

2.1. Plant specimen

Whole plants of Pedalium murex (L.) was collected from Thanjavur, Tamil Nadu, India and was authenticated by the Director of the Rapinat Herbarium and Centre for Molecular Systematics, St. Joseph College, Tiruchirappalli. The plant was assigned a voucher number RHPM SR 001.

2.2. Solvent extraction of plant

The plant sample was completely dried under shade, ground to fine powder by an electrical mixer and sieved through a 20 μ mesh sieve. The powdered sample was extracted using soxhlet apparatus with ethyl acetate, filtered through and concentrated at 45 °C using rotary vacuum evaporator under reduced pressure until it becomes a thick paste. Finally, it was yielded 15.1% w/w in terms of dried material and it was kept at 4 °C in a refrigerator an air tight glass bottle for this study (Chopra et al., 1992).

2.3. Antibacterial assay

2.3.1. Isolation, identification and antibiotic sensitivity test

Most common UTI pathogen Proteus mirabilis was isolated from clinical samples and used for this study. The UTI patients urine samples were collected from National pharma hospital, Thanjavur and reference strain Proteus mirabilis from MTCC 425. Identification of pathogenic bacterial strains was done by colony morphology and it was compared with reference strain. Antibiotic sensitivity test for the bacterial strain was done by the Kirby-Bauer's disc diffusion method. Antibiotic susceptibility test was performed following Clinical Laboratory Standard Institute guidelines (CLSI, 2011).

2.3.2. Antimicrobial activity of EAEP against P. mirabilis

The antibacterial efficacy of EAEP against the clinical samples were analysed by disc diffusion method (Bauer et al., 1966; Baba and Malik, 2015).

Table 1

Pedalium murex L.	Plant description and its medicinal value.			
No.	**Scientific Name**	**Vernacular Name**	**Parts used**	**Prediction of plant**
1	Pedalium murex L.	Yaanaanerij	Whole plant	Medicinal uses, Urinary problem, urinary calculi, urinary troubles, dieuermic, male fertility disorder, leucorrhoea
2	Pedalium murex L.	Yaanaanerij	Fruits	Diabetes, demulcent, antispasmodic and aphrodisiac, Gonorrhoea
3	Pedalium murex L.	Yaanaanerij	Dried fruits	Incontinence of urine, urinary calculi, Strangury
4	Pedalium murex L.	Yaanaanerij	Leaves	Ulcers, dysuria, Bone fracture, diarrhea, splenic enlargement, diabetes, Gonorrhoeal rheumatism, Aphrodisiac, Demulcent
5	Pedalium murex L.	Yaanaanerij	Root	anti-bilious, calm body heat, virility, Poustukh
6	Pedalium murex L.	Yaanaanerij	Seed	Leucorrhoea, urinary tract disorders, diuretic property, joint pain & lumbago, bladder troubles and gonorrhoea
7	Pedalium murex L.	Yaanaanerij	Stem	Spermatorrhoea, Dysuria, Ardorurrinae, Gonorrhoea
2.4. Urease inhibitory activity

2.4.1. Extraction of urease enzyme

For the production of urease, the overnight culture of \textit{P. mirabilis} MTCC 425 of 50 ml cultivated in Mueller Hinton Broth (MHB). Then they were transferred into sterile MHB of 10 ml and then it was incubated for 18 hrs at 37°C with even shaking. After that, the cells were deposited as pellet by centrifugation at 1258 rpm for 15 min (4°C). With the solution of 10 mM K2HPO4 the pellet was washed by three times and again immersed in 2 ml of the same solution. Then, it was sonicated for 90 sec with 0.5 cycles using an ultra sonicator at 100% amplitude with an ice container for releasing urease from bacteria. Finally, the bacterial lysate was collected and used for urease activity assay (Ranjbar-Omidet al., 2015).

2.4.2. Inhibitory effect of urease enzyme – Weatherburn method

For the inhibition activity of urease enzyme, EAEP and pedalitin compound were subjected in indophenol method (Weatherburn, 1967). The assay solution was contained with a bacterial urease solution (0.2 ml) mixed with 0.1 ml of extract along with 1.2 ml of phosphate buffer (pH 8.2) and it was incubated at 30°C for 5 min. After incubation, aliquots were taken and added to 0.5 ml (66 mM) of urea and the whole sample was incubated for 20 min. Thiourea was used as the standard inhibitor for urease from bacteria. Finally, the bacterial lysate was collected and used for urease activity assay (Ranjbar-Omidet al., 2015).

2.5. qPCR – gene expression analysis

The \textit{Proteus mirabilis} strain (MTCC 425) was grown in LB broth to delay logarithmic phase and then the cells were collected and kept at 20°C. The total RNA was extracted from the bacteria using RNeasey protects bacteria mini kit (Qiagen USA). Then, DNA in the sample was digested by RQ Dnase. The total RNA was quantified using spectramax i3 with spectral Drop Micro- Volume Microplate (Molecular devices, USA). The RNA was reverse transcribed with cDNA synthesis kit (iScriptcDNA synthesis kit, Biorad).

Quantitative PCR was performed with CFX 96 PCR model (Applied Biosystems, USA). Target gene expression level was quantified using SYBR green based qPCR in 10 μl reactions containing 5 μl Power SYBR Green Master Mix (Biorad, USA), 1 μl cDNA, 1 μl 10 p mole forward (FP: GGG CTC TCC TAC CGA CTT GAT C) and 3 μl DEPC water. The target gene expression was calculated by the $2^{-ΔΔCT}$ (Livak method). The gene expression was normalised with housekeeping gene \textit{rpoA} (RNA polymerase A).

3. Results

3.1. Antibacterial activity

3.1.1. Antibiotic sensitivity test of \textit{P. mirabilis}

The antibiotic profiles of pathogenic bacteria were determined using specified antibiotic discs Hexa UTI 5 containing different antibiotics. Isolated gram negative bacteria, \textit{P. mirabilis} were more resistant to Amoxyclav, Ampicillin, Ciprofloxacin, Co-Trimoxazole, Nitrofurantoin, Norfloxacine in sample 5 and very sensitive in sample 1 against these antibiotics in the disc. The details of individual antibiotics resistant profiles of individual bacteria are represented (Table 3).

3.1.2. Antibacterial test of plant extracts

From the results, it was proved that the tested extract has significant antibacterial potency against \textit{P. mirabilis} strains from clinical isolates and its reference strain from MTCC 425 (Table 4). It was observed that EAEP showed highest antibacterial activity against UTI bacteria which causes severe infection in patients.
3.2. Inhibitory effects of urease using EAEP and bioactive fractioned compound (Pedalitin)

Urease inhibitory activity of EAEP (0.1 ml) and pedalatin (0.1 ml) was depicted in Table 5. The activity was compared with Thiourea (80 mg/ml) which was used as standard. The urease inhibition of standard Thiourea was 96.3%. EAEP extract was showed the maximum urease activity (56.7%) with considerable value of inhibition and the pedalatin compound showed 30.1% of inhibitory activity.

3.3. qPCR – Gene expression analysis

Expression of urease gene (UreC) in P. mirabilis was studied and shown in the Tables 6–8. In this analysis, mRNA was extracted from P. mirabilis and reverse transcribed. Furthermore, the target gene expression was quantified by qPCR. From the evidence of linear regression correlation, the expression of UreC was significantly responded by the treatment of EAEP and Pedalitin. The regression calculations of qPCR was showed significant activity in EAEP treated group ($r^2 = 0.62$ & $P = 0.04$) than the pedalatin treated group ($r^2 = 0.46$ & $P = 0.03$). Moreover, the results were showed that the treatment with EAEP and pedalatin significantly down regulated the expression of UreCmRNAs as compared to control group. Overall results of this study, the EAEP was showed more effect on the urease gene expression and moderate effect was noted inpedalitin treatment.

4. Discussion

Universally, the bacterial infections are an important cause of morbidity and mortality. The exploration for antimicrobials from plant source has expected much attention and efforts to discover the compounds that can perform as right antimicrobial agent to change the synthetic ones (Sen and Batra, 2012). In most of the common cases, the microbes do not involve directly to cause disease. It allows the bacteria to overcome the natural protective mechanisms of the body through the damage of the skin, leading to infections (Ejaz et al., 2014). In the present situation, the use of medicinal herbs and conventional traditional drugs is quiet economical when compared to modern medicine. It is mandatory to inspect and authenticate various indigenous drugs along with better understanding of their biological and pharmacological properties (Kelmanson et al., 2000; Roopan et al., 2019; Valsalam et al., 2019a, 2019b).

Phytochemical can serve as a prototype to develop less lethal and efficient drug for controlling the development of microbes (Sen and Batra, 2012). Principally, it involved in the separation and discovery of the secondary metabolites extracted from the plants and used as the active ingredients in medical preparations (Aiyegoro and Okoh, 2009). Nowadays, most of the people interested to consume drugs with safe, effective from natural products as extracts or plant oils that is alternative to the commercial synthetic medicine. These antimicrobial drugs have enormous potentially effective therapeutic value which involve in the treatment of infectious disease caused by microbes (Zablotowicz et al., 1996).

Among the various diseases affecting human population, kidney stone stands third. It may be infectious or non-infectious, mainly originating from metabolic disorders or through some unknown changes and also with urinary tract infections (Kunin, 1997). Bac terial infection can disturb any part of urinary tract (Stamm and Norbury, 2001) and if untreated they make much damage. It may cause serious medical consequences such as extreme obstruction, hydronephrosis, infection and haemorrhage in the urinary tract system. It is reported that these infections are more common in women than men (Al-Jiffri et al., 2011). The main causative agents for the stone formation was screened by the presence of different elements by means of increasing super-saturation of urine (Worcester and Coe, 2010; Ghelani et al., 2016).
Presence of broad multiplicity of natural products in the world has been used as a drug against various disease. Further, it has been examined by the researcher for the preventive and management of diseases, especially for the antibiotic resistance pathogens. Based on the traditional knowledge, the plant *P. murex*, which was the main causative factor for the urinary tract infection, in turn develops the struvite stone or infection stone. In the past work, the *P. murex* showed highest inhibitory activity against various UTI bacteria such as *E. coli*, *P. mirabilis*, *B. cereus*, *S. aureus*, *B. licheniformis* and *S. typhi* (Kaleeswaran and Ramadevi, 2016). The reason behind this inhibitory activity is the presence of some active compounds which may be responsible for providing resistance against the development of infection caused by the microbes.

P. mirabilis is recognized by its capability to colonize the virulence factors. The virulence factor, urease enzyme mediate the conversion of urea into ammonium and CO2 which alter the pH that deposit the polyvalent ions in the urine termed as struvite stone. It increases the colonization in catheter, bacterial observance, development of biofilm incrustation and also increase the swarmer cells, in turn, it facilitates into the formation of bacterial infection (Al-Mayahi, 2017). It may cause serious medical consequences such as extreme obstruction, hydronephrosis, infection and haemorrhage in the urinary tract system. The immune system in human cannot eliminate because of the bacterial capacity of immune evasion. Thus, suppressing the expression of virulence factors to facilitate the pathogenicity of the bacterium and ease the elimination for the host immune system to overcome infection (Fernebro, 2011). For this purpose, urease inhibitors had been extracted from some plants such as *Allium ursinum*, *Hyssopus officinalis*, *Potentilla argentea*, *Salvia sclarea*, *Yucca filamentosa* and *Fagonia arabica* (Amin et al., 2013; Modolo et al., 2015). We studied *P. murex* plant that has not been analyzed yet for its inhibitory activities of urease in *P. mirabilis* in order to find out its effect on the factor responsible for colonization and virulence capacity of the bacterium.

The flavonoid compound Pedalitin present in *P. murex* may be responsible for the urease inhibitory activity of *P. mirabilis*. The result showed that the EAEP and Pedalitin have more potent activity against urease. It was also proved from previous work in different plant with various organisms (Khan et al., 2014; Ali et al., 2015). The plant *Hibiscus schizopetalus* showed urease inhibitory activity as 55.5% (Zahid et al., 2014). A stronger urease activity was also reported in *Sambucus ebulus* and *Rheum ribes* extracts using in vitro method (Nabati et al., 2012). Five different plants such as *Matricaria disciforme*, *Nasturtium officinale*, *Punica granatum*, *Camelia sinensis* and *Citrus aurantifolia* also showed potent inhibitory activity against urease enzyme of Horse gram (Biglar et al., 2012). We analysed the urease producing gene UreC expression in *P. mirabilis* using specific primer sequences which is responsible for the expression of gene. *Mobley* and *Chippendale* (1990) reported that the provisory of this *P. mirabilis* highly produced the urease enzyme and it has to detect the gene by molecular identification. Among this gene clusters, a broad distribution of virulence factors *UreR* and *UreC* with *P. mirabilis* was identified by the researchers *Mobley* and *Chippendale* (1990) and MacFaddin (2000). Further, in our research, we were mainly focused on the mRNA expression of *UreC* in control and treated bacteria because it is very important gene present in the *P. mirabilis* that produces urease abundantly.

NO	Treatment group	Target urease	House Keeping	References	Mean	SEM	
1.	Control	16.76 E11	U6srRNA	14.75	2.01	0	1.00
2.	Control	16.87 D11	U6srRNA	14.86	2.02	0.01	1.00
3.	Control	16.52 D12	U6srRNA	14.79	1.73	–0.29	1.22
4.	Control	16.57 F11	U6srRNA	14.83	1.75	0.02	0.99
5.	Control	16.75 C11	U6srRNA	14.81	1.94	0.19	0.87
6.	Control	16.87 A11	U6srRNA	14.91	1.96	0.02	0.98
7.	Control	16.73 B11	U6srRNA	14.87	1.86	–0.11	1.08
8.	Control	16.71 H11	U6srRNA	14.53	2.18	0.33	0.80

S. No	Treatment Group	Target urease	House Keeping	References	Mean	SEM	
1.	EAEP	18.19 G10	SYBR	15.15	3.04	1.04	0.49
2.	EAEP	18.97 F10	SYBR	15.08	3.89	1.88	0.27
3.	EAEP	18.44 H10	SYBR	14.30	4.14	2.41	0.19
4.	EAEP	18.30 B10	SYBR	14.73	3.56	1.82	0.28
5.	EAEP	18.44 A10	SYBR	14.84	3.60	1.66	0.32
6.	EAEP	18.72 C10	SYBR	15.03	3.69	1.73	0.30
7.	EAEP	18.25 E10	SYBR	15.12	3.12	1.27	0.42
8.	EAEP	18.02 D10	SYBR	14.56	3.46	1.28	0.41

S. NO	Treatment group	Target urease	House Keeping	References	Mean	SEM	
1.	Pedalitin	17.69 D12	SYBR	14.78	2.91	0.90	0.53
2.	Pedalitin	17.17 E12	SYBR	14.81	2.36	0.34	0.79
3.	Pedalitin	17.47 F12	SYBR	14.91	2.55	0.83	0.56
4.	Pedalitin	17.66 G12	SYBR	14.98	2.69	0.94	0.52
5.	Pedalitin	17.65 C12	SYBR	14.77	2.89	0.95	0.52
6.	Pedalitin	17.87 H12	SYBR	15.06	2.80	0.84	0.56
7.	Pedalitin	17.01 A12	SYBR	14.81	2.20	0.34	0.79
8.	Pedalitin	17.77 B12	SYBR	15.04	2.73	0.54	0.69
Urease is an apoenzyme which is composed as a trimeric complex with trimer URE-ABC. For the activation of this apoenzyme, it requires a nickel ion which is located in UreC in the metallocenter region (Sambrook and Russel, 2001; Alatrash and Al-yasseen, 2017) and is larger subunits present in P. mirabilis. Therefore, we quantified expression level of urease producing gene in P. mirabilis. Our result suggested that EAEP and pedalitin might inhibited the expression of virulence factor especially UreC in P. mirabilis. This is the first information that describes the inhibitory effect on UreC by the treatment of M. perurex extract and also by the lead compound pedalitin. It may be very useful to pharmaceutical industries for developing a new strategy to control or prevent the kidney stone formation by P. mirabilis and other bacteria, particularly against struvite stone.

Acknowledgement

The authors thank the Science and Engineering Research Board (SERB) SB/YS/LS-224/2013 for the financial assistance to complete the project. This work was also supported by the Researchers Supporting Project number (RSP-2019/11), King Saud University, Riyadh, Saudi Arabia. The author Hak-Jae Kim thanks the support received from Soochunhyang University research fund for this research work.

References

Aiyegoro, O.A., Okoh, A.I., 2009. Use of bioactive plant combinations in production with standard antibiotics: Implications in antimicrobial chemotherapy. J. Med. Plants Res. 3 (13), 1147–1152.
Alatrash, Abdul Kareem Munee, Al-yasseen, AhlamKadhhum, 2017. Detection of UreC and UreE among Proteus mirabilis. Asian J. Pharmaceut. Clin. Res. 10 (8), 380–386.
Al-Dhabi, N.A., Arasu, M.V., 2016. Quantification of phytochemicals from commercial Spirulina products and their antioxidant activities. Evidence-Based Complem. Alternative Med.
Al-Dhabi, N.A., Arasu, M.V., Rejinomer, T.S., 2015. In vitro antibacterial, antifungal, antioilin, antioxidant, and anticancer properties of isosoevital isolated from endangered medicinal plant Pittosporum tetraspernum. Evidence-Based Complem. Alternative Med.
Al-Dulaimi, A.A., Nauman, N.G., Hasan, A.S., Al-Azawi, Z.H., 2011. Virulence factors of Proteus mirabilis isolated from patients otitis media in baquba and its Peripheries. Diyala J. Med. 1 (1), 69–75.
Ali, Shaikhrilkhat, Mabunni, Shaik, Mounica, N., Kuldeep, P., Jeevan Kumar, T., 2015. In Vitro Urease inhibitory Activity of Four Selected Medicinal Plant Extracts. Int. J. Pharma Res. Health Sci. 3 (6), 891–894.
Al-Jiffri, O., El-Sayed, Zahira MF, Al-Sharif, Fadwa M, 2011. Urinary Tract Infection and Inhibitory Activity of Some Traditional Medicinal Plants. Int. J. Urology 18 (2), 2135–2149.
Al-Mayahi, F.S., 2017. Phenotypic and molecular detection of virulence factors in Proteus mirabilis isolated from different clinical sources. Bas. J. Vet. Res 16 (1).
Amin, M., Anwar, F., Naz, F., Mehmoon, T., Saati, N., 2013. AntiHelicobacter pylori and urease inhibition activities of some traditional medicinal plants. J. Ethnopharmacol. 148, 717–743.
Al-Nouri, S.A., Elagoz, W.A., Al-Dhabi, N.A., Arasu, M.V., Dhamodaran, K.I., Elumalai, K., 2017. Cocos nucifera core-modified green synthesis of Pd NPs and its investigations against larvae and agricultural pest. Nanomedicine, and Biotechnology, Artificial Cells, Nanomedicine, and Biotechnology, Artificial Cells.
Al-Dhabi, N.A., Al-Dhabi, N.A., Arasu, M.V., Damodharan, K.I., Elumalai, K., 2017. Cocos nucifera core-modified green synthesis of Pd NPs and its investigations against larvae and agricultural pest. Nanomedicine, and Biotechnology, Artificial Cells.
Park, Y.J., Park, S.-Y., Arasu, M.V., Al-Dhabi, N.A., Ahn, H.-G., Kim, J.K., Park, S.U., 2017. Accumulation of carotenoids and metabolic profiling in different cultivars of Tagetes flowers. Molecules 22, 313.

Rahman, S., Parvez, A.K., Islam, R., Khan, M.H., 2011. Antibacterial activity of natural spices on multiple drug resistant Escherichia coli isolated from drinking water, Bangladesh. Ann. Clin Microbiol Antimicro 10, 10.

Rajkumari, J., Maria, Magdalane C., Siddhuraju, B., Madhavan, J., Ramalingam, G., Al-Dhabi, N.A., Arasu, M.V., Ghilan, A.K.M., Duraiyapaniyan, V., 2019. Kaviyarasu K. Synthesis of titanium oxide nanoparticles using Aloe barbadensis mill and evaluation of its antibiofilm potential against Pseudomonas aeruginosa PAO1. J. Photochem. Photobiol., B. https://doi.org/10.1016/j.jphotobiol.2019.111667.

Ranjbar-Omid, M., Arzanlou, M., Amani, M., Shokri Al-Hashem, S.K., Amir Mozafari, N., Peeri Doghaheh, H., 2015. Allicin from garlic inhibits the biofilm formation and urease activity of Proteus mirabilis -vitro. FEMS Microbiol. Lett. 362 (9), 1–9.

Roopan, S.M., Priya, D.D., Shanavas, S., Acevedo, R., Al-Dhabi, N.A., Arasu, M.V., 2019. CuO/C nanocomposite: Synthesis and optimization using sucrose as carbon source and its antifungal activity. Mater. Sci. Eng., C 101, 404–414.

Sambrook, J., Russell, D.W., 2001. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, Cold Spring Harbor Laboratory Press, New York, N.Y.

Sen, A., Batra, A., 2012. Evaluation of antimicrobial activity of different solvent extracts of medicinal Plant: Melia azedarach(L). Int. J. Current Pharm. Res. 4 (2), 67–73.

Stamm, W.E., Norrby, S.R., 2001. Urinary tract infections: disease panorama and challenges. J. Infect. Dis. 183, 1–4.

Surendra, T.V., Roopan, S.M., Arasu, M.V., Al-Dhabi, N.A., Sridharan, M., 2016c. Phenolic compounds in drumstick peel for the evaluation of antibacterial, hemolytic and photocatalytic activities. J. Photochem. Photobiol., B 161, 463–471.

Surendra, T.V., Roopan, S.M., Arasu, M.V., Al-Dhabi, N.A., Rayalu, G.M., 2016b. RSM optimized Moringa oleifera peel extract for green synthesis of M. oleifera capped palladium nanoparticles with antibacterial and hemolytic property. J. Photochem. Photobiol., B 162, 550–557.

Thulasi, G., Amsaveni, V., 2012. Antibacterial activity of Cassia auriculata against ESBL Producing E. coli from UTI Patients. Int. J. Microbiol. Res. 3 (1), 24–29.

Valsalam, S., Agastian, P., Esmail, G.A., Ghilan, A.K.M., Al-Dhabi, N.A., Arasu, M.V., 2019b. Biosynthesis of silver and gold nanoparticles using Musa acuminate colla flower and its pharmaceutical activity against bacteria and anticancer efficacy. J. Photochem. Photobiol., B. https://doi.org/10.1016/j.jphotobiol.2019.111670.

Valsalam, S., Agastian, P., Arasu, M.V., Al-Dhabi, N.A., Ghilan, A.K.M., Kaviyarasu, K., Ravindran, B., Chang, S.W., Akoyyaraj, S., 2019a. Rapid biosynthesis and characterization of silver nanoparticles from the leaf extract of Tropaeolum majus L. and its enhanced in-vitro antibacterial, antifungal, antioxidant and anticancer properties. J. Photochem. Photobiol., B 191, 65–74.

Weatherburn, M.W., 1967. Phenol-hypochlorite reaction for determination of ammonia. Anal Chem. 39, 971–974.

Weatherburn, M.W., 2010. Clinical practice. Calcium kidney stones. N. Engl. J. Med. 363, 954–963.

Zabolotowicz, R.M., Hoagland, R.E., Wagner, S.C., 1996. Effect of saponins on the growth and activity of rhizosphere bacteria. Adv. Exp. Med. Biol. 405, 83–95.

Zahid, H., Rizwan, G.H., Shareef, H., Ali, S.T., 2014. Antioxidant and urease inhibition activity of methanol extract of Hibiscus schizopetalus (Mast) Hook. J. Pharmacognosy Phytochem. 2 (6), 07–11.