Expression of costimulatory molecules in human neuroblastoma. Evidence that CD40+ neuroblastoma cells undergo apoptosis following interaction with CD40L

I Airoldi1, S Lualdi1, S Bruno2, L Raffaghello1, M Occhino1, C Gambini3, V Pistoia*,1 and MV Corrias1

1Laboratory of Oncology, G Gaslini Institute, Largo G Gaslini, 5, 16148 Genova, Italy; 2Department of Experimental Medicine, Section of Human Anatomy, University of Genova, Genova, Italy; 3Service of Pathology, G Gaslini Institute, 16148 Genova, Italy

British Journal of Cancer (2003) 88, 1527 – 1536. doi:10.1038/sj.bjc.6600951 www.bjcancer.com

© 2003 Cancer Research UK

Keywords: costimulatory molecules; human neuroblastoma; CD40; apoptosis; caspase-8

Costimulatory molecules play an indispensable role in the induction and maintenance of T-cell activation. Costimulatory signals promote T-cell proliferation, cytokine production and effector functions (Chambers et al, 2001). T-cell activation through T-cell receptor (TCR) and cluster designation 28 (CD28) induces CD8+ T lymphocytes to acquire cytolytic functions and CD4+ cells to differentiate into T Helper 1 (TH1) or TH2 cells (Lenschow et al, 1996). Some costimulatory molecules, such as CD40, CD80 and CD86, are constitutively expressed by professional antigen-presenting cells (APCs), and rapidly upregulated in the course of antigen presentation to T cells (Chambers et al, 2001). The binding of CD80 and CD86 on APC to CD28 on T cells is followed by the upregulation of additional costimulatory molecules on the latter cells, that amplify (e.g. inducible costimulator (ICOS) and 4-1BB; Akiba et al, 1999; Wang et al, 2000; Cannons et al, 2001; Dong et al, 2001) or downregulate (e.g. programmed death 1 (PD-1); Freeman et al, 2000) T-cell activation upon binding to their receptors on APC. On the other hand, interaction between CD80 and CD86 on APC with CTLA-4 on T cells delivers inhibitory signals to the latter cells that dampen ongoing immune responses (Chambers, 2001).

T-cell interaction with nonprofessional APC-presenting antigenic peptides in the context of HLA-class I or II molecules, but in the absence of costimulatory molecules, leads to T-cell anergy or apoptosis (Chambers, 2001). Most tumour cells are poor APC because of the low or absent expression of costimulatory molecules (Hurwitz et al, 2000), but enforced expression of some of these (e.g. CD80, B7H2 or 4-1BBL) by gene transfer has resulted in enhanced antitumour responses and tumour rejection in different animal models (Wu et al, 1995; Weinberg et al, 2000; Liu et al, 2001).

Neuroblastoma (NB) is the most common solid tumour in young children and carries a poor prognosis in more than half of the cases, because of its frequent presentation as metastatic disease at diagnosis (Brodeur et al, 1988). High-dose chemotherapy followed by rescue with autologous haematopoietic stem cells has not improved significantly the outcome of advanced-stage NB patients. So far, two groups have reported that CD80 or CD86 gene transfer in murine NB cells decreases their tumorigenicity (Katsanis et al, 1995; Enomoto et al, 1997), whereas virtually no data are available on the expression of costimulatory molecules in human NB cells (Uçar et al, 1995). In this perspective, we have investigated the expression of the CD40, CD80, CD86, PD-1L, B7H2, OX40L and 4-1BBL costimulatory molecules in 10 human NB cell lines, as well as in primary tumour cells isolated from NB patients. Here, we show that incubation of surface CD40+ NB cells with CD40 ligand (L) triggers their apoptosis through a caspase-8-dependent mechanism.

RESULTS

Expression of CD40, CD80, CD86, PD-1L, B7H2, OX40L and 4-1BBL in NB cell lines

A total of 10 human NB cell lines were tested for the expression of costimulatory molecules by RT–PCR and, when reagents were available, by flow cytometry.
CD40 and B7H2 mRNA were detected in all the cell lines but GI-ME-N, GI-CA-N and IMR-32. CD80 and CD86 transcripts were present in the majority of NB cell lines; exceptions were LAN-5, that did not express the CD80 gene, as well as IMR-32 and GI-CA-N cells, that did not show CD80 or CD86 transcripts (Figure 1). PD-1L, OX40L and 4-1BBL mRNA were found in all the cell lines (Figure 1). The specificity of the amplified bands was confirmed by sequencing.

In subsequent experiments, surface expression of CD40, CD80, CD86, 4-1BB and OX40L on the 10 NB cell lines was investigated by flow cytometry. Cells were stained with CD40, CD80 and CD86 monoclonal antibodies (mAbs), as well as with the rhOX40Fc and rh4-1BBFc fusion proteins. No costimulatory molecule was detected on the surface of any cell line, with the exception of OX40L that was expressed by GI-CA-N and IMR-32 cells only (not shown).

Recombinant (r) interferon-γ (IFN-γ) treated NB cell lines express surface CD40

In further experiments, NB cell lines were incubated with human rIFN-γ for 72 h, since this cytokine upregulates the expression of various costimulatory molecules (Aicher et al., 2000; Wagner et al., 2002). Thereafter, costimulatory molecule gene expression was investigated by RT-PCR and flow cytometry.

GI-ME-N, GI-CA-N and IMR-32 cells showed de novo expression of the CD40 gene (Figure 2A). Furthermore, the CD80 transcript was induced in LAN-5 cells, and B7H2 mRNA was detected in GI-ME-N cells (data not shown).

To investigate whether or not CD40 mRNA expression was upregulated by incubation with rIFN-γ, cells from the LAN-5, SK-N-SH, SK-N-NE 2(C), SK-N-NE and ACN cell lines were subjected to semiquantitative RT-PCR following 72 h culture with rIFN-γ or with medium alone (Figure 2B). A clear-cut increase of CD40 mRNA was observed after incubation of the LAN-5, SK-N-SH, SK-N-NE 2(C), and ACN cell lines, but not in the SK-N-NE cell line, with rIFN-γ (Figure 2B).

Next, CD40 surface expression was investigated by flow cytometry in rIFN-γ treated NB cell lines. ACN, GI-ME-N, LAN-5, SK-N-NE2(C), SK-N-SH and GI-CA-N cell lines were found to express surface CD40 on a minority of cells (range: 6–13%) (see Table 1). One representative experiment carried out with the LAN-5 cell line is shown in Figure 2C, together with surface CD40 staining of Raji Burkitt’s lymphoma cells shown as reference. Surface CD40 was detected in cell lines that either displayed constitutive expression of the CD40 transcript (ACN, LAN-5, SK-N-NE2(C) and SK-N-SH), or expressed CD40 mRNA only following incubation with rIFN-γ (GI-ME-N and GI-CA-N).

Additional experiments were carried out to investigate whether a representative surface CD40+ (i.e. GI-LI-N) and two representative CD40+ (i.e. SK-N-NE2(C) and LAN-5) cell lines contained intracellularly the CD40 protein following incubation with rIFN-γ or with medium alone. As shown in Figure 2C LAN-5 cells did not express intracellular CD40, as assessed by flow cytometry, unless they were incubated with rIFN-γ; similar results were obtained with the SK-N-NE2(C) cell line (not shown). In contrast, no intracellular CD40 protein was detected in GI-LI-N cells upon culture with either rIFN-γ or medium alone (not shown). These findings indicate that intracellular and surface CD40 expression are induced coordinately in rIFN-γ-responsive NB cell lines.

In view of the ability of rIFN-γ to upregulate CD40 expression on NB cells, ACN cells stably transfected with a plasmid containing the human IFN-γ gene or with the empty plasmid were tested for CD40 surface expression. The detailed characterisation of this cell line will be the matter of a separate report; suffices here to say that CD40 was consistently detected by flow cytometry on 50–60% of the cells transfected with the plasmid carrying the IFN-γ gene (Figure 2D, right panel), but not on cells transfected with the empty plasmid (Figure 2D, left panel). The proportion of CD40+ cells in IFN-γ gene transfected ACN cells remained stable over a 6 month period, with little fluctuations that did not exceed 10–15%.

Expression of CD40, CD80, CD86, PD-1L, B7H2, OX40L and 4-1BB in primary NB cells

First, costimulatory molecule gene expression was investigated in GD2+ neuroblasts isolated from four tumours (from one stage 1, one stage 2, one stage 3 and one stage 4 patients) by

Figure 1 Costimulatory molecule gene expression in human NB cell lines, as assessed by RT—PCR. From left to right: MW = molecular weight markers; NC = negative control, represented by water in the place of cDNA; PC = positive control, represented by normal peripheral blood MNC stimulated with phytohaemagglutinin for 6 h; lanes from 4 to 13, 10 NB cell lines are shown. The first upper panel shows the amplification product of the G3PDH housekeeping gene tested as control. On the right side of each panel, the expected MW of the amplification products are shown.
immunomagnetic bead manipulation. The GD₂ disialoganglioside is a reliable surface marker of NB cells (Cheung et al., 1986; Mujoo et al., 1987).

The purity of the GD₂⁺ cell suspensions was checked by RT–PCR with CD45 and HLA-DRβ gene-specific primers (Figure 3). Since these genes are not expressed in NB cells (Komada et al., 1998; Corrias et al., 2001), further experiments were carried out only with GD₂⁺ cell suspensions that tested negative for CD45 and HLA-DRβ mRNA expression. The latter transcripts were detected, as expected, in GD₂⁻ cell fractions.

Figure 3 shows the patterns of costimulatory molecule gene expression in GD₂⁺ and GD₂⁻ cell fractions from two tumours.
(from a stage 2 and a stage 4 patient, respectively), representative of the four tested with similar results. Primary GD2+ neuroblasts were found to express CD40, CD80, CD86, OX40L and 4-1BBL, but not PD-1L or B7H2, mRNA. In contrast, all of the costimulatory gene transcripts were consistently detected in the GD2+/C0 cell fractions (Figure 3).

Flow cytometric analysis of six bone marrow (BM) aspirates (all from stage 4 patients) performed for diagnostic purposes was subsequently carried out by double staining for GD2 and CD40, CD80, CD86, OX-40L or 4-1BBL. All BM aspirates were found to contain GD2+ neuroblasts (Figure 4A) with the following figures: BM1 50.8%, BM2 38.7%, BM3 65.7%, BM4 25.6%, BM5 30.2% and BM6 36.4%. GD2+ cells coexpressing CD40 were found in all BM samples and ranged from 10 to 65% (mean 35%). GD2+ cells coexpressing CD86 were detected in three BM samples (range 10 – 20%, mean 15%).

Figure 4B and C shows the results of immunophenotypic analyses of CD40 and CD86 expression on neuroblasts from three representative BM aspirates. As apparent, GD2+ neuroblasts expressed CD40 in both samples, whereas coexpression of CD86 was detected only in one case.

Neuroblasts tested always negative for CD80, OX40L or 41BBL staining.

CD40L triggers apoptosis of NB cells expressing surface CD40

Previous studies have shown that ligation of CD40 on the surface of tumour cells by CD40L can induce inhibition of cell proliferation and apoptosis (Hirano et al, 1999; Ghamande et al, 2001; Bugaj ska et al, 2002; Szocinski et al, 2002). Therefore, subsequent experiments were addressed at investigating whether CD40+ NB cells were susceptible to CD40L-induced apoptosis.

First, IFN-γ pretreated ACN, GI-ME-N, LAN-5, SK-N-BE2(C), SK-N-BE, SK-N-SH, GI-CA-N and IMR-32 cell lines were incubated for 48 h with medium alone or with rCD40L, and tested for apoptosis by double staining for annexin V and propidium iodide (Koopman et al, 1994). As shown in Table 1, all the CD40+ cell lines were found to undergo apoptosis in the presence of rCD40L, while the two CD40− cell lines were unaffected by rCD40L treatment.

To better investigate the kinetics of CD40L-induced apoptosis and the mechanism involved, subsequent experiments were carried with IFN-γ gene-transfected ACN cells. To this end, IFN-γ gene-transfected ACN cells were incubated for 5–72 h with medium

Table 1 Surface CD40 expression and apoptosis induction in neuroblastoma cell lines treated sequentially with rIFN-γ and rCD40L

Cell Lines	Percentage of CD40+ cells after IFN-γ treatmenta	Percentage of CD40+ apoptotic cells after rCD40L treatmentb
ACN	16	97.2
LAN-1	ND	ND
LAN-5	12	98.5
GI-LI-N	ND	ND
GI-ME-N	5	86.3
GI-CA-N	10	94.8
SK-N-SH	3	99.6
SK-N-BE	0	0
SK-N-BE 2(C)	14	89.7
IMR-32	0	0

*aCells were cultured for 72 h with 1000 U ml⁻¹ rIFN-γ and stained with a CD40 mAb. Results are percentage of positive cells; bCells that had been pretreated with rIFN-γ as in (a) were washed and incubated for 48 h with rCD40L (1 μg ml⁻¹) and double stained with annexin and propidium iodide.

Figure 4B and C shows the results of immunophenotypic analyses of CD40 and CD86 expression on neuroblasts from three representative BM aspirates. As apparent, GD2+ neuroblasts expressed CD40 in both samples, whereas coexpression of CD86 was detected only in one case.

Neuroblasts tested always negative for CD80, OX40L or 41BBL staining.

CD40L triggers apoptosis of NB cells expressing surface CD40

Previous studies have shown that ligation of CD40 on the surface of tumour cells by CD40L can induce inhibition of cell proliferation and apoptosis (Hirano et al, 1999; Ghamande et al, 2001; Bugaj ska et al, 2002; Szocinski et al, 2002). Therefore, subsequent experiments were addressed at investigating whether CD40+ NB cells were susceptible to CD40L-induced apoptosis.

First, IFN-γ pretreated ACN, GI-ME-N, LAN-5, SK-N-BE2(C), SK-N-BE, SK-N-SH, GI-CA-N and IMR-32 cell lines were incubated for 48 h with medium alone or with rCD40L, and tested for apoptosis by double staining for annexin V and propidium iodide (Koopman et al, 1994). As shown in Table 1, all the CD40+ cell lines were found to undergo apoptosis in the presence of rCD40L, while the two CD40− cell lines were unaffected by rCD40L treatment.

To better investigate the kinetics of CD40L-induced apoptosis and the mechanism involved, subsequent experiments were carried with IFN-γ gene-transfected ACN cells. To this end, IFN-γ gene-transfected ACN cells were incubated for 5–72 h with medium

Table 1 Surface CD40 expression and apoptosis induction in neuroblastoma cell lines treated sequentially with rIFN-γ and rCD40L

Cell Lines	Percentage of CD40+ cells after IFN-γ treatmenta	Percentage of CD40+ apoptotic cells after rCD40L treatmentb
ACN	16	97.2
LAN-1	ND	ND
LAN-5	12	98.5
GI-LI-N	ND	ND
GI-ME-N	5	86.3
GI-CA-N	10	94.8
SK-N-SH	3	99.6
SK-N-BE	0	0
SK-N-BE 2(C)	14	89.7
IMR-32	0	0

*aCells were cultured for 72 h with 1000 U ml⁻¹ rIFN-γ and stained with a CD40 mAb. Results are percentage of positive cells; bCells that had been pretreated with rIFN-γ as in (a) were washed and incubated for 48 h with rCD40L (1 μg ml⁻¹) and double stained with annexin and propidium iodide.

Figure 3 Costimulatory molecule gene expression in primary NB cells, as assessed by RT–PCR. The results of the experiments carried out with two tumours out of the four studied are shown. Neuroblasts were isolated as GD2+ cells by immunomagnetic bead manipulation. From left to right: MW = molecular weight markers; NC = negative control, represented by water in the place of cDNA; PC = positive control, represented by normal peripheral blood MNC stimulated with phytohaemagglutinin for 6 h; NB (GD2+) cells from patient 1 (Pt1); GD2−/C0 cell fraction from patient 1 (Pt 1); NB (GD2+) cells from patient 2 (Pt 2); GD2− cell fraction from patient 2 (Pt 2). The first upper panel shows the amplification product of the G3PDH housekeeping gene tested as control. On the right side of each panel, the expected MW of the amplified bands are shown.
alone, or rCD40L, or NIH-3T3 murine fibroblasts, either transfected with the human CD40L gene, or with the empty vector.

A dot-plot representative of these experiments is shown in Figure 5B, where cell apoptosis was tested after 24 h culture with rCD40L.

Figure 5B shows the results of time course experiments in which IFN-γ gene-transfected ACN cells were cultured in the presence or absence of rCD40L for 5, 24 or 48 h. Results are expressed as mean percentages (from four independent experiments) of CD40+ cells undergoing apoptosis. These values were obtained by dividing the percentage of apoptotic cells in CD40L containing cultures by the percentage of CD40+ cells in control cultures for each time point. As apparent, apoptosis was detected in IFN-γ gene-transfected ACN cells that had been cultured with rCD40L for 5, 24 and 48 h. At 72 h, apoptotic cells were no longer found in these cultures (not shown). Cells kept in medium alone for the same time intervals showed only minimal levels of apoptosis (Figure 5B).

The above experiments were repeated by incubating for the same times IFN-γ gene-transfected ACN cells with NIH-3T3 murine fibroblasts, either transfected with the human CD40L gene or with the empty vector for the same times. Apoptosis of ACN cells was detected with the same kinetics as above following incubation with the former, but not with the latter, transfectant (data not shown). These results indicate that soluble and insoluble CD40L were equally effective at inducing apoptosis of IFN-γ gene-transfected ACN cells.
Apoptosis of CD40+ NB cells induced by CD40L is caspase-8 dependent

CD40 belongs to the TNF receptor superfamily, whose components trigger cell apoptosis through caspase-8 activation (Ashkenazi and Dixit, 1998; Grell et al, 1999; Eliopoulos et al, 2000). We therefore investigated whether this mechanism operated also in CD40-expressing NB cells. IFN-γ gene-transfected ACN cells were treated overnight with the recently developed caspase-8 selective inhibitor Z-LE(Ome)-TD(Ome)-FMK (Z-LETD-FMK) (Ahmad and Shi, 2000), before being incubated with rCD40L. Z-LETD-FMK was then added every 24 h to the cultures and apoptosis was assessed by flow cytometry.

As shown in Figure 5B, incubation of IFN-γ gene-transfected ACN cells with Z-LETD-FMK decreased apoptosis induced by CD40L after 5 h by approximately 70% and abrogated programmed cell death in cells tested at 24 and 48 h. Z-LETD-FMK alone did not cause apoptosis of IFN-γ gene-transfected ACN cells cultured up to 48 h (Figure 5B). The results are shown as mean percentages (from four independent experiments) of CD40+ cells undergoing apoptosis.

Finally, involvement of caspase-8 in CD40L-induced apoptosis of NB cells was demonstrated by Western blot experiments in which IFN-γ gene-transfected ACN cells were cultured with rCD40L or medium in the presence or absence of Z-LETD-FMK for 15 or 24 h (Figure 5C). After 15 h culture with rCD40L, the specific 17 kDa protein corresponding to active caspase-8 was clearly detectable in IFN-γ gene-transfected ACN cells. Treatment with Z-LETD-FMK strongly reduced the expression of activated caspase-8. After 24 h treatment with rCD40L, the band corresponding to activated caspase-8 was faint; addition of Z-LETD-FMK to the cultures led to its complete disappearance (Figure 5C). Taken together these findings demonstrate the direct role of caspase-8 in rCD40L-induced apoptosis of CD40+ NB cell lines.

DISCUSSION

Expression of seven costimulatory molecules (CD40, CD80, CD86, PD-1L, B7H2, OX40L and 4-1BBL) has been investigated in a panel of human NB cell lines and in primary NB cells. The rationale for this study came from the following: (i) costimulatory molecules are poorly expressed on the surface of malignant cells (Hurwitz et al, 2000), (ii) transfer of some costimulatory molecule coding genes in tumour cells leads to tumour rejection in vivo (Katsanis et al, 1995; Enomoto et al, 1997) and (iii) virtually no information is available as to costimulatory molecule expression in human NB (Uyar et al, 1995).

Costimulatory gene transcripts were expressed constitutively in the majority of cell lines, but the CD40, CD80, CD86, OX40L and 4-1BB proteins were not detected on the cell surface. Primary NB cells displayed a similar profile of gene expression, but PD-1L and B7H2 transcripts were not detected.

CD86 was detected on the surface of neuroblasts from three out of six BM cell suspensions tested. CD80 and/or CD86 expressed on neoplastic cells may induce NK cell activation, possibly because of the triggering of CD80/CD86 ligands alternative to CD28 or CTLA-4 (Wilson et al, 1999). In addition, targeting of CD86 and/or CD80 in experimental tumours, even of low immunogenicity, was found to promote antitumour CTL responses (Moro et al, 1999). Thus, our preliminary observation on CD86 expression in some NB cases deserves further investigation.

The most important finding of this study is the constitutive expression of CD40 mRNA and protein in all of the tumour samples tested. In contrast, the majority of NB cell lines were found to express constitutively CD40 mRNA, but surface CD40 was detected on a minority of cells in the individual cell lines, only following culture with rIFN-γ. Additional experiments were performed to investigate whether lack of expression of surface CD40 in some NB cell lines following treatment with rIFN-γ was related to defects in CD40 protein transport. The finding that surface CD40 expression was paralleled by accumulation of intracellular CD40 protein in rIFN-γ-responsive cell lines, whereas no intracellular CD40 was detected in unresponsive cell lines, suggest that the inability of the latter cell lines to express the CD40
protein upon incubation with rIFN-γ was not because of defects in protein trafficking.

To get further insight into the mechanisms involved in the rIFN-γ-mediated induction of CD40 protein in NB cell lines, CD40 mRNA expression was evaluated by semiquantitative RT–PCR in cell cultured with rIFN-γ or medium alone. These experiments showed that surface CD40+ cell lines displayed an evident upregulation of CD40 mRNA following incubation with rIFN-γ, whereas a surface CD40− cell line did not, suggesting that regulation of CD40 expression occurred mainly at the transcriptional level. However, additional, post-transcriptional mechanisms may be involved, since IMR-32 cells, that acquired de novo expression of CD40 mRNA following incubation with rIFN-γ, failed to express CD40 protein.

The discrepancies in CD40 expression between NB cell lines and fresh tumour cells may be related to the presence of in vivo factors (e.g. IFN-γ) capable of upregulating surface CD40 in the tumour microenvironment.

CD40 expression is a common feature of haematopoietic and nonhaematopoietic tumours (Hirano et al, 1999; Ghamande et al, 2001; Bugajska et al, 2002; Szocinski et al, 2002). Previous studies have shown that interaction of tumour cell-associated CD40 with CD40L can lead to different consequences: (i) CD40 triggering induces upregulation of HLA and adhesion molecules on the surface of tumour cells (Ahmad and Shi, 2000), thus enhancing their immunogenicity, and (ii) exposure of neoplastic cells to soluble CD40L results into inhibition of cell proliferation and induction of cell death by apoptosis (Hirano et al, 1999; Ghamande et al, 2001; Bugajska et al, 2002; Szocinski et al, 2002). Furthermore, soluble CD40L was found to induce tumour regression in SCID mice implanted with human breast cancer cells (Hirano et al, 1999).

The functional role of surface CD40 in neuroblastoma cells was investigated using both IFN-γ-treated cell lines and the ACN cell line transfected with a plasmid carrying the human IFN-γ gene. In these experiments, cells were incubated with soluble or insoluble CD40L and tested for apoptosis. All CD40 + neuroblastoma cell lines underwent massive apoptosis following 48 h culture with CD40L.

Since CD40 belongs to the TNF receptor superfamily that triggers apoptosis by caspase-8 activation (Ashkenazi and Dixit, 1998; Grell et al, 1999; Eliopoulos et al, 2000), experiments were performed in which CD40L-induced apoptosis of ACN cells was investigated in the presence or absence of Z-LETD-FMZ, a selective inhibitor of caspase-8 (Ahmad and Shi, 2000). It was found that apoptosis of CD40 + ACN cells cultured with CD40L was abrogated by Z-LETD-FMZ, thus pointing to the involvement of caspase-8 in our experimental model. The latter conclusion was directly supported by Western blot experiments showing activation of caspase-8 in NB cells following CD40−CD40L interaction and its block by exposure to the Z-LE-TD-FMK inhibitor.

Previously, it was shown that the CD40 cytoplasmic C terminus lacks a death domain homology with the cytotoxic members of the TNF-R superfamily, such as Fas, TNF-R1 and TNF-related apoptosis-inducing ligand (TRAIL) (Ashkenazi and Dixit, 1998; Grell et al, 1999; Eliopoulos et al, 2000). CD40L-induced apoptosis in neoplastic cells was found to depend on the membrane-proximal domain of the molecule (Eliopoulos et al, 2000) and to involve endogenous production of TNF in the target cell, leading to autotopic or paratopic activation of TNF-R1 and, eventually, to TNF-R1-mediated cytotoxicity (Grell et al, 1999). In this connection, human NB cell lines were reported to express surface TNF-R1 and TNF-R2, as well as TNF mRNA (Goillot et al, 1992; Montaldo et al, 1994). Thus, it is conceivable that NB cell apoptosis induced by CD40L takes place through the TNF/TNF-R1 pathway identified in other experimental models.

Recently, caspase-8 gene expression was found to be reduced or absent in neoplastic cells from patients with metastatic NB (Hopskins-Donaldson et al, 2000; Teitz et al, 2001). This feature has been related to methylation of caspase-8 gene promoter regions (Teitz et al, 2000; Ranelli et al, 2002) or, more rarely, to deletion of the caspase-8 gene (Teitz et al, 2000). In the former case, demethylating agents, such as 5-aza-2'-deoxycytidine, or IFN-γ can restore caspase-8 gene expression in NB cells (Fulda et al, 2001; Ranelli et al, 2002; Fulda and Debatin, 2002), whereas this cannot happen in the latter case. Thus, the potential therapeutic use of rCD40L in NB patients may depend on preliminary in vitro assessment of caspase-8 activation in tumour cells under baseline conditions and following culture with demethylating agents or IFN-γ. Thereafter, combination therapy with either of the latter molecules and rCD40L may be envisaged.

Triggering of dendritic cell-associated CD40 leads to increased production of IL-12, which activates NK cells and drives Thelper 1 lymphocyte responses (Trinchieri, 1998). Notably, this network of cell interactions has been shown to be involved in the regression of murine metastatic neuroblastoma (Turner et al, 2001). Thus, CD40 may represent a novel therapeutic, multifunctional target in NB because of its expression on both tumour cells and professional antigen-presenting cells. Since, in the present study, surface CD40 was detected on a fraction of neuroblasts from the individual tumours, CD40L-induced apoptosis of malignant cells and immune activation may cooperate in the elimination of CD40 + and CD40 − neuroblasts, as already shown in a different neoplastic model (Dotti et al, 2002).

A trimeric recombinant form of soluble CD40L, recently tested in Phase I studies with lymphoma or solid tumour bearing patients, showed limited toxicity, indicating the potential feasibility of this therapeutic approach in NB patients (Vonderheide et al, 2001a,b).

MATERIALS AND METHODS

Patient samples

This investigation was performed after approval by a local institutional review board. Four NB tumours were obtained from the local pathologist (CG). Disease stage according to the International Neuroblastoma Staging System (Brodeur et al, 1998) was: stage 1 (one case), stage 2 (one case), stage 3 (one case) and stage 4 (one case). Aliquots of BM aspirates performed for diagnostic purposes were from six patients with stage 4 disease. These samples contained at least 25% infiltrating neuroblasts, as assessed by morphological criteria and anti-GD2 staining.

Cell separation and culture

Solid tumours were minced in RPMI 1640 medium (Seromed-BiochromKG, Berlin, Germany) supplemented with 10% fetal calf serum (Seromed) (RPMI-FCS) and subjected to gravity sedimentation for 2 min to remove large debris. Supernatants were used for further experiments. Bone marrow aspirates were depleted of erythrocytes by osmotic lysis, washed twice in RPMI–FCS and tested.

Neuroblastoma cells were isolated as follows. Cells were first incubated with an anti-GD2 mAb and then positively selected by immunomagnetic beads coated with anti-mouse immunoglobulin antibodies, according to the instructions of the manufacturer (Immunotech, Marseille, France). The source of the anti-GD2 mAb (IgG2a) was the supernatant of the ME361-52a murine hybridoma, purchased from ATCC, Manassas, VA, USA.

The ACN, SK-N-BE, SK-N-BE2(C), SK-N-SH, LAN-1, LAN-5, GI-Li-N, GI-ME-N, GI-CA-N and IMR-32 NB cell lines, whose features are described in Thiele (1999), or IFN-γ gene-transfected ACN cells were cultured in RPMI–FCS for the indicated times. IFN-γ gene-transfected ACN cells were generated by one of us (MVC) in collaboration with Dr Silvano Ferrini, IST, Genova. In some
Monoclonal antibodies

Flow cytometric analysis was carried out as reported (Airoldi et al., 2000). Neuroblastoma cells were always stained in parallel with positive controls, that is, the Colo 205 cell line for OX40L and 4-1BBL staining (Salih et al., 2000), and the Raji cell line for CD40, CD80 and CD86 staining.

The following mAbs were used for single or double staining: PE-conjugated CD40, FITC-conjugated CD80 and PE-conjugated CD86 mAbs, all from Diaclone (Diaclone SA, Besançon, France) and anti-GD2 from ATCC (see above). Cells stained with the latter mAb were washed and incubated with a PE- or FITC-conjugated goat anti-mouse IgG subclass antisera (Dako, Glostrup, Denmark), depending on the partner mAb used in double staining experiments. Controls for CD40, CD80 and CD86 were fluorochrome-conjugated, isotype-matched murine mAbs of irrelevant specificity. Control for anti-GD2 staining was purified murine IgG2a (Southern Biotechnology Associates, Birmingham, AL, USA) of irrelevant specificity.

In addition, the rhOX40Fc and rh4-1BBFc (Alexis Corp., Del Mar, CA, USA) fusion proteins, in which the OX40 and 4-1BB genes were fused with the Fc portion of human IgG1, were used for single or double staining. Cells were incubated with the fusion proteins or with the purified Fc portion of human IgG1 (Alexis Biochemicals, Lausanne, Switzerland) as control, washed and stained with FITC-conjugated goat anti-human IgG (Fc portion-specific antibodies) (Alexis).

In some experiments, GI-LI-N, SK-N-BE2(C) and LAN-5 cell lines that had been preincubated 72 h with rIFN-γ were incubated with the selective caspase-8 inhibitors, that is, the Colo 205 cell line for OX40L and CD40 L or control transfectant cell ratio. The latter transfectants were kindly provided by Dr Franco Fais, Department of Experimental Medicine, University of Genova, Italy.

Cells were harvested by brief trypsinisation and the proportion of apoptotic cells was assessed by flow cytometry using an annexin V–FITC apoptosis kit according to the manufacturer’s instruction (Bender MedSystems, Vienna, Austria). In this assay, cells double stained for annexin and propidium iodide are apoptotic, whereas cells single positive for propidium iodide staining are necrotic. In the experiments in which murine fibroblasts were cocultured with neuroblasts, the latter cells were first gated on the basis of their larger size and then analysed by double staining for annexin and propidium iodide. Gated cells were uniformly GD2+ as assessed by flow cytometry.

For inhibition of apoptosis studies, IFN-γ gene-transfected ACN cells were preincubated overnight with the selective caspase-8 inhibitor, Z-LE(Ome)-TD(ome)-FMK (Alexis) at the final concentration of 20 μM before adding rCD40L. The cultures were supplemented with Z-LETD-FMK every 24 h. Cells were harvested and assessed for apoptosis by flow cytometry as described above.

Reverse transcription–polymerase chain reaction and sequencing

RNA was extracted from freshly isolated or cultured cells using RNaseasy Mini Kit from Qiagen (Qiagen GmbH, Hilden, Germany) and subjected to RT–PCR as reported (Turner et al., 2001). Primers were selected on the ground of previous studies (Montaldo et al., 1997).

Total extracts and Western blot analysis

Cells were incubated for 30 min on ice with lysis buffer containing 20 mM HEPES, 150 mM NaCl, 10% glycerol, 0.5%. NP-40, 1 mM EDTA, 2.5 mM DTT, 10 μg/ml aprotinin, 10 μg/ml leupeptin, 1 μg/ml pepstatin A, 1 mM PMSF and 1 mM Na3VO4, all from Sigma-Aldrich. During this time interval, cells were subjected to vortex mixing every 5 min. Thereafter, lysates were centrifuged at 12,000 r.p.m. for 5 min at 4°C and supernatants quantitated by the BCA kit assay (Pierce, Rockford, IL, USA). Equal amounts of protein (10 μg) were loaded on 8% SDS–polyacrylamide gel and boiled 3 min before application. Gel was blotted onto Protean nitrocellulose membrane (Schleicher & Schuell, Dassel, Germany) for 1 h at 100 V. Blots were incubated in a blocking buffer containing BSA and 0.5% Tween-20 in Tris-buffered saline (TBS) for 1 h, followed by incubation with goat anti-human Caspase-8 antisera (Santa Cruz Biotechnology Inc, Santa Cruz, CA, USA).

After three washings in TBS–Tween, blots were incubated for 1 h with rabbit anti-goat Ig conjugated with horseradish peroxidase.
(Sant Cruz) at the final concentration of 50 ng/ml−1 in TBS–
Tween containing 1% BSA. Detection was performed by enhanced
chemiluminescence (ECL, Pierce, NE, USA).

ACKNOWLEDGEMENTS
We thank the Immunex Corporation, Seattle, USA for the kind
supply of soluble recombinant human CD40 ligand, as well as Drs
Silvano Ferrini, IST, Genova and Franco Fais, DIMES, University of
Genova for sharing their transfected cell lines. We thank Mr
Marco Di Duca for the help in the sequencing experiments and Dr
Angela Sementa for the selection of tumour and BM samples.

This work has been supported by grants from: Ministero della
Sanità 1999, Progetto Finalizzato n. ICS070.2/RF99.21 to VP;
Ricerca Corrente project n. RC2001-3-74; Consiglio Nazionale
Ricerche to VP, project n. CNRC002AC9_005 and Associa-
zione Italiana per la lotta al Neuroblastoma. MO is a recipient of
a FIRC fellowship. SL is supported by Associazione Italiana per
la lotta al Neuroblastoma.

REFERENCES
Ahmad M, Shi Y (2000) TRAIL-induced apoptosis of thyroid cancer cells:
potential for therapeutic intervention. Oncogene 19: 3363–3371
Aicher A, Hayden-Ledbetter M, Brady WA, Pezzutto A, Richter G, Magaletti
D, Buckwalter S, Ledbetter JA, Clark EA (2000) Characterization of human
inducible costimulatory ligand expression and function. J Immunol 164: 4690 – 4696
Airoldi I, Gri G, Marshall JD, Corcione A, Facchetti P, Guglielmino R,
Trinchieri G, Pistoia V (2000) Expression and function of IL-12 and IL-18
receptors on human tonsillar B cells. J Immunol 165: 6880 – 6888
Akiba H, Oshima H, Takeda K, Atsuma M, Nakano H, Nakajima A, Nohara
C, Yagita H, Okumura K (1999) CD28-independent costimulation of T cells by
OX40 ligand and CD70 on activated B cells. J Immunol 162: 7058 – 7066
Ashkenazi A, Dixit VM (1998) Death receptors: signaling and modulation.
Science 281: 1305 – 1308
Banelli B, Casciano I, Croce M, Vinci AD, Gelvi I, Pagnan G, Brignole C,
Ashkenazi A, Dixit VM (1998) Death receptors: signaling and modulation.
Science 281: 1333 – 1335
Brodeur GM, Seeger RC, Barret A, D’Angio G, De Bernardi B, Evans AE,
Haase J (1988) International criteria for diagnosis, staging, and
response to treatment in patients with neuroblastoma. J Clin Oncol 6: 1874 – 1881
Bugajska U, Georgopoulos NT, Southgate J, Johnson PW, Graber P, Gordon
J, Selby PJ, Trejdosiewicz LK (2002) The effect of malignant transforma-
tion on susceptibility of human urothelial cells to CD40-mediated
apoptosis. J Natl Cancer Inst 18: 1381 – 1395
Cannons JL, Lau P, Ghuman B, DeBenedette MA, Yagita H, Okumura K,
Watts TH (2001) 4-1BB ligand induces cell division, sustains survival,
and enhances effector function of CD4 and CD8+ T cells with similar
efficacy. J Immunol 167: 1313 – 1324
Chambers CA, Kuhns MS, Egen JG, Allison JP (2001) CTLA-4-mediated
inhibition in regulation of T cell responses: mechanisms and manipula-
tion in tumor immunotherapy. Annu Rev Immunol 19: 565 – 594
Chambers CA (2001) The expanding world of co-stimulation: the two-
function model revisited. Trends Immunol 22: 217 – 223
Cheung NK, Von Hoff DD, Strandjord SE, Coccia PF (1986) Detection of
neuroblastoma cells in bone marrow using GD2 specific monoclonal
antibodies. J Clin Oncol 4: 363 – 369
Corrias MV, Occhino M, Croce M, De Ambrosis A, Pistillo MP, Bocca P,
Pistoia V, Ferrini S (2001) Lack of HLA-class I antigens in human
neuroblastoma cells: analysis of its relationship to TAP and tapasin
expression. Tissue Antigens 57: 110 – 117
Dong C, Jueudes AE, Temann G, Shresta S, Allison JP, Ruddle NH (2001)
ICOS co-stimulatory receptor is essential for T cell activation and
function. Nature 409: 97 – 101
Dotti G, Savoldo B, Yotnda P, Rill D, Brenner MK (2002) Transgenic
expression of CD40 ligand produces an in vivo antitumor immune
response against both CD40+ and CD40− plasmacytoma cells. Blood
84: 200 – 207
Eliopoulos AG, Davies C, Knox PG, Gallagher NJ, Afford SC, Adams DH,
Young LS (2000) CD40 induces apoptosis in carcinoma cells through
activation of cytotoxic ligands of the tumor necrosis factor superfamily.
Mol Cell Biol 20: 5503 – 5515
Enomoto A, Kato K, Yagita H, Hokumura K (1997) Adoptive transfer of
cytotoxic T lymphocytes induced by CD86-transfected tumor cells
suppresses multi-organ metastases of C1300 neuroblastoma in mice.
Cancer Immunol Immunother 44: 204 – 210
Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, Fitz
JL, Malenkovich N, Okazaki T, Byrne MC, Horton HF, Fouser L, Carter L,
Ling V, Bowman MR, Carreno BM, Collins M, Wood CR, Honjo T (2000)
Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family
member leads to negative regulation of lymphocyte activation. J Exp Med
192: 1027 – 1034
Fulda S, Debatin KM (2002) IFN gamma sensitizes for apoptosis by
upregulating caspase-8 expression through the Stat3 pathway. Oncogene
21: 2229 – 2308
Fulda S, Kufer MU, Meyer E, van Valen F, Dockhorn-Dworniczak B,
Debatin KM (2001) Sensitization for death receptor- or drug-induced
apoptosis by re-expression of caspase-8 through demethylation or gene
transfer. Oncogene 20: 5865 – 5877
Ghamande S, Hylander BL, Oflozoglu E, Lele S, Fanslow W, Repasky EA
(2001) Recombinant CD40 ligand therapy has significant antitumor
effects on CD40-positive ovarian tumor xenografts grown in SCID mice
and demonstrates an augmented effect with cisplatin. Cancer Res 61: 8032
Guillot E, Combevat B, Ladenstein R, Baubet D, Blay JY, Philip T, Favrot
MC (1992) Tumor necrosis factor as an autocrine growth factor for
neuroblastoma. Cancer Res 52: 3194 – 3200
Grell M, Zimmermann G, Gottfried E, Chen CM, Grunwald U, Huang DCS,
Lee YHW, Durkop H, Engelmann H, Scheurich P, Wajant H, Strasser A
(1999) Induction of cell death by tumor necrosis factor (TNF) receptor 2,
CD40 and CD30: a role for TNF-R1 activation by endogenous membrane-
anchored TNF. EMBO J 18: 3034 – 3043
Hirano A, Longo DL, Taub DD, Ferris DK, Young LS, Eliopoulos AG,
Agathangelou A, Cullen N, Macartney J, Fanslow WC, Murphy WJ
(1999) Inhibition of human breast carcinoma growth by a soluble recombinant
human CD40 ligand. Blood 93: 2999 – 3007
Hopskins-Donaldson S, Bodmer JL, Bourloud KB, Brograna CB, Tschopp J,
Gross N (2000) Loss of caspase-8 expression in highly malignant human
neuroblastoma cells correlates with resistance to tumor necrosis factor-
related apoptosis-inducing ligand-induced apoptosis. Cancer Res 60: 4315 – 4319
Hurdwitz AA, Kwon ED, van Elsas A (2000) Costimulatory wars: the tumor
menace. Curr Opin Immunol 12: 589 – 596
Katsanis E, Xu Z, Bausero MA, Dancisab BB, Gorden KB, Davis G, Gray GS,
Orchard PJ, Blazar BR (1995) B7-1 expression decreases tumorigenicity
and demonstrates an augmented effect with cisplatin. Blood
85: 207 – 210
Katsanis E, Xu Z, Bausero MA, Dancisab BB, Gorden KB, Davis G, Gray GS,
Orchard PJ, Blazar BR (1995) B7-1 expression decreases tumorigenicity
and induces partial systemic immunity to murine neuroblastoma.
Cancer Gene Ther 2: 39 – 46
Komada Y, Zhang XL, Zhou YW, Inaba H, Deguchi T, Azuma E, Sakurai M
(1998) Flow cytometric analysis of peripheral blood and bone marrow for
tumor cells in patients with neuroblastoma. Cancer 82: 591 – 599
Koopman G, Reutelingsperger CP, Kuijten GAM, Keehnen RMJ, Pals ST, van
Oers MJH (1994) Annexin V for flow cytometric detection of
phosphatidylserine expression on B cell undergoing apoptosis. Blood
84: 1415 – 1420
Lenschow DJ, Walunas TL, Bluestone JA (1996) CD28/B7 system of T cell
costimulation. Annu Rev Immunol 14: 233 – 258
Liu X, Bai XF, Wen J, Gao JX, Liu J, Lu P, Wang Y, Zheng P, Liu Y (2001)
B7H costimulates clonal expansion of, and cognate destruction of tumor
cells by CD8+ T lymphocytes in vivo. J Exp Med 194: 1359 – 1348
Montalvo PG, Carbone R, Corrias MV, Ferraris PG, Ponzioni M (1994)
Synergistic differentiation-promoting activity of interferon gamma and
tumor necrosis factor-alpha: role of receptor regulation on human
neuroblasts. J Natl Cancer Inst 22: 1694 – 1701

© 2003 Cancer Research UK
British Journal of Cancer (2003) 88 (10), 1527 – 1536

Molecular and Cellular Pathology

I Airoldi et al
Montaldo PG, Chiesa V, Bado M, Raffaghello L, Rozzo, Ponzoni M (1997) Induction of differentiation and apoptosis by interferon-γ in human neuroblastoma cells in vitro as a dual and alternative early biological response. *Cell Death Differ* 4: 150–158

Moro M, Gasparri AM, Pagano S, Bellone M, Tornaghi P, Veglia F, Corti A, Casorati G, Dellabona P (1999) Induction of therapeutic T-cell immunity by tumor targeting with soluble recombinant B7-immunoglobulin costimulatory molecules. *Cancer Res* 59: 2650–2656

Mujoo K, Cheres DA, Yang HM, Reifeld RA (1987) Disialoganglioside GD2 on human neuroblastoma cells: target antigen for monoclonal antibody-mediated cytolysis and suppression of tumor growth. *Cancer Res* 47: 1098–1104

Salih HR, Kosowski SG, Haluska VF, Starling GC, Loo DT, Lee F, Aruffo AA, Trail PA, Kiener PA (2000) Constitutive expression of functional 4-1BB (CD137) ligand on carcinoma cells. *J Immunol* 165: 2903–2910

Szocsinski JL, Khaled AR, Hixon J, Halverson D, Funakoshi S, Fanslow WC, Boyd A, Taub DD, Durum SK, Siegall CB, Longo DL, Murphy WJ (2002) Activation-induced cell death of aggressive histology lymphomas by CD40 stimulation: induction of Bax. *Blood* 1: 217–223

Teitz T, Lahti MJ, Kidd VJ (2001) Aggressive childhood neuroblastomas do not express caspase-8: an important component of programmed cell death. *J Mol Med* 79: 428–436

Teitz T, Wei T, Valentine MB, Vanin EF, Grenet J, Valentine VA, Behm FG, Look AT, Lahti JM, Kidd VJ (2000) Caspase 8 is deleted or silenced preferentially in childhood neuroblastomas with amplification of MYCN. *Nat Med* 6: 529–535

Thiele CJ (1999) Neuroblastoma. In *Human Cell Culture* Vol. 1, Master JRW, Palsson B (eds) pp 21–53. London: Kluwer Acad Publishers

Trinchieri G (1998) Interleukin-12: a cytokine at the interface of inflammation and immunity. *Adv Immunol* 70: 83–243

Turner JG, Rakhalievich AL, Burdelya L, Neal Z, Imboden M, Sondel PM, Yu H (2001) Anti-CD40 antibody induces antitumor and antimetastatic effects: the role of NK cells. *J Immunol* 166: 89–94

Uçar K, Seeger RC, Challita PM, Watanabe CT, Yen TL, Morgan JP, Amado R, Chou E, McCallister T, Barber JR, Jolly DJ, Reynolds GP, Gangavalli R, Rosenblatt JD (1995) Sustained cytokine production and immunophenotypic changes in human neuroblastoma cell lines transduced with a human gamma interferon vector. *Cancer Gene Ther* 2: 171–181

Vonderheide RH, Butler MO, Liu JF, Battle TE, Hirano N, Gribben J, Frank DA, Schultz JL, Nadler LM (2001a) CD40 activation of carcinoma cells increases expression of adhesion and major histocompatibility molecules but fails to induce either CD80/CD86 expression or T cell alloreactivity. *Int J Oncol* 19: 3280–3287

Vonderheide RH, Butcher JP, Anderson JE, Eckhardt SG, Stephens KF, Razvillas B, Garl S, Butine MD, Perry VP, Armitage RJ, Ghalie R, Caron DA, Gribben JG (2001b) Phase I study of recombinant human CD40 ligand in cancer patients. *J Clin Oncol* 19: 2025–2032

Wagner HA, Gebauer M, Pollok-Kopp B, Hecker M (2002) Cytokine inducible CD40 expression in human endothelial cells is mediated by interferon regulatory factor-1. *Blood* 99: 520–525

Wang S, Zhu G, Chapoval AJ, Dong H, Tamada K, Ni J, Chen L (2000) Costimulation of T cells by B7H2, a B7-like molecule that binds ICOS. *Blood* 96: 2807–2813

Weinberg AD, Rivera MM, Prell R, Morris A, Ramstad T, Vetto JT, Urba WJ, Alvord G, Bunce C, Shields J (2000) Engagement of the OX-40 receptor *in vivo* enhances antitumor immunity. *J Immunol* 164: 2160–2169

Wilson JL, Charo J, Martin-Foncette A, Dellabona P, Casorati G, Chambers BJ, Kiessling R, Bejarano MT, Ljunggren HG (1999) NK cell triggering by the human costimulatory molecules CD80 and CD86. *J Immunol* 163: 4207–4712

Wu TC, Huang AY, Jaffee EM, Levitsky HI, Pardoll DM (1995) A reassessment of the role of B7-1 expression in tumor rejection. *J Exp Med* 182: 1415–1421