Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Risk of venous thromboembolism after COVID-19 vaccination

Damon E. Houghton1,2 | Waldemar Wysokinski1,2 | Ana I. Casanegra1
Leslie J. Padrnos3 | Surbhi Shah3 | Ewa Wysokinska4 | Rajiv Pruthi2
Aneel Ashrani2 | Meera Sridharan2 | Lisa Baumann-Kreuziger5
Robert McBane1,2 | Anand Padmanabhan6

1Division of Vascular Medicine, Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, USA
2Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
3Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Scottsdale, Arizona, USA
4Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Jacksonville, Florida, USA
5Division of Hematology/Oncology, Department of Internal Medicine, Versiti, Milwaukee, Wisconsin, USA
6Divisions of Hematopathology, Transfusion Medicine & Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA

Correspondence
Damon E. Houghton, Division of Vascular Medicine, Department of Cardiovascular Diseases & Division of Hematology, Department of Internal Medicine, Mayo Clinic, 200 1st St, Rochester, MN 55905, USA.
Email: Houghton.Damon@mayo.edu

Abstract

Background: COVID-19 vaccinations in the United States are effective in preventing illness and hospitalization yet concern over post-vaccination venous thromboembolism (VTE) risk has led to vaccine hesitancy.

Methods: The aim of this study was to compare VTE rates before and after COVID-19 vaccination. COVID-19 vaccinated patients ≥18 years between November 1, 2020 through November 1, 2021 were analyzed using electronic medical records across the Mayo Clinic enterprise. The primary outcome was imaging confirmed acute VTE (upper or lower deep vein thrombosis or pulmonary embolism) occurring 90 days before and after the date of first vaccine dose.

Results: A total of 792,010 patients with at least one COVID-19 vaccination were identified (Pfizer, n = 452,950, Moderna, n = 290,607, and Janssen [Johnson & Johnson], n = 48,453). A total of 1,565 VTE events occurred in the 90 days before (n = 772) and after (n = 793) COVID-19 vaccination. VTE post-vaccination occurred in 326 patients receiving Moderna (0.11%, incidence rate [IR] 4.58 per 1000p-years), 425 patients receiving Pfizer (0.09%, IR 3.84 per 1000p-years), and 42 receiving Janssen (0.09%, IR 3.56 per 1000p-years). Compared to the pre-vaccination timeframe, the adjusted hazard ratio (aHR) for VTE after the Janssen vaccination was 0.97 (95% confidence interval [CI] 0.63–1.50), aHR 1.02 (95% CI 0.87–1.19) for Moderna, and aHR 1.00 (95% CI 0.87–1.15) for Pfizer.

Conclusion: In this large cohort of COVID-19 vaccinated patients, no increased risk for acute VTE post-vaccination was identified for the authorized vaccines in the United States.

KEYWORDS
COVID-19, deep vein thrombosis, immunization, pulmonary embolism, SARS-CoV-2, vaccination, venous thromboembolism
The pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, also known as COVID-19, led to a race to develop effective vaccines. The United States has three authorized vaccines (BNT162b2—Pfizer-BioNTech, mRNA-1273—Moderna, and Ad. 26. COV2. S—Janssen/Johnson & Johnson) and these have been administered to millions of individuals. Vaccine safety beyond the initial clinical trials has been a major area of focus to maintain public trust and encourage high rates of vaccination. COVID-19 infection itself is known to significantly increase short-term venous thromboembolism (VTE) risk. In early 2021 reports of a rare thrombotic complication (vaccine-induced immune thrombocytopenia [VITT]) were observed with the ChAdOx1 nCov-19 (AstraZeneca) vaccine,3–5 which ultimately led many European nations to temporarily pause administration of this vaccine in March of 2021 for further review. A similar phenomenon was later recognized with the Janssen vaccine leading to a temporary pause in the administration of this vaccine in the United States in April 2021.6 While many of the thrombotic events described initially were in less typical locations (such as cerebral vein thrombosis and mesenteric vein thrombosis), speculation began to grow about the thrombotic risk for typical leg thrombosis and pulmonary embolism and in relation to other COVID-19 vaccines.7

In this study, we evaluated the safety of COVID-19 vaccinations related to VTE outcomes (deep vein thrombosis and pulmonary embolism) among the three Food and Drug Administration–authorized COVID-19 vaccines in the United States using real-world observational data, comparing the incidence of VTE between different vaccine manufacturers and within the 90 days before and after vaccination.

2.1 Study population

Mayo Clinic enterprise patients at least 18 years or older were identified using an electronic search of a unified data platform of COVID-19 vaccination records from November 1, 2020 through November 1, 2021. Mayo Clinic enterprise consists of numerous outpatient and inpatient locations utilizing a common medical record system, including three tertiary referral centers (Rochester, Minnesota; Phoenix, Arizona; and Jacksonville, Florida) and many regional Mayo Clinic Health System sites in Minnesota, Wisconsin, and Iowa. The date of the first COVID-19 vaccination was used as the index date. This study was approved by the Mayo Clinic Institutional Review Board in Rochester, Minnesota. For requests of original data, please contact the corresponding author.

2.2 Data collection

Demographic variables including age at COVID-19 vaccination, sex, race, and zip code were extracted from electronic records. Using the cohort of COVID-19–vaccinated patients, electronic medical records were searched to identify all hospital admissions (elective or urgent/emergent) and emergency department (ED) visits, surgeries (requiring general or regional anesthesia) within 90 days before or after the index date, and pregnancy status and delivery dates. Laboratory records were searched to identify cases of laboratory-confirmed COVID-19 infection and testing for platelet factor 4 antibodies. International Classification of Diseases (ICD) 10 codes were used to evaluate for baseline comorbidities and to calculate a Charlson Comorbidity Index (CCI). Radiology text reports within 90 days before and after the index vaccination date were extracted (computed tomography [CT] scans of the chest and all venous Duplex ultrasound sounds of the upper or lower extremity).

2.3 Outcomes and analysis

Thromboembolic events were extracted from the electronic medical record in the 90 days before and after the index date through December 9, 2021. VTE was defined as upper or lower extremity deep vein thrombosis (DVT; proximal and distal) and pulmonary embolism (PE) and were analyzed from radiology text reports using highly accurate, previously validated natural language processing (NLP) algorithms.18 VTE events within the 90 days after vaccination were compared to events occurring in the 90-day window before vaccination using reversed person-time analysis and the Kaplan-Meier method. For patients with DVT and PE, the first event in each time frame in closest proximity to the index date was used for the time to event analysis. Patients were censored at death or time of data extraction if follow-up time had not reached 90 days. Cox proportional hazard models were used to compare rates of VTE in unadjusted and adjusted analyses. The rates of post-vaccination thromboembolism were compared between vaccines using the Kaplan-Meier method and multivariable Cox proportional hazard models adjusting for the
CCI, age, sex, race, history of VTE or arterial thromboembolism, and history of atrial fibrillation. Sensitivity analyses were performed based on sex, age, geographic region, and among patients paneled to a Mayo Clinic primary care provider during the study timeframe. Statistical analyses were performed using JMP Pro version 14.1.

3 | RESULTS

A total of 792,010 patients with at least one COVID-19 vaccination were identified from November 1, 2020, to November 1, 2021. The most frequent vaccine administered was Pfizer (n = 452,950) followed by Moderna (n = 290,607) and Janssen (Johnson & Johnson; n = 48,453). The mean age of the overall cohort was 57 years (standard deviation 18.3) and 55% were female. A total of 1,565 VTE events were identified by the NLP in the 90 days before and after COVID-19 vaccination, 772 before and 793 after vaccination. Among the 793 patients with VTE after COVID-19 vaccination, 489 had DVT (upper or lower extremity) and 426 had PE. The overall incidence rates (IR) of VTE were low, 4.1 per 1000 person-years (p-yrs) post-vaccination compared to 4.0 per 1000p-yrs pre-vaccination. Patients with hospital admissions (elective or urgent/emergent) and/or ED visits occurred more frequently in the 90 days after vaccination (7.0% vs. 6.5%, P < .001). COVID-19 infections occurred more commonly in the pre-vaccination 90-days (1.09% vs. 0.39%, P < .001). No difference was seen in the number of surgeries pre-versus post-vaccination (2.38% vs. 2.40%, P = .28).

3.1 | Pre/post-vaccination thromboembolism

The time to VTE curves in the post- versus pre-vaccination timeframes for each COVID-19 vaccine are shown in Figure 1. The unadjusted hazard ratio (HR) for VTE overall post-vaccination was 1.04 (95% confidence interval [CI] 0.94–1.14). After the Janssen vaccination, the HR for VTE was 1.09 (95% CI 0.70–1.68), HR 1.05 (95% CI 0.90–1.23) for Moderna, and HR 1.02 (95% CI 0.89–1.17) for Pfizer. After multivariable adjustment for surgeries, hospitalizations, and COVID-19 infections within 90 days, the adjusted HR (aHR) for VTE after the Janssen vaccination was 0.97 (95% CI 0.63–1.50), aHR 1.02 (95% CI 0.87–1.19) for Moderna, and aHR 1.00 (95% CI 0.87–1.15) for Pfizer. Sensitivity analysis performed in patients paneled to primary care providers (aHR 1.04, 95% CI 0.80–1.28) was similar to non-paneled patients (aHR 0.94, 95% CI 0.79–1.12). Results were also similar for patients living in counties of the Rochester Epidemiology Project (aHR 1.08, 95% CI 0.94–1.24) or elsewhere (aHR 0.92, 95% CI 0.80–1.07). A sensitivity analysis was also performed excluding any patients with documented COVID-19 infection and the results did not change significantly (Janssen: aHR 0.98, 95% CI 0.60–1.58; Moderna: aHR 0.91, 95% CI 0.77–1.07; Pfizer aHR 0.99, 95% CI 0.86–1.15).

Due to the concern for VITT in younger women, the results were also stratified by sex and age (+/−60 years) and by vaccine manufacturer and there was no statistically significantly elevated risk of VTE within any of these subgroups with Janssen or Moderna vaccines. We did however observe an elevated post-vaccination VTE risk in women less than 60 with Pfizer (aHR 1.53, 95% CI 1.07–2.19) whereas men less than 60 had a lower risk of VTE (aHR 0.70, 95% CI 0.50–0.97). On further evaluation of age in quartiles, a statistically significant risk in women was only present in the lowest age quartile (age 18–43) with the Pfizer vaccine, aHR 2.19 (95% CI 1.17–4.07). The incidence rates for VTE in young women in the pre-versus post-vaccination 90 days were 1.07 and 1.77 per 1000
p-yrs respectively. We further investigated this finding by identifying women who were pregnant in the study timeframe and found there was an increased number of vaccinations around the time of delivery and women with pregnancies were much more likely to receive vaccination with the Pfizer vaccine (Table 1). After removing these patients from the analysis, the results were no longer statistically significant (aHR 1.82, 95% CI 0.95–3.49). Within the overall group of women with current or recent pregnancies (any vaccine), the aHR for post-vaccination VTE was 6.18 (95% CI 1.26–30.2). The lower overall sample size and event rates did not allow for further analyses such as stratification based on the trimester of pregnancy.

Concern about VTE risk post-vaccination has been most pronounced in specific patient populations (those with prior VTE, previous COVID-19 infection, and those with a history of heparin-induced thrombocytopenia [HIT]) and therefore we performed additional pre/post analyses within these subgroups. In 25 296 patients with a history of VTE (any time before vaccination), there was a lower risk in the post-vaccination compared to the pre-vaccination timeframe (aHR 0.77, 95% CI 0.62–0.95). In 37 838 patients with

| TABLE 1 Baseline characteristics of COVID-19 vaccinated patients |
|-----------------|-----------------|-----------------|-----------------|
| | Janssen (J&J) | Moderna | Pfizer |
| Age, mean (SD) | 51.6 (16.4) | 59.2 (17.7) | 55.8 (18.6) |
| Male, n (%) | 24 852 (51.3) | 131 586 (45.3) | 199 063 (44.0) |
| Race, White, n (%) | 41 749 (86.2) | 255 140 (87.8) | 391 052 (86.3) |
| Two doses administered, n (%) | NA | 270 492 (93.1) | 428 313 (94.6) |
| Interval between doses (days), median (IQR) | NA | 28 (28–28) | 21 (21–22) |
| Charlson Comorbidity Index, mean (SD) | 1.11 (2.0) | 1.45 (2.3) | 1.33 (2.2) |
| Dementia, n (%) | 751 (1.6) | 9557 (3.3) | 10 675 (2.4) |
| Diabetes | 4767 (9.8) | 36 679 (12.6) | 49 655 (11.0) |
| Diabetes complications, n (%) | 1433 (3.0) | 11 665 (4.01) | 16 085 (3.6) |
| Cancer | 639 (1.2) | 5271 (1.8) | 7251 (1.6) |
| Cancer w/ metastasis, n (%) | 1815 (3.8) | 14 712 (5.1) | 21 212 (4.7) |
| Congestive heart failure, n (%) | 1669 (3.4) | 16 511 (5.7) | 21 587 (4.8) |
| HIV, n (%) | 1632 (3.4) | 8494 (2.9) | 15 085 (3.3) |
| Liver disease, n (%) | 3031 (6.3) | 20 939 (7.2) | 29 856 (6.6) |
| Liver disease, severe, n (%) | 329 (0.68) | 2957 (1.02) | 6246 (1.88) |
| Myocardial infarction, n (%) | 699 (1.4) | 5465 (1.88) | 7439 (1.64) |
| Paraplegia, n (%) | 278 (0.57) | 2284 (0.79) | 2750 (0.61) |
| Peptic ulcer disease, n (%) | 736 (1.5) | 5505 (1.9) | 8069 (1.8) |
| Peripheral vascular disease, n (%) | 1494 (3.1) | 13 371 (4.6) | 18 709 (4.1) |
| Pulmonary disease, n (%) | 6550 (13.5) | 43 521 (15.0) | 66 389 (14.7) |
| Renal disease, n (%) | 2879 (5.9) | 27 962 (9.6) | 37 618 (8.31) |
| Active or recent pregnancy, n (%) | 270 (0.56) | 1440 (0.50) | 4601 (1.02) |
| Ischemic stroke | 1006 (2.1) | 9405 (3.2) | 12 690 (2.8) |
| Atrial fibrillation | 1926 (4.0) | 20 082 (6.9) | 27 871 (6.2) |
| Venous thromboembolism | 1230 (2.5) | 10 005 (3.4) | 14 061 (3.1) |
| Heparin induced thrombocytopenia | 14 (0.03) | 169 (0.06) | 202 (0.04) |
| Hypertension | 1700 (3.5) | 10 076 (3.5) | 15 557 (3.4) |
| COVID-19 infection (lab or ICD) | 3201 (6.6) | 12 453 (4.3) | 22 553 (5.0) |
| Arterial embolism | 162 (0.33) | 1300 (0.45) | 1785 (0.39) |
| REP County | 22 551 (46.6) | 113 653 (39.1) | 208 145 (46.0) |
| Mayo Clinic PCP | 25 852 (53.4) | 147 447 (50.7) | 256 320 (56.6) |

Abbreviations: ICD, International Classification of Diseases; HIV, human immunodeficiency virus; IQR, interquartile range; PCP, primary care physician; REP, Rochester Epidemiology Project; SD, standard deviation.
COVID-19 infection (ICD-10 or laboratory confirmation) preceding the study timeframe (>90 days before index date) there was a higher risk of VTE in the pre-vaccination 90 days compared to the post-vaccination 90 days (aHR 1.67, 95% CI 1.15–2.41). In 385 patients with a history of HIT, there was no significant elevation in the post-vaccination VTE risk (log-rank P = .26); eight patients had VTE in the pre-vaccination 90 days and four had VTE in the post-vaccination 90 days. The results were also stratified by comorbidities and VTE rates were expectedly higher in patients with CCI > 1 (7.89 per 1000p-yrs) compared to those with CCI = 0 (1.00 per 1000p-yrs). However, comparing post-vaccination versus pre-vaccination rates within each group there was no evidence of increased post-vaccination VTE risk (log-rank P = .69 and P = .35 for those with CCI = 0 or CCI > 1, respectively). Among cancer patients, the rate of VTE was highest (IR 13.3 per 1000p-yrs); however, again no increased risk was observed post-vaccination compared to pre-vaccination (log-rank P = .35).

3.2 | Post-vaccination thromboembolism compared by vaccine manufacturer

Age, sex, and comorbidities were significantly different among patients receiving different vaccines (Table 1). Most patients receiving Pfizer (94.6%) or Moderna (93.1%) vaccines completed the recommended two doses at the appropriate time intervals within the study dates. The group of patients receiving Moderna vaccines had the highest mean CCI (1.45), followed by Pfizer (1.33) and then Janssen (1.11). The frequency of VTE post-vaccination varied by vaccine type. VTE occurred in 326 patients receiving Moderna (0.11%, IR 4.58 per 1000p-yrs), 425 patients receiving Pfizer (0.09%, IR 3.84 per 1000p-yrs), and 42 receiving Janssen (0.09%, IR 3.56 per 1000p-yrs). In multivariable Cox proportional hazard models (age, sex, race, CCI, atrial fibrillation, prior arterial or venous thromboembolism, surgeries within 90 days, admissions/ED visits within 90 days, and COVID-19 infections within 90 days) there was no difference in the post-vaccination VTE risk within 90 days comparing Pfizer to Moderna (aHR 0.88, 95% CI 0.76–1.02) and Janssen to Moderna (aHR 0.85, 95% CI 0.62–1.18). To further examine the previous finding of higher post-vaccination (compared to pre-vaccination) VTE in younger women receiving Pfizer, cross-product terms for the variables sex, age, and vaccine were added to the model (examining only the post-vaccination timeframe) to evaluate for effect measure modification and P values were all >0.1. In a separate multivariable Cox proportional hazard model specifically examining the effects of young women vaccinated with Pfizer there was no elevation in VTE risk (aHR 1.14, 95% CI 0.75–1.73) within the post-vaccination 90 days after adjusting for all other variables.

Laboratory testing for heparin-induced thrombocytopenia (platelet factor 4 [PF4] antibody) was performed in 149 patients in the 90 days after vaccination (n = 20, Janssen; n = 65, Moderna; n = 64, Pfizer). Positive testing by enzyme-linked immunosorbent assay (ELISA) for HIT (optical density >0.4) was identified in nine patients (n = 4, Moderna; n = 5, Pfizer). Five patients had evidence of VTE (with recent heparin exposure), three were diagnosed with VTE concurrently with PF4 testing, and two with initial VTE had subsequent testing (day 11 and day 13). The timing of PF4 testing from initial vaccination ranged from day 38 to day 80 post-vaccination. All patients with VTE had clear provoking factors and none were suspected to have VITT. Among patients without VTE, two had a known history of HIT (pre-vaccination) and the other two were presumed HIT (with recent heparin exposure) without associated thrombosis.

4 | DISCUSSION

This study represents the largest observational cohort to specifically evaluate VTE outcomes in the authorized COVID-19 vaccines in the United States. Post-vaccination thrombosis has led patients to question the safety of vaccination and has led to vaccine hesitancy and/or avoidance. Our results comparing post-vaccination to pre-vaccination rates demonstrate no significant elevation in VTE risk with COVID-19 vaccinations overall and specifically by each vaccine manufacturer. A comparison of risk between the vaccines also demonstrates no significant differences in VTE rates after multivariable adjustment.

Initial evaluations of thrombotic events post-vaccination were limited by smaller sample sizes. Subsequent data from the Vaccine Safety Datalink studied more than 6 million Pfizer and Moderna vaccine recipients evaluating a variety of possible post-vaccination adverse events and found no statistically significant increased risk for VTE. This study compared a day 1–21 post-vaccination (first or second vaccine) interval to a day 22–42 interval (after the most recent dose) to compare rates of adverse events. For the outcome of VTE, the rate was 0.95 in the at-risk interval compared to 0.90 per 1000p-yrs for an adjusted HR of 1.16 (95% CI 1.00–1.34). This result was not statistically significant due to adjustment of significance level in the setting of multiple hypothesis testing.

As it relates to the outcome of VTE and vaccination it is less clear whether this might be an immediate or a more delayed adverse event (either due to delayed recognition and diagnosis or delayed thrombotic risk). Therefore, the current study evaluated a period of 90 days post-vaccination to capture more delayed adverse events and used time-to-event curves to visualize event rates over this time. The rate of VTE in the post-vaccination 90 days in the current study was 4.1 per 1000 person-years, representing an approximately 4-fold higher risk than the at-risk interval in the Vaccine Safety Datalink study. The overall higher risk in the current study can in part be explained by the higher mean patient age (57 vs. 49 years). Patients in the current study may have also had a higher number of comorbidities due to their interaction with the medical system; however, this is uncertain because the Vaccine Safety Datalink data did not have this baseline information. The safety of the Pfizer vaccine in data reported from Israel has similarly demonstrated the safety of the vaccine in a national cohort of 884 828 citizens compared to a matched unvaccinated control population. The rates of DVT and PE were reported separately in this study and were lower than...
of fever and pain around the injection site. However, no significant differences were found in the study outcomes before or after vaccination for the combination of COVID-19 vaccination and influenza vaccination. Although there was a trend towards a higher risk of VTE in the combination group, this was not statistically significant.

Conclusions

COVID-19 vaccination appears to be safe and does not lead to an increased risk of VTE in the general population or pregnant women. The risk of VTE after vaccination is similar to the risk before vaccination. Future studies are needed to confirm these findings in larger populations and to evaluate the risk of VTE in other subgroups, such as patients with underlying medical conditions. The risk of VTE after vaccination may also depend on the specific vaccine used and the timing of vaccination within the pregnancy.

Conflict of Interest

The authors declare no conflicts of interest.

Acknowledgments

The authors thank the patients and staff at the participating hospitals for their contributions to this study. The study was supported by grant numbers 1U10TW027701-01A1, 1U01HL140387, and 1U01AT008930 from the National Institutes of Health.

References

1. Pasha AK, McBane RD, Chaudhary R, et al. Timing of venous thromboembolism diagnosis in hospitalized and non-hospitalized patients with COVID-19. *Thromb Res*. 2021;207:150-157.
2. Nazy I, Sachs UJ, Arnold DM, et al. Recommendations for the clinical and laboratory diagnosis of vaccine-induced immune thrombocytopenia (VITT) for SARS-CoV-2 infections: communication from the ISTH SSC Subcommittee on Platelet Immunology. J Thromb Haemost. 2021;19(6):1585-1588.

3. Greinacher A, Thiele T, Warkentin TE, Weisser K, Kyrlle PA, Eichinger S. Thrombotic thrombocytopenia after ChAdOx1 nCoV-19 vaccination. N Engl J Med. 2021;384(22):2092-2101.

4. Schultz NH, Sørvoll IH, Michelsen AE, et al. Thrombosis and thrombocytopenia after ChAdOx1 nCoV-19 vaccination. N Engl J Med. 2021;384(22):2124-2130.

5. Scully M, Singh D, Lown R, et al. Pathologic antibodies to platelet factor 4 after ChAdOx1 nCoV-19 vaccination. N Engl J Med. 2021;384(23):2202-2211.

6. Marks P, Schuchat A. Joint CDC and FDA statement on Johnson & Johnson COVID-19 vaccine. Accessed January 3, 2022. https://www.fda.gov/news-events/press-announcements/joint-cdc-and-fda-statement-johnson-johnson-covid-19-vaccine

7. Smadja DM, Yue Q-Y, Chocron R, Sanchez O, Louet AL-L. Vaccination against COVID-19: insight from arterial and venous thrombosis occurrence using data from VigiBase. Eur Respir J. 2021;58(1):2100956.

8. Chaudhary R, Padmos L, Wysokinska E, et al. Macrovascular thrombotic events in a mayo clinic enterprise-wide sample of hospitalized COVID-19–positive compared with COVID-19–negative patients. Mayo Clin Proc. 2021;96(7):1718-1726.

9. See I, Lale A, Marquez P, et al. Case series of thrombosis with thrombocytopenia syndrome following COVID-19 vaccination—United States, December 2020–August 2021. Medrxiv. 2021.

10. Shah A, Challener DW, O’Horo JC, Badley AD. Vaccination safety don’t toss the champagne with the cork. Mayo Clin Proc. 2021;96(7):1712-1713.

11. Klein NP, Lewis N, Goddard K, et al. Surveillance for adverse events after COVID-19 mRNA vaccination. JAMA. 2021;326(14):1390-1399.

12. Barda N, Dagan N, Ben-Shlomo Y, et al. Safety of the BNT162b2 mRNA Covid-19 vaccine in a nationwide setting. N Engl J Med. 2021;385(12):1078-1090.

13. Sultan AA, West J, Tata LJ, Fleming KM, Nelson-Piercy C, Grainge MJ. Risk of first venous thromboembolism in and around pregnancy: a population-based cohort study. Br J Haematol. 2012;156(3):366-373.

14. Wainstock T, Yoles I, Sergienko R, Sheiner E. Prenatal maternal COVID-19 vaccination and pregnancy outcomes. Vaccine. 2021;39(41):6037-6040.

15. Blakeway H, Prasad S, Kalafat E, et al. COVID-19 vaccination during pregnancy: coverage and safety. Am J Obstet Gynecol. 2022;226(2):236.e1-236.e14.

16. Centers for Disease Control. Interim clinical considerations for use of COVID-19 vaccines currently approved or authorized in the United States [updated 2/11/2022]. Accessed February 22 2022. https://www.cdc.gov/vaccines/covid-19/clinical-considerations/covid-19-vaccines-us.html?CDC_AA_refVal=https%3A%2F%2Fwww.cdc.gov%2Fvaccines%2Finfo-by-product%2Fclinical-considerations.html#considerations-Janssen

17. Bussel J, Connors J, Cines D, et al. Thrombosis with thrombocytopenia syndrome (also termed Vaccine-induced Thrombotic Thrombocytopenia). Accessed January 3 2022. https://www.hematology.org/covid-19/vaccine-induced-immune-thrombotic-thrombocytopenia

18. FDA and CDC lift recommended pause on Johnson & Johnson (Janssen) COVID-19 vaccine use following thorough safety review. Accessed January 3, 2022. https://www.cdc.gov/media/releases/2021/fda-cdc-lift-vaccine-use.html

How to cite this article: Houghton DE, Wysokinski W, Casanegra AI, et al. Risk of venous thromboembolism after COVID-19 vaccination. J Thromb Haemost. 2022;20:1638-1644. doi:10.1111/jth.15725