Ecto- and endo-parasitic monogeneans (Platyhelminthes) on cultured freshwater exotic fish species in the state of Morelos, South-Central Mexico

Edgar F. Mendoza-Franco¹, Juan Manuel Caspeta-Mandujano², Marina Tapia Osorio³

¹ Instituto de Ecología, Pesquerías y Oceanografía del Golfo de México (EPOMEX), Universidad Autónoma de Campeche, Campeche, México ² Facultad de Ciencias Biológicas y Centro de Investigaciones Biológicas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico ³ Centro Nacional de Servicios de Constatación en Salud Animal Jiutepec, Morelos, México

Corresponding author: Edgar F. Mendoza-Franco (efmendoza@uacam.mx)

Abstract
An extensive parasitological study of 365 freshwater exotic fish specimens belonging to 13 species of seven families (Cichlidae, Cyprinidae, Osphronemidae, Pangasidae, Poeciliidae, Characidae, and Loricariidae) collected from 31 Aquaculture Production Units (APU) from Central Mexico revealed the occurrence of 29 ecto- and endo-parasitic monogeneans found on gills and stomachs: Cichlidogyrus sclerosus, C. thurstonae, C. tilapiae, Cichlidogyrus sp. 1, Cichlidogyrus sp. 2, Enterogyrus coronatus, E. malmbergi, Gussevia spiralcirra, Sciadicleithrum iphthimum, Sciadicleithrum sp., Scutogyrus longicornis (all Dactylogyridae), Gyrodactylus cichlidarum, and G. yacatli on Oreochromis niloticus, Pterophyllum scalare and Hemichromis sp. (Cichlidae); Dactylogyrus baueri, D. formosus, D. intermedius, D. vastator, D. extensus, Dactylogyrus sp. (all Dactylogyridae), and G. kobayashii on Carassius auratus, Cyprinus carpio and Ctenopharyngodon idella (Cyprinidae); Trianchonorus acleithrium and T. trichogasterium (Dactylogyridae) on Trichogaster trichopterus (Osphronemidae); Thaparocleidus caece, T. siamensis (Dactylogyridae), and Dactylogyridae sp. on Pangasianodon hypophthalmus (Pangasidae); G. poecilae on Poecilia reticulata (Poeciliidae); Diaphorocleidus armillatus (Dactylogyridae) on Gymnocorymbus ternetzi (Characidae); Unilatus unilatus (Dactylogyridae) and Gyrodactylidae sp. on Hypostomus sp. (Loricariidae). The paramount importance of the establishment of these monogeneans due to the importation/exportation of non-native ornamental and other exotic host fish species cultured for food in Mexico is briefly discussed. Quarantine is recommended for all transferred host species.
Keywords
characids, cichlids, cyprinids, fish introductions, loricariids, Monogenea, Morelos state, non-native ornamental fish, osphronemids, pangasids, parasites, poeciliids, quarantine, tilapia

Introduction
At a global level, increasing attention is being paid to generate useful ecological indicators that favor invasiveness and geographic range expansion by introduced species (Lavergne and Molofsky 2007, Blackburn and Ewen 2017). Conjointly, introductions of species are rising sharply because of increased trade, transport, travel, and tourism associated with globalization (IPPC Secretariat 2005). Within this context, trade of the non-native ornamental fish industry and/or fish farms for food production, has been the main cause of introductions of fish and their parasites around the world (Barroso de Magalhães and Jacobi 2013, Mendoza et al. 2015). Furthermore, the same industries pose a growing threat to native wildlife if non-native fishes are later released into the wild (see Mendoza-Franco et al. 2012). Culture of non-native ornamental and food fishes represents major activities in the state of Morelos (south-central Mexico) since these fishes are commercially distributed within and outside of Mexico in large quantities (Martínez et al. 2010).

Although non-native aquatic organisms are important to Morelos aquaculture and the economy of the state of Morelos, the aquaculture industry should be made aware of the considerable local, state, and national concern over the potential ecological or economic problems arising from non-native fish introductions and their parasites in natural environments (i.e., parasite transfer and/or fish competition with native species) (Barroso de Magalhães and Jacobi 2013). Recently, a total of 44 helminth species on introduced freshwater fishes were listed for Mexico, of which five are invasive species, i.e., *Cichlidogyrus sclerosus* Paperna & Thurston, 1969 *Dactylogyrus extensus* Muel ler & Van Cleave, 1932 and *Gyrodactylus cichlidarum* (Paperna 1968) García-Vasquez & Hansen, 2007 (Monogenea); *Centrocestus formosanus* (Nishigori 1924) Price, 1932 (Digenea) and *Schyzocotyle acheilognathi* Yamaguti, 1934 (Cestoda), all of them introduced with their Asian and African hosts (Tapia Osorio et al. 2014). The present study was conducted to identify the most common ecto- and endo-parasitic monogeneans inhabiting commercially important ornamental and/or food fish species that have been imported into Mexico.

Materials and methods
Ornamental fish species were collected from 2010 to 2014 from different municipalities (Axochiapan, Ayala, Cuautla, Jiutepec, Jojutla, Tlaltizapan, Tlaquiltenango, Xochitepec, and Zacatepec) located in the state of Morelos. Live fish were examined thoroughly externally under a stereo-microscope before opening the visceral cavity.
Fish were sacrificed by puncturing the brain region and the gills of each fish were removed and placed in vials containing hot 4–5% formalin solution to fix any of the ectoparasites that might be present and labeled with data of each collection site. The internal cavity of each fish was exposed by an incision made along the venter from the anus to mouth. The entire alimentary canal was removed; the interior of the gut was thoroughly examined in situ, then placed in a Petri dish containing hot formalin solution 4–5%, where it was searched for monogeneans (Salgado-Maldonado et al. 2014). Subsequently, all monogeneans specimens were isolated and stained with Gomori’s trichrome and mounted in Canada balsam. In addition, some specimens were mounted in a mixture of lactic-acid (LA) and glycerin- ammonium picrate (GAP) and then re-mounted in Canada balsam as permanent preparations (Mendoza-Franco et al. 2013). Parasite identifications were made using a Leica microscope DM2500 with Nomarski interference contrast and based on descriptions provided in the following references: García-Vásquez et al. 2007, 2015, Jogunoori et al. 2004, Kritsky et al. 1989, Lim 1996, Mendoza-Palmero et al. 2012, Pariselle and Euzet 1995, Yamaguti 1963. Reference specimens were deposited in the National Helminthological Collection of Mexico (CNHE). Prevalence (percent of hosts infected), mean abundance (mean number of parasites per examined fish), and intensity range for each monogenean species follows Bush et al. (1997). Host species and common names follow those in the FishBase (Froese and Pauly 2017).

Results

A total of 365 fish specimens of 13 species belonging to 7 families was examined for monogeneans: Cichlidae, Characidae, Cyprinidae, Loricariidae, Osphronemidae, Pangasidae, and Poeciliidae. Twenty-nine monogenean species infecting gills and/or stomachs were identified from hosts species of all families mentioned above from a total of 31 Aquaculture Production Units (APU) from different municipalities located in the state of Morelos (see Table 1 and Figure 1). The prevalence, mean abundance, and mean intensity of infections at each APU of individual species from different hosts are provided in Tables 2–4.

Discussion

Currently, 31 species of exotic monogeneans have been registered in the state of Morelos due to the introduction of their hosts that are cultured either for food or aquariums (present data; Caspeta-Mandujano et al. 2009). This current study on cultured exotic fish species revealed that cichlids (i.e., species of *Oreochromis*, *Hemichromis*, and *Pterophyllum*), harbored the highest number of monogeneans (14 species) followed by cyprinids with seven species of which *Dactylogyrus baueri* Gussev, 1955, *Dactylogyrus formosus* Kulwieć, 1927, *Dactylogyrus intermedius* Wegener, 1909, and
Table 1. Ecto- and endo-parasitic monogeneans (Platyhelminthes) on cultured exotic fish from several Aquaculture Production Units (APU) in the state of Morelos, South-Central Mexico.

Host species/Family	Monogeneans/CNHE	APU	Municipalities		
Oreochromis niloticus (Cichlidae)	**Cichlidogyrus sclerosus†/10743**	Acuícola Jaloxtoc	Ayala		
		El Cifón	Zacatepec		
		7 Hermanos	Cuautla		
		La cascada	Tlaltizapan		
		Acuícola Ayala	Ayala		
		Maricultura Argos	Zacatepec		
	Cichlidogyrus thurstonae†/10744	La Cascada	Tlaltizapan		
	Cichlidogyrus tilapia†/10745	Acuícola Ayala	Ayala		
		Maricultura Argos	Zacatepec		
Oreochromis niloticus	*Cichlidogyrus sp. 1 †/10746*	Acuícola Ayala	Ayala		
	Cichlidogyrus sp. 2 †/10747				
	Hemichromis sp.	**Enterogyrus coronatus‡/10748**	Maleny	Zacatepec	
Oreochromis niloticus	**Enterogyrus malmbergi†/10749-10750**	San Tilapia	Tlaltizapan		
		La buena Fortuna	Jojutla		
	Oreochromis niloticus	**Gyrodactylus cichlidarum§/10756**	Acuícola Jaloxtoc	Ayala	
		Centro Zacatepec	Zacatepec		
		El Invernadero	Ayala		
		Los Huajes	Ayala		
		Linda Vista	Ayala		
		Platanar	Ayala		
		Grupo Carsal	Ayala		
		Gyrodactylus yacatli§/10757	Jesus Madariaga	Zacatepec	
		Pterophyllum scalare	**Gussevia spiralocirra†/10752**		
		Sciadicleithrum iphthimum†/10753			
		Sciadicleithrum sp. †/10754			
		Scutogyrus longicornis†/10755	La Cascada	Tlaltizapan	
	Carassius auratus (Cyprinidae)	**Dactylogyrus baueri†/10758**	Centro de acopio La Perla	Tlaltizapan	
		Dactylogyrus formosus†/10759	El Invernadero	Ayala	
		Dactylogyrus intermedius†/10760	Los Huajes	Ayala	
		Dactylogyrus vastator†/10761-10762	Linda Vista	Ayala	
		Dactylogyrus kobayashii†/10765-10767	Platanar	Ayala	
		Cyprinus carpio (Cyprinidae)	**Dactylogyrus extensus†/10763**	Ornapez	Ayala
		Ctenopharyngodon idella (Cyprinidae)	**Dactylogyrus sp.†/10764**	Centro Zacatepec	Zacatepec
		Trichogaster trichopterus (Osphronemidae)	*Trichanthurus alechthrum†/10768*	Consorcio Lugo-Galeana	Juijtepec
				Granja Acuícola Foras	Xochitepec
		Trichanthurus trichogasterium†/10769			
		Pangasianodon hypophthalmus (Pangasidae)	**Thaparocleidus caecus†/10770**	Betta Fish	Xochitepec
		*Thaparocleidus siamensis†/10771-10772**	Betta Fish	Xochitepec	
		*Dactylogyrus sp.†/10761-10762**	La buena Fortuna	Juijtepec	
				Exopec	Jojutla
				Agua Fría	Tlaltizapan
		Poeclia reticulata (Poeciliidae)	**Gyrodactylus poeciliae§/10773**	Huertas de Cuatla	Ayala
				Exopec	Tlaltizapan
				Agua Fría	Tlalpuente
		Gymnocorymbus ternetzi (Characidae)	*Diaphorocleidus armillatus†/10774-10775**	Aquafrío	Zacatepec
				Tropipex	
		Hypostomus sp. (Loricariidae)	*Gyrodactylus sp.†/10777**	Consorcio Lugo-Galeana	Juijtepec
		*Unilatus unilatus†/10776**	Consorcio Lugo-Galeana	Juijtepec	

* = new record in Mexico. Site of infection on host: † = gills lamellae; ‡ = stomach; § = fins.
Figure 1. Map of the state of Morelos, Mexico showing position of each APU: 1 7 Hermanos (18°51'49.82132"N; 98°58'01.20211"W) 2 Acuícola Ayala (18°45'11.59525"N; 98°56'58.87989"W) 3 Acuícola de Jiutepec (18°52'29.84116"N; 99°09'24.49751"W) 4 Acuícola Jaloxtoc (18°43'56.72740"N; 98°55'20.14003"W) 5 Adilene Marisol (18°35'43.94208"N; 99°01'43.49419"W) 6 Agua Fría (18°33'22.41096"N; 99°00'57.44948"W) 7 Aquafish (18°38'53.20757"N; 99°13'13.80019"W) 8 Betta Fish (18°46'15.00012"N; 99°12'05.44263"W) 9 Centro Zacatepec (18°39'22.70079"N; 99°12'02.36030"W) 10 Centro de Acopio La Perla (18°38'18.23968"N; 99°00'32.15165"W) 11 Consorcio Lugo-Galeana (18°53'48.34681"N; 99°11'13.92251"W) 12 El Chino (18°54'03.35178"N; 99°12'10.27438"W) 13 El Cifón (18°40'42.68111"N; 99°11'26.16448"W) 14 El Invernadero (18°37'11.86468"N; 98°59'37.85120"W) 15 Exopez (18°41'41.78829"N; 99°06'07.81780"W) 16 Granja Acuícola Foras (18°31'07.09460"N; 98°47'54.39963"W) 17 Grupo Carsal (18°37'21.23567"N; 99°00'54.9462"W) 18 Huertas de Cuatla (18°45'41.45252"N; 98°54'57.10516"W) 19 Jesús Madariaga (18°39'59.91903"N; 99°12'05.85187"W) 20 La Buena Fortuna (18°38'07.31312"N; 99°10'58.58424"W) 21 La Cascada (18°41'06.91860"N; 99°09'05.97650"W) 22 Linda Vista (18°38'11.27728"N; 98°59'41.36454"W) 23 Los Huajes (18°38'01.06064"N; 98°59'39.86312"W) 24 Maleny (18°39'43.43675"N; 99°11'52.86078"W) 25 Maricultura Argos (18°35'50.18775"N; 99°12'16.44262"W) 26 Olascoaga (18°55'43.93946"N; 99°10'40.92078"W) 27 Ornapec (18°45'06.02177"N; 98°59'14.37030"W) 28 Platanar (18°43'30.25259"N; 98°54'30.22690"W) 29 Pliego (18°37'45.93123"N; 98°59'53.99321"W) 30 San Tilapia (18°39'09.51796"N; 99°11'36.53955"W) 31 Tropipez (18°46'10.83544"N; 99°12'05.47184"W).
Table 2. Parameters of infection of monogeneans on cichlids (APU: Aquaculture Production Unit; P%: Prevalence; MA: mean abundance; RI: range of infection; MI: mean intensity; IH: infected hosts).

APU	Hosts	Monogeneans	Inds.	P%	MA	RI	MI	IH
Maleny	Hemichromis sp.	Enterogyrus coronatus	36	50	5.14	1–13	3.6	10/20
7 hermanos	Oreochromis niloticus	Cichlidogyrus sclerosus	12	57	1.71	2–4	3.0	4/7
Acuícola de Jiutepec	Oreochromis niloticus	Enterogyrus malmbergi	18	50	2.57	2–5	3.6	5/10
Acuícola Jaloxtoc	Oreochromis niloticus	Cichlidogyrus cichlidarum	18	20	2.57	18	1.5	1/5
Acuícola Jaloxtoc	Oreochromis niloticus	Cichlidogyrus sclerosus	13	100	2.60	1–7	2.6	5/5
Adilene Marisol	Oreochromis niloticus	Enterogyrus malmbergi	53	100	7.57	2–13	5.3	10/10
Centro Zacatepec	Oreochromis niloticus	Gyrodactylus yacatli	15	10	2.14	15	15	1/10
El Cifón	Oreochromis niloticus	Cichlidogyrus sclerosus	7	40	1.00	3–4	3.5	2/5
A cúcola Ayala	Oreochromis niloticus	Dactylogyrus tilapiae	159	100	22.71	3–37	15.9	10/10
A cúcola Ayala	Oreochromis niloticus	Enterogyrus malmbergi	6	50	0.86	1–2	1.2	5/10
Pliego	Oreochromis niloticus	Enterogyrus malmbergi	2	25	0.29	2	2.0	1/4
San Tilapia	Oreochromis niloticus	Enterogyrus malmbergi	34	100	4.86	1–17	8.5	4/4
La Buena Fortuna	Oreochromis sp.	Enterogyrus malmbergi	23	60	3.29	1–7	3.83	6/10
Jesús Madariaga	Pterophyllum scalare	Gussevia spiralocirra	5	10	0.71	5	5.0	1/10
El Chino	Pterophyllum scalare	Sciadicleithrum spp.	6	83.3	1.00	1–2	1.2	5/6
Olascoaga	Pterophyllum scalare	Sciadicleithrum sp.	9	75	1.29	1–4	3.0	3/4

Table 3. Parameters of infection of monogeneans on hosts of the Cyprinidae (APU: Aquaculture Production Unit; P%: Prevalence; MA: mean abundance; RI: range of infection; MI: mean intensity; IH: infected hosts).

APU	Hosts	Monogeneans	Inds.	P%	MA	RI	MI	IH
Consorcio Lugo-Galeana	Carassius auratus	Dactylogyrus sp.	520	100	52.0	13–154	86.7	10/10
El invernadero	Carassius auratus	Gyrodactylus kohayashii	525	100	87.5	5–314	87.5	6/6
Grupo Carsal	Carassius auratus	Dactylogyrus formosus	1	17	0.17	1–8	1.0	1/6
Linda vista	Carassius auratus	Gyrodactylus kohayashii	28	100	20	0.3–54	26.7	3/3
Los Huajes	Carassius auratus	Dactylogyrus vastator	5	33	1.7	5	5.0	1/3
Los Huajes	Carassius auratus	Dactylogyrus baueri	1	20	0.2	1	1.0	5/5
Los Huajes	Carassius auratus	Dactylogyrus spp.	38	100	7.6	2–25	7.6	5/5
Los Huajes	Carassius auratus	Gyrodactylus kohayashii	102	100	20.4	2–58	20.4	5/5
Centro Zacatepec	Ctenopharyngodon idella	Dactylogyrus sp.	100	14	14.3	100	100.0	1/7
Ornapec	Cyprinus carpio	Dactylogyrus extensus	5	20	0.5	2–3	2.5	2/10
Table 4. Parameters of infection of monogeneans on characids, loricariids, osphronemids, pangasids, and poeciliids (APU: Aquaculture Production Unit; P%: Prevalence; MA: mean abundance; RI: range of infection; MI: mean intensity; IH: infected hosts).

APU	Host	Monogeneans	Inds.	P%	MA	RI	MI	IH
Aquafish	Gymnocorymbus ternetzi	Diaphorocleidus armillatus	131	100	13.1	2–24	13.1	10/10
Tropipez	Gymnocorymbus ternetzi	Diaphorocleidus armillatus	698	100	69.8	7–217	69.8	10/10
Consorcio Lugo-Galeana	Hypostomus sp.	Unilatus unilatus	15	60	1.5	1–11	2.5	6/10
	Hypostomus sp.	Gyrodactylus sp.	14	60	1.4	1–8	2.3	6/10
	Trichogaster trichopterus	Trianchoratus spp.	80	75	20	03–54	26.7	3/4
	Trichogaster trichopterus	Trianchoratus trichogasterium	250	80	25	16–61	31.3	8/10
Granja Acuícola Foras	Trichogaster trichopterus	Trianchoratus trichogasterium	564	90	56.4	1–262	62.7	9/10
Betta fish	Pangasianodon hypophthalmus	Thaparocleidus spp.	536	40	26.8	1–125	67.0	8/20
La Buena Fortuna	Pangasianodon hypophthalmus	Thaparocleidus siamensis	1000	100	200	130–300	200.0	5/5
	Pangasianodon hypophthalmus	Dactylogyridae sp.	10400	100	2080	1000–3000	1733.3	5/5
Exopez	Poecilia reticulata	Gyrodactylus poecilia	4	33	0.67	2	2.0	2/6
Agua fría	Poecilia reticulata	Gyrodactylus poecilia	75	90	7.5	1–37	8.3	9/10
Huertas de Cuautla	Poecilia reticulata	Gyrodactylus poecilia	1	12.5	0.125	1	1.0	1/8

Gyrodactylus kobayashii Hukuda, 1940 are new geographical records in Mexico (see Tables 1 and 3). Despite the great number of parasitological studies on native and/or introduced species of Cichlidae in Mexico (Vidal-Martínez et al. 2001), studies on the parasite fauna of other exotic freshwater fishes, especially on their monogeneans, are relatively scarce. Exceptionally, there have been many reports of species of *Cichlidorhysis* on species of *Oreochromis* (often called tilapia) (see Kritsky et al. 1994, Jiménez-García et al. 2001). Even so, intensity of infection is comparatively high as well as the number of new records of these monogeneans, the latter which continues to grow each year (see Table 3, Mendoza-Franco et al. 2015b). In the present study, the angelfish *P. scalare* (Schultze) and *Hemichromis* sp. were studied for the first time and are shown to be parasitized with *G. spiralocirra* Kohn & Paperna, 1964, *S. iphthimum* Kritsky, Thatcher & Boeger, 1989, *Sciadicleithrum* sp. (new geographical records), and *E. coronatus* Pariselle, Lambert & Euzet, 1991.

Monogeneans usually exhibit high host specificity in comparison with other parasite groups, parasitizing a single or few closely related host species. The only zoogeographic range expansion of exotic monogeneans on native hosts is the discovery of species of *Cichlidorhysis* and *G. cichlidarum* from tilapia on native cichlids and poeciliids, respectively, in natural environments of Mexico (Jiménez-García et al. 2001, García-Vásquez...
et al. 2007, 2017). The present study revealed the highest intensity of infection with *G. cichlidarum* (identified as a tilapia pathogen by García-Vásquez et al. 2017) and *Cichlidogyrus* spp. on *Oreochromis* spp. (see Table 2). Therefore, preventing escape of these tilapia from culture systems due to their monogeneans’ ability to infest and persist on other non- or related wild fish is urgently required. Another example of the persistence of monogeneans is seen with the dactylogyrid *Urocleidoides vaginoclaustrum* Jogunoori, Kritsky & Venkatanarasaiah 2004. This monogenean was originally described from fishes introduced to India via the aquarium trade. Its type host, the green swordtail *Xiphophorus hellerii* (Heckel) (Poeciliidae), is naturally distributed in southern Mexico and Central America, where the native profundulid *Profundulus labialis* (Günther) also hosts *U. vaginoclaustrum*. The problem is that *X. hellerii* has been artificially introduced along with *U. vaginoclaustrum* to other hydrological systems such as India and northern Mexico (Jogunoori et al. 2004, Mendoza-Palmero and Aguilar-Aguilar 2008, Mendoza-Franco et al. 2015a) from which other cyprinodontiform hosts could potentially become infected with this parasite. Additionally, in the present study the black tetra *G. ternetzi* (Boulenger) (Characidae) was studied for the first time and is revealed to be highly infested with *D. armillatus* Jogunoori, Kritsky & Venkatanarasaiah, 2004 (Dactylogyridae) (see Table 4). *Gymnocorymbus ternetzi* is native to South America and has been introduced via the aquarium trade to India and Mexico. Currently, there are nine species of *Diaphoroceleidus* dispersed on native bryconid and characid (Characiformes) hosts in the neotropics (South and Central America) (Santos et al. 2018). The transfer and/or evidence of extensive cryptic speciation of other monogenean groups from exotic to native or vice versa on closely related hosts in Mexico remains unknown, but that potential exists.

Similarly to the introduced tilapia in Mexico, cyprinids (i.e., *C. idella*) are also widely distributed in the country including habitats located within areas protected for conservation (see Salgado Maldonado et al. 2014). These fishes were introduced to Central America (i.e., Mexico and Honduras) for aquaculture purposes from 1965-1980s (Salgado-Maldonado and Rubio-Godoy 2014, Salgado-Maldonado et al. 2015) and the presence of species of *Dactylogyrus* and *G. kobayashii* (see Table 1, 3) in Morelos might be originally related to these introductions. Poeciliids (known as guppies, mollies, platies, and swordtails) have been studied for ectoparasitic monogeneans in Mexico and mainly gyroactylids have been reported on the skin and/or gills on these fishes (García-Vásquez et al. 2015). Currently, there are 11 gyroactylid species described and/or reported from poeciliids. Only species of *Urocleidoides* (Dactylogyridae) have been reported on the gills of the poeciliids of the two-spot livebearers *Pseudoxiphophorus bimaculata* (Heckel), *X. hellerii*, and *Poeciliopsis retropinna* (Regan) from Mexico and Panama (Mendoza-Franco et al. 2015). In the present study, *G. poeciliae* Harris & Cable, 2000 was found for the first time on the guppy *Poecilia reticulata* Peters from Mexico (see Tables 1, 4). This monogenean species has been reported on *Poecilia caucana* (Steindachner) and *P. reticulata* from their natural ranges of distribution (Venezuela and Trinidad, respectively). Among all species of *Gyrodactylus* mentioned above, only *G. bullatarudis* Turnbull, 1956 and *G. turnbulli* Harris, 1986 have been reported on six poeciliid host species (*Gambusia*...
holbrooki Girard, Poecilia sphenops Valenciennes, P. reticulata, P. bimaculata, Poeciliopsis sp., and X. bellerii) from Mexico, Canada, Costa Rica, Peru, Trinidad, Australia, and Singapore (see García-Vásquez et al. 2015). Given the low host specificity of both gyro-
dactylid species and the invasive characteristic of poeciliids, the potential transfer of these
 gyro dactylids to native poeciliids and other ecologically-associated hosts in Mexico is
 high (see García-Vásquez et al. 2017, Mendoza-Franco et al. 2015).

The African tilapia (Cichlidae) and the Asian catfish (Pangasiidae) are both freshwater whitefish aquaculture species that potentially compete for similar markets. In
 fact, in 2013 Mexico was recognized as the second largest importer of pangasius fillet
 in the world (Martínez et al. 2016). No analysis concerning the environmental im-
pact of the introduction of these latter fishes and their parasites from Vietnam into
 Mexican aquaculture and/or in wild habitats (Martínez et al. 2016) has been made. Pangasianodon hypophthalmus (Sauvage) was studied for the first time in the present
 study and it revealed to be parasitized with three monogenean species: Thaparocleidus
caeus (Mizelle & Kritsky, 1969) Lim 1996, T. siamensis (Lim 1990) Lim, 1996, and
 Dactylogyridae sp. (Table 4). Finally, Loricariids, otherwise known as plecos (species
 of Hypostomus) are very popular ornamental freshwater fish naturally found in tropical
 South America, Panama, and Costa Rica. In Mexico, Hypostomus plecostomus (L.) was
 introduced into the Balsas Basin (see geographic position in Figure 1) to control macro-
 phytes and algae, and are now established in multiple water bodies (Ramírez-Morales
 and Ayala-Pérez 2009). The only report of a gill monogenean species on an introduced
 pleco to Mexico is that of Heteropriapulus sp. (Dactylogyridae) on the Amazon sail-
 fin Pterygoplichthys pardalis Castelnau from the Reserva de la Biosfera Montes Azules
 (BRMA) in the state of Chiapas (Mendoza-Franco et al. 2012). The present study
 provides two new monogenean records for Mexico, Gyrodactylidae sp. and Unilatus
 unilatus, the latter belonging to the Dactylogyridae which was previously reported on
 the snow pleco P. anisitsi Eigenmann and Kennedy and on Plecostomus sp., from Brazil
 and Peru, respectively (Mendoza-Palmero et al. 2012).

The fish examined in the present study are ornamental and/or for food production
 that are commercialized in Mexico. Results clearly show that importation of these fish
 can carry several monogeneans, both ecto- and endo-parasitic species, which could
 infect other related fish in systems they invade. Therefore, determining the occurrence
 of parasitic species will help provide better aquaculture conditions and will help to
 solve some of the problems faced by fish farmers. In the literature, there are a number
 of reports dealing with the introduction of parasites by ornamental fish from which
 the consequences of parasite introduction can be detrimental to native fish. For ex-
 ample, epizootics that may lead to extensive mortality (i.e., D. vastator on cyprinids,
 see Cone 1999) as shown for several species of monogeneans introduced into farms or
 aquariums, and from there to natural populations (Bakke et al. 2002, 2007; García-
 Vásquez et al. 2017). In addition to the identification of invasive host fish species, it is
 recommended that all freshwater fish imported into the country for food (farmed) or
 ornamental purposes must comply, at least, with quarantine regulations.
Acknowledgements

We thank the owners of the Aquaculture Production Units (APU) located in the municipalities of the state of Morelos, Mexico. MTO was supported by a Master student fellowship (scholarship number 301041) from the Consejo Nacional de Ciencia y Tecnología (CONACyT), Mexico. This study was completed during a search and training visit of MTO to EPOMEX from the Universidad Autónoma de Campeche, Mexico; the visit was financially supported by the Fondo para Elevar la Calidad en la Educación Superior (FECES) 2012 (May-June 2014) in Mexico and FECES 2014 (March-April 2015).

References

Bakke TA, Harris PD, Cable J (2002) Host specificity dynamics: observations on gyrodactylid monogeneans. International Journal for Parasitology 32: 281–308. https://doi.org/10.1016/S0020-7519(01)00331-9
Bakke TA, Cable J, Harris PD (2007) The Biology of Gyrodactylid Monogeneans: The “Russian-Doll Killers”. Advances in Parasitology 64: 161–376. https://doi.org/10.1016/S0065-308X(06)64003-7
Barroso de Magalhães AL, Jacobi CM (2013) Invasion risks posed by ornamental freshwater fish trade to southeastern Brazilian rivers. Neotropical Ichthyology 11: 433–441. http://dx.doi.org/10.1590/S1679-62252013005000003
Bush AO, Lafferty KD, Lotz JM, Shostak AW (1997) Parasitology meets ecology on its own terms: Margolis et al. revisited. Journal of Parasitology 83: 575–583. https://doi.org/10.2307/3284227
Blackburn TM, Ewen JG (2017) Parasites as drivers and passengers of human-mediated biological Invasions. EcoHealth 14: S61–S73. https://doi.org/10.1007/s10393-015-1092-6
Caspeta-Mandujano J, Cabañas-Carranza G, Mendoza-Franco EF (2009) Helminthes parásitos de peces dulceacuícolas mexicanos, caso Morelos. AGT, Editor, S.A. Primera Edición, Progreso 202 Planta Alta, Col. Escandón, México, 129 pp.
Cone DK (1999). Monogenea (Phylum: Platyhelminthes). In: Woo PTK (Ed.) Fish Diseases and disorders. CABI Publishing, 289–327.
Froese R, Pauly D (Eds) (2017) FishBase. http://www.fishbase.org [accessed October 2017]
García-Vásquez A, Hansen H, Shinn AP (2007) A revised description of Gyrodactylus cichlidarum Paperna, 1968 (Gyrodactylidae) from the Nile tilapia, Oreochromis niloticus niloticus (Cichlidae), and its synonymy with G. niloticus Cone, Arthur et Bondad-Reantaso, 1995. Folia Parasitologica 54: 129–140. https://doi.org/10.14411/fp.2007.018
García-Vásquez A, Razo-Mendivil U, Rubio-Godoy M (2015) Morphological and molecular description of eight new species of Gyrodactylus von Nordmann, 1832 (Platyhelminthes: Monogenea) from pimelodid fishes, collected in their natural distribution range in the Gulf of Mexico slope, Mexico. Parasitology Research 114: 3337–3355. https://doi.org/10.1007/s00436-015-4559-z
García-Vásquez A, Razo-Mendivil U, Rubio-Godoy M (2017) Triple trouble? Invasive pimelodid fishes carry the introduced tilapia pathogen Gyrodactylus cichlidarum in the Mexican highlands. Veterinary Parasitology 235: 37–40. https://doi.org/10.1016/j.vetpar.2017.01.014
IPPIC Secretariat (2005) Identification of risks and management of invasive alien species using the IPPC framework. Proceedings of the workshop on invasive alien species and the International Plant Protection Convention, Braunschweig, Germany, 22–26 September 2003. Rome, Italy, FAO, 301 pp.

Jiménez-García MI, Vidal-Martínez VM, Lopez-Jiménez S (2001) Monogeneans in introduced and native cichlids in Mexico: evidence for transfer. Journal of Parasitology 84: 907–909. https://doi.org/10.1645/0022-3395(2001)087[0907:MIIANC]2.0.CO;2

Jogunoori W, Kritsky DC, Venkatanarasiah J (2004) Neotropical Monogenoidea. 46. Three new species from the gills of introduced aquarium fishes in India, the proposal of *Heterotyphlus* n. g. and *Diaphorocleidus* n. g., and the reassignment of some previously described species of *Urocleidoides* Mizelle & Price, 1964 (Polyonchoinea: Dactylogyridae). Systematic Parasitology 58: 115–124. https://doi.org/10.1023/B:SYPA.0000029422.16712.9a

Kritsky DC, Thatcher VE, Boeger WA (1989) Neotropical Monogenea. 15 Dactylogyriids from gills of Brazilian Cichlidae with proposal of *Sciadicleithrum* gen. n. (Dactylogyridae). Proceedings of the Helminthological Society of Washington 56: 128–140.

Kritsky DC, Vidal-Martínez VM, Rodríguez-Canul R (1994) Neotropical Monogenoidea. 19. Dactylogyridae of cichlids (Perciformes) from the Yucatán Peninsula, with descriptions of three new species of *Sciadicleithrum* Kritsky, Thatcher, and Boeger, 1989. Journal Helminthological Society of Washington 61: 26–33.

Laverne S, Molofsky J (2007) Increased genetic variation and evolutionary potential drive the success of an invasive grass. PNAS 104: 3883–3888. https://doi.org/10.1073/pnas.0607324104

Lim LHS (1996) *Thaparocleidus* Jain, 1952, the senior synonym of *Silurodiscoides* Gussev, 1976 (Monogenea: Ancylodiscoidinae). Systematic Parasitology 35(3): 207–215. https://doi.org/10.1007/BF00009640

Martínez ED, Malpica SA, Hernández AJ (2010) Estructura de la producción de la piscicultura de ornato del estado de Morelos y su relación con la diversidad de la oferta. Sociedades rurales, producción y medio ambiente 10: 16–36.

Martínez CA, Ramírez HM (2016) Catálogo de peces ornamentales producidos en Morelos con capacidad de ser Especies Exóticas Invasoras (EEI). Elaborado dentro del proyecto GEF 00089333 “Aumentar las capacidades de México para manejar especies exóticas invasoras a través de la implementación de la Estrategia Nacional de Especies Invasoras”. Morelos, México, 170 pp.

Mendoza-Franco EF, Caspeta-Mandujano JM, Salgado-Maldonado G (2012) Primer reporte de *Heteropriapulus* sp. (Platelmintos, Monogenoidea) infectando al pez Diablo *Pterygoplichthys pardalis* (Siluriformes, Loricariidae) introducido en la cuenca del Rio Lacantún de la Reserva de la biosfera montes azules, Chiapas, México. Jaina 23: 1–6.

Mendoza-Franco EF, Caspeta-Mandujano JM, Salgado-Maldonado G (2013) New species of *Cacatuocotyle* (Monogenoidea, Dactylogyridae) parasitising the anus and the gill lamellae of *Astyanax aeneus* (Pisces, Ostariophysi: Characidae) from the Rio Lacantún basin in the Biosphere Reserve of Montes Azules, Chiapas, Mexico. Parasitology Research 112: 199–205. https://doi.org/10.1007/s00436-012-3126-0

Mendoza-Franco EF, Caspeta-Mandujano JM, Salgado-Maldonado G, Matamoros WA (2015a) Two new species of *Urocleidoides* Mizelle et Price, 1964 (Monogenoidea) from the
gill lamellae of profundulids and poeciliids from Central America and southern Mexico. Folia Parasitologica 62: 059. https://doi.org/10.14411/fp.2015.059

Mendoza-Franco EF, Quintal Méndez JR, Laffón Leal SM, del Rio Rodríguez RE (2015b) Ectoparásitos (Platelmintos: Monogenea) exóticos de peces cultivados en zonas aledañas a la Laguna de Términos, municipio del Carmen, Campeche, México” In: Aspectos Socio-Ambientales de la Región de la Laguna de Términos Campeche. Editor-Universidad Autónoma de Campeche, México, 210 pp.

Mendoza-Palmero CA, Scholz T, Mendoza-Franco EF, Kuchta R (2012) New species and geographical records of dactylogyrids (Monogenea) of catfish (Siluriformes) from the Peruvian Amazonia. Journal of Parasitology 98: 484–497. http://www.journalofparasitology.org/doi/pdf/10.1645/GE-2941.1

Mendoza R, Luna S, Aguilera C (2015) Risk assessment of the ornamental fish trade in Mexico: analysis of freshwater species and effectiveness of the FISK (Fish Invasiveness Screening Kit). Biological Invasions 17: 3491–3502. https://doi.org/10.1007/s10530-015-0973-5

Pariselle A, Euzet L (1995) *Scutogyrus* gen. n. (Monogenea: Ancyrocephalinae) for *Cichlidogyrus longicornis minus* Dossou, 1982. *C. l. longicornis*, and *C. l. gravivaginus* Paperna and Thurston, 1969, with description of three new species parasitic on African cichlids. Journal Helminthological Society of Washington 62: 157–173.

Ramírez-Morales S, Ayala-Pérez LA (2009) “Plecos” en la presa “Infiernillo”. Jaina 20: 24–35.

Salgado Maldonado G, Caspeta Mandujano JM, Ramírez Martínez C, Lozano Vilano L, García Ramírez ME, Mendoza Franco EF (2014) Helmintos de parásitos de los peces del río La-cantún en la reserva de la Biosfera Montes Azules, Chiapas. Editor: Universidad Autónoma de Nuevo León con Financiamiento de Natura y Ecosistemas Mexicanos, Asociación Civil, Mexico, 147 pp.

Salgado-Maldonado G, Matamoros WA, Kreiser BR, Caspeta-Mandujano JM, Mendoza-Franco EF (2015) First record of the invasive Asian fish tapeworm, *Bothriocephalus acheilognathi* Yamaguti, 1934, in Honduras Central America. Parasite 22: 1–6. https://doi.org/10.1051/parasite/2015007

Salgado-Maldonado G, Rubio-Godoy M (2014) Helmintos parásitos de peces de agua dulce introducidos. In: Mendoza R, Koleff P (Coords) Especies acuáticas invasoras en México. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, México, 269–285.

Santos NJF, Costa NGS, Soares JB, Domingues MV (2018) Monogenoidean parasites of *Acestrolorhynchus falcatus* (Characiformes: Acestorhynchidae) from Parána, Brazil: species of *Diaphorocleidus* and *Rhinoxenoides* n. gen. (Monogenoidea: Dactylogyridae). Journal of Helminthology 7: 1–12. https://doi.org/10.1017/S0022149X18000093

Tapia Osorio M, Mendoza Franco EF, Caspeta-Mandujano JM (2014) Species exóticas en ecosistemas acuáticos: ¿Invasiones biológicas silenciosas? Jaina 25: 25–29.

Vidal-Martínez VM, Aguirre-Macedo ML, Scholz T, González-Solís D, Mendoza-Franco EF (2001) Atlas of the helminth parasites of cichlid fish of Mexico. Academia, Prague, Czech Republic, 185 pp.

Yamaguti S (1963) *Systema helminthum*, Volume IV. Interscience Publishers, New York, 699 pp.