Self-assembled MoS$_2$/rGO Nanocomposites with Tunable UV-IR Absorption

Wei Wang,*1,2 Olesya O. Kapitanova,3 Pugazhendi Ilanchezhiyan,2 Sixing Xi,¹

Gennady N. Panin,*2,4 Dejun Fu,5 Tae Won Kang2

¹ College of Science, Hebei University of Engineering, Handan 056038, China.

² Department of Physics, Quantum-Functional Semiconductor Research Center, Nano Information Technology Academy, Dongguk University, 100-715, Seoul, Korea

³ Department of Chemistry, Moscow State University, Leninskie Gory, 1, b.3, 119991, Moscow, Russia

⁴ Institute for Microelectronics Technology & High Purity Materials, RAS, 142432 Chernogolovka, Moscow district, Russia

⁵ Key Laboratory of Artificial Micro- and Nano-Materials of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, China.

*E-mail: g_panin@dongguk.edu; panin@iptm.ru (G.N.P), wangwe19872010@163.com (W.W)
Figure S1 shows the SEM images of MoS$_2$/rGO composites on a SiO$_2$/Si substrate after annealing for the different TAA/GO ratios: (a) 1:0, (b) 1:1, (c) 1:2 and (d) 1:3. rGO deriving from GO acts as a dispersing platform, efficiently reducing the aggregation of MoS$_2$ with a decrease of the TAA/GO ratio and forming self-assembled layered MoS$_2$/rGO structures during the hydrothermal process. The morphology of the annealed structure is slightly different from the morphology of as-grown structure (Fig. 1).

Figure S1. SEM images of MoS$_2$/rGO composites on a SiO$_2$/Si substrate after annealing for the different TAA/GO ratios: (a) 1:0, (b) 1:1, (c) 1:2 and (d) 1:3.
Figure S2. Raman spectra of MoS$_2$ and MoS$_2$/rGO composites with different GO content before and after annealing (fitted with Lorentzian functions).

The Raman spectra of MoS$_2$ (Fig. S2) show the weak peak at 820 cm$^{-1}$ which corresponds to the M=O bending stretch vibrations for MoO$_{3-x}$ and can be ascribed to the formation of molybdenum oxide during annealing process [1-2]. This peak disappears in the spectra of MoS$_2$/GO composites, indicating a stronger binding of oxygen to carbon. The origin of the main peaks of the MoS$_2$/r-GO composite (E_{2g}^1, A_{1g} and G, D) is discussed in the description of Fig. 2b. The 520 cm$^{-1}$ peak and the peaks at ~2700 and ~2930 cm$^{-1}$ correspond to the Si substrate [3] and the second-order 2D and D+G bands of graphene [4-5], respectively.

Figure S3. X-ray photoelectron spectra of MoS$_2$ and MoS$_2$/rGO composites corresponding to (a) survey, and (b) C 1s core levels.
The chemical composition and binding energies of elements in MoS$_2$/rGO composites were investigated using XPS. Figure S3 shows the X-ray photoelectron spectra of MoS$_2$ and MoS$_2$/rGO composites corresponding to (a) survey, and (b) C 1s core levels. To fit the spectra of composites with MoS$_2$/GO ratios 1:2 and 1:3, two doublets and splittings of 1.2 and 3.1 eV for S 2p and Mo 3d, respectively, were used. The stronger C 1s signal of the MoS$_2$/GO (1:2) compared to MoS$_2$ (Fig. S3a) clearly indicates a significant hydrothermal GO reduction during the synthesis. The low intensity of the Mo 3d signals is apparently due to the formation of Mo$_2$S$_x$O$_{1-x}$ and Mo$_2$S$_5$, which shows an intermediate product in the MoS$_3$-to-MoS$_2$ transition reacting with oxygen from GO deoxygenation. The spectra of C 1s can be decomposed into six components. Peaks at 284.6, 285.3, 285.8, 286.6, 287.5, 288.99 correspond to C=C (sp2) of 48.1 %, C-C (sp3) of 20.4 %, C-OH of 16.4 %, C-O-C of 9.5 %, C=O of 1.2 %, and O=C-OH of 4.4 %, respectively, further confirming the existence of rGO in the composites (Fig. S3b).

Table S1. Detailed characteristics of Raman scattering of MoS$_2$ and MoS$_2$/rGO composites.

Specimen	As-grown	Annealed					
MoS$_2$	E$_{12g}$	A$_{1g}$	E$_{12g}$	A$_{1g}$	D	G	
As-grown	381.2	407.6	35.1	12.8	/	/	
Annealed	381.2	407.4	26.96	12.7	/	/	
MoS$_2$/rGO (1:1)	As-grown	381.9	406.6	30.6	19.9	1342.3	1576.4
Annealed	382.1	405.3	28.4	17.6	1341.7	1573.98	
MoS$_2$/rGO (1:2)	As-grown	382.1	404.6	22.0	13.6	1345.9	1578.6
Annealed	382.6	404.5	21.3	15.7	1348.7	1581.4	
MoS$_2$/rGO (1:3)	As-grown	382.6	404.4	17.9	12.1	1347.6	1581.7
Annealed	382.7	404.1	20.5	15.2	1349.1	1581.9	
The chemical reaction for the hydrothermal synthesis can be described as:

$$4MoO_4^{2-} + 9CSNH_2^+ + 12H_2O = 4MoS_2 + SO_4^{2-} + 9COOH^+ + 6OH^- + 9NH_3$$

References

[1] B. Yan, Z. Zheng, J.X. Zhang, H. Gong, Z.X. Shen, W. Huang, T.Yu, J. Phys.
[2] M. Dieterle, G. Weinberg, G. Mestl, Phys. Chem. Chem. Phys. 4 (2002) 812-821.

[3] M. Baleva, G. Zlateva, A. Atanassov, M. Abrashev, E. Goranova, Phys. Rev. B 72 (2005) 115330-115.

[4] A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Phys. Rev. Lett. 97 (2006) 187401-187404.

[5] M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, L.A. Cancado, A. Jorio, R. Sato, Phys. Chem. Chem. Phys. 9 (2007) 1276-1291.