Symmetries and time operators

G C Hegerfeldt1,2 and J G Muga2,3

1 Institut für Theoretische Physik, Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
2 Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, 01187 Dresden, Germany
3 Departamento de Química Física, Universidad del País Vasco, Apartado 644, 48080 Bilbao, Spain

E-mail: jg.muga@ehu.es

Received 26 August 2010, in final form 6 October 2010
Published 24 November 2010
Online at stacks.iop.org/JPhysA/43/505303

Abstract
All covariant time operators with normalized probability distribution are derived for Hamiltonians with continuous eigenvalues. Symmetry criteria are invoked to arrive at a unique expression for a given Hamiltonian. As an application, a well-known result for the arrival time distribution of a free particle is generalized and extended. Interestingly, the resulting arrival time distribution operator is connected to a particular, positive, quantization of the classical current. For particles in a potential, we also introduce and study the notion of conditional arrival-time distribution.

PACS numbers: 03.65.Ta, 03.65.Ca, 03.65.Nk

1. Introduction

In spite of a famous footnote by Pauli [1]4 on the purported non-existence of a time operator in quantum mechanics, physically motivated questions relating to time occur quite naturally in the form of arrival times or of time durations. These become interesting when the extension of the wavefunction comes into play and a quantum mechanical description by operators is not at all obvious. Also clock time operators have been investigated in the literature. For reviews of several aspects of these difficulties and of some more recent results see e.g. [2, 3]. As recently stressed by us and Muñoz in [4], for a given system there is no single time operator. Indeed, there may be many, corresponding to different observables and measuring devices.

4 Pauli argued that a Hermitean time operator and a Hamiltonian satisfying canonical commutation relations would have properties analogous to those of momentum and position. The unitary group generated by the momentum operator acts as a translation of the position operator, and in a similar way a time operator should generate translation of the Hamiltonian. But a unitary transformation cannot change the spectrum of eigenvalues, and so the energy eigenvalues would have to range from $-\infty$ to ∞, as for position. Since the energy eigenvalues are usually bounded from below this leads to a contradiction. One loophole here is that in order to have a unitary group the generator must be self-adjoint. Hermiticity is not enough. In fact, time operators constructed in the literature are not self-adjoint but only Hermitean (symmetric). See also [12] for a different approach.
There are two main groups of physically relevant time operators. These are associated with time durations and time instants, respectively. An example of a duration is the dwell time of a particle in a region of space. The corresponding operator commutes with the Hamiltonian since the duration does not depend on a particular reference instant \([5]\) if the Hamiltonian has no explicit time dependence, as assumed in this paper. In the other group, the time observables are covariant in the sense that when the preparation time is shifted, they are shifted by the same amount, either forward (quantum clocks) \([6]\) or backward (event times recorded with a stopwatch, e.g. time of arrival), and they are conjugate to the Hamiltonian.

The measurement of a clock time operator \(\hat{T}\) is supposed to yield, up to a constant, the parametric time. More precisely, \(\hat{T}\) should satisfy \(\langle \psi_t | \hat{T} | \psi_t \rangle = t + \langle \psi_0 | \hat{T} | \psi_0 \rangle\). Time-of-arrival operators are mathematically similar to clock time operators, but the physics is different. Some of their properties are motivated by the behavior of a classical particle and in any case may be put at test experimentally. A free particle in one dimension must, during its motion, arrive at a given point with certainty, and it must also arrive in three dimensions at an infinitely extended plane. On a half-line, a free particle is reflected at the end point and may therefore arrive twice at another point. In this case it is reasonable to investigate first (or second) arrivals at a point \([4]\). The most difficult case is a particle interacting with an external potential \([7–12]\). The particle can be deflected and, in one dimension, reflected so that it may, with a non-zero probability, never arrive at a particular position. In such a case it is then natural to ask for the probability distribution of first arrival at time \(t\), given that the particle is arriving at all, i.e. to ask for the conditional first-arrival probability distribution, which is, by definition, normalized to 1. In \([4]\) the most general form of covariant and normalized time observables was announced and a proof of a special case was indicated. The general proof of this result will be given in this paper. Hegerfeldt et al \([4]\) also gave applications to arrival times for a free particle on a half-line and to Lyapunov operators in quantum mechanics. Based on physically motivated postulates pertaining to arrivals at a plane in three dimensions, \([13]\) and \([14]\) derived a time-of-arrival operator for a free particle in three dimensions coming in from one side of the plane. Among the postulates were invariance of the time operator under Galilei transformations, which leave invariant the plane in question, and minimal means-square deviation. This result will be generalized in the present paper and the underlying conditions will be weakened. In particular, Galilei invariance will not be needed.

The plan of the paper is as follows. In section 2 we study covariant and normalized time observables and explicitly spell out their most general form, with the detailed proof referred to the appendix. In section 3 we analyze physical conditions, in particular symmetry conditions, under which time observables become unique, and discuss applications to clock time operators. In section 4 we give applications to time-of-arrival operators for free particles in one and three dimensions. In particular, the result of \([13, 14]\) will be generalized. The restriction on the incoming direction will be lifted and the above Galilei invariance will be replaced by invariance under translations which leave the plane in question invariant. It will be shown that the resulting arrival time distribution and operator are related to a particular, positive, quantization of the classical current. Due to the backflow effect \([15]\) the usual quantization in the form of the quantum mechanical probability does not have the necessary positivity properties. In section 5 we study the notion of first arrivals in the presence of a potential and the associated probability distribution operator, which in general is not normalized to 1. Normalizing by the total arrival probability for a given state one obtains the conditional arrival probability distribution which is normalized, but, by construction, is not bilinear in the wavefunction. Alternatively, to keep bilinearity we consider normalization by means of an operator and the resulting distribution operators. A one-dimensional example for a particle in a potential symmetric about the origin and arrivals at the
origin is discussed. In the appendix mathematical fine points such as regularity properties are discussed.

2. Clock time and time-of-arrival operators

Clock time operators can be associated with a quantum clock whose average measures the progressing parametric time. A good clock would also minimize the variance in order to estimate the time as accurately as possible with a finite number of measurements.

For a clock observable, let the probability of finding the measured time in the interval \((-\infty, \tau)\) for a state \(|\psi\rangle\) be given by the expectation of an operator \(\hat{F}_\tau\), which plays the role of a cumulative probability operator, so that \(\hat{F}_\tau\) is monotonically increasing to \(\hat{F}_\infty = 1\). The derivative \(d\langle\psi|\hat{F}_\tau|\psi\rangle/d\tau\) is the corresponding temporal probability distribution and it is normalized to 1. For a momentum measurement the analogous operator would be a projector, while here one just has \(0 \leq \hat{F}_\tau \leq 1\) with self-adjoint \(\hat{F}_\tau\). The collection of \(\hat{F}_\tau\)'s yields a positive operator-valued measure. We define the probability distribution operator \(\hat{P}_1\) and the time operator \(\hat{T}\) by

\[
\hat{P}_1 = \frac{d}{d\tau} \hat{F}_\tau,
\]

\[
\hat{T} = \int d\tau \tau \hat{P}_1.
\]

The derivative is to be understood in terms of matrix elements (see below). The mean value of observed time can be written as

\[
\langle\psi|\int d\tau \tau \hat{P}_1|\psi\rangle \equiv \langle\psi|\hat{T}|\psi\rangle.
\]

The second moment, if it exists, is given by

\[
\langle\psi|\int d\tau \tau^2 \hat{P}_1|\psi\rangle = \langle\psi|\hat{T}^2|\psi\rangle
\]

and similarly for higher moments.

Covariance of a clock time operator with respect to ordinary (parametric) time means that the probabilities of finding the measured time in the interval \((-\infty, \tau)\) for state \(|\psi_0\rangle\) and in \((-\infty, \tau + t)\) for \(|\psi_t\rangle\) coincide. This implies

\[
\hat{F}_\tau = e^{-i\hat{H}\tau/\hbar} \hat{F}_0 e^{i\hat{H}\tau/\hbar}.
\]

For differentiation it is convenient to momentarily use the non-Dirac notation \(\langle\psi, \phi\rangle \equiv \langle\psi|\phi\rangle\). Then, for normalizable \(|\psi\rangle\) and \(|\phi\rangle\) in the domain of the Hamiltonian, one has that the derivative of \(\langle\psi|\hat{F}_\tau|\phi\rangle \equiv \langle\psi|\hat{F}_\tau\phi\rangle\) exists and equals

\[-i/\hbar\{\langle\hat{H}\psi, \hat{F}_\tau \phi\rangle - \langle\hat{F}_\tau \psi, \hat{H}\phi\rangle\}.\]

From this one obtains

\[
\hat{P}_1 = e^{-i\hat{H}\tau/\hbar} \hat{P}_0 e^{i\hat{H}\tau/\hbar},
\]

\[
\hat{P}_0 = -i\hbar\{\hat{H}, \hat{F}_0\},
\]

\[
\hat{F}_0 = e^{-i\hat{H}\tau/\hbar} \hat{F}_0 e^{i\hat{H}\tau/\hbar}
\]

where the commutator has to be taken in the weak sense, i.e. in terms of matrix elements \(\langle\psi| [\hat{H}, \hat{F}_0]|\phi\rangle \equiv \langle\hat{H}\psi, \hat{F}_0 \phi\rangle - \langle\hat{F}_0 \psi, \hat{H}\phi\rangle\). Note that \(\hat{P}_0\) and \(\hat{P}_1\) are in general not operators on the Hilbert space but only bilinear forms evaluated between normalizable vectors from the domain of \(\hat{H}\). Since \(\langle\psi|\hat{F}_\tau|\psi\rangle\) is non-decreasing, \(\hat{P}_1\) is a positive bilinear form. An expression like \(\langle E|\hat{P}_0|E\rangle\) has to be understood as a distribution. Since the diagonal \(E = E'\) has measure 0, it is no contradiction that (4) formally gives 0 on the diagonal while explicit examples may give a non-zero value [4]. By a change of variable in (1) one obtains

\[
e^{i\hat{H}\tau/\hbar} \hat{T} e^{-i\hat{H}\tau/\hbar} = \hat{T} + t.
\]
Furthermore, \hat{H} and \hat{T} satisfy the canonical commutation relation as a bilinear form for normalizable vectors from the domain of \hat{H}.

A superscript A denotes quantities for (first) arrival times at a given location. In contrast to clock times, if the particle’s state is shifted in time by t_0, it should arrive a time t_0 earlier, and the temporal probability distribution should be shifted by t_0 earlier times. Thus the analog of the cumulative probability operator in (3) and the probability density operator must now satisfy

$$\hat{F}_t^A = e^{i\hat{H}t/\hbar} \hat{F}_t^A e^{-i\hat{H}t/\hbar},$$
(7)

$$\hat{\Pi}_0^A = \frac{i}{\hbar} [\hat{H}, \hat{F}_t^A],$$
(8)

$$\hat{F}_t^A = e^{i\hat{H}t/\hbar} \hat{\Pi}_0^A e^{-i\hat{H}t/\hbar}.$$
(9)

Again, $\hat{\Pi}_0^A$ is a positive bilinear form.

In the case of a particle in a potential, it may happen that for a given state the particle arrives at the location with a total probability less than 1. This means that the integral of $\hat{\Pi}_1^t$ is not unity. For the average arrival time one can then not use the left-hand side of the analog of (2) but rather

$$\langle \psi | \int d\tau \hat{F}_t^A | \psi \rangle / \langle \psi | \hat{N} | \psi \rangle,$$
(10)

where $\hat{N} = \int d\tau \hat{F}_t^A = \hat{F}_\infty$. However, if the total arrival probability is always 1, one can define an arrival time operator by

$$\hat{T}_t^A = \int d\tau \hat{F}_t^A$$
(11)

$$= \int d\tau e^{i\hat{H}t/\hbar} \hat{\Pi}_0^A e^{-i\hat{H}t/\hbar}.$$
(12)

As seen by a change of integration variable, an arrival time operator behaves as the negative of a clock time operator whose probability distribution operator is given by $\hat{\Pi}_t = \hat{\Pi}_t^A$, with a cumulative probability operator $\hat{F}_t = 1 - \hat{F}_t^A$.

We now prove the following general result for covariant clock operators and arrival time operators with normalized distributions. This was already announced in [4] without proof.

Let \hat{H} be a Hamiltonian with purely continuous eigenvalues and eigenvectors $|E, \alpha\rangle$, where the degeneracy index can be assumed to be a discrete number. Their normalization is taken as

$$\langle E, \alpha | E', \alpha' \rangle = \delta_{\alpha \alpha'} \delta(E - E').$$
(13)

For simplicity we assume the same degeneracy for each E. We consider any covariant clock time operator which has a probability distribution normalized to 1 and whose second moment exists for a dense set of vectors. Then for $t = 0$ the probability distribution $\hat{\Pi}_0$ is given by

$$\hat{\Pi}_0 = \frac{1}{2\pi \hbar} \sum_i |b_i\rangle \langle b_i|$$
$$= \frac{1}{2\pi \hbar} \sum_i \int dE dE' \sum_{\alpha \alpha'} b_i(E, \alpha) |E, \alpha\rangle \langle E', \alpha' | b_j(E', \alpha')$$
(14)

where $b_i(E, \alpha) = \langle E, \alpha | b_i\rangle$ are any functions satisfying the two conditions

$$\sum_i b_i(E, \alpha) b_j(E, \alpha') = \delta_{\alpha \alpha'},$$
(15)
\[
\sum_i |\partial_E b_i(E, \alpha)|^2 \text{ integrable over finite intervals.} \quad (16)
\]

The same results hold for \(\hat{\Pi}_0^a\) of normalized arrival time distributions. The complete distributions \(\hat{\Pi}_1\) and \(\hat{\Pi}_1^a\) and the associated time operators are then given by (1)–(5) and (7)–(11), respectively.

For a state \(|\psi\rangle\), with \(\psi(E, \alpha) \equiv \langle E, \alpha | \psi \rangle\), one has
\[
\langle \psi | \hat{T} | \psi \rangle = \int dE \sum_{\alpha} \overline{\psi(E, \alpha)} \partial_E \psi(E, \alpha)
+ \int dE \sum_{\alpha \alpha'} \overline{\psi(E, \alpha)} \psi(E, \alpha') \sum_i b_i(E, \alpha) \partial_E b_i(E, \alpha') \quad (17)
\]

second moment = \(\hbar^2 \int dE \left|\partial_E \sum_{\alpha} b_i(E, \alpha) \psi(E, \alpha)\right|^2\). \quad (18)

To illustrate the crucial mathematical points of the proof, we first treat the case of a Hamiltonian \(\hat{H}\) with a simple absolutely continuous spectrum from \([E_0, \infty)\) or \((-\infty, \infty)\), with no degeneracy. The degenerate case will be treated in the appendix.

The generalized eigenvectors of \(\hat{H}\) can be denoted by \(|E\rangle\), with normalization \(\langle E | E' \rangle = \delta(E - E')\). In the Hilbert space, \(\mathcal{H}\), of the Hamiltonian we denote by \(S(\hat{H})\) and \(D(\hat{H})\) the subspaces of vectors \(|\psi\rangle\in \mathcal{H}\) such that \(\langle E | \psi \rangle \equiv \psi(E)\) is in the Schwartz space \(S(\mathbb{R})\) or \(D(\mathbb{R})\), respectively. Then \(\hat{\Pi}_0 = -i[\hat{H}, \hat{F}_0]/\hbar\) from (4) is a positive semi-definite continuous sesquilinear form on \(S(\hat{H})\) or \(D(\hat{H})\) and, by continuation, on \(S(\mathbb{R})\) or \(D(\mathbb{R})\). Hence, by the kernel theorem, it defines a distribution on \(S(\mathbb{R}^2)\) or \(D(\mathbb{R}^2)\), respectively, formally denoted by \(\hat{\Pi}_0^a(E, E')\). \quad (19)

Let \(\{|g_i\rangle\in D(\hat{H}), i = 1, \cdots\}\) be a maximal set (finite or infinite) such that
\[
\langle g_i | \hat{\Pi}_0 | g_j \rangle = \delta_{ij}. \quad (20)
\]

We put \(g_i(E) \equiv \langle E | g_i \rangle\) and define \(b_i \in S'(\mathbb{R})\) by
\[
b_i(E) = \sqrt{2\pi\hbar} \int dE' \hat{\Pi}_0(E, E') g_i(E'). \quad (21)
\]

Then
\[
\langle g_a | b_i \rangle = \int dE \overline{g_a(E)} b_i(E) = 2\pi\hbar \delta_{ai}. \quad (22)
\]

and therefore
\[
\sum_i \langle g_a | b_i \rangle \langle b_i | g_b \rangle = 2\pi\hbar \delta_{ab}. \quad (23)
\]

With \(\mathcal{L}\{g_i\}\) the linear span of the \(g_i(E)\)'s, one therefore has, on \(\mathcal{L}\{g_i\} \times \mathcal{L}\{g_i\}\),
\[
\langle E | \hat{\Pi}_0 | E' \rangle = \frac{1}{2\pi\hbar} \sum_i b_i(E)\overline{b_i(E')}. \quad (24)
\]

If \(\mathcal{N} \subset S(\mathbb{R})\) or \(\mathcal{N} \subset D(\mathbb{R})\), respectively, defines the null space of (the distribution defined by) \(\hat{\Pi}_0\), then \(\mathcal{L}\{g_i\} \cup \mathcal{N}\) span \(S(\mathbb{R})\) or \(D(\mathbb{R})\), respectively, and therefore, by continuity, (24) holds also on \(S(\hat{H}) \times S(\hat{H})\) and \(D(\hat{H}) \times D(\hat{H})\), respectively.
Exploiting normalization. From equations (5) and (24) one obtains, for a normalized $|\psi\rangle \in \mathcal{S}(\hat{H})$,
\[
1 = \int \frac{dt}{2\pi\hbar} \langle \psi | e^{-i\hat{H}t/\hbar} \hat{N}_0 e^{i\hat{H}t/\hbar} |\psi\rangle = \sum_i \int \frac{dt}{\sqrt{2\pi}} \int dE \frac{1}{\sqrt{2\pi}} \int dE \ e^{iE\tau} \overline{b_i(E)} \overline{b_i(E)}^* \psi(E) \overline{\psi}(E)^* \quad .
\]
(25)

If one wrote the square as a double integral and formally employed a δ function for the integral over τ, one would arrive immediately at (26) below. However, since as yet $b_i(E)$ might still be a distribution, a δ function may not be applied. A rigorous argument runs as follows.

Equation (25) implies that, for each i, the inner integral, considered as a function of τ, is square integrable, and so is its Fourier transform. The latter, as a distribution, is given by $\overline{b_i(E)} \overline{b_i(E)}^*$ and hence is equivalent to a square integrable (i.e. L^2) function. Hence $b_i(E)$ is not only a distribution but even locally an L^2 function. From (25) one then has by Parseval’s theorem
\[
\sum_i \int dE |b_i(E)\overline{b_i(E)}|^2 = 1.
\]
(26)

Since this is true for any normalized $|\psi\rangle \in \mathcal{S}(\hat{H})$, this implies
\[
\sum_i \overline{b_i(E)} b_i(E) = 1 \quad \text{for almost all} \quad E.
\]
(27)

Conversely, if a sequence of locally L^2-functions satisfies (27), then \hat{N}_0 defined by (24) gives rise to a covariant time operator through equations (5) and (1).

Exploiting the second moment. We assume that for a dense set of $|\psi\rangle \in \mathcal{S}(\hat{H})$, the second moment exists, i.e.
\[
\int \frac{dt}{2\pi\hbar} t^2 \langle \psi | e^{-i\hat{H}t/\hbar} \hat{N}_0 e^{i\hat{H}t/\hbar} |\psi\rangle < \infty.
\]
(28)

With (24) this can be written as
\[
\hbar^2 \sum_i \int d\tau \frac{1}{\sqrt{2\pi}} \int dE \ e^{iE\tau} \overline{b_i(E)} \overline{b_i(E)}^* \psi(E) \overline{\psi}(E)^* \quad .
\]
(29)

Again, as $b_i(E)$ may not be continuous, a δ function argument, which directly would give (30) below, cannot be applied. A rigorous argument uses the fact that, for each i, the inner integral considered as a function of τ is not only square integrable but is also in the domain of the operator ‘multiplication by τ’. Therefore, by standard results, the Fourier transform of this function, given by $\overline{b_i(E)} \overline{b_i(E)}^*$, is not only in L^2 but is also absolutely continuous and has a derivative which is also in L^2. Again by Parseval’s theorem,
\[
\text{second moment} = \hbar^2 \sum_i \int dE |\partial_E (\overline{b_i(E)} \overline{b_i(E)}^*)|^2 < \infty.
\]
(30)

Since $|\psi\rangle$ is from the dense set $\mathcal{S}(\hat{H})$, b_i must also be absolutely continuous and its derivative exists almost everywhere and is locally L^2. Using (27) one obtains
\[
\text{second moment}/\hbar^2 = \int dE |\partial_E |\psi|^2 + \int dE \sum_i |b'_i| |\psi|^2 + 2 \text{Re} \int dE \sum_i \overline{b_i} b_i \overline{\psi}' \psi.
\]
(31)

In a similar way one finds
\[
\langle \psi | \hat{T} | \psi \rangle = \int dE \overline{\psi} \overline{\theta} \partial_E |\psi|^2 + \int dE |\psi|^2 \sum_i b_i \overline{\theta} \partial_E \overline{b_i}.
\]
(32)
We note that if the b_i’s are real, then (27) implies $\sum b_i(E) b_i'(E) = 0$ for almost all E and thus for real b_i’s the last term in (31) as well as in (32) vanishes.

This concludes the proof for the case of a Hamiltonian with non-degenerate continuous eigenvalues. The degenerate case is treated in appendix A.1.

3. Degenerate energy eigenstates: unique clock time operators from symmetry and minimal variance

Clock time operators have a normalized probability distribution, and this will be assumed in the following. To reduce the multitude of covariant clock time operators, we may require that the variance ΔT, or the mean-square deviation ΔT^2, is minimal for all states for which the second moment exists. Physically this means that no other time observable can be measured more precisely. However, requiring minimal variance by itself does not make \hat{T} unique, not even in the case of non-degenerate spectrum of \hat{H}, as was shown in [4]. But if in addition one restricts the set of functions b_i by symmetry requirements, uniqueness may then follow from minimality of ΔT, as will be illustrated now.

We denote the anti-unitary time reversal operator by $\hat{\Theta}$. In the x space representation, $(\hat{\Theta} \psi)(x) = \overline{\psi(x)}$. If the Hamiltonian is time reversal invariant, we may demand

$$\hat{\Theta} \hat{T} \hat{\Theta} = -\hat{T}$$

and similarly for the probability distribution. By (3) this implies

$$\hat{\Theta} \hat{\Pi}_0 \hat{\Theta} = \hat{\Pi}_0.$$

(34)

In [4] it was shown for the non-degenerate eigenvalue case that time reversal invariance of the Hamiltonian \hat{H} and minimal ΔT together imply that \hat{T} and $\hat{\Pi}_0$ are unique and given by

$$\hat{\Pi}_0 = \frac{1}{2\pi \hbar} \int dE dE' e^{-i(E-E')/\hbar} |E\psi\rangle \langle E\psi|,$$

$$\hat{T} = \int dt r \hat{\Pi}_0,$$

with time reversal invariant $|E\psi\rangle$.

If the Hamiltonian has degenerate continuous eigenvalues, this is no longer true and additional conditions are needed to obtain uniqueness, as discussed now.

Example 1. In one dimension we consider

$$\hat{H} = \hat{p}^2/2m + V(\hat{x})$$

(36)

and assume a purely continuous spectrum. \hat{H} is invariant under space reflection, denoted by $\hat{\sigma}$, and under time reversal $\hat{\Theta}$. We assume \hat{T} and its probability distribution to have analogous properties. For $\hat{\Pi}_0$ this implies

$$\hat{\sigma} \hat{\Pi}_0 \hat{\sigma} = \hat{\Theta} \hat{\Pi}_0 \hat{\Theta} = \hat{\Theta} \hat{\sigma} \hat{\Pi}_0 \hat{\sigma} \hat{\Theta} = \hat{\Pi}_0.$$

(37)

Then, under the assumption of normalizability, the time operator becomes unique, as shown now. As eigenstates of \hat{H} we choose real and either symmetric or antisymmetric wavefunctions, denoted by $|E, \pm\rangle$ and normalized as $\delta(E-E')$. Then $\hat{\Theta} |E, \pm\rangle = |E, \pm\rangle$ and $\hat{\sigma} |E, \pm\rangle = \pm |E, \pm\rangle$. Decomposing the functions $b_{\alpha a}$ in (14) for $\hat{\Pi}_0$ into real and imaginary parts one finds from $\hat{\Pi}_0 = \frac{1}{2}(\hat{\Pi}_0 + \hat{\sigma} \hat{\Pi}_0 \hat{\sigma})$ that (14) can be written with real functions when using $|E, +\rangle$ and $|E, -\rangle$ as basis. Writing again $\hat{\Pi}_0 = \frac{1}{2}(\hat{\Pi}_0 + \hat{\sigma} \hat{\Pi}_0 \hat{\sigma})$ the mixed $\alpha \alpha'$ terms cancel so that $\hat{\Pi}_0$ can be written in the form

$$\hat{\Pi}_0 = \frac{1}{2\pi \hbar} \sum \sum dE dE' b_{\alpha a}(E) |E, \alpha\rangle \langle E', \alpha| b_{\alpha' a}(E').$$

(38)
with real functions $b_{\alpha\alpha}$. Note that (38) has no mixed $\alpha\alpha'$ terms and is in this sense diagonal. The normalization condition (15) is replaced by

$$\sum_i b_{\alpha\alpha}(E)^2 = 1, \quad \alpha = \pm. \quad (39)$$

Diagonality in α and reality of the functions $b_{\alpha\alpha}$ will be crucial for determining $b_{\alpha\alpha}$ explicitly. In fact, expanding the right-hand side of (18) for the second moment, the term

$$\sum_i \int dE b_{\alpha\alpha}'(E) b_{\alpha\alpha}(E) \frac{\psi(E, \alpha')}{\psi(E, \alpha)} \psi'(E, \alpha') + \text{c.c.} \quad (40)$$

is replaced by

$$\sum_i \int dE \left| b_{\alpha\alpha}'(E) b_{\alpha\alpha}(E) \right|^2 \left| \psi(E, \alpha) \right|^2. \quad (41)$$

and similarly for an analogous term in $\langle \psi | \hat{T} | \psi \rangle$. Now,

$$\sum_i b_{\alpha\alpha}'(E) b_{\alpha\alpha}(E) = \frac{1}{2} \partial_E \sum_i b_{\alpha\alpha}(E)^2 = 0 \quad (42)$$

by (39). Therefore the only $b_{\alpha\alpha}$ dependent term in ΔT^2 is

$$\sum_i \int dE |b_{\alpha\alpha}'(E)|^2 |\psi(E, \alpha)|^2. \quad (43)$$

This becomes minimal if and only if $b_{\alpha\alpha}' \equiv 0$, i.e.

$$b_{\alpha\alpha}(E) \equiv c_{\alpha\alpha}, \quad (44)$$

with the real constant $c_{\alpha\alpha}$ satisfying, by (39),

$$\sum_i (c_{\alpha\alpha})^2 = 1, \quad \alpha = \pm. \quad (45)$$

Inserting this into (38) it gives finally

$$\hat{\Pi}_0 = \frac{1}{2\pi \hbar} \int dE dE' |\langle E, + | E', + \rangle + |E, - \rangle, \langle E', - \rangle|. \quad (46)$$

From (3) and (1) one now obtains the corresponding operators $\hat{\Pi}_t$ and \hat{T}. Thus, in this one-dimensional example, covariance under time reversal and reflection plus minimality of ΔT lead to a unique clock time operator and a unique associated temporal probability distribution.

Interestingly, when the potential V in (36) allows the application of scattering theory, $\hat{\Pi}_0$ in (46) can be re-expressed in terms of the Møller operators $\hat{\Omega}_\pm$ and complex reflection and transmission coefficients, $T(k)$ and $R(k)$. We denote by $|k\rangle$ momentum eigenstates. Reflection invariance gives $\hat{\sigma} \hat{\Omega}_\pm \hat{\sigma} = \hat{\Omega}_\mp$ and $R(-k) = R(k), T(-k) = T(k)$. The interpolation property $\hat{H} \hat{\Omega}_\pm = \hat{\Omega}_\pm \hat{H}_0$ shows that the two vectors

$$\begin{align*}
(\hat{\Omega}_+ + \hat{\Omega}_-)(|k\rangle + | -k\rangle)/\sqrt{2} \\
(\hat{\Omega}_+ - \hat{\Omega}_-)(|k\rangle - | -k\rangle)/\sqrt{2}
\end{align*} \quad (47)$$

are eigenvectors of \hat{H} which are symmetric and antisymmetric, respectively, and invariant under $\hat{\sigma}$ since $\hat{\Theta} \hat{\Omega}_\pm \hat{\Theta} = \hat{\Omega}_\mp$. Hence the vectors in (47) are real multiples of $|E, \pm\rangle$. To determine the respective multiple we use the identities

$$\hat{\Omega}_+ + \hat{\Omega}_- = \hat{\Omega}_-(\hat{S} + 1) = \hat{\Omega}_+(1 + \hat{S}^z), \quad (48)$$
\[\hat{S} |k\rangle = T(k) |k\rangle + R(k) | -k\rangle. \] (49)

Thus
\[\hat{S} (|k\rangle \pm | -k\rangle) = (T(k) \pm R(k)) (|k\rangle \pm | -k\rangle). \] (50)

This implies that here \(T(k) \pm R(k) \) are pure phases. With (48) the two vectors in (47) become
\[(1 \pm \frac{T(k) + R(k)}{1 + T(k) + R(k)}) |k\rangle \pm | -k\rangle \] (51)

Hence, from normalization we find
\[|E, \pm\rangle = \frac{i(1 \pm T(k) + R(k))}{\sqrt{\frac{2m}{\hbar^2}}} \frac{1}{\Omega_1} \big(|k\rangle \pm | -k\rangle \big) \] (52)

Using (50) this can be re-expressed by \(T, R, \) and \(\hat{\Omega}_1 \) as
\[|E, \pm\rangle = \frac{i^{(1+\gamma)/2}}{\sqrt{\frac{m}{\hbar^2}}} \frac{1 \pm T + R}{|1 + T(k) + R(k)|} \hat{\Omega}_1 |k\rangle \pm | -k\rangle \] (53)

Inserting this into (46) and introducing \(k \) as integration variable, \(E / \hbar = \hbar k^2 / 2m \), one obtains an expression for \(\hat{\Pi}_1 \) with coherences between \(|k\rangle \) and \(| -k\rangle \). For a free particle in one dimension \((T = 1, R = 0, \hat{\Omega}_1 = \mathbb{I})\) one obtains
\[\hat{\Pi}_1^{(V = 0)} = \frac{1}{2\pi m} \int_0^\infty dk \int_0^\infty dk' \sqrt{kk'} |k\rangle \langle k| + | -k\rangle \langle -k'| \] (54)

so that in the free case there are no coherences between positive and negative momenta.

Example 2. We consider the three-dimensional case of the Hamiltonian
\[\hat{H} = \frac{\hat{\mathbf{p}}^2}{2m} + V(\mathbf{r}) \] (55)

and assume a purely continuous spectrum. \(\hat{H} \) is invariant under rotations, reflection \(\hat{\sigma}_1 \) at the \(x_2 - x_3 \) plane, i.e. \(\phi \to \pi - \phi \) in spherical coordinates, and under time reversal. In the following we assume only invariance of \(\hat{T} \) and its probability distribution operator under rotations and covariance under the combined action \(\hat{\sigma}_1 \hat{\Theta} \); this means the invariance of \(\hat{\Pi}_1 \) under these operations. Again this implies the existence of a unique time operator and its probability distribution, as shown now.

The eigenfunctions of \(\hat{H} \) can be chosen in the form \(f_{El}(r)Y_{lm}(\theta, \phi), f_{El} \) real. We denote these states by \(|Elm\rangle \), with the normalization
\[\langle Elm| E'l'm'\rangle = \delta(El - E'l')\delta_{ll'}\delta_{mm'}. \] (56)

The action of \(\hat{\sigma}_1 \hat{\Theta} \) is given by
\[\hat{\sigma}_1 \hat{\Theta} |Elm\rangle = (-1)^m |Elm\rangle. \] (57)

Invariance under rotations and under \(\hat{\sigma}_1 \hat{\Theta} \) implies that \(\hat{\Pi}_1 \) can be written in the form
\[\hat{\Pi}_1 = \frac{1}{2\pi m} \sum_i \int dE dE' \sum_{lm} b_{ilm}(E)|Elm\rangle \langle E'l'm| b_{ilm}(E'), \] (58)

with real functions \(b_{ilm} \). In principle, the allowed set of \(l \) and \(m \) in the sum might depend on \(E, E' \). However, if scattering theory can be applied this is not so, as seen further below. Note
the diagonality in \(l, m \). The condition for the functions \(b_{ilm} \), arising from the normalization of the probability, now reads

\[
\sum_i (b_{ilm}(E))^2 = 1 \quad \text{for each } l, m.
\] (59)

Equations (40)–(43) remain the same, only with \(\alpha \) replaced by \(lm \), and therefore minimality of \(\Delta_1T \) implies

\[
\hat{\Pi}_0 = \frac{1}{2\pi\hbar} \sum_i \sum_{lm} \int dE \, dE' |Elm\rangle\langle E'lm|,
\] (60)

where \(\langle x|Elm\rangle = f_{El}(r)Y_{lm}(\vartheta, \phi) \), with \(f_{El} \) real. Thus also in this example the time operator is unique and there are no coherences between different \(lm \) values.

Using scattering theory, (60) can again be expressed by the Møller operators \(\hat{\Omega}_\pm \) and partial waves’ shifts, \(\delta_l \). We write \(|Elm\rangle_0 \) when \(V \equiv 0 \). Then

\[
\langle x|Elm\rangle_0 = \sqrt{\frac{2}{\pi}} \frac{\hbar}{\sqrt{m}} \frac{j_f(kr)}{k} Y_{lm}(\vartheta, \Phi),
\] (61)

and, from rotation symmetry,

\[
\hat{S} |Elm\rangle_0 = e^{2i\delta_l} |Elm\rangle_0.
\] (62)

\(\hat{\Omega}_\pm \) commutes with rotations and \(\hat{\sigma}_1 \), and again \(\hat{\Theta}_\pm \hat{\Theta}_\mp = \hat{\Theta}_0 \). From \(\hat{H} \hat{\Omega}_\pm = \hat{\Omega}_\pm \hat{H} \) it follows that \((\hat{\Theta}_+ + \hat{\Theta}_-)|Elm\rangle_0 \) is an eigenstate of \(\hat{H}, \hat{L}_1, \hat{L}_3 \), and also of \(\hat{\sigma}_1 \hat{\Theta} \) with eigenvalue \((-1)^m\). Therefore it is a real multiple of \(|Elm\rangle \). To calculate this multiple we use (48) and obtain

\[
(\hat{\Theta}_+ + \hat{\Theta}_-)|Elm\rangle_0 = (1 + e^{2i\delta_l}) \hat{\Omega}_\pm |Elm\rangle_0.
\] (63)

Taking scalar products one obtains, from the unitarity of \(\hat{\Omega}_\pm \),

\[
|Elm\rangle = \frac{1}{1 + e^{2i\delta_l}} (\hat{\Theta}_+ + \hat{\Theta}_-)|Elm\rangle_0.
\] (64)

and, from (63),

\[
|Elm\rangle = \frac{1 + e^{2i\delta_l}}{1 + e^{2i\delta_{l'}}} \hat{\Theta}_\pm |Elm\rangle_0.
\] (65)

Inserting this into (60) for \(\hat{\Pi}_0 \), using \(k \) as integration variable, where \(E/\hbar = \hbar k^2/2m \), and the states

\[
|klm\rangle_0 \equiv \hbar \sqrt{k/m} |Elm\rangle_0,
\] (66)

which are normalized to \(\delta(k - k')\delta_{l\ell'}\delta_{mm'} \),

\[
\hat{\Pi}_0 = \Omega_+ \frac{\hbar}{2\pi m} \sum_{lm} \int_0^\infty dk \int_0^\infty dk' \sqrt{kk'} \frac{1 + e^{-2i\delta_l(k)}}{1 + e^{2i\delta_l(k)}} \frac{1 + e^{2i\delta_{l'}(k')}}{1 + e^{2i\delta_{l'}(k')}} |klm\rangle_0 \langle k'l'm|\hat{\Omega}_\pm.
\] (67)

The free particle case results if \(\Omega_+ = I \) and \(\delta_l = 0 \).

10
4. Application to arrival times

Kijowski [13] considered, in three dimensions, a free particle of mass \(m \) coming in from \(x_1 = -\infty \) and determined the distribution of times of arrival at a plane perpendicular to the \(x_1 \) axis, e.g. at \(x_1 = 0 \), by using physically motivated postulates. These were covariance, normalization, invariance under all Galilei transformations which leave the plane \(x_1 = 0 \) invariant, invariance under the combined action of time reversal and space reflection \(\sigma : x \rightarrow -x \), and minimal variance. His result, denoted here by \(\Pi_{ij}^{K} \), for the probability distribution of particles with only positive momenta in the \(x_1 \) direction and for arrivals at the plane \(x_1 = 0 \), can be written as

\[
\Pi_{ij}^{K} = \frac{\hbar}{2\pi m} \int_{-\infty}^{\infty} dk_2 dk_3 \int_{0}^{\infty} dk_1 \int_{0}^{\infty} dk_1' e^{i(k_1-k_1')n/2m} k_1 k_1' \delta(k_1 - k_1') \delta(k_2, k_3) \langle \theta(x) \rangle. \tag{68}
\]

In the following, the methods of the previous sections will be used to generalize this result in two ways. First, invariance under Galilei transformations can be replaced by a weaker condition, and second, the restriction to particles coming in from one side can be lifted. We assume covariance under time translations, invariance under space translations which leave the plane \(x_1 = 0 \) invariant, invariance under the space reflection \(\sigma : x \rightarrow -x \), time reversal covariance, and minimal variance. These symmetry assumptions are taken over from the classical case. Indeed, if one has an ensemble of free classical particles and reflects each particle trajectory by \(\sigma \), then the resulting reflected ensemble has the same distributions for arrivals at the plane \(x_1 = 0 \) as the original ensemble. In addition, one can go over to the time reversed trajectories, defined by \(x_0(t) = x(-t) \). Then, if a particle arrives at the plane at time \(t' \), the corresponding particle on the time reversed trajectory will arrive there at time \(-t' \). This implies that for the time reversed ensemble, the arrival time distribution is obtained from the original one by replacing \(t \) by \(-t \). Note that the arrival location, i.e. the plane \(x_1 = 0 \), is singled out here by the required reflection invariance under \(\sigma \).

Under the above assumptions it will now be shown that \(\Pi_{ij}^{A} \), the operator for the probability distribution of times of arrivals at the plane \(x_1 \), is given by

\[
\Pi_{j0}^{A} = \theta(\hat{v}_1)|\hat{v}_1|^{1/2} \delta(\hat{x}_1)|\hat{v}_1|^{1/2} \theta(\hat{v}_1) + \theta(-\hat{v}_1)|\hat{v}_1|^{1/2} \delta(\hat{x}_1)|\hat{v}_1|^{1/2} \theta(-\hat{v}_1),
\]

\[
\Pi_{j}^{A} = \exp[i\hat{H}_d/\hbar] \Pi_{j0}^{A} \exp[-i\hat{H}_d/\hbar], \tag{69}
\]

where \(\hat{v}_1 \) and \(\hat{x}_1 \) are the components of the velocity and position operator and \(\theta(x) \) is the usual step function \(\theta(x) = 0 \) for \(x < 0 \) and \(\theta(x) = 1 \) for \(x > 0 \). Note that classically the first term on the right-hand side corresponds to \(\theta(v_1) v_1 \delta(x_1) \) which classically gives the number of particles crossing the plane \(x_1 \) per second from the left. Similarly for the second term, and their sum corresponds to \(|v_1| \delta(x_1) \). Thus in this case the arrival time distribution operator can be regarded as a particular—positive—quantization of the classical current. The usual quantum mechanical probability current is not necessarily positive, not even for states with only positive momenta in the \(x_1 \) direction [15].

Inserting in (69) two complete sets of momentum eigenstates and using

\[
\langle k|\delta(\hat{x}_1)|k' \rangle = \frac{1}{2\pi} \delta(k_1 - k'_1) \delta(k_2 - k'_2) \delta(k_3 - k'_3), \tag{70}
\]

\(\Pi_{j}^{A} \) can be written as

\[
\Pi_{j}^{A} = \frac{\hbar}{2\pi m} \int_{-\infty}^{\infty} dk_2 dk_3 \int_{0}^{\infty} dk_1 \int_{0}^{\infty} dk_1' e^{i(k_1-k_1')n/2m} \sqrt{k_1 k_1' |k_1, k_2, k_3\rangle \langle k_1', k_2, k_3| + | -k_1, k_2, k_3\rangle \langle -k_1', k_2, k_3|}. \tag{71}
\]
For states with $k_1 > 0$, this reduces to (68). Note the absence of coherences between positive and negative k_1 values in the above expression. For dimensions d other than three an analogous result holds. For $d = 1$ it becomes, under a change $t \rightarrow -t$, identical to the clock time expression in (54).

To show (71) we introduce the notation
\[
|k, +\rangle = \left(|k_1, k_2, k_3\rangle + |-k_1, k_2, k_3\rangle \right)/\sqrt{2},
\]
\[
|k, -\rangle = i \left(|k_1, k_2, k_3\rangle - |-k_1, k_2, k_3\rangle \right)/\sqrt{2},
\]
(72)
which is a δ-normalized basis and invariant under $\sigma \hat{\Theta}$ since $\sigma \hat{\Theta} |k\rangle = |k\rangle$. The latter also implies that $\langle k|\tilde{\Pi}^{\downarrow}_{f(\hat{0})}|k\rangle$ must be real. One now has
\[
\langle k, +|\tilde{\Pi}^{\downarrow}_{f(\hat{0})}|k', +\rangle = \langle k, -|\tilde{\Pi}^{\downarrow}_{f(\hat{0})}|k', -\rangle = \langle k|\tilde{\Pi}^{\downarrow}_{f(\hat{0})}|k\rangle.
\]
(73)
Translation invariance in the $x_1 = 0$ plane gives the general form
\[
\langle k, +|\tilde{\Pi}^{\downarrow}_{f(\hat{0})}|k', +\rangle = \delta(k_2 - k'_2)\delta(k_3 - k'_3)M(k_1, k_2, k_3, k'_1),
\]
(74)
where, for fixed k_2 and k_3, $M(\cdot, k_2, k_3, \cdot)$ is a positive definite kernel and we can write, with real functions $b_i(k_1; k_2, k_3)$,
\[
M(k_1, k_2, k_3, k'_1) = \frac{\hbar}{2\pi m} \sum_i b_i(k_1; k_2, k_3)b_i(k'_1; k_2, k_3),
\]
(75)
(cf appendix A.2 for more mathematical details). From this and (73) we obtain, with $|k', \pm\rangle \equiv |k'_1, k_2, k_3, \pm\rangle$,
\[
\tilde{\Pi}^{\downarrow}_{f(\hat{0})} = \frac{\hbar}{2\pi m} \sum_i \int_{-\infty}^{\infty} dk_2 \int_{-\infty}^{\infty} dk_3 \int_0^{\infty} dk_1 \int_0^{\infty} dk'_1 b_i(k_1; k_2, k_3)b_i(k'_1; k_2, k_3),
\]
(76)
Note again the diagonality, this time in k_2 and k_1. Since $\tilde{\Pi}^{\downarrow}_{f(\hat{0})}$ commutes with translations and hence with the momentum operators \hat{P}_2 and \hat{P}_3, the normalization condition for the probability distribution
\[
\frac{1}{2\pi} \langle \psi|e^{i\hat{H}/\hbar} \tilde{\Pi}^{\downarrow}_{f(\hat{0})} e^{-i\hat{H}/\hbar} |\psi\rangle,
\]
(77)
for states with $|k|\psi\rangle$ vanishing at $k_1 = 0$, gives the condition
\[
\frac{\hbar}{m} \sum_i \int dk_1 dk_3 \int_{-\infty}^{\infty} dk_1 dk'_1 \delta \left(\frac{\hbar}{2m} (k_1^2 - k'_1^2) \right)
\times b_i(k_1; k_2, k_3)b_i(k'_1; k_2, k_3)\langle \psi_+(k_1, k_2, k_3)|\psi_(k_1', k_2, k_3) + (+ \leftrightarrow -) \rangle
\]
\[
= \sum_i \int dk_2 dk_3 \int_0^{\infty} dk_1 \int_0^{\infty} \frac{1}{k_1} b_i(k_1; k_2, k_3)^2 \langle |\psi_+|^2 + |\psi_-|^2 \rangle = 1,
\]
(78)
where $\psi_\pm(k) \equiv \langle k, \pm|\psi\rangle$. Since $|\psi\rangle$ can range through a dense set, this yields
\[
\sum_i \left(\frac{b_i(k_1; k_2, k_3)}{\sqrt{k_1}} \right)^2 = 1, \quad k_1 > 0.
\]
(79)
For states $|\psi\rangle$ with $\psi_\pm(k)$ vanishing at $k_1 = 0$, one easily calculates that $\langle \psi|\hat{T}|\psi\rangle$ is independent of b_i and that for ΔT^2 the only b_i dependent term is of the form
\[
\int dk_2 \int dk_3 \int_0^{\infty} dk_1 \frac{1}{k_1} \sum_i \left(\frac{b_i}{\sqrt{k_1}} \right)^2 \langle |\psi_+|^2 + |\psi_-|^2 \rangle
\]
(80)
where again the reality of b_i is crucial. For ΔT^2 to be minimal this implies
\[\frac{1}{\sqrt{k_1}} b_i(k'_1; k_2, k_3) = c_i(k_2, k_3). \] (81)

From (79) it follows that
\[\sum_i (c_i(k_2, k_3))^2 = 1. \] (82)

Inserting (81) into (76) and using (82) then gives
\[
\hat{\Pi}^A_{f_0} = \frac{i\hbar}{2\pi m} \int_{-\infty}^{\infty} dk_2 \int_{-\infty}^{\infty} dk_3 \int_0^{\infty} dk_1 \int_0^{\infty} dk'_1 \sqrt{k_1'k_1}\langle | k, + \rangle (k'_1k_2k_3, +) + | k, - \rangle (k'_1k_2k_3, -) \rangle.
\] (83)

Inserting for $|k, \pm\rangle$ from (72) one obtains the expression in (71) for $t = 0$. The operator $\hat{\Pi}^A_{f_0}$ is then obtained from (9). Since $\hat{\Pi}^A_{f_0}$ commutes with \hat{P}_2 and \hat{P}_3, only \hat{P}_2 remains and this yields (71).

The absence of coherences between positive and negative k_1 components in (71) is due to the assumed reflection invariance. Recall that invariance under Galilei transformations as in [13] was not used here, only invariance under translations of the plane $x_1 = 0$ is assumed.

If instead of the plane $x_1 = 0$ one considers arrivals at the plane $x_1 = a$, the corresponding probability distribution operator is obtained by a spatial translation, which leads to an additional factor $\exp\{i(k_1 - k'_1)a\}$ in (71).

5. Interactions: conditional and operator-normalized arrival times

In many physical situations the total arrival probability of a particle at a specific location may be less than 1, and then the above derivation of the general form of covariant arrival time operator does not work any longer since normalization of the probability distribution was an essential input. Conditional arrival times arise naturally in this connection, and they do not seem to have been considered so far in quantum mechanics. These conditional arrival times are much harder to treat. It will be shown here that by symmetry the problem can be reduced to a calculation of the total arrival time probability. Although the latter is also hard to do, it is a considerably smaller problem.

A free particle in two dimensions will arrive at a finite interval with a probability less than 1, and similarly in three dimensions. For a particle in a potential, also the arrival probability at a plane may be less than 1, due to scattering, and moreover there may be several arrivals. Experimentally, in such a case one may measure the first time of arrival at a given position for a large number of replicas of the system and determine their distribution with respect to the total number of replicas. This distribution is, in general, not normalized to 1 since there may be systems with no arrival occurring. Dividing by the total probability for a first arrival or, equivalently, considering only those systems for which an arrival has actually been found, one obtains the conditional first-arrival probability distribution. Although this is, by construction, normalized to 1, it is not bilinear in the state vector and not the expectation of an operator. It will be shown now that operator normalization as in [16–18] together with symmetry can reduce the problem. The physical relevance and interpretation of operator-normalized distribution in terms of a modification of the initial state have been pointed out in [18].

13
The operator for the (possibly non-normalized) distribution of first arrivals is again denoted by \hat{N}, and the operator for the total probability for arrival at a given location by $\hat{\Pi}^A$. One has

$$\hat{N} = \int_{-\infty}^{\infty} dt \hat{\Pi}^A.$$ \hfill (84)

For a given state $|\psi\rangle$ the conditional distribution, denoted by $\Pi^{A\psi}_{ct}$ for the times of first arrivals, is given by

$$\Pi^{A\psi}_{ct} = \frac{\langle \psi | \hat{\Pi}^A | \psi \rangle}{\langle \psi | \hat{N} | \psi \rangle},$$ \hfill (85)

which is evidently not bilinear in $|\psi\rangle$. Since \hat{N} is a positive operator, $\hat{N}^{-1/2}$ exists on states on which \hat{N} does not vanish and which can be taken care of by a projector. If the external potential remains finite or is not too singular, one expects from tunneling that for any state there is a finite arrival probability, i.e. that $\hat{N} |\psi\rangle$ will never vanish. One can therefore define the operator $\hat{\Pi}^A_{Nt}$ by

$$\hat{\Pi}^A_{Nt} = \hat{N}^{-1/2} \hat{\Pi}^A \hat{N}^{-1/2}.$$ \hfill (86)

Its time integral is then the unit operator, and therefore the distributions determined by $\hat{\Pi}^A_{Nt}$ are normalized to 1. If $\hat{\Pi}^A$ and $\hat{\Pi}^A_{Nt}$ are known, one obtains $\hat{\Pi}^A_{ct}$ from (86).

To the normalized operator distribution $\hat{\Pi}^A_{Nt}$ we can apply the procedures of section 2 if additional symmetries hold. Physically motivated symmetries of $\hat{\Pi}^A_{ct}$ carry over to $\hat{\Pi}^A$ and thus also over to $\hat{\Pi}^A_{Nt}$. More tricky is the requirement of minimal variance under given symmetry conditions. Physically, one would require minimal variance for the conditional distribution, i.e. that $\hat{\Pi}^A_{ct}$ is chosen in such a way that $\Pi^{A\psi}_{ct}$ has minimal variance for each $|\psi\rangle$ among all candidates satisfying the symmetry requirements. From (85) one has

$$\Pi^{A\psi}_{ct} = \frac{\langle \psi | \hat{\Pi}^A_{Nt} | \psi \rangle}{\langle \psi | \hat{\Pi}^A_{Nt} | \psi \rangle}.$$ \hfill (87)

Defining the normalized vector $|\psi_N\rangle$ by

$$|\psi_N\rangle = \frac{\hat{\Pi}^A_{Nt} \hat{N}^{-1/2} |\psi\rangle}{\| \hat{N}^{1/2} |\psi\rangle \|},$$ \hfill (88)

we can write

$$\Pi^{A\psi}_{ct} = \langle \psi_N | \hat{N}^{-1/2} \hat{\Pi}^A_{ct} \hat{N}^{-1/2} |\psi_N\rangle = \langle \psi_N | \hat{\Pi}^A_{Nt} |\psi_N\rangle.$$ \hfill (89)

For given \hat{N}, the correspondence between $|\psi\rangle$ and $|\psi_N\rangle$ is one to one, and therefore if $\hat{\Pi}^A_{ct}$ leads to minimal variance, the same is true for $\hat{\Pi}^A_{Nt}$, as long as \hat{N} is kept fixed. Therefore, one may look for a normalized operator distribution satisfying required symmetry conditions and minimal variance, as in section 2. If in addition the operator \hat{N} for the total probability for arrival at a given location is known, the physically interesting conditional probability distribution is obtained from equations (86) and (85).

To exemplify this, we consider one-dimensional motion in a bounded potential. The latter is assumed to be invariant under space reflection about the origin, and we consider an ensemble of particles which originally came in from $\pm \infty$. For an ensemble of classical particles, there are two types of individual trajectories. A particle coming in from $-\infty (+\infty)$ will either be reflected before it reaches the origin or, if it reaches the origin, will then continue to $+\infty (-\infty)$, by the symmetry of the potential. We consider first arrivals at the origin. The corresponding classical arrival time distribution has certain symmetries. Indeed, from the reflection invariance of the potential, in the ensemble obtained by space reflecting each trajectory of the original ensemble has the same distribution for arrivals at the origin as the
original ensemble. Going over to the time reversed trajectories one concludes, as in section 4 for the time reversed ensemble, that the arrival time distribution is obtained from the original one by replacing \(t \) by \(-t\).

These symmetry properties are now carried over to the quantum case by demanding corresponding symmetries for \(\hat{\Pi}_{\bar{t}} \), i.e. invariance under space reflection and covariance under time reversal. This implies the corresponding properties for the operator-normalized \(\hat{\Pi}_{\bar{t}} \), and in particular invariance of \(\hat{\Pi}^{A}_{\bar{t},0} \) under space reflection and time reversal. This then is the same situation as in example 1 of section 3, where a clock operator with the similar symmetry properties was constructed. Therefore, for \(\hat{\Pi}^{A}_{\bar{t},0} \) one obtains the same result as in (46), where, as a reminder, \(|E, \pm\rangle\) denote eigenstates of \(\hat{H} \) such that \(\langle x | E, \pm \rangle \) are real wavefunctions which are either symmetric or antisymmetric. From this expression and equations (7)–(11), one then obtains \(\hat{\Pi}_{\bar{t}} \).

To determine the corresponding conditional probability distribution one needs \(\hat{\mathcal{N}} \), the operator for the total arrival probability at the origin. An at least approximate expression for \(\hat{\mathcal{N}} \) may be obtained by modeling the detection process. The simplest way to do this is by a complex potential at the origin or by a fluorescence model (cf [19] for a review of these models). From the operator \(\hat{\mathcal{N}} \) calculated in this way and from the above result for \(\hat{\Pi}_{t}^{A} \), one obtains the approximate expression \(\hat{\mathcal{N}}^{-1/2} \hat{\Pi}_{t}^{A} \hat{\mathcal{N}}^{-1/2} \) for the conditional distribution of arrivals at the origin. On the other hand, one can also directly use the complex potential model or the fluorescence model to calculate this. The expressions will in general be different, and it would be interesting to see whether \(\hat{\mathcal{N}}^{-1/2} \hat{\Pi}_{t}^{A} \hat{\mathcal{N}}^{-1/2} \) leads to a smaller variance than the distributions derived from the models and in so far be superior.

This example can be carried over to three dimensions and a Hamiltonian of the form

\[
\hat{H} \equiv \hat{\mathbf{p}}^2/2m + V(\hat{\mathbf{x}}_1),
\]
(90)

using techniques similar to those described in appendix A.2.

6. Discussion

For any Hamiltonian with continuous eigenvalues we have derived the most general form of covariant time operators with a normalized probability distribution. The result has been applied to clock time operators and to time-of-arrival operators. To arrive at a unique operator, the multitude of possible operators has been restricted by physically motivated symmetry requirements, in particular time reversal invariance and, to obtain an optimally sharp observable, by the requirement of minimal variance.

Our general result has allowed us not only to weaken the assumptions of Kijowski [13] but at the same time generalize his arrival time distribution for free particles arriving at a plane. It had been required in [13] that the distribution should be invariant under Galilei transformations which transform the plane into itself. As shown here, Galilei transformations are not needed and translation invariance is sufficient. Moreover, the restriction that the particles should come in from one side of the plane only has been lifted.

A free particle in three dimensions will arrive at a location of finite extent only with a probability less than 1, and also for a particle in a potential the arrival probability at a plane may be less than 1, due to scattering, and moreover there may be several arrivals. In an actual and repeated measurement one can consider only those outcomes for which at least one arrival has actually been found at some time and then in addition consider only the distribution of the times of the first arrival. This amounts to a division by the total arrival probability and determines the (normalized) conditional first-arrival probability distribution. However, the latter is not bilinear in the state vector, due to the division. As an alternative, we have
applied operator normalization to the original distribution, and then one can apply the general results. The distribution thus obtained leads to the conditional distribution if the total arrival probability is known.

It should be pointed out that the probability distribution associated with an observable is in general of more direct experimental relevance than the operator of the observable itself because in most circumstances first the distribution of individual measurement results for a given state is obtained and then the expectation value is derived from that. For a particle in a potential, the total arrival probability at a plane may be less than 1. In such a case there may still be a non-normalized temporal probability distribution operator but not necessarily an associated time operator. As has been pointed out above, the conditional probability distribution is in general not bilinear in the state vector and so cannot be used directly to construct a time operator.

In order to be meaningful, any experimental procedure purported to be the realization of a measurement of arrival times or of a quantum clock has to satisfy certain requirements, and the so constructed ideal observables provide guidelines for these requirements. In this context, an analysis of this kind for the ideal time-of-arrival distribution of [13] has been carried out in terms of an operational quantum-optical realization with cold atoms (cf [19] for a review).

Acknowledgments

We thank Michael J W Hall for discussions. We acknowledge the kind hospitality of the Max Planck Institute for Complex Systems in Dresden, as well as funding by the Basque Government (Grant IT472-10), and the Ministerio de Ciencia e Innovación (FIS2009-12773-C02-01).

Appendix. Mathematical details

A.1. Extension to degenerate energy spectrum

In case of a discrete degeneracy label, we use the normalization as in (13) where for simplicity we assume the same degeneracy for each E. (The general case can be treated by direct integrals of Hilbert spaces). Then $\Pi(E, E')$, $g_i(E)$ and $b_i(E)$ from the nondegenerate case are replaced by $\Pi_i(E, \alpha, E', \alpha')$, $g_i(E, \alpha)$ and $b_i(E, \alpha)$, respectively, and (24) can be written as

$$\langle E, \alpha | \hat{\Pi}_0 | E', \alpha' \rangle = \frac{1}{2\pi\hbar} \sum_i b_i(E, \alpha) \overline{b_i(E', \alpha')}.$$ (A.1)

By the same technique as above the normalization condition now implies

$$\sum_i b_i(E, \alpha) \overline{b_i(E, \alpha')} = \delta_{\alpha\alpha'}.$$ (A.2)

Finiteness of the second moment implies that $b_i(E, \alpha)$ is absolutely continuous in E for each α and its derivative is locally L^2.

In the case of a continuous degeneracy label, we use the normalization

$$\langle E, \lambda | E' \lambda' \rangle = \delta(E - E') \delta(\lambda - \lambda').$$ (A.3)

This can be reduced to the discrete case by choosing a complete orthonormal set \{\Phi_\alpha(\lambda), \alpha = 1, 2, \ldots\} and putting

$$|E, \alpha\rangle \equiv \int d\lambda \Phi_\alpha(\lambda) |E, \lambda\rangle, \quad \alpha = 1, 2, \ldots.$$ (A.4)
It can also be treated directly by replacing the functions $g_i(E)$ by $g_i(E, \lambda)$ and $b_i(E)$ by $b_i(E, \lambda)$. Then (A.2) is replaced by the equation

$$\sum_i b_i(E, \lambda)\bar{b}_i(E, \lambda') = \delta(\lambda - \lambda')$$

(A.5)

valid for almost all E.

A.2. The case of partial translation invariance

To illustrate some mathematical details for section 4 we consider for notational simplicity the two-dimensional case. We search for a covariant probability distribution operator, denoted by $\hat{\Pi}^A_1$, which is invariant under reflection $\sigma: x \to -x$, under translations which leave the line $x_1 = 0$ invariant, as well as under time reversal $\hat{\Theta}$, and which has minimal variance. Let \hat{H}_1 be the one-dimensional Hamiltonian

$$\hat{H}_1 = p^2/2m$$

(A.6)

in the Hilbert space $\mathcal{H}_1 \equiv L^2(\mathbb{R})$ and denote by $|E_1, \pm\rangle$ the real symmetric respectively antisymmetric eigenstates of \hat{H}_1, similarly as in example 1 of section 3. The eigenstates of \hat{H} are then

$$|E_1, \pm\rangle |k_2\rangle.$$

(A.7)

The assumed invariances imply the corresponding invariances of $\hat{\Pi}^A_0$ and of \hat{F}^A_0. The expectation value of the latter gives the probability of finding a measured time value in $(-\infty, 0)$, and so $0 \leq \hat{F}^A_0 \leq 1$. If $|\psi\rangle \in \mathcal{H}$, the formal expression

$$|\psi(k_2)\rangle \equiv \langle k_2 | \psi \rangle$$

(A.8)

can be regarded, for each k_2, as a vector in \mathcal{H}_1, i.e. as a vector function of k_2 with values in \mathcal{H}, and for $|\psi_1\rangle, |\psi_2\rangle \in \mathcal{H}$ one has

$$\int dk_2 \langle \psi_1(k_2) | \psi_2(k_2) \rangle_{\mathcal{H}_1} = \langle \psi_1 | \psi_2 \rangle,$$

(A.9)

where the index indicates the scalar product in \mathcal{H}_1. Each bounded operator \hat{A} which commutes with \hat{P}_2 satisfies

$$\langle k_2 | \hat{A} | k_2' \rangle = \delta(k_2 - k_2') \hat{A}(k_2),$$

(A.10)

where $\hat{A}(k_2)$ acts in \mathcal{H}_1, and thus

$$\langle k_2 | \hat{A} | \psi \rangle = \hat{A}(k_2) |\psi(k_2)\rangle.$$ (A.11)

In a rigorous way this can be expressed in terms of direct integrals of Hilbert spaces,

$$\mathcal{H} = \int_{\mathbb{R}} dk_2 \mathcal{H}(k_2), \quad \text{where} \quad \mathcal{H}(k_2) \equiv \mathcal{H}_1,$$

(A.12)

with $|\psi\rangle$ corresponding to a vector-valued function $|\psi(\cdot)\rangle$, with $|\psi(k_2)\rangle \in \mathcal{H}(k_2)$, and \hat{A} corresponding to an operator-valued function $\hat{A}(\cdot)$ satisfying (A.11). If \hat{A} is positive and bounded by 1, then so is $\hat{A}(k_2)$, for almost all k_2.

We now take \hat{F}^A_0 for \hat{A}. Since \hat{H}_1 acts in each $\mathcal{H}(k_2)$, the action of $\hat{\Pi}^A_0$ is given by

$$\hat{\Pi}^A_0(k_2) \equiv \frac{-i}{\hbar} \left[\hat{H}_1, \hat{F}^A_0(k_2) \right]$$

(A.13)

considered as a bilinear form in each $\mathcal{H}(k_2)$. For almost all k_2, $\hat{\Pi}^A_0(k_2)$ is a positive bilinear form satisfying invariance under $\hat{\sigma}$ and $\hat{\Theta}$. Hence each $\hat{\Pi}^A_0(k_2)$ is given by (46), (with E replaced by E_i). This finally implies

$$\hat{\Pi}_0^A = \frac{1}{2\pi\hbar} \int dE_1 dE'_1 |\psi_1, +\rangle \langle E_1, +| + |\psi_1, -\rangle \langle E_1, -|$$

(A.14)
or, equivalently,

\[
\langle \psi | \hat{\Pi}_0^\delta | \psi \rangle = \frac{1}{2\pi\hbar} \int dk_2 \ dE_1 \ dE'_1
\]

\[
\{ \langle \psi | E_1+ \rangle | k_2 \rangle \langle k_2 | \langle E'_1+, +| \psi \rangle + (+ \leftrightarrow -) \}. \tag{A.15}
\]

In three dimensions, the procedure is analogous. Now (83) results by a change of variable.

References

[1] Pauli W 1933 *Handbuch der Physik* vol 24, part 1 (Berlin: Springer) p 140
[2] Muga J G, Sala Mayato R and Egusquiza I L (ed) 2008 *Time in Quantum Mechanics* vol 1 (Lecture Notes in Physics vol 734) (Berlin: Springer)
[3] Muga J G, Ruschhaupt A and del Campo A 2010 *Time in Quantum Mechanics* vol 2 (Lecture Notes in Physics vol 789) (Berlin: Springer)
[4] Hegerfeldt G C, Muga J G and Muñoz J 2010 *Phys. Rev.* A **82** 012113
[5] Muñoz J, Seidel D and Muga J G 2009 *Phys. Rev.* A **79** 012108
[6] Sala Mayato R, Alonso D and Egusquiza I L 2008 *Lect. Notes Phys.* **734** 235
[7] Baute A D, Sala Mayato R, Palao J P, Muga J G and Egusquiza I L 2000 *Phys. Rev.* A **61** 022118
[8] Baute A D, Egusquiza I L and Muga J G 2001 *Phys. Rev.* A **64** 012501
[9] León J, Julve J, Pitanga P and de Urriés F J 2000 *Phys. Rev.* A **61** 062101
[10] Galapon E A 2006 *Int. J. Mod. Phys.* A **21** 6351
[11] Galapon E A and Villanueva A 2008 *J. Phys. A: Math. Theor.* **41** 455302
[12] Galapon E A 2009 *Lect. Notes Phys.* **789** 25, and references therein
[13] Kijowski J 1974 *Rep. Math. Phys.* **6** 362
[14] Werner R 1986 *J. Math. Phys.* **27** 793
[15] Bracken A J and Melloy G F 1994 *J. Phys. A: Math. Gen.* **27** 2197
[16] Brunetti R and Fredenhagen K 2002 *Phys. Rev.* A **66** 044101
[17] Hegerfeldt G C, Seidel D and Muga J G 2003 *Phys. Rev.* A **68** 022111
[18] Hegerfeldt G C, Seidel D, Muga J G and Navarro B 2004 *Phys. Rev.* A **70** 012110
[19] Ruschhaupt A, Muga J G and Hegerfeldt G 2010 *Lect. Notes Phys.* **789** 65