Extinction in genetic bit-string model with sexual recombination

D. Stauffer1 and S. Cebrat2

1 Institute for Theoretical Physics, Cologne University
D-50923 Köln, Euroland

2 Department of Genomics, Institute of Genetics and Microbiology
University of Wrocław, ul. Przybyszewskiego 63/77
PL-54148 Wrocław, Poland

Abstract:
We have analyzed the relations between the mutational pressure, recombination and selection pressure in the bit-string model with sexual reproduction. For specific sets of these parameters we have found three phase transitions with one phase where populations can survive. In this phase, recombination enhances the survival probability. Even if recombination is associated, to some extent, with additional mutations it could be advantageous to reproduction, indicating that the frequencies of recombinations and recombination-associated mutations can self-organize in Nature. Partitioning the diploid genome into pairs of chromosomes independently assorted during gamete production enables recombinations between groups of genes without the risk of mutations and is also advantageous for the strategy of sexual reproduction.

Keywords:

1 Introduction

The asexual Eigen quasispecies model \cite{1} of biological evolution can be simulated by identifying each genome with a string of L bits which are either zero or one. The fittest genome has zero everywhere, and its mutants with some bits set to one are less fit. Usually it has been treated in the approximation of a constant population but extinction studies were also made \cite{2}. With every mutation decreasing the survival rate by a factor $x < 1$, this factor x was adjusted in \cite{3} such that the population stayed constant. In both the latter model \cite{4} and the original Eigen model, a transition was observed for increasing mutation rates between an average genome with few mutations,
and one with the number of mutations being large and proportional to L. This transition is sharp only for $L \to \infty$.

In the present work, instead we keep the survival factor x fixed and allow the population to fluctuate. Thus we investigate the mutational meltdown \cite{5}: Can the population survive, or do the mutations cause its extinction? This transition is sharp only for population size going to infinity, instead of the length L going to infinity for a sharp Eigen runaway (error catastrophe).

Moreover, we simulate sexual reproduction with half of the population male and the other half female, and each individual having two bit-strings of length L each. We search for the optimal recombination rate, both when recombination between these two bit-strings does lead to additional mutations at the crossover point, and when it does not.

We first define the model, then present its numerical results, then explain some of them by a simple theory, and finally we summarize our results.

2 Model

Each genome is represented by two bit-strings of length $L = 8, 16, 32, $ or 64; each bit can be zero or one such that zero is a healthy gene and one represents a detrimental irreversible mutation. Instead of a single gene a bit could also represents several connected genes, or a larger part of a gene, such that the probability of a back mutation from one to zero is negligible. Thus if a mutation hits a bit set already to one, this bit stays at one. All mutations are recessive, and thus only a pair of corresponding one bits on the same locus reduces the survival probability per iteration by a fixed factor x. Survivors have a fixed number $B = 1$ or 4 of offspring per iteration. The model keeps the population size $N(t)$ from diverging by a Verhulst death probability $V = N(t)/K$ due to a finite carrying capacity K.

Half of the population is male, the other is female. Mutations happen at birth with a probability M per bit-string, and affect from then on child and parent. After these mutations, recombination happens with probability R such that the first y bits of one bit-string are combined with the last $L - y$ bits of the other bit-string, and also the remaining parts are recombined. Now, with probability M_R, at one side of the crossover point an additional mutation happens in both bit-strings. Then one of the two recombined bit-strings is selected as gamete; the female selects randomly a male, and a gamete from this male together with a gamete from this female forms the genome
of their child. Thus, if each bit-string got one new mutation, it is possible that after recombination one bit-string carries both new mutations and the other bit-string carries none of them. The Verhulst survival probability $V = 1 - N(t)/K$ is applied twice, to the babies by reducing the effective birth rate, and later at each iteration to the adults; this second application may correspond to density-dependent infections.

Thus the survival probability per iteration after birth is $V \cdot x^n$ if n is the number of active mutations, i.e. of one-one bit pairs.

The standard sexual Penna program [4] is first simplified by omitting the ageing interpretation, the pregnancy period, the male fidelity, the dominance, and the threshold (limit) for the allowed number of bad mutations. Thus we have two bit-strings of length L, with all positions equivalent, and only recessive bad mutations. Instead of the sharp limit, the exponential decay of survival probability x^n is used. Thus the model has a birth rate B, a mutation probability M (per bit-string), a recombination probability R, a recombination-mutation probability M_R that after each crossover one bit adjacent to the crossover position is mutated in each bit-string, and a birth rate B. The Verhulst parameter K limits the population.

3 Results

For x close to one we found that the populations survive and have all bits set after $t \sim 10^2$ time steps. For smaller x the populations die out, $N \propto 1/t$, if we wait long enough. (If the new mutations at birth are stored only in the child and not in the parent, survival is also possible for $x < 0.8$.) Mathematically the limits of $t \to \infty$ and $N \to \infty$ cannot be interchanged; in practice we regard the population as extinct if it decays in this way even if our actual simulations did not reach $N = 0$.

Fig.1 shows the population after 1000 iterations for a large K of 20 million (for males and females together). The lines through the data correspond to the theory presented in the next section. Survival for large x and extinction for smaller x are separated by a sharp phase transition for both small and large lengths $L = 8, 16, 32, 64$ of the bit-strings. On the survival side of the phase transitions, all bits become set in both bit-strings. On this latter side of high x, Darwinian selection of the fittest no longer works, and thus this phase near $x = 1$ may correspond to paradise more than to reality.

For the high mutation rates $M \simeq 1$ used in Fig.1, the population dies out
Figure 1: Transition between extinction (left) and survival (right), for $L = 8$, 16, 32 and 64 from left to right. Birth rate $B = 4$, mutation rate $M = 0.99$, recombination rate $R = 1$, no additional mutations associated with recombination ($MR = 0$), $K = 20$ million. The curves give the theory, Eq.(3).

For all x not close to 1. Using $M = 0.1$ instead, also at low x survival becomes possible, Fig.2, but the approach to a stationary state is slow. The survival regions of small x and of x near unity are separated by a small gap, Fig.3. For $L = 64$, $M = 0.1$ the survival region has a lower bound at $x = 0.45$ while for our smaller L all x down to zero allow a survival under these conditions. The mutation load, i.e. the number of bits set to one, is small for small x, increases towards the gap, and is maximal = L on the other side of the gap. For $L = 64$, $B = 4$, $R = 1$, $M = 0.1$, $MR = 0$, the mutation load is about 42 for small x, seems to jump downward with increasing x to about 7 near $x = 0.45$, then increases slowly to about 31 near $x = 0.96$ where it jumps to about 46 and then increases until it reaches $L = 64$ at $x = 0.983$ and stays at this maximal value until $x=1$.

Figure 2: Parameters as in Fig. 1 except $M = 0.1$ instead of 0.99, and $K = 40$ million, for $t = 100, 1000$ and 10000 and $L = 64$. For clarity the large populations for $x > 0.983$ are not shown. Curves at $t = 10000$ for $L = 8, 16$, and 32 look similar in the right part but extend down to $x = 0$ on the left border with roughly constant population.

As a function of recombination probability R between 0.001 and 1 we see that for very small R the population dies out quickly; for $R \sim 0.01$ it decays after a long metastable survival; and larger R prevent extinction, Fig. 4a. If additional bad mutations are associated with each recombination, by setting $M_R = 1/2$ instead of zero, then also for R near unity the population dies out, Fig. 4b.

Thus far we always started with an ideal genome. Starting instead with a random genome (half of the bits mutated) and large x, the equilibrium results are the same for survival since again all bits of both bit-strings become set to one after long enough time. On the extinction side of the phase transition, the time dependence of the population is different at first, but later becomes similar though not identical, to the case when the initial genomes are ideal.
For smaller x like 0.97 (not shown), the population first decays, then recovers, and finally dies out, if we start with random bit-strings. Fig.5 shows at fixed survival factor $x = 0.8$ the variation of the population and of the genetic load with the mutation rate M at $M_R = 0$ and $= 0.5$. Too high M kill the population by increasing the genetic load after a metastable state with low load and high population; however, the high load during the decay is appreciably smaller than L.

Finally, we simulated two instead of only one chromosome by a simple approximation: The total length $L = 64$ of the bit-strings is divided into two parts, one with L_1 bits and the other with $L_2 = L - L_1$ bits. Before each random crossover also a deterministic pseudo-crossover at the bit position L_1 is made (always or with probability 1/2); this deterministic pseudo-crossover is not accompanied by additional mutations there.

The resulting Fig. 6 shows the populations under the same conditions as
Figure 4: The upper part a has $M_R = 0$, the lower part b has $M_R = 1/2$. The lower part shows a disadvantage of too small and too large recombination rates.

in Fig.4b. Again, too high recombination rates are bad; at low recombination rates survival is possible (except $L_1 = L/4$ and very low R near 0.001) while before the population became extinct for recombination rates of 0.02 and below. It does not matter much whether the division is 32 + 32 or 16 + 48, or whether the additional ”crossover” is made always or with probability 1/2.

More numerical results are available in a report from stauffer@thp.uni-koeln.de.
4 Simple scaling theory

For x close to one all bits were set to one and the population survived nevertheless. Since in this case all further mutations and all crossovers do not change anything, all heridity correlations have vanished and a mean-field probability approach should be valid. This region and its transition point to the extinction region for smaller x can be explained by a simple scaling theory.

The rate at which daughters are born is $B/2$ if the total birth rate (including sons) is B. Each female has L mutations and survives with probability x^L. If she survives she has $B/2$ daughters. Thus the equilibrium point X
Figure 6: Parameters as in Fig.4b, but now better survival chances with two chromosomes of length $32 + 32$ $(+)$ or $16 + 48$ (x); $t = 10^4$.

where without Verhulst factor the deaths and births just balance is given by

$$(1 + B/2)x^L = 1$$ \hspace{1cm} (1)$$

or $X = (1 + B/2)^{-1/L} = 0.872, 0.934, 966, \text{ and } 0.983$ at $B = 4$ for $L = 8, 16, 32, \text{ and } 64$, respectively, in agreement with the curves in Fig.1. For large L we have $1 - X \propto 1/L$.

For $X < x < 1$ we need the Verhulst survival probabilities $BV = 1 - N(t)/K$ to stabilize the simulations, where $N(t)$ is the population and K the carrying capacity. For time-independent N, we now have

$$V(1 + VB/2)x^L = 1$$ \hspace{1cm} (2)$$

or

$$N/K = 1 - V = 1 - [(1 + 2B/x^L)^{1/2} - 1]/4$$ \hspace{1cm} (3)$$
which for varying x is a function of only the scaling variable $z = L \ln(x)$, even for small L. Fig.1 shows that this expression fits the simulations for $L = 8$ to 64 without any adjustable parameter; the mutation and recombination rates do not enter this equilibrium theory.

This theory applies to the transition point from the gap (extinction) to x close to 1 (survival). What happens in the gap? In principle, equilibrium there means extinction of the whole population. In practice, one can simulate a large population with a survival factor x only slightly below the transition point X where the decay of the population occurs very slowly. Then a long time interval can be found where the population diminishes but the average properties of the survivors are time-independent. There is an average load slightly below 64, but the closer we are to the phase transition at $x = 0.983$ the closer the load is to 64. Thus at least approximately, the transition point X from extinction to survival at $x \simeq 1$ agrees with the "runaway" point where the mutation load first reaches its maximum L, i.e. where all bits are mutated. Note: runaway means survival, no runaway means extinction near this phase transition; for lower x, runaway meant extinction. For x below the gap, the mutational load no longer reaches L and thus the above theory no longer is valid.

5 Conclusion

For bit-string length $L = 64$ we found for increasing survival factor x four different phases for $B = 4, M_R = 0, R = 1$ in Figs.1 and 2:

a) the population dies out for $0 < x < 0.45$;

b) the population survives for $0.45 \leq x < 0.96$;

c) the population dies out for $x \leq 0.96 < 0.983$;

d) the population survives for $0.983 \leq x \leq 1$.

At the phase transitions between a and b and between b and c, the population seems to jump, while at the transition between c and d it is continuous. Phase d and its transition point to phase c can be calculated mathematically and obey scaling for arbitrary length L through the variable x^L. Phase b is the biologically relevant one.

In that intermediate survival phase b, recombination is always useful if it brings with it no further mutations, Fig.4a; but with about one additional mutation per recombination event and per bit-string pair, an intermediate value of recombination probability like 0.04 is best, and both too high and
too low recombination probability leads to extinction, Fig. 4b. In this latter case, with two instead of one chromosome, at fixed total length L, also lower recombination probabilities are allowed, Fig.6.

We thank P.M.C. de Oliveira, S. Moss de Oliveira and A. Pękalski for suggestions and criticism, and the European grants COST P10 and GIACS for supporting our meeting.

References

[1] M. Eigen, Self-organization of matter and evolution of biological macromolecules, Naturwissenschaften 58, 465-523 (1971).

[2] K. Malarz and D. Tiggemann, Dynamics in Eigen Quasispecies Model, Int. J. Mod. Phys. C 9, 481-490 (1998); F. Bagnoli and M. Bezzi, Eigen’s Error Threshold and Mutational Meltdown in a Quasispecies Model, Int. J. Mod. Phys. C 9, 999-1006 (1998).

[3] P.M.C. de Oliveira, Theory in Biosciences 120, 1 (2001).

[4] D. Stauffer, S. Moss de Oliveira, P.M.C. de Oliveira, J.S. Sá Martins, Biology, Sociology, Geology by Computational Physicists Elsevier, Amsterdam, 2006 in press, in particular sections 2.9 and 2.10.

[5] M. Lynch and W. Gabriel, Mutation load and the survival of small populations. Evolution 44, 1725-1737 (1990).