Case Report

Management of a Novel Autoimmune Disease, COPA Syndrome, in Pregnancy

Archana Ayyar, Rachel D. Seaman, Kalpalatha Guntupalli, and Mary C. Tolcher

Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, USA
Department of Medicine, Pulmonary and Critical Care, Baylor College of Medicine, Houston, Texas, USA

Correspondence should be addressed to Mary C. Tolcher; mary.tolcher@bcm.edu

Received 11 August 2021; Revised 26 January 2022; Accepted 14 February 2022; Published 2 March 2022

Background. COPA syndrome is a rare autoimmune disease, demonstrating an autosomal dominant inheritance pattern with variable penetration that occurs more frequently in females than males. This disease manifests in childhood as pulmonary hemorrhage, arthritis, and renal disease. Case. We present a case of obstetric management of a 20-year-old nulligravida patient with a diagnosis of COPA syndrome. Her case was further complicated by multiple antepartum admissions for hypoxemia and a complex psychosocial history of substance use. On her first antepartum admission, rheumatology recommended management with hydroxychloroquine, inhaled corticosteroids (budesonide), and bronchodilators (albuterol inhaler) as needed. On admission for induction of labor, she was again noted to have oxygen desaturations. A chronic thrombus was noted on computed tomography (CT), and a multidisciplinary team was recommended against Valsalva. Thus, she had a primary cesarean delivery. Her postpartum course was only remarkable for improved oxygenation status. Conclusion. Management of COPA syndrome should be performed by a multidisciplinary team including maternal-fetal medicine, rheumatology, and pulmonology specialists. Traditionally, COPA syndrome is treated with immunomodulator therapy often used to treat autoimmune syndromes. However, many of these medications are not well studied or contraindicated in pregnancy. Preconception counseling is recommended both to ensure pregnancy safe medications being prescribed and to provide information on the genetic inheritance of this disease. At time of entry to care, patients should have a baseline work-up including a radiographic imaging, complete blood count, complete metabolic panel, lactate dehydrogenase, and a 24-hour urine protein collection for baseline. Although thought to be rare, COPA syndrome has an autosomal dominance pattern of inheritance with variable penetrance that is more common in females. Thus, incidence of COPA syndrome in pregnancy will likely increase in the future. Further case studies are warranted to optimize management of patients with COPA syndrome in pregnancy.

1. Introduction

COPA syndrome, named after its affected COPα protein, is a recently identified, heritable immunodeficiency marked by dysfunctional protein transport between the Golgi complex and endoplasmic reticulum [1–3]. Under physiologic circumstances, COPα regulates the retrograde movement of proteins from the Golgi complex to the endoplasmic reticulum. One of these proteins is the stimulator of interferon gene (STING), which provides immune system equilibrium. Dysfunctional transport by mutated COPα in COPA syndrome leads to trapping of STING within the Golgi which facilitates a skewed type I interferon inflammatory response [4, 5]. This leads to the release of proinflammatory cytokines and abnormal cellular autophagy, manifesting clinically as diffuse alveolar hemorrhage (DAH), arthritis, and renal disease—often beginning before five years of age and progressing into adulthood [1–3, 6].

First identified in 2015, COPA syndrome is thought to be more common than previously believed [3]. Following
an autosomal dominant inheritance pattern, the syndrome appears to have variable penetrance and affects females more commonly than males. However, to our knowledge, this is the first documented case of COPA syndrome in pregnancy.

2. Case

A 20-year-old primigravida with known COPA syndrome presented at 11 weeks gestation to establish prenatal care at our maternal-fetal medicine clinic. Her COPA disease had been diagnosed at an early age, requiring multiple admissions for pulmonary vasculitis with alveolar hemorrhage throughout her childhood. Secondary to a complex psychosocial situation and financial instability, she had been off immunosuppressive therapy for two years at the time of her entry into prenatal care. During that period, she sought symptomatic relief of episodic dyspnea through local emergency departments, with her most recent encounter occurring at 6 weeks gestation. At that visit, she presented with mild shortness of breath and was discharged with a rescue albuterol inhaler. She also endorsed long-term, regular use of cigarettes and marijuana, and smoking cessation education was provided.

On presentation to our obstetrics clinic, the patient complained of persistent shortness of breath and was found to have a peripheral oxygen saturation of 88% upon ambulation. She was directly admitted to the antepartum service for further evaluation of her hypoxemia. Chest X-ray revealed diffuse reticular opacities consistent with a history of interstitial lung disease, without any evidence of active pulmonary hemorrhage. Pulmonary function testing demonstrated a mild restrictive ventilation defect [FEV1 2.26 L (71% of predicted value), FVC 2.57 L (72%), and FEV1/FVC 88% (101%)]. Echocardiogram was normal with an ejection fraction of 60-64% and without evidence of right-sided dysfunction or pulmonary hypertension. Supplemental oxygen was not needed throughout her work-up, and her oxygen saturation remained largely within normal limits for the remainder of the admission. Following consultation with rheumatology, she was discharged home on hydroxychloroquine 300 mg daily, budesonide twice daily, and albuterol inhaler as needed, with close outpatient follow-up. She was readmitted at 21 weeks gestation for similar symptoms, thought to be due to medication nonadherence. Work-up was again unremarkable, she did not require oxygen therapy, and she was discharged home.

At 37 2/7 weeks gestation, she was admitted for induction of labor in the setting of newly diagnosed fetal growth restriction with an estimated fetal weight at the 3rd percentile. However, upon presentation, she was again noted to be hypoxemic, with oxygen saturations ranging from 74 to 94% on room air. She required supplemental oxygenation via nasal cannula and her clinical picture was concerning for a COPA flare with possible diffuse alveolar hemorrhage (DAH). She again acknowledged nonadherence with her home medications and recent cigarette smoking at the time of admission.

An extensive work-up was commenced, and admission chest X-ray and echocardiogram remained stable from prior. Computed tomography of the chest revealed poor visualization of the superior vena cava (SVC) with extensive collateral vasculature of the left hemithorax and mediastinum, concerning for a chronic SVC thrombus with resultant collateralization and possible SVC syndrome. This was corroborated by review of outside hospital records which revealed a stable SVC thrombus for the past two years, thought to have arisen from a prior port placement. A multidisciplinary discussion was held amongst maternal-fetal medicine, cardiology, pulmonology, hematology, and radiology specialists, and ultimately, the decision was made to proceed with prednisone 30 mg daily for presumed COPA flare. Anticoagulation was deferred in the setting of chronic thrombus, given the potential adverse effects of concurrent alveolar hemorrhage. The decision was also made to proceed with cesarean delivery for maternal benefit as Valsalva was felt to pose an indeterminable risk for dislodgement of the SVC thrombus and/or pulmonary decompensation.

Delivery itself was unremarkable. The patient underwent a primary low transverse cesarean delivery under neuraxial anesthesia and without cardiopulmonary complications. Her pulmonary status improved following delivery, and she was weaned off supplemental oxygen by the second postoperative day. Prophylactic anticoagulation was again deferred given remote risk for alveolar hemorrhage. The patient completed a three-day prednisone course and resumed her home medications. She was subsequently discharged on postoperative day three with close outpatient follow-up.

3. Discussion

COPA syndrome is a novel immunodeficiency due to mutations of the regulatory COPA proteins and dysfunctional intracellular protein transport, resulting in interferon-mediated inflammatory response. COPA syndrome has a myriad of clinical manifestations, most commonly presenting as diffuse alveolar hemorrhage and antibody-mediated conditions (e.g., rheumatoid factor-positive arthritis, antineutrophil cytoplasmic antibody-positive arthritis and lung disease, isolated juvenile idiopathic arthritis, or isolated lupus-like nephropathy) [3].

Our index case was diagnosed with COPA syndrome in early childhood, and her course was complicated by discontinuity of care from diagnosis through adulthood, leading to numerous admissions for pulmonary vasculitis with alveolar hemorrhage. Her case was further complicated by numerous barriers to care leading to medication nonadherence and by marijuana and tobacco use—all of which likely exacerbated her chronic underlying pulmonary damage.

Treatment for COPA syndrome is similar to other immunodeficiency and autoimmune disorders and utilizes immunomodulators with varying safety profiles for use in pregnancy. In 2015, the Food and Drug Administration (FDA) replaced the previous pregnancy risk categories A-D and X with a new system entitled Pregnancy and Lactation Labeling Rule. This new system is aimed at providing data and clinical considerations for pregnancy, lactation, and reproduction that allow for clinical interpretation and
patient-specific counseling [7]. Acute COPA exacerba-
tions may be managed with systemic corticosteroids, cyclo-
phosphamide, or rituximab. Maintenance therapy can include
etanercept, intravenous immunoglobulin, azathioprine,
hydroxychloroquine, or methotrexate [6–8]. While metho-
trexate is contraindicated during pregnancy, the other med-
ications may be considered on an individual basis after
appropriate discussion with specialists and patient counsel-
ing. The role of surgical management remains investigatory,
although Mallea et al. report a case of a COPA patient
undergoing lung transplantation with stable pulmonary
function fifteen months postoperatively and without evi-
dence of disease recurrence [9].

This case was largely managed via expert opinion, drawn
from a diverse, multidisciplinary healthcare team. Although
a multidisciplinary healthcare team may be involved in the
care of these patients, we recommend that the obstetrical
care of COPA patients be managed by maternal-fetal medi-
cine specialists. Ideally, intensive preconception counseling
should be performed in order to review patterns of transmis-
tion to offspring and to discuss potential risk of worsening
maternal morbidity, particularly the risk of pulmonary
decompensation. Radiographic imaging, echocardiography,
and pulmonary function testing should be obtained at entry
to prenatal care, serving as a baseline for comparison in
event of an antepartum disease flare.

Without prior reports of COPA syndrome in pregnancy,
it is difficult to discern the effects of pregnancy on COPA
syndrome. However, one can infer that pregnancy increased
the oxygen demands in this patient, as her previously
required oxygen supplementation was weaned down post-
partum. Furthermore, although there are no studies on
COPA syndrome in pregnancy, there are reports of DAH
secondary to systemic lupus erythematous (SLE) [10]. Alve-
olar hemorrhage can cause severe hypoxemia that is unre-
sponsive to mechanical ventilation [11]. In SLE patients,
abrupt alveolar hemorrhage may develop despite concurrent
immunosuppressive drugs. Treatment for active alveolar
hemorrhage includes high-dose corticosteroids, possible
addition of cyclophosphamide, ventilatory support, and
blood resuscitation [10]. Although the patient in this index
did not have acute DAH, the same treatment for DAH can
be used as a model for future COPA syndrome patients with
concurrent DAH.

As previously mentioned, COPA syndrome may also
manifest as lupus-like nephritis, with the resultant protein-
uria mimicking a common pregnancy condition, preeclamp-
sia. Our index patient did not develop blood pressure
elevation, so this conflict did not present itself. However,
it is reasonable to also include preeclampsia labs (e.g., com-
plete blood count, liver function testing, lactate dehydro-
genase, creatinine, and urine protein studies) in the baseline
evaluation of maternal COPA syndrome. This may aid in
diagnostic clarity should the patient develop elevated blood
pressures in later gestation.

Lastly, the complexities of delivery planning should not
be underestimated in the setting of COPA syndrome. Mode
of delivery for our index patient was determined based on
multiple factors including her active COPA flare causing
desaturation, chronic SVC thrombus, and possible SVC syn-
drome. On literature review, alveolar hemorrhage does not
appear to be absolute contraindication to Valsalva; however,
it is also important to note that there are no reports associ-
ating chronic SVC thrombus with COPA syndrome.

Although our patient ultimately underwent a cesarean sec-
tion, delivery planning for patients with COPA syndrome
should be individualized without a clear contraindication
to attempted vaginal delivery.

Given COPA syndrome’s variable penetrance and
increased expression in women, it is likely that the incidence
of COPA syndrome in pregnancy will increase in the future.
Further research is warranted to optimize the management
of obstetrics patients with COPA syndrome.

Consent
The patient signed a waiver granting consent for this article
to be published.

Conflicts of Interest
The authors do not report any potential conflicts of interest,
and each author indicates that he or she has met the jour-
nal’s requirement for authorship.

Authors’ Contributions
AA, MCT, and KG provided care for the patient during her
antepartum and intrapartum stay. AA and RS were major
contributors in writing the manuscript. All authors read
and approved the final manuscript.

References
[1] L. Watkin, B. Jessen, W. Wiszniewski et al., "COPA_ muta-
tions impair ER-Golgi transport and cause hereditary autoim-
une- mediated lung disease and arthritis," Nature Genetics,
vol. 47, no. 6, pp. 654–660, 2015.
[2] M. Frémond and N. Nathan, "COPA syndrome, 5 years after: where are we?,” Joint, Bone, Spine, vol. 88, no. 2, article 105070,
2021.
[3] T. Vece, L. Watkin, S. Nicholas et al., “Copa syndrome: a novel
autosomal dominant immune dysregulatory disease,” Journal of Clinical Immunology, vol. 36, no. 4, pp. 377–387, 2016.
[4] Z. Deng, Z. Chong, C. Law et al., “A defect in COPI-mediated
transport of STING causes immune dysregulation in COPA
syndrome,” Journal of Experimental Medicine, vol. 217, no. 11, 2020.
[5] K. Mukai, E. Ogawa, R. Uematsu et al., "Homeostatic regula-
tion of STING by retrograde membrane traffic to the ER,” Nature Communications, vol. 12, no. 1, p. 61, 2021.
[6] S. Krutzke, C. Rietzschel, and G. Hornef, “Baricitinib in ther-
apy of COPA syndrome in a 15-year-old girl,” European Jour-
nal of Rheumatology, vol. 7, no. 1, pp. 78–81, 2020.
[7] S. Pernia and G. DeMaagd, "The new pregnancy and lactation
labeling rule," P T, vol. 41, no. 11, pp. 713–715, 2016.
[8] J. Tsui, O. Estrada, Z. Deng et al., "Analysis of pulmonary fea-
tures and treatment approaches in the COPA syndrome," ERI
Open Research, vol. 4, no. 2, pp. 00017–02018, 2018.
[9] J. Mallea, A. Kornafeld, A. Khoor, and D. Erasmus, “Lung transplantation in a patient with COPA syndrome,” *Case Rep Transplant*, vol. 2020, pp. 1-2, 2020.

[10] K. Gaither, K. Halstead, and T. C. Mason, “Pulmonary alveolar hemorrhage in a pregnancy complicated by systemic lupus erythematosus,” *Journal of the National Medical Association*, vol. 97, no. 6, pp. 831–833, 2005.

[11] F. Pais, M. Fayed, and T. Evans, “The successful use of extracorporeal membrane oxygenation in systemic lupus erythematosus-induced diffuse alveolar haemorrhage,” *European journal of case reports in internal medicine*, vol. 4, no. 1, article 000515, 2017.