Local structure and ionic transport in acceptor-doped layered perovskite BaLa\textsubscript{2}In\textsubscript{2}O\textsubscript{7}

Nataliia A. Tarasova *

Institute of High Temperature Electrochemistry of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg 620990, Russia

* Corresponding author: natalia.tarasova@urfu.ru

This paper belongs to a Regular Issue.

© 2022, the Author. This article is published in open access under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Abstract

Materials with perovskite or perovskite-related structure have many applications because of their different physical and chemical properties. These applications are extremely diverse and cover different fields including hydrogen energy. Layered perovskites with Ruddlesden-Popper structure constitute a novel class of ionic conductors. In this paper, the effect of acceptor doping on the local structure and its relationship with transport properties were shown for layered perovskites based on BaLa\textsubscript{2}In\textsubscript{2}O\textsubscript{7} for the first time. The geometric factor (the increase in the unit cell volume due to the increase in the ionic radii of cations) plays major role in the area of small dopant concentration ($x < 0.15$). The concentration factor (the increase in the oxygen vacancy concentration) is more significant in the area of big dopant concentration ($x > 0.15$). The acceptor doping is a promising way of improving the oxygen-ionic conductivity of layered perovskite BaLa\textsubscript{2}In\textsubscript{2}O\textsubscript{7}.

Keywords

layered perovskite ionic conductivity acceptor doping BaLa\textsubscript{2}In\textsubscript{2}O\textsubscript{7}
The Bruker Advance D8 diffractometer with Cu Kα radiation was used for the monitoring of the phase purity of samples. The samples were prepared for XRD by heat treated at 1100 °C for 4 h and then cooled in dry Ar (pH2O = 3.5·10^{-5} atm). Ar atmosphere was used to avoid any carbonization of the samples.

Raman spectra were collected on the modular confocal Raman microscopy system Alpha 300 AR (WiTec, Germany). The 10x objective lens (numerical aperture 0.2) were used to focus the blue laser (λ = 488 nm, 1800 g/mm exposure time 5 seconds, averaging three spectra) to a spot size around 3 μm. The spectral resolution was 1.22 cm⁻¹. The RayShield coupler with a specialized narrow band filter was used to cut off the Rayleigh scattering.

3. Results and Discussion

The homogeneity ranges of the solid solutions BaLa_{2-x}Sr_{x}In_{2}O_{7-0.5x} and BaLa_{2-x}Ba_{x}In_{2}O_{7-0.5x} were established using X-ray analysis. The compositions with x ≤ 0.2 mol for BaLa_{2-x}Sr_{x}In_{2}O_{7-0.5x} and x ≤ 0.3 mol for BaLa_{2-x}Ba_{x}In_{2}O_{7-0.5x} were single-phase. All samples belong to the P4_{1}./mmm space group (tetragonal symmetry). Figure 1b represents the XRD patterns for Sr-doped composition BaLa_{1.9}Sr_{0.1}In_{2}O_{6.95} as an example of the full-profile data fitting. The lattice parameters and unit cell volumes of doped compositions increased with increase in the dopant concentration (Figure 1c) because of the bigger ionic radii of the dopants (r_{La^{3+}} = 1.216 Å, r_{Sr^{2+}} = 1.31 Å, r_{Ba^{2+}} = 1.47 Å [51]). Local structure of the obtained compositions was investigated using the Raman spectroscopy method. The Raman spectra of solid solutions BaLa_{2-x}Sr_{x}In_{2}O_{7-0.5x} and BaLa_{2-x}Ba_{x}In_{2}O_{7-0.5x} are presented in Figures 2a and 2b, respectively.

The Raman spectra of all investigated compositions can be divided into two general regions. The first region includes the bending and stretching vibrations of polyhedra containing cations with bigger ionic radii (barium, strontium, lanthanum). This is a region of low, 120–200 cm⁻¹, wavenumbers. The modes v_1, v_2, v_3, and v_4 are observed in this region. They can be attributed to the M–O stretching and O–M–O bending vibrations of [BaO_{2}] and [LaO_{3}] polyhedra [49, 50, 52, 53]. The second region includes the tilting/bending and stretching vibrations of In-contained polyhedra and locates higher than 200 cm⁻¹ wavenumbers. The tilting/bending vibrations of polyhedra [InO_{6}] are described by the v_5, v_6, v_7, v_8, and v_9 bands. The stretching vibrations of In-contained polyhedra should be located in the higher wavenumbers. The stretching vibrations of In–O bonds appear around 400 cm⁻¹ for the monolayer perovskites BaLaInO_{4} [49, 50]. The spectra of two-layer perovskites Sr_{n+1}Ti_{n}O_{3n+1} [54] and Sr_{n+1}Ru_{n}O_{3n+1} [55] contain two signals corresponding to the M–O stretching vibrations with lower and higher wavenumbers than the wavenumbers for their monolayer analogs. Based on this, v_{10}, v_{11} and v_{2} bands can be assigned to In–O stretching vibrations.

Comparative analysis of the Raman spectra of solid solutions BaLa_{2-x}Ba_{x}In_{2}O_{7-0.5x} and BaLa_{2-x}Sr_{x}In_{2}O_{7-0.5x} show that they are all similar to each other. On the one hand, doping leads to the increase in the oxygen vacancy concentration in the crystal lattice:

$$2\text{MO} \xrightarrow{La^{3+}} 2\text{M}'_{\text{La}} + 20\text{O}^{0} + V_{0}^{**},$$

where $M'_{\text{La}} = \text{Sr}$ or Ba ions in La sites, V_{0}^{**} - an oxygen vacancy, O^{0} - an oxygen atom in a regular position. Doping causes the decrease in the coordination number of metals.

Figure 1 The scheme of acceptor doping of layered perovskite BaLa_{2}In_{2}O_{7} (a), XRD patterns for the composition BaLa_{1.9}Sr_{0.1}In_{2}O_{6.95} (b) and dependences of unit cell volume on dopant concentration for the solid solutions BaLa_{2-x}Sr_{x}In_{2}O_{7-0.5x} and BaLa_{2-x}Ba_{x}In_{2}O_{7-0.5x} (c).
Consequently, the bond length M–O should decrease in the vacancy-containing polyhedra, and the blue shift in the Raman spectra can be expected. On the other hand, doping by the ions with bigger ionic radii leads to the increase in the unit cell volume (Figure 1c) which could be due to increase of the bond length M–O. Based on this, the red shift in the Raman spectra can be expected. Obviously, the absence of significant shifts in the spectra of doped compositions is the resulting effect of the overlay of these processes (Figure 2). Meanwhile, the acceptor doping of layered perovskite BaLa$_2$In$_2$O$_7$ is accompanied by the changes in the ionic radii of cations (geometric factor) and the concentration of oxygen vacancies (concentration factor). Both of these factors should affect the ionic conductivity. It should be noted that the effect of acceptor doping on the local structure of monolayer perovskite BaLaInO$_4$ compared with that of the two-layer BaLa$_2$In$_2$O$_7$ perovskite was more pronounced [49, 50]. The monolayer perovskite structure contains the octahedra layers bonded only by axial oxygens and non-bonded by apical oxygens, in contrast with two-layer structure where perovskite blocks contain the octahedrons connected by all six vertices. Obviously, the crystal lattice of a monolayer perovskite is more flexible and the changes in the local structure are more evident.

Figure 3 represents the dependences of oxygen-ionic conductivity and mobility for the solid solutions BaLa$_{2-x}$Ba$_x$In$_2$O$_7$–0.5x and BaLa$_{2-x}$Sr$_x$In$_2$O$_7$–0.5x obtained in the previous work [46]. As can be seen, the maximum in the conductivity and mobility curves is observed at a relatively small (0.1–0.15) dopant concentration. The most probable reason of oxygen mobility increasing in the area of small dopant concentration is the increase in the unit cell volume, i.e. in the space for ionic transfer in the crystal lattice. The presence of significant dopant concentration can lead to the formation of defect associates because of the interaction between defects with opposite charges:

\[
M’_{La} + V^*_{0} \rightarrow (M’_{La} \cdot V^*_{0})^* \quad \text{or} \tag{4}
\]

\[
M’_{La} + (M’_{La} \cdot V^*_{0})^* \rightarrow (2M’_{La} \cdot V^*_{0})^X. \quad \text{(5)}
\]

Figure 2 Raman spectra for the solid solutions BaLa$_{2-x}$Ba$_x$In$_2$O$_7$–0.5x (a) and BaLa$_{2-x}$Sr$_x$In$_2$O$_7$–0.5x (b).
Consequently, the oxygen mobility should decrease. As we can see (Figure 3), the decrease in the oxygen mobility determines the decrease in the oxygen conductivity despite the increase in the oxygen vacancy concentration and the increase in the unit cell volume.

Therefore, we can conclude, that ionic conduction in the acceptor-doped layered perovskite $\text{BaLa}_2\text{In}_2\text{O}_7$ is determined by several factors, including geometric (dopant radius) and concentration (dopant concentration) factors. The geometric factor (the increase in the unit cell volume due to the increase in the ionic radii of cations) plays major role in the area of small dopant concentration ($x < 0.15$). The concentration factor (the increase in the oxygen vacancy concentration) is more significant in the area of big dopant concentration ($x > 0.15$), where formation of defect associates is more probable.

4. Conclusions

In this paper, the local structure of solid solutions $\text{BaLa}_{2-x}\text{Ba}_x\text{In}_2\text{O}_7-0.5x$ and $\text{BaLa}_{2-x}\text{Sr}_x\text{In}_2\text{O}_7-0.5x$ was investigated. It was shown that several factors, including dopant radius and dopant concentration affect the changes in the oxygen ionic conductivity. The increase in the unit cell volume due to the increase in the ionic radii of cations (geometric factor) plays major role in the area of small dopant concentration ($x < 0.15$). The increase in the oxygen vacancy concentration (concentration factor) is more significant in the area of big dopant concentration ($x > 0.15$), where formation of defect associates is more probable. The acceptor doping is a promising way of improving the oxygen-ionic conductivity of layered perovskite $\text{BaLa}_2\text{In}_2\text{O}_7$.

Supplementary materials

Supplementary materials are available.

Funding

This research was performed according to the budgetary plan of the Institute of High Temperature Electrochemistry and funded by the Budget of Russian Federation

Acknowledgments

None.

Author contributions

Conceptualization: N.T.
Data curation: N.T.
Methodology: N.T.
Visualization: N.T.
Writing – original draft: N.T.
Writing – review & editing: N.T.

Figure 3 The concentration dependencies of oxygen-ionic conductivity (a) and mobility of oxygen ions (b) for the solid solutions $\text{BaLa}_{2-x}\text{Ba}_x\text{In}_2\text{O}_7-0.5x$ and $\text{BaLa}_{2-x}\text{Sr}_x\text{In}_2\text{O}_7-0.5x$.

4 of 6
Conflict of interest
The authors declare no conflict of interest.

Additional information
Author ID:
Natalia A. Tarasova, Scopus ID 37047022700.
Website:
Institute of High Temperature Electrochemistry UB RAS, http://www.ihte.uran.ru.

References
1. Punj P, Singh J, Singh K. Ceramic biomaterials: Properties, state of the art and prospective. Ceram Int. 2021;47:28059–28074. doi:10.1016/j.ceramint.2021.06.278
2. Koons GL, Diba M, Mikos AG. Materials design for bone-tissue engineering. Nature Rev Mater. 2020;5:584–603. doi:10.1038/s41578-020-0204-2
3. Weng W, Wu W, Hou M, Liu T, Wang T, Yang H. Review of zirconia-based biomimetic scaffolds for bone tissue engineering. J Mater Sci. 2021;56:8309–8333. doi:10.1007/s10853-021-03824-3
4. Rosso JM, Volnistem EA, Santos IA, Bonadio TGM, Freitas AT, Jacobson Rb(Bi1.5-n+1Sn0.5+n)O3-coupled ferroelectric perovskites and their polar polymer-ceramic composites: Fundamentals and potentials for electronic and biomedical applications. Ceram Int. 2022;48:19527–19541. doi:10.1016/j.ceramint.2022.04.089
5. Tarasova N, Galisheva A, Belova K, Mushnikova A, Volokitina E. Ceramic materials based on lanthanum zirconate for the bone augmentation purposes: materials science approach. Chim Techna Acta. 2022;9:2029209. doi:10.15826/chimtech.2022.0.2.09
6. Duan C, Huang J, Sullivan N, O’Hayre R. Proton-conducting oxides for energy conversion and storage. Appl Phys Rev. 2022;7:011114. doi:10.1063/1.5135319
7. Abdalla AM, Hossain S, Nisfiny OB, Azad AT, Dawood M, Azad AK. Hydrogen production, storage, transportation and key challenges with applications: A review. Energy Convers Manag. 2018;165:602–627. doi:10.1016/j.enconman.2018.03.088
8. Kim J, Sengodan S, Kim S, Kwon O, Bu Y, Kim G. Proton conducting oxides: A review of materials and applications for renewable energy conversion and storage. Renewable and Sustainable. Energy Rev. 2019;109:606–618. doi:10.1016/j.ENER.2019.04.042
9. Medvedev DA, Current drawbacks of proton-conducting ceramic materials: How to overcome them for real electrochemical purposes. Curr Opin Green Sustain Chem. 2021;32:100549. doi:10.1016/j.cogsc.2021.100549
10. Zvonareva I., Fu XZ, Medvedev D, Shao Z. Electrochemistry and energy conversion features of protonic ceramic cells with mixed ionic-electronic electrolytes. Energy Environ. Sci. 2021;15:439–465. doi:10.1039/D1EE03199K
11. Ruddlesden SN, Popper P. New compounds of the K2NiF4 type. Acta Cryst. 1957;10:538–539. doi:10.1107/S0670071857010395
12. Ruddlesden SN, Popper P. The compound Sr3Ti2O7 and its structure. Acta Cryst. 1958;11:54–55. doi:10.1107/S0090265858001028
13. Aurivillius B. Mixed Bismuth Oxides with Layer Lattices: I. Structure Type of CaBi4B6O19. Arkiv Kemi. 1949;1:463–480.
14. Dion M, Ganne M, Tournoux M. Nouvelles familles de phases MM2+x,y abrasive «perovskites». Mat Res Bull. 1981;16:1429–1435.
15. Jacobson AJ, Lewandowski JT, Johnson JW Ion exchange of the layered perovskite KCa,Nb2O6 by protons. J Less-Common. Metal. 1986;116:137–145.
16. Jacobson AJ, Lewandowski JT, Johnson JW. Interlayer chemistry between thick transition-metal oxide layers: synthesis and intercalation reactions of K[Ca3N4-x,5Nb2O11]. Inorg Chem. 1985;24:3727–3729.
17. Rodionov IA, Zvereva IA. Photocatalytic activity of layered perovskite-like oxides in practically valuable chemical reactions. Russ Chem Rev. 2016;85:2485–2527.
18. Krasheninnikova OV, Syrov EV, Smirnov SM, Suleimanov EV, Fukina DG, Knazyev AV, Titaev DN. Synthesis, crystal structure and photocatalytic activity of new Dion-Jacobson type titanoniobates. J Solid State Chem. 2022;315:123445. doi:10.1016/j.jssc.2022.123445.
19. Chawla H, Chandra A, Ingle P, Garg S. Recent advancements in enhancement of photocatalytic activity using bismuth-based metal oxides Bi2MoO6 (M = W, Mo, Cr) for environmentally remediation and clean energy production. J Ind Eng Chem. 2021;95:1–15. doi:10.1016/j.jiec.2020.12.028
20. Ferreira WC, Rodrigues GLC, Araujo BS, de Aguiar FAB, de Abreu Silva ANA, Fechine, PBA, de Araujo Paschoal CW; Ayala AP. Pressure-induced structural phase transitions in the multiferroic four-layer Aurivillius ceramic BiFe3TiO9. Ceram Int. 2020;46:18056–180621. doi:10.1016/j.ceramint.2020.04.123
21. Zulhadri Wendarli TP, Ikram M, Putri YE, Septian U, Imelda. Enhanced dielectric and ferroelectric responses in La0.7–x/Ti0.3x substituted SrBi2Ta2O9 Aurivillius phase. Ceram Int. 2022;48:10328–103321. doi:10.1016/j.ceramint.2022.01.007
22. Xu Q, Xie S, Wang F, Liu J, Shi J, Xing J, Chen Q, Zhu J, Wang Q. Bismuth titanate based piezoceramics: Structural evolutions and electrical behaviors at different sintering temperatures. J Alloys Compd. 2021;88215:160637. doi:10.1016/j.jallcom.2021.160637
23. Mamidi S, Gundeboina R, Kurra S, Velchuri R, Muga V. Aurivillius family of layered perovskites, BiREWO3 (RE = La, Pr, Gd, and Dy): Synthesis, characterization, and photocatalytic studies. Comptes Rendus Chimie. 2018;21:547–552. doi:10.1016/j.crcl.2018.01.011
24. Zhou G, Jiang X, Zhao J, Molokeev M, Lin Z, Liu Q, Xia Z. Two-Dimensional-Layered Perovskite AlTa2O7–Bi2O3 (A = K and Na) Phosphors with Versatile Structures and Tunable Photo-luminescence. ACS Appl Mater Interfaces. 2018;10:24648–246525. doi:10.1021/acsami.8b08129
25. Panda DP, Singh AK, Kundu TK, Sundaresan A. Visible-light excited proton-Dion-Jacobson Rb(Bi1.5Eu0.5)Ti2O7 perovskites: Photoluminescence properties and in vitro bioimaging. J Mater Chem B. 2022;10:935–944. doi:10.1039/D2TB02445K
26. Tarasova N, Animitsa I. A2In5O13 with Ruddlesden-Popper structure for electrochemical applications: relationship between ion (oxygen-ion, proton) conductivity, water uptake and structural changes. Mater. 2022;15(1):114. doi:10.3390/MAT5100114
27. Ishigaki T, Hester JR. New perovskite-related structure families of oxide-ion conducting Materials NdBaInO7. Chem Mater. 2014;26(8):2488–2491. doi:10.1021/cm502726x
28. Fujii K, Shiraishi M, Esaki Y, Yamashita M, Kim SJ, Lee S. Improved oxide-ion conductivity of NdBaInO7 by Sr doping. J Mater Chem A. 2015;3(22):11985–11990. doi:10.1039/C5TA0336D
29. Ishihara T, Yan Y, Sakai T, Ida S. Oxide ion conductivity in doped Nb2O5, Solid State Ion. 2016;288:262–265. doi:10.1016/j.ssi.2016.01.011
30. Yang X, Liu S, Lu F, Xu J, Klang X. Acceptor Doping and oxygen vacancy migration in layered perovskite Nb2O5-based
mixed conductors. J Phys Chem C. 2016;12:6416–6426. doi: 10.1021/acs.jpcc.6b00070
31. Fuji K, Yashima M. Discovery and development of BaNdInO4 – A brief review. J Ceram Soc Japan. 2018;126(10):852–859. doi: 10.2103/jcersj.18110
32. Zhou Y, Shiraiwa M, Nagao M, Fujii K, Tanaka I, Yashima M, Baque L, Basbus JF, Mogli LV, Skinner SJ. Protonic conduction in the BaNdInO4 structure achieved by acceptor doping. Chem Mater. 2021;33(6):2139–2146. doi: 10.1021/acs.chemmater.0c04828
33. Kato S, Ogasawara M, Sugai M, Nakata S. Synthesis and oxide ion conductivity of new layered perovskite La5Sr1xInO4+x. Solid State Ion. 2002;149(1–2):53–57. doi: 10.1016/S0167-2738(02)00138-8
34. Troncoso L, Alonso JA, Aguadero A. Low activation energies for interstitial oxygen conduction in the layered perovskites La0.5Sr0.5InO4. J Mater Chem A. 2015;3(34):17797–17803. doi: 10.1039/c5ta03185k
35. Troncoso L, Alonso JA, Fernández-Díaz MT, Aguadero A. Introduction of interstitial oxygen atoms in the layered perovskite La5Sr1xInO4+x system (B=Zr, Ti). Solid State Ion. 2015;282:82–87. doi: 10.1016/j.ssi.2015.09.014
36. Troncoso L, Maríto C, Arce MD, Alonso JA. Dual oxygen defects in layered La0.5Sr1xInO4+x (x = 0.2, 0.3) oxide-ion conductors: a neutron diffraction study. Mater. 2019;12(10):1624. doi: 10.3390/ma12101624
37. Troncoso L, Arce MD, Fernández-Díaz MT, Mogli LV, Alonso JA. Water insertion and combined interstitial-vacancy oxygen conduction in the layered perovskites La5Sr1xIn0.4δO3x+δ. New J Chem. 2019;43(15):6087–6094. doi: 10.1039/C8NJ05320K
38. Shiraiwa M, Kido T, Fujii K, Yashima M. High-temperature proton conductors based on the (110) layered perovskite BaNdScO3. J Mat Chem A. 2021;9:8607. doi: 10.1039/D1TA11572H
39. Tarasova N, Animitsa I, Galisheva A. Effect of acceptor and donor doping on the state of protons in block-layered structures based on BaLaInO4, Solid State Comm. 2021;323:114903. doi: 10.1016/j.ssc.2020.114903
40. Tarasova N, Galisheva A, Animitsa I. Improvement of oxygen-ionic and protonic conductivity of BaLaInO4 through Ti doping. Ionics. 2020;26:5075–5088. doi: 10.1007/s11511-020-03659-6
41. Tarasova N, Galisheva A, Animitsa I. Ba2+/Ti4+ co-doped layered perovskite BaLaInO4: the structure and ionic (O2–, H+) conductivity. Int J Hydrog Energy. 2021;46(32):16868–16877. doi: 10.1016/j.ijhydene.2021.02.044
42. Tarasova N, Galisheva A, Animitsa I, Anokhina I, Gilev P, Cheremisina P. Novel mid-temperature Yd+ to In3+ doped proton conductors based on the layered perovskite BaLaInO4. Ceram Int. 2022;48(11):15677–15685. doi: 10.1016/j.ceramint.2022.02.102
43. Tarasova N, Galisheva A, Animitsa I, Korona D, Davletbaev K. Novel proton-conducting layered perovskite based on BaLaInO4 with two different cations in B-sublattice: Synthesis, hydration, ionic (O2–, H+) conductivity. Int J Hydrog Energy. 2022;47(44):18972–18982
44. Tarasova N, Bedarkova A. Advanced proton-conducting ceramics based on layered perovskite BaLaInO4 for energy conversion technologies and devices. Mater. 2022;15:6841. doi: 10.3390/inorganics10060161
45. Tarasova N, Galisheva A, Animitsa I, Korona D, Kreimish H, Fedorova I. Protonic transport in layered perovskites BaLaInO4+δ (n = 1, 2) with Ruddlesden-Popper structure. Appl Sci. 2022;12(8):4082. doi: 10.3390/app12084082
46. Tarasova N, Bedarkova A, Belova K, Abakumova E, Cheremisina P, Medvedev D. Oxygen ion and proton transport in alkali-earth doped layered perovskites based on BaLaInO4+. Inorg. Chem. 2022;10:161. doi: 10.3390/inorganics10010016
47. Tarasova N, Galisheva A, Animitsa I, Belova K, Egorova A, Abakumova E, Medvedev D. Layered Perovskites BaMnInO4 (M = La, Nd): From the Structure to the Ionic (O2–, H+) Conductivity. Mater. 2022;15:3488. doi: 10.3390/ma15103488
48. Tarasova N, Galisheva A. Phosphorus-doped protonic conductors based on BaLaIn0.5O3 (n = 1, 2): applying oxianion doping strategy to the layered perovskite structures. Chim Tehn Acta. 2022;9:20229405. doi: 10.15826/chimtech.2022.9.4.05
49. Tarasova N, Animitsa I, Galisheva A, Spectroscopic and transport properties of Ba- and Ti-doped BaLaInO4. J Raman Spec. 2021;52:980–987. doi: 10.1002/jrs.6078
50. Tarasova N, Animitsa I, Galisheva A. Effect of doping on the local structure of new block-layered protonic conductors based on BaLaInO4. J Raman Spec. 2021;51:2290–2297. doi: 10.1002/jrs.5966
51. Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. 1976;A32:751–767. doi: 10.1107/S0567739476001551
52. Scherban T, Villeneuve R,ABELLO L, Lucazeau G. Raman scattering study of acceptor-doped BaCeO3. Solid State Ion. 1993;61:93–98. doi: 10.1016/0167-2738(93)80072-5
53. Chemarin C, Rosman N, Pagnier T, Lucazeau G. High-pressure raman study of mixed perovskites BaCeZr1-xO3 (0 ≤ x ≤ 1). J Solid State Chem. 2000;149:298–307. doi: 10.1006/jssc.1999.8430
54. Kamba S, SamoukPina F, Kadlec F, Pokorny J, Petzelt J, Reaney IM, Wise PL. Composition dependence of the lattice vibrations in Sr1−xTixO3n−1 Ruddlesden–Popper homologous series. J Eur Ceram Soc. 2003;23:2639–2645. doi: 10.1016/S0955-2219(03)00150-X
55. Iliev MN, Popov VN, Lvitvinchuk AP, Abrashev MV, Backstrom J, Sun YY, Mena RL, Chu CW. Comparative Raman studies of SrRuO3, Sr3Ru2O7 and Sr4Ru3O10 phases. Phys B. 2005;358:138–152. doi: 10.1016/j.physb.2004.12.069