SUPPLEMENTARY INFORMATION

Multicomponent reactions provide key molecules for secret communication

Meier et al.
Table of Contents

Supplementary Figures ... 4

Supplementary Methods ... 13

Exemplarily encoded messages and tandem-MS spectra of the respective molecular keys 13
Encoded messages and file container .. 13
Tandem-MS spectra for decrypting example 1 .. 14
Tandem-MS spectra for decrypting example 2 ... 17
Tandem-MS spectra for decrypting example 3 ... 20

Experimental Part .. 23

General .. 23
Synthetic procedures ... 26
Ugi reaction of perfluorononanoic acid, benzaldehyde, tert-butylisocyanide and butylamine 26
Ugi reaction of perfluoropentanoic acid benzaldehyde, tert-butylisocyanide and butylamine 31
Ugi reaction of perfluorononanoic acid, \(p\)-anisaldehyde, cyclohexylisocyanide and propargylamine... 35
Ugi reaction of perfluorononanoic acid, \(p\)-anisaldehyde, cyclohexylisocyanide and allylamine........... 40
Ugi reaction of perfluorononanoic acid, benzaldehyde, cyclohexylisocyanide and propargylamine.... 44
Ugi reaction of perfluorononanoic acid, benzaldehyde, cyclohexylisocyanide and octylamine 49
Ugi reaction of perfluorononanoic acid, \(p\)-anisaldehyde, 4-methoxyphenyl-isocyanide and propargylamine ... 54
Ugi reaction of perfluorononanoic acid, \(p\)-anisaldehyde, 2,6-dimethylphenyl-isocyanide and propargylamine ... 59
Ugi reaction of perfluorononanoic acid, \(p\)-anisaldehyde, cyclohexylisocyanide and heptylamine 64
Ugi reaction of perfluorononanoic acid, \(p\)-anisaldehyde, ethyl-2-isocyanoacetate and propargylamine ... 69
Ugi reaction of perfluorononanoic acid, valeraldehyde, tert-butylisocyanide and pentylamine 74
Ugi reaction of perfluorononanoic acid, valeraldehyde, tert-butylisocyanide and cyclohexylamine..... 79
Ugi reaction of perfluorononanoic acid, valeraldehyde, tert-butylisocyanide and tert-butylamine 83
Ugi reaction of perfluorononanoic acid, isobutyraldehyde, cyclohexylisocyanide and pentylamine..... 87
Ugi reaction of perfluorononanoic acid, valeraldehyde, cyclohexylisocyanide and pentylamine 92
Ugi reaction of perfluorononanoic acid, cyclohexancarboxaldehyde, cyclohexylisocyanide and pentylamine... 96
Ugi reaction of perfluorononanoic acid, isobutyraldehyde, tert-butylisocyanide and cyclohexylamine 101
Ugi reaction of perfluorononanoic acid, isobutyraldehyde, pentylisocyanide and cyclohexylamine... 106
Ugi reaction of perfluorononanoic acid, isobutyraldehyde, cyclohexylisocyanide and cyclohexylamine .. 110
Ugi reaction of perfluoropentanoic acid valeraldehyde, 4-methoxyphenylisocyanide and butylamine ... 114
Ugi reaction of perfluorotetradecanoic acid, benzaldehyde, tert-butylisocyanide and butylamine 119
Ugi reaction of perfluorononanoic acid, dodecanal, pentylisocyanide and benzylamine 128
Ugi reaction of perfluorononanoic acid, undec-10-enal, cyclohexylamine and benzylisocyanide 133
Ugi reaction of perfluorononanoic acid, 4-hydroxybenzaldehyde, cyclohexylisocyanide and propargylamine ... 138
Ugi reaction of perfluorononanoic acid, heptanal, 4-methoxyphenylisocyanide and butylamine...... 143
Ugi reaction of perfluorononanoic acid, benzaldehyde, cyclohexylisocyanide and pentylamine 148
Ugi reaction of perfluorononanoic acid, cyclamen aldehyde, tert-butylisocyanide and 2-pentylamine ... 154
Influence of stereochemistry... 159
Supplementary Note 1 ... 161

Solutions for encrypted messages ... 161
Solution for example 1 .. 161
Solution for example 2 .. 165
Solution for example 3 .. 168
Solution for deciphering the filecontainer .. 170
Supplementary References ... 170
Supplementary Figures

Supplementary Figure 1 | The Ugi reaction. a, Reaction equation of the Ugi reaction. b, Generally accepted reaction mechanism of the Ugi reaction. c, Illustration of limitations for setting up the list of components.
Supplementary Figure 2 | NMR evaluation of an exemplary molecular key. a, ¹H-NMR: Signal assignment was performed with additional information from 2D NMR experiments. Noteworthy, the NH, CH and the CH₂⁺ protons appear as split signals due to restricted rotation. The CH₂⁻ signal is split into a signal of higher order. b, COSY: The cross signals of the CH₂ protons confirm the scalar coupling with the CH₃ and CH₂⁻ protons. c, NOE: The signals with the same phase (color) as the diagonal indicate chemical exchange (restricted rotation). d, ¹³C-NMR stack: Top: DEPT135 experiment CH and CH₃ positive, CH₂ negative. Middle: DEPT90 experiment CH positive. Bottom: ¹³C NMR: Signal C² is weak in intensity due to 3J(C-F) coupling with the vicinal CF₂⁺. The ¹⁹F signals of the perfluorinated chain are weak in intensity due to the numerous C-F couplings. e, HSQC: Confirms the molecular structure. f, HMBC: Confirms the signal assignment for the carbon and proton signals. g, ¹⁹F-NMR: Stack of the molecular key with the precursor perfluorononoic acid. Top: Precursor perfluorononoic acid. Bottom: Molecular key with an expansion for the signals of the CF₂⁺ group next to the newly formed amide bond. Two AB signals (two species caused by restricted rotation) can be observed.
Supplementary Figure 3 | Hiding of molecular keys.

a, Powdered molecular key on a scale.
b, Envelope before application.
c, Envelope after application of the molecular key. The black box indicates the area of interest, however the adsorbed molecular key was not visible with bare eyes.
d, Cut piece of the envelope containing the molecular key.
e, Shredded paper before the extraction with methanol.
f, Molecular key adsorbed onto instant coffee powder after grinding.
g, Molecular key on green tea.
h, adsorption onto sugar.
i, in this vial the molecular key was dissolved in ethanol and evaporated until a transparent film was obtained before mixing with blood.
j, mixing of the molecular key with pig blood.
k, Extraction of the molecular key from blood.
l, Perfume bottle.
m, left vial (yellow) contains the perfume, right vial (colorless) contains the molecular key dissolved in methanol.
n, Resulting solution after mixing the perfume with the dissolved molecular key.
o, Perfume bottle with the resulting mixture ready for transportation. Although the perfume is more diluted after mixing with the molecular key, it cannot easily be distinguished with bare eye or by the smell from the original perfume.
p, F-SPE column for purification of the molecular keys.
Supplementary Figure 4 | Database evaluation of the list of components. Regarding the occurring masses within certain thresholds.

a. $\Delta M = 0.001 \text{ Da}$

b. $\Delta M = 0.005 \text{ Da}$

c. $\Delta M = 0.01 \text{ Da}$

d. $\Delta M = 0.05 \text{ Da}$

e. $\Delta M = 0.1 \text{ Da}$

f. $\Delta M = 0.5 \text{ Da}$

The List of components can be found in Supplementary Data 1.
Supplementary Figure 5 | Purity determination via GC-MS. a, GC-MS chromatogram of a representative molecular key. The respective masses of the intensive signal at 11.5 min retention time are analyzed in c. The masses of the weak signal at 10.6 min retention time are analyzed in b. b, MS spectrum of the weak signal (1%) at 10.6 min retention time. The masses of the analyzed fragments in e. c, MS spectrum of the intense signal (99%) at 11.5 min retention time. The masses are assigned in d. d, Fragment assignment of the intense signal at 11.5 min. Interestingly, a similar fragmentation pattern as for the tandem-MS spectra can be observed. e, Fragment assignment of the weak signal at 10.6 min indicates the presence of a Ugi product with a shorter perfluorinated side chain. This impurity (originating from a shorter perfluorinated acid) was already present in the starting material and did not interfere with other analytical methods and the readout.
Supplementary Figure 6 | ESI-MS of different molecular keys

Top: ESI-MS spectra of four representative molecular keys. Recorded in positive mode in the range from 200 – 2000 m/z. The two predominant signals correspond to the [M + Na]+ (●) and the [2 M + Na]+ (■) adducts. **Table (bottom):** Peak assignment of the ESI-MS spectra presented in above. The resolution (obtained by the Xcalibur software), the experimental m/z vs. the theoretical m/z values and Δm/z for the proposed structure.

Entry	Label	Resolution	m/z (exp)	m/z (theo)	Δm/z	Formula	Structure
1 in a	●	77000	731.1541	731.1537	0.0004	C_{30}H_{26}N_{2}F_{17}Na	
2 in a	■	56000	1439.3219	1439.3181	0.0038	C_{50}H_{50}O_{4}N_{4}F_{34}Na	
3 in b	●	90000	531.1669	531.1665	0.0004	C_{21}H_{25}O_{2}N_{2}F_{9}Na	
4 in b	■	66000	1039.3451	1039.3437	0.0014	C_{42}H_{50}O_{4}N_{4}F_{18}Na	
5 in c	●	93000	595.1615	595.1619	0.0004	C_{25}H_{26}O_{3}N_{2}F_{9}Na	
6 in c	■	66000	1167.3384	1167.3341	0.0043	C_{50}H_{50}O_{6}N_{4}F_{18}Na	
7 in d	●	83000	739.1238	739.1229	0.0009	C_{42}H_{50}O_{4}N_{4}F_{18}Na	
8 in d	■	59000	1455.2600	1455.2561	0.0039	C_{52}H_{42}O_{4}N_{4}F_{34}Na	
Supplementary Figure 7 | Fragmentation energy screening. a, Stacked tandem-MS spectra of a single charged species at 595 \textit{m/z} (⊙). Recorded in positive mode with different higher-energy collision dissociation (HCD) energy levels in the relevant range from 50 – 750 \textit{m/z}. b, Tandem-MS of a single charged species at 595 \textit{m/z} (⊙). Recorded in positive mode with a higher-energy collision dissociation (HCD) of 30 eV in the relevant range from 50 – 650 \textit{m/z}. The expansion visualizes the fragment ion (▼). **Table (bottom):** includes peak assignment of the ESI-MS/MS spectrum presented in b at 595 \textit{m/z} with a higher-energy collision dissociation (HCD) of 30 eV. The resolution (obtained by the Xcalibur software), the experimental \textit{m/z} vs. the theoretical \textit{m/z} values, and ∆\textit{m/z} for the proposed structure.

Entry	Label	Resolution	\textit{m/z}(exp)	\textit{m/z}(theo)	∆\textit{m/z}	Formula	Structure
1	☒	89000	595.1612	595.1619	0.0007	C_{25}H_{25}O_{3}N_{2}F_{9}Na	
2	▼	97000	446.1137	446.1142	0.0009	C_{17}H_{18}ONF_{9}Na	
3	❌	112000	375.0274	375.0282	0.0008	C_{12}H_{7}ONF_{9}Na	
4	●	125000	325.1911	325.1916	0.0005	C_{20}H_{25}O_{2}N_{2}Na	
5	★	135000	262.0839	262.0840	0.0001	C_{15}H_{13}O_{2}Na	
6	☀	162000	176.1435	176.1439	0.0004	C_{17}H_{16}N	
7	■	202000	104.0499	104.0500	0.0001	C_{6}H_{5}N	
Supplementary Figure 8 | Fragmentation at different energies a, Tandem-MS of a single charged species at 731 m/z (►). Recorded in positive mode with a higher-energy collision dissociation (HCD) of 35 eV (top left) and b, 50 eV (top right) in the relevant range from 50 – 750 m/z. The expansions visualize the range from 550 – 700 m/z. The heavier fragments (❖ and ✶) are observed in the lower energy spectrum (a) and the smaller fragments (● and ◄) in the higher energy spectrum (b) exclusively. Table (bottom): includes peak assignment of the ESI-MS/MS spectrum at 731 m/z (►) with a higher-energy collision dissociation (HCD) of 35 eV (a) compared to 50 eV (b). The resolution (obtained by the Xcalibur software), the experimental m/z vs. the theoretical m/z values, and Δm/z for the proposed structure.
Supplementary Figure 9 | Differentiation of isomers.

a. Two isomeric molecular keys and their respective fragments allowing differentiation.
b. ESI-MS/MS of a single charged species at 737 m/z (►) (Isomer 1).
c and d, ESI-MS/MS of a single charged species at 737 m/z (►) (Isomer 2). HCD = 25 eV (top) and 50 eV (bottom). The larger fragment (▼) is observed in the 25 eV spectrum (top) and the smaller fragments ( and ●) in the 50 eV spectrum (bottom). Table (bottom): includes fragment assignment.
Supplementary Methods

Exemplarily encoded messages and tandem-MS spectra of the respective molecular keys

Encoded messages and file container

The encrypted messages for following examples are included as ciphertext files (Supplementary Data 2) and can be decrypted utilizing the molecular encryption script (Supplementary Software 2). The respective decryption keys can be obtained by analyzing the corresponding tandem-MS spectra below with the analysis script (Supplementary Software 1). For this purpose start with the [M+Na]+ ion from the ESI-MS spectra (intense signal at smaller m/z) and choose a ΔM of 0.002, then proceed by entering the pronounced fragment masses of the higher energy spectra, as previously described in the methods section. After determining the molecular key enter the alphanumerical codes into the molecular encryption script, the decrypted file can be exported as a *.txt file. The filecontainer included in the SI can be decrypted by utilizing all three molecular keys in sequential order. For accessing the files, save the decrypted version as a *.zip file.
Tandem-MS spectra for decrypting example 1

Supplementary Figure 10 | ESI-MS spectrum for example 1.

Supplementary Figure 11 | ESI-MS/MS spectrum of example 1. NCE = 10 eV.
Supplementary Figure 12 | ESI-MS/MS spectrum of example 1. NCE = 30 eV.

Supplementary Figure 13 | ESI-MS/MS spectrum of example 1. NCE = 35 eV.
Supplementary Figure 14 | ESI-MS/MS spectrum of example 1. NCE = 40 eV.

Supplementary Figure 15 | ESI-MS/MS spectrum of example 1. NCE = 50 eV.
Tandem-MS spectra for decrypting example 2

Supplementary Figure 16 | ESI-MS spectrum for example 2.

Supplementary Figure 17 | ESI-MS/MS spectrum of example 2. NCE = 30 eV.
Supplementary Figure 18 | ESI-MS/MS spectrum of example 2. NCE = 35 eV.

Supplementary Figure 19 | ESI-MS/MS spectrum of example 2. NCE = 40 eV.
Supplementary Figure 20 | ESI-MS/MS spectrum of example 2. NCE = 50 eV.
Tandem-MS spectra for decrypting example 3

Supplementary Figure 21 | ESI-MS spectrum for example 3.

Supplementary Figure 22 | ESI-MS/MS spectrum of example 3. NCE = 10 eV.
Supplementary Figure 23 | ESI-MS/MS spectrum of example 3. NCE = 15 eV.

Supplementary Figure 24 | ESI-MS/MS spectrum of example 3. NCE = 30 eV.
Supplementary Figure 25 | ESI-MS/MS spectrum of example 3. NCE = 35 eV.

Supplementary Figure 26 | ESI-MS/MS spectrum of example 3. NCE = 40 eV.
Experimental Part

General

All technical solvents were used, if not explicitly described otherwise, without further purification. Ethyl acetate, tetrahydrofuran, acetone and hexanes were pre-distilled. All commercially available chemicals were used, unless otherwise stated, without further purification and purchased from SIGMA ALDRICH at the highest commercial quality. Aldehydes were tested for oxidative contaminations (carboxylic acids) before use via TLC and 1H NMR. Flash column chromatography was performed utilizing Merck SiO$_2$ 60 (230 – 400 mesh);1 for TLC analysis, precoated aluminum foils with fluorescence indicator from MERCK (TLC Silica gel 60, F$_{254}$, layer thickness: 0.25 mm) were employed as stationary phase. The spots were firstly visualized by fluorescence quenching under UV-light ($\lambda = 254$ nm), fluorescence ($\lambda = 365$ nm), and afterwards by staining with Seebach reagent: solution of 2.50 g cerium(IV) sulfate tetrahydrate (Ce(SO$_4$)$_2$·4H$_2$O), 6.25 g ammonium heptamolybdate tetrahydrate (NH$_4$)$_6$Mo$_7$O$_{24}$·4H$_2$O), 225 mL water and 25.0 mL concentrated sulfuric acid or potassium permanganate: solution of 3.00 g potassium permanganate (KMnO$_4$), 20.0 g potassium carbonate (K$_2$CO$_3$) and 5.00 mL of a 5 wt.% sodium hydroxide (NaOH)-solution in 300 mL water.

Supplementary Figure 27 | ESI-MS/MS spectrum of example 3. NCE = 50 eV.
1H and 13C NMR spectra were recorded on BRUKER Avance DPX spectrometers (Billerica, MA) with a 5-mm dual proton/carbon probe (300 and 400 MHz), on a Bruker Avance III with a 5 mm z-gradient cryogenically cooled probe head (CPTCI, 600 MHz 1H/75.5 MHz) or on a 500 MHz WB Bruker Avance I spectrometer with a proton frequency of 499.97 MHz, 13C frequency of 125.72 MHz on a 8 mm TXI probe head with actively shielded z-gradients (at $\Theta =0^\circ$) and on a 4 mm triple HCX MAS probe head (at ca. $\Theta = 65^\circ$) at 298 K, regulated with a Bruker VTU-3000. Unless otherwise stated, all spectra were measured at ambient temperature. The chemical shift for 1H-NMR spectra was reported in parts per million (ppm) referenced to characteristic solvent signals of partly deuterated solvents e.g. CDCl$_3$ at 7.26 ppm or the centroid peak of the DMSO-d^6 quintet at 2.50 ppm. 13C-NMR spectra were reported in ppm relative to characteristic signals of partly deuterated solvents, e.g. the centroid peak of the CDCl$_3$ triplet at 77.00 ppm or the DMSO-d^6 septet at 39.52 ppm. All 13C spectra are decoupled from 1H signals. The signals were listed from low field (large ppm) to high filed (small ppm) with the following notation: NMR-active nucleus (frequency [MHz], deuterated solvent): δ [ppm] = chemical shift (spin multiplicity, scalar coupling constant J [Hz], integral/number of nuclei, assignment Atom position). The spin multiplicity and corresponding signal patterns were abbreviated as follows: s = singlet, d = doublet, t = triplet, q = quartet, quint. = quintet, m = multiplet, br s = brought singlet. Coupling constants J were noted in Hz. 2D NMR methods i.e. heteronuclear multiple quantum coherence (HMQC), heteronuclear single quantum coherence (HSQC), heteronuclear multiple bond correlation (HMBC), correlated spectroscopy (COSY) or nuclear overhauser enhancement spectroscopy (NOESY) were carried out, if necessary, for signal assignment and structure elucidation.

Fast-atom-bombardment (FAB) and electron ionization (EI) spectra were recorded utilizing a Finnigan MAT 95 mass spectrometer. Molecule fragmentations observed in FAB or EI measurements were formally denoted as homolytic bond cleavage to allow a simple illustration of the observed m/z species, but a radical mechanism (or formation) was not proven.

Infrared (IR) spectra were recorded on a BRUKER Alpha-p instrument applying ATR-technology. The signals were noted from large to smaller wavenumbers with the following notation: IR (Type of measurement) ν [cm$^{-1}$] = Wave number (signal intensity, molecular oscillation assignment). The signal shape and intensity is reported relative to the signal of highest intensity and was abbreviated in the following pattern: br = brought, vs = very strong, s = strong, m = medium, w = weak, vw = very weak.

GC-MS (electron impact (EI)) analyses were conducted using a Varian 431-GC instrument with a capillary column FactorFour™ VF-5ms (30 m \cdot 0.25 mm \cdot 0.25 μm) and a Varian 210-MS ion trap mass detector. Scans were performed from 40 to 650 m/z at rate of 1 scan per second. The oven temperature program applied during the analysis was: initial temperature 95 °C, hold for 1 min, ramp
at 15 °C·min⁻¹ to 200 °C, hold for 2 min., ramp at 15 °C·min⁻¹ to 300 °C, hold for 5 min. The injector transfer line temperature was set to 250 °C. Measurements were performed in the split-split mode (split ratio 50:1) using helium as carrier gas (flow rate 1.0 mL·min⁻¹).

ESI-MS and ESI-MS-MS spectra were recorded on a Q Exactive (Orbitrap) mass spectrometer (Thermo Fisher Scientific, San Jose, CA, USA) equipped with a HESI II probe to record high resolution electrospray ionization–MS (ESI-MS). Calibration was carried out in the \(m/z \) range 74–1.822 using premixed calibration solutions (Thermo Fisher Scientific). A constant spray voltage of 4.7 kV and a dimensionless sheath gas of 5 were employed. The S-lens RF level was set to 62.0, while the capillary temperature was set to 250 °C. All samples were dissolved at a concentration range of 0.05 – 0.01 mg mL⁻¹ in a mixture of THF and MeOH (3:2) doped with 100 μmol sodium trifluoroacetate and injected with a flow of 5 μL min⁻¹.
Synthetic procedures

Ugi reaction of perfluorononanoic acid, benzaldehyde, \textit{tert}-butylisocyanide and butylamine

In a 25 mL round bottom flask benzaldehyde (50.0 µL, 52.0 mg, 490 µmol, 1.30 eq.) was dissolved in 1.5 mL methanol, subsequently butylamine (48.5 µL, 35.9 mg, 490 µmol, 1.30 eq.) was added and the resulting mixture was stirred for 60 min over sodium sulfate. Afterwards, the mixture was filtrated. The solid was washed with 10 mL methanol three times. Subsequently, the filtrate was concentrated under reduced pressure. Perfluorononanoic acid (175 mg, 377 µmol, 1.00 eq.) dissolved in 1 mL methanol was added to the imine at room temperature and the resulting mixture was stirred for 2 min. Subsequently, \textit{tert}-butylisocyanide (51.2 µL, 37.6 mg, 453 µmol, 1.20 eq.) was added to the stirring mixture. The reaction was stirred for 18 h at room temperature. The crude reaction mixture was dried under reduced pressure and purified via column chromatography employing FluoroFlash® silica gel. The fluorous fraction was concentrated and the residue was adsorbed onto celite® and purified via column chromatography employing silica gel and eluting with a gradual solvent mixture of ethyl acetate and \textit{c}-hexane (0:1 → 1:1) to yield the Ugi product as a pale highly viscous oil (59.4 mg, 83.7 µmol, 22.2%).

\(R_f = 0.50 \) in \textit{c}-hexane/ethyl acetate (6:1). Visualized via fluorescent quench and Seebach staining solution.

IR (ATR): \(\nu [\text{cm}^{-1}] = 3320.6 \) (w, \(\nu(\text{N-H}) \)), 2968.3 (w, \(\nu(\text{C-H}) \)), 1675.7 (m, \(\nu(\text{C=O}) \)), 1654.1 (m, \(\nu(\text{C=O}) \)), 1553.5 (m), 1477.9 (vw), 1453.2 (w), 1429.2 (w), 1369.4 (w), 1330.5 (w), 1243.4 (m), 1202.1 (vs), 1148.3 (vs), 1111.3 (m), 987.4 (w), 968.1 (vw), 928.5 (w), 806.6 (vw), 772.64 (vw), 736.7 (w), 697.8 (w), 655.0 (m), 631.3 (m), 611.6 (w), 564.8 (w), 519.9 (s), 496.1 (w), 439.3 (vw).

\(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta [\text{ppm}] = 7.64 – 7.31 \) (m, 5 H, CH\(_{23-27}\)), 5.74 – 5.36 (m, 2 H, NH\(^5\) + CH\(^2\)), 3.78 – 3.00 (m, 2 H, CH\(_2\)), 1.47 – 1.18 (m, 9 H, CH\(_{18,28,29}\)), 1.14 – 0.96 (m, 4 H, CH\(_2\)), 0.67 (t, \(J = 7.2 \) Hz, 3 H, CH\(_3\)).

\(^13\)C NMR (101 MHz, CDCl\(_3\)): \(\delta [\text{ppm}] = 166.2 \) (s, CONR\(^4\)), 158.0 (s, CONR\(^1\)), 132.9 (s, C\(_{22}\)), 132.6 (s, CH\(_{20}\)), 128.6 (s, CH\(_{21}\)), 128.1 (s, CH\(_{21}\)), 128.1 (s, CH\(_{21}\)), 64.9 (s, CH\(^2\)), 51.2 (s, C\(^6\)), 47.2 (s, CH\(_2\)), 30.9 (s, CH\(_{20,19}\)), 27.9 (s, CH\(_{18,28,29}\)), 27.5 (s, CH\(_{18,28,29}\)), 18.9 (s, CH\(_{20,19}\)), 12.3 (s, CH\(_3\)).
\(^{19}\text{F} \text{NMR} \ (376 \text{ MHz, CDCl}_3)\): \(\delta \text{ [ppm]} = -85.11 \ (t, J = 10.3 \text{ Hz, 3 F, CF}_3^9)\), AB-signal \((\delta_A = -113.09, \delta_B = -114.08, J_{AB} = 297.4 \text{ Hz, A and B are split into } t, J = 13.1 \text{ Hz, CF}_2^{16a})\), AB-signal \((\delta_A = -115.56, \delta_B = -116.60, J_{AB} = 291.8 \text{ Hz, CF}_2^{16b}, \text{ additional coupling not resolved, signals broadened})\), -124.62 (s, CF2), -126.11 (s, CF2), -127.05 (s, CF2), -130.44 (s, CF2\(^{10}\)). Total integral of CF2 region normalized with respect to the \(\text{CF}_3^9\) group = 14.

FAB – MS \([m/z]\) (relative intensity): 709.2 (35%) \([\text{M + H}]^+\), 637.1 (40%) \([\text{Fragment A – H}]^+\), 608.1 (55%) \([\text{Fragment A – CO}]^+\), 552.1 (20%) \([\text{Fragment A – CO – C}_3\text{H}_9]^+\), 191.1 (12%), \([\text{Fragment B + H}]^+\).

HRMS – FAB \([m/z]\): \([\text{M + H}]^+\) calculated for \(^{12}\text{C}_{25}^{1}\text{H}_{26}^{16}\text{O}_2^{14}\text{N}_2^{19}\text{F}_17\), 709.1717; found, 709.1715; \(\Delta = 0.19 \text{ mmu}\).

Supplementary Figure 28 | Proposed fragments observed in FAB-MS.
Supplementary Figure 29 | 1H NMR of the title compound recorded in CDCl$_3$.

Supplementary Figure 30 | 13C NMR of the title compound recorded in CDCl$_3$.
Supplementary Figure 31 | 19F NMR of the title compound recorded in CDCl$_3$.

Supplementary Figure 32 | COSY experiment of the title compound recorded in CDCl$_3$.
Supplementary Figure 33 | Multiplicity-edited HSQC experiment of the title compound recorded in CDCl$_3$.

Supplementary Figure 34 | HMBC experiment of the title compound recorded in CDCl$_3$.

30
Ugi reaction of perfluoropentanoic acid benzaldehyde, tert-butylisocyanide and butylamine

In a 25 mL round bottom flask benzaldehyde (115 µL, 119 mg, 1.12 mmol, 1.70 eq.) was dissolved in 1.5 mL methanol, subsequently butylamine (114 µL, 82.4 mg, 1.12 mmol, 1.70 eq.) was added and the resulting mixture was stirred for 60 min over sodium sulfate. Afterwards, the mixture was filtrated and the solid was washed with 10 mL methanol three times. Subsequently, the filtrate was concentrated under reduced pressure. Perfluoropentanoic acid (175 mg, 663 µmol, 1.00 eq.) dissolved in 1 mL methanol was added to the imine at room temperature and the resulting mixture was stirred for 2 min. Subsequently, tert-butylisocyanide (127 µL, 93.7 mg, 1.12 mmol, 1.70 eq.) was added to the stirring mixture. The reaction was stirred for 3 d at room temperature. The crude reaction mixture was dried under reduced pressure and purified via column chromatography employing FluoroFlash® silica gel. The fluorous fraction was tested for purity via TLC and concentrated under reduced pressure. The remaining perfluoro acid was removed with a short silica gel filter column, eluting with c-hexane/ethyl acetate (3:1) to yield the Ugi product as a yellow powder (259 mg, 562 µmol, 85.1%).

\[R_f = 0.50 \text{ in } c\text{-hexane/ethyl acetate (5:1). Visualized via fluorescent quench and Seebach staining solution.} \]

IR (ATR): \[\nu [\text{cm}^{-1}] = 3317.9 \text{ (w, } \nu(\text{N-H)), 2963.9 \text{ (w, } \nu(\text{C-H)), 1679.7 \text{ (m, } \nu(\text{C=O)), 1654.9 \text{ (s, } \nu(\text{C=O)), 1556.6 \text{ (m, 1475.8 (w), 1454.4 (w), 1429.8 (m), 1355.4 (w), 1305.9 (w), 1233.5 (s), 1214.1 (s), 1187.4 (s), 1137.4 (s), 1125.2 (w), 1110.5 (w), 1029.5 (w), 959.2 (w), 869.7 (w), 855.6 (w), 805.5 (w), 787.1 (w), 764.8 (w), 748.8 (w), 728.1 (w), 699.2 (w), 648.3 (m), 634.3 (s), 610.4 (w), 522.6 (s), 498.2 (w), 435.9 (w).} \]

\[^{1}H \text{ NMR (400 MHz, CD}_{3}\text{OD): } \delta [\text{ppm}] = 7.67 – 7.06 \text{ (m, 5 H, CH}_{\text{Ar}}^{19-23}, 6.09 – 5.59 \text{ (m, 2 H, CH}^{2} + \text{NH}^{3}), 3.72 – 2.94 \text{ (m, 2 H, CH}_{2}^{8}), 1.33 \text{ (d, } J = 15.2 \text{ Hz, 9 H, CH}_{2}^{14,24,25}), 1.03 – 0.76 \text{ (m, 4 H, CH}_{2}^{15 +16}), 0.68 – 0.55 \text{ (m, 3 H, CH}_{3}^{17}). \]

\[^{13}C \text{ NMR (126 MHz, CD}_{3}\text{OD): } \delta [\text{ppm}] = 168.8 \text{ (s, CONR}^{4}, 158.0 \text{ (s, CONR}^{12}, 134.2 \text{ (s, C}_{\text{Ar}}^{18}, 130.2 \text{ (s, CH}_{\text{Ar}}), 129.6 \text{ (s, CH}_{\text{Ar}}), 128.9 \text{ (s, CH}_{\text{Ar}}), 128.8 \text{ (s, CH}_{\text{Ar}}), 128.6 \text{ (s, CH}_{\text{Ar}}), 64.2 \text{ (s, CH}^{2}), 51.0 \]
(s, C\(^6\)), 45.8 (s, CH\(_2\)^8), 32.1 (s, CH\(_2\)^15 or 16), 29.0 (s, CH\(_3\)^14, 24, 25), 27.3 (s, CH\(_3\)^14, 24, 25), 19.5 (s, CH\(_2\)^15 or 16), 12.3 (s, CH\(_3\)^17).

\(^{19}\text{F NMR (376 MHz, CD}_3\text{OD):} \ \delta \ [\text{ppm}] = -82.77 \ (\text{dt, } J = 23.6, 11.7 \text{ Hz, } 3 \text{ F, CF}_3^9), \ \text{AB-signal (} \delta_A = -110.63, \delta_B = -111.89, J_{AB} = 240.9 \text{ Hz, A and B are split into } t, J = 14.0 \text{ Hz, CF}_2^{12a}), \ \text{AB-signal (} \delta_A = -112.48, \delta_B = -113.57, J_{AB} = 235.3 \text{ Hz, A and B are split into } t, J = 14.4 \text{ Hz, CF}_2^{12b}), -122.01 - -122.31 \ (m, \text{ CF}_2), -124.75 \ (s, \text{ CF}_2), -125.33 \ (s, \text{ CF}_2), -125.44 \ (s, \text{ CF}_2^{10}). \ \text{Total integral of CF}_2 \ \text{region normalized with respect to the CF}_3^9 \ \text{group} = 6. \n
\text{ESI-MS \ [m/z]:} \ [M + Na]^+ \ \text{calculated for } ^{12}\text{C}_{21}^1\text{H}_{25}^{16}\text{O}_{2}^{14}\text{N}_{2}^{19}\text{F}_9^{23}\text{Na}, 531.1665; \ \text{found, } 531.1669, \ \Delta = 0.42 \ \text{mmu.} \n
\text{ESI-MS \ [m/z]:} \ [2M + Na]^+ \ \text{calculated for } ^{12}\text{C}_{42}^1\text{H}_{50}^{16}\text{O}_{4}^{14}\text{N}_{4}^{19}\text{F}_{18}^{23}\text{Na}_{2}, 1039.3437; \ \text{found, } 1039.3450, \ \Delta = 1.29 \ \text{mmu.} \n
Supplementary Figure 35 | \(^1\text{H NMR of the title compound recorded in CD}_3\text{OD.} \)
Supplementary Figure 36 | 13C NMR of the title compound recorded in CD$_3$OD.

Supplementary Figure 37 | 19F NMR of the title compound recorded in CD$_3$OD.
Supplementary Figure 38 | COSY experiment of the title compound recorded in CD$_3$OD.

Supplementary Figure 39 | Multiplicity-edited HSQC experiment of the title compound recorded in CDCl$_3$.
Ugi reaction of perfluorononoic acid, \(p \)-anisaldehyde, cyclohexylisocyanide and propargylamine

![Chemical Structure](image)

In a 25 mL round bottom flask \(p \)-anisaldehyde (77.9 µL, 87.3 mg, 641 µmol, 1.70 eq.) isobutyraldehyde and propargylamine (41.4 µL, 35.3 mg, 641 µmol, 1.70 eq.) were added. The resulting mixture was stirred for 60 min over sodium sulfate. Perfluorononoic acid (175 mg, 377 µmol, 1.00 eq.) dissolved in 0.5 mL methanol was added to the imine at room temperature and the resulting mixture was stirred for 2 min. Subsequently, cyclohexylisocyanide (79.7 µL, 70.0 mg, 641 µmol, 1.70 eq.) was added to the stirring mixture. The reaction was stirred for 3 d at room temperature. The crude reaction mixture was dried under reduced pressure and purified via column chromatography employing FluoroFlash® silica gel. The fluorous fraction was tested for purity via TLC and concentrated under reduced pressure. The remaining perfluorononoic acid was removed with a short silica gel filter column, eluting with \(\text{c}-\text{hexane/ethyl acetate} \) (3:1) to yield the Ugi product as a yellow oil (158 mg, 212 µmol, 56.3%).

\[
R_f = 0.36 \text{ in } \text{c}-\text{hexane/ethyl acetate (6:1). Visualized via fluorescent quench and Seebach staining solution.}
\]

IR (ATR): \(\nu \text{ [cm}^{-1}] = 3314.9 \text{ (m, } \nu(\text{N-H}), 2937.2 \text{ (m, } \nu(\text{C-H})), 2862.0 \text{ (w), 1687.5 (vs, } \nu(\text{C=O}), 1655.8 \text{ (vs), 1612.7 (m), 1550.2 (s), 1518.1 (s), 1440.1 (s), 1405.5 (m), 1368.2 (m), 1326.9 (m), 1307.5 (m), 1286.6 (s), 1243.1 (s), 1021.5 (s), 1150.3 (s), 1119.4 (vs), 1079.4 (vs), 1034.4 (vs), 1011.4 (vs), 986.9 (s), 939.2 (m), 894.0 (m), 874.4 (m), 838.6 (m), 776.3 (m), 755.3 (m), 736.6 (m), 707.6 (m), 653.7 (vs), 642.8 (s), 629.0 (vs), 618.8 (vs), 560.0 (s), 527.0 (vs), 441.5 (w), 424.2 (m).
\]

\(^1H \text{ NMR (500 MHz, CD}_{3}\text{OD): } \delta \text{ [ppm]} = 7.41 - 7.19 \text{ (m, } 2 \text{ H, CH}_{21,25} \text{), 7.03 - 6.81 \text{ (m, } 2 \text{ H, CH}_{22,24} \text{), 5.91 \text{ (s, } 1 \text{ H, CH}^2 \text{), 4.40 - 4.18 \text{ (m, } 2 \text{ H, CH}_2^9 \text{), 3.80 \text{ (s, } 3 \text{ H, CH}_3^{34} \text{), 3.69 \text{ (s, } 1 \text{ H, CH}^6 \text{), 3.34 - 3.25 \text{ (m, } 1 \text{ H, CH}_2^{20} \text{), 1.94 - 1.10 \text{ (m, } 10 \text{ H, CH}_2 \text{).}}
\]

\(^13C \text{ NMR (126 MHz, CD}_{3}\text{OD): } \delta \text{ [ppm]} = 173.0 \text{ (s, CONR}^4 \text{), 170.0 \text{ (s, CONR}^{28} \text{), 162.0 \text{ (s, C}^\text{Ar}^{23} \text{), 133.1 \text{ (s, C}^\text{Ar}^{21,25} \text{), 132.1 \text{ (s, C}^\text{Ar}^{2} \text{), 115.3 \text{ (s, CH}_{22,24} \text{), 61.5 \text{ (s, CH}}^2 \text{), 55.8 \text{ (s, CH}_3^{34} \text{), 50.0 \text{ (s, CH}^6 \text{ or CH}_{20} \text{), 50.0 \text{ (s, CH}^6 \text{ or CH}_{20} \text{), 36.9 \text{ (s, CH}_2^9 \text{), 33.5 \text{ (s, CH}_2 \text{), 33.5 \text{ (s, CH}_2 \text{), 27.0 \text{ (s, CH}_2 \text{), 26.6 \text{ (s, CH}_2 \text{), 26.0 \text{ (s, CH}_2 \text{).}}
\]
19F NMR (376 MHz, CD$_3$OD): δ [ppm] = -88.24 (t, $J = 10.3$ Hz, 3 F, CF$_3^{10}$), AB-signal ($\delta_A = -116.45$, $\delta_B = -117.92$, $J_{AB} = 301.2$ Hz, A and B are split into t, additional coupling not resolved, signals broadened, CF$_2^{17a}$), AB-signal ($\delta_A = -117.79$, $\delta_B = -119.06$, $J_{AB} = 293.6$ Hz, A and B are split into t, additional coupling not resolved, signals broadened, CF$_2^{17b}$), -126.39 – -127.61 (m, CF$_2$), -128.66 (s, CF$_2$), -129.62 (s, CF$_2$), -133.16 (s, CF$_2^{11}$). Total integral of CF$_2$ region normalized with respect to the CF$_3^{10}$ group = 14.

FAB – MS [m/z] (relative intensity): 747.2 (25%) [M – H]$^+$, 621.0 (30%) [Fragment A + H]$^+$, 620.0 (45%) [Fragment A]$^+$, 582.0 (34%) [Fragment A + H – C$_3$H$_3$]$^+$, 247.1 (33%) [Fragment B + H]$^+$.

HRMS – FAB [m/z]: [M + H]$^+$ calculated for 12C$_{27}$H$_{24}$O$_3^{16}$N$_2^{19}$F$_{17}$, 747.1510; found, 747.1509; $\Delta = 0.06$ mmu.

Supplementary Figure 40 | Proposed fragments observed in FAB-MS.
Supplementary Figure 41 | 1H NMR of the title compound recorded in CD$_2$OD.

Supplementary Figure 42 | 13C NMR of the title compound recorded in CD$_2$OD.
Supplementary Figure 43 | 19F NMR of the title compound recorded in CD$_3$OD.

Supplementary Figure 44 | COSY experiment of the title compound recorded in CD$_3$OD.
Supplementary Figure 45 | Multiplicity-edited HSQC experiment of the title compound recorded in CDCl$_3$.

Supplementary Figure 46 | HMBC experiment of the title compound recorded in CDCl$_3$.
In a 25 mL round bottom flask \(p\)-anisaldehyde (77.9 \(\mu\)L, 87.3 mg, 641 \(\mu\)mol, 1.70 eq.) and allylamine (48.1 \(\mu\)L, 36.6 mg, 641 \(\mu\)mol, 1.70 eq.) were added. The resulting mixture was stirred for 60 min over sodium sulfate. Perfluorononanoic acid (175 mg, 377 \(\mu\)mol, 1.00 eq.) dissolved in 0.5 mL methanol was added to the solution at room temperature and the resulting mixture was stirred for 2 min. Subsequently, cyclohexylisocyanide (79.7 \(\mu\)L, 70.0 mg, 641 \(\mu\)mol, 1.70 eq.) was added to the stirring mixture. The reaction was stirred for 3 d at room temperature. The crude reaction mixture was dried under reduced pressure and purified via column chromatography employing FluoroFlash® silica gel. The fluorous fraction was tested for purity via TLC and concentrated under reduced pressure. The remaining perfluorononanoic acid was removed with a short silica gel filter column, eluting with \(c\)-hexane/ethyl acetate (3:1) to yield the Ugi product as a yellow oil (193 mg, 259 \(\mu\)mol, 68.9%).

\[R_f = 0.43 \text{ in } c\text{-hexane/ethyl acetate (6:1). Visualized via fluorescent quench and Seebach staining solution.} \]

IR (ATR): \(\nu [\text{cm}^{-1}] = 3286.2 \text{ (br, } \nu(\text{N-H})) \), 3083.6 (w), 2926.3 (m, \(\nu(\text{C-H}) \)), 2849.5 (m), 1675.0 (s, \(\nu(\text{C=O}) \)), 1555.6 (s), 1515.9 (s), 1417.2 (m), 1369.6 (m), 1330.1 (w), 1308.9 (w), 1248.4 (w), 1195.6 (s), 1143.4 (vs), 1116.4 (vs), 1042.2 (s), 989.9 (m), 943.3 (m), 927.1 (m), 889.1 (m), 863.4 (m), 840.1 (m), 805.7 (m), 760.8 (m), 716.6 (m), 681.4 (m), 649.5 (m), 633.9 (m), 615.3 (m), 564.7 (m), 549.9 (s), 519.5 (s), 481.4 (s), 450.5 (w).

\(^{1}\)H NMR (400 MHz, CD\(_{3}\)OD): \(\delta [\text{ppm}] = 7.30 – 7.22 \text{ (m, } 2 \text{ H, CH}\text{_}25,32 \), 6.97 – 6.89 (m, 2 H, CH\(_{\text{Ar}}\)22,24 \), 5.90 (s, 1 H, CH\(_2\) \), 5.85 – 5.75 (m, 2 H, CH\(_2\)33 \), 5.45 – 5.04 (m, 1 H, CH\(_19\) \), 4.81 – 4.58 (m, 2 H, CH\(_3\) \), 3.79 (s, 3 H, CH\(_3\)35 \), 3.77 – 3.60 (m, 1 H, CH\(_6\) \), 1.95 – 1.01 (m, 10 H, CH\(_2\) \).

\(^{13}\)C NMR (126 MHz, CD\(_{3}\)OD): \(\delta [\text{ppm}] = 173.0 \text{ (s, CONR}^4 \), 170.2 (s, C\(_{\text{Ar}}\)23 \), 162.0 (s, CONR)18 \), 135.2 (s C\(_{\text{Ar}}\)8 \), 133.2 (s, CH\(_19\) \), 132.3 (s, CH\(_{\text{Ar}}\)25,32 \), 116.6 (s, CH\(_3\) \), 115.2 (s, C\(_{\text{Ar}}\)22,24 \), 65.0 (s, CH\(_2\) \), 61.5 (s, CH\(_3\)33 \), 55.8 (s, CH\(_3\)35 \), 50.1 (s, CH\(_6\) \), 33.6 (s, CH\(_2\) \), 33.5 (s, CH\(_3\) \), 26.6 (s, CH\(_2\) \), 26.0 (s, CH\(_2\) \), 20.9 (s, CH\(_2\) \).

\(^{19}\)F NMR (376 MHz, CD\(_{3}\)OD): \(\delta [\text{ppm}] = -88.26 \text{ (t, } J = 10.5 \text{ Hz, } 3 \text{ F, CF}_3\text{_}16 \), AB-signal (\(\delta_A = -116.14 \), \(\delta_B = -117.58 \), \(J_{\text{AB}} = 299.3 \text{ Hz, } J_{\text{AB}} = 297.4 \text{ Hz, A and B are split into t, } J = 12.3 \text{ Hz, CF}_2\text{_}17\text{a} \), AB-signal
(δ_A = 117.23, δ_B = -118.91, J_{AB} = 295.5 Hz, A and B are split into t, J = 12.6 Hz, CF_2^{17b}), -126.44 (s, CF_2), -126.96 – -127.37 (m, CF_2), -128.69 (s, CF_2), -129.65 (s, CF_2), -133.16(s, CF_2^{11}). Total integral of CF_2 region normalized with respect to the CF_3^{10} group = 14.

FAB – MS [m/z] (relative intensity): 749.1 (25%) [M + H]^+, 622.0 (68%) [Fragment A]^+, 582.0 (52%) [Fragment A + H – C_3H_5]^+, 247.1 (28%) [Fragment B + H]^+.

HRMS – FAB [m/z]: [M + H]^+ calculated for^{12}C_{27}^{1}H_{26}^{16}O_{3}^{14}N_{2}^{19}F_{17}, 749.1665; found, 749.1666; Δ = 0.18 mmu.

Supplementary Figure 47 | Proposed fragments observed in FAB-MS.

Supplementary Figure 48 | ^1H NMR of the title compound recorded in CD$_3$OD.
Supplementary Figure 49 | 13C NMR of the title compound recorded in CD$_3$OD.

Supplementary Figure 50 | 19F NMR of the title compound recorded in CD$_3$OD.
Supplementary Figure 51 | COSY experiment of the title compound recorded in CD$_3$OD.

Supplementary Figure 52 | Multiplicity-edited HSQC experiment of the title compound recorded in CDCl$_3$.
Ugi reaction of perfluorononanoic acid, benzaldehyde, cyclohexylisocyanide and propargylamine

In a 25 mL round bottom flask benzaldehyde (65.4 µL, 68.0 mg, 641 µmol, 1.70 eq.) and propargylamine (41.4 µL, 35.3 mg, 641 µmol, 1.70 eq.) were added. The resulting mixture was stirred for 60 min over sodium sulfate. Perfluorononanoic acid (175 mg, 377 µmol, 1.00 eq.) dissolved in 0.5 mL methanol was added to the solution at room temperature and the resulting mixture was stirred for 2 min. Subsequently, cyclohexylisocyanide (79.7 µL, 70.0 mg, 641 µmol, 1.70 eq.) was added to the stirring mixture. The reaction was stirred for 3 d at room temperature. The crude reaction mixture was dried under reduced pressure and purified via column chromatography employing FluoroFlash® silica gel. The fluorous fraction was tested for purity via TLC and concentrated under reduced pressure. The remaining perfluorononanoic acid was removed with a short silica gel filter column, eluting with c-hexane/ethyl acetate (3:1) to yield the Ugi product as a yellow oil (41.3 mg, 57.8 µmol, 15.3%).

$R_f = 0.43$ in c-hexane/ethyl acetate (6:1). Visualized via fluorescent quench and Seebach staining solution.

IR (ATR): ν [cm$^{-1}$] = 3292.6 (m, ν(N-H)), 2937.3 (m, ν(C-H)), 2857.2 (w, ν(C-H)), 1681.4 (s, ν(C=O)), 1645.5 (m, ν(N-H)), 1549.9 (m), 1494.1 (w), 1456.2 (m), 1421.6 (m), 1365.9 (m), 1329.4 (m), 1202.6 (vs), 1147.9 (vs), 1081.6 (m), 1029.4 (s), 1002.3 (m), 940.7 (m), 926.3 (m), 895.4 (w), 870.3 (w), 805.7 (m), 789.9 (m), 769.1 (s), 744.5 (s), 699.2 (vs), 669.8 (s), 633.2 (s), 559.7 (s), 520.3 (vs), 464.3 (w).

1H NMR (500 MHz, CD$_3$OD): δ [ppm] = 7.40 (s, 5 H, CH$_{Ar}^{22-26}$), 5.99 (s, 1 H, CH$_2$), 4.52 – 4.20 (m, 2 H, CH$_2$), 4.09 – 3.85 (m, 1 H, CH$_6$), 3.77 – 3.53 (m, 1 H, CH$_{20}$), 1.92 – 1.54 (m, 4 H, CH$_2$), 1.40 – 1.06 (m, 6 H, CH$_2$).

13C NMR (126 MHz, CD$_3$OD): δ [ppm] = 169.6 (s, CONR$_4$), 157.5 (s, CONR$_{18}$), 131.7 (s, C$_{Ar}$), 130.7 (s, CH$_{Ar}$), 130.3 (s, CH$_{Ar}$), 130.0 (s, CH$_{Ar}$), 64.2 (s, CH$_2$), 53.4 (s, CH$_6$), 50.0 (s, CH$_{20}$), 36.6 (s, CH$_2$), 33.5 (s, CH$_2$), 33.4 (s, CH$_2$), 27.0 (s, CH$_2$), 26.6 (s, CH$_2$), 26.0 (s, CH$_2$).
$^{19}\text{F NMR (376 MHz, CD}_3\text{OD): } \delta \text{ [ppm]} = -88.26 \text{ (t, } J = 10.2 \text{ Hz, 3 F, CF}_3^{10}), \text{ AB-signal (}\delta_A = -116.51, \delta_B = -117.81, J_{AB} = 301.2 \text{ Hz, A and B are split into t, CF}_2^{17a}, \text{ additional coupling not resolved, signals broadened), AB-signal (}\delta_A = -117.81, \delta_B = -119.02, J_{AB} = 295.5 \text{ Hz, A and B are split into t, CF}_2^{17b}, \text{ additional coupling not resolved, signals broadened), -126.28 - -127.72 (m, CF}_2, -128.68 \text{ (s, CF}_2, -129.64 \text{ (s, CF}_2, -133.18 \text{ (s, CF}_2^{11}). \text{ Total integral of CF}_2 \text{ region normalized with respect to the CF}_3^{10} \text{ group} = 14.}$

FAB – MS [m/z] (relative intensity): 717.2 (87%) [M + H]$^+$, 591.0 (17%) [Fragment A + H]$^+$, 590.0 (60%) [Fragment A$^+$, 552.0 (15%) [Fragment A + H – C$_3$H$_3]^+$, 217.1 (23%) [Fragment B + H]$^+$.

HRMS – FAB [m/z]: [M + H]$^+$ calculated for 12C$_{26}^{1}$H$_{22}^{16}$O$_2^{14}$N$_2^{15}$F$_{17}$, 717.1403; found, 717.1404; $\Delta = 0.11$ mmu.

Supplementary Figure 53 | Proposed fragments observed in FAB-MS.
Supplementary Figure 54 | 1H NMR of the title compound recorded in CD$_3$OD.

Supplementary Figure 55 | 1H NMR of the title compound recorded in CD$_3$OD.
Supplementary Figure 56 | 19F NMR of the title compound recorded in CD$_3$OD.

Supplementary Figure 57 | COSY experiment of the title compound recorded in CD$_3$OD.
Supplementary Figure 58 | Multiplicity-edited HSQC experiment of the title compound recorded in CD$_3$OD.

Supplementary Figure 59 | HMBC experiment of the title compound recorded in CD$_3$OD.
Ugi reaction of perfluorononanoic acid, benzaldehyde, cyclohexylisocyanide and octylamine

In a 25 mL round bottom flask benzaldehyde (65.4 µL, 68.0 mg, 641 µmol, 1.70 eq.) and octylamine (106 µL, 82.9 mg, 641 µmol, 1.70 eq.) were added. The resulting mixture was stirred for 60 min over sodium sulfate. Perfluorononanoic acid (175 mg, 377 µmol, 1.00 eq.) dissolved in 0.5 mL methanol was added to the solution at room temperature and the resulting mixture was stirred for 2 min. Subsequently, cyclohexylisocyanide (79.7 µL, 70.0 mg, 641 µmol, 1.70 eq.) was added to the stirring mixture. The reaction was stirred for 3 d at room temperature. The crude reaction mixture was dried under reduced pressure and purified via column chromatography employing FluoroFlash® silica gel. The fluoruous fraction was tested for purity via TLC and concentrated under reduced pressure. The remaining perfluorononanoic acid was removed with a short silica gel filter column, eluting with c-hexane/ethyl acetate (3:1) to yield the Ugi product as a yellow oil (41.8 mg, 52.8 µmol, 14.0%).

\[R_f = 0.36 \] in c-hexane/ethyl acetate (6:1). Visualized via fluorescent quench and Seebach staining solution.

IR (ATR): \(\nu [\text{cm}^{-1}] = 2924.8 \, (s, \nu(C=H)), 2853.3 \, (s, \nu(C=H)), 1768.8 \, (w, \nu(C=O)), 1712.5 \, (s, \nu(C=O)), 1646.9 \, (s, \nu(C=O)), 1450.9 \, (m), 1375.6 \, (m), 1240.5 \, (s), 1150.2 \, (m), 753.2 \, (s), 496.5 \, (w). \)

\[\delta [\text{ppm}] = 6.99 - 6.90 \, (m, 5 \, H, \text{CH}_2_{25-26}), 4.30 \, (s, 1 \, H, \text{CH}^2), 3.26 - 3.08 \, (m, 3 \, H, \text{CH}^6 + \text{CH}_2^9), 1.28 - 1.16 \, (m, 4 \, H, \text{CH}_2), 0.96 - 0.68 \, (m, 16 \, H, \text{CH}_2), 0.49 - 0.28 \, (m, 3 \, H, \text{CH}_3^{28}). \]

\[\delta [\text{ppm}] = 171.6 \, (s, \text{CONR}^4), 160.8 \, (s, \text{CONR}^{16}), 136.5 \, (s, \text{CA}^8), 128.1 \, (s, \text{CH}_2), 127.4 \, (s, \text{CH}_2), 65.5 \, (s, \text{CH}^3), 63.4 \, (s, \text{CH}_2), 62.0 \, (s, \text{CH}^6), 32.0 \, (s, \text{CH}_2), 31.1 \, (s, \text{CH}_3), 29.8 \, (s, \text{CH}_2), 29.6 \, (s, \text{CH}_2), 29.4 \, (s, \text{CH}_2), 27.5 \, (s, \text{CH}_2), 26.8 \, (s, \text{CH}_2), 25.2 \, (s, \text{CH}_2), 22.8 \, (s, \text{CH}_2), 14.2 \, (s, \text{CH}_3^8). \]

\[\delta [\text{ppm}] = -85.11 \, (t, J = 9.0 \, Hz, 3 \, F, \text{CF}_3^{10}), \text{AB-signal} \, (\delta_A = -112.92, \delta_B = -114.05, J_{AB} = 295.5 \, Hz, \text{A and B are split into t, CF}_2^{17a}, \text{additional coupling not resolved, signals} \]
broadened), AB-signal ($\delta_A = -115.47$, $\delta_B = -116.59$, $J_{AB} = 291.8$ Hz, A and B are split into t, CF$_2^{17b}$, additional coupling not resolved, signals broadened), -123.73 – -124.95 (m, CF$_2$), -126.12 (s, CF$_2$), -127.05 (s, CF$_2$), -130.46 (s, CF$_2^{11}$). Total integral of CF$_2$ region normalized with respect to the CF$_3^{10}$ group = 14.

FAB – MS [m/z] (relative intensity): 791.3 (40%) [M + H]$^+$, 552.0 (22%) [Fragment A + H]$^+$, 118.0 (23%) [Fragment B – H]$^+$, 98.0 (31%) [Fragment C]$^+$.

HRMS – FAB [m/z]: [M + H]$^+$ calculated for 12C$_{31}^{1}$H$_{36}^{16}$O$_{2}^{14}$N$_{2}^{19}$F$_{17}$, 797.2500; found, 791.2501; $\Delta = 0.14$ mmu.

Supplementary Figure 60 | Proposed fragments observed in FAB-MS.
Supplementary Figure 61 | 1H NMR of the title compound recorded in CDCl$_3$.

Supplementary Figure 62 | 13C NMR of the title compound recorded in CDCl$_3$.
Supplementary Figure 63 | 19F NMR of the title compound recorded in CDCl$_3$.

Supplementary Figure 64 | COSY experiment of the title compound recorded in CDCl$_3$.
Supplementary Figure 65 | Multiplicity-edited HSQC experiment of the title compound recorded in CDCl₃.

Supplementary Figure 66 | HMBC experiment of the title compound recorded in CDCl₃.
Ugi reaction of pfluorononoic acid, p-anisaldehyde, 4-methoxyphenyl-isocyanide and propargylamine

In a 25 mL round bottom flask p-anisaldehyde (77.9 µL, 87.3 mg, 641 µmol, 1.70 eq.) and propargylamine (41.1 µL, 35.3 mg, 641 µmol, 1.70 eq.) were added. The resulting mixture was stirred for 60 min over sodium sulfate. Perfluorononoic acid (175 mg, 377 µmol, 1.00 eq.) dissolved in 0.5 mL methanol was added to the solution at room temperature and the resulting mixture was stirred for 2 min. Subsequently, 4-methoxyphenyl-isocyanide (85.4 mg, 641 µmol, 1.70 eq.) was added to the stirring mixture. The reaction was stirred for 3 d at room temperature. The crude reaction mixture was dried under reduced pressure and purified via column chromatography employing FluoroFlash® silica gel. The fluorous fraction was tested for purity via TLC and concentrated under reduced pressure. The remaining perfluorononoic acid was removed with a short silica gel filter column, eluting with c-hexane/ethyl acetate (3:1) to yield the Ugi product as a yellow oil (190 mg, 247 µmol, 65.4%).

$R_f = 0.30$ in c-hexane/ethyl acetate (4:1). Visualized via fluorescent quench and Seebach staining solution.

IR (ATR): ν [cm$^{-1}$] = 3299.7 (br, ν(N-H)), 1680.0 (s, ν(C=O)), 1656.2 (s), 1606.8 (m), 1549.2 (m), 1510.5 (vs), 1462.2 (m), 1418.1 (m), 1300.9 (m), 1202.6 (vs), 1143.7 (vs), 1034.2 (s), 1004.1 (m), 945.7 (m), 828.0 (s), 781.1 (m), 719.5 (m), 657.6 (s), 632.1 (s), 526.1 (s), 441.3 (w).

1H NMR (400 MHz, CDCl$_3$): δ [ppm] = 7.59 – 7.29 (m, 4 H, CH$_{Ar}^{25,32,28,33}$), 6.93 (d, $J = 8.7$ Hz, 2 H, CH$_{Ar}^{22,24}$ or $29,31$), 6.81 (d, $J = 8.4$ Hz, 2 H, CH$_{Ar}^{22,24}$ or $29,31$), 6.00 (s, 1 H, CH$_{2}$), 4.45-4.32 (m, 2 H, CH$_{2}$), 3.89 (s, 1 H, CH$_{2}$), 3.83 (s, 3 H, CH$_{3}$), 3.77 (s, 3 H, CH$_{3}$ 27 or 35), 3.77 (s, 3 H, CH$_{3}$ 27 or 35).

13C NMR (101 MHz, CDCl$_3$): δ [ppm] = 171.4 (s, CONR$_4$), 166.2 (s, CONR$_8$), 160.8 (s, C$_{Ar}^{23}$ or 30), 156.9 (s, C$_{Ar}^{23}$ or 30), 132.0 (s, C$_{Ar}^{25,32}$ or 28,33), 130.3 (s, C$_{Ar}^{8}$), 123.9 (s, C$_{Ar}^{6}$), 122.0 (s, C$_{Ar}^{25,32}$ or 28,33), 114.8 (s, C$_{Ar}^{22,24}$ or 29,31), 114.3 C$_{Ar}^{22,24}$ or 29,31), 64.0 (s, CH$_{2}$), 55.6 (s, CH$_{3}$), 55.5 (s, CH$_{3}$ 27 or 3), 36.0 (s, CH$_{2}$).
\[^{19}\text{F NMR} \ (376 \text{ MHz, CDCl}_3): \delta \ [\text{ppm}] = -85.13 \ (t, J = 9.9 \text{ Hz, } 3 \text{ F, CF}_3^{10}), \text{AB-signal} \ (\delta_A = -113.30, \delta_B = -114.73, J_{AB} = 299.3 \text{ Hz, additional coupling not resolved, signals broadened, CF}_2^{17a}), \text{AB-signal} \ (\delta_A = -115.21, \delta_B = -116.14, J_{AB} = 293.6 \text{ Hz, additional coupling not resolved, signals broadened, CF}_2^{17b}), -124.78 \ (s, \text{ CF}_2), -126.13 \ (s, \text{ CF}_2), -127.07 \ (s, \text{ CF}_2), -130.46 \ (s, \text{ CF}_2^{17}). \text{ Total integral of CF}_2 \text{ region normalized with respect to the CF}_3^{10} \text{ group} = 14. \]

\[^{19}\text{F FAB – MS} \ [m/z] \ (\text{relative intensity}): \ 771.2 \ (33\%) \ [\text{M + H}]^+, 770.1 \ (65\%) \ [\text{M}]^+, 620.1 \ (65\%) \ [\text{Fragment A}]^+, 271.1 \ (33\%) \ [\text{Fragment B + H}]^+. \]

\[^{19}\text{HRMS – FAB} \ [m/z]: \ [\text{M}]^+ \text{ calculated for } ^{12}\text{C}_{28}^{15}\text{H}_{19}^{16}\text{O}_{4}^{14}\text{N}_{2}^{19}\text{F}_{17}, \ 770.1068; \text{ found, } 770.1070; \Delta = 0.22 \text{ mmu.} \]

\[
\begin{align*}
\text{Chemical Formula: } & C_{20}H_{11}F_{17}NO_2^+ \\
\text{Exact Mass: } & 620,05183 \\
\text{Fragment A}
\end{align*}
\]

\[
\begin{align*}
\text{Chemical Formula: } & C_{19}H_{16}NO_3^+ \\
\text{Exact Mass: } & 270,11302 \\
\text{Fragment B}
\end{align*}
\]

Supplementary Figure 67 | Proposed fragments observed in FAB-MS.
Supplementary Figure 68 | 1H NMR of the title compound recorded in CDCl$_3$.

Supplementary Figure 70 | 13C NMR of the title compound recorded in CDCl$_3$.
Supplementary Figure 71 | 19F NMR of the title compound recorded in CDCl$_3$.

Supplementary Figure 72 | COSY experiment of the title compound recorded in CDCl$_3$.
Supplementary Figure 73 | Multiplicity-edited HSQC experiment of the title compound recorded in CDCl₃.

Supplementary Figure 74 | HMBC experiment of the title compound recorded in CDCl₃.
Ugi reaction of perfluorononanoic acid, \(p \)-anisaldehyde, 2,6-dimethylphenyl-isocyanide and propargylamine

In a 25 mL round bottom flask \(p \)-anisaldehyde (77.9 µL, 87.3 mg, 641 µmol, 1.70 eq.) and propargylamine (41.1 µL, 35.3 mg, 641 µmol, 1.70 eq.) were added. The resulting mixture was stirred for 60 min over sodium sulfate. Perfluorononanoic acid (175 mg, 377 µmol, 1.00 eq.) dissolved in 0.5 mL methanol was added to the solution at room temperature and the resulting mixture was stirred for 2 min. Subsequently, 2,6-dimethylphenyl-isocyanide (84.1 mg, 641 µmol, 1.70 eq.) was added to the stirring mixture. The reaction was stirred for 3 d at room temperature. The crude reaction mixture was dried under reduced pressure and purified via column chromatography employing FluoroFlash® silica gel. The fluorous fraction was tested for purity via TLC and concentrated under reduced pressure. The remaining perfluorononanoic acid was removed with a short silica gel filter column, eluting with \(c \)-hexane/ethyl acetate (3:1) to yield the Ugi product as a yellow oil (114 mg, 149 µmol, 39.5%).

\[R_f = 0.30 \text{ in } c \text{-hexane/ethyl acetate (4:1). Visualized via fluorescent quench and Seebach staining solution.} \]

IR (ATR): \(\nu [\text{cm}^{-1}] = 3330.2 \text{ (m, } \nu(\text{N-H}), 1694.4 \text{ (m), 1665.2 (s), 1609.3 (w), 1534.7 (m), 1513.8 (m), 1426.0 (w), 1362.7 (w), 1205.8 (w), 1178.3 (vs), 1144.8 (vs), 1109.7 (vs), 1072.8 (s), 1027.5 (m), 1003.6 (s), 937.2 (s), 920.3 (m), 831.6 (m), 802.9 (m), 771.0 (m), 765.8 (m), 703.0 (s), 663.7 (vs), 633.2 (s), 597.1 (m), 559.7 (m), 525.1 (s), 444.7 (w). \]

\(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta [\text{ppm}] = 7.51 \text{ (d, } J = 9.5 \text{ Hz, 2 H, CH}_2^{25,32}, 7.11 – 7.01 \text{ (m, 3 H, CH}_2^{29,30,31}), 6.97 \text{ (d, } J = 8.7 \text{ Hz, 2 H, CH}_2^{22,24}, 5.99 \text{ (s, 1 H, CH}_2^2, 4.32 \text{ (s, 2 H, CH}_2^5, 3.85 \text{ (s, 3 H, CH}_3^{27}), 2.16 \text{ (s, 6 H, CH}_3^{24,35}). \)

\(^{13}\)C NMR (101 MHz, CDCl\(_3\)): \(\delta [\text{ppm}] = 166.7 \text{ (s, CONR}^4\), 160.9 \text{ (s, C}_Ar^{23}, 136.5 \text{ (s, C}_Ar^8 \text{ or } 6, 132.2 \text{ (s, CH}_2^{25,32}, 128.4 \text{ (s, CH}_2^8 \text{ or } 6, 127.8 \text{ (s, CH}_2^{29,30,31}, 114.7 \text{ (s, CH}_Ar^{22,24}, 55.5 \text{ (CH}_3^{27), 36.0 \text{ (s, CH}_2^5), 18.6 \text{ (CH}_3^{24,35}). \)
19F NMR (376 MHz, CDCl$_3$): δ [ppm] = -85.10 (t, J = 9.9 Hz, 3 F, CF$_3$), AB-signal (δ_A = -112.63, δ_B = -114.35, J_{AB} = 297.4 Hz, additional coupling not resolved, signals broadened, CF$_2^{17a}$), AB-signal (δ_A = -115.23, δ_B = -116.38, J_{AB} = 293.6 Hz, additional coupling not resolved, signals broadened, CF$_2^{17b}$), -124.82 (s, CF$_2$), -126.13 (s, CF$_2$), -127.06 (s, CF$_2$), -130.44 (s, CF$_2^{17}$). Total integral of CF$_2$ region normalized with respect to the CF$_3$ group = 14.

FAB – MS [m/z] (relative intensity): 769.1 (60%) [M + H]$^+$, 620.1 (85%) [Fragment A]$^+$.

HRMS – FAB [m/z]: [M]$^+$ calculated for 12C$_{29}$H$_{22}$O$_5$N$_2^{19}$F$_{17}$, 769.1353; found, 769.1355; Δ = 0.18 mmu.

Supplementary Figure 75 | Proposed fragments observed in FAB-MS.
Supplementary Figure 76 | 1H NMR of the title compound recorded in CDCl$_3$.

Supplementary Figure 77 | 13C NMR of the title compound recorded in CDCl$_3$.
Supplementary Figure 78 | 19F NMR of the title compound recorded in CDCl$_3$.

Supplementary Figure 79 | COSY experiment of the title compound recorded in CDCl$_3$.
Supplementary Figure 80 | Multiplicity-edited HSQC experiment of the title compound recorded in CDCl$_3$.

Supplementary Figure 81 | HMBC experiment of the title compound recorded in CDCl$_3$.

63
Ugi reaction of perfluorononanoic acid, *p*-anisaldehyde, cyclohexylisocyanide and heptylamine

In a 25 mL round bottom flask *p*-anisaldehyde (77.9 µL, 87.3 mg, 641 µmol, 1.70 eq.) and heptylamine (95.0 µL, 73.8 mg, 641 µmol, 1.70 eq.) were mixed. The resulting mixture was stirred for 60 min over sodium sulfate. Perfluorononanoic acid (175 mg, 377 µmol, 1.00 eq.) dissolved in 0.5 mL methanol was added to the solution at room temperature and the resulting mixture was stirred for 2 min. Subsequently, cyclohexylisocyanide (79.9 µL, 70.0 mg, 641 µmol, 1.70 eq.) was added to the stirring mixture. The reaction was stirred for 3 d at room temperature. The crude reaction mixture was dried under reduced pressure and purified via column chromatography employing FluoroFlash® silica gel. The fluorous fraction was tested for purity via TLC and concentrated under reduced pressure. The remaining perfluorononanoic acid was removed with a short silica gel filter column, eluting with *c*-hexane/ethyl acetate (3:1) to yield the Ugi product as a yellow oil (76.9 mg, 95.4 µmol, 25.3%).

$R_t = 0.36$ in *c*-hexane/ethyl acetate (4:1). Visualized via fluorescent quench and Seebach staining solution.

IR (ATR): ν [cm$^{-1}$] = 3295.4 (br, ν(N-H)), 2927.7 (m, ν(C-H)), 2853.7 (w, ν(C-H)), 1675.3 (s, ν(C=O)), 1645.9 (vs, ν(C=O)), 1612.2 (w), 1555.6 (m), 1513.0 (m), 1437.6 (w), 1200.7 (vs), 1144.6 (vs), 1028.7 (m), 977.1 (m), 918.3 (w), 822.1 (m), 773.1 (m), 703.4 (m), 662.7 (m), 561.6 (m), 527.0 (s), 443.0 (w).

1H NMR (400 MHz, CDCl$_3$): δ [ppm] = 7.33 (d, $J = 8.7$ Hz, 2 H, CH$_{25,32}$), 6.91 (d, $J = 8.8$ Hz, 2 H, CH$_{Ar^{22,24}}$), 5.54 (s, 1 H, CH$_2$), 3.83 (s, 3 H, OCH$_3$), 3.81 – 3.75 (m, 1 H, CH$_6$), 3.38 (s, 2 H, CH$_2$), 1.94 – 1.84 (m, 2 H, CH$_2$), 1.69 – 1.55 (m, 4 H, CH$_2$), 1.38 – 0.94 (m, 16 H, CH$_2$), 0.83 (t, $J = 7.2$ Hz, 3 H, CH$_3$).

13C NMR (101 MHz, CDCl$_3$): δ [ppm] = 167.4 (s, CONR$_4$), 160.3 (s, CA$_{23}$), 159.0 (s, CONR$_{10}$), 131.3 (s, CH$_{Ar^{23,32}}$), 125.5 (s, CA$_8$), 114.6 (s, CA$_{22,24}$), 64.8 (s, CH$_2$), 55.5 (s, OCH$_3$), 48.9 (s, CH$_6$), 47.5
(s, \text{CH}_2^9), 32.8 \text{ (s, CH}_2), 31.7 \text{ (s, CH}_2), 30.0 \text{ (s, CH}_2), 28.6 \text{ (s, CH}_2), 27.1 \text{ (s, CH}_2), 26.7 \text{ (s, CH}_2), 25.6 \text{ (s, CH}_2), 24.9 \text{ (s, CH}_2), 22.6 \text{ (s, CH}_2), 14.1 \text{ (s, CH}_3^{17}).

^{19}\text{F NMR (376 MHz, CDCl}_3\text{): } \delta \text{ [ppm]} = -85.11 \text{ (t, J = 9.9 Hz, 3 F, CF}_3^{10}), \text{ AB-signal (} \delta_A = -112.88, \delta_B = -114.15, J_{AB} = 295.5 \text{ Hz, A and B are split into t, J = 13.3 Hz, CF}_2^{17a}), \text{ AB-signal (} \delta_A = -115.47, \delta_B = -116.63, J_{AB} = 291.8 \text{ Hz, A and B are split into t, J = 13.7 Hz, CF}_2^{17b}), \text{ -123.87 – 125.00 (m, CF}_2\text{), -126.13 (s, CF}_2\text{), -127.06 (s, CF}_2\text{), -130.45 (s, CF}_2^{17}). \text{ Total integral of CF}_2 \text{ region normalized with respect to the CF}_3^{10} \text{ group = 14.}

\text{FAB – MS [m/z] (relative intensity): 807.3 (25\%) [M + H]^+, 708.1 (23\%) [Fragment A +H]^+, 681.2 [Fragment B +H]^+}.

\text{HRMS – FAB [m/z]: [M + H]^+ calculated for C}_{31}^{12}H_{36}^{16}O_{3}^{14}N_{2}^{19}F_{17}, 807.2449; found, 807.2449; \Delta = 0.03 \text{ mmu.}

\begin{align*}
\text{Chemical Formula: C}_{24}^{14}H_{23}^{18}F_{17}N_{2}O_{3}^{19}^+ \\
\text{Exact Mass: 680,14573} \\
\text{Fragment B}
\end{align*}

\begin{align*}
\text{Chemical Formula: C}_{24}^{14}H_{20}^{17}N_{2}O_{3}^{19}^+ \\
\text{Exact Mass: 707,12025} \\
\text{Fragment A}
\end{align*}

Supplementary Figure 82 | Proposed fragments observed in FAB-MS.
Supplementary Figure 83 | 1H NMR of the title compound recorded in CDCl$_3$.

Supplementary Figure 84 | 13C NMR of the title compound recorded in CDCl$_3$.
Supplementary Figure 85 | 19F NMR of the title compound recorded in CDCl$_3$.

Supplementary Figure 86 | COSY experiment of the title compound recorded in CDCl$_3$.

67
Supplementary Figure 87 | Multiplicity-edited HSQC experiment of the title compound recorded in CDCl₃.

Supplementary Figure 88 | HMBC experiment of the title compound recorded in CDCl₃.
Ugi reaction of perfluorononanoic acid, p-anisaldehyde, ethyl-2-isocyanoacetate and propargylamine

In a 25 mL round bottom flask p-anisaldehyde (77.9 µL, 87.3 mg, 641 µmol, 1.70 eq.) and propargylamine (41.1 µL, 35.3 mg, 641 µmol, 1.70 eq.) were added. The resulting mixture was stirred for 60 min over sodium sulfate. Perfluorononanoic acid (175 mg, 377 µmol, 1.00 eq.) dissolved in 0.5 mL methanol was added to the solution at room temperature and the resulting mixture was stirred for 2 min. Subsequently, ethyl-2-isocyanoacetate (82.6 µL, 72.5 mg, 641 µmol, 1.70 eq.) was added to the stirring mixture. The reaction was stirred for 3 d at room temperature. The crude reaction mixture was dried under reduced pressure and purified via column chromatography employing FluoroFlash® silica gel. The fluorous fraction was tested for purity via TLC and concentrated under reduced pressure. The remaining perfluorononanoic acid was removed with a short silica gel filter column, eluting with c-hexane/ethyl acetate (3:1) to yield the Ugi product as a yellow oil (65.8 mg, 87.8 µmol, 23.3%).

$R_f = 0.30$ in c-hexane/ethyl acetate (4:1). Visualized via fluorescent quench and Seebach staining solution.

IR (ATR): $\nu [\text{cm}^{-1}] = 3269.5 (\text{m}, \nu(\text{N-H})), 2924.6 (\text{w}, \nu(\text{C-H})), 1746.7 (\text{s}, \nu(\text{C=O})), 1691.8 (\text{s}), 1666.2 (\text{s}), 1613.2 (\text{w}), 1563.9 (\text{m}), 1514.8 (\text{m}), 1449.1 (\text{m}), 1412.8 (\text{m}), 1200.9 (\text{vs}), 1145.4 (\text{vs}), 1106.1 (\text{s}), 1036.6 (\text{m}), 1004.3 (\text{m}), 950.1 (\text{m}), 828.4 (\text{m}), 768.2 (\text{m}), 702.4 (\text{s}), 672.2 (\text{s}), 636.9 (\text{s}), 558.2 (\text{s}), 529.1 (\text{s}), 430.2 (\text{w}), 390.0 (\text{w}).$

1H NMR (400 MHz, CDCl$_3$): $\delta [\text{ppm}] = 7.39 (\text{d}, J = 8.2 \text{ Hz}, 2 \text{ H}, \text{CH}_2^{25,32}), 6.93 (\text{d}, J = 8.7 \text{ Hz}, 2 \text{ H}, \text{CH}_2^{22,24}), 5.92 (\text{s}, 1 \text{ H}, \text{CH}^2), 4.46 – 3.96 (\text{m}, 6 \text{ H}, \text{CH}_2^{34,6,9}), 3.89 (\text{s}, 1 \text{ H}, \text{CH}^{20}), 3.83 (\text{s}, 3 \text{ H}, \text{CH}_3^{37}), 1.42 – 1.09 (\text{m}, 3 \text{ H}, \text{CH}_3^{25}).$

13C NMR (101 MHz, CDCl$_3$): $\delta [\text{ppm}] = 169.4 (\text{s}, \text{CONR}^4), 164.8 (\text{s}, \text{CONR}^{18}), 160.7 (\text{s}, \text{C}_\text{Ar}^{23}), 132.1 (\text{s}, \text{CH}_2^{25,32}), 129.6 (\text{s}, \text{C}_\text{Ar}^8), 114.7 (\text{s}, \text{C}_\text{Ar}^{22,24}), 61.8 (\text{s}, \text{CH}^2), 55.7 (\text{s}, \text{CH}^{20}), 55.5 (\text{s}, \text{OCH}_3^{37}), 41.8 (\text{s}, \text{CH}_2^9), 36.0 (\text{s}, \text{CH}_2^9), 14.2 (\text{CH}_3^{15}).$
19F NMR (376 MHz, CDCl$_3$): δ [ppm] = -85.10 (t, $J = 9.9$ Hz, 3 F, CF$_3$), AB-signal ($\delta_A = -113.26$, $\delta_B = -114.63, J_{AB} = 297.4$ Hz, additional coupling not resolved, signals broadened, CF$_2^{17a}$), AB-signal ($\delta_A = -115.22, \delta_B = -116.19, J_{AB} = 291.8$ Hz, additional coupling not resolved, signals broadened, CF$_2^{17b}$), -124.84 (s, CF$_2$), -126.12 (s, CF$_2$), -127.05 (s, CF$_2$), -130.44 (s, CF$_2^{17}$). Total integral of CF$_2$ region normalized with respect to the CF$_3$ group = 14.

FAB – MS [m/z] (relative intensity): 750.1 (90%) [M]$^+$, 620.1 (17%) [Fragment A]$^+$, 250.1 (33%) [Fragment B]$^+$, 120.1 [Fragment C]$^+$.

HRMS – FAB [m/z]: [M]$^+$ calculated for 12C$_{29}$H$_{19}$O$_5^{16}$N$_2^{19}$F$_{17}$, 750.1017; found, 750.1018; $\Delta = 0.13$ mmu.

Chemical Formula: C$_{29}$H$_{19}$F$_{17}$NO$_2^{+}$

Exact Mass: 620.08183

Fragment A

Chemical Formula: C$_{13}$H$_{16}$NO$_4^{+}$

Exact Mass: 250.10793

Fragment B

Chemical Formula: C$_{8}$H$_{9}$O$_2^{+}$

Exact Mass: 120.05751

Fragment C

Supplementary Figure 89 | Proposed fragments observed in FAB-MS.
Supplementary Figure 90 | 1H NMR experiment of the title compound recorded in CDCl$_3$.

Supplementary Figure 91 | 13C NMR experiment of the title compound recorded in CDCl$_3$.
Supplementary Figure 92 | 19F NMR experiment of the title compound recorded in CDCl$_3$.

Supplementary Figure 93 | COSY experiment of the title compound recorded in CDCl$_3$.
Supplementary Figure 94 | Multiplicity-edited HSQC experiment of the title compound recorded in CDCl₃.

Supplementary Figure 95 | HMBC experiment of the title compound recorded in CDCl₃.
In a 25 mL round bottom flask valeraldehyde (42.2 mg, 490 µmol, 1.30 eq.) was dissolved in 1.5 mL methanol, subsequently pentylamine (56.6 µL, 42.7 mg, 490 µmol, 1.30 eq.) was added and the resulting mixture was stirred for 60 min over sodium sulfate. Afterwards, the mixture was filtraed. The solid was washed with 10 mL methanol three times. Subsequently, the filtrate was concentrated under reduced pressure. Perfluorononanoic acid (175 mg, 377 µmol, 1.00 eq.) dissolved in 1 mL methanol was added to the imine at room temperature and the resulting mixture was stirred for 2 min. Subsequently, tert-butylisocyanide (51.2 µL, 37.6 mg, 453 µmol, 1.20 eq.) was added to the stirring mixture. The reaction was stirred for 3 d at room temperature. The crude reaction mixture was dried under reduced pressure and purified via column chromatography employing FluoroFlash® silica gel. The fluorous fraction was concentrated and the residue was adsorbed onto celite® and purified via column chromatography employing silica gel as stationary phase and eluting with a gradual solvent mixture of ethyl acetate and c-hexane (0:1 → 1:1) to yield the Ugi product as a highly viscous yellow oil (42.7 mg, 60.3 µmol, 16.0%).

$R_f = 0.49$ in c-hexane/ethyl acetate (6:1). Visualized via Seebach staining solution and permanganate staining.

IR (ATR): ν [cm$^{-1}$] = 3367.2 (br, ν(N-H)), 2962.9 (m, ν(C-H)), 2875.3 (w), 1661.9 (s, ν(C=O)), 1532.8 (m), 1456.6 (m), 1366.2 (m), 1204.6 (vs), 1147.5 (vs), 996.7 (w), 778.1 (m), 735.4 (m), 703.2 (m), 656.5 (m), 558.6 (m), 528.9 (m).

1H NMR (400 MHz, CD$_3$OD): δ [ppm] = 7.43 (s, 1 H, NH$_3$), 4.57 (t, $J = 7.6$ Hz, 1 H, CHi), 3.58 – 3.37 (m, 2 H, CH$_2$), 2.04 – 1.85 (m, 2 H, CH$_2$), 1.79 – 1.57 (m, 2 H, CH$_2$), 1.40 – 1.19 (m, 17 H, CH$_3$ 10,22,23 + CH$_2$), 0.92 (t, $J = 7.2$ Hz, 6 H, CH$_3$ 24,28).

13C NMR (101 MHz, CD$_3$OD): δ [ppm] = 170.6 (s, CONR$_2$), 159.7 (s, CONR$_9$), 62.4 (s, CHi), 52.4 (s, CHd), 47.1 (s, CH$_2$), 32.1 (s, CH$_2$), 31.5 (s, CH$_2$), 30.4 (s, CH$_2$), 30.0 (s, CH$_2$), 29.7 (s, CH$_2$), 29.4 (s, CH$_2$), 28.7 (s, CH$_3$ 22,23,10), 23.2 (s, CH$_2$), 14.3 (s, CH$_3$ $^{24 or 28}$), 14.2 (s, CH$_3$ $^{24 or 28}$).
19F NMR (376 MHz, CD$_3$OD): δ [ppm] = -88.27 (t, $J = 10.3$ Hz, 3 F, CF$_3^{11}$), AB-signal ($\delta_A = -116.39$, $\delta_B = -117.10$, $J_{AB} = 288.0$ Hz, A and B are split into t, $J = 11.7$ Hz, CF$_2^{18a}$), AB-signal ($\delta_A = -118.10$, $\delta_B = -118.55$, $J_{AB} = 291.8$ Hz, A and B are split into t, $J = 12.5$ Hz, CF$_2^{18b}$), -126.95 (s, CF$_2$), -128.68 (s, CF$_2$), -129.65 (s, CF$_2$), -133.16 (s, CF$_2^{12}$). Total integral of CF$_2$ region normalized with respect to the CF$_3^{11}$ group = 14.

FAB – MS [m/z] (relative intensity): 703.2 (65%) [M + H]$^+$, 630.1 (25%) [Fragment A – H]$^+$, 560.5 (28%) [Fragment A – C$_3$H$_{11}$]$^+$.

HRMS – FAB [m/z]: [M + H]$^+$ calculated for 12C$_{24}^{1}H_{34}^{16}O_{2}^{14}N_{2}^{19}F_{17}$, 703.2187; found, 703.2188; $\Delta = 0.13$ mmu.

Chemical Formula: C$_{23}$H$_{25}$F$_{17}$NO$_2$

Exact Mass: 631.13791

Supplementary Figure 96 | Proposed fragments observed in FAB-MS.
Supplementary Figure 97 | 1H NMR experiment of the title compound recorded in CDCl$_3$.

Supplementary Figure 98 | 13C NMR experiment of the title compound recorded in CDCl$_3$.
Supplementary Figure 99 | 19F NMR experiment of the title compound recorded in CDCl$_3$.

Supplementary Figure 100 | COSY experiment of the title compound recorded in CDCl$_3$.
Supplementary Figure 101 | Multiplicity-edited HSQC experiment of the title compound recorded in CDCl₃.

Supplementary Figure 102 | HMBC experiment of the title compound recorded in CDCl₃.
Ugi reaction of perfluorononanoic acid, valeraldehyde, \textit{tert}-butylisocyanide and cyclohexylamine

In a 25 mL round bottom flask valeraldehyde (126 mg, 1.46 mmol, 1.70 eq.) was stirred with cyclohexylamine (145 mg, 1.46 mmol, 1.70 eq.) for 60 min over sodium sulfate. Perfluorononanoic acid (400 mg, 862 µmol, 1.00 eq.) dissolved in 1 mL methanol was added to the imine at room temperature and the resulting mixture was stirred for 2 min. Subsequently, \textit{tert}-butylisocyanide (165 µL, 122 mg, 1.46 mmol, 1.70 eq.) was added to the stirring mixture. The reaction was stirred for 4 days at room temperature. The crude reaction mixture was dried under reduced pressure and purified via column chromatography employing FluoroFlash® silica gel. The fluorous fraction was concentrated and the residue was adsorbed onto celite® and purified via column chromatography employing silica gel as stationary phase and eluting with a gradual solvent mixture of ethyl acetate and \textit{c}-hexane (0:1 \(\rightarrow\) 1:1) to yield the Ugi product as a highly viscous yellow oil (42.2 mg, 61.2 µmol, 7.1%).

\(R_f = 0.52\) in \textit{c}-hexane/ethyl acetate (6:1). Visualized \textit{via} Seebach staining solution and permanganate staining.

IR (ATR): \(\nu[\text{cm}^{-1}] = 3337.4\) (br, \(\nu(\text{N-H})\)), 2933.4 (s, \(\nu(\text{C-H})\)), 2875.3 (m), 1675.6 (s, \(\nu(\text{C=O})\)), 1534.8 (s), 1453.0 (m), 1238.8 (vs), 1206.8 (vs), 1148.2 (vs), 1109.0 (s), 999.9 (w), 896.1 (w), 785.3 (w), 735.0 (m), 702.4 (m), 668.5 (m), 557.5 (m), 528.0 (m).

\(^1\text{H NMR (400 MHz, CD}_3\text{OD): \(\delta[ppm] = 4.02 - 3.66\) (m, 1 H, CH1), 2.80 - 1.69\) (m, 7 H, CH\textsubscript{2} + CH\textsubscript{25}), 1.59 - 1.05\) (m, 19 H, CH\textsubscript{10,22,23} + CH\textsubscript{2}), 1.00 - 0.83\) (m, 3 H, CH\textsubscript{3})).

\(^{13}\text{C NMR (101 MHz, CD}_3\text{OD): \(\delta[ppm] = 180.2\) (s, CONR3), 171.8\) (s, CONR19), 63.5\) (s, CH\textsubscript{16}), 59.7\) (s, CH\textsubscript{14}), 32.5\) (s, CH\textsubscript{2}), 32.2\) (s, CH\textsubscript{2}), 30.6\) (s, CH\textsubscript{2}), 30.5\) (s, CH\textsubscript{2}), 30.4\) (s, CH\textsubscript{2}), 28.7\) (s, CH\textsubscript{2}), 28.6\) (s, CH\textsubscript{10,22,23}), 26.8\) (s, CH\textsubscript{2}), 26.6\) (s, CH\textsubscript{2}), 26.0\) (s, CH\textsubscript{2}), 23.6\) (s, CH\textsubscript{2}), 14.2\) (s, CH\textsubscript{3})).

\(^{19}\text{F NMR (376 MHz, CD}_3\text{OD): \(\delta[ppm] = -86.69\) (t, \(J = 10.6\) Hz, 3 F, CF\textsubscript{3}), -114.08 - 114.49\) (m, CF\textsubscript{3}), -114.08 - 114.49\) (m, CF\textsubscript{3}), AB-signal (\(\delta_A = -115.38, \delta_B = -116.76\), J\textsubscript{AB} = 293.6 Hz, CF\textsubscript{3}, additional coupling not resolved, signals broadened), -124.02 - 124.67\) (m, CF\textsubscript{2}), -124.86 - 125.21\) (m, CF\textsubscript{2}).}
CF₂), -125.30 – -125.50 (m, CF₂), -126.98 (s, CF₂), -127.23 (s, CF₂), -128.08 (s, CF₂), -131.58 (s, CF₂₁/₂). Total integral of CF₂ region normalized with respect to the CF₃¹ group = 14.

ESI-MS [m/z]: [M + Na]⁺ calculated for C₂₆H₃₁O₂N₂F₁₇Na, 737.2006; found, 737.2008, Δ = 0.20 mmu.

Supplementary Figure 103 | ¹H NMR experiment of the title compound recorded in CD₃OD.
Supplementary Figure 104 | 13C NMR experiment of the title compound recorded in CD$_3$OD.

Supplementary Figure 105 | 19F NMR experiment of the title compound recorded in CD$_3$OD.
Supplementary Figure 106 | COSY experiment of the title compound recorded in CD$_3$OD.

Supplementary Figure 107 | HSQC experiment of the title compound recorded in CD$_3$OD.
Ugi reaction of perfluorononanoic acid, valeraldehyde, tert-butylisocyanide and tert-butylamine

In a 25 mL round bottom flask valeraldehyde (126 mg, 1.46 mmol, 1.70 eq.) and tert-butylamine (107 mg, 1.46 mmol, 1.70 eq.) were stirred for 60 min over sodium sulfate. Perfluorononanoic acid (400 mg, 826 µmol, 1.00 eq.) dissolved in 1 mL methanol was added to the imine at room temperature and the resulting mixture was stirred for 2 min. Subsequently, tert-butylisocyanide (165 µL, 122 mg, 1.46 mmol, 1.70 eq.) was added to the stirring mixture. The reaction was stirred for 5 d at room temperature. The crude reaction mixture was dried under reduced pressure and purified via column chromatography employing FluoroFlash® silica gel. The fluorous fraction was concentrated and the residue was adsorbed onto celite® and purified via column chromatography employing silica gel as stationary phase and eluting with a gradual solvent mixture of ethyl acetate and c-hexane (0:1 → 1:1) to yield the Ugi product as a highly viscous yellow oil (109 mg, 141 µmol, 17.3%).
$R_f = 0.58$ in c-hexane/ethyl acetate (6:1). Visualized via Seebach staining solution and permanganate staining.

IR (ATR): $\nu [\text{cm}^{-1}] = 2965.2$ (m, $\nu(\text{C-H})$), 1683.9 (s, $\nu(\text{C=O})$), 1509.6 (m), 1456.9 (m), 1394.9 (m), 1366.9 (m), 1205.7 (s), 1146.3 (s), 1040.6 (w), 985.7 (w), 879.4 (w), 821.3 (w), 783.1 (w), 735.7 (m), 710.2 (m), 669.4 (m), 635.8 (m), 559.7 (m), 530.2 (m), 473.4 (w).

1H NMR (400 MHz, CD$_3$OD): δ [ppm] = 4.34 (t, $J = 6.8$ Hz, 1 H, CH1), 2.40 – 2.14 (m, 1 H, CH$_2^{6a}$), 1.86 – 1.66 (m, 1 H, CH$_2^{6b}$), 1.55 – 1.05 (m, 22 H, CH$_2^{8,9} + \text{CH}_3^{10,22,23,25-27}$), 0.95 (t, $J = 7.1$ Hz, 3 H, CH$_3^{24}$).

13C NMR (101 MHz, CD$_3$OD): δ [ppm] = 169.5 (s, CONR2), 160.8 (s, CONR19), 62.1 (s, Cd or 7), 61.3 (s, CH6), 51.3 (s, Cd or 7), 32.2 (s, CH$_2$), 30.0 (s, CH$_2$), 28.3 (s, CH$_3^{10,22,23}$ or $^{25-27}$), 27.2 (s, CH$_3^{10,22,23}$ or $^{25-27}$), 22.3 (s, CH$_2$), 12.8 (s, CH$_3^{24}$).

19F NMR (376 MHz, CD$_3$OD): δ [ppm] = -88.25 (t, $J = 10.2$ Hz, 3 F, CF$_3^{11}$), -113.23 – -116.89 (m, CF$_2^{18}$), -125.75 (s, CF$_2$), -128.64 (d, $J = 64.9$ Hz, CF$_2$), -129.65 (s, CF$_2$), -133.15 (s, CF$_2^{12}$). Total integral of CF$_2$ region normalized with respect to the CF$_3^{11}$ group = 14.

ESI-MS [m/z]: [M + Na]$^+$ calculated for 12C$_{23}$H$_{29}$O$_2^{14}$N$_2^{19}$F$_{17}^{23}$Na, 711.1850 found, 711.18064, $\Delta = 1.35$ mmu.

Supplementary Figure 109 | 1H NMR experiment of the title compound recorded in CD$_3$OD.
Supplementary Figure 110 | 13C NMR experiment of the title compound recorded in CD$_3$OD.

Supplementary Figure 111 | 19F NMR experiment of the title compound recorded in CD$_3$OD.
Supplementary Figure 112 | COSY experiment of the title compound recorded in CD$_3$OD.

Supplementary Figure 113 | Multiplicity-edited HSQC experiment of the title compound recorded in CD$_3$OD.
In a 25 mL round bottom flask isobutyraldehyde (83.6 µL, 66.0 mg, 916 µmol, 1.70 eq.) and pentyamine (106 µL, 79.8 mg, 916 µmol, 1.70 eq.) were added and the resulting mixture was stirred for 60 min over sodium sulfate. Perfluorononanoic acid (250 mg, 539 µmol, 1.00 eq.) dissolved in 0.5 mL methanol was added to the imine at room temperature and the resulting mixture was stirred for 2 min. Subsequently, cyclohexylisocyanide (114 µL, 100 mg, 916 µmol, 1.70 eq.) was added to the stirring mixture. The reaction was stirred for 3 d at room temperature. The crude reaction mixture was dried under reduced pressure. The residue was adsorbed onto celite® and purified via column chromatography employing silica gel as stationary phase and eluting with a gradual solvent mixture
of ethyl acetate and c-hexane (1:10 → 1:3) to yield the Ugi product as a yellow oil (95.1 mg, 133 mmol, 24.7%).

$R_f = 0.54$ in c-hexane/ethyl acetate (6:1). Visualized via permanganate staining solution.

IR (ATR): ν [cm$^{-1}$] = 3033.7 (br, ν(N-H)), 2927.3 (s, ν(C-H)), 2855.9 (m), 1764.4 (w), 1707.2 (s, ν(C=O)), 1673.4 (m), 1626.5 (s), 1538.8 (m), 1451.3 (m), 1429.5 (s), 1378.9 (m), 1239.5 (vs), 1211.9 (vs), 1146.6 (s), 1088.2 (m), 891.7 (w), 726.2 (w), 626.7 (m), 557.7 (w), 529.1 (w), 481.3 (w), 402.1 (w).

1H NMR (400 MHz, CD$_3$OD): δ [ppm] = 3.71 – 3.30 (m, 2 H, CH1 + CH18), 3.27 – 3.21 (m, 2 H, CH$_2^6$), 2.88 – 2.79 (m, 2 H, CH$_2$), 2.00 – 1.70 (m, 3 H, CH5 + CH$_2$), 1.67 – 1.53 (m, 2 H, CH$_2$), 1.50 – 1.16 (m, 12 H, CH2), 1.06 (d, $J = 6.8$ Hz, 3 H, CH$_3^{28,29}$), 0.97 – 0.77 (m, 6 H, CH$_3^{28,29}$ + CH$_3^{27}$).

13C NMR (101 MHz, CD$_3$OD): δ [ppm] = 166.9 (s, CONR$_2^2$), 162.8 (s, CONR$_{15}$), 51.8 (s, CH1), 50.2 (s, CH18), 42.5 (s, CH$_2^6$), 40.7 (s, CH$_2$), 33.1 (s, CH5), 32.5 (s, CH$_2$), 30.9 (s, CH$_2$), 30.5 (s, CH$_2$), 30.1 (s, CH$_2$), 29.6 (s, CH$_2$), 28.8 (s, CH$_2$), 25.5 (s, CH$_2$), 25.4 (s, CH$_2$), 20.0 (s, CH$_3^{28,29}$), 19.9 (s, CH$_3^{28,29}$), 14.3 (s, CH$_3^{27}$).

19F NMR (376 MHz, CD$_3$OD): δ [ppm] = -86.72 (t, $J = 10.3$ Hz, 3F, CF$_3^7$), -122.25 (t, $J = 12.5$ Hz, CF$_2^{14}$), -126.96 (s, CF$_2$), -127.28 (s, CF$_2$), -127.92 (s, CF$_2$), -128.12 (s, CF$_2$), -131.66 (s, CF$_2^{8}$). Total integral of CF$_2$ region normalized with respect to the CF$_3^7$ group = 14.

ESI-MS [m/z]: [M + Na]$^+$ calculated for 12C$_{25}$H$_{31}$O$_2^{16}$N$_2^{19}$F$_{17}^{23}$Na, 737.2011; found, 737.2006, $\Delta = 0.42$ mmu.
Supplementary Figure 115 | 1H NMR experiment of the title compound recorded in CD$_3$OD.

Supplementary Figure 116 | 13C NMR experiment of the title compound recorded in CD$_3$OD.
Supplementary Figure 117 | 19F NMR experiment of the title compound recorded in CD$_3$OD.

Supplementary Figure 118 | COSY experiment of the title compound recorded in CD$_3$OD.
Supplementary Figure 119 | Multiplicity-edited HSQC experiment of the title compound recorded in CD$_3$OD.
In a 25 mL round bottom flask valeraldehyde (52.1 µL, 42.2 mg, 490 µmol, 1.30 eq.) was dissolved in 1.5 mL methanol, subsequently pentyamine (56.6 µL, 42.7 mg, 490 µmol, 1.30 eq.) was added and the resulting mixture was stirred for 60 min over sodium sulfate. Afterwards, the mixture was filtrated and the solid was washed with 10 mL methanol three times. Subsequently, the filtrate was concentrated under reduced pressure. Perfluorononanoic acid (175 mg, 377 µmol, 1.00 eq.) dissolved in 1 mL methanol was added to the imine at room temperature and the resulting mixture was stirred for 2 min. Subsequently, cyclohexylisocyanide (56.3 µL, 59.4 mg, 453 µmol, 1.20 eq.) was added to the stirring mixture. The reaction was stirred for 4 d at room temperature. The crude reaction mixture
was dried under reduced pressure and purified via column chromatography employing FluoroFlash® silica gel. The fluorous fraction was tested for purity via TLC and concentrated under reduced pressure. The remaining perfluoro acid was removed with a short silica gel filter column, eluting with c-hexane/ethyl acetate (3:1) to yield the Ugi product as a colorless solid (86.0 mg, 118 µmol, 31.4%).

\[R_t = 0.40 \text{ in } c\text{-hexane/ethyl acetate (6:1). Visualized via Seebach staining solution.}\]

IR (ATR): \(\nu [\text{cm}^{-1}] = 3325.5 \text{ (br, } \nu(\text{N-H}), 2933.4 \text{ (m, } \nu(\text{C-H})), 2859.3 \text{ (m, } \nu(\text{C-H})), 1651.9 \text{ (s, } \nu(\text{C=O}), 1534.7 \text{ (m), 1452.3 (m), 1367.9 (w), 1237.4 (vs), 1203.2 (vs), 1146.7 (vs), 1054.4 (w), 965.9 (w), 890.9 (w), 777.3 (m), 735.3 (m), 703.5 (m), 656.3 (m), 557.8 (m), 528.9 (m)).\]

\(1^H \text{ NMR (400 MHz, } \text{CD}_3\text{OD): } \delta [\text{ppm}] = 4.59 \text{ (t, } J = 7.6 \text{ Hz, CH}^{1a}), 4.50 \text{ (t, } J = 7.2 \text{ Hz, total integral of CH}^{1} = 1 \text{ H, CH}^{1b}), 3.69 - 3.43 \text{ (m, 3 H, CH}_2^{6\text{or}5} + \text{CH}^{18}), 2.03 - 1.60 \text{ (m, 10 H, CH}_2), 1.43 - 1.15 \text{ (m, 12 H, CH}_2), 0.92 \text{ (t, } J = 7.2 \text{ Hz, 6 H, CH}_3^{27,30}).\]

\(13^C \text{ NMR (101 MHz, } \text{CD}_3\text{OD): } \delta [\text{ppm}] = 170.4 \text{ (s, CONR}^2), 159.7 \text{ (s, CONR}^{15}), 62.0 \text{ (s, CH}^{1a}), 61.4 \text{ (s, CH}^{1b}), 50.1 \text{ (s, CH}^{18}), 47.2 \text{ (s, CH}_2^{6\text{or}5}), 33.6 \text{ (s, CH}_2), 33.4 \text{ (s, CH}_2), 32.0 \text{ (s, CH}_2), 31.4 \text{ (s, CH}_2), 30.4 \text{ (s, CH}_2), 30.0 \text{ (s, CH}_2), 29.6 \text{ (s, CH}_2), 29.5 \text{ (s, CH}_2), 28.4 \text{ (s, CH}_2), 26.6 \text{ (s, CH}_2), 26.0 \text{ (s, CH}_2), 23.5 \text{ (s, CH}_2), 23.3 \text{ (s, CH}_2), 14.3 \text{ (s, CH}_3^{27\text{or}30}), 14.2 \text{ (s, CH}_3^{27\text{or}30}).\]

\(19^F \text{ NMR (376 MHz, } \text{CD}_3\text{OD): } \delta [\text{ppm}] = -88.27 \text{ (t, } J = 10.4 \text{ Hz, 3 F, CF}_3^{7}), \text{AB-signal (} \delta_A = -116.17, \delta_B = -116.99, J_{AB} = 301.2 \text{ Hz, A and B are split into t, } J = 12.4 \text{ Hz, CF}_2^{14a}), \text{AB-signal (} \delta_A = -118.12, \delta_B = -118.63, J_{AB} = 293.6 \text{ Hz, A and B are split into t, } J = 12.3 \text{ Hz CF}_2^{14b}), -126.20 \text{ (s, CF}_2), -126.78 \text{ (s, CF}_2), -127.15 \text{ (s, CF}_2), -128.74 \text{ (s, CF}_2), -129.66 \text{ (s, CF}_2), -133.17 \text{ (s, CF}_2^{8}). \text{ Total integral of CF}_2 \text{ region normalized with respect to the CF}_3^{7} \text{ group } = 14.\]

FAB – MS \([m/z]\) (relative intensity): 729.3 (55%) [M + H] +, 631.2 (10%) [Fragment A] +, 630.2 (28%) [Fragment A – H] +, 281.3 (7%) [Fragment B] +, 197.2 (16%) [Fragment C + H] +.

HRMS – FAB \([m/z]\): [M + H] + calculated for \(^{12}\text{C}^{26}_{22}^{1}H^{34}_{16}O^{2}_{14}N^{19}_{2}^{16}F^{17}, 729.2343; \text{ found, 729.2342; } \Delta = 0.16 \text{ mmu.}\)
Supplementary Figure 121 | Proposed fragments observed in FAB-MS.

Chemical Formula: C_{20}H_{22}F_{17}NO_{2}
Exact Mass: 631.13791

Chemical Formula: C_{17}H_{33}N_{2}O^{+}
Exact Mass: 281.25929

Chemical Formula: C_{12}H_{22}NO^{+}
Exact Mass: 196.17014

Supplementary Figure 122 | 1H NMR experiment of the title compound recorded in CD$_3$OD.
Supplementary Figure 123 | 13C NMR experiment of the title compound recorded in CD$_3$OD.

Supplementary Figure 124 | 19F NMR experiment of the title compound recorded in CD$_3$OD.
Supplementary Figure 125 | Multiplicity-edited HSQC experiment of the title compound recorded in CD$_3$OD.

Ugi reaction of perfluorononanoic acid, cyclohexancarboxaldehyde, cyclohexylisocyanide and pentylamine

In a 25 mL round bottom flask cyclohexancarboxaldehyde (59.4 µL, 55.0 mg, 490 µmol, 1.30 eq.) was dissolved in 1.5 mL methanol, subsequently pentylamine (56.6 µL, 42.7 mg, 490 µmol, 1.30 eq.) was added and the resulting mixture was stirred for 60 min over sodium sulfate. Afterwards, the mixture was filtrated and the solid was washed with 10 mL methanol three times. Subsequently, the filtrate was concentrated under reduced pressure. Perfluorononanoic acid (175 mg, 377 µmol, 1.00 eq.) dissolved in 1 mL methanol was added to the imine at room temperature and the resulting mixture was stirred for 2 min. Subsequently, cyclohexylisocyanide (56.3 µL, 59.4 mg, 453 µmol, 1.20 eq.)
was added to the stirring mixture. The reaction was stirred for 4 d at room temperature. The crude reaction mixture was dried under reduced pressure and purified via column chromatography employing FluoroFlash® silica gel. The fluorous fraction was tested for purity via TLC and concentrated under reduced pressure. The remaining perfluoro acid was removed with a short silica gel filter column, eluting with c-hexane/ethyl acetate (3:1) to yield the Ugi product as a colorless solid (103 mg, 137 µmol, 36.3%).

$R_f = 0.45$ in c-hexane/ethyl acetate (6:1). Visualized via Seebach staining solution and permanganate staining.

IR (ATR): ν [cm$^{-1}$] = 3317.7 (br, ν(N-H)), 2930.9 (s, ν(C-H)), 2856.6 (m, ν(C-H)), 1653.4 (s, ν(C=O)), 1536.7 (m), 1451.4 (m), 1351.0 (m), 1237.9 (vs), 1203.5 (vs), 1147.1 (vs), 1117.8 (s), 1053.5 (m), 962.2 (m), 891.1 (w), 777.5 (m), 735.4 (m), 703.4 (m), 656.3 (m), 557.6 (m), 528.6 (m).

1H NMR (400 MHz, CD$_3$OD): δ [ppm] = 4.47 (d, $J = 11.0$ Hz, CH$_{1a}$), 4.19 – 3.90 (m, total integral of CH$_1 = 1$ H, CH$_{1b}$), 3.71 – 3.35 (m, 3 H, CH$_2$ + CH$_{18}$), 2.24 – 1.95 (m, 1 H, CH$_5$), 1.96 – 1.46 (m, 12 H, CH$_2$), 1.41 – 1.01 (m, 14 H, CH$_2$), 0.92 (t, $J = 7.1$ Hz, 3 H, CH$_{327}$).

13C NMR (101 MHz, CD$_3$OD): δ [ppm] = 169.9 (s, CONR$_2$), 160.3 (s, CONR$_{15}$), 66.5 (s, CH$_{1a}$), 65.7 (s, CH$_{1b}$), 49.9 (s, CH$_{18}$), 46.3 (s, CH$_2$), 39.0 (s, CH$_{5a}$), 37.6 (s, CH$_{5b}$), 33.5 (s, CH$_2$), 33.3 (s, CH$_2$), 31.4 (s, CH$_2$), 31.1 (s, CH$_2$), 30.8 (s, CH$_2$), 30.1 (s, CH$_2$), 27.3 (s, CH$_2$), 26.6 (s, CH$_2$), 25.9 (s, CH$_2$), 23.2 (s, CH$_2$), 14.2 (s, CH$_{327}$).

19F NMR (376 MHz, CD$_3$OD): δ [ppm] = -88.27 (t, $J = 10.5$ Hz, 3 F, CF$_3$), -115.58 (t, $J = 10.8$ Hz, CF$_2$), AB-signal ($\delta_A = -117.67$, $\delta_B = -118.82$, $J_{AB} = 293.6$ Hz, A and B are split into t, $J = 12.0$ Hz, CF$_2$), -125.59 (s, CF$_2$), -126.65 (s, CF$_2$), -126.92 (s, CF$_2$), -128.72 (s, CF$_2$), -129.66 (s, CF$_2$), -133.20 (s, CF$_2$). Total integral of CF$_2$ region normalized with respect to the CF$_3$ group = 14.

FAB – MS [m/z] (relative intensity): 755.3 (67%) [M + H]$^+$, 629.2 (27%) [Fragment A + H]$^+$, 307.3 (8%) [Fragment B]$^+$, 223.2 (23%) [Fragment C + H]$^+$.

HRMS – FAB [m/z]: [M + H]$^+$ calculated for 12C$_{28}$H$_{36}$O$_2$N$_2$F$_{17}$, 755.2501; found, 755.2500; $\Delta = 0.14$ mmu.
Supplementary Figure 126 | Proposed fragments observed in FAB-MS.

Supplementary Figure 127 | 1H NMR experiment of the title compound recorded in CD$_3$OD.
Supplementary Figure 128 | 13C NMR experiment of the title compound recorded in CD$_3$OD.

Supplementary Figure 129 | 19F NMR experiment of the title compound recorded in CD$_3$OD.
Supplementary Figure 130 | COSY experiment of the title compound recorded in CD$_3$OD.

Supplementary Figure 131 | Multiplicity-edited HSQC experiment of the title compound recorded in CD$_3$OD.
Ugi reaction of perfluorononanoic acid, isobutyraldehyde, tert-butylisocyanide and cyclohexylamine

In a 25 mL round bottom flask isobutyraldehyde (83.6 µL, 66.0 mg, 916 µmol, 1.70 eq.) and cyclohexylamine (105 µL, 90.8 mg, 916 µmol, 1.70 eq.) were added and the resulting mixture was stirred for 60 min over sodium sulfate. Perfluorononanoic acid (250 mg, 539 µmol, 1.00 eq.) dissolved in 0.5 mL methanol was added to the solution at room temperature and the resulting mixture was stirred for 2 min. Subsequently, tert-butylisocyanide (104 µL, 76.1 mg, 916 µmol, 1.70 eq.) was added to the stirring mixture. The reaction was stirred for 3 d at room temperature. The crude reaction mixture was dried under reduced pressure. The residue was adsorbed onto celite® and purified via column chromatography on silica gel eluting with a gradual solvent mixture of ethyl acetate and c-hexane (1:10 → 1:3) to yield the Ugi product as a yellow solid (75.0 mg, 102 µmol, 19.1%).
$R_f = 0.54$ in c-hexane/ethyl acetate (6:1). Visualized via permanganate staining solution.

IR (ATR): ν [cm$^{-1}$] = 2927.2 (vs, ν(C-H)), 2854.9 (s, ν(C-H)), 1673.1 (s, ν(C=O)), 1596.0 (m), 1539.9 (m), 1450.7 (s), 1367.1 (m), 1349.4 (m), 1232.6 (vs), 1148.6 (s), 1130.7 (s), 991.2 (m), 890.6 (w), 802.1 (m), 721.0 (w), 701.0 (m), 660.6 (w), 553.3 (m).

1H NMR (400 MHz, CD$_3$OD): δ [ppm] = 3.75 (s, CH1_a), 3.66 – 3.50 (m, 1 H, CH6), 3.40 – 3.33 (m, total integral of CH1 = 1 H, CH1_b), 2.38 – 1.98 (m, 1 H, CH5), 1.95 – 1.49 (m, 8 H, CH2), 1.47 – 1.11 (m, 11 H, CH$_2$ + CH$_3$26,27,28), 1.04 – 0.79 (m, 6 H, CH$_3$24,25).

13C NMR (101 MHz, CD$_3$OD): δ [ppm] = 170.2 (s, CONR2), 164.1 (s, CONR15), 57.5 (s, CH2), 56.3 (s, CH6), 54.8 (s, C23), 35.0 (s, CH1), 34.4 (s, CH$_2$), 31.7 (s, CH$_2$), 31.6 (s, CH$_2$), 30.8 (s, CH$_2$), 29.2 (s, CH3), 25.5 (s, CH$_3$26-28), 25.3 (s, CH$_3$26-28), 22.2 (s, CH$_2$), 18.7 (s, CH$_3$24,25), 18.5 (s, CH$_3$24,25).

19F NMR (376 MHz, CD$_3$OD): δ [ppm] = -88.25 (t, $J = 10.4$ Hz, 3 F, CF$_3$), AB-signal ($\delta_A = -116.39$, $\delta_B = -117.11$, $J_{AB} = 301.2$ Hz, A and B are split into t, $J = 11.0$ Hz, CF$_2$14a), AB-signal ($\delta_A = -118.11$, $\delta_B = -118.55$, $J_{AB} = 293.6$ Hz, A and B are split into t, $J = 12.3$ Hz, CF$_2$14b), -126.26 (s, CF$_2$), -126.73 (s, CF$_2$), -127.10 (s, CF$_2$), -128.75 (s, CF$_2$), -129.64 (s, CF$_2$), -133.22 (s, CF$_2$). Total integral of CF$_2$ region normalized with respect to the CF$_3$ group = 14.

ESI-MS [m/z]: [M + Na]$^+$ calculated for 12C$_{24}$16O$_2$14N$_2$19F$_{17-23}$Na, 723.18498; found, 723.18591, $\Delta = 1.02$ mmu.
Supplementary Figure 133 | 1H NMR experiment of the title compound recorded in CD$_3$OD.

Supplementary Figure 134 | 13C NMR experiment of the title compound recorded in CD$_3$OD.
Supplementary Figure 135 | 19F NMR experiment of the title compound recorded in CD$_3$OD.

Supplementary Figure 136 | COSY experiment of the title compound recorded in CD$_3$OD.
Supplementary Figure 137 | Multiplicity-edited HSQC experiment of the title compound recorded in CD$_3$OD.

Supplementary Figure 138 | HMBC experiment of the title compound recorded in CD$_3$OD.
In a 25 mL round bottom flask isobutyraldehyde (46.2 mg, 641 µmol, 1.70 eq.) was dissolved in 1.5 mL methanol, subsequently cyclohexylamine (674 µL, 63.6 mg, 641 µmol, 1.70 eq.) was added and the resulting mixture was stirred for 60 min over sodium sulfate. Afterwards, the mixture was filtrated and the solid was washed with 10 mL methanol three times. Subsequently, the filtrate was concentrated under reduced pressure. Perfluorononanoic acid (175 mg, 377 µmol, 1.00 eq.) dissolved in 0.5 mL methanol was added to the imine at room temperature and the resulting mixture was stirred for 2 min. Subsequently, pentylisocyanide (80.6 µL, 62.2 mg, 641 µmol, 1.70 eq.) was added to the stirring mixture. The reaction was stirred for 6 d at room temperature. The crude reaction mixture was dried under reduced pressure and purified via column chromatography employing FluoroFlash® silica gel. The fluorous fraction was tested for purity via TLC and concentrated under reduced pressure. The remaining perfluoro acid was removed with a short silica gel filter column, eluting with c-hexane/ethyl acetate (3:1) to yield the Ugi product as a highly viscous yellow oil (9.1 mg, 12.6 µmol, 3.34%).

\[R_f = 0.54 \text{ in c-hexane/ethyl acetate (6:1). Visualized via permanganate staining solution.} \]

IR (ATR): \(\nu \text{[cm}^{-1}] = 3338.2 \text{ (br, } \nu(N-H)), 2930.9 \text{ (s, } \nu(C-H)), 2859.9 \text{ (s, } \nu(C-H)), 1659.8 \text{ (s, } \nu(C=O)), 1540.8 \text{ (m), 1457.7 (m), 1369.4 (m), 1238.5 (vs), 1206.8 (vs), 1148.7 (vs), 998.0 (m), 777.8 (w), 735.1 (m), 703.1 (m), 656.7 (m), 558.1 (m), 528.8 (w).} \]

\(^1\)H NMR (400 MHz, CD\(_3\)OD): \(\delta \text{ [ppm]} = 4.42 \text{ (d, } J = 11.0 \text{ Hz, CH}^{1a}), 4.10 \text{ (d, } J = 7.1 \text{ Hz, total integral of CH}^4 = 1 \text{ H, CH}^{1b}), 3.73 – 3.36 \text{ (m, 1 H, CH}_2^{23a}), 3.22 – 3.04 \text{ (m, 1 H, CH}_2^{23b}), 2.51 – 2.12 \text{ (m, 1 H, CH}_2^5), 1.93 – 1.49 \text{ (m, 6 H, CH}_2), 1.46 \text{ (s, 1 H, CH}_5^3), 1.38 – 1.14 \text{ (m, 10 H, CH}_2), 1.05 – 0.84 \text{ (m, 9 H, CH}_3^{24,25} + \text{ CH}_3^9).} \]

\(^1\)C NMR (101 MHz, CD\(_3\)OD): \(\delta \text{ [ppm]} = 170.9 \text{ (s, CONR}_2^2), 67.4 \text{ (s, CH}^1), 46.1 \text{ (s, CH}_2^{23a}), 40.4 \text{ (s, CH}_2^{23b}), 31.4 \text{ (s, CH}_2), 30.9 \text{ (s, CH}_2), 30.1 \text{ (s, CH}_2), 30.0 \text{ (s, CH}_5^3), 29.5 \text{ (s, CH}_2), 28.2 \text{ (s, CH}_2), 23.2 \text{ (s, CH}_2), 20.9 \text{ (s, CH}_9), 19.9 \text{ (s, CH}_3^{24,25}, 18.7 \text{ (s, CH}_3^{24,25}, 14.3 \text{ (s, CH}_3^9).} \]
19F NMR (376 MHz, CD$_3$OD): δ [ppm] = -83.25 (s, CF$_3$), -88.25 (t, $J = 10.3$ Hz, 3 F, CF$_3^7$), AB-signal ($\delta_A = -114.98$, $\delta_B = -115.37$, $J_{AB} = 207.1$ Hz, A and B are split into A and B are split into t, $J = 12.0$ Hz, CF$_2^{14a}$), AB-signal ($\delta_A = -117.60$, $\delta_B = -119.02$, $J_{AB} = 293.6$ Hz, A and B are split into t, $J = 12.6$ Hz, CF$_2^{14b}$), -125.47 (s, CF$_2$), -126.86 (s, CF$_2$), -128.72 (s, CF$_2$), -129.63(s, CF$_2$), -133.14(s, CF$_2^8$). Total integral of CF$_2$ region normalized with respect to the CF$_3^7$ group = 14.

ESI-MS [m/z]: [M + Na]$^+$ calculated for 12C$_{25}^{1}$H$_{31}^{16}$O$_2^{14}$N$_2^{19}$F$_9^{23}$Na, 737.2006; found, 737.2013, $\Delta = 0.66$ mmu.

Supplementary Figure 139 | 1H NMR experiment of the title compound recorded in CD$_3$OD.
Supplementary Figure 140 | 13C NMR experiment of the title compound recorded in CD$_3$OD.

Supplementary Figure 141 | 19F NMR experiment of the title compound recorded in CD$_3$OD.
Supplementary Figure 142 | COSY experiment of the title compound recorded in CD$_3$OD.

Supplementary Figure 143 | Multiplicity-edited HSQC experiment of the title compound recorded in CD$_3$OD.
Supplementary Figure 144 | HMBC experiment of the title compound recorded in CD$_3$OD.

Ugi reaction of perfluorononanoic acid, isobutyraldehyde, cyclohexylisocyanide and cyclohexylamine

In a 25 mL round bottom flask isobutyraldehyde (46.2 mg, 641 µmol, 1.70 eq.) was dissolved in 1.5 mL methanol, subsequently cyclohexylamine (73.5 µL, 63.6 mg, 641 µmol, 1.70 eq.) was added and the resulting mixture was stirred for 60 min over sodium sulfate. Afterwards, the mixture was filtrated and the solid was washed with 10 mL methanol three times. Subsequently, the filtrate was concentrated under reduced pressure. Perfluorononanoic acid (175 mg, 377 µmol, 1.00 eq.) dissolved in 0.5 mL methanol was added to the imine at room temperature and the resulting mixture was stirred for 2 min. Subsequently, cyclohexylisocyanide (79.9 µL, 70.0 mg, 641 µmol, 1.70 eq.) was added to the stirring mixture. The reaction was stirred for 6 d at room temperature. The crude reaction mixture was dried under reduced pressure and purified via column chromatography employing FluoroFlash®
silica gel. The fluorous fraction was tested for purity via TLC and concentrated under reduced pressure. The remaining perfluoro acid was removed with a short silica gel filter column, eluting with c-hexane/ethyl acetate (3:1) to yield the Ugi product as a highly viscous yellow oil (31.2 mg, 42.9 µmol, 11.4%).

Rt = 0.64 in c-hexane/ethyl acetate (6:1). Visualized via permanganate staining solution.

IR (ATR): \(\nu \text{[cm}^{-1}] = 3343.1 \text{ (br, } \nu(\text{N-H})) \), 2933.8 (m, \(\nu(\text{C-H}) \)), 2856.3 (m, \(\nu(\text{C-H}) \)), 1675.5 (s, \(\nu(\text{C=O}) \)), 1535.2 (m), 1453.3 (m), 1325.8 (w), 1238.3 (s), 1205.6 (vs), 1148.5 (vs), 1109.9 (m), 1000.4 (w), 896.2 (w), 785.3 (w), 735.4 (m), 702.4 (m), 668.3 (m), 556.8 (w), 529.4 (w), 409.9 (w).

\(^1\text{H NMR (400 MHz, CD}_3\text{OD): } \delta \text{[ppm]} = 3.98 – 3.73 \text{ (m, 1 H, CH}^1 \text{)}, 3.72 – 3.59 \text{ (m, 1 H, CH}^2 \text{)}, 3.44 \text{ (d, } J = 11.1 \text{ Hz, 1 H, CH}^6 \text{)}, 3.02 – 2.80 \text{ (m, 1 H, CH}^5 \text{)}, 1.99 – 1.51 \text{ (m, 10 H, CH}^2 \text{)}, 1.45 – 1.16 \text{ (m, 10 H, CH}^2 \text{)}, 1.04 – 0.76 \text{ (m, 6 H, CH}^{24,25} \text{)} .

\(^{13}\text{C NMR (101 MHz, CD}_3\text{OD): } \delta \text{[ppm]} = 172.6 \text{ (s, CONR}^2 \text{)}, 160.6 \text{ (s, CONR}^{15} \text{)}, 71.6 \text{ (s, CH}^6 \text{)}, 61.5 \text{ (s, CH}^4 \text{)}, 49.9 \text{ (s, CH}^{23} \text{)}, 33.1 \text{ (s, CH}^2 \text{)}, 32.7 \text{ (s, CH}^2 \text{)}, 32.3 \text{ (s, CH}^2 \text{)}, 27.8 \text{ (s, CH}^5 \text{)}, 26.9 \text{ (s, CH}^2 \text{)}, 26.6 \text{ (s, CH}^2 \text{)}, 25.9 \text{ (s, CH}^2 \text{)}, 25.2 \text{ (s, CH}^2 \text{)}, 20.3 \text{ (s, CH}^{24,25} \text{)}, 20.0 \text{ (s, CH}^{24,25} \text{)} .

\(^{19}\text{F NMR (376 MHz, CD}_3\text{OD): } \delta \text{[ppm]} = -88.29 \text{ (t, } J = 9.9 \text{ Hz, 3 F, CF}_3 \text{)}, -114.97 \text{ (s, CF}_2 \text{)}, AB-signal \((\delta_A = -116.37, \delta_B = -118.34, J_{AB} = 293.6 \text{ Hz, A and B are split into t, } J = 11.3 \text{ Hz CF}_2^{14b} \)}, -125.13 \text{ (s, CF}^2 \text{)}, -126.01 \text{ (s, CF}^2 \text{)}, -126.68 \text{ (d, } J = 73.4 \text{ Hz, CF}^2 \text{)}, -128.66 \text{ (d, } J = 77.4 \text{ Hz, CF}^2 \text{)}, -129.66 \text{ (s, CF}^2 \text{)}, -133.16 \text{ (s, CF}_2 \text{)} . \text{Total integral of CF}_2 \text{ region normalized with respect to the CF}_3 \text{group } = 14 .

FAB – MS \([m/z]\) (relative intensity): 755.3 (67%) [M + H]⁺, 600.1 (31%) [Fragment A]⁺, 518.0 (100%) [Fragment A – C\text{ }\text{6}\text{H}_{10}]⁺, 98.1 (15%) [Fragment B – CHO]⁺.

HRMS – FAB \([m/z]\): [M + H]⁺ calculated for \(^{12}\text{C}_{26}^{1}\text{H}_{32}^{16}\text{O}_2^{14}\text{N}_2^{19}\text{F}_{17} \), 727.2187; found, 727.2185; A = 0.22 mmu.

Chemical Formula: C\text{ }_{19}\text{H}_{19}\text{F}_{17}\text{NO}^{+}

Exact Mass: 600.11952

Fragment A

Chemical Formula: C\text{ }_{7}\text{H}_{12}\text{NO}^{+}

Exact Mass: 126.09189

Fragment B

Supplementary Figure 145 | Proposed fragments observed in FAB-MS.
Supplementary Figure 146 | 1H NMR experiment of the title compound recorded in CD$_3$OD.

Supplementary Figure 147 | 13C NMR experiment of the title compound recorded in CD$_3$OD.
Supplementary Figure 148 | 19F NMR experiment of the title compound recorded in CD$_3$OD.

Supplementary Figure 149 | Multiplicity-edited HSQC experiment of the title compound recorded in CD$_3$OD.
Ugi reaction of perfluoropentanoic acid valeraldehyde, 4-methoxyphenylisocyanide and butylamine

In a 25 mL round bottom flask valeraldehyde (83.2 mg, 966 µmol, 1.70 eq.) was dissolved in 1.5 mL methanol, subsequently butylamine (108 µL, 70.6 mg, 966 µmol, 1.70 eq.) was added and the resulting mixture was stirred for 60 min over sodium sulfate. Afterwards, the mixture was filtrated and the solid was washed with 10 mL methanol three times. Subsequently, the filtrate was concentrated under reduced pressure. Perfluoropentanoic acid (150 mg, 568 µmol, 1.00 eq.) dissolved in 1 mL methanol was added to the imine at room temperature and the resulting mixture was stirred for 2 min. Subsequently, 4-methoxyphenylisocyanide (108 µL, 129 mg, 966 µmol, 1.70 eq.) was added to the stirring mixture. The reaction was stirred for 3 d at room temperature. The crude reaction mixture was dried under reduced pressure and purified via column chromatography employing FluoroFlash® silica gel. The fluorous fraction was tested for purity via TLC and concentrated under reduced pressure. The remaining perfluoro acid was removed with a short silica gel filter column, eluting with c-hexane/ethyl acetate (3:1) to yield the Ugi product as a yellow powder (18.4 mg, 34.1 µmol, 6.01%).

Rf = 0.48 in c-hexane/ethyl acetate (5:1). Visualized via fluorescent quench and Seebach staining solution.

IR (ATR): ν [cm⁻¹] = 2957.5 (m, ν(C-H)), 2929.3 (s, ν(C-H)), 2858.8 (m,), 1795.3 (m), 1718.9 (s, ν(C=O)), 1606.3 (vs, ν(C=O)), 1506.0 (m), 1464.9 (m), 1351.9 (m), 1292.8 (vs), 1234.4 (vs), 1136.6 (s), 1099.4 (s), 1036.6 (s), 894.2 (m), 835.9 (s), 793.9 (m), 742.8 (m), 725.7 (m), 691.5 (m), 575.6 (w), 527.3 (w), 435.6 (w).

¹H NMR (400 MHz, CD₃OD): δ [ppm] = 7.47 – 7.35 (m, 2 H, CH₅¹⁶,²⁰), 6.94 – 6.80 (m, 2 H, CH₅¹⁷,¹⁹), 4.75 (t, J = 7.6 Hz, 1 H, CH²), 3.76 (s, 3 H, OCH₃²²), 3.67 – 3.47 (m, 2 H, CH₂⁹), 2.15 – 2.00 (m, 1 H, CH₂⁶⁰), 1.94 – 1.76 (m, 1 H, CH₂⁸⁰), 1.72 – 1.57 (m, 2 H, CH₂), 1.45 – 1.22 (m, 6 H, CH₂), 1.02 – 0.81 (m, 6 H, CH₃²⁴,²⁷).
13C NMR (126 MHz, CD$_3$OD): δ [ppm] = 169.9 (s, CONR$_4$), 169.4 (s, CONR$_4^{14}$), 158.3 (s, C$_{Ar}^{18}$), 132.2 (s, C$_{Ar}^{6}$), 123.6 (s, CH$_{Ar}^{16,20}$), 115.0 (s, CH$_{Ar}^{17,19}$), 62.5 (s, CH$_2$), 55.8 (s, OCH$_3^{22}$), 47.1 (s, CH$_2$), 33.7 (s, CH$_2$), 29.7 (s, CH$_2$), 29.6 (s, CH$_2$), 23.5 (s, CH$_2$), 21.1 (s, CH$_2$), 14.3 (s, CH$_3^{24 or 27}$), 13.9 (s, CH$_3^{24 or 27}$).

19F NMR (376 MHz, CD$_3$OD): δ [ppm] = -88.25 (t, $J = 10.5$ Hz, 3 F CF$_3^{10}$), -123.93 (s, CF$_2^{13}$), -125.69 – -127.15 (m, CF$_2$), -133.18 (s, CF$_2$), -133.32 (s, CF$_2$), -134.92 (s, CF$_2^{11}$). Total integral of CF$_2$ region normalized with respect to the CF$_3^{10}$ group = 6.

FAB – MS [m/z] (relative intensity): 538.3 (28%) [M + H]$^+$, 523.3 (34%) [M – CH$_3$]$^+$, 220.2 (28%) [Fragment A]$^+$, 122.1 (53%) [Fragment B]$^+$.

HRMS – FAB [m/z]: [M]$^+$ calculated for 12C$_{22}^{1}$H$_{27}^{16}$O$_{3}^{14}$N$_{2}^{19}$F$_{9}$, 538.1872; found, 538.1870; $\Delta = 0.26$ mmu.

Chemical Formula: C$_{13}$H$_{18}$NO$_2$$^-$

Exact Mass: 220,13375

Fragment A

Chemical Formula: C$_{17}$H$_{18}$NO$_2$$^+$

Exact Mass: 122,06059

Fragment B

Supplementary Figure 150 | Proposed fragments observed in FAB-MS.
Supplementary Figure 151 | 1H NMR experiment of the title compound recorded in CD$_3$OD.

Supplementary Figure 152 | 13C NMR experiment of the title compound recorded in CD$_3$OD.
Supplementary Figure 153 | 19F NMR experiment of the title compound recorded in CD$_3$OD.

Supplementary Figure 154 | COSY experiment of the title compound recorded in CD$_3$OD.
Supplementary Figure 155 | Multiplicity-edited HSQC experiment of the title compound recorded in CD$_3$OD.

Supplementary Figure 156 | HMBC experiment of the title compound recorded in CD$_3$OD.
Ugi reaction of perfluorotetradecanoic acid, benzaldehyde, tert-butylisocyanide and butylamine

In a 25 mL round bottom flask benzaldehyde (97.2 µL, 101 mg, 952 µmol, 1.70 eq.) was dissolved in 1.5 mL methanol, subsequently butylamine (94.1 µL, 69.6 mg, 952 µmol, 1.70 eq.) was added and the resulting mixture was stirred for 60 min over sodium sulfate. Perfluorotetradecanoic acid (400 mg, 560 µmol, 1.00 eq.) dissolved in 1 mL methanol was added at room temperature and the resulting mixture was stirred for 2 min. Subsequently, tert-butylisocyanide (108 µL, 79.2 mg, 952 µmol, 1.70 eq.) was added to the stirring mixture. After 4 h a precipitate was formed and 2 mL tetrahydrofuran were added to homogenize the reaction mixture. The resulting solution was stirred for 5 d at room temperature. The crude reaction mixture was dried under reduced pressure. The residue was adsorbed onto celite® and purified via column chromatography employing silica gel and eluting with a gradual solvent mixture of ethyl acetate and c-hexane (1:10 → 1:3) to yield the Ugi product as a yellow solid (98.7 mg, 103 mmol, 18.4%).

Rf = 0.50 in c-hexane/ethyl acetate (5:1). Visualized via fluorescent quench and Seebach staining solution.

IR (ATR): ν [cm⁻¹] = 3321.1 (w, ν(N-H)), 2968.1 (w, ν(C-H)), 1679.5 (s, ν(C=O)), 1654.5 (s, ν(C=O)), 1553.7 (m), 1452.7 (w), 1429.0 (w), 1363.3 (w), 1021.7 (vs), 1149.1 (vs), 1113.3 (s), 1095.2 (m), 1042.1 (m), 987.1 (w), 968.3 (w), 938.3 (w), 873.6 (w), 827.5 (m), 761.6 (m), 729.6 (m), 699.6 (m), 645.8 (s), 549.9 (s), 524.9 (s), 436.8 (w).

¹H NMR (400 MHz, CDCl₃): δ [ppm] = 7.79 – 7.25 (m, 5 H, CH₆Ar₂₄₋₂₈), 5.83 – 5.10 (m, 2 H, NH), 3.79 – 3.16 (m, 2 H, CH₂⁹), 1.43 (s, 1 H, CH₂²⁰ᵃ), 1.40 – 1.22 (m, 9 H, CH₃¹⁹,₂⁹,₃₀), 1.16 – 0.82 (m, 3 H, CH₂²⁰ᵇ + CH₂²¹ᵇ), 0.77 – 0.56 (m, 3 H, CH₃₂²). ¹³C NMR (101 MHz, CDCl₃): δ [ppm] = 166.2 (s, CONR²), 159.8 (s, CONR¹⁸), 132.6 (s, CAr²³), 129.4 (s, CH₂⁹), 128.6 (s, CH₂⁹), 127.6 (s, CH₂⁹), 64.8 (s, CH₂²⁰ᵃ), 62.1 (s, CH₂⁶ᵇ), 50.8 (s, C⁶), 46.3 (s, CH₂⁹), 30.8 (s, CH₂²⁰ᵇ or 2¹ᵇ), 27.4 (s, CH₃¹⁸,₂⁹,₃₀), 18.7 (s, CH₂²⁰ᵇ or 2¹ᵇ), 12.3 (s, CH₃₂²). ¹⁹F NMR (376 MHz, CDCl₃): δ [ppm] = -80.78 (t, J = 9.7 Hz, 3 F, CF₃³⁵), AB-signal (δₐ = -108.81, δ₉ = -109.78, Jₐ₉ = 237.2 Hz, A and B are split into t, J = 13.1 Hz, CF₂₁₇ᵃ), AB-signal (δₐ = -111.27,
\(\delta_B = -112.34, J_{AB} = 233.4 \text{ Hz, CF}_2^{17b}, \) additional coupling not resolved, signals broadened, -120.31 (s, CF\(_2\)), -121.76 (s, CF\(_2\)), -122.77(s, CF\(_2\)), -126.18 (s, CF\(_2^{34}\)). Total integral of CF\(_2\) region normalized with respect to the CF\(_3^{35}\) group = 24.

FAB – MS [\(m/z \)] (relative intensity): 959.1 (25%) [M + H]\(^+\), 886.0 (27%) [Fragment A]\(^+\), 858.0 (43%) [Fragment B]\(^+\), 802.0 [Fragment B – C\(_4\)H\(_6\)]\(^+\).

HRMS – FAB [\(m/z \)]: [M + H]\(^+\) calculated for \(^{12}\text{C}_{30}^{1}\text{H}_{26}^{16}\text{O}_{2}^{14}\text{N}_{2}^{19}\text{F}_{27}\), 959.1558; found, 959.1557; \(\Delta = 0.09 \text{ mmu.} \)

Supplementary Figure 157 | Proposed fragments observed in FAB-MS.
Supplementary Figure 158 | 1H NMR experiment of the title compound recorded in CD$_3$OD.

Supplementary Figure 159 | 13C NMR experiment of the title compound recorded in CD$_3$OD.
Supplementary Figure 160 | 19F NMR experiment of the title compound recorded in CD$_3$OD.

Supplementary Figure 161 | COSY experiment of the title compound recorded in CD$_3$OD.
Supplementary Figure 162 | Multiplicity-edited HSQC experiment of the title compound recorded in CD$_3$OD.

Supplementary Figure 163 | HMBC experiment of the title compound recorded in CD$_3$OD.
Ugi reaction of perfluoropentanoic acid benzaldehyde, 4-methoxyphenylisocyanide and pentylamine

In a 25 mL round bottom flask benzaldehyde (115 µL, 119 mg, 1.12 mmol, 1.70 eq.) was dissolved in 1.5 mL methanol, subsequently butylamine (114 µL, 82.4 mg, 1.12 mmol, 1.70 eq.) was added and the resulting mixture was stirred for 60 min over sodium sulfate. Afterwards, the mixture was filtrated and the solid was washed with 10 mL methanol three times. Subsequently, the filtrate was concentrated under reduced pressure. Perfluoropentanoic acid (175 mg, 663 µmol, 1.00 eq.) dissolved in 2 mL methanol was added to the imine at room temperature and the resulting mixture was stirred for 2 min. Subsequently, tert-butylisocyanide (127 µL, 93.7 mg, 1.12 mmol, 1.70 eq.) was added to the stirring mixture. The reaction was stirred for 4 d at room temperature. The crude reaction mixture was dried under reduced pressure and purified via column chromatography employing fluoro flash silica gel. The fluorous fraction was tested for purity via TLC and concentrated under reduced pressure. The remaining perfluoro acid was removed with a short silica gel filter column, eluting with c-hexane/ethyl acetate (3:1) to yield the Ugi product as a colorless powder (258 mg, 451 µmol, 68.1%).

$R_f = 0.29$ in c-hexane/ethyl acetate (4:1). Visualized via fluorescent quench and Seebach staining solution.

IR (ATR): ν [cm$^{-1}$] = 3307.9 (br, ν(N-H)), 2962.1 (m, ν(C-H)), 2932.8 (m, ν(C-H)), 1673.9 (vs, ν(C=O)), 1657.4 (s, ν(C=O)), 1599.4 (m), 1544.4 (s), 1513.9 (w), 1494.6 (w), 1477.9 (m), 1463.6 (m), 1452.6 (m), 1431.4 (m), 1417.4 (m), 1381.8 (w), 1353.1 (m), 1298.5 (m), 1284.8 (m), 1262.9 (m), 1234.3 (s), 1211.9 (vs), 1197.1 (vs), 1185.5 (s), 1175.2 (s), 1136.8 (vs), 1126.6 (s), 1110.5 (vs), 1034.0 (s), 974.4 (w), 950.7 (s), 931.0 (w), 870.8 (w), 849.6 (w), 829.7 (s), 812.4 (s), 802.4 (s), 760.1 (m), 745.8 (m), 722.2 (m), 704.7 (vs), 632.3 (m), 612.4 (m), 574.9 (w), 548.1 (m), 524.7 (m), 512.3(s), 474.4 (m), 436.9 (w).

1H NMR (400 MHz, CDCl$_3$): δ [ppm] = 7.44 (d, $J = 2.6$ Hz, 5 H, CH$_2$), 7.31 (d, $J = 9.0$ Hz, 2 H, CH$_2$), 6.79 (d, $J = 8.9$ Hz, 2 H, CH$_2$), 5.74 (s, 1 H, CH$_2$), 3.88 – 3.66 (m, 3 H, OCH$_3$), 3.58 – 3.25 (m, 2 H, CH$_2$), 1.57 (d, $J = 58.6$ Hz, 2 H, CH$_2$), 1.19 – 0.91 (m, 4 H, CH$_2$), 0.75 (t, $J = 7.0$ Hz, 3 H, CH$_3$).
13C NMR (126 MHz, CDCl$_3$): δ [ppm] = 166.6 (s, CONR$_4$), 159.7 (s, C$_{Ar}$), 157.1 (s, CONR$_4$), 133.4 (s, C$_{Ar}$), 130.8 (s, C$_{Ar}$), 130.1 (s, CH$_{Ar}$), 129.9 (s, CH$_{Ar}$), 129.7 (s, CH$_{Ar}$), 122.3 (s, CH$_{Ar}$), 114.5 (s, CH$_{Ar}$), 66.6 (s, CH$_2$), 55.9 (s, OCH$_3$), 48.2 (s, CH$_2$), 29.9 (s, CH$_2$), 29.1 (s, CH$_2$), 22.3 (s, CH$_2$), 14.2 (s, CH$_3$).

19F NMR (376 MHz, CDCl$_3$): δ [ppm] = -85.38 (t, J = 9.9 Hz, 3 F, CF$_3$), AB-signal (δA = -113.13, δB = -114.21, J_{AB} = 301.20 Hz, A and B are split into t, J = 12.3 Hz, CF$_2$), AB-signal (δA = -115.78, δB = -116.72, J_{AB} = 291.8 Hz, A and B are split into t, J = 12.4 Hz, CF$_2$), -125.48 (s, CF$_2$), -128.89 (s, CF$_2$). Total integral of CF$_2$ region normalized with respect to the CF$_3$ group = 6.

ESI-MS [m/z]: [M + Na]$^+$ calculated for 12C$_{25}$H$_{25}$O$_3$N$_2$F$_9$Na, 595.1614; found, 595.1615, Δ = 0.13 mmu.

ESI-MS [m/z]: [2M + Na]$^+$ calculated for 12C$_{50}$H$_{50}$O$_6$N$_4$F$_{18}$Na, 1167.3335; found, 1167.3348, Δ = 1.32 mmu.

Supplementary Figure 164 | 1H NMR experiment of the title compound recorded in CD$_3$OD.
Supplementary Figure 165 | 13C NMR experiment of the title compound recorded in CD$_3$OD.

Supplementary Figure 166 | 19F NMR experiment of the title compound recorded in CD$_3$OD.
Supplementary Figure 167 | COSY experiment of the title compound recorded in CD$_3$OD.

Supplementary Figure 168 | Multiplicity-edited HSQC experiment of the title compound recorded in CD$_3$OD.
Supplementary Figure 169 | HMBC experiment of the title compound recorded in CD$_3$OD.

Ugi reaction of perfluorononanoic acid, dodecanal, pentylisocyanide and benzylamine

In a 25 mL round bottom flask dodecyl aldehyde (90.4 mg, 490 µmol, 1.30 eq.) was dissolved in 1.5 mL methanol, subsequently benzylamine (56.0 µL, 52.5 mg, 490 µmol, 1.30 eq.) was added and the resulting mixture was stirred for 60 min over sodium sulfate. Afterwards, the mixture was filtrated and the solid was washed with 10 mL methanol three times. Subsequently, the filtrate was concentrated under reduced pressure. Perfluorononanoic acid (175 mg, 377 µmol, 1.00 eq.) dissolved
in 1 mL methanol was added to the imine at room temperature and the resulting mixture was stirred for 2 min. Subsequently, pentylisocyanide (56.9 µL, 43.9 mg, 453 µmol, 1.20 eq.) was added to the stirring mixture. The reaction was stirred for 3 d at room temperature. The crude reaction mixture was dried under reduced pressure and purified *via* column chromatography employing FluoroFlash® silica gel. The fluorous fraction was tested for purity *via* TLC and concentrated under reduced pressure. The remaining perfluoro acid was removed with a short silica gel filter column, eluting with *c*-hexane/ethyl acetate (3:1) to yield the Ugi product as a highly viscous yellow oil (57.1 mg, 68.4 µmol, 18.1%).

$R_f = 0.69$ in *c*-hexane/ethyl acetate (6:1). Visualized *via* fluorescent quench and Seebach staining solution.

IR (ATR): ν [cm$^{-1}$] = 3327.8 (br, ν(N-H)), 2924.6 (m, ν(C-H)), 2854.8 (w, ν(C-H)), 1659.9 (m, ν(C=O)), 1539.8 (w, ν(N-H)), 1455.2 (w), 1364.5 (s), 1239.1 (s), 1209.2 (vs), 1148.2 (s), 956.2 (w), 722.9 (m), 699.5 (m), 559.4 (w), 529.2 (w), 463.1 (w).

1H NMR (400 MHz, CDCl$_3$): δ [ppm] = 7.38 – 7.13 (m, 5 H, CH$_{Ar}^{32-36}$), 6.17 (t, $J = 5.5$ Hz, 1 H, NH8), 5.04 – 4.55 (m, 2 H, CH$_2^{10}$), 4.43 (t, $J = 14.8$, 1 H, CH$_1$), 3.34 – 2.92 (m, 2 H, CH$_2^{6}$), 1.96 – 1.67 (m, 2 H, CH$_2^9$), 1.66 – 1.37 (m, 2 H, CH$_2^{38\ or\ 29}$), 1.36 – 1.06 (m, 22 H, CH$_2$), 0.87 (s, 6 H, CH$_3$$_{30\ or\ 39}$).

13C NMR (126 MHz, CDCl$_3$): δ [ppm] = 168.3 (s, CONR4), 159.0 (s, CONR19), 135.9 (s, C$_{Ar}^{31}$), 127.9 (s, CH$_{Ar}$), 127.3 (s, CH$_{Ar}$), 126.5 (s, CH$_{Ar}$), 60.7 (s, CH1), 40.3 (s, CH$_2^6$), 31.6 (s, CH$_2^{26}$), 28.4 (s, CH$_2$), 28.3 (s, CH$_2$), 22.3 (s, CH$_2$), 21.9 (s, CH$_2$), 13.8 (s, CH$_3^{30\ or\ 39}$), 13.6 (s, CH$_3^{30\ or\ 39}$).

19F NMR (376 MHz, CDCl$_3$) δ [ppm] = -85.10 (t, $J = 9.9$ Hz, 3 F, CF$_2^{11}$), -112.37 – -114.22 (m, CF$_2^{18\ or\ 20}$), AB-signal ($\delta_A = -114.15$, $\delta_B = -115.22$, $J_{AB} = 291.8$ Hz, A and B are split into t, $J = 13.1$ Hz, CF$_2^{18\ or\ 20}$), 124.25 (s, CF$_2$), -126.13 (s, CF$_2$), -127.05 (s, CF$_2$), -130.44 (s, CF$_2^{12}$). Total integral of CF$_2$ region normalized with respect to the CF$_3^{11}$ group = 14.

FAB – MS [m/z] (relative intensity): 835.4 (65%) [M + H]$^+$, 387.3 (10%) [Fragment A]$^+$, 283.2 (32%) [Fragment B + H]$^+$.

HRMS – FAB [m/z]: [M + H]$^+$ calculated for 12C$_{34}$H$_{44}$O$_{17}$N$_2$F$_{17}$, 835.3126; found, 835.3125; $\Delta = 0.06$ mmu.
Supplementary Figure 170 | Proposed fragments observed in FAB-MS.

Supplementary Figure 171 | 1H NMR experiment of the title compound recorded in CD$_3$OD.
Supplementary Figure 172 | 13C NMR experiment of the title compound recorded in CD$_3$OD.

Supplementary Figure 173 | 19F NMR experiment of the title compound recorded in CD$_3$OD.
Supplementary Figure 174 | COSY experiment of the title compound recorded in CD$_3$OD.

Supplementary Figure 175 | Multiplicity-edited HSQC experiment of the title compound recorded in CD$_3$OD.
Supplementary Figure 176 | HMBC experiment of the title compound recorded in CD$_3$OD.

Ugi reaction of perfluorononanoic acid, undec-10-enal, cyclohexylamine and benzylisocyanide

In a 25 mL round bottom flask undec-10-enal (97.6 µL, 84.5 mg, 490 µmol, 1.30 eq.) was dissolved in 1.5 mL methanol, subsequently cyclohexylamine (56.5 µL, 48.9 mg, 490 µmol, 1.30 eq.) was added and the resulting mixture was stirred for 60 min over sodium sulfate. Afterwards the mixture was filtrated and the solid was washed with 10 mL methanol three times. Subsequently, the filtrate was concentrated under reduced pressure. Perfluorononanoic acid (175 mg, 377 µmol, 1.00 eq.) was
added at room temperature and the resulting mixture stirred for 2 min. Subsequently, benzylisocyanide (53.9 µL, 53.0 mg, 453 µmol, 1.20 eq.) was added to the stirring mixture. The reaction was stirred for 5 d at room temperature. The crude reaction mixture was dried under reduced pressure and purified via column chromatography employing silica gel and eluted with a gradual solvent mixture of ethyl acetate and c-hexane (0:1 → 1:3) to remove the remaining perfluoro acid. The product containing fractions were collected and further purified via column chromatography employing FluoroFlash® silica gel to yield the Ugi product as a highly viscous yellow oil (59.4 mg, 71.5 µmol, 19.0%).

$R_f = 0.50$ in c-hexane/ethyl acetate (6:1). Visualized via fluorescent quench and Seebach staining solution.

IR (ATR): ν [cm$^{-1}$] = 3324.4 (br, ν(N-H)), 2926.4 (s, ν(C-H)), 2855.8 (m, ν(C-H)), 1663.4 (s, ν(C=O)), 1528.8 (w, ν(C=C)), 1455.2 (w), 1364.2 (w), 1238.6 (vs), 1208.1 (vs), 1147.9 (s), 1029.0 (w), 992.2 (w), 909.4 (m), 723.2 (s), 698.2 (s), 655.9 (m), 559.2 (m), 528.9 (m).

1H NMR (400 MHz, CDCl$_3$): δ [ppm] = 7.65 – 6.99 (m, 5 H, CH$_{Ar}^{30-34}$), 6.70 (t, $J = 5.7$ Hz, 1 H, NH$_3$), 5.95 – 5.64 (m, 2 H, CH$_2^{29}$), 5.11 – 4.83 (m, 1 H, CH$_2$), 4.58 (s, 1 H, CH$_2$), 4.50 – 4.26 (m, 3 H, CH$_2^6 + CH_10$), 3.61 – 3.16 (m, 2 H, CH$_2$), 2.17 – 1.94 (m, 4 H, CH$_2$), 1.88 – 1.42 (m, 4 H, CH$_2$), 1.41 – 1.03 (m, 16 H, CH$_2$).

13C NMR (101 MHz, CDCl$_3$): δ [ppm] = 170.4 (s, CONR$_4^4$), 160.5 (s, CONR$_19^9$), 140.4 (s, CH$_2^{29}$), 138.6 (s, C$_{Ar}^{26}$), 129.6 (s, CH$_2$), 128.5 (s, CH$_2$), 128.4 (s, CH$_2$), 115.0 (s, CH$_2^{28}$), 62.8 (s, CH$_2^{10}$), 61.9 (s, CH$_2^{10}$), 47.5 (s, CH$_2$), 44.5 (s, CH$_2^6$), 34.7 (s, CH$_2$), 32.1 (s, CH$_2$), 30.9 (s, CH$_2$), 30.6 (s, CH$_2$), 30.3 (s, CH$_2$), 30.2 (s, CH$_2$), 29.9 (s, CH$_2$), 29.5 (s, CH$_2$), 28.7 (s, CH$_2$), 27.7 (s, CH$_2$), 27.4 (s, CH$_2$), 26.9 (s, CH$_2$).

19F NMR (376 MHz, CDCl$_3$): δ [ppm] = -85.11 (t, $J = 10.3$ Hz, 3 F, CF$_3^{11}$), AB-signal ($\delta_A = -112.77$, $\delta_B = -113.30$, $J_{AB} = 299.3$ Hz, A and B are split into t, $J = 12.7$ Hz, CF$_2^{18a}$), AB-signal ($\delta_A = -115.50$, $\delta_B = -115.86$, $J_{AB} = 289.9$ Hz, A and B are split into t, $J = 13.2$ Hz, CF$_2^{18b}$), -124.62 (s, CF$_2$), -126.11 (s, CF$_2$), -127.05 (s, CF$_2$), -130.44 (s, CF$_2^{12}$). Total integral of CF$_2$ region normalized with respect to the CF$_3^{11}$ group = 14.

FAB – MS [m/z] (relative intensity): 831.4 (45%) [M + H]$^+$, 726.3 (73%) [Fragment A + H]$^+$, 106.0 (17%) [Fragment B]$^+$.

HRMS – FAB [m/z]: [M + H]$^+$ calculated for 12C$_{34}$H$_{40}$O$_{16}$N$_2^{14}$F$_{17}$, 831.2813; found, 821.2814; $\Delta = 0.13$ mmu.
Supplementary Figure 177 | Proposed fragments observed in FAB-MS.

Supplementary Figure 178 | 1H NMR experiment of the title compound recorded in CDCl$_3$.

Chemical Formula: C$_{27}$H$_{32}$F$_{17}$NO$_2$

Exact Mass: 725.21616

Chemical Formula: C$_7$H$_9$N

Exact Mass: 106.06567

Fragment A

Fragment B
Supplementary Figure 179 | 13C NMR experiment of the title compound recorded in CDCl$_3$.

Supplementary Figure 180 | 19F NMR experiment of the title compound recorded in CDCl$_3$.
Supplementary Figure 181 | COSY experiment of the title compound recorded in CDCl₃.

Supplementary Figure 182 | Multiplicity-edited HSQC experiment of the title compound recorded in CDCl₃.
Supplementary Figure 183 | HMBC experiment of the title compound recorded in CD$_3$OD.

Ugi reaction of perfluorononanoic acid, 4-hydroxybenzaldehyde, cyclohexylisocyanide and propargylamine

In a 25 mL round bottom flask 4-hydroxybenzaldehyde (59.6 mg, 489 µmol, 1.30 eq.) was dissolved in 1.5 mL methanol, subsequently propargylamine (31.4 µL, 27.0 mg, 490 µmol, 1.30 eq.) was added and the resulting mixture was stirred for 60 min over sodium sulfate. Afterwards, the mixture was filtrated. The solid was washed with 10 mL methanol three times. Subsequently, the filtrate was concentrated under reduced pressure. Perfluorononanoic acid (175 mg, 377 µmol, 1.00 eq.) dissolved in 1 mL methanol was added to the imine at room temperature and the resulting mixture was stirred for 2 min. Subsequently, cyclohexylisocyanide (56.3 µL, 49.4 mg, 453 µmol, 1.20 eq.) was added to the stirring mixture. The reaction was stirred for 1 d at room temperature. The crude reaction mixture
was dried under reduced pressure and purified via column chromatography employing FluoroFlash® silica gel. The fluorous fraction was tested for purity via TLC and concentrated under reduced pressure. The Ugi product was obtained as a yellow oil (93.9 mg, 128 µmol, 34.1%).

$R_f = 0.66$ in c-hexane/ethyl acetate (6:1). Visualized via fluorescent quench and Seebach staining solution.

IR (ATR): ν [cm$^{-1}$] = 3301.6 (br, ν(N-H)), 3103.4 (br, ν(O-H)), 2928.2 (w, ν(C-H)), 2855.1 (w, ν(C-H)), 1650.1 (m, ν(C=O)), 1614.5 (w), 1598.5 (w), 1566.03 (m), 1514.2 (m), 1452.4 (w), 1425.6 (w), 1367.3 (w), 1347.2 (w), 1200.5 (s), 1149.3 (vs), 988.9 (w), 945.4 (m), 891.3 (w), 864.1 (w), 837.2 (w), 821.1 (w), 806.3 (w), 769.8 (w), 712.8 (m), 678.2 (m), 638.9 (s), 558.5 (m), 544.7 (m), 515.6 (s), 451.2 (w), 440.3 (w), 415.3 (w).

1H NMR (400 MHz, CD$_3$OD): δ [ppm] = 7.20 (dd, $J = 25.7, 7.3$ Hz, 2 H, CH$_{22,24}$), 6.86 (d, $J = 7.3$ Hz, 2 H, CH$_{21,25}$), 5.89 (d, $J = 17.6$ Hz, 1 H, CH2), 4.41 – 3.93 (m, 2 H, CH$_9$), 3.77 – 3.57 (m, 1 H, CH$_6$), 1.97 – 1.06 (m, 11 H, CH$_{20} +$ CH$_2$).

13C NMR (126 MHz, CD$_3$OD): δ [ppm] = 170.1 (s, CONR4), 159.8 (s, CONR18), 141.0 (s, C$_{Ar}^{23}$), 133.2 (s, CH$_{Ar}^{22,24}$), 125.0 (s, C$_{Ar}^{8}$), 116.7 (s, CH$_{Ar}^{21,25}$), 73.0 (s, C$_{19}$), 64.5 (s, CH$_3$), 48.8 (s, CH$_6$), 36.9 (s, CH$_9$), 33.5 (s, CH$_2$), 26.6 (s, 2 CH$_2$), 26.0 (s, 2 CH$_2$), 24.4 (s, CH$_{20}$).

19F NMR (376 MHz, CD$_3$OD): δ [ppm] = -86.69 (t, $J = 10.3$ Hz, 3 F, CF$_3^{10}$), AB-signal ($\delta_A = -114.86, \delta_B = -116.45, J_{AB} = 286.1$ Hz, A and B are split into t, CF$_2^{17a}$, additional coupling not resolved, signals broadened), AB-signal ($\delta_A = -116.24, \delta_B = -117.50, J_{AB} = 293.6$ Hz, A and B are split into t, CF$_2^{17b}$, additional coupling not resolved, signals broadened), - 125.00 (s, CF$_2$), -125.59 (m, CF$_2$), -127.10 (s, CF$_2$), -128.07 (s, CF$_2$), -131.60 (s, CF$_2^{11}$). Total integral of CF$_2$ region normalized with respect to the CF$_3^{10}$ group = 14.

FAB – MS [m/z] (relative intensity): 733.2 (65%) [M + H]$^+$, 606.0 (75%) [Fragment A]$^+$, 568.0 (22%) [Fragment A + H – C$_3$H$_3$]$^+$, 232.1 (83%) [Fragment B]$^+$.

HRMS – FAB [m/z]: [M + H]$^+$ calculated for 12C$_{26}^{1}$1H$_{22}^{16}$O$_{3}^{14}$N$_{2}^{19}$F$_{17}$, 733.1353; found, 733.1352; $\Delta = 0.14$ mmu.
Supplementary Figure 184 | Proposed fragments observed in FAB-MS.

Supplementary Figure 185 | 1H NMR experiment of the title compound recorded in CDCl$_3$.

Chemical Formula: $C_{19}H_{19}F_{17}NO_2^-$

Exact Mass: 606,03618

Fragment A

Chemical Formula: $C_{14}H_{19}NO_2^-$

Exact Mass: 232,13375

Fragment B
Supplementary Figure 186 | 13C NMR experiment of the title compound recorded in CDCl$_3$.

Supplementary Figure 187 | 19F NMR experiment of the title compound recorded in CDCl$_3$.
Supplementary Figure 188 | COSY experiment of the title compound recorded in CDCl₃.

Supplementary Figure 189 | Multiplicity-edited HSQC experiment of the title compound recorded in
Supplementary Figure 190 | HMBC experiment of the title compound recorded in CDCl₃.

Ugi reaction of perfluorononanoic acid, heptanal, 4-methoxyphenylisocyanide and butylamine

In a 25 mL round bottom flask heptanal (71.0 µL, 56.0 mg, 490 µmol, 1.30 eq.) was dissolved in 1.5 mL methanol, subsequently butylamine (48.5 µL, 35.9 mg, 490 µmol, 1.30 eq.) was added and the resulting mixture was stirred for 60 min over sodium sulfate. Afterwards, the mixture was filtrated and the solid was washed with 10 mL methanol three times. Subsequently, the filtrate was concentrated under reduced pressure. Perfluorononanoic acid (175 mg, 377 µmol, 1.00 eq.) dissolved in 1 mL methanol was added to the imine at room temperature and the resulting mixture was stirred
for 2 min. Subsequently, 4-methoxypheynhylisocyanide (50.4 µL, 60.3 mg, 453 µmol, 1.20 eq.) was added to the stirring mixture. The reaction was stirred for 3 d at room temperature. The crude reaction mixture was dried under reduced pressure and purified *via* column chromatography employing FluoroFlash® silica gel. The fluorous fraction was tested for purity *via* TLC and concentrated under reduced pressure. The remaining perfluoro acid was removed with a short silica gel filter column, eluting with *c*-hexane/ethyl acetate (3:1) to yield the Ugi product as a highly viscous yellow oil (53.9 mg, 70.3 µmol, 18.6%).

$R_f = 0.45$ in *c*-hexane/ethyl acetate (6:1). Visualized *via* fluorescent quench and Seebach staining solution.

IR (ATR): ν [cm$^{-1}] = 3320.9 (br, ν(N-H)), 2959.5 (m, ν(C-H)), 2932.7 (w, ν(C-H)), 2861.1 (w, ν(C-H)), 1794.9 (w, ν(C=O)), 1665.5 (s), 1605.3 (w), 1511.7 (m), 1466.2 (s), 1414.5 (m), 1298.9 (m), 1236.4 (vs), 1205.4 (vs), 1147.3 (vs), 1037.6 (s), 936.0 (w), 829.4 (m), 722.4 (m), 703.9 (m), 659.9 (m), 559.0 (m), 528.0 (m).

1H NMR (400 MHz, CDCl$_3$): δ [ppm] = 8.25 (s, 1 H, NH5), 7.53 – 7.27 (m, 2 H, CH$_{Ar}$20,24), 7.13 – 6.68 (m, 2 H, CH$_{Ar}$21,23), 4.69 (t, J = 7.5 Hz, 1 H, CH$_2$), 3.79 (s, 3 H, OCH$_3$26), 3.63 – 3.28 (m, 2 H, CH$_2$9), 2.42 – 1.68 (m, 2 H, CH$_2$8), 1.64 – 1.42 (m, 2 H, CH$_2$19), 1.39 – 1.19 (m, 10 H, CH$_3$28 or 33), 1.02 – 0.77 (m, 6 H, CH$_3$28 or 33).

13C NMR (126 MHz, CDCl$_3$): δ [ppm] = 167.7 (s, CONR4), 160.3 (s, CONR18), 156.8 (s, C$_{Ar}^{22}$), 130.7 (s, C$_{Ar}^6$), 121.8 (s, CH$_{Ar}^{20,24}$), 114.3 (s, CH$_{Ar}^{21,23}$), 62.0 (s, CH$_2$), 55.6 (s, OCH$_3$26), 45.6 (s, CH$_2$9), 31.7 (s, CH$_3$), 29.1 (s, CH$_2$), 27.8 (s, CH$_2$8), 26.1 (s, CH$_2$), 22.6 (s, CH$_2$), 20.1 (s, CH$_2$), 14.1 (s, CH$_3$33 or 28), 13.6 (s, CH$_3$33 or 28).

19F NMR (376 MHz, CDCl$_3$): δ [ppm] = -85.08 (t, J = 9.9 Hz, 3 F, CF$_3^{10}$), -112.11 – -113.63 (m, CF$_2$7a), AB-signal (δ_A = -115.34, δ_B = -115.68, J_{AB} = 331.3 Hz, A and B are split into t, J = 12.8 Hz, CF$_2$17b), -124.74 (s, CF$_2$), -126.11 (s, CF$_2$), -127.03 (s, CF$_2$), -130.42 (s, CF$_2$11). Total integral of CF$_2$ region normalized with respect to the CF$_3$10 group = 14.

FAB – MS [m/z] (relative intensity): 766.3 (50%) [M]$^+$, 617.2 (85%) [Fragment A + H]$^+$.

HRMS – FAB [m/z]: [M]$^+$ calculated for 12C$_{28}^{1}$H$_{31}$^{16}O$_{3}^{14}$N$_{2}^{19}$F$_{17}$, 766.2058; found, 766.2058; $\Delta = 0.04$ mmu.
Supplementary Figure 191 | Proposed fragments observed in FAB-MS.

Supplementary Figure 192 | 1H NMR experiment of the title compound recorded in CDCl$_3$.

Chemical Formula: C$_{20}$H$_{23}$F$_{17}$NO$^-$
Exact Mass: 616,15082
Supplementary Figure 193 | 13C NMR experiment of the title compound recorded in CDCl$_3$.

Supplementary Figure 194 | 19C NMR experiment of the title compound recorded in CDCl$_3$.
Supplementary Figure 195 | COSY experiment of the title compound recorded in CDCl₃

Supplementary Figure 196 | Multiplicity-edited HSQC experiment of the title compound recorded in CDCl₃
In a 25 mL round bottom flask benzaldehyde (56.3 µL, 49.4 mg, 453 µmol, 1.20 eq.) was dissolved in 1.5 mL methanol, subsequently pentyamine (56.6 µL, 42.7 mg, 490 µmol, 1.30 eq.) was added and the resulting mixture was stirred for 60 min over sodium sulfate. Afterwards, the mixture was filtrated and the solid was washed with 10 mL methanol three times. Subsequently, the filtrate was concentrated under reduced pressure. Perfluorononanoic acid (175 mg, 377 µmol, 1.00 eq.) dissolved in 1 mL methanol was added to the imine at room temperature and the resulting mixture was stirred for 2 min. Subsequently, cyclohexylisocyanide (56.3 µL, 59.4 mg, 453 µmol, 1.20 eq.) was added to the stirring mixture. The reaction was stirred for 4 d at room temperature. The crude reaction mixture was dried under reduced pressure and purified via column chromatography employing FluoroFlash®.
silica gel. The fluorous fraction was tested for purity via TLC and concentrated under reduced pressure. The remaining perfluoro acid was removed with a short silica gel filter column, eluting with c-hexane/ethyl acetate (3:1) to yield the Ugi product as a colorless solid (106 mg, 140 µmol, 42.3%).

$R_f = 0.47$ in c-hexane/ethyl acetate (6:1). Visualized via fluorescent quench and Seebach staining solution.

IR (ATR): ν [cm$^{-1}$] = 3306.5 (br, ν(N-H)), 2922.9 (m, ν(C-H)), 2851.1 (w), 2186.6 (vw), 2044.9 (vw), 1971.1 (vw), 1672.8 (s, ν(C=O)), 1654.2 (s, ν(C=O)), 1556.4 (m), 1445.1 (w), 1428.8 (m), 1369.9 (m), 1234.2 (s), 1139.3 (s), 1145.5 (s), 1119.6 (s), 1062.2 (m), 975.9 (m), 923.8 (m), 859.2 (w), 762.6 (w), 709.5 (s), 683.4 (m), 666.9 (m), 643.2 (m), 559.2 (m), 516.4 (m), 463.7 (w), 437.2 (w).

1H NMR (400 MHz, CD$_3$OD): δ [ppm] = 7.54 – 7.22 (m, 5 H, CH$_{Ar}^{28-32}$), 5.87 (d, $J = 29.9$ Hz, 1 H, CH1), 3.84 – 3.52 (m, 1 H, CH$_2^{6a}$), 3.41 – 3.35 (m, 1 H, CH$_1^{16}$), 3.24 – 3.13 (m, 1 H, CH$_{2}^{6b}$), 1.90 – 1.52 (m, 6 H, CH$_2$), 1.44 – 1.24 (m, 4 H, CH$_2$), 1.21 – 1.04 (m, 4 H, CH$_2$), 1.04 – 0.68 (m, 2 H, CH$_2^{26}$), 0.66 – 0.53 (m, 3 H, CH$_3^{27}$).

13C NMR (101 MHz, CD$_3$OD): δ [ppm] = 169.9 (s, CONR$_2$), 158.8 (s, CONR15), 135.7 (s, C$_{Ar}^{5}$), 131.7 (s, CH$_{Ar}$), 130.9 (s, CH$_{Ar}$), 130.1 (s, CH$_{Ar}$), 65.5 (s, CH$_{1a}$), 64.1 (s, CH$_{1b}$), 50.0 (s, CH$_{18}$), 47.3 (s, CH$_2^{6}$), 33.5 (s, CH$_2$), 30.3 (s, CH$_2$), 26.6 (s, CH$_2$), 26.0 (s, CH$_2$), 21.0 (s, CH$_2$), 20.7 (s, CH$_2^{26}$), 13.7 (s, CH$_3^{27}$).

19F NMR (376 MHz, CD$_3$OD): δ [ppm] = -88.27 (t, $J = 9.4$ Hz, 3 F, CF$_3^{7}$), AB-signal ($\delta_A = -116.01$, $\delta_B = -117.30$, $J_{AB} = 299.3$ Hz, A and B are split into t, $J = 12.8$ Hz, CF$_2^{14a}$), AB-signal ($\delta_A = -117.97$, $\delta_B = -119.28$, $J_{AB} = 291.8$ Hz, A and B are split into t, $J = 11.3$ Hz, CF$_2^{14b}$), -126.38 (s, CF$_2$), -127.08 (s, CF$_2$), -128.67 (s, CF$_2$), -129.65 (s, CF$_2$), -133.20 (s, CF$_2^{8}$). Total integral of CF$_2$ region normalized with respect to the CF$_3$ group = 14.

FAB – MS [m/z] (relative intensity): 749.2 [M + H]$^+$ (80%), 552.0 (92%) [Fragment A + H]$^+$, 217.1 (68%) [Fragment B + H]$^+$.

HRMS – FAB [m/z]: [M + H]$^+$ calculated for 12C$_{28}$1H$_{29}$16O$_2$14N$_2$19F$_{17}$, 749.2030; found, 749.2032; $\Delta = 0.17$ mmu.
Supplementary Figure 198 | Proposed fragments observed in FAB-MS.

Supplementary Figure 199 | 1H NMR experiment of the title compound recorded in CD$_3$OD.
Supplementary Figure 200 | 13C NMR experiment of the title compound recorded in CD$_3$OD.

Supplementary Figure 201 | 19F NMR experiment of the title compound recorded in CD$_3$OD.
Supplementary Figure 202 | COSY experiment of the title compound recorded in CD$_3$OD.
Supplementary Figure 203 | Multiplicity-edited HSQC experiment of the title compound recorded in CD$_3$OD.

Supplementary Figure 204 | HMBC experiment of the title compound recorded in CD$_3$OD.
Ugi reaction of perfluorononanoic acid, cyclamen aldehyde, tert-butylisocyanide and 2-pentylamine

In a 25 mL round bottom flask cyclamenaldehyde (906 µL, 861 mg, 4.53 mmol, 3.00 eq.) and 2-pentylamine (493 µL, 394 mg, 4.53 mmol, 3.00 eq.) were stirred for 60 min over sodium sulfate. The mixture was diluted with 0.5 mL methanol and perfluorononanoic acid (700 mg, 1.51 mmol, 1.00 eq.) was added at room temperature. Subsequently, tert-butylisocyanide (512 µL, 376 mg, 4.53 mmol, 3.00 eq.) was added to the stirring mixture. The reaction was stirred for 4 d at room temperature. The crude reaction mixture was dried under reduced pressure and purified via column chromatography employing FluoroFlash® silica gel and eluting with 8 mL methanol/water (8:2) to elute the organic fraction, subsequently the fluorous fraction was eluted with pure methanol. The remaining perfluoro acid was removed with a short silica gel filter column, eluting with c-hexane/ethyl acetate (3:1). After drying under reduced pressure, the fluoro-tagged product (diastereomer mixture) was obtained as a yellow oil (209 mg, 251 µmol, 16.7%).

\[R_f = 0.75 \] in c-hexane/ethyl acetate (3:1). Visualized via fluorescent quench and Seebach staining solution.

IR (ATR): \(\nu \) [cm\(^{-1}\)] = 3305.2 (br, \(\nu \)(N-H)), 2959.7 (vs, \(\nu \)(C-H)), 2929.3 (s, \(\nu \)(C-H)), 2870.8 (m, \(\nu \)(C-H)), 2711.1 (m), 1725.1 (vs, \(\nu \)(C=O)), 1674.4 (s, \(\nu \)(C=O)), 1512.6 (m), 1457.4 (m), 1419.9 (w), 1382.2 (w), 1363.0 (w), 1282.5 (w), 1217.7 (m), 1114.2 (s), 1050.7 (m), 1019.5 (w), 923.8 (w), 879.9 (m), 837.5 (w), 704.4 (w), 548.6 (m).

\(^1\)H NMR (500 MHz, CD\(_3\)OD): \(\delta \) [ppm] = 7.20 – 6.95 (m, 4 H, CH\(_{\text{Ar}}\)), 4.87 (s, 1 H), 4.30 (dd, \(J = 5.0, 2.3 \) Hz, 1 H, CH\(^3\)), 3.04 – 2.50 (m, 5 H, CH\(_2\))\(^{19+37} + \text{CH}\(^3\)), 2.31 (ddd, \(J = 13.4, 9.4, 2.6 \) Hz, 2 H, CH\(_2\)), 1.94 – 1.80 (m, 2 H, CH\(^3\) + CH\(^{46}\)), 1.42 – 1.12 (m, 18 H, CH\(_3\))\(^{45,47} + \text{CH}_3\(^{27,31,32} + \text{CH}_3\(^{33}\)), 1.03 – 0.82 (m, 6 H, CH\(_3\))\(^{35+46}\).
\(^{13}\)C NMR (126 MHz, CD\(_3\)OD): \(\delta \text{ [ppm]} = 147.3 \text{ (s, CONR}^4\text{)}, 139.3 \text{ (s, CONR}^{18}\text{)}, 139.2 \text{ (s, C}_{Ar}\text{)}, 130.2 \text{ (s, C}_{Ar}\text{)}, 127.4 \text{ (s, CH}_{Ar}\text{)}, 127.1 \text{ (s, CH}_{Ar}\text{)}, 102.1 \text{ (s, CH}^2\text{)}, 42.7 \text{ (s, CH}\text{^{38 or 44}}\text{)}, 42.4 \text{ (s, CH}\text{^{38 or 44}}\text{)}, 38.9 \text{ (s, CH}^2\text{)}, 38.7 \text{ (s, CH}^2\text{)}, 35.5 \text{ (s, CH}^2\text{)}, 34.9 \text{ (s, CH}^3\text{)}, 24.6 \text{ (s, CH}^3\text{)}, 24.5 \text{ (s, CH}^3\text{)}, 14.2 \text{ (s, CH}_{35 or 46}\text{)}, 14.1 \text{ (s, CH}_{35 or 46}\text{)}.

\(^{19}\)F NMR (376 MHz, CD\(_3\)OD): \(\delta \text{ [ppm]} = -86.41 \text{ (t, } J = 10.4 \text{ Hz, } 3 \text{ F, CF}^{51}\text{)}, -113.47 - -116.61 \text{ (m, CF}^2_{17}\text{)}, -124.05 - -125.24 \text{ (m, CF}^2\text{)}, -126.48 \text{ (s, CF}^2\text{)}, -126.67 - -127.14 \text{ (m, CF}^2\text{)}, -127.72 \text{ (d, } J = 17.1 \text{ Hz, CF}^2\text{)}, -127.84 \text{ (s, CF}^2\text{)}, -130.95 - -131.61 \text{ (m, CF}^2_{50}\text{)}. \text{Total integral of CF}^2\text{ region normalized with respect to the CF}^3\text{ group} = 14.

ESI – MS \([m/z]\): \([M + Na]^+\) calculated for \(^{12}\)C\(_{32}\)\(^{1}\)H\(_{39}\)\(^{16}\)O\(_2\)\(^{14}\)N\(_2\)\(^{19}\)F\(_{17}\)Na\(_1\), 829.2638; found, 829.2636; \(\Delta = 0.19 \text{ mmu.}\)

Supplementary Figure 205 | \(^1\)H NMR experiment of the title compound recorded in CD\(_3\)OD.
Supplementary Figure 206 | 13C NMR experiment of the title compound recorded in CD$_3$OD.

Supplementary Figure 207 | 19F NMR experiment of the title compound recorded in CD$_3$OD.
Supplementary Figure 208 | COSY experiment of the title compound recorded in CD$_3$OD.
Supplementary Figure 209 | Multiplicity-edited HSQC experiment of the title compound recorded in CD$_3$OD.

Supplementary Figure 210 | HMBC experiment of the title compound recorded in CD$_3$OD.
Influence of stereochemistry

During the Ugi reaction a new chiral center is formed, which is not controlled in the present protocol. However, if chiral precursor components are utilized, diastereomeric product mixtures will result. In order to study if diastereoisomers have an influence on the separation protocol or the MS/MS fragmentation behavior, a model substrate was synthesized, purified via F-SPE and fragmented via ESI-MS/MS.

Supplementary Figure 211 | Model substrate for studying the influence of stereochemistry. The structure presented above was synthesized from the racemic precursor components. The reaction product will thus be a mixture of four different diastereoisomers.

The F-SPE purification protocol retains perfluorinated compounds selectively and is thus unaffected by diastereoisomers. This is a great advantage of F-SPE and was utilized in the field of so called fluorous mixture synthesis (FMS). FMS separation was also applied successfully for the synthesis of diastereomer mixtures, wherein F-tagged diastereomers were synthesized stepwise and separated from non-fluorinated contaminations via F-SPE. The synthetic procedures for the diastereomeric molecular key mixture presented above is included at the end of the chapter Synthetic procedures (page 154). If a diastereomeric mixture is subjected to a tandem-MS experiment, it can be assumed that the required fragments for the readout will still be observed, since, even if theoretically different fragmentation pathways may occur, the favored fragments presented in the manuscript will still be observed, at least for some of the fragmentation pathways (maybe with a somewhat lower probability, but the required fragments should still be present and detectable). The observed mass of the fragments is independent from the stereochemical information. The fragmentation behavior of diastereoisomers in MS/MS methods and was previously studied, confirming that the fragmentation leads to a different intensity distribution pattern but all relevant fragments were observed. In the Supplementary Figure 11 the fragmentation of the diastereomeric product mixture presented above is illustrated, indicating that diastereomeric mixtures of molecular keys can be unambiguously read out similar to diastereomeric pure molecular keys.
Supplementary Figure 212 | Fragmentation of a molecular key diastereomeric mixture. ESI-MS/MS of a single charged species at 829 m/z (⊕). HCD = 35 eV. Table (bottom): Fragment assignment. In conclusion the diastereomeric mixture can be read out in the same fashion.
Supplementary Note 1

Solutions for encrypted messages

In this chapter, the solutions for obtaining the encryption keys from the above presented tandem-MS spectra are included.

Solution for example 1

Enter \([M+Na]^+ = 731.15414\), choose dM = 0.002
Supplementary Figure 214 | Solution for example 1. ESI-MS/MS. NEC = 35 eV.

Enter 106.06

Supplementary Figure 215 | Solution for example 1. ESI-MS/MS. NEC = 50 eV.

Enter 162.12
The \(\alpha \)-addition of immonium ions and anions (\(\text{OH}^- \), \(\text{SeH}^- \), \(\text{S}_2\text{O}_3^{2-} \), \(\text{N}_3^- \text{NCO}^- \text{NCS}^- \), \(\text{R-CO}_2^- \), \(\text{RO-CO}_2^- \)) to isonitriles, accompanied by secondary reactions provides a means for the one-stage synthesis of organic nitrogen compounds starting with two to five different components. Thus, by the condensations of amines (ammonia, primary, and secondary aliphatic and aromatic amines, hydrazines) and aldehydes or ketones with isonitriles and acids, a number of \(\alpha \)-aminocarboxylic acid amides, thioamides, selenoamides, 1,5-disubstituted tetrazoles, hydantoin imides, thiohydantoin imides, \(\alpha \)-acylamino carboxylic acid amides, oligopeptide derivatives, \(\beta \)-lactams, derivatives of penicillanic acid, urethanes, diacylimides, and various hydrazine derivatives, can be prepared. The reactions are easily carried out and take place under mild conditions. Yields of more than 90% are frequently encountered.

This is the abstract of the original publication from Ivar Ugi describing the herein utilized Ugi reaction.
Ugi, I. (1962), The α-Addition of Immonium Ions and Anions to Isonitriles Accompanied by Secondary Reactions. Angew. Chem. Int. Ed. Engl., 1: 8–21. doi:10.1002/anie.196200081.
Solution for example 2

Supplementary Figure 216 | Solution for example 2. ESI-MS.
Enter \([\text{M+Na}^+] = 531.16688\), choose \(\text{dM} = 0.002\)

Supplementary Figure 217 | Solution for example 2. ESI-MS/MS. NCE = 40 eV
Enter 106.06 than enter 162.12
Solution: A(001)-B(002)-C(004)-D(007)

\[
O=C(C(F)(C(F)(C(F)(C(F)(F)F)F)F)F)N(C(C(C(C(C(C1=CC=CC1)(NC(C(C)C)=O

Originally encoded text:

Dear reader, congratulations!

You successfully encoded the following message:

Wer reitet so spät durch Nacht und Wind?
Es ist der Vater mit seinem Kind;
Er hat den Knaben wohl in dem Arm,
Er fasst ihn sicher, er hält ihn warm.

Mein Sohn, was birgst du so bang dein Gesicht? –
Siehst, Vater, du den Erlkönig nicht?
Den Erlenkönig mit Kron’ und Schweif? –
Mein Sohn, es ist ein Nebelstreif. –

„Du liebes Kind, komm, geh mit mir!
Gar schöne Spiele spiel’ ich mit dir;
Manch’ bunte Blumen sind an dem Strand,
Meine Mutter hat manch gülden Gewand.“ –
Mein Vater, mein Vater, und hörest du nicht,
Was Erlenkönig mir leise verspricht? –
Sei ruhig, bleibe ruhig, mein Kind;
In dürren Blättern säuselt der Wind. –

„Willst, feiner Knabe, du mit mir gehn?
Meine Töchter sollen dich warten schön;
Meine Töchter führen den nächtlichen Reihn
Und wiegen und tanzen und singen dich ein.“ –

Mein Vater, mein Vater, und siehst du nicht dort
Erlkönigs Töchter am düstern Ort? –
Mein Sohn, mein Sohn, ich seh’ es genau:
Es scheinen die alten Weiden so grau. –

„Ich liebe dich, mich reizt deine schöne Gestalt;
Und bist du nicht willig, so brauch’ ich Gewalt.“ –
Mein Vater, mein Vater, jetzt faßt er mich an!
Erlkönig hat mir ein Leids getan! –

Dem Vater grauset’s; er reitet geschwind,
Er hält in Armen das ächzende Kind,
Erreicht den Hof mit Mühe und Not;
In seinen Armen das Kind war tot.

This is the famous German poem „Erlkönig” from Johann Wolfgang von Goethe (1782).

https://en.wikipedia.org/wiki/Erlk%C3%B6nig_(Goethe), accessed june 2017.
Solution for example 3

Supplementary Figure 218 | Solution for example 3. ESI-MS.

Enter [M+Na]^+ = 595.16149, choose dM = 0.002

Supplementary Figure 219 | Solution for example 3. ESI-MS/MS. NCE = 40 eV

Enter 176.14
Supplementary Figure 220 | Solution for example 3. ESI-MS/MS. NCE = 50 eV

Enter 106.06

Solution: A(001)-B(012)-C(007)-D(007)

\[O=C(C(F)(C(F)(C(F)(C(F)(F)\text{F})\text{F})\text{F})\text{N(C}CC\text{C}C\text{C}C\text{C}C)\text{C}(\text{C}1=\text{C}C=\text{C}C=\text{C}1)\text{C}(\text{C}1=\text{C}C=\text{C}(\text{O})\text{C}=\text{C}1)=O \]

Originally encoded text:

Dear reader, congratulations!

You successfully encoded the following message:
Tell me, Muse, of the man of many ways, who was driven far journeys, after he had sacked Troy’s sacred citadel. Many were they whose cities he saw, whose minds he learned of, many the pains he suffered in his spirit on the wide sea, struggling for his own life and the homecoming of his companions. Even so he could not save his companions, hard though he strove to; they were destroyed by their own wild recklessness, fools, who devoured the oxen of Helios, the Sun God, and he took away the day of their homecoming. From some point here, goddess, daughter of Zeus, speak, and begin our story. Then all the others, as many as fled sheer destruction, were at home now, having escaped the sea and the fighting. This one alone, longing for his wife and his homecoming, was detained by the queen nympf Kalypso, bright among goddess, in der hollowed caverns, desiring that he should be her husband.

The Odyssey of Homer, book 1, opening lines. Translated by Richmond Lattimore (1965).

Solution for deciphering the filecontainer

Enter the three molecular keys as follows:

A(005)-B(002)-C(004)-D(007)

A(001)-B(002)-C(004)-D(007)

A(001)-B(012)-C(007)-D(007)

Save as *.zip file.

Supplementary References

1. Still, W. C., Kahn, M. & Mitra, A. Rapid chromatographic technique for preparative separations with moderate resolution. J. Org. Chem. 43, 2923–2925 (1978).

2. Luo, Z., Zhang, Q., Oderaotoshi, Y. & Curran, D. P. Fluorous Mixture Synthesis: A Fluorous-Tagging Strategy for the Synthesis and Separation of Mixtures of Organic Compounds. Science (80-.). 291, 1766–1769 (2001).
3. Lu, Y. et al. Fluorous diastereomeric mixture synthesis (FDMS) of hydantoin-fused hexahydrochromeno[4,3-b]pyrroles. *Chem. Commun.* **46**, 7578 (2010).

4. Madhusudanan, K. P. Tandem mass spectra of ammonium adducts of monosaccharides: differentiation of diastereomers. *J. Mass Spectrom.* **41**, 1096–1104 (2006).

5. Drabik, E. et al. Differentiation of Diastereoisomers of Protected 1,2-Diaminoalkylphosphonic Acids by EI Mass Spectrometry and Density Functional Theory. *J. Am. Soc. Mass Spectrom.* **24**, 388–398 (2013).