Selected environmental risk factors and congenital heart defects

Renata Kučienė, Virginija Dulskienė
Institute of Cardiology, Kaunas University of Medicine, Lithuania

Key words: environmental risk factors; congenital heart defects; maternal illness; lifestyle factors.

Summary. The aim of the article is to review the published scientific literature and epidemiological studies about the effect of selected environmental risk factors on congenital heart defects in infants.

According to recent reports, the prevalence of congenital heart defects is around 1% of live births. Congenital heart malformations are the leading cause of infant mortality. Unfortunately, the majority of the causes of heart defects remain unknown. These malformations are caused by interaction of genetic and environmental factors.

The article reviews selected environmental risk factors: maternal illnesses and conditions associated with metabolic disorder (maternal diabetes, obesity, phenylketonuria), maternal lifestyle factors (alcohol use, smoking), which may increase the risk of congenital heart defects.

Introduction

The prevalence of congenital heart defects (CHDs) is around 1% of live births (1). Mortality from CHDs remains a major cause of death in infancy and childhood (2). The heart and the vascular system are almost fully formed by midgestation, so early months of pregnancy are a critical window of exposure for CHDs (3).

The etiology of most CHDs is unknown; only around 15% of CHDs can be attributed to a known cause (4). Approximately 5–10% are associated with a chromosome abnormality, 3–5% can be linked to defects in single genes, and about 2% are attributed to known environmental factors (5). It is difficult to establish the role of a single factor, because in many cases, the cause of a defect is believed to be multifactorial (6, 7), including environmental teratogens with genetic and chromosomal conditions (4). Most of the causes of these anomalies occur within the fetal–placental–maternal “environment” (8). Maternal illnesses play a significant role in the development of heart defects in fetuses. Although the embryo does not have the disease, prolonged exposure to metabolites of the maternal illness leads to the development of congenital malformations (7). Any of the environmental factors may affect the woman’s organism before pregnancy or development of the fetus.

The article reviews published scientific literature and epidemiological studies on association between CHDs in offspring and selected environmental risk factors: maternal illnesses and conditions (diabetes mellitus, obesity, and phenylketonuria) associated with metabolic disorders and lifestyle factors (alcohol use, smoking).

Methods

Relevant studies were identified by searching computerized Medline database by the following key words: “congenital heart defects,” “environmental risk factors,” “lifestyle factors,” and “maternal illness.” Publications published between 1995 and 2007 were included.

Maternal illnesses and conditions

Maternal diabetes mellitus

Maternal pregestational diabetes mellitus increases the risk of CHDs (9–13). Maternal diabetes mellitus is generally associated with a wide spectrum of CHDs: laterality/looping defects, transposition of the great arteries outflow tract defects with normal great arteries, nonchromosomal atriocentric septal defects, double-outlet right ventricle, tetralogy of Fallot, membranous ventricular septal defects, hypoplastic left heart syndrome, cardiomyopathy (9). Recent studies showed that pre-existing maternal diabetes had an increased risk of cardiovascular congenital abnormalities (10, 11) (Table).

The exact teratogenic mechanism of maternal diabetes is not fully defined and is likely to be multifactorial (4, 14, 15). Abnormalities, including increased
Table. Selected environmental risk factors reported to be significantly associated with congenital heart defects

Risk factor	Study design	Defects	Estimated risk	Authors
Pregestational diabetes	Case-control	Laterality/looping defects	Adjusted OR=8.3 (95% CI, 3.0–23.0)	Ferencz et al. (1997)
	Case-control	Transposition of the great arteries	Adjusted OR=3.8 (95% CI, 1.4–10.2)	Ferencz et al. (1997)
	Case-control	Outflow tract defects with normal great arteries	Adjusted OR=5.4 (95% CI, 2.5–10.8)	Ferencz et al. (1997)
	Case-control	Nonchromosomal atrioventricular septal defects	Adjusted OR=10.6 (95% CI, 3.7–30.6)	Ferencz et al. (1997)
	Case-control	Membranous ventricular septal defects	Adjusted OR=2.9 (95% CI, 1.4–6.1)	Ferencz et al. (1997)
	Case-control	Hypoplastic left heart syndrome	Adjusted OR=3.9 (95% CI, 1.2–13.2)	Ferencz et al. (1997)
	Case-control	Cardiomyopathy	Adjusted OR=11.5 (95% CI, 4.4–29.8)	Ferencz et al. (1997)
	Case-control	Cardiovascular malformations	OR=5.0 (95% CI, 3.3–7.8)	Wren et al. (2003)
Obesity	Case-control	Transposition of the great arteries	OR=4.4 (95% CI, 1.1–17.7)	Quiesser-Luft et al. (1998)
BMI ≥30 kg/m² for risk*	Case-control	Truncus arteriosus	OR=6.3 (95% CI, 1.6–24.8)	Quiesser-Luft et al. (1998)
BMI ≥27 kg/m²	Retrospective cohort	Congenital heart defects	OR=6.5 (95% CI, 1.2–34.9)	Mikhail et al. (2002)
BMI 25.0–29.9 kg/m²	Case-control	Heart defects in aggregate	Unadjusted OR=2.0 (95% CI, 1.2–3.1)	Watkins et al. (2003)
BMI 25.0–29.9 kg/m²	Case-control	Left ventricular outflow tract defects	Unadjusted OR=3.3 (95% CI, 1.6–6.7)	Watkins et al. (2003)
BMI ≥30 kg/m²	Case-control	Heart defects in aggregate	Unadjusted OR=2.0 (95% CI, 1.2–3.4)	Watkins et al. (2003)
BMI >29 kg/m²	Case-control	All cardiovascular defects	Adjusted OR=1.18 (95% CI, 1.09–1.27)	Cedergren et al. (2003)
BMI >29 kg/m²	Case-control	Ventricular septal defects	Adjusted OR=1.14 (95% CI, 1.01–1.28)	Cedergren et al. (2003)
BMI >29 kg/m²	Case-control	Atrial septal defects	Adjusted OR=1.37 (95% CI, 1.09–1.72)	Cedergren et al. (2003)
BMI >35 kg/m²	Case-control	All cardiovascular defects	Adjusted OR=1.40 (95% CI, 1.22–1.64)	Cedergren et al. (2003)
Alcohol	Case-control	Small muscular ventricular septal defect	Adjusted OR=2.6 (95% CI, 1.4–4.8)	Ferencz et al. (1997)
osmolarity and abnormal levels of ketones, amino acids, and fatty acids, may contribute to pathogenesis. High blood glucose levels could cause congenital malformations by inhibiting glycolysis, the primary process of energy production during embryogenesis (15). The experimental study showed a positive significant interrelationship between increased malformation and resorption rates and the maternal serum concentrations of glucose, triglycerides, beta-hydroxybutyrate, branched-chain amino acids, and creatinine (16). Hyperglycemia has a direct influence on proliferation and migration of neural crest cells, which are essential in the development of the heart (17). The recent study by Roest et al. showed a high incidence of cardiovascular malformations in embryos, which cardiac neural crest cells were exposed to an elevated glucose level (18). Other study reported that abnormal glucose level in embryos disturbed the expression of Pax-3, a development control gene (19), which is an important transcription factor of cardiac neural crest cells (18, 20).

The influence of preconceptional diabetes begins during embryonic development in the first trimester; it continues to have an influence during the second and third trimesters and into the perinatal and neonatal period (14).

The risk of developing a CHD can be greatly diminished by good blood glucose control (4). Contrarily, duration of mother’s insulin-dependent diabetes and poor glycemic control before and during pregnancy increase the risk of congenital malformations (13).

Obesity

A number of recent studies have examined the relation between maternal prepregnancy obesity and CHDs. The findings of these studies have been inconsistent because of variations in categorization of body mass index and methods.

A population-based case-control study by Watkins et al. reported that obese and overweight women were more likely than average-weight women to have infants with heart defects (21). Cedergren et al. observed a positive association between maternal obesity in early pregnancy and CHDs in the offspring. Obese mother and mothers with morbid obesity (BMI >35 kg/m²) had an increased risk for cardiovascular defects compared with the average-weight mothers. There was an increased risk for all specific defects studied among the obese women, but only ventricular septal defects and atrial septal defects reached statistical significance (22). A case-control study from Germany reported

Table continuation

1	2	3	4	5
Smoking	Case-control	Pulmonic stenosis	Adjusted OR=12.5 (95% CI, 3.2–49.4)	Ferencz et al. (1997)
Case-control	Transposition with ventricular septal defect	Adjusted OR=2.1 (95% CI, 1.2–3.9)	Ferencz et al. (1997)	
Case-control	Transposition with ventricular septal defect	Adjusted OR=4.5 (95% CI, 1.4–14.9)	Ferencz et al. (1997)	
Case-control	Atrioventricular canal defects	OR=2.3 (95% CI, 1.2–4.5)	Torfs and Christianson (1999)	
Case-control	Tetralogy of Fallot	OR=4.6 (95% CI, 1.2–17.08)	Torfs and Christianson (1999)	
Case-control	Atrial septal defects without ventricular septal defect	OR=2.2 (95% CI, 1.1–4.3)	Torfs and Christianson (1999)	
Retrospective cohort	Cardiovascular system abnormalities	Adjusted RR=1.56 (95% CI, 1.12–2.19)	Woods and Raju (2001)	
Case-control	Heart defects in aggregate	Adjusted OR=1.88 (95% CI, 1.21–2.92)	Dulskenė and Gražulevičienė (2005)	

*Reference group, BMI <30 kg/m².
**Reference group, BMI <27 kg/m².
***Reference group, BMI 18.5–24.9 kg/m².
****Reference group, BMI=19.8–26 kg/m².

21–39 cigarettes/day.

40+ cigarettes/day.
Maternal lifestyle factors

Alcohol use and cigarette smoking

A limited number of studies have examined the relationship between maternal lifestyle factors and risk of CHDs. Maternal alcohol use during pregnancy is associated with birth defects in children (6, 33, 34). The adverse effects of alcohol on the developing human comprise a spectrum of structural anomalies and behavioral disabilities (34) and leads to an increased number of neonates with fetal alcohol syndrome (6, 34, 35). Shillingford et al. reported that atrial septal defects were the most frequent cardiac anomalies in these neonates (35). Ferencz et al. reported only association between heavy maternal alcohol consumption and small muscular ventricular septal defect. Authors explained that analysis by the greatest number of alcoholic beverages consumed at any occasion during critical period did not reveal any associations of the trend in the risk of CHD with exposure (9) (Table).

In Spain, a case-control study by Martinez-Frias et al. reported that higher risk of developing CHDs was in the group with the highest-level prenatal exposure to alcohol (the absolute alcohol ingestion was more than 92 gm per day) (36).

Few epidemiological studies investigated the association between maternal smoking during their pregnancies and CHDs. These studies are difficult to compare because of differences in sizes, classifications, and methods of population-based studies. In the Baltimore–Washington Infant Study, maternal cigarette smoking of more than one pack per day was associated with two cardiac diagnoses: transposition with ventricular septal defect and pulmonic stenosis (women who were more than 34 years old) (9). In study by Torfs and Christianson, an association between mother’s cigarette smoking and specific defects (atrioventricular canal and atrial septal defects without ventricular septal defect, tetralogy of Fallot) was reported (37). The case-control study conducted in Lithuania indicated that maternal smoking increased the risk of having infant with CHD almost two times (38) (Table). Kallen found no association between all heart defects combined and maternal smoking (39). In a retrospective different cohort study, Woods and Raju reported that of the 22 categories of congenital defects, only cardiovascular system abnormalities were significantly associated with maternal smoking (40). In a recent study, Scherbak et al. did not detect any dependence between smoking and probability of having a newborn with birth defects in the cardiovascular system (41).

Lifestyle factors such alcohol consumption and
Selected environmental risk factors and congenital heart defects

Kai kurie aplinkos rizikos veiksniai ir įgimtos širdies ydos

Renata Kučienė, Virginijos Duskenė
Kauno medicinos universiteto Kardiologijos institutas

Raktas
Aplinkos rizikos veiksniai, įgimtos širdies ydos, motinos liga, gyvensenos veiksniai.

Santrauka
Straipsnio tikslas. Apžvelgti mokslinę literatūrą ir epidemiologines studijas apie pasirinktų aplinkos veiksniių poveikį įgimtoms širdies ydoms. Moksliniai tyrimai duomenimis, apie 1 proc. gyvų gimų su įgimtais širdies ydomais. Šiame straipsnyje apžvelgiame kai kurie aplinkos rizikos veiksniai: motinos ligos ir būklės, susijusios su sutrikusia medžiaga apykleita (cukrinis diabetas, nutukimas, fenilketonuriija), motinos gyvensenos veiksniai (alkoholinës gėrimų vartojimas, rūkymas), turintys įtakos įgimtoms širdies ydoms formavimui.

Adresas susirašinėti: R. Kučienė, KMU Kardiologijos institutas, Sukilėlių 17, 50161 Kaunas
El. paštas: renatakuciene@yahoo.com

References
1. Meberg A, Lindberg H, Thaulow E. Congenital heart defects: the patients who die. Acta Pediatr 2005;94:1060-5.
2. Boneva RS, Botto LD, Moore CA, Yang Q, Correa A, Erickson JD. Mortality associated with congenital heart defects in the United States: trends and racial disparities, 1979–1997. Circulation 2001;103:2376-81.
3. Mone SM, Gillman MW, Miller TL, Herman EH, Lipshultz SE. Effects of environmental exposures on the cardiovascular system: prenatal period through adolescence. Pediatrics 2004;113:1058-69.
4. Botto LD, Correa A. Decreasing the burden of congenital heart anomalies: an epidemiologic evaluation of risk factors and survival. Prog Ped Cardiol 2003;18:111-21.
5. Clark EB. Etiology of congenital cardiovascular malformation: epidemiology and genetics. In: Allen H, Cark E, Gutgesell H, Driscoll D, editors. Moss and Adams’ Heart Disease in Infants, Children and Adolescents. 6th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2001. p 64-79.
6. Brent L. Environmental causes of human congenital malformations: the pediatrician’s role in dealing with these complex clinical problems caused by a multiplicity of environmental and genetic factors. Pediatrics 2004;113:957-68.
7. Patel TH. Basic pathophysiology. In: Hijazi ZM, Koenig P, Zimmerman F. Essential Pediatric Cardiology. New York: McGraw-Hill Medical Publishing Division; 2004. p. 111-4.
8. Lin AE, Arding HH. Genetic epidemiology of cardiovascular malformations. Progr Pediatr Cardiol 2005;20:113-26.
9. Ferencz C, Loffredo CA, Correa-Villasenor A, Wilson PD. Genetic and environmental risk factors of major congenital heart disease: the Baltimore – Washington Infant Study 1981–1989. Armonk (NY): Futura Publishing Company; 1997.
10. Nielsen GL, Norgard B, Puho E, Rothman KJ, Sorensen HT, Czeizel AE. Risk of specific congenital abnormalities in offspring of women with diabetes. Diabet Med 2005;22:693-6.
11. Wren C, Birell G, Hawthorne G. Cardiovascular malformations in infants of diabetic mothers. Heart 2003;89:1217-20.
12. Abu-Sulaiman RM, Subaib B. Congenital heart disease in
infants of diabetic mothers: echocardiographic study. Pediatr Cardiol 2004;25:137-40.
13. Kalaidzhieva M, Popivanova A, Doicheva E, Nikolov A, Dimitrov A. Maternal insulin-dependent diabetes and congenital malformations in the newborn. Akush Ginekol (Sofia) 2003;42:3-5.
14. Hornberger LK. Maternal diabetes and the fetal heart. Heart 2006;92:1019-21.
15. Nold JL, Georgieff MK. Infants of diabetic mothers. Pediatr Clin North Am 2004;51:619-37.
16. Roest PA, van Iperen L, Vis S, Wisse LJ, Poelmann RE, Styrud J, Thunberg L, Nybacka O, Eriksson UJ. Correlations between maternal obesity and deranged development in the offspring of normal and diabetic rats. Pediatr Res 1995; 37:343-53.
17. Suzuki N, Svensson K, Eriksson UJ. High glucose concentration inhibits migration of rat cranial neural crest cells in vitro. Diabetologia 1996;39:401-11.
18. Hornberger LK. Maternal diabetes and the fetal heart. Heart 2006;92:1019-21.
19. Roest PA, van Iperen L, Vis S, Wisse LJ, Poelmann RE, Styrud J, Thunberg L, Nybacka O, Eriksson UJ. Correlations between maternal obesity and deranged development in the offspring of normal and diabetic rats. Pediatr Res 1995; 37:343-53.
20. Epstein JA, Li J, Lang D, Chen F, Brown CB, Jin F, et al. Migration of cardiac neural crest cells in Splotch embryos. Development 2000;127:1869-78.
21. Watkins ML, Rasmussen SA, Honein MA, Botto LD, Moore CA. Maternal obesity and risk for birth defects. Pediatrics 2003;111:1152-8.
22. Cedergren MI, Kallen B.A. Maternal obesity and infant heart defects. Obes Res 2003;11:1065-71.
23. Queisser-Luft A, Kieninger-Baum D, Menger H, Stolz G, Schlaefer K, Merz E. Does maternal obesity increase the risk of fetal abnormalities? Analysis of 20,248 newborn infants of the Mainz Birth Register for detecting congenital abnormalities. Ultraschall Med 1998;19:40-4.
24. Mikhail LN, Walker CK, Mittendorf R. Association between maternal obesity and fetal cardiac malformations in African Americans. J Natl Med Assoc 2002;94:695-700.
25. Kautzky-Willer A, Bancher-Todesca D. Gestational diabetes. Wien Med Wochenschr 2003;153:478-84.
26. Matalon KM, Platt LD, Acosta PB, Azen C. Role of nutrition in pregnancy with phenylketonuria and birth defects. Pediatrics 2003;112:1534-6.
27. Lee PJ, Ridout D, Walter JH, Cockburn F. Maternal phenylketonuria: report from the United Kingdom Registry 1978–97. Arch Dis Child 2005;82:143-6.
28. Politiška JE, Friedman JM. Medical genetics: 1. Clinical teratology in the age of genomics. CMAJ 2002;167:625-73.
29. Autti-Ramo I, Fagerlund A, Ervalahti N, Louinu L, Korkman M, Hoyme HE. Fetal alcohol spectrum disorders in Finland: clinical delineation of 77 older children and adolescents. Am J Med Genet A 2006;140:137-43.
30. Shillingford AJ, Weiner S. Maternal issues affecting the fetus. Clin Perinatol 2001;28:31-70.
31. Martinez-Frias ML, Bermejo E, Rodriguez-Pinilla E, Frias JL. Risk for congenital anomalies associated with different sporadic and daily doses of alcohol consumption during pregnancy: a case-control study. Birth Defects Res A Clin Mol Teratol 2004;70:194-200.
32. Torfs CP, Christianson RE. Maternal risk factors and major associated defects in infants with Down syndrome. Epidemiology 1999;10:264-70.
33. Dulkienė V, Gražulevičienė R. Kenksmingi aplinkos veiksniai bei oro užterštumas formaldehidu ir igintos širdies anomalijos. (Environmental risk factors and outdoor formaldehyde and risk of congenital heart malformations.) Medicina (Kaunas) 2005;41:877-95.
34. Kallen K. Maternal smoking and congenital heart defects. Eur J Epidemiol 1999;15:731-7.
35. Woods SE, Raju U. Maternal smoking and the risk of congenital birth defects: a cohort study. J Am Board Fam Pract 2001;14:330-4.
36. Scherbak Y, Tymchenko O, Galagan, Lynchak O, Omelchenko E, Polka O. Smoking influence on birth of child with birth defects in big city (Kyiv, Ukraine). In: Jedrzychowski WA, Perera FP, Maugeri U. Vulnerability of fetus and infant to ambient pollutants and reduced food intake in pregnancy. Krakow: Jagiellonian University Press; 2007. p. 242.
37. Moller P, Wallin H, Knudsen LE. Oxidative stress associated with exercise, psychological stress and life-style factors. Chem Biol Interact 1996;102:17-36.
38. Manahan SE. Toxicological chemistry and biochemistry. 3rd ed. Lewis Publishers/CRC Press, Boca Raton, FL; 2003.
39. Artman M, Mahony L, Teitel DF. Counseling families based on etiology and epidemiology. In: Artman M, Mahony L, Teitel DF, editors. Lewis Publishers/CRC Press, Boca Raton, FL; 2003.
40. Rouse BM. Congenital heart disease in maternal phenylketonuria: report from the United Kingdom Registry 1978–97. Arch Dis Child 2005;82:143-6.
41. Politiška JE, Friedman JM. Medical genetics: 1. Clinical teratology in the age of genomics. CMAJ 2002;167:625-73.
42. Autti-Ramo I, Fagerlund A, Ervalahti N, Louinu L, Korkman M, Hoyme HE. Fetal alcohol spectrum disorders in Finland: clinical delineation of 77 older children and adolescents. Am J Med Genet A 2006;140:137-43.
43. Shillingford AJ, Weiner S. Maternal issues affecting the fetus. Clin Perinatol 2001;28:31-70.
44. Martinez-Frias ML, Bermejo E, Rodriguez-Pinilla E, Frias JL. Risk for congenital anomalies associated with different sporadic and daily doses of alcohol consumption during pregnancy: a case-control study. Birth Defects Res A Clin Mol Teratol 2004;70:194-200.
45. Torfs CP, Christianson RE. Maternal risk factors and major associated defects in infants with Down syndrome. Epidemiology 1999;10:264-70.
46. Dulkienė V, Gražulevičienė R. Kenksmingi aplinkos veiksniai bei oro užterštumas formaldehidu ir igintos širdies anomalijos. (Environmental risk factors and outdoor formaldehyde and risk of congenital heart malformations.) Medicina (Kaunas) 2005;41:877-95.
47. Kallen K. Maternal smoking and congenital heart defects. Eur J Epidemiol 1999;15:731-7.
48. Woods SE, Raju U. Maternal smoking and the risk of congenital birth defects: a cohort study. J Am Board Fam Pract 2001;14:330-4.
49. Scherbak Y, Tymchenko O, Galagan, Lynchak O, Omelchenko E, Polka O. Smoking influence on birth of child with birth defects in big city (Kyiv, Ukraine). In: Jedrzychowski WA, Perera FP, Maugeri U. Vulnerability of fetus and infant to ambient pollutants and reduced food intake in pregnancy. Krakow: Jagiellonian University Press; 2007. p. 242.
50. Moller P, Wallin H, Knudsen LE. Oxidative stress associated with exercise, psychological stress and life-style factors. Chem Biol Interact 1996;102:17-36.
51. Manahan SE. Toxicological chemistry and biochemistry. 3rd ed. Lewis Publishers/CRC Press, Boca Raton, FL; 2003.
52. Artman M, Mahony L, Teitel DF. Counseling families based on etiology and epidemiology. In: Artman M, Mahony L, Teitel DF, editors. Lewis Publishers/CRC Press, Boca Raton, FL; 2003.