Jean Talairach was born in 1911 in Perpignan, on the French-Spanish border (Fig. 1). As a youth, he was immersed in music and developed a passion for architecture, often exploring abandoned mines and drawing architectural building plans.20,22 Perhaps to follow in the footsteps of his cousin (psychiatrist Henri Ey), or perhaps due to the inspiring historic halls of the Faculty of Medicine at Montpellier, Talairach decided to pursue a career in medicine.33 After finishing his undergraduate medical training in 1938, he moved to Paris for training in psychiatry at Hôpital Sainte-Anne under renowned psychiatrist Jean Delay.4,20

Sainte-Anne was originally established as an asylum for the mentally ill in the 1600s and was converted to a psychiatric hospital in the following century.41 It was right around the time Talairach arrived at the institution that the neurosurgery department was established by neurosurgeon Pierre Puech with the aim of exploring surgical treatments to psychiatric diseases.43 Although Talairach was named clinical director of the psychiatric service, a meeting in 1942 changed his career trajectory and resulted in reverberating effects on the field of neurosurgery. Neurologist Julian de Ajuriaguerra introduced Talairach to neurosurgeon Marcel David (who would later become the second chief of neurosurgery at Sainte-Anne). Talairach recounts: “I will never forget this first meeting on a Monday in April 1942 and that particular anguish, known to those who suddenly discover a world hoped for, and one that would make me irresistibly abandon my career in psychiatry that was already laid out before me.”32 (Quotes in the text represent the first author’s [M.H.] translation from the original French text.) He subsequently began his neurosurgical training at Hôpital Paul-Brousse under the tutelage of David.

Psychosurgery

While Talairach’s name is most commonly associated with his significant contributions to the field of stereotaxy, he made his initial contributions at the intersection of his
two paths in medicine—in the field of psychosurgery. Talairach began his career at a time when neuroleptics were not yet available and Egas Moniz’s prefrontal lobectomy, first performed in 1936, was being popularized. Partnering with his new mentor, David, the two went on to perform numerous prefrontal lobotomies at several Paris hospitals, reporting mixed results.

With his background in psychiatry, Talairach was critical of the technique and is in fact often quoted saying that “psychosurgery is too important to leave to the neurosurgeons.” Talairach was influenced by the work of his cousin, Sainte-Anne psychiatrist Henri Ey, on the organodynamic theory which adopts the Jacksonian framework of nervous system organization and applies it to psychology. In the context of the sensorimotor system, Jackson described the presence of a gradual hierarchy from sensory organs and motor neurons all the way to higher centers (i.e., premotor areas and sensory association cortices); at these higher levels, function is not represented in discrete areas, as is suggested by the localizationist theory, but rather by diffuse networks. Applying this theory to psychology, Ey maintained that mental illness, with complex pathologic manifestations such as hallucinations and alterations in consciousness and behavior, is a result of disturbance in higher functional centers with diffuse representation. With this in mind, Talairach argued that gross resection/disconnection of large portions of the network involved in the pathology (i.e., frontal lobotomy/leucotomy) may not be necessary. Rather, a more selective approach, targeting a single network node or network fiber tracts may be sufficient. In this vein, in 1949, Talairach first described the use of bilateral anterior capsulotomy for psychiatric disease, turning a necessary new leaf for psychosurgery. Ironically, that same year, Egas Moniz won the Nobel Prize in Medicine for the frontal lobotomy.

In 1952, Talairach’s initial mentor, Sainte-Anne psychiatrist Jean Delay, and colleague Pierre Deniker discovered the first neuroleptic, chlorpromazine. The development of psychopharmacology and changes in public opinion, among other factors, led to a decline in psychosurgery, and Talairach turned his attention more fully to his work in stereotaxy and later, epilepsy surgery.

A New Stereotaxic Approach

In the early 1900s, Horsley and Clarke developed the first stereotactic frame based on a 3D Cartesian coordinate system for animal use. The first human stereotactic frame was built soon thereafter by Canadian neurologist Aubrey Mussen; his contribution went largely unnoticed at the time, likely because up until the 1940s the thought of using intracerebral electrodes in the human was faced with an ethical resistance to the violation of the human brain. In a book published shortly after his passing, Talairach recounts the moment that he moved from the theoretical to the practical stage of stereotaxy in the human brain. David, Talairach, and neurologists Hécaen and De Ajuriaguerra attended a conference hosted by renowned neurologist Jean Lhermitte (of Lhermitte’s sign, among others) at Hôpital Paul-Brousse. Lhermitte was presenting work on thalamic pain syndromes. “Driven by the feeling of false precision felt during interventions for abnormal movements or for mental disorders, and the discomfort felt in the trans-cerebral pursuit of some ever-elusive epileptogenic foci,” the attendants set the goal of building a device that would allow for the precise interrogation and, if necessary, ablation of deep structures in the human brain.

When it came to localizing thalamic nuclei, the question, then as it is now, was how do you find something you cannot see? At the time, neuroimaging was limited to monoplanar radiography, allowing for the identification of bony cranial landmarks. This could be supplemented with the use of intraventricular and intravascular contrast agents, allowing for a delineation of the ventricular system and cerebral arterial supply. These structures could therefore be localized in a direct fashion. In contrast, localization of the deep gray nuclei and cerebral cortex could only be done in relation to these visible structures, in an indirect fashion. Interestingly, the term “direct localization” has taken on a somewhat different meaning in modern functional surgery; today, it most often refers to physiological localization by means of identifying stereotypical neuronal firing patterns obtained using microelectrode
recording. Indirect targeting has become more granular thanks to the advances in modern neuroimaging which have made many more parenchymal structures visible.

Entrusted with developing a reliable, indirect method to localize deep gray nuclei, Talairach contracted Sainte-Anne’s resident technician, M. Sabbaton, to help him build a suitable stereotactic frame to his specification.19,33 These efforts were mirrored by functional neurosurgeons all over the world, who began developing their own frames for human use by collaborating with local engineers; Talairach in France, Leksell in Sweden, Mundinger in Germany, Narabayashi in Japan, Bertrand in Canada, and Roberts in the United States all developed their own prototypes. While Spiegel and Wycis have long been credited with the first human stereotactic frame, much controversy exists over who actually “invented” the first human stereotactic frame, and Talairach and Wycis often debated this point heatedly, almost to the point of fisticuffs (G. Bertrand, personal communication). Nevertheless, Spiegel and Wycis were indeed the first to report the use of a stereotactic frame in the human in 1947, using it to perform a thermal medial thalamotomy.29

Each feature of the Talairach frame was designed based on the understanding that the key to accurate indirect targeting was accurate and reliable imaging. A central feature of the frame was the double grid system (Fig. 2)—the grids were attached at opposite edges of the frame perpendicular to the path of the x-ray. If the image was acquired without distortion (displacement or magnification), the double grids would superimpose and appear as a single grid on the acquired image.19,20,31 The thick grids also allowed for the stable introduction of multiple probes.19,20 Another key difference between Spiegel and Wycis’ frame and the one developed at Sainte-Anne was that the Talairach frame was fixed directly to the outer table of the skull, whereas the Spiegel and Wycis frame was fixed to the head by means of a plaster cap.20,40 The cranial fixation of the Talairach frame allowed for accurate repositioning between imaging and/or treatment sessions, which proved particularly useful in staged surgery. Talairach also developed a system for collimated teleradiography to further reduce distortion and magnification, which was supplemented by the use of long-distance stereoradiology, made possible by the building of a large operating room to Talairach’s specifications.4,19,20 The team first used their stereotactic apparatus in 1948 to perform a thalamotomy for the treatment of central pain syndrome.31 Over the years, the Sainte-Anne team used this apparatus for numerous stereotactic interventions, including tumor biopsy, interstitial irradiation, thermal lesioning, stereo-electroencephalography (SEEG), and endonasal procedures.19,32,33,35,37,39,41

Talairach and colleagues used their stereotactic apparatus to study 100 cadaveric brains, which in 1957 resulted in the first stereotaxic atlas of the human deep gray nuclei.36 Although the use of cranial bony landmarks was the standard in animal stereotaxic atlases, such as those used by Horsley and Clarke, bony landmarks were thought to be insufficiently reliable for human interventions—both due to the lower margin for error and due to the greater structural variability among humans than among laboratory animals.31 In lieu of bony landmarks, or the calcified pineal and foramen of Monro used by Spiegel and Wycis, Talairach introduced the anterior commissure (AC) and posterior commissure (PC) as the standard points of references, which were selected because they could be reliably identified on contrast ventriculography and were in close proximity to the deep gray nuclei.20,31 The newly established Talairach coordinate space was therefore defined by an origin at the AC, a y-axis along the AC-PC line, and a x-axis and a z-axis extending perpendicularly from AC along the horizontal and vertical planes, respectively (Fig. 3 upper). In 1958, Talairach became head of the newly founded stereotaxic and functional neurosurgical service at Sainte-Anne and continued his work, now with Hungarian-born neurosurgeon Gábor Szikla, to generate a second atlas focusing on the telencephalon.38 In 1988, a third atlas was published, by Talairach and Tournoux, which covered the whole human brain. Recognizing the neuroanatomical variability between patients, they devel-
opened a proportional grid system (Fig. 3 lower) that allowed for the transformation of any point in the Talairach space to patient-specific coordinates and vice-versa. Talairach viewed the development of the proportional grid system as a necessary component of a complete stereotactic system for two main reasons. First, it allowed for the consideration of the volume of the brain in its entirety, in contrast to stereotactic systems that focused on the deep gray nuclei or on the temporal lobe in isolation, for example, each with their own reference point system. This holoencephalic stereotaxic system was necessary, in particular, for SEEG work. Second, the proportional grid system allowed for the stereotaxic system to go beyond the guidance of neurosurgical intervention in individuals; it provided a tool for the study of functional localization across individuals, since any individual-specific point could be abstracted to a standardized space. For his contributions to stereotaxy, Talairach was awarded in 1989 the Prix de l’État - Grand Prix des Sciences chimiques et naturelles (grand prize in chemical and natural sciences) by the Académie des Sciences.

The Talairach and Tournoux 1988 atlas is limited by a number of factors. Most importantly, it is based on a single postmortem brain, which limits its generalization, despite the proportional grid system. Additionally, the atlas is composed of 2D sections without a corresponding 3D representation, which, in today’s digital age, limits the utility of the atlas for digital MRI analysis and functional mapping. In the 1990s, Evans et al. at the Montreal Neurological Institute (MNI) described a new coordinate space which has since been adopted for many applications. The MNI space maintained the AC as the point of origin, as initially established by Talairach and colleagues in the 1950s. However, unlike the Talairach atlas, the MNI space is based on a pooled average of hundreds of brain MRI scans. Despite the limitations of the Talairach space, it remains the standard universal reference system, and the Talairach and Tournoux atlas remains a seminal work and fundamental tool for the stereotactic neurosurgeon.

Wartime Efforts

Talairach’s arrival at Sainte-Anne at the end of the 1930s coincided with an arrival of an altogether different nature in Paris—the Nazi invasion. Initially, Talairach served at the military hospital Val-de-Grace. In the following years, under Nazi occupation, Talairach’s friend and colleague, psychiatrist René Suttel, discovered an entrance to Paris’ catacombs network south of the Seine underneath Sainte-Anne. The two were recruited by the French resistance to chart the catacombs system with the intent that it could be used for storage of munitions and supplies. Suttel, who had a preexisting fascination with the subterranean system, and Talairach, with his passion for architecture and a keen sense for geometry, went on nightly excursions that resulted in a meticulous map of the system (Fig. 4). During the day, Talairach was studying neuroanatomy and developing the founding principles that years later resulted in the stereotaxic atlas, and during the night, he was working on an altogether different kind of map. This map, detailing around 100 km of the subterranean tunnels, carefully noted intersections, junctions, and unique characteristics or reference points allowing for navigation. These maps were reportedly used to select the bunker location for resistance headquarters out of which commander Colonel Rol-Tanguy coordinated the Battle of Paris in August of 1944. For these efforts, Talairach and Suttel were awarded both the Croix de Guerre, France’s highest military distinction, and were later also inducted into the Légion d’honneur, the highest French order of military and civic merit.

Epilepsy Surgery and Development of SEEG

In the first half of the 20th century, Wilder Penfield and Herbert Jasper at the MNI revolutionized epilepsy surgery with their electrocorticography (ECOG)-based “Montreal method.” This method used surface recording to localize the seizure-onset zone based on a correlation between seizure semiology and the interictal spike patterns. Talairach and epileptologist Jean Bancaud were unsatisfied with the ability to unambiguously delineate the epileptogenic zone (Fig. 5), which they defined as the beginning site of an epileptic seizure and of its primary organization,
using interictal ECoG alone, particularly in patients without a macroscopically visible epileptogenic lesion or with insular epilepsy.18,24,32 They emphasized the importance of understanding not only where epileptic seizure activity originated but also its pattern of propagation in surrounding tissue, as well as identifying when and where it eventually results in clinical symptoms.1,2,34,35 A characterization of the epileptic network enables cortical excision of epileptogenic tissue, when appropriate and safe, and/or disconnection of critical propagation pathways.35 This dynamic physiological description of an epileptic seizure required ictal recordings in awake patients, with multiple accurately and safely placed multi-lead intracerebral electrodes—something that Talairach’s stereotaxic method made possible.

The “Sainte-Anne method” developed by Talairach and Bancaud consisted of 2 stages—reconnaissance and SEEG exploration—with the purpose of generating an anatomo-electro-clinical correlation.1,34,35 In stage I, the patients would undergo a thorough clinical examination with a detailed assessment of seizure semiology as well as scalp EEG (Fig. 6). They would then be fitted with the stereotactic frame and undergo a series of anteroposterior (AP) and lateral imaging in the specialized stereotaxic operating room (OR), including fractionated encephalography, ventriculography, and arteriography. All images were developed on semitransparent paper which noted the frame’s reference points, allowing for the transfer of information onto two, to-scale master tracings (AP and lateral).19 Applying the principles of direct and indirect localization and the proportional grid system, the patient’s anatomy was mapped onto the tracings. This anatomy was then assessed by the multidisciplinary team in the context of the patient’s seizure semiology and EEG recordings in order to design a patient-specific, hypothesis-driven SEEG lead placement plan that took safety into account (avoiding cerebral arteries shown on the arteriogram).35
Stage II, which typically was done about 15 days after stage I, started with replacement of the stereotactic apparatus with verification of exact same location as prior. SEEG multilead depth electrodes were then placed according to the presurgical plan and their position was verified. Then came the time to wait for the occurrence of a seizure in the awake patient. Of this period, Talairach recounts: “This waiting requires a lot of patience, but remarkably, the patient, aware of the physicians’ effort to subdue a disease which is often frightening for the patient, remains not only patient but also contributes to the research. It is equally remarkable to see patients share in the physicians’ joy when they are able to elicit a seizure, indicating that they are reaching their goal and that a corticectomy may be done successfully, and that they may together overcome the disease.”[33] Although acute recordings were the rule at that time, chronic recordings (i.e., with the electrodes left in place) were also done occasionally.[35] The acute recordings were limited by their short EEG recording time span (6–12 hours) and often interictal activity alone or a single seizure. Once the electrodes were implanted, the surgical team would often retreat to the OR lounge to await a seizure over wine and cheese. The patient’s file, with all collected data, would be evaluated by the team to construct said anatomo-electro-clinical correlation, at which point a therapeutic intervention may be decided upon. In the first 42 patients assessed with this methodology, Talairach and Tournoux reported no surgical complications (which was a significant a priori concern, given this was the first such report on the use of numerous electrodes) and 79% recovery/improvement rate in the 34 patients who were offered definitive surgical treatment based on the stereotactic interrogation.[35] The Sainte-Anne team went on to assess and treat hundreds of epilepsy patients utilizing this methodology in the decades that followed.[3] Although advances in neuroimaging and digital surgical planning may have significantly changed how stage I is carried out, the principles that underlie Talairach and Bancaud’s methodology were carried on by their students and remain central to modern day epilepsy surgery.[4,11,14,19] Mark Rayport—one of Penfield’s last residents—came to Sainte-Anne in the late 1960s as a visiting professor.[28] Rayport would later translate the 1988 atlas into English and was one of the early adopters of SEEG in North America; working with his wife, psychiatrist Shirley Ferguson, he combined the MNI and Sainte-Anne methods, adding an emphasis on the neuropsychiatric status of the patient.[23,40]

Legacy

Talairach insisted on not patenting his stereotaxic apparatus, quoting the phrase “on ne s’enrichit avec la souffrance des autres” (“one must not get rich through the suffering of others”).[33] He embodied this phrase in every aspect of his clinical and academic career—through his generosity in time spent in the rigorous pursuit of better treatments for his patients and through his generosity in teaching the many students who came to learn the methods of the Sainte-Anne school.[4,10,20] Jean Talairach retired from clinical practice in 1978. He would continue his dedi-
References

1. Bancaud J: Apport de l’exploration fonctionnelle par voie stéréotaxique à la chirurgie de l’épilepsie; à propos de 8 observations. Neurochirurgie 5:55–112, 1959

2. Bancaud J, Talairach J: Stéréoencéphalographie dans l’Épilepsie. Paris: Masson & Cie, 1965

3. Bancaud J, Talairach J: Sémiologie clinique des crises du lobe temporal (méthodologie et investigations SEEG de 233 malades), in Crises Epileptiques et Épilepsies du Lobe Temporal, Tome II. Gentilly: Labaz, 1991

4. Benabid AL: Jean Talairach (1911–2007).

5. Bourdillon P, Apra C, Lévêque M, Vinckier F: Neuroplas observations.

6. Bourdillon P, Lévêque M, Apra C: Second World War. Paris neurosurgeon’s map outwitted Nazis. Nat Rev Neurosci 243:3–249, 2002

7. Chau W, McIntosh AR: The Talairach coordinate of a point in the MNI space: how to interpret it. Neuroimage 25:408–416, 2005

8. David M, Talairach J: Quelques réflexions sur les lobotomies frontales. Evol Psychiatr (Paris) 4:532–540, 1949

9. Delay J, Deniker P, Harl JM: Therapeutic use in psychiatry of phenothiazine of central elective action (4560 RP). Ann Med Psychol (Paris) 110:112–117, 1952 (French)

10. Desai A, Bekelis K, Darcey TM, Roberts DW: Surgical techniques for investigating the role of the insula in epilepsy: a review. Neurosurg Focus 32(3):E6, 2012

11. Evans AC, Collins DL, Mills SR, Brown ED, Kelly RL, Peters TM: 3D statistical neuroanatomical models from 305 MRI volumes, in 1993 IEEE Conference Record: Nuclear Science Symposium and Medical Imaging Conference. San Francisco: IEEE, 1993, pp 1813–1817 (http://ieeexplore.ieee.org/document/373602/) [Accessed July 10, 2019]

12. Evans P: Henri Ey’s concepts of the organization of conscious and its organization: an extension of Jacksonian theory. Brain 95:413–440, 1972

13. Ho AL, Feng AY, Kim LH, Pendharkar AV, Sussman ES, Halpern CH, et al: Stereoelectroencephalography in children: an introduction of the nervous system. Neurosurg Focus 5:9–20, 2005

14. Horsley V, Clarke RH: The structure and functions of the cerebellum examined by a new method. Brain 31:45–124, 1908

15. Jackson JH: The Croonian lectures on evolution and dissolution of the nervous system. BMJ 1:660–663, 1884

16. Jensen RL, Stone JL, Hayne RA: Introduction of the human Horsley-Clarks stereotactic frame. Neurosurgery 38:563–567, 1996

17. Kahan M, Landre E, Minotti L, Francione S, Ryvlin P: The Bancaud and Talairach view on the epileptogenic zone: a working hypothesis. Epileptic Disord 8 (Suppl 2):S16–S26, 2006

18. Kelly PF: Stereotactic navigation, Jean Talairach, and I. Neurosurgery 54:454–464, 2004

19. Mazoyer B: In memoriam: Jean Talairach (1911–2007): a life in stereotaxy. Hum Brain Mapp 29:250–257, 2008

20. Moniz E: Tentatives Opératoires Dans Le Traitement de Cer-Taines Psychoses. Paris: Masson, 1936

21. Nau JY: Jean Talairach. Le Monde, March 20, 2007 (https://www.lemonde.fr/disparitions/article/2007/03/20/jean-talairach_885505_3382.html) [Accessed July 10, 2019]

22. Ojemann G: In memoriam: Mark Rayport, M.D. C.M., Ph.D., F.A.C.S. Epilepsia 44:1262–1264, 2003

23. Palmini A: The concept of the epileptogenic zone: a modern look at Penfield and Jasper’s views on the role of interictal spikes. Epileptic Disord 8 (Suppl 2):S10–S15, 2006

24. Penfield W, Jasper H: Epilepsy and the Functional Anatomy of the Human Brain. Boston: Little, Brown and Company, 1954

25. Picard C, Olivier A, Bertrand G: The first human stereotactic apparatus. The contribution of Aubrey Mussen to the field of stereotaxis. J Neurosurg 59:673–676, 1983

26. Rahman M, Murad GJA, Mocco J: Early history of the stereotactic apparatus in neurosurgery. Neurosurg Focus 27(3):E12, 2009

27. Rayport M: Appendix II: Conceptual foundations of studies of patients undergoing temporal lobe surgery for seizure control, in International Review of Neurobiology. Amsterdam: Elsevier, 2006, Vol 76, pp 123–127

28. Spiegel EA, Wycis HT, Marks M, Lee AJ: Stereotactic apparatus for operations on the human brain. Science 106:349–350, 1947

29. Suttel R. Catacombes et Carrières de Paris. SEHDCAS, 1986

30. Talairach J: Jean Talairach, MD interviewed by Mark Rayport, MD. 1993 (https://www.youtube.com/watch?v=6_X7NbaAIU) [Accessed July 10, 2019]

31. Talairach J: Mes Travaux. 1965 (https://histoire.inserm.fr/les-femmes-et-les-hommes/jean-talairach/page/3) [Accessed July 10, 2019]

32. Talairach J: Souvenirs des Études Stéréotaxiques du Cerveau Humain. Montrouge, France: John Libbey Eurotext, 2007

33. Talairach J, Bancaud J: Stereotactic approach to epilepsy, in Krayenbühl H, Maspes PE, Sweet WH (eds): Progress in Neurosurgical Surgery. Basel: S Karger, 1973, Vol 5, pp 297–354

34. Talairach J, Bancaud J, Bonis A, Szikla G, Tournoux P: Functional stereotaxic exploration of epilepsy. Confin Neurol 22:328–331, 1962

35. Talairach J, David M, Tournoux P, Corredor H, Kvasina T: Atlas d’Anatomie Stéréotaxique. Repérage Radiologique Indirect des Noyaux Gris Centraux des Régions Mésencéphalosousphoïde et Hypothalamique de l’Homme. Paris: Masson & Cie, 1957

36. Talairach J, Hécaen H, David M: Lobotomie frontale limitée par électrocoagulation des fibres thalamo-frontales a leur émergence du bras antérieur de la capsule interne. Rev Neurol (Paris) 83:59, 1949

37. Talairach J, Szikla G: Atlas of Stereotaxic Anatomy of the Telencephalon. Paris: Masson & Cie, 1967

38. Talairach J, Tournoux P: [Apparatus for hypophyseal stereotaxis by nasal approach.] Neurochirurgie 1:127–131, 1955 (French)

39. Talairach J, Tournoux P: Co-Planar Stereotactic Atlas of the Human Brain: 3-Dimensional Proportional System: An Approach to Cerebral Imaging. Stuttgart: Georg Thieme, 1988

40. Talairach J, Tournoux P, Szikla G, Bonis A, Bancaud J: [Surgical treatment of Parkinson’s disease. Methodologic remarks and surgical technic.] Int J Neuro 2:76–91, 1961 (French)

41. Talairach MJ: [Anatomic-physiological reflections on psychosurgery.] Rev Neurol (Paris) 87:554–557, 1952 (French)

42. Zanello M, Pallud J, Baup N, Peeters S, Turak B, Krebs MO, et al: History of psychosurgery at Sainte-Anne Hospital, Paris, France, through translational interactions between psychiatrists and neurosurgeons. Neurosurg Focus 43(3):E9, 2017

Disclosures

The authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper.
Author Contributions
Conception and design: both authors. Acquisition of data: Harary. Analysis and interpretation of data: Harary. Drafting the article: Harary. Critically revising the article: both authors. Reviewed submitted version of manuscript: both authors. Approved the final version of the manuscript on behalf of both authors: Harary. Administrative/technical/material support: Harary.

Supplemental Information
Current Affiliations
Dr. Harary: Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA.

Correspondence
Maya Harary: David Geffen School of Medicine, University of California, Los Angeles, CA. mharary@mednet.ucla.edu.