製鋼スラグによる閉鎖性海域における硫化物イオンの低減

林 明夫*1,2・渡辺 哲哉*2・金子 諒子*2・鷹野 明*2・高橋 克則*1・宮田 康人*1・松尾 章子*3・山本 民次*4・井上 幹*5・有山 達郎*5

Decrease of Sulfide in Enclosed Coastal Sea by Using Steelmaking Slag

Synopsis: Currently in Japan, 15 million tons of steelmaking slag (SMS) as a by-product of the steelmaking process is produced annually. More than 60% of the SMS is used in civil construction. SMS has special properties which are presently under-exploited. Therefore, research into the greater utilization of the special characteristics of SMS in coastal environments has been undertaken over the last 20 years. It is known that steelmaking slag can reduce hydrogen sulfide in seawater. Hydrogen sulfide is highly toxic and fatal to benthic organisms. It also depletes oxygen and generates blue tide.

The purpose of this study is to evaluate and demonstrate the effects of removal of hydrogen sulfide in seawater by steelmaking slag. Both the laboratory and the field experiments showed that steelmaking slag removed the hydrogen sulfide from seawater and reduced the concentration of hydrogen sulfide in sediment. The field experiments also indicated that steelmaking slag changed the anaerobic condition of sediment into an aerobic condition. The results imply that effective utilization of steelmaking slag in coastal area restoration can significantly improve the surrounding marine environment.

Key words: steelmaking slag; iron content; hydrogen sulfide; sediment; seawater environment.

1. 緒言

製鋼プロセスでは多くの副産物が生成され、中でも年間4,000万t発生する鉄鋼スラグについては、従前より100%近く再利用が図られているが、さらに付加価値の高い有効利用を目指す技術開発が進められている。鉄鋼スラグの中で、製鋼工程で年間2,500万t発生する高炉スラグについては、その60%以上が水硬性を利用した高炉セメント原料として、付加価値の高い利用がなされ、CO2削減にも大きく寄与している。一方、製鋼工程で年間1,500万t発生する製鋼スラグについては、道路用、土木用が60%を占めており、高炉スラグのような物性や組成を活用した付加価値の高い用途は、充分開発されていない。このような状況の中で、近年、製鋼スラグに20%近く含まれている鉄分に着目した研究が進められており、製鋼スラグから溶出する鉄イオンを活用した礁やけ対策や閉鎖性海域の底質改良への利用が報告されている。

閉鎖性海域の深渓地やハドロが堆積している海域では、夏季の水温上昇による酸素溶解度の減少、水塊の滞留、底質に堆積した有機物分解による未酸素化によって、硫化水素が発生し、生物生育環境の悪化、異臭発生等の問題が生じている。この状況を踏まえ、国土交通省の交通政策審議会は、青潮の原因となる貧酸素水塊の発生場所となっている窪地埋め戻しを、港湾工事から発生する土砂だけでなく、リサイクル材等の活用を積極的に進めていく必要があると答申している。

これらの材料は、天然材に較べてより効果的な硫化物発生抑制機能を持つことも注目されている。Asaoka and...
Yamamotoは、フライアッシュに高炉スラグセメント10～15%を添加して造粒した石灰石製造物による硫化物イオンの除去について検討し、硫化物イオンの低減機構は、吸着だけでなくバイライト（FeS2）の形成やイオウ（S0）の生成によって解析した。

製鋼スラグによる硫化物低減効果については、硫化ナトリウムを溶解させた人工海水に添加し、時間経過や使用量を算出した。

200SA定時率ごとに北川式ガス検知管（光明理化学工業（株）製ロータリーシェーカーにて）に採用し、窒素ガスで溶存酸素を22±2mg/Lまで静かに注ぎ入れた後、製鋼スラグを固液比で100から1:10となる条件で添加されたものであり、実海実験の発達性と実用化に認証し、メカニズムを検討するとともに、川崎港浅野運河に製鋼スラグによる硫化物吸収試験を行い、その吸収効果を確認した。

製鋼スラグの適用性を検討するため、室内試験において製鋼スラグを用いた海底への設置実証実験を行い、硫化物濃度や溶存酸素濃度を測定し、実用化に向けた底質や水質の改善効果を検証した。

2. 実験方法

2.1 室内試験

2.1.1 製鋼スラグによる硫化物イオンの吸収試験

人工海水（八洲薬品株式会社製アクアマリン）310mlを窒素ガスで溶存酸素（DO）2mg/L以下になるまで曝気して、その後Na2S・9H2Oを22mg/L添加し、1規定のHClにてpHを8.2±0.1に調整した。人工海水を250mlのポリエチレン瓶に静かに注ぎ入れた後、Table 1に示す製鋼スラグA、B、C、D、E（粒度0.5mm）をそれぞれ0.08wt%添加し、ロータリーシェーカーにて20℃、30rpmで攪拌させ、所定時間にて北川式ガス検知管（光明理化学工業（株）製200SA、200SB）を用いて、溶存硫化物濃度を測定した。

スラグEについては、硫化物濃度が検出限界値以下になった時点で、Na2S・9H2Oを22mg/L添加し、1規定HClにてpHを8.2±0.1に調整し、スラグ1g当りの硫化物吸収量を算出した。

また、対照として、製鋼スラグを添加していない条件（X）と製鋼スラグの代わりに天然砂（豊浦産標準砂）（粒度0.5mm）を加えた条件（Y）を設けて、同様の実験を行った。

2.1.2 製鋼スラグと硫化物イオンの反応生成物の成分分析

2.1.1と同様に調整した溶液に、粒度0.15-8mmに調整したスラグE（Table 1）を1.0wt%添加し、ロータリーシェーカーにて30rpmで攪拌した。3日間に亘って、24時間ごとに初期と同量のNa2S・9H2Oを添加し、96時間目の人工海水中に生成した浮遊物質を調査した。

Table 1. Chemical composition of steelmaking slag.

Slag	T-Fe	Slag B	Slag C	Slag D	Slag E
T-Fe	26.9	24.4	18.8	30.7	51.7
Fe-Mn	1.51	4.80	6.34	10.7	37.1
FeO	19.9	16.2	7.01	11.0	9.47
Fe2O3	14.2	10.0	10.0	16.4	5.16
SiO2	10.1	10.8	15.2	23.4	14.1
CaO	36.7	35.9	49.7	27.3	16.3
T-S	0.06	0.02	0.10	0.05	0.08

実験場所は、Fig.2に示す川崎港浅野運河で行った。潮位差約1.9m、水深5m程度の流れの少ない閉鎖的な海域である。平成20年度の川崎市の水質測定結果によれば、浅野運河内の海域のDOは、夏期（8月）の上層の都度5mg/L、下層で0.8mg/L、CODは、上層で3.8mg/Lとなっている。試料は、室内実験で使用した材料と同じ、Table 1に示す粒度をカットした4種類の製鋼スラグA、B、C、D（粒径13～30mm）を用い、対照として天然砂（粒径13～30mm）を用いた。

2.2 実海域試験

2.2.1 試験場所および試料

実験場所は、Fig.2に示す川崎港浅野運河で行った。潮位差約1.9m、水深5m程度の流れの少ない閉鎖的な海域である。平成20年度の川崎市の水質測定結果によれば、浅野運河内の海域のDOは、夏期（8月）の上層の都度5mg/L、下層で0.8mg/L、CODは、上層で3.8mg/Lとなっている。試料は、室内実験で使用した材料と同じ、Table 1に示す粒度をカットした4種類の製鋼スラグA、B、C、D（粒径13～30mm）を用い、対照として天然砂（粒径13～30mm）を用いた。
海底に設置した。また、蛇籠材料内に塩ビ製パイプを事前に挿入し、間隙水を採取できるようにした。

採水、分析方法

試験区、対照区の蛇籠直上(5cm)と原地盤直上(5cm)の海水を直上水、蛇籠内にあらかじめ設置した塩ビパイプを用いて採取した海水を間隙水とし、各地点でサンプルリングした。

直上水は、ダイバーが水中にて採水器を用いて採水した。硫化物分析用のサンプルは、現地船上にてJIS K0102 39.1、JIS K0102 32.1、JIS K0102 12.1で測定した。また、直上水と間隙水の電解還元電位(以下ORP)を、白金電極法(水質汚濁調査指針5.14)で測定し、比較電極(銀-塩化銀/3.3mol/L KCl)の単極電位を用いて水素電極基準値の値を算出した。なお、原地盤のORPは、シンリンでの間隙水採取は困難なため、底泥サンプルに電極(PS-T-5721C、東亜ディーケーケー社製)を直接差し込んで測定した。

底泥中の硫化物濃度は、ヨウ素滴定法(底質調査方法Ⅱ17(環水管127号 昭和63年9月))に則って分析した。直上水の溶存鉄濃度は、0.45μmフィルターを通過した海水中の鉄濃度(以降、溶存鉄と呼ぶ)を分離カラム(NOBIAS CHELATE-PA1、日立ハイテクフィールディングス社製)を用いて捕集、濃縮操作を行い、電気加熱原子吸光分析装置(AAnalyst600、PerkinElmer社製)で分析した。

3. 結果および考察

3.1 室内実験

3.1.1 製鋼スラグによる硫化物イオンの吸収試験

実験結果をFig.3に示す。スラグA、B、Cを添加した溶液の硫化物溶液濃度は、24時間後に検出限界値以下を、スラグDは、24時間後に2mg/Lを示し、またスラグEについては、3時間後に検出限界値以下を示した。一方、無添加の硫化物溶液および天然砂を加えた硫化物溶液は、24時間後それぞれ、20mg/L、22mg/Lと高い値を示しており、スラグによる硫化物低減効果が確認された。

スラグEについては、初期条件で検出下限になった状態でNaS・9H2Oを22mg-S/L追加して添加、添加6時間後に

Fig.1. Process of the experiments testing sulfide removal capacity of steelmaking slags.

Fig.2. Location of the field experiments and layout of gabions containing various types of steelmaking slag and natural stone.
再び検出限界値以下となり、更に、Na₂S・9H₂Oを22mg-S/ L追加して添加、追加15時間後に検出限界値以下となた。この間、スラグEが吸収したSの量は、スラグ1g当り、73.7mgと計算された。この硫化物イオン吸収計算量は、Yamamoto and Asaokaが報告しているフライアッシュに高炉スラグセメント10〜15%を添加して造粒した石灰石造粒物による硫化物イオンの飽和吸着量108mg-S・g⁻¹に、近いレベルである。

この結果から、添加の硫化物溶液および天然砂を加えた硫化物溶液が、24時間後それぞれ高い硫化物濃度を継続している中で、スラグを加えた硫化物溶液の硫化物濃度が大幅に低下した原因は、(1)および(2)の反応11)に、スラグから溶出した鉄分が溶存硫化物と反応して不溶性の硫化物や硫黄となった可能性が考えられる。

\[\text{HS}^- + \text{Fe}^{2+} \rightarrow \text{FeS} + \text{H}^+ \] (1)

\[\text{HS}^- + 2\text{Fe}^{3+} \rightarrow \text{S}^0 + 2\text{Fe}^{2+} + \text{H}^+ \] (2)

3・1・2 製鋼スラグと硫化物イオンの反応生成物の分析
試薬で硫化物濃度を調整した人工海水に製鋼スラグ（スラグE）を入れ、生成した反応物（ろ紙上の沈殿物）の成分分析をTable 2に示す。酸素、鉄、硫黄、カルシウム、ケイ素が含まれている。無反射X線回析の結果をFig.4に示す。単体SとCaCO₃の結晶のピークのみが観測され、FeS他の結晶は観測されなかった。

一方、スラグについて、EPMAによる反応後のスラグ粒

	S	C	O	Mg	Ca	Fe	Si	Al
	16.8	2.05	32.8	3.34	3.78	22.3	1.05	1.07

Table 2. Chemical component of suspended matter after H₂S absorption.

Fig.3. Change over time of dissolved sulfide concentration added with various types of steelmaking slag.

Fig.4. XRD pattern of suspended matter after H₂S absorption.

Fig.5. SEM image and EPMA elementary mapping of the slag after H₂S absorption.
子断面の元素マッピングにより調査した結果(Fig.5)、スラグ表面部分でFeとSの分布がよく一致した一方、Caの分布は、FeとSの分布にほとんど一致していなかった。

ろ紙上の生成物と反応後のスラグ粒子表面について、XAFS分析を行った結果をFig.6に示す。ろ紙上の生成物は硫酸イオン(SO$_{4}^{2-}$)と単体硫黄のピークに合致するピークが確認されたのに対し、反応後のスラグ粒子にはFeSと硫酸イオン(SO$_{4}^{2-}$)のピークに合致するピークが確認された。

生成物のX線回折分析の結果からはFeSやFeS$_{2}$の結晶は観測されなかった一方で、反応が起こりやすいスラグ表面部分では、FeとSの分布がよく一致していること、XAFS分析の結果では、ろ紙上の生成物に単体硫黄のピークに合致するピークが、反応後のスラグ粒子にFeSのピークに合致するピークが確認されたことから、製鋼スラグと溶存硫化物の反応により、鉄と硫化物の非晶質の化合物や硫黄が、スラグ表面や溶液内で生成されることが示唆される。

Asaokaらの研究によれば、石炭灰造粒物による硫化物イオン濃度の低下は、パイライトの形成や触媒作用による造粒物表面における硫黄の生成によると考えられている12)。石炭灰造粒物には、製鋼スラグと同様にFe$_2$O$_3$、CaO、SiO$_2$等が含まれていることから、類似的なメカニズムによって、FeSやSが生成している可能性が考えられる。

なお、XAFS分析で、硫酸イオンのピークに合致するピークが確認されたが、硫酸化合物については、人工海水内に多くの硫黄が含まれていることから、新たに生成されたものか否かは不明である。硫酸イオンを含まない曝気した人工海水を用いて、硫化物と製鋼スラグを加えた実験を行い、生成物のXAFS分析により、硫酸イオンまで硫黄の酸化が進むかが判明すると考えられる。

3.2 実海域試験

モニタリング結果をFig.7からFig.11に示す。

Fig.6. Sulfur K-edge spectra of several sulfide compounds, slag particle with and without H$_2$S absorption, and suspended matter after H$_2$S absorption.

Fig.7. Monthly change of sulfide concentration (a) in the overlying water (5 cm above) and (b) in interstitial water of gabions containing various types of steelmaking slag and natural stone and (c) in surface sediment (5 cm to gabions containing various types of steelmaking slag and natural stone).

Fig.8. Monthly change of dissolved oxygen (a) in the overlying water (5 cm above) and (b) in interstitial water of gabions containing various types of steelmaking slag and natural stone.
硫化物
直上水の硫化物は、いずれの調査地点も定量下限値未満であった（Fig.7(a)）。すべての試験区（スラグ）、対照区（天然碎石）現地盤において直上水の硫化物イオン濃度が検出限界以下であった原因としては、当該海域の鉄イオン濃度（Fig.10）が20〜140ppmと高いことから、底泥から硫化水素が発生しても海水中の鉄イオンと反応して硫化鉄となったことや、直上水で溶存酸素があり、ORPが高いことから、硫化物イオンが硫黄や硫酸イオンに酸化されたことが考えられる。

間隙水の硫化物濃度は、Fig.7(b)に示すとおり、11月にスラグBと対照区（天然碎石）で上昇したが、同月以外は定量下限値未満であった。間隙水中的硫化物濃度が、11月のスラグBと対照区（天然碎石）を除き、定量下限値未満であった。硫化物濃度の原地盤（スラグや天然碎石の置かれていない部分）の底泥中の濃度に較べ低い値を示した。試験区・対照区の側面に接する底泥中の硫化物濃度が原地盤に比べて低くなった原因としては、次の3点が考えられる。

1. スラグや天然碎石の空隙により、通水性がよくなり、酸素供給量が増え、硫化物との反応が進み、硫化物濃度が減少した。
2. スラグから溶出したFeイオンと硫化物が反応して硫化物濃度が減少した。
3. スラグ近傍のpHが上昇し(Fig.11)，スラグ近傍の底泥中に生息する硫酸還元菌の活動が増加した。

3・2・1 硫化物
直上水の硫化物は、いずれの調査地点も定量下限値未満であった（Fig.7(a)）。すべての試験区（スラグ）、対照区（天然碎石）、現地盤において直上水の硫化物イオン濃度が検出限界以下であった原因としては、当該海域の鉄イオン濃度（Fig.10）が20〜140ppmと高いことから、底泥から硫化水素が発生しても海水中の鉄イオンと反応して硫化鉄となったことや、直上水で溶存酸素があり、ORPが高いことから、硫化物イオンが硫黄や硫酸イオンに酸化されたことが考えられる。

間隙水の硫化物濃度は、Fig.7(b)に示すとおり、11月にスラグBと対照区（天然碎石）で上昇したが、同月以外は定量下限値未満であった。間隙水中的硫化物濃度が、11月のスラグBと対照区（天然碎石）を除き、定量下限値未満であった原因としては、次の2つの可能性が考えられる。

1. スラグや天然碎石の空隙により、通水性がよくなり、酸素供給量が増え、硫化物との反応が進み、硫化物濃度が減少した。
2. スラグから溶出したFeイオンと硫化物が反応して硫化物イオン濃度が減少した。

11月にスラグBで間隙水の硫化物濃度が上昇したが、直上水には影響なく、またスラグBの蛇籠に接する底泥中の硫化物濃度も他の試験区や対照区とは較べ高くなってしまい、試験区（スラグ）および対照区（天然碎石）の蛇籠側面に接する底泥中の硫化物濃度は、Fig.7(c)に示す通り、2月スラグCを除き、原地盤（スラグや天然碎石の置かれていない部分）の底泥中の濃度に較べ低い値を示した。
3・2・2 溶存酸素(ORP)および酸化還元電位(ORP)

直上水のDOは、Fig.8(a)に示す通り全般的には低く(3mg/L以下)、秋以降高く(4mg/L以上)になった。8月と11月は、試験区のDOが高くなった。間隔水のDOには、あまり変化(2mg/L以下)がなかったが、2月にスラグCのDOが高く(4mg/L)になった(Fig.8(b))。

直上水のORPは、Fig.9(a)に示す通り、対照区に差異は認められなかったが、2月にスラグCのORPが高くなった。間隔水のORPは、Fig.9(b)に示す通り9月に試験区は対照区に較べ高くなった。また、原地盤のORPは、-200〜0mV程度で推移したのに対し、試験区・対照区のORPは、共に200〜500mVで推移しており、材料設置によって底質の嫌気的雰囲気が改善されていることが認められた。

3・3 室内実験結果と実海域実験結果の比較

実験において試験区と対象区で差異が生じなかった原因とpHが関与したものと考えられる。直上水の鉄分は、試験区、対象区とも原地盤に較べ大幅に高くなった。間隔水のORPの差異は認められなかったが、試験区や天然採石が置かれたことにより、通水性が良くなり、酸素供給量が増えたことが考えられる。

DOおよび酸化還元電位(DO)

室実験では、底泥内部を再現することを想定して、FeSが抑制されることが示唆される。一方、FeSがない状態で自然砂を加えた場合には、反応(1)、(2)が起こらず、H2Sの減少が生じなかったと考えられる(Fig.3)。

これに対して実海域実験を行った浅野河川では、対照区(天然砂石側)に接する底泥の硫化物濃度は低下していた。本海域でのFe濃度が高かったことも影響していると考えられるが、溶存酸素濃度が高くなっていることから、砂石間の空隙により通水性が増し、海水から供給された酸素によって、(3)または(4)の反応が進み、底泥の硫化物が減少することによる効果が大きいと考えられる。

HS⁻＋1/2O₂→S⁰＋OH⁻（3）

HS⁻＋2O₂→SO₄²⁻＋H⁺（4）
量に含まれていれば、硫化水素元から発生したH₂Sは、FeやFeOと速やかに反応してFeSとなり、海水の中の溶解硫化物を低下することが考えられる。硫化物の減少は溶存酸素消費の減少につながり、それに伴うORPの上昇と酸素供給量の増加は、FeSを酸化し酸化鉄や鉄イオンとSO₄²⁻、SO₃²⁻をもたらすこととなる。したがって、鉄分が多量に存在しているならば、HS⁻の多くは、S²⁻やS₂O₃²⁻となり、相当長期間に亘って底泥内のH₂Sの発生が抑制されることと考えられる。この想定は、Fe含有量の多いラグーンでは、底泥中の硫化物含有量が少ないという世界各地の測定結果とも一致する。したがって、製鋼スラグを敷設することにより、長期に亘って内港、養殖筏下、深堀跡の底質に製鋼スラグが発生し、低遊離の鉄イオンと異常的な底泥の鉄イオンが鉄イオンとの反応により硫化水素を酸化し、硫化水素の減少が可能であると考える。硫化水素の減少は溶存酸素の増加に伴い、酸化物の発生を抑制することが期待される。硫化水素が多量に発生している実海域での施工実験とその効果の検証により、深堀跡や閉鎖性海域の底質改善に製鋼スラグが利用されることが期待される。

文献
1）環境対策 鉄鋼スラグ、鉄鋼スラグ協会、（2010）。
2）E.Kiso, N.Tsutsunami, M.Shibuya and M.Nakagawa: 20th Ocean Engineering Symp., JFOES, JASNAOE, Tokyo, (2008)。
3）Y.Miyata, Y.Sato, S.Shimizu K.Oyama: JFE Technical Report, 19 (2008), 1。
4）www.pa.ktr.mlit.go.jp/chiba/overview/tokyo/committee/pdf/inkai.pdf
5）www.kaiho.mlit.go.jp/03kankou/kouhou/19-1/1901-2.pdf
6）www.env.go.jp/council/09water/y097-02/mat02_5.pdf
7）今後の港湾環境政策の基本的な方向について（答申）、交通政策審議会、（2005）。
8）S.Asaoka and T.Yamamoto: J. of Water and Waste, 51 (2009), 157。
9）T.Yamamoto and S.Asaoka : Symp.the Environment Committee of the Japanese Society of Fisheries Science, (2011)。
10）軽量製鋼スラグ海域利用の手引き、日本鉄鋼連盟、（2008）。
11）G.Kanaya and E.Kikuchi: Northeast Asian Studies, 13 (2009), 17。
12）S.Asaoka, T.Yamamoto and S.Hayakawa: J. J. Society on Water Environment, 32 (2009), 363。
13）O. Miki, C. Ueki and T. Kato: 45th Annual conference Japan Society on Water Environment, (2011), 1-409-1。
14）A.Hayashi, H.Tozawa, K.Shimada, K.Takahashi, R.Kaneko, F.Tsukihashi, R.Inoue and T.Arimaya : ISIJ Int., 51(2011),1919。
15）K.Nasuha, T.Matsuo and Y.Nimura: Fisheries Science, 67 (2001), 14。
16）D.E.Canfield: Geochim. Cosmochim. Acta, 53 (1988), 619。
17）G.Giordani, M.Bartoli, M.Cattadori and P.Viaroli: Hydrobiologia, 329 (1996), 211。
18）S.K.Heij, H.M.Jonkers, H.van Gemen, B.E.M.Schaub and L.J.Stal: Estuarine, Coastal and Shelf Science, 49 (1999), 21。
19）G.Kanaya and E.Kikuchi: Hydrobiologia, 528 (2004), 187。

4 結言

製鋼スラグを用いた底質からの硫化物除去に関する実験、閉鎖性海域における実証実験を行った。その結果、以下の結論が得られた。

(1) 室内実験で、製鋼スラグによる人工海水内の硫化物の低減効果があることを、明らかにした。

(2) 実海域での実証実験で、製鋼スラグによって製鋼スラグ間区間水中および製鋼スラグに接する底泥中の硫化物濃度が減少するとともに、嫌気的雰囲気が改善されることが明らかにした。

(3) EPMA解析、XAFS分析結果から、製鋼スラグ中の鉄分が、海水中の硫化物を吸収する可能性があることが示唆された。

(4) 底質からの硫化物除去に関し、鉄が触媒的な機能を有する可能性が考えられるが、その検証および製鋼スラグによる硫化物除去機能の持続性については、今後の研究課題である。

硫化水素が多量に発生している実海域での施工実験とその効果の検証により、深堀跡や閉鎖性海域の底質改善に製鋼スラグが利用されることが期待される。本研究の一部は、経済産業省低炭素モデル事業の委託費を受けて実施した。実証実験の実施に当っては、川崎市の協力があった。ここに記して謝意を表します。