The prevalence of *Campylobacter* spp. in vegetables, fruits, and fresh produce: a systematic review and meta-analysis

Hooriyeh Mohammadpour¹, Enayat Berizi²*, Saeid Hosseinzadeh³, Majid Majlesi⁴ and Morteza Zare²

Abstract

There are a number of reports indicating correlation between outbreaks of campylobacteriosis and the consumption of raw vegetables. This study is a meta-analysis on the prevalence of *Campylobacter* in fresh vegetables and fruits without any location limitation, which was performed through a documented review of the available resources. Relevant literature was reviewed by trained reviewers, who examined the results for the inclusion of articles in the meta-analysis. The prevalence of *Campylobacter* in raw vegetables, the sample source, the *Campylobacter* species, and the method of detection were extracted. The prevalence of *Campylobacter* in vegetables, fruits, and fresh produce were estimated to be 0.53%. Analysis of the various sample groups initially showed that the bean and sprouts group was the vegetable with the highest prevalence of *Campylobacter* (11.08%). The rate of contamination was higher when both the molecular and conventional methods were employed. The highest prevalence of *Campylobacter* was found in Asia (33.4%). Despite the low prevalence, consumption of raw vegetables is inherently risky because no treatment is used to inactivate the pathogens. Therefore, proper sanitation methods are recommended to treat the raw products.

Keywords: Campylobacter, Raw vegetable, Foodborne infections

Background

In recent years, it is emphasized that consuming the organic food is associated with a healthier lifestyle. Thus, new food consumption trends indicate that people are interested in freshly produced organic foods. Among them, the consumption of fresh cut or minimally-processed fruit and vegetables have undergone a sharp increase. Such trends have been reflected in an increase in the popularity of salad bars in many countries [1–3]. In terms of retail, vegetables can be sold intact or minimally processed to provide a ready-to-eat product and can be contaminated at any point in the chain, starting from the farm to the plate. As they are not subjected to any treatment to eliminate pathogens, a diverse range of human enteric pathogens can contaminate them. There are a number of reports showed the correlation between foodborne illness outbreaks and the consumption of raw vegetables, annually [4, 5]. Several bacterial pathogens have been implicated in foodborne illnesses associated with the consumption of raw vegetables, such as *Salmonella* spp., thermo-tolerant *Campylobacter*, *Listeria monocytogenes*, and certain enteric viruses [6]. These may contaminate vegetables during any stage of production. The yearly average frequency of foodborne outbreaks linked with fresh produce contamination between 2002 and 2012 was reported by Wadamori et al. [7] with the prevalence of 57% (USA), 8% (Japan), and 6% (New Zealand). Infection by *Campylobacter* spp., specifically *Campylobacter jejuni* and *Campylobacter coli*, are the major cause of the mild bacterial diarrhea disease in the world [8]. *Campylobacter* spp. is estimated as the third most common bacterial cause of foodborne illness, but relatively few outbreaks have been detected [5]. Studies in high-income countries have estimated the annual incidence between 4.4 and 9.3 per 1000 population. While, the disease is usually self-limiting within 3–7 days, an acute...
infection can have serious long-term consequences, including severe neurological dysfunctions, such as Guiliain–Barré syndrome (GBS) and Miller Fisher syndrome (MFS), and functional bowel diseases, such as irritable bowel syndrome (IBS) [9]. In 2013, the overall national incidence of campylobacteriosis infections per 100,000 population was estimated to be 6.621, which led to 1010 hospitalizations and 12 death [10]. In 2011, the Euro surveillance editorial team reported that out of a total of 5048 outbreaks of foodborne diseases, Campylobacter was responsible for 220,209 cases which occurred in the European Union (EU) [11]. It has been estimated that 75% [12] and 82% [13] of Campylobacter disease in Australia was associated with food. Most fruits and many vegetables are typically consumed raw and may also be as an important vehicle for Campylobacter spp. It is essential to assess Campylobacter as a relevant microbial risk for raw vegetables, fruits and minimally processed packaged salads, because can be part of the indigenous microflora of fresh produce. A number of reports refer to fresh produce harboring potential foodborne pathogens. Lettuce and spinach are described in the international literature as the main vegetable sources of human infection by Campylobacter spp. [1, 16, 25, 26]. An increased interest in the campylobacteriosis risk assessment of raw vegetables is driven by several outbreaks of infections caused by consumption of fresh produce, such as leafy vegetables and salads [14], lettuce [15], and sprout and cabbage [16]. Studies have revealed that travelling to Asia, Africa, Latin America, the Caribbean, and Southern Europe significantly increased the risk of acquiring campylobacteriosis as compared to travelling within Western Europe [17–19]. Between 2004 and 2012, total of seven and three outbreaks of campylobacteriosis associated with the consumption of fresh vegetables have occurred in the United States and Europe, respectively [20]. Studies such as Evans et al. [21]; Mellou et al. [22] and Danis et al. [3] reported that fresh vegetables and fruits could be considered as risk factors for Campylobacter infection. Role of fresh vegetable as a risk factor in campylobacteriosis, was previously addressed. Previous studies reported different prevalence of infection in assorted fresh vegetables. Present systematic review and meta-analysis study was aimed to focus on the more precise prevalence of infection. Therefore our study will be useful to find out the role of each vegetable to cause the infection.

Methods
Search strategy
A comprehensive scientific search on the presence of Campylobacter spp. in freshly produced food was carried out in three valid electronic global databases: PubMed, Scopus, and Science Direct using the same keywords. The search was performed through systematic research from the year 1990 till 2017. Keywords used to filter through the databases were: Campylobacter, vegetable, lettuce, spinach, leafy vegetable, sprout, fruits, salad, rocket, onion, carrot, cilantro, tomato, cucumber, broccoli, cabbage, cantaloupe, parsley, arugula, pepper, blueberry, strawberry, apple, peach, and melon. Articles containing any of these keywords in their abstracts or titles were included. A total of 135 articles were finally selected.

Study selection
After screening these relevant abstracts, 80 articles were selected. Articles that did not use the English language in the main text, review articles, and book chapters, as well as publications, related to the surveillance of case control study, risk factors, outbreaks of campylobacteriosis, genotyping, food handlers with their hygienic practices, and artificially contaminated samples were excluded from the study. Thereafter, full text screening of all the eligible primary studies was carried out from the databases. In case that full text of the articles were not available, they were finally excluded. To improve the reliability, our included articles were screened by two independent researchers.

Data extraction
Population of the study included vegetables, fruits, and freshly produced food investigated in each relevant primary study. Food that has been considered as fresh produces in this study are vegetables [fresh cut, organic, leafy, root crops, and ready-to-eat (RTE)], beans and sprouts, salad (mixed, gravy), and fruits (fresh cut, mixed, or fruit crops). Various samples were collected from restaurants, retail shops, farm, supermarkets, and ready-to-eat street-vended foods. Studies that apply any treatment, such as heat, pressure, irradiation, and bactericidal on fresh produce, and those found to report effects of cross-contamination were disregarded from the assay. Different kinds of salads and vegetables were categorized into a few subgroups.

Statistical analysis
All the data was analyzed using the Stata® 13.0 software (StataCorp LP, College Station, Texas, USA). Confidence interval of the prevalence rate of Campylobacter spp. in every study was calculated on the basis of binomial proportion formula. Statistical heterogeneity was assessed with the help of the I^2 and Chi square test. For heterogeneity recognition, $p < 0.05$ and 1 square > $50%$. Random-effects model was used to calculate the prevalence estimate after the heterogeneity test.
Results and discussion

Systematic review

Search results and selection of studies

Following research using electronic global databases, a list of titles and abstracts from all the articles provided by the researcher was evaluated independently based on the selected keywords and elimination of similar articles in order to determine and select related topics. From a total of 447 records, at least 301 studies selected as related articles. These articles were assessed by their titles; 115 articles were included. After screening of relevant abstracts, full text of 87 articles were obtained and assessed for eligibility. Out of these, 49 studies were excluded based on inclusion and exclusion criteria mentioned in the methodology. Considering all the requirements, at least 38 studies were finally included in the quantitative meta-analysis. Some studies related to basic scientific, quality, quantity, and methodologies were selected for additional assessment (Fig. 1). All the selected articles were classified based on total samples, prevalence, commodity, isolation method, and region, and were collected for the preparation of a check list by the researcher. Sample collections were grouped into seven categories: vegetables, RTE vegetables, leafy vegetables, root crops, salad, beans and sprouts, and fruit and evaluated using two dimensions of scientific principles and methodology accuracy.

Characteristics of studies and data extraction

The summary plan of this study has been presented in Table 1. Although in most studies the prevalence of Campylobacter was low, the highest prevalence of

Fig. 1 Flowchart stages of the entry studies into a systematic review and meta-analysis
Table 1 Information of included studies in the meta-analysis of prevalence of Campylobacter spp. in vegetables, fruits and fresh produces

References	N	n (%)	P (%)	95% CI	Cam.Sp	Sample	Method	Country	V (g)
[1]	5	0	0	0–4.90	spp.	Arugula	Culture	Spain	25
	18	0	0	0–2.09	spp.	Carrot	Culture	Spain	25
	21	0	0	0–1.86	spp.	Corn salad	Culture	Spain	25
	21	0	0	0–1.86	spp.	Endive	Culture	Spain	25
	29	0	0	0–1.41	spp.	Lettuce	Culture	Spain	25
	10	0	0	0–1.27	spp.	Spinach	Culture	Spain	25
	15	0	0	0–1.28	spp.	Sprouts	Culture	Spain	25
	132	0	0	0–1.37	spp.	Mixed salads	Culture	Spain	25
	21	0	0	0–1.86	spp.	Fresh-cut fruit	Culture	Spain	25
	28	0	0	0–1.46	spp.	Whole vegetables	Culture	Spain	25
[23]	40	0	0	0–9.75	spp.	Fresh vegetable	Culture	Austria	25
	36	0	0	0–1.71	spp.	Mixed salad	Culture	Austria	25
[24]	128	0	0	0–3.58	spp.	Lettuce	Culture	Canada	25
	59	0	0	0–7.37	spp.	Spinach	Culture	Canada	25
	129	0	0	0–3.56	spp.	Green onions	Culture	Canada	25
	206	0	0	0–2.26	spp.	Carrots	Culture	Canada	25
	120	0	0	0–3.28	spp.	Tomatoes	Culture	Canada	25
	31	0	0	0–1.38	spp.	Strawberry	Culture	Canada	25
[25]	40	2	5	0–1.75	jejuni	Lettuce	Molecular Brazil	25	
[26]	40	1	2.5	0–7.33	coli	Lettuce	Molecular Brazil	25	
[27]	40	0	0	0–10.62	spp.	Spinach	Molecular Brazil	25	
	80	0	0	0–4.6	spp.	Strawberry	Culture/molecular Belgium	25	
	241	8	3.3	1.7–6.4	spp.	Leafy greens	Culture/molecular Belgium	25	
[28]	40	0	0	0–1.93	spp.	Yard long bean	Culture/molecular Malaysia	10	
	39	0	0	0–1.38	spp.	Winged bean	Culture/molecular Malaysia	10	
[29]	41	2	5.09	41–71	spp.	Mung bean sprout	Culture/molecular Malaysia	10	
	36	20	55.5	40–70	spp.	Vietnamese coriander	Culture/molecular Malaysia	10	
[31]	39	21	53.8	38–70	spp.	Japanese parsley	Culture/molecular Malaysia	10	
[32]	37	22	59.4	43–74	spp.	Indian pennywort	Culture/molecular Malaysia	10	
[33]	38	13	34.2	19–49	spp.	Wild cosmos	Culture/molecular Malaysia	10	
	49	4	8.16	0–15.7	spp.	Vegetable from farm	Culture/molecular Malaysia	10	
[34]	27	0	0	0–1.43	jejuni	Vegetable	Culture	Vietnam	250
[35]	5170	0	0	0–0.09	spp.	Leafy vegetables	Culture	Canada	25
[36]	369	0	0	0–0.13	spp.	Leafy herbs	Culture	Canada	25
[30]	400	2	0.5	0–1.2	jejuni	Grated vegetables	Culture/molecular France	20	
[31]	50	1	2	0–5.88	spp.	Parsley	Culture/molecular Mexico	25	
[32]	88	8	9	3.02–14.97	spp.	Lettuce	Culture	Belgium	25
[15]	48	4	8.3	0.5–16.1	spp.	Greenhouse lettuce	Culture	Belgium	25
[33]	40	4	10	0–1.71	spp.	Open field farm lettuce	Culture	Belgium	25
[34]	22	9	40.9	19.52–60.47	jejuni	Vegetable/fruits salads	Culture	Pakistan	10
[16]	61	0	0	0–5.5	spp.	Strawberry	Culture/molecular Norway	10	
[10]	60	0	0	0–5.5	spp.	Long yard bean	Culture/molecular Malaysia	10	
[11]	20	0	0	0–5.5	spp.	Indian pennywort	Culture/molecular Malaysia	10	
[17]	47	20	42.5	28.4–56.6	jejuni	Japanese parsley	Culture/molecular Malaysia	10	
[18]	10	7	70	42–98	jejuni	Vietnamese coriander	Culture/molecular Malaysia	10	
[19]	23	12	52.2	31.6–72.4	jejuni	Cucumber	Culture/molecular Malaysia	10	
[20]	30	21	70	54–86	jejuni	Cabbage	Culture/molecular Malaysia	10	
[21]	10	8	80	56–104	jejuni	Mung bean sprout	Culture/molecular Malaysia	10	
Table 1 (continued)

References	N^a	n^b	P (%)	95% Cl	Cam.Sp	Sample	Method	Country	V (g)^f
[35]	70	50	71.4	70–81.9	jejuni	Wild cosmos	Culture/molecular	Malaysia	10
[35]	9	1	11.11	0–31.44	jejuni	Spinach	Culture	India	25
[35]	9	1	11.11	0–31.44	jejuni	Fenugreek	Culture	India	25
[35]	9	0	0	0–34.86	spp.	Cauliflower	Culture	India	25
[35]	9	0	0	0–34.86	spp.	Cabbage	Culture	India	25
[35]	10	0	0	0–32.48	spp.	Coriander	Culture	India	25
[35]	4	0	0	0–55	spp.	Raddish	Culture	India	25
[35]	6	0	0	0–44.79	spp.	Carrot	Culture	India	25
[36]	151	0	0	0–2.9	spp.	Lettuce	Culture	UK	25
[37]	1372	12	0.9	0.4–1.4	spp.	Fresh leafy vegetable	Culture/molecular	Italy	25
[38]	1160	6	0.5	0.1–0.9	spp.	Ready to Eat vegetable	Culture/molecular	Italy	25
[39]	86	0	0	0–5.23	spp.	Organic vegetable	Culture	North Ireland	25
[40]	42	0	0	0–10.16	spp.	RTE vegetables	Culture	Canada	100
[40]	1260	0	0	0–0.36	spp.	Fruit and vegetables	Culture	UK	25
[40]	224	0	0	0–2.07	spp.	Mixed salads	Culture	UK	25
[40]	226	0	0	0–2.05	spp.	Coleslaw (Salad)	Culture	UK	25
[41]	12	0	0	0–28.7	spp.	Salad	Culture	South Africa	25
[42]	22	0	0	0–17.78	jejuni	Salad/gravy prepared	Culture	South Africa	20
[42]	22	0	0	0–17.78	jejuni	Salad/gravy during holding	Culture	South Africa	20
[43]	65	0	0	0–6.85	spp.	RTU vegetables	Culture	Canada	25
[43]	296	0	0	0–1.47	spp.	RTU vegetable	Culture	Canada	25
[44]	183	2	1.09	0–2.4	spp.	Spinach	Culture	Canada	50
[45]	348	2	0.57	0–1.24	spp.	Lettuce	Culture	Canada	50
[45]	174	2	1.15	0.0–2.65	spp.	Radish	Culture	Canada	200
[45]	160	1	0.62	0–1.8	spp.	Green onion	Culture	Canada	50
[45]	177	1	0.56	0–1.54	spp.	Parsley	Culture	Canada	50
[45]	153	1	0.65	0.0–1.82	spp.	Potatoes	Culture	Canada	200
[45]	150	0	0	0–3.09	spp.	Celery	Culture	Canada	50
[45]	130	0	0	0–3.55	spp.	Cabbage	Culture	Canada	200
[45]	149	0	0	0–3.09	spp.	Carrot	Culture	Canada	200
[45]	123	0	0	0–3.61	spp.	Cucumber	Culture	Canada	200
[45]	482	14	2.9	1.5–4.5	spp.	Fresh vegetables	Culture	Canada	50/200
[46]	90	20	22.2	13.5–30.5	spp.	MAP mixed salad	Culture	UK	10
[47]	2870	0	0	0–0.165	spp.	RTE salads	Culture	UK	25
[47]	3852	0	0	0–0.122	spp.	RTE salad vegetables	Culture	UK	25
[48]	3200	0	0	0–0.148	spp.	RTE organic vegetables	Culture	UK	25
[49]	94	0	0	0–4.93	spp.	Chicken salad	Culture/molecular	UK	25
[49]	35	0	0	0–12	spp.	Ham salad	Culture/molecular	UK	25
[50]	12	0	0	0–28.7	spp.	Salmon salad	Culture/molecular	UK	25
[51]	28	0	0	0–14.6	jejuni	Vegetable	Culture	Malawi	10
[52]	40	0	0	0–10.6	spp.	Vegetable	Culture	United States	25
[52]	11	1	9.1	0–25.9	jejuni	Cucumber	Culture	Malaysia	25
[53]	9	0	0	0–34.8	jejuni	Lettuce	Culture	Malaysia	25
[53]	55	0	0	0–7.85	jejuni	Asparagus	Culture	New Zealand	50
[53]	55	0	0	0–7.85	jejuni	Mung bean sprouts	Culture	New Zealand	50
[53]	55	0	0	0–7.85	jejuni	Watercress	Culture	New Zealand	50
[53]	55	0	0	0–7.85	jejuni	Spinach	Culture	New Zealand	50
Campylobacter spp. was reported by Khalid et al. [16]. Out of the seven food categories, freshly produced food showed the highest prevalence, while the lowest rate of contamination was associated with the consumption of salads. Among Campylobacter species, C. jejuni has reflected the highest prevalence in targeted population, while only one study confirmed the isolation in lettuce. The major detection methods were included the selective culture, molecular, and a combination of culture/molecular techniques. The presence of pathogen was confirmed by of the selective culture method (n = 29). Thirty studies were performed to isolate different species of Campylobacter regardless of any limitation. This analysis revealed seven researches in Asia, three in Africa, nineteen in Europe, one in Oceania, two in South America, and six in North America.

Meta-analysis results

Overall prevalence

The total prevalence of Campylobacter in vegetables, fruits, and fresh products was estimated at 0.53% (Fig. 2). The results showed a low occurrence of Campylobacter based on the reports of Losio and Verhoeff-Bakkenes, where the prevalence was less than one percent in vegetables and fruits [30, 37]. Lower rates of isolation were probably due to problems in the growth and recovery of microorganisms. Based on many scientific research reports, foods of animal origin, such as raw milk [56], turkey, chicken, beef, pork [57] and manure [58] were considered as the major sources of Campylobacter spp. Hence, it is likely that the occurrence of Campylobacter spp. in the targeted resource of this study was due to cross-contamination during growth, irrigation, harvest, transportation, and further processing and handling. Danis and Pintar both supported this hypothesis [3, 59].

Type of samples

All of the target samples included for this review have been listed in Table 2. Fresh produce, in particular fruit, does not receive any lethal treatment that kills all pathogens prior to consumption. Results related to the prevalence of pathogen in the different types of produce subgroups have been presented in Table 3. The results of the meta-analysis demonstrated that, among the different group of samples, the beans and sprouts (11.08%) revealed the highest prevalence, followed by the vegetable, detected in 1.73% of samples from supermarkets, retails, and farm lands. The minimum prevalence of Campylobacter was belong to the salad and fruit, which estimated at around 0.02% and 0.20%, respectively. As shown in Table 2, the highest prevalence of Campylobacter was found in the Indian pennywort and wild cosmos. Fields on which livestock or wild animals have grazed are more likely to be contaminated with enteric pathogens. Factors, such as bacterial presence in livestock, companion animals, wild animals, insects, and the natural environment, including soil and surface waters, lack of good agricultural practices (GAP), and cross-contamination with manure, could be related to the presence of pathogens in these vegetables [60]. Also, high prevalence was

References	N	a	b	P (%)	95% Cl	Cam.Sp	Sample Method	Country	V (g)
[14]	55	0	0	0–7.85	jejuni	Silver beet	Culture	New Zealand	50
1157	2	0.17	0.02–0.62	spp. Fruit crops	Culture	Netherland	25		
196	0	0	0–1.86	spp. Root crops	Culture	Netherland	25		
127	0	0	0–2.86	spp. Cabbage	Culture	Netherland	25		
8	0	0	0–36.94	spp. Mushrooms	Culture	Netherland	25		
42	0	0	0–8.41	spp. Onions, garlic	Culture	Netherland	25		
50	1	2	0.05–10.65	spp. Stem and sprout crops	Culture	Netherland	25		
2549	5	0.2	0.06–0.46	spp. Mixed salads/vegetables	Culture	Netherland	25		
159	1	0.6	0.02–3.45	spp. Vegetable-fruit mix	Culture	Netherland	25		
11	0	0	0–28.49	spp. Fruit	Culture	Netherland	25		
779	2	0.3	0.03–0.92	spp. Mixed fruit	Culture	Netherland	25		
562	2	0.36	0.04–1.28	spp. Leafy vegetables	Culture	Netherland	25		
[54]	217	2	0.9	0–2.2	jejuni	Mushrooms	Culture	Ireland	10
62	0	0	0–7.11	spp. Vegetables/salad	Culture	Ireland	10		
[55]	1810	3	0.22	0.06–0.48	spp. Raw vegetable	Culture	Netherland	25	
764	0	0	0–0.5	spp. Vegetable	Culture	Netherland	25		
1151	0	0	0–0.4	spp. Vegetable	Culture	Netherland	25		

* Number of samples, b Number of positive samples, c Sample volume
Fig. 2 Forest plot for meta-analysis of Campylobacter spp. prevalence
found in beans and sprouts. Lots of outbreak reports throughout the world have been linked to the consumption of raw and lightly cooked sprouts [61, 62]. Sprout production involves a unique seed germination process that can support the growth of pathogens because its germination is ideal for bacterial proliferation [63]. Additional factors, such as nutritive value, root nature of sprout, cross-contamination by manure, and irritation might have influenced the microbial contamination of these products. When manure is spread on agricultural fields, it possibly goes into the surface water. Hence, along with weak good manufacturing practice (GMP) and GAP, the presence of environmental bacteria may occur in food. Low prevalence in salad vegetables (0.02%) and fruits (0.20%) may be due to the accurate and sufficient attention paid towards hygiene of salad commodities and also sensitivity to acidic conditions (pH < 5.0) for fruits. Human or animal sources, as well as handling in the stores, may also be associated with increasing the microorganisms at the surface of fresh produce. The low temperature and lack of nutrients at the surface of fruits cause a reduction in Enterobacteriaceae during storage.

Source	Total inputs	Total sample size	Overall prevalence (%)	95% confidence interval	I² (%)	P for χ²
Pennywort	2	57	57.84	45.37–70.31	0.00	0.74
Wild cosmos	2	108	53.46	17.02–89.89	95.10	0.00
Coriander	3	56	41.00	0.00–83.65	93.60	0.00
Bean	4	200	39.47	13.81–65.13	94.70	0.00
Sprouts	5	171	23.68	6.68–40.68	95.60	0.00
Parsley	4	313	18.58	8.54–28.62	96.10	0.00
Cucumber	3	157	18.30	0.00–42.00	92.50	0.00
Fenugreek	1	9	11.11	0.00–26.83	–	–
Cabbage	4	296	10.42	2.38–18.45	95.90	0.00
Lettuce	10	921	1.53	0.12–2.94	54.00	0.02
Radish	2	178	1.14	0.00–2.47	0.00	0.93
Spinach	6	356	0.91	0.00–1.98	0.00	0.81
Mushroom	2	225	0.89	0.00–1.99	0.00	0.92
Potato	1	153	0.65	0.00–1.56	–	–
Fresh cut vegetables	2	421	0.50	0.00–1.10	–	–
Green Onion	2	289	0.49	0.00–1.29	0.00	0.54
Fruits	4	1968	0.21	0.00–0.45	0.00	0.97
RTE vegetables	5	4763	0.13	0.00–0.40	31.00	0.21
Vegetables	15	8535	0.12	0.00–0.28	38.40	0.06
Leafy vegetables	5	11,041	0.10	0.00–0.25	81.10	0.00
Salad	16	7692	0.02	0.00–0.26	63.50	0.00
Onion	1	42	0.00	0.00–4.20	–	–
Crops	1	196	0.00	0.00–0.93	–	–
Beet	1	55	0.00	0.00–3.92	–	–
Water cress	1	55	0.00	0.00–3.92	–	–
Asparagus	1	55	0.00	0.00–3.92	–	–
Celery	1	55	0.00	0.00–3.92	–	–
Cauliflower	1	9	0.00	0.00–17.43	–	–
Strawberry	3	191	0.00	0.00–1.70	0.00	1.00
Tomatoes	1	120	0.00	0.00–1.90	–	–
Endive	1	21	0.00	0.00–9.31	0.00	0.00
Arugula	2	60	0.00	0.00–24.53	0.00	0.00
Carrot	4	379	0.00	0.00–0.90	0.00	1.00

a Different type of fresh vegetables and fruits
b Number of distinctive prevalence values is reported
c Number of vegetable and fruit samples used to determine each estimate
can also be due to the breaking of the cold chain during shelf-life or handling by the shoppers. Therefore, it is not surprising to find *Campylobacter* on the surface of fresh produce [64].

Campylobacter species

Results of the statistical analysis also showed that the highest prevalence of *Campylobacter* was observed for *C. jejuni*, with a percentage of 18.20%, whereas other *Campylobacter* spp. had the minimum prevalence, with a percentage of 0.23% (Table 4). Actually, among different species, *C. jejuni* showed the highest prevalence [54, 65]. It is worth mentioning that the aim of majority of the papers assessed in this study was to consider no specific species of *Campylobacter*. The highest prevalence of *Campylobacter* was identified by molecular approaches. *C. jejuni* mainly resided in the intestinal tract of warm-blooded animals and birds, and, therefore, the excreta may act as a source of contamination. Isolation of *C. jejuni* from vegetables was possibly due to the fecal contamination of these commodities and water at any step of the production chain. However, contact with the utensils used to process raw chicken was also important as they were the main reservoirs of *C. jejuni* [66]. In developed countries, *C. jejuni* was the most frequent cause of acute diarrheal infections. An improvement in the survival of *C. jejuni* in soil and rhizosphere is possibly a substantial factor in the environmental cycle of bacteria [67].

Table 3 Prevalence of *Campylobacter* in subgroups of freshly produced foods

Source	Total inputs	Total sample size	Overall prevalence (%)	95% confidence interval	I² (%)	P for χ²
Vegetables						
Organic vegetable, asparagus, parsley, coriander, tomatoes, green onion, cucumber, endive, mushroom, arugula, cosmos, fenugreek, cauliflower, Celery	39	10,094	1.73	1.04–2.41	95.10	0.00
RTE vegetables						
Fresh cut vegetables, RTU and RTE vegetables	3	1602	0.49	0.16–0.83	0.00	0.98
Leafy vegetables						
Spinach, lettuce, cabbage, pennywort, water cress	29	12,726	0.49	0.17–0.82	87.00	0.00
Root crops						
Radish, potato, carrot, beet	9	961	0.34	0.00–0.82	0.00	0.93
Salad						
MAP mixed salad, RTE salads, chicken salad, ham salad, salmon salad	16	7692	0.02	0.00–0.26	63.50	0.00
Bean and sprouts						
Winged bean, long yard bean, sprouts, mung bean sprout	12	3932	11.08	7.82–14.33	96.20	0.00
Fruit						
Fruits, strawberry, fruit salads	8	2168	0.20	0.00–0.45	0	1.00

* a Sample collections were grouped into seven categories: vegetables, RTE vegetables, leafy vegetables, root crops, salad, beans and sprouts, and fruit
* b Number of distinctive prevalence values is reported
* c Number of vegetable and fruit samples used to determine each estimate

Table 4 Prevalence values and sample sizes for *Campylobacter* species provided in Table 1

Species	Total inputs	Total sample size	Overall prevalence (%)	95% confidence interval	I² (%)	P for χ²
Campylobacter spp.	86	37,682	0.23	0.11–0.35	77.8	0.000
Campylobacter jejuni	27	1444	18.20	13.63–22.77	97.2	0.000
Campylobacter coli	1	40	2.50	0.0–6.16	_	_

* a Different species of *Campylobacter*
* b Number of distinctive prevalence values is reported
* c Number of vegetable and fruit samples used to determine each estimate
Methods of detection
Various isolation methods have been applied according to the literature. The results of the meta-analysis have shown on more than one method for better identification of the bacterium, and thus the estimated prevalence in this method was 21.52% (Table 5). Higher prevalence rates were reported using most probable number PCR (MPN-PCR) by Khalid et al. [16] and Chai et al. [8]. Additionally, there have been articles documenting the positive efficacy of this method for the isolation of food-borne pathogens in various food types. Norinaga et al. [68] compared two methods, MPN-PCR and MPN- thiosulfate citrate bile sucrose agar (MPN- TCBS agar), for the detection and enumeration of Vibrio parahaemolyticus in sea foods. The results showed that MPN-PCR was more convenient and reliable compared to MPN-TCBS, which was also supported by Luan et al. [69].

Strength and weaknesses of this study
In few studies, the heterogeneity as high as 75%. This finding indicated a high proportion of heterogeneity to assess weighted mean between studies. Factors influencing variations that were not clarified in our study may have associated with this heterogeneity. This phenomenon is common for this kind of study due to limited number of published data. One of the limitations was due to English inclusion criteria, therefore other non-English reports were not included in our study. Data for most Oceania, Africa and South American countries were inadequate for analysis. As such, we were not able to estimate the prevalence of campylobacter in fresh vegetables among those countries.

The current systematic review and meta-analysis was the first study estimating the prevalence of Campylobacter in different kinds of fresh vegetables and fruits in various geographical areas. In addition the specific role of each species of bacteria was studied. The more applicable method of detection was also investigated.

Conclusion
As final conclusion it seems that in spite of general low prevalence of the Campylobacter contamination in vegetable and fruits and the high level of consumption of these products raises it total risk of infection. Food chain is increasing the risk of contamination by different routes, for instances, primary production (the most effective one), postharvest contamination during transportation, food processing steps, packaging, distribution and cross contamination in the retail market are among the health hazards. Therefore, employing proper sanitation techniques is highly recommended during all the steps of food preparation.

Authors' contributions
EB: study design; review relevant articles, analysis and interpretation of data; drafting and finalizing the manuscript; study supervision. HM, MM and SH: review relevant articles, analysis and interpretation of data; drafting the manuscript. MZ: analysis and interpretation of data; drafting the manuscript. All authors read and approved the final manuscript.

Authors' details
1 Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran. 2 Nutrition Research Center, Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran. 3 Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz 71345-1731, Iran. 4 Department of Nutrition Sciences, School of Health and Nutrition Sciences, Yasuj University of Medical Sciences, Yasuj, Iran.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Consent for publication
All authors read and approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Funding
This work was supported by Shiraz University of Medical Sciences (Grant No. 1396-01-106-15153).

Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
36. Little C, Roberts D, Youngs E, De Louvois J. Microbiological quality of retail imported unprepared whole lettuces: a PHLS food working group study. J Food Prot. 1999;62(4):325–8.

37. Losio MN, Pavoni E, Bilei S, Bertasi B, Bove D, Capuano F, Fanti E, Blasi G, Comin D, Cardamone C, Decastelli L, Debellato E, De Santis P, Di Pasquale S, Gattuso A, Goffredo E, Fadda A, Pisano M, De Medici D. Microbiological survey of raw and ready-to-eat leafy green vegetables marketed in Italy. Int J Food Microbiol. 2015;210:88–91. https://doi.org/10.1016/j.ijfoodmicro.2015.05.026.

38. McMahon MA, Wilson IG. The occurrence of enteric pathogens and Aeromonas species in organic vegetables. Int J Food Microbiol. 2001;70(1–2):155–62. https://doi.org/10.1016/S0168-1605(00)00359-9.

39. Medeiros DT, Sattar SA, Farber JM, Carrillo CD. Occurrence of Campylobacter spp. in raw and ready-to-eat foods and in a Canadian food service operation. J Food Prot. 2008;71(10):2087–93.

40. Meldrum R, Ribeiro C, Smith R, Walker A, Simmons M, Worthington D, Edwards C. Microbiological quality of ready-to-eat foods: results from a long-term surveillance program (1995 through 2003). J Food Prot. 2005;68(8):1654–8.

41. Mosupye FM, Von Holy A. Microbiological quality and safety of ready-to-eat street- vended foods in Johannesburg, South Africa. J Food Prot. 1999;62(11):1278–84.

42. Mosupye FM, Von Holy A. Microbiological quality and safety of ready-to-eat street- vended foods in Johannesburg, South Africa. J Food Prot. 2000;63(2–3):137–45. https://doi.org/10.1111/j.0300-5978.2000.tb04442.x.

43. Odumeru JA, Mitchell SJ, Alves DM, Lynch JA, Yee AJ, Wang SL, Styliadis I, Farber JM. Assessment of the microbiological quality of ready-to-use processed packaged salads produced in and for the Netherlands. J Food Prot. 2008;71(10):2087–93.

44. Park CE, Sanders GW. Occurrence of thermotolerant campylobacters in fresh vegetables sold at farmers’ outdoor markets and supermarkets. Can J Microbiol. 1992;38(4):313–6. https://doi.org/10.1139/m92-052.

45. Phillips CA. The isolation of Campylobacter spp. from modified atmosphere packaged foods. Int J Environ Health Res. 1998;8(3):215–21. https://doi.org/10.1080/09603129873499.

46. Sagoo SK, Little CL, Mitchell RT. Microbiological quality of open ready-to-eat salad vegetables: effectiveness of food hygiene training of management. J Food Prot. 2003;66(9):1581–6.

47. Sagoo S, Little C, Ward L, Gillespie I, Mitchell R. Microbiological study of ready-to-eat salad vegetables from retail establishments uncovers a national outbreak of salmonellosis. J Food Prot. 2003;66(3):403–9.

48. Sagoo SK, Little CL, Mitchell RT. The microbiological examination of ready-to-eat organic vegetables from retail establishments in the United Kingdom. Lett Appl Microbiol. 2001;33(6):434–9. https://doi.org/10.1046/j.1472-765X.2001.01026.x.

49. Söderqvist K, Lambertz ST, Vägsholm I, Boqvist S. Foodborne bacterial pathogens in retail prepacked ready-to-eat mixed ingredient salads. J Food Prot. 2016;79(6):978–85.

50. Taulo S, Wetlesen A, Abrahamsen R, Kululanga G, Makosyos R, Grimson A. Microbiological hazard identification and exposure assessment of food prepared and served in rural households of Lungwena, Malawi. Int J Food Microbiol. 2008;125(2):111–6. https://doi.org/10.1016/j.ijfoodmicro.2008.02.025.

51. Thuinberg RL, Tran TT, Bennett RW, Matthews RN, Belay N. Microbial evaluation of selected fresh produce obtained at retail markets. J Food Prot. 2002;65(4):677–82.

52. Thung TY, Sit Norsnahawatie BM, Premaratne JM, Chang WS, Loo YY, Kuan CH, New CY, Ubonbong A, Ramzi OS, Mahyudin NA, Dayang FB. Isolation of food-borne pathogen bacteriophages from retail food and environmental sewage. Int Food Res J. 2017;24(1):450–4.

53. Tsuez AC, Carey-Smith GV, Hudson JA, Billington C, Heinemann JA. Prevalence and numbers of coliphages and Campylobacter jejuni bacteriophages in New Zealand foods. Int J Food Microbiol. 2007;116(1):121–5. https://doi.org/10.1016/j.ijfoodmicro.2006.12.028.

54. Whyte P, McGill K, Cowley D, Madden RH, Moran L, Sates P, Carroll C, O’Leary A, Fanning S, Collins JD, McNamara E, Moore JE, Cormican M. Occurrence of Campylobacter in retail foods in Ireland. Int J Food Microbiol. 2004;95(2):111–8. https://doi.org/10.1016/j.ijfoodmicro.2003.10.018.

55. Wijnands LM, Delfgou-Van Asch EH, Beerepoot-Mensink ME, Van Der Meij-Florijn A, Fitz-James I, Van Leusden FM, Pielaat A. Prevalence and concentration of bacterial pathogens in raw produce and minimally processed packaged salads produced in and for the Netherlands. J Food Prot. 2014;77(3):388–94.

56. Christidis T, Pintar K, Butler A, Nesbitt A, Thomas M, Marshall B, Pollari F. Campylobacter spp. prevalence and levels in raw milk: a systematic review and meta-analysis. J Food Prot. 2016;79(10):1775–83.

57. Korsak D, Mackiw E, Rozynek E, Zylowska M. Prevalence of Campylobacter spp. in retail chicken, turkey, pork, and beef meat in Poland between 2009 and 2013. J Food Prot. 2015;78(5):1024–8.

58. Topp E, Khan IU, Ball BR, Edwards M, Gottschall N, Sunohara M, Lappen DR. Quantitative Campylobacter spp. antibiotic resistance genes, and veterinary antibiotics in surface and ground water following manure application: influence of tile drainage control. Sci Total Environ. 2015;532:138–53. https://doi.org/10.1016/j.scitotenv.2015.03.114.

59. Sagoo SK, Little CL, Mitchell RT. Microbiological quality of ready-to-eat street- vended foods in Johannesburg, South Africa. J Food Prot. 1999;62(11):1278–84.

60. Mosupye FM, Von Holy A. Microbiological quality and safety of ready-to-eat street-vended foods in Johannesburg, South Africa. J Food Prot. 2000;63(2–3):137–45. https://doi.org/10.1111/j.0300-5978.2000.tb04442.x.

61. Phillips CA. The isolation of Campylobacter spp. from modified atmosphere packaged foods. Int J Environ Health Res. 1998;8(3):215–21. https://doi.org/10.1080/09603129873499.

62. Centers for Disease Control and Prevention. 2013. OutbreakNet, foodborne disease active surveillance program. http://foodsafety.k-state.edu/en/article-details.php.

63. Frey SK, Toop E, Khan IU, Ball BR, Edwards M, Gottschall N, Sunohara M, Lappen DR. Quantitative Campylobacter spp. antibiotic resistance genes, and veterinary antibiotics in surface and ground water following manure application: influence of tile drainage control. Sci Total Environ. 2015;532:138–53. https://doi.org/10.1016/j.scitotenv.2015.03.114.

64. Brandl MT, Haxo AF, Bates AH, Mandrell RE. Comparison of survival of Campylobacter jejuni in the phyllosphere with that in the rhizosphere of spinach and radish plants. Appl Environ Microbiol. 2002;68(1):151–64. https://doi.org/10.1128/AEM.70.2.1182-1189.2004.

65. Butzler JP, Oosterom J. Campylobacter: pathogenicity and significance in foods. Int J Food Microbiol. 1991;12(1):1–8. https://doi.org/10.1016/0168-1605(91)90043-O.

66. Wu X, Chen J, Liu Y, Li Y, Jia J, Liu R, Zhang XH. Rapid quantitative detection of Vibrio parahaemolyticus in seafood by MPN-PCR. Curr Microbiol. 2009;59(2):289–93. https://doi.org/10.13335/chokuenshi.44.289.

67. Luan X, Chen J, Liu Y, Li Y, Jia J, Liu R, Zhang XH. Rapid quantitative detection of Vibrio parahaemolyticus in seafood by MPN-PCR. Curr Microbiol. 2008;57(3):218–21. https://doi.org/10.1007/s00284-008-9177-x.