Heat shock protein DNAJA1 stabilizes PIWI proteins to support regeneration and homeostasis of planarian Schmidtea mediterranea

Chen Wang1,2*, Zhen-Zhen Yang3, Fang-Hao Guo3, Shuo Shi3, Xiao-Shuai Han3, An Zeng5, Haifan Lin4*, and Qing Jing2,6*

From the 1 Shanghai Institute of Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China, the 2 CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China, and the 3 Yale Stem Cell Center, Yale School of Medicine, New Haven, Connecticut 06511

Edited by Ursula Jakob

PIWI proteins are key regulators of germline and somatic stem cells throughout different evolutionary lineages. However, how PIWI proteins themselves are regulated remains largely unknown. To identify candidate proteins that interact with PIWI proteins and regulate their stability, here we established a yeast two-hybrid (Y2H) assay in the planarian species Schmidtea mediterranea. We show that DNAJA1, a heat shock protein 40 family member, interacts with the PIWI protein SMEDWI-2, as validated by the Y2H screen and co-immunoprecipitation assays. We found that DNAJA1 is enriched in planarian adult stem cells, the nervous system, and intestinal tissues. DNAJA1 knockdown abolished planarian regeneration and homeostasis, compromised stem cell maintenance and PIWI-interacting RNA (piRNA) biogenesis, and deregulated SMEDWI-1/2 target genes. Mechanistically, we observed that DNAJA1 is required for the stability of SMEDWI-1 and SMEDWI-2 proteins. Furthermore, we noted that human DNAJA1 binds to Piwi-like RNA-mediated gene silencing 1 (PIWIL1) and is required for PIWIL1 stability in human gastric cancer cells. In summary, our findings reveal a similar transposon-depressing role of PIWI protein in adult stem cells of planarian (17), suggesting conserved functions of PIWI protein in germ line and adult stem cells. Moreover, PIWI proteins are critical for biogenesis of PIWI-interacting RNAs (piRNAs) (10, 12, 18), epigenetic regulation (19–21), and cancer cell survival and metastasis (22, 23). Thus, PIWI proteins participate in multiple vital biological processes through various mechanisms.

Freshwater planarians are capable of regenerating any missing body parts after injury or amputation. Regeneration in the planarian relies on an abundant population of adult stem cells known as neoblasts, which is specifically marked by PIWI family genes (11, 24). Therefore, planarians provide an excellent model for studying the regulation of PIWI proteins as well as its involvement in adult stem cells and regeneration. Both planarian’s abundant adult stem cells, also known as neoblasts, and its unique reproductive system provide distinctive advantages for studying PIWI regulation in the adult soma and in the germ line (25–27). Two homologs of PIWI-like protein were identified in the planarian Schmidtea mediterranea, and smedwi-2 was found to be essential for planarian regeneration (11). Another PIWI homolog, smedwi-3, and piRNAs were later identified in planarian neoblasts (12). Accordingly, PIWI homologs in planarian Dugesia japonica and Dugesia ryukyuensis were identified, respectively (28–30). In D. japonica, DjpiwiB is expressed in neoblasts and inherited into neoblast descendant to suppress transposons (17). Recent studies on S. mediterranea suggested that stem cells and their progeny have different levels of PIWI proteins (24), suggesting that the PIWI level needs to be tightly controlled. However, the underlying mechanisms that control PIWI stability remain largely unknown.

This work was supported in part by National Natural Science Foundation of China Grants 81130005, 91339205, 31229002, 31101037, 31401238, and 81000117; Ministry of Science and Technology of China Grant 2017YFA0103700 (to Q. J.); and ShanghaiTech University (to H. L.). Publication charges were paid by the Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences. The authors declare that they have no conflicts of interest with the contents of this article. This article contains Tables S1 and S2 and Figs. S1–S5.

1 To whom correspondence may be addressed. E-mail: haifan.lin@yale.edu.
2 To whom correspondence may be addressed. E-mail: qjing@sibs.ac.cn.

3 The abbreviations used are: piRNA, PIWI-interacting RNA; Y2H, yeast two-hybrid; QDO, quadruple dropout; FISH, fluorescent in situ hybridization; WISH, whole-mount in situ hybridization; IF, immunofluorescence microscopy; NA, numerical aperture; qPCR, quantitative PCR; TE, transposable element; Xα-Gal, 5-bromo-4-chloro-3-indoly β-D-galactoside; HA, hemagglutinin; FBS, fetal bovine serum.
DNAJA1 stabilizes PIWI proteins for regeneration

Several PIWI partner proteins that facilitate PIWI function have been identified in model organisms. In *Drosophila* and mice, Tudor domain–containing proteins directly interact with PIWI proteins by binding to symmetrically dimethylated arginine residues in PIWI, as catalyzed by PRMT5 and Valois (31–35). This interaction facilitates the function of PIWI proteins in spermatogenesis and transposon silencing. Moreover, Armitage, Zucchini, Squash, Maelstrom, and HEN1 are all found to interact with PIWI and promote the biogenesis of piRNAs (36–39). In *Drosophila*, PIWI recruits heterochromatin protein 1a (HP1a) by directly binding to HP1a, forming a complex that establishes epigenetic modification to repress gene expression (20, 40). Interestingly, the planarian HP1a homolog HP1-1 is required for adult stem cell self-renewal, whereas SMEDWI-2 is also required for stem cell division, even though their interaction has not been reported (11, 12, 41). Furthermore, chaperones and co-chaperones are found to be essential for PIWI functions in *Drosophila* and mice (42–45). In *Drosophila*, heat shock protein 90 (HSP90) and HSP70/HSP90-organizing protein (Hop) bind to PIWI to suppress transposition as well as the expression of genetic variation (42). In addition, co-chaperone Shutdown binds to Trdr1 and HSP90 to assist in the production of piRNAs (43–45). Even though these partners are all critical for PIWI function, PIWI interactors that assist in the production of piRNAs (20, 42-45) are found to interact with PIWI and promote the biogenesis of piRNAs. This interaction facilitates the function of PIWI proteins during regeneration or under environmental stress that have not yet been identified.

The HSP protein family includes a large variety of proteins that respond to stress (46). Among them, HSP40, initially identified as DNAJ in *Escherichia coli* as a temperature-sensitive co-chaperone, is critical for the replication of the bacterial DNA (47). The DNAJ family, consisting of the three subtypes DNAJA, DNAJB, and DNAJC, assists protein folding and degradation to ensure the quality of cellular proteins (48). In the mouse germline, DNAJ type I homolog, DjA1, is critical for spermatogenesis (49). Interestingly, levels of human DNAJA1 and DNAJA2 are high in embryonic stem cells, whereas Mrj, a homolog of human DNAJB6, is required for neural stem cell self-renewal (50, 51), indicating that DNAJ proteins also play roles in stem cells. Moreover, human DNAJA1 stabilizes mutant p53 rather than WT p53, indicating that DNAJA1 promotes cell proliferation through this interaction (52). In planarians, the expression of a DNAJA family gene, Smed-HSP40, was identified in adult stem cells (53). Because DNAJA1 has dual roles in both the germ line and stem cells, the two major places where PIWI also function, DNAJA1 might interact with PIWI proteins.

To identify the PIWI interactor in the planarian *S. mediterranea*, we established a yeast two-hybrid library and utilized full-length SMEDWI-2, N-terminal SMEDWI-2, and C-terminal SMEDWI-2 as baits to fish for potential interactors. These screens resulted in seven prey proteins. One of them, DNAJA1, is required for planarian regeneration and homeostasis. We found that DNAJA1 is expressed in neoblasts, the central nervous system, and the intestine. Most importantly, our results showed that DNAJA1 stabilizes PIWI proteins in the planarian and, thus, is required for piRNA maintenance and other functions of PIWI.

Results

Identification of SMEDWI-2–interacting proteins in the planarian *S. mediterranea*

To identify novel interacting partners for planarian SMEDWI-2, we sought to establish a yeast two-hybrid (Y2H) assay using prey libraries generated from planarian cDNA. The Y2H assay has been among the most popular reverse genetics tools for detecting protein–protein interactions. First, we constructed a yeast two-hybrid prey library using whole planarian cDNA as starting material. Thirty asexual worms were harvested for RNA extraction, and poly(A⁺) mRNA was further enriched and reverse transcribed into cDNA and cloned into plasmid pGADT7 vector to build a plasmid library in the yeast strain Y187 (Fig. S1A). We cultured the yeasts and collected 1.429 × 10⁶ independent yeast clones. The yeast cells were amplified, and at least 7.7 × 10⁸ yeast cells were used in each hybridization. To assess the quality of the cDNA library, we randomly picked 100 yeast clones and amplified the transformed sequences with common primers by PCR. All of the plasmids contained cDNA inserts, with 31, 31, and 17% of cDNAs of 250–500, 500–1000, and >1000 bp in length, respectively (Fig. S1B). Only 21% of the clones contained cDNAs shorter than 250 bp. The results suggest the good quality of the planarian cDNA library.

We next constructed three bait yeast strains in the host strain Y2HG. Gold. Each strain carries a pGBKTK7 plasmid that contains either the full-length SMEDWI-2 sequence (SMEDWI-2-FL) or the SMEDWI-2 N-terminal sequence (SMEDWI-2-NT; amino acids 1–385) or the SMEDWI-2 C-terminal sequence (SMEDWI-2-CT; amino acids 378–833) (Fig. 1A). All three baits expressed planarian proteins, and the baits did not self-activate the reporter for the screen (Fig. 1B and Fig. S1C).

We mated three bait strains with prey libraries separately and observed the formation of typical zygotes (Fig. S1D). We first screened the zygotes on triple dropout plates (culture medium lacking adenine, leucine, and tryptophan) and selected the surviving clones on quadruple dropout (QDO) plates (culture medium lacking histidine, adenine, leucine, and tryptophan). We then picked the clones that grew on QDO plates and cultured the clones on QDO plates with X-α-Gal (Fig. 1C). We finally harvested seven preys containing planarian homologs of HIVEP3, RACK1, KU70, SSCO, collagen, SLCA4, and DNAJA1 (Fig. 1, D and E).

Among the seven putative interactors, DNAJA1 was identified previously as a stem cell–enriched protein in a proteomic analysis (53). Moreover, it was co-expressed with SMEDWI-2 in adult stem cells and displayed a SMEDWI-1-like phenotype (see below), so we chose to focus our study on DNAJA1. Sequence analysis of DNAJA1 showed that it encodes a protein of 411 amino acids, consisting of an N-terminal DnaJ domain and a large DnaJ_C domain that spans the middle and C-terminal regions of the protein (Fig. 1F). Within the DnaJ_C domain, a highly conserved DnaJ_ZF domain was identified by a CXX-CXXPXP motif, which is a symbolic domain for DNAJA family protein (Fig. 1F) (54). Thus, we name this gene *Smed–DNAJA1* (henceforth referred to as DNAJA1 for simplicity). Multiple-sequence alignment showed the high sequence similarity of
DNAJA1 stabilizes PIWI proteins for regeneration

S. mediterranea DNAJA1 protein with *D. japonica* DNAJA1 as well as *Homo sapiens* and *Mus musculus* DNAJA1 (Fig. S3).

To verify the interaction between SMEDWI-2 and DNAJA1, we mated yeast Y187 expressing planarian DNAJA1 with yeast Y2HGold™ expressing SMEDWI-2-FL, SMEDWI-2-NT, and SMEDWI-2-CT, respectively. Mated yeast expressing both SMEDWI-2-FL and DNAJA1 grew on QDO plates and turned blue (Fig. 1G). The same results were observed in mated yeast expressing SMEDWI-2-CT and DNAJA1 but not in mated yeast expressing SMEDWI-2-NT and DNAJA1 (Fig. 1G), indicating that DNAJA1 binds to the C terminus of SMEDWI-2.

We next independently expressed HA-tagged planarian DNAJA1 and FLAG-tagged planarian SMEDWI-2 in 293T cells. After harvesting the cells, we incubated cell lysates from 293T expressing DNAJA1 with cell lysates either from 293T expressing empty vector or 293T expressing SMEDWI-2. Then we immunoprecipitated SMEDWI-2 with anti-FLAG antibody and found that DNAJA1 was co-immunoprecipitated (Fig. 1H). These results suggest that DNAJA1 physically interacts with SMEDWI-2 protein.

DNAJA1 is expressed in SMEDWI-positive cells

To more precisely define the cells expressing DNAJA1 in the planarian body, we performed fluorescent in situ hybridization (FISH) and immunofluorescence co-staining to compare the expression pattern of DNAJA1 with various cell-type markers. The results revealed that DNAJA1 mRNA was co-expressed with smedwi-1 mRNA, a marker specific for neoblasts (Fig. 2A), and was also enriched in SMEDWI-1 protein-positive cells, which encompass both neoblasts and their early differentiating progenies (Fig. 2A).
Moreover, we confirmed that DNAJA1 mRNA was co-expressed with both smedwi-2 mRNA (Fig. S4A) and SMEDWI-2 protein in the same cells (Figs. 2B). Although highly enriched in neoblasts, smedwi-2 is also expressed in differentiated tissues, such as the central nervous system. We found that DNAJA1 mRNA was expressed in SMEDWI-2–positive cells in both the ventral central nervous system and dorsal germ-lines (Fig. 2, B and C), indicating that the expression of DNAJA1 was not just enriched in neoblasts but also extends to their early progenies.

Exposure to γ-irradiation effectively and specifically ablates planarian neoblasts (55). To further confirm the enrichment of
DNAJA1 in neoblasts, we examined the expression levels of DNAJA1 mRNA in γ-ray–irradiated worms by whole-mount in situ hybridization. DNAJA1 transcripts were reduced in γ-ray–irradiated worms, although the majority of signals detected in the intestine and central nervous system remained unaffected (Fig. 2D). We further confirmed the expression of DNAJA1 in the intestinal system by staining DNAJA1 with intestine marker mat (Fig. 2E). Our results showed that DNAJA1 was co-expressed with mat in the intestinal system.

Because DNAJA1 belongs to the heat shock protein family, we next evaluated the expression dynamics of DNAJA1 mRNA under thermal stress. DNAJA1 mRNA was significantly increased when worms were cultured in 30 °C, whereas neoblast-specific genes were slightly altered (worms were cultured in 30 °C, whereas neoblast-specific genes were slightly altered (Fig. 2F), suggesting an expected role of DNAJA1 in response to heat shock. Together, the above data indicate that DNAJA1 is ubiquitously expressed and enriched in cells where SMEDWIs are expressed, suggesting that DNAJA1 and SMEDWIs are functionally connected in regeneration.

DNAJA1 is required for the stability of proteins controlling planarian regeneration and homeostasis

To assess the necessity of these seven putative interactors in planarian regeneration, we knocked them down individually by feeding with bacteria expressing dsRNA four times on day 1, 4, 7, and 10. Animals fed with bacteria expressing GFP(RNAi) served as negative control. Interestingly, DNAJA1(RNAi) worms were unable to regenerate a head and only formed a smaller tail. Putative interactor SLAC4(RNAi), SSCO(RNAi), collagen (RNAi), and KU70(RNAi) worms showed no defect in regeneration (Fig. 3A). Rack1(RNAi) led to severe homeostasis defects but no defect in regeneration (Fig. S2A), whereas Hivep3(RNAi) displayed specific defects in tail regeneration but not head regeneration (Fig. S2B). These analyses suggest that DNAJA1 interacts with SMEDWI-2 in adult stem cells to facilitate regeneration.

To further characterize the function of DNAJA1, we examined the phenotype caused by DNAJA1 knockdown in intact worms. Intact DNAJA1(RNAi) worms displayed regression in the head region and curls toward their ventral surface at 30 days after the first RNAi feeding (Fig. 3B). By 35 days after the first RNAi feeding, all of the worms lysed (Fig. 3C). Compared with the phenotype caused by smedwi-2(RNAi) (11), DNAJA1(RNAi) resulted in a weaker phenotype, suggesting that DNAJA1 is not the only partner in the PIWI machinery in adult stem cells. Together, our results revealed that among the seven putative interactors of SMEDWI-2, only DNAJA1, as a validated interactor, is involved in the regeneration process.

DNAJA1 is required for the stability of proteins controlling planarian stem cell maintenance

Because the loss of DNAJA1 in planarian resulted in a phenotype similar to that of smedwi-2, we suspected that the stem cell population was affected in DNAJA1(RNAi) worms. To investigate this, we analyzed the stem cell population in DNAJA1(RNAi) and GFP(RNAi) worms by flow cytometry. After the initial RNAi feeding, DNAJA1 was successfully knocked down in DNAJA1(RNAi) worms, as indicated by both in situ hybridization (Fig. 4A) and quantitative RT-PCR (Fig. 4D). The stem cell population in DNAJA1(RNAi) worms consistently decreased during the 27-day period that we monitored (Fig. 4B and C), indicating the requirement of DNAJA1 for adult stem cell maintenance.

To confirm the role of DNAJA1 in stem cell maintenance, we examined the expression of stem cell–specific genes in DNAJA1(RNAi) worms. We monitored the mRNA levels of the stem cell–specific genes and a pigment cell–specific gene, PBGD (56), at corresponding time points in DNAJA1(RNAi) worms. Expectedly, PBGD mRNA was unaffected at all time points examined, yet all four neoblast-specific transcripts (smedwi-1, smedwi-2, hp1-1, and zfp1) were decreased at day 27 (Fig. 4D),...
indicating a role of DNAJA1 in maintaining critical proteins in stem cells. At 27 days after the initial RNAi feeding, SMEDWI-1, SMEDWI-2, and HP1-1 proteins were all significantly reduced (Fig. 4E) as they were in smedwi-2(RNAi) worms who failed to maintain the stem cell population (Fig. S5B), confirming that loss of DNAJA1 resulted in a stem cell loss by this time point.

PIWI proteins are stabilized by DNAJA1 in planarians

Because DNAJA1 is a chaperone that interacts with SMEDWI-2 and both proteins are required for stem cell maintenance, we wondered whether DNAJA1 maintains stem cells by protecting the stability of SMEDWI-2. We examined the mRNA fold changes of DNAJA1, smedwi-1, smedwi-2, hp1-1, zfp1, and PBGD in DNAJA1(RNAi) day 19, 23, and 27 (D19, D23, and D27) worms. mRNA levels are normalized to gapdh. Error bars, S.D.; *, p < 0.05; **, p < 0.01; ***, p < 0.001; significance was determined with Student’s t test.

Figure 4. DNAJA1 is required for the stability of SMEDWI proteins and stem cell maintenance. A, representative DFISH + IF results of DNAJA1, smedwi-1, and SMEDWI-2 in GFP(RNAi) or DNAJA1(RNAi) worms. The results show dorsal views. Enlarged areas were indicated with white dashed squares. All panels are single frames. Scale bar, 80 μm. B, flow cytometry analysis of stem cell population at the indicated time point after GFP(RNAi) or DNAJA1(RNAi). At least 10 worms were used for one experiment, and only one of three experiments is shown here. For a complete data set, see Fig. S5A. C, statistical analysis of stem cell population at the indicated time points after GFP(RNAi) or DNAJA1(RNAi). At least 10 worms were used for one experiment, and the average of three experiments is shown here. Error bar, S.D.; significance was determined with Student’s t test. D, mRNA expression -fold changes of DNAJA1, smedwi-1, smedwi-2, hp1-1, zfp1, and PBGD in DNAJA1(RNAi) day 19, 23, and 27 (D19, D23, and D27) worms. mRNA levels are normalized to gapdh. Error bars, S.D.; *, p < 0.05; **, p < 0.01; ***, p < 0.001; significance was determined with Student’s t test.

PIWI proteins are stabilized by DNAJA1 in planarians

Because DNAJA1 is a chaperone that interacts with SMEDWI-2 and both proteins are required for stem cell maintenance, we wondered whether DNAJA1 maintains stem cells by protecting the stability of SMEDWI-2. We examined the mRNA fold changes of DNAJA1, smedwi-1, smedwi-2, hp1-1, zfp1, and PBGD in DNAJA1(RNAi) day 19, 23, and 27 (D19, D23, and D27) worms. mRNA levels are normalized to gapdh. Error bars, S.D.; *, p < 0.05; **, p < 0.01; n.s., no significance. Significance was determined with Student’s t test.
levels of *smedwi-1* and DNAJA1 as well as the protein level of SMEDWI-2 at day 23 in *GFP(RNAi)* worms and DNAJA1(RNAi) worms, respectively. The mRNA levels of *smedwi-1* and *smedwi-2* were hardly affected, as assayed by both *in situ* hybridization for *smedwi-1* mRNA (Fig. 4A) and quantitative RT-PCR for both *smedwi-1* and *smedwi-2* mRNAs (Fig. 4D). We next tested whether depletion of DNAJA1 affected the stability of SMEDWI proteins. Interestingly, we found that the level of both SMEDWI-1 and SMEDWI-2 proteins was severely reduced, as indicated by both immunofluorescence microscopy for SMEDWI-2 (Fig. 4A) and by Western blot analysis for both SMEDWI-1 and SMEDWI-2 (Fig. 4E). These results indicate that DNAJA1 promotes the stability of the SMEDWI proteins but not their mRNAs. Furthermore, the reduction of SMEDWI-2 in DNAJA1(RNAi) worms occurred in the cytoplasm, with *smedwi-2* not detectably affected (Fig. 4A), which further indicates that DNAJA1 might bind to SMEDWI-2 in the cytoplasm to maintain its stability.

Because DNAJA1 is responsive to heat shock, we examined whether DNAJA1 protects SMEDWIs under thermal stress in planarians. Interestingly, thermal stress reduced the levels of both SMEDWI-1 and SMEDWI-2 proteins, and loss of DNAJA1 exacerbated the effect of the thermal stress on the proteins (Fig. 4, F and G). This indicates a role of DNAJA1 in protecting SMEDWI proteins from environmental stress.

DNAJA1 is required for maintenance of the piRNA population in planarians.

Because *smedwi-2* is required for piRNA maintenance (12), we wondered whether DNAJA1 is also required for piRNA maintenance. Because DNAJA1(RNAi) worms showed a weaker phenotype compared with SMEDWI-2(RNAi) worms, we isolated RNA from *GFP(RNAi)* and SMEDWI-2(RNAi) worms at 13 days after the first RNAi (two feeds) and *GFP(RNAi)* and DNAJA1(RNAi) worms at 23 days after the first RNAi (four feeds). We first analyzed the piRNA population of SMEDWI-2(RNAi) and DNAJA1(RNAi) and found that loss of either *smedwi-2* or DNAJA1 led to a significant decrease of the total piRNA population (Fig. 5A). To clarify the role DNAJA1 plays in piRNA maintenance, we sequenced the small RNAs from the *GFP(RNAi)*, *smedwi-2(RNAi)*, and DNAJA1(RNAi) worms (Table S1). Because the global miRNA expression profile between these groups was similar (Table S2), we assumed that the miRNA pathway is unaffected in *smedwi-2(RNAi)* and DNAJA1(RNAi) worms and normalized all libraries to the level of total miRNAs. Among the small RNAs from the planarian samples (Fig. 5, B and C), we observed a second peak around nucleotides 32–33, which matches the signature of planarian piRNAs. The base composition of these piRNAs showed strong first U bias (Fig. 5D), a typical signature for primary piRNAs. Both *smedwi-2(RNAi)* and DNAJA1(RNAi) caused a significant piRNA reduction, 23.9% (*p = 0.047*) and 18.1% (*p = 0.022*), respectively, compared with their control genotype (Fig. 5, B and C). Transposon-derived piRNAs (Fig. 5E, top two panels) and transposon-targeting piRNAs (Fig. 5E, bottom two panels) were both significantly reduced in DNAJA1(RNAi) and *smedwi-2(RNAi)* worms compared with *GFP(RNAi)* worms, indicating that the observed piRNA reduction is likely a global effect. Altogether, these lines of evidence indicate a role of DNAJA1 in piRNA biogenesis.

DNAJA1 facilitates *smedwi-2*-mediated regulation of gene expression

We previously inspected the mRNA expression changes in *smedwi-2(RNAi)* worms at 3 days post-amputation via microarray and found that 391 genes were down-regulated, whereas 494 genes were up-regulated (41). Therefore, we examined whether DNAJA1 is involved in the regulation. Based on the expression -fold change and gene function in 3-day post-amputation *smedwi-2(RNAi)* worms, we first selected 16 down-regulated genes and 15 up-regulated genes and examined their expression in intact worms fed with *smedwi-2* dsRNA only once to mimic an early status of SMEDWI-2 loss. All of the 16 down-regulated genes, except for *MAPK14*, were decreased in intact *smedwi-2(RNAi)* worms (1 feed, day 8) to different extents (Fig. 6A), whereas 12 of the 15 up-regulated genes were increased in intact *smedwi-2(RNAi)* worms (Fig. 6B). To examine whether DNAJA1 is involved in SMEDWI-2–mediated gene expression regulation, we next examined the changes in the expression of these genes in DNAJA1(RNAi) worms. Ten of 15 genes down-regulated in intact *smedwi-2(RNAi)* worms showed reduced levels in day 19 DNAJA1(RNAi) worms, indicating that DNAJA1 is required for the expression of these SMEDWI-2–dependent genes (Fig. 6C). Meanwhile, more than two-thirds of genes that increased in *smedwi-2(RNAi)* worms were up-regulated in DNAJA1(RNAi) worms, indicating that DNAJA1 is required for SMEDWI-2–mediated suppression of gene expression (Fig. 6D). Furthermore, we examined the expression of all of the 16 down-regulated and 15 up-regulated genes in day 27 DNAJA1(RNAi) worms. As expected, we observed a similar gene expression alteration in day 27 DNAJA1(RNAi) worms as compared with *smedwi-2(RNAi)* worms (Fig. 6, E and F), indicating that DNAJA1 is required for SMEDWI-2–mediated regulation of gene expression.

DNAJA1–PIWI interaction is conserved during evolution

To explore whether the interaction between DNAJA1 and SMEDWI-2 is conserved in humans, we co-expressed HA-tagged HDJ2, the human ortholog of DNAJA1, with FLAG-tagged PIWIL1, the human ortholog of SMEDWI-2, in 293T cells. To see whether the interaction region in SMEDWI-2 is also conserved, we tested the three PIWIL1 constructs: PIWIL1-FL (full-length PIWIL1) and its truncated forms PIWIL1-NT (containing amino acids 1–554) and PIWIL1-CT (containing amino acids 375–861) (Fig. 7A). HDJ2 and PIWIL1-FL were co-immunoprecipitated with each other (Fig. 7, B and C). In addition, HA-tagged HDJ2 was co-immunoprecipitated with PIWIL1-CT but not PIWIL1-NT (Fig. 7D), which is in line with the finding that planarian DNAJA1 interacts with SMEDWI-2-CT (Fig. 7E). Thus, our data demonstrated that DNAJA1 binds to C-terminal of PIWI proteins.

To further examine whether the function of DNAJA1 in protecting PIWI stability is also conserved, we knocked down...
HDJ2 in the human gastric cancer cell line AGS with three different siRNA sequences and found that down-regulation of HDJ2 resulted in significant decrease of PIWIL1 protein level in AGS cells (Fig. 7F). These results further indicate the functional conservation of DNAJA1 interaction with PIWI proteins during evolution.
Discussion

The PIWI–piRNA pathway is a major eukaryotic small RNA pathway with multifaceted function in gene regulation, transposon silencing, and diverse developmental processes. Identification of PIWI-interacting proteins is an effective routine to decipher the function of the pathway (34). Over the past decade, multiple PIWI-interacting proteins have been identified in Drosophila, C. elegans, mice, and other model organisms. Most of the identified interactors are either involved in piRNA biogenesis or partner with PIWI proteins to achieve a particular regulatory function (34). Despite this progress, little is known about how the stability of PIWI proteins is regulated. In planarians, the function of several PIWI partners has been identified in Drosophila, C. elegans, mice, and other model organisms. Most of the identified interactors are either involved in piRNA biogenesis or partner with PIWI proteins to achieve a particular regulatory function (34). Despite this progress, little is known about how the stability of PIWI proteins is regulated. In planarians, the function of several PIWI partners has been characterized. Our previous work demonstrated the HP1-1, a PIWI interactor, is required for regenerative mitosis through activating the mcm5 gene (41). Moreover, proteins known to interact with PIWI in other organisms, such as VASA and TDRD1, have also been identified in planarians (57–60), even though the interaction between these proteins and PIWI in planarian has not been tested yet. Here, we reported the identification of DNAJA1 in planarians as a SMEDWI interactor with an important and unique function in ensuring the stability of both SMEDWI-1 and SMEDWI-2, under both normal and stressed conditions. Moreover, we show that this interaction, as well as its function in stabilizing the PIWI protein, is well-conserved in human cells. Thus, the interaction between DNAJA1 and PIWI homologues represents a conserved mechanism that regulates PIWI protein stability.

In addition, we demonstrated that DNAJA1 is enriched in SMEDWI-positive cells and is required for stem cell maintenance, regeneration, homeostasis, and piRNA biogenesis in planarians. These findings are consistent with a previous proteomic finding that DNAJA1 is a neoblast-enriched protein (53). Because DNAJA1 sustains the stability of both SMEDWI-1 and SMEDWI-2 proteins yet these two proteins are key players in stem cell maintenance, regeneration, homeostasis, and piRNA biogenesis in planarians, it is likely that DNAJA1 achieves these functions mostly, if not exclusively, via its interaction with PIWI.

Of note, the phenotype caused by DNAJA1(RNAi) is weaker than that caused by smedwi-2(RNAi). This indicates that DNAJA1 is a main but not the exclusive regulator of
DNAJA1 stabilizes PIWI proteins for regeneration

A

PIWIL1-FL:
1
GAGE
ArgoL1 domain
PAZ domain
PIWI domain
861
PIWIL1-NT:
1
GAGE
ArgoL1 domain
PAZ domain
554
PIWIL1-CT:
375
PIWI domain
861

B

	pCDNA3.1-HA + PIWIL1-FLAG	HDJ2-HA + pCDNA3.1-FLAG	HDJ2-HA + PIWIL1-FLAG
1.5% Input HA	Immunoprecipitation	Immunoprecipitation	Immunoprecipitation
	HA	FLAG	IgG

Anti-PIWIL1
100 KD

Anti-HDJ2
58 KD

C

	pCDNA3.1-HA + PIWIL1-FLAG	HDJ2-HA + pCDNA3.1-FLAG	HDJ2-HA + PIWIL1-FLAG
1.5% Input HA	Immunoprecipitation	Immunoprecipitation	Immunoprecipitation
	HA	FLAG	IgG

Anti-FLAG
100 KD

D

	HDJ2-HA + PIWIL1-NT(1-554)-FLAG
1.5% Input HA	Immunoprecipitation
	HA

Anti-FLAG
80 KD

Anti-HA
58 KD

E

	HDJ2-HA + PIWIL1-CT(375-861)-FLAG
1.5% Input HA	Immunoprecipitation
	HA

Anti-FLAG
58 KD

Anti-HA
58 KD

F

siRNA in AGS cell

	NC	HDJ2	Human Testis
	1136	1270	995

100 KD
PIWIL1
58 KD
HDJ2
46 KD
ACTIN
SMEDWI proteins; nor is it an integral component of the PIWI machinery.

It is also noteworthy that DNAJA1 stabilizes SMEDWI-1 and SMEDWI-2 but not HP1-1, another protein enriched in stem cells and important for their maintenance. This reflects that DNAJA1 as a chaperone has a selective clientele.

Beyond its enrichment in stem cells, we found that DNAJA1 is also abundantly expressed in the central nervous system and the intestine in planarians. Interestingly, the SMEDWI-2 proteins are also enriched in the peripheral region of the brain. Previous reports implicated that PIWI is a critical regulator in the brain (61), whereas DNAJA1 protects proteins in neuronal cells (62). These findings point to a possibility that DNAJA1 also mediates PIWI turnover in the central nervous system.

In addition to DNAJA1, we identified six other putative PIWI-interacting proteins in planarians through a yeast two-hybrid assay. Two of them, HIVEP3 and RACK1, are required for regeneration and homeostasis, respectively. RACK1 is a scaffold protein critical for both embryonic and adult stem cells (63). It is also expressed in neoblasts. HIVEP3 is ubiquitously expressed and is an essential regulator of polarity establishment in planarians, which is likely independent of known PIWI functions. Studying how these two proteins interact with PIWI proteins may shed new light on molecular mechanisms underlying regeneration and homeostasis.

Experimental procedures

Planarian culture

Clonal lines of hermaphroditic and asexual (CIW4) *S. mediterranea* were maintained as described previously (64) in water supplied with 0.21 g/liter Instant Ocean salts. Animals were fed weekly with homogenized calf livers. Animals were starved for 1 week before any experiment. For irradiation, planarians were exposed to 60 grays of γ-irradiation using a sealed source of cesium 137 (Gammacell3000, MDS Dordion, Chalk River, Canada). The animals were kindly provided by P. Newmark (University of Illinois at Urbana-Champaign/Howard Hughes Medical Institute, Urbana, IL), P. Reddien (Massachusetts Institute of Technology/Howard Hughes Medical Institute, Cambridge, MA), and N. Oviiedo (University of California, Merced, CA).

Yeast two-hybrid assay

Yeast library was constructed with the Matchmaker Library Construction & Screening Kits (630445, Clontech) according to the manufacturer’s instructions. Details and modifications are described under “Results.” Yeast two-hybrid assays were performed with the Matchmaker Gold Yeast Two-Hybrid System (630489, Clontech) according to the manufacturer’s instructions. Details and modifications are also described under “Results.”

DNAJA1 stabilizes PIWI proteins for regeneration

RNAi experiments

We used bacteria expressing dsRNA to induce gene knockdown as described previously (65). The worms were fed four times for screening and DNAJA1 (RNAi) and two times for SMEDWI-2 (RNAi). At least 10 worms were used in each RNAi experiment, and at least three independent experiments were carried out for each gene.

Sequence analysis of SMEDWI interactors

We aligned the acquired sequences with online PFAM (http://pfam.xfam.org/), and local ClustalX2. Phylogenetic trees were constructed with ClustalX2 using the neighbor-joining algorithm with 1000 trials of bootstrap and 120 random seeds.

Whole-mount in situ hybridization (WISH), FISH, and immunofluorescence microscopy (IF)

WISH and FISH were performed as described previously (56, 66, 67). In brief, worms were killed in 5% N-acetyl cysteine solution (Sigma-Aldrich), fixed in 4% paraformaldehyde, permeabilized in reduction buffer, and dehydrated in a graded series of methanol in PBSTx before bleaching. After rehydration, hybridizations were performed with 0.1–0.5 ng/µl riboprobes. For WISH, we use anti-digoxigenin-AP, 1:4000 (Roche Applied Science). Signal was developed using nitro blue tetrazolium/5-bromo-4-chloro-3-indolyl phosphate substrate (1:50; Roche Applied Science). For double staining, sequential FISH was performed. For the first round of FISH, anti-digoxigenin-peroxidase antibody (1:500; 11207733910, Roche Applied Science) was used first. Signals were developed with CY3-tyramide and inactivated by adding 4% paraformaldehyde for 60 min. After a >2-h wash, samples were incubated with anti-fluorescein-peroxidase antibody (1:500; 11426346910, Roche Applied Science) overnight. Signals were developed with FITC-tyramide. Within a given experiment, all samples were developed in the fluorescent substrate for the same length of time and imaged using identical exposure conditions. All sections were performed after WISH or FISH. Frozen sections were performed as described previously (56). The sections were placed on charged slides (Premiere, Shanghai, China) and mounted with Mowiol mounting medium before imaging. Antibodies against HP1-1, SMEDWI-1, and SMEDWI-2 were described previously (41). Secondary antibodies were Alexa Fluor 488 and 555 obtained from Molecular Probes, Inc. (Invitrogen). IF was performed after FISH development was finished as reported previously with modifications (68). Samples that underwent FISH were blocked in PBSTx containing 0.25% IgG-free BSA.

Please note that the JBC is not responsible for the long-term archiving and maintenance of this site or any other third party hosted site.

Figure 7. Interaction between human PIWIL1 and human DNAJA1. A, schematic presentation of human PIWIL1 and its truncated variants used for assaying interaction with human DNAJA1. B, human HDJ2 interacts with full-length PIWIL1. Human DNAJA1 homologue HDJ2 and PIWI homologue PIWIL1 were overexpressed in 293T cells, and co-immunoprecipitation using anti-PIWIL1 antibody (ab12337, Abcam) and anti-HDJ2 antibody (ab126774, Abcam) showed that HDJ2 interacts with full-length PIWIL1. C, co-IP experiments visualized by anti-FLAG and anti-HA antibodies revealed that human HDJ2 interacts with N-terminal PIWIL1. D, human HDJ2 does not interact with N-terminal PIWIL1. E, human HDJ2 does not interact with C-terminal PIWIL1. F, Western blot analysis of HDJ2, PIWIL1, and β-ACTIN in AGS cells transfected with negative control (NC) or siRNAs targeting HDJ2. Human testis sample was used to indicate the PIWIL1-negative band.
DNAJA1 stabilizes PIWI proteins for regeneration

(Sigma-Aldrich) and incubated with primary antibodies overnight at 4 °C. After extensive washing with PBS-Tx, samples were incubated with Alexa Fluor 488 – or Alexa Fluor 555–conjugated secondary antibody and mounted using Mowiol mounting medium.

Image acquisition, processing, and quantification

Live animals and WISH samples mounted with Mowiol mounting medium were photographed using a SteREO Discovery.V20 microscope (Carl Zeiss, Jena, Germany) equipped with a Plan Apochromat ×1.0 objective and a digital microscope camera (AxioCamHRc, Carl Zeiss) automated by AxioVision Rel.4.8 software (Carl Zeiss). FISH specimens were mounted with fluorescence mounting medium (Dako, Glostrup, Denmark) or Mowiol mounting medium, and images were captured with a laser-scanning confocal microscope (True Confocal Scanner SP5; Leica; HCX Plan Apochromat confocal scanning ×10/0.4 NA, ×20/0.7 NA, or ×40/0.85 NA objective lens) by LAS AF software (Leica). Images were processed with LAS AF Lite software. All in situ hybridization experiments were performed, imaged, and processed identically (at room temperature, 22 °C) to allow direct comparison between experimental animals and controls.

RNA extraction, qPCR, and gene expression profiling

qPCR was performed as described previously (56), and at least six worms were collected for each biological replicate, and for each experiment, at least three biological replicates were performed. In brief, total RNA was isolated using TRIzol (Invitrogen). CDNA was generated from 500 ng of total RNA with the FastQuant RT Kit with gDNAse (Tiangen, Beijing, China). Gene-specific primers were designed with Oligo Perfect designer (Invitrogen). qPCR was performed with an Ace Q qPCR SYBR Green Master Mix kit (Vazyme, Nanjing, China). At least three biological replicates were performed, and each experiment was performed with triplicate or quadruplicate PCRs. Data are expressed using the comparative cycle threshold method. Relative expression levels were normalized to the levels of gapdh (AY068133) mRNA and plotted with SigmaPlot 11.0 (Systat Software, Inc., San Jose, CA). Gene arrays applied the Agilent Custom array described previously (41). The same array results of SMEDWI-2 (RNAi) with corresponding controls were used in this project.

Small RNA analyses

Small RNAs were first selected using a length cutoff ranging from 20 to 35 bp. Further, reads were mapped onto the S. mediterranea genome (SmedSxl Genome Assembly version 4.0 downloaded from SmedGD) using Bowtie1 (version 1.2.1.1) (69). We allowed one mismatch during mapping throughout the analyses (parameters “Bowtie -k 1 -v 1 -S -p 10 –no- unal –phred33quals –a sample.Gmapped.read.fq SmedSxl genome_v4.0.fa sample.20to35.fq > sample.bowtie.sam”). Only reads mapped to the genome were retained for downstream analyses. Genome-mapped small RNAs were classified by first identifying rRNAs and then tRNAs and miRNAs, and the remaining were defined as putative piRNAs. Two sets of planarian rRNA reference sequences were obtained; one set consists of the noncoding RNA sequences downloaded from RNAcentral (70) (release 7), and the other is a de novo rRNA prediction analyzed with RNaamer (71) version 1.2 (with hmer version 2.2g) and default settings. Reads mapped to the reference rRNA sequences allowing one mismatch were classified as rRNAs, and the remaining were mapped to planarian tRNAs with Bowtie1. For tRNA identification in planarians, we performed de novo tRNA prediction with tRNAscan (version 1.4) (72) and default settings. tRNA introns where removed. Only tRNA sequences ranging from 50 to 100 nt in length, with no more than 5% Ns considered. Known miRNAs were identified by mapping to the known planarian miRNAs from miRBase (73) (including both precursors and mature miRNAs) using Bowtie1. Another de novo set of miRNAs was identified by running ShortStack (74) with default settings (parameters “ShortStack version 3.8.3 -bowtie_cores 3 -mismatches 1 –sort_mem 8G -readfile sample.fastq.gz –genomefile SmedSxl_genome_v4.0.fa”). Samples were normalized using the total number of miRNAs in the size range of 21–23 bp. To identify transposable element (TE)-associated piRNAs, the putative piRNAs were first filtered with a size cutoff of 30–35 bp. Then these piRNAs were mapped to the TE consensus sequences downloaded from RepBase (75) (http://www.girinst.org/repbase/update/browe.php), allowing up to three mismatches (–v 3). TE-derived piRNAs were sense-derived (samtools (76) view –F 16), whereas TE-targeting piRNAs were mapped to the antisense strands of TE consensus sequences (samtools view –F 16).

Cell culture, gene overexpression, and siRNA

The human cell line HEK293T and AGS were purchased from ATCC (Manassas, VA). HEK293T were cultured in Dulbecco’s modified Eagle’s medium (Life Technologies, Inc.) supplemented with 10% FBS in a 5% CO2 humidified atmosphere at 37 °C. The gastric cancer cell line AGS was cultured in RPMI 1640 medium (Life Technologies) supplemented with 10% fetal bovine serum in a 5% CO2 humidified atmosphere at 37 °C.

To overexpress genes, SMEDWI-2, DNAJA1, HDJ2, PIWIL1-FL, PIWIL1-NT, and PIWIL1-CT cDNA sequences were cloned into the pCDNA3.1 plasmids with either FLAG tag or HA tag and were transfected with Lipofectamine 2000 (Invitrogen). The siRNA sequences for HDJ2 are as follows: sequence-1136, 5’-CGCCUAUAUCGGAUUAUATT-3’; sequence-1270, 5’-GGUGGACUUUGAUGCAATT-3’; sequence-995, 5’-GGCGUUCAGAAGCAGAUAATT-3’; sequence-721, 5’-UUUCGCAAAGCUGUCAGGTT-3’.

Protein collection, immunoprecipitation, and Western blotting

60 μl of radioimmune precipitation assay lysis buffer (Solarbio, Beijing, China) were used per worm, and at least six worms were lysed for one experiment. At least three independent experiments were performed. A full 10-cm plate of HEK293T cells or AGS cells was collected for each immunoprecipitation or Western blotting experiment. The worms/cells were lysed on ice for 30 min, and the lysis was centrifuged at 14,000 rpm for 15 min. The supernatant was collected and mixed with 2× SDS-loading buffer and was subjected to Western blot analysis. Immunoprecipitation was performed as reported (77). Briefly, cells were lysed in 1 ml of lysis buffer (20 mM Hepes (pH 7.4), 9884 J. Biol. Chem. (2019) 294(25) 9873–9887
CrossRef Medline

Briefly, for each experiment, 10 planarians were cut with a razor blade on ice-cold dishes and digested in CMFB (400 mg/liter NaH₂PO₄, 800 mg/liter NaCl, 1200 mg/liter KCl, 800 mg/liter NaHCO₃, 240 mg/liter glucose, 1% BSA, 15 mM HEPES, pH 7.3) supplemented with 1 mg/ml collagenase (V900893, Vetc) for 45 min at room temperature. Cell suspensions were filtered with a 35-μm cell strainer cap (BD Biosciences) and stained with Hoechst 33342 (Life Technologies) and propidium iodide (Life Technologies) and filtered again. Cells were analyzed with MoFlo Astrios (Beckman-Coulter).

Flow cytometry

Flow cytometry was performed as described previously (78). Briefly, for each experiment, 10 planarians were cut with a razor blade on ice-cold dishes and digested in CMFB (400 mg/liter NaH₂PO₄, 800 mg/liter NaCl, 1200 mg/liter KCl, 800 mg/liter NaHCO₃, 240 mg/liter glucose, 1% BSA, 15 mM HEPES, pH 7.3) supplemented with 1 mg/ml collagenase (V900893, Vetc) for 45 min at room temperature. Cell suspensions were filtered with a 35-μm cell strainer cap (BD Biosciences) and stained with Hoechst 33342 (Life Technologies) and propidium iodide (Life Technologies) and filtered again. Cells were analyzed with MoFlo Astrios (Beckman-Coulter).

Statistical analysis

Results are presented as means ± S.D., and statistical analyses were performed in SigmaPlot version 11.0 using Student’s t test for two groups. p < 0.05 was considered significant.

Author contributions—C. W., A. Z., Z. Y., H. L., and Q. J. conceptualization; C. W., Z.-Z. Y., F.-H. G., S. S., and X.-S. H. data curation; C. W., F.-H. G., X.-S. H., and Q. J. writing-original draft; F.-H. G. and X.-S. H. validation; A. Z., H. L., and Q. J. writing-review; H. L. and Q. J. resources; Q. J. and H. L. funding acquisition; Q. J. project administration.

Acknowledgments—We thank Drs. P. Newmark, P. Reddien (Whitehead Institute), and N. Oviedo for kindly providing worms. We thank Dr. David Rosenkranz (Mainz University) for providing the planarian reference sequences for tRNA and rRNAs. We thank Drs. Sanhong Liu and Xi Chen for critical reading of the manuscript. We thank all Jing and Lin laboratory members for comments and the staff of the core facility of the Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, and Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, for assistance.

References

1. Cox, D. N., Chao, A., Baker, J., Chang, L., Qiao, D., and Lin, H. (1998) A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. Genes Dev. 12, 3715–3727 CrossRef Medline

2. Juliano, C., Wang, J., and Lin, H. (2011) Unitsing germline and stem cells: the function of Piwi proteins and the piRNA pathway in diverse organisms. Annu. Rev. Genet. 45, 447–469 CrossRef Medline

3. Cox, D. N., Chao, A., and Lin, H. (2000) piwi encodes a nucleoplasmonic factor whose activity modulates the number and division rate of germline stem cells. Development 127, 503–514 CrossRef Medline

4. Harris, A. N., and Macdonald, P. M. (2001) Aubergine encodes a Drosophila polaron granule component for piRNA cell formation and related to eIF2C. Development 128, 2823–2832 CrossRef Medline

5. Carmell, M. A., Girard, A., van de Kant, H. J., Bourchis, D., Bestor, T. H., de Rooij, D. G., and Hannon, G. J. (2007) Miwi2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev. Cell 12, 503–514 CrossRef Medline

6. Houwing, S., Kammainga, L. M., Berezikov, E., Cronembold, D., Girard, A., van den Elst, H., Filippov, D. V., Blaser, H., Raz, E., Moens, C. B., Plasterk, R. H., Hannon, G. J., Draper, B. W., and Ketting, R. F. (2007) A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in Zebrafish. Cell 129, 69–82 CrossRef Medline

7. Wang, G., and Reinke, V. (2008) A C. elegans Piwi, PRG-1, regulates 21URNAs during spermatogenesis. Curr. Biol. 18, 861–867 CrossRef Medline

8. Li, C., Vagin, V. V., Lee, S., Xu, J., Ma, S., Xi, H., Seitz, H., Horwich, M. D., Syrzycka, M., Honda, B. M., Klettler, E. L., Zapp, M. L., Klattemhoff, C., Schulz, N., Theurkauf, W. E., et al. (2009) Collapse of germline piRNAs in the absence of Argonaute3 reveals somatic piRNAs in flies. Cell 137, 509–521 CrossRef Medline

9. Kim, T. H., Yun, T. W., Rengaraj, D., Lee, S. I., Lim, S. M., Seo, H. W., Park, T. S., and Han, J. Y. (2012) Conserved functional characteristics of the Piwi family members in chicken germ cell lineage. Theriogenology 78, 1948–1959 CrossRef Medline

10. Brennecke, J., Aravin, A. A., Stark, A., Dus, M., Kellis, M., Sachidanandam, R., and Hannon, G. J. (2007) Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128, 1089–1103 CrossRef Medline

11. Reddien, P. W., Oviedo, N. J., Jennings, J. R., Jenkin, J. C., and Sánchez Alvarado, A. (2005) SMEDWI-2 is a Piwi-like protein that regulates planarian stem cells. Science 310, 1327–1330 CrossRef Medline

12. Palakodeti, D., Smielewksa, M., Lu, Y. C., Yeo, G. W., and Graveley, B. R. (2008) The Piwi proteins SMEDWI-2 and SMEDWI-3 are required for stem cell function and piRNA expression in planarians. RNA 14, 1174–1186 CrossRef Medline

13. Denker, E., Manuel, M., Leclère, L., Le Guayder, H., and Rabet, N. (2008) Ordered progression of nematogenesis from stem cells through differentiation stages in the tentacle bulb of Cyltia hemisphaerica (Hydrozoa, Cnidaria). Dev. Biol. 315, 99–113 CrossRef Medline

14. De Mulder, K., Pfister, D., Kuales, G., Egger, B., Salvenmoser, W., Willems, M., Steger, J., Fauster, K., Micura, R., and Ladurner, P. (2009) Stem cells are differentially regulated during development, regeneration and homeostasis in flatworms. Dev. Biol. 334, 198–212 CrossRef Medline

15. Funaya, N., Nakatsukasa, M., Mohri, K., Masuda, Y., and Agata, K. (2010) Piwi expression in archeocytes and choanoocytes in demosponges: insights into the stem cell system in demosponges. Evol. Dev. 12, 275–287 CrossRef Medline

16. Rinkevich, Y., Rosner, A., Rabinowitz, C., Lapidot, Z., and Agata, V. (2010) Piwi positive cells that line the vasculature epithe-
nism for repeat-associated siRNA 5’ end formation in Drosophila. Science 315, 1587–1590
CrossRef Medline

19. Aravin, A. A., Sachidanandam, R., Bourc’his, D., Schaeffer, C., Pesciz, D., Toth, K. F., Bestor, T., and Hannon, G. J. (2008) A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. Mol. Cell 31, 785–799 CrossRef Medline

20. Brower-Toland, B., Findley, S. D., Jiang, L., Liu, L., Yin, H., Dus, M., Zhou, P., Elgin, S. C., and Lin, H. (2007) Drosophila PIWI associates with chromatin and interacts directly with HP1α. Genes Dev. 21, 2300–2311 CrossRef Medline

21. Pal-Bhadra, M., Leibovitch, B. A., Gandhi, S. G., Chikka, M. R., Rao, M., Bhadra, U., Birchler, J. A., and Elgin, S. C. (2004) Heterochromatic silencing and HP1 localization in Drosophila are dependent on the RNAi machinery. Science 303, 669–672 CrossRef Medline

22. Tan, Y., Liu, L., Liao, M., Zhang, C., Hu, S., Zou, M., Gu, M., and Li, X. (2015) Emerging roles for PIWI proteins in cancer. Acta Biochim. Biophys. Sin. 47, 315–324 CrossRef Medline

23. Wang, Z., Liu, N., Shi, S., Liu, S., and Lin, H. (2016) The role of PIWI-like 4, an Argonaute family protein, in breast cancer. J. Biol. Chem. 291, 10646–10658 CrossRef Medline

24. Zeng, A., Li, H., Gao, X., McKinsey, S., Wang, Y., Yu, Z., Park, J., Semerad, C., Ross, E., Cheng, L. C., Davies, E., Lei, K., Wang, Z., Perera, A., et al. (2018) Prospectively isolated tetratraspin (+) neoblasts are adult pluripotent stem cells underlying planaria regeneration. Cell 173, 1593–1608.e20 CrossRef Medline

25. Newmark, P. A., Wang, Y., and Chong, T. (2008) Germ cell specification and regeneration in planarians. Cold Spring Harb. Symp. Quant. Biol. 73, 573–581 CrossRef Medline

26. Sánchez Alvarado, A. (2003) The freshwater planarian Schmidtea mediterranea: embryogenesis, stem cells and regeneration. Curr. Opin. Genet. Dev. 13, 438–444 CrossRef Medline

27. Iyer, H., Collins J. J., 3rd, Newmark, P. A. (2016). NF-YB regulates spermatogonial stem cell self-renewal and proliferation in the planarian Schmidtea mediterranea. PLoS Genet. 12, e1006109 CrossRef Medline

28. Shibata, N., Rouhana, L., and Agata, K. (2010) Cellular and molecular dissociation of pluripotent adult somatic stem cells in planarians. Dev. Growth Differ. 52, 27–41 CrossRef Medline

29. Nakagawa, H., Ishizu, H., Hasegawa, R., Kobayashi, K., and Matsumoto, M. (2012) Drpiwi-1 is essential for germ cell formation during sexualization of the planarian Dugesia ryukyuensis. Dev. Biol. 361, 167–176 CrossRef Medline

30. Rossi, L., Salvetti, A., Leno, A., Batistoni, R., Deri, P., Pugliesi, C., Loretto, E., and Gremigni, V. (2006) Djpiwi-1, a member of the PAZ-Piwi gene family, defines a subpopulation of planarian stem cells. Dev. Genes Evol. 216, 335–346 CrossRef Medline

31. Reuter, M., Chuma, S., Tanaka, T., Franz, T., Stark, A., and Pillai, R. S. (2009) Loss of the Mili-interacting Tudor domain-containing protein-1 activates transposons and alters the Mili-associated small RNA profile. Nature Cell Biol. 11, 579–592 CrossRef Medline

32. Terada, K., Nomiyama, K., Imai, T., Kiyonari, H., Takeda, N., Kadomatsu, T., Yano, M., Aizawa, S., and Mori, M. (2005) A type I DnaJ homolog, DJA1, regulates androgen receptor signaling and spermato genesis. EMBO J. 24, 611–622 CrossRef Medline

33. Van Hoof, D., Passier, R., Ward-Van Oostwaard, D., Pinkse, M. W., Heck, A. J., Mummery, C. L., and Krijgsveld, J. (2006) A quest for human and Drosophila homologs of Drosophila DNAJ-1. Acta Biochim. Biophys. Sin. 38, 611–619 CrossRef Medline

34. Watson, E. D., Mattar, P., Schuurmans, C., and Cross, J. C. (2009) Neural stem cell self-renewal requires the Mrj co-chaperone. Dev. Dyn. 238, 2564–2574 CrossRef Medline

35. Fernández-Taboada, E., Rodríguez-Esteban, G., Saló, E., and Abril, J. F. (2011) A proteomics approach to decipher the molecular nature of planarian stem cells. BMC Genomics 12, 133 CrossRef Medline

36. Dekker, S. L., Passier, R., Ward-Van Oostwaard, D., Pinkse, M. W., Heck, A. J., Mummery, C. L., and Krijgsveld, J. (2006) A quest for human and mouse embryonic stem cell-specific proteins. Mol. Cell. Proteomics 5, 1261–1273 CrossRef Medline

37. Watson, E. D., Mattar, P., Schuurmans, C., and Cross, J. C. (2009) Neural stem cell self-renewal requires the Mrj co-chaperone. Dev. Dyn. 238, 2564–2574 CrossRef Medline

38. Parrales, A., Ranjan, A., Iyer, S. V., Padhye, S., Weir, S. J., Roy, A., and Iwakuma, T. (2016) DNAJA1 controls the fate of misfolded mutant p53 through the mevalonate pathway. Nat. Cell Biol. 18, 1233–1243 CrossRef Medline

39. Pal-Bhadra, M., Leibovitch, B. A., Gandhi, S. G., Chikka, M. R., Rao, M., Bhadra, U., Birchler, J. A., and Elgin, S. C. (2004) Heterochromatic silencing and HP1 localization in Drosophila are dependent on the RNAi machinery. Science 303, 669–672 CrossRef Medline

40. Pal-Bhadra, M., Leibovitch, B. A., Gandhi, S. G., Chikka, M. R., Rao, M., Bhadra, U., Birchler, J. A., and Elgin, S. C. (2004) Heterochromatic silencing and HP1 localization in Drosophila are dependent on the RNAi machinery. Science 303, 669–672 CrossRef Medline

41. Dioszegi, G., and Necsuti, A. (2009) Heterochromatic silencing and HP1 localization in Drosophila are dependent on the RNAi machinery. Science 303, 669–672 CrossRef Medline

42. Pal-Bhadra, M., Leibovitch, B. A., Gandhi, S. G., Chikka, M. R., Rao, M., Bhadra, U., Birchler, J. A., and Elgin, S. C. (2004) Heterochromatic silencing and HP1 localization in Drosophila are dependent on the RNAi machinery. Science 303, 669–672 CrossRef Medline
DNAJA1 stabilizes PIWI proteins for regeneration

66. Pearson, B. J., Eisenhoffer, G. T., Gurley, K. A., Rink, J. C., Miller, D. E., and Sánchez Alvarado, A. (2009) Formaldehyde-based whole-mount in situ hybridization method for planarians. Dev. Dyn. 238, 443–450 CrossRef Medline

67. King, R. S., and Newmark, P. A. (2013) In situ hybridization protocol for enhanced detection of gene expression in the planarian Schmidtea mediterranea. BMC Dev. Biol. 13, 8 CrossRef Medline

68. Guo, T., Peters, A. H., and Newmark, P. A. (2006) A buno-like gene is required for stem cell maintenance in planarians. Dev. Cell 11, 159–169 CrossRef Medline

69. Langmead, B., Trapnell, C., Pop, M., and Salzberg, S. L. (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 CrossRef Medline

70. The RNAcentral Consortium, Petrov, A. I., Kay, S. J. E., Kalvari, I., Howe, K. L., Gray, K. A., Bruford, E. A., Kersey, P. J., Cochrane, G., Finn, R. D., Bateman, A., Kozomara, A., Griffiths-Jones, S., Frankish, A., Zwieb, C. W., et al. (2017) RNAcentral: a comprehensive database of non-coding RNA sequences. Nucleic Acids Res. 45, D128–D134 CrossRef Medline

71. Lagesen, K., Hallin, P., Redland, E. A., Staerfeldt, H. H., Rognes, T., and Ussery, D. W. (2007) RNAmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 35, 3100–3108 CrossRef Medline

72. Lowe, T. M., and Eddy, S. R. (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955–966 CrossRef Medline

73. Kozomara, A., and Griffiths-Jones, S. (2014) miRBase: annotating high confidence microRNA using deep sequencing data. Nucleic Acids Res. 42, D68–D73 CrossRef Medline

74. Axtell, M. J. (2013) ShortStack: comprehensive annotation and quantification of small RNA genes. RNA 19, 740–751 CrossRef Medline

75. Bao, W., Kojima, K. K., and Kohany, O. (2015) Repbase Update, a database of repetitive elements in eukaryotic genomes. Mobile DNA 6, 11 CrossRef Medline

76. Liu, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R., and 1000 Genome Project Data Processing Subgroup (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 CrossRef Medline

77. Chen, X., Cao, X., Sun, X., Lei, R., Chen, P., Zhao, Y., Jiang, Y., Yin, J., Chen, R., Ye, D., Wang, Q., Liu, Z., Liu, S., Cheng, C., Mao, J., et al. (2016) Bcl-3 regulates TGFβ signaling by stabilizing Smad3 during breast cancer pulmonary metastasis. Cell Death Dis. 7, e2508 CrossRef Medline

78. van Wolfswinkel, J. C., Wagner, D. E., and Reddien, P. W. (2014) Single-cell analysis reveals functionally distinct classes within the planarian stem cell compartment. Cell Stem Cell 15, 326–339 CrossRef Medline

rappyrrole-based body pigmentation in planarian. Cell Discov. 2, 16029 CrossRef Medline

57. Wagner, D. E., Ho, J. J., and Reddien, P. W. (2012) Genetic regulators of a pluripotent adult stem cell system in planarians identified by RNAi and clonal analysis. Cell Stem Cell 10, 299–311 CrossRef Medline

58. Shibata, N., Umesono, Y., Orii, H., Sakurai, T., Watanabe, K., and Agata, K. (1999) Expression of vasa(vas)-related genes in germline cells and totipotent somatic stem cells of planarians. Dev. Biol. 206, 73–87 CrossRef Medline

59. Rouhana, L., Vieira, A. P., Roberts-Galbraith, R. H., and Newmark, P. A. (2012) PRMT5 and the role of symmetrical dimethylarginine in chroma
toid bodies of planarian stem cells. Development 139, 1083–1094 CrossRef Medline

60. Solana, J., Lasko, P., and Romero, R. (2009) Spoltud-1 is a chromatoid body component required for planarian long-term stem cell self-renewal. Dev. Biol. 328, 410–421 CrossRef Medline

61. Rajasethupathy, P., Antonov, I., Sheridan, R., Frey, S., Sander, C., Tuschi
t., and Kandel, E. R. (2012) A role for neuronal piRNAs in the epigenetic control of memory-related synaptic plasticity. Cell 149, 693–707 CrossRef Medline

62. Kakkar, V., Prins, L. C., and Kampinga, H. H. (2012) DNAJ proteins and protein aggregation diseases. Curr. Topics Med. Chem. 12, 2479–2490 CrossRef Medline

63. Labbé, R. M., Irimia, M., Currie, K. W., Lin, A., Zhu, S. J., Brown, D. D., Ross, E. J., Voisin, V., Bader, G. D., Blencowe, B. J., Pearson, B. J. (2012) A comparative transcriptomic analysis reveals conserved features of stem cell pluripotency in planarians and mammals. Stem cells 30, 1734–1745 CrossRef Medline

64. Newmark, P. A., and Sánchez Alvarado, A. (2000) Bromodeoxyuridine specifically labels the regenerative stem cells of planarians. Dev. Biol. 230, 142–153 CrossRef Medline

65. Sánchez Alvarado, A., and Newmark, P. A. (1999) Double-stranded RNA specifically disrupts gene expression during planarian regeneration. Proc. Natl. Acad. Sci. U.S.A. 96, 5049–5054 CrossRef Medline

66. Pearson, B. J., Eisenhoffer, G. T., Gurley, K. A., Rink, J. C., Miller, D. E., and Sánchez Alvarado, A. (2009) Formaldehyde-based whole-mount in situ hybridization method for planarians. Dev. Dyn. 238, 443–450 CrossRef Medline

67. King, R. S., and Newmark, P. A. (2013) In situ hybridization protocol for enhanced detection of gene expression in the planarian Schmidtea mediterranea. BMC Dev. Biol. 13, 8 CrossRef Medline

68. Guo, T., Peters, A. H., and Newmark, P. A. (2006) A buno-like gene is required for stem cell maintenance in planarians. Dev. Cell 11, 159–169 CrossRef Medline

69. Langmead, B., Trapnell, C., Pop, M., and Salzberg, S. L. (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 CrossRef Medline

70. The RNAcentral Consortium, Petrov, A. I., Kay, S. J. E., Kalvari, I., Howe, K. L., Gray, K. A., Bruford, E. A., Kersey, P. J., Cochrane, G., Finn, R. D., Bateman, A., Kozomara, A., Griffiths-Jones, S., Frankish, A., Zwieb, C. W., et al. (2017) RNAcentral: a comprehensive database of non-coding RNA sequences. Nucleic Acids Res. 45, D128–D134 CrossRef Medline

71. Lagesen, K., Hallin, P., Redland, E. A., Staerfeldt, H. H., Rognes, T., and Ussery, D. W. (2007) RNAmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 35, 3100–3108 CrossRef Medline

72. Lowe, T. M., and Eddy, S. R. (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955–966 CrossRef Medline

73. Kozomara, A., and Griffiths-Jones, S. (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 42, D68–D73 CrossRef Medline

74. Axtell, M. J. (2013) ShortStack: comprehensive annotation and quantification of small RNA genes. RNA 19, 740–751 CrossRef Medline

75. Bao, W., Kojima, K. K., and Kohany, O. (2015) Repbase Update, a database of repetitive elements in eukaryotic genomes. Mobile DNA 6, 11 CrossRef Medline

76. Liu, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R., and 1000 Genome Project Data Processing Subgroup (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 CrossRef Medline

77. Chen, X., Cao, X., Sun, X., Lei, R., Chen, P., Zhao, Y., Jiang, Y., Yin, J., Chen, R., Ye, D., Wang, Q., Liu, Z., Liu, S., Cheng, C., Mao, J., et al. (2016) Bcl-3 regulates TGFβ signaling by stabilizing Smad3 during breast cancer pulmo
ary metastasis. Cell Death Dis. 7, e2508 CrossRef Medline

78. van Wolfswinkel, J. C., Wagner, D. E., and Reddien, P. W. (2014) Single-cell analysis reveals functionally distinct classes within the planarian stem cell compartment. Cell Stem Cell 15, 326–339 CrossRef Medline