Supporting Information

Synthesis of poly-functionalized benzofurans via one-pot domino oxidation/[3+2] cyclization reactions of a hydroquinone ester and ynamides

Dongxin Zhang*, Jingjing Man, Yan Chen, Lei Yin, Junchao Zhong and Qian-Feng Zhang*

Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, No. 59 Hudong Road, Ma’anshan 243002, China.
E-mail: dxzhang@ahut.edu.cn, zhangqf@ahut.edu.cn

1. General --- S2
2. Preparation of ynamides -- S2
3. Procedure for the oxidation of hydroquinone ester 5------------------ S3
4. Procedures for the one-pot domino oxidation/[3+2] cyclization--------- S3
5. References --- S7
6. NMR spectra --- S8
1. General

1H NMR and 13C NMR were recorded on a Bruker-400 MHz spectrometer. Proton chemical shifts are reported in ppm downfield from tetramethylsilane or from the residual solvent as internal standard in CDCl$_3$ (δ 7.26 ppm). Carbon chemical shifts were internally referenced to the deuterated solvent signals in CDCl$_3$ (δ 77.0 ppm). High-resolution mass spectra were recorded on a Thermo Scientific LTQ Orbitrap ESI ion trap mass spectrometer. Reagents obtained from commercial sources are used without further purification and all solvents were purified and dried according to standard methods prior to use, unless stated otherwise.

2. Preparation of ynamides

General procedure for the preparation of ynamides 1. Based on the literature procedures,1,2 amide (3.0-4.0 mmol), CuCl$_2$ (26.9 mg, 0.20 mmol), and Na$_2$CO$_3$ (212.0 mg, 2.0 mmol) were combined in a 50 mL three-neck round-bottom flask. The flask was purged with O$_2$ for 10 min and connected with a balloon filled with O$_2$. A solution of pyridine (160.0 μL, 2.0 mmol) in 8.0 mL dry toluene was added to the reaction flask via a syringe and the flask was heated to 70 °C. A solution of alkyne (1.0 mmol) in 5.0 mL dry toluene was added to the flask slowly over a period of 3-4 h. After complete addition of the alkyne, the reaction mixture was allowed to stir at 70 °C for another 10 h. After cooling to room temperature, the crude mixture was filtered through a pad of Celite, concentrated by rotary evaporation, and purified by flash chromatography to provide the desired product, which was later stored in the freezer.

Procedure for a 6 mmol-scale reaction for the synthesis of 1h. Methyl indole-3-carboxylate (3.15 g, 18.0 mmol), CuCl$_2$ (161.4 mg, 1.2 mmol), and Na$_2$CO$_3$ (1.27 g, 12.0 mmol) were combined in a 250 mL three-neck round-bottom flask. The flask was purged with O$_2$ for 10 min and connected with a balloon filled with O$_2$. A solution of pyridine (966.7 μL, 12.0 mmol) in 45.0 mL dry toluene was added to the reaction flask via a syringe and the flask was heated to 70 °C. A solution of 1-heptyne (577.1 mg, 6.0 mmol) in 30.0 mL dry toluene was added to the flask slowly over a period of 4 h. After complete addition of the alkyne, the reaction mixture was allowed to stir at 70 °C for another 20 h. After cooling to room temperature, the crude mixture was filtered through a pad of Celite, concentrated by rotary evaporation, and purified by flash chromatography to provide 1h (1.10 g, 68%).

Ynamides 1a,1 1b,1 1c,2 1d,1 1e,1 and 1g1 are known compounds and characterizations are the same as reported.

1-(Hept-1-yn-1-yl)azetidin-2-one (1f)

![1f](synthesis of 1f)

Synthesized by the general procedure; 138.7 mg (84%).

Yellow oil. 1H NMR (400 MHz, CDCl3): δ = 0.87 (t, J = 6.8 Hz, 3H, CH$_3$), 1.23-1.36 (m, 4H, CH$_2$×2), 1.45-1.52 (m, 2H, CH$_2$), 2.25 (t, J = 7.2Hz, 2H, CH$_2$), 2.97 (t, J = 4.7 Hz, 2H, CH$_2$), 3.55 (t, J = 4.8 Hz, 2H, CH$_2$) ppm; 13C NMR (100 MHz, CDCl3): δ = 13.9, 18.3, 22.1, 28.4,
30.9, 37.4, 42.8, 69.9, 70.2, 167.2 ppm. HRMS (ESI): calcd. for C_{16}H_{16}NO ([M + H]^+) 166.1226, found 166.1228.

Methyl 1-(hept-1-yn-1-yl)-1H-indole-3-carboxylate (1h)

![Methyl 1-(hept-1-yn-1-yl)-1H-indole-3-carboxylate](image)

Synthesized by the general procedure; 177.7 mg (66%). Colorless solid. 1H NMR (400 MHz, CDCl3): $\delta = 0.95$ (t, $J = 7.1$ Hz, 3H, CH$_3$), 1.34-1.51 (m, 4H, CH$_2 \times 2$), 1.62-1.68 (m, 2H, CH$_2$), 2.47 (t, $J = 7.0$ Hz, 2H, CH$_2$), 3.92 (s, 3H, CH$_3$), 7.31-7.39 (m, 2H, ArH), 7.55 (d, $J = 8.0$ Hz, 1H, ArH), 7.89 (s, 1H, ArH), 8.16 (d, $J = 7.4$Hz, 1H, ArH) ppm; 13C NMR (100 MHz, CDCl3): $\delta = 14.0$, 18.3, 22.2, 28.4, 31.0, 51.3, 70.5, 71.8, 109.8, 111.4, 121.7, 123.3, 124.1, 125.1, 135.2, 138.5, 164.5 ppm. HRMS (ESI): calcd. for C$_{17}$H$_{20}$NO$_2$ ([M + H]^+) 270.1489, found 270.1490.

3. **Procedure for the oxidation of hydroquinone ester 5**

According to literature procedure3, silver oxide (2.09 g, 9.0 mmol) and magnesium sulfate (1.08 g, 9.0 mmol) were added to a solution of methyl 2,5-dihydroxybenzoate (5) (504.5 mg, 3.0 mmol) in diethyl ether (50 mL). The reaction mixture was stirred at 25 °C for 3 h. After filtration through a pad of Celite, the filtrate was concentrated in vacuo and purified by flash chromatography to furnish the desired quinone ester 2b. Characterizations are the same as reported.

Oxidation using O$_2$ as the oxidant. Hydroquinone ester 5 (20.2 mg, 0.12 mmol), MgSO$_4$ (28.9 mg, 0.24 mmol) were mixed in CH$_2$Cl$_2$ (2.0 mL) under oxygen atmosphere (use of O$_2$ balloon). The reaction was stirred at room temperature (25 °C) for 8 h. TLC indicated that only small amount of 5 was oxidized, which indicated that O$_2$ is not a good oxidant for the oxidation of 5.

4. **Procedures for the one-pot domino oxidation/[3+2] cyclization**

General procedure for the one-pot domino oxidation/[3+2] cyclization. Hydroquinone ester 5 (20.2 mg, 0.12 mmol), Ag$_2$O (55.6 mg, 0.24 mmol) and MgSO$_4$ (28.9 mg, 0.24 mmol) were mixed in CH$_2$Cl$_2$ (2.0 mL) and stirred at room temperature (25 °C) for 2 h. Then, ynamide 1 (0.1 mmol) and Sc(OTf)$_3$ (1.0 mg, 0.002 mmol) were added to the above mixture. All the reactions finished with 5 min. The crude reaction mixture was filtered through a pad of Celite, concentrated by rotary evaporation, and purified by flash chromatography to provide the desired product 3.

Procedure for a large scale one-pot reaction. Hydroquinone ester 5 (1.23 g, 4.90 mmol), Ag$_2$O (3.41 g, 14.7 mmol) and MgSO$_4$ (1.77 g, 14.7 mmol) were mixed in CH$_2$Cl$_2$ (60.0 mL) and stirred at room temperature (25 °C) for 4 h. Ynamide 1h (1.10 g, 4.08 mmol) and Sc(OTf)$_3$ (20.2 mg, 0.041 mmol) were added to the above mixture. The reaction was allowed to stir for 30 min. Then, the crude reaction mixture was filtered through a pad of Celite, concentrated by rotary evaporation, and purified by flash chromatography to provide the desired product 3h (1.64 g, 92%).
Methyl 2-((N,4-dimethylphenyl)sulfonamido)-5-hydroxy-3-phenylbenzofuran-4-carboxylate (3a)

Synthesized by the general procedure; 40.9 mg (91%).
Light yellow solid. \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta = 2.45\) (s, 3H, CH\(_3\)), 2.98 (s, 3H, CH\(_3\)), 3.02 (s, 3H, CH\(_3\)), 7.02 (d, \(J = 9.0\) Hz, 1H, ArH), 7.27-7.42 (m, 7H, ArH), 7.53 (d, \(J = 9.0\) Hz, 1H, ArH), 7.61 (d, \(J = 8.3\) Hz, 2H, ArH), 10.8 (s, 1H, OH) ppm; \(^1^3\)C NMR (100 MHz, CDCl\(_3\)): \(\delta = 21.6, 37.7, 51.0, 105.1, 115.7, 118.5, 119.4, 126.0, 127.0, 127.9, 128.2, 129.1, 129.6, 133.9, 135.0, 144.1, 146.0, 148.1, 159.1, 170.0\) ppm; HRMS (ESI): calcd. for C\(_{24}\)H\(_{22}\)NO\(_6\)S ([M + H]\(^+\)) 452.1162, found 452.1163.

Methyl 2-((N,4-dimethylphenyl)sulfonamido)-5-hydroxy-3-(4-methoxyphenyl)benzofuran-4-carboxylate (3b)

Synthesized by the general procedure; 42.3 mg (88%).
Light yellow solid. \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta = 2.46\) (s, 3H, CH\(_3\)), 2.97 (s, 3H, CH\(_3\)), 3.11 (s, 3H, CH\(_3\)), 3.87 (s, 3H, CH\(_3\)), 6.94 (d, \(J = 8.6\) Hz, 2H, ArH), 7.01 (d, \(J = 9.0\) Hz, 1H, ArH), 7.23-7.30 (m, 4H, ArH), 7.50 (d, \(J = 9.0\) Hz, 1H, ArH), 7.64 (d, \(J = 8.2\) Hz, 2H, ArH), 10.71 (s, 1H, OH) ppm; \(^1^3\)C NMR (100 MHz, CDCl\(_3\)): \(\delta = 29.7, 37.7, 51.2, 55.3, 105.2, 113.3, 115.6, 118.4, 119.1, 124.1, 126.2, 128.2, 129.57, 129.58, 130.1, 135.2, 144.1, 146.0, 148.2, 159.1, 170.1\) ppm; HRMS (ESI): calcd. for C\(_{25}\)H\(_{24}\)NO\(_7\)S ([M + H]\(^+\)) 482.1268, found 482.1265.

Methyl 2-((N,4-dimethylphenyl)sulfonamido)-5-hydroxy-3-pentylbenzofuran-4-carboxylate (3c)
Synthesized by the general procedure; 41.8 mg (94%).
Light yellow solid. 1H NMR (400 MHz, CDCl$_3$): $\delta = 0.88$ (t, $J = 6.8$ Hz, 3H, CH$_3$), 1.29-1.46 (m, 6H, CH$_2$×3), 2.46 (s, 3H, CH$_3$), 2.85 (t, $J = 7.6$ Hz, 2H, CH$_2$), 3.16 (s, 3H, CH$_3$), 4.02 (s, 3H, CH$_3$), 6.94 (d, $J = 9.0$ Hz, 1H, ArH), 7.32 (d, $J = 8.0$ Hz, 2H, ArH), 7.36 (d, $J = 9.0$ Hz, 1H, ArH), 7.68 (d, $J = 8.3$ Hz, 1H, ArH), 10.9 (s, 1H, OH) ppm; 13C NMR (100 MHz, CDCl$_3$): $\delta = 14.1, 21.6, 22.6, 25.9, 29.3, 32.1, 37.6, 51.9, 105.4, 115.2, 118.5, 118.6, 125.7, 128.1, 129.6, 134.7, 144.2, 146.1, 147.8, 159.2, 170.7$ ppm; HRMS (ESI): calcd. for C$_{23}$H$_{28}$NO$_6$S ([M + H]$^+$) 446.1632, found 446.1634.

Methyl 2-((N,4-dimethylphenyl)sulfonamido)-5-hydroxy-3-(triisopropylsilyl)benzofuran-4-carboxylate (3d)

Synthesized by the general procedure; 45.4 mg (85%).
Light yellow solid. 1H NMR (400 MHz, CDCl$_3$): $\delta = 1.20$ (br, 18H, CH$_3$×6), 1.61-1.68 (m, 3H, CHx3), 2.48 (s, 3H, CH$_3$), 3.02 (s, 3H, CH$_3$), 3.94 (s, 3H, CH$_3$), 6.93 (d, $J = 9.0$ Hz, 1H, ArH), 7.29 (d, $J = 9.0$ Hz, 1H, ArH), 7.34 (d, $J = 8.2$ Hz, 2H, ArH), 7.71 (d, $J = 8.2$ Hz, 2H, ArH), 9.51 (s, 1H, OH) ppm; 13C NMR (100 MHz, CDCl$_3$): $\delta = 13.5, 20.0, 38.7, 52.8, 109.3, 110.8, 115.2, 116.9, 127.3, 129.2, 129.4, 130.0, 130.7, 133.6, 144.4, 146.8, 156.3, 170.0$ ppm; HRMS (ESI): calcd. for C$_{27}$H$_{38}$NO$_6$Si ([M + H]$^+$) 532.2184, found 532.2189.

Methyl 5-hydroxy-2-(2-oxazetidin-1-yl)-3-phenylbenzofuran-4-carboxylate (3e)

Synthesized by the general procedure; 28.8 mg (85%).
Light yellow solid. 1H NMR (400 MHz, CDCl$_3$): $\delta = 2.99$ (s, 3H, CH$_3$), 3.03 (t, $J = 4.8$ Hz, 2H, CH$_2$), 3.20 (t, $J = 4.7$ Hz, 2H, CH$_2$), 6.91 (d, $J = 9.0$ Hz, 1H, ArH), 7.29-7.31 (m, 2H, ArH), 7.36-7.43 (m, 3H, ArH), 7.59 (d, $J = 8.9$ Hz, 1H, ArH), 10.9 (s, 1H, OH) ppm; 13C
NMR (100 MHz, CDCl₃): δ = 38.0, 41.0, 50.8, 104.4, 108.0, 113.8, 118.2, 126.8, 127.3, 127.7, 130.2, 133.6, 145.1, 145.9, 159.5, 164.1, 170.3 ppm; HRMS (ESI): calcd. for C₁₀H₁₆NO₅ ([M + H]⁺) 338.1023, found 338.1022.

Methyl 5-hydroxy-2-(2-oxazetidin-1-yl)-3-pentylbenzofuran-4-carboxylate (3f)

Synthesized by the general procedure; 30.1 mg (91%).
Light yellow solid. ¹H NMR (400 MHz, CDCl₃): δ = 0.87 (t, J = 6.9 Hz, 3H, CH₃), 1.25-1.45 (m, 6H, CH₂×3), 2.80 (t, J = 7.6 Hz, 2H, CH₂), 3.21 (t, J = 4.7 Hz, 2H, CH₂), 3.81 (t, J = 4.6 Hz, 2H, CH₂), 3.99 (s, 3H, CH₃), 6.89 (d, J = 9.0 Hz, 1H, ArH), 7.45 (d, J = 9.0 Hz, 1H, ArH), 10.9 (s, 1H, OH) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 14.1, 22.6, 25.1, 29.7, 31.9, 37.3, 40.9, 51.8, 105.1, 110.8, 114.1, 118.2, 126.6, 144.6, 145.6, 159.2, 164.5, 170.8 ppm; HRMS (ESI): calcd. for C₁₈H₂₂NO₅ ([M + H]⁺) 332.1492, found 332.1494.

Methyl 1-(5-hydroxy-4-(methoxycarbonyl)-3-phenylbenzofuran-2-yl)-1H-indole-3-carboxylate (3g)

Synthesized by the general procedure; 39.6 mg (90%).
Light yellow solid. ¹H NMR (400 MHz, CDCl₃): δ = 3.05 (s, 3H, CH₃), 3.86 (s, 3H, CH₃), 7.09 (d, J = 9.0 Hz, 1H, ArH), 7.16-7.19 (m, 2H, ArH), 7.28-7.34 (m, 5H, ArH), 7.42-7.44 (m, 1H, ArH), 7.60 (s, 1H, ArH), 7.67 (d, J = 9.0 Hz, 1H, ArH), 8.14-8.16 (m, 1H, ArH), 10.8 (s, 1H, OH) ppm; ¹³C NMR(100 MHz, CDCl₃): δ = 51.12, 51.26, 105.1, 110.9, 111.7, 115.7, 118.6, 121.7, 123.2, 124.2, 126.0, 126.1, 127.5, 128.4, 128.9, 132.8, 133.9, 137.5, 145.8, 146.0, 159.5, 164.7, 170.0 ppm; HRMS (ESI): calcd. for C₂₆H₂₀NO₆ ([M + H]⁺) 442.1285, found 442.1284.

Methyl 1-(5-hydroxy-4-(methoxycarbonyl)-3-pentylbenzofuran-2-yl)-1H-indole-3-carboxylate (3h)
Synthesized by the general procedure; 41.2 mg (90%); for a large scale reaction 1.64 g (92%). Light yellow solid. 1H NMR (400 MHz, CDCl$_3$): $\delta = 0.72$ (t, $J = 6.7$ Hz, 3H, CH$_3$), 1.05-1.12 (m, 3H, CH$_2$$\times$1.5), 1.35-1.45 (m, 3H, CH$_2$$\times$1.5), 2.64 (t, $J = 7.6$ Hz, 2H, CH$_2$), 3.96 (s, 3H, CH$_3$), 4.04 (s, 3H, CH$_3$), 7.05 (d, $J = 9.0$ Hz, 1H, ArH), 7.28-7.39 (m, 3H, ArH), 7.59 (d, $J = 9.0$ Hz, 1H, ArH), 7.96 (s, 1H, ArH), 8.24-8.27 (m, 1H, ArH), 11.0 (s, 1H, OH) ppm; 13C NMR (100 MHz, CDCl$_3$): $\delta = 13.8$, 22.3, 25.5, 29.5, 31.5, 51.4, 52.0, 105.4, 111.0, 111.3, 115.0, 115.7, 119.0, 121.9, 123.2, 124.3, 125.7, 126.1, 134.3, 137.8, 145.1, 146.5, 159.6, 164.9, 170.5 ppm; HRMS (ESI): calcd. for C$_{25}$H$_{26}$NO$_6$ ([M + H]$^+$) 436.1755, found 436.1777.

5. References

[1] T. Hamada, X. Ye and S. S. Stahl, J. Am. Chem. Soc., 2008, 130, 833.

[2] W. D. Mackay, M. Fistikci, R. M. Carris and J. S. Johnson, Org. Lett., 2014, 16, 1626.

[3] Y. H. Chen, D. J. Cheng, J. Zhang, Y. Wang, X. Y. Liu and B. Tan, J. Am. Chem. Soc., 2015, 137, 15062.
NAME ynamide-1f
EXPNO 20190228
PROCNO 1
Date_ 20190228
Time 19.58
INSTRUM spect
PROBHD 5 mm PABBO BB-
PULPROG zg30
TD 65536
SOLVENT CDC13
NS 16
DS 2
SWH 8223.685 Hz
FIDRES 0.125483 Hz
AQ 3.9846387 sec
RG 80.6
DW 60,800 usec
DE 6.50 usec
TE 293.9 K
D1 1.00000000 sec
TDO 1

-------- CHANNEL f1 ---------
NUC1 1H
P1 14.80 usec
PL1 -1.00 dB
PL1W 10.90985775 W
SF01 400.1724712 MHz
SI 32768
SF 400.1700156 MHz
WDW no
SSB 0
LB 0.00 Hz
GB 0
PC 1.00
NAME fanyin 5
EXPNO 20181127
PROCNO 1
Date_ 20181127
Time 15.35
INSTRUM spect
PROBHD 5 mm PABBO BB-
PULPROG zg30
TD 65356
SOLVENT CDCl3
NS 16
DS 2
SNH 8223.685 Hz
FIDRES 0.125483 Hz
AQ 3.9846387 sec
RG 228
DW 60.800 usec
DE 6.50 usec
TE 296.0 K
D1 1.00000000 sec
TD0 1

-------- CHANNEL f1 --------
NUC1 1H
P1 14.80 usec
PL1 -1.00 dB
PL1W 10.90985775 W
SF01 400.1724712 MHz
SI 32768
SF 400.1700153 MHz
WDW no
SSB 0
LB 0.00 Hz
GB 0
PC 1.000000

ppm
NAME dz01
EXPNO 2018113004
PROCNO 1
Date_ 20181130
Time 22.38
INSTRUM spect
PROBHD 5 mm PABBO BB-
PULPROG zgpg30
TD 68536
SOLVENT CDC13
NS 12000
DS 4
SWH 24038.461 Hz
FIDRES 0.366798 Hz
AQ 1.3631988 sec
RG 2050
DW 20.800 usec
DE 6.50 usec
TE 295.9 K
D1 2.00000000 sec
D11 0.03000000 sec
TD0 1

-------- CHANNEL f1 --------
NUC1 13C
P1 9.90 usec
PL1 -1.10 dB
PL1W 40.29647064 W
SF01 100.6328888 MHz

-------- CHANNEL f2 --------
CPDPRG2 waltz16
NUC2 1H
PCPD2 90.00 usec
PL2 -1.00 dB
PL12 14.68 dB
PL13 17.68 dB
PL2W 10.90985775 W
PL12W 0.29499799 W
PL13W 0.14784923 W
SF02 400.1716007 MHz
SI 32768
SF 100.6228303 MHz
WDW no
SSB 0
LB 0.00 Hz
GB 0
PC 1.40
NAME dz02
EXPNO 2018113002
PROCNO 1
Date_ 20181130
Time 21.25
INSTRUM spect
PROBHD ... 1093
SOLVENT CDC13
NS 1093
DS 4
SWH 24038.461 Hz
FIDRES 0.366798 Hz
RQ 2050
DW 20.800 usec
DE 6.50 usec
TE 295.5 K
D1 2.00000000 sec
D11 0.03000000 sec
TD0 1

-------- CHANNEL f1 --------
NUC1 13C
P1 9.90 usec
PL1 -1.10 dB
PL1W 40.29647064 W
SF01 100.6328888 MHz

-------- CHANNEL f2 --------
CPDPRG2 waltz16
NUC2 1H
PCPD2 90.00 usec
PL2 -1.00 dB
PL2W 0.29499799 W
PL3W 0.14784923 W
SF02 400.1716007 MHz
SI 32768
SF 100.6228319 MHz
NDW no
SSB no
LR 0.00 Hz
GB 0
PC 1.40

200 180 160 140 120 100 80 60 40 20 ppm

NAME dz02
EXPNO 2018113002
PROCNO 1
Date_ 20181130
Time 21.25
INSTRUM spect
PROBHD ... 1093
SOLVENT CDC13
NS 1093
DS 4
SWH 24038.461 Hz
FIDRES 0.366798 Hz
RQ 2050
DW 20.800 usec
DE 6.50 usec
TE 295.5 K
D1 2.00000000 sec
D11 0.03000000 sec
TD0 1

-------- CHANNEL f1 --------
NUC1 13C
P1 9.90 usec
PL1 -1.10 dB
PL1W 40.29647064 W
SF01 100.6328888 MHz

-------- CHANNEL f2 --------
CPDPRG2 waltz16
NUC2 1H
PCPD2 90.00 usec
PL2 -1.00 dB
PL2W 0.29499799 W
PL3W 0.14784923 W
SF02 400.1716007 MHz
SI 32768
SF 100.6228319 MHz
NDW no
SSB no
LR 0.00 Hz
GB 0
PC 1.40

200 180 160 140 120 100 80 60 40 20 ppm
NAME dz20
EXPNO 2018121806
PROCNO 1
Date_ 20181219
Time 20.52
INSTRUM spect
PROBHD 5 mm PABBO BB-
PULPROG zgpg30
TD 65536
SOLVENT CDC13
NS 15000
DS 4
SWH 24038.461 Hz
FIDRES 0.366798 Hz
AQ 1.3631988 sec
RG 2050
DW 20.800 usec
DE 6.50 usec
TE 2956.0 K
D1 2.00000000 sec
D11 0.03000000 sec
TD0 1

------- CHANNEL f1 -------
NUC1 13C
P1 9.90 usec
PL1 -1.10 dB
PL1W 40.29647064 MHz
SFO1 100.6328888 MHz

------- CHANNEL f2 -------
CPDPRG2 waltz16
NUC2 1H
PCPD2 90.00 usec
PL2 -1.00 dB
PL12 14.68 dB
PL13 17.68 dB
PL2W 10.90985775 W
PL12W 0.29499799 W
PL13W 0.14784923 W
SFO2 400.1716007 MHz
SI 32768
SP 100.6228304 MHz
WDW no
SSB 0
LB 0.00 Hz
GB 0
PC 1.40
