Reduced capacity of alternative σs to melt promoters ensures stringent promoter recognition

Byoung-Mo Koo,1 Virgil A. Rhodius,1 Gen Nonaka,1,5 Pieter L. deHaseth,2,3 and Carol A. Gross1,4,6

1Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, California 94158, USA; 2Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, Ohio 44106, USA; 3Department of Cell and Tissue Biology, University of California at San Francisco, San Francisco, California 94158, USA; 4Department of Cell and Tissue Biology, University of California at San Francisco, San Francisco, California 94158, USA; 5Present address: Ajinomoto Co., Inc., 15-1, Kyobashi 1-chome, Chuo-ku, Tokyo 104-8315, Japan; 6Corresponding author.

In bacteria, multiple σs direct RNA polymerase to distinct sets of promoters. Housekeeping σs direct transcription from thousands of promoters, whereas most alternative σs are more selective, recognizing more highly conserved promoter motifs. For σ32 and σ38, two Escherichia coli Group 3 σs, altering a few residues in Region 2.3, the portion of σ implicated in promoter melting, to those universally conserved in housekeeping σs relaxed their stringent promoter requirements and significantly enhanced melting of suboptimal promoters. All Group 3 σs and the more divergent Group 4 σs have nonconserved amino acids at these positions and rarely transcribe >100 promoters. We suggest that the balance of “melting” and “recognition” functions of σs is critical to setting the stringency of promoter recognition. Divergent σs may generally use a nonoptimal Region 2.3 to increase promoter stringency, enabling them to mount a focused response to altered conditions.

Keywords: σ factor; Region 2.3; melting proficiency; promoter stringency

Supplemental material is available at http://www.genesdev.org.

Received July 14, 2009; revised version accepted August 31, 2009.

In bacteria, promoter recognition is accomplished primarily by the σ subunit of RNA polymerase [RNAP]. A single housekeeping σ directs RNAP to thousands of promoters, whereas alternative σs generally orchestrate transcription from substantially fewer promoters, allowing focused responses to cellular, environmental, and developmental signals [Gruber and Gross 2003; Paget and Helmann 2003; Gama-Castro et al. 2008]. This unequal division of labor requires a housekeeping σ with broad, flexible promoter recognition [Hook-Barnard and Hinton 2007], and alternative σs with more restricted recognition [Amaya et al. 2001; Britton et al. 2002; Eichenberger et al. 2003; Nonaka et al. 2006; van Schaik et al. 2007; Zhao et al. 2007; Asayama and Imamura 2008; Koo et al. 2009a,b]. More extensive use of activators and repressors by the housekeeping σ than by alternative σs partially explains this distinction [Browning and Busby 2004]. Here, we provide evidence for an additional strategy intrinsic to the σs themselves, demonstrating that some alternative σs are specifically constructed to limit their ability to transcribe a wide range of promoters.

σs are sequence-specific DNA-binding proteins with a modular architecture, consisting of globular domains [Murakami and Darst 2003] subdivided into conserved regions (Fig. 1A). In free σ, DNA-binding determinants are masked by domain interactions [Dombroski et al. 1993; Sorensen and Darst 2006]. However, strong interactions between RNAP and domains 2–4 [σ2–4] expose DNA-binding determinants and position domains for interaction with promoter motifs [Fig. 1A; Kuznedelov et al. 2002, Murakami et al. 2002]. σ4 recognizes the −35 motif [Gardella et al. 1989; Siegele et al. 1989], σ3 recognizes the extended −10 (E-10) motif [Barne et al. 1997; Koo et al. 2009a,b], and σ2 facilitates strand opening by three sequential activities: (1) recognition of the −10 and discriminator regions [Siegele et al. 1989; Daniels et al. 1990, Waldburger et al. 1990, Tatti et al. 1991; Feklistov et al. 2006, Haugen et al. 2006, Koo et al. 2009a,b], (2) participation in melting [Juang and Helmann 1994; Fenton et al. 2000, Tomsic et al. 2001; Lee and Gralla 2003], and (3) interaction with the −10 region nontemplate strand DNA to stabilize the melted state [Helmann and deHaseth 1999, Schroeder et al. 2009]. σ1 (Region 1.1) is unique to housekeeping σs and has regulatory roles [Dombroski et al. 1992, 1993; Hook-Barnard and Hinton 2009].

The σ70 superfamily includes three subfamilies, divided according to phylogenetic relatedness to the essential
We previously found an important distinction between the promoter recognition properties of the *E. coli* Group 3 σs and their housekeeping σ, σ^70. In σ^70, the −35, −10, and E-10 motifs are partially redundant, and functional promoters are constructed from subsets of motifs [Hook-Barnard and Hinton 2007]. Most commonly, promoters have −10 and −35 motifs but lack the E-10 [Lisser and Margalit 1993]. Conversely, promoters with the E-10 motif do not have good matches to both the −10 and −35 motifs [Mitchell et al. 2003]. Most E-10 promoters require neither the −35 motif nor its σ recognition region [4.2] [Ponnambalam et al. 1986; Kumar et al. 1993; Minakhtin and Severinov 2003, Young et al. 2004], a few have an excellent −35 and a reduced requirement for −10 [Thouvenot et al. 2004; Hook-Barnard et al. 2006]. In sharp contrast, functional σ^28 and σ^32 promoters require good matches to the −35, −10, and E-10 motifs [Fig. 1B; Koo et al. 2009a,b]. Consistent with this, the information content of the core regions of σ^32 promoters (18.3 bits) [Nonaka et al. 2006] and σ^28 promoters (21.3 bits) [determined from sequences of all *E. coli* σ^28 promoters listed in BioCyc [http://biocyc.org]; V Rhodius, unpubl.; data not shown] is much higher than that for σ^70 promoters (9.2 bits) [Shultzaberger et al. 2007]. Requiring extensive recognition determinants would limit transcription to a relatively restricted set of promoters, making it important to understand how these σs maintain dependence on all three promoter motifs.

We show that σ^32 and σ^28 require all three core promoter motifs for function largely because of altered residues in Region 2.3, a 17-amino-acid section of σ^2 implicated in promoter melting. Both σs deviate in sequence from critical Region 2.3 residues that are universally conserved in the housekeeping σs and are known to be important in melting. Converting these σ^32 and σ^28 residues to those present in the housekeeping σs decreases the requirement for extensive recognition motifs and increases melting capacity at nonoptimal promoters. Our results suggest that extensive recognition motifs compensate for nonoptimal Regions 2.3 in σ^32 and σ^28. All Group 3 and Group 4 σs have nonconsensus amino acids at the Region 2.3 positions we investigated. Decreasing melting capacity may be a general strategy enabling divergent alternative σs to mount a discrete, focused, and structured response to altered conditions.

Results

Phylogenetic analysis identifies elements required to bypass the σ^32 requirement for an E-10 motif

σ^32s from different proteobacterial groups differ in their stringency of promoter recognition and in their recognition determinants. σ^32 from *E. coli* and other γ/β-proteobacteria exhibit high dependence on the E-10 motif and recognize it with a universally conserved residue (K130) in σ^32 [Koo et al. 2009a]. In contrast, α/β-γ-proteobacteria show little to no dependence on the E-10 motif, and their comparable σ^3 residue is alanine, serine, or glutamine [Green and Donohue 2006; McGrath...
Koo et al. 2007; Koo et al. 2009a; σ32 of the α-proteobacterium Caulobacter crescentus has little dependence on the E-10 motif even in combination with E. coli core RNAP [Koo et al. 2009a], indicating that the distinction in promoter recognition stringency resided within σ32 itself. This raises the question of how C. crescentus σ32 bypasses the requirement for the E-10 motif.

Comparison of E. coli and C. crescentus σ32 revealed that the two differ in important residues in Region 2.3 [Fig. 2A], but not in residues implicated in base-specific recognition of promoters [Fig. 1C] or in Region 2.2, the most important core-binding motif [data not shown]. Four Region 2.3 aromatic amino acids are universally conserved in housekeeping σs [bold in Fig. 2A]. Of these, F427 is buried and is likely to play a structural role [Murakami et al. 2002], W434 is likely to be involved in promoter recognition [Juang and Helmann 1994], and Y430 and W433 are most directly involved in promoter DNA melting [Juang and Helmann 1994; Fenton et al. 2000; Tomsic et al. 2001]. Three of these residues are present in C. crescentus σ32 [and in σ32 of all α-proteobacteria], but only one is present in E. coli σ32 [and in σ32 of all other γ-proteobacteria] [Kourennaia and deHaseth 2007]. We tested whether transplantation of C. crescentus Region 2.3 residues into E. coli σ32 reduced dependence on the E-10 motif using lacZ reporter assays driven from the groE σ32 promoter [Fig. 2B] or derivatives of this promoter. Whereas authentic E. coli σ32 exhibited a 20-fold dependence [Fig. 2C, columns 1, 2], the hybrid σ32 showed only a fourfold dependence [Fig. 2C, columns 5, 6]; introducing the K130A substitution to more fully mimic authentic C. crescentus σ32 eliminated dependence on the E-10 motif [Fig. 2C, columns 7, 8] and reduced the deleterious effect of the K130A substitution alone [Fig. 2C, cf. columns 7, 8, and 3, 4]. Importantly, this effect is recapitulated by simply changing the residues in E. coli σ32 analogous to Y430 and W433 to their counterparts in the housekeeping σs and in C. crescentus σ32 [creating F104YH107Wσ32;YWσ32] [Fig. 2C, cf. columns 9, 10, and 5, 6, and columns 11, 12, and 7, 8]. Note that Y430 and W433 are the residues most directly implicated in promoter DNA melting [Juang and Helmann 1994; Fenton et al. 2000; Tomasic et al. 2001]. Single amino acid substitutions showed a partial effect, and a triple mutant [L101F, F104Y, H107W] is virtually indistinguishable from YWσ32 [data not shown]. These results suggest that these YW residues in C. crescentus [and other α/β-γ-proteobacteria] enable their σ32s to bypass the requirement for an E-10 motif.

YWσ32 generally suppresses defects of nonoptimal promoters

We tested whether YWσ32 was generally proficient in transcribing nonconsensus promoters [Fig. 3]. YWσ32 significantly suppressed the two 35 and the three 10 mutations in vivo; Whereas most mutations resulted in a fourfold to fivefold decrease in expression with wild-type σ32, they showed only a 1.5-fold to twofold decrease in expression with YWσ32 [Fig. 3A]. Likewise, YWσ32 showed reduced dependence on the length of the spacer DNA separating the 35 and 10 elements [Fig. 3B]. This effect was reproduced in vitro. All mutant promoters with a significant transcription defect [≤40% of the wild-type promoter] showed significantly higher transcription with YWσ32 than with wild-type σ32, indicating that these effects were direct [Fig. 3C,D]. We conclude that YWσ32 generally exhibited higher activity than authentic σ32 on weak promoters.

Altering Region 2.3 in σ28 also broadens promoter recognition

σ28 is highly divergent from σ32 [Gruber and Gross 2003; Paget and Helmann 2003], enabling us to test whether the
relationship between Region 2.3 consensus and increased transcription of weak promoters was likely to be generalizable to other Group 3 σs. Comparison with σ70 indicated that only two of the four aromatic Region 2.3 residues universally conserved in the housekeeping σs are present in E. coli σ28 [Fig. 4A]. R74 ([W434 in σ28] was not considered further as it is highly conserved among σ28 orthologs and participates in nonspecific promoter binding [Koo et al. 2009b]. Q73 ([W433 in σ70] varies in different σ28s but is never W. We investigated whether Q73Wσ28 has broadened promoter recognition.

σ28 is exceptionally sensitive to substitution in the −10 region of the promoter, and the Q73W substitution dramatically increases the ability of σ28 to recognize a variety of nonoptimal promoters. We examined promoter activity using lacZ reporter assays driven from the tar σ28 promoter [Fig. 4B] and its derivates. Eliminating the E-10 motif (−14G, −13C) or altering any one of three bases in the −10 motif reduces expression by wild-type σ28 ~30-fold to 400-fold in vivo [Fig. 4C; Koo et al. 2009b]. In sharp contrast, Q73Wσ28 exhibits only a threefold to 18-fold decrease on this same set of promoters [Fig. 4C]. Importantly, Q73A does not increase expression from these mutant promoters, indicating that the suppressive effect resulted from adding the W residue at position 73, rather than removing the naturally occurring Q residue [data not shown]. Likewise, Q73W exhibits 10-fold suppression of the transcription defects resulting from removing each of the three σ28 residues known to participate in base-specific recognition of the σ28 promoter [Fig. 3; Koo et al. 2009b] and shows enhanced tolerance for variation in the length of the spacer DNA separating the −35 and −10 elements [Fig. 4E]. All promoters with significant transcriptional defects in vitro (≥40% of the wild-type promoter) showed significantly increased transcription with Q73Wσ28 as compared with wild-type σ28 [Fig. 4F]. Thus, Q73Wσ28 is directly responsible for significantly enhanced transcription of a broad range of nonoptimal promoters.

YWσ32 broadens promoter recognition of natural promoters

Thus far, we examined the effects of YWσ32 on a promoter set, each differing from the groE consensus promoter at only a single position. Natural promoters may have many changes from the consensus and an UP-element [Zhao et al. 2005; Nonaka et al. 2006; Wade et al. 2006], recognized by the C-terminal domain of the σ-subunit [Ross et al. 1993; Gourse et al. 2000], which might obscure the effect of YWσ32 on natural promoters. We compared expression of natural σ32 promoters in E. coli fused to a green fluorescent protein [GFP] reporter driven by either wild-type σ32 or YWσ32 [see the Materials and Methods]. The promoter library encompassed sequences −65 to +20 relative to the start site of transcription, and therefore included any UP-element present. We found that promoters very weakly transcribed by σ32 RNAP were more strongly transcribed by YWσ32 RNAP; conversely, promoters strongly transcribed by σ32 RNAP have similar or less expression with YWσ32 RNAP. This is illustrated by comparing the ratio of promoter strengths by σ32 or YWσ32 RNAP against the strength of the promoter in the presence of σ32 RNAP [Fig. 5A; see also Supplemental Fig. S2 for the raw data]. Therefore, YWσ32 preferentially increases expression from weaker, less conserved natural promoters. We consider the implications of this finding in the Discussion.
Altered Region 2.3 residues exert their effects on a step beyond duplex promoter binding

The σ^{70} residues analogous to those altered in σ^{28} and/or σ^{32} [Y430 and W433] have a minor effect on initial recognition of duplex DNA and a major effect on open complex formation (Fenton et al. 2000; Tomsic et al. 2001; Schroeder et al. 2009). The crystal structure of Aquifex aeolicus σ^{28} complexed to its anti-ribozyme indicates that these Region 2.3 residues in Group 3 are roughly in the same position as in the housekeeping σs with respect to the most C-terminal helix of σ_2 (Sorenson et al. 2004), suggesting that they might play similar roles in both σ families. We examined whether aromatic amino acid-substituted σ^{28} and σ^{32} holoenzymes (E$_{\sigma^{32}}$ and E$_{\sigma^{28}}$) were altered in initial duplex DNA recognition or in open complex formation using assays developed to characterize σ^{70} holoenzyme (E$_{\sigma^{70}}$). Consistent with their effects in E$_{\sigma^{70}}$, these residues have little or no effect on duplex binding by E$_{\sigma^{32}}$ and E$_{\sigma^{28}}$ [Fig. 6A,B] and exert their major effects on strand opening [Fig. 6C,D].
motif, showing the log2 value of the ratio of promoter activities driven by enzyme (E-Q73W of OD600 versus GFP fluorescence (RFU); see the Materials and Methods. Each motif covers the following sequences: UP 5' ...the down the pathway. In any case, E-Q73W binding (Fig. 6A), providing clear evidence that YW preferentially increases expression of weak σ32 promoters in vivo. Promoter activities driven by either wild type (wt) or YWσ32 were determined by the expression of GFP from 50 σ32 promoters (Nomaka et al. 2006) as described in the Materials and Methods. [A] Data are displayed as a scatter plot showing the log2 value of the ratio of promoter activities driven by YWσ32 and wild-type σ32 [Y-axis] versus the strength of the promoter when driven by wild-type σ35 [X-axis]. Promoter activity was calculated from the slope of the differential plot of OD600 versus GFP fluorescence (RFU); see the Materials and Methods. [B] Information content of promoters more active with either wild type (30 promoters) or YW σ32 [19 promoters]. Values were calculated as described in the Materials and Methods. Each motif covers the following sequences: UP element, −60 to −45; −35 motif, −37 to −31; spacer between −35 and −10 motif; extended −10 motif, −16 and −15; and −10 motif, −14 to −9.

We assessed initial recognition by determining Eσ70 and Eσ28 binding to duplex DNA at 4°C, a temperature that prevents strand opening and traps the initial rapidly dissociating complex between RNAP and DNA, as shown for Eσ70 (Fenton et al. 2000). The low-temperature complex is on the pathway to the open complex, and therefore provides an accurate estimate of initial binding [Li and McClure 1998]. These trapped complexes are expected to be sensitive to inhibition by heparin, which binds free RNAP irreversibly, thereby inactivating rapidly dissociating RNAP. We assessed binding both to the complete promoter [consensus −35, E-10, and −10 elements] and to a suboptimal promoter [lacking the E-10 motif]. YWσ32 holoenzyme [E-YWσ32] and wild-type σ32 holoenzyme [E-σtσ28] show equivalent extents of heparin-sensitive binding [Fig. 6A], providing clear evidence that YWσ32 does not affect initial binding. Likewise, Q73Wσ28 holoenzyme [E-Q73Wσ28] and wild-type σ28 holoenzyme [E-σtσ28] show equivalent extents of binding [Fig. 6B]. This binding is partially heparin-resistant, possibly reflecting formation of an “intermediate” complex further down the pathway. In any case, E-Q73Wσ28 and E-σtσ28 do not display any distinction in behavior in this assay, consistent with the idea that initial steps in the process are unaffected. Very similar results were obtained for Eσ32 and Eσ28 using shorter templates truncated just downstream from the −10 regions of each promoter [data not shown]. Additionally, we validated that the observed binding of Eσ28 and Eσ32, although weak, is dependent on specific promoter sequences, as it is not observed with random sequence DNA [Supplemental Fig. S3]. Taken together, these results support the conclusion that the Region 2.3 alterations in σ28 and σ32 have a minimal effect on duplex recognition.

To examine strand opening, we assessed heparin-resistant binding to “fork junction” templates at 4°C. A fork junction template is one in which the template strand is truncated just upstream of the position of strand opening [T-11 for PgroE with Eσ32 [Mecsas et al. 1991] and T-9 for Ppar with Eσ28 [Givens et al. 2001]], and the nontemplate strand continues as a single-strand overhang. This assay has been validated both kinetically and structurally to be an excellent mimic of open complex formation in Eσ70 [Guo and Gralla 1998; Murakami et al. 2002, Tsujikawa et al. 2002]. Indeed, the extent to which a particular combination of fork junction template and holoenzyme is able to form a stable complex [i.e., resistant to heparin challenge] reflects the propensity for open complex formation with the particular set of reagents used [Guo and Gralla 1998; Fenton et al. 2000; Tsujikawa et al. 2002]. We observe clear evidence that both YWσ32 and Q73Wσ28 are more proficient than their wild-type counterparts at promoting formation of the open complex, when assayed with the appropriate templates. E-YWσ32 shows fivefold enhancement of open complex formation when assayed on a suboptimal template [no E-10] whose fork extends to −9 [8% E-wtσ32 vs. 41% E-YWσ32] [Fig. 6C, −16, −15 AA]. The other templates are almost completely shifted by E-wtσ32 and therefore cannot provide distinction between the two holoenzymes. The effect is even more dramatic for σ28, where E-Q73Wσ28 exhibits ≥20-fold more open complex formation than E-σtσ28 at both the long and short suboptimal fork junction templates [Fig. 6D, −14, −13 AA]. We also validated that the observed binding of Eσ28 and Eσ32 to fork junction templates is dependent on specific promoter sequences, as no specific binding to fork junction templates bearing their anti−10 promoter sequences was observed [Supplemental Fig. S3]. Taken together, these results provide strong support for the idea that YWσ32 and Q73Wσ28 significantly promote open complex formation at suboptimal promoter templates.

Discussion

Early “primordial” σ factors have diverged into major subgroups: the housekeeping σs such as σ70, and the alternative σs. This divergence spawned evolution of an important gene expression strategy, allowing differentially regulated σs to recognize discrete classes of promoters. σ factor specialization has another distinguishing feature: Housekeeping σs recognize a large number of diverse promoters (>1000), whereas most alternative σs are much more restrictive in promoter selection, with a tighter requirement for the sequence and spacing of
their promoter motifs. In this study, we asked what feature(s) of σs is responsible for this important difference in promoter recognition strategy. Our results suggest the hypothesis that the balance of melting and recognition functions of σs is critical to setting the stringency of promoter recognition.

We investigated the features of σs required for stringent promoter recognition by E-s32 and E-s28, two highly divergent members of the Group 3 σ subfamily present in E. coli. Sequence variation in Region 2.3 is largely responsible for this requirement: Converting one or two residues in Region 2.3 to their counterpart(s) in the housekeeping σs largely alleviated the stringent requirements. Our results indicated that the consensus variants were five- to 20-fold more proficient than their wild-type counterparts at promoting open complex formation on suboptimal promoters (Fig. 6C,D). Thus, E-s32 and E-s28 residues that recognize specific bases in the −10 region and then stabilize the melted state by interaction with the nontemplate strand. In E-70 promoters, strand separation is nucleated within the −10 recognition motif, most likely by flipping out the −11A base (Lim et al. 2001; Schroeder et al. 2009). W433 may “push” the −11A out of the helix (Tomisic et al. 2001). Y430 is believed to interact with and stabilize the conformation of the flipped out −11A (Schroeder et al. 2009). Importantly, it is altering σ32 and σ28 residues at positions analogous to Y430 and W433 to those in housekeeping σs (F104YH107Wσ32; Q73Wσ28) that increases melting and relaxes promoter recognition.

How might a completely consensus promoter decrease the requirements for σ melting functions performed by Y430 and W433? The kinetics of open complex formation by E-s70 holoenzyme at a consensus promoter (consensus −35, E-10, −10) provide a way of thinking about this linkage (Schroeder et al. 2009). It is suggested that the completely consensus promoter greatly stabilizes the transition state of the normally rate-limiting step in open complex formation so that it becomes a kinetically significant intermediate, possibly through contacts between the E-10 region and RNAP. The implication is that base flipping and strand separation, previously coupled kinetically, become two separable steps.
at the consensus promoter, with the latter being rate-limiting. Thus, the defect in base flipping caused by a suboptimal amino acid sequence in σ Region 2.3 would have no or little effect at consensus promoters but would lead to much reduced expression in weaker promoters. Consistent with this interpretation, Y430 and W433 substitutions do not affect open complex formation at the consensus σ^{32} promoter, although they have big effects on melting at standard promoters [Tomsic et al. 2001; Schroeder et al. 2009]. Thus, the conformational changes driven by the consensus promoter elements obviate the requirement for these Region 2.3 residues. This scenario precisely explains our findings for σ^{32} and σ^{28}. Their consensus promoters drive melting even though substitutions in residues analogous to Y430 and/or W433 reduce the melting proficiency of σ^{32} and σ^{28}.

The suboptimal melting capacity of σ^{32} and σ^{28} has biological correlates. The necessity of optimal placement and sequence of promoter motifs to create a functional promoter means that deviation from consensus has profound negative effects on promoter activity. This focuses transcription by these σs on their authentic regulons and decreases the possibility that their responses will be diminished because they engage in adventitious transcription of near-match promoters. Likewise, the exquisite sensitivity of transcriptional capacity to promoter sequence also allows promoter strength to be regulated over a broad range so that regulon members are produced in optimal amounts relative to each other. Finally, suboptimal melting allows these σs to maintain the integrity of their recognition across many organisms. σ^{28} directs synthesis of flagellar components in both Gram-negative and Gram-positive bacteria, separated in evolution by billions of years. Yet the consensus sequence of the promoters recognized by σ^{28} remains unchanged.

Our results graphically illustrate the extent to which the relative promoter strength is deregulated when the σ factor has consensus melting determinants. Whereas the natural promoters in the σ^{32} regulon members display an ~100-fold range in activity when driven by wild-type σ^{32}, only a 20-fold range is seen when they are transcribed by the melting-proficient YWσ^{32}, with the weakest promoters having enhanced activity and the strongest promoters showing decreased transcription by YWσ^{32} [possibly because of difficulty in promoter clearance] (Fig. 5A; Supplemental Fig. S2). Interestingly, motif comparison indicates that the predominant difference between promoters preferentially transcribed by YWσ^{32} and by wild-type σ^{32} is that the former has a less conserved −35 motif (Fig. 5B). This distinction raises the intriguing possibility that wild-type σ^{32}, but not YWσ^{32}, uses the −35 region as a “gatekeeper” both to determine functional promoters and to set promoter strength. A consensus −35 region may be necessary to slow dissociation sufficiently to permit strand opening.

It is interesting to consider why the σ^{32}s of α-protobacteria might have broadened promoter specificity. Interestingly, σ^{28}s in the α-protobacteria often control processes in addition to heat shock, such as development in Myxococcus xanthus [Ueki and Inouye 2001] or other stress responses (e.g., heavy metal stress in C. crescentus) [McGrath et al. 2007]. Additionally, groEL, the most important member of the σ^{32} regulon [Kusukawa and Yura 1988], is regulated by an alternative mechanism in α-protobacteria (Yura and Nakahigashia 1999). Thus, α-protobacterial σ^{32}s may transcribe more genes without the necessity of finely controlling the extent of their expression as compared with γ-protobacterial σ^{28}s.

Ever since Helmann’s seminal work [Juang and Helmann 1994] demonstrated the involvement of σ Region 2.3 residues in promoter DNA melting, much effort has been devoted to defining its mechanism [Juang and Helmann 1994; Fenton et al. 2000; Schroeder et al. 2009]. However, there has been little consideration of whether σ melting proficiency differs among σ subfamilies and whether this property is used to set the promoter recognition promiscuity of that family. Given that Group 3 σs rarely use >100 promoters in any bacterial species [in marked contrast to the housekeeping σ^{70}] and that all of them share nonconsensus residues in Region 2.3 (Supplemental Fig. S4), we propose the hypothesis that amino acid sequence differences within Region 2.3 are important for the differences in breadth of promoter choice. Importantly, divergent Group 4 σs are also discrepant from the housekeeping σs in some of these important Region 2.3 residues. Melting deficiencies in the more divergent alternative σs may be a universal mechanism to ensure their promoter recognition stringency.

Materials and methods

Details of materials and methods are presented in the Supplemental Material.

Strains, plasmids, and growth conditions

Strains and plasmids used in this study are listed in Supplemental Table S1. Cells were grown at 30°C in Luria-Bertani (LB) media supplemented with appropriate antibiotics such as ampicillin (100 μg/mL), chloramphenicol (30 μg/mL), kanamycin (20 μg/mL), and spectinomycin (50 μg/mL). For the strains lacking rpoH (CAG57101), cells were grown with 0.1% L-(-)-arabinose to induce expression of GroESL [Koo et al. 2009a].

β-galactosidase assay, purification of σs, and in vitro transcription

β-galactosidase assays (used to measure in vivo promoter::lacZ activities), overproduction and purification of σs, and in vitro single-round transcription assays were performed essentially as described [Koo et al. 2009a,b]. Details are in the Supplemental Material.

Promoter activity determined by expression of GFP

The σ^{32} promoter library was constructed as described previously [Rhodius et al. 2006]. Fifty σ^{32} promoters validated in our previous work [Nonaka et al. 2006] were cloned as XhoI–BamHI fragments into the GFP reporter plasmid, pUA66. Reporter strains were constructed by transforming derivatives of pSAKT32 and promoter library plasmids into CAG57101 sequentially using electroporation.
Promoter assays were performed by direct inoculation of LB broth supplemented with appropriate antibiotics from fresh transformants. Fluorescence and ODeq0 were measured in a Varian spectrofluorometer (Thermo Electron Corporation). \(\alpha^{32} \)-dependent promoter activity was determined as described in the Supplemental Material.

Calculation of information content of promoter motifs

The information content \(I(x) \) of aligned promoter motifs was calculated using

\[
I(x) = \sum_{i} f_{bi} \log \frac{f_{bi}}{p_{b}}
\]

where \(i \) is the position within the site, \(b \) refers to each of the possible bases, \(f_{bi} \) is the observed frequency of each base at that position, and \(p_{b} \) is the frequency of base \(b \) in the entire genome (in E. coli, taken to be 0.25 for A/G/C/T) (Schneider et al. 1986).

Electrophoretic mobility shift assay

PAGE-purified synthetic oligonucleotides were used for preparing double-strand and fork junction probes. 32P-labeled 10 nM annealed DNA probe and 25 nM holoenzyme were mixed in 10 L of binding buffer and incubated for 10 min at 4°C. See details in the Supplemental Material.

Acknowledgments

We thank Tania Baker for her critical input in conceptualizing this work, Vivek Muthal for technical assistance, and members of the Gross laboratory for useful comments. This work was supported by National Institutes of Health Grants GM057755 (to C.A.G.) and GM31808 (to P.L.dH.).

References

Amaya E, Khvorova A, Piggot PJ. 2001. Analysis of promoter recognition in vivo directed by \(\sigma^{37} \) of *Bacillus subtilis* by using random-sequence oligonucleotides. *J Bacteriol* **183**: 3623–3630.

Asayama M, Imamura S. 2008. Stringent promoter recognition possible bases, 4 resis was performed in a prechilled 5% acrylamide/TBE gel at incubation was continued for an additional 5 min. Electrophoresis was performed in a prechilled 5% acrylamide/TBE gel at 4°C. See details in the Supplemental Material.

Daniels D, Zuber P, Losick R. 1990. Two amino acids in an RNA polymerase \(\sigma \) factor involved in the recognition of adjacent base pairs in the \(-10 \) region of a cognate promoter. *Proc Natl Acad Sci* **87**: 8075–8079.

Dombroski AJ, Walter WA, Record MT Jr, Siegela DA, Gross CA. 1992. Polypeptides containing highly conserved regions of transcription initiation factor \(\sigma^{70} \) exhibit specificity of binding to promoter DNA. *Cell* **70**: 501–512.

Feklistov A, Barinova N, Sevostyanova A, Heyduk E, Bass I, Vvedenskaya I, Kuznedelov K, Merkinei K, Stavrovskaya E, Klimasauskas S, et al. 2006. A basal promoter element recognized by free RNA polymerase \(\sigma \) subunit determines promoter recognition by RNA polymerase holoenzyme. *Mol Cell* **23**: 97–107.

Fenton MS, Lee SJ, Gralla JD. 2000. *Escherichia coli* promoter opening and \(-10 \) recognition: Mutational analysis of \(\alpha^{70} \). *EMBO J* **19**: 1130–1137.

Gama-Castro S, Jimenez-Jacinto V, Peralta-Gil M, Santos-Zavaleta A, Penaloza-Spinola MI, Contreras-Moreira B, Segura-Salazar J, Muniz-Rascado L, Martinez-Flores I, Salgado H, et al. 2008. RegulonDB (version 6.0): Gene regulation model of *Escherichia coli* K-12 beyond transcription, active [experimental] annotated promoters and Textpresso navigation. *Nucleic Acids Res* **36**: D120–D124. doi: 10.1093/nar/gkm994.

Givens JR, McGovern CL, Dombroski AJ. 2001. Formation of intermediate transcription initiation complexes at pflD and pflGm by \(\sigma^{32} \) RNA polymerase. *J Bacteriol* **183**: 6244–6252.

Gourse RL, Ross W, Gaal T. 2000. UPs and downs in bacterial transcription initiation: The role of the \(\alpha \) subunit of RNA polymerase in promoter recognition. *Mol Microbiol* **37**: 687–695.

Green HA, Donohue TJ. 2006. Activity of *Rhodobacter sphaeroides* RpoHII, a second member of the heat shock \(\sigma \) factor family. *J Bacteriol* **188**: 5712–5721.

Gruber TM, Gross CA. 2003. Multiple \(\sigma \) subunits and the partitioning of bacterial transcription space. *Annu Rev Microbiol* **57**: 441–466.

Guisbert E, Yura T, Rhodius VA, Gross CA. 2008. Convergence of molecular, modeling, and systems approaches for an understanding of the *Escherichia coli* heat shock response. *Microbiol Mol Biol Rev* **72**: 545–554.

Guo Y, Gralla JD. 1998. Promoter opening via a DNA fork junction binding activity. *Proc Natl Acad Sci* **95**: 11655–11660.

Haugen SP, Berkmen MB, Ross W, Gaal T, Ward C, Gourse RL. 2006. rRNA promoter regulation by nonoptimal binding of \(\sigma \) region 1.2: An additional recognition element for RNA polymerase. *Cell* **125**: 1069–1082.

Helmann JD, deHaseth PL. 1999. Protein–nucleic acid interactions during open complex formation investigated by systematic alteration of the protein and DNA binding partners. *Biochemistry* **38**: 5959–5967.

Hook-Barnard IG, Hinton DM. 2007. Transcription initiation by mix and match elements: Flexibility for polymerase binding to bacterial promoters. *Gene Regul Syst Bio* **1**: 275–293.

Hook-Barnard IG, Hinton DM. 2009. The promoter spacer influences transcription initiation via \(\alpha^{70} \) region 1.1 of *Escherichia coli* RNA polymerase. *Proc Natl Acad Sci* **106**: 737–742.
Hook-Barnard I, Johnson XB, Hinton DM. 2006. *Escherichia coli* RNA polymerase recognition of an σ^{70}-dependent promoter requiring a -35 DNA element and an extended -10 TGN motif. *J Bacteriol* 188: 8352–8359.

Juang YL, Helmann JD. 1994. A promoter melting region in the primary σ factor of *Bacillus subtilis*. Identification of functional importance of aromatic amino acids. *J Mol Biol* 235: 1470–1488.

Koo BM, Rhodius VA, Campbell EA, Gross CA. 2009a. Dissection of recognition determinants of *Escherichia coli* σ^{32} suggests a composite -10 region with an ‘extended’ $-10'$ motif and a core -10 element. *Mol Microbiol* 72: 815–829.

Koo BM, Rhodius VA, Campbell EA, Gross CA. 2009b. Mutational analysis of *Escherichia coli* σ^{32} and its target promoters reveals recognition of a composite -10 region, comprised of an ‘extended’ $-10'$ motif and a core -10 element. *Mol Microbiol* 72: 830–843.

Kourennaia Ov, deHaseth PL. 2007. Substitution of a highly conserved histidine in the *Escherichia coli* heat shock transcription factor, σ^{32}, affects promoter utilization in vitro and leads to overexpression of the biofilm-associated *fliC* protein in vivo. *J Bacteriol* 189: 8430–8436.

Kumar A, Malloch RA, Fujita N, Smillie DA, Ishihama A, Hayward RS. 1993. The -35 recognition region of *Escherichia coli* σ^{70} is essential for initiation of transcription at an ‘extended’ $-10'$ promoter. *J Mol Biol* 232: 406–418.

Kusukawa N, Yura T. 1988. Heat shock protein GroE of *Escherichia coli*: Key protective roles against thermal stress. *Genes & Dev* 2: 874–882.

Kuznedelov K, Minakhin L, Niedziela-Majka A, Dove SL, Rogulja D, Nichols BE, Hochschild A, Heyduk T, Severinov K. 2002. A role for interaction of the RNA polymerase flap domain with the σ subunit in promoter recognition. *Science* 295: 855–857.

Lee SJ, Gralla JD. 2003. Open complex formation in vitro by σ^{32} [rhoS] RNA polymerase: Roles for region 2 amino acids. *J Mol Biol* 329: 941–948.

Li XY, McClure WR. 1998. Characterization of the closed complex intermediate formed during transcription initiation by *Escherichia coli* RNA polymerase. *J Biol Chem* 273: 23549–23557.

Lim HM, Lee HJ, Roy S, Adhya S. 2001. A ‘master’ in base conservation and evolutionary relationships. *J Bacteriol* 174: 3843–3849.

McGrath PT, Lee H, Zhang L, Iniesta AA, Hottes AK, Tan MH, Hillson NJ, Hu P, Shapiro L, McAdams HH. 2007. High-throughput identification of transcription start sites, conserved promoter motifs and predicted regulons. *Nat Biotechnol* 25: 584–592.

Mecsas J, Cowing DW, Gross CA. 1991. Development of RNA polymerase-promoter contacts during open complex formation. *J Mol Biol* 220: 585–597.

Minakhin L, Severinov K. 2003. On the role of the *Escherichia coli* RNA polymerase σ^{70} region 4.2 and σ-subunit C-terminal domains in promoter complex formation on the extended -10 galP1 promoter. *J Biol Chem* 278: 29710–29718.

Mitchell JE, Zheng D, Busby SJ, Minchin SD. 2003. Identification and analysis of ‘extended’ -10 promoters in *Escherichia coli*. *Nucleic Acids Res* 31: 4689–4695.

Murakami KS, Darst SA. 2003. Bacterial RNA polymerases: The whole story. *Curr Opin Struct Biol* 13: 31–39.

Murakami KS, Masuda S, Campbell EA, Muzzin O, Darst SA. 2002. Structural basis of transcription initiation: An RNA polymerase holoenzyme-DNA complex. *Science* 296: 1285–1290.

Nakahigashi K, Yanagi H, Yura T. 1995. Isolation and sequence analysis of rpoH genes encoding σ^{32} homologs from gram negative bacteria: Conserved mRNA and protein segments for heat shock regulation. *Nucleic Acids Res* 23: 4383–4390.

Nonaka G, Blankschien M, Herman C, Gross CA, Rhodius VA. 2006. Regulon and promoter analysis of the *E. coli* heat-shock factor, σ^{32}, reveals a multifaceted cellular response to heat stress. *Genes & Dev* 20: 1776–1789.

Paget MS, Helmann JD. 2003. The σ^{70} family of σ factors. *Genome Biol* 4: 203. doi: 10.1186/gb-2003-4-1-203.

Ponnambalam S, Webster C, Bingham A, Busby S. 1986. Transcription initiation at the *Escherichia coli* galactose operon promoters in the absence of the normal -35 region sequences. *J Biol Chem* 261: 16043–16048.

Rhodius VA, Sub WC, Nonaka G, West J, Gross CA. 2006. Conserved and variable functions of the σ^{70} stress response in related genomes. *PLoS Biol* 4: e2. doi: 10.1371/journal.pbio.0040002.

Ross W, Goshink KK, Salomon J, Igarashi K, Zou C, Ishihama A, Severinov K, Gourse RL. 1993. A third recognition element of the promoter sequences. *J Mol Biol* 235: 1031–1040.

Sorenson MK, Ray SS, Darst SA. 2004. Crystal structure of DNA promoter sequences. *J Mol Biol* 339: 339–349.

Serizawa M, Yamamoto H, Yamaguchi H, Fujita Y, Kobayashi K, Ogasa W, Sekiguchi J. 2004. Systematic analysis of SigD-regulated genes in *Bacillus subtilis* by DNA microarray and Northern blotting analyses. *Gene* 329: 125–136.

Shen L, Feng X, Yuan Y, Luo X, Hatch TP, Hughes KT, Liu JS, Zhang YX. 2006. Selective promoter recognition by chlamydial σ^{28} holoenzyme. *J Bacteriol* 188: 7364–7377.

Shultzaberger RK, Chen Z, Lewis KA, Schneider TD. 2007. Anatomy of *Escherichia coli* σ^{32} promoters. *Nucleic Acids Res* 35: 771–788.

Siegele DA, Hu JC, Walter WA, Gross CA. 1989. Altered promoter recognition by mutant forms of the σ^{70} subunit of *Escherichia coli* RNA polymerase. *J Mol Biol* 206: 591–603.

Sorenson MK, Darst SA. 2006. Disulfide cross-linking indicates that FlgM-bound and free σ^{28} adopt similar conformations. *Proc Natl Acad Sci U S A* 103: 7622–7627.

Sorenson MK, Ray SS, Darst SA. 2004. Crystal structure of the flagellar α-anti-σ complex σ^{28}/FlgM reveals an intact σ factor in an inactive conformation. *Mol Cell* 14: 127–138.

Tatti KM, Jones CH, Moran CP Jr. 1991. Genetic evidence for interaction of σ^{70} with the spoIID promoter in *Bacillus subtilis*. *J Bacteriol* 173: 7828–7833.

Thouvenot B, Charpentier B, Branlant C. 2004. The strong efficiency of the *Escherichia coli* gapA P1 promoter depends on a complex combination of functional determinants. *Biochem* 383: 371–382.

Tomsic M, Tsujikawa L, Panaghi C, Wang Y, Azok J, deHaseth PL. 2001. Different roles for basic and aromatic amino acids in conserved region 2 of *Escherichia coli* σ^{70} in the nucleation and maintenance of the single-stranded DNA bubble in open RNA polymerase-promoter complexes. *J Biol Chem* 276: 31891–31896.
Tsujikawa L, Tsodikov OV, deHaseth PL. 2002. Interaction of RNA polymerase with forked DNA: Evidence for two kinetically significant intermediates on the pathway to the final complex. Proc Natl Acad Sci 99: 3493–3498.

Ueki T, Inouye S. 2001. SigB, SigC, and SigE from Myxococcus xanthus homologous to σ^32 are not required for heat shock response but for multicellular differentiation. J Mol Microbiol Biotechnol 3: 287–293.

van Schaik W, van der Voort M, Molenaar D, Moezelaar R, de Vos WM, Abee T. 2007. Identification of the σ^B regulon of Bacillus cereus and conservation of σ^B-regulated genes in low-GC-content gram-positive bacteria. J Bacteriol 189: 4384–4390.

Wade JT, Roa DC, Grainger DC, Hurd D, Busby SJ, Struhl K, Nudler E. 2006. Extensive functional overlap between σ factors in Escherichia coli. Nat Struct Mol Biol 13: 806–814.

Waldburger C, Gardella T, Wong R, Susskind MM. 1990. Changes in conserved region 2 of Escherichia coli σ^70 affecting promoter recognition. J Mol Biol 215: 267–276.

Young RA, Gruber TM, Gross CA. 2004. Minimal machinery of RNA polymerase holoenzyme sufficient for promoter melting. Science 303: 1382–1384.

Yu HH, Tan M. 2003. σ^28 RNA polymerase regulates hetB, a late developmental gene in Chlamydia. Mol Microbiol 50: 577–584.

Yura T, Nakahigashi K. 1999. Regulation of the heat-shock response. Curr Opin Microbiol 2: 153–158.

Zhao K, Liu M, Burgess RR. 2005. The global transcriptional response of Escherichia coli to induced σ^32 protein involves σ^32 regulon activation followed by inactivation and degradation of σ^32 in vivo. J Biol Chem 280: 17758–17768.

Zhao K, Liu M, Burgess RR. 2007. Adaptation in bacterial flagellar and motility systems: From regulon members to ‘foraging’-like behavior in E. coli. Nucleic Acids Res 35: 4441–4452.