安全面と衛生面の異なるリスクを包括した評価のためのリスク低減プロセス

大村 宏之*1，福田 隆文*2

Study on risk reduction procedure for evaluation that comprehend safety and hygiene risks

Hiroyuki OMURA*1 and Takabumi FUKUDA*2

*1 The Japan Food Machinery Manufacturers’ Association
3-19-20 Shibaura, Minato-ku, Tokyo 108-0023, Japan
*2 Department of System Safety, Nagaoka University of Technology
1603-1 Kami-Tomioka-machi, Nagaoka-shi, Niigata 940-2188, Japan

Received: 30 September 2020; Revised: 9 November 2020; Accepted: 8 December 2020

Abstract

The international standards for safety of machinery mainly focuses on design requirements for occupational safety. However, there are some standards which remark about the hygienic design are included in that one. Because food machinery has the characteristic related to "safety design" and "hygienic design" both characteristics must be considered at the design stage. And we should have to consider about the problem that a protective measure may raise the different kind of risks at the time. However, it is not established the procedures to evaluate inclusive two risks that takes these contrary effects into consideration in the standards that mention the risk assessment process. Therefore, in the food machinery manufacturing industry, it is an urgent problem to address the concept of the risk reduction process handling two risks, and to develop a model. In order to contribute to the development of risk assessment based on international safety standards for the food machinery industry, this paper propose as it is not consider about kind of adequate protective measure, a procedure for considering for the most suitable combination of components of a protective measure by an iterative process are requested, thereby, that can reduce two kind of different risks in a well-balanced.

Keywords: Risk assessment, Safety design, Hygienic design, Food machinery, Food processing machinery, Safety risk, Hygiene risk

1. 緒 言

機械類の安全性を定める国際規格（以下，国際安全規格）は，ISO 12100 (ISO, 2010)が示すように，規格の適用範囲に基づいてタイプA，B及びCの3つの階層に分類される。これら階層の規格群は，作業者に対する安全面（以下，機械安全）の構造要求を中心に定めるが，一部に衛生面の構造要求を含めた規格を含む。タイプBの階層に，多くの機械に適用可能な衛生面に関する要求事項を定める規格，ISO 14159（以下，衛生B規格）がある。衛生B規格は，食品の生産に使用する機械（以下，食品機械）を含む衛生面を考慮する必要のある産業機械に対し，機械安全と同様にリスク低減に基づくアプローチによる設計を定める。

食品機械の安全は，これら「機械安全」及び「衛生面」の2つの危険に関するリスクを考慮しなければならないことが最大の特徴となる。なおここでは，安全面のリスクを“安全リスク(Safety risk)”，衛生面の危険のリスクを“衛生リスク(Hygienic risk)”と呼ぶ。そしてこれら一方のリスクを低減するための保護方策は，時として他方

No.20-00336 [DOI:10.1299/transjsme.20-00336], J-STAGE Advance Publication date : 17 December, 2020
*1 正員，フェロー，（一社）日本食品機械工業会（〒108-0023 東京都港区芝浦3-19-20）
*2 正員，フェロー，長岡技術科学大学システム安全専攻（〒940-2188 新潟県長岡市上富岡町1603-1）
E-mail of corresponding author: ohmura@fooma.or.jp
のリスクを引き上げる特徴がある（大村他，2011a）。だが、衛生 B 規格をはじめとする国際安全規格には、このような性質の異なる複数のリスクを包含し、評価するための具体的な方法論が見当たらないことから筆者らは、前報まで（大村他，2011a）（大村，2011）に方法論に関する基本的なスキームを提示した。このスキームで意図するリスク低減は、採用する保護方策の構成要素を含めた適切性の考慮を含む。だが食品機械産業界では、“可動式ガード”（AOPD（Active opto-electronic protective devices）（ライトカーテン））のような保護方策別に検討するとの解釈が多く見られた。以上より、安全リスク及び衛生リスクの性質が異なる 2 つのリスクを扱うリスク低減プロセスについて、保護方策の構成要素からそれぞれのリスクに対する影響を考慮する考え方を整理し、その手順のモデルを開発することが、喫緊の課題となっている。そのために、安全及び衛生リスクに関する全ての保護方策に関する選択肢と、両者のリスクをバランスよく低減可能な組み合わせを反復プロセスによって探る道筋と、その具体的事例を明確にすることが必要である。

異なる特性のリスクを扱った報告は古くから数多く見られる。例えば佐藤らは農業機械の安全性工学において、災害要因分析は「機械」「環境」の 2 要因に関する多原因的分析の必要性を明らかとした（佐藤，宮崎，1978）。また、野口は、既存の学問体系ごとの安全を整理した組み合わせ研究の重要性を明らかにすると共に、そのための課題を提起した（野口，2013）。さらに貴田は、おもちゃの安全性について、「機械的・物理的特性」「食理性特性」「化学的特性」の規準を定める、各法規制の統合の必要性、並びにその際の課題を明らかにしている（貴田、2012）。これらの研究では、異なるリスクが存在する場合の扱いを論じているが、食品機械もこれら同様、安全及び衛生に関するリスクの扱いに対する考察が必要となる。

本論文では、異なる法令が扱う食品機械の「安全性」及び「衛生性」の双方を包括し、それぞれのリスクを同時に低減するためのリスク評価プロセスに関する具体的な考え方、及びその手順を示し、モデル化するもので、以て我が国食品機械産業界における労働安全、及び食品安全の更なる向上に資することを目的とする。

2. 食品接触部に適用する保護方策の優先順位

2.1 食品機械の設計時に考慮すべきハザード

食品加工時に食品が接触する機械の部位（以下、食品接触部）には、食品加工のためのローラ部、切断部、成型部、回転部など多くの駆動部が存在する。これらの駆動部は、厚生労働省が取りまとめた休業日 4 日以上の「労働者死傷病報告」による死傷発生状況（令和元年度確定値）（厚生労働省、2020）より、「安全面」における代表的な危険源（以下、安全面のハザード）として知られている。

一方、ISO 14159（ISO，2002）では衛生面のハザードを生物的なハザード、化学的なハザード、そして物理的なハザードの 3 種類に分類する。これら衛生面のハザードが機械構造に由来する場合、多くは食品接触部における「アクセスしにくい構造」、「洗浄・殺菌しにくい構造」などが前述する 3 種類の衛生的ハザードを生み出す構造（以下、衛生面のハザード）として同定される。なお、日本においては、スーパーやごみ処理場で販売される“加工食品”による消費者の健康障害を伴う事故の発生件数は、他国に比して極端に少ないことから、食品メーカーが実施するリコールによる「経済的損失」を衛生リスクの一つの指標として扱う（大村他、2010）（大村他、2011a）。

このような食品接触部における主な衛生リスク低減のための保護方策は、ISO 14159 の箇条 5.2.2 が示す。これら保護方策が想定する、食品接触部における重大な衛生リスクをもたらす衛生面のハザード構造の特徴を、ここでは ISO 14159 に従って、表 1 の①～⑥の 6 つに大別した。

なおこれら安全面及び衛生面のハザードは、大村の研究（大村他、2011a）に示すスキームに従い、一種類ずつ扱う。また、“安全及び衛生を考慮したリスク低減プロセス”では、制限仕様を定めるプロセスに衛生リスクのアセスメントプロセスを付加しているが、リスク以外の要因によっては、衛生リスクと全リスクのアセスメントプロセスを入れ替え、安全リスクのアセスメントプロセスを制限仕様として扱うこともできる。さらに安全リスク及び衛生リスクに関する危害の内容は異なるため、リスク評価のたるの危険のひどさは、それぞれ分けて定義する。
Table 1 Leading structural characters that yield hygiene risks.
(Leading structural characters that yield hygiene risks were assumed from hygienic design requirements)

Outline of hygienic design requirements for food contact surfaces	Leading structural characters that yield hygiene risks
5.2.2.1 : Surfaces shall be free of cracks, crevices, etc.	① Non-easy to clean
5.2.2.2*1 : Surfaces shall be cleanable. Intended to be disassembled design shall be readily accessible for cleaning and inspection and demountable parts shall be readily removable.	② Non-easy to disinfect
5.2.2.3 : Surfaces can attain the required disinfection, sterilization, etc.	③ Non-easy to remove
5.2.2.6*2 : Dead space shall be avoided.	④ Easy to contamination
5.2.2.9 : Such as corners shall be effectively cleanable.	⑤ Non-easy to check
5.2.2.10 : Such as seals shall be designed to minimize food contact surface and can be cleanable.	⑥ Substance retainable design
5.2.2.11 : Fasteners shall be avoided. Unavoidable, fasteners shall be cleanable. Threads which may become product contact surface during dismantling operation should be cleanable.	
5.2.2.12 : Process flow disruption caused by intrusion shall be avoided. Where necessary such a intrusion shall be cleanable.	
5.2.2.13 : Shaft seals shall be cleanable or readily accessible for cleaning.	
5.2.2.16*4 : Such as covers and doors shall be avoid accumulation of soil and cleanable.	
5.2.2.21 : Surfaces shall be cleanable. Intended to be disassembled design shall be readily accessible for cleaning and inspection and demountable parts shall be readily removable.	
5.2.2.4/5.2.2.15 : Machinery shall be designed to prevent micro-organisms migrating, either directly or via soil.	
5.2.2.6*2 : Dead spaces shall be avoided.	
5.2.2.14*3 : All sensors contact surfaces shall be avoid.	
5.2.2.5 : Surfaces shall be self-draining or be drainable.	
5.2.2.7 : Permanent jointed shall be flush.	
5.2.2.6*2 : Dead spaces shall be avoided.	
5.2.2.14*3 : All sensors contact surfaces shall be avoid crevices, dead spaces, and shall be drainable.	
5.2.2.16*4 : Covers and doors shall be avoid adverse influence and shall be cleanable.	

*1~*4 That requirement also related to another "characteristic for hygiene risks"

2・2 食品機械のリスク低減のための保護方策の優先順位、及び2つのリスクへの対応

ISO 12100 は、リスクを低減するための優先順位を3つのステップに分け、それぞれ次のように規定する。

(1) ステップ1（本質的安全設計方策）: 機械と暴露される人との間の相互作用に関する設計特性を適切に選択することで、危険源を除去、又はリスクを低減。

(2) ステップ2（安全防護及び/又は付加保護方策）: ステップ1で許容可能なリスクにまでリスクを低減できない場合に行うガード及び保護装置を用いたリスク低減。機械類の制限（以下、制限仕様）を考慮して、適切なガード、保護装置を選択する。

(3) ステップ3（使用上の情報）: ステップ1及び2の採用にも関わらず、リスクを十分に低減できない場合、使用上の情報で残留リスクを作業者などに認知させることで、リスクを低減。

食品を加工する駆動部の安全リスクを低減する場合、初めに前記“ステップ1”に従い、手指が届かない距離を設ける、又は駆動部へのアクセス可能な隙間をなくすなど、本質的に「アクセスできない構造」を検討する。
だが，食品加工機械の食品接触部は，表1の①，②に記す衛生リスクを回避するための構造は，機械停止中は本質的に「容易にアクセス可能な構造」であり，機械稼動中は，⑤のように本質的に「内部が確認可能な構造（内部が十分見える隙間）」でなければならない，このような衛生面の“本質的安全設計方策”の採用は，安全面の本質的安全設計方策の採用を困難とさせる場合がある。

そこで設計者は次のステップ2 “安全防護及び付加保護方策”で示される，ガードを用いたリスク低減を検討することになる。ガードを用いる場合，表1の①②：アクセスしにくい，③：分解しにくいを構造にならないよう，必要な時に直ちにガードを開放し，直ちに異物の除去あるいは確認ができるよう，「インターロック付き可動式ガード」が多用される傾向がある。このようなガードは食品機械のホッパ部，食材をシート状に成型するローラ部など，多くの場所で見ることができる。

だが，時としてガードに対する衛生リスクの検討が不十分な場合，今度はガードを通じて内部が十分見えない，「洗浄のためガードにアクセスできない構造がある」，「ガードはねじで締結されており，水が浸透する」などの非衛生的構造となり，高い衛生リスクが残るガードとなってしまう可能性がある，さらにこのようなガードのリスクは，作業者がガードを無効化する動機にもなり得る。

一方，衛生面を重視し「ガード格子の間隔を広くし，ガードした状態で駆動部のある内部加工エリア全体が良く見える」，「ガードは工具を使わずにごく容易に取り外すことができ，手持ち工具を用いずに取り外すことができる」など，衛生B級が定める構造を採用すると，ガード格子の間隔が関連規定（ISO 13857（ISO, 2019））で定める寸法よりも広くなる，又はガード解放から駆動部が停止するまでの時間に基づく最小距離が，関連規定（JIS B 9715（JIS, 2013a））で定める寸法よりも短くなる，など，高い安全性が残るガードとなってしまう可能性がある。

このようなどちらか一方の残留リスクのみが高いなる構造を回避するために，衛生リスク及び安全リスクを包括したリスクアセスメント手法（以下，多重リスク低減プロセス）を大村らが提示した（大村他，2011a，しかし筆者らが2012年から2018年にかけて，食品機械の安全及び衛生設計に関する要求事項を定めた8種類のJIS（日本規格協会，2013b，2014，2015，2017a，2017b，2018，2020a，2020b）を作成するため，機械装置メーカの設計者が行う，50機種以上の食品加工機械のリスクアセスメント作業によって，設計者が保護方策を検討する際，安全防護物の構成要素の検討にまで及ばず，「インターロック付き可動式ガード」，「施錠式インターロック付きガード」，「ライトカーテン」などの保護方策単位で，又は安全防護物の構造とガードの表面構造のみで，2つのリスクのレベルを見積もるプロセスが多く採用されていることがわかった。このようなプロセスにより安全リスク低減を中心に設計した「手指がハザードに届かない構造」の場合，清掃しにくい高い衛生リスクが残存する可能性がある。一方，衛生リスク低減を中心に設計した「内部の目視が可能で，手指が全てに届く構造」の場合，作業者の手指が稼働中のハザードに届くような，高い安全リスクが残存する可能性がある。

2・3 食品機械のリスクアセスメントのモデル

安全防護物の各構成要素は，安全リスクと衛生リスクに影響を与えるだけでなく，その影響の大きさ自体が異なることがある，リスクを見積る際，安全防護物を構成する，「格子」，「取付部」，「スイッチ」などの各構成要素，あるいは追加で利用可能な他の保護方策を含めた，保護方策の組み合わせについてもハザードを同定し，リスクアセスメントの反復プロセスによって最適な組み合わせを特定することが必要になる（図1）。この方法は，異なる複数のリスクを扱うリスクアセスメントを行う際，2つのリスク低減に適切な構造を特定し得る，有効な方法の1つになると考える。
3. 安全及び衛生リスクのバランスを考慮したリスクアセスメントの考え方

筆者らが提唱する「安全及び衛生を考慮したリスク低減プロセス」に従い、ステップ1の考慮を終えた後、初めてステップ2の“安全防護と付加保護方策”によりリスク低減を検討する場合、安全リスク及び衛生リスクに大きく影響する可能性のある、保護方策の構成要素を明らかにする。次にそれら各構成要素の採用しうる組み合わせから、安全リスク及び衛生リスク双方が最も低くなる組み合わせをリスクアセスメントの反復プロセスに従って特定する。

ISO 12100は、リスク低減の際に「リスク」と共に「機械の能力」「機械の使用性」「機械の製造・運転コスト」の4つの要因(以下、リスク低減4要因)を考慮することを定める。従って最後のステップでは、これらリスク低減4要因を加味して、安全リスク及び衛生リスクのバランスを考慮した安全防護物を決定することが望ましい。

なお、「安全及び衛生を考慮したリスク低減プロセス」では、限定仕様を定めるプロセスに衛生リスクのアセスメントプロセスを付加しているが、リスク以外の上記要因によっては、衛生リスクと安全リスクのアセスメントプロセスを入れ替え、安全リスクのアセスメントプロセスを限定仕様として扱うこともできる。

本章は、このリスク評価手順に関するモデルを2例示す。

3.1 ホッパ上に設置するインターロック付き可動式ガードの例

安全リスクと衛生リスクのバランスを考慮するプロセスを示すための、1つ目の参考例として、多くの食品機械に見ることができる、食品材料を貯める「ホッパ」上に設置する「インターロック付き可動式ガード（以下、インターロックガード）」を取り上げる。

本節が例示する機械のガード部のリスク見極めに関連する、便宜上の条件である制限仕様を表2に示す。

表2は、食材を機械の加工部へ送り込むスクリュを下部に備えた、機械のホッパ部（図2）に対する2つのリスクのバランスを考慮した、ガード構造決定プロセスを検討するために、機械類の制限の参考例を一覧にまとめたものである。
The machinery limits for risk estimation	Example of contents of the machinery limits
The machine part which subject to	A hopper with a drive unit that stored foodstuffs
estimate the risk	
Characteristics of food processed by	5 days expiration date undried sweets (it is sold through a stores)
machinery	
Ingredients for food to be put into a	Raw-cream to fill up a undried sweets
hopper	
The place to install a guard	The upper part of the hopper which throws in foods
Foreseeable misuse of a guard	Use it with defeat the switch of interlock or remove the guard
	Put in a finger inside through the lattice on the guard surface
	After opening the guard, immediately put a fingers inside before the internal drive device stops.
Main tasks of worker	Supplying food materials (4 times/60 minutes)
	Scrape off the material adhering to the inside of the hopper through the lattice by dedicated tool when appropriate.
	Monitoring and removal a foreign matter through the lattice
	Disassemble and cleaning a hopper (3 times/day: a time of products switching, at the end of work)
Safety aspects	The feed screw inside a hopper (stop time due to switch off: 1 second)
Serious hazardous events	a) Access the moving screw through the lattice and be entangled finger
	b) Open the guard and access the screw immediately before stope, and be entangled finger.
The probability and severity of harm	Severing finger. Incision or fracture of Finger when the guard opened and accessed the screw immediately.
Hygienic aspects	That Structure is difficult to wash and disinfect
	That Structure is difficult to disassemble
	That Structure is difficult to check the inside surface
	That Structure is easily held a material and is easily polluted
Serious hazardous events	c) Micro-organism remain and grow by poor cleaning and disinfect of the guard part
	d) Micro-organism remain and grow by overlooking food materials which bonded with the guard structure
	e) Micro-organism remain and grow by food and water intrusion into the guard gaps
	f) The screw drops into the food and contaminate it.
The probability and severity of harm	Economic loss for 10 million yen or more and less than 100 million yen by products recall (Number of user employees: 30)

Fig.2 Example of a hopper with a screw for feeding. Food processing machine's hopper for creamy materials with a feeding screw underneath of it.
安全リスク及び衛生リスクのバランス

本例で取り上げる、インターロックガードで検討する重要なガード要素は、ガード表面の“格子”，本体へのガードの“取付部”そしてガードの開閉状態を検出する“ドアスイッチ”、以上3つの要素を表2に示す条件で、安全リスク及び衛生リスクに大きな影響を与える要素とし、検討の対象にする。本例では安全リスクと衛生リスク双方が関わる構造部のみに焦点を絞った。また、表2に示すような条件内容によっては、ガード設置部の構造など、他の要素を検討する必要が生じることもある。

最後にこれら要素の組み合わせについては、食品機械で良く見られる各要素の代表的な型式として、それぞれ便宜上4点想定し、それらの組み合わせから、安全面及び衛生面の残留リスクレベルのバランスを考察するプロセスを示す。

ガードの主な要素別構造の例

安全及び衛生のリスクバランスを考慮したリスクアセスメントプロセスを示すために、食品機械に多く採用されるガード格子(L)，ガードの取付部(I)，そしてガードのドアスイッチ(S)をそれぞれ4タイプずつ選定した。なおここで採用する各要素の構造の特徴は以下の通りとする。

(a)：安全リスクを中心に考慮した構造。
(b)：衛生リスクを中心に考慮した構造。
(c)：リスクアセスメントプロセスを反復せずに安全リスク、衛生リスク双方を考慮した構造。

ガード要素に関する各構造の概要は次の通り。

ガードの格子(L)の主な構造例

食品機械の食品接触部へ使用するガード表面は、衛生面の要求により、内部の視認性を確保する必要がある。視認性を得るために、ポリカーボネート製などの透明パネルを隙間なく用いることも考えられるが、高分子材料の欠けた微片は金属探知機で検出することができない。さらに微細な傷が付きやすい材料特性により、耐用期間中に表面に穢が生じて視認性を妨げる、などの理由で一般的に好まれない。そのためここでは現在の食品機械に採用されるステンレス鋼による、4つのガード格子(L)を例とした（表3参照）。

開口部寸法に応じた安全距離を定めるISO 13857に準じた、目の細かい格子を採用した表面で、最も安全リスクを低減可能な構造を(a)とする。

(b)のガードにある格子の交差部をなくし、容易に清掃し易い、交差なし格子を衛生リスクが最も低い構造として、(d)とする。

次に安全リスクと衛生リスク双方を考慮した構造として、格子交差部の開口部から、200 mmまで内部に侵入する可能性があると、ISO 13857が定める寸法まで開口部を広げた(b)。そして原料投入部のみ(b)の寸法を採用し、他の部分は(a)の寸法を採用した格子を(c)とする。

ガードの取付部(I)の主な構造例

食品は時間経過と共に腐敗が進行し、食品の衛生リスクは上昇する。加工プロセスを通過する食品が包装されるまでの時間は、安全な食品を作るための管理システムによって厳しく管理される。そのため、飛び散りなどにより加工プロセスから離れ、ホッパ表面に付着・滞留する食品は、食品の腐敗しやすさを防ぐ。そのためここでは現在の食品機械に採用されるステンレス鋼による、4つのガード取付部(I)を例として次に示す（表3参照）。

ガードの取付部の要求事項を定めるJIS B 9716（JIS, 2019a）に準じた、工具の使用によって取り外し可能な構造を、作業者による意図しない分解、及び無効化を防ぐ、最も安全リスクを低減可能な構造として、(a)とする。

食品からの脱落、食品への混入の恐れがある一切の締結具をなくし、作業者が直面に取り外し可能で、かつ、デッドスペースがなく、清掃、清掃後の確認がしやすい構造（以下、ひっかけ型）を、最も衛生リスクを低減可能な構造として、(d)とする。なお、ここでは工具を使わずに分解可能な構造を「分解しやすい構造」と呼ぶ。
Table 3 Outline for main types of guard components and risks. It is Listed are four major types of risk characteristics for the three components of guards frequently used in food machinery.

Guard elements	(a)	(b)	(c)	(d)
Lattice structures of guard (L)	Fixed hinge	Insertion type hinge	Bolt shaft hinge	Hooking type
Fine grid (Size:20 × 20) Distance from the lattice opening to the hazard : 340(The distance that is easy to cleaning)	Open grid (Size:30 × 65) Distance from the lattice opening to the hazard : 340(The distance that is easy to cleaning)	Food material feeding area	Parallel lattice (Size:30) Distance from the lattice opening to the hazard : 340(The distance that is easy to cleaning)	
Characteristics of safety risk	Only the fingertips can into inside.	Hand and fingers may be able to into inside up to 200 mm.	Hand and fingers may be able to into inside up to 200 mm at the lattice part of the food material feeding area.	The elbow might be possible to into inside.
Characteristics of hygiene risk	It is difficult to see the inside from the work area. There are many cross points on the lattice that make difficult to clean and check.	It is possible to see the inside by changing the viewing angle from the work area. There are still several cross points on the lattice that are difficult to clean and check.	It is difficult to see the inside from the work area.	It is easiest to check the inside from the work area. There is not any cross point on the lattice and it is easiest to clean and check.
Mounting structures of guard (I)				
Fixed hinge	Insertion type hinge	Bolt shaft hinge	Hooking type	
Characteristics of safety risk	It cannot be removed by general workers. It is not likely to accidental get out.	Anyone can remove it. It is possible to get out accidentally.	It is fastened with a single nut, there is a possibility of accidental disconnection.	Anyone can easiest remove it. It can make easiest to get out, and to do disabling.
Characteristics of hygiene risk	It is difficult to removed. It is difficult to the soil such as inside the gap. It cannot be easily clean immediately.	It can be easily removed. It cannot be easily checked the soil such as inside the gap.	It can be removed. If the diameter of the bolt cylinder is more than 1 cm, it can be cleaned and checked.	It can be easily removed. It can be easiest checked the soil such as inside the gap.
Type of door switch (interlocking device) (S)	Guard locking device	Non-contact device with delay function	Non positive mechanical action switch (A)	Non-contact device
Characteristics of safety risk	It is Locked until the hazardous machine functions have disappeared.	It can makes the time which for the hazardous machine functions disappeared.	It has a high reliability due to the redundant system. but, if the guard is removed for cleaning, the switch (A) can make easily disabled such as a sticky tape. Environmental oil and powder adhere to the plunger and fix it.	It can be guard opened immediately and a worker can reach the hazardous machine functions before stopped.
Characteristics of hygiene risk	Food residue and washing water that have got into the plug-in slot of a key cannot be clean.	The screws and delay function device are not easy to clean.	The roller part of switch is difficult to clean.	It is the easiest to clean and check of such as food residue.
ガードのドアスイッチ（S）の主なタイプの例

インターロック装置の要求を定めるJIS B 9710 (JIS, 2019b)では、ガードの位置を検出するドアスイッチを“機械式”、“非接触式”の2つに大別し、さらにコード化の有無で合計4つに分類する。なお、コード化なしの非接触スイッチは、鉄片又は汎用マグネットで容易に無効化が可能なため、ここでは対象から除外し、他の3種類を取り上げる。

JIS B 9710に準じた、安全面のハザードが停止しない限り施錠状態を継続する、コード化された機械式スイッチ（以下、施錠式スイッチ）を、最も安全リスクを低減可能な構造として、(a)とする。

(a)のスイッチにある隙間、溝などがなく、清掃し易さ、汚れの確認がしやすいコード化された非接触式スイッチ（以下、非接触スイッチ）を、(d)とする。

次の(a)と(d)の中間となり、(d)のスイッチの欠点を補うため、ねじを用いた開放遅延機構を持たせたもの（以下、遅延機能付き非接触式スイッチを2つ［直接機械作動（ポジティブ）及び非直接機械作動（非ポジティブ）］用いたスイッチとする。

なお、ここに示すガードシステムが有する、制御系の安全関連部の安全機能を遂行する能力（時間当たりの危険側故障発生率）は、JIS B 9705-1（日本規格協会, 2019c）が規定する、PL = eとする。

ガードのリスク評価に用いるリスク要素のレベル及び評価の例

表3に示すガード構成要素の組み合わせを考慮した安全及び衛生リスクの評価には、大村らが提示した「安全面と衛生面を含むリスクアセスメント手法（大村他, 2011b）」より、危害の発生確率の尺度の例に表4、危害のひどさの例に表5、リスクを評価するためのマトリックス例に表6、そしてリスクレベルの分類例に表7をそれぞれ用いる。なお、安全リスク及び衛生リスクに関する危害の内容は異なるため、表5はリスクの種類別にひどさの内容を分けて記している。

Table 4
Example of scale for Probability of occurrence of harm, and classification of those levels.

Severity levels of probability (P)	Scales used to estimate the probability of occurrence of harm,	
Very likely	P4	near certain to occur
Likely	P3	can occur
Unlikely	P2	not likely to occur
Remote	P1	so unlikely as to be near 0

Table 5
Example of the scale for severity of harm, and classification of those levels.

Severity levels of harm (S)	Scales used to estimate the severity of harm for hygiene (For user)	Scales used to estimate the severity of harm for safety
Minor	- less than ¥10^4- per one employee	- No injury or slight injury requiring no more than first aid
Moderate	- Loss exceeding ¥10^4- but less than ¥10^5- per one employee	- Significant injury or illness requiring more than first aid
Serious	- Loss exceeding ¥10^5- but less than ¥10^6- per one employee	- Severe debilitating injury or illness
Catastrophic	- Loss exceeding ¥10^6- per one employee	- Death or permanently disabling injury or illness
これらガード構成要素の代表的な組み合わせ例に対する安全リスク,及び衛生リスクの評価例を表8に示す。3つの構成要素にそれぞれ4点の異なる型式を想定しているので,本来これらの組み合わせは64通り存在する。しかしここではリスク評価の考え方を示すため,それぞれの組み合わせの特徴が顕著に出る4通りを代表的な組み合わせ例とした。なおガードが存在しない状態は,ガードに関連する衛生的面のハザード構造及び危険事象も存在しない。そのため,表8のB)の衛生リスクはブランクとなる。

Identified hazards events which are reasonably foreseeable	Safety risks before installing guards	Safety risks after installing guards					
	(S)	(P)	Risk level (RL)	Gard construction	(S)	(P)	Risk level (RL)
a) Access the moving screw through the lattice and be entangled finger.	S4	P4	IV	(a) (b) (c)	S4	P1	II
				(d)	S4	P3	IV
b) Open the guard and access the screw immediately before stop, and be entangled finger.	S3	P4	IV	(a) (b) (c)	S3	P1	II
				(d)	S3	P3	IV

Identified hazards events which are reasonably foreseeable	Hygiene risks before installing guards	Hygiene risks after installing guards					
	(S)	(P)	Risk level (RL)	Gard construction	(S)	(P)	Risk level (RL)
c) Micro-organism remain and grow by poor cleaning and disinfect of the guard part.	–	–	–	(a) (b) (c)	S3	P3	IV
				(d)	S3	P1	II
d) Micro-organism remain and grow by overlooking food materials which bonded with the guard structure.	–	–	–	(a) (b) (c)	S3	P2	III
				(d)	S3	P3	IV
e) Micro-organism remain and grow by food and water intrusion into the guard gaps.	–	–	–	(a) (b) (c)	S3	P1	III
				(d)	S3	P2	III

Table 6 Risk levels and categories of matrix.

Probability of occurrence of harm (P)	Severity of harm (S)			
	Minor (S1)	Moderate (S2)	Serious (S3)	Catastrophic (S4)
Remote (P1)	I	I	II	II
Unlikely (P2)	I	II	III	III
Likely (P3)	II	III	IV	IV
Very likely (P4)	III	IV	IV	IV

Table 7 Levels of risks.

Risk level (RL)	Interpretation of risk level
I	Negligible (Acceptable risk)
II	Low (Acceptable risk)
III	Medium Intolerable risk (Conditionally acceptable risk)
IV	High (Unacceptable risk)

Table 8 Levels of risks.

A) Variation for safety risks.

B) Variation for hygiene risks.
リスクアセスメントに基づくガード構成要素の検討

ガードを設置していない状態から、主な3タイプのガードのリスクを考慮し、最適な構造へ至る過程を考察する（表8を参照）。まずガードを設置していない状態のリスクを検討し（3・1・4・1）、次に主な3タイプのガードのリスクを考慮した評価を行う（3・1・4・2）。最後に最適な構造へ至る過程を考察する（3・1・4・3）。

3・1・4・1 ガード設置前のリスク

(1) 安全リスク

ホッパ上にガードがない状態は、安全面のハザードであるスクリュに、作業者は“作業中”及び“停止操作後”共に常時アクセス可能である。そのため、表8のA)の安全リスクのリスクレベル（以下、RL）は、許容できないレベルのIVとした。

ガードを設置しない状態での常時アクセスの利用は、リスクを適切に低減しない。従って、この段階における発生確率低減のための方策として適切でないと考え、選択可能な保護方策から除外する。

(2) 衛生リスク

ガードが存在しないので、表8のB)のガードに関連する衛生リスクは存在しない。

3・1・4・2 ガード設置後のリスク

安全リスクの低減を目的にガードを設ける事により、ガード表面の格子(L)、ネジやヒンジなどを含む取付部(I)、インターロックシステムの検出スイッチ(S)などが、食品接触部に追加される。その結果、表2の衛生面の危険事象に示す「c) ガード格子部（主に格子とその交差部の隙間）の洗浄、殺菌不良による菌の残留又は腐敗」、「d) ガード構造部（ヒンジ部のねじ、ねじ山及びその差込穴、スイッチのキー差込穴など）に残留する食材の見逃しによる腐敗」、「e) ガード構成要素接合部の隙間（ヒンジ及びねじの金属間の可動接合部など）への、食材及び水の侵入による腐敗」が現れる。

3・1・1項でリスクアセスメントの対象とした「ガード表面(L)」、「ガードの取付部(I)」そして「ドアスイッチ(S)」の主な組み合わせによる安全リスク、及び衛生リスクの概要を次に示す。

3・1・4・2・1 L(a),l(a),S(a)の組み合わせ

(1) 安全リスク

ガード表面の格子(L)の開口部は、ISO 13857（ISO, 2019）に準じた寸法と衛生面のハザードまでの距離を満たしているため、ガードを閉じた状態で安全面のハザードにアクセスする可能性は限りなく低い。なお、格子からハザードまでの距離340 mmは、両手を中に入れた作業、すなわち清掃がしやすい距離としてISO 15534-1（ISO, 2000）に従う。

また取付部(I)は、工具を要する縫結を採用しているため、食品安全マネジメントシステムにより工具を持って作業場に立ち入ることができない作業者は、ガードを外すことは極めて困難である。

次にドアスイッチ(S)は、スクリュが止まるまで施錠が続く。

以上により、安全リスクは表8の安全面の危険事象a)及びb)に危害のひどさは、S4及びS3、発生の可能性は、危険事象a)及びb)にP1と見積もった。従って危険事象a)及びb)の安全リスクのRLは、共有IIとした。

(2) 衛生リスク

ガード表面の格子(L)には、狭い隙間を伴う交差部が多数存在する。これら交差部の適切な“洗浄”及び“清浄度確認”には、多くの時間と労力を要求するだけでなく、作業者に高い負荷を与える。このような高い負荷の作業は、作業者がミスをする可能性を高める。

固定されたヒンジ(I)の金属間結合部の隙間、ドアスイッチ(S)に用いた施錠式スイッチのキー差込部は、食材及び洗浄水の侵入、そしてその滞在が生じる可能性が極めて高い。さらにこれらの部位は清掃性及び検覈性が極めて劣るデッドスペースとなっている。さらにヒンジの縫結に用いるナットの意図しない外れにより、ナットが食品加工エリアへ混入する可能性がある。
以上より衛生リスクは、表 8 の衛生面の危険事象 c), d)及び e)共に危害のひどさ(S)に変化なく S3. 発生の可能性(P)は、現場の作業手順による回避の可能性を考慮し、P3 と見積もった。従って危険事象 c), d)及び e)の衛生リスクの RL は、共に IV とした。

3・1・4・2・2 L(b), I(b), S(b)の組み合わせ

(1) 安全リスク

ガード表面(L)の交差部が減り、開口部の寸法が 30 mm × 65 mm と広がるが、ハザードまでの距離は一律 340 mm なので、ISO 13857 の規定を満たす構造となっている。

ドアスイッチ(S)は、非接触式であり、施錠機能はない。しかし、簡易式の遅延装置により直ちに開放できない構造となっている。ねじの長さは、ホッパ内のスクリュが停止に要する時間が長くねじを回し続ける必要のある長さとする。

取付部(I)は、差込式ヒンジのため外しやすい構造であるが、ドアスイッチと共に運用されるねじを用いた簡易式の遅延装置により、遅延装置を開放せずに外すことができない構造とすることで、ドアスイッチを OFF にすることなく、ガードを開放することができない構造とする。

以上より、危険事象 a)及び b)共に、危害のひどさ(S)は変化なく、S4 及び S3. 表 8 の危険事象 a)及び b)共に、P1 と見積もった。従って危険事象 a)及び b)の安全リスクの RL は、共に III とした。

(2) 衛生リスク

ガード表面の狭い隙間を伴う格子の交差部(L)の数は減り、煩雑さは改善した。

ガード取付部(I)に採用する差込み式ヒンジの穴の内部、ドアスイッチ(S)に附属する簡易式の遅延装置のねじ部のねじ山と、この遅延機構全体に、洗浄性及び視認性を妨げる構造が認められる。一方、ドアスイッチは非接触型であるため、視認性及び清掃性は優れる。

以上より、危険事象 c), d)及び e)共に、危害のひどさ(S)に変化なく、S3. 発生の可能性(P)は、致命的な構造であるデッドスペースが除去され、事例では格子部の数が 56 か所から 8 か所と 1 術に減少し、煩雑性においても 3・4・2・1 項より大きく改善が認められることから、P2 と見積もった。従って危険事象 c), d)及び e)の衛生リスクの RL は、共に III とした。

3・1・4・2・3 L(c), I(c), S(c)の組み合わせ

(1) 安全リスク

ガード表面(L)の交差部は(a)及び(b)の組み合わせであるため、ISO 13857 の規定を満たす。

ドアスイッチ(S)は、メカニカルスイッチのポジティブな結合をもつスイッチ、及び非ポジティブなスイッチを持つスイッチの、合計 2 つを組み合わせ、信頼性を高めている。だが食品機械の場合、ガードを頻繁に取り外すことが必要になる。ガードを外し、非ポジティブなスイッチをテープなどで固定することで、容易にロックシステムを無効化することが可能となることから、本例のような食品機械への使用は、安全性が低い(大村他, 2011b)。

取付部(I)は、1 本の寸法が長いボルトによってガードを固定部に設置し、このボルトの胴部がヒンジの芯棒の役割を果たす構造である。芯棒の固定は、ボルトヘッドの反対側を止めるドームヘッドのナットによる。このボルトの脱着には工具を要するが、1 か所しかない。使用中の開閉及び機械の振動により、ねじ部が緩み、手で取り外し可能になると予想できる。また、ドアスイッチ(S)は、施錠機構がないため、作業者は片手でガードを容易に解除することが可能である。機械使用中に、片手で極めて急速にガードを解放し、手を内部へ差し込むような、スクリュへのアクセスが否定できない。また、食品製造環境中に漂う油脂分及び食品由来の塵埃が、スイッチのプランジャに付着し、まれにプランジャの固着を生じさせることもある。

以上による安全リスクは、危険事象 a)及び b)共に、危害のひどさ(S)は変化なく、S4 及び S3. 発生の可能性(P)は、危険事象 a)及び b)共に P3 とし、危険事象 a)及び b)の安全リスクの RL は、共に IV とした。
(2) 衛生リスク
ガード表面の格子(L)は、狭い隙間を伴う交差部の数が(a)より少ないが、(b)以上存在し、洗浄作業時における作業者の高い負荷が、依然残留している。
取付部(I)は、直径10 mm以上のボールを芯棒として使用する場合、ボールの差込穴の洗浄し易さが、(d)より確認しにくい。ボールの締結部の数は最少となっているが異物混入の可能性は僅かであり、ねじ部は最低限の長さであるが、依然、洗浄しにくい構造となっている。

ドアスイッチ(S)は構造にもよるが、本例のようなプランジャーの先端についているローラ部の洗浄がしにくい。

3・1・4・2・4 L(d),I(d),S(d)の組み合わせ
(1) 安全リスク
ガード表面(L)の格子から全ての交差部を除去した。格子間の隙間を20 mm以下とすれば、開口部寸法はISO 13857の規定を満たすことができる。だが内部の視認性の確保を目的に、ここでは30 mmの隙間を設けた格子を導入している。そのためISO 13857の規定から外れ、格子開口部から内部の駆動部へアクセスできる可能性が高まる。
開口部から駆動部までの距離は、洗浄性を考慮した距離(4.3.2.1の(1)参照)なので、変更しない。
また、取付部(I)はひっかけ型。そしてアクセスキッチ(S)は非接触スキッチであり、施錠機構がないため、作業者は工具を用いることなく片手でガードを容易に解除することが可能となる。また、機械使用時に、片手で極めて急にガードを解放し、手を内側へ差し込むような、スクリュへのアクセスが否定できない。以上による安全リスクは、危険事象a)及びb)共に、危険のひどさ(S)に変化なく、S4及びS3、発生の可能性(P)は、危険事象a)及びb)共にP3とし、危険事象a)及びb)の安全リスクのRLは、共にIVとした。
(2) 衛生リスク
ガード表面の格子(L)は、狭い隙間を伴う交差部がなく、直線状となっている。この構造は、目視の際に陰にくなり、及び指の届きにくい構造である交差部を除去した、本質的な衛生構造をしたもので、汚れの確認しやすさ及び清掃のしやすさが最も優れる。
取付部(I)をひっかけ式となっており、ファスナに見られる洗浄・確認がしにくいねじ山の溝、穴などは一切なく、ひっかけ部の内角寸法を、指が入る隙間とすることで、取付部の衛生性も最も優れる。

ドアスイッチ(S)にも非接触型を用いているので、デッドスペースはいない。

以上よりこの組み合わせのガードは、可能な限り衛生的危険源を除去したガードといえる。危険事象c)、d)及びe)共に、危険のひどさ(S)に変化なく、S3、発生の可能性(P)は、最も低いP1と見積もった。従ってc)、d)及びe)の衛生リスクのRLは、共にIIとした。

3・1・4・3 本事例における適切なガード構成の考察
上述する3・1・4・2項の検討結果から、L(a), I(a), S(a)及びL(c), I(c), S(c)の組み合わせは、一方のリスクを許容可能なレベルにまで低減するが、他方のリスクは高い状態で残留する構造であるため、追加の方策を講じずに採用することは困難と考えられる。このように特定のリスク低減を目的とした構造は、他方のリスクを引き上げることがあり、時には、"許容不可能なリスク"と判断されるレベルになることがある。
これら4パターンの組み合わせだけならば、L(b), I(b), S(b)が2つのリスクに対して、"許容不可能なリスク"を回避したガードと言える。

LSL＝IIIの衛生リスクがなおも残留することから、実際のリスクアセスメントでは、L(b), I(b), S(b)の組み合わせからさらにリスクアセスメントプロセスを反復し、それぞれの要素について他の構造に変更することで、一層のリスク低減が可能な組み合わせを検討する必要がある。それぞれの構成要素に対する考察を次に示す。
(1) ガードの格子 (L)
L(b)の構造は ISO 13857 に準じており、安全リスクは許容可能と考えられる。表 2 に定める前提条件を含む食材の大きさによっては、ガードを開放することなく、格子の上から食材の投入が可能である。その場合、材料供給時に、機械を停止させる必要がないことから、使い勝手を損なうことのない構造と言える。

一方で、衛生リスクが III であり、交差部の溶接作業によるコスト上昇だけでなく、清掃においても歯ブラシなどを用いた残留の除去、及び確認作業を作業者に要求する。

それに対し L(d)は最も溶接工程が少なく、また洗浄も 1 本の格子をスポンジで一気に洗うことが可能であり、清掃性、格子汚れに関する視認性、及び格子内部の視認性も最も優れる。さらに L(b)同様、ガードを開放することなく食材を投入することも可能である。L(d)は 3 章の冒頭に示す “リスク低減 4 要因” の「機械の使用性」「機械の製造・運転コスト」に優れるが、依然として格子の隙間から手を内部へ入れる予見可能な誤用途の課題が残る。

L(b)は最優先で採用を検討すべき構造と言える。しかし、L(b)の構造が衛生リスクの観点から許容できないユーザも存在する。その場合、格子の隙間から手や指を押し込むことが防止されている。交差部溶接作業によるコスト上昇だけでなく、清掃においても歯ブラシを用いた残渣の除去、及び確認作業を作業者に要求する。

(2) ガードの取付部 (I)
I(b)が有する差し込み式ヒンジの軸の差し込み部は、指で触れることが極めて困難であり、表面全体を十分に目視で確認することもできる。だが、このヒンジ部の数は、1 つのガードに通常 2 箇所と少ないことから、洗浄時に何らかの洗浄器具の使用等を制限仕様としてユーザが受け入れる場合がある。この危険事象が重大なリスクにつながる場合は、I(c)の利用が有効である。ただし I(b)は、ブレーキモータを採用し、ガード解放による動力遮断による停止時間を 1 秒から大幅に短縮させることで、安全リスクを低減することができる。この場合、I(d)の選択もあり得る。

I(b)、I(c)の構造を衛生リスクの観点から許容できないユーザが、I(d)のひっかけ式を検討する場合、予想可能な偶発的なガードのずれや、外れを考慮し、I(d)の構造を一部改良する必要が生じかもしれない。例えば参考例の I(d)は、長年に渡る使用中、ガードへの体又は容器などの衝突により、ひっかけ部分が変形することが予想できる。ひっかけ部分は水平面と垂直面への変形に強い構造とすると共に、ホッパの縁にずれにくく、ひっかけ部の保持構造を設けて、偶発的なガードのずれや、外れを防止することで、I(d)の選択もあり得る。

(3) ドアスイッチ (S)
S(b)は、制限機能のネジ部の清掃が容易ではない。だが 1 か所だけならば、作業者に与える負荷は低いと思われる。また、このネジは、ガードの偶発的なずれや、外れの防止など、前記 I(d)を採用する場合の安全リスク低減に役立つ。

S(b)の構造を衛生リスクの観点から許容できるユーザが、S(d)のスイッチを検討する場合、例えばコストに関する制限仕様の変更が許されるならば、プレーキモータを採用し、ガード解放による動力遮断による停止時間を 1 秒から大幅に短縮させることで、安全リスクを低減することができる。この場合、S(d)の選択はあり得る。

あるいはガードによって隔離するハザードの重篤度を重視する場合は、一切の食材及び洗浄水がスイッチ及びその取付部に触れない構造とすることで、S(a)を採用することができる。
3・2 フィーダの移送ブレードに対する保護方策の例

ここでは本報で提案する手法が有効であることを示すために、更にもう一つの例として、高さによるリスク低減を中心とした「移送ブレード」の保護方策を取り上げる。

本節で例示する移送ブレードは、めん類などのドウ生地を製造する前工程で使用される機械で、中間製品を次工程へ送る、“フィーダ”の加工容器内に備わっている送り機構（図3）である。移送ブレードのリスク見積もりに関連する、便宜上の制限仕様を表9に示す。

Table 9 例示の内容の機械限界におけるリスクを見積もるための事例。

The machinery limits for risk estimation	Example of contents of the machinery limits
The machine part which subject to estimate the risk	Processing vessel that transfers food to the next process
Characteristics of food processed by machinery	Intermediate products such as noodles and bread (granular products with a diameter of less than 1 mm and low viscosity)
Ingredients for food to be put into a hopper	Granules made by mixing flour up with seasonings and water
The protective measures to consider	- Hazard isolation by height
	- Hazard isolation by guards
	- or a combination of these
Foreseeable misuse of protective measure	- Defeating protective measures
	- Unexpected start-up by a third person during work
Main tasks of worker	- Area cleaning of food materials scattered around the processing area when intermediate products throwing.
	- Checking the condition of food materials during processing products
	- Cleaning of the processing vessel after the work
Safety aspects	Hazard The blade that rotates in the vessel (revolution speed: 15 rpm) (stop time due to power cutoff: less than 0.3 seconds)
	Serious hazardous events a) Entanglement a body by Accessing the moving blade through the opening
	b) Entanglement a body by accidental start-up of the blade, during cleaning of the vessel
	The probability and severity of harm Bruise or fracture of arm or body. Worst case is death
Hygienic aspects	Hazards (Hazardous structures) That Structure is difficult to wash and disinfect
	That Structure is difficult to disassemble
	That Structure is difficult to check the inside surface
	That Structure is easily held a material and is easily polluted
	Serious hazardous events c) Micro-organism remain and grow by poor cleaning and disinfect of the guard part
	d) Foreign matter contaminated into the food processing area due to the fall of the guard structure
	e) Contamination of around due to spoilage of foods scattered around the vessel
	The probability and severity of harm Economic loss for 10 million yen or more and less than 100 million yen by products recall (Number of user employees: 30)

[DOI: 10.1299/transjsme.20-00336] © 2021 The Japan Society of Mechanical Engineers
Fig.3 Example of a hopper with a screw for feeding. Machine that feeding material to the next process while mixing it by rotating blade.

3・2・1 移送ブレードに対する保護方策を例とした安全リスクと衛生リスクのバランス
本例では、検討する中心的な保護方策に“高さ”を用い、その他に追加の安全防護物として“ガード”、及び安全情報を生成する“ドアスイッチ”を用いる。
本例が採用するこれら要素の組み合わせについては、このようなハザードに対して多く見られる各要素の代表的な型式から6点想定し、それらの組み合わせから、安全面及び衛生面の残留リスクレベルのバランスを考察するプロセスを示す。

3・2・2 保護方策の主な要素別構造の例
安全及び衛生のリスクバランスを考慮したリスクアセスメントプロセスを示すため、類似のハザードに多く採用される、加工容器の高さ(H)、ガード(G)、ドアスイッチ(S)を、それぞれ2〜4タイプずつ選定した。なおここで採用する各要素の構造の特徴は、3・1・2項同様、以下とする。
- (a)：安全リスクを中心に考慮した構造。
- (d)：衛生リスクを中心に考慮した構造。
- (b), (c)：安全リスク、衛生リスク双方を考慮した構造。
保護方策の要素に関する各構造の概要は次の通り。

3・2・2・1 高さ（L）の主な構造例
ハザードから生じるリスクを回避する代表的な方策の一つに、3・1節に示した、ガードを用いてハザードにアクセスできない構造とする方策がある。その他に人体がハザードにアクセスできない距離（高さ）を設ける方法があり、この高さを用いた方策を当該機械に適用した例を多く見ることができる。本事例では、衛生リスクへの対応のため、ハザード周囲へのガードの設置が省略できる、ISO 13857 が規定する“上方への到達に対する安全距離”を設けたモデル、及び“上方への到達に対する安全距離”を採用しないモデルを比較事例として取り上げる。ここでは、ISO 13857 に準じた高さを設けた加工容器を(a)とし、衛生リスクに関連する清掃及び確認などの作業性を考慮し、可能な限り低い位置に加工容器を設けたものを(c)とする（表10参照）。
Table 10 Outline for main types of protective measures and risks. It is listed risk characteristics with 4 major types of the 3 risk reduction measures that are using "height" as the primary protective measure.

Protective measure	(a)	(b)	(c)	(d)
Height (H)				
Upper end of the vessel over than 1700 mm				
Upper end of the vessel less than 1300 mm				
Characteristics of safety risk				
Hands don't reach inside the vessel.				
Cleaning and checking inside is done in high places, and it will arise a falling hazard.				
Completely reach inside of the vessel from the working area.				
Characteristics of hygiene risk				
It is impossible to check and clean the inside of the vessel from the working area.				
It can be easy to check and clean the inside of the vessel from the working area.				

Guard (G)

- Set upped the guard on stairs
- Set upped the guard around the vessel
- Set upped the guard on the vessel

Characteristics of safety risk
- Doors may be accidentally closed and be making safety signal. It makes an increase of risk of accidental start-up.
- The guard lattice clearance is 30×65, and the reach to the moving drive is more than 200.
- The guard lattice clearance is 20×20, and the reach between it and the supply port is less than 12.
- Guard measures is according to ISO 13857.
- Doors may be accidentally closed and be making safety signal. It makes an increase of the risk of accidental start-up.

Characteristics of hygiene risk
- Low risk as safeguard is away from food processing area.
- It is difficult to removed.
- It is difficult to check the soil such as inside the gap.
- It is difficult to removed.
- It is difficult to the soil such as inside the gap.
- It cannot be easily clean immediately.
- Guard has a safe distance from the food processing area, then polymeric material can be used on the guard surface.
- If the distance is less than 300, it can be visible to inside.

Type of switch (Interlocking device) (S)

- Guard locking device
- Non-contact device

Characteristics of safety risk
- It is Locked until the hazardous machine functions have disappeared.
- The guard can open sooner, but since the speed of the hazardous machine functions speed is slow and the stop time is less than 0.3 seconds, the probability of harm does not increase.

Characteristics of hygiene risk
- Food residue and washing water that have got into the plug-in slot of a key cannot be cleaned.
- It is the easiest to clean and check of such as food residue.

3.2.2 ガード（G）の主な構造例

手の届かない高さに加工容器を配置させても、加工エリアの清掃、加工状態の確認、及び加工終了後の清掃などの作業を行うため、作業者はハザードに必ず接近できなければならない。そのため高さを設けた場合は、加工容器に安全に接近し、作業を行うための昇降設備（以下、階段）を通常備える。危険状態を回避するため、“階段に扉を設ける構造”，及び“加工容器周辺にガードを設置した構造”をここでは想定した。これらの保護方策を、階段への設置する扉（ガード）とした場合を(a)、加工容器周辺に設置するガードを(b)とする。そして加工容器上に設置するガードを(c)とする。
次に、“上方への到達に対する安全距離”を採用しない場合の保護方策として想定できる、加工容器を含む機械全体を取り囲む距離ガードを(d)とする。
なお本例では、ガード表面の開口部の寸法は、3・1・2・1項に記したISO 13857に準じるものとする。

3・2・2・3 ドアスイッチ(S)の主な構造例
3・1・2・3項では4種類のスイッチを上げたが、本事例で想定する移送ブレードの停止時間は0.3秒であることから、遅延機構を有するコード化された非接触式スイッチ（表3のS(b)）は、除外する。また、3・1・4・2・3項の評価より、食品産業界では無効化される可能性がある2つのメカニカルなプランジャー式スイッチを用いるタイプ（表3のS(c))も、選択対象から除外する。
なお、ここに示すガードシステムは、JIS B 9705-1が規定するPL=eとする。

3・2・3 保護方策のリスク評価に用いるリスク要素のレベル及び評価の例,
リスク評価に用いるリスク要素、及びそのレベルは、3・1・3項と同様とする。
この事例に関する保護方策の要素に関する、代表的な組み合わせ例に対する安全リスク、及び衛生リスクの評価例を表11に示す。
この事例の場合、“高さ(H)”によるリスク低減を「採用する(a)」又は「採用しない(c)」によって評価を大別する。また、高さによるリスク低減を採用した場合、“ガード(G)”の(a)、(b)、(c)は選択肢に含まれるが、すでに高さによって手が届かない構造なので、(d)の距離ガードは、選択対象から除外する。
一方、高さによるリスク低減を採用しない場合は、高所作業が発生しないため、階段に設ける扉タイプのガードは選択対象から除外し、“ガード(G)”の(b)、(c)、(d)を対象とする。
以上より表11は、“高さ(H)”に関する(a)及び(c)の保護方策に対して、それぞれ3タイプずつ、合計6種類の保護方策を組み合わせたと。
なお、表11の衛生面の危険事項c)、d)の安全リスクを考慮したガードを設けていない状態は、衛生リスクが生じないため、プランとする。だがc)の危険事象は、容器周辺へ飛散した食材の腐敗なので、ガードの有無に関わらず発生するため、衛生リスクを見積もっている。

3・2・4 リスクアセスメントに基づくリスク低減要素の検討
はじめに安全リスク及び衛生リスクを最も低減する保護方策の組み合わせ、並びに表11における安全リスク及び衛生リスクのバランスが最も取れている組み合わせについて考察する（3・2・4・1）、そして最後に最適な構造へ至る過程を考察する（3・2・4・2）。

3・2・4・1 安全リスク、衛生リスクが優れる組み合わせ及びバランス取れた組み合わせ
(1) 安全リスクが最も低い組み合わせ
表11より、最も安全リスクが低くなる組み合わせは、多くの事業所で見ることができる“高さ(H)”によるリスク低減を中心とした組み合わせ、“H(a)、G(a)、S(a)”“H(a)、G(b)、S(a)”“H(a)、G(c)、S(a)”である。
この場合、加工容器の確認及び清掃はいずれも高所作業になることから、JIS B 9713-1（JIS、2004）に適合した階段が不可欠となる。階段を設置した場合のガード(G)は、階段のステップへのインターロック付き扉（インターロックガード）(G(a)及び(d))の他に、加工容器への設置ガード（G(b)及び(c)）となる。
(G(a)及び(d))の扉は、食品を扱う加工容器から数m離れた場所への設置になるので、扉表面の開口部寸法に対する安全面の要求は除外できる。一方、扉は意図しない偶発的な閉鎖による安全情報の生成があり得、これは意図しない起動のリスクを著しく高める。偶発的な扉の閉鎖を防止するための方策他、扉内部へのエレアセンサ、圧力検知マット又はトリップバーなどの追加の保護方策、及び加工容器周辺への非常停止ボタンの設置などが必要になる。
さらに“高さ(H)”による方策を採用する場合は、衛生面の確認、清掃作業などが高所作業となり、特に清掃時に分解したガードなどのパーツを持ったステップの移動は、高さ固定のリスクを持つ。そのため表11の安全面
の危険事象 a), b) に，“ステップからの転落” “ステップでの転倒” の事象を新たに重大なリスクとして加えるべきではない。

“スイッチ(S)” は全て (S(a)) を使用しているが， (G(a)又は(b)) のガードの場合は，ブレードの停止時間が短く，かつハザードまで距離が離れているので (S(d)) を使用しても安全リスクに影響を与えないと。

| Table 11 Levels of risks. |

Identified hazards events which are reasonably foreseeable	Safety risks before installing guards	Safety risks after installing guards							
	(S)	(P)	Risk level (RL)	Gard construction	(S)	(P)	Risk level (RL)		
a) Access the moving blade through an opening and body is entangled to it.	S4	P4	IV	(a)	(a)	(a)	S4	P1	II
b) Accidental start-up the blade causes the body to become entangled to it.	S4	P4	IV	(a)	(b)	(a)	S4	P1	II
				(c)	(a)	(a)	S4	P1	II
				(c)	(b)	(d)	S4	P1	II
				(c)	(c)	(d)	S4	P1	II
				(c)	(d)	(d)	S4	P1	II

Identified hazards events which are reasonably foreseeable	Hygiene risks before installing guards	Hygiene risks after installing guards							
	(S)	(P)	Risk level (RL)	Gard construction	(S)	(P)	Risk level (RL)		
c) Micro-organism remain and grow by poor cleaning and disinfect of the guard part.	S3	P1	II	(a)	(a)	(a)	S3	P1	II
d) The parts of guard structure fall off to the food processing area and contaminate food.	S3	P1	II	(a)	(b)	(a)	S3	P2	III
				(c)	(a)	(a)	S3	P3	IV
				(c)	(b)	(d)	S3	P3	IV
				(c)	(c)	(d)	S3	P3	IV
				(c)	(d)	(d)	S3	P3	IV
				(c)	(d)	(d)	S3	P3	IV
				(c)	(d)	(d)	S3	P3	IV
e) Food materials are spilled around the machine and they decayed.	S3	P1	II	(a)	(a)	(a)	S3	P1	II

[DOI: 10.1299/transjsme.20-00336] © 2021 The Japan Society of Mechanical Engineers 19
(2) 衛生リスクが最も低い組み合わせ

表 11 より, 最も衛生リスクが低くなる組み合わせは, 衛生面の作業効率を優先し, 加工容器の上端の“高さ(H)”を 1 300 mm 以下に引き下げ, 目視確認及び清掃作業がしやすい高さとした“H(c), G(d), S(d)”である。

ガード(G)は床に設置するため, ガードの高さが 2 000 mm を超えても作業性に影響を与える可能性は低い。さらにガードは, 食品加工部から離れているため, 清掃時に毎回の分解を必要としない。それだけでなく例えば 500 mm 程度, 加工容器より離れた距離を取り, ガードを設置する場合, 作業中にガード表面を覆うほど食材が飛散する可能性は低いと考えられる。このようなガードの場合, 清掃の手間を最も短くできるポリカーボネートなどの「1 枚板」の高分子材料をガード表面に用いることも可能になる。1 枚板の表面は一面であるため, 清掃し易さは最も優れるだけでなく, 食材の飛散をガード内に閉じ込めることができるのので, 作業エリアの汚染し難さも優る。

スイッチ(S)は, 3・1・4・2・4 項の(2) 同様, 非接触式のため清掃性は優れる。

(3) 安全リスク, 衛生リスクのバランスが取れた組み合わせ

表 11 の組み合わせだけならば “H(a), G(b), S(a)” が安全リスク及び衛生リスク共に, レベルⅣのリスクが残留しない保護方策の組み合わせとなる。だが, ”H(a), G(b), S(a)” の組み合わせは, 表 11 で評価していない, 新たな 2 つの安全性の危険事象（3・2・4・1 項の(1)）を生み出すだけでなく, RL=Ⅲの衛生リスクの残留を許容する。この衛生面に関する残留リスクの回避は, 作業者に強く依存する。次節ではリスク低減に用いる保護方策に, 追加の方策を適用することによってさらにリスク低減を可能とする組み合わせについて考察する。

3・2・4・2 本事例への追加の方策の適用による適切なガード構成の考察

高さ(H)によるリスク低減において最も問題となるのは, “ステップからの転落”, 及び “ステップ上での転倒”などの新たなリスクの発生, 及び高い衛生リスクの残留だけでなく, 昇降設備を制作するための追加のコストも必要になるという点である。

ここではリスク低減要素の組み合わせに対し有効な, 追加の方策を考慮した安全リスクと衛生リスクの比較に基づくリスク低減について考察する。

(1) 高さ(H)

高さによる保護方策は, 3・2・4・2・4 項に記述するように多くの問題が明らかである。さらに加えて加工容器の位置が高くなると, 食材がより遠くまで飛散し, 室内を汚染するため, 衛生リスクも引き上げる。

以上の理由から, 高さによる保護方策を採用しない "H(c)" を規準に, 安全リスクを下げるガード(G), スイッチ(S)を検討する。

(2) ガード(G)

ガードは 3・2・4・1 項の(2)に記す通り, ポリカーボネートなどによる 1 枚板が最も清掃性及び内部の視認性に優れる。また, 食品を加工する場所から距離を離すことで, 清掃の度に分解・洗浄を行う必要がなくなる。ガードの分解・洗浄の頻度を大幅に減らすことができれば, 大きなガードを洗浄エリアへ移送する手間, 及びその際の転倒リスクも低減可能である。この条件を備えているのは, インターロック付きの扉を備えた, 機械の開口付近に備えているが, ガードのガード(G)のみである。

ただしガードの一部である扉は, 表 10 の「安全リスクの特徴」に記すように, 屋の意図しない閉鎖によるブレードの偶発起動のリスクがある。そのため, 表 11 の危険事象 b) の "H(c), G(d), S(d)" は, 安全面の残留リスクレベルをⅣと評価している。

この偶発起動のリスクを低減するため, 次の保護方策の追加を検討する。

- 屋のヒンジにバネヒンジなどの利用により, 閉じるために力を要する “常開式”とする。
- 屋のラッチポルトの形状を立方体とし, ドアハンドルを回さなければならない扉を閉じることができない構造とする。

ドアハンドルを回さない状態をロック可能な, ロックアウト用の開口部を, ドアハンドルと扉に設ける。
以上の追加の方策により、扉を閉鎖する際には、作業者が意図的に操作をしなければ、扉を閉位置にすることができない構造とすることができる。また、扉の解放状態を維持するためのロックアウトタブを利用することで、扉の意図しない閉鎖の確率を一層下げることができる。さらにこれらのコストは階段よりも大幅に低い。

（3）スイッチ (S)

本事例では施錠機能による大きなリスク低減がないので、洗浄性に優れた(d)が適切と考えられる。

以上の追加の“G(d)”の扉に追加の方策を実施することで、リスクレベルIVと評価した危険事象b)の“H(c), G(d), S(d)”の安全リスクを下げることが可能と判断できる。さらに加えて扉内部のハザードエリアに、“トリップバー”又は“非常停止ロープ”などの緊急停止装置を追加することで、“H(c), G(d), S(d)”の組み合わせによる安全事故の発生の確率(P)をP1と評価し、リスクレベルはIIに引き下げることが可能と考える。

3・3 考察

以上に示す3・1, 3・2節の2つの事例のように、安全及び衛生の性質が異なる複数のリスクを扱うリスクアセスメントにおいては、2つのリスクを包括したリスクアセスメントの反復的リスク低減プロセスに従い、使い勝手、コストなどのリスク低減4要因を考慮し、安全リスク及び衛生リスクの一方が高いリスクが残留する構造を容認することを回避し、2つのリスクが共に可能な限り低くなるよう、保護方策を構成する各要因の組み合わせ、並びに追加の方策の組み合わせを検討することで、コストをかせず、可能な限り低いリスクでバランスを取る保護方策の検討を可能とする。

4. 結 言

機械類の安全性を定める国際安全規格は、安全面だけでなく、衛生面の安全性を扱う。時に相反するこれら2つのリスクを考慮するリスクアセスメントでは、機械の使い方、つまり制限仕様によっては、一方のリスクに有効な安全防護物が、それを構成する要素の種類及び構造、又は保護方策の組み合わせによって、他方のリスクに対して不適切になり得ることを本報は示し、また、ハザード同定及びリスク評価の際、一方のリスク低減に有効な保護方策の構成要素、及び保護方策の組み合わせが、他方のリスクを引き上げることを考慮すべきであることを明らかにした。そして、2つのリスクを考慮したリスク低減プロセスを具体例で示し、両例からそのプロセスを抽出した。

リスクアセスメント及びリスク低減のプロセスにおいて適切な保護方策を検討する場合、保護方策を構成する要素を1つ変えことで、対象とする残留リスクを変えることができる。このことを用いて、特に安全リスク及び衛生リスクの2つを対象とするリスクを考える場合、保護方策の組み合わせが、2つのリスクを考慮することで、安全性が向上することを示した。本論文は、ISO 14159等の規格を参考とした、性質が異なる安全と衛生の2つのリスクを扱うリスクアセスメント結果について、表3で「構成要素」の組み合わせ、表4においては「構成要素」と「他の保護方策」との組み合わせの考慮が不十分な場合、他方のリスクが大きなレベルのまま残留する可能性があることを、一般的に見られる事例を参考に用いて示した。

大村の研究（大村他，2011a）では、安全及び衛生の2つのリスクを同時に扱い、保護方策を示すが、本報では、2つのリスクを適切に低減するためには、リスクアセスメント時に「構成要素」などの組み合わせから保護方策を考慮することが有効であることを示した。このような保護方策の構成要素に踏み込んだ2つの異なるリスク低減に関する研究は見当たらない。そのため本報では、これら手順を具体例と共に示したことで、国際規格が求める食品機械のリスク低減を正しく適用するための基礎としての利用に資するものと考える。2020年6月から食品の安全管理手法であるHACCPシステムによる食品の衛生管理が我が国で制度化され、食品加工機械の衛生設計に対するユーザーからの要求が強まることが、安全リスクと引き換えに衛生リスク低減を重視するのではなく、2つの異なるリスクは同時に低減することが可能であることを示すこの手順は今後一層重要になると考える。
Codex Alimentarius Commission (CAC), Recommended International Code of Practice General Principles of Food Hygiene (1969), pp.8-10.
International Organization for Standardization (ISO), ISO 12100 : Safety of machinery - general principles for design - Risk assessment and risk reduction (2010), p.vi.
International Organization for Standardization (ISO), ISO 14159 : Safety of machinery - Hygiene requirements for the design of machinery (2002), pp.1-28.
International Organization for Standardization (ISO), ISO 13857 : Safety of machinery - Safety distances to prevent hazard zones being reached by upper and lower limbs (2019), pp.1-13.
International Organization for Standardization (ISO), ISO 15534-1 : Ergonomic design for the safety of machinery - Part 1: Principles for determining the dimensions required for openings for whole-body access into machinery (2000), pp.1-10.
日本規格協会, JIS B 9715: 機械類の安全性ー人体部位の接近速度に基づく安全防護物の位置決め (2013a), pp.1-21.
日本規格協会, JIS B 9716: 機械類の安全性ーガードー固定式及び可動式ガードの設計及び製作のための一般要求事項 (2019a), pp.1-23.
日本規格協会, JIS B 9705-1: 機械類の安全性ー制御システムの安全関連部－第 1 部: 設計のための一般原則 (2019c), pp.1-42.
日本規格協会, JIS B 9705-2: 機械類の安全性ー制御システムの安全関連部－第 2 部: 高低差のある 2 か所間の固定された昇降設備の選択 (2004), pp.1-7.
貴田晶子, おもちゃの安全性, 廃棄物資源循環学会誌, Vol.23, No.3 (2012), pp.230-238.
厚生労働省, 「労働者死傷病報告」による死傷災害発生状況 (令和元年確定値), available form <https://anzeninfo.mhlw.go.jp/user/anzen/tok/anst00.htm>, (参照日 2020年7月3日).
野口和彦, 安全を検討する構造の俯瞰的整理 安全ルネサンスのために, 安全工学, Vol.52, No.2 (2013), pp.70-74.
大村宏之, 食品加工機械をモデルとする国際安全規格に基づく安全・衛生の統合設計に関する研究, 長岡技術科学大学, 博士論文 (2011), pp.113-147.
大村宏之, 福田隆文, 田中紘一, 杉本旭, 安全面と衛生面を含むリスクアセスメント手法に関する一考察, 日本機械学会論文集 C 編, Vol.77, No.774 (2011a), pp.260-268.
大村宏之, 福田隆文, 田中紘一, 杉本旭, 安全面及び衛生面を考慮したインターロック付きガード用位置検出器の評価, 日本機械学会論文集 C 編, Vol.77, No.784 (2011b), pp.359-369.
大村宏之, 田中紘一, 杉本旭, 食品加工機械のリスクアセスメントにおける衛生的危険源リスト, 日本信頼性学会誌, Vol.32, No.5 (2010), pp.367-375.
佐藤英雄, 宮崎平三, 農業機械の安全性工学に関する研究 (第 2 報), コンバイン災害事故要因の分析, 日本農機学会誌, Vol.27, No.2 (1978), pp.173-180.

References
Codex Alimentarius Commission (CAC), Recommended International Code of Practice General Principles of Food Hygiene (1969), pp.8-10.
International Organization for Standardization (ISO), ISO 12100 : Safety of machinery - general principles for design - Risk assessment and risk reduction (2010), p.vi.
Omura and Fukuda, Transactions of the JSME (in Japanese), Vol.87, No.893 (2021)

International Organization for Standardization (ISO), ISO 14159: Safety of machinery - Hygiene requirements for the design of machinery (2002), pp.1-28.

International Organization for Standardization (ISO), ISO 13857: Safety of machinery - Safety distances to prevent hazard zones being reached by upper and lower limbs (2019), pp.1-13.

International Organization for Standardization (ISO), ISO 15534-1: Ergonomic design for the safety of machinery - Part 1: Principles for determining the dimensions required for openings for whole-body access into machinery (2000), pp.1-10.

Japan Standards Association, JIS B 9715: Safety of machinery - Positioning of safeguards with respect to the approach speeds of parts of the human body (2013a), pp.1-21 (in Japanese).

Japan Standards Association, JIS B 9716: Safety of machinery - Guards - General requirements for the design and construction of fixed and movable guards (2019a), pp.1-23 (in Japanese).

Japan Standards Association, JIS B 9710: Safety of machinery - Interlocking devices associated with guards - Principles for design and selection (2019b), pp.1-33 (in Japanese).

Japan Standards Association, JIS B 9705-1: Safety of machinery - Safety related parts of control system - part 1: General principles for design (2019c), pp.1-42 (in Japanese).

Japan Standards Association, JIS B 9653: Requirements for safety and hygiene of meat processing machinery (2013c), pp.1-62 (in Japanese).

Japan Standards Association, JIS B 9655: Requirements for safety and hygiene of processing machinery used in flouring mill (2014), pp.1-34 (in Japanese).

Japan Standards Association, JIS B 9658: Requirements for safety and hygiene of rice and wheat milling machinery (2015), pp.1-36 (in Japanese).

Japan Standards Association, JIS B 9654: Requirements for safety and hygiene of marine product machinery (2017a), pp.1-47 (in Japanese).

Japan Standards Association, JIS B 9651: Requirements for safety and hygiene of baking machinery (2017b), pp.1-76 (in Japanese).

Japan Standards Association, JIS B 9652: Requirements for safety and hygiene of cake making machinery (2018), pp.1-77 (in Japanese).

Japan Standards Association, JIS B 9656: Requirements for safety and hygiene of noodle making machinery (2020a), pp.1-74 (in Japanese).

Japan Standards Association, JIS B 9657: Requirements for safety and hygiene of drink making machinery (2020b), pp.1-117 (in Japanese).

Japan Standards Association, JIS B 9713-1: Safety of machinery - Permanent means of access to machinery - Part 1: Choice of fixed means and general requirements of access (2004), pp.1-7 (in Japanese).

Kida, A., The concept of the toy safety in Japan and other countries, Material cycles and waste management research, Vol.23, No.3 (2012), pp.230-238 (in Japanese).

Ministry of Health, Labour and Welfare, Shokuba no anzen Sight, Worker's death and illness report (financial year 2019), available from <https://anzeninfo.mhlw.go.jp/user/anzen/tok/anst00.htm>, (accessed on 3 July, 2020).

Noguchi, K., Comprehensively reorganize of the structure for considering safety - For the safety renaissance-, Journal of Japan Society for Safety Engineering, Vol.52, No.2 (2013), pp.70-74 (in Japanese).

Omura, H., Study on integrated design of safety and hygiene based on international safety standards modeled on food processing machines, Nagaoka University of Technology, Doctoral thesis (2011), pp.113-147 (in Japanese).

Omura, H., Fukuda, T., Futsuhara, K. and Sugimoto, N., A study of risk assessment method containing hygiene aspect and safety aspect, Transactions of the Japan Society of Mechanical Engineers, Series C, Vol.77, No.774 (2011a), pp.260-264 (in Japanese).

Omura, H., Fukuda, T., Tanaka, K., Futsuhara, K. and Sugimoto, N., Study on evaluation of position detectors for an interlocking guard in consideration of safety and hygiene aspect, Transactions of the Japan Society of Mechanical Engineers, Series C, Vol.77, No.784 (2011b), pp.359-369 (in Japanese).

Omura, H., Tanaka, K. and Sugimoto, N., A hazard list for risk assessment of food processing machinery, The Journal of Reliability Engineering Association of Japan, Vol.32, No.5 (2010), pp.367-375 (in Japanese).

Sato, H. and Miyazaki, H., Studies on the safety engineering of agricultural machines, Analyses of the causes of combine accidents, Journal of the Japanese Association of Rural Medicine, Vol.27, No.2 (1978), pp.173-180 (in Japanese).

[DOI: 10.1299/transjsme.20-00336] © 2021 The Japan Society of Mechanical Engineers