Abstract. Ehrenborg and Jung [14] recently related the order complex for the lattice of \(d\)-divisible partitions with the simplicial complex of pointed ordered set partitions via a homotopy equivalence. The latter has top homology naturally identified as a Specht module. Their work unifies that of Calderbank, Hanlon, Robinson [12], and Wachs [32]. By focusing on the underlying geometry, we strengthen and extend these results from type \(A\) to all real reflection groups and the complex reflection groups known as Shephard groups.

1. Introduction

The aim of this paper is to elucidate a phenomenon that has been studied for the symmetric group \(S_n\) by studying the underlying geometry. Here we sketch the phenomenon, along with our geometric interpretation and generalization.

For \(n+1\) divisible by \(d\), recall that the \(d\)-divisible partition lattice \(\Pi_{n+1}^d\cup\{\hat{0}\}\) is the poset of partitions of the set \(\{1, 2, \ldots, n+1\}\) with parts divisible by \(d\), together with a unique minimal element \(\hat{0}\) when \(d > 1\). In [12], Calderbank, Hanlon and Robinson showed that for \(d > 1\) the top homology of the order complex \(\Delta(\Pi_{n+1}^d\setminus\{\hat{1}\})\), when restricted from \(S_{n+1}\) to \(S_n\), carries the ribbon representation of \(S_n\) corresponding to a ribbon with row sizes \((d, d, \ldots, d, d-1)\). Wachs [32] gave a more explicit proof of this fact. Their results generalized Stanley’s [27] result for the Möbius function of \(\Pi_{n}^2\cup\{\hat{0}\}\), which generalized G. S. Sylvester’s [29] result for \(2\)-divisible partitions \(\Pi_n^2\cup\{\hat{0}\}\).

Ehrenborg and Jung extend the above results by introducing posets of pointed partitions \(\Pi_{\vec{c}}^\bullet\) parametrized by a composition \(\vec{c}\) of \(n\) with last part possibly 0, from which they obtain all ribbon representations. More importantly, they explain why Specht modules are appearing by establishing a homotopy equivalence with another complex whose top homology is naturally a Specht module.

Ehrenborg and Jung construct their pointed partitions \(\Pi_{\vec{c}}^\bullet \subset \Pi_n^\bullet \cong \Pi_{n+1}^d\) by distinguishing a particular block (called the pointed block) and restricting to those of type \(\vec{c}\). They show that \(\Delta(\Pi_{\vec{c}}^\bullet \setminus \{\hat{1}\})\) is homotopy equivalent to a wedge of spheres, and that the top homology \(H_{\text{top}}(\Delta(\Pi_{\vec{c}}^\bullet \setminus \{\hat{1}\}))\) is the \(S_n\)-Specht module corresponding to \(\vec{c}\).

Their approach is to first relate \(\Pi_{\vec{c}}^\bullet\) to a selected subcomplex \(\Delta_{\vec{c}}\) of the simplicial complex \(\Delta_n^\bullet\) of ordered set partitions of \(\{1, 2, \ldots, n\}\) with last block possibly empty. In particular, they use Quillen’s fiber lemma to show that \(\Delta(\Pi_{\vec{c}}^\bullet \setminus \{\hat{1}\})\) is homotopy equivalent to \(\Delta_{\vec{c}}\). They then give an explicit basis for \(H_{\text{top}}(\Delta_{\vec{c}})\) that identifies the top homology as a Specht module.

Ehrenborg and Jung recover the results of Calderbank, Hanlon and Robinson [12] and Wachs [32] by specializing to \(\vec{c} = (d, \ldots, d, d-1)\).

Key words and phrases. \(d\)-divisible partition lattice, Specht modules, ribbon representations, homology, homotopy, well-generated complex reflection groups, hyperplane arrangements, complex regular polytopes.

Supported by NSF grant DMS-1001933.
Taking a geometric viewpoint, one can consider $\Delta_n^•$ as the barycentric subdivision of a distinguished facet of the standard n-simplex having vertices labeled with $\{1, 2, \ldots, n, n+1\}$. As such, it carries an action of \mathfrak{S}_n and is a balanced simplicial complex, with each $\Delta_n^•$ corresponding to a particular type-selected subcomplex. Under this identification, the poset $\Pi_n^•$ corresponds to linear subspaces spanned by faces in $\Delta_n^•$.

We propose an analogous program for all well-generated complex reflection groups by introducing \textit{well-framed} and \textit{locally conical} systems. We complete the program for all irreducible \textit{finite} groups having a presentation of the form

\[(1) \quad \langle r_1, \ldots, r_\ell \mid r_i^{p_i} = 1, \quad r_ir_jr_i\cdots = r_jr_ir_j\cdots \quad \forall i, j \rangle\]

with $p_i \geq 2$ for all i. Each such group has an irreducible faithful representation as a complex reflection group. The irreducible finite Coxeter groups are precisely those with each $p_i = 2$, i.e., those with a real form. The remaining groups are \textit{Shephard groups}, the symmetry groups of regular complex polytopes. The family of Coxeter and Shephard groups contains 21 of the 26 exceptional well-generated complex reflection groups. Using Shephard and Todd’s numbering, the remaining five groups are $G_{24}, G_{27}, G_{29}, G_{33}, G_{34}$.

\section*{Contents}

1. Introduction
2. Well-framed systems for complex reflection groups
3. Geometry and algebra for frames
4. Pointed objects
5. Equivariant homotopy for locally conical systems
6. Homology of locally conical systems
7. Specializing to objects of Ehrenborg and Jung
8. Coxeter groups
9. Shephard groups
10. Shephard systems
11. Shephard systems are locally conical
12. Additional properties of ribbon representations
12.1. Solomon’s group algebra decomposition
12.2. Expressing the ribbon decomposition of the coinvariant algebra
13. Remarks and questions
13.1. An interesting family of well-framed systems
13.2. The remaining reflection groups
13.3. Shellability
14. Acknowledgments
References

\footnote{The algebraic unification of Coxeter groups and Shephard groups presented here does not appear to be widely known, and is attributed to Koster [18, p. 206].}
2. Well-framed systems for complex reflection groups

Let \(V \) denote an \(\ell \)-dimensional \(\mathbb{C} \)-vector space. A \textit{reflection} in \(V \) is any non-identity element \(g \in \text{GL}(V) \) of finite order that fixes some hyperplane \(H \), and a finite group \(W \subset \text{GL}(V) \) is called a \textit{reflection group} if it is generated by reflections. Henceforth, we assume that \(W \) acts irreducibly on \(V \). Shephard and Todd gave a complete classification of all such groups in [23].

Given a (finite) reflection group \(W \subset \text{GL}(V) \), we may choose a positive definite Hermitian form \(\langle - , - \rangle \) on \(V \) that is preserved by \(W \), i.e.,
\[
\langle gx, gy \rangle = \langle x, y \rangle
\]
for all \(x, y \in V \) and \(g \in W \). We always regard \(V \) as being endowed with such a form, which is unique up to positive real scalar when \(W \) acts irreducibly on \(V \). We let \(|\cdot| \) denote the associated norm, defined by \(|v|^2 = \langle v, v \rangle \) for all \(v \in V \).

As a special case of a complex reflection group, consider a finite group \(W \subset \text{GL}(\mathbb{R}^\ell) \) that is generated by reflections through hyperplanes. By extending scalars, we consider \(W \) as acting on \(\mathbb{C}^\ell \), and regard \(W \) as a reflection group. We will call a (complex) reflection group that arises in this way a \textit{(finite) real reflection group}.

A subgroup \(W \subset \text{GL}(V) \) naturally acts on the dual space \(V^* \) via \(gf(v) = f(g^{-1}v) \), and this action extends to the symmetric algebra \(S = S(V^*) \). An important subalgebra of \(S \) is the \textit{ring of invariants} \(S^W \), whose structure actually characterizes reflection groups:

Theorem 2.1 (Shephard-Todd, Chevalley). A finite group \(W \subset \text{GL}(V) \) is a reflection group if and only if \(S^W \) is a polynomial algebra \(S^W = \mathbb{C}[f_1, \ldots, f_\ell] \).

When \(W \) is a reflection group, such generators \(f_1, \ldots, f_\ell \) of algebraically independent homogeneous polynomials for \(S^W \) are not unique, but we do have uniqueness for the corresponding \textit{degrees} \(d_1 \leq \cdots \leq d_\ell \).

It is well-known that the minimum number of reflections required to generate \(W \) is either \(\dim V \) or \(\dim V + 1 \). If there exists such a generating set \(R \) with \(|R| = \dim V \), we say that \(W \) is \textit{well-generated} and that \((W, R) \) is a \textit{well-generated system}. (Finite) real reflection groups form an important class of well-generated reflection groups. Another important family consists of symmetry groups of \textit{regular complex polytopes}; these are known as Shephard groups, and were extensively studied by both Shephard [22] and Coxeter [13].

The (complex) reflecting hyperplanes of a real reflection group \(W \) intersect the embedded real sphere
\[
S^{\ell-1} = \{ x \in \mathbb{R}^\ell \subset \mathbb{C}^\ell : |x| = 1 \}
\]
to form the \textit{Coxeter complex}, a simplicial complex with many wonderful properties. We call the maximal simplices of a Coxeter complex \textit{chambers}. The real cone \(\mathbb{R}_{\geq 0} C \) over a chamber \(C \) is called a \textit{(closed) Weyl chamber}, and one nice feature of the Coxeter complex is its algebraic description when \((W, R) \) is a \textit{simple system}, i.e., when \(R \) is the set of reflections through walls of a Weyl chamber. In this case, the poset of faces for the complex has the alternate description [11] as the poset of parabolic cosets
\[
\Delta(W, R) = \{ gW_J : g \in W, J \subseteq R \},
\]
ordered by reverse inclusion, i.e.,
\[
gW_J < g'W_{J'} \text{ if } gW_J \supset g'W_{J'}.
\]
Naturally, one can define such a poset $\Delta(W, R)$ for an arbitrary group W with set of distinguished generators R. In [3], Babson and Reiner show that the geometry of this general construction is still well-behaved when R is finite and minimal with respect to inclusion. In particular, they show that such posets $\Delta(W, R)$ are simplicial posets, meaning that every lower interval is isomorphic to a Boolean algebra. In fact, each $\Delta(W, R)$ is pure of dimension $|R| - 1$ and balanced. In other words, there is a coloring of the atoms using $|R|$ colors so that each maximal element lies above exactly one atom of each color. The natural coloring given by

$$g_{W \setminus \{r_i\}} \mapsto \{r_i\}$$

extends to a type function

$$\text{type} : \Delta(W, R) \mapsto \{\text{subsets of } R\}$$

$$g_{W \setminus J} \mapsto J.$$

Recall that when such a coloring is present, we can select subposets by restricting to particular colors. Precisely, from each subset $T \subseteq R$, we obtain the following subposet selected by T:

$$\Delta_T(W, R) \overset{\text{def}}{=} \{\sigma \in \Delta(W, R) : \text{type}(\sigma) \subseteq T\} = \{g_{W \setminus J} : J \subseteq T\}.$$

We will often write Δ in place of $\Delta(W, R)$, and Δ_T in place of $\Delta_T(W, R)$.

When W is a reflection group, the lattice of intersections of reflecting hyperplanes for W under reverse inclusion is denoted \mathcal{L}_W, or simply \mathcal{L}. It is a subposet of the lattice $\mathcal{L}(V)$ of all \mathbb{C}-linear subspaces of V ordered by reverse inclusion. For a subset $A \subseteq V$, we define

$$\text{Span}(A) \overset{\text{def}}{=} \text{minimal } \mathbb{C}\text{-linear subspace of } V \text{ containing } A.$$

$$\text{AffSpan}(A) \overset{\text{def}}{=} \text{minimal } \mathbb{C}\text{-linear affine space of } V \text{ containing } A.$$

$$\text{Hull}(A) \overset{\text{def}}{=} \left\{ \sum_{i=1}^{m} t_i a_i \mid a_i \in A, \ t_i \geq 0, \ \sum_{i=1}^{m} t_i = 1 \right\}.$$

These are the only notions of span and hull that will appear in this paper.

The following definitions aim to extend the relation between \mathcal{L} and $\Delta(W, R)$ for simple systems of real reflection groups to well-generated systems for complex reflection groups.

Definition 2.2. For (W, R) a well-generated system, a frame

$$\Lambda = \{\lambda_1, \lambda_2, \ldots, \lambda_\ell\}$$

is a collection of nonzero vectors with

$$\lambda_i \in H_1 \cap \cdots \cap \hat{H}_i \cap \cdots \cap H_\ell \quad \text{for} \quad 1 \leq i \leq \ell.$$

Here, H_i is the reflecting hyperplane for reflection $r_i \in R$. We say that (W, R, Λ) is a framed system.

We will sometimes index a generating set R and frame Λ with $\{0, 1, \ldots, \ell - 1\}$ instead of $\{1, 2, \ldots, \ell\}$, writing $R = \{r_0, r_1, \ldots, r_{\ell-1}\}$ and $\Lambda = \{\lambda_0, \lambda_1, \ldots, \lambda_{\ell-1}\}$. This is usually done when W is the symmetry group of a regular polytope and Λ is chosen from the vertices of
the barycentric subdivision in such a way that each λ_i corresponds to an i-dimensional face of the polytope; see Figures 4, 5, and Section 9.

Before stating the next definition, we make precise what is meant by (piecewise) \mathbb{R}-linearly extending a map $F : \text{Vert}(\Delta) \to V$ on vertices of a simplicial poset Δ. Identifying Δ with a CW-complex as in [8], each point $y \in \Delta$ is contained in a unique (open) cell σ. Because Δ is a simplicial poset, the cell admits a characteristic map f that maps the standard $\text{dim}\, \sigma$-simplex onto σ while restricting to a bijection between vertices (0-cells). Thus, there are unique scalars c_v so that

$$f^{-1}(y) = \sum_{v \in \text{Vert}(\sigma)} c_v f^{-1}(v), \quad \sum_{v \in \text{Vert}(\sigma)} c_v = 1, \quad \text{and} \quad c_v \in \mathbb{R}_{\geq 0} \text{ for all } v.$$

We extend F to all of Δ by defining

$$F(y) = \sum_{v \in \text{Vert}(\sigma)} c_v F(v).$$

We can now state the main definitions of this paper.

Definition 2.3. Let (W,R,Λ) be a framed system. Define $\rho : ||\Delta(W,R)|| \to V$ by the following map on vertices

$$gW_{R\setminus\{r_i\}} \overset{\rho}{\longrightarrow} g\lambda_i$$

(which is well-defined because the subgroup $W_{R\setminus\{r_i\}}$ fixes λ_i) and then extending \mathbb{R}-linearly over each face $gW_{R\setminus J}$ of Δ, so

$$gW_{R\setminus J} \overset{\rho}{\longrightarrow} g\Lambda_J,$$

where

$$\Lambda_J := \text{Hull}(\{\lambda_i : r_i \in J\}).$$

- We say that (W,R,Λ) is *well-framed* if the equivariant map ρ is an embedding.
- If, in addition, each $X \in \mathcal{L}_W$ contains the image of at least one $(\text{dim}\, X - 1)$-face under ρ, then we say that (W,R,Λ) is *strongly stratified*.

Convention 2.4. Given a well-framed system (W,R,Λ), we will often identify the abstract simplicial poset $\Delta(W,R)$ and the geometric realization $\rho(\Delta(W,R))$ afforded by ρ.

Observe that a system (W,R,Λ) is well-framed if and only if for any positive real constants c_1, c_2, \ldots, c_ℓ, the system $(W,R,\{c_1\lambda_1, c_2\lambda_2, \ldots, c_\ell\lambda_\ell\})$ is well-framed.

Example 2.5. Let (W,R) be a simple system, i.e., an irreducible finite real reflection group W with R the set of reflections through walls of a Weyl chamber. If W is a Weyl group, one can obtain a real frame by choosing Λ to be the set of fundamental dominant weights. More generally, a real frame is obtained by choosing one nonzero point on each extreme ray of a Weyl chamber corresponding to R. The resulting system (W,R,Λ) is strongly stratified and $\rho(\Delta(W,R))$ is homeomorphic to the Coxeter complex via radial projection; Figure 1 illustrates the construction for $W = I_2(5)$, the dihedral group of order 10.

Definition 2.6. We say that (W,R) is *well-framed* or *strongly stratified* if there exists a frame Λ for which (W,R,Λ) is well-framed or strongly stratified, respectively.
Figure 1. A well-framed system and shaded Weyl chamber for $I_2(5)$.

For W a real reflection group, the following example suggests that only simple systems (W,R) can be well-framed by a real frame $\Lambda \subset \mathbb{R}^\ell$. In other words, the well-framed systems (W,R,Λ) with Λ real and W a (complexified) finite real reflection group are completely characterized in Example 2.5: see Corollary 3.2 below.

Example 2.7. Let $W = I_2(5)$, the dihedral group of order 10, and let $R = \{r_1, r_2\}$, where r_1, r_2 are the reflections indicated in Figure 2. In this case, (W,R) is not a simple system, as the corresponding hyperplanes H_1, H_2 do not form a Weyl chamber; see the shaded region. Two real frames are shown in the figure, one with $|\lambda_1| \neq |\lambda_2|$ (left) and one with $|\lambda_1| = |\lambda_2|$ (right). Both fail to yield a well-framed system. For example, on the right in Figure 2 when $|\lambda_1| = |\lambda_2|$, the map $||\Delta(W,R)|| \xrightarrow{\rho} \rho(\Delta)$ is a double covering.

Figure 2. Systems (W,R,Λ) that are not well-framed for $W = I_2(5)$, $R = \{r_1, r_2\}$, and real $\Lambda = \{\lambda_1, \lambda_2\}$.

Comparing Figures 1 and 2, we see that for a fixed W, it is possible to have both good and bad choices for R and Λ. Also observe that (W,R,Λ) being well-framed is a global property, not a local one. For example, Figure 2 shows that for $\ell(w)$ large, one has to check for intersections of the simplices $\rho(eW_\varnothing)$ and $\rho(wW_\varnothing)$.
Though some systems \((W, R)\) do not give a well-framed triple \((W, R, \Lambda)\) for any real \(\Lambda \subset \mathbb{R}^t\), one may still be able to choose a good frame \(\Lambda \subset \mathbb{C}^t\), as in the following example.

Example 2.8. Let \(W = I_2(3)\) and let \(R = \{r_1, r_2\}\), where \(r_1, r_2\) and \(r_3\) are the reflections indicated in Figure 3. As in Example 2.7 \((W, R)\) is not a simple system because the corresponding hyperplanes \(H_1, H_2\) do not form a Weyl chamber. If \(\lambda_1, \lambda_2\) are real and as shown in Figure 3 the triple \((W, R, \Lambda)\) is not well-framed. In fact, for every choice of a real frame \(\Lambda \subset \mathbb{R}^2\), the resulting system \((W, R, \Lambda)\) is not well-framed. However, it is still possible to construct a well-framed system from \((W, R)\) using \(\Lambda \subset \mathbb{C}^2\).

Let \(H_1, H_2, H_3\) be the (complex) reflecting hyperplanes for \(r_1, r_2, r_3\), respectively, and choose coordinates so that

\[
H_1 = \mathbb{C} \left[\begin{array}{c} \sqrt{3} \\ -1 \end{array} \right], \quad H_2 = \mathbb{C} \left[\begin{array}{c} 0 \\ 1 \end{array} \right], \quad H_3 = \mathbb{C} \left[\begin{array}{c} \sqrt{3} \\ 1 \end{array} \right].
\]

Let

\[
\lambda_2 = \frac{1}{4} \left[\begin{array}{c} \sqrt{3} \\ -1 \end{array} \right] \quad \text{and} \quad \lambda_1 = i \left[\begin{array}{c} 0 \\ 1 \end{array} \right].
\]

Then it is straightforward to verify that \((W, R, \Lambda)\) is a well-framed system. For example, the two segments

\[
\sigma_1 = \Lambda_R = \left\{ t \left[\begin{array}{c} 0 \\ 1 \end{array} \right] + (1 - t) \frac{1}{4} \left[\begin{array}{c} \sqrt{3} \\ -1 \end{array} \right] : 0 \leq t \leq 1 \right\}
\]

and

\[
\sigma_2 = w\sigma_1 = \left\{ s \frac{i}{2} \left[\begin{array}{c} \sqrt{3} \\ -1 \end{array} \right] + (1 - s) \frac{1}{2} \left[\begin{array}{c} 0 \\ 1 \end{array} \right] : 0 \leq s \leq 1 \right\}
\]

do not intersect, since they have distinct endpoints and there is no real solution to

\[
(1 - t)\frac{\sqrt{3}}{4} = s\frac{\sqrt{3}}{2} \quad 0 < s, t < 1.
\]

Note also that the linear form \(\alpha_{H_3} := x_1 - \sqrt{3}x_2\) is nonzero on \(\sigma_1\) and \(\sigma_2\), implying that \(H_3\) neither intersect \(\sigma_1\) nor \(\sigma_2\).

![Figure 3](image-url)
Figure 3. System \((W, R, \Lambda)\) with \(W = I_2(3)\) and \(R = \{r_1, r_2\}\). The system \((W, R)\) is well-framed for some nonreal \(\Lambda = \{\lambda_1, \lambda_2\} \subset \mathbb{C}\), but not for any real \(\Lambda \subset \mathbb{R}\).
Though $\Delta(W,R)$ is generally only a Boolean complex, existence of a well-framed system (W,R,Λ) forces it to be a simplicial complex:

Proposition 3.1. If (W,R,Λ) is well-framed, then $\Delta := \Delta(W,R)$ is a balanced simplicial complex.

Proof. The image of a face under ρ is determined by its vertices. Because ρ is assumed to be an embedding, it follows that any two faces of Δ with equal vertex sets must be the same face. \qed

As a corollary, we see that every well-framed system (W,R,Λ) with W a real reflection group and $\Lambda \subset \mathbb{R}^\ell$ is of the type constructed in Example 2.5. We make this precise in the following corollary, whose proof is straightforward and left to the reader.

Corollary 3.2. Let (W,R) be a well-generated system with W a (finite) real reflection group. Assume that $\Lambda \subset \mathbb{R}^\ell$ is a real frame. Then (W,R,Λ) is well-framed if and only if

$$R \geq 0 \lambda_1, \ldots, R \geq 0 \lambda_\ell$$

are the extreme rays of a Weyl chamber. Moreover, if (W,R,Λ) is well-framed, then (W,R) is a simple system.

We now come to the notion of support. Note that in the following definition, we could very well replace Supp with Span, given Convention 2.4. However, it will be helpful to distinguish between the two.

Definition 3.3. Let (W,R,Λ) be well-framed. We define the support map

$$\text{Supp} : \Delta \rightarrow \mathcal{L}(V)$$

$$gW_J \mapsto \text{Span}(\rho(gW_J)),$$

and let

$$\Pi_W^{\text{def}} = \{\text{Supp}(\sigma) \mid \sigma \in \Delta\},$$

viewed as a subposet of $\mathcal{L}(V)$.

As for \mathcal{L}_W, we will often write Π in place of Π_W. We start by observing that for a well-framed system, $\text{Supp} : \Delta_W \rightarrow \mathcal{L}_W$.

Proposition 3.4. For a well framed system (W,R,Λ), we have

$$\Pi_W \subseteq \mathcal{L}_W,$$

with equality if and only if (W,R,Λ) is strongly stratified.

Proof. Consider a coset $gW_{R\setminus J}$, and recall that $\rho(gW_{R\setminus J}) = g\Lambda_J$. Using the definition of Λ, we also have that

$$\text{Span}(\Lambda_J) = \bigcap_{r_i \in R \setminus J} H_i.$$

The inclusion follows. The second claim follows from the definition of a strongly stratified system by considering dimension. \qed
The main theorem of this section is that the equivariant support map for a well-framed system has a purely algebraic description. The mechanism enabling this characterization is the Galois correspondence, an analogue of Barcelo and Ihrig’s Galois correspondence; see [4], where they utilize the Tits cone to establish a result generalizing the real case to all Coxeter groups. In order to state the correspondence, we introduce the poset of standard parabolics

\[P(W, R) \overset{\text{def}}{=} \{ gW_Jg^{-1} : g \in W, J \subseteq R \}, \]

ordered by inclusion, i.e.,

\[gW_Jg^{-1} < hW_J'h^{-1} \quad \text{if} \quad gW_Jg^{-1} \subset hW_J'h^{-1}. \]

Note that \(W \) acts on \(P(W, R) \) via conjugation.

Theorem 3.5 (Galois Correspondence). For \((W, R, \Lambda)\) a well-framed system,

\[\text{Stab} : \Pi_W \rightarrow P(W, R) \]

\[X \mapsto \{ g \in W : gx = x \text{ for all } x \in X \} \]

is an \(W \)-poset isomorphism, with inverse

\[\text{Fix} : P(W, R) \rightarrow \Pi_W \]

\[G \mapsto V^G := \{ v \in V : gv = v \text{ for all } g \in G \}. \]

Proof. Using the fact that \(\rho \) is an equivariant embedding of a balanced complex,

\[\text{Stab}(\text{Supp}(gW_{R\setminus J})) = \{ w \in W : w\rho(gW_{R\setminus S}) = \rho(gW_{R\setminus S}) \text{ pointwise} \} \]

\[= \{ w \in W : wgW_{R\setminus S} = gW_{R\setminus S} \} \]

\[= gW_{R\setminus S}g^{-1}. \]

Regarding the inverse, we have

\[V^{gW_{R\setminus S}g^{-1}} = gV^{W_{R\setminus S}} = g \bigcap_{r_i \in R \setminus S} H_i = g \cdot \text{Span}(\Lambda_S) = \text{Supp}(gW_{R\setminus S}). \]

\[\square \]

The promised algebraic interpretation of support is now encoded in an equivariant commutative diagram:

Theorem 3.6. For a well-framed system \((W, R, \Lambda)\), we have the following commutative diagram of equivariant maps:

\[\xymatrix{ gW_J \ar@{.>}[d] \ar@{.>}[r] & \Delta \ar[r]^{\sim}_{\rho} & \rho(\Delta) \ar[d]^{\text{Span}} \ar[r]^{\text{Fix}} & \Pi_W \ar[r]^\iota & \mathcal{L}_W \ar[d]^\text{Stab} \ar@{.>}[u] } \]

If \((W, R)\) is strongly stratified, then \(\Pi_W = \mathcal{L}_W \).
4. Pointed objects

This section introduces the main objects of this paper, the generalizations of Ehrenborg and Jung’s pointed objects. Recall that the \((closed)\) star \(\text{St}_\Sigma(\sigma)\) of a simplex \(\sigma\) in a simplicial complex \(\Sigma\) is the subcomplex of all faces that are joinable to \(\sigma\) within \(\Sigma\). That is,

\[
\text{St}_\Sigma(\sigma) = \{\tau : \tau \in \Sigma \text{ and } \tau \cup \sigma \in \Sigma\}.
\]

We will write \(\tau * \sigma\) for the join \(\tau \cup \sigma\).

Definition 4.1. Let \((W, R, \Lambda)\) be a well-framed system. Let \(U \subseteq R\). The subcomplex pointed by \(U\) is

\[
\Delta^U \overset{\text{def}}{=} \text{St}_\Delta(W_{R \setminus U}).
\]

The corresponding pointed poset of flats is

\[
\Pi^U \overset{\text{def}}{=} \{\text{Supp}(\sigma) : \sigma \in \Delta^U\},
\]

as a subposet of \(\mathcal{L}_W\).

For \(T \subseteq R\), let

\[
\Delta^U_T \overset{\text{def}}{=} \Delta^U |_T \text{ and } \Pi^U_T \overset{\text{def}}{=} \{\text{Supp}(\sigma) : \sigma \in \Delta^U_T\}.
\]

Note that by Theorem 3.6, we have \(\text{Supp}(gW_J) = V^{gW_J g^{-1}}\), showing that

\[
(2) \quad \Pi^U_T = \{V^{gW_J g^{-1}} : gW_J \in \Delta^U_T\}
\]

Figure 4 illustrates the construction of \(\Delta^U_T\) for \(W = S_4\) and eight choices of \(T\) and \(U\). We have written “\(U\)” above each element of \(U\), and “\(T\)” below each element of \(T\) in the Coxeter diagram \(\mathcal{D}\) of \((W, R)\). Labeling the generators \(R = \{r_0, \ldots, r_{\ell-1}\}\), a vertex marked \(i\) in \(\mathcal{D}\) represents the reflection \(r_i\) whose hyperplane can be written as

\[
H_i = \text{Span}(\Lambda \setminus \{\lambda_i\}).
\]

Recall that \(W\) is the symmetry group of the tetrahedron \(\mathcal{P}\), so the barycentric subdivision \(B(\mathcal{P})\) of the boundary of \(\mathcal{P}\) is homeomorphic to the Coxeter complex via radial projection. The vertex of \(\Delta\) marked with \(i\) corresponds to \(\lambda_i\). It happens that \(W\) is also a Shephard group, because \(\mathcal{P}\) is a regular polytope. In the later notation of Shephard groups, vertex \(i\) will correspond to a face \(B_i\) in a distinguished base flag \(B\) (a chamber in the flag complex \(K(\mathcal{P})\) for the polytope \(\mathcal{P}\)).

Similarly, Figure 5 illustrates the construction for the hyperoctahedral group \(\mathbb{Z}_2 \wr S_n\) of \(n \times n\) signed permutation matrices. Recall that this is the symmetry group of the \(n\)-cube \(\mathcal{P}\), so its Coxeter complex is a radial projection of the barycentric subdivision \(B(\mathcal{P})\) of the boundary of \(\mathcal{P}\). Again, we let \(i\) denote our choice of \(\lambda_i\), and in later notation, a face \(B_i\) of a distinguished base flag \(B_0 \subset \cdots \subset B_{\ell-1}\) in the flag complex \(K(\mathcal{P})\) of \(\mathcal{P}\).

5. Equivariant homotopy for locally conical systems

Recall that a map \(f : P \rightarrow Q\) of posets is order-preserving if \(f(p_1) \leq f(p_2)\) whenever \(p_1 \leq p_2\), and order-reversing if \(f(p_1) \geq f(p_2)\) whenever \(p_1 \leq p_2\). A \(G\)-poset is a poset with a \(G\)-action that preserves order, and a map \(f : P \rightarrow Q\) of such posets is \(G\)-equivariant if it is a mapping of \(G\)-sets, i.e., if \(f(gp) = gf(p)\) for all \(g \in G\) and \(p \in P\).
The order complex of a poset P, i.e., the simplicial complex of all totally ordered subsets of P, is denoted $\Delta(P)$. The face poset $\text{Face}(\Sigma)$ of a simplicial complex Σ is the poset of all nonempty faces ordered by inclusion. Finally, \simeq denotes homotopy equivalence, with added decoration to indicate equivariance. Note that the barycentric subdivision $\Delta(\text{Face}(\Sigma))$ is homeomorphic to Σ.

The aim of this section is to establish a sufficient condition for the order complex of $\Pi^U_T \setminus \{\hat{1}\}$ to be equivariantly homotopy equivalent to Δ^U_T. Our main tool is a specialization\(^2\) of Thévenaz and Webb’s equivariant version of Quillen’s fiber lemma.

\(^2\)The main theorem of [30] states that $\Delta(P) \simeq_G \Delta(Q)$ if $\phi : P \to Q$ is an order-preserving G-equivariant map of G-posets such that each fiber $\Delta(\phi^{-1}(Q_q))$ is $\text{Stab}_G(q)$-contractible. Theorem [31] specializes P to
Theorem 5.1 (Thévenaz and Webb [30]). Let Q be a G-poset, and let Σ be a simplicial complex with a G-action. If $\phi : \text{Face}(\Sigma) \to Q$ is an order-reversing G-equivariant map of G-posets such that the order complex $\Delta(\phi^{-1}(Q_{\geq q}))$ is $\text{Stab}_G(q)$-contractible for all $q \in Q$, then $\Sigma \simeq_G \Delta(Q)$.

Consider a simplicial complex Σ and order-reversing map $\phi : \text{Face}(\Sigma) \to Q$ of posets. Since $\phi^{-1}(Q_{\geq q})$ is an order ideal in $\text{Face}(\Sigma)$, it is the face poset $\text{Face}(\Phi)$ of some subcomplex $\Phi \subseteq \Sigma$. Call such a subcomplex Φ a Quillen fiber. Note that $\Delta(\phi^{-1}(Q_{\geq q}))$ is homeomorphic to Φ, so Quillen’s fiber lemma concerns contractibility of Quillen fibers.

The following definition of a locally conical system is central to our work. In particular, we will show that for such systems, Theorem 5.1 can be applied to establish the desired homotopy equivalence.

Definition 5.2. A well-framed system (W, R, Λ) is locally conical if for each nonempty $U \subseteq R$, every Quillen fiber $\Phi := X \cap \Delta^U \quad (X \in \Pi^U \setminus \{\hat{1}\})$ of $\text{Supp} : \text{Face}(\Delta^U) \to \Pi^U \setminus \{\hat{1}\}$ has a cone point.

Recall that a cone point p of a simplicial complex Σ is a vertex of Σ that is joinable in Σ to every simplex of Σ, i.e., every maximal simplex of Σ contains p.

Proposition 5.3. Let Σ be a simplicial complex with a G-action. If Σ has a cone point, then Σ is G-contractible.

Proof. The union of all cone points must form a G-stable simplex of Σ, whose barycenter p is therefore a G-fixed point of the geometric realization $\|\Sigma\|$. Since p lies in a common simplex with every simplex of Σ, this space $\|\Sigma\|$ is star-shaped with respect to the G-fixed point p, and a straight-line homotopy retracts $\|\Sigma\|$ onto p in a G-equivariant fashion.

Before employing Theorem 5.1, recall that $\Delta^U = \text{St}_\Delta(W_{R \setminus U})$ and that the action of W on Δ preserves types. Hence, the subcomplex Δ_T^U is a $W_{R \setminus U}$-poset. It follows that

$$\text{Supp} : \text{Face}(\Delta_T^U) \to \Pi_T^U \setminus \{\hat{1}\}$$

is an order-reversing $W_{R \setminus U}$-equivariant map.

Theorem 5.4. Let (W, R, Λ) be a locally conical system. Let $U \subseteq R$ be nonempty and $T \subseteq R$. Then $\Delta(\Pi_T^U \setminus \{\hat{1}\})$ is $W_{R \setminus U}$-homotopy equivalent to Δ_T^U.

Proof. We apply Theorem 5.1 to the map

$$\text{Supp} : \text{Face}(\Delta_T^U) \to \Pi_T^U \setminus \{\hat{1}\}.$$

Let $X \in \Pi_T^U \setminus \{\hat{1}\} \subseteq \Pi^U \setminus \{\hat{1}\}$, and consider first the Quillen fiber

$$\Phi := X \cap \Delta^U$$

(3) for the unrestricted map $\text{Supp} : \text{Face}(\Delta^U) \to \Pi^U \setminus \{\hat{1}\}$.

By definition of locally conical system, Φ has a cone point p. Since Δ is balanced, the subcomplex Φ is also balanced. It follows that p is the unique vertex of Φ of its type.

Face(Σ) and replaces Q with its opposite Q^{opp}, using the fact that $\Sigma \simeq_G \Delta(\text{Face}(\Sigma))$ and $\Delta(Q^{\text{opp}}) = \Delta(Q)$. Recall that Q^{opp} is obtained from Q by reversing order.
Choose \(\sigma \in \Delta_U^V \) with \(X = \text{Supp}(\sigma) \). By the construction of \(\rho(\Delta) \), the vertices of the join \(\{p\} * \sigma \) are contained in
\[
g\Lambda = \{g\lambda_1, g\lambda_2, \ldots, g\lambda_r\}
\]
for some \(g \in W \). Because \(g\Lambda \) is a linearly independent set, \(p \in \text{Supp}(\sigma) \) implies that \(p \) is a vertex of \(\sigma \), and hence a vertex of \(\Delta_U^V \). Therefore, the restricted Quillen fiber \(X \cap \Delta_U^V \) also has \(p \) as a cone point. It follows from Proposition [5,3] that \(X \cap \Delta_U^V \) is Stab\(_{W,R,U}\)\((X)\)-contractible.

6. Homology of locally conical systems

By applying the homology functor to Theorem [5,4] we have the following

Theorem 6.1. Let \((W, R, \Lambda)\) be a locally conical system. Let \(U \subseteq R \) be nonempty and \(T \subseteq R \). Then \(\bigoplus_i \tilde{H}_i(\Delta_U^V) \) and \(\bigoplus_i \tilde{H}_i(\Delta(\Pi_U^R \setminus \{\bar{1}\})) \) are isomorphic as graded \((W_{R,U})\)-modules.

Recall that a simplicial complex \(\Sigma \) is Cohen-Macaulay (over \(\mathbb{Z} \)) if for each \(\sigma \in \Sigma \) we have \(\tilde{H}_i(\text{lk} \sigma, \mathbb{Z}) = 0 \) whenever \(i < \dim(\text{lk} \sigma) \), where \(\text{lk} \sigma \) denotes the link:
\[
\text{lk} \sigma(\sigma) = \{ \tau \in \Sigma : \tau \cap \sigma = \emptyset, \tau \cup \sigma \subseteq \Sigma \}.
\]
The complex \(\Sigma \) is homotopy Cohen-Macaulay if for each \(\sigma \in \Sigma \) we have \(\pi_r(\text{lk} \sigma(\sigma)) = 0 \) whenever \(r \leq \dim(\text{lk} \sigma(\sigma)) - 1 \). Homotopy Cohen-Macaulay implies Cohen-Macaulay (over \(\mathbb{Z} \)), and Cohen-Macaulay implies Cohen-Macaulay over any field; see the appendix of [7].

This section is devoted to establishing explicit descriptions for the modules in Theorem 6.1 when \(\Delta \) is Cohen-Macaulay. We start with the following

Proposition 6.2. Let \((W, R, \Lambda)\) be a well-framed system. Let \(U,T \subseteq R \). If \(\Delta \) is Cohen-Macaulay (resp. homotopy Cohen-Macaulay), then \(\Delta_U^V \) is Cohen-Macaulay (resp. homotopy Cohen-Macaulay).

Proof. It is an easy exercise to show that stars inherit the Cohen-Macaulay (resp. homotopy Cohen-Macaulay) property. The nontrivial step is concluding that \(\Delta_U^V \) is Cohen-Macaulay (resp. homotopy Cohen-Macaulay). This follows from a type-selection theorem for pure simplicial complexes; see Björner [8, Thm. 11.13] and Björner, Wachs, and Welker [10].

Lemma 6.3. Let \((W, R, \Lambda)\) be a well-framed system. If \(U \cap T \neq \emptyset \), then \(\Delta_U^V \) is contractible.

Proof. This is immediate from \(\Delta_U^V = \{W_{R,U}\} * \text{lk} \Delta_{W_{R,U}} \).

Theorem 6.4. Let \((W, R, \Lambda)\) be a well-framed system. Let \(U,T \subseteq R \), and assume that \(\Delta \) is Cohen-Macaulay. If \(U \cap T \neq \emptyset \), then the top homology \(\tilde{H}_{|T|-1}(\Delta_U^V) \) is trivial; otherwise,
\[
\tilde{H}_{|T|-1}(\Delta_U^V) \cong \sum_{J \subseteq T} (-1)^{|T \setminus J|} \text{Ind}_{W_{R,U}}^{W_{R,U}(U \cup J)} 1
\]
as virtual \((W_{R,U})\)-modules.

Remark 6.5. Specializing to type A and to Ehrenborg and Jung’s objects (see Section 7), Lemma 6.3 translates to \(\Delta_{\tilde{c}} \) being contractible whenever \(\tilde{c} \) ends with a zero; this is precisely Lemma 3.1 in [14]. The condition that \(U \cap T = \emptyset \) collapses to the condition that \(\tilde{c} \) not end with zero.

We also note that the virtual modules in (4) are well-known to be the natural generalization of ribbon representations to all Coxeter and Shephard groups; see [24] and [20].
Though the proof of Theorem 6.4 is entirely standard, we first need a particular description of Δ^U_T when $U \cap T = \emptyset$. The following intermediate description is straightforward.

Lemma 6.6. Let (W, R) be a well-generated system. Then for $U, T \subseteq R$ we have

$$\Delta^U_T = \{ g_{W \setminus J} : g \in W_{R \setminus U}, \ J \subseteq T \}. \tag{5}$$

When $\Delta(W, R)$ is a simplicial complex, one has that (W, R) satisfies the intersection condition

$$\bigcap_{r \in R \setminus J} W_{R \setminus \{r\}} = W_J \text{ for all } J \subseteq R.$$

In fact, satisfying the intersection condition is equivalent to $\Delta(W, R)$ being a simplicial complex; see [3, Cor. 2.6]. The following lemma is a straightforward application of the intersection property, and the desired description of Δ^U_T is obtained by applying the lemma to (5).

Lemma 6.7. Let (W, R) be well-framed. If $U \cap T = \emptyset$, then the map

$$\{ g_{W \setminus J} : g \in W_{R \setminus U}, \ J \subseteq T \} \longrightarrow \{ g_{W \setminus (U \cup J)} : g \in W_{R \setminus U}, \ J \subseteq T \}$$

$$g_{W \setminus J} \longmapsto g_{W \setminus (U \cup J)}$$

is a $(W_{R \setminus U})$-poset isomorphism.

The proof of Theorem 6.4 now follows:

Proof of Theorem 6.4. The first claim follows from Lemma 6.3. When $U \cap T = \emptyset$, the result follows from the description of Δ^U_T obtained through Lemmas 6.6 and 6.7 by applying the standard argument using Cohen-Macaulayness and the Hopf trace formula, as is detailed by Solomon in [25]. Other good sources include [20] and the notes of Wachs [31]. □

7. Specializing to objects of Ehrenborg and Jung

In the case of type A, Ehrenborg and Jung constructed pointed objects Δ_n, Π^*_n and subcomplexes $\Delta_{\bar{c}}, \Pi^*_{\bar{c}}$ indexed by compositions $\bar{c} = (c_1, c_2, \ldots, c_k)$ of n that have positive entries $c_1, \ldots, c_{k-1} > 0$ but nonnegative last entry $c_k \geq 0$. Figure 6 shows Ehrenborg and Jung’s Δ_2 and Π^*_2, each carrying an action of S_2. In [14], they show that the top homology of $\Delta_{\bar{c}}$ is homotopy equivalent to the order complex of $\Pi^*_{\bar{c}} \setminus \{\hat{1}\}$, and that the top homology is given by a ribbon Specht module of S_n with row sizes determined by \bar{c}.

![Figure 6](image-url)

Figure 6. Ehrenborg and Jung’s pointed objects.

The aim of this section is to present the underlying geometry of Ehrenborg and Jung’s objects by showing how our objects Δ^U_T, Π^U_T specialize to theirs. It will follow that applying
our results to this specialization recovers their main results, even upgrading their homotopy equivalence to an equivariant one. The translations between objects of this section are well-known, and we will largely follow the discussion of Aguiar and Mahajan; see [2, §1.4].

Let \(W = \mathfrak{S}_{n+1} \) and let \(R = \{r_1, r_2, \ldots, r_n \} \) be the usual generating set of adjacent transpositions, i.e.,

\[
 r_i = (i, i+1).
\]

The symmetric group \(\mathfrak{S}_{n+1} \) is the symmetry group of the standard \(n \)-simplex \(\mathcal{P}_n \) with vertices labeled by \(\{1, 2, \ldots, n+1\} \). The barycentric subdivision \(B(\mathcal{P}_n) \) of the boundary of \(\mathcal{P}_n \) is homeomorphic to the Coxeter complex via radial projection. Letting \(\lambda_i \) be the vertex of \(B(\mathcal{P}_n) \) indexed by \(\{1, 2, \ldots, i\} \) yields a well-framed system \((W, R, \Lambda)\) with \(\rho(\Delta) = B(\mathcal{P}_n) \). Note that, in particular, \(\Lambda \) lies on the distinguished face \(\mathcal{P}_{n-1} \) of \(\mathcal{P}_n \) that has vertex set \(\{1, 2, \ldots, n\} \); see Figure 7. We call \((W, R, \Lambda)\) the standard system for \(\mathfrak{S}_{n+1} \).

![Figure 7. W = S_4 with the subdivision of facet P_2 shaded.](image-url)

A set composition of \(n + 1 \) is an ordered partition \(B_1-B_2-\cdots-B_k \) of \([n+1]\) with nonempty blocks. The collection of all set compositions of \(n + 1 \) form a simplicial complex \(\Sigma_{n+1} \) under refinement, with chambers having \(n + 1 \) singleton blocks; see Figure 9. The type of a set composition is the composition of its block sizes, i.e.,

\[
\text{type}(B_1-B_2-\cdots-B_k) = (|B_1|, |B_2|, \ldots, |B_k|).
\]

Given a composition \(\bar{c} \) of \(n + 1 \), the subcomplex of \(\Sigma_{n+1} \) generated by the faces of type \(\bar{c} \) is denoted \(\Sigma_{\bar{c}} \). The map \(\phi \) obtained by letting

\[
\{\lambda_{i_1}, \lambda_{i_2}, \ldots, \lambda_{i_k}\} \mapsto 1, \ldots, i_1-(i_1+1), \ldots, i_2-\cdots-(i_k+1), \ldots, n+1,
\]

and extending by the action of \(W \), is an equivariant isomorphism \(\rho(\Delta) \to \Sigma_{n+1} \); see Figure 8. Under this isomorphism, a face \(B_1-B_2-\cdots-B_k \) of type \(\bar{c} \) corresponds to a face of type

\[
\text{Des}(\bar{c}) := \{r|B_1, r|B_1+B_2, \ldots, r|B_1+\cdots+B_{k-1}\}.
\]

Note also that those faces of \(B(\mathcal{P}_n) \) in the star of \(\mathcal{P}_{n-1} \) either have \(n + 1 \) contained in the last block or have last block equal to \(\{n+1\} \).

The lattice of hyperplane intersections \(\mathcal{L}_W \) for \(W \) also has a simple description obtained from set compositions. Under the identification of \(\rho(\Delta) \) and \(\Sigma_{n+1} \), the support map corresponds to forgetting the order on the blocks. That is,

\[
\text{Supp}(B_1-B_2-\cdots-B_k) = B_1|B_2|\cdots|B_k.
\]
The induced partial order is given by refinement.

A pointed set composition of n is an ordered partition $B_1—B_2—\cdots—B_k$ of $[n]$ with last block B_k possibly empty. We denote the collection of all pointed set compositions of $[n]$ by Δ_n^\bullet. The previous discussion shows that by removing $n + 1$ from blocks in elements of Σ_{n+1}, the barycentric subdivision of the facet \mathcal{F}_{n-1} can be identified with Δ_n^\bullet; see Figures 8 and 10. More accurately, Δ_n^\bullet is S_n-equivariantly isomorphic to $\Delta^{(e^n)}$. Given a composition \vec{c} of n with last part possibly 0, the corresponding selected complex is denoted $\Delta_{\vec{c}}$, which is Ehrenborg and Jung’s complex $\Delta_{\vec{c}}$; see Figure 10. By distinguishing terminal blocks before taking the image of $\Delta_{\vec{c}}$ under the support map, one obtains their pointed poset $\Pi_{\vec{c}}^\bullet$ after removing any (possibly distinguished) empty blocks; see Figure 9.

Ehrenborg and Jung distinguish a block by underlining it. Thus, the above map is

$$\Delta_{\vec{c}} \longrightarrow \Pi_{\vec{c}}^\bullet$$

$$B_1—B_2—\cdots—B_k \mapsto B_1|B_2|\cdots|B_k.$$

The following proposition summarizes the correspondence outlined above.

Proposition 7.1. Let (W, R, Λ) be the standard system for S_{n+1}, and let $\vec{c} = (c_1, c_2, \ldots, c_k)$ be a composition of n with last part c_k possibly 0. Then the following diagram composed of
Theorem 7.2 (Ehrenborg and Jung). Let $\vec{c} = (c_1, c_2, \ldots, c_k)$ be a composition of $n + 1$ with last part c_k possibly 0. Then we have the following isomorphism of top (reduced) homology groups as S_n-modules:

$$\tilde{H}_{\text{top}}(\Delta_{\{r_n\}_{\text{Des}(\vec{c})}}) \cong S_n \tilde{H}_{\text{top}}(\Delta_{\vec{c}}).$$

Remark 7.3. Proposition 7.1 shows that Theorem 7.2 is implied by combining Theorem 8.1(iv) or Theorem 10.3(iv) below with Theorem 5.4 (or Theorem 6.1).

8. Coxeter groups

The main theorem of this section is that we can apply all previous results to finite irreducible Coxeter groups.

Theorem 8.1. Let (W, R) be a simple system for a finite irreducible real reflection group W, and let $\Lambda = \{\lambda_1, \lambda_2, \ldots, \lambda_\ell\}$ consist of one nonzero point from each extreme ray of a Weyl chamber corresponding to R. Then the following hold:

(i) (W, R, Λ) is strongly stratified.
(ii) $\rho(\Delta)$ is homeomorphic to the Coxeter complex of (W, R) via radial projection.
(iii) $\Delta := \Delta(W, R)$ is homotopy Cohen-Macaulay.
(iv) (W, R, Λ) is locally conical.

Properties (i)-(iii) are well-known. The aim of this section is to establish (iv).

We will need the following Lemma 8.2. Let W be a finite irreducible real reflection group, and let $\lambda_1, \lambda_2, \ldots, \lambda_\ell$ be nonzero vectors on extreme rays of a fixed Weyl chamber. Then the orthogonal projection of λ_1 onto $\text{Span}(\lambda_2, \ldots, \lambda_\ell)$ is nonzero.
Proof. This follows from the claim that, for all \(i, j \), one has \(\langle \lambda_i, \lambda_j \rangle > 0 \) for any set \(\{ \lambda_1, \ldots, \lambda_\ell \} \) of nonzero vectors on the extreme rays of a Weyl chamber \(C \).

To see this claim, let \(\alpha_1, \ldots, \alpha_\ell \) be the simple system of roots associated with \(C \). In particular, \(\alpha_i \) is orthogonal to \(H_i = \text{Span}(\lambda_1, \ldots, \hat{\lambda}_i, \ldots, \lambda_\ell) \), and its direction is chosen so that \(\langle \lambda_i, \alpha_i \rangle \geq 0 \). Recall that the \(\alpha_i \) form an obtuse basis for \(V \), i.e., a basis with \(\langle \alpha_i, \alpha_j \rangle \leq 0 \) for all \(i, j \).

It follows from [11, Ch.V, §3, no. 5, Lemma 6] that \(C \subseteq \{ \Sigma_i c_i \alpha_i : c_i \geq 0 \} \). This implies the weak inequality, i.e., \(\langle \lambda_i, \lambda_j \rangle \geq 0 \) for all \(i, j \).

One can now obtain the desired strict inequality by using the connectivity of the Coxeter diagram for \(W \) and the fact that the \(\alpha_i \) are obtuse; see [15, p. 72, no. 8] for an outline. □

We will also need some basic facts regarding convexity of the Coxeter complex; see [1], particularly Section 3.6, for details and a more general treatment. Let \(W \leq \text{GL}(\mathbb{R}^\ell) \) be a finite real reflection group, and let \(\Sigma \) denote its Coxeter complex. Recall that \(\Sigma \) is a chamber complex, meaning that all maximal simplices (called chambers) are of the same dimension, and any two chambers can be connected by a gallery. Here, a gallery connecting two chambers \(C, D \) is a sequence of chambers \(C = C_0, C_1, \ldots, C_k = D \) with the additional property that consecutive chambers are adjacent, meaning that they share a codimension-1 face.

A root \(\beta \) of \(\Sigma \) is the intersection of \(\Sigma \) with a closed half-space determined by a reflecting hyperplane, and a subcomplex of \(\Sigma \) is called convex if it is an intersection of roots. Each convex subcomplex \(\Sigma' \) is itself a chamber complex in which any two maximal simplices can be connected by a \(\Sigma' \)-gallery. Moreover, a chamber subcomplex \(\Sigma' \) is convex if and only if any shortest \(\Sigma \)-gallery connecting two chambers of \(\Sigma' \) is contained in \(\Sigma' \).

The main tool for proving Theorem 8.1(iv) is an iterative method for detecting cone points. The following discussion and lemma make this precise.

Choose a nontrivial subset \(U \subseteq R \) and consider a nontrivial simplex \(\sigma \in \Delta^U \). Choose \(B \) to be a chamber of \(\Delta^U \) containing \(\sigma \ast \Lambda_U \). From a sequence \(b_0, b_1, \ldots, b_k \) of distinct vertices of \(B \), we construct a descending sequence of convex subcomplexes

\[
\Delta^U = \Delta_0 \supseteq \Delta_1 \supseteq \cdots \supseteq \Delta_k \supseteq \Delta_{k+1},
\]

where we set \(H^B_i = \text{Supp}(B \setminus \{b_i\}) \) and define

\[
\Delta_i = \left(\bigcap_{j=0}^{i-1} H^B_j \right) \cap \Delta^U.
\]

We call the sequence \(b_0, b_1, \ldots, b_k \) cone-approximating for the triple \((\Delta^U, \sigma, B) \) if the following two conditions hold:

\footnote{Root vectors of \(W \) in \(\mathbb{R}^\ell \) (vectors perpendicular to reflecting hyperplanes) are in canonical 1-1 correspondence with roots of \(\Sigma \). The notion of root extends to arbitrary thin chamber complexes by introducing the notion of a folding. The terminology is due to Tits, who characterized abstract Coxeter complexes as precisely those thin chamber complexes with “enough” foldings; see [1, Sec. 3.4].}
(1) b_i is a cone point of Δ_i for $0 \leq i \leq k$.
(2) $\sigma \in \Delta_i$ for $0 \leq i \leq k$.

Note that $\Delta_0 = \Delta^U$ implies the existence of cone-approximating sequences, since U is nontrivial. The main result is that any cone-approximating sequence can be extended to contain a vertex of σ:

Lemma 8.3. In the above setting, a maximal cone-approximating sequence b_0, b_1, \ldots, b_m for (Δ^U, σ, B) has $b_m \in \sigma$.

Proof. Supposing $b_m \not\in \sigma$, we have that $\sigma \in \text{lk}_{\Delta_m}(b_m)$. From this it follows that

$$\sigma \in H^R_m \cap \Delta_m = \Delta_{m+1}.$$

First note that Δ_{m+1} is a convex subcomplex. Set

$$B_{m+1} = B \setminus \{b_0, \ldots, b_m\},$$

the distinguished chamber of Δ_{m+1} containing σ, and let \tilde{B}_{m+1} be another chamber of Δ_{m+1}.

Since Δ_{m+1} is convex, we have that

$$\Delta_{m+1} \ast \{b_0, \ldots, b_m\}$$

is a convex chamber subcomplex of Δ^U. Thus, there is a gallery in $\Delta_{m+1} \ast \{b_0, \ldots, b_m\}$ that connects chambers $B_{m+1} \ast \{b_0, \ldots, b_m\}$ and $\tilde{B}_{m+1} \ast \{b_0, \ldots, b_m\}$. Therefore, there is a sequence of reflections \tilde{r} that induces a gallery from B_{m+1} to \tilde{B}_{m+1} in Δ_{m+1}.

Since \tilde{r} (sequentially) stabilizes Δ_{m+1}, meaning that $r_i \Delta_{m+1} = \Delta_{m+1}$ for every reflection r_i in \tilde{r}, the sequence \tilde{r} also stabilizes both Supp(Δ_{m+1}) and its orthogonal complement in Supp(Δ_m). Because b_m is fixed by \tilde{r} and lies strictly on one side of Supp(Δ_{m+1}) in Supp(Δ_m), it follows that \tilde{r} fixes the orthogonal complement pointwise. This implies that the orthogonal projection Proj$_{m+1}^m(b_m)$ of the vector b_m onto Supp(Δ_{m+1}) in Supp(Δ_m) is fixed by \tilde{r}.

From Lemma 8.2 we have

$$\dim \ \text{Proj}_{m+1}^m(b_m) = 1.$$

We claim that this projection has nontrivial intersection with the cone over B_{m+1}. That is,

(6) $$\dim \ \text{Proj}_{m+1}^m(b_m) \cap \mathbb{R}^r_{>0} B_{m+1} = 1.$$

To see this, note first that $B_{m+1} \ast \{b_m\}$ forms a chamber for a Coxeter complex. The claim now follows from the fact that pairs of walls in a chamber do not intersect obtusely; indeed, writing s_i, s_j for the reflections in two distinct walls of a chamber, we have $s_i \neq s_j$ and the dihedral angle formed by the walls is π/m_{ij}, where m_{ij} is the order of $s_i s_j$.

By (6), the line $L = \text{Span} \ \text{Proj}_{m+1}^m(b_m)$ intersects a face F of B_{m+1} that is minimal in the sense that no proper face of F meets L. Therefore, if L is fixed by a reflection, the face F is fixed pointwise by the reflection. Choose b_{m+1} to be some vertex of F. We conclude that any gallery in Δ_{m+1} that contains B_{m+1} has b_{m+1} as a cone point. By connectivity, this implies that Δ_{m+1} has b_{m+1} as a cone point. As we also have $\sigma \in \Delta_{m+1}$ and $b_{m+1} \neq b_m, \ldots, b_0$, we can append b_{m+1} to obtain a longer approximating sequence. \square

Proof of Theorem 8.7 [IV]. Let $U \subseteq R$ be nonempty and $\sigma \in \Delta^U \setminus \{\emptyset\}$. Choose B to be a chamber of Δ^U containing $\sigma \ast \Lambda_U$. Consider the Quillen fiber Supp(σ) $\cap \Delta^U$ for the map

$\text{Supp} : \text{Face}(\Delta^U) \to \Pi^U \setminus \{1\}$, as in (3) of Theorem 5.4 and let b_0, b_1, \ldots, b_m be a maximal
cone-approximating sequence for \((\Delta^U, \sigma, B)\). By Lemma 8.3, \(\Delta_m\) has cone point \(b_m\) that is also a vertex of \(\sigma\). We want to show that \(b_m\) is also a cone point for the Quillen fiber.

Since \(\sigma \in \Delta_m\) and \(\Delta_m = X \cap \Delta^U\) for some particular \(X \in \mathcal{L}_W\), it follows that \(\sigma \subset X\), and hence

\[
\text{Supp}(\sigma) \cap \Delta^U \subseteq \Delta_m.
\]

Let \(\tau \in \text{Supp}(\sigma) \cap \Delta^U\). We want to show that the join \(\tau \ast \{b_m\}\) is also in the fiber. Since \(\tau \ast \{b_m\} \in \Delta_m \subseteq \Delta^U\), we need only show that \(\text{Supp}(\tau \ast \{b_m\}) \subseteq \text{Supp}(\sigma)\). But this is clear, since \(\tau \subset \text{Supp}(\sigma)\) and \(b_m \in \sigma\). \(\square\)

9. Shephard groups

Shephard groups form an important class of complex reflection groups. They are the symmetry groups of regular complex polytopes, as defined by Shephard [22]. Here we will follow Coxeter’s treatment [13].

Let \(\mathcal{P}\) be a finite arrangement of complex affine subspaces of \(V\), with partial order given by inclusion. We call its elements *faces*, denoting an \(i\)-dimensional face by \(F_i\). A 0-dimensional face is called a *vertex*. Allowing *trivial faces* \(F_n = V\) and \(F_{-1} = \emptyset\), all other faces are called *proper faces*. A totally ordered set of proper faces is called a *flag*. The simplicial complex of all flags is called the *flag complex* and is denoted \(K(\mathcal{P})\). This is the order complex of \(\mathcal{P}\) with its improper faces \(\emptyset\) and \(V\) omitted.

Such an arrangement \(\mathcal{P}\) is a *polytope* if the following hold:

(i) \(\emptyset, V \in \mathcal{P}\),

(ii) If \(F_i \subset F_j\) and \(|i - j| \geq 3\), then the open interval

\[
(F_i, F_j) = \{F : F_i \subset F \subset F_j\}
\]

is connected, i.e., its Hasse diagram is a connected graph.

(iii) If \(F_i \subset F_j\) and \(|i - j| \geq 2\), then the open interval \((F_i, F_j)\) contains at least two distinct \(k\)-dimensional faces \(F_k, F_k'\) for each \(k\) with \(i < k < j\).

For \(\mathcal{P}\) a polytope, note that properties (i) and (ii) enable one to extend any partial flag \(F_{i_1} \subset F_{i_2} \subset \cdots \subset F_{i_k}\) in \(K(\mathcal{P})\) to a maximal flag (under inclusion) of the form

\[
F_0 \subset F_1 \subset \cdots \subset F_{\ell-1}.
\]

We call maximal flags in \(K(\mathcal{P})\) *chambers*. If the group \(W \subset \text{GL}(V)\) of automorphisms of \(\mathcal{P}\) acts transitively on the chambers of \(\mathcal{P}\), then we say that \(\mathcal{P}\) is *regular* and that \(W\) is a *Shephard group*.

The complexifications of the two (affine) arrangements shown in Figure 11 are examples of regular (complex) polygons. Both polygons have symmetry group \(I_2(5)\), the dihedral group of order 10.

Figure 11. Two regular polygons with symmetry group \(I_2(5)\).
If \mathcal{P} contains a pair of distinct vertices that are at the minimum distance apart (among all pairs of distinct vertices) with no edge of \mathcal{P} connecting them, then \mathcal{P} is starry; see [22, p. 87]. For example, the first polytope of Figure [11] is starry, whereas the second is nonstarry. From the work of Coxeter, each Shephard group W is the symmetry group of two (possibly isomorphic) nonstarry regular complex polytopes; see Tables IV and V in [13]. Henceforth, we assume that all polytopes are nonstarry. Though currently unmotivated, the importance of this assumption will be made clear by Theorem 10.3.

Given a regular complex polytope \mathcal{P} and a choice of maximal flag

$$\mathcal{B} = B_0 \subset B_1 \subset \cdots \subset B_{\ell-1},$$

called the base chamber, for each i the group

$$\text{Stab}_W(B_0 \subset \cdots \subset \hat{B}_i \subset \cdots \subset B_{\ell-1})$$

is generated by some reflection r_i. Choosing such an r_i for each i yields an associated set $R = \{r_0, r_1, \ldots, r_{\ell-1}\}$ that generates W. We call R a set of distinguished generators.

In the case that \mathcal{P} has a real form, each r_i is uniquely determined, and they give the usual Coxeter presentation for W. In general, Coxeter shows that one can always choose the reflections r_i so that for some integers $p_0, p_1, \ldots, p_{\ell-1}, q_0, q_1, \ldots, q_{\ell-2}$ the group has the following Coxeter-like presentation with defining relations

$$r_i^{p_i} = 1,$$
$$r_ir_j = r_jr_i \quad \text{if } |i - j| \geq 2,$$

$$\underbrace{r_ir_{i+1}r_{i+2} \cdots}_{q_i} = \underbrace{r_{i+1}r_{i+2}r_{i+3} \cdots}_{q_i}.$$

These relations are encoded by symbol

$$p_0[q_0]p_1[q_1]p_2 \cdots p_{\ell-2}[q_{\ell-2}]p_{\ell-1},$$

which is uniquely determined by W up to reversal. The corresponding nonstarry polytopes are denoted

$$p_0\{q_0\}p_1\{q_1\}p_2\cdots p_{\ell-2}\{q_{\ell-2}\}p_{\ell-1} \quad \text{and} \quad p_{\ell-1}\{q_{\ell-2}\}p_{\ell-2}\cdots p_2\{q_1\}p_1\{q_0\}p_0,$$

the second called the dual of the first. If we denote one of the two polytopes by \mathcal{P}, then the other is denoted by \mathcal{P}^\ast. The two polytopes have dual face posets and isomorphic flag complexes.

The complete classification of Shephard groups is quite short:

- The symmetry groups of real regular polytopes, i.e., the Coxeter groups with connected unbranched diagrams: types $A_n, B_n = C_n, F_4, H_3, H_4, I_2(n)$.
- $p_0[q]p_1$ with $p_0, p_1 \geq 2$ not both 2, and $q \geq 3$ satisfying

$$\frac{1}{p_0} + \frac{1}{p_1} + \frac{2}{q} > 1,$$

where $p_0 = p_1$ if q is odd. Using Shephard and Todd’s numbering, these groups are $G_4, G_5, G_6, G_8, G_9, G_{10}, G_{14}, G_{16}, G_{17}, G_{18}, G_{20}, G_{21}$.
- $G(r, 1, n) = Z_\ast \wr S_n$ with $r > 2$. The group can be represented as $n \times n$ permutation matrices with entries the rth roots of unity.
- $2[4]3[3]3 = G_{26}$
• $3[3]3[3]3 = G_{25}$
• $3[3]3[3]3[3]3 = G_{32}$.

The following list summarizes notation and assumptions that will remain fixed when dealing with Shephard groups.

- W is a Shephard group.
- \mathcal{P} is a non-starry regular complex polytope with symmetry group W.
- $K(\mathcal{P})$ is the flag complex of \mathcal{P}, consisting of all flags of (proper) faces.
- $B = B_0 \subset B_1 \subset \cdots \subset B_{\ell-1}$ is a chosen base flag in $K(\mathcal{P})$.
- R is a set of distinguished generators for W corresponding to B. One can choose R to satisfy the presentation found in the classification above, but doing so is unnecessary.
- Let $U \subseteq R$ with $U = \{r_{i_1}, \ldots, r_{i_k}\}$ and $i_1 < \cdots < i_k$. Then
 $$B_U \overset{\text{def}}{=} B_{i_1} \subset \cdots \subset B_{i_k}.$$
- \mathcal{L}_W is the lattice of hyperplane intersections for W under reverse inclusion.

10. SHEPHARD SYSTEMS

The aim of this section is to present an analogue of Theorem 8.1 for Shephard groups.

If W is the symmetry group of a real regular polytope \mathcal{P}, then the Coxeter complex Σ is obtained by intersecting the reflecting hyperplanes with the real sphere $\mathbb{S}^{\ell-1}$. A radial projection sends Σ homeomorphically onto the barycentric subdivision of \mathcal{P}. Moreover, it is a geometric realization of the (a priori) poset of standard cosets

$$\Delta_W = \{ gW_J \}_{J \leq R},$$

ordered by reverse inclusion. This section presents the analogous picture for Shephard groups, as established by Orlik [17] and Orlik, Reiner, Shepler [20].

The vertices of a face F of \mathcal{P} are the vertices of \mathcal{P} lying on F, and the centroid O_F of F is the average of its vertices. Centroids play an important role in what follows.

Definition 10.1. A Shephard system is a triple (W, R, Λ) with the following properties:

(i) W is the symmetry group of a nonstarry regular complex polytope \mathcal{P}.

(ii) R is a set of distinguished generators corresponding to a chosen base flag

$$B = B_0 \subset B_1 \subset \cdots \subset B_{\ell-1}.$$

(iii) $\Lambda = \{\lambda_0, \lambda_1, \ldots, \lambda_{\ell-1}\}$ is defined by setting $\lambda_i = O_{B_i}$.

We start by observing that such triples are framed systems.

Proposition 10.2. A Shephard system is a framed system.

Proof. Recall from Section 9 that for $0 \leq k \leq \ell - 1$, the reflection $r_k \in R$ stabilizes

$$B_0 \subset \cdots \subset B_k \subset \cdots \subset B_{\ell-1}.$$

In particular, centroid O_i of B_i is fixed by all r_k with $k \neq i$. In other words,

$$O_i \in H_0 \cap \cdots \cap H_i \cap \cdots \cap H_{\ell-1}.$$

\square
Let $B(\mathcal{P})$ denote the (topological) subspace of V that consists of all real convex hulls of centroids of flags under inclusion, i.e.,

$$B(\mathcal{P}) = \bigcup_{(F_1 \subset \cdots \subset F_k) \in K(\mathcal{P})} \text{Hull}(O_{F_1}, \ldots, O_{F_k}).$$

We can now state the analogue of Theorem 8.1 for Shephard groups:

Theorem 10.3. Let (W, R, Λ) be a Shephard system. Then the following hold:

(i) (W, R, Λ) is strongly stratified.

(ii) $\rho(\Delta) = B(\mathcal{P})$.

(iii) $\Delta := \Delta(W, R)$ is homotopy Cohen-Macaulay.

(iv) (W, R, Λ) is locally conical.

Note that Figure 11 illustrates why the non-starry assumption is necessary; indeed, ρ fails to be an embedding in the starry case when $\Lambda = \{O_{B_0}, O_{B_1}\}$ and $B_0 \subset B_1$ is a maximal flag.

The remainder of this section explains (i)-(iii), while (iv) will be established in the next section. During our discussion, the reader should take note of our use of Theorems 10.4 and 10.7, two uniformly stated theorems that are proven case-by-case. In particular, Theorem 10.4 relies on a theorem of Orlik and Solomon that says a Shephard group and an associated Coxeter group have the same discriminant matrices, a result relying on the classification of Shephard groups; see [19]. However, up to the use of Theorems 10.4 and 10.7, our approach for Theorem 10.3 is case-free.

For each Shephard group, the invariant f_1 of smallest degree d_1 is unique, up to constant scaling. For example, if W has a real form, then $f_1 = x_1^2 + \cdots + x_\ell^2$ for some suitable set of coordinates. The Milnor fiber of W is defined to be $f_1^{-1}(1)$, where f_1 is regarded as a map $f_1 : V \to \mathbb{C}$. In [17], Orlik constructs a W-equivariant strong deformation retraction of the Milnor fiber $f_1^{-1}(1)$ onto a simplicial complex Γ homeomorphic to $B(\mathcal{P})$, which he shows is a geometric realization of the flag complex $K(\mathcal{P})$.

Theorem 10.4 (Orlik [17]). Let $W \subset \text{GL}(V)$ be a Shephard group with invariant $f_1 : V \to \mathbb{C}$ of smallest degree. Then there exists a simplicial complex $\Gamma \subset f_1^{-1}(1)$ called the Milnor fiber complex containing the vertices of \mathcal{P} such that

1. (a) There is an equivariant strong deformation retract $\pi : f_1^{-1}(1) \to \Gamma$.

 (b) For each $X \in \mathcal{L}_W$, the set $\Gamma_X := \Gamma \cap X$ is a subcomplex of Γ, and π restricts to a strong deformation retract of $f_1^{-1}(1) \cap X$ onto Γ_X.

2. Let Γ^k and Γ^k_X denote the k-skeleton of each complex. Then

 (a) $\Gamma^k_X = \Gamma^k \cap X$ for all k, and

 (b) $\Gamma^k \setminus \Gamma^{k-1} = \bigcup_{\dim X = k+1} (\Gamma^k_X \setminus \Gamma_X^{k-1})$ is a disjoint union.

3. (a) Γ is W-equivariantly homeomorphic to $B(\mathcal{P})$, and

 (b) $B(\mathcal{P})$ is a geometric realization of the flag complex $K(\mathcal{P})$ via

$$F_{i_1} \subset \cdots \subset F_{i_k} \mapsto \text{Hull}(O_{F_{i_1}}, \ldots, O_{F_{i_k}}).$$

Parts (1) and (2) are [17] Thm 4.1(i)-(ii)], while (3) uses the proof of [17] Thm 5.1. A nice discussion of the related theory is found in [20].

Using the additional property that $f_1^{-1}(1)$ has an isolated critical point at the origin, Orlik was able to describe the topology of the flag complex $K(\mathcal{P})$:
Theorem 10.5 (Orlik [17]). \(K(\mathcal{P}) \) is homotopy Cohen-Macaulay, and is homotopy equivalent to a wedge of \((d_1 - 1)\ell\)-spheres of dimension \(\ell - 1\).

We will establish (i) and (iii) of Theorem 10.3 by combining Theorem 10.4(3) and Theorem 10.5 with the following

Theorem 10.6 (Orlik, Reiner, Shepler [20]). Let \(W \) be a Shephard group of \(\mathcal{P} \), and let \(B \) be a base flag with corresponding distinguished generating set \(R \). Then the map

\[
\phi : K(\mathcal{P}) \rightarrow \{ gW_J : g \in W, J \subseteq R \}
\]

\[
g(B_{i_1} \subset \cdots \subset B_{i_s}) \mapsto gW_{R \setminus \{r_{i_1}, \ldots, r_{i_s}\}}
\]

is a \(W \)-equivariant isomorphism.

The crux of the proof is that

\[
\text{Stab}_W(B_{j_1} \subset B_{j_2} \subset \cdots \subset B_{j_s}) = W_{R \setminus \{r_{j_1}, r_{j_2}, \ldots, r_{j_s}\}}.
\]

The type function on \(K(\mathcal{P}) \) is naturally given by

\[
\text{type}(B_{i_1} \subset \cdots \subset B_{i_s}) = \{r_{i_1}, \ldots, r_{i_s}\}.
\]

Proof of Theorem 10.3 (ii), (iii), and the well-framed component of (i). Notice that \(\rho \) factors as

\[
\Delta \xrightarrow{\phi^{-1}} K(\mathcal{P}) \xrightarrow{\sim} B(\mathcal{P}) \hookrightarrow V,
\]

where \(\phi \) is as in Theorem 10.6 and \(K(\mathcal{P}) \xrightarrow{\sim} B(\mathcal{P}) \) is provided by Theorem 10.4(3)(a). Hence, the triple \((W, R, \Lambda)\) is well-framed and \(\rho(\Delta) = B(\mathcal{P}) \). Employing Theorem 10.5 yields (iii).

All that remains for establishing (i)-(iii) is to show that each \(X \in \mathcal{L}_W \) contains the image under \(\rho \) of a \((\dim X - 1)\)-simplex of \(\Delta \). This follows from the following beautiful theorem that merges work of Orlik and Solomon [18, Thm. 6] and Orlik [17, Thm. 4.1(iii)]; this amalgamation appears in the latter paper of Orlik.

Theorem 10.7 (Orlik-Solomon). Let \(W \) be the symmetry group of a nonstarry regular complex polytope \(\mathcal{P} \). Let \(X \in \mathcal{L}_W \), and write \(\dim X = n \). Then there exists strictly positive integers \(b_1^X, \ldots, b_n^X \) such that

\[
|\Gamma_X^{n-1} \setminus \Gamma_X^{n-2}| = (m_1 + b_1^X) \cdots (m_1 + b_n^X),
\]

where \(m_1 = d_1 - 1 \) and \(\Gamma_X^k \) is the \(k \)-skeleton of the restricted Milnor fiber complex \(X \cap \Gamma \).

Proof of Theorem 10.3(iii). Consider \(X \in \mathcal{L}_W \) with \(\dim X = n \geq 1 \). By Theorem 10.7, \(\Gamma_X^{n-1} \setminus \Gamma_X^{n-2} \) is nonempty if \(m_1 \geq 0 \), as this implies that the right side of (7) is strictly positive. But this is clear, since \(d_1 = \deg f_1 \geq 1 \) for any set of basic invariants \(f_1, \ldots, f_r \). (In fact, \(d_1 \geq 2 \), with equality if and only if \(W \) is a real reflection group.)

By Theorem 10.4 each \((n-1)\)-simplex of \(\Gamma \cap X \) corresponds to an \((n-1)\)-simplex of \(B(\mathcal{P}) \cap X \). Hence, \((B(\mathcal{P}) \cap X)^{n-1} \) is nonempty. Since \(\rho(\Delta) = B(\mathcal{P}) \), it follows by considering dimension that \(X = \text{Supp}(\sigma) \) for some \(\sigma \in \Delta \). \(\square \)
11. Shephard systems are locally conical

This section is dedicated to proving (iv) of Theorem 10.3. Throughout, \((W, R, \Lambda)\) will be a fixed Shephard system, and \(F_i\) will denote an \(i\)-dimensional face of \(P\). Because we will need to work with faces of \(P\) instead of centroids, we start with some straightforward results relating the two. The most important of these results says that centroids of a maximal flag (together with the origin \(O_{F_i}\)) form an orthoscheme; see [13, p. 116]. More precisely, we have the following

Proposition 11.1 (Coxeter). Let \(P\) be a regular complex polytope, and let
\[
F = F_0 \subset F_1 \subset \cdots \subset F_{\ell - 1}
\]
be a maximal flag of faces. Then the vectors
\[
O_{F_{\ell - 1}} - O_{F_\ell}, \quad O_{F_{\ell - 2}} - O_{F_{\ell - 1}}, \quad \ldots, \quad O_{F_0} - O_{F_1}
\]
form an orthogonal basis for \(V\).

By taking partial sums in (8), we obtain the following

Lemma 11.2. Let \(F_0 \subset F_1 \subset \cdots \subset F_{\ell - 1}\) be a maximal flag of a regular polytope \(P\). Then the centroids \(O_{F_0}, O_{F_1}, \ldots, O_{F_{\ell - 1}}\) form a basis for \(V = \mathbb{C}^\ell\).

Two particularly important results follow from Lemma 11.2.

Corollary 11.3. \(F_i = \text{AffSpan}(O_{F_0}, \ldots, O_{F_i})\) for all \(i \geq 0\).

Corollary 11.4. If \(F_1, F_2\) are two subflags of a fixed flag \(F\), then
\[
\text{Span}\{O_F\}_{F \in F_1} \cap \text{Span}\{O_F\}_{F \in F_2} = \text{Span}\{O_F\}_{F \in F_1 \cap F_2}
\]
and
\[
\text{AffSpan}\{O_F\}_{F \in F_1} \cap \text{AffSpan}\{O_F\}_{F \in F_2} = \text{AffSpan}\{O_F\}_{F \in F_1 \cap F_2}.
\]

We are now ready to present the main tool that will be used in the proof of Theorem 10.3(iv):

Proposition 11.5. Let \(X \in \mathcal{L}_W\) of dimension \(k > 0\), and suppose that \(F = F_{i_1} \subset \cdots \subset F_{i_k}\) and \(F' = F'_{j_1} \subset \cdots \subset F'_{j_k}\) are two \(k\)-flags with
\[
X = \text{Span}(O_{F_{i_1}}, \ldots, O_{F_{i_k}}) = \text{Span}(O_{F'_{j_1}}, \ldots, O_{F'_{j_k}}).
\]
Set \(i_{k+1} = \ell\). For \(1 \leq s \leq k\), if \(F\) is a face such that \(F_{i_s} \subseteq F \subsetneq F_{i_{s+1}}\), then one of the following holds:
(a) \(F'_{j_t} = F_{i_s}\).
(b) \(F'_{j_t} \not\subset F\) for all \(t\).

Proof. Suppose that \(F'_{j_t}, F_{i_s} \subseteq F \subsetneq F_{i_{s+1}}\) with \(s\) and \(t\) maximal. Using the definition of a polytope, we can extend \(F_{i_1} \subset \cdots \subset F_{i_s} \subseteq F \subset \cdots \subset F_{i_k}\) to a maximal flag \(F\). By doing so, Corollaries 11.3 and 11.4 imply that
\[
F \cap X = \text{AffSpan}(O_{F_{i_1}}, \ldots, O_{F_{i_s}}).
\]
Similarly,
\[
F \cap X = \text{AffSpan}(O_{F'_{j_1}}, \ldots, O_{F'_{j_t}}).
\]
By comparing dimension, we have that \(t = s \).

Our first claim is that \(F_{i_s}, F'_{j_s} \) are minimal faces of \(F \) containing \(F \cap X \). Certainly the intersection is contained in \(F_{i_s} \) (and \(F'_{j_s} \)). Moreover, it contains the centroid \(O_{F_{i_s}} \) (resp. \(O_{F'_{j_s}} \)), which cannot be contained in any proper face of \(F_{i_s} \) (resp. \(F'_{j_s} \)) by Corollary 11.3.

Assume without loss of generality that \(i_s \leq j_s \). From the equalities of (9) and (10), we have \(O_{F'_{j_s}} \in F_{i_s} \). The definition of a polytope implies the existence of a face \(\tilde{F}_{j_s} \supseteq F_{i_s} \), which must therefore necessarily contain both \(O_{\tilde{F}_{j_s}} \) and \(O_{F'_{j_s}} \). We claim that \(F'_{j_s} = \tilde{F}_{j_s} \). This follows immediately if \(O_{F'_{j_s}} = O_{\tilde{F}_{j_s}} \), since faces and centroids determine each other; see Theorem 10.4(3)(b), for example. The other case is slightly more work.

Suppose that \(O_{F'_{j_s}} \neq O_{\tilde{F}_{j_s}} \). Extend \(\tilde{F}_{j_s} \) to a maximal flag \(\tilde{F} \) and recall that the centroids for \(\tilde{F} \) form an orthoscheme. Combining Corollary 11.3 with Proposition 11.1 it follows that the vector of \(O_{\tilde{F}_{j_s}} \) is perpendicular to \(\tilde{F}_{j_s} \). As \(O_{F'_{j_s}} \) is also in \(\tilde{F}_{j_s} \), this implies that \(O_{F_{j_s}} - O_{\tilde{F}_{j_s}} \) is orthogonal to \(O_{\tilde{F}_{j_s}} \). Hence,

\[
\| O_{F'_{j_s}} \|^2 = \| O_{F'_{j_s}} - O_{\tilde{F}_{j_s}} + O_{\tilde{F}_{j_s}} \|^2 \\
= \langle O_{F'_{j_s}} - O_{\tilde{F}_{j_s}} + O_{\tilde{F}_{j_s}}, O_{F'_{j_s}} - O_{\tilde{F}_{j_s}} + O_{\tilde{F}_{j_s}} \rangle \\
= \| O_{F'_{j_s}} - O_{\tilde{F}_{j_s}} \|^2 + \| O_{\tilde{F}_{j_s}} \|^2.
\]

Because \(O_{F'_{j_s}} \neq O_{\tilde{F}_{j_s}} \), we therefore have

\[\| O_{F'_{j_s}} \| > \| O_{\tilde{F}_{j_s}} \|. \]

This contradicts regularity, since there is a unitary \(g \in W \) with \(g\tilde{F}_{j_s} = F'_{j_s} \), i.e., with \(gO_{\tilde{F}_{j_s}} = O_{F'_{j_s}} \).

Having established that \(F'_{j_s} = \tilde{F}_{j_s} \supseteq F_{i_s} \), the minimality of \(F'_{j_s} \) forces equality. \(\square \)

Proof of Theorem 10.3. Let \(U \subseteq R \) be nonempty. Identifying \(\Delta \) with \(K(\mathcal{P}) \), we have \(W_{R\setminus U} \) corresponds to \(B_U \), and

\[\Delta^U = \text{St}_\Delta(W_{R\setminus U}) = \text{St}_{K(\mathcal{P})}(B_U), \]

with \(\text{Supp} : \text{Face}(\Delta^U) \longrightarrow \Pi^U \setminus \{\hat{1}\} \) given by \(F_{i_1} \subset \cdots \subset F_{i_s} \mapsto \text{Span}(O_{F_{i_1}}, \ldots, O_{F_{i_s}}) \).

Let \(X \in \Pi^U \setminus \{\hat{1}\} \). We claim that for some face \(F_t \) of \(\mathcal{P} \), the Quillen fiber

\[\Phi = X \cap \Delta^U \]

has \(F_t \) as a cone point. This implies the desired claim of \((W, R, \Lambda) \) being locally conical.

From the definition of \(\Pi^U \) and Theorem 10.4(3), we can write

\[X = \text{Span}(O_{F_{t_1}}, \ldots, O_{F_{t_k}}) \]

for some \(k \)-flag \(\mathcal{F} = F_{t_1} \subset \cdots \subset F_{t_k} \) in \(\Delta^U \). Because \(\mathcal{F} \) can be extended to a flag in \(\Delta \) containing \(B_U \), we can fix a nontrivial face \(F \in B_U \) and choose \(m \) such that one of the following holds:

(a) \(F_{m} \) is the maximal face of \(\mathcal{F} \) that is weakly contained in \(F \), or
(b) \(F_{m} \) is the minimal face of \(\mathcal{F} \) that weakly contains \(F \).
contradiction. In the case of (1), Lemma 11.5 shows that F_{t_m} is another k-flag in Δ^U with support X. Using Lemma 11.5, we will show that $F_{t_m} \in F'$.

Suppose first that we are in case (a), i.e., $F_{t_m} \subseteq F$. Because F' can be extended to a maximal flag containing B_U, either

1. an element of F' is weakly contained in F, or
2. each element of F' strictly contains F.

However, (2) is not a valid possibility. Supposing otherwise, we can extend F' by F_{t_m} to obtain a strictly larger flag with support equal to X. Considering dimension yields a contradiction. In the case of (1), Lemma 11.5 shows that $F_{t_m} \in F'$.

If we are instead in case (b), i.e., $F_{t_m} \supseteq F$, we can use the same argument, applied to the dual polytope \mathcal{P}^*, to conclude that $F_{t_m} \in F'$.

12. Additional properties of ribbon representations

The aim of this section is to relate ribbon representations of Shephard groups to the group algebra, the exterior powers of the reflection representation, and to the coinvariant algebra.

Recall that the group algebra $\mathbb{C}[G]$ of a finite group G over \mathbb{C} is semisimple, and thus the Grothendieck group $R(G)$ of the category of finite dimensional G-representations is the free \mathbb{Z}-module with basis the isomorphism classes of irreducible G-modules. The map sending each irreducible module to its character linearly extends to an isomorphism of $\mathbb{C} \otimes_{\mathbb{Z}} R(G)$ and the space of complex class functions on G. In fact, this is an isomorphism in the category of finite-dimensional Hilbert spaces, where the form $\langle -, - \rangle$ on $\mathbb{C} \otimes_{\mathbb{Z}} R(G)$ is that for which the irreducible G-modules form an orthonormal basis, and the form $\langle -, - \rangle$ on class functions is given by $\langle \varphi, \psi \rangle = \frac{1}{|G|} \sum_{g \in G} \varphi(g) \overline{\psi}(g)$. In what follows, we make no notational distinction between elements of $\mathbb{C} \otimes_{\mathbb{Z}} R(G)$ and class functions.

12.1. Solomon’s group algebra decomposition. Let (W, R) be a simple system, and ϵ be the sign representation, defined by $\epsilon(r) = -1$ for $r \in R$. In [24], Solomon showed that

$\mathbb{C}W = \bigoplus_{T \subseteq R} \mathbb{C}W_{c_T}$ and $\mathbb{C}W_{c_T} \cong_W \bigoplus_{T \subseteq J \subseteq R} (-1)^{|J \setminus T|} \text{Ind}_{W_{J \setminus T}}^{W} 1$

for $c_T := a_T b_{R \setminus T}$, where

$$a_T = \frac{1}{|W_T|} \sum_{g \in W_T} g \quad \text{and} \quad b_{R \setminus T} = \frac{1}{|W_{R \setminus T}|} \sum_{g \in W_{R \setminus T}} \epsilon(g) g.$$

The W-modules $\mathbb{C}W_{c_T}$ are known as ribbon representations due to their alternate description when $W = S_n$ and $r_i = (i, i + 1)$ for $1 \leq i \leq n - 1$. Considering this case, let $T \subseteq R$, write $R \setminus T = \{r_{i_1}, \ldots, r_{i_j}\}$ with $i_1 < \cdots < i_j$, and let λ/μ be the ribbon skew shape corresponding to composition $(i_1, i_2 - i_1, \ldots, i_j - i_{j-1}, n - i_j)$; see Figure 12. Filling λ/μ with $1, \ldots, n$ in increasing order from southwest to northeast produces a tableau whose rows are stabilized by W_T and whose columns are stabilized by $W_{R \setminus T}$. Thus, c_T is the Young symmetrizer $c_{\lambda/\mu}$, and hence $\mathbb{C}W_{c_T}$ is the S_n-Specht module of ribbon skew shape λ/μ.

For a simple system or Shephard system (W, R), define $\chi^T = \tilde{H}_{|T|-1}(\Delta_T)$ for $T \subseteq R$. We call these ribbon representations, noting that in the case of Coxeter groups

$$\mathbb{C}c_T \cong_W \bigoplus_{T \subseteq J \subseteq R} (-1)^{|J \setminus T|} \text{Ind}_{W_{J \setminus T}}^{W} 1 = \bigoplus_{J \subseteq R \setminus T} \sum_{J \subseteq R \setminus T} (-1)^{|R(T) \setminus J|} \text{Ind}_{W_{R \setminus J}}^{W_{R(T)}} 1 \cong_W \chi^{R(T)}.$$
Regarding Solomon’s group algebra decomposition, applying Möbius inversion to the equality
$$\chi^R = \sum_{T \subseteq R} (-1)^{|R \setminus T|} \text{Ind}_{W_{R \setminus T}}^W 1$$ yields

Theorem 12.1. For \((W, R)\) a simple system or Shephard system, \(CW \cong W \bigoplus_{T \subseteq R} \chi^T\).

Another extension of a main theorem in [24] is

Theorem 12.2. Let \((W, R)\) be a simple system or Shephard system. For \(T \subseteq R\), the ribbon representation \(\chi^T\) contains a unique irreducible submodule isomorphic to \(\bigwedge^{|T|} V\) and has no submodule isomorphic to \(\bigwedge^p V\) for \(p \neq |T|\).

One can follow the same proof as in [24], replacing (11) with Theorem 12.1. However, for the reader’s convenience, we supply a simple and significantly shorter argument.

Proof of Theorem 12.2. Since \(\bigwedge^{|T|} V\) occurs in \(CW\) with multiplicity equal to its dimension \(|R| - |T|\), by Theorem 12.1 it will suffice to show
$$\langle \text{Ind}_{W_{R \setminus J}}^W 1, \bigwedge^{|T|} V \rangle = \begin{cases} 1 & \text{if } J = T, \\ 0 & \text{otherwise.} \end{cases}$$
(12)

If \(J = R\), then \(\text{Ind}_{W_{R \setminus J}}^W 1\) is the regular representation and \(\dim \bigwedge^{|T|} V = 1\), so (12) follows.

Assuming that \(J \neq R\), there are disjoint nonempty sets \(I_j \subseteq R \setminus J\) such that
$$W_{R \setminus J} \cong W_{I_1} \times \cdots \times W_{I_n}$$
with each \(W_{I_j}\) acting irreducibly on \(V_j := (\cap_{s \in I_j} H_s)^\perp\), thus yielding a decomposition
$$V = V^{W_{R \setminus J}} \oplus V_1 \oplus \cdots \oplus V_n$$
on which each \(W_{I_j}\) acts trivially on all factors except \(V_j\); see [16, Ch. 1]. The resulting decomposition of the exterior power
$$\bigwedge^{|T|} V \cong \bigoplus_{i_1 + \cdots + i_n + m = |T|} \bigwedge^m (V^{W_{R \setminus J}}) \otimes \bigwedge^{i_1} V_1 \otimes \cdots \otimes \bigwedge^{i_n} V_n,$$
combined with Frobenius reciprocity, implies that
$$\langle \text{Ind}_{W_{R \setminus J}}^W 1, \bigwedge^{|T|} V \rangle = \sum_{m=0}^{|T|} \binom{|T|}{m} \sum_{i_1 + \cdots + i_n = |T| - m} \prod_{j=1}^n \langle 1, \bigwedge^{i_j} V_j \rangle_{W_{I_j}}.$$By a theorem of Steinberg [11, Ch. 5, §2, Exercise 3], the \(W_{I_j}\)-modules \(\bigwedge^k V_j\) are irreducible and distinct for \(0 \leq k \leq \dim V_j\). Hence \(\langle 1, \bigwedge^{i_j} V_j \rangle_{W_{I_j}} = \delta_{i_j, 0}\) and (12) follows. □
12.2. **Expressing the ribbon decomposition of the coinvariant algebra.** A central object in invariant theory is the coinvariant algebra S/S_+^W of a finite subgroup $W \subset \text{GL}(V)$. This is the graded quotient of S by the ideal S_+^W generated by homogeneous invariants of positive degree. Recall that W is a reflection group if and only if S/S_+^W affords the regular representation as an ungraded module.

This section concerns the decomposition of the coinvariant algebra of a Shephard group W into ribbon representations. More precisely, we give a determinantal expression for the multivariate generating function

$$W(t, q) = \sum_{T \subseteq R} \langle \chi, S/S_+^W(q) \rangle t^T,$$

where t^T is defined below, and $\langle \chi, M(q) \rangle$ denotes the graded inner product $\sum_{d \geq 0} \langle \chi, M_d \rangle q^d$ of an element $\chi \in \mathbb{C} \otimes_{\mathbb{Z}} R(W)$ and a graded W-module $M = \bigoplus_{d=0}^{\infty} M_d$.

For a Shephard system (W, R) and subset $J \subseteq R$, define

$$t^J = \prod_{r_i \in J} t_i, \quad (1 - t)^J = \prod_{r_i \in J} (1 - t_i), \quad W_J(q) = \text{Hilb}(S/S_+^{W_J}(q), \quad W_{[i,j]} = W_{\{r_i : i \leq k \leq j\}},$$

where W_\emptyset is the trivial subgroup, we set $W(q) = W_R(q)$, and the *Hilbert series* of a graded module $M = \bigoplus_{d=0}^{\infty} M_d$ is the formal power series $\text{Hilb}(M, q) := \sum_{d \geq 0} M_d q^d$.

Recall that the generators of a Shephard system (W, R) inherit an indexing from the associated chosen flag of faces $B_0 \subset \cdots \subset B_{\ell-1}$. However, in what follows it will be convenient to shift all indices by 1, thus writing $R = \{r_1, \ldots, r_\ell\}$.

Theorem 12.3. Let (W, R) be a Shephard system. Then

$$W(t, q) = W(q) \cdot \det \begin{bmatrix} 1 & \frac{1}{W_{[1,1]}(q)} & \frac{1}{W_{[1,2]}(q)} & \cdots & \frac{1}{W_{[1,\ell]}(q)} \\ t_1 - 1 & t_1 & \frac{1}{W_{[2,2]}(q)} & \cdots & \frac{1}{W_{[2,\ell]}(q)} \\ 0 & t_2 - 1 & t_2 & \cdots & \frac{1}{W_{[3,\ell]}(q)} \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & t_\ell - 1 & t_\ell \end{bmatrix}.$$ (13)

Remark 12.4. For a (finite) Coxeter system (W, R), the multivariate q-Eulerian distribution is defined to be

$$\text{Eul}(t, q) = \sum_{g \in W} t^{\text{Des}(g)} g^{\ell(g)},$$

where $\ell(g) = \min\{m : r_{i_1} \cdots r_{i_m} = g\}$ is the usual length function on Coxeter groups, and $\text{Des}(g) = \{r \in R : \ell(gr) < \ell(g)\}$ is the descent set of g. In the case of real Shephard groups, Reiner [21], following Stembridge [28], established Theorem 12.3 with Eul (t, q) in place of $W(t, q)$. Thus,

$$\text{Eul}(t, q) = W(t, q)$$

for real Shephard groups. Extending (14) to other Shephard groups is a problem of considerable interest.
Proof of Theorem 12.3. Fix $T \subseteq R$ and consider the coefficient of t^T in $W(t, q)$. By Frobenius reciprocity, we have

$$
\langle \chi^T, S/S_+^W \rangle(q) = \sum_{J \subseteq T} (-1)^{|T \setminus J|} \langle \text{Ind}_{W_R \setminus J}^W 1, S/S_+^W \rangle(q)
$$

$$
= \sum_{J \subseteq T} (-1)^{|T \setminus J|} \langle 1, S/S_+^W \rangle_{W_R \setminus J}(q).
$$

Recall that for a reflection group $G \subset \text{GL}(V)$, one has $S \cong S^G \otimes_{\mathbb{C}} S/S^G$ as graded G-modules. It follows that $W_J(q) = \frac{\text{Hilb}(S_{q}, q)}{\text{Hilb}(S_{W,J}, q)}$ for any $J \subseteq R$, and that the graded W-module S/S_+^W affords graded character $\chi(g) = \sum_{d \geq 0} \text{Tr}(g |_{(S/S_+^W)_d}) q^d = \frac{1}{\text{det}(1 - qg) \text{Hilb}(S_{q}, q)}$. Therefore,

$$
\langle 1, S/S_+^W \rangle_{W_R \setminus J}(q) = \frac{1}{\text{Hilb}(S_{q}, q)} \langle 1, S \rangle_{W_R \setminus J}(q) = \frac{\text{Hilb}(S_{W,R \setminus J}, q)}{\text{Hilb}(S_{q}, q)} = \frac{W(q)}{W_{R \setminus J}(q)}.
$$

Consider now the right-hand side of (13). From the usual permutation expansion of the determinant, we have the following general equation:

$$
\det \begin{bmatrix}
a_{01} & a_{02} & a_{03} & \cdots & a_{0,n+1} \\
a_{11} & a_{12} & a_{13} & \cdots & a_{1,n+1} \\
0 & a_{22} & \ddots & \cdots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & a_{nn} & a_{n,n+1}
\end{bmatrix} = \sum_{1 \leq i_1 < i_2 < \cdots < i_{n} \leq n} (-1)^{n-j} a_{i_1,i_2} \cdots a_{i_j,n+1} \prod_{1 \leq i \leq n, i \neq i_1, \ldots, i_j} a_{ii}.
$$

Thus, the right-hand side of (13) is equal to

$$
W(q) \sum_{1 \leq i_1 < \cdots < i_{n} \leq \ell} (-1)^{\ell-j} \frac{t_{i_1} \cdots t_{i_j}}{W_{[1,i_1-1]}(q) W_{[i_1+1,i_2-1]}(q) \cdots W_{[i_j+1,\ell]}(q)} \prod_{1 \leq i \leq \ell, i \neq i_1, \ldots, i_j} (t_i - 1),
$$

which, using the fact that $r_ir_j = r_jr_i$ for $|i - j| \geq 2$, can be written as

$$
W(q) \sum_{J \subseteq R} (-1)^{|R \setminus J|} \frac{t^J}{W_{R \setminus J}(q)} (t - 1)^{R \setminus J}.
$$

Taking the coefficient of t^T yields $\sum_{J \subseteq T} (-1)^{|T \setminus J|} \frac{W(q)}{W_{R \setminus J}(q)}$. \qed

13. Remarks and questions

13.1. An interesting family of well-framed systems. In Section 2 we introduced well-framed and strongly stratified systems (W, R, Λ). The well-framed systems subsequently studied were additionally strongly stratified, locally conical, and produced Cohen-Macaulay complexes $\Delta(W, R)$. However, there are well-framed systems (W, R) lacking many of these properties, including that of $\Delta(\Pi^U_T \setminus \{1\})$ being homotopy equivalent to Δ^U_T. We discuss some of these here.

Consider \mathcal{P}_n the boundary of the standard n-simplex having vertices labeled by the set $\{1, 2, \ldots, n+1\}$. Its symmetry group is \mathfrak{S}_{n+1}, and a minimal generating set of reflections
corresponds to a spanning tree T of the complete graph K_{n+1} on $\{1, 2, \ldots, n+1\}$ by identifying an edge ij of T with the transposition (i, j); see [3]. We will focus on the generating set
\[
R_n^* := \big\{ (1, n+1), (2, n+1), \ldots, (n, n+1) \big\}
\]
of \mathfrak{S}_{n+1} that corresponds to the star graph with center $n + 1$. We leave the proof of the following result to the reader.

Proposition 13.1. Let \mathcal{P}_n be as above. Let $v_1, v_2, \ldots, v_{n+1}$ be the vertices of \mathcal{P}_n, indexed so that v_i corresponds to the vertex labeled by i. Let $\alpha_1, \alpha_2, \ldots, \alpha_n \in \mathbb{C}$ be pairwise linearly independent over \mathbb{R}, and set $\Lambda := \{\alpha_1 v_1, \ldots, \alpha_n v_n\}$. Then $(\mathfrak{S}_{n+1}, R_n^*, \Lambda)$ is well-framed.

For $n \geq 3$, a system $(\mathfrak{S}_{n+1}, R_n^*, \Lambda)$ as in Proposition 13.1 is neither locally conical nor strongly stratified. Moreover, for $n \geq 4$, it is no longer true that Δ^U is homotopy equivalent to $\Delta(\Pi_T^U \setminus \{\hat{1}\})$ for every $U, T \subseteq R$ with U nonempty. These assertions are straightforward after first considering

Example 13.2. Let $(\mathfrak{S}_5, R_4^*, \Lambda)$ be a system as in Proposition 13.1 with $n = 4$. The link of a 1-simplex in Δ has 6 vertices supporting 3 lines; see Figure 3. Thus, the system is not locally conical. Moreover, it fails to be strongly stratified, since the vertices of Δ support only the 5 complex lines spanned by the vertices of \mathcal{P}_4.

The link $\Delta^{\{r_i\}} = lk_\Delta(W_{(r_i)})$ of a vertex is isomorphic to $\Delta(\mathfrak{S}_4, R_3^*)$. The latter is isomorphic to the 3×4 chessboard complex, which is known to be a 2-torus; see [3, Example 3.1] and [9, p. 30]. On the other hand, $\Pi^{\{r_i\}} \setminus \{\hat{1}\}$ is easily seen to be the face poset of the barycentric subdivision of \mathcal{P}_3, hence its order complex is a 2-sphere.

13.2. **The remaining reflection groups.** This subsection provides evidence that our main results partially extend to the remaining well-generated reflection groups.

Theorem 13.3. If (W, R) is a well-generated system, then $\Delta(W, R)$ is a simplicial complex.

Our proof relies on each subgroup W_J being parabolic, meaning the pointwise stabilizer of a subset $X \subseteq V$. The following can be obtained from the classification by considering cases.

Theorem 13.4. Let $W \subset GL(V)$ be well-generated by R. Then each standard parabolic gW_Jg^{-1} is parabolic. More precisely, $gW_Jg^{-1} = \text{Stab}(g \cdot \cap_{r \in J} H_r)$.

Proof of Theorem 13.3. To establish the intersection property (see Section 6), first note that $\text{Stab}(X_1) \cap \text{Stab}(X_2) = \text{Stab}(\text{Span}(X_1, X_2))$ for $X_1, X_2 \subseteq V$. Thus,

\[
\bigcap_{r \in R \setminus J} W_{R \setminus \{r\}} = \bigcap_{r \in R \setminus J} \text{Stab}(\cap_{s \in R \setminus \{r\}} H_s)
\]

\[
= \text{Stab}(\text{Span}(\{\cap_{s \in R \setminus \{r\}} H_s \mid r \in R \setminus J\}))
\]

\[
= \text{Stab}(\cap_{r \in J} H_r)
\]

\[
= W_J,
\]

where the third equality follows from the obvious inclusion by comparing dimensions. \hfill \Box
Remark 13.5. Consider the rank 1 reflection group $Z_6 := G(6,1,1)$ generated by a primitive 6th root of unity ζ. Observe that $R = \{ \zeta^2, \zeta^3 \}$ is a minimal generating set with $|R| > \dim V$ and $\Delta(Z_6, R)$ simplicial. Thus, a well-generated group W and minimal generating set R may yield a simplicial complex even when W is not well-generated by R.

Question 13.6. Let W be a well-generated group, and let R be a minimal generating set of reflections under inclusion. Is $\Delta(W, R)$ necessarily a simplicial complex?

Question 13.7. For which non-well-generated groups W is $\Delta(W, R)$ a simplicial complex for some R?

Let (W, R) be a well-generated system. Motivated by [2], define

$$\text{Supp} : \Delta(W, R) \to \mathcal{L}_W \quad \text{by} \quad gW_J \mapsto V^{gW_Jg^{-1}}$$

and let

$$\Delta^U_T = \text{St}_{\Delta(W,R)}(W_{R \setminus U})|_T \quad \text{and} \quad \Pi^U_T = \{ V^{gW_Jg^{-1}} : gW_J \in \Delta^U_T \}$$

for $U, T \subseteq R$. Recall that we identify Δ^U_T with the poset of faces of a simplicial complex, and thus $\text{Face}(\Delta^U_T)$ is obtained from Δ^U_T by removing its unique bottom element W. Call (W, R) (abstractly) locally conical if for each $U, T \subseteq R$ with U nonempty, every Quillen fiber of $\text{Supp} : \text{Face}(\Delta^U_T) \to \Pi^U_T \setminus \{ \hat{1} \}$ has a cone point. Note that if (W, R) is (abstractly) locally conical, then $\Delta(\Pi^U_T \setminus \{ \hat{1} \})$ is $W_{R \setminus U}$-homotopy equivalent to Δ^U_T for all $U, T \subseteq R$ with U nonempty.

Conjecture 13.8. For each well-generated reflection group W, there exists a well-generating R for which (W, R) is (abstractly) locally conical.

Further, we predict the following partial extension of Theorems 8.1 and 10.3.

Conjecture 13.9. For each well-generated reflection group W, there exists a generating set R and a frame Λ such that

(i) $|R| = \dim V$.

(ii) (W, R, Λ) is strongly stratified.

(iii) (W, R, Λ) is locally conical.

13.3. **Shellability.** It is well-known [5] that the Coxeter complex Γ for a finite Coxeter group is shellable, meaning that its facets can be ordered F_1, F_2, \ldots, F_k so that the subcomplex $F_j \cap (\cup_{i=1}^{j-1} F_i)$ is pure of dimension $\dim \Delta - 1$ for all $j \geq 2$.

The question of whether the flag complex $K(\mathcal{P})$ of a regular complex polytope \mathcal{P} is lexicographically shellable appears in [20, Question 16] and [6, p. 32]. By Section 10, $K(\mathcal{P})$ is isomorphic to $\Delta(W, R)$ for (W, R) a Shephard system for \mathcal{P}. It is straightforward to shell those of rank 2, as they are connected graphs, and it is also straightforward for $G(r, 1, n) = Z_r \wr S_n$. Those of Coxeter type are shellable, as mentioned in Question 13.11.

The author used a computer to produce shellings in the remaining cases:

Theorem 13.10. Let (W, R) be a Coxeter or Shephard system. Then $\Delta(W, R)$ is shellable.

Question 13.11. Is there a uniform way of shelling the flag complex $K(\mathcal{P})$ of a regular complex polytope? This would give a more direct proof that $K(\mathcal{P})$ is homotopy Cohen-Macaulay.
The following was inspired by a personal communication with Taedong Yun and [14] Section 8.

Question 13.12. Let \((W, R)\) be a Coxeter or Shephard system. Is \(\Pi_U \setminus \{\hat{1}\}\) shellable for all \(U, T \subseteq R\)?

14. Acknowledgments

This work forms part of the author’s doctoral thesis at the University of Minnesota, supervised by Victor Reiner, whom the author thanks for suggesting some of these questions. He is also grateful to Marcelo Aguiar and Volkmar Welker for their helpful suggestions and corrections, Richard Ehrenborg and JiYoon Jung for making their work available, Stephen Griffeth, Jia Huang, Gus Lehrer, and Vivien Ripoll for helpful conversations, and Michelle Wachs for writing a set of truly wonderful notes [31].

References

[1] P. Abramenko and K.S. Brown, Buildings: Theory and applications, Springer-Verlag, New York, 2008.

[2] M. Aguiar, S. Mahajan, Coxeter groups and Hopf algebras, Fields Institute Monographs 23. American Mathematical Society, Providence, RI, 2006.

[3] E. Babson, V. Reiner, Coxeter-like complexes, Disc. Math. and Theor. Comp. Sci., 6 (2004), 223-252.

[4] H. Barcelo, E. Ihrig, Lattices of parabolic subgroups in connection with hyperplane arrangements, J. Alg. Combin., 9 (1999), no. 1, 5-24.

[5] A. Björner, Some combinatorial and algebraic properties of Coxeter complexes and Tits buildings, Adv. in Math., 52 (1984), 173-212.

[6] A. Björner, Nonpure shellability, f-vectors, subspace arrangements and complexity, DIMACS Ser. in Disc. Math. and Th. Comp. Sci., 24 (1996), 25-53.

[7] A. Björner, Shellable and Cohen-Macaulay partially ordered sets, Trans. Amer. Math. Soc., 260 (1980), 159-183.

[8] A. Björner, Topological Methods, in Handbook of Combinatorics (eds. R. Graham, M. Grötschel and L. Lovász), North-Holland, Amsterdam, 1995, 1819-1872.

[9] A. Björner, L. Lovász, S.T. Vrecia, and R.T. Zivaljević, Chessboard complexes and matching complexes, J. London Math. Soc., 49 (1994), 25-39.

[10] A. Björner, M. Wachs and V. Welker, On sequentially Cohen-Macaulay complexes and posets, Israel J. Math., 169 (2009), 295-316.

[11] N. Bourbaki, Groupes et algèbres de Lie, Chapitres 4,5 à 6, Hermann, Paris, 1968.

[12] A.R. Calderbank, P. Hanlon and R.W. Robinson, Partitions into even and odd block size and some unusual characters of the symmetric groups, Proc. London Math. Soc. (3) 53 (1986), 288-320.

[13] H.S.M. Coxeter, Regular complex polytopes, 2nd edition, Cambridge University Press, Cambridge, 1991.

[14] R. Ehrenborg and J.Y. Jung, The topology of restricted partition posets, Proc. of FPSAC 2011, 281-292.

[15] J.E. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer-Verlag, New York, 1972.

[16] G.I. Lehrer and D.E. Taylor, Unitary reflection groups, Australian Mathematical Society Lecture Notes, 20. Cambridge University Press, Cambridge, 2009.

[17] P. Orlik, Milnor fiber complexes for Shephard groups, Advances Math., 83 (1990), 135-154.

[18] P. Orlik and L. Solomon, Complexes for reflection groups, in “Algebraic Geometry: Proceedings” (L. Libgober and P. Wagreich, Eds.), 193-207, Lecture Notes in Mathematics, Vol. 862, Springer-Verlag, Berlin/New York, 1981.

[19] P. Orlik and L. Solomon, Discriminants in the invariant theory of reflection groups, Nagoya Math. J., 109 (1988), 23-45.

[20] P. Orlik, V. Reiner, and A.V. Shepler, The sign representation for Shephard groups, Math. Ann., 322 (2002), 477-492.
[21] V. Reiner, *The distribution of descents and length in a Coxeter group*, Electron. J. Combin., 2 (1995), R25.
[22] G.C. Shephard, *Regular complex polytopes*, Proc. London Math. Soc., 2 (1952), 82-97.
[23] G.C. Shephard and J. A. Todd, *Finite unitary reflection groups*, Canad. J. Math. 6 (1954), 274-304.
[24] L. Solomon, *A decomposition of the group algebra of a finite Coxeter group*, J. Algebra, 9 (1968), 220-239.
[25] L. Solomon, *The orders of the finite Chevalley groups*, J. Algebra, 3 (1966), 376-393.
[26] R.P. Stanley, *Some aspects of groups acting on finite posets*, J. Comb. Theor. (A), 32 (1982), 132-161.
[27] R.P. Stanley, *Exponential structures*, Stud. Appl. Math., 59 (1978), 73-82.
[28] J. Stembridge, *Some permutation representations of Weyl groups associated with the cohomology of toric varieties*, Adv. in Math., 106 (1994), 244-301.
[29] G.S. Sylvester *Continuous-Spin Ising Ferromagnets*, Ph.D. Thesis, M.I.T., 1976.
[30] J. Thévenaz and P.J. Webb, *Homotopy equivalence of posets with a group action*, J. Combin. Theory (A) 56 (1991), 173-181.
[31] M.L. Wachs, *Poset topology: Tools and applications*, Geometric combinatorics, IAS/Park City Math. Ser., vol. 13, Amer. Math. Soc., Providence, RI, 2007, 497-615.
[32] M.L. Wachs, *Whitney homology of semipure shellable posets*, J. Algebraic Combin., 9 (1999), 173-207.

E-mail address: mill1966@math.umn.edu

School of Mathematics, University of Minnesota, Minneapolis, MN 55455

34