1. Introduction
Mining activities gives a negative impact on the environment such as ecology on the local level, although some publications assessed vegetation impacts and animal behaviour also at the regional level [1]. The mining industry will give an impact on a bio-geo-physics aspect such as land, air pollution and wastewater namely acid mine drainage (AMD). AMD is wastewater caused by sulphide as an abundant element on Earth such as sulphur that dangerous for the environment. The largest of sulphur reservoirs are in sediments and rocks (7800 × 1018 g) in the form of iron sulphides, mainly pyrite (FeS2), and gypsum (CaSO4) or as sulphate in seawater (1280 × 1018 g). Sulphur occurs in different oxidation states (from -2 to +6) and chemical forms. These compounds be transformed both chemical and biologically [2].

AMD is also wastewater caused by mining activity and needs to be treated. Acid mine drainage has high heavy metals (Fe, Mn, As, Al, Ca, etc.) content and low pH [3]. The recent study informs that AMD has been treated by adsorption and precipitation [4,5]. Adsorption is a low-cost method to
reduce heavy metals on AMD. Several studies have showed that biochar is a new green carbon material and successfully absorbed the metals ion from aqueous [6,7]. Biochar can produce from all of the carbon materials [8]. Biochar has been successfully reduce more than 40 mg/g Cu from artificial solutions in the competitive study [9]. In several studies, biochar has been utilized in wastewater treatment and soil remediation [10,11]. Biochar has good pores and high surface area, therefore biochar considered as a potential sorbent to reduce metals ion in acid mine drainage. Although biochar has been used to reduce metals ion, however biochar cannot solve the low pH condition in AMD. Meanwhile, clamshell has high CaCO₃, and considered as a potential feedstock to generate CaO by using calcination process.

Although biochar has good pores and high surface area, and clamshell is a potential material to produce CaO; however how to produce biochar and CaO from clamshell in rural areas still being a problem. This might be due to the coal mining area is always in rural areas. Thus, the low cost and simple technology to produce biochar and CaO is still a problem. In this paper, biochar and CaO are generated from coconut shells and clamshells using a low-cost modified reactor. Metals ion removal (Fe and Mn) were measured using Atomic Absorption Spectrophotometry (AAS)

2. Materials and Methods

AMD has been collected from a coal mining company in Batang Hari, Jambi, Indonesia. Clamshell and coconut shells were collected from Tanjung Jabung Barat, Jambi, Indonesia. Low-cost modified reactor was created from a modified pan. The schematic design of biochar production can be seen in Figure 1. Biochar and clamshell were burned for 4 h in the low-cost modified reactor separately.

![Figure 1. Schematic design of biochar production](image)

Biochar and clamshell were added into AMD in beaker glass at room temperature. 100 mg of biochar has been added into 200 mL of AMD and stirred at 500 rpm for 0, 60, 80, 100 and 120 minutes. Then 0, 40, 60, 80, 100 and 120 mg of clamshell were added separately into 100 mL of AMD at room temperature. The samples were stirrer at 500 rpm for 1 h. Biochar and clamshell were characterized by XRD and XRF to identify the structure and elements of samples; the heavy metals and pH measurement were performed by using AAS and pH meter.
3. Results and Discussions

3.1. The Effect of Biochar on The Removal of Heavy Metals
The initial concentration of Fe and Mn in acid mine drainage is 8.9 and 0.5. The different concentrations of heavy metals on acid mine drainage were caused by the geological formation, oxidation process, oxygen, and the weather. The weather will affect the concentration of heavy metals because rain will dilute the acid mine drainage and reduce the heavy metals concentration. The biochar effect of acid mine drainage can be seen in Figure 2. In this study, biochar has successfully reduced Mn from 8 into 0.3 and Fe from 0.5 into 0.1, respectively. This phenomenon informed that low-cost modified pyrolysis has been successfully convert coconut shell into biochar.

The low-cost-modified reactor in this study was able to reduce heavy metals up to 97 % for Mn and 80 % for Fe, respectively. This condition showed that biochar could be considered as a potential adsorbent in competitive study or wastewater application. The possible absorption process in this research is ion exchange adsorption, and recent research also informs that the absorption of heavy metals into biochar is in appropriate with ion exchange and adsorption [12-15]. Biochar utilization on acid mine drainage will give positive impact to reduce waste materials, while biochar sludge is a good material for soil and carbon sequestration [16].

Figure 2. Biochar effect towards Mn and Fe Concentrations in the AMD
3.2. The Effect of Clamshell on The Removal of Heavy Metals

A recent study reported that clamshell has high CaCO₃ concentration [17]. This material is a potential material as an alternative way to neutralize pH of AMD. CaCO₃ is able to synthesis CaO using the calcination process in a modified reactor. In this study, CaO was derived from clamshell and able to neutralize pH on AMD (Figure 3). The possible reaction in this phenomenon can be seen in equation (1). Based on Figure 4, pH of AMD was increased when CaO was added from the clamshell. Clamshell utilization will reduce waste material significantly. The optimum mass of clamshell in 60 mg was successfully increased pH from 2.7 to 7.0. Thus, the best concentration of clamshell in AMD utilization is 60 mg/100 mL AMD.

\[\text{H}_2\text{O}(l) + \text{CaO} (s) \rightarrow \text{Ca(OH)}_2 \]

(1)

Figure 3. Biochar effect towards percent removal of heavy metals in the AMD

Figure 4. Effect of clamshell into pH AMD
4. Conclusion
A simple method using clamshell and biochar could reduce pH and heavy metals content in acid mine drainage. This method involved a low-cost technology in producing biochar and clamshell. Clamshell could neutralize pH from 2.7 to approximately 6-7 and reduce Fe and Mn content from 8.89 to -0.5. This method is suitable to be applied in mining industry at a rural area.

Acknowledgment
Authors thanks to the Research Unit for Mineral Technology (BPTM) - Indonesian Institute of Sciences (LIPI) to support this research.

References
[1] Wibowo Y G, Maryani A T, Rosanti D, Rosarina D, Program P, Jambi U and Tangerang U M 2019 Microplastic in Marine Environment and Its Impact Sainmatika: Journal of Matematica and science 16 81–7
[2] Sánchez-Andrea I, Sanz J L, Bijmans M F M and Stams A J M 2014 Sulfate reduction at low pH to remediate acid mine drainage Journal of Hazardous Materials 269 98–109
[3] Karaca O, Cameselle C and Bozcu M 2019 Opportunities of electrokinetics for the remediation of mining sites in Biga peninsula, Turkey Chemosphere 227 606–13
[4] Zhang Z, Zhu Z, Shen B and Liu L 2019 Insights into biochar and hydrochar production and applications: A review Energy 171 581–98
[5] Fazal T, Razzaq A, Javed F, Hafeez A, Rashid N, Amjad U S, Saif M, Rehman U, Faisal A and Rehman F 2019 Integrating Adsorption and Photocatalysis: A cost-effective Strategy for Textile Wastewater Treatment using Hybrid Biochar-TiO₂ Composite Journal of Hazardous Materials 379 121623
[6] Liu C, Peng J, Zhang L, Wang S and Ju S 2018 Mercury adsorption from aqueous solution by regenerated activated carbon produced from the depleted mercury-containing catalyst by microwave-assisted decontamination Journal of Cleaner Production 196 109–21
[7] de Matos T N, Léon J J L, Almeida I L S, Marcionilio S M L O, Rezende H C and Araújo C S T 2017 Elucidation of mechanism involved in adsorption of Pb(II) onto lobeira fruit (Solanum lycocarpum) using Langmuir, Freundlich, and Temkin isotherms Microchemical Journal 137 348–54
[8] Wibowo Y G, Ramadan B S and Andriansyah M 2019 Simple Technology to Convert Coconut Shell Waste into Biochar: A Green Leap Towards Achieving Environmental Sustainability Jurnal Presipitasi: Media Komunikasi dan Pengembangan Teknik Lingkungan 16 15–21
[9] Li Z, Wang Z, Wu X, Li M and Liu X 2020 Chemosphere Competitive adsorption of tylosin, sulfamethoxazole and Cu (II) on nano-hydroxyapatitemodi ed biochar in water Chemosphere 240 124884
[10] Jawed A, Saxena V and Pandey L M 2020 Engineered nanomaterials and their surface functionalization for the removal of heavy metals: A review Journal of Water Process Engineering 33 101009
[11] Joseph L, Jun B, Flora J R V, Min C and Yoon Y 2019 Chemosphere Removal of heavy metals from water sources in the developing world using low-cost materials: A review Chemosphere 229 142–59
[12] Qian T, Zhang X, Hu J and Jiang H 2013 Effects of environmental conditions on the release of phosphorus from biochar Chemosphere 93 2069–75
[13] Fidel R B, Laird D A and Spokas K A 2018 Sorption of ammonium and nitrate to biochars is electrostatic and pH-dependent Scientific Reports 8 1–10
[14] Ahmad M, Lee S S, Dou X, Mohan D, Sung J K, Yang J E and Ok Y S 2012 Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water Bioresource Technology 118 536–44
[15] Safaie Khorram M, Zhang Q, Lin D, Zheng Y, Fang H and Yu Y 2016 Biochar: A review of its
impact on pesticide behavior in soil environments and its potential applications. Journal of Environmental Sciences (China) 44 269–79

[16] Windeatt J H, Ross A B, Williams P T, Forster P M, Nahl M A and Singh S 2014 Characteristics of biochars from crop residues: Potential for carbon sequestration and soil amendment. Journal of Environmental Management 146 189–97

[17] Asikin-Mijan N, Taufiq-Yap Y H and Lee H V. 2015 Synthesis of clamshell derived Ca(OH)₂ nano-particles via simple surfactant-hydration treatment. Chemical Engineering Journal 262 1043–51