Considering the Immune System during Fecal Microbiota Transplantation for *Clostridioides difficile* Infection

Alyse L. Frisbee,1,* and William A. Petri Jr1,2,3

Our understanding and utilization of fecal microbiota transplantation (FMT) has jump-started over the past two decades. Recent technological advancements in sequencing and metabolomics have allowed for better characterization of our intestinal microbial counterparts, triggering a surge of excitement in the fields of mucosal immunology and microbiology. This excitement is well founded, as demonstrated by 90% relapse-free cure rates in FMT treatment for recurrent *Clostridioides difficile* infections. Growing evidence suggests that in addition to bacterial factors, the host immune response during *C. difficile* infection greatly influences disease severity. In this review, we discuss recent advancements in understanding the interplay between immune cells and the microbiota and how they may relate to recovery from *C. difficile* through FMT therapy.

Commensal Dysbiosis Is a Risk Factor for *C. difficile* Infection

Clostridioides (formerly *Clostridium*) *difficile* is a Gram-positive, anaerobic, spore-forming opportunistic pathogen and is the leading cause of hospital-acquired, antibiotic-associated diarrhea. It is also one of Center for Disease Control’s three most urgent infectious disease threats in the USA. *C. difficile* colonizes the colon, causing inflammation and diarrhea via the expression of its epithelium-damaging toxins [1,2]. Over the past 15 years, *C. difficile* incidence has tripled and is attributed to the emergence of hypervirulent epidemic strains of *C. difficile* (referred to as NAP1/027 strains) [3]. In a single year, *C. difficile* caused approximately 500,000 infections, $4.8 billion worth of excess healthcare costs, and 29,000 deaths occurring in the USA alone [4].

A recent healthcare survey demonstrated an overall decline in the prevalence of healthcare-associated infections from 2011 to 2015, there was no reduction in the high prevalence of *C. difficile* infections (CDIs) during that time [5]. Thus, reducing CDI is a priority, as emphasized in the National Institute of Allergy and Infectious Diseases Antimicrobial Resistance Program in 2014 [6].

C. difficile disease is initiated by the depletion of protective *commensal* microbes commonly through antibiotic exposure [7,8]. Risk of hospital-acquired and community-acquired CDI is highest in individuals with prior exposure to cephalosporins, fluoroquinolones, and clindamycin antibiotics [7,8]. Antibiotics can cause long-lasting alterations to the microbial community that normally would provide colonization resistance against *C. difficile* [9]. A single treatment with clindamycin confers murine susceptibility to infection and induces long-lasting alterations in the composition of the gut microbiome, eliminating ~90% of bacterial taxa for up to 28 days [10]. Similarly, in human subjects, a 7-day clindamycin regimen caused long-lasting deficiencies in the microbiota, especially a significant decline in the diversity of Bacteroides that over a span of 2 years, did not return to its original composition [9]. Furthermore, using next-generation sequencing, additional studies have demonstrated decreases in the diversity and species

© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0).
Trends in Molecular Medicine

richness of CDI patients relative to controls [11–13]. Thus, it is clear that commensal dysbiosis is a risk factor for the development of C. difficile colitis.

During this susceptible state of intestinal dysbiosis, C. difficile flourishes in the colon whereby it releases epithelium-damaging toxins. Toxin damage initiates C. difficile diarrheal disease through the killing of colonic host-epithelial cells and breakdown of the gut barrier [14]. The clinical manifestations of C. difficile range from mild to severe diarrhea to life-threatening pseudomembranous colitis. The spectrum of C. difficile disease manifestations is dictated by the virulence factors of the infecting strain, the composition of the microbiome that provides colonization resistance, and the quality of the host inflammatory response (see Clinician’s Corner).

Importance of FMT to Treat C. difficile

Fecal microbiota transplantation (FMT) has had success in the treatment of recurrent and severe CDI. Standard-of-care treatments for CDI include treatment with antibiotics such as vancomycin and fidaxomicin. However, high rates of recurrence of CDI are problematic and occur in up to 30% of patients due to sustained antibiotic-associated dysbiosis [3,15]. While C. difficile is susceptible to antibiotic therapy, the antibiotics used to treat the infection further disrupt the microbiota that provides colonization resistance and immune-mediated protection. Thus, while killing C. difficile, antibiotics also cause greater host susceptibility to reinfection and recurrent disease [16]. FMT combats this cyclical diseased state, by restoring a diverse community of microbes in the colon and restoring intestinal homeostasis (Figure 1).

Crude FMT therapy was first introduced into modern medicine in 1958 by Eisenman and colleagues to treat pseudomembranous colitis with fecal enema [17]. Since then, multiple studies have demonstrated the effectiveness of FMT to treat recurrent CDI. However, the first open-label, randomized controlled trial was not completed until 2009, in which 41 patients completed treatment with either a donor-feces infusion, standard vancomycin regimen, or standard vancomycin plus bowel lavage. Remarkably, 81.3% relapse-free C. difficile cure rates were reported 10 weeks after the donor-feces infusion. Furthermore, two additional patients were cured after receiving a second donor-feces infusion, resulting in a 94% overall donor infusion cure rate, surpassing conventional vancomycin treatment by threefold (NL1135) [18]. The subsequent idea that a defined mixture of rationally designed, purified commensals, within a healthy stool are sufficient to transfer FMT-mediated protection was initially demonstrated by Tvede and Rask-Madsen in 1989. This initial human study demonstrated that the administration of 10 bacterial strains into five patients caused a loss of C. difficile and toxin levels within the infected bowel while replenishing Bacteroides species [19]. After this study, purified bacteriotherapy for CDI was limited and primarily focused on probiotics in combination with standard antibiotic care that had some success [20,21]. A resurgence of interest for rationally designed bacteriotherapy to treat C. difficile occurred in the mid-2000s. A seminal study by Lawley et al., demonstrated that a defined consortium of six bacterial strains (Staphyloococcus, Enterococcus, Lactobacillus, Anaerostipes, Bacteroidetes, and Enterorhabdus) could suppress hypervirulent C. difficile 027/B1 and promote recovery from antibiotic-associated dysbiosis [22]. Another group importantly identified the Lachnospiraceae family as a potential therapeutic target for bacteriotherapy [23]. A follow-up study demonstrated that precolonization of germ-free mice with Lachnospiraceae led to a dramatic reduction in subsequent C. difficile colonization and mortality after infection [24]. Additionally, administration of Clostridium scindens, an intestinal bacterium whose depletion is associated with more severe disease in humans and mice, was able to restore colonization resistance against CDI in mice, and protection was associated with secondary bile acid synthesis [25]. Thus, advances have been made to improve our understanding of how defined species of bacteria can combat CDI.

Glossary

16S rRNA sequencing: method used for bacterial identification and taxonomy through detection of sequence differences within the hypervariable regions of the 16S rRNA gene.

Bile acid: end products of cholesterol metabolism in the liver.

Commensal: bacteria coexisting in a nonharmful and mutualistic manner with host.

Dysbiosis: an imbalance of the microbiome that disrupts the symbiotic balance between host and host-resident commensal organisms.

Fecal microbiota transplant (FMT): procedure whereby healthy donor stool material is delivered into the gastrointestinal tract of a recipient with the aim to restore health.

Germ-free mice: mice raised in isolators so that they are devoid of any microorganisms.

Homeostasis: healthy and balanced equilibrium reached between the microbiota and host.

Inflammasome: multiprotein intracellular complex that orchestrates proinflammatory IL-1β and IL-18 activation and release. Activation of the inflammasome complex requires assembly of three essential proteins: (i) an inflammasome sensor containing a pyrin domain; (ii) the adaptor protein ASC (apoptosis-associated speck-like protein); and (iii) the protease caspase-1.

Innate lymphoid cells (ILCs): lymphoid cells lacking antigen-specific receptors that have important effector and regulatory functions during the innate immune response. ILCs are categorized into three groups based on their function, cytokine profile, and transcription factor expression.

Microbe-associated molecule patterns (MAMPs): microbe-derived molecules that share patterns or structural motifs which can be recognized by the immune system.

Microbiota-accessible carbohydrate (MAC): nondigestible carbohydrates that are metabolized by the microbiota.

NAP1/B1/027: Epidemic, hypervirulent C. difficile strain associated with increased severity and rates of C. difficile infections and linked with global outbreaks over the past 15 years.

Next-generation sequencing: modernized high-throughput sequencing technologies allowing for quicker and less expensive sequencing of DNA and RNA.
Microbiota-Elicited Immunity and Its Importance in Combating C. difficile

While C. difficile toxins drive epithelial disruption and disease during CDI, recently, many groups have demonstrated that the type of host immune response generated against C. difficile also dictates the severity of symptoms during infection, independent of bacterial factors [26–30]. The host immune system has a multifaceted role during CDI with some level of inflammation required to clear the infection. However, this inflammation must be tightly regulated to prevent overly robust damage to the host (Figure 2). Protective host defenses during CDI include: neutrophil-mediated bacterial killing; type 1 innate lymphoid cells (ILC1s) and granulocyte-mediated bacterial clearance; and tissue-repair via type 2 ILCs (ILC2s), and eosinophil signaling [31–34]. Pathogenic immune responses include: Toll-like receptor (TLR)2 activation; IL-23 and IL-6 signaling; and adaptive T helper (Th)17 cells that further damage host intestinal tissue during infection [35–38]. Thus, the type of host immune response elicited during CDI plays an important role in dictating disease severity. Given the rise of FMT to treat severe CDI and efforts to define specific, purified commensals that elicit protection from disease, it is increasingly important to understand how members of the microbiota or their microbe-derived products influence the type of host-immune response generated during CDI [18,39]. In the subsequent sections of this review, mechanisms of host immunity that influence CDI recovery and their regulation by commensals are discussed.

Type 1 Immunity Drives CDI Recovery and Is Regulated by the Microbiota

Type 1 immunity is typically characterized by expression of the cytokines interferon (IFN)-γ, IL-12, and IL-18, which canonically have antiviral functions. Type-1-associated cytokines, IFN-γ and IL-12, are upregulated in response to CDI in humans and mice and are critical for driving disease recovery [40–42]. Mice lacking ILCs have increased mortality during CDI and lack the ability to upregulate IFN-γ and IL-22 [41,43]. Further investigation has revealed that IFN-γ+ ILC1s are central to survival during CDI with a limited role for IL-22+ type 3 ILCs (ILC3s) [41]. This important role for IFN-γ+ ILC1s was corroborated in humans, demonstrating that high levels of IFN-γ in the serum of CDI-patients is associated with less severe infection [29]. How IFN-γ protects during CDI requires further investigation but it may act by increasing phagocytic functions during infection.

Type 1 immunity is regulated by commensal-derived signals [41]. For example, the commensal Bacteroides fragilis contributes to the maintenance of CD4+ T cell development, Th1 differentiation, and lymphoid organogenesis through the production and subsequent immunological presentation of the zwitterionic polysaccharide PSA [44]. Within the Th2/Th1 imbalanced germ-free setting, colonization with PSA producing B. fragilis restores splenic IFN-γ+CD4+ T cells via antigenic presentation in a IL-12/STAT4 specific manner. In addition to adaptive Th1 cells, innate natural killer (NK) cell function is also impaired in the absence of the microbiota. NK cells are cytotoxic ILC1s that require priming by mononuclear phagocytes in order to function [45]. Germ-free mice have defective type 1 IFN production from mononuclear phagocytes and thus lack primed IFNγ+ NK cells [46]. As type 1 immunity is critical for recovery from C. difficile, further investigations are required to understand how FMT-derived commensals may contribute to C. difficile pathogenesis via modulation of type 1 IFN and IFNγ+ signaling.

The Microbiota Maintains Protective Type 2 Polarizing Cytokines in the Intestine

Recent studies demonstrate that type 2 immune responses play an important role in recovery and survival during CDI [30,33,35]. Eosinophils, a type-2-associated myeloid subset, have protective roles in both human and murine studies of C. difficile colitis [30,33,35]. CDT toxin expressed by epidemic NAP1/027 isolates can kill protective eosinophils during infection, contributing to heightened virulence [35]. IL-25, IL-33, and IL-5 are type 2 cytokines that contribute to eosinophil accumulation in the intestine, and are associated with survival and less severe disease during CDI.
IL-33 promotes ILC2 activation and subsequent eosinophilia during CDI and is essential for tissue repair and survival [34]. The maintenance of protective IL-33 protein in the colon is critically dependent upon the microbiota and can be rescued with FMT therapy [34]. Although microbiota-dependent IL-25 and IL-33 are important activators of ILC2s, ILC2 seeding of both the lung and intestine occurs independently of the microbiota, as germ-free mice have comparable ILC2 numbers [32,48]. While the microbiota does not dictate the seeding of intestinal ILC2s, it may have an important role in promoting ILC2 function. In line with this idea, human ILC2s express TLRs and can directly sense microbe-associated molecular patterns (MAMPs), resulting in increased expression of IL-5 and IL-13 [49]. Furthermore, during a model of intestinal colitis, germ-free mice had reduced expression of type 2 cytokines, IL-4, IL-5, IL-13, and IL-33, as well as lack of eosinophils, which could be rescued by FMT therapy [50]. Given recent findings that IL-25-elicited eosinophils and IL-33-elicited ILC2s are protective during C. difficile infection, further studies are required to understand the connection between FMT regulation and possible restoration of protective type 2 immune function.

Commensal Regulated Type 17 Immunity Is a Double-Edged Sword during CDI
Type-17-associated cytokines, IL-1β, IL-23, IL-17α, IL-22, and IL-6 are upregulated in the gut in response to CDI [29,37]. Both pathogenic and protective outcomes are associated with type 17 immunity during C. difficile colitis. IL-23 signaling is pathogenic during CDI, contributing to increased mortality and tissue pathology, whereas IL-22 contributes to survival and systemic pathobiont elimination through the complement system [37,38,51]. The type 17 cytokine network
is a key driver of neutrophil production and accumulation during mucosal infections. In accordance, neutrophils are characteristically recruited at high levels into the colon during *Clostridioides difficile* colitis via MyD88 signaling [31,52]. Neutrophils have important antimicrobial functions during infection through their phagocytic activity, granule formation, and production of antimicrobial proteases, peptides, and reactive oxygen species [52]. However, dual roles for neutrophils have been reported during *C. difficile* colitis. Complete depletion of neutrophils with anti-GR1 antibody increases CDI-associated mortality; however, inhibition of neutrophil recruitment through blockage of CD18 or macrophage inflammatory protein (MIP) 2, or inhibition of IL-23 reduces tissue pathology and mortality during infection [31,37,38,53,54]. Similarly, in human patients, high neutrophil counts are associated with more severe disease, whereas neutropenia is a risk factor during infection [55,56]. Thus, type-17-associated immunity is essential for pathogen elimination; however, if left unregulated, it can contribute to profound tissue damage during infection.

The maintenance of robust and effective type 17 immunity is critically dependent upon commensal-derived signals from the microbiota. For example, adaptive Th17 cell differentiation is impaired in the small intestine of germ-free mice and rescued with fecal transplant [57]. The commensal organism segmented filamentous bacteria (SFB) drive Th17 differentiation in the gut and can aggravate colitis and other autoimmune diseases [58-60]. SFB make direct contact with intestinal epithelial cells, activating an IL-22/IL-23-dependent circuit between ILC3s, epithelial cells, and Th17 cells [51,62]. In addition to adaptive Th17 cells, the microbiota can additionally shape the function of ILC3s. Microbiota-induced tumor necrosis factor (TNF)-like ligand 1A released from CX3CR1+ mononuclear phagocytes can increase the production of IL-22 by ILC3s [63]. Thus, FMT-derived colonization of certain commensals may contribute to CDI-associated disease depending on their alterations of type 17 dynamics.
Certain Microbes Can Elicit Immunosuppression after Colonization of the Intestine

In addition to mounting antimicrobial defenses, the microbiota is also essential for mounting immunosuppression. One of the prime examples of this is the induction of regulatory Foxp3+ T regulatory cells (Treg cells) by *B. fragilis* and Clostridia commensals. *B. fragilis*-derived PSA inhibits IL-17 production in the intestine by enhancing the production of anti-inflammatory IL-10 and Treg cells to protect from experimental colitis via TLR2 signaling [64]. Thus, in addition to its role in maintaining a balanced Th2/Th1 ratio, *B. fragilis*-derived PSA also supports intestinal Treg cells. In this specific pathogen-free experimental setting, *B. fragilis* did not increase inflammatory Th1 (IFN-γ+) CD4+ T cells in gut tissue as had previously been demonstrated in spleens of germ-free mice [44]. This indicates that the same commensal-derived molecule may have opposing functions depending on compartmentalized tissue-specific microenvironments and the endogenous microbiota. Commensal Clostridia also contribute to IL-10+ Treg cell accumulation in the gut by increasing expression of transforming growth factor (TGF)-β from intestinal epithelial cells [65]. Additionally, a consortia of 17 Clostridia strains, falling within clusters IV, XIVa, and XVIII, were rationally identified from a human fecal sample based on their Treg cell inducing activity, and could attenuate colitis, quantified by a reduction in colon tissue pathology and diarrheal scores, upon administration to mice [66]. Therefore, sensing of the microbiota additionally maintains homeostasis through immunosuppression, preventing an overly robust immune response to host-proximal commensals.

Recently, experimental evidence has linked the effectiveness of FMT for colitis with immunosuppression. FMT therapeutically controlled gut inflammation and colitis via the induction of IL-10 and TGF-β, cytokines critical for Treg cell accumulation in the intestine [67,68]. Whether FMT-directed immunosuppression aids in the recovery from *C. difficile* requires further investigation. This area of research is of importance as patients with recurrent CDI have increased proinflammatory IL-17+ or IFN-γ+ CD4+ T cells circulating in their peripheral blood [69], and additionally, Th17 cells are necessary and sufficient to enhance the severity of CDI in settings of prior gut insult such as inflammatory bowel disease (IBD) [36]. Thus, FMT-induced IL-10+ Treg cells could plausibly be involved in the inhibition of pathogenic Th17 cells during recurrent CDI or in patients with prior exposure to gut commensals such as those with IBD or Crohn’s disease.

Commensal-Derived Signals That Orchestrate Host Immunity

Commensal bacteria are dynamic, and their nutrient acquisition, production of metabolites and MAMPs, and expression of antimicrobial factors are all important mechanisms of colonization resistance against *C. difficile*. The microbial–microbial interactions by which commensals and FMT therapy limit *C. difficile* growth have been outlined in other reviews [16,70]. Here, we focus on how signals from the microbiota interact with the host immune system to possibly confer additional protection during *C. difficile* colitis (Figure 3).

SCFAs Affect the Fitness of *C. difficile* and Promote Host Epithelial Regeneration and Immunoregulation

Breakdown of carbohydrates provides an energy source for commensals, whereas antibiotic treatment alters the balance of commensal fermenters, leading to reduced short-chain fatty acid (SCFA) production [71,72]. Lawley *et al.* demonstrated that in the presence of hypervirulent *C. difficile*, the microbiota of infected mice was marked by low diversity and reductions in SCFAs, with most notable reductions in acetate and butyrate [22]. Similarly, an additional study characterized the metabolome of susceptible, antibiotic-treated mice and demonstrated reduced fermenting commensal activity with increases in sugar alcohols and carbohydrates and reciprocal reductions in SCFAs [73]. Aligning with these studies, 16S rRNA sequencing of the human flora demonstrated reductions in the families Ruminococcaceae, Lachnospiraceae, and butyrate-
Figure 3. *Clostridioides difficile* Relevant Host Immune Responses Are Impacted by the Presence of the Microbiota. A diverse microflora protects from *C. difficile* infection. Commensals that produce secondary bile acids and short chain fatty acids (SCFAs) can inhibit *C. difficile* growth through bacterial competition. Commensals also promote disease-limiting immune responses. Secondary bile acids analogs can activate the pyrin inflammasome which is important for antimicrobial immune defenses against toxins. SCFAs promote epithelial barrier tight junction through butyrate stabilization of hypoxia-inducible factor-1 (HIF-1). The SCFAs butyrate and propionate aid in regulatory T (Treg) cell generation via histone deacetylase inhibition. Treg-cell-mediated IL-10 expression can suppress pathogenic T helper (Th)17 cells. Th17 cells increase *C. difficile* disease severity in cases of prior gut insult and are promoted by the gut commensal, segmented filamentous bacteria (SFB). Type 2 innate lymphoid cells (ILC2s) are protective against *C. difficile* infection. Human ILC2s express Toll-like receptors (TLRs) that can sense microbiota-associated molecular patterns (MAMPs). ILC2-activating cytokines, IL-33 and IL-25, prevent mortality during murine models of *C. difficile* colitis and their expression are maintained by the presence of a diverse microbiota. Abbreviation: RegIIIγ, regenerating islet-derived protein 3γ.
producing C2 to C4 anaerobic fermenters in human CDI patients [12]. Finally, a recent study demonstrated that microbiota-accessible carbohydrate (MAC) diets caused outgrowth of MAC-utilizing bacteria (e.g., Bacteroides). This outgrowth was associated with increased fermentation end products acetate, propionate, and butyrate, as well as decreased C. difficile fitness in vivo [74,75].

While SCFAs have effects on C. difficile fitness, they are also important communicators with the intestinal immune system, being sensed by epithelial cells and immune cells via G-protein-coupled receptors, GPR41 and GPR43, and by maintaining the transcription of many cytokine and chemokines within the intestine [76]. Recently it was demonstrated that butyrate protected from C. difficile colitis by increasing epithelial tight junctions via the transcription factor hypoxia-inducible factor (HIF)-1 and independent of bacterial burden [77]. Thus, restoration of SCFA pools with FMT therapy may act in concert with anti-C. difficile mechanisms to promote epithelial barrier and cytokine defenses.

Lastly, the SCFAs butyrate and propionate limit inflammatory responses in the intestine by supporting peripheral Treg cell development via their histone deacetylase activity [78–80]. The direct addition of SCFAs to ex vivo T cell cultures inhibits Th17 cell differentiation and IL-6 production, while increasing Treg cell differentiation [81]. Thus, SCFAs dampen overactive immune responses and suppress colitis through their regulation of the intestinal Treg:Th17 cell ratio. Given recent findings that CD4+ Th17 cells drive severe C. difficile disease after a previous gut insult, it is possible that SCFAs additionally provide protection during relapsing C. difficile through modulation of the intestinal T-reg:Th17 cell balance, and preventing an overactive immune response to host-proximal commensals [36].

FMT-Restored Secondary Bile Acids Interact with Host Inflammasome Defenses

Bile acids are produced in the liver and metabolized by the microbiota into secondary forms. Secondary bile acids deoxycholate and lithocholate are inhibitors of C. difficile growth and are associated with CDI protection, whereas the primary bile acids taurocholate and cholate induce spore germination [25,82–84]. Human patients with recurrent CDI have high levels of primary bile acids, yet are completely deficient in secondary bile salts prior to FMT therapy [85]. FMT therapy can restore bile-acid-metabolizing microbiota, rescuing protective levels of secondary bile acids [85].

While bile acids have direct implications on C. difficile growth, they also have important implications on host immune defenses mediated by the inflammasome. The pyrin inflammasome sensor is activated by the Rho-glucosylating activity of C. difficile toxins [86]. The role of the pyrin inflammasome sensor in vivo is less clear as pyrin-deficient mice have no significant differences in C. difficile disease, whereas mice deficient in apoptosis executioner caspases have delayed recovery during infection [87]. That being said, inflammasome signaling is indeed essential for recovery from acute CDI, as complete abolishment of the inflammasome complex in ASC−/− mice or inhibition of caspase-1 in vivo causes severe mortality during infection, higher bacterial burden, and impaired CXCL1-mediated neutrophil chemotaxis [88,89]. When putative secondary bile acids are screened for inflammasome activity, 2 deoxycholic acid analogs cause IL-1β and IL-18 release from epithelial and myeloid cells via activation of the pyrin inflammasome [90]. Furthermore, another study demonstrated that multiple secondary and primary bile acids had dose-inhibitory activity on the NLRP3 inflammasome, with the secondary bile acid lithocholic acid having the greatest anti-IL-1β and caspase-1 inhibition [91]. Thus, the bile acid pool transferred by FMT therapy may have profound effects on inflammasome defenses against C. difficile and should be considered when screening for protective rationally designed cocktails.
MAMPs Promote Immune Health

Expression of pattern recognition receptors (PRRs) such as TLRs and NOD receptors and their subsequent sensing of microbe-derived patterns is not restricted to pathogen encounter. In contrast, PRRs are expressed in the intestinal epithelium at steady state and are thus uniquely positioned to sense and interact with the luminal intestinal microbiota [92]. In fact, the interaction between PRRs and commensal-derived signals is essential for maintaining intestinal symbiosis and immune function [93,94]. For example, sensing of commensal-derived signals by intestinal TLR–MyD88 signaling protects mice from chemically induced dextran sulfate sodium (DSS) colitis [93,94]. Microbiota-depleted mice display increased mortality, colonic bleeding, and intestinal epithelial injury that can be rescued by oral administration of the commensal bacterial product, LPS, in a TLR4-dependent manner. Additionally, TLR5-mediated sensing of microbiota-derived flagellin by dendritic cells increases the production of the antimicrobial C-type lectin, [regenerating islet-derived protein 3y (RegIIIγ)], by epithelial cells. Antibiotic-mediated downregulation of RegIIIγ leads to reduced killing of vancomycin-resistant Enterococcus [95,96]. RegIIIγ has antimicrobial activity against Gram-positive bacteria and future studies should test requirement of RegIIIγ induction by FMT in the setting of CDI.

Commensal sensing by PRRs is also critical for maintaining neutrophil defenses. Microbiota-derived peptidoglycan enhances neutrophil killing of the pathogens Streptococcus pneumoniae and Staphylococcus aureus [97]. Recognition of peptidoglycan by the PRR, NOD1, is sufficient to restore neutrophil function [97]. Thus, PRRs may be important downstream targets of FMT-mediated efforts to restore gut homeostasis during CDI. Mice lacking the PRRs TLR4, MyD88, and NOD-1 are more susceptible to CDI and have deficiencies in their granulocyte responses. However, whether a lack of host/microbiota immune development contributes to disease severity has not been addressed [31,97,98]. Further in vivo studies of FMT therapy to treat C. difficile in the context of genetic ablation of TLRs or NLRs will be critical to understand whether these sensors play an important role in FMT-mediated recovery.

Concluding Remarks

Many recent studies have refined our approach and application of FMT therapy in the clinic. Freezing of FMT material enables many advances such as prescreening, banking, and restocking of donor stool in addition to the possibility of delivery to other hospitals. An additional advance in making FMT therapy more accessible is the demonstration that oral FMT capsules are an effective way to administer donor material relative to other procedures such as enemas [99]. The ideal gold standard FMT treatment would be the identification of a defined, purified, microbial cocktail that is sufficient to transfer FMT protection.

Likely, there is not just one commensal or one community architecture that contributes to colonization resistance, but multiple community structures exist that can transfer protection from C. difficile colitis. Given the vast complexity of the microbiota, its expansive influence on the metabolic state of the gut, and its numerous interactions with the mucosal interface and the host immune response, it is likely that not one magic bullet exists to combat CDI. This idea is supported by a recent study demonstrating that multiple CDI-resistant states of the microbiota exist with differing community structures however their functional outputs are similar [73]. Further studies defining mechanistic and functional outputs of commensals, such as their metabolomes and their interactions with the host, are key to the advancement of purified, next-generation bacteriotherapy to treat both C. difficile and other diarrheal diseases (see Outstanding Questions).

Towards the goal of refining FMT therapy, and defining a consortium of commensals that could be produced under good manufacturing practices, multiple factors should be taken into account. Research has mostly focused on antimicrobial mechanisms by which FMT protects during C. difficile infection. Will targeting of tissue-recovery pathways using defined microbes add additional value when designing rational bacteriotherapies?

Can host cytokine biomarkers improve the clinical decision-making of treatment with antibiotics versus FMT therapy?

In the context of FMT to treat C. difficile, do microbe-derived metabolites such as SCFAs and secondary bile acids improve disease severity through additional modulation of the host immune defenses?

How can microbes be screened for immunostimulating or immunosuppressive activity robustly and quickly, to aid in rational design of next-generation bacteriotherapy?
consideration: limited antibiotic resistance; durability in passing through the gastrointestinal tract; engraftment stability; and anti-C. difficile competition (e.g., secondary bile acid production). While reducing C. difficile growth via competition is of key importance, the work outlined in this review indicates that the additional ability of microbes to modulate the immune system should be considered as well. Thus, work to identify microbes that increase protective immune signaling within the intestine will add an important layer of host protection into next-generation bacteriotherapy in the face of C. difficile colitis.

Disclaimer Statement
W.P. is a consultant for TechLab, Inc. which manufactures diagnostic tests for CDI. The authors declare no other competing interests.

Acknowledgments
This work was supported by the National Institutes of Health (NIH) funded grants 1F31AI136421-01A1 and 5T32AI007496-24 to A.L.F and by the NIH grant R01 AI124214 to W.A.P and Bill and Melinda Gates Foundation OPP1136759 to W.A.P.

Resources
www.atrialregister.nl/trial/1135

References
1. Bartlett, J.G. (2008) Narrative review: the new epidemic of Clostridium difficile. Ann. Intern. Med. 148, 758–764
2. Rupnik, M. et al. (2009) Clostridium difficile infection: new developments in epidemiology and pathogenesis. Nat. Rev. Microbiol. 7, 526–536
3. Kelly, C.P. and LaMont, J.T. (2008) Clostridium difficile – more difficult than ever. N. Engl. J. Med. 359, 1932–1940
4. Lessa, F.C. et al. (2015) Burden of Clostridium difficile infection in the United States. N. Engl. J. Med. 372, 825–834
5. Magli, S.S. et al. (2016) Changes in Prevalence of healthcare-associated infections in U.S. hospitals. N. Engl. J. Med. 375, 1732–1744
6. National Institute of Allergy and Infectious Diseases (2014) NIAID’s Antibacterial Resistance Program: Current Status and Future Directions. NIAID
7. Deshpande, A. et al. (2013) Community-associated Clostridium difficile infection antibodies: A meta-analysis. J. Antimicrob. Chemother. 68, 1951–1961
8. Simings, C. and Riley, T.V. (2014) Antibiotics and hospital-acquired C. difficile infection: update of systematic review and meta-analysis. J. Antimicrob. Chemother. 69, 881–891
9. Jernberg, C. et al. (2010) Long-term impacts of antibiotic exposure on the human intestinal microbiota. Microbiology 156, 3216–3233
10. Buffie, C.G. et al. (2012) Profound alterations of intestinal microbiota following a single dose of clindamycin results in sustained susceptibility to Clostridium difficile-induced colitis. Infect. Immun. 80, 62–73
11. Gu, S. et al. (2016) Identification of key taxa that favor intestinal colonization of Clostridium difficile in an adult Chinese population. Microbes Infect. 18, 93–98
12. Antinama, V.C. et al. (2013) Intestinal dysbiosis and depletion of butyrogenic bacteria in Clostridium difficile infection and nosocomial diarrhea. J. Clin. Microbiol. 51, 2884–2892
13. Chang, J.Y. et al. (2008) Decreased diversity of the fecal microbiome in recurrent Clostridium difficile-associated diarrhea. J. Infect. Dis. 197, 435–438
14. Rupnik, M. et al. (2009) Clostridium difficile infection: new developments in epidemiology and pathogenesis. Nat. Rev. Microbiol. 7, 526
15. Shields, K. et al. (2015) Recurrent clostridium difficile infection: from colonization to cure. Anaerobe 34, 59–73
16. Buffie, C.G. and Palmier, E.G. (2013) Microbiota-mediated colonic resistance against intestinal pathogens. Nat. Rev. Immunol. 13, 790–801
17. Eisenman, B. et al. (1958) Fecal enema as an adjunct in the treatment of pseudomembranous, Surgery 44, 654–659
18. van Noord, E. et al. (2013) Duodenal infusion of donor feces for recurrent Clostridium difficile. N. Engl. J. Med. 368, 407–415
19. Tweedle, M. and Reak-Madsen, J. (1989) Bacteriotherapy for chronic relapsing Clostridium difficile diarrhea in six patients. Lancet 1, 1156–1160
20. Surawicz, C.M. et al. (2000) The search for a better treatment for recurrent Clostridium difficile disease: use of high-dose vancomycin combined with Saccharomyces boulardii. Clin. Infect. Dis. 31, 1012–1017
21. McFarland, L.V. (2009) Evidence-based review of probiotics for antibiotic-associated diarrhea and Clostridium difficile infections. Am. J. Gastroenterol. 104, 274–280
22. Lawley, T.D. et al. (2012) Targeted restoration of the intestinal microbiota with a simple, defined bacteriotherapy resolves relapsing Clostridium difficile disease in mice. PLoS Pathog. 8, e1002565
23. Reeves, A.E. et al. (2011) The interplay between microbiome dynamics and pathogen dynamics in a murine model of Clostridium difficile infection. Gut Microbes 2, 145–156
24. Reeves, A.E. et al. (2012) Suppression of Clostridium difficile in the gastrointestinal tracts of germfree mice inoculated with a murine isolate from the family Lachnospiraceae. Infect. Immun. 80, 3786–3794
25. Buffie, C.G. et al. (2015) Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 517, 205–208
26. Steiner, T.S. et al. (1997) Fecal lactoferin, interleukin-1beta, and interleukin-8 are elevated in patients with severe Clostridium difficile colitis. Clin. Diagn. Lab. Immunol. 4, 719–722
27. Jiang, Z.D. et al. (2006) A common polymorphism in the interleukin 8 gene promoter is associated with Clostridium difficile diarrhea. Am. J. Gastroenterol. 101, 1112–1116
28. El Feghaly, R.E. et al. (2013) Markers of intestinal inflammation, not bacterial burden, correlate with clinical outcomes in clostridium difficile infection. Clin. Infect. Dis. 56, 1713–1721
29. Yu, H. et al. (2017) Cytokines are markers of the Clostridium difficile-induced inflammatory response and predict disease severity. Clin. Vaccine Immunol. 4, e00037-17
30. Kulaylat, A.S. et al. (2018) Development and validation of a prediction model for mortality and adverse outcomes among patients with peripheral eosinopenia on admission...
Trends in Molecular Medicine

506

506

506

506

506

506

506

506

506

506

506

506

506

506

506

506

for Clostridium difficile infection. JAMA Surg. 153, 1104–1112

Jarchum, I. et al. (2012) Critical role for myd88-mediated neutrophil recruitment during Clostridium difficile colitis. Infect. Immun. 80, 2983–2990

Montebelli, L.A. et al. (2011) Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat. Immunol. 12, 1045–1054

Buonomo, E.L. et al. (2016) Microbiota-regulated IL-25 increases eosinophil number to provide protection during Clostridium difficile infection. Cell Rep. 16, 432–443

Frisbee, A.L. et al. (2019) IL-33 drives group 2 innate lymphoid cell-mediated protection during Clostridium difficile infection. Nat. Commun. 10, 2712

Cowardin, C.A. et al. (2016) The binary toxin CDT enhances Clostridium difficile virulence by suppressing protective colonic eosinophilia. Nat. Microbiol. 1, 16016

Saleh, M.M. et al. (2019) Collins-induced Th17 cells increase the risk for severe subsequent Clostridium difficile infection. Cell Host Microbe 25, 756–765

Buonomo, E.L. et al. (2013) Role of IL-23 signaling in Clostridium difficile colitis. J. Infect. Dis. 208, 917–920

McDermott, A.J. et al. (2016) Interleukin-23 (IL-23), independent of IL-17 and IL-22, drives neutrophil recruitment and innate inflammation during Clostridium difficile colitis in mice. Immunology 147, 114–124

Khanna, S. et al. (2018) A novel microbiome therapeutic increases gut microbiota diversity and prevents recurrent Clostridium difficile infection. J. Infect. Dis. 214, 173–181

Jafari, N.V. et al. (2010) Clostridium difficile modulates host innate immunity via toxin-independent and dependent mechanism(s). PLoS One 5, e98946

Abit, M.C. et al. (2015) Innate immune defenses mediated by two ileal subsets are critical for protection against acute Clostridium difficile infection. Cell Host Microbe 18, 27–37

Ishida, Y. et al. (2004) Essential involvement of IFN-γ in Clostridium difficile toxin A-induced enteritis. J. Immunol. 172, 3018–3025

Xu, W. et al. (2015) NFIL3 orchestrates the emergence of common helper innate lymphoid cell precursors. Cell Rep. 10, 2043–2054

Mazmanian, S.K. et al. (2005) An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122, 107–118

Lucas, M. et al. (2007) Dendritic cells prime natural killer cells by trans-presenting interleukin 15. Immunity 26, 503–517

Ganai, S.G. et al. (2012) Priming of natural killer cells by nonmucosal mononuclear phagocytes requires instructive signals from commensal microbiota. Immunity 37, 171–186

Nuesbaum, J.C. et al. (2013) Type 2 innate lymphoid cells control eosinophil homeostasis. Nat. Med. 20, 245–249

Schneider, C. et al. (2018) A metabolite-triggered gut cell-ILC2 circuit drives small intestinal remodeling. Cell 174, 271–294

Maegi, L. et al. (2017) Human circulating group 2 innate lymphoid cells can express CD154 and promote TGF production. J. Allergy Clin. Immunol. 139, 964–976

De Salvo, C. et al. (2016) IL-33 drives eosinophil infiltration and pathogenic type 2 helper T-cell immune responses leading to chronic experimental colitis. Am. J. Pathol. 186, 885–898

Hasegawa, M. et al. (2014) Interleukin-22 regulates the complex system to promote resistance against pathobionts after pathogen-induced intestinal damage. Immunity 41, 98–110

Jose, S. and Modan, R. (2016) Neutrophil-mediated inflammation in the pathogenesis of Clostridium difficile infections. Anaerobe 41, 85–90

Castagnoullo, J. et al. (1998) Clostridium difficile toxin A stimulates macrophage-inflammatory protein-2 production in rat intestinal epithelial cells. J. Immunol. 160, 6039–6045

Kelly, C.P. et al. (1994) Neutrophil recruitment in Clostridium difficile toxin A enteritis in the rabbit. J. Clin. Invest. 93, 125–1265

Yoon, Y.K. et al. (2014) Predictors of mortality attributable to Clostridium difficile infection in patients with underlying malignancy. Support Care Cancer 22, 2029–2048

56. Solomon, K. et al. (2013) Mortality in patients with Clostridium difficile infection correlates with host pro-inflammatory and humoral immune responses. J. Med. Microbiol. 62, 1453–1460

57. Ivanov, I.I. et al. (2008) Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe 4, 337–349

58. Ivanov, I.I. et al. (2009) Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485–498

59. Gabonou-Rouby, V. et al. (2009) The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 31, 677–689

60. Lee, Y.K. et al. (2019) Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc. Natl. Acad. Sci. U. S. A. 116, 4015–4020

61. Atarashi, K. et al. (2013) Th17 cell induction by adhesion of microbes to intestinal epithelial cells. Cell 163, 367–380

62. Sano, T. et al. (2015) An IL-23R/IL-22 circuit regulates epithelial cell’s response of A to promote local effecter Th17 responses. Cell 164, 324

63. Castellanos, J.G. et al. (2016) Microbiota-Induced TNF-like ligand 1A drives group 3 innate lymphoid cell-mediated barrier protection and intestinal T cell activation during colitis. Immunity 49, 1077–1089

64. Mazmanian, S.K. et al. (2008) A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 453, 620–625

65. Atarashi, K. et al. (2011) Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331, 337–341

66. Atarashi, K. et al. (2013) Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 502, 239–245

67. Burello, C. et al. (2018) Therapeutic faecal microbiota transplantation controls intestinal inflammation through IL10 secretion by immune cells. Nat. Commun. 9, 5184

68. Wei, Y. et al. (2016) Fecal microbiota transplantation ameliorates experimentally induced colitis in mice by upregulating AHR. Front. Microbiol. 9, 1921

69. Yacyshyn, M.B. et al. (2014) Clostridium difficile recurrence is characterized by pro-inflammatory peripheral blood mononuclear cell (PBMC) phenotype. J. Med. Microbiol. 63, 1260–1273

70. Britton, R.A. and Young, V.B. (2014) Role of the intestinal microbiota in resistance to colonization by Clostridium difficile. Gastroenterology 146, 1547–1553

71. Hove, H. et al. (1999) Antibiotic-associated diarrhoea, Clostridium difficile, and short-chain fatty acids. Scand. J. Gastroenterol. 34, 694–698

72. Heverstäd, T. et al. (1988) Influence of ampicillin, clindamycin, and metronidazole on faecal excretion of short-chain fatty acids in healthy subjects. Scand. J. Gastroenterol. 21, 621–626

73. Thercic, C.M. et al. (2014) Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection. Nat. Commun. 5, 3114

74. Hyricleswian, A.J. et al. (2016) Microbiota-accessible carbohydrates suppress Clostridium difficile infection in a murine model. Nat. Microbiol. 3, 662–669

75. Karlsson, S. et al. (2000) Toxins, butyric acid, and other short-chain fatty acids are coordinate expressed and down-regulated by cysgene in Clostridium difficile. Infect. Immun. 68, 5881–5888

76. Kim, M.H. et al. (2013) Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice. Gastroenterology 145, 390–406

77. Fachi, J.L. et al. (2019) Butyrate protects mice from Clostridium difficile-induced colitis through an IFN-1-dependent mechanism. Cell Rep. 27, 759–761

78. Arpaia, N. et al. (2013) Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 27, 451–455

79. Fucikova, Y. et al. (2013) Commensal microbe-derived butyrate induces the differentiation of inflammatory regulatory T cells. Nature 504, 446–450

80. Smith, P.M. et al. (2013) The microbial metabolites, short-chain fatty acids, regulate colonic T cell homeostasis. Science 341, 569–573
81. Asarat, M. et al. (2016) Short-chain fatty acids regulate cytokines and Th17/Treg cells in human peripheral blood mononuclear cells in vitro. Immunol. Invest. 45, 205–222
82. Sorg, J.A. and Sonenshein, A.L. (2009) Chenodeoxycholate is an inhibitor of Clostridium difficile spore germination. J. Bacteriol. 191, 1110–1117
83. Sorg, J.A. and Sonenshein, A.L. (2008) Bile salts and glycine as cogerminants for Clostridium difficile spores. J. Bacteriol. 190, 2505–2512
84. Giel, J.L. et al. (2010) Metabolism of bile salts in mice influences spore germination in Clostridium difficile. PLoS One 5, e9740
85. Weingarden, A.R. et al. (2014) Microbiota transplantation restores normal fecal bile acid composition in recurrent Clostridium difficile infection. Am. J. Physiol. Liver Physiol. 306, G310–G319
86. Xu, H. et al. (2014) Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. Nature 513, 237–241
87. Saavedra, P.H.V. et al. (2018) Apoptosis of intestinal epithelial cells restricts Clostridium difficile infection in a model of pseudomembranous colitis. Nat. Commun. 9, 4946
88. Miller, L.S. et al. (2007) Inflammasome-mediated production of IL-1beta is required for neutrophil recruitment against Staphylococcus aureus in vivo. J. Immunol. 179, 6933–6942
89. Liu, Y.H. et al. (2016) The ATP-P2X7 signaling axis is an essential sentinel for intracellular Clostridium difficile pathogen-induced inflammasome activation. Front. Cell. Infect. Microbiol. 8, 84
90. Almov, I. et al. (2019) Bile acid analogues are activators of pyrin inflammasome. J. Biol. Chem. 294, 3359–3369
91. Guo, C. et al. (2018) Bile acids control inflammation and metabolic disorder through inhibition of NLRP3 inflammasome. Immunity 45, 944
92. Peterson, L.W. and Artis, D. (2014) Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat. Rev. Immunol. 14, 141–153
93. Abreu, M.T. (2013) Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function. Nat. Rev. Immunol. 10, 131–144
94. Rakoff-Nahoum, S. et al. (2004) Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 119, 229–241
95. Brandl, K. et al. (2008) Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits. Nature 455, 804–807
96. Brandl, K. et al. (2007) MyD88-mediated signals induce the bactericidal lectin RegIIIgamma and protect mice against intestinal Listeria monocytogenes infection. J. Exp. Med. 204, 1691–1900
97. Clarke, T.B. et al. (2013) Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat. Med. 16, 228–231
98. Ryan, A. et al. (2011) A role for TLR4 in clostridium difficile infection and the recognition of surface layer proteins. PLoS Pathog. 7, e1002076
99. Youngster, I. et al. (2016) Oral, frozen fecal microbiota transplant (FMT) capsules for recurrent Clostridium difficile infection. BMC Med. 14, 134