In recent decades, we have witnessed an explosive growth of diagnostic tools that have changed the face of modern medicine. Among these diagnostic tools, medical imaging is indeed one of the most representative fields that have been growing fast, used extensively, and regarded as an irreplaceable part of clinical routines. With a very different scale, “omics” refers to the study of cellular- or DNA-level molecules including their functions, structures, interactions, and involvement in disease development. Similar to imaging, the “omics” fields such as genomics, proteomics, and metabolomics have also advanced drastically in recent decades. The “omics” data obtained from a patient reveal a much more microscaled world that allows the practitioner to see what is going on in the genomic and proteomic levels. As imaging and omics technologies look at human physiology in quite different scales, physicians and scientists are currently attempting to integrate imaging and omics data for tailored therapies and research purposes. This special issue provides original research and review on the potential role and value of imaging in the “omics” era.

Image quantification and information extraction remain to be a challenge for integrating imaging and omics information. In this special issue, Y.-H. D. Fang et al. described an example in the open-source software development for quantifying the intratumoral heterogeneity. Such quantification based on texture analysis has been reported to be helpful for prognosis in oncological applications. However, currently there is no free software for such quantification in the public domain. Therefore, Y.-H. D. Fang et al. developed and shared a software package to fill this void and demonstrated its usefulness in a small cohort of oral cavity cancer patients.
There are also many practical limitations for medical imaging that is modality-dependent. Ionizing radiation is one major concern for CT and radionuclide imaging such as PET and SPECT. MR does not require ionizing radiation and owns a great potential in molecular imaging, but it has its own limitations in speed, cost, and potential renal toxicity with the use of Gd-based contrast agents. In this special issue, H. M. Huang and Y. Y. Shih gave a review on the recent technical advancement of dose reduction for CT and acceleration for MR. From their review, it could be optimistically expected that such practical limitations will gradually be resolved to make those two modalities more commonly used in the integration of imaging and omics research in the future.

To fully exploit the omics data in personalized medicine, new advancements for instrumentation to extract omics data play a critical role. A review article by C.-S. A. Gong and K. F. Lei in this special issue will discuss the recent advancement of miniaturized devices for genomics, which may further advance the clinical popularity for gene sequencing. One of the striking examples is the use of electrochemical impedance spectroscopy as the electrical detection of DNA hybridization in microfluidic devices. The combination of microfluidic and impedimetric technologies shows an alternative and attractive method for detecting the genomic signal.

In conclusion, the dramatic advancements of the omics knowledge have further propelled the development of personalized medicine. The original and review articles in this special issue show that there will be a significant role of medical images in the future of personalized medicine. It can be optimistically expected that imaging will continue to evolve as part of the omics data as well as serving as a tool for omics measurements. Although integration of imaging and omics data is a challenging task for the imaging community, such efforts will truly benefit personalized medicine by allowing us to see an individual from macro- to microscale levels.

Tzu-Chen Yen
Dimitris Visvikis
Tinsu Pan
Yu-Hua Dean Fang