Antimycobacterial effect of selenium nanoparticles on Mycobacterium tuberculosis

Hector Estevez¹, Ainhoa Palacios², David Gil², Juan Anguita², Maria Vallet-Regi¹, Blanca Gonzalez¹, Rafael Prados-Rosales³, Jose Luis Luque-Garcia³

¹Complutense University of Madrid, Spain, ²Center for Cooperative Research in Biosciences, Spain, ³Autonomous University of Madrid, Spain

Submitted to Journal:
Frontiers in Microbiology

Specialty Section:
Antimicrobials, Resistance and Chemotherapy

Article type:
Original Research Article

Manuscript ID:
537548

Received on:
24 Feb 2020

Revised on:
02 Apr 2020

Frontiers website link:
www.frontiersin.org
Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest

Author contribution statement

J.L.L.-G, R.P.-R. and B.G. designed the study, supervised the experimental work, analysed and interpreted the data and wrote the paper together with H.E., A.P., J.A and M.V.-R. H.E., A.P. and D.G. performed the experimental work.

Keywords

Selenium nanoparticles, Mycobacterium tubeculosis, Smegmatis, Antimycobacterial effect, Cell wall damaging agents

Abstract

Word count: 170
Tuberculosis remains the leading cause of death from infection worldwide. In recent years, the occurrence of tuberculosis cases caused by drug-resistant strains has spread, and is expected to continue to grow. Therefore, the development of new alternative treatments to the use of antibiotics is highly important. In that sense, nanotechnology can play a very relevant role, due to the unique characteristics of nanoparticles. In fact, different types of nanoparticles have already been evaluated both as potential bactericides and as efficient drug delivery vehicles. In this work, the use of selenium nanoparticles has been evaluated to inhibit the growth of two types of mycobacteria: Mycobacterium smegmatis and Mycobacterium tuberculosis. The results showed that selenium nanoparticles stabilized with chitosan are able to inhibit the growth of both types of mycobacteria by damaging their cell envelope integrity. These results open a new opportunity for the use of this type of nanoparticles as antimycobacterial agents by themselves, or for the development of novel nanosystems that combine the action of these nanoparticles with other drugs.

Contribution to the field

During the last years, attention on nanotechnology and nanomaterials has reached high relevance. Among this novel nanomaterials, selenium nanoparticles (SeNPs) are a relatively novel compound that has shown promising biomedical potential due to their antioxidant properties and different behavior as compared to other selenospecies. SeNPs have been evaluated as antimicrobial agents only in a few studies. It has been demonstrated their bactericidal potential against S. aureus and their anti-biofilm capacity against S. aureus, P. aeruginosa and P. mirabilis. However, to date, the potential of SeNPs against Mycobacterium tuberculosis (Mt) has not been evaluated. This, along with the fact that multi-drug resistant Mt strains are spreading worldwide (more than 480,000 cases reported last year according to the TB alliance), which have created an urgent need for the development of alternative non-antibiotic treatments against tuberculosis, has led us to evaluate the potential of SeNPs as mycobactericidal agent against two types of mycobacteria: the fast-growing Mycobacterium smegmatis (Msm) and the slow-growing Mt, finding an effective inhibition in the mycobacterial growth in a dose-dependent manner. A structural analysis of the mycobacteria subjected to the presence of the SeNPs has been performed by means of electron microscopy to analyze their effect on the cell wall.

Funding statement

This study was supported by Ministerio de Economía y Competitividad (MINECO) grants: CTQ2017-85673-R (JLL-G), SAF2016-77433-R (RP-R), RTI2018-096494-B-100 (JA) and the European Research Council ERC-2015-AdG (VERDI) Proposal No. 694160. CIBER is a public research consortium created by ISCIII whose actions are co-funded by the European Regional Development Fund. CIC bioGUNE thanks MINECO for the Severo Ochoa Excellence Accreditation (SEV-2016-0644). HE acknowledges Ministerio de Ciencia, Innovacion y Universidades from the Spanish Government for a predoctoral fellowship (PRE2018-084196). AP holds a fellowship form the Department of Education of the Basque Government (PRE_2018_1_0229).
Ethics statements

Studies involving animal subjects
Generated Statement: No animal studies are presented in this manuscript.

Studies involving human subjects
Generated Statement: No human studies are presented in this manuscript.

Inclusion of identifiable human data
Generated Statement: No potentially identifiable human images or data is presented in this study.
Data availability statement

Generated Statement: The datasets generated for this study are available on request to the corresponding author.
Antimycobacterial effect of selenium nanoparticles on *Mycobacterium tuberculosis*

Hector Estevez\(^a,1\), Ainhoa Palacios\(^b,1\), David Gil\(^c\), Juan Anguita\(^b,g\), Maria Vallet-Regi\(^d,e\), Blanca González\(^d,e\), Rafael Prados-Rosales\(^f,*\), Jose L. Luque-Garcia\(^a,*\)

\(^a\)Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid. Av. Complutense s/n, 28040 Madrid, Spain.

\(^b\)Inflammation and Macrophage Plasticity lab, CIC bioGUNE, Derio, 48160 Bizkaia, Spain.

\(^c\)Electron Microscopy Platform, CIC bioGUNE, Derio, 48160 Bizkaia, Spain.

\(^d\)Department of Chemistry in Pharmaceutical Sciences. Faculty of Pharmacy. Complutense University of Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.

\(^e\)Centro de Investigación Biomédica en Red de Bioingenería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.

\(^f\)Department of Preventive Medicine and Public Health and Microbiology, Faculty of Medicine, Autonoma University of Madrid, 28029 Madrid, Spain.

\(^g\)Ikerbasque, Basque Foundation for Science, Bilbao, Spain.

*Corresponding authors.

E-mail addresses: illuque@ucm.es (J.L. Luque-Garcia), rafael.prados@uam.es (R. Prados-Rosales).

\(^1\)These authors contributed equally to this work.
Abstract

Tuberculosis remains the leading cause of death from a single infection agent worldwide. In recent years, the occurrence of tuberculosis cases caused by drug-resistant strains has spread, and is expected to continue to grow. Therefore, the development of new alternative treatments to the use of antibiotics is highly important. In that sense, nanotechnology can play a very relevant role, due to the unique characteristics of nanoparticles. In fact, different types of nanoparticles have already been evaluated both as potential bactericides and as efficient drug delivery vehicles. In this work, the use of selenium nanoparticles has been evaluated to inhibit the growth of two types of mycobacteria: *Mycobacterium smegmatis* and *Mycobacterium tuberculosis*. The results showed that selenium nanoparticles are able to inhibit the growth of both types of mycobacteria by damaging their cell envelope integrity. These results open a new opportunity for the use of this type of nanoparticles as antimycobacterial agents by themselves, or for the development of novel nanosystems that combine the action of these nanoparticles with other drugs.

Keywords: Selenium nanoparticles, mycobacterium tuberculosis, antimycobacterial effect
1. Introduction

Tuberculosis (TB) is a chronic infectious disease transmitted aerially through droplets expelled by an infected person. The disease is caused by the slow-growing tubercle bacillus *Mycobacterium tuberculosis* (*Mtb*). TB is the leading cause of death due to infection worldwide, with approximately 1.4 million deceased in 2018 [1] and estimates at 75 million people dying from TB over the next 35 years. In 2018 alone, new TB cases were estimated to be 10.4 million worldwide [1]. Currently, TB treatment requires a six-month regimen of four first-line drugs, which are ineffective at treating infection with multidrug-resistant (MDR) *Mtb* strains. These strains are rapidly spreading worldwide (more than 480,000 cases reported last year according to the TB alliance) and could cost $16 trillion over the next 35 years. Since microbial resistance to antibiotics increases, there is a call for non-antibiotic therapies that can fill the gaps for bactericidal purposes where antibiotics fail [2]. In the recent years, the combination of nanotechnology and biomedicine has proven to be promising for multiple purposes, including in bactericide applications [3,4,5].

Nanoparticles are highly promising as antimicrobials, complementary to antibiotics, as they act by influencing the bacterial cell wall by direct contact without the need to be endocytosed [6,7]. Their small size implies a greater surface-area-to-volume ratio than bulk material. Also, they may have optical or even magnetic properties [8]. There is a great variety of nanoparticles in use as antimicrobials, such as metal, metal oxide or organic nanoparticles, involving multiple modes of action [9,10,11]. However, nanoparticles affect bacteria in two main lethal pathways, which can occur simultaneously: disruption of membrane potential and integrity, or production of reactive oxygen species (ROS) [12].
Selenium nanoparticles (SeNPs) have already been suggested for multiple biomedical applications due to their antioxidant properties and differential behavior in comparison to other selenospecies [13]. Also, SeNPs have been shown to have antimicrobial activity against different types of bacteria [14]. However, SeNPs have never been proven before to have an antimicrobial effect on Mtb.

Therefore, in this work, the mycobactericidal capacity of SeNPs has been evaluated on two types of mycobacteria, the fast-growing Mycobacterium smegmatis (Msm) and the slow-growing Mtb, finding an effective inhibition in the mycobacterial growth in a dose-dependent manner. A structural analysis of the mycobacteria subjected to the presence of the SeNPs has been performed by means of electron microscopy to analyze their effect on the cell envelope, showing that SeNPs interact directly with the mycobacteria membrane of Mtb and Msm, compromising their integrity and inducing extrusion of cytoplasmic material.

2. Materials and methods

2.1. Chemicals

Reagents for the synthesis of SeNPs: chitosan, bovine serum albumin, sodium selenite, ascorbic and acetic acid were purchased from Sigma-Aldrich. Reagents for electron microscopy: glutaraldehyde, cacodylate and formaldehyde were purchased from Sigma. Uranyl formate was purchased from Electron Microscopy Sciences (Hatfield, PA, US).

2.2. Synthesis of SeNPs

Chitosan-stabilized SeNPs (Ch-SeNPs) were synthesized following the procedure described by Bai et al. [15]. Briefly, 10 mL of an aqueous chitosan polysaccharide solution
(0.5% w/v) were mixed with 7.5 mL of ascorbic acid 0.23 M and 5 mL of acetic acid 2.4 M. Then, 0.25 mL of sodium selenite 0.51 M were slowly added to the previous solution. SeNPs formation was recognized by observing the change of the solution from colorless to red as the reaction progressed. After the synthesis, the colloidal suspension was diluted to 50 mL with distilled water, resulting in final concentrations of 200 mg L\(^{-1}\) of Se and 0.1\% of chitosan. Finally, the colloidal suspension was dialyzed for 2 h at room temperature in a ratio of 10 mL against 2 L of distilled water and using a 12 kDa of MWCO membrane. For control experiments, BSA-SeNPs were also prepared following the same procedure but using an aqueous bovine serum albumin solution (0.5\% w/v) instead of the chitosan solution.

2.3. Analytical characterization of the synthesized SeNPs

Transmission electron microscopy (TEM) was performed using a JEOL JEM 1400 instrument operated at 120 kV equipped with a CCD camera (KeenView Camera) and an energy dispersive X-ray spectroscopy (EDS) analyzer. Sample preparation was performed by placing one or two drops of the SeNPs colloidal suspension onto carbon-coated copper grids.

Electrophoretic mobility measurements of the materials suspended in water were used to calculate the zeta potential (\(\zeta\)) values of the nanoparticles. Measurements were performed in a Zetasizer Nano ZS (Malvern Instruments Ltd., United Kingdom) equipped with a 633 nm “red” laser. The hydrodynamic size of nanoparticles was measured by dynamic light scattering (DLS) with the same Malvern instrument.

2.4. Bacterial strains and culture conditions

Mycobacterium smegmatis mc\(^2\)155 (Msm) and *Mycobacterium tuberculosis* H37Rv (Mt\(\text{b}\)) strains (obtained from the ATCC) were grown in Middlebrook 7H9 medium
supplemented with 10% (v/v) OADC supplement (NaCl 8.5 g/L, BSA fraction V 50 g/L, dextrose 20 g/L, 5% (v/v) oleic acid solution 1%, 40 mg/L catalase), 0.5% (v/v) glycerol and 0.05% Tyloxapol (v/v; Sigma). Cultures were grown at 37 °C in static standing 25 cm² flasks with vented caps. Msm-Lux was generated by transforming Msm with the plasmid construct pMV306hsp+Lux (which contains the entire bacterial Lux operon cloned in a mycobacterial integrative expression vector) [16].

2.5. Minimum inhibitory concentration (MIC) assay

Minimum inhibitory concentration (MIC) assay was carried out in 96-well plates diluting exponentially growing Msm or Mtb at an initial density of 1 x 10⁵ bacteria/mL in the presence of two-fold serial dilutions of Ch-SeNPs or BSA-SeNPs starting at 50 µg/mL and including one control sample with no NPs. Plates were incubated at 37 °C for 7 days (Msm) or for 20 days (Mtb). Bacterial growth was monitored every day for Msm and every week for Mtb and was determined by measuring optical density at 570 nm. The assay was performed in triplicate. MIC values were selected as the minimum concentration able to suppress mycobacterial growth. Alternatively, Msm-lux was submitted to MIC assay and cell viability was assessed by measuring relative luminescence units (RLUs) at day 2. Correlation between colony forming units (CFUs) was performed according to a previously performed in vitro RLUs vs CFUs curve.

2.6. Transmission electron microscopy (TEM) (Negative staining)

Msm cells were fixed with 2% glutaraldehyde in 0.1 M cacodylate at room temperature for 2 h, and then incubated overnight in 4% formaldehyde, 1% glutaraldehyde, and 0.1% PBS. For negative staining of the samples, a drop of the fixed bacterial suspension was applied directly onto a glow-discharged EM grid (QUANTIFOIL. Formvar/Carbon. Cu 400 mesh grids). The sample was allowed to be adsorbed and then
blotted with filter paper (Whatman grade No. 1). The grid was washed by touching the surface with two consecutive drops of 0.75% (w/v) uranyl formate, blotting each time, and stained for 1 min with one more drop of the same staining agent. Negative stained samples were examined in a JEOL JEM-1230 (accelerating voltage 100 kV) electron microscope, and images were recorded with a CCD camera ORIUS SC100 (4 × 2.7 k pixel).

2.7. Cryo-electron microscopy (Cryo-EM)

Msm and *Mtb* cultures were fixed as above prior to vitrification. Grids were prepared following standard procedures and observed at liquid nitrogen temperatures in a JEM-2200FS/CR transmission electron microscope (JEOL Europe, Croissy-sur-Seine, France) operated at 200 kV. An in-column omega energy filter helped to record images with improved signal/noise ratio by zero-loss filtering. The energy selecting slit width was set at 9 eV. Digital images were recorded on an UltraScan4000 CCD camera under low-dose conditions at a magnification of 55,058 obtaining a final pixel size of 2.7 Å/pixel.

3. Results

3.1. Synthesis and Characterization of SeNPs

Selenium nanoparticles were prepared via a redox system in the presence of a biomacromolecule as soft template to control the nucleation and growth of the inorganic nanoselenium. The chemical reduction of selenite with ascorbic acid in the presence of a polysaccharide such as chitosan as stabilizer and capping agent afforded red elemental selenium in colloidal state [17]. Based on our previous work, 0.1 % of chitosan concentration was selected to prepare the SeNPs [13]. Under these conditions, the nanoparticles proved to be colloidally stable. Two months after their synthesis, no
flocculated material was present, DLS measurements showed no displacement of the hydrodynamic size distribution and no significant differences in the shape or size of the SeNPs were observed by TEM.

Transmission electron microscopy (TEM) images show well dispersed Ch-SeNPs that exhibit spherical morphology and homogeneous sizes of around 60-80 nm (Fig. 1A). The energy dispersive spectroscopy analysis (Fig. 1B) indicates a composition in selenium for the Ch-SeNPs, also being observed in the spectrum the signals for C and O from chitosan and the carbon coated copper grid.

The hydrodynamic size distribution of the Ch-SeNPs measured in the aqueous colloidal suspension (Fig. 1C) is monomodal and reasonably narrow, with a maximum centered at 105.7 ± 2.5 nm of diameter, which is in concordance with the smaller size of the inorganic nanoparticle determined in the TEM study. The ζ-potential of the Ch-SeNPs in water is in the zone of colloidal stability with a value of + 66.6 ± 4.7 mV. This highly positive value is due to the surface stabilization with chitosan, which possesses a equilibrium for the protonation of the amino groups in water. Therefore, chitosan allows the selenium nanoparticles to form stable colloidal suspensions due to both electrostatic as well as steric stabilization.

3.2. Antimycobacterial activity of SeNPs

We evaluated the ability of SeNPs to inhibit the growth of two different species of mycobacteria: the fast-growing *Msm* and the slow-growing *Mtb*. SeNPs were found to be effective in inhibiting mycobacterial growth in a dose-dependent manner, showing MIC values of 0.400 µg/mL for *Msm* (Supplementary Fig. S1A) and 0.195 µg/mL for *Mtb* (Fig. 2A). To determine whether this inhibition was concomitant to bacterial cell death we generated a luciferase-expressing reporter strain of *Msm* (*Msm*-Lux) [16]. Correlation between relative fluorescence units (RLUs) and CFUs was previously determined.
(Supplementary Fig. S2A) and used to calculate viable bacteria after treatment of Msm-Lux with SeNP (Supplementary Fig. S2B). We observed a reduction in CFUs as concentration of NPs increased, indicating the bactericidal effect of SeNPs. By this method MIC was similar to that of previously determined by measuring optical density.

To gain insight into the nature of the inhibitory effect of SeNPs, we performed ultrastructural analysis of Msm submitted to 0.400 µg/mL of SeNPs. Transmission electron micrographs of negative stained samples suggested that Msm exposed to SeNPs manifested reduced integrity of cell envelope leading to extrusion of cytoplasmic material, relative to untreated Msm (Supplementary Fig. S1B and S1C). To capture the antimycobacterial effect of SeNPs in a close-to-native state, treated (0.195 ug/mL) and untreated Msm and Mtb cells were submitted to cryo-EM. This technique revealed more in detail the membrane damage, both in Msm (Supplementary Fig. S1D and S1E) and Mtb (Fig. 2B-F). In addition, SeNPs could be spotted in direct contact with the mycobacterial cell wall, suggesting a direct connection between the effect of SeNPs and the reduction of the integrity of the mycobacterial cell envelope.

4. Discussion

The rapid spread of antibiotic-resistant Mtb strains makes it necessary to search for alternative treatments. In this sense, the use of nanoparticles with mycobactericidal potential could be especially interesting, since nanoparticles have a high surface area, which means that they contain a high number of active sites to be able to interact with biological entities and, on the other hand, they have a high capacity to penetrate cells and tissues [18,19].

Previous studies have used different types of nanoparticles, either as drug carriers [20] or as bactericidal agents themselves against tuberculosis. In the latter case, the
mycobactericidal potential of different metallic nanoparticles such as Ag [21], AgO, AgZnO [22] or Ga [23] nanoparticles, has been evaluated.

Among the different nanoparticles that are being used in biomedicine, Se nanoparticles are especially interesting because of their low toxicity. While Se has a narrow therapeutic window and the toxicity margins are very delicate, SeNPs possess remarkably reduced toxicity [24] and it has been proposed as a therapeutic agent for different applications without significant side effects [25]. As a matter of fact, it has been demonstrated that SeNPs are less toxic than other inorganic and organic selenospecies [13], showing unique properties such as their capacity for inducing cell cycle arrest [26] without inducing a significant degree of apoptosis [13]. In addition, SeNPs have also been used as a bactericidal agent against *Staphylococcus aureus* [27] and their anti-biofilm capacity has been demonstrated against *S. aureus*, *Pseudomonas aeruginosa* and *Proteus mirabilis* [28]. However, to date, the potential of Se nanoparticles against *Mtb* has not been evaluated.

In this study, the mycobactericidal capacity of SeNPs has been demonstrated against two types of mycobacteria, *Msm* and *Mtb*, with MIC values of 0.400 µg/mL and 0.195 µg/mL, respectively. Furthermore, to rule out an effect of the chitosan in the Ch-SeNPs bactericidal action, SeNPs stabilized with a protein such as bovine serum albumin (BSA-SeNPs) have been evaluated on *Mtb* showing an inhibition on the bacterial growth at similar concentrations than Ch-SeNPs (Fig. 2A). Therefore, the mycobactericidal effect is due to the SeNPs themselves and not to the presence of the stabilizing agent chitosan. In agreement with the previously demonstrated bactericidal effect of SeNPs on unrelated bacterial pathogens, we have demonstrated that these NPs can also kill Mycobacteria. Furthermore, our analyses by TEM and cryo-EM have shown that SeNPs come into contact with the cell wall of *Mtb* and *Msm*, compromising their integrity and inducing extrusion of cytoplasmic material. These results open a new opportunity for the
development of novel nanosystems with high antmycobacterial potential that, alone or in combination with antibiotics, could improve the treatment of multi-drug resistant tuberculosis strains.

Declarations

Funding: This study was supported by Ministerio de Economía y Competitividad (MINECO) grants: CTQ2017-85673-R (JLL-G), SAF2016–77433-R (RP-R), RTI2018-096494-B-100 (JA) and the European Research Council ERC-2015-AdG (VERDI) Proposal No. 694160. CIBER is a public research consortium created by ISCIII whose actions are co-funded by the European Regional Development Fund. CIC bioGUNE thanks MINECO for the Severo Ochoa Excellence Accreditation (SEV-2016–0644). HE acknowledges Ministerio de Ciencia, Innovacion y Universidades from the Spanish Government for a predoctoral fellowship (PRE2018-084196). AP holds a fellowship form the Department of Education of the Basque Government (PRE_2018_1_0229).

Competing Interests: None declared.

Ethical approval: Not required.
Figure legends

Fig. 1. Characterization of the synthesized SeNPs. A) TEM images of a 200 mg L\(^{-1}\) suspension of Ch-SeNPs. B) EDS spectrum of Ch-SeNPs. C) Hydrodynamic size distribution of the Ch-SeNPs in aqueous colloidal suspension measured by dynamic light scattering.

Fig. 2. Antimicrobial activity of SeNPs against *Mycobacterium tuberculosis*. A) MIC assay testing the antibacterial activity of Ch-SeNPs and BSA-SeNPs after 20 days of treatment. (B-E) Ultrastructural analysis by cryo-EM of untreated *Mtb* cells (B, C) or *Mtb* cells treated with an inhibitory concentration (0.195 µg/mL) of SeNPs (D-F).
References

1 Global Tuberculosis Report 2019. Geneva: World Health Organization, 2019.

2 Chandra Mohana N, Yashavantha Rao HC, Rakshith D, Mithun PR, Nuthan BR, Satish S. Omics based approach for biodiscovery of microbial natural products in antibiotic resistance era. J. Genet. Eng. Biotechnol. 2018; 1:1-8.

3 Vallet-Regí M, González B, Izquierdo-Barba I. Nanomaterials as Promising Alternative in the Infection Treatment. Int J Mol Sci 2019; 20:3806.

4 Jayawardana, K.W., Jayawardana, H.S.N., Wijesundera, S.A., De Zoysa, T., Sundhoro, M., Yan, M. Selective targeting of mycobacterium smegmatis with trehalose-functionalized nanoparticles. Chem. Commun. 2015; 51:12028-12031.

5 Reshma VG, Syama S, Sruthi S, Reshma SC, Remya NS, Mohanan PV. Engineered nanoparticles with antimicrobial property. Curr. Drug Metab. 2017; 11:1040-1054.

6 Wang, L., Hu, C., Shao, L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Inter. J. Nanomedicine 2017; 12:1227-1249.

7 Herman A, Herman AP. Nanoparticles as antimicrobial agents: their toxicity and mechanisms of action. J. Nanosci. Nanotechnol. 2014; 1: 946-57.

8 Baranwal A, Srivastava A, Kumar P, Bajpai VK, Maurya PK, Chandra P. Prospects of nanostructure materials and their composites as antimicrobial agents. Front. in Microbiol. 2018; 9: 422.

9 Hoseinzadeh, E., Makhdoumi, P., Taha, P., Hossini, H., Stelling, J., Kamal, M.A., Ashraf, G.M. A review on nano-antimicrobials: metal nanoparticles, methods and mechanisms. Curr. Drug Metab. 2017; 18: 120-128.

10 Khan, F., Lee, J.W., Pham, D.T.N., Khan, M.M., Park, S.K., Shin, I.S., Kim, Y.M. Antibiofilm action of ZnO, SnO2 and CeO2 nanoparticles towards Gram-positive biofilm formin pathogenic bacteria. Recent Pat. Nanotechnol. 2020; doi: 10.2174/187221051466620031321953.

11 Reshman, V.G., Syama, S., Sruthi, S., Reshma, S.C., Remya, N.S., Mohanan, P.V. Engineered nanoparticles with antimicrobial property. Curr. Drug Metab. 2017; 18:1040-1054.

12 Beyth, N., Houri-Haddad, Y., Domb, A., Khan, W., Hazan, R. Alternative antimicrobial approach: nano-antimicrobial materials. Evid. Based Complement. Alternat. Med. 2015; 1:16

13 Estevez H, Garcia-Lidon JC, Luque-García JL, Cámara C. Effects of chitosan-modified selenium nanoparticles on cell proliferation, apoptosis and cell cycle pattern in HepG2 cells: comparison with other selenospecies. Colloids Surf. B Biointerfaces 2014; 122:184-193.

14 Huang T, Holden JA, Heath DE, O’Brien-Simpson NM, O’Connor AJ. Engineering highly effective antimicrobial selenium nanoparticles through control of particle size. Nanoscale 2019; 11:14937-51.
Bai Y, Wang Y, Zhou Y, Li W, Zheng W. Modification and modulation of saccharides on elemental selenium nanoparticles in liquid phase. Mater Lett 2008; 62:2311-4.

Andreu N, Zelmer A, Fletcher T, Elkington PT, Ward TH, Ripoll J, Parish T, Bancroft GJ, Schaible U, Robertson BD, Wiles S. Optimisation of bioluminescent reporters for use with mycobacteria. PLoS ONE. 2010;5:e10777.

Zhang Y, Wang J, Zhang L. Creation of highly stable selenium nanoparticles capped with hyperbranched polysaccharide in water. Langmuir 2010; 26:17617-23.

Singh, R., Nawale, L.U., Arkile, M., Shedbalkar, U.U., Wadhwani, S.A., Sarkar, D., Chopade, B.A. Chemical and biological metal nanoparticles as antimycobacterial agents: A comparative study. Int. J. Antimicrob. Agents 2015; 46:183-188.

Kumarasingam, K., Vincent, M., Mane, S.R., Shunmugam, R., Sivakumar, S., Uma Devi, K.R.

Lu T, Wu Y, Zhao C, Su F, Liu J, Ma Z, Han Q. One-step fabrication and characterization of Fe$_3$O$_4$/HBPE-DDSA/INH nanoparticles with controlled drug release for treatment of tuberculosis. Mater. Sci. Eng. C Mater. Biol. Appl. 2018; 93:838-845.

Selim A, Elhaig MM, Taha SA, Nasr EA. Antibacterial activity of silver nanoparticles against field and reference strains of Mycobacterium tuberculosis, Mycobacterium bovis and multiple drug-resistant tuberculosis strains. Rev. Sci. Tech. 2018; 37:823-830.

Jafari A, Mosavari N, Movahedzadeh F, Nedooshan SJ, Safarkar R, Moro R, Kamalzadeh M, Majidpur A, Boustanshenas M, Mosavi T. Bactericidal impact of Ag, ZnO and mixed AgZnO colloid nanoparticles on H37Rv Mycobacterium tuberculosis phagocyte by THP-1 cell lines. Microb. Pathog. 2017; 110:335-344.

Choi SR, Britigan BE, Moran DM, Narayanasamy P. Gallium nanoparticles facilitate phagosome maturation and inhibit growth of virulent Mycobacterium tuberculosis in macrophages. PLoS One 2017; 12:e0177987.

Khurana, A., Tekula, S., Saifi, M.A., Venkatesh, P., Godugu, C. Therapeutic applications of selenium nanoparticles. Biomed. Pharmacother 2019; 111:802-812.

Hosnedlova, B., Kepinska, M., Skalickova, S., Fernandez, C., Ruttkay-Nedecky, B., Peng, Q., Baron, M., Melcova, M., Opatrillova, R., Zidkova, J., Bjorklund, G., Sochor, J., Kizek, R. Nano-selenium and its nanomedicine applications: a critical review. Int. J. Nanomedicine 2018; 13:2017-2018.

Lopez-Heras, I., Sanchez-Diaz, R., Anunciacao, D.S., Madrid, Y., Luque-Garcia, J.L., Camara, C. Effect of chitosan-stabilized selenium nanoparticles on cell cycle arrest and invasiveness in hepatocarcinoma cells revealed by quantitative proteomics. J. Nanomed. Nanotechnol. 2014; 5:5.
27 Tran PA, Webster TJ. Selenium nanoparticles inhibit Staphylococcus aureus growth. Int. J. Nanomed. 2011; 6:1553-1558.

28 Shakibaie M, Foroontanfar H, Golkari Y, Mohammadi-Khorsand T, Shakibaie MR. Anti-biofilm activity of biogenic selenium nanoparticles and selenium dioxide against clinical isolates of Staphylococcus aureus, Pseudomonas aeruginosa, and Proteus mirabilis. J. Trace Elem. Med. Biol. 2014; 29:235-241.
Figure 2

A

B

C

D

E

F

Figure 2.TIF