Summary data of potency and parameter information from semi-mechanistic PKPD modeling of prolactin release following administration of the dopamine D2 receptor antagonists risperidone, paliperidone and remoxipride in rats

Amit Taneja a,1, An Vermeulen b, Dymphy R.H. Huntjens b, Meindert Danhof c, Elizabeth C.M. De Lange c, Johannes H. Proost a,∗

a Division of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
b Clinical Pharmacology and Pharmacometrics, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
c Department of Pharmacology, Leiden Academic Center for Drug Research, Leiden University, The Netherlands

ARTICLE INFO

Article history:
Received 8 July 2016
Received in revised form 23 July 2016
Accepted 28 July 2016
Available online 6 August 2016

ABSTRACT

We provide the reader with relevant data related to our recently published paper, comparing two mathematical models to describe prolactin turnover in rats following one or two doses of the dopamine D2 receptor antagonists risperidone, paliperidone and remoxipride, “A comparison of two semi-mechanistic models for prolactin release and prediction of receptor occupancy following administration of dopamine D2 receptor antagonists in rats” (Taneja et al., 2016) [1]. All information is tabulated. Summary level data on the in vitro potencies and the physicochemical properties is presented in Table 1. Model parameters required to explore the precursor pool model are presented in Table 2. In Table 3, estimated parameter comparisons for both models are
presented, when separate potencies are estimated for risperidone and paliperidone, as compared to a common potency for both drugs. In Table 4, parameter estimates are compared when the drug effect is parameterized in terms of drug concentration or receptor occupancy.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Specifications Table

Subject area	Pharmacology
More specific subject area	Neuropsychopharmacology
Type of data	Tables
How data was acquired	Experimental study in male wistar rats, as described below
Data format	Processed tabulated data
Experimental factors	Plasma samples were collected for bioanalysis of risperidone, paliperidone, and remoxipride using an on-line solid phase extraction with liquid chromatography – tandem mass spectrometry method. Serum prolactin levels were measured using an enzyme linked immunosorbent assay technique.
Experimental features	All animal procedures were performed at Leiden University, in accordance with Dutch laws governing animal experimentation. Male Wistar rats, received single intravenous doses of risperidone (2 mg/kg, n = 16) or paliperidone (0.5 mg/kg, n = 21). Plasma drug concentrations as well as plasma prolactin levels were measured at pre-dose and at serial intervals post-dose. In another study, remoxipride was administered to rats either as a single intravenous dose of 4, 8 or 16 mg/kg (n = 10) remoxipride or two doses of 3.8 mg/kg at varying dosing intervals. Blood samples were serially collected. Plasma concentrations of the drugs as well as prolactin were assayed using validated analytical methods.
Data source location	Department of Pharmacology, Leiden Academic center for Drug Research, Leiden.
Data accessibility	The data is within this article.

Value of the data

Data can be used

- To compare experimental findings in literature with our model-based approach.
- As prior information, especially when the available data is scarce.
- For exploratory modeling.
- For translation from rat to humans.

1. Data

The information is presented in 4 tables. Table 1 presents the in vitro inhibition constant (Ki) values in rat and humans and physicochemical characteristics of the antipsychotics risperidone, paliperidone and remoxipride. Table 2 presents the pharmacokinetic–pharmacodynamic model...
Table 2
Model parameters used for the simulations in exploratory model analysis. Pharmacokinetic and pharmacodynamic parameters obtained from Kozielska et al. [3] and Stevens et al. [4], respectively.

Parameter	Estimate
CL (l·h⁻¹)	1.62
V1 (l)	1.29
Q (l·h⁻¹)	0.0882
V2 (l)	0.169
F	1
Ka (h⁻¹)	2.84
Cprl₀ (ng·ml⁻¹)	6.2
Rform (ng·ml⁻¹·h⁻¹)	35.3*
Kbase (h⁻¹)	0.57
Kout (h⁻¹)	5.7
Emax	25
EC₅₀ (ng·ml⁻¹)	0.08
γ	1
Emax,_smooth	3.5
EC₅₀,smooth (ng·ml⁻¹)	12.4

CL = clearance from the central compartment, V1 = volume of the central compartment, Q = intercompartmental clearance, V2 = volume of the peripheral compartment, F = bioavailability, Ka = absorption constant, Cprl₀ = plasma concentration of prolactin in the absence of antipsychotic drug, Rform = zero-order rate constant for prolactin synthesis, Kbase = first-order rate constant of prolactin release from the pool, Kout = first-order rate constant of elimination of prolactin from plasma, Emax = maximum increase in the prolactin release from the pool, EC₅₀ = drug concentration at half-maximal effect, γ = slope parameter, Emax,sf = maximum prolactin feedback, EC₅₀,sf = plasma prolactin concentration at half-maximal effect.

* Rform is calculated as the product of Cprl₀ · Kout (equation (5) of Taneja et al. [1]).

Table 1
Overview of literature Ki values and physicochemical characteristics of risperidone, paliperidone and remoxipride.

Ki values (nM)	Risperidone	Paliperidone	Remoxipride
Rat*	2.55	2.74	370.66
Human*	2.18	2.08	165.75
Human**	4.9 / 6	NA	243 / 125

Physicochemical characteristics

Protein binding % (rat)*	88.2	74.7	20-30
Protein binding % (human)*	90	77.4	80
Molecular weight (g/mol)	410.48	426.48	371.26

* Data on file.
** Data from Richtand et al. [2]. Values depicted for D₂ and D₃ long receptor in vitro experimental Ki.
parameters used to perform exploratory model simulations of the precursor pool model, as referred to in Section 3.2, Fig. 5 of Taneja et al. [1]. Table 3 presents the model parameters assuming equal or different potency of risperidone and paliperidone. Table 4 presents the model parameters obtained with different parameterizations, assuming either unbound drug concentration or dopamine D2 receptor occupancy as the driving force for drug effect.

2. Experimental design, materials and methods

Details of the experimental procedures have been described previously [1,5,6].
Acknowledgments

This project was supported by the Dutch Top Institute Pharma (TI Pharma) (Project no. D2-501) PK-PD Platform 2.0. A. Vermeulen and D.R.H. Huntjens are employees of Janssen Research and Development. The authors have no other conflicts of interest.

References

[1] A. Taneja, A. Vermeulen, D.R.H. Huntjens, M. Danhof, E.C.M. De Lange, J.H. Proost, A comparison of two semi-mechanistic models for prolactin release and prediction of receptor occupancy following administration of dopamine D2 receptor antagonists in rats, Eur. J. Pharmacol. 789 (2016) 202–214. http://dx.doi.org/10.1016/j.ejphar.2016.07.005.

[2] N.M. Richtand, J.A. Welge, A.D. Logue, P.E. Keck Jr., S.M. Strakowski, R.K. McNamara, Dopamine and serotonin receptor binding and antipsychotic efficacy, Neuropsychopharmacology 32 (8) (2007) 1715–1726. http://dx.doi.org/10.1038/sj.npp.1301305.

[3] M. Kozielska, M. Johnson, V. Pilla Reddy, A. Vermeulen, C. Li, S. Grimwood, R. de Greef, G.M. Groothuis, M. Danhof, J.H. Proost, Pharmacokinetic-pharmacodynamic modeling of the D(2) and 5-HT(2A) receptor occupancy of risperidone and paliperidone in rats, Pharm. Res. 29 (7) (2012) 1932–1948. http://dx.doi.org/10.1007/s11095-012-0722-8.

[4] J. Stevens, B.A. Ploeger, M. Hammarlund-Udenaes, G. Osswald, P.H. van der Graaf, M. Danhof, E.C. de Lange, Mechanism-based PK-PD model for the prolactin biological system response following an acute dopamine inhibition challenge: quantitative extrapolation to humans, J. Pharmacokin. Pharmacodynam. 39 (5) (2012) 463–477. http://dx.doi.org/10.1007/s10928-012-9262-4.

[5] J. Stevens, D.J. van den Berg, S. de Ridder, H.A. Niederlander, P.H. van der Graaf, M. Danhof, E.C. de Lange, Online solid phase extraction with liquid chromatography-tandem mass spectrometry to analyze remoxipride in small plasma-, brain homogenate-, and brain microdialysate samples, J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 878 (13–14) (2010) 969–975. http://dx.doi.org/10.1016/j.jchromb.2010.02.024.

[6] J. Stevens, B.A. Ploeger, P.H. van der Graaf, M. Danhof, E.C. de Lange, Systemic and direct nose-to-brain transport pharmacokinetic model for remoxipride after intravenous and intranasal administration, Drug Metab. Dispos. 39 (12) (2011) 2275–2282. http://dx.doi.org/10.1124/dmd.111.040782.

Table 4

Parameter	Estimates using \(\text{EC}_{50} \)	Estimates using \(\text{RO}_{50} \)
\(R_{\text{form}} \) (ng/mL/h)	45.7 (10)	49.8 (10)
\(K_{\text{base}} \) (h\(^{-1}\))	0.25 (10)	0.226 (11)
\(K_{\text{out}} \) (h\(^{-1}\))	6.06 (12)	6.96 (13)
\(E_{\text{max}} \)	3.5 FIXED	3.5 FIXED
\(EC_{50} \) risperidone/paliperidone (nM)	35.1 (51)	*
\(RO_{50} \) remoxipride (nM)	94.8 (31)	*
\(IIV K_{\text{out}} \) (%)	42.1 (18)	42.3 (18)
Residual error - proportional (%)	47.2 (4)	37.4 (8)
Residual error - additive (ng/mL\(^{-1}\))	NE	2.68 (29)
Minimization	+ +	+ +
Covariance step	+ +	+ +
Objective Function Value	3434.44	3430.56

\(R_{\text{form}} \) = zero-order rate constant for prolactin synthesis, \(K_{\text{base}} \) = first-order rate constant of prolactin release from the pool, \(K_{\text{out}} \) = first-order rate constant of elimination of prolactin from plasma, \(E_{\text{max}} \) = maximum increase in the prolactin release from the pool, \(EC_{50} \) = unbound drug concentration at half-maximal effect, \(RO_{50} \) = receptor occupancy at half-maximal effect, \(\gamma \) = slope parameter, IIV = inter-individual variability.

NA = not applicable.
NE = not estimated.

* \(K_I \) risperidone/paliperidone = 2.55 nM, \(K_I \) remoxipride = 370.66 nM (fixed to in vitro experimental values).