Preventative therapeutic approaches for hypertrophic cardiomyopathy

Tanya Solomon\(^1\), Aleksandra Filipovska\(^2,3,4,5,6\), Livia Hool\(^1,7\) and Helena Viola\(^1\)

\(^1\)School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia
\(^2\)Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
\(^3\)ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia, Australia
\(^4\)Centre for Medical Research, University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, Australia
\(^5\)Telethon Kids Institute, Perth Children’s Hospital, Nedlands, Western Australia, Australia
\(^6\)School of Molecular Sciences, University of Western Australia, Crawley, Western Australia, Australia
\(^7\)Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia

Edited by: Ian Forsythe & Michael Shattock

Abstract Sarcomeric gene mutations are associated with the development of hypertrophic cardiomyopathy (HCM). Current drug therapeutics for HCM patients are effective in relieving symptoms, but do not prevent or reverse disease progression. Moreover, due to heterogeneity in...
the clinical manifestations of the disease, patients experience variable outcomes in response to therapeutics. Mechanistically, alterations in calcium handling, sarcomeric disorganization, energy metabolism and contractility participate in HCM disease progression. While some similarities exist, each mutation appears to lead to mutation-specific pathophysiology. Furthermore, these alterations may precede or proceed development of the pathology. This review assesses the efficacy of HCM therapeutics from studies performed in animal models of HCM and human clinical trials. Evidence suggests that a preventative rather than corrective therapeutic approach may be more efficacious in the treatment of HCM. In addition, a clear understanding of mutation-specific mechanisms may assist in informing the most effective therapeutic mode of action.

(Received 26 May 2020; accepted after revision 6 August 2020; first published online 21 August 2020)

Corresponding author H. Viola: M309 School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia. Email: helena.viola@uwa.edu.au

Abstract figure legend Sarcomeric gene mutations are associated with the development of hypertrophic cardiomyopathy (HCM). Mechanistically, alterations in calcium handling, sarcomeric disorganization, energy metabolism and contractility participate in HCM disease progression. These alterations may precede or proceed development of the pathology. This review assesses the efficacy of preventative versus corrective HCM therapeutics from studies performed in animal models of HCM and human clinical trials.

Introduction

Hypertrophic cardiomyopathy (HCM) is an autosomal dominant cardiovascular disease that affects 1:200 of the general population (Semsarian et al. 2015). It is well-documented that the clinical characteristics of HCM consist of left ventricular wall thickening in the absence of increased haemodynamic workload, diastolic dysfunction and in other cases left ventricular outflow tract (LVOT) obstruction, mitral valve abnormalities and left atrial enlargement (Maron et al. 2006; Marian & Braunwald, 2017). At the cellular level, HCM is characterized by cardiac myocyte remodelling, disorganization of sarcomeric proteins, interstitial fibrosis and altered energy metabolism (Watkins et al. 2011). The literature to date suggests that HCM occurs primarily due to genetic mutations in sarcomeric proteins, which demonstrate variable penetrance and heterogeneous phenotypic expression in patients (Marian & Braunwald, 2017).

In cardiac muscle, calcium influx through the L-type calcium channel (I_{Ca,L}) in response to depolarization of the plasma membrane initiates contraction which leads to complex interactions between sarcomeric proteins and sarcoplasmic reticulum Ca^{2+} release. Genetic studies have identified over 1500 different mutations in genes of sarcomere proteins that have been associated with the development of HCM (Marian & Braunwald, 2017). The most common mutations appear to be cardiac myosin binding protein-C (MYBPC3), β-myosin heavy chain (MYH7), troponin I (TNNI3), troponin T (TNNT2) and α-tropomyosin (TPM1) (Watkins et al. 1995; Seidman & Seidman, 2001; Sabater-Molina et al. 2018). Regarding function, β-myosin heavy chain (β-MHC) is a sarcomeric protein that consists of a myosin carboxyl terminal rod domain, and an amino terminal globular head domain that interacts with actin filaments during muscle contraction (Fig. 1) (Rayment et al. 1993; Sata et al. 1997). Actin–myosin interactions that occur during excitation–contraction coupling, are regulated by the cardiac troponin (cTn) complex (Chandra et al. 2007). Cardiac troponin is composed of three regulatory sub-units: cardiac troponin I (cTnI), cardiac troponin T (cTnT) and cardiac troponin C (cTnC). Cardiac troponin I regulates cardiac contraction and relaxation in response to alterations in intracellular calcium (Ca^{2+}), while cTnT anchors the entire cTn complex to tropomyosin (Cheng & Regnier, 2016). During relaxation, cTnI inhibits the actin–myosin interaction, but when Ca^{2+} binds to the cTnI Ca^{2+} binding site (cTnC), cTnI undergoes a conformational change that allows the actin–myosin interaction and as a result, contraction (Cheng & Regnier, 2016). Cardiac myosin binding protein-C (cMyBP-C) is a thick filament associated protein that is believed to have structural importance by binding to actin, myosin and titin, as well as functional importance, through regulation of cross-bridge cycling and cardiac muscle contractility (Freiburg & Gautel, 1996; Sequeira et al. 2014).

Evidence suggests that HCM-causing sarcomeric gene mutations are associated with disorganization of sarcomere proteins, alterations in Ca^{2+} handling, myofilament Ca^{2+} sensitivity and mitochondrial metabolic function (for a review, see Viola & Hool, 2019). Indeed, patients expressing sarcomeric gene mutations are found to have decreased myocardial energy efficiency, which is thought to play an important role in the molecular pathway of the disease. However, although some similarities exist, each mutation appears to result in mutation-specific pathophysiology (Ferrantini et al. 2017;
β-adrenergic blockers

The cardiac L-type calcium channel is comprised of α_1c, α_2δ and β_2 subunits. Upon β-adrenergic receptor stimulation, calcium (Ca^{2+}) influx through the pore-forming α_1c subunit initiates ‘Ca^{2+}-induced-Ca^{2+}-release’ from sarcoplasmic reticulum (SR) stores via the Ryanodine receptor (RyR). ATP production occurs through Ca^{2+}-dependent mitochondrial oxidative phosphorylation, a process involving Ca^{2+} uptake by the mitochondrial Ca^{2+} uniporter (MCU), subsequent activation of the tricarboxylic acid (TCA) cycle and movement of electrons down complexes I–V of the electron transport chain. The β_2 subunit of the L-type calcium channel is anchored to F-actin via subsarcolemmal stabilizing protein AHNAK. Mitochondria also associate with F-actin via mitochondrial docking proteins. Mechanism for calcium-independent regulation of mitochondrial membrane potential (ψm) by the L-type calcium channel is shown in green. Concurrently, Ca^{2+} binds to thin filaments, which, powered by ATP, results in contraction. During the course of contraction, ATP is converted to ADP via ATPase, and back to ATP via the conversion of phosphocreatine (PCr) to creatine (Cr). Actin–myosin interaction is regulated by the cardiac troponin (cTn) complex, which is anchored to tropomyosin by cardiac troponin T (cTnT). When Ca^{2+} binds to cardiac troponin C (TnC), cTnI undergoes a conformational change that allows actin–myosin interaction, and therefore contraction. During relaxation, cTnI inhibits actin–myosin interaction. Cardiac myosin binding protein-C (cMyBP-C) binds to actin, myosin and titin and plays a role in regulating actin–myosin cross-bridge cycling and contractility. Hypertrophic cardiomyopathy (HCM) is caused by mutations in sarcomeric proteins. Existing therapeutic targets for treatment of HCM include β-adrenergic receptor (blockers), L-type calcium channel blockers (diltiazem, verapamil and nisoldipine), and β-myosin heavy chain (β-MHC)-actin binding (Mavacamten, MYK-461). AC, adenylyl cyclase; AID, alpha-interaction domain; cAMP, cyclic adenosine monophosphate; CSQ, calsequestrin; Gs, G-stimulatory protein; NCX, sodium/calcium exchanger; P, phosphorylation; PKA, protein kinase A; PLN, phospholamban; SERCA, sarcoplasmic reticulum Ca^{2+}-ATPase. Adapted from Viola & Hool (2019).
Viola & Hool, 2019). Additionally, these alterations may precede or proceed development of HCM pathology. This may contribute to the observed phenotypic variability in sarcomeric-related HCM, and as a result, provide an additional challenge to the design of effective drug therapy. Recent findings indicate that the cardiac L-type calcium channel (ICa-L) and mitochondria may play a collaborative role in the development of HCM (Viola & Hool, 2019). Interestingly, this appears to occur before the development of the pathology. In the present article, we assess the current knowledge regarding hypertrophic cardiomyopathy therapeutics in order to develop an understanding of the efficacy of preventative compared to corrective approaches (Abstract Figure).

Role of the L-type calcium channel in cardiac function

Calcium entry into cardiac myocytes through the ICa-L is critical for maintaining cardiac excitation and contraction (Bodi et al. 2005). The ICa-L is a heterotetrameric structure consisting of the pore-forming α1C and the accessory β2 and α2δ subunits (Fig. 1). The α1C subunit is a transmembrane structure consisting of four homologous motifs that regulate ion conductance and voltage sensing and contains binding sites for channel-modifying second messengers, toxins and drugs (Bodi et al. 2005). The β2 subunit of the ICa-L is entirely intracellular and assists with trafficking and insertion of the α1C subunit in the cell membrane (Burrai & Yang, 2013). The β2 subunit is bound to the cytoplasmic I–II linker of the α1C subunit of the channel called the alpha-interaction domain (AID) and undergoes conformational movement during channel activation and inactivation (Bodi et al. 2005).

The ICa-L regulates mitochondrial function via both Ca2+-dependent and Ca2+-independent mechanisms (Fig. 1). *In vitro* studies using intact quiescent cardiac myocytes, demonstrate that activation of the ICa-L by voltage-clamp of the plasma membrane, or the ICa-L agonist BayK(−), leads to increased intracellular Ca2+, increased mitochondrial Ca2+ uptake and superoxide production, and increased mitochondrial metabolic activity (Viola et al. 2009). While each of these responses is Ca2+-dependent, there is also evidence that activation of the ICa-L results in increased mitochondrial membrane potential (Ψm) that occurs in a Ca2+-independent manner (Viola et al. 2009, 2016a). This response may be in part dependent on a structural–functional interaction between the ICa-L and mitochondria that is transmitted via sarcomeric proteins.

In cardiac myocytes, microtubules (tubulin), microfilaments (actin) and intermediate filaments, extend from the plasma membrane to traverse cellular organelles including the t-tubules, sarcoplasmic reticulum and mitochondria (Tokuyasu et al. 1983). The β2 subunit of the ICa-L is anchored to F-actin networks (Fig. 1) (Rueckschloss & Isenberg, 2001; Hohaus et al. 2002). Changes in actin filament organization are sufficient to alter channel kinetics (Haase et al. 1999; Hohaus et al. 2002; Leach et al. 2005). Mitochondria also associate with sarcomeric proteins via mitochondrial docking proteins (Rappaport et al. 1998). We have identified that alterations in cardiac ICa-L activity can regulate Ψm via sarcomeric proteins in a Ca2+-independent manner (Viola et al. 2009). Preventing movement of the β2 subunit with application of a peptide derived specifically against the AID region of the ICa-L attenuates increases in Ψm caused by application of BayK(−) (Viola et al. 2009). Additionally, exposure of cardiac myocytes to F-actin depolymerizing agent latrunculin A also attenuates the response (Viola et al. 2014). These findings suggest that the ICa-L may influence cardiac mitochondrial function through a structural–functional communication. In support of this concept, the actin cytoskeleton plays an important role in mediating regulation of mitochondrial function by neuronal ICa-L (Johnson & Byerly, 1993; de Oliveira et al. 2019; Hotka et al. 2020). In neurons of the locus coeruleus, application of the mitochondrial protonophore carbonyl cyanide m-chlorophenylhydrazone has been demonstrated to induce a hyperpolarizing response that can be inhibited by application of either ICa-L blockers (nifedipine or nicardipine) or the actin depolymerizing agent cytochalasin D (de Oliveira et al. 2019). These findings suggest that a structural–functional communication between ICa-L and mitochondria may also play a role in regulating neuronal function.

Role of the L-type calcium channel and mitochondria in hypertrophic cardiomyopathy disease progression

Mutations in MYBPC3 genes coding for cMyBP-C are the most abundant, including primarily heterozygous nonsense mutations, insertions or deletions, and splicing point mutations (Carrier et al. 2015). Generally, these mutations result in C-terminally truncated cMyBP-C that lacks binding sites for sarcomeric proteins myosin and titin (Carrier et al. 2015). Studies performed in murine models expressing these mutations reveal that the absence of cMyBP-C protein is associated with increased actin–myosin cross-bridge cycling, myocyte disarray and fibrosis (Harris et al. 2002; Carrier et al. 2004). HCM patients with these mutations present with a mild disease phenotype and late onset of disease (Barefield et al. 2014). Since HCM is associated with disorganization of sarcomeric proteins and altered energy metabolism, it may be reasonable to postulate that a communication ‘break-down’ between the cardiac ICa-L and mitochondria may be involved in progression of HCM.

Transgenic mouse models of HCM are a useful tool to gain further insight into HCM pathophysiology. However,
a clear understanding of the underlying mechanisms of disease progression, from a pre- to post-hypertrophic state, has been difficult to ascertain from the current literature. This is in part due to the lack of clarity of cohort age (Viola & Hool, 2019). Therefore, the most valuable knowledge on the role of the ICa-L and mitochondria in early and late stage HCM has been gained from studies performed in mouse models of the disease resulting from sarcomeric gene mutations.

In humans, a missense mutation in the TNNI3 gene encoding the cTnI protein (Gly203Ser) is characterized primarily by the development of apical hypertrophy, and in some cases supraventricular and ventricular arrhythmias (Kimura et al. 1997). Transgenic mice with a human disease-causing Gly203Ser mutation (cTnI-G203S) develop similar characteristic HCM features by 21 weeks of age, including hypertrophy, hypercontractility, cardiac myocyte disorganization and interstitial fibrosis (Tsoutsman et al. 2006; Viola et al. 2016a).

Cardiac myocytes isolated from 25- to 30-week-old cardiomyopathic cTnI-G203S mice exhibit significantly faster ICa-L inactivation rates compared to wild-type myocytes (Viola et al. 2016a). In addition, consistent with the human phenotype, cardiac myocytes exhibit a hypermetabolic state compared to wild-type myocytes, as evidenced by significantly larger increases in mitochondrial activity and Ψ_m in response to exposure of myocytes to BayK$(-)$ (Viola et al. 2016a). Interestingly, the increase in Ψ_m was not due to further increases in mitochondrial Ca$^{2+}$ uptake in myocytes. We proposed that a structural–functional ‘breakdown’ between the cardiac ICa-L and mitochondria may be involved in progression of the disease state. Furthermore, the same responses were observed in myocytes isolated from 10- to 15-week-old pre-hypertrophic cTnI-G203S mice (Viola et al. 2016a), indicating that altered metabolism appears to occur before the onset of clinical manifestations of HCM.

Patients carrying the Arg403Gln missense mutation in the MYH7 gene progressively develop septal hypertrophy and myocardial dysfunction and have a high incidence of sudden cardiac death (SCD) (Geisterfer-Lowrance et al. 1990; McConnell et al. 2001). There are two cardiac isoforms of MHC: α-MHC and β-MHC. The predominant isoform in humans is β-MHC, accounting for >90% of ventricular myosin (Gupta, 2007). In neonatal mice the predominant isoform is β-MHC, but expression of β-MHC is silenced after birth and the predominant isoform transcribed shifts to α-MHC in adult mice (Gupta, 2007). Heterozygous mice expressing the human Arg403Gln β-MHC mutation (αMHC$^{403/+}$) gradually develop hypertrophy, myocyte disarray and increased myocardial fibrosis, mimicking the human disease (Geisterfer-Lowrance et al. 1996; Fatkin et al. 2000). Myocyte disarray appears to be an early cellular response, while histopathological features such as the development of hypertrophy and fibrosis occur after haemodynamic abnormalities (Geisterfer-Lowrance et al. 1996).

Similar to findings observed in myocytes isolated from cTnI-G203S mice, myocytes isolated from 30- to 50-week-old αMHC$^{403/+}$ mice with established hypertrophy and fibrosis exhibit faster ICa-L inactivation rates, and a hypermetabolic state compared to wild-type myocytes (Viola et al. 2016b). Additionally, myocytes isolated from 10- to 15-week-old pre-hypertrophic αMHC$^{403/+}$ mice exhibit alterations in ICa-L inactivation rates, mitochondrial activity and Ψ_m which were comparable to those observed in post-hypertrophic αMHC$^{403/+}$ mice (Viola et al. 2016b). Consistent with this, ex vivo studies assessing pre-cardiomyopathic 20- to 24-week-old Arg403Gln mice demonstrate lower cardiac phosphocreatine (PCr) to ATP (PCr/ATP) ratio, indicative of inefficient metabolic energetics (Spindler et al. 1998). Overall, data from both cTnI-G203S and αMHC$^{403/+}$ mice suggest that alterations in ICa-L kinetics, and a resulting hypermetabolic state, manifest before the development of the cardiomyopathy. Therefore, targeting the ICa-L as a means of normalizing mitochondrial metabolic activity may be an attractive therapeutic approach for the treatment of HCM.

Evaluation of current hypertrophic cardiomyopathy therapeutics

Clinical studies examining phenotypic heterogeneity in HCM have established that the disease ranges from asymptomatic or mildly symptomatic to severe manifestations (Marian & Braunwald, 2017). The presentation of HCM is age-dependent and while most patients have a normal life-expectancy with manageable symptoms, some are at increased risk of heart failure (HF) and SCD (Marian & Braunwald, 2017). Clinical features in patients with HCM, in addition to left ventricular hypertrophy, include altered ejection fraction, atrial fibrillation, ventricular arrhythmias and mitral regurgitation (Marian & Braunwald, 2017). One-third of patients present with LVOT obstruction at rest, and it can be induced in another third by increased cardiac workload (e.g. exercise) (Maron et al. 2006). To date, common therapeutics for patients with HCM focus on symptom management and the prevention of thrombotic events and SCD. These treatment strategies consist primarily of pharmacological therapies, and in more severe cases, surgical interventions including septal reduction and implantable cardioverter-defibrillators (Spoladore et al. 2012). Septal reduction methods such as septal myectomy or septal ablation, can improve function by relieving LVOT obstruction (Spoladore et al. 2012). However, these surgical procedures are invasive, target only symptomatic features, are not widely accessible
and carry risk to the patients. Additionally, implantable cardioverter-defibrillators are only used in high-risk patients, or those with very severe symptoms for the prevention of SCD.

Current pharmacological treatments in patients with HCM mainly aim to reduce LVOT obstruction and increase filling capacity (Ammirati et al. 2016). The most widely used therapeutics for HCM include β-adrenergic receptor blockers and Ca2+ channel blockers. Despite some management of symptoms with these drugs, their use can have pleiotropic effects and inconsistent therapeutic responses in patients (Ammirati et al. 2016). Given mutation-specific variations in disease progression (Ferrantini et al. 2017; Viola & Hool, 2019), we examined the current knowledge gained from studies performed in both animal models of HCM and clinical trials to develop an understanding of the efficacy of preventative versus corrective approaches.

β-Adrenergic receptor blockers

β-Adrenergic receptor blockers (β-blockers) have been described extensively in the literature as a treatment of symptomatic HCM since the 1960s. β-Blockers are capable of reducing LVOT obstruction, angina, dyspnoea and the risk of ventricular arrhythmias (Spoladore et al. 2012). β-Blockers inhibit sympathetic stimulation by binding to β-AR (β-adrenergic receptors) (Fig. 1). Downstream effects include decreased heart rate, contractility and LVOT obstruction (Spoladore et al. 2013). Studies performed in human induced pluripotent stem cell-derived cardiac myocytes (hiPSC-CMs) demonstrate some therapeutic effects of β-blockers on myocardial hypertrophy, arrhythmia and Ca2+ handling abnormalities (Lan et al. 2013; Han et al. 2014; Toepfer et al. 2019a). Clinical studies in HCM patients indicate that β-blockers reduce left ventricular diastolic pressures and improve left ventricular filling; however there appears to be little beneficial impact regarding long-term effects on disease progression (Marian, 2009; Spoladore et al. 2012). Additionally, as β-blockers are a broad class of therapeutics and are used for a variety of heart conditions, they carry the potential for adverse side effects (Farzam & Jan, 2020). Recent reviews on their efficacy indicate that chronic use of β-blockers may induce additional side effects such as bradycardia, hypotension and atrioventricular nodal conduction block (Farzam & Jan, 2020).

Metabolic modulating agents

While the healthy adult heart utilizes fatty acid oxidation as a primary source of energy production, hypertrophic and failing hearts shift toward glucose and lactate metabolism (Lopaschuk et al. 2010; Vakrou & Abraham, 2014). Additionally, reduced PCr/ATP ratios have been reported in HCM patients with established left ventricular hypertrophy and in patients before the development of the pathology (Jung et al. 1998; Crilley et al. 2003; Timmer et al. 2011; Abraham et al. 2013). These findings support the notion that excessive ATP utilization and subsequent energy deficiency is an early mechanism in the development of HCM pathology. With this, a number of studies have investigated the use of metabolic therapies to target energetic deficits (Lee et al. 2005; Abozguia et al. 2010; Horowitz & Chirkov, 2010; van Driel et al. 2019).

Over the past decade, metabolic modulating agents such as perhexiline, trimetazidine and ranolazine, which were initially developed as therapeutic agents for angina, have been examined as potential HCM therapeutics (Abozguia et al. 2010; Olivotto et al. 2018). Perhexiline is thought to bind to and inhibit mitochondrial carnitine palmitoyltransferase enzymes, shifting myocardial substrate utilization from fatty acid oxidation to glucose metabolism (Ashrafian et al. 2007). In a Phase 2 clinical trial (METAL-HCM trial), perhexiline treatment (100 mg administered for 3–6 months) appeared to improve myocardial ratios of PCr/ATP ratio (indicative of improved energetics), diastolic dysfunction and \(P_{\text{O}_{2}} \) during exercise in a cohort of symptomatic HCM patients (Abozguia et al. 2010). Trimetazidine, a metabolic modulator and anti-ischaemic agent, is believed to act via inhibition of fatty acid β-oxidation, shifting metabolism from fatty acid oxidation to glucose oxidation (Dezsi, 2016; Steggall et al. 2017). In a Phase 2b clinical trial, trimetazidine (20 mg administered 3 times a day for 3 months) was shown to be ineffective in improving exercise capacity in symptomatic patients with non-obstructive HCM (Coats et al. 2019). Ranolazine acts to inhibit fatty acid β-oxidation and late inward sodium channels (Ardehali et al. 2012; Steggall et al. 2017). In a Phase 4 clinical trial, ranolazine (500 mg administered for 60 days) was used in the treatment of non-obstructive HCM, and although it effectively relieved some symptomatic features (angina and dyspnoea), it was demonstrated to have no overall effect on exercise performance or diastolic dysfunction (Gentry et al. 2016; Olivotto et al. 2018). Although some improvements have been observed, there is conflicting evidence in relation to improvements in overall functional capacity of HCM patients, with a small number of studies reporting adverse side effects (Abozguia et al. 2010; Gentry et al. 2016; Olivotto et al. 2018). Overall, it would appear that enhancing myocardial glucose metabolism may not be an efficacious approach in the treatment of HCM.

Calcium channel inhibitors

Calcium channel inhibitors target the pore-forming α\textsubscript{1C} subunit of the I\textsubscript{Ca-L} and have been used as an alternative treatment to β-blockers in clinical settings (Fig. 1)
(Striessnig et al. 2015). Calcium channel blockers are used in a similar manner to \(\beta \)-blockers in that they reduce heart rate and contractility, leading to improved diastolic filling and outflow; however, they are primarily administered in patients that exhibit non-obstructive HCM, or as an alternative in those experiencing adverse side effects with \(\beta \)-blockers (Spoladore et al. 2013; Striessnig et al. 2015). Calcium channel blockers such as diltiazem interrupt \(Ca^{2+} \) dysregulation processes through attenuation of \(Ca^{2+} \)-induced \(Ca^{2+} \) release, and subsequent restriction of \(Ca^{2+} \) uptake by the mutated sarcomere (Semsarian et al. 2002). Calcium channel inhibitors also cause greater negative ionotrophic effects compared to \(\beta \)-blockers due to the inhibition of \(Ca^{2+} \) through the channel pore and thereby tend to lead to poor clinical outcomes (Braunwald et al. 2002; Ho et al. 2015).

Animal studies. Studies performed in a mouse model of HCM due to a \(Tnnt2 \) mutation have revealed that in this model diastolic dysfunction occurs in the absence of significant hypertrophy (Westermann et al. 2006). Hypertrophy develops later in the pathogenesis of the disease. Under resting conditions, 21- to 30-week-old pre-hypertrophic mice with \(Tnnt2 \) mutation \(cTnT-Ile79Asn \), demonstrate left ventricular diastolic dysfunction, hypercontractility, enhanced myofilament \(Ca^{2+} \) sensitivity and cardiac stiffness, in the absence of hypertrophy or cardiac interstitial fibrosis. In response to \(\beta \)-adrenergic stimulation (isoproterenol), \(cTnT-Ile79Asn \) mice exhibit diastolic HF and SCD (Westermann et al. 2006). However, when pre-treated with diltiazem (25 mg kg\(^{-1}\) day\(^{-1}\)), isoproterenol-induced HF and SCD was prevented (Table 1). It was proposed that this effect may have been due to acute inhibition of \(I_{Ca-L} \) current, resulting in reduced \(Ca^{2+} \) influx into myocytes, and subsequent alterations in diastolic \(Ca^{2+} \) (Westermann et al. 2006). Certainly, it would appear that pre-treatment of the \(cTnT-Ile79Asn \) mice with diltiazem prevented isoproterenol-induced HF and SCD.

Although the \(I_{Ca-L} \) is the primary target of diltiazem, it is also known to have other cellular targets including the mitochondrial \(Na^{+}/Ca^{2+} \) exchanger (Striessnig et al. 2015). With this, it has been proposed that diltiazem may reduce hypertrophic presentation by normalizing alterations in mitochondrial \(Ca^{2+} \) concentration, thereby improving cardiac energetics (Semsarian et al. 2002). In a recent study, diltiazem was assessed as an HCM therapeutic in homozygous \(Mybpc3 \)-targeted knock-in (KI) mice carrying a \(c.772G>A \) transition on the last nucleotide of exon 6 (\(Mybpc3 \) KI (\(c.772G>A \)) (Frayssé et al. 2012; Flenner et al. 2017). \(Mybpc3 \) KI (\(c.772G>A \)) mice exhibit increased systolic and diastolic dysfunction and myofilament \(Ca^{2+} \) sensitivity followed by cardiac hypertrophy (Frayssé et al. 2012; Flenner et al. 2017). Cardiac myocytes were isolated from cardiac myopathic \(Mybpc3 \) KI (\(c.772G>A \)) mice, and exposed to isoproterenol and high pacing frequency stress conditions (Flenner et al. 2017). Under these conditions, myocytes exhibited decreased diastolic sarcomere length, increased \(Ca^{2+} \) transient rise, and arrhythmias (Flenner et al. 2017). Each of these observations was normalized in the presence of diltiazem (Table 1). In *vivo* studies were also performed in 6- to 8-week-old pre-cardiomyopathic \(Mybpc3 \) KI (\(c.772G>A \)) mice, treated with diltiazem for 6 months (Flenner et al. 2017). Diltiazem treatment did not prevent activation of the fetal gene programme, cardiac hypertrophy and dysfunction, or fibrosis (Table 1) (Flenner et al. 2017). These data suggest that while acute diltiazem treatment in post-hypertrophic \(Mybpc3 \) KI (\(c.772G>A \)) mice may be beneficial in prevention of stress-induced contractile abnormalities, chronic administration of diltiazem treatment does not appear to reverse or prevent development of HCM pathology.

Studies performed in \(\alpha MHC^{403/+} \) mice have indicated abnormal \(Ca^{2+} \) handling and reduced \(Ca^{2+} \)-binding and storage protein levels in this model, including calsequestrin, junctin, triadin and ryanodine receptor 2 (RyR2) compared to control mice (Semsarian et al. 2002). This occurs before the onset of the disease phenotype. In the same study, 15- to 20-week-old pre-hypertrophic \(\alpha MHC^{403/+} \) mice were treated with diltiazem (25 mg kg\(^{-1}\) day\(^{-1}\)). Following 7 weeks of treatment, \(Ca^{2+} \)-binding and storage protein levels were restored (Table 1) (Semsarian et al. 2002). Interestingly, histological features such as fibrosis, myocyte hypertrophy and disarray were also abated with early diltiazem treatment (Semsarian et al. 2002). Similar studies were performed in 30- to 50-week-old post-hypertrophic \(\alpha MHC^{403/+} \) mice. Following 7 weeks of diltiazem treatment, \(\alpha MHC^{403/+} \) mice demonstrated reduced expression of hypertrophic molecular markers, reduced left ventricular wall thickness, improved end-diastolic and end-systolic volumes, and reduced fibrosis, compared to untreated mice (Table 1) (Semsarian et al. 2002). However, fractional shortening (FS) was not improved. These data indicate that an early, pre-treatment approach may be more effective in preventing HCM pathology.

In *vivo* studies performed in cardiac myocytes isolated from both pre- and post-cardiomyopathic \(\alpha MHC^{403/+} \) mice provide additional support for an early intervention approach. Myocytes isolated from both pre- and post-cardiomyopathic \(\alpha MHC^{403/+} \) mice exhibit a significantly faster \(I_{Ca-L} \) inactivation rate, and subsequently a hypermetabolic mitochondrial state in response to BayK(−), compared to myocytes isolated from age-matched wild-type mice (Viola et al. 2016b). Exposure of \(\alpha MHC^{403/+} \) myocytes to diltiazem or nisoldipine (15 \(\mu M \)) normalized mitochondrial metabolic activity in both pre- and post-cardiomyopathy \(\alpha MHC^{403/+} \) myocytes.
Gene	Mutation/Model	Pre/Post HCM	Characteristics	Treatment	Outcomes	Ref	
Animal models					(Continued)		
TNNT2	Tnn2-TnT-179N mice	in vivo	Pre (21–30 week) ISO	HFSCD: ↑	Diltiazem (25 mg kg⁻¹ day⁻¹, 50 days)	Westermann et al. (2006)	
MYBPC3	Homozygous Mybpc3 KI (c.772G>A) mice	in vitro	Post (32–34 week ISO/Paced	Sarcomere length: ↓, Ca²⁺ transient time to peak: ↑, Arrhythmias: ↑	Diltiazem (1 µM) Sarcomere length: ↓, Ca²⁺ transient time to peak: ↓, Arrhythmias: ↓	Flenner et al. (2017)	
in vitro	Post (6–8 week)	Hypertrophy & Dysfunction: ↑	Diltiazem (5 mg kg⁻¹ day⁻¹, 6 months)	Hypertrophy and Dysfunction: ↑	(no ∆)		
Mybpc1h/ Mybpc1h	mice	in vitro	Post (8–20 week)	Cell shortening: ↑, MYBPC3t/t Cell shortening: ↑, Relaxation time: ↑	MYK-461 (0.15 µM, 0.3 µM)	Toepfer et al. (2019b)	
TNNT2	Tnn13-Gly203Ser mice	in vitro	Pre (10–15 week) MMA: ↑, ψm: ↑	Nisoldipine (15 µM)	MMA: ↓, ψm: ↓	Viola et al. (2016a)	
in vivo	Post (25–30 week)	MMA: ↑, ψm: ↑	Diltiazem (15 µM) MMA: ↓, Nisoldipine (15 µM)	MMA: ↓, ψm: ↓			
in vivo	Pre (20 week)	I ca-L inactivation rate: ↑, MMA: ↑, ψm: ↑	AID-TAT (10 µM, 3 × week/5 week)	I ca-L inactivation rate: ↓, MMA: ↓, ψm: ↓, Myocyte hypertrophy: ↓, HW:BW: ↓, IVST: ↓, LVEDD/LVESD: ↑, FS: ↓	Viola et al. (2020)		
Post (30 week)	I ca-L inactivation rate: ↑, MMA: ↑, ψm: ↑, Myocyte hypertrophy: ↑, HW:BW: ↑, IVST: ↑, LVEDD/LVESD: ↓, FS: ↑	AID-TAT (10 µM, 3 × week/5 week)	MMA: ↑ (no ∆), ψm: ↑ (no ∆), Myocyte hypertrophy: ↑ (no ∆), HW:BW: ↑ (no ∆), IVST: ↑ (no ∆), LVEDD/LVESD: ↓ (no ∆), FS: ↑ (no ∆)				
(Continued)							
Gene	Mutation/Model	Pre/Post HCM	Characteristics	Treatment	Outcomes	Ref	
--------	------------------	--------------	--------------------	-----------------	------------------------------------	-------------------	
MYH7	Arg403Gln mice	Pre (10–15 week)	MMA: ↑ ✓	Nisoldipine (15 µM)	MMA: ↓ ✓	Viola et al. (2016b)	
		Post (30–50 week)	⊳Psi1 m: ↑ ✓	Diltiazem (15 µM)	⊳Psi1 m: ↓ ✓		
			⊳MMA: ↑ ✓	Nisoldipine (15 µM)	MMA: ↓ ✓		
		Pre (10–15 week)	Ca²⁺-binding proteins: ↓	Diltiazem (25 mg kg⁻¹ day⁻¹, 7 weeks)	Ca²⁺-binding proteins: ↑ Fibrosis: ↓ Myocyte hypertrophy and disarray: ↓	Sensarian et al. (2002)	
		Post (30–50 week)	Hypertrophic markers: ↑ Myocyte disarray: ↑ Fibrosis: ↑ ESV and EDV: ↓		Hypertrophic markers: ↓ Myocyte disarray: ↓ Fibrosis: ↓ ESV and EDV: ↑ FS: ↑ (no Δ)		
MYH7 –	Arg403Gln Arg719Trp Arg453Cys mice	Pre (6–15 week)	NA	MYK-461 (2.5 mg kg⁻¹ day⁻¹, 20–26 weeks)	LVWT: improved (✓) FS: improved (✓) Fibrosis: improved (✓) Myocyte disarray: improved (✓)	Green et al. (2016)	
		Post (30–35 week)	LVWT: ↑ FS: ↑ Fibrosis: ↑ Myocyte disarray: ↑	MYK-461 (2.5 mg kg⁻¹ day⁻¹, 4 weeks)	LVWT: partial ↓ FS: partial ↓ Fibrosis: ↑ (no Myocyte disarray: ↑ (no Δ)		
Not specified	Idiopathic HCM felines	Post (5.7–10.8 years)	LVWT: ↑ IVST: ↑ LVEDD: ↓ FS: ↑	Diltiazem (~5.34 mg kg⁻¹, 6 months)	LVWT: ↓ IVST: ↓ LVEDD: ↑ FS: ↑ (no Δ) Adverse effects or HF/SCD	Bright et al. (1991)	
Not specified	Idiopathic HOCM felines	Post (0.9–3.7 years)	ISO	FS: ↑ LVOT obstruction: ↑ SAM: ↑	MYK-461 (0.12–0.36 mg kg⁻¹ h⁻¹)	FS: ↓ LVOT obstruction: ↓ SAM: ↓ LVWT: not reported	Stern et al. (2016)

(Continued)
Gene	Mutation/Model	in vitro/in vivo	Pre/Post HCM	Characteristics	Treatment	Outcomes	Ref
MYBPC3	Mybp^{c1h}	in vitro	30 days post-differentiation	Cell shortening: ↑	Propanolol (0–10 μM l⁻¹)	Cell shortening: ↓	Toepfer et al. (2019a)
				Contractility: ↑	Verapamil (0–10 μM l⁻¹)	Contractility and relaxation time: ↑	
				Relaxation time: ↑	MYK-461 (0–10 μM l⁻¹)	Cell shortening: ↓	
MYH7	MYH7 – Arg663His	in vitro	20–40 days post-differentiation	Hypertrophic markers: ↑	Propanolol (400 nM)	Myocyte hypertrophy: ↓	Lan et al. (2013)
				Myocyte hypertrophy: ↑	Verapamil, (50–100 nM)	Ca²⁺ handling abnormalities: ↓	
				Ca²⁺ handling abnormalities: ↑	Diltiazem, (50–100 nM)	Arrhythmia: ↓	
				Arrhythmia: ↑	Metapropolol (10 μM)		Han et al. (2014)
	MYH7 – Arg442Gly	in vitro	30 days post-differentiation	Contractility: ↑	Verapamil (100 nM)	Ca²⁺ handling abnormalities: ↓	
				Myocyte hypertrophy & disarray: ↑		Arrhythmia: ↓	
				Ca²⁺ handling abnormalities: ↑			

(Continued)
Table 1. Continued

Gene	Mutation/Model	in vitro/in vivo	Pre/Post HCM	Characteristics	Treatment	Outcomes	Ref	
Human studies	**MYBPC3**	*in vivo*	Pre (20–55 years)	S': ↓	Diltiazem (240 mg day\(^{-1}\), 8 weeks)	S': ↑	McTaggart (2004)	
	MYBPC3–O969X, N755K human patients			E': ↓				
	MYH7	Mixture of 25 mutations	in vivo	Pre (5–39 years)	NA	Diltiazem (5 mg kg\(^{-1}\) day\(^{-1}\), 12–42 months)	LVWT dimension: improved (↓)	Ho et al. (2015)
	MYBPC3							
	TNNT2							
Not specified	Human HCM patients	*in vivo*	Post (22–70 years)	PIONEER HCM TRIAL (Phase 2)	Resting LVEF: ↑ Post-exercise LVOT gradient: ↑	MYK-461 (10–20 mg day\(^{-1}\), 12 weeks)	Ho et al. (2019)	
LVWT: not reported								
Not specified	Human HCM patients	*in vivo*	Post (mean age: 54 years)	MAVERICK HCM trial (Phase 2)	LVEF: ↑ NT-proBNP (wall stress): ↑	19, 21, 19 patients to 200 ng ml\(^{-1}\), 500 ng ml\(^{-1}\), or placebo, respectively	Ho et al. (2020a)	
LVWT: not reported								
Unknown	Human HCM patients	*in vivo*	>18 years	EXPLORER HCM trial (Phase 3)	LVEF: ↑ P_{O2}: ↑ LVOT gradient: ↑	2.5, 5.0, 10.0 or 15 mg day\(^{-1}\), 30 weeks	Ho et al. (2020b), Myokardia (2020)	

E', peak velocity of early diastolic mitral annular motion; E/E', ratio of peak velocity of early diastolic transmural flow to mitral annular motion; EDV, end-diastolic volume; ESV, end-systolic volume; FS, fractional shortening; HW:BW, heart weight to body weight ratio; HOCM, obstructive hypertrophic cardiomyopathy; HF, heart failure; I\(_{Ca-L}\), L-type calcium channel; ISO, isoproterenol; IVST, Intraventricular septum thickness; LVD, left ventricular diameter; LVEDD, left ventricular end-diastolic diameter; LVEDP, left ventricular end-diastolic pressure; LVEF, left ventricular ejection fraction; LVESD, left ventricular end-systolic diameter; LVOT, left ventricular outflow tract obstruction; LVWT, left ventricular wall thickness; MMA, mitochondrial metabolic activity; NA, not applicable; Δ, change; Ψ_1, mitochondrial membrane potential; P_{O2}, peak oxygen consumption; S', systolic velocity peak; SAM, systolic anterior motion of the mitral valve; SCD, sudden cardiac death.
arrhythmias, while diltiazem exposure ameliorated Ca2+ including cellular enlargement, contractile arrhythmia, demonstrate numerous disease features of HCM, and human clinical studies indicate that early treatment may be beneficial to prevent some HCM-associated characteristics.

hiPSC-CM studies. *In vitro* experiments utilizing hiPSC-CMs expressing a missense mutation in \(\beta\)-MHC demonstrate numerous disease features of HCM, including cellular enlargement, contractile arrhythmia, Ca2+ dysregulation and sarcomeric disorganization (Lan et al. 2013; Han et al. 2014; Tanaka et al. 2014). In a hiPSC-CM model expressing MYH7 gene mutation Arg663His, *in vitro* verapamil prevented myocyte hypertrophy and abolished Ca2+ dysregulation and arrhythmias, while diltiazem exposure ameliorated Ca2+ handling abnormalities and arrhythmias, in single and multi-cell preparations (Lan et al. 2013) (Table 1). Similar findings were observed in hiPSC-CMs expressing MYH7 gene mutation Arg442Gly, whereby *in vitro* exposure to verapamil normalized Ca2+ handling abnormalities and arrhythmias (Han et al. 2014).

Human studies. Transgenic rabbit models of HCM and human clinical studies indicate that early diastolic velocities are abnormally low in MYBPC3 gene mutation carriers before the development of left ventricular hypertrophy (Nagueh et al. 2001; Ho et al. 2002). Therefore, utilizing tissue Doppler, the effects of diltiazem treatment have been assessed in patients carrying MYBPC3 gene mutations (Gln969X or Asn755Lys) (McTaggart, 2004). Patients were pre-hypertrophic, with no symptomatic manifestations of HCM assessed by echocardiography and electrocardiography. Patients administered diltiazem (240 mg day−1) for 8 weeks, exhibited increases in both systolic velocity peak (\(S^\prime\)) and early diastolic velocity peak (\(E^\prime\)) that appeared to normalize cardiac flow, as compared to patients receiving placebo treatment (Table 1) (McTaggart, 2004). These data indicate a potential benefit of early diltiazem treatment in the pre-hypertrophic stages of the disease in patients carrying MYBPC3 gene mutations. Interestingly, the greatest improvements were in the youngest patients who may have had fewer structural changes present.

More recently, a pilot study was undertaken to assess the efficacy of diltiazem in preventing the phenotypic presentation of HCM in 38 patients carrying MYBPC3, MYH7 and TNNT2 gene mutations (Ho et al. 2015). Mutation carriers with no clinical diagnosis of HCM (specifically left ventricular hypertrophy as assessed by echocardiography) received chronic diltiazem treatment (5 mg kg−1 day−1, 12–42 months) or an equivalent placebo. Patients treated with diltiazem exhibited improved LVWT-to-dimension ratio, and LVEDD, compared to the placebo group (Table 1) (Ho et al. 2015). Within the diltiazem-treated MYBPC3 mutation carriers, LVWT, diastolic filling (reflected by \(E/E^\prime\)) and cardiac troponin I levels were improved compared to the placebo group (Ho et al. 2015). Interestingly, four unrelated patients, three with MYH7 mutations and one with a TNNT2, did not respond to diltiazem treatment.

Overall, studies performed in animal models of HCM and human clinical studies indicate that early treatment with diltiazem may be beneficial to prevent some HCM-associated characteristics. Mechanistically, this may occur by normalizing cellular Ca2+ handling, and/or by restoring structural–functional communication between the I\textsubscript{Ca-L} and mitochondria and subsequently normalizing mitochondrial metabolic activity. Certainly, treatment efficacy appears to vary depending on the underlying gene mutation.

MYK-461

Patients with HCM often present with early hypercontractility that stems from a high degree of actin–myosin cross-linking (Heitner et al. 2019). Recent studies have identified a cardiac-specific small-molecule, mavacamten (MYK-461), that directly targets the sarcomere by modulating \(\beta\)-MHC (Green et al. 2016; Stern et al. 2016; Kawas et al. 2017). This reversibly inhibits \(\beta\)-MHC–actin binding, and subsequently reduces sarcomere force output and contractility (Fig. 1) (Heitner et al. 2019). Over the past 5 years, several studies have investigated the efficacy of MYK-461 as a potential HCM therapeutic.
Animal models. The effectiveness of MYK-461 treatment has been assessed in murine models of HCM expressing cMyBP-C gene mutations (Mybpc3\(^{3/4}\) and Mybpc3\(^{3/5}\)) (Toepfer et al. 2019b). Echocardiography studies have revealed that Mybpc3\(^{3/4}\) (endogenous heterozygous) mice exhibit minimal increases in left ventricular posterior wall thickness, and depressed cardiac contractility compared to wild-type mice (Toepfer et al. 2019b) (Table 1). On the other hand, Mybpc3\(^{3/5}\) (homozygous truncated) mice exhibit significantly increased left ventricular volumes and mass, but depressed contractile function (Toepfer et al. 2019b). However, studies performed in isolated cardiac myocytes revealed contractile differences that were not apparent from in vivo echocardiography. Utilizing isolated cardiac myocytes, sarcomere length in vivo that were not apparent from in vitro contractility and relaxation (defined as proxies for systolic and diastolic function respectively). Cardiac myocytes isolated from Mybpc3\(^{3/4}\) and Mybpc3\(^{3/5}\) mice exhibited significantly increased cell shortening compared to wild-type myocytes (Toepfer et al. 2019b). Relaxation time was significantly increased in Mybpc3\(^{3/5}\) myocytes, but not significantly altered in Mybpc3\(^{3/4}\) myocytes. These data are consistent with a hypercontractile state. Acute exposure to MYK-461 (0.15–0.3 \(\mu\)M) significantly reduced cell shortening in both Mybpc3\(^{3/4}\) and Mybpc3\(^{3/5}\), and normalized relaxation times in Mybpc3\(^{3/5}\) myocytes (Toepfer et al. 2019b). These in vitro data indicate that MYK-461 may normalize contractile function.

Studies have also been performed in mice expressing \(\beta\)-MHC mutations to investigate the efficacy of MYK-461 in both preventing and reversing associated HCM (Green et al. 2016). Treatment of 6- to 15-week-old pre-hypertrophic mice expressing \(\beta\)-MHC mutations (Arg403Gln, Arg719Trp or Arg453Cys) with MYK-461 (0.12–0.36 mg kg\(^{-1}\) h\(^{-1}\)) before isoproterenol treatment exhibited a significantly reduced FS compared to vehicle treatment, without negatively impacting heart rate (Stern et al. 2016) (Table 1). In addition, in post-hypertrophic felines exposed to isoproterenol, MYK-461 treatment reduced systolic anterior motion of mitral valves and prevented worsening of LVOT obstruction (Stern et al. 2016). Overall, early MYK-461 treatment appeared to improve contractility and relieve inducible HOCM (Stern et al. 2016).

hiPSC-CM studies. An in vitro model utilizing hiPSC-CMs that express a heterozygous truncation variant in the MYBPC3 gene (Mybpc3\(^{3/4}\)) recapitulates aspects of the HCM phenotype including hypercontractility, cell shortening and impaired relaxation (Toepfer et al. 2019a). Consistent with observations in animal models of the disease, exposure of hiPSC-CMs to MYK461 resolved contractile abnormalities, specifically low doses (1 \(\mu\)mol l\(^{-1}\)) normalized hypercontractility, whereas higher doses (2–4 \(\mu\)mol l\(^{-1}\)) were required to normalize relaxation times (Toepfer et al. 2019a) (Table 1).

Human studies. In a Phase 2 clinical trial (PIONEER HCM trial), patients with symptomatic HOCM presenting with elevated resting left ventricular ejection fraction (LVEF), post-exercise left ventricular outflow tract (LVOT) obstruction and LVWT, received MYK-461 (10–20 mg day\(^{-1}\)) for 12 weeks (Heitner et al. 2019). Patients receiving MYK-461 treatment demonstrated improved resting LVEF (reduced), improved peak oxygen consumption (increased), and reduced post-exercise LVOT gradients (Heitner et al. 2019) (Table 1). The effect of MYK-461 on LVWT was not reported.

In another Phase 2 clinical trial (MAVERICK-HCM trial), patients with symptomatic non-obstructive HCM (characterized by the presence of hyper-contractility and impaired relaxation but no significant LVOT obstruction at rest or with provocation) were treated with 200 ng ml\(^{-1}\), 500 ng ml\(^{-1}\) or a placebo for 16 weeks (Ho et al. 2020a). Compared to placebo-treated individuals, patients receiving MYK-461 treatment exhibited improved LVEF (reduced), improved peak oxygen consumption (\(P_{\text{VO}_2}\)) and decreased wall stress as indicated by reduced levels of serum biomarkers such as N-terminal pro-B-type natriuretic peptide (NT-proBNP) (Ho et al. 2020a) (Table 1). No data has been released regarding the effect of MYK-461 on LVWT.

A recent Phase 3 trial (EXPLORER HCM trial) was undertaken involving patients with HOCM presenting with LVOT obstruction and associated left ventricular hypertrophy, being administered MYK-461 at a range of doses (2.5, 5, 10 and 15 mg day\(^{-1}\)) over a 30-week period (Ho et al. 2020b). Primary and secondary efficacy assessments included post-exercise LVOT peak...
improvements in cellular Ca-L kinetics, mitochondrial treatment with AID-TAT peptide resulted in significant improvements in P_{VO_2} and LVOT gradient (Ho et al. 2020b) (Table 1). To date, patients receiving MYK-461 have been reported to display improvements in P_{VO_2} and LVOT gradient (decreased) (Myokardia, 2020). No data have been released regarding the effect on LVWT (Myokardia, 2020).

The use of hiPSC-CMs has been an important development in the field of cardiovascular disease modelling to further understand pathophysiological mechanisms of cardiovascular diseases in vitro, and develop novel therapeutic treatments for cardiovascular diseases such as HCM (Lodrini et al. 2020). The recent application of genome editing to hiPSC-CMs has enabled further investigation on the genetic causation of HCM. However, limitations exist, as hiPSC-CMs are structurally and functionally immature in comparison to human adult cardiac myocytes and therefore do not fully recapitulate their complex physiological properties (Lan et al. 2013; Han et al. 2014; Ramachandra et al. 2019). Nonetheless, when considered together, studies performed in animal models of HCM, hiPSC-CM and human clinical studies indicate that early therapeutic intervention with MYK-461 may be effective in normalizing HCM-associated hypercontractility, and relieve inducible HOCM, by inhibiting β-MHC–actin binding and subsequently, reducing sarcomere force output.

AID-TAT peptide

Studies utilizing transgenic mouse models of HCM indicate that a structural–functional ‘breakdown’ between the cardiac $I_{\text{Ca-L}}$ and mitochondria via sarcomeric proteins may lead to the development of a hypermetabolic mitochondrial state, which precedes development of HCM pathology (Viola et al. 2016a,b). Recent studies have investigated the use of AID-TAT peptide as a potential HCM therapeutic (Viola et al. 2020). Unlike β-blockers and Ca$^{2+}$ channel blockers, AID-TAT peptide specifically targets the AID region of the cardiac $I_{\text{Ca-L}}$, immobilizing movement of the $I_{\text{Ca-L}}$ β_2 subunit (Fig. 1) (Hohaus et al. 2000; Viola et al. 2020).

Twenty-week-old pre-cardiomyopathic cTnI-G203S mice were treated with AID-TAT peptide (10 μm) three times a week for 5 weeks (Viola et al. 2020). Treatment with AID-TAT peptide resulted in significant improvements in cellular $I_{\text{Ca-L}}$ kinetics, mitochondrial metabolic activity and cell size (decreased), and a significant decrease in heart weight to body weight ratio (Viola et al. 2020). In vivo echocardiography revealed a significant improvement in LVEDD/LVESD (increase), and IVST and FS (decrease) in cTnI-G203S mice treated with AID-TAT peptide. Treatment of 30-week-old post-cardiomyopathic cTnI-G203S mice with established hypertrophy with AID-TAT peptide did not significantly improve mitochondrial metabolic activity, cell size, heart weight to body weight ratio (HW:BW) or echocardiographic parameters (Viola et al. 2020). These studies indicate that early therapeutic intervention with AID-TAT peptide may represent a viable approach to restore structural–functional communication between $I_{\text{Ca-L}}$ and mitochondria, normalize metabolic activity and prevent the development of HCM.

Conclusion

Conventionally, HCM is characterized by cardiac myocyte remodelling, disorganization of sarcomeric proteins, interstitial fibrosis and altered energy metabolism. There is now evidence to suggest that alterations in Ca$^{2+}$ handling, energy metabolism, contractility and sarcomeric disorganization may precede the presentation of hypertrophy and fibrosis. Indeed, here we find that a preventative rather than corrective therapeutic approach may be more efficacious in the treatment of HCM. However, while some similarities exist, each mutation appears to lead to mutation-specific pathophysiology, which may contribute to the observed clinical phenotypic variability in sarcomere-related HCM (Viola & Hool, 2019). A clear understanding of early mutation-specific mechanisms may be required, on a cellular level, in order to determine the most effective therapeutic mode of action. Studies investigating the efficacy of diltiazem or AID-TAT peptide indicate that early treatment may be beneficial in preventing hypertrophy by normalizing cellular Ca$^{2+}$ handling, and/or normalizing mitochondrial metabolic activity. On the other hand, early therapeutic intervention with MYK-461 may be effective in normalizing hypercontractility and relieve inducible HOCM, by reducing sarcomere force output. In addition to mutation-specific pathophysiology, epigenetic differences, genetic modifiers and environmental factors can also influence HCM morphology, producing a variety of clinical phenotypes from the same gene mutation (Burke et al. 2016). Therefore, an understanding of the physiological mechanisms underlying patient-specific pathology will also be an important consideration in the design of personalized treatment approaches, or ‘precision medicine’ (Dainis & Ashley, 2018), for HCM patients.

References

Abozgua K, Elliott P, McKenna W, Phan TT, Nallur-Shivu G, Ahmed I, Maher AR, Kaur K, Taylor J, Henning A, Ashrafian H, Watkins H & Frenneaux M (2010). Metabolic modulator perhexiline corrects energy deficiency and improves exercise capacity in symptomatic hypertrophic cardiomyopathy. *Circulation* **122**, 1562–1569.
Abraham MR, Bottomley PA, Dimaano VL, Pinheiro A, Steinberg A, Traill TA, Abraham TP & Weiss RG (2013). Creatine kinase adenosine triphosphate and phosphocreatine energy supply in a single kindred of patients with hypertrophic cardiomyopathy. *Am J Cardiol* **112**, 861–866.

Ammirati E, Contri R, Coppini R, Cecchi F, Frigerio M & Olivitto I (2016). Pharmacological treatment of hypertrophic cardiomyopathy: current practice and novel perspectives. *Eur J Heart Fail* **18**, 1106–1118.

Ardehali H, Sabbah HN, Burke MA, Sarma S, Liu PP, Cleland JG, Maggioni A, Fonarow GC, Abel ED, Campia U & Geerkhiade M (2012). Targeting myocardial substrate metabolism in heart failure: potential for new therapies. *Eur J Heart Fail* **14**, 120–129.

Ashrafian H, Horowitz JD & Frenneaux MP (2007). Cardiac troponin subunit of voltage-gated Ca$^{2+}$ channels. *J Lnter Mtd Cardiol* **40**, 509–517.

Ammirati E, Contri R, Coppini R, Cecchi F, Frigerio M & Olivitto I (2016). Pharmacological treatment of hypertrophic cardiomyopathy: current practice and novel perspectives. *Eur J Heart Fail* **18**, 1106–1118.

Ammirati E, Contri R, Coppini R, Cecchi F, Frigerio M & Olivitto I (2016). Pharmacological treatment of hypertrophic cardiomyopathy: current practice and novel perspectives. *Eur J Heart Fail* **18**, 1106–1118.

Bodi I, Mikala G, Koch SE, Akhter SA & Schwartz A (2005). The L-type calcium channel in the heart: the beat goes on. *Clin Invest* **115**, 3306–3317.

Braunwald E, Seidman CE & Sigwart U (2002). The L-type calcium channel in the heart: the beat goes on. *Am J Physiol Heart Circ Physiol* **306**, H807–H815.

Bodi I, Mikala G, Koch SE, Akhter SA & Schwartz A (2005). The L-type calcium channel in the heart: the beat goes on. *Clin Invest* **115**, 3306–3317.

Braunwald E, Seidman CE & Sigwart U (2002). Contemporary evaluation and management of hypertrophic cardiomyopathy. *Circulation* **106**, 1312–1316.

Bright JM, Golden AL, Gompf RE, Walker MA & Toal RL (1991). Evaluation of the calcium-channel-blocking agents diltiazem and verapamil for treatment of feline hypertrophic cardiomyopathy. *J Vet Intern Med* **5**, 272–282.

Buraei Z & Yang J (2013). Structure and function of the β subunit of voltage-gated Ca$^{2+}$ channels. *Biochim Biophys Acta* **1828**, 1530–1540.

Burke MA, Cook SA, Seidman JG & Seidman CE (2016). Clinical and mechanistic insights into the genetics of cardiomyopathy. *J Am Coll Cardiol* **68**, 2871–2886.

Carrier L, Knoll R, Vignier N, Keller DJ, Bausser P, Prudhon B, Isnard R, Ambroisine ML, Fiszman M, Ross J Jr, Schwartz K & Chien KR (2004). Asymmetric septal hypertrophy in heterozygous cMyBP-C null mice. *Cardiovasc Res* **63**, 293–304.

Carrier L, Mearini G, Stathopoulos K & Cuello F (2015). Cardiac myosin-binding protein C (MYBPC3) in cardiac pathophysiology. *Gene* **573**, 188–197.

Chandra M, Tschirgi ML, Ford SJ, Slinker BK & Campbell KB (2007). Interaction between myosin heavy chain and troponin isoforms modulate cardiac myofiber contractile dynamics. *Am J Physiol Regul Integr Comp Physiol* **293**, R1595–R1607.

Cheng Y & Regnier M (2016). Cardiac troponin structure-function and the influence of hypertrophic cardiomyopathy associated mutations on modulation of contractility. *Arch Biochem Biophys* **601**, 11–21.

Cheng Y & Regnier M (2016). Cardiac troponin structure-function and the influence of hypertrophic cardiomyopathy associated mutations on modulation of contractility. *Arch Biochem Biophys* **601**, 11–21.

Coats CJ, Pavlou M, Watkinson OT, Protonotarios A, Moss L, Hyland R, Rantell K, Pantazis AA, Tome M, McKenna WJ, Frenneaux MP, Omar R & Elliott PM (2019). Effect of trimetazidine dihydrochloride therapy on exercise capacity in patients with nonobstructive hypertrophic cardiomyopathy: a randomized clinical trial. *JAMA Cardiol* **4**, 230–235.

Crilley JG, Boehm EA, Blair E, Rajagopalan B, Blamire AM, Styles P, McKenna WJ, Ostman-Smith I, Clarke K & Watkins H (2003). Hypertrophic cardiomyopathy due to sarcomeric gene mutations is characterized by impaired energy metabolism irrespective of the degree of hypertrophy. *J Am Coll Cardiol* **41**, 1776–1782.

Dains AM & Ashley EA (2018). Cardiovascular precision medicine in the genomics era. *JACC Basic Transl Sci* **3**, 313–326.

de Oliveira RB, Petiz LL, Lim R, Lipski J, Gravina FS, Bricha AM, Callister RJ, Leao RN & van Helden DF (2019). Crosstalk between mitochondria, calcium channels and actin cytoskeleton modulates noradrenergic activity of locus coeruleus neurons. *J Neurochem* **149**, 471–487.

Dezsi CA (2016). Trimetazidine in practice: review of the clinical and experimental evidence. *Am J Ther* **23**, e871-e879.

Farzam K & Jan A (2020). Beta blockers. In *StatPears*. StatPearsPublishing, Treasure Island (FL).

Fatkin D, McConnell BK, Mudd JO, Sensarion C, Moskowitz IG, Schoen FJ, Giewat M, Seidman CE & Seidman JG (2000). An abnormal Ca$^{2+}$ response in mutant sarcomere protein-mediated familial hypertrophic cardiomyopathy. *J Clin Invest* **106**, 1351–1359.

Ferrantini C, Coppini R, Pioner JM, Gentile F, Tosi B, Mazzoni L, Scellini B, Piroddi N, Laurino A, Santini L, Spinelli V, Sacconi L, De Tombe P, Moore R, Tardiff J, Mugelli A, Olivitto I, Cerbai E, Tesi C & Poggesi C (2017). Pathogenesis of hypertrophic cardiomyopathy is mutation rather than disease specific: a comparison of the cardiac troponin T E163R and R92Q mouse models. *J Am Heart Assoc* **6**, e005407.

Flenner F, Geertz B, Reichmann-Dusener S, Weinberger F, Eschenhagen T, Carrier L & Friedrich FW (2017). Diltiazem prevents stress-induced contractile deficits in cardiomyocytes, but does not reverse the cardiomyopathy phenotype in Mypb3–/ mice. *J Physiol* **595**, 3987–3999.

Fraysse B, Weinberger F, Bardswell SC, Cuello F, Vignier N, Geertz B, Starbatty J, Kramer E, Coirault C, Eschenhagen T, Kentish JC, Avkiran M & Carrier L (2012). Increased myofilament Ca$^{2+}$ sensitivity and diastolic dysfunction as early consequences of Mypb3 mutation in heterozygous knock-in mice. *J Mol Cell Cardiol* **52**, 1299–1307.

Freiburg A & Gautel M (1996). A molecular map of the interactions between titin and myosin-binding protein C. Implications for sarcomeric assembly in familial hypertrophic cardiomyopathy. *Eur J Biochem* **235**, 317–323.

Geisterfer-Lowrance AA, Christe M, Conner DA, Ingwall JS, Schoen FJ, Seidman CE & Seidman JG (1996). A mouse model of familial hypertrophic cardiomyopathy. *Science* **272**, 731–734.
Geisterfer-Lowrance AA, Kass S, Tanigawa G, Vosberg HP, McKenna W, Seidman CE & Seidman JG (1990). A molecular basis for familial hypertrophic cardiomyopathy: a beta cardiac myosin heavy chain gene missense mutation. *Cell* 62, 999–1006.

Gentry JL 3rd, Mentz RJ, Hurdle M & Wang A (2016). Ranolazine for treatment of angina or dyspnea in hypertrophic cardiomyopathy patients (RHYME). *J Am Coll Cardiol* 68, 1815–1817.

Green EM, Wakimoto H, Anderson RL, Evanich MJ, Gorham JM, Harrison BC, Henze M, Kawar S, Losb JD, Rodriguez HM, Song Y, Wan W, Leinwand LA, Spudich JA, McDowell RS, Seidman JG & Seidman CE (2016). A small-molecule inhibitor of sarcomere contractility suppresses hypertrophic cardiomyopathy in mice. *Science* 351, 617–621.

Gupta MP (2007). Factors controlling cardiac myosin-isoform shift during hypertrophy and heart failure. *J Mol Cell Cardiol* 43, 388–403.

Haase H, Podzuweit T, Lutsch G, Hohaus A, Lostka S, Lindschau C, Kott M, Kraft R & Morano I (1999). Signaling from beta-adrenoreceptor to L-type calcium channel: identification of a novel cardiac protein kinase A target possessing similarities to AHNK. *FASEB J* 13, 2161–2172.

Han L, Li Y, Tchao J, Kaplan AD, Lin B, Li Y, Mich-Basso J, Lis A, Hassan N, London B, Bett GC, Tobita K, Rasmussen RL & Yang L (2014). Study familial hypertrophic cardiomyopathy using patient-specific induced pluripotent stem cells. *Cardiovasc Res* 104, 258–269.

Harris SP, Bartley CR, Hacker TA, McDonald KS, Douglas PS, Greaser ML, Powers PA & Moss RL (2002). Hypertrophic cardiomyopathy in cardiac myosin binding protein-C knockout mice. *Circ Res* 90, 594–601.

Heitner SB, Jacoby D, Lester SJ, Owens A, Wang A, Zhang D, Lambing J, Lee J, Semigran M & Sehnert AJ (2019). Mavacamten treatment for obstructive hypertrophic cardiomyopathy: A clinical trial. *Ann Intern Med* 170, 741–748.

Ho CY, Lakdawala NK, Cirino AL, Lipshultz SE, Sparks E, Abbasi SA, Kwong RW, Antman EM, Sensaric C, Gonzalez A, Lopez B, Diez J, Orav EJ, Golan SD & Seidman CE (2015). Diltiazem treatment for pre-clinical hypertrophic cardiomyopathy sarcomere mutation carriers: a pilot randomized trial to modify disease expression. *JACC Heart Fail* 3, 180–188.

Ho CY, Meallife ME, Bach RG, Bhattacharya M, Choudhury L, Edelberg JM, Hegde SM, Jacoby D, Lakdawala NK, Lester SJ, Ma Y, Marian AJ, Nagheg SF, Owens A, Rader F, Saberi S, Sehnert AJ, Sherrid MV, Solomon SD, Wang A, Wever-Pinzon O, Wong TC & Heitner SB (2020a). Evaluation of mavacamten in symptomatic patients with nonobstructive hypertrophic cardiomyopathy. *J Am Coll Cardiol* 75, 2649–2660.

Ho CY, Olivitto I, Jacoby D, Lester SJ, Roe M, Wang A, Waldman CB, Zhang D, Sehnert AJ & Heitner SB (2020b). Study design and rationale of EXPLORER-HCM: Evaluation of mavacamten in adults with symptomatic obstructive hypertrophic cardiomyopathy. *Circ Heart Fail* 13, e006853.

Ho CY, Sweitzer NK, McDonough B, Maron BJ, Casey SA, Seidman JG, Seidman CE & Solomon SD (2002). Assessment of diastolic function with Doppler tissue imaging to predict genotype in preclinical hypertrophic cardiomyopathy. *Circulation* 105, 2992–2997.

Hohaus A, Person V, Behlke J, Schaper J, Morano I & Haase H (2002). The carboxyl-terminal region of ahnak provides a link between cardiac L-type Ca2+ channels and the actin-based cytoskeleton. *FASEB J* 16, 1205–1216.

Hohaus A, Poteser M, Romanin C, Klugbauer N, Hofmann F, Morano I, Haase H & Groschner K (2000). Modulation of the smooth-muscle L-type Ca2+ channel α1 subunit (α1C-b) by the β2a subunit: a peptide which inhibits binding of β to the I-II linker of α1 induces functional uncoupling. *Biochem J* 348, 657–665.

Horowitz JD & Chirkov YY (2010). Perhexiline and hypertrophic cardiomyopathy: a new horizon for metabolic modulation. *Circulation* 122, 1547–1549.

Hotka M, Cagalinec M, Hilker K, Hool L, Boehm S & Kubista H (2020). L-type Ca2+ channel-mediated Ca2+ influx adjusts neuronal mitochondrial function to physiological and pathophysiological conditions. *Sci Signal* 13, eaaw6923.

Johnson BD & Byerly L (1993). A cytoskeletal mechanism for Ca2+ channel metabolic dependence and inactivation by intracellular Ca2+. *Neuron* 10, 797–804.

Jung WI, Sieverding L, Breuer J, Hoess T, Widmaier S, Schmidt O, Bunse M, van Erckelens F, Apitz J, Lutz O & Dietze GJ (1998). 31P NMR spectroscopy detects metabolic abnormalities in asymptomatic patients with hypertrophic cardiomyopathy. *Circulation* 97, 2536–2542.

Kawas RF, Anderson RL, Ingle SRB, Song Y, Sran AS & Rodriguez HM (2017). A small-molecule modulator of cardiac myosin acts on multiple stages of the myosin chemomechanical cycle. *J Biol Chem* 292, 16571–16577.

Kimura A, Harada H, Park JE, Nishi H, Satoh M, Takahashi M, Hiroi S, Sasaoaka T, Ohbuchi N, Nakamura T, Koyanagi T, Hwang TH, Choo JA, Chung KS, Hasegawa A, Nagai R, Okazaki O, Nakamura H, Matsuzaki M, Sakamoto T, Toshima H, Koga Y, Imaizumi T & Sasazuki T (1997). Mutations in the cardiac troponin I gene associated with hypertrophic cardiomyopathy. *Nat Genet* 16, 379–382.

Lee J, Lee AS, Liang P, Sanchez-Freire V, Nguyen PK, Wang L, Han L, Yen M, Wang Y, Sun N, Ablez OJ, Hu S, Ebert AD, Navarrete EG, Simmons CS, Wheeler M, Pruitt B, Lewis R, Yamaguchi Y, Ashley EA, Bers DM, Robbins RC, Longaker MT & Wu JC (2013). Abnormal calcium handling properties underlie familial hypertrophic cardiomyopathy pathology in patient-specific induced pluripotent stem cells. *Cell Stem Cell* 12, 101–113.

Leach RN, Desai JC & Orchard CH (2005). Effect of cytoskeleton disruptors on L-type Ca channel distribution in rat ventricular myocytes. *Cell Calcium* 38, 515–526.

Lee L, Campbell R, Scheuermann-Freestone M, Taylor R, Gunaruwan P, Williams L, Ashrafian H, Horowitz J, Fraser AG, Clarke K & Frenneaux M (2005). Metabolic modulation with perhexiline in chronic heart failure: a randomized, controlled trial of short-term use of a novel treatment. *Circulation* 112, 3280–3288.

© 2020 The Authors. *The Journal of Physiology* published by John Wiley & Sons Ltd on behalf of The Physiological Society.
Lodrini AM, Barile L, Roccetti M & Altomare C (2020). Human induced pluripotent stem cells derived from a cardiac somatic source: insights for an in-vitro cardiomyocyte platform. *Int J Mol Sci* 21, 507.

Lopaschuk GD, Ussher JR, Colmes CD, Jaswal JS & Stanley WC (2010). Myocardial fatty acid metabolism in health and disease. *Physiol Rev* 90, 207–258.

Marian AJ (2009). Contemporary treatment of hypertrophic cardiomyopathy. *Contemp Med* 36, 101–105.

Marian AJ & Braunwald E (2017). Hypertrophic cardiomyopathy: genetics, pathogenesis, clinical manifestations, diagnosis, and therapy. *Circ Res* 121, 369–790.

Maron MS, Olivotto I, Zenovich AG, Link MS, Pandian NG, Kuvin JT, Nistri S, Cecchi F, Udelson JE & Maron BJ (2006). Hypertrophic cardiomyopathy is predominantly a disease of left ventricular outflow tract obstruction. *Circulation* 114, 2232–2239.

McConnell BK, Fatkin D, Senssarian C, Jones KA, Georgakopoulos D, Maguire CT, Healey MJ, Mudd JO, Moskowitz IP, Conner DA, Giewat M, Wakimoto H, Berul Cl, Schoen FJ, Kass DA, Seidman CE & Seidman JG (2001). Comparison of two murine models of familial hypertrophic cardiomyopathy. *Circ Res* 88, 383–389.

McTaggart DR (2004). Diltiazem reverses tissue Doppler velocity abnormalities in pre-clinical hypertrophic cardiomyopathy. *Heart Lung Circ* 13, 39–40.

Myokardia (2020). MyoKardia announces primary and all secondary endpoints met in Phase 3 EXPLORER clinical trial of Mavacamten for the treatment of obstructive hypertrophic cardiomyopathy. http://investors.myokardia.com/news-releases/news-release-details/myokardia-announces-primary-and-all-secondary-endpoints-met.

Nagueh SF, Bachinski LL, Meyer D, Hill R, Zoghbi WA, Tam JW, Quinones MA, Roberts R & Marian AJ (2001). Tissue Doppler imaging consistently detects myocardial abnormalities in patients with hypertrophic cardiomyopathy and provides a novel means for an early diagnosis before and independently of hypertrophy. *Circulation* 104, 128–130.

Olivotto I, Camici PG, Merlini PA, Rapezzi C, Patten M, Climent V, Sinagra G, Tomberli B, Marin F, Ehlermann P, Maier LS, Fornaro A, Jacobsen C, Ganau A, Moretti L, Hernandez Madrid A, Coppini R, Reggiardo G, Poggesi C, Fatfiroli F, Belardini L, Gensini G & Mugellia A (2018). Efficacy of ranolazine in patients with symptomatic hypertrophic cardiomyopathy: the RESTYLE-HCM Randomized, double-blind, placebo-controlled study. *Circ Heart Fail* 11, e004124.

Ramachandra CJA, Mai J, KPM, Lin YH, Shim W, Boisvert WA & Hausenloy DJ (2019). Induced pluripotent stem cells for modelling energetical alterations in hypertrophic cardiomyopathy. *Cord Med* 2, 142–151.

Rappaport L, Oliviero P & Samuel JL (1998). Cytoskeleton and mitochondrial morphology and function. *Mol Cell Biochem* 184, 101–105.

Rayment I, Holden HM, Whittaker M, Yohn CB, Lorenz M, Holmes KC & Milligan RA (1993). Structure of the actin-myosin complex and its implications for muscle contraction. *Science* 261, 58–65.

Rueckschloss U & Isenberg G (2001). Cytochalasin D reduces Ca2+ currents via cofilin-activated depolymerization of F-actin in guinea-pig cardiomyocytes. *J Physiol* 537, 363–370.

Saber-Molina M, Perez-Sanchez I, Hernandez Del Rincon JP & Gimeno JR (2018). Genetics of hypertrophic cardiomyopathy: a review of current state. *Clin Genet* 93, 3–14.

Sata M, Stafford WF, 3rd, Mabuchi K & Ikebe M (1997). The motor domain and the regulatory domain of myosin solely dictate enzymatic activity and phosphorylation-dependent regulation, respectively. *Proc Natl Acad Sci U S A* 94, 91–96.

Seidman JG & Seidman C (2001). The genetic basis for cardiomyopathy: from mutation identification to mechanistic paradigms. *Cell* 104, 557–567.

Senssarian C, Ahmad I, Giewat M, Georgakopoulos D, Schmitt JP, McConnell BK, Reiken S, Mende U, Marks AR, Kass DA, Seidman CE & Seidman JG (2002). The L-type calcium channel inhibitor diltiazem prevents cardiomyopathy in a mouse model. *J Clin Invest* 109, 1013–1020.

Senssarian C, Ingles J, Maron MS & Maron BJ (2015). New perspectives on the prevalence of hypertrophic cardiomyopathy. *J Am Coll Cardiol* 65, 1249–1254.

Sequeira V, Witjas-Paalberends ER, Kuster DW & van der Velden J (2014). Cardiac myosin-binding protein C: hypertrophic cardiomyopathy mutations and structure-function relationships. *Pflugers Arch* 466, 201–206.

Spindler M, Sauge KW, Christe ME, Sweeney HL, Seidman CE, Seidman JG & Ingwall JS (1998). Diastolic dysfunction and altered energetics in the alphaMHC403/+ mouse model of familial hypertrophic cardiomyopathy. *J Clin Invest* 101, 1775–1783.

Spoladore R, Fragasso G, Perseghin G, De Cobelli F, Esposito A, Maranta F, Calori G, Locatelli M, Lattuada G, Scifo P, Del Maschio A & Margonato A (2013). Beneficial effects of beta-blockers on left ventricular function and cellular energy reserve in patients with heart failure. *Fundam Clin Pharmacol* 27, 455–464.

Spoladore R, Maron MS, D’Amato R, Camici PG & Olivotto I (2012). Pharmacological treatment options for hypertrophic cardiomyopathy: high time for evidence. *Eur Heart J* 33, 1724–1733.

Stegall A, Mordi IR & Lang CC (2017). Targeting metabolic modulation and mitochondrial dysfunction in the treatment of heart failure. *Diseases* 5, 14.

Stern JA, Markova S, Ueda Y, Kim JB, Pascoe PJ, Evanich MJ, Green EM & Harris SP (2016). A small molecule inhibitor of sarcomere contractility acutely relieves left ventricular outflow tract obstruction in feline hypertrophic cardiomyopathy. *PloS One* 11, e0168407.

Striessnig J, Ortner NJ & Pinggera A (2015). Pharmacology of l-type calcium channels: novel drugs for old targets? *Curr Mol Pharmacol* 8, 110–122.

Tanaka A, Yuasa S, Mearini G, Egashira T, Seki T, Kodaira M, Kusumoto D, Kusumoto Y, Okata S, Suzuki T, Inohara T, Tomberli B, Marin F, Ehlermann P, Carrier L, Node K & Fukuda K (2014). Endothelin-1 induces myofibrillar disarray and contractile vector variability in hypertrophic cardiomyopathy-induced pluripotent stem cell-derived cardiomyocytes. *J Am Heart Assoc* 3, e001263.
Timmer SA, Germans T, Brouwer WP, Lubberink M, van der Velden J, Wilde AA, Christiaans I, Lammeretsma AA, Knaapen P & van Rossum AC (2011). Carriers of the hypertrophic cardiomyopathy MYBPC3 mutation are characterized by reduced myocardial efficiency in the absence of hypertrophy and microvascular dysfunction. *Eur J Heart Fail* **13**, 1283–1289.

Toepfer CN, Sharma A, Cicconet M, Garfinkel AC, Mucke M, Neyazi M, Willcox JAL, Agarwal R, Schmid M, Rao J, Ewoldt J, Pourquie O, Chopra A, Chen GS, Seidman JG & Seidman CE (2019a). SarcTrack. *Circ Res* **124**, 1172–1183.

Toepfer CN, Wakimoto H, Garfinkel AC, McDonough B, Liao D, Jiang J, Tai AC, Gorham JM, Lunde IG, Lun M, Lynch TLT, McNamara JW, Sadayappan S, Redwood CS, Watkins HC, Seidman JG & Seidman CE (2019b). Hypertrophic cardiomyopathy mutations in MYBPC3 dysregulate myosin. *Sci Transl Med* **11**, eaat1199.

Tokuyasu KT, Dutton AH & Singer SJ (1983). Immunoelectron microscopic studies of desmin (skeletin) localization and intermediate filament organization in chicken cardiac muscle. *J Cell Biol* **96**, 1736–1742.

Tsoutsman T, Chung J, Doolan A, Nguyen L, Williams IA, Tu E, Lam L, Bailey CG, Rasko JE, Allen DG & Semsarian C (2006). Molecular insights from a novel cardiac troponin I mouse model of familial hypertrophic cardiomyopathy. *J Mol Cell Cardiol* **41**, 623–632.

Vakrou S & Abraham MR (2014). Hypertrophic cardiomyopathy: a heart in need of an energy bar? *Front Physiol* **5**, 309.

van Driel BO, van Rossum AC, Michels M, Huurman R & van der Velden J (2019). Extra energy for hearts with a genetic defect: ENERGY trial. *Neth Heart J* **27**, 200–205.

Viola H, Johnstone V, Cserne Szappanos H, Richman T, Tsoutsman T, Filipovska A, Semsarian C & Hool LC (2016a). The L-type Ca\(^{2+}\) channel facilitates abnormal metabolic activity in the cTnI-G203S mouse model of hypertrophic cardiomyopathy. *J Physiol* **594**, 4051–4070.

Viola HM, Shah AA, Johnstone VPA, Cserne Szappanos H, Hodson MP & Hool LC (2020). Characterization and validation of a preventative therapy for hypertrophic cardiomyopathy in a murine model of the disease. *Proc Natl Acad Sci U S A*. https://www.pnas.org/content/early/2020/08/27/2002976117.

Watkins H, McKenna WJ, Thierfelder L, Suk HJ, Anan R, O’Donoghue A, SPIrito P, Matsumori A, Moravec CS, Seidman JG & Seidman CE (1995). Mutations in the genes for cardiac troponin T and α-tropomyosin in hypertrophic cardiomyopathy. *N Engl J Med* **332**, 1058–1065.

Watkins SJ, Borthwick GM & Arthur HM (2011). The H9C2 cell line and primary neonatal cardiomyocyte cells show similar hypertrophic responses in vitro. *In Vitro Cell Dev Biol Anim* **47**, 125–131.

Westermann D, Knollmann BC, Steendijk P, Rutschow S, Riad A, Pauschinger M, Potter JD, Schultheiss HP & Tschipe C (2006). Diltiazem treatment prevents diastolic heart failure in mice with familial hypertrophic cardiomyopathy. *Eur J Heart Fail* **8**, 115–121.

Additional information

Competing interests

None.

Author contributions

All authors have read and approved the final version of this manuscript and agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. All persons designated as authors qualify for authorship, and all those who qualify for authorship are listed.

Funding

This study was supported by the National Health and Medical Research Council of Australia [APP1143203, APP1103782]. Livia Hool is a National Health and Medical Research Council Senior Research Fellow [APP1117366]. Helena Viola is a Heart Foundation Future Leader Fellow [101930].

Keywords

hypertrophic cardiomyopathy, metabolism, mitochondria, therapy