Electronic Supplementary Information

Magnetic core-shell Fe₃O₄@Cu₂O and Fe₃O₄@Cu₂O-Cu materials as the catalysts for aerobic oxidation of benzylic alcohols assisted with TEMPO and N-methylimidazole

Binyu Xu,a Samuthirarajan Senthilkumar,b Wei Zhong,*,b Zhongquan Shen,b Chunxin Lu b and Xiaoming Liu*,a,b

a School of Chemistry, Nanchang University, Nanchang, Jiangxi, China
b College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang, China.
Email: weizhong@mail.zjxu.edu.cn; xiaoming.liu@mail.zjxu.edu.cn

Table of Contents

S. No	Contents	Page No.
1.	Synthesis of Cu₂O nanoparticles & TEMPOH	S2
2.	Table S1 EDX analysis of the core-shell Fe₃O₄@Cu₂O nanomaterial.	S2
3.	Fig. S1 Calibration curve for the calculation of Cu/Cu₂O content in Fe₃O₄@Cu₂O-Cu catalysts.	S3
4.	Table S2 Comparison of powder XRD Strength and calculation of Cu/Cu₂O content in Fe₃O₄@Cu₂O-Cu catalysts.	S3
5.	Table S3 Calculation of average crystal size from p-XRD analysis using Scherer equation.	S4
6.	Fig. S2 Comparison of p-XRD spectra of Fe₃O₄@Cu₂O nanomaterial.	S4
7.	Fig. S3 Effect of temperature in the aerobic oxidation of benzylic alcohols using Fe₃O₄@Cu₂O.	S5
8.	Fig. S4 Comparison of p-XRD spectra of fresh and reused catalysts of Fe₃O₄@Cu₂O-Cu nanomaterial.	S5
9.	Fig. S5 XPS results of fresh catalyst of Fe₃O₄@Cu₂O-Cu-7 nanomaterial.	S6
10.	Fig. S6 Comparison for the effect of TEMPO and TEMPOH on the catalysts.	S6
11.	Fig. S7 Comparison of XPS results of fresh and reused catalysts of Fe₃O₄@Cu₂O-Cu-7 nanomaterial.	S7
12.	Fig. S8 Comparison of FTIR spectroscopy for Fe₃O₄@Cu₂O before (black) and after (red) use.	S7
13.	Table S4 The binding energies (eV) of XPS results of Cu, O, N in Fe₃O₄@Cu₂O nanomaterial.	S8
14.	Table S5 The binding energies (eV) of XPS results of Cu, O, N in Fe₃O₄@Cu₂O-Cu-7 nanomaterial.	S8
15.	Fig. S9 ¹H-NMR spectrum of TEMPOH	S9
16.	Fig. S10 ¹³C-NMR spectrum of TEMPOH	S9
17.	References	S10
Synthesis of Cu$_2$O nanoparticles:

The cubic Cu$_2$O nanocrystals were synthesized by following the reported procedure.1 About 5 mL of NaOH (2.0 mol/L) was added dropwise into 50 mL of aqueous CuCl$_2$ (0.01 mol/L) at 55 °C. After adequate stirring for 30 minutes, 5 mL of ascorbic acid solution (0.6 mol/L) was added dropwise into the solution. The mixed solution was adequately stirred 5 hours at 55 °C. The resulting precipitate was collected by centrifugation and decanting, then washed with distilled water and absolute ethanol, and finally dried in vacuum at room temperature for 12 hours. The as prepared catalyst was used for the TEMPO assisted aerobic oxidation of alcohols.

Synthesis of TEMPOH:

The synthesis of TEMPOH was following the reported procedure.2 TEMPO (0.5 g, 3.2 mmol) was added into a round flask charged with sodium ascorbate (1.0 g, 5.3 mmol) and H$_2$O (9 mL). Then the suspension was stirred vigorously at room temperature until completely decolorized with the appearance of a white precipitate. The resulting suspension was extracted with diethyl ether. Afterward, the ether extracts were washed with water and brine, dried over anhydrous sodium sulfate and evaporated under reduced pressure to provide TEMPOH. (white solid, 476 mg, 94.6%). 1H NMR (400 MHz, CDCl$_3$, ppm): δ 1.49 (s, 6H), 1.14 (s, 12H); 13C NMR (101 MHz, CDCl$_3$, ppm): δ 58.5, 39.4, 16.9.

Table S1 EDX analysis of the core-shell Fe$_3$O$_4$@Cu$_2$O nanomaterial.

Catalyst	C(%)	O(%)	N(%)	Fe(%)	Cu(%)	Cu:Fe (mol. ratio)
Fe$_3$O$_4$	7.06	28.44	-	64.51	-	
Fe$_3$O$_4$/L-Lys	10.12	29.72	4.62	55.54	-	
Fe$_3$O$_4$@Cu$_2$O	14.86	21.73	1.37	12.83	49.22	3.8:1
Fig. S1 Calibration curve for the calculation of Cu/Cu$_2$O content in Fe$_3$O$_4$@Cu$_2$O-Cu catalysts.

Table S2 Comparison of powder XRD strength and calculation of Cu/Cu$_2$O content in Fe$_3$O$_4$@Cu$_2$O-Cu catalysts.

Catalyst preparation time / hrs	Intensity of Cu$_2$O (111) plane	Intensity of Cu (111) plane	Cu:Cu$_2$O
4	476	30	0.18
5	410	51	0.32
7	457	197	1.01
9	1038	874	1.94
12	750	1082	3.29
24	163	2596	36.00
Table S3 Calculation of average crystal size from p-XRD analysis using Scherrer’s formula.

Scherrer’s equation for average crystal size, \(D = \frac{K\gamma}{B \cos\theta} \).

crystal plane	2\(\theta \) / °	B	D / nm	Average Size (in nm)
Cu\(_2\)O				
(111)	36.404	0.690	11.984	
(200)	42.305	0.458	18.391	16.19
(220)	61.45	0.502	18.204	

Fig. S2 Comparison of p-XRD spectra of Fe\(_3\)O\(_4@Cu\(_2\)O nanomaterial (a) fresh catalyst (b) 4\(^{th}\) recycle and (c) 7\(^{th}\) recycle.
Fig. S3 Effect of temperature on the aerobic oxidation of benzyl alcohol catalysed by Fe$_3$O$_4$@Cu$_2$O.

Fig. S4 Comparison of p-XRD spectra of fresh and reused catalysts of Fe$_3$O$_4$@Cu$_2$O-Cu-7 nanomaterial.
Fig. S5 XPS spectra of core shell Fe$_3$O$_4$@Cu$_2$O-Cu-7 nanomaterial: (a) Survey spectrum; (b) Fe 2p; (c) Cu 2p; (d) Cu LMM Auger spectra.

Fig. S6 Comparison for the effect of TEMPO and TEMPOH on the catalysis.
Fig. S7 Comparison of XPS spectra of fresh and recycled Fe$_3$O$_4$@Cu$_2$O-Cu-7 nanomaterial: Cu 2p (Top left), Cu LMM (Top right), O 1s (Bottom left) and N 1s (Bottom right); (a) fresh catalyst, (b) 3th recycling and (c) 7th recycling.

Fig. S8 Comparison of FTIR spectroscopy for Fe$_3$O$_4$@Cu$_2$O before (black) and after (red) use.
Table S4 The binding energies (eV) of XPS results of Cu, O, N in Fe₃O₄@Cu₂O nanomaterial.

	Cu⁺ 2p₃/2	Cu²⁺ 2p₃/2	Cu²⁺Sat.	Cu⁺ 2p₁/2	Cu²⁺ 2p₁/2	Cu²⁺Sat.	Cu LMM	O 1s	N 1s
Fresh catalyst	932.3	934.4	941.0, 943.6	952.1	954.2	962.0	570.0	530.1⁺, 530.9⁺, 531.9⁺	398.6
Related peak area	54850.2	39365.7	10929.5, 16092.5	25535.8	16311.4	7495.7	37999.4	27739.1, 15107.2, 15852.8	1018.1
4th recycles	932.5	934.1	941.0, 943.6	952.3	954.2	962.0	568.5, 570.0	530.1⁺, 531.0⁺, 531.7⁺	399.3⁺, 400.7⁺
Related peak area	11906.0	78094.1	53694.9, 14298.4	6249.1	38933.9	35029.1	7526.8, 38349.3	13212.8, 33826.3, 20513.8	1810.4, 748.2
7th recycles	932.5	934.1	940.8, 943.5	952.4	954.2	961.9	568.5, 570.0	530.1⁺, 531.0⁺, 531.8⁺	399.3⁺, 400.7⁺
Related peak area	12248.2	49413.2	29391.4, 11236.6	5909.6	23561.6	23920.4	8334.9, 20184.0	19151.3, 18067.7, 17872.2	2074.9, 1232.0

*a Binding to Cu²⁺, b Binding to Cu⁺, c Surface O.

Table S5 The binding energies (eV) of XPS results of Cu, O, N in Fe₃O₄@Cu₂O-Cu7 nanomaterial.

	Cu⁺ 2p₃/2	Cu²⁺ 2p₃/2	Cu²⁺Sat.	Cu⁺ 2p₁/2	Cu²⁺ 2p₁/2	Cu²⁺Sat.	Cu LMM	O 1s	N 1s
Fresh catalyst	932.4	934.3	940.8, 943.3	952.2	954.2	962.0	568.0, 570.1	/	/
Rel.peak area	469444.2	73972.6	57290.9, 100990.8	229259.4	30916.3	28193.7	56832.5, 246334.5	/	/
3rd recycles	932.3	934.3	940.8, 943.3	952.2	954.2	962.0	569.5	530.1⁺, 531.1⁺, 531.7⁺	399.2⁺, 400.6⁺
Related peak area	12880.2	67982.0	26668.5, 18075.8	6663.8	30746.9	30361.0	139149.8	15214.7, 24859.0, 23333.8	1799.2, 1865.6
7th recycles	-	934.3	940.8, 943.3	-	954.2	962.2	569.5, 570.4	530.1⁺, 531.0⁺, 531.7⁺	399.4⁺, 400.9⁺
Related peak area	-	68414.3	22116.6, 24452.7	-	29909.2	23943.7	48888.1, 107052.3	18663.5, 10791.6, 33820.5	1890.5, 941.9

*a Binding to Cu²⁺, b Binding to Cu⁺, c Surface O. “-” Not detected, “/” Not tested.
Fig. S9 1H-NMR spectrum of TEMPOH

Fig. S10 13C-NMR spectrum of TEMPOH
Reference:

1. Q. Hua, K. Chen, S. Chang, H. Bao, Y. Ma, Z. Jiang and W. Huang, *RSC Advances*, 2011, 1, 1200-1203.

2. Y. Zhu, L. Li, and Z. Shen, *Chem. Eur. J.*, 2015, 21, 13246-13252.