Magnetic moments have long been known [1, 2] to deplete the superconducting order, hindering the coexistence of ferromagnetism and superconductivity. At the atomic scale, a single magnetic atom can locally modify the superconducting order parameter, binding in-gap Yu–Shiba–Rusinov (YSR) states [2–5]. Using scanning tunneling spectroscopy (STS), these in-gap states have been observed in a variety of systems [6–10], all of them involving transition metal or rare Earth local moments. In presence of either spin–orbit coupling or non-collinear magnetic order, chains of YSR impurities [11] have been predicted to result in topological superconductivity, whose fingerprint would be the emergence of zero energy Majorana [12] edge states. The recent observation [13] of zero energy end states by means of STS in atomic chains of Fe atoms on the surface of superconducting Pb has been interpreted along this line and has triggered and enormous interest in the engineering of YSR states [11, 14, 15].

In conventional superconductors, the parameter that controls the energetics of YSR states is \(J\), where \(\rho\) is the density of states (DOSs) at the Fermi surface in the normal phase and \(S\) is strength of the Kondo exchange between the local moment with spin \(S\) and the conduction electrons. When \(\rho\) is a slowly varying function of energy, the binding energy of YSR states for a classical spin in a superconductor, is given by [2, 16]

\[
E_S = \frac{1 - \left(\frac{S J}{\rho}\right)^2}{1 + \left(\frac{S J}{\rho}\right)^2},
\]

where \(\Delta\) is the superconducting energy gap. Thus, according to this classical result, a finite \(\rho\) is needed in order to have in-gap YSR states. We now address the question of how could graphene change this state of affairs.

Graphene can be made superconductor via proximity effect using several complementary strategies. On one hand superconductivity can be induced in lateral graphene/superconductor heterostructures [17–19] and on the other hand taking advantage of its two dimensional character, graphene can be deposited on top of and beneath a superconductor [20, 21]. The recent reports of fabrication of vertical Van der Waals structures combining [22–24] graphene with superconducting NbSe\(_2\) also present a promising venue in this regard. Moreover, a carbon layer of intercalated graphite C\(_x\)Ca\(_{2}\) [25–27] could be considered as superconducting graphene, although in the former case the Fermi level is away from half filling.

Local magnetic moments can be induced in graphene without using transition metals via chemisorption of atomic hydrogen [28, 29] as well as many other covalent functionalizations [30, 31]. Within a one-
body picture, the chemisorption of atomic hydrogen in graphene creates a zero energy state, which greatly enhances the local DOS close to the Fermi energy. Electron–electron interactions result [28, 29, 32, 33] in the formation of a local moment associated to chemisorbed hydrogen. When two hydrogen atoms are chemisorbed on the same sub lattice, ferromagnetic couplings are expected [29, 33]. These theoretical results are in line with recent experiments [34] where both individual chemisorbed hydrogen, as well as dimers and trimers, have been probed using STS. In these experiments atomic manipulation of individual hydrogen atoms has been demonstrated, showing the potential for atomic scale engineering of magnetism in graphene. In addition, this magnetism can be turned on and off when the density of carriers is changed [34], in line with the experimentally demonstrated electrical control of paramagnetism in the case of fluorinated graphene [35] and as expected from theoretical calculations [36].

2. Methods

We now model hydrogenated graphene on top of a superconductor using a one orbital tight-binding model with pairing and exchange fields. Within the one-orbital model, the effect of hydrogenation and other covalent functionalizations [31] are equivalent to the removal of a site in the lattice [33] without modifying the onsite energies of neighboring carbon atoms. At the non-interacting level, this results in an in-gap $E = 0$ state in the case of gapped graphene nanostructures, and a resonance in the case of 2D graphene [37]. In most instances, interactions have been included at a mean field level using supercells [28], that invariably result in spin-split solutions with a sublattice polarized magnetization cloud in the neighborhood of the hydrogen atom and total spin $S = 1/2$. Our Hamiltonian includes the spin-dependent potential in the three closest carbon atoms to the one underneath the chemisorbed hydrogen. This minimal model mimics a self-consistently calculated exchange field that breaks time reversal symmetry that implies a local magnetization induced by the chemisorbed hydrogen. Finally, in order to account for the proximity induced superconducting gap Δ, we include a pairing term [38] in the theory. Thus, the complete Bogoliubov–De Gennes (BdG) Hamiltonian reads:

$$H = H_{\text{kin}} + H_{W} + H_{J} + H_{SC},$$

where H_{kin} describes hopping, H_{W} an onsite potential term, H_{J} is the exchange term and H_{SC} the superconducting pairing. The hopping term is the standard nearest neighbor hopping:

$$H_{\text{kin}} = t \sum_{i} \sum_{(i,j) \in \text{NN}} c_{i\sigma}^\dagger c_{j\sigma}.$$

In the case of the hydrogenated system, the effect of hydrogenation is captured by adding an infinite onsite energy W to functionalized carbon site

$$H_{W} = \lim_{W \to \infty} W \sum_{i} c_{i\sigma}^\dagger c_{i\sigma}.$$

The exchange term can be written down as:

$$H_{J} = \sum_{i} j(i) c_{i\sigma}^\dagger c_{i\sigma}.$$

When we model the conventional Shiba state in the square and honeycomb lattice, we take $W = 0$ and $j(i)$ takes a non-zero value J in just one site, marked in red in figures 2(a) and (c). In contrast, when we model hydrogenated graphene we take $W = \infty$ and $j(i)$ takes a non zero value J in the first three neighbors of the functionalized carbon site (see figure 2(c)). We treat J as a free parameter, to account for variations of the local magnetization coming from temperature or doping [35, 36].

Finally, the superconducting proximity effect is introduced as an effective conventional s-wave pairing term

$$H_{SC} = \Delta \sum_{i} [c_{i\uparrow} c_{i\downarrow} + c_{i\downarrow}^\dagger c_{i\uparrow}].$$

Here Δ is taken as an input parameter in the calculation, and no attempt to compute it self-consistently is done. Since we are considering a single impurity in an infinite pristine system, we have to deal with a problem with infinite size and no translational invariance. We tackle the problem using Green functions and a partition method, valid for any dimension. To do so, we divide the problem in a core region that contains the impurity site(s) and an outer region [39]. This division is performed by creating a graphene supercell as the new unit cell C, where the central supercell host the hydrogenated site and the sites with exchange coupling

$$h_{W} = h_{\text{kin}} + h_{W} + h_{J} + h_{SC},$$

with h_{kin}, h_{W}, h_{J} and h_{SC} are the projection of equation (2) in the central defective supercell. The rest of the system is formed of pristine supercells coupled to each other and to the defective one. To calculate the full Green function of the defective supercell, we write down the Dyson equation of defective supercell coupled to the infinite graphene

$$G_{V} = (E - h_{V} - \Sigma(E))^{-1},$$

where $G_{V}(E)$ is the selfenergy induced over the defective supercell by the rest of pristine system. The calculation of $\Sigma(E)$ is done noting that, for a pristine supercell, an analogous Dyson equation can be written up:

$$G_{0}(E) = (E - h_{0} - \Sigma(E))^{-1}. $$

However, in the case of pristine graphene the Green function G_{0} of the supercell C can also be calculated by summing up the Green functions of the Bloch Hamiltonian H_{kin} as
\[G_0(E) = \frac{1}{(2\pi)^2} \int (E - H_0)^{-1} d^2k \]

(10)

with \(H_0 \) the usual Bloch Hamiltonian

\[H_0 = h_0 + \sum_{\ell} t_{\ell} e^{i\ell \cdot \vec{r}}, \]

(11)

where \(h_0 \) is the pristine intracell hopping matrix, \(t_{\ell} \) are the intercell hopping matrices and \(\vec{r} \) are real space vector connecting supercells. Coming back to equation (9), the self energy that pristine graphene induces on a central supercell can be calculated combining equations (9) and (10) as

\[\Sigma(E) = E - h_0 - \left(\frac{1}{(2\pi)^2} \int (E - H_0)^{-1} d^2k \right)^{-1}. \]

(12)

Finally, with the previous self energy the full Green function of the defective supercell \(G_V \) can be calculated with equation (8). From the Green function, the spectral function can easily be obtained as \(\rho = -\frac{i}{\pi} \text{Im} G_V(E) \) introducing a small but finite imaginary part in the energy \(E \rightarrow E + i\delta \). We stress that this method is specially well suited to capture single impurities in infinite systems, not relying on periodic boundary conditions and avoiding undesired interference effects between different impurities.

3. Results

It is instructive to analyze the DOS of the single hydrogenated graphene in three stages. First, with \(J = \Delta = 0 \), we see in figure 1(b) how the DOS diverges for \(E = 0 \), in line with analytic results [40]. Second, when the effect of the mean field exchange is added (\(J \neq 0 \) in our Hamiltonian), the \(E = 0 \) peak spin splits, and results in a vanishing DOS at \(E = 0 \) (see figure 1(d)). The resulting DOS calculated using the embedding method shows a phenomenology analogous to a toy model, a zero energy level, spin splitted by an exchange \(J \) and coupled to a bath with the graphene DOS \(\rho_0 = \chi|F| \). In this toy model, the Dyson equation gives the spectral function \(\rho_s(E, J) = \frac{\chi|F| + \eta}{\eta + |F|^2 + (\chi|F| + \eta)^2} \). The dramatic difference between the results with \(J = 0 \) (figure 1(b)) and \(J \neq 0 \) (figure 1(d)) are analogous to the pathological behavior of the function \(\rho(E, J) \). In particular, \(\rho \) can not be Taylor expanded for \(E = 0 \), because the small \(J \) and \(E \) limits can not be exchanged. This prevents the use of \(\rho \) as a well defined function and invalidates the use of equation (1) to model YSR states in hydrogenated graphene.

Finally, in the third stage, we study the effect of the superconducting proximity effect on graphene. A proximity gap opens in the DOS of pristine graphene (blue line in figure 1(f)). In contrast, the calculated DOS close to a chemisorbed hydrogen atom shows an intra-gap YSR state (red line in figure 1(f)).

3.1. YSR states for individual magnetic centers

The in-gap excitation energy is governed by the strength of the exchange coupling. Using our methodology for a magnetic impurity embedded in square lattice (figure 2(a)), with conventional parabolic bands, the evolution of the in-gap YSR state as a function of \(J \) is shown in figure 2(b), with \(\Delta = 0.05t \) taking chemical potential \(E_F = -2t \). Our results follow equation (1). In particular, in the low \(J \) limit the in-gap energies \(E_S \) follow a quadratic law \(\Delta - E_S \propto J^2 \).

In contrast, a single magnetic impurity (figure 2(c)) in the honeycomb lattice at half filling yields no in-gap state unless the exchange interaction \(J \) takes unrealistically large values \(J \gg t \) (figure 2(d)), in line with a previous result [41]. This can be understood within the standard model as a straightforward consequence of the vanishing DOS at \(E = 0 \). The situation is radically different when we consider the model for hydrogenated graphene (figure 2(e)). In this case, in-gap YSR states appear at weak coupling that, in contrast with conventional YSR states, follow a linear evolution with \(J \) at low coupling, and therefore are not described by equation (1). This is the main result of this paper.

On top of their linear dependence on \(J \), the hydrogenated graphene YSR states have another unconventional property. Let us define \(J_c \) as the point that satisfies \(E_S(J_c) = 0 \), which marks a parity switching of the ground state between a singlet state for \(J < J_c \) to a doublet state for \(J > J_c \) [16]. For the conventional case, equation (1) shows how \(J_c \) is independent from the superconducting pairing \(\Delta \), depending solely on the DOSs at Fermi energy \(\pi^2/2L_2 = 1 \). In comparison, for hydrogenated graphene the parity switching point is \(\Delta \) dependent, as can be observed in figure 3(a). In figure 3(b) we plot a contour map of the BdG spectral function evaluated at \(E = 0 \) as a function of \(J \) and \(\Delta \), showing a clear linear dependence of \(J_c \) on \(\Delta \). In contrast, in the case of a square lattice, the same procedure yields a \(J_c \) that is independent of \(\Delta \) (inset of figure 3(b)).

Thus, from an experimental point of view, the parity switching point could be observed by controlling either the superconducting gap \(\Delta \), that depends strongly on temperature, as well as tuning the hydrogen magnetic moment by controlling the doping level of graphene with a gate [35]. Given that \(E_S \approx \Delta - J/6 \), the critical \(J_c \) is in the range of the \(\Delta \), i.e., in the range of \(10 \text{ meV} \) [42, 43]. Another prediction for experiments is shown in figures 3(c) and (d), where we show the spectral function of the YSR states, as it would be measured with an STM. This hydrogenated-graphene YSR wave function inherits both the extension and the \(C_3 \) symmetry of the impurity resonance of the normal phase [28] (figure 3(c)). In particular, the YSR state peaks on the first neighbors of the hydrogen atom (figure 3(d)).
Figure 1. (a) Sketch of hydrogenated graphene (b) and DOS in the carbons close to the hydrogen. Upon introduction of interactions a local magnetic moment is developed (c), changing dramatically the associated DOS (d). When the system is placed on top of a superconductor (e), YSR excitations arise below the superconducting gap (f). The parameters used are $\Delta = 0.15t$ and $J = 0.4$.

DOS
3.2. YSR states for superlattices

We now consider YSR state superlattices formed by several hydrogen atoms chemisorbed in the same sublattice. This secures a ferromagnetic coupling between them \[29, 33\]. We first consider the case of a dimer (figure 4(a)) which is expected \[29\] to have \(S = 1\). The resulting DOSs with \(\Delta = 0\) and \(J = 0\) shows two peaks (figure 4(b)), rather than only one.

Figure 2. Single magnetic impurity in an infinite square lattice (a), showing in-gap states described by equation (1). The same impurity in the honeycomb lattice (c) does not show YSR states at weak coupling (d). For the single hydrogenated graphene (e), a new and qualitatively different branch of in-gap state arises (f).
When the superconducting pairing is switched on, the YSR spectrum also acquires an extra line, compared to the single hydrogen case. Thus, there are as many bound YSR states as hydrogen atoms. We now extend this notion to the case of a one dimensional periodic array of hydrogen atoms (figure 4(d)). For this one dimensional YSR crystal we obtain a single YSR band that corresponds to a gapless 1D superconductor, reminiscent of the one recently found at the interface of a magnetically ordered graphene edge and a superconductor \[44\]. Such fluctuations are not captured within the present theoretical framework. However, our approach becomes more accurate for the larger structures considered in figure 4, that have a larger spin, and thereby smaller quantum fluctuations.

4. Conclusions

We have shown that a single chemisorbed hydrogen in superconducting graphene creates a YSR bound state.
in spite of the vanishing DOSs of pristine graphene. These YSR states have properties very different from conventional YSR states, such as a linear dependence of the binding energy E_S with exchange, and a parity switching point J_c that depends on the superconducting pairing energy, and can thereby be modulated with temperature. Motivated by recent experiments that demonstrate the atomic manipulation of individual hydrogen atoms on graphene [34], we have also explored the properties of YSR super-structures. Furthermore, these results also apply for a much wider class of covalent functionalizations in graphene [31]. Combined with the electric control of magnetism, this class of systems offers a unique platform to engineer exotic superconducting states at the nanoscale.

Acknowledgments

JFR acknowledges financial supported by MEC-Spain (FIS2013-47328-C2-2-P) and Generalitat Valenciana (ACOMP/2010/070), Prometeo. This work has been financially supported in part by FEDER funds. We acknowledge financial support by Marie-Curie-ITN 607904-SPINOGRAPH. J L Lado thanks the
hospitality of the Departamento de Física Aplicada at the Universidad de Alicante. We thank Ivan Brihuega for sharing experimental data. We thank D Jacob for bringing to our attention the embedding method [39]. We thank N Garcia for insightful comments and proof reading of the manuscript. We thank SPICE for support in the organization of the workshop on ‘Magnetic adatoms as building blocks for quantum magnetism’ that has inspired this work.

References

[1] Suh H and Matthias B T 1959 Impurity scattering in superconductors Phys. Rev. 114 977
[2] Shiba H 1968 Classical spins in superconductors Prog. Theor. Phys. 40 435–41
[3] Shiba H and Soda T 1969 Superconducting tunneling through the barrier with paramagnetic impurities Prog. Theor. Phys. 41 25–44
[4] Yu L 1965 Bound state in superconductors with paramagnetic impurities Acta Phys. Sin. 21 79–91
[5] Rusinov A I 1969 Theory of gapless superconductivity in alloys containing paramagnetic impurities Sov. Phys.—JETP 29 1101–6
[6] Yazdani A, Jones B A, Lutz C P, Crompte M F and Eigler D M 1997 Probing the local effects of magnetic impurities on superconductivity Science 275 1767–70
[7] Shi H, Zhang T, Fu Y-S, Chen X, Ma X-C, Li JI, Liu D W-H, Jia J-F and Xue Q-K 2008 High-resolution scanning tunneling spectroscopy of magnetic impurity induced bound states in the superconducting gap of pb thin films Phys. Rev. Lett. 100 226801
[8] Hatter N, Heinrich B W, Ruby M, Pascual J I and Franke K J 2015 Magnetic anisotropy in shiba bound states across a quantum phase transition Nat. Commun. 6 8998
[9] Menard G et al 2015 Coherent long-range magnetic bound states in a superconductor Nat. Phys. 11 1013–6
[10] Ruby M, Pientka F, Peng Y, von Oppen F, Heinrich B W and Franke K J 2015 Tunneling processes into localized subgap states in superconductors Phys. Rev. Lett. 115 087001
[11] Heimes A, Kotetes P and Schön G 2014 Majorana fermions from Shiba states in an antiferromagnetic chain on top of a superconductor Phys. Rev. B 90 060509
[12] Elliott S R and Franz M 2015 Colloquium: Majorana fermions in nuclear, particle, and solid-state physics Rev. Mod. Phys. 87 137
[13] Nadj-Perge S, Drozdov I K, Li JI, Chen H, Leon S, Seo J, MacDonald A H, Bernevig B A and Yazdani A 2014 Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor Science 346 602–7
[14] Pientka F, Glazman I L and von Oppen F 2013 Topological superconducting phase in helical Shiba chains Phys. Rev. B 88 155420
[15] Pöyhönen K, Weststrom A, Röntynen J and Ojanen T 2014 Majorana states in helical Shiba chains and ladders Phys. Rev. B 89 115109
[16] Balatsky A V, Vekhter I L and Zhu J X 2006 Impurity-induced states in conventional and unconventional superconductors Rev. Mod. Phys. 78 373
[17] Heersche H B, Jarillo-Herrero P, Oostinga J B, Vandersypen L M K and Morpguo A F 2007 Bipolar supercurrent in graphene Nature 446 56–9
[18] Komatsu K, Li C, Autier-Laurent S, Bouchiat H and Guéron S 2012 Superconducting proximity effect in long superconductor/ graphene/superconductor junctions: from specular Andreev reflection at zero field to the quantum Hall regime Phys. Rev. B 86 115412
[19] Calado V E, Goswami S, Nanda G, Diez M, Akhmerov A R, Watanabe K, Taniguchi T, Klajniewski T M and Vandersypen L M K 2015 Ballistic Josephson junctions in edge-contacted graphene Nat. Nanotechnol. 10 761–4
[20] Tonnor C, Kimouche A, Coraux J, Maugad L, Desob B, Gilles B and Chapelier C 2013 Induced superconductivity in graphene grown on rhodium Phys. Rev. Lett. 111 246805
[21] Han Z, Allain A, Arjmandi-Tash H, Tikhonov K, Feigelman M, Sacépe B and Bouchiat V 2014 Collapse of superconductivity in a hybrid tin–graphene Josephson junction array Nat. Phys. 10 380–6
[22] Ugeda M M et al 2016 Characterization of collective ground states in single-layer nbs2Nat. Phys. 12 92–7
[23] Cao Y et al 2015 Quality heterostructures from two-dimensional crystals unstable in air by their assembly in inert atmosphere Nano Lett. 15 4914–21
[24] Efetov D K et al 2015 Specular interband Andreev reflections in graphene arXiv:1505.04812
[25] Yang S-L, Sobota J A, Howard C A, Pickard C J, Hashimoto M, Lu D H, Mo S-K, Kirchmann P S and Shen Z X 2014 Superconducting graphene sheets in ca6 enabled by phonon-mediated interband interactions Nat. Commun. 5 3493
[26] Chapman J, Su Y, Howard C A, Kundys D, Grigorenko A, Guinea F, Geim A K, Grigorieva I V and Nair R R 2015 Superconductivity in Ca-doped graphene arXiv:1508.06931
[27] Kheisit K C, Howard C A, Shuttleworth N E, Schofield S R, Iwaya K, Hirahkedan C F, Renner C, Apelli G and Ellerby M 2011 Charge density waves in the graphene sheets of the superconductor CaC6, Nat. Commun. 2 558
[28] Yazev O V and Helm L 2007 Defect-induced magnetism in graphene Phys. Rev. B 75 125408
[29] Palacios J J, Fernández-Rossier J and Brey L 2008 Vacancy-induced magnetism in graphene and graphene ribbons Phys. Rev. B 77 195428
[30] Nair R R, Sepioni M, Tsai I L, Lehtinen O, Keinonen J, Krasheninnikov A V, Thomson T, Geim A K and Grigorieva I V 2012 Spin-half paramagnetism in graphene induced by point defects Nat. Phys. 8 199–202
[31] Santos E J G, Ayuela A and Sánchez-Portal D 2012 Universal magnetic properties of sp3-type defects in covalently functionalized graphene New J. Phys. 14 043022
[32] Boukhvalov D W, Katsnelson M I and Lichtenstein A I 2008 Hydrogen on graphene: electronic structure, total energy, structural distortions and magnetism from first-principles calculations Phys. Rev. B 77 035427
[33] Soriano D, Muñoz-Rojas F, Fernández-Rossier J and Palacios J J 2010 Hydrogenated graphene nanoribbons for spintronics Phys. Rev. B 81 165409
[34] Brihuega I 2013 Atomic scale control of graphene magnetism using hydrogen atoms SPICE Workshop, Magnetic Adatoms as Building Blocks for Quantum Magnetism
[35] Nair R R, Tsai I L, Sepioni M, Lehtinen O, Keinonen J, Krasheninnikov A V, Castro Neto A H, Katsnelson M I, Geim A K and Grigorieva I V 2013 Dual origin of defect magnetism in graphene and its reversible switching by molecular doping Nat. Commun. 4 1010
[36] Yndurain F 2014 Effect of hole doping on the magnetism of point defects in graphene: a theoretical study Phys. Rev. B 90 245420
[37] Wehling T O, Balatsky A V, Katsnelson M I, Lichtenstein A I, Scharnberg K and Wiesendanger R 2007 Local electronic signatures of impurity states in graphene Phys. Rev. B 75 125425
[38] Beenakker C W J 2006 Specular Andreev reflection in graphene Phys. Rev. Lett. 97 060607
[39] Jacob D and Kotliar G 2010 Orbital selective and tunable Kondo effect of magnetic adatoms on graphene: correlated electronic structure calculations Phys. Rev. B 82 085423
[40] Peres N M R, Guinea F and Neto A H C 2006 Electronic properties of disordered two-dimensional carbon Phys. Rev. B 73 125411
[41] Wehling T O, Dahal H P, Lichtenstein A I and Balatsky A V 2008 Local impurity effects in superconducting graphene Phys. Rev. B 78 035414
[42] McMillan W L 1968 Tunneling model of the superconducting proximity effect Phys. Rev. 175 537

[43] Chrestin A, Matsuyama T and Merkt U 1997 Evidence for a proximity-induced energy gap in nb/inas/nb junctions Phys. Rev. B 55 8457

[44] San-Jose P, Lado J L, Aguado R, Guinea F and Fernández-Rossier J 2015 Majorana zero modes in graphene Phys. Rev. X 5 041042

[45] Lim J S et al 2015 Shiba states and zero-bias anomalies in the hybrid normal-superconductor Anderson model Phys. Rev. B 91 045441

[46] Matsuura T 1977 The effects of impurities on superconductors with kondo effect Prog. Theor. Phys. 57 1823–35

[47] Nagaoka Y and Matsuura T 1971 Bound states due to a magnetic impurity in a superconductor: I Prog. Theor. Phys. 46 364–86

[48] Soda T, Matsuura T and Nagaoka Y 1967 sd exchange interaction in a superconductor Prog. Theor. Phys. 38 551–67

[49] Satori K, Shiba H, Sakai O and Shimizu Y 1992 Numerical renormalization group study of magnetic impurities in superconductors J. Phys. Soc. Japan 61 3239–54

[50] Bauer J, Oguri A and Hewson A C 2007 Spectral properties of locally correlated electrons in a Bardeen–Cooper–Schrieffer superconductor J. Phys.: Condens. Matter 19 486211

[51] Kiršanskas G, Goldstein M, Flensberg K, Glazman L I and Paaske J 2015 Yu–Shiba–Rusinov states in phase-biased superconductor-quantum dot-superconductor junctions Phys. Rev. B 92 235422

[52] Haase P, Fuchs S, Pruschke T, Ochoa H and Guinea F 2011 Magnetic moments and Kondo effect near vacancies and resonant scatterers in graphene Phys. Rev. B 83 241408

[53] Sofo J O, Usaj G, Cornaglia P S, Suarez A M, Hernández-Nieves A D and Balseiro C A 2012 Magnetic structure of hydrogen-induced defects on graphene Phys. Rev. B 85 115405