Salmonella Serovars from Humans and Other Sources in Thailand, 1993–2002

Aroon Bangtrakulnonth,* Srirat Pornreongwong,* Chaiwat Pulsrikarn,* Pathom Sawanpanyalert,† Rene S. Hendriksen,† Danilo M. A. Lo Fo Wong,† and Frank M. Aarestrup†

We serotyped 44,087 Salmonella isolates from humans and 26,148 from other sources from 1993 through 2002. The most common serovar causing human salmonellosis in Thailand was Salmonella enterica Weltevreden. Serovars causing human infections in Thailand differ from those in other countries and seem to be related to Salmonella serovars in different food products and reservoirs.

Salmonella enterica is one of the most common causes of human gastroenteritis. The infection is caused primarily by improper handling and digestion of uncooked food; a large number of food animal sources have been identified as reservoirs of the bacteria (1). More than 2,500 serovars of S. enterica have been identified; most have been described as the cause of human infections, but only a limited number of serovars are of public health importance. S. enterica serovars Typhimurium and Enteritidis have been reported to be the most common causes of human salmonellosis (1,2). However, in some regions other serovars are of greater importance (3,4).

Different serovars in one country can be of global importance because of travel and animal and food product trade. Knowledge about the occurrence and epidemiology of different serovars in different countries and geographic regions may assist in the recognition and tracing of new emerging pathogens. We review the trends in serovars of Salmonella causing infections in humans and potential reservoirs in Thailand during 1993 to 2002.

The Study

The World Health Organization (WHO) National Salmonella and Shigella Centre in Bangkok receives all isolates suspected to be Salmonella from all diagnostic laboratories throughout Thailand. From 1993 to 2002, these have included 62 governmental general hospitals; 5 private hospitals; 12 regional medical centers; 3 laboratories within the Department of Livestock Development; 6 laboratories within the Fisheries Department, the Laboratory of Bangkok Health Center, and U.S. Embassy; and 28 food industry laboratories. All laboratories are encouraged to use both direct plating and enrichment broth to isolate Salmonella. For enrichment the laboratories use Selenite, Tetraionate or Rappaport-Vassiliadis Soya Peptone broth. For direct plating they use Salmonella/Shigella, Xylose Lysine Desoxycholate, Brilliant Green or Modified Semi-solid Rappaport-Vassiliadis agar. Accepted brands are Difco, Oxoid, MAST, BBL, and Merck. For shipment the isolates are stabbed in nutrient agar sticks.

On arrival, all isolates were purified and confirmed to be Salmonella on the basis of reactions on triple sugar iron agar and lysine indol motility agar. All strains identified as S. enterica were serotyped according to the Kauffman-White serotyping scheme (5). Salmonella antisera (S & A Reagent Laboratory LMT, Bangkok, Thailand) were used for serotyping. From 1993 through 2002, a total of 70,235 isolates received were confirmed as S. enterica and serotyped.

A total of 118 serovars were identified among the 44,087 isolates from humans. The 25 most common serovars accounted for 86% of the isolates, the 10 most common for 64.7%, and the 5 most common serovars (S. Weltevreden, S. Enteritidis, S. Anatum, S. Derby, S. 1,4,5,12:i) for 44.3% of the isolates (Table 1). The proportion of S. Weltevreden isolates decreased from 13.5% in 1993 to 9.3% in 1996 and has since increased to 18% in 1999, 15.9% in 2001, and 7.9% in 2002. The proportion of S. Enteritidis isolates has decreased during the period from 14% to 9% in 2001 and 12.6% in 2002. The proportion of S. Anatum has varied from 4% to 10%. Salmonella (1,4,5,12:i) peaked in 1996 at 10% but has otherwise been 6%-8%. The proportion of S. Typhimurium isolates peaked in 1997 at 9%, but was 4% in 2002. An increase has been observed for S. Rissen (2% to 8%), S. Stanley (2% to 6%), S. Panama (1% to 6%), and S. Schwarzengrund (0% to 2%), while a decrease has been observed for S. Derby (11% to 3%) and S. Krefeld (4.5% to 1%). The trends of the most common serovars are shown in Figure 1.

Samples have not been systematically taken from the different reservoirs for Salmonella infections in humans. However, data from samples were available from chicken, seafood, other food products, and water for all 10 years. Data from ducks were only available from 1998 to 2002.
The 10 most common serovars from all sources are given in Table 2. All serovars that were represented with >6% of the isolates are given in Figure 2.

S. Enteritidis (19.9%) was the most common serovar among the 14,559 *Salmonella* isolates from chicken, followed by *S. Hadar* (9.3%) and *S. Paratyphi B var Java* (7.1%). The most common serovar among the 1,007 isolates from seafood was *S. Weltevreden* (26%); among the 2,670 isolates from duck, the most commonly isolated serovars were, *S. Weltevreden* (12%), *S. Hadar* (9.9%), *S. Stanley* (10.4%), and *S. Chester* (6.4%). Among the 6,928 isolates from other food products, *S. Anatum* (17.0%), *S. Rissen* (10.3%), *S. Hadar* (6.3%), and *S. Weltevreden* (6.6%) were the predominant serovars; among the 984 isolates from water, they were *S. Weltevreden* (14.5%), *S. Anatum* (11.5%), *S. Rissen* (9.5%), and *S. Derby* (7.2%).

Similar trends were detected for some of the serovars among isolates causing infections in humans and contami-

Serovar	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	Total
Salmonella											
S. Derby	386	650	368	112	137	132	112	137	132	112	2,889
S. Rissen	193	727	112	911	814	794	814	794	814	794	7,148
S. Typhimurium	154	216	326	276	305	276	315	304	334	326	3,232
S. Agona	54	162	222	143	295	246	317	287	259	351	1,096
S. Stanley	64	147	186	85	99	147	245	210	242	263	1,688
S. Panama	31	64	9	80	173	172	264	209	160	230	1,474
S. Agona	118	215	236	103	102	76	95	76	95	95	1,096
S. Choleraeuis	99	87	139	122	68	118	92	69	85	186	1,065
S. Typhimurium	76	107	330	47	157	108	15	7	981		
S. Rissen	149	207	135	72	67	135	72	67	135	72	785
S. Hadar	64	68	198	67	80	875	90	102	79	95	4,520
S. Paratyphi A	31	40	66	46	61	56	132	120	117	48	698
S. Typhi	61	53	41	42	43	64	68	213	82	667	
S. Cheer	52	69	77	28	35	45	89	70	102	79	646
S. Lexington	40	67	66	35	45	60	56	88	52	577	
S. Blockley	82	78	53	27	20	49	56	47	41	667	
*S. Hvidtingfoss	12	94	125	27	12	16	66	41	33	461	
S. Sentfieberg	62	126	64	16	28	37	56	26	26	452	
S. Bovismorbidicans	32	54	87	16	37	42	56	30	29	439	
S. London	27	92	72	45	67	71	24	15	8	421	
S. Schwarzengrund	0	9	3	3	6	26	76	99	52	372	
S. Emek	31	38	56	29	29	51	30	26	27	347	
S. Other	424	1,116	1,011	415	380	643	679	577	366	598	6,299

Total: 3,284

Table 1. The 25 most common serovars of *Salmonella* isolates from humans reported annually, 1993–2002, Thailand

The 10 most common serovars from all sources are given in Table 2. All serovars that were represented with >6% of the isolates are given in Figure 2.

S. Enteritidis (19.9%) was the most common serovar among the 14,559 *Salmonella* isolates from chicken, followed by *S. Hadar* (9.3%) and *S. Paratyphi B var Java* (7.1%). The most common serovar among the 1,007 isolates from seafood was *S. Weltevreden* (26%); among the 2,670 isolates from duck, the most commonly isolated serovars were, *S. Weltevreden* (12%), *S. Hadar* (9.9%), *S. Stanley* (10.4%), and *S. Chester* (6.4%). Among the 6,928 isolates from other food products, *S. Anatum* (17.0%), *S. Rissen* (10.3%), *S. Hadar* (6.3%), and *S. Weltevreden* (6.6%) were the predominant serovars; among the 984 isolates from water, they were *S. Weltevreden* (14.5%), *S. Anatum* (11.5%), *S. Rissen* (9.5%), and *S. Derby* (7.2%).

Similar trends were detected for some of the serovars among isolates causing infections in humans and contami-
nation in some of the food products (Tables 3 and 4). In chicken, the relative incidence of *S. Enteritidis* decreased from 17.1% in 1993 and 33.8% in 1994 to 6.6% in 2001 and increased to 14.2% in 2002. Similarly, *S. Derby* decreased from 6.7% in 1993 to 1.1% in 2002. In contrast, *S. Schwarzengrund* increased from 0.3% in 1993 to 26.2% in 2001, with a decrease to 7.2% in 2002. *S. Rissen* in other food products increased from 4.7% (1993) to 14.7% (2002); *S. Panama* was found in <3% (1993) to >4% (2002); *S. Stanley* was found in 1% (1993) to 7.3% (2002); and *S. Schwarzengrund* was found in 0% (1993) to 3% (2001), followed by a decrease to 1% (2002).

Conclusions

S. enterica continues to be one of the most important causes of foodborne gastrointestinal infections in humans. During the last few decades *S. Enteritidis* and *S. Typhimurium* have emerged as the two predominant serovars in most Western countries. The epidemiology of these serovars has been studied, and different programs have been established to limit the spread of these serovars. However, other serovars may have a different epidemiology, and conditions are optimal for spread between reservoirs in some countries.

Our report indicates that *S. Weltevreden* was the most common serovar isolated from humans in Thailand. A similar finding has been reported from Malaysia (3), and *S. Weltevreden* was the most common serovar to cause human infections in India during the early 1970s (6). Before 1970, this serovar constituted <4% of total human salmonellosis. The number of reported infections caused by *S. Weltevreden* increased in the early 70s; in 1972, this serovar constituted 29.1% of all *Salmonella* infections in India. Thong et al. (7) found the same types of *S. Weltevreden* among isolates infecting humans and those in

Table 2. Distribution of the 10 most common serovars from the different reservoirs, Thailand

Serovar	Humans	Frozen chicken	Frozen seafood	Frozen duck	Other food products	Water
Weltevreden	5,491	—	265 (26.3)	320 (12.0)	457 (6.6)	143 (14.5)
Enteritidis	5,010	2,901 (19.9)	14 (1.4)	—	309 (4.5)	22 (2.2)
Anatum	3,263	423 (2.9)	20 (2.0)	—	1,177 (17.0)	113 (11.5)
Derby	2,889	—	20 (2.0)	—	370 (5.3)	71 (7.2)
1, 4, 5, 12:i:-ssp.I	2,804	—	—	—	72 (10.3)	93 (9.5)
Typhimurium	2,322	—	12 (1.2)	—	198 (2.9)	—
Rissen	2,319	—	21 (2.1)	—	712 (10.3)	93 (9.5)
Stanley	1,688	—	20 (2.0)	279 (10.4)	—	—
Panama	1,474	—	—	41 (1.5)	254 (3.7)	47 (4.8)
Agona	1,096	452 (3.1)	—	80 (3.0)	273 (3.9)	39 (4.0)
Paratyphi B var Java	—	1037 (7.1)	—	—	—	—
Hadar	—	1,357 (9.3)	21 (2.1)	263 (9.9)	439 (6.3)	—
Virchow	—	863 (5.9)	—	—	249 (3.6)	27 (2.7)
Schwarzengrund	—	565 (3.9)	—	—	—	—
Emek	—	359 (2.5)	—	—	—	—
Blockley	—	676 (4.6)	—	—	—	—
Amsterdam	—	368 (2.5)	—	103 (3.9)	—	—
Seftenberg	—	49 (4.9)	86 (3.2)	—	—	—
Lexington	—	47 (4.7)	—	—	35 (3.6)	—
Newport	—	—	100 (3.7)	—	—	—
Tennessee	—	—	77 (2.9)	—	—	—
Chester	—	—	171 (6.4)	—	—	—
London	—	—	—	—	22 (2.2)	—
Other	15,824	5,558 (38.2)	518 (51.4)	1,150 (43.1)	2,490 (35.9)	372 (37.8)
Total	44,087	14,559	1,007	2,670	6,928	984

1.—, not among the top 10 serovars.
raw vegetables, suggesting that this is a potential reservoir of this serovar in Malaysia. Raw vegetables may, however, be contaminated by both feces and water. In a recent study from the United States, *S*. Weltevreden was the most common serovar found in seafood mainly imported from Thailand and Malaysia (8). These observations could point to a water-related source for *S*. Weltevreden.

S. Enteritidis infections in humans in Thailand increased from 1.3% in 1990 to 14% in 1993 to 1994 (4). Thus, Thailand has also been part of the global pandemic of *S*. Enteritidis observed in the late 1980s (9). The 1995 global survey conducted by WHO showed that the global pandemic has continued and expanded (2). The *S*. Enteritidis pandemic appears to have ended in 1997; this finding is similar to the decrease observed in Thailand, where *S*. Enteritidis has decreased during the last decade. However, this serovar is still an important cause of human infections, reflected in the increase in 2002. The frequent occurrence of this serovar in chickens suggests that poultry may be an important reservoir, a finding that is consistent with almost all other studies in other countries (10). Eggs have also been found to be important reservoirs in other countries (10) but were not examined in this study.

S. Anatum has consistently been one of the most important causes of salmonellosis in Thailand. The main reservoirs seem to be other food products and water. This serovar has previously been isolated from a large number of different animal sources.

The importance of *S*. Derby has decreased in Thailand. *S*. Derby has been associated with pigs (11,12). Pork and other swine products were not sampled in this report, but a frequent occurrence of the serovar was observed among unspecified other food products, which could include pork.

Salmonella isolates of serovar (1,4,5,12:i) were frequently found in isolates from humans, but infrequently in isolates from the different food reservoirs. Thirty isolates from Thailand were examined by phage typing and susceptibility testing (data not shown). A variable resistance pattern was observed, and five (17%) had a resistance pattern and phage reaction in agreement with *S*. Typhimurium U302. Twenty (67%) did not react with any phages. Some of these isolates from Thailand might be *S*. Typhimurium, but a large number might belong to other serovars.

S. Typhimurium is among the most prevalent serovars in Europe and America and of growing importance in Southeast Asia, Africa, and the Western Pacific (2). In Thailand, the importance of this serovar has not increased and continues to account for 5% of all human infections. *S*. Typhimurium can be found among a large number of different animal reservoirs; no specific source has been found.

S. Rissen has been isolated infrequently as a cause of human infections, and limited information about the potential reservoirs are available. The importance of this serovar seems to be increasing in Thailand. A specific reservoir for

Table 3. Annual number of reported *Salmonella* isolates from chicken in which changes in number of infections in humans were observed

Salmonella serovar	Trend in human isolates (%)	% of isolates from chicken									
	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	
Enteritidis	14 to 13	17.1	33.8	29.5	15.0	18.5	15.3	14.2	12.0	6.6	14.2
Derby	11 to 3	6.7	0.9	2.6	4.3	1.2	0.4	1.3	1.6	1.1	1.1
Schwarzengrund	0 to 1	0.3	0.1	0.0	0.2	1.6	1.4	3.5	15.0	26.2	7.2
No. of isolates	1,909	2,370	2,010	1,005	1,534	1,414	908	952	836	1,621	
S. Rissen has not been identified, but the frequent occurrence of this serovar in Salmonella from water and other food products indicates that a foodborne or waterborne reservoir is a possibility.

S. Stanley infections were among the 15 most common serovars in 12 of 104 countries (2) in 1995. The relative importance of this serovar seems to be increasing in Thailand, and the only reservoir where the serovar was found in high frequency was duck.

S. Panama has been the cause of a number of outbreaks in different countries (13) and among the 15 most common serovars in 10 of 104 countries in a recent WHO survey (2). To date, no specific reservoir has been identified. The importance of this serovar seems to be increasing in Thailand and may be correlated to a simultaneous increase among food products.

S. Schwarzengrund has only been isolated sporadically from infections in humans and from animal sources. The number of infections caused by this serovar in Thailand is still very low. However, the proportion seems to be increasing in isolates from humans and chicken. From 1993 to 1997, this serovar constituted <0.2% of all reported humans salmonellosis, a proportion that increased from 1% to 2% in 2001 to 2002. During the same period, the proportion among isolates from chicken has increased from a similar figure to 26% of all isolates in 2001 and 7.2% in 2002. Thus, some evidence exists that this serovar could be increasing in importance in the chicken population and subsequently in humans in Thailand. S. Schwarzengrund has also been found in chickens in other studies, suggesting that poultry could be the most common reservoir (14,15).

A large number of other serovars were also isolated from humans and nonhuman sources. However, some serovars most commonly found in the 1995 WHO survey were only infrequently observed in Thailand. S. Hadar was the 12th most common serotype and S. Typhi was the 16th, while other commonly observed serovars such as S. Infantis and S. Newport were not observed among the 25 most common serovars. S. Hadar has been associated with poultry (15). This finding was also observed in this study; S. Hadar was frequently isolated from chicken and duck. However, this finding does not seem to have a major impact on the number of infections in humans.

The results from this report show that serovars can differ largely between countries and regions, which is likely related to the available reservoirs for persistence and spread of Salmonella infections. The distribution of serovars causing infections in Thailand differs markedly from those reported in other countries and seems to be related to the Salmonella serovars in the different food products and other reservoirs for infections. Of particular interest is the frequent occurrence of S. Weltevreden and recent increase in occurrence of S. Rissen, S. Stanley, and S. Schwarzengrund.

Mrs. Bangtrakulnonth is currently head of the World Health Organization National Salmonella and Shigella Centre at the National Institute of Health, Department of Medical Sciences, under the Ministry of Public Health in Thailand.

Table 4. Annual number of reported Salmonella isolates from other food products in which changes in number of infections in humans were observed

Salmonella serovar	Trend in human isolates (%)	% of isolates from other food products
Rissen	2 to 8	10.0 to 15.3
Panama	1 to 6	0.0 to 0.4
Stanley	2 to 6	2.9 to 6.7
Schwarzengrund	0 to 1	0.0 to 4.2
No. of isolates	107	1998

DISPATCHES

References

1. Humphrey TJ. Public-health aspects of Salmonella infections. In: Wray C, Wray A, editors. Salmonella in domestic animals. Wallingford, United Kingdom: CABI publishing, CAB International; 2000.

2. Herikstad H, Motarjemi Y, Tauxe RV. Salmonella surveillance: a global survey of public health serotyping. Epidemiol Infect 2002;129:1–8.

3. Yasin RM, Tiew CC, Jegathesan M. Human salmonellosis in Malaysia for the period 1989–July 1994. Southeast Asian J Trop Med Public Health 1995;26:457–60.

4. Borirsaj V, Bangtrakulnonth A, Pornruangwor S, Saitanu K. Demographic data on Salmonella enteritidis infection in Thailand, 1990–1995: Southeast Asian J Trop Med Public Health 1997;28:774–80.

5. Popoff MY, Le Minor L. Antigenic formulas of the Salmonella serovars. 7th revision. WHO Collaborating Centre for Reference Research on Salmonella. Paris: Institut Pasteur; 1992.

6. Basu S, Sood LR. Salmonella Weltevreden: a sero-type of increasing public health importance in India. Trop Geogr Med 1997;27:387–94.

7. Thong KL, Goh YL, Radu S, Noorzaleha S, Yasin R, Koh YT, et al. Genetic diversity of clinical and environmental strains of Salmonella enterica serotype Weltevreden isolated in Malaysia. J Clin Microbiol 2002;40:2496–503.

8. Heinritz ML, Ruble RD, Wagner DE, Tatini SR. Incidence of Salmonella in fish and seafood. J Food Prot 2000;63:579–92.

9. Rodrigue DC, Tauxe RV, Rowe B. International increase in Salmonella enteritidis: a new pandemic? Epidemiol Infect 1990;105:21–7.

10. Guard-Petter J. The chicken, the egg and Salmonella enteritidis. Environ Microbiol 2001;3:421–30.

Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 10, No. 1, January 2004 135
11. Davies PR, Bovee FG, Funk JA, Morrow WE, Jones FT, Deen J. Isolation of Salmonella serotypes from feces of pigs raised in a multiple-site production system. J Am Vet Med Assoc 1998;212:1925–9.

12. Letellier A, Messier S, Pare J, Menard J, Quessy S. Distribution of Salmonella in swine herds in Quebec. Vet Microbiol 1999;67:299–306.

13. Soto SM, Guerra B, del Cerro A, González-Hevia MA, Méndez MC. Outbreaks and sporadic cases of Salmonella serovar Panama studied by DNA fingerprinting and antimicrobial resistance. Int J Food Microbiol 2001;71:35–43.

14. Limawongpranee S, Hayashidani H, Okatani AT, Ono K, Hirota C, Kaneko K, et al. Prevalence and persistence of Salmonella in broiler chicken flocks. J Vet Med Sci 1999;61:255–9.

15. Poppe C, Irwin RJ, Messier S, Finley GG, Oggel J. The prevalence of Salmonella enteritidis and other Salmonella sp. among Canadian registered commercial chicken broiler flocks. Epidemiol Infect 1991;107:201–11.

Address for correspondence: Frank M. Aarestrup, Danish Institute for Food and Veterinary Research, Bülowsvej 27, DK-1790 Copenhagen V, Denmark; fax: +45 72 34 60 01; email: faa@dfvf.dk

Search past issues of EID at www.cdc.gov/eid