Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Letter to the editor

Diagnostic tests for SARS-CoV-2: Implications in head and neck oncology

Anuraj Singh Kochha, Ritasha Bhasin, Gulsheen Kaur Kochhar, Himanshu Dadlani

PII: S1368-8375(20)30249-9
DOI: https://doi.org/10.1016/j.oraloncology.2020.104813
Reference: OO 104813

To appear in: Oral Oncology

Received Date: 16 May 2020
Accepted Date: 19 May 2020

Please cite this article as: A. Singh Kochha, R. Bhasin, G. Kaur Kochhar, H. Dadlani, Diagnostic tests for SARS-CoV-2: Implications in head and neck oncology, Oral Oncology (2020), doi: https://doi.org/10.1016/j.oraloncology.2020.104813

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier Ltd.
Dear Editor,

Owing to the perplexing nature of SARS-CoV-2 and its asymptomatic spread[1], diagnostic dilemmas exist amongst healthcare practitioners. In the present scenario, to carry out surgical procedures, patients’ diagnostic test reports for SARS-CoV-2 might be sought, particularly in Head and Neck Cancer (HNC) patients, who are more prone to develop COVID-19, as inferred from a cohort study in China.[2] In cancer patients, suspension of oncology treatment can have serious repercussions and should be prioritized.

To perform surgical procedures, many institutions have advocated SARS-CoV-2 screening as the utmost priority and have mandated it.[3] However, it is arduous to screen for and select COVID-19 negative patients for surgery as COVID-19 positive patients may even circumvent two-weeks with negative testing. Hence, inappropriate pre-surgical screening for COVID-19 can be an impediment to safe HNC surgery.[4] Therefore, it is imperative that dentists, oral surgeons, and oncologists have cognizance about the diagnosis and various modalities available for the same, their use, reliability and interpretation, in order to safeguard their patients, staff and themselves.

Synthesis from the present literature divulges that there is an array of diagnostic tests available or in the pipeline, for this pernicious disease, (Table-1)[5-8] which either test for the virus itself or are serological tests detecting antibodies in blood. While the viral tests making use of RT-PCR or qRT-PCR and ELISA tests detecting antibodies usually require laboratories or specific conditions[9], rapid antibody tests can be done albeit any particular conditions. Although qRT-
PCR remains the gold standard, it is not without fallibility.[5] Its sensitivity varies depending on the kits and PCR instrument deployed[9] and mostly takes long to be processed. Rapid RT-PCR tests that have been launched are processed faster but require special armamentarium and only a few can be done at a time depending upon machine capabilities and supply of reagents. RT-PCR test in principle has 100% sensitivity. Nevertheless, due to biology of the disease, for instance, inappropriate timing of sample collection in relation to disease onset or the virus not being present in the particular location being tested at the particular time results in some false negatives.[3,9] Other RT-PCR false negatives may be attributable to further problems, such as laboratories being under the cosh, substandard sample collection and preparation.[9] Healthcare practitioners must be aware of these problems as a single test report cannot be taken at face value.

Also, while nasopharyngeal swabs are predominant means of obtaining the sample, a single nasopharyngeal swab is only 63% sensitive, compared to bronchoalveolar lavage specimens being 93%, which however are difficult to obtain.[5] Hence, other samples are being researched. Saliva and GCF which can provide a quick and non-invasive sample have become increasingly popular for SARS-CoV-2 diagnosis, requiring further exploration.[10]

Rapid serology tests, which do not require centralized facilities, detect antibodies wherein IgM antibodies are discerned in early disease whereas IgG are formed later & persist longer. Although rapid tests infer expedited diagnosis of COVID-19, false negatives and cross-reactivity are a bigger problem which cannot be overlooked.[6-8]
Diagnostic tests should be correlated with clinical findings. While taking the history and during the oral examination, attention should be paid to features, such as dysgeusia/ageusia, dry mouth and exanthematous lesions like ulcers or blisters which might be initial symptoms of COVID-19, presenting even before fever, dry cough, and other quintessential clinical symptoms. Self-acknowledged loss of taste and smell might be owed to the cellular entry receptors of SARS-CoV-2 (ACE2) and is a much stronger predictor of a positive COVID-19 diagnosis than self-disclosed fever.[10]

Testing via saliva or GCF samples may be valuable and dentists and oral surgeons might play a pivotal role in early diagnosis. Hence, the practitioner must be apprised with the expression of the disease and test modalities available. The results should be interpreted prudently, and the clinicians must use their acumen while corroborating the results with the patient’s history and clinical findings for their HNC patients.

Table Heading:
Table-1: Diagnostic tests for SARS-CoV-2 and Dental Implications
References:

1. Suri S, Vandersluis YR, Kochhar AS, Bhasin R, Abdallah M. Clinical orthodontic management during the COVID-19 pandemic. The Angle Orthodontist. 2020; [epub ahead of print] [Date Accessed May 16, 2020] https://doi.org/10.2319/033120-236.1

2. Wang H, Zhang L. Risk of COVID-19 for patients with cancer. The Lancet Oncology. 2020;21(4):e181. https://doi.org/10.1016/S1470-2045(20)30149-2

3. Panesar K, Dodson T, Lynch J, Bryson-Cahn C, Chew L, Dillon J. Evolution of COVID-19 Guidelines for University of Washington Oral and Maxillofacial Surgery Patient Care. Journal of Oral and Maxillofacial Surgery. 2020 [epub ahead of print][Date Accessed May 16, 2020] https://doi.org/10.1016/j.joms.2020.04.034

4. Day AT, Sher DJ, Lee RC, et al. Head and neck oncology during the COVID-19 pandemic: Reconsidering traditional treatment paradigms in light of new surgical and other multi-level risks. Oral Oncology. 2020;105:104684. https://doi.org/10.1016/j.oraloncology.2020.104684

5. Sethuraman N, Jeremiah SS, Ryo A. Interpreting Diagnostic Tests for SARS-CoV-2. JAMA. 2020 [epub ahead of print] [Accessed on 16 May 2020] doi:10.1001/jama.2020.8259
6. Santiago I. Trends and innovations in biosensors for COVID-19 mass testing. ChemBioChem. 2020[epub ahead of print][Accessed on 16 May, 2020] https://doi.org/10.1002/cbic.202000250

7. Cheng MP, Papenburg J, Desjardins M, et al. Diagnostic Testing for Severe Acute Respiratory Syndrome–Related Coronavirus-2. Ann Intern Med. 2020[epub ahead of print] [Accessed on 16 May, 2020] https://doi.org/10.7326/M20-1301

8. Udugama B, Kadhiresan P, Kozlowski HN, et al. Diagnosing COVID-19: The Disease and Tools for Detection. ACS Nano. 2020;14(4):3822-35.https://doi.org/10.1021/acsnano.0c02624

9. De Virgilio A, Costantino A, Mercante G, Spriano G. How to increase the SARS-CoV-2 detection rate through the nasopharyngeal swab? Oral Oncology. 2020;104802.https://doi.org/10.1016/j.oraloncology.2020.104802

10. Ren Y, Rasubala L, Malmstrom H, Eliav E. Dental Care and Oral Health under the Clouds of COVID-19.J. Dent. Res 2020 Apr 24:238008442092438 [Date Accessed May 16, 2020] https://doi.org/10.1177%2F2380084420924385