Effects of flow condition and chute geometry on the shockwaves formed on chute spillway

Tohid Jamali Rovesht, Mohammad Manafpour and Mehdi Lotfi

Hydraulic Structure Engineering, Urmia University, Urmia, Iran
Department of Civil Engineering, Urmia University, Urmia, Iran

Corresponding author. E-mail: st_t.jamali@urmia.ac.ir

ABSTRACT

Shock waves have undesirable effects, such as excessive dynamic pressure on spillway walls and the extension of flow beyond spillway conduits. To eliminate these detrimental impacts, designers have attempted to detect the characteristics of these waves. Flow interaction with chute piers generates triple waves in the middle walls and sidewalls of spillway conduits. The present study quantitatively investigated the characteristics of these waves with respect to variations in the bottom inclination angle (θ), wall contraction (ψ), and Fr numbers (Fr₀). The results indicated that with the increment of θ, Fr₀, (ψ, Fr₀), and (θ, Fr₀), the height (Hₘ) and distance (lₘ) of the first wave (w₁) increased, which can be helpful for flow aeration. Furthermore, owing to a boost in θ, Fr₀, (ψ, Fr₀), and (θ, Fr₀), the height of the second wave (w₂) was decreased. Therefore, the amount of dynamic pressure on the spillway walls was reduced. Moreover, the distance of w₂ decreased with a rise in θ, ψ and increased with the increment of Fr₀ and (ψ, Fr₀). As for w₃, raising ψ and (ψ, Fr₀) elevated the height of this wave and declined its distance. An increase in the height of w₃ boosted the flow turbulence and aeration.

Key words: chute spillways, Flow-3D, numerical model, shockwave characteristics

HIGHLIGHT

- The characteristics of the shockwaves were investigated with respect to various bottom inclination angles, variations in wall contraction, and different Fr numbers.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/).
NOTATIONS

Fr_0 Froude number

g gravitational acceleration (m/s²)

H shockwave height (m)

H_{max} Maximum shockwave height (m)

H_{avg} average shockwave height in transverse direction of H_{max} (m)

θ bottom inclination angle (degree)

φ wall contraction (degree)

l_s distance between location of H_{max} and tip of chute pier (m)

a_1 First shock angle (degree)

a_2 Second shock angle (degree)

ρ water density (kg/m³)

μ dynamic viscosity of water (Pa·s)

σ surface tension (N/m)

V average flow velocity in the spillway (m/s)

b_p pier width (m)

b_s pier space (m)

w_1 First shockwave

w_2 Second shockwave

w_3 Third shockwave

↑ increase

↓ decrease

→ move toward downstream

← move toward upstream
1. INTRODUCTION

Spillways, as principal sections of dams, play a critical role in receiving water and delivering it to the downstream so as to prevent dam overtopping during floods. In spillways, due to high flow velocity and geometrical changes, some undesirable phenomena, such as local vortices, cavitation, and shock waves, may occur during operations. Although numerous studies have been conducted to determine flow characteristics in dam structures, limited information is currently available about shock waves (Hunt et al. 2008; Woolbright et al. 2008; Bai et al. 2016; Jahani et al. 2018; Juan César et al. 2018).

Shock waves are usually formed in chute piers and inclined chutes (Reinauer & Hager 1994, 1997; Wu et al. 2006; Wu & Yan 2008; Abdo et al. 2018). Piers are used to install gates, divide the longitudinal section of spillways, and enhance aeration; therefore, using the piers is inevitable. Moreover, due to a decline in chute width due to bridges, a transition from side-channel intakes to tunnel spillways, and a decrease in excavation cost, designers make use of inclined chutes (Reisi et al. 2015; Salazar et al. 2019).

According to the literature, three kinds of shock waves are produced in chute spillways (Figure 1). The first wave (w_1), called rooster tail waves, is generated just after piers (Wu et al. 2005; Chen et al. 2013). The first wave moves in the transverse direction and collides with sidewalls, which leads to the formation of the second wave (w_2). Finally, owing to the development of the second wave and channel convergence, the third wave (w_3) is created at the mid-latitude of the channel axis (Biabani et al. 2019). The formation of these waves brings about unbalanced hydraulic conditions and imposes considerable dynamic pressure on the sidewalls of the structure. Therefore, it is necessary to explore the features of these waves in order to achieve more practical and efficient designs for dam structures.

Jan et al. (2009) studied the characteristics of w_3 in inclined chutes considering the effects of sidewall contraction ($27.45^\circ < \varphi < 40.17^\circ$), the bottom inclination angle ($6.22^\circ < \theta < 25.38^\circ$), and the Fr number ($1.04 < Fr_0 < 3.51$). They offered empirical dimensionless relations to predict maximum shock wave height (H_m), the distance of the maximum shock wave (l_s), and the shock angle (α). The results of their study showed that under the same inflow conditions, with an increase in sidewall convergence, the values of α and H_m were raised while the value of l_s decreased. Pagliara & Kurdistani (2011) observed that increasing Fr_0 led to a boost in the height of rooster tail waves and air concentration. Hassanzadeh et al. (2019) investigated the characteristics of rooster tail waves in horseshoe spillways and concluded that the height of these waves had a linear relationship with the flow velocity, and length had a reverse relationship with the spillway length. In their study, Xue et al. (2018) pointed out that the height of rooster tail waves was augmented by increasing spillway slope. Nikpura et al. (2018) showed that decreasing the length of contraction walls in open channels raised the flow velocity and the shock wave height. Mousavimehr et al. (2021) investigated the behavior of shock waves along chute spillways and found that with an increase in the Froude number, the wavelength at walls was augmented while the wave height was shortened. Furthermore, the maximum end sections of the waves were transmitted to the downstream area.

![Figure 1](image-url) | Sketch of hydraulic shockwaves in a chute spillway.
In plenty of studies, the K-ε (RNG) turbulence model and the VOF method have been used to investigate the characteristics of flow on hydraulic structures. For instance, Aminoroayaie Yamini et al. (2021) evaluated the hydrodynamic performance of flow and cavitation indices in the bottom outlet of Sardab Dam. Stamou et al. (2008) examined the characteristics of supercritical flows in gradual open channel expansions. Ebrahimnejzad er al. (2020) simulated flow on the spillway of Gavoshan Dam to determine the effect of the bucket edge angle on hydraulic flow characteristics. Jahani et al. (2018) assessed the impact of the geometry of guide walls and piers on flow patterns at the spillway entrance of Jareh Dam. Bayon et al. (2018) studied flow behaviors in the non-aerated region of stepped spillways. The cavitation index was calculated for different values of bed roughness in chute spillways by Samadi-Boroujeni et al. (2019). Also, in his studies, Yakhot et al. (1992) observed that in comparison with the k-ε model, the Renormalized Group Equations had higher accuracy in measuring flow behaviors which has stronger shear regions, and lower turbulence intensity.

As obvious, previous studies have focused on certain aspects of Dam, which restricts their practical implications. In this vein, there is a lack of knowledge about the features of shock waves in chute spillways. Therefore, it is required to identify the characteristics of these waves under hydraulic and geometric variations. In the present study, the characteristics of shock waves, such as \(H/H_{aw} \) (at the transverse direction of the \(H_m \) location), \(l_i \) (the distance between the location of \(H_m \) and the tip of the chute pier), and \(\alpha \) (the shock angle), were investigated with respect to various bottom inclination angles (\(4^\circ < \theta < 12^\circ \)), variations in wall contraction (\(3^\circ < \varphi < 7^\circ \)), and different \(Fr \) numbers (2.18 < \(Fr_0 \) < 5.85). Then, the simultaneous effects of (\(\varphi, Fr_0 \)) and (\(\theta, Fr_0 \)) were studied in 76 scenarios (see Table 1). Ultimately, the obtained results were compared with the findings of previous research.

2. BASIC EQUATIONS OF FLOW FIELD

There are two basic equations of fluid motion: the continuity and momentum equations expressed as Equations (1) and (2) for incompressible and turbulent flow with constant viscosity and density (Ferziger & Peric 2012).

\[
\frac{\partial U_i}{\partial x_i} = 0 \tag{1}
\]

\[
\frac{\partial U_i}{\partial t} + U_i \frac{\partial U_i}{\partial x_i} = - \frac{1}{\rho} \frac{\partial P}{\partial x_i} + \frac{\partial}{\partial x_j} \left(\nu \frac{\partial U_i}{\partial x_j} - \frac{\nu'}{2} \frac{\partial U_j}{\partial x_i} \right) \tag{2}
\]

where \(x_i \), \(t \), and \(\rho \) represent the Cartesian system, time, and fluid density, respectively. \(P, U_i, \frac{\nu'}{2}, \frac{\partial U_j}{\partial x_i} \) denote the mean pressure, velocity, and fractional area of fluid (VOF) method and a maker function \(F \) (x, y, z, t). This function reflects the VOF #1 per unit volume and satisfies the following equations:

\[
\frac{\partial F}{\partial t} + \frac{1}{V_F} \left[\frac{\partial}{\partial x} (FA_x u) + R \frac{\partial}{\partial y} (FA_y v) \right] + \frac{1}{V_F} \left[\frac{\partial}{\partial z} (FA_z w) + \frac{\xi}{\nu A_x} \frac{FA_x u}{x} \vphantom{\frac{\xi}{\nu A_x}} \right] = F_{DIF} + F_{SOR} \tag{3}
\]

\[
FDIF = \frac{1}{V_F} \left[\frac{\partial}{\partial x} \left(v \nu A_x \frac{\partial F}{\partial x} + R \frac{\partial}{\partial y} \left(\nu \nu A_y \frac{\partial F}{\partial y} \right) \vphantom{\frac{\partial}{\partial x}} \right) \right] + \frac{1}{V_F} \left[\frac{\partial}{\partial z} \left(v \nu A_z \frac{\partial F}{\partial z} \vphantom{\frac{\partial}{\partial z}} \right) + \frac{\xi}{\nu A_x} \frac{FA_x F}{X} \right] \tag{4}
\]

where \(V_F \) is the volume fraction of flow, \(u, v, w \). \(A_x, A_y, \) and \(A_z \) signify the velocity and fractional area of flow components along the x, y, and z axes, respectively. When Cartesian coordinates are used, \(R \) is set to 1 and \(\xi \) to 0. The term \(F_{SOR} \)

Table 1 | Variations of Fr number (\(Fr_0 \)), bottom inclination angle (\(\theta \)), and wall contraction (\(\varphi \)) used in the cases of simulations

\(Fr_0 \)	\(\theta \)	\(\varphi \)
2.18	3	4
2.58	4	6
2.74	5	8
2.95	6	10
3.20	7	12
corresponds to R_{SOR} (the density source) in Equation (3). F_{SOR} refers to the time rate of change in fluid volume fraction $\#1$ associated with the mass source for fluid $\#1$.

F is construed based on the type of problem. For a single fluid, F represents the volume fraction occupied by the fluid. Thus, fluid exists where $F = 1$. Void regions refer to the locations where there is no fluid mass ($F = 0$). Thus, a uniform pressure was assigned to void regions. Physically, they refer to the areas that are filled with vapor or gas and have a negligible density with respect to fluid density (Hirt & Nichols 1981; Zhang et al. 2011).

3. GENERAL CHARACTERISTICS OF NAZLOOCHAY DAM AND ITS FACILITIES

The embankment of Nazloochay Dam with a clay core is located in the Northwest of Urmia Province, Iran. This dam controls flows in the Nazloo River. This dam is designed to effectively manage and use water and soil resources in the region, prevent downstream floods, supply municipal water, and irrigate farmlands. A chute spillway, constructed on the right side of the dam, consists of an entrance channel with a pier, spillway crest, chute section, and stilling basin. Figure 2 illustrates the plan and longitudinal sections of the spillway. As seen in Figure 2, the 2-m pier on the central axes of the entrance channel divides the longitudinal section of the crest into two spaces, each with a length of 21 m. The upstream and downstream faces of the spillway crest are designed based on the recommended international standards. These upstream and downstream faces had circle radii of 4.75 and 1.5 m, and a parabolic shape with Equation $Y = 0.1015x^{1.836}$, respectively. The chute section is comprised of two parts. One of them has a bottom slope of 4° and a convergent-sidewall degree of 3° and the other one has a bottom slope of 32° and a consistent-width value of 50 m. This spillway was designed for a maximum discharge rate of 2,270 m3s$^{-1}$ (The final report of Nazloochay dam’s spillway hydraulic model 2008).

4. NUMERICAL MODEL

In this research, the Flow-3D software was used to develop a three-dimensional (3D) numerical model for the spillway in Nazloochay Dam. The 3D geometry of this spillway was initially drawn in actual size by the Auto Cad3D software. Then, it was exported to the Flow-3D in the STL format. The boundary conditions of the numerical model are reported in Table 2.
The fluid was considered incompressible with a single-phase flow. To benefit from the features of the Renormalization Group, it was substituted for constant factors. In this regard, the turbulent model of K-ε (RNG) was used. The VOF method was also employed to calculate the free surface profile for the flow downstream of the service gate.

The accuracy of the computational meshes was increased by considering the interior part of the spillway as a meshing component and the volume flow rate boundary condition as model input. Due to the longitudinal symmetry of the conduit, half of the flow was simulated so as to boost the number of simulated cells with small sizes. Therefore, the flow simulation errors decreased in the regions under study (Table 3).

5. PHYSICAL MODEL OF SPILLWAY AND VALIDATION OF NUMERICAL MODEL

The physical model of the spillway comprises Plexiglas sheets and wood in the 1:40 scale. In order to measure the flow depth along the spillway channel, a point gauge, a ruler, and scale side walls were utilized. A pitot tube and a current meter were

Table 2	Boundary condition of the numerical model
Item	Definition
Model input	Volume flow rate
Model output	Outflow
Walls	Wall
Border between the blocks	Symmetry

Table 3	Sensitivity of numerical model under various boundary conditions and simulated areas											
Row	Boundary condition of model input	Simulated area	Cell dimensions	The computational time (s)	R²	Depth	Velocity					
			Upstream of the crest	Downstream of the crest	Total cells		Q830	Q1200	Q2270	Q830	Q1200	Q2270
1	Volume flow rate	Whole spillway duct	0.4	0.3	9,633,362	25	0.829	0.818	0.845	0.819	0.828	0.835
2	Volume flow rate	Interior part of the spillway duct	0.4	0.3	7,076,576	25	0.889	0.879	0.890	0.879	0.889	0.899
3	Volume flow rate	Half of the interior part of spillway	0.4	0.3	3,816,681	25	0.889	0.879	0.890	0.879	0.889	0.899
4	Volume flow rate	Half of the interior part of spillway	0.3	0.25	9,245,654	25	0.989	0.985	0.976	0.990	0.961	0.974
5	Volume flow rate	Half of the interior part of spillway	0.3	0.2	12,251,520	25	0.989	0.985	0.976	0.990	0.961	0.974
6	Flow velocity	Half of the interior part of spillway	0.3	0.2	12,251,520	25	0.943	0.942	0.934	0.921	0.932	0.912
7	Flow pressure	Half of the interior part of spillway	0.3	0.2	12,251,520	25	0.954	0.957	0.962	0.971	0.968	0.975
also used to measure the flow velocity. A rectangular channel was also placed in the downstream of the physical model to compute the flow discharge rate (Figure 3). To calculate the flow pressure, 214 piezometers were used on the sidewalls and at the bottom of the physical model. The flow depth and velocity were measured using various service flow rates. In the physical model, some measurement errors were observed in model construction, velocity and pressure measurements, and the reading of water level and flow depth.

The numerical simulations were performed based on the prototype spillway for the total flow rate of 830 m3/s (less than the average flow rate), 1,200 m3/s (the average flow rate), and 2,270 m3/s (the maximum flow rate). The performance of the numerical model was validated using the flow depth and velocity on the central axes of the spillway in the physical model (Figures 4(a)–4(c) and 5(a)–5(c)). There was a discrepancy between the numerical and experimental values of flow depth and velocity at the stilling basin section where the flow encountered turbulence and hydraulic jumps. However, the estimated errors were less than 4%, which was acceptable in engineering practice. Therefore, the numerical model was verified.

6. DIMENSIONAL ANALYSIS OF SHOCK WAVE HEIGHT (H)

Due to the steep slope of the second part of the chute section (32°), the shock waves dissipated in this part. Consequently, the upstream of the above-mentioned section was simulated to explore the characteristics of these waves. As depicted in Figure 1, the amount of H was determined by the geometric and hydraulic parameters, including water density ρ (kg/m3), the dynamic viscosity of water μ (N s/m2), the average flow velocity in the spillway V (m/s), surface tension σ (N/m), the acceleration of gravity g (m/s2), the average flow depth h_{av} (m), the bottom inclination angle $\theta = \arctan (h/l)$, wall contraction $\varphi = \arctan (h/l)$, pier width b_p (m), and pier space b_a (m). The general role of these variables in the amount of H is defined via the following equation:

$$H = f (\rho, \mu, g, h_{av}, V, \theta, \varphi, b_p, b_a)$$

(5)

Given that the Reynolds number and flow depth were bigger than 10^5 and 5 mm, respectively, μ and σ were ignored. Also, geometrical parameters b_p and b_a were not included. Parameters ρ, g, and h signify three independent basic dimensionless quantities. Considering the dimensions of these parameters, the following non-dimensional equation is formed using the π theorem:

$$\frac{H}{h_{av}} = f (\rho, g, V, \theta, \varphi)$$

(6)

Equation (6) is rewritten as follows:

$$\frac{H}{h_{av}} = f (\theta, \varphi, Fr_0)$$

(7)

As seen in Equation (7), the amount of H/h_{av} is a function of the bottom inclination angle (θ), wall contraction (φ), and the Fr number (Fr_0).

7. RESULTS AND DISCUSSION

7.1. CHARACTERISTICS OF SHOCK WAVES

7.1.1. Impact of bottom inclination angle (θ)

This part presents different characteristics of the triple waves (w_1, w_2, w_3), such as H/H_{av}, l_s, and α, with regard to the variations in the bottom inclination angle ($4^\circ < \theta < 12^\circ$). It is worth noting that the Fr number ($Fr_0 = 2.18$ ($Q = 1,200$ m3/s)) and wall contraction ($\varphi = 3^\circ$) were constant in all simulations. Furthermore, H_{av} was the average flow height in the transverse direction of the H_m location. Figure 6 depicts the transverse and longitudinal profiles of w_1 and w_2. As clear, by increasing θ from 4° to 12°, the value of H/H_{av} increased in w_1. Additionally, this wave was generated at greater distances. To put it in other terms, the amount of H/H_{av} was elevated from 1.120 to 1.32, and that of l_s was raised from 9.2 to 15.5 m. Hassanzadeh et al. (2019) found that the height and length of w_1 had a linear relationship with the flow velocity. Therefore, with a boost in θ, the flow velocity
Figure 3 | Physical model of Nazloochay spillway and laboratory measuring instruments.
Figure 4 (a–c) Numerical and experimental results of flow depth along central axes of spillway at flow rates of (a) 830, (b) 1,200, and (c) 2,270 m3/s.
Figure 5 | (a-c) Numerical and experimental results of flow velocity along central axes of spillway at flow rates of (a) 830, (b) 1,200, and (c) 2,270 m3/s.
rose, which brought about an increase in the height of \(w_1 \). As the result of Pagliara & Kurdistani (2011) also indicated, the higher the height of \(w_1 \), the more the amount of air concentration. Hence, it can be declared that increasing \(\theta \) elevates pressure along the conduit of chute spillways.

Figure 6 | Transverse and longitudinal profiles of \(w_1 \) and \(w_2 \) with respect to variations in bottom inclination angle (\(\theta \)).

Figure 7 | Sketch of shock angle (\(\alpha \)) with respect to variations in bottom inclination angle (\(\theta \)).
Concerning the characteristics of \(w_2\), the amounts of \(H = H_{av}\) and \(l_s\) decreased by increasing the angle. The amount of \(H = H_{av}\) declined from 1.614 in \(\theta = 4^\circ\) to 1.162 in \(\theta = 12^\circ\). Furthermore, \(H_m\) was pushed 4.5 m toward the upstream. It shows that increasing \(\theta\) makes \(w_2\) longer and thinner.

Based on the obtained results, it can be asserted that with a boost in \(\theta\), the amount of \(l_s\) in \(w_1\) increases, and the amount of \(l_s\) in \(w_2\) is reduced, which leads to the increment of \(\alpha_1\). Figure 7 exhibits the sketch of \(\alpha_1\) in various degrees of the angle (\(\theta\)). The amount of \(\alpha_1\) was augmented from 10.06° in \(\theta = 4^\circ\) to 11.8° in \(\theta = 12^\circ\).

As a result of increasing \(\theta\), the height of \(w_2\) declined and the flow entered the second part of the chute. Consequently, the height of \(w_3\) plummeted and dissipated. Therefore, the characteristics of this wave were not measured.

7.1.2. Impact of wall contraction (\(\varphi\))

The behavior of the shock waves was assessed with respect to variations in \(\varphi\). It is worth noting that the bottom inclination angle (\(\theta = 4^\circ\)) and the \(Fr\) number (\(Fr = 2.18\)) remained constant. Owning to the relevance of \(\tan \varphi \leq (2Fr)^{-1}\), the maximum amount of contraction angle can increase to 12.91° in \(Fr = 2.18\). Thus, in this study, \(\varphi\) was set in the range of 3° to 7°.

The results revealed that regarding \(w_1\), the increment of \(\varphi\) had no significant effect on the values of \(H = H_{av}\) and \(l_s\). The contraction of the walls started at the pier, which largely influenced the flow in the downstream. As a result, the amount of \(H = H_{av}\)
varied from 1.197 to 1.22 and that of l_s ranged from 9 to 11 m. Boosting φ not only had a remarkable impact on w_1 but also substantially affected w_2 and w_3. As illustrated in Figure 8, the amount of H/H_{aw} increased from 1.56 to 1.72 in w_2 and from 1.339 to 1.68 in w_3. The amount of l_s decreased by 16 m in w_2 and by 35 m in w_3. Consequently, both w_2 and w_3 moved toward the upstream. Because of the wall contraction, the shock waves had already collided with the sidewalls. All of the aforementioned results are consistent with the findings of Biabani et al. (2019) who observed that by increasing φ from 3° to 7°, the amount of H/H_{aw} in w_3 increased from 1.9 to 2.2. In a similar vein, the amounts of w_1 characteristics were varied with variations in φ.

Concerning α_1 and α_2, Figure 9(a) and 9(b) show that with an increase in φ, the degree of α_1 was raised from 10.09° to 15.63°. This can be attributed to the formation of w_2 at lower distances and a drop in the amount of l_s. In addition, α_2 had an upward trend and increased from 13.61° to 26.77°. Both w_2 and w_3 moved toward the upstream; however, variations in w_3 were larger.

7.1.3. Impact of Fr number

According to Reinauer & Hager (1994), Fr numbers greater than 5 have no significant effect on the characteristics of shock waves, meaning that, similar shock wave specifications would be obtained for $Fr_0 > 5$. In the current study, since the Fr numbers were less than 5 (2.18 < Fr_0 < 3.85), the amounts of bottom inclination angle ($\theta = 4°$) and wall contraction ($\varphi = 3°$) remained stable.

The transverse and longitudinal profiles of w_1 and w_2 are displayed in Figure 10. The amounts of H/H_{aw} and l_s rose by increasing the Fr number in w_1. To be more exact, the amount of H/H_{aw} was elevated from 1.197 to 1.52 and the amount of l_s was raised from 9.2 to 13.80 m. As a result of increasing the Fr number, the velocity of the flows colliding with each other increased after the chute pier, which led to the extension of the height of w_1.

Considering w_2, increasing the Fr number pushed this wave toward the downstream and declined the amount of H/H_{aw}. As presented in Figure 10 the amount of H/H_{aw} lessened from 1.614 in $Fr = 2.18$ to 1.21 in $Fr = 3.85$. Consequently, w_2 moved 6.7 m toward the downstream. As a result of a boost in the Fr number, the flow velocity increased, which prevents the

Figure 9 | Sketch of shock angle (α_1 and α_2) with respect to variations in wall contraction (φ).
first shock wave from developing or colliding with sidewalls at the upstream parts. In a similar vein, Mousavimehr et al. (2021) found that boosting the Fr number led to an increase in the wavelength at the walls and a reduction in the wave height. Furthermore, the maximum end sections of the waves were transmitted to the downstream.

Given that with a rise in the Fr number, w_2 exhibited a greater movement than w_1, α_1 declined from 10.05° in Fr = 2.18 to 9.905° in Fr = 3.85 in w_2 (Figure 11).

When the flow entered the second part of the chute, the height of w_2 decreased, the characteristics of w_3 were not examined.

7.1.4. Simultaneous impact of ψ and Fr0

In this study, the influence of the prominent parameters (H/H_{aw}, l_x, α_1, and α_2) on the features of shock waves was evaluated individually. However, exploring the simultaneous effects of these parameters can also provide invaluable information on the most influential factors and substantially assist designers in constructing more efficient structures.

In this regard, as pointed out in Sections 7.1.2 and 7.1.3, the contraction angle of the walls ranged from 3° to 7° (3° < ψ < 7°), and the Fr number was set between 2.18 and 5.85 (2.18 < Fr0 < 3.85). The relevance of $\tan \psi \leq (2Fr)^{-1}$ confirmed the maximum amount of ψ (7°) in Fr = 3.85.

Figure 12 showed that as for w_1, the increment of the Fr number increased the value of H_m/H_{aw} from 0.070 to 0.105 and the value of l_x from 6.6 to 8 m. On the other hand, with a boost in ψ, the amount of H_m/H_{aw} varied between −0.020 and +0.011 and the amount of l_x ranged between −0.10 and +1.30. Hence, compared to ψ, the Fr number had a more remarkable impact
on the formation of \(w_1 \). As a result, it can be claimed that by simultaneously increasing \(\varphi \) and \(Fr_0 \) in the mentioned ranges, this wave moves toward the downstream and the amount of \(H_m = H_{av} \) is elevated.

With regard to \(w_2 \), it was found that the amount of \(H_m = H_{av} \) was determined by the \(Fr \) number. A closer analysis revealed that the increment of \(\varphi \) increased the amount of this parameter at most to 0.156 while an increase in the \(Fr \) number lessened it by more than 0.35. Nonetheless, the location of \(H_m \) was determined by \(w \). Therefore, this wave moved toward the upstream. In other words, although a boost in the \(Fr \) number pushed this wave toward the downstream, in all the states, \(\varphi \) pushed this wave more toward the upstream (Figure 12).

The variations of the \(H_m = H_{av} \) and \(l_s \) values in \(w_3 \) were the same as those in \(w_2 \), meaning that, the amounts of the \(H_m = H_{av} \) and \(l_s \) decreased in \(w_3 \) as well (Figure 12). It is worth mentioning that this wave in \(\varphi = 3^\circ \) and \(Fr = 2.18 \) entered the second part of the chute and dissipated.

7.1.5. Simultaneous impact of \(\theta \) and \(Fr_0 \)

The results associated with the simultaneous influence of \(\theta \) \((4^\circ \leq \theta \leq 12^\circ) \) and \(Fr_0 \) \((2.18 < Fr_0 < 3.85) \) on the shock wave characteristics demonstrated that by increasing both parameters, the amounts of \(H_m / H_{av} \) and \(l_s \) were boosted in \(w_1 \). As seen in Figure 13, the amounts of \(H_m / H_{av} \) and \(l_s \) were raised at least by 0.078 and 2.80 m, respectively, with an increase in the \(Fr \) number. Moreover, the \(H_m / H_{av} \) and \(l_s \) amounts increased by 0.068 and 3.00 m with a boost in \(\theta \).

Concerning \(w_2 \), with a rise in each parameter, the amount of \(H_m / H_{av} \) decreased by at least 0.2. The location of \(H_m \) was variable and did not follow any special pattern. In other words, this wave sometimes moved toward the upstream and sometimes toward the downstream (Figure 13). Also, owing to a reduction in the height of \(w_2 \), \(w_3 \) was not formed.

8. CONCLUSION

In the present study, the characteristics of shock waves (\(H/H_{av} \), \(l_s \), \(\alpha_1 \), and \(\alpha_2 \)) were investigated in chute spillways with respect to variations in the bottom inclination angle \((4^\circ < \theta < 12^\circ) \), wall contraction \((3^\circ < \varphi < 7^\circ) \), and \(Fr \) numbers \((2.18 < Fr_0 < 3.85) \). The simultaneous effects of \((\varphi, Fr_0) \) and \((\theta, Fr_0) \) on aforementioned parameters were also studied. The numerical model was simulated in the Flow-3D software and verified through the experimental results of the chute spillway in Nazloochay Dam. The results can substantially contribute to designing more efficient chute spillways with a pier.

Based on the results, the following conclusions are drawn:

- The amounts of \(H/H_{av} \) and \(l_s \) in \(w_1 \) increased with the increment of \(\theta \), \(Fr_0 \), \((\varphi, Fr_0) \), and \((\theta, Fr_0) \). The major reason lies in the fact that elevated \(\theta \) and \(Fr_0 \) boost flow velocity, which induces the collision of water flows after the pier and pushes them toward the downstream. Furthermore, increasing the height of \(w_1 \) raises the amount of air concentration. Nonetheless, an increase in \(\varphi \) did not have any significant impact on the above-mentioned shock wave characteristics.

Figure 11 | Sketch of shock angle \((\alpha_1) \) with respect to variations in \(Fr \) number \((Fr_0) \).
In w_2, the amount of H_m/H_{aw} decreases by increasing θ, Fr_0, (φ, Fr_0), and (θ, Fr_0). The increment of θ and Fr_0 enhances flow velocity, which makes w_2 shorter and longer. However, the amount of the mentioned parameter is augmented with a boost in φ.

In w_2, l_i declines by increasing θ and φ and is raised with the increment of Fr_0 and (φ, Fr_0). An increase in the wall contraction angle brings about the collision of shock waves with sidewalls in the upstream parts. Furthermore, with a boost in Fr_0, flow velocity increases, which leads to the development of the mentioned wave and its collision with sidewalls at longer distances.
The amount of \(l_s \) reduces in \(w_3 \) owing to an increase in \(\theta \) and \((\theta, Fr_0) \). The amount of \(H / H_{av} \) is also raised due to a boost in \(\varphi \) and it declined in \((\varphi, Fr_0) \). This wave dissipates as a result of a drop in the height of \(w_2 \) and enters the second part of the chute owing to an increase in \(\theta, Fr_0 \), and \((\theta, Fr_0) \).

Figure 13 | Variations of \(H / H_{av} \) and \(l_s \) in \(w_1 \) and \(w_2 \) under the simultaneous influence of \((\theta, Fr_0) \).

Table 4 | Summary of the impact of bottom inclination angle \((\theta) \), wall contraction \((\varphi) \), \(Fr \) number \((Fr_0) \), \((\varphi, Fr_0) \), and \((\theta, Fr_0) \) on shock wave characteristics

\(w_1 \)	\(w_2 \)	\(w_3 \)						
\(H / H_{av} \)	\(l_s \)	\(H / H_{av} \)	\(l_s \)	\(H / H_{av} \)	\(l_s \)			
\(\theta \)	↑	→	↓	←	Not formed	↑	→	Not formed
\(\varphi \)	↑	→	↓	←	Not formed	↑	←	Not formed
\(Fr_0 \)	↑	→	↓	←	Not formed	↓	←	Not formed
\((\varphi, Fr_0) \)	↑	→	↓	←	Not formed	↓	←	Not formed
\((\theta, Fr_0) \)	↑	→	↓	←	Not formed	↓	←	Not formed

- The amount of \(l_s \) reduces in \(w_3 \) owing to an increase in \(\varphi \) and \((\varphi, Fr_0) \). The amount of \(H / H_{av} \) is also raised due to a boost in \(\varphi \) and it declined in \((\varphi, Fr_0) \). This wave dissipates as a result of a drop in the height of \(w_2 \) and enters the second part of the chute owing to an increase in \(\theta, Fr_0 \), and \((\theta, Fr_0) \).
The degree of first shock angle (α_1) is augmented with the increment of θ and φ while it lessens with an increase in Fr_0. Furthermore, due to the dissipation of w_1 induced by the increment of θ and Fr_0, α_2 was calculated just with respect to φ variations, and the results confirmed the increment of this angle (Table 4).

DATA AVAILABILITY STATEMENT
All relevant data are included in the paper or its Supplementary Information.

REFERENCES

Abdo, K., Riahi-Nezhad, C. K. & Imran, J. 2018 Steady supercritical flow in a straight-wall open channel contraction. *Journal of Hydraulic Research* 57 (5), 647–661. doi:10.1080/00221686.2018.1504126.

Aminorooayaie Yamini, O., Mousavi, S. H., Kavianpour, M. R. & Safari Ghaleh, R. 2021 Hydrodynamic performance and cavitation analysis in bottom outlets of dam using CFD modelling. *Journal of Advances in Civil Engineering*. ID 5529792, https://doi.org/10.1155/2021/5529792.

Bai, R., Zhang, F., Liu, S. & Wang, W. 2016 Air concentration and bubble characteristics downstream of a chute aerator. *International Journal of Multiphase Flow* 87, 156–166.

Bayon, A., Toro, J. P., Bombardelli, F. A., Matos, J. & Amparo, P. 2018 Influence of VOF technique, turbulence model and discretization scheme on the numerical simulation of the non-aerated, skimming flow in stepped spillways. *Journal of Hydro-Environment Research* 19, 137–149. doi:10.1016/j.jher.2017.10.002.

Biabani, S., Hamidi, M. & Navayi Neya, B. 2019 Numerical simulation of the chute convergence effects on forming the transverse wave in flood evacuation systems. *Journal of Hydraulics* 14 (5), 67–84.

Chen, S., Zhang, J., Hu, M. & Hazrati, A. 2013 Experimental study on water wing characteristics induced by piers in flood drainage culverts. *Scientia Iranica Transactions on Civil Engineering (A)* 20 (5), 1320–1326.

Ebrahimnezhadian, H., Manafpour, M. & Babazadeh, V. 2020 Simulation of the effect of flip bucket edge angle on flow hydraulic characteristics. *Iranian Journal of Soil and Water Research* 51 (5), 2085–2010. doi:10.22059/ijswr.2020.298275.668509.

Ferziger, J. H. & Peric, M. 2012 *Computational Methods for Fluid Dynamics*. Springer Science & Business Media.

Hassanzadeh Vaqghan, V., Mohammadi, M. & Ranjarb, A. 2019 Experimental study of the rooster tail jump and end sill in horseshoe spillways. *Civil Engineering Journal* 5 (4), 871–880. doi:10.28991/cej-2019-03091295.

Hirt, C. & Nichols, B. 1981 Volume of fluid (VOF) method for the dynamics of free boundaries. *Journal of Computational Physics* 39, 201–225.

Hunt, S. L., Kadavy, K. C., Abt, S. R. & Temples, D. M. 2008 Impact of converging chute walls for roller compacted concrete stepped spillways. *Journal of Hydraulic Engineering* 134 (7), 1000–1003.

Jahani, M., Sarkardeh, H. & Jabbari, E. 2018 Effect of using guide walls and piers with different geometries on the flow at entrance of a spillway: *The European Physical Journal Plus* 133 (91), 1–21. doi:10.1140/epjp/i2018-11948-5.

Jan, C. D., Chang, C. J., Lai, J. S. & Guo, W. D. 2009 Characteristics of hydraulic shock waves in an inclined chute contraction – experiments. *Journal of Mechanics* 25, 129–136. doi:10.1101/S1727719100002574.

Juan César, L. B., Oscar, P. E., Víctor Manuel, O. M. & Jesús, G. S. 2018 Experimental investigation of artificial aeration on a smooth spillway with a crest pier. *Journal of Water 10*, 1383. doi:10.3390/w10101383.

Mousavimehr, S. M., Aminorooayaie Yamini, O. & Kavianpour, M. R. 2021 Performance assessment of shockwaves of chute spillways in large dams. *Journal of Advances in Civil Engineering*. ID 6634086, https://doi.org/10.1155/2021/6634086.

Nikpoura, M. R., Khorasviniab, F. & Farsadizadeh, D. 2018 Experimental analysis of shock waves turbulence in contractions with rectangular sections. *Journal of Computational and Applied Research* 8 (1), 189–198.

Pagliara, S. & Kurdistani, S. M. 2011 Rooster tail wave hydraulic of chutes. *Journal of Hydraulic Engineering* 137, 1085–1088. doi:10.1061/(ASCE)HY.1943-7900.0000397.

Reinauer, R. & Hager, W. H. 1994 Supercritical flow behind chute piers. *Journal of Hydraulic Engineering* 120 (11), 1292–1308.

Reinauer, R. & Hager, W. H. 1997 Pier waves in sloping chutes. *International Journal of Hydropower and Dams* 4 (3), 100–103.

Reisi, A., Salah, P. & Kavianpour, M. R. 2015 Impact of chute walls convergence angle on flow characteristics of spillways using numerical modeling. *International Journal of Chemical, Environmental & Biological Sciences* 3 (3), 245–251.

Salazar, F., San-Mauro, J., Celigueta, M. A. & Oñate, E. 2019 Shockwaves in spillways with the particle finite element method. *Journal of Computational Particle Mechanics* 7, 87–99. doi:10.1007/s40571-019-00252-1.

Samadi-Boroujeni, H., Abbasi, S., Altuee, A. & Fattahi Nafchi, R. 2019 Numerical and physical modelling of the effect of roughness height on cavitation index in chute spillways. *International Journal of Civil Engineering* 18 (5), 1–12.

Stamou, I., Chapsas, D. G. & Christodoulou, G. C. 2008 3-D numerical modelling of supercritical flow in gradual expansions. *Journal of Hydraulic Research* 46 (3), 402–409.

The Final Report of Nazloochay dam’s spillway Hydraulic model. 2008. Water Research Institute, Tehran, Iran.
Woolbright, R. W., Hanson, G. J. & Hunt, S. L. 2008 Model study of RCC stepped spillways with sloped converging training walls. Proceedings of American Society of Agricultural and Biological Engineers International.

Wu, J. H. & Yan, Z. M. 2008 Hydraulic characteristics of bottom underlay-type pier for water-wing control. Journal of Hydrodynamics, Series B 20 (6), 735–740.

Wu, J. H., Cai, C. G., Ji, W., Ruan, S. P. & Luo, C. 2005 Experimental study on cavitation and water-wing for middle-piers of discharge tunnels. Journal of Hydrodynamics, Series B 17 (4), 429–437.

Wu, J. H., Cai, C. G., Ji, W. & Ruan, S. p. 2006 Hydraulic characteristics of water wings for the middle-pier of a discharge tunnel. Journal of Hydrodynamics, Series B 18 (5), 567–571.

Xue, H., Diao, M., Ma, Q. & Sun, H. 2018 Hydraulic characteristics and reduction measure for rooster tails behind spillway piers. Arabian Journal for Science and Engineering 43, 5597–5604. doi:10.1007/s13369-018-3237-8.

Yakhot, V., Orszag, S. A., Thangam, S., Gatski, T. B. & Speziale, C. G. 1992 Development of turbulence models for shear flows by a double expansion technique. Physics of Fluids A 4 (7), 1510–1520. doi:10.1063/1.858424.

Zhang, J. M., Chen, J. G., Xu, W. I., Wang, Y. R. & Li, G. J. 2011 Three-dimensional numerical simulation of aerated flows downstream sudden fall aerator expansion-in-a tunnel. Hydrodynamics Journal 23 (1), 71–80.

First received 22 October 2021; accepted in revised form 7 January 2022. Available online 21 January 2022.