Incidence of cassava mosaic disease and associated whitefly vectors in South West and North Central Nigeria: Data exploration

Angela O. Eni, Oghenevwairhe P. Efekemo, Mojisola G. Soluade, Segun I. Popoola, Aderemi A. Atayero

Department of Biological Sciences, Covenant University, Ota, Nigeria
West African Virus Epidemiology (WAVE) for root and tuber crops, Covenant University Hub, Ota, Nigeria
Department of Electrical and Information Engineering, Covenant University, Ota, Nigeria
IoT-Enabled Smart and Connected Communities (SmartCU) Research Cluster, Covenant University, Ota, Nigeria

Abstract

Cassava mosaic disease (CMD) is one of the most economically important viral diseases of cassava, an important staple food for over 800 million people in the tropics. Although several Cassava mosaic virus species associated with CMD have been isolated and characterized over the years, several new super virulent strains of these viruses have evolved due to genetic recombination between diverse species. In this data article, field survey data collected from 184 cassava farms in 12 South Western and North Central States of Nigeria in 2015 are presented and extensively explored. In each State, one cassava farm was randomly selected as the first farm and subsequent farms were selected at 10 km intervals, except in locations where cassava farms are sporadically located. In each selected farm, 30 cassava plants were sampled along two diagonals and all selected plant was scored for the presence or absence of CMD symptoms. Cassava mosaic disease incidence and associated whitefly vectors in South West and North Central Nigeria are explored using relevant descriptive statistics, box plots, bar charts, line graphs, and pie charts. In addition, correlation analysis, Analysis of Variance (ANOVA), and multiple comparison post-hoc tests are performed to understand the relationship between the numbers of...
whiteflies counted, uninfected farms, infected farms, and the mean of symptom severity in and across the States under investigation. The data exploration provided in this data article is considered adequate for objective assessment of the incidence and symptom severity of cassava mosaic disease and associated whitefly vectors in farmers’ fields in these parts of Nigeria where cassava is heavily cultivated.

© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Specifications Table

Subject area	Biological Science
More specific subject area	Cassava Virus Epidemiology
Type of data	Tables, graphs, figures, and spreadsheet file
How data was acquired	Cassava farms located along major and intermediate roads in all the State in the South West and North Central Nigeria were surveyed. In each State, one cassava farm was randomly selected as the first farm and subsequent farms were selected at 10 km intervals, except in locations where cassava farms are sporadically located. In each selected farm, 30 cassava plants were sampled along two diagonals and all selected plant was scored for the presence or absence of CMD symptoms.
Data format	Raw, analyzed
Experimental factors	Field survey data collected from 184 cassava farms in 12 South Western and North Central States of Nigeria in 2015 are presented and extensively explored
Experimental features	Cassava mosaic disease incidence and associated whitefly vectors in South West and North Central Nigeria are explored using relevant descriptive statistics, box plots, bar charts, line graphs, and pie charts. In addition, correlation analysis, ANOVA, and multiple comparison post-hoc tests are performed.
Data source location	184 cassava farms in 12 South Western and North Central States of Nigeria
Data accessibility	A comprehensive dataset is presented in Microsoft Excel spreadsheet and attached to this data article as supplementary material

Value of the data

- In addition to its significance as source of food and animal feed, cassava is increasingly becoming an important raw material for several industries including biofuel producing industries [1,2]. Therefore, addressing the incidence of cassava mosaic disease and associated whitefly vectors is considered pivotal to the realization of the Sustainable Development Goals (SDGs) numbers 1–3 (i.e. no poverty, zero hunger, and good health and well-being) by 2030 [3,4].
- Nigeria is the highest producer of cassava globally and the plant is heavily cultivated in the South Western and North Central States of Nigeria [5,6]. The data provided in this data article will help in tackling the challenges of cassava mosaic disease and associated whitefly vectors in South West and North Central Nigeria. This solution will help the country to harness the potentials of cassava as an important source of foreign exchange.
- The data exploration and the statistical analyses provided in this data article are considered adequate for objective assessment of the incidence and symptom severity of cassava mosaic disease and associated whitefly vectors in farmers’ fields in these parts of Nigeria where cassava is heavily cultivated [7–9].
- The data presented in this article will encourage reproducible research and open new doors of research collaborations towards finding effective solutions to deal with the evolution of new super virulent strains of cassava mosaic viruses.
Table 1
Descriptive statistics of counted whiteflies in 184 farms in 12 Nigerian States.

State	Mean	Median	Mode	Standard deviation	Variance	Kurtosis	Skewness	Range	Min	Max	Sum
Benue	0.67	0.00	0	2.19	4.78	18.35	3.96	11	0	11	20
Ekiti	5.45	5.00	0	6.02	36.27	2.13	0.66	17	0	17	60
Kogi	0.00	0.00	0	0.00	0.00	N/A	N/A	0	0	0	0
Kwara	7.75	2.00	0	10.02	100.39	2.84	1.00	30	0	30	93
Lagos	14.67	0.00	0	25.40	645.33	1.50	0.71	44	0	44	44
Nassarawa	0.20	0.00	0	0.42	0.18	3.25	1.50	1	0	1	2
Niger	0.23	0.00	0	0.44	0.19	2.63	1.28	1	0	1	3
Ogun	10.29	1.50	0	16.80	282.29	5.40	1.86	62	0	62	288
Ondo	9.67	7.00	0	9.71	94.38	2.65	0.94	29	0	29	145
Osun	2.75	2.00	0	3.08	9.48	2.40	0.75	9	0	9	33
Oyo	3.67	0.00	0	8.44	71.19	10.21	2.74	36	0	36	88
Plateau	0.00	0.00	0	0.00	0.00	N/A	N/A	0	0	0	0

Table 2
Descriptive statistics of uninfected cassava plants cassava plants in 184 farms in 12 Nigerian States.

State	Mean	Median	Mode	Standard deviation	Variance	Kurtosis	Skewness	Range	Min	Max	Sum
Benue	12.33	12.50	17	6.09	37.13	3.22	0.42	27	2	29	370
Ekiti	16.55	16.00	12	5.35	28.67	2.11	0.18	18	8	26	182
Kogi	21.19	26.00	28	9.60	92.16	3.08	-1.07	30	0	30	339
Kwara	15.58	14.50	6	7.77	60.45	2.42	0.59	24	6	30	187
Lagos	22.67	22.00	22	1.15	1.33	1.50	0.71	2	22	24	68
Nassarawa	20.90	21.00	20	8.37	70.10	2.53	-0.75	25	5	30	209
Niger	18.69	20.00	30	9.74	94.90	1.62	-0.31	25	5	30	243
Ogun	15.11	14.50	10	6.64	44.03	2.46	0.32	27	3	30	423
Ondo	17.13	16.00	16	7.36	54.12	2.23	0.67	22	8	30	257
Osun	19.33	18.50	15	4.87	23.70	2.46	0.73	15	13	28	232
Oyo	15.25	15.50	1	9.56	91.41	1.86	-0.09	30	0	30	366
Plateau	25.78	30.00	30	6.04	36.44	2.23	-0.95	15	15	30	232

Fig. 1. Distribution of 184 cassava farms surveyed in 12 South Western and North Central States of Nigeria in 2015.
Cassava is a major staple food for millions of people in Nigeria and Africa at large. The plant is drought tolerant, grows in all agro-ecological zones in Nigeria and is one of the highest producing crops in terms of carbohydrate produced per hectare [10]. Beyond its use for food and animal feed, cassava is increasingly becoming a crucial raw material for several industries including biofuel producing industries. Cassava therefore has the potentials to become an important source of foreign exchange for Nigeria which is the highest producer of cassava globally [11]. This important plant is however plagued by several viral diseases which threaten its production and productivity. Cassava mosaic disease (CMD), one of the most economically important cassava virus disease, is wide spread in all areas where cassava is grown [12]. The virus is either seed

1. Data

Cassava is a major staple food for millions of people in Nigeria and Africa at large. The plant is drought tolerant, grows in all agro-ecological zones in Nigeria and is one of the highest producing crops in terms of carbohydrate produced per hectare [10]. Beyond its use for food and animal feed, cassava is increasingly becoming a crucial raw material for several industries including biofuel producing industries. Cassava therefore has the potentials to become an important source of foreign exchange for Nigeria which is the highest producer of cassava globally [11]. This important plant is however plagued by several viral diseases which threaten its production and productivity. Cassava mosaic disease (CMD), one of the most economically important cassava virus disease, is wide spread in all areas where cassava is grown [12]. The virus is either seed

Table 3
Descriptive statistics of infected cassava plants.

State	Mean	Median	Mode	Standard deviation	Variance	Kurtosis	Skewness	Range	Min	Max	Sum
Benue	17.67	17.50	13	6.09	37.13	3.22	−0.42	27	1	28	530
Ekiti	13.45	14.00	18	5.35	28.67	2.11	−0.18	18	4	22	148
Kogi	8.81	4.00	0	9.60	92.16	3.08	1.07	30	0	30	141
Kwara	14.42	15.50	15	7.77	60.45	2.42	−0.59	24	0	24	173
Lagos	7.33	8.00	8	1.15	1.33	1.50	−0.71	2	6	8	22
Nassarawa	9.10	9.00	10	8.37	70.10	2.53	0.75	25	0	25	91
Niger	11.31	10.00	0	9.74	94.90	1.62	0.31	25	0	25	147
Ogun	14.89	15.50	20	6.64	44.03	2.46	−0.32	27	0	27	417
Ondo	12.87	14.00	0	7.36	54.12	2.23	−0.67	22	0	22	193
Osun	10.67	11.50	2	4.87	23.70	2.46	−0.73	15	2	17	128
Oyo	14.79	14.50	9	9.60	92.09	1.84	0.09	30	0	30	355
Plateau	4.89	0.00	0	6.21	38.61	1.69	0.59	15	0	15	44

Fig. 2. Percentage contribution of each states to the 184 cassava farms covered in this study.
transmitted or transmitted by whitefly vectors [13]. A diversity of cassava mosaic virus species associated with CMD have been isolated and characterized over the years. However, several new super virulent strains of these viruses have evolved over the years due to genetic recombination between diverse species [14]. This data article seeks to evaluate the incidence and symptom severity of cassava mosaic disease and associated whitefly vectors in farmers' fields in South West and North Central Nigeria where cassava is heavily cultivated.

2. Experimental design, materials and methods

Cassava farms located along major and intermediate roads in all the State in the South West and North Central Nigeria were surveyed. The distribution of 184 cassava farms surveyed in 12 South Western and North Central States of Nigeria in 2015 is shown in Fig. 1. In each State, one cassava farm was randomly selected as the first farm and subsequent farms were selected at 10 km intervals except in locations where cassava farms are sporadically located. In each selected farm, 30 cassava plants were sampled along two diagonals and all selected plants were scored for the presence or absence of cassava mosaic disease (CMD) symptoms. Where present, CMD symptom severity was then scored on a scale of 2–5, with 2 indicating mild symptom and 5 indicating very severe symptom covering over 75% of the infected plant. A score of 1 was assigned for none symptomatic plants. The whiteflies present in the top five leaves of each sampled plant were also counted and recorded, to determine the abundance of these CMD vector across the States.
3. Data exploration

Tables 1–4 present the descriptive statistics (mean, median, mode, standard deviation, variance, kurtosis, Skewness, range, minimum value, maximum value, and the sum) of whiteflies counted, uninfected cassava plants, infected cassava plants, and mean of symptom severity in 184 cassava farms in 12 South Western and North Central States of Nigeria in 2015. The percentage contribution of each of the 12 States is shown in Fig. 2.

Figs. 3–14 give comprehensive information about the whiteflies counted, uninfected cassava plants, infected cassava plants, and mean of symptom severity in 184 cassava farms in Benue, Ekiti, Kogi, Kwara, Lagos, Nassarawa, Niger, Ogun, Ondo, Osun, Oyo, and Plateau States respectively.

Boxplot representations of the numbers of whiteflies counted, uninfected cassava plants, infected cassava plants, and mean of symptom severity in 184 cassava farms across the 12 States of Nigeria are shown in Figs. 15–18 respectively. The boxplot representations allow visual and statistical comparisons of the data distributions in terms of quartiles.

![Boxplot](image-url)

Fig. 4. Bar chart showing information about the abundance whiteflies on 11 cassava farms in Ekiti State.
Fig. 5. Bar chart showing information about whiteflies on cassava farms in Kogi State.

Fig. 6. Bar chart showing information about whiteflies on cassava farms in Kwara State.
Fig. 7. Bar chart showing information about the abundance of whiteflies on cassava farms in 3 Lagos State.

Fig. 8. Bar chart showing information about the abundance of whiteflies on 10 cassava farms in Nassarawa State.
Fig. 9. Bar chart showing information about the abundance of whiteflies on 13 cassava farms in Niger State.

Fig. 10. Bar chart showing information about the abundance of whiteflies on 28 cassava farms in Ogun State.
Fig. 11. Bar chart showing information about the abundance whiteflies on 15 cassava farms in Ondo State.

Fig. 12. Bar chart showing information about the abundance whiteflies on 12 cassava farms in Osun State.
Fig. 13. Bar chart showing information about the abundance whiteflies on 24 cassava farms in Oyo State.

Fig. 14. Bar chart showing information about the abundance whiteflies on 9 cassava farms in Plateau State.
Table 4
Descriptive statistics of mean of symptom severity.

State	Mean	Median	Mode	Standard deviation	Variance	Kurtosis	Skewness	Range	Min	Max	Sum
Benue	2.69	2.60	2.5	0.35	0.12	2.73	0.47	1.52	2	3.52	80.60
Ekiti	3.13	3.25	3.5	0.37	0.14	1.71	-0.42	1.01	2.55	3.56	34.38
Kwara	2.01	2.24	0	1.07	1.14	2.92	-1.11	3.17	0	3.17	32.20
Lagos	2.60	2.80	2	0.53	0.28	1.50	-0.60	1.00	2	3.00	7.80
Nassarawa	2.39	2.80	2.8	1.06	1.12	3.76	-1.43	3.50	0	3.50	23.92
Niger	2.30	2.75	0	1.38	1.89	2.37	-0.96	3.76	0	3.76	29.93
Ogun	2.56	2.67	2	0.61	0.37	12.37	-2.72	3.17	0	3.17	71.73
Ondo	2.37	2.73	0	1.00	1.00	4.86	-1.84	3.18	0	3.18	35.55
Osun	2.81	2.75	2.5	0.31	0.10	1.65	0.32	0.90	2.43	3.33	33.67
Oyo	2.44	2.53	0	0.90	0.80	5.96	-1.31	4.31	0	4.31	58.65
Plateau	1.94	1.00	1	1.21	1.47	1.58	0.59	2.86	1	3.86	17.44

Fig. 15. Boxplot representation of no. of whiteflies counted in 184 cassava farms across the 12 Nigerian States.

Fig. 16. Boxplot representation of no. of uninfected cassava plants in 184 cassava farms sampled across 12 Nigerian States.
Fig. 17. Boxplot representation of no. of infected cassava plants in 184 cassava farms sampled across 12 Nigerian States.

Fig. 18. Boxplot representation of mean of Cassava mosaic virus symptom severity across 12 Nigerian States.

Table 5

	Whiteflies Counted	No. of uninfected farms	No. of infected farms	Mean of symptom severity
Whiteflies counted	1.0000	−0.0245	0.0225	0.1401
No. of uninfected plants	−0.0245	1.0000	−0.9985	−0.5853
No. of infected plants	0.0225	−0.9985	1.0000	0.5852
Mean of symptom severity	0.1401	−0.5853	0.5852	1.0000
Table 8
Multiple comparison post-hoc test results for whiteflies counted in 184 farms in 12 Nigerian States.

Groups compared	Lower limits for 95% confidence intervals	Mean difference	Upper limits for 95% confidence intervals	p-value
Benue	–15.0550	–4.7879	5.4792	0.9343
Benue	–8.3505	0.6667	9.6838	0.1000
Benue	–17.0325	–7.0833	2.8658	0.4573
Benue	–31.6379	–14.0000	3.6379	0.2829
Benue	–10.1694	0.4667	11.1027	1.0000
Benue	–10.9771	–3.0000	7.8658	0.9999
Benue	–10.4037	0.0000	11.7370	0.9867
Ekiti	–5.9542	0.6667	11.7370	0.9000
Ekiti	–14.4542	–2.2955	9.8633	0.1000
Ekiti	–28.1844	–9.2121	9.7601	0.9143
Ekiti	–7.4724	5.2545	17.9815	0.9725
Ekiti	–6.7092	5.2238	17.1568	0.9577
Ekiti	–15.1962	–4.8312	5.5338	0.9345
Ekiti	–15.7748	–4.2121	7.3505	0.9898
Ekiti	–9.4542	2.7045	14.8633	0.9999
Ekiti	–8.8179	1.7879	12.3937	1.0000
Ekiti	–7.6376	5.4545	18.5466	0.9706
Kogi	–18.8735	–7.7500	3.3735	0.4932
Kogi	–32.9927	–14.6667	3.6594	0.2707
Kogi	–11.9419	–0.2000	11.5419	1.0000
Kogi	–11.1070	–0.2308	10.6455	1.0000
Kogi	–19.4142	–10.2857	–1.1572	0.0124
Kogi	–20.1352	–9.6667	0.819	0.1033
Kogi	–13.8735	–2.7500	8.3735	0.9997
Kogi	–13.0677	–3.6667	5.7344	0.9823
Kogi	–12.1367	0.0000	12.1367	1.0000
Kogi	–25.7188	–6.9167	11.8854	0.9889
Kogi	–4.9219	7.5500	20.0219	0.7084
Kogi	–4.1413	7.3192	19.1798	0.6175
Correlation analysis, ANOVA, and multiple comparison post-hoc tests were performed to understand the relationship between the numbers of whiteflies counted, uninfected cassava plants, infected cassava plants, and the mean of symptom severity in and across the States under investigation. Correlation coefficient matrix and the p-value computed using the field data are presented in Table 5 and Table 6 respectively. Tables 7–14 give the results of the ANOVA and multiple comparison post-hoc tests for whiteflies counted, uninfected cassava farms, infected cassava farms, and mean of symptom severity across the 12 States of Nigeria. Figs. 19–22 show the mean comparisons of the four parameters for easy data interpretations.

Table 8 (continued)

Groups compared	Lower limits for 95% confidence intervals	Mean difference	Upper limits for 95% confidence intervals	p-value
Kwara Ogun	−12.5859	−2.5357	7.5144	0.9996
Kwara Ondo	−13.1979	−1.9167	9.3646	1.0000
Kwara Osun	−6.8915	5.0000	16.8915	0.9685
Kwara Plateau	−6.2150	4.0833	14.3817	0.9798
Kwara Plateau	−5.9043	7.7500	20.5943	0.7128
Lagos Nassarawa	−4.7078	14.4667	33.6411	0.3618
Lagos Niger	−4.2210	14.4359	33.0928	0.3218
Lagos Ogun	−13.3142	4.3810	22.0761	0.9997
Lagos Ondo	−13.4222	5.0000	23.4222	0.9992
Lagos Osun	−6.8854	11.9167	30.7188	0.6435
Lagos Oyo	−6.8372	11.0000	28.8372	0.6830
Lagos Plateau	−4.7521	14.6667	34.0854	0.3601
Nassarawa Niger	−12.2827	−0.0308	12.2212	1.0000
Nassarawa Ogun	−20.8163	−10.0857	0.6449	0.0891
Nassarawa Ondo	−21.3582	−9.4667	2.4248	0.2785
Nassarawa Osun	−15.0219	−2.5500	9.9219	1.0000
Nassarawa Oyo	−14.4301	−3.4667	7.4967	0.9970
Nassarawa Plateau	−13.1834	0.2000	13.5834	1.0000
Niger Ogun	−19.8308	−10.0549	0.2791	0.0373
Niger Ondo	−20.4735	−9.4359	1.6017	0.1824
Niger Osun	−14.1798	−2.5192	9.1413	0.9999
Niger Oyo	−13.4667	−3.4359	6.5949	0.9939
Niger Plateau	−12.4000	0.2308	12.8616	1.0000
Ogun Ondo	−8.7011	0.6190	9.9392	1.0000
Ogun Osun	−2.5144	7.5357	17.5859	0.3719
Ogun Oyo	−1.4836	6.6190	14.7217	0.2415
Ogun Plateau	−0.8755	10.2857	21.4470	0.1050
Ondo Osun	−4.3646	6.9167	18.1979	0.6911
Ondo Oyo	−3.5872	6.0000	15.5872	0.6621
Ondo Plateau	−2.6148	9.6667	21.9481	0.2955
Osun Oyo	−11.2150	−0.9167	9.3817	1.0000
Osun Plateau	−10.0943	2.7500	15.5943	0.9999
Oyo Plateau	−7.7186	3.6667	15.0519	0.9964

Table 9
ANOVA test results for number of uninfected cassava plants in 184 farms in 12 Nigerian States.

Source of variation	Sum of squares	Degree of freedom	Mean squares	F statistic	Prob > F
Columns	2178.73	11	198.067	3.46	0.0002
Error	9784.22	171	57.218		
Total	11962.95	182			
Table 10
Multiple comparison post-hoc test results for number of uninfected cassava plants in 184 farms in 12 Nigerian States.

Groups compared	Lower limits for 95% confidence intervals	Mean difference	Upper limits for 95% confidence intervals	p-value
Benue	-12.9254	-4.2121	4.5012	0.9167
Benue	-16.5067	-8.8542	-1.2016	0.0086
Benue	-11.6935	-3.2500	5.1935	0.9840
Benue	-23.3020	-10.3333	4.6353	0.5085
Benue	-17.9531	-8.5667	0.4598	0.0819
Benue	-14.5672	-6.3590	1.8493	0.3199
Benue	-9.2694	-2.7738	3.7218	0.9647
Benue	-12.6171	-4.8000	3.0171	0.6891
Benue	-15.4435	-7.0000	1.4435	0.2214
Benue	-9.6865	-2.9167	3.8532	0.9623
Benue	-22.8395	-13.4444	-4.0494	0.0002
Ekiti	-14.3242	-4.6420	5.0401	0.9210
Ekiti	-9.3566	0.9621	11.2808	1.0000
Ekiti	-22.2223	-6.1212	9.9799	0.9855
Ekiti	-15.1555	-4.3545	6.4646	0.9771
Ekiti	-12.2740	-2.1469	7.9802	0.9999
Ekiti	-7.3581	1.4383	10.2347	0.0000
Ekiti	-10.4007	-0.5879	9.2249	1.0000
Ekiti	-13.1066	-2.7879	7.5308	0.9993
Ekiti	-7.7053	1.2955	10.2962	1.0000
Ekiti	-20.3431	-9.2323	1.8785	0.2183
Kogi	-3.8359	5.6042	15.0443	0.7339
Kogi	-17.0318	-1.4792	14.0735	1.0000
Kogi	-9.6774	0.2875	10.2524	1.0000
Kogi	-6.7351	2.4952	11.7255	0.9993
Kogi	-1.6667	6.0804	13.8274	0.2998
Kogi	-4.8301	4.0542	12.9385	0.9433
Kogi	-7.5859	1.8542	11.2943	1.0000
Kogi	-2.0408	5.9375	13.9158	0.3841
Kogi	-14.3903	-4.5903	5.7097	0.9520
Kwara	-23.0400	-7.0833	8.8733	0.9533
Kwara	-15.9011	-5.3167	5.2678	0.8938
Kwara	-13.0049	-3.1090	6.7869	0.9971
Kwara	-8.0530	0.4762	9.0054	1.0000
Kwara	-11.1240	-1.5500	8.0240	1.0000
Kwara	-13.8419	-3.7500	6.3419	0.9880
Kwara	-8.4065	0.3333	9.0732	1.0000
Kwara	-21.0949	-10.1944	0.7060	0.0929
Lagos	-14.5060	1.7667	18.0393	1.0000
Lagos	-11.8591	3.9744	19.0878	0.9996
Lagos	-7.4577	7.5595	22.5767	0.8923
Lagos	-10.1009	5.5333	21.1676	0.9920
Lagos	-12.6233	3.3333	19.2900	0.9999
Lagos	-7.7211	7.4167	22.5545	0.9092
Lagos	-19.5911	-3.1111	13.3689	1.0000
Nassarawa	-8.1901	2.0777	12.6055	0.9999
Nassarawa	-3.3138	5.7929	14.8995	0.6381
Nassarawa	-6.3252	3.7667	13.8585	0.9875
Nassarawa	-9.0178	1.5667	12.1511	1.0000
Nassarawa	-3.6543	5.6500	14.9543	0.7043
Nassarawa	-16.2358	-4.8778	6.4803	0.9632
Niger	-4.7112	3.5852	11.8815	0.9615
Niger	-7.8082	1.5590	10.9262	1.0000
Niger	-10.5369	-0.6410	9.2549	1.0000
Niger	-5.0705	3.4423	11.9551	0.9765
Niger	-17.8048	-7.0855	3.6338	0.5789
Ogun	-9.9358	-2.0262	5.8835	0.9996
Ogun	-12.7554	-4.2262	4.3030	0.9024
Table 10 (continued)

Groups compared	Lower limits for 95% confidence intervals	Mean difference	Upper limits for 95% confidence intervals	\(p \)-value
Ogun Oyo	\(-7.0193\) \(-0.1429\) \(6.7336\)	\(1.0000\)		
Ogun Plateau	\(-20.1428\) \(-10.6706\) \(-1.1985\)	\(0.0124\)		
Ondo Osun	\(-11.7740\) \(-2.2000\) \(7.3740\)	\(0.9998\)		
Ondo Oyo	\(-6.2330\) \(1.8833\) \(10.0197\)	\(0.9998\)		
Ondo Plateau	\(-19.1067\) \(-8.6444\) \(1.7784\)	\(0.2208\)		
Osun Oyo	\(-6.5656\) \(4.0833\) \(12.8232\)	\(0.9335\)		
Osun Plateau	\(-17.3449\) \(-6.4444\) \(4.5600\)	\(0.7391\)		
Oyo Plateau	\(-20.1900\) \(-10.5278\) \(-0.8655\)	\(0.0191\)		

Table 11

ANOVA test results for number of infected cassava plants in 184 farms in 12 Nigerian States.

Source of variation	Sum of squares	Degree of freedom	Mean squares	F statistic	Prob > F
Columns	2080.4	11	189.131	3.29	0.0004
Error	9817	171	57.409		
Total	11897.5	182			

Table 12

Multiple comparison post-hoc test results for number of infected cassava plants in 184 farms in 12 Nigerian States.

Groups compared	Lower limits for 95% confidence intervals	Mean difference	Upper limits for 95% confidence intervals	\(p \)-value
Benue Ekiti	\(-4.5158\) \(4.2121\) \(12.9400\)	\(0.9176\)		
Benue Kogi	\(1.1888\) \(8.8542\) \(16.5195\)	\(0.0088\)		
Benue Kwarar	\(-5.2076\) \(3.2500\) \(11.0706\)	\(0.9843\)		
Benue Lagos	\(-4.6604\) \(10.3333\) \(25.3271\)	\(0.5112\)		
Benue Nassarawa	\(-0.4749\) \(8.5667\) \(17.6082\)	\(0.0831\)		
Benue Niger	\(-1.8630\) \(6.3590\) \(14.5809\)	\(0.3225\)		
Benue Ogun	\(-3.7327\) \(2.7738\) \(9.2803\)	\(0.9651\)		
Benue Ondo	\(-3.0302\) \(4.8000\) \(12.6302\)	\(0.6914\)		
Benue Osun	\(-1.4576\) \(7.0000\) \(15.4576\)	\(0.2236\)		
Benue Oyo	\(-3.9062\) \(2.8750\) \(9.6562\)	\(0.9665\)		
Benue Plateau	\(3.3670\) \(12.7778\) \(22.1885\)	\(0.0006\)		
Ekiti Kogi	\(-5.0563\) \(4.6420\) \(14.3404\)	\(0.9219\)		
Ekiti Kwarar	\(-11.2981\) \(-0.9621\) \(9.3738\)	\(1.0000\)		
Ekiti Lagos	\(-10.0068\) \(6.1212\) \(22.2492\)	\(0.9857\)		
Ekiti Nassarawa	\(-6.4645\) \(4.3545\) \(15.1736\)	\(0.9774\)		
Ekiti Niger	\(-7.9972\) \(2.1469\) \(12.2909\)	\(0.9999\)		
Ekiti Ogun	\(-10.2494\) \(-1.4383\) \(7.3728\)	\(1.0000\)		
Ekiti Ondo	\(-9.2413\) \(0.5879\) \(10.4171\)	\(1.0000\)		
Ekiti Osun	\(-7.5481\) \(2.7879\) \(13.1238\)	\(0.9993\)		
Ekiti Oyo	\(-10.3530\) \(-1.3371\) \(7.6787\)	\(1.0000\)		
Ekiti Plateau	\(-2.5637\) \(8.5657\) \(19.6951\)	\(0.3301\)		
Kogi Kwarar	\(-15.0601\) \(-5.6042\) \(3.8517\)	\(0.7360\)		
Kogi Lagos	\(-14.0995\) \(1.4792\) \(17.0578\)	\(1.0000\)		
Kogi Nassarawa	\(-10.2691\) \(-0.2875\) \(9.6941\)	\(1.0000\)		
Kogi Niger	\(-11.7409\) \(-2.4952\) \(6.7505\)	\(0.9993\)		
Kogi Ogun	\(-13.8404\) \(-6.0804\) \(1.6796\)	\(0.3024\)		
Kogi Ondo	\(-12.9533\) \(-4.0542\) \(4.8450\)	\(0.9440\)		
Kogi Osun	\(-11.3101\) \(-1.8542\) \(7.6017\)	\(1.0000\)		
Table 12 (continued)

Groups compared	Lower limits for 95% confidence intervals	Mean difference	Upper limits for 95% confidence intervals	p-value
Kogi Oyo	−13.9709	−5.9792	2.0125	0.3754
Kogi Plateau	−6.3936	3.9236	14.2408	0.9855
Kwara Lagos	−8.9000	7.0833	23.0667	0.9538
Kwara Nassarawa	−5.2855	5.3167	15.9188	0.8949
Kwara Niger	−6.8035	3.1090	13.0214	0.9972
Kwara Ogun	−9.0197	−0.4762	8.0673	1.0000
Kwara Ondo	−8.0400	1.5500	11.1400	1.0000
Kwara Osun	−6.3588	3.7500	13.8588	0.9881
Kwara Oyo	−9.1295	−0.3750	8.3795	1.0000
Kwara Plateau	−1.3909	9.5278	20.4465	0.1587
Lagos Nassarawa	−18.0666	−1.7667	14.5332	1.0000
Lagos Niger	−19.8343	−3.9744	11.8856	0.9996
Lagos Ogun	−22.6019	−7.5595	7.4828	0.8935
Lagos Ondo	−21.1938	−5.5333	10.1271	0.9921
Lagos Osun	−19.3167	−3.3333	12.6500	0.9999
Lagos Oyo	−22.6215	−7.4583	7.7048	0.9069
Lagos Plateau	−14.0631	2.4444	18.9520	1.0000
Nassarawa Niger	−12.6229	−2.2077	8.2075	0.9999
Nassarawa Ogun	−14.9148	−5.7929	3.3291	0.6406
Nassarawa Ondo	−13.8754	−3.7667	6.3421	0.9877
Nassarawa Osun	−12.1688	−1.5667	9.0355	1.0000
Nassarawa Oyo	−15.0115	−5.6917	3.6282	0.6965
Nassarawa Plateau	−7.1659	4.2111	15.5882	0.9884
Niger Ogun	−11.8954	−3.5852	4.7251	0.9619
Niger Ondo	−10.9418	−1.5590	7.8239	1.0000
Niger Osun	−9.2714	0.6410	10.5535	1.0000
Niger Oyo	−12.0110	−3.4840	5.0431	0.9746
Niger Plateau	−4.3184	6.4188	17.1560	0.7250
Ogun Ondo	−5.8967	2.0262	9.9491	0.9996
Ogun Osun	−4.3173	4.2262	12.7697	0.9035
Ogun Oyo	−6.7668	0.1012	6.9892	1.0000
Ogun Plateau	0.5160	10.0040	19.4920	0.0283
Ondo Osun	−7.3900	2.2000	11.7900	0.9999
Ondo Oyo	−10.0750	−1.9250	6.2230	0.9998
Ondo Plateau	−2.4625	7.9778	18.4181	0.3415
Osun Oyo	−12.8795	−4.1250	4.6295	0.9296
Osun Plateau	−5.1409	5.7778	16.6965	0.8550
Oyo Plateau	0.2244	9.9028	19.5812	0.0394

Table 13
ANOVA test results for mean of Cassava mosaic diseases symptom severity.

Source of variation	Sum of squares	Degree of freedom	Mean squares	F statistic	Prob > F
Columns	14.223	11	1.293	1.91	0.0413
Error	115.911	171	0.67784		
Total	130.133	182			
Table 14
Multiple comparison post-hoc test results for mean of Cassava mosaic disease symptom severity.

Groups compared	Lower limits for 95% confidence intervals	Mean difference	Upper limits for 95% confidence intervals	p-value
Benue Ekiti	−1.3872	−0.4388	0.5096	0.9377
Benue Kogi	−0.1585	0.6744	1.5073	0.2540
Benue Kwara	−0.7682	0.1508	1.0698	1.0000
Benue Lagos	−1.5426	0.0866	1.7159	1.0000
Benue Nassarawa	−0.6881	0.2943	1.2768	0.9981
Benue Niger	−0.5091	0.3843	1.2777	0.9627
Benue Ogun	−0.5822	0.1248	0.8318	1.0000
Benue Ondo	−0.5342	0.3166	1.1675	0.9878
Benue Osun	−1.0382	−0.1192	0.7998	1.0000
Benue Oyo	−0.4940	0.2429	0.9797	0.9956
Benue Plateau	−0.2734	0.7492	1.7718	0.4098
Ekiti Kogi	0.0594	1.1132	2.1670	0.0277
Ekiti Kwara	−0.5335	0.5896	1.7127	0.8615
Ekiti Lagos	−1.2270	0.5255	2.2779	0.9981
Ekiti Nassarawa	−0.4424	0.7332	1.9088	0.6671
Ekiti Niger	−0.2791	0.8231	1.9254	0.3784
Ekiti Ogun	−0.3938	0.5637	1.5211	0.7443
Ekiti Ondo	−0.3126	0.7555	1.8235	0.4682
Ekiti Osun	−0.8035	0.3196	1.4427	0.9988
Ekiti Oyo	−0.2980	0.6817	1.6614	0.4953
Ekiti Plateau	−0.0213	1.1880	2.3973	0.0596
Kogi Kwara	−1.5511	−0.5236	0.5039	0.8840
Kogi Lagos	−2.2805	−0.5878	1.1050	0.9932
Kogi Nassarawa	−1.4647	−0.3801	0.7046	0.9926
Kogi Niger	−1.2947	−0.2901	0.7146	0.9987
Kogi Ogun	−1.3927	−0.5495	0.2937	0.6011
Kogi Ondo	−1.3247	−0.3578	0.6092	0.9884
Kogi Osun	−1.8211	−0.7936	0.2339	0.3246
Kogi Oyo	−1.2999	−0.4315	0.4369	0.9007
Kogi Plateau	−1.0463	0.0748	1.1959	1.0000
Kwara Lagos	−1.8009	−0.0642	1.6726	1.0000
Kwara Nassarawa	−1.0085	0.1435	1.2956	1.0000
Kwara Niger	−0.8436	0.2335	1.3106	0.9999
Kwara Ogun	−0.9543	−0.0260	0.9024	1.0000
Kwara Ondo	−0.8762	0.1658	1.2079	1.0000
Kwara Osun	−1.3684	−0.2700	0.8284	0.9997
Kwara Oyo	−0.8592	0.0921	1.0433	1.0000
Kwara Plateau	−0.5880	0.5984	1.7848	0.8911
Lagos Nassarawa	−1.5635	0.2077	1.9789	1.0000
Lagos Niger	−1.4257	0.2977	2.0210	1.0000
Lagos Ogun	−1.5963	0.0382	1.6727	1.0000
Lagos Ondo	−1.4717	0.2300	1.9317	1.0000
Lagos Osun	−1.9426	−0.2058	1.5309	1.0000
Lagos Oyo	−1.4914	0.1563	1.8039	1.0000
Lagos Plateau	−1.1312	0.6626	2.4563	0.9886
Nassarawa Niger	−1.0417	0.0900	1.2217	1.0000
Nassarawa Ogun	−1.1607	−0.1695	0.8217	1.0000
Nassarawa Ondo	−1.0761	0.0223	1.1207	1.0000
Nassarawa Osun	−1.5656	−0.4135	0.7385	0.9910
Nassarawa Oyo	−1.0641	−0.0515	0.9612	1.0000
Nassarawa Plateau	−0.7814	0.4549	1.6911	0.9889
Niger Ogun	−1.1625	−0.2595	0.6435	0.9987
Niger Ondo	−1.0872	−0.0677	0.9519	1.0000
Table 14 (continued)

Groups compared	Lower limits for 95% confidence intervals	Mean difference	Upper limits for 95% confidence intervals	p-value
Niger Osun	−1.5806	−0.5035	0.5736	0.9332
Niger Oyo	−1.0680	−0.1414	0.7851	1.0000
Niger Plateau	−0.8019	0.3649	1.5316	0.9972
Ogun Ondo	−0.6691	0.1918	1.0527	0.9999
Ogun Osun	−1.1724	−0.2440	0.6843	0.9994
Ogun Oyo	−0.6304	0.1180	0.8665	1.0000
Ogun Plateau	−0.4066	0.6243	1.6553	0.7079
Ondo Osun	−1.4779	−0.4358	0.6062	0.9697
Ondo Oyo	−0.9593	−0.0738	0.8118	1.0000
Ondo Plateau	−0.7019	0.4326	1.5670	0.9852
Osun Oyo	−0.5892	0.3621	1.3133	0.9854
Osun Plateau	−0.3180	0.8684	2.0548	0.4114
Oyo Plateau	−0.5454	0.5063	1.5580	0.9189

Fig. 19. Multiple comparison post-hoc for mean whiteflies counted in 184 farms in 12 Nigerian States.
Fig. 20. Multiple comparison post-hoc for mean uninfected cassava plants in 184 farms in 12 Nigerian States.

Fig. 21. Multiple comparison post-hoc for mean infected cassava plants in 184 farms in 12 Nigerian States.
Acknowledgements

This work was fully funded by the Bill and Melinda Gates Foundation and Department for International Development (DFID) Grant no. OPP1082413 “West African Virus Epidemiology (WAVE) for root and tuber crops”, through a subgrant from Université Félix Houphouët-Boigny (UFHB). Data analysis was carried out by the IoT-Enabled Smart and Connected Communities (SmartCU) Research Cluster of Covenant University Ota, Nigeria.

Transparency document. Supporting information

Transparency data associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2018.05.016.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2018.05.016.

References

[1] N.J. Tonukari, et al., White gold: cassava as an industrial base, Am. J. Plant Sci. 06 (07) (2015) 972–979.
[2] C. Jansson, A. Westerbergh, J. Zhang, X. Hu, C. Sun, Cassava, a potential biofuel crop in (the) People’s Republic of China, Appl. Energy 86 (2009) S95–S99.
[3] K. Von Grebmer, J. Bernstein, D. Nabarro, N. Prasai, S. Amin, Y. Yohannes, et al., Global hunger index: getting to zero hunger, Int. Food Policy Res Inst. (2016) 2016.
[4] S. Kumar, N. Kumar, S. Vivekadish, Millennium development goals (MDGS) to sustainable development goals (SDGS): addressing unfinished agenda and strengthening sustainable development and partnership, Indian J. Community Med.: Off. Publ. Indian Assoc. Prev. Soc. Med. 41 (2016) 1.
[5] R.J. Hillocks, Cassava in Africa, Cassava: Biol. Prod. Util. (2002) 41–54.
[6] FAO, “WFP, The State of Food Insecurity in the World, 2014, p. 80.
[7] E.S. Bah, B.A. Bamkefa, S. Winter, A.G.O. Dixon, Distribution and current status of cassava mosaic disease and begomoviruses in Guinea, Afr. J. Root Tuber. Crop. 09 (01) (2011) 17–23.
[8] P. Sseruwagi, W.S. Sserubombwe, J.P. Legg, J. Ndunguru, J.M. Thresh, Methods of surveying the incidence and severity of cassava mosaic disease and whitefly vector populations on cassava in Africa: a review, Virus Res. 100 (1) (2004) 129–142.
[9] P.C. Chikoti, M. Tembo, M. Chisola, P. Ntawuruhunga, J. Ndunguru, Status of cassava mosaic disease and whitefly population in Zambia, Afr. J. Biotechnol. 14 (33) (2015) 2539–2546.
[10] V. Manyong, Impact: the Contribution of IITA-improved Cassava to Food Security in Sub-Saharan, IITA, Africa, 2000.
[11] A. Parmar, B. Sturm, O. Hensel, Crops that feed the world: production and improvement of cassava for food, feed, and industrial uses, Food Secur 9 (5) (2017) 907–927.
[12] J. Zinga, et al., East African cassava mosaic virus-Uganda (EACMV-UG) and African cassava mosaic virus (ACMV) reported for the first time in Central African Republic and Chad, New Dis. Rep. 26 (2012) (17–17).
[13] S. Macfadyen, C. Paull, L. Boykin, P. De Barro, M. Maruthi, M. Otim, et al., Cassava whitefly, Bemisia tabaci (Gennadius) (Hemiptera: aleyrodidae) in East African farming landscapes: a review of the factors determining abundance, Bull. Entomol. Res. (2018) 1–18.
[14] V.N. Fondong, J.S. Pita, M.E.C. Rey, A. De Kochko, R.N. Beachy, C.M. Fauquet, Evidence of synergism between African cassava mosaic virus and a new double-recombinant geminivirus infecting cassava in Cameroon, J. Gen. Virol. 81 (1) (2000) 287–297.