How to prove that the LHC did not discover dark matter

Doojin Kim1 and Konstantin T. Matchev2

1Theoretical Physics Department, CERN, CH-1211 Geneva 23, Switzerland
2Physics Department, University of Florida, Gainesville, FL 32611, USA

If the LHC is able to produce dark matter particles, they would appear at the end of cascade decay chains, manifesting themselves as missing transverse energy. However, such “dark matter candidates” may decay invisibly later on. We propose to test for this possibility by studying the effect of particle widths on the observable invariant mass distributions of the visible particles seen in the detector. We consider the simplest non-trivial case of a two-step two-body cascade decay and derive analytically the shapes of the invariant mass distributions, for generic values of the widths of the new particles. We demonstrate that the resulting distortion in the shape of the invariant mass distribution can be significant enough to measure the width of the dark matter “candidate”, ruling it out as the source of the cosmological dark matter.

PACS numbers: 95.35.+d, 14.80.-j, 13.85.Qk

Introduction. \(E_T \) events at the Large Hadron Collider (LHC) at CERN are motivated by the dark matter problem — the dark matter particles are stable and weakly interacting, and, once produced in the LHC collisions, will escape without leaving a trace inside the detector. This will lead to an imbalance in the transverse momentum of the event, known as “missing transverse momentum” \(\vec{P}_T \). However, the reverse statement is not so obvious — if we observe an excess of \(E_T \) events at the LHC, how can one be sure that what we are seeing is indeed the cosmological dark matter?

The question of proving that \(E_T \) signal observed at the LHC is indeed due to dark matter, has attracted a lot of attention in the past [1–8]. The basic idea was to test whether the newly discovered weakly interacting massive particle (WIMP) was consistent with being a thermal relic or not. The general approach was to assume a specific model, most often some version of low-energy supersymmetry, and then attempt to measure all relevant model parameters affecting the thermal relic density calculation. Unfortunately, such an approach is model-dependent; applies only to thermal relics (for alternative non-thermal scenarios, see [9, 10]); requires full understanding of the early cosmology; and typically demands a large number of additional measurements, possibly at future (or futuristic) facilities.

Given that proving the discovery of dark matter at the LHC is such a difficult task, perhaps one should focus on the opposite question — how to disprove that the newly found invisible particle is the cosmological dark matter. One possibility is to perform a precise measurement of its mass, and if the mass is consistent with zero, it may just be one of the Standard Model (SM) neutrinos instead of a brand new particle [11]. However, this logic is not ironclad either — there exist examples where the dark matter particles are very light \([12, 13] \) and cannot be ruled out just on the basis of their small mass.

A much more direct approach would be to test whether the particle which is the source of the \(E_T \) is indeed stable — after all, we only know that it did not decay inside the detector. If its lifetime is relatively short, so that it does decay outside, but not too far from the detector, one could attempt to build a dedicated experiment to record such delayed decays. In the past, there were proposals to place such supplementary detectors near the D0 experiment at Fermilab \([14] \) and near the LHC \([15] \), and these ideas were recently revived in \([16] \). However, any such experiment is doomed if the dark matter candidate decays invisibly, e.g., to hidden sector particles \([17] \).

In this letter we address the worst case scenario, when the dark matter candidate produced at the LHC is unstable and decays invisibly sufficiently quickly. For concreteness, we consider the standard new physics decay chain shown inside the solid box of Fig. 1:

\[
A \rightarrow v_1 B \rightarrow v_1 v_2 C, \tag{1}
\]

where \(v_{1,2} \) are massless SM particles, while \(A, B, \) and \(C \) are new particles, with \(C \) being the dark matter candidate. The canonical example for the processes (1) is the neutralino decay \(\tilde{\chi}_0^2 \rightarrow \ell \ell^* \rightarrow \ell \tilde{\chi}_0^0 \) in supersymmetry \([18] \), where \(\tilde{\chi}_2^0 \) is the second-lightest (lightest) neutralino, \(\ell (\ell^*) \) is a charged (anti-)lepton and \(\ell (\tilde{\ell}) \) is a SM (anti-)lepton. The masses of the particles \(A, B \) and \(C \) are denoted with \(m_A, m_B \) and \(m_C \), respectively, and in general all three particles will have corresponding widths \(\Gamma_A, \Gamma_B \) and \(\Gamma_C \). In particular, we shall pay special attention to the case when the dark matter “candidate” \(C \) is unstable and thus its decay width \(\Gamma_C \) is strictly non-zero. Our key idea here is to attempt a direct measurement of the new particle widths (including \(\Gamma_C \)) from the kinematic distributions of the visible decay products \(v_1 \) and...
ν_2. If one could unambiguously establish experimentally that $\Gamma_C > 0$, then C will be ruled out as a dark matter candidate. Therefore, our first goal is to derive the effect of non-zero widths on the observable kinematics.

Pure on-shell case. In what follows, we shall be investigating the distribution of the invariant mass $m \equiv m_{v_1v_2}$ of the two visible particles v_1 and v_2. In the purely on-shell case, where all three particles A, B and C are exactly on-shell, the unit-normalized distribution dN/dm has the well-known “triangular” shape

$$
dm{N}{m} = \frac{m}{128\pi^2m_A^3m_B\Gamma_B}, \tag{2}
$$

which extends up to the kinematic endpoint $m_{\text{on max}}$

$$
m_{\text{on max}}(m_A, m_B, m_C) = \sqrt{(m_A^2 - m_B^2)(m_B^2 - m_C^2)/m_B}. \tag{3}
$$

The validity of (2) is ensured (at tree-level) as long as the narrow width approximation holds and there are no significant polarization effects. We shall now investigate how the result (2) is modified in the case of non-negligible widths of Γ_A, Γ_B and, most importantly, Γ_C. For simplicity, we shall be turning on those widths one at a time.

Non-negligible Γ_B. As a warm-up, we begin with the case when only B is relatively broad, $\Gamma_B \neq 0$. In that case, the narrow-width result (2) gets modified to [19]

$$
dm{N}{m} = \frac{m}{128\pi^2m_A^3} \int_{s_{\pm}}^{s_+} \frac{ds}{(s - m_B^2)^2 + m_B^2\Gamma_B^2}, \tag{4}
$$

where

$$
s_{\pm} = \frac{1}{2} \left[m_A^2 + m_C^2 - m^2 \pm \lambda^{1/2}(m_A^2, m_C^2, m^2) \right], \tag{5}
$$

and $\lambda(x, y, z) \equiv x^2 + y^2 + z^2 - 2xy - 2yz - 2xz$. In the limit of massless v_1 and v_2, the lower endpoint of (4) is at $m = 0$, while the upper endpoint, $m_{\text{on max}}$, is obtained by solving the equation $s_+ = s_{\pm}$, which results in

$$m_{\text{on max}} = m_A - m_B, \tag{6}
$$

a result identical to the one for the direct three-body decay

$$A \to v_1v_2C. \tag{7}
$$

Note that in the narrow width approximation limit of $\Gamma_B/m_B \to 0$, the integrand in (4) becomes

$$
\lim_{m_B \to 0} \frac{1}{(s - m_B^2)^2 + m_B^2\Gamma_B^2} = \frac{\pi}{m_B^3\Gamma_B} \delta \left(\frac{s}{m_B^2} - 1 \right) \tag{8}
$$

and we recover the purely on-shell result (2).

Fig. 2 illustrates the effect of a finite Γ_B on the invariant mass distribution (4) for $(m_A, m_B, m_C) = (1000, 970, 500)$ GeV (left panel) and $(m_A, m_B, m_C) = (1000, 530, 500)$ GeV (right panel), with negligible Γ_A and Γ_C and several different choices of Γ_B/m_B as shown in the legends. The magenta dashed curve corresponds to the case of a pure three-body decay (e.g., $m_B \gg m_A$).

![Image](https://example.com/image.png)

FIG. 2: The solid lines represent unit-normalized invariant mass distributions (4) for $(m_A, m_B, m_C) = (1000, 970, 500)$ GeV (left panel) and $(m_A, m_B, m_C) = (1000, 530, 500)$ GeV (right panel), with negligible Γ_A and Γ_C and several different choices of Γ_B/m_B as shown in the legends. The magenta dashed curve corresponds to the case of a pure three-body decay (e.g., $m_B \gg m_A$).
In the present approach, we focus on the impact of the non-trivial width effects as in (9), the cancellation is incomplete and even the case of vector-like couplings is markedly different from the pure scalar theory result (compare the blue solid and black dotted lines in Fig. 3) [20].

Non-negligible Γ_C. We now consider perhaps the most interesting case, when the dark matter candidate (particle C) has a non-vanishing width, $\Gamma_C \neq 0$, due to an invisible decay to two dark sector particles X and x, as shown in the right (dot-dashed) boxed extension of Fig. 1. Under those circumstances, we find that the shape of the invariant mass distribution is given by

$$\frac{dN}{dm} = \frac{m}{2048\pi^3 m_A m_B \Gamma_B} \int_{s_{+}}^{s_{-}} ds \; \lambda^{1/2}(s,m_X^2,m_Z^2) \left(s - m_X^2 \right)^{1/2} \left(s - m_Z^2 \right)^{1/2} \Gamma_C,$$

where m_X and m_Z are the respective masses of the hidden sector particles X and x and

$$s_- \equiv (m_X + m_Z)^2, \quad s_+ \equiv m_B^2 \left(1 - \frac{m_Z^2}{m_A^2 - m_B^2} \right).$$

Comparing to (3), we notice that

$$m_{C,B}^{\text{max}} = m_{\text{an}}^{\text{max}} (m_A,m_B,m_X,m_Z),$$

which is easily understood as the limit when C becomes extremely off-shell.

In analogy to Fig. 3, Fig. 4 illustrates the impact of the non-vanishing width Γ_C on the shape of the invariant mass distribution (11). We take the mass spectrum to be $(m_A,m_B,m_C) = (1000,520,500)$ GeV and again vary the dimensionless ratio Γ_C/m_C from 1% to 50% as indicated in the legend. For concreteness, we assume the hidden sector particles X and x to be massless, i.e., $m_X = m_Z = 0$, in which case the distributions in Fig. 4 have a common upper kinematic endpoint $m_{C,B}^{\text{max}} = \sqrt{(m_A^2 - m_B^2)(m_A^2 - (m_X + m_Z)^2)}/m_B = 854$ GeV.

Fig. 4 demonstrates that the effect of Γ_C can be quite drastic. Even when the width Γ_C is as small as 1% of the resonance mass m_C, the shape of the distribution is visibly distorted from the standard triangular shape (2), and a sizable fraction of events are already leaking out beyond the expected kinematic endpoint (3), which is indicated with the vertical dashed line. Increasing the width to $\Gamma_C \sim 0.05 m_C$ appears already sufficient to render the triangular shape unrecognizable and indicate the presence of off-shell effects.
Non-negligible Γ_A. Finally, for completeness we also consider the case where the width of particle A is non-negligible, $\Gamma_A \neq 0$. This case is a little bit more model-dependent, since we must know how to sample the 4-momentum squared, p_A^2, of particle A. One simple possibility is that A is the decay product of a narrow resonance Y with mass m_Y, $Y \to yA$, as shown in the left (dashed) boxed extension of Fig. 1. Under those circumstances, the invariant mass distribution is given by

$$\frac{dN}{dm} = \frac{m}{2048 \pi^4 m_Y^3 m_B \Gamma_B} \int_{s_-}^{s_+} ds \frac{\lambda^{1/2}(m_Y^2, m_y^2, s)}{(s - m_Y^2)^2 + m_A^2 \Gamma_A^2}, \quad (15)$$

where m_Y and m_y are the masses of the particles Y and y, respectively, while

$$s_- \equiv m_B^2 \left(1 + \frac{m_B^2}{m_Y^2 - m_C^2}\right), \quad s_+ \equiv (m_Y - m_y)^2. \quad (16)$$

The upper kinematic endpoint, $m_{\Gamma_A}^{\text{max}}$, of the distribution (15) is again found from $s_- = s_+$:

$$m_{\Gamma_A}^{\text{max}} = \sqrt{(m_Y - m_y)^2 - m_B^2 (m_Y^2 - m_C^2)/m_B^2}, \quad (17)$$

and can be equivalently interpreted as

$$m_{\Gamma_A}^{\text{max}} = m_{\text{on}}^{\text{max}} (m_Y - m_y, m_B, m_C). \quad (18)$$

Fig. 5 shows the effect of a non-vanishing width Γ_A on the shape of the invariant mass distribution (15). The mass spectrum is chosen as $(m_Y, m_A, m_B, m_C) = (1500, 1000, 970, 500)$ GeV and the dimensionless ratio Γ_A/m_A is again varied from 1% to 50%, as indicated in the legend. For concreteness, we assume that the additional final state particle y is massless, then all distributions in Fig. 5 have a common kinematic endpoint $m_{\text{on}}^{\text{max}}(m_Y, m_B, m_C) = 980$ GeV, as predicted by (18). Once again, we observe that even a width of only 1% leads to a noticeable change in the expected triangular shape and an overflow of events beyond the nominal kinematic endpoint of 208.3 GeV predicted by (3) and denoted by the vertical dashed line. As the width is further increased, the shape distortion becomes quite significant, confirming the sensitivity to the value of Γ_A.

Summary and outlook. We derived the effects of non-zero particle widths on the observable invariant mass distribution dN/dm in the case of the decay chain of Fig. 1. We showed that the shape of the distribution can be very sensitive to the widths and therefore can be used to perform a measurement of Γ_A, Γ_B and, most importantly, Γ_C, thus directly probing the nature of the dark matter candidate C, which appears invisible in the detector. Our results for these three cases can be compactly summarized as

$$\frac{dN}{dm} \sim m \int_{s_-}^{s_+} ds \frac{1}{(s - m_i^2)^2 + m_A^2 \Gamma_i^2} F_i(s), \quad (19)$$

where $i = \{A, B, C\}$, the integration limits s_{\pm} are given by eqs. (16), (5) and (12), respectively, while

$$F_i(s) = \begin{cases} \lambda^{1/2}(m_Y^2, m_y^2, s)/s, & \text{for } i = A; \\ 1, & \text{for } i = B; \\ \lambda^{1/2}(s m_Y^2, m_C^2)/s, & \text{for } i = C. \end{cases} \quad (20)$$

One should be mindful of the fact that there are other factors which also affect the shape of the invariant mass distribution dN/dm. On the theoretical side, there could be spin correlations [20–23], interference [24, 25] and higher order effects [26, 27]. On the experimental side, the cuts and the detector resolution will also play a role in this measurement. However, these effects are well known and under control, and can be readily accounted for (see, e.g., the kinematic endpoint measurements in [28]). Furthermore, the width measurement relies mostly on the events above the nominal kinematic endpoint (3), while all those effects impact mostly the softer part of the distribution dN/dm. We are therefore optimistic that such width measurements will be feasible, once a sufficiently strong and clean missing energy signal of new physics is observed at the LHC.

Acknowledgments

We would like to thank Gennaro Corcella and Rakhi Mahbubani for insightful discussions. This work is supported in part by a US Department of Energy grant DE-SC0010296. DK was supported in part by the LHC Theory Initiative postdoctoral fellowship (NSF Grant No. PHY-0969510), and presently supported by the Korean Research Foundation (KRF) through the CERN-Korea Fellowship program.
[1] M. Battaglia, I. Hinchliffe and D. Tovey, “Cold dark matter and the LHC,” J. Phys. G 30, R217 (2004) doi:10.1088/0954-3899/30/10/R01 [hep-ph/0406147].

[2] B. C. Allanach, G. Belanger, F. Boudjema and A. Pukhov, “Requirements on collider data to match the precision of wmap on supersymmetric dark matter,” JHEP 0412, 020 (2004) doi:10.1088/1126-6708/2004/12/020 [hep-ph/0410091].

[3] J. L. Bourjaily and G. L. Kane, “What is the cosmological significance of a discovery of wimps at colliders or in direct experiments?”, hep-ph/0501262.

[4] T. Moroi, Y. Shimizu and A. Yotsuyanagi, “Reconstructing dark matter density with e^+e^- linear collider in focus-point supersymmetry,” Phys. Lett. B 625, 79 (2005) doi:10.1016/j.physletb.2005.07.068 [hep-ph/0505252].

[5] A. Birkedal et al., “Testing cosmology at the ILC,” eConf C 050318, 0708 (2005) [hep-ph/0507214].

[6] M. M. Nojiri, G. Polesello and D. R. Tovey, “Constraining dark matter in the MSSM at the LHC,” JHEP 0603, 063 (2006) doi:10.1088/1126-6708/2006/03/063 [hep-ph/0512204].

[7] E. A. Baltz, M. Battaglia, M. E. Peskin and T. Wizansky, “Determination of dark matter properties at high-energy colliders,” Phys. Rev. D 74, 103521 (2006) doi:10.1103/PhysRevD.74.103521 [hep-ph/0602187].

[8] D. Chung, L. Everett, K. Kong and K. T. Matchev, “Connecting LHC, ILC, and Quintessence,” JHEP 0710, 016 (2007) doi:10.1088/1126-6708/2007/10/016 [arXiv:0706.2376 [hep-ph]].

[9] J. L. Feng, A. Rajaraman and F. Takayama, “SuperWIMP dark matter signals from the early universe,” Phys. Rev. D 68, 063504 (2003) doi:10.1103/PhysRevD.68.063504 [hep-ph/0306024].

[10] H. Baer, K. Y. Choi, J. E. Kim and L. Roszkowski, “Dark matter production in the early Universe: beyond the thermal WIMP paradigm,” Phys. Rept. 555, 1 (2015) doi:10.1016/j.physrep.2014.10.002 [arXiv:1407.0017 [hep-ph]].

[11] S. Chang and A. de Gouvea, “Neutrino alternatives for missing energy events at colliders,” Phys. Rev. D 80, 015008 (2009) doi:10.1103/PhysRevD.80.015008 [arXiv:0901.4796 [hep-ph]].

[12] J. F. Gunion, D. Hooper and B. McElrath, “Light neutralino dark matter in the NMSSM,” Phys. Rev. D 73, 015011 (2006) doi:10.1103/PhysRevD.73.015011 [hep-ph/0509024].

[13] H. K. Dreiner, S. Heinemeyer, O. Kittel, U. Langenfeld, A. M. Weber and G. Weiglein, “Mass Bounds on a Very Light Neutralino,” Eur. Phys. J. C 62, 547 (2009) doi:10.1140/epjc/s10052-009-1042-y [arXiv:0901.3485 [hep-ph]].

[14] C. H. Chen and J. F. Gunion, “Probing gauge mediated supersymmetry breaking models at the Tevatron via delayed decays of the lightest neutralino,” Phys. Rev. D 58, 075005 (1998) doi:10.1103/PhysRevD.58.075005 [hep-ph/9802252].

[15] K. Maki and S. Orito, “Hadron colliders as the neutralino factory: Search for a slow decay of the lightest neutralino at the CERN LHC,” Phys. Rev. D 57, 554 (1998) doi:10.1103/PhysRevD.57.554 [hep-ph/9706382].

[16] J. P. Chou, D. Curtin and H. J. Lubatti, “New Detectors to Explore the Lifetime Frontier,” Phys. Lett. B 767, 29 (2017) doi:10.1016/j.physletb.2017.01.043 [arXiv:1606.06298 [hep-ph]].

[17] M. J. Strassler, “Possible effects of a hidden valley on supersymmetric phenomenology,” hep-ph/0607160.

[18] I. Hinchliffe, F. E. Paige, M. D. Shapiro, J. Soderqvist and W. Yao, “Precision SUSY measurements at CERN LHC,” Phys. Rev. D 55, 5520 (1997) doi:10.1103/PhysRevD.55.5520 [hep-ph/9610544].

[19] Y. Grossman, M. Martone and D. J. Robinson, “Kinematic Edges with Flavor Oscillation and Non-Zero Widths,” JHEP 1110, 127 (2011) doi:10.1007/JHEP10(2011)127 [arXiv:1108.5381 [hep-ph]].

[20] L. T. Wang and I. Yavin, “Spin measurements in cascade decays at the LHC,” JHEP 0704, 032 (2007) doi:10.1088/1126-6708/2007/04/032 [hep-ph/0605296].

[21] A. J. Barr, “Determining the spin of supersymmetric particles at the LHC using lepton charge asymmetry,” Phys. Lett. B 596, 205 (2004) doi:10.1016/j.physletb.2004.06.074 [hep-ph/0405052].

[22] J. M. Smillie and B. R. Webber, “Distinguishing spins in supersymmetric and universal extra dimension models at the large hadron collider,” JHEP 0510, 069 (2005) doi:10.1088/1126-6708/2005/10/069 [hep-ph/0507170].

[23] M. Burns, K. Kong, K. T. Matchev and M. Park, “A General Method for Model-Independent Measurements of Particle Spins, Couplings and Mixing Angles in Cascade Decays with Missing Energy at Hadron Colliders,” JHEP 0810, 081 (2008) doi:10.1088/1126-6708/2008/10/081 [arXiv:0808.2472 [hep-ph]].

[24] A. Birkedal, R. C. Group and K. Matchev, “Slepton mass measurements at the LHC,” eConf C 050318, 0210 (2005) [hep-ph/0507002].

[25] E. Fuchs, S. Thewes and G. Weiglein, “Interference effects in BSM processes with a generalised narrow-width approximation,” Eur. Phys. J. C 75, 254 (2015) doi:10.1140/epjc/s10052-015-3472-z [arXiv:1411.4652 [hep-ph]].

[26] M. Drees, W. Hollik and Q. Xu, “One-loop calculations of the decay of the next-to-lightest neutralino in the MSSM,” JHEP 0702, 032 (2007) doi:10.1088/1126-6708/2007/02/032 [hep-ph/0610267].

[27] M. Beneke, L. Jenniches, A. Mck and M. Ubiali, “Radiative distortion of kinematic edges in cascade decays,” Phys. Lett. B 770, 539 (2017) doi:10.1016/j.physletb.2017.04.018 [arXiv:1611.08166 [hep-ph]].

[28] S. Chatrchyan et al. [CMS Collaboration], “Measurement of masses in the $t\bar{t}$ system by kinematic endpoints in pp collisions at $\sqrt{s} = 7$ TeV,” Eur. Phys. J. C 73, 2494 (2013) doi:10.1140/epjc/s10052-013-2494-7 [arXiv:1304.5783 [hep-ex]].

[29] For historical reasons, the magnitude of this quantity is known as the missing transverse energy $E_T \equiv |\vec{P}_T|$. This point was overlooked in the previous analysis of Ref. [19].

[30] The alternative choice is for B to be a boson, while A and C are fermions.