S100A6 (Calcyclin) is a prostate basal cell marker absent in prostate cancer and its precursors

S100A6 (Calcyclin) is a calcium-binding protein that has been implicated in a variety of biological functions as well as tumorigenesis. The aim of our study was to investigate the involvement of S100A6 during prostate cancer development and progression. Using immunohistochemistry, the expression of S100A6 was examined in benign (n = 66), premalignant (n = 10), malignant (n = 66) and metastatic prostate (n = 5) tissues arranged in a tissue-microarray or whole sections as well as in prostate cancer cell lines. The S100A6 immunostaining pattern in tissues was compared with that of cytokeratin 5 (a basal cell marker) and 18 (a benign luminal cell marker). In all cases of benign epithelium, intense S100A6 expression was seen in the basal cell layer with absent staining in luminal cells. In all cases of prostatic adenocarcinoma (matched), metastatic lesions and 3/10 high-grade prostatic intraepithelial neoplasia lesions, an absence of S100A6 was seen. Western blotting and RT–PCR analysis of cell lines showed S100A6 expression to be absent in LNCaP, LNCaP-LN3 and LNCaP-Pro5 but present in Du145, PC3, PC-3M and PC-3M-LN4. LNCaP cells treated with 5-Azacytidine, caused re-expression of S100A6 mRNA. Sequencing of bisulphite modified DNA showed CpG methylation within the S100A6 promoter region and exon 1 of LNCaP, LNCaP-LN3 and LNCaP-Pro5 cell lines but not in Du145 cells. Our data suggest that loss of S100A6 protein expression is common in prostate cancer development and may occur at an early stage. The mechanism of loss of expression may involve hypermethylation of CpG sites. The finding of intense S100A6 expression in the basal cells of benign glands but loss of expression in cancer could be useful as a novel diagnostic marker for prostate cancer.

Keywords: S100; adenocarcinoma; prostatic intraepithelial neoplasia; cytokeratin 5; cytokeratin 18; methylation

Prostate cancer is among the most commonly diagnosed cancers in men and has become the second most common cause of cancer-related deaths (Greenlee et al, 2000; Gronberg, 2003). However, our understanding of its aetiology is limited. Molecular genetic studies have shown that the frequency of genetic alterations is low compared with other common cancers. The most common alterations identified are loss of Glutathione S transferase-pi (GST-pi) and Annexin expression (Lee et al, 1994; Pawelz et al, 2000; Chetcuti et al, 2001). The frequencies of loss of expression of GST-pi, Annexin I and II approach 100% in prostate cancer.

Calcium plays an important role in a number of physiological processes, thus intracellular calcium levels must be carefully regulated. There are three main families of calcium-binding proteins, which are thought to regulate calcium levels (Schafer and Heizmann, 1996; Hawkins et al, 2000; Michalak et al, 2002; Donato, 2003). The first family includes the endoplasmic reticulum calcium-binding proteins; the second family includes the Annexins and the third family includes the S100 members. Members of the S100 protein family have been implicated in a variety of cellular activities such as protein phosphorylation, enzyme activities, cell proliferation and differentiation, as well as in tumorigenesis (Schafer and Heizmann, 1996; Heizmann et al, 2002; Donato, 2003). It has also been reported that proteins from two different families may form heterodimer complexes, such as the interaction between S100A6 and Annexin II and between S100B and S100A6 (Zeng et al, 1997; Deloulme et al, 2000). Other than one recent report showing S100A6 expression in ~20% of prostatic cancers arranged on a tissue-microarray (Hsieh et al, 2003), there are no reports investigating S100A6 expression in benign and malignant prostate tissues or cell lines. We therefore examined the tissue expression of S100A6 in benign, malignant and metastatic prostate tissues.
for the absence of expression in prostate cancer cell lines was investigated by bisulphite modified DNA sequencing of CpG sites within the S100A6 promoter and 5’ upstream sequence of exon 1.

MATERIALS AND METHODS

Tissue specimens

Following local ethics committee approval and informed consent, tissues were collected from a total of 71 patients, who attended the Urology clinic at three centres: Academic Urology Unit, University of Sheffield; CeRePP-EA3104, Départements d’Urologie, Universités Paris or Service d’Anatomie Pathologique, CHU Nancy-Brabois (France). Paraffin-embedded tissue in blocks from 28 histologically proven cases of organ confined prostate cancer obtained either by radical prostatectomy or Transurethral resection of prostate (TURP) were collected at the Universities Paris. Organ confined tumours had Gleason scores ranging from 3 to 6 (n = 3), 7 (n = 13) and 8–10 (n = 12). Four cases of metastatic prostate cancer in lymph node were collected at the University of Sheffield.

Tissue microarrays

For the construction of Tissue Microarrays (TMA), 38 tumour tissue samples obtained either by radical prostatectomy or TURP were collected at the University of Sheffield. Areas representing the largest carcinoma as well as areas of normal appearing epithelium and normal appearing stroma were circled on the haematoxylin & eosin stained slides. For each area, triplicate 0.6 mm cores were obtained from the circled areas and were transferred onto recipient paraffin blocks. Tumour areas sampled generally reflected the final Gleason score for the case and included low, intermediate and high-grade adenocarcinomas. In total, 5-μm sections from the array blocks and tissues were cut for immunohistochemistry.

Prostate cancer cell lines and culture

PC3, Du145 and LNCaP cell lines were obtained from the American-Type Culture Collection (Manassas, VA, USA). PC-3M, PC-3M-LN4, LNCaP-LN3 and LNCaP-Pro5 cell lines were kindly provided by Dr CA Pettaway (University of Texas MD Anderson Cancer Centre, Houston, TX, USA) (Pettaway et al., 1996). All cell lines were maintained in RPMI-1640 medium as described (Invitrogen). Molecular weight markers used were the See blue plus 2 prestained standards (Invitrogen).

RNA extraction

RNA was extracted using TRI reagent (Sigma-Aldrich, Dorset, UK), according to the manufacturer’s instructions. After precipitation the pellet was washed three times with 75% ethanol. All RNA was quantified spectrophotometrically.

RT–PCR

RNA (2 μg) was reverse transcribed into cDNA using a reverse transcription kit (Invitrogen), with 250 ng of random primers according to the manufacturer’s instructions. For S100A6 PCR two primer pairs were designed using the cDNA sequence of the Ensembl genome browser (Ensembl gene i.d. ENSG00000160670). The sequence of the forward and reverse primer pairs were:

S100A6F1 GAAAACCGCGAATGGTGCGTGGTG (exon 1)
S100A6R1 GAGTACTCTGGAAGATGGGCA (exon 2)
S100A6F2 AGCTGAGGAGCTGATTGACAGA (exon 2)
S100A6R2 CCGGTGAGGGTCTTGGATGAGTA (exon 3)

GAPDH PCR was performed to test RNA integrity and as a loading control. Primer sequences were

GAPDHF GAAGGTGAAGGTCGGAGTCGTT
GAPDHR GAAGATGGTGTAGGGTATTT

All primers were synthesised by MWG-Biotech (UK). RT–PCR was performed using 200 ng of each primer in 20 μl volumes. Touch down thermocycling was performed using the following annealing temperatures, three cycles each of 65 °C for 30 s, 62 °C for 30 s, 59 °C for 30 s then 30 cycles of 56 °C for 1 min. All denaturation steps were 94 °C for 30 s and all extension steps were 72 °C for 30 s. PCR controls consisted of nontranscribed total RNA and water. Amplified products were separated on 2.5% agarose gels containing ethidium bromide.

Immunohistochemistry

Immunohistochemistry was performed essentially as previously described with the following modifications (Rehman et al., 1996). Non-specific sites were blocked using 1 × Casein (Vector laboratories, Peterborough, UK) in 0.5 M Tris-buffered saline (TBS), 2 mM CaCl2, 0.05% Tween 20, pH 7.5. Sections were incubated for 1 h with rabbit anti-S100A6 polyclonal antibody at a 1:1000 dilution (Cat. No. A5115, Dako, Cambs, UK) or Mouse monoclonal anti-S100A6 antibody (Cat. No. S5049, Sigma-Aldrich, Dorset, UK) at 1:2000 dilution in 1/4 × Casein in 0.5 M TBS, 2 mM CaCl2, 0.012% Tween 20, pH 7.5. Secondary antibodies were either biotinylated Goat anti-rabbit (1:400 dilution) (Vector laboratories) or biotinylated rabbit anti-mouse (1:400 dilution) (Dako). Cytokeratin 5 and 18 immunostaining was performed using mouse monoclonal antibodies (NCL-L-C5 and NCL-C18, Novocastra laboratories, Newcastle, UK). S100B immunostaining was performed using the monoclonal mouse anti-S100B antibody (Cat No. M7221, Dako), at a 1:30 dilution. For immunostaining of cell lines, cells fixed with 4% paraformaldehyde/PBS were first treated with hot sodium citrate pH 6.0 for 15 min, and the staining performed as described above. Negative controls were included for most tissues and included omission of primary antibody. All immunostained tissues were scored by an expert histopathologist (SSC).

Western blotting

Protein was extracted from all seven cell lines using the mammalian cell lysis kit (Sigma-Aldrich) and the NER-PER kit (Pierce Biotechnology), according to the manufacturer’s instructions. Protein extracts (20 μg each) were run on 12% SDS-Tris-glycine gels and blotted onto immobil PVDF transfer membranes (Millipore, Watford, UK) for 1 h at 65 V. Blots were then blocked by 5% non-fat milk for 1 h, incubated with a 1:2000 dilution of the anti-S100A6 polyclonal antibody (Cat No. A5115, Dako), overnight at 4 °C. After incubation with secondary peroxidase conjugated horse anti-rabbit antibody at a 1:30 000 dilution (Cat No. NA934 Amersham Biosciences, Bucks, UK), the membranes were developed by ECL Advanced Western blotting detection kit (Amersham Biosciences) for X-ray film exposure. Molecular weight markers used were the See blue plus 2 prestained standards (Invitrogen).

5-Azacytidine treatment

LNCaP cells were cultured in RPMI-1640 medium as described above for 2 days in 12-well plates. A final concentration of 1 or 5 μM of freshly prepared 5-azacytidine (Sigma-Aldrich) was added to the culture medium. After 5 days of treatment, RNA was isolated using TRI reagent as described above.
Bisulphite modified DNA sequencing and primer design

The methylation status of the S100A6 gene (promoter region and 5’ upstream region of exon 1) was investigated in the S100A6 negative cell lines and in the Du145 cell line, by sequencing of bisulphite modified DNA (Herman et al, 1996). To design sequencing primers an appropriate area of the S100A6 promoter and exon 1 was identified using the published human S100A6 sequence (Gene bank accession number; J02763), and the MethPrimer design programme (http://itsa.ucsf.edu/~urolab/methprimer/). The bisulphite modified sense primer sequence was (IRD 800 labelled) 5’ CTCCCCCTATCTCTCTAAAATAC 3’, which corresponds to position –1084 to –1109 (designating the ATG of the translational start site as 0). The bisulphite modified antisense primer was (IRD 700 labelled) 5’ TGGGGGAGTTAG-TAGGTGTTATGG 3’, which corresponds to position –842 to –867. This 267 bp fragment encompassed the promoter region and the first 41 nucleotides 5’ of exon 1. Genomic DNA was extracted by a standard phenol–chloroform method. In total, 1 μg of DNA was treated with sodium bisulphite for 16 h, using the CpGenome kit (Serologicals, UK), according to the manufacturer’s instructions. After purification, a 2 μl aliquot was used for sequencing using the EXCEL II sequencing kit-LC (Epicentre technologies), according to the manufacturer’s instructions. Sequencing was performed in both the forward and reverse direction. The sequencing PCR products were resolved on an automated sequencer (LICOR) and aligned using the Sequencher programme.

RESULTS

S100A6 staining in benign prostate tissue

Immunostaining for S100A6 showed that in all 66 cases of benign epithelium adjacent to prostatic adenocarcinoma, the staining was seen to be intense in the nuclei and cytoplasm of basal cells, with luminal cells showing an absence of staining. Overall, the staining pattern was seen as a single layer of stained cells within the typical two-layered architecture (Figure 1A and B). Many of the specimens in blocks showed foci of basal cell proliferations. These are benign lesions where the basal cells have proliferated to become multi-layered. S100A6 immunostaining showed intense staining in all basal cell layers with the single layer of luminal cells showing an absence of staining (Figure 1C). In all cases absent or weak-moderate staining was seen in the smooth muscle cells within the benign stroma (Figure 1A and B).

S100A6 staining in prostate cancer and metastatic lesions

In contrast to the intense expression seen in the basal cell layer of benign glands, a complete loss of S100A6 staining was seen in all 66 cases of adenocarcinomas, regardless of Gleason score (Figure 1D). Absent staining was seen in all five cases of metastatic cancer (Figure 1E and F).

S100A6 staining in high-grade prostatic intraepithelial neoplasia

In 10 cases of adenocarcinoma, we examined 10 lesions of high-grade prostatic intraepithelial neoplasia (PIN) chosen at random. High-grade PIN lesions consist of architecturally benign prostatic acini lined by cytologically atypical cells in which the basal cell layer may show some disruption (Bostwick et al, 1997). S100A6 immunostaining was found to be absent in three cases of PIN where the basal cell layer was disrupted (Figure 1G), and was found to be present in the basal cells of the seven cases of high-grade PIN where an intact basal cell layer was present (Figure 1H).

Comparison of S100A6 staining with cytokeratin 5 and 18

To compare the S100A6 staining pattern with that of cytokeratin 5 and 18, tissues arranged in a TMA, comprising of 19 cases of matched adenocarcinoma, benign epithelium and benign stroma were serially cut and immunostained for cytokeratin 5 (a marker of prostate basal cells), or cytokeratin 18 (a marker for benign luminal cells), which is also expressed in malignant cells (Freeman et al, 2002). As expected, in all cases of benign epithelium intense cytokeratin 5 immunostaining was seen in the basal cell layer, with an absence of staining in the luminal cells (Figure 2A), and in all cases this staining pattern was identical to...
Loss of S100A6 in prostate cancer
I Rehman et al.

S100A6 expression was investigated by Western blotting in all seven cell lines using the anti-S100A6 polyclonal antibody. Protein expression was seen in Du145, PC3, PC-3M-LN4 cell lines as a single ~10 kDa band, thus confirming the specificity of the antibody used. However, protein expression was absent in the LNCaP, LNCaP-LN3, LNCaP-Pro5 cell lines. Data using different protein extraction protocols. To further confirm the expression of S100A6 in cell lines, we performed immunocytochemistry on Du145, PC3 and LNCaP cell lines. Cytoplasmic protein expression was seen in both Du145 and PC3 cells with weak expression in the nucleus (data not shown). LNCaP cells as expected showed a complete absence of S100A6 expression.

To confirm the protein expression status in the cell lines, we performed RT–PCR using two separate PCR primer pairs (S100A6 F1/R1 and S100A6 F2/R2), on RNA extracted from all seven cell lines. Using both primer sets, S100A6 mRNA expression was detected in Du145, PC3, PC-3M, PC-3M-LN4 cells, as seen by the 10 kDa band, but its absence in the LNCaP cell line.

S100A6 mRNA is re-expressed following 5-azacytidine treatment

Previous studies have shown an inverse correlation between expression of S100A6 and methylation in human keratinocytes and fibroblasts (Elder and Zhao, 2002), we therefore investigated whether this could be the mechanism of silencing in LNCaP cells. Cells were treated with 5-Azacytidine for 5 days using two doses: 1 and 5 μM. S100A6 mRNA expression was reactivated in LNCaP cells following treatment with both doses and was seen using both primer sets. Data using primer pair S100A6F2/R2 are shown (Figure 4, lanes 5 and 6).

CpG sites within the S100A6 promoter and exon 1 are methylated in prostate cancer cell lines

In view of the above results, we hypothesised that CpG methylation may underlie the absence of S100A6 protein expression in the LNCaP, LNCaP-LN3 and LNCaP-Pro5 cell lines. Bisulphite modified DNA sequencing of a region of the S100A6 promoter and first upstream region of exon 1 in LNCaP, LNCaP-LN3 and LNCaP-Pro5 cell lines. Bisulphite modified DNA sequencing revealed the presence of methylated CpG sites in the promoter region of S100A6 in LNCaP cells, as seen by the 10 kDa band, but its absence in the LNCaP cell line.
of benign tissues were studied and the distribution of staining in the cases arranged on a TMA had S100A6 expression (Hsieh et al, 2002). The finding of S100A6 loss of expression in a significant proportion of high-grade PIN lesions as well as in all cases of adenocarcinoma, regardless of Gleason score and metastatic lesions, suggests that loss of expression occurs at an early stage of prostate tumour development and that loss of expression is maintained throughout tumour progression. In addition, this loss of expression was related to the loss of the basal cell phenotype in high-grade PIN and cancer.

Analysis of human prostate cancer cell lines showed expression of S100A6 protein and mRNA in Du145 (derived from metastatic prostate in the brain), PC3 (derived from metastatic prostate in the bone), PC-3M and PC-3M-LN4 (metastatic variants of PC3), whereas the LNCaP cell line (derived from a lymph node metastasis) and LNCaP-LN3 and LNCaP-Pro5 cell lines (metastatic variants of LNCaP) (Pettaway et al, 1996) showed an absence of protein and mRNA. Although, the absence of S100A6 expression seen in all tumours was confirmed in the LNCaP cell line and its variants, other metastatic cell lines such as Du145 and PC3 (and its variants), were shown to express S100A6. The reason(s) for the differences in S100A6 expression seen between the human metastatic tissues and certain cell lines is not known, but it is possible that re-expression could have occurred at some point during the establishing of the cell lines. Nevertheless, the finding of S100A6 expression in some prostate cancer cell lines but not others provides a useful tool to further understand the mechanism(s) involved in regulating S100A6 expression.

The pattern of S100A6 immunostaining seen in benign prostate epithelium was similar to the pattern seen for cytokeratin 5 and that reported for p63 and 34/EB12 (a cocktail of cytokeratins), which are markers of prostate basal cells (Parsons et al, 2001; Freeman et al, 2002). In all cases of adenocarcinoma, expression of both S100A6 and cytokeratin 5 was seen in the malignant cells. This frequency of loss is similar to the frequency of loss (~95%) reported for p63 in prostate cancer (Parsons et al, 2001). Therefore, S100A6 immunohistochemistry could represent a novel marker for basal cells in the benign prostate and its absence in malignant cells may be useful as an adjuvant method to p63 and 34/EB12 immunostaining to facilitate the pathological diagnosis of prostate cancer.

The loss of expression seen in the malignant cells was confirmed using two commercially available antibodies, that is, a mouse monoclonal antibody (Sigma) and rabbit polyclonal antibody (Dako). Both antibodies showed identical staining patterns, using serial sections, although the monoclonal antibody showed slightly reduced staining in the intranuclear compartment. The S100A6 polyclonal antibody was shown to be specific for S100A6, by the finding of a single band of the correct molecular size (~10 kDa) in Du145, PC3, PC-3M and PC-3M-LN4 cell lines. In addition, the absence of protein in LNCaP cells was very unlikely to be due to proteolytic cleavage since no low molecular weight bands were seen on the Western blots.

Since yeast two-hybrid experiments have shown S100A6 to interact with S100B and co-localise in astrocytoma cells (Deloume et al, 2000), we investigated the expression of both S100A6 and S100B in serial sections of prostatic adenocarcinoma of various Gleason scores and adjacent benign epithelium. We found no evidence of S100B protein expression in the prostate whereas different cell types was not described, that is, no distinction between luminal or basal cells was made. Given the results of previous studies showing S100A6 expression to be increased in all cancers as well as the correlation between expression and malignant transformation and invasion, our finding of loss of S100A6 expression in all adenocarcinomas studied was unexpected. The frequency of S100A6 loss we observed in our series of adenocarcinomas is comparable to the frequency of loss reported for Annexin I and II. Thus, loss of expression of proteins belonging to the calcium-binding protein family is among the most frequent events in prostate cancer development.
intense expression was seen in the malignant melanoma cases used as positive controls (data not shown). This suggests that in contrast to previous studies, S100A6 is not co-expressed with S100B and that S100B is unlikely to play a role in the normal function of S100A6 in the prostate.

As the mechanism of S100A6 loss of expression has been correlated with DNA methylation in human keratinocytes and fibroblasts (Elder and Zhao, 2002), we investigated the mechanism of S100A6 silencing in the LNCaP cell line using the drug 5-Azacytidine. 5-Azacytidine is a DNA methylation inhibitor that effectively inactivates the DNA methyltransferase enzyme. Several in vitro and in vivo studies have reported that 5-Azacytidine can cause hypomethylation and reverse the epigenetic silencing of tumour suppressor genes in tumour cell lines (Bender et al, 1999; Bovenzi et al, 1999). Our finding that S100A6 mRNA could be re-activated following treatment of cells with 5-Azacytidine suggested that hypermethylation could be the mechanism for silencing of the S100A6 gene. However, more significantly sequencing of bisulphite modified DNA in LNCaP, LNCaP-LN3 and LNCaP-Pro5 cell lines showed that CpG methylation was present, but was not present in Du145 cells which showed high expression of S100A6 protein.

In summary, we have shown intense S100A6 expression in the basal cells of benign prostate epithelium. Loss of expression was seen in high-grade PIN, all grades of adenocarcinoma, all metastatic prostate lesions and in the LNCaP prostate cancer derived cell line. The high frequency of loss of expression parallels the frequency of loss seen in other calcium-binding proteins such as Annexin I and II. The pattern of S100A6 expression in benign epithelium and adenocarcinomas is similar to that of cytokeratin 5 and that reported for p63 and 34bE12, and therefore has the potential to be used as an adjunct to these markers in the diagnosis of prostate cancer. The mechanism underlying the loss of expression appears to involve methylation of CpG sites within the promoter region and exon 1. Further studies regarding the expression of S100A6 in prostate cancer and other tumours are clearly warranted.

ACKNOWLEDGEMENTS

We thank Natasha Wylde, Abir Mukherjee and Dipali Dhawan for technical support.

REFERENCES

Bender CM, Pao MM, Jones PA (1998) Inhibition of DNA methylation by 5-aza-2’-deoxycytidine suppresses the growth of human tumor cell lines. Cancer Res 58: 95 – 101

Bostwick DG, Pacelli A, Lopez-Beltran A (1997) Ultrastructure of prostatic intraepithelial neoplasia. Prostate 33: 32 – 37

Bovenzi V, Le NL, Cote S, Sinnett D, Momparler LF, Momparler RL (1999) DNA methylation of retinoic acid receptor beta in breast cancer and possible therapeutic role of 5-aza-2’-deoxycytidine. Anticancer Drugs 10: 471 – 476

Calabretta B, Buttini R, Kaczmarek L, de Riel JK, Baserga R (1986) Annexin II heavy and light chains binding S100B protein. J Biol Chem 261: 12628 – 12632

Camby I, Nagy N, Lopes MB, Schafer WA, Maurage CA, Ruchoux MM, Murmann P, Pochet R, Heizmann CW, Brodtch J, Salmon I, Kiss R, Decaestecker C (1999) Supratentorial pilocytic astrocytomas, astrocytomas, anaplastic astrocytomas and glioblastomas are characterized by a differential expression of S100 proteins. Brain Pathol 9: 1 – 19

Chetcuti A, Margan SH, Russell P, Mann S, Millar DS, Clark SJ, Rogers J, Handelsman DJ, Dong Q (2001) Loss of annexin II heavy and light chains in prostate cancer and its precursors. Cancer Res 61: 6331 – 6334

Deloume JC, Assard N, Mbele GO, Mangin C, Kuwano R, Baudier J (2000) S100A6 and S100A11 are specific targets of the calcium- and zinc-binding S100B protein in vivo. J Biol Chem 278: 35302 – 35310

Donato R (2003) Intracellular and extracellular roles of S100 proteins. Biosis Rep Tech 60: 540 – 551

Elder JT, Zhao X (2002) Evidence for local control of gene expression in the epidermal differentiation complex. Exp Dermatol 11: 406 – 412

Fremant A, Teurriehheit N, Munson P, Miller K, Parkinson MC (2002) A comparison of basal cell markers used in the prostate. Histopathology 40: 492 – 494

Greenlee RT, Murray T, Bolden S, Wingo PA (2000) Cancer statistics, 2000. CA Cancer J Clin 50: 7 – 33

Gronberg H (2003) Prostate cancer epidemiology. Lancet 8: 859 – 864

Hawkins TE, Merrifield CJ, Moss SE (2000) Calcium signaling and annexins. Cell Biochem Biophys 32: 209 – 215

Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB (1996) Loss of expression in S100A6 at the invading fronts of the primary lesion and liver metastasis in patients with colorectal adenocarcinoma. Br J Cancer 73: 769 – 774

Kuo WN, Jn-Baptiste JB, Zalai L, Chambers MC, Kanadia R (1997) Immunoreactivities of p11 and calcyclin in baker’s yeast, wheat germ and lobster. Biochem Mol Biol Int 41: 209 – 215

Lee WH, Morton RA, Epstein JI, Brooks JD, Campbell PA, Bova GS, Hsieh WS, Isaacs WB, Nelson WG (1994) Cytidine methylation of regulatory sequences near the p-class glutathione S-transferase gene accompanies human prostatic carcinogenesis. Proc Natl Acad Sci USA 91: 11733 – 11737

Logsdon CD, Simeone DM, Binkley C, Arumugam T, Greenson JK, Giordano TJ, Misek DE, Kluck R, Hanash S (2003) Molecular profiling of pancreatic adenocarcinoma and chronic pancreatitis identifies multiple genes differentially regulated in pancreatic cancer. Cancer Res 63: 2649 – 2657

Michalak M, Robert Parker JM, Opas M (2002) Ca2+ signaling and calcium-binding chaperones of the endoplasmic reticulum. Cell Calcium 32: 269 – 278

Parsons JK, Gage WB, Nelson WG, De Marzo AM (2001) p63 protein expression is rare in prostate adenocarcinoma: implications for cancer diagnosis and carcinogenesis. Urology 58: 619 – 624

Pawelez CP, Ornstein DK, Roth MJ, Bichsel VE, Gillespie JW, Calvert VS, Voce CK, Westwood SM, Duray PH, Herring J, Wang QH, Hu N, Linehan WM, Taylor PR, Liotto LA, Emmert-Buck MB, Petricoin III EF (2000) Loss of annexin 1 correlates with early onset of tumorigenesis in esophagel and prostate carcinoma. Cancer Res 60: 6293 – 6297

Pettaway CA, Pathak S, Greene S, Ramirez E, Wilson MR, Killion JJ, Fidler IJ (1996) Selection of highly metastatic variants of different human prostatic carcinomas using orthotopic implantation in nude mice. Clin Cancer Res 2: 1627 – 1636

Rehman I, Takata M, Wu YY, Rees JL (1996) Genetic change in actinic keratoses. Oncogene 12: 2483 – 2490

Schafer BW, Heizmann CW (1996) The S100 family of EF-hand calcium-binding proteins: functions and pathology. Trends Biochem Sci 21: 134 – 140

Wetteman MA, Stoopen GM, van Muijzen GN, Kuznicket J, Ruiter DJ, Bloemers HP (1992) Expression of calcyclin in human melanoma cell lines correlates with metastatic behavior in nude mice. Cancer Res 52: 1291 – 1296

Wetteman MA, van Muijzen GN, Bloemers HP, Ruiter DJ (1993) Expression of calcyclin in human melanocytic lesions. Cancer Res 53: 6061 – 6066

Zeng FY, Gerke V, Gabius HJ (1993) Identification of annexin II, annexin I and a third annexin in baker’s yeast. J Biol Chem 268: 21358 – 21364

We thank Natasha Wylde, Abir Mukherjee and Dipali Dhawan for technical support.