Simultaneous Local and Global State Estimation for Robotic Navigation

David C. Moore
Massachusetts Institute of Technology

Joint work with
Albert S. Huang, Matthew Walter, Edwin Olson, Luke Fletcher, John Leonard and Seth Teller

ICRA 2009
Talk Outline

- Define problem of state estimation
- Discuss two traditional coordinate frames:
 - Globally-referenced coordinate system
 - Body-centered coordinate system
- Propose new representation: “Local Frame”
- Show simulations and collected data
State Estimation in Mobile Robotics

- Two general classes of measured state information:
 - **Globally referenced**
 - GPS Position
 - Map constructed using SLAM
 - **Body-referenced**
 - Sensor data (LIDAR, cameras, radar, etc.)
 - Inertial measurement (gyro, accelerometer)
 - Kinematics (odometry, joint position, etc.)

How do we reconcile this state data?
Reconciling Global and Body State

One solution:

Transform all state into the global frame before storing it or reasoning with it
What happened?

- Alice lost GPS under some power lines.
- Signal returned, but new state estimate had a bias.
- Obstacle map was still registered against previous localization.
- Alice obeyed previous obstacle map and drove into barriers.
- Conclusion: Don't store persistent data in the global frame.
GPS Discontinuities

- Gradual bias
- 3.8m jump

Graphs:
- IMU + odometry
- GPS + IMU + odometry
Body Frame

- Vehicle position defined as (0,0,0)
- Sensor data:
 - Project into body frame per sensor
 - Corrupted by intrinsic sensor and projection error
- Globally-registered data:
 - Project into body frame using localization fix
 - Corrupted by noise from localization system
- Primary disadvantage:

 Must propagate stored map data at every time step
Three Possible Frames

Representing Uncertainty

Global Frame

Local Frame

Body Frame

△ robot
× globally referenced
+ locally sensed
The Local Frame Defined

- Traditional position update in same frame L_t:
 \[
 x_{t+1}^{L_t} = F(x_t^{L_t}, u_t) + w_t^{L_t}
 \]

- Local frame update:
 - Position update into new frame L_{t+1} without noise:
 \[
 x_{t+1}^{L_{t+1}} = F(x_t^{L_t}, u_t)
 \]
 - Must also migrate map data into L_{t+1} with noise

- Key feature: Maximum Likelihood Estimate of map data is the same in L_t and L_{t+1}
Local Frame Simulation

Uncertainty of a map feature in the local frame

- 2 circles ($r=64m$)
- 1 circle ($r=127m$)
- Wide turn ($r=509m$)
- Straight line

$|\Sigma_{mm}|$ vs. time (s)
Global vs. Local in the Real World

Global Frame

Local Frame
Conclusions

- Global frame is not recommended for storing measured sensor data.
- Body frame is suitable, but can be expensive to do time updates.
- The local frame is a good alternative.
- Request for manufacturers of high-end Inertial Navigation Systems (INS):
 Please provide a purely inertial position/attitude estimate *in addition* to traditional GPS-fused position estimate.
Questions?