THE PROBABILITY MEASURE CORRESPONDING TO 2-PLANE TREES

BY

WOJCIECH MŁOTKOWSKI* (WROCLAW) AND KAROL A. PENSON** (PARIS)

Abstract. We study the probability measure \(\mu_0 \) for which the moment sequence is \(\binom{3n}{n} \frac{1}{n+1} \). We prove that \(\mu_0 \) is absolutely continuous, find the density function and prove that \(\mu_0 \) is infinitely divisible with respect to the additive free convolution.

2000 AMS Mathematics Subject Classification: Primary: 44A60; Secondary: 46L54.

Key words and phrases: Beta distribution, additive and multiplicative free convolution, Meijer G-function.

1. INTRODUCTION

A 2-plane tree is a planted plane tree such that each vertex is colored black or white and for each edge at least one of its ends is white. Gu and Prodinger [3] proved that the number of 2-plane trees on \(n + 1 \) vertices with black (white) root is \(\binom{3n+1}{n} \frac{1}{3n+1} \) (Fuss–Catalan number of order three, sequence A001764 in OEIS [10]) and \(\binom{3n+2}{n} \frac{2}{3n+2} \) (sequence A006013 in OEIS) respectively (see also [4]). We will study the sequence

\[
\binom{3n}{n} \frac{2}{n+1} = \binom{3n+1}{n} \frac{1}{3n+1} + \binom{3n+2}{n} \frac{2}{3n+2},
\]

which begins with

2, 3, 10, 42, 198, 1001, 5304, 29070, 163438, \ldots,

of total numbers of such trees (A007226 in OEIS).

* W. M. is supported by the Polish National Science Center grant No. 2012/05/B/ST1/00626.
** K. A. P. acknowledges support from Agence Nationale de la Recherche (Paris, France) under Program PHYSCOMB No. ANR-08-BLAN-0243-2.
Both the sequences on the right-hand side of (1.1) are positive definite (see [5] and [6]), therefore so is the sequence \(\binom{3n}{n} \frac{2}{n+1} \) itself. In this paper we study the corresponding probability measure \(\mu_0 \), i.e. such that the numbers \(\binom{3n}{n} \frac{1}{n+1} \) are moments of \(\mu_0 \). First we prove that \(\mu_0 \) is Mellin convolution of two beta distributions, in particular \(\mu_0 \) is absolutely continuous. Then we find the density function of \(\mu_0 \). In the last section we prove that \(\mu_0 \) can be decomposed as additive free convolution \(\mu_1 \boxplus \mu_2 \) of two measures \(\mu_1 \) and \(\mu_2 \), which are both infinitely divisible with respect to \(\boxplus \) and are related to the Marchenko–Pastur distribution. In particular, the measure \(\mu_0 \) itself is \(\boxplus \)-infinitely divisible.

2. THE GENERATING FUNCTION

Let us consider the generating function

\[
G(z) = \sum_{n=0}^{\infty} \binom{3n}{n} \frac{2z^n}{n+1}.
\]

According to (1.1), \(G \) can be represented as a sum of two generating functions. The former is usually denoted by \(B_3 \),

\[
B_3(z) = \sum_{n=0}^{\infty} \binom{3n+1}{n} \frac{z^n}{3n+1},
\]

and satisfies the equation

\[
B_3(z) = 1 + z \cdot B_3(z)^3. \tag{2.1}
\]

Lambert’s formula (see (5.60) in [2]) implies that the latter is just square of \(B_3 \),

\[
B_3(z)^2 = \sum_{n=0}^{\infty} \binom{3n+2}{n} \frac{2z^n}{3n+2},
\]

so we have

\[
G(z) = B_3(z) + B_3(z)^2. \tag{2.2}
\]

Combining (2.1) and (2.2), we obtain the following equation for \(G \):

\[
2 - z - (1 + 2z)G(z) + 2zG(z)^2 - z^2G(z)^3 = 0, \tag{2.3}
\]

which will be applied later on.

Now we will give a formula for \(G(z) \).

Proposition 2.1. For the generating function of the sequence (1.1) we have

\[
G(z) = \frac{12 \cos^2 \alpha + 6}{(4 \cos^2 \alpha - 1)^2}, \tag{2.4}
\]

where \(\alpha = \frac{1}{3} \arcsin \left(\sqrt{\frac{27z}{4}} \right) \).
The probability measure corresponding to 2-plane trees

Proof. Defining \((a)_n := a(a + 1) \ldots (a + n - 1)\) we have

\[
\frac{2(3n)!}{(n + 1)! (2n)!} = \frac{-2 \left(\frac{-2}{3} \right)_{n+1} \left(\frac{-1}{2} \right)_{n+1}}{3(n + 1)! \left(\frac{-1}{2} \right)_{n+1}} 2^{7n+1}.
\]

Therefore

\[
G(z) = \frac{2 - 2 \cdot 2 \cdot F_1 \left(\frac{-2}{3}, \frac{-1}{3}; \frac{1}{2} \mid \frac{27z}{4} \right)}{3z}.
\]

Now we apply the formula

\[
2F1 \left(\frac{-2}{3}, \frac{-1}{3}, \frac{-1}{2} \mid u \right) = \frac{1}{3} \sqrt{u} \sin \left(\frac{1}{3} \arcsin \left(\sqrt{u} \right) \right) + \sqrt{1 - u} \cos \left(\frac{1}{3} \arcsin \left(\sqrt{u} \right) \right),
\]

which can be checked by verifying the hypergeometric equation (note that both the functions \(w \mapsto w \sin \left(\frac{1}{3} \arcsin (w) \right)\) and \(w \mapsto \cos \left(\frac{1}{3} \arcsin (w) \right)\) are even, so the right-hand side is well defined for \(|u| < 1\)). Putting \(\alpha = \frac{1}{3} \arcsin \left(\sqrt{u} \right), u = 27z/4\), we have \(\sqrt{u} = \sin 3\alpha, \sqrt{1 - u} = \cos 3\alpha,\) which leads to (2.4).

3. The Measure

Now we want to study the (unique) measure \(\mu_0\) for which \(\{ (\binom{3n}{n})_{n=0} \infty \) is the moment sequence. We will show that \(\mu_0\) can be expressed as the Mellin convolution of two beta distributions. Then we will provide an explicit formula for the density function \(V(x)\) of \(\mu_0\).

Recall (see [1]) that for \(\alpha, \beta > 0\), the beta distribution \(\text{Beta}(\alpha, \beta)\) is the absolutely continuous probability measure defined by the density function

\[
f_{\alpha,\beta}(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \cdot x^{\alpha-1} (1 - x)^{\beta-1}
\]

for \(x \in (0, 1)\). The moments of \(\text{Beta}(\alpha, \beta)\) are

\[
\int_0^1 x^n f_{\alpha,\beta}(x) \, dx = \frac{\Gamma(\alpha + \beta)\Gamma(\alpha + n)}{\Gamma(\alpha)\Gamma(\alpha + \beta + n)} = \prod_{i=0}^{n-1} \frac{\alpha + i}{\alpha + \beta + i}.
\]

For probability measures \(\nu_1, \nu_2\) on the positive half-line \([0, \infty)\) the Mellin convolution is defined by

\[
(\nu_1 \circ \nu_2)(A) := \int_0^\infty \int_0^\infty \chi_A(xy) d\nu_1(x) d\nu_2(y)
\]
for every Borel set \(A \subseteq [0, \infty) \) \((\chi_A \) denotes the indicator function of the set \(A \)).
This is the distribution of the product \(X_1 \cdot X_2 \) of two independent nonnegative random variables with \(X_i \sim \nu_i \). In particular, if \(c > 0 \) then \(\nu \circ \delta_c \) is the dilation of the measure \(\nu \):
\[
(\nu \circ \delta_c) (A) = D_c \nu (A) := \nu \left(\frac{1}{c} A \right),
\]
where \(\delta_c \) denotes the Dirac delta measure at \(c \).
If both the measures \(\nu_1, \nu_2 \) have all moments \(s_n(\nu_i) := \int_0^\infty x^n d\nu_i(x) \) finite, then so has \(\nu_1 \circ \nu_2 \) and
\[
s_n \left(\nu_1 \circ \nu_2 \right) = s_n(\nu_1) \cdot s_n(\nu_2)
\]
for all \(n \). The method of Mellin convolution has been recently applied to a number of related problems, see for example [6] and [8].
From now on we will study the probability measure corresponding to the sequence \(\left(\frac{3^n}{n} \right)_{n+1} \).

Proposition 3.1. Define \(\mu_0 \) as the Mellin convolution:
\[
\mu_0 = \text{Beta}(1/3, 1/6) \circ \text{Beta}(2/3, 4/3) \circ \delta_{27/4}.
\]
Then the numbers \(\left(\frac{3^n}{n} \right)_{n+1} \) are moments of \(\mu_0 \):
\[
\int_0^{27/4} x^n d\mu_0(x) = \left(\frac{3n}{n} \right) \frac{1}{n+1}.
\]

Proof. It is sufficient to check that
\[
\frac{(3n)!}{(n+1)! (2n)!} = \prod_{i=0}^{n-1} \frac{1}{i+1/2} \cdot \prod_{i=0}^{n-1} \frac{2/3+i}{2+i} \cdot \left(\frac{27}{4} \right)^n.
\]
In view of formula (3.2), the measure \(\mu_0 \) is absolutely continuous and its support is the interval \([0, 27/4]\). Now we want to find the density function \(V(x) \) of the measure \(\mu_0 \).

Theorem 3.1. Let
\[
V(x) = \frac{\sqrt{3}}{2^{10/3} \pi x^{2/3}} \left(3 \sqrt{1 - 4x/27} - 1 \right) \left(1 + \sqrt{1 - 4x/27} \right)^{1/3}
+ \frac{1}{2^{8/3} \pi x^{1/3} \sqrt{3}} \left(3 \sqrt{1 - 4x/27} + 1 \right) \left(1 + \sqrt{1 - 4x/27} \right)^{-1/3},
\]
x \in (0, 27/4). Then \(V \) is the density function of \(\mu_0 \), i.e.
\[
\int_0^{27/4} x^n V(x) \, dx = \left(\frac{3n}{n} \right) \frac{1}{n+1}
\]
for \(n = 0, 1, 2, \ldots \).
The probability measure corresponding to 2-plane trees

(a) The densities of μ_1, μ_2

(b) The density of $\mu_0 = \mu_1 \boxplus \mu_2$

Figure 1. The densities of μ_1, μ_2 and $\mu_0 = \mu_1 \boxplus \mu_2$

The density $V(x)$ of μ_0 is represented in Figure 1 (b).

Proof. Putting $n = s - 1$ and applying the Gauss–Legendre multiplication formula

$$\Gamma(mz) = (2\pi)^{(1-m)/2}m^{mz-1/2}\Gamma(z)\Gamma(z + \frac{1}{m})\Gamma(z + \frac{2}{m})\cdots\Gamma(z + \frac{m-1}{m})$$

we obtain

$$\binom{3n}{n} = \frac{\Gamma(3n+1)}{\Gamma(n+2)\Gamma(2n+1)} = \frac{\Gamma(3s-2)}{\Gamma(s+1)\Gamma(2s-1)}$$

$$= \frac{2}{27}\sqrt{\frac{3}{\pi}} \left(\frac{27}{4} \right)^s \frac{\Gamma(s-2/3)\Gamma(s-1/3)}{\Gamma(s-1/2)\Gamma(s+1)} := \psi(s).$$

Then ψ can be extended to an analytic function on the complex plane, except for the points $1/3 - n$, $2/3 - n$, $n = 0, 1, 2, \ldots$

Now we want to apply a particular type of the Meijer G-function, see [9] for details. Let \tilde{V} denote the inverse Mellin transform of ψ. Then we have

$$\tilde{V}(x) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} x^{-s} \psi(s) \, ds$$

$$= \frac{2}{27}\sqrt{\frac{3}{\pi}} \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \frac{\Gamma(s-2/3)\Gamma(s-1/3)}{\Gamma(s-1/2)\Gamma(s+1)} \left(\frac{4x}{27} \right)^{-s} \, ds$$

$$= \frac{2}{27}\sqrt{\frac{3}{\pi}} G_{2,2}^{1,1} \left(\frac{4x}{27}, -1/2, 1 \mid -2/3, -1/3 \right).$$
where \(x \in (0, 27/4) \) (see [11] for the role of \(c \) in the integrals). On the other hand, for the parameters of the \(G \)-function we have

\[
(-2/3 - 1/3) - (-1/2 + 1) = -3/2 < 0,
\]

and hence the assumptions of formula 2.24.2.1 in [9] are satisfied. Therefore we can apply the Mellin transform on \(\tilde{V}(x) \):

\[
\int_0^{27/4} x^{s-1} \tilde{V}(x) \, dx = 2 \sqrt{\frac{3}{\pi}} \frac{27}{4} \frac{4x}{27} \begin{pmatrix} 4x \mid -1/2, 1 \end{pmatrix} \begin{pmatrix} -2/3, -1/3 \end{pmatrix}^{-2/3} \begin{pmatrix} 2 \begin{pmatrix} -2\frac{2}{3}, 5\frac{2}{3}; \frac{4x}{27} \end{pmatrix} \end{pmatrix} + \begin{pmatrix} 2 \begin{pmatrix} -1\frac{1}{3}, 7\frac{4}{3}; \frac{4x}{27} \end{pmatrix} \end{pmatrix} = \psi(s)
\]

whenever \(\Re s > 2/3 \). Consequently, \(\tilde{V} = V \).

Now we use Slater’s formula (see [9], formula 8.2.2.3) and express \(V \) in terms of the hypergeometric functions:

\[
V(x) = 2 \sqrt{\frac{3}{\pi}} \frac{27}{4} \frac{4x}{27} \begin{pmatrix} 4x \mid -1/2, 1 \end{pmatrix} \begin{pmatrix} -2/3, -1/3 \end{pmatrix}^{-2/3} \begin{pmatrix} 2 \begin{pmatrix} -2\frac{2}{3}, 5\frac{2}{3}; \frac{4x}{27} \end{pmatrix} \end{pmatrix} + \begin{pmatrix} 2 \begin{pmatrix} -1\frac{1}{3}, 7\frac{4}{3}; \frac{4x}{27} \end{pmatrix} \end{pmatrix} = \sqrt{\frac{3}{4\pi x^{2/3}}} 2F1\left(\frac{-2\frac{2}{3}, 5\frac{2}{3}; \frac{4x}{27}}{3\frac{6}{3}}\right) + \frac{1}{2\pi \sqrt{3}x^{1/3}} 2F1\left(\frac{-1\frac{1}{3}, 7\frac{4}{3}; 4x}{3\frac{6}{3}}\right).
\]

Applying the formula

\[
2F1\left(\frac{t - 2}{2}, \frac{t + 1}{2}; t \mid z\right) = \frac{2t}{2t} \left(t - 1 + \sqrt{1 - z} \right) \left(1 + \sqrt{1 - z} \right)^{1-t}
\]

(see [6]) for \(t = 2/3 \) and \(t = 4/3 \) we complete the proof.

4. RELATIONS WITH FREE PROBABILITY

In this part we describe relations of \(\mu_0 \) with free probability. In particular, we will show that \(\mu_0 \) is infinitely divisible with respect to the additive free convolution. Let us briefly describe the additive and multiplicative free convolutions. For details we refer to [12] and [7].

Denote by \(\mathcal{M}_c \) the class of probability measures on \(\mathbb{R} \) with compact support. For \(\mu \in \mathcal{M}_c \), with moments

\[
s_m(\mu) := \int_{\mathbb{R}} t^m \, d\mu(t)
\]
and the moment generating function

\[M_\mu(z) := \sum_{m=0}^{\infty} s_m(\mu) z^m = \int_\mathbb{R} \frac{d\mu(t)}{1 - tz}. \]

we define its R-transform \(R_\mu(z) \) by the equation

\[(4.1) \quad R_\mu(z M_\mu(z)) + 1 = M_\mu(z). \]

Then the additive free convolution of \(\mu', \mu'' \in \mathcal{M}^c \) is defined as the unique measure \(\mu' \boxplus \mu'' \in \mathcal{M}^c \) which satisfies

\[R_{\mu' \boxplus \mu''}(z) = R_{\mu'}(z) + R_{\mu''}(z). \]

If the support of \(\mu \in \mathcal{M}^c \) is contained in the positive half-line \([0, +\infty)\) then we define its S-transform \(S_\mu(z) \) by

\[(4.2) \quad M_\mu\left(\frac{z}{1 + z} S_\mu(z)\right) = 1 + z \quad \text{or} \quad R_\mu(z S_\mu(z)) = z \]

on a neighborhood of zero. If \(\mu', \mu'' \) are such measures then their multiplicative free convolution \(\mu' \boxtimes \mu'' \) is defined by

\[S_{\mu' \boxtimes \mu''}(z) = S_{\mu'}(z) \cdot S_{\mu''}(z). \]

Recall that for dilated measure \(D_{c,\mu} \) we have

\[M_{D_{c,\mu}}(z) = M_\mu(c z), \quad R_{D_{c,\mu}}(z) = R_\mu(c z), \quad \text{and} \quad S_{D_{c,\mu}}(z) = S_\mu(z) / c. \]

The operations \(\boxplus \) and \(\boxtimes \) can be regarded as free analogs of the classical and Mellin convolution.

For \(t > 0 \) let \(\varpi_t \) denote the Marchenko–Pastur distribution with parameter \(t \),

\[(4.3) \quad \varpi_t = \max\{1 - t, 0\} \delta_0 + \frac{\sqrt{4t - (x - 1 - t)^2}}{2\pi x} \, dx, \]

with the absolutely continuous part supported on \([(1 - \sqrt{t})^2, (1 + \sqrt{t})^2 \]). Then

\[(4.4) \quad M_{\varpi_t}(z) = \frac{2}{1 + z - tz + \sqrt{(1 - z - tz)^2 - 4tz^2}} \]

\[= 1 + \sum_{n=1}^{\infty} z^n \sum_{k=1}^{n} \binom{n}{k} \left(\frac{n}{k - 1} \right) \frac{t^k}{n}, \]

\[(4.5) \quad R_{\varpi_t}(z) = \frac{tz}{1 - z}, \quad S_{\varpi_t}(z) = \frac{1}{t + z}. \]

In free probability the measures \(\varpi_t \) play the role of the Poisson distributions. Note that by (4.5) the family \(\{ \varpi_t \}_{t > 0} \) constitutes a semigroup with respect to \(\boxplus \), i.e. we have \(\varpi_s \boxplus \varpi_t = \varpi_{s+t} \) for \(s, t > 0 \).
THEOREM 4.1. The measure \(\mu_0 \) can be decomposed as the additive free convolution \(\mu_0 = \mu_1 \boxplus \mu_2 \), where \(\mu_1 = D_2 \varpi_1/2 \), so that

\[
\mu_1 = \frac{1}{2} \delta_0 + \frac{\sqrt{8 - (x - 3)^2}}{4 \pi x} \chi_{(3 - \sqrt{8}, 3 + \sqrt{8})}(x) \, dx,
\]

and \(\mu_2 = \frac{1}{2} \delta_0 + \frac{1}{2} \varpi_1 \), i.e.

\[
\mu_2 = \frac{1}{2} \delta_0 + \frac{\sqrt{4x - x^2}}{4 \pi x} \chi_{(0, 4)}(x) \, dx.
\]

The measures \(\mu_1, \mu_2 \) are infinitely divisible with respect to the additive free convolution \(\boxplus \), and, consequently, so is \(\mu_0 \).

The absolutely continuous parts of the measures \(\mu_1 \) and \(\mu_2 \) are represented in Figure 1 (a).

Proof. The moment generating function of \(\mu_0 \) is \(M_{\mu_0}(z) = G(z)/2 \). Then we have \(M_{\mu_0}(0) = 1 \) and, by (2.3),

\[
2 - z - 2(1 + 2z) M_{\mu_0}(z) + 8z M_{\mu_0}(z)^2 - 8z^2 M_{\mu_0}(z)^3 = 0.
\]

Let \(T(z) \) be the inverse function for \(M_{\mu_0}(z) - 1 \), so that we have \(T(0) = 0 \) and \(M_{\mu_0}(T(z)) = 1 + z \). Then

\[
2 - T(z) + (-1 - 2T(z))2(1 + z) + 8T(z)(1 + z)^2 - 8T(z)^2(1 + z)^3 = 0,
\]

which gives

\[
8(1 + z)^3 T(z)^2 - (8z^2 + 12z + 3) T(z) + 2z = 0,
\]

and finally

\[
T(z) = \frac{8z^2 + 12z + 3 - \sqrt{9 + 8z}}{16(1 + z)^3} = \frac{4z}{8z^2 + 12z + 3 + \sqrt{9 + 8z}}.
\]

Therefore we can find the \(S \)-transform of \(\mu_0 \):

\[
S_{\mu_0}(z) = \frac{1 + z}{z} T(z) = \frac{8z^2 + 12z + 3 - \sqrt{9 + 8z}}{16z(1 + z)^2} = \frac{4(1 + z)}{8z^2 + 12z + 3 + \sqrt{9 + 8z}};
\]

consequently, from (4.2) we get the \(R \)-transform

\[
R_{\mu_0}(z) = \frac{4z - 1 + \sqrt{1 - 2z}}{2(1 - 2z)}.
\]
Now we observe that $R_{\mu_0}(z)$ can be decomposed as follows:

$$R_{\mu_0}(z) = \frac{z}{1 - 2z} + \frac{1 - \sqrt{1 - 2z}}{2\sqrt{1 - 2z}} = R_1(z) + R_2(z).$$

Comparing this formula with (4.5) we observe that $R_1(z)$ is the R-transform of $\mu_1 = D_2 \varpi_{1/2}$, which implies that μ_1 is \boxplus-infinitely divisible.

Consider the Taylor expansion of $R_2(z)$:

$$R_2(z) = \sum_{n=1}^{\infty} \left(\frac{2n}{n}\right) z^{n-1} \frac{z^n}{2 + z^2} \sum_{n=0}^{\infty} \left(\frac{2(n+2)}{n+2}\right) z^n = R_1(z) + R_2(z).$$

Since the numbers $\left(\frac{2n}{n}\right)$ are moments of the arcsine distribution

$$\frac{1}{\pi \sqrt{x(4-x)}} \chi_{(0,4)}(x) \, dx,$$

the coefficients of the last sum constitute a positive definite sequence. So $R_2(z)$ is the R-transform of a probability measure μ_2, which is \boxplus-infinitely divisible (see Theorem 13.16 in [7]). Now using (4.1) we obtain

$$M_{\mu_2}(z) = 1 + 2z - \sqrt{1 - 4z} = 1 + 2z - 2\sqrt{1 - 4z} = \frac{1}{2} + \frac{1}{1 + \sqrt{1 - 4z}}.$$

Comparing this formula with (4.4) for $t = 1$ we see that $\mu_2 = \frac{1}{2} \delta_0 + \frac{1}{2} \varpi_1$.

Let us now consider the measures μ_1, μ_2 separately. For $\mu_1 = D_2 \varpi_{1/2}$ the moment generating function is

$$M_{\mu_1}(z) = \frac{2}{1 + z + \sqrt{1 - 6z + z^2}} = 1 + \sum_{n=1}^{\infty} z^n \sum_{k=1}^{n} \binom{n}{k} \left(\frac{n}{k-1}\right) \frac{2^{n-k}}{n},$$

so the moments are

$$1, 1, 3, 11, 45, 197, 903, 4279, 20793, 103049, 518859, \ldots$$

This is the A001003 sequence in OEIS (little Schroeder numbers). $s_n(\mu_1)$ is the number of ways to insert parentheses in product of $n + 1$ symbols. There is no restriction on the number of pairs of parentheses. The number of objects inside a pair of parentheses must be at least two.

On the subject of μ_2, applying (4.2) we can find the S-transform:

$$S_{\mu_2}(z) = \frac{2(1 + z)}{(1 + 2z)^2} = \frac{1 + z}{1/2 + z} \cdot \frac{1}{1 + 2z}.$$

One can check that $(1 + z)/(1/2 + z)$ is the S-transform of $\frac{1}{2} \delta_0 + \frac{1}{2} \delta_1$, which yields

$$\mu_2 = \left(\frac{1}{2} \delta_0 + \frac{1}{2} \delta_1\right) \boxplus \mu_1.$$

(4.8)
Acknowledgments. We would like to thank G. Aubrun, C. Banderier, K. Górska, and H. Prodinger for fruitful interactions.

REFERENCES

[1] N. Balakrishnan and V. B. Nevzorov, A Primer on Statistical Distributions, Wiley-Interscience, Hoboken, N. J., 2003.
[2] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics. A Foundation for Computer Science, Addison-Wesley, New York 1994.
[3] N. S. S. Gu and H. Prodinger, Bijections for 2-plane trees and ternary trees, European J. Combin. 30 (2009), pp. 969–985.
[4] N. S. S. Gu, H. Prodinger, and S. Wagner, Bijection for a class of labeled plane trees, European J. Combin. 31 (2010), pp. 720–732.
[5] W. Młotkowski, Fuss–Catalan numbers in noncommutative probability, Doc. Math. 15 (2010), pp. 939–955.
[6] W. Młotkowski, K. A. Penson, and K. Życzkowski, Densities of the Raney distributions, arXiv:1211.7259, Doc. Math., 2013 (in press).
[7] A. Nica and R. Speicher, Lectures on the Combinatorics of Free Probability, Cambridge University Press, 2006.
[8] K. A. Penson and K. Życzkowski, Product of Ginibre matrices: Fuss–Catalan and Raney distributions, Phys. Rev. E 83 (2011) 061118, 9 pp.
[9] A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series, Vol. 3: More Special Functions, Gordon and Breach, Amsterdam 1998.
[10] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences (2013), published electronically at: http://oeis.org/.
[11] I. N. Sneddon, The Use of Integral Transforms, Tata McGraw-Hill Publishing Company, 1974.
[12] D. V. Voiculescu, K. J. Dykema, and A. Nica, Free Random Variables, CRM Monogr. Ser., Amer. Math. Soc., 1992.