Surfactant Cloud Point Extraction as a Procedure of Preconcentrating for Metoclopramide Determination Using Spectro Analytical Technique

Hawraa Mahmood Abdulkareem Maha Al-Tameemi* Israa H. Ibraheem Muna Sameer Hadi

Received 2/2/2019, Accepted 24/9/2019, Published 1/3/2020

This work is licensed under a Creative Commons Attribution 4.0 International License.

Abstract:
In current article an easy and selective method is proposed for spectrophotometric estimation of metoclopramide (MCP) in pharmaceutical preparations using cloud point extraction (CPE) procedure. The method involved reaction between MCP with 1-Naphthol in alkali conditions using Triton X-114 to form a stable dark purple dye. The Beer’s law limit in the range 0.34-9 μg mL\(^{-1}\) of MCP with \(r = 0.9959\) (n=3) after optimization. The relative standard deviation (RSD) and percentage recoveries were 0.89 %, and (96.99–104.11%) respectively. As well, using surfactant cloud point extraction as a method to extract MCP was reinforced the extinction coefficient(\(\varepsilon\)) to 1.7333×10\(^5\) L/mol.cm in surfactant-rich phase. The small volume of organic solvent (500 μL/sample) provides an environmentally friendly and low-cost preconcentration method. The suggested method was utilized for analyzing of MCP in commercial pharmaceutical injections.

Key words: Cloud point extraction, Metoclopramide hydrochloride detection, 1-Naphthol, Pharmaceutical products, Spectrophotometry.

Introduction:
Metoclopramide, chemically known as (4-amino-5-chloro-[N]-[2-(diethylamino) ethyl]-2-methoxybenzamide) (Fig. 1). Because it has a wide application and a great therapeutic in empirical and clinical medicine, spacious researches concentrated on its determination in dose forms and biological fluids.

Figure 1. Metoclopramide (MCP) structure.

It is primarily utilized as antiemetic or a gastrointestinal prokinetic drug in adults and children medicine (1) as well as it is used for treatment of the symptoms of a certain type of stomach problems such as gastroparesis in patients with diabetes nausea, vomiting, a feeling of fullness satiety, and loss of zest (2).

Metoclopramide works by rising the constriction or movements of the intestines and stomach.
For patients with gastroesophageal reflux disease (GERD), MCP is also utilized to treat stomach burn gastroesophageal reflux disease (GERD) is esophageal commotion from the in reverse flow of gastric acid into the esophagus. It is also used for prevention vomiting that happened after the cancer chemotherapy at higher doses (2).

For the quantification of metoclopramide in pharmaceutical products and biological fluids, several methods have been reported among the analytical methods are high-performance liquid chromatography (3,4), spectrofluorimetric (5), electrochemical (6,7), chemiluminescence (8) potentiometry (9) tandem mass spectrophotometry (1).

Several of these mentioned procedures are not simple for routine analysis and required costly or complicated instruments, heating step, as well as poor selectivity, and less sensitive. Visible spectrophotometry is perhaps the most widely used technique reported for the determination of MCP in pharmaceuticals (10-20). In recent times a notable interest has been increased in cloud point extraction-spectrophotometric technique to determine several of organic compounds of medicinal importance to solve this problem (21,22).
CPE method particularly based on formation of azo-day between the drug and chelating agent which extracted and analyzed spectrophotometrically.

This article presents screening methodology for extraction and determination of the drug MCP in pharmaceutical preparations by using CPE combined with spectrophotometric technique. The current work was relied on the diazotization-coupling reaction of MCP with 1-Naphthol as a reagent in the presence of alkaline medium to product the azo-dye which can readily extract to a non-ionic surfactant phase. The simplicity of the experimental procedure, short analysis time, selectivity, low usage of organic solvents, and a good analytical figure of merit demonstrate the advantages of cloud point extraction in routine spectrophotometric analysis of the MCP in pharmaceutical formulations.

Material and Methods: Chemicals and Reagents

All experiments used analytical grades chemicals and utilized without further purification. Unless otherwise noted, Deionized water was used throughout. A pure grade (95.5%) metoclopramide (MCP) was acquired from Sigma Aldrich (USA). Stock solutions of MCP were prepared by dissolving pure standards 0.0955 g in distilled water and complete the volume to 100 mL volumetric flask with and then was relocated to a dark glass vial and saved in the dark at 4 °C. Working solutions were prepared daily by serial dilution with deionized water. 2 ml of concentrated HCl (12.1 M) from (BDH, UK) was transferred 250 ml volumetric flask and diluted with distilled water in order to prepare 0.1M HCL. A 0.1 M of Sodium nitrite (Sigma-Aldrich, USA) was prepared by dissolving 1.7248 g in water and the absorbance dilution with deionized water to give a final concentration is 1000 μg mL⁻¹ then was relocated to a dark glass vial and saved in the dark at 4 °C. Working solutions were prepared daily by serial dilution with distilled water. 10 ml of Triton X-114 from AMRESCO LLC (Solon, USA) with purity >99.9 was diluted with water in a 100 volumetric flask. A 1% (w/v) of sulfamic acid was prepared by dissolving 1 g with water in a 100 volumetric flask. 0.1000 g of 1-Naphthol which obtained from Sigma Aldrich (USA) was dissolved in an appropriate amount of water then diluted in 100 ml volumetric flask to obtain a final concentration 1000 μg mL⁻¹ as stock solution. Three pharmaceutical injections containing MCP were acquired from different local markets.

Recommended CPE Procedure for MCP drug

Under ideal conditions, aliquots of MCP standard or sample solutions (1-9 μg mL⁻¹), 0.04ml of 0.1M HCL, 0.03ml of 0.1M NaNO₂ were transferred into a10 mL volumetric flasks, then put it in ice for 5 minutes. Afterwards, 0.3 ml of sulfamic acid (1%), 0.4 mL of 1000 μg mL⁻¹ 1-Naphtholand, 1 mL of 0.1 M NaOH were added. Subsequently, 0.6 mL of Triton X-114 (10%) was added to each flask, the solution mingled completely and diluted with water to the mark and left to stand in the thermostatic bath at 65 °C for 25 minutes. Separation of an aqueous and surfactant-rich phase was accomplished by using centrifuge at 3500 rpm for 10 minutes. The aqueous phase was readily removed by using pipette then the surfactant-rich phase that has the azo-dye product was dissolved in 0.5 mL ethanol and the absorbance of the solution was measured at λmax of 550 nm against a blank solution.

Pharmaceutical preparations (Injections)

Three pharmaceutical injections [each one contents (10mg /2mL) metoclopramide as an effective ingredient mixed well then, transferred to a 100 mL volumetric flask and made up with deionized water to the mark. An aliquot of the solution was then analyzed as described in proposed procedure.

Instrumentation

A double-beam spectrophotometer Shimadzu (UV-1800 (Kyoto, Japan)) equipped with 5-mm optical path cell was used for measuring all the absorption spectra. Thermostatic water bath model WNB7-45 Experts (England) is utilized for the whole of the CPE experiments.

Results and Discussion:

Preliminary studies and Absorption spectra

The first attempt of this study focused on the possibility the reaction of diazotized MCP drug with (1-Naphthol) reagent in basic medium by taking an aliquot of 10 mL containing a fixed concentration of diazotized MCP (3μg mL⁻¹), 0.03 ml of 0.1M HCL, 0.02 ml of 0.1M NaNO₂, then the solution put in ice for 5 min thereafter 0.2 ml of 1% sulphantic acid, 0.4 ml of 1000 μg mL⁻¹ 1-Naphtholand 0.005 ml of 0.1M NaOH, 1.0 mL of 10% Triton X-114 were added. The solution was subjected to heat in a controlled-temperature water bath at a temperature of 55 °C for 15 min and the cloud point layer which contains the dark purple colored product was separated by centrifuge, dissolved in 0.5 mL ethanol then scanned.
spectrophotometrically from 200 -800 nm against the reagent blank. The results revealed that the azo dye product gave maximum absorption signals at 550 nm as shown in the Fig. (2) with molar absorptivity of 1.7333×10^5 L.mol$^{-1}$.cm$^{-1}$.

Figure 2. Absorption spectra of colored product obtained after CPE method

Optimization of cloud point extraction conditions

Number of significant experimental parameters which mainly effect on stability and sensitivity of the azo-dye were accurately studied and optimized. In the current work effect of their experimental parameters were accomplished by changing one parameter and observing the effect on the absorbance of the azo dye at the same time keeping the others constant. These parameters such as; the effect of HCL, NaNO$_2$, reagent concentration, alkaline medium, amount of surfactant, equilibration temperature and incubation time have been systematically optimized.

Influence of HCL amount

The impact of HCL concentration was studied by using various volumes (0.01-0.08) ml of 0.1 M HCL. The maximum absorption was monitored at wavelength (550 nm). The highest absorption was obtained with 0.04 ml of HCL all further studies were then conducted using 0.04 ml of HCL solution, it was previously reported that HCl was more satisfactory acid compared with other acids such HNO$_3$, H$_2$SO$_4$, H$_3$PO$_4$, and CH$_3$COOH for diazotization reaction of MCP (19) (Fig. 3).

![Figure 3. Impact of HCL amount on colored product formation](attachment:image)

Figure 3. Impact of HCL amount on the colored product formation. Conditions: MCP 3µg mL$^{-1}$; 0.02 ml NaNO$_2$ (0.1 M); reaction time (5 min); 0.2 ml of sulphamic acid (1%); 0.005 ml 1-Naphthol (1000 µg mL$^{-1}$); 0.005 ml ofNaOH(0.1M); 1 ml of TX-114 (1.0%); CP temperature (55 °C); incubation time (25 min).

Effect of NaNO$_2$ concentration

The absorption spectrum of cloud point layer was recorded at different amount (0.01-0.06) ml of 0.1 M NaNO$_2$. Figure 4 shows the best absorption was recorded with 0.03 ml of NaNO$_2$ solution and used in further experiments.

![Figure 4. Impact of NaNO$_2$ amount on colored product formation](attachment:image)

Figure 4. Impact of NaNO$_2$ amount on colored product formation. Conditions: MCP 3µg mL$^{-1}$; 0.04 ml HCL(0.1M); reaction time (5 min); 0.2 ml of sulphamic acid (1%); 0.005 ml 1-Naphthol (1000 µg mL$^{-1}$); 0.005 ml of NaOH (0.1M); 1 ml of TX-114 (1.0%); CP temperature (55 °C); incubation time (25 min).

Effect of sulfamic acid concentration

The next attempt was to optimize the concentration of sulfamic acid. Figure 5 shows the significant increase in absorption signal was reached at 0.3 ml of sulfamic acid which indicate the excess of nitrous oxide acid was removed from the solution and the date was collected using different sulfamic acid volume (0.05-0.45) ml at highest absorption signal at 550 nm.
Figure 5. Effect of Sulphamic acid concentration on the formation of the colored product (conditions: MCP 3µg mL⁻¹; 0.04 ml HCL (0.1M); 0.03 ml NaNO₂(0.1M); reaction time (5 min); 0.005 ml 1-Naphthol (1000 µg mL⁻¹); 0.005 ml of NaOH (0.1M); 1 ml of TX-114 (1.0%); CP temperature (55 °C); incubation time (25 min).

Effect of 1-Nanaphthol concentration
Several volumes were used for this purpose including (0.05-0.5) ml of 1-Naphthol. Figure 6 shows the experimental results and the best absorption was obtained at 0.4 ml of 1-Naphthol then our further studies focused on 0.3 ml.

Figure 6. Effect of 1-Naphthol concentration on the formation of the colored product (conditions: MCP 3µg mL⁻¹; 0.04 ml HCL (0.1M); 0.03 ml NaNO₂ (0.1M); 0.3 ml of sulphamic acid (1%); reaction time (5 min); 0.005 ml of NaOH (0.1M); 1 ml of TX-114 (1.0%); CP temperature (55 °C); incubation time (25 min).

Effect of NaOH concentration
The impact concentration of NaOH was investigated using different volumes (0.4-2) ml. Studies for the optimization of NaOH concentration revealed that the optimum volume was 1 mL of 0.1 M NaOH gives maximum absorption signal of the colored products between MCP and 1-Naphthol as displayed in Fig. 7.

Figure 7. Effect of NaOH concentration on the formation of the colored product (conditions: MCP 3µg mL⁻¹; 0.04 ml HCL (0.1M); 0.03 ml NaNO₂ (0.1M); 0.3 ml of sulphamic acid (1%); reaction time (5 min); 0.005 ml of NaOH (0.1M); 1 ml of TX-114 (1.0%); CP temperature (55 °C); incubation time (25 min).

Effect of Triton X-114 amount
The influence of variation of Triton X-114 amount on the absorbance signal of the colored products depicts in Fig (8). Different volumes range of Triton X-114 (0.2-1.2) ml (10% v/v) were used in this study at previously optimum conditions. Figure 8 shows the absorbance of the colored product increases with increases of Triton X-114 volume up to 0.6 ml and then unexpectedly decreased at higher volume. As a result, 0.6 ml of 10% (v/v) Triton X-114 was utilized as the optimal volume in this study. This result is in agreement with reference which emphasize the amount of the TX-114 as an extracting medium plays a crucial role for the extraction efficiency by minimizing the phase volume ratio (Vs/Va), as result, the pre-concentration factor of the CPE procedure was improved.

Figure 8. Effect of Triton X-114 amount on the formation of the colored product (conditions: MCP 3µg mL⁻¹; 0.04 ml HCL (0.1M); 0.03 ml NaNO₂ (0.1M); 0.3 ml of sulphamic acid (1%); reaction time (5 min); 0.005 ml of NaOH (0.1M); 1 ml of TX-114 (1.0%); CP temperature (55 °C); incubation time (25 min).
Effect of the temperature

Figure 9 summarize the behavior of the absorption signal of the colored product as a function of temperature was clearly observed at various temperature range from 50°C to 80°C. The experimental results appeared that the absorbance signal started to increase from 50°C up to 65°C. At higher temperature than 65°C, a sudden decrease in absorption signal has occurred which most probably due to thermal decomposition and instability of the colored products. Increasing in surfactant-rich phase volume is compatible with spread of micelles in aqueous solution, which lead to decreasing in the extraction efficiency (23,24).

Further studies were then carried out with 65°C of temperature to ensure the complete separation of the colored product.

Figure 9. effect of temperature on the formation the colored product [conditions: MCP 3µg mL−1); 0.04 ml HCL(0.1M);0.03 ml NaNO2 (0.1M); 0.3 ml of sulphamic acid (1%); reaction time (5 min);0.4ml 1-Naphthol (1000 µg mL−1);1 ml of NaOH(0.1M); CP temperature (65 ⁰C).

Effect of the incubation time

The expected behavior between the absorption signal of the colored product and different heating times (10-40) min at cloud point temperature of 65 °C was clearly observed. The results shown in Fig. 10 described the best absorption signal was achieved at 25 min then up to 25 min the absorption of the colored product gradually decreased. It was also noted that the centrifugation speed and time of 20 min at 35000 rpm were suitable to separate two phases.

Figure 10. impact the incubation time on the formation the colored product [conditions: MCP 3µg mL−1); 0.04 ml HCL(0.1M);0.03 ml NaNO2 (0.1M); 0.3 ml of sulphamic acid (1%); reaction time (5 min);0.4ml 1-Naphthol (1000 µg mL−1);1 ml of NaOH(0.1M); CP temperature (65 ⁰C).

Stoichiometry of the reaction

The mole-ratio method used in order to find the composition of azo dye between MCP and 1-Naphthol in alkaline medium in which the amount of MCP is held constant, while the amount of the 1-Naphthol is varied. Absorbance is monitored at a wavelength where the azo dye absorbs. Figure 11 represent the mole-ratio plot of azo dye between MCP and 1-Naphthol in alkaline medium. The results obtained shows a ≈ 1:2 drug to reagent (1-Naphthol: MCP) was formed. Therefore, based on the mole ratio results the proposed reaction path for the formation azo dye can assumed as shown in Fig. 12.

Figure 11. Mole ratio plot of MCP/1-Naphthol
Analytical figures of merit

Table (1) summarize the analytical characteristics of the optimized method, including regression equation, linear range, molar absorptivity, correlation coefficient, limits of detection, enrichment factor and extraction recovery. Calibration curve for the assay of MCP drug by its reaction with 1-Naphthol reagent was constructed by plotting the absorbance (at λ_{max} of 550nm) as a function of the corresponding concentrations as showed in Fig. 13. All linear dynamic range were based on the average intensities ($n=3$) of nine MCP concentrations. Limits of detection (LOD) and limits of quantitation (LOQ) were calculated according to the formula LOD=$3 \times S_B /m$ and LOQ = $10 \times S_B /m$; where S_B is the standard deviation of the average blank signal and m is the slope the calibration curve. The (RSD) value at middle linear concentrations were excellent. This fact demonstrates that the pre-concentration procedure with CPE does not deteriorate significantly the precision of measurements.

Figure 12. A reaction mechanism path between MCP and 1-Naphthol in alkaline medium.

Figure 13. Calibration carve for determination MCP drug by using 1-Naphthol as conjugation reagent

$y = 0.2229x + 1.0528$

$R^2 = 0.9959$
Table 1. Analytical characteristics of the proposed method.

Parameter	Proposed method
Product colour	Dark purple
Wavelength (nm)	550
Linear Regression equation	y=0.2229x+1.0528
Correlation coefficient (r)	0.9959
LDR (μg mL⁻¹)	1.9
Reproducibility (RSD %)	0.89
Molar absorptivity (L mol⁻¹ cm⁻¹)	1.733×10⁵
LOD (μg mL⁻¹)	0.10
LOQ (μg mL⁻¹)	0.34
SS (μg cm⁻²)×10⁻¹²	1.729
Composition of the coloured product	1:2
Enrichment factor	31.84
Preconcentration	33.3
Recovery (%)	99.10

LOD=Limit of Detection, LOQ= Limit of Quantitation, SS= Sandell's sensitivity, LDR= Linear Dynamic Range

Table 2. Precision and accuracy of the proposed method.

Taken	MCP mg mL⁻¹	Found	SD	RSD%	Rec%
1	0.9950	0.0055	0.55	99.50	
3	3.0785	0.0301	0.96	103.77	
5	4.937	0.0169	0.34	98.74	

Analysis of MCP in pharmaceutical injections

Determination of MCP has been tested by the suggested method on three brands commercially available pharmaceutical injections from various countries containing 10 mg/2 ml metoclopramide as an effective ingredient. All the samples were undergoing to the proposed CPE procedure as described earlier then MCP drug determined spectrophotometrically at 550 nm for three replicate measurements. Table (3) summarized the results obtained from the investigations which indicated no interfere with the determination and the proposed methods have good selectivity. Calculated t values for determination MCP using CPE method in various pharmaceuticals injections at 95% confidence interval are lower than t-tabulated that mean there is no systematic or random error at 95% confidence level (25). Table (4) summarized the statistical analysis data.

Table 3. Determination of MCP content in some pharmaceutical injections using the proposed method.

Pharmaceutical injection name	Concentration of MCP (μg/mL)		
METAMID (IBN HAYYAN PHARM (Syrian))			
Taken	Found	Rec (%)	RSD%
1	0.9699	96.99	0.98
3	2.9731	99.10	0.44
5	4.9253	98.50	0.45
	0.9729	97.29	0.17
(GLAND PHRMALIMITED (Indian))			
3	2.9758	99.09	0.21
5	4.9208	98.41	0.28
	0.9812	97.56	0.18
HAMELNAHARMACEUTICALS, GMBH LANGES FELD 13, (Germany)			
3	3.1233	104.11	0.10
5	4.9283	98.56	0.25

Table 4. Statistical comparison with quoted values for MCP drug determination in pharmaceutical injections by the suggested method.

Pharmaceutical injection name	MCP content in proposed method (mg/2ml)	t= (x-μ) √n/s between proposed method against demand value at 95% C.I.	RSD %
METAMID, IBN HAYYAN PHARM (Syrian)	9.80	t= 1.13	2.90
GLAND PHRMALIMITED (Indian)	9.81	t= 0.85	3.27
HAMELNAHARMACEUTICALS, GMBH LANGES FELD 13, (Germany)	9.72	t= 0.28	3.26

\[t\text{-tabulated value (4.303), } N=3, \text{ degrees of freedom}(n-1)\]
Conclusions:

Cloud point extraction combined with spectrophotometric technique provide a rapid and cost-effective producer for determination of MCP in pharmaceutical products as well as toxic solvent extraction has been avoided by using small amount (500µL per sample) of solvent which make proposed method environmentally friendly. The recovery results and all statistical factors clearly point to the accuracy and reproducibility of this method, which mean the current method can be selected as a good spectrophotometric method.

Conflicts of Interest: None.

References:

1. Lee H W, Ji H Y, Kim H Y, Park E S. Determination of metoclopramide in human plasma using hydrophilic interaction chromatography with tandem mass spectrometry. J. Chromatogr. B., 2009; 877: 1716-1720.
2. Tas C, Ozkan CK, Savaser A, Ozkan Y, Tasdemir U. Nasal absorption of metoclopramide from different Carbopol-based formulations: In vitro, ex vivo and in vivo evaluation. Eur. J. Pharm. Biopharm., 2006; 64(2): 246-254.
3. Kahali N, Khanam J. A Novel HPLC Method Validation Based on Analytical Techniques of Metoclopramide Benzamide Derivative (Metoclopramide Base) and its Determination from Solid Dispersion by Solvent Evaporation Method. J Appl Pharm Sci., 2018; 8(2): 018-026.
4. Khan A, Khan J, Irfan M, Naqvi S, Khan G. Validation and application of high-performance liquid chromatographic method for the estimation of metoclopramide hydrochloride in plasma. Pak J Pharm Sci., 2017; 30(1):143-147.
5. Elmansi H, Mohamed SAEA, Fathy M. Simultaneous determination of metoclopramide and aspirin by spectrofluorimetric technique: application to pharmaceutical formulations and human plasma. Anal Methods., 2016;8(6):1281-1292.
6. Al-Haideri A, Abdulla N, Malih I. Polymeric membrane sensors for the selective determination of metoclopramide hydrochloride and their applications to pharmaceutical analysis. Iraqi. J. Pharmac. Sci., 2017; 21(1): 70-77.
7. Patil SM, Pattar VP, Nandibewoor ST. Simultaneous electrochemical determination of acetaminophen and metoclopramide at electrochemically pre-treated disposable graphite pencil electrode. J Electro chem Sci Engineer., 2016;6(3):265-276.
8. Hun X, Zhang Z. Electrogendated chemiluminescence sensor for metoclopramide determination based on Ru (bpy) 32+ doped silica nanoparticles dispersed in Nafion on glassy carbon electrode. J Pharm Biomed. Anal., 2008; 47(4):670-676.
9. Ghonim OA. PVC membrane sensors for potentiometric determination of metoclopramide in pharmaceutical preparations and in presence of its degradeat. Anal Bioanal Electrochem., 2014; 6:296-307.
10. Naggar A, Elnasr T, Sayed Ali A, Kotb A, El Sayed A. Determination of metoclopramide hydrochloride in pharmaceutical formulations using three different spectrophotometric methods. Pharm Anal Acta., 2017;8 (538):2.
11. Basheer MY, Kashif AA, Aljaily A, Ibrahim MM, Osman HM. Development and validation of UV-spectroscopic method for assay of metoclopramide hydrochloride in bulk and injectable dosage form. American J Res Commun., 2017;5(3):22-33.
12. Devi OZ, Basavaiah K, Vinay K, Revanasiddappa H. Sensitive spectrophotometric determination of metoclopramide hydrochloride in dosage forms and spiked human urine using vanillin. Arabian J Chem., 2016;9: S64-S72.
13. Thangamani A, Smith AA, Vedhapiya B. Development of analytical method for metoclopramide using UV-spectrophotometry. Int J Pharm. Biol Sci., 2014;4 (3): 551-555.
14. Jawad A, Kadhim K. Spectrophotometric determination of metoclopramide hydrochloride in bulk and pharmaceutical preparations by diazotization-coupling reaction. Int. J. Pharm. Pharm. Sci., 2013; 5(3): 294-298.
15. Dudhane N, Vidhate S, Borkar B, Lohiya R, Umekar M. Simultaneous UV Spectrophotometric estimation of Metoclopramide hydrochloride and Paracetamol in solid dosage form. J. Pharm. Sci. Res., 2010; 2(1):48.
16. Al-Abbasi K, Mohammed S, Sarsam L. Spectrophotometric Determination of Metoclopramide Hydrochloride in Pharmaceutical Preparations Using Diazotization Reaction. J. Raf.Sci., 2011; 22(3E): 76-88.
17. Devi O, Basavaiah K, Vinay K. Determination of metoclopramide hydrochloride in pharmaceuticals and spiked human urine through diazotization reaction. J. Food Drug. Anal., 2012; 20(2):454-463.
18. Devi O, Basavaiah K, Vinay K, Revanasiddappa H. Sensitive spectrophotometric determination of metoclopramide hydrochloride in dosage forms and spiked human urine using vanillin. Arab. J. Chem., 2016; 9: S64-772.
19. Khammas Z, Abdulkareem H. A New Visible Spectrophotometric Approach for Mutual Determination of Amoxicillin and Metoclopramide Hydrochloride in Pharmaceuticals after Cloud Point Extraction. Sci., 2016; 4(5): 66-76.
20. Khammas Z, Mubdir N. An eco-friendly method for extraction and determination of ciprofloxacin in blood serum and pharmaceuticals., Sci J Anal Chem., 2014; 2(5): 47-54.
21. Tabrizi A. A cloud point extraction-spectrofluorimetric method for determination of thiamine in urine. Bull. Korean. Chem. Soc., 2006;27(10): 1604-1608.
22. Tabrizi A, Harasi M. Applying cloud point extraction technique for the extraction of oxazepam from human urine as a color or fluorescent
استخلاص نقاط السحب بطريقة لتركيز وتقدير ميتوكروباميد باستخدام تقنية التحليل الضوئي

حوراء محمود عبد الكريم
منى سمير هادي
عذرا، نعيم
قسم الكيمياء، كلية العلوم للبنات، جامعة بغداد، بغداد، العراق

الخلاصة:
في هذه المقالة نقدم طريقة بسيطة وانتقائية لفصل وتقدير الطيفي لكميات ضئيلة من ميتوكروباميد في المنتجات الصيدلانية باستخدام نفس تقنية استخلاص نقاط السحب. وتعتبر هذه الطريقة على استخلاص ميتوكروباميد في محیط قاعدي باستخدام تريتون-114 الغير ايوني لتكوين صبغة بنفسجية داكنة تحت الظروف المثلى من المعايرة خطيًا ضمن المدى 0.34-9.50 ملغًا. وتتعلق معالج الإرتباط 0.9959. معدل الاسترجاع للنماذج يتراوح بين 96.99-99.96٪. وانحراف المعياري النسبى 0.89٪. وكانت الامتصاصية المولارية ×10³.173.3. استخدام حجوم قليلة من المذيبات العضوية (500 ميكرومليتر لكل عينة) يجعل من الطريقة الاستخلاص صديقة للبيئة وفعالة من حيث التكلفة. تم تطبيق الطريقة المقترحة لتقدير الدواء في المستحضرات الصيدلانية.

الكلمات المفتاحية: استخلاص نقاط السحب، الكشف عن هيدروكلوريد ميتوكروباميد، عيدانول، منتجات دوائية، قياس الطيف الضوئي.