Towards Algorithmic Transparency: A Diversity Perspective

Fausto Giunchiglia1*, Jahna Otterbacher2, Styliani Kleanthous2, Khuyagbaatar Batsuren1, Veronika Bogina3, Tsvi Kuflik3 and Avital Shulner Tal3

1Department of Information Engineering and Computer Science, University of Trento, IT
2School of Pure and Applied Sciences, Open University of Cyprus, CY
3Department of Information Systems, The University of Haifa, IL
\{fausto.giunchiglia, k.batsuren\}@unitn.it, \{jahna.otterbacher, styliani.kleanthous\}@ouc.ac.cy, \{sveron, avitalshulner\}@gmail.com, tsvikak@is.haifa.ac.il

Abstract
As the role of algorithmic systems and processes increases in society, so does the risk of bias, which can result in discrimination against individuals and social groups. Research on algorithmic bias has exploded in recent years, highlighting both the problems of bias, and the potential solutions, in terms of algorithmic transparency (AT). Transparency is important for facilitating fairness management as well as explainability in algorithms; however, the concept of diversity, and its relationship to bias and transparency, has been largely left out of the discussion. We reflect on the relationship between diversity and bias, arguing that diversity drives the need for transparency. Using a perspective-taking lens, which takes diversity as a given, we propose a conceptual framework to characterize the problem and solution spaces of AT, to aid its application in algorithmic systems. Example cases from three research domains are described using our framework.

1 Introduction
Algorithmic systems are undeniably socio-technical in nature [Barocas et al., 2018]. In machine learned systems, training and evaluation datasets aim to capture aspects of the state-of-the-world, and learning mechanisms are applied to create models based on them. Thus, systems naturally reflect the biases of the societies in which they are developed. Some lead to discrimination, as in the much discussed case of the COMPAS system for predicting recidivism [Angwin et al., 2016], or computer vision applications that infer a depicted person’s demographic characteristics [Buolamwini and Gebru, 2018]. However, the aim of developing algorithmic systems is to introduce them into social contexts, with the intent that they will serve their intended purposes, without harming people.

Unfortunately, we often ignore the intentional or unintentional consequences that the system will have when introduced into a social context [Selbst et al., 2019]. When designing a system, we have an implicit model of its users, based on the development process followed. Yet, when we deploy the system, we cannot anticipate who will use it and how. The actual users of our system will be diverse, and likely different, than the audience we initially had in mind. In other words, this exposure to diversity – in a world globalized by the Internet – has had a profound effect on the development of information systems.

A decade ago, the issue of diversity was much less critical, as the space and time limitations shielded us from it. However, this is no longer the case. All of us – and the systems we develop – are exposed to new diversity on a daily basis, manifested in language, data and knowledge. Arguably, the diversity of users of networked, intelligent algorithmic systems has exacerbated the issue of social and cultural bias. A system may show behaviors that deviate from what users expect, or what they consider to be normal with respect to their own context and perspective. When deviations in system behavior are perceived, this then leads to discussions of whether the system is behaving in a manner that is fair. However, there is no single standard to which we can compare the behaviors of a given system; with a globalized user base, what is “normal” depends on many contextual factors, including one’s socio-cultural environment and the prevailing values in a society [Dignum, 2017].

Transparency has long been recognized as a desirable property of a system [Tyugu, 2006]. Recently, researchers have emphasized its importance in ensuring that systems can be held accountable for harmful behaviors or the perception of unfairness [Diakopoulos, 2016; Datta et al., 2016]. Yet research on algorithmic biases and algorithmic transparency (AT) is dispersed across communities, with little consensus on definitions/approaches (see for example, the “21 definitions of fairness” [Narayanan, 2018] and “50 Years of Test (Un)fairness: Lessons for Machine Learning” [Hutchinson and Mitchell, 2019]).

Danks and London [Danks and London, 2017], citing the need for a conceptualization of algorithmic system bias, put forth a taxonomy, including biases of a computational origin, as well as those arising from inappropriate use of a system. They detailed five sources: i) training data, ii) algorithmic focus (i.e., differential usage of attributes in the training data), iii) processing (e.g., use of a statistically biased estimator in
a model), iv) transfer context (i.e., application in a context differing from the one for which the system was developed) and v) interpretation bias (i.e., user misinterpretation of the system output).

We argue that the notion of diversity is key to understanding the above sources of bias. Since diversity is inevitable, perspective taking [Galinsky and Moskowitz, 2000] (i.e., interpreting the world in someone else’s shoes), can be a tool for determining when bias is problematic, and for whom. Thus, we motivate a “diversity perspective,” taking into account the perspective taking work from psychology [Davis, 1983], bringing it into the discussion on algorithmic system bias and transparency. Our intent is not to advocate for a “view from nowhere” but rather, to highlight the fundamental relationship between diversity, bias and transparency. In a globalized world, diversity drives the need for AT; without transparency one cannot detect or understand system biases. The current paper provides a different view, and continues the discussion initiated by Hutchinson and Mitchell [Hutchinson and Mitchell, 2019], on Fairness in ML systems, with the aim of minimizing the gap between theory on AT and its application in intelligent algorithmic systems.

2 Diversity and Bias

Diversity is considered by many disciplines to be a positive attribute. Nelson [Nelson, 2014] stresses that diverse teams – in terms of skill set, education, work experiences, perspectives on a problem, cultural orientation, gender, etc. – produce better results compared to homogeneous teams. Similarly, in [Galinsky et al., 2015], the authors emphasize that the USA’s success as a nation is strongly based on the diversity of its immigrants. However, Nelson also stresses that stereotypes (e.g., based on race or gender) that we formulate in societies are potential threats to a diverse team’s success. This is due to expecting certain outputs and/or behaviors from particular social groups (e.g., men vs. women, African Americans vs. Caucasians) and when a deviation occurs, unfair treatment can cause conflicts within the team.

Galinsky et al. advocate that transparency in work practices can help a diverse society to thrive [Galinsky et al., 2015] and minimize conflicts due to biases. As mentioned in Section 1, the Internet today, (along with its applications, such as social networks, search engines, recommender systems, decision support systems, etc.), represents a diverse community that we cannot ignore. As scientists and researchers of Web, social, and/or intelligent algorithmic systems, we face diversity in many forms: the diversity in data on the Web, the diversity of humans involved in developing and using a system, diversity in the output/information delivered to the user, to name just a few factors.

There is growing acknowledgment that promoting transparency is a direction towards minimizing the unwanted side-effects (such as stereotyping and biases) of diversity in data, humans and output, consequently promoting fairness. Baeza-Yates [Baeza-Yates, 2018], in his article concerning the different types of biases on the Web, concludes by stating that we can only reduce bias if we are aware that it exists. Thus, developers of algorithmic systems need to be conscious of the diversity – based on culture, race, gender, knowledge, etc. – of the potential consumers of their system’s output, making their systems transparent at different levels. In other words, they need to first recognize that there are alternative perspectives, in addition to their own.

2.1 Perspective taking and diversity

Researchers in psychology have emphasized the importance of perspective taking in occasions where significant diversity exists, (e.g., differences in the knowledge, political views, or cultural backgrounds of participants), aiming to reduce prejudice [Shih et al., 2009], minimize bias and stereotyping [Todd et al., 2011] and increase in- and out-group empathy [Galinsky and Moskowitz, 2000; Shih et al., 2009; Vescio et al., 2003]. Perspective-taking studies require one person to view a situation or behavior from another’s point of view [Galinsky and Moskowitz, 2000]; hence, the relevance to diversity and bias research.

Studies involving culturally diverse groups of people have illustrated the power of perspective taking. In their studies, Vescio and colleagues [Vescio et al., 2003] found that individuals engaged in perspective-taking endorsed pro-African American attitudes, minimizing other individuals’ bias towards African Americans in the group. Unlike humans, systems do not have the ability to change their perspective towards a situation, a statement or a belief. However, the humans involved in each step of the development of an algorithmic system (from requirement analysis to input training data and algorithm development) do have the ability, and need to consider perspective-taking as one approach towards Algorithmic Systems Transparency.

In their work, Shih et al.[Shih et al., 2009] examined participants’ empathic feelings towards an Asian character, depicted in a scenario in which he tried to overcome a societal stereotype. Overall, the study involved Caucasian, African American, Hispanic and other non-Asian participants. It was found that participants who engaged in perspective-taking showed empathic feelings and liking for the character, thus illustrating that perspective-taking can reduce prejudice towards out-group members. Similarly, Galinsky [Galinsky and Moskowitz, 2000], in three experimental studies, found that allowing participants to see a different perspective, decreased stereotypic biases toward out-group members, by enabling participants to associate themselves with the subject. The results showed that participants demonstrated both in-group as well as out-group favoritism. In summary, perspective taking research includes a number of studies consistent with the above findings, underscoring its promising potential application in the context of FATE (fairness, accountability, transparency and ethics) research.

Therefore, we adopt a perspective-taking lens. We propose a framework for discussing and understanding bias in algorithmic systems, considering variables such as the cultural, language, knowledge and life-experience diversity of

\[1\] We use the term “developers” loosely here, to mean anyone involved in the process, not only ML practitioners.

\[2\] This will be explored in detail in Section 4.
the users, the developer and the observer/researcher. Within data and systems, such diversity results in the co-existence of competing and/or contradictory statements, some of which may be non-factual or referring to opposing beliefs or opinions [Giunchiglia et al., 2012]. A system’s user base may be global, serving individuals who perceive the world differently and do not interpret system behaviors in the same way. Thus, algorithmic systems must take diversity into account to enhance user experience [Kunaver and Požrl, 2017; Gu et al., 2017]. Given the challenges, our next steps are to relate the notions of diversity and bias.

2.2 Representing knowledge in the world

Diversity is manifested in the ways that implicit knowledge is represented, even when we limit the discussion to the “factual” aspects of knowledge [Jovchelovitch, 2002]. The same entity (object/person/event) may be described in infinite ways across observers, varying by community, culture and language, or even life experience [Galinsky and Moskowitz, 2000]. When we describe an entity, we choose the properties to use, which according to our background, will best characterize that entity. In other words, the resulting description can be a person’s perspective towards a situation or an entity. These properties define the space, S, over which we shall eventually measure bias.

To illustrate this, consider the entity snail. As snails have been common in European and Mediterranean cuisine for thousands of years, individuals from such cultures would likely use the property “food” when describing snails. In contrast, a person from East Asia might relate snails to beauty products, rather than food. Still, the strength of association may vary by the observer’s gender or age. This diversity of perspective is reflected in the data used to train systems. The text and multimedia shared via the Web, often used in training corpora, reflects our perspectives and experiences. Similarly, crowdsourcing often involves asking workers of various backgrounds to annotate or judge an entity relying on their own understanding of the world. Thus, embedding in the data one’s perspective, which might encompass stereotypes and biases [Duan et al., 2020].

2.3 Defining an unbiased point of reference

Another aspect of diversity that we need to consider, concerns the choice of the reference or standard: the unbiased point, O. According to the Oxford dictionary, a standard is “something used as a measure, norm, or model in comparative evaluations.” However, the choice of the reference is not common across all observers. Specifically, Jones and Nisbett noted that people can process information in different ways due to their divergent perspectives [Jones and Nisbett, 1971].

Continuing on the previous example, many individuals raised in the US or UK have a strong aversion to snails as food or otherwise.3 Those who are Jewish or Muslim often share this aversion, as snails are neither kosher nor Halal. For such individuals, the unbiased area in the hyperspace representing the entity snail will allow for little variance with respect to dimensions such as “food” or “pet,” as compared to individuals of other backgrounds.

2.4 Measuring bias

Diversity also has a relation to bias, in the choice of the metric M, to express the deviation from a given point, to the reference. In contrast to the statistical tests discussed in [Hutchinson and Mitchell, 2019] for measuring bias, here we assume that an entity (incoming observation) and one’s reference, are represented as vectors in an n-dimensional space, where dimensions represent properties used to describe the entity. One could measure the distance using any number of measures (e.g., Euclidean, Cosine or Manhattan distance). However, distance measures have properties that make them more/less informative given various considerations (e.g., dimensionality). This affects perception of the deviation and thus, whether the observation is “biased.” Table 1 summarizes the formal notation.

2.5 Defining and measuring algorithmic bias

We have seen that diversity relates to a general notion of bias in terms of: i) how facts of the world are represented in data and information; ii) the standard against which any incoming observation will be compared; and iii) how the deviation between the observation and the standard is measured.

With the above in mind, we provide the following definitions. In Table 1, the formal notation of the below definitions are provided.

Reference Context. Before moving onto formally defining algorithmic bias, we need to acknowledge that each individual observes the world context differently or from a different perspective. Hence, context is an important part of understanding diversity and bias. As a result, the contextual reference point (individual perspective) for what is “normal” differs from person to person. For example, take C to be the context in which the facts of the world are represented. Individual i perceives the world with respect to her own context, C_i, where $C_i = < S_i, O_i >$. S_i is the metric space in which i interprets/describes the world, and O_i represents what is “normal” for her. From here on Context will be used to represent a person’s individual perspective.

Bias. Whether characterizing a situation, an event or an object, we are making a statement about the state of the world. Bias is a property of a given statement. However, this bias is independent of whether the statement is true or false, and depends strongly on the context that intermingles the individual’s point of view, with her means of making comparisons (i.e., distance metric) (see formalization in Table 1). Assume a statement a concerning the world, where $a \in C$. The Bias Space, the context in which Bias is perceived and measured, is $B = < C, M >$. When we observe a situation, an event or an object in the world we do so from our own context. Thus, the deviation of a statement (measured distance), used for describing what we experience at a given point in S, from the reference point O_i we have, can be considered as the bias of the statement. Therefore, the Perceived Bias of i is $PB_i(a) = ||a - O_i||$.

3 As evidenced by the popular saying that boys are “made of snails and puppydog tails,” while girls are “made of sugar and spice and everything nice.”
Algorithmic Bias. Systems, like people, also make statements describing the state of the world. Algorithmic bias (AB) is the bias generated by an algorithmic system. Extrapolating from the above definition of bias, algorithmic bias depends on the reference contexts of two parties: the developer, D, and the system observer, V.4

By default, the reference context of the system is that of its developer. Thus, we often have that the context of the developer will be different from the context of the system observer, $C_D = S_D, O_D > C_V$. This is a key cause of algorithmic bias: the system is built under the developer’s context C_D, but its behaviors are interpreted under a different reference context C_V.

For example, when a developer is adding specific rules in an interactive dating system, the developer is acting according to her own context (e.g., how recommendations are made to a user), the developer is acting according to her own context, C_D. Continuing on the dating system example above, if we assume that the developer acts in good faith, the Perceived Bias of a system output will be different from the context of the observer, C_V. For instance, the mean system bias might be calculated, again from the perspective of the observer, as

$$Mean_{PAB_v} = \frac{1}{N} \sum_{k=1}^{N} PAB_v(a_k)$$

As will be shown in Section 3, researchers are often aiming to characterize the average bias of a given algorithmic system, rather than whether or not an individual algorithmic statement is biased.

2.6 Diversity and value judgments

We have seen that algorithmic systems make value judgments concerning the world, which may or may not align with those of an observer of the system. An algorithm is an artefact produced by a human developer, on the basis of some reference context (C_D). As mentioned in the introduction, while the developer has an implicit model of the user during the development process, in reality, users will be diverse and perhaps unexpected. Any observer of the system’s behavior brings in a second reference context (C_V), which typically differs from that of the developer, and it is under this reference context and bias space (B_V), where the evaluation of the system behaviors takes place.

It must be noted that the determination of the reference context is also a value judgment, because it defines not only how we perceive the world (i.e., the space in which we characterize what we see, S) but also what we perceive as being expected, normal, or unbiased (O). One’s reference context - and thus, bias space (B) - is a result of her culture and upbringing, and may change (at least a bit) over time, with life experience. Thus, it is clear that the diversity of the world, and in particular, the differences between the reference contexts of people, is the root of algorithmic bias.

3 Problem Space: Bias in Systems and Processes

Now we examine how diversity and bias manifest and are measured within an algorithmic system. To this end, we review examples of AT research across three domains, using the definitions of Section 2. First, we provide a general characterization of algorithmic systems and their macro components, as well as the role of the researcher as the system observer.

4The observer may or may not be a user of the system. We shall return to this point.
A basic architecture is provided in Figure 1. First, the system receives input (I) for an instance of its operation; its operational component (i.e., algorithmic model - (M)) performs some computation based on the inputs provided and produces an output (O). The model learns from a set of observations of data (D) from the problem domain. It may receive constraints from third party actors (T), and/or fairness criteria (F), which modify the operation of the algorithmic model (M).

3.1 Researcher as observer

Recall that Algorithmic Bias (AB) depends on the reference contexts of the developer and the observer and this reference context will define their perspective towards the system’s output. While the context of the developer C_D may be unknown, the context of the observer C_V is known or implied by the manner in which the study is conducted, and serves as the context for the evaluation. Thus, AT research characterizes the average algorithmic bias AB of a system, as perceived by the researcher/observer, $PAB(a) = \|a - O_V\|$.

With the above in mind, we analyze examples of the problem space, as presented in publications from three domains - text classification, search engines and recommender systems, leaving the discussion of the solution space for Section 4. When considering the problem space of each example we:

- Characterize the algorithmic system addressed, in relation to Figure 1.
- Identify the relevant dimension(s) of diversity.
- Detail the manner in which PAB_V is calculated.

![Figure 1: General architecture of an algorithmic system.](image)

3.2 Text classification

Problem. Given an input text (I), the goal is to assign one or more appropriate classes (O) that describe some attribute of the text. In the case of a classifier based on supervised learning (M), such as those in the examples below, the necessary data for training the model is a corpus of text from the domain of interest, in which each observation/text has been labelled with the correct class(es) (D).

Example 1 [TC1]. Dixon and colleagues [Dixon et al., 2018] trained a binary classifier (M) to label Wikipedia comments as being toxic/not toxic (O), based on the words in the textual comment (I). The diversity dimension of interest was minority status, including groups based on sexual orientation and religious affiliation, which were flagged by the use of sensitive identity terms (e.g., gay, black, atheist, Muslim) that appeared in the training corpus (D).

The concern was that sensitive words were associated more frequently with examples of “toxic” rather than “not toxic” comments, resulting in unintended biases in the classifier. Therefore, the authors proposed balancing the toxic/not toxic examples in the dataset (F). Average perceived algorithmic bias (PAB_V) was calculated based on error rate metrics (i.e., comparing the rates of false positives and negatives) when classifying comments containing sensitive words versus those not containing such terms. Thus, the reference point of the observer (O_V) was the classification error rate for texts containing no sensitive terms.

Example 2 [TC2]. Shen and colleagues presented a sentiment analysis scenario [Shen et al., 2018]. Social media texts (I) were labeled as having positive/neutral/ negative affect (O). Various black-box algorithms (M) were trained on corpora from social media (D). The diversity dimension of interest was race. Specifically, the authors were concerned about stylistic bias, such that texts containing linguistic markers of African-American English (AAE), were often mislabeled as negative. They proposed to “neutralize” incoming texts, such that the algorithms would analyze them like a text of comparable context, but without sensitive terms (F).

A regression model was used to calculate average perceived algorithmic bias (PAB_V). Specifically, each sentiment algorithm was used to score the original datasets, as well as datasets in which sensitive words were neutralized. The regression model related the two sets of sentiment scores, such that average PAB_V represented the average change in sentiment scores (i.e., change in regression coefficient). In other words, O_V referred to the sentiment scores of texts in which markers of AAE were absent.

3.3 Search engines

Problem. Given an input query from a user (I), a search engine returns a ranked list of documents (O), meant to be relevant to the user’s information need. The algorithmic models (M) behind modern proprietary search engines such as Google or Bing are difficult to characterize, not only because they are trade secrets, but also because of their complexity. The data used to train the models (D) likely consists of a combination of curated relevance datasets, datasets collected from “the wild,” as well as user history and profile, etc.

Example 1-2 [SE1, SE2]. Two recent studies addressed the diversity dimension of gender, in proprietary image search engines, considering search results (O) returned in response to queries (I) concerning the professions [Kay et al., 2015] as well as character traits [Otterbacher et al., 2017]. Fairness constraints (F) were not suggested; rather, the aim was to document bias to raise user awareness.

In [Kay et al., 2015], the reference point of the observer, O_V, was derived from US labor statistics on a given profession (i.e., the gender distribution of workers in the profession). The authors noted that the choice of O_V was not neutral, but rather, reflected the biases of the offline world. This was used as a benchmark of gender bias in the search engine results (presented to US-based users). Average PAB_V was computed by comparing the online versus offline gender distribution in retrieved images, across a set of profession-related queries.
In contrast, to compare the gender distribution of images retrieved for a given character trait query (e.g., “sensitive person”), no offline reference point was cited in [Otterbacher et al., 2017]. Instead, the authors compared the images retrieved on a given query, across four search engine markets (US, UK, South Africa and India). Average pairwise deviation was examined between the four markets, by comparing the gender distributions in images retrieved across a large set of queries demonstrating different observer’s reference point O_Y.

Example 3 [SE3]. Mowshowitz and Kawaguchi demonstrated a method for measuring search engine bias in a proprietary search engine [Mowshowitz and Kawaguchi, 2005]. Thus, a fairness constraint (F) was not imposed on the system. For a large set of user-generated search queries (I), they created a “fair results set,” consisting of results retrieved for a given query, across a number of alternative search engines. The diversity dimension of interest is information diversity. Put another way, O_Y expects adequate diversity in search results, regardless of the topic of the query. Thus, average PAB_Y was calculated, based on the deviation of the search results given by the engine being evaluated (O), from the search results of the “fair results set.”

3.4 Recommender systems

Problem. Given the profile of a user and an expressed need (i.e., query) (I), the system generates a ranked list of recommendations (O), deemed to be most compatible with the user’s interests/needs. The system’s model (M) is trained on datasets (D) capturing all users’ interactions with the system. Additional constraints may be added by third parties (T) who interact with / take decisions in the system.

Example 1 [RS1]. A recent study examined gender and racial biases in two freelance marketplaces, TaskRabbit and Fiverr [Hannák et al., 2017]. In both systems, users receive ranked lists of candidates (O) in response to search terms concerning small jobs (I). Third parties leave textual comments as well as ratings for candidates (T), who have completed previous jobs. The assumption was that candidates with similar qualifications and history of experience, should receive similar rankings, regardless of their gender/race.

The authors considered the feedback of candidates from other users, the language of the textual reviews on candidates’ work (i.e., the use of positive/negative adjectives), and the candidates’ positions in resulting rankings for a given job. Regression models were used to study the relationship of gender/race with these variables. The average system bias was measured in terms of the coefficients on gender/race (statistical significance, effect size). Ideas were put forward, such as re-ranking candidates to ensure fair treatment (F).

Example 2 [RS2]. Another example [Eslami et al., 2017], presented a cross-platform audit of hotel recommendations. The systems studied returned a ranked list of recommendations (O), in response to a user’s profile and search terms (I), taking into consideration others’ ratings/reviews (T). Credibility was the dimension of interest, as the primary concern was that the system Booking.com skewed users’ ratings of hotels, as compared to other systems. The authors compared customer ratings of over 1,500 hotels, by taking the average difference in ratings between any two platforms, and testing for statistical significance. Specific fairness constraints (F) were not mentioned; however, the authors noted that users often raise awareness of biases through textual reviews of the hotels.

3.5 Summary of observations

By design, all algorithmic models express intentional bias (e.g., in a search engine, a preference for “relevant” content over that which is deemed less relevant). However, some algorithmic biases are unintended and potentially problematic, such as those examined above. Table 2 summarizes the problem spaces in these cases. As can be seen, the diversity dimensions examined reflect the potential for algorithmic biases to result in harm, such as discrimination against particular social groups (based on characteristics such as race, gender, religion or sexual orientation), or providing information to users that is not balanced or credible.

Another observation from Table 2 is that, while the representation of knowledge (S) used in a given system, as well as the distance metric used (M), are dependent on the domain and the problem at hand, it is interesting to note a commonality in the choice of the reference point (O_Y). In particular, all reflect an attempt to find a “cultural consensus” on the baseline, either through the use of crowd wisdom obtained through open Web and social media (e.g., TC1, TC2, SE3), comparable data within the same or another system (RS1, RS2) or official government statistics (SE1).

In all of the above examples, we can appreciate the importance of perspective taking as a way to acknowledge the diversity, that exists in the data, as well as in the humans involved in system development, auditing and use. Although we have by no means provided an exhaustive list of examples and cases where diversity and biases exist in intelligent algorithmic systems, we have demonstrated that perspective taking can be an approach to AT.

4 Towards Algorithmic Transparency

Having explored the problem space of bias in algorithmic systems, we now describe five levels of algorithmic transparency. We shall relate the examples from Section 3 to these levels, to better understand the state of AT research, and to propose directions for future research.

4.1 First-level AT: User awareness

In the first level of transparency, which is the most informal, the user becomes aware that something is “not quite right.” The user interprets the system from her own context, C_I. However, the context of the developer, C_D is unknown and no formal assessment takes place.

This form of AT is related to users’ digital skills and is documented in the literature. Through repeated interactions with the system, the user can develop a mental model of the system and may learn to be critical of its statements, developing also an awareness of its biases. RS2 described such a case, where users of Booking.com posted reviews, in which they warned others about skewed ratings. Some users may generalize their observations, developing “folk theories” of how the algorithm works [Rader and Gray, 2015], essentially taking the potential perspective of the developer, building an unformalized, unverified model of C_D. However, others show little
ability to scrutinize algorithmic statements, particularly those that reinforce their own deeply held beliefs (e.g., concerning gender roles [Otterbacher et al., 2018]).

First-level AT represents a very active area of research. However, further work is needed on how to design and deliver user awareness (e.g., explainability [Abdollahi and Nasraoui, 2018]). In other words, future work must address questions such as: what methods are the most efficient for making the user aware of how the system is making its decisions (what data the system holds, how the system uses the data), and/or why specific information is delivered to the user. For example, in [Chen and Sundar, 2018], the authors conduct a number of experiments to understand how different strategies towards transparency and personalization affect the users.

4.2 Second-level AT: Observer audit

In the second level of transparency, we have an observer who interprets the system’s behaviors in terms of \(C_V \). As in the first level, the context of the developer/system, \(C_D \), is undefined. The observer could be a user of the system; however, in second-level transparency, the observer seeks to evaluate the system for biases, with respect to a cultural consensus on \(O_V \), and not that of one particular user (\(O_i \)). Those in the observer role might be researchers as in the cases in Section 3 and in Andreou et al. [Andreou et al., 2018], where researchers aimed to understand the effectiveness of Facebook targeted advertising; or even journalists, as in the often-discussed article on racial bias in the COMPAS system for predicting recidivism.\(^5\)

As seen in the above mentioned cases, in second-level transparency, the observer is tasked with measuring AB (or more commonly, average AB). She must also define \(O_V \) which, as mentioned, can be done by drawing on large corpora from the Web, official published statistics, or even through crowdwork. Since \(C_D \) is unknown, the observer conducts an evaluation of the system’s empirical behaviors, comparing them to \(O_V \), and then documents her observations, as well as the whole process. Thus, the observer’s analysis can be replicated by others, and over various points in time, in order to track system behavior.

4.3 Third-level AT: Developer disclosure

A third level of transparency is to articulate, at least in part, the context of the developer, \(C_D \). We have seen that in first-level transparency, the user may reach a point of “theorizing” or trying to infer \(C_D \), while in second-level transparency, an observer uses empirical experimentation to “go around” \(C_D \). In contrast to these two levels, in third-level transparency, \(C_D \) is formalized in the developer’s own terms. We might relate this level of transparency to the Value Sensitive Design (VSD) approach [Friedman et al., 2008]. VSD asks technology developers to consider all stakeholders’ values, and how these might be supported or hindered in the system in question (perspective-taking). During this process, a developer would need to first define his own reference context. In a similar vein, professional codes of conduct for developers, ask them to reflect upon their position and the impact of their work. For instance, the ACM Code of Ethics and Professional Conduct\(^6\) asks developers to “be honest and trustworthy” (1.3) and “be fair and take action not to discriminate” (1.4). Genuine compliance would require self-reflection on / definition of \(C_D \) and perspective taking so developer \(D \) will minimize biases.

To articulate \(S_D \), a developer would need to describe how knowledge about the world is represented within the system, beginning with the implicit user model on which the system was developed (i.e., who are the intended users). She would also need to document any sources of training data (e.g., how were datasets chosen/built/annotated, and by whom) and resources used by the system (e.g., dictionaries). Finally, explanations surrounding the treatment of data by algorithmic processes would also be needed (e.g., which features are considered important enough not only to represent in the data, but also to exploit in the model).

To communicate \(O_D \), the developer would need to explain what she considers to be the norm or standard. This issue is related again to data (e.g., the choice of training data to

5https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

6https://ethics.acm.org/
represent a given entity) but also to the manner in which the system is trained and evaluated by the developer.

4.4 Fourth-level AT: User/Developer mapping

The fourth level of AT assumes that both the first and third levels are feasible. This level allows for the comparison between the reference contexts of the developer and user, C_D and C_U. This would include formally mapping the dimensions that each use to represent knowledge of the world (i.e., S_D and S_U) as well as mapping their unbiased references (i.e., O_D and O_U). A path towards fourth-level AT is for the developer to contextualize user scripts when developing an intelligent algorithmic system, bearing in mind that concepts like “fairness” are specific to social contexts [Selbst et al., 2019]. Through this process, the user would be able to understand the perspective of the developer. Such a disclosure may lead to greater trust in the system. Likewise, the system developer could achieve a better understanding of the diversity of the user base, and for whom perceived biases are a problem. These, of course, are value judgments.

4.5 Fifth-level AT: Full transparency

Finally, at the highest level of transparency, any third party observer would be able to see, in full transparency, the positions of the user(s) and the developer. He could then make his own value judgment concerning the system’s behaviors, independent of the evaluation of another user and/or the evaluation of the system against a cultural consensus on O.

4.6 Summary

The state-of-the-art AT literature primarily documents cases of first- and second-level transparency. That said, efforts towards reaching third-level transparency can be seen both in professional/ethical codes for developers, as well as research efforts that promote the alignment of human values with the manner in which technologies are developed.

Fourth- and fifth-level AT would be the most difficult to achieve and thus, remain areas for future research. These levels would require a mapping (i.e., projection) of one Cartesian space onto another. As explained in Section 2, the dimensions used to represent a given entity vary across individuals. Furthermore, the dimensions describe different properties (e.g., some are discrete, some may be unordered, etc.) Therefore, such comparisons would become complicated, but could lead to a more general methodology of AT, in which many useful properties might be evaluated (e.g., under which circumstances bias is symmetrical).

As a final note, we do not mean to imply that it is possible to construct a final, “objective” reference point, from which an observer can evaluate the world around him. Arguably, the biggest obstacle that we face in working towards algorithmic transparency, is the fact that each one of us lives with our “bias blind spots.” Even if one is able to work through the levels of transparency, documenting his position and perceptions at each step of the process of using/creating a system, it is difficult for us to be aware of all the biases that influence our perception and behaviors [Pronin et al., 2002]. For this reason, we believe that the solution itself is the process of building an ever-changing reference point (and not a final or definitive reference point).

5 Conclusion

In this work, we aimed to bring the issue of diversity into the discussion on algorithmic bias and algorithmic system transparency. To this end, we adopted a perspective taking approach from psychology in defining a theoretical framework towards understanding and discussing bias in algorithmic systems, taking into consideration the diversity aspect. Biases and stereotypes occur due to the divergent perspectives, mainly, of the humans involved in the process of designing, developing and using an algorithmic system. Acknowledging diversity is a first step towards appreciating that transparency at any level can contribute to the efforts in reducing biases in algorithmic systems. The developer needs to be in a position to identify who the potential users will be and take their perspectives (e.g., through script writing) when interpreting the system’s output. In addition, the perspective of the developer should be made available to the users, when possible, so the user can make informed decisions when receiving an output.

We have seen that transparency is the obvious solution to the problem of algorithmic system bias. This is because of the diversity of people, and the fact that each one of us has a unique reference context (i.e., perspective), from which we interpret system behaviors and/or from which we develop systems. It is not that we all necessarily see things differently, and thus, disagree as to whether or not a given system is biased. As observed through the examples presented in Section 3, a cultural consensus can typically be established within a broader context (e.g., amongst users who speak the same language, were raised in a similar culture, and/or who have common life experiences). However, the rapid development of Internet technologies in the last decade has led us to a situation in which effectively managing diversity is an everyday phenomenon.

It can be noticed that, despite that transparency is the definitive solution for bias elimination, full transparency has yet to be achieved. It is complicated by the fact that each one of us is positioned within our own reference context. The solution to the unreachability of full AT is to make the level of transparency dependent on the nature of the problem and the users’ level of digital literacy. The more critical a system, the higher the level of transparency required. In this way, we also minimize the costs, which clearly increase with the level of AT. For instance, for less critical bias problems (e.g., adults using a search engine to find information to aid a decision), it may be sufficient for users to simply be aware of the biases such that they can adjust their actions accordingly. The level of awareness can depend on their digital skills and understanding. In contrast, in cases where the system’s decisions might result in more immediate harm (e.g., facial recognition systems processing photos of suspects in a criminal case), it is necessary to insist on the higher level of developer disclosure.

7The above lists of required explanations are not exhaustive.
5.1 Addendum: on detecting “fake news”

In closing, we note the relationship between the perspective on AT advocated in this work, and another pertinent area of research, that of developing algorithms to detect “fake news.” The link between these domains highlights the importance of taking a diversity perspective when analyzing problems related to bias, whether the bias manifests in the behaviors of algorithmic systems (AT) or in information itself (fake news).

Fake news has been characterized as a “distortion bias on information manipulated by the publisher” [Shu et al., 2017]. Credibility is the diversity dimension of interest; research on detecting rumors on social media [Qazvinian et al., 2011] or classifying posts as to their newsworthiness [Castillo et al., 2011] assume that the level of credibility of messages varies. The challenge is to use features of a message, to determine whether or not it deviates significantly from O (a baseline representing credible information). Just as in AT research, incoming observations are evaluated with respect to the observer’s reference context (C_V).

In future work, a means to achieve fourth-level AT could also benefit fake news detection. The issue of “fake news” often enters political debates (e.g., Trump supporters vs. detractors), with each party accusing the other of not acting in good faith (i.e., circulating fake news). However, if the reference contexts of the parties were to be mapped, each could better understand the underlying value judgments of the other. This is parallel to the developer in Section 2, acting in good faith (i.e., the assumption that $PAB_T(a) = 0$). Thus, the parties would be positioned to identify genuine “fake news,” differentiating it from that which is simply generated via a reference context that differs from theirs. Of course, to realize this, a diversity perspective is essential.

Acknowledgements

This research has been supported by the European Union’s Horizon 2020 Research and Innovation Program under Grant Agreement No. 810105 (CyCAT: Cyprus Center for Algorithmic Transparency).

References

[Abdollahi and Nasraoui, 2018] Behnoush Abdollahi and Olfa Nasraoui. Transparency in fair machine learning: The case of explainable recommender systems. In Human and Machine Learning, pages 21–35. Springer, 2018.

[Andreou et al., 2018] Athanasios Andreou, Giridhari Venkatadri, Oana Gogoi, Krishna P Gummad, Patrick Loiseau, and Alan Mislove. Investigating Ad Transparency Mechanisms in Social Media: A Case Study of Facebook’s Explanations. In NDSS 2018 - Network and Distributed System Security Symposium, pages 1–15, San Diego, United States, February 2018. HAL.

[Angwin et al., 2016] Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. Machine bias. ProPublica, May, 23(2016):139–159, 2016.

[Baeza-Yates, 2018] Ricardo Baeza-Yates. Bias on the web. Communications of the ACM, 61(6):54–61, 2018.

[Barocas et al., 2018] Solon Barocas, Moritz Hardt, and Arvind Narayanan. Fairness and Machine Learning. fairmlbook.org, 2018.

[Buolamwini and Gebru, 2018] Joy Buolamwini and Timnit Gebru. Gender shades: Intersectional accuracy disparities in commercial gender classification. In Conference on fairness, accountability and transparency, pages 77–91. PMLR, 2018.

[Castillo et al., 2011] Carlos Castillo, Marcelo Mendoza, and Barbara Poblete. Information credibility on twitter. In Proceedings of the 20th international conference on World wide web, pages 675–684. ACM, 2011.

[Chen and Sundar, 2018] Tsai-Wei Chen and S. Shyam Sundar. This app would like to use your current location to better serve you: Importance of user assent and system transparency in personalized mobile services. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, CHI ’18, pages 537:1–537:13, New York, NY, USA, 2018. ACM.

[Danks and London, 2017] David Danks and Alex John London. Algorithmic bias in autonomous systems. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, pages 4691–4697. AAAI Press, 2017.

[Datta et al., 2016] Anupam Datta, Shyak Sen, and Yair Zick. Algorithmic transparency via quantitative input influence: Theory and experiments with learning systems. In 2016 IEEE symposium on security and privacy (SP), pages 598–617. IEEE, 2016.

[Davis, 1983] Mark H Davis. Measuring individual differences in empathy: Evidence for a multidimensional approach. Journal of personality and social psychology, 44(1):113, 1983.

[Diakopoulos, 2016] Nicholas Diakopoulos. Accountability in algorithmic decision making. Communications of the ACM, 59(2):56–62, 2016.

[Dignum, 2017] Virginia Dignum. Responsible autonomy. In Proceedings of the 26th International Joint Conference on Artificial Intelligence, pages 4698–4704. IJCAI, 2017.

[Dixon et al., 2018] Lucas Dixon, John Li, Jeffrey Sorensen, Nithum Thain, and Lucy Vasserman. Measuring and mitigating unintended bias in text classification. In Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society, pages 67–73. ACM, 2018.

[Duan et al., 2020] Xiaoni Duan, Chien-Ju Ho, and Ming Yin. Does exposure to diverse perspectives mitigate biases in crowdwork? an explorative study. In Proceedings of the AAAI Conference on Human Computation and Crowdsourcing, volume 8, pages 155–158, 2020.

[Eslami et al., 2017] Motahhare Eslami, Kristen Vaccaro, Karrie Karahalios, and Kevin Hamilton. “be careful; things can be worse than they appear”: Understanding biased algorithms and users’ behavior around them in rating platforms. In Eleventh International AAAI Conference on Web and Social Media, pages 62–71. AAAI, 2017.
[Friedman et al., 2008] Batya Friedman, Peter H Kahn, and Alan Borning. Value sensitive design and information systems. The handbook of information and computer ethics, May(12):69–101, 2008.

[Galinsky and Moskowitz, 2000] Adam D Galinsky and Gordon B Moskowitz. Perspective-taking: decreasing stereotype expression, stereotype accessibility, and in-group favoritism. Journal of personality and social psychology, 78(4):708, 2000.

[Galinsky et al., 2015] Adam D Galinsky, Andrew R Todd, Astrid C Homan, Katherine W Phillips, Evan P Apfelbaum, Stacey J Sasaki, Jennifer A Richeson, Jennifer B Olayon, and William W Maddux. Maximizing the gains and minimizing the pains of diversity: A policy perspective. Perspectives on Psychological Science, 10(6):742–748, 2015.

[Giunchiglia et al., 2012] Fausto Giunchiglia, Vincenzo Maltese, and Biswanath Dutta. Domains and context: first steps towards managing diversity in knowledge. Web Semantics: Science, Services and Agents on the World Wide Web, 12:53–63, 2012.

[Gu et al., 2017] Liang Gu, Peng Yang, and Yongqiang Dong. Diversity optimization for recommendation using improved cover tree. Knowledge-Based Systems, 135:1–8, 2017.

[Hannák et al., 2017] Anikó Hannák, Claudia Wagner, David Garcia, Alan Mislove, Markus Strohmaier, and Christo Wilson. Bias in online freelance marketplaces: Evidence from taskrabbit and fiverr. In Proceedings of the 2017 ACM Conference on Computer Supported Cooperative Work and Social Computing, pages 1914–1933. ACM, 2017.

[Hutchinson and Mitchell, 2019] Ben Hutchinson and Margaret Mitchell. 50 years of test (un)fairness: Lessons for machine learning. In Proceedings of the Conference on Fairness, Accountability, and Transparency, FAT* ’19, pages 49–58, New York, NY, USA, 2019. ACM.

[Jones and Nisbett, 1971] Edward E Jones and Richard E Nisbett. The actor and the observer: Divergent perceptions of the causes of behavior. New York, General Learning Press, 1971.

[Jovchelovitch, 2002] Sandra Jovchelovitch. Re-thinking the diversity of knowledge: Cognitive polyphasia, belief and representation. Psychologie et société, 5(1):121–138, 2002.

[Kay et al., 2015] Matthew Kay, Cynthia Matuszek, and Sean A Munson. Unequal representation and gender stereotypes in image search results for occupations. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, pages 3819–3828. ACM, 2015.

[Kunaver and Požrl, 2017] Matevž Kunaver and Tomaž Požrl. Diversity in recommender systems—a survey. Knowledge-Based Systems, 123:154–162, 2017.

[Mowshowitz and Kawaguchi, 2005] Abbe Mowshowitz and Akira Kawaguchi. Measuring search engine bias. Information processing & management, 41(5):1193–1205, 2005.

[Narayanan, 2018] Arvind Narayanan. Translation tutorial: 21 fairness definitions and their politics. Proc. Conf. Fairness Accountability Transp., New York, USA, 2018.

[Nelson, 2014] Beryl Nelson. The data on diversity. Commun. ACM, 57(11):86–95, October 2014.

[Otterbacher et al., 2017] Jahna Otterbacher, Jo Bates, and Paul Clough. Competent men and warm women: Gender stereotypes and backlash in image search results. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, pages 6620–6631. ACM, 2017.

[Otterbacher et al., 2018] Jahna Otterbacher, Alessandro Checco, Gianluca Demartini, and Paul Clough. Investigating user perception of gender bias in image search: the role of sexism. In The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, pages 933–936. ACM, 2018.

[Pronin et al., 2002] Emily Pronin, Daniel Y Lin, and Lee Ross. The bias blind spot: Perceptions of bias in self versus others. Personality and Social Psychology Bulletin, 28(3):369–381, 2002.

[Qazvinian et al., 2011] Vahed Qazvinian, Emily Rosenberg, Dragomir R Radev, and Qiaozhu Mei. Rumor has it: Identifying misinformation in microblogs. In Proceedings of the Conference on Empirical Methods in Natural Language Processing, pages 1589–1599. Association for Computational Linguistics, 2011.

[Rader and Gray, 2015] Emilee Rader and Rebecca Gray. Understanding user beliefs about algorithmic curation in the facebook news feed. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, pages 173–182. ACM, 2015.

[Selbst et al., 2019] Andrew D Selbst, Danah Boyd, Sorelle A Friedler, Suresh Venkatasubramanian, and Janet Vertesi. Fairness and abstraction in sociotechnical systems. In Proceedings of the Conference on Fairness, Accountability, and Transparency, pages 59–68. ACM, 2019.

[Shen et al., 2018] Judy Hanwen Shen, Lauren Fratamico, Iyad Rahwan, and Alexander M Rush. Darling or Babygirl? Investigating Stylistic Bias in Sentiment Analysis. In Proceedings of FATML, 2018.

[Shih et al., 2009] Margaret Shih, Elsie Wang, Amy Trahan Bucher, and Rebecca Stotzer. Perspective taking: Reducing prejudice towards general outgroups and specific individuals. Group Processes & Intergroup Relations, 12(5):565–577, 2009.

[Shu et al., 2017] Kai Shu, Amy Sliva, Suhang Wang, Jiliang Tang, and Huan Liu. Fake news detection on social media: A data mining perspective. ACM SIGKDD Explorations Newsletter, 19(1):22–36, 2017.
[Todd et al., 2011] Andrew R Todd, Galen V Bodenhausen, Jennifer A Richeson, and Adam D Galinsky. Perspective taking combats automatic expressions of racial bias. Journal of personality and social psychology, 100(6):1027, 2011.

[Tyugu, 2006] Enn Tyugu. Understanding knowledge architectures. Knowledge-based systems, 19(1):50–56, 2006.

[Vescio et al., 2003] Theresa K Vescio, Gretchen B Sechrist, and Matthew P Paolucci. Perspective taking and prejudice reduction: The mediational role of empathy arousal and situational attributions. European Journal of Social Psychology, 33(4):455–472, 2003.