The effect of Andong (Cordyline terminalis) leave, one of the traditional plants in Bali as antioxidant and antibacterial

N W Bogoriani1,3, A A B Putra1, S Wahjuni1, W E Heltyani2, N P P M S Dewi1 and V Y K Sadin1

1Department of Chemistry, Faculty of Mathematic and Natural Science, University of Udayana, Jl. Kampus Jimbaran Badung, Bali 80362 Indonesia.
2Pharmacy Department, Faculty of Mathematic and Natural Science, Udayana University, Bali, Indonesia, Jl Kampus Jimbaran Badung, Bali 80362, Indonesia.
3Corresponding author: bogi_wayan@yahoo.com

Abstract. Climate change can have a direct effect (e.g. changes in air temperature, increased ultraviolet radiation, and pollution) and indirect effect (such as increased incidence infectious diseases). Infectious diseases are the main cause of high human mortality, especially in developing countries like Indonesia. Andong plant (Cordyline terminalis) is one of Bali’s local plants, which is widely used as a drug for infections due to microbes resulting from climate change. This study aimed to observe the effect of Andong leaf extract as an antioxidant and antibacterial and to identify the compounds. This research design was carried out with sample preparation including cleaning, cutting, drying, grinding and sifting to powder. Extraction was done by maceration method. Phytochemical tests were then performed with color reagents. Antioxidant test was carried out using diphenyl picryl hydrazil hydrate (DPPH) method and antibacterial activity was determined by well diffusion method. Measurement of antioxidant compounds’ levels was determined spectrophotometrically and analysis of antioxidant compounds was carried out by the LC-MS/MS method. The result showed that the Andong leaf extract contained saponins, polyphenols, flavonoids, steroids, triterpenoids, phytosterols, amino acids and alkaloids. In the testing of antioxidant compounds, Andong leaf extract contained tannins was 3324.550±0.821 mg/100 g TAE, phenol was 1398.905±0.812 mg/100 g GAE acids and alkaloids. In the testing of antioxidant compounds, Andong leaf extract contained flavonoids was 1

1. Introduction
Climate change is a change that can have a direct effect (e.g., changes in air temperature, increased ultraviolet radiation, and pollution), but most of these changes have indirect consequences (such as food availability, increased incidence of vector-borne diseases, and infectious and non-infectious diseases) [1]. The impact of climate change in Indonesia can be even more severe due to socio-economic factors such as population density, poverty, personal hygiene, availability of clean water and unequal income distribution. Indonesia is also a hotbed for infectious diseases such as dengue fever and diarrhea.

Infectious diseases are the main cause of high human mortality, especially in developing countries like Indonesia. The main pathogenic microbes that cause infectious diseases are bacteria [2]. Severe infections due to these bacteria include pneumonia, mastitis, meningitis and urinary tract infections. Staphylococcus aureus is also the main cause of nosocomial infections and food poisoning [3]. Other
bacteria that also infect humans are *Escherichia coli*. *Escherichia coli* is a gram-negative bacteria that cause diarrheal disease, urinary tract infections, nosocomial infections and can cause acute meningitis [3].

Infectious diseases caused by bacteria are often treated with antibiotics. Antibiotics have two main functions namely, to kill bacteria or slow their proliferation. Although antibiotics give satisfactory results, their use must be limited because excessive use can lead to the development of bacterial resistance. Bacterial resistance to certain antibiotics results in the use of the same antibiotics that are no longer effective in treating these bacterial infections so that the pathogenicity process due to infection continues. These events will encourage long-term use of antibiotics, which can have harmful side effects on the body [4].

An alternative method that can be done to overcome this problem is to develop herbal medicines derived from plants. The content of secondary metabolite compounds that act as antioxidants in plants plays an important role in their activity as antibacterial [5]. Andong leaf (*Cordyline terminalis* Kunth) is one of Bali’s local plants, which has benefits, namely as an ornamental plant, medicine, and religious ceremonies. The color of the leaves of this Andong plant is very influenced by the season. If the rainy season, the leaves’ color becomes slightly greenish and in summer, the color becomes bright red and it is thought that they contain lots of antioxidant compounds.

Antioxidant compounds are compounds that can capture, neutralize and stabilize free radicals. Free radicals are molecules that have one or more unpaired electron in an outer shell. These unpaired electrons cause free radicals to become highly reactive compounds to body cells by binding to electron molecule cells. In this condition, humans need antioxidant compounds obtained from foods that contain phenolics, anthocyanins, tannins, flavonoids and saponin. Various scientific evidence shows that the risk of chronic diseases due to free radical can be reduced by utilizing antioxidant compounds such as vitamins C, E, A, carotene, phenolics, and polyphenols flavonoids, steroids, tannins, and saponins [6].

Several studies on antioxidant compounds’ activity have been carried out on Andong plant, namely Andong leaf saponins as antiobesity and anticholesterol [7][8]. Andong leaf extract has also been able to act as an antidiabetic in obese Wistar rats [9]. These activities indicate that Andong leaves contained antioxidant compounds that are thought to also act as antimicrobials.

This study aimed to observe the effect of Andong leaf extract as an antioxidant and antibacterial and to identify the compounds contained in the plant leaf extract.

2. Material and methods

2.1. Materials and tools
The research material was Andong leaf obtained in Tampaksiring, Gianyar, Bali, Indonesia; 2,2 - Diphenyl-1-picrylhydrazyl (DPPH) ex. Sigma; ethanol solvent for Spectrophotometer ex. E. Merck; Heidolph freeze dryer; Hitachi U1800 spectrophotometer, *Staphylococcus aureus* ATCC 25923, *Escherichia coli* ATCC 25922, and *Shigella flexneri*.

2.2. Preparation and extraction of andong leaves
Andong leaves powder of 350 g was extracted by maceration using methanol solvent for 24 hours at room temperature and the extraction process was carried out 5 times. The extract obtained was dried with the freeze-drying technique.

2.3. Phytochemical test
According to Hossain and Nagooru [10], the phytochemical test was carried out qualitatively.

2.4. Determination of total flavonoids content
The content of total flavonoid was determined by AlCl₃ method using quercetin as a standard compound. The absorbance of the mixture was measured at 415 nm. The total flavonoid content is expressed in quercetin equivalent (mg/100 g QE) [11].
2.5. Determination of total phenol content
The content of total phenol was carried out using the Folin-Ciocalteu method. The samples were measured spectrophotometrically at 765 nm. The total phenolic amount was determined as gallic acid and expressed as mg/100 g GAE [12].

2.6. Determination of total tannin content
Total tannin of leaf extract was determined using the spectrophotometry method, according to Saranya et al [12].

2.7. The activity of 1,1-diphenyl-2-picrylhydrazylhydride (DPPH) radical scavenging
The activity of DPPH radical scavenging of Andong leaf extract was determined based on Bogoriani et al [9]. The DPPH radical concentration was calculated using the following equation (1).

\[
\% \text{ inhibition} = \frac{A_{\text{Control}} - A_{\text{test}}}{A_{\text{Control}}} \times 100
\]

(1)

2.8. Analysis of microbiological
Microbiological analysis of Andong leaf extracts was performed according to Mahuruk et al [13]. The antimicrobial activity was characterized by forming clear zones around the wells and measured for its diameter (mm) [13].

2.9. Analysis of Andong leaf extract with LC-MS/MS method
LC-MS/MS analysis uses the ACQITY UPLC * H-Class System (water, USA) LC, and Xevo G2-S Qtof Mass Spectrometer (water, USA). All mass spectrometer (MS) spectra were extracted using masslynx v 4.1 software.

2.10. Analysis of statistic
The data were tested by one-way ANOVA followed by the least-significant-difference test (LSD) and Tamhan’s test for determined the value difference between treatment groups. The criterion for significance differences was set at p < 0.05.

3. Result and discussion

3.1 Andong leaf methanol extract with maceration method
Maceration results from 350 grams of dried powder of red Andong leaf using 96% methanol solvent obtained as much as 65 grams of powder extract which was dark green and had a distinctive aroma. The yield of powder extract was 18.57 ± 0.671%. The yield of powder extract was calculated according to the extraction yield formula given by Tahar et al. [14].

3.2 Phytochemical test
Table 1 shows positive reactions to all test reagents. The methanol extract of Andong leaf contained all tested compounds like polyphenols, flavonoids, saponins, alkaloids, steroids, tannins, glycosides, and triterpenoids, phytosteroid and amino acids. These compounds have been reported to have medicinal benefits like anti glycemic, antioxidant, anticancer, antilipidemic, antiobesity, antimicrobial and immunomodulatory activities [7][8][11]. Methanol extracts of Andong leaf were quite an effective solvent in the extraction of antioxidant compounds. Methanol extracts of Andong leaf exhibited a positive reaction in all the assays. The phytochemical analysis results were almost the same as a previous study by Hossain and Nagooru [10].
Table 1. Result of phytochemical test from Andong leaf methanol extract

No	Phytochemical compound	Test	Result
1	Polyphenols	FeCl₃ test	+
2	Flavonoids	Mg powder dan concentrated HCl	+
3	Saponins	Frothing test	+
4	Alkaloids	Mayer’s reagent test/Drageordoff’s test	+
5	Steroids	Liebermann-burchard test	+
6	Tannins	Ferric Chloride test	+
7	Glycosides	Borntrager test	+
8	Triterpenoids	Liebermann-burchard test	+
9	Phytosterols	Liebermann-burchard test	+
10	Amino acids	Ninhydrin reagent	+

+ = presence; - = absence

3.3. Determination of total phenolic compounds content

Table 2 shows that Andong leaf’s extract contained the highest tannins with a significant difference (p<0.05) compared to phenols and flavonoids. Total phenol was 1399±0.81 mg/100 g GAE; tannin was 3324.55±0.82 mg/100 g TAE; and flavonoids was 1373.07±1.28 mg/100g QE. Andong leaf extract exhibited a good radical scavenging activity on DPPH (88.26±0.015 ppm). Generally, phenolic compounds’ antioxidant activity can scavenge free radicals, chelate metal cations, or donate hydrogen atoms or electrons [5]. The antioxidant capacity of phenolic compounds is also attributed to their ability to chelate metal ions involved in free radicals production [6].

Table 2. The contents of the flavonoids, tannins, phenolic compounds and IC₅₀ of Andong leaf extract

Sample	Flavonoids mg/100g QE	Tannins mg/100g TAE	Phenolic mg/100g GAE	IC₅₀ ppm
Andong leaf	1373.07±1.28b,d	3324.55±0.82a,c,d	1398.92±0.92b,d	88.26±0.015a,b,c

The mean ± standard deviation (n = 5) followed by a superscript in the same row shows a significant difference p < 0.05. The letters (a,b,c,d) indicated the non-homogeneous subsets of Tamhane’s test. QE = quercetin equivalents; TAE = tannic acid equivalent; GAE = gallic acid equivalents.

Tannins as a secondary metabolite have been reported to have a role in reducing feed intake, growth rate, feed efficiency, net metabolizable energy, and protein digestibility in test animals. The antioxidant properties of tannins have the potential to be anti-carcinogenic and antimutagenic and can protect cell damage due to lipid peroxidation processes [15].

Flavonoids, a group of hydroxylated phenolic substances known to be potent free radical scavengers, have attracted tremendous interest in therapeutics against free radical-mediated diseases, particularly diabetes mellitus and their different pharmacological effects are mostly structured dependent. Flavonoids of plants are most commonly known for antioxidant and antimicrobial biological activities [6].

Andong leaf extract could neutralize free radicals from DPPH (Table 2). This test is one of the most widely used in vitro tests to determine extracts’ effect on free radicals from DPPH. With Andong leaf extract, which can donate hydrogen atoms, DPPH free radicals are lost and the purple color turns yellow (diphenyl picryl hydrazine) [7]. This study indicated that Andong leaf extract had IC₅₀ = 88.26 ± 0.015 ppm, which means that the extract had strong antioxidant activity. It was proven that the extracts showed the ability to donate hydrogen atoms so that the extracts can function as a free radical scavenger [7].
3.4. Antibacterial activity of Andong leaf extracts

Antibacterial activity of Andong leaf was determined against three bacteria viz. *Staphylococcus aureus*, *Shigella flexneri*, and *Escherichia coli* by diffusion method. Table 3 indicates that all the test bacteria were found to be susceptible to Andong leaf extracts. Extract of Andong leaf 100 ppm was more effective against *E. coli* compared to *S. aureus* and *S. flexneri*. The inhibitory power of extract with 100 ppm was the highest against *E. coli* and the lowest was against *S. aureus*. Inhibitory extracts of Andong leaf was higher than tetracycline with a significant difference (p < 0.05). Pavithra et al [5] reported that medicinal plants have been used as remedies for centuries of diseases. Antimicrobials of plant origin have enormous therapeutic potential due to the presence of certain metabolites [5].

Test bacteria	*Escherichia coli*	*Shigella flexneri*	*Staphylococcus aureus*
Control (methanol)	0.79±0.19^{b,c}	0.82±0.16^{b,c}	0.77±0.23^{b,c}
Extract 100 ppm	8.43±0.55^{a,c}	7.44±0.55^{a,c}	6.84±0.54^{a,c}
Tetracycline	6.02±0.24^{a,b}	5.31±0.61^{a,b}	6.40±0.52^{a,b}

The mean of inhibition zone (mm) ± standard deviation (n = 5) followed by a superscript in the same row shows a significant difference at p < 0.05. The letters (a,b,c,d) indicated the non homogeneous and homogeneous subsets of Tamhane and LSD’ test.

3.5 The analysis of Andong leaf extract with LC-MS/MS

The chromatograms and compounds of Andong leaf extract analysis using methanol and dichloromethane (DCM) are presented in Figures 1 and 2, respectively (see Appendix Table 4 and Table 5).

Figure 1. Chromatogram of extraction result sample with methanol solvent
4. Conclusion
Andong leaf extract had antioxidant and antibacterial activity due to secondary metabolites namely tannins, phenolic, flavonoid, steroids, alkaloids, and saponins the potential to treat infectious diseases caused by climate change.

Acknowledgments
The author would like to thank all researchers and students who helped conduct the study. The authors also thank the Udayana University BOPTN, which funded this research.

References
[1] Beck M A 2000 Nutritionally induced oxidative stress: effect on viral diseases. American Journal of Clinical nutrition 71 1676S-9S.
[2] Radji M 2011. Buku Ajar Mikrobiologi Panduan Mahasiswa Farmasi dan Kedokteran (Jakarta: EGC).
[3] Brooks G F, K C Carroll, J S Butel and S A Morse 2013 Jawetz, Melnick, & Adelberg’s Medical Microbiology 24th ed (New York: McGraw-Hill).
[4] Fischbach M A and Walsh T 2009 Antibiotics for emerging pathogen Journal of Science 325 1089-93.
[5] Pavithra G M, S Siddiqua, S N Abhishiktha, TR P Kekuda, KS Vinayaka 2013 Antioxidant and antimicrobial activity of flowers of Wendlandia thyrsoidea, Olea dioica, Lagerstroemia speciosa and Bombax malabaricum. Journal of Applied Pharmaceutical Science 3 114-20.
[6] Rekha C, G Poornima, M Manasa, V Abhipsa, P J Devi, V H T Kumar, P T R Kekuda 2012 Ascorbic Acid, total phenol content and antioxidant activity of fresh juices of four ripe and unripe Citrus fruits. Chemical Science Transactions 1 303-10.
[7] Bogoriani N W 2015 The activity of Andong leaf saponin (Cordyline terminalis Kunth.) against cholesterol and diphenyl picryl hydroxyl (DPPH) vitro, Proceeding 5th International Conference and Workshop on Basic and Applied Sciences 228-33.
[8] Bogoriani N W, I B P Manuaba, K Suastika and I W Wita 2015 Cordyline terminalis Kunth leaves’s saponin lowered plasma cholesterol and bile acids levels by increased the excretion of fecal total bile acids and cholesterol in male wistar rats European Journal of Biomedical and Pharmaceutical Sciences 2 122-34.

Bogoriani N W, A A I M Laksmiwiati, A A B Putra, W E Heltyani, K D P Lestari, P A E Mahayani 2019 Saponins role of Bali Andong leaf as antiobesity in rats. International Journal of Pharmaceutical Research 11 382-89.
[9] Bogorani N W, N M Suaniti, A A B Putra, K D P Lestari 2019. The activity of Cordyline terminalis’s leaf extract as antidiabetic in obese wistar rats. Int.J.Pharm Res allied Sci 8 206-213.

[10] Hossain M A, and M R Nagooru 2011 Biochemical profiling and total flavonoid contents of leaves crude extract of endemic medicinal plant Cordyline terminalis L. Kunth. Pharmacognosy Journal 3 25-30.

[11] Reddy C, A Noor, V Sabareesh and Vijayalakshmi 2016 Preliminary screening of potential flavonoid subclasses in Myristica fragrans and Cordyline terminalis by LC-ESI-MS. J Pharm Phytochem 5 437-50.

[12] Saranya D, J Sekar and G Adaikalaraj 2017 Assessment of antioxidant activities, phenol and flavonoid contents of different extracts of leaves, bark, and root from the Abutilon indicum (L.) Weet Asian J Pharm Clin Res 10 88-94.

[13] Manihuruk F M, T Suryati and I I Arief 2017 Effectiveness of the red dragon fruit (Hylocereus polyrhizus) peel extract as the colorant, antioxidant, and antimicrobial on beef sausage Media Peternakan 40 47-54.

[14] Tahar M, L Abderrahmane, R Mustapha, B Salim, T Mohamed 2019 The total phenolic compounds and antioxidant activity of Atriplex nummularia leaves’ extract Int.J. Pharm. Res.Allied Sci 8 168-79.

[15] Marella S 2017 Flavonoids-the most potent polyphenols as antidiabetic agents: an overview. Mod Appro Drug Des 1 1-5.
Appendix table

Table 4. Identification of compounds of Andong leaf extract with methanol solvent

Time retention (minute)	m/z (M+H)⁺	Formula (+H⁺)	Compound name	Structure
0.69	144.1021	C₇H₁₄NO₂	1-Aminocyclohexanecarboxylic acid	![Structure](image1)
1.72	154.0745	C₇H₆O₄	Protocatechuic acid	![Structure](image2)
1.72	353.1475	C₁₄H₂₅O₁₀	Methyl 4-O-{[(5R)-5-vinyl-α-L-arabinopyranosyl]-α-D-galactopyranoside	![Structure](image3)
3.73	154.0745	C₇H₆O₄	Protocatechuic acid	![Structure](image4)
4.06	191.0809	C₁₀H₁₂N₂O₄	4-Cyanophenylalanine	![Structure](image5)
4.64	636.2259	C₃₉H₆₅NO₂₄	N-[2-{[(4-O-(α-D-Glucopyranosyl)-β-D-glucopyranosyl)oxy]ethoxy}ethyl]-9-oxo-9H-fluorene-2-carboxamide	![Structure](image6)
5.38	611.1625	C₂₃H₂₂N₂O₁₂	4-{[(4-Benzoyloxy)-1H-benzimidazol-6-yl]carbamoyl}oxy]methyl]-2-nitrophenyl hexopyranosiduronic acid	![Structure](image7)
5.63	625.3586	C₂₃H₂₇O₁₆	5,7-Dihydroxy-2-(4-hydroxy-3-methoxyphenyl)-3-chromeniumyl 2-O-[β-D-glucopyranosyl-α-D-mannopyranoside	![Structure](image8)
6.0	1029.5291	C₁₄H₂₃N₃O₅S		

Amino acid

Phenolic

Glycoside

Phenolic

Amino acid

Phenolic

Glycoside

Phenolic

Flavonoid
Time retention (minute)	r/m (M+H)+	Formula (+H)+	Compound name	Structure
5.74	609.3636	C_{27}H_{29}O_{16}	3-[(2-O-Hexopyranosyl)hexopyranosyl]oxy]-5-hydroxy-2-(4-hydroxyphenyl)-4-oxo-4H-chromen-7-olate	Flavonoid
6.21	611.3766	C_{13}H_{10}O_{10}	(3β,5α,16ξ,22S,23S,25R,26S)-3,22-Dihydroxy-23,26-epoxyfurostan-26-yl β-D-glucopyranoside	Saponin
6.29	648.2014	C_{13}H_{12}O_{10}	1(R,3S,4R,5S)-3-Hydroxy-1,4,5-tris(3,4,5-trihydroxybenzoyl)oxy)cyclohexancarboxylic acid	Polyphenolic
7.27	181.1220	C_{11}H_{10}O	2-(5-Hexen-1-yl)-5-hydroxy-3,4-dihydropyranium	
7.72	192.1832	C_{12}H_{10}NO	N-(3-Hydroxybenzyl)-N,N-dimethyl-2-propen-1-aminium	Alkaloid
7.80	721.4144	C_{34}H_{61}N_{10}OS_{3}	Ethyl4-(((3β,5α)-cholestan-3-yloxy)carbothioyl)sulfanyl)-3-oxobutanoate	Steroid
8.19	331.2258	C_{21}H_{31}O_{3}	11α-hydroxy-Progesterone	Steroid
8.55	225.1958	C_{21}H_{22}NO	Ethyl (4S)-5-cyclohexyl-2,2-difluoro-4-[(2S)-2-[[N-(4-morpholinsulfonyl)]-L-phenylalanyl]amino]-4-pentenoyl]amino)-3-oxopentanoate	Amino acid
9.00	403.2011	C_{26}H_{29}N_{2}O_{3}	4-[[E]-2-[(3-Ethoxy-4-[(2-[4-methylphenyl]amano)-2-oxoethoxy]phenyl)vinyl]-1-methylpyridinium	Alkaloid
Time retention (minute)	m/z (M+H)^+	Formula (+H^+)	Compound name	Structure
-------------------------	-------------	----------------	---------------	-----------
9.32	312.2535	C_{19}H_{20}O_{4}	1-Oxo-1-phenyl-2-propanyl (4-methoxyphenyl)propanoate	
9.65	314.2694	C_{19}H_{22}O_{4}	4-Methoxyphenyl (2-isopropyl-5-methylphenox)acetate	
10.28	286.2739	C_{19}H_{20}O_{4}	Kaempferol	
10.78	314.2689	C_{19}H_{20}O_{4}	4-Methoxyphenyl (2-isopropyl-5-methylphenox)acetate	
11.12	318.3003	C_{19}H_{20}O_{4}	5,7,8-Trihydroxy-2-(3,4,5-trihydroxyphenyl)-4H-chromen-4-one	
11.48	884.5023	C_{40}H_{71}O_{17}	Osladin	
11.70	884.5013	C_{40}H_{71}O_{17}		
12.11	886.5179	C_{40}H_{71}O_{17}	(3β,5β,9α,14α,25S)-Spirostan-3-yl 6-deoxy-a-L-mannopyranosyl(1->4)[β-D-glucopyranosyl(1->2)]β-D-glucopyranoside	
13.07	721.4172	C_{27}H_{41}N_{2}O_{8}S		
13.28	413.3060	C_{7}H_{11}O_{3}	3-Oxandrostan-4-en-17-yl 3-cyclopentylpropanoate	
13.43	415.3211	C_{7}H_{11}O_{3}	Diosgenin	
Time retention (minute)	m/z (M+H)^+	Formula (+H)^+	Compound name	Structure
------------------------	-------------	----------------	---------------	-----------
14.01	522.3565	C_{24}H_{26}O_{13}	5-Hydroxy-2-(3-hydroxy-4-methoxyphenyl)-3,6-dimethoxy-4-oxo-4H-chromen-7-y1-D-glucopyranoside	![Structure Image](image1)
14.31	217.1586	C_{15}H_{21}O	Turmerone	![Structure Image](image2)
15.11	324.2900	C_{18}H_{12}O_{6}	2-[(Methoxycarbonyl)phenyl]-2-oxo-2H-chromene-3-carboxylate	![Structure Image](image3)
15.36	341.2836	C_{19}H_{17}O_{6}	4-[(2E)-3-(3-Ethoxy-4-hydroxyphenyl)-2-propenoyl]phenoxy]acetate	![Structure Image](image4)
15.69	397.384	C_{21}H_{17}O_{6}	6-Carboxy-2-[2-(5-carboxy-2-hydroxy-3-methoxyphenyl)vinyl]-8-methoxychromenium	![Structure Image](image5)
16.24	776.5663	C_{45}H_{74}O_{10}	1S,5'R,6R,6'R,7S,8R,10S,11R,12R,14R,15R,16S,22S,25R,27S,28R,29S-[22-Ethyl]-7,11,15-trihydroxy-6-[(2S)-2-hydroxypropyl]-5,6,6,10,12,14,16,28,29-nonamethyl-3,4,5,6-tetrahydro-3H-6H,13H-spiro[2,26-dioxabicyclo[23.3.1]nonacosa-3,9,13-trione	![Structure Image](image6)
16.64	397.3821	C_{23}H_{18}	Stigmasta-3,5-diene	![Structure Image](image7)
17.08	504.4414	C_{24}H_{12}O_{2}	1,4-Dioxo-1,4-dihydro-2-naphthalenyl-2-acetyl-α-D-galactopyranoside	![Structure Image](image8)
17.82	411.3254	C_{22}H_{12}O_{2}	Ergosta-4,24(28) diene-3,6-diene	![Structure Image](image9)
Time retention (minute)	m/z (M+H)*	Formula (+H*)	Compound name	Structure
-------------------------	------------	---------------	---------------	-----------
17.94	494.5659	C_{26}H_{38}O_{9}	(1S,4S,9R,12S,13R,16S,17R)-17-(Hydroxymethyl)-12-methyl-7-oxo-8-oxapentacyclo[14.2.1.0\{1,13\}.0\{4,12\}.0\{5,9\}]nonadec-5-en-17-yl β-D-glucopyranoside	Glycoside
17.99	522.5964	C_{24}H_{26}O_{13}	Iridin	Flavonoid
19.74	550.6291	C_{25}H_{26}O_{14}	5,8-Dihydroxy-3-methyl-1,4-dioxo-1,4-dihydro-2-naphthalenyl 2,3,4,6-tetra-O-acetyl-β-D-glucopyranoside	Phenolic
Time retention (minute)	m/z (M+H)⁺	Formula (+H⁺)	Compound name	Structure
------------------------	------------------------	--------------------------	----------------	-----------
5.48	227.1550	C₁₅H₁₉N₂	1-(1-Naphthylmethyl)piperazine	![Alkaloid](image)
9.50	273.1492	C₁₅H₁₃O₅	3,5-Dihydroxy-4-[3-(4-hydroxyphenyl)propanoyl]phenolate	![Phenolic](image)
9.87	396.2477	C₂₁H₃₂O₇	5α,1,2-O-Isopropylidene-3-O-[4-(pentyloxy)benzyl]-α-D-xylo-hexofuranose	![Phenolic](image)
12.06	301.1418	C₁₈H₂₁O₄	(S)-2-(3,4-Dimethoxyphenyl)-7-methoxychroman 3',4',7-Trimethoxyflavan	![Phenolic](image)
10.24	139.9886	C₂H₄O₄	p-Benzoquinone, 2,5-dihydroxy	![Phenolic](image)
14.44	378.2224	C₂H₂O₃	Methyl4-[2-(4-phenylmethoxyphenoxy)ethoxy]benzoate	![Phenolic](image)
15.07	639.2832	C₃₄H₅₄O₁₁	1-O-[1α,3β,11β,22R,24E-1,3,11,22-Tetrahydroxy-26-oxoergosta-5,24-dien-26-yl]-β-D-glucopyranose	![Saponin](image)
15.44	653.2996	C₃₁H₃₉N₈O₃	1-[4-(2-[1-Methyl-2-oxo-2,3-dihydro-1H-indol-5-yl]amino)-4-pyrimidinyl]oxy]-1-naphthyl]-3-[1-(4-methylphenyl)]-3-(2-methyl-2-propanyl]-1H-pyrazol-5-yl]urea	![Alkaloid](image)
16.24	494.5655	C₂₆H₂₂O₃	Methyl 3-[2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-4-oxo-4H-chromen-8-yl]-3-(4-methoxyphenyl)propanoate	![Flavonoid](image)
Time retention (minute)	m/z (M+H)^+	Formula (+H^+)	Compound name	Structure
------------------------	-------------	----------------	---------------	-----------
16.64	629.5655	C_{31}H_{32}O_{14}	4-[(3R)-1-Oxo-8-[(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl)oxy]-3,4-dihydro-1H-isochromen-3-yl]phenyl acetate	![Flavonoid](image1.png)
17.19	522.5969	C_{24}H_{26}O_{13}	5-Hydroxy-2-(3-hydroxy-4-methoxyphenyl)-3,6-dimethoxy-4-oxo-4H-chromen-7-yl α-D-glucopyranoside	![Flavonoid](image2.png)
16.64	550.6291	C_{25}H_{26}O_{14}	5,8-Dihydroxy-3-methyl-1,4-dioxo-1,4-dihydro-2-naphthalenyl 2,3,4,6-tetra-O-acetyl-β-D-glucopyranoside	![Phenolic](image3.png)
17.82	394.3482	C_{23}H_{44}N	Cholesta-3,5-diene-3-carbonitrile	![Steroid](image4.png)