Prenatal Diagnosis of Tetralogy of Fallot Associated with Chromosome 22q11 Deletion

INTRODUCTION

Microdeletion of 22q11 is responsible for DiGeorge syndrome, velocardiofacial syndrome, congenital conotruncal heart defects, and related disorders. We report our experiences on prenatal diagnosis by fluorescence in situ hybridization (FISH) for 22q11 deletion in two fetuses with tetralogy of fallot. Karyotyping and FISH of the parents revealed that one fetus inherited the disease from maternal microdeletion. These findings suggest the importance of performing FISH in pregnancies with prenatally detected tetralogy of Fallot.

CASE REPORTS

Fetal blood sample in Case 1 and amniotic fluid in Case 2 were obtained for karyotyping and FISH. Cells harvested from cultures of phytohemagglutin-stimulated lymphocytes were spread onto slides for the production of G-banded chromosomes. FISH of metaphase chromosomes using the LSI DiGeorge/VCFS Region Dual Color Probe (Vysis) for the DGS chromosome region was carried out according to Pinkel et al. (10).

Case 1

A 29-yr-old Gravida 2 Para 1 woman underwent fetal echocardiography because her previous baby died of sepsis complicating congenital heart disease at 7 days of age. Fetal echocardiography showed tetralogy of Fallot (TOF), severe...
hypoplasia of pulmonary arteries, right aortic arch with aberrant left subclavian artery arising from the descending aorta at 23 weeks of gestation. The possibility of CATCH 22 syndrome was considered because of her previous history and its strong association with TOF. A fetal blood sample was obtained for karyotyping and FISH for CATCH 22, which revealed 46,XX karyotype with a 22q11 deletion (Fig. 1). The parental karyotypings were normal. However, the mother was found to be a carrier of the deletion by FISH on lymphocytes in metaphase. She did not show unusual faces or known cardiac abnormality. The parents decided to terminate the pregnancy. The FISH study from amniotic fluid drawn before termination revealed the 22q11 microdeletion. Autopsy was refused. Parents had normal karyotype without 22q11 deletion.

DISCUSSION

Chromosome 22q11 deletion causes a contiguous gene syndrome that includes DiGeorge syndrome (DGS) (4), velocardiofacial syndrome (VCFS) (2), and conotruncal anomaly face syndrome (CAFS) (3). Wilson et al. acronymed the common forms of defects associated with chromosome 22q11 deletion as CATCH 22 syndrome. The most severely affected patients have serious life threatening heart defects. The least severely affected patients have only mild facial anomalies and some developmental delay without cardiac defects (11). However, most of the patients with chromosome 22q11 microdeletion who have survived infancy were mildly to moderately retarded (12).

The estimated incidence of deletion of chromosome 22q11 is 1 in 4,000 live births (13). Cardiovascular abnormalities have been reported in 83% of those with 22q11 deletion (14). This condition is the second most frequent chromosomal anomaly associated with congenital heart disease, next to Down syndrome. Congenital heart defects characteristically involve the conotruncal region, tetralogy of Fallot (TOF), interrupted aortic arch, and truncus arteriosus being the most common lesion. TOF is the most common cyanotic congenital heart disease, occurring in approximately 10% of infants with congenital heart disease. The improvements in routine ultrasound techniques are expected to increase dramatically the number of cases with prenatally detected cardiac defects (15). Prenatal diagnosis of tetralogy of Fallot aids parental counseling and enables the early inhibition of optional treatment at a pediatric cardiac center, which may further improve treatment outcomes (16).

Chromosome 22 microdeletion occurs de novo in most cases, with only 8% being inherited (13). When one of the parents carries the deletion, either symptomatic or not, the fetus has a 50% risk of inheriting the abnormality. Thus, parental screening is necessary to identify the parents who have a 50% risk of affected offspring. For familial cases, prenatal genetic diagnosis should be offered. Preimplantation genetic diagnosis with in vitro fertilization can be considered to prevent termination of further affected pregnancy since FISH in a single cell has been a feasible method (17). Even though neither parent has the deletion, it is expected that there will be a low risk of having a further child with a 22q11 deletion since gonadal mosaicism (18) cannot be ruled out (6).

In a series of 17 nonsyndromic children with congenital conotruncal heart defects, five were found to have a 22q11 deletion (19). However, it is now well established that nearly all patients with the microdeletion exhibit subtle but
typical facial features (20, 21). The prevalence of the 22q11 microdeletion in newborn infants with congenital conotruncal cardiac anomalies was reported to be about 48% (22). They suggested that FISH should be performed in newborn infants with conotruncal defect and at least one additional manifestation of the CATCH 22 phenotype. The prevalence of 22q11 deletion in tetralogy of Fallot patients was reported to be 13% (23). These data from postnatal studies are not applicable to prenatal diagnosis, since dysmorphic features may not be accessible to ultrasound survey and every conotruncal heart defect detected in the fetal period is potentially related to the 22q11 microdeletion. Very few data are available concerning the prognosis for fetuses diagnosed prena tally as having a 22q11 deletion. Prenatal diagnosis of 22q11 deletion was reported in a fetus with a known affected sister and another case (24), in a fetus of a patient with the deletion and velocardiofacial syndrome (13), in a fetus of a mother with congenital heart disease (25), and in a fetus with interrupted aortic arch type B (26). The discovery of a conotruncal heart defect associated with a 22q11 deletion during pregnancy might indicate a severe form of this syndrome, which is known to show a great phenotypic variability.

Whether molecular cytogenetic studies should be offered when a conotruncal heart defect is diagnosed during fetal life remains controversial. Among the pregnancies with prena tally detected heart defect, about 11.5% of the cases have the deletion (5). According to the increasing awareness among obstetricians, echocardiographers and geneticists, one can predict that there will be a dramatic increase in demand for prenatal diagnosis of 22q11 deletion. Prenatal detection allows time for genetic counseling. It is also helpful in making choices and arrangements for delivery and postnatal surgical care, planning the immediate neonatal medical care, detecting other affected family members, and considering a cesarean section in case of fetal distress. These discussions and decisions are difficult when the diagnosis of a major anomaly requiring emergency care is established after birth.

These findings highlight the importance of performing FISH for suspected chromosome 22q11 deletion during pregnancy when ultrasound studies show a conotruncal cardiac anomaly. However, the counseling remains difficult in view of the clinical variability described in DGS, where the phenotype cannot be accurately predicted from the genotype. In our opinion, the knowledge of the fetal status with regard to the 22q11 microdeletion remains useful. It could help the decision making process of obstetricians, pediatric cardiologists, and surgeons in the perinatal period. In conclusion, prenatally detected tetralogy of Fallot may be considered for 22q11 microdeletion.

REFERENCES

1. Wilson DI, Burn J, Scambler P, Goodship J. DiGeorge syndrome: part of CATCH 22. J Med Genet 1993; 30: 852-6.
2. Shprintzen RJ, Goldberg RB, Lewin ML, Sidoti EJ, Berkman MD, Argamaso RV, Young D. A new syndrome involving cleft palate, cardiac anomalies, typical facies, and learning disabilities: velocardiofacial syndrome. Cleft Palate Craniofac J 1978; 5: 56-62.
3. Takao A, Ando M, Cho K, Kinouchi A, Murakami Y. Etiologic categorization of common congenital heart disease. In Van Praagh R, Takao A, eds. Etiology and Morphogenesis of Congenital Heart Disease. New York: Futura 1980; 253-69.
4. Scambler PJ, Carey AH, Wyse RK, Roach S, Dunanski JP, Nordenskold M, Williamson R. Microdeletions within 22q11 associated with sporadic and familial DiGeorge syndrome. Genomics 1991; 10: 201-6.
5. Levy-Mozziconacci A, Fiquet C, Heutervin PC, Philip N. Prenatal diagnosis of 22q11 microdeletion. Prenat Diagn 1997; 17: 1033-7.
6. Driscoll DA, Salvin J, Sellinger B, Budarf ML, McDonald-McGinn DM, Zackai EH, Emanuel BS. Pervalence of 22q11 microdeletions in DiGeorge and velocardiofacial syndromes: implications for genetic counseling and prenatal diagnosis. J Med Genet 1993; 30: 813-7.
7. Levy-Mazziconacci A, Wernert F, Scambler F, Rouault F, Metras D, Kreitmann B, Depetris D, Mattel MG, Philip N. Clinical and molecular study of DiGeorge sequence. Eur J Pediatr 1994; 153: 813-20.
8. Park SY, Choi SK, Choi KH, Ryu HM. Congenital malformed off-spring with unbalanced karyotype from a woman with balanced translocation between 2q and 12q. Korean J Perinatol 1996; 7: 81.
9. Lee MH, Park SY, Ryu HM, Hong SR, Lee YH, Choi SK. Prenatal diagnosis of the Wolf-Hirschhorn syndrome. J Genet Med 1998; 2: 49-51.
10. Pinkel D, Gray JW, Trask B, van den Engh G, Fuscioe J, van Dekken H. Cytogenetic analysis by in situ hybridization with fluorescence labeled nucleic acid probes. Cold Spring Harb Symp Quant Biol 1986; 51: 151-7.
11. Lindsay EA, Greenberg F, Shaffer LG, Shapira SK, Scambler PJ, Baldini A. Submicroscopic deletions at 22q11.2: variability of the clinical picture and delineation of a commonly deleted region. Am J Med Genet 1995; 56: 191-7.
12. Conley ME, Beckwith JB, Mancer JFK, Tenchhoff L. The spectrum of the DiGeorge syndrome. J Pediatr 1979; 94: 883-90.
13. Driscoll DA, Budarf ML, Emanuel BS. Antenatal diagnosis of DiGeorge syndrome. Lancet 1991; 338: 1390-1.
14. Motzkin B, Marion R, Goldberg R, Shprintzen R, Sanger P. Variable phenotypes in velocardiofacial syndrome with chromosomal deletion. J Pediatr 1993; 123: 406-10.
15. Yoo SJ, Lee YH, Kim ES, Ryu HM, Kim MY, Choi HK, Cho KS, Kim A. Three-vessel view of the fetal upper mediastium: an easy means of detecting abnormalities of the ventricular outflow tracts and great arteries during obstetrics screening. Ultrasound Obstet Gynecol 1997; 9: 173-82.
16. Yoo SJ, Lee YH, Kim ES, Ryu HM, Kim MY, Yang JH, Chun YK, Hong SR. Tetralogy of Fallot in the fetus: findings at targeted sonography. Ultrasound Obstet Gynecol 1999; 14: 29-37.
17. Lim CK, Han MH, Jun JH, Song GJ, Kim JW, Park SY, Kim KH, Choi BC, Koong MK, Kang IS. Clinical application of preimplantation genetic diagnosis (PGD) using fluorescence in situ hybridiza-
tion to balanced reciprocal or Robertsonian translocation carriers in human IVF-ET program. Korean J Obstet Gynecol 2000; 43: 1147-53.

18. Sitch FL, James RS, Cockwell AE, Matchwell E. Gonadal mosaicism for a submicroscopic deletion of chromosome region 22q11. Eur J Hum Genet 1996; 4: 59.

19. Goldmuntz E, Driscoll D, Budarf ML, Zackai EH, McDonald-McGinn DM, Biegel JA, Emanuel BS. Microdeletions of chromosomal region 22q11 in patients with congenital conotruncal cardiac defects. J Med Genet 1995; 30: 807-12.

20. Digilio MC, Marino B, Giannotti A, Dallapiccola B. Search for 22q11 deletion in non-syndromic conotruncal cardiac defects. Eur J Pediatr 1996; 155: 619-20.

21. Takahashi K, Kido S, Hoshino K, Ogawa K, Ohashi H, Fukushima Y. Frequency of 22q11 deletion in patients with conotruncal cardiac malformations: a prospective study. Eur J Pediatr 1995; 154: 878-81.

22. Iserin L, de Lonlay P, Viot G, Sidi D, Kachaner J, Munnich A, Lyonnet S, Vekemans M, Bonnet D. Prevalence of the microdeletion 22q11 in newborn infants with congenital conotruncal cardiac anomalies. Eur J Pediatr 1998; 157: 881-4.

23. Maeda J, Yamagishi H, Matsuoka R, Ishihara J, Tokumura M, Fukushima H, Ueda H, Takahashi E, Yoshihisa S, Kojima Y. Frequent association of 22q11.2 deletion with tetralogy of Fallot. Am J Med Genet 2000; 92: 269-72.

24. Van Hemel JO, Schaap C, Van Opstal D, Mulder MP, Niermeijer MF, Meijers JHC. Recurrence of DiGeorge syndrome: prenatal detection by FISH of a molecular 22q11 deletion. J Med Genet 1995; 32: 657-8.

25. Puder KS, Humes RA, Gold RL, Bawle EV, Goyert GL. The genetic implication for preceding generations of the prenatal diagnosis of interrupted aortic arch in association with unsuspected DiGeorge anomaly. Am J Obstet Gynecol 1995; 173: 239-41.

26. Davidson A, Khanelwal M, Punnett HH. Prenatal diagnosis of the 22q11 deletion syndrome. Prenat Diagn 1997; 17: 380-3.