Study on Condition Assessment Metrics based Facilities Condition Index and Building Condition Index

Muhd Zubair Tajol Anuar¹, Noor Nabilah Sarbini* and Izni Syahrizal Ibrahim¹

¹ Department of Structures & Materials, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
*Corresponding author: noomabilah@utm.my

Abstract. This paper presents several types of condition assessment metrics that were used by previous literatures. The condition assessment metrics are developed to supports decision-making for stakeholders in accomplishing the maintenance priority and proposed budget-driven. These condition assessments have both advantages and disadvantages to support the building infrastructure and asset management. This paper studies two groups of condition indices which are monetary- derived and engineering-derived approach. Both approaches are well-known methods to determine the condition index of buildings or facilities. Monetary approach involved a facility condition index, FCI. The FCI can be determined through estimation of deferred maintenance listed from basic, intermediate and advanced parameters. On the other hand, the engineering-derived approach is mostly referred to the Building Condition Index, BCI. Findings focused on the critical review from the rating system, conditions and recommendations that have been used by the FCI and the BCI. It was found that the disadvantages of the facility condition index can be improved through the integration of the BCI during the process. The details and quantitative figures that can be determined from the BCI will help an efficient FCI determination. Besides, BCI approach can also be used independently to give fast and first-hand findings on the conditions of buildings or facilities to the stakeholders. In conclusion, an efficient building and asset management can be offered by considerations in combining the BCI and FCI to promote "best practice" when evaluating the condition assessment due to defects and deteriorations of assets and facilities.

1. Introduction
As stated by Mihai et. al. [1], asset management is the core element in the maintenance and management of a building. At present, asset management has expanded with time. It provides outcomes to the stakeholder who employs the tools for asset registration, monitoring the asset condition and deterioration forecast, asset valuation, life cycle economic and many others. The expansion of condition assessment metrics from the aspect of built environment in Malaysia. Every country has its own guidelines of condition assessment metrics for maintenance and management purposes, especially European countries. The condition assessment metrics is developed to support decision-making for the organisation in accomplishing the maintenance service standards.

Moreover, it is a tool to determine the physical state of buildings or facilities either in good or bad condition. Yacob et al [2] pointed out that from time to time, a building or facility needs regular inspection since it reflects the condition of the building from deteriorates and defects. The condition assessment metrics are classified into two groups which are monetary-derived and engineering-derived. The monetary approach is an economic and financial metric that consists of facility condition

IOP Conf. Series: Materials Science and Engineering 1144 (2021) 012013 doi:10.1088/1757-899X/1144/1/012013

Published under licence by IOP Publishing Ltd
index, *FCI* and backlog maintenance. However, the engineering-derived approach is functionality and performance matrix which consists of the Building Condition Index, *BCI* and quantity of defects [3].

2. Monetary-Derived Condition
The condition assessment based on the monetary approach is called the Facility Condition Index, *FCI*. *FCI* offers an index that can describe the physical state of a building or facility and its component systems against a cost model as if a recently constructed with the beginning of their service life [4]. There are many definitions of facility condition index which are stated-in journals and guidelines. According to Parsons [4], the *FCI* measures the estimated cost of the current deficiencies and compares it to the projected Replacement Value for that system.

According to APPA [5], the *FCI* is the proposition of overall deficiency backlog cost to the building's current replacement value, *CRV*. G. Mayo and P. Karanja [6] stated that the definition of Facility Condition Assessment, *FCA* is a systematically evaluating procedure an organisation’s capital assets to project repair, renewal, or replacement needs that will conserve their ability to support the task or activities that they are appointed to contribute. *FCA* also can be referred as Condition Assessment, *CA*.

According to Weeks [7], the primary objective of the *FCA* is to identify the backlog of maintenance and capital. Besides, it can determine the overall physical condition of building systems and equipment for an individual facility and the total portfolio of the facilities. Then, reported to the individual facility assessment reports include detailed descriptions and cost estimates of the maintenance repair and capital replacement backlogs for all facilities. Finally, the goal of the *FCA* reports is to provide sufficient technical and budgetary information to enable asset management to decide on the best approach or options to maintain and sustain the facilities.

According to Mayo and Karanja [6], the data are analysed and converted into a condition value which is Facility Condition Index, *FCI* once the inspection is completed. NCES [8] stated that FCI is used to compare facilities condition and to determine its economical aspects to repair or replace the facilities. Equations (1) and (2) show general formula to calculate *FCI* and *CRV*.

\[
FCI = \frac{DM}{CRV} \times 100\% \tag{1}
\]

\[
CRV = GA \times RCSF \tag{2}
\]

Where:

FCI = Facility Condition Index
DM = Deferred Maintenance
CRV = Current Replacement Value
GA = Gross Area
RCSF = Replacement cost per sq.ft

Cost for the deferred maintenance is a monetary expenditure for maintenance operations and renewals on components, systems or the whole building which have been delayed. Current Replacement Value is defined as the replacement value of components, systems or the whole building [9–11]. Table 1 shows the rating scale of *FCI* with their condition description. The result scale rating in percentage from 0 to 100 which is evaluated as 0 as the best condition and 100 as very poor or critical conditions.
Table 1. FCI Rating with description

Ref.	Scope of CA	Estimated Area of CA, sq.ft	FCI Rating, %	Condition	Recommended Action
[4]	Ferris State Uni.	3,481,797	0 – 15	Good	Maintain.
	i. Academic buildings		16 – 25	Fair	Functional and repairable.
	ii. Administrative buildings		26 – 60	Poor	Need significant attention.
	iii. Etc.	> 60	Critical	Suggest beyond useful life.	
[7]	Park:	54,537,000	0 – 20	Good	Minor improvement needed.
	i. Playgrounds		21 – 30	Fair	Some significant repairs needed.
	ii. Courts		> 30	Poor	Major repairs needed.
	iii. Parking Lots				
	iv. Park Roads				
[9]	Department of the Interior.	n.a	0<15	Acceptable	n.a
	i. Non-heritage buildings & structure		15>100	Unacceptable	n.a
	ii. Heritage buildings & structures & assets				
	iii. Road				
	iv.				
[12]	Uni. of Ottawa	n.a	0 – 5	Excellent	Maintain
	i. Academic building		6 – 10	Fair	Repair
	ii. Student residence		11 – 30	Poor	Replacement
	iii. Ancillary		> 30	Critical	n.a
	iv. Site services				
	v. Etc.				
[13]	Uni. of Louisville	2,476,144	0 – 5	Excellent	Satisfactory
	i. Classroom		6 – 10	Good	Satisfactory to Remodelling
	ii. Laboratories		> 11	Fair to Poor	Remodelling to Demolition
	iii. Office				
	iv. Other spaces				

*n.a = not available

2.1. FCI Approach

The facility condition index, FCI, is a well-known and globally acceptable index in determining the building’s overall condition. The standard methodology of the FCI is shown in Figure. 1. The challenges in determining the FCI especially true during the condition survey and deferred maintenance determination. The monetary expenditure of deferred maintenance can come from very simple parameters and to the extent of complex and detailed considerations. It depends on the knowledge, experience and stakeholder needs.
Previous literature U.S. Department of the Interior [9] reported that there are six (6) maintenance decisions making for DM which are; replacement, rehabilitation, demolition, component renewal, recurring and corrective. These decisions are crucial, based on experienced engineers which conducted the condition survey and assisted by the decisions from the stakeholders. Another challenge faced is to find the actual cost of deferred maintenance.

According to Uzarski and Grussing [3], it can be confusing when the deferment or backlog cost is used as a condition metric because each will have a different acceptable deferment or backlog level. It is because each building has its own criteria which are task, functionality, size and features of its deficiencies. It is also unreasonable if assuming that a zero deferment or backlog cost [3]. Figure 2 shows different considerations in calculating the FCI. FCI is mostly calculated from the basic deferred maintenance which is based on the priority condition survey and economic considerations. Thus, there is a chance of other factors will contribute to the deficiencies of the facilities. To certain extents, it will cause other defects to not be entertained and yet caused higher costs to be spending by the stakeholders as soon as it is discovered.

![Figure 1. FCI Methodology](image)

![Figure 2. Considerations in DM for FCI calculation [6]](image)
3. Engineering-Derived Condition

The condition assessment based on the engineering approach is called the Building Condition Index, \(BCI \) or Building Condition Rating. The main objective of \(BCI \) is to resolve the issues related to the inspections due to defects and deficiencies found during the field survey [3]. According to Uzarski and Grussing [3], the structured inspection method involves few actions such as observe, identify, and record the defects that occur at building components [3]. The process of structured inspection method is conducted based on the visual inspection by using suitable instruments such as a checklist and measuring tool. According to the standard, a checklist was used to register the building details, define, describe, defects in the functional components, assess the condition of the building and recommends maintenance action [2].

According to Zubair Tajol Anuar M et al. [14], the inspectors need to examine all components of the building such as architectural, civil, mechanical, electrical and external work. Each of them has its own elements need to inspect such as structures, exterior & interior part, piping system, fire prevention, lighting & communication system and roads & outdoor water reticulation. During inspection, all observed defects and severity level for each component are recorded [3]. The severity level is known as condition index or rating that is used to determine the physical state of the building. A rating system that lessens the long description evaluation and effectively forecasts future physical state of the building. The value provided from condition rating is used to compare the condition with other components [2].

According to Pitt [15], no matter what categories of conditions are introduced, it is important that the building inspector must be well qualified to ensure the data is accurate and reliable. There are three types of method of assessment using a rating scale system such as normal rating scale, matrix rating scale and percentage rating scale which will be explained later. According to Uzarski and Grussing [3] the deficiency using \(BCI \) method is that prepared the tools such as a manually checklist and building inventory for inspection. These tools need time to prepare because to list up the component-sections that are required by building with condition index, \(CI \). The \(CI \) roll-up result will affect if missing or incomplete checklist and inventory. Then, the more complicated part is to list out the element or components of the building into a checklist and inventory.

3.1. Standard Rating Scale

The normal rating scale of building index did not have a formula or equation that can analyse the condition of the overall building. However, it can still be used to indicate the condition of each building component. Table 2 shows the rating scale of building condition which has 3 to 5-point scale for the standardised method. The standard rating scale is very general and subjective. The disadvantage of this rating scale is different assessors will give different conditions from the inspections.

3.2. CSP1 matrix scale

This type of rating system has two sets of data which are building condition and defect severity. Thus, it can be evaluated to provide a rating of the overall building condition. As the basis of this rating system is Protocol 1 (visual inspection), we called the system the protocol for condition survey \(CSP \) 1 matrix [21–22]

Table 3 shows the most common scale in the \(CSP1 \) matrix. Each reported defect is assigned a priority rating and condition. Subsequently, each rating is combined to determine the cumulative score for each distress or defects. The overall score will then match the matrix and the score will range from 1 to 20 and from 1 to 25. The overall building rating will be determined after scoring every defect or distress, which summarises the state of the building. The score for each defect is applied and divided by the total number of defects to obtain the overall rating [21]. The equation (3) is a formula for a total score of building condition.
Total Score,$s = \frac{\sum \text{Total matrix}}{\sum \text{Total defect}}$ \hspace{1cm} (3)

Total matrix = \sum \text{Condition} \times \text{Priority} \hspace{1cm} (4)

Table 2. Standard Rating Scale

Ref.	Scale	Condition	Recommended Action
[16]	0	Good	Maintain
	1	Fair	Minor improvement needed
	2	Poor	Some significant repairs needed
	3	Severe	Major repairs needed
	4	Very Severe	Replace/demolish
[17]	1	Excellent	Maintain
	2	Good	Minor improvement needed
	3	Fair	Some significant repairs needed
	4	Poor	Major repairs needed
	5	Bad	Replace/demolish
	6	Very Bad	Replace/demolish
[18]	1	Good	No repair
	2	Fair	Repair but not too serious or urgent
	3	Poor	Replace and repair immediately
[19]	1	Excellent	Maintain
	2	Good	Minor improvement needed
	3	Fair	Some significant repairs needed
	4	Poor	Major repairs/replace/demolish
[20]	1	Very Poor	Replace/demolish
	2	Poor	Major repairs needed
	3	Fair	Some significant repairs needed
	4	Good	Minor improvement needed
	5	Excellent	Maintain

Table 3. CSP1 matrix scale

Reference	Condition Scale	Priority scale	Total matrix/score
[21]	1: Good	1: Normal	1:1-4
	2: Fair	2: Routine	2:5-12
	3: Poor	3: Urgent;	3:13-20
	4: Very poor	4: Emergency	
	5: Dilapidated		
[22]	1: Very good	1: Normal	A:1-5
	2: Good	2: Routine	B:6-10
	3: Fair	3: Repair	C:11-15
	4: Poor	4: Rehabilitation	D:16-20
	5: Very poor	5: Replacement	E:21-25

3.3. Percentage rating scale

This type of rating has a similar five-point scale as stated on the above method and shown in Table 4. Conversely, this type of method used the components weightage or percentage with condition-based to calculate the average condition of building components. The detail of each condition category as shown in Table 4. Equation (5) is a formula to calculate the average of building condition.
Average condition, \(Cr = p_1 + 2p_2 + 3p_3 + 4p_3 + 5p_5 \)

(5)

Where,
CR = Components rating

\(p_i \) - percentage of the component with a condition rating of \(i \).

Table 4. Percentage rating scale [23–25]

Condition Rating	Condition	Action Required
5	Very Good	Planned preventative maintenance
4	Good	Condition-based maintenance
3	Fair	Major Repair
2	Bad	Rehabilitation
1	Very Bad	Replacement

3.4. Aggregation Approach rating

For this type of method, it has the same condition rating as stated on the above method and the rating scale shown in Table 5. However, the differences between them were the calculation of the overall building condition. This method used alternative approaches to aggregating system-level condition data into a single overall value for facility condition. The alternative was to calculate a weighted average condition based on asset replacement cost. This approach requires quantifying the replacement cost for each facility component. Given these replacement costs, the average rating is calculated for each component, and an overall rating is calculated by weighting each component by the component replacement cost. The average rating for the component is calculated as follows in equation (4) and the overall facility condition rating may be expressed as (6).

\[
OR = \frac{\sum_i CR_i \cdot RC_i}{\sum_i RC_i}
\]

(6)

Where,

OR = overall rating
CR\(_i\) = the rating for component \(i \) (refer to Eq 5)
RC\(_i\) = the replacement cost for component \(i \).

Table 5. General Condition Assessment Rating Scale [26]

Rating	Condition
5	Excellent
4	Good
3	Adequate
2	Marginal
1	Poor

4. Recommendations on Best Practice

Basic considerations during the determination of \(FCI \) has caused some defects and deficiencies are not properly acknowledge and entertained. It is crucial to find options that can improve the disadvantage of \(FCI \). If this is proposed, defects and deteriorations that affected building maintenance issues can be solved efficiently. To that proposed, Figure. 3 recommends as the best practice approach to increase the efficiencies in condition assessment. Integrating the \(BCI \) into \(FCI \) in efficient manners can promote such an optimum maintenance approach. The \(BCI \) will not only quantitatively calculated the \(FCI \), but it can efficiently stand-alone to the stakeholders get a first hand and speed results on the conditions of their building or facilities.
5. Conclusion
The facility condition index and building condition index served the same purpose, to determine the condition of building or facility. FCI has a disadvantage especially when leading to value deficiency backlog. BCI derived from the engineering analyses on how deterioration affects the components-section and efficiency of buildings. BCI was found as the best derivation method, accurate, and robust especially in reporting building or facilities conditions. Building and asset management should involved integrations from FCI and BCI to promote efficiency. FCI is a good condition metric-economic but not performance-based. Nevertheless, BCI is a good performance-based but not condition metric-economic. The integration of both approach can give an optimum decision-making process in building and asset management.

6. References
[1] Mihai F, Binning N and Dowling L 2002 A Framework for Assessing Asset Management Performance In Australia. Australia:Main Roads Western Australia. Retrieved on December 20, 2020 from http://www.zietlow.com/docs/mihai1.pdf
[2] Yacob S, A. Ali S and Peng A C 2016 Building Condition Assessment: Lesson Learnt from Pilot Projects MATEC Web of Conferences 72 1-7
[3] Uzarски D R and Grussing M N 2008 Building condition assessment metrics: Best practices Infrastructure Reporting and Asset Management, American Society of Civil Engineers, pp. 147-152
[4] Parsons 2018 Facility Condition Assessment Update (Ferris State University) pp 1-33
[5] APPA , Federal Facilities Council, HOLDER, IFMA and NASFA 2003 Asset Lifecycle Model for Total Cost of Ownership Management (United States of America) pp 1-28
[6] Mayo G and Karanja P 2018 Building Condition Assessments – Methods and Metrics J. Facil. Manag. Educ. Res. 2 1-11
[7] Weeks T 2016 Facilities Condition Assessment: Comprehensive Report for City-Occupied General Fund Facilities Fy14 To Fy16 (City Of San Diego) pp 1-119
[8] NCES 2003 Facilities Information Management: A Guide For State And Local Education Agencies (United States of America) pp 1-104

[9] U.S. Department of the Interior 2008b Policy on Deferred Maintenance, Current Replacement Value and Facility Condition Index in Life-Cycle Cost Management (United States of America) pp 1-54

[10] Cecconi F R, Moretti N and Dejaco M C 2019 Measuring The Performance Of Assets: A Review Of The Facility Condition Index Int. J. Strateg. Prop. Manag. 23 187-196

[11] Mayo G and Karanja P 2017 Current State Of Practice For Condition Assessment Methods And The Facility Condition Index As A Measure (APP A) pp 1-38

[12] Sparling M 2016 Facility Asset Management Report (University of Ottawa) pp1-29

[13] Paulien and Associates 2007 Facility Condition Assessment and Space Study Project: (Kentucky Postsecondary Education) pp. 1-82

[14] Zubair Tajol Anuar M, Nabilah Sarbini N, Syahrizal Ibrahim I, Hanim Osman M, Ismail M and Khun M C 2019 A comparative of building condition assessment method used in Asia countries: A review IOP Conf. Ser. Mater. Sci. Eng. 513 1-8

[15] Pitt 1997 T J Data requirements for the prioritization of predictive building maintenance J. of Facili 15 97-104

[16] CPWD 2002 Handbook on repair and rehabilitation of RCC buildings (India) pp 1- 498

[17] Straub A 2009 Dutch standard for condition assessment of buildings J. Struc Survey, 27 23-35,

[18] RICS 2009 3rd Edition Practice Notes. RICS Building Survey. (United Kingdom: Coventry) pp 1-92.

[19] Norbert Karl Becker C, Ireland D, Neil Kennedy, Rashmi Nathwani, Brian Ross and Will Teron 2016 Structural Condition Assessments of Existing Buildings and Designated Structures Guideline (Ontario) pp 1-24

[20] Queensland Department of Housing and Public Works 2017 Maintenance Management Framework: Building Condition Assessment pp 1-26

[21] Che-Ani A I, Tazilan A S M and Kosman K A 2011 The development of a condition survey protocol matrix J. Struct. Surv 29 35-45

[22] JKR 2013 Guideline of Building Condition Inspection for Existing Building (Malaysia) pp 1-110

[23] Abbot G R, Mc Duling J J, Parsons S and Schoeman J C 2007 Building condition assessment: A performance evaluation tool towards sustainable asset management CIB World Build. Congr. pp.649-662

[24] Adamu A D and Shakantu W 2016 Condition Assessment of Student Hostel Building on Campuses of Federal Universities in North-Central J. Constr. Prof. Manag. Innov. 6 1330–1338

[25] Duling C Mc, Harok J and Cloete 2004 Quantifying the Consequences of Maintenance Budget Cuts ICEC World Congr. pp. 1-16

[26] United State Department of Transportation 2016 Facility Condition Assessment Guidebook (United States of America) pp1-54

Acknowledgements
This research was supported by the Universiti Teknologi Malaysia through Collaborative Research Grant (CRG) R.J130000.7351.4B528. Any opinion and conclusions expressed in this manuscript are those of the authors and do not necessarily reflect the views of the institutions.