Introduction

Malignant tumors, as a genetic disease, are caused by structural alterations of the genome which can give rise to the expression of tumor-associated antigens (TAA) in the form of either structurally altered molecules or of overexpressed normal molecules. TAA may be recognized by the host’s immune system and may induce a T-cell-mediated immune response. Consequently, out-growing cancers develop different strategies to evade potential destruction by the host’s immune system. In particular, immune evasion mechanisms affecting the expression and/or function of human leukocyte antigens (HLA) are of special interest to tumor immunologists, since these molecules play a crucial role in the interaction of malignant cells with immune cells. As summarized in Table 1, the two types of classical HLA antigens, HLA class I and II antigens, share certain similarities, but also substantial differences.

Analyses of tumor cell lines and of large numbers of surgically removed tumor lesions of distinct histology have demonstrated defects in HLA class I surface expression in most of the tumors tested. This was associated with a downregulation or loss of components of the HLA class I antigen-processing machinery (APM) as summarized in Table 1 in solid and hematopoietic tumors; however, the frequency of these defects strongly varied among the different types of cancer. Multiple molecular mechanisms have been shown to underlie these abnormalities, which cause defective synthesis and/or expression of HLA class I antigen/tumor antigen (TA)-derived peptide complexes. The latter mediate the interactions of tumor cells with antigen-specific cytotoxic T lymphocytes (CTL). The functional significance of these defects is indicated by their negative impact on the CTL-mediated elimination of tumor cells. An impaired interaction of immune cells with HLA class I antigen-deficient cancer cells also accounts for the association between defective HLA class I APM component expression in tumors and poor clinical course identified in various types of malignancies. Alterations of HLA class I APM and their significance in malignant tumors have been recently reviewed by various groups and we refer the interested reader to these reviews. In contrast, HLA class II antigens expressed by malignant cells of solid tumors have been characterized only to a limited

Abbreviations:
- APC: antigen presenting cell
- APM: antigen-processing machinery
- CIITA: class II transactivator
- CLIP: class II associated invariant chain peptide
- CRC: colorectal carcinoma
- CREB: cAMP-responsive element binding protein
- CTL: cytotoxic T lymphocyte
- DAC: 5'-aza-2'-deoxycytidine
- DC: dendritic cells
- ER: endoplasmic reticulum
- GILT: gamma interferon inducible lysosomal thiolreductase
- HLA: human leukocyte antigen
- HNSCC: head and neck squamous cell carcinoma
- HPV: human papilloma virus
- IFN: interferon
- Ii: invariant chain
- MHC: major histocompatibility complex
- MIC: microsatellite instability
- MSI: microsatellite instability
- PADRE: pan-HLA-DR reactive epitope
- RB: retinoblastoma
- RFX: regulatory factor X
- TAA: tumor-associated antigen
- TCR: T-cell receptor
- TSA: trichostatin A
- USF: USF-1, upstream regulatory factor
The increased availability of mAbs recognizing HLA class II APM components during the last few years has greatly facilitated the export of HLA class II molecules from the ER and is responsible for directing the HLA class II complexes into specialized endosomal/lysosomal antigen loading compartments, termed MHC class II containing compartment (MIIC). Here, the li is proteolytically degraded by cathepsin into the 14 amino acid long class II-associated invariant chain peptide (CLIP) occupying the HLA class II peptide-binding groove.16

Exogeneous engulfed proteins delivered into the endosomal/lysosomal network are also exposed to distinct endosomal/lysosomal aspartyl and cysteine proteases including cathepsin S,16 peptidases and reductases, such as the gamma-interferon inducible lysosomal thiol reductase GILT, yielding peptide ligands for HLA class II molecules.17,18 In the MIIC, the exchange of CLIP for such antigenic high-affinity peptides is facilitated by low pH, endosomal proteases and the assistance of the non-classical MHC class II molecule HLA-DM. The latter serves as a peptide editor.19 Following peptide loading, the HLA class II/peptide complex is then transported via the trans-Golgi to the cell surface and there presented to cognate CD4+ T cells. The CD4+ T cells have a helper function or display an effector function with HLA class II bearing tumor cells. The function of HLA class II proteins has been associated with the regulation of immune responses by presenting antigenic peptides to CD4+ T cells and by controlling B-cell differentiation into antibody-producing blasts. Efficient and long-lasting TAA-specific immunity requires both CD8+ CTL and CD4+ T lymphocytes during priming and effector phases of TAA-specific immune responses.20,21 However, not only exogeneous, but also endogeneous peptides can be loaded onto HLA class II molecules;22 this process is mediated by an li-independent, but proteasome- and peptide transporter-dependent presentation pathway.23

Table 1. Comparison of the major characteristics of the HLA class I and II APM pathway.

Steps of APM	HLA class I APM	HLA class II APM
Antigen presentation	HLA-A, -B, -C	HLA-DR, -DQ, DP
Stabilization and loading	Tapasin	HLA-DM
Peptide generation	Proteasome	Lyosomal enzymes
Transactivation	No	Yes, CIITA
Assembly and stabilization	β2-m	Invariant chain
Peptide loading	ER	MCI
compartment	CD8+ T cells	CD4+ T cells
Presentation to	IFNγ	IFNγ
Regulation by cytokines	Loss	Loss
Expression by tumor cells	Downregulation	Down- or upregulation

Organization of the HLA class II antigen-processing machinery

The expression levels of HLA class II antigens are tightly regulated to ensure an immune response directed against pathogens as well as malignant or virally transformed cells.24 The promoters of HLA class II and related genes share a set of conserved sequence elements, the W/S, X1, X2 and Y boxes, which interact with transcription factors (TF) including members of the regulatory factor X (RFX) family, the nuclear factor Y and the cAMP-responsive element binding protein CREB.25,26 All these TF and co-factors bind to cis regulatory elements of the HLA class II promoters to form a highly stable multimeric complex known as MHC enhanceosome. Due to their ubiquitous expression, the enhanceosome components fail to account for the cell type specificity and/or IFNγ inducibility of HLA class II antigen expression.27 In contrast, the HLA class II transactivator CIITA, the master key transcriptional activator interacting with the DNA-binding proteins of the HLA class II promoters, exhibits a cell type-specific, cytokine-inducible and differentiation-specific expression pattern. This is controlled by the alternative usage of the four distinct CIITA promoters (CIITA-P I, II, III and IV. CIITA-PIV is involved in the IFNγ-

HLA class II antigen expression in normal cells

It has been assumed for a long time that under physiological conditions the constitutive expression of the gene products of HLA class II loci is primarily restricted to professional antigen presenting cells (APCs) and to thymic epithelial cells in man and in other animal species.13 With the availability of HLA class II antigen-specific monoclonal antibodies (mAb), the expression of these antigens could be studied in a variety of normal tissues, revealing that HLA class II antigens have a broader distribution in normal tissues than originally postulated14-13: A weak to moderate expression of HLA class II antigens has been shown in skin, breast, lung and kidney tissues (www.proteinatlas.org), indicating that in addition to APC, other tissues are able to constitutively express HLA class II antigens.
mediated induction of HLA class II surface expression. In addition, to promote the binding of TF to CIITA-PIV, IFN also includes the acetylation of histones leading to an accessibility of CIITA-PIV. Furthermore, a variety of signal transduction pathways, such as PKA, upregulates CIITA expression, which, in turn, enhances HLA class II antigen cell surface expression.

Expression of HLA class II antigens in malignant tumors

Malignant transformation of cells is not only associated with changes in HLA class I, but also in HLA class II antigen expression. The frequency of these changes varies among the different types of hematopoietic and solid tumors depending on their origin and/or molecular phenotype: for example, more than 80% of ductal breast carcinoma lesions analyzed lack HLA class II antigen expression. In contrast, about 50% of papillary thyroid carcinoma and 60% of primary melanoma express HLA class II antigens, suggesting a gain of HLA class II antigen expression in these tumor types. In addition, a heterogeneous intra-tumoral HLA class II antigen expression pattern was detected in HLA class II antigen-positive tumor lesions. While there is concordant information in the literature about the frequency of HLA class II antigen expression in some tumor types, in others the information is conflicting. For example, the frequency of HLA class II positivity in colorectal carcinoma (CRC) reported in the literature varied between 21 and 55% depending on the study. These different results may reflect differences in the methodology and antibodies used, in the characteristics of the patients’ population included in the studies and in the molecular pathogenesis of the disease. In this context, it is noteworthy that HLA class II antigen expression in CRC is closely related to the high-level microsatellite instability (MSI-H) phenotype, underlining that a precise molecular classification is required to obtain reliable information about the frequency of HLA class II antigen expression in defined tumor subtypes. This conclusion is further supported by the observation in head and neck cancers, where HLA class II antigen expression is related to human papillomavirus infection of the lesions.

Altered constitutive and IFNγ inducible HLA class II antigen expression in cancer cells

So far, five distinct HLA class II phenotypes have been described in human tumors, which are characterized by (i) a strong cytokine-independent homogeneous overexpression, (ii) total lack of expression, (iii) downregulation, (iv) altered IFNγ inducibility of basal HLA class II surface antigens in terms of level and kinetics quantity and time and (v) lack of IFNγ inducibility. In addition, a novel, cytokine-independent mechanism of HLA class II antigen upregulation has recently been
detected in Schwann cells, which express high levels of HLA class II antigens upon inactivation of the tumor suppressor gene neurofibromin.\(^{41}\) The molecular mechanisms mediating the selective lack or downregulation of constitutive as well as IFN\(\gamma\)-mediated upregulation of HLA class II antigens by malignant cells have been characterized to a limited extent. They appear to be mainly mediated by structural abnormalities, by epigenetic, transcriptional and post-transcriptional regulation of HLA class II molecules and/or APM components (Table 2)\(^{42}\) and by genomic instability.\(^{33}\) Furthermore, the function of genes encoding IFN\(\gamma\) as well as components of the IFN\(\gamma\) signal pathway, which regulate HLA class II antigen expression, may be impaired by multiple mechanisms. They include either gene-inactivating mutations, silencing through promoter methylation, transcriptional downregulation or post-translational alterations, such as an altered phosphorylation pattern.\(^{42-45}\) In the following section, we will focus on structural alterations and de-regulation of HLA class II antigen expression since they are the best characterized abnormalities affecting HLA class II antigen expression in tumors.

Structural alterations of HLA class II APM components in malignant cells

Sequence abnormalities, such as mutations or rearrangements in CIITA, RFX5, RFXAP and/or HLA class II alleles leading to impaired constitutive or IFN\(\gamma\)-inducible HLA class II expression have been described in particular in diffuse large B-cell lymphoma, CRC and melanoma.\(^{46,47}\) These structural alterations appear to occur at a low frequency, although this might be underestimated due to the heterogeneity of clinical samples. Mutations in the HLA class II-regulatory gene RFX5 were found at frequency of about 30% of HLA class II antigen-negative microsatellite-unstable (MSI-H) CRC (28.9%), while CIITA mutations were only found in about 5% of these lesions.\(^{33}\)

Also in tumor types distinct from CRC, structural alterations of HLA class II antigen-regulatory genes have been detected. In melanoma A to G substitutions in the 5' flanking region of the CIITA-PIII were found, which were associated with higher levels of constitutive HLA-DR expression.\(^{48}\) Recently, CIITA has been described as a recurrent gene fusion partner in B-cell lymphoma and Hodgkin’s disease.\(^{46}\) The presence of the CIITA rearrangement was associated with HLA class II antigen downregulation and significantly correlated with a shorter disease-specific survival, which is compatible with a reduced immunogenicity of the affected tumor cells.\(^{46}\)

Deregulation of HLA class II APM components in malignant cells

Impaired HLA class II antigen cell surface expression may be also caused by the deregulation of APM components at each step of this pathway. Suppression of CIITA transcription mediated by the overexpression of HASH-1, c-Myc and N-Myc, which competitively bind to the E-box in the CIITA-PIV has been reported in neuroblastoma, in small cell lung carcinoma (SCLC) and in B-cell tumors.\(^{49,50}\) In contrast, RET/PTC expression is correlated with increased CIITA expression associated with an increased HLA class II antigen expression.\(^{51}\) The lack of STAT1\(\alpha\) and the retinoblastoma tumor suppressor gene affects CIITA expression and consequently leads to an impaired constitutive and IFN\(\gamma\)-inducible HLA class II antigen expression as demonstrated in breast carcinoma and NSCLC cells.\(^{50,52}\) Furthermore, a low frequency of mutations or downregulated expression of the interferon regulatory factor (IRF)-2 have been found in tumors, which is associated with impaired CIITA expression and IFN\(\gamma\) response.\(^{53}\) These data demonstrate an important role of the IFN\(\gamma\) signal pathway for both the basal and IFN\(\gamma\)-inducible HLA class II expression.

In addition, an epigenetic control of different HLA class II APM components including HLA-DR and CIITA due to alterations in their chromatin accessibility and DNA methylation status has been described; these abnormalities lead to a lack of HLA class II antigen expression.\(^{42,54}\) These abnormalities could be reverted by treatment of tumor cells with pharmacologic substances like 5-aza-2-deoxycytidine (DAC) and trichostatin A (TSA), which induce DNA demethylation and block histone deacetylation, respectively.\(^{55}\) The hypermethylation of the CIITA promoter, in particular of CIITA-PIV was found at a high frequency in gastric cancers, HNSCC and ocular melanoma, but not in CRC suggesting tumor type-specific CIITA methylation.\(^{33,55,56}\) Pro-moters of the HLA class II antigen-encoding genes could also be directly silenced by methylation. In RFX5-negative B-lymphoma cells, the HLA-DO, HLA-DR and HLA-DQ promoters are methylated.\(^{57}\) Furthermore,

Table 2. Molecular mechanisms causing HLA class II abnormalities in malignant tumors.

Molecular mechanism	Tumor type
Mutations in CIITA and RFX5	Colorectal cancer (MSI-H subtype)\(^{31,47}\)
CIITA promoter polymorphism A to G substitution	Melanoma\(^{59}\)
Transcriptional downregulation of the CIITA promoter due to HASH-1, L-myc and c-myc overexpression	SCLC, neuroblastoma\(^{50}\) B cell tumors\(^{65}\)
Hypermethylation of CIITA	Teratocarcinoma\(^{108}\) Embryonal carcinoma\(^{108}\) Lymphoblastic leukemia\(^{98,109}\) Ocular melanoma\(^{109}\) Head and neck squamous cell carcinoma\(^{102}\) B-cell lymphoma\(^{95,96}\) Squamous cell carcinoma\(^{58}\) Leukemia\(^{96,109}\) Head and neck squamous cell carcinoma, ocular melanoma\(^{101,102}\) Thymoma\(^{105}\) Thymoma\(^{105}\) Melanoma, large B cell lymphoma\(^{66}\) B-cell lymphoma\(^{49}\) Esophageal squamous cell carcinoma\(^{52}\) Acute myeloid leukemia\(^{107}\) Head and neck squamous cell carcinoma\(^{104}\) B-cell lymphoma\(^{103}\) B-cell lymphoma\(^{46}\)
Histone acetylation of CIITA	
Post-transcriptional regulation of HLA class II antigens	
Absence of AIRE	
STAT1 defects associated with impaired IFN\(\gamma\)-induction	
Low expression of GILT	
Decreased expression of HLA-DM	
Hypermethylation of HLA class II gene promoters	
Low CLIP expression	
Lack of HLA-DM	
CLIP occupation	
CIITA gene fusion	
modification of histone deacetylation could be also associated with CIITA silencing in some tumor types, like squamous cell carcinoma and hematopoietic tumors. The clinical relevance of the epigenetic control of HLA class II antigen expression was shown for esophageal squamous cell carcinoma and adrenocortical tumors promoting their recurrence and progression.

Impaired HLA class II-restricted TAA presentation due to abnormalities in the processing pathway could limit CD4+ T-cell help for the induction of CD8+ T-cell responses. Intracellular synthesis and occupancy of HLA class II antigen with CLIP as well as low to basal levels of GILT negatively interfere with the activation of CD4+ T cells reactive against acute myeloid leukemia (AML) and lymphoma cells. This caused immune tolerance or unresponsiveness to leukemia antigens and lead to a significantly shortened disease-free survival of patients with AML or diffuse large B-cell lymphoma. In contrast, some CLIP+ tumor cells were able to process i-independent endogenous antigens generated by the proteasome for HLA class II-restricted presentation thereby activating TAA-specific CD4+ T cells.

Furthermore, it has recently been suggested that the different HLA class II phenotypes in tumors can be controlled at the post-transcriptional level, in particular by microRNAs (miRs). Bioinformatic analyses have identified a number of miRs binding to the 3'-untranslated region (3'-UTR) of CIITA. As an example, miR-150 was shown to abrogate CIITA expression in macrophages upon infection with pathogenic mycobacteria. However, a miR-mediated altered expression of HLA class II pathway components in tumors has not yet been identified. Furthermore, HLA class II molecules could be regulated by the interaction with ubiquitin ligases leading to their intracellular sequestration and degradation.

Clinical significance of HLA class II antigens in cancer

A functional role of HLA class II antigens on the tumor cell surface is suggested by the observation that HLA class II antigen expression is related to prognosis in several types of cancers. However, the available information about the prognostic significance of HLA class II antigen expression in cancers is conflicting (Table 3). While constitutive HLA class II antigen expression was reported to be associated with a favorable prognosis in some tumor types, e.g., CRC and larynx squamous cell carcinoma, it was associated with higher metastatic dissemination, increased tumor stage and reduced patients’ survival in other malignancies, such as melanoma and cervical carcinoma. Conflicting is the information about the clinical relevance of HLA class II antigen expression in osteosarcoma; however, the number of tumors analyzed is too small to draw conclusions.

In addition, even within defined cancer types, the prognostic value of HLA class II antigens is conflicting depending on the studies. Immunohistochemically detectable HLA class II antigen expression was associated with a better prognostic outcome of CRC patients in some studies, but not associated with tumor grade, stage and survival in other studies. A positive prognostic effect of HLA class II antigen expression in CRC may reflect the increased T-cell infiltration which is one of the strongest favorable prognostic biomarkers in CRC. Consequently, high levels of IFNγ might induce HLA class II antigen expression in densely T-cell-infiltrated tumors, which has a good prognosis.

Immune selection of HLA class II-deficient tumors

The role of immune selection in the generation of tumors with defects in HLA class I antigen expression has been extensively investigated. In vitro experiments, studies in animal models and clinical investigations have convincingly shown that the selective pressure imposed by HLA class I antigen-restricted, TAA-specific T cells on a tumor cell population can facilitate the outgrowth of tumor cells, which are not recognized by cognate CTL due to defective synthesis and/or expression of HLA class I antigen-TAA-derived peptide complexes. The latter mediate the interactions of tumor cells with host’s immune system. In contrast, limited information is available about the impact of immune selection on HLA class II antigen expression by tumor cells. We are aware of only one example suggesting that immune selection facilitates the outgrowth of HLA class II antigen-negative tumor cells: MSI-H CRCs are characterized by a pronounced antitumor immune response, which is triggered by a high amount of mutation-induced neoantigens. In MSI-H CRCs, pronounced CD4+ T-cell infiltration was associated with HLA class II antigen loss induced by RFX5 or CIITA mutations. The association between CD4+ T-cell infiltration and lack of HLA class II antigen expression by tumor cells may reflect the role of immune selection in the generation of tumors without detectable HLA class II antigen expression. The selective pressure imposed by CD4+ cells on the tumor cell population may lead to the elimination of MSI-H CRC cells expressing HLA class II antigens by cognate CD4+ T cells and may facilitate the outgrowth of tumor cells, which have lost the ability to express HLA class II antigens. This possibility is supported by the detection of mutations in HLA class II-regulatory genes in the tumor cells, which do not express HLA class II antigens. If our interpretation is correct, our results imply that human TAA recognized by cognate CD4+ T cells are effective in inducing a TAA-specific immune response and in mediating tumor rejection through an antigen-specific CD4+ T-cell response. This hypothesis is supported by recent studies in mouse models reporting that the presence of MHC class II molecules on the tumor cell surface can mediate efficient elimination of tumor cells through direct recognition by CD4+ T cells.

Beyond conventional recognition of HLA class II molecules by CD4+ T cells, the expression of HLA class II antigens may have consequences for tumor/immune cell interactions and

Table 3. Clinical relevance of HLA class II expression.

Tumor type	HLA class II level	Prognosis	Citation
CRC	High	Favorable	72-74,80
Larynx squamous cell carcinoma	High	Favorable	71
Oropharyngeal squamous carcinoma	High	Favorable	40
Melanoma	High	Poor	76, 77
Cervical cancer	High	Poor	75
Osteosarcoma	High	Controversial	78, 79
Pediatric adrenocortical tumors	Low	Poor	63
tumor cell survival. For example, the interaction between LAG3, a surface molecule expressed on exhausted lymphocytes, and HLA class II antigens can enhance survival and apoptosis resistance of melanoma cells.87

Concluding remarks and perspectives

Although there exist major differences in the HLA class I and II APM pathways, interactions between both pathways have been identified, which allow the cross-presentation of antigens as a key feature for the induction of TAA- and viral antigen-specific CD8+ T cell responses.88 However, the mechanisms underlying antigen cross-presentation have not yet been defined, but an escape of internalized proteins from the endosomes via an unknown transporter is currently being discussed. Other possibilities involve the TAP-mediated transport of cytosolic peptides back to the phagosome or endosome89,90 and the escort of the unknown transporter is currently being discussed. Other possibilities involve the TAP-mediated transport of cytosolic peptides back to the phagosome or endosome91,92 and the escort of the HLA class I antigens by the li to the endosomal compartment.91,92

The role of HLA class II antigen expression by tumors and its clinical relevance remains controversial and appears to depend on the tumor type including its genetic determinants. There is increasing evidence that HLA class II antigens on tumor cells shape the TAA-specific antitumoral immune response suggesting that HLA class II antigens may represent a novel therapeutic target.93 Thus, there are still many open questions, which have to be addressed in order to fully characterize the function of HLA class I and class II antigens in tumors.

Disclosure of potential conflicts of interest

No potential conflicts of interest were disclosed.

Funding

This work was supported by a grant from the German Cancer Aid 110703 (BS).

References

1. Jensen PE. Recent advances in antigen processing and presentation. Nat Immunol 2007; 8:1041-8; PMID:17878914; http://dx.doi.org/10.1038/nri1516
2. Vyas JM, Van der Veen AG, Ploegh HL. The known unknowns of antigen processing and presentation. Nat Rev Immunol 2008; 8:607-18; PMID:18641464; http://dx.doi.org/10.1038/nri2268
3. Garrido F, Algarra I, Garcia-Lora AM. The escape of cancer from T lymphocytes: immunoselection of MHC class I loss variants harboring structural-irreversible “hard” lesions. Cancer Immunol Immunother 2010; 59:1601-6; PMID:20625726; http://dx.doi.org/10.1007/s00262-010-0893-2
4. Bukur J, Jasinski S, Seliger B. The role of classical and non-classical HLA class I antigens in human tumors. Semin Cancer Biol 2012; 22:350-8; PMID:22465194; http://dx.doi.org/10.1016/j.semcancer.2012.03.003
5. Campoli M, Ferrone S. HLA antigen and NK cell activating ligand expression in malignant cells: a story of loss or acquisition. Semin Immunopathol 2011; 33:321-34; PMID:21523560; http://dx.doi.org/10.1007/s00281-011-0270-z
6. Mittal D, Gubin MM, Schreiber RD, Smyth MJ. New insights into cancer immunoediting and its three component phases—elimination, equilibrium and escape. Curr Opin Immunol 2014; 27:16-25; PMID:24531241; http://dx.doi.org/10.1016/j.coi.2014.01.004
7. Sabbatino F, Schwab JH, Ferrone S, Ferrone CR. Evolution of studies of HLA class I antigen processing machinery (APM) components in malignant cells. Clin Transpl 2013:453-63; PMID:25095541
8. Seliger B. The link between MHC class I abnormalities of tumors, oncogenes, tumor suppressor genes, and transcription factors. J Immunotoxicol 2014; 11:308-10; PMID:24479372; http://dx.doi.org/10.3109/1547691X.2013.875084
9. Natali PG, Segatto O, Ferrone S, Tosi R, Corte G. Differential tissue distribution and ontology of DC-1 and HLA-DR antigens. Immunogenetics 1984; 19:109-16; PMID:6421723; http://dx.doi.org/10.1007/BF00387853
10. van den Hoorn T, Paul P, Jongsma ML, Neefjes J. Routes to manipulate MHC class II antigen presentation. Curr Opin Immunol 2011; 23:88-95; PMID:21112200; http://dx.doi.org/10.1016/j.coi.2010.11.002
11. Drozina G, Kohouteck J, Jabrane-Ferrat N, Peterlin BM. Expression of MHC II genes. Curr Top Microbiol Immunol 2005; 290:147-70; PMID:16480042
12. Natali PG, Bigotti A, Nicotra MR, Nardi RM, Delovu A, Segatto O, Ferrone S. Analysis of the antigenic profile of uveal melanoma lesions with anti-cataneous melanoma-associated antigen and anti-HLA monoclonal antibodies. Cancer Res 1989; 49:1269-74; PMID:2917356
13. Real FX, Houghton AN, Albino AP, Cardo M, Melamed MR, Oetgen HF, Old LJ. Surface antigens of melanomas and melanocytes defined by mouse monoclonal antibodies: specificity analysis and comparison of antigen expression in cultured cells and tissues. Cancer Res 1985; 45:4401-11; PMID:4028024
14. Rocha N, Neefjes J. MHC class II molecules on the move for successful antigen presentation. EMBO J 2008; 27:1-5; PMID:18046453; http://dx.doi.org/10.1038/sj.emboj.7601945
15. Walchli S, Kumari S, Fallang LE, Sand KM, Yang W, Landsverk OJ, Bakke O, Olweus J, Gregers TF. Invariant chain as a vehicle to load antigenic peptides on human MHC class I for cytoxic T-cell activation. Eur J Immunol 2014; 44:774-84; PMID:24293164; http://dx.doi.org/10.1002/eji.201343671
16. Blum JS, Cresswell P. Role for intracellular proteases in the processing and transport of class II HLA antigens. Proc Natl Acad Sci USA 1988; 85:3975-9; PMID:3287381; http://dx.doi.org/10.1073/pnas.85.11.3975
17. Maric M, Arunachalam B, Phan UT, Dong C, Garrett WS, Cannon KS, Alfonso C, Karlsson L, Flavell RA, Cresswell P. Defective antigen processing in GILT-free mice. Science 2001; 294:1361-5; PMID:11701933; http://dx.doi.org/10.1126/science.1065500
18. Norton DL, Haque A. Insights into the role of GILT in HLA class II antigen processing and presentation by melanoma. J Oncol 2009; 2009:142959; PMID:20016802; http://dx.doi.org/10.1155/2009/142959
19. Mellins ED, Stern LJ. HLA-DM and HLA-DO, key regulators of MHC-II processing and presentation. Curr Opin Immunol 2014; 26:115-22; PMID:24463216; http://dx.doi.org/10.1016/j.coi.2013.11.005
20. Aarnsten EH, De Vries IJ, Lesterhuis WJ, Schuurhuis D, Jacobs JF, Cant AJ, van der Zwaag L, Loosdrecht AA. Class II-associated invariant chain peptide down-regulation enhances the immunogenicity of myeloid leukemic cell surface. Blood 2007; 110:157-65; PMID:17537074; http://dx.doi.org/10.1182/blood-2006-10-033084
21. Fischer WH, thor Straten P, Terheyden P, Becker JC. Function and dysfunction of CD4+ T cells in the immune response to melanoma. Cancer Immunol Immunother 1999; 48:363-70; PMID:10501848; http://dx.doi.org/10.1007/s002620050587
22. Ma W, Van den Eynde BJ. Endosomal compartment: Also a dock for antigen processing? J Immunol 2014; 192:6951-6; PMID:24857851; http://dx.doi.org/10.1007/s10732-014-44470-9
23. van Luijn MM, Chamuleau ME, Thompson JA, Ostrand-Rosenberg S, Westers TM, Souwer Y, Ossenkoppele GJ, van Ham SM, van de Loosdrecht AA. Class II-associated invariant chain peptide down-modulation enhances the immunogenicity of myeloid leukemic cell surface. Blood 2006; 108:1776-83; PMID:16410618; http://dx.doi.org/10.1182/blood-2006-01-0067
blasts resulting in increased CD4+ T-cell responses. Haematologica 2010; 95:485-93; PMID:19903675; http://dx.doi.org/10.3324/haematol.2009.010595

24. van den Elsen PJ, Holling TM, Kuipers HF, van der Stoep N. Transcriptional regulation of antigen presentation. Curr Opin Immunol 2004; 16:67-75; PMID:14734112; http://dx.doi.org/10.1016/j.coi.2004.01.015

25. Kern I, Steimle V, Siegrist CA, Mach B. The two novel MHC class II transactivators RXF5 and CIITA both control expression of HLA-DM genes. Int Immunol 1995; 7:1295-9; PMID:7495736; http://dx.doi.org/10.1093/intimm/7.8.1295

26. Lochamy J, Rogers EM, Boss JM. CREB and phospho-CREB interact with RXF5 and CIITA to regulate MHC class II genes. Mol Immunol 2007; 44:837-47; PMID:16730065; http://dx.doi.org/10.1016/j.molimm.2006.04.004

27. Chang CH, Fontes JD, Peterlin M, Flavell RA. Class II transactivator (CIITA) is sufficient for the inducible expression of major histocompatibility complex class II genes. J Exp Med 1994; 180:1367-74; PMID:78931070; http://dx.doi.org/10.1084/jem.180.4.1367

28. Morris AC, Beresford GW, Mooney MR, Boss JM. Kinetics of a gamma interferon response: expression and assembly of CIITA promoter IV and inhibition by methylation. Mol Cell Biol 2002; 22:4781-91; PMID:12052885; http://dx.doi.org/10.1128/MCB.22.13.4781-4791.2002

29. Lazzaro B, Anderson AE, Kajdacsy-Balla A, Hesmmer MJ. Antigenic characterization of medullary carcinoma of the breast: HLA-DR expression in lymph node positive cases. Appl Immunohistochem Mol Morphol 2001; 9:234-41; PMID:11556751

30. Concha A, Ruiz-Cabello F, Cabrera T, Nogales F, Collado A, Garrido F. Different patterns of HLA-DR antigen expression in normal epithelium, hyperplastic and neoplastic malignant lesions of the breast. Eur J Immunogenet 1995; 22:299-310; PMID:7495782; http://dx.doi.org/10.1111/j.1744-313X.1995.tb00246.x

31. Taramelli D, Fossati G, Mazzocco A, Delia D, Ferrone S, Parmiani G. Classes I and II HLA and melanoma-associated antigen expression and modulation on melanoma cells isolated from primary and metastatic lesions. Cancer Res 1986; 46:433-9; PMID:3079589

32. Jo YS, Lee JC, Li S, Choi YS, Bai YS, Kim YJ, Ro HK, Kim JM et al. Significance of the expression of major histocompatibility complex class II antigen, HLA-DR and -DQ, with recurrence of papillary thyroid cancer. Int J Cancer Journal international du cancer 2008; 122:785-90; PMID:17957790; http://dx.doi.org/10.1002/ijc.23167

33. Michel S, Linnebacher M, Alcaniz J, Voss M, Wagner R, Dippold W, Becker C, von Knebel Doeberitz M, Ferrone S, Kloor M. Lack of HLA class II antigen expression in microsatellite unstable colorectal carcinomas is caused by mutations in HLA class II regulatory genes. Int J Cancer Journal international du cancer 2010; 127:889-98; PMID:20013806

34. Gutierrez J, Lopez-Nevo MA, Cabrera T, Garrido F. Class I and II HLA antigen distribution in normal mucosa, adenoma and colon carcinoma: relation with malignancy and invasiveness. Exp Clin Immunogenet 1987; 4:144-52; PMID:2856203

35. McDougall CJ, Ngoi SS, Goldman IS, Godwin T, Felix J, DeCosse JJ, McGorie CJ. MHC class II regulation by epigenetic agents and microRNAs. Immunol Res 2010; 46:45-58; PMID:19771399; http://dx.doi.org/10.1007/s10018-009-2413-y

36. Surmann EM, Voigt AY, Michel S, Bauer K, Reuschenbach M, Ferrone S, von Knebel Doeberitz M, Kloor M. Association of high CD4+-positive T cell infiltration with mutations in HLA class II regulatory genes in microsatellite-unstable colorectal cancer. Cancer Immunol Immunother 2014; 64:357-66; PMID:2545815

37. Rodriguez T, Mendez R, Del Campo A, Aptsiauri N, Martin J, Orozco G, Pawelec G, Schadendorf D, Ruiz-Cabello F, Garrido F. Patterns of constitutive and IFN-gamma inducible expression of HLA class II molecules in human melanoma cell lines. Immunogenetics 2007; 59:123-33; PMID:17180681; http://dx.doi.org/10.1007/s00251-006-0171-9

38. God JM, Cameron C, Figueroa J, Amria S, Hossain A, Kempkes B, Bornkamm GW, Stuart RK, Blum JS, Haque J. A elevation of c-MYC disrupts HLA class II-mediated immune recognition of human B cell tumors. J Immunol 2015; 194:1434-45; http://dx.doi.org/10.4049/jimmunol.1402382

39. Yazawa T, Ito T, Kamma H, Suzuki T, Okudela K, Hayashi H, Horiguchi H, Ogata T, Mitsuji H, Ikeda M et al. Complicated malignancy and invasiveness. Exp Clin Immunogenet 1987; 161:291-300; PMID:12107114; http://dx.doi.org/10.1016/S0002-1689.2005.00227.x

40. Tomasi TB, Magner WJ, Wiesen JL, Oshlag JZ, Cao F, Pontikos AN, Ra, Rognum TO. Strong HLA-DR expression in microsatellite stable carcinomas of the large bowel is associated with good prognosis. Br J Cancer 2002; 87:56-62; PMID:12237260; http://dx.doi.org/10.1038/sj.bjc.6600507

41. Nordenvall L, Attner P, Nyberg T, Masucci GV, Munck-Wikland E, Schenone H, Bornkamm GW, Kloor M. Lack of HLA class II antigen expression in lymph node positive cases. Appl Immunohistochem Mol Morphol 2001; 9:234-41; PMID:11556751

42. Surmann EM, Voigt AY, Michel S, Bauer K, Reuschenbach M, Ferrone S, von Knebel Doeberitz M, Kloor M. Association of high CD4+-positive T cell infiltration with mutations in HLA class II regulatory genes in microsatellite-unstable colorectal cancer. Cancer Immunol Immunother 2014; 64:357-66; PMID:2545815

43. Steidl C, Shah SP, Woolcock BW, Rui L, Kawahara M, Farinha P, Johnson NA, Zhao Y, Telenius A, Neriah SB et al. MHC class II transactivator CIITA is a recurrent gene fusion partner in lymphoid cancers. Nature 2011; 471:377-81; PMID:21368758; http://dx.doi.org/10.1038/nature09754

44. Tomasi TB, Magner WJ, Wiesen JL, Oshlag JZ, Cao F, Pontikos AN, Ra, Rognum TO. Strong HLA-DR expression in microsatellite stable carcinomas of the large bowel is associated with good prognosis. Br J Cancer 2002; 87:56-62; PMID:12237260; http://dx.doi.org/10.1038/sj.bjc.6600507

45. God JM, Cameron C, Figueroa J, Amria S, Hossain A, Kempkes B, Bornkamm GW, Stuart RK, Blum JS, Haque J. A elevation of c-MYC disrupts HLA class II-mediated immune recognition of human B cell tumors. J Immunol 2015; 194:1434-45; http://dx.doi.org/10.4049/jimmunol.1402382

46. Yazawa T, Ito T, Kamma H, Suzuki T, Okudela K, Hayashi H, Horiguchi H, Ogata T, Mitsuji H, Ikeda M et al. Complicated malignancy and invasiveness. Exp Clin Immunogenet 1987; 161:291-300; PMID:12107114; http://dx.doi.org/10.1016/S0002-1689.2005.00227.x

47. Rodriguez T, Mendez R, Del Campo A, Aptsiauri N, Martin J, Orozco G, Pawelec G, Schadendorf D, Ruiz-Cabello F, Garrido F. Patterns of constitutive and IFN-gamma inducible expression of HLA class II molecules in human melanoma cell lines. Immunogenetics 2007; 59:123-33; PMID:17180681; http://dx.doi.org/10.1007/s00251-006-0171-9

48. God JM, Cameron C, Figueroa J, Amria S, Hossain A, Kempkes B, Bornkamm GW, Stuart RK, Blum JS, Haque J. A elevation of c-MYC disrupts HLA class II-mediated immune recognition of human B cell tumors. J Immunol 2015; 194:1434-45; http://dx.doi.org/10.4049/jimmunol.1402382
52. Lu Y, Tschickardt ME, Schmidt BJ, Blanck G. IFN-gamma inducibility of class II transactivator is specifically lacking in human tumour lines: relevance to retinoblastoma protein rescue of IFN-gamma inducibility of the HLA class II genes. Immunol Cell Biol 1997; 75:325-32; PMID:9315472; http://dx.doi.org/10.1038/icb.1997.50.

53. Xi H, Blanck G. The IRF-2 DNA binding domain facilitates the activation of the class II transactivator (CIITA) type IV promoter by IRF-1. Mol Immunol 2003; 39:677-84; PMID:12498643; http://dx.doi.org/10.1016/S0161-5890(02)00221-6

54. Chou SD, Khan AN, Magner WJ, Tomasi TB. Histone acetylation of the MHC class II promoter in myeloid leukemic blasts predicts poor clinical outcome. Cancer Res 2004; 64:5546-50; PMID:15313888; http://dx.doi.org/10.1158/0008-5472.CAN-04-1350

55. Phipps-Yonas H, Cui H, Sebastiao N,布鲁内霍泽 PS, Haddock E, Deymier MJ, Klapper W, Lybarger L, Roe DJ, Hastings KT. Low GILT expression is associated with poor patient survival in diffuse large B-cell lymphoma. Front Immunol 2013; 4:425; doi:10.3389/fimmu.2013.00425

56. van Luijten MM, van den Ancker W, Chamuleau ME, Zevenbergen A, Westers TM, Ossenkoppele GJ, van Ham SM, van de Loosdrecht AA. Absence of class II-associated invariant chain peptide on leukemic blasts predicts poor clinical outcome. Cancer Res 2004; 64:5546-50; PMID:15313888; http://dx.doi.org/10.1158/0008-5472.CAN-04-1350

57. Esteban F, Ruiz-Cabello F, Concha A, Perez-Ayala M, Sanchez-Rozas JA, Garrido F. HLA-DR expression is associated with excellent prognosis in squamous cell carcinoma of the larynx. Clin Exp Metastasis 1990; 8:319-28; PMID:2350918; http://dx.doi.org/10.1007/BF01810678

58. Kunihiro M, Tanaka S, Haruma K, Yoshihara M, Sumii K, Kajiyama G, Shimamoto F. Combined expression of HLA-DR antigen and proliferating cell nuclear antigen correlates with colorectal cancer prognosis. Oncology 1998; 55:326-33; PMID:9663422; http://dx.doi.org/10.1159/000011870

59. Lazzarini AC, Theodoropoulos GE, Davaris PS, Panoussopoulos D, Nakopoulos L, Kittas C, Geelmann BC. Heat shock protein 70 and HLA-DR molecules tissue expression. Prognostic implications in colorectal cancer. Dis Colon Rectum 1995; 38:739-45; PMID:8264228; http://dx.doi.org/10.1097/00008390-199708000-00006

60. Morimoto Y, Toyota M, Satoh A, Murai M, Mita H, Suzuki H, Taka-mura Y, Ikeda H, Ishida T, Sato N. Inactivation of class II transactivator by DNA methylation and histone deacetylation associated with absence of HLA-DR induction by interferon-gamma in haematopoietic tumour cells. Br J Cancer 2004; 90:844-52; PMID:14970863; http://dx.doi.org/10.1038/sj.bjc.6601602

61. LeibundGut-Landmann S, Waldburger JM, Krawczyk M, Otton LA, Suter T, Fontana A, Acha-Orbea H, Reith W. Mini-review: specificity and expression of CIITA, the master regulator of MHC class II genes. Eur J Immunol 2004; 34:1513-25; PMID:15162420; http://dx.doi.org/10.1002/eji.200424964

62. Seguin-Estevez Q, De Palma R, Krawczyk M, Leimgruber E, Villard J, Picard C, Tagliamacco A, Abbate G, Gorski J, Nocera A et al. The transcription factor RFX protects MHC class II genes against epigenetic silencing by DNA methylation. J Immunol 2009; 183:2545-53; http://dx.doi.org/10.1016/S0022-1759(11)00827-0

63. Xi H, Blanck G. The IRF-2 DNA binding domain facilitates the activation of the class II transactivator (CIITA) type IV promoter by IRF-1. Mol Immunol 2003; 39:677-84; PMID:12498643; http://dx.doi.org/10.1016/S0161-5890(02)00221-6

64. Chou SD, Khan AN, Magner WJ, Tomasi TB. Histone acetylation of the MHC class II promoter in myeloid leukemic blasts predicts poor clinical outcome. Cancer Res 2004; 64:5546-50; PMID:15313888; http://dx.doi.org/10.1158/0008-5472.CAN-04-1350

65. Phipps-Yonas H, Cui H, Sebastiao N,布鲁内霍泽 PS, Haddock E, Deymier MJ, Klapper W, Lybarger L, Roe DJ, Hastings KT. Low GILT expression is associated with poor patient survival in diffuse large B-cell lymphoma. Front Immunol 2013; 4:425; doi:10.3389/fimmu.2013.00425

66. van Luijten MM, van den Ancker W, Chamuleau ME, Zevenbergen A, Westers TM, Ossenkoppele GJ, van Ham SM, van de Loosdrecht AA. Absence of class II-associated invariant chain peptide on leukemic blasts predicts poor clinical outcome. Cancer Res 2004; 64:5546-50; PMID:15313888; http://dx.doi.org/10.1158/0008-5472.CAN-04-1350

67. van Luijten MM, van den Ancker W, Chamuleau ME, Zevenbergen A, Westers TM, Ossenkoppele GJ, van Ham SM, van de Loosdrecht AA. Absence of class II-associated invariant chain peptide on leukemic blasts predicts poor clinical outcome. Cancer Res 2004; 64:5546-50; PMID:15313888; http://dx.doi.org/10.1158/0008-5472.CAN-04-1350
aggravation and poor survival in patients with osteosarcomas. Onco Targets Ther 2014; 7:477-84; PMID:24711704.

80. Degener T, Momburg F, Moller P. Differential expression of HLA-DR, HLA-DP, HLA-DQ and associated invariant chain (ii) in normal colorectal mucosa, adenoma and carcinoma. Virchows Arch A Pathol Anat Histopathol 1988; 412:315-22; PMID:3125670; http://dx.doi.org/10.1007/BF00750257.

81. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pages C, Tosolini M, Camus M, Berger A, Wind P et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 2006; 313:1960-4; PMID:17008531; http://dx.doi.org/10.1126/science.1129139.

82. Schreiber RD, Old LJ, Smyth MJ. Cancer immunoeediting: integrating immunity's roles in cancer suppression and promotion. Science 2011; 331:1565-70; PMID:21436444; http://dx.doi.org/10.1126/science.1203486.

83. von Knebel Doeberitz M, Kloor M. Towards a vaccine to prevent cancer in Lynch syndrome patients. Familial Cancer 2013; 12:307-12; PMID:23760517; http://dx.doi.org/10.1007/s10689-013-9662-7.

84. Perez-Diez A, Joncker NT, Choi K, Chan WF, Anderson CC, Lantz CJI.0b013e31824b3b14

85. Xie Y, Akpinarli A, Maris C, Hipkiss EL, Lane M, Kwon EK, Perez-Diez A, Joncker NT, Choi K, Chan WF, Anderson CC, Lantz C, von Knebel Doeberitz M, Kloor M. Towards a vaccine to prevent cancer in Lynch syndrome patients. Familial Cancer 2013; 12:307-12; PMID:23760517; http://dx.doi.org/10.1007/s10689-013-9662-7.

86. Zanetti M. Tapping CD4 T cells for cancer immunotherapy: the role of antigen presentation functions of trophoblast cells. Pigment Cell Melanoma Res 2008; 21:545-58; PMID:19609238; http://dx.doi.org/10.1097/CCI.0b013e31811c24e

87. Alatrash G, Ono Y, Sergiavea A, Sukhumalchandra P, Zhang M, St John LS, Yang TH, Ruisaard K, Armistead PM, Mittendorf EA et al. High class II-associated invariant chain expression is associated with increased relapse risk in acute myeloid leukemia. Leuk Res 2014; 38:691-3; PMID:24731748; http://dx.doi.org/10.1016/j.leukres.2014.03.014.

88. Radwan FF, Zhang L, Hossain A, Doonan BP, God JM, Hague A. Mechanisms regulating enhanced human leukocyte antigen class II-mediated CD4 + T cell recognition of human B-cell lymphoma by resveratrol. Leukemia & lymphoma 2012; 53:305-14; PMID:21854084; http://dx.doi.org/10.1038/lol.2011.165423.

89. Safaeian M, Johnson LG, Yu K, Wang SS, Gravitt PE, Hansen JA, Carrington M, Schwartz SM, Gao X, Hildesheim A et al. Human leucocyte antigen Class I and II alleles and cervical adenocarcinoma. Br J Dermatol 2008; 158:930-40; PMID:18264388; http://dx.doi.org/10.1111/j.1365-2123.2008.08465.x.

90. Bhatia A, Kumar Y. Cellular and molecular mechanisms in cancer immune escape: a comprehensive review. Expert Rev Clin Immunol 2014; 10:41-62; PMID:24325346; http://dx.doi.org/10.1586/1744666X.2014.865519.
109. van Eggermond MC, Boom DR, Klous P, Schooten E, Marquez VE, Wierda RJ, Holling TM, van den Elsen PJ. Epigenetic regulation of CIITA expression in human T-cells. Biochem Pharmacol 2011; 82:1430-7; PMID:21664896; http://dx.doi.org/10.1016/j.bcp.2011.05.026

110. Vinay DS, Ryan EP, Pawelec G, Talib WH, Stagg J, Elkord E, Lichtor T, Decker WK, Whelan RL, Kumara HM et al. Immune evasion in cancer: mechanistic basis and therapeutic strategies. Semin Cancer Biol 2015; 35:S185-98; PMID:25818339

111. Xiao X, Liu L, Li WJ, Liu J, Chen DJ. HLA-A, HLA-B, HLA-DRB1 polymorphisms and risk of cervical squamous epithelial cell carcinoma: a population study in China. Asian Pac J Cancer Prev 2013; 14:4427-33; PMID:23992015; http://dx.doi.org/10.7314/APJCP.2013.14.7.4427

112. Zhukov VF, Vasil’chenko MI, Proletarskii AV. Surveillance of prostate adenoma patients administering selective alpha-1a-adreno-blocker. Voen Med Zh 2004; 325:44-7; PMID:15188540