Direct Access to New Gem-Difluorinated Pyrido[1,2-\(a\)] Pyrimidine-2-one Systems

Ranin Kawtharani\(^1,2\), Mirvat Elmasri\(^2\), Ali Hachem\(^2\), Khalil Cherry\(^3\) and Mohamed Abarbri\(^1\)*

\(^1\)Laboratoire de Physico-Chimie des Matériaux et des Electrolytes pour l’Energie (PCM2E), France
\(^2\)Laboratoire de Chimie Médicinale et de Produit naturels, (LCMPN) Lebanon
\(^3\)Laboratoire Matériaux, Catalyse, Environnement et Méthodes Analytiques (MCEMA), Lebanon

*Corresponding author: Mohamed Abarbri, Laboratoire de Physico-Chimie des Matériaux et des Electrolytes pour l’Energie (PCM2E), France

Efficient method for the synthesis of gem-difluorinated pyrido[1,2-\(a\)]pyrimidine-2-ones using addition/heterocyclization followed by Heck and Suzuki cross coupling reactions is reported. A variety of substituted products are obtained in good to excellent yields starting from 2-aminopyridines and gem-difluorinated alkynes.

Keywords: Gem-Difluorinated Pyrido[1,2-\(a\)]Pyrimidine-2-Ones; 2-Aminopyridines; Gem-Difluorinated Alkynes; Heck Reaction; Suzuki Reaction

Introduction

The pyrido[1,2-\(a\)]pyrimidine core is of great pharmaceutical importance due to its potent and significant biological activities as an anti-inflammatory,[1] antiallergic,[2] analgesic,[3] and anticancer agent (3-5 antifolate),[4] and its anti-aggressive activities.[5] In fact, there are two types of position isomers within the same family; pyrido[1,2-\(a\)]pyrimidin-2-ones and pyrido[1,2-\(a\)]pyrimidin-4-ones (Figure 1). They are associated in the synthesis of broad range of biologically active heterocycles such as antiulcerative agents,[6] tranquillizers and antipsychotic drugs (Pirenperone),[7] inhibitors of polyhydroxylase, or inhibitors of dihydrofolate reductase in humans (hDHFR)[8] (Figure 1). The first synthesis of pyrido[1,2-\(a\)]pyrimidin-2-ones was described in 1961 by Lappin et al. by cyclocondensation between various 2-aminopyridines and α,β-acetylenic esters such as methyl propiolate. However, the use of these conditions leads to the formation of two different compounds[9] (Scheme 1). While several synthetic routes have been developed to obtain these pyrido[1,2-\(a\)]pyrimidin-2-ones, few synthetic methodologies have been published in the literature for the regioselective synthesis of pyrido[1,2-\(a\)]pyrimidin-2-ones. The Harriman group investigated the reactivity of the fluorinated alkyne ethyl 4,4,4-trifluorobut-2-ynoate with the 2-aminopyridine that led to the formation of 4-(trifloromethyl)-2H-pyrido[1,2-\(a\)]pyrimidin-2-one as the sole product with an excellent yield[10] (Scheme 2).

Figure 1: Examples of bioactive pyrido[1,2-\(a\)]pyrimidin-2-ones and pyrido[1,2-\(a\)]pyrimidin-4-ones.
Scheme 1: The first synthesis of pyrido[1,2-α]pyrimidin-2-ones.

Scheme 2: The first synthesis of pyrido[1,2-α]pyrimidin-2-ones.

In view of the importance of the 2H-pyrido[1,2-α]pyrimidin-2-one scaffold, our laboratory team studied the extension of this heterocyclic family. We discovered a new series of synthesized molecules exhibiting in vitro activity against the host cell invasion by *E. tenella* parasites. This investigation revealed a “chief” compound with a “pyrido[1,2-α]pyrimidin-2-one”, with an IC50 value of 15 μM.[11] Furthermore, it is well established that the incorporation of a fluorine atom into organic compounds can alter or modify their physiochemical properties and enhance their metabolic stability. The unique properties of fluorine have an exceptional impact on the electronic, lipophilic, and steric parameters, and acidity or basicity of organofluorinated molecules.[12] Much attention has been drawn in recent years to the difluoromethylene group (CF2) due to its special physical and chemical properties.[13]

Methods

General Methods

Most reagents were obtained from commercial sources and used as received. Thin-Layer Chromatography (TLC) was performed on Merck 60F254 plates. Column Chromatography was carried out with Merck silica gel 60 (0.040-0.063 mm, 230-400 mesh). All 1H NMR, 13C NMR and 19F NMR spectra were recorded on a 300 MHz Bruker Avance FT NMR spectrometer (300 MHz, 75 or 282 MHz, respectively). All chemical shifts are given as δ value (ppm) with reference to tetramethylsilane (TMS) as an internal standard. The peak patterns are indicated as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet. The coupling constants J are reported in Hertz (Hz). Electrospray ionization High-Resolution Mass Spectrometry Experiments (HRMS) were performed on a hybrid Tandem Quadrupole/Time-Of Flight (Q-TOF) instrument, equipped with a pneumatically assisted electrospray (Z-spray) ion source (Micromass, Manchester, U.K.) operated in positive mode.

Results and Discussion

Due to the valuable role of 2H-pyrido[1,2-α]pyrimidin-2-one derivatives as well as the important pharmacological role of the CF2 moiety, we planned to look for an access to new gem-difluorinated-2H-pyrido[1,2-α]pyrimidin-2-one derivatives. Our investigation started by exploring the cycloaddition reaction between two different 2-aminopyridines and gem-difluorinated alkynes. The corresponding gem-difluorinated alkynes were prepared in the laboratory following a known synthetic strategy.[14] The cycloaddition reaction was done in ethanol at room temperature. Following the same mechanism as that described by Harriman’s group.[10] The cycloaddition reactions between three different gem-difluorinated alkynes 1a-c and 2-aminopyridines 2a-b were successfully conducted, leading to the formation of pyrido[1,2-α]pyrimidin-2-ones 3a-f with good to excellent yields (70-93%) (Table 1). Moreover, the reactions proceeded very cleanly, and the desired products were obtained as a solid in pure form after filtration. As product 3b bears a reactive carbon-bromide bond connected to the phenyl group, it seemed important to test the reactivity of this bond in order to achieve further transformations. Therefore, a palladium catalyzed Heck coupling reaction was carried out on pyrido[1,2-α]pyrimidin-2-one 3b with methyl acrylate.

Table 1: Cycloaddition reaction between gem-difluorinated alkynes and 2-aminopyridines.

Entry	R1	R2	n	R3	Product	Yield* (%)
1	Br	H	0	H	3a	70
2	H	Br	0	H	3b	84
3	H	H	2	H	3c	79
4	Br	H	0	Br	3d	77
5	H	Br	0	Br	3e	93
6	H	H	2	Br	3f	85

*Isolated yield
Experimental Part

Methyl 4,4-difluoro-6-phenylhex-2-ynoate (1c): Colorless oil; C_{13}H_{12}F_{2}O; Yield = 70%; 1H NMR (300 MHz, CDCl$_3$): δ (ppm) = 7.90 (d, 1H, $J = 7.2$ Hz), 7.79 (d, 2H, $J = 8.5$ Hz), 7.73-7.67 (m, 3H), 7.28 (dd, 1H, $J = 9.9/1.2$ Hz), 6.90 (dt, 1H, $J = 6.5/7.2$ Hz), 6.66 (s, 1H). 13C NMR (75 MHz, DMSO-d$_6$): δ (ppm) = 161.1 (CO), 152.7, 140.2 (t, $J_{CF} = 29.7$ Hz), 137.2 (CH), 132.6 (2CH), 131.1 (t, $J_{CF} = 25.8$ Hz), 130.2 (t, CH, $J_{CF} = 5.2$ Hz), 128.3 (t, 2CH, $J_{CF} = 5.1$ Hz), 126.0 (t, $J_{CF} = 2.1$ Hz), 124.7 (CH), 117.2 (t, CF, $J_{CF} = 241.9$ Hz), 116.9 (t, CH, $J_{CF} = 6.0$ Hz), 113.8 (CH). 19F NMR (282 MHz, DMSO-d$_6$): δ (ppm) = -89.76. HRMS(ESI): m/z [M+H]$^+$ calcd for C_{13}H_{12}F_{2}O: 239.08736; found: 239.08781.

General procedure for cycloaddition reaction between fluorinated alkenes 1a and 2-aminopyridine derivatives: 2-Aminopyridine (12 mg, 0.13 mmol) in 2 ml of ethanol was introduced into a small round bottom flask. The gem-difluorinated alkyne 1a (41 mg, 0.14 mol) in 1.1 equiv.) was added drop by drop. Once the reaction was completed, the solvent was evaporated under vacuum. The product was rinsed with ether and then dried under vacuum yielding the pure product 3a without any additional treatment.

4-[(4-Bromophenyl)difluoromethyl]-2H-pyrido[1,2-a]pyrimidin-2-one (3a): Yellow solid; C_{19}H_{16}BrF,N,O; Yield = 70%; m.p = 219-221°C. 1H NMR (300 MHz, DMSO-d$_6$): δ (ppm) = 8.05 (d, 1H, $J = 7.3$ Hz), 7.74 (m, 2H), 7.55-7.39 (m, 4H), 6.78 (dt, 1H, $J = 7.2$ Hz), 6.68 (dt, 1H, $J = 1.3/7.3$ Hz), 6.57 (s, 1H). 13C NMR (75 MHz, DMSO-d$_6$): δ (ppm) = 167.1 (CO), 153.2, 141.1 (t, $J_{CF} = 28.5$ Hz), 136.5 (CH), 136.4 (CH), 134.2 (t, $J_{CF} = 25.7$ Hz), 131.1 (CH), 130.1 (t, CH, $J_{CF} = 6.5$ Hz), 129.1 (t, CH, $J_{CF} = 5.9$ Hz), 126.1 (CH), 124.7 (t, CH, $J_{CF} = 5.4$ Hz), 123.7 (CH), 118.8 (t, CH, $J_{CF} = 4.7$ Hz), 117.6 (t, CF, $J_{CF} = 244.4$ Hz), 133.6. 19F NMR (282 MHz, DMSO-d$_6$): δ (ppm) = -89.76. HRMS(ESI): m/z [M+H]$^+$ +calcd for C_{19}H_{16}BrF,N,O: 350.99291; found: 350.99237.

4-[(3-Bromophenyl)difluoromethyl]-2H-pyrido[1,2-a]pyrimidin-2-one (3b): Yellow solid; C_{19}H_{16}BrF,N,O; Yield = 84%; m.p = 219-221°C. 1H NMR (300 MHz, CDCl$_3$): δ (ppm) = 8.05 (d, 1H, $J = 7.3$ Hz), 7.74 (m, 2H), 7.55-7.39 (m, 4H), 6.78 (dt, 1H, $J = 1.3/7.3$ Hz), 6.57 (s, 1H). 13C NMR (75 MHz, CDCl$_3$): δ (ppm) = 167.1 (CO), 153.2, 141.1 (t, $J_{CF} = 28.5$ Hz), 136.5 (CH), 136.4 (CH), 134.2 (t, $J_{CF} = 25.7$ Hz), 131.1 (CH), 130.1 (t, CH, $J_{CF} = 6.5$ Hz), 129.1 (t, CH, $J_{CF} = 5.9$ Hz), 126.1 (CH), 124.7 (t, CH, $J_{CF} = 5.4$ Hz), 123.7 (CH), 118.8 (t, CH, $J_{CF} = 4.7$ Hz), 117.6 (t, CF, $J_{CF} = 244.4$ Hz), 133.6. 19F NMR (282 MHz, CDCl$_3$): δ (ppm) = -89.76. HRMS(ESI): m/z [M+H]$^+$ +calcd for C_{19}H_{16}BrF,N,O: 350.99291; found: 350.99507.

4-[(1,1-Difluoro-3-phenylpropyl)-2H-pyrido[1,2-a]pyrimidin-2-one (3c): Yellow solid; C_{20}H_{18}F,N,O; Yield = 79%; m.p = 120-122°C. 1H NMR (300 MHz, DMSO-d$_6$): δ (ppm) = 8.47 (t, 1H, $J = 7.1$ Hz), 7.95 (t, 1H, $J = 7.8$ Hz), 7.41 (d, 2H, $J = 9$ Hz), 7.26-7.17 (m, 5H), 6.94 (s, 1H), 2.88-2.75 (m, 4H). 13CNMR (75 MHz, DMSO-d$_6$): δ (ppm) = 163.4 (CO), 151.6, 141.2 (t, $J_{CF} = 28.4$ Hz).

* = Isolated yield

The best conditions for performing this coupling reaction were found to be a catalytic amount of palladium (II) acetate [Pd(OAc)$_2$ (5 mol%)], triphenyl phosphine [PPh$_3$, 10 mol%] and triethylamine as base and heating in a sealed tube at 120°C. The reaction gave the desired product 4 ($E/Z = 94/6$) that was easily purified by recrystallization and was isolated with a 60% of overall yield. A typical Suzuki-Miyaura cross coupling reaction[15] was then tested on pyrido[1,2-a]pyrimidin-2-one 3b using a variety of phenyl boronic acids in order to achieve further transformation. The reactions were performed in a mixture of dioxane/water (3/1) with Palladium (II)(bis(triphenylphosphine) dichloride [PdCl$_2$(PPh$_3$)$_2$] (5 mol%) as catalyst and Potassium carbonate (K$_2$CO$_3$) as base. The desired products 5a-e were isolated in a yield ranging between 70-94%. The results are summarized in Table 2. Despite of their ability to facilitate the oxidative addition step in Suzuki-Miyaura cross coupling reaction, the presence of EWG such as a CF$_2$ group (entry 5, Table 2) in phenyl boronic acids has the disadvantage to induce a partial protodeboronation in presence of aqueous base which globally decreases the yield of the cross-coupling reaction.[16-18]
8-Bromo-4-[(4-bromophenyl)-difluoromethyl]-2H-pyrido[1,2-a]pyrimidin-2-one (3d): Yellow solid; \(\text{C}_{15}\text{H}_{10}\text{BrF}_3\text{N}_2\text{O}_2\); \(\text{M}+\text{H} +\text{calcd for C}_{15}\text{H}_{10}\text{BrF}_3\text{N}_2\text{O}_2: 349.1042\); found: 349.11409.

General Procedure of Suzuki Cross Coupling Reaction on Compound 3b: Compound 3b (30 mg, 0.085 mmole), phenyl-boronic acid (42 mg, 0.34 mmole, 4 equiv), Palladium(II) bis(triphenylphosphine) dichloride \(\text{PdCl}_2(\text{PPh}_3)_2\) (0.5 mol%), Potassium carbonate \(\text{K}_2\text{CO}_3\) (23.5 mg, 0.17 mmole, 2 equiv), and a mixture of dioxide/\(\text{H}_2\text{O}\) (3/0.6 ml) were introduced in a sealed tube. The reaction mixture was heated to 80°C. When the reaction was finished, Sodium chloride \(\text{NaCl}\) was added. Extraction was done with ethyl acetate and water. The organic phase was dried over Magnesium sulfate, filtered followed by the evaporation of the solvent. The desired product 5a was isolated in 90% yield (26.5 mg, white solid) using silica gel column chromatography, eluent EA/PE = 9/1.

8-Bromo-4-[(1,1-difluoro-3-phenylpropyl)-2H-pyrido[1,2-a]pyrimidin-2-one (3f): Yellow solid; \(\text{C}_{15}\text{H}_{10}\text{BrF}\text{N}_2\text{O}\); Yield = 85%; \(\text{M}+\text{H} +\text{calcd for C}_{15}\text{H}_{10}\text{BrF}\text{N}_2\text{O: 347.1042}\); found: 347.1042.

Procedure of Heck Reaction for Preparation of Compound 4: Compound 3b (30 mg, 0.08 mmol), triphenyl phosphine \(\text{PPh}_3\) (2.2 mg, 10 mol%), and Palladium (II) acetate \(\text{Pd(OAc)}_2\) (1 mg, 5 mol%) were introduced in a sealed tube with an excess of methyl acrylate. Then trimethylamine \(\text{Et}_3\text{N}\) (0.04 ml) was added slowly. The reaction mixture was stirred at 120°C under Argon. After the reaction was completed, extraction using ethyl acetate and water was done. The reaction mixture was dried over Magnesium sulfate and the solvent was evaporated under vacuum. The pure product was isolated using silica gel column chromatography in 60% yield (18.2 mg, yellow solid). \(\text{M}+\text{H} +\text{calcd for C}_{15}\text{H}_{10}\text{BrF}\text{N}_2\text{O: 347.1042}\); found: 347.0234.

Methyl-3-[(difluoro(2-oxo-2H-pyrido[1,2-a]pyrimidin-4-yl)methyl)phenyl]acrylate (4-E): \(\text{C}_{18}\text{H}_{13}\text{F}_2\text{N}_2\text{O}_2\); \(\text{H}NMR (300 MHz, CDCl}_3\); \(\delta (ppm) = 8.10 \text{ (d, } J = 1.7 \text{ Hz, } 1H)\), 7.75 (dd, \(J = 1.7 \text{ Hz, } 1H\)), 7.59 (dd, \(J = 1.7 \text{ Hz, } 1H\)), 7.33-7.16 (m, 6H), 6.85 (s, 1H), 2.97 (m, 2H), 2.69 (m, 2H).

9-Bromo-4-[(4-bromophenyl)-difluoromethyl]-2H-pyridopyridopyrimidin-2-one (3e): Yellow solid; \(\text{C}_{15}\text{H}_{10}\text{BrF}\text{N}_2\text{O}_2\); \(\text{M}+\text{H} +\text{calcd for C}_{15}\text{H}_{10}\text{BrF}\text{N}_2\text{O}_2: 349.1042\); found: 349.0269.

7-Bromo-4-[(3-bromophenyl)difluoromethyl]-2H-pyridopyridopyrimidin-2-one (3e): Yellow solid; \(\text{C}_{15}\text{H}_{10}\text{BrF}_3\text{N}_2\text{O}_2\); \(\text{M}+\text{H} +\text{calcd for C}_{15}\text{H}_{10}\text{BrF}_3\text{N}_2\text{O}_2: 349.1042\); found: 349.0269.

8-Bromo-4-[(1,1-difluoro-3-phenylpropyl)-2H-pyridopyridopyrimidin-2-one (3f): Yellow solid; \(\text{C}_{15}\text{H}_{10}\text{BrF}\text{N}_2\text{O}\); Yield = 85%; \(\text{M}+\text{H} +\text{calcd for C}_{15}\text{H}_{10}\text{BrF}\text{N}_2\text{O: 347.1042}\); found: 347.0234.

DOI: 10.26717/BJSTR.2019.16.002859

Copyright © Mohamed Abarbri | Biomed J Sci & Tech Res | BJSTR. MS-ID.002859.
4-(Difluoro(2'-methoxy-[1,1'-biphenyl]-3-yl)methyl)-2H-pyrido[1,2-a]pyrimidin-2-one: Yellow solid; C\textsubscript{23}H\textsubscript{17}F\textsubscript{2}N\textsubscript{2}O\textsubscript{2}; Yield = 94%; m.p. = 201-203°C. 1H NMR (300 MHz, CDCl\textsubscript{3}): δ (ppm) = 8.05 (d, \textit{J} = 7.2 Hz, 1H), 7.63 (d, \textit{J} = 8.8 Hz, 1H), 7.62 (s, 1H), 7.49-7.40 (m, 3H), 7.32-7.18 (m, 3H), 6.96-6.87 (m, 2H), 6.67 (s, 1H), 6.66 (m, 1H), 6.67 (s, 3H), 3.67 (s, 3H).

13C NMR (75 MHz, CDCl\textsubscript{3}): δ (ppm) = 171.2 (CO), 167.4, 156.3, 153.1, 141.7 (t, \textit{J}_{CF} = 29.7 Hz), 139.9, 136.2 (CH), 133.1 (CH), 131.7 (t, \textit{J}_{CF} = 25.1 Hz), 130.6 (CH), 130.4 (t, CH, \textit{J}_{CF} = 6.4 Hz), 129.7(CH), 129.2 (CH), 128.6 (CH), 127.2 (t, CH, \textit{J}_{CF} = 5.6 Hz), 125.8 (CH), 124.1 (t, CH, \textit{J}_{CF} = 5.5 Hz), 121.1 (CH), 118.5 (t, CH, \textit{J}_{CF} = 5.5 Hz), 118.4 (t, CF, \textit{J}_{CF} = 243.2 Hz), 111.3 (CH), 55.5 (CH). 19F NMR (282 MHz, CDCl\textsubscript{3}): δ (ppm) = -91.85. HRMS (ESI): m/z [M+H] + calcd for C\textsubscript{23}H\textsubscript{17}F\textsubscript{2}N\textsubscript{2}O\textsubscript{2}: 391.12526; found: 391.12649.

4-(Difluoro(4'-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)methyl)-2H-pyrido[1,2-a]pyrimidin-2-one (5e): Yellow solid; C\textsubscript{22}H\textsubscript{14}F\textsubscript{5}N\textsubscript{2}O; Yield = 70%; m.p. = 214-216°C. 1H NMR (300 MHz, CDCl\textsubscript{3}): δ (ppm) = 8.20 (d, \textit{J} = 7.3 Hz, 1H), 7.83-7.54 (m, 9H), 7.42 (d, \textit{J} = 9.0 Hz, 1H), 6.80 (t, \textit{J} = 7.2 Hz, 1H), 6.61 (s, 1H). 13C NMR (75 MHz, CDCl\textsubscript{3}): δ (ppm) = 167.3 (CO), 153.3, 143.0, 141.5 (t, \textit{J}_{CF} = 29.1 Hz), 141.4, 136.3 (CH), 133.2 (t, \textit{J}_{CF} = 25.0 Hz), 131.0 (CH), 130.6 (q, \textit{J}_{CF} = 25.0 Hz), 130.4 (t, CH, \textit{J}_{CF} = 9.0 Hz), 127.7 (2CH), 126.2 (CH), 126.1 (2CH), 125.7 (t, CH, \textit{J}_{CF} = 5.5 Hz), 124.8 (t, CH, \textit{J}_{CF} = 5.4 Hz), 124.2 (q, CF, \textit{J}_{CF} = 270.6 Hz), 119.1 (t, CH, \textit{J}_{CF} = 5.0 Hz), 118.6 (t, CF, \textit{J}_{CF} = 243.2 Hz), 113.4 (CH). 19F NMR (282 MHz, CDCl\textsubscript{3}): δ (ppm) = -62.58 (CF\textsubscript{3}), -92.28 (CF\textsubscript{2}). HRMS(ESI): m/z [M+H] + calcd for C\textsubscript{22}H\textsubscript{14}F\textsubscript{5}N\textsubscript{3}O: 417.10208; found: 417.10357.
Graph 3: 13C NMR (1c).

Graph 4: 1H NMR (3a).

Graph 5: 19F NMR (3a).
Graph 6: 13C NMR (3a).

Graph 7: 1H NMR (3b).

Graph 8: 19F NMR (3b).
Graph 9: 13C NMR (3b).

Graph 10: 1H NMR (3c).

Graph 11: 19F NMR (3c).
Graph 15: 13C NMR (3d).

Graph 16: 1H NMR (3e).

Graph 17: 19F NMR (3e).
Graph 18: 13C NMR (3e).

Graph 19: 1H NMR (3f).

Graph 20: 19F NMR (3f).
Graph 21: 13C NMR (3f).

Graph 22: 1H NMR (4a).

Graph 23: 19F NMR (4a).
Graph 24: 1H NMR (5a).

Graph 25: 19F NMR (5a).

Graph 26: 13C NMR (5a).
Graph 27: 1H NMR (5b).

Graph 28: 19F NMR (5b).

Graph 29: 13C NMR (5b).
Graph 30: 1H NMR (5c).

Graph 31: 19F NMR (5c).

Graph 32: 13C NMR (5c).
Graph 36: 1H NMR (5e).

Graph 37: 19F NMR (5e).

Graph 38: 13C NMR (5e).
Summary

In summary, we have provided a straightforward access to a new gem-difluorinated pyrido[1,2-a]pyrimidine-2-ones using a practical and general method. We first established a concise one-pot strategy for the synthesis of gem-difluorinated pyrido[1,2-a]pyrimidin-2-ones by condensation of 2-aminopyridines with gem-difluorinated methyl propiolates. These compounds were then used as building blocks to synthesize a new 4-[[3-substitutedphenyl]difluoromethyl]-2H-pyrido[1,2-a]pyrimidin-2-ones via cross-coupling reactions. This valuable strategy is being applied to the production of a wide range of compounds that are currently under biological evaluation.

Acknowledgment

We would like to thank the Association of Specialization and Scientific Orientation (Lebanon) and Lebanese University for their support. We thank also the Département d’analyses Chimiques et Médicales (Tours, France) for chemical analyses.

References

1. Hermecz I, Meszaros Z (1988) Pyrido[1,2-a]pyrimidines: New chemical entities in medicinal chemistry. Medicinal Res Rev 8: 203-230.
2. Hermecz I, Vásári Debrezei L (2007) Comprehensive Heterocyclic Chemistry 12: 77-217.
3. Lappin GR (1961) J Org Chem 26: 2350-2353.
4. Rosowsky A, Mota CE, Queener SF (1995) J Heter Chem, 32(1): 335-340.
5. Saladowska H, Bartoszko Malik A, Zawiszas T (1990) Farmaco, 45(1): 101.
6. Smith RL, Barrett RJ, Sanders Bush EJ (1995) Pharmacol Exp Ther 275: 1050-1057.
7. Awouters F, Vermeire J, Smeysers F, Vormote P, Van Beek R, Niemegeers C J E (1986) Drug Development Res 8: 95-102.
8. Rapoöl A, Alla M, Bommene RV, Addagatta A (2013), Med Chem Comm 4: 817-821.
9. Hunter L (2010), Beilstein J Org Chem 6: 38: 1-14.
10. Wu J, Cao S (2010) Organic and Biomolecular Chemistry 8: 2386-2391.
11. Khalaf A, Hachem A, Greer R (2011) Tetrahedron 67: 3881-3886.
12. Miyaura N, Suzuki A (1979), Chemical Reviews 95 (7): 2457-2483.
13. Kuivila HG, Reuwer JF, Mangravite JA (1963) Can J Chem 41: 3081-3090.
14. Kuivila HG, Nahabedian KV (1961) J Am Chem Soc 83: 2159-2163.
15. Cox PA, Reid M, Leach AG, Campbell AD, King E J, et al. (2017) J Am Chem Soc 139: 13156-13165.