BEHAVIOR OF GAUSSIAN CURVATURE
AROUND NON-DEGENERATE SINGULAR POINTS
ON WAVE FRONTS

LUCIANA F. MARTINS, KENTARO SAJI, MASAAKI UMEHARA,
AND KOTARO YAMADA

Abstract. We define cuspidal curvature κ_c along cuspidal edges in Riemannian 3-manifolds, and show that it gives a coefficient of the divergent term of the mean curvature function. Moreover, we show that the product κ_H (called product curvature) of κ_c and the limiting normal curvature κ_ν is an intrinsic invariant of the surface and is closely related to the boundedness of the Gaussian curvature. We also consider the limiting behavior of κ_H when cuspidal edges accumulate to other singularities. As an application, several new geometric properties of limiting normal curvature κ_ν are shown.

Introduction

In [11], the behavior of Gaussian curvature K along cuspidal edge singularities in Riemannian 3-manifolds was discussed. However, the existence of intrinsic invariants related to the boundedness of K was not mentioned there. The purpose of this paper is to show the existence of such invariants for non-degenerate singular points on wave fronts. In fact, geometric invariants of cross cap singularities on surfaces are recently discussed by several geometers ([12, 13, 14, 15, 16, 17]). Also, Nuño-Ballesteros and the first author [8] investigate geometric properties of co-rank one singularities other than cross caps. After that, in a joint work [9] of the first two authors, a West-type normal form for cuspidal edges is given and geometric meanings of its coefficients are discussed. In this paper, we define limiting normal curvature κ_ν, for an arbitrarily given co-rank one singular point on wave fronts, which is a generalization of κ_ν for cuspidal edges defined in [11]. (The definition of wave fronts are given in the first section.) Our first result is as follows:

Theorem A. Let $f : \mathcal{U} \to \mathbb{R}^3$ be a front, and $p \in \mathcal{U}$ a co-rank one singular point, where \mathcal{U} is a domain in \mathbb{R}^2. Then the Gauss map $\nu : \mathcal{U} \to S^2$ of f has a singularity at p if and only if the limiting normal curvature $\kappa_\nu(p)$ is equal to zero, where S^2 denotes the unit sphere.

Date: August 9, 2013.

2010 Mathematics Subject Classification. 53A10, 53A35; 53C42, 33C05.

Key words and phrases. singularities, wave front, cuspidal edge, swallowtail, cuspidal cross cap, Gaussian curvature, mean curvature.

The first author was partly supported by CAPES and JSPS under Brazil-Japan research cooperative program, Proc BEX 12998/12-5. The second author was partly supported by Grant-in-Aid for Scientific Research (Young Scientists (B)) No. 23740045, from the Japan Society for the Promotion of Science. The third author by (A) No. 22244006 and the fourth author by (B) No. 21340016 from the Japan Society for the Promotion of Science.
The proof is given in the first section. We next define cuspidal curvature function κ_c along cuspidal edges in Section 2 and show that it appears in the first coefficient of the divergent term of the mean curvature function. Then, we consider their product called ‘product curvature’

$$\kappa_{\Pi} := \kappa_{\nu}\kappa_c,$$

along cuspidal edges, and show that κ_{Π} is an intrinsic invariant, i.e. determined only on the first fundamental form of the surface. Using κ_{Π}, we give a necessary and sufficient condition for the boundedness of the Gaussian curvature around cuspidal edges. We then discuss on the limiting behavior of κ_{Π} when cuspidal edges accumulate to other singularities in Section 3. As a consequence, we get the following property of the limiting normal curvature:

Theorem B. Let $f : U \rightarrow (M^3, g)$ be a front, and $p \in U$ a non-degenerate singular point, where U is a domain in \mathbb{R}^2 and (M^3, g) is a Riemannian 3-manifold. Then the Gaussian curvature of f is rationally bounded at p if and only if the limiting normal curvature $\kappa_{\nu}(p)$ is equal to zero.

The definition of rational boundedness is given in Definition 2.3.

This assertion is a consequence of Corollary 2.9 and Theorem 3.2. The above two theorems yield the following assertion, which summarize the geometric properties of the limiting normal curvature:

Corollary C. Let $f : U \rightarrow \mathbb{R}^3$ be a front, and $p \in U$ a non-degenerate singular point, where U is a domain in \mathbb{R}^2. Then the following three properties are equivalent:

1. The Gaussian curvature of f is rationally bounded at p.
2. The limiting normal curvature at p is equal to zero.
3. A singular point p of f is also a singular point of the Gauss map of f.

In [14, Lemma 3.25], the authors showed that the singular set of Gauss map coincides with the singular set of f if $\log |K|$ is bounded. The equivalency of (1) and (3) is a refinement of it.

1. LIMITING NORMAL CURVATURE

Let Σ^2 be an oriented 2-manifold and $f : \Sigma^2 \rightarrow (M^3, g)$ a C^∞-map into an oriented Riemannian 3-manifold (M^3, g). A singular point of f is a point at which f is not an immersion. The map f is called a frontal if for each $p \in \Sigma^2$, there exist a neighborhood U of p and a unit vector field ν along f defined on U such that ν is perpendicular to $df(a)$ for all tangent vectors $a \in TU$. Moreover, if $\nu : U \rightarrow TM^3$ gives an immersion, f is called a (wave) front. We fix a frontal $f : \Sigma^2 \rightarrow M^3$.

Definition 1.1. A singular point $p \in \Sigma^2$ of the frontal f is called non-degenerate if the exterior derivative of the function

$$\lambda := \det_g(f_u, f_v, \nu), \quad (f_u := df(\partial_u), \quad f_v := df(\partial_v))$$

does not vanish at p, where (u, v) is a local coordinate system of Σ^2 at p, $\partial_u = \partial/\partial u$, $\partial_v = \partial/\partial v$, and where \det_g is the Riemannian volume element of (M^3, g). If the ambient space is the Euclidean 3-space E^3, then \det_g can be identified with the usual determinant.
A non-degenerate singular point \(p \) of \(f \) is a co-rank one singular point, i.e., the kernel of \(df(p) \) is of one dimensional. Since \(\{ \lambda = 0 \} \) is the singular set, by the implicit function theorem, we can take a smooth curve \(\gamma(t) (|t| < \varepsilon) \) on \(\mathcal{U} \) as a parametrization of the singular set, where \(\varepsilon > 0 \). We may assume that \(\gamma(0) = p \). (We call \(\gamma \) the singular curve.) There exists a non-vanishing vector field \(\eta(t) \) along \(\gamma \) such that \(df(\gamma(t)) \) vanishes identically. We call \(\eta(t) \) a null vector field along \(\gamma \).

A non-degenerate singular point \(p \) is said to be of the first kind if \(\eta(0) \) is not proportional to \(\gamma'(0) := d\gamma/dt|_{t=0} \). Otherwise, it is said to be of the second kind.

Definition 1.2. A singular point \(p \in \Sigma^2 \) of a map \(f : \Sigma^2 \to M^3 \) is a cuspidal edge if the map germ \(f \) at \(p \) is right-left equivalent to \((u,v) \mapsto (u,v^2,v^3) \) at the origin. A singular point \(p \) of \(f \) is a swallowtail (respectively, cuspidal cross cap) if \(f \) at \(p \) is right-left equivalent to \((u,v) \mapsto (u,4v^3 + 2uv, 3v^4 + uv^2) \) (respectively, \((u,v) \mapsto (u,v^2,uv^3) \)) at the origin. Here, \(f \) is considered as a map germ \(f : (\mathbb{R}^2,0) \to (\mathbb{R}^3,0) \) by taking local coordinates systems of \(\Sigma^2 \) and \(M^3 \) at \(p \) and \(f(p) \), respectively, and two map germs \(f_1 \) and \(f_2 \) are right-left equivalent if there exist diffeomorphism germs \(d_s : (\mathbb{R}^2,0) \to (\mathbb{R}^2,0) \) and \(d_t : (\mathbb{R}^3,0) \to (\mathbb{R}^3,0) \) such that \(d_t \circ f_1 = f_2 \circ d_s \) holds.

Figures of these singularities are drawn in Figure 1. There are criteria for these singularities.

Figure 1. A cuspidal edge, a swallowtail and a cuspidal cross cap.

Fact 1.3 ([4] Proposition 1.3], [5] Corollary 1.5] see also [12 Corollary 2.5]). Let \(f : \Sigma^2 \to (M^3,g) \) be a frontal and \(p \) a non-degenerate singular point. Take the singular curve \(\gamma(t) \) such that \(\gamma(0) = p \) and a null vector field \(\eta(t) \) along \(\gamma \). Then

1. \(f \) at \(p \) is a cuspidal edge if and only if \(f \) is a front, and \(\eta \) and \(\gamma' \) are linearly independent at \(p \).
2. \(f \) at \(p \) is a swallowtail if and only if \(f \) is a front, \(\eta \) and \(\gamma' \) are linearly dependent but \((d/dt)\det(\gamma'(t),\eta(t))|_{t=0} \neq 0 \) holds, where \(\det \) denotes an area element of \(\Sigma^2 \), and
3. \(f \) at \(p \) is a cuspidal cross cap if and only if \(\eta \) and \(\gamma' \) are linearly independent at \(p \), \(\psi_{ccc}(0) = 0 \) and \(\psi'_{ccc}(0) \neq 0 \), where

\[
\psi_{ccc}(t) = \det_g \left(\hat{\gamma}'(t), \nu(\gamma(t)), (\nabla_{\nu'})(\gamma(t)) \right), \quad \hat{\gamma}(t) := f(\gamma(t)),
\]

\(\nu \) is the unit normal vector field, and \(\nabla \) is the Levi-Civita connection of \((M^3,g) \).
About ψ_{crr}, the following lemma holds.

Lemma 1.4 ([5, Corollary 1.7]). Let $f : \Sigma^2 \to M^3$ be a frontal and p a singular point of the first kind. Then f is a front at p if and only if $\psi_{crr} \neq 0$ at p.

Proof. Since η is a null vector and p is a singularity of co-rank one of f, then f is a front at p if and only if $\nabla_\eta \nu(p) \neq 0$. Thus the necessity is obvious. Let us assume that $\psi_{crr} = 0$ at p. Since p is a singular point of first kind, $\gamma'(t) \neq 0$ at p holds. Thus $\nabla_\eta \nu$ is a linear combination of $\hat{\gamma}'(t)$ and ν at p. On the other hand, noticing that ∇ is the Levi-Civita connection, it holds that

$$\langle \nabla_\eta \nu, f(\gamma(t))' \rangle = \langle \nu(\gamma(t))', (\nabla_\eta f)(\gamma(t)) \rangle = 0$$

and $\langle \nabla_\eta \nu, \nu \rangle = 0$ at p, where \langle , \rangle is the inner product corresponding to the Riemannian metric g. Hence $\nabla_\eta \nu(p) = 0$ holds. □

By Fact 1.3, if f is a front, then a non-degenerate singular point of the first kind gives a cuspidal edge. On the other hand, cuspidal cross caps are typical examples of non-degenerate singular points of the first kind when f is a frontal but not a front. Swallowtails are singularities of the second kind. When f is a front, a non-degenerate peak in the sense of [11, Definition 1.10] is a singular point of the second kind.

Example 1.5. Let $f : \mathbb{R}^2 \to \mathbb{R}^3$ be a map defined by

$$f(u, v) = (5u^4 + 2uv, v, 4u^5 + u^2v - v^2).$$

Then the singular set is $\{10u^3 + v = 0\}$, the null vector field is $\eta = \partial_u = \partial / \partial u$ and $d\nu(\partial_u) = (-1, 0, 0)$ holds, where ν is the unit normal vector field. Hence f is a front and 0 is a singular point of the second kind (namely, a non-degenerate peak) but not a swallowtail (see the left hand side of Figure 2).

On the other hand, let $f : \mathbb{R}^2 \to \mathbb{R}^3$ be a map defined by

$$f(u, v) = (u^2 + 2v, uv + 3uv, u^5 + 5u^3v).$$

Then the singular set is $\{v = 0\}$, the null vector field is $\eta = \partial_u - u\partial_v$, and $d\nu(0, 0) = 0$ hold. Hence f is a frontal but not a front at 0, and 0 is a singular point of the second kind (see the right hand side of Figure 2).

![Figure 2. Singularities of the second kind](image-url)
Definition 1.6. Let \(p \) be a co-rank one singular point of a frontal \(f \). A local coordinate system \((U; u, v)\) centered at \(p \) is called admissible if \(f_u(p) = 0 \) and it is compatible with respect to the orientation of \(\Sigma^2 \).

We denote by \('\langle \cdot, \cdot \rangle'\) the inner product on \(M^3 \) induced by the metric \(g \), and \(|a| := \sqrt{\langle a, a \rangle} \) \((a \in TM^3)\). We fix a unit normal vector field \(\nu \) of \(f \). Take an admissible coordinate system at a co-rank one singular point \(p \). Then we define

\[
\kappa_\nu(p) := \frac{\langle f_{uu}(p), \nu(p) \rangle}{|f_u(p)|^2},
\]

which is called the limiting normal curvature. Here, we denote \(f_{uu} := \nabla_{\partial u}f_u \). By definition, \(\kappa_\nu(p) \) depends on the \(\pm \)-ambiguity of \(\nu \).

Proposition 1.7 (The continuity of the limiting normal curvature). Let \(p \) be a co-rank one singular point of \(f \). The definition of \(\kappa_\nu \) does not depend on a choice of the admissible coordinate system. Moreover, if \(p \) is non-degenerate and \(\gamma(t) \) is a singular curve such that \(\gamma(0) = p \), and if \(\gamma(t) \) \((t \neq 0)\) consists of singular points of the first kind, then it holds that

\[
\kappa_\nu(p) = \left(\lim_{t \to 0} \kappa_\nu(\gamma(t)) \right) = \lim_{t \to 0} \frac{\langle \hat{\gamma}''(t), \nu(\gamma(t)) \rangle}{|\hat{\gamma}'(t)|^2},
\]

where \(\hat{\gamma}(t) := f(\gamma(t)), \hat{\gamma}''(t) := \nabla_{\hat{\gamma}'(t)}\hat{\gamma}'(t) \).

Proof. Let \((U, V)\) be another admissible coordinate system. Then \(U_u(p) \neq 0 \) holds. Moreover,

\[
\langle f_{uu}, \nu \rangle = -\langle f_u, \nu_u \rangle = -U_u \langle f_U, U_u \nu_U + V_u \nu_V \rangle = -U^2 \langle f_U, \nu_U \rangle - U_u V_u \langle f_U, \nu_V \rangle
\]

holds at \(p \), where \(\nu_u = \nabla_{\partial_u} \nu \). Since

\[
\langle f_U, \nu_V \rangle = -\langle f_U V, \nu \rangle = -\langle f_{UV}, \nu \rangle = \langle f_V, \nu_U \rangle = 0,
\]

we have that

\[
\frac{\langle f_{uu}, \nu \rangle}{|f_u|^2} = -\frac{U^2}{U_u^2} \frac{\langle f_U, \nu_U \rangle}{|f_U|^2} = \frac{\langle f_{UV}, \nu \rangle}{|f_U|^2}
\]

at \(p \), which proves the first assertion. Take a coordinate system \((x, y)\) at \(p \) so that \(f_y(\gamma(t)) = 0 \) and \(|f_x(\gamma(t))| = 1 \) for all \(t \) \((\partial_x := \partial/\partial x \) does not necessarily point to the singular direction\). Then \((1.4)\) implies the continuity of the limiting normal curvature, that is, it holds that

\[
\lim_{t \to 0} \kappa_\nu(\gamma(t)) = \kappa_\nu(\gamma(0)).
\]

Now fix \(t \neq 0 \). Since \(\gamma(t) \) is a singular point of the first kind, we can take another coordinate system \((u, v)\) centered at \(\gamma(t) \) so that \(u \)-curve is a singular curve and \(\partial_v := \partial/\partial v \) is the null direction. Since \(f(u, 0) = \hat{\gamma}(u) \), we have that

\[
\kappa_\nu(\gamma(t)) = \frac{\langle \hat{\gamma}''(t), \nu(\gamma(t)) \rangle}{|\hat{\gamma}'(t)|^2}
\]

for \(t \neq 0 \). Then \((1.2)\) follows from \((1.4)\) and \((1.5)\). □
Remark 1.8. When \(p \) is a cuspidal edge, the limiting normal curvature is initially defined in [11]. Our definition is a generalization of it for non-degenerate singular points, which can be checked by comparing [12] and the original definition in [11]. Recently, Nuño-Ballesteros and the first author [8] defined a notion of umbilic curvature \(\kappa_u \) for corank one singular points in the Euclidean 3-space \(E^3 \). We remark that the unsigned limiting normal curvature \(\kappa_u := |\kappa_v| \) coincides with \(\kappa_u \) for cuspidal edges, see [9] for details.

Example 1.9. Consider a swallowtail

\[
f(u, v) = \left(u^4 - 4u^2v, u^3 - 3uv, \frac{v^2}{2} - v \right) + (u^2 - 2v)^2(a, b, 0) \quad (a, b \in \mathbb{R})
\]

in \(E^3 \). Then the singular set is \(\{ v = 0 \} \) and we can take a unit normal vector

\[
\nu(u, v) = \frac{\left(3, -8u, -4(3(-1 + a)u^2 - 8bu^3 - 6av + 16buv) \right)}{\sqrt{9 + 64u^2 + 16(3(-1 + a)u^2 - 8bu^3 - 6av + 16buv)^2}}.
\]

Since \(f_u(0, 0) = 0 \) holds by (1.1), the limiting normal curvature at \((0, 0) \) is

\[
\frac{\langle f_{uu}(0, 0), \nu(0, 0) \rangle}{\langle f_u(0, 0), f_v(0, 0) \rangle} = 8a.
\]

On the other hand, the limiting normal curvature on \(\tilde{\gamma}(u) = f(u, 0), u \neq 0 \) is

\[
\frac{\langle \tilde{\gamma}''(u), \nu(u, 0) \rangle}{|\tilde{\gamma}'(u)|^2} = 8a - \frac{64b}{3}u + O(u^2),
\]

where \(O(u^2) \) is the higher order term with respect to \(u^2 \).

Example 1.10. Consider a cone \(f(u, v) := (v \cos u, v \sin u, v^2 + v) \). Then the set of singular points is \(\{ v = 0 \} \), and then the limiting normal curvature at \((u, 0) \) for a normal vector

\[
- \frac{(1 + 2v) \cos u, (1 + 2v) \sin u, -1)}{\sqrt{(1 + 2v)^2 + 1}}
\]

is \(1/\sqrt{2} \).

We now prove Theorem A in the introduction.

(Proof of Theorem A) Let \(\nu \) be the Gauss map of \(f \). Take an admissible coordinate system \((u, v)\) at a given co-rank one singular point \(p \). By (1.3), \(f_u(p) \) is perpendicular to \(\nu_u(p) \). Since \(p \) is of co-rank one, \(f_u(p) \neq 0 \). \(p \) is a singular point of \(\nu \) if and only if \(\nu_u(p) \) is proportional to \(\nu_v(p) \). Since \(f \) is a front, \(\nu_v(p) \neq 0 \). Thus, \(p \) is a singular point of \(\nu \) if and only if \(f_u(p) \) is perpendicular to \(\nu_v(p) \), namely \(\kappa_v(p) \) is equal to zero.

We denote by \(S^3 \) the unit 3-sphere. For a front \(f : \Sigma^2 \to S^3 \), its unit normal vector field can be considered as a map \(\nu : \Sigma^2 \to S^3 \). We call this the Gauss map of \(f \). Using a modification of the above proof of Theorem A, we get the following:

Proposition 1.11. Let \(f : \Sigma^2 \to S^3 \) be a front, and \(p \in \Sigma^2 \) a co-rank one singular point. Then the Gauss map \(\nu : \Sigma^2 \to S^3 \) of \(f \) has a singularity at \(p \) if and only if the limiting normal curvature \(\kappa_v(p) \) is equal to zero.
The hyperbolic space
\[H^3 := \{(t, x, y, z) \in \mathbb{R}^4_1 : t^2 - x^2 - y^2 - z^2 = 1, \ t > 0\} \]
of constant curvature -1 can be considered as a hyperboloid in the Lorentz-Minkowski 4-space \mathbb{R}^4_1. For fronts $f : \Sigma^2 \to H^3$, its unit normal vector fields can be considered as the Gauss map $\nu : \Sigma^2 \to S^3_1$, where
\[S^3_1 := \{(t, x, y, z) \in \mathbb{R}^4_1 : t^2 - x^2 - y^2 - z^2 = -1, \} \]
is the de Sitter space. We also get the following:

Proposition 1.12. Let $f : \Sigma^2 \to H^3$ be a front, and $p \in \Sigma^2$ a co-rank one singular point. Then its Gauss map $\nu : \Sigma^2 \to S^3_1$ of f has a singularity at p if and only if the limiting normal curvature $\kappa_\nu(p)$ is equal to zero.

We now return to the general situation. Let $f : \Sigma^2 \to (M^3, g)$ be a frontal. Suppose that p is of the first kind. Let $\kappa(t) = |\gamma''(t)|$ be the curvature function of $\gamma := f \circ \gamma$ in M^3, where t is the arclength parameter of γ. Then $\kappa_\nu = \langle \gamma''(t), \nu \rangle$ gives the normal part of $\gamma''(t)$. On the other hand, we set
\[
\kappa_s := \text{sgn}(d\lambda(\eta)) \det_g \left(\langle \gamma'(t), \gamma''(t), \nu(\gamma(t)) \rangle \right)
\]
which is called the singular curvature, where $\eta(t)$ is a null vector field along γ such that $\{\gamma', \eta\}$ is compatible to the orientation of Σ^2, and $\text{sgn}(d\lambda(\eta))$ is the sign of the function $d\lambda(\eta)$ at p. Since κ_s gives the tangential component of $\gamma''(s)$, it holds that
\[
\kappa'' = \kappa_s^2 + \kappa_{\nu'}^2.
\]
When p is a cuspidal edge, the singular curvature is defined in [11]. In this case, it was shown in [11] that κ_s depends only on the first fundamental form (i.e. it is intrinsic) and we can prove the following assertion as an application of [11].

Fact 1.13. Let p be a non-degenerate singular point of the first kind of a frontal f. If the Gaussian curvature function K is bounded near p, then the limiting normal curvature κ_ν vanishes at p.

Proof. In the first paragraph of [11] Theorem 3.1, it was stated that the second fundamental form of a frontal f vanishes at non-degenerate singular points if K is bounded. In fact, the proof there needed only that f is a frontal. By [11], κ_ν is a coefficient of the second fundamental form, and must vanish.

Fact 1.13 strongly suggests the existence of an intrinsic invariant related to the behavior of the Gaussian curvature, as a product of terms that are each individually not intrinsic. This is our motivation for introducing the ‘product curvature’.

For a non-degenerate singular point p of the first kind, the derivatives of the limiting normal curvature and the singular curvature with respect to the arclength parameter t of $\gamma(t) = f(\gamma(t))$
\[
\kappa_\nu'(p) := \left. \frac{d\kappa_\nu(t)}{dt} \right|_{t=0}, \quad \kappa_s'(p) := \left. \frac{d\kappa_s(t)}{dt} \right|_{t=0},
\]
where $\gamma(t)$ is the singular curve such that $p = \gamma(0)$, are called the derivate limiting normal curvature and the derivate singular curvature, respectively, which will be useful in the following sections,
2. Cuspidal curvature

Let \(\sigma(t) \) be a curve in the Euclidean plane \(\mathbb{E}^2 \) and suppose that \(t = 0 \) is a 3/2-cusp. Then the cuspidal curvature of the 3/2-cusp is given by (cf. [13] and [15])

\[
(2.1) \quad \tau := \frac{\text{det}(\sigma''(0), \sigma'''(0))}{|\sigma''(0)|^{3/2}}.
\]

In [15], the following formula was shown

\[
(2.2) \quad \tau = 2\sqrt{2} \lim_{t \to 0} \sqrt{|s(t)|} \kappa(t), \quad s(t) := \int_0^t |\sigma'(t)|dt,
\]

where \(\kappa(t) \) is the curvature function of \(\sigma(t) \).

Let \(p \) be a non-degenerate singular point of the first kind of a frontal \(f \), and \(\gamma(t) \) a singular curve such that \(\gamma(0) = p \). Let \(\eta \) be a non-vanishing vector field defined on a neighborhood of \(p \) such that \(\eta \) points to the null direction along \(\gamma \), which is called an extended null vector field. We set

\[
(2.3) \quad f_\eta := df(\eta), \quad f_{\eta\eta} := \nabla_\eta f_\eta, \quad f_{\eta\eta\eta} := \nabla_\eta f_{\eta\eta}.
\]

By definition, \(f_\eta \) vanishes along \(\gamma \). Let \((u,v)\) be an admissible coordinate system at \(p \). Since \(\partial_u \) and \(\eta \) are linearly independent at \(p \), we may consider \(\lambda \) in Definition 1.1 as \(\lambda = \text{det}_g(f_u, f_\eta, \nu) \). Since \(\lambda = 0 \) along \(\gamma \), the non-degeneracy of \(p \) yields that \((2.3) \) \(0 \neq \lambda_\eta = \text{det}_g(f_u, f_{\eta\eta}, \nu) \), namely, \(f_u \) and \(f_{\eta\eta} \) are linearly independent at the non-degenerate singular point. Define the exterior product \(\times_g \) so that

\[
(a \times_g b, c) = \text{det}_g(a, b, c)
\]

holds for each \(a, b, c \in T_p M^3 (q \in M^3) \). Since \(\hat{\gamma}'(t) \) is proportional to \(f_u \), \(\hat{\gamma}'(t) \times_g f_{\eta\eta}(\gamma(t)) \) does not vanish. Then we define the cuspidal curvature for singular points of the first kind as

\[
(2.4) \quad \kappa_\epsilon(t) := \frac{|\hat{\gamma}'(t)|^{3/2} \text{det}_g(\hat{\gamma}'(t), f_{\eta\eta}(\gamma(t)), f_{\eta\eta\eta}(\gamma(t)))}{|\hat{\gamma}'(t) \times_g f_{\eta\eta\eta}(\gamma(t))|^{5/2}},
\]

where \(\hat{\gamma} = f(\gamma(t)) \) and \(\eta \) is chosen so that \(\{\partial_u, \eta\} \) consists of a positively oriented frame on \(\Sigma^2 \). If \(t \) is the arclength parameter of \(\hat{\gamma} \), then

\[
\kappa_\epsilon'(p) := \frac{d\kappa_\epsilon(t)}{dt} \bigg|_{t=0}
\]

is called the derivate cuspidal curvature.

Proposition 2.1. Let \(f \) be a front in \(\mathbb{E}^3 \) and \(p \) a cuspidal edge, and let \(\gamma(t) \) be the singular curve such that \(\gamma(0) = p \). Then the intersection of the image of \(f \) and a plane \(P \) passing through \(f(p) \) perpendicular to \(\hat{\gamma}'(0) \) consists of a 3/2-cusp \(\sigma \) on \(P \). Then \(\kappa_\epsilon(0) \) coincides with the cuspidal curvature of \(\sigma \) at \(p \).

Proof. Without loss of generality we may assume that \(p = (0,0) \) and \(f(p) \) is the origin. We denote by \(\Gamma \) the intersection of the image of \(f \) and the plane \(P \) as in the statement. Let \((u,v)\) be an admissible coordinate system. Then we have that

\[
\Gamma = \left\{ f(u,v) : \langle f(u,v), f_u(0,0) \rangle = 0 \right\}.
\]
Since \(f_u(0, 0) \neq 0 \), by applying the implicit function theorem for \(\langle f(u, v), f_u(0, 0) \rangle = 0 \), there exists a \(C^\infty \)-function \(u = u(v) \) such that
\[
\langle f(u(v), v), f_u(0, 0) \rangle = 0 \quad \text{and} \quad u(0) = 0,
\]
and
\[
\sigma(t) := f(u(t), t)
\]
gives a parametrization of the set \(\Gamma \). Differentiating \((2.5)\), we have that
\[
\langle u'(v) f_u(u(v), v) + f_v(u(v), v), f_u(0, 0) \rangle = 0,
\]
where \(u' := du/dv \). Since \(f_v(0, 0) = 0 \), we have that
\[
u'(0) = 0.
\]
Differentiating \((2.7)\) again, one can get
\[
u''(0) = -\frac{\langle f_u(0, 0), f_v(0, 0) \rangle}{\langle f_u(0, 0), f_u(0, 0) \rangle}.
\]
On the other hand, differentiating \((2.6)\), \((2.8)\) yields that
\[
\sigma'(0) = 0,
\]
\[
\sigma''(0) = f_v(0, 0) + f_u(0, 0)u''(0),
\]
\[
\sigma'''(0) = f_vv(0, 0) + 3f_u(0, 0)u''(0) + f_u(0, 0)u'''(0),
\]
which imply that
\[
\det(f_u(p), \sigma''(0), \sigma'''(0)) = \det(f_u(p), f_vv(p), f_u(0, 0) + 3f_u(0, 0)u''(0))
\]
\[
= \det(f_u(p), f_vv(p), f_u(0, 0) + 3u''(0)\det(f_u(p), f_v(p), f_u(p))).
\]
Since \(p \) is not a cross cap, \(\det(f_u(p), f_vv(p), f_u(p)) \) vanishes by the well-known Whitney’s criterion of cross caps [18 Page 161 (b)]. Thus, we get the identity
\[
\det(f_u(p), \sigma''(0), \sigma'''(0)) = \det(f_u(p), f_vv(p), f_u(p)).
\]
By \((2.10)\) and \((2.9)\), we have that
\[
|\sigma''(0)|^2 = \langle f_vv(p), f_u(p) \rangle - \frac{\langle f_vv(p), f_u(p) \rangle^2}{\langle f_u(p), f_u(p) \rangle} = \frac{|f_u(p) \times f_vv(p)|^2}{|f_u(p)|^2}.
\]
By \((2.11)\), \((2.4)\), \((2.11)\) and \((2.12)\), we get the assertion. \(\square \)

Remark 2.2. In [9], a normal form of a cuspidal edge singular point in \(E^3 \) was given, and its proof can be applied to a given non-degenerate singular point \(p \) of the first kind without any modification. So there exists a local coordinate system \((u, v) \) at \(p \) such that
\[
f(u, v) = \left(u, \frac{a(u)u^2 + v^2}{2}, \frac{b_0(u)u^2 + b_2(u)uv^2}{2} + \frac{b_3(u, v)v^3}{6} \right),
\]
where \(a, b_0, b_2 \) and \(b_3 \) are \(C^\infty \)-functions. It holds that
\[
\kappa_u(p) = a(0), \quad \kappa_v(p) = b_0(0), \quad \kappa_v(p) = b_3(0, 0).
\]
Moreover, we have that
\[
\kappa'_u(p) = b_0(0)b_2(0) + 3a'(0),
\]
\[
\kappa'_v(p) = -a(0)b_2(0) + 3b'_0(0), \quad \kappa'_v(p) = (b_3)_u(0, 0).
\]
In particular, since κ_s is intrinsic, so is κ'_s, which gives a geometric meaning for the coefficient $a'(0)$. On the other hand,

$$k_t(p) := b_2(0), \quad k_i(p) := 3b'_0(0),$$
called the \textit{cusp-directional torsion} and the \textit{edge inflectional curvature}, are investigated in [9].

\textbf{Definition 2.3.} Let p be a point of Σ^2, and $(\mathcal{U}; u, v)$ a coordinate neighborhood centered at p. We set $u = r \cos \theta$ and $v = r \sin \theta$, that is, (r, θ) is the polar coordinate system. A continuous function φ defined on an open dense subset O of \mathcal{U} is called \textit{rationally bounded} at p if there exists a 2π-periodic continuous function $\lambda = \lambda(\theta)$ such that

- the zero set of λ has no interior points,
- there exists $\varepsilon > 0$ such that the function $\lambda \varphi$ is a restriction of a continuous function ψ defined on $\{(r, \theta); 0 \leq r < \varepsilon, 0 \leq \theta \leq 2\pi\}$.

Moreover, if there exists a constant c such that $\psi(0, \theta) = c\lambda(\theta)$ for $\theta \in [0, 2\pi]$, then the function φ is called \textit{rationally continuous} at p.

By definition, continuity implies rational continuity, and rational continuity implies rational boundedness. For example, for $a \in \mathbb{R} \setminus \{0\}$ and $k \geq 2$, we set

$$f(u, v) := (u, v^2, v^3 + au^k).$$

Then its Gaussian curvature function is given by

$$K(u, v) = 3ak(k - 1)\frac{u^{k-2}}{v} + O(1).$$

Hence K is rationally bounded (resp. rationally continuous) if $k \geq 3$ (resp. $k \geq 4$).

\textbf{Remark 2.4.} The above definitions of rational boundedness and continuity do not depend on the choice of local coordinate systems. In fact, it is a special case of the following definition: Let p be a point of n-manifold M and $\pi : \hat{M}_p \to M$ the blowing up of M at p. Let S be a subset of M. A function $\varphi : S \to \mathbb{R}$ is called \textit{rationally bounded} if there exist a neighborhood \mathcal{U} of p and a continuous function $\lambda : \pi^{-1}(\mathcal{U}) \to \mathbb{R}$ such that

- $\mathcal{U} \cap S$ is an open dense subset of \mathcal{U},
- the zero set of the restriction of λ into $\pi^{-1}(p)$ has no interior points in $\pi^{-1}(p)$,
- there exists a continuous function ψ on $\pi^{-1}(\mathcal{U})$ such that $(\varphi \circ \pi) \lambda$ is the restriction of ψ.

Moreover, if there exists a constant c such that $\psi = c\lambda$ holds on $\pi^{-1}(p)$, then φ is called \textit{rationally continuous}.

\textbf{Definition 2.5.} An admissible coordinate system (u, v) at a singular point p of the first kind of a frontal f is called \textit{adapted} if it satisfies the following properties along the u-axis

(a) $|f_u| = 1$,
(b) $f_v = 0$, in particular, the singular set coincide with the u-axis,
(c) $\{f_u, f_{vv}, \nu\}$ is an orthonormal basis which is compatible with respect to the orientation of M^3.
The existence of adapted coordinate system was shown in [11, Lemma 3.2]. (In fact, the proof of [11, Lemma 3.2] does not use the assumption that f is a front.) Since $\langle f_{uv}, \nu \rangle = -\langle f_{u}, \nu \rangle = 0$ along the u-axis, (c) is equivalent to the condition that $\langle f_{u}, f_{vv} \rangle = (f_{u}, f_{v})_{v} = 0$ and $\langle f_{vv}, f_{vv} \rangle = \frac{1}{2} (f_{v}, f_{v})_{vv} = 1$ along the u-axis up to an orientation. So the definition of adapted coordinate system depends only on the first fundamental form of f. If (U, V) be another adapted coordinate system at p, then it holds that $V_{\nu}(p) = \pm 1$.

We fix an adapted coordinate system (u, v) of a frontal $f : \Sigma^{2} \to M^{3}$. Then $f_{1} := f_{u}$ and $f_{2} := f_{v}$ give smooth vector fields around the origin of the (u, v)-plane. We now set

$$
\hat{g}_{ij} := \langle f_{i}, f_{j} \rangle, \quad \hat{h}_{ij} := -\langle f_{i}, \nu \rangle (i, j = 1, 2),
$$

where $\nu_{1} := \nu_{u}$ and $\nu_{2} := \nu_{v}$. Then the mean curvature function H of f is given by

$$
H = \frac{\hat{g}_{11} \hat{h}_{22} - 2 v \hat{g}_{12} \hat{h}_{21} + v \hat{g}_{22} \hat{h}_{11}}{2 v (\hat{g}_{11} \hat{g}_{22} - (\hat{g}_{12})^{2})},
$$

namely $\hat{H} := v H$ is a C^{∞}-function of u, v such that $\hat{H} = \frac{1}{2} \hat{g}_{11} \hat{h}_{22} + O(v)$, where $O(v)$ is the higher order term with respect to v. By definition, $f_{2}(u, 0) = f_{vv}(u, 0)$. Then by (a) and (c) we have $\hat{g}_{11}(u, 0) = \hat{g}_{22}(u, 0) = 1$. Differentiating $f_{u} = v \varphi$ ($\varphi := f_{2}$), we have that

$$
f_{uv} = \varphi + v \varphi_{v}, \quad f_{vv} = 2 \varphi_{v} + v \varphi_{vv}.
$$

By (c) $\nu = f_{u} \times g f_{vv}$ holds at $(u, 0)$. Then we have

$$
\kappa_{c} = \det g(f_{u}, f_{vv}, f_{vv}) = \langle \nu, f_{vv} \rangle = 2 \langle \nu, \varphi_{v} \rangle = -2 \langle \nu, \varphi \rangle = 2 \hat{h}_{22}
$$

along the u-axis. So it holds that

$$
4 \hat{H}(u, 0) = \kappa_{c}(u) = \kappa_{c}(p) + u \kappa'_{c}(p) + O(u^{2}),
$$

which yields the following assertion:

Proposition 2.6. Let p be a singular point of the first kind of a frontal f. Then the mean curvature function H is bounded at p if and only if κ_{c} vanishes on a neighborhood of p in the singular set (cf. [11, Corollary 3.5]). Moreover, H is rationally bounded (resp. rationally continuous) if and only if $\kappa_{c}(p) = 0$ (resp. $\kappa'_{c}(p) = 0$).

Next, we discuss on the Gaussian curvature K, which is given by

$$
K := \frac{\hat{h}_{11} \hat{h}_{22} - \epsilon \hat{h}_{21}^{2}}{v (\hat{g}_{11} \hat{g}_{22} - \hat{g}_{12}^{2})}.
$$

In particular, $\hat{K} := v K$ is a C^{∞}-function of u, v. Since $\kappa_{\nu}(u, 0) = \hat{h}_{11}(u, 0)$, we have that

$$
2 \hat{K}(u, 0) = \kappa_{11}(u) = \kappa_{11}(p) + \kappa'_{11}(p) u + O(u^{2}),
$$

where

$$
\kappa_{11}(u) := \kappa_{\nu}(u) \kappa_{c}(u) \quad \text{and} \quad \kappa'_{11}(p) := \kappa'_{\nu}(p) \kappa_{c}(p) + \kappa_{\nu}(p) \kappa'_{c}(p).
$$

We call κ_{11} and κ'_{11} the product curvature and the derive product curvature, respectively. Since the adapted coordinate system is intrinsic, we get the following.
Theorem 2.7. The two curvatures κ_Π and κ'_Π are both intrinsic invariants\(^1\). Moreover, the Gaussian curvature K is rationally bounded (resp. rationally continuous) if and only if $\kappa_\Pi = 0$ (resp. $\kappa_\Pi = \kappa'_\Pi = 0$) holds at p. Furthermore, K is bounded on a neighborhood U of p if and only if κ_Π vanishes along the singular curve in U.

By [11, Corollary 3.5], $\kappa_c(p) \neq 0$ holds if p is a cuspidal edge. In fact, the following lemma holds.

Lemma 2.8. Let f be a frontal and p a singular point of the first kind. Then κ_c is proportional to ψ_{ccr} on the singular set.

Proof. On an adapted coordinate system, $\kappa_c = \det g(f_u, f_{vv}, f_{vvv})(u,0)$. On the other hand, since $f_v(u,0) = 0$ holds, $f_{uv}(u,0) = 0$. Thus it holds that

$$\psi_{ccr}(u) = \det g(f_u, f_{vv}, f_{vvv})(u,0) = \det g(f_u, f_{uv} \times g f_{vv}, f_u \times g f_{vvv})(u,0).$$

Hence the assertion holds. Here, note that the tensor fields $\det g$ and \langle , \rangle are parallel with respect to ∇. □

Corollary 2.9. Let p be a cuspidal edge. Then K is rationally bounded (resp. rationally continuous) near p if and only if $\kappa_\nu = 0$ (resp. $\kappa'_\nu = 0$) holds at p.

Remark 2.10. In [11], it was pointed out that the Gaussian curvature of a front f takes opposite signs on the left and right hand sides of the singular curve if $\kappa_\nu \neq 0$. This follows immediately from the formula $vK = \frac{1}{2} \kappa_\Pi + O(u,v)$.

By Lemma 2.8 and Fact 1.3 (3), if p is a cuspidal cross cap, then $\kappa_c(p) = 0$ and $\kappa'_c(p) \neq 0$ hold. So we have:

Corollary 2.11. Let p be a cuspidal cross cap. Then K is rationally bounded. Moreover it is rationally continuous around p if and only if $\kappa_\nu(p) = 0$.

In Theorem B, the assumption that f is a front is crucial. The Gaussian curvature of the following cuspidal cross cap is rationally bounded but $\kappa_\nu \neq 0$ holds.

Example 2.12. Let us consider a cuspidal cross cap defined by

$$f(u,v) = (u, v^2, uv^3 + u^2).$$

Then

$$\nu(u,v) = \frac{1}{\sqrt{4 + 4(2u + v^3)^2 + 9u^2v^2}} \left(-2(2u + v^3), 3uv, 2 \right)$$

gives a unit normal vector. By a direct calculation, one can see that $\kappa_\nu(0,0) = 2$ and the Gaussian curvature K is

$$K(u,v) = \frac{12(2u - 3v^3)}{v \left(4 + 16u^2 + 9u^2v^2 + 16uv^3 + 4v^6 \right)^2}.$$

This is rationally bounded around $(0,0)$.

\(^1\) This might be considered as a variant of Gauss’ Theorema Egregium.
Remark 2.13. If the ambient space is E^3, we can take the normal form as in Remark 2.2. Then the C^∞-function $K := vK(u,v)$ satisfies

$$2\bar{K} = \kappa_{II} + \kappa_{II} u - v \left(2(b_2)^2 + \frac{\kappa_2^2}{2} - \frac{8(b_3)_{\nu} \kappa_{II}}{3}\right) + O(u^2 + v^2).$$

If p is a cuspidal edge and $K \geq 0$ near p, then $\kappa_{II} = 0$ and thus $0 \leq 4K = -4b_2^2 - \kappa_2^2$ holds. So we have $\kappa_2 \leq 0$, which reproves the second assertion of [11, Theorem 3.1] in the special case that the ambient space is E^3.

Remark 2.14. It is well-known that the Gaussian curvature K is the product of two principal curvatures λ_1 and λ_2 which is an intrinsic invariant of surfaces, although principal curvatures are not. So one can expect that there might exist a suitable modification of the shape operator along the cuspidal edge singularities so that its eigenvalues are equal to κ_ν and κ_c. In fact, we can accomplish to give such a modification of the shape operator using the adapted coordinate system as follows: We fix a frontal f in (M^3, g). Let (u,v) be an adapted coordinate system centered at a non-degenerate singular point p of the first kind. We denote by ν_p^\perp the subspace of $T_p M^3$ which is orthogonal to the unit normal vector $\nu(p)$ at p. Take an orthonormal basis $\{e_1, e_2\}$ of ν_p^\perp and define a matrix

$$A_p := -\begin{pmatrix} \langle u, e_1 \rangle & \langle u, e_2 \rangle \\ \langle v, e_1 \rangle & \langle v, e_2 \rangle \end{pmatrix}.$$

Then the eigenvalues of A_p do not depend on a choice of $\{e_1, e_2\}$. So we may set $e_1 := f_u$ and $e_2 := f_v$. Then one can easily check that e_1, e_2 are eigenvectors, and the eigenvalues of A_p are equal to $\kappa_\nu(p)$ and $\kappa_c(p)/2$ respectively, using (1.5) and (2.3).

It is classically known that regular surfaces in E^3 admit non-trivial isometric deformations, and it might be interesting to discuss on the existence of such deformations at cuspidal edge singularities: Let $\xi(s)$ ($|s| < 1$) be a regular curve on the unit sphere $S^2(\subset E^3)$ with the arclength parameter s, and let $a(s)$ ($|s| < 1$) be a positive valued function. Then

$$f_{a,\xi}(u,v) := \left(\int_0^u a(s) \xi(s) \, ds \right) + v\xi(u)$$

gives a developable surface with singularities on u-axis. Then [24] yields $\kappa_c = -2\mu_g/\sqrt{a}$, where μ_g is the geodesic curvature of the spherical curve ξ. As pointed out in [4], moving ξ so that μ_g varies, we get an isometric deformation of $f_{a,\xi}$ so that κ_c changes. Thus κ_c is not an intrinsic invariant. Unfortunately, this method cannot produce any isometric deformations of cuspidal edges changing κ_ν, since any ruled cuspidal edges have vanishing limiting normal curvature. So the following problem seems interesting:

Problem. *Do there exist isometric deformations of an arbitrarily given cuspidal edge in E^3 which change κ_ν?*

3. **Singularities of the second kind.**

We fix a frontal $f : \Sigma^2 \rightarrow M^3$. Let $p \in \Sigma^2$ be a non-degenerate singular point of the second kind.
Definition 3.1. A local coordinate system \((u, v)\) at \(p = (0, 0)\) is called adapted at \(p\) if it is compatible with respect to the orientation of \(\Sigma^2\), and the following conditions holds.

(i) \(f_u(p) = 0\),
(ii) the \(u\)-axis gives a singular curve,
(iii) \(|f_u(p)| = 1\).

Let \((U, V)\) be another adapted coordinate system, then the condition \(f_u(p) = 0\) and \((\text{iii})\) yield that
\[
V_v(p) = \pm 1.
\]

We fix an adapted coordinate system \((u, v)\) at \(p = (0, 0)\) and take a null vector field \(\eta\) along the \(u\)-axis. Then there exists a smooth function \(\varepsilon = \varepsilon(u)\) such that
\[
\eta = \partial_u + \varepsilon(u) \partial_v \quad (\varepsilon(0) = 0).
\]

We can extend this \(\eta\) as a vector field defined on a neighborhood of the origin. Since \(f_\eta = f_u + \varepsilon(u)f_v\) vanishes on the \(u\)-axis, there exists a \(C^\infty\)-function \(\psi\) such that \(f_\eta(u, v) = \psi\psi_0(u, v)\). Since \(f_u(0, 0) = f_\eta(0, 0) = \psi\psi_0(0, 0)\), we have that \(\psi(0, 0) = f_{uv}(0, 0)\). Since \(\lambda(u, 0) = 0\), the non-degeneracy of \(p\) yields that
\[
0 \neq \lambda_v = \det g(f_{uv}, f_v, \nu) = \det g(\psi, f_u, \nu)
\]
at \(p\), which implies that \(\psi(0, 0) \neq 0\). We now set
\[
g_{ij} := \langle f_{u_i}, f_{u_j} \rangle, \quad h_{ij} := -\langle f_{u_i}, \nu_{u_j} \rangle \quad (i, j = 1, 2),
\]
where \(u_1 = u\) and \(u_2 = v\). Then it holds that
\[
g_{11} = \langle \psi \varepsilon - f_v, \nu \varepsilon f_v \rangle, \quad g_{12} = \langle \psi \varepsilon f_v, f_v \rangle, \quad g_{22} = \langle f_v, f_v \rangle,
\]
which yields that
\[
g_{11}g_{22} - (g_{12})^2 = v^2(\langle \psi \varepsilon f_v, \nu \varepsilon f_v \rangle - \langle \psi f_v, \nu f_v \rangle)^2 = v^2 \det f_v \times \nu f_v.
\]

On the other hand,
\[
\langle f_u + \varepsilon f_v, \nu_{u_i} \rangle = \langle f_\eta, \nu_{u_i} \rangle = v \langle \psi, \nu_{u_i} \rangle \quad (i = 1, 2)
\]
holds, namely, we have
\[
-h_{11} - \varepsilon h_{12} = v \langle \psi, \nu_u \rangle, \quad -h_{12} - \varepsilon h_{22} = v \langle \psi, \nu_v \rangle.
\]
So we have that
\[
h_{12} = -v \langle \psi, \nu_v \rangle - \varepsilon h_{22}, \quad h_{11} = -v \langle \psi, \nu_u \rangle + v \langle \psi, \nu_v \rangle + \varepsilon^2 h_{22}.
\]
Since the mean curvature \(H\) of \(f\) is expressed as
\[
2vH = \frac{g_{11}h_{22} - 2g_{12}h_{12} + g_{22}h_{11}}{g_{11}g_{22} - (g_{12})^2}
\]
then \(\hat{H} := vH\) is a \(C^\infty\)-function of \(u, v\). So we can expand
\[
2\hat{H}(u, 0) = \kappa_H(p) + \kappa'_H(p)u + O(u^2).
\]
Thus, \(H\) is rationally bounded (resp. rationally continuous) if and only if \(\kappa_H(p) = 0\) (resp. \(\kappa_H(p) = \kappa'_H(p) = 0\)). By (3.1), \(\kappa_H(p)\) is a geometric invariant, but \(\kappa'_H(p)\)
In particular, the product curvature
\[\kappa_H(p) = \frac{-\langle \psi(p), \nu_u(p) \rangle}{|\psi(p) \times g f_v(p)|^2} = -\frac{\langle f_{uv}(p), \nu_u(p) \rangle}{|f_{uv}(p) \times g f_v(p)|^2}. \]

The right hand side of (3.2) is independent of the choice of an adapted coordinate system.

Like as in the case of the mean curvature, \(\tilde{K} := vK \) is a \(C^\infty \)-function of \(u, v \) satisfying
\[\tilde{K}(u, 0) = \tilde{H}(u, 0) \frac{h_{22}(u, 0)}{| f_v(u, 0) |^2} = \tilde{H}(u, 0) \kappa_v(u) \]
because of (1.1), where \(\kappa_v(u) \) is the limiting normal curvature defined in Section 1 (see Proposition 1.7), where \(K \) is the Gaussian curvature of \(f \). Then we have
\[\tilde{K}(u, 0) = \tilde{H}(u, 0) \left(\kappa_v(p) + \kappa_p(u) + O(u^2) \right), \]

Since \(\kappa_p(u) = d\kappa_v(u, 0)/du \) depends on the parameter \(u \), we consider the co-vector
\[\omega_v(p) := \kappa_p'(u)du \in T^*_p \Sigma^2 \]
instead, which does not depend on the choice of a parameter of the singular curve \(\gamma \). In [11, Corollary 3.5], it is proved that \(\tilde{H}(0, 0) \neq 0 \) when \(f \) is a front, that is, \(\kappa_H(p) \) does not vanish. By (3.3), we get the following:

Theorem 3.2. Let \(f \) be a front and \(p \) its non-degenerate singular point of the second kind. Then the Gaussian curvature \(K \) is rationally bounded (resp. rationally continuous) if and only if \(\kappa_v(p) = 0 \) (resp. \(\kappa_v(p) = 0 \) and \(\omega_v(p) = 0 \)). Moreover, \(K \) is bounded on a neighborhood \(U \) of \(p \) if and only \(\kappa_v \) vanishes along the singular curve in \(U \).

Definition 3.3. An adapted coordinate system \((u, v) \) at \(p \) is called strongly adapted if \(f_{uv} \) is perpendicular to \(f_v \) at \(p \).

Lemma 3.4. A strongly adapted coordinate system exists at \(p \).

Proof. For an adapted coordinate system \((u, v) \), the new coordinate system \((U, V) \) defined by \(U = u \) and \(V = u - \langle f_{uv}(p), f_v(p) \rangle_{uv} \), gives a strongly adapted coordinate system. \(\square \)

Theorem 3.5. Let \(f \) be a frontal and \(p \) its non-degenerate singular point of the second kind, and let \(\gamma(t) \) be the singular curve such that \(\gamma(0) = p \). If \(\gamma(t) \) \(t \neq 0 \) is a singular point of the first kind, then it holds that
\[\kappa_H(p) = \lim_{t \to 0} \frac{\kappa_v(\gamma(t))}{2|\kappa_v(\gamma(t))|^{1/2}}. \]

In particular, the product curvature \(\kappa_H(\gamma(t)) \) does not converge to \(\kappa_v(p)\kappa_H(p) (= \tilde{K}(0, 0)) \).

Proof. Let \((u, v) \) be a strongly adapted coordinate system and take the null vector field as \(\eta = \partial_u + \varepsilon(u)\partial_v \), where \(\varepsilon(u) \neq 0 \) for \(u \neq 0 \) and \(\varepsilon(0) = 0 \). Since \(\psi(p) = f_{uv}(p) \) is perpendicular to \(f_v(p) \), (3.2) reduces to
\[\kappa_H(p) = \frac{\langle \psi, \nu_u(p) \rangle}{|\psi|^2}. \]
By [11] Page 501, we have that
\[\lim_{u \to 0} |\varepsilon(u)\kappa_s(u)| = |\det_g(f_v(p), f_{uv}(p), \nu)| = |\det_g(f_v(p), \psi, \nu)| = |\psi|. \]

On the other hand, we have that
\[f_{\eta \eta} = \psi_{\eta \eta} = \psi_{\eta \eta} v_{\eta} + \psi v_{\eta \eta}. \]

Since \(v_{\eta} = v_{u} + \varepsilon v_{v} = \varepsilon \), we have that
\[f_{\eta \eta}(u, 0) = \psi_{\varepsilon} + \psi v_{\eta \eta}. \]

Since \(\xi := f_v(u, 0) \) is proportional to \(f_u(u, 0) \) (resp. orthogonal to \(\psi \)), (2.4) reduces to
\[\kappa_c = \frac{|\det_g(\xi, \psi, 2\psi_{\varepsilon})|}{|\psi_{\varepsilon}|^5/2} = 2\frac{|\det_g(\xi, \psi, \psi_{\eta})|}{\sqrt{|\varepsilon| |\psi|^3/2}} = \frac{2}{\sqrt{|\varepsilon|}} \]
along \(\gamma(u) = (u, 0) \). Thus it holds that (cf. [2.4])
\[\lim_{t \to 0} \frac{\kappa_c(\gamma(t))}{|\kappa_c(\gamma(t))|^{1/2}} = \frac{\lim_{t \to 0} \sqrt{|\varepsilon(u)|\kappa_c(u)}}{\lim_{t \to 0} |\varepsilon(u)\kappa_s(u)|} = 2\kappa_H(p), \]
which proves the assertion. \(\square \)

We now assume that \(p \) is a swallowtail singularity of \(f \). Then \(f_{uu}(p) = -\varepsilon'(0)f_v(p) \) and by Fact [13] (2), \(\varepsilon'(0) \neq 0 \), it holds that \(\tilde{\gamma}''(0) \neq 0 \).

Proposition 3.6. Let \(f : \Sigma^2 \to E^3 \) be a front, and \(p \in \Sigma^2 \) a swallowtail singularity. Then the following identity holds
\[(\tau_s :=) 2\sqrt{2} \lim_{t \to 0} \sqrt{|t| |\kappa_s(\gamma(t))|} = \frac{|\det(\tilde{\gamma}''(0), \tilde{\gamma}'''(0), \nu)|}{|\tilde{\gamma}''(0)|^{5/2}}, \]
where \(t \) is the arclength parameter of \(\tilde{\gamma} \). We call \(\tau_s \) the limiting singular curvature at \(p \). As a consequence, \(\tau_s \) is an intrinsic invariant.

Remark that \(\kappa_s \) diverges to \(-\infty \) at a swallowtail ([11] Corollary 1.14]), only the absolute value of \(\tau_s \) is meaningful.

Proof. Take a strongly adapted coordinate system \((U; (u, v)) \) and let \(t = t(u) \) be the arclength parameter of \(\tilde{\gamma} = f(u, 0) \). Since the tensor fields \(\det_g \) and \(\langle \cdot, \cdot \rangle \) are parallel, we have
\[\lim_{u \to 0} \frac{\det_g(\tilde{\gamma}', \tilde{\gamma}'', \nu(\gamma))}{u^2} = \lim_{u \to 0} \frac{\det_g(\tilde{\gamma}', \tilde{\gamma}'', \nu(\gamma))'}{2} = \lim_{u \to 0} \frac{\det_g(\tilde{\gamma}', \tilde{\gamma}'', \nu(\gamma))'}{2} + \det_g(\tilde{\gamma}', \tilde{\gamma}'', \nu(\gamma)'). \]

and
\[\lim_{u \to 0} \frac{\langle \tilde{\gamma}', \tilde{\gamma}' \rangle}{u^2} = \lim_{u \to 0} \frac{\langle \tilde{\gamma}', \tilde{\gamma}' \rangle'}{2} = \langle \tilde{\gamma}', \tilde{\gamma}' \rangle_{u=0}. \]

Since \(|\kappa_s(u)| = |\det_g(\tilde{\gamma}'(u), \tilde{\gamma}''(u), \nu(\gamma(u)))| |\tilde{\gamma}'(u)|^{-3} \), we have
\[\lim_{u \to 0} \frac{|u||\kappa_s(u)|}{|\tilde{\gamma}'|^3} = \lim_{u \to 0} \frac{\det_g(\tilde{\gamma}', \tilde{\gamma}'', \nu(\gamma))}{|u|^2 |\tilde{\gamma}'|^3} = \frac{\det_g(\tilde{\gamma}', \tilde{\gamma}'', \nu(\gamma))}{2 |\tilde{\gamma}'|^3} \]
On the other hand,
\[\lim_{u \to 0} \frac{t(u)}{u^2} = \lim_{u \to 0} \frac{|\dot{\gamma}'(u)|}{2u} = \frac{|\dot{\gamma}''(0)|}{2} \]
holds. Thus we have
\[\lim_{u \to 0} \frac{\sqrt{|t(u)|}}{|u|} = \frac{\sqrt{|\dot{\gamma}''(0)|}}{\sqrt{2}}. \]
Hence
\[2\sqrt{2} \lim_{t \to 0} \sqrt{|t||\kappa_s(t)|} = 2\sqrt{2} \lim_{u \to 0} \frac{|\det g(\dot{\gamma}', \dot{\gamma}'', \nu(\gamma))(u)|}{u^2} \frac{\sqrt{|t|}}{u} \frac{|\dot{\gamma}'(u)|^3}{u^3} \]
\[= 2\sqrt{2} \frac{|\det g(\dot{\gamma}'', \dot{\gamma}'''(0), \nu(\gamma))|}{2} \frac{|\dot{\gamma}''(0)|}{|\dot{\gamma}''(0)|^3/2} \bigg|_{u=0} \]
proves the assertion.

Proposition 3.7. Let \(f : \Sigma^2 \to \mathbf{E}^3 \) be a front, and \(p \in \Sigma^2 \) a swallowtail singularity. Let \(P \) be the tangential plane of \(f \) at \(f(p) \) (that is, the plane passing through \(f(p) \) which is orthogonal to \(\nu(p) \)), and \(\sigma \) the orthogonal projection of \(\dot{\gamma} := f \circ \gamma \) to the plane \(P \). Then \(\tau_s \) coincides with the absolute value of cuspidal curvature of the curve \(\sigma \) in the plane \(P \).

Proof. Take a strongly adapted coordinate \((U; (u, v))\). Then it holds that \(\sigma(u) = \dot{\gamma}(u) - \langle \dot{\gamma}(u), \nu(p) \rangle \nu(p) \). Then since \(|\nu(p)| = 1 \), the absolute value of cuspidal curvature of \(\sigma \) is
\[\frac{|\det(\dot{\gamma}''(0), \dot{\gamma}'''(0), \nu(p))|}{|\sigma''(0)|^{5/2}}. \]
Since \(\dot{\gamma}''(u) = f_{uu}(u, 0) \) and \(f_u(p) = 0 \), we have \(\langle f_{uu}(p), \nu(p) \rangle = -\langle f_u(p), \nu_u(p) \rangle = 0 \). Thus \(|\sigma''(p)| = |\dot{\gamma}''(p)| \) holds. Hence we have the assertion. \(\square \)

Using Theorem 3.3, we then set
\[\tau_c := \sqrt{|\tau_s||\kappa_H(p)|} = \frac{2\sqrt{2}}{\sqrt{2}} \lim_{t \to 0} \sqrt{|t|^{1/4} \kappa_c(\gamma(t))}, \]
where \(t \) is the arclength parameter of \(\gamma \), and call it the *limiting cuspidal curvature*. Noticing (1.1), we have the following.

Corollary 3.8. If \(f \) be a front and \(p \) is a swallowtail, then the following identity holds:
\[\sqrt{|\tau_s||\kappa_H(p)|} = \kappa_c(p)\tau_c. \]
In particular, the right hand side is intrinsic.

Example 3.9. Consider a swallowtail
\[f(u, v) = \left(u^4 - 4u^2v, u^3 - 3uv, \frac{u^2}{2} - v \right) + (u^2 - 2v)^2(a, b, 0) \quad (a, b \in \mathbf{R}) \]
in \(\mathbf{E}^3 \). Then we have
\[2\dot{H}(u, 0) = -\frac{8}{9} + O(u^2), \]
\[\dot{K}(u, 0) = -\frac{64a}{9} + \frac{512b}{27}u + O(u^2) \]
and
\[
\kappa_c(u) = \frac{-16}{3\sqrt{3}u} + O(u^{3/2}), \quad \kappa_s(u) = \frac{-3}{u} - 8b + O(u).
\]
Moreover, we have \(\tau_s = \lim_{t \to 0} \sqrt{t||\kappa_s(t)||} = 6\), since the arclength \(t(u)\) of \(f(u, 0)\) is \(t(u) = u^2/2 + O(u^3)\). On the other hand, the absolute value of the cuspidal curvature of \(\sigma(u) = (u^3(1 + bu), u^2/2)\) in the \(yz\)-plane is 6. Thus the limiting cuspidal curvature \(\tau_c\) is \(-8\sqrt{6}/9\).

Acknowledgements. The third and the fourth authors thank Toshizumi Fukui for fruitful discussions at Saitama University. By his suggestion, we get the new definition of rational boundedness and continuity. The second author thanks Shyuichi Izumiya for fruitful discussions.

References

[1] F. S. Dias and F. Tari, On the geometry of the cross-cap in the Minkowski 3-space, preprint, 2012. Available from www2.icmc.usp.br/~faridtari/Papers/DiasTari.pdf.
[2] T. Fukui and M. Hasegawa, Fronts of Whitney umbrella—a differential geometric approach via blowing up, J. Singul., 4 (2012), 35–67.
[3] T. Fukui and M. Hasegawa, Height functions on Whitney umbrellas, to appear in RIMS Kôkyûroku Bessatsu, 38 (2013).
[4] R. Garcia, C. Gutierrez, and J. Sotomayor, Lines of principal curvature around umbilics and Whitney umbrellas, Tohoku Math. J., 52 (2000), 163–172.
[5] S. Fujimori, K. Saji, M. Umehara and K. Yamada, Singularities of maximal surfaces, Math. Z., 259 (2008), 827–848.
[6] M. Hasegawa, A. Houda, K. Naokawa, M. Umehara, and K. Yamada, Intrinsic invariants of cross caps, to appear in Selecta Mathematica, arXiv:1207.3853v2.
[7] M. Kokubu, W. Rossman, K. Saji, M. Umehara, and K. Yamada, Singularities of flat fronts in hyperbolic 3-space, Pacific J. Math., 221 (2005), 303–351.
[8] L. F. Martins and J. J. Nuño-Ballesteros, Contact properties of surfaces in \(\mathbb{R}^3\) with corank 1 singularities, preprint, 2012. Available from www.uv.es/nano/Preprints/Nuño-Martins.pdf.
[9] L. F. Martins and K. Saji, Geometric invariants of cuspidal edges, preprint, 2013. Available from www.ibilce.unesp.br/Home/Departamentos/Mate\mbox{m}atica/Singularidades/martins-saji-geometric.pdf.

[10] R. Oset Sinha and F. Tari, Projections of surfaces in \mathbb{R}^4 to \mathbb{R}^3 and the geometry of their singular images, preprint, 2012. Available from www2.icmc.usp.br/~faridtari/Papers/OsetTariSingularSurfaces.pdf.

[11] K. Saji, M. Umehara, and K. Yamada, The geometry of fronts, Ann. of Math., 169 (2009), 491–529.

[12] K. Saji, M. Umehara, and K. Yamada, A_k singularities of wave fronts, Math. Proc. Cambridge Philos. Soc., 146 (2009), 731–746.

[13] K. Saji, M. Umehara, and K. Yamada, The duality between singular points and inflection points on wave fronts, Osaka J. Math. 47 (2010), 591–607.

[14] K. Saji, M. Umehara and K. Yamada, Coherent tangent bundles and Gauss-Bonnet formulas for wave fronts, Journal of Geometric Analysis (2012) 22:383-409. DOI 10.1007/s12220-010-9193-5.

[15] S. Shiba and M. Umehara, The behavior of curvature functions at cusps and inflection points, Diff. Geom. Appl., 30 (2012), 285–299.

[16] F. Tari, On pairs of geometric foliations on a cross-cap, Tohoku Math. J., 59 (2007), 233–258.

[17] J. West, The differential geometry of the cross-cap, Ph. D. thesis, Liverpool Univ. 1995.

[18] H. Whitney, The general type of singularity of a set of $2n-1$ smooth functions of n variables, Duke Math. J., 10 (1943), 161–172.

(Martins) Departamento de Matemática, IBILCE - UNESP R. Cristovão Colombo, 2265, CEP 15054-000, São José do Rio Preto, SP, Brazil

E-mail address: lmartins@ibilce.unesp.br

(Saji) Department of Mathematics, Faculty of Science, Kobe University, Rokko, Kobe 657-8501

E-mail address: saji@math.kobe-u.ac.jp

(Umehara) Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Tokyo 152-8552, Japan

E-mail address: umehara@is.titech.ac.jp

(Yamada) Department of Mathematics, Tokyo Institute of Technology, Tokyo 152-8551, Japan

E-mail address: kotaro@math.titech.ac.jp