Case Report

Autoimmune glomerulonephritis in a multiple sclerosis patient after cladribine treatment

Kristina Schönfelder, Helene Schuh, Frederick Pfister, Julia Krämer, Ute Eisenberger, Jelena Skuljic, Jana Hackert, Tobias Ruck, Steffen Pfeuffer, Michael Fleischer, Anja Gäckler, Tim Hagenacker, Andreas Kribben, Sven G Meuth, Christoph Kleinschnitz and Refik Pul

Abstract

Background: Oral cladribine is an approved disease-modifying drug for the treatment of relapsing multiple sclerosis. In controlled clinical trials as well as in post marketing safety assessments, autoimmune conditions have not yet been reported as a specific side effect of cladribine.

Objective and Results: Here, we report a case of anti-glomerular basement membrane antibody-mediated glomerulonephritis that occurred shortly after the fourth cladribine treatment cycle.

Conclusion: Neurologists should be attentive to the development of secondary autoimmunity in cladribine-treated patients.

Keywords: Relapsing multiple sclerosis, cladribine tablets, adverse event, secondary autoimmunity, anti-glomerular basement membrane antibodies, thrombocytopenia, autoimmune hepatitis

Date received: 19 October 2020; revised: 20 February 2021; accepted: 3 April 2021.

Introduction

In Germany, cladribine tablets (CT; Cladribine, Merck, Darmstadt, Germany; Mavenclad®) are approved for the treatment of relapsing multiple sclerosis (RMS) since 2017. As an adenosine deaminase–resistant purine nucleoside, it selectively depletes T and B cells since these cells exhibit a high intracellular ratio of deoxycytidine kinase to deoxynucleotidase.1 Following treatment, T and B cells gradually deplete, reaching a nadir at month 4 and 2, respectively.2 Although the exact mechanisms remain elusive, the subsequent repopulation that results in altered immune properties probably relates to the therapeutic efficacy of cladribine.3 An increase of naïve B cell and M2 macrophage with a reduction of memory B and T cell counts has been reported at 2 years after treatment initiation.4 Autoimmune conditions have been reported neither in the pivotal studies (CLARITY, CLARITY Extension, ONWARD, ORACLE) nor in the PREMIERE registry or in the periodic safety update reports.5-9 Here, we present the first case of secondary autoimmunity in a multiple sclerosis (MS) patient under treatment with CT.

Case report

In a 44-year-old female patient with RMS, CT treatment course (year 1) was commenced in June 2018 (first cycle) after a spinal relapse (Figure 1(a)). Apart from migraine and arterial hypertension, the patient had no other comorbidities. As concomitant medication, she was taking fampridine 10 mg BID and amiodipine 5 mg QD. She was treated with interferon β-1a from June 2006 to March 2015 and with teriflunomide from March 2015 to June 2018. Prior to CT treatment, teriflunomide was washed out with colestyramine 3 × 8 g daily for 11 consecutive days. In year 2, the first CT cycle was started in June 2019 and the second one had been postponed because of a dental root infection, which was treated endodontically and with amoxicillin (Figure 1(c)). Two relapses occurred during year 1 requiring intravenous steroid administration (Figure 1(a)). Several adverse events such as increased tiredness and folliculitis occurred upon cladribine treatment (Figure 1(e)). In November 2019, the patient presented with fever and pollakisuria. Pyelonephritis associated with acute kidney injury (AKI) was suspected (Figure 1(a) and (b)). Despite ciprofloxacin treatment, the patient developed acute...
Figure 1. Overview about disease-related and immunological parameters upon cladribine treatment. (a) Decrease of hemoglobin (Hb; min. value 4.7 g/dL) and thrombocytes (min. value 13 platelets/nL) while serum creatinine values were increasing. Haptoglobin levels were constantly <0.01 g/L and increased in May 2020 to 0.35 g/L (data not shown). (b) Increase of C-reactive protein (CRP) was associated with hemolytic anemia, thrombocytopenia, and renal failure. Increase of leukocytes and neutrophils occurred after steroid administration followed by a decrease to 240 neutrophils per µL necessitating the application of granulocyte colony stimulating factor. (c) Increase of liver enzymes after the fourth cladribine course. GOT: aspartate aminotransferase; GPT: alanine aminotransferase; GGT: gamma-glutamyl transferase. (a)–(c) A base-10 log scale is used for the Y axis. (d) Lymphocyte and T cell subset (total CD3+ cells, CD3+ CD4+, CD3+ CD8+, and CD3+ HLADR+ subsets) pharmacodynamics reveal a distinct decrease of lymphocytes following the third cladribine cycle. The slight drop and subsequent increase of lymphocyte count shortly after the first week of cladribine treatment in year 1 and 2 is associated with steroid treatments due to multiple sclerosis relapse. (e) Despite B cell counts close to zero, high levels of anti-glomerular basement membrane (GBM) antibodies were detected which decreased with plasma exchange therapy. (f) Proportional representation of immune cell subsets. Treatment courses, relapses, and treatment for anti-GBM glomerulonephritis are shown in (a) and (d). The chronology of adverse events is illustrated in (e).
renal failure with oliguria, edema, and hypertension after 10 days, leading to hospitalization and eventually to hemodialysis. Kidney biopsy revealed a necrotizing glomerulonephritis with anti-glomerular basement membrane (GBM) antibodies (Figure 2). Anti-GBM antibodies were also detected in the serum with ≥ 680 U/mL (Figure 1(e)). Steroid pulse therapy and plasmapheresis were initiated. Three weeks later, the patient developed bicytopenia with severe thrombocytopenia (18,000/µL) and a Coombs negative hemolytic anemia (Figure 1(a)). Bone marrow biopsy was without pathological findings. Laboratory examinations for Epstein–Barr virus, hantavirus, influenza (A and B), respiratory syncytial virus, cytomegalovirus, and HIV were negative. Because of distinct anemia, the patient received a total of six blood transfusions and seven erythropoietin injections (4000–8000 IE). Laboratory tests for heparin-induced thrombocytopenia and thrombotic thrombocytopenic purpura were negative. Liver enzymes were elevated (Figure 1(e)), and we detected anti-mitochondrial M2 antibodies at a low titer with 22 IU/mL being compatible with autoimmune hepatitis. In January 2020, filgrastim was injected since neutrophil count declined to 240 cells per µL. Complement factor I was profoundly decreased with 1 µg/mL (normal range, 18–48 µg/mL) indicating increased complement activation. Genetic analyses did not unveil any mutation within the complement system. In order to reduce complement activation, treatment with eculizumab was commenced in December 2019. Hemolysis and thrombocytopenia resolved, but the patient remained dialysis dependent (Figure 1(a)).

Discussion

In anti-GBM glomerulonephritis, circulating autoantibodies raised toward the noncollagenous domain of the α_3 chain of type IV collagen (α_3IVnc) cause rapidly progressive glomerulonephritis and often result in end-stage renal failure, as it was the case in our patient. The α_3IVnc is sequestered within hexamers formed from cross-linked α_3/α_5 and α_4/α_5 heterodimers. It is suggested that disruption of the GBM exposes epitopes of the α_3 chain eliciting the induction of directly pathogenic autoantibodies. Anti-GBM disease is a rare autoimmune disorder with an incidence estimated at one patient per million population. In our patient, we did not identify any preceding infection of the urinary tract or the kidney that might have represented the above-mentioned trigger. Only the fact that cladribine is eliminated by the kidneys might suggest nephrotoxicity. Ultrastructural changes in the glomeruli of the kidney of white Wistar rats following cladribine treatment have been reported. However, this study did not find any disruption of the anti-glomerular basement membrane. Since no case of nephrotoxicity in humans has been
eliminated through apoptosis.15 Whether the distinct
tolerance in the bone marrow, but after that, they acquire
cladribine treatment. Indeed, several autoreactive B
active B cells that were under control prior to
immunity may depend on an existing pool of autore-
One can speculate that the rapid generation of auto-
dampens the idea of a random coincidence, but also
penia, and later on autoimmune hepatitis and neutro-
diseases (Coombs negative hemolysis, thrombocyto-
nephritis, our patient developed further autoimmune
tolerance. Of note, besides the anti-GBM glomerulo-
was a rapid spontaneous proliferation of autoreactive
erentially driven by self-antigens or whether there
was a rapid spontaneous proliferation of autoreactive
cells following treatment in year 2. The latter mecha-
nism seems to require stimulation by endogenous
peptide/MHC, but under conditions of severe lympho-
the factor that conferred susceptibility was lympho-
immunity; however, it is not the only condition linked to the
development of autoimmune diseases.14 It remains
speculative whether cladribine treatment in the first
year led to the development of autoreactive cells by slow
lymphopenia-induced proliferation that is pre-
entially driven by self-antigens or whether there
reported to date at dosages used for MS, this etiology
seems unlikely. There are several lines of evidence
to suggest that T cells may have a role in anti-GBM
disease. For example, in CD4+ and CD8+ knockout
animals, the disease cannot be activated in an experi-
mental setting.12 There is a strong association with
polymorphisms of HLA class II genes, particularly
with HLA-DRB1*1501.10 Using transgenic mice, it has
been shown that disease susceptibility is conferred
by HLA-DRB1*1501 and, thus, by CD4+
cells.13 However, our patient was negative for HLA-
DRB1*1501 excluding at least any implication of this
haplotype in the current context. We suppose that the
tory between activated (CD3+ HLA-DR+) and
non-activated (CD3+ HLA-DR−) T cells suggesting
this might have caused an imbalance in disfavor of
regulatory T cells resulting in decreased immune
tolerance. Of note, besides the anti-GBM glomerulo-
nephritis, our patient developed further autoimmune
diseases (Coombs negative hemolysis, thrombocyto-
penia, and later on autoimmune hepatitis and neutro-
penia; Figure 1(a) and (c)) and this fact not only
dampens the idea of a random coincidence, but also
points toward the generation of autoreactive B cells.
One can speculate that the rapid generation of auto-
immunity may depend on an existing pool of autore-
active B cells that were under control prior to
cladribine treatment. Indeed, several autoreactive B
cells can escape from the “central tolerance” selec-
tion in the bone marrow, but after that, they acquire
tolerance in the periphery by T regulatory cells or are
eliminated through apoptosis.15 Whether the distinct
lymphopenia in our patient is tantamount to a break-
down of this “peripheral tolerance” and, if at all, suf-
cient enough to induce autoimmunity remains open.
Recent studies stress the importance of additional
factors like interleukin-7 or transforming growth
factor \(\beta \) as a sort of “second hit” for the induction of
autoimmunity.11 We here report a case about devel-
oped autoimmunity associated with cladribine treat-
ment. Further cases will shed light on its true
incidence. Early detection is critical to prevent seri-
ous consequences. Thus, neurologists should be
attentive to the development of secondary autoim-
unity in cladribine-treated patients.

\textbf{Declaration of Conflicting Interests}

The author(s) declared the following potential con-
flicts of interest with respect to the research, author-
ship, and/or publication of this article: Outside the
submitted work, some of the authors received hono-
raria for lectures, travel grants, or research grants.
K.S. declares that there is no conflict of interest; H.S.
declares that there is no conflict of interest; F.P.
declares that there is no conflict of interest; J.K.
received honoraria for lecturing from Biogen,
Novartis, Genzyme, Merck, Mylan, and Teva, and
financial research support from Sanofi Genzyme and
Novartis; U.E. received honoraria for lecturing and/
or travel expenses from Astellas, Biotest, Chiesi,
Novartis, Teva, and Otsuka; J.S. declares that there is
no conflict of interest; J.H. received honoraria for
lectures and travel grants from Celgene, Merck,
Novartis, Roche, and Sanofi Genzyme; T.R. received
grants from German Ministry of Education, Science,
Research and Technology, grants and personal fees
from Sanofi-Genzyme and Alexion, personal fees
from Biogen, Roche, and Teva, personal fees and
nonfinancial support from Merck Serono (outside the
submitted work); S.P. received travel grants from
Sanofi Genzyme and Merck Serono, lecturing hono-
raria from Sanofi Genzyme, Mylan Healthcare, and
Biogen, and research support from Diamed, Merck
Serono, and the German Multiple Sclerosis Society
Northrhine-Westphalia; M.F. declares that there is no
conflict of interest; A.G. has received honoraria from
Ablynx/Sanofi, Alexion, and Novartis; T.H. received
honoraria for lectures and advisory board attendance
from Alexion, Roche, and Biogen; A.K. has received
research grants for clinical studies, speakers’ fees,
honoraria, and travel expenses from Alexion,
Amicus, Amgen, Astellas, Bayer Vital, Binding-Site,
Baxter, Bristol-Myers, CytoSorbents, Chiesi, Fresenius,
GlaxiSmithKline, Hexal, Janssen, Kyowa Kirin, MSD,
Neovil Biotech, Novartis, Roche, Peripal, Pfizer, Stada
Pharma, Shire, Sanofi, Teva, Vifor Fresenius Medical
Care, Otsuka Pharma; S.G.M. received honoraria for
lecturing and travel expenses for attending meetings
from Almirall, Amicus Therapeutics Germany, Bayer
Health Care, Biogen, Celgene, Diamed, Genzyme,
MedDay Pharmaceuticals, Merck Serono, Novartis,
Novo Nordisk, ONO Pharma, Roche, Sanofi-Aventis, Chugai Pharma, QuintilesIMS, and Teva. His research is funded by the German Ministry for Education and Research (BMBF), Deutsche Forschungsgemeinschaft (DFG), Else Kröner Fresenius Foundation, German Academic Exchange Service, Hertie Foundation, Interdisciplinary Center for Clinical Studies (IZKF) Muenster, German Foundation Neurology, and by Almirall, Amicus Therapeutics Germany, Biogen, Diamed, Fresenius Medical Care, Genzyme, Merck Serono, Novartis, ONO Pharma, Roche, and Teva; C.K. received honoraria for lectures and travel grants from Alexion, Bayer, Biogen, Celgene, MedDay, Merck, Mylan, Novartis, Roche, Sanofi Aventis, and TEVA; R.P. received honoraria for lectures and travel grants from Alexion, Bayer, Biogen, Celgene, MedDay, Merck, Mylan, Novartis, Roche, Sanofi Aventis, and TEVA, and received research grants from Novartis and Merck.

Funding
The author(s) received no financial support for the research, authorship, and/or publication of this article.

Patient Consent
The patient gave written informed consent to publish the clinical data and images in an anonymized form.

Reporting Adverse Events
Adverse events have been reported to the Paul-Ehrlich-Institute, an agency of the German Federal Ministry of Health, and to the manufacturer.

ORCID iD
Steffen Pfeuffer https://orcid.org/0000-0001-5171-4845

References
1. Beutler E. Cladribine (2-chlorodeoxyadenosine). *Lancet* 1992; 340: 952–956.
2. Comi G, Cook S, Giovannoni G, et al. Effect of cladribine tablets on lymphocyte reduction and repopulation dynamics in patients with relapsing multiple sclerosis. *Mult Scler Relat Disord* 2019; 29: 168–174.
3. Baker D, Pryce G, Herrod SS, et al. Potential mechanisms of action related to the efficacy and safety of cladribine. *Mult Scler Relat Disord* 2019; 30: 176–186.
4. Giovannoni G, Leist T, Soelberg-Sorensen P, et al. Increase of naïve B cells, M2 macrophages and reduction of memory B/T cells during immune repopulation at 96 weeks in CLARITY assessed by immune cell deconvolution. In: *Annual meeting of the European Committee on Treatment and Research in Multiple Sclerosis (ECTRIMS) Poster P977*, Stockholm, 11–13 September 2019.
5. Giovannoni G, Comi G, Cook S, et al. A placebo-controlled trial of oral cladribine for relapsing multiple sclerosis. *N Engl J Med* 2010; 362: 416–426.
6. Giovannoni G, Soelberg Sorensen P, Cook S, et al. Safety and efficacy of cladribine tablets in patients with relapsing-remitting multiple sclerosis: Results from the randomized extension trial of the CLARITY Study. *Mult Scler* 2018; 24(12): 1594–1604.
7. Leist TP, Comi G, Cree BA, et al. Effect of oral cladribine on time to conversion to clinically definite multiple sclerosis in patients with a first demyelinating event (ORACLE MS): A phase 3 randomised trial. *Lancet Neurol* 2014; 13(3): 257–267.
8. Cook S, Vermersch P, Comi G, et al. Safety and tolerability of cladribine tablets in multiple sclerosis: The CLARITY (CLAdRIbine Tablets treating multiple sclerosis orallyY) study. *Mult Scler* 2011; 17(5): 578–593.
9. Cook S, Leist T, Comi G, et al. Safety of cladribine tablets in the treatment of patients with multiple sclerosis: An integrated analysis. *Mult Scler Relat Disord* 2019; 29: 157–167.
10. Henderson SR and Salama AD. Diagnostic and management challenges in Goodpasture’s (anti-glomerular basement membrane) disease. *Nephrol Dial Transplant* 2018; 33: 196–202.
11. Merayo-Chalico J, Rajme-Lopez S, Barrera-Vargas A, et al. Lymphopenia and autoimmunity: A double-edged sword. *Hum Immunol* 2016; 77(10): 921–929.
12. Tipping PG, Huang XR, Qi M, et al. Crescentic glomerulonephritis in CD4- and CD8-deficient mice: Requirement for CD4 but not CD8 cells. *Am J Pathol* 1998; 152: 1541–1548.
13. Ooi JD, Chang J, O’Sullivan KM, et al. The HLA-DRB1*15:01-restricted Goodpasture’s T cell epitope induces GN. *J Am Soc Nephrol* 2013; 24(3): 419–431.
14. Zhang N and Bevan MJ. TGF-beta signaling to T cells inhibits autoimmunity during lymphopenia-driven proliferation. *Nat Immunol* 2012; 13: 667–673.
15. Tsubata T. B-cell tolerance and autoimmunity. *F1000Res* 2017; 6: 391.