THE TIP OF THE RED GIANT BRANCH DISTANCES TO TYPE IA SUPERNOVA HOST GALAXIES.

IV. COLOR DEPENDENCE AND ZERO-POINT CALIBRATION

IN SUNG JANG AND MYUNG GYoon LEE
Astronomy Program, Department of Physics and Astronomy, Seoul National University, Gwanak-gu, Seoul 151-742, Korea;
isjang@astro.snu.ac.kr, mglee@astro.snu.ac.kr
Received 2016 May 19; revised 2016 November 7; accepted 2016 November 9; published 2017 January 16

ABSTRACT

We present a revised Tip of the Red Giant Branch (TRGB) calibration, accurate to 2.7% of distance. A modified TRGB magnitude corrected for its color dependence, the QT magnitude, is introduced for better measurement of the TRGB. We determine the color–magnitude relation of the TRGB from photometry of deep images of HST/ACS fields around eight nearby galaxies. The zero-point of the TRGB at the fiducial metallicity ($\langle [\text{Fe}/\text{H}] \rangle = -1.6$) is obtained from photometry of two distance anchors, NGC 4258 (M106) and the Large Magellanic Cloud (LMC), to which precise geometric distances are known: $M_{QT,\text{TRGB}} = -4.023 \pm 0.073$ mag from NGC 4258 and $M_{QT,\text{TRGB}} = -4.004 \pm 0.096$ mag from the LMC. A weighted mean of the two zero-points is $M_{QT,\text{TRGB}} = -4.016 \pm 0.058$ mag. Quoted uncertainty is $\sim2\times$ smaller than those of previous calibrations. We compare the empirical TRGB calibration derived in this study with theoretical stellar models, finding that there are significant discrepancies, especially for red color ($\langle F606W – F814W \rangle_0 \gtrsim 2.5$). We provide the revised TRGB calibration in several magnitude systems for future studies.

Key words: galaxies: distances and redshifts – galaxies: stellar content – stars: Population II

1. INTRODUCTION

The Tip of the Red Giant Branch (TRGB) represents the brightest part of the Red Giant Branch (RGB) in the color–magnitude diagrams (CMDs) of old stellar systems such as globular clusters and halos in galaxies. It corresponds to the core-He flash point in the evolutionary stages of low-mass stars. An implication of the TRGB as a distance indicator was suggested first by Baade (1944). In his pioneering paper introducing the concept of stellar populations I and II, he investigated the red-sensitive plates of three early-type stellar systems, M32, NGC 205, and the central region (bulge) of M31, concluding that the brightest stars (RGB stars) in these three systems have similar magnitudes and colors. Sandage (1971, p. 601) pointed out that photographs of the Local Group galaxies invariably show surrounding red stars, which have similar absolute magnitudes and colors. Based on the Cepheid distances to three Local Group galaxies (M31, M33, and IC 1613), he derived a mean absolute magnitude of these brightest red stars to be $M_V = -3.0 \pm 0.2$ mag.

Mould et al. (1983, 1984) and Mould & Kristian (1986) carried out CCD photometry of four Local Group galaxies (M31, M33, NGC 147, and NGC 205) and determined the TRGB distances to them, which are not very different from previous distance estimates to M31 and M33 based on Cepheid variables. They adopted a bolometric magnitude of the TRGB ($M_{bol} \sim -3.5$ mag) given by Frogel et al. (1983). Freedman (1988b) presented CCD photometry of two fields in IC 1613. CMDs of these fields show a clear RGB population and the TRGB. Adopting the aforementioned bolometric magnitude ($M_{bol} \sim -3.5$ mag), she derived remarkably similar TRGB distances between the two fields, showing only 0.04 mag difference. Moreover, the TRGB distance from her photometry is in excellent agreement with the Cepheid distance to IC 1613 obtained by Freedman (1988a).

The feasibility of the TRGB as a robust distance indicator was established by Lee et al. (1993). They investigated empirical RGB loci of the Milky Way globular clusters (Da Costa & Armandroff 1990) and Yale theoretical stellars isochrones (Green et al. 1987), finding that the I-band magnitude of the TRGB is almost constant, with variation smaller than 0.1 mag ($M_{I,\text{TRGB}} = -4.0 \pm 0.1$) for low metallicity ($\langle [\text{Fe}/\text{H}] \rangle \lesssim -0.7$) or for ages older than 3 Gyr. Also, they applied a Sobel kernel for detecting the TRGB from the discontinuity of the I-band luminosity function. They found that a comparison of the TRGB distances to 12 Local Group galaxies with distances based on Cepheid and RR-Lyrae variables shows a good agreement, showing that the precision of the TRGB is comparable to these primary distance indicators. With the TRGB, distances to more than 300 nearby galaxies have been measured (Dalcanton et al. 2009; Freedman & Madore 2010; Radburn-Smith et al. 2011; Lee & Jang 2013, 2016; Tully et al. 2013).

In comparison with the Cepheid variables, which are a well known primary distance indicator, the TRGB has several advantages. First, the TRGB method uses Population II RGB stars. It enables us to measure distances to both early- and late-type galaxies, whereas Cepheid variables can be used only for the latter. Second, the TRGB method mainly uses RGB stars in the halo regions, where stellar densities are low and internal extinctions are negligible, while Cepheid variables are located in star-forming regions where internal extinctions are often significant. Third, the TRGB stars are non-variable stars, so that a single epoch observation is enough to obtain distances, while Cepheids require many epochs of observations. Fourth, the metallicity dependence of the I-band magnitude of the TRGB is known to be small for low metallicity (Lee et al. 1993; Rizzi et al. 2007; Bellazzini 2008; Madore et al. 2009), while the metallicity effect on the optical luminosity of Cepheids is controversial (Gerke et al. 2011).

On the other hand, the TRGB has the disadvantage that its luminosity is relatively fainter than those of the bright Cepheid variables. The absolute magnitude of the brightest Cepheid variable is estimated to be $M_V \sim -7$ mag, about 4.5 mag brighter than that of the TRGB, $M_V \sim -2.5$ mag. This
difference becomes smaller at longer wavelengths: \(\Delta \text{mag} = 3.9, 3.1, 2.6, \) and \(2.6 \text{mag} \) in \(I, J, H, \) and \(K_s \) bands, respectively (Macri et al. 2006, 2015, assuming the maximum period of Cepheid variables \((P_{\text{max}} = 100 \text{ days}) \).

Taking advantage of the TRGB, we started a project, the TRGB distances to SN host galaxies in the universe (TIPSNU), to improve luminosity calibration of SNe. Lee & Jang (2012) (Paper I) presented the TRGB distance to the nearby spiral galaxy M101 hosting SN 2011fe. Lee & Jang (2013) (Paper II) determined TRGB distances to M66 and M96 in the Leo I group hosting two SNe Ia, SN 1989B and SN 1998bu. Later, Jang & Lee (2015) (Paper III) obtained TRGB distances to two galaxies, NGC 4038/39 hosting SN 2007 sr, and NGC 5584 hosting SN 2007af. Combining the TRGB distances and optical light curves of the five SNe Ia, Jang & Lee (2015) derived a value of the Hubble constant, \(H_0 = 69.8 \pm 2.6 \pm 3.9 \text{ km s}^{-1}\text{Mpc}^{-1} \). This value is similar to those from the cosmic microwave background (Bennett et al. 2014; Planck Collaboration et al. 2016) but still agrees within errors with those of Cepheid-calibrated SNe Ia (Riess et al. 2011; Freedman et al. 2012; Riess et al. 2016). In order to make a better estimation of \(H_0 \), we need to reduce both random and systematic uncertainties.

This paper, the fourth paper of our series, aims to refine two issues in the TRGB method: a calibration of the color (metallicity)–luminosity relation and a calibration of the zero-point of the TRGB magnitude. Both calibrations are important to reduce the systematic uncertainty of the TRGB distance estimates and of the value of the Hubble constant. Previous color dependence calibrations were based on theoretical stellar models (Salaris & Cassisi 1997; Fusco et al. 2012), or on a small number of stellar systems (Milky Way globular clusters or nearby galaxies) showing a narrow RGB color range (Lee et al. 1993; Bellazzini et al. 2001, 2004; Rizzi et al. 2007; Bellazzini 2008; Madore et al. 2009). These calibrations show a significant discrepancy of the color–luminosity relation, ranging from flat to steep (as shown in Section 5).

Zero-point calibrations of the TRGB in previous studies were carried out using theoretical models (Salaris & Cassisi 1997; Fusco et al. 2012) or observational approaches (Lee et al. 1993; Ferrarese et al. 2000; Bellazzini et al. 2001, 2004; Rizzi et al. 2007; Bellazzini 2008; Tammann et al. 2008; Madore et al. 2009). Various distance indicators (RR Lyrae stars, Cepheids, eclipsing binary stars, and horizontal branch stars) have been used for this calibration. However, derived values show a non-negligible scatter with a large uncertainty, as shown in Section 5.

This paper is composed as follows. In Section 2 we describe how we derive the color (metallicity)–luminosity relation of the TRGB. Target galaxy selection criteria and data reduction methods are presented. Section 3 shows the zero-point calibration of the TRGB based on two distance anchors: NGC 4258 and the Large Magellanic Cloud (LMC). A summary of the revised TRGB calibration including various filter systems is shown in Section 4. We discuss the implications of our results in Section 5 and summarize the primary results in the final section.

2. COLOR DEPENDENCE CALIBRATION

2.1. Target Selection and Data Reduction

Optimal target galaxies and target fields for the color (metallicity) dependence calibration of the TRGB are expected to satisfy the following criteria: (1) They show a wide color range of the TRGB, covering from the metal-poor (blue) RGB stars to the metal-rich (red) RGB stars; (2) they allow a high signal-to-noise detection of RGB stars; (3) they show a dominant old RGB population; (4) they are observed with the same instrument to reduce any chance of increasing instrument-dependent uncertainties (e.g., photometric transformation uncertainties). Considering these selection criteria, we selected 14 fields around eight nearby galaxies for which Hubble Space...
Telescope (HST)/Advanced Camera for Surveys (ACS) images are available in the archive: M105 (E1), NGC 3384 (SB0), M81 (SA(s)AB), NGC 3377 (E5-6), NGC 253 (SAB(s)c), NGC 4258 (SAB(s)bc), NGC 300 (SA(s)d), and NGC 3077 (I0 pec).

These galaxies have various morphological types, from elliptical galaxies to spiral and irregular galaxies. Identifications of the HST fields in each galaxy are shown in Figure 1. These HST fields are located from the center to outer regions in the target galaxies. Note that the three fields in NGC 300 are located in the disk. Rizzi et al. (2007) used two HST/ACS fields in other positions of the NGC 300 disk for their TRGB color calibration. For this reason, we also included disk fields of NGC 300 for which deeper HST/ACS images are available. Table 1 lists a summary of HST/ACS observations of the target galaxies. Exposure times range from 1515 s to 38,500 s, long enough to detect resolved red giants. It is noted that NGC 4258 was observed with a F555W filter, while the other galaxies were observed with a F606W filter.

We obtained ACS images of the fields from the HST archive and constructed deep master drizzled images, following the procedures described in Jang & Lee (2015). In our previous studies (Lee & Jang 2012, 2013; Jang & Lee 2015), we carried out point-spread function (PSF) photometry using DAOPHOT in the IRAF package (Stetson 1987). We note, however, that most of the previous and ongoing studies for the calibration of SNe Ia (e.g., the Hubble Key Project (Freedman et al. 2001), the SN HST Project (Sandage et al. 2006), the SH0ES Project (Riess et al. 2011), and the Carnegie–Chicago Hubble Program (Beaton et al. 2016)) have been done with the standalone version of DAOPHOT (Stetson 1987). Moreover, the Optical Gravitational Lensing Experiment (OGLE) photometric data of the LMC (Ulaczyk et al. 2012), which we used in the zero-point calibration of the TRGB (see Section 3.2), is also based on the standalone version of DAOPHOT. Thus, we use this version of DAOPHOT in this study, to reduce software-dependent uncertainty as much as possible. Our previous results based on IRAF/DAOPHOT will be updated in an upcoming paper (I. S. Jang & M. G. Lee 2016, in preparation). A single-pass sequence (DAOFINF, PHOT, ALLSTAR and ALLFRAME) of PSF photometry was carried out. We used PSF images produced from isolated bright stars in each ACS field. We adopted updated photometric zero-points and aperture correction values provided by the STScI webpage.1

2.2. CMDs of Resolved Stars and the TRGB Detection

In Figure 2 ((a), (c), (e), (g), (i), (k), (m), and (o)), we display CMDs of the resolved stars in the selected regions, marked by hatched regions in Figure 1, of each galaxy. The central regions of NGC 3384 (R ≤ 3′), NGC 300 (R ≤ 0′6), and NGC 3077 (R ≤ 1′5) were discarded in the analysis because of serious crowding due to high stellar densities. The most prominent feature in all CMDs is a distinguishable RGB. The widths of the RGBs show a large variation: from narrow RGBs for low-mass galaxies (NGC 300 and NGC 3077) to broad RGBs for high-mass galaxies (M105 and M81). All CMDs show also a small population of Asymptotic Giant Branch (AGB) stars. The CMD of the disk fields in NGC 300 shows not only a strong old RGB but also the presence of red core helium-burning stars with much younger age at (F606W–F814W)_0 ≈ 1.0.

We detected the TRGB by applying the Sobel edge detection algorithm with a kernel of [−1, −2, −1, 0, +1, +2, +1] and a bin size of 0.05 mag. In order to check the color–magnitude relation of the TRGB, we divided the stars into sub-groups according to their color with a color interval of 0.3 mag. In the case of NGC 300, we used a color interval of 0.15 mag because the CMD of this galaxy contains a much larger number of blue RGB stars. Figure 2 ((b), (d), (f), (h), (j), (l), (n), and (p)) shows the TRGB detection results for the target galaxies. Edge detection responses are indicated by grayscale maps: black for strong response (sharp discontinuity in the luminosity function) and white for weak response. The TRGB magnitudes and corresponding measurement uncertainties are determined through 10,000 simulations of bootstrap resampling. Derived values and errors are listed in Table 2 and also indicated by white vertical lines in each grayscale map. All eight galaxies clearly show the color–magnitude relations of the TRGB: the TRGBs become fainter as color increases.

Madore et al. (2009) pointed out that at least 400 ~ 500 stars in the 1 mag interval below the TRGB are needed to detect the TRGB within the Poisson noise of 0.1 mag. Considering this, we set 100 RGB stars in 0.2 mag interval below the TRGB as a

1 http://www.stsci.edu/hst/acs/analysis/zeropoints
Figure 2. Left windows in each panel: foreground reddening-corrected CMDs of the resolved stars in eight galaxies used for the color-dependence calibration. High-density regions in each CMD are displayed as a density map (Hess diagram). Right windows in each panel: maps showing the strength of edge detection responses. We divided the stars in each CMD into subgroups based on their color and applied an edge detection algorithm. Dark and pale regions in each map represent strong and weak edge detection responses, respectively. Estimated TRGB magnitudes and their errors for the subgroups are marked by white vertical lines. Note that (F555W − F814W)_o colors were used for NGC 4258, while (F606W − F814W)_o colors were used for the other galaxies.
criterion for analysis. We chose a narrower range of magnitude, to use photometry with higher completeness. Then we counted the number of RGB stars in each subgroup in each galaxy to check whether they have a sufficient number of RGB stars for precise determination of the TRGB or not. Only the cases satisfying our selection criteria above, as indicated by white vertical lines in Figure 2, were used in the following analysis.

2.3. Color Transformation between $F_{555W} − F_{814W}$ and $F_{606W} − F_{814W}$

NGC 4258 is an important galaxy for calibration of both the color dependence and the zero-point, because it shows a broad range of RGB color and hosts a megamaser, which is useful for geometric distance estimation. NGC 4258 was observed with F_{555W} and F_{814W} filters. However, the other galaxies used for color dependence calibration were observed with F_{606W} and F_{814W} filters. Therefore, the color transformation between $F_{555W} − F_{814W}$ and $F_{606W} − F_{814W}$ is needed for a direct comparison. Sirianni et al. (2005) provides photometric transformations from the ACS to Johnson–Cousins systems. With these relations, F_{555W} and F_{814W} magnitudes can be converted to V and I magnitudes, respectively. Similarly, V and I magnitudes can also be converted to F_{606W} and F_{814W} magnitudes, respectively. This method enables the color transformation between the two ACS colors. However, applying the transformation twice would increase the systematic uncertainty.

In Paper III we presented F_{555W}, F_{606W}, and F_{814W} band photometry of two Milky Way globular clusters, NGC 2419 and 47 Tuc. Using the photometric catalogs of the stars in the two globular clusters obtained from our previous study, we derived a direct color transformation. We selected resolved stars in each globular cluster with the following criteria: $R ≥ 1′$ and $18.5 < F_{814W} ≤ 21.0$ mag for NGC 2419, and $R ≥ 7′$ and $19.5 < F_{814W} ≤ 22.0$ mag for 47 Tuc (see Figure 4 of Paper III). A comparison of two ACS colors from the selected stars is shown in Figure 3(a). The $F_{606W} − F_{814W}$ color ranges from 0.0 to 2.8 mag. A large scatter of NGC 2419 stars at $F_{606W} − F_{814W} ∼ 0.5$ mag is probably due to the RR Lyrae variables. The distribution of stars can be fitted well by two linear relations (blue and red solid lines) with a break at $F_{606W} − F_{814W} = 1.5$ mag:

$$\left(F_{555W} − F_{814W} \right) = \left(1.393 \pm 0.003 \right) \left(F_{606W} − F_{814W} \right) − \left(0.004 \pm 0.004 \right)$$

(1)
Figure 3. (a) Color difference between F606W – F814W and F555W – F814W as a function of F606W – F814W color for the stars in NGC 2419 (open squares) and 47 Tuc (open triangles). Blue and red solid lines show double linear fits to the observed colors: the blue stars (F606W – F814W < 1.5, blue line) and the red stars (F606W – F814W > 1.5, red line). (b) Residual F555W – F814W color after subtraction of the linear fits for the blue and the red stars. The curved line indicates 12 Gyr stellar isochrone for a metallicity of [Fe/H] = −1.4, which is a mean metallicity of the two globular clusters, provided by the Dartmouth group. The gray dashed line represents the color relation expected from the photometric transformations given in Sirianni et al. (2005), which shows a strong difference with respect to the observed stars.

for F606W – F814W ≤ 1.5 mag, and

\[(F555W – F814W) = (1.148 \pm 0.021)(F606W – F814W) + (0.336 \pm 0.035)\]

for F606W – F814W > 1.5 mag.

Figure 3(b) displays F555W – F814W color difference between the observed stars and the linear relation of the blue and the red stars (0.0 < F606W – F814W < 2.8 mag). The root mean square of stars over the entire color range (0.0 < F606W – F814W < 2.8) is 0.033 mag. We overlay a stellar isochrone for 12 Gyr age, and [Fe/H] = −1.4, which is the mean metallicity of the two globular clusters in the Dartmouth models (Dotter et al. 2008) as a curved line. We also overlay a relation from the observational transformations given in Sirianni et al. (2005) (dashed line). The theoretical model agrees very well with the observed stars. However, the relation from Sirianni et al. (2005) shows a systematic offset of ∼0.1 mag. We use double linear relations derived in this study in the following analysis.

2.4. Deriving the Color–magnitude Relation

In Figure 4, we plotted the (F606W – F814W)₀ color and F814W₀ magnitude relations of the TRGB stars in eight galaxies. The (F555W – F814W)₀ color of NGC 4258 was converted to (F606W – F814W)₀ color using the transformation described in Section 2.3. The TRGB magnitudes show a clear nonlinear relation as a function of color. We use the equation below, keeping quadratic terms for the approximation of the TRGB:

\[F814W_{\text{TRGB}} = \alpha (\text{Color}_{\text{TRGB}} - \gamma)^2 + \beta (\text{Color}_{\text{TRGB}} - \gamma) + \delta\]

where γ means a fiducial color at [Fe/H] = −1.6. In the case of the F606W – F814W combination, the value of γ corresponds to 1.1. Coefficients α and β determine the shape of the relation, and δ reflects the apparent magnitudes of the TRGB in each galaxy. Thus, the values of α and β are the same in all eight galaxies, but that of δ depends on the individual galaxy. We carried out a multi-parameter fitting for the entire color range of the TRGB bins using IDL/mlptextr to find the values of the three coefficients and listed results in Table 3. Derived values are α = 0.159 ± 0.010, β = −0.047 ± 0.020, and δ = 22.4 ± 26.2, as plotted by the solid lines in Figure 4.

We investigated the variation of α and β values depending on the selection of the TRGB color and the galaxies. When we use the TRGB color bins bluer than (F606W – F814W)₀ = 2.5 in the fit, we get α = 0.182 ± 0.025 and β = −0.070 ± 0.038 (shown as dashed lines in Figure 4), which agree well with those from the entire color bins. If we try fits for individual galaxies with the entire color bins, we obtain α = 0.063 to 0.307, β = −0.229 to 0.047 (as shown by dotted lines in the figure). The weighted means of the eight α and β values are α = 0.139 ± 0.025 and β = −0.023 ± 0.039, which are similar to the results from the same curvature parameters for all eight galaxies. All the α and β values from individual galaxies agree well, within the 1σ level, with the weighted mean values, except for the values from NGC 253; this gives α = 0.307 ± 0.084 and β = −0.229 ± 0.132, which show 2.0σ and 1.6σ differences, marginally agreeing with the weighted mean values. In the following analysis, we use α (0.159 ± 0.010) and β (−0.047 ± 0.020) values from the fit of the entire color range of the TRGB bins with the same α and β values of all eight galaxies.

We shifted the TRGB magnitudes and corresponding fit results of each galaxy along the vertical direction, to be consistent with the result from NGC 4258, and plot them in Figure 5(a). All eight galaxies show reasonable agreement. The difference between the data points and the best-fit result is shown in Figure 5(b). The root mean square of the data is estimated to be 0.031 mag, similar to the mean measurement uncertainty of the TRGB.

We computed the correction parameters α, β, and γ for several different filter systems as well. The values for the F555W – F814W combination in ACS/WFC were determined using the color transformation between F555W – F814W and F606W – F814W shown in Section 2.3. The transformation was applied to seven galaxies that were observed with the F606W and F814W filters, excluding NGC 4258. Then we carried out multi-parameter fitting as done for the F606W – F814W combination and obtained the values. In the fitting, we fixed γ = 1.6, which corresponds to [Fe/H] = −1.6. Conversion relations described in Sirianni et al. (2005) were used to obtain the parameters in three photometric systems: the F555W – F814W and F606W – F814W combinations in WFPC2, and V − I combination in the Johnson–Cousins system. Parameters for the F555W – F814W and F606W – F814W combinations in WFC3/UVIS were derived by applying the photometric transformation between ACS/
WFC to WFC3/UVIS described in Paper III. Transformation uncertainties, $0.01 \sim 0.02$ mag, were added in each calculation. The derived values are summarized in Table 6.

The color–magnitude relation of the TRGB given in Figure 5 shows two interesting properties. First, at the blue color range of $F606W - F814W \leq 1.5$ (corresponding to $F555W - F814W \leq 2.1$ and $V - I \leq 1.9$), the color–magnitude relation of the TRGB is nearly flat in $F814W$–$F606W$ CMD, which means that an additional color (metallicity) correction is not required in the TRGB measurement. If we use these blue RGB stars only in the TRGB measurement, the distance modulus can be derived directly by adding the zero-point of the TRGB in $F814W$:

$$ (m - M)_0 = F814W_{0,TRGB} + M_{F814W,TRGB} \quad (4) $$

Hereafter, we call this the blue I calibration.

Second, the red color range with $F606W - F814W > 1.5$ shows a color–magnitude dependence, so that an additional color correction should be applied for an accurate calibration of the TRGB.

We introduce the QT magnitude, a quadratic form of the TRGB magnitude corrected for the color dependence of the F814W (or I) magnitude TRGB. The QT is expressed by

$$ QT = F814W_0 - \alpha (\text{Color} - \gamma)^2 - \beta (\text{Color} - \gamma), \quad (5) $$

where $\alpha = 0.159 \pm 0.010$, $\beta = -0.047 \pm 0.020$, and $\gamma = 1.1$ in the $F606W - F814W$ filter combination in ACS/WFC. The distance modulus is obtained as

$$ (m - M)_0 = Q_{TRGB} + M_{QT,TRGB}, \quad (6) $$

where $M_{QT,TRGB}$ is the absolute magnitude of the TRGB in the QT system. This TRGB calibration is called hereafter the QT calibration. Values of $M_{F814W,TRGB}$ and $M_{QT,TRGB}$ will be addressed in the next section.

3. ZERO-POINT CALIBRATION

3.1. NGC 4258 as a Distance Anchor

NGC 4258 is known to be a useful distance anchor because it hosts a water megamaser, which can be used as a powerful and precise geometric distance indicator. By monitoring observations of the nuclear water megamaser sources in NGC 4258, several geometric distance estimates were presented by Greenhill et al. (1995), Miyoshi et al. (1995), Herrnstein et al. (1999), Humphreys et al. (2005, 2008, 2013), Argon et al. (2007), and...
Table 3

Galaxy	α	β	δ	rms
M105	0.159 ± 0.010	−0.047 ± 0.020	26.201 ± 0.012	0.024
N3384	26.124 ± 0.111	0.026		
M81	23.780 ± 0.010	0.029		
N377	26.106 ± 0.016	0.021		
N253	23.698 ± 0.010	0.035		
N4258	25.357 ± 0.011	0.035		
N300	22.433 ± 0.009	0.012		
N3077	23.852 ± 0.013	0.020		

Blue RGB stars with F606W–F814W ≤ 2.5, the same α and β values for all galaxies

Galaxy	α	β	δ	rms
M105	0.182 ± 0.025	−0.070 ± 0.038	26.203 ± 0.016	0.030
N3384	26.124 ± 0.011	0.026		
M81	23.780 ± 0.013	0.015		
N377	26.106 ± 0.016	0.021		
N253	23.698 ± 0.013	0.030		
N4258	25.362 ± 0.015	0.037		
N300	22.437 ± 0.012	0.010		
N3077	23.854 ± 0.017	0.022		

Entire color range, different α and β values for each galaxy

Galaxy	α	β	δ	rms
M105	0.106 ± 0.050	0.047 ± 0.085	26.093 ± 0.035	0.027
N3384	0.107 ± 0.052	0.024 ± 0.088	26.090 ± 0.039	0.029
M81	0.157 ± 0.050	−0.044 ± 0.070	23.782 ± 0.046	0.031
N377	0.063 ± 0.166	0.037 ± 0.235	26.199 ± 0.060	0.026
N253	0.307 ± 0.084	−0.229 ± 0.132	23.729 ± 0.042	0.034
N4258	0.116 ± 0.074	0.020 ± 0.134	25.338 ± 0.059	0.035
N300	0.249 ± 0.252	−0.164 ± 0.262	22.465 ± 0.061	0.012
N3077	0.135 ± 0.150	−0.037 ± 0.155	23.859 ± 0.042	0.020

Weighted mean

Galaxy	α	β	δ	rms
M105	0.139 ± 0.025	−0.023 ± 0.039	23.859 ± 0.042	0.020

Note.

a F606W–F814W filter combination of ACS/WFC.

Riess et al. (2016). Humphreys et al. (2013) reported a distance value of $d = 7.60 \pm 0.17 \pm 0.15$ Mpc ($M - M_0 = 29.404 \pm 0.049, \pm 0.043$), where errors with r and s represent random errors and systematic errors, respectively. This is slightly larger than the old value given by Herrnstein et al. (1999) ($d = 7.2 \pm 0.2, \pm 0.5$ Mpc), which is similar to the value used in Riess et al. (2011, 2012) ($d = 7.28 \pm 0.22$ Mpc). Most recently, Riess et al. (2016) provided a similar value with smaller systematic uncertainty, $d = 7.54 \pm 0.17, \pm 0.10, Mpc (M - M_0 = 29.387 \pm 0.049, \pm 0.029$). They performed a significantly larger Markov Chain Monte Carlo analysis than Humphreys et al. (2013), reducing the systematic uncertainty by a factor of two. We adopted the most recent distance estimate given by Riess et al. (2016) for the zero-point calibration of the TRGB in this study.

Mager et al. (2008) reported a TRGB distance to NGC 4258 based on photometry of the same HST images as used in this study. They carried out PSF photometry using two software tools, DOLPHOT (Dolphin 2000) and DAOPHOT, and derived a TRGB magnitude, $T_{TRGB} = 25.24 \pm 0.04$ from DOLPHOT photometry. It is noted that they found a ∼0.04 mag difference in the TRGB magnitude between the two data reduction methods.

We obtained a value for the TRGB magnitude in the QT system for NGC 4258 from photometry of ACS image data that

we used for the color dependence calibration (Section 2). We also performed a test similar to that of Mager et al. (2008). We performed point source photometry based on five different techniques using different software and different image types: (1) DAOPHOT/ALLFRAME run on charge transfer efficiency (CTE) corrected drizzled images (indicated by _drz.fits), (2) IRAF/DAOPHOT run on the same _drz.fits images, (3) DAOPHOT/ALLFRAME run on CTE corrected and flat-fielded images (indicated by _flc.fits), (4) DOLPHOT run on the same _flc.fits images, and (5) DOLPHOT run on CTE uncorrected and flat-fielded images (indicated by _flt.fits). We used PSF images we derived using isolated bright stars (for DAOPHOT/ALLFRAME and IRAF/DAOPHOT reductions on drizzled images) or provided by Tiny Tim (for DOLPHOT reductions). In the case of DAOPHOT/ALLFRAME photometry on individual _flc.fits images, we used PSF images constructed from the ACS images of 47 Tuc (Proposal IDs = 10737 for F555W and 10101 for F814W filters), because the number of bright stars in a single _flc.fits image of NGC 4258 is only a few. A single-pass sequence of DAOFIND-PHOT-ALLSTAR/ALLFRAME routines was applied for the IRAF/DAOPHOT and ALLFRAME reductions. DOLPHOT reductions were done using the parameter set recommended by the DOLPHOT/ACS User’s guide (version 2.0). We set the ACSuseCTE = 0 (CTE uncorrection mode) for _flc.fits and 1 (CTE correction mode) for _flt.fits in DOLPHOT reductions.

Figure 6 displays the magnitude differences between the results of the ALLFRAME (drc) reduction and those of other reductions (ALLFRAME (drc) minus the others). Comparisons of F555W band magnitudes (left panels) show small offsets. Mean offsets for the bright stars with F555W ≤ 27.0 are smaller than 0.05 mag. At the TRGB level, F555W ∼ 27.8 mag, mean offsets are estimated to be −0.004, 0.035, 0.045, and 0.060 mag for the IRAF/
Figure 6. (a)–(d) Comparisons of PSF magnitudes in F555W band between ALLFRAME on drc reduction and IRAF/DAOPHOT on drc (a), ALLFRAME on flc (b), DOLPHOT on flc (c), and DOLPHOT on flt (d) reductions of NGC 4258. Red dots and error bars represent the mean magnitude offset and its standard deviation, respectively. Mean magnitude offsets at the TRGB level (F555W ~ 28.0) are labeled in each panel. (e)–(h) Same as (a)–(d), except for F814W band. Note the mean magnitude offsets at the TRGB level (F814W ~ 25.4) are very small, $\Delta F814W \lesssim 0.02$ mag.

DAOPHOT (drc), ALLFRAME (flc), DOLPHOT (flc), and DOLPHOT (flt), respectively. Thus, three DAOPHOT reductions (ALLFRAME (drc), IRAF/DAOPHOT (drc), and ALLFRAME (flc)) agree well within 0.01 mag, but DOLPHOT reductions show ~ 0.05 mag differences. Faint stars with F555W $\gtrsim 28.0$ mag yield larger offsets, which increase as a function of magnitude. The origin of these magnitude differences is unclear. Although non-negligible offsets are detected at the faint levels (F555W $\gtrsim 28.0$), most of the RGB stars we used in the TRGB detection of NGC 4258 are brighter than F555W ~ 28.0, where mean offsets are small enough. Moreover, F555W band magnitudes are only used in the estimation of the TRGB color, which little affects the QT magnitude estimation. Comparisons of F814W band magnitudes show much better agreement. All five reductions agree well within 0.02 mag from the bright to the faint magnitude range (21.0 $\lesssim F814W \lesssim 27.5$ mag).

In Figure 7 we compare QT - (F555W - F814W)$_0$ CMDs from five different reductions. All five CMDs show strong edge detection responses at QT ~ 27.4, which clearly represents a TRGB. Precise TRGB magnitudes and uncertainties are obtained using the bootstrap method as done in Paper III: $QT_{\text{RGB}} = 25.370 \pm 0.023$, 25.356 ± 0.053, 25.375 ± 0.035, 25.379 ± 0.018, 25.383 ± 0.019 mag for ALLFRAME(drc), IRAF/DAOPHOT (drc), ALLFRAME (flc), DOLPHOT (flc), and DOLPHOT(flt), respectively. These estimations yield a mean of $QT_{\text{RGB}} = 25.373$ mag, median of $QT_{\text{RGB}} = 25.375$ mag, and standard deviation of 0.010 mag, which is very small. Thus our TRGB estimation is robust. Software-dependent uncertainties in the TRGB detection are not significant. We use the TRGB magnitude from the ALLFRAME (drc) reduction, $QT_{\text{RGB}} = 25.370 \pm 0.023$ in the following analysis.

We also determine a color dependence uncorrected TRGB magnitude, F814W$_0$.QT_{RGB}. Figure 8 shows F814W$_0$−(F555W−F814W)$_0$ CMD of NGC 4258 from the ALLFRAME (drc) reduction. We selected the blue RGB stars in the shaded region where color dependence of the TRGB is less severe ((F555W−F814W)$_0$ $\lesssim 2.1$) and plotted their edge detection response by a solid line. The edge detection response is relatively noisy compared to that from the QT CMD, but still shows a major peak at F814W$_0 = 25.357 \pm 0.031$ mag, which is the TRGB.

From the TRGB magnitudes derived in this study ($QT_{\text{RGB}} = 25.370 \pm 0.023$ mag and F814W$_0$.$QT_{\text{RGB}} = 25.357 \pm 0.031$ mag) and the distance modulus to NGC 4258 given by Riess et al. (2016), we determine the zero-points of the TRGB: $M_{QT,\text{TRGB}} = -4.017 \pm 0.067$ mag for the QT calibration and $M_{F814W,\text{TRGB}} = -4.030 \pm 0.068$ mag for the blue I calibration. Their uncertainties, 0.067 mag and 0.068 mag are obtained from the quadratic sums of individual uncertainties as summarized in Table 4: TRGB detection errors (0.023 mag and 0.031 mag), an extinction correction error (0.003 mag, 10% of F814W band extinction), a photometric zero-point error (0.020 mag), a color transformation error (0.005 mag), an F814W to QT transformation error (0.014 mag), and an NGC 4258 distance error (0.057 mag). When we use the QT calibration in the standard VI system, a
photometric transformation error (0.03 mag) is added, so that the total uncertainties are estimated to be 0.073 and 0.074 mag for the QT and the blue I calibration, respectively. Thus systematic uncertainties are dominated by the NGC 4258 distance error.

3.2. The Large Magellanic Cloud as a Distance Anchor

The LMC has been often used as a distance anchor for extragalactic distance indicators (Freedman & Madore 2010; de Grijs et al. 2014). Its distance has long been controversial, from \((m - M)_0 = 18.1 \pm 1.8\) to \((m - M)_0 = 18.8 \pm 0.1\), and it appeared to settle down with a value of \((m - M)_0 = 18.50 \pm 0.10\), after the results of the Hubble Key Project (Freedman et al. 2001) were published. However, it has been suspected that the tight correlation of the LMC distance estimates might have been affected by the publication bias or the bandwagon effect (Schaefer 2008; de Grijs et al. 2014). This problem can be resolved with more accurate distance estimates for the LMC in the future.

Recently Freedman et al. (2012) presented an updated distance estimate, \((m - M)_0 = 18.477 \pm 0.011, \pm 0.033\), accurate to 1.7\%, from the analysis of Spitzer 3.6\,\mu m photometry for 10 Cepheids in the Milky Way and 80 Cepheids in the LMC. On the other hand, Pietrzyński et al. (2013) analyzed eight eclipsing binary stars using OGLE...
photometry, and yielded a distance value with a total uncertainty of 2.2%:

\[(m - M)_0 = 18.494 \pm 0.008, \pm 0.048 \]

(\(d = 49.97 \pm 0.19, \pm 0.11 \text{ kpc} \)). These two recent estimates agree very well. We adopted the distance estimate by Pietrzyński et al. (2013) for the zero-point calibration of the TRGB, because we use OGLE photometry of the LMC for the analysis of the TRGB in this study as follows.

We measured the TRGB magnitude of the LMC using the \(VI\) photometric catalog from the OGLE-III shallow survey (Ulaczyk et al. 2012). This catalog was made using the same telescope and the same CCD camera as used for the analysis of Pietrzyński et al. (2013). It offers the advantage that any instrument-dependent uncertainties, which are hard to measure, can be ruled out in the zero-point calibration of the TRGB.

Figure 9 shows identifications of eight eclipsing binary stars used in Pietrzyński et al. (2013) (starlets) overlayed on a spatial number density map of bright RGB stars in the LMC (white cross). It is known that the distance measurement can be affected by the geometry and the depth of the LMC. For this reason, Pietrzyński et al. (2013) applied an additional geometry correction to their distance estimation. However, they concluded that the effect of this correction to the distance measurement is negligible. For the analysis of the TRGB for the LMC we selected eight fields located around the eclipsing binary stars used in Pietrzyński et al. (2013), and used the stars at \(R \leq 50'\) region around each eclipsing binary star. We investigated also two additional fields, control field 1 and 2 (pentagons), covering the eastern side of the LMC as a reference.

In Figure 10, we plot the extinction-corrected \(QT - (V - I)_0\) CMDs of eight fields around eclipsing binary stars ((a)-(h)) and two control fields (i), (j). The extinction correction was done using the extinction map of the LMC given by Haschke et al. (2011), who estimated the extinction values from the mean color of red clump stars in the OGLE-III photometry. It is noted that we used the same extinction map as applied in Pietrzyński et al. (2013). All ten CMDs show various populations of stars including young main sequence stars (a vertical feature at \((V - I)_0 \sim -0.2\)), blue and red helium-burning stars (vertical and slanted features at \((V - I)_0 \sim 0.1\) and 1.2, respectively), old RGB stars (a dominant broad slanted feature above the RGB) and AGB stars (a broad slanted feature above the RGB) in the LMC. The Milky Way foreground stars are also seen (vertical feature at

\[0.00 \quad 0.5 \quad 1.0 \quad 1.5 \quad 2.0 \quad 2.5 \quad (V - I)_0 \]
We measured the TRGB using the stars located in the shaded regions in Figure 10, which were designed to avoid young stellar populations and to sample as many RGB stars as possible. We plotted the edge detection responses as curved lines in each panel. All ten CMDs show strong peaks at $QT \sim 14.5$ mag. We obtained quantitative values of the TRGB magnitudes and corresponding errors from the bootstrap resampling of 10,000 simulations. We also obtained the color dependence uncorrected TRGB magnitude, $I_0 - (V - I)_0$, by applying the same TRGB analysis to $I_0 - (V - I)_0$ CMDs of the ten fields. Only the blue TRGB stars ($1.5 \leq (V - I)_0 \leq 1.9$) showing a weak color dependence of the TRGB were used for the detection. A summary of the QT and I_0 magnitudes of the TRGB in each field of the LMC is listed in Table 5.

Table 5

Field	R.A.	Decl.	QT^a Magnitude (Measured)	QT^a Magnitude (Distortion Corrected)	I_0^b Magnitude (Measured)	I_0^b Magnitude (Distortion Corrected)
EB1	05 25 25.550	−69 33 04.39	14.485 ± 0.010	14.489 ± 0.010	14.521 ± 0.035	14.525 ± 0.035
EB2	05 14 05.952	−69 15 56.83	14.486 ± 0.011	14.482 ± 0.011	14.522 ± 0.017	14.518 ± 0.017
EB3	05 14 01.908	−68 41 18.41	14.492 ± 0.012	14.496 ± 0.012	14.527 ± 0.025	14.531 ± 0.025
EB4	05 11 49.458	−67 05 45.19	14.459 ± 0.012	14.485 ± 0.012	14.475 ± 0.013	14.501 ± 0.013
EB5	05 10 19.650	−68 58 12.00	14.502 ± 0.014	14.498 ± 0.014	14.480 ± 0.023	14.476 ± 0.023
EB6	05 04 32.882	−69 20 50.99	14.505 ± 0.015	14.489 ± 0.015	14.580 ± 0.015	14.564 ± 0.015
EB7	04 55 51.491	−69 13 47.99	14.511 ± 0.016	14.487 ± 0.016	14.569 ± 0.016	14.565 ± 0.016
EB8	04 52 15.280	−68 19 10.30	14.524 ± 0.016	14.509 ± 0.016	14.472 ± 0.027	14.457 ± 0.027
CF1	06 04 00.000	−71 30 00.00	14.470 ± 0.030	14.485 ± 0.030	14.468 ± 0.025	14.483 ± 0.025
CF2	06 04 00.000	−69 30 00.00	14.425 ± 0.015	14.472 ± 0.015	14.472 ± 0.021	14.519 ± 0.021

Notes.

a A wide color range of the TRGB with $1.5 \leq (V - I)^b_{0,TRGB} \leq 2.5$ was used.

b The blue color range of the TRGB with $1.5 \leq (V - I)^b_{0,TRGB} \leq 1.9$ was used.

c Denotes standard deviation.

Figure 11. Comparison of the TRGB magnitudes from the fields around eclipsing binary stars (starlets) and from the control fields (pentagons) vs. galactocentric radius of the LMC. The open and filled symbols denote the TRGB magnitudes before and after geometric distortion correction, respectively. The mean TRGB magnitude of the eight eclipsing binary fields, corrected for the geometric distortion (filled stars), is estimated to be $QT = 14.490 \pm 0.004$ mag (dashed line).

Figure 12. TRGB for 4 Gyr (blue lines) and 12 Gyr (red lines) populations from the Padova (Girardi et al. 2000; Marigo et al. 2013) (solid lines) and the Dartmouth (Dotter et al. 2008) (dashed lines) models. The adopted metallicity range is $-2.3 < [\text{Fe}/\text{H}] < -0.5$. [Fe/H] = −1.0 points are marked by crosses. A gray vertical region at $(V - I) = 1.8 \sim 1.9$ indicates the mean TRGB color of the LMC. Note that the TRGB for the 4 Gyr Padova model at $(V - I) = 1.9$ is ~0.02 mag brighter than that of the 12 Gyr model, whereas those of Dartmouth models are ~0.03 mag fainter.
Figure 11 shows a comparison of the TRGB magnitudes in the QT system of eight eclipsing binary fields (starlets) and two control fields (pentagons) in the LMC. We corrected geometric distortion of the LMC by assuming the LMC disk to have an inclination angle of 28° and a position angle of 128°, as assumed in Pietrzyński et al. (2013). We plot the TRGB magnitudes before and after correction of geometric distortion in Figure 11 by open and filled symbols, respectively. The TRGB magnitudes range from $QT_{RGB} \approx 14.425$ to 14.524 mag. A weighted mean value of the TRGB magnitudes of all ten fields is $QT_{RGB} = 14.485 \pm 0.004$ mag with a standard deviation of 0.030 mag. Similar values of $QT_{RGB} = 14.491 \pm 0.004$ mag and $QT_{RGB} = 14.432 \pm 0.013$ mag are derived from the eight eclipsing binary fields and two control fields, respectively. Distortion correction contributes a very small change to the TRGB magnitudes: 0.004 mag for all ten fields, 0.043 mag for the two control fields, and 0.001 mag for the eight eclipsing binary fields. Similarly, distortion correction changes the I-band TRGB magnitude of 0.007 mag for all ten fields, 0.034 mag for the two control fields, and 0.001 mag for the eight eclipsing binary fields (Table 5). Thus geometric distortion of the LMC is not significant in the TRGB estimation in this study.

The eight eclipsing binary fields used in this study cover the bar and disk of the LMC, so that we need to check the effect of composite stellar populations in the TRGB estimation. Salaris & Girardi (2005) conducted an analysis of artificial synthesis populations based on the star formation history of the LMC derived by Holtzman et al. (1999) and showed that intermediate-age stars (\sim4 Gyr) can contaminate the RGB, resulting in inaccurate measurement of metallicity from colors by $d(\text{Fe}/\text{H}) = 0.5$ dex. They also pointed out that the metallicity difference of 0.5 dex may lead to 0.1 mag difference for the bolometric magnitude and corresponding I-band absolute magnitude of the TRGB, when they use the calibration given in Lee et al. (1993), $M_{\text{bol,TRGB}} = -0.19 [\text{Fe}/\text{H}] - 3.81$ mag. However, they did not show how much the TRGB magnitudes vary with different ages from their artificial CMD.

We compared the TRGB magnitudes for the old (12 Gyr) and the intermediate-age (4 Gyr) populations using stellar isochrones provided by the Padova (Girardi et al. 2000; Marigo et al. 2013) and Dartmouth (Dotter et al. 2008) groups and plot them in Figure 12. At the mean TRGB color of the LMC, $(V - I) = 1.8 \sim 1.9$, measured from our study, the intermediate-age population from the Padova group (blue solid line) shows 0.02 mag brighter magnitude than that of the old population (red solid line). However, that of the Dartmouth group shows an inverse trend: the intermediate-age population is 0.03 mag fainter than that of the old population. This result implies that the the effect of the intermediate-age population on the TRGB measurement is probably smaller than 0.03 mag.

The two control fields used in this study, CF1 and CF2 shown in Figure 10 (i) and (j), are located far from the LMC bar, showing no evidence of young or intermediate-age populations in the CMD. They are dominated by old halo stars. Measured QT magnitudes of these two control fields are, on average, no different from those of the other eight fields in the LMC disk and bar. The mean differences between the two control fields and the other eight fields are 0.015 mag in QT and 0.020 mag in I after geometric correction. From these results, we quote 0.02 mag as a systematic uncertainty for the mixture population of the LMC.

We adopted the distortion-corrected mean TRGB magnitude of the eight eclipsing binary fields, $QT_{RGB} = 14.490$ mag and $I_{\text{RGB}} = 14.524$, as mean values for TRGB magnitudes of the LMC. Conservative errors, 0.020 mag and 0.042 mag, which are standard deviations of these fields before distortion correction, are adopted as measurement errors. Finally we obtain the zero-points of the TRGB: $M_{QTRGB} = -4.004 \pm 0.096$ mag for the QT calibration and $M_{I_{RGB}} = -3.970 \pm 0.102$ mag for the blue I calibration. Quoted uncertainties, 0.096 mag and 0.102 mag, are derived as summarized in Table 4: TRGB detection errors (0.020 mag and 0.042 mag), an extinction correction error (0.07 mag Haschke et al. 2011; Górska et al. 2016), a photometric zero-point error (0.03 mag), the QT transformation error (0.014 mag), the intermediate-age population error (0.02 mag).
Table 7
A List of Previous and Revised TRGB Calibrations

Reference	Calibration	Zero-point $M_\text{I,TRGB}$	Note
Lee et al. (1993)	-4.0 ± 0.1	-4.0 ± 0.1	MW GCs
Salaris & Cassisi (1997)	$-3.732 + 0.588[M/H] + 0.193[M/H]^2$	-4.16	$-2.35 \leq [M/H] \leq -0.57$
Ferrarese et al. (2000)	$-4.06 \pm 0.07 \pm 0.13$	$-4.06 \pm 0.07 \pm 0.13$	Cepheids, $\gamma = 0.00$
Ferrarese et al. (2000)	$-3.99 \pm 0.07 \pm 0.13$	$-3.99 \pm 0.07 \pm 0.13$	Cepheids, $\gamma = -0.24$
Bellazzini et al. (2001)	$-3.66 + 0.48[Fe/H] + 0.14[Fe/H]^2$	-4.04 ± 0.12	$[Fe/H] = -1.7, E.B, \omega$ Cen
Bellazzini et al. (2004)	$-3.629 + 0.679[M/H] + 0.258[M/H]^2$	-4.07 ± 0.12	$[M/H] = -1.2, E.B, \omega$ Cen
Rizzi et al. (2007)	$-4.05 \pm 0.217(V - I)_0 - 1.6$	-4.05	Six galaxies
Bellazzini (2008)	$-3.939 - 0.194(V - I)_0 + 0.080(V - I)_0^2$	-4.05	RR Lyrae, LMC scale
Tammann et al. (2008)	$-4.05 \pm 0.02 \pm 0.10$	$-4.05 \pm 0.02 \pm 0.10$	T magnitude
Madore et al. (2009)	$-4.05 \pm 0.2[(V - I)_0 - 1.5]$	-4.05	F814W, model
Fusco et al. (2012)	$-3.63 - 0.40\alpha^2 + 0.08\alpha^2$	-4.13 ± 0.01	QT, NGC 4258, and the LMC
This study	$-4.016 + 0.091(V - I)_0 - 1.5^2 - 0.007(V - I)_0 - 1.5$	-4.016 ± 0.058	

Note. a Col = (F475W – F814W)$_0$.

![Figure 13](image1.png)

Figure 13. Comparison of the TRGB calibrations in the $M_I - (V - I)_0$ domain in this study and previous studies (Lee et al. 1993; Salaris & Cassisi 1997; Ferrarese et al. 2000; Rizzi et al. 2007; Bellazzini 2008; Tammann et al. 2008; Madore et al. 2009).

![Figure 14](image2.png)

Figure 14. Propagation of uncertainties in the zero-point calibration of the TRGB. Note that the previous calibration based on ω Centauri gives a zero-point uncertainty of 0.124 mag (Bellazzini et al. 2001, 2004). When NGC 4258 and LMC are used as a distance anchor, uncertainties are estimated to be 0.073 and 0.096 mag, respectively. Combining these two anchors (NGC 4258 and the LMC) provides the most accurate calibration with an uncertainty of 0.058 mag (red starlet), 53% smaller than the value given by Bellazzini et al. (2001, 2004). Individual error values are listed in Table 4.

4. SUMMARY OF THE REVISED TRGB CALIBRATION

In Table 6, we summarize the two revised TRGB calibrations, the QT and the blue I calibrations, in several photometric systems. Color dependence correction terms (α, β, and γ) in these photometric systems were determined by applying the photometric transformation as described in Section 2.4. The same method was applied to obtain the zero-point values in each photometric system. The zero-point uncertainties associated with the photometric transformation from F814W in ACS to other systems are estimated to be 0.03 mag for the I, 0.01 mag for both the F555W – F814W and F606W – F814W combinations of F814W in WFC3, 0.015 mag for the F555W – F814W combination of F814W in WFPC2, and 0.106 mag for the F606W – F814W combination of F814W in WFPC2 (Sirianni et al. 2005; Jang & Lee 2015).

Zero-points from NGC 4258 and the LMC show good agreement. A weighted mean of the zero-points from NGC 4258 and the LMC yields $M_{QT,TRGB} = -4.016 \pm 0.058$ and $M_{I,TRGB} = -4.013 \pm 0.060$ in the I-band. These values are...
similar to those given in previous calibrations, $M_{\text{TRGB}} = -4.05 \pm 0.12$ (Bellazzini et al. 2001, 2004; Rizzi et al. 2007; Madore et al. 2009), but the quoted error is two times smaller.

5. DISCUSSION

5.1. Comparison with Previous TRGB Calibrations

There have been several studies of the TRGB calibration, including both color–magnitude dependence and zero-point calibrations as summarized in Table 7. Da Costa & Armandroff (1990) provided the bolometric magnitude and bolometric correction of the TRGB as a function of metallicity and color, based on VI photometry of six globular clusters in the Milky Way. With these relations, Lee et al. (1993) estimated the absolute I-band magnitude of the TRGB, $M_{\text{TRGB}} = -4.00 \pm 0.11$ mag, for metal-poor stellar systems ([Fe/H] < -0.7). Salaris & Cassisi (1997) derived a TRGB calibration having quadratic terms of metallicity from their theoretical stellar models. The absolute I-band magnitude of the TRGB at the fiducial metallicity, [M/H] = -1.2, is estimated to be -4.16 mag, slightly brighter than that of Lee et al. (1993). This discrepancy comes from the different estimation of the TRGB bolometric luminosity by Ferrarese et al. (2000), who calibrated it from the Cepheid distance estimates of nine galaxies in the Local Group. Absolute I-band magnitudes of the TRGB, -3.99, and -4.06 mag with an uncertainty of $+0.15$ mag, were derived depending on the adoption of the metallicity dependence of the Cepheid variables ($\gamma = \delta (m - M_H)/\delta [O/H] = 0.00$ and -0.24, respectively).

Later Bellazzini et al. (2001, 2004) and Bellazzini (2008) presented another set of TRGB calibrations based on the larger sample of the Milky Way globular clusters: $M_{\text{sol,TRGB}} = -0.12[\text{Fe/H}] - 3.76$ and $M_{\text{TRGB}} = 0.14[\text{Fe/H}]^2 + 0.48[\text{Fe/H}] - 3.66$. Bellazzini et al. (2001) also presented another calibration based on ω Centauri for which a direct distance estimate based on one eclipsing binary star (Thompson et al. 2001) is available. Adopting a metallicity of $[\text{Fe/H}] = -1.7$ for ω Centauri, they derived $M_{\text{TRGB}} = -4.04 \pm 0.12$ where the error is dominated by its distance measurement error. This error has been used as a value for the systematic error for the TRGB calibration (Mager et al. 2008; Conn et al. 2011; Shappee & Stanek 2011; Lee & Jang 2012, 2013; Jang & Lee 2014, 2015).

On the other hand Rizzi et al. (2007) provided a linear color dependence of the TRGB from the analysis of HST photometry data for six nearby galaxies: $M_{\text{TRGB}} = -4.05 + 0.217 (V - I)_0 - 1.6$. They constrained the zero-point by using five Local Group galaxies, whose distances are obtained from the horizontal branch stars. Adopting the calibration of the horizontal branch stars given by Carretta et al. (2000), they derived a zero-point value, -4.05 ± 0.02 mag at a fiducial color, $(V - I)_0 = 1.6$ (corresponding to $[\text{Fe/H}] = -1.5$). The systematic error of this value is mainly due to the uncertainty in the mean absolute magnitude of the horizontal branch stars, which is ~ 0.1 mag (Carretta et al. 2000).

Tammann et al. (2008) compiled data for 24 galaxies that have estimates for both the TRGB magnitudes and the RR Lyrae distances in the literature, and derived an absolute magnitude of the TRGB, $M_{\text{TRGB}} = -4.05$ mag with a mean error of 0.02 mag. The systematic error of this value is mainly due to the uncertainty in the mean magnitude of the RR Lyrae, which is ~ 0.1 mag (Popowski & Gould 1998a, 1998b).

Madore et al. (2009) described a novel approach for robust determination of the TRGB magnitude by introducing a new magnitude system, T magnitude, which is a color (metallicity) corrected I-band magnitude: $T = I_0 - \beta ((V - I)_0 - 1.5)$. They adopted a value for the slope, $\beta = 0.20 \pm 0.05$ for $1.5 < (V - I)_0 < 3.0$, from a linear approximation of the color–luminosity relation given by Bellazzini et al. (2001, 2004). They showed that the T magnitude works well in the case of NGC 4258 (Mager et al. 2008; Madore et al. 2009).

Recently Fusco et al. (2012) carried out a TRGB calibration with the BaSTI stellar models (Pietrinferni et al. 2004, 2006), updating the conductive opacity evaluations provided by Cassisi et al. (2007). They presented variations of the TRGB magnitude as a function of metallicity and $F475W - F814W$ color in their Figure 4. At the fiducial metallicity ([Fe/H] = -1.6), their calibration yields a value $M_{\text{F814W,TRGB}} = -4.13$, which is slightly brighter than other calibrations.

In Figure 13, we compare our TRGB calibration with the previous ones in the $M_I - (V - I)_0$ domain. In the figure we set line lengths to be consistent with the color range used for each TRGB calibration. In the upper axis of the figure we also mark the metallicity values of the TRGB using the relation between $(V - I)_0$ and [Fe/H] for [Fe/H] < -0.7, given by Bellazzini et al. (2001) ($(V - I)_0, M_{\text{TRGB}} = 0.58[\text{Fe/H}]^2 + 2.742[\text{Fe/H}] + 4.013$). Several important features are seen in this figure. First, the revised TRGB calibration derived in this study (red line) covers a much wider color range, $1.2 \lesssim (V - I)_0 \lesssim 4.3$, than other calibrations. Second, our TRGB calibration shows a color–magnitude
relation that is relatively flat at the blue end and steep at the red color range. Some of the previous calibrations adopted either a flat relation (Lee et al. 1993; Ferrarese et al. 2000; Tamman et al. 2008) or color-dependent relations (Salaris & Cassisi 1997; Rizzi et al. 2007; Madore et al. 2009). Third, the color dependence at the color range of $2.0 \lesssim (V-I) \lesssim 3.0$ derived in this study is similar to the results given by Salaris & Cassisi (1997), Madore et al. (2009), Rizzi et al. (2007), and Bellazzini (2008). Fourth, our calibration shows an absolute magnitude of the TRGB, $M_V = -4.016 \pm 0.058$, at a fiducial color, $(V-I) = 1.5$. This agrees well with the values from all of the previous calibrations within uncertainties.

Figure 14 shows the propagation of the zero-point uncertainties in the previous calibration based on ω Centauri (circles, Bellazzini et al. 2001, 2004) and the revised QT calibrations based on NGC 4258 and the LMC in this study (triangles and squares). Four main sources of uncertainties (TRGB detection, extinction, photometric zero-point, and distance anchor uncertainties) and additional sources of uncertainties (ETC, which includes color transformation, photometric transformation, QT transformation uncertainties) listed in Table 4 are indicated. We calculated cumulative errors of each source (a quadratic sum of uncertainties including all the previous sources), according to this order. Bellazzini et al. (2001, 2004) presented a luminosity calibration of the TRGB based on the distance to ω Centauri, and derived a total uncertainty, 0.124 mag, from the quadratic sum of three uncertainties: 0.04, 0.04, and 0.11 mag for extinction, TRGB detection, and distance anchor uncertainties, respectively. They did not provide any uncertainty for the photometric zero-point. On the other hand, the revised TRGB calibration in this study yields total systematic uncertainty of 0.073 mag from NGC 4258 and 0.096 mag from the LMC as described in Section 3. A weighted mean of these two calibrations gives a systematic uncertainty of 0.058 mag, which is about a half of the uncertainty given by Bellazzini et al. (2001, 2004). This value represents the systematic error of the revised TRGB calibration in this study.

5.2. Comparison with Stellar Isochrones

In Figure 15 we compare the empirical calibration of the TRGB (solid line with shaded region) derived in this study with the TRGB from three theoretical stellar models: Dartmouth (Dotter et al. 2008) (dashed line), BasTI (Pietrinferni et al. 2004, 2006) (dotted–dashed line), and Padova (Girardi et al. 2000; Marigo et al. 2013) (solid line). We set an age of 12 Gyr and metallicity range of $[M/H] = -2.2$ to $+0.2$ for the stellar models. A fixed alpha element abundance, $[\alpha/Fe] = +0.2$, was adopted for the Dartmouth model.

A few notable features are seen in this figure. First, the blue color range ($f_606W - f_814W \lesssim 1.6$) of the empirical calibration shows a good agreement with those of the Dartmouth and Padova models. In the case of the BasTI model, however, it shows $0.20 \sim 0.15$ mag systematic offset and is steeper than those of other calibrations. Second, all four calibrations show a good agreement at $f_606W - f_814W \sim 2.0$, which corresponds to $[M/H] \sim -0.5$. Third, a significant dispersion is seen at the red color range ($f_606W - f_814W \gtrsim 2.7$). The BasTI model gives a relatively bright TRGB luminosity and a shallower color dependence. The Dartmouth and Padova models show a much steeper dependence than the others. Our empirical calibration of the TRGB will be very useful for improving the modeling of stellar evolution in the future.

5.3. Implications on the Distance Scale and the Hubble Constant

We obtained the zero-point of the TRGB, $M_{\text{TRGB}} = -4.023 \pm 0.073$ from NGC 4258 and $M_{\text{TRGB}} = -4.004 \pm 0.096$ from the LMC. The zero-point difference is $\Delta M_{\text{TRGB}} = -0.019 \pm 0.121$. Thus, the two zero-point values agree very well. From the TRGB magnitudes of NGC 4258 and the LMC, the distance modulus difference between the two galaxies is obtained, $\Delta (m-M)_0 = 10.874 \pm 0.083$. This value shows excellent agreement with that from the Cepheid variables, $\Delta (m-M)_0 = 10.88 \pm 0.04, \pm 0.05$ (Macri et al. 2006). If we adopt the TRGB zero-point from the LMC, the TRGB distance to NGC 4258 is estimated to be $(m-M)_0 = 29.368 \pm 0.023, \pm 0.096$, consistent with the recent megamaser distance to NGC 4258, $(m-M)_0 = 29.404 \pm 0.049, \pm 0.043$, (Humphreys et al. 2013) and $(m-M)_0 = 29.387 \pm 0.049, \pm 0.029$ (Riess et al. 2016).

The revised TRGB calibration derived in this study enables us to determine more precise TRGB distances to nearby galaxies and a corresponding value of the Hubble constant. There have been several studies to determine the Hubble constant based on the TRGB (Ferrarese et al. 2000; Tamman et al. 2008; Mould & Sakai 2009a, 2009b; Hislop et al. 2011; Lee & Jang 2012, 2013; Tamman & Reindl 2013; Jang & Lee 2015). Most of these studies were based on the zero-point of the TRGB, $M_{\text{TRGB}} = -4.0 \sim -4.1$ mag with a systematic uncertainty of 0.10 ~ 0.12 mag. The revised TRGB calibration combined with both NGC 4258 and LMC anchors yields a TRGB zero-point of $M_{\text{TRGB}} = -4.016 \pm 0.058$ mag ($M_{\text{TRGB}} = -4.013 \pm 0.060$), slightly fainter and much more accurate than those of previous calibrations. Thus, the value of the Hubble constant derived in the previous studies can be slightly increased if the revised TRGB calibration is used.

Our previous studies, Lee & Jang (2012, 2013) and Jang & Lee (2015), presented a value of the Hubble constant, $H_0 = 69.8 \pm 2.6$, 3.9, 3.9, km s$^{-1}$ Mpc$^{-1}$ and $H_0 = 72.2 \pm 3.3, \pm 4.0$, km s$^{-1}$ Mpc$^{-1}$ based on five and three TRGB calibrated SNe Ia. In these studies we used the old TRGB calibration given by Rizzi et al. (2007) and the systematic error of 0.12 mag given by Bellazzini et al. (2001). If we apply the revised TRGB calibration including the QT magnitude and updated zero-point ($M_{\text{TRGB}} = -4.016 \pm 0.058$ mag), then the value of H_0 would be increased by ~ 1 km s$^{-1}$ Mpc$^{-1}$ and the systematic uncertainty would be decreased by a factor of 2. A detailed analysis of the TRGB distances to eight SN Ia host galaxies and the Hubble constant based on this new calibration will be presented in our upcoming paper (I. S. Jang & M. G. Lee 2017, in preparation).

6. SUMMARY AND CONCLUSION

The TRGB has been used as a reliable distance indicator for resolved stellar systems. However, its calibration needs to be improved to derive more precise distances to nearby galaxies and a corresponding value of the Hubble constant. We present a revised TRGB calibration including the color dependence and zero-point calibrations, accurate to 0.058 mag (2.7% of distance). The primary results are as follows.
REFERENCES

Argon, A. L., Greenhill, L. J., Reid, M. J., Moran, J. M., & Humphreys, E. M. L. 2007, ApJ, 659, 1040
Baade, W. 1944, ApJ, 100, 137
Beaton, R. L., Freedman, W. L., Madore, B. F., et al. 2016, ApJ, 832, 210
Bellazzini, M., Ferraro, F. R., & Pancino, E. 2001, ApJ, 556, 635
Bellazzini, M., Ferraro, F. R., Sollima, A., Pancino, E., & Origlia, L. 2004, A&A, 424, 199
Bellazzini, M. 2008, MmSAI, 79, 440
Conn, A. R., Lewis, G. F., Ibata, R. A., et al. 2011, ApJ, 740, 69
Da Costa, G. S., & Armandroff, T. E. 1990, AJ, 100, 162
Dalcanton, J. J., Williams, B. F., Seth, A. C., et al. 2009, ApJS, 183, 67
de Grijs, R., Wicker, J. E., & Bono, G. 2014, AJ, 147, 122
Dolphin, A. E. 1997, PASP, 112, 961
Dolphin, A. E. 2000, PASP, 112, 1383
Dotter, A., Chaboyer, B., Jevremovic, D., et al. 2008, ApJS, 178, 99
Freeman, W. L. 1983a, ApJ, 270, 358
Freeman, W. L. 1983b, ApJ, 273, 754
Freeman, W. L. 1991b, ApJ, 366, 1040
Freeman, W. L., & Madore, B. F. 2010, A&A, 48, 673
Frogel, J. A., Cohen, J. G., & Persson, S. E. 1983, ApJ, 275, 773
Fusco, F., Buonanno, R., Bono, G., et al. 2012, A&A, 548, A129
Gerke, J. R., Kochanek, C. S., Prieto, J. L., Stanek, K. Z., & Macri, L. K. 2011, ApJ, 743, 176
Girardi, L., Bressan, A., Bertelli, G., & Chiosi, C. 2000, A&AS, 141, 371
Gorski, M., Pietrzyński, G., Gieren, W., et al. 2016, AJ, 151, 167
Green, E. M., Demarque, P., & King, C. R. 1987, The Revised Yale Isochrones and Luminosity Functions (New Haven, CT: Yale Observatory)
Greenhill, L. J., Jang, D. R., Moran, J. M., et al. 1995, ApJ, 440, 619
Haschke, R., Grebel, E. K., & Duffau, S. 2011, AJ, 141, 158
Hermstein, J. R., Moran, J. M., Greenhill, L. J., et al. 1999, Natur, 400, 539
Hislop, L., Mould, J., Schmidt, B., et al. 2011, ApJ, 733, 75
Holtzman, J. A., Gallagher, J. S., III, Cole, A. A., et al. 1999, AJ, 118, 2262
Humphreys, E. M. L., Argon, A. L., Greenhill, L. J., Moran, J. M., & Reid, M. J. 2005, in ASP Conf. Ser. 340, Future Directions in High Resolution Astronomy, ed. J. Romney & M. Reid (San Francisco, CA: ASP), 466
Humphreys, E. M. L., Reid, M. J., Greenhill, L. J., Moran, J. M., & Argon, A. L. 2008, ApJ, 672, 800
Humphreys, E. M. L., Reid, M. J., Moran, J. M., Greenhill, L. J., & Argon, A. L. 2013, ApJ, 775, 13
Jang, I. S., & Lee, M. G. 2014, ApJ, 792, 52
Jang, I. S., & Lee, M. G. 2015, ApJ, 807, 133 (Paper III)
Lee, M. G., Freedman, W. L., & Madore, B. F. 1993, ApJ, 417, 553
Lee, M. G., & Jang, I. S. 2012, ApJL, 760, L14 (Paper I)
Lee, M. G., & Jang, I. S. 2013, ApJ, 773, 13 (Paper II)
Lee, M. G., & Jang, I. S. 2016, ApJ, 822, 70
Macri, L. M., Stanek, K. Z., Bersier, D., Greenhill, L. J., & Reid, M. J. 2006, ApJ, 652, 1133
Macri, L. M., Ngeow, C.-C., Kanbur, S. M., Mahzooni, S., & Smith, M. T. 2015, AJ, 149, 117
Madore, B. F., Mager, V., & Freedman, W. L. 2009, ApJ, 690, 389
Mager, V. A., Madore, B. F., & Freedman, W. L. 2008, ApJ, 689, 721
Marigo, P., Bressan, A., Nanni, A., Girardi, L., & Pumo, M. L. 2013, MNRAS, 434, 488
Miyoshi, M., Moran, J., Herbstmizlein, J., et al. 1995, Natur, 373, 127
Mould, J. R., Kristian, J., & Da Costa, G. S. 1983, ApJ, 270, 471
Mould, J. R., & Kristian, J. 1983, ApJ, 271, 575
Mould, J., & Kristian, J. 1986, ApJ, 305, 591
Mould, J., & Sukai, S. 2009a, ApJ, 694, 1331
Mould, J., & Sukai, S. 2009b, ApJ, 697, 996
Pietrinferni, A., Cassisi, S., Salaris, M., & Castelli, F. 2004, ApJ, 612, 168
Pietrinferni, A., Cassisi, S., Salaris, M., & Castelli, F. 2006, ApJ, 642, 797
Pietrzyński, G., Grażyński, D., Gieren, W., et al. 2013, Natur, 495, 76
Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2016, A&A, 594, A13
Popowski, P., & Gould, A. 1998, ApJ, 506, 259
Popowski, P., & Gould, A. 1998, ApJ, 506, 271
Rahman, S. M., & Da Costa, G. S. 1984, ApJ, 278, 575
Rahman, S. M., & Da Costa, G. S. 1984, ApJ, 278, 575
Rahman, S. M., & Da Costa, G. S. 1984, ApJ, 278, 575
Rahman, S. M., & Da Costa, G. S. 1984, ApJ, 278, 575
Rahman, S. M., & Da Costa, G. S. 1984, ApJ, 278, 575
Rahman, S. M., & Da Costa, G. S. 1984, ApJ, 278, 575