A NOTE ON THE ABELIANIZATIONS
OF FINITE-INDEX SUBGROUPS
OF THE MAPPING CLASS GROUP

ANDREW PUTMAN

(Communicated by Daniel Ruberman)

Abstract. For some $g \geq 3$, let Γ be a finite index subgroup of the mapping class group of a genus g surface (possibly with boundary components and punctures). An old conjecture of Ivanov says that the abelianization of Γ should be finite. In the paper we prove two theorems supporting this conjecture. For the first, let T_x denote the Dehn twist about a simple closed curve x. For some $n \geq 1$, we have $T_x^n \in \Gamma$. We prove that T_x^n is torsion in the abelianization of Γ. Our second result shows that the abelianization of Γ is finite if Γ contains a “large chunk” (in a certain technical sense) of the Johnson kernel, that is, the subgroup of the mapping class group generated by twists about separating curves.

1. Introduction

Let $\Sigma_{g,b}^p$ be an oriented genus g surface with b boundary components and p punctures and let $\text{Mod}(\Sigma_{g,b}^p)$ be its mapping class group, that is, the group of isotopy classes of orientation-preserving diffeomorphisms of $\Sigma_{g,b}^p$ that fix the boundary components and punctures pointwise (we will omit b or p when they are zero). A long-standing conjecture of Ivanov (see [6] for a recent discussion) says that for $g \geq 3$, the group $\text{Mod}(\Sigma_{g,b}^p)$ does not virtually surject onto \mathbb{Z}. In other words, if Γ is a finite-index subgroup of $\text{Mod}(\Sigma_{g,b}^p)$, then $H_1(\Gamma; \mathbb{R}) = 0$.

The goal of this paper is to offer some evidence for this conjecture. If G is a group and $g \in G$, then we will denote by $[g]_G$ the corresponding element of $H_1(G; \mathbb{R})$. Also, for a simple closed curve γ on $\Sigma_{g,b}^p$, we will denote by T_γ the corresponding right Dehn twist. Observe that if Γ is any finite-index subgroup of $\text{Mod}_{g,b}^p$, then $T_\gamma^n \in \text{Mod}_{g,b}^p$ for some $n \geq 1$. Our first result is the following.

Theorem A (Powers of twists vanish). For some $g \geq 3$, let $\Gamma < \text{Mod}(\Sigma_{g,b}^p)$ satisfy $[\text{Mod}(\Sigma_{g,b}^p) : \Gamma] < \infty$ and let γ be a simple closed curve on $\Sigma_{g,b}^p$. Pick $n \geq 1$ such that $T_\gamma^n \in \Gamma$. Then $[T_\gamma^n]_\Gamma = 0$.

Remark. After this paper was written, Bridson informed us that in unpublished work he had proven a result about mapping class group actions on CAT(0) spaces that implies Theorem A. Bridson’s work will appear in [3].
We use this to verify Ivanov’s conjecture for a class of examples. For a long time, the only positive evidence for Ivanov’s conjecture was a result of Hain [5] that says that it holds for all finite-index subgroups containing the Torelli group $T_{g,b}^p$, that is, the kernel of the action of $\text{Mod}(\Sigma_{g,b}^p)$ on $H_1(\Sigma_g;\mathbb{Z})$ induced by filling in all the punctures and boundary components. The group $T_{g,b}^p$ contains the Johnson kernel $K_{g,b}^p$, which is the subgroup generated by Dehn twists about separating curves. A result of Johnson [7] says that $K_{g,b}^p$ is an infinite-index subgroup of $T_{g,b}^p$.

For a subgroup Γ of $\text{Mod}(\Sigma_{g,b}^p)$, denote by $K(\Gamma)$ the subgroup of $\Gamma \cap K_{g,b}^p$ generated by the set

$$\{T^n_\gamma \mid \gamma \text{ a separating curve, } n \in \mathbb{Z}, \text{ and } T^n_\gamma \in \Gamma\}.$$

If $K_{g,b}^p < \Gamma$, then $K(\Gamma) = \Gamma \cap K_{g,b}^p$, but the converse does not hold. Our second result is the following.

Theorem B (Subgroups containing large pieces of Johnson kernel). *For some $g \geq 3$, let $\Gamma < \text{Mod}(\Sigma_{g,b}^p)$ satisfy $[\text{Mod}(\Sigma_{g,b}^p) : \Gamma] < \infty$. Assume that $[\Gamma \cap K_{g,b}^p : K(\Gamma)] < \infty$. Then $H_1(\Gamma;\mathbb{R}) = 0$.*

As a corollary, we obtain the following result, which was recently proven by Boggi [2] via a difficult algebro-geometric argument under the assumption $b = p = 0$.

Corollary C (Subgroups containing Johnson kernel). *For some $g \geq 3$, let $\Gamma < \text{Mod}(\Sigma_{g,b}^p)$ satisfy $[\text{Mod}(\Sigma_{g,b}^p) : \Gamma] < \infty$. Assume that $K_{g,b}^n < \Gamma$. Then $H_1(\Gamma;\mathbb{R}) = 0$.*

Remark. McCarthy [11] proved that Ivanov’s conjecture fails in the case $g = 2$.

2. Notation and basic facts about group homology

If M is a G-module, then M_G will denote the coinvariants of the action, that is, the quotient of M by the submodule generated by the set $\{x - g(x) \mid x \in M, g \in G\}$. This appears in the 5-term exact sequence [4] Corollary VII.6.4], which asserts the following. If

$$1 \longrightarrow K \longrightarrow G \longrightarrow Q \longrightarrow 1$$

is a short exact sequence of groups, then for any ring R, there is an exact sequence

$$H_2(G;R) \longrightarrow H_2(Q;R) \longrightarrow (H_1(K;R))_Q \longrightarrow H_1(G;R) \longrightarrow H_1(Q;R) \longrightarrow 0.$$

If $G_2 < G_1$ are groups satisfying $[G_1 : G_2] < \infty$ and R is a ring, then for all k there exists a transfer map of the form $t : H_k(G_1;R) \rightarrow H_k(G_2;R)$ (see, e.g., [4] Chapter III.9]). The key property of t (see [4] Proposition III.9.5]) is that if $i : H_k(G_2;R) \rightarrow H_k(G_1;R)$ is the map induced by the inclusion, then $i \circ t : H_k(G_1;R) \rightarrow H_k(G_1;R)$ is multiplication by $[G_1 : G_2]$. In particular, if $R = \mathbb{R}$, then we obtain a right inverse $\frac{1}{[G_1 : G_2]} t$ to i. This yields the following standard lemma.

Lemma 2.1. *Let $G_2 < G_1$ be groups satisfying $[G_1 : G_2] < \infty$. For all k, the map $H_k(G_2;\mathbb{R}) \rightarrow H_k(G_1;\mathbb{R})$ is surjective.*
3. Proof of Theorem A

Let $n \geq 1$ be the smallest integer such that $T^n_\beta \in \Gamma$.

We first claim that there exists a subsurface $S \hookrightarrow \Sigma^p_{g,b}$ whose genus is at least 2 with the following property. Let $i: \text{Mod}(S) \to \text{Mod}(\Sigma^p_{g,b})$ be the induced map ("extend by the identity"). Then there exists some boundary component β of S such that $i(T_\beta) = T_\gamma$. There are two cases. If γ is nonseparating, then let S be the complement of a regular neighborhood of γ. Observe that $S \cong \Sigma^p_{g-1,b+2}$, so the genus of S is at least 2. If instead γ is separating, then let S be the component of $\Sigma^p_{g,b}$ cut along γ whose genus is maximal. Since $g \geq 3$, this subsurface must have genus at least 2. The claim follows.

Define $\Gamma' = i^{-1}(\Gamma)$. We have $T^n_\beta \in \Gamma'$, and it is enough to show that $[T^n_\beta]_{\Gamma'} = 0$. Let Σ be the result of gluing a punctured disc to β and let $\text{Mod}(\Sigma)$ be the image of Γ' in $\text{Mod}(\Sigma)$. There is a diagram of central extensions

$$
\begin{array}{cccccc}
1 & \longrightarrow & \mathbb{Z} & \longrightarrow & \Gamma' & \longrightarrow & \text{Mod}(\Sigma) & \longrightarrow & 1 \\
\downarrow & & \downarrow & & & \downarrow & & \\
1 & \longrightarrow & \mathbb{Z} & \longrightarrow & \text{Mod}(S) & \longrightarrow & \text{Mod}(\Sigma) & \longrightarrow & 1
\end{array}
$$

with $\mathbb{Z} < \text{Mod}(S)$ and $\mathbb{Z} < \Gamma'$ generated by T_β and T^n_β, respectively. The last 4 terms of the corresponding diagram of 5-term exact sequences are

$$
\begin{array}{cccccc}
H_2(\Gamma'; \mathbb{R}) & \longrightarrow & \mathbb{R} & \longrightarrow & H_1(\Gamma'; \mathbb{R}) & \longrightarrow & H_1(\text{Mod}(\Sigma); \mathbb{R}) & \longrightarrow & 0 \\
\downarrow f_2 & & \downarrow \cong & & \downarrow & & \downarrow & & \\
H_2(\text{Mod}(\Sigma); \mathbb{R}) & \longrightarrow & \mathbb{R} & \longrightarrow & H_1(\text{Mod}(S); \mathbb{R}) & \longrightarrow & H_1(\text{Mod}(\Sigma); \mathbb{R}) & \longrightarrow & 0
\end{array}
$$

We remark that there are no nontrivial coinvariants in these sequences since our extensions are central. We must show that f_1 is a surjection. Since S has genus at least 2, we have $H_1(\text{Mod}(S); \mathbb{R}) = 0$ (see, e.g., [10]), so f_3 is a surjection. Since $[\text{Mod}(\Sigma); \Gamma'] < \infty$, Lemma 3.1 implies that f_2 is a surjection, so f_1 is a surjection, as desired.

4. Proof of Theorem B

4.1. Two facts about $\text{Sp}_{2g}(\mathbb{Z})$. We will need two standard facts about finite-index subgroups Γ of $\text{Sp}_{2g}(\mathbb{Z})$, both of which follow from the fact that Γ is a lattice in $\text{Sp}_{2g}(\mathbb{R})$.

For the first, since $\text{Sp}_{2g}(\mathbb{R})$ is a connected simple Lie group with finite center and real rank g, the group Γ has Kazhdan’s property (T) when $g \geq 2$ (see, e.g., [13 Theorem 7.1.4]). One standard property of groups with property (T) is that they have no nontrivial homomorphisms to \mathbb{R} (see, e.g., [13 Theorem 7.1.7]). Combining these facts, we obtain the following theorem.

Theorem 4.1. For some $g \geq 2$, let $\Gamma < \text{Sp}_{2g}(\mathbb{Z})$ satisfy $[\text{Sp}_{2g}(\mathbb{Z}); \Gamma] < \infty$. Then $H_1(\Gamma; \mathbb{R}) = 0$.

For the second, since $\text{Sp}_{2g}(\mathbb{R})$ is a connected noncompact simple real algebraic group, we can apply the Borel density theorem (see, e.g., [13 Theorem 3.2.5]) to deduce that Γ is Zariski dense in $\text{Sp}_{2g}(\mathbb{R})$. This implies that any finite-dimensional
nontrivial irreducible $\text{Sp}_{2g}^p(\mathbb{R})$-representation V must also be an irreducible Γ-representation; indeed, if V' was a nontrivial proper Γ-submodule of V, then the subgroup of $\text{Sp}_{2g}^p(\mathbb{R})$ preserving V' would be a proper subvariety of $\text{Sp}_{2g}^p(\mathbb{R})$ containing Γ. Recall that the ring of coinvariants V_Γ of V under Γ is the quotient V/K, where $K = \{x - g(x) \mid x \in V, g \in \Gamma\}$. Since $K \neq 0$, we can apply Schur’s lemma to deduce that $K = V$, i.e. that $V_\Gamma = 0$. We record this fact as the following theorem.

Theorem 4.2. For some $g \geq 1$, let $\Gamma < \text{Sp}_{2g}^p(\mathbb{Z})$ satisfy $[\text{Sp}_{2g}^p(\mathbb{Z}) : \Gamma] < \infty$ and let V be a nontrivial irreducible $\text{Sp}_{2g}^p(\mathbb{R})$-representation. Then $V_\Gamma = 0$.

4.2. Two preliminary lemmas. We will need two lemmas. The first is the following, which slightly generalizes a theorem of Johnson [8].

Lemma 4.3. For $g \geq 3$, we have $\mathcal{T}^p_{g,b}/\mathcal{K}^p_{g,b} \cong (\wedge^3 H)/H \oplus H^{p+1}$, where $H = H_1(\Sigma_g; \mathbb{Z})$.

Proof. Since $\mathcal{K}^p_{g,b}$ contains all twists about boundary curves, we can assume that $b = 0$.

Building on work of Johnson [8], Hain [5] proved that

$$H_1(\mathcal{T}^p_{g,b}; \mathbb{R}) \cong (\wedge^3 H)/H \oplus H^p,$$

where $H = H_1(\Sigma_g; \mathbb{R})$. Also, Johnson [9, Lemma 2] proved that for $x \in \mathcal{K}^p_g$, we have $[x]_x^p = 0$. (Johnson only considered the case where $p = 0$, but his argument works in general.) It follows that

$$H_1(\mathcal{T}^p_{g,b}/\mathcal{K}^p_{g,b}; \mathbb{R}) \cong (\wedge^3 H)/H \oplus H^p.$$

We will prove the lemma by induction on p. The base case $p = 0$ is a theorem of Johnson [8]. Assume now that $p > 0$ and that the lemma is true for all smaller p. Fixing a puncture $*$ of Σ_g, work of Birman [1] and Johnson [9] gives an exact sequence

$$1 \longrightarrow \pi_1(\Sigma_g^{p-1}; *) \longrightarrow \mathcal{T}^p_g \longrightarrow \mathcal{T}^{p-1}_g \longrightarrow 1,$$

where the map $\mathcal{T}^p_g \rightarrow \mathcal{T}^{p-1}_g$ comes from “forgetting the puncture *”. Quotienting out by \mathcal{K}^p_g, we obtain an exact sequence

$$1 \longrightarrow \pi_1(\Sigma_g^{p-1}; *)/(\pi_1(\Sigma_g^{p-1}; *) \cap \mathcal{K}^p_g) \longrightarrow \mathcal{T}^p_g/\mathcal{K}^p_g \longrightarrow \mathcal{T}^{p-1}_g/\mathcal{K}^{p-1}_g \longrightarrow 1.$$

By induction, we have

$$\mathcal{T}^{p-1}_g/\mathcal{K}^{p-1}_g \cong (\wedge^3 H)/H \oplus H^{p-1}.$$

Set $A = \pi_1(\Sigma_g^{p-1}; *)/(\pi_1(\Sigma_g^{p-1}; *) \cap \mathcal{K}^p_g)$. We will prove that A is a quotient of H. We will then be able to conclude that $\mathcal{T}^{p-1}_g/\mathcal{K}^{p-1}_g$ acts trivially on A, so $\mathcal{T}^p_g/\mathcal{K}^p_g$ is the abelian group

$$(\wedge^3 H)/H \oplus H^{p-1} \oplus A.$$

Using [1], a simple dimension count will then imply that A cannot be a proper quotient of H, and the lemma will follow.

The element of \mathcal{T}^p_g corresponding to $\delta \in \pi_1(\Sigma_g^{p-1}, *)$ “drags” $*$ around δ. As shown in Figure [1]a–b, a simple closed curve $\gamma \in \pi_1(\Sigma_g^{p-1}, *)$ corresponds to $T_\gamma T^{-1}_\gamma \in \mathcal{T}^p_g$, where γ_1 and γ_2 are the boundary components of a regular neighborhood of γ. In particular, if γ is a simple closed separating curve, then as shown in Figure [1]c–d, the corresponding element of \mathcal{T}^p_g is a product of separating twists. Since $[\pi_1(\Sigma_g^{p-1}, *), \pi_1(\Sigma_g^{p-1}, *)]$ is generated by simple closed separating curves (see,
e.g., [12 Lemma A.1]), we deduce that \([\pi_1(\Sigma_g^{-1}, *), \pi_1(\Sigma_g^{-1}, *)] \subset \pi_1(\Sigma_g^{-1}, *) \cap K_g^p\).

Thus \(A = \pi_1(\Sigma_g^{-1}, *)/(\pi_1(\Sigma_g^{-1}, *) \cap K_g^p)\) is a quotient of \(H_1(\Sigma_g^{-1}; \mathbb{Z})\). Finally, as shown in Figure 1e–f, all simple closed curves that are homotopic into punctures are also contained in \(\pi_1(\Sigma_g^{-1}, *) \cap K_g^p\), so we conclude that \(A\) is a quotient of \(H = H_1(\Sigma_g; \mathbb{Z})\), as desired. \(\square\)

For the second lemma, define \(Q_{g,b}^p = \text{Mod}_{g,b}^p / K_{g,b}^p\).

Lemma 4.4. For some \(g \geq 3\), let \(Q' < Q_{g,b}^p\) satisfy \([Q_{b,b}^p : Q'] < \infty\). Then \(H_1(Q'; \mathbb{R}) = 0\).

Proof. Restricting the short exact sequence

\[
1 \longrightarrow T_{g,b}^p / K_{g,b}^p \longrightarrow Q_{b,b}^p \longrightarrow \text{Sp}_{2g}(\mathbb{Z}) \longrightarrow 1
\]

to \(Q'\), we obtain a short exact sequence

\[
1 \longrightarrow B \longrightarrow Q' \longrightarrow \overline{Q} \longrightarrow 1,
\]

where \(B\) and \(\overline{Q}\) are finite-index subgroups of \(T_{g,b}^p / K_{g,b}^p\) and \(\text{Sp}_{2g}(\mathbb{Z})\), respectively. The last 3 terms of the associated 5-term exact sequence are

\[
(H_1(B; \mathbb{R}))_{\overline{Q}} \longrightarrow H_1(Q'; \mathbb{R}) \longrightarrow H_1(\overline{Q}; \mathbb{R}) \longrightarrow 0.
\]

By Theorem 4.1 we have \(H_1(\overline{Q}; \mathbb{R}) = 0\). Letting \(H = H_1(\Sigma_g; \mathbb{Z})\), Lemma 4.3 says that

\[
T_{g,b}^p / K_{g,b}^p \cong (\wedge^3 H) / H \oplus H^{b+p}.
\]

Since \(B\) is a finite-index subgroup of \(T_{g,b}^p / K_{g,b}^p\), we get that \(B\) is itself abelian and

\[
H_1(B; \mathbb{R}) \cong B \otimes \mathbb{R} \cong (T_{g,b}^p / K_{g,b}^p) \otimes \mathbb{R} \cong (\wedge^3 H_R) / H_R \oplus H_R^{b+p},
\]

where \(H_R = H_1(\Sigma_g; \mathbb{R})\). Both \((\wedge^3 H_R) / H_R\) and \(H_R^{b+p}\) are nontrivial finite-dimensional irreducible representations of \(\text{Sp}_{2g}(\mathbb{R})\), so Theorem 4.2 implies that \((H_1(B; \mathbb{R}))_{\overline{Q}} = 0\), and we are done. \(\square\)

4.3. The proof of Theorem 3

The last 3 terms of the 5-term exact sequence associated to the short exact sequence

\[
1 \longrightarrow \Gamma \cap K_{g,b}^p \longrightarrow \Gamma \longrightarrow \Gamma / (\Gamma \cap K_{g,b}^p) \longrightarrow 1
\]

are

\[
(H_1(\Gamma \cap K_{g,b}^p; \mathbb{R}))_{\Gamma / (\Gamma \cap K_{g,b}^p)} \longrightarrow H_1(\Gamma; \mathbb{R}) \longrightarrow H_1(\Gamma / (\Gamma \cap K_{g,b}^p); \mathbb{R}) \longrightarrow 0.
\]

By assumption, \([\Gamma \cap K_{g,b}^p : K(\Gamma)] < \infty\), so Lemma 2.1 implies that the map \(H_1(K(\Gamma); \mathbb{R}) \rightarrow H_1(\Gamma \cap K_{g,b}^p; \mathbb{R})\) is surjective. Since \(K(\Gamma)\) is generated by powers of twists, Theorem A allows us to deduce that \(i = 0\). Also, \(\Gamma / (\Gamma \cap K_{g,b}^p)\) is a finite-index subgroup of \(Q_{g,b}^p\), so Lemma 4.4 implies that \(H_1(\Gamma / (\Gamma \cap K_{g,b}^p); \mathbb{R}) = 0\), and we are done.
Acknowledgments

I wish to thank Martin Bridson, Benson Farb, Thomas Koberda, Dan Margalit, and Ben Wieland for useful comments and conversations. I also wish to thank Dongping Zhuang for showing me how to slightly weaken the hypotheses in my original version of Theorem B.

References

[1] J. S. Birman, Mapping class groups and their relationship to braid groups, Comm. Pure Appl. Math. 22 (1969), 213–238. MR0243519 (39:4840)
[2] M. Boggi, Fundamental groups of moduli stacks of stable curves of compact type, Geom. Topol. 13 (2009), 247–276. MR2469518
[3] M. Bridson, Semisimple actions of mapping class groups on CAT(0) spaces, LMS Lecture Notes, vol. 368, Geometry of Riemann surfaces, to appear. http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=9780521733076
[4] K. S. Brown, Cohomology of groups, corrected reprint of the 1982 original, Springer-Verlag, New York, 1994. MR1324339 (96a:20072)
[5] R. M. Hain, Torelli groups and geometry of moduli spaces of curves, in Current topics in complex algebraic geometry (Berkeley, CA, 1992/93), 97–143, Cambridge Univ. Press, Cambridge, 1995. MR1397061 (97d:14036)
[6] N. V. Ivanov, Fifteen problems about the mapping class groups, in Problems on mapping class groups and related topics, 71–80, Proc. Sympos. Pure Math., 74, Amer. Math. Soc., Providence, RI, 2006. MR2264532 (2008b:57003)
[7] D. Johnson, An abelian quotient of the mapping class group \(\mathcal{I}_g \), Math. Ann. 249 (1980), no. 3, 225–242. MR579105 (82a:57008)
[8] D. Johnson, The structure of the Torelli group. II. A characterization of the group generated by twists on bounding curves, Topology 24 (1985), no. 2, 113–126. MR793178 (86i:57011)
[9] D. Johnson, The structure of the Torelli group. III. The abelianization of \(\mathcal{T} \), Topology 24 (1985), no. 2, 127–144. MR793179 (87a:57016)
[10] M. Korkmaz, Low-dimensional homology groups of mapping class groups: A survey, Turkish J. Math. 26 (2002), no. 1, 101–114. MR1892804 (2003f:57002)
[11] J. D. McCarthy, On the first cohomology group of cofinite subgroups in surface mapping class groups, Topology 40 (2001), no. 2, 401–418. MR1808225 (2001m:57029)
[12] A. Putman, Cutting and pasting in the Torelli group, Geom. Topol. 11 (2007), 829–865. MR2302503 (2008c:57049)
[13] R. J. Zimmer, Ergodic theory and semisimple groups, Birkhäuser, Basel, 1984. MR776417 (86j:22014)