Management and outcomes of non–small cell lung cancer patients with rapid progression under second-or-more-line immune checkpoint inhibitors: ERORECI study (GFPC 2016-04)

Alain Vergnenegre1 | Margaux Geier2 | Florian Guisier3 | Regine Lamy4 | Bénédicte Comet5 | Gwenaelle Le Garff6 | Pascal Do7 | Henri Janicot8 | Hugues Morel9 | Chantal Decroisette10 | Michel Andre11 | Lionel Falchero12 | Nicolas Paleiron13 | Isabelle Monnet14 | the GFPC Team*

1CHU Dupuytren, UOTC, Limoges, France
2Department of Pneumology, CHU Morvan, Brest, France
3Department of Pneumology, Thoracic Oncology and Respiratory Intensive Care – CHU de Rouen, Hôpital Charles Nicolle, Rouen, France
4Department of Oncology, Centre Hospitalier Bretagne Sud-Lorient, Lorient, France
5Department of Oncology, Centre Catalan d'Oncologie, Perpignan, France
6Department of Pneumology, CH Yves Le Foll, Saint-Brieuc, France
7Centre François Baclesse, Caen, France
8Department of Pneumology, CHU Hôpital Montpied, Clermont Ferrand, France
9Department of Pneumology, CHR Orléans, Orléans, France
10Department of Pneumology, Centre Hospitalier Annecy-Genevoise, Pringy, France
11Department of Pneumology, CHU La Réunion, Saint-Denis, France
12Department of Pneumology, L'Hôpital Nord-Ouest, Villefranche Sur Saône, France
13Department of Pneumology, Hôpital d'Instruction des Armées Sainte-Anne, Toulon, France
14Department of Pneumology, Centre Hospitalier Intercommunal Créteil, Créteil, France

Correspondence
Alain Vergnenegre, Unité d'Oncologie Thoracique et Cutanée, CHU de Limoges, Hôpital Dupuytren, 2, avenue Martin-Luther-King, 87042 Limoges Cedex, France.
Email: alain.vergnenegre@unilim.fr

Funding information
Supported by an academic grant from Pierre-Fabre Pharmaceuticals, which did not contribute to the development of the study or preparation of the manuscript.

Abstract

Background: Immune checkpoint inhibitors (ICIs) have been approved as second-line therapy for advanced non–small cell lung cancers (NSCLCs) progressing after platinum-based chemotherapy. However, some patients' disease progressed rapidly and sometimes exhibited explosive tumor progression. This descriptive, prospective study aimed to assess the characteristics of nonresponders with rapid progression (RP), defined as progression-free survival (PFS) ≤2 or 2-4 months under ICIs.

Methods: This analysis included all consecutive ICI-treated (second-or-more line) patients with RP ≤4 months from 1 September 2016 to 31 August 2017 and compared the clinical characteristics, treatments, and outcomes (overall survival [OS];
1 | INTRODUCTION

Immune checkpoint inhibitors (ICIs) represent a major advancement in the management of metastatic non–small cell lung cancers (NSCLCs).\(^1\)-\(^5\) As monotherapy, after progression on platinum-based chemotherapy, they significantly prolong survival with median overall survival (OS) of 9.9 [7.8-12.4] months.\(^1\),\(^2\),\(^5\),\(^6\) Nevertheless, rapid progression (RP) characterizes 25% of these tumors, notably during the first 4 months on ICIs or even earlier. Some of those RPs can involve numerous sites, giving the impression of an explosion of metastatic disease.\(^7\),\(^8\) The definitions of RP or hyperprogression are still being debated.\(^7\),\(^8\) That phenomenon has also been observed for other solid tumors.\(^9\) To define hyperprogression, the tumor growth rate between two computed-tomography (CT) scans with computer determinations has to be calculated,\(^7\) which is difficult to do in clinical practice. The RP definition relies on the duration of progression-free survival (PFS) but no consensus has yet been reached.\(^8\) According to some studies,\(^3\)-\(^6\) the therapeutic response was influenced by the programmed cell death-1 ligand (PD-L1)-expression rate. However, some NSCLCs undergo early progression, regardless of their PD-L1 expression rate.\(^5\)

Numerous factors impact the risk of progression: nutritional status\(^10\), genetic alterations\(^11\)-\(^15\) and biological anomalies,\(^16\) like the neutrophil/lymphocyte ratio,\(^17\)-\(^20\) which has been identified in some studies as also being a predictor of OS or PFS.\(^21\)-\(^24\)

The RP definition of varies according to the authors, but the majority of studies retained 2- or 4-months following ICI onset.\(^25\) Little is known about these patients' characteristics and those of their tumors, therapeutic options post-ICI and their outcomes.\(^26\)

This study was undertaken to describe the characteristics and management of patients given immunotherapy as second-or-more line, whose NSCLCs progressed within the 2 months after starting it, and their outcomes, and compared them to patients whose disease progressed 2-4 months post-ICI onset.

2 | MATERIALS AND METHODS

This multicenter, observational, prospective study included patients >18 years old, managed for stage-IIIb or- IV NSCLC treated with second-line-or-more immunotherapy, whose disease progressed within the 4 months after starting ICI. Almost all patients had progressive disease. Patients not covered by the French National Healthcare System or prisoners could not be included.

The primary outcome criterion was OS after starting ICI, with comparison between patients whose NSCLCs progressed within the 2 months after starting it, and their outcomes, and compared them to patients whose disease progressed 2-4 months post-ICI onset.

Results: Comparisons of the 224 (70.2%) patients with ≤2-month and 95 (29.8%) with 2- to 4-month RP revealed the former had less frequent nonsmokers and ECOG PS = 0, more frequent stage IV disease and higher neutrophil/lymphocyte ratio. Their respective ICI PFS rates were: 1.6 [95% CI: 0.1-2] and 2.7 [2.0-4.2] months, with 16.5% and 11.6% having partial responses to first- and second-line therapies post-ICI chemotherapy. Their respective median OS rates were 6.0 and 9.0 months (\(P \leq .009\)). Multivariate analysis retained only PFS of the first-line therapy pre-ICI and neutrophil/lymphocyte ratio at ICI onset as being significantly associated with ≤2-month RP.

Conclusion: In the real-life setting, NSCLC RP on ICI remains a challenge. New descriptive and analytic studies are needed to identify factors predictive of RP.

KEYWORDS
immune checkpoint inhibitors, non–small cell lung cancer, rapid progression, second-line treatment
Characteristic	Entire cohort (N = 319)	RP < 2 mo (N = 224)	RP 2-4 mo (N = 95)	P			
Age: median (range), y	64.3 (25-89)	65.0 (25-87)	64.2 (46-87)	.21			
Sex							
Male	226	70.8%	158	70.5%	68	71.6%	.35
Female	93	19.6%	66	29.5%	27	28.4%	
Smoking status							
Nonsmoker	27	8.4%	16	7.2%	11	12.2%	.06
Smoker	138	43.1%	100	46.0%	32	39.6%	
Ex-smoker	155	48.5%	106	47.8%	47	48.9%	
ECOG PS							
0	130	46.7%	87	44.6%	43	51.2%	.011
1	129	46.2%	94	48.2%	35	41.7%	
≥2	20	6.1%	14	7.2%	6	7.1%	
Stage at diagnosis							
I-II-III	80	28.2%	66	29.5%	14	16.3%	.03
IV	229	71.8%	157	70.5%	72	83.7%	
Histology							
Squamous cell	94	29.4%	62	27.7%	32	33.7%	.53
Adenocarcinoma	203	63.6%	144	64.2%	59	62.1%	
Undifferentiated	22	7.0%	18	8.1%	4	4.2%	
No. of metastatic sites							
≤1	114	49.8%	79	50.6%	35	47.9%	.33
>1	115	50.2%	77	49.4%	38	52.1%	
Metastatic site(s) at diagnosis							
Lung	77	20.8%	50	20.2%	27	21.9%	.63
Brain	51	13.8%	31	12.5%	20	16.7%	
Nodes	32	8.6%	25	10.7%	7	5.7%	
Liver	45	12.2%	32	12.9%	13	10.6%	
Bones	86	23.2%	57	23.1%	29	23.6%	
Skin	10	2.7%	5	2.0%	5	4.1%	
Others	69	18.6%	47	19.0%	22	17.9%	
No. of lines before ICI							
1	203	63.7%	147	65.9%	55	59.8%	.94
2	82	25.8%	54	24.2%	28	29.5%	
3	34	10.6%	22	9.9%	12	12.7%	
No. of ICI infusions, median (range)	4 (1-10)	3.99 (1-10)	5 (1-8)	.0001			
NLR, mean ± SD							
NLR1 at ICI onset (n = 231)	7.79 ± 21.1 G/L	7.83 ± 21.31 G/L	7.69 ± 20.6 G/L	.01			
NLR2 at progression on ICI (n = 226)	10.90 ± 46.1 G/L	8.13 ± 13.43 G/L	12.72 ± 83.42 G/L	.06			
NLR2 − NLR1: (n = 193)	−0.14 ± 19.44 G/L	0.42 ± 18.83 G/L	−1.58 ± 20.91 G/L	.92			

Note: Results are expressed as n (%) unless stated otherwise.

Abbreviations: ECOG PS, Eastern Cooperative Oncology Group performance status; G/L: giga/liter; ICI, immune checkpoint inhibitor; NLR1/2, neutrophil/lymphocyte ratio at ICI initiation/ICI progression; NLR1 − NLR2, difference between ratios; NSCLC, non–small cell lung cancer; RP, rapid progression; SD, standard deviation.

*Patient numbers vary as a function of the number of missing data.
(neutrophil and lymphocyte counts) at NSCLC diagnosis and then at ICI onset, treatments before and after immunotherapy. Each PFS was calculated from initiation of the treatment line until the disease progressed, according to RECIST v1.1 criteria, which were assessed by each local investigating team, including a radiologist. No central review was done because this was a real-world study.

Statistical analyses were computed with StatView v5.0 (SAS Institute Inc). They included descriptive analyses: frequencies of qualitative variables, and means ± standard deviation (SD), medians [95% confidence intervals (CIs)] for quantitative variables. Between-group comparisons (≤2- vs 2- to 4-month RP) used chi2 or Fisher’s exact tests. Univariate analyses of dichotomized variables used ANOVA. Survival analysis was estimated with Kaplan-Meier curves. Factors predictive of survival and RP ≤2 vs 2-4 months were identified with a Cox backward step-by-step logistic-regression model comprised of variables achieving P < .25 in univariate ANOVA.

In accordance with French law, the study was approved by Limoges University Ethics Committee on 23 March 2017.

3 | RESULTS

Between July 2016 and July 2017, 20 GFPC (French Lung Cancer Group) centers prospectively included 319 patients: median age: 64.3 years; 70.8% men; 91.6% smokers or ex-smokers; 92.9% with Eastern Cooperative Oncology Group performance status (ECOG PS) PS = 0/1, 7.1% PS = 2; predominantly (63.6%) adenocarcinomas and 50.2% with >1 metastatic site at ICI onset (see Table 1 for other characteristics). Because PD-L1 testing was not generalized in France until September 2017, its status had been obtained for only 9% of the patients. All the patients had received nivolumab, the only ICI available at that time, initially as compassionate therapy, then after its marketing authorization had been obtained. Data about oncogenic drivers were not available for all patients, depending on the study period in France. However, 82 (27.5%) patients had Kirsten rat-sarcoma viral oncogene mutations, with the other biological markers being scarce: nine epidermal growth factor receptor mutations, four the v-RAF murine sarcoma viral oncogene homolog-B mutations, four human epidermal growth-factor–receptor-2 overexpressions, and four tyrosine kinase c-Met protooncogene mutations.

Before starting ICIs, all but three patients had received first-line platinum-based chemotherapy: doublet for 269/319 (84.3%), triplet (including bevacizumab) for 47/319 (14.7%) and 171 received maintenance chemotherapy. Among the 82 (25.7%) patients given pre-ICI second-line therapy, 38 received bitherapy, eight tritherapy and 36 monotherapy. Finally, among the 34 who received pre-ICI third-line therapy, 22 were given monotherapy, three tritherapy and nine targeted therapy. Notably, 63.7% of ICI treatments were second-line therapy. The mean pre-ICI neutrophil/lymphocyte ratio was 7.8 ± 21. At the beginning of ICI treatment, 18 (5.6%) patients received corticosteroids: eight (2.5%) at a dose ≤ 10 mg and 10 at a dose ≥15 mg to control brain metastases.

Among the 319 patients included in the cohort, 224 experienced RP within ≤2 months and 95 between 2 and 4 months. Adverse events occurred in 52 (16%) patients: grade 1-2 for 35 (10.9%), without any consequences on ICI treatment; grade 3 for 12 (5%); three digestive, three hepatic, two respiratory, four cutaneous toxicities), treated with dose reduction or temporary treatment stoppage; one (0.3%) grade-4 digestive toxicity with treatment interruption.

The cohort’s PFS was 1.8 [95% CI: 0.2-4.2] months. This short duration is explained by cohort constitution (all patients had progressive disease). Among the 319, 167 progressed within 2 months after starting ICI; their PFS lasted 1.6 [95% CI: 0.2-4.2] months vs 2.7 [95% CI: 2.2-4.2] months for those with RP 2-4 months. The more rapid progressors had significantly worse ECOG PS, more advanced stage NSCLCs, and higher neutrophil/lymphocyte ratios at ICI onset and lower rates at the end of ICIs. Their PFS was significantly shorter on first- and second-line therapies before ICI than for those with RP 2-4 months. The cohort received a median of 4 [95% CI: 1-10] immunotherapy cycles: 3.99 and 5 for RP ≤2 and 2-4 months, respectively.

Progression-free survival rates on first-, second-, and third-line therapies, as a function of RP on ICI, are reported in Table 2. Those results clearly showed that PFS for the two first lines pre-ICI was longer for 2- to 4-month RP group than those progressing within ≤2 months. PFS3 is difficult

TABLE 2	PFS on successive treatment lines before immune checkpoint inhibitors (ICIs) according to RP on ICI							
Pre-ICI line	N	Median	Range	Median	Range	Median	Range	P
PFS1	314	5.8	0.3-25.0	9.0	0.7-34.0	.001		
PFS2	93	2.8	0.56-21.2	8.3	0.7-25.8	.018		
PFS3	29	3.0	1.6-21	3.63	1.6-18.6	.93		

Abbreviations: FPFS, progression-free disease; PFS1/2/3: PFS on first-, second- or third-line treatment before ICI(s); RP, rapid progression.
to analyze because of the small number of patients. Post-ICI, 212 (66.5%) and 69 (21.6%) patients, respectively, were given first- and second-line treatments (Table 3). Their respective response and control rates were 16.7% and 38.2%, and 11.6% and 27.5%. Median OS from ICI onset was 6 [95% CI 5.15-6.85] months (Figure 1A), and differed significantly between RP ≤ 2 (6 [95% CI 6.45-8.4]) and 2-4 (9 [95% CI 8.17-10.85] months; \(P < .009 \)) (Figure 1B).

Multivariate analysis retained only pre-ICI PFS after first-line therapy and the neutrophil/lymphocyte ratio at ICI onset as being significantly associated with RP ≤ 2 months (Table 4).

DISCUSSION

This multicenter, observational, prospective study was designed to determine the clinical, biological, and evolutionary characteristics of patients with NSCLC progression and compared as a function of their RP ≤ 2 or 2-4 months. Its results showed that a shorter PFS after first-line therapy and marked inflammation at ICI onset were significantly associated with the earlier RP. Those factors were accompanied by shorter survival. However, it was possible to treat these patients after progression on ICI, with some of them achieving satisfactory survival.
Hyperprogression among immunotherapy-treated patients is a real challenge for oncologists. And its precise mechanisms are still being debated: primary resistance, PD-1 expression on T-regulatory cells, compensatory T-cell exhaustion, modulation of tumor-promoting cells, aberrant inflammation, and activation of an oncologic pathway.7 This investigation concerned patients with metastatic NSCLCs that progressed rapidly, defined as a very short interval between ICI onset and diagnosis of progressive disease.25 We did not focus on patients with recently defined hyperprogression,8 which

FIGURE 1 Kaplan-Meier survival curves (A) post immune checkpoint inhibitors (ICI) for the entire study cohort or (B) according to rapid progression after ≤2 (dotted line) or 2 to 4 months (solid line) on ICIs

TABLE 4 Multivariate backward step-by-step Cox regression model of rapid progression ≤2 mo on immune checkpoint inhibitor

Variable	Hazard ratio	95% Confidence interval	P
NLR1	1.023	1.001-1.045	.037
PFS1	0.997	0.995-0.999	.005

Note: Variables included in the model: age, smoking status, Eastern Cooperative Oncology Group performance status, number of metastatic sites, progression-free survival on the 1st-line treatment (PFS1), PFS2, NLR1: ratio neutrophil/lymphocyte ratio at ICI onset (NLR1).
requires at least two CT-scans before starting ICI to evaluate the tumor's doubling rate.7,9

The RP definition varies according to authors. Some base it on the tumor-doubling time,7,9 whereas others rely on death occurring within the 3 months following ICI onset27 or ≥ 3 nivolumab infusions.26 Constantini et al28 considered patients to have refractory NSCLCs when their disease progressed after one or two nivolumab injections. Shiroyama et al retained a threshold of 2 months.25 Depending on the definition applied, NSCLC RP frequencies ranged from 9\% to 20\%.26 The characteristics of those patients also varied28,29 but the majority of them had multisite metastatic disease.

The authors of most studies compared progressor's clinical and biological characteristics to those of responders. Our findings are consistent with those of other studies.16,18,25,26,29 Shiroyama et al25 found ECOG PS and inflammation to be factors associated with RP, whereas, according to Costantini et al's very recent publications,26,28 RP was significantly associated with ECOG PS, bone metastases or short duration of pre-ICI treatment. Their observations are consistent with ours, showing a significant link between short first-line therapy PFS before ICI and inflammation at ICI onset as factors discriminating between RP < 2 and 2-4. In contrast, age, ECOG PS, smoking status, pre-ICI second-line therapy PFS, neutrophil/lymphocyte ratio at the end of ICI did not differentiate between the two RP groups.

Our study has several limitations. First, the results were influenced by the chosen RP definition, which could be different with another threshold but there is no consensus for the RP definition. Second, its observational nonrandomized design means data could be missing, notably for certain biological markers. Third, the absence of PD-L1 status, which prevents exploration of the impact of this parameter on prognosis. Fourth, the multicenter participation meant RP identification was left to the physicians at each site without central review, as in real-life, routine practice. Last, some data were lacking, like serum albumin or lactate dehydrogenase, which could not be included in the model.

5 | CONCLUSION

Non–small cell lung cancers RP on ICI remains a very real challenge because of the clinical deterioration it represents. Factors predictive of these NSCLCs need to be specified in the framework of large cohorts, with clinical and biological data, as in ongoing trials (NCT03412058). In addition to clinical trials, new descriptive and analytical studies will be essential once a clear definition of RP is established. Artificial intelligence could allow noninvasive radiomic biomarkers, as recently described,30,31 to combine clinical and radiological data.

CONFLICTS OF INTEREST

M Geier, R Lamy, B Comet, G Le Garff, P Do, H Janicot, H Morel, M Andre, L Falchero, N Paleiron, I Monnet, M Dusselier have no commercial interests to declare. C Decroisette has received honoraria for consultancies and fees for medical conferences from Roche, BMS, Pierre Fabre, Novartis, AstraZeneca, and Boehringer Ingelheim. F Guisier has received honoraria from AstraZeneca, Boehringer Ingelheim, MSD, BMS, and Roche. A Vergnenègre has received honoraria for consultancies and fees for medical conferences from MSD, Hoffman Laroche, BMS, Pierre-Fabre Oncology, AstraZeneca, and Boehringer Ingelheim.

DATA AVAILABILITY STATEMENT

I confirm that I have included a citation for available data in my references section, unless my article type is exempt.

ORCID

Alain Vergnenègre \(\text{https://orcid.org/0000-0002-5356-6070}\)

REFERENCES

1. Rizvi NA, Mazières J, Planchard D, et al. Activity and safety of nivolumab, an anti-PD-1 immune checkpoint inhibitor, for patients with advanced, refractory squamous non-small-cell lung cancer (CheckMate 063): a phase 2, single-arm trial. Lancet Oncol. 2015;16:257-265.
2. Gettinger SN, Horn L, Gandhi L, et al. Overall survival and long-term safety of nivolumab (anti-programmed death 1 antibody, BMS-936558, ONO-4538) in patients with previously treated advanced non-small-cell lung cancer. J Clin Oncol. 2015;33:2004-2012.
3. Borghaei H, Paz-Ares L, Horn L, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med. 2015;373:1627-1639.
4. Garon EB, Leighl NB, Rizvi NA, et al. Safety and clinical activity of MK-3475 in previously treated patients (pts) with non-small cell lung cancer (NSCLC). J Clin Oncol. 2014;32:8020–8020.
5. Helissey C, Champiat S, Soria JC. Immune checkpoint inhibitors in advanced nonsmall cell lung cancer. Curr Opin Oncol. 2015;27:108-117.
6. Brahmer J, Reckamp KL, Baas P, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med. 2015;373:123-135.
7. Champiat S, Dercle L, Ammari S, et al. Hyperprogressive disease is a new pattern of progression in cancer patients treated by anti-PD-1/PD-L1. Clin Cancer Res. 2017;23:1920-1928.
8. Ferrara R, Caramella C, Texier M, et al. Hyperprogressive disease (HPD) is frequent in non-small cell lung cancer (NSCLC) patients (pts) treated with anti PD1/PD-L1 monoclonal antibodies (IO). Ann Oncol. 2017;28:S460-S496.
9. Saâda-Bouzid E, Defaucheux C, Karabajakian A, et al. Hyperprogression during anti-PD-1/PD-L1 therapy in patients with recurrent and/or metastatic head and neck squamous cell carcinoma. Ann Oncol. 2017;28:1605-1611.
10. Ramos Chaves M, Boleo-Tome C, Monteiro-Grillo I, Camilo M, Ravasco P. The diversity of nutritional status in cancer: new insights. Oncologist. 2010;15:523-530.
11. Kato S, Goodman A, Walavalkar V, Barkauskas DA, Sharabi A, Kurzrock R. Hyperprogressors after immunotherapy: analysis of genomic alterations associated with accelerated growth rate. Clin Cancer Res. 2017;23:4242-4250.

12. Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420:860-867.

13. Shaul ME, Fridlender ZG. Cancer related circulating and tumor-associated neutrophils – subtypes, sources and function. FEBS J. 2018;285:4316-4342.

14. Suh KJ, Kim SH, Kim YJ, et al. Post-treatment neutrophil-to-lymphocyte ratio at week 6 is prognostic in patients with advanced non-small cell lung cancers treated with anti-PD-1 antibody. Cancer Immunol Immunother. 2018;67:459-470.

15. Jiang T, Liu H, Qiao M, et al. Impact of clinicopathologic features on the efficacy of PD-1/PD-L1 inhibitors in patients with previously treated non-small-cell lung cancer. Clin Lung Cancer. 2018;19:e177-e184.

16. Crusz SM, Balkwill FR. Inflammation and cancer: advances and new agents. Nat Rev Clin Oncol. 2015;12:584-596.

17. Templeton AJ, Ace O, McNamara MG, et al. Role of platelet to lymphocyte ratio in solid tumors: a systematic review and meta-analysis. Cancer Epidemiol Biomarkers Prev. 2014;23:1204-1212.

18. Ferrucci PF, Gandini S, Battaglia A, et al. Baseline neutrophil-to-lymphocyte ratio is associated with outcome of ipilimumab-treated metastatic melanoma patients. Br J Cancer. 2015;112:1904-1910.

19. Khoja L, Atenafu EG, Templeton A, et al. The full blood count as a biomarker of outcome and toxicity in ipilimumab-treated cutaneous metastatic melanoma. Cancer Med. 2016;5:2792-2799.

20. Ferrucci PF, Ascierto PA, Pigozzo J, et al. Baseline neutrophils and derived neutrophil-to-lymphocyte ratio: prognostic relevance in metastatic melanoma patients receiving ipilimumab. Ann Oncol. 2016;27:732-738.

21. Jafri SH, Shi R, Mills G. Advance lung cancer inflammation index (ALI) at diagnosis is a prognostic marker in patients with metastatic non-small cell lung cancer (NSCLC): a retrospective review. BMC Cancer. 2013;13:158.

22. He X, Zhou T, Yang Y, et al. Advanced lung cancer inflammation index, a new prognostic score, predicts outcome in patients with small-cell lung cancer. Clin Lung Cancer. 2015;16:e165-e171.

23. Park YH, Yi HG, Lee MH, Kim CS, Lim JH. Prognostic value of the pretreatment advanced lung cancer inflammation index (ALI) in diffuse large B cell lymphoma patients treated with R-CHOP chemotherapy. Acta Haematol. 2017;137:76-85.

24. Soyano AE, Dholaria B, Marin-Acevedo JA, et al. Peripheral blood biomarkers correlate with outcomes in advanced non-small cell lung cancer patients treated with anti-PD-1 antibodies. J Immunother Cancer. 2018;6:129.

25. Shiroyama T, Suzuki H, Tamiya M, et al. Pretreatment advanced lung cancer inflammation index (ALI) for predicting early progression in nivolumab-treated patients with advanced non-small cell lung cancer. Cancer Med. 2018;7:13-20.

26. Costantini A, Corny J, Fallet V, et al. Efficacy of next treatment received after nivolumab progression in patients with advanced nonsmall cell lung cancer. ERJ Open Res. 2018;4:00120. https://doi.org/10.1183/23120541.00120-2017.

27. Inoue T, Tamiya M, Tamiya A, et al. Analysis of early death in Japanese patients with advanced non-small cell lung cancer treated with nivolumab. Clin Lung Cancer. 2018;19:e171-e176.

28. Costantini A, Fallet V, Corny J, et al. Nivolumab-refractory patients with advanced non-small-cell lung cancer. Lung Cancer. 2019;130:128-134.

29. Gettinger SN, Wurtz A, Goldberg SB, et al. Clinical features and management of acquired resistance to PD-1 axis inhibitors in 26 patients with advanced non-small cell lung cancer. J Thorac Oncol. 2018;13:831-839.

30. Tunali I, Gray JE, Qi J, et al. Novel clinical and radiomic predictors of rapid disease progression phenotypes among lung cancer patients treated with immunotherapy: an early report. Lung Cancer. 2019;129:75-79.

31. Trebeschi S, Drago SG, Birkbak NJ, et al. Predicting response to cancer immunotherapy using non-invasive radiomic biomarkers. Ann Oncol. 2019;30:998-1004.

How to cite this article: Vergnenegre A, Geier M, Guisier F, et al; the GFPC Team. Management and outcomes of non–small cell lung cancer patients with rapid progression under second-or-more-line immune checkpoint inhibitors: EROREC1 study (GFPC 2016-04). Cancer Med. 2020;9:432–439. https://doi.org/10.1002/cam4.2716

APPENDIX A

AUTHORS CONTACT DETAILS
Margaux Geier: margaux.geier@gmail.com
Florian Guisier: florian.guisier@gmail.com
Régine Lamy: r.lamy@ch-bretagne-sud.fr
Bénédicte Comet: benedictecomet@gmail.com
Gwenaelle Le Garff St Brieuc: gwenaelle.legarff@ch-stbrieuc.fr
Pascal Do: PDO@baclesse.unicanter.fr
Henri Janicot: hjanicot@chu-clermontferrand.fr
Hugues Morel: hugues.morel@chr-orleans.fr
Chantal Decroisette: cdecroisette@ch-annecy.fr
Michel Andre: michel.andre@chu-reunion.fr
Lionel Falchero:LFalchero@lhbpitalnordouest.fr
Nicolas Paleiron: nicolas.paleiron@free.fr
Isabelle Monnet: Isabelle.Monnet@chicreteil.fr