Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Antiviral Research 63 (2004) 209–215

Short communication

Application of real-time PCR for testing antiviral compounds against Lassa virus, SARS coronavirus and Ebola virus in vitro

Stephan Günthera,∗, Marcel Asper4, Christina Rösera, Luciano K. S. Lunaa, Christian Drosten4, Beate Becker-Ziaja, Peter Borowskia, Huan-Ming Chenb, Ramachandra S. Hosmaneb

a Department of Virology, Bernhard-Nocht-Institute of Tropical Medicine, Bernhard-Nocht-Strasse 74, D-20359 Hamburg, Germany
b Department of Chemistry & Biochemistry, University of Maryland, Baltimore County, MD 21250, USA

Received 9 April 2004; accepted 10 May 2004

Abstract

This report describes the application of real-time PCR for testing antivirals against highly pathogenic viruses such as Lassa virus, SARS coronavirus and Ebola virus. The test combines classical cell culture with a quantitative real-time PCR read-out. The assay for Lassa virus was validated with ribavirin, which showed an IC50 of 9 μg/ml. Small-scale screening identified a class of imidazole nucleoside/nucleotide analogues with antiviral activity against Lassa virus. The analogues contained either dinitrile or diester groups at the imidazole 4,5-positions, and many of which possessed an acyclic sugar or sugar phosphonate moiety at the imidazole 1-position. The IC50 values of the most active compounds ranged from 5 to 21 μg/ml. The compounds also inhibited replication of SARS coronavirus and Ebola virus in analogous assays, although to a lesser extent than Lassa virus.

Keywords: Lassa virus; SARS coronavirus; Ebola virus; Real-time PCR; Imidazole nucleoside analogues

© 2004 Elsevier B.V. All rights reserved.

Lassa virus belongs to the family Arenaviridae and is the etiologic agent of Lassa fever in humans. Transmission of the virus from its natural host – the African rodent Mastomys natalensis – to humans causes a systemic disease with bleeding and organ failure. Lassa fever is endemic in the West African countries of Sierra Leone, Guinea, Liberia, and Nigeria. A variety of compounds have shown antiviral activity against arenaviruses in cell culture (Huggins et al., 1984; Rodriguez et al., 1986; Burns et al., 1988; Andrei and De Clercq, 1990, 1993; De Clercq et al., 1991; Nair and Ussery, 1992; Smee et al., 1992; Candurra et al., 1996; Garcia et al., 2000; Wachsmann et al., 2000; Bartolotta et al., 2001). The only drug with a proven therapeutic effect in humans with Lassa fever is the broad-spectrum nucleoside analogue ribavirin (McCormick et al., 1986). Several cases of Lassa fever recently imported into Europe have demonstrated that even state-of-the-art intensive care cannot prevent a fatal outcome if ribavirin treatment is initiated too late (Schmitz et al., 2002). This report describes assays for testing potential antiviral compounds against Lassa virus and other highly pathogenic viruses, such as severe acute respiratory syndrome-associated coronavirus (SARS-CoV) (Drosten et al., 2003) and Ebola hemorrhagic fever virus (Feldmann et al., 2003). The test combines classical cell culture with real-time PCR. A class of imidazole nucleoside/nucleotide analogues was identified which showed inhibitory activity against Lassa virus and, to a lesser extent, against SARS-CoV and Ebola virus.

The flowchart of the test is shown in Fig. 1(A). Vero cells were plated at a density of 4 × 104/well of a 24-well plate. Twenty-four hours later, the cells were infected in the biosafety level 4 laboratory with Lassa virus strain AV at a multiplicity of infection (MOI) of 0.01, SARS-CoV at an MOI of 0.01, or Ebola virus subtype Zaire at an MOI of 0.1 in 100 μl. The inoculum was removed after 1 h and replaced by fresh medium complemented with different concentrations of compound. None of the three viruses showed cytopathic effect under our culture conditions. Virus RNA concentration

∗ Corresponding author. Tel.: +49 40 42818 421; fax: +49 40 42818 378
E-mail address: guenther@bni.uni-hamburg.de (S. Günther).
in supernatant was measured by real-time PCR during the exponential growth phase of the viruses (Fig. 1B), i.e. after 2 days for Lassa virus and SARS-CoV, and after 3 days for Ebola virus. During this time, the viruses were growing by several orders of magnitudes if no inhibitor was added. For RNA preparation, a simple and inexpensive method (Boom et al., 1990) was adopted. A 140-μl aliquot of supernatant was mixed with 560 μl chaotropic lysis buffer AVL (Qiagen) and incubated at room temperature for 15 min. The lysate was added to 100 mg diatomaceous silica (Sigma–Aldrich) suspended in 560 μl ethanol and incubated with agitation for 30 min at room temperature. The diatomaceous silica were pelleted by centrifugation and the pellet was washed with 500 μl AW2 buffer (Qiagen), subsequently with 500 μl AW2 buffer (Qiagen), and finally with 400 μl acetone. The pellet was dried at 56 °C and the RNA eluted with 100 μl water. Quantitative real-time PCR assays for Lassa virus, SARS-CoV, and Ebola virus Zaire were performed with the purified RNA based on previously published protocols (Gibb et al., 2001; Drosten et al., 2003; Asper et al., 2004). The detailed reaction conditions are given in Table 1. In vitro transcripts of the PCR target regions were amplified in the PCR to generate standard curves for quantification of the virus RNA in supernatant.

In selected experiments, infectious Lassa virus particles in the supernatant were quantified by immunofocus assay. Vero cells in 24-well plates were inoculated with serial 10-fold dilutions of supernatant. The inoculum was removed after 1 h and replaced by a 1% methylcellulose-medium overlay. After 5 days of incubation, cells were fixed with 4% formaldehyde, permeabilized with 0.5% Triton X-100, blocked with 10% fetal calf serum, and washed. Infected cell foci were detected with Lassa virus nucleoprotein (NP)-specific monoclonal antibody L2F1 diluted 1:50 (Hufert et al., 1989). After washing and incubation with peroxidase-labelled anti-mouse IgG antibody 1:3000 (Dianova), foci were stained with 3,3′,5,5′-tetramethylbenzidine (TMB) and counted.

Cell growth inhibition or cytotoxicity was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) method. MTT solution (50 μl, 5 mg/ml PBS) was added to the remaining supernatant of the cells from which an aliquot of supernatant was taken for measuring virus RNA or infectious particles concentration. The plate was incubated for 90 min at 37 °C. The supernatant was completely removed and the cells were fixed with 4% formaldehyde for 30 min. Tetrazolium crystals were dissolved in 1 ml ethanol for 10 min and the extinction was measured at 560 nm.

The concentrations required to inhibit virus replication by 50% (IC₅₀) or 90% (IC₉₀) were calculated by fitting a sigmoidal curve to the data following logarithmic transformation of the drug concentration. Curve fitting was performed by probit regression analysis using Statgraphics plus 5.0 software (Statistical Graphics Inc.).

Initial experiments were performed with the Lassa virus assay. It was validated using ribavirin as a positive control (Fig. 1C). In agreement with published data on related arenaviruses (Huggins et al., 1984; Rodriguez et al., 1986; Andre and De Clercq, 1990), ribavirin inhibited Lassa virus replication with an IC₅₀ of 9 μg/ml and an IC₉₀ of 14 μg/ml. Furthermore, the inhibition kinetics measured with real-time PCR perfectly corresponded to the kinetics measured with
concentration data ranged from 5 to 21.

trations in the range between 10 and 50 were tested using this assay. For screening, three different concen-

tations up to 100 were observed with the less toxic compounds due to its toxicity.

Abbreviations: FAM, 6-carboxyfluorescein; TAMRA, 6-carboxy-

ty, the complete set of 18 compounds was also tested against SARS-CoV and Ebola virus (Table 2). Virus-specific effects were observed with the less toxic compounds 8, 10, 13, 23, 24, and 35 (Fig. 3B and C). However, the inhibiting effects against SARS-CoV and Ebola virus were considerably lower than observed for Lassa virus and overlapped with cell toxicity at higher concentrations. There was no evidence for a SARS-CoV- or Ebola virus-specific effect with compound 3 due to its toxicity.

This study shows that real-time PCR is a useful approach to determine the antiviral effect of compounds. The assay provides an impartial and quantitative value of virus growth in cells in the presence of a compound over a broad dynamic range (i.e. several orders of magnitudes), with the effect of the compound on cell growth and viability being measured with the same cells. However, it is more laborious than classical methods, such as plaque reduction tests, immunofluorescence tests, or tests based on inhibition of virus-induced cytopathogenicity.

The nucleoside analogues identified as inhibitors of Lassa virus replication contained a 5-membered hetero-
cyclic ring, namely an imidazole. A number of nucleoside

Assay and references	Reaction conditions	Cycling conditions
Lassa virus (Dobrny et al., 1994; Auper et al., 2004)	20-μl reaction based on Brilliant single-step quantitative RT-PCR kit (Stratagene): 2 μl RNA, 1x buffer, 2.5 mM MgCl2, 800 μM dNTPs, 0.4 μg bovine serum albumin, 5 μM SybrGreen-binding molecule SGS (Dressten, 2003s), SybrGreen 1:10000 (Molecular Probes), 1.25 U Stratascript RT, 1 U SureStart Taq polymerase, 200 μM primer 36E2 (ACC GCG GAT CCT AGG CAT TT), and 300 μM primer 80F2 (ATA TAA TGA TGA CTG TTG TTC TTT GTG CA)	LightCycler (Roche): 20 min at 45°C; 12 min at 95°C; 10 precycles with 10 s at 95°C, 10 s at 60°C with a decrease of 0.8°C/cycle, and 30 s at 72°C; 25 cycles with 5 s at 95°C, 10 s at 55°C, 30 s at 65°C; and 20 s fluorescence read at 80°C (F1 detection channel), melting curve analysis.
SARS-CoV (Dressten et al., 2003)	25-μl reaction based on Superscript II RT-PCR kit (Invitrogen): 5 μl R N A, 1 μl buffer, 3.6 mM MgCl2, 800 nM primer EBOGP-1D forward (TGG GCA GCG CCA GAC GG-TAMRA), 300 nM primer EBOGP-1D reverse (CTT GAA AAY TGC TAG AAT C), and 200 nM primer EBOGP-1DZProbes, 1.25 U StrataScript RT, 1 U Taq polymerase, 200 nM primer BNITMSARP (FAM-TCG TGC GTG GAT TGT GMA CAT ASC GGC AC)	7000 SDS machine (Applied Biosystems): 15 min at 45°C; 3 min at 95°C; 40 cycles with 15 s at 95°C and 30 s at 58°C with fluorescence measured at 58°C (FAM detection channel without passive reference dye)
Ebola virus (Gibb et al., 2001)	20-μl reaction based on Brilliant single-step quantitative RT-PCR kit (Stratagene): 2 μl RNA, 1x buffer, 2.5 mM MgCl2, 800 μM dNTPs, 1.25 U Stratascript RT, 1 U SureStart Taq polymerase, 250 nM probe EBOGP-1DZProbes, 1.25 U Taq polymerase	7000 SDS machine (Applied Biosystems): 30 min at 50°C, 10 min at 95°C; 45 cycles with 15 s at 95°C and 30 s at 58°C with fluorescence measured at 58°C (FAM detection channel without passive reference dye)
Fig. 2. Chemical structures of imidazole nucleoside/nucleotide analogues tested. Abbreviations: Et, ethyl; Ac, acetyl; Bz, benzoyl; Tol, toluoyl.

Table 2
Inhibition parameters of the compounds

Compound	Lassa virus IC50 (μg/ml)	Lassa virus IC90 (μg/ml)	CC50 (μg/ml)	SARS-CoV IC50 (μg/ml)	SARS-CoV IC90 (μg/ml)	CC50 (μg/ml)	Ebola virus IC50 (μg/ml)	Ebola virus IC90 (μg/ml)	CC50 (μg/ml)
A 3	10	28	70	30	31	13	36		
A 8	13	43	>100	20	>75	37	>75		
A 23	8	27	>100	23	>75	19	>75		
A 34	8	29	>100	17	>75	43	>75		
A 40	32	>50	>50	48	>75	41	>75		
A 72	>50	>50	>50	46	>75	18	>75		
B-1 10	25	>50	>50	32	>75	12	>75		
B-1 35	13	46	>100	18	>75	32	75		
B-1 39	30	>50	>50	28	>75	17	75		
B-1 56	21	58	>100	46	>75	30	>75		
B-1 64	12	36	97	40	75	19	75		
B-1 71	46	>50	>50	23	75	19	>75		
B-1 83	2	7	12	17	29	10	30		
B-2 13	4	>50	>50	28	>75	16	>75		
B-2 36	18	>50	>50	49	75	41	>75		
B-3 28	35	>50	>50	35	>75	23	>75		
B-4 54	10	>50	>50	26	>75	28	>75		

Abbreviations: IC50, concentration causing 50% reduction of the viral RNA concentration in the supernatant; IC90, concentration causing 90% reduction of the viral RNA concentration in the supernatant; CC50, concentration causing 50% reduction of the MTT value; n.t., not tested.

* Virus RNA measurement and MTT test were performed with cells and supernatant, respectively, of the same cell culture well. IC50 values were not calculated for SARS-CoV and Ebola virus because they were for most compounds above the concentration range tested.
analogues containing 5-membered heterocyclic rings, such as imidazole, pyrazole, and triazole, have since long been documented as potent antiviral, antibacterial, and antitumor agents (De Clercq and Luczak, 1975; Srivastava et al., 1976; Korbukh et al., 1978; Smith and Kirkpatrick, 1980; Revankar et al., 1981). These include, but are not limited to, bredinin (Gerber et al., 1998), a potent nucleoside antibiotic containing an imidazole ring, and ribavirin (Sidwell et al., 1972; Witkowski et al., 1972; Smith and Kirkpatrick, 1980; Tam et al., 2001; Crotty et al., 2002; Lau et al., 2002), a broad-spectrum antiviral agent containing a triazole nucleus. In addition to possessing a 5-membered heterocyclic ring, the target compounds also contain acyclic sugar or sugar phosphate groups attached to the heterocyclic ring, and thus mimic part or whole of the natural sugar or sugar phosphate of nucleosides and nucleotides. In this context, they are analogues of the widely known potent, broad-spectrum antivirals, namely acyclovir [9-(2-hydroxyethoxymethyl)guanine] (Schaeffer et al., 1978; Kaplan and Bain, 1999; Emmert, 2000; De Clercq et al., 2001) and PMEA/PMEG [9-(2-phosphonylmethoxyethyl)adenine/guanine] (Balzarini et al., 1997; Naesens et al., 2000), and SARS-CoV RNA.
and De Clercq, 1997; Naesens et al., 1997; Kramata et al., 1998; Compton et al., 1999; Noble and Goa, 1999). The observation that SARS-CoV and Ebola viruses were also inhibited to a certain extent suggests that this class of analogues potentially has broad-spectrum antiviral activity. The mode of action is completely speculative and may be different depending on the chemical characteristics of a given compound. One possibility is direct inhibition of the virus replication machinery. Alternatively, the analogues might affect cellular pathways of nucleotide metabolism. The RNA synthesis of a highly replicating virus like Lassa virus probably is more susceptible to inhibition of nucleotide metabolism than the corresponding cellular processes. Inhibition of nucleotide metabolism could also account for the toxicity associated with some of the compounds.

Acknowledgements

The research was supported by a grant # 9R01 AI55452 from the United States National Institute of Allergy and Infectious Diseases (NIAID/NIH) (to R.S.H.), grant EB414/G3091/A403 from the Bundesamt für Wehrtechnik und Beschaffung (to S.G.), and a grant from the Concelho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil (to L.K.S.L.). The Bernhard-Nocht-Institut is supported by the Bundesministerium für Gesundheit and the Freie und Hansestadt Hamburg.

References

Andre, G., de Clercq, E., 1999. Inhibitory effect of selected antiviral compounds on arenoside replication in vitro. Antiviral Res. 41, 287–299.
Andre, G., de Clercq, E., 1993. Molecular approaches for the treatment of hemorrhagic fever virus infections. Antiviral Res. 22, 45–75.
Aegerter, M., Sterenbold, T., Haas, M., Drosten, C., Rhode, A., Schmitz, H., Ginder, S., 2004. Inhibition of different Lassa virus strains by alpha and gamma interferons and comparison with a less pathogenic arenavirus. J. Virol. 78, 3162–3169.
Balzarini, J., Vaillantkamp, T., Egberink, H., Hartmann, K., Wereese, M., Pannecouque, C., Casara, P., Nave, J.F., de Clercq, E., 1997. Antiviral activities of acyclic nucleoside phosphonates [9-(2-phosphonylmethoxyethyl)adenine, 9-(2-phosphonylmethoxyethyl)guanine, (R)-9-(2-phosphonylmethoxyethyl)thymidine]. Nucleosides Nucleotides Nucleic Acids 16, 611–616.
Bartsch, S., Garcia, C.C., Candura, N.A., Damonte, E.B., 2000. Antiviral and anticausal activities against arenaviruses of zince-finger active compounds. Antiviral Chem. Chemother. 11, 231–237.
Berger, D.A., Bonham, C.A., Thomson, A.W., 1998. Immunosuppressive agents: recent developments in molecular action and clinical application. Transplant. Proc. 30, 1573–1579.
Gibb, T.R., Norwood Jr., D.A., Woollen, N., Henchal, E.A., 2001. Development and evaluation of a fluorogenic 5′-nuclease assay to detect and differentiate between Ebola virus subtypes Zaire and Sudan. J. Clin. Microbiol. 39, 4125–4130.
Hufert, F.T., Laude, W., Schmitz, H., 1989. Epitope mapping of the Lassa virus nucleoprotein using monoclonal anti-nucleocapsid antibodies. Arch. Virol. 106, 201–212.
Huggins, J.W., Robins, R.K., Canovas, P.G., 1984. Synergistic antiviral effects of ribavirin and the C-nucleoside analog tosylamide and sefazofurin against togaviruses, bunyaviruses, and arenaviruses. Antiviral Chem. Chemother. 26, 476–480.
Jahrung, P.B., Huey, R.A., Ilday, G.A., Johnson, K.M., Callis, R.T., Jahrling, P.B., Hesse, R.A., Eddy, G.A., Johnson, K.M., Callis, R.T., 1993. Patent no. 101 50 121.8, Deutsches Patentamt München, Germany.
Kaplin, C.P., Bains, K.P., 1989. Cognitive outcome after emergent treatment of acute herpes simplex encephalitis with acyclovir. Brain Inj. 13, 935–941.
Kramata, P., Drosten, K.M., 1998. Incorporation and excision of 9-(2-phosphonylmethoxyethyl)guanine (PMEG) by DNA
polymerase delta and epsilon in vitro. J. Biol. Chem. 273, 21966–21971.
Lau, J.Y., Tam, R.C., Liang, T.J., Hong, Z., 2002. Mechanism of action of ribavirin in the combination treatment of chronic HCV infection. Hepatology 33, 1002–1009.
McCormick, J.B., King, L.J., Webb, P.A., Scribben, C.L., Craven, R.B., Johnson, K.M., Elliott, L.H., Belshe-Williams, R., 1995. Lassa fever. Effective therapy with ribavirin. N. Engl. J. Med. 331: 24–28.
Naesens, L., De Clercq, E., 1997. Therapeutic potential of HPMPC (cidofovir), PMEA (adefovir) and related acyclic nucleoside phosphate analogues as broad-spectrum antiviral agents. Nucleosides Nucleotides 16, 983–992.
Naesens, L., Snoeck, R., Andrei, G., Balzarini, J., Neyts, J., De Clercq, E., 1997. HPMPC (cidofovir), PMEA (adefovir) and related acyclic nucleoside phosphate analogues: a review of their pharmacology and clinical potential in the treatment of viral infections. Antiviral Chem. Chemother. 8, 1–23.
Noble, S., Gou, K.L., 1999. Adeboxir dipivoxil. Drugs 58, 479–489.
Revankar, G.R., Solan, V.C., Robins, R.K., Witkowski, J.T., 1981. Synthesis and biological activity of certain 1,2,3-triazole carboxamide nucleosides related to brevirin and pyrazofurin. Nucleic Acids Symp. Ser. 65–68.
Rodríguez, M., McCormick, J.B., Wessendorfer, M.C., 1986. Antiviral effect of ribavirin on Junin virus replication in vitro. Rev. Argent. Microbiol. 18, 69–74.
Schaeffer, H.J., Beuchamp, L., de Miranda, P., Elliott, G.B., Bauer, D.J., Collin, P., 1978. 9-(2-hydroxyethoxymethyl) guanine activity against viruses of the herpes group. Nature 272, 583–585.
Schmitz, H., Kohler, B., Lau, T., Desclaux, J., Veldkamp, P.J., Günther, S., Eisenzem, P., Grönert, H.P., Fleischer, K., Beermann, M.F., Horsburgh, A., 2002. Monitoring of clinical and laboratory data in two cases of imported Lassa fever. Microbes Infect. 4, 43–50.
Sidwell, R.W., Hoffmann, J.H., Khare, G.P., Allen, L.B., Witkowski, J.T., Robins, R.K., 1972. Broad-spectrum antiviral activity of Virazole: 1-beta-D-ribofuranosyl-1,2,4-triazole-3-carboxamide. Science 177, 765–766.
Sidwell, R.W., Morris, J.L., Barnard, D.L., Van Aerichot, A., 1992. Selective inhibition of arthropod-borne and arenaviruses in vitro by 2′-fluoro-3′-deoxyadenosine. Antiviral Res. 18, 151–162.
Smith, R.A., Kuklinski, W., 1980. Ribavirin: a Broad Spectrum Antiviral Agent. Academic Press, New York.
Smee, D.F., Morris, J.L., Barnard, D.L., Van Aerichot, A., 1992. Selective inhibition of arthropod-borne and arenaviruses in vitro by 2′-fluoro-3′-deoxyadenosine. Antiviral Res. 18, 151–162.
Smith, R.A., Kirkpatrick, W., 1980. Ribavirin: a Broad Spectrum Antiviral Agent. Academic Press, New York.
Smee, D.F., Morris, J.L., Van Aerichot, A., 1992. Selective inhibition of arthropod-borne and arenaviruses in vitro by 2′-fluoro-3′-deoxyadenosine. Antiviral Res. 18, 151–162.
Smith, R.A., Kuklinski, W., 1980. Ribavirin: a Broad Spectrum Antiviral Agent. Academic Press, New York.
Stephen, E.L., Jahrling, P.B., 1979. Experimental Lassa fever virus infection successfully treated with ribavirin. Lancet 1, 268–269.
Tam, R.C., Lau, J.Y., Hong, Z., 2001. Mechanisms of action of ribavirin in antiviral therapies. Antiviral Chem. Chemother. 12, 261–272.
Wachman, M.B., Lopez, E.M., Ramirez, J.A., Galagovsky, L.R., Coto, C.E., 2000. Antiviral effect of brassinosteroids against herpes virus and arenaviruses. Antivir. Chem. Chemother. 11, 71–77.
Witkowski, J.T., Robins, R.K., Sidwell, R.W., Simon, L.N., 1972. Design, synthesis, and broad spectrum antiviral activity of 1-beta-D-ribofuranosyl-1,2,4-triazole-3-carboxamide and related nucleosides. J. Med. Chem. 15, 1150–1154.