Association between microRNA-146a, -499a and -196a-2 SNPs and non-small cell lung cancer: a case-control study involving 2,249 subjects

Hao Qiu¹*, Zhiqiang Xie²*, Weifeng Tang³, Chao Liu³, Yafeng Wang⁴, Haiyong Gu⁵#, Qingfeng Zheng⁶#

¹Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, China;
²Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China;
³Department of Cardiothoracic Surgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China
⁴Department of Cardiology, The People's Hospital of Xishuangbanna Dai Autonomous Prefecture, Jinghong, Yunnan Province, China;
⁵Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China;
⁶Department of Thoracic Surgery, Fujian Provincial Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, Fujian Province, China;

*Equal contributors

#Corresponding author

#Correspondence should be addressed to: Qingfeng Zheng, Department of Thoracic Surgery, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350014, China; tel: 0086-13809533865, E-mail: qingfeng_zheng@163.com or Haiyong Gu, Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China; tel: 0086-13381808896, E-mail: haiyong_gu@hotmail.com

Running Title: microRNA polymorphisms and SNCLC

Key words: microRNA, polymorphism, susceptibility, non-small cell lung cancer
Abstract: MicroRNA (miR) acts as a negative regulator of gene expression. Many literatures have suggested that miRs may be involved in the process of cell proliferation, inflammation, oxidative stress, energy metabolism and epithelial mesenchymal transition. Thus, miRs may be implicated in the occurrence of non-small cell lung cancer (NSCLC). In the current investigation, we included 2,249 subjects (1,193 NSCLC patients and 1,056 controls) and designed a study to identify the relationship of miR-146a rs2910164 C/G, -499a rs3746444 A/G, and -196a-2 rs11614913 T/C with the risk of NSCLC. The risk factors (e.g., body mass index, sex, smoking, drinking and age), was used to adjust the odds ratios and 95% confidence intervals. After conducting a power value assessment, we did not confirm that the miR-SNPs genotypic distributions were different in NSCLC cases and controls. However, the association of miR-196a-2 rs11614913 with a decrease risk of NSCLC was identified in the female subgroup (adjusted $P=0.005$, power=0.809 for TC vs. TT, and adjusted $P=0.004$, power=0.849 for CC/TC vs. TT). In addition, gene-gene interaction analysis showed that rs11614913 TC/rs3746444 AA and rs11614913 CC/rs3746444 AA could also reduce the susceptibility to NSCLC (rs11614913 TC/rs3746444 AA vs. rs11614913 TT/rs3746444 AA, $P=0.001$, power=0.912 and rs11614913 CC/rs3746444 AA vs. rs11614913 TT/rs3746444 AA, $P=0.003$, power=0.836). In conclusion, in overall comparisons, we did not confirm that the rs2910164, rs3746444, and rs11614913 SNPs genotypic distributions were different in NSCLC cases and controls. However, this case-control study demonstrates that miR-196a-2 rs11614913 may be a protective factor for the development of NSCLC among female patients.
Introduction

Lung cancer (LC) caused about 11.6% of all new cancer cases and 18.4% of all cancer-related deaths worldwide [1]. In China, 733.3 thousand new LC patients and 610.2 thousand LC-related deaths were assessed to occur in 2015 [2]. The etiology of LC was unclear. It is reported that a number of genetic and environmental risk factors may cause the development of LC [3, 4, 5]. Non-small cell lung cancer (NSCLC) is the most common type of LC. The individual’s hereditary factor may be implicated in the occurrence of NSCLC.

MicroRNA (miR), a small non-coding RNA, acts as a negative regulator of gene expression. In the nucleus, the Drosha/DiGeorge syndrome critical region 8 complex cleaves pri-miRNAs [6]. Then, in the cytoplasm, Dicer crops these formed pre-miRNAs [7]. Finally, they are incorporated into the Argonaute-containing RNA-induced silencing complexes [8]. Mature miR is composed of about 22 nucleic acids, which is generated from primary miRs and further changed to mature miRs in cytoplasm. The target mRNAs located in 3’-untranslated regions (3’-UTRs). Matured miRs can recognize the 3’-UTRs of mRNA and bind to them, and then result in a weakened expression of target genes. The mechanism of the process is hybridization of seed sequences of matured miRs with 3’-UTRs. An individual miR can bind to masses of targets, and regulate a number of pathways. Many investigations have suggested that miRs may be involved in the process of cell proliferation, inflammation, oxidative stress, energy metabolism and epithelial mesenchymal transition (EMT) [9, 10, 11, 12, 13, 14, 15, 16]. Of late, some previous investigations have indicated that miRs have been implicated in the occurrence of NSCLC [17, 18]. There are single nucleotide polymorphisms (SNPs) in certain miRs. These SNPs might influence the generation process of miRs or alter target recognition/hybridization. Thus, miR polymorphisms may be implicated in the occurrence and/or progress of cancer [19, 20, 21, 22, 23, 24, 25].

Park et al. reported that miR-146a could restrain EMT progression in NSCLC by repressing the expression of insulin receptor substrate-2 [14]. It was found that miR-146a inhibited migratory capacity, downstream signaling of epidermal growth factor receptor and NSCLC cell growth; however, it could promote the apoptosis process of NSCLC cell lines [13]. Xiong et al. reported that miR-146a rs2910164 C>G locus could affect its maturation in peripheral blood mononuclear cells [26]. A recent study reported that G allele of rs2910164 might increase miR-146a level [27]. A previous study suggested that rs2910164 locus might influence the toxicity in LC chemotherapy [28]. Several reports indicated that rs2910164 polymorphism in miR-146a could decrease the risk to LC [29, 30]. However, other case-control studies suggested that rs2910164 might not influence the occurrence of LC [31, 32]. These controversial observations may be due to the limited sample sizes. Here, we explored the role of miR-146a rs2910164 SNP with the development of NSCLC and a potential interaction of this SNP with risk factors to identify whether this locus could be used as a biomarker for susceptibility to NSCLC in Chinese populations.

Rs11614913 T>C was widely explored in malignancy as a candidate locus of miR-196a-2 [33, 34]. Hu et al. reported that the rs11614913 T→C variant in miR-196a-2 could affect the binding ability of mature hsa-mir-196a-2-3p binding with its target mRNA [35]. Recently, this polymorphism was thought to alter LC cases’ sensitivity to platinum-based chemotherapy [23]. A functional study highlighted that rs11614913 might be involved in the development of LC through altering the secondary structure and the expression of miR-196a-2 [36]. Thus, rs11614913
polymorphism might be implicated in carcinogenesis of LC and could affect an individual’s susceptibility of LC. Indeed, several case-control studies have investigated the role of rs11614913 in the occurrence of LC [23, 36]. However, the observations were conflicting, even in a same ethnicity. For example, some recent studies indicated a significant relationship between miR-196a-2 rs11614913 and the development of LC [36, 37, 38], whereas others did not confirm the potential correlation [23, 32].

A previous investigation reported that miR-499a rs3746444 SNP could affect the process of miR-499-5p maturation and the role of antiapoptosis [39]. The relationship between miR-499a rs3746444 A>G and the susceptibility and progress of LC has been explored. Ge et al. reported that miR-499a rs3746444 AA genotype could inhibit the expression of miR-499a gene and CD200 [40]. And then this SNP could influence the survival of NSCLC cases. Several studies have focused on the role of miR-499a rs3746444 in the development of LC [40, 41]. However, recent meta-analyses have reported contradictory findings [42, 43, 44]. Thus, the correlation of miR-499a rs3746444 with the development of LC was more inconsistent.

In the current investigation, we designed a larger sample size study to identify the correlation of rs3746444, rs2910164 and rs11614913 with the occurrence of NSCLC.

Materials and methods

Study population and ethical approval

Each participant donated a peripheral blood sample. NSCLC cases in the current investigation were recruited from the Zhenjiang Medical College of Nanjing Medical University (Jiangsu Province, China) and the Union Medical College of Fujian Medical University (Fujian Province, China) between January 2014 and June 2018. All NSCLC cases were diagnosed via histopathological examination. In this study, the selection criteria were defined as the following: (1) Chinese Han populations, (2) sporadic cases and (3) without any history of other cancer. And the exclusion criteria were summarized as: (1) a patient who has an autoimmune disease, (2) NSCLC patients who have treated with chemoradiotherapy and/or targeted therapy, (3) NSCLC recurrent cases and (4) heterochronous NSCLC. In total, 1,193 NSCLC cases were enrolled. At the same time, 1,056 participants without a history of cancer were included as controls in the Medical Colleges mentioned above. The data of demographics and potential risk factors were collected by a pre-structured questionnaire. During the recruitment, each participant signed a written informed consent. This study was approved by the Ethics Review Committee of Fujian Union Hospital (2018KY023).

Isolation of DNA and genotyping

Using DNA Isolation Kit (Promega, Madison, USA), we extracted genomic DNA. The obtained DNA was kept at -80°C. The quality of DNA sample was assessed by Nanodrop ND-1000 UV. A custom-SNPscan™ Kit (Genesky Biotechnologies Inc., Shanghai, China) was used to analyze the genotypes. Briefly, no less than 120 ng DNA sample was used to conduct a double ligation and multiplex fluorescence polymerase chain reaction (PCR). ABI-3730XL sequencer (PE Applied Biosystems, Foster City, CA, USA) was used to detect the PCR products. The obtained raw data were analyzed by harnessing GeneMapper 4.1 (AppliedBiosystems, USA). To conduct a quality control, ninety samples were randomly chosen and
repeated genotyped in the same PCR method. The results indicated that 100% concordant results were observed.

Statistical analysis

Hardy–Weinberg equilibrium (HWE) (https://ihg.gsf.de/cgi-bin/hw/hwa1.pl) [45] and SAS 9.4 (SAS Institute, Cary, North Carolina) softwares were harnessed to analyze HWE and genetic data. Odds ratios (ORs) and 95% confidence intervals (CIs) were used to estimate the relationship of rs2910164, rs11614913 and rs3746444 with the risk of NSCLC. We also calculated adjusted ORs and 95% CIs using logistic regression analyses. In the current study, five risk factors [e.g., body mass index (BMI), smoking, drinking, age and gender] were included. Power Calculator (http://biostat.mc.vanderbilt.edu/twiki/bin/view/Main/PowerSampleSize) was used to calculate the power of sample size [19, 46]. We also used the false-positive report probability (FPRP) to evaluate the findings [47].

Results

Characteristics of the study population

In the current study, 1,193 cases with NSCLC (mean ± SD age, 58.92±10.44 years) and 1,056 controls (mean ± SD age, 59.36±9.19 years) were collected (Table 1). In NSCLC group, 642 males and 551 females were included. While in controls, there were 586 males and 470 females. The age and gender were well-mathed \((P=0.960\) and 0.425, respectively). The distribution of smoking, drinking and BMI were different between two groups \((All \ P<0.001\). Raw data of genotypes and characteristics were summarized in Table S1.

Information of rs3746444, rs2910164 and rs11614913 SNPs

The successful ratio of genotyping was more than 99.00%. Table 2 has summarized some vital information for rs2910164, rs11614913 and rs3746444. In controls, these included miR-SNPs genotype distributions met HWE \((P>0.05)\). Table S1 summarized the detailed information and genotypes for each individual.

Rs3746444, rs2910164 and rs11614913 SNPs and NSCLC susceptibility

The number of miR-146a rs2910164 allele and genotype in NSCLC cases and controls is summarized in Table 3. In this case-control study, for overall comparisons, we identified that the miR-146a genotype frequency was not significantly different among the two groups. As well, we also found that the miR-499a rs3746444 genotypic distribution was not different in NSCLC cases and controls.

Table 3 listes the miR-196a-2 rs11614913 genotype distribution in NSCLC cases and controls. It was notable that there was statistically significant in comparison of rs11614913 genotypes in three genetic models among NSCLC cases and controls. The decreased genotype frequencies of rs11614913 TC, CC and TC/CC were found in NSCLC patients. In relation to rs11614913 TT, individuals carrying rs11614913 TC genotypes had a decreased 21% susceptibility to the occurrence of NSCLC \((P=0.014)\), Table 4. Additionally, compared to rs11614913 TT, rs11614913 CC and TC/CC genotypes were also protective factors for the occurrence of NSCLC \((CC \ vs. \ TT: P=0.027\) and TC/CC vs. TT: \(P=0.007)\), Table 4). When we adjusted for risk factors, the decreased susceptibility for the occurrence of NSCLC was not changed (Table 4).

MiR-SNPs and NSCLC susceptibility in different type of pathology
Table S2 and Table S3 summarized the detailed information and genotypes for squamous cell carcinoma (SCC) and non-SCC cases, respectively. When we conducted a subgroup analysis by type of pathology, for rs11614913 SNP, the decreased susceptibility for the occurrence of NSCLC was also found in non-SCC subgroup (TC vs. TT: adjusted $P=0.026$ and TC/CC vs. TT: adjusted $P=0.015$, Table 4). For rs2910164 and rs3746444 polymorphisms, no significant association between these SNPs and NSCLC risk was found (Table 4).

Stratification analysis of miR-SNPs and NSCLC susceptibility

(a) **miR-146a rs2910164 C>G locus**

When we conducted stratification analyses by risk factors, an increased risk for the occurrence of NSCLC was identified in never drinking subgroup (CG vs. CC: adjusted $P=0.043$ and GG/CG vs. CC: adjusted $P=0.028$, Table 5).

(b) **MiR-499a rs3746444 A>G locus**

Table 6 listed the findings of stratification analyses for rs3746444 polymorphism. We identified that rs3746444 polymorphism elevated the susceptibility of NSCLC (never smoking subgroup: adjusted $P=0.035$ for GG vs. AA genetic model and adjusted $P=0.049$ for GG vs. AA/AG genetic model; never drinking subgroup: adjusted $P=0.032$ for GG vs. AA genetic model, adjusted $P=0.035$ for GG/AG vs. AA genetic model and adjusted $P=0.047$ for GG vs. AA/AG genetic model; BMI <24 (kg/m2) subgroup: adjusted $P=0.042$ for AG vs. AA genetic model and adjusted $P=0.034$ for GG vs. AA/AG genetic model and never BMI ≥ 24 (kg/m2) subgroup: adjusted $P=0.046$ for GG vs. AA/AG genetic model).

(c) **miR-196a-2 rs11614913 T>C locus**

For miR-196a-2 rs11614913, significant difference in frequency of its genotype was found between NSCLC cases and controls. We identified that rs11614913 polymorphism may be a protective factor for the occurrence of NSCLC (female subgroup: adjusted $P=0.005$ for TC vs. TT genetic model, adjusted $P=0.038$ for CC vs. TT genetic model and adjusted $P=0.004$ for CC/TC vs. TT genetic model; never smoking subgroup: adjusted $P=0.038$ for CC vs. TT genetic model and adjusted $P=0.049$ for CC/TC vs. TT genetic model; never drinking subgroup: adjusted $P=0.024$ for TC vs. TT genetic model, adjusted $P=0.018$ for CC vs. TT genetic model and adjusted $P=0.009$ for CC/TC vs. TT genetic model, Table 7).

Gene–gene interaction analysis

We also conducted miR-SNPs combined analysis for three included SNPs. Three potential types (rs11614913/rs2910164, rs11614913/rs3746444, rs2910164/rs3746444 and rs11614913/rs2910164/rs3746444) were combined to explore the gene–gene interaction and their roles on the occurrence of NSCLC.

In analysis of rs11614913/rs2910164 loci combination, we used rs11614913 TT/rs2910164 CC as reference. It was notable that the rs11614913 CC/rs2910164 CC combination was a protective factor for the development of NSCLC ($P=0.010$, Table 8). In another analysis of rs11614913/rs3746444 loci combination, compared to rs11614913 TT/rs3746444 AA, frequency of rs11614913 TC/rs3746444 AA was lower in NSCLC patients 32.54% (384/1080) than in controls 37.70% (397/1053).
When rs11614913 TT/rs3746444 AA was used as a reference, frequency of rs11614913 CC/rs3746444 AA was also lower in NSCLC patients 12.46% (147/1080) than in controls 15.19% (160/1053). When rs11614913 TT/rs2910164 CC/rs3746444 AA was used as a reference, TC/CC/AA, TC/GG/AA and CC/CC/AA genotype combinations might decreased the risk of NSCLC (Table 8).

Study power (α= 0.05) and FPRP method

For overall comparisons, these miR-SNPs did not confer a risk to NSCLC. Each power value for overall positive report was less than 0.8 (data not shown). For the comparison of miR-SNPs and NSCLC susceptibility in different type of pathology, we also could not confirm the positive report (data not shown). In stratification analysis of miR-SNPs with NSCLC susceptibility, we only confirmed that rs11614913 polymorphism could be a protective factor for the occurrence of NSCLC in the female subgroup (the power values were 0.809 in TC vs. TT and 0.848 in CC/TC vs. TT). In these miR-SNPs combination analysis, compared to rs11614913 TT/3746444 AA, rs11614913 TC/3746444 AA and rs11614913 CC/rs3746444 AA could decrease the susceptibility of NSCLC (power value: 0.912 and 0.836, respectively). Other power values less than 0.8 were not shown. After assessing power value and FPRP, we highlighted that miR-196a-2 rs11614913 decreased the risk to NSCLC in the female subgroup. As well, gene-gene interaction analysis showed that rs11614913 TC/3746444 AA and rs11614913 CC/rs3746444 AA could also reduce the susceptibility to NSCLC.

Discussion

LC is a common malignancy with 18.4% of overall cancer-related deaths worldwide [1]. The etiology of LC is not well-known. NSCLC is the most common subtype of LC. MiR is a negative regulator of gene expression. It may involve in the development of cancer. Some investigations have focused on the role of miRs on the occurrence and survival of NSCLC [40, 48, 49]. The individual’s hereditary factor may be implicated in the occurrence of NSCLC. In this investigation, we designed a study to identify the correlation of miR-SNPs (rs3746444, rs2910164 and rs11614913) with the risk of NSCLC in Chinese populations. We highlighted that rs11614913, in the female subgroup, could decrease the risk to NSCLC. As well, gene-gene interaction analysis showed that rs11614913 TC/3746444 AA and rs11614913 CC/rs3746444 AA could also reduce the susceptibility to NSCLC.

Rs11614913 locates on the 3p strand region of mature miR-196a-2 [50]. Thus, this locus could participate in the process of pre-miR maturation and affect the combination of miR-196a-2 with target genes [51]. Hu et al. reported that that the T>C variant in rs11614913 locus could alter the ability of mature hsa-mir-196a-2-3p binding to its target mRNA [35]. Therefore, this SNP could be used as an important biomarker for NSCLC prognosis [35]. A previous study has suggested that annexin A1 (ANXA1), a regulator of inflammation, could be regulated by miR-196a-2 [52]. A bioinformatics analysis suggested that the expression of ANXA1 could influence the survival of NSCLC cases [53]. Additionally, knockdown of ANXA1 could inhibit the invasion, migration and proliferation of NSCLC cells. Thus, miR-196a-2 could be implicated in the occurrence of cancer. Fang et al. reported that variants of rs11614913 could alter the response of LC case to platinum-based chemotherapy [23]. Toraih et al. found that individuals carrying the rs11614913 C allele might be a protective factor of LC, which was associated with miR-196a-2 low-expression in
A recent investigation indicated that the polymorphism of rs11614913, through influencing the level of miR-196a-2 and secondary structure, conferred risk to LC in females [36]. In the current investigation, we found that the miR-196a-2 rs11614913 could reduce the susceptibility to NSCLC in female. In view of these investigations mentioned above, we might conclude that rs11614913 C allele could be a protective factor to the occurrence of NSCLC though altering the level of miR-196a-2 and secondary structure. It is well known that smoking is a major risk for LC. However, in this study, we did not find the interaction of tobacco using and rs11614913 SNP with the development of NSCLC. In the future, these conclusions should be confirmed by further studies.

Several literatures have focused on the relationship between gene-gene interaction and the occurrence of human diseases [55, 56, 57]. In this study, we analyzed the combined effect of these miR-SNPs. Gene-gene interaction analyses showed that rs11614913 TC/3746444 AA and rs11614913 CC/rs3746444 AA could also decrease the susceptibility of NSCLC, which suggested that rs11614913 C allele could inhibit the development of NSCLC. We first confirmed that rs11614913 TC/3746444 AA and rs11614913 CC/rs3746444 AA combinations could decrease the risk of NSCLC. However, this combination did not influence the risk of cervical cancer [56]. Therefore, the effect of rs11614913 TC/3746444 AA combination could be different in different cancer. In the future, the possible correlation is needed to verify in other studies.

Several limitations, in this investigation, should be pointed out. Firstly, some vital data were unknown; thus, a more extensively stratified analysis for other risk factors (e.g., vegetable and fruit intake, air pollution, lifestyle and occupational exposure) could not be done. Second, due to the hospital-based study, bias might have happened in our analysis. Third, the number of participants in this study was moderate. Last, we only included three miR-SNPs in this study, and other important miR-SNPs should not be ignored.

In conclusion, this study highlights that miR-196a-2 rs11614913 decreases the risk to NSCLC among female subgroup. Additionally, combined gene-gene analyses suggest that rs11614913 TC/3746444 AA and rs11614913 CC/rs3746444 AA are protective factors for the development of NSCLC. More investigations are needed to validate the potential effect of these miR-SNPs in NSCLC. And more functional studies should also be done.

Acknowledgements: We appreciate the help/participation of all people who participated in this study.

Disclosure of Potential Conflicts of Interests: The authors have no potential financial conflicts of interest.

Grant support: This study was supported in part by Fujian Provincial Health Technology (Grant number: 2018-CXB-4), Research Foundation for Senior Talents of Jiangsu University (Grant number: 16JDG066), National Natural Science Foundation of China (Grant number: 81472332) and Interdisciplinary Program of Shanghai Jiao Tong University (Grant number: YG2016MS79).

Author contribution statement:
Haiyong Gu and Qingfeng Zheng designed the study. Hao Qiu, Zhiqiang Xie, Weifeng Tang, Chao Liu and Yafeng Wang performed the experiments. Hao Qiu and Zhiqiang Xie analyzed the data. Hao Qiu drafted the manuscript and Haiyong Gu revised the manuscript.

Data Availability Statement: Full data are available via an online supplementary material. Raw data of genotypes and characteristics were summarized in Table S1. Table S2 and Table S3 summarized the detailed information and genotypes for squamous cell carcinoma (SCC) and non-SCC cases, respectively.
References:

1. Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians. 2018 Nov;68(6):394-424. doi: 10.3322/caac.21492. PubMed PMID: 30207593.

2. Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015. CA: a cancer journal for clinicians. 2016 Mar-Apr;66(2):115-32. doi: 10.3322/caac.21338. PubMed PMID: 26808342.

3. de Groot P, Munden RF. Lung cancer epidemiology, risk factors, and prevention. Radiologic clinics of North America. 2012 Sep;50(5):863-76. doi: 10.1016/j.rcl.2012.06.006. PubMed PMID: 22974775.

4. Yang JJ, Yu D, Xiang YB, et al. Association of Dietary Fiber and Yogurt Consumption With Lung Cancer Risk: A Pooled Analysis. JAMA oncology. 2019 Oct 24. doi: 10.1001/jamaoncol.2019.4107. PubMed PMID: 31647500; PubMed Central PMCID: PMC6813596.

5. Akhtar N, Bansal JG. Risk factors of Lung Cancer in nonsmoker. Current problems in cancer. 2017 Sep-Oct;41(5):328-339. doi: 10.1016/j.currprobcancer.2017.07.002. PubMed PMID: 28823540.

6. Han J, Lee Y, Yeom KH, et al. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell. 2006 Jun 2;125(5):887-901. doi: 10.1016/j.cell.2006.03.043. PubMed PMID: 16751099.

7. Urbanek-Trzeciak MO, Jaworska E, Krzyzosiak WJ. miRNAmotif-A Tool for the Prediction of Pre-miRNA(-)Protein Interactions. International journal of molecular sciences. 2018 Dec 17;19(12). doi: 10.3390/ijms19124075. PubMed PMID: 30562930; PubMed Central PMCID: PMC6321451.

8. Gebert LFR, MacRae IJ. Regulation of microRNA function in animals. Nature reviews Molecular cell biology. 2019 Jan;20(1):21-37. doi: 10.1038/s41580-018-0045-7. PubMed PMID: 30108335; PubMed Central PMCID: PMC6546304.

9. McDonald RA, Halliday CA, Miller AM, et al. Reducing In-Stent Restenosis: Therapeutic Manipulation of miRNA in Vascular Remodeling and Inflammation. Journal of the American College of Cardiology. 2015 Jun 02;65(21):2314-27. doi: 10.1016/j.jacc.2015.03.549. PubMed PMID: 26022821; PubMed Central PMCID: PMC4444526.

10. Afzal TA, Luong LA, Chen D, et al. NCK Associated Protein 1 Modulated by miRNA-214 Determines Vascular Smooth Muscle Cell Migration, Proliferation, and Neointima Hyperplasia. Journal of the American Heart Association. 2016 Dec 07;5(12). doi: 10.1161/JAHA.116.004629. PubMed PMID: 27927633; PubMed Central PMCID: PMC5210428.

11. Maves CK, Johnson JF, Bove K, et al. Gastric inflammatory pseudotumor in children. Radiology. 1989 Nov;173(2):381-3. doi: 10.1148/radiology.173.2.2678252. PubMed PMID: 2678252.

12. Jin X, Chen D, Zheng RH, et al. miRNA-133a-UCP2 pathway regulates inflammatory bowel disease progress by influencing inflammation, oxidative stress and energy metabolism. World journal of gastroenterology. 2017 Jan 07;23(1):76-86. doi: 10.3748/wjg.v23.i1.76. PubMed PMID: 28104982; PubMed Central PMCID: PMC5221288.

13. Chen G, Umelo IA, Lv S, et al. miR-146a inhibits cell growth, cell migration and induces apoptosis in non-small cell lung cancer cells. PloS one.
14. Park DH, Jeon HS, Lee SY, et al. MicroRNA-146a inhibits epithelial-mesenchymal transition in non-small cell lung cancer by targeting insulin receptor substrate 2. International journal of oncology. 2015 Oct;47(4):1545-53. doi: 10.3892/ijo.2015.3111. PubMed PMID: 26238771.

15. Li YY, Zheng XH, Deng AP, et al. MiR-92b inhibited cells EMT by targeting Gabra3 and predicted prognosis of triple negative breast cancer patients. European review for medical and pharmacological sciences. 2019 Dec;23(23):10433-10442. doi: 10.26355/eurrev_201912_19682. PubMed PMID: 31841197.

16. Han S, Shi Y, Sun L, et al. MiR-4319 induced an inhibition of epithelial-mesenchymal transition and prevented cancer stemness of HCC through targeting FOXQ1. International journal of biological sciences. 2019;15(13):2936-2947. doi: 10.7150/ijbs.38000. PubMed PMID: 31853229; PubMed Central PMCID: PMC6909970.

17. Petrek H, Yu AM. MicroRNAs in non-small cell lung cancer: Gene regulation, impact on cancer cellular processes, and therapeutic potential. Pharmacology research & perspectives. 2019 Dec;7(6):e00528. doi: 10.1002/prp2.528. PubMed PMID: 31859460.

18. Zou Y, Jing C, Liu L, et al. Serum microRNA-135a as a diagnostic biomarker in non-small cell lung cancer. Medicine. 2019 Dec;98(50):e17814. doi: 10.1097/MD.0000000000017814. PubMed PMID: 31852062.

19. Tang W, Wang Y, Pan H, et al. Association of miRNA-499 rs3746444 A>G variants with adenocarcinoma of esophagogastric junction (AEG) risk and lymph node status. OncoTargets and therapy. 2019;12:6245-6252. doi: 10.2147/OTT.S209013. PubMed PMID: 31496728; PubMed Central PMCID: PMC6690596.

20. Ahmad M, Ahmad S, Rahman B, et al. Association of MIR146A rs2910164 variation with a predisposition to sporadic breast cancer in a Pakistani cohort. Annals of human genetics. 2019 Sep;83(5):325-330. doi: 10.1111/ahg.12316. PubMed PMID: 30963551.

22. Wang S, Zhu H, Ding B, et al. Genetic variants in microRNAs are associated with cervical cancer risk. Mutagenesis. 2019 May 29;34(2):127-133. doi: 10.1093/mutage/gez005. PubMed PMID: 30852614.

23. Fang C, Li XP, Chen YX, et al. Functional miRNA variants affect lung cancer susceptibility and platinum-based chemotherapy response. Journal of thoracic disease. 2018 Jun;10(6):3329-3340. doi: 10.21037/jtd.2018.05.145. PubMed PMID: 30069329; PubMed Central PMCID: PMC6051820.

24. Zhang W, Xiao J, Lu X, et al. PVT1 (rs13281615) and miR-146a (rs2910164) polymorphisms affect the prognosis of colon cancer by regulating COX2 expression and cell apoptosis. Journal of cellular physiology. 2019 Aug;234(10):17538-17548. doi: 10.1002/jcp.28377. PubMed PMID: 30820968.
25. Dai ZM, Lv JR, Liu K, et al. The role of microRNA-608 polymorphism on the susceptibility and survival of cancer: a meta-analysis. Aging. 2018 Jun 16;10(6):1402-1414. doi: 10.18632/aging.101476. PubMed PMID: 29909406; PubMed Central PMCID: PMC6046227.

26. Xiong XD, Cho M, Cai XP, et al. A common variant in pre-miR-146 is associated with coronary artery disease risk and its mature miRNA expression. Mutation research. 2014 Mar;761:15-20. doi: 10.1016/j.mrfmmm.2014.01.001. PubMed PMID: 24447667.

27. Alipoor B, Ghaedi H, Meshkani R, et al. The rs2910164 variant is associated with reduced miR-146a expression but not cytokine levels in patients with type 2 diabetes. Journal of endocrinological investigation. 2018 May;41(5):557-566. doi: 10.1007/s40618-017-0766-z. PubMed PMID: 29058209.

28. Fang C, Li XP, Gong WJ, et al. Age-related common miRNA polymorphism associated with severe toxicity in lung cancer patients treated with platinum-based chemotherapy. Clinical and experimental pharmacology & physiology. 2017 Dec;44 Suppl 1:21-29. doi: 10.1111/1440-1681.12704. PubMed PMID: 27873337.

29. Yin Z, Cui Z, Ren Y, et al. MiR-146a polymorphism correlates with lung cancer risk in Chinese nonsmoking females. Oncotarget. 2017 Jan 10;8(2):2275-2283. doi: 10.18632/oncotarget.13722. PubMed PMID: 27911870; PubMed Central PMCID: PMC5356798.

30. Yin Z, Cui Z, Ren Y, et al. Association between polymorphisms in pre-miRNA genes and risk of lung cancer in a Chinese non-smoking female population. Lung cancer. 2016 Apr;94:15-21. doi: 10.1016/j.lungcan.2016.01.013. PubMed PMID: 26973201.

31. Yin Z, Cui Z, Guan P, et al. Interaction between Polymorphisms in Pre-MiRNA Genes and Cooking Oil Fume Exposure on the Risk of Lung Cancer in Chinese Non-Smoking Female Population. PloS one. 2015;10(6):e0128572. doi: 10.1371/journal.pone.0128572. PubMed PMID: 26083623; PubMed Central PMCID: PMC4471348.

32. Parlayan C, Ikeda S, Sato N, et al. Association analysis of single nucleotide polymorphisms in miR-146a and miR-196a2 on the prevalence of cancer in elderly Japanese: a case-control study. Asian Pacific journal of cancer prevention : APJCP. 2014;15(5):2101-7. doi: 10.7314/apjcp.2014.15.5.2101. PubMed PMID: 24716941.

33. Rahim A, Afzal M, Naveed AK. Genetic polymorphism of miRNA-196a and its target gene annexin-A1 expression based on ethnicity in Pakistani female breast cancer patients. Pakistan journal of medical sciences. 2019 Nov-Dec;35(6):1598-1604. doi: 10.12669/pjms.35.6.1322. PubMed PMID: 31777500; PubMed Central PMCID: PMC6861506.

34. Farokhzadeh Z, Dehbidi S, Geramizadeh B, et al. Association of MicroRNA Polymorphisms With Hepatocellular Carcinoma in an Iranian Population. Annals of laboratory medicine. 2019 Jan;39(1):58-66. doi: 10.3343/alm.2019.39.1.58. PubMed PMID: 30215231; PubMed Central PMCID: PMC6143471.

35. Hu Z, Chen J, Tian T, et al. Genetic variants of miRNA sequences and non-small cell lung cancer survival. The Journal of clinical investigation. 2008 Jul;118(7):2600-8. doi: 10.1172/JCI34934. PubMed PMID: 18521189; PubMed Central PMCID: PMC2402113.
36. Yin Z, Cui Z, Ren Y, et al. MiR-196a2 and lung cancer in Chinese non-smoking females: a genetic association study and expression analysis. Oncotarget. 2017 Sep 19;8(41):70890-70898. doi: 10.18632/oncotarget.20174. PubMed PMID: 29050330; PubMed Central PMCID: PMC5642605.

37. He F, Lin J, Yu T, et al. [Interaction research on smoking and microRNA genes SNP related to lung cancer in Fujian Han population]. Zhonghua yu fang yi xue za zhi [Chinese journal of preventive medicine]. 2016 Feb;50(2):168-74. doi: 10.3760/cma.j.issn.0253-9624.2016.02.013. PubMed PMID: 29050330; PubMed Central PMCID: PMC5642605.

38. Yuan Z, Zeng X, Yang D, et al. Effects of common polymorphism rs11614913 in Hsa-miR-196a2 on lung cancer risk. PloS one. 2013;8(4):e61047. doi: 10.1371/journal.pone.0061047. PubMed PMID: 23593385; PubMed Central PMCID: PMC3625214.

39. Ding W, Li M, Sun T, et al. A polymorphism rs3746444 within the pre-miR-499 alters the maturation of miR-499-5p and its antiapoptotic function. Journal of cellular and molecular medicine. 2018 Nov;22(11):5418-5428. doi: 10.1111/jcmm.13813. PubMed PMID: 30102014; PubMed Central PMCID: PMC6201352.

40. Ge N, Mao C, Yang Q, et al. Single nucleotide polymorphism rs3746444 in miR499a affects susceptibility to nonsmall cell lung carcinoma by regulating the expression of CD200. International journal of molecular medicine. 2019 May;43(5):2221-2229. doi: 10.3892/ijmm.2019.4124. PubMed PMID: 30864695.

41. Li D, Zhu G, Di H, et al. Associations between genetic variants located in mature microRNAs and risk of lung cancer. Oncotarget. 2016 Jul 5;7(27):41715-41724. doi: 10.18632/oncotarget.9566. PubMed PMID: 27232940; PubMed Central PMCID: PMC5173090.

42. Fan X, Wu Z. Effects of four single nucleotide polymorphisms in microRNA-coding genes on lung cancer risk. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine. 2014 Nov;35(11):10815-24. doi: 10.1007/s13277-014-2371-5. PubMed PMID: 25077922.

43. Chen Z, Xu L, Ye X, et al. Polymorphisms of microRNA sequences or binding sites and lung cancer: a meta-analysis and systematic review. PloS one. 2013;8(4):e61008. doi: 10.1371/journal.pone.0061008. PubMed PMID: 23613771; PubMed Central PMCID: PMC3628762.

44. Yang X, Li X, Zhou B. A Meta-Analysis of miR-499 rs3746444 Polymorphism for Cancer Risk of Different Systems: Evidence From 65 Case-Control Studies. Frontiers in physiology. 2018;9:737. doi: 10.3389/fphys.2018.00737. PubMed PMID: 29946268; PubMed Central PMCID: PMC6005882.

45. Tang W, Wang Y, Chen S, et al. Investigation of Cytotoxic T-lymphocyte antigen 4 Polymorphisms in Gastric Cardia Adenocarcinoma. Scandinavian journal of immunology. 2016 Mar;83(3):212-8. doi: 10.1111/sji.12409. PubMed PMID: 26709093.

46. Tang W, Qiu H, Ding H, et al. Association between the STK15 F311 polymorphism and cancer susceptibility: a meta-analysis involving 43,626 subjects. PloS one. 2013;8(12):e82790. doi: 10.1371/journal.pone.0082790. PubMed PMID: 24349361; PubMed Central PMCID: PMC3862673.
47. He J, Wang MY, Qiu LX, et al. Genetic variations of mTORC1 genes and risk of gastric cancer in an Eastern Chinese population. Molecular carcinogenesis. 2013 Nov;52 Suppl 1:E70-9. doi: 10.1002/mc.22013. PubMed PMID: 23423739.

48. Li C, Zhang Y, Li Y, et al. The association of polymorphisms in miRNAs with nonsmall cell lung cancer in a Han Chinese population. Cancer management and research. 2018;10:697-704. doi: 10.2147/CMAR.S154040. PubMed PMID: 29692628; PubMed Central PMCID: PMC5901134.

49. Wu S, Shen W, Pan Y, et al. Genetic Variations in Key MicroRNAs are Associated With the Survival of Nonsmall Cell Lung Cancer. Medicine. 2015 Nov;94(47):e2084. doi: 10.1097/MD.0000000000002084. PubMed PMID: 26632718; PubMed Central PMCID: PMC5058987.

50. Hu Z, Liang J, Wang Z, et al. Common genetic variants in pre-microRNAs were associated with increased risk of breast cancer in Chinese women. Human mutation. 2009 Jan;30(1):79-84. doi: 10.1002/humu.20837. PubMed PMID: 18634034.

51. Landgraf P, Rusu M, Sheridan R, et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell. 2007 Jun 29;129(7):1401-14. doi: 10.1016/j.cell.2007.04.040. PubMed PMID: 17604727; PubMed Central PMCID: PMC2681231.

52. Luthra R, Singh RR, Luthra MG, et al. MicroRNA-196a targets annexin A1: a microRNA-mediated mechanism of annexin A1 downregulation in cancers. Oncogene. 2008 Nov 06;27(52):6667-78. doi: 10.1038/onc.2008.256. PubMed PMID: 18663355.

53. Fang Y, Guan X, Cai T, et al. Knockdown of ANXA1 suppresses the biological behavior of human NSCLC cells in vitro. Molecular medicine reports. 2016 May;13(5):3858-66. doi: 10.3892/mmr.2016.5022. PubMed PMID: 27035116; PubMed Central PMCID: PMC4838122.

54. Toraih EA, Fawzy MS, Mohammed EA, et al. MicroRNA-196a2 Biomarker and Targetome Network Analysis in Solid Tumors. Molecular diagnosis & therapy. 2016 Dec;20(6):559-577. doi: 10.1007/s40291-016-0223-2. PubMed PMID: 27342110.

55. Rah H, Jeon YI, Shim SH, et al. Association of miR-146aC>G, miR-196a2T>C, and miR-499A>G polymorphisms with risk of premature ovarian failure in Korean women. Reproductive sciences. 2013 Jan;20(1):60-8. doi: 10.1177/1933719112450341. PubMed PMID: 22872486.

56. Thakur N, Singhal P, Mehrotra R, et al. Impacts of single nucleotide polymorphisms in three microRNAs (miR-146a, miR-196a2 and miR-499) on the susceptibility to cervical cancer among Indian women. Bioscience reports. 2019 Apr 30;39(4). doi: 10.1042/BSR20180723. PubMed PMID: 30872409; PubMed Central PMCID: PMC6465206.

57. Qiu H, Chen Z, Lv L, et al. Associations Between microRNA Polymorphisms and Development of Coronary Artery Disease: A Case-Control Study. DNA and cell biology. 2019 Nov 6. doi: 10.1089/dna.2019.4963. PubMed PMID: 31692368.
Table 1 Distribution of selected demographic variables and risk factors in NSCLC cases and controls

Variable	NSCLC Cases (n=1,193)	Controls (n=1,056)	P	
	n	%	n	%
Age (years)	58.92±10.44	59.36±9.19	0.293	
<59	535	44.84	452	42.80
≥59	658	55.16	604	57.20
Sex			0.425	
Male	642	53.81	586	55.65
Female	551	46.19	470	44.35
Smoking status			<0.001	
Never	757	63.45	857	81.16
Ever	436	36.55	199	18.84
Alcohol use			<0.001	
Never	946	79.30	967	91.83
Ever	247	20.70	89	8.17
BMI (kg/m²)			<0.001	
<24	801	67.14	571	54.07
≥24	392	32.86	485	45.93
Type of NSCLC				
SCC	182	15.26		
Non-SCC	1,011	84.74		
Stage				
I	703	58.93		
II	87	7.29		
III	222	18.61		
IV	181	15.17		
Lymph node status				
Positive	381	31.94		
Negative	812	68.06		

*Two-sided χ² test and student t test;

Bold values are statistically significant (P<0.05).

BMI: body mass index;
NSCLC: non-small-cell lung cancer

SCC: squamous cell carcinoma
Genotyped SNPs	miR-146a rs2910164 C>G	miR-196a-2 rs11614913 T>C	miR-499a rs3746444 A>G
Chromosome	5	12	20
Function	nc-transcript-variant	nc-transcript-variant	nc-transcript-variant
Chr Pos (NCBI Build 38)	160485411	53991815	3499048
MAF\(a\) for Chinese in database	0.35	0.34	0.15
MAF in our controls (n = 1,056)	0.36	0.46	0.15
\(P\) value for HWE\(^b\) test in our controls	0.217	0.208	0.898
Genotyping method	SNPscan	SNPscan	SNPscan
% Genotyping value	99.47%	99.47%	99.29%

\(^a\) MAF: minor allele frequency;

\(^b\) HWE: Hardy–Weinberg equilibrium
Table 3 The frequencies of *miR-146a* rs2910164 C>G, *miR-196a-2* rs11614913 T>C and *miR-499a* rs3746444 A>G polymorphisms in CAD patients and controls

Genotype	Overall NSCLC cases (n=1,193)	SCC cases (n=182)	Non-SCC cases (n=1,011)	Controls (n=1,056)				
	n	%	n	%	n	%	n	%
miR-146a rs2910164 C>G								
CC	460	38.85	68	37.57	392	39.08	440	41.79
CG	555	46.88	91	50.28	464	46.26	467	44.35
GG	169	14.27	22	12.15	147	14.66	146	13.87
G allele	893	37.71	135	37.29	758	37.79	759	36.04
miR-499a rs3746444 A>G								
AA	814	68.98	128	71.11	686	68.60	757	71.89
AG	330	27.97	47	26.11	283	28.30	271	25.74
GG	36	3.05	5	2.78	31	3.10	25	2.37
G allele	402	17.03	57	15.83	345	17.25	321	15.24
miR-196a-2 rs11614913 T>C								
TT	392	33.11	59	32.60	333	33.20	293	27.83
TC	572	48.31	90	49.72	482	48.06	544	51.66
CC	220	18.58	32	17.68	188	18.74	216	20.51
C allele	1,012	42.74	154	42.54	858	42.77	976	46.34
NSCLC: non-small-cell lung cancer

SCC: squamous cell carcinoma
Table 4 Overall and stratified analyses of miR-146a rs2910164 C>G, miR-196a-2 rs11614913 T>C and miR-499a rs3746444 A>G polymorphisms with NSCLC

Genotype	Overall NSCLC cases (n=1,193) vs. Controls (1,056)	Non-SCC cases (n=1,011) vs. Controls (1,056)	SCC cases (n=182) vs. Controls (1,056)								
	Crude OR (95%CI)	Adjusted OR (95%CI)	p	Adjusted OR (95%CI)	OR†	p	Adjusted OR (95%CI)	OR†	p		
miR-146a rs2910164 C>G											
CG vs. CC	1.14(0.95-1.36)	1.11(0.92-1.34)	0.268	1.12(0.93-1.35)	0.254	1.07(0.88-1.30)	0.498	1.26(0.90-1.77)	0.182	1.22(0.82-1.81)	0.323
GG vs. CC	1.11(0.86-1.43)	1.17(0.90-1.54)	0.243	1.13(0.87-1.48)	0.368	1.15(0.87-1.51)	0.329	0.98(0.58-1.63)	0.924	1.24(0.68-2.27)	0.477
GG/GC vs. CC	1.13(0.95-1.34)	1.13(0.94-1.34)	0.188	1.12(0.94-1.33)	0.212	1.09(0.91-1.31)	0.367	1.19(0.86-1.65)	0.287	1.23(0.84-1.79)	0.291
GG vs. CC/GG	1.03(0.82-1.31)	1.11(0.87-1.42)	0.415	1.07(0.83-1.37)	0.608	1.11(0.86-1.43)	0.436	0.86(0.53-1.39)	0.536	1.12(0.64-1.96)	0.700
miR-499a rs3746444 A>G											
AG vs. AA	1.13(0.94-1.37)	1.14(0.93-1.39)	0.201	1.15(0.95-1.40)	0.156	1.16(0.94-1.42)	0.164	1.03(0.71-1.47)	0.891	0.92(0.61-1.41)	0.707
GG vs. AA	1.34(0.80-2.25)	1.63(0.94-2.81)	0.081	1.37(0.80-2.34)	0.253	1.64(0.94-2.88)	0.083	1.18(0.45-3.15)	0.737	1.18(0.37-3.70)	0.780
GG/AG vs. AA	1.15(0.96-1.38)	1.18(0.97-1.42)	0.098	1.17(0.97-1.42)	0.103	1.19(0.98-1.45)	0.080	1.04(0.73-1.47)	0.829	0.94(0.63-1.42)	0.778
GG vs. AA/AG	1.29(0.77-2.17)	1.57(0.91-2.71)	0.104	1.32(0.77-2.24)	0.315	1.58(0.90-2.76)	0.109	1.18(0.44-3.11)	0.746	1.20(0.38-3.76)	0.752
miR-196a-2 rs11614913 T>C											
TC vs. TT	0.79(0.65-0.95)	0.79(0.65-0.97)	0.024	0.78(0.64-0.95)	0.014	0.79(0.64-0.97)	0.026	0.82(0.58-1.18)	0.282	0.82(0.54-1.24)	0.336
CC/TC vs. TT	0.76(0.60-0.97)	0.77(0.60-0.99)	0.042	0.77(0.60-0.98)	0.037	0.77(0.60-1.00)	0.052	0.74(0.46-1.17)	0.196	0.83(0.48-1.42)	0.490
CC vs. TT/TC	0.78(0.65-0.93)	0.79(0.65-0.95)	0.014	0.78(0.64-0.94)	0.008	0.79(0.65-0.96)	0.015	0.80(0.57-1.12)	0.190	0.82(0.55-1.21)	0.319
CC/TT vs. TC	0.88(0.72-1.09)	0.89(0.71-1.11)	0.286	0.89(0.72-1.11)	0.314	0.90(0.71-1.12)	0.333	0.83(0.55-1.25)	0.380	0.94(0.59-1.51)	0.795

* Adjusted for age, sex, smoking, drinking and body mass index;
NSCLC: non-small-cell lung cancer;
SCC: squamous cell carcinoma;
Bold values are statistically significant ($P < 0.05$).
Table 5. Stratified analyses between miR-146a rs2910164 C>Г polymorphism and NSCLC risk by age, sex, smoking, drinking and body mass index

Variable	miRNA-146a rs2910164 C>G (case/control) a	Adjusted OR b (95% CI); P						
	CC	CG	GG	CG vs. CC	GG vs. CC	GG/C	GG vs. CC	GG vs. CC/GG
Sex								
Male	260/249	289/255	89/80	1.06(0.81-1.37); P: 0.685	1.19(0.82-1.73); P: 0.361	1.09(0.85-1.39); P: 0.508	1.16(0.82-1.64); P: 0.411	
Female	200/191	266/212	80/66	1.15(0.88-1.52); P: 0.309	1.21(0.82-1.78); P: 0.347	1.17(0.90-1.51); P: 0.247	1.12(0.78-1.60); P: 0.550	
Age								
<59	203/192	258/198	69/60	1.16(0.87-1.54); P: 0.313	1.17(0.76-1.78); P: 0.478	1.16(0.89-1.52); P: 0.282	1.08(0.73-1.60); P: 0.709	
≥59	257/248	297/269	100/86	1.06(0.83-1.37); P: 0.627	1.22(0.86-1.73); P: 0.272	1.10(0.87-1.39); P: 0.426	1.18(0.85-1.63); P: 0.323	
Smoking status								
Never	280/358	360/371	111/125	1.22(0.98-1.52); P: 0.080	1.15(0.85-1.57); P: 0.274	1.20(0.98-1.48); P: 0.084	1.04(0.78-1.38); P: 0.809	
Ever	180/82	195/96	58/21	0.88(0.61-1.27); P: 0.507	1.32(0.74-2.33); P: 0.352	0.96(0.68-1.36); P: 0.814	1.40(0.82-2.40); P: 0.221	
Alcohol consumption								
Never	354/410	447/420	139/135	1.23(1.01-1.21); P: 0.043	1.26(0.94-1.67); P: 0.120	1.24(1.02-1.50); P: 0.028	1.12(0.86-1.47); P: 0.390	
Ever	106/30	108/47	30/11	0.59(0.34-1.02); P: 0.061	0.77(0.34-1.73); P: 0.527	0.63(0.37-1.06); P: 0.079	1.02(0.48-2.16); P: 0.956	
BMI (kg/m2)								
<24	303/236	381/260	110/73	1.12(0.88-1.42); P: 0.373	1.27(0.89-1.80); P: 0.191	1.15(0.91-1.44); P: 0.236	1.19(0.86-1.66); P: 0.292	
≥24	157/204	174/207	59/73	1.11(0.82-1.50); P: 0.493	1.06(0.70-1.61); P: 0.790	1.10(0.83-1.46); P: 0.518	1.00(0.68-1.48); P: 0.988	

* For miRNA-146a rs2910164 C>G, the genotyping was successful in 1,184 (99.25%) NSCLC cases, and 1,053 (99.72%) controls;
Adjusted for age, sex, smoking, drinking and body mass index (besides stratified factors accordingly) in a multiple logistic regression model;
Table 6. Stratified analyses between miR-499a rs3746444 A>G polymorphism and NSCLC risk by age, sex, smoking, drinking and body mass index

Variable	miRNA-499a rs3746444 A>G (case/control) a	Adjusted OR b (95% CI); P					
	AA	AG	GG	AG vs. AA	GG vs. AA	GG/AG vs. AA	GG vs. AA/AG
Sex							
Male	444/415	172/152	20/17	1.05(0.79-1.38); P: 0.744	1.59(0.79-3.21); P: 0.199	1.09(0.84-1.43); P: 0.509	1.57(0.78-3.16); P: 0.209
Female	370/342	158/119	16/8	1.21(0.91-1.61); P: 0.194	1.84(0.77-4.41); P: 0.172	1.25(0.95-1.65); P: 0.118	1.74(0.73-4.17); P: 0.211
Age							
<59	367/338	144/101	15/11	1.30(0.95-1.78); P: 0.096	1.68(0.72-3.92); P: 0.233	1.33(0.99-1.80); P: 0.060	1.57(0.67-3.65); P: 0.297
≥59	447/419	186/170	21/14	1.03(0.79-1.33); P: 0.854	1.71(0.84-3.51); P: 0.141	1.07(0.84-1.38); P: 0.583	1.70(0.83-3.47); P: 0.144
Smoking status							
Never	511/618	209/215	28/21	1.17(0.93-1.48); P: 0.176	1.91(1.08-3.48); P: 0.035	1.23(0.99-1.54); P: 0.066	1.82(1.00-3.32); P: 0.049
Ever	303/139	121/56	8/4	1.04(0.71-1.52); P: 0.856	0.90(0.26-3.13); P: 0.873	1.03(0.71-1.49); P: 0.889	0.90(0.26-3.09); P: 0.861
Alcohol consumption							
Never	629/695	274/247	33/23	1.19(0.97-1.47); P: 0.101	1.86(1.06-3.29); P: 0.032	1.25(1.02-1.53); P: 0.035	1.77(1.01-3.12); P: 0.047
Ever	185/62	56/24	3/2	0.75(0.42-1.32); P: 0.314	0.43(0.07-2.65); P: 0.360	0.72(0.41-1.25); P: 0.245	0.46(0.07-2.82); P: 0.398
BMI (kg/m2)							
<24	535/413	230/139	25/17	1.30(1.01-1.68); P: 0.042	1.31(0.68-2.52); P: 0.419	1.30(1.02-1.67); P: 0.034	1.22(0.64-2.33); P: 0.555
≥24	279/344	100/132	11/8	0.90(0.65-1.23); P: 0.495	2.54(0.98-6.55); P: 0.054	0.97(0.71-1.32); P: 0.854	2.61(1.02-6.73); P: 0.046

a For miR-499a rs3746444 A>G, the genotyping was successful in 1,180 (98.91%) NSCLC cases, and 1,053 (99.72%) controls;

b Adjusted OR for age, sex, smoking, and drinking.
b Adjusted for age, sex, smoking, drinking and body mass index (besides stratified factors accordingly) in a multiple logistic regression model;
Table 7 Stratified analyses between miR-196a-2 rs11614913 T>C polymorphism and NSCLC risk by age, sex, smoking, drinking and body mass index

Variable	mIR-196a-2 rs11614913 T>C (case/control)	Adjusted OR (95% CI); P					
	TT	TC	CC	TT vs. TC	CC vs. TT	CC/TC vs. TT	CC vs. TT/TC
Sex							
Male	204/176	315/287	119/121	0.96(0.73-1.26); P: 0.761	0.87(0.61-1.23); P: 0.428	0.93(0.72-1.21); P: 0.594	0.89(0.66-1.21); P: 0.461
Female	188/117	257/257	101/95	**0.66(0.49-0.88); P: 0.005**	**0.68(0.47-0.98); P: 0.038**	**0.66(0.50-0.87); P: 0.004**	0.88(0.64-1.22); P: 0.445
Age							
<59	184/141	246/218	100/91	0.81(0.60-1.09); P: 0.165	0.81(0.56-1.19); P: 0.279	0.81(0.61-1.07); P: 0.142	0.92(0.66-1.29); P: 0.625
≥59	208/152	326/326	120/125	0.79(0.60-1.03); P: 0.083	0.74(0.53-1.04); P: 0.081	0.77(0.60-1.00); P: 0.050	0.86(0.64-1.15); P: 0.317
Smoking status							
Never	246/237	365/436	140/181	0.83(0.66-1.05); P: 0.121	**0.73(0.55-0.98); P: 0.038**	**0.80(0.64-1.00); P: 0.049**	0.82(0.64-1.06); P: 0.131
Ever	146/56	207/108	80/35	0.73(0.49-1.08); P: 0.116	0.88(0.53-1.47); P: 0.624	0.77(0.53-1.11); P: 0.163	1.07(0.69-1.67); P: 0.765
Alcohol consumption							
Never	312/264	456/501	172/200	**0.78(0.63-0.97); P: 0.024**	**0.72(0.55-0.95); P: 0.018**	**0.76(0.62-0.94); P: 0.009**	0.84(0.67-1.07); P: 0.151
Ever	80/29	116/43	48/16	0.97(0.55-1.70); P: 0.908	1.19(0.58-2.45); P: 0.640	1.03(0.61-1.74); P: 0.923	1.21(0.64-2.30); P: 0.558
BMI (kg/m2)							
<24	258/165	382/282	154/122	0.83(0.64-1.08); P: 0.167	0.82(0.59-1.12); P: 0.207	0.83(0.65-1.06); P: 0.128	0.91(0.69-1.20); P: 0.505
≥24	134/128	190/262	66/94	0.75(0.55-1.03); P: 0.079	0.70(0.47-1.07); P: 0.097	0.74(0.55-1.00); P: 0.051	0.84(0.59-1.21); P: 0.358

For mIR-196a-2 rs11614913 T>C, the genotyping was successful in 1,184 (99.25%) NSCLC cases, and 1,053 (99.72%) controls;
Adjusted for age, sex, smoking, drinking and body mass index (besides stratified factors accordingly) in a multiple logistic regression model;
Genotype	case	Control	OR (95% CI)	P-value		
	n	%	n	%		
rs11614913/rs2910164						
TT/CC	159	13.43	122	11.59	1.00	
TT/CG	177	14.95	133	12.63	1.02(0.74-1.41)	0.900
TT/GG	56	4.73	38	3.61	1.13(0.70-1.82)	0.612
TC/CC	227	19.17	224	21.27	0.78(0.58-1.02)	0.110
TC/CG	268	22.64	239	22.70	0.86(0.64-1.15)	0.315
TC/GG	77	6.50	81	7.69	0.73(0.49-1.08)	0.113
CC/CC	74	6.25	94	8.93	**0.60(0.41-0.89)**	**0.010**
CC/CG	110	9.29	95	9.02	0.89(0.62-1.28)	0.522
CC/GG	36	3.04	27	2.56	1.02(0.59-1.78)	0.936
rs11614913/rs3746444						
TT/AA	283	23.98	200	18.99	1.00	
TT/AG	97	8.22	86	8.17	0.80(0.57-1.12)	0.194
TT/GG	11	0.93	7	0.66	1.11(0.42-2.91)	0.831
TC/AA	384	32.54	397	37.70	**0.68(0.54-0.86)**	**0.001**
TC/AG	166	14.07	137	13.01	0.86(0.64-1.14)	0.294
TC/GG	19	1.61	10	0.95	1.34(0.61-2.95)	0.462
CC/AA	147	12.46	160	15.19	**0.65(0.49-0.87)**	**0.003**
CC/AG	67	5.68	48	4.56	0.99(0.65-1.49)	0.948
CC/GG	6	0.51	8	0.76	0.53(0.18-1.55)	0.239
rs2910164/rs3746444						
CC/AA	322	27.29	324	30.77	1.00	
-------	-------	-------	-------	-------	-------	
CC/AG	124	10.51	108	10.26	1.16(0.86-1.56)	0.346
CC/GG	13	1.10	8	0.76	1.64(0.67-4.00)	0.277
CG/AA	374	31.69	320	30.89	1.18(0.95-1.46)	0.139
CG/AG	161	13.64	135	12.82	1.20(0.91-1.58)	0.195
CG/GG	18	1.53	12	1.14	1.51(0.72-3.18)	0.277
GG/AA	118	10.00	113	10.73	1.05(0.78-1.42)	0.747
GG/AG	45	3.81	28	2.66	1.62(0.98-2.66)	0.056
GG/GG	5	0.42	5	0.47	1.01(0.29-3.51)	0.992
rs11614913/rs2910164/rs3746444						
TT/CC/AA	114	9.66	86	8.17	1.00	
TT/CC/AG	41	3.47	35	3.32	0.88(0.52-1.50)	0.648
TT/CC/GG	4	0.34	1	0.09	3.02(0.33-27.55)	0.304
TT/CG/AA	128	10.85	89	8.45	1.08(0.74-1.60)	0.681
TT/CG/AG	44	3.73	40	3.80	0.83(0.50-1.38)	0.475
TT/CG/GG	5	0.42	4	0.38	0.94(0.25-3.62)	0.932
TT/GG/AA	41	3.47	25	2.37	1.24(0.70-2.19)	0.464
TT/GG/GG	12	1.02	11	1.04	0.82(0.35-1.95)	0.658
TT/GG/AG	2	0.17	2	0.19	0.75(0.10-5.47)	0.780
TC/CC/AA	155	13.14	167	15.86	0.70(0.49-1.00)	0.049
TC/CC/AG	64	5.42	54	5.13	0.89(0.57-1.41)	0.632
-------	-------	-------	-------	-------	-------	
TC/CC/GG	7	0.59	3	0.28	1.76(0.44-7.01)	0.417
TC/CG/AA	174	14.75	163	15.48	0.81(0.57-1.15)	0.228
TC/CG/AG	83	7.03	71	6.74	0.88(0.58-1.35)	0.560
TC/CG/GG	9	0.76	5	0.47	1.36(0.44-4.20)	0.594
TC/GG/AA	55	4.66	67	6.36	**0.62(0.39-0.97)**	**0.038**
TC/GG/AG	19	1.61	12	1.14	1.19(0.55-2.59)	0.653
TC/GG/GG	3	0.25	2	0.19	1.13(0.18-6.92)	0.894
CC/CC/AA	53	4.49	71	6.74	**0.56(0.36-0.89)**	**0.013**
CC/CC/AG	19	1.61	19	1.80	0.75(0.38-1.51)	0.426
CC/CC/GG	2	0.17	4	0.38	0.38(0.07-2.11)	0.250
CC/CG/AA	72	6.10	68	6.46	0.80(0.52-1.23)	0.310
CC/CG/AG	34	2.88	24	2.28	1.07(0.59-1.93)	0.826
CC/CG/GG	4	0.34	3	0.28	1.01(0.22-4.61)	0.994
CC/GG/AA	22	1.86	21	1.99	0.79(0.41-1.53)	0.484
CC/GG/AG	14	1.19	5	0.47	2.26(0.79-6.47)	0.119
CC/GG/GG	0	0.0	1	0.09	0.25(0.01-6.26)	0.251
