Lanthanide diphosphonates based on a V-shaped ligand: syntheses, structures, experimental and theoretical luminescence properties†

Si-Fu Tang and Xuebing Li*

One series of isostructural lanthanide phosphonates, namely [Ln2(H2L)2][H2O]6] (H2L = (5-methyl-1,3-phenylene)bis(phosphonic acid); Ln = Eu (1), Gd (2), Tb (3), and Dy (4)), have been successfully synthesized from a V-shaped rigid ligand. Systematic characterizations using single-crystal and powder X-ray diffraction (XRD), thermogravimetric analyses (TGA), and photoluminescence spectroscopy were accomplished. It was found that these compounds all crystallize in the cubic I213 space group, showing three-dimensional framework structures. The frameworks are stable up to 350 °C and show their respective characteristic metal-centered emissions. The photoluminescence properties were also theoretically investigated by using a newly developed software program – LUMPAC. The energy transfer and back energy transfer rates were estimated, and the T1 → 5D1 and T1 → 5D0 channels were revealed to be the dominant pathways. The combination of experimental and theoretical studies on the photoluminescence properties substantially supports the understanding and design of highly luminescent inorganic–organic hybrid materials.

Introduction

Metal phosphonates have emerged as an important type of functional materials due to their potential applications in the field of gas storage/separation, catalysis, proton conduction, magnetism, luminescence, magnetic resonance imaging (MRI), and so on. But for a long time, the number of metal phosphonates was limited compared with the carboxylate analogues due to their low solubility and poor crystallinity. To overcome these obstacles, a few effective strategies have been developed, which include (1) introduction of a functional group (e.g., carboxylate, hydroxyl, amine, crown ether, sulfonyl and pyridine) to the organic building blocks and (2) introduction of a second ligand (e.g., oxalate, 2,2′-bipy, 4,4′-bipy and 1,10-phen) to the reaction system. By employing these strategies, more and more metal phosphonates have been successfully synthesized in the past two decades. Among these compounds, lanthanide phosphonates are of particular interest because of their diverse structures and fantastic photophysical properties.

Phosphonate group has three oxygen atoms and can coordinate to metal ions with many possible coordination modes when they are in any state of protonation. Lanthanide ions usually exhibit a high coordination number. The combination of lanthanide centers with phosphonate ligands leads to diverse structures. Meanwhile, lanthanide compounds emit intense well-defined narrow bands from the UV to near IR spectral range but suffer from low molar absorption coefficients. Phosphonate ligands especially rigid ones can function as “antennae”, sensitizing the emissive state of lanthanide centers via energy transfer. Thus, lanthanide phosphonates are highly desirable.

Although great progress has been made, it is still necessary to synthesize more lanthanide phosphonates and characterize their structures and properties. It is believed that the structure of lanthanide phosphonates depends greatly on the size, shape and coordination mode of the ligand. The size and shape of the ligand can be tailored by varying the organic moiety attached to the phosphonic acid group. Similar ligands with different sizes would result in a myriad of architectures, either dense or porous. The ligand shape (linear or angular) would influence the extension direction and lead to different structures. For carboxylate analogues, many interesting structures have been formed from ligands with predesigned geometry (V-shaped or angular), illustrating that ligand shape has significant influence on the structure formation. The coordination mode can be altered by varying the synthesis conditions (e.g., pH value, temperature, temperature, and so on).

Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China.
E-mail: lixb@qibebt.ac.cn
† Electronic supplementary information (ESI) available: PXRD diagrams, coordination environment of the lanthanide center, selected angles and optimized geometry. CCDC 1400186–1400189. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c5ce01366f
Single-crystal structure determination

Single-crystal X-ray structure determination measurements of compounds 1 to 4 were carried out on a Bruker SMART APEX II CCD diffractometer (Mo Kα radiation, λ = 0.71073 Å) at room temperature. SAINT was used for integration of the intensity of reflections and scaling.16 Absorption corrections were carried out with the program SADABS.17 Crystal structures were solved by direct methods using SHELXS.18 Subsequent difference Fourier analyses and least-squares refinement with SHELXL-97 (ref. 19) allowed for the location of the atom positions. In the final step of the crystal structure refinement, hydrogen atoms of idealized –CH2 and –CH3 groups were added and treated with the riding atom mode, and their isotropic displacement factors were chosen as 1.2 and 1.5 times the preceding carbon atoms, respectively. All non-hydrogen atoms were refined with anisotropic thermal parameters. The hydrogen atoms on the water molecules of 1–4 were located from the difference Fourier map and were not included in the refinements. The crystallographic details for compounds 1–4 are summarized in Table 1. The data have been deposited with the Cambridge Crystallographic Data Centre (CCDC), with deposition numbers CCDC 1400186–1400189 for compounds 1–4.

Synthesis of (5-methyl-1,3-phenylene)bis(phosphonic acid) (H4L)

The ligand (5-methyl-1,3-phenylene)bis(phosphonic acid) (H4L) was synthesized via the Arbuzov reaction20 using 1,3-dibromo-5-methylbenzene and triethyl phosphite. Under an atmosphere of argon, a solution of 1,3-dibromo-5-methylbenzene (Energy Chemicals) and anhydrous NiBr2 (Alfa Aesar) in 1,3,5-trimethylbenzene (Aldrich) was heated to reflux (180 °C) and triethyl phosphite was slowly added dropwise over 5 hours. After 3 days of reaction, the unreacted triethyl phosphite and 1,3,5-trimethylbenzene were removed under reduced pressure. The obtained oil was hydrolysed with conc. hydrochloric acid until a powder product was formed which was then isolated by filtration and washing with small portions of cold ethanol.1H NMR (DMSO-d6) data for H4L: δ = 7.61–7.57 (Ph-H, m, 2H), 2.50 (–CH3, s, 6H) ppm. 13C NMR (DMSO-d6) data: δ = 137.66, 133.72, 130.44, 127.99, 21.29 ppm. 31P NMR (D2O) shows only one single peak at 4.65 ppm. IR (KBr, cm−1): 3422.2 (w, b), 2768.2 (s, b), 2290.1 (m, b), 1636.6 (s), 1480.8 (w), 1457.0 (w), 1359.4 (m), 1219.5 (s), 1140.3 (vs), 1101.1 (s), 1031.5 (vs), 942.2 (vs), 904.6 (m), 818.4 (w), 767.7 (w), 624.6 (m), 591.0 (s), 490.9 (s), 464.3 (m).

Synthesis of compound [Ln2(IJH2L)3][(IJH2O)3]n (Ln = Eu (1), Gd (2), Tb (3) and Dy (4))

H4L (0.063 g, 0.25 mmol), LnCl3·6H2O (1/6 mmol, Eu: 0.0611 g; Gd: 0.0620 g; Tb: 0.0622 g; Dy: 0.0628 g) and 10 mL of water were mixed and stirred in a Teflon-lined autoclave. The pH value of the solution was altered to about 2 with ten drops of 1 N NaOH. Afterwards, it was sealed and heated at 160 °C for 3 days and allowed to cool to room temperature in a time period of 24 hours. Colorless prismatic crystals were...
Table 1 Crystal and refinement parameters of compounds 1–4

Compound	1	2	3	4
Formula	C$_{21}$H$_{34}$Eu$_2$O$_{23}$P$_6$	C$_{21}$H$_{34}$Gd$_2$O$_{23}$P$_6$	C$_{21}$H$_{34}$Tb$_2$O$_{23}$P$_6$	C$_{21}$H$_{34}$Dy$_2$O$_{23}$P$_6$
Fw	1144.22	1154.80	1158.14	1165.30
Crystal system	Cubic	Cubic	Cubic	Cubic
Space group	$I2_1$	$I2_1$	$I2_1$	$I2_1$
a (Å)	16.0668(9)	16.0416(9)	16.0134(11)	15.9547(8)
V (Å3)	4147.5(7)	4128.0(7)	4106.3(8)	4061.3(6)
Z	4	4	4	4
D_{calc} (g cm$^{-3}$)	1.832	1.858	1.873	1.906
Abs coeff (mm$^{-1}$)	3.305	3.495	3.728	3.966
f(000)	2240	2248	2256	2264
Reflns collected	2970	6288	10160	4423
Independent reflns/Rint	1221/0.0459	1222/0.0602	1219/0.0518	1204/0.0448
Completeness to theta	97.7%	97.0%	98.3%	96.8%
GOF on F2	1.007	1.037	1.103	1.057
R_1, wR2 ($I > 2\sigma(I)$)	0.0351, 0.0698	0.0279, 0.0559	0.0348, 0.0782	0.0243, 0.0473
R_1, wR2 [all data]	0.0420, 0.0731	0.0374, 0.0595	0.0438, 0.0868	0.0298, 0.0490
Largest diff. peak and hole (e Å$^{-3}$)	0.512, −0.599	0.475, −0.425	1.358, −0.707	0.489, −0.292

$^a R_1 = \sum|F_o| - |F_c|/\sum|F_o|$, $^b wR_2 = (\sum[w(F_o^2 - F_c^2)^2]/\sum[w(F_o^2)^2])^{1/2}$.

Results and discussion

Structural description of compounds 1–4

The structures of compounds 1–4 are identical except that the cell volume decreases in the sequence of 1 (Eu) > 2 (Gd) > 3 (Tb) > 4 (Dy) due to the effect of lanthanide contraction. Here, only the structure of 1 will be depicted in detail. Compound 1 crystallizes in the cubic space group $I2_1$ with four molecules in each unit cell. Each asymmetric unit is composed of one europium(III) ion located at a three-fold axis, one lattice water molecule lying at a three-fold axis, one lattice water molecule lying at a two-fold axis and half diposphonate ligand (H$_2$L)$_2^2-$, suggesting a formula of [Eu$_2$(H$_2$L)$_2$][(H$_2$O)$_5$]. The diposphonate ligand is doubly deprotonated and adopts a tetradentate coordination mode. The coordination mode can be described as μ2η1η3η3ñ1ñ1:ñ1:ñ1, which means that each diposphonate ligand bridges four symmetry-related europium ions in total with its four phosphate oxygen atoms (see Scheme 1 and Fig. 1). The europium ion (Eu1) is octahedrally coordinated to six phosphate oxygen atoms (O2 and O3) of six phosphate ligands. These oxygen atoms are arranged in a fac coordination geometry (see Fig. S5 in the ESI†) with the O–Eu–O angles found in the range of 89.8(3)–90.1(3)° (see Table S1†) and the Eu–O distances in the range of 2.7248(18)–2.8269(19) Å (see Table 2), which are comparable to those found for other europium phosphonates.21 As far as we know, the octahedral coordination geometry is rarely observed in hydrothermally synthesized lanthanide compounds.21 The europium ions are interconnected by the

Scheme 1 Schematic representation of the coordination environment of ligand H$_2$L$^2-$.
tetradentate diphosphonate ligands into a three-dimensional network (see Fig. 2a). Topological analysis reveals an unknown 2-nodal (4,6)-connected net featured by the Schlafli symbol \(\{4^3,6^2,8\}_3,\{4^9,6^6\}_2 \), where in the \(\{4^3,6^2,8\} \) and \(\{4^9,6^6\} \) notations correspond to the 4-connected diphosphonate ligands and the 6-connected \(\text{Eu}^{III} \) ion nodes, respectively (see Fig. 2b). With the aid of the PLATON program, the free solvent-accessible volumes are estimated to be about 4.8–6.6% for compounds 1–4, indicating that these frameworks are quite dense.

Until now, only very few lanthanide diphosphonates based on rigid diphosphonate ligands have been reported.\(^{22}\) Among these limited compounds, 2D layered or 3D pillar layered structures have been observed. A closer look at the bond distances of compound 1 reveals that all \(\text{Eu} \cdots \text{Eu} \) distances of two neighboring europium ions are about 5.729 Å. Definitely, this can be ascribed to the bent shape of the diphosphonate ligand, which reduces the \(\text{Eu} \cdots \text{Eu} \) distance between two neighboring phosphonate groups. The symmetrical structure of the ligand, identical coordination geometry and distance between neighboring metals make it possible to form a highly symmetrical 3D crystal structure, illustrating that the predesigned ligand geometry has a major effect on the structure formation.

TGA analyses

The TGA diagrams of compounds 1–4 are shown in Fig. 3. As expected, they exhibited similar thermal behaviors which underwent two major weight losses. The first ones in the temperature range of 30–135 °C could be ascribed to the removal of lattice water molecules (for 1: calculated 7.8%, observed 7.5%; for 2: calculated 7.7%, observed 7.5%; for 3: calculated 7.7%, observed 7.8%; for 4: calculated 7.6%, observed 7.5%). These frameworks remained stable until 350 °C, suggesting their good thermal stability. It was also confirmed by PXRD measurements that these samples retained their crystallinity after heating at 100 °C for 3 hours in an oven (see Fig. S1–S4 in the ESI†). Further heating led to the collapse of the frameworks and decomposition of the organic ligands.

Photoluminescence studies

The rigid diphosphonate ligand (\(\text{H}_3\text{L}^{2-} \)) possesses a delocalized \(\pi \)-electron conjugated system and could be a good
absorbing chromophore to sensitize Ln(III) emission. To examine its ability as an “antenna” for sensitizing Ln(III) emission, the steady-state emission spectra of the free ligand H₄L and compounds 1–4 in the solid state were measured at room temperature and the results are shown in Fig. 4–7.

The excitation spectrum of ligand H₄L recorded by monitoring at an emission wavelength of 468 nm exhibits a broad band in the range of 250–400 nm with a maximum at 305 nm. With the excitation wavelength fixed at 305 nm, the free ligand H₄L exhibits a broad emission band containing four components (450, 468, 480.5 and 491.5 nm), which can be assigned to the π* → n or π* → π transitions of the aromatic ring in the ligand (see Fig. 4).

Under excitation, compounds 1 (Eu), 3 (Tb) and 4 (Dy) show the characteristic metal-centered luminescence of Eu, Tb and Dy, respectively. The excitation spectra of compounds 1, 3 and 4 are all dominated by a broad band in the range of 230–320 nm with a maximum at about 280 nm, confirming the existence of the ligand sensitizing process. Meanwhile, some characteristic transitions of the Eu(III), Tb(III) and Dy(III) energy levels can be observed in the excitation spectra. The blue shift of the maximum in comparison with that of the free ligand should be caused by the coordination of lanthanide ions.

For compound 1, the emission spectra were recorded by excitation into the ligand (λ₂₈₀ = 280 nm) and the 7Fₓ → 5L₆ transition band of the Eu(III) ion (λ₂₈₀ = 393 nm) (see Fig. 5). In both cases, a series of sharp lines originated from the transitions between the lowest emitting state 5D₀ and different 7Fₓ (j = 0–4) levels of the fundamental Eu(III) septet at 578 (5D₀ → 7F₆), 589 (5D₀ → 7F₅), 612, 617, 622 (5D₀ → 7F₄), 649 (5D₀ → 7F₃) and 701 nm (5D₀ → 7F₄) can be observed. Only one component is found for the 5D₀ → 7Fₓ transition, verifying that there is only one crystallographic independent Eu(III) ion in the compound. The change of the incident wavelength from 280 to 393 nm leads to peak splitting and variation of the intensity ratio of I(5D₀ → 7Fₓ)/I(5D₀ → 7F₄) from 2.07 to 1.43. The small asymmetry parameter implies a slightly distorted octahedral geometry around the Eu(III) center. The decay curve (λₑₓₑₙ = 393, 612 nm) can be well fitted by a single exponential function, confirming the presence of only one kind of emissive Eu³⁺ center in the crystal lattice.
Theoretical values of the intramolecular energy transfer and back-transfer rates \(^1\) calculated for compound 1

Transfer rate	Back-transfer rate	
S\(_1\) \(\rightarrow\) \(^7\)D\(_4\)	\(2.84 \times 10^4\)	\(2.61 \times 10^{-19}\)
T\(_1\) \(\rightarrow\) \(^5\)D\(_1\)	\(5.38 \times 10^5\)	\(3.21 \times 10^{-3}\)
T\(_1\) \(\rightarrow\) \(^5\)D\(_0\)	\(3.37 \times 10^5\)	\(4.06 \times 10^{-7}\)

Excitation at 350 nm and monitoring at 542 nm. In the emission spectrum of compound 4 \((\lambda_{\text{ex}} = 280 \text{ nm})\), typical intense emission bands at about 480, 574 and 660 nm can be observed, corresponding to the \(^4\)F\(_{9/2} \rightarrow \) \(^6\)H\(_{j}\) \((j = 15/2, 13/2, \text{and } 11/2)\) transitions of the Dy\(^{3+}\) ion, respectively (see Fig. 7). No emission bands originating from the ligands are detected, indicating efficient ligand-to-lanthanide energy transfer.

Luminescence modeling

It is very important to understand the mechanism of photoluminescence; therefore, theoretical calculation was performed on compound 1 with a newly developed software program – LUMPAC.\(^{15}\) To date, theoretical modeling of the photoluminescence properties of extended solids is still very rare.\(^{27}\) Considering that the photoluminescence properties of lanthanide compounds mainly depend on the first coordination sphere, straightforward approximation was carried out to obtain a mononuclear motif. In this case, one Eu(II) ion and six doubly deprotonated diphosphonate ligands were selected to obtain the optimized geometry using Sparkle PM3 implemented in MOPAC 2012 \((\text{ref. 28})\) software (Fig. S6†). The polarizability \((\alpha)\) and charge factor \((g)\) values of the oxygen atoms directly bonded to the europium center are shown in Table 3.

Based on these polarizability \((\alpha)\) and charge factor \((g)\) values, the theoretical JO intensity parameters were calculated in models 2 and 3 of LUMPAC. The obtained \(\Omega_2\), \(\Omega_4\) and \(\Omega_6\) values are listed in Table 4. The slight deviation between the experimental and calculated JO intensity parameters might be due to the oversimplified process of the mononuclear motif. These theoretical parameters were further used to calculate the theoretical \(^5\)D\(_0\) transition probabilities \((k_t\) and \(k_{nr})\), quantum efficiency \((\eta)\) and quantum yield \((q)\), which were found to be very close to the experimental values. The singlet \((S_i)\) and triplet \((T_i)\) energies were calculated to be 37 197.9 and 23 009.3 cm\(^{-1}\), respectively, which are greater than those for the low-lying excited state of Eu\(^{3+}\) \((^7\)D\(_{1}\) \(; 18 674 \text{ cm}^{-1}\); \(^5\)D\(_{0}\) \(; 17 500 \text{ cm}^{-1}\)). It is well known that an optimal

The \(^5\)D\(_0\) lifetime is long \((1.95 \text{ ms})\), implying the absence of coordinated water in the first coordination sphere.\(^{24}\)

As expected, both the excitation and emission spectra of compound 2 resemble those of ligand H\(_4\)L (see Fig. 4). For a Gd-containing compound, the ligand-to-metal energy transfer and metal-centered (MC) luminescence cannot take place because the MC electronic levels of the Gd\(^{3+}\) ion \((3 1000 \text{ cm}^{-1})\) are well above the ligand-centered electronic levels of typical organic ligands.\(^{25}\) The small red shift of the emission bands from Tb\(^{3+}\) cations are observed for compound 2, which can be assigned to the \(^5\)D\(_4\) \(\rightarrow\) \(^7\)F\(_{j}\) \((j = 6 \text{ to } 3)\) transitions at 494 \((j = 6)\), 548 \((j = 5)\), 594 \((j = 4)\) and 620 nm \((j = 3)\). The luminescence lifetime \((1.30 \text{ ms})\) was investigated by

Under excitation at 280 nm, sharp characteristic emission bands from Tb\(^{3+}\) cations are observed for compound 3 (see Fig. 6), which can be assigned to the \(^4\)F\(_{9/2} \rightarrow \) \(^6\)H\(_{j}\) \((j = 15/2, 13/2, \text{and } 11/2)\) transitions of the Tb\(^{3+}\) ion, respectively (see Fig. 7). No emission bands originating from the ligands are detected, indicating efficient ligand-to-lanthanide energy transfer.

Table 4

Intensity parameters \((10^{-20} \text{ cm}^2)\)	\(\Omega_2\)	\(\Omega_4\)	\(\Omega_6\)	\(k_t\) \((\text{s}^{-1})\)	\(k_{nr}\) \((\text{s}^{-1})\)	\(\eta\) \((\%)\)	\(q\) \((\%)\)
Experimental	2.52	1.60	—	149.57	363.25	29.17	—
Theoretical	2.65	0.34	0.43	135.0	377.82	26.32	12.16
The energy transfer rates were also calculated with model 3 of LUMPAC (Table 5). It is obvious that the values for the ligand singlet state are quite low compared with those for the processes through ligand triplet states, implying its weak effect on the luminescence process. The energy transfer channels through the ligand triplet state to the \(^5\text{D}_0 \) and \(^5\text{D}_0 \) states \((T_1 \rightarrow ^5\text{D}_1 \text{ and } T_1 \rightarrow ^5\text{D}_0)\) are the dominant pathways and all the back-transfer rates are almost negligible. Thus, it can be deduced that the most efficient luminescence pathway is \(S_0 \rightarrow S_1 \rightarrow T_1 \rightarrow \left(^5\text{D}_1 , ^5\text{D}_0 \right) \rightarrow \left(^7\text{F}_0-^7\text{F}_6 \right) \). The intramolecular energy transfer processes taking place in compound 1 are presented in Scheme 2.

![Scheme 2](image)

Scheme 2 Schematic energy transfer process in compound 1.

Conclusions

In summary, we have synthesized one series of lanthanide diphosphonates from a V-shaped diphosphonic acid ligand. The structural analyses reveal that interesting structures can be obtained from the symmetric V-shaped ligand. The rigidity of the ligand leads to the high thermal stability of the obtained compounds. The experimental and theoretical luminescence properties were investigated and compared. With the aid of software, scientists can have a better understanding of the mechanism of energy transfer which provides effective inspiration for the design of luminescent hybrid materials. The present work is a rare example of luminescence modeling of extended lanthanide phosphonates which provides insight into the design of luminescent inorganic-organic hybrid materials.

Acknowledgements

The authors are grateful for the financial support from the Natural Science Foundation of China (no. 21171173).

Notes and references

1. (a) K. J. Gagnon, H. P. Perry and A. Clearfield, *Chem. Rev.*, 2012, 112, 1034–1054; (b) Metal phosphonate chemistry: From synthesis to application, ed. A. Clearfield and K. D. Demadis, The Royal Society of Chemistry, London, 2012.
2. (a) S. R. Miller, G. M. Pearce, P. A. Wright, F. Bonino, S. Chavan, S. Bordiga, I. Margioliak, N. Guillou, G. Férey, S. Bourrelly and P. L. Llewellyn, *J. Am. Chem. Soc.*, 2008, 130, 15967–15981; (b) M. Taddei, F. Costantino, A. Ienco, A. Comotti, P. V. Daud and S. M. Cohen, *Chem. Commun.*, 2013, 49, 1315–1317.
3. (a) M. Angeloni, O. Piermatti, F. Pizzo and L. Vaccaro, *Eur. J. Org. Chem.*, 2014, 79, 1716–1726; (b) Y.-P. Zhu, Y.-L. Liu, T.-Z. Ren and Z.-Y. Yuan, *RSC Adv.*, 2014, 4, 16018–16021; (c) A. Dutta, A. K. Patra, H. Uyama and A. Bhaumik, *ACS Appl. Mater. Interfaces*, 2013, 5, 9913–9917.
4. (a) M. Bazaga-García, R. M. P. Colodrero, M. Papadaki, P. Garcezarek, J. Zoñ, P. Olivera-Pastor, E. R. Losilla, L. León-Reina, M. A. G. Aranda, D. Choquesillo-Lazarte, K. D. Demadis and A. Cabeza, *J. Am. Chem. Soc.*, 2014, 136, 5731–5739; (b) A. Donnadio, M. Nocchetti, F. Costantino, M. Taddei, M. Casciola, F. da Silva Lisboa and R. Vivani, *Inorg. Chem.*, 2014, 53, 13220–13226; (c) M. Bazaga-García, M. Papadaki, R. M. P. Colodrero, P. Olivera-Pastor, E. R. Losilla, B. Nieto-Ortega, M. Á. G. Aranda, D. Choquesillo-Lazarte, A. Cabeza and K. D. Demadis, *Chem. Mater.*, 2015, 27, 424–435.
5. X. Yang, S.-S. Bao, M. Ren, N. Hoshino, T. Akutagawa and L.-M. Zheng, *Chem. Commun.*, 2014, 50, 3979–3981.
6. (a) C. Maxim, D. G. Branzea, C. Tiseanu, M. Rouzières and R. Clérac, *Inorg. Chem.*, 2014, 53, 2708–2717; (b) R. M. P. Colodrero, K. E. Papathanasiou, N. Stavgianoudaki, P. Olivera-Pastor, E. R. Losilla, M. A. G. Aranda, L. León-Reina, J. Sanz, I. Sobrados, D. Choquesillo-Lazarte, J. M. Garcia-Ruiz, P. Atienzar, F. Rey, K. D. Demadis and A. Cabeza, *Chem. Mater.*, 2012, 24, 3780–3792; (c) J. Janicki, M. Monteil, M. Lecouvey and A. Mondry, *Opt. Mater.*, 2013, 36, 259–264.
7. M. Elhabiri, S. Abada, M. Sy, A. Nonat, P. Choquet, D. Esteban-Gomez, C. Cassino, C. Platas-Iglesias, M. Botta and L. J. Charbonnière, *Chem. – Eur. J.*, 2015, 21, 6535–6546.
8. J.-G. Mao, *Coord. Chem. Rev.*, 2007, 251, 1493–1520.
9. (a) T. Araki, A. Kondo and K. Maeda, *Chem. – Eur. J.*, 2015, 21, 6257–6264; (b) A. R. Patterson, W. Schmitt and R. C. Evans, *J. Phys. Chem. C*, 2014, 118, 10291–10301; (c) S. M. F. Vilela, D. Ananias, A. C. Gomes, A. A. Valente, L. D. Carlos, J. A. S. Cavaleiro, J. Rocha, J. P. C. Tomé and F. A. A. Paz, *J. Mater. Chem.*, 2012, 22, 18354–18371; (d) S. M. F. Vilela, A. D. G. Firmino, R. F. Mendes and J. A. Fernandez, *Chem. Commun.*, 2013, 49, 6400–6402; (e) F.-N. Shi, T. Trindade, J. Rocha and F. A. A. Paz, *Cryst. Growth Des.*, 2015, 17, 7723–7730.
Published on 11 September 2015. Downloaded on 27/04/2016 08:55:01.

17 G. M. Sheldrick, \textit{SADABS}, Version 2.10, Bruker AXS Inc., Madison, WI, 2003.

18 G. M. Sheldrick, \textit{SHELXS-97, Program for Crystal Structure Solution and Refinement}, University of Göttingen, 1997.

19 G. M. Sheldrick, \textit{SHELXTL, Crystallographic Software Package}, SHELXTL, Version 5.1, Bruker-AXS, Madison, WI, 1998.

20 (a) D. Kong and A. Clearfield, \textit{Cryst. Growth Des.}, 2005, 5, 1767–1773; (b) D. Kong, J. Zoñ, J. McBee and A. Clearfield, \textit{Inorg. Chem.}, 2006, 45, 977–986.

21 (a) S.-F. Tang, J.-L. Song, X.-L. Li and J.-G. Mao, \textit{Cryst. Growth Des.}, 2007, 7, 360–366; (b) Y.-S. Ma, H. Li, J.-J. Wang, S.-S. Bao, R. Cao, Y.-Z. Li, J. Ma and L.-M. Zheng, \textit{Chem. – Eur. J.}, 2007, 13, 4759–4769.

22 (a) Z. Amghouz, S. Garcia-Granda, J. R. García, A. Clearfield and R. Valiente, \textit{Cryst. Growth Des.}, 2011, 11, 5289–5297; (b) M. J. Bialek, J. Janczakb and J. Zon, \textit{CrystEngComm}, 2013, 15, 390–399.

23 E. Guillet, D. Imbert, R. Scopelliti and J.-C. G. Bünzli, \textit{Chem. Mater.}, 2004, 16, 4063–4070.

24 A.-S. Chauvin, S. Comby, M. Baud, C. De Piano, C. Duhot and J.-C. G. Bünzli, \textit{Inorg. Chem.}, 2009, 48, 10687–10696.

25 W.-K. Wong, H. Liang, J. Guo, W.-Y. Wong, W.-K. Lo, K.-F. Li, K.-W. Cheah, Z. Zhou and W.-T. Wong, \textit{Eur. J. Inorg. Chem.}, 2004, 829.

26 (a) W.-G. Lu, L. Jiang, X.-L. Feng and T.-B. Lu, \textit{Cryst. Growth Des.}, 2006, 6, 564; (b) Q.-L. Zhu, T.-L. Sheng, C.-H. Tan, S.-M. Hu, R.-B. Fu and X.-T. Wu, \textit{Inorg. Chem.}, 2011, 50, 7618–7624.

27 M. M. Nolasco, R. F. Mendes, P. P. Lima, F. A. A. Paz, L. D. Carlos and J. Rocha, \textit{Eur. J. Inorg. Chem.}, 2015, 1254–1260.

28 (a) MOPAC2012, James P. Stewart, Stewart Computational Chemistry, Version 15.027W web: HTTP://OpenMOPAC.net; (b) J. D. C. Maia, G. A. U. Carvalho, C. P. Mangeira, S. R. Santana, L. A. F. Cabral and G. B. Rocha, \textit{J. Chem. Theory Comput.}, 2012, 8, 3072–3081.

29 M. Latva, H. Takalo, V. M. Mukkala, C. Matachescu, J. C. Rodriguez-Ubis and J. Kankare, \textit{J. Lumin.}, 1997, 75, 149–169.