ACCELERATION-ENLARGED SYMMETRIES IN NONRELATIVISTIC SPACE-TIME WITH A COSMOLOGICAL CONSTANT*

J. Lukierski1), P.C. Stichel2) and W.J. Zakrzewski3)

1)Institute for Theoretical Physics, University of Wroclaw, pl. Maxa Borna 9, 50–205 Wroclaw, Poland
and
Department of Theoretical Physics, Univ. of Valencia, 46100 Burjassot (Valencia), Spain
e-mail: lukier@ift.uni.wroc.pl

2)An der Krebskuhle 21, D-33619 Bielefeld, Germany
e-mail:peter@physik.uni-bielefeld.de

3)Department of Mathematical Sciences, University of Durham,
Durham DH1 3LE, UK
e-mail: W.J.Zakrzewski@durham.ac.uk

Abstract

By considering the nonrelativistic limit of de-Sitter geometry one obtains the nonrelativistic space-time with a cosmological constant and Newton-Hooke (NH) symmetries. We show that the NH symmetry algebra can be enlarged by the addition of the constant acceleration generators and endowed with central extensions (one in any dimension (D) and three in D=(2+1)). We present a classical Lagrangian and Hamiltonian framework for constructing models quasi-invariant under enlarged NH symmetries which depend on three parameters

*Supported by the KBN grant 1P03B01828
described by three nonvanishing central charges. The Hamiltonian dynamics then splits into external and internal sectors with new non-commutative structures of external and internal phase spaces. We show that in the limit of vanishing cosmological constant the system reduces to the one presented in [1] which possesses acceleration-enlarged Galilean symmetries.

1 Introduction

The two nonrelativistic Newton-Hooke (NH) cosmological groups were introduced by Bacry and Leblond in [2] who classified all kinematical groups in $D = (3 + 1)$. The NH symmetries can be obtained, in the limit $c \to \infty$, from the de-Sitter and anti-de-Sitter geometries [2-6] and they describe, respectively, the nonrelativistic expanding (with symmetry described by the NH_+ algebra) and oscillating (with symmetry described by the NH_- algebra) universes. The cosmological constant describes the time scale τ determining the rate of expansion or the period of oscillation of the universe. When $\tau \to \infty$ we obtain the Galilean group and the standard flat nonrelativistic space-time. It has been argued that the NH symmetries and the corresponding NH space-times can find an application in nonrelativistic cosmology [7,8,9] or even in M/String theory [10].

Recently, we have considered in [1] the acceleration-enlarged Galilean symmetries with their central extensions and their dynamical realisations. The aim of this note is to show that these results, corresponding to $\tau \to \infty$, can be generalised to the NH spaces with a finite cosmological constant (τ finite). In particular we show that the acceleration-enlarged NH symmetries, as in the Galilean case, can have

1. for arbitrary D - one central extension,

2. for $D = (2 + 1)$ - three central extensions.

We also generalise to $\tau < \infty$ the actions providing the dynamical realisations of the NH algebra and the corresponding equations of motion.

The plan of our presentation is as follows. First, in Section 2 we recall some known results [5,6,8,11] on the NH algebras with central extensions. We also add the constant acceleration generators, consider the most general central extensions and describe the Casimirs of our new algebras. In Section 3 we present a (2+1) dimensional classical mechanics Lagrangian

1 In [1] we described our procedure of adding constant acceleration generators as an ‘extension’. To avoid confusion with the mathematical terminology (G' is an extension of G by K if $G = G' \oplus K$) we call, in this paper, our procedure an ‘enlargement’.

2
model with higher derivatives providing a dynamical realisation of the introduced symmetries. In section 4 we consider its phase space formulation - with five 2-vector coordinates \((x_i, p_i, v_i, q_i, u_i)\). In the following section we decompose its dynamics into two sectors ("external" and "internal"), with the six-dimensional external sector describing a new \(D = 2\) non-commutative extended phase space. The last section contains some final remarks.

2 Acceleration-enlarged Newton-Hooke symmetries with central charges - algebraic considerations

Let us first recall the \(NH_+\) algebra - corresponding to an expanding universe. In this case the Galilean algebra with the following nonvanishing commutators \((i, j, k, l = 1, \ldots, D - 1)\):

\[
\begin{align*}
[J_{ij}, J_{kl}] &= \delta_{ik}J_{jl} - \delta_{jl}J_{ik} + \delta_{jk}J_{il} - \delta_{il}J_{jk}, \quad (1a) \\
[J_{ij}, A_k] &= \delta_{ik}A_j - \delta_{jk}A_i \quad (A_i = P_i, K_i), \quad (1b) \\
[H, K_i] &= P_i \quad (1c)
\end{align*}
\]

is supplemented by the additional commutators:

\[
[H, P_i] = \frac{K_i}{R^2} \quad (1d)
\]

obtained by the deformation of the Galilean relations \([H, P_i] = 0\) \[12\].

In arbitrary dimension \(D\), as in the Galilean case, one can introduce a central extension describing the mass \(m\):

\[
[P_i, K_j] = m\delta_{ij}. \quad (2)
\]

In \(D = (2 + 1)\) one can have a second central charge \(\theta\) \[6, 8, 11\]

\[
[K_i, K_j] = \theta\epsilon_{ij}. \quad (3a)
\]

Algebraic consistency then requires that

\[
[P_i, P_j] = -\frac{\theta}{R^2}\epsilon_{ij}. \quad (3b)
\]

\(^2\)We pass to the \(NH_-\) algebra by the substitution \(\frac{1}{R^2} \rightarrow -\frac{1}{R^2}\) in \(1d\).

\(^3\)In this paper we represent our central generators as \(\lambda 1\) where \(\lambda\) is a number and omit the unity operator 1.
The NH algebra can be enlarged to the algebra \(\hat{N}H \) by the addition of the generators \(F_i \) that describe the constant acceleration transformations (see also [5]). These generators satisfy the relation (1b) and

\[
[F_i, F_j] = [F_i, K_j] = 0, \quad [H, F_i] = 2K_i.
\]

(4)

By considering now the Jacobi identity for the generators \((H, P_i, F_j)\) one can show that in the acceleration-enlarged \(\hat{N}H_\pm \) algebra one must put \(m = 0 \). However, one can show that in an arbitrary space-time dimension \(D \) one can introduce one central charge \(c \) as follows:

\[
[K_i, F_j] = 2c\delta_{ij}.
\]

(5)

The algebraic consistency then requires that

\[
[P_i, K_j] = -\frac{c}{R^2}\delta_{ij}.
\]

(6)

In \(D = (2+1) \) one can introduce, besides \(c \), two additional central charges \(\theta \) and \(\theta' \). The first one is already present in (3a,b). The second central charge occurs only in the relation

\[
[F_i, F_j] = \theta'\epsilon_{ij}.
\]

(7)

However, it is easy to check that \(\theta \) is a genuine central charge, determining the structure of the enveloping algebra; the other two can be generated by the linear transformations of the generators \((P_i, K_i, F_i)\) in the enveloping algebra \(U(\hat{N}H_\theta) \)

\[
P_i \to \tilde{P}_i = \gamma P_i + \frac{c}{2\theta R^2\gamma}\epsilon_{ij}K_j, \\
K_i \to \tilde{K}_i = \gamma K_i + \frac{c}{2\theta\gamma}\epsilon_{ij}P_j, \\
F_i \to \tilde{F}_i = (\gamma - \frac{\rho}{2R^2})F_i + \frac{c}{\gamma\theta}\epsilon_{ij}K_j + \rho P_i,
\]

(8)

where

\[
\gamma^2 = \frac{1}{2} \left[1 + \left(1 + \left(\frac{c}{\theta R^2}\right)^2 \right)^{\frac{1}{2}} \right], \\
\rho = 2\gamma R^2 \left[1 - \left(1 + \frac{\theta' - \frac{c^2}{4\gamma^2\theta R^2}}{4\gamma^2 R^2} \right)^{\frac{1}{2}} \right].
\]

(9)

4By \(\hat{N}H_\theta \) we denote the acceleration-enlarged NH algebra with one central charge \(\theta \).
Note that as $R \to \infty$ we have

$$\gamma \to 1, \quad \rho \to \frac{c^2}{4\theta^2} - \frac{\theta'}{4\theta}$$ \hfill (10)

and so we see that our formulae (8)-(9) generalise to the case $R < \infty$ the relevant expressions given in [1].

Finally, let us mention the two Casimirs of the acceleration enlarged Newton-Hooke algebra with central charges. They are

$$C_H = H + \frac{c}{2\theta^2} \left(\bar{P}^2 - \frac{\bar{K}^2}{R^2}\right) - \frac{1}{\theta(1 + \frac{c^2}{\theta^2R^2})} \epsilon_{ij} K_i P_j$$ \hfill (11a)

and, putting $J_{ij} = \epsilon_{ij} J$ for $D = (2 + 1)$

$$C_J = J - a \left(\bar{P}^2 - \frac{\bar{K}^2}{4R^2}\right) - \frac{c}{\theta} H - b \left(\bar{P}^2 - \frac{\bar{K}^2}{R^2}\right),$$ \hfill (11b)

where

$$a = \frac{1}{2\theta + \frac{c^2}{2R^2}}, \quad b = \frac{\alpha \theta'}{4\theta}. \hfill (11c)$$

One can check that in the limit $R \to \infty$ these Casimirs reduce to the Casimirs of the acceleration-enlarged Galilei algebra given in [1].

Note that in $D = (2 + 1)$ we can add to the above given \tilde{NH}_+ algebra with one central charge two further generators

$$J_\pm = \frac{1}{4\theta} \left(K^2_\pm - F_\pm P_\pm + \frac{F^2_\pm}{4R^2}\right),$$ \hfill (12)

where $K_\pm = K_1 \pm iK_2$ etc. If we now put $C_J = 0$ and express J from the formula (11b), the triple of generators (J, J_+, J_-) provides a basis of a Lie algebra $O(2,1)$. If we now make the substitution $R^2 \to -R^2$ (ie $\tilde{NH}_+ \to \tilde{NH}_-$), as can be easily checked this algebra becomes $O(3)$. In fact, an analogous result for the exotic ((2+1) dimensional with two central charges) NH algebras, in the case of $F_i = 0$, was discussed in [11].

3 $D = (2+1)$ Lagrangian models with acceleration-enlarged NH symmetries and with central charges

When we put central charges to zero our algebra given by the relations (1a-d) and (1) can be realised by the following differential operators on the nonrel-
ativistic $D = (2 + 1)$ space-time $(x_i, t) \ (i = 1, 2)$

$$H = \frac{\partial}{\partial t}, \quad J = \epsilon_{ij} x_i \frac{\partial}{\partial x_j},$$

$$P_i = \cosh \frac{t}{R} \frac{\partial}{\partial x_i}, \quad K_i = R \sinh \frac{t}{R} \frac{\partial}{\partial x_i},$$

$$F_i = 2R^2 (\cosh \frac{t}{R} - 1) \frac{\partial}{\partial x_i}. \quad (13)$$

Note that we have the following NH transformations of the $D = (2 + 1)$ space-time (δa_i - translations, δv_i - boosts, δb_i - constant accelerations, δa - time displacement and $\delta \alpha$ - $O(2)$ - angle rotation)

$$\delta t = \delta a,$$

$$\delta x_i = \delta \alpha \epsilon_{ij} x_j + \cosh \frac{t}{R} \delta a_i +$$

$$+ R \sinh \frac{t}{R} \delta v_i + 2R^2 \left(\cosh \frac{t}{R} - 1 \right) \delta b_i. \quad (14)$$

Next we look for Lagrangians which are quasi-invariant under the transformations (14) and which, in the limit $R \to \infty$, reduce to the higher derivative Lagrangian given in [1], namely:

$$L_{R=\infty}(c, \theta, \theta') = -\frac{\theta}{2} \epsilon_{ij} \dot{x}_i \dot{x}_j + \frac{c}{2} \dot{x}_i^2 - \frac{\theta'}{8} \epsilon_{ij} \dot{x}_i \dot{x}_j. \quad (15)$$

Note that when $c = \theta' = 0$ and adding, for $m \neq 0$, the kinetic term $\frac{m^2}{2} \dot{x}_i^2$, we get the Lagrangian considered in [13]. The extension of this Lagrangian to the NH case was obtained in [8,11] via the substitution:

$$\epsilon_{ij} \dot{x}_i \dot{x}_j \to \epsilon_{ij} \left(\dot{x}_i \dot{x}_j + \frac{1}{R^2} x_i \dot{x}_j \right) \quad (16)$$

It is easy to check that this substitution can be also generalised to the other two terms in (15) as follows

$$\dot{x}_i^2 \to \dot{x}_i^2 + \frac{1}{R^2} \dot{x}_i^2,$$

$$\epsilon_{ij} \dot{x}_i \dot{x}_j \to \epsilon_{ij} \left(\dot{x}_i \dot{x}_j + \frac{1}{R^2} \dot{x}_i \dot{x}_j \right). \quad (17)$$

Note that for finite R suitable linear combinations of P_i and F_i generate standard translations.
It is easy to check that the RHS terms in (16) and (17) are quasi-invariant under the transformations (14). If we perform the substitutions (17) together with \(\theta \rightarrow \tilde{\theta} = \theta + \theta' \frac{R^2}{4R^2} \) we obtain

\[
L_{NH} = -\frac{\tilde{\theta}}{2} \epsilon_{ij} \left(\ddot{x}_i \ddot{x}_j + \frac{1}{R^2} \dot{x}_i \dot{x}_j \right) + \frac{c}{2} \left(\dddot{x}_i + \frac{1}{R^2} \dddot{x}_i \right) - \theta' \frac{R^2}{8} \epsilon_{ij} \left(\dddot{x}_i \dddot{x}_j + \frac{1}{R^2} \dddot{x}_i \dddot{x}_j \right). \tag{18}
\]

Note that the substitution \(\theta \rightarrow \tilde{\theta} \) is necessary to get agreement with the definition of the central charge \(\theta \) in (3a).

When, below, we rewrite our Lagrangian (18) in the first order Hamiltonian formalism we need to introduce five pairs of variables \((x_i, p_i, y_i, q_i, u_i) \).

4 First order Hamiltonian formalism and the extended phase space

First we define two new 2-vector variables by

\[
y_i = \dot{x}_i, \quad u_i = \dot{y}_i. \tag{19}
\]

Then we obtain the following first order Lagrangian \(L_{NH} \)

\[
L_{NH} = p_i (\dddot{x}_i - y_i) + q_i (\dddot{y}_i - u_i) - \frac{\tilde{\theta}}{2} \epsilon_{ij} y_i y_j - \frac{\theta'}{8} \epsilon_{ij} u_i u_j + \frac{c}{2} \left(u_i^2 + \frac{y_i^2}{R^2} \right) - \frac{\tilde{\theta}}{2R^2} \epsilon_{ij} x_i y_j - \frac{\theta'}{8R^2} \epsilon_{ij} y_i u_j \tag{20}
\]

which, after the substitution (19), is equivalent to the higher order action (18). Using the Faddeev-Jackiw prescription [15,16] we obtain the following non-vanishing Poisson brackets:

\[
\{ x_i, p_j \} = \delta_{ij}, \quad \{ y_i, q_j \} = \delta_{ij}, \quad \{ q_i, q_j \} = -\tilde{\theta} \epsilon_{ij}, \quad \{ u_i, u_j \} = \frac{4}{\theta'} \epsilon_{ij}. \tag{21}
\]

The first order quasi-invariant actions can be also derived by a geometric technique which involves the method of nonlinear realisations of the \(\tilde{N}H_+ \) group with central extensions and the inverse Higgs mechanism (for the \(NH_+ \) group see [11]; see also [14]). It would be interesting to describe the most general class of first order actions that can be generated this way.
The Hamiltonian, which follows from (20) has the form
\[H = p_i y_i + q_i u_i - \frac{c}{2} \left(u_i^2 + \frac{1}{R^2} y_i^2 \right) + \frac{\hat{\theta}}{2R^2} \epsilon_{ij} y_i y_j + \frac{\theta'}{8R^2} \epsilon_{ij} y_i u_j. \] (22)

The equations of motion, which can be obtained from (20) as the Euler-Lagrange equations or as the Hamilton equations following from (21-22), give, besides the equations (19) also
\[
\begin{align*}
\dot{u}_i &= \frac{1}{2R^2} y_i + \frac{4}{\theta'} \epsilon_{ij} (q_j - cy_j) \\
\dot{q}_i &= -\left(\hat{\theta} + \frac{\theta'}{8R^2} \right) \epsilon_{ij} u_j + \frac{\hat{\theta}}{2R^2} \epsilon_{ij} x_j + \frac{c}{R^2} y_i - p_i \\
\dot{p}_i &= -\frac{\hat{\theta}}{2R^2} \epsilon_{ij} y_j.
\end{align*}
\] (23a,b,c)

Using the first two equations as defining the variables \(q_j, p_i \) we obtain the following set of the \(\hat{N}H \) transformation laws for the extended phase space coordinates: \((x_i, p_i, y_i, q_i, u_i) \):

- \(\hat{N}H \) translations (parameters \(a_i \))
 \[
 \begin{align*}
 \delta x_i &= a_i \cosh \frac{t}{R}, & \delta y_i &= a_i \frac{1}{R} \sinh \frac{t}{R}, \\
 \delta u_i &= a_i \cosh \frac{t}{R}, & \delta p_i &= -\epsilon_{ij} a_j \frac{\hat{\theta}}{2R^2} \cosh \frac{t}{R}, \\
 \delta q_i &= a_i \frac{c}{R} \cosh \frac{t}{R} - \epsilon_{ij} a_j \frac{\theta'}{8R^2} \sinh \frac{t}{R}.
 \end{align*}
 \] (24)

- \(\hat{N}H \) boosts (parameters \(v_i \))
 \[
 \begin{align*}
 \delta x_i &= v_i R \sinh \frac{t}{R}, & \delta y_i &= v_i \cosh \frac{t}{R}, \\
 \delta u_i &= v_i R \sinh \frac{t}{R}, & \delta p_i &= -\epsilon_{ij} v_j \frac{\hat{\theta}}{2R^2} \sinh \frac{t}{R}, \\
 \delta q_i &= v_i c R \sinh \frac{t}{R} - \epsilon_{ij} v_j \frac{\theta'}{8R^2} \cosh \frac{t}{R}.
 \end{align*}
 \] (25)

- \(\hat{N}H \) accelerations (parameters \(b_i \))
 \[
 \begin{align*}
 \delta x_i &= 2b_i R^2 \left(\cosh \frac{t}{R} - 1 \right), & \delta y_i &= 2b_i R \sinh \frac{t}{R}, \\
 \delta u_i &= 2b_i \cosh \frac{t}{R}, & \delta p_i &= -\epsilon_{ij} b_j \frac{\hat{\theta}}{2R^2} \left(\cosh \frac{t}{R} + 1 \right), \\
 \delta q_i &= 2b_i c \cosh \frac{t}{R} - \epsilon_{ij} b_j \frac{\theta'}{4R^2} \sinh \frac{t}{R}.
 \end{align*}
 \] (26)
We leave it as an exercise for the interested reader to determine the Noether charges generating (24-26). They will satisfy the acceleration-enlarged $\hat{N}H$-algebra with central charges introduced in Section 2.

5 “External” and “internal” dynamics sectors with noncommutative structure

Next we look for internal variables which are invariant under the transformations (24-26) and so could be used to parametrise the internal sector of the phase space with the time evolution being an internal automorphism. We note that for these internal sector variables we can take

$$U_i = u_i - \frac{1}{\theta} \epsilon_{ij} \left(p_j + \frac{\tilde{\theta}}{2R^2} \epsilon_{jk} x_k \right) - \frac{x_i}{R^2}$$

$$Q_i = q_i - cu_i + \frac{\theta'}{8R^2} \epsilon_{ij} y_j$$

as they are invariant under the transformations (24-26).

From eq. (19) and (23a-c) we get

$$\dot{U}_i = \frac{4}{\theta} \epsilon_{ij} Q_j,$$

$$\dot{Q}_i = -\frac{4c}{\theta'} \epsilon_{ij} Q_j - \frac{\theta'}{4R^2} \epsilon_{ij} U_j.$$ \hspace{1cm} (28)

Hence we see that the dynamics of the variables U_i and Q_i is closed under the time evolution, and as such, it describes the “internal” dynamics in our model. Let us note that

- The set of equations (28) leads to the fourth order equations for the individual components of the fields U_i and Q_i.

- The description of the dynamics of the internal sector (U_i, Q_i) does not depend on R, i.e. it is the same in the Galilean limit $(R \to \infty)$ considered in [1] after the substitution $\theta \to \tilde{\theta}$ has been made.

To describe the “external” sector of our model we have to introduce three sets of variables (X_i, P_i, Y_i) which have vanishing Poisson brackets with U_i and Q_i. Then the two sectors will be dynamically independent.

Note that from (27) and (21) we have

$$\{U_i, U_j\} = \frac{4}{\theta} \epsilon_{ij}, \quad \{Q_i, U_j\} = -\frac{4c}{\theta'} \epsilon_{ij}$$

$$\{Q_i, Q_j\} = \epsilon_{ij} \left(-\tilde{\theta} + \frac{4c^2}{\theta'} + \frac{\theta'}{4R^2} \right).$$ \hspace{1cm} (29)
Then, if we define
\[X_i = x_i + \alpha Q_i + \beta U_i \] (30)
we find that
\[\{X_i, Q_j\} = \{X_i, U_j\} = 0 \] (31)
are satisfied if
\[\alpha = \left(\frac{\theta^2}{c} + \frac{c}{R^2} \right)^{-1}, \quad \beta = \left(c - \frac{\theta^\prime}{4c} \right) \alpha. \] (32)

For \(Y_i \) we try the ansatz \(Y_i = \dot{X}_i \). Then using the Jacobi identity and the field equations (28) we see that
\[\{Y_i, U_j\} = \{\{X_i, H\}, U_j\} = -\{X_i, \{Q_j, H\}\} = -\frac{4}{\theta^\prime} \epsilon_{ij} \{X_i, Q_j\} = 0. \] (33)
Thus we see that we can put \(Y_i = \dot{X}_i \), or we can use the field equations (29) and note that
\[Y_i = y_i - \alpha \left(\tilde{\theta} \epsilon_{ij} U_j + \frac{\theta}{c} \epsilon_{ij} Q_j \right). \] (34)

To find the third set of variables of the external variables we calculate the time derivative of \(Y_i \). We find
\[\dot{Y}_i = \frac{X_i}{R^2} + \frac{1}{\theta} \epsilon_{ij} P_j, \] (35)
where \(P_i \) is given by
\[P_i = p_i + \frac{\tilde{\theta}}{2R^2} \epsilon_{ij} x_j. \] (36)

Note that
- The variables \(P_i \) are invariant under the \(\widehat{N}H_+ \) translations and \(\widehat{N}H_+ \) boosts.
- The “external” 2-momenta \(P_i \) are constant “on-shell”, i.e. from (36) (19), and (23c) we see that
\[\dot{P}_i = 0. \] (37)

\footnote{In a similar way we can show that \(\{Y_i, Q_j\} = 0 \)}
The equal time non-commutative structure of the “external” sector variables \(X_i, P_i, Y_i = \dot{X}_i \) is determined by the following set of Poisson brackets:

\[
\begin{align*}
\{ X_i, P_j \} &= \delta_{ij}, \\
\{ P_i, P_j \} &= \frac{\dot{\theta}}{R^2} \epsilon_{ij} \\
\{ X_i, X_j \} &= \frac{\beta}{\dot{\theta}} \epsilon_{ij}, \\
\{ X_i, Y_j \} &= -\frac{\alpha}{c} \theta \epsilon_{ij}, \\
\{ Y_i, Y_j \} &= \frac{\alpha}{c} \theta \epsilon_{ij}, \\
\{ Y_i, P_j \} &= 0.
\end{align*}
\]

Therefore, by means of the substitution \(X_i \rightarrow X'_i = X_i + \frac{R^2}{\dot{\theta}} \epsilon_{ik} P_k \) we obtain the equations of the hyperbolic oscillator

\[
\ddot{X}'_i = \frac{1}{R^2} X'_i
\]

and a decoupling of \(P_i \) from \((X'_i, Y_i)\) in the Poisson Brackets (38).

We see that our present model differs in many respects from the original higher-derivative model [13,17]:

- The external sector, described in [13] by a pair \((X_i, P_i)\) of non-commutative \(X_i\) and commutative \(P_i\) variables, is replaced now by a triplet of variables \((X_i, P_i, Y_i)\) with both \(X_i\) and \(P_i\) being noncommutative (see formula (38)).

- The internal sector described in [13] by a single 2-vector is spanned in the present model by a pair of 2-vectors \((Q_i, U_i)\) with the dynamics described by the equations with the fourth order time derivatives (see e.g. [18,19]). However, after a complex point transformation \((Q_i, U_i) \rightarrow (z_i, \pi_i)\) the internal part \(L_{\text{int}}\) of the first order Lagrangian (20) can be put into the standard form with a canonical symplectic structure \((L_{\text{int}} = \dot{z}_i \pi - H_{\text{int}}(z_i, \pi_i))\) (cp [20]).

6 Final Remarks

This paper has had three aims:

- To show that the acceleration-enlarged Galilean symmetries can be generalised to the acceleration-enlarged Newton-Hooke symmetries describing very special nonrelativisitic de-Sitter geometries. In particular we have shown that the acceleration-enlarged \(\tilde{NH}\) algebra in \((D = 2 + 1)\) dimensions has three central charges.
It has been known for some time that mass, as a central charge of the Galilean symmetry, provides a unique parameter which controls the free particle motion. Now we see that in the $D = (2 + 1)$ dimensions the $\hat{N}H$ invariant action depends on three parameters which are determined by three central charges of the acceleration enlarged $\hat{N}H$ algebra.

It was shown in [13] that in $D = (2 + 1)$ dimensions the exotic central charge of the Galilean algebra generates the noncommutativity of the $D = 2$ nonrelativistic space coordinates. In this paper we have shown that for a system with $\hat{N}H$ symmetries (dS radius R finite) one can generate a more complicated nonrelativistic $D = 2$ phase space with both coordinates and momenta being noncommutative. We have found also that the complete noncommutative phase space describing the external sector of our model, besides (X_i, P_i), possesses also a third non-commutative 2-vector.

As is well known the quantization of models with higher time derivatives leads to the canonical derivation of the deformed quantum phase space structures. It still remains to be clarified how the well known difficulty with the quantization of mechanical systems with higher order equations of motion, leading to the appearance of ghosts, can be remedied if we formulate the model in the framework of suitably extended and deformed quantum mechanics.

Acknowledgments: We would like to thank Jose de Azcarraga, Joaquim Gomis and Mikhail Plyushchay for valuable remarks.

References

[1] J. Lukierski, P.C. Stichel and W.J. Zakrzewski, *Phys. Lett. B* 650, 203 (2007); [hep-th/0702179]

[2] H. Bacry, J.M. Levy-Leblond, *J. Math. Phys.* 9, 1605 (1968)

[3] J. Derome, J.G. Dubois, *Nuovo Cimento* B9, 351, (1972)

[4] J.F. Carineña, M.A. del Olmo, M. Santander, *J. Phys.* A14, 1 (1981)

[5] J. Negro, M.A. del Olmo, A. Rodriguez-Marco, *J. Math. Phys.* 38, 3786 (1997); ibid 38, 3810 (1997)

[6] J. Arratia, M.A. Martin and M.A. del Olmo, math-phys/9903013
[7] R. Aldrovandi, A.L. Barbosa, L.C.B. Crispino, *Class. Quant. Grav.* **16**, 495 (1995)

[8] Y.H. Gao, [hep-th/0107067](http://arxiv.org/abs/hep-th/0107067)

[9] Y. Tian, H.-Y. Guo, C.-G. Huang and B. Zhou, *Phys. Rev.* **D 71** 044030 (2005)

[10] G.W. Gibbons, C.E. Patricot, *Class. Quant. Grav.* **20**, 522 (2003) [hep-th/0308200](http://arxiv.org/abs/hep-th/0308200)

[11] P.D. Alvarez, J. Gomis, K. Kamimura and M.S. Plyushchay, *Ann. Phys.* **322**, 1556 (2007) [hep-th/0702014](http://arxiv.org/abs/hep-th/0702014)

[12] F.J. Herranz, M. Santander, [math-phys/0612059](http://arxiv.org/abs/math-phys/0612059)

[13] J. Lukierski, P.C. Stichel and W.J. Zakrzewski, *Ann. Phys.* **260**, 224 (1997).

[14] R. Casalbuoni, J. Gomis and G. Longhi, “Exotic Non-relativistic String”, arXiv:ph-th/0709.4385

[15] L. Faddeev, R. Jackiw, *Phys. Rev. Lett.* **60**, 1962 (1988)

[16] R. Jackiw in “Constraints Theory and Quantization Methods” (F. Colomo et al., Eds), World Scientific, Singapore, (1994) p. 163

[17] P.A. Horvathy, M.S. Plyushchay, *JHEP* **0206** 033 (2002)

[18] A. Pais, G.H. Uhlenbeck, *Phys. Rev.* **79**, 145 (1959)

[19] P.D. Mannheim, [hep-th/0608154](http://arxiv.org/abs/hep-th/0608154) (2006)

[20] C.M. Bender and P.D. Mannheim - hep-th/0706.0207 (2007)