Predictors of stress and associated factors among healthcare workers in Western Ghana

Stephen T. Odonkor*, Samuel Adams

School of Public Services and Governance, Ghana Institute of Management and Public Administration Accra, Ghana

1. Introduction

It is well known that African countries suffer diseases, but in recent times, there is an increasing trend in the loss of life attributed to non-infectious or non-communicable diseases (NCD) (e.g., stress, malnutrition and obesity). The World Health Statistics report in 2019, shows that NCDs collectively caused 41 million deaths worldwide in 2016, equivalent to 71% of all global deaths (WHO, 2019). Stress at the workplace have gained much attention recently and have been recognized as a global disease due to its negative impact on the physical, emotional, and psychological wellbeing of people in various occupational groups (Godfay et al., 2018; Ahmad et al., 2015). It is not surprising therefore that Ofei et al. (2020) portray stress as an epidemic, while the World Health Organization has declared stress as the global epidemic of the 21st century and Al-Makhaita et al. (2014) describe it simply as been pervasive and insidious part of everyday life in the work environment. Dagget et al. (2016), however, have observed that though occupational stress exists in every profession it is more pronounced in the health professions. The complex and dynamic nature of the world of work of the health sector exposes health care workers to high levels of work-related stress which seriously impacts on general wellbeing and organizational outcomes. Indeed, Hensch et al. (2016) describe nursing as a notoriously high-stress occupation, emotionally taxing and physically draining, with a high incidence of burnout.

Stress has been defined variously by many authors. For example, According to United States National Institute for Occupational Safety and Health, job stress is defined as “the harmful physical and emotional responses that occur when the requirements of the job do not match the capabilities, responses, or needs of the worker. Work-related stress (WRS) is simply stress, which is caused or made worse by working. Job stress is a substantial and growing concern for workers, their advocates, employers, occupational health and safety regulators, and workers' compensation programs. Kyei et al. (2016) define stress as a feeling of strain and pressure and reflects disparity between comprehension of the requirements on one hand, and the ability to cope with this demand on the other. Molero et al. (2019) also define stress as a complex psychological process which is experienced when the individual perceives a threat or danger in the environment. Stress remains a major organizational challenge confronting many healthcare professionals due to its adverse effects on staff performance, job satisfaction, and patients' outcomes. The current work environment of nurses is confronted with increasing healthcare complexities such as heavy workloads, inadequate staffing levels, scarce resources and expanding roles which significantly promote work-related stress (Jones et al., 2015). Almutairi et al. (2020) have argued that health care professionals especially those in pre-hospital care are exposed to emotional stress every day and therefore likely to be...
depressed. Kyei et al. (2016) report that stressed employees exhibit signs of depression or not being appreciated, nervousness and anxiety, loss of appetite, exhaustion, blood pressure and even lead to abnormal menstruation. The reduced psychological and physiological challenges in the health professionals affect their quality of life and consequently their productivity and overall quality of health service delivery and outcomes (Afulani et al., 2021). Stress is also related to all types of ulcers and more importantly, it impairs response to treatment due to the fact that it acts by stimulating the production of gastric acid or by promoting behavior that causes risk to health (Sadiq et al., 2020). Accordingly, the identification of the predictors of stress at work becomes critical in the management and prevention of sociological and psychological disorders (Suleiman-Martos et al., 2020; Pisljar et al., 2011), which gives credence to this study.

Generally, stress can also be said to be a psychological and physiological response to undesirable experiences generally termed as stressors (Al-Makhaita et al., 2014). Though ‘stress’ is more commonly thought of as harmful (Epel et al., 2018), how it is responded to could be more detrimental or otherwise. The management of stress could lead to “eustress” (positive responses such as innovation and improved productivity) or “distress” (negative outcomes) (Kaburi et al., 2016; Rudland et al., 2020). In this regard, for instance, report that thinking more positively about stress, could lead to productive learning in health education and improve performance. Accordingly, it has been argued that focusing only on distress may be limiting it as curtails recognition of the positive benefits of stress in health professional education (Pollock et al., 2020).

Globally, the prevalence of stress varies between 9.2% and 68.0% (Kaburi et al., 2019). In Ghana, occupational stress and its sources among healthcare workers is largely under-explored by researchers. This gap motivates the study. The purpose of this study is to assess the psychological working conditions, and to identify the important predictors of occupational stress among health care workers in the Western region of Ghana. To get a comprehensive understanding of the predictors of stress, we also account for not only the demographic factors of the employees but also the work environment and organizational factors. This research is relevant because in addition to the damaging effects of stress on health and well-being (O’Connor et al., 2021), stress is also a major contributor to attrition and widespread shortages in the health profession (Hersch et al., 2016). Many studies do show that health professionals show higher levels of psychosocial stress than other population samples and nurses and doctors in particular have been recognized as susceptible to burnout mainly due to work overload (Rössler, 2012; Ribeiro et al., 2018; Shepherd and Newell, 2020). Reasons for stress included long working hours, heavy workload, low wages and high job risk (Garcia-Rodriguez et al., 2014; Munnangi et al., 2018; Yehya et al., 2020; Molero et al., 2019).

The Ghana Health Service (2018) shows that in 2017 there were 1003 clinics, 404 hospitals, 855 health centres, and three (3) psychiatric hospitals manned by 4016 Doctors, 718 Pharmacists, 21, 225 Enrolled Nurses, 15, 456 Community Nurses, 9884 Midwives, and 21, 927 professional nurses (Ghana Health Service, 2018). Though health infrastructure is inadequate, it is worthy of mention that there has been improvement in the past few years. For example, in 2013, there were 2730 doctors but increased to 4016 in 2017. The doctor to population ratio was 1:9749 in 2013 but improved to 1:7374 in 2017. The nurse to population ratio national average was 505 in 2017, with highest figure for the Western region (focus of study) at 597. The region is also peculiar in that it is one of the three (3) coastal regions of the country. The Mining industry of Ghana accounts for 5% of the country’s GDP and minerals make up 37% of total exports, of which gold contributes over 90% of the total mineral exports. Also, Ghana’s outpatient attendance per capita is about 0.97 with the Western region having 1.2, which is exceeded only by the Brong Ahafo Region at 1.4 and the Upper East at 1.5 (Ghana Health Service, 2018). Thus, this Western Regional study could provide lessons for both endowed and less endowed regions of Ghana in understanding stressors for healthcare workers.

Currently, the Government of Ghana (GOG) spends just under 7% of general government expenditure on health as a percentage of total government expenditure based on 2014 values, which is equivalent to approximately USD100 per capita annually. This is far below the African average of 11.4% and the global average of 14.1%. Though the total expenditure on health as a percentage of gross domestic products (2015) is higher (6%) than the African average of (5.6%) but below the global average of 8.6% (World Health Statistics, 2017; UK Home Office Country Report, 2019). Overall, the report notes that Ghana has made significant strides in strengthening International Health Regulations (IHR) capacity and reducing mortality due to noncommunicable diseases, suicide, harmful use of alcohol, and tobacco use, respectively. The progress is attributed to collaborations with the agricultural, financial, transportation, customs and immigration, and housing sectors, among others.

Additionally, the level of skilled health professionals in Ghana is ranked 14 out 47 ranked countries over the period 2005–2015 and it is ranked 8th on the IHR and health emergency preparations but does poorly on the health expenditure as a percentage of government expenditure of just 6.8% which is ranked 41 out of 47 nations. This has been made worse by the emigration trend, the recruitment of health workers, particularly physicians, remains a challenge and has created daunting shortages in the health sector. As health workers age and recruitment remains stagnant, these shortages have hindered the operational capacity of many lower-level facilities, including the Community-based Health Planning and Services (CHPS) (Asemota, 2020). Accordingly, identifying the key stressors of the health professionals is in the direction as it will prioritize the strategies that will optimize the mitigation and adaptation strategies to be employed in the midst of resource constraints. In the sections that follow, the methodology employed to achieve the research objectives is described after which the results are presented and then the conclusion and policy implications are given.

2. Materials and methods

2.1. Study site description

2.1.1. Demographics of the study area

The Western Region covers an area of 23,921 sq. km, and had a population of 2,376,021 at the 2010 Census; the latest official projected population (as at 2019) is 3,093,201. The Western Region enjoys a long coastline that stretches from Ghana’s southern border with Ivory Coast to the Western region’s boundary with the Central Region on the east. The region’s doctor and nurse population ratio are one doctor to 10,452 and one nurse to 1,251.

2.1.2. Research design and sample size

The study employed a descriptive, cross-sectional design with self-administered questionnaires to assess workplace stress among health care workers in the western region of Ghana. The study was, conducted from September 1 2019 to 2019 to February 28, 2020. The sample size was determined using Miller and Brower's mathematical formula for estimating single proportions (Miller and Brower, 2003). The standard normal deviation was set at a 95% confidence level, prevalent with the allowable margin of error of 0.08. The formula \( n = \frac{N \cdot (N-1)}{N(\alpha) + \sigma^2} \) was used to determine a sample size for each hospital. The minimum sample size increased and rounded up when more than 10 % of the calculated, minimum sample size was added for nonresponse, inappropriately filled or missing questionnaires since the questionnaires were interviewer administered. In the formula: \( n \) = Sample Size, \( N \) = Total Population, and \( \alpha \) = Margin of Error, adopted from Miller and Brower (2003). Thus, a total of 420 questionnaires were distributed for the study. However, 400 were completely filed and returned, which represents a 95% response rate. Questionnaires were self-administered and took an average of 28 min to complete. The respondents comprised of health care workers in the hospitals included: Physicians, Nurses/midwives, Pharmacists, Laboratory scientists, and Radiographers.
2.1.3. Sampling technique

Data were obtained from a regionally representative survey of among health care workers (N = 400). The region was demarcated into 3 zones: south-western belt, middle belt and north-western belt. The study utilized a stratified sampling technique to obtain the required number of respondents from hospitals within the three (3) demarcated zones.

Sampling proportionate to size was used to determine the number of respondents to be interviewed from each of the demarcated zones.

2.1.3.1. Data collection instrument. A standardized questionnaire was used to obtain data. Field inspection of questionnaire data was carried out days after the interviews were conducted, and errors were immediately verified and corrected. The stress causes-related aspect of the questionnaire was adopted form Cohen et al. (1983). It contains 39 statements to be answered on a five-point Likert scale (Willems, 2014). Furthermore, the questionnaire also captured demographic data of the respondents. It took approximately 25–35 min to complete the questionnaire. Six experts in social sciences measurement and evaluation determined face validity of the instrument. The average overall face validity was equal to 95%. The study used Cronbach's alpha test formula to test the reliability of the standard questionnaire. The test yielded a reliability coefficient of 0.8. The Cronbach's alpha test assess the internal consistency of a set of scale of or items to ensure that they are all consistent in measuring the same attributes under study (Odonkor and Frimpong, 2019).

2.1.3.2. Ethical considerations. The protocol for the study was ethical and was cleared by Ethics Review Committee of the Ghana Institute of Management and Public Administration. Prior to data collection respondents’ written and verbal consent were sought. Respondents were informed about the purpose of the study and were made to understand that participation was voluntary and refusal to participate in the study would not affect their employment status. The study respondents were assured of confidentiality and informed that they could withdraw from the study at any time and were at liberty not to answer any question they did not want to. All respondents were advised that completing the survey implied informed consent to use the data for research purposes. In addition, all personal identifiers were removed in the summary data to ensure confidentiality.

2.1.3.3. Data handling and analysis. The data were entered into a Spreadsheet and later exported to SPSS version 23 and coded for analysis. The analysis included both descriptive and inferential statistics. Descriptive statistics (frequencies, means, and standard deviations) were used to describe the variables of interest. Univariate analysis was used in obtaining the frequency of socio - demographic characteristics and other discrete variables of the study population. Data were analyzed by contingency table except for t-tests as appropriate for continuous data (for example, age). The Chi Squared (X²) tests were used to assess the bivariate relationships between these factors as well as for difference in proportions and for other categorical variables. All statistical tests were two-tailed and alpha = 0.05 or less were considered to be statistically significant. We employed stratification and standardization techniques to control for confounding variables.

3. Results

Table 1 shows the demographic characteristics of the respondents. Majority of the respondents (272) representing 68.0% were females while the remaining 128 representing 32.0% were males. Most respondents, 230 (57.5%) were within 25–35 years. Majority of the respondents (41.3%) were Bachelor’s degree holders. Most of the respondents (50.3%) work 40hrs per week while relatively few of them (19.3%) work over 50hrs per week.

Table 2 shows the demographic characteristics and stress level among the respondents. It can be observed that except for gender, there were significant differences among respondents in terms of the demographic characteristics and their stress levels. Among the age groups, those aged 46 or more had the highest percentage of respondents (over 83%) indicating that they do not encounter stress whilst the relatively more youthful 34–45 age group had the highest percentage of respondents (35.7%) indicating they do encounter stress.

Table 3 shows the work characteristics of the respondents. All the hospital workers (100%) indicated that they always receive compensation for working extra hours. It is worth noting that a large percentage of respondents (75%) revealed that they do not get any support at all from their workplace for stress relief. Most respondents (87.5%) indicated they never resolve conflict on time.
Table 4 shows the causes of stress among respondents' level among the respondents. It can generally be observed that with the exception of ‘working with opposite sex’ and ‘supervising the work of others’, more than half of the respondents agreed/strongly agreed to the causes of stress.

Table 5 shows reasons why respondents miss work. About 40% of the respondents reported that the most common reason why they missed work was physical illness, while work related injury was the least (3.7%). However, 16.6% said they miss work as a result of public holidays and 12% of the respondents reported that they miss work because they were unable to get needed day off.

Figure 1 shows the respondents intended actions to stress they faced at their work place. The results show that 40.4% intend to change their
place of work, while 28.6% consider changing jobs altogether. However, 18.2% intend to quit their health practice, while 12.8% consider working on part-time basis only.

Table 6 shows the relationship between stress and the following selected socio-demographic characteristics: sex, age group, educational level, social status, work experience, marital status, and residence. Significant difference ($p < 0.05$) existed between workplace stress and marital status; age group and work stress; residence and social status; age group and marital status; and social status and residence. The multiple logistic regression results (Table 7) show that respondents who are 56 or older were more likely to be stressed (3.16) than those in the other age groups. Respondents working 41–50 h/week were 2.36 times more likely to be stressed. In terms of educational level, the results indicate that stress is likely to decrease with increasing level of education, and that respondents with a diploma are 3.73 times more likely to be stressed compared to those with higher education qualification.

4. Discussion

In the study, overall stress prevalence among the respondents was 30.5%, which is in line with similar studies by Mosadeqhrad (2013) for Iran (34.9%) and Sallih and Abajobir (2014) for Ethiopia (37.8%). However, the current finding is lower than previous studies conducted in Ethiopia (68.2%) by Birhanu et al. (2018), India (73.5%) by Kane (2009), Saudi Arabia (66.2%) by Salam (2016), Nigeria (92.8%) by Etim et al. (2015) and Botswana (74%) by Maphangela (2015). On the other hand, stress prevalence is higher in the current study than studies carried out in Jordan (27%) by Boran et al. (2012), Malaysia (25%) by Rosnavati and Robat (2008), Taiwan (17%) by Aoki et al. (2011) and Vietnam by 20.7% Minh (2014). The reasons for these differences might be due to variation in tools used in the present study, the low level of stress prevalence is possibly due to the study setting, tools used, and target population but may not necessarily be as a result of sample size, because the number of respondents were relatively larger than those in studies which reported high levels of stress prevalence (Birhanu et al., 2018; Etim et al., 2015; Kane 2009).

The results of the study do not show significant difference in the stress levels of men and women. This is consistent with many other studies (Faraji et al., 2019; Birhanu et al., 2018; Dagget et al., 2016; Godwin et al., 2016; Al-Omar, 2003). However, Pawlina and Schnorr (2018) and Ogisaka-Bulik (2006) report that female health professionals are more likely to suffer stress as compared to males. On the other hand, Nirmala and Babu (2015) report that male healthcare workers felt higher levels of stress as compared to their female colleagues. These differences could be attributed to the variations in tools, settings and the male to female ratio of the health workers employed in the current study and the other studies. Moreover, in this current study we found that respondents who worked 40hrs per week were more stressed (42.8%) than those who worked over 50hrs per week (22.7%). This is contrary to other studies by Salam (2016), Boran et al. (2012), and Birhanu et al. (2018) in Saudi Arabia, Jordan, and Ethiopia, respectively. There are several reasons that could possibly explain the variations in findings in the current study compared to other studies which include nature of work, number and duration of break intervals, and number of hours between shifts.

Table 5. Reasons for missing work.

| Variable                   | Frequency | Percent (%) |
|----------------------------|-----------|-------------|
| Physical illness           | 139       | 39.7        |
| Public holiday             | 58        | 16.6        |
| Work related injury        | 13        | 3.7         |
| Casual leave               | 70        | 20.0        |
| Unable to get needed day off| 42        | 12          |
| Total                      | 350       | 100         |
One of the stressors identified in this study was the lack of clarity in promotion criteria. This finding is consistent with a similar study in Ghana, where lack of opportunity for promotion and inadequate resources were among the causes of stress (Godwin et al., 2016). Another, interesting finding of the study concerns respondents response to stress. Many respondents (40.4%) who reported stressed indicate that they usually change jobs. This possibly suggests the absence of proper stress management policies or lack of education of stress coping techniques and disinterest in the stress issues of the respondents by management in their respective health institutions. A Multiple Logistic Regression Model was used to examine the relationship between the association of socio-demographic characteristics and work place stress.

**Table 6. Correlation between stress and selected socio-demographic variables.**

| Variable              | WS   | S     | AG    | EL    | SS    | WE    | MS    | R     |
|-----------------------|------|-------|-------|-------|-------|-------|-------|-------|
| Work-place Stress (WS)| 1    | 0.582 | 0.322*| -0.874| 0.687 | 0.873 | 0.223 | 0.439 |
| Sex (S)               | 0.532**| 1     | 0.147 | -0.867| 0.782 | 0.718 | 0.222 | 0.148 |
| Age Group (AG)        | 0.322*| 0.276 | 1     | 0.116 | 0.341 | -0.174| 0.044*| -0.588|
| Educational Level (EL)| -0.864| -0.782| 0.112 | 1     | -0.861| -0.819| -0.292| -0.335|
| Social Status (SS)    | 0.787 | 0.786 | 0.220 | -0.841| 1     | 0.716 | 0.358 | 0.033*|
| Work Experience (WE)  | 0.578 | 0.788 | 0.024*| -0.416| 0.511 | 1     | 0.532 | 0.383 |
| Marital Status (MS)   | 0.023*| 0.261 | 0.158 | -0.492| 0.186 | 0.532 | 1     | 0.098 |
| Residence (R)         | 0.539 | -0.148| -0.588| -0.231| 0.139 | 0.383 | 0.098 | 1     |

**Table 7. Multiple Logistic Regression Model for the association of socio-demographic characteristics and work place stress.**

| Variable              | β    | OR   | OR 95%CI * | P value |
|-----------------------|------|------|------------|---------|
| **Age group**         |      |      |            |         |
| 25–35 years(reference) | 1    | 0.00–0.00 | 0.01      |
| 36–45 years           | 1.26 | 1.18 | 0.88–1.76  | 0.01    |
| 46–55 years           | 0.45 | 1.65 | 1.15–2.30  | 0.01    |
| above 56 years        | 1.43 | 3.16 | 2.78–4.94  | 0.01    |
| **Marital status**    |      |      |            |         |
| Single(reference)     | 1.36 | 1.23 | 0.80–1.46  | 0.01    |
| Married               | 0.65 | 1.81 | 1.50–2.10  | 0.01    |
| Divorced              | 0.86 | 3.26 | 1.28–4.10  | 0.01    |
| **Workload**          |      |      |            |         |
| 40 h/week             | 0.79 | 2.23 | 1.08–4.63  | 0.01    |
| 41–50 h/week          | 0.79 | 2.23 | 1.08–4.63  | 0.01    |
| More than 50 h/week   | 0.79 | 2.23 | 1.08–4.63  | 0.01    |
| **Level of education**|      |      |            |         |
| Less than Diploma(reference) | 1.33 | 1.23 | 0.80–1.46  | 0.01    |
| Diploma               | 0.77 | 3.73 | 0.53–21.6  | 0.01    |
| Bachelor's degree     | 0.76 | 2.32 | 0.86–5.79  | 0.01    |
| Master's degree or higher | 1.33 | 1.23 | 0.80–1.46  | 0.01    |

**Figure 1.** Respondents intended action to stress at their workplace.
5. Conclusion

Stress prevalence among the healthcare professionals in the present study was high. Except for gender, there was significant difference between the two sociodemographic characteristics and stress levels among the respondents. The associated factors of stress were found to be age group, marital status, workload and educational background.

Based on the relationship between associated factors and stress levels as observed in this study, several vital points for policy are recommended.

First, management of healthcare institutions should put up structures which will strictly ensure employees carry out their respective roles and responsibilities in such way to reduce stress. This may be achieved by employing additional staff and cutting down the work load of staff. Second, counseling centers manned by qualified psychologists should be established with the various healthcare facilities, to help health workers cope with the stress they encounter as a result of their job demands.

5.1. Study limitations

This study is a cross-sectional study and hence, it measured information at a given point in time. Secondly, cross sectional studies represent only those who are surveyed and willing and can introduce information at a given point in time. Secondly, cross sectional studies represent only those who are surveyed and willing and can introduce bias. In addition, issues of temporality is which one of the main shortcomings of cross-sectional study may be present. In spite of this, cross sectional studies such as this are important because they provide a snapshot of the data which can be used for policy intervention.

Declarations

Author contribution statement

Stephen T. Odonkor: Conceived and designed the experiments; Performed the experiments; Analyzed and interpreted the data; Contributed reagents, materials, analysis tools or data; Wrote the paper.

Samuel Adams: Analyzed and interpreted the data; Wrote the paper.

Funding statement

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Data availability statement

Data included in article/supplementary material/referenced in article.
Minh, K.P., 2014. Work-related depression and associated factors in a shoe manufacturing factory in Haiphong City, Vietnam. Int. J. Occup. Med. Environ. Health 27 (6), 950–958.
Molero, M.J., Pérez-Puentes, M.D.C., Oropeza, N.R., Simón, M.M., Gámez, J.L., 2019. Self-efficacy and emotional intelligence as predictors of perceived stress in nursing professionals. Medicina (Kaunas, Lithuania) 55 (6), Monadehgrad, A.M., 2013. Occupational stress and turnover intention: implications for nursing management. Int. J. Health Pol. Manag. 1 (2), 169.
Munnangi, S., Dupiton, L., Boutin, A., Angus, L.D., 2018. Burnout, perceived stress, and job satisfaction among trauma nurses at a level I safety-net trauma center. J. Trauma Nurs. 25, 4–13.
Nirmala, K.V., Babu, M.S., 2015. Job stress among health care professionals in selected hospitals with special reference to age and gender. Age 94 (180), 107.
O’Connor, D.B., Thayer, J.F., Vedhara, K., 2021. Stress and health: a review of psychobiological processes. Annu. Rev. Psychol. 72, 663–688.
Oginika-Bulik, N., 2006. Occupational stress and its consequences in healthcare professionals: the role of type D personality. Int. J. Occup. Med. Environ. Health 19 (2), 113–122.
Oleif, A.M., Paarima, Y., Barnes, T., Kwashie, A.A., 2020. Stress and coping strategies among nurse managers. J. Nurs. Educ. Pract. 10 (2).
Pavliani, M.M.C., Schnorr, G.P., 2018. Prevalence of stress in health workers in the context hospital. Psychol Behav Med Open Access J 15–21.
Pidjar, T., van der Lippe, T., den Dulk, L., 2011. Health among hospital employees in Europe: a cross-national study of the impact of work stress and work control. Soc. Sci. Med. 72 (6), 899–906.
Pollock, A., Campbell, P., Cheyne, J., Cowie, J., Davis, B., McCallum, J., et al., 2020. Interventions to support the resilience and mental health of frontline health and social care professionals during and after a disease outbreak, epidemic or pandemic: a mixed methods systematic review. Cochrane Database Syst. Rev. 11.
Ribeiro, R.P., Marziale, M.H.P., Martins, J.T., Galdino, M.J.Q., Ribeiro, P.H.V., 2018. Occupational stress among health workers of a university hospital. Revista gaucha de enfermagem 39, e65127 e65127.
Rosnawati, B., Robat, M., 2008. Occupational Stress Among Nurses in the District Hospital and Health Centers of Temerloh, Pahang. Kuala Lumpur: University of Malaya.
Salam, A., 2016. March). Job stress and job satisfaction among health care professionals. Int. J. Environ. Res. Publ. Health 17 (2), 641.
Shepherd, M.A., Newell, J.M., 2020. Stress and health in social workers: implications for self-care practice. Best Pract. Ment. Heal. 16 (1), 46–65.
Suleiman-Martos, N., Albenís-García, L., Vargas-Román, K., Ramírez-Baena, L., Ortega-Campos, E., et al., 2020. Prevalence and predictors of burnout in midwives: a systematic review and meta-analysis. Int. J. Environ. Res. Publ. Health 17 (2), 641.
Sveinsson, H., Birling, P., Ramel, A., 2006. Occupational stress, job satisfaction, and working environment among Icelandic nurses: a cross-sectional questionnaire survey. Int. J. Nurs. Stud. 43 (7), 875–889.
Tekeleta-Dadik, S., Mulat, H., Necho, M., Waja, T., 2017. Occupational Stress and its Associated Factors Among Health Care Professionals Working at a Setting of a Specialized Mental Hospital. Addis Ababa, Ethiopia, 2161-0487.
UK Home Office. 2019. Country Policy and Information Note Ghana: Medical and Healthcare Issues.
World Health Organization, 2019. World health statistics 2019: monitoring health for the SDGs, sustainable development goals.
Willems, E.A., 2014. Stress Among Social Work Professionals in Mental Health Care Settings.
World Health Statistics, 2017. Monitoring Health for the SDGs, Sustainable Development Goals. WHO, Geneva.
Yehya, A., Sankaranarayanan, A., Alkhali, A., Alnoini, H., Almeer, N., Khan, A., Ghuloum, S., 2020. Job satisfaction and stress among healthcare workers in public hospitals in Qatar. Arch. Environ. Occup. Health 75 (1), 10–17.