Extracting \hat{q} in event-by-event hydrodynamics and the centrality/energy puzzle

Carlota Andrés

Universidade de Santiago de Compostela

Quark Matter 2017, Chicago

N. Armesto, Harri Niemi, Risto Paatelainen, Carlos A. Salgado and Pia Zurita
Introduction

- Study of suppression of high-p_T particles in \textbf{PbPb} collisions at the LHC and \textbf{AuAu} collisions at RHIC.

- Analysis based on the quenching weights (QW) for medium-induced gluon radiation.

- QW computed in multiple soft scattering approximation.

- Embedded in \textbf{EKRT event-by-event} description of the medium.

- Study done for \textbf{different centrality classes}.
Single inclusive cross section

The single inclusive cross section is described by

$$\frac{d\sigma^{AA\rightarrow h+X}}{dp_T dy} = \int \frac{dx_2}{x_2} \frac{dz}{z} \sum_{i,j} x_1 f_{i/A}(x_1, Q^2) x_2 f_{j/A}(x_2, Q^2) \times \frac{d\hat{\sigma}_{ij \rightarrow k}}{d\hat{t}} D_{k\rightarrow h}(z, \mu_F^2)$$

Factorization scale $Q^2 = (p_T/z)^2$. Fragmentation scale as $\mu_F = p_T$.

- CTEQ6M + EPS09 (NLO).
- We absorb energy loss in a redefinition of the fragmentation functions:

$$D_{k\rightarrow h}^{(med)}(z, \mu_F^2) = \int_0^1 d\epsilon P_E(\epsilon) \frac{1}{1 - \epsilon} D_{k\rightarrow h}^{(vac)} \left(\frac{z}{1 - \epsilon}, \mu_F^2 \right)$$

- $P_E(\epsilon)$ is the Quenching Weight and $D_{k\rightarrow h}^{(vac)}(z, \mu_F^2)$, DSS fragmentation functions.
The ASW Quenching Weights are given by

\[P(\Delta E) = \sum_{n=0}^{\infty} \frac{1}{n!} \left[\prod_{i=1}^{n} \int d\omega_i \frac{dI^{(med)}(\omega_i)}{d\omega} \right] \times \delta \left(\Delta E - \sum_{i=1}^{n} \omega_i \right) \exp \left[- \int_0^{\infty} d\omega \frac{dI^{(med)}}{d\omega} \right] \]

- **Independent** gluon emission assumed.
- QW are Poisson distributions.
- Support in recent works of **coherence** and **resummation** by J. Casalderrey-Solana, Y. Mehtar-Tani, C. A. Salgado, K. Tywoniuk...
Coherence

- Totally coherent case:
 - Vacuum-like fragmentations.
 - Jets loosing energy as a single parton.
- This picture is in agreement with LHC data.

Casalderrey-Solana, Mehtar-Tani, Salgado, Tywoniuk, PLB 725 (2013) 357.
Independent gluon emission

- **Interference** effects may break independent gluon emission.

- They are **absent** for $\tau_{\text{form}} = \sqrt{\omega / \hat{q}} \ll L$.

- Independent gluon emission is a **good approximation** for soft radiation.

 J. P. Blaizot, F. Dominguez, E. Iancu and Y. Mehtar-Tani, JHEP 1301 (2013) 143.

- For soft radiation and no finite energy effects **QW and rate equations** are **equivalent**.

 S. Turbide, C. Gale, S. Jeon and G. D. Moore, Phys. Rev. C 72 (2005) 014906.
In $\frac{dI^{(med)}}{d\omega}$ the medium properties appear in: $\sigma(r)n(\xi)$.

In the multiple soft scattering approximation we use

$$\sigma(r)n(\xi) \approx \frac{1}{2} \hat{q}(\xi)r^2$$

Perturbative tails neglected.

We specify the relation between $\hat{q}(\xi)$ and the medium properties given by our hydrodynamic model as

$$\hat{q}(\xi) = K\hat{q}_{QGP}(\xi) \approx K \cdot 2\epsilon^{3/4}(\xi)$$

K is our **fitting parameter**.

Energy density obtained by solving the relativistic hydrodynamic equations.
Hydrodynamic medium modelling

Before…

Eur. Phys. J. C (2016) 76, 475

- We used several ’event-averaged’ hydro simulations:
 - “Hirano”: no viscous, optical Glauber model, $\tau_0 = 0.6$ fm.
 - “Glauber”: viscous $\eta/s = 0.08$, energy density proportional to ρ_{bin} as initial condition, $\tau_0 = 1$ fm.
 - “fKLN”: viscous $\eta/s = 0.16$, factorised Kharzeev-Levin-Nardi model, $\tau_0 = 1$ fm.

Now…

- We use EKRT event-by-event hydro: arXiv:1505.02677 [hep-ph].
 - Initial conditions given: minijet + saturation model.
 - $\tau_0 = 0.197$ fm.
 - $\eta/s = 0.2$.

Ambiguity before thermalization:

- $\hat{q}(\xi) = \hat{q}(\tau_0)$ for $\xi < \tau_0$.

\[\hat{q}(\xi) = \hat{q}(\tau_0) \text{ for } \xi < \tau_0. \]
Nuclear modification factor

- We use R_{AA} experimental data:

$$R_{AA} = \frac{dN_{AA}/d^2p_Tdy}{\langle N_{coll} \rangle dN_{pp}/dp_T^2dy}$$

- From Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV and Au-Au at $\sqrt{s_{NN}} = 200$ GeV.

- ALICE data on R_{AA} for charged particles with $p_T > 5$ GeV in different centrality classes and for $|\eta| < 0.8$, arXiv:1208.2711 [hep-ex].

- PHENIX data on π_0 R_{AA} $p_T > 5$ GeV, arXiv:0801.4020 [nucl-ex].
R_{AA} at $\sqrt{s_{NN}} = 200$ GeV for different centralities

![Graphs showing R_{AA} for different centralities of Au-Au collisions at 200 GeV.](image-url)
R_{AA} at $\sqrt{s_{NN}} = 2.76$ TeV for different centralities

χ^2 to the best value of K. $\Delta \chi^2 = 1$.
K-factor vs. impact parameter

$K = \hat{q}/2\epsilon^{3/4}$

$\hat{q}(\tau) = \hat{q}(\tau_0), \tau < \tau_0$

RHIC 200 GeV

LHC 2.76 TeV

K depends mainly on the energy and it is almost independent of the centrality of the collision!!
Introduction

Energy loss implementation

Hydrodynamic modelling of the medium

Results

Limitations and conclusions

K-factor vs. $\epsilon\tau_0$

![Graph showing $K = \frac{\hat{q}}{2\epsilon^{3/4}}$ vs. $\epsilon\tau_0$](image)

$\hat{q}(\tau) = \hat{q}(\tau_0), \, \tau < \tau_0$

Estimates taken from: arXiv:1509.06727 [nucl.ex] PHENIX Collaboration and arXiv:1603.04775 [nucl.ex] ALICE collaboration.

Difficult to reconcile the energy and centrality dependence!! A new puzzle??

Possible explanations already being studied: Amir Kumar Session 5.4 We 8:50.
Limitations

- The definition of \hat{q} neglects the **perturbative tails** of the distributions.
- The QW find support in the **coherence** analysis of the medium: if coherence is broken they could fail.
- Finite energy corrections.
- \hat{q} energy or length independent.
- **Collisional energy loss** is neglected.
Conclusions

- We fit the single-inclusive experimental data at RHIC and LHC for different centralities.
- The fitted value at RHIC confirms large corrections to the ideal case.
- For the case of the LHC, the extracted value of K is close to unity.
- K-factor is $\sim 2 - 3$ times larger for RHIC than at the LHC.
- Centrality dependences at RHIC and the LHC are rather flat.
- The change in the value of K does not look to be simply due to the different local medium parameters.
- Unexpected result!!
Backup
The inclusive energy distribution of gluon radiation off an in-medium produced parton is given by

\[\omega \frac{dI^{(med)}}{d\omega} = \frac{\alpha_s C_R}{(2\pi)^2 \omega^2} 2 \text{Re} \int_0^\infty dy_l \int_0^\infty d\bar{y}_l \int d\mathbf{u} \int d\mathbf{k}_\perp \chi \omega \times e^{-i \mathbf{k}_\perp \cdot \mathbf{u}} e^{-\frac{1}{2} \int_0^\infty d\xi n(\xi) \sigma(\mathbf{u})} \frac{\partial}{\partial y_l} \cdot \frac{\partial}{\partial u} \int_{y=0}^{\bar{y}_l} D\mathbf{r} \times \exp \left[i \int_{y_l}^{\bar{y}_l} d\xi \frac{\omega}{2} \left(\dot{\mathbf{r}}^2 - \frac{n(\xi) \sigma(\mathbf{r})}{i\omega} \right) \right] \]

- \(n(\xi) \), density of scattering centers.
- \(\sigma(\mathbf{r}) \), strength of a single elastic scattering.
The production weight is given by

\[\omega(x_0, y_0) = T_{Pb}(x_0, y_0) T_{Pb}(\vec{b} - (x_0, y_0)) \]

The average values of an observable and in particular of our fragmentations functions is computed as

\[\langle O \rangle = \frac{1}{N} \int d\phi dx_0 dy_0 \omega(x_0, y_0) O(x_0, y_0, \phi) \]

\[\langle D_{k \rightarrow h}^{(med)}(z, \mu_F^2) \rangle = \frac{1}{N} \int d\phi dx_0 dy_0 \omega(x_0, y_0) \]

\[\times \int d\zeta P(x_0, y_0, \phi, \zeta) \frac{1}{1 - \zeta} D_{k \rightarrow h}^{(vac)} \left(\frac{z}{1 - \zeta}, \mu_F^2 \right) \]

where \(N = 2\pi \int dx_0 dy_0 \omega(x_0, y_0) \).
R_{AA} at $\sqrt{s_{NN}} = 200$ GeV for different centralities
R_{AA} at $\sqrt{s_{NN}} = 2.76$ TeV for different centralities

χ^2 to the best value of K. $\Delta \chi^2 = 1.$
K-factor vs. impact parameter

Energy density constant before thermalization.

Free-streaming case.

K depends mainly on the energy and it is almost independent of the centrality of the collision!!
K-factor vs. $\epsilon \tau_0$ for \hat{q} constant before thermalization

Estimates taken from: arXiv:1509.06727 [nucl.ex] PHENIX Collaboration and arXiv:1603.04775 [nucl.ex] ALICE collaboration.

Difficult to reconcile the energy and centrality dependence!! A new puzzle??
R_{AA} predictions for $\sqrt{s_{NN}} = 5.02$ TeV

Using $K_{5.02} = K_{2.76}$

If $R_{AA}^{2.76} = R_{AA}^{5.02} \Rightarrow K_{5.02} \sim 0.85K_{2.76}$
Nuclear modification factors R_{AA} for single-inclusive and I_{AA} for hadron-triggered fragmentation functions for different values of $2K = K'/0.73$, with $K' = 0.5, 1, 2, 3, ..., 20$. The green line in the curve corresponding to the minimum of the common fit to R_{AA} and I_{AA} data:

$K' = 4.1$.

16 / 16
Left: χ^2-values for different values of K for light hadrons and for the three different extrapolations for $\xi < \tau_0$. Red lines correspond to single-inclusive π_0 data from PHENIX (R_{AA}) and black ones to the double-inclusive measurements by STAR (I_{AA}).

Right: the corresponding central values (minima of the χ^2) and the uncertainties computed by considering $\Delta \chi^2 = 1$.
Hydrodynamic medium modelling

- We use several hydrodynamic simulations:
 - “Hirano”: no viscous, optical Glauber model, $\tau_0 = 0.6$ fm.
 - “Glauber”: viscous $\eta/s=0.08$, energy density proportional to ρ_{bin} as initial condition, $\tau_0 = 1$ fm.
 - “fKLN”: viscous $\eta/s=0.16$, factorised Kharzeev-Levin-Nardi model, $\tau_0 = 1$ fm.

- Uncertainty coming from the hydrodynamic background is negligible with respect to our conclusions.

- Ambiguity before thermalization. 3 extrapolations:
 - Case i): $\hat{q}(\xi) = 0$ for $\xi < \tau_0$.
 - Case ii): $\hat{q}(\xi) = \hat{q}(\tau_0)$ for $\xi < \tau_0$.
 - Case iii): $\hat{q}(\xi) = \hat{q}(\tau_0)/\xi^{3/4}$ for $\xi < \tau_0$.
FIG. 3. Scaled transverse momentum distribution of negative pions and anti-protons in Au+Au 130 A GeV central and semi-central collisions. Solid lines and dashed lines correspond to initial conditions A and B, respectively. Experimental data are observed by the PHENIX Collaboration.
v_2 for charged pions

Tetsufumi Hirano and Keiichi Tsuda, arXiv:nucl-th/0205043

FIG. 12: $v_2(p_t)$ for charged pions. The solid, dotted, and dashed lines correspond to total pions, pions directly emitted from freeze-out hypersurface, and pions from resonance decays. Data from Ref. [56].
FIG. 7: (Color online) Centrality dependence of total multiplicity dN/dY and $<p_T>$ for $\pi^+, \pi^-, K^+, K^-, p$ and \bar{p} from PHENIX [84] for Au+Au collisions at $\sqrt{s} = 200$ GeV, compared to the viscous hydrodynamic model and various η/s, for Glauber initial conditions and CGC initial conditions. The model parameters used here are $\tau_0 = 1$ fm/c, $\tau_H = 6\eta/s$, $\lambda_1 = 0$, $T_f = 140$ MeV and adjusted T_i (see Table I).
\(v_2 \) at RHIC

Matthew Luzum and Paul Romatschke, arXiv:0804.4015 [nucl-th]
v_2 at LHC

Matthew Luzum and Paul Romatschke, arXiv:0901.4588 [nucl-th]

FIG. 2: (Color online) Anisotropy (3) prediction for $\sqrt{s} = 5.5$ TeV Pb+Pb collisions (LHC), as a function of centrality. Prediction is based on values of η/s for the Glauber/CGC model that matched $\sqrt{s} = 200$ GeV Au+Au collision data from PHOBOS at RHIC ([31], shown for comparison). The shaded band corresponds to the estimated uncertainty in our prediction from additional systematic effects: using $e_p/2$ rather than v_2 (5%) [1]; using a lattice EoS from [29] rather than [27] (5%); not including hadronic cascade afterburner (5%) [38].
In the case of 'Hirano’s ideal hydro', the values of the temperature at $\tau=0.6$ fm and $x=y=\eta=0$ for RHIC and LHC are:

	LHC	RHIC
00-05%:	484.3 MeV	373.2 MeV
05-10%:	476.6 MeV	369.6 MeV
10-20%:	463.6 MeV	356.8 MeV
20-30%:	444.6 MeV	341.1 MeV
30-40%:	421.5 MeV	323.7 MeV
40-50%:	393.6 MeV	
50-60%:	359.6 MeV	
Initial temperatures for Matt’s hydros

'Matt’s viscous hydro for two different initial conditions and \(\eta/s \). Initial temperatures at \(x=y=0, \tau=1 \) fm:

Glauber:
- \(b=2 \) fm LHC: 418 MeV
- \(b=12 \) fm LHC: 272 MeV
- \(b=2 \) fm RHIC: 331 MeV

fKLN:
- \(b=2 \) fm LHC: 389 MeV
- \(b=12 \) fm LHC: 296 MeV
- \(b=2 \) fm RHIC: 299 MeV
\(\hat{q} \sim T^3 \sim \epsilon^{3/4} \) both for hadronic and partonic phase

arXiv:hep-ph/0209038, R. Baier.

Figure 3. Transport coefficient as a function of energy density for different media: cold, massless hot pion gas (dotted) and (ideal) QGP (solid curve)
K versus initial temperature

$\hat{q}(\tau) = \hat{q}(\tau_0), \, \tau < \tau_0$

- Hirano RHIC
- fKLN RHIC
- Glauber RHIC
- Hirano LHC
- fKLN LHC
- Glauber LHC
K versus initial energy

$K = \hat{q}/2\epsilon^{3/4}$

$\hat{q}(\tau) = \hat{q}(\tau_0), \tau < \tau_0$

Hirano RHIC
fKLN RHIC
Glauber RHIC
Hirano LHC
fKLN LHC
Glauber LHC

ϵ_0 (GeV/fm3)