Potential of Biochar for Minesoil Amendment and Floristic Diversity Enhancement at the Yongwa Quarry Site in the Eastern Region of Ghana

D. Adusu, S. Abugre, D. Dei-Kusi

ABSTRACT

Background: Reclamation of degraded and mined lands has become paramount due to exploitation of our resources. The study sought to explore the potential of biochar for amending degraded mined soil and stockpiled topsoil and its ability to enhance plant diversity at the Yongwa quarry site in the eastern region of Ghana.

Method: Two separate experiments were conducted using a randomized complete block design (RCBD). Four treatments were allotted randomly within each block for stockpiled topsoil and amended degraded mined soils and replicated three times. Biochar and poultry manure were applied at 0.002 tons per every 2 m x 2 m plot. However, when applied in combination (biochar and poultry manure), they were applied at 0.001 tons of biochar and 0.001 tons of poultry manure per every 2 m x 2 m plot.

Result: The results of the study revealed a generally higher nutrient status and species diversity on the plots with amended soils compared to the control. The highest Shannon index (2.04) was recorded on the combined biochar and poultry manure-amended plots while the lowest was recorded on the control plot (1.08). A similar trend was observed on the degraded mined soil amended plots with the combined biochar and poultry manure-amended soil recording the highest Shannon index (2.32) and effective number of species values (10.15) compared to the other amendment plots.

Key words: Biochar, Degraded soil, Stockpile soil, Plant diversity.

INTRODUCTION

In mined land rehabilitation, the topsoil plays a very important role not only as a growth medium but also as a bank for numerous indigenous plant seeds (Ballard et al., 1996). However, due to its long storage during mineral exploitation, the physical, chemical and biological properties are compromised by the time of rehabilitation. This results in soil nutrient depletion, soil degradation, lack of topsoil and reduced natural regeneration. It is therefore important to amend disturbed mine soils to provide alternative topsoil substitutes as well as improve the health of stockpiled topsoils for successful mine rehabilitation.

Most studies have explored different soil amendments such as cow dung, poultry manure, etc. which have proven to have some potential in soil nutrient restoration. However, their impacts are short-term, usually (1-5 years) (Bendfeldt et al., 2001). Since mine rehabilitation is a long term project, it is important to adopt the use of amendments that have a lasting impact on the soil.

According to Glaser et al. (2002), the persistence of organic matter in tropical soils for centuries can be attributed to biochar application either consciously or unconsciously. Studies conducted by Lehmann et al. (2008), has dated naturally occurring biochar in Australian soils to 1,300 – 2,600 years. Similarly, controlled decomposition experiments have revealed that biochar can reside in the soil for between 1,300 to 4,000 years (Liang et al., 2008; Kuzyakov et al., 2009). The long term impacts of biochar on the soil are due to its aromatic structure which makes it physically, chemically and biologically stable and resistant to degradation (Novak et al., 2010). It may, therefore, be more suitable for amending degraded mined soils for long term projects such as mine rehabilitation compared to other amendments.

MATERIALS AND METHODS

Description of the Study Area

The study was conducted at the Ghacem limestone quarry at Yongwa located at Klo-Begoro in the Yilo Krobo District of the eastern region of Ghana between January 2018 to August 2018 (Fig 1). The quarry covers an area of about 81.45 ha with about 46 ha of the area currently being mined. It is located at N6°33’00” - W0°04’40” (Fig 1).

Experimental Design

Two experiments were laid separately at 5 m apart for stockpiled topsoil and degraded mined soil. The first experiment assessed the effect of biochar and poultry manure rates on stockpiled topsoil whilst the second
experiment was on degraded mined soil. The experiments were laid in a randomized complete block design with three replications and the treatments allocated within the blocks. The amendments were applied and mixed thoroughly with the soils within the 0 - 15 cm layer of each 2 m x 2 m experimental unit. Where amendments were applied individually (biochar only or poultry manure only), they were applied at 0.002 tons per every 2 m x 2 m plot. However, when applied in combination (biochar and poultry manure), they were applied at 0.001 tons of biochar and 0.001 tons of poultry manure per every 2 m x 2 m plot. Degraded soils in this experiment are the waste soils (quarry dust) which are produced as by-products of limestone extraction while stockpiled soil represents topsoil that has been stockpiled for 13 years (2004-2017). The treatments used in the experiments for Stockpiled topsoil amendment were: Stockpiled topsoil only (Control, TS only), Stockpiled topsoil + Biochar (TS+B), Stockpiled topsoil + Poultry Manure (TS+PM) and Stockpiled topsoil + Biochar + Poultry Manure (TS + B + PM). Treatments for the degraded mined soils were Degraded Mined soil (Control, MS), Degraded mined soil + Biochar (MS + B), Degraded mined soil + poultry manure (MS + PM) and Degraded mined soil + Biochar + Poultry manure (MS+B+PM).

Field Data Collection and Analysis
All naturally regenerating plants on each 2m x 2m plot were identified and enumerated by observation from a botanist with Forest Research Institute of Ghana (FORIG). Soil samples were also collected from each plot at a depth of 0-15 cm in August, 2018 and analyzed for pH, N, P, K and OC. The pH was determined using a potentiometer in soils suspended in water and 0.01Molar (M) calcium chloride solution (SERAS, 2002). Nitrogen was determined by the Kjeldahl method (Bremner, 1960), Phosphorus by the spectrophotometric method (Bender and Wood, 2000), Potassium by the flame photometry method (Stanford and English, 1949) and organic carbon (Walkley-Black) (De et al., 2007). The mean values of the soil analysis data were subjected to one-way analysis of variance and Tukey HSD All-Pairwise Comparisons Test using SPSS (Version 20). Shannon and Simpson’s indices were used to estimate plant species diversity (Magurran, 2004).

RESULTS AND DISCUSSION
Naturally regenerated plant species on the stockpiled topsoil amended plots
A total count of 388 naturally regenerated species distributed over 19 species and 12 families were identified on the stockpiled topsoil amended plots (Table 1). The highest number of species (16) were recorded on the plots with combined biochar and poultry manure (TS + B + PM) and the lowest (5) recorded on the control plot. The study also observed 7 native, 8 non-native and 4 Invasive alien species on the experimental plots. However, the most dominant species on the plots was *Megathyrsus maximus* (native). The Fabaceae family recorded the highest number of species (4) followed by the Poaceae family (3). The Asteraceae and Solanaceae families recorded two species each while the Compositae, Malvaceae, Rubiaceae and the other families recorded one species each (Table 1).

Naturally regenerated plant species on the degraded mined soil amended plots
A total count of 295 naturally regenerated species distributed over 8 species and 6 families were identified on amended degraded mined soil. The plots amended with biochar recorded the highest number of species (8) while plots amended with poultry manure recorded four species each with the control plot. The study also observed 5 native, 1 non-native and 2 Invasive alien species on the experimental plots with the most dominant species being *Megathyrsus maximus* (native species) (Table 2).

Diversity of naturally regenerated plant species on the stockpiled topsoil and degraded mined soil
Stockpiled topsoil amended with biochar and poultry manure...
had the highest Shannon index (2.04) and the lowest (1.08) was recorded on the control plot. Simpson index values of 0.78, 0.76 and 0.68 were recorded for the combined amended (TS+BP+M), poultry manure and biochar amended plots respectively. The lowest Simpson index value (0.25) was recorded on the control plot (Table 3). Also, the combined amended plots (TS+B+PM) recorded the highest effective number of species (7.66) compared to the other amendments with the control plot recording the lowest (2.95).

A similar trend was observed on amended degraded mined soil (Table 4). This suggests that the addition of biochar to the soil had a positive effect on natural regeneration. Despite the positive effect of biochar on the natural regeneration of plant species, the synergistic effect of biochar and poultry manure had a more positive effect on plant regeneration with the dominance of *Megathyrsus maximus* on all established plots. These results may be due to biochar addition which released soluble nutrients contained in the fresh char and increased soil water retention (Atkinson et al., 2010; Thomas et al., 2013). The dark colour of biochar alters thermal dynamics and facilitates the rapid germination of seedlings (Genesio et al., 2012). Biederman and Harpole (2013) in a review paper also reported a positive response of belowground annual plants to biochar amendments in a meta-analysis. They, however, noted that perennial species had no response to biochar addition. Gundale et al (2016) however observed that the biochar amendment alone was ineffective at enhancing the growth of the ground layer vegetation or the regeneration of forest trees and may, therefore, need the addition of other amendments to facilitate this process. The higher diversity as a result of the synergistic effect of biochar and poultry

Table 1: Naturally regenerated plant species on amended stockpiled topsoil.

Species	Frequency from the Treatment			
	TS + B + PM	TS + B	TS + PM	TS Only
Tridax procumbens	15	7	11	3
Chromolaena odorata	4	4	9	5
Aspilia Africana	2	4	4	-
* Mimosa pudica	2	2	6	-
* Solanum torvum	3	2	-	-
* Sida acuta*	3	3	-	-
* Richardia brasiliensis*	3	-	-	-
* Cassia occidentalis*	6	-	-	-
* Ricinus communis*	21	-	5	3
* Cola gigantea*	8	7	6	-
* Centrosema pubescens*	2	-	-	-
* Oryza longistaminata*	2	-	3	-
* Megathyrsus maximus*	53	33	46	82
* Pennisetum purpureum*	3	-	-	2
* Acacia auriculiformis*	2	-	-	-
* Azadirachta indica*	1	-	-	-
* Physalis angulata*	-	2	4	-
* Senna occidentalis*	-	-	3	-
* Aneilema beniniense*	-	-	2	-
Total	130	62	101	95

Table 2: Naturally regenerated plant species on amended degraded mined soil.

Species	Frequency from the Treatment			
	MS + B + PM	MS + PM	MS +B	MS Only
Tridax procumbens	14	15	7	15
Aspilia Africana	7	-	-	-
Ricinus communis	3	-	10	-
Megathyrsus maximus	39	35	31	62
Mimosa pudica	3	6	8	1
Chromolaena odorata	-	12	9	8
Oryza longistaminata	-	-	1	-
Aneilema beniniense	-	-	9	-
Total	66	68	75	86
manure is because in biochar production most volatile soil nutrients like nitrogen are lost through the combustion process. These nutrients are however replaced through the synergy between these amendments which provides the seeds with the nutrients needed in the readily available form which enhances natural regeneration of the plants. The enhancement of N mineralization associated with biochar and soil moisture retention due to biochar addition creates the required soil conditions for soil microbial activities. These activities of the soil microbes expose dominant plant seeds to the required conditions for natural regeneration (Keech et al., 2005).

Table 3: Diversity of naturally regenerated plant species on amended stockpiled topsoil.

Treatments	Shannon Index (H)	Simpson Index (1-D)	Effective number of species
TS+B+PM	2.04±0.01a	0.78b	7.66±0.01a
TS+B	1.55±0.01b	0.68a	4.71±0.01a
TS+PM	1.92±0.01b	0.76b	6.82±0.01b
TS Only	1.08±0.01b	0.25c	2.95±0.01c
P-Value	0.00	0.00	0.00

Means of same superscript letters are not significantly different at 5% level.

Table 4: Diversity of naturally regenerated plant species on amended degraded mined soil.

Treatments	Shannon Index (H)	Simpson Index (1-D)	Effective number of species
MS+B+PM	2.32±0.01a	0.59ab	10.15±0.01b
MS+PM	1.20±0.01a	0.65a	3.31±0.01a
MS+B	1.66±0.01c	0.76b	5.26±0.01b
MS Only	1.06±0.01a	0.44c	2.90±0.01c
P-Value	0.002	0.003	0.00

Means of same superscript letters are not significantly different at 5% level.

Table 5: Nutrient status of stockpiled topsoils.

Treatments	Soil pH	% O.C	% N	Available P ppm	K me/100g
TS	8.2 ± 0.02a	0.51 ±0.04b	0.04 ±0.003a	0.09±0.01b	0.39±0.07ab
TS+B	8.3 ± 0.01a	0.64±0.04ab	0.07±0.006a	2.04±0.86b	0.85±0.01ab
TS+PM	7.2 ± 0.07c	1.23±0.20b	0.09±0.018b	24.33±3.38b	0.23±0.02ab
TS+PM	7.8 ± 0.02b	0.61±0.15b	0.06±0.018b	1.11±0.04b	1.00±0.26b
P-value	0.00	0.02	0.20	0.00	0.01

Means of same superscript letters are not significantly different at 5% level.

Table 6: Nutrient status of degraded mined soils.

Treatments	Soil pH	% O.C	% N	Available P ppm	K me/100g
MS	8.16±0.01a	0.33±0.02b	0.03±0.003b	1.29±0.49b	0.46±0.01b
MS+B	7.83±0.09b	0.35±0.07b	0.04±0.008b	1.91±0.07b	0.44±0.05b
MS+PM+B	8.19±0.01a	1.35±0.03b	0.12±0.014a	37.51±11.24b	1.33±0.07b
MS+PM	8.22±0.08a	0.78±0.43ab	0.08±0.032ab	5.74±2.03b	1.29±0.36b
P-value	0.01	0.03	0.03	0.01	0.01

Means of same superscript letters are not significantly different at 5% level.
process, its ability to immobilize nitrogen (Kimetu et al. 2008) and enhance soil nitrogen mineralization (Ameloot et al., 2015) increases soil microbial activity and cation exchange capacity which makes nutrients readily available in the soil for plant use (Lehmann et al., 2011; Brewer et al., 2011). Therefore, the high nutrient status could be due to the addition of poultry manure. According to Biederman and Harpole (2013), the composting of biochar and organic materials enhanced nutrient use efficiency, biological activation of biochar, better material flow management and a higher and long-term C sequestration potential compared to individual compost and biochar applications.

CONCLUSION

The study proved that biochar can improve the nutrient status of both stockpiled topsoil and degraded mined soil. Its use also enhanced plant diversity and therefore ideal for the improvement of stockpiled and degraded soils. We recommend that mined and degraded sites could employ the use of biochar for reclamation and rehabilitation.

ACKNOWLEDGEMENT

This research was funded by the Ghacem quarry life awards project.

Conflict of interest statement

The authors declare that there is no conflict of interest arising from this publication

REFERENCES

Ameloot, N., Sleutel, S., Das, K.C., Kanagaratnam, J. and De Neve S. (2015). Biochar amendment to soils contrasting organic matter level: effects on N mineralization and biological soil properties. GCB Bioenergy. 7: 135-144.

Atkinson, C.J., Fitzgerald, J.D. and Hipp., N.A. (2010). Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil. 337: 1-18.

Ballard, D., Bradford, B. and Skousen, J. (1996). Use of Reclaimed Land for Horticultural Crop Production. Dept. of Agricultural and Natural Resources, West Virginia University.

Bender, M.R., & Wood, C.W. (2000). Total phosphorus in soil. Methods of Phosphorus Analysis for Soils, Sediments, Residuals and Waters. 45.

Bendfeldt, E.S., Burger, J.A. and Daniels, W.L. (2001). Quality of amended mine soils after sixteen years. Soil Science Society of America Journal. 65(8): 1736-1744.

Biederman, L.A. and Harpole, W.S. (2013). Biochar and its effects on plant productivity and nutrient cycling: a meta analysis. GCB bioenergy. 5(2): 202-214.

Bremner, J.M. (1960). Determination of nitrogen in soil by the Kjeldahl method. The Journal of Agricultural Science. 55(1): 11-33.

Brewer, C.E., Unger, R., Schmidt-Rohr, K. and Brown, R.C. (2011). Criteria to select biochars for field studies based on biochar chemical properties. Bioenergy Research. 4: 312-323.

DeLuca, T., MacKenzie, M.D., Gundale, M.J. and Hoben, W.E. (2006). Wildfire-produced charcoal directly influences nitrogen cycling in ponderosa pine forests. Soil. Sci. Soc. Am. J. 70: 448-453.

De Vos, B., Lettens, S., Muys, B. and Deckers, J.A. (2007). Walkley-Black analysis of forest soil organic carbon: recovery, limitations and uncertainty. Soil Use and Management. 23(3): 221-229.

Genesio, L., Miglietta, F., Lugato, E., Baroni, S., Pieri, M. and Vaccari, F.P. (2012). Surface albedo following biochar application in durum wheat. Environmental Resource Letters. 7: doi: 10.1088/1748-9326/7/1/014025.

Glaser, B.; Lehmann, J. & Zech, W. (2002). Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal - a review. Biology and Fertility of Soils. 35: 219-230.

Ghana Statistical Service. (2014). 2010 Population and Housing Census: District Analytical Report, Yilo Krobo Municipal. Accra: Ghana Statistical Service.

Gundale, M.J., Nilsson, M.C., Pluchon, N. and Wardle, D.A. (2016). The effect of biochar management on soil and plant community properties in a boreal forest. GCB Bioenergy. 8(4): 777-789.

Keech, O., Carcaillot, C. and Nilsson, M.C. (2005). Adsorption of allelopathic compounds by wood-derived charcoal; the role of wood porosity. Plant and Soil. 272: 291-300.

Kimetu, J.M., Lehmann, J., Ngoze, S.O., Mugendi, D.N., Kinyangi, J., Riha, S.J., Verchot, L.; Recha, J.W. and Pell, A.N. (2008). Reversibility of Soil Productivity Decline with Organic Matter of Differing Quality along a Degradation Gradient. Ecosystems. 11: 726-739.

Kuzyakov, Y.; Subbotina, I.; Chen, H.Q.; Bogomolova, I. and Xu, X.L. (2009). Black carbon decomposition and incorporation into soil microbial biomass estimated by C-14 labeling. Soil Biology and Biochemistry. 41: 210-219.

Lehmann, J., Rillig, M.C., Thies, J., Masliello, C.A., Hockaday, W.C. and Crowley, D. (2011). Biochar effects of soil biota - A review. Soil Biology and Biochemistry. 43: 1812-1836.

Lehmann, J.; Skjemstad, J. and Sohi, S. (2008). Australian climate-carbon cycle feedback reduced by soil black carbon. Nature Geoscience. 1: 832-835.

Liang, B., Lehmann, J., Solomon, D., Sohi, S., Thies, J.E., Skjemstad, J.O., Luizao, F.J., Engelhard, M.H., Neves, E.G. and Wirick, S. (2008). Stability of biomass-derived black carbon in soils. Geochimica Et Cosmochimica Acta. 72: 6069-6078.

Magurran, A.E. (2004). Measuring biological diversity. 2004. Malden: Blackwell.

Novak, J.M., Busscher, W.J., Watts, D.W., Laird, D.A., Ahmedna, M.A. and Niandou, M.A. (2010). Short-term CO2 mineralization after additions of biochar and switchgrass to a Typic Kandiudult. Geoderma. 154(3-4): 281-288.

SERAS, (2002). Standard operating procedure for soil pH determination. SOP. 1844: 1-6.

Stanford, G. and English, L. (1949). Use of the flame photometer in rapid soil tests for K and Ca. Agronomy Journal. 41(9): 446-447.