Scaling behavior of improvement and renormalization constants

Tanmoy Bhattacharyaa, Rajan Guptaa, Weonjong Leea, Stephen Sharpeb

aMS B-285, Los Alamos National Lab, Los Alamos, New Mexico 87545, USA
bPhysics Department, University of Washington, Seattle, Washington 98195, USA

This talk summarizes results for all the scale independent renormalization constants for bilinear currents (Z_A, Z_V, and Z_S/Z_P), the improvement constants (c_A, c_V, and c_T), the quark mass dependence of Z_O, and the coefficients of the equation of motion operators for $O(a)$ improved lattice QCD. Using data at $\beta = 6.0, 6.2$ and 6.4 we study the scaling behavior of these quantities and quantify residual discretization errors.

The use of axial and vector Ward identities has proven to be a very efficient and reliable way of extracting the improvement and renormalization constants for the $O(a)$ improved fermion action. The methodology, references to previous calculations, and the notation we use are given in \[\text{[1]}\].

The new features of our calculation summarized here are: new determinations of c_A including $O(m^2a^2)$ corrections and using non-zero momentum correlators; improved chiral extrapolations in the extraction of Z_A^0, c_T and $b_P - b_A$; and a quantitative comparison of the scaling behavior of the differences between our results and those of the ALPHA collaboration \[\text{[2,2]}\] and 1-loop perturbation theory. Results are summarized in Table 1 and will be presented in detail in \[\text{[4]}\].

The first feature we discuss is the need for including an $O(m^2a^2)$ term in the extrapolation of c_A to the chiral limit. Data at $\beta = 6.4$ is shown in Fig. 1. Table 1 gives results from both the linear and the preferred quadratic fit. Our results show a weak dependence of c_A on β in the range $6.0 - 6.4$, unlike that found by the ALPHA collaboration, but consistent with the recent results by Collins et al. \[\text{[5]}\].

The second new feature is the demonstration that consistent estimates for c_A are obtained from correlators with zero and non-zero momentum once additional $O(p^2a^2)$ errors are accounted for. A plot of c_A versus $(12p^2/\pi)^2$ at $\beta = 6.4$ is shown in Fig. 2. We find that a linear extrapolation to $p = 0$ yields results consistent with those obtained using zero momentum correlators, and with a slope of expected magnitude.

The second point concerns the chiral extrapolation for Z_A^0, c_T, $b_P - b_A$. Our estimates presented in \[\text{[4]}\] were based on constant fits as these quantities are not expected to have $O(ma)$ corrections if the theory is fully improved to $O(a)$. We now advocate using results of linear extrapolation (marked with an asterisk in Table 1) as our data show a dependence on m. Such behavior can be explained by $O(a\Lambda_{QCD} ma)$ corrections which can arise as a result of using a mass-dependent c_A in intermediate stages of the calculations. To show the size of this effect, we give both estimates

\[\text{Figure 1. Comparison of linear and quadratic extrapolation of } c_A \text{ to the chiral limit}\]
Table 1
The first error in LANL estimates is statistical, and the second, where present, corresponds to the difference between using 2-point and 3-point discretization of the derivative in extraction of \(c_A\). Asterisks mark values which include \(O(ma)\) corrections in the chiral extrapolations.

\(\beta = 6.0\)	\(\beta = 6.2\)	\(\beta = 6.4\)							
\(c_{SW}\)	LANL	ALPHA	P. Th.	LANL	ALPHA	P. Th.	LANL	ALPHA	P. Th.
1.769	1.769	1.521	1.614	1.614	1.481	1.526	1.526	1.449	
\(Z_V^0\)	+0.770(1)	+0.789(6)	+0.810	+0.787(4)	+0.792(4)	+0.821	+0.802(1)	+0.832(6)	+0.830
\(Z_A^0\)	+0.807(2)(8)	+0.7906(94)	+0.829	+0.818(2)(5)	+0.807(8)(2)	+0.839	+0.827(1)(4)	+0.827(8)(1)	+0.847
\(Z_A^0*\)	+0.802(2)(8)	+0.815(2)(5)	+0.822(1)(4)	+0.884(3)(1)	+0.901(2)(5)				
\(Z_V^0/Z_Z^0\)	+0.842(5)(1)	N.A.	+0.956	N.A.	+0.959	N.A.	+0.962		
\(c_A\)	-0.037(4)(8)	-0.083(5)	-0.013	-0.032(3)(6)	-0.038(4)	-0.012	-0.029(2)(4)	-0.025(2)	-0.011
\(c_{A*}\)	-0.038(4)	-0.033(3)	-0.032(3)	-0.009(2)(1)	-0.026	-0.08(1)(2)	-0.13(5)		
\(c_V\)	-0.107(17)(4)	-0.32(T)	-0.028	-0.09(2)(1)	-0.21(7)	-0.026	-0.13(5)		
\(c_T\)	+0.063(7)(29)	N.A.	+0.020	+0.051(7)(17)	N.A.	+0.019	+0.041(3)(23)		
\(c_T^*\)	+0.0767(10)	+0.059(8)	+0.051(4)	+0.051(4)					
\(b_V\)	+1.43(1)(4)	N.A.	+1.106	+1.30(1)(1)	N.A.	+1.099	+1.24(1)(1)	N.A.	+1.093
\(b_V\)	+1.52(1)	+1.54(2)	+1.274	+1.42(1)	+1.41(2)	+1.255	+1.39(1)	+1.36(3)	+1.239
\(b_A - b_V\)	-0.263(3)(4)	N.A.	-0.002	-0.11(3)(4)	N.A.	-0.002	-0.09(1)(1)	N.A.	-0.002
\(b_A - b_V\)	-0.243(3)(4)	N.A.	-0.002	-0.11(3)(4)	N.A.	-0.002	-0.08(1)(1)	N.A.	-0.002
\(b_P - b_S\)	-0.064(3)(3)	N.A.	-0.066	-0.09(2)(1)	N.A.	-0.062	-0.09(10)(1)	N.A.	-0.059
\(b_P - b_A\)	-0.074(5)	N.A.	+0.002	-0.09(3)(3)	N.A.	+0.001	-0.12(2)(5)	N.A.	+0.001
\(b_P - b_A^*\)	-0.08(30)	+0.03(10)	-0.02(4)						
\(\Delta Z_V^0\)	-55a	-(464a)^3	} \(\Delta Z_A^0\) = -(181a) + (763a)^2, \(\Delta c_A\) = -(367a) + (669a)^2, where \(a\) is in units of \((\text{MeV}^{-1})\) and has values 1/210, 1/2910 and 1/3850 at the three \(\beta\). Considering that the expected size of the terms is \(O(a_{QCD})^n\), all the coefficients look reasonable, however, the errors in them are large. We make the following observations:						

- The difference in \(Z_V^0\) is dominated by the \(O(a^2)\) term.
- The errors in the coefficients for \(Z_A^0\), and \(c_V\) are >100%. This is not surprising since the combined error at each \(\beta\) is approximately equal to the difference.
- The coefficients in the fit for \(\Delta c_A\) have reasonable errors, however the fit is dominated...
corrections dominate the differences in the fits. Over this range of Δ, the leading residual discretization error in Z^0_A, $O(\alpha_s^2)$, corrections. The results are

$$
\Delta Z^0_A = -(158a)^2 - (1.4\alpha_s)^2
$$

$$
\Delta Z_V = (197a)^2 - (1.4\alpha_s)^2
$$

$$
\Delta Z_V^0/Z_S^0 = -(502a)^2 - (1.8\alpha_s)^2
$$

$$
\Delta c_A = -(13a) - (1.3\alpha_s)^2
$$

$$
\Delta c_V = -(51a) - (1.7\alpha_s)^2
$$

$$
\Delta c_T = (94a) + (0.8\alpha_s)^2
$$

$$
\Delta b_V = (930a) - (2.6\alpha_s)^2
$$

$$
\Delta b_V = (429a) + (1.5\alpha_s)^2
$$

where a, expressed in MeV$^{-1}$, $\alpha_s = g^2/(4\pi u_0^4)$ is the tadpole improved coupling with values 0.1340, 0.1255 and 0.1183 at the three β, and u_0 is the plaquette$^{1/4}$. The errors in the other b are too large to allow any meaningful fits.

The errors in the coefficients for the three ΔZ's are reasonably small, providing some confidence in the fits. Over this range of β, the perturbative corrections dominate the differences in Z^0_A and Z^0_V, whereas in Z^0_V/Z^0_S, the two corrections are comparable.

The errors in the coefficients for the three Δc's are large. Even though the coefficients are of the size expected, it is important to note that the non-perturbative estimates are 2 - 4 times the perturbative values.

Both corrections are large in Δb_V and Δb_V, with the discretization error being the larger of the two.

Overall, these fits, since they are based on data at just three β values with $1/a$ between 2.1 and 3.86 GeV and since we have ascribed no errors to a or α_s, should be considered indicative and qualitative and certainly not sufficient to draw precise conclusions. This is why we refrain from quoting errors in the fits.

Finally, in Table 2 we present results for the coefficients of the equation of motion operators. Estimates at $\beta = 6.0$ are poor, but become reasonably precise at $\beta = 6.2$ and 6.4. We find that except for c_P, the corrections to the tree level value $c^0 = 1$ are large.

Table 2

β	6.0(f)	6.0(b)	6.2	6.4
$c_V + c_P$	2.82(15)	+2.68(19)	2.62(8)	2.44(4)
$c_A + c_P$	2.43(24)	+2.12(31)	2.43(14)	2.27(6)
$2c_P$	0.88(97)	-0.65(57)	1.82(24)	1.85(8)
$c_S + c_P$	2.44(13)	+2.40(13)	2.40(7)	2.27(4)
$c_T + c_P$	2.40(18)	+2.27(20)	2.42(9)	2.28(5)
c_V	2.38(50)	+3.00(37)	1.72(16)	1.52(4)
c_A	1.99(56)	+2.45(46)	1.53(20)	1.35(6)
c_P	0.44(49)	-0.33(29)	0.91(12)	0.93(4)
c_S	2.00(48)	+2.72(33)	1.49(14)	1.35(4)
c_T	1.96(49)	+2.60(38)	1.51(15)	1.36(4)

REFERENCES

1. T. Bhattacharya et al., Phys. Rev. D63 (2001) 074505.
2. M. Lüscher et al., Nuc. Phy. B491 (1997) 323.
3. M. Lüscher et al., Nuc. Phy. B491 (1997) 344.
4. T. Bhattacharya et al., in preparation.
5. S. Collins et al., these proceedings.