A model-free approach to linear least squares regression with exact probabilities

Laurie Davies and Lutz Dümbgen
(University of Duisburg-Essen and University of Bern)

July 26, 2018

Abstract

In a regression setting with observation vector $y \in \mathbb{R}^n$ and given finite collection $(x_\nu)_{\nu \in N}$ of regressor vectors $x_\nu \in \mathbb{R}^n$, a typical question is whether a given subset of these regressors is sufficient to approximate y. A classical method for this question is the F test, assuming that y is a linear combination of the regressor vectors plus Gaussian white noise. In this note we show that the corresponding p-value has also a clear data-scientific interpretation without having to assume the data to be random. Then it is shown that such a dual interpretation is possible for a rather large family of tests, the underlying tool being normalized Haar measure on orthogonal groups.

1 Introduction

Let $y \in \mathbb{R}^n$ be an observation vector, and let $x_\nu \in \mathbb{R}^n$, $\nu \in N_*$, be a given finite collection of regressor vectors. The question is how well y may be approximated by linear combinations of these regressors.

Specifically, suppose the raw data are given by a data matrix with n rows

$$[y_i, z_1^\top] = [y_i, z_{i1}, \ldots, z_{id}], \quad 1 \leq i \leq n,$$

containing the values of a response and d numerical covariables for each observation. Then the usual multiple linear regression model would consider the regressor vectors $x_0 := (1)_{i=1}^n$ and $x_j := (z_{ij})_{i=1}^n$, $1 \leq j \leq d$. More complex models would also include the $\binom{d}{2}$ interaction vectors $x_{j,k} := (x_{ij}x_{ik})_{i=1}^n$, $1 \leq j < k \leq d$. In general, with arbitrary types of covariables, one could think of $x_\nu = (f_\nu(z_i))_{i=1}^n$ with given basis functions $f_\nu, \nu \in N_*$.

For any subset N of N_* consider the linear space $\mathbb{V}_N := \text{span}(x_\nu : \nu \in N)$ and the orthogonal projection

$$\hat{y}_N := \arg \min_{\eta \in \mathbb{V}_N} \|y - \eta\|^2$$

of y onto \mathbb{V}_N. This includes the case of $N = \emptyset$ with $\mathbb{V}_\emptyset := \{0\}$ and $\hat{y}_\emptyset := 0$. If \hat{y}_N is viewed as an approximation of y, a raw measure of approximation error would be the sum of squared
residuals

$$SS_N := \|y - \hat{y}_N\|^2 = \|y\|^2 - \|\hat{y}_N\|^2.$$

In case of $\forall_N \neq \forall_{N*}$, a common question in linear regression is whether the approximation of y by \hat{y}_N, is “substantially better” than the one by \hat{y}_{N*}. Of course it follows from $\forall_N \subset \forall_{N*}$ that $SS_N \geq SS_{N*}$, so the question is whether the ratio SS_{N*}/SS_N is “significantly small”. Let us first recall the classical answer as presented in standard textbooks, e.g. [4].

Classical approach: Gaussian model and F test. Suppose that the regressor vectors x_{ν}, $\nu \in N_*$, are fixed and linearly independent with $0 \leq p := \#N < p_* := \#N_* < n$. (In case of random regressors, we consider conditional distributions given $(x_{\nu})_{\nu \in N_*}$.) Suppose that

$$y = \sum_{\nu \in N_*} \theta_{\nu} x_{\nu} + \epsilon$$

with unknown parameters θ_{ν}, $\nu \in N_*$, and a random vector

$$\epsilon \sim N_n(0, \sigma^2 I_n),$$

the standard deviation $\sigma > 0$ being unknown as well. Here I_n denotes the identity matrix in $\mathbb{R}^{n \times n}$. Under the null hypothesis that

$$\theta_{\nu} = 0 \quad \text{for} \quad \nu \in N_* \setminus N,$$

the random variables SS_{N_*} and $SS_N - SS_{N_*}$ are stochastically independent with

$$\frac{SS_{N_*}}{\sigma^2} \sim \chi^2_{n-p_*} \quad \text{and} \quad \frac{SS_N - SS_{N_*}}{\sigma^2} \sim \chi^2_{p_* - p}.$$

With the F test statistic

$$F := \frac{(SS_N - SS_{N_*})/(p_* - p)}{SS_{N_*}/(n - p_*)},$$

a corresponding p-value of the null hypothesis [1] is given by

$$1 - F_{p_* - p, n - p_*}(F),$$

where $F_{k,\ell}$ denotes the distribution function of Fisher’s F distribution with k and ℓ degrees of freedom.

Outline of this note. In Section 2 we present a new interpretation of the p-value (2). Instead of viewing y as a random vector with a rather specific distribution, we consider all vectors y and x_{ν}, $\nu \in N_*$, as fixed. Then we compare the decrease $SS_N - SS_{N_*}$ with the random decrease which would result if we replaced the $p_* - p$ vectors x_{ν}, $\nu \in N_* \setminus N$, with independent random vectors
\[z_\nu \sim \mathcal{N}_n(0, I_n), \nu \in N_\ast \setminus N. \] It turns out that the probability of this random decrease being greater than or equal to the actual decrease \(SS_N - SS_N^\ast \) is precisely the p-value (2). This provides a purely data-driven interpretation of this p-value.

The technical arguments for Section 2 are rather direct in the sense that we rely only on basic properties of standard Gaussian, beta and gamma distributions. There is, however, a more abstract approach based on Haar distributions on orthogonal groups. A good introduction to that topic can be found, for instance, in the monograph [3]. It is shown in Section 3 that both the classical and the new interpretation of the p-value (2) are a consequence of a basic invariance consideration. This viewpoint allows us to weaken our assumptions on the random noise vector \(\epsilon \) in the classical setup and on the artificial random regressor vectors \(z_\nu \) in the new approach. It also shows that several other tests, some of which are applicable for high-dimensional settings with \(p_\ast \geq n \), have a purely data-driven interpretation, too.

Technical details and proofs are deferred to Section 4.

Based on the findings of Section 2 there is a simple stepwise procedure for selecting covariates which outperforms the lasso and knockoff procedures introduced in [5] and [1], respectively. As an example, consider the well-known Boston housing data with \(n = 504 \) observations and \(d = 13 \) covariables. A linear model with interactions of order at most seven gives a data set with \((n, p_\ast) = (504, 77520) \). This is much too large for knockoff which exits with the error message “cannot allocate a vector of the size 44.8 GB”. Ten repetitions of lasso gave between 4 and 116 selected regressors with a mean of 58. The time for each selection was about 100 seconds. The selection method based on Section 2 selects 10 regressors in less than two seconds. It also selects 10 regressors with interactions of order at most eight giving \((n, p_\ast) = (504, 203490) \). The time required was five seconds. Interactions of order at least nine exceed the memory capacity of the laptop. A detailed description of the method and comparison with lasso and knockoff is given in [2].

2 A model-free interpretation of the F test

Rephrasing the p-value (2). In view of the subsequent considerations it is useful to rewrite the p-value (2) in terms of beta distribution functions. Let \(B_{a,b} \) be the distribution function of the beta distribution with parameters \(a, b > 0 \). Then

\[
F_{p_\ast-p,n-p_\ast}(F) = 1 - B_{(p_\ast-p)/2,(n-p_\ast)/2}\left(\frac{SS_N - SS_N^\ast}{SS_N}\right),
\]

(3)

\[
= B_{(n-p_\ast)/2,(p_\ast-p)/2}\left(\frac{SS_N^\ast}{SS_N}\right),
\]

see Section 4.

The new interpretation. As mentioned in the introduction, we now consider the data y and x_ν as fixed vectors. To judge whether \hat{y}_{N_*} is substantially better than \hat{y}_N, we compare the resulting reduction SS_{N_*}/SS_N in the sum of squared residuals with the reduction one would obtain if $(x_\nu)_{\nu \in N_* \setminus N}$, would be replaced with pure white noise.

Theorem 1. Suppose that the $p + 1$ vectors y and x_ν, $\nu \in N$, are fixed and linearly independent, and let $p_* < n$. Suppose we replace the regressors x_ν, $\nu \in N_* \setminus N$, with independent random vectors $z_\nu \sim N_n(0, I_n)$, $\nu \in N_* \setminus N$. Then SS_{N_*} becomes a random variable such that

$$\frac{SS_{N_*}}{SS_N} \sim \text{Beta}\left(\frac{(n-p_*)/2}{(p_*-p)/2}\right).$$

Consequently, if y and x_ν, $\nu \in N_*$, are linearly independent and viewed as fixed vectors, then the p-value

$$B_{(n-p_*)/2,(p_*-p)/2}\left(\frac{SS_{N_*}}{SS_N}\right),$$

which is precisely the p-value (2), quantifies how extraordinary the reduction in the sum of squared residuals really is, without referring to a statistical model for y.

Remark. The artificial regressor tuple $(z_\nu)_{\nu \in N_* \setminus N}$ in Theorem 1 need not be pure white noise. The proof of Theorem 1 and the considerations in the next section reveal that the following property is sufficient: With the orthogonal projection Π from \mathbb{R}^n onto $V_{N_*}^\perp$, consider the random linear space

$$M := \text{span}(\Pi z_\nu : \nu \in N_* \setminus N).$$

Then $\dim(M) = p_* - p$ almost surely, and

$$\mathcal{L}(SM) = \mathcal{L}(M)$$

for any fixed orthogonal matrix $S \in \mathbb{R}^{n \times n}$ such that $Sv = v$ for all $v \in V_N$.

3 Further considerations in terms of orthogonal invariance

Let us first introduce some notation and recall some concepts from measure theory and algebra: With O_n we denote the set of all orthogonal matrices $S \in \mathbb{R}^{n \times n}$. For a linear subspace V of \mathbb{R}^n with $q := \dim(V) < n$ let

$$O_n(V) := \{ S \in O_n : Sv = v \text{ for all } v \in V \}.$$
If \(b_1, \ldots, b_n \) is an orthonormal basis of \(\mathbb{R}^n \) such that \(\mathbb{V} = \operatorname{span}(b_i : 1 \leq i \leq q) \), then \(S \in O_n(\mathbb{V}) \) may be represented as

\[
S = B \begin{bmatrix} I_q & 0_{q \times (n-q)} \\ 0_{(n-q) \times q} & S_o \end{bmatrix} B^T
\]

with \(B := [b_1, \ldots, b_n] \) and an orthogonal matrix \(S_o \in \mathbb{R}^{(n-q) \times (n-q)} \).

Normalized Haar measure on \(O_n(\mathbb{V}) \), denoted by \(\text{Haar}_{n, \mathbb{V}} \), is the unique probability distribution on \(O_n(\mathbb{V}) \) such that a random variable \(T \sim \text{Haar}_{n, \mathbb{V}} \) satisfies

\[
\mathcal{L}(ST) = \mathcal{L}(T) \quad \text{for any fixed } S \in O_n(\mathbb{V}).
\]

The latter property also implies that

\[
\mathcal{L}(T^\top) = \mathcal{L}(T) \quad \text{and} \quad \mathcal{L}(TS) = \mathcal{L}(T) \quad \text{for any fixed } S \in O_n(\mathbb{V}).
\]

Moreover, for any fixed vector \(x = v + w \) with \(v \in \mathbb{V} \) and \(w \in \mathbb{V}^\perp \), the random vector \(Tx \) has the same distribution as

\[
v + \|w\|u
\]

where \(u \) is uniformly distributed on the unit sphere of \(\mathbb{V}_N^\perp \). Specifically, if \(b_{q+1}, \ldots, b_n \) is an orthonormal basis of \(\mathbb{V}_N^\perp \), then \(u \) is distributed as

\[
\left(\sum_{i=q+1}^{n} Z_i^2 \right)^{-1} \sum_{i=q+1}^{n} Z_i b_i
\]

with independent random variables \(Z_i \sim \mathcal{N}(0, 1) \), \(q < i \leq n \).

3.1 A generalization of the classical setting

Throughout this and the next subsection we consider a fixed subset \(N \) of \(N_* \) with \(p < n - 1 \) elements such that the vectors \(x_\nu, \nu \in N \), are linearly independent. We write \(\hat{y} := \hat{y}_N \) and consider the residual vector

\[
\hat{\varepsilon} := y - \hat{y},
\]

i.e. the orthogonal projection of \(y \) onto \(\mathbb{V}_N^\perp \). In the classical setting, \(y \) is viewed as a random vector. The next lemma specifies a null hypothesis which is appropriate for the F test as well as several other tests.

Lemma 2 (A null hypothesis \(H_N \)). The following three statements about the distribution of \(y \) are equivalent:

(i) For any fixed \(S \in O_n(\mathbb{V}_N) \),

\[
\mathcal{L}(Sy) = \mathcal{L}(y).
\]
(ii) Let T be a random matrix with distribution Haar_{n, V_N} such that y and T are stochastically independent. Then
\[
\mathcal{L}(Ty) = \mathcal{L}(y).
\]

(iii) Let u be a random vector with uniform distribution on the unit sphere of V_N^\perp such that y and u are stochastically independent. Then
\[
\mathcal{L}(y) = \mathcal{L}(\hat{y} + \|\hat{\epsilon}\|u).
\]

The null hypothesis H_N described in Lemma 2 is satisfied, for instance, if
\[
y = \mu + \epsilon
\]
with fixed vector $\mu \in V_N$ and a random vector ϵ with orthogonally invariant distribution in the sense that
\[
\mathcal{L}(Su) = \mathcal{L}(u) \quad \text{for any fixed } S \in O_n.
\]

A general test. Let $\tau : \mathbb{R}^n \to \mathbb{R}$ be an arbitrary test statistic. Then a p-value for the null hypothesis H_N specified in Lemma 2 is given by
\[
\pi(y) := \mathbb{P}(\tau(Ty) \geq \tau(y) \mid y) = \mathbb{P}(\tau(\hat{y} + \|\hat{\epsilon}\|u) \geq \tau(y) \mid y)
\]
with T and u as in Lemma 2.

Example: F test. Suppose that the vectors $x_\nu, \nu \in N_*$, are linearly independent with $p < p_* = \#N_* < n$. Let b_1, \ldots, b_n be an orthonormal basis of \mathbb{R}^n such that
\[
\text{span}(b_1, \ldots, b_p) = V_N \quad \text{and} \quad \text{span}(b_1, \ldots, b_{p_*}) = V_{N_*}.
\]
Then the F test statistic F may be written as $F = \tau(y)$ with
\[
\tau(y) = \frac{\sum_{i=p+1}^{p_*} (b_i^\top y)^2 / (p_* - p)}{\sum_{i=p_*+1}^{n} (b_i^\top y)^2 / (n - p_*)}
\]
and the convention $0/0 := 0$. Now let’s replace y with $\hat{y} + \|\hat{\epsilon}\|u$, where
\[
u = \mathcal{L} \left(\sum_{i=p+1}^{n} Z_i^2 \right)^{-1/2} \sum_{i=p+1}^{n} Z_i b_i
\]
with independent random variables $Z_i \sim \mathcal{N}(0, 1)$, independent from y. Then we obtain
\[
\tau(\hat{y} + \|\hat{\epsilon}\|u) = 1_{\hat{\epsilon} \neq 0} \frac{\sum_{i=p+1}^{p_*} Z_i^2 / (p_* - p)}{\sum_{j=p_*+1}^{n} Z_j^2 / (n - p_*)},
\]
and the latter fraction follows $F_{p_*-p,n-p_*}$. Hence the p-value (4) coincides with (2).
Example: Multiple T test. Suppose that $\mathbb{V}_N \neq \mathbb{R}^n$. Further suppose that the vectors x_ν, $\nu \in N_s \setminus N$, have been standardized to be orthogonal to \mathbb{V}_N and have unit length. Then a possible test statistic which is similar in spirit to Tukey’s studentized range statistic is given by

$$
\tau(y) := \max_{\nu \in N_s \setminus N} \frac{|x_\nu^\top y|}{\text{SS}_N^{1/2}}
$$

Note that the vectors x_ν, $\nu \in N_s \setminus N$, need not be linearly independent.

Example: Multiple F test. If $\mathbb{V}_N = \mathbb{R}^n$ or if $n - \dim(\mathbb{V}_N)$ is rather small, one could think about a finite collection $(M_\lambda)_{\lambda \in \Lambda}$ of subsets of $N_s \setminus N$ all of which satisfy $\dim(\mathbb{V}_N \cup M_\lambda) = p + \#M_\lambda \ll n$. Then one could consider the test statistic

$$
\max_{\lambda \in \Lambda} F_\lambda
$$

where F_λ is defined as F with $N \cup M_\lambda$ in place of N_s. The idea behind this test statistic is that possibly $y = \sum_{\nu \in N_s} \theta_\nu x_\nu + \epsilon$ with a random vector ϵ having orthogonally invariant distribution and fixed real parameters θ_ν, $\nu \in N_s$, such that

$$
\sum_{\nu \in M_\lambda} \theta_\nu^2 \gg \sum_{\nu \in N_s \setminus (N \cup M_\lambda)} \theta_\nu^2
$$

for some $\lambda \in \Lambda$.

3.2 A model-free interpretation of the p-value

Again we consider the data y and $(x_\nu)_{\nu \in N_s}$ as fixed. All examples of the test statistic τ may be written as

$$
\tau(y) = \tau(y, (x_\nu)_{\nu \in N_s}),
$$

and one can verify in each case that the latter value depends only on the inner products

$$
y^\top y, \quad x_\nu^\top y \quad \text{and} \quad x_\nu^\top x_\omega
$$

for certain $\nu, \omega \in N_s$. For instance, if $X \in \mathbb{R}^{n \times q}$ contains linearly independent regressors x_ν, $\nu \in M$, then

$$
\text{SS}_M = y^\top y - y^\top X(X^\top X)^{-1}X^\top y.
$$

Now let T be a random matrix with distribution Haar$_{n, N_s}$. Since

$$
(Ty)^\top (Ty) = y^\top y, \quad (Ty)^\top x_\nu = y^\top (T^\top x_\nu) \quad \text{and} \quad x_\nu^\top x_\omega = (T^\top x_\nu)^\top (T^\top x_\omega)
$$
for arbitrary $\nu, \omega \in N$, and since $L(T^\top) = L(T)$, we may rewrite the p-value (4) as

$$\pi(y) = \mathbb{P}(\tau(y,(T^\top x_\nu)_{\nu \in N_*}) \geq \tau(y,(x_\nu)_{\nu \in N_*})).$$

In other words, the p-value (4) results from comparing the relation between y and $(x_\nu)_{\nu \in N_*}$ with the relation between y and the randomized regressor tuple $(T^\top x_\nu)_{\nu \in N_*}$. Note that

$$T x_\nu = x_\nu \text{ for } \nu \in N$$

and

$$(T x_\nu)^\top (T x_\omega) = x_\nu^\top x_\omega \text{ for } \nu, \omega \in N_*.$$

So the randomized tuple $(T x_\nu)_{\nu \in N_*}$ has the same geometry as the original $(x_\nu)_{\nu \in N_*}$, and the linear space V_N remains unchanged.

3.3 Confidence and plausibility regions

Consider the classical setting with observation vector

$$y = \mu + \epsilon,$$

where μ is an unknown fixed vector in \mathbb{R}^n and ϵ is a random vector with orthogonally invariant distribution on \mathbb{R}^n. Let β be the orthogonal projection of μ onto $V_{N_*} \cap V_N^\perp$. The p-value (4) gives rise to a $(1 - \alpha)$-confidence region for β:

$$C_\alpha(y) := \{ \beta \in V_{N_*} \cap V_N^\perp : \pi(y - \beta) \geq \alpha \}.$$

In case of the usual F-test, this yields Scheffé’s confidence ellipsoid for β. The coverage probability of $C_\alpha(y)$ equals

$$\mathbb{P}(\beta \in C_\alpha(y)) \begin{cases} = 1 - \alpha & \text{if } \mathbb{P}(\epsilon = 0) = 0 \text{ and } \mu \in V_{N_*}, \\ > 1 - \alpha & \text{otherwise.} \end{cases}$$

If we view all data as fixed, and if the test statistic τ in (4) depends only on inner products of the data vectors, we may interpret $C_\alpha(y)$ as a $(1 - \alpha)$-plausibility region. It consists of all vectors $\beta \in V_{N_*} \cap V_N^\perp$ such that the association between $y - \beta$ and $(x_\nu)_{\nu \in N_*}$, as measured by τ, is not significantly stronger than the association between $y - \beta$ and the randomized regressor tuple $(T^\top x_\nu)_{\nu \in N_*}$, where $T \sim \text{Haar}_{n,V_{N_*}}$.

8
4 Technical details and proofs

Gamma, beta and chi-squared distributions. Recall that the gamma distribution with shape parameter \(a > 0\) and scale parameter \(c > 0\), denoted by \(\text{Gamma}(a, c)\), is the distribution on \((0, \infty)\) with density

\[
\gamma_{a,c}(y) := \Gamma(a) c^{-1} e^{-y/c} y^{a-1}, \quad y > 0,
\]

where \(\Gamma(a) := \int_0^{\infty} x^{a-1} e^{-x} \, dx\). We also write \(\text{Gamma}(a, c) = \text{Gamma}(a, 1)\). Furthermore, the beta distribution with parameters \(a, b > 0\), denoted by \(\text{Beta}(a, b)\) is the distribution on \((0, 1)\) with density

\[
\beta_{a,b}(u) := B(a, b) u^{a-1} (1-u)^{b-1}, \quad 0 < u < 1,
\]

where \(B(a, b) := \int_0^1 u^{a-1} (1-u)^{b-1} \, du\). The following two results are well-known:

Lemma 3. For arbitrary integers \(\ell \geq 1\),

\[
\chi^2_\ell = \text{Gamma}(\ell/2, 2).
\]

Lemma 4. For \(a, b, c > 0\) let \(Y_a\) and \(Y_b\) be independent random variables with distribution \(\text{Gamma}(a, c)\) and \(\text{Gamma}(b, c)\), respectively. Then the random variables \(Y_a + Y_b\) and \(U := Y_a/(Y_a + Y_b)\) are stochastically independent, where

\[
Y_a + Y_b \sim \text{Gamma}(a + b, c) \quad \text{and} \quad U \sim \text{Beta}(a, b).
\]

Proof of (3). By definition of Fisher’s F distribution and Lemma 3 \(F_{k,\ell}\) describes the distribution of

\[
\tilde{F} := \frac{Y_{k/2}/k}{Y_{\ell/2}/\ell}
\]

with independent random variables \(Y_{k/2} \sim \Gamma(k/2, 2)\) and \(Y_{\ell/2} \sim \Gamma(\ell/2, 2)\). But then Lemma 4 implies that

\[
\frac{Y_{k/2}}{Y_{k/2} + Y_{\ell/2}} = \frac{(k/\ell)\tilde{F}}{(k/\ell)\tilde{F} + 1} \sim \text{Beta}(k/2, \ell/2),
\]

and the latter random variable is a strictly increasing function of \(\tilde{F}\). Hence

\[
F_{k,\ell}(x) = B_{k/2,\ell/2}(\frac{(k/\ell)x}{(k/\ell)x + 1}) \quad \text{for} \quad x \geq 0.
\]

With \(k := p_* - p, \ell := n - p_*\) and \(x := F\), these considerations show that the p-value \(2\) is equal to

\[
1 - F_{p_*-p,n-p_*}(F) = 1 - B_{(p_*-p)/2,(n-p_*)/2}(\frac{SS_N - SS_{N*}}{SS_N})
\]

\[
= B_{(n-p_*)/2,(p_*-p)/2}(\frac{SS_{N*}}{SS_N}).
\]
The latter equation follows from the elementary fact that $U \sim \text{Beta}(a, b)$ if, and only if, $1 - U \sim \text{Beta}(b, a)$.

In the proof of Theorem 1 we utilize another well-known result about beta distributions which is an easy consequence of Lemma 4.

Lemma 5. For $a, b, c > 0$ let $U \sim \text{Beta}(a, b)$ and $V \sim \text{Beta}(a + b, c)$ be independent random variables. Then $UV \sim \text{Beta}(a, b + c)$.

Corollary 6. For $a, \delta > 0$ and an integer $k \geq 2$ let U_1, \ldots, U_k be independent with $U_j \sim \text{Beta}(a + (j - 1)\delta, \delta)$. Then $\prod_{j=1}^k U_j \sim \text{Beta}(a, k\delta)$.

Proof of Lemma 5. Our starting point are independent random variables $G_a \sim \text{Gamma}(a)$, $G_b \sim \text{Gamma}(b)$ and $G_c \sim \text{Gamma}(c)$. Now we apply Lemma 4 three times: We first conclude that $U := G_a/(G_a + G_b)$, $G_a + G_b$ and G_c are independent, where $U \sim \text{Beta}(a, b)$ and $G_a + G_b \sim \text{Gamma}(a + b)$. Then we may conclude that U and $V := (G_a + G_b)/(G_a + G_b + G_c)$ are independent with $V \sim \text{Beta}(a + b, c)$. Finally, $UV = G_a/(G_a + G_b + G_c)$ has distribution $\text{Beta}(a, b + c)$.

Proof of Theorem 1. Let us first consider the case $p = p + 1$, so $\{x_\nu : \nu \in N \setminus N\} = \{z\}$ with only one random vector $z \sim N_n(0, I_n)$. Note that $y - \hat{y}_N$ is a nonzero vector in the linear space

$$\mathbb{V}_N^\perp = \{x \in \mathbb{R}^n : x^T \eta = 0 \text{ for all } \eta \in \mathbb{V}_N\}.$$

Let b_1, b_2, \ldots, b_n be an orthonormal basis of \mathbb{R}^n such that

$$\mathbb{V}_N = \text{span}(b_1, \ldots, b_p) \text{ and } y - \hat{y}_N = S_{SS}^{1/2} b_{p+1}.$$

By rotational symmetry of the standard Gaussian distribution on \mathbb{R}^n, $Z_j := b_j^T z$ defines stochastically independent, standard Gaussian random variables Z_1, Z_2, \ldots, Z_n, and the orthogonal projection of z onto \mathbb{V}_N^\perp is given by

$$\tilde{z} := \sum_{j=p+1}^n Z_j b_j.$$

In particular,

$$\mathbb{V}_N^* = \text{span}(1, \ldots, b_p, z) = \text{span}(1, \ldots, b_p, \tilde{z})$$

and

$$y = \hat{y}_N + S_{SS}^{1/2} b_{p+1},$$

$$\hat{y}_N^* = \hat{y}_N + \frac{z^T y}{\|z\|^2} \tilde{z} = \hat{y}_N + S_{SS}^{1/2} \frac{z^T b_{p+1}}{\|z\|^2} \tilde{z}.$$
Consequently,

\[
\frac{SS_{N*}}{SS_N} = \left\| b_{p+1} - \frac{z^\top b_{p+1} z}{\|z\|^2} \right\|^2 = 1 - \frac{(z^\top b_{p+1})^2}{\|z\|^2} = \frac{\sum_{j=p+2}^n Z_j^2}{\sum_{j=p+1}^n Z_j^2}
\]

\[
\sim \text{Beta}\left((n - p - 1)/2, 1/2\right) = \text{Beta}\left((n - p_*)_2, (p_* - p)/2\right)
\]

by Lemmas 3 and 4.

In case of \(k := p_* - p > 1 \), one may apply the previous argument inductively to show that

\[
\frac{SS_{N*}}{SS_N} = \prod_{\ell=1}^k U_\ell
\]

in distribution, where \(U_1, \ldots, U_k \) are stochastically independent with

\[
U_\ell \sim \text{Beta}\left((n - p - \ell)/2, 1/2\right).
\]

In other words, for \(j = 1, \ldots, k \),

\[
U_{k+1-j} \sim \text{Beta}\left((n - p_*)/2 + (j - 1)/2, 1/2\right).
\]

Applying Corollary 5 with \(a = (n - p_*)/2 \) and \(\delta = 1/2 \) yields the assertion that \(SS_{N*}/SS_N \) follows \(\text{Beta}\left((n - p_*)/2, k/2\right) \).

\[
\square
\]

Haar measure on \(\mathcal{O}_n \). For the reader’s convenience we collect some standard arguments to provide a self-contained account of that topic. We start with two specific constructions of a random matrix \(T \in \mathcal{O}_n \) such that

\[
\mathcal{L}(ST) = \mathcal{L}(T) \quad \text{for any fixed } S \in \mathcal{O}_n.
\]

(5)

In both cases the starting point is a random matrix \(Z = [z_1, \ldots, z_n] \) with \(d^2 \) independent components with standard Gaussian distribution. With probability one, the columns \(z_1, \ldots, z_n \) are linearly independent. Hence

\[
T := Z(Z^\top Z)^{-1/2}
\]

is well-defined almost surely and easily seen to belong to \(\mathcal{O}_n \). For fixed \(S \in \mathcal{O}_n \) it follows from \(\mathcal{L}(SZ) = \mathcal{L}(Z) \) that the distribution of \(T \) coincides with the distribution of

\[
(SZ)((SZ)^\top (SZ))^{-1/2} = SZ(Z^\top Z)^{-1/2} = ST.
\]

Thus \(T \) satisfies (5).
The same conclusion holds true if we construct \(T = [t_1, \ldots, t_n] \) by means of the Gram-Schmidt orthogonalization: We start with \(t_1 := \frac{1}{\|z_1\|} z_1 \) and then set

\[
t_k := \left(\frac{\|z_k\|^2}{k-1} - \sum_{j=1}^{k-1} (t_j^\top z_k)^2 \right)^{-1/2} \left(z_k - \sum_{j=1}^{k-1} (t_j^\top z_k) t_j \right)
\]

for \(k = 2, \ldots, n \). This representation shows that the first column of \(T \) has the same distribution as a standard Gaussian random vector normalized to have length one.

Now let \(T_1, T_2 \) be stochastically independent random matrices in \(O_n \) satisfying (5). Then for any Borel set \(B \subset O_n \),

\[
\Pr(T_1^\top T_2 \in B) = \mathbb{E} \Pr(T_1^\top T_2 \in B \mid T_1) = \Pr(T_2 \in B),
\]

and

\[
\Pr(T_1^\top T_2 \in B) = \mathbb{E} \Pr((T_2^\top T_1)^\top \in B \mid T_2) = \Pr(T_1^\top \in B).
\]

Hence \(T_1^\top \) and \(T_2 \) have the same distribution. From this one can easily deduce that there is only one distribution \(\text{Haar}_n \) on \(O_n \) such that a random matrix \(T \) with that distribution satisfies (5).

The previous considerations show that a random matrix \(T \sim \text{Haar}_n \) satisfies also

\[
\mathcal{L}(T^\top) = \mathcal{L}(T) = \mathcal{L}(TS) \quad \text{for any fixed } S \in O_n.
\]

(6)

Moreover, if \(s_1, \ldots, s_q \) are fixed orthonormal vectors in \(\mathbb{R}^n \), \(1 \leq q < n \), then

\[
\mathcal{L}(\{Ts_1, \ldots, Ts_q\}) = \mathcal{L}(\{t_1, \ldots, t_q\}),
\]

where \(t_1, \ldots, t_n \) are the columns of \(T \). This follows by extending \(s_1, \ldots, s_q \) to an orthonormal basis \(s_1, \ldots, s_n \) of \(\mathbb{R}^n \) and applying (6) with \(S = [s_1, \ldots, s_n] \in O_n \). In particular, for any fixed unit vector \(s \in \mathbb{R}^n \), the random vector \(Ts \) has the same distribution as \(u := \|z\|^{-1}z \) with a standard Gaussian random vector \(z \in \mathbb{R}^n \).

Proof of Lemma 2. Suppose that \(y \) satisfies (i). Then for any Borel set \(B \subset \mathbb{R}^n \),

\[
\Pr(Ty \in B) = \mathbb{E} \Pr(Ty \in B \mid T) = \Pr(y \in B),
\]

Hence (ii) is satisfied as well.

Now suppose that \(y \) satisfies (ii). That means \(y \) has the same distribution as \(Ty \), where \(T \sim \text{Haar}_{n, V_N} \) is stochastically independent from \(y \). By conditioning on \(y = \tilde{y} + \hat{e} \) one sees that
The vector Ty has the same distribution as $\hat{y} + \|\hat{\epsilon}\|u$, where u is uniformly distributed on the unit sphere of V_N^\perp. Thus y satisfies (iii) as well.

Finally, suppose that y satisfies (iii), that means, y has the same distribution as $\hat{y} + \|\hat{\epsilon}\|u$, where u is uniformly distributed on the unit sphere of V_N^\perp and stochastically independent from y. But for any fixed $S \in O_n$ the distributions of Su and u are identical, so for any Borel set $B \subset \mathbb{R}^p$,

$$
\mathbb{P}(Sy \in B) = \mathbb{P}(S(\hat{y} + \|\hat{\epsilon}\|u) \in B) = \mathbb{P}(\hat{y} + \|\hat{\epsilon}\|Su \in B) = \mathbb{E}\mathbb{P}(\hat{y} + \|\hat{\epsilon}\|Su \in B | y) = \mathbb{E}\mathbb{P}(\hat{y} + \|\hat{\epsilon}\|u \in B | y) = \mathbb{P}(\hat{y} + \|\hat{\epsilon}\|u \in B) = \mathbb{P}(y \in B).
$$

Consequently, y satisfies (i) as well.

\[\square\]

References

[1] Candès, E., Fan, Y., Janson, L. and Lv, J. (2017). Panning for gold: Model-free knockoffs for high-dimensional controlled variable selection. Preprint, [arXiv:1610.02351](https://arxiv.org/abs/1610.02351).

[2] Davies, L. (2018). Lasso, knockoff and Gaussian covariates: a comparison. Preprint, [arXiv:1805.01862](https://arxiv.org/abs/1805.01862).

[3] Eaton, M.L. (1989). Group invariance applications in statistics. NSF-CBMS Regional Conference Series in Probability and Statistics, Vol. 1, Institute of Mathematical Statistics, Hayward, CA; American Statistical Association, Alexandria, VA.

[4] Scheffé, H. (1959). Analysis of Variance. Wiley and Sons.

[5] Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. *J. Royal. Statist. Soc. B.* 58(1), 267–288.