Terrestrial ecosystem model studies and their contributions to AsiaFlux

Akihiko Itoa,b,† and Kazuhiro Ichiia,c

aNational Institute for Environmental Studies, 16–2 Onogawa, Tsukuba, 305–8506, Japan
bJapan Agency for Marine-Earth Science and Technology, Yokohama, 236–0001, Japan
cChiba University, Chiba, 263–8522, Japan

Abstract

A wide variety of models have been developed and used in studies of land–atmosphere interactions and the carbon cycle, with aims of data integration, sensitivity analysis, interpolation, and extrapolation. This review summarizes the achievements of model studies conducted in Asia, a focal region in the changing Earth system, especially collaborative works with the regional flux measurement network, AsiaFlux. Process-based biogeochemical models have been developed to simulate the carbon cycle, and their accuracy has been verified by comparing with carbon dioxide flux data. The development and use of data-driven (statistical and machine learning) models has further enhanced the utilization of field survey and satellite remote sensing data. Model intercomparison studies were also conducted by using the AsiaFlux dataset for uncertainty analyses and benchmarking. Other types of models, such as cropland models and trace gas emission models, are also briefly reviewed here. Finally, we discuss the present status and remaining issues in data–model integration, regional synthesis, and future projection with the models.

Key words: Atmosphere–ecosystem interactions, Carbon cycle, Eddy-covariance measurement, Micrometeorology, Simulation-based analysis

1. Introduction

Terrestrial ecosystems play important roles in the global biogeochemical cycles and climate system, but these processes and functions have not been adequately quantified. Biophysical exchanges of momentum, heat, and water vapor between the atmosphere and ecosystems affect local micrometeorological conditions, and their coherent actions at broad scales affect meso-scale and eventually global atmospheric dynamics (Raupach, 1991; Bonan, 2002). Terrestrial ecosystems also interact with the atmosphere by exchanging volatile organic gases and particles, which serve as cloud condensation nuclei and react chemically with atmospheric pollutants (Mooney et al., 1987; Arneth et al., 2010). Moreover, ecosystems absorb and release greenhouse gases (GHGs) such as carbon dioxide (CO\textsubscript{2}), methane (CH\textsubscript{4}), nitrous oxide (N\textsubscript{2}O), and ozone in the troposphere (Tian et al., 2016). These functions are garnering attention in terms of anthropogenic climate change and its impacts and mitigation.

These interactions between the atmosphere and ecosystems have been simulated, in early studies, by various kinds of models such as big-leaf models for canopy gas exchange, multi layer models for energy and momentum transfer, and bucket models for surface hydrology in climate models (e.g., Monsi and Saeki, 1953; Manabe, 1969). In particular, micrometeorological studies have led to sophisticated theories on the structure and dynamics of the near-surface atmosphere or boundary layer, providing the basis for land surface models as well as flux measurements (e.g., Obukhov, 1946; Mellor and Yamada, 1974; Monteith, 1977; Sellers et al., 1997; Leuning, 2000; Foken, 2006). The component models (or schemes) have successfully captured target ecosystem processes, which occur mainly at daily or shorter time scales. To capture seasonal, interannual, and decadal ecosystem processes, biogeochemical models that include plant growth and the soil mass budget were developed (e.g., Century by Parton et al., 1988; Terrestrial Ecosystem Model [TEM] by Raich et al., 1991; Forest-BGC by Running and Gower, 1991). These models, which were often constructed on the basis of carbon and nitrogen cycles, have been used to simulate land–atmosphere GHG exchange associated with ecosystem structural change. In light of the increasing attention on global climate change issues, several biogeochemical models have been developed and applied to point- to global-scale simulations. Furthermore, dynamic vegetation models, which simulate temporal change in plant size and/or age structures, have been developed to capture long-term responses to environmental changes (e.g., Lund-Potsdam-Jena [LPJ] by Sitch et al., 2003; Organizing Carbon and Hydrology in Dynamic Ecosystem [ORCHIDEE] by Krinner et al., 2005). At present, these atmosphere–terrestrial models are integrated, so that they can be applicable to short- and long-term simulations (e.g., Joint UK Land Environment Simulator [JULES] by Clark et al., 2011; Community Land Model [CLM] by Lawrence et al., 2019). In general, the models are driven by climate, soil, land-cover and land-use, and atmospheric (e.g., GHG concentration and nitrogen deposition) conditions, and they simulate GHG exchange fluxes and internal biogeochemical processes. Such model integration is also advantageous in including various observations such as flux measurements at a 30-min time step to biomass data at an annual time step (Ito et al., 2015). These models are now being applied not only in scientific research but also to environmental
The models are now playing important roles in environmental and carbon cycle studies with regard to data integration, sensitivity analysis, and future projection (Fig. 1). The development of models is a meaningful way to clarify our knowledge gaps and deepen our understanding of natural processes. In flux research, models are practically useful for temporal gap-filling and spatial upscaling. However, serious uncertainties remain in the ecosystem functions simulated by models, because of complexity and heterogeneity of ecosystems that cannot be formulated and numerically calculated directly. As a result, multiple-model comparison studies have revealed that existing models differ in mean values and environmental responsiveness of ecosystem functions (e.g., Sitch et al., 2008; Ichii et al., 2013). Reducing such uncertainty can be achieved by devising more sophisticated model structure and formulations, and through optimization using observational data. The latter approach includes so-called data assimilation or data-model fusion, in which model parameters (and state variables) are adjusted by minimizing a cost function (Luo and Schimel, 2011). Spatial gaps in observational data, which can reduce data coverage and representativeness, have been largely filled by measurement networks and satellite remote sensing (Kobayashi et al., in preparation). The recent explosive increase of observational data has allowed the adoption of a statistical, data-driven modeling approach. Models based on this approach (e.g., neural network, random forest, support vector regression) do not assume certain physical or biological formulas and parameters and so are more flexible than previous ecosystem models (Reichstein et al., 2019). By applying machine learning algorithms, regional and global continuous fields of heat, water, and CO₂ exchange fluxes have been calculated (Jung et al., 2011; Ichii et al., 2017).

Here, we review model-based studies on terrestrial ecosystems, which have been greatly enhanced by flux measurements — mainly by the eddy-covariance method. Indeed, the evolution of the flux datasets, both in quantity and in quality, from global and regional networks has greatly stimulated modeling studies (e.g., Baldocchi et al., 2001; Friend et al., 2007). This review emphasizes collaborative works with the regional flux measurement network AsiaFlux (Yamamoto et al., 2005; Mizoguchi et al., 2009; Saigusa et al., 2013) and component national networks (e.g., ChinaFlux, JapanFlux, and KoFlux). We summarize the achievements in the development of biogeochemical (process-based) and statistical (data-driven) models and their applications in the Asian region. Numerous global-scale modeling studies have been conducted, and this regional review also refers to several of these key works. Finally, we discuss the remaining research gaps and prospective future directions.

2. Leaf- and Canopy-Scale Models

Models at the leaf and canopy scale aim chiefly at simulating atmosphere–vegetation exchanges of vapor and CO₂ such as gross primary production (GPP) and net ecosystem exchange (NEE), which are regulated by canopy structure and leaf stomatal conductance. Models at these scales are mostly applied to phenomena with short-term (i.e., seconds to days) variability and based on observational data. The canopy photosynthesis model developed by Monsi and Saeki (1953) is a classic example that provided a theoretical basis of canopy radiation absorption on the basis of field observations conducted by using the stratified clip method. This study also proposed the concept of the optimal leaf area index (LAI), providing insights for subsequent studies on canopy structure and resource allocation. Based on micrometeorological insights, Monteith (1972, 1977) established a relationship between canopy-absorbed solar radiation and dry-matter production in forest and cropland, leading to a light-use efficiency (LUE) model that provided a basis for remote-sensing of vegetation productivity. Modeling of leaf gas exchange was markedly improved by the landmark work of Farquhar et al. (1980), who proposed a biochemical and practical photosynthesis model. Later advancements in plant ecophysiology allowed for refinements of the canopy photosynthesis model (Terashima and Hikosaka, 1995). For example, separation of

![Fig. 1. Schematic diagram of the roles of models in atmosphere-ecosystem flux studies. OSSE: Observation System Simulator Experiment; IPCC: Intergovernmental Panel on Climate Change; IPBES: Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; SDGs: Sustainable Development Goals; GCP: Global Carbon Project; RECCAP: REgional Carbon Cycle Assessment and Processes.](image-url)
beam and diffuse components and inclusion of the within-canopy gradient of leaf nitrogen concentration helps optimize the canopy photosynthesis rate under changing light conditions (de Purry and Farquhar, 1997; Hikosaka, 2014).

Micrometeorological studies have revealed fine-scale structures and dynamics of canopy exchanges of energy and materials (e.g., Inoue, 1963; Monteith, 1964). To capture these processes, multi-layer canopy models have been developed (e.g., Baldocchi and Hutchinson, 1986; Wang and Jarvis, 1990; Leuning, 2000). For example, Tanaka (2002) developed a multi-layer canopy model of CO₂ and water vapor exchange (50 layers) and applied it to a temperate forest in Japan. Kosugi et al. (2006) used a revised version of the Tanaka (2002) model to assess the impacts of leaf physiological variations on canopy gas exchange. In addition, Kumagai et al. (2006) modified the radiation transfer scheme proposed by Tanaka (2002) and developed a multi-layer canopy model applicable to tropical rain forest. The model accurately captures the diurnal variations in heat and CO₂ exchange measured by the eddy-covariance method. To analyze rice canopy processes, Oue (2001) developed a multilayer energy budget model on the basis of a core scheme by Kondo and Watanabe (1992) and investigated the effects of solar angle, plant area density, and stomatal resistance.

Stomatal conductance (and resistance) is a key parameter for the gas exchange models and also for process-based and vegetation dynamics models. Jarvis (1976) proposed the first empirical model of stomatal conductance as a function of light, temperature, humidity, leaf water potential, and ambient CO₂ concentration. Ball et al. (1987) proposed a semi-empirical model, which accounts for interaction between photosynthesis and stomatal conductance. Leuning (1995) modified the Ball et al. (1987) model by considering vapor pressure deficit and intercellular CO₂ concentration as well. The stomatal conductance models have been widely used in analytical and modeling studies conducted in Asia (e.g., Kosugi et al., 2003). Stand-level stomatal conductance may also be estimated on the basis of sap flow measurement data (Kumagai et al., 2008; Yoshifuji et al., 2020). Recent ecophysiological studies proposed new stomatal conductance models (Medlyn et al., 2011; Buckley and Mott, 2013), although more work is needed to evaluate their implementation.

Because of the importance of stomatal regulation on gas exchange, most land-surface schemes used in climate models incorporate some canopy photosynthetic model (Sellers et al., 1997). Mabuchi et al. (1997) developed the Biosphere–Atmosphere Interaction Model (BAIM), which was coupled with a climate model of the Japan Meteorological Agency. The BAIM model has a two-layer vegetation canopy, which accounts for gas exchange regulated by stomatal conductance. Mabuchi et al. (2005) assessed the impacts of vegetation change (e.g., deforestation) on the climate system in the Asian tropical region. Similarly, Takata et al. (2003) developed Minimal Advanced Treatments of Surface Interaction and RunOff (MATSIRO), which is coupled with a climate model of the University of Tokyo and Japan Agency for Marine-Earth Science and Technology. The MATSIRO model has a similar vegetation canopy, which is subdivided into snow-free and snow-covered fractions. Although these land-surface schemes do not put much emphasis on the accuracy of the carbon cycle, they are expected to accurately capture energy and water exchange over the canopy, which is physiologically and inevitably coupled with photosynthesis.

3. Process-Based Models

Process-based or mechanistic models aim to simulate biogeochemical cycles within ecosystems, as well as exchanges with the atmosphere. Typically, this kind of model is used to capture the carbon cycle over interannual and decadal periods, making them effective for analyzing field and flux measurement data. Although several component models (e.g., leaf phenology and soil respiration) have been developed, here we focus on ecosystem-scale flux models. These models were based on ecological studies of primary productivity and carbon stock, many of which were conducted as a part of the International Biological Programme in the 1960s and 1970s. Oikawa (1985) developed an ecosystem-scale carbon cycle model and applied it to an intact tropical rainforest in Pasoh, Malaysia. He analyzed the effects of dry season length and elevated CO₂ concentration on the carbon cycle and thus the stability of the tropical forest. Nakane (1984) developed a soil carbon cycle model and applied it to a pine forest in Hiroshima, Japan. Although these earlier studies provided insights from field data, the models were rather simple (e.g., box-flow model) and operate at annual time steps.

To link flux measurement data with underlying ecophysiology and biogeochemistry, a more mechanistic model was required. Namely, the principal processes of the carbon cycle and associated ecosystem dynamics needed to be described in a theoretical or ecophysiological manner. In addition, models needed to operate daily or shorter time steps in order to be comparable to flux measurements (e.g., 30-min) and capture short-term variability. In contrast, most models of this category do not resolve turbulent transfer processes within the canopy, for simplicity. Ito and Oikawa (2002) developed the Simulation model of Carbon eCYcle in Land Ecosystems (Sim-CYCLE), which simulated the global terrestrial carbon cycle in historical and future periods. The refined model, Vegetation Integrative Simulator for Trace gases (VISIT), was developed by including the nitrogen cycle and trace gas–related processes (Inatomi et al., 2010; Ito, 2010a). One characteristic feature of the VISIT model is its flexible scalability in terms of spatial scale (point to global) and time step (30-min to monthly). The point-scale 30-min-step version was applied to a cool-temperate deciduous broad-leaved forest in Takayama, Japan (Ito et al., 2005) and captured seasonal variability in NEE well. Whereas the early model adopted a “big-leaf” type canopy scheme, a refined model (Ito et al., 2006) introduced a sun/shade type canopy scheme coupled with the biochemical photosynthesis model. This modification, associated with the seasonal change in leaf properties (e.g., leaf mass per area and maximum carboxylation rate), resulted in substantial improvement in the accuracy of GPP and NEE simulation. Ito et al. (2007) also examined the simulation of another CO₂ flux component, ecosystem respiration (RE), and reported poor agreement under stable (i.e., low friction velocity) atmospheric conditions. Inatomi et al. (2010) included CH₄ oxidation and N₂O emission schemes into the VISIT model and evaluated the net GHG budget of a Takayama forest site.
Several models have been developed to simulate the carbon cycle of ecosystems in Asia. Sasai et al. (2005) developed the Biosphere model integrating Eco-physiological And Mechanistic approaches using Satellite data (BEAMS), which is driven by remotely sensed data of the fraction of absorbed photosynthetically active radiation (fAPAR). Sasai et al. (2005) applied the model to seven sites of AmeriFlux, eight sites of EuroFlux, and one site (Manaus) of Large-scale Biosphere–atmosphere experiment in Amazonia, and then Sasai et al. (2007) applied it to the Takayama site. This diagnostic model accurately captured the spatial distribution of GPP over the steep topographic region of central Japan. Sasai et al. (2011) then calibrated the model at five sites in Japan (Teshio, Tomakomai, Takayama conifer, Takayama deciduous, and Seto mixed forest) and at the Laoshan larch site in China to develop a high-resolution East Asian model. Moreover, Sasai et al. (2017) included a CH₄ production scheme into BEAMS and estimated CH₄ emissions from Japanese paddy fields. By focusing on population dynamics and micrometeorological features, Watanabe et al. (2004) developed the Multilayered Integrated Numerical model of Surface physics–Growing plants Interaction (MINoSGI). The model has dynamic vegetation height class and multi layer canopy schemes and explicitly simulates turbulent transport within the canopy. One remarkable feature of the model is the interaction between short-term (canopy fluxes) and long-term (vegetation dynamics) processes. Toda et al. (2007) applied the MINoSGI model to a larch forest and simulated the carbon cycle. Putting further emphasis on vegetation dynamics, Sato et al. (2007) developed the Spatially Explicit Individual-Based Dynamic Global Vegetation Model (SEIB-DGVM), which simulates the global vegetation distribution in the Earth system model. Wu et al. (2019) applied the model to a cool-temperate forest in Tomakomai, Japan, and assessed the impacts of tropical cyclone disturbance on the carbon budget. Focusing on soil carbon dynamics in South Korea, Lee et al. (2014) developed the Korean Forest Soil Carbon (KFSC) model and assessed the net carbon budget of domestic forests. In China, Cao and Woodward (1998) developed the Carbon Exchange between Vegetation, Soil, and the Atmosphere (CEVSA) model, which was primarily used for global studies. Zhang et al. (2012) used a revised version, the CEVSA2 model, to simulate the carbon cycle in a temperate mixed forest in Jilin, China, and conducted a parameter uncertainty analysis.

Many studies have been conducted by using carbon cycle models developed outside Asia. Feng et al. (2007) used the Boreal Ecosystem Productivity Simulator (BEPS), which was originally developed for boreal forests in Canada (Liu et al., 1997), to simulate GPP and net primary productivity (NPP) in China. Tan et al. (2010) used the Organizing Carbon and Hydrology in Dynamic Ecosystem (ORCHIDEE) model, a dynamic global vegetation model developed in France (Krinner et al., 2005), to estimate vegetation biomass and soil carbon stock in the Qinghai–Tibetan grasslands, China. Zhu et al. (2011) used the Integrated Biosphere Simulator (IBIS) developed in the United States to analyze water-use efficiency of terrestrial ecosystems in China, including a future projection under elevated CO₂ concentration. Sun and Mu (2013) used the Lund-Potsdam-Jena (LPJ) dynamic vegetation model, originally developed in Europe (Sitch et al., 2003), to simulate NPP in China under different climate scenarios, implying the importance of climatic perturbations. Ueyama et al. (2010) applied the Biome-BGC model (Thornton et al., 2002), originally developed at a pine forest in Montana, northern United States, to six larch forests in Asia. After parameter calibration, the Biome-BGC model captured the carbon cycle of the forests, allowing them to analyze inter site variations. At black spruce forests in Alaska, Ueyama et al. (2016) also used the Biome-BGC model and attempted to optimize photosynthetic and stomatal parameters using flux measurement data. Kondo et al. (2013) applied the Biome-BGC model at the Takayama, Fujiyoshida, Tomakomai, and Laoshan sites, which differ in forest types and disturbance histories. They demonstrated the effectiveness of flux and biometric (biomass) data to constrain model behaviors across these sites. Focusing on nitrogen dynamics, Shibata et al. (2006) applied the Photosynthesis and EvapoTranspiration (PenET) model (Aber et al., 1995), originally developed in the eastern United States, to a cool-temperate forest in Uryu forest, Japan. They assessed hydrological effects on nitrogen biogeochemistry in conjunction with observational data. Saitoh et al. (2015) applied the National Center of Atmospheric Research Land Surface Model (NCAR-LSM) to the Takayama site and investigated the effects of canopy leaf phenology on the ecosystem carbon budget.

Several process-based models simulate the nitrogen cycle and trace gas emissions of terrestrial ecosystems, in addition to the carbon cycle, because the evaluation of the GHG budget is an important application of the models. Tian et al. (2011) developed the Dynamic Land Ecosystem Model (DLEM) and evaluated the CO₂, CH₄, and N₂O budgets of terrestrial ecosystems in China. Zhu et al. (2016) used the TRIPLEX-GHG model to estimate the CH₄ emissions from Chinese wetlands, including climatic and land-use effects. Using multiple process-based models, Shang et al. (2019) assessed the underlying mechanisms of temporal change in cropland N₂O emissions in China. Ito et al. (2019) conducted a bottom-up assessment of the CH₄ budget in East Asia, using the VISIT model estimations for wetland emission and upland oxidation. Biogenic volatile organic compounds (BVOCs), such as isoprene, are noteworthy because they affect atmospheric quality and climatic conditions and terrestrial ecosystems are a major source of BVOCs. Tanaka et al. (2012) introduced a BVOC scheme, the Model of Emissions of Gases and Aerosols from Nature (MEGAN; Guenther et al., 2012), into MATSIRO and conducted global simulations to assess the impacts of historical climate and land-use changes on BVOC emissions. Situ et al. (2013) also used MEGAN to estimate BVOC emissions in the Pearl River delta region of China and assessed the impacts on surface ozone concentration. Emission factors, however, which are key parameters of the BVOC model have not been well constrained for Asian ecosystems, because of the inadequacy of observational data.

Few model studies have been conducted on wildfire and biomass burning, which is associated with atmospheric emissions of trace gases and particles such as black carbon and carbon monoxide. Most fire-related analyses have been done as a part of global studies (e.g., van der Werf et al., 2010). Considering its biogeochemical importance and increasing social
impact as a disaster, the lack of regional studies on wildfire modeling highlights further research needs and opportunities.

Process-based models are useful for interpreting (i.e., deriving ecophysiological and biogeochemical insights) flux measurement data, which at most sites cover only a few years of variability of a limited number of variables. For example, Ito (2010b) used the VISIT model to interpret the anomalous NEE observed at the Takayama site in 2004 and concluded that it is attributable to the impacts of defoliation caused by tropical cyclones. Adachi et al. (2011) used the same model at a tropical site in Pasoh, Malaysia, and assessed the decadal-scale impacts of land-use conversion to oil palm plantations on the carbon budget and CO$_2$ exchange. Hirata et al. (2014) also applied the VISIT model to interpret the 12-year long change in NEE at the Tomakomai and Teshio forest sites in northern Japan in relation to logging disturbance and management. Kondo et al. (2015a) used the Biome-BGC model to analyze the impacts of anomalous (i.e., associated with El Niño event) meteorological conditions on the carbon budget of the Takayama site through the changes in carbon allocation.

4. Data-Driven Models

The accumulation of flux measurement data and recent development of machine learning algorithms has enabled researchers to develop data-driven (or empirical) modeling and spatial extension of fluxes. Machine learning algorithms such as neural network have been used in flux measurement studies for gap-filling of time series data (e.g., Ooba et al., 2006; Moffat et al., 2007). In addition, empirical or geostatistical algorithms such as Kriging have been used for spatial extrapolation of site-based CO$_2$ fluxes to broad scales (e.g., Saito et al., 2009). Studies have used multiple algorithms not only for temporal gap-filling but also for spatial extrapolation. For example, Papale and Valentini (2003) first applied a machine learning (neural network) algorithm to estimate continental CO$_2$ fluxes using an eddy-covariance observation network focusing on Europe. Furthermore, Yang et al. (2007) applied the support vector regression algorithm to estimate continental GPP across the United States using AmeriFlux data and remote sensing data. Jung et al. (2011) applied the model-tree ensemble algorithm to the FLUXNET dataset and obtained global continuous fields of GPP, RE, and NEE. Although these flux-upscaled maps have several limitations (e.g., short temporal coverage and algorithm-specific biases), they allow us to conduct global observation-based assessments (e.g., Kondo et al., 2015b; Tramontana et al., 2016; Jung et al., 2017). Because of good data availability (frequency, coverage, and variables), the data-driven approach has high affinity with remote sensing. Several studies used carbon cycle models driven by satellite data, such as the Carnegie Ames Stanford Approach (CASAS) model, to assess a regional CO$_2$ budget. Piao et al. (2005) and Pei et al. (2013) used the CASA model to assess the impacts of climate variability and urbanization, respectively, on NPP in China. Ryu et al. (2011) developed a global 1-km resolution mapping model, the Breathing Earth System Simulator (BESS). Instead of machine learning algorithms, BESS considers the radiation budget and photosynthetic (not whole carbon cycle) processes in an explicit manner and is driven by remote sensing data (MODerate resolution Imaging Spectroradiometer [MODIS] Land products).

In this regard, BESS would be a fusion approach between the process-based and data-driven models.

In Asia, Zhu et al. (2014) applied the multivariate regression method to ChinaFlux data (52 sites) and obtained maps of GPP, RE, and NEE across China. Using the region-specific data and model, this study obtained higher GPP in central China than that of the global estimate. L. Zhang et al. (2014) adopted a piecewise regression tree approach for upscaling NEE flux data at 12 sites (including six Coordinated Observation and Synthesis on Arid and Semi-arid China [COSAS]) to temperate grasslands in northern China. This upscaled map allowed them to evaluate the potential of carbon sequestration in the study region. Yao et al. (2018) applied the model-tree ensemble algorithm to up-scaling of flux data obtained from 46 sites in China, including regional data on forest age and nitrogen deposition. Using support vector regression, Ichii et al. (2017) developed flux-upscaled maps of GPP and NEE from 2000 to 2015 based on flux data from 54 sites. As usual for this kind of study, the authors used remote sensing data for data-driven model development (land cover, land surface temperature, LAI, and bidirectional reflectance distribution function-corrected reflectance) and evaluation (GPP, sun-induced chlorophyll fluorescence [SIF], and surface CO$_2$ fluxes). Using the same algorithm, Ueyama et al. (2013) attempted to upscale CO$_2$ flux data obtained at 21 sites in Alaska and obtained regional NEE estimates comparable with those calculated by atmospheric inversion. To clarify the characteristics of machine learning algorithms, Xu et al. (2018) compared five algorithms (neural network, support vector regression, random forest, Cubist based on modified regression tree theory, and deep belief network) at the Heihe River Basin, China. The data-driven modeling approach was also applied to chamber-measured fluxes of soil GHG exchange. Hashimoto et al. (2011) obtained a statistical model of soil GHG exchange (functions of soil temperature, water-filled pore space, and physicochemical properties) on the basis of data from 36 sites in Japan. They applied the model to estimate the total GHG budget of soils in Japan, and Hashimoto et al. (2015) later applied the method to global soils for the period from 1965 to 2012.

The upscaled flux data are effective for assessing broad-scale gradients of ecosystem functions (e.g., Jung et al., 2017; Yu et al., 2019), providing data-driven estimation of terrestrial GPP anomalies responding to extreme climate (e.g., Saigusa et al., 2010), and evaluating process-based models (e.g., Ito et al., 2017). Previous studies indicated, however, that the data-driven algorithms do not work well for NEE and RE, although GPP is captured well by these methods combined with remote sensing data. Although the current algorithms are also not good at upscaling fluxes in disturbed ecosystems or managed croplands, future developments are expected to provide more accurate datasets.

5. Data Assimilation

Data assimilation or data-model fusion is a more advanced use of observational data than conventional comparison for validation (Wang et al., 2009). The concept and methods were developed earlier for atmospheric and ocean models, aiming at improving reliability of numerical weather forecast (Navon, 2009). In the early stage of data assimilation with carbon cycle and
ecosystem models, Kaminski et al. (2002) attempted to assimilate atmospheric CO₂ concentration data to the Simple Diagnostic Biosphere Model (SDBM). Because the model was coupled with an atmospheric transport model, a numerical algorithm — the adjoint method — was applicable to their system, later called Carbon Cycle Data Assimilation System (CCDAS). Kato et al. (2013) applied the system to a semi-arid woodland site in Botswana by using satellite (MODIS fAPAR) and flux measurement data. At the global scale, Chen et al. (2017) developed the Global Carbon Assimilation System (GCAS), in which the BEPS model was optimized with the adjoint algorithm and ground-observed CO₂ data. Ju et al. (2010) used another popular data-assimilation algorithm, the ensemble Kalman Filter, to optimize the BEPS model at a subtropical coniferous plantation at the Qianyanzhou site in China. While using a non-linear data assimilation algorithm (Particle Filter), Arakida et al. (2017) attempted to assimilate satellite-observed LAI to the SEIB-DGVM. By optimizing two parameters (maximum photosynthesis and leaf dormancy start date), they obtained better accuracy in capturing stand LAI seasonality. Ise et al. (2018) applied the Particle Filter to the Super-Simple Stochastic Ecosystem Model (SSSEM) at the regional (i.e. all of Japan) scale; optimization of leaf onset and offset threshold temperatures improved the accuracy of simulated leaf phenology. Several studies estimated terrestrial CO₂ budgets by assimilating atmospheric measurement data. For example, H.F. Zhang et al. (2014) used the CarbonTracker Data Assimilation System (CTDAS) to estimate the net carbon budget of China in 2001–2010.

6. Model Intercomparison

Comparison of the simulation results of multiple models, using common forcing data and protocol, have been done for (1) the evaluation of the range of estimation uncertainty, (2) specification of sensitive processes and parameters, and (3) extraction of consistent patterns. Benchmarking is a kind of model intercomparison that chiefly focuses on the agreement with a particular observational dataset. Many model intercomparison projects have been conducted to assess the range of estimation uncertainty, especially at the global scale, for which observational data are generally sparse and inadequate (e.g., Cramer et al., 1999; Sitch et al., 2008; Tian et al., 2015). Furthermore, comparison between different approaches provides addition insights. For example, Jiang and Ryu (2016) compared GPP and evapotranspiration derived from a process-based model (BESS), a data-driven model with FLUXNET data, and a semi-empirical LUE model with remote sensing (MODIS).

Regional model intercomparison projects have also been done, including in-depth analyses on some region-specific features. Piao et al. (2011) used three models (ORCHIDEE, LPJ, and SDGVM) to evaluate the influence of climate, land-use, ozone, and agricultural management on the terrestrial carbon budget in East Asia. Although the results showed a complicated pattern, this work demonstrated the effectiveness of this modeling approach. Ichii et al. (2010) conducted a comparison of nine data-driven and process-based models: support vector regression, TOPS, CASA, VISIT, Biome-BGC, DAYCENT, SEIB, LPJ, and TRIFFID; comparison of simulated values with flux measurement data of monthly GPP, RE, and NEE was conducted at four forest sites in Japan (Teshio, Tomakomai, Takayama, and Fujiyoshida). This study also compared the results of spatial simulations across Japan and confirmed the effectiveness of parameter calibration at flux measurement sites to reduce estimation uncertainty. As a part of the same project, Ito et al. (2010) compared the simulation results of soil respiration, for which many chamber measurement data were available. Ichii et al. (2013) expanded the study area to East Asia and compared the simulation results of eight models (BEAMS, CASA, Biome-BGC, CLM3.5-CN, PnET-CN, VISIT, LPJ, and MOSES2/TRIFFID) at 24 sites in the AsiaFlux network covering a variety of ecosystems (Fig. 2). The results revealed large inconsistency and estimation uncertainty in the present model performance at tropical rainforest sites. At a larch forest in eastern Siberia, Takata et al. (2017) conducted an intercomparison among process-based, data-driven, and top-down (atmospheric inversion, mentioned later) models and assessed the temporal variability and scale-dependency of simulation consistency.

Regional analyses using global simulation results have been conducted. Sitch et al. (2008) started the TRENDY project, which aims at analyzing dynamic global vegetation models, and the datasets have been widely used for analyses. Kondo et al. (2018) used the simulated net biome production of the TRENDY dataset for an analysis of the carbon budget of Southeast Asia. This study highlighted the remarkable impact of land-use change on the long-term carbon budget and climatic impacts on interannual variability in the region. Piao et al. (2012) used the TRENDY dataset extracted for East Asia as a part of the Regional Carbon Cycle Assessment and Processes (RECCAP; Sitch et al., 2015). Model-ensemble results are useful for achieving a consistent regional carbon budget, compensating for the eddy-covariance flux measurement data (Jung et al., 2011). Recent advancements in the data-driven approach have allowed us to use the upscaled flux data for model benchmarking. For example, Ito et al. (2017) used the global GPP data upscaled from the FLUXNET data and investigated agreements among eight terrestrial process-based models that participated in the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP).

7. Regional Synthesis of Carbon Budget

Modelling is playing an important role in the global and regional synthesis of carbon budgets, through collaborations with other approaches. As mentioned above, process-based and data-driven models provide estimates of terrestrial CO₂ budgets that are necessary for bottom-up evaluations, such as East Asia by Piao et al. (2012), South Asia by Patra et al. (2013), and Southeast Asia by Kondo et al. (2018). Ito (2008) and Yoo et al. (2013) applied the VISIT model to East Asian and South Korean land areas, respectively, and evaluated the regional ecosystem CO₂ budget. Recently, Yun et al. (2020) assessed the temporal changes (e.g., enhanced ecosystem uptake) in CO₂ budget of South Korea using atmospheric CO₂ measurement data, process-based models, and atmospheric transport models.

In broad-scale synthesizes, remote sensing plays an increasingly indispensable role, and the collaboration of field measurement, modeling, and remote sensing provides plenty of research opportunities. For example, global continuous maps of fAPAR, LAI, and GPP compiled using multiple platforms and processing
algorithms are available (e.g., Zhao et al., 2006; Yuan et al., 2011; Zhu et al., 2013). Continuous measurements of these variables provide data on temperate phenology and its interannual variability under monsoon climate (e.g., Nasahara and Nagai, 2015). Broad-scale measurements with lidar, e.g., for canopy height, leaf-area density, and vegetation optical depth, allow us to assess structural aspects of terrestrial ecosystems (e.g., Hosoi and Omasa, 2009; Ma et al., 2014; Itakura and Hosoi, 2019; Liu et al., 2019).

Recently developed fine-resolution spectrometers allow the measurement of SIF, which is more tightly coupled with photosynthetic biochemistry than simple reflectance. As demonstrated by Ito et al. (2017), emitted SIF intensity data are useful for examining spatial and temporal variability of GPP simulated by process-based models. These satellite data are obviously useful for data-driven models (e.g., Ichii et al., 2017). Moreover, global GPP data calculated from satellite-observed SIF have become available for more straightforward comparison with the results of process-based models (Li and Xiao, 2019). In Asia, many SIF-oriented field and model studies have been conducted at different sites and scales. For example, Yang et al. (2018) measured CO₂ flux and SIF at a paddy field of Cheorwon, South Korea, and examined the relationship between SIF-derived light-use efficiency and observed GPP. Based on field works, Dechant et al. (2020) presented a framework for analyzing the SIF–GPP relationship in terms of canopy physiological and structural factors for different crops. Although vegetation structure and associated radiation transfer within canopy make the relationship complicated, intimate field–satellite–modeling collaborations would enable us to quantify canopy photosynthesis with higher accuracy.

Remote sensing studies also provide estimates of regional

Fig. 2. Comparison of monthly net ecosystem exchange (NEE) between model simulations and observations at 24 AsiaFlux sites. Reproduced from Ichii et al. (2013). TUR: Tura; YLF: Yakutsk, larch; SKT: Southern Khentei Taiga; LSH: Laoshan; CBS: Changbaishan; MMF: Moshiri, mixed forest; TMK: Tomakomai; TSE: Teshio; GDK: Gwangneung; SMF: Seto; YPF: Yakutsk, pine; TKC: Takayama, conifer; MBF: Moshiri, birch; TKY: Takayama, deciduous; QYZ: Qianyanzhou; HBG: Haibei; BNS: Xishuangbanna; SKR: Sakaerat; MSL: Mase; QHB: Qinghai; MKL: Maeklong; PDF: Palangkaraya; HFK, Haenam; YCS: Yucheng.
carbon budgets by top-down approaches. Several satellites, including the Greenhouse gas Observation SATellite (GOSAT) series of Japan and the Orbiting Carbon Observatory (OCO) series of the United States, provide global data of atmospheric-column CO₂ concentration. By using atmospheric transport models, surface CO₂ exchange fluxes can be inversely estimated from the observed atmospheric CO₂ data (e.g., Maksyutov et al., 2013). Using GOSAT and passenger aircraft measurement data, Basu et al. (2014) estimated the terrestrial CO₂ exchange and its seasonality in tropical Asia. Thompson et al. (2016) assessed the carbon budget of Asia using seven atmospheric transport models and reported a substantial net terrestrial sink on average, 0.46 Pg C yr⁻¹, 1996–2012, mostly in East Asia. The agreement and inconsistency between the bottom-up and top-down estimates have implications for our ability to quantify regional carbon budget with high credibility. Indeed, both approaches are contributing to synthesis of the global CO₂ budget (Friedlingstein et al., 2019). Kondo et al. (2020) investigated the inconsistency i.e., higher land uptake by the top-down approach between the approaches and noted the importance of riverine carbon export to account for the global carbon budget. In sum, to obtain reliable estimates of regional carbon budget, we should use multiple approaches that have different advantages and disadvantages. For example, Fig. 3 compares the annual GPP estimates by using different approaches, indicating overall consistency but local discrepancies.

In terms of the carbon budget, human activities such as agriculture and wood harvest have considerable influences, but their quantification is difficult at the regional scale. A number of flux measurement towers were established in croplands (e.g., Mase paddy field in Japan, Haenam farmland site in South Korea, Jiangdu cropland site in China). However, most process-based models lack realistic agricultural processes such as planting, harvesting, fertilization, and irrigation, and therefore comparison with flux measurement data is difficult in croplands. Instead, several cropland models have been developed to simulate carbon and nitrogen cycles and emissions of GHGs. Fumoto et al. (2008) revised the DeNitrification–DeComposition (DNDC) model to be applicable to paddy fields, by explicitly including rice tilling, the root exudation of carbon and oxygen, and the chemical conditions that lead to GHG production. Katayanagi et al. (2017) applied the model DNDC-Rice to paddy fields in Japan and evaluated CH₄ emissions. Masutomi et al. (2016) developed a paddy field process model, MACRO-Rice, on the basis of the MATSIRO land surface model. Analysis of the model at a paddy field in Tsukuba, Japan, showed that it captured various properties spanning from energy fluxes to grain yield well. Li et al. (2007) developed the Water and Nitrogen Management Model (WNMM) and simulated the nitrogen cycle in a cropland at the Fengqiu Agricultural Experimental Station, China. They found that the model accurately captured the emissions of ammonia and N₂O.

![Figure 3](image URL) Annual GPP (2001–2015 mean) in Asia estimated by different methods. (a) Up-scaled flux measurement data (FLUXCOM: Jung et al., 2017); (b) support vector regression (Ichii et al., 2017); (c) mixed remote sensing and process-based model (BESS v2: Jiang and Ryu, 2016); (d) satellite remote sensing for vegetation reflectance (MODIS: Zhao et al., 2006); (e) satellite remote sensing of sun-induced chlorophyll fluorescence (GOSIF; Li and Xiao, 2019); and (f) process-based model (VISIT; Ito, 2019). Note that two machine learning results (a and b) differ in the observational data used to develop the models.
(2014) compared the results of N₂O emissions at paddy fields in China simulated by WNMM, DAYCENT, and Crop-DNDC. With respect to forest management, Zhao et al. (2009) used the Physiological Principles in Predicting Growth (3-PG) model to simulate the growth of a Chinese fir plantation, including a sensitivity analysis of physiological parameters. Saitoh et al. (2012) applied the NCAR LSM model to an even-aged cypress plantation in Japan and simulated GPP, RE, and NEE. However, few model studies have been conducted including realistic forest management options such as thinning, pruning, and understory mowing.

8. Future Projections

One important purpose of terrestrial ecosystem models is to make future projections, typically in the 21st century. Indeed, many studies have been conducted to assess the impacts of future land-use and climate change on global terrestrial ecosystems (e.g., Friend et al., 2014; Nishina et al., 2014). The future projections are also conducted using Earth system models, in which a carbon cycle scheme is coupled with climatic schemes, aiming at evaluating climatic feedbacks caused by terrestrial and ocean CO₂ exchange (e.g., Hajima et al., 2014). Site-scale future projection is important in terms of early detection of ecosystem changes and their attribution. Ito (2010a) conducted a future projection of the carbon cycle at the Takayama, Tomakomai, and Fujiyoshida sites using the VISIT model and climate scenarios until 2050, and the findings indicated consistent but site- and scenario-dependent increases of GPP and NEE. Regional-scale future projections have also been conducted. For example, Ito et al. (2016) assessed the future changes in NPP, vegetation biomass, and soil carbon stock by the end of the 21st century, using the ISIMIP simulation dataset. As a result of elevated CO₂ and intensified monsoonal climate, the analysis indicated a consistent increase of regional NPP and biomass, with a wide range of variability between models and scenarios. As shown in Fig. 4, considerable changes in the terrestrial carbon budget (e.g., productivity and seasonality) are expected to occur around the AsiaFlux sites, suggesting the importance of monitoring these parameters. Kuribayashi et al. (2017) conducted a future projection for central Japan with the VISIT model. They used future meteorological scenarios produced with a meso-scale meteorological model, Weather Research and Forecast (WRF), accounting for the topographic complexity (e.g., heterogeneous snow cover on the mountain slopes) of the mountainous area. Yi et al. (2019) applied the dynamic soil organic version of the terrestrial ecosystem model (DOS-TEM), originally developed in the United States, to estimate the carbon dynamics of alpine grasslands in Qinghai-Tibetan Plateau under the future-projected climates. They found that the disappearance of permafrost would have substantial impacts on carbon stock and productivity, which were predicted to increase due to the CO₂ fertilization. Ito et al. (2015) conducted a simulation with the NCAR LSM under future (2068–2073) conditions at the Takayama site. These site-scale studies were effective at specifying ecophysiological processes and factors such as changes in leaf phenology and overstory/understory contributions.

9. Concluding Remarks

This review summarized the achievements of model studies conducted in Asia, focusing on relationships with the regional flux measurement network, AsiaFlux. Activities of modeling studies in this region are comparable with those in other regions such as the AmeriFlux and European flux networks (followed by the International Carbon Observation System) (Keenan et al., 2019; Baldocchi, 2020). Many models, including process-based and data-driven models, have been developed in Asia, which is predicted to undergo severe population and land-use pressures. The model studies were enhanced by the use of observational data and have made contributed to the global synthesis of GHG budgets and thereby to policy-relevant activities such as the Intergovernmental Panel on Climate Change assessments and the United Nations Framework Convention of Climate Change (e.g., Saunois et al., 2017; Friedlingstein et al., 2019; Tian et al., 2019). This region is also remarkable for its

Fig. 4. Simulated net primary production (NPP) and net ecosystem CO₂ exchange (NEE) at AsiaFlux sites. (a) Haibei, China; (b) Takayama, Japan; (c) Belut, India; and (d) Pasoh, Malaysia. Based on simulations by seven ecosystem models. Reproduced from Ito et al. (2016).
contributions to the global biogeochemical cycles and climate system. Recent scientific and technological developments (e.g., high-spatial-resolution or geostationary satellites, deep learning algorithms, and high-performance computers) have enhanced environmental modeling studies. Indeed, these models are increasingly necessary not only for scientific studies but also for practical, policy-relevant issues such as impact assessments and management planning (cf. Fig 1). For any of these purposes, validation with flux measurement data from site to global (i.e., upscaled) scales is now necessary to prove that the model is valid.

The increasing utility of models in turn encourages field monitoring and data management as conducted by FLUXNET and AsiaFlux. However, there remain serious issues and uncertainties in the present models of terrestrial processes. As shown by model intercomparison studies, the present models do not agree very well in temporal and spatial patterns in the simulated fluxes, and the increasing complexity of the models makes it more and more difficult to specify pivotal processes and parameters. The present models also have weaknesses in simulating the impacts of extreme meteorological events (e.g., tropical cyclones) and disturbances such as land-use conversion (e.g., from tropical forest to oil palm plantation). Socioeconomic scenarios and climate projections suggest the future intensification of land-use and extreme events, indicating the need for further studies.

Acknowledgements

This study was supported by funds provided by a Japan Society for the Promotion of Science KAKENHI grant (no. 17H01867), the Environmental Research Fund (JPMERF20172010) of the Ministry of Environment, and the Environmental Restoration and Conservation Agency, Japan. This work is a contribution of the AsiaFlux 20th Anniversary, and the authors express their gratitude to all flux researchers whose work is discussed in this review.

References

Aber JD, Magill A, McNulty SG et al., 1995: Forest biogeochemistry and primary production altered by nitrogen saturation. Water, Air, and Soil Pollution 85, 1665–1670.

Adachi M, Ito A, Ishida A et al., 2011: Carbon budget of tropical forests in Southeast Asia and the effects of deforestation: an approach using a process-based model and field measurements. Biogesosciences 8, 2635–2647. doi: 10.5194/bg-8-2635-2011

Arakida H, Miyoshi T, Ise T et al., 2017: Non-Gaussian data assimilation of satellite-based leaf area index observations with an individual-based dynamic global vegetation model. Nonlinear Processes in Geophysics 24, 553–567. doi: 10.5194/npg-24-553-2017

Arnett A, Harrison SP, Zaehle S et al., 2010: Terrestrial biogeochemical feedbacks in the climate system. Nature Geoscience 3, 525–532. doi: 10.1038/ngeo905

Baldocchi DD, 2020: How eddy covariance flux measurements have contributed to our understanding of Global Change Biology. Global Change Biology 26, 242–260. doi: 10.1111/gcb.14807

Baldocchi DD, Hutchison BA, 1986: On estimating canopy photosynthesis and stomatal conductance in a deciduous forest with clumping foliage. Tree Physiology 2, 155–168.

Baldocchi D, Falge E, Gu L et al., 2001: FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bulletin of the American Meteorological Society 82, 2415–2434.

Ball JT, Woodrow IE, Berry JA, 1987: A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: J. Biggins (ed) Progress in Photosynthesis Research. Martinus Nijhoff, Dordrecht, pJ 221–224.

Basu S, Krol M, Butz A et al., 2014: The seasonal variation of the CO2 flux over Tropical Asia estimated from GOSAT, CONTRAIL, and IASI. Geophysical Research Letters 41, 1809–1815. doi: 10.1002/2013GL059105

Bonan G, 2002: Ecological Climatology: Concepts and Applications. Cambridge University Press, Cambridge, UK.

Buckley TN, Mott KA, 2013: Modelling stomatal conductance in response to environmental factors. Plant, Cell, and Environment 36, 1691–1699. doi: 10.1111/pce.12140

Cao M, Woodward FI, 1998: Net primary and ecosystem production and carbon stocks of terrestrial ecosystems and their responses to climate change. Global Change Biology 4, 185–198.

Chen Z, Chen JM, Zhang S et al., 2017: Optimization of terrestrial ecosystem model parameters using atmospheric CO2 concentration data with the Global Carbon Assimilation System (GCAS). Journal of Geophysical Research Biogeosciences 122, 3218–3237. doi: 10.1002/2016JG003716

Clark DB, Mercado LM, Sitch S et al., 2011: The Joint UK Land Environment Simulator (JULES), model description – Part 2: Carbon fluxes and vegetation dynamics. Geoscientific Model Development 4, 701–722. doi: 10.5194/gmd-4-701-2011

Cramer W, Kicklighter DW, Bondeau A et al., 1999: Comparing global NPP models of terrestrial net primary productivity (NPP): overview and key results. Global Change Biology 5, 1–15.

de Pury DGG, Farquhar GD, 1997: Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models. Plant, Cell, and Environment 20, 537–557.

Dechant B, Ryu Y, Badgley G et al., 2020: Canopy structure explains the relationship between photosynthesis and sun-induced chlorophyll fluorescence in crops. Remote Sensing of Environment 241, 111733. doi: 10.1016/j.rse.2020.111733

Farquhar GD, von Caemmerer S, Berry JA, 1980: A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90.

Feng X, Liu G, Chen JM et al., 2007: Net primary productivity of China’s terrestrial ecosystems from a process model driven by remote sensing. Journal of Environmental Management 85, 563–573. doi: 10.1016/j.jenvman.2006.09.021

Foken T, 2006: 50 years of the Monin-Obukhov similarity theory. Boundary-Layer Meteorology 119, 431–447. doi: 10.1007/s10546-006-9048-6

Friedlingstein P, Jones MW, O’Sullivan M et al., 2019: Global carbon budget 2019. Earth System Science Data 11, 1783–1838. doi: 10.5194/essd-11-1783-2019

Friend AD, Arnett A, Kiang NY et al., 2007: FLUXNET and modelling the global carbon cycle. Global Change Biology 13, 610–633.

Friend AD, Lucht W, Rademacher TT et al., 2014: Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO2. Proceedings of the National Academy of Science USA 111, 3280–3285. doi: 10.1073/pnas.1222477110

Fumoto T, Kobayashi K, Li C et al., 2008: Revising a process-based biogeochemistry model (DNDC) to simulate methane emission from rice paddy fields under various residue management and fertilizer regimes. Global Change
Ito, A. and K. Ichii: Review of Terrestrial ecosystem modeling in Asia

Biology 14, 382–402. doi: 10.1111/j.1365-2486.2007.01475.x
Guenther AB, Ji X, Heald CL et al., 2012: The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geoscientific Model Development, 5, 1471–1492. doi: 10.5194/gmd-5-1471-2012

Hajima T, Ito A, Tachiiri K et al., 2014: Uncertainty of concentration - terrestrial carbon feedback in the Earth System Models. Journal of Climate 27, 3425–3445. doi: 10.1175/JCLI-D-13-00177.1

Hashimoto S, Morishita T, Sakata T et al., 2011: Increasing trends of soil greenhouse gas fluxes in Japanese forests from 1980 to 2009. Scientific Reports 1, 116. doi: 10.1038/srep00116

Hashimoto S, Carvalhais N, Ito A et al., 2015: Global spatiotemporal distribution of soil respiration modeled using a global database. Biogeosciences 12, 4121–4132. doi: 10.5194/bg-12-4121-2015

Hikosaka K, 2014: Optimal nitrogen distribution within a leaf canopy under direct and diffuse light. Plant, Cell, and Environment 37, 2077–2085. doi: 10.1111/pce.12291

Hirata R, Takagi K, Ito A et al., 2014: The impact of climate variation and disturbance on the carbon balance of forests in Hokkaido, Japan. Biogeosciences 11, 5139–5154. doi: 10.5194/bg-11-5139-2014

Hosoi F, Omasa K, 2009: Detecting seasonal change of broad-leaved woody canopy leaf area density profile using 3D portable LIDAR imaging. Functional Plant Biology 36, 998–1005. doi: 10.1071/FP09113

Ichii K, Kondo M, Lee Y-H et al., 2013: Site-level model-data synthesis of terrestrial carbon fluxes in the CarboEastAsia eddy-covariance observation network: Toward future modeling efforts. Journal of Forest Research 18, 13–20. doi: 10.1007/s10310-012-0367-9

Ichii K, Suzuki T, Kato T et al., 2010: Multi-model analysis of terrestrial carbon cycles in Japan: Reducing uncertainties in model outputs among different terrestrial biosphere models using flux observations. Biogeosciences 7, 2061–2080. doi: 10.5194/bg-7-2061-2010

Ichii K, Ueyama M, Kondo M et al., 2017: New data-driven estimation of terrestrial CO2 fluxes in Asia using a standardized database of eddy covariance measurements, remote sensing data, and support vector regression. Journal of Geophysical Research Biogeosciences 122, 767–795. doi: 10.1002/2016JG003640

Inatomi M, Ito A, Ishijima K et al., 2010: Greenhouse gas budget of a cool temperate deciduous broadleaved forest in Japan estimated using a process-based model. Ecosystems 13, 472–483. doi: 10.1007/s10021-010-9332-7

Inoue E, 1963: On the turbulent structure of airflow within crop canopies. Journal of Meteorological Society of Japan 41, 317–326.

Ise T, Ikeda S, Watanabe S et al., 2018: Regioma-scale data assimilation of a terrestrial ecosystem model: Leaf phenology parameters are dependent on local climate conditions. Frontiers in Ecology and the Environment 6, 95. doi: 10.3389/fenvs.2018.00095

Itakura K, Hosoi F, 2019: Estimation of leaf inclination angle in three-dimensional plant images obtained from lidar. Remote Sensing 11, 344. doi: 10.3390/rs11030344

Ito A, 2008: The regional carbon budget of East Asia simulated with a terrestrial ecosystem model and validated using AsiaFlux data. Agricultural and Forest Meteorology 148, 738–747. doi: 10.1016/j.agrformet.2007.12.007

Ito A, 2010a: Changing ecophysiological processes and carbon budget in East Asian ecosystems under near-future changes in climate: Implications for long-term monitoring from a process-based model. Journal of Plant Research 123, 577–588. doi: 10.1007/s10265-009-0305-x

Ito A, 2010b: Evaluation of defoliation impacts of tropical cyclones on the forest carbon budget using flux data and a process-based model. Journal of Geophysical Research 115, doi: 10.1029/2010JG001314

Ito A, 2019: Disequilibrium of terrestrial ecosystem CO2 budget caused by disturbance-induced emissions and non-CO2 carbon export flows: a global model assessment. Earth System Dynamics 10, 685–709. doi: 10.5194/esd-10-685-2019

Ito A, Oikawa T, 2002: A simulation model of the carbon cycle in land ecosystems (Sim-CYCLE): A description based on dry-matter production theory and plot-scale validation. Ecological Modelling 151, 147–179.

Ito A, Ichii K, Kato T, 2010: Spatial and temporal patterns of soil respiration over the Japanese Archipelago: A model intercomparison study. Ecological Research 25, 1033–1044. doi: 10.1007/s11284-010-9729-8

Ito A, Inatomi M, Mo W et al., 2007: Examination of model-estimated ecosystem respiration using flux measurements data from a cool-temperate deciduous broad-leaved forest in central Japan. Tellus 59B, 616–624.

Ito A, Murakha K, Koizumi H et al., 2006: Seasonal variation in leaf properties and ecosystem carbon budget in a cool-temperate deciduous broad-leaved forest: simulation analysis at Takayama site, Japan. Ecological Research 21, 137–149.

Ito A, Nishina K, Noda HM, 2016: Evaluation of global warming impacts on the carbon budget of terrestrial ecosystems in monsoon Asia: a multi-model analysis. Ecological Research 31, 459–474. doi: 10.1007/s11284-016-1354-y

Ito A, Nishina K, Reyer CPO et al., 2017: Photosynthetic productivity and its efficiencies in ISIMIP2a biome models: benchmarking for impact assessment studies. Environmental Research Letters 12, doi: 10.1088/1748-9326/aa1087/1019

Ito A, Saigusa N, Murayama S et al., 2005: Modeling of gross and net carbon dioxide exchange over a cool-temperate deciduous broad-leaved forest in Japan: Analysis of gross and interannual change. Agricultural and Forest Meteorology 134, 122–134.

Ito A, Saitoh TM, Sasai T, 2015: Synergies between observational and modeling studies at the Takayama site: towards a better understanding of processes in terrestrial ecosystems. Ecological Research 30, 201–210. doi: 10.1007/s11284-014-1205-7

Ito A, Tohijima Y, Saito T et al., 2019: Methane budget of East Asia, 1990–2015: A bottom-up evaluation. Science of the Total Environment 676, 40–52. doi: 10.1016/j.scitotenv.2019.04.263

Jarvis PG, 1976: The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philosophical Transactions of the Royal Society of London B273, 593–610.

Jiang C, Ryu Y, 2016: Multi-scale evaluation of global gross primary productivity and evapotranspiration products derived from Breathing Earth System Simulator (BESS). Remote Sensing of Environment 186, 528–547. doi: 10.1016/j.rse.2016.08.030

Ju W, Wang S, Yu G et al., 2010: Modeling the impact of...
drought on canopy carbon and water fluxes for a subtropical evergreen coniferous plantation in southern China through parameter optimization using an ensemble Kalman filter. Biogeosciences 7, 845–857.

Jung M, Reichstein M, Margolis HA et al., 2011: Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. Journal of Geophysical Research 116, doi: 10.1029/2010JG001566

Jung M, Reichstein M, Schwalm CR et al., 2017: Compensatory water effects on annual global land CO₂ sink changes to temperature. Nature 541, 516–520, doi: 10.1038/nature20780

Kaminski T, Knorr W, Rayner PJ et al., 2002: Assimilating atmospheric data into a terrestrial biosphere model: A case study of the seasonal cycle. Global Biogeochemical Cycles 16, doi: 10.1029/2001GB001463

Katayanagi N, Fumoto T, Hayano M et al., 2017: Estimation of total CH4 emission from Japanese rice paddies using a new estimation method based on the DNDC-Rice simulation model. Environmental Research 201, doi: 10.1016/j.envres.2017.05.090

Kato T, Knorr W, Scholze M et al., 2013: Simultaneous assimilation of satellite and eddy covariance data for improving terrestrial water and carbon simulations at a semi-arid woodland site in Botswana. Biogeosciences 10, 789–802, doi: 10.5194/bg-10-789-2013

Keenan TF, Moore DJF, Desai A, 2019: Growth and opportunities in networked synthesis through AmeriFlux. New Phytologist 222, 1685–1687

Kondo J, Watanabe T, 1992: Studies on the bulk transfer coefficients over a vegetation surface with a multilayer energy budget model. Journal of Atmospheric Science 49, 2183–2199

Kondo M, Ichii K, Takagi H et al., 2015b: Comparison of the data-driven top-down and bottom-up global terrestrial CO₂ exchanges: GOSSAT CO₂ inversion and empirical eddy flux upscaling. Journal of Geophysical Research 120, doi: 10.1002/2014JD024866

Kondo M, Ichii K, Patra PK et al., 2018: Land use change and El Niño-Southern Oscillation drive decadal carbon balance shifts in Southeast Asia. Nature Communications 9, doi: 10.1038/s41467-018-03374-x

Kondo M, Ichii K, Ueyama M et al., 2013: The role of carbon flux and biometric observations in constraining a terrestrial ecosystem model: a case study in disturbed forests in East Asia. Ecological Research 28, 893–905, doi: 10.1007/s11284-013-1072-7

Kondo M, Ichii K, Ueyama M, 2015a: Impact of anomalous climates on carbon allocation to biomass production of leaves, woody components, and fine roots in a cool-temperate deciduous forest. Agricultural and Forest Meteorology 201, 38–50, doi: 10.1016/j.agrformet.2014.11.005

Kondo M, Patra PK, Stich S et al., 2020: State of the science in reconciling top-down and bottom-up approaches for terrestrial CO₂ budget. Global Change Biology 26, 1068–1084, doi: 10.1111/gcb.14917

Kosugi Y, Shibata S, Kobashi S, 2003: Parameterization of the CO₂ and H₂O gas exchange of several temperate deciduous broad-leaved trees at the leaf scale considering seasonal change. Plant, Cell, and Environment 26, 285–301.

Kosugi Y, Takanashi S, Matsuo N et al., 2006: Impact of leaf physiology on gas exchange in a Japanese evergreen broad-leaved forest. Agricultural and Forest Meteorology 139, 182–199.

Kruinig G, Vivy N, de Noblet-Ducoudré N et al., 2005: A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Global Biogeochemical Cycles 19, R1029:10.2003GBC00199

Kumagai T, Ichie T, Yoshimura M et al., 2006: Modeling CO₂ exchange over Bornean tropical rain forest using measured vertical and horizontal variations in leaf-level physiological parameters and leaf area densities. Journal of Geophysical Research 111, doi: 10.1029/2005JD006676

Kumagai T, Tateishi M, Shimizu T et al., 2008: Transpiration and canopy conductance at two slope positions in a Japanese cedar forest watershed. Agricultural and Forest Meteorology 148, 1444–1455, doi: 10.1016/j.agrformet.2008.04.010

Kuribayashi M, Noh N-J, Saitoh TM et al., 2017: Current and future carbon budget at Takayama site, Japan, evaluated by a regional climate model and a process-based terrestrial ecosystem model. International Journal of Biometeorology 61, 989–1001, doi: 10.1007/s00484-016-1278-9

Lawrence DM, Fishman RA, Koven CD et al., 2019: The Community Land Model Version 5: Description of new features, benchmarking, and impact of forcing uncertainty. Journal of Advances in Modeling Earth Systems 11, doi: 10.1029/2018MS001583

Lee J, Yoon TK, Han S et al., 2014: Estimating the carbon dynamics of South Korean forests from 1954 to 2012. Biogeosciences 11, 4637–4650, doi: 10.5194/bg-11-4637-2014

Leuning R, 1995: A critical appraisal of a combined stomatal-photosynthesis model for C₃ plants. Plant, Cell, and Environment 18, 339–355

Leuning R, 2000: Estimation of scalar source/sink distributions in plant canopies using Lagrangian dispersion analysis: corrections for atmospheric stability and comparison with a multilayer canopy model. Boundary-Layer Meteorology 96, 293–314.

Li X, Xiao J, 2019: Mapping photosynthesis solely from solar-induced chlorophyll fluorescence: A global, fine-resolution dataset of gross primary production derived from OCO-2. Remote Sensing 11, 2563, doi: 10.3390/rs11212563

Li Y, White R, Chen D et al., 2007: A spatially referenced water and nitrogen management model (WNMM) for irrigated intensive cropping systems in the North China Plain. Ecological Modelling 203, 395–423, doi: 10.1016/j.ecolmodel.2006.12.011

Liu J, Chen JM, Cihlar J et al., 1997: A process-based boreal ecosystem productivity simulator using remote sensing inputs. Remote Sensing of Environment 62, 158–175

Liu R, Wen J, Wang X et al., 2019: Derivation of vegetation optical depth and water content in the source region of Yellow River using the FY-3B microwave data. Remote Sensing 11, 1536, doi: 10.3390/rs11131536

Luo Y, Schimel DS, 2011: Model improvements via data assimilation toward ecological forecasting. Ecological Applications 21, 1427–1428.

Ma H, Song J, Wang J et al., 2014: Improvement of spatially continuous forest LAI retrieval by integration of discrete airborne LiDAR and remote sensing multi-angle optical data. Agricultural and Forest Meteorology 189/190, 60–70, doi: 10.1016/j.agrformet.2014.01.009

Mabuchi K, Sato Y, Kida H, 2005: Climatic impact of vegetation change in the Asian tropical region. Part I: Case of the
Northern Hemisphere summer. *Journal of Climate* 18, 410–428.

Mabuchi K, Sato Y, Kida H et al., 1997: A biosphere-atmosphere interaction model (BAIM) and its primary verification using grassland data. *Papers in Meteorology and Geophysics* 47, 115–140.

Maksyutov S, Takagi H, Valsala VK et al., 2013: Regional CO₂ flux estimates for 2009–2010 based on GOSAT and ground-based CO₂ observations. *Atmospheric Chemistry and Physics* 13, 9351–9373. doi: 10.5194/acp-13-9351-2013

Manabe S, 1969: Climate and the ocean circulation I. the atmospheric circulation and the hydrology of the earth’s surface. *Monthly Weather Review* 97, 739–774.

Masutomi Y, Ono K, Takimoto T et al., 2016: A land surface model combined with a crop growth model for paddy rice (MATCRo-Rice v.1) - Part 2: Model validation. *Geoscientific Model Development* 9, 4155–4167. doi: 10.5194/gmd-9-4155-2016

Medlyn BE, Daursma RA, Eamus D et al., 2011: Reconciling the optimal and empirical approaches to modelling stomatal conductance. *Global Change Biology* 17, 2134–2144. doi: 10.1111/j.1365-2486.2010.02375.x

Mellor GL, Yamada T, 1974: A hierarchy of turbulence closure models for planetary boundary layers. *Journal of Atmospheric Sciences* 31, 1791–1806.

Mizoguchi Y, Miyata A, Ohtani Y et al., 2009: A review of tower flux observation sites in Asia. *Journal of Forest Research* 14, 1–9. doi: 10.1007/s10310-008-0101-9

Moffat AM, Papale D, Reichstein M et al., 2007: Comprehensive comparison of gap-filling techniques for eddy covariance net carbon fluxes. *Agricultural and Forest Meteorology* 147, 209–232.

Monsi M, Saeki T, 1953: Über den Lichtfaktor in den Pflanzengesellschaften und seine Bedeutung für die Stoffproduktion. *Japanese Journal of Botany* 14, 22–52.

Monteith JL, 1964: Crop photosynthesis and the flux of carbon dioxide below the canopy. *Journal of Applied Ecology* 1, 321–327.

Monteith JL, 1972: Solar radiation and productivity in tropical ecosystems. *Journal of Applied Ecology* 9, 747–766.

Monteith JL, 1977: Climate and efficiency of crop production in Britain. *Philosophical Transactions of the Royal Society of London B* 281, 277–294.

Mooney HA, Vitousek PM, Matson PA, 1987: Exchange of materials between terrestrial ecosystems and the atmosphere. *Science* 238, 926–932.

Nakane K, 1984: Cycling of soil carbon in a Japanese red pine forest I. before a clear-felling. *Botanical Magazine* 97, 39–60.

Nasahara KN, Nagai S, 2015: Review: Development of an in situ observation network for terrestrial ecological remote sensing: the Phenological Eyes Network (PEN). *Ecological Research* 30, 211–223. doi: 10.1007/s11284-014-1239-x

Navon IM, 2009: Data assimilation for numerical weather prediction: A review. In: SK Park, L Xu (eds) *Data Assimilation for Atmospheric, Oceanic and Hydrological Applications*, pp. 21–65.

Nishina K, Ito A, Beering DJ et al., 2014: Quantifying uncertainties in soil carbon responses to changes in global mean temperature and precipitation. *Earth System Dynamics* 5, 197–209. doi: 10.5194/esd-5-197-2014

Obukhov AM, 1946: Turbulence in an atmosphere with a non-uniform temperature. *Trudy Institute of Theoretical Geophysics*, pp. 95–115.

Oikawa T, 1985: Simulation of forest carbon dynamics based on dry-matter production model: 1. Fundamental model structure of a tropical rainforest ecosystem. *Botanical Magazine* 98, 225–238.

Ooba M, Hirano T, Mogami J-I et al., 2006: Comparisons of gap-filling methods for carbon flux dataset: A combination of a genetic algorithm and an artificial neural network. *Ecological Modelling* 198, 473–486.

Oue H, 2001: Effects of vertical profiles of plant area density and stomatal resistance on the energy exchange processes within a rice canopy. *Journal of Meteorological Society of Japan* 79, 925–938.

Papale D, Valentini R, 2003: A new assessment of European forests carbon exchanges by eddy fluxes and artificial neural network spatialization. *Global Change Biology* 9, 525–535.

Parton WJ, Stewart JWB, Cole CV, 1988: Dynamics of C, N, P and S in grassland soils: a model. *Biogeochemistry* 5, 109–131.

Patra PK, Canadell JG, Houghton RA et al., 2013: The carbon budget of South Asia. *Biogeosciences* 10, 513–527. doi: 10.5194/bg-10-513-2013

Pei F, Li X, Liu X et al., 2013: Assessing the differences in net primary productivity between pre- and post-urban land development in China. *Agricultural and Forest Meteorology* 171/172, 174–186. doi: 10.1016/j.agrformet.2012.12.003

Piao S, Ciais P, Lomas M et al., 2011: Contribution of climate change and rising CO₂ to terrestrial carbon balance in East Asia: A multi-model analysis. *Global and Planetary Change* 75, 133–142. doi: 10.1016/j.gloplacha.2010.10.014

Piao S, Fang J, Zhou L et al., 2005: Changes in vegetation net primary productivity from 1982 to 1999 in China. *Global Biogeochemical Cycles* 19, doi: 10.1029/2004GB002274

Piao S, Ito A, Li SG et al., 2012: The carbon budget of terrestrial ecosystems in East Asia over the last two decades. *Biogeosciences* 9, 3571–3586. doi: 10.5194/bg-9-3571-2012

Raich JW, Rastetter EB, Melillo JM et al., 1991: Potential net primary productivity in South America: application of a global model. *Ecological Applications* 1, 399–429.

Raupach MR, 1991: Vegetation-atmosphere interaction in homogeneous and heterogeneous terrain: some implications of mixed-layer dynamics. *Vegetatio* 91, 105–120.

Reichstein M, Camps-Valls G, Stevens B et al., 2019: Deep learning and process understanding for data-driven Earth system science. *Nature* 566, 195–204. doi: 10.1038/s41586-019-0912-1

Running SW, Gower ST, 1991: FOREST-BGC, a general model of forest ecosystem processes for regional applications. II. dynamic carbon allocation and nitrogen budgets. *Tree Physiology* 9, 147–160.

Ryu Y, Baldocchi DD, Kobayashi H et al., 2011: Integration of MODIS land and atmosphere products with a coupled-process model to estimate gross primary productivity and evapotranspiration from 1 km to global scales. *Global Biogeochemical Cycles* 25, doi: 10.1029/2011GB004053

Saigusa N, Ichii K, Murakami H et al., 2010: Impact of meteorological anomalies in the 2003 summer of gross primary productivity in East Asia. *Biogeosciences* 7, 641–655.

Saigusa N, Li S-G, Kwon H et al., 2013: Dataset of CarboEastAsia and uncertainties in the CO₂ budget evaluation caused by different data processing. *Journal of Forest Research* 18, 41–48. doi: 10.1007/s10310-012-0378-6

Saito M, Maksyutov S, Hirata R et al., 2009: An empirical

J-STAGE Advance Publication DOI: 10.2480/agrmet.D-20-00024
model simulating diurnal and seasonal CO₂ flux for diverse vegetation types and climate conditions. *Biogeosciences* **6**, 585–599.

Saitoh TM, Nagai S, Yoshino J et al., 2015: Effects of canopy phenology on deciduous overstory and evergreen understory carbon budgets in a cool-temperate forest ecosystem under ongoing climate change. *Ecological Research* **30**, 267–277. doi:10.1007/s11284-014-1229-z

Saitoh TM, Nagai S, Yoshino J et al., 2012: Functional consequences of differences in canopy phenology for the carbon budget of two cool-temperate forest types: simulations using the NCAR/LSM model and validation using tower flux and biometric data. *Eurasian Journal of Forest Research* **15**, 19–30.

Sasai T, Ichii K, Yamaguchi Y et al., 2005: Simulating terrestrial carbon fluxes using the new biosphere model BEAMS: Biosphere model integrating eco-physiological and mechanistic approaches using satellite data. *Journal of Geophysical Research* **110**, doi:10.1029/2005JD006046.

Sasai T, Nakai S, Ono K et al., 2017: Estimation of methane emission from rice paddies soils in Japan using the diagnostic ecosystem model. *Journal of Agricultural Meteorology* **73**, 1–7. doi:10.2480/agrmet-D-16-00013.

Sasai T, Okamoto K, Hiyama T et al., 2007: Comparing terrestrial carbon fluxes from the scale of a flux tower to the global scale. *Ecological Modelling* **208**, 135–144. doi:10.1016/j.ecolmodel.2007.05.014.

Sasai T, Saigusa N, Nishida K et al., 2011: Satellite-driven estimation of terrestrial carbon flux over Far East Asia with 1-km grid resolution. *Remote Sensing of Environment* **115**, 1758–1771. doi:10.1016/j.rse.2011.03.007.

Sato H, Ito A, Kohyama T, 2007: SEIB-DGVM: A new Dynamic Global Vegetation Model using a spatially explicit individual-based approach. *Ecological Modelling* **200**, 279–307.

Saunois M, Bousetq P, Poulter B et al., 2017: Variability and quasi-decadal changes in the methane budget over the period 2000–2012. *Atmospheric Chemistry and Physics* **17**, 11135–11161. doi:10.5194/acp-17-11135-2017.

Sellers PJ, Dickinson RE, Randall DA et al., 1997: Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. *Science* **275**, 502–509.

Shang Z, Zhou F, Smith P et al., 2019: Weakened growth of cropland-N₂O emissions in China associated with nationwide policy interventions. *Global Change Biology* **25**, 3706–3719. doi:10.1111/gcb.14741.

Shibata H, Ohite N, Sato F et al., 2006: Biogeochmical model in forest ecosystem: Application and problem of PnET model. *Japanese Journal of Limnology*, **67**, 235–244. (in Japanese with English abstract)

Stitch S, Friedlingstein P, Gruber N et al., 2015: Recent trends and drivers of regional sources and sinks of carbon dioxide. *Biogeosciences* **12**, 653–679. doi:10.5194/bg-12-653-2015.

Stitch S, Huntingford C, Gedney N et al., 2008: Evaluation of the terrestrial carbon cycle, future plant geography and climate – carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). *Global Change Biology* **14**, 2015–2039. doi:10.1111/j.1365-2486.2008.01626.x.

Stitch S, Smith B, Prentice IC et al., 2003: Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. *Global Change Biology* **9**, 161–185.

Situs S, Guenther A, Wang X et al., 2013: Impacts of seasonal and regional variability in biogenic VOC emissions on surface ozone in the Pearl River delta region, China. *Atmospheric Chemistry and Physics* **13**, 11803–11817. doi:10.5194/acp-13-11803-2013.

Sun G, Mu M, 2013: Understanding variations and seasonal characteristics of net primary production under two types of climate change scenarios in China using the LPJ model. *Climatic Change* **120**, 755–769. doi:10.1007/s10584-013-0833-1.

Takata K, Emori S, Watanabe T, 2003: Development of the minimal advanced of the surface interaction and runoff. *Global and Planetary Change* **38**, 209–222.

Takata K, Patra PK, Kotani A et al., 2017: Reconstruction of top-down and bottom-up CO₂ fluxes in Siberian larch forest. *Environmental Research Letters* **12**, 125012. doi:10.1088/1748-9326/aa926d.

Tan K, Ciais P, Piao S et al., 2010: Application of the ORCHIDEE global vegetation model to evaluate biomass and soil carbon stocks of Qinghai-Tibetan grasslands. *Global Biogeochemical Cycles* **24**, doi:10.1029/2009GB003530.

Tanaka K, 2002: Multi-layer model of CO₂ exchange in a plant community coupled with the water budget of leaf surfaces. *Ecological Modelling* **147**, 85–104.

Tanaka K, Kim H-J, Saito K et al., 2012: How have both cultivation and warming influenced annual global isoprene and monoterpene emissions since the preindustrial era? *Atmospheric Chemistry and Physics* **12**, 9703–9718. doi:10.5194/acp-12-9703-2012.

Terasima I, Hikosaka K, 1995: Comparative ecophysiology of leaf and canopy photosynthesis. *Plant, Cell, and Environment* **18**, 1111–1128.

Thompson RL, Patra PK, Chevallier F et al., 2016: Top-down assessment of the Asian carbon budget since the mid 1990s. *Nature Communications* **7**, doi:10.1038/ncomms10724.

Thornton PE, Law BE, Gholz HL et al., 2002: Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needleleaf forests. *Agricultural and Forest Meteorology* **113**, 185–222.

Tian H, Lu C, Ciais P et al., 2016: The terrestrial biosphere as a net source of greenhouse gases to the atmosphere. *Nature* **531**, 225–228. doi:10.1038/nature16946.

Tian H, Lu C, Yang J et al., 2015: Global patterns and controls of soil organic carbon dynamics as simulated by multiple terrestrial biosphere models: current status and future directions. *Global Biogeochemical Cycles* **29**, doi:10.1002/2014GB005021.

Tian H, Melillo J, Lu C et al., 2011: China’s terrestrial carbon balance: Contributions from multiple global change factors. *Global Biogeochemical Cycles* **25**, doi:10.1029/2010GB003838.

Tian H, Yang J, Xu R et al., 2019: Global soil nitrous oxide emissions since the pre-industrial era estimated by an ensemble of terrestrial biosphere models: Magnitude, attribution and uncertainty. *Global Change Biology* **25**, 640–659. doi:10.1111/gcb.14514.

Toda M, Yokozawa M, Sumida A et al., 2007: Simulating the carbon balance of a temperate larch under various meteorological conditions. *Carbon Balance and Management* **2**, 1–18.

Tramontana G, Jung M, Schwalm CR et al., 2016: Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms. *Biogeosciences* **13**, 4291–4313. doi:10.5194/biog-13-4291-2016.

Ueyama M, Ichii K, Hirata R et al., 2010: Simulating carbon and water cycles of larch forests in East Asia by the BIOME-BGC model with AsiaFlux data. *Biogeosciences* **7**, 959–977.
Ueyama M, Ichii K, Iwata H et al., 2013: Upscaling terrestrial carbon dioxide fluxes in Alaska with satellite remote sensing and support vector regression. *Journal of Geophysical Research Biogeosciences* **118**, 1266–1281. doi: 10.1002/jgrg.20095

Ueyama M, Tahara N, Iwata H et al., 2016: Optimization of a biochemical model with eddy covariance measurements in black spruce forests of Alaska for estimating CO₂ fertilization effects. *Agricultural and Forest Meteorology* **222**, 98–111. doi: 10.1016/j.agrformet.2016.03.007

van der Werf GR, Randerson JT, Giglio L et al., 2010: Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009). *Atmospheric Chemistry and Physics* **10**, 11707–11735. doi: 10.5194/acp-10-11707-2010

Wang YP, Jarvis PG, 1990: Description and validation of an array model-MAESTRO. *Agricultural and Forest Meteorology* **51**, 257–280.

Wang Y-P, Trudinger CM, Enting IG, 2009: A review of applications of model-data fusion to studies of terrestrial carbon fluxes at different scales. *Agricultural and Forest Meteorology* **149**, 1825–1842. doi: 10.1016/j.agrformet.2009.07.009

Watanabe T, Yokozawa M, Emori S et al., 2004: Developing a Multilayered Integrated Numerical model of Surface physics Growing plants interaction (MINoSGI). *Global Change Biology* **10**, 963–982.

Wu L, Kato T, Sato H et al., 2019: Sensitivity analysis of the typhoon disturbance effect on forest dynamics and carbon balance in the future in a cool-temperate forest in northern Japan by using SEIB-DGVM. *Forest Ecology and Management* **451**, 117529. doi: 10.1016/j.foreco.2019.117529

Wu X, Zhang A, 2014: Comparison of three models for simulating N₂O emissions from paddy fields under water-saving irrigation. *Agronomic Environment* **98**, 500–509. doi: 10.1610/atmosenv.2014.09029

Xu T, Guo Z, Liu S et al., 2018: Evaluating different machine learning methods for upscaling evapotranspiration from flux towers to the regional scale. *Journal of Geophysical Research Atmosphere* **123**, 8674–8690. doi: 10.1029/2018JD028447

Yamamoto S, Saigusa N, Gamo M et al., 2005: Findings through the AsiaFlux network and a view toward the future. *Journal of Geographical Sciences* **15**, 142–148.

Yang F, Ichii K, White MA et al., 2007: Developing a continental-scale measure of gross primary production by combining MODIS and AmeriFlux data through Support Vector Machine approach. *Remote Sensing of Environment* **110**, 109–122. doi: 10.1016/j.rse.2007.02.016

Yang K, Ryu Y, Dechant B et al., 2018: Sun-induced chlorophyll fluorescence is more strongly related to absorbed light than to photosynthesis at half-hourly resolution in a rice paddy. *Remote Sensing of Environment* **216**, 658–673. doi: 10.1016/j.rse.2018.07.008

Yao Y, Li Z, Wang T et al., 2018: A new estimation of China’s net ecosystem productivity based on eddy covariance measurements and a model tree ensemble approach. *Agricultural and Forest Meteorology* **253/254**, 84–93. doi: 10.1016/j.agrformet.2018.02.007

Yi S-H, Xiang B, Meng B-P et al., 2019: Modeling the carbon dynamics of alpine grassland in the Qinghai-Tibetan Plateau under scenarios of 1.5 and 2 °C global warming. *Advances in Climate Change Research* **10**, 80–91. doi: 10.1016/j.accre.2019.06.001

Yoo S, Kwak D-A, Cui G et al., 2013: Estimation of the ecosystem carbon budget in South Korea between 1999 and 2008. *Ecological Research* **28**, 1045–1059. doi: 10.1007/s10344-013-1085-2

Yoshifujii N, Kumagai T, Ichii T et al., 2020: Limited stomatal regulation of the largest-size class of Dryobalanops aromatica in a Bornean tropical rainforest in response to artificial soil moisture regulation. *Journal of Plant Research* **133**, 175–191. doi: 10.1007/s10265-019-01161-3

Yu R, Ruddell BL, Kang M et al., 2019: Anticipating global terrestrial ecosystem state change using FLUXNET. *Global Change Biology* **25**, 2352–2367. doi: 10.1111/gcb.14602.

Yuzhi H, Dai Y, Xiao Z et al., 2011: Reprocessing the MODIS Leaf Area Index products for land surface and climate modelling. *Remote Sensing of Environment* **115**, 1171–1187. doi: 10.1016/j.rse.2011.01.001

Yun J, Jeong S, Ko C-H et al., 2020: Enhanced regional terrestrial carbon uptake over Korea revealed by atmospheric CO₂ measurements from 1999 to 2017. *Global Change Biology* **26**, 3368–3383. doi: 10.1111/gcb.15063.

Zhang HF, Chen BZ, van der Laan-Luijkx ET et al., 2014: Net terrestrial CO₂ exchange over China during 2001–2010 estimated with an ensemble data assimilation system for atmospheric CO₂. *Journal of Geophysical Research Atmosphere* **119**, 3500–3515. doi: 10.1002/2013JD021297

Zhang L, Guo H, Jia G et al., 2014: Net ecosystem productivity of temperate grasslands in northern China: An upsampling study. *Agricultural and Forest Meteorology* **184**, 71–81. doi: 10.1016/j.agrformet.2013.09.004

Zhang L, Yu G, Gu F et al., 2012: Uncertainty analysis of modeled carbon fluxes for a broad-leaved Korean pine mixed forest using a process-based ecosystem model. *Journal of Forest Research* **17**, 268–282. doi: 10.1007/s10310-011-0305-2

Zhao M, Running SW, Nemani RR, 2006: Sensitivity of Moderate resolution Imaging Spectrometer (MODIS) terrestrial primary production to the accuracy of meteorological reanalysis. *Journal of Geophysical Research* **111**, doi: 10.1029/2004JG000004

Zhao M, Xiang W, Peng C et al., 2009: Simulating age-related changes in carbon storage and allocation in a Chinese fir plantation growing in southern China using the 3-PG model. *Forest Ecology and Management* **257**, 1520–1531. doi: 10.1016/j.foreco.2008.12.025

Zhu B, Li J, Pan Y et al., 2013: Global data sets of vegetation leaf area index (LAI/3g) and fraction of photosynthetically active radiation (FPAR)3g derived from Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI13g) for the period 1981 to 2011. *Remote Sensing* **5**, 927–948. doi: 10.3390/rs5020927

Zhu Q, Jiang H, Peng C et al., 2011: Evaluating the effects of future climate change and elevated CO₂ on the water use efficiency in terrestrial ecosystems of China. *Ecological Modelling* **222**, 2414–2429. doi: 10.1016/j.ecolmodel.2010.09.035

Zhu Q, Peng C, Liu J et al., 2016: Climate-driven increase of natural wetland methane emissions offset by human-induced wetland reduction in China over the past three decades. *Scientific Reports* **6**, doi: 10.1038/srep38020

Zhu X-J, Yu G-R, He H-L et al., 2014: Geospatial statistical assessments of carbon fluxes in terrestrial ecosystems of China: Results from upsampling network observations. *Global and Planetary Change* **118**, 52–61. doi: 10.1016/j.gloplacha.2014.04.003