Evaluation of fish diversity and abundance in the Kabul River with comparisons between reaches above and below Kabul City, Afghanistan

Ugyen Kelzang 1, Ahmad Farid Habibi 2 & Ryan J. Thoni 3

1 Forest Research Institute (Deemed to be University), Kaulagarh Road, PO. I.P.E., Dehradun, Uttarakhand 248195, India.
2 Present address: Ministry of Health, P.O. Box: 726, lhado Lam, Kawajangsa, Thimphu, Bhutan.
3 Feather River College, 570 Golden Eagle Avenue, Quincy, CA 95971, United States.

Abstract: The fish fauna of the Kabul River downstream of the City of Kabul face threats from increasing human population such as pollution, overfishing, and increased development. Although the rapid increase of these activities is leading to threats to fishes in the Kabul River, no studies have examined the changes in diversity, distribution, and abundance of fish fauna in the Kabul River surrounding of Kabul City. In this study, the Kabul River was divided into two zones (upstream and downstream) consisting of six sampling sites (3 sites per zone). Of the total of 1,190 fishes collected, Cypriniformes was the dominant order with one family, six genera, and eight species. Cyprinidae was the dominant family of that order with 81.4% (n = 969) of total individuals. Species abundance was higher in the upstream reaches in almost all analyses. Upstream sites recorded 11 species, while seven species were recorded from downstream sites. Fish species richness was significantly higher upstream versus downstream reaches (H’ = 1.90 ± 0.15 vs. 0.63 ± 0.58; U = -2.3, z = -1.99, p = 0.04, r = -0.81). Similarly, species evenness was also higher upstream than downstream (J’ = 0.84 ± 0.01). Low diversity, abundance, and evenness in downstream reaches are likely due to anthropogenic activities affecting the river in and around Kabul City.

Keywords: Anthropogenic, diversity indices, native species, pollution, species composition.
INTRODUCTION

Fishes are the most diverse and abundant group of vertebrates in the world (Powers 1989; Ravi & Venkatesh 2008), making up nearly 50% of all vertebrate diversity. Further, fishes are important keystone species in many ecosystems and exhibit diverse behaviours and ecologies (Spencer & King 1984; Allan 2004; Dudgeon et al. 2006; Wu et al. 2014). They play important roles managing balanced trophic dynamics within a system. Additionally, fishes contribute to food security throughout most of the world, making up as much as 17% of the world population’s protein intake (Bennett et al. 2018) and fishing is one of the most common livelihoods globally (FAO 2014).

An assessment done by the International Union for Conservation of Nature (Reid et al. 2013), on more than 5,000 species, reported that freshwater fishes are the most threatened group of vertebrates in the world. The Himalayan region holds a variety of both warm and cold-water fishes (Jayaram 2010). Coad (2015) reported that there are 85 species of fishes belonging to 10 families in the landlocked country of Afghanistan, however, FishBase.org (2020) reports 125 species (all freshwater species) known to occur in Afghanistan – a gulf that reflects the paucity of reliable data on fish diversity in Afghanistan. Though, several studies on the fishes have been conducted throughout different regions of the Himalaya (Vishwanath et al. 1998; Shrestha 1999; Goswami et al. 2007; Jayaram 2010; Gurung et al. 2013; Thoni & Thoni 2015; Prasad et al. 2020), in Afghanistan, such studies are very limited in scope and number, despite the fact that several fishes found in the country are endemic and likely threatened (UNEP 2003). In order to preserve biodiversity in a given area, we must understand what the diversity is and how it is impacted by different resource uses, development processes, and management strategies.

The Kabul River is home to a diverse fish community including the globally endangered Golden Mahseer Tor putitora (UNEP 2008). The Kabul River is mainly used for irrigation, waste disposal, watering livestock, and fishing. The river runs through the most densely populated areas of the city. In the Kabul River, water pollution is a significant threat to the freshwater ecosystem (Weir 2018). The United Nations Environment Protection (UNEP 2003) reported pollution of the Kabul River in the city of Kabul mainly by the release of industrial effluents, domestic waste, and development activities. To date no biodiversity indices-based research efforts on fish fauna have been carried out in Afghanistan. Hence, this study aims to assess the diversity, distribution, and abundance of fish fauna in the Kabul River downstream of Kabul City compared to upstream.

MATERIAL AND METHODS

Study area

This study was conducted along reaches of the Kabul River above and below Kabul City, located at 34.542°N 68.803°E, at an elevation of 1,791 m (Figure 1). The study area was divided into two different zones: upstream, and downstream. Three sampling sites each from each zone were selected to sample fish (Figure 1; Table 1). Four sampling replicates were taken in each sampling sites, keeping 400 m distance between sampling replicates. Sites were selected to ensure that similar habitat types were represented in upstream and downstream reaches. Fish sampling was carried out between December 2019 to June 2020 by using nets (mesh sizes ranging from ½ inch to 2.5 inch) both in upstream and downstream reaches. We used different mesh sizes of nets so as to minimize the bias in sampling fishes of numerous sizes due to specific gears.

The area receives 312 mm of precipitation on an average annually, with rarer precipitation in the summer months (NEPA 2007). Average annual temperature of the area ranges from 4.3 °C to 19.6 °C, with approximately 12.4 °C to 32.1 °C during summer months and -7.1 °C to 8.3 °C in winter months (Broshears et al. 2005). The area is densely populated (Mack et al. 2009), with much of the non-wood forest product industry (mainly fruits and tree nut farming and industry) dependent upon the Kabul River and its tributaries for the disposal of effluents (dyes, metals, and minerals). A population of roughly 3–5 million people live in the greater Kabul area (Barbè 2013).

Fish sampling

Using the expertise of the local fishermen, ichthyofaunal sampling was done in the selected sampling sites. Fishes were collected using gill nets and fish traps for two days in each sampling site. Fishes were counted, photographed, and identified up to the species level when possible, before being released back into the river. Species that were not readily identified by the project team on site were photographed and all diagnostic data required for identification were taken for further identification and referred to available literature. Taxonomic studies of the fish fauna collected from this study were performed following Mishra (1959), Talwar &
Jhingran (1991), Jayaram (1981, 2010), and Coad (2014, 2015).

Analysis of data

A Mann-Whitney test, comparing species diversity and abundance was performed using IBM SPSS Statistics 23.0 to examine differences in species abundance and diversity between upstream and downstream locations. Dendrogram of Bray-Curtis coefficients of similarity (Bray & Curtis 1957) and rank abundance plots of sites were generated using BioDiversity Professional version 2.0 (McAleece 1999). As there seems to be no single diversity index more appropriate than another (Morris et al. 2014), several common diversity indices were tested. Shannon diversity index (Shannon & Wiener 1949), Simpson’s diversity (Pielou 1969), Pielou evenness index (Pielou 1975), Margalef’s richness index (Margalef 1958), Menhinick’s index (Menhinick 1964), and Sørensen’s similarity coefficient (Dice 1945; Sørensen 1948) were calculated using the following formulae:

(a) Shannon diversity index: $H' = -\sum_{i=1}^{S} p_i \ln p_i$

where p_i = the proportion of individuals belonging to the i^{th} species.

(b) Simpson’s diversity: $D_1 = 1 - \sum_{i=1}^{S} p_i^2$

where p_i = the proportion of individuals belonging to the i^{th} species.

(c) Pielou evenness index: $J' = \frac{H'}{\ln S}$

where H' = Shannon diversity index; S = species richness.

(d) Margalef’s richness index: $D_{MB} = \frac{S-1}{\ln N}$

where S = species richness; N = total number of individuals.

(e) Menhinick’s index: $D_{Mn} = \frac{S}{N}$

where S = species richness; N = total number of individuals.

(f) Sørensen’s similarity coefficient: $CC = \frac{2C}{S_1 + S_2}$

where C = number of species the two communities
RESULTS AND DISCUSSION

Fish composition

A total of 1,190 fishes were collected (Table 2) from the study area. Out of the total of all fishes across both zones, 81.4 % (n= 969) of belong to the order Cypriniformes, 18.2 % (n= 216) to Salmoniformes, and 0.4 % (n= 5) to Cichliformes (Figure 2). This is in line with the research carried out by Saund et al. (2012) in the Mahakali River, Nepal, where they have reported Cypriniformes as the most dominant order. Studies conducted by Shendge (2007), Aryani (2015), and Akhi et al. (2020) have reported similar community structures. However, the aquatic habitats of Afghanistan are less conducive to and are geographically isolated from many of the more diverse groups of Asian Siluriformes, resulting in our relatively low diversity of catfishes. Cyprinids can live in cold waters, tolerate very low oxygen levels, and exhibit a broad range of trophic guilds (Royce 1996). Hence, combined with historical processes, they are typically found to be more dominant in freshwater habitats throughout most of the Asian continent.

The order of Cypriniformes was represented by one family, six genera, and eight species. The second most abundant order, Salmoniformes, was represented by one family, two genera, and two species. Cichliformes was only represented by a single species. Among families, Cyprinidae was the most dominant within the study area, and Salmonidae was second most dominant family. Similarly, Dau & Parkash (2009), Cunico et al. (2011), Choubey & Qureshi (2013), Mohsin et al. (2013), Hu et al. (2019), and Herawati et al. (2020) reported Cyprinidae as the dominant family in regional censuses throughout much of Asia.

Among the predominant fish families, Cyprinidae is one of the most diverse (Boschung & Mayden 2004; Shen et al. 2016) and pollution-disturbance-tolerant families, with more than 2,000 species and 210 genera (Barbour et al. 1999; Grabarkiewicz & Davis 2008). Their ability to survive in unclean habitats validates their dominance in the most polluted part of the Kabul River (Kabul city and downstream reaches).

Species abundance

Within the upstream sites, Schizothorax sp. was highly abundant at sites S2 (n= 76) and S3 (n= 117) followed by Schizothorax esocinus. At S1, Oncorhynchus
mykiss (n= 44) was the most abundant species, followed by S. esocinus (n= 31) (Figure 3a). Schizothorax sp. was the most abundant species at all three of the downstream sites (S4 n= 64, S5 n= 52, S6 n= 87; Figure 3b). Species abundance significantly differs among the 6 different sampling sites. *Alburnoides holciki* (n= 33), *Ctenopharyngodon idella* (n= 18), *Cyprinus carpio* (n= 15), *Hypophthalmichthys molitrix* (n= 26), *Salmo trutta* (n= 16), *Schizothorax esocinus* (n= 70), *Schizothorax* sp. (n= 117), *Tariqilabeo diplochilus* (n= 35), *Tariqilabeo* sp. (n= 11), and *Coptodon zillii* (n= 4) were recorded more in S3 than in other sites.

Overall, in upstream sites, *Schizothorax* sp. was abundant (n= 217, 72.33 ± 46.61), followed by *Schizothorax esocinus* (n= 148, 49.33 ± 19.60) and *Oncorhynchus mykiss* (n= 103, 34.33 ± 11.93). *Coptodon zillii* (n= 5, 1.67 ± 2.08) was least abundant fish species in the upstream zone (Table 3). Likewise, in the downstream, *Schizothorax* sp. (n= 203, 67.67 ± 17.79) was most abundant and *Cyprinus carpio* (n= 6, 2 ± 3.46) was least abundant.

Pandey et al. (2018) also found abundance and dominance of *Schizothorax* spp. in rivers in Uttarakhand, India. Similar reports on the abundance of schizothoracines were also made in the Tibetan Plateau (Zhang et al. 2017; Ma et al. 2020). Moreover, Kabul is a cold place located at 1,791 m and Aljazeera (2012) reported -17°C at night in February. Schizothoracines are cold-water species, also living at elevations of up to 3,323 m (Petr et al. 2002). Thus, the abundance of schizothoracines in the Kabul River is in consistence with the other rivers of the Himalaya.

While comparing overall fish abundance between upstream and downstream reaches, upstream (n= 744) was found to be higher than downstream (n= 446). This result is contrary to normal patterns of fish diversity along a river continuum (Edwards 1993; Tiemann et al. 2004). In addition, the dendrogram of Bray-Curtis coefficients of similarity in the abundance of fish was produced. As per the cluster analysis, S2 and S6 had a parallel Bray-Curtis similarity in their species abundance of about 83 %. Though these sites are from different locations (upstream and downstream), the high similarity explained between these sites is mainly due to similar level of anthropogenic activities and pollution level. S1, S5, S3, and S2–S6 combined had a common similarity of about 74 %, indicating similarity in species abundance (Figure 4).

Species present at the upstream sites like *Salmo trutta*, *Tariqilabeo diplochilus*, *Tariqilabeo* sp., and
Coptodon zillii were not recorded from the downstream sites. This is likely because of the high intensity of ongoing habitat degradation caused by the discharge of industrial waste and sewage directly into the river system, construction activities, and the high density of human population and their associated anthropogenic effects on the downstream reaches.

Native and non-native species in sampling sites

From the total of nine species recorded from the area (lumping Schizothorax sp. with Schizothorax esocinus and Tariqilabeo sp. with Tariqilabeo diplochilus), five species were found to be native and four non-native species (Table 4).

We recorded the highest number of native species from S3 (n= 286), followed by S2 (n= 157), and S6 (n= 140). Similarly, as shown in Table 5, non-native fish species were recorded more in S3 (n= 84) followed by S2 (n= 83) and S6 (n= 75). The lowest number of non-native fish were found in S4 (n= 14). It was found that almost all non-native fish species were used for aquaculture in the area. The decrease in native species richness while moving from upstream to downstream was also reported by Loures & Pompeu (2019). They stated that the main reason behind such occurrence is mainly due to increase in non-native species in downstream areas.

Diversity and richness of fish species

The high species richness in S3 and S2 were indicated by Margalef’s diversity index (D_{Mg}) (1.69 and 1.64, respectively), as their values were higher than other sampling sites. To examine the similarity of species
richness between the sampling sites, Sorenson’s similarity coefficient (CC) was appraised (Table 5). Sampling sites S2 & S3, S1 & S6, S4 & S6, and S5 & S6 indicated having similarity of 95 %, 93 %, 92 %, and 92 % between them, respectively. Sorenson’s similarity coefficient value between S3, S4, and S5 (CC= 0.71) was the lowest, which also shows 71 % of similarity between them.

Altogether, upstream sites recorded 11 species while downstream sites recorded seven species. High richness upstream ($D_{m} = 0.63 \pm 0.05, D_{mg} = 1.59 \pm 0.15$) was supported by Menhinick’s Index (D_{mn}) and Margalef’s diversity index (D_{mg}). For downstream, Menhinick’s index and Margalef’s diversity index were 0.53 ± 0.05 and 1.07 ± 0.04 correspondingly, which was considerably less than upstream (Table 6). This was supported by Mann-Whitney test which revealed that fish richness upstream ($H= 1.90 \pm 0.15, D_{m} = 0.81 \pm 0.02$) of Kabul City when compared to downstream reaches ($H= 1.36 \pm 0.22, D_{m} = 0.67 \pm 0.09$) was significantly different ($U= 0.00, z= -1.99, p= 0.04, r= 0.81$) (Table 7).

Fish species diversity was evaluated using various diversity indices. The most diverse site among all was S3 with Shannon diversity index (H') of 2.04 and Simpson’s diversity (D') of 0.83. S4 was the site with least diversity ($H'= 1.12, D'= 0.57$). Similarly, species evenness was highest in S3 with Pielou evenness index (J') of 0.85 and lowest in S4 ($J'= 0.62$).

Overall, diversity of fishes was higher in reaches of the Kabul River upstream ($H'= 1.90 \pm 0.15, D_{m} = 0.81 \pm 0.02$) of Kabul City when compared to downstream reaches ($H'= 1.36 \pm 0.22, D_{m} = 0.67 \pm 0.09$) which was indicated both by the Shannon diversity index and Simpson’s diversity. Likewise, species evenness was higher in reaches upstream of Kabul City ($J'= 0.84 \pm 0.01$) compared to downstream reaches ($J'= 0.74 \pm 0.10$). Previous studies have shown a similar pattern in which reaches of rivers upstream of densely populated areas harbour higher diversity of freshwater fishes compared to downstream (Tawari-Fufeyin & Ekaye 2007).

The higher species richness and diversity in upstream reaches in the study area may be due to the constant flow of the river, less modification of land use, less pollution and fewer developmental activities. Urban activities like urban and industrial construction leads to land use change, adding pollution and nutrients to the river system, varying hydro-morphology and hydrologic flow regimes, and creating unstable flow (as the valley remains dry in most of the winter months) which negatively effects fish diversity and richness (Grimm et al. 2000; Wang et al. 2001; Booth 2005; Walsh et al. 2005; Gebrekiros 2016).

Freshwater ichthyofauna conservation

Afghanistan is an arid and landlocked country (Brekle 2007; Wily 2015), but is abundant in water resources (Qureshi 2002). However, as much as 80 % of Afghanistan’s freshwater is contaminated and water pollution is a serious threat to the conservation of aquatic biodiversity and human survival (Weir 2018). In Kabul City, solid waste, waste water (both domestic and industrial), and open sewers directly drain into the Kabul River (UNEP 2003), exacerbated by population growth (Mack et al. 2009), modifying the aquatic habitat. Habitat quality plays a great role in the fish composition,
To conserve these species and other associated species of the freshwater ecosystem in Kabul City. This study has documented 11 fish species from the area. One species of them is listed under the IUCN Red List of Threatened Species (Table 8). To conserve these species and other associated species in the area, adoption of scientific fishing or sustainable fishing methods, timely monitoring of water quality, and proper management of solid waste and water are urgently recommended.

CONCLUSIONS

The Kabul River downstream of Kabul City is threatened by numerous anthropogenic activities. The majority of fishes recorded from the area were from the upstream sites where the aquatic habitat was least disturbed compared to downstream sites. Intensive agriculture, infrastructural development, and ineffective management of waste in the downstream area increases sedimentation, contamination, and changes the overall aquatic habitats and their function. Our study shows that species diversity, richness, and abundance tend to decrease as we move from sites upstream of Kabul City to sites downstream of Kabul City. Thus, implementation of sustainable development practice is deemed essential, so as to manage the water resources and conserve its biodiversity. Moreover, studies on physiochemical parameters of the river, aquatic macroinvertebrates and fishes, and their association needs to be carried out to generate additional baseline information on the aquatic biodiversity of the area and to monitor water quality.

REFERENCES

Agarwal, N.K., G. Singh, H. Singh, N. Kumar & U.S. Rawat (2018). Ecological impacts of dams on the fish diversity of Bhagirathi River in central Himalaya (India). Coldwater Fisheries Society of India 1(1): 76–84.

Akhi, M.M., M.A. Jewel, B.K. Sarker, M.S. Khutun, A.K. Paul, M.S. Islam & S.K. Das (2020). Multivariate approaches to determine the relationship between fish assemblage structure and environmental variables in Karatoya River, Bangladesh. Community Ecology 21: 171–181. https://doi.org/10.1007/s42974-020-00015-6.

Aljazeera (2012). Afghanistan battles against cold and snow. In: Aljazeera. Retrieved on 30 March 2020. https://www.aljazeera.com/indepth/inpictures/2012222102246504375.html

Allan, J.D. (2004). Landscapes and riverscapes: the influence of land use on stream ecosystems. The Annual Review of Ecology, Evolution, and Systematics 35: 257–284. https://doi.org/10.1146/annurev.ecolsys.35.120202.110122

Aryani, N. (2015). Native species in Kampur Kanan River, Riau province Indonesia. International Journal of Fisheries and Aquatic Studies 2(5): 213–217.

Barbè, D. (2013). Population Displacement and Urban Transition in Kabul City. Sciences Po - Fall 2013. Risk Governance in the Large Metropolis.

Barbour, M.T., J. Gerritsen, B.D. Snyder & J.D. Strickler (1999). Rapid Bioassessment Protocols for Use in Streams and Wadable Rivers: Periphyton, Benthic Macroinvertebrates and Fish, 2nd Edition. U.S. Environmental Protection Agency, Office of Water, Washington, D.C.

Bennett, A., P. Patil, K. Kleisner, D. Rader, J. Virdin & X. Basurto (2018). Contribution of fisheries to food and nutrition security: Current knowledge, policy, and research. Duke University, Nicholas Institute for Environmental Policy Solutions.

Bhatt, J.P. & M.K. Pandit (2016). Endangered Golden Masheer Tor putitora Hamilton: a review of natural history. Reviews in Fish Biology and Fisheries 26(1): 25–38.

Booth, D.B. (2005). Challenges and prospects for restoring urban streams: a perspective from the Pacific Northwest of North America. Journal of the North American Benthological Society 24(3): 724–737.

Boschung, H.T. & R.L. Mayden (2004). Fishes of Alabama. Smithsonian Institution, Washington, 736 pp.

Bray, J.R. & J.T. Curtis (1957). An ordination of upland forest

Species	Conservation status	Regional status
Alburnoides holciki	Not Evaluated	Native
Ctenopharyngodon idella	Non-Native	Native
Cyprinus carpio	Non-Native	Native
Hypophthalmichthys molitrix	Non-Native	Native
Oncorhynchus mykiss	Non-Native	Native
Salmo trutta	Least concern	Native
Schizothorax esocinus	Not Evaluated	Native
Schizothorax sp.	Native	Native
Tariqilabeo diplochilus	Not Evaluated	Native
Tariqilabeo sp.	Native	Native
Captodon zillii	Least Concern	Native

Table 7. Mann-Whitney U test result of species richness between upstream and downstream.

Species richness	Group	N	Mean rank	Mean Sum	U	z	p	r
Downstream	3	5.00	15.00	.00	-1.99	.04	.81	
Upstream	3	2.00	6.00	.00	-1.99	.04	.81	

Table 8. Fish species recorded from the Kabul River in Kabul City, Afghanistan with global conservation status.

Species	Conservation status	Regional status
Alburnoides holciki	Not Evaluated	Native
Ctenopharyngodon idella	Non-Native	Native
Cyprinus carpio	Non-Native	Native
Hypophthalmichthys molitrix	Non-Native	Native
Oncorhynchus mykiss	Non-Native	Native
Salmo trutta	Least concern	Native
Schizothorax esocinus	Not Evaluated	Native
Schizothorax sp.	Native	Native
Tariqilabeo diplochilus	Not Evaluated	Native
Tariqilabeo sp.	Native	Native
Captodon zillii	Least Concern	Native
evaluation of fish diversity and abundance in Kabul River

Kelzang et al.

communities of southern Wisconsin. Ecological Monographs 27: 325–349.

Breckle, S.W. (2007). Flora and vegetation of Afghanistan. Basic and Applied Dryland Research 1(2): 155–194.

Broshears, R.E., M.A. Akbari, M.P. Chornack, D.K. Mueller & B.C. Ruddy (2005). Inventory of Ground-Water Resources in the Kabul Basin, Afghanistan. U.S. Geological Survey Scientific Investigation Report 2005.

Choubey, K. & Y. Qureshi (2013). Study of ichthyofaunal biodiversity of Rajandgaon town, CG, India. International Research Journal of Biological Sciences 2(2): 21–24.

Coad, B.W. (2014). Fishes of Afghanistan. Pensoft Publishers, 393 pp.

Coad, B.W. (2015). Native fish biodiversity in Afghanistan. Iranian Journal of Ichthyology 24(4): 227–234.

Cunico, A.M., J.D. Allan & A.A. Agostinho (2011). Functional convergence of fish assemblages in urban streams of Brazil and the United States. Ecological Indicators 11(5): 1354–1359.

Dau, A. & C. Parkash (2009). Distribution and abundance of fish populations in Herike wetland-A Ramsar site in India. Journal of Environmental Biology 30(2): 247–251.

Dice, L.R. (1945). Measurement of the amount of ecologic association between species. Ecology 26(3): 297–302.

Dudgeon, D., A.H. Arthington, M.O. Gessner, Z. Kabawabata, D.J. Knowler, C. Lévêque, R.J. Naiman, A. Prieur-Richard, D. Soto, M.J.I. Stassney & C.A. Sullivan (2006). Freshwater biodiversity: importance, threats and conservation challenges. Biological Reviews 81(2): 163–182.

Eds, D.R. (1993). Fish assemblage structure and environmental correlates in Nepal’s Gandaki River. Copeia 11: 48–60.

FAO (2014). The State of World Fisheries and Aquaculture 2014: Opportunities and Challenges. Food and Agriculture Organization.

FishBase.org (2020). FishBase. World Wide Web electronic publication. http://www.fishbase.org, version (1/2020).

Freyhof, J. (2011). Salmo trutta. In: The IUCN Red List of Threatened Species 2011: e.T19861A9050312. Downloaded on 20 March 2020. https://doi.org/10.2305/IUCN.UK.2008.RLTS.T19861A9050312.en

Freyhof, J. & M. Kottelat (2008). Cyprinus carpio. In: The IUCN Red List of Threatened Species 2008: e.T6181A12559362. Downloaded on 20 March 2020. https://doi.org/10.2305/IUCN.UK.2008.RLTS.T6181A12559362.en

Gbegbeyos, S.T. (2016). Factors Affecting Stream Fish Community Composition and Habitat Suitability. Journal of Aquaculture and Marine Biology 4(2): 00076. https://doi.org/10.15406/jamb.2016.04.00076

Goswami, U.C, W. Vishwanath & K.C. Jayaram (2007). Fish fauna of north east India: natural and anthropogenic. Natural and Anthropogenic Hazards on Fish and Fisheries 21.

Grabarkiewicz, J. & W. Davis (2008). An introduction to freshwater fishes as biological indicators. EPA-260-R-08-016. U.S. Environmental Protection Agency, Office of Environmental Information, Washington, DC.

Grimm, N.B., J.M. Grove, S.T.A. Pickett & C.L. Redman (2000). Integrated approaches to longterm studies of urban ecological systems. BioScience 50(7): 571–584.

Gurung, D.B., S. Dorji, U. Tshering & J.T. Wangyal (2013). An annotated checklist of fishes from Bhutan. Journal of Threatened Taxa 5(14): 4880–4886. https://doi.org/10.11690/JTT.o3160.4880-6

Gurung, D.B. & R.J. Thoni (2015). Fishes of Bhutan: a preliminary checklist. Kuensel Corporation Limited.

Herawati, T., M. Syaiful, I. Bangkit, A. Sahidin, A. Yustiati, Y. Dhahiyat. (2016). Native fish biodiversity in Afghanistan. Coad, B.W. (2015).

Herawati, T., M. Syaiful, I. Bangkit, A. Sahidin, A. Yustiati, Y. Dhahiyat. (2016). Native fish biodiversity in Afghanistan. Coad, B.W. (2015).

Herrera, W., J. Sylia, I. Bangkit, A. Sahidin, A. Yustiati, Y. Dhahiyat & Iskandar (2020). Freshwater community structure before reservoir inundation in Cipanas, West Java. In IOP Conference Series: Earth and Environmental Science Vol. 535, No. 1, p. 012059. IOP Publishing.

Hu, M., C. Wang, Y. Liu, X. Zhang & S. Jian (2019). Fish species composition, distribution and community structure in the lower reaches of Ganjirang River, Lianjiang, China. Scientific Reports 9: 10100. https://doi.org/10.1038/s41598-019-46600-2

Jayaram, K.C. (1981). The freshwater fishes of India, Pakistan, and rock bass in an Ozark stream. North American Journal of Environmental Sciences 2(2): 297–302.

Jayaram, K.C. (2010). Freshwater fishes of the Indian region, 2nd edition. Narendra Publishing House, Delhi, India.

Lalély, P. (2020). Coptodon zillii. In: The IUCN Red List of Threatened Species 2020: e.T183163A64508317. Downloaded on 20 March 2020. https://doi.org/10.2305/IUCN.UK.2020-2.RLTS.T183163A64508317.en

Loures, R.C. & P.S. Pompeu (2019). Temporal changes in fish diversity in lotic and lentic environments along a reservoir cascade. Freshwater Biology 64(10): 1806–1820.

Ma, Q., K. He, X. Wang, J. Jiang, X. Zhang & Z. Song (2020). Better resolution of Cytochrome b than Cytochrome c Oxidase Subunit I to Identify Schizothorax Species (Teleostei: Cyprinidae) from the Tibetan Plateau and Its Adjacent Area. DNA and Cell Biology 39(4): 579–598.

Mack, T.J., M.A. Akbari, M.P. Chornack, I.M. Verstraeten, T.B. Collen & L.N. Plummer (2009). Water resources availability in Kabul, Afghanistan: a conceptual simulation integrating climatologic, hydrogeologic, geochemical, and remotely sensed data. Program with Abstracts. In Second India Kush Conference, Symposia and Workshops for Geoscientists, Engineers, Planners, Archeologists and Investors (pp. 27–79).

Margraf, R. (1958). Temporal succession and spatial heterogeneity in phytoplankton, pp. 323–347. In: Perspectives in Marine biology, Buzzatti-Traverso (ed.), University of California Press, Berkeley.

McAleece, N. (1999). BioDiversity Pro, Version 2.00. The Natural History Museum and the Scottish Association for Marine Science.

McClendon, D.D. & C.F. Rabeni (1987). Physical and biological variables for predicting population characteristics of the small mouth bass and rock bass in an Ozark stream. North American Journal of Fisheries Management 7: 46–56.

Menhinick, E.F. (1964). A comparison of some species individual diversity indices applied to samples of field insects. Ecology 45: 859–861.

Mishra, K.S. (1959). An aid to identification of the common commercial fishes of India and Pakistan. Record of the Indian Museum 1–4(57): 172–177.

Mohsin, A.B.M., S.M. Haque, S.M. Galib, F.H. Fahad, N. Chaki, N. Islam & M. Rahman (2013). Seasonal abundance of fin fishes in the Padma River at Rajshahi district, Bangladesh. World Journal of Fish and Marine Sciences 5(6): 680–685.

Morrís, E.K., T. Caruso, F. Buscot, M. Fischer, C. Hancock, T.S. Maier, T. Meiners, C. Müller, E. Obermaier, D. Pratt, S.A. Socher, I. Sonnemann, N. Wäschke, T. Wubet, S. Wurst & M.C. Rillig (2014). Choosing and using diversity indices: insights for ecological applications from the German Biodiversity Exploratories. Ecology and Evolution 4(18): 3514–3524.

NEPA (2007). Afghanistan Initial National Communication to the United Nations Framework Convention on Climate Change. National Environmental Protection Agency, Islamic Republic of Afghanistan

Pandey, N., P. Kumar, S. Ali, B.K. Vishwakarma & S. Kumar (2018). Role of small tributaries in ichthyofaunal diversity of rivers in Uttarakhand. Journal of Coldwater Fisheries 1(1): 89–96.

Pett, T., D.B. Swar & S.B. Swar (Eds.) (2002). Cold water fisheries in the trans-Himalayan countries (No. 431). Food and Agriculture Organization.

Pielou, E.C. (1975). Ecological Diversity. Wiley, New York, 165 pp.

Pielou, E.C. (1969). An Introduction to Mathematical Ecology. Wiley, New York, USA, 286 pp.

Powers, D.A. (1989). Fish as model systems. Science 246(4928): 352–358.

Prasad, A., A. Shrestha, J.H. Limbu & D. Swar (2020). Spatial and Temporal Variation of Fish Assemblages in Seti Gandaki River, Tanahu, Nepal. Borneo Journal of Resource Science and Technology 10(2): 93–104.

Pusey, B.J., D.M. Warfe, S.A. Townsend, M.M. Douglas, D. Burrows, M.J. Kennard & P.G. Close (2011). Conditions, impacts and threats to aquatic biodiversity. In: Aquatic Biodiversity in Northern Australia: Patterns, Threats and Future. Charles Darwin University
Evaluation of fish diversity and abundance in Kabul River

Ravi, V. & B. Venkatesh (2008). Rapidly evolving fish genomes and teleost diversity. Current Opinion in Genetics and Development 18(6): 544–550.

Reid, G.M., T.C. MacBeath & K. Csatádi (2013). Global challenges in freshwater-fish conservation related to public aquariaums and the aquarium industry. International Zoo Yearbook 47(1): 6–45.

Royce, W.F. (1996). Introduction to the Practice of Fishery Science, Revised Edition: 1st Edition. Elsevier, 448 pp. https://doi.org/10.1016/B978-0-12-600952-1.X5000-2

Qureshi, A.S. (2002). Water Resources Management in Afghanistan: The Issues and Options (Vol. 49). International Water Management Institute.

Saund, T.B., J.B. Thapa & H.P. Bhatt (2012). Fish Diversity at Pancheshwar Multipurpose Project Area in Mahakali River. Nepal Journal of Science and Technology 13(2): 225–230.

Shannon, C.E. & W. Wiener (1948). The mathematical theory of communication. Urbana, University of Illinois Press, 177pp.

Shen, Y., L. Guan, D. Wang & X. Gan (2016). DNA barcoding and evaluation of genetic diversity in Cyprinidae fish in the midstream of the Yangtze River. Ecology and Evolution 6(9): 2702–2713.

Tawari-Fufeyin, P. & S.A. Ekaye (2007). Thoni, R.J. & D.B. Gurung (2008). Effects of Lowhead Damns on Riffle-Dwelling Fishes and Macroinvertebrates in a Midwestern River. Transactions of the American Fisheries Society 133(3): 705–717. https://doi.org/10.1577/T03-058.1

Turner, G.F. (1999). What is a fish species? Reviews in Fish Biology and Fisheries 9(4): 281–297.

UNEP (2003). Afghanistan: Post-conflict Environmental Assessment. United Nations Environment Program, Nairobi, Kenya

UNEP (2008). Biodiversity profile of Afghanistan: An output of the national capacity needs self-assessment for global environment management (NCSA) for Afghanistan. United Nations Environment Program, Kabul, Afghanistan.

Vishwanath, W., W. Manojkumar, L. Kosygín & K.S. Selim (1998). Biodiversity of freshwater fishes of Manipur, India. Italian Journal of Zoology 65(51): 312–322. https://doi.org/10.1080/11250009809386840

Walsh, C.J., T.D. Fletcher & A.R. Ladson (2005). Stream restoration in urban catchments through redesigning storm water systems: looking to the catchment to save the stream. Journal of the North American Benthological Society 24(3): 690–705.

Wang, L., J. Lyons & P. Kanehl (2001). Impacts of urbanization on stream habitat and fish across multiple spatial scales. Environmental Management 28(2): 255–266.

Weir, D. (2018). The slow violence of pollution in Afghanistan. In: Conflict and Environment Observatory. Retrieved on 15 February 2020. https://ceobs.org/the-slow-violence-of-pollution-in-afghanistan/

Whittaker, R.H. (1965). Dominance and Diversity in Land Plant Communities: Numerical relations of species express the importance of competition in community function and evolution. Science 147(3655): 250–260.

Willy, L.A. (2015). Resolving natural resource conflicts to help prevent war: a case from Afghanistan. Livelihoods, Natural Resources, and Post-Conflict Peacebuilding 115–137.

Wu, W., Z. Xu, X. Yin & D. Zuo (2014). Assessment of ecosystem health based on fish assemblages in the Wei River basin, China. Environmental Monitoring and Assessment 186(6): 3701–3716. https://doi.org/10.1007/s10661-014-3651-7

Zhang, C., C. Tong, F. Tian & K. Zhao (2017). Integrated mRNA and microRNA transcriptome analyses reveal regulation of thermal acclimation in Gymnocephalum przewalskii: a case study in Tibetan Schizothoracine fish. PloS one 12(10): e0186433. https://doi.org/10.1371/journal.pone.0186433

Zhao, H.H. (2011). Hypophthalmichthys molitrix. In: The IUCN Red List of Threatened Species 2011: e.T166081A168056. Downloaded on 20 March 2020. https://doi.org/10.2305/IUCN.UK.2011-2.RLTS.T166081A168056.en
Articles

Roosting habits and habitats of the Indian Flying Fox *Pteropus medius* Temminck, 1825 in the northern districts of Tamil Nadu, India
– M. Pandian & S. Suresh, Pp. 19675–19688

Diversity and distribution of avifauna at Warathenna-Hakkinda Environmental Protection Area in Kandy, Sri Lanka
– Dinela Thilakaratne, Tithira Lakanna, Gayan Hirimuthugoda, Chaminda Wijesundara & Shalika Kumuregama, Pp. 19689–19701

Grass species composition in tropical forest of southern India
– M. Ashokkumar, S. Swaminathan & R. Nagarajan, Pp. 19702–19713

Communications

Habitat use and conservation threats to Wild Water Buffalo *Bubalus arnee* (Mammalia: Artiodactyla: Bovidae) in Koshi Tappu Wildlife Reserve, Nepal
– Reeta Khulal, Bijaya Neupane, Bijaya Dhani, Siddhartha Regmi, Ganesh Prasad Tiwari & Manita Parajuli, Pp. 19714–19724

Get my head around owls: people perception and knowledge about owls of Andaman Islands
– Shannugawel Sureshmarimuthu, Santhanakrishan Babu, Nagaraj Rajeshkumar & Honnavalli Nagaraj Kumara, Pp. 19725–19732

Abundance and diversity of threatened birds in Nagal Wetland, Punjab, India
– Rajwinder Kaur & Onkar Singh Brraich, Pp. 19733–19742

Evaluation of fish diversity and abundance in the Kabul River with comparisons between reaches above and below Kabul City, Afghanistan
– Ugyen Kelzang, Ahmad Farid Habibi & Ryan J. Thoni, Pp. 19743–19752

New record of *Myrmarachne melanoccephala* MacLeay, 1839 (Araneae: Salticidae) from Jharkhand, India and biogeographical implications of the co-occurrence of its ant model *Tetraponera rufonigra* Jerdon, 1851
– Rahul Kumar, Mirtunjay Sharma & Ajay Kumar Sharma, Pp. 19753–19761

Diversity of spiders (Arachnida: Araneae) and the impact of pruning in Indian sandalwood plantations from Karnataka, India
– Neeraj Prabakaran, Anoop Raj Singh & Vedagiri Thirumurugan, Pp. 19762–19768

Notes

A recent sighting of the Stripe-backed Weasel *Mustela strigidoruma* (Mammalia: Carnivora: Mustelidae) in Hkakabo Razi Landscape, Myanmar
– Sai Sein Lin Oo, Tun Tun, Kyaw Myo Naing & Paul Jeremy James Bates, Pp. 19855–19859

Are the uplifted reef beds in North Andaman letting nesting Olive Ridley Sea Turtle *Lepidochelys olivacea* stranded?
– Nehru Prabakaran, Anoop Raj Singh & Vedagiri Thirumurugan, Pp. 19860–19863

First record of the orb-weaving spider *Araneus tubadominus* Zhu & Zhang, 1993 (Araneae: Araneidae) from India
– Souvik Sen, John T.D. Caleb & Shelley Acharya, Pp. 19864–19866

The genus *Catapiestus* Perty, 1831 (Coleoptera: Tenebrionidae: Cnoodaloniini) from Arunachal Pradesh with one new record to India
– V.D. Hegde & Sarita Yadav, Pp. 19867–19869

Rediscovery and extended distribution of *Indigofera santapauia* Sanjappa (Leguminosae: Papilionoideae) from the states of Maharashtra and Gujarat, India
– Anoop P. Balan & A.J. Robi, Pp. 19878–19883

Notes on the extended distribution of *Impatiens malayalam*, a recently described balsam in Western Ghats, India
– Swapnil S. Boyane & Hemant V. Ghate, Pp. 19824–19830

Book Review

A look over on the scented tree of India (*Santalum album*)
– S. Suresh Ramanan & A. Arunachalam, Pp. 19884–19886

Short Communications

Is release of rehabilitated wildlife with embedded lead ammunition advisable? Plumism in a Jaguar *PantheraOnca* (Mammalia: Carnivora: Felidae), survivor of gunshot wounds
– Eduardo A. Díaz, Carolina Sáenz, E. Santiago Jiménez, David A. Egas & Kelly Swing, Pp. 19808–19812

New record of the Sewing Needle Zipper Loach *Paracanthocobitis inyoho* Singer & Page, 2015 (Teleostei: Cypriniformes: Nemacheilidae) from the Chindwin drainage of Manipur, India
– Yunnam Rameshori, Yengkhom Chinglema & Waikhom Vishwanath, Pp. 19813–19817

Field identification characters to diagnose *Microhyla mukhlesuri* from closely related *M. mymensingensis* (Amphibia: Microhylidae) and range extension of *M. mukhlesuri* up to west Bengal State, India
– Suman Pratihar & Kaushik Deute, Pp. 19818–19823