Ensemble cryo-EM elucidates the mechanism of translation fidelity

Anna B. Loveland1, Gabriel Demo1, Nikolaus Grigorieff2 & Andrei A. Korostelev1

Gene translation depends on accurate decoding of mRNA, the structural mechanism of which remains poorly understood. Ribosomes decode mRNA codons by selecting cognate aminoacyl–tRNAs delivered by elongation factor Tu (EF–Tu). Here we present high-resolution structural ensembles of ribosomes with cognate or near-cognate aminoacyl–tRNAs delivered by EF–Tu. Both cognate and near-cognate tRNA anticodons explore the aminoacyl–tRNA–binding site (A site) of an open 30S subunit, while inactive EF–Tu is separated from the 30S subunit. A transient conformation of decoding–centre nucleotide G530 stabilizes the cognate codon–anticodon helix, initiating step–wise ‘latching’ of the decoding centre. The resulting closure of the 30S subunit docks EF–Tu at the sarcin–ricin loop of the 50S subunit, activating EF–Tu for GTP hydrolysis and enabling accommodation of the aminoacyl–tRNA. By contrast, near–cognate complexes fail to induce the G530 latch, thus favouring open 30S pre–accommodation intermediates with inactive EF–Tu. This work reveals long–sought structural differences between the pre–accommodation of cognate and near–cognate tRNAs that elucidate the mechanism of accurate decoding.

Recognition of an mRNA codon by aminoacyl-tRNA occurs at the decoding centre in the A site of the small 30S ribosomal subunit. Aminoacyl-tRNA is delivered to the ribosome as a ternary complex with elongation factor Tu (EF-Tu) and GTP (EF-Tu•GTP•aminoacyl-tRNA). Non-cognate or near-cognate ternary complexes dissociate quickly, whereas cognate ternary complexes dissociate slowly and stimulate GTP hydrolysis by EF-Tu. GTP hydrolyses EF-Tu•GDP, allowing aminoacyl-tRNA accommodation into the 50S A site for peptide-bond formation. EF-Tu-dependent aminoacyl-tRNA delivery, therefore, ensures the high fidelity of aminoacyl-tRNA selection.

The structural mechanism of aminoacyl-tRNA discrimination has been extensively studied, but key questions remain unresolved. We present high-resolution structural ensembles of ribosomes with cognate or near-cognate aminoacyl-tRNAs delivered by EF-Tu. Here we use single-particle electron cryo-microscopy (cryo-EM) to visualize the binding of cognate or near-cognate ternary complexes to 70S ribosomes. Improved classification allows us to resolve several near-atomic-resolution structures in heterogeneous samples.

Three states of cognate complex pre–accommodation

We visualized the dynamics of cognate Phe-tRNAPhe•EF-Tu•GDPCP ternary complex on Escherichia coli 70S ribosomes programmed with mRNA encoding a phenylalanine UUC codon in the A site. A non-hydrolysable GTP analogue, GDPCP (guanosine-5’-[(β,γ) methyleno]triphosphate), was used to capture aminoacyl-tRNA binding states before GTP hydrolysis and EF-Tu dissociation. Maximum-likelihood classification allows us to resolve several near-atomic-resolution structures in heterogeneous samples.

We present high-resolution structural ensembles of ribosomes with cognate or near-cognate aminoacyl-tRNAs delivered by EF-Tu. Here we use single-particle electron cryo-microscopy (cryo-EM) to visualize the binding of cognate or near-cognate ternary complexes to 70S ribosomes. Improved classification allows us to resolve several near-atomic-resolution structures in heterogeneous samples.

Recognition of an mRNA codon by aminoacyl-tRNA occurs at the decoding centre in the A site of the small 30S ribosomal subunit. Aminoacyl-tRNA is delivered to the ribosome as a ternary complex with elongation factor Tu (EF-Tu) and GTP (EF-Tu•GTP•aminoacyl-tRNA). Non-cognate or near-cognate ternary complexes dissociate quickly, whereas cognate ternary complexes dissociate slowly and stimulate GTP hydrolysis by EF-Tu. GTP hydrolyses EF-Tu•GDP, allowing aminoacyl-tRNA accommodation into the 50S A site for peptide-bond formation. EF-Tu-dependent aminoacyl-tRNA delivery, therefore, ensures the high fidelity of aminoacyl-tRNA selection.

The structural mechanism of aminoacyl-tRNA discrimination has been extensively studied, but key questions remain unresolved. We present high-resolution structural ensembles of ribosomes with cognate or near-cognate aminoacyl-tRNAs delivered by EF-Tu. Here we use single-particle electron cryo-microscopy (cryo-EM) to visualize the binding of cognate or near-cognate ternary complexes to 70S ribosomes. Improved classification allows us to resolve several near-atomic-resolution structures in heterogeneous samples. We identify six aminoacyl-tRNA decoding complexes at up to 3.2 Å resolution (Fig. 1), including five elusive pre–accommodation states not visualized previously. These structures report on three binding steps for ternary complex. Together, they reveal differences between cognate and near–cognate pre–accommodation states and suggest a mechanism of aminoacyl-tRNA discrimination by the ribosome.
Multiple tRNA conformations sample the A site

Structures I and II reveal different conformations of EF-Tu-bound aminoacyl-tRNA, as the ASL interrogates the A site (Fig. 1b, c, Extended Data Fig. 4c). In structure I, the tRNA resembles the ‘relaxed’ conformation of ternary-complex tRNA (T-tRNA) seen in crystal structures of isolated ternary complex. The ASL of the tRNA reaches towards the peptidyl tRNA-binding site (P site) tRNA. The ASL tip is around 15 Å away from its codon-paired position (Fig. 2c, Extended Data Fig. 4d). In structure II, the ASL is kinked towards the A-site codon, forming three Watson–Crick codon–anticodon base pairs (Fig. 2d, Extended Data Fig. 4e). The tRNA conformation resembles that of A/T tRNA (A-site/ternary-complex tRNA) characterized in 70S structures with ternary complex. Unlike in previous structures, however, the 30S subunit is open. We therefore distinguish this tRNA conformation as A*/T tRNA. Sub-classification of cryo-EM data revealed additional lower-resolution ASL conformations positioned between the T-tRNA and A*/T-tRNA states (Extended Data Fig. 4f, Supplementary Information).

In structure III, the tRNA adopts the A/T tRNA structure. From structures II to III, the tRNA binds deeper into the 30S A site without a substantial conformational change. The acceptor arm shifts by 7 Å towards the P-site tRNA as the elbow slides along the L11 stalk (Extended Data Fig. 5, Supplementary Information). The shift of the tRNA is in good agreement with single-molecule fluorescence resonance energy transfer (smFRET) studies that monitored step-wise binding of ternary complex (Supplementary Information).

G530 triggers ‘latching’ of the decoding centre

The decoding centre provides the binding pocket for the ASL as the tRNA rearranges from the relaxed to the kinked conformation. Comparing structures I, II and III reveals new step-wise rearrangements of decoding-centre nucleotides in the presence of the ternary complex, suggesting that G530 at the tip of the 30S shoulder has a central role. In structure I, the decoding-centre nucleotides exhibit conformations found in ribosome structures with empty A sites or in stringent-response 70S·tRNA·RelA complexes. In structure III, the distance from the 30S shoulder to the body closes by 4–5 Å (Fig. 2a, b, Extended Data Fig. 4a, b, Extended Data Table 2). The conformational change in the 30S subunit from structures I and II to structure III coincides with 30S ‘domain closure’, previously inferred from comparisons of 30S structures lacking or containing A-site tRNA anticodon stem–loops (ASLs).

Structures I and II reveal previously unobserved states of ternary-complex binding. These structures have an open 30S-domain conformation as in ribosomes without ternary complex or in stringent-response 70S·tRNA·RelA complexes. In structure I, the distance from the 30S shoulder to the body closes by 4–5 Å (Fig. 2a, b, Extended Data Fig. 4a, b, Extended Data Table 2). The conformational change in the 30S subunit from structures I and II to structure III coincides with 30S ‘domain closure’, previously inferred from comparisons of 30S structures lacking or containing A-site tRNA anticodon stem–loops (ASLs).

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
the minor groove of the first base pair of the codon–anticodon helix (A1493 ON).

Finally, the decoding-centre nucleotides in structure III adopt conformations seen in A-tRNA-bound and A/T-tRNA-bound structures1,4,12,15,20–23,33 (G530/A1913/A1492/A1493 ON; Fig. 3c, e, Extended Data Fig. 6f, j). Relative to structure II, the 530 loop and protein S12 shift closer to A1493 and A1492, as G530 moves approximately 3 Å further into the minor groove of the codon–anticodon helix. This shift restructures the G530 hydrogen-bond network: G530 contacts the riboses of A35 and A36 of the anticodon (at the first and second base pairs) and the base of A1492 (Fig. 5b). Thus, G530 acts as a latch that fastens the codon–anticodon helix into the decoding centre, bringing the 530 loop of the 30S shoulder towards the body, resulting in 30S-domain closure.

30S-domain closure activates EF-Tu

Ternary complexes must bind the SRL to activate EF-Tu and hydrolyse GTP, releasing EF-Tu from aminoacyl-tRNA to allow aminoacyl-tRNA accommodation16–18. Biochemical studies show that the SRL and His84 are indispensable for GTP hydrolysis and tRNA accommodation16,17. From structure I to structure III, EF-Tu progresses from the inactive GTPase state to the activated GTPase state. In all three structures, EF-Tu binds the shoulder of the 30S subunit at helices h5 and h15 of 16S rRNA and protein S12 (Extended Data Fig. 7). From structures I and II (30S open) to III (30S closed), the 30S shoulder moves towards the 50S subunit by about 4 Å, shifting the GTPase domain of EF-Tu by 8 Å to bind the SRL (Fig. 4). His84 binds the phosphate at A2662 of the SRL, near the terminal phosphate of GDPCP preparing for GTP hydrolysis (Fig. 4d, Extended Data Fig. 7f), as seen in the Thermus thermophilus 70S pre-accommodation structure15. Thus, our structures show that the decoding-centre-induced movement of the 30S shoulder activates EF-Tu.

Near-cognate ternary complex favours open 30S

We next asked whether near-cognate ternary complex has distinct pre-accommodation intermediates explaining discrimination during mRNA decoding. We repeated our experiment using a near-cognate 70S complex formed with tRNAPhe (UUU anticodon) and mRNA coding for arginine (AGA codon) in the A site, resulting in a G+U mismatch at the second position of the codon–anticodon helix (Fig. 1a, see Supplementary Information). A 572,417-particle dataset yielded three structures of EF-Tu-bound ribosomes at 3.8–4.0 Å resolution (Fig. 1e–g, Extended Data Figs 1–3, Extended Data Table 1). Overall, the near-cognate structures—structures I-nc, II-nc, and III-nc—resemble the cognate structures with aminoacyl-tRNA bound in the T (I-nc), A+T (II-nc) and A/T (III-nc) states and the 30S in open (I-nc and II-nc) and closed (III-nc) conformations (Extended Data Figs 6j–n, 7g, Extended Data Table 2).

In structure II-nc, the decoding centre differs from that in the cognate structure II. Whereas G530 in structure II is clearly resolved in the anti-conformation and stabilizes the matched codon–anticodon helix (Fig. 5a, Extended Data Fig. 6g), G530 in structure II-nc is less resolved, and the density is more consistent with the syn-conformation (Fig. 5c, Extended Data Fig. 6k, o). The neighbouring nucleotides, however, are similarly well resolved in structures II and II-nc, indicating an ordered 530 loop (Extended Data Fig. 6d, l). G530 (OFF) is separated from the ASL, as the latter is shifted relative to the position of the cognate anticodon (Extended Data Fig. 6r, s, u, v). While the anticodon bases interact with the bases of the codon, the G+U mismatch and third base pair deviate from Watson–Crick conformations, thus shifting the anticodon (Fig. 5c, Extended Data Fig. 2o).

By contrast, in the 30S-closed structure III-nc, strong density reveals a canonical codon–anticodon helix with the G+U base pair in a tautomeric Watson–Crick-like conformation, similar to the U+A pair in structure III (Fig. 5b, d). The decoding-centre nucleotides in structure III-nc, including G530, are clearly resolved and adopt conformations similar to those in structure III (Extended Data Fig. 6m, n, p, q). Thus, G530 latching is coupled with the formation of the Watson–Crick codon–anticodon helix and coincides with domain closure.

Ternary complexes formed with tRNAPhe and tRNALys exhibit similar binding affinities to their respective codons36–38 and accuracies of initial selection38, allowing us to compare near-cognate and cognate samples. The distribution of ribosomes with cognate and near-cognate ternary complexes differed (Fig. 5e, f). Whereas cognate ternary complex bound to 34% of ribosomes, near-cognate ternary complex bound to 7% of ribosomes—despite assembling samples with 2.5-fold more near-cognate than cognate complex—consistent with the lower affinity of near-cognate ternary complex1–8. Moreover, the cognate complex predominantly samples the closed 30S state (87% of EF-Tu-bound ribosomes), but the near-cognate complex prefers the open 30S states (structures I-nc and II-nc, 67% of EF-Tu-bound ribosomes) (Fig. 5f). The identities and distributions of these structures are consistent with biochemical, structural and biophysical data (Supplementary Information). Thus, cognate ternary complexes favour an ordered decoding centre, closed 30S subunit, and activated EF-Tu, whereas the near-cognate complexes favour a disengaged decoding centre, open 30S subunit and inactive EF-Tu.
A mechanism for accurate mRNA decoding

Our work reveals the elusive structures of pre-accommodation intermediates that coincide with the biochemically identified steps\(^4,6,8,12-15\); initial codon-independent binding of ternary complex (structures I and I-nc), codon recognition (structures II and II-nc) and GTPase activation (structures III and III-nc). The ensembles of cognate and near-cognate structures provide the structural basis for the initial selection of aminoacyl-tRNA (Fig. 6, Supplementary Video 1).

In the early step(s) of mRNA decoding, ternary complex binds the ribosome via EF-Tu at the 30S shoulder and the tRNA elbow at the L1 stalk (structure I or I-nc). The open 30S forces the EF-Tu GTPase domain away from the SRL. In the A site, the ASL samples the codon and the decoding centre (structures I/II-nc and II/II-nc). Formation of the matched codon–anticodon helix (structure II) is stabilized by interactions between the RNA backbone of the helix and G530 in an intermediate (SEMI-ON) conformation. Engagement of G530 is, thus, independent of the nucleotide identities of the Watson–Crick base pairs (Fig. 5), consistent with uniform affinities of distinct aminoacyl-tRNA to their cognate codons\(^8,36,37\). Stabilization of G530 SEMI-ON, however, may be modulated by tRNA modifications at position 34 and magnesium (Supplementary Information, Extended Data Fig. 8). Bolstered by G530, ASL binding next to helices 44 and 69 destabilizes A1913 stacking on A1492 within helix 44. As A1913 interacts with the ASL, A1492 flips into the minor groove of the codon–anticodon helix, and G530 shifts to ‘latch’ the decoding centre, resulting in domain closure (structure III). The 30S shoulder moves towards the 50S subunit, docking EF-Tu at the SRL, arranging the EF-Tu active site for GTP hydrolysis. GTPase activation is a rate-limiting step of pre-accommodation\(^4,5\), and is physically distinct from GTP hydrolysis\(^35\). Structures II and III suggest that GTPase activation results from 30S-domain closure pushing EF-Tu towards the SRL. Indeed, the antibiotic paromomycin, which stabilizes decoding-centre nucleotides G530, A1492 and A1493 in the ‘ON’ conformation favouring 30S-domain closure\(^1,20,22\), accelerates GTPase activation for both cognate and near-cognate complexes\(^7\). The critical structural role of G530 is emphasized by mutational studies, which showed that G530 is indispensable for EF-Tu-dependent aminoacyl-tRNA binding\(^39\), EF-Tu GTPase activation\(^40\) and translation efficiency\(^41-45\) (Supplementary Information).

Our structures show that domain closure requires Watson–Crick base pairing at the first two codon–anticodon positions (structures III and III-nc), as previously proposed based on 70S crystal structures with mismatched tRNA bound in the absence of EF-Tu\(^35\). The mismatched codon–anticodon helix in structure II-nc demonstrates that near-cognate tRNA is inefficient in stabilizing the G530 SEMI-ON state required to initiate 30S-domain closure. The high energetic cost of the Watson–Crick-like G+U base pair—which requires a keto-enol tautomerization\(^44\)—shifts the conformational equilibrium towards the open 30S states, favouring departure of near-cognate ternary complex. Nevertheless, some near-cognate ternary complexes sample the less favourable Watson–Crick-like conformation and progress to domain closure and EF-Tu activation (structure III-nc). A small fraction of pre-accommodated near-cognate aminoacyl-tRNAs then escapes EF-Tu-independent proofreading\(^6,9,38\), leading to rare miscoding.

Our work reveals a key role for G530 in decoding mRNA and demonstrates that accurate aminoacyl-tRNA selection is achieved by physical separation of EF-Tu from the SRL at early steps of pre-accommodation. We recently reported similar step-wise 30S-domain closure in the presence of decacyl-tRNA and RelA, demonstrating the universality of the tRNA acceptance mechanism\(^29\). While we were finalizing this manuscript, a cryo-EM study reported pre-activation states of SelB, a specialized elongation factor that binds an mRNA stem–loop structure and delivers a selenocysteine-tRNA to a UGA stop codon\(^45\). Although the resolution of the open-30S structures was limited to approximately 5 Å, and a Watson–Crick-paired codon–anticodon intermediate (similar to structure II) was not observed, the overall mechanism of SelB GTPase activation via the 30S-domain closure appears similar to that of EF-Tu. A lower-resolution (~8 Å) study of the eukaryotic elongation factor EF1A (a homologue of EF-Tu) bound to the 80S ribosome suggested that codon recognition and GTPase activation states differ in positions of aminoacyl-tRNA and the GTPase domain\(^46\). Together, these findings indicate that translation fidelity throughout all domains of life results from direct control of the GTPase by the decoding centre.

Online Content Methods, along with any additional Extended Data display items and Source Data, are available in the online version of the paper; references unique to these sections appear only in the online paper.

Received 15 December 2016; accepted 26 April 2017.

Published online 24 May 2017.

1. Ogle, J. M., Murphy, F. V., IV, Tarry, M. J. & Ramakrishnan, V. Selection of tRNA by the ribosome requires a transition from an open to a closed form. Cell 111, 721–732 (2002).

2. Rodnina, M. V., Pape, T., Fricke, R., Kuhn, L. & Wintermeyer, W. Initial binding of the elongation factor Tu GTP-aminoacyl-tRNA complex preceding codon recognition on the ribosome. J. Biol. Chem. 271, 646–652 (1996).
METHODS

No statistical methods were used to predetermine sample size. The experiments were not randomized, and investigators were not blinded to allocation during experiments and outcome assessment.

Preparation of *E. coli* 70S ribosome bound with the cognate or near-cognate ternary complex. Escherichia coli EF-Tu (6fB gene) with a C-terminal hexahistidine tag was overexpressed and purified essentially as described47. The crude E. coli EF-Tu-containing lysate was passed through a His-Trap-HP column. The column was washed with wash buffer (50 mM HEPES-KOH, pH 7.5, 60 mM ammonium chloride, 7 mM magnesium chloride, 15 mM imidazole, 500 mM KC1, 5% glycerol) and EF-Tu was eluted with a linear gradient of wash buffer mixed with elution buffer (50 mM HEPES-KOH, pH 7.5, 60 mM ammonium chloride, 7 mM magnesium chloride, 250 mM imidazole, 5% glycerol). The purity of EF-Tu in eluted fractions was assessed by SDS–PAGE and agarose gel electrophoresis. The purest fractions (~95%) were concentrated and exchanged into EF-Tu storage buffer (50 mM HEPES-KOH, pH 7.5, 60 mM ammonium chloride, 7 mM magnesium chloride, 250 mM imidazole, 5% glycerol, 6 mM (–mercaptoethanol, 20 µM GDP), flash-frozen in liquid nitrogen, and stored at ~80 °C.

30S and 50S ribosomal subunits were prepared from MRE600 *E. coli* as described previously48,49 and stored in buffer A (20 mM Tris, pH 7, 10.5 mM MgCl2, 100 mM NH4Cl, 0.5 mM EDTA, 6 mM (–mercaptoethanol) at ~80 °C. S100 extract was prepared as described50, RNAase, tRNA Phe, and tRNA Asn (ChemiBlock) were charged with their cognate amino acids using the S100 extract and the aminocaylination of tRNAs was confirmed by polyacrylamide gel electrophoresis as described47. mRNA containing the Shine–Dalgarno sequence and a linker to place the AUG codon in the P site and the desired codon in the A site were synthesized by IDT DNA and had the following sequences: Phe cognate complex: GGCACGAGGGAAAAGAAGAAAGAAA (see Supplementary Information).

The 70S mRNA+tRNAGDP•EF-Tu•GDPCP•aminocayl-L11-tRNA complexes were prepared as follows. Heat-activated (42 °C) 30S ribosomal subunits (4.1 M) were mixed with 50S ribosomal subunits (4.4 M) and with the cognate or near-cognate mRNA (20 µM) (all final concentrations) in reaction buffer (20 mM HEPES-KOH, pH 7.5, 20 mM magnesium chloride, 150 mM ammonium chloride, 2 mM spermidine, 0.1 mM spermine, 6 mM (–mercaptoethanol) for 45 min at 37 °C. A twofold molar excess of fMet-tRNAAsn was added to the ribosomal subunits and incubated for 5 min at 37 °C, resulting in the 70S mRNA•tRNA•fMet-GDP•L11-tRNA complexes. To prepare the isolated ternary complex with Phe-tRNAAsn, 2.5 µM EF-Tu was pre-incubated with 1 mM GDP•PCP (Jena Bioscience) for 5 min at 37 °C and then was supplemented with 2.5 µM Phe-tRNAAsn and incubated for 1 min at 37 °C. For the tRNAAsn•ternaary complex, 2.5 µM EF-Tu was pre-incubated with 1 mM GDPCP (Jena Bioscience) for 5 min at 37 °C and then was supplemented with 2.5 µM Lys-tRNAAsn and incubated for 1 min at 37 °C. Subsequently, the ternary complexes were chilled on ice and mixed with the 70S mRNA•tRNA•fMet-GDP•PCP complexes resulting in the following concentrations for the cognate complex: 250 nM 30S; 250 nM 50S, 1.25 µM mRNA; 500 nM tRNA•fMet•GDP•PCP; 1 µM EF-Tu; 500 µM GDPCP; and 1 µM Phe-tRNAAsn51; for the near-cognate complex: 125 nM 30S; 125 nM 50S; 625 mM mRNA; 250 nM Met-tRNAAsn•PCP; 1.25 µM EF-Tu; 500 µM GDPCP; and 1.25 µM Lys-tRNAAsn. The complexes were equilibrated on ice for at least 5 min before application to cryo-EM grids.

Grid preparation. Holey-carbon grids (C-flat 1.2-1.3, Protocols) were coated with a thin layer of carbon and glow discharged with 20 mA with negative polarity for 45 s in an EMTECH K100X glow discharge unit. 2 µl of 70S•ternary complex sample was applied to each grid. After a 10-s incubation, the grids were blotted for 2–4 s at 4 °C and ~95% humidity, and plunged into liquid ethane using a CP3 cryo plungers (Gatan Inc.).

Electron microscopy. Data for the cognate complex and near-cognate complex were collected on a K2 Summit direct electron detector (Gatan Inc.) using 0.5–2.2–e− per frame for a total exposure of 50 e− Å−2 on the sample. For the near-cognate complex, a dataset of 572,417 particles from 1,773 videos of 70S•mRNA•fMet-tRNAfMet•EF-Tu•GDPCP•aminoacyl-tRNA complexes was corrected with mag_distortion_estimate and mag_distortion_reference. Videos were drift-corrected using unblur54. Magnification anisotropy of the video sums was corrected with mag_distortion_estimate and mag_distortion_correct55. CTFIND56 was used to determine defocus values. Particles were automatically picked from 10× binned images using Signature57 with a ribosome reference (18 representative reprojections of the EM databank map 1003 34, which was low-pass filtered to 50 Å, 480 × 480–pixel boxes with particles were extracted from super-resolution–aligned and magnification-anisotropy-corrected images, and the stack and FREALIGN parameter file were assembled in EMAN259. To speed up processing, binned image stacks were prepared using resample.exe, which is part of the FREALIGN distribution52.

High-resolution map refinement and reconstruction. FREALIGN version 9 (versions 9.07–9.11) was used for all steps of refinement and reconstruction52 (Extended Data Fig. 1). A related map, structure IIb, also had a closed 30S conformation and activated EF-Tu at the SRL, but a disordered L11 stalk. This class consisted of 72,533 particles and was not used for structure modelling and refinements. Finally, 50,667 particles belonging to the open–30S complex were extracted using merge_classes.exe, including particles with >50% occupancy and scores >0. The resulting substack was subjected to further classification with a focused mask (30 Å radius) around the decoding centre. Using three classes separated structure I and structure II from a third class in which the anticodon was disordered. The final maps for the structures I and II were prepared from these classes, using 50% of particles with highest scores.

Further processing of the near-cognate complex proceeded as follows. 37,341 particles belonging to the single class bound with EF-Tu from the 6-model classification described above, were extracted using merge_classes.exe using thresholds of >90% occupancy and scores >10. The particles were classified again for 50 rounds using the same 60–Å-wide focus mask around EF-Tu and A/T tRNA, including resolutions from 300 Å to 8 Å during classification. This particle set had a higher score compared to the previous set and was used for further processing.

For the near-cognate complex, 31,260 particles were extracted using merge_classes.exe, including particles with >75% occupancy and scores >10, and 50% of them with the highest score were used to prepare the final structure I-nc map. Particles belonging to the classes with the open 30S subunit were extracted using merge_classes.exe with thresholds of >75% occupancy and scores >10. The resulting substack was subjected to a 2-model classification with a focused mask (30–Å radius) around the decoding centre. The final maps for structures I-nc and II-nc were prepared from these classes, using 50% of particles with highest scores.

We report the percentages of the particles that belong to structures I, II or III or structures I-nc, II-nc, or IIInc in Fig. 5e, f. The percentages were calculated using all particles assigned to the corresponding classes shown in Extended Data Fig. 1 (structure II comprises particles assigned to both 30S–domain-closed classes III and IIb, which only differ in the L11 stalk occupancy, as described above).

The maps used for structure refinements were sharpened by applying negative B-factors of up to −100 Å2 using bfactor.exe (included with the FREALIGN distribution52). FSC curves were calculated by FREALIGN for even and odd particle sets using the calc_fsc.exe routine. The b factor was chosen to give the highest resolution for each class. Blocres was used to assess local resolution of unfiltered and unmasked volumes using a box size of 60 pixels, step size of 10 pixels, and resolution criterion of FSC value at 0.143 (ref. 60).

Model building and refinement. The high-resolution cryo-EM structure of the 70S•tRNA•EF-Tu•GDP•kirromycin complex (PDB code 5AFI33)53, excluding EF-Tu, A/T, P- and E-site tRNAs, was used as a starting model for structure refinements. The starting structural models for fMet-tRNAAsn50 in the P and E sites were adopted from the 70S•RF2•tRNA crystal structure51. We could not distinguish the identity of E-site tRNA (tRNA•fMet or tRNA•Phe for cognate complex or tRNA•fMet or tRNA•Lys for near-cognate complex) owing to lower than average resolution of this part of the cryo-EM maps, probably due to conformational flexibility suggested by further classification. Since tRNA•fMet was used in the absence of EF-Tu and is likely to bind the E site upon deacylation, we modelled the E-site tRNA as tRNA•fMet. The starting model for A/T Phe-tRNAAsn in structures II and III was taken from PDB code 5AFI33.
The starting model for Phe-tRNA

was in structure I was from the crystal structure of the isolated Thermus aquaticus ternary complex (PDB code 1TTT)\(^\text{32}\). For the near-cognate structures, the starting model for Lys-tRNA was from the crystal structure of the ribosome with a near-cognate tRNA in the A site (PDB code 5I89)\(^\text{33}\). The T. aquaticus ternary complex (PDB code 1TTT)\(^\text{32}\) was used for homology modelling of E. coli EF-Tu using SWISS-PROT\(^\text{34}\) and deriving the initial structure of GDPF. A homology model was similarly created for E. coli L1 using the crystal structure of the isolated T. thermophilus L1 stalk (PDB code 3U4M)\(^\text{64}\).

All structures were domain-fitted using Chimera\(^\text{65}\) and refined using real-space simulated-annealing refinement using RSRef\(^\text{66,67}\) against corresponding maps. Atomic electron scattering factors\(^\text{68}\) were used during refinement. Local structural elements that differed between structures, such as the decoding centre, were manually fitted into cryo-EM maps before refinement. Refinement parameters, such as the relative weighting of stereochemical restraints and experimental energy term, were optimized to produce the optimal structure stereochemistry, real-space correlation coefficient and R-factor, which report on the fit of the model to the map\(^\text{35}\). Secondary-structure restraints, comprising hydrogen-bonding restraints for ribosomal proteins and base-pairing restraints for tRNA molecules were used as described\(^\text{36}\). The structures were next refined using phenix.real_space_refine\(^\text{65}\), followed by a round of refinement in Refiner applying harmonic restraints to preserve protein backbone geometry\(^\text{66,67}\). Ions were modelled as Mg\(^2+\) in structure III, filling the difference-map peaks (using CNS)\(^\text{37}\) residing next to oxygen atoms. Phenix was used to refine B-factors of the models against their respective maps\(^\text{38}\). The resulting structural models have good stereochemical parameters, characterized by low deviation from ideal bond lengths and angles and agree closely with the corresponding maps as indicated by high correlation coefficients and low real-space R factors (Extended Data Table 1). Structure quality was validated using MolProbity\(^\text{39}\).

The cryo-EM maps for structure I and structure II-nc did not allow unambiguous visual assignment of the G530 conformation. To interpret a predominant conformation, we prepared two ribosome models with G530 in the alternative 'syn' and 'anti', and refined the complete ribosome structures independently against corresponding maps. Following the refinements, a preferred fit was assessed based on the local real-space correlation coefficient (calculated only for G530 non-hydrogen atoms). The local correlation coefficient in structure I suggests that G530-syn and G530-anti fit nearly equally well (correlation coefficient \(= 0.67\) versus \(= 0.66\), respectively, Extended Data Fig. 6b). The local correlation coefficient in structure II-nc suggests a better fit for G530-syn (correlation coefficient \(= 0.63\)) whereas a refined G530-anti yields the moderately lower correlation coefficient of 0.57. In structure II, whose density unambiguously shows G530-anti (Extended Data Fig. 8d, g), this preferred conformation yields a correlation coefficient value of 0.71, whereas a refined G530-syn fits poorly and exhibits a correlation coefficient of 0.44.

Figures were prepared in Chimera and Pymol\(^\text{40,41}\).

Calculation of distance differences using smFRET data. We used published results to estimate the real-time change in distance between accommodating aminocyl-tRNA and P-site-bound tRNA during EF-Tu-mediated tRNA accommodation. An absolute distance between two labelled residues in smFRET experiment is difficult to measure, but distance differences can be derived from relative changes between two FRET efficiency values.\(^\text{53}\) A low-FRET state of 0.35 in ref. 8 or 0.33 in ref. 76 and mid-FRET state of 0.5 (ref. 8) or 0.43 (ref. 76) were reported during aminocyl-tRNA accommodation when residue 47 of the accommodating tRNA was labelled with acceptor dye and residue 8 of P-site tRNA was labelled with donor dye. Using the equation in ref. 75 to deduce distance differences from FRET efficiencies and assuming \(X = 35\) \\(^\text{A} \) for the Cy3/Cy5 FRET pair, we calculate that the accommodating tRNA is 4–6 \\(^\text{A} \) farther from P-site tRNA in the low-FRET state than in the mid-FRET state.

Data availability. The models generated and analysed during the current study are available from the RCSB Protein Data Bank (PDB) under the accession codes SUYK (structure I), SUYL (structure II), SUYM (structure III), SUYN (structure I-nc), SUYP (structure II-nc) and SUYQ (structure III-nc). The cryo-EM maps used to generate models are available from the Electron Microscopy Data Bank (EMDB) under the accession codes EMBD-8615 (structure I), EMBD-8616 (structure II), EMBD-8617 (structure III), EMBD-8618 (structure II-nc) and EMBD-8620 (structure III-nc). All other data are available from the corresponding author upon reasonable request.
Extended Data Figure 1 | Overview of classification procedures and resolution curves for all structures. a, Scheme of refinement and classification procedures for the cognate dataset. b, Fourier shell correlation (FSC) curves for the cognate structures. c, Scheme of refinement and classification procedures for the near-cognate dataset. d, FSC curves for the near-cognate structures.
Extended Data Figure 2 | See next page for caption.
Extended Data Figure 2 | Cryo-EM densities for ternary complex in each structure. a, Cryo-EM density for ternary complex and codon in structure I is shown at 3σ after applying a B-factor of −36 Å². b, Cryo-EM density for cognate tRNA and codon in structure I is shown as in a. c, Cryo-EM density for the anticodon and codon, which are not base paired, in structure I is shown at 4σ after applying a B-factor of −36 Å². d, Cryo-EM density for ternary complex and codon in structure II is shown at 3σ after applying a B-factor of −50 Å². e, Cryo-EM density for cognate tRNA and codon in structure II is shown as in d. f, Cryo-EM density for the anticodon and codon, which are base paired, in structure II is shown at 4.5σ after applying a B-factor of −50 Å². g, Cryo-EM density for ternary complex and codon in structure III is shown at 4σ after applying a B-factor of −100 Å². h, Cryo-EM density for cognate tRNA and codon in structure II is shown as in g. i, Cryo-EM density for the anticodon and codon, which are base paired, in structure III is shown at 5σ after applying a B-factor of −150 Å². j, Cryo-EM density for ternary complex and codon in structure I-nc is shown at 3σ. k, Cryo-EM density for near-cognate tRNA and codon in structure I-nc is shown as in j. l, Cryo-EM density for the anticodon and codon, which are not base paired, in structure I-nc is shown at 3.5σ for T tRNA and 16S rRNA or 4σ for mRNA. m, Cryo-EM density for ternary complex and codon in structure II-nc is shown at 3σ after applying a B-factor of −25 Å². n, Cryo-EM density for near-cognate A*/T tRNA and codon in structure II-nc is shown as in m. o, Cryo-EM density for the anticodon and codon, which are interacting in structure II-nc is shown at 4.5σ after applying a B-factor of −25 Å². p, Cryo-EM density for ternary complex and codon in structure III-nc is shown at 4σ after applying a B-factor of −50 Å². q, Cryo-EM density for near-cognate tRNA and codon in structure II-nc is shown as in p. r, Cryo-EM density for the anticodon and codon, which are base paired, in structure III-nc is shown at 5.2σ after applying a B-factor of −60 Å².

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
Extended Data Figure 3 | See next page for caption.
Extended Data Figure 3 | Local resolution of cryo-EM maps of the cognate and near-cognate complexes. Local resolution of each cryo-EM map was determined using Blocres. a, An overview of the structure I map. The unsharpened map is shown at 5σ, coloured using a scale ranging from 3.5 Å to 8.5 Å (left). b, An overview of the structure II map shown as in a. c, An overview of the structure III map. The unsharpened map is shown at 5σ, coloured using a scale ranging from 3.0 Å to 8.0 Å (left). d–f, Slab views at the ribosome interior in maps corresponding to structure I (d), structure II (e) and structure III (f), prepared and coloured as in a, b and c, respectively. g, Close-up view of decoding centre of structure I. The map was sharpened by applying a B-factor of −36 Å² and is shown at 4.5σ, coloured as in a. h, Close-up view of decoding centre of structure II. The map was sharpened by applying a B-factor of −50 Å² and is shown at 5σ, coloured as in a. i, Close-up view of decoding centre of structure III. The map was sharpened by applying a B-factor of −100 Å² and is shown at 4σ, coloured as in c. j, An overview of the structure I-nc map. The unsharpened map is shown at 5σ and is coloured using a scale ranging from 3.5 Å to 8.5 Å (left). k, An overview of the structure II-nc map, as in j. l, An overview of the structure III-nc map, as in j. m–o, Slab views at the ribosome interior in maps corresponding to structure I-nc (m), structure II-nc (n) and structure III-nc (o), prepared and coloured as in j. p, Close-up view of decoding centre of structure I-nc. The unsharpened map is shown at 4.5σ, coloured as in j. q, Close-up view of decoding centre of structure II-nc. The map was sharpened by applying a B-factor of −25 Å² and is shown at 5σ, coloured as in j. r, Close-up view of the decoding centre of structure III-nc. The map was sharpened by applying a B-factor of −50 Å² and is shown at 5σ, coloured as in j.
Extended Data Figure 4 | 30S domain closure and aminoacyl-tRNA conformations in cognate and near-cognate complexes. a, Comparison of the 30S conformations among structures I (magenta), II (grey) and III (multi-coloured). Superposition was achieved by structural alignment of 23S rRNA. b, Superposition of structure II (grey) and III (multi-coloured) highlighting the movement of the shoulder including the 530 loop towards the 30S body including h44. c, Different conformations of aminoacyl-tRNA in structures I and II: T tRNA (structure I) is relaxed, whereas A*/T tRNA (structure II) is kinked to base-pair with mRNA. d, Interaction of T tRNA in structure I with the decoding centre is shown in surface representation. All atoms within 15 Å of residues 30–38 of T tRNA are shown except for 16S residues 950–964 and 984–985, which were omitted for clarity. e, Interaction of A*/T tRNA in structure II with the decoding centre is shown in surface representation as in d. f, Cognate tRNA anticodon samples positions between those in structures I and II. Additional focused classification into four classes revealed intermediate classes with A-site tRNA density midway between the T tRNA and A*/T tRNA conformations. The cryo-EM density, within 15 Å of residues 30–38 of T or A*/T tRNA, is shown with exceptions as in d, at 3σ after applying a B-factor of +200 Å². g, Near-cognate tRNA anticodon samples positions between those in structure I-nc and structure II-nc. Additional focused classification into four classes revealed intermediate classes with A-site tRNA density midway between the T tRNA and A*/T tRNA conformations. The cryo-EM density is shown as in f.
Extended Data Figure 5 | Sliding of tRNA elbow along the L11 stalk from structures I–III towards the P-site tRNA agrees with distance changes inferred from smFRET studies of tRNA decoding. **a**, Overview of structure III with box highlighting the location of tRNA elbow and L11 stalk. **b**, tRNA elbow residues G19 and C57 slide along L11 stalk residues 1095 and 1067 from structure II (grey) to structure III (green). Superposition was achieved by aligning on residues 1095 and 1067 of L11 stalk. **c**, The elbow of T tRNA (green) and L11 stalk in structure I. **d**, The elbow of A* tRNA (green) and L11 stalk in structure II. **e**, The elbow of A/T tRNA (green) and L11 stalk in structure III. **f**, The distance between nucleotide 47 of T tRNA (magenta) and nucleotide 8 of P-site tRNA (orange) is shown. These locations were used in smFRET studies of tRNA decoding. **g**, The distance between nucleotide 47 of A* tRNA (grey) and nucleotide 8 of P-site tRNA (orange) is shown. **h**, The distance between nucleotide 47 of A/T tRNA (green) and nucleotide 8 of P-site tRNA (orange) is shown. The distance changes between T or A* tRNA to A/T tRNA are consistent with the change from a low FRET value of 0.35 in the early tRNA decoding states to a mid-FRET value of 0.5 in the GTP activated tRNA decoding state, as described in the Methods.
Extended Data Figure 6 | See next page for caption.
Extended Data Figure 6 | Conformational differences in the decoding centres of cognate and near-cognate structures I–III. a, Cryo-EM density (shown as mesh) of the decoding centre in structure I. The map was sharpened by applying a B-factor of $-36\,\text{Å}^2$ and density is shown at 3.5σ for mRNA and anticodon of T tRNA, 5.5σ for G530, 4.0σ for A1492, A1493 and A1913. b, Cryo-EM density for the G530 region in structure I is shown with two conformations of G530-syn (top) and G530-anti (bottom). Both conformations fit with similar local cross-correlation coefficients (Methods). The map was sharpened by applying a B-factor of $-100\,\text{Å}^2$ and density is shown at 5σ. c, Cryo-EM density for the decoding centre in structure II. The map was sharpened by applying a B-factor of $-75\,\text{Å}^2$ and density is shown at 5σ. d, Cryo-EM density for the G530 region in structure II. The map was sharpened by applying a B-factor of $-100\,\text{Å}^2$ and density is shown at 5σ for G530 or at 4σ for the mRNA and the anticodon of A*/T tRNA, A1492, A1493 and A1913. Density for residue 1492 (shown in grey) is compatible with two conformations, in and out of h44. e, Cryo-EM density for the G530 region in structure II. The map was sharpened by applying a B-factor of $-100\,\text{Å}^2$ and density is shown at 5σ. f, Cryo-EM density for the decoding centre in structure III. The map was sharpened by applying a B-factor of $-150\,\text{Å}^2$ and density is shown at 4.5σ for the mRNA and the anticodon of A*/T tRNA, G530, A1492, A1493 and A1913. I, Cryo-EM density for the G530 region in structure III. The map was sharpened by applying a B-factor of $-150\,\text{Å}^2$ and density is shown at 5σ. g, Cryo-EM density (grey mesh) showing the anti-conformation of G530 (yellow model) in structure II. The map was sharpened by applying a B-factor of $-100\,\text{Å}^2$ and density is shown at 5σ. h, i, Cryo-EM density showing the anti-conformation of G530 in structure III. The map was sharpened by applying a B-factor of $-150\,\text{Å}^2$ and density is shown at 5σ. j, Cryo-EM density of the decoding centre in structure I-nc. The map was not B-factor sharpened and density is shown at 3.75σ for mRNA, the anticodon of T tRNA, A1492, A1493 and A1913, or at 5σ for G530. k, Cryo-EM density for the decoding centre in structure II-nc. The map was sharpened by applying a B-factor of $-25\,\text{Å}^2$ and density is shown at 4.3σ for mRNA, the anticodon of tRNA, A1492, A1493 and A1913, or at 5.5σ for G530. l, Cryo-EM density of structure II-nc for the 30S shoulder including G530. The map was sharpened by applying a B-factor of $-120\,\text{Å}^2$ and density is shown at 3.5σ. m, Cryo-EM density for the decoding centre in structure III-nc. The map was sharpened by applying a B-factor of $-50\,\text{Å}^2$ and density is shown at 4.75σ for mRNA and the anticodon of tRNA, G530, A1492 and A1493, and at 4.5σ for A1913. n, Cryo-EM density of structure III-nc for the 30S shoulder including G530. The map was sharpened by applying a B-factor of $-100\,\text{Å}^2$ and density is shown at 4.5σ. o, Cryo-EM density showing the syn-conformation of G530 in structure II-nc. The map was sharpened by applying a B-factor of $-120\,\text{Å}^2$ and density is shown at 3.7σ. p, q, Cryo-EM density showing the anti-conformation of G530 in structure III-nc. The map was sharpened by applying a B-factor of $-120\,\text{Å}^2$ and density is shown at 3.3σ. r, Nucleotide 34 of the anticodon stacks on C1054 in the cognate structure II. s, Cryo-EM density (grey mesh) for the cognate structure II. The map was sharpened by applying a B-factor of $-100\,\text{Å}^2$ and density is shown at 5σ. t, Cryo-EM density for the cognate structure III. The map was sharpened by applying a B-factor of $-150\,\text{Å}^2$ and density is shown at 5.5σ. u, Nucleotide 34 of the near-cognate anticodon in structure II-nc is shifted by approximately 2 Å from C1054, relative to its position in the cognate complex (shown in r). v, Cryo-EM density for the near-cognate structure II-nc. The map was sharpened by applying a B-factor of $-120\,\text{Å}^2$ and density is shown at 3.5σ. w, Cryo-EM density for the near-cognate structure III-nc. The map was sharpened by applying a B-factor of $-50\,\text{Å}^2$ and density is shown at 5.5σ. Modification of U34 of tRNA1Lys to 5-methylaminomethyl-2-thiouridine (mnm5s2U34) is shown in u–w.
Extended Data Figure 7 | Anchoring of EF-Tu to the 30S shoulder in structures I, II and III and to the SRL in structures III and III-nc.

a, Overview of structure III with boxes highlighting locations of EF-Tu contacts to 30S shoulder (dashed box) and to SRL (solid box). b, The contacts of EF-Tu with the 30S shoulder are similar among structures I (purple), II (grey) and III (red). c, Cryo-EM density for EF-Tu (red) and 16S rRNA (pale yellow) in structure I. The map was sharpened by applying a B-factor of $-36 \, \text{Å}^2$ and is shown at 3σ. d, Cryo-EM density for EF-Tu and 16S rRNA in structure II. The map was sharpened by applying a B-factor of $-75 \, \text{Å}^2$ and is shown at 3.5σ. e, Cryo-EM density for EF-Tu and 16S rRNA in structure III. The map was sharpened by applying a B-factor of $-100 \, \text{Å}^2$ and is shown at 4.5σ. f, Cryo-EM density for EF-Tu (red) and the SRL of 23S rRNA (pale cyan) in structure III. The map was sharpened by applying a B-factor of $-150 \, \text{Å}^2$ and is shown at 4.5σ. g, Cryo-EM density for EF-Tu and SRL of 23S rRNA in structure III-nc. The map was sharpened by applying a B-factor of $-50 \, \text{Å}^2$ and is shown at 4.5σ. © 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
Extended Data Figure 8 | Modifications of A37 in tRNA\(^{\text{Phe}}\) and tRNA\(^{\text{Lys}}\), and magnesium ion coordination near G530.

a, Cryo-EM density for the codon–anticodon helix in structure II shows that the 2-methylthio moiety of 2-methylthio-\(N^6\)-(2-isopentenyl)-adenosine at position 37 of tRNA\(^{\text{Phe}}\) (\(\text{ms}^2\text{i6A}37\)) stacks on U1 of the A-site codon. The map was sharpened by applying a B-factor of \(-75\,\text{Å}^2\) and density is shown at 4.8\(\sigma\).

b, Cryo-EM density for the codon–anticodon helix in structure III shows that \(\text{ms}^2\text{i6A}37\) of tRNA\(^{\text{Phe}}\) stacks on U1 similarly to that in structure II. The map was sharpened by applying a B-factor of \(-150\,\text{Å}^2\) and density is shown at 6\(\sigma\).

c, Cryo-EM density for the codon–anticodon helix in structure III-nc shows that 6-threonylcarbamoyl adenosine at position 37 of tRNA\(^{\text{Lys}}\) (t6A37) stacks on A1. The map was sharpened by applying a B-factor of \(-120\,\text{Å}^2\) and density is shown at 4.5\(\sigma\).

d, Cryo-EM density for structure II shows the \(N^6\) modification of \(\text{ms}^2\text{i6A}37\) of tRNA\(^{\text{Phe}}\) in close proximity to U33. The map was sharpened by applying a B-factor of \(-75\,\text{Å}^2\) and density is shown at 4\(\sigma\).

e, Cryo-EM density for structure III shows the \(N^6\) modification of \(\text{ms}^2\text{i6A}37\) of tRNA\(^{\text{Phe}}\) in close proximity to U33. The map was sharpened by applying a B-factor of \(-150\,\text{Å}^2\) and density is shown at 4\(\sigma\).

f, Cryo-EM density for structure III-nc shows the \(N^6\) modification of t6A37 of tRNA\(^{\text{Lys}}\). The map was sharpened by applying a B-factor of \(-120\,\text{Å}^2\) and density is shown at 3.5\(\sigma\).

g, In structure II, three magnesium ions (magenta) are coordinated (dotted lines) by G530 and codon–anticodon helix (in some instances, the coordination probably occurs via water molecules). Density for magnesium ions (mesh) was sharpened by applying a B-factor of \(-75\,\text{Å}^2\), shown at 4\(\sigma\).

h, In structure III, the magnesium ions shift with G530. Density was sharpened by applying a B-factor of \(-150\,\text{Å}^2\), shown at 4\(\sigma\).

i, In structure III-nc, three magnesium ions are seen at equivalent position to those in structure III. Density was sharpened by applying a B-factor of \(-120\,\text{Å}^2\), shown at 3\(\sigma\).
Extended Data Table 1 | Refinement statistics for all structures

	Structure I	Structure II	Structure III	Structure I-nc	Structure II-nc	Structure III-nc
PDB code	5UYK	5UYL	5UYM	5UYN	5UYP	5UQY
EMDB code	8615	8616	8617	8618	8619	8620
Data collection						
EM equipment	FEI Titan Krios					
Voltage (kV)	300	300	300	300	300	300
Detector	K2 summit	K2 summit	K2 summit	K2 summit	K2 summit	K2 summit
Pixel size (Å)	1.64	1.64	1.64	1.64	1.64	1.64
Electron dose (e/Å²)	50	50	50	50	50	50
Defocus range (µm)	0.4 – 5.0	0.4 – 5.0	0.4 – 5.0	0.5 – 5.0	0.5 – 5.0	0.5 – 5.0
Reconstruction						
Software	Frealign v9.10-9.11					
Number of particles in final map	6,726	10,431	153,597	4,629	6,910	5,758
Final resolution (Å)	3.9	3.6	3.2	4.0	3.9	3.8
Map-sharpening B factor (Å²)	-36	-50	-100	0	-25	-25
Model fitting						
Software	Chimera & Pymol					
Model composition						
Non-hydrogen atoms	154,413	153,755	154,140	153,718	153,781	153,760
Protein residues	6,563	6,476	6,476	6,474	6,476	6,476
RNA bases	4,812	4,810	4,810	4,809	4,811	4,810
Ligands (Zn²⁺/Mg²⁺)	0, 0	0, 0	2, 383	0, 0	0, 0	0, 1
Ligands/Modifications (GDPCP, fMet, Phe, Lys)	1 (GDPCP)	3 (GDPCP, fMet, Phe)	3 (GDPCP, fMet, Phe)	1 (GDPCP)	3 (GDPCP, fMet, Lys)	3 (GDPCP, fMet, Lys)
Refinement						
Software	RSRef & Phenix					
Correlation Coefficient *	0.84	0.84	0.88	0.79	0.80	0.79
Real space R-factor †	0.19	0.19	0.20	0.20	0.20	0.20
Validation (proteins)						
Molprobity Score ‡	2.22	2.31	2.31	2.4	2.5	2.4
Clash score, all atoms †	12.0	13.1	13.0	13.6	13.3	14.5
Poor rotamers (%) †	0.9	1.1	1.2	1.1	1.6	1.3
Favorable rotamers (%) †	94.9	93.8	94.6	93.6	92.8	92.9
Ramachandran-plot statistics						
Outlier (%) †	1.7	2.2	2.0	2.8	3.1	2.7
Favor (%) †	86.4	85.6	86.5	83.5	82.6	84.5
Bond length (Å)	0.007	0.008	0.006	0.005	0.005	0.005
Bond angle (˚)	0.9	0.9	0.9	0.9	0.9	0.9
Validation (RNA)						
Good sugar puckers (%) †	99.6	99.5	99.5	99.6	99.6	99.4
Good backbone conformation (%) †	88.4	88.2	88.4	88.4	88.3	87.1

*All-atom correlation coefficient as reported by phenix.real_space_refine.†As reported by RSRef.‡As reported by Molprobity.§Root mean square deviation (r.m.s.d.) values from ideal covalent bond lengths and angles.
Extended Data Table 2 | Distances among cognate structures I to III and near-cognate structures I-nc to III-nc, reflecting movements of the 30S shoulder domain relative to the head and body of the 30S subunit

Region	Distance* (RMSD, all-atom), Å	Distance* (RMSD, all-atom), Å	Distance* (RMSD, all-atom), Å						
	I to II	I to III	II to III	I-nc to II-nc	II-nc to III-nc	I-nc to III-nc	I to I-nc	II to II-nc	III to III-nc
50S subunit, used to align 70S ribosomes (23S rRNA, excluding L1 and L11 stalks)	0.46	0.51	0.47	0.52	0.71	0.71	0.57	0.56	0.66
Body, 30S central region (nt 580-920 of 16S rRNA)	0.49	1.4	1.4	0.52	1.1	1.1	0.61	0.58	0.75
Head (nt 960-1400 of 16S rRNA)	0.56	1.6	1.7	0.60	1.2	1.2	0.71	0.75	0.86
Shoulder, near 30S center (h18, nt 510-540, 16S rRNA)	0.90	3.2	3.2	0.78	2.8	2.7	0.89	0.93	0.85
Shoulder, periphery (h16, nt 400-440)	0.54	4.6	4.6	0.58	4.3	4.1	0.65	0.67	0.88

*R.m.s.d. values that are more than 3 × r.m.s.d. values for the 23S rRNA, are shown in bold blue font. Superposition of structures relative to each other was obtained by structural alignment of 23S rRNA excluding the L1 and L11 stalks.