Non-targeted effects and radiation-induced carcinogenesis: a review

Julie J Burtt1, Patsy A Thompson1 and Robert M Lafrenie2

1 Canadian Nuclear Safety Commission, 280 Slater Street, Ottawa, Ontario, K1P 5S9, Canada
2 Northeast Cancer Centre, AMRIC-Health Sciences North, 41 Ramsey Lake Road, Sudbury, Ontario, P3E 5J1, Canada

E-mail: Julie.Burtt@canada.ca, rlafrenie@canada.ca and Patsy.Thompson@cnsc-ccsn.gc.ca

Received 17 July 2015, revised 18 December 2015
Accepted for publication 15 January 2016
Published 24 February 2016

Abstract
Exposure to ionising radiation is clearly associated with an increased risk of developing some types of cancer. However, the contribution of non-targeted effects to cancer development after exposure to ionising radiation is far less clear. The currently used cancer risk model by the international radiation protection community states that any increase in radiation exposure proportionately increases the risk of developing cancer. However, this stochastic cancer risk model does not take into account any contribution from non-targeted effects. Nor does it consider the possibility of a bystander mechanism in the induction of genomic instability. This paper reviews the available evidence to date for a possible role for non-targeted effects to contribute to cancer development after exposure to ionising radiation. An evolution in the understanding of the mechanisms driving non-targeted effects after exposure to ionising radiation is critical to determine the true contribution of non-targeted effects on the risk of developing cancer. Such an evolution will likely only be achievable through coordinated multidisciplinary teams combining several fields of study including: genomics, proteomics, cell biology, molecular epidemiology, and traditional epidemiology.

Keywords: bystander effect, genomic instability, radiation, cancer

(Some figures may appear in colour only in the online journal)
1. Introduction

The relationship between non-targeted effects and the risk of developing radiation-induced cancer is still quite uncertain with a significant amount of the data being null, inconclusive, contradictory, or open to alternate interpretation. The current estimate of cancer risk (5% per sievert) is based on epidemiological studies of large populations (such as the Japanese atomic bomb survivors) with relatively high radiation doses [1, 2]. Cancer risk from low dose exposures (i.e. below 100 mGy) is extrapolated linearly down to zero for which no firm epidemiological evidence exists. This extrapolation, known as the linear-non-threshold (LNT) model, is based on the assumption that the physical energy deposited by ionising radiation (or simply radiation) increases carcinogenic risk linearly with increasing dose, regardless of dose rate [2]. This conclusion is contentious because the LNT model cannot explain all biological findings. The LNT model has been repeatedly endorsed for radiation protection purposes—that is, for setting dose limits and as the basis for ALARA (As Low As Reasonably Achievable) requirements; it is not intended for risk analysis [2–5]. Further, accumulating evidence suggests that the LNT model does not accurately reflect the mechanistic contributions of radiation effects. More refined models which take into account personal dosimetry, age, and sex are required for determining individual risk after radiation exposure. To this end, risk analysis models will have a major role to play in future studies and validation by other groups will be necessary [6, 7].

The weight of evidence provided by epidemiological studies, which has been typically used to support the LNT model, indicates that if an excess risk from low dose radiation exposures exists, it is indistinguishable from baseline cancer incidence or mortality risk. Overall, low dose exposure studies typically find cancer mortality and incidence rates that are in line with what is expected for the general population or demonstrate a healthy worker effect [2, 3, 8, 9]. In contrast, some recent studies, evaluating moderate to low dose exposures, have been able to detect a statistically significant increase in the risk for select cancers following radiation exposures below 100 mGy due to their strong statistical power, few confounding factors, and narrow confidence intervals [10–16]. The evidence of a risk below 100 mGy is becoming more frequent in the latest research. These studies are well designed and thus may offer greater insights into low dose risk that were previously not detected. They highlight the need for further investigation.

Cancers are a large group of diseases that result in cells becoming defective in normal metabolic and cell proliferation pathways. Tumour development can be divided into three phases: tumour initiation, tumour promotion, and malignant progression. Tumours frequently initiate following molecular damage to DNA [17]. Damage often involves activation of growth promoting genes (oncogenes) or disruption of growth inhibitory signals (tumour suppressors). The tumour promotion stage is the accumulation and amplification of the initial damage by cellular responses in an attempt to maintain the genetic stability of the cell [18]. The progression stage occurs when cells continue to proliferate as a result of the acquisition of additional alterations [19]. The accumulation of mutations in up to 20 different genes is required to overcome the multiple safeguards that exist to protect against the development of an invasive cancer. The majority of these mutations confer only a small selective advantage during tumorigenesis [20]. Thus, it is best to think of mutations as contributing to (rather than causing) cancer [21]. Several studies have attempted to characterise exposure to radiation as a direct initiator, promoter, or progressor of cancer [22–27]. However, it is difficult to strictly classify radiation as one or the other because it could affect carcinogenesis as an initiator, promoter, or progressor, depending on dose, the receptor [28, 29], and potentially as a function of age at exposure [6]. For this reason, particular attention is paid in this review to the dose, the receptor, and the general state of the target cell.
It has been known for quite some time that un-irradiated cells can and do respond to radiation-induced damage. These responses are collectively known as non-targeted effects and are well documented, even though the underlying mechanisms are not completely understood. Two main types of non-targeted effects include the bystander effect and genomic instability. Radiation-induced bystander effects refer to the presence of radiation-like effects in cells that were not directly hit by radiation, and involve cellular signalling pathways [5]. Radiation-induced genomic instability refers to the increased acquisition rate of alterations or mutations in the genome being transmitted to progeny cells [5]. These cellular and genomic responses have been put forward as evidence that the response to radiation-induced DNA damage may, in some cases, deviate from linearity. However, at this time, it is not certain whether non-targeted effects are causing a deviation from linearity, nor if the deviation is leading to an overestimation or an underestimation of cancer risk.

2. Methods

The purpose of this comprehensive review is to summarise and critically analyze the relevant scientific research on the role of non-targeted effects in cancer development in hopes of identifying gaps or inconsistencies to generate future research avenues. Non-targeted effects are important not only for high radiation dose exposures, but low dose exposures as well. Furthermore, there is limited knowledge available on the interaction of non-targeted effects such as the bystander effect and genomic instability. This topic was originally chosen as the focus of a graduate review project to provide the Canadian Nuclear Safety Commission with a scientifically sound knowledge base and several options for which to provide funding for future research. Pubmed was the primary electronic database used to search for relevant literature. By using the advanced search option, the keyword search terms selected (all fields) were: radiation, bystander effect, genomic instability, and cancer. From the approximately 70 papers identified, additional papers were identified based on the citations of the original 70 papers. This included several books and international reports. The method by which papers were included or excluded from this work was based on a set of detailed questions which addressed the adequacy of the experimental design, data analysis, consideration of alternate explanation of findings, biological plausibility of findings, and sufficient evidence to support conclusions.

3. Review results

3.1. Historical experimental approach

In order to study non-targeted effects, researchers have used a microarray approach to see how radiation dose can impact gene expression. These studies have used high dose, low dose, and shielded dose components and statistically significant changes in gene expression can be seen for each category. Gene expression patterns depend on the cell type, the growth state of the cell, the type of radiation, and the biological endpoint being measured. The types of genes expressed following exposures to doses below about 200 mGy and scatter doses vary substantially from those expressed in response to higher doses and there may also be important time- and tissue-dependent differences [30–40]. Ding et al [41] noted that the genes upregulated in response to high dose radiation exposures tend to be involved in regulating apoptosis and cell proliferation, while the genes upregulated in response to low dose radiation exposures tend to be involved in signal transduction, intercellular signalling, and DNA damage responses. Although a coherent set of genes that responds differently to high and low doses of radiation
has yet to be identified [42], many of these genes have been implicated in cancer development. Select genes and signalling pathways are highlighted in the following sections as they may provide a link between radiation exposures and increased cancer risk via bystander effects, activation of chronic inflammation, and stimulation of genomic instability events.

3.2. Radiation-induced bystander effect

Cell–cell communication is required to mediate the bystander effect and is thought to involve two main mechanisms: the secretion of soluble factors into the extracellular space [43–45]; and via cell–cell interchanges through gap-junction communication [46, 47]. There is now firm evidence that this phenomenon does not only occur in vitro, but in vivo as well [48, 49].

A variety of end points have been reported as bystander effects, such as sister chromatid exchanges [50–54], the presence of chromosomal rearrangements and aberrations [55, 56], micronuclei formation [47, 57–59], the induction of gene mutations including acquisition of point mutations (such as base changes) [60–66], gene expression changes [57, 67] including changes in γH2AX foci that indicate DNA damage [67–69], changes in cell proliferation, cell cycle control, cell transformation, cell death, or apoptosis [56, 70–79]. Radiation-induced bystander effects have been proposed to require the involvement of several biological signalling pathways, including both p53-independent [80] and p53-dependent pathways [47, 81] as well as ATM-dependent pathways [54].

The evolution in our understanding of the potential mechanisms behind the bystander effect comes directly from gene expression studies. Huo et al [66] confirmed that the types of mutations occurring in bystander cells were primarily point mutations, whereas those occurring in irradiated cells were primarily deletions. Since reactive oxygen species (ROS) are thought to induce primarily point mutations, they propose that generation of ROS is a major mechanism by which mutations arise in bystander cells [66]. Furthermore, bystander and directly irradiated cells respond to radiation differently with regard to cell signalling [82]. It is not only important to understand the mechanism behind the bystander effect, but also what, if any, role it may play in radiation-induced carcinogenesis. Watson et al [83] provided the first evidence for an in vivo bystander mechanism in the induction of chromosomal instability in response to ionising radiation. Several papers support these findings [84–88], Table 1 illustrates how inflammatory mediators link the bystander effect and genomic instability.

3.3. Radiation-induced genomic instability

Radiation-induced genomic instability is characterised by the accumulation of genetic alterations within individual cells that increases over time and is transmitted to progeny cells, even multiple generations after the initial insult [89, 90]. The progeny of the irradiated cells display a high level of non-clonal genomic damage, which is present at a frequency that is not consistent with independent mutations [91]. The induction of radiation-induced genomic instability appears to be dependent on radiation quality (high- or low-linear energy transfer (LET)) and genetic background [92, 93]. There may also be a threshold for low-LET radiation (<500 mGy), below which no genomic instability is induced [91, 94].

Some of the measured endpoints for genomic instability overlap with the end points mentioned above for the bystander effect, demonstrating the commonalities between the two radiation-induced non-targeted effects. The endpoints used to characterise genomic instability have included: increased levels of sister chromatid exchanges [40, 45, 95] and chromosomal breaks or aberrations [81, 91, 96–98]; enhanced micronuclei formation, gene mutations and
Table 1. Dose and observed bystander effect.

Reference	Dose	Target tissue	Response of target	Effect
Mancuso et al [46]	3000 mGy (direct and indirect) (x-rays)	Patched-1 heterozygous mouse cerebellum	*Direct*: Whole body irradiated animals developed aggressive cerebellar tumours.	
Indirect: Animals with shielded brains had a lower tumour response than directly irradiated animals but significantly more tumours than untreated animals. | An increased tumour response in shielded tissue suggests that a persisting low level of DNA damage in central nervous system after low radiation doses (36 mGy, estimated scatter dose) may facilitate chromosomal events relevant for carcinogenesis.
- *In vivo* evidence of a dose-response effect.
- Bystander effects are *in vivo* events with carcinogenic potential. |
| Lorimore et al [85] | 4000 mGy (direct and indirect) (gamma radiation) | Whole body mice (CBA/Ca and C57BL/6) | Macrophages obtained from the bone marrow of irradiated CBA/Ca, but not C57BL/6 mice, are able to induce chromosomal instability assayed as nonclonal cytogenic aberrations in the clonal descendants of non-irradiated stem cells | Chromosomal instability was induced as a consequence of proinflammatory cytokine signalling. The findings show a genotype dependent chromosomal instability phenotype induced by radiation-induced macrophage-mediated bystander signalling *in vivo*.
- TNF-α was implicated in the mechanism underlying the macrophage-mediated chromosomal instability phenotype. |
| Ghandhi et al [82] | 500 mGy (direct and indirect) (alpha particles) | Primary human lung fibroblasts | *Direct*: P53- and NFκB-regulated radiation response genes were expressed at elevated levels in the directly exposed cells.
Indirect: P53-regulated radiation response genes (ex: CDKN1A) showed little or no change in bystander cells. Genes regulated by NFκB (ex: COX-2) were expressed at elevated levels in bystander cells. | Two major transcriptional hubs (p53 and NFκB) that regulate the response to radiation responded differently in bystander cells and similarly in directly irradiated cells *in vitro*.
- ‘The greater relative contribution of signalling through NFκB in bystander cells may lead to a greater survival of these cells, even in the presence of persistent damage, possibly putting bystander cells at an increased risk for long-term consequences of radiation damage.’ |
| Chai et al [49] | 5000 mGy (direct and indirect) (x-rays) | Lower abdominal area of gpt delta transgenic mice | ● No significant change in cytokine plasma levels
● Significant change in cytokine levels in non-targeted lung tissues, but not in non-targeted liver tissues | The TGFβ-TGFB1-COX-2 signalling pathway has a critical role in radiation-induced non-targeted response and genomic instability *in vivo*.
- COX-2 signalling pathway falls under NFκB regulation. |
amplifications \[96, 99\]; changes in ploidy \[100–102\]; mini- and micro-satellite instabilities and/or decreased plating efficiency \[90, 103\]; increased cellular transformation, and enhanced rates of apoptosis \[104\]; and changes in the incidence of cell death \[66, 105, 106\].

The mechanisms by which exposure to radiation results in the induction of genomic instability are still unclear \[107\]. Several different mechanisms have been proposed, including: bridge-breakage; persistent oxidative stress affecting DNA regulation; unequal DNA segregation; and, altered DNA regulation \[96, 108, 109\]. However, two mechanisms that are gaining support are that of epigenetics \[110\] and chronic inflammation \[111\]. Epigenetics refers to heritable changes in gene expression that take place without alterations in the DNA sequence. Epigenetic changes include an array of molecular modifications such as DNA methylation, histone acetylation, chromatin remodeling, and miRNA regulated gene expression \[112–116\]. Chronic inflammation refers to activation of innate immune processes that result in downregulation of DNA repair pathways and cell cycle checkpoints in response to release of inflammatory mediators and ROS which lead to genomic instability \[111\]. The mechanisms leading to genetic alterations under inflammatory conditions are still unclear and have been the focus of many recent reviews \[111, 117–119\].

3.4. Implications for non-targeted radiation-induced carcinogenesis

As stated above, Watson et al \[83\] provided the first evidence of an in vivo bystander mechanism in the induction of chromosomal instability in response to ionising radiation. Furthermore, inflammatory processes provide a mechanistic link between radiation-induced chromosomal instability, bystander effects, and clastogenic factors \[85\]. Many studies have demonstrated that the nuclear factor (NF)-κB family of transcription factors plays an important role in radiation-induced bystander effects \[120\] as well as immune/inflammatory responses \[119\]. Chai et al \[49\] have shown that the TGFβ-TGFBR1-COX-2 signalling pathway plays a critical role in the radiation-induced non-targeted response in vivo. The COX-2 signalling pathway is under NFκB regulation \[120\] and is over-expressed in tissues subjected to chronic inflammation and infiltrating leukocytes \[121\]. Also, there is evidence that TGFβ is involved in ROS induction and Ca2+ influx by bystander cells \[122, 123\]. Various links between the bystander effect, chronic inflammation, and genomic instability exist. Additionally, there is recent evidence that examining different epigenetic responses in bystander organs after partial body irradiation may provide further insight into the mechanism leading to genomic instability \[124\].

Until recently, the bystander effect, chronic inflammation, and genomic instability were typically studied separately. By combining all of these radiation-related events, a more global model of non-targeted radiation carcinogenesis can be established (see figure 1). Figure 1 shows a cell being directly hit by ionising radiation in frame (a), followed by a radiation-induced bystander event in frame (b). ROS are proposed to be the mechanism by which mutations arise in bystander cells. Inflammatory mediators decrease DNA repair pathways and cell cycle checkpoints during bystander cell division (frame c). Additional signalling from inflammatory mediators leads to an instability event in the progeny of the bystander cell in frame (d). Epigenetic regulation is proposed to be the means by which multiple non-targeted events facilitate carcinogenesis.

4. Conclusions

Although there is no strong epidemiological evidence of excess cancers caused directly by non-targeted effects following radiation exposure, the studies reviewed here provide a
mechanistic link between the bystander effect and genomic instability in the induction of radiation-induced carcinogenesis. As limited (experimental) human data exists, the animal studies reviewed here can inform radiation protection practices for people exposed to radiation from occupational, medical, and natural sources. Animal studies have shown that bystander effects can increase the tumour response in shielded mice [46], are genotype dependent [85], and can induce multiple signalling pathways [49]—supporting the findings that bystander cells could be at a greater risk than irradiated cells for long-term consequences of radiation damage [82]. The evidence presented in this review does not warrant a deviation from current radiation protection practice, but it does show that additional work is required to determine the extent to which non-targeted effects contribute to radiation-induced carcinogenesis. Future studies will require coordinated multidisciplinary teams combining several fields of study including: genomics, proteomics, cell biology, molecular epidemiology, and traditional epidemiology to achieve a greater understanding of the contribution of non-targeted effects in radiation-induced carcinogenesis.

Acknowledgments

The authors wish to acknowledge the assistance of Annick Laporte in the graphic design of figure 1 and to thank the two anonymous reviewers for their valuable suggestions.
References

[1] Ozasa K, Shimizu Y, Suyama A, Kasagi F, Soda M, Grant E J, Sakata R, Sugiyama H and Kodama K 2012 Studies of the mortality of atomic bomb survivors, Report 14, 1950–2003: an overview of cancer and noncancer diseases Radiat. Res. 177 229–43
[2] Valentin J (ed) 2007 The 2007 recommendations of the International Commission on Radiological Protection Ann. ICRP 37 1–332 (Publication 103)
[3] National Research Council 2006 Committee on the Biological Effects of Radiation, Health risks from exposure to low levels of ionizing radiation (BEIR VII Phase 2) (Washington, DC: National Academies Press)
[4] United Nations Scientific Committee on the Effects of Atomic Radiation 2008 Effects of Ionizing Radiation: vol I UNSCEAR 2006 Report (New York: United Nations)
[5] Valentin J (ed) 2006 Low-dose extrapolation of radiation-related cancer risk Ann. ICRP 35 1–142 (Publication 99)
[6] Shuryak I, Sachs R K and Brenner D J 2010 Cancer risks after radiation exposure in middle age J. Natl Cancer Inst. 102 1628–38
[7] Sachs R K, Chan M, Hlatky L and Hahnfeldt P 2005 Modeling intercellular interactions during carcinogenesis Radiat. Res. 164 324–31
[8] Brenner D J and Sachs R K 2006 Estimating radiation-induced cancer risks at very low doses: rational for using a linear no-threshold approach Radiat. Environ. Biophys. 44 253–6
[9] Preston J 2003 The LNT model is the best we can do—today J. Radiol. Prot. 23 263–8
[10] Mathews J D et al 2013 Cancer risk in 680,000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians BMJ 346 f2360
[11] Wakeford R 2008 Childhood leukaemia following medical diagnostic exposure to ionizing radiation in utero or after birth Radiat. Prot. Dosim. 132 166–74
[12] Wakeford R 2013 The risk of childhood leukaemia following exposure to ionising radiation—a review J. Radiol. Prot. 33 1–25
[13] Zablotska L B et al 2012 Radiation and the risk of chronic lymphocytic and other leukemias among Chernobyl cleanup workers Environ. Health Perspect. 121 59–65
[14] Pearce M S et al 2012 Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study Lancet 380 499–505
[15] Jacob P, Rühl W, Walsh L, Blettner M, Hammer G and Zeeb H 2009 Is cancer risk of radiation workers larger than expected? Occup. Environ. Med. 66 789–96
[16] Muirhead C R, O’Hagan J A, Haylock R G E, Phillipson M A, Willcock T, Berridge G L C and Zhang W 2009 Mortality and cancer incidence following occupational radiation exposure: third analysis of the National Registry for Radiation Workers Brit. J. Cancer 100 206–12
[17] Cox R 1994 Human cancer predisposition and the implications for radiological protection Int. J. Radiat. Biol. 66 643–7
[18] Nikjoo H 2003 Radiation track and DNA damage Iran. J. Radiat. Res. 1 3–16
[19] Rudden R W 2007 Cancer Biology 4th edn (New York: Oxford University Press)
[20] Beerenwinkel N, Antal T, Dingli D, Traulsen A, Kinzler K W, Velculescu V E, Vogelstein B and Nowak M A 2007 Genetic progression and the waiting time to cancer PLoS Comput. Biol. 3 e225
[21] Vogelstein B and Kinzler K W 2004 Cancer genes and the pathways they control Nat. Med. 10 789–99
[22] Jaffe D R, Williamson J F and Bowden G T 1987 Ionizing radiation enhances malignant progression of mouse skin tumors Carcinogenesis 8 1753–5
[23] Jaffe D and Bowden G T 1987 Ionizing radiation as an initiator—effects of proliferation and promotion time on tumour-incidence in mice Cancer Res. 47 6692–6 (PMID: 3677101)
[24] Kaufman W K, Mackenzie S A and Kaufman D G 1987 Factors influencing the initiation by gamma rays of hepatocarcinogenesis in the rat Teratog. Carcinog. Mutag. 7 551–6
[25] Schmah W, Kriegel H and Senft E 1980 Can prenatal x-irradiation in mice act as an initiator stimulus in a modified 2-stage Berenblum/Mottram experiment with postnatal promotion with phorbol ester TPA? J. Cancer Res. Clin. Oncol. 97 109–17
[26] Kemp J, Wheldon T and Balmain A 1994 p53-deficient mice are extremely susceptible to radiation-induced tumourigenesis Nat. Genet. 8 66–9
[27] Inano H, Suzuki K, Ishii-Ohba H, Yamanouchi H, Takahashi M and Wakabayashi K 1993 Promotive effects of diethylstilbestrol, its metabolite (ZZ-dienestrol) and a stereoisomer of the metabolite.
(E.E-dienestrol) in tumorogenesis of rat mammary glands pregnancy-dependently initiated with radiation Carcinogenesis 14 2157–63

[28] Trosko J E 1996 Role of low-level ionizing radiation in multi-step carcinogenic process Health Phys. 70 812–22

[29] Hattis D, Chu M, Rahmioglu N, Goble R, Verma P, Hartman K and Kozlak M 2009 A preliminary operational classification system for nonmutagenic modes of action for carcinogenesis Crit. Rev. Toxicol. 39 97–138

[30] Furlong H, Mothersill C, Lynga F M and Howe O 2013 Apoptosis is signalled early by low doses of ionising radiation in a radiation-induced bystander effect Mutat. Res. 741–422 35–43

[31] Azzam E I, de Toledo S M and Little J B 2003 Expression of CONNEXIN43 is highly sensitive to environmental stress Cancer Res. 63 7128–35

[32] Otomo T, Hishii M, Arai H, Sato K and Sasai K 2004 Microarray analysis of temporal gene responses to ionizing radiation in two glioblastoma cell lines: up-regulation of DNA repair genes J. Radiat. Res. 45 53–60

[33] Lee W J, Majumder Z R, Jeoung D I, Lee H J, Kim S H, Bae S and Lee Y S 2006 Organ-specific gene expressions in C57BL/6 mice after exposure to low dose radiation Radiat. Res. 165 562–9

[34] Prise K M 2006 New advances in radiation biology Occup. Med. 56 156–61

[35] Amundson S A, Do K T, Shahab S, Bittner M, Meltzer P, Trent J and Fornace A J Jr 2000 Identification of potential mRNA biomarkers in peripheral blood lymphocytes for human exposure to ionizing radiation Radiat. Res. 154 342–6

[36] Amundson S A, Bittner M, Meltzer P, Trent J and Fornace A J Jr 2001 Physiological function as regulation of large transcriptional programs: the cellular response to genotoxic stress Comp. Biochem. Physiol. B 129 703–10

[37] Fornace A J Jr, Amundson S A, Bittner M, Myers T G, Meltzer P, Weinstein J N and Trent J 1999 The complexity of radiation stress responses: analysis by informatics and functional genomics approaches Gene Expr. 7 387–400 (PMID: 10440239)

[38] Fornace A J Jr, Amundson S A, Do K T, Meltzer P, Trent J and Bittner M 2002 Stress-gene induction by low dose gamma irradiation Mil. Med. 167 13–5 (Suppl. 2)

[39] Yin E, Nelson D O, Coleman M A, Peterson L E and Wyrobek A J 2003 Gene expression changes in mouse brain after exposure to low-dose ionizing radiation Int. J. Radiat. Biol. 79 759–75

[40] Daino K, Ichimura S and Nenoi M 2002 Early induction of CDKN1A (p21) and GADD45 mRNA by a low dose of ionizing radiation is due to their dose-dependent post-transcriptional regulation Radiat. Res. 157 478–82

[41] Ding I H, Shingyoi J, Chen F, Hwang J J, Burma S, Lee C, Cheng J F and Chen D J 2005 Gene expression profiles of normal human fibroblasts after exposure to ionizing radiation: a comparative study of low and high doses Radiat. Res. 164 17–26

[42] Amundson S A 2008 Functional genomics in radiation biology: a gateway to cellular systems level studies Radiat. Environ. Biophys. 47 25–31

[43] Lehner B and Goodwin E H 1997 Extracellular factor(s) following exposure to alpha particles can cause sister chromatid exchanges in normal human cells Cancer Res. 57 2164–71

[44] Lehner B and Goodwin E H 2003 Cancer Res. 63 1439 (erratum)

[45] Mothersill C and Seymour C B 1998 Cell–cell contact during gamma irradiation is not required to induce a bystander effect in normal human keratinocytes: evidence for release during irradiation of a signal controlling survival into the medium Radiat. Res. 149 256–62

[46] Sowa Resat M B and Morgan W F 2004 Radiation-induced genomic instability: a role for secreted soluble factors in communicating the radiation response to non-irradiated cells J. Cell Biochem. 92 1013–9

[47] Mancuso M et al 2008 Oncogenic bystander radiation effects in Patched heterozygous mouse cerebellum Proc. Natl Acad. Sci. USA 105 12445–50

[48] Azzam E I, de Toledo S M and Little J B 2001 Direct evidence for the participation of gap junction-mediated intercellular communication in the transmission of damage signals from α-particle irradiated to nonirradiated cells Proc. Natl Acad. Sci. USA 98 473–8

[49] Hatzi V I, Laskaratou D A, Mavragani I V, Nikitaki Z, Mangelis A, Panayiotidis M I, Pantelias G E, Terzoudi G I and Georgakilas A G 2015 Non-targeted radiation effects in vivo: a critical glance of the future in radiobiology Cancer Lett. 356 34–42

[50] Chai Y, Lam R K K, Calai G M, Zhou H, Amundson S and Hei T K 2013 Radiation-induced non-targeted response in vivo: role of the TGF/β-TGFBRI-COX-2 signalling pathway BJ C 108 1106–12
[50] Nagasawa H and Little J B 1992 Induction of sister chromatid exchanges by extremely low doses of alpha particles Cancer Res. 52 6394–6.

[51] Deshpande A, Goodwin E H, Baily S M, Marrone B and Lehnert B 1996 Alpha-particle-induced sister chromatid exchanges in normal human lung fibroblasts: evidence for an extranuclear target Radiat. Res. 145 260–7.

[52] Nagasawa H, Peng Y, Wilson P F, Lio Y C, Chen D J, Bedford J S and Little J B 2005 Role of homologous recombination in the alpha-particle-induced bystander effect for sister chromatid exchanges and chromosomal aberrations Radiat. Res. 164 141–7.

[53] Nagasawa H, Cremesti A, Kolesnick R, Fuks Z and Little J B 2002 Involvement of membrane signaling in the bystander effect in irradiated cells Cancer Res. 62 2531–4.

[54] Hagelstrom R T, Askin K F, Williams A J, Ramaiah L, Desaintes C, Goodwin E H, Ullrich R L and Bailey S M 2008 DNA-PKcs and ATM influence generation of ionizing radiation-induced signals Oncogene 27 6761–9.

[55] Prise K M, Belyakov O V, Folkard M and Michael B D 1998 Studies of bystander effects in human fibroblasts using a charged particle microbeam Int. J. Radiat. Biol. 74 793–8.

[56] Nagasawa H and Little J B 2002 Bystander effect for chromosomal aberrations induced in wild-type and repair deficient CHO cells by low fluences of alpha particles Mutat. Res. 508 121–9.

[57] Azzam E I, De Toledo S M, Spitz D R and Little J B 2002 Oxidative metabolism modulates signal transduction and micronucleus formation in bystander cells from alpha-particle-irradiated normal human fibroblast cultures Cancer Res. 62 5436–42.

[58] Kashino G, Prise K M, Schettino G, Folkard M, Vojnovic B, Michael B D, Suzuki K, Kodama S and Watanabe M 2004 Evidence for induction of DNA double strand breaks in the bystander response to targeted soft x-rays in CHO cells Mutat. Res. 556 209–15 (PMID: 15491649).

[59] Shao C, Folkard M, Michael B D and Prise K M 2004 Targeted cytoplasmic irradiation induces bystander responses Proc. Natl Acad. Sci. USA 101 13495–500.

[60] Nagasawa H and Little J B 1999 Unexpected sensitivity to the induction of mutations by very low doses of alpha-particle radiation: evidence for a bystander effect Radiat. Res. 152 552–7.

[61] Nagasawa H, Huo L and Little J B 2003 Increased bystander mutagenic effect in DNA double-strand break repair-deficient mammalian cells Int. J. Radiat. Biol. 79 35–41.

[62] Persaud R, Zhou H, Baker S E, Hei T K and Hall E J 2005 Assessment of low linear energy transfer radiation-induced bystander mutagenesis in a three-dimensional culture model Cancer Res. 65 9876–82.

[63] Zhou H, Randers-Pehrson G, Waldren C A, Vannais D, Hall E J and Hei T K 2000 Induction of a bystander mutagenic effect of alpha particles in mammalian cells Proc. Natl Acad. Sci. USA 97 2099–104.

[64] Hei T K, Wu L J, Liu S X, Vannais D, Waldren C A and Randers-Pehrson G 1997 Mutagenic effects of a single and an exact number of alpha particles in mammalian cells Proc. Natl Acad. Sci. USA 94 3765–70.

[65] Wu L J, Randers-Pehrson G, Xu A, Waldren C A, Geard C R, Yu Z and Hei T K 1999 Targeted cytoplasmic irradiation with alpha particles induces mutations in mammalian cells Proc. Natl Acad. Sci. USA 96 4959–64.

[66] Huo L, Nagasawa H and Little J B 2001 HPRT mutants induced in bystander cells by very low fluences of alpha particles result primarily from point mutations Radiat. Res. 156 521–5.

[67] Yang H, Asaad N and Held K D 2005 Medium-mediated intercellular communication is involved in bystander responses of x-ray-irradiated normal human fibroblasts Oncogene 24 2096–103.

[68] Hu B, Han W, Wu L, Feng H, Liu X, Zhang L, Xu A, Hei T K and Yu Z 2005 In situ visualization of DSBs to assess the extranuclear/extracellular effects induced by low dose alpha-particle irradiation Radiat. Res. 164 286–91.

[69] Sokolov M V, Smilenov L B, Hall E J, Panyutin I G, Bonner W M and Sedelnikova O A 2005 Ionizing radiation induces DNA double-strand breaks in bystander primary human fibroblasts Oncogene 24 7257–65.

[70] Mothersill C and Seymour C 1997 Medium from irradiated human epithelial cells but not human fibroblasts reduces the clonogenic survival of unirradiated cells Int. J. Radiat. Biol. 71 421–7.

[71] Mothersill C, Seymour R J and Seymour C B 2006 Increased radiosensitivity in cells of two human cell lines treated with bystander medium from irradiated repair-deficient cells Radiat. Res. 165 26–34.
[72] Zhu A, Zhou H, Leloup C, Marino S A, Geard C R, Hei T K and Lieberman H B 2005 Differential impact of mouse Rad9 deletion on ionizing radiation-induced bystander effects Radiat. Res. 164 655–61
[73] Sawant S G, Randers-Pehrson G, Geard C R, Brenner D J and Hall E J 2001 The bystander effect in radiation oncogenesis: I. Transformation in C3H 10T½ cells in vitro can be initiated in the unirradiated neighbors of irradiated cells Radiat. Res. 155 397–401
[74] Sokolov M V, Dickey J S, Bonner W M and Sedelnikova O A 2007 γ-H2AX in bystander cells: not just a radiation-triggered event, a cellular response to stress mediated by intercellular communication Cell Cycle 6 2210–2
[75] Lewis D A, Mayhugh B M, Qin Y, Trott K and Mendonca M S 2001 Production of delayed death and neoplastic transformation in CGL1 cells by radiation-induced bystander effects Radiat. Res. 156 251–8
[76] Gerashchenko B I and Howell R W 2003 Cell proximity is a prerequisite for the proliferative response of bystander cells co-cultured with cells irradiated with gamma-rays Cytometry A 56 71–80
[77] Belyakov O V, Folkard M, Mothersill C, Prise K M and Michael B D 2002 Bystander-induced apoptosis and premature differentiation in primary urethelial explants after charged particle microbeam irradiation Radiat. Prot. Dosim. 99 249–51
[78] Lyng F M, Seymour C B and Mothersill C 2002 Initiation of apoptosis in cells exposed to medium from the progeny of irradiated cells: a possible mechanism for bystander-induced genomic instability? Radiat. Res. 157 365–70
[79] Azzam E I, de Toledo S M, Waker A J and Little J B 2000 High and low fluences of alpha-particles induce a G1 checkpoint in human diploid fibroblasts Cancer Res. 60 2623–31
[80] Zhang Y, Zhou J, Held K D, Redmond R W, Prise K M and Liber H L 2008 Deficiencies of double-strand break repair factors and effects on mutagenesis in directly γ-irradiated and medium-mediated bystander human lymphoblastoid cells Radiat. Res. 169 197–206
[81] Azzam E I, de Toledo S M, Gooding T and Little J B 1998 Intercellular communication is involved in the bystander regulation of gene expression in human cells exposed to very low fluences of alpha particles Radiat. Res. 150 497–504
[82] Ghandi S A, Yaghoubian B and Amundson S A 2008 Global gene expression analyses of bystander and alpha particle irradiated normal human lung fibroblasts: synchronous and differential responses BMC Med. Genomics 1 63
[83] Watson G E, Lorimore S A, Macdonald D A and Wright E G 2000 Chromosomal instability in unirradiated cells induced in vivo by a bystander effect of ionizing radiation Cancer Res. 60 5608–11
[84] Tanaka K, Kohda A, Toyokawa T, Ichinohe K and Oghiso Y 2008 Chromosome aberration frequencies and chromosome instability in mice after long-term exposure to low-dose-rate γ-irradiation Mutat. Res. Genet. Toxicol. Environ. Mutagen. 657 19–25
[85] Lorimore S A, Chrystal J A, Robinson J I, Coates P J and Wright E G 2008 Chromosomal instability in unirradiated hematopoietic cells induced by macrophages exposed in vivo to ionizing radiation Cancer Res. 68 8122–6
[86] Lorimore S A, Kadhim M A, Pocock D A, Papworth D, Stevens D L, Goodhead D T and Wright E G 1998 Chromosomal instability in the descendants of unirradiated surviving cells after alpha-particle irradiation Proc. Natl Acad. Sci. USA 95 5730–3
[87] Lorimore S A, Coates P J, Scobie G E, Milne G and Wright E G 2001 Inflammatory-type responses after exposure to ionizing radiation in vivo: a mechanism for radiation-induced bystander effects? Oncogene 20 7085–95
[88] Lorimore S A and Wright E G 2003 Radiation-induced genomic instability and bystander effects: related inflammatory-type responses to radiation-induced stress and injury? A review Int. J. Radiat. Biol. 79 15–25
[89] Morgan W F, Day J P, Kaplan M I, McGhee E M and Limoli C L 1996 Genomic instability induced by ionizing radiation Radiat Res. 146 247–58
[90] Kadhim M A, Macdonals D A, Goodhead D T, Lorimore S A, Marsden S J and Wright E G 1992 Transmission of chromosomal instability after plutonium alpha-particle irradiation Nature 355 738–40
[91] Maxwell C, Fleisch M C, Coates S V, Erikson A C, Boissière A, Gupta R, Ravani S A, Parvin B and Barcellos-Hoff M H 2008 Targeted and nontargeted effects of ionizing radiation that impact genomic instability Cancer Res. 68 8304–11
[92] Limoli C L, Ponnaiya B, Corcoran J J, Giedzinski E, Kaplan M I, Hartmann A and Morgan W F 2000 Genomic instability induced by high and low LET ionizing radiation Adv. Space Res. 25 2107–17
[93] Smith L E, Nagar S, Kim G J and Morgan W F 2003 Radiation-induced genomic instability: radiation quality and dose response Health Phys. 85 23–9
[94] Mughal S K, Myazin A E, Zhavoronkov L P, Rubanovich A V and Dubrova Y E 2012 The dose and dose-rate effects of paternal irradiation on transgenerational instability in mice: a radiotherapy connection PLoS one 7 e41300
[95] Narayanan P K, Goodwin E H and Lehnert B E 1997 α particles initiate biological production of superoxide anions and hydrogen peroxide in human cells Cancer Res. 5 3963–71
[96] Clutton S M, Townsend K M, Walker C, Ansell J D and Wright E G 1996 Radiation-induced genomic instability and persisting oxidative stress in primary bone marrow cultures Carcinogenesis 17 1633–9
[97] Watson G, Pocock D, Papworth D, Lorimore S and Wright E 2001 In vivo chromosomal instability and transmissible aberrations in the progeny of haemopoietic stem cells induced by high- and low-LET radiations Int. J. Radiat. Biol. 77 409–17
[98] Kadhim M, Marsden S and Wright E 1998 Radiation-induced chromosomal instability in human fibroblasts: temporal effects and the influence of radiation quality Int. J. Radiat. Biol. 73 143–8
[99] Little J B, Nagasawa H, Pfennig T and Vetrovs H 1997 Radiation-induced genomic instability: delayed mutagenic and cytogenetic effects of x rays and alpha particles Radiat. Res. 148 299–307
[100] Morgan W F 2003 Is there a common mechanism underlying genomic instability, bystander effects and other non-targeted effects of exposure to ionizing radiation? Oncogene 22 7094–9
[101] Morgan W F 2003 Non-targeted and delayed effects of exposure to ionising radiation: I. Radiation-induced genomic instability and bystander effects in vitro Radiat. Res. 159 567–80
[102] Morgan W F 2003 Non-targeted and delayed effects of exposure to ionising radiation: II. Radiation-induced genomic instability and bystander effects in vivo, clastogenic factors and transgenerational effects Radiat. Res. 159 581–96
[103] Jamali M and Trott K R 1996 Increased micronucleus frequency in the progeny of irradiated Chinese hamster cells Int. J. Radiat. Biol. 69 301–7
[104] Mendonca M S, Howard K L, Farrington D L, Desmond L A, Temples T M, Mayhugh B M, Pink J J and Boothman D A 1999 Delayed apoptotic responses associated with radiation-induced neoplastic transformation of human hybrid cells Cancer Res. 59 3972–9
[105] Chang W P and Little J B 1991 Delayed reproductive death in x-irradiated Chinese hamster ovary cells Int. J. Radiat. Biol. 60 483–96
[106] Fitzek M and Trott K R 1993 Clonal heterogeneity in delayed decrease of plating efficiency of irradiated HeLa cells Radiat. Environ. Biophys. 32 33–9
[107] Somodi Z, Zyzukov N A, Kashingo G, Trott K R and Prise K M 2005 Radiation-induced genomic instability in repair deficient mutants of Chinese hamster cells Int. J. Radiat. Biol. 81 929–36
[108] Marder B A and Morgan W F 1993 Delayed chromosomal instability induced by DNA damage Mol. Cell. Biol. 13 6667–77
[109] Kadhim M A, Moore S R and Goodwin E H 2004 Interrelationships amongst radiation-induced genomic instability, bystander effects, and the adaptive response Mutat. Res. 568 21–32
[110] Little J B 1998 Radiation-induced genomic instability Int. J. Radiat. Biol. 74 663–71
[111] Colotta F, Allavena P, Sica A, Garlanda C and Mantovani A 2009 Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability Carcinogenesis 30 1073–81
[112] Jirtle R L and Skinner M K 2007 Environmental epigenomics and disease susceptibility Nat. Rev. Genet. 8 253–62
[113] Aypar U, Morgan W F and Baulch J E 2011 Radiation-induced genomic instability: are epigenetic mechanisms the missing link? Int. J. Radiat. Biol. 87 179–91
[114] Tawa R, Kimura Y , Komura J, Miyamura Y , Kurishita A, Sasaki M S, Sakurai H and Ono T 1998 Effects of x-ray irradiation on genomic DNA methylation levels in mouse tissues J. Radiat. Res. 39 271–8
[115] Pogribny I, Raiche J, Slovack M and Kovalchuk O 2004 Dose dependence, sex- and tissue-specificity and persistence of radiation-induced genomic DNA methylation changes Biochem. Biophys. Res. Commun 320 1253–61
[116] Kovalchuk O and Baulch J E 2008 Epigenetic changes and nontargeted radiation effects—is there a link? Environ. Mol. Mutagen. 49 16–25
Shimizu T, Marusawa H, Endo Y and Chiba T 2012 Inflammation-mediated genomic instability: roles of activation-induced cytidine deaminase in carcinogenesis Cancer Sci. 103 1201–6

Mantovani A, Allavena P, Sica A and Balkwill F 2008 Cancer-related inflammation Nature 454 436–44

Georgakilas A G, Pavlopoulou A, Louka M, Nikitaki Z, Vorgias C E, Bagos P G and Michalopoulos I 2015 Emerging molecular networks common in ionizing radiation, immune and inflammatory responses by employing bioinformatics approaches Cancer Lett. 368 164–72

Zhou H, Ivanov V N, Lien Y C, Davidson M and Hei T K 2008 Mitochondrial function and nuclear factor-κB-mediated signalling in radiation-induced bystander effects Cancer Res. 68 2233–40

Desouza I A, Franco-Penteado C F, Camargo E A, Lima C S, Teixeira S A, Mascara M N, De Nucci G and Antunes E 2005 Inflammatory mechanisms underlying the rat pulmonary neutrophil influx induced by airway exposure to staphylococcal enterotoxin type A Brit. J. Pharmacol. 146 781–91

Shao C, Folkard M and Prise K M 2008 Role of TGF-β1 and nitric oxide in the bystander response of irradiated glioma cells Oncogene 27 434–40

Shao C, Lyng F M, Folkard M and Prise K M 2006 Calcium fluxes modulate the radiation-induced bystander response of irradiated glioma and fibroblast cells Radiat. Res. 166 479–87

Ilnytskyy Y, Koturbash I and Kovalchuk O 2009 Radiation-induced bystander effects in vivo are epigenetically regulated in a tissue-specific manner Environ. Mol. Mutagen. 50 105–13