Quantitative Phosphoproteomics after Auxin-stimulated Lateral Root Induction Identifies an SNX1 Protein Phosphorylation Site Required for Growth**

Hongtao Zhang‡§¶, Houjiang Zhou§¶, Lidija Berke¶, Albert J. R. Heck§¶, Shabaz Mohammed§¶, Ben Scheres‡, and Frank L. H. Menke‡**

Protein phosphorylation is instrumental to early signaling events. Studying system-wide phosphorylation in relation to processes under investigation requires a quantitative proteomics approach. In Arabidopsis, auxin application can induce pericycle cell divisions and lateral root formation. Initiation of lateral root formation requires transcriptional reprogramming following auxin-mediated degradation of transcriptional repressors. The immediate early signaling events prior to this derepression are virtually uncharacterized. To identify the signal molecules responding to auxin application, we used a lateral root-inducible system that was previously developed to trigger synchronous division of pericycle cells. To identify and quantify the early signaling events following this induction, we combined 15N-based metabolic labeling and phosphopeptide enrichment and applied a mass spectrometry-based approach. In total, 3068 phosphopeptides were identified from auxin-treated root tissue. This root proteome dataset contains largely phosphopeptides not previously reported and represents one of the largest quantitative phosphoprotein datasets from Arabidopsis to date. Key proteins responding to auxin treatment included the multidrug resistance-like and PIN2 auxin carriers, AUXIN RESPONSE FACTOR2 (ARF2), SUPPRESSOR OF AUXIN RESISTANCE 3 (SAR3), and SORTING NEXIN1 (SNX1). Mutational analysis of serine 16 of SNX1 showed that over-expression of the mutated forms of SNX1 led to retarded growth and reduction of lateral root formation due to the reduced outgrowth of the primordium, showing proof of principle for our approach.

In recent years, immense progress has been made in the global analysis of cellular protein phosphorylation events (1–3). Understanding the relative contribution of protein phosphorylation to the regulation of cellular signaling requires implementation of relative or absolute quantification of protein phosphorylation at the tissue and organism level. The analysis and quantification of phosphorylated proteins are analytically challenging. For instance, phosphorylated peptides are present at substoichiometric levels when compared with non-modified peptides in digested lysates. The recent development of an array of phosphopeptide enrichment strategies (4) has resulted in an explosion of the number of reported phosphoproteomics datasets from diverse organisms, including plants (2, 6). Most recently, it has been shown that using Ti4+-IMAC1 as an enrichment strategy has an excellent selectivity and efficiency for the enrichment of phosphopeptides (7, 8). A modest number of the reported plant phosphoproteomics datasets also contain quantitative data; however, the majority of these datasets were obtained with cultured cells (9–11). Those cases that report quantitative phosphoproteomic data from seedling or plant tissue rely on post-extraction labeling or label-free quantification. Metabolic labeling with stable isotopes is one of the favored strategies to accurately determine differential protein (phosphorylation) levels (12). Incorporation of stable isotopes in cellular proteins is possible in cultured cells as well as at the organism level and generates the least variation in sample preparation and analysis. Because plants are autotrophic organisms able to synthesize all amino acids from inorganic nitrogen (9), 15N labeling is preferential for metabolic labeling (12). Cell cultures can

1 The abbreviations used are: Ti4+-IMAC, immobilized titanium ion affinity chromatography; LRIS, lateral root-inducible system; SCX, strong cation exchange chromatography; PLT, PLETHORA AP2 class putative transcription factor; NPA, N-1-naphthylphthalamic acid; NAA, 1-naphthalene acetic acid; MS medium, Murashige and Skoog medium; Col-0, Columbia ecotype; IAA, indole-3-acetic acid; ARF, Auxin Response Factor; MDR, multidrug resistance-like; PIN, PIN formed; SAR, Suppressor of Auxin Resistance; RPS6, ribosomal protein S6; MPK, mitogen-activated protein kinase; SNX1, sorting nexin1; XPP, xylem pole pericycle; dpg, days post-germination.
Auxin-induced Protein Phosphorylation in Arabidopsis Root

be grown on media containing 15N as the sole nitrogen source (13). Metabolic labeling was used to study the differentially phosphorylated membrane proteins upon elicitor or cadmium treatment in cell culture (6, 14). The use of hydroponic growth systems has also made it possible to apply 15N stable isotope labeling using 15N-labeled inorganic salts to intact plants (15). More recently, several different 15N-labeling techniques, which include the comparison of partial versus full labeling (16), the automated analysis of uniformly labeled proteins using Mascot peptide identification in conjunction with the trans-proteomic pipeline (17), and a procedure referred to as hydroponic isotope labeling of entire plants (18, 19), were implemented. These metabolic labeling strategies for proteomics generally grow plants in liquid media, which can significantly affect their development.

Exogenous application of auxin to roots has been extensively used to trigger changes in gene expression (20) and root development (21) and provides a relevant model system for studies involving auxin-induced protein phosphorylation. We combined 15N-based metabolic labeling using LRIS. We combined 15N-based metabolic labeling using LRIS with 5 mM dithiothreitol for 30 min at 50°C and alkylated by addition of 10 mM iodoacetamide. After 30 min of incubation in the dark at room temperature, the first digestion was performed by addition of Lys-C at an enzyme/protein ratio of 1:100 and incubated for 4 h at 37°C. Subsequently, the digest was diluted with water to a final urea concentration of 1 M, and a second digestion with trypsin at an enzyme/protein ratio of 1:50 was performed at 37°C. Finally, the digestion was quenched with 5% formic acid. The resulting digest of protein was desalted using 200-ml Sep-Pak C18 cartridges (Waters Corp.), dried in vacuo, and stored at −20°C.

Protein Digestion—Two milligrams of protein were mixed with buffer containing 8 M urea, 400 mM NH$_4$HCO$_3$, 1 mM NaF, 1 mM Na$_2$VO$_3$, and 5 mM NaPO$_4$, pH 7.0, and reduced with 5 mM dithiothreitol for 30 min at 50°C and alkylated by addition of 10 mM iodoacetamide. After 30 min of incubation in the dark at room temperature, the first digestion was performed by addition of Lys-C at an enzyme/protein ratio of 1:100 and incubated for 4 h at 37°C. Subsequently, the digest was diluted with water to a final urea concentration of 1 M, and a second digestion with trypsin at an enzyme/protein ratio of 1:50 was performed at 37°C overnight. Finally, the digestion was quenched with 5% formic acid. The resulting digest of protein was desalted using 200-ml Sep-Pak C18 cartridges (Waters Corp.), dried in vacuo, and stored at −20°C.

Strong Cation Exchange Chromatography for Peptide Fractionation and Phosphopeptide Enrichment—Strong cation exchange chromatography and phosphopeptide enrichment are as described before (33) with minor modifications. Affinity material Ti$^{4+}$-IMAC resin was loaded onto gel-loader tip microcolumns using a C8 plug and an −1.2-cm length of material. The enrichment procedures were as follows: 2 × 30 μl of Ti$^{4+}$-IMAC binding buffer (80% acetonitrile, 6% TFA) to Ti$^{4+}$-IMAC column. Certain SCX fractions were combined and desalted, respectively, resuspended in 40 μl of loading buffer, and loaded on the equilibrated gel-loader tip microcolumn. Columns were sequentially washed with 60 μl of loading buffer, followed by washing using 60 μl of 50% acetonitrile, 0.5% TFA containing 200 mM NaCl and additional washing by 60 μl of 50% acetonitrile, 0.1% TFA to Ti$^{4+}$-IMAC column, respectively. The bound peptides were eluted by 20 μl of 5% ammonia into 20 μl of 10% formic acid and then stored at −20°C for LC-MS/MS analysis.

Mass Spectrometry—The analysis of the peptides was performed on a reversed phase nano-LC-coupled LTQ Orbitrap Classic, Discovery, or XL (Thermo Fisher Scientific). An Agilent 1200 series HPLC system was equipped with a 20-mm ReproSil-Pur 120 C18-AQ (Dr. Maisch, Ammerbuch-Entringen, Germany) trapping column (packed in-house, 100 μm inner diameter, 3-μm particle size) and a 400-mm ReproSil-Pur 120 C18-AQ (Dr. Maisch, Ammerbuch-Entringen, Germany) analytical column (packed in-house, 50 μm inner diameter, 3-μm particle size). As described previously (34), trapping was performed at 5 μl/min solvent C (0.1 M acetic acid in water) for 10 min, and elution was achieved with a gradient of 10–35% (v/v) of solvent D (0.1 M acetic acid in 80:20 acetonitrile/water) in 140 min with a total analysis time of 180 min. The flow rate was passively split from 0.60 ml/min to 100 nl/min when performing the elution. Nanospray was achieved using a distally coated fused silica emitter (360-μm outer diameter, 20-μm inner diameter, 10-μm tip inner diameter; con-

MATERIALS AND METHODS

Metabolic Labeling of Arabidopsis—Arabidopsis Col-0 seeds were liquid-sterilized and sown on 0.6% agar in a hydroponic system supplied with single component B5 medium containing 14N- or 15N-ammonium nitrate and potassium nitrate. Seeds were vernalized for 2 days at 4°C in the darkness and transferred to long day growth conditions (16 h of light/8 h of darkness). 14N- or 15N-labeled seeds were harvested, surface-sterilized, and sown on 3MM Whatman paper strips on modified 1/2GM (Murashige and Skoog basal salt mixture containing either 14N- or 15N-ammonium or nitrate salts, without vitamins, 1% sucrose, and 0.8% agar) medium. Plated seeds were vernalized at 4°C in the darkness for 2 days. The plates were transferred to light to germinate for 4 days, and the paper strips were transferred to modified 1/2MS medium containing 10 μM NPA for 3 days. For induction, the paper strips carrying the seedlings with roots were transferred to modified 1/2MS medium with 10 μM NAA (treatment) or without (control) for 2 h. 15N- and 15N-labeled roots were harvested separately by flash-dipping the paper strips into liquid nitrogen and breaking of the root tissue, which was ground into a fine powder. The extraction buffer (8 mM urea, 25 mM NH$_4$HCO$_3$, 1 mM NaF, 1 mM Na$_2$VO$_3$, and 5 mM NaPO$_4$, pH 7.0) was added to the powder to extract the protein. Protein extracts were spun two times for 15 min at 13,000 rpm at 4°C, and soluble protein was quantified with Bradford.

Protein Digestion—Two milligrams of protein were mixed with buffer containing 8 M urea, 400 mM NH$_4$HCO$_3$, 1 mM NaF, 1 mM Na$_2$VO$_3$, and 5 mM NaPO$_4$, pH 7.0, and reduced with 5 mM dithiothreitol for 30 min at 50°C and alkylated by addition of 10 mM iodoacetamide. After 30 min of incubation in the dark at room temperature, the first digestion was performed by addition of Lys-C at an enzyme/protein ratio of 1:100 and incubated for 4 h at 37°C. Subsequently, the digest was diluted with water to a final urea concentration of 1 M, and a second digestion with trypsin at an enzyme/protein ratio of 1:50 was performed at 37°C overnight. Finally, the digestion was quenched with 5% formic acid. The resulting digest of protein was desalted using 200-ml Sep-Pak C18 cartridges (Waters Corp.), dried in vacuo, and stored at −20°C.

Strong Cation Exchange Chromatography for Peptide Fractionation and Phosphopeptide Enrichment—Strong cation exchange chromatography and phosphopeptide enrichment are as described before (33) with minor modifications. Affinity material Ti$^{4+}$-IMAC resin was loaded onto gel-loader tip microcolumns using a C8 plug and an −1.2-cm length of material. The enrichment procedures were as follows: 2 × 30 μl of Ti$^{4+}$-IMAC binding buffer (80% acetonitrile, 6% TFA) to Ti$^{4+}$-IMAC column. Certain SCX fractions were combined and desalted, respectively, resuspended in 40 μl of loading buffer, and loaded on the equilibrated gel-loader tip microcolumn. Columns were sequentially washed with 60 μl of loading buffer, followed by washing using 60 μl of 50% acetonitrile, 0.5% TFA containing 200 mM NaCl and additional washing by 60 μl of 50% acetonitrile, 0.1% TFA to Ti$^{4+}$-IMAC column, respectively. The bound peptides were eluted by 20 μl of 5% ammonia into 20 μl of 10% formic acid and then stored at −20°C for LC-MS/MS analysis.

Mass Spectrometry—The analysis of the peptides was performed on a reversed phase nano-LC-coupled LTQ Orbitrap Classic, Discovery, or XL (Thermo Fisher Scientific). An Agilent 1200 series HPLC system was equipped with a 20-mm ReproSil-Pur 120 C18-AQ (Dr. Maisch, Ammerbuch-Entringen, Germany) trapping column (packed in-house, 100 μm inner diameter, 3-μm particle size) and a 400-mm ReproSil-Pur 120 C18-AQ (Dr. Maisch, Ammerbuch-Entringen, Germany) analytical column (packed in-house, 50 μm inner diameter, 3-μm particle size). As described previously (34), trapping was performed at 5 μl/min solvent C (0.1 M acetic acid in water) for 10 min, and elution was achieved with a gradient of 10–35% (v/v) of solvent D (0.1 M acetic acid in 80:20 acetonitrile/water) in 140 min with a total analysis time of 180 min. The flow rate was passively split from 0.60 ml/min to 100 nl/min when performing the elution. Nanospray was achieved using a distally coated fused silica emitter (360-μm outer diameter, 20-μm inner diameter, 10-μm tip inner diameter; con-
 Auxin-induced Protein Phosphorylation in Arabidopsis Root

struc(ted in-house) biased to 1.7 kV. Survey full scan MS spectra were acquired from m/z 350 to m/z 1500 in the Orbitrap with a resolution of 60,000 at m/z 400 after accumulation to a target value of 500,000 in the linear ion trap with a target value of 30,000. The 10 most intense peaks were fragmented in the linear ion trap using collision-induced dissociation.

Data Analysis—All MS/MS spectra were centroided and merged to a single peak list file using MaxQuant (version 1.0.13.13) MaxQuant.org, which was searched using the Mascot search engine (version 2.2.0, Matrix Science, London, UK) containing a total 67,344 entries (which includes contaminants and an equivalent number of decoy sequences) generated from the publicly available Arabidopsis database (The Arabidopsis Information Resource (TAIR9); June 2009; file name, TAIR9_pep_20090619) with carbamidomethylcysteine as a fixed modification. Oxidized methionine and phosphorylation (serine, threonine, and tyrosine) were searched as variable modifications. Searches were done with trypsin specificity allowing two miscleavages (arginine, lysine, glutamic acid, cysteine, aspartic acid, asparagine, threonine, and tyrosine) were searched as variable modifications. Searches were done with trypsin specificity allowing two miscleavages (arginine, lysine, glutamic acid, cysteine, aspartic acid, asparagine, threonine, and tyrosine) were searched as variable modifications.

To determine whether phosphorylation ratios for normalized peptides were significantly different, a p value was generated using significance B, which is part of the MaxQuant package (37). The changes were considered significant at a p value of 0.05 or less.

A scaffold file containing all annotated spectra alongside confidence levels at the peptide and protein level can be accessed at the publically available repository Tranche using the following hash code: http://cptac.tranche.proteomecommons.org/RppitjZezgEgP9Qplzd9Ua/c3Vkn9WyjjfYcut6kmPzy9n9n/q7f6gij9DEqW/zWZOUJq7m7n OtC7THn2FOHO1sAAAAAACWQ== (Pass Phrase: snx1).

Plant Materials and Constructs—Seeds were germinated on plates containing MS medium (0.5× Murashige and Skoog salt mixture, 1% sucrose, and 0.5 g/liter MES, pH 5.8) and 0.8% agar and later transferred to soil. Plants were grown under long day conditions of 16 h of light and 8 h of dark. Sequence of SNX1 CDNA was amplified from Col-0 cDNA using the primer combinations listed in supplemental Table S1 from Lan et al. (50) for phosphopeptide comparison. Modifications other than nonambiguous phosphorylation were ignored resulting in a reduction from the original 879 phosphopeptides to 556 peptides. We used Pep2Pro “TAIR10 wos” dataset (40) for comparison at the protein level.

A scaffold file containing all annotated spectra alongside confidence levels at the peptide and protein level can be accessed at the publically available repository Tranche using the following hash code: http://cptac.tranche.proteomecommons.org/RppitjZezgEgP9Qplzd9Ua/c3Vkn9WyjjfYcut6kmPzy9n9n/q7f6gij9DEqW/zWZOUJq7m7n OtC7THn2FOHO1sAAAAAACWQ== (Pass Phrase: snx1).

Modification of the LRIS for Proteomics—Auxin-induced divisions in xylem pole pericycle (XPP) are associated with expression of auxin-responsive synthetic promoter DR5 as well as PLETHORA gene expression (42). DR5 expression precedes the initial division by several hours, whereas PLT3 and PLT7 expressions are only switched on when asymmetric divisions are initiated in the daughter cells that will go on to become lateral root initial cells.3 We used pPLT3::GUS and pPLT3::eCFP marker lines to observe early divisions of XPP cells and lateral root formation (supplemental Fig. 1, a and b). The LRIS as described by Beeckman and co-workers (20, 29) uses polar auxin transport inhibitor NPA during the first 3 days post-germination (dpg) to prevent the initiation of lateral root primordia. Germination on NPA leads to agravitropic root growth, hampering root harvesting at a scale required for proteomics samples (data not shown). To avoid agravitropic growth during the first days, seeds were germinated and grown on medium without NPA. Within 72 h after germination, seedlings were transferred to medium containing NPA for an additional 72 h of NPA treatment and subsequently transferred to medium without NAA (mock) or medium with 10 µM NAA. No pPLT3::GUS expression was detected in the pericycle of the new root tissue after mock treatment (supplemental Fig. 1e); however, 10 µM NAA synchronously induced glucuronidase expression (supplemental Fig. 1, c and f). With

3 H. Hofhuis and B. Scheres, unpublished data.

RESULTS AND DISCUSSION

Modification of the LRIS for Proteomics—Auxin-induced divisions in xylem pole pericycle (XPP) are associated with expression of auxin-responsive synthetic promoter DR5 as well as PLETHORA gene expression (42). DR5 expression precedes the initial division by several hours, whereas PLT3 and PLT7 expressions are only switched on when asymmetric divisions are initiated in the daughter cells that will go on to become lateral root initial cells.3 We used pPLT3::GUS and pPLT3::eCFP marker lines to observe early divisions of XPP cells and lateral root formation (supplemental Fig. 1, a and b). The LRIS as described by Beeckman and co-workers (20, 29) uses polar auxin transport inhibitor NPA during the first 3 days post-germination (dpg) to prevent the initiation of lateral root primordia. Germination on NPA leads to agravitropic root growth, hampering root harvesting at a scale required for proteomics samples (data not shown). To avoid agravitropic growth during the first days, seeds were germinated and grown on medium without NPA. Within 72 h after germination, seedlings were transferred to medium containing NPA for an additional 72 h of NPA treatment and subsequently transferred to medium without NAA (mock) or medium with 10 µM NAA. No pPLT3::GUS expression was detected in the pericycle of the new root tissue after mock treatment (supplemental Fig. 1e); however, 10 µM NAA synchronously induced glucuronidase expression (supplemental Fig. 1, c and f). With

2 A. P. Mähönen et al., manuscript in preparation.

3 H. Hofhuis and B. Scheres, unpublished data.
obtain stable isotope-labeled seeds. The 15N-labeled seeds, and the 15N-labeled sample was treated with NAA (see supplemental Fig. 1, d and g). Transfer to NPA efficiently inhibited new formation of lateral root primordia. Subsequent exogenous application of 10 μM NAA was then used to induce divisions of XPP cells with similar synchrony as reported previously (20).

Metabolic Labeling of Arabidopsis Root Tissue—Metabolic incorporation of stable isotopes at the whole organism level is preferential to post-extraction labeling if small variations in protein or protein phosphorylation levels have to be accurately determined. We used seeds from hydroponically grown plants fertilized exclusively with 15N- or 14N-labeled salts to obtain stable isotope-labeled seeds. The 15N-labeled seeds were then germinated and grown on ½MS medium containing 15N-labeled salts as the sole nitrogen source to obtain root tissue with a high 15N-stable isotope incorporation rate. The incorporation of 15N in root samples was analyzed. Unmodified ½MS medium containing 15N generated an incorporation level of 97% (data not shown) suggesting a source of contamination with 14N. When seedlings were grown on 15N ½MS medium lacking vitamins, the incorporation rate increased to 99% (see supplemental Fig. 2b for an example spectrum). Seedling growth on ½MS medium with or without vitamins was compared up to 7 dpg and shown to be equivalent (supplemental Fig. 2a). The use of 15N containing ½MS medium lacking vitamins resulted in a sufficient level of incorporation to perform the quantitative proteomics screens.

Workflow of Reciprocal Labeling Experiments—To identify auxin-induced differentially phosphorylated proteins in LRIS, two reciprocal biological replicas were performed (Fig. 1). In the first biological replica, following the NPA treatment, the 15N-labeled root sample was used as control, and the 15N-labeled sample was NAA-treated. In the inversely labeled biological replica, the 15N-labeled sample was used as control, and the 15N-labeled sample was treated with NAA (see “Materials and Methods”). We used several different phospho-antibodies, including antibodies raised against phosphorylated threonine (α-Thr(P)) and tyrosine (α-Tyr(P)) as well as against the phosphorylated activation loop of MAPKs (α-p42/44 ERK, Cell Signaling Technology) in an attempt to detect early changes in protein phosphorylation upon auxin treatment; however, no obvious change induced by NAA specifically could be observed at the time points we tested (data not shown). The range of time points tested were 3, 5, 10, 20, 30, 60, and 120 min after addition of auxin or auxin analogues. Therefore, we chose a time point that is the same as the earliest transcriptome analysis (30). Mock and NAA-treated root tissue were harvested at 2 h post-transfer, and proteins were extracted, pooled at a 1:1 ratio, and digested. Trypsinized peptides were enriched by the use of low pH SCX (33, 43, 44) to enrich the phosphopeptides in the early fractions followed by Ti4+-IMAC for further enrichment of later fractions (6, 7, 45, 46). These fractions were analyzed by LC-MS-MS to identify the proteome and enriched phospho-proteome (Fig. 1). The phosphopeptides and nonmodified peptides were selected and quantified using MSQuant (36) and selected pairs were manually checked. Quantified ratios were extracted using StatQuant (47).

Quantification of Proteins—In two experiments, 22, 435 nonphosphorylated peptides were identified and quantified, which were derived from 3266 proteins (supplemental Table 1). Among the nonphosphoproteins, 1817 proteins overlapped in the two experiments. We compared our root proteome dataset to the Pep2Pro database, which is the most comprehensive plant proteome database available that contains tissue-specific information (40). Out of the 3266 proteins identified in our dataset, 3180 were also present in the Pep2pro database. From this overlap, there were 106 proteins that were only identified in root samples in the Pep2Pro database (supplemental Table 5). The vast majority of these proteins were identified by multiple spectra in Pep2Pro. Out of all quantified proteins, eight proteins had a ratio of >4 compared with the control. These included known auxin early responsive proteins such as two indole-3-acetic acid amid synthetase GH3 proteins (AT4G37390 ratio 44.3 and AT2G23170 ratio 33.7) (48) and a calcium ion-binding protein Touch3 (AT2G41100 ratio 5.4) (supplemental Table 1) (49). The most prominent down-regulated protein in both experiments was a dormancy/auxin-associated family protein AT2G33830 that showed a 2-fold change. The up-regulation of GH3 and Touch3 and down-regulation of dormancy/auxin-associated protein are consistent with the data from the transcript analysis using LRIS (30), providing validity to our proteomics experiments. Furthermore, our data show that the vast majority of the identified proteins did not change in abundance in response to 2 h of auxin treatment.

Quantification of Phosphopeptides and Normalization by Its Protein of Origin—In total, 3068 phosphopeptides were quantified in two reciprocal biological replicas (supplemental Table 2). The first replica contained a total of 1756 quantified phosphopeptides, and the second replica contained 2319 quantified phosphopeptides, with an overlap of 57% (1007 peptides, supplemental Table 2). The two combined datasets represent one of the largest available Arabidopsis quantitative phosphoproteomic datasets to date (10, 39). We compared our phosphopeptides to all experimental phosphopeptides in the PhosPhAt 4.0 database (39). Between our dataset and the PhosPhAt database, 1147 phosphopeptides overlapped (supplemental Table 5 and supplemental Fig. 8). In addition, we also compared our dataset with a root phosphopeptide dataset recently published and not included in PhosPhAt database (50). The supplementary data file with all phosphopeptides from Lan et al. (50) contained 556 unique phosphopeptides and showed an overlap of 166 phosphopeptides with our dataset (supplemental Table 5 and supplemental Fig. 8). Only 120 phosphopeptides were present in all three data-
sets, showing that more than half of our root-derived phosphopeptides were not reported before.

The changes in abundance of these peptides could indicate both changes in levels of the respective protein as well as differential phosphorylation. In two experiments, 980 and 982 phosphopeptides were normalized against their originating protein (Fig. 2a and supplemental Table 3). After normalization, 31 and 37 phosphopeptides were found to be more than 2-fold differentially phosphorylated in the respective replicas (supplemental Table 3). Among the overlapping phosphopeptides, 330 could be normalized in both replicas (Fig. 2a and supplemental Table 4). Aided by MaxQuant significance B analysis, we selected peptides significantly and differentially phosphorylated in both biological replicas. To be included in the final set of significantly differential phosphopeptide, ratios for both biological replicas had to show change in the same direction. Out of the combined sets, the average ratio of 20 phosphopeptides was observed to be significantly differentially phosphorylated after 2 h of auxin induction in both experiments (Table I).

Auxin-induced Differentially Phosphorylated Proteins—In our dataset, we can identify several proteins known to be involved in auxin signaling as differentially phosphorylated, and some of these were only observed in one biological

Workflow of reciprocal labeling experiments. Reciprocally labeled NAA or mock-treated roots are harvested. Extracted proteins are mixed, digested, and fractionated. Phosphopeptides are enriched by SCX and Ti$^{4+}$-IMAC and subsequently analyzed by LC-MS-MS. Mascot and MSQuant are used for peptide identification and quantification, respectively.
These include two ABCB/PGP P-glycoproteins, MDR1 and MDR4 and a PIN-FORMED (PIN) family protein, PIN2 (51). MDR proteins are members of the ancient ATP-binding cassette protein superfamily (53). The roles of auxin transport of these two proteins in lateral root development have been investigated (54, 55). It has been shown that impaired rootward auxin transport due to mutation of the MDR1 gene and impaired shootward auxin transport in MDR4 mutations (55). Mutation of the MDR1 also caused 21% of nascent lateral roots to arrest their growth and the remainder to elongate 50% more slowly than the wild type (54). The phosphorylation of the two MDR proteins was observed before in response to stimuli other than the auxin itself (6, 56–59). The differential phosphorylation upon auxin treatment could indicate that the function of these two auxin carriers is modulated upon auxin perception.

The auxin efflux protein PIN2 has been proposed to be involved in root gravitropism (60) and lateral root formation (61). Recently, it has been shown that phosphorylation of the middle serine in three conserved TPRXS(N/S) motifs within

Fig. 2. Filtering of phosphoproteomic data and performing normalization of phosphopeptides against their respective protein levels. a, Venn diagram indicates overlap in phosphopeptide and nonmodified protein populations for both biological replicas. The intersection corresponds to phosphopeptides whose protein of origin is also detected by peptides in a nonmodified form. Middle, Venn diagram shows overlap of phosphopeptides within these intersections between the two labeling experiments. b, phosphopeptides observed in both experiments normalized by nonmodified protein level. S-Curve depicts average ratio (across both experiments). Ratios of these 330 peptides are ranked from low to high. See Table I and supplemental Table 4 for list of phosphoproteins.
Auxin-induced Protein Phosphorylation in Arabidopsis Root

Peptides sequences are listed in peptide ID; capital letters in the peptide sequence column indicate amino acids; lowercase p indicates phosphorylation of the serine, threonine, or tyrosine residue that follows, and (ox) indicates oxidation of the methionine that follows. The average of auxin to control ratio, standard deviation (STD), and p value are listed for each differently regulated peptide. The AG code and description of the proteins are listed.

TABLE I

Peptide ID	Ratio	STD	p value	Protein Description	
VTSESDFMpTepYYVTR	2.689177	0.892041	5.68541E-09	AT2G43790.1 MAPK 6	
VTAAVAGSpTTPQGSR	1.739921	0.026916	0.001266819	AT2G33830.1 Dormancy/auxin-associated family protein	
VTAAVAGSpTTPQGSR	1.715228	0.027397	0.001701282	AT2G33830.1 Dormancy/auxin-associated family protein	
SASSpSQAQSGSSQSK	1.61825	0.110709	0.005269285	AT5G42950.1 GYF domain-containing protein	
AAtApSpSEASGPQMLNK	1.610572	0.242289	0.005750693	AT1G27090.1 Glycine-rich protein	
VPEAQITnpSATPPTR	1.58007	0.054565	0.008111699	AT4G9680.1 SAP domain-containing protein	
SDpSgingVDFTEK	1.524053	0.148322	0.015030633	AT5G40390.1 SIP1 (seed imbibition 1-like)	
QLPpSLDOQFQNEpR	1.520887	0.17187	0.015554228	AT4G30380.1 Elch repeat-containing serine/threonine phosphoesterase family protein	
VGIPNQopsQPpSPipANGSR	1.510716	0.21614	0.017354727	AT5G18230.1 Transcription regulator NOT2/NOT3/NOT5 family protein	
TTATNTGpTPPAITTTAaK	1.466798	0.160624	0.027610849	AT4G36750.1 Quinone reductase family protein	
NISGSMqspPR	1.423583	0.081446	0.044049363	AT1G11360.1 Universal stress protein	
SPTVpTVqPpSPPR	1.421118	0.012852	0.04433552	AT3G60240.2 EIF4G (EUKARYOTIC TRANSLATION INITIATION FACTOR 4G)	
VIPnpSmSPVtptTPtP	1.520887	0.17187	0.015554228	AT4G30380.1 Elch repeat-containing serine/threonine phosphoesterase family protein	
TEPpMAspSIDVHLR	0.745373	0.009821	0.040745486	AT1G53310.1 ATPPC1 (PHOSPHOENOLPYRUVATE CARBOXYLASE 1)	
VdpSSSGDCvCGATFK	0.737103	0.103317	0.047051619	AT5G43830.1 Unknown protein	
EAsDGStLPpSPDASAK	0.736016	0.003846	0.03178149	AT4G27060.1 TOR1, SPR2, CN	AT1G53310.1 ATPPC1 (PHOSPHOENOLPYRUVATE CARBOXYLASE 1)
AFFpPsADWALGK	0.718891	0.064460	0.022248212	AT1G69510.1 FUNCTIONS IN: molecular_function unknown	
STpTPTIPnLMPPSR	0.69543	0.236039	0.012202556	AT4G39680.1 Hydroxyproline-rich glycoprotein family	
NVETnpTEpVpSQTETSAK	0.663993	0.047132	0.004906113	AT2G35050.1 Protein kinase family protein	
VApTPVpEGK	0.628052	0.238890	0.001460951	AT4G28300.1 Hydroxyproline-rich glycoprotein family	

The PIN central hydrophilic loop invoked recruitment of PINs into the shootward recycling (62–64). Surprisingly, we observed one phosphorylated peptide of PIN2 that was down-regulated upon auxin treatment (supplementary Table 2). Whether this novel phospho-site also plays a role in direct PIN localization remains an open question.

Phosphorylation of an auxin-responsive factor ARF2 was also up-regulated in one replica (supplementary Table 2). ARF2 acts as a repressor in auxin signaling and is detected in the vascular tissue and the initiation sites of lateral roots (65). ARF2 was shown to regulate senescence and floral organ abscission, and ARF2 links auxin signaling, cell division, and the size of seeds and other organs (66). More recently, it was shown that miR390 targets ARF2, -3 and -4 during lateral root growth (67). It was also reported previously that phosphorylation leads to loss of ARF2 DNA binding and repression activities (68). Auxin does not influence ARF2 protein abundance (69), indicating that de-repression of ARF2 is different from proteasome-mediated degradation of AUX/IAA (70). It is possible that disassociation from DNA and loss of repression of ARF2 are regulated by phosphorylation upon auxin treatment.

Some proteins are shown to be up-regulated in both replicates (supplementary Table 2), such as ribosomal protein S6 (RPS6). In animals, the analyses of mutants lacking ribosomal protein S6 kinase have indicated that RPS6 phosphorylation is required for reentry of quiescent cells into the cell cycle through promotion of translation of mRNAs that possess a 5’-terminal polypyrimidine tract. These mRNAs predominantly encode components of the translational apparatus that are required for cell growth and proliferation (71, 72). In plants, the phosphorylation of RPS6 is developmentally programmed and regulated by temperature, oxygen availability, and other growth conditions (59). The stimulation of RPS6 phosphorylation upon transfer of cultured Arabidopsis cells to fresh medium containing auxin and kinetin was inhibited by pretreatment of cells with anti-auxin or phosphatidylinositol 3-kinase drugs (73). Recently, it was shown that rps6 mutants had a short primary root, and the slow root growth was due to a reduced meristem activity (74). The initiation of lateral root primordia and auxin-induced XPP division in the LRIS requires reentry into the cell division of differentiated pericycle cells. Therefore, the phosphorylation of RPS6 protein induced upon auxin treatment is consistent with the functional importance of these phospho-sites. Further experiments are needed to address whether the regulation of S6 phosphorylation by auxin affects translation of mRNA-related growth and proliferation or influences global change of mRNA in plants.
Beside the up-regulated phosphoproteins, phosphorylation of some proteins was down-regulated upon auxin treatment (supplemental Table 2), including suppressor of auxin resistance 3 (SAR3). SAR3 encodes a putative nucleoporin of the NUP107-120 subcomplex (75). In a related human study, it is believed that phosphorylation regulated the breakdown of the nuclear envelope at mitosis and the disassembly of the nuclear pore complex into different subcomplexes. In Arabidopsis, it has been suggested that defects in this complex restore partial auxin sensitivity to auxin-resistant 1 (axr1) mutants by affecting the translocation of the Aux/IAA17 proteins into the nucleus. The loss function of SAR3 results in a severe growth phenotype, including short primary root and lower lateral root density (76). The observed reduction in phosphorylation of the SAR3 protein could indicate that in Arabidopsis phosphorylation of SAR3 might also be involved in breaking down the nuclear envelope.

Proteins with significant differential phosphorylation in response to auxin are shown in Table I. Only two of these proteins have previously been linked to auxin signaling. One of these is mitogen-activated protein kinase MPK6, which comes out as differentially double-phosphorylated (2.69 ± 0.89, Table I). This MAPK functions in several stress responses in Arabidopsis (77–79). Induction of phosphorylation of MPK by auxin has been reported before (80) but remains controversial. We tested differential phosphorylation after induction with p-chlorophenoxy-isobutric acid (PCIB) and 1-napthoxyacetic acid (1-NOA) auxin analogues, which are...
Auxin-induced Protein Phosphorylation in Arabidopsis Root

biologically inactive, instead of the active NAA. MPK6 was transiently activated under all four conditions, including the mock treatment, although activation by NAA at 1 h post-induction was notably higher when compared with the mock at 1 h post-induction (supplemental Fig. 3). However, at least one inactive auxin analogue, 1-NOA, induced activation of MPK6 to the level observed for NAA (supplemental Fig. 3). Hence, auxin induction of MPK6 phosphorylation is likely caused by off-target effects induced by auxin analogues. Interestingly, we also found one B4 group MPKKK (81) was down-regulated (0.66 ± 0.04, Table I). Whether this change is linked to the increase of phosphorylation of MPK6 and is related to auxin signaling needs further investigation.

Functional Analysis of Phosphoprotein SNX1—Another protein whose phosphorylation status was enhanced in response to auxin (Table I) was sorting nexin1 (SNX1, ratio 1.42 ± 0.08). Because SNX1 was previously described to be involved in lateral root development (5, 32) but not described previously as a phosphorylated protein, we chose this phosphorylation site as a target for a proof-of-principle analysis for our method to detect biologically meaningful changes in phosphorylation. Amino acid substitutions were made for serine 16 of SNX1 to test the role this phosphorylated serine plays in lateral root development. Serine 16 was mutated to glutamic acid to mimic phosphorylation or to alanine to mimic dephosphorylation.

The cDNAs of SNX1 and mutated versions SNX1S16A or SNX1S16E were fused with GFP and expressed under the control of the estradiol-inducible XVE construct (41) in the Arabidopsis Col-0 background. For each construct, six nonsegregating lines were analyzed for primary root growth and lateral root density. Overexpression of SNX1-GFP had a mild but significant impact on primary root growth and lateral root density as compared with Col-0 (supplemental Fig. 4, a and b). For six dpg, five out of six lines had slightly shorter primary roots and increased lateral root densities (supplemental Fig. 4, a and b). However, this effect decreased by day 9, and one line showed a shorter primary root, and two lines showed lower lateral root density (supplemental Fig. 4, a and b). In contrast to the minor effect of SNX1 overexpression, SNX1S16A and SNX1S16E overexpression showed a much more pronounced effect on primary root growth and lateral root development. Two out of six lines overexpressing SNX1S16A showed a significant suppression of growth, with a shorter primary root, smaller cotyledons and leaves, and low lateral root densities at 6 and 9 dpg (Fig. 3, a–c and supplemental Fig. 4, c and d). In lines overexpressing SNX1S16E, the phenotypes were even stronger; all six lines tested showed significant reduction of primary root growth at 6 and 9 dpg, and four of these lines showed very severe reduction in lateral root density (Fig. 3, a–c, and supplemental Fig. 4, e and f). Without sucrose, a proportion of snx1-1 and snx1-2 seedlings arrest growth (52). The induction of SNX1S16E-GFP also caused growth arrest on medium without sucrose (Fig. 3d and data not shown). On medium without estradiol, seedlings transformed either with SNX1-GFP or SNX1S16E-GFP grew similarly (supplemental Fig. 5). Out of four lines with strong inhibition phenotype overexpressing SNX1S16E (Fig. 3), three lines showed high (E5, E6, and NE4) and one line showed intermediate expression levels (NE2) (Fig. 4). The two SNX1S16A overexpression lines showing the strongest inhibition phenotype also had intermediate (NA1) and high expression levels (NA4) (Fig. 4, compare with Fig. 3). The intermediate SNX1S16A-GFP NA1 line displayed reduced growth without inducer, even though the inducer could enhance the growth phenotype (data not shown). Confocal laser scanning microscopy analysis of the localization of SNX1-GFP and mutant protein indicated that WT and mutant proteins localized similarly in the meristematic cells (supplemental Fig. 6 and data not shown). In some lines with high overexpression of SNX1S16E, we observed accumulation at the periphery of the cell (supplemental Fig. 6). These data indicate that mutation of serine 16 may cause mislocalization of the protein. This might indicate that the overexpression of SNX1S16E either causes accumulation of a stabilized SNX1 protein or a failure in trafficking of the protein to its proper location. Reduced lateral root numbers can be caused by initiation or emergence defects (27). At 6 dpg, differential interference contrast microscopy showed that, as compared with wild type seedlings, SNX1 lines, which all had similar expression level, had similar lateral root primordia density and emerged lateral root density (Figs. 5a and 4). In contrast, the two SNX1S16A lines NA1 and NA4, which had similar expression level (NA1) or higher expression level compared with control lines, had reduced lateral root numbers but similar lateral root primordia numbers (Figs. 5a and 4). Two SNX1S16E lines E5 and NE2 displayed similar defects, and the E6 line had significant influence on primordia, which either had a similar expression level of the control line (NE2) or a high expression level (E5 and E6, Figs. 5a and 4). Over the main
in 6-day-old seedlings of Col-0, SNX1-GFP, SNX1 S16A-GFP, and SNX1 S16E-GFP on 6 dpg; SNX1S16E-GFP lines at stage II (*, 0.01; **, 0.001).

Mutations of this serine 19 to glutamate or alanine were also investigated. Overexpression of some of those lines showed a similar suppressive phenotype on seedling growth, primary root growth, and lateral root formation as did overexpression of the double mutation of SNX1S16A/S19A and SNX1S16D/S19D (supplemental Fig. 7 and data not shown). Despite the similar phenotypes caused by phosphomimic and loss of phosphorylation potential, which do not yet allow us to pinpoint the exact biological role of the detected site, our data reveal that novel SNX1 phosphorylation sites detected by our proteomics approach have functions in growth control in the entire plant, thus validating our screen for new phosphorylation sites.

REFERENCES

1. Lemeer, S., and Heck, A. J. (2009) The phosphoproteomics data explosion. Curr. Opin. Chem. Biol. 13, 414–420
2. Grimsrud, P. A., Swaney, D. L., Wenger, C. D., Beauchene, N. A., and Coon, J. J. (2010) Phosphoproteomics for the masses. ACS Chem. Biol. 5, 105–119
3. Del Rosario, A. M., and White, F. M. (2010) Quantifying oncogenic phototyrosine signaling networks through systems biology. Curr. Opin. Genet. Dev. 20, 23–30
4. Thingholm, T. E., and Larsen, M. R. (2009) The use of titanium dioxide micro-columns to selectively isolate phosphopeptides from proteolytic digests. Methods Mol. Biol. 527, 57–66
5. Jailleis, Y., Santambrogio, M., Rozier, F., Fobis-Loisy, I., Mie`ge, C., and Gaude, T. (2007) The retromer protein VPS29 links cell polarity and organ initiation in plants. Cell 130, 1057–1070
6. Benschop, J. J., Mohammed, S., O’Flaherty, M., Heck, A. J., Slijper, M., and Menke, F. L. (2007) Quantitative phosphoproteomics of early elicitor signaling in Arabidopsis. Mol. Cell. Proteomics 6, 1198–1214
7. Zhou, H., Low, T. Y., Hennrich, M. L., van der Toorn, H., Schwend, T., Zou, H., Mohammed, S., and Heck, A. J. (2011) Enhancing the identification of phosphopeptides from putative basophilic kinase substrates using Ti(IV)-based IMAC enrichment. Mol. Cell. Proteomics 10, M110 006452
Auxin-induced Protein Phosphorylation in Arabidopsis Root

8. Zhou, H., Ye, M., Dong, J., Han, G., Jiang, X., Wu, R., and Zou, H. (2008) Specific phosphopeptide enrichment with immobilized titanium ion affinity chromatography adsorbent for phosphoproteome analysis. J. Proteome Res. 7, 3957–3967

9. Schulze, W. X., and Usadel, B. (2010) Quantitation in mass-spectrometry-based proteomics. Annu. Rev. Plant Biol. 61, 491–516

10. Mithoe, S. C., and Menke, F. L. (2011) Phosphoproteomics perspective on plant signal transduction and tyrosine phosphorylation. Phytochemistry 72, 997–1006

11. Kersten, B., Agrawal, G. K., Durek, P., Neijenfiedt, J., Schulze, W., Walther, D., and Rakwal, R. (2009) Plant phosphoproteomics: an update. Proteomics 9, 964–988

12. Gouw, J. W., Krijgsveild, J., and Heck, A. J. (2010) Quantitative proteomics by metabolic labeling of model organisms. Mol. Cell. Proteomics 9, 1068–1061

13. Engelsberger, W. R., Erban, A., Kopka, J., and Schulze, W. X. (2006) Metabolic labeling of plant cell cultures with K(15)NO3 as a tool for quantitative analysis of proteins and metabolites. Plant Methods 2, 14

14. Lanquar, V., Kuhn, L., Leilievre, F., Khaffif, M., Espagne, C., Bruley, C., Barbier-Brygoo, H., Garin, J., and Thomine, S. (2007) 13N-Metabolic labeling for comparative plasma membrane proteomics in Arabidopsis thaliana. Mol. Cell. Proteomics 6, 750–764

15. Nelson, C. J., Huttlin, E. L., Hegeman, A. D., Harms, A. C., and Sussman, M. R. (2007) Implications of 15N-metabolic labeling for automated peptide-identification in Arabidopsis thaliana. Proteomics 7, 1279–1292

16. Huttlin, E. L., Hegeman, A. D., Harms, A. C., and Sussman, M. R. (2007) Comparison of full versus partial metabolic labeling for quantitative proteomics analysis in Arabidopsis thaliana. Mol. Cell. Proteomics 6, 1463–1472

17. Palmblad, M., Bindschedler, L. V., and Cramer, R. (2007) Quantitative proteomics using uniform 15N-labeling, MASCOT, and the trans-proteomic pipeline. Proteomics 7, 3462–3469

18. Bindschedler, L. V., Palmblad, M., and Cramer, R. (2008) Hydroponic isotope labelling of entire plants (HILEP) for quantitative plant proteomics; an oxidative stress case study. Phytochemistry 69, 1962–1972

19. Kline, K. G., Barrett-Wilt, G. A., and Sussman, M. R. (2010) In planta changes in protein phosphorylation induced by the plant hormone abscisic acid. Proc. Natl. Acad. Sci. U.S.A. 107, 15986–15991

20. Himanen, K., Boucheron, E., Vanneste, S., de Almeida Engler, J., Inzé, D., and Beeckman, T. (2002) Auxin-mediated cell cycle activation during early lateral root initiation. Plant Cell 14, 2339–2351

21. Sabatini, S., Beis, D., Wolkenfelt, H., Muffett, J., Guifoyle, T., Malamy, J., Benfey, P., Leyser, O., Bechtold, N., Weisbeek, P., and Scheres, B. (1999) An auxin-independent distal organizer of pattern and polarity in the Arabidopsis root. Cell 99, 463–472

22. Kepinski, S., and Leyser, O. (2005) The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435, 446–451

23. Dharmasiri, N., Dharmasiri, S., and Estelle, M. (2005) The F-box protein TIR1 is an auxin receptor. Nature 435, 441–445

24. Teale, W. D., Paponov, I. A., and Palme, K. (2006) Auxin in action: signalling, transport, and the control of plant growth and development. Nat. Rev. Mol. Cell Biol. 7, 847–859

25. Kepinski, S., and Leyser, O. (2004) Auxin-induced SCFTIR1-Aux/IAA interaction involves stable modification of the SCFTIR1 complex. Proc. Natl. Acad. Sci. U.S.A. 101, 12381–12386

26. Welch, D., Hassan, B., Billou, I., Immink, R., Heidstra, R., and Scheres, B. (2007) Arabidopsis JACKDAW and MAGPIE zinc finger proteins delimit asymmetric cell division and stabilize tissue boundaries by restricting SHORT-ROOT action. Genes Dev. 21, 2196–2204

27. Péret, B., De Rybel, B., Casimiro, I., Benková, E., Swarup, R., Laplaze, L., Beeckman, T., and Bennett, M. J. (2009) Arabidopsis lateral root development: an emerging story. Trends Plant Sci. 14, 399–408

28. De Rybel, B., Vassilieva, V., Parizot, B., De Veylder, L., Verbruggen, N., Van Hove, K., Paponov, I., Palme, K., and Benkova, E. (2009) Highly robust, automated, and sensitive online TiO2-based phosphoproteomics applied to study endogenous phosphorylation in Drosophila melanogaster. J. Proteome Res. 7, 687–697

29. van Breukelen, B., van den Toorn, H. W., Drugan, M. M., and Heck, A. J. (2011) VisualRTLC: a new view on lateral root initiation by combining specific transcriptome datasets. Plant Physiol. 153, 34–40
Auxin-induced Protein Phosphorylation in Arabidopsis Root

Donahue, M. C., and Suzsa, W. (2005) Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell 17, 616–627

Antosiewicz, D. M., Polisensky, D. H., and Braam, J. (1995) Cellular localization of the Ca" binding TCH3 protein of Arabidopsis. Plant J. 8, 625–636

Lan, P., Li, W., Wen, T. N., and Schmidt, W. (2012) Quantitative phosphoproteome profiling of iron-deficient Arabidopsis roots. Plant Physiol. 159, 403–417

Friml, J. (2010) Subcellular trafficking of PIN auxin efflux carriers in auxin transport. Eur. J. Cell Biol. 89, 231–235

Kleine-Vehn, J., Lettner, J., Zwiewka, M., Sauer, M., Abas, L., Luschnig, C., and Friml, J. (2008) Differential degradation of PIN2 auxin efflux carrier by retromer-dependent vacuolar targeting. Proc. Natl. Acad. Sci. U.S.A. 105, 17812–17817

Titapiwatanakun, B., and Murphy, A. S. (2009) Post-transcriptional regulation of auxin transport proteins: cellular trafficking, phosphorylation, protein maturation, ubiquitination, and membrane composition. J. Exp. Bot. 60, 1093–1107

Wu, G., Lewis, D. R., and Spalding, E. P. (2007) Mutations in Arabidopsis multigene and ABC membrane transporters separate the roles of acropetal and basipetal auxin transport in lateral root development. Plant Cell 19, 1826–1837

Lewis, D. R., Miller, N. D., Spillt, B. L., Wu, G., and Spalding, E. P. (2007) Separating the roles of acropetal and basipetal auxin transport on gravitropism with mutations in two Arabidopsis multidrug resistance-like ABC transporter genes. Plant Cell 19, 1838–1850

Weidema, S., Messerli, G., Baerenfaller, K., Gerrits, B., Endler, A., Grossmann, J., Gruissem, W., and Baginsky, S. (2009) Large-scale Arabidopsis phosphoproteome profiling reveals novel chloroplast kinase substrates and phosphorylation networks. Plant Physiol. 150, 889–903

Nühse, T. S., Stensballe, A., Jensen, O. N., and Peck, S. C. (2004) Phosphoproteomics of the Arabidopsis plasma membrane and a new phosphorylation site database. Plant Cell 16, 2394–2405

Nühse, T. S., Bottrill, A. R., Jones, A. M., and Peck, S. C. (2007) Quantitative phosphoproteomic analysis of plasma membrane proteins reveals regulatory mechanisms of plant innate immune responses. Plant J. 51, 931–940

Chang, I. F., Szick-Miranda, K., Pan, S., and Bailey-Serres, J. (2005) Proteomic characterization of evolutionarily conserved and variable proteins of Arabidopsis cytosolic ribosomes. Plant Physiol. 137, 848–862

Müller, A., Guan, C., Gällweiler, L., Tänzerl, P., Hüljser, P., Marchant, A., Parry, G., Bennett, M., Wisman, E., and Palme, K. (1998) AtPIN2 defines a locus of Arabidopsis for root gravitropism control. EMBO J. 17, 6903–6911

Laszkowski, M., Greineisen, V. A., Hofhuis, H., Hove, C. A., Hogeweg, P., Marée, A. F., and Scheres, B. (2008) Root system architecture from coupling cell shape to auxin transport. PLoS Biol. 6, e307

Dhonukshe, P., Huang, F., Galvan-Ampudia, C. S., Mähönen, A. P., Kleine-Vehn, J., Xu, J., Quint, A., Prasad, K., Friml, J., Scheres, B., and Offringa, R. (2010) Plasma membrane-bound AGCS kinases phosphorylate PIN auxin carriers at TPRXS(N/S) motifs to direct apical PIN recycling. Development 137, 3245–3255

Huang, F., Zago, M. K., Abas, L., van Marion, A., Galván-Ampudia, C. S., and Offringa, R. (2010) Phosphorylation of conserved PIN motifs directs Arabidopsis PIN1 polarity and auxin transport. Plant Cell 22, 1129–1142

Zhang, J., Nozdynski, T., Penclik, A., Rolcik, J., and Friml, J. (2010) PIN phosphorylation is sufficient to mediate PIN polarity and direct auxin transport. Proc. Natl. Acad. Sci. U.S.A. 107, 918–922

Okushima, Y., Mitina, I., Quach, H. L., and Theologis, A. (2005) AUXIN RESPONSE FACTOR 2 (ARF2): a pleiotropic developmental regulator. Plant J. 43, 29–46

Schwuff, M. C., Spielman, M., Tiwari, S., Adams, S., Fenby, N., and Scott, R. J. (2006) The AUXIN RESPONSE FACTOR 2 gene of Arabidopsis links auxin signalling, cell division, and the size of seeds and other organs. Development 133, 251–261

Marin, E., Jouannet, V., Herz, A., Lokerse, A. S., Weijers, D., Vaucheret, H., Nussaume, L., Crepsi, M. D., and Maizel, A. (2010) mR390, Arabidopsis TAS3 tasiRNAs, and their AUXIN RESPONSE FACTOR targets define an autoregulatory network quantitatively regulating lateral root growth. Plant Cell 22, 1104–1117

Vert, G., Walcher, C. L., Chory, J., and Nemhauser, J. L. (2008) Integration of auxin and brassinosteroid pathways by Auxin Response Factor 2. Proc. Natl. Acad. Sci. U.S.A. 105, 9829–9834

Li, H., Johnson, P., Stepanova, A., Alonso, J. M., and Ecker, J. R. (2004) Convergence of signaling pathways in the control of differential cell growth in Arabidopsis. Dev. Cell 7, 193–204

Dharmasiri, S., and Estelle, M. (2002) The role of regulated protein degradation in auxin response. Plant Mol. Biol. 49, 401–409

Jefferies, H. B., Reinhard, C., Kozma, S. C., and Thomas, G. (1994) Rapa-mycin selectively represses translation of the “polypyrimidine tract” mRNA family. Proc. Natl. Acad. Sci. U.S.A. 91, 4441–4445

Holland, E. C. (2004) Regulation of translation and cancer. Cell Cycle 3, 452–455

Turck, F., Zilbermann, F., Kozma, S. C., Thomas, G., and Nagy, F. (2004) Phytohormones participate in an S6 kinase signal transduction pathway in Arabidopsis. Plant Physiol. 134, 1527–1535

Creff, A., Soriami, R., and Desnos, T. (2010) The two Arabidopsis RPS6 genes, encoding for cytoplasmic ribosomal proteins S6, are functionally equivalent. Plant Mol. Biol. 73, 533–546

Zhang, Y., and Li, X. (2005) A putative nucleoporin 96 is required for both basal defense and constitutive resistance responses mediated by suppressor of npr1-1, constitutive 1. Plant Cell 17, 1306–1316

Parry, G., Ward, S., Cernac, A., Dharmasiri, S., and Estelle, M. (2006) The Arabidopsis SUPPRESSOR OF AUXIN RESISTANCE proteins are nucleoporins with an important role in hormone signaling and development. Plant Cell 18, 1590–1603

Asai, T., Tena, G., Plotnikova, J., Willmann, M. R., Chiu, W. L., Gomez-Gomez, L., Bolier, T., Ausubel, F. M., and Sheen, J. (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415, 977–983

Menke, F. L., van Pelt, A. J., Pieterse, C. M., and Klessig, D. F. (2004) Silencing of the mitogen-activated protein kinase MPK6 compromises disease resistance in Arabidopsis. Plant Cell 16, 897–907

Rodriguez, M. C., Petersen, M., and Mundy, J. (2010) Mitogen-activated protein kinase signaling in plants. Annu. Rev. Plant Biol. 61, 621–649

Mockaitis, K., and Howell, S. H. (2000) Auxin induces mitogenic activated protein kinase (MAPK) activation in roots of Arabidopsis seedlings. Plant J. 24, 785–796

MAPK Group (2002) Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci. 7, 301–308