Occurrence of aflatoxin in agricultural produce from local markets in Burundi and Eastern Democratic Republic of Congo

Patchimaporn Udomkun | Charity Mutegi | Tesfamicheal Wossen
Joseph Atehnkeng | Nsharwasi Léon Nabahungu | Emmanuel Njukwe
Bernard Vanlauwe | Ranajit Bandyopadhyay

Abstract
Aflatoxins are noxious secondary metabolites, of certain fungal species, found in food and feed. Contamination of a commodity with aflatoxins is associated with production and storage losses, and subsequently less food availability. Aflatoxins can also pose human health risks and represent a barrier to the development of trade, in both domestic and international markets. In this study, samples of cassava, maize, groundnut, beans, soybean, sorghum and milk, and their processed products were collected from local markets in Burundi and Eastern DRC. In order to investigate the levels of aflatoxin, crop samples were analyzed using a single step lateral flow immunochromatographic assay (Reveal Q+), while enzyme-linked immune-sorbent assay (ELISA) was used to analyze aflatoxin-M₁ in milk, yogurt, and cheese samples. The results revealed the presence of aflatoxins in all samples from both countries, with levels ranging from 1.3 to 2,410 μg/kg. Samples collected from Burundi contained relatively higher (p > 0.0.5) levels of aflatoxins. In 51% of all the crops samples, total aflatoxin contamination was above the EU maximum tolerable level of 4 μg/kg. Processed products, particularly from groundnut, maize, and sorghum, had the highest levels of aflatoxin contamination when compared to unprocessed grain. With regard to milk and dairy products, the level of aflatoxin-M₁ ranged from 4.8 to 261.1 ng/kg. Approximately 29% of milk and yogurt samples had aflatoxin-M₁ higher than the EU regulatory limit of 50 ng/kg, whereas 20% of cheese samples were found to be contaminated at levels higher than the maximum limit of 250 ng/kg. These results can serve as the basis for pre- and postharvest approaches to reduce aflatoxin contamination in agricultural commodities in Burundi and Eastern DRC in order to reduce health risk, avoid reduced production in livestock, and open up export markets.

KEYWORDS
aflatoxins, Central Africa, crops, fungi, milk and dairy products
Nutritional security is effectively achieved when all people at all times consume food of sufficient quantity and quality, in terms of variety, diversity, nutrient content, and safety, to meet their dietary needs and food preferences for an active and a healthy life (FAO/AGN 2012). Contaminated food is one of the major causes of undernutrition, morbidity, and mortality in sub-Saharan Africa, particularly among children, who are more vulnerable to diseases (Paudyal et al., 2017). Ensuring food safety through the reduction of aflatoxin contamination can contribute significantly to alleviating poverty, increasing food security, and improving nutrition. Also, this has likely positive impacts on enhancing farm productivity, conserving natural resources, as well as improving economic growth by meeting standards in domestic, regional, and international trade.

Among the various mycotoxins, aflatoxins have garnered significant attention due to their negative, and carcinogenic, effects on human and animal health (Klingelhofer et al., 2018). Although aflatoxins are produced by several Aspergillus species, the major causal agent of contamination globally is A. flavus (Klich, 2007). There are four major aflatoxins, including B1, B2, G1, and G2; however, aflatoxin-B1 is the most toxic and prevalent and is classified as a Group 1A carcinogen by the International Agency for Research on Cancer (IARC 2002). High-dose exposure to aflatoxins concentrations can cause acute health effects such as vomiting, abdominal pain, and even possible death (Probst, Njapau, & Cotty, 2007; Sherif, Salama, & Abdel-Wahhab, 2009), while sublethal chronic exposure may lead to liver cancer, stunting in children, and immune system suppression (Chan-Hon-Tong, Charles, Forhan, Heude, & Sirot, 2013; Wu & Khlangwiset, 2010). In 1981, for instance, the outbreak of aflatoxicosis as a result of ingestion of maize contaminated with 3.2–12 mg/kg of aflatoxin-B1 caused fatalities in Kenya (Obura, 2013). In another severe aflatoxicosis outbreak, Azziz-Baumgartner et al. (2005) also reported that aflatoxin contamination was found to be the cause of over 125 deaths during 2004–2005 in Eastern province of Kenya. Williams et al. (2004) estimated that over 5 billion people living in low-income countries are at risk of chronic exposure to aflatoxins.

The incidence of aflatoxin contamination in major food crops such as maize, groundnut, sorghum, tree nuts, and dried fruits and spices as well as milk and meat products is widespread in warm climates (CAST 2003; Chala et al. 2014; Mutegi, Ngugi, Hendriks, & Jones, 2009; Perrone et al., 2014; Williams et al., 2004). In animals, aflatoxins may lower resistance to diseases, interrupt vaccine-induced immunity, and adversely affect growth and reproduction, causing serious economic losses (CAST 2003; Fink-Gremmels, 1999). When animal feeds are infected with aflatoxin-producing fungi, aflatoxins are introduced into animal source food chains and can be converted to M-type aflatoxins (De Ruyck, De Boevre, Huybrechts, & De Saeger, 2015; Iqbal, Jinap, Pirouz, & Ahmad Faizal, 2015). Infection and production of aflatoxins by ubiquitous, air-borne, and soil-inhabiting species of fungi begin at preharvest stages and may continue to increase until the grain is consumed (Waliyar, Ntare, Diallo, Kodio, & Diarra, 2007; Waliyar et al., 2015).

The interplay between the safety of food and the adequacy of food is therefore crucial when addressing the aflatoxins problem in low-income countries. An earlier study by Brudzynski, Van Pee, and Kornazewski (1977), for example, showed the presence of aflatoxins up to 1,000 μg/kg in maize and groundnut from the DRC. Recently, Kamika and Takoy (2011) reported that 95% of groundnut samples collected during the dry and the rainy seasons in Kinshasa contained aflatoxin-B1 over the maximum limit of 2 μg/kg prescribed by the EU as the standard for direct human consumption. These studies were, however, limited to maize and groundnut conducted only in the DRC. To expand insight, we conducted a comprehensive investigation on the incidence of aflatoxin contamination in raw and processed materials from cassava, maize, sorghum, beans, soybean, groundnut, and milk in the local markets of Burundi and Eastern DRC.
labeled with the name of village and collection date and then subdivided into three portions. The first portion was kept as a backup, while the second was directly used for moisture analysis. The third was examined to determine the level of aflatoxin contamination. All samples were sealed in polyethylene plastic bags under normal atmospheric conditions, whereas the milk and dairy products were kept in plastic bottles. The package seal was carefully inspected to avoid any possibility of leakage. Subsequently, the sealed packages were stored at a temperature of 4°C for dried samples and ~4°C for milk and dairy products about 2 weeks, without direct sunlight until further analysis.

2.2 Chemical analysis

2.2.1 Moisture content

Moisture content (MC) of each sample was determined by drying the samples in the hot air oven at 105°C for 12 hr, following technique 950.46 (AOAC 2006). The tests were conducted in triplicates, and the moisture content was calculated using the following formula: [(original weight of sample - weight of sample after drying)/original weight of sample] * 100.

2.2.2 Analysis of aflatoxins in grains

For each sample except flour, 200 g was ground into fine powder using a laboratory blender (model 37BL85; Dynamics Corporation of America, USA). Approximately 10 g ground sample was added to 50 ml 65% ethanol (v/v) in a 100 ml media bottle. The resulting suspension was shaken (model HS 501 D Shaker; IKa, Germany) at 200 rpm for 3 min to extract aflatoxins. The suspension was allowed to settle, filtered through Whatman No. 1 paper, and filtrate collected.

To analyze the aflatoxins concentration, a Reveal Q+ test kit (Neogen Corporation, USA) was used as a single step lateral flow immunochromatographic assay based on a competitive immunooassay format. A total of 500 μl diluent was mixed with 100 μl of the sample filtrate and then carefully mixed by pipetting up and down five times in a dilution cup. A 100 μl portion of the mixture was transferred to a new clear sample cup. Subsequently, a Reveal Q+ for aflatoxin test strip was placed into the sample cup for 6 min; the strip was removed and inserted to the AccuScan® reader (AccuScan Pro, model AX-2; Neogen Corporation, Australia). Aflatoxin concentration was displayed in parts per billion (ppb). All samples were analyzed in duplicate from a separate 10 g measure.

2.2.3 Analysis of aflatoxins in milk and dairy products

To determine aflatoxin-M₄ in milk and yogurt, the method developed by Gizachew, Szoñy, Tegegne, Hanson, and Grace (2016) was adapted, while the method of Škrbić, Antić, and Živančev (2015) was modified to determine aflatoxin-M₄ in cheese products. One hundred milliliter of milk and yogurt samples was warmed to 37°C in a water bath and then centrifuged at 10°C with 3500 g for 10 min (model TDL-5-A; Lab companion, Korea). After discarding the upper cream layer, the remaining skimmed milk was filtered through Whatman No. 4 filter paper before aflatoxin-M₄ analysis. For the cheese products, 2 g of homogenized samples were weighed and blended with 40 ml dichloromethane for 15 min. The filtrates were evaporated via rotary evaporator (model R-II; Büchi, Postfach, Switzerland) at 60°C. A solution of 0.5 ml methanol, 0.5 ml phosphate buffer saline (PBS), and 1 ml hexane was added to the residue and then centrifuged at 15°C with 2,700 g for 15 min. The lower methanolic phase was collected. Prior aflatoxin-M₄ determination, 100 μl of this methanolic phase was diluted with PBS to achieve a dilution of 1:5.

Assay procedure was followed according to the protocol provided by RIDASCREEN® Aflatoxin-M₄ (R-Biopharm AG, Darmstadt, Germany). Briefly, 100 μl solutions from the mixing wells were transferred to the assay wells coated with aflatoxin-M₄ antibodies and incubated for 15 min at room temperature in the dark. After adding 100 μl horseradish peroxidase as a conjugate to aflatoxin-M₄, incubation continued for further 30 min. Then the liquid was poured out of the wells, and the wells were washed with PBS-Tween 20 buffer solution three times. The wells were tapped face down on a layer of absorbent to remove the residual wash buffer. Subsequently, 100 μl of tetramethylbenzidine (TMB), as enzyme substrate, was added into each well, incubated for 15 min at room temperature in the dark, and then 100 μl of the stop solution was added to the microplate wells, which changes the color from blue to yellow. The optical density (OD) was measured at 450 nm using the enzyme-linked immunosorbent assay (ELISA) plate reader (model BDSL, Immunoscan plus; Lab systems, Finland). All analyses were run in duplicates.

Two sets of standard solutions were prepared for aflatoxin-M₄ calibration curves. The lower concentrations were in the range of 0.05–0.1 mg/L, whereas the higher concentrations were in the range of 0.1–2.0 mg/L. Samples that were beyond the range of the highest standard concentration were diluted, and the ELISA experiments were repeated.

2.2.4 Total aflatoxin and aflatoxin-M₄ validation

To test the sensitivity of the method, the total aflatoxin standard solution at two different concentrations was added to the all samples. The extraction and the recovery of the spiked samples were performed as previously described, in duplicate. The validation of Reveal Q+ and ELISA methods was carried out with the determination of the recoveries and the coefficient of variation (%CV) as presented in Table 1.

3 RESULTS AND DISCUSSION

3.1 Moisture content of samples

The MC of grain samples collected from local markets in Burundi and Eastern DRC is shown in Table 2. There was no significant difference in mean MC of the samples from the two countries. In the market, grain samples were mostly kept in open containers, while processed
samples were stored in plastic closed containers or paper bag. Only traditionally fermented cassava foods (ubuswage) were wrapped in plantain leaves. Overall, the MC ranged between 6.7% and 15.0% for grain samples and between 5.5% and 12.6% for flour, with the lowest being recorded in groundnut flour and the highest in cassava flour. Much higher MC content was recorded in the cassava prepared for ubuswage, with an average MC of 59.8%. In addition, the MC of fresh milk, yogurt, and cheese ranged between 79.3% and 89.3%.

3.2 Occurrence of aflatoxins in crop samples

The occurrence and concentration of total aflatoxins in crop samples collected from Burundi and Eastern DRC are summarized in Tables 3 and 4. All the 218 samples were contaminated with aflatoxins, which ranged from 1.3 to 2,410.0 μg/kg. Nowadays, the EU has set the strictest standards, such that any products for direct human consumption can only be marketed with concentrations of aflatoxin-B1 and total aflatoxins not >2 and 4 mg/kg, respectively (EC, 2007, 2010). Likewise, US regulations have specified the maximum acceptable limit for total aflatoxins at 20 mg/kg (Wu, 2006). In India, a tolerance limit of 30 mg/kg for aflatoxins in all foods has been defined. Kenya adopted a maximum allowed level of 10 mg/kg of aflatoxin-B1 in groundnuts and several grain foods. Brazil has fixed the limit of total aflatoxins in nuts at 30 mg/kg (Freitas-Silva & Venâncio, 2011). As Burundi and DRC do not have regulations for aflatoxins, in this study, we applied the EU standard as the strictest standards to compare for all crop samples.

About 60% of these samples contained aflatoxins above the EU maximum permissible limit (4 μg/kg) for total aflatoxins in maize intended for human consumption (EC 2007; EC 2010). As other countries found within the tropics, aflatoxin contamination in food commodities from Burundi and Eastern DRC can be attributed to high temperatures and drought conditions driven by climate change, resulting in crop stress which favors A. flavus infection in the production field and proliferation during postharvest period (Bandyopadhyay et al., 2016; Kamika, Koto-te-Nyiwa, & Tekere, 2016; Kamika & Takoy, 2011; Paterson & Lima, 2010; Schmidt-Heydt, Abdel-Hadi, Magan, & Geisen, 2009). In addition, high aflatoxin contamination levels can be compounded by other farm practice factors, including poor weeding, infertile soils particularly in Burundi, poor crop rotation, high planting densities, and delayed time of harvesting. The poor storage of agricultural produce can also lead to accelerated aflatoxin contamination as a result of proliferation of aflatoxin-producing fungi. This has been demonstrated by many authors (Azziz-Baumgartner et al., 2005; Mwalwayo & Thole, 2016). Some socioeconomic factors may also contribute to aflatoxins contamination, including informal marketing systems, inadequate transportation modes, unavailability of needed materials, tools, and equipment, lack of information and knowledge on appropriate pre- and postharvest managements, and poor governmental regulations and legislations. Moreover, some of these countries have experienced conflicts, resulting in poor outcomes in health, education, and living standards. Food insecurity and malnutrition, especially among children, in resource-poor households

TABLE 1 Validation data of methods for total aflatoxins in dried food, milk, and dairy products samples

Category	Total aflatoxin level added (μg/kg)	% Recovery	Coefficient of variation (%CV)
Cassava			
Dried root	2.0	80.2	3.0
	10.0	82.3	3.7
Flour	2.0	85.7	2.9
	10.0	87.6	5.1
Ubuswage	2.0	83.5	6.0
	10.0	81.2	2.9
Bakery products (bread, cookies)	2.0	77.8	4.0
	10.0	83.1	1.2
Maize			
Grain	2.0	93.6	2.1
	10.0	90.8	3.6
Flour	2.0	84.3	4.3
	10.0	90.1	2.4
Sorghum			
Grain	2.0	83.4	1.7
	10.0	85.2	2.5
Flour	2.0	80.5	3.3
	10.0	87.7	4.7
Germe	2.0	78.9	2.6
	10.0	77.6	4.1
Beans			
Grains	2.0	82.8	3.9
	10.0	88.1	1.6
Soybean			
Grains	2.0	83.2	3.2
	10.0	84.6	5.5
Flour	2.0	85.0	4.1
	10.0	88.5	3.6
Groundnut			
Grain	2.0	90.4	1.3
	10.0	92.6	3.2
Roasted	2.0	88.5	2.4
	10.0	83.9	1.8
Flour	2.0	87.2	1.1
	10.0	86.1	2.4
Milk			
Fresh milk	0.5	91.5	1.7
	1.0	101.2	1.1
Yogurt	0.5	95.4	2.8
	1.0	98.5	4.2
Cheese	0.5	91.7	1.9
	1.0	101.5	2.1

- **Ubuswage** is the traditional cassava product in Central African region.
- **Germe** is the germinated sorghum for beer processing.
TABLE 2 Presence of moisture content in food samples collected from local markets in Burundi and Eastern DRC

Category	Burundi	Eastern DRC
Cassava		
Dried root	14.95 ± 1.23	–
Flour	13.58 ± 2.41	13.14 ± 1.52
Ubuswageb	59.76 ± 4.41	–
Bakery products (bread, cookies)	–	13.07 ± 1.18
Maize		
Grain	11.21 ± 1.49	11.92 ± 1.26
Flour	10.36 ± 1.34	10.58 ± 1.28
Sorghum		
Grain	12.23 ± 0.52	12.52 ± 1.44
Flour	10.76 ± 1.91	10.71 ± 0.76
Germeb	10.39 ± 0.65	–
Beans		
Grain	11.52 ± 1.03	11.85 ± 1.30
Soybean		
Dried	9.54 ± 0.30	8.74 ± 1.15
Flour	6.76 ± 2.35	7.60 ± 1.29
Groundnut		
Grain	7.00 ± 1.00	6.65 ± 1.67
Roasted	4.56 ± 1.05	5.21 ± 1.26
Flour	6.52 ± 0.63	5.52 ± 1.04
Milk		
Fresh milk	89.25 ± 1.41	89.12 ± 1.35
Yogurt	88.02 ± 1.25	87.72 ± 1.47
Cheese	–	79.34 ± 1.08

Notes. Value is the mean ± SD.

bUbuswage is the traditional cassava product in Central African region.
bGerme is the germinated sorghum for beer processing.

Aflatoxin contamination by aflatoxins in cassava are reported in Ghana (Wareing, Westby, Gibbs, Allotey, & Halm, 2001), Republic of Benin (Adjoji et al., 2014; Gnonlonfin et al., 2012) and Tanzania (Sulyok et al., 2015). The occurrence of aflatoxins in cassava chips from Cameroon was only detected after 4 weeks’ storage (Essono et al., 2009). These results suggested that fresh cassava is safe regarding aflatoxin contamination; however, processing methods such as heat treatment, sun drying, or freezing may alter the ability of cassava to block toxigenesis, leading to secondary contamination. Another possible explanation associated with this observation is that the effect of fermentation process generally employed in the processing of cassava into dried cassava, cassava flour, and ubuswage favors the growth of lactic acid bacteria (LAB) or some microorganisms like Saccharomyces cerevisiae strains. The ability of these microorganisms to bind or degrade aflatoxins, especially aflatoxin-B₁ and aflatoxin-M₁, in foods and feeds has been reported (Ahlberg, Joutsjoki, & Korhonen, 2015; El-Nezami & Gratz, 2011; Peltonen, El-Nezami, Haskard, Ahokas, & Salminen, 2001). Aflatoxin binding seems to be strongly related to several factors such as LAB strains, matrix, temperature, pH, and incubation time (El-Nezami & Gratz, 2011; Shetty, Hald, & Jespersen, 2007). Moreover, the MC of cassava has been shown to influence the shelf life of samples rather than aflatoxin occurrence.

3.2.2 Maize

Among the grain samples, the high concentrations of total aflatoxins were obviously detected in maize, followed by groundnut, sorghum, beans, and soybean, respectively (Table 3). Notably, aflatoxin levels in maize flour ranged from 2.5 to 350.0 μg/kg. Kamika et al. (2016) also reported that aflatoxin contamination in the DRC along the maize supply chain. They showed that contamination increased of up to 500 times from preharvest (3.1–103.9 μg/kg) to city stores (2,070.5 μg/kg) and to distribution markets (2,806.5 μg/kg). They attributed this trend to inappropriate storage practices as well as a lack of drying facilities in the country. Similar studies in SSA countries have reported high levels of aflatoxin contamination in maize. Kaaya and Kyamuhangire (2006), for instance, reported more than 20 μg/kg of aflatoxins in maize kernels from Uganda after 6 months of storage, while very high content of aflatoxins in homegrown maize was found in Kenya when compared to purchased or relief maize (Daniel et al., 2011). Lewis et al. (2005) indicated that the contaminated homegrown maize may represent a source of aflatoxin contamination in market maize, especially when local farmers sold a portion of their farm household stores to market vendors. In Tanzania, Kamala et al. (2015) also reported that 87% of maize samples were co-contaminated with aflatoxins and fumonisins.

3.2.3 Sorghum

In this study, all sorghum samples in grain, flour, and germé forms contained detectable concentrations of aflatoxins, ranging
Category	Burundi		Eastern DRC		Overall							
	Incidence	Average (μg/kg)	Median (μg/kg)	Range (μg/kg)	Incidence	Average (μg/kg)	Median (μg/kg)	Range (μg/kg)	Incidence	Average (μg/kg)	Median (μg/kg)	Range (μg/kg)
Cassava												
Dried root	8/8	3.7	3.6	2.5–5.4	-	-	-	-	8/8	3.7	3.6	2.5–5.4
Flour	10/10	2.8	2.6	1.9–4.6	18/18	2.7	2.7	1.3–5.0	28/28	2.7	2.6	1.3–5.0
Ubuswage^b	2/2	3.8	4.0	3.3–4.0	-	-	-	-	2/2	3.8	4.0	3.3–4.0
Bakery products (bread, cookies)	-	-	-	-	3/3	3.4	3.3	2.3–5.6	3/3	3.4	3.3	2.3–5.6
Maize												
Grain	10/10	38.7	4.3	2.7–330.0	9/9	10.7	3.2	2.2–73.2	19/19	25.5	3.9	2.2–330.0
Flour	10/10	41.9	5.9	3.2–350.0	9/9	47.9	7.5	2.5–320.0	19/19	44.7	6.9	2.5–350.0
Sorghum												
Grain	12/12	7.1	6.4	5.6–490.0	11/11	4.1	4.3	2.5–5.5	23/23	23.3	4.8	2.5–490.0
Flour	5/5	6.1	5.9	4.0–8.5	7/7	4.9	4.9	3.1–6.5	12/12	5.4	5.2	3.1–8.5
Germé^c	3/3	6.2	6.3	5.2–6.9	-	-	-	-	3/3	6.2	6.3	5.2–6.9
Beans												
Grains	21/21	3.9	3.7	2.5–6.6	10/10	3.5	3.4	1.9–6.4	31/31	3.7	3.7	1.9–6.6
Soybean												
Grains	8/8	3.4	3.5	2.3–4.1	3/3	3.7	3.8	2.8–4.2	11/11	3.5	3.6	2.3–4.2
Flour	5/5	6.9	4.8	3.5–12.3	4/4	4.1	4.4	2.3–5.5	9/9	5.6	5.7	2.3–12.3
Groundnut												
Grain	7/7	7.1	4.6	3.9–29.3	9/9	3.4	3.4	2.2–5.4	16/16	5.0	3.9	2.2–29.3
Roasted	10/10	220.3	34.0	4.3–1,080.0	11/11	4.0	3.9	2.9–5.7	21/21	107.0	5.3	2.9–1,080.0
Flour	10/10	824.0	550.0	310.0–2,410.0	2/2	1027.5	1010.0	470.0–1,620.0	12/12	857.9	550.0	310.0–2,410.0
Total	121/121	99.6	4.5	1.9–2,410.0	97/97	29.3	3.7	1.3–1,620.0	218/218	68.1	4.0	1.3–2,410.0

^aIncidence number is represented by the number of samples with aflatoxins above the detectable level/total sample in a particular category. ^bUbuswage is the traditional cassava product in Central African region. ^cGermé is the germinated sorghum for beer processing.
between 2.5 and 490.0 μg/kg. Additionally, total aflatoxins exceeded the regulatory levels for direct human consumption as set by the EU in 84.6% of the sorghum samples. The levels of aflatoxin contaminations may also be associated with the poor pre- and postharvest practices as well as processing methods. Sorghum, in particular, is used as a malted grain (germé) in beer production in Burundi. The traditional processing technique, which involves the use of Enterobacteriaceae and molds, may cause aflatoxin contamination in germé (Batiano et al., 2015). Although zearalenone is reported as the most common mycotoxin found in sorghum (Chala et al., 2014), high levels of aflatoxins, ranging 340–476 μg/kg, were also found in malted sorghum (Matumba, Monjerezi, Khonga, & Lakudzala, 2011). Another study by Ayalew, Fehmann, Lepschy, Beck, and Abate (2006) reported that about 6% of field samples of sorghum in Ethiopia are contaminated with aflatoxin-B1 up to 26 μg/kg, whereas Bandypadhyay, Kumar, and Leslie (2007) found that 5% of sorghum grain samples exceeded the Nigerian safety threshold of 20 μg/kg.

3.2.4 Beans

Aflatoxin was present in 100% of bean samples from Burundi and Eastern DRC and ranged from 1.9 to 6.6 μg/kg. This low level of aflatoxin contamination in the bean samples is perhaps due to the ability of phenolic compounds, particularly gallic and chlorogenic acids, to inhibit fungal amylase activities (Telles, Kupski, & Furlong, 2017). Pagnussatt, Bretanha, Silvia, Garda-Buffon, and Badiale-Furlong (2013) also mentioned that the synergistic effect of different compounds in beans can contribute to a defense barrier against development of toxigenic species. Literature reports a few instances of aflatoxins in red kidney beans, split peas, chickpea, and cowpea such as in Pakistan (Lutfullah & Hussain, 2012).

3.2.5 Soybean

All soybean samples analyzed were positive for total aflatoxins with 40.0% of these samples exceeding 4 μg/kg. The highest concentration of aflatoxins was found in flour than in dried grains. It has been reported that aflatoxin contaminations in soybean are relatively low, but there are conflicting explanations to the possible cause of low aflatoxin contamination in soybean. One of the initial studies associated this phenomenon to the zinc binding ability of phytate in soybean, as it is an important intermediate substrate of aflatoxin biosynthesis (Gupta & Venkitasubramanian, 1975). However, Ehrlich and Cieglar (1985) showed that phytate level does not influence aflatoxin biosynthesis. Burow, Nesbitt, Dunlap, and Keller (1997) hypothesized that lipoxygenase in soybean can produce hydroxyl fatty acids which are capable of inhibiting aflatoxin production in A. parasiticus. With regard to aflatoxin inhibition, Mellon and Cotty (2002) reported that soybean grains with lipoxygenase might not deter increased seed pathogen susceptibility, but seed coat integrity and seed viability may play more determinant role in seed resistance to aflatoxin contamination. There is hence the need for further understanding of the possible cause of low aflatoxin contamination in soybean.

3.2.6 Groundnut

In this study, total aflatoxins concentration in groundnut products from the local markets in Burundi and Eastern DRC ranged from 2.2 to 2,410.0 μg/kg. The highest contamination level was found in groundnut flour (2,410 μg/kg), followed by roasted groundnut (1,080 μg/kg) and dried kernel (29.3 μg/kg), respectively. About 69.4% of the groundnut samples exceeded the EU aflatoxin regulatory limits. None of the groundnut flour samples were fit for human consumption according to any existing regulation globally, with some samples surpassing the EU maximum permissible limit of 4 μg/kg by 600-fold. Aflatoxins were found more in processed groundnut than in unprocessed dried grains (Tables 2 and 3). Processed groundnut, often prepared from low quality groundnut, can be exposed to a wide range of environmental conditions, such as high temperature and humidity as well as to oxygen and mold, which can trigger further increase in aflatoxin contamination. Nonetheless, other factors including biological, nutritional, and climatic factors can be responsible for aflatoxins contamination, especially in groundnut and maize, some of which are either difficult or impracticable to control. Groundnut is a preferred substrate for aflatoxin-producing fungi (Bankole, Schollenberger, & Drochner, 2006; Ezekiel et al., 2013; Monyo et al., 2012). The range of aflatoxin contamination in groundnut samples in this study was comparable to those reported from local vendors, markets, and retail shops in Nigeria where aflatoxin-B1 detected in 64.2% of dry roasted groundnut (Bankole, Ogunsanwo, & Eseigbe, 2005). In Kenya, about 87.0% of groundnut were contaminated with <4 μg/kg of aflatoxin-B1, while 7.5% exceeded national regulatory limited of 20 μg/kg (Mutegi et al., 2009). Similarly, 70% of groundnut samples from the DRC were found to contain higher than 5 μg/kg aflatoxins (Kamika & Takoy, 2011). Matumba, Van Poucke, Monjerezi, Ediage, and De Saeger (2015) also revealed that groundnut samples from informal markets in Malawi contained aflatoxins up to 47 times as compared with samples destined as export goods.

3.3 Occurrence of aflatoxin-M1 in milk and dairy products

Milk and dairy products are important for growth and development as well as maintenance of good health in humans, especially babies and children. The occurrence of aflatoxin-M1 in milk and its products collected in Burundi and Eastern DRC is presented in Tables 5 and 6. According to the EU regulations, the maximum residue level of aflatoxin-M1 in raw milk and dairy products is 50 ng/L, while this level based on USA regulations was adjusted to

Occurrence of aflatoxin-M1 in milk and dairy products	
Milk and dairy products are important for growth and development as well as maintenance of good health in humans, especially babies and children.	
The occurrence of aflatoxin-M1 in milk and its products collected in Burundi and Eastern DRC is presented in Tables 5 and 6.	
According to the EU regulations, the maximum residue level of aflatoxin-M1 in raw milk and dairy products is 50 ng/L, while this level based on USA regulations was adjusted to	
TABLE 4

Category	Burundi	Eastern DRC	Overall						
	<4 μg/kg	4–10 μg/kg	>10 μg/kg	<4 μg/kg	4–10 μg/kg	>10 μg/kg	<4 μg/kg	4–10 μg/kg	>10 μg/kg
Cassava									
Dried root	7 (87.5)b	1 (12.5)	0	-	-	-	7 (87.5)	1 (12.5)	0
Flour	9 (90)	1 (10)	0	16 (88.9)	2 (11.1)	0	25 (89.3)	3 (10.7)	0
Ubuswagec	1 (50)	1 (50)	0	-	-	-	1 (50)	1 (50)	0
Bakery products (bread, cookies)	-	-	-	3 (100)	0	0	3 (100)	0	0
Maize									
Grain	4 (40)	4 (40)	2 (20)	7 (77.8)	1 (11.1)	1 (11.1)	11 (57.9)	5 (26.3)	3 (15.8)
Flour	3 (30)	2 (20)	5 (50)	2 (22.2)	3 (33.3)	4 (44.5)	5 (26.3)	5 (26.3)	9 (47.4)
Sorghum									
Grain	0	9 (75)	3 (25)	4 (36.4)	7 (63.6)	0	4 (17.4)	16 (69.6)	3 (13)
Flour	0	5 (100)	0	2 (25.0)	6 (75.0)	0	2 (15.4)	11 (84.6)	0
Germe3d	0	3 (100)	0	-	-	-	0	3 (100)	0
Beans									
Grain	14 (67)	7 (33.3)	0	8 (80)	2 (20)	0	22 (71)	9 (29)	0
Soybean									
Grain	7 (87.5)	1 (12.5)	0	2 (66.7)	1 (33.3)	0	9 (81.8)	2 (18.2)	0
Flour	1 (20)	3 (60)	1 (20)	2 (50)	2 (50)	0	3 (33.3)	5 (55.6)	1 (11.1)
Groundnut									
Dried	1 (14.3)	5 (71.4)	1 (14.3)	7 (77.8)	2 (22.2)	0	8 (50.0)	7 (43.8)	1 (6.2)
Roasted	0	3 (30)	7 (70)	7 (63.6)	4 (36.4)	0	7 (33.3)	7 (33.3)	7 (33.3)
Flour	0	0	10 (100)	0	0	2 (100)	0	0	12 (100)
Total	47 (38.8)	45 (37.2)	29 (24.0)	60 (61.9)	30 (30.9)	7 (7.2)	107 (49.1)	75 (34.4)	36 (16.5)

500 ng/kg (Campagnolino et al., 2016; Iqbal et al., 2015; Mulunda & Mike, 2014). Aflatoxin-M₁ was detected in all samples collected for this study, with concentrations ranging between 4.8 and 261.1 ng/kg. Among the 13 fresh milk samples analyzed, 4 (30.8%) contained aflatoxin-M₁ above the maximum permissible limit of 50 ng/kg, as set by the EU for raw milk, heat-treated milk, and milk for the manufacture of milk-based products (EC 2006).

Of the eight yogurt samples, only two samples (25%) were contaminated with aflatoxin-M₁ above the limit of 50 ng/kg, with the concentration ranging between 4.8 and 63.2 ng/kg. Brackett and Marth (1982) explained that the changes in casein structure due to fermentation process may cause adsorption or occlusion of toxins, including aflatoxin-M₁, in the precipitate. Montaseri et al. (2014) also referred to this behavior as the possible reason why LAB is capable of removing aflatoxin-M₁ from yogurt. Furthermore, the low concentration of aflatoxin-M₁ in yogurt might be associated with processing variables such as pH, formation of organic acids, or other fermented by-products (Govaris, Roussi, Koidis, & Botsoglou, 2002).

Four out of five (80.0%) cheese samples had concentration of aflatoxin-M₁ below the EU maximum limit of 250 ng/kg. The contamination of aflatoxin-M₁ in these samples can be attributed to the intake of aflatoxicigenic mold contaminated feeds by milk-producing animals. Variability of aflatoxin-M₁ in milk and dairy products is influenced by several factors such as geographical region, seasons, type and quality of feed, feed storage conditions, and processing methods and conditions (Gizachew et al., 2016; Škrbić et al., 2015).

Several studies have reported the occurrence of aflatoxin-M₁ in milk and dairy products. Milk samples from urban centers in Kenya contained aflatoxin-M₁ up to 6,800 ng/L (Kang‘ethe & Lang’a, 2009). In Sudan, 95% of milk was contaminated with aflatoxin-M₁ ranging between 220 and 6,800 ng/L (Elzupir & Elhussein, 2010), whereas 6–527 ng/L of aflatoxin-M₁ was detected in 15% of cow milk samples from Cameroon (Tchané, Moundépa, & Tchouanguep, 2010). The concentration of aflatoxin-M₁ varied between 150 and 170 ng/L in commercial and rural milk in South Africa (Mulunda & Mike, 2014), while 8.0% of milk samples in Ethiopia contained aflatoxin-M₁.
<5 ng/L (Gizachew et al., 2016). In Iran, Feta cheese samples contained aflatoxin-M₁ with concentration ranging from 150 to 2,410 ng/kg (Kamkar, Karim, Aliabadi, & Khaksar, 2008), whereas white cheese was contaminated with 52 to 745 ng/kg of aflatoxin-M₁ (Fallah, Jafari, Fallah, & Rahnama, 2009). In Serbia, Tomašević et al. (2015) identified that 56.3% of raw milk, 32.6% of heat-treated milk, and 37.8% of milk product samples contaminated aflatoxin-M₁ above the EU maximum residue permitted amount.

4 | CONCLUSIONS

This first report on the incidence of aflatoxin contamination in agricultural products from local markets in Burundi and Eastern DRC showed that of the 244 crops, milk, and their processed products sampled, the percentage of aflatoxin positive samples was 100%. In addition, 50.9% of crop, 28.6% of milk and yogurt, and 20.0% of cheese samples had aflatoxin concentrations higher than the regulatory limits set by the EU. The processed samples presented higher aflatoxin contamination when compared to unprocessed samples. Therefore, the presence of aflatoxin in local food products from Burundi and Eastern DRC is a problem in the context of food sufficiency, public health, and economic benefits. Appropriate pre- and postharvest management strategies need to be promoted among actors along the food value chains, especially farmers and processors, to achieve significant reduction in aflatoxin contamination in agricultural commodities. This can increase food availability, accessibility, utilization, and stability, as well as economic sustainability in the two countries. At the subsistence farm and processing levels, application of biocontrol tools, in conjunction with other aflatoxin-management practices such as drying and storage technologies, as well as the proper and effective regulatory standards are required as part of efforts to reduce the risk of aflatoxin contamination. Mitigation measures must, however, be backed up by further insights on the causes of contamination and possible variations in contamination levels across regions as well as crop commodities. Further work, for example, on the microbiology, especially on etiology, on-farm, and postharvest as well as marketing structures need to be studied further. To further strengthen the county’s efforts in abating contamination, risk assessments are proposed in order to establish country regulatory thresholds that the local consumer population can depend on and which can be used to monitor safety across the country. These thresholds can also be used to monitor safety of food commodities across the county’s boarders.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the “ILRI/IITA Crop Livestock Integration Project (PJ-002057)” for giving the opportunity to prepare this article. The authors also acknowledge the support of the project “Aflatoxin contamination prevention and control in grain” which is funded by the Bill & Melinda Gates Foundation (OPP1007117).
Table 6: Number of samples with ≤50 ng/kg or more of aflatoxin-M$_1$ concentration in milk and dairy products marketed in Burundi and Eastern DRC

Category	Burundi ≤50 ng/kg	Burundi >50 ng/kg	Eastern DRC ≤50 ng/kg	Eastern DRC >50 ng/kg	Overall ≤50 ng/kg	Overall >50 ng/kg
Milk	6 (60)a	4 (40)	3 (100)	0	9 (69.2)	4 (30.8)
Yogurt	4 (66.7)	2 (33.3)	2 (100)	0	6 (75)	2 (25)
Cheese	–	–	1 (20)	4 (80)	1 (20)	4 (80)
Total	10 (62.5)	6 (37.5)	6 (60)	4 (40)	16 (61.5)	10 (38.5)

aFigures in parenthesis indicate proportion (%) of samples in a particular category.

CONFLICT OF INTEREST

The authors have no conflict of interests.

ETHICAL STATEMENT

This study does not involve any human or animal testing.

ORCID

Patchimaporn Udomkun http://orcid.org/0000-0002-3777-9252

REFERENCES

Adjovi, Y. C. S., Baillie, S., Gnonlonfin, B. J. G., Tadrist, S., Querin, A., Sanni, A., ... Baillie, J. D. (2014). Analysis of the contrast between natural occurrence of toxigenic Aspergilli of the Flavi section and aflatoxin B1 in cassava. *Food Microbiology*, 38, 151-159. https://doi.org/10.1016/j.fm.2013.08.005

Ahlberg, S. H., Joutsjoki, V., & Korhonen, H. J. (2015). Potential of lactic acid bacteria in aflatoxin risk mitigation. *International Journal of Food Microbiology*, 207, 87-102. https://doi.org/10.1016/j.ijfoodmicro.2015.04.042

AOAC (2006). *Official methods of analysis* (18th ed.). Gaithersburg, MD: Association of Official Analytical Chemists.

Ayalew, A., Fehmann, H., Lepschy, J., Beck, R., & Abate, D. (2006). Natural occurrence of mycotoxins in staple cereals from Ethiopia. *Mycopathologia*, 162(1), 57-63. https://doi.org/10.1007/s11046-006-0027-8

Aziz-Baumgartner, E., Lindblade, K., Gieseke, K., Rogers, HS, Kieszak, S, Njapau, H, ... Aflatoxin Investigative Group. (2005). Case–control study of an acute aflatoxicosis outbreak, Kenya. 2004. *Environmental Health Perspectives*, 113(12), 1779-1783.

Bandypadhyay, R., Kumar, M., & Leslie, J. F. (2007). Relative severity of aflatoxin contamination of cereal crops in West Africa. *Food Additives and Contaminants*, 24(10), 1109-1114. https://doi.org/10.1080/02652030701553251

Bandypadhyay, R., Ortega-Beltran, A., Akande, A., Muteigi, C., Atehkneng, J., Kaptoge, L, ... Cotty, P. J. (2016). Biological control of aflatoxins in Africa: Current status and potential challenges in the face of climate changes. *World Mycotoxin Journal*, 9, 771-789. https://doi.org/10.3920/WMJ2016.2130

Bankole, S. A., Ogunsanwo, B. M., & Eseigbe, D. A. (2005). Aflatoxins in Nigerian dry-roasted groundnuts. *Food Chemistry*, 89, 506-509.

Bankole, S., Schollenberger, M., & Drochner, W. (2006). Mycotoxins in food systems in Sub Saharan Africa: A review. *Mycotoxin Research*, 22, 163-169. https://doi.org/10.1007/BF02959270

Bationo, J. F., Nikiéma, P. A., Kououdouga, K., Ouédraogo, M., Bazié, S. R., Sanou, E., & Barro, N. (2015). Assessment of aflatoxin B1 and ochratoxin A levels in sorghum malts and beer in Ouagadougou. *African Journal of Food Science*, 9(7), 417–420.

Brackett, R. E., & Marth, E. H. (1982). Association of aflatoxin M1 with casein. *European Food Research and Technology*, 174(6), 439–441.

Brudzynski, A., Van Pee, W., & Kornazewski, W. (1977). The occurrence of aflatoxin B1 in peanuts, corn and dried cassava sold at the local market in Kinshasa, Zaire: Its coincidence with high hepatoma morbidity among the population. *Zeszyty Problemowe Postepow Nauk Rolniczych*, 189, 113–115.

Burow, G. B., Nesbitt, T. C., Dunlap, J., & Keller, N. P. (1997). Seed lipoxynegene products modulate Aspergillus mycotoxin biosynthesis. *Molecular Plant-Microbe Interactions Journal*, 10, 380–387. https://doi.org/10.1094/MPMI.1997.10.3.380

Campagnollo, F. B., Ganey, K. C., Khangeghah, A. M., Portela, J. B., Cruz, A. G., Granato, D., ... Sant’Ana, A. S. (2016). The occurrence and effect of unit operations for dairy products processing on the fate of aflatoxin M1: A review. *Food Control*, 68, 310–329. https://doi.org/10.1016/j.foodcont.2016.04.007

CAST (2003). Mycotoxins: Risks in plant, animal and human systems. In J. L. Richard & G. A. Payne (Eds.), *Council for agricultural science and technology task force report no. 139* (pp. 1–191). Ames, IA: CAST.

Chala, A., Taye, W., Ayalew, A., Krksa, R., Sulyok, M., & Logrieco, A. (2014). Multimycotoxin analysis of sorghum (Sorghum bicolor L. Moench) and finger millet (Eleusine coracana L. Garten) from Ethiopia. *Food Control*, 45, 29-35. https://doi.org/10.1016/j.foodcont.2014.04.018

Chan-Hon-Tong, A., Charles, M.-A., Forhan, A., Heude, B., & Sirot, V. (2013). Exposure to food contaminants during pregnancy. *Science of the Total Environment*, 458, 27–35. https://doi.org/10.1016/j.scitotenv.2013.03.100

Daniel, J. H., Lewis, L. W., Redwood, Y. A., Kieszak, S., Breiman, R. F., Flanders, W. D., ... McGeehin, M. A. (2011). Comprehensive assessment of maize aflatoxin levels in Eastern Kenya, 2005-2007. *Environmental Health Perspectives*, 119, 1794–1799. https://doi.org/10.1289/ehp.1003044

De Ruycx, K., De Boever, M., Huybrechts, I., & De Saeger, S. (2015). Dietary mycotoxins, co-exposure, and carcinogenesis in humans: Short review. *Mutation Research, Reviews in Mutation Research*, 766, 32–41. https://doi.org/10.1016/j.mrrev.2015.07.003

Ehrlich, K., & Ciegler, A. (1985). Effect of phytoate on aflatoxin formation by Aspergillus paraciticus on different grains. *Mycopathologia*, 92, 3–6. https://doi.org/10.1007/BF00442651

El-Nezami, H. S., & Gratz, S. (2011). Control of mycotoxin contamination in foods using lactic acid bacteria. *Protective Cultures,*
Antimicrobial Metabolites and Bacteriophage for Food and Beverage Biopreservation: A volume in Woodhead publishing Series in Food Science, technology and Nutrition, p. 449-459.

Elzupir, A. O., & Elhussein, A. M. (2010). Determination of aflatoxin M1 in dairy cattle milk in Khartoum state, Sudan. Food Control, 31, 945-946. https://doi.org/10.1016/j.foodcont.2009.11.013

Essono, G., Ayodele, M., Akoa, A., Foko, J., Flitenborg, O., & Olembo, S. (2009). Aflatoxin-producing Aspergillus spp. and aflatoxin levels in stored cassava chips as affected by processing practices. Food Control, 20, 648–654. https://doi.org/10.1016/j.foodcont.2008.09.018

European Commission (2006). Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Official Journal of the European Union, L 364, 5–24.

European Commission-EC (2006). European Commission (2006). The effect of storage time and stability of aflatoxin M1 in peanut collected from Kinshasa, Democratic Republic of Congo. Food Control, 22, 1760–1764.

Kamkar, A., Karim, G., Alilabadi, F. S., & Khakser, R. (2008). Fate of aflatoxin M1 in Iranian white cheese processing. Food and Chemical Toxicology, 46, 2236–2238. https://doi.org/10.1016/j.fct.2008.02.028

Kang’ethe, E. K., & Lang’a, K. A. (2009). Aflatoxin B1 and M1 contamination of animal feeds and milk from urban centers in Kenya. African Health Science, 9(4), 218–226.

Klich, M. A. (2007). Aspergillus flavus: The major producer of aflatoxin. Molecular Plant Pathology, 8, 713–722. https://doi.org/10.1111/j.1364-3703.2007.00436.x

Klingelhofer, D., Zhu, Y., Braun, M., Bendels, M. H. K., Brüggmann, D., & Gronneberg, D. A. (2018). Aflatoxin – Publication analysis of a global health threat. Food Control, 89, 280–290. https://doi.org/10.1016/j.foodcont.2018.02.017

Lewis, L., Onsongo, M., Njapau, H., Schurz-Rogers, H., Luber, G., Kieszak, S., ... the Kenya Aflatoxicosis Investigation Group (2005). Aflatoxin contamination of commercial maize products during an outbreak of acute aflatoxicosis in eastern and central Kenya. Environmental Health Perspectives, 113, 1763–1767. https://doi.org/10.1289/ehp.7998

Lutfullah, G., & Hussain, A. (2012). Studies on contamination level of aflatoxins in some cereals and beans of Pakistan. Food Control, 23(1), 32–36. https://doi.org/10.1016/j.foodcont.2011.06.004

Matumba, L., Monjerezi, M., Khonga, E. B., & Lakudzala, D. D. (2011). Aflatoxins in sorghum, sorghum malt and traditional opaque beer in southern Malawi. Food Control, 22(2), 266–268. https://doi.org/10.1016/j.foodcont.2010.07.008

Matumba, L., Van Poucke, C., Monjerezi, M., Ediaye, E. N., & De Saeger, M. (2015). Concentrating aflatoxins on the domestic market through groundnut export: A focus on Malawian groundnut value and supply chain. Food Control, 51, 236–239. https://doi.org/10.1016/j.foodcont.2014.11.035

Mellon, J. E., & Cotty, P. J. (2002). No effect of soybean lipoygenase on aflatoxin production in Aspergillus flavus-inoculated seeds. Journal of Food Protection, 65(12), 1984–1987. https://doi.org/10.3118/jfp.2011.06.004

Montaseri, H., Arjmandtalab, S., Dehghanzadeh, G., Karami, S., Razmjoo, H., ... the Kenya Aflatoxicosis Investigation Group (2005). Aflatoxin contamination of commercial maize products during an outbreak of acute aflatoxicosis in eastern and central Kenya. Environmental Health Perspectives, 113, 1763–1767. https://doi.org/10.1289/ehp.7998

Mulunda, M., & Mike, D. (2014). Occurrence of aflatoxin M1 from rural subsistence and commercial farms from selected areas of South Africa. Food Control, 39, 92–96. https://doi.org/10.1016/j.foodcont.2013.11.011

Mutegi, C. K., Ngugi, H. K., Hendriks, S. L., & Jones, R. B. (2009). Prevalence and factors associated with aflatoxin contamination of peanuts from Western Kenya. International Journal of Food Microbiology, 130, 27–34. https://doi.org/10.1016/j.ijfoodmicro.2008.12.030

Mwalwayo, D. S., & Thole, B. (2016). Prevalence of aflatoxin and fumonisins (B1 + B2) in maize consumed in rural Malawi. Toxicology Reports, 3, 173–179. https://doi.org/10.1016/j.toxrep.2016.01.010
Obura, A. (2013). Aflatoxicosis: Evidence from Kenya. 2020 Focus Brief, 20(2). Washington, DC: International Food Policy Research Institute.

Pagnussatt, F. A., Bretana, C. C., Silvia, L. R. M., Garda-Buffon, J., & Badiale-Furlong, E. (2013). Activity of rice bran proteic extracts against Fusarium graminearum. African Journal of Agricultural Research, 8, 6283–6290.

Paterson, R. R. M., & Lima, N. (2010). How will climate change affect mycotoxins in food? Food Research International, 43(7), 1902-1914. https://doi.org/10.1016/j.foodres.2009.07.010

Paudyal, N., Anihouvi, V., Hounhouigan, J., Matsheka, M. I., Sekwati-Monang, B., Amoa-Awua, W., ... Fang, W. (2017). Prevalence of foodborne pathogens in food from selected African countries – A meta-analysis. International Journal of Food Microbiology, 249, 35–43. https://doi.org/10.1016/j.ijfoodmicro.2017.03.002

Peltonen, K., El-Nezami, H., Haskard, C., Ahokas, J., & Salminen, S. (2001). Aflatoxin B1 binding by dairy strains of lactic acid bacteria and bifidobacteria. Journal of Dairy Science, 84(10), 2152-2156. https://doi.org/10.3168/jds.S0022-0302(01)74660-7

Perrone, G., Haidukowski, M., Stea, G., Epifani, F., Bandypadhay, R., Leslie, J. F., & Logrieco, A. (2014). Population structure and Aflatoxin production by Aspergillus Sect. Flavi from maize in Nigeria and Ghana. Food Microbiology, 41, 52–59. https://doi.org/10.1016/j. fm.2013.12.005

Probst, C., Njapau, H., & Cotty, P. J. (2007). Outbreak of an acute aflatoxicosis in Kenya in 2004: Identification of the causal agent. Applied and Environmental Microbiology, 73, 2762–2764. https://doi.org/10.1128/AEM.02370-06

Schmidt-Heydt, M., Abdel-Hadi, A., Magan, N., & Geisen, R. (2009). Complex regulation of the aflatoxin biosynthesis gene cluster of A. flavus in relation to various combinations of water activity and temperature. International Journal of Food Microbiology, 135, 231–237. https://doi.org/10.1016/j.ijfoodmicro.2009.07.026

Sherif, S. O., Salama, E. E., & Abdel-Wahhab, M. A. (2009). Mycotoxins and child health: The need for health risk assessment. International Journal of Hygiene and Environmental Health, 212, 347-368. https://doi.org/10.1016/j.ijheh.2008.08.002

Shetty, P. H., Hald, B., & Jespersen, L. (2007). Surface binding of aflatoxin B1 by Saccharomyces cerevisiae strains with potential decontaminating abilities in indigenous fermented foods. International Journal of Food Microbiology, 113(1), 41–46. https://doi.org/10.1016/j.ijfoodmicro.2006.07.013

Škrbić, B., Antić, I., & Živančev, J. (2015). Presence of aflatoxin M1 in white and hard cheese samples from Serbia. Food Control, 50, 111–117.

Sulyok, M., Beed, F., Boni, S., Abass, A., Mukunzi, A., & Krška, R. (2015). Quantitation of multiple mycotoxins and cyanogenic glucosides in cassava samples from Tanzania and Rwanda by LC-MS/MS-based multi-toxin method. Food Additives and Contaminants: Part A, 32(4), 488–502. https://doi.org/10.1080/19440049.2014.975752

Tchana, A. N., Moundipa, P. F., & Tchouanguep, F. M. (2010). Aflatoxin contamination in food and body fluids in relation to malnutrition and cancer status in Cameroon. International Journal of Environmental Research and Public Health, 7, 178–188. https://doi.org/10.3390/ijerph7010178

Telles, A. C., Kupsiki, L., & Furlong, E. B. (2017). Phenolic compound in beans as protection against mycotoxins. Food Chemistry, 214, 293–299. https://doi.org/10.1016/j.foodchem.2016.07.079

Tomašević, I., Petrović, J., Jovetić, M., Raičević, S., Milojević, M., & Miočinović, J. (2015). Two year survey on the occurrence and seasonal variation of aflatoxin M1 in milk products in Serbia. Food Control, 56, 64–70.

Walayar, F., Ntare, B. R., Diallo, A. T., Kodio, O., & Diarra, B. (2007). On-farm management of aflatoxin contamination of groundnut in West Africa. A Synthesis Report. International Crops Research Institute for the Semi-Arid Tropics. 24 pp.

Walayar, F., Umeh, V. C., Traore, A., Osiru, M., Ntare, B. R., Diarra, B., ... Sudini, H. (2015). Prevalence and distribution of aflatoxin contamination in groundnut (Arachis hypogaea L.) in Mali, West Africa. Crop Protection, 70, 1–7.

Wareing, P. W., Westby, A., Gibbs, J. A., Allotey, I. T., & Halm, M. (2001). Consumer preferences and fungal and mycotoxin contamination of dried cassava products from Ghana. International Journal of Food Science and Technology, 36, 1–10. https://doi.org/10.1046/j.1365-2621.2001.00419.x

Williams, J. H., Phillips, T. D., Jolly, P. E., Stiles, J. K., Jolly, C. M., & Aggarwal, D. (2004). Human aflatoxicosis in developing countries: A review of toxicology, exposure, potential health consequences, and interventions. American Journal of Clinical Nutrition, 80(5), 1106–1122. https://doi.org/10.1093/ajcn/80.5.1106

Wu, F. (2006). Mycotoxin reduction in Bt corn: Potential economic, health, and regulatory impacts. ISB news report, September 2006.

Wu, F., & Khlangwiset, P. (2010). Health economic impacts and cost-effectiveness of aflatoxin-reduction strategies in Africa: Case studies in biocontrol and postharvest interventions. Food Additives and Contaminants: Part A., 27(4), 496–509. https://doi.org/10.1080/19440040903437865

How to cite this article: Udomkun P, Mutegi C, Wossen T, et al. Occurrence of aflatoxin in agricultural produce from local markets in Burundi and Eastern Democratic Republic of Congo. Food Sci Nutr. 2018;6:2227-2238. https://doi.org/10.1002/fsn3.787