A Specific, Glycomimetic Langerin Ligand for Human Langerhans Cell Targeting

Eike-Christian Wamhoff,† Jessica Schulze,‡,♯ Lydia Bellmann,§,∥ Juliane Rademacher,† Martin Hermann,¶ Barbara Del Frari,❼ Rob van Dalen,○ Nina M. van Sorge,† Oliver Seitz,∥ Patrizia Stoitzner,§ and Christoph Rademacher†,

†Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
‡Department of Biotechnology, Chemistry and Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
♯Department of Dermatology, Venereology and Allergology, ‡Department of Anesthesiology and Intensive Care Medicine, and §Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria
∥Department of Chemistry, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
○Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, Netherlands

ABSTRACT: Langerhans cells are a subset of dendritic cells residing in the epidermis of the human skin. As such, they are key mediators of immune regulation and have emerged as prime targets for novel transcutaneous cancer vaccines. Importantly, the induction of protective T cell immunity by these vaccines requires the efficient and specific delivery of both tumor-associated antigens and adjuvants. Langerhans cells uniquely express Langerin (CD207), an endocytic C-type lectin receptor. Here, we report the discovery of a specific, glycomimetic Langerin ligand employing a heparin-inspired design strategy and structural characterization by NMR spectroscopy and molecular docking. The conjugation of this glycomimetic to liposomes enabled the specific and efficient targeting of Langerhans cells in the human skin. We further demonstrate the doxorubicin-mediated killing of a Langerin+ monocyte cell line, highlighting its therapeutic and diagnostic potential in Langerhans cell histiocytosis, caused by the abnormal proliferation of Langerin+ myeloid progenitor cells. Overall, our delivery platform provides superior versatility over antibody-based approaches and novel modalities to overcome current limitations of dendritic cell-targeted immuno- and chemotherapy.

INTRODUCTION

The human skin is an attractive vaccination site due to the high density of immune cells compared to other organs such as the muscle.1 The highly efficacious and cost-effective small pox vaccine was first used via this administration route and has proven its feasibility.2 The skin contains several subsets of dendritic cells (DCs), immune cells that are specialized in the internalization of pathogens and the presentation of antigens to induce T cell responses.3 Langerhans cells (LCs) constitute a subset of DCs residing in the epidermis of the stratified as well as the mucosal skin. Following their activation, LCs migrate to the draining lymph nodes to elicit systemic immune responses.4 Because of their localization in the epidermis and their ability to cross-present exogenous antigens to cytotoxic T cells, LCs have emerged as promising targets for transcutaneous vaccination strategies.5−7 Various approaches such as microneedles or thermal ablation have been explored to overcome the stratum corneum and thereby facilitate antigen delivery to the skin.1

Sipuleucel-T, an adoptive cell therapy for prostate cancer, has provided proof of concept for the induction of protective cytotoxic T cell responses against tumor-associated antigens (TAAs) by myeloid immune cells.8 Moreover, the adoptive transfer of monocyte-derived DCs into melanoma patients has been demonstrated to elicit TAA-specific T cell immunity.9 As ex vivo strategies remain laborious and expensive, the focus has shifted toward the delivery of antigens in situ.10 Intriguingly, DCs express several endocytic receptors including chemokine receptors, scavenger receptors, and C-type lectin receptors (CLR)s that promote the internalization and cross-presentation of antigens.11−13 Pioneered by Steinman et al., the use of antibody–antigen conjugates targeting CLR,s such as DEC-205, DC-SIGN, and DNGR-1 represents an established strategy to deliver antigens to DCs and has been translated into clinical trials.14−16 These investigations helped identify several parameters that shape cytotoxic T cell immunity and
guide the development of next-generation cancer vaccines. First, the activation of DCs by coadministration of adjuvants such as Toll-like receptor (TLR) or RIG-I-like receptor agonists is required to avoid tolerance induction.18 Furthermore, the choice of delivery platform and targeting ligand influence the efficiency of antigen internalization, processing, and cross-presentation by DCs.19–22 Finally, the specific targeting of individual DC subsets is essential as off-target delivery of antigens and adjuvants may result in adverse effects or compromised cytotoxic T cell immunity.15,24 Consequently, DC subset-specific receptors such as the CLRs Langerin and DNGR-1 as well as the chemokine receptor XCR1 have become a focal point for the development of novel immunotherapies.13,17 In healthy humans, Langerin (CD207) is exclusively expressed on LCs and has been shown to promote the endocytosis and cross-presentation of antigens to prime cytotoxic T cells.4,22 The CLR thus represents an attractive target receptor for transcutaneous vaccination strategies.25 Furthermore, Langerin-mediated targeting is potentially relevant in Langerhans cell histiocytosis (LCH). LCH, one of the most common pediatric cancers, is caused by the abnormal proliferation of Langerin+ myeloid progenitor cells and manifests as lesions of the skin, bone marrow, and lungs as well as other organs.26 Clinical manifestation are highly variable, and despite advances in elucidating the mechanism of disease progression and chemotherapy, survival rates remain below 50%.27 As lesions consist of up to 70% LCH cells of varying phenotype, targeted delivery holds both therapeutic and diagnostic potential by reducing adverse effects and facilitating the characterization of the disease in individual patients.28

In this study, we pursued the development of targeted nanoparticles as an antigen or chemotherapeutics delivery platform for LCs as an alternative to antibody-based approaches. Liposomes represent versatile nanoparticles that have been approved for the delivery of chemotherapeutics in Kaposi\textquotesingle s sarcoma and allow for the coformulation of adjuvants.29,30 They can be targeted to glycan-binding proteins (GBPs) including CLRs or sialic acid-binding immunoglobulin-like lectins (Siglecs) expressed on immune cells using glycans or glycomimetic ligands.31–33 Glycan recognition by Langerin is Ca2+- as well as pH-dependent and consequently abrogated in the early endosome, thereby influencing lysosomal antigen degradation.24 This release mechanism simultaneously increases the internalization capacity of LCs as unbound Langerin has been shown to recycle to the plasma membrane.35 Hence, the use of glycans or glycomimetics provides advantages over antibody-based approaches which potentially suffer from inefficient ligand release.20,21 As glycans are typically recognized by several CLRs or other GBPs, they do not provide the specificity required to target individual DC subsets.36 Additionally, glycan–Langerin interactions display low affinities insufficient

Figure 1. Heparin-inspired design of glycomimetic targeting ligands for Langerin. (a) The heparin-derived monosaccharide GlcNS was identified as a favorable scaffold for glycomimetic ligand design. The design of GlcNS analogues lead to the discovery of glycomimetic targeting ligand 15. 15 bears an ethylamino linker in β-orientation of C1 for conjugation to the delivery platform. 20 served as a Man-based reference molecule throughout this study. (b) On the basis of the binding mode of GlcNAc (PDB code: 4N32), potentially favorable cation–π or π−π interactions between small substituents and the Langerin binding site were explored.40 The receptor surface is colored according to its lipophilicity (lipophilic: red, hydrophilic: blue). (c) 19F F\textsubscript{2}-filtered NMR experiments revealed a 42-fold affinity increase for model ligand 16 (K\textsubscript{I} = 0.24 ± 0.03 mM) over Man-based reference molecule 21 (K\textsubscript{I} = 10 ± 1 mM). Additionally, 16 displayed an encouraging specificity against DC-SIGN (K\textsubscript{I,DC-SIGN} = 15 ± 3 mM). (d) The affinity of 16 for Langerin was validated in15N HSQC NMR experiments analyzing resonances in the fast (K\textsubscript{D,fast} = 0.23 ± 0.07 mM) and the slow (K\textsubscript{D,slow} = 0.3 ± 0.1 mM) exchange regime.
to promote the endocytosis of liposomes.37–40 This renders the design of potent and specific glycomimetic ligands essential for the development of an antigen delivery platform for LCs. The carbohydrate binding sites of CLRs are hydrophilic and solvent-exposed which has impeded the discovery of drug-like molecule ligands.31,42 While mono- and oligosaccharides represent attractive scaffolds, the synthesis of carbohydrates and structural glycomimetics is generally considered onerous.43,44 Nevertheless, individual reports have demonstrated the feasibility of ligand design for these challenging target receptors and other GBPs.45 Many of these reports highlight the utility of concepts from rational and fragment-based drug discovery for glycomimetic ligand design.

Here, we present the discovery of the first micromolar glycomimetic ligand for Langerin. We rationally designed heparin-derived monosaccharide analogues and analyzed their binding via NMR spectroscopy and molecular docking. The targeting ligand facilitated the endocytosis of liposomes by LCs and provided remarkable specificity over other GBPs in a physiologically relevant ex vivo skin model. Our findings demonstrate for the first time the CLR-mediated targeting of nanoparticles to individual immune cell subsets using glycomimetics. The liposomal delivery platform was further applied to enable the doxorubicin-mediated killing of a Langerin+ monocyte cell line, highlighting its therapeutic and diagnostic potential in LCH. Beyond the envisioned applications in cancer immunotherapy and chemotherapy, the targeted liposomes also hold immediate value for investigations into the mechanisms of LC-mediated cross priming or tolerance induction as well as into the role of LCs in skin homeostasis.50

RESULTS

Heparin-Derived Monosaccharides Represent Favorable Scaffolds for Glycomimetic Ligand Design

Aside from its function as a pathogen recognition receptor, Langerin interacts with self-antigens such as glycosaminoglycans including heparin.59,51–53 These linear polysaccharides are composed of disaccharide repeating units consisting of galactose or uronic acids and differentially sulfated N-acetyl glucosamine (GlcNAc). Promoted by the 10-fold affinity increase ($K_D = 0.49 \pm 0.05$ mM) over mannose (Man) disaccharides ($K_D = 1.4 \pm 0.2$ mM) recently reported for a heparin-derived trisaccharide, we employed ligand-observed 19F R\textsubscript{2} filtered NMR experiments to determine K_I values for a set of differentially sulfated GlcNAc derivatives (Figure 1a).38,39,54 Interestingly, the affinities of glucosamine-2-sulfate (GlcNS) ($K_I = 1.4 \pm 0.2$ mM), N-acetyl glucosamine-6-sulfate (GlcNAc-6-OS) ($K_I = 0.49 \pm 0.05$ mM), and glucosamine-2-sulfate-6-sulfate (GlcNS-6-OS) ($K_I = 0.28 \pm 0.06$ mM) were comparable or higher than those observed for heparin-derived oligosaccharides and other monosaccharides including Glc ($K_I = 21 \pm 4$ mM), GlcNAc ($K_I = 4.1 \pm 0.7$ mM), and Man ($K_I = 4.5 \pm 0.5$ mM) (Figure S1, Table S1).52 Overall, our observations are in agreement with recently published results from surface plasmon resonance-based competition experiments.55

The affinity increase for GlcNS-6-OS, the most potent monosaccharide identified, is based on the formation of a salt bridge with K313 and a hydrogen bond with N307 by the sulfate group in C6, as previously shown by X-ray crystallography.55 GlcNS-6-OS displayed an altered orientation of the Glc scaffold, characterized by an approximately 180° rotation, compared to the Langerin-GlcNAc complex, and no interactions were observed for the sulfate group in C2 (Figure 1b).40 As this static model is contrasted by the additive structure–activity relationship (SAR) for the sulfation in C2 and C6, we propose the existence of alternative binding modes for sulfated GlcNAc derivatives, similar to the characteristics of Man recognition.56 In addition, an H\textsubscript{2}O-mediated hydrogen bond formed between the amide group in C2 and K299 is observed in the X-ray structure for GlcNAc and results in an affinity increase over Glc.40

Importantly, either of these interactions might be leveraged via the biososteric substitution of the sulfate groups in C2 or C6 with a sulfonamide linker, rendering sulfated GlcNAc derivatives favorable scaffolds for the design of glycomimetic Langerin ligands. In particular, the synthesis of GlcNS analogues represents an intriguing fragment growing approach to explore the carbohydrate binding site for favorable interactions (Figure 1a). We prioritized the introduction of substituents in C2 over C6 based on the synthetic feasibility. This design choices for our first-generation glycomimetics were further guided by the essential role of equatorial hydroxyl groups in C3 and C4 in Ca2+-dependent monosaccharide recognition and C1 being our preferred position for liposome conjugation.

Small Aromatic Sulfonamide Substituents Render Glycomimetics Potent Targeting Ligands for Langerin and Provide Specificity against DC-SIGN

Assuming the conservation of the Glc scaffold orientation observed for GlcNAc and based on the visual inspection of the carbohydrate binding site, small aromatic substituents in C2 were hypothesized to increase the affinity by the formation of cation–π interactions with K299 and K313 or π–π and H–π interactions with F315 and P310, respectively (Figure 1b). Accordingly, a panel of GlcNS analogues 1–5 bearing differentially substituted phenyl rings was prepared, followed by the determination of K_I values (Figures 1a and S2, Scheme S1). The phenyl ring was chosen as an aromatic substituent
with minimal steric demands, and methyl and chloride groups in para or meta were explored. Our selection aimed to test for steric tolerance in these positions while also evaluating the impact of electron-donating versus -withdrawing groups. Increased affinities over GlcNAc were observed for all analogues, with a 13-fold affinity increase for 2 ($K_I = 0.32 \pm 0.05 \text{ mM}$), the most potent panel member (Figure S3, Table 1 and S2). Compared to titrations with 21, Y251, I285, and T314 displayed a relative CSP increase, while a decrease was observed for K313 (Figure S6). Overall, the majority of residues displaying increased CSPs can be associated with N307 and F315, which could not be assigned34 (d) STD NMR experiments served to further validate the interaction formed between 16 and Langerin. STD NMR spectra were recorded at saturation times t_{sat} of 0.4 s and are magnified 8-fold. Epitopes determined from build-up curves suggest strong interactions formed by the phenyl substituent (Figure S11). By contrast, low relative STD's values were observed for the acetylated ethylamino linker, consistent with a solvent-exposed orientation. (e) 16 was docked into the carbohydrate binding site to rationalize the observations from 15N HSQC and STD NMR experiments. The selected docking pose predicted the formation of $\pi-\pi$ interactions between the phenyl ring and F315 as well as the formation of a hydrogen bond between the sulfonamide group and N307. The linker displays high solvent exposure. The receptor surface is colored according to its lipophilicity (lipophilic: red, hydrophilic: blue).
ethylamino linker in β-orientation of C1 of the Glc scaffold to yield targeting ligand 15 (Figures 1a and S2, Scheme S2).

After acetylation of the amino group, we obtained model ligand 16 (Figure 1a and S2, Scheme S2). The K_I value determination for 16 ($K_I = 0.24 \pm 0.03 \text{ mM}$) revealed a 42-fold affinity increase over the Man-based reference molecule 21 ($K_I = 1.0 \pm 0.1 \text{ mM}$) (Figure 1a, 1c, S2 and S4, Table 1, Schemes S2 and S3). To validate these affinities and to expand our insight into the recognition process, orthogonal protein-observed 15N HSQC NMR experiments were performed (Figures 1d, 2a and S5, Table 1). Notably, a considerable fraction of the resonances displaying chemical shift perturbations (CSPs) upon the addition of 16 also displayed line broadening $\Delta \nu_{0.5}$ of more than 10 Hz, indicative of intermediate exchange phenomena. Accordingly, these resonances were not considered for K_D determination. Simultaneously, slow exchange phenomena were observed for a set of resonances corresponding to Y251, I253, N297, and K299 (Figure 2a). Analysis of both fast- and slow-exchanging peaks revealed affinities comparable to the K_I values obtained for 16 ($K_{D,fast} = 0.23 \pm 0.07 \text{ mM}$, $K_{D,slow} = 0.3 \pm 0.1 \text{ mM}$) as well as 21 ($K_D = 12 \pm 1 \text{ mM}$) (Figures 1d and S5, Table 1). Likewise,
the affinity of 2 was validated using 15N HSQC NMR (K_Dfast = 0.46 ± 0.04 mM, $K_{Tyndall}$ = 0.5 ± 0.2 mM) (Figure S6, Table 1).

Next, we explored the specificity of targeting ligand 16 against DC-SIGN as such off-target affinity would imply a reduced efficiency of the delivery approach and the potential induction of adverse effects. For this purpose, we transferred the 19F R$_2$-filtered NMR reporter displacement assay to DC-SIGN (Figure S7, Table S3). Strikingly, 16 ($K_{DC-SIGN}$ = 15 ± 3 mM) displayed a considerably decreased K_I for DC-SIGN compared to Langerin corresponding to 63-fold specificity (Figure 1c, Table 1). At the same time, 21 displayed 3.7-fold specificity for DC-SIGN over Langerin ($K_{LDC-SIGN}$ = 2.7 ± 0.3 mM). A comparison with the affinities determined for 2 ($K_{LDC-SIGN}$ = 17 ± 1 mM) and Man ($K_{LDC-SIGN}$ = 3.0 ± 0.3 mM) revealed that the differential recognition of α- and β-glycosides by these CLRs contributes to specificity (Figure S8, Table 1).

Formation of π–π Interactions and Hydrogen Bonds by Aromatic Sulfonylamine Substituents Mediates an Affinity Increase for Langerin. To investigate the binding mode of model ligand 16, 15N HSQC and STD NMR experiments were combined with molecular docking studies (Figure 2a–e). Here, the orientation of the linker was of particular interest to evaluate the compatibility of the binding mode with the presentation of targeting ligand 15 on liposomes.

Titration of 16 induced CSPs for E285 and K299 provided further evidence for a canonical Ca$^{2+}$-dependent binding mode of the Glc scaffold of the glycomimetic (Figure 2b,c). These protein-observed NMR experiments additionally revealed strong CSPs for residues in proximity of F315 and N307. Notably, both residues could not be assigned, likely due to their association with the flexible long loop.34 This effect is accompanied by a decreased CSP for K313 compared to titrations with Man analogue 21 (Figures S5 and S9). Both observations are conserved in titrations with 2 and indicate an orientation of the phenyl ring toward F315 or K299 rather than K313 or P310 (Figures S6 and S9). Interestingly, additional CSPs were induced for residues remote from the carbohydrate binding, suggesting the modulation of an allosteric network involved in the regulation of Ca$^{2+}$ recognition by Langerin (Note S1).34

To complement the protein-observed NMR experiments and to investigate the orientation of the acetylated ethylamino linker, STD NMR epitope mapping with 16 and 21 was conducted. The binding epitope of 16 was dominated by uniformly high STD effects for the phenyl ring and thus supports a model in which favorable secondary interactions are formed between this substituent and the Langerin surface (Figures 2d, S10 and S11). The acetylated ethylamino linker did, by contrast, display uniformly low STD effects indicating a solvent-exposed orientation and validating the developed conjugation strategy for GlcNS analogues. Similarly, the ethylamino linker of 21 received decreased STD effects compared to the Man scaffold (Figures S12 and S13).

Finally, molecular docking was performed utilizing the X-ray structure of the Langerin complex with GlcNAc (Figures 2e and S14).40 Alternative conformations for K313 previously observed via X-ray crystallography were explicitly accounted for.34 To address the challenging prediction of Ca$^{2+}$-dependent glycan–protein interactions, we employed a pharmacophore model constraining the orientation of the Glc scaffold during docking pose refinement and filtering.46 Generated poses were evaluated in the context of the NMR experiments, and representative poses were selected to visualize the formation of potential secondary interactions. Indeed, orienting the phenyl ring toward F315 resulted in the formation of an edge-to-face π–π interaction. This orientation also coincided with the formation of a weak hydrogen bond between the sulfonamide linker and N307. Both interactions explain the pronounced CSP values observed for residues that are associated with F315 and N307 including I250, Y251, N297, and K299. Furthermore, the phenyl ring received high STD effects indicating the formation of secondary interaction and high proximity to the Langerin surface. Conversely, the acetylated ethylamino linker displayed high solvent exposure and no conserved secondary interactions for the majority of docking poses. This observation was in accordance with the low STD effects and thus validated the developed conjugation strategy for GlcNS analogues. Overall, we propose a binding mode for 16 that displays a conserved orientation of the Glc scaffold, consistent with both STD and 15N HSQC NMR experiments. The affinity increase can be rationalized by the formation of π–π interactions between the phenyl substituent and F315 as well as a hydrogen bond between the sulfonamide linker and N297.

Targeted Liposomes Specifically Bind to Langerin$^+$ Cells in Vitro. Next, monosaccharide analogues 15 and 20 were utilized to synthesize glycolipids 22 and 23, respectively (Figure 3a, Scheme S4). Their affinity for Langerin was evaluated in a plate-based enzyme-linked lectin assay (ELLA) (Figure S15).33 While a dose-dependent interaction could be demonstrated for 22, no interaction was detected for the immobilization of 23. This validates the determined affinity increase of model ligand 16 over the Man-based reference molecule 21. Encouraged by these findings, we prepared targeted liposomes labeled with Alexa Fluor (AF) 647 with a diameter d of 160 ± 60 nm that were stable over several months when stored at 4 °C in PBS (Figures 3a and S15). 1H NMR experiments were employed to probe the accessibility of targeting ligand 15 on the surface of the liposomes. Interestingly, two states were observed for the resonances corresponding to H1′ and H2′ of the phenyl ring (Figure S15). Both states displayed line widths $\nu_{0.5}$ smaller than 30 Hz, suggesting residual flexibility due to the presentation of the targeting ligand on an extended polyethylene glycol linker. The alternative state potentially corresponds to targeting ligands oriented toward the lumen of the liposomes. In summary, 15 is likely presented favorably on the surface of the liposomes to enable interactions with Langerin, further validating the developed conjugation strategy.

The binding of the targeted liposomes to Langerin$^+$ Raji model cells was evaluated via flow cytometry (Figure S16). Indeed, initial titration experiments revealed dose- and Langerin-dependent binding of liposomes 22, as well as negligible cytotoxicity (Figures 3b, S16 and S17). The avidity of the interaction was furthermore dependent on the fraction of glycolipid 22 incorporated into the liposomal formulation, with negligible unspecific interactions observed for non-targeted liposomes (Figure 3c). As expected, binding of the targeted liposomes could be abrogated via the addition of EDTA or the Man-based polysaccharide mannan to inhibit Ca$^{2+}$-dependent glycan recognition (Figure 3d). Analogously, liposomes 23, bearing Man on their surface bound to DC-SIGN$^+$ Raji cells (Figure 3e). Strikingly, binding of these
Liposomes was not detected for Langerin+ or Dectin-1+ cells, suggesting an avidity threshold for liposomal targeted delivery. These observations are consistent with the 3.7-fold specificity of Man-based reference molecule for DC-SIGN over Langerin. Furthermore, DC-SIGN has been shown to form nanoclusters that specifically promote the binding and uptake of viruses and nanoparticles at the 100 nm scale. Most importantly, Langerin-targeted liposomes specifically bound to Langerin+ cells and neither to DC-SIGN nor Dectin-1 expressing cells (Figure 3f). The intracellular trafficking of liposomes 22 was followed in Langerin+ COS-7 cells. Upon internalization, the liposomes colocalized with the early endosomal markers EEA1 and Rab5 within 2 min lasting up to at least 20 min (Figure 3g). At this later time point, a subset of liposomes was trafficked into the late endosomal compartment as demonstrated by costaining with Rab9 as a marker.

Langerhans Cells of the Human Epidermis Efficiently Internalize Targeted Liposomes. To explore the binding and subsequent internalization of the delivery platform by primary cells, we prepared epidermal cell suspensions from skin biopsies (Figure 4a).60 The cells were incubated with targeted and nontargeted liposomes for 1 h at 37 °C and analyzed by flow cytometry. Upon incubation with liposomes 22, more than 95% of gated HLA-DR-CD45-CD1a high LCs were targeted by liposomes 22, investigated ex vivo using flow cytometry. To this end, epidermal cell suspensions were prepared as previously described and incubated at 37 °C. The binding and endocytosis of liposomes 22 by human LCs was detected via the fluorescence signal of AF 647. Selectivity for LCs over CD45+ keratinocytes and HLA-DR-CD45-CD1a+ T cells was reproducibly demonstrated in four independent experiments and quantified via the fraction of AF 647+ cells. The gating strategy is shown for one representative experiment. (d) The kinetics of endocytosis by LCs was analyzed at different temperatures in three independent experiments. Simultaneous incubation with liposomes 22 and EDTA resulted in complete inhibition of endocytosis. By contrast, the addition of EDTA 20 min after incubation at 37 °C did not alter the fraction of AF 647+ LCs, indicating efficient endocytosis. As expected, endocytosis was abrogated at 4 °C. The results from one representative experiment are shown. (e) LCs in epidermal cell suspensions were identified by addition of a fluorescently labeled anti-CD1a antibody, and internalization of liposomes 22 was visualized by confocal microscopy at 37 °C. The scale bars indicate 4 μm. (f) The cytotoxicity of liposomes 22 for LCs was monitored in four independent experiments. No significant increase in active caspase 3 levels due to incubation with liposomes was observed after 1 or 48 h. (g) Furthermore, the incubation with liposomes 22 for 1 and 48 h in four independent experiments did not significantly increase the expression levels of CD80 or CD83, indicating the absence of liposome-mediated LC activation ex vivo.

Figure 4. Ex vivo targeting of human LCs in epidermal cell suspensions. (a) LC targeting by liposomes 22 was investigated ex vivo using flow cytometry. To this end, epidermal cell suspensions were prepared as previously described and incubated at 37 °C. (b and c) LCs were identified as viable HLA-DR-CD45-CD1a high cells. The binding and endocytosis of liposomes 22 by human LCs was detected via the fluorescence signal of AF 647. Selectivity for LCs over CD45+ keratinocytes and HLA-DR-CD45-CD1a+ T cells was reproducibly demonstrated in four independent experiments and quantified via the fraction of AF 647+ cells. The gating strategy is shown for one representative experiment. (d) The kinetics of endocytosis by LCs was analyzed at different temperatures in three independent experiments. Simultaneous incubation with liposomes 22 and EDTA resulted in complete inhibition of endocytosis. By contrast, the addition of EDTA 20 min after incubation at 37 °C did not alter the fraction of AF 647+ LCs, indicating efficient endocytosis. As expected, endocytosis was abrogated at 4 °C. The results from one representative experiment are shown. (e) LCs in epidermal cell suspensions were identified by addition of a fluorescently labeled anti-CD1a antibody, and internalization of liposomes 22 was visualized by confocal microscopy at 37 °C. The scale bars indicate 4 μm. (f) The cytotoxicity of liposomes 22 for LCs was monitored in four independent experiments. No significant increase in active caspase 3 levels due to incubation with liposomes was observed after 1 or 48 h. (g) Furthermore, the incubation with liposomes 22 for 1 and 48 h in four independent experiments did not significantly increase the expression levels of CD80 or CD83, indicating the absence of liposome-mediated LC activation ex vivo.
were found to display AF 647+ fluorescence (Figure 4b). As for the Raji cells, binding was dependent on the targeting ligand and could be abrogated by simultaneous incubation with EDTA. The interaction was highly specific in the context of the human epidermis as neither keratinocytes nor T cells were targeted (Figure 4c).

Next, the kinetics of endocytosis by LCs were evaluated by adding EDTA at different times after the incubation with the delivery platform (Figure 4d). From these experiments, it can be inferred that more than 95% of gated LCs had internalized targeted liposomes after 20 min. The continuous increase in AF 647+ fluorescence was monitored for up to 60 min, further highlighting the efficient endocytosis by LCs that was expectedly abrogated at 4 °C. The internalization of liposomes was additionally demonstrated via confocal microscopy where only negligible colocalization with CD1a at the plasma membrane was observed (Figure 4e). Similar to the Langerin+ Raji cells, the liposomal formulations displayed no cytotoxicity with LCs as indicated by the analysis of active caspase3 levels (Figures 4f and S18). Finally, we evaluated whether liposomes 22 would activate LCs ex vivo (Figures 4g and S18). The expression levels of neither CD80 nor CD83 were significantly increased after incubation with nontargeted or targeted liposomes for 1 h. As reported previously, LCs in epidermal cell suspension matured within 48 h, serving as an internal positive control.61 This process was not affected by liposomes 22. Additionally, we evaluated the induction of TNF-α secretion and did not observe liposome 22-dependent LC activation after 16 h in this experiment (Figure S18).

In conclusion, the targeted liposomes exclusively address Langerin+ cells of the human skin while not inducing their activation.

As an alternative to epicutaneous administration, intradermal injection represents an attractive vaccination strategy for the skin.25,62 However, the human dermis contains additional antigen-presenting cells including dermal DCs, macrophages, and monocytes. These cells express a variety of GBP such as MR, Dectin-1, DC-SIGN, and Siglec-10 and hence represent potential targets for glycomimetics.63 In analogy to the experiments with epidermal skin cell suspensions, whole skin cell suspensions were utilized to analyze the specificity of the delivery platform in a physiologically relevant context (Figure 5).60 Again, targeted liposomes were efficiently endocytosed by LCs. Additionally, a minor population of CD1intermediate-Langerin+ dermal DCs and other cell populations was negligible. Approximately 3% of CD14+ macrophages and monocytes were targeted by liposomes 22, comparable to the population nonspecifically internalizing nontargeted liposomes. Overall, the delivery platform was found to be highly specific for LCs in the context of the human skin.

Targeted Liposome-Mediated Delivery of Doxorubicin Exclusively Kills Langerin+ Cells. To explore the modulation of cellular function using our liposomal delivery platform, we investigated the Langerin-specific killing of THP-1 cells in vitro in a colorimetric assay. As LCH is partially driven by the abnormal proliferation of Langerin+ myeloid...
progenitor cells, we have identified this dividing monocyte cell line as a viable experimental model for the disease. To this end, we encapsulated doxorubicin into liposomes as previously described (Figure 6a). Incubation of Langerin+ THP-1 cells with liposomes 22 resulted in efficient killing at levels comparable to the use of free doxorubicin (Figure 6b). Importantly, no cytotoxicity was observed for Langerin+ THP-1 cells, whereas incubation with nontargeted liposomes had no effect on either cell line. Free doxorubicin was used at concentrations corresponding to the total amount encapsulated in liposomes at a given [Lipid]T. Liposomes 22 contained 0.225 equiv. of doxorubicin per [Lipid]T. The results from one representative experiment are shown.

DISCUSSION

Human LCs have been recognized for their capacity to internalize and cross-present exogenous antigens to elicit cytotoxic T cell responses, an established strategy for the development of novel cancer immunotherapies. They reside in the epidermis of the skin and have consequently emerged as viable targets for transcutaneous vaccines. However, the induction of protective T cell immunity remains challenging, requiring the efficient and specific delivery of antigens as well as adjuvants. Moreover, lesions in LCH are predominantly composed of Langerin+ myeloid progenitor cells, and current treatments of this pediatric cancer would benefit from the targeted delivery of chemotherapeutics to reduce adverse effects. In this study, we present the development of a liposomal delivery platform that specifically addresses Langerin+ cells, in particular in the context of the human skin, to overcome these challenges.

Beyond their relevance for transcutaneous vaccination strategies, our findings provide the proof of concept for CLR-mediated targeting of nanoparticles to individual immune cell subsets using glycomimetics. The discovery of ligand 15 (Kd = 0.24 ± 0.03 mM) with micromolar affinity for Langerin represents the essential innovation required to achieve efficient internalization of liposomes by LCs. Previous ex vivo studies have explored the use of natural glycans such as Le^3 for this purpose. Interestingly, Le^3 did not promote endocytosis by LCs, while the Le^3-mediated (Kd = ca. 1 mM) targeting of DC-SIGN on dermal DCs succeeded. At the time, the authors concluded that liposomal formulations are not suitable to address LCs. Here, we propose the concept of CLR-specific avidity thresholds to explain these findings. The affinities of the utilized natural glycans for Langerin and DC-SIGN were comparable. Yet, the Le^3-bearing liposomes presumably displayed an increased avidity for dermal DCs due to the tetrameric organization of the carbohydrate recognition domains, the formation of nanoclusters, or increased expression levels for DC-SIGN.

These characteristics render LCs more difficult targets for glycan-mediated liposomal delivery compared to dermal DCs. Here, we have demonstrated that this difficulty can be overcome by glycomimetic ligand design. While generally considered challenging in itself, the design of mono- or oligosaccharide analogues has been successfully applied to target delivery platforms to other GPs such as ASGPR and Siglec-2. The 42-fold affinity increase over natural glycans observed for 15, by proxy of model ligand 16, exceeds that reported for other first-generation glycomimetics and highlights the success of our heparin-inspired rational design strategy. Additionally, 15 additionally provides improved synthetic feasibility and metabolic stability over sulfated heparin-derived mono- (Kd = 0.28 ± 0.06 mM) or trisaccharides (Kd = 0.49 ± 0.05 mM), which display similar affinities. Furthermore, we argue that the conjugation of GlcNS-6-OS to liposomes will result in an affinity decrease due to the loss of the hydrogen bond between the hydroxyl group in C1 and K299 recently observed via X-ray crystallography. By comparison, the formation of β-glucosides represents a favorable conjugation strategy for the designed GlcNS analogues, superior to the use of α-mannosides previously explored.

Using NMR spectroscopy and molecular docking, we have proposed a Ca^2+ -dependent binding mode for 15, which likely resembles that of GlcNac. The conserved orientation of the Glc scaffold allows for the formation of an edge-to-face π-π interaction between the phenyl ring and F315 as well as a hydrogen bond between the sulfonamide linker and N307. The formation of the former interaction is further supported by the affinity decrease resulting from the introduction of the electron withdrawing chloride group for 4. The hydrogen bond with N307 was also observed for the sulfate group in C6 of GlcNS-O-6S via X-ray crystallography. We conclude that these interactions contribute substantially to the affinity increase observed for 15. The combination of the obtained SAR with our binding mode analysis will inform the design of next-generation glycomimetics. Attractive approaches to further optimize the affinity for Langerin include the introduction of electron-donating substituents in the para position on the phenyl ring such as amino or alkoxy groups will be evaluated to optimize the edge-to-face π-π interaction between the phenyl ring and F315. Finally, the obtained SAR suggests that larger substituents extending in the para direction might be tolerated, and intriguing scaffolds for second-generation glycomimetics include biphenyl and naphthyl substituents. As our analysis does not account for conformational flexibility of the carbohydrate binding site and is furthermore limited by an incomplete resonance assignment for Langerin, X-ray
crystallography will serve to validate the proposed binding mode for 15 moving forward.

In summary, liposomes 22 bearing targeting ligand 15 were efficiently internalized both by model cells expressing Langerin as well as LCs in whole skin suspensions. Furthermore, we observed no cytotoxicity even upon exposure over several days. The kinetics of endocytosis were fast, and the majority of LCs was successfully addressed within 20 min, while internalization by off-target cells was negligible. Notably, the epidermis predominantly consists of keratinocytes, while LCs only amount to approximately 3% of epidermal cells. Additional skin-resident immune cells such as dermal DCs and macrophages are present in the dermis, and many of these off-target cells express GBP receptors including CLRs such as MR, dectin-1, and DC-SIGN or Siglec-10. Accordingly, the required specificity can be expected for glycomimetic ligands, the proposed avidity threshold for liposomal targeting likely prevents endocytosis by non-LC skin-resident cells. Intriguingly, our observation might be leveraged to infer general design principles for nanoparticle-based delivery platforms, emphasizing the monovalent specificity of targeting ligands. Overall, the reported findings not only highlight the therapeutic potential of the targeted liposomes, but also their value as molecular probes for basic research where they will potentially contribute to studying the role of LCs in skin homeostasis or to elucidate the mechanisms of antigen cross-presentation.

In contrast to other CLRs, Langerin-dependent signaling has not been reported to date. Our findings support this hypothesis as the binding and endocytosis of targeted liposomes did not activate immature LCs ex vivo. This expands the therapeutic scope of the liposomal delivery platform. On the one hand, the coadministration of adjuvants, preferably TLR-3 or MDA5 agonists, will promote the induction of cytotoxic T cell immunity required for cancer vaccines. As both are intracellular pattern recognition receptors, facilitating the internalization of these agonists is of particular importance. On the other hand, antigen delivery to LCs in the absence of adjuvants has been shown to result in the expansion of regulatory T cells and can be leveraged to treat autoimmune diseases. In this context, liposomes are superior to antibody–antigen conjugates as they enable the coformulation of antigens and adjuvants. While the systemic administration of adjuvants generally induces adverse effects and compromises cytotoxic T cell immunity, their targeted delivery to LCs allows for reduced adjuvant doses and tailored immune responses.

Moreover, many CLRs including Langerin recycle between the plasma membrane and the endosomal compartment. In this context, the Ca²⁺- and pH-dependent release of glycomimetic ligands in the early endosome increases the endocytic capacity of LCs and other DCs. It can be argued that this intracellular trafficking mechanism evolved to promote antigen cross-presentation. The observed fast internalization kinetics and the prolonged colocalization of targeted liposomes with early endosomal markers suggest that this mechanism is efficiently exploited. By contrast, antibodies have been demonstrated to recycle back to the plasma membrane, thereby limiting the dose of internalized and processed antigens. These characteristics highlight another potential advantage of the liposomal delivery platform over antibody-based approaches.

Future investigations will advance the Langerin-specific liposomal delivery platform toward in vivo studies. In this context, we explored the delivery of cargo to modulate cellular function in vitro. LCH, one of the most common pediatric cancers, is characterized by the formation of lesions of the skin, bone marrow, lungs, and other organs due to the abnormal proliferation of Langerin+ myeloid progenitor cells. As access to skin biopsies from pediatric cancer patients is highly restricted, we chose a monocytic cell line as an experimental model for the disease and were able to demonstrate Langerin-specific cytotoxicity of targeted liposomes containing doxorubicin. THP-1 cells are developmentally related to LCH cells and are, in contrast to LCs isolated from healthy individuals, highly proliferative, rendering them susceptible to cytostatic chemotherapeutics. Our delivery platform also provides unique opportunities to improve current treatments of LCH. Specifically, these opportunities include the targeting of chemotherapeutics to lesions to improve the therapeutic window and the development of novel diagnostic tools to elucidate the mechanisms of disease progression.

Moving forward, we envision similar experiments ex vivo to demonstrate the LC-mediated induction of cytotoxic T cell responses. Important parameters of this process that remain to be investigated are the intracellular trafficking and the efficient cross-presentation of delivered antigen. Finally, the feasibility of transcutaneous vaccinations using targeted liposomes will be evaluated to pave the way for therapeutic applications.

Safety Statement. No unexpected or unusually high safety hazards were encountered.

ASSOCIATED CONTENT

5 Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acscentsci.9b00093.

Supporting notes, figures, tables, and schemes as well as methods (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: christoph.rademacher@mpikg.mpg.de.

ORCID

Oliver Seitz: 0000-0003-0611-4810

Christoph Rademacher: 0000-0001-7082-7239

Author Contributions

*J.S. and L.B. contributed equally.

Notes

The authors declare the following competing financial interest(s): E.-C.W., J.S., G.B., O.S. and C.R. declare the filing of a patent covering the use of glycomimetic Langerin ligands for targeting human Langerin-expressing cells.

ACKNOWLEDGMENTS

The work was financially supported for C.R. by the DFG (RA1944/2-1) and the Max Planck Society as well as by the Austrian Science Fund for P.S. (W1101-B15). We thank Prof. Dr. Peter H. Seeberger for support and helpful discussions. We would like to thank the Department of Plastic, Reconstructive and Aesthetic Surgery in Innsbruck for providing human skin
samples. N.M.S. was supported by the Dutch Scientific Organization (VIDI 97113303). Furthermore, we thank Dr. Dongyoon Kim for conducting preliminary microscopy experiments.

REFERENCES

(1) Prausnitz, M. R.; Langer, R. Transdermal drug delivery. *Nat. Biotechnol.* 2008, 26 (11), 1261–1268.

(2) WHO expert committee on smallpox eradication. Second report. *World Health Organ. Tech. Rep. Ser.* 1972, 493, 1–64.

(3) Banchereau, J.; Steinman, R. M. Dendritic cells and the control of immunity. *Nature* 1998, 392 (6673), 245–252.

(4) Clausen, B. E.; Stoitzen, P. Functional specialization of skin dendritic cell subsets in regulating T cell responses. *Front. Immunol.* 2015, 6, 534.

(5) Kclehevsky, E.; Morita, R.; Liu, M.; Cao, Y.; Coquery, S.; Thompson-Snipe, L.; Briere, F.; Chassault, D.; Zarawski, G.; Palucka, A. K.; Reiter, Y.; Banchereau, J.; Ueno, H. Functional specializations of human epidermal Langerhans cells and CD14+ dendritic cells. *Immunity* 2008, 29 (3), 497–510.

(6) Stoitzen, P.; Tripp, C. H.; Eberhart, A.; Price, K. M.; Jung, Y. J.; Burch, L.; Ronchese, F.; Romani, N. Langerhans cells cross-present antigen derived from skin. *Proc. Natl. Acad. Sci. U. S. A.* 2006, 103 (20), 7783–7788.

(7) Zarić, M.; Lyubomska, O.; Poux, C.; Hanna, M. L.; McCrudden, M. T.; Malissen, B.; Ingram, R. J.; Power, U. F.; Scott, C. J.; Donnelly, R. F.; Kissenpfennig, A. Dissolving microneedle delivery of nanoparticle-encapsulated antigen elicits efficient cross-prime and Th1 immune responses by murine Langerhans cells. *J. Invest. Dermatol.* 2015, 135 (2), 425–434.

(8) Kanto, P. W.; Higano, C. S.; Shore, N. D.; Berger, E. R.; Small, D. L.; Scheighoffer, E. T.; Buthwhit, V.; Fleiss, C. A.; Darguste, D.; Burch, L.; Ronchese, F.; Romani, N.; Langerhans cells cross-present antigen derived from skin. *Proc. Natl. Acad. Sci. U. S. A.* 2006, 103 (20), 7783–7788.

(9) Tultet, B.; Leal Rojas, I. M.; Simko, S. J.; Abhyankar, H.; Chakraborty, R.; Leboeuf, M.; Beltrao, P.; Simko, S. J.; Abhyankar, H.; Chakraborty, R.; Leboeuf, M.; Beltrao, P.; Simko, S. J.; Abhyankar, H.; Chakraborty, R.; Leboeuf, M.; Beltrao, P.; Simko, S. J.; Abhyankar, H.; Chakraborty, R.; Leboeuf, M.; Beltrao, P.; Simko, S. J.; Abhyankar, H.; Chakraborty, R.; Leboeuf, M.; Beltrao, P.; Simko, S. J.; Abhyankar, H.; Chakraborty, R.; Leboeuf, M.; Beltrao, P.; Simko, S. J.; Abhyankar, H.; Chakraborty, R.; Leboeuf, M.; Beltrao, P.; Simko, S. J.; Abhyankar, H.; Chakraborty, R.; Leboeuf, M.; Beltrao, P.; Simko, S. J.; Abhyankar, H.; Chakraborty, R.; Leboeuf, M.; Beltrao, P.; Simko, S. J.; Abhyankar, H.; Chakraborty, R.; Leboeuf, M.; Beltrao, P.; Simko, S. J.; Abhyankar, H.; Chakraborty, R.; Leboeuf, M.; Beltrao, P.; Simko, S. J.; Abhyankar, H.; Chakraborty, R.; Leboeuf, M.; Beltrao, P.; Simko, S. J.; Abhyankar, H.; Chakraborty, R.; Leboeuf, M.; Beltrao, P.; Simko, S. J.; Abhyankar, H.; Chakraborty, R.; Leboeuf, M.; Beltrao, P.; Simko, S. J.; Abhyankar, H.; Chakraborty, R.; Leboeuf, M.; Beltrao, P.; Simko, S. J.; Abhyankar, H.; Chakraborty, R.; Leboeuf, M.; Beltrao, P.; Simko, S. J.; Abhyankar, H.; Chakraborty, R.; Leboeuf, M.; Beltrao, P.; Simko, S. J.; Abhyankar, H.; Chakraborty, R.; Leboeuf, M.; Beltrao, P.; Simko, S. J.; Abhyankar, H.; Chakraborty, R.; Leboeuf, M.; Beltrao, P.; Simko, S. J.; Abhyankar, H.; Chakraborty, R.; Leboeuf, M.; Beltrao, P.; Simko, S. J.; Abhyankar, H.; Chakraborty, R.; Leboeuf, M.; Beltrao, P.; Simko, S. J.; Abhyankar, H.; Chakraborty, R.; Leboeuf, M.; Beltrao, P.; Simko, S. J.; Abhyankar, H.; Chakraborty, R.; Leboeuf, M.; Beltrao, P.; Simko, S. J.; Abhyankar, H.; Chakraborty, R.; Leboeuf, M.; Beltrao, P.; Simko, S. J.; Abhyankar, H.; Chakraborty, R.; Leboeuf, M.; Beltrao, P.; Simko, S. J.; Abhyankar, H.; Chakraborty, R.; Leboeuf, M.; Beltrao, P.; Simko, S. J.; Abhyankar, H.; Chakraborty, R.; Leboeuf, M.; Beltrao, P.; Simko, S. J.; Abhyankar, H.; Chakraborty, R.; Leboeuf, M.; Beltrao, P.; Simko, S. J.; Abhyankar, H.; Chakraborty, R.; Leboeuf, M.; Beltrao, P.; Simko, S. J.; Abhyankar, H.; Chakraborty, R.; Leboeuf, M.; Beltrao, P.; Simko, S. J.; Abhyankar, H.; Chakraborty, R.; Leboeuf, M.; Beltrao, P.; Simko, S. J.; Abhyankar, H.; Chakraborty, R.; Leboeuf, M.; Beltrao, P.; Simko, S. J.; Abhyankar, H.; Chakraborty, R.; Leboeuf, M.; Beltrao, P.; Simko, S. J.; Abhyankar, H.; Chakraborty, R.; Leboeuf, M.; Beltrao, P.; Simko, S. J.; Abhyankar, H.; Chakraborty, R.; Leboeuf, M.; Beltrao, P.; Simko, S. J.; Abhyankar, H.; Chakraborty, R.; Leboeuf, M.; Beltrao, P.; Simko, S. J.; Abhyankar, H.; Chakraborty, R.; Leboeuf, M.; Beltrao, P.; Simko, S. J.; Abhyankar, H.; Chakraborty, R.; Leboeuf, M.; Beltrao, P.; Simko, S. J.; Abhyankar, H.; Chakraborty, R.; Leboeuf, M.; Beltrao, P.; Simko, S. J.; Abhyankar, H.; Chakraborty, R.; Leboeuf, M.; Beltrao, P.; Simko, S. J.; Abhyankar, H.; Chakraborty, R.; Leboeuf, M.; Beltrao, P.; Simko, S. J.; Abhyankar, H.; Chakraborty, R.; Leboeuf, M.; Beltrao, P.; Simko, S. J.; Abhyankar, H.; Chakraborty, R.; Leboeuf, M.; Beltrao, P.; Simko, S. J.; Abhyankar, H.; Chakraborty, R.; Leboeuf, M.; Beltrao, P.; Simko, S. J.; Abhyankar, H.; Chakraborty, R.; Leboeuf, M.; Beltrao, P.; Simko, S. J.; Abhyankar, H.; Chakraborty, R.; Leboeuf, M.; Beltrao, P.; Simko, S. J.; Abhyankar, H.; Chakraborty, R.; Leboeuf, M.; Beltrao, P.; Simko, S. J.; Abhyankar, H.; Chakraborty, R.; Leboeuf, M.; Beltrao, P.; Simko, S. J.; Abhyankar, H.; Chakraborty, R.; Leboeuf, M.; Beltrao, P.; Simko, S. J.; Abhyankar, H.; Chakraborty, R.; Leboeuf, M.; Beltrao, P.; Simko, S. J.; Abhyankar, H.; Chakraborty, R.; Leboeuf, M.; Beltrao, P.; Simko, S. J.; Abhyankar, H.; Chakraborty, R.; Leboeuf, M.; Beltrao, P.; Simko, S. J.; Abhyankar, H.; Chakraborty, R.; Leboeuf, M.; Beltrao, P.; Simko, S. J.; Abhyankar, H.; Chakraborty, R.; Leboeuf, M.; Beltrao, P.; Simko, S. J.; Abhyankar, H.; Chakraborty, R.; Leboeuf, M.; Beltrao, P.; Simko, S. J.; Abhyankar, H.; Chakrabo...
(65) Chen, W. C.; Completo, G. C.; Sigal, D. S.; Crocker, P. R.; Saven, A.; Paulson, J. C. In vivo targeting of B-cell lymphoma with glycan ligands of CD22. *Blood* 2010, 115 (23), 4778−4786.

(66) Peng, W.; Paulson, J. C. CD22 ligands on a natural N-glycan scaffold efficiently deliver toxins to B-lymphoma cells. *J. Am. Chem. Soc.* 2017, 139 (36), 12450−12458.

(67) Sanhueza, C. A.; Baksh, M. M.; Thuma, B.; Roy, M. D.; Dutta, S.; Previll, C.; Chrunyk, B. A.; Beaumont, K.; Dullea, R.; Ammirati, M.; Liu, S.; Gebhard, D.; Finley, J. E.; Salatto, C. T.; King-Ahmad, A.; Stock, I.; Atkinson, K.; Reichel, B.; Lin, W.; Kumar, R.; Tu, M.; Menhaji-Klotz, E.; Price, D. A.; Liras, S.; Finn, M. G.; Mascitti, V. Efficient liver targeting by polyvalent display of a compact ligand for the Asialoglycoprotein Receptor. *J. Am. Chem. Soc.* 2017, 139 (9), 3528−3536.

(68) Thepaut, M.; Guzzi, C.; Sutkeviciute, I.; Sattin, S.; Ribeiro-Viana, R.; Varga, N.; Chabrol, E.; Rojo, J.; Bernardi, A.; Angulo, J.; Nieto, P. M.; Fieschi, F. Structure of a glycomimetic ligand in the carbohydrate recognition domain of C-type lectin DC-SIGN. Structural requirements for selectivity and ligand design. *J. Am. Chem. Soc.* 2013, 135 (7), 2518−2529.

(69) Hauck, D.; Joachim, I.; Frommeyer, B.; Varrot, A.; Philipp, B.; Möller, H. M.; Imberty, A.; Exner, T. E.; Titz, A. Discovery of two classes of potent glycomimetic inhibitors of Pseudomonas aeruginosa LecB with distinct binding modes. *ACS Chem. Biol.* 2013, 8 (8), 1775−1784.

(70) Bauer, J.; Bahmer, F. A.; Worl, J.; Neuhuber, W.; Schuler, G.; Fartasch, M. A strikingly constant ratio exists between Langerhans cells and other epidermal cells in human skin. A stereologic study using the optical disector method and the confocal laser scanning microscope. *J. Invest. Dermatol.* 2001, 116 (2), 313−318.

(71) Scharenberg, M.; Schwarz, O.; Rabbani, S.; Ernst, B. Target selectivity of FimH antagonists. *J. Med. Chem.* 2012, 55 (22), 9810−9816.

(72) Geijtenbeek, T. B.; Gringhuis, S. I. Signalling through C-type lectin receptors: shaping immune responses. *Nat. Rev. Immunol.* 2009, 9 (7), 465−479.

(73) Oosterhoff, D.; Heusinkveld, M.; Lougheed, S. M.; Kosten, I.; Lindstedt, M.; Bruijn, S. C.; Van Es, E.; Van Kooyk, Y.; Van der Burg, S. H.; De Grujil, T. D. Intradermal delivery of TLR agonists in a human explant skin model: preferential activation of migratory dendritic cells by polyribosinic-polyribocytidylic acid and peptidoglycans. *J. Immunol.* 2013, 190 (7), 3338−3345.

(74) Flacher, V.; Bouschbacher, M.; Verronnee, E.; Massacrier, C.; Siirak, V.; Berthier-Vergnes, O.; De Saint-Vis, B.; Caux, C.; Dezutter-Dambuyant, C.; Lebecque, S.; Valladeau, J. Human Langerhans cells express a specific TLR profile and differentially respond to viruses and Gram-positive bacteria. *J. Immunol.* 2006, 177 (11), 7959−7967.

(75) Seneschal, J.; Clark, R. A.; Gehad, A.; Baecher-Allan, C. M.; Kupper, T. S. Human epidermal Langerhans cells maintain immune homeostasis in skin by activating skin resident regulatory T cells. *Immunity* 2012, 36 (5), 873−884.

(76) Fehres, C. M.; Unger, W. W.; Garcia-Vallejo, J. J.; Van Kooyk, Y. Understanding the biology of antigen cross-presentation for the design of vaccines against cancer. *Front. Immunol.* 2014, 5, 149.