ISOMORPHISM INVARIANTS OF RESTRICTED ENVELOPING ALGEBRAS

HAMID USEFI

Abstract. Let L and H be finite-dimensional restricted Lie algebras over a perfect field F such that $u(L) \cong u(H)$, where $u(L)$ is the restricted enveloping algebra of L. We prove that if L is p-nilpotent and abelian, then $L \cong H$. We deduce that if L is abelian and F is algebraically closed, then $L \cong H$. We use these results to prove the main result of this paper stating that if L is p-nilpotent, then $L/L' + \gamma_3(L) \cong H/H' + \gamma_3(H)$.

1. Introduction

Let L be a restricted Lie algebra with the restricted enveloping algebra $u(L)$. We shall say that a particular invariant of L is determined by $u(L)$, if every restricted Lie algebra H also possesses this invariant whenever $u(L)$ and $u(H)$ are isomorphic as associative algebras. In particular, the restricted isomorphism problem asks whether the isomorphism type of L is determined by $u(L)$. This problem is motivated by the classical isomorphism problem for group rings: is every finite group G determined by its integral group ring $\mathbb{Z}G$? The survey article [11] contains most of the development in this area. In the late 1980’s, Roggenkamp and Scott [8] and Weiss [9] independently settled down the group ring problem for finite nilpotent groups.

There are close analogies between restricted Lie algebras and finite p-groups. In particular, the restricted isomorphism problem is the Lie analogue of the modular isomorphism problem that asks: given finite p-groups G and H with the property that $\mathbb{F}_p G \cong \mathbb{F}_p H$ can we deduce that $G \cong H$? Here, \mathbb{F}_p denotes the field of p elements. There has been intensive investigation on the modular isomorphism problem, however the main problem is rather far from being completely answered. Unfortunately not every technique from finite p-groups can be used for restricted Lie algebras. For example it is known that the class sums form a basis of the center of FG. It then follows that the center of G is determined, see Theorem 6.6 in [12]. Whether or not the center of L is determined by $u(L)$ remains an interesting open question.

In analogy with finite p-groups we consider the class \mathcal{F}_p of restricted Lie algebras that are finite-dimensional and p-nilpotent. Let $L \in \mathcal{F}_p$. It follows from the Engel’s Theorem that L is nilpotent. We shall examine the nilpotence class of L in Corollary [22]. Note that whether or not the

2000 Mathematics Subject Classification. Primary 17B35, 17B50; Secondary 20C05.

The research is supported by an NSERC Postdoctoral Fellowship.
nilpotence class of \(G \) is determined by \(\mathbb{F}_p G \) has been considered in the recent years, however no major result is reported up-to-date, see [2].

We start the investigation on the restricted isomorphism problem by first considering the abelian case. In Proposition [2.5] we prove that if \(L \in \mathcal{F}_p \) is an abelian restricted Lie algebra over a perfect field \(\mathbb{F} \), then the isomorphism type of \(L \) is determined by \(u(L) \). Furthermore, if \(\mathbb{F} \) is algebraically closed then every abelian restricted Lie algebra is determined by its enveloping algebra, see Corollary [2.8].

It is not clear what is the next step beyond the abelian case in both the modular isomorphism problem and the restricted isomorphism problem. Nevertheless, we have proved in [13] that if \(L \in \mathcal{F}_p \) is a metacyclic restricted Lie algebra over a perfect field then the isomorphism type of \(L \) is determined by \(u(L) \). The main result of this paper that will be proved in Section 3, is another contribution in this direction; a similar result for finite \(p \)-groups was proved by Sandling [10]. Let us recall that for a Lie subalgebra \(I \subseteq L \), we denote by \(I' \) the restricted Lie subalgebra of \(L \) generated by all \(x' \), \(x \in I \). Also, \(\gamma_i(L) \) denotes the \(i \)-th term of the lower central series of \(L \). Our main result is as follows:

Theorem. Let \(L \in \mathcal{F}_p \) be a restricted Lie algebra over a perfect field. Then the restricted Lie algebra \(L/(L' + \gamma_3(L)) \) is determined.

2. Preliminaries

Let \(L \) be a restricted Lie algebra with the restricted enveloping algebra \(u(L) \) over a field \(\mathbb{F} \). By the Poincaré-Birkhoff-Witt (PBW) Theorem, see [8], we can view \(L \) as a restricted Lie subalgebra of \(u(L) \). Let \(\omega(L) \) denote the augmentation ideal of \(u(L) \) which is the kernel of the augmentation map \(\epsilon_L : u(L) \to \mathbb{F} \) induced by \(x \mapsto 0 \), for every \(x \in L \).

Let \(H \) be another restricted Lie algebra such that \(\varphi : u(L) \to u(H) \) is an algebra isomorphism. We observe that the map \(\eta : L \to u(H) \) defined by \(\eta = \varphi - \epsilon_H \varphi \) is a restricted Lie algebra homomorphism. Hence, \(\eta \) extends to an algebra homomorphism \(\overline{\eta} : u(L) \to u(H) \). In fact, \(\overline{\eta} \) is an isomorphism that preserves the augmentation ideals, that is \(\overline{\eta}(\omega(L)) = \omega(H) \), see [7] for the proof of similar fact for Lie algebras. So, without loss of generality, we assume that \(\varphi : u(L) \to u(H) \) is an algebra isomorphism that preserves the augmentation ideals.

Recall that \(L \) is said to be nilpotent if \(\gamma_n(L) = 0 \) for some \(n \); the nilpotence class of \(L \), denoted by \(cl(L) \), is the minimal integer \(c \) such that \(\gamma_{c+1}(L) = 0 \). We denote by \(L'_c \) the restricted subalgebra of \(L \) generated by \(L' = \gamma_2(L) \).

The \(n \)-th dimension subalgebra of \(L \) is

\[
D_n(L) = L \cap \omega^n(L) = \sum_{i p^j \geq n} \gamma_i(L)p^j,
\]

see [5].
Recall that L is said to be in the class \mathcal{F}_p if L is finite-dimensional and p-nilpotent. The \textit{exponent} of $x \in L$, denoted by $\exp(x)$, is the least integer s such that $x^{p^s} = 0$. Whether or not $L \in \mathcal{F}_p$ is determined by the following lemma, see [5].

Lemma 2.1. Let L be a restricted Lie algebra. Then $L \in \mathcal{F}_p$ if and only if $\omega(L)$ is nilpotent.

Now, consider the graded restricted Lie algebra:

$$\text{gr}(L) := \bigoplus_{i \geq 1} D_i(L)/D_{i+1}(L),$$

where the Lie bracket and the p-map are induced from L. It is well-known that $u(\text{gr}(L)) \cong \text{gr}(u(L))$ as algebras, see [13]. So we may identify $\text{gr}(L)$ as the graded restricted Lie subalgebra of $\text{gr}(u(L))$ generated by $\omega^1(L)/\omega^2(L)$. Thus, $\text{gr}(L)$ is determined. We can now deduce the following:

Corollary 2.2. Let L and H be restricted Lie algebras such that $u(L) \cong u(H)$. If $L \in \mathcal{F}_p$ then $|\text{cl}(L) - \text{cl}(H)| \leq 1$.

Proof. Let $c = \text{cl}(L)$. We note that

$$\gamma_n(\text{gr}(L)) = \bigoplus_{i \geq n} \gamma_i(L) + D_{i+1}(L)/D_{i+1}(L),$$

for every $n \geq 1$. Since $\text{gr}(L)$ is determined, it follows that $\gamma_{c+1}(\text{gr}(H)) = 0$. Hence, $\gamma_{c+1}(H) \subseteq D_{c+2}(H)$. So, $\gamma_{c+2}(H) = \gamma_{c+3}(H)$. Since H is nilpotent, it follows that $\gamma_{c+2}(H) = 0$. \hfill \square

Note that $D_n(\text{gr}(L)) = \bigoplus_{i \geq n} D_i(L)/D_{i+1}(L)$. Thus, $D_n(L)/D_{n+1}(L)$ is determined, for every $n \geq 1$. We remark that methods of [4] and [7] can be adapted to prove that $D_n(L)/D_{2n+1}(L)$ and $D_n(L)/D_{n+2}(L)$ are also determined, for every $n \geq 1$. In particular, $L/D_3(L)$ is determined. We shall need the following analogue of Lemma 5.1 in [7].

Lemma 2.3. If $\varphi : u(L) \to u(H)$ is an isomorphism then $\varphi(D_n(L) + \omega^{n+1}(L)) = D_n(H) + \omega^{n+1}(H)$, for every positive integer n.

Now suppose that L is an abelian restricted Lie algebra. Note that the conditions on the p-map reduces to

$$(x + y)^p = x^p + y^p, \quad (\alpha x)^p = \alpha^p x^p,$$

for every $x, y \in L$ and $\alpha \in \mathbb{F}$. Thus the p-map is a semi-linear transformation. Let σ be an automorphism of \mathbb{F}. Consider the skew polynomial ring $\mathbb{F}[t; \sigma]$ which consists of polynomials $f(t) \in \mathbb{F}[t]$ with multiplication given by

$$\alpha t^i \beta t^j = \alpha \beta^{\sigma^{-1} i} t^{i+j}.$$
L decomposes as a direct sum of cyclic $\mathbb{F}[t;\sigma]$-modules. In particular, the number of these summands is unique. We summarize this in the following, see also [3] or Section 4.3 in [1]. We denote by $\langle x \rangle_p$ the subalgebra generated by x.

Theorem 2.4. Let L be a finitely generated abelian restricted Lie algebra over a perfect field \mathbb{F}. Then there exist a unique integer n and generators $x_1, \ldots, x_n \in L$ such that

$$L = \langle x_1 \rangle_p \oplus \cdots \oplus \langle x_n \rangle_p.$$

Proposition 2.5. Let $L \in \mathcal{F}_p$ be an abelian restricted Lie algebra over a perfect field \mathbb{F}. If H is a restricted Lie algebra such that $u(L) \cong u(H)$, then $L \cong H$.

Proof. We argue by induction on $\dim_{\mathbb{F}} L$. Let A be the subalgebra of $\omega(L)$ generated by all u^p, where $u \in \omega(L)$. We observe that $A \cong \omega(L^p)$, as algebras. Thus there is an induced isomorphism:

$$\omega(L^p) \cong \omega(H^p).$$

Since $L \in \mathcal{F}_p$, it follows that $\dim_{\mathbb{F}} L^p < \dim_{\mathbb{F}} L$. Thus, by the induction hypothesis, there exists a restricted Lie algebra isomorphism $\phi : L^p \cong H^p$. We now lift ϕ to an isomorphism of L and H. By Theorem 2.4, there exist generators $x_1, \ldots, x_n \in L$ such that $L = \langle x_1 \rangle_p \oplus \cdots \oplus \langle x_n \rangle_p$. Without loss of generality we assume

$$L^p = \langle x_1^p \rangle_p \oplus \cdots \oplus \langle x_n^p \rangle_p,$$

for some $m \leq n$. Thus, $x_i^p = 0$, for every i in the range $m < i \leq n$. Note that $\dim L = n + \dim L^p$. So, as it is mentioned in Theorem 2.4, n is determined. Let $y_1, \ldots, y_n \in H$ such that $H = \langle y_1 \rangle_p \oplus \cdots \oplus \langle y_n \rangle_p$. Then

$$H^p = \langle y_1^p \rangle_p \oplus \cdots \oplus \langle y_m^p \rangle_p.$$

So, we can assume that $\phi(x_i^p) = y_i^p$, for every $1 \leq i \leq m$. We can verify that the map induced by $x_i \mapsto y_i$, for every $1 \leq i \leq n$, is a restricted Lie algebra isomorphism between L and H.

Corollary 2.6. Let $L \in \mathcal{F}_p$ be a restricted Lie algebra over a perfect field. Then L/L'_p is determined.

Proof. Note that $[u(L), u(L)]u(L) = L'_p u(L)$. Also, we have $u(L/L'_p) \cong u(L)/L'_p u(L)$. Hence, $u(L/L'_p)$ is determined. Since $L/L'_p \in \mathcal{F}_p$, it follows from Proposition 2.5 that L/L'_p is determined.

It turns out that over an algebraically closed field stronger results hold. Before we state the next result we need to recall a well-known theorem, see [3] or Section 4.3 in [1]. Let $T_L = \langle x \in L \mid x^p = x \rangle_2$ and denote by $\text{Rad}(L)$ the subalgebra of L spanned by all p-nilpotent elements.

Theorem 2.7. Let L be a finite-dimensional abelian restricted Lie algebra over an algebraically closed field \mathbb{F}. Then $L = T_L \oplus \text{Rad}(L)$.

4

HAMID USEFI
Corollary 2.8. Let L be a finite-dimensional abelian restricted Lie algebra over an algebraically closed field \mathbb{F}. Let H be a restricted Lie algebra such that $u(L) \cong u(H)$. Then $L \cong H$.

Proof. Note that for every $k \geq 1$,
\[
\dim_\mathbb{F} L/D_{p^k}(L) = \dim_\mathbb{F} L/D_p(L) + \cdots + \dim_\mathbb{F} D_{p^{k-1}}(L)/D_{p^k}(L),
\]
is determined. So $\dim_\mathbb{F} D_{p^k}(L)$ is determined, for every $k \geq 1$. Let t be the least integer such that $\text{Rad}(L)^{p^t} = 0$. It follows that $D_{p^t}(L) = T_L$. Hence, $\dim_\mathbb{F} \text{Rad}(L) = \dim_\mathbb{F} \text{Rad}(H)$, by Theorem 2.7. Note that $L/T_L \cong \text{Rad}(L)$, as restricted Lie algebras. We claim that $\varphi(u(T_L)) = u(T_H)$. Suppose that the claim holds. Then $\varphi(T_L u(L)) = T_H u(H)$. So,
\[
u(L/T_L) \cong u(L)/T_L u(L) \cong u(H)/T_H u(H) \cong u(H/T_H).
\]
Thus, $u(\text{Rad}(L)) \cong u(\text{Rad}(H))$. Since $\text{Rad}(L), \text{Rad}(H) \in \mathcal{F}_p$, Proposition 2.5 then implies that there exists an isomorphism $\phi : \text{Rad}(L) \rightarrow \text{Rad}(H)$. Clearly, ϕ can be extended to an isomorphism of L and H by sending x_i to y_i.

Now, we prove the claim. Let z_1, \ldots, z_n be a basis of $\text{Rad}(H)$ and y_1, \ldots, y_s be a basis of T_H and assume that every y_i is less than every z_j. Let $x \in T_L$ and express $\varphi(x)$ in terms of PBW monomials in the y_i and z_j. So we have,
\[
\varphi(x) = u + \sum \alpha y_1^{a_1} \cdots y_s^{a_s} z_1^{b_1} \cdots z_n^{b_n},
\]
where u is a linear combination of PBW monomials in the y_i only and each term in the sum has the property that $b_1 + \cdots + b_n \neq 0$. Note that for a large k we have $\varphi(x)^{p^k} = u^{p^k} \in u(T_H)$. But $\varphi(x) = \varphi(x)^{p^k}$. So, $\varphi(x) \in u(T_H)$. Since $u(T_L)$ is generated by L and φ is an algebra homomorphism, it follows that $\varphi(u(T_L)) \subseteq u(T_H)$. But $u(T_L)$ and $u(T_H)$ are finite-dimensional. So we get $\varphi(u(T_L)) = u(T_H)$. This proves the claim and so the proof is complete. \square

3. The Quotient $L/L^p + \gamma_3(L)$

We first record a couple of easy statements.

Lemma 3.1. Let N be a restricted subalgebra of L. We have,
\[
\omega(L)N + N\omega(L) = [N, L] + N\omega(L).
\]

Lemma 3.2. For every restricted subalgebra N of L we have,
\[
(1) \quad L \cap ([N, L] + N\omega(L)) = [N, L] + N^p,
(2) \quad Nu(L)/\omega(L)N + N\omega(L) \cong N/([N, L] + N^p).
\]

Now write $J_L = \omega(L)L' + \omega'(L) = \omega(L)L'_p + L'_p\omega(L)$. Since both $\omega(L)L'$ and $L'\omega(L)$ are determined, it follows that J_L is determined.

Corollary 3.3. If $L \in \mathcal{F}_p$ then $\dim_\mathbb{F}(L/L^p + \gamma_3(L))$ is determined.
Lemma 3.6. If $\mathfrak{L}'_p u(L)$ and J_L are determined, it follows from Lemma 3.2 that $\dim_{\mathbb{F}}(\mathfrak{L}'_p/L^{p+\gamma_3(L)})$ is determined. The result then follows, since L/L'_p is determined, by Corollary 2.6.

From now on we assume that $L \in \mathcal{F}_p$ and \mathbb{F} is perfect. By Theorem 2.4 there exists $e_1, \ldots, e_n \in L$ such that

$$L/L'_p = \langle e_1 + L'_p \rangle_p \oplus \cdots \oplus \langle e_n + L'_p \rangle_p.$$

Let \bar{X} be a basis of L/L'_p consisting of \bar{e}_i^p, where $\bar{e}_i = e_i + L'_p$ and $1 \leq i \leq n$. We fix a set X of representatives of \bar{X}. So the elements of X are linearly independent modulo L'_p.

We define the height of an element $x \in L$, denoted by $\nu(x)$, to be the largest integer n such that $x \in D_n(L)$, if n exists and infinity otherwise. The weight of a PBW monomial $x_1^{a_1} \cdots x_t^{a_t}$ is defined to be $\sum_{i=1}^t a_i \nu(x_i)$. We observe that $\nu(e_i^p) = p^j$, for every $1 \leq i \leq n$ and every $1 \leq j < \exp(\bar{e}_i)$.

Indeed, if $e_i^p \in D_m(L)$, for some $m > p^j$, then $e_i^p = \sum_{k>j} \alpha_k e_i^k$ modulo L'_p. It follows then that $e_i^{\exp(\bar{e}_i)-1} \in L'_p$, which is a contradiction. Let Y be a linearly independent subset of L'_p such that $Z = X \cup Y$ is a basis of \mathfrak{L} and the set $\{z + D_{\nu(z)+1} \mid z \in Z\}$ is a basis of \mathfrak{L}. One way to construct such a subset Y is to take coset representatives of a basis for

$$\langle i \geq 1 \rangle \mathbb{D}_1(L) \cap (L'_p + \langle X \rangle_{\mathbb{F}})/D_{i+1}(L).$$

We need the following variant of Theorem 2.1 in [3].

Lemma 3.4. Let $L \in \mathcal{F}_p$. Let \bar{Z} be a homogeneous basis of \mathfrak{L} with a fixed set of representatives Z. Then the set of all PBW monomials in Z of weight at least k forms a basis for $\omega^k(L)$, for every $k \geq 1$.

Note that J_L is linearly independent with the set of all PBW monomials in X. Let E denote the vector space spanned by J_L and all PBW monomials in X of degree at least two. The following lemma is easy to see and so we omit the proof.

Lemma 3.5. The following statements hold.

1. $\omega(L) = L + E$.
2. $(L + J_L) \cap E = J_L = E \cap L'_p u(L)$.
3. $\omega(L)/J_L = L + J_L/ J_L \oplus E/J_L$.

Lemma 3.6. If $L \in \mathcal{F}_p$ then E/J_L is a central restricted Lie ideal of $\omega(L)/J_L$.

Proof. The fact that E/J_L is a central Lie ideal of $\omega(L)/J_L$ easily follows from the identity $[ab, c] = a[b, c] + [a, c]b$ which holds in any associative algebra. So we have to prove that E/J_L is closed under the p-map. Since J_L is an associative ideal of $\omega(L)$, it is enough to prove that $u^p \in E$, for every PBW monomial u in E. Let $u = e_1^{a_1} \cdots e_n^{a_n}$, where each a_i is in the range $0 \leq a_i < p^{\exp(\bar{e}_i)}$. It is not hard to see that $u^p = e_1^{pa_1} \cdots e_n^{pa_n}$ modulo J_L.

Since $L \in \mathcal{F}_p$, each \bar{e}_i is p-nilpotent. If $pa_i < p^{\exp(\bar{e}_i)}$, for every $1 \leq i \leq n$, then u^p is a PBW monomial of degree at least two. Now suppose that $pa_i \geq p^{\exp(\bar{e}_i)}$, for some i. If $pa_i = p^{\exp(\bar{e}_i)}$ then a_i is a power of p. Since u has degree at least two, there exists $j \neq i$ such that $a_j \neq 0$. It now follows that $u^p \in J_L$. If $pa_i > p^{\exp(\bar{e}_i)}$ then $e^{pa_i}_i \in J_L$ and so $u^p \in E$. □

Lemma 3.7. We have $H \cap \varphi(E) \subseteq J_H$.

Proof. We suppose $J_H = 0$ and prove that $H \cap \varphi(E) = 0$. Let $v \in H \cap \varphi(E) \subseteq \omega^2(H)$. Let $u \in E$ such that $\varphi(u) = v$. So, $u \in \omega^2(L)$. We prove by induction that $u \in \omega^n(L)$, for every n. But $\omega(L)$ is nilpotent, by Lemma 2.1 and so $u = 0$. Suppose now, by induction, that $u \in \omega^n(L)$ and we prove that $u \in \omega^{n+1}(L)$. So, $v \in H \cap \omega^n(H) = D_n(H)$. Thus, by Lemma 2.3 $u \in (D_n(L) + \omega^{n+1}(L)) \cap E$. But

$$(D_n(L) + \omega^{n+1}(L)) \cap E \subseteq \omega^{n+1}(L).$$

Indeed, let $u = \sum \alpha_i z_i + w$, where each $z_i \in Z$ has height n and $w \in \omega^{n+1}(L)$. By Lemma 3.4 w is a linear combination of PBW monomials in Z of weight at least $n + 1$. Since $u \in E$ it follows by the PBW Theorem that $\alpha_i = 0$, for every i. So, $u = w \in \omega^{n+1}(L)$, as required. □

Lemma 3.8. We have, $\omega(H)/J_H = H + J_H/\varphi(E)/J_H$.

Proof. By Lemma 3.7 it is enough to prove that

$$\omega(H)/J_H \subseteq H + J_H/\varphi(E)/J_H.$$

Note that both $\omega(H)/J_H$ and $\varphi(E)/J_H$ are determined. Since $\dim_p(H + J_H/J_H) = \dim_p(H/(H')^p + \gamma_3(H))$ is determined by Corollary 3.3, the result follows from Lemma 3.5. □

We can now finish the proof of our main result. Note that $L + J_L/J_L \cong L/L^p + \gamma_3(L)$, by Lemma 3.2.

Lemma 3.9. The restriction of the natural isomorphism $\omega(L)/J_L \to \omega(H)/J_H$ to $L + J_L/J_L$ induces an isomorphism of $L + J_L/J_L$ and $H + J_H/J_H$.

Proof. We denote by φ the induced isomorphism $\omega(L)/J_L \to \omega(H)/J_H$. Let $\varphi_{L+J_L/J_L} = \varphi_1 + \varphi_2$ denote the restriction of φ to $L + J_L/J_L$, where $\varphi_1 : L + J_L/J_L \to H + J_H/J_H$. It is enough to prove that φ_1 is a restricted Lie algebra isomorphism. Since E/L is a central Lie ideal of $\omega(L)/J_L$, by lemma 3.6 $\varphi(E)/J_H$ is a central Lie ideal of $\omega(H)/J_H$. So, for every $x, z \in L$, we have

$$\varphi([x, z] + J_L) = [\varphi(x) + J_H, \varphi(z) + J_H] = [\varphi_1(x), \varphi_1(z)] + J_H.$$

So, φ_1 preserves the Lie brackets. Also,

$$\varphi(x^p + J_L) = \varphi(x)^p + J_H = (\varphi_1(x))^p + (\varphi_2(x))^p + J_H.$$

Since $(\varphi_2(x))^p + J_H \in \varphi(E)/J_H$, it follows that φ_1 preserves the p-powers. Furthermore, φ_1 is injective, by Lemma 3.5. Since $L + J_L/J_L$ and $H +$
J_H/J_H have the same dimension, by Corollary 3.3 it follows that φ_1 is an isomorphism, as required.

\begin{acknowledgments}
I am grateful to the referee for careful reading of the paper and Luzius Grunenfelder for useful discussions.
\end{acknowledgments}

\begin{references}
[1] Yu.A. Bahturin, A. Mikhalev, V. Petrogradsky, M. Zaicev, \textit{Infinite-Dimensional Lie Superalgebras}, de Gruyter Exp. Math. 7 (de Gruyter, Berlin, 1992).
[2] C. Baginski, A. Konovalov, The modular isomorphism problem for finite p-groups with a cyclic subgroup of index p^2, Groups St. Andrews 2005. Vol. 1, 186–193, \textit{London Math. Soc. Lecture Note Ser.}, 339 (Cambridge Univ. Press, 2007).
[3] N. Jacobson, \textit{Lie Algebras} (Interscience, New York, 1962).
[4] J. Ritter S.K. Sehgal, Isomorphism of group rings, \textit{Arch. Math.} 40 (1983), 32–39.
[5] D.M. Riley, A. Shalev, Restricted Lie algebras and their envelopes, \textit{Canad. J. Math.} 47 (1995), 146–164.
[6] D.M. Riley, A. Shalev, The Lie structure of enveloping algebras, \textit{J. Algebra} 162 (1993), no. 1, 46–61.
[7] D.M. Riley and H. Usefi, The isomorphism problem for universal enveloping algebras of Lie algebras, \textit{Algebras and Representation Theory} 10 (2007), no. 6, 517–532.
[8] K. Roggenkamp, L. Scott, Isomorphisms of p-adic group rings, \textit{Ann. of Math.} (2) 126 (3) (1987) 593–647.
[9] A. Weiss, Rigidity of p-adic p-torsion, \textit{Ann. of Math.} 2 127 (2) (1988) 317–332.
[10] R. Sandling, The modular group algebra of a central-elementary-by-abelian p-group, \textit{Arch. Math.} (Basel) 52 (1989), no. 1, 22–27.
[11] R. Sandling, The isomorphism problem for group rings: a survey, \textit{Orders and Their Applications} (Oberwolfach, 1984), Lecture Notes in Math., 1142 (Springer, Berlin, 1985), 256–288.
[12] S.K. Sehgal, \textit{Topics in group rings}, (Marcel Dekker, New York, 1978).
[13] H. Usefi, The restricted isomorphism problem for metacyclic restricted Lie algebras, \textit{Proc. Amer. Math. Soc.} 136 (2008), 4125–4133.
\end{references}

\textit{Department of Mathematics, University of British Columbia, 1984 Mathematics Road, Vancouver, BC, Canada, V6T 1Z2}

\textit{E-mail address: usefi@math.ubc.ca}