QUIVER VARIETIES AND YANGIANS

MICHELA VARAGNOLO

Département de Mathématique, Université de Cergy-Pontoise, 2 av. A. Chauvin, 95302 Cergy-Pontoise cedex. e-mail: michela.varagnolo@math.u-cergy.fr

Mathematics Subject Classification (1991): Primary 17B37, 14L30, 19D55.

Key words: yangian, equivariant homology, convolution product.

Abstract. We prove a conjecture of Nakajima ([5], for type A it was announced in [2]) giving a geometric realization, via quiver varieties, of the Yangian of type ADE (and more in general of the Yangian associated to every symmetric Kac-Moody Lie algebra). As a corollary we get that the finite dimensional representation theory of the quantized affine algebra and that of the Yangian coincide.

1. The algebra $Y_\hbar(Lg)$.

Let g be a simple, simply laced, complex Lie algebra over \mathbb{C} with Cartan matrix $A = (a_{kl})_{k,l \in I}$. Denote by $Lg = g[t, t^{-1}]$ the loop Lie algebra of g. The Yangian $Y_\hbar(Lg)$ is the associative algebra, free over $\mathbb{C}[h]$, generated by $x_{k,r}^\pm, h_{k,r} (k \in I, r \in \mathbb{N})$ with the following defining relations

\begin{align}
(1.1) & \quad [h_{k,r}, h_{l,s}] = 0, \quad [h_{k,0}, x_{l,s}^\pm] = \pm a_{kl} x_{l,s}^\pm, \\
(1.2) & \quad 2[h_{k,r+1}, x_{l,s}^+] - 2[h_{k,r}, x_{l,s+1}^+] = \pm a_{kl} (h_{k,r}x_{l,s}^+ + x_{l,s}^+ h_{k,r}), \\
(1.3) & \quad [x_{k,r}^+, x_{l,s}^-] = \delta_{kl} h_{k,r+s}, \\
(1.4) & \quad 2[x_{k,r+1}^+, x_{l,s}^+] - 2[x_{k,r}^+, x_{l,s+1}^+] = \pm a_{kl} (x_{k,r}^+ x_{l,s}^+ + x_{l,s}^+ x_{k,r}^+), \\
(1.5) & \quad \sum_{w \in S_m} [x_{k,r_w(1)}^+, [x_{k,r_w(2)}^+, \ldots, [x_{k,r_w(m)}^+, [x_{l,s1]^+, \ldots]]]] = 0, \quad k \neq l
\end{align}

for all sequences of non-negative integers r_1, \ldots, r_m, where $m = 1 - a_{kl}$.

Set

\[[n] = \frac{q^n - q^{-n}}{q - q^{-1}} \quad \forall n \in \mathbb{Z}. \]

2. Quiver varieties.

Let I (resp. E) be the set of vertices (resp. edges) of a finite graph (I, E) with no edge loops. For $k, l \in I$ let n_{kl} be the number of edges joining k and l. Put $a_{kl} = 2\delta_{kl} - n_{kl}$. The map $(I, E) \mapsto A = (a_{kl})_{k,l \in I}$ is a bijection from the set of finite graphs with no loops onto the set of symmetric generalized Cartan matrices. Let α_k and $\omega_k, k \in I$, be the simple roots and fundamental weights of the symmetric Kac-Moody algebra corresponding to A. Let H be the set of edges of (I, E)

\[\text{The author is partially supported by EEC grant no. ERB FMRX-CT97-0100.} \]
together with an orientation. For \(h \in H \) let \(h' \in I \) (resp. \(h'' \in I \)) the incoming (resp. the outgoing) vertex of \(h \). If \(h \in H \) we denote by \(\tilde{h} \in H \) the same edge with opposite orientation. Take two collection of finite dimensional complex vector spaces \(V = (V_k)_{k \in I}, \ W = (W_k)_{k \in I} \). Let us fix once for all the following convention: the dimension of the graded vector space \(V \) is identified with the element \(v = \sum_{k \in I} v_k \alpha_k \) in the root lattice (where \(v_k \) is the dimension of \(V_k \)). Similarly the dimension of \(W \) is identified with the weight \(w = \sum_k w_k \omega_k \) (where \(w_k \) is the dimension of \(W_k \)). Set

\[
M(v, w) = \bigoplus_{h \in H} \text{Hom}(V_{h''}, V_{h'}) \oplus \bigoplus_{k \in I} \text{Hom}(W_k, V_k) \oplus \bigoplus_{k \in I} \text{Hom}(V_k, W_k).
\]

The group \(G_v = \prod_k \text{GL}(V_k) \) acts on \(M(v, w) \) by \(g \cdot (B, i, j) = (gB g^{-1}, gi, jg^{-1}) \). We denote by \(B_h \) the component of the element \(B \) in \(\text{Hom}(V_{h''}, V_{h'}) \). Let us consider the map

\[
\mu_{v,w} : M(v, w) \to \bigoplus_{k \in I} \text{Hom}(V_k, V_k), \quad (B, i, j) \mapsto \sum_h \varepsilon(h) B_h B_{\tilde{h}} + ij,
\]

where \(\varepsilon \) is any function \(\varepsilon : H \to \mathbb{C}^\times \) such that \(\varepsilon(h) + \varepsilon(\tilde{h}) = 0 \). We say that a triple \((B, i, j) \in \mu_{v,w}^{-1}(0) \) is stable if there is no nontrivial \(B \)-invariant subspace of \(\text{Ker} j \). Let \(\mu_{v,w}^{-1}(0)^s \) be the set of stable triples. The group \(G_v \) acts freely on \(\mu_{v,w}^{-1}(0)^s \). Put

\[
T(v, w) = \mu_{v,w}^{-1}(0)^s / G_v, \quad N(v, w) = \mu_{v,w}^{-1}(0) / G_v
\]

and let \(\pi : T(v, w) \to N(v, w) \) be the affinization map (it sends \(G_v \cdot (B, i, j) \) to the only closed \(G_v \)-orbit contained in \(G_v \cdot (B, i, j) \)). It is proved in [4, 3.10(2)] that \(T(v, w) \) is a smooth quasi-projective variety. Given \(v^1, v^2 \in \mathbb{N}[I] \) consider the fiber product \(Z(v^1, v^2; w) = T(v^1, w) \times_{\pi} T(v^2, w) \). Take \(v^2 = v^1 + \alpha_k \) where \(\alpha_k \) is a simple root and assume that \(V^1 \subseteq V^2 \) have dimension \(v^1, v^2 \), respectively. Consider the closed subvariety \(C^+_k(v^2, w) \) of \(Z(v^1, v^2; w) \) consisting of the pairs of triples \((B^1, i^1, j^1), (B^2, i^2, j^2) \) such that \(B^2_{|v^1} = B^1, i^2 = i^1, j^2_{|v^1} = j^1 \). Put \(C^-_k(v^2, w) = \varphi(C^+_k(v^2, w)) \subset Z(v^2, v^1; w) \) where \(\varphi : T(v^1, w) \times T(v^2, w) \to T(v^2, w) \times T(v^1, w) \) permutes the components. The varieties \(C^+_k(v^2, w) \) are nonsingular [4, 5.7]. The group \(\tilde{G}_w = G_w \times \mathbb{C}^\times \) acts on \(T(v, w) \) by

\[
(g, t) \cdot (B, i, j) = (tB, t^2 i g^{-1}, gj), \quad \forall g \in G_w, \forall t \in \mathbb{C}^\times.
\]

Let \(V_k = \mu_{v,w}^{-1}(0)^s \times_{G_v} V_k \) and \(W_k \) be respectively the \(k \)-th tautological bundle and the trivial \(W_k \)-bundle on \(T(v, w) \). The bundles \(V_k, W_k \), are \(\tilde{G}_w \)-equivariant. The group \(\tilde{G}_w \) acts also on \(N(v, w), C^+_k(v^2, w), \) and \(Z(v^1, v^2; w) \). Let \(q \) be the trivial line bundle on \(T(v, w) \) with the degree one action of \(\mathbb{C}^\times \). For any complex \(G \)-variety \(X \) let \(K^G(X) \) be the Grothendieck ring of \(G \)-equivariant coherent sheaves on \(X \). Put

\[
F_k(v, w) = q^{-2} W_k - (1 + q^{-2}) V_k + q^{-1} \sum_{h'' = k} V_{h''} \in K^{\tilde{G}_w}(T(v, w)).
\]

The rank of \(F_k(v, w) \) is \((w - v | \alpha_k) \), where \((|) \) is the standard metric on the weight lattice of \(g \). We fix a pair of linear maps \(w \mapsto w_\pm \) on the weight lattice which are adjoin with respect to \((\ |) \), and such that \(w_+ + w_- = w \) for all \(w \).
3. Equivariant homology and convolution product.
Let \(G \) be a complex, connected, linear algebraic group. For any complex \(G \)-variety \(X \), let \(H^G_i(X) \) (resp. \(H^G_r(X) \)) be the \(i \)-th space of \(G \)-equivariant complex Borel-Moore homology (resp. of \(G \)-equivariant complex cohomology). Put

\[
H^G(X) = \bigoplus_i H^G_i(X), \quad H_G(X) = \bigoplus_i H_G^i(X).
\]

See [3] for details on equivariant Borel-Moore homology. Let us only recall the following well known facts.

- If \(Y \) is a closed \(G \)-subvariety of \(X \) and \(X \) is smooth, then \(H^G(Y) = H^G(X, X \setminus Y) \). Moreover there is a natural map \(H^G(X) \to H^G(Y) \). Call \(\alpha^o \in H^G(X) \) the image of \(\alpha \in H^G(Y) \). The \(\cup \)-product in equivariant cohomology induce, via the Poincaré duality, a product, noted \(. \), in equivariant homology. We will denote also by a dot the product \(H^G(X) \otimes H^G(X) \to H^G(X) \).

- Any \(G \)-equivariant vector bundle \(E \) on \(X \) admits an equivariant Chern polynomial \(\lambda_z(E) \in H^G(X)([z]) \). The coefficient of \(z \) in \(\lambda_z(E) \) is the equivariant first Chern class \(c_1(E) \in H^G(X) \). The coefficient of \(z^{rk(E)} \) in \(\lambda_z(E) \) is the equivariant Euler class \(\lambda(E) \in H^G(X) \). If \(E \) is invertible, then \(\lambda_z(E) = 1 + c_1(E)z \). Moreover, for any \(E \) and \(F \) we have \(\lambda_z(E \oplus F) = \lambda_z(E) \cup \lambda_z(F) \). The class \(\lambda_z(E) \) depends only on the class of \(E \) in \(K^G(X) \).

- If \(T \subset G \) is a maximal torus, put \(t = \text{Lie}(T) \). Then \(H^G_{2i}(pt) = S^{2i}(t^*)^W \), where \(S^i \) is the \(i \)-symmetric product and \(W \) is the Weyl group.

We will use the following (see [1, Proposition 2.6.47]):

Lemma. Let \(X \) be a smooth \(G \)-variety and let \(C_i \ (i = 1, 2) \) be two smooth closed \(G \)-subvarieties. Set \(C_3 = C_1 \cap C_2 \) and let \(\gamma_i : C_i \hookrightarrow X \ (i = 1, 2, 3) \) be the natural embedding. Suppose that \(C_1 \) and \(C_2 \) are transversal. Then, for all \(\alpha \in H^G(C_1) \) and \(\beta \in H^G(C_2) \),

\[
\gamma_{1*}(\alpha^o) \cdot \gamma_{2*}(\beta^o) = \gamma_{3*}((\alpha|_{C_3} \cup \beta|_{C_3})^o),
\]

where \(\alpha|_{C_3} \) (resp. \(\beta|_{C_3} \)) is the restriction of \(\alpha \) (resp. \(\beta \)) to \(C_3 \). \(\square \)

Let us recall the definition of the convolution product. Given quasi-projective \(G \)-varieties \(X_1, X_2, X_3 \), consider the projection \(p_{ij} : X_1 \times X_2 \times X_3 \to X_i \times X_j \) for all \(1 \leq i < j \leq 3 \). Consider subvarieties \(Z_{ij} \subset X_i \times X_j \) such that the restriction of \(p_{13} \) to \(p_{12}^{-1}Z_{12} \cap p_{23}^{-1}Z_{23} \) is proper and maps to \(Z_{13} \). The convolution product is the map

\[
* : \ H^G(Z_{12}) \otimes H^G(Z_{23}) \to H^G(Z_{13}), \quad \alpha \otimes \beta \mapsto p_{13*}(p_{12}^*\alpha) \cdot (p_{23}^*\beta).
\]

See [1, 2.7 and the remark (iii), page 113] for more details on convolution product.

We will essentially consider the case \(X_i = T(v^i, w) \) and \(Z_{ij} = Z(v^i, v^j; w) \), where \(v^1, v^2, v^3, w \in \mathbb{N}[I] \) and \(1 \leq i < j \leq 3 \).

4. Statement of the Result.
Let \((I, E) \) be a graph of type \(ADE \). Fix \(w, v^1, v^2 \in \mathbb{N}[I] \), with \(v^2 = v^1 + \alpha_k \). For any \(k \), denote by \(\cal{V}_k^1 \) (resp. \(\cal{V}_k^2 \)) the vector bundle \(\cal{V}_k \otimes O_{T(v^2, w)} \) (resp. \(O_{T(v^1, w)} \otimes \cal{V}_k \)) over \(T(v^1, w) \times T(v^2, w) \). The restriction to \(C_k^+(v^2, w) \) of the sheaf \(\cal{V}_k^1 \) is a subsheaf
Let $\Delta : T^k \rightarrow T^k$ and (1.4) in the case $k = 1$. If v, v', v'' take all the possible values in $\mathbb{N}[I]$. Let Δ^\pm be the two natural embeddings

$$\Delta^+ : C^+_k(v^2, w) \hookrightarrow Z(v^1, v^2; w) \quad \text{and} \quad \Delta^- : C^-_k(v^2, w) \hookrightarrow Z(v^2, v^1; w).$$

If $r \geq 0$, put

$$x^\pm_{k,r} = \sum_{v^2} (-1)^{(\alpha_k | v^2)} \Delta^\pm_2(c_1(L^\pm_k)^\gamma)^r \in H^G_w(Z(w)).$$

Let $\Delta : T(v, w) \rightarrow T(v, w) \times T(v, w)$ be the diagonal embedding and set $h = c_1(q^2)^\circ$. Define $h_{k,r}$ as the coefficient of hz^{-r-1} in

$$-1 + \sum_v \Delta_v \left(\frac{\lambda_{-1/z}(F_k(v, w))}{\lambda_{-1/z}(q^2 F_k(v, w))} \right)^-,$$

where $- \Delta$ stands for the expansion at $z = \infty$. The following result was conjectured by Nakajima ([5, Introduction], in [2] the result was announced for type A).

Theorem. For all $w \in \mathbb{N}[I]$, the map $x^\pm_{k,r} \mapsto x^\pm_{k,r}$, $h_{k,r} \mapsto h_{k,r}$ extends uniquely to an algebra homomorphism $\Phi_w : Y_h(Lq) \rightarrow H^G_w(Z(w))$. \[\square\]

Remark. We can prove a similar result for any symmetric Kac-Moody algebra. Let $A = (a_{kl})_{k,l \in I}$ be a symmetric generalized Cartan matrix. In the definition of the Yangian, the relation (1.4) becomes

$$\left\{ \begin{array}{l}
[x^\pm_{k,r+1}, x^\pm_{k,s}] - [x^\pm_{k,r}, x^\pm_{k,s+1}] = \pm h(x^\pm_{k,r} x^\pm_{k,s} + x^\pm_{k,s} x^\pm_{k,r}) \\
\eta_{-a_{kl}}(z, w)x^\pm_{k,r}(z)x^\pm_{k,s}(w) = \eta_{-a_{kl}}(z, w = \frac{h}{2})x^\pm_{k,s}(w)x^\pm_{k,r}(z) \quad \text{if } k \neq l
\end{array} \right.$$

where

$$x^\pm_{k}(z) = \sum_{r \geq 0} x^\pm_{k,r} z^{-r}, \quad \text{and} \quad \eta_a(z, w) = \prod_{j=1}^{n} (z - w + (1 + a - 2j)h/2).$$

In this case the action of \mathbb{C}^\times on $T(v, w)$ and the complex $F_k(v, w)$ has to be changed as in [5]. In the proof of the theorem there are only minor and evident changes to do.

5. Proof of the Result.

The proof is as in [5, sections 10 and 11]: we check relations (1.1), (1.2), (1.5) and relations (1.3) and (1.4) in the case $k \neq l$ by direct computation. Relations (1.3) and (1.4) in the case $k = l$ are proved by reduction to the \mathfrak{sl}_2-case. We insist here only on the parts which need different calculations.
Relation (1.1). It is an immediate consequence of the definition, since for all \(x \in H^{G_w}(Z(v, v'; w)) \) we have

\[
h_{k, 0} \ast x = \text{rk} \mathcal{F}_k(v, w)x = (w - v|\alpha_k)x,
\]

\[
x \ast h_{k, 0} = \text{rk} \mathcal{F}_k(v', w)x = (w - v'|\alpha_k)x.
\]

Relation (1.2). We prove only the plus case, the minus being similar. Fix \(v^2 = v^1 + a_l \). We identify \(\mathcal{F}_k(v^1, w) \) and \(\mathcal{F}_k(v^2, w) \) with their pull-back to \(C^+_l(v^2, w) \) via the 1-st and the 2-nd projection. Then, in \(K^{G_w}(C^+_l(v^2, w)) \), we have

\[
\mathcal{F}_k(v^1, w) - q^2 \mathcal{F}_k(v^1, w) = \mathcal{F}_k(v^2, w) - q^2 \mathcal{F}_k(v^2, w) + [a_{kl}](q^{-1} - q)L^+_l.
\]

It follows that \([h_{k, r}, x^{+}_{l, s}] \in H^{G_w}(C^+_l(v^2, w))\) is the coefficient of \(h_z^{-r-1} \) in

\[
(\lambda_{-1/z}(\mathcal{F}_k(v^1, w) - q^2 \mathcal{F}_k(v^1, w)) - \lambda_{-1/z}(\mathcal{F}_k(v^2, w) - q^2 \mathcal{F}_k(v^2, w)))^{- x^{+}_{l, s}} =
\]

\[
= \left((\lambda_{-1/z}([a_{kl}](q^{-1} - q)L^+_l) - 1)\lambda_{-1/z}(\mathcal{F}_k(v^2, w) - q^2 \mathcal{F}_k(v^2, w)) \right)^{- x^{+}_{l, s}}.
\]

Set

\[
A_s = \lambda_{-1/z}(\mathcal{F}_k(v^2, w) - q^2 \mathcal{F}_k(v^2, w))x^{+}_{l, s},
\]

\[
X = \lambda_{-1/z}([a_{kl}](q^{-1} - q)L^+_l) = \frac{1 - (c^+_l - a_{kl}h/2)z^{-1}}{1 - (c^+_l + a_{kl}h/2)z^{-1}}.
\]

Then the LHS and the RHS of the relation (1.2) are respectively equal to the coefficient of \(h_z^{-r-1} \) in

\[
(2z(X - 1)A_s - 2(X - 1)A_{s+1})^{-} = (2(X - 1)(z - c^+_l)A_s)^{-} \quad \text{and} \quad (ha_{kl}(X + 1)A_s)^{-}.
\]

We are then reduced to the identity, easily checked, in \(H^{G_w}(C^+_l(v^2, w)) \):

\[
2(X - 1)(z - c^+_l) = ha_{kl}(X + 1).
\]

Relation (1.3) with \(k \neq l \). Fix \(v^1, v^2, \tilde{v}^2, v^3 \), such that

\[
\tilde{v}^2 = v^1 - \alpha_l = v^3 - \alpha_k = v^2 - \alpha_k - \alpha_l.
\]

If \(1 \leq i < j \leq 3 \), consider the projections

\[
p_{ij} : T(v^1, w) \times T(v^2, w) \times T(v^3, w) \rightarrow T(v^i, w) \times T(v^j, w),
\]

\[
\tilde{p}_{ij} : T(v^1, w) \times T(\tilde{v}^2, w) \times T(v^3, w) \rightarrow T(\tilde{v}^i, w) \times T(\tilde{v}^j, w),
\]

where we set \(\tilde{v}^1 = v^1, \tilde{v}^3 = v^3 \). We have

\[
x^{+}_{k, r} \ast x^{-}_{l, s} = (-1)^{(\alpha_k|v^3) + (\alpha_l|v^3)} p_{13*} (p_{12*}(c_1(V^2_k/V^1_k)^{or}) \cdot p_{23*}(c_1(V^3_l/V^1_l)^{os}))
\]

\[
x^{-}_{l, s} \ast x^{+}_{k, r} = (-1)^{(\alpha_l|\tilde{v}^2) + (\alpha_k|\tilde{v}^2)} \tilde{p}_{13*} (\tilde{p}_{12*}(c_1(V^2_l/V^1_l)^{os}) \cdot \tilde{p}_{23*}(c_1(V^3_k/V^1_k)^{or})).
\]
It is proved in [5, Lemma 10.2.1] that the intersections

\begin{align*}
p_{12}^{-1}C_k^+(v^2, w) \cap p_{23}^{-1}C_l^-(v^3, w) \quad \text{and} \quad \tilde{p}_{12}^{-1}C_l^-(\tilde{v}^2, w) \cap \tilde{p}_{23}^{-1}C_k^+(\tilde{v}^3, w)
\end{align*}

are transversal in \(T(v^1, w) \times T(v^2, w) \times T(v^3, w) \) and \(T(v^1, w) \times T(\tilde{v}^2, w) \times T(v^3, w) \) and that there exists a \(\mathcal{G}_w \)-equivariant isomorphisms between them which induces the isomorphisms:

\begin{align*}
V_k^2/V_k^1 \simeq V_l^2/V_l^1 \quad \text{and} \quad \tilde{V}_l^2/\tilde{V}_l^1 \simeq V_l^3/V_l^2.
\end{align*}

The result follows from the lemma in section 3.

Relation (1.4) with \(k \neq l \). We prove only the plus case. Fix \(v^1, v^2, \tilde{v}^2, v^3 \), such that

\begin{align*}
v^3 = \tilde{v}^2 + \alpha_k = v^2 + \alpha_l = v^1 + \alpha_k + \alpha_l.
\end{align*}

Consider the projections \(p_{ij} \) and \(\tilde{p}_{ij} \) \((1 \leq i < j \leq 3)\) as before. The intersections

\begin{align*}
Z_{kl} = p_{12}^{-1}C_k^+(v^2, w) \cap p_{23}^{-1}C_l^-(v^3, w) \quad \text{and} \quad Z_{lk} = \tilde{p}_{12}^{-1}C_l^-(\tilde{v}^2, w) \cap \tilde{p}_{23}^{-1}C_k^+(\tilde{v}^3, w)
\end{align*}

are transversal in \(T(v^1, w) \times T(v^2, w) \times T(v^3, w) \) and \(T(v^1, w) \times T(\tilde{v}^2, w) \times T(v^3, w) \) (see [5, Lemma 10.3.1]). Since \(k \neq l \), the restriction of \(p_{13} \) and \(\tilde{p}_{13} \) to \(Z_{kl} \) and \(Z_{lk} \) is an embedding into \(Z(v^1, v^3; w) \). Call it \(\iota_{kl} \) and \(\iota_{lk} \) respectively. Put \(b_k = c_1(V_k^3 - V_k^1), b_l = c_1(V_l^3 - V_l^1) \). We have (see the lemma in section 3)

\begin{align*}
x_{k,r}^+ \ast x_{l,s}^+ &\equiv (-1)^{(\alpha_k|v_k^2) + (\alpha_l|v_l^2) + \iota_{kl}}(p_{12}(b_k^r)_{|Z_{kl}} \cup p_{23}(b_l^s)_{|Z_{kl}})^o, \\
x_{l,s}^+ \ast x_{k,r}^+ &\equiv (-1)^{(\alpha_l|v_l^2) + (\alpha_k|v_k^2) + \iota_{lk}}(p_{12}(b_l^s)_{|Z_{lk}} \cup p_{23}(b_k^r)_{|Z_{kl}})^o.
\end{align*}

Take \(h \in H \) such that \(h' = l \) and \(h'' = k \). The map \(B_h \) may be viewed as a section of the \(\mathcal{G}_w \)-bundle \(E_{kl} = q(V_k^3/\mathbb{V}_k^1)^* \otimes (V_k^3/\mathbb{V}_k^1) \) on \(p_{13}(Z_{kl}) \) (where we set \(E_{kl} = 0 \) if \(a_{kl} = 0 \)). Similarly \(B_h \) is a section of the \(\mathcal{G}_w \)-bundle \(E_{lk} = q(V_l^3/\mathbb{V}_l^1)^* \otimes (V_l^3/\mathbb{V}_l^1) \) on \(\tilde{p}_{13}(Z_{lk}) \) (where again we set \(E_{lk} = 0 \) if \(a_{kl} = 0 \)). In [5, 10.3.9] it is proved that \(B_h \) and \(B_h \) are transversal to the zero section respectively. Moreover

\begin{align*}
p_{13}(Z_{kl}) \cap B_h^{-1}(0) &\equiv \tilde{p}_{13}(Z_{lk}) \cap B_h^{-1}(0).
\end{align*}

Then,

\begin{align*}
\iota_{kl} \ast (c_1(E_{kl})^o) x_{k,r}^+ \ast x_{l,s}^+ &\equiv (-1)^{\alpha_k \iota_{kl}}(c_1(E_{lk})^o) x_{l,s}^+ \ast x_{k,r}^+,
\end{align*}

i.e.

\begin{align*}
\iota_{kl}(b_k^r - b_l^s + h/2) x_{k,r}^+ \ast x_{l,s}^+ = \iota_{lk}(b_l^s - b_k^r + h/2) x_{l,s}^+ \ast x_{k,r}^+.
\end{align*}

The relation (1.4) follows immediately from this.

Relations (1.3) and (1.4) with \(k = l \). Thank to the same argument than in [5, 11.3] we are reduce to the case of \((I,E)\) of type \(A_1 \). In this case \(v \) and \(w \) are identified with natural numbers, so let us call them \(v \) and \(w \). Moreover we will omit everywhere the subindex 1. Let \(Gr_v(w) \) be the variety of \(v \)-dimensional subspaces in \(W \). It is easy to see that \(T(v,w) \simeq T^*Gr_v(w) \). The group \(G_w \) acts in the obvious way on
\(T(v, w)\). The group \(\mathbb{C}^\times\) acts by scalar multiplication on the fibers of the cotangent bundle. Fix \(T_1, ..., T_w\) such that
\[
K^G_\chi(\text{Gr}_v(w)) = \mathbb{C}[q^{\pm 1}, T_1^{\pm 1}, ..., T_w^{\pm 1}]^{S_v \times S_w - v},
\]
where \(e_i\) is the \(i\)-th elementary symmetric function. We get
\[
\mathcal{F}(v, w) = q^{-2}\mathcal{W} - (1 + q^{-2})\mathcal{V} = q^{-2}(T_{v+1} + \cdots + T_w) - (T_1 + \cdots + T_v).
\]
Put \(t_k = c_1(T_k)^\circ\). Then \(H^{G_\chi}(T(w)) = \bigoplus_{v=0}^w \mathbb{C}[h, t_1, \ldots, t_w]^{S_v \times S_w - v}\). The following lemma is proved as in [1, Claim 7.6.7].

Lemma. The space \(H^{G_\chi}(T(w))\) is a faithful module over \(H^{G_\chi}(Z(w))\). \(\square\)

The operators \(x_+^\pm\) on \(H^{G_\chi}(T(w))\) can be written down explicitly. Put
\[
O(v, w) = \{(V^1, V^2) \in \text{Gr}_{v-1}(w) \times \text{Gr}_v(w) | V^1 \subset V^2\}.
\]
The Hecke correspondence \(C^+(v, w)\) is the conormal bundle to \(O(v, w)\). Consider the projections \(p_1, p_2\) from \(O(v, w)\) to the first and the second component and let \(\pi : T(v, w) \to \text{Gr}_v(w)\) be the projection. We can prove as in [6, Lemme 5] that if \(\alpha \in H^{G_\chi}(O(v, w))\) and \(\beta \in H^{G_\chi}(\text{Gr}_v(w))\), then
\[
\pi^*(\alpha) \star \pi^*(\beta) = p_{1*}(\lambda(q^2T^*p_1) \cdot \alpha \cdot T^*\beta),
\]
where \(T^*p_1\) is the relative cotangent bundle to \(p_1\). The map \(p_1\) is a \(\mathbb{P}^{w-v}\)-fibration, then we have
\[
\lambda(q^2T^*p_1) = \prod_{m=v+1}^w (t_m - t_v + h) \in H^{G_\chi}(O(v, w)).
\]
Let us introduce the following notation. Fix \(z \in [1, w] = \{1, 2, ..., w\}\) and let \(I = (I_1, I_2)\) be a partition of \([1, w]\) into two subset of cardinality \(z\) and \(w - z\) respectively, say \(I_1 = \{a_1, a_2, ..., a_z\}\), \(I_2 = \{b_1, b_2, ..., b_{w-z}\}\). Then put
\[
f(t_{I_1}; t_{I_2}) = f(t_{a_1}, t_{a_2}, ..., t_{a_z}, t_{b_1}, t_{b_2}, ..., t_{b_{w-z}}).
\]
Thus (see [6, Lemme 1]), for any \(f \in \mathbb{C}[h, t_1, ..., t_w]^{S_v \times S_w - v}\),

(5.1)
\[
x_+^\pm(f)(t_{[1, v-1]}; t_{[v, w]}) = \sum_{k=v}^w f(t_{[1, v-1] \cup \{k\}}; t_{[v, w] \setminus \{k\}})\prod_{m \in [v, w] \setminus \{k\}} \left(1 + \frac{h}{t_k - t_m}\right),
\]

(5.2)
\[
x_-^\pm(f)(t_{[1, v+1]}; t_{[v+2, w]}) = \sum_{k=1}^{v+1} f(t_{[1, v+1] \setminus \{k\}}; t_{[v+2, w] \cup \{k\}})\prod_{m \in [1, v+1] \setminus \{k\}} \left(1 + \frac{h}{t_m - t_k}\right).
\]
We have
\[\lambda_z F(v, w) = \frac{\prod_{m=v+1}^w (1 - z(t_m - h))}{\prod_{m=1}^v (1 - z(t_m + 1))}. \]

Thus \(h_r(f) \) is the coefficient of \(h z^{-r-1} \) in
\[f \left(\prod_{m=1}^v \frac{z - t_m - h}{z - t_m} \prod_{m=v+1}^w \frac{z - t_m + h}{z - t_m} \right)^{-1}. \]

Proposition. Relations (1.3) and (1.4) hold in the \(\mathfrak{sl}_2 \)-case.

Proof. Let us prove relation (1.3). Fix \(f \in \mathbb{C}[h, t_1, ..., t_w] S_v \times S_{w-v} \). Using formulas (5.1) and (5.2), we have
\[
(x^-_r x^+_s(f))(t_{[1,v]}; t_{[v+1,w]}) = \sum_{l=1}^v \sum_{t \in [1,v] \cup \{l\}} f(t_{|[1,v] \cup \{l\}}; t_{|[v+1,w] \cup \{l\}}) t^r_t \cdot X_{kl},
\]
\[
(x^+_r x^-_s(f))(t_{[1,v]}; t_{[v+1,w]}) = \sum_{l \in [1,v] \cup \{k\}} \sum_{k=v+1}^w f(t_{|[1,v] \cup \{k\}}; t_{|[v+1,w] \cup \{k\}}) t^r_t Y_{kl},
\]
where
\[
X_{kl} = \prod_{m \in [1,v] \setminus \{l\}} \left(1 + \frac{h}{t_m - t_l} \right) \prod_{n \in [v+1,w] \cup \{l\} \setminus \{k\}} \left(1 + \frac{h}{t_k - t_n} \right),
\]
\[
Y_{kl} = \prod_{m \in [1,v] \cup \{k\} \setminus \{l\}} \left(1 + \frac{h}{t_m - t_l} \right) \prod_{n \in [v+1,w] \setminus \{k\}} \left(1 + \frac{h}{t_k - t_n} \right).
\]
The terms with \(k \neq l \) cancel out in the bracket. We get
\[
[x^+_r, x^-_s](f) = f \sum_{k=v+1}^w t^r_k t^-_k \prod_{m \in [1,v]} \left(1 + \frac{h}{t_m - t_l} \right) \prod_{n \in [v+1,w] \setminus \{k\}} \left(1 + \frac{h}{t_k - t_n} \right) -
\]
\[
-f \sum_{l=1}^v \prod_{m \in [1,v] \setminus \{l\}} \left(1 + \frac{h}{t_m - t_l} \right) \prod_{n \in [v+1,w]} \left(1 + \frac{h}{t_l - t_n} \right).
\]
Put
\[
A(z) = \prod_{m=1}^v (z - t_m), \quad B(z) = \prod_{m=1}^v (z - t_m - h) \prod_{m=v+1}^w (z - t_m + h).
\]
Then it is easy to check that
\[
h[x^+_r, x^-_s](f) = f \sum_{k=1}^w t^r_k B(t_k) A'(t_k) = f \text{res}_\infty z^{r+s} \frac{B(z)}{A(z)}.
\]
This is the definition of \(h_{r+s}(f) \) given in (5.3). As for the relation (1.4), note that, using (5.1), we get
\begin{align*}
(x^+_n x^+_m (f))(t_{[1,v-2]}; t_{[v-1,w]} &= \\
= & \sum_{l=v-1}^{w} \sum_{k \in [v-1,w] \setminus \{l\}} f(t_{[1,v-2] \cup \{k,l\}}; t_{[v-1,w] \setminus \{k,l\}}) t^+_l t^+_k Z_{kl},
\end{align*}

where

\[Z_{kl} = \prod_{n \in [v-1,w] \setminus \{l\}} \left(1 + \frac{\hbar}{t_l - t_n} \right) \prod_{m \in [v-1,w] \setminus \{k,l\}} \left(1 + \frac{\hbar}{t_k - t_m} \right). \]

The relation in the plus case follows now by a direct computation. \qed

\textbf{Relation (1.5).} The proof is exactly as in [5, 10.4], so we omit it.

\textbf{Remark.} Nakajima [5, Theorem 9.4.1] has proved that there exists an algebra morphism

\[\Psi_w : U_q(Lg) \to K^G_w(Z(w)) \otimes_{\mathbb{Z}[q,q^{-1}]} \mathbb{C}(q), \]

where the algebra to the left is the quantized enveloping algebra of \(Lg \) and the algebra to the right is equipped with the convolution product. Using \(\Phi_w \) and \(\Psi_w \) we can construct the finite dimensional simple modules of \(Y_h(Lg) \) and \(U_q(Lg) \) respectively (see [5, section 14]). In particular \(Y_h(Lg) \) and \(U_q(Lg) \) have the same finite dimensional representation theory. More precisely let \(\mathcal{C} \) (resp. \(\mathcal{D} \)) be the abelian category of finite dimensional \(U_q(Lg) \)-modules such that the Drinfeld polynomials of the simple factors have roots in \(q^{-1} \mathbb{Z} \) (resp. \(\mathbb{Z} \)).

\textbf{Proposition.} The characters (as \(U_q(Lg) \)-modules and \(U(Lg) \)-modules resp.) of the simple finite dimensional modules in \(\mathcal{C} \) and in \(\mathcal{D} \) are the same. \qed

\textbf{Acknowledgments.} The author thanks E. Vasserot for useful discussions.

\textbf{References.}
1. Chriss, N., Ginzburg, V.: Representation theory and complex geometry, Birkhäuser, Boston-Basel-Berlin, 1997.
2. Ginzburg, V., Vasserot, E.: Langlands reciprocity for affine quantum groups of type \(A_n \), Internat. Math. Res. Notices, 3, 1993, 67-85.
3. Lusztig, G.: Cuspidal local systems and graded Hecke algebras I, Inst. Hautes Études Sci. Publ. Math., 67, 1988, 145-202.
4. Nakajima, H.: Quiver varieties and Kac-Moody algebras, Duke. Math. J., 91, 1998, 515-560.
5. Nakajima, H.: Quiver varieties and finite dimensional representations of quantum affine algebras, Preprint QA/9912158.
6. Vasserot, E.: Représentations de groupes quantiques et permutations, Ann. Scient. Éc. Norm. Sup., 26, 1993, 747-773.