Sylow p-groups of polynomial permutations on the integers mod p^n

Sophie Frisch and Daniel Krenn

Abstract. We enumerate and describe the Sylow p-groups of the group of polynomial permutations of the integers mod p^n. MSC 2000: primary 20D20, secondary 11T06, 13M10, 11C08, 13F20, 20E18.

1. Introduction

Fix a prime p and let $n \in \mathbb{N}$. Every polynomial $f \in \mathbb{Z}[x]$ defines a function from $\mathbb{Z}_{p^n} = \mathbb{Z}/p^n\mathbb{Z}$ to itself. If this function happens to be bijective, it is called a polynomial permutation of \mathbb{Z}_{p^n}. The polynomial permutations of \mathbb{Z}_{p^n} form a group (G_n, \circ) with respect to composition. The order of this group has been known since at least 1921 (Kempner [10]) to be

$$|G_2| = p!(p-1)p^p \quad \text{and} \quad |G_n| = p!(p-1)^p p^p p^{\sum_{k=3}^{n} \beta(k)} \quad \text{for } n \geq 3,$$

where $\beta(k)$ is the least n such that p^k divides $n!$, but the structure of (G_n, \circ) is elusive. (See, however, Nöbauer [15] for some partial results). Since the order of G_n is divisible by a high power of $(p-1)$ for large p, even the number of Sylow p-groups is not obvious.

We will show that there are $(p-1)!(p-1)^{p-2}$ Sylow p-groups of G_n and describe these Sylow p-groups, see Theorem 4.5.

Some notation: p is a fixed prime throughout. A function $g : \mathbb{Z}_{p^n} \rightarrow \mathbb{Z}_{p^n}$ arising from a polynomial in $\mathbb{Z}_{p^n}[x]$ or, equivalently, from a polynomial in $\mathbb{Z}[x]$, is called a polynomial function on \mathbb{Z}_{p^n}. We denote by (F_n, \circ) the monoid with respect to composition of polynomial functions on \mathbb{Z}_{p^n}, and by (G_n, \circ) its group of units, the group of polynomial permutations of \mathbb{Z}_{p^n}.

The natural projection of polynomial functions on $\mathbb{Z}_{p^{n+1}}$ onto polynomial functions on \mathbb{Z}_{p^n} we write as $\pi_n : F_{n+1} \rightarrow F_n$. If f is a polynomial in $\mathbb{Z}[x]$

Sophie Frisch is supported by the Austrian Science Fund (FWF), grant P23245-N18.

Daniel Krenn is supported by the Austrian Science Fund (FWF), project W1230 doctoral program “Discrete Mathematics”.

1
(or in $\mathbb{Z}_{p^n}[x]$ for $m \geq n$) we denote the polynomial function on $\mathbb{Z}_{p^n}[x]$ induced by f by $[f]_{p^n}$.

The order of F_n and that of G_n have been determined by Kempner [10] in a rather complicated manner. His results were cast into a simpler form by Nöbauer [14] and Keller and Olson [9] among others. Since then there have been many generalizations of the order formulas to more general finite rings [16, 13, 2, 6, 1, 8, 7]. Also, polynomial permutations in several variables (permutations of $(\mathbb{Z}_{p^n})^k$ defined by k-tuples of polynomials in k variables) have been looked into [5, 4, 19, 17, 18, 11].

2. Polynomial functions and permutations

To put things in context, we recall some well-known facts, to be found, among other places, in [10, 14, 3, 9]. The reader familiar with polynomial functions on finite rings is encouraged to skip to section 3. (Reviewers take note that we do not claim anything in section 2 as new!)

Definition. For p prime and $n \in \mathbb{N}$, let

$$\alpha_p(n) = \sum_{k=1}^{\infty} \left[\frac{n}{p^k} \right] \quad \text{and} \quad \beta_p(n) = \min\{m \mid \alpha_p(m) \geq n\}.$$

If p is fixed, we just write $\alpha(n)$ and $\beta(n)$.

Notation. For $k \in \mathbb{N}$, let $(x)_k = x(x-1)\ldots(x-k+1)$ and $(x)_0 = 1$. We denote p-adic valuation by v_p.

2.1 Fact.

1. $\alpha_p(n) = v_p(n!)$.
2. For $1 \leq k \leq p$, $\beta_p(k) = kp$ and for $k > p$, $\beta_p(k) < kp$.
3. For all $n \in \mathbb{Z}$, $v_p((n)_k) \geq \alpha_p(k)$; and $v_p((k)_k) = v_p(k!) = \alpha_p(k)$.

Proof. Easy. □

Remark. The sequence $(\beta_p(n))_{n=1}^{\infty}$ is obtained by going through the natural numbers in increasing order and repeating each $k \in \mathbb{N}$ $v_p(k)$ times. For instance, $\beta_2(n)$ for $n \geq 1$ is: 2, 4, 4, 6, 8, 8, 8, 10, 12, 12, 14, 16, 16, 16, 18, 20, 20,

The falling factorials $(x)_0 = 1$, $(x)_k = x(x-1)\ldots(x-k+1)$, $k > 0$, form a basis of the free \mathbb{Z}-module $\mathbb{Z}[x]$, and representation with respect to this basis gives a convenient canonical form for a polynomial representing a given polynomial function on \mathbb{Z}_{p^n}.

2
2.2 Fact. A polynomial \(f \in \mathbb{Z}[x], f = \sum_k a_k (x)_k \), induces the zero-function mod \(p^n \) if and only if \(a_k \equiv 0 \mod p^{n-\alpha(k)} \) for all \(k \) (or, equivalently, for all \(k < \beta(n) \)).

Proof. Induction on \(k \) using the facts that \((m)_k = 0 \) for \(m < k \), that \(v_p((n)_k) \geq \alpha_p(k) \) for all \(n \in \mathbb{Z} \), and that \(v_p((k)_k) = v_p(k!) = \alpha_p(k) \).

2.3 Corollary. Every polynomial function on \(\mathbb{Z}_{p^n} \) is represented by a unique \(f \in \mathbb{Z}[x] \) of the form \(f = \sum_{k=0}^{\beta(n)-1} a_k (x)_k \), with \(0 \leq a_k < p^{n-\alpha(k)} \) for all \(k \).

Comparing the canonical forms of polynomial functions mod \(p^n \) with those mod \(p^{n-1} \) we see that every polynomial function mod \(p^{n-1} \) gives rise to \(p^{\beta(n)} \) different polynomial functions mod \(p^n \):

2.4 Corollary. Let \((F_n, \circ) \) be the monoid of polynomial functions on \(\mathbb{Z}_{p^n} \) with respect to composition and \(\pi_n : F_{n+1} \to F_n \) the canonical projection.

(1) For all \(n \geq 1 \) and for each \(f \in F_n \) we have \(|\pi_n^{-1}(f)| = p^{\beta(n+1)}\).

(2) For all \(n \geq 1 \), the number of polynomial functions on \(\mathbb{Z}_{p^n} \) is

\[|F_n| = p^{\sum_{k=1}^{n} \beta(k)}. \]

Notation. We write \([f]_{p^n}\) for the function defined by \(f \in \mathbb{Z}[x] \) on \(\mathbb{Z}_{p^n} \).

2.5 Lemma. Every polynomial \(f \in \mathbb{Z}[x] \) is uniquely representable as

\[f(x) = f_0(x) + f_1(x)(x^p - x) + f_2(x)(x^p - x)^2 + \ldots + f_m(x)(x^p - x)^m + \ldots \]

with \(f_m \in \mathbb{Z}[x], \deg f_m < p\), for all \(m \geq 0 \). Now let \(f, g \in \mathbb{Z}[x] \).

(1) If \(n \leq p \), then \([f]_{p^n} = [g]_{p^n}\) is equivalent to: \(f_k = g_k \mod p^{n-k}\mathbb{Z}[x] \) for \(0 \leq k < n \).

(2) \([f]_{p^2} = [g]_{p^2}\) is equivalent to: \(f_0 = g_0 \mod p^2\mathbb{Z}[x] \) and \(f_1 = g_1 \mod p\mathbb{Z}[x] \).

(3) \([f]_p = [g]_p\) and \([f']_p = [g']_p\) is equivalent to: \(f_0 = g_0 \mod p\mathbb{Z}[x] \) and \(f_1 = g_1 \mod p\mathbb{Z}[x] \).

Proof. The canonical representation is obtained by repeated division with remainder by \((x^p - x)\), and uniqueness follows from uniqueness of quotient and remainder of polynomial division. Note that \([f]_p = [f_0]_p\) and \([f']_p = [f'_0 - f_1]_p\). This gives (3).

Denote by \(f \sim g \) the equivalence relation \(f_k = g_k \mod p^{n-k}\mathbb{Z}[x] \) for \(0 \leq k < n \). Then \(f \sim g \) implies \([f]_{p^n} = [g]_{p^n}\). There are \(p^{p+2p+3p+\ldots+n} \) equivalence classes of \(\sim \) and \(p^{\beta(1)+\beta(2)+\beta(3)+\ldots+\beta(n)} \) different \([f]_{p^n}\). For \(k \leq p \), \(\beta(k) = kp \). Therefore the equivalence relations \(f \sim g \) and \([f]_{p^n} = [g]_{p^n}\) coincide. This gives (1), and (2) is just the special case \(n = 2 \).

3
We can rephrase this in terms of ideals of $\mathbb{Z}[x]$.

2.6 Corollary. For every $n \in \mathbb{N}$, consider the two ideals of $\mathbb{Z}[x]$

$$I_n = \{ f \in \mathbb{Z}[x] \mid f(\mathbb{Z}) \subseteq p^n \mathbb{Z} \} \quad \text{and} \quad J_n = \{ (p^{n-k}(x^p - x)^k \mid 0 \leq k \leq n) \}.$$

Then $[\mathbb{Z}[x] : I_n] = p^{\beta(1)+\beta(2)+\beta(3)+\ldots+\beta(n)}$ and $[\mathbb{Z}[x] : J_n] = p^{p+2p+3p+\ldots+np}$. Therefore, $J_n = I_n$ for $n \leq p$, whereas for $n > p$, J_n is properly contained in I_n.

Proof. $J_n \subseteq I_n$. The index of J_n in $\mathbb{Z}[x]$ is $p^{p+2p+3p+\ldots+np}$, because $f \in J_n$ if and only if $f_k = 0 \mod p^{n-k} \mathbb{Z}[x]$ for $0 \leq k < n$ in the canonical representation of Lemma 2.5. The index of I_n in $\mathbb{Z}[x]$ is $p^{\beta(1)+\beta(2)+\beta(3)+\ldots+\beta(n)}$ by Corollary 2.4 (2) and $[\mathbb{Z}[x] : I_n] < [\mathbb{Z}[x] : J_n]$ if and only if $n > p$ by Fact 2.1 (2). □

2.7 Fact. (cf. McDonald [12]) Let $n \geq 2$. The function on \mathbb{Z}_p^n induced by a polynomial $f \in \mathbb{Z}[x]$ is a permutation if and only if

1. f induces a permutation of \mathbb{Z}_p
2. the derivative f' has no zero mod p.

2.8 Lemma. Let $[f]_{p^n}$ and $[f]_p$ be the functions defined by $f \in \mathbb{Z}[x]$ on \mathbb{Z}_{p^n} and \mathbb{Z}_p, respectively, and $[f']_p$ the function defined by the formal derivative of f on \mathbb{Z}_p. Then

1. $[f]_{p^n}$ determines not just $[f]_p$, but also $[f']_p$.
2. Let $n \geq 2$. Then $[f]_{p^n}$ is a permutation if and only if $[f]_{p^2}$ is a permutation.
3. For every pair of functions (α, β), $\alpha : \mathbb{Z}_p \rightarrow \mathbb{Z}_p$, $\beta : \mathbb{Z}_p \rightarrow \mathbb{Z}_p$, there are exactly p^p polynomial functions $[f]_{p^2}$ on \mathbb{Z}_{p^2} with $[f]_p = \alpha$ and $[f']_p = \beta$.
4. For every pair of functions (α, β), $\alpha : \mathbb{Z}_p \rightarrow \mathbb{Z}_p$ bijective, $\beta : \mathbb{Z}_p \rightarrow \mathbb{Z}_p \setminus \{0\}$, there are exactly p^p polynomial permutations $[f]_{p^2}$ on \mathbb{Z}_{p^2} with $[f]_p = \alpha$ and $[f']_p = \beta$.

Proof. (1) and (3) follow immediately from Lemma 2.5 for $n = 2$ and (2) and (4) then follow from Fact 2.7. □

2.9 Remark. Lemma 2.8 (2) implies that the inverse image of G_n under $\pi_n : F_{n+1} \rightarrow F_n$ is G_{n+1}. We denote by $\pi_n : G_{n+1} \rightarrow G_n$ the restriction of π_n to G_n. Then Corollary 2.4 implies, for all $n \geq 2$,

$$|\ker(\pi_n)| = p^{\beta(n+1)}.$$
2.10 Corollary. The number of polynomial permutations on \mathbb{Z}_{p^2} is

$$|G_2| = p!(p-1)^p p^p$$

and for $n \geq 3$ the number of polynomial permutations on \mathbb{Z}_{p^n} is

$$|G_n| = p!(p-1)^p p^p \sum_{k=3}^{n} \beta(k).$$

Proof. In the canonical representation of $f \in \mathbb{Z}[x]$ in Lemma 2.5, there are $p!(p-1)^p$ choices of coefficients mod p for f_0 and f_1 such that the criteria of Fact 2.7 for a polynomial permutation on \mathbb{Z}_{p^2} are satisfied. And for each such choice there are p^p possibilities for the coefficients of f_0 mod p^2. The coefficients of f_0 mod p^2 and those of f_1 mod p then determine the polynomial function mod p^2. So $|G_2| = p!(p-1)^p p^p$. The formula for $|G_n|$ then follows from Remark 2.9. \(\square\)

This concludes our review of polynomial functions and polynomial permutations on \mathbb{Z}_{p^n}. We will now introduce a homomorphic image of G_2 whose Sylow p-groups bijectively correspond to the Sylow p-groups of G_n for any $n \geq 2$.

3. A group between G_1 and G_2

Into the projective system of monoids (F_n, \circ) we insert an extra semi-group E between F_1 and F_2 by means of monoid epimorphisms $\theta : F_2 \to E$ and $\psi : E \to F_1$ with $\psi \theta = \pi_1$.

$$F_1 \xleftarrow{\psi} E \xleftarrow{\theta} F_2 \xleftarrow{\pi_2} F_3 \xleftarrow{\pi_3} \ldots$$

The restrictions of θ to G_2 and of ψ to the group of units H of E will be group-epimorphisms, so that we also insert an extra group H between G_2 and G_1 into the projective system of the G_i.

$$G_1 \xleftarrow{\psi} H \xleftarrow{\theta} G_2 \xleftarrow{\pi_2} G_3 \xleftarrow{\pi_3} \ldots$$

In the following definition of E and H, f and f' are just two different names for functions. The connection with polynomials and their formal derivatives suggested by the notation will appear when we define θ and ψ.

5
Definition. We define the semi-group \((E, \circ)\) by

\[
E = \{ (f, f') \mid f : \mathbb{Z}_p \to \mathbb{Z}_p, f' : \mathbb{Z}_p \to \mathbb{Z}_p \}
\]

with law of composition

\[
(f, f') \circ (g, g') = (f \circ g, (f' \circ g) \cdot g'),
\]

where \((f \circ g)(x) = f(g(x))\) and \(((f' \circ g) \cdot g')(x) = f'(g(x)) \cdot g'(x)\).

We denote by \((H, \circ)\) the group of units of \(E\).

3.1 Lemma.

1. The identity element of \(E\) is \((\iota, 1)\), with \(\iota\) denoting the identity function on \(\mathbb{Z}_p\) and 1 the constant function 1.

2. The group of units of \(E\) has the form

\[
H = \{ (f, f') \mid f : \mathbb{Z}_p \to \mathbb{Z}_p \text{ bijective}, f' : \mathbb{Z}_p \to \mathbb{Z}_p \setminus \{0\} \}.
\]

3. The inverse of \((g, g') \in H\) is

\[
(g, g')^{-1} = (g^{-1}, \frac{1}{g' \circ g^{-1}}),
\]

where \(g^{-1}\) is the inverse permutation of the permutation \(g\) and \(1/a\) stands for the multiplicative inverse of a non-zero element \(a \in \mathbb{Z}_p\), such that

\[
\left(\frac{1}{g' \circ g^{-1}}\right)(x) = \frac{1}{g'(g^{-1}(x))}
\]

means the multiplicative inverse in \(\mathbb{Z}_p \setminus \{0\}\) of \(g'(g^{-1}(x))\).

Note that \(H\) is just a wreath product (designed to act on the left) of the permutation group \(S_p\) and a cyclic group of \(p - 1\) elements (here appearing as the multiplicative group of units of \(\mathbb{Z}_p\)).

Now for the homomorphisms \(\theta\) and \(\psi\).

Definition. We define \(\psi : E \to F_1\) by \(\psi(f, f') = f\). As for \(\theta : F_2 \to E\), given an element \([g]_{p^2} \in F_2\), set \(\theta([g]_{p^2}) = ([g]_p, [g']_p)\) – this is well-defined by Lemma 2.8 (1).
3.2 Lemma.

(i) $\theta : F_2 \to E$ is a monoid-epimorphism.
(ii) The inverse image of H under $\theta : F_2 \to E$ is G_2.
(iii) The restriction of θ to G_2 is a group epimorphism $\theta : G_2 \to H$ with $|\ker(\theta)| = p^k$.
(iv) $\psi : E \to F_1$ is a monoid epimorphism and ψ restricted to H is a group epimorphism $\psi : H \to G_1$.

Proof. (i) follows from Lemma 2.8 (3) and (ii) from Fact 2.7. (iii) follows from Lemma 2.8 (4). Finally, (iv) holds because every function on \mathbb{Z}_p is a polynomial function and every permutation of \mathbb{Z}_p is a polynomial permutation. □

4. Sylow subgroups of H and G_n

We will first determine the Sylow p-groups of H. The Sylow p-groups of G_n for $n \geq 2$ then are obtained as the inverse images of the Sylow p-groups of H under the epimorphism $G_n \to H$.

4.1 Lemma. Let C_0 be the subgroup of S_p generated by the p-cycle $(0 1 2 \ldots p-1)$. Then one Sylow p-subgroup of H is

$$S = \{(f, f') \in H \mid f \in C_0, f' = 1\},$$

where $f' = 1$ means the constant function 1. The normalizer of S in H is

$$N_H(S) = \{(g, g') \mid g \in N_{S_p}(C_0), g' \text{ a non-zero constant }\}.$$

Proof. As $|H| = p!(p-1)^p$, and S is a subgroup of H of order p, S is a Sylow p-group of H. Conjugation of $(f, f') \in S$ by $(g, g') \in H$ (using the fact that $f' = 1$) gives

$$(g, g')^{-1}(f, f')(g, g') = (g^{-1}, \frac{1}{g' \circ g^{-1}})(f \circ g, g') = (g^{-1} \circ f \circ g, \frac{g'}{g' \circ g^{-1} \circ f \circ g})$$

The first coordinate of $(g, g')^{-1}(f, f')(g, g')$ being in C_0 for all $(f, f') \in S$ is equivalent to $g \in N_{S_p}(C_0)$. The second coordinate of $(g, g')^{-1}(f, f')(g, g')$ being the constant function 1 for all $(f, f') \in S$ is equivalent to

$$\forall x \in \mathbb{Z}_p \quad g'(x) = g'(g^{-1}(f(g(x)))$$

which is equivalent to g' being constant on every cycle of $g^{-1}fg$, which is equivalent to g' being constant on \mathbb{Z}_p, since f can be chosen to be a p-cycle. □
4.2 Lemma. Another way of describing the normalizer of S in H is

$$N_H(S) = \{(f, f') \in H \mid \exists k \neq 0 \; \forall a, b, f(a) - f(b) = k(a - b); \; f' \text{ a non-zero constant}\}.$$

Therefore, $|N_H(S)| = p(p - 1)^2$ and $[H : N_H(S)] = (p - 1)!(p - 1)^{p - 2}$.

Proof. Let $\sigma = (0 \; 1 \; 2 \ldots p - 1)$ and $f \in S_p$ then

$$f \sigma f^{-1} = (f(0) \; f(1) \; f(2) \ldots f(p - 1))$$

Now $f \in NS_p(C_0)$ if and only if, for some $1 \leq k < p$ \(f \sigma f^{-1} = \sigma^k \), i.e.,

$$f(0) \; f(1) \; f(2) \ldots f(p - 1) = (0 \; k \; 2k \ldots (p - 1)k),$$

all numbers taken mod p. This is equivalent to $f(x + 1) = f(x) + k$ or

$$f(x + 1) - f(x) = k$$

and further equivalent to $f(a) - f(b) = k(a - b)$. Thus k and $f(0)$ determine $f \in NS_p(C_0)$, and there are $(p - 1)$ choices for k and p choices for $f(0)$. Together with the $(p - 1)$ choices for the non-zero constant f' this makes $p(p - 1)^2$ elements of $N_H(S)$. □

4.3 Corollary. There are $(p - 1)!(p - 1)^{p - 2}$ Sylow p-subgroups of H.

4.4 Theorem. The Sylow p-subgroups of H are in bijective correspondence with pairs $(C, \bar{\varphi})$, where C is a cyclic subgroup of order p of S_p, $\varphi : \mathbb{Z}_p \to \mathbb{Z}_p \setminus \{0\}$ is a function and $\bar{\varphi}$ is the class of φ with respect to the equivalence relation of multiplication by a non-zero constant. The subgroup corresponding to $(C, \bar{\varphi})$ is

$$S_{(C, \bar{\varphi})} = \{(f, f') \in H \mid f \in C, \; f'(x) = \frac{\varphi(f(x))}{\varphi(x)}\}$$

Proof. Observe that each $S_{(C, \bar{\varphi})}$ is a subgroup of order p of H. Different pairs $(C, \bar{\varphi})$ give rise to different groups: Suppose $S_{(C, \bar{\varphi})} = S_{(D, \bar{\psi})}$. Then $C = D$ and for all $x \in \mathbb{Z}_p$ and for all $f \in C$ we get

$$\frac{\varphi(f(x))}{\varphi(x)} = \frac{\psi(f(x))}{\psi(x)}.$$

As C is transitive on \mathbb{Z}_p, the latter condition is equivalent to

$$\forall x, y \in \mathbb{Z}_p \; \frac{\psi(x)}{\varphi(x)} = \frac{\psi(y)}{\varphi(y)},$$

which means that $\varphi = k\psi$ for a nonzero $k \in \mathbb{Z}_p$.

There are $(p - 2)!$ cyclic subgroups of order p of S_p, and $(p - 1)^{p - 1}$ equivalence classes $\bar{\varphi}$ of functions $\varphi : \mathbb{Z}_p \to \mathbb{Z}_p \setminus \{0\}$. So the number of pairs $(C, \bar{\varphi})$ equals $(p - 1)!(p - 1)^{p - 2}$, which is the number of Sylow p-groups of H, by the preceding corollary. □
In the projective system of groups
\[G_1 \xleftarrow{\psi} H \xleftarrow{\theta} G_2 \xleftarrow{\pi_2} \ldots \xleftarrow{\pi_{n-1}} G_n \]
the kernel of the group epimorphism \(G_n \to H \) is a finite \(p \)-group for every \(n \geq 2 \), because, firstly, the kernel of \(\pi_{n-1} : G_n \to G_{n-1} \) is of order \(p^{\beta(n)} \) by Remark 2.9, and secondly, the kernel of \(\theta : G_2 \to H \) is of order \(p^\beta \) by Lemma 3.2 (iii). So the Sylow \(p \)-groups of \(G_n \) for \(n \geq 2 \) are just the inverse images of the Sylow \(p \)-groups of \(H \):

4.5 Theorem. Let \(n \geq 2 \). Let \(G_n \) be the group (with respect to composition) of polynomial permutations on \(\mathbb{Z}_{p^n} \). There are \((p-1)!(p-1)^{p-2} \) Sylow \(p \)-groups of \(G_n \). They are in bijective correspondence with pairs \((C, \bar{\varphi})\), where \(C \) is a cyclic subgroup of order \(p \) of \(S_p \), \(\varphi : \mathbb{Z}_p \to \mathbb{Z}_p \setminus \{0\} \) a function and \(\bar{\varphi} \) its class with respect to the equivalence relation of multiplication by a non-zero constant. The subgroup corresponding to \((C, \bar{\varphi})\) is

\[S_{(C, \bar{\varphi})} = \{ [f]_{p^n} \in G_n \mid [f]_p \in C, [f']_p(x) = \varphi([f]_p(x))/\varphi(x) \}. \]

One particularly easy to describe Sylow \(p \)-group of \(G_n \) corresponds to a constant function \(\varphi \) and the subgroup \(C \) generated by \((0 \ 1 \ 2 \ldots p-1)\) of \(S_p \). It is the inverse image of \(S \) defined in Lemma 4.1 and consists of those polynomial functions on \(\mathbb{Z}_{p^n} \) which are mod \(p \) a power of \((0 \ 1 \ 2 \ldots p-1)\), and whose derivative is constant \(1 \) mod \(p \).

One last remark: Each Sylow \(p \)-group of \(G_1 = S_p \) is isomorphic to \(C_p \), where \(C_p \) denotes the cyclic group of order \(p \). Also, it is not difficult to see (using the description of \(G_2 \) in [6]) that the Sylow \(p \)-groups of \(G_2 \) are of the form \(C_p \wr C_p \). It is an open question, posed by W. Herfort (personal communication), if every finite wreath product \(C_p \wr C_p \wr \ldots \wr C_p \) of cyclic groups of order \(p \) can be embedded in \(G_n \) for some \(n \).

References

[1] M. Bhargava, *P-orderings and polynomial functions on arbitrary subsets of Dedekind rings*, J. Reine Angew. Math., 490 (1997), pp. 101–127.

[2] J. V. Brawley and G. L. Mullen, *Functions and polynomials over Galois rings*, J. Number Theory, 41 (1992), pp. 156–166.

[3] L. Carlitz, *Functions and polynomials \(\text{mod} \ p^n \)*, Acta Arith., 9 (1964), pp. 67–78.
SYLOW GROUPS OF GROUPS OF POLYNOMIAL PERMUTATIONS

[4] Z. Chen, On polynomial functions from \(\mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2} \times \cdots \times \mathbb{Z}_{n_r} \) to \(\mathbb{Z}_m \), Discrete Math., 162 (1996), pp. 67–76.

[5] S. Frisch, When are weak permutation polynomials strong?, Finite Fields Appl., 1 (1995), pp. 437–439.

[6] ———, Polynomial functions on finite commutative rings, in Advances in commutative ring theory (Fez, 1997), vol. 205 of Lecture Notes in Pure and Appl. Math., Dekker, New York, 1999, pp. 323–336.

[7] J. Jiang, A note on polynomial functions over finite commutative rings, Adv. Math. (China), 39 (2010), pp. 555–560.

[8] J. J. Jiang, G. H. Peng, Q. Sun, and Q. Zhang, On polynomial functions over finite commutative rings, Acta Math. Sin. (Engl. Ser.), 22 (2006), pp. 1047–1050.

[9] G. Keller and F. Olson, Counting polynomial functions (mod \(p^n \)), Duke Math. J., 35 (1968), pp. 835–838.

[10] A. J. Kempner, Polynomials and their residue systems, Trans. Amer. Math. Soc., 22 (1921), pp. 240–266, 267–288.

[11] N. P. Liu and J. J. Jiang, Polynomial functions in \(n \) variables over a finite commutative ring, Sichuan Daxue Xuebao, 46 (2009), pp. 44–46.

[12] B. R. McDonald, Finite Rings with Identity, Dekker, 1974.

[13] A. Nechaev, Polynomial transformations of finite commutative local rings of principal ideals, Math. Notes, 27 (1980), pp. 425–432. transl. from Mat. Zametki 27 (1980) 885-897, 989.

[14] W. Nöbauer, Gruppen von Restpolynomidealrestklassen nach Primzahlpotenzen, Monatsh. Math., 59 (1955), pp. 194–202.

[15] ———, Polynomfunktionen auf primen Restklassen, Arch. Math. (Basel), 39 (1982), pp. 431–435.

[16] I. G. Rosenberg, Polynomial functions over finite rings, Glas. Mat., 10 (1975), pp. 25–33.

[17] Q. Wei and Q. Zhang, On strong orthogonal systems and weak permutation polynomials over finite commutative rings, Finite Fields Appl., 13 (2007), pp. 113–120.
SYLOW GROUPS OF GROUPS OF POLYNOMIAL PERMUTATIONS

[18] Q. J. Wei and Q. F. Zhang, *On permutation polynomials in two variables over* $\mathbb{Z}/p^2\mathbb{Z}$, *Acta Math. Sin. (Engl. Ser.)*, 25 (2009), pp. 1191–1200.

[19] Q. Zhang, *Polynomial functions and permutation polynomials over some finite commutative rings*, *J. Number Theory*, 105 (2004), pp. 192–202.

S. F.
Institut für Mathematik A
Technische Universität Graz
Steyrergasse 30
A-8010 Graz, Austria
frisch@tugraz.at

D. K.
Institut für Mathematik B
Technische Universität Graz
Steyrergasse 30
A-8010 Graz, Austria
krenn@math.tugraz.at