The effect of halogen bulb and light-emitting diode light curing units on temperature increase and fibroblast viability
[version 1; peer review: 1 approved, 1 approved with reservations]

Georgia Memari Trava¹, Juliane Almeida Santos¹, Lucas Paula Ramos¹,², Pamela Beatriz Rosário Estevam dos Santos¹, Amjad Abu Hasna³, Karen Cristina Yui¹, Adriano Bressane⁴, Luciane Dias de Oliveira¹, Marianne Spalding¹

¹Department of Biosciences and Oral Diagnosis, São Paulo State University (Unesp), Institute of Science and Technology, São Jose dos Campos, São Paulo, 12245000, Brazil
²Department of Higher Education (ITES), Taubaté, São Paulo, 12090000, Brazil
³Department of Restorative Dentistry, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos, São Paulo, 12245000, Brazil
⁴Department of Environmental, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos, São Paulo, 12247016, Brazil

First published: 25 Nov 2020, 9:1369
https://doi.org/10.12688/f1000research.25456.1
Latest published: 25 Nov 2020, 9:1369
https://doi.org/10.12688/f1000research.25456.1

Abstract

Background: This study aimed to compare the temperature increase produced by halogen bulb (HAL) and light-emitting diode (LED) light curing units (LCUs) by irradiating dentin discs (0.5 mm and 1 mm thickness), and to evaluate their cytotoxic effects on fibroblast culture in the presence of dentin discs due to the increasing demand on resin composite restorations and teeth bleaching for esthetic purposes.

Methods: A total of 20 bovine incisors were used to obtain dentin discs and divided into four experimental groups (n=10): HAL0.5: irradiation with halogen-tungsten bulb Curing Light XL 3000 at an intensity of 470 mW/cm² over a dentin disc of 0.5 mm; LED0.5: irradiation with LED Optilight Max (GNATUS- Ribeirão Preto, SP, Brazil) at an intensity of 1200 mW/cm² over a dentin disc of 0.5 mm; HAL1: irradiation as in HAL0.5 but over a dentin disc of 1 mm; LED1: irradiation as in LED0.5 but over a dentin disc of 1 mm. The temperature increase was measured using a digital thermometer and the cytotoxicity was evaluated using an MTT assay with a mouse fibroblast cell line (L929). Parametric Data were analyzed by ANOVA and Tukey and non-parametric data were analyzed by Kruskal Wallis with Conover-Iman for non-parametric data (all with α=0.05).
Results: A significant statistical difference was found between the groups HAL0.5 and HAL1 and both were different of LED0.5 and LED1 which presented higher temperature. All the experimental groups were different of the control group (without irradiation), and promoted reduction of cellular viability.

Conclusions: HAL LCU promoted a lower temperature change in the dentin compared to LED, regardless of the dentin thickness (0.5-1 mm). Both HAL and LED LCUs decreased fibroblast viability; however, LED promoted more significant cytotoxic effects.

Keywords
Halogen light, Light-emitting-diode, mouse fibroblasts, temperature increase
Introduction

Dentistry patients are looking for esthetically pleasing smiles and increasingly demanding resin composite restorations and teeth bleaching (Al Otaibi et al., 2020; Sebold et al., 2020). These processes require photopolymerization and photoactivation by halogen bulb (HAL) and light-emitting diode (LED) light curing units (LCUs) (Gallinari et al., 2020; Pieniak et al., 2014). However, these LCUs can increase the temperature and induce thermal transfer, depending on the light source intensity and type (Armellin et al., 2016; Kim et al., 2017).

The elevated temperature resulting from daily clinical procedures can cause an increase in pulp temperature, with the subsequent development of symptoms such as hyperalgesia, dentin hypersensitivity, and spontaneous typical pain of acute pulpitis (Vinagre et al., 2019). The thermal change causes heat-induced bone tissue injury (Eriksson & Albrektsson, 1983) and pulp tissue necrosis, pathology or alteration (Matalon et al., 2010; Nyborg & Brännström, 1968).

Additionally, some thermal injuries may affect the surrounding tissue cells (Baldissara et al., 1997) and form lesions in the odontoblastic layer, which leads to its degeneration, protein coagulation and fluid expansion in the dentinal tubules (Vinagre et al., 2019). Some contributing factors affect the extent of injury, such as the remaining dentin thickness, the type of the LCU, the type of ultrasonic device, or the type of water spray used (Kwon et al., 2013).

Therefore, controlling the temperature increase during the emission of LCUs is an important factor in the use of photopolymerizers. The objective of this study was to compare the temperature increase produced by HAL and LED LCUs by irradiating dentin discs (0.5 mm and 1 mm thickness), and to evaluate their cytotoxic effects on fibroblast culture in the presence of dentin discs.

Methods

Specimen preparation

A total of 20 bovine incisors were used in this study, the crowns were separated from the roots 2 mm below the level of cemento-enamel junction and then embedded in self-curing acrylic resin (TDV, Santa Catarina, Brazil) in a prefabricated PVC mold. Later, longitudinal dentin discs (without enamel) were obtained (10 discs of 0.5 mm and 10 discs of 1 mm) by sectioning the crowns using diamond disc (0.3 mm thickness) and an EXTEC cutting machine (Labpol 8-12, Extec Corp®, Enfield, Connecticut, USA) (Figure 1).

Light irradiation and temperature measuring

A digital thermometer (MT-507 Minipa, São Paulo) was used to measure the temperature variation during light irradiation with HAL and LED LCUs (Table 1). The base of the specimen was covered with an insulating thermal paste (Implastec, Votorantim Ind. Brasileira, São Paulo, SP, Brazil), and the tip of the thermocouple surrounded by paste was placed in contact with the lower wall of each dentin disc. The specimens

Figure 1. Schematic illustration of dentin discs. (A) the bovine tooth was cross-cut on the level of cemento-enamel junction of the lateral surface and the enamel was removed totally with sand paper. (B) the crown was fixed in self-curing acrylic resin JET (fabrication) in a PVC prefabricated mold. (C) Longitudinal discs were obtained (10 discs of 0.5 mm and 10 discs of 1 mm).
were irradiated for 20 s and the temperature was measured one time for each specimen obtaining 10 measurements for each experimental group (n= 10).

MTT analysis
Mouse fibroblast cells (L929) (Rio de Janeiro Cell Bank, APABCAM, RJ, Brazil) were grown in cell culture flasks (TPP, Switzerland) containing Dulbecco’s modified Eagle medium (DMEM) (LGC Biotecnologia, Cotia, Brazil) and supplemented with 10% fetal bovine serum (Invitrogen, New York, USA) at 37°C and 5% CO₂ with atmospheric humidity. Next, 2×10⁵ cells/mL were cultivated in 96-well microplates (TPP, Trasadingen, Switzerland) in the same medium for 24 hours for cell adhesion. DMEM was used as a control group (0 mg/mL).

The treatment was carried-out for the groups (n= 10), in which each dentin disc was positioned over a well containing 100 µL of cell suspension in DMEM and light irradiation performed (Table 1). This positioning was to simulate the clinical situation when the LCU irradiates the dentin and this irradiation may affect the fibroblast in the adjacent soft tissues (Figure 2).

Next, MTT solution (100 µL/well) was added to the 96-well plate and the plates were incubated at 37°C with 5% CO₂ for 1 h. Then, the MTT solution was discarded and 100 µL/well of dimethylsulfoxide (DMSO; Sigma, Missouri, USA) was added and the plates were incubated again for 10 min and shaken for 10 min. The absorbance of the wells was measured using a spectrophotometer at 570 nm and data generated were converted to cell viability percentage using the formula: \(\text{OD} = \frac{\text{OD of each group} \times 100}{\text{OD of control group}} \) (OD = optical density).

Cytotoxicity analysis
All groups were significantly different to the control group, and promoted reduction of cellular viability. There was no significant difference between the groups HAL0.5 (cell viability 43.5%) and HAL1 (cell viability 41.1%), and between the groups LED0.5 (cell viability 17.1%) and LED1 (cell viability 17.3%). However, both HAL0.5 and LED0.5 were significantly different to LED0.5 and LED1, which presented higher temperatures. However, no significant difference was observed between the two LED groups (Figure 3).

Results

Table 1. The protocol of light irradiation of each experimental group.

Groups	Protocol (n=10 per group)
HAL0.5	Irradiation with Curing Light XL 3000 (3M) halogen-tungsten bulb at an intensity of 470 mW/cm² using active fiber optic tip (7 mm diameter) emitting light wavelength of 400 to 500 nm for 20 s over a dentin disc of 0.5 mm.
LED0.5	Irradiation with Optilight Max (GNATUS- Ribeirão Preto, SP, Brazil) LED at an intensity of 1200 mW/cm², emitting a light wavelength of 420 to 480 nm for 20 s over a dentin disc of 0.5 mm.
HAL1	Irradiation with aforementioned halogen-tungsten bulb at an intensity of 470 mW/cm² using active fiber optic tip (7 mm diameter) emitting light wavelength of 400 to 500 nm for 20s over a dentin disc of 1 mm.
LED1	Irradiation with Optilight Max LED at an intensity of 1200 mW/cm² with emitting light wavelength of 420 to 480 nm for 20 s over a dentin disc of 1 mm.

Statistical analysis
After normality testing, data were analyzed by one-way ANOVA with Tukey’s post hoc test for parametric data or Kruskal-Wallis with post hoc Conover-Iman test for non-parametric data (α=0.05) using GraphPad Prism 6 (La Jolla, CA, USA).

Discussion
This paper investigated the heating generated by HAL and LED when irradiating dentin discs of thickness 0.5 mm and 1 mm of for 20 seconds. Hannig & Bott (1999) obtained different readings were obtained (2.9 to 7.9°C) when they evaluated six LCUs, including HAL, for 40, 10 and 5 s, finding that significantly higher pulp chamber temperatures were obtained when compared to conventional LCUs like Heliolux II. Uhl et al. (2003) evaluated the heating generated after resin composite photopolymerization and found that LED LCUs represent a viable alternative to HAL LCUs for dental composite photopolymerization due lower temperature increases than LED increases within the composite. Different results were obtained in the present study, as HAL generated lower temperature increases than LED in dentin. Conversely, another study showed no difference between HAL and LED LCUs in generating heat (Drost et al., 2019). These different results in the literature may be related to the kind of temperature sensor and the methodology used (Jiang et al., 2019).

Both LED and HAL LCUs negatively influence cellular viability (Passarelli et al., 2020); however, there is insufficient evidence that they cause pulp inflammation/cytotoxicity (Benetti et al., 2018). In the present study, it was verified that LED was more cytotoxic than HAL LCUs; however,
Gonçalves et al. (2016) found that LED had minimal cytotoxicity. This result may be influenced by the dentin thickness, as Daronch et al. (2007) found that the increase in pulp temperature was directly related to the remaining dentin thickness. In the present study, the application of LED light to the thickest dentin disc (1.0 mm) was less cytotoxic than the thinnest dentin disc (0.5 mm).

The divergence observed in the present work in relation to the dentin thickness, light source and the possible greater protection that it can confer to the pulp could be related to the wavelength that the devices emit. The HAL LCU used emits a wavelength of 400–500 nm, and the dental structure is capable of absorbing light in a spectrum from 350–400 nm, meaning it can thus exhibit fluorescence at 410–500 nm. Therefore, the
HAL LCU employed herein emits light at an absorbable wavelength for the dentin disc. Thus, the greater the dentin thickness, the greater the absorbance of light and the higher the concentration of photons, thus explaining the increase in the temperature of the disc (Neumann et al., 2005).

This study found that HAL LCU promoted a lower temperature change in the dentin compared to LED, regardless of the dentin thickness (0.5–1 mm). HAL and LED LCUs decreased fibroblast viability; however, LED resulted in greater cytotoxicity.

Data availability
Underlying data
Harvard Dataverse: Replication Data for: Dataset. https://doi.org/10.7910/DVN/M4FYVV (Paula Ramos, 2020).

File ‘Dataset.tab’ contains raw data for cell viability and temperature generated in the present study.

Data are available under the terms of the Creative Commons Zero “No rights reserved” data waiver (CC0 1.0 Public domain dedication).

References

Al Otaibi FL, Althumairy AF, Al Ahmadi BT, et al.: Patients' preferences on different types of esthetic treatment in saudi arabia. J Contemp Dent Pract. 2020; 21(1): 62-67. PubMed Abstract | Publisher Full Text
Armellin E, Bovesecchi G, Coppa P, et al.: LED curing lights and temperature changes in different tooth sites. Biomed Res Int. 2016; 2016: 1894672. PubMed Abstract | Publisher Full Text | Free Full Text
Baldessara P, Catapano S, Scotti R: Clinical and histological evaluation of thermal injury thresholds in human teeth: a preliminary study. J Oral Rehabil. 1997; 24(11): 791-801. PubMed Abstract | Publisher Full Text
Benetti F, Lemos CAA, de Oliveira Gallinari M, et al.: Influence of different types of light on the response of the pulp tissue in dental bleaching: a systematic review. Clin Oral Investig. 2018; 22(4): 1825-1837. PubMed Abstract | Publisher Full Text
Daronch M, Rueggeberg FA, Hall G, et al.: Effect of composite temperature on in vitro intrapulpal temperature rise. Dent Mater. 2007; 23(10): 1283-1288. PubMed Abstract | Publisher Full Text
Drest T, Reimann S, Frentzen M, et al.: Effectiveness of photopolymerization in composite resins using a novel 445-nm diode laser in comparison to LED and halogen bulb technology. Lasers Med Sci. 2019; 34(4): 729–736. PubMed Abstract | Publisher Full Text
Eriksson AR, Albrektsson T: Temperature threshold levels for heat-induced bone tissue injury: a vital-microscopic study in the rabbit. J Prosthet Dent. 1983; 50(1): 101–107. PubMed Abstract | Publisher Full Text
Gallinari M, de Q, Contra LTA, et al.: Evaluation of the color change and tooth sensitivity in treatments that associate violet LED with carbamide peroxide 10 %. A randomized clinical trial of a split-mouth design. Photodiagnosis Photodyn Ther. 2020; 30: 101679. PubMed Abstract | Publisher Full Text
Gonçalves RS, Costa CAS, Soares DGS, et al.: Effect of different light sources...
and enamel preconditioning on color change, H2O2 penetration, and cytotoxicity in bleached teeth. Oper Dent. 2016; 41(1): 83–92.

Hannig M, Bott B: In-vitro pulp chamber temperature rise during composite resin polymerization with various light-curing sources. Dent Mater. 1999; 15(4): 275–281.

Jiang X, Lin C, Huang Y, et al.: Hybrid Fiber Optic Sensor, Based on the Fabry Perot Interference, Assisted with Fluorescent Material for the Simultaneous Measurement of Temperature and Pressure. Sensors (Basel). 2019; 19(5): 1097.

Kim MJ, Kim RJY, Ferracane J, et al.: Thermographic analysis of the effect of composite type, layering method, and curing light on the temperature rise of photo-cured composites in tooth cavities. Dent Mater. 2017; 33(10): e373–e383.

Kwon SJ, Park YJ, Jun SH, et al.: Thermal irritation of teeth during dental treatment procedures. Restor Dent Endod. 2013; 38(3): 105–112.

Matalon S, Slutsky H, Wassersprung N, et al.: Temperature rises beneath resin composite restorations during curing. Am J Dent. 2010; 23(4): 223–226.

Neumann MG, Miranda WG, Schmitt CC, et al.: Molar extinction coefficients and the photon absorption efficiency of dental photoinitiators and light curing units. J Dent. 2005; 33(6): 525–532.

Nyborg H, Brännström M: Pulp reaction to heat. J Prosthet Dent. 1968; 19(6): 605–612.

Passarelli PC, Saccomanno S, De Angelis P, et al.: Study of cellular toxicity in vitro of two resins for orthodontic use. Eur Rev Med Pharmacol Sci. 2020; 24(2): 930–934.

Paula Ramos L: Replication Data for: Dataset. Harvard Dataverse, V3. 2020. http://www.doi.org/10.7910/DVN/M4FYVY

Sebold M, Lins RB, André CB, et al.: Flowable and Regular Bulk-Fill Composites: A Comprehensive Report on Restorative Treatment. Int J Periodontics Restorative Dent. 2020; 40(2): 293–300.

Uhl A, Mills RW, Jandt KD: Polymerization and light-induced heat of dental composites cured with LED and halogen technology. Biomaterials. 2003; 24(10): 1809–1820.

Vinagre A, Ramos JC, Rebelo C, et al.: Pulp Temperature Rise Induced by Light-Emitting Diode Light-Curing Units Using an Ex Vivo Model. Materials (Basel). 2019; 12(3): 411.
Afnan O Al-Zain
Operative and Esthetic Dentistry Division, Restorative Dentistry Department, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia

Dalea M. Bukhary
Oral and Maxillofacial Prosthodontics Department, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia

The authors investigated the effect of heat generated from a quartz-tungsten-halogen and a light-emitting-diode curing unit on the temperature increase and fibroblast cell viability by irradiating 0.5-mm and 1-mm dentin slices. The article topic is important and interesting. A few points need to be justified, and sections of the methods need to be clarified.

Title
○ Authors should use scientific terminology and abbreviations. According to the literature, the scientific term for “Halogen bulb” light is “quartz-tungsten-halogen” and the correct abbreviation is “QTH”. Authors need to kindly correct this by using the scientific term and abbreviation throughout the article.

Introduction
○ In the last sentence of the first paragraph, the authors mentioned that “... LCUs can increase temperature and induce thermal transfer depending on the light source and intensity and type”; nevertheless, the LCUs used in this study had approximately a 60% difference in the light irradiance. Therefore, it was not clear why authors used units with such vast differences in irradiance values. This point will be further addressed in the methods.

○ The authors used the term “intensity”. However, this term should no longer be used. The updated term is “irradiance”. A Glossary of Terms for Light Curing was published in 2014. Authors may kindly find these terms in several publications, and the following research article is one of them: Jeffrey A Platt, Richard B Price; Light Curing Explored in Halifax. Oper Dent November 1 2014; 39 (6): 561–563. DOI: https://doi.org/10.2341/1559-2863-39.6.561
Materials and Methods

- I appreciate the authors' novelty in the methods, but it does not simulate in vivo or clinical situations. The authors placed a dentin slice over the well-plate, which resulted in a distance between the slice and cells. It seems that this design would test the amount of light transmission through the dentin slices rather than simulating clinical situations. Did the authors consider using a larger well-plate and placing the dentin slice inside the well? This may better simulate the clinical situation where the dentin is closer to the cells since the soft tissue surrounds the tooth structure. Therefore, when light curing, the emitted light hits the tooth and the surrounding tissue simultaneously. So, it is more clinically relevant if a larger well-plate is used and the dentin slice is placed inside the well. Furthermore, authors could use different slice thicknesses as they did in this study. Authors may consider this for future research. More details, justification, or the thinking process behind the methodology would be appropriate for the readers to relate to clinical settings.

- Authors need to kindly clarify a few things to the readers based on the methodology; how does dentin's thickness relate to temperature increase? Does 0.5- and 1-mm slice represent curing? i.e., which class does it represent curing? a class II or a class III resin-based composite restoration or another clinical situation? What is the degree of insulating vs. presence of composite layer on top of dentin? The authors mentioned a few of these points. However, it is suggested for authors to mention more details and address these points.

- It is not clear why the authors obtained one section per tooth? Since teeth have variations among them, it would have been more relevant for authors to consider collecting both slices (0.5 and 1 mm) from the same tooth or collect more slices per tooth and account for within-sample variation during the statistical analysis.

- It is not clear why authors obtained vertical sections instead of horizontal if the sections were placed flat on top of the well-plate. Also, the dentin histology would differ from the top to the bottom of the specimens. Did the authors consider that during the study design? How would the authors justify their sections? Authors need to add justifications in the discussion section.

- It is not clear how the specimens were stored and tested. The authors need to add details. In what medium were the dentin slices stored? For how long were they stored? were the dentin slices hydrated or dehydrated before testing? These details may impact the light transmission, and it is important to mention them in the methods.

- The authors had a control group without irradiation. However, it would be relevant to include an additional control group with irradiated cells without the dentin slice's presence.

- It is not clear why the authors selected 20 seconds to light cure the dentin slices. The authors needed to justify this point.

- QTH Irradiance values are approximately half that of the LED. Therefore, it would be more relevant to double or triple the curing time when light curing with the QTH or use different units with relatively similar irradiance values. Although the literature is conflicting regarding applying the law of reciprocity on light-curing resin-based composites, the concept is relatively valid, according to some publications. The radiant exposure is the amount of...
energy the restoration receives over time \[\text{radiant exposure (J/cm}^2\) = irradiance \times \text{time}\]; therefore, we would expect the amount of radiant exposure the dentin slices received using the LED is double or more than the QTH unit.

- In the cytotoxicity analysis, the authors needed to consider having an additional control group without the disks, as mentioned previously.
- The authors did not mention the average dimensions of the dentin slices. What was the diameter of the slices relative to the diameter of each well in the 96-well plate?

Results
- Figure 3: the control group is missing. Also, the authors need to consider adding another control group with irradiated cells with no dentin slice over the well. However, it may be challenging at this point but may be considered in future studies.
- Figure 4: there is a space without a bar present between the control bar and the LED 1-mm bar. This space is best to be removed. The control here is cells without light irradiation; as mentioned in Figure 3 comment, adding a control group of irradiated cells without dentin slices would be relevant.
- Figures 3 and 4: it is best to place the letter "A" on the bar with the highest significant bar, followed by "B", and then "C" on the lowest significant bar. It would be easier for the reader to follow.
- It would have been nice for authors to show cell morphology images for the different groups. The cell morphology images may be considered in future studies.
- The authors would expect significant differences between the QTH and LED groups due to the significant differences in irradiance values between units.

Discussion
- Authors should discuss the results of their study first before discussing other research articles. Readers would want to know the justification of their study first.
- Justifications for the mentioned comments would best be added in the discussion section.

Conclusion
- The conclusion is accurate to the results and aligned with the aim.

Overall, the research is valuable, and considering the suggested comments would be beneficial for future research.

References
1. Platt J, Price R: Light Curing Explored in Halifax. *Operative Dentistry*. 2014; 39 (6): 561-563

Publisher Full Text

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Partly

Are sufficient details of methods and analysis provided to allow replication by others?
Partly

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Partly

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Dental light-curing units, resin-based composites, dental adhesives.

We confirm that we have read this submission and believe that we have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however we have significant reservations, as outlined above.

© 2020 Al-Nahlawi T. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Talal Al-Nahlawi
Department of Endodontics and Operative Dentistry, Syrian Private University, Damascus, Syria

This study aimed to evaluate a relevant topic in operative dentistry nowadays because of the increased demand and need for light curing units in many procedures including photopolymerization of resin composite restorations and for teeth bleaching despite the heavy discussion about the light curing efficacy on improving the bleaching.

Introduction:
- The authors were able to successfully approach these topics in the introduction section. The objective defined at the end of this section was clearly reported.

Material and methods:
- This study protocol is well described and standardized. The light irradiation and
temperature measuring method were described in the literature in other studies. I think it would be more appropriate to cite the original studies, however, it is not of great relevance as a number of these studies were cited in the discussion section. The same should be followed in the MTT assay, it is not a unique test of this study, I think in the future, all the original studies of these tests should be cited.

- I should congratulate the authors for the schematic illustration of MTT assay, this part of the test of applying the dentin discs over the 96-well plate is innovative, or at least, to the best of my knowledge, it was not used in any other study.

Results and Discussion:
- Even I don’t agree with the results. However, they were well described and illustrated. And the fact the LED light curing was more cytotoxic and generated more thermal changes than the Halogen light curing unit may be explained by the LED unit intensity used in the study (1200 mW/cm²) which relatively 3 times the intensity of the halogen light curing unit used in this study 470 mW/cm²). Why did the authors use light curing units with great intensity difference?

- Why did the authors not evaluate the laser as well? What about laser-induced photopolymerization?

- There are divergent results in the literature about the thermal changes caused by LED and halogen light curing units, however, the common concept is that the LED generates less thermal changes (Mahant RH et al. 2016). Still, the results of this study answered its objective, and the conclusion is supported by the findings.

I think this study has the potential to be indexed justly to alert the importance of more studies about this topic of great relevance.

References
1. Mahant RH, Chokshi S, Vaidya R, Patel P, et al.: Comparison of the Amount of Temperature Rise in the Pulp Chamber of Teeth Treated With QTH, Second and Third Generation LED Light Curing Units: An In Vitro Study. *J Lasers Med Sci*. 2016; 7 (3): 184-191 PubMed Abstract | Publisher Full Text

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Endodontics and Operative Dentistry

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com