Dear Editor,

Pneumothorax and pneumomediastinum may complicate acute respiratory distress syndrome (ARDS). Early studies in ARDS caused by coronavirus disease 2019 (COVID-19) suggested increased pneumothorax incidence but lacked relevant controls [1, 2]. We investigated whether COVID-19 ARDS is associated with more radiographic pneumothorax and/or pneumomediastinum than pre-pandemic ARDS and whether pneumothorax/pneumomediastinum in COVID-19 ARDS is associated with worse outcomes or differing treatments.

This retrospective cohort study included adult ARDS patients admitted between 2017 and 2021 to a 23-hospital system in the Intermountain West. We abstracted data from the electronic health record and used natural language processing to identify radiographic pneumothorax and/or pneumomediastinum [3, 4]. We performed bivariate and adjusted analyses to compare patients with pre-pandemic ARDS (2017–2020) to patients with a positive SARS-CoV-2 polymerase chain reaction (PCR) result proximate to ARDS (2020–2021) (see also Supplemental Methods).

Comparing 2,211 patients with COVID-19 ARDS and 5,522 with pre-pandemic ARDS (Table 1 and Supplemental Fig. 1), unadjusted incidence of pneumothorax/pneumomediastinum was similar (24% vs. 22.5%, p < 0.148). After adjustment, pneumothorax/pneumomediastinum risk was significantly higher in COVID-19 vs. pre-pandemic ARDS (adjusted odds ratio 1.31, 95% CI 1.13–1.52, p < 0.001). COVID-19 ARDS patients had significantly higher rates of pneumomediastinum but not pneumothorax in unadjusted and adjusted analyses (Table 1 and Supplemental Table 2). Compared to COVID-19 ARDS, chest tube placement for pre-pandemic pneumothorax patients was more frequent (52.1% vs. 38.2%, p < 0.001), occurred earlier (−0.4 vs. 1.3 days, p < 0.001) and remained in place longer (9.9 days vs. 7 days, p < 0.001).

Mortality rates in COVID-19 ARDS were higher than pre-pandemic ARDS (39.4% vs. 28.5%, p < 0.001). Among COVID-19 ARDS patients, we observed higher 30-day mortality rates with pneumothorax/pneumomediastinum (49.5% vs. 36.2%, p < 0.001), while we observed a lower mortality in pre-pandemic ARDS patients with pneumothorax/pneumomediastinum (24.8% vs. 29.5%, p < 0.001). Adjusted analyses yielded similar results (Supplemental Table 3).

Prior to pneumothorax/pneumomediastinum, both COVID-19 and pre-pandemic ARDS cohorts had similar receipt of invasive mechanical ventilation (77% vs. 74%, p = 0.17). COVID-19 patients received higher maximum PEEP (16 vs. 10 mmHg, p < 0.001). The median duration of invasive ventilation prior to pneumothorax/pneumomediastinum was much longer in the COVID-19 patients (2 vs. 0.3 days, p < 0.001; Supplemental Fig. 2), as was time from admission until pneumothorax/pneumomediastinum (7.3 vs. 1.3 days, p < 0.001).
Study strengths include comparison of large, multi-hospital COVID-19 and control ARDS cohorts. Limitations include the possibility of unmeasured confounding and potentially counting radiographic pneumothorax/pneumomediastinum events that were "clinically insignificant" or not due to acute lung injury. We note a substantially higher rate of pneumothorax/pneumomediastinum compared with other published cohorts (Supplemental Table 5). Our detection is more sensitive than clinically reported as all events are included, not just pneumothorax/pneumomediastinum > 2 cm or presence in clinical notes, which may limit generalizability. The relationships between radiographic and clinically significant pneumothorax/pneumomediastinum, pneumothorax/pneumomediastinum risk factors (including use of guideline-endorsed “high positive end-expiratory pressure (PEEP)” ventilation [5]), and pneumothorax management warrant further study.

In conclusion, COVID-19 ARDS patients experienced similar rates of radiographic pneumothorax but more pneumomediastinum. Chest tubes were used less frequently and placed later in COVID-19 ARDS than in pre-pandemic ARDS. Radiographic pneumothorax/
Table 1 (continued)

	Overall	Prepandemic	p	Overall	Prepandemic	p	Overall	Prepandemic	p
	COVID-19	Prepandemic		COVID-19	Prepandemic		COVID-19	Prepandemic	
Invasive mechanical ventilation	872 (39.5)	2902 (52.6)	< 0.001	639 (38.1)	2194 (51.3)	< 0.001	233 (43.9)	708 (57.3)	< 0.001
Outcomes									
Pneumomediastinum	288 (13)	188 (3.4)	< 0.001	288 (54.2)	188 (15.2)	< 0.001			
Pneumothorax	448 (20.3)	1201 (21.7)	0.158	448 (84.4)	1201 (96.9)	< 0.001			
Pneumothorax or pneumomediastinum	531 (24)	1240 (22.5)	0.148						
Days from admission until pneumothorax or pneumomediastinum	7.3 [2.9, 12.6]	1.3 [0.1, 5.1]	< 0.001	7.3 [2.9, 12.6]	1.3 [0.1, 5.1]	< 0.001			
Hospital Length of Stay (days)	14.5 [9.5, 23.7]	9.2 [5.3, 15.4]	< 0.001	13.1 [8.9, 21]	8.3 [4.9, 13.6]	< 0.001	20.8 [12.8, 33.4]	13.9 [8.4, 21]	< 0.001
30 Day Mortality	871 (39.4)	1572 (28.5)	< 0.001	608 (36.2)	1265 (29.5)	< 0.001	263 (49.5)	307 (24.8)	< 0.001
ICU Length of Stay	10.4 [6, 18.4]	4.9 [2.5, 9.9]	< 0.001	9 [5.2, 15.2]	4.3 [2.2, 8.6]	< 0.001	17.1 [10.1, 27.3]	7.9 [4, 14.4]	< 0.001
Management of pneumothorax and/or pneumomediastinum									
Chest tube placed	203 (38.2)	646 (52.1)	< 0.001						
Days from admission until chest tube placement	8.6 [3.9, 15.9]	0.9 [0.2, 3.8]	< 0.001						
Duration of chest tube (days)	9.9 [4.9, 17]	7 [4.1, 11.5]	< 0.001						
Treatment occurring prior to pneumothorax/pneumomediastinum									
Nasal canula utilized	228 (44)	598 (56.5)	< 0.001						
High-flow nasal canula utilized	402 (77.6)	179 (16.9)	< 0.001						
Non-invasive ventilation utilized	251 (48.5)	368 (34.8)	< 0.001						
Invasive ventilation utilized	400 (77.2)	783 (74)	< 0.001						
Positive pressure ventilation	481 (92.9)	918 (86.8)	< 0.001						
Nasal canula days	0 [0, 0.9]	0.2 [0, 2]	< 0.001						
High-flow nasal canula	0.6 [0, 3.5]	0 [0, 0]	< 0.001						
Non-invasive ventilation days	0 [0, 0.7]	0 [0, 0.3]	< 0.001						
Invasive ventilation days	2 [0, 8.4]	0.3 [0, 2.6]	< 0.001						
Maximum FiO₂	100 [100, 100]	100 [65.5, 100]	< 0.001						
Maximum PEEP	16 [14, 20]	10 [8, 12]	< 0.001						
Maximum plateau pressure	34 [30, 40]	24 [19, 30]	< 0.001						
Maximum peak inspiratory pressure	38 [28, 45]	29 [23, 36]	< 0.001						
pneumomediastinum in COVID-19 ARDS patients is associated with an increased mortality.

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1007/s00134-022-06816-9.

Author details
1 Division of Pulmonary and Critical Care Medicine, Intermountain Medical Center, Bldg 4, Floor 6, 5121 Cottonwood St, Murray, UT 84107, USA. 2 Division of Pulmonary and Critical Care Medicine, University of Utah, Salt Lake City, UT, USA.

Acknowledgements
We would like to acknowledge Kyle Henry MD for assistance with proofreading the manuscript, Colin Grissom MD and James Orme MD for assistance in design of the study and Jason R. Jacobs for assistance with the data queries. The study was determined to be exempt from review by the Intermountain Healthcare IRB #1051342.

Author contributions
All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Daniel Knox. The first draft of the manuscript was written by Alex Brunhoeber and Daniel Knox and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Funding
National Institutes of Health (K23GM129661).

Data availability
To protect patient privacy and comply with relevant regulations, identified data are unavailable. Requests for deidentified data from qualified researchers with appropriate ethics board approvals and relevant data use agreements will be processed by the Intermountain Office of Research, officeofresearch@imail.org.

Declarations
Conflicts of interest
SMB chairs a DSMB for Hamilton Ventilators and has received research funding from National Institutes of Health, Department of Defense, and Centers for Disease Control and Prevention. IDP reports grant support from NIH, Centers from Disease Control and Prevention, Intermountain Research and Medical Foundation, and Janssen Pharmaceuticals, and payments to his institution for trial enrollment from Asahi Kasei Pharma and Regeneron. Otherwise no conflicts for any other authors.

Open Access
This article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License, which permits any non-commercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc/4.0/.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Accepted: 4 July 2022
Published: 5 August 2022

References
1. Belletti A, Todaro G, Valsecchi G et al (2021) Barotrauma in Coronavirus Disease 2019 patients undergoing invasive mechanical ventilation: a systematic literature review. Crit Care Med. https://doi.org/10.1097/CCM.000000000005283
2. Shrestha DB, Sedhai YR, Budhathoki P et al (2022) Pulmonary barotrauma in COVID-19: a systematic review and meta-analysis. Ann Med Surg 73:103221. https://doi.org/10.1016/j.amsu.2021.103221
3. Afshar M, Joyce C, Oakey A et al (2018) A computable phenotype for acute respiratory distress syndrome using natural language processing and machine learning. AMIA Annu Symp Proc AMIA Symp 2018:157–165
4. Mayampurath A, Churpek MM, Su X et al (2020) External validation of an acute respiratory distress syndrome prediction model using radiology reports. Crit Care Med 48:e791–e798. https://doi.org/10.1097/CCM.000000000004668
5. Fan E, Del Sorbo L, Goligher EC et al (2017) An Official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine Clinical Practice Guideline: mechanical ventilation in adult patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 195:1253–1263. https://doi.org/10.1164/rccm.201703-0548ST