Targeting of epigenetic regulators in neuroblastoma

Luz Jubierre¹, Carlos Jiménez¹, Eric Rovira¹, Aroa Soriano¹, Constantino Sábado², Luis Gros², Anna Llort², Raquel Hladun¹, Josep Roma¹, Josep Sánchez de Toledo¹, Soledad Gallego¹,² and Miguel F. Segura¹

Abstract

Approximately 15,000 new cases of pediatric cancer are diagnosed yearly in Europe, with 8–10% corresponding to neuroblastoma, a rare disease with an incidence of 8–9 cases per million children <15 years of age. Although the survival rate for low-risk and intermediate-risk patients is excellent, half of children with high-risk, refractory, or relapsed tumors will be cured, and two-thirds of the other half will suffer major side effects and life-long disabilities. Epigenetic therapies aimed at reversing the oncogenic alterations in chromatin structure and function are an emerging alternative against aggressive tumors that are or will become resistant to conventional treatments. This approach proposes targeting epigenetic regulators, which are proteins involved in the creation, detection, and interpretation of epigenetic signals, such as methylation or histone post-translational modifications. In this review, we focused on the most promising epigenetic regulators for targeting and current drugs that have already reached clinical trials.

Introduction

Cancer therapy underwent a drastic change in the 20th century. The spread of anesthesia in the 1840s eased surgical procedures and added to the introduction of radiotherapy in the early 1900s, and the discovery of chemotherapeutics during World War II caused this field to grow exponentially¹. Most of these approaches act by targeting DNA or DNA-related proteins, which produce alterations that become lethal, particularly in dividing cells. However, the efficacy of these strategies is not optimal because cancer remains one of the main causes of death in developed countries, and the toxicity and high mutagenic potential of many of these therapeutic agents render them highly uncomfortable with many undesired side effects²–⁴. These deficiencies have prompted the search for targeted therapies that aim to inhibit elements that are involved in signaling pathways or mechanisms that are specific to the tumor and responsible for its tumorigenic features. However, in many cases, cancer cells are able to evade the effect of a specific targeted therapy using independent mechanisms, eventually resulting in drug resistance⁵. To overcome this challenge, cancer research also focuses on multi-target therapies aimed at disrupting multiple cancer pathways with combinations of specific drugs⁶–⁸.

Epigenetic therapies are an emerging option for overcoming drug resistance. This approach proposes targeting of epigenetic regulators, which are proteins involved in the creation, detection and interpretation of epigenetic signals. The term epigenetics refers to all of the chemical changes that can modulate gene expression and can be transmitted through mitosis and meiosis without altering the nucleotide sequence⁹. The main epigenetic signals are DNA methylation, histone modifications and RNA-associated silencing. These processes are responsible for the specific expression of certain sets of genes that must be transcribed at a certain dose and at a particular time. The inhibition of one epigenetic regulator could have the same effect on several cell processes as if all of these
pathways were individually targeted with a specific drug. A further advantage of epigenetic therapies is that they act at the transcriptional level, which enables the repression of certain genes or the transcriptional reactivation of genes epigenetically silenced in cancer10, 11. In the recent two decades, interest in development and validation of drugs that target epigenetic regulators has continued to increase. Selected compounds have already been approved for treatment of certain tumors, and many other compounds are currently at a pre-clinical stage or already under clinical trials12–17. All of these advances render epigenetic therapies a promising alternative for cancers in which survival rates are still poor due to resistance to current treatments.

High-risk neuroblastoma is one of the malignancies that often become refractory to current therapies and for which epigenetic therapies could be useful. Neuroblastoma (NB) is an embryonal tumor of the sympathetic nervous system and is the most common extracranial solid tumor of childhood, causing 12–15% of pediatric cancer deaths in European populations. This disease appears mainly in the adrenal glands, and in advanced stages, it can disseminate to distant lymph nodes, bone, bone marrow, liver, and skin. Neuroblastoma patients are classified according to disease stage and molecular alterations into three groups: low, intermediate, and high risk. Although the first two groups show five-year survival rates greater than 90%, the survival of high-risk patients remains poor at approximately 40%. Despite aggressive treatment consisting of surgery and a combination of high-dose chemotherapy, radiotherapy and immunotherapy, the survival rate of high-risk neuroblastoma remains notably low18, 19. Therefore, high-risk NB is a good candidate for epigenetic therapies to overcome drug resistance.

Currently, most epigenetic drugs act at three main levels (Fig. 1): (i) DNA methylation, which can be modulated by targeting of DNA methyltransferases (DNMT); (ii) histone modifications, such as acetylation and methylation, which can be targeted by inhibiting the enzymes responsible for these chemical changes; and (iii) blockage of the interpretation of these modifications by targeting epigenetic readers, among which proteins containing bromodomains are the most thoroughly characterized. In this review, we offer an accurate compilation of the current status of epigenetic therapy research for neuroblastoma treatment and highlight the most promising therapeutic targets and potential drugs involved in these three epigenetic levels.

DNA methylation

The bases of the epigenetic field were founded on the study of DNA methylation in the 1960s. DNA methylation leads to stable long-term transcription repression, whereas unmethylated DNA tends to remain in a more relaxed structure, thereby facilitating entry of the replicative and transcription machinery20. For methylation to occur, four DNA methyltransferases (DNMT1, DNMT3a, DNMT3b, and DNMT3L) exist in mammals, and the activity of these methyltransferases consists of transfer of a methyl group from S-adenosyl-L-methionine to the C5 position of cytosine residues (Fig. 2a). DNMT are capable of performing de novo methylation when the initial pattern is set during embryogenesis and perpetuating this methylation throughout the individual’s life. DNMT3A and B are considered the de novo DNMT. However, DNMT1 is responsible for maintaining methylation in the daughter DNA strand during replication. Finally, DNMT3L is a related protein lacking catalytic activity that stimulates de novo methylation by DNMT3A and is required for the establishment of maternal genomic imprints (previously reviewed21).

The association between DNA methylation and cancer was established soon after discovery. In 1965, Craddock and Magee analyzed DNA methylation in the liver during carcinogenesis22, and one year later, Silber et al. described methylation in normal and leukemic leukocytes23. Currently, aberrant DNA methylation patterns have been observed in many different cancers.

The expression of DNMTs have been shown to be altered in neuroblastoma. Particularly, DNMT3A/B expression was observed to be higher in high-risk NB tumors and overexpressed in cisplatin-resistant NB cells24. Recently, a truncated form of DNMT3B, i.e., DNMT3B7, was identified in primary NB tumors. Interestingly, although DNMT3B7 expression correlates with NB with poor outcome, DNMT3B7 expression was associated with better clinical behavior. In fact, ectopic expression of DNMT3B7 in NB cells inhibited tumor growth in vivo by reducing cell proliferation and increasing apoptosis. Furthermore, reduced tumor vascularity was also observed. Genomic and transcriptomic analyses revealed that DNMT3B7-overexpressing cells had higher levels of genomic methylation and increased expression of genes related to the retinoic acid pathway. Consistent with these findings, treatment of DNMT3B7-overexpressing cells with all-trans retinoic acid enhanced NB differentiation25. Why DNMT3A/B and DNMT3B7 have opposite roles and whether these DNMT target different genomic regions remain to be elucidated.

Nevertheless, general increased genomic methylation is associated with poor outcome in NB26. Therefore, the use of DNMT inhibitors (DNMTi) might offer new alternatives for patients who do not respond to current therapies. One of the first DNMTi tested in NB cells was 5-aza-deoxycytidine (5-aza or decitabine), a chemical analog of the nucleoside cytidine. Treatment of NB cells with 5-aza showed induced cell differentiation27 and
reduced proliferation and colony formation27, 28. Further studies demonstrated that 5-aza can potentiate the cyto-
toxic effects of current chemotherapies, such as doxor-
ubicin, cisplatin and etoposide29, thereby suggesting that a
combination of 5-aza with standard therapies could lead
to more effective and safer treatments. However, a phase I
clinical study of decitabine with doxorubicin showed that
only low-doses of decitabine with this combination were
tolerable and that those capable of producing clinically
significant biologic effects were not well tolerated30.

These results suggest that more specific DNMT-
inhibitors might offer better safety profiles. Recently,
two new DNMT inhibitors, i.e., SGI-1027 (selective for
DNMT1, DNMT3A/B) and nanaomycin A (DNMT3B-
specific), displayed higher cytotoxic effects alone or in
combination with doxorubicin but without alteration of
general genome methylation31. The use of these new
inhibitors is expected to result in fewer side effects.

Histone modifications

Histones are the evolutionary solution to compaction of
large amounts of DNA in the nucleus of eukaryotic cells.
Approximately 147 bp of DNA are wrapped in histone octamers (formed by H2A, H2B, H3, and H4) to form a
nucleosome. Nucleosomes are assembled in successively
higher-order structures to eventually form a chromosome.
Nucleosomes build chromatin, which can exist as
euchromatin (decondensed and transcriptionally active)
or heterochromatin (condensed and transcriptionally
inactive). The compaction of chromatin is regulated by
modifications on the histone tails. The N-terminal and C-
terminal domains protrude from the nucleosome and are
subjected to different covalent post-transcriptional mod-
fications, such as methylation, acetylation, phosphoryla-
tion, and sumoylation. The enzymes responsible for these
covalent modifications are known as “writers”, whereas
the enzymes that remove these marks are referred to as
“erasers”. Finally, enzymes capable of recognizing histone
marks are denoted as “readers” (reviewed in ref. 32–34)
(Fig. 1).

Histone methyltransferases

Histone methyltransferases (HMT) are a class of histone
writers that transfer methyl groups from S-adenosyl
methionine to histone-specific lysine or arginine resi-
dues on the histones35, 36. Histone methylation is involved
in different processes, such as chromatin compaction, X-
chromosome inactivation, genomic imprinting and repression, or activation of transcription, among other
tasks. These functions are influenced by the site and
degree of methylation on specific residues (reviewed in
previous work36, 37). Histone methylation usually occurs
on the H3 and H4 tails.

To date, approximately 60 HMTs have been identified.
HMT are classified depending on the histone amino acid
that is methylated, and lysine methyltransferases (PKMT)
modify lysine residues by mono-methylation, di-methyl-
ation, or tri-methylation and are classified in a SET
domain-containing or a non-SET domain-containing PKMT. Arginine residues are mono-methylated and symmetrically or asymmetrically di-methylated by arginine methyltransferases (PRMTs) (Fig. 2b).

In the last decade, certain SET-PKMs have been associated with prognostic factors, although the functional significance of these alterations remain to be determined. Nonetheless, PKMT inhibitors show therapeutic potential in NB. This is the case of BIX-01294, a specific inhibitor of EHMT2 and a protein frequently over-expressed in several tumor types. Treatment of NB cells with BIX-01294 showed decreased cell proliferation, inhibition of cell mobility and invasion, induction of apoptosis in vitro and reduced tumor growth in preclinical mouse models.

Histone demethylases

Histone methylation represents a balance resulting from the opposing activity of HMT and histone demethylases (HDM). KDM1 (also known as LSD1) was the first enzyme found to be capable of removing the methyl group from mono-methylated and di-methylated Lys 4 in histone 3 (H3K4me1/2). HDM can be divided into two lysine HDM families: (i) the KDM1 family and (ii) the JHDM family.

Fig. 2 Schematic representation of members of the main epigenetic regulator families and subfamilies. Representative members of a DNMT, b HMT, c HDM, d HAT, e HDAC, and f BRD-containing proteins are included, showing their domain configurations and indicating the catalytic region, which is the main target of epigenetic drugs. Sources: UniProt, InterPro.
JHDM family. Although proteins from the KDM1 family demethylate mono-methylated or di-methylated lysines, those of the JHDM family demethylate tri-methylated lysines. Of note, JMJD6 (a member of the JHDM family) is also an arginine-specific HDM that demethylates H3R2me1/2 and H4R3me1/2. KDM1A was the first HDM, the expression of which was found to correlate with adverse outcome and undifferentiated tumors. Loss-of-function experiments showed that KDM1A silencing resulted in a reduction in cell proliferation, colony formation, migration and invasion of NB cell lines. Several KDM1A inhibitors have been designed, but only trans-2-phenylcyclopropylamine (TCP) derivatives have advanced into early phase clinical trials. However, the therapeutic potential of these compounds in neuroblastoma animal models or in clinical trials remains to be addressed.

The JHMD family is larger than the KDM1A family, and therefore, more members of the family are associated with NB. One of such examples is the KDM4B found in a search for mediators of oncogenic functions of MYCN. KDM4B knockdown reduced NB cell proliferation and induced differentiation in vitro and in vivo. Mechanistically, KDM4B physically interacts with MYCN, removes histone methylation marks at MYCN binding sites, and blocks the transcription of MYCN direct targets, such as the miR-17-92 cluster, CDC25A, TRIP13, and VCAN.

Histone acetyltransferases

A further histone modification is the addition of acetyl groups from acetyl-CoA to specific histone lysine residues. This process can be performed by histone acetyltransferases (HAT). HAT are capable of modulating gene transcription by altering histone acetylation patterns or by acetylating non-histone substrates, such as transcription factors. HAT are usually classified based on sequence similarity and structure to define five families: GNAT, p300/CBP, MYST, SRC (nuclear receptors coactivators) and others (reviewed in ref. [50]) (Fig. 2d).

To date, no HAT expression or functional studies have been conducted either in clinical or preclinical NB models. Nevertheless, in silico analyses did show that several HAT are differentially expressed in advanced stages of NB. In most cases, HAT levels are expressed at lower levels in patients with poor prognosis (i.e., stage 4 with MYCN amplified), thereby indicating that strong criteria for selection of patients who could benefit from these therapies must be considered (Fig. 3).

Nevertheless, three HAT inhibitors have been tested in NB models: PU139 (a HAT pan-inhibitor), PU141 (a CBP and p300 selective inhibitor), and BF1 (an H3-acetylation protein inhibitor). All of these inhibitors reduced NB cell growth in vitro, but only PU139 and PU140 were demonstrated to reduce tumor growth in vivo. Furthermore, PU139 showed synergism with doxorubicin in vivo, thereby blocking tumor growth.

Histone deacetylases

Histone acetylation and deacetylation exert a dynamic balance that controls gene transcription. Although histone acetylation is associated with active transcription, histone deacetylation is associated with transcriptional repression. Hypoacetylated nucleosomes usually result in
tightly compacted chromatin, thereby restricting the access of transcription factors to their target DNA and leading to transcription repression (reviewed in ref.53). An alteration in this acetylation balance might result in the development of diseases, such as cancer.

The 18 histone deacetylases (HDAC) encoded in our genome can be classified based on their homology with yeast HDAC54 as follows: class I, which includes HDAC1, 2, 3 and 8; class II HDAC4, 5, 6, 7, 9 and 10; class III sirtuins (SIRT1-7); and class IV-only HDAC1155. All HDAC share a conserved histone deacetylase domain, but they vary in location, structure and expression patterns56. Classes I, II, and IV share homology in structure and sequence and require a zinc ion for their catalytic activity. Class III HDAC share no similarities with the other classes and require nicotinamide adenine dinucleotide (NAD\(^+\)) for their activity57 (Fig. 2e).

Only two HDAC have been reported as associated with NB prognosis. Particularly, HDAC8 and HDAC10 were found to be overexpressed in high-risk NB, and their inhibition resulted in reduced NB cell proliferation in vitro68, 69 and in vivo70. Moreover, the inhibition of HDAC8 and 10 was found to increase doxorubicin sensitivity58, 61.

One of the most important genetic factors associated with NB outcome is the genomic amplification of the transcription factor MYCN, a driver oncogene in NB, which in turn regulates the expression of a myriad of genes associated with cell proliferation, survival and metastasis, among others. Selected HDAC have been shown to participate in a positive feedback loop with MYCN.

One of such examples was described for the Class III HDACs SIRT1. SIRT1 studies revealed that MYCN directly induced the transcription of SIRT1 and increased the stability of this oncogenic protein. Furthermore, pharmacologic inhibition of SIRT1 (cambinol) reduced tumorigenesis in a MYCN-driven neuroblastoma transgenic mouse model62.

Owing to the relevance of HDAC proteins in cancer, many inhibitors have been developed in recent decades. These inhibitors are classified depending on the targeted HDAC class. The first developed HDAC inhibitors (HDACi) were those targeting Classes I, II and IV and can be classified into six basic types depending on the structure of the inhibitor (reviewed in ref.63). In contrast, Class III HDAC are inhibited with derivatives of NAD64. Multiple studies showed the therapeutic potential of HDACi in NB in preclinical studies (Table 1), but few reached clinical trials (Table 2).

One of the most studied HDACi in NB is valproic acid (VAP), which was discovered by B.S. Burton in 188265. This inhibitor has higher but not exclusive selectivity to Class I HDAC. Initially, this compound was used to treat seizures, bipolar disorders or migraines. Different studies later showed that VAP inhibited HDAC proteins (reviewed in ref.66), thereby opening a door to cancer treatment.

When NB cells are treated with VAP, a strong inhibition of cell proliferation and induction of differentiation and apoptosis is observed67, 68. Other studies showed the therapeutic potential of VAP in combination with current therapies, such as ABT-510 (an angiogenic inhibitor)69 or with OGX-01170 (inhibitor of clusterin), resulting in tumor growth impairment. However, in certain cases, VAP combination effects are subject to administration order. When VAP is combined with conventional chemotherapeutic agents, such as etoposide or cisplatin, these drugs must be administered before any other treatment71, 72.

Table 1 HDAC inhibitors studied in Neuroblastoma

Name	Alias	Effective in vivo	Reference
m-Carboxycinnamic acid bis-hydroxamide	CBHA	+	106-108
Suberoyl-3-aminopropionamide hydroxamic acid	Pyroxamine	n.d.	109
MS-275	Entinostat	+	110-113
Sodium butyrate	NaB	n.d.	114-119
BL1521	BL1521 n.d.	120-122	
Trichostatine A	TSA	+	123-129
Glycerin tributyrate	Tributyrin	n.d.	85
M344	M344 n.d.	111	
HKi 46F08	HKi 46F08 n.d.	130	
Helminthosporium carbonum-toxin	HC-toxin n.d.	131	
Romidepsin	Istopax	+	132
CI149	CI149 n.d.	133	
LBH-589	Panobinostat	+	134, 135
PCI-24781	Abexinostat	+	136, 137
BRD8430	BRD8430 n.d.	138	
CAS 14513-15-6	Cambinol	+	76
Salermide	Salermide n.d.	77	
PCI-35051	PCI-35051 +	70, 139	
Tubacin	Tubacin n.d.	79, 80	
1-Naphthohydroxamic acid	Cpd2	+	70

n.d. not determined
Another well-studied HDACi in NB is vorinostat (also known as SAHA). Vorinostat is a selective class I and II HDACi and is currently in use in multiple clinical trials in NB. Treatment of NB cells with vorinostat resulted in cell cycle arrest in G2/M phase followed by the activation of the intrinsic apoptotic pathway. Vorinostat was also shown to impair VEGF secretion by NB cells, thereby suggesting a potential antiangiogenic effect. Vorinostat has also been shown to potentiate the anti-tumor activity of different drugs, such as flavopiridol (a pan-Cdk inhibitor) and fenretinide (a synthetic retinoid), and therapies, such as radiotherapy. The latest HDACi to reach clinical trials was 4PB (4-phenylbutyrate), which is also selective for HDAC class I and II. In 1998, Pelidis et al. described the effectiveness of 4PB in NB for the first time and demonstrated that 4PB reduced proliferation and induced differentiation of NB cell lines. Moreover, 4PB demonstrated additive cytotoxic effects when administered with the chemotherapeutic drug vincristine. Concurring with these results, Tang et al. showed that 4PB induced the expression of several genes associated with favorable outcome (i.e., EPHB6, EFNB2, EFNB3, NTRK1, and CD44) and impaired tumor growth and metastasis in vitro and in vivo.

Histone phosphorylation

Histone phosphorylation is widely known to be involved in chromatin condensation during cell division and apoptosis and also acts as an important signal for DNA damage response. These are transient processes that do not produce stable and heritable changes in gene expression. However, phosphorylation of certain histone residues has also been directly related to transcriptional regulation control. In fact, many phosphorylated sites act by crosstalk with other histone modifications, such as methylation or acetylation (reviewed in the literature). Phosphorylation and dephosphorylation of histones are performed by kinases and phosphatases, respectively. Most of these enzymes are not histone specific. For example, Aurora B kinase is known to phosphorylate histone H3 on serine 10 to induce chromosome condensation in the early phases of cell division, which is essential for cell cycle progression. Aurora B kinase has been found as a potential target for NB treatment, and its inhibition with barasertib promotes arrest in the G2/M phase followed by apoptosis in vitro and in vivo. Selected histone phosphatases have also been reported to play a role in NB biology. EYA1, which dephosphorylates the tyrosine 142 of histone H2AX, is down-regulated in the advanced stages of NB. Phosphatase PP2A has also been observed to exert tumor suppressive effects on NB cells.

Although many kinases and phosphatases able to modify histone residues are under study as targets for NB treatment, the impact of histone phosphorylation in itself on NB progression is still not well characterized and should be investigated further.

Histone modifiers are by far the largest family of epigenetic regulators. Structural similarities have paved the way for the design of pan-inhibitors, such as those developed for HDAC. Despite a growing body of evidence showing therapeutic potential in preclinical studies, only modest results have been observed in clinical trials to date. A better understanding of the tumor-specific dependency on each of these epigenetic regulators might lead to the development of additional target-specific inhibitors and better patient selection.

Table 2: Current epigenetic drugs clinical trials in Neuroblastoma

Name of the drug	Type of drug	Phase	Estate	Number
Decitabine	DNMT pan-inhibitor	Phase I	Complete	NCT01241162
		Phase I	Complete	NCT00075634
Genistein	DNMT pan-inhibitor	Phase II	Recruiting	NCT02624388
Vorinostat	HDAC class I and II inhibitor	Phase I	Complete	NCT02559778
		Phase I	Recruiting	NCT01132911
		Phase I	Complete	NCT01019850
		Phase I	Complete	NCT01208454
VAP	HDAC class I and II inhibitor	Phase I	Complete	NCT01204450
4-PB	HDAC pan-inhibitor	Phase I	Complete	NCT00001565
GS525762	iBET	Phase I	Recruiting	NCT01587703

Of official journal of the Korean Society for Biochemistry and Molecular Biology
Chromatin readers

To translate the pattern of histone modifications into a functional phenotype, these modifications must be recognized by proteins known as “readers”. These readers are bromodomain (BRD), chromodomain and tudor-domain containing proteins, which recognize histone marks and recruit other proteins required to start or inhibit transcription. Bromodomain-containing proteins are capable of recognizing the acetylation of histones, whereas chromodomains and tudor-domains recognize methylated histones. BRD-containing proteins are highly conserved throughout evolution and can perform various functions, such as histone acetylation, chromatin remodeling and transcriptional activation. The human homolog of the drosophila gene Brahma (Brm) was the first of 61 human BRD to be described, a subset of 46 BRD-containing proteins. All known BRD have a central hydrophobic pocket with a highly conserved asparagine residue responsible for the binding to the acetylated lysines of histones (Fig. 2f).

Only one study to date has demonstrated the correlation of a BRD-containing protein and NB outcome. BPTF was found to be amplified in 55% of NB cases due to gain of the 17q24.3 locus. In silico analysis of mRNA expression data sets in NB (EGEOD-3960, Fig. 3) shows that at least 15 BRD-containing proteins are differentially expressed in patients with advanced disease and poor prognosis (10 were upregulated, 5 were downregulated), thereby suggesting that they could be new potential therapeutic targets for NB.

The crystallization of the BRD structure and the feasibility of designing small molecules to target this domain placed the BRD inhibitors in the spotlight as new therapeutic targets for cancer. In 2010, two small-molecule inhibitors against BET-bromodomains (a family of BRD known as bromodomain and extra-terminal domain, which consists of four different proteins) were described by two independent groups (JQ1 and I-BET) with high affinity for BRD2, BRD3 and BRD4. Both compounds showed that BRD inhibition resulted in antitumor effects in mixed lineage leukemia, multiple myeloma, or lung adenocarcinomas.

The therapeutic potential of BRD inhibition in NB was first analyzed by Puissant et al. Treatment of NB cells with the BET inhibitor (iBET) JQ1 resulted in a reduction in MYCN levels, reduced cell growth and induction of apoptosis in vitro and in vivo. The JQ1 inhibitor also showed synergistic effects when combined with the HDACi panobinostat. This drug combination showed reduced MYCN protein expression and impaired tumor growth in vivo.

Recently, another BRD inhibitor (i.e., OTX015) was tested in NB. Administration of OTX015 produced a reduction in MYCN expression and loss of interaction of MYCN with the promoter of their target genes. Furthermore, BRD4 was also shown to be preferentially displaced from DNA super-enhancers regulated by MYCN.

Conclusions and future perspectives

Classically, pediatric oncology has mirrored the therapeutic strategies of adult oncology, and epigenetic therapies are not an exception. In addition to considering epigenetic modifications as diagnostic or prognostic tools, a large proportion of clinical trials (~40%) focus on
evaluating the therapeutic potential of DNMTi followed by HDACi (≈10%), either as single agents or in combination with standard therapies. Therefore, a long list of potential new epigenetic targets remains to be explored. In particular, in NB, only three HDACi, two DNMTi and one iBET compounds have reached clinical trials, and of these, only two inhibitors have reached phase II: genistein and vorinostat (Table 2).

The low number of active clinical trials, despite preclinical evidence of the role of epigenetic regulators in NB, underlines the need for advanced preclinical studies in new therapeutic targets (Table 3) and the development of new compounds, probably more specific versions, which should be more effective at tolerable doses and with fewer side effects. The compounds that reached clinical trials have specificity for more than one target of the same family and are referred to as pan-inhibitors. Presumably, the development of more specific compounds (instead of pan-inhibitors) against chromatin remodelers proteins found to be altered in NB will be more cancer-specific and have potentially fewer side effects. Nevertheless, most of these epigenetic regulators are poorly characterized with few crystalized structures. Therefore, design and development of new small molecules remains a great challenge. Additional efforts must be invested in the definition of these structures to create better inhibitors for development of future treatments. Alternatively, blocking of protein-protein interactions or siRNA-mediated gene silencing could be considered.

Acknowledgements
This work was supported by the Instituto de Salud Carlos III (CPI16/0006, PI17/00564, RD12/0036/0016) and co-financed by the European Regional Development Fund (ERDF), Generalitat de Catalunya 2014-SGR-660, and Asociación Acunapata. The authors thank Ms. Christine O’Hara for English language correction and the members of the Group of Translational Research in Child and Adolescent Cancer for helpful suggestions and discussion. The authors apologize to their colleagues whose work could not be cited in this paper due to space limitations. The authors have no financial relationships relevant to this article to disclose.

Conflict of Interest
The authors declare that they have no conflict of interest.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 7 September 2017 Revised: 13 January 2018 Accepted: 31 January 2018.
Published online: 27 April 2018

References
1. DeVita, V. T. & Rosenberg, S. A. Two hundred years of cancer research. N. Engl. J. Med. 23, 2207–2214 (2012).
2. Khamisipour, G., Jadidi-Niaragh, F., Jahromi, A. S., Zandi, K. & Hojat-Farsangi, M. Mechanisms of tumor cell resistance to the current targeted-therapy agents. Tumor Biol. 37, 10021–10039 (2016).
3. Shi, V. J., Levy, L. L. & Choi, J. N. Cutaneous manifestations of non-targeted and targeted chemotherapies. Semin Oncol. 43, 419–425 (2016).
4. Ezeo, S. Secondary leukemia associated with the anti-cancer agent, etoposide, a topoisomerase II inhibitor. Int. J. Environ. Res. Public Health 9, 2444–2453 (2012).
5. Paez-Ribes, M., Allen, E., Hodgson, J., Takeda, T., Okuyama, H. & Viale, F. et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15, 220–231 (2009).
6. Zinzani, P. L., Rigacci, L., Cox, M. C., Devizzi, L., Fabbrini, A. & Zaja, F. et al. The efficacy of lenalidomide combination therapy in heavily pretreated non-Hodgkin lymphoma patients: an Italian observational, multicenter, retrospective study. Leuk. Lymphoma 58, 226–229 (2017).
7. Kazayeva, V. K., Korleva, A. A., Ice, R. J., Jones, B. C., Loskutov, Y. V. & Matalkah, F. et al. Combination of Eribulin and Aurora A Inhibitor MLN8237 prevents metastatic colonization and induces cytotoxic autophagy in breast cancer. Mol. Cancer Ther. 15, 1809–1822 (2016).
8. Zou, H., Li, L., Garcia Carcedo, I., Xu, Z. P., Monteiro, M. & Gu, W. Synergistic inhibition of colon cancer cell growth with nanoemulsion-loaded paclitaxel and PFK/ImTOR dual inhibitor BEZ235 through apoptosis. J. Nat. Nanomed. 11, 1947–1958 (2016).
9. Berger, S. L., Kourzides, T., Shekhhatr, R. & Shlafirad, A. An operational definition of epigenetics. Genes Dev. 23, 781–783 (2009).
10. Chuang, J. C., Warner, S. L., Vollmer, D., Vankayalapati, H., Redkar, S. & Beans, D. J. et al. S110, a 5-Aza-2’-deoxycytidine–containing dinucleotide, is an effective DNA methylation inhibitor in vivo and can reduce tumor growth. Mol. Cancer Ther. 9, 1443–1450 (2010).
11. Meng, C. F., Zhu, X. J., Peng, G. & Dai, D. Q. Re-expression of methylation-induced tumor suppressor gene silencing is associated with the state of histone modification in gastric cancer cell lines. World J. Gastroenterol. 13, 6166–6171 (2007).
12. Olsen, E. M., Petersen, J., Skovgaard, A. M., Wele, B., Jørgensen, T. & Wright, C. M. Failure to thrive: the prevalence and concurrence of anthropometric deficits. J. Med. Genet. 10039 (2016).
13. Fenaux, P., Mufli, G. J., Hellsstrom-Lindberg, E., Santini, V., Finelli, C. & Gia-Ida, F. et al. The phase I/II multi-institutional trial of the histone deacetylase inhibitor romidepsin as monotherapy for patients with cutaneous T-cell lymphoma. J. Clin. Oncol. 27, 5410–5417 (2009).
14. Tsi, H. C., Li, H., Van Nieste, L., Cai, Y., Robert, C. & Rassoul, F. V. et al. Transient low doses of DNA-demethylating agents exert durable antitumor effects on hematological and epithelial tumor cells. Cancer Cell 21, 430–446 (2012).
15. Grishina, O., Schmoo, C., Dohner, K., Hackanson, B., Lubrich, B. & May, A. M. et al. DECIDER: prospective randomized multicenter phase II trial of low-dose decitabine (DAC) administered alone or in combination with the histone deacetylase inhibitor valproic acid (VPA) and all-trans retinoic acid (ATRA) in patients >60 years with acute myeloid leukemia who are ineligible for induction chemotherapy. BMC Cancer 15, 430 (2015).
16. Berenguer-Daizé, C., Astorgues-Xerri, L., Odrole, E., Cayol, M., Cvitkovic, E. & Noel, K. et al. OCTX015 (MK-8628), a novel BET inhibitor, displays in vitro and in vivo antitumor effects on neuroblastoma cell lines. Clin. Oncol. 304 (2009).
17. Maris, J. M. Recent advances in neuroblastoma. N. Engl. J. Med. 362, 2202–2211 (2010).
18. Cohn, S. L., Pearson, A. D. J., London, W. B., Monclair, T., Ambros, P. F. & Brodeur, G. M. et al. The International Neuroblastoma Risk Group (INRG) classification system: an INRG Task Force report. J. Clin. Oncol. 27, 289–297 (2009).
19. Cedar, H. & Bergman, Y. Linking DNA methylation and histone modification: patterns and paradigms. Nat. Rev. Genet. 10, 295–304 (2009).
20. Jurkowski, R. Z., Jurkowski, T. P. & Jeltsch, A. Structure and function of mammalian DNA methyltransferases. ChemBioChem 12, 206–222 (2011).
21. Cnaan, D. V. & Magee, P. N. Analysis of bases of rat-liver nucleic acids after administration of the carcinogen dimethylnitrosamine. Biochem. J. 100, 724–732 (1966).
22. Silber, R., Berman, E., Geldstein, B., Stein, H., Famham, G. & Bertino, J. R. Methylation of nuclear acids in normal and leukemic leukocytes. Biochim. Biophys. Acta 123, 638–640 (1966).
24. Qiu, Y. Y., Mirkin, B. L. & Dwivedi, R. S. Inhibition of DNA methyltransferase reverses cisplatin induced drug resistance in murine neuroblastoma cells. Cancer Detect. Prev. 29, 456–463 (2005).

25. Ostler, K. R., Yang, Q., Looney, T. J., Zhang, L., Vasanthakumar, A. & Tian, Y. et al. Truncated DNMT3b isoform DNMT3B7 suppresses growth, induces differentiation, and alters DNA methylation in human neuroblastoma. Cancer Res 72, 4714–4723 (2012).

26. Gómez, S., Castellano, G., Mayol, G., Sunol, M., Queiroz, A. & Bibikova, M. et al. DNA methylation fingerprint of neuroblastoma reveals new biological and clinical insights. Epigenetics 7, 1137–1153 (2013).

27. Bartolucci, S., Estenoz, M., Longo, A., Santors, B., Momparler, R. L. & Ross, M. et al. Set-2a-2-deoxycytidine as inducer of differentiation and growth inhibition in mouse neuroblastoma cells. Cell. Differ. Dev. 27, 47–55 (1989).

28. Carpinelli, P., Granata, F., Augusti-Tocco, G., Rossi, M. & Bartolucci, S. Anticancer effects and DNA hypomethylation by 5-aza-2-deoxycytidine in human neuroblastoma cell lines. Anticancer Drugs 4, 629–635 (1993).

29. Charlet, J., Schneienburger, M., Brown, K. W. & Diederich, M. DNA demethylation increases sensitivity of neuroblastoma cells to chemotherapeutic drugs. Anticancer Res. 119, 57 (2016).

30. George, R. E., Lahti, J. M., Adamsson, P. C., Zhu, K., Finkelstein, D. & Ingle, A. M. et al. Phase I study of decitabine with doxorubicin and cyclophosphamide in children with neuroblastoma and other solid tumors: a children’s oncology group study. Pediatr. Blood Cancer 55, 629–638 (2010).

31. Penter, L., Maier, B., Frede, U., Hackner, B., Carell, T. & Hagemeier, C. et al. A novel role for lysine acetyltransferases in normal and malignant hematopoiesis. Cell. Differ. Dev. 47, 95–103 (2008).

32. Yi, X., Jiang, X. J., Li, X. Y. & Jiang, D. S. Histone methyltransferases: Novel targets for tumor and developmental defects. Experimental & Molecular Medicine 50, 51 (2018).

33. Morera, L., Lübbert, M. & Jung, M. Targeting histone methyltransferases and histone demethylases in therapy of neuroblastoma. Expert Opin. Investig. Drugs 18, 1605–1617 (2009).

34. PichLMER, J. M., FURDAS, S. D., GRUNDER, A., GOTHWAL, M. & HEINICKE, U. et al. Histone deacetylase inhibitors block neuroblastoma cell growth in vivo. OncoTargets and Therapy 4, 1317–1325 (2015).

35. Brownell, J. E., Zhou, J., Ranalli, T., Kobayashi, R., Edmondson, D. G. & Roth, S. Y. et al. Tetrahydromena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 84, 843–851 (1996).

36. Taunton, J., Hasig, C. A. & Schreiber, S. L. A mammalian histone deacetylase related to the yeast transcriptional regulator Ppd1p. Science 272, 408–411 (1996).

37. Glozak, M. A., Sengupta, N., Zhang, X. & Seto, E. Acetylation and deacetylation of non-histone proteins. Gene 363, 15–23 (2005).

38. Haery, L., Thompson, R. C. & Gilmore, T. D. Histone acetyltransferases and histone deacetylases in B- and T-cell development, physiology and malignancy. Genes Cancer 6, 184–213 (2015).

39. Li, H. Y., Chen, C. S., Lin, S. P., Weng, J. R. & Chen, C. S. Targeting histone deacetylase in cancer therapy. Med. Res. Rev. 26, 397–413 (2006).

40. Thaigalingam, S., Chen, K.-H., Lee, H. J., Mineva, N., Thaigalingam, A. & Ponte, J. F. Histone deacetylases: unique players in shaping the epigenetic histone landscape. Ann. N. Y. Acad. Sci. 1056, 1–16 (2005).

41. Shi, Y., Lan, F., Matson, C., Mulligan, P., Whetstine, J. R. & Cole, P. A. et al. MARK-dependent inhibition of DNA methyltransferase family members. J. Biol. Chem. 278, 15353–15360 (2003).

42. Chang, B., Chen, Y., Zhao, Y. & Bruick, R. K. JMJD6 is a histone arginine methylation enzyme that can be inhibited by the cancer drug Gd-222. Mol. Cell. 37, 185–194 (2009).

43. Spanhoff, A., Hauser, A. T., Henke, R., Sippi, W. & Jung, M. The emerging therapeutic potential of histone methyltransferase and demethylase inhibitors. MedChemComm 4, 1568–1582 (2009).

44. Green, E. L. & Shi, Y. Histone modification: a dynamic mark in health, disease and inheritance. Nat. Rev. Genet. 13, 343–357 (2012).

45. Lu, Z., Tian, Y., Salwen, H. R., Chelenski, A., Godley, L. A. & Raj, J. U. et al. Histone-lysine methyltransferase EHMT2 is involved in proliferation, apoptosis, cell invasion, and DNA methylation of human neuroblastoma cells. Anticancer Drugs 24, 484–493 (2013).

46. Ke, X. X., Zhang, D., Zhu, S., Xia, Q., Xiang, Z. & Cui, H. Inhibition of H3K9 methyltransferase G9A repressed cell proliferation and induced autophagy in neuroblastoma cells. PLoS One 9, e106962 (2014).

47. Shi, Y., Lan, F., Matson, C., Mulligan, P., Whetstine, J. R. & Cole, P. A. et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119, 941–953 (2004).

48. Chung, B., Chen, Y., Zhao, Y. & Bruck, R. K. JMD6 is a histone arginine methyltransferase. Cell. 138, 875–887 (2009).

49. Alothoff, K., Beckers, A., Odersky, M., Mestdagt, P., Koster, J. & Bray, I. M. et al. IR137 functions as a tumor suppressor in neuroblastoma by down-regulating KDM1A. Int. J. Cancer. 133, 1064–1073 (2008).

50. Yang, H., Li, Q., Zhao, W., Yuan, D., Zhao, H. & Zhou, Y. IR-329 suppresses the growth and motility of neuroblastoma by targeting KDM1A. FEBS Lett. 588, 192–197 (2014).

51. Yang, J., Athahan, A. M., Hu, D., Wang, Y., Cheng, P. H. & Morton, C. L. et al. The role of histone demethylase KDM4B in Myc signaling in neuroblastoma. J. Natl. Cancer Inst. 107, 1–9 (2015).

52. Sun, X.-J., Man, N., Tan, Y., Nimer, S. D. & Wang, L. The role of histone acetyltransferases in normal and malignant hematopoiesis. Front. Oncol. 5, 106 (2015).

53. Brownell, J. E., Zhou, J., Ranalli, T., Kobayashi, R., Edmondson, D. G. & Roth, S. Y. et al. Tetrahydromena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 84, 843–851 (1996).
a histone deacetylase inhibitor valproate in high-risk neuroblastoma cells. Int J Oncol. 47, 343–352 (2015).

72. Groth, T., Habietta, J., Poljakova, J., Eckschlag, T. & Stiborova, M. Impact of histone deacetylase inhibitor valproic acid on the anticancer effect of etoposide on neuroblastoma cells. Neuro Endocrinol Lett. 33, 16–24 (2012).

73. De los Santos, M., Zambrano, A. & Aranda, A. Combined effects of retinoid acid and histone deacetylase inhibitors on human neuroblastoma SH-SY5Y cells. Mol. Cancer Ther. 6, 1425–1432 (2007).

74. Mühlethaler-Mottet, A., Meier, R., Flahaut, M., Bourloud, K. B., Nardou, K. & Joseph, J.-M. et al. Complex molecular mechanisms cooperate to mediate histone deacetylase inhibitors anti-tumour activity in neuroblastoma cells. Mol. Cancer. 7, 55 (2008).

75. Huang, J.-M., Sheard, M. A., Ji, L., Sposto, R. & Keshleva, N. Combination of vorinostat and flavopiridol is selectively cytotoxic to multidrug-resistant neuroblastoma cell lines with mutant TP53. Mol. Cancer Ther. 9, 3289–3301 (2010).

76. Cheung, B. B., Tan, O., Koach, J., Liu, B., Shum, M. S.-Y. & Carter, D. R. et al. Thymosin-β4 is a determinant of drug sensitivity for Farnesitide and Vorinostat combination therapy in neuroblastoma. Mol. Oncol. 9, 1484–1500 (2015).

77. Mueller, S., Yang, X., Sortero, T. L., Gragg, A., Prasad, G. & Polley, M. Y. et al. Cooperation of the HDAC inhibitor vorinostat and radiation in metastatic neuroblastoma efficacy and underlying mechanisms. Cancer. 306, 223–229 (2013).

78. More, S. S., Tsara, M., Yang, X., Geier, E. G., Tadano, M. K. & Seq, Y. et al. Vorinostat increases expression of functional norepinephrine transporter in neuroblastoma in vitro and in vivo model systems. Clin. Cancer Res. 17, 2339–2349 (2011).

79. Pélidis, M. A., Carducci, M. A. & Simons, J. W. Cytotoxic effects of sodium phenylbutyrate on human neuroblastoma cell lines. Int J Oncol. 12, 889–893 (1998).

80. Tang, X. X., Robinson, M. E., Reecberg, J. S., Kim, D. Y., Kung, B. & Titus, T. B. et al. Favorable neuroblastoma genes and molecular therapeutics of neuroblastoma. Clin. Cancer Res. 10, 5837–5844 (2004).

81. Baek, S. H. When signaling kinases meet histones and histone modifiers in the nucleus. Mol. Cell. 42, 274–284 (2011).

82. Rossetto, D., Aviliakoumou, N. & Côté, J. Histone phosphorylation: a chromatin modification involved in diverse nuclear events. Epigenetics. 7, 1098–1108 (2012).

83. Zeitzl, S. G., Shelby, R. D. & Sullivan, K. F. CENP-A is phosphorylated by Aurora B kinase and plays an unexpected role in completion of cytokinesis. J Cell Biol. 155, 1147–1158 (2001).

84. Morozova, O., Veyovdic, M., Grinstein, N., Hansford, L. M., Blaaky, K. M. & Maislová, A. et al. System-level analysis of neuroblastoma tumor-initiating cells implicates AURKB as a novel drug target for neuroblastoma. Clin. Cancer Res. 16, 4572–4582 (2010).

85. Bogen, D., Wei, J. S., Azaroun, D. O., Ormanagolu, P., Buehler, E. & Ghuia, R. et al. Aurora B kinase is a potent and selective target in MYCN-driven neuroblastoma. Oncotarget. 6, 35247–35262 (2015).

86. Hansen, J. N., Lotta, L. T., Eberhardt, A., Schor, N. F. & Li, X. EYA1 expression and subcellular localization in neuroblastoma and its association with prognostic markers. J Cancer Res. Ther. 4, 11–18 (2016).

87. Khanna, A., kauko, O., Bockelman, C., Laine, A., Schreck, I. & Partanen, J. I. et al. Complex molecular mechanisms cooperate to mediate histone deacetylase inhibitors anti-tumour activity in neuroblastoma cells. Mol. Cancer. 7, 55 (2008).

88. Condorelli, F., Gremmi, I., Vallario, A., Genazzani, A. A. & Canonico, P. L. Histone deacetylase inhibitors strongly sensitize neuroblastoma cells to TRAIL-induced apoptosis by a caspases-dependent increase of the pro- to anti-apoptotic proteins ratio. BMC Cancer. 6, 214 (2006).

89. De los Santos, M., Zambrano, A. & Aranda, A. Combined effects of retinoid acid and histone deacetylase inhibitors on human neuroblastoma SH-SY5Y cells. Mol. Cancer Ther. 6, 1425–1432 (2007).

90. Mühlethaler-Mottet, A., Flahaut, M., Bourloud, K. B., Nardou, K. & Joseph, J.-M. et al. Histone deacetylase inhibitors strongly sensitize neuroblastoma cells to TRAIL-induced apoptosis by a caspases-dependent increase of the pro- to anti-apoptotic proteins ratio. BMC Cancer. 6, 214 (2006).

91. de Ruijter, A. J., Kemp, S., Kramer, G., Meursma, R. J., Kaufmann, J. O. & Caron, H. N. et al. The novel histone deacetylase inhibitor BL1521 inhibits proliferation and induces apoptosis of p53 deficient neuroblastoma cells. Clin. Cancer Res. 16, 1279–1288 (2004).

92. De Ouwehand, K., de Ruijter, A. J., van Bree, C., Caron, H. N. & van Kuijlenburg, A. B. Histone deacetylase inhibitor BL1521 induces a GI-phase arrest in neuroblastoma cells through altered expression of cell cycle proteins. FEBS Lett. 579, 1523–1528 (2005).

93. De Ruijter, A. J., Leen, R., Hoebsch, J., Caron, H. N. & van Kuijlenburg, A. B. Antagonistic effects of sequential administration of BL1521, a histone deacetylase inhibitor, and gemcitabine to neuroblastoma cells. Cancer Lett. 233, 240–246 (2006).

94. Wang, Z., Hu, J., Zhou, D., Xu, Z., Panacei, L. C. & Chen, Z. TRichostatin A inhibits proliferation and induces expression of p21/WAF and p27 in human brain tumor cell lines. Ai Zhong. 21, 1100–1105 (2005).

95. Hřebščíková, J., Poljaková, J., Eckschlagler, T., Habietta, J., Procházková, P. & Smutný, J. et al. Histone deacetylase inhibitors valproate and trimostatin A
are toxic to neuroblastoma cells and modulate cytochrome P450 1A1, 1B1 and 3A4 expression in these cells. Interdiscip. Toxicol. 2, 205–210 (2009).

116. Carén, H., Franson, S., Ejevik, K., Kogner, P. & Martinsson, T. Genetic and epigenetic changes in the common 1p36 deletion in neuroblastoma tumours. Br. J. Cancer 97, 1416–1424 (2007).

117. Politis, P. K., Aleviou, S., Hurel, C., Papadodima, O. & Matras, R. BM88/Cond1 is involved in histone deacetylase inhibition-mediated growth arrest and differentiation of neuroblastoma cells. FEBS Lett. 582, 741–748 (2008).

118. Hamner, J. B., Sims, T. L., Cutshaw, A., Dickson, P. V., Rosati, S. & McGee, M. et al. The efficacy of combination therapy using adeno-associated virus-interferon beta and trichostatin A in vitro and in a murine model of neuroblastoma. J. Pediatr. Surg. 43, 177–183 (2008).

119. Kulača, S., Liu, T., Tee, A. E., Hāber, M., Norris, M. D. & Dwarte, T. et al. Enhancing the anti-angiogenic action of histone deacetylase inhibitors. Mol. Cancer 6, 68 (2007).

120. Poljakova, J., Hreibackova, J., Divorakova, M., Moserova, M., Eckschlager, T. & Hrubeta, J. et al. Anticancer agent eliplticine combined with histone deacetylase inhibitors, valproic acid and trichostatin A is an effective DNA damage repair inhibitor in human neuroblastoma Neuro Endocrinol. Lett. 32, 101–116 (2011).

121. Wegener, D., Deuber, H. E., Oehme, I., Milde, T., Hildmann, C. & Schwenhöft, A. et al. HD1 4608, a novel potent histone deacetylase inhibitor, exhibits antitumour activity against embryonic childhood cancer cells. Anticancer Drugs 19, 849–857 (2008).

122. Deuber, H. E., Ehemann, V., Kukolzik, A. E., Westermann, F., Saveljeva, L. & Kopp-Schneider, A. et al. Anti-neoplastic activity of Helminthosporium carbonum (HC)-toxin is superior to that of other differentiating compounds in vitro. Cancer Lett. 264, 21–28 (2008).

123. Pandicker, J., Li, Z., McMahan, C., Szer, C., Steadman, K. & Piekarz, R. et al. Romidepsin (FK228/depsipeptide) controls growth and induces apoptosis in neuroblastoma tumor cells. Cell Cycle 9, 1830–1838 (2010).

124. Suzuki, T., Ota, Y., Bando, M., Gotoh, A. & Ito, Y. et al. Rapid discovery of highly potent and selective inhibitors of histone deacetylase 8 using click chemistry to generate candidate libraries. J. Med. Chem. 55, 9562–9575 (2012).

125. Wang, G., Edwards, H., Caldwell, J. T., Buck, S. A., Qing, W. Y. & Taub, J. W. et al. Panobinostat synergistically enhances the cytotoxic effects of cisplatin, doxorubicin or etoposide on high-risk neuroblastoma cells. Cancer Res. 69, 6242–6249 (2009).

126. Keshelava, N., Davicioni, E., Wan, Z., Ji, L., Sposto, R. & Triche, T. J. et al. Histone deacetylase 1 gene expression and sensitization of multidrug-resistant neuroblastoma cell lines to cytotoxic agents by depsipeptide. J. Natl Cancer Inst. 99, 1107–1119 (2007).

127. Berdasco, M., Ropero, S., Setien, F., Fraga, M. F., Lapunzina, P. & Losson, R. et al. Epigenetic inactivation of the Sotos overgrowth syndrome gene histone methyltransferase NSD1 in human neuroblastoma and glioma. Proc. Natl Acad. Sci. USA 106, 21830–21835 (2009).

128. Hudelebusch, H. R., Stocke, J., Santonij-Rugiu, E., Ziming, Z. G., Lees, M. J. & Simon, R. et al. MMSET is highly expressed and associated with aggressiveness in neuroblastoma. Cancer Res. 71, 4226–4235 (2011).

129. Wang, C., Liu, Z., Woo, C.-W., Li, Z., Wang, L. & Wei, J. S. et al. EZH2 mediates epigenetic silencing of neuroblastoma suppressor genes CASL2, CLU, RUNK3, and NFGR1. Cancer Res. 72, 315–324 (2012).

130. Park, J. H., Szmol, M., Veira, G. C., Melegh, Z., Malik, S. & Heeseom, K. et al. Protein arginine methyltransferase 5 is a key regulator of the MYCN oncoprotein in neuroblastoma cells. Mol. Oncol. 9, 617–627 (2015).

131. Teo, A. E., Ling, D., Nelson, C., Atmadibrata, B., Dinger, M. E. & Xu, N. et al. The histone demethylase JMJD1A induces cell migration and invasion by up-regulating the expression of the long noncoding RNA MALAT1. Oncotarget 7, 18793–18804 (2016).

132. Kuo, Y. T., Liu, Y. L., Adebayo, B. O., Shih, P. H., Lee, W. H. & Wang, L. S. et al. JARD1B expression plays a critical role in chemoresistance and stem cell-like phenotype of neuroblastoma cells. PLoS One 10, 1–14 (2015).

133. Shahbazii, S., Scarlett, C. J., Norris, M. D., Liu, B., Hāber, M. & Tee, A. E. et al. Histone Deacetylase 2 and N-Myc reduce p53 protein phosphorylation at serine 46 by repressing gene transcription of tumor protein 53-induced nuclear protein 1. Oncotarget 5, 4257–4266 (2014).

134. Sun, Y., Liu, P. Y., Scarlett, C. J., Malyukova, A., Liu, B. & Marshall, G. M. et al. Histone Deacetylase 5 blocks neuroblastoma cell differentiation by interacting with N-Myc. Oncogene 33, 2987–2994 (2014).

135. Subramanian, C., Jarzembski, A. J., Hāley, S. M., Kuick, R., Oppari, A. W. & Castle, V. P. et al. CLU blocks HDAC6-mediated killing of neuroblastoma. Tumor Biol. 32, 285–294 (2011).

136. Thole, T. M., Lodrini, M., Fabian, J., Wünschel, J., Pfiel, S. & Hieschler, T. et al. Neuroblastoma cells depend on HDAC11 for mitotic cell cycle progression and survival. Cell Death Dis. 8, e6635 (2017).

137. Glick, R. D., Svendsen, S. L., Coffey, D. C., Rikkind, R. A., Marks, P. A. & Richon, V. M. et al. Hybrid polar histone deacetylase inhibitor induces apoptosis and CD95/CD95 ligand expression in human neuroblastoma. Cancer Res. 59, 4392–4399 (1999).

138. Coffey, D. C., Kukto, M. C., Glick, R. D., Svendsen, S. L., Butler, L. & Rikkind, R. et al. Histone deacetylase inhibitors and retinoic acids inhibit growth of human neuroblastoma in vitro. Med. Pediatr. Oncol. 35, 577–581 (2000).

139. Coffey, D. C., Kukto, M. C., Glick, R. D., Acid, A. R., Butler, L. M. & Heller, G. et al. The histone deacetylase inhibitor, CHA, inhibits growth of human neuroblastoma xenografts in vivo, alone and synergistically with all-trans retinoic acid. Cancer Res. 61, 3591–3594 (2001).

140. Butler, L. M., Webb, Y., Agu, D. B., Higgins, B., Tolentino, T. R. & Kukto, M. C. et al. Inhibition of transformed cell growth and induction of cellular differentiation by pyroxamide, an inhibitor of histone deacetylase. Clin. Cancer Res. 7, 962–970 (2001).

141. Jaboie, J., Wild, J., Hamid, K., Khanna, C., Kim, C. J. & Robey, R. et al. MS-27-275, an inhibitor of histone deacetylase, has marked in vitro and in vivo antitumor activity against pediatric solid tumors. Cancer Res. 62, 6108–6115 (2002).

142. Furcht, S. E., Lanvers-Kaminsky, C., Jurgen, F., Jung, H., Lodli, A. & Fruthwald, M. C. Inhibitors of histone deacetylases as potential therapeutic tools for high-risk embryonal tumors of the nervous system of childhood. Int. J. Cancer 120, 1787–1794 (2007).

143. Bayat Mohktari, R., Baluch, N., Ka Hon Tsui, M., Kumar, S., Homayouni, T. & Aitken, K. et al. Acetazolamide potentiates the anti-tumor potential of HDAC5, MS-275, in neuroblastoma. BMC Cancer 17, 156 (2017).

144. Rozental, R., Farahani, R., Yu, Y., Johnson, J. M., Chan, S. G. & Chiu, F. C. Sodium butyrate induces apoptosis in MSN neuroblastoma cells in a calcium independent pathway. Neurochem. Res. 29, 2125–2134 (2004).