Propensity for DNA Damage in Psoriasis Patients Genotyped for Two Candidate Genes

G. Gandhi1*, Premjot Singh Girgila2, Ramesh K. Aggarwal3 and Brinderjit Singh Buttar1

1Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
2Formerly at Skin and T.B. Ward, Sri Guru Ram Das Charitable Hospital, Amritsar, Punjab, India
3Molecular Genetics Lab., Centre for Cellular and Molecular Biology, Hyderabad, India

Abstract

Studies assessing genetic damage and its association with disease-candidate genes in patients belonging to geographically distinct populations are scanty. The present study evaluated DNA damage using the alkaline Single Cell Gel Electrophoresis assay in peripheral blood leukocytes of Psoriasis Punjabi Patients on systemic-topical therapy who had been genotyped for two disease-candidate genes (HLA-C, human leukocyte antigen and the coiled-coil alpha-helical rod protein 1(CCHCR1). Genetic damage was disease gene-influenced as homozygous mutants for CCHCR1 Exon 4 site 386* (C→T) and heterozygous mutants for 404* (C→T) alleles had significantly more damage (p<0.05) compared to respective homozygous wild types. The arginine to tryptophan substitution alters the protein, triggering keratinocyte proliferation and probably inflammation/ oxidative stress. This along with drug treatment probably caused the observed DNA damage. Population sub-groups had no within group differences but larger sizes can explore this possibility. Studies of this type can provide disease-gene-damage prone information for exploring DNA-safe therapeutics.

Keywords: Genetic damage; Gene association; Population sub-groups

Background

Studies for associations between polymorphisms of candidate disease genes and genetic damage in geographically defined populations have not come to attention. Such studies can explore ethnic and racial differences in disease as well as propensity for DNA damage since the latter is an early indicator of carcinogenesis. Assessment of patients for genetic damage can assist in its management. Psoriasis, an immune-mediated inflammatory skin disease requiring long term treatment, affecting 2–3% of the population [1] with varying ethnic-frequency [2], mediated via genetic-environmental factors, causes keratinocyte hyperproliferation, inflammatory response [3] with an impaired oxidant/antioxidant status [4-6] which is damaging to proteins, lipids and DNA. Patients with/without various treatment modalities have been assessed for genetic damage [7-11] but none on both, systemic and topical treatments which is a regular, local prescription. Therefore DNA damage was investigated in peripheral blood leukocytes (PBL) of patients applying coal tar ointment and prescription. Gel Electrophoresis assay in peripheral blood leukocytes of Psoriasis Punjabi Patients on systemic-topical therapy who had been genotyped for two disease-candidate genes (HLA-C, human leukocyte antigen and the coiled-coil alpha-helical rod protein 1(CCHCR1). Genetic damage was disease gene-influenced as homozygous mutants for CCHCR1 Exon 4 site 386* (C→T) and heterozygous mutants for 404* (C→T) alleles had significantly more damage (p<0.05) compared to respective homozygous wild types. The arginine to tryptophan substitution alters the protein, triggering keratinocyte proliferation and probably inflammation/ oxidative stress. This along with drug treatment probably caused the observed DNA damage. Population sub-groups had no within group differences but larger sizes can explore this possibility. Studies of this type can provide disease-gene-damage prone information for exploring DNA-safe therapeutics.

Questions Addressed

As propensity for genetic disease is ethnicity-dependent and as susceptibility for genomic insult has an association with metabolic genotypes, there could also be an association underlying disease gene-specificity and genetic damage. With this hypothesis and in view of cited literature, Psoriasis patients on systemic and topical therapy, already genotyped for some polymorphisms of CCHCR1 gene and HLA-C region, were assessed for DNA damage (pre-cancerous lesions) in order to correlate the level of genetic damage, if any, with their genotypic status, population sub-group besides routine variables. To the best of our knowledge, no such studies have been reported, at least not in Psoriasis patients from this region.

Experimental Design

Patients and healthy, matched controls participated after voluntary, written informed consent and study’s institutional ethical clearance. Disease history, demographic information and pedigree were recorded on a questionnaire. PBL from genotyped patients were processed for DNA damage by alkaline SCGE assay [15] except use of local chemicals and silver staining. Under electrophoresis, breaks in the super coiled DNA migrate towards the anode and appear as a comet indicative of DNA damage. Coded slides were visually scored at 400X. DNA migration was measured using a calibrated ocular micrometer and cells were graded into categories based on tail length. Arbitrary score, damage frequency (DF) and damage index (DI) were calculated [16] as mean ± S.E.M. Mann-Whitney U test was applied for significance of DNA damage. Chi-square (χ2) test compared attributes of patients and controls and their cells in different damage categories. Regression analysis, analysis of variance and odds ratio at 95% confidence interval were performed for confounders of DNA damage. Values were taken significant at p≤0.05, p<0.01 and p<0.001. All analysis was done using SPSS (version 10.0).

Results

Characteristics of patients and matched controls are given in...
supplementary material (Table S1, Table S2). DNA migration length, DI and DF reflect cellular events

Table 1: HLA-C and CCHCR1 genotypes and DNA damage in Psoriasis patients and controls.

Allele	Genotype	PATIENTS	CONTROLS				
		DI S.E.M. (n)	DF S.E.M. (n)	Mean DNA migration length ± S.E.M. (n)	DI S.E.M. (n)	DF S.E.M. (n)	Mean DNA migration length ± S.E.M. (n)
22222* (G–A)	GG	25.38***±1.97 (12)	55.23***±3.28 (12)	37.51***±1.56 (12)	4.88±1.28 (9)	11.77±5.9 (9)	9.38±1.94 (9)
	GA	28.41***±1.94 (10)	55.29***±3.62 (10)	38.78***±2.60 (10)	6.75±2.56 (4)	13.50±5.12 (4)	12.29±3.36 (4)
	AA	34.46±1.32 (7)	62.85±1.37 (7)	33.41±1.49 (7)	6.00±1.30 (2)	12.00±2.00 (2)	5.07±0.68 (2)
22333* (A–G)	GG	26.25***±1.95 (12)	54.83***±3.54 (12)	36.92***±1.58 (12)	10.68±3.10 (9)	11.33±2.76 (9)	8.79±2.17 (9)
	AG	28.31***±2.06 (10)	55.12***±3.85 (10)	33.88***±2.77 (10)	6.75±2.56 (4)	13.50±5.12 (4)	12.29±3.36 (4)
	AA	35.57±1.70 (9)	62.85±1.37 (9)	33.41±1.49 (9)	6.00±1.30 (2)	12.00±2.00 (2)	5.07±0.68 (2)
24118* (T–C)	TT	26.90***±2.01 (11)	56.18***±3.59 (11)	36.76***±1.72 (11)	9.00±3.60 (11)	11.07±2.28 (11)	8.69±1.77 (11)
	TC	27.72±2.17 (18)	53.86±3.33 (18)	36.04±2.27 (18)	9.00±3.00 (11)	10.00±0.00 (11)	7.56±0.00 (11)
	CC	34.83±1.88 (6)	65.33±2.34 (6)	33.66±4.26 (6)	9.00±0.00 (1)	8.00±0.00 (1)	7.59±0.00 (1)
386* (C–T)	CC	26.09***±2.02 (11)	50.36***±3.33 (11)	32.83***±2.38 (11)	9.28±3.32 (11)	14.28±3.32 (11)	8.96±1.82 (11)
	CT	29.40±1.91 (21)	57.40±3.06 (21)	36.51±2.11 (21)	9.00±0.00 (11)	10.00±0.00 (11)	8.39±0.00 (11)
	TT	37.06±1.57 (18)	66.98±1.55 (18)	36.37±2.66 (18)	9.00±0.00 (11)	10.00±0.00 (11)	8.39±0.00 (11)
404* (T–C)	CC	25.69***±1.95 (9)	48.33***±2.94 (9)	31.32***±2.50 (9)	9.28±3.32 (14)	12.14±3.21 (14)	8.96±1.82 (14)
	CT	30.30***±1.70 (20)	59.20***±3.21 (20)	35.07±2.05 (20)	5.00±0.00 (1)	10.00±0.00 (1)	8.39±0.00 (1)
	TT	31.50±3.41 (6)	66.85±3.55 (6)	39.24±3.85 (6)	9.00±0.00 (11)	10.00±0.00 (11)	8.39±0.00 (11)
1364* (C–T)	TC	29.01***±2.47 (10)	56.20***±2.99 (10)	33.54***±3.81 (10)	6.40±1.39 (10)	10.84±2.76 (10)	8.63±2.22 (10)
	CC	30.31***±1.47 (17)	59.12***±3.57 (17)	34.64***±1.93 (17)	5.25±1.93 (14)	10.50±3.86 (14)	7.63±2.54 (14)
	TT	25.60±2.37 (16)	10.00±0.00 (8)	30.00±4.23 (8)	50.00±0.00 (1)	10.00±0.00 (1)	7.55±0.00 (1)

Very highly significant (p<0.001), ** highly significant (p<0.01), *significant (p<0.05) when compared to parallel control groups (Mann Whitney-U-test)

Very highly significant when compared to parallel control group (p<0.005) within patient group (404* (C–T)).

Very highly significant (p≤0.001), ** highly significant (p≤0.01), *significant (p≤0.05) when compared to parallel control groups (Mann Whitney-U-test).
10. Borska L, Andrys C, Krejsek J, Hamakova K, Kremlacek J, et al. (2009) Plasma levels of p53 protein and chromosomal aberrations in patients with psoriasis treated with the Goeckerman regimen. Clin Exp Dermatol 34: e881-e883.

11. Borska L, Smekalova J, Cerna M, Hamakova K, Kucera I, et al. (2010) Urinary mutagenicity and genotoxic risk in children with psoriasis after therapeutic exposure to polycyclic aromatic hydrocarbons and ultraviolet radiation. Mutat Res 696: 144-147.

12. Ündeğer U, Şahin TT, Yüksel O, Bostanc H, Kurukahvecioğlu O, et al. (2008) Assessment of DNA Damage in Peripheral Blood Lymphocytes From Patients with Benign and Malignant Thyroid Disorders. University Journal of the Faculty of Pharmacy 28: 1-14.

13. Lowes MA, Bowcock AM, Krueger JG (2007) Pathogenesis and therapy of psoriasis. Nature 445: 866-873.

14. Carlen L, Sakuraba K, Stahle M, Sanchez F (2007) HLA-C expression pattern is spatially different between psoriasis and eczema skin lesions. J Invest Dermatol 127: 342-348.

15. Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175: 184-191.

16. Collins A, Al-Guo M, Duthie SJ (1995) The kinetics of repair of oxidative DNA damage (strand breaks and oxidised pyrimidines) in human cells. Mutat Res 336: 69-77.

17. Suomela S, Elomaa O, Skoog T, Ala-aho R, Jeskanen L, et al. (2009) CCHCR1 is up-regulated in skin cancer and associated with EGFR expression. PLoS One 4: e6030.

18. Chang YT, Shiao YM, Chan PJ, Liu YL, Chou FC, et al. (2004) Genetic polymorphisms of the HCR gene and a genomic segment in close proximity to HLA-C are associated with patients with psoriasis in Taiwan. Br J Dermatol 150: 1104-1111.

19. Asumalahti K, Veal C, Laitinen T, Suomela S, Allen M, et al. (2002) Coding haplotype analysis supports HCR as the putative susceptibility gene for psoriasis at the MHC PSORS1 locus. Hum Mol Genet 11: 589-597.

20. Davidovici BB, Sattar N, Prinz JC, Puig L, Emery P, et al. (2010) Psoriasis and systemic inflammatory diseases: potential mechanistic links between skin disease and co-morbid conditions. J Invest Dermatol 130: 1785-1796.