INTRODUCTION

Gastric cancer is one of the most common epithelial malignancies and the secondary leading cause of cancer-related death in the world.[1] There are about 952,000 new gastric cancer cases each year worldwide, 47% of which are in China. Gastric cancer is ranked second in the incidence of malignant tumors in China, and some 352,300 people in China die of gastric cancer each year, ranking third in cancer mortality in the country.[2]

Despite the advances in treatment and research efforts over the past few decades, the poor overall 5-year survival rate of gastric cancer is largely because many gastric cancers are fail to diagnosed at an early stage, tumor recurrence and metastasis[3]. Thus, it is necessary to further explore and investigate the tumorigenesis of gastric cancer and its novel therapy targets.[4]

G-protein coupled receptors (GPCRs) represent a large family of proteins and regulate key biological functions including cellular growth, motility, differentiation, and gene transcription, and also appear to be involved in cancer progression.[5] GPCRs are one of the most important drug targets for the pharmaceutical industry and >30% of all marketed therapeutics act on them.[6] Additional, short hairpin RNA (ShRNA)-mediated GPCR gene silencing has promising therapeutic potential for gastric cancer therapy.[7,8]

G protein - coupled receptor 34 (GPR34) is a 7-transmembrane receptor. Only a few studies have addressed elevated expression levels of GPR34 in malignancies, including metastatic melanoma[9] and MALT lymphoma[10,11] and its essential roles in tumor development and progression. Our previous studies have demonstrated that increased expression of PI3K/PDK1/AKT and ERK using Western blotting. We also measured expression profile of PI3K/PDK1/AKT and ERK using Western blotting.

Background: Overexpression of G-protein coupled receptor 34 (GPR34) affects the progression and prognosis of human gastric adenocarcinoma, however, the role of GPR34 in gastric cancer development and progression has not been well-determined. The current study aimed to investigate the effect of GPR34 knockdown on the proliferation, migration, and apoptosis of HGC-27 gastric cancer cells and the underlying mechanisms.

Methods: The expression of GPR34 in gastric cancer cell line HGC-27 was detected by quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting. HGC-27 cells were employed to construct the stable GPR34 knockdown cell model in this study. Real-time RT-PCR and Western blotting were applied to validate the effect of short hairpin RNA (ShRNA) on the expression of GPR34 in HGC-27 gastric cells. The proliferation, migration of these cells were examined by Cell Counting Kit-8 and transwell. We also measured expression levels of PI3K/PDK1/AKT and ERK using Western blotting.

Results: The ShRNA directed against GPR34 effectively inhibited both endogenous mRNA and protein expression levels of GPR34, and significantly down-regulated the expression of PIK3CB (P < 0.01), PIK3CD (P < 0.01), PDK1 (P < 0.01), phosphorylation of PDK1 (P < 0.01), Akt (P < 0.01), and ERK (P < 0.01). Furthermore, GPR34 knockdown resulted in an obvious reduction in HGC-27 cancer cell proliferation and migration activity (P < 0.01).

Conclusions: GPR34 knockdown impairs the proliferation and migration of HGC-27 gastric cancer cells in vitro and provides a potential implication for therapy of gastric cancer.

Key words: Gastric Cancer; GPR34; Knockdown; Migration; Proliferation
of GPR34 in the membrane of gastric cancer tissues was likely associated with metastatic ability, as well as invasion of NCI-N87 gastric cancer cells.\(^{[13]}\) However, the relationship between down-regulation of GPR34 and proliferation and the underlying mechanism remains largely unknown.

In this study, we investigated the effects of down-regulation of GPR34 by ShRNA on proliferation, apoptosis, and migration of HGC-27 gastric cancer cells, as well as PI3K/AKT and ERK expression, with the aim of evaluating whether the expression of GPR34 may be linked to gastric cancer progression, and exploring the underlying mechanisms.

Methods

Cell culture

The human gastric adenocarcinoma cell line HGC-27 was purchased from the American Type Culture Collection and HGC-27 in DMEM (Gibco, USA) containing 10% fetal bovine serum (FBS) (Hyclone, German) and penicillin/streptomycin (10 μg/ml) (Gibco, USA) at 37°C in a humidified atmosphere with 5% CO₂.

Stable knockdown of GPR34

One MSCV-based retroviral vector containing-shRNA that specifically target GPR34 transcript was purchased from Open Biosystems (Huntsville, AL, USA). Sense sequence of GPR34 shRNA is as follows: CAGTTTTGATCGCTATATA. The expression of shRNAs was driven by the U6 promoter. Amplification and purification of plasmid DNAs were performed as specified by the manufacturer’s instructions. Lipofectin 2000 was used to transfect MSCV-empty vector (Clontech, USA)-or MSCV-ShRNA plasmids-into HGC-27 gastric cancer cells according to manufacturer’s instruction (Invitrogen, USA). The stable transformed clones were selected by puromycin (2 mg/ml) (Invitrogen, USA) and used for subsequent experiments.

Quantitative real-time reverse transcription-polymerase chain reaction and Western blotting analyses

Quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR) was performed using an OPTICON 2 real-time PCR detection system (Bio-Rad, USA) using human GPR34 primers\(^{[12]}\) combined with SYBR Green Master Mix (Applied Biosystems, USA). Sense sequence of GPR34 primers was forward: 5’-CTGTTGGATATGCA-3’, reverse: 5’-TGGAATCATA TTGGAACATGTAAACC-3’; human GAPDH (forward: 5’-CTGCCACAGAATGCCGTGTTTA-3’, reverse: 5’-CAACCGTGCCCAGATGAAA-3’).

Western blotting analyses were performed by conventional protocols as described by Cui et al.\(^{[13]}\) In brief, Cells were lysed in ice-cold lysis buffer. Whole cell lysates were then clarified by centrifugation at 16,000 ×g for 30 min at 4°C and mixed with loading buffer and boiled for 5 min. Samples were resolved by 8% sodium dodecyl sulfate polyacrylamide gel electrophoresis and proteins were transferred onto Hybond™-N Nylon membranes (Pharmacia, UK).

Nylon membranes were then blocked with 5% skimmed milk in tris buffered saline containing 0.1% Tween 20 (TBST), followed by an overnight incubation with primary antibodies (1:1000) at 4°C. Membranes were then washed with TBST and incubated with secondary antibodies conjugated to HRP (Jackson, USA). Signals were detected using the SuperSignal West Pico Trial Kit (Thermo Scientific, USA). Images were acquired using an Image Quant 350 (GE HEALTHCARE, USA) and analyzed by ImageJ software (NIH, USA). β-actin, (1:2000 dilution) (Proteintech, USA) P13 Kinase Ab Sampler Kit (#9655), P-AKT pathway Sampler Kit (#9916), and ERK/P-ERK (#9102/#4370) (1:1000 dilution; CST, USA).

Cell proliferation assay

Cell proliferation assays were performed with Cell Counting Kit-8 (CCK-8, Dojindo Rockville, USA) according to the manufacturer’s instructions. The HGC-27 parental cells (HGC-27), the empty-vector transfected HGC-27 cells (HGC-27-V), and GPR34- ShRNA transfected HGC-27 cells (HGC-27-K) were seeded at 5 × 10^3 into each well of a 96-well plate and plated in 100 μl of DMEM supplemented with 10% FBS. At the indicated time-points, culture medium was exchanged for 110 μl of DMEM supplemented with CCK-8 reagent (10 μl CCK-8 plus 100 μl DMEM), and the cells were incubated for an additional 2 h. Absorbances were measured for each well at a wavelength of 450 nm, with a reference wavelength set at 600 nm. An increase or decrease in absorbance values at 450 nm in the experimental wells relative to the initial value indicated cell growth or death respectively. Cell growth was monitored at 24 h, 48 h, 72 h, and 96 h (and was repeated in replicates of 3 wells per time-point.

Apoptosis assay

Apoptosis was monitored using Annexin V-FITC Apoptosis Detection Kit (KeyGen Biotech, China). For FACS analysis, 1 × 10^3 cells were co-stained with Annexin V and with propidium iodide (PI). Cells that stained negative for both PI and annexin V were considered viable cells; PI-negative and annexin V-positive stained cells were considered early apoptotic cells; PI-positive and annexin V-positive stained cells were considered primarily in the later stages of apoptosis.

Migration assay

The activity of migration of cells was performed using 24-well transwell chamber (Corning, USA) with 8.0-μm pore polycarbonate filter inserts. Cells (5 × 10^3 cells/well) suspended in serum-free DMEM containing 0.2% BSA were overlaid in the upper chamber of each transwell. In each lower chamber, 600 μl of DMEM supplemented with 10% FBS was added. Then, the inserts were incubated at 37°C in a
humidified atmosphere containing 5% CO2 for overnight. The cells that had not penetrated the filters were removed using cotton swabs. The migrated cells attached to the bottom side were fixed in 4% paraformaldehyde for 10 min and stained in 0.1% crystal violet for 30 min, rinsed in PBS and examined under a bright-field microscope with ×100 magnification. The value of migratory activity was expressed as the average number of migrated cells per microscopic field over the 5 fields in each assay from three independent experiments.

Statistical analysis
Data from all quantitative assays are expressed as the mean ± standard deviation (SD) and were analyzed statistically using one-way analysis of variance (ANOVA) and the independent-samples t test. Statistical calculations were performed using SPSS 16.0 (SPSS Inc., USA). *P<0.05 were considered as statistically significant.

RESULTS
Construction of HGC-27 GPR34 knock-down cell models
HGC-27, a low-phosphatase and tensin homolog gastric cancer cell line, was selected and used as a cell model in vitro to determine the correlation between GPR34 expression and proliferation, apoptosis and migration of gastric cancer cells. Both western blotting and real-time RT-PCR results indicated that the GPR34 knockdown HGC-27 cell model (one clone) was successfully constructed [Figure 1a-c].

GPR34 knockdown impairs the proliferation of HGC-27 gastric cancer cells
Significant up-regulation of GPR34 protein in gastric cancer tissues suggested a potential oncogenic role of this gene. To investigate the possible pro-proliferative effects of GPR34 in vitro, a CCK-8 assay was performed and a cell growth curve was generated. As shown in Figure 2, the proliferation of HGC-27 cells transfected with GPR34 specific shRNA was significantly suppressed [Figure 2].

GPR34 knockdown dose not induce apoptosis of HGC-27 gastric cancer cells
To further evaluate the effects of GPR34 on HGC-27 cells apoptosis, the combination of annexin V-FITC and PI was applied. We found that GPR34 knockdown did not induce the apoptosis of HGC-27 gastric cancer cells [Figure 3].

GPR34 knockdown inhibits the migration of HGC-27 gastric cancer cells
To evaluate the function of GPR34 on HGC-27 cells migration, transwell chambers were utilized. We found that GPR34 knockdown led to a significantly decreased migratory ability compared with the control group (*P<0.01, Figure 4).

GPR34 knockdown suppresses the ERK and PI3K/PDK1/AKT pathways
Combined with our previous study,[14] to understand decreased expression of GPR34 in HGC-27 represents a potential molecular mechanism by which HGC-27-K results in the decreased abilities of proliferation and migration any differently from that seen with HGC-27 parental cells in vitro. We studied alterations in ERK, the class I PI3K subunits (p110α, p110β, and p110δ), and PDK1/AKT. When compared with HGC-27 and HGC-27-V cells, both p110β and p110δ were found to be down-regulated in HGC-27-K cells. We did not observe any alteration in the expression of p110α and detect the expression of p110γ in either cell-line [Figure 5]. Furthermore, low expression levels of p-PDK1, p-AKT, and p-ERK were observed in HGC-27-K cells [Figure 5].

DISCUSSION
The activation of oncogenes is currently thought as one of
Many studies have shown that PI3Ks/AKT and/or ERK activity are detectable in gastric cancer. Our previous study showed that up-regulation of GPR34 in primary gastric cancer tissues/cell lines might play a critical role in tumor progression and in determining patient prognosis. Furthermore, alteration of GPR34 expression also involved in the NCI-N87 invasion in vitro by PI3K/PDK1/AKT pathway.

In this study, our results revealed that both GPR34 mRNA and protein were markedly inhibited in HGC-27 cell line transfected with GPR34-ShRNA, which is consistent with our studies showing in NCI-N87. Furthermore, ShRNA-directed targeting of GPR34 in these cells could reduce cellular proliferation and migration. More importantly, a low level of p-ERK, p110β and p110δ, p-PDK1, p-AKT in the HGC-27-K group was detected compared with HGC-27 and HGC-27-V control groups. The above data indicate that knockdown of GPR34 may result in a reduction in ERK-phosphorylation, decreased catalytic activity of PI3K, subsequent low-phosphorylation of the downstream effector AKT, and thus low activity or aberrant inactivation of ERK and PI3K/Akt pathways in these cells.

Taken together, ShRNA targeting GPR34 effectively impairs the proliferation and migration of HGC-27 cells in vitro. The phosphorylation activation of ERK and the ability of PI3K to activate its key downstream effector AKT. Many studies have shown that PI3Ks/AKT and or ERK activity are detectable in gastric cancer. Our previous study showed that up-regulation of GPR34 in primary gastric cancer tissues/cell lines might play a critical role in tumor progression and in determining patient prognosis. Furthermore, alteration of GPR34 expression also involved in the NCI-N87 invasion in vitro by PI3K/PDK1/AKT pathway.

In this study, our results revealed that both GPR34 mRNA and protein were markedly inhibited in HGC-27 cell line transfected with GPR34-ShRNA, which is consistent with our studies showing in NCI-N87. Furthermore, ShRNA-directed targeting of GPR34 in these cells could reduce cellular proliferation and migration. More importantly, a low level of p-ERK, p110β and p110δ, p-PDK1, p-AKT in the HGC-27-K group was detected compared with HGC-27 and HGC-27-V control groups. The above data indicate that knockdown of GPR34 may result in a reduction in ERK-phosphorylation, decreased catalytic activity of PI3K, subsequent low-phosphorylation of the downstream effector AKT, and thus low activity or aberrant inactivation of ERK and PI3K/Akt pathways in these cells. The PI3Ks have been linked to an extraordinarily diverse group of cellular functions, including proliferation, apoptosis and tumor cell migration. Many of these functions relate to the activation of the PI3Ks upstream molecules like GPCRs, the phosphorylation activation of ERK and the ability of PI3K to activate its key downstream effector AKT.

REFERENCES

1. Anderson WF, Camargo MC, Fraumeni JF Jr, Correa P, Rosenberg PS, Rabkin CS. Age-specific trends in incidence of noncardia gastric cancer in US adults. JAMA 2010;303:1723-8.
2. Available from: http://www.news.xinhuanet.com/english/health/2014-06/03/c_133379921.htm.
3. D’Ugo D, Persiani R, Zoccali M, Cananzi F, Vigorita V, Mazzeo P, et al. Surgical issues after neoadjuvant treatment for gastric cancer. Eur Rev Med Pharmacol Sci 2010;14:315-9.
4. Zhou XK, Tang SS, Yi G, Hou M, Chen JH, Yang B, et al. RNAi knockdown of PIK3CA preferentially inhibits invasion of mutant PIK3CA cells. World J Gastroenterol 2011;17:3700-8.
5. Gao Y, Kitagawa K, Hiramatsu Y, Kikuchi H, Isobe T, Shimada M, et al. Up-regulation of GPR48 induced by down-regulation of p27Kip1 enhances carcinoma cell invasiveness and metastasis. Cancer Res 2006;66:11623-31.
6. Hopkins AL, Groom CR. The druggable genome. Nat Rev Drug Discov 2002;1:727-30.
7. Xi HQ, Cai AZ, Wu XS, Cui JX, Shen WS, Bian SB, et al. Leucine-rich repeat-containing G-protein-coupled receptor 5 is associated with invasion, metastasis, and could be a potential therapeutic target in human gastric cancer. Br J Cancer 2014;110:2011-20.
8. Yu CY, Liang GB, Du P, Liu YH. Lgr4 promotes glioma cell proliferation through activation of Wnt signaling. Asian Pac J Cancer Prev 2013;14:4907-11.
9. Qin Y, Verdegaal EM, Siderius M, Bebelman JP, Smit MJ, Leurs R, et al. Quantitative expression profiling of G-protein-coupled receptors (GPCRs) in metastatic melanoma: The constitutively active orphan GPCR GPR18 as novel drug target. Pigment Cell Melanoma Res 2011;24:207-18.
10. Ansell SM, Akasaka T, McPhail E, Manske M, Braggio E, Price-Troska T, et al. t (X; 14) (p11;q32) in MALT lymphoma involving GPR34 reveals a role for GPR34 in tumor cell growth. Blood 2012;120:3949-57.
11. Baens M, Finalet Ferreiro J, Tousseyn T, Urbankova H, Michaux L, de Leval L, et al. t (X; 14) (p11.4;q32.33) is recurrent in marginal zone lymphoma and up-regulates GPR34. Haematologica 2012;97:184-8.
12. Yu W, Ma S, Wang L, Zuo B, Li M, Qiao Z, et al. Upregulation of GPR34 expression affects the progression and prognosis of human gastric adenocarcinoma by PI3K/PDK1/AKT pathway. Histol Histopathol 2013;28:1629-38.
13. Cui M, Yu W, Dong J, Chen J, Zhang X, Liu Y. Downregulation of ABI1 expression affects the progression and prognosis of human gastric carcinoma. Med Oncol 2010;27:632-9.
14. Ji D, Zhang Z, Cheng L, Chang J, Wang S, Zheng B, et al. The combination of RAD001 and MK-2206 exerts synergistic cytotoxic effects against PTEN mutant gastric cancer cells: Involvement of MAPT-dependent autophagic, but not apoptotic cell death pathway. PLoS One 2014;9:e85116.
15. New DC, Wu K, Kwok AW, Wong YH. G protein-coupled receptor-induced Akt activity in cellular proliferation and apoptosis. FEBS J 2007;274:6025-36.
16. Tang SY, Xie H, Yuan LQ, Luo XH, Huang J, Cui RR, et al. Apelin stimulates proliferation and suppresses apoptosis of mouse osteoblastic cell line MC3T3-E1 via JNK and PI3-K/Akt signaling pathways. Peptides 2007;28:708-18.
17. Arrighi N, Bodei S, Zani D, Michel MC, Simeone C, Cosciani Cunico S, et al. Different muscarinic receptor subtypes modulate proliferation of primary human detrusor smooth muscle cells via Akt/PI3K and map kinases. Pharmacol Res 2013;74:1-6.
18. Tveteraas IH, Müller KM, Aasrum M, Ødegård J, Dajani O, Guren T, et al. Mechanisms involved in PGE2-induced transactivation of the epidermal growth factor receptor in MH1C1 hepatocarcinoma cells. J Exp Clin Cancer Res 2012;31:72.
19. Fu X, Feng J, Zeng D, Ding Y, Yu C, Yang B. PAK4 confers cisplatin resistance in gastric cancer cells via PI3K/Akt- and MEK/Erk-dependent pathways. Biosci Rep 2014;[Epub ahead of print].
20. Takahashi N, Yamada Y, Taniguchi H, Fukahori M, Sasaki Y, Shoji H, et al. Clinicopathological features and prognostic roles of KRAS, BRAF, PIK3CA and NRAS mutations in advanced gastric cancer. BMC Res Notes 2014;7:271.