Universal Lossless Data Compression
Via Binary Decision Diagrams

J. Kieffer, P. Flajolet, and E-h. Yang
Abstract

A binary string of length 2^k induces the Boolean function of k variables whose Shannon expansion is the given binary string. This Boolean function then is representable via a unique reduced ordered binary decision diagram (ROBDD). The given binary string is fully recoverable from this ROBDD. We exhibit a lossless data compression algorithm in which a binary string of length a power of two is compressed via compression of the ROBDD associated to it as described above. We show that when binary strings of length n a power of two are compressed via this algorithm, the maximal pointwise redundancy/sample with respect to any s-state binary information source has the upper bound $(4 \log_2 s + 16 + o(1)) / \log_2 n$. To establish this result, we exploit a result of Liaw and Lin stating that the ROBDD representation of a Boolean function of k variables contains a number of vertices on the order of $(2 + o(1))2^{k/k}$.

Index Terms: lossless source coding, universal codes, Boolean functions, ROBDD representations
I Introduction

Let S(dyadic) denote the set of all binary strings x such that

- The length of x is a power of two.
- The substring of x which forms the left half of x does not coincide with the substring of x which forms the right half of x.
- x contains at least one entry of 1 and at least one entry of 0.

Let $x \in S$(dyadic) and let k be the logarithm to the base two of the length of x. In a natural way, x induces a Boolean function f_x of k variables. The function f_x maps the set $\{0, 1\}^k$ into the set $\{0, 1\}$, and can be defined as follows. Let $u_1, u_2, \ldots, u_{2^k}$ be the lexicographical ordering of all binary strings of length k. For each $i = 1, 2, \ldots, 2^k$, define $f_x(u_i)$ to be the i-th coordinate of x. Following [1] [2], the Boolean function f_x can be represented by a directed acyclic graph called a reduced ordered binary decision diagram (ROBDD). Since the Boolean function f_x can be recovered from its ROBDD representation, x can also be recovered from this representation. This means that we can losslessly compress a string $x \in S$(dyadic) by compressing the ROBDD representation of the Boolean function f_x induced by x. It is the purpose of this note to investigate the compression performance that is achievable by such a compression algorithm (we obtain a redundancy bound).

There are public domain software packages (some of them on the Internet) for computing the ROBDD representation of a Boolean function. Such a package would be easily adaptable in order to provide compression of a data string in S(dyadic) according to the ROBDD-based compression algorithm that we shall present.

II ROBDD’s Representing Data Strings

Define G to be the set of all finite graphs G such that

(a) G is directed and acyclic.

(b) G has a unique nonterminal vertex V_G^r such that for every other vertex V of G, there is at least one directed path leading from V_G^r to V. The vertex V_G^r is called the root vertex of G.

(c) There are exactly two terminal vertices of G, which shall be denoted T_G^0 and T_G^1, respectively.

(d) From each nonterminal vertex of G, there emanate exactly two edges, one of which is labelled “0” and the other of which is labelled “1”. These edges terminate at different vertices (i.e., G has no multiple edges).

(e) Each vertex V of G carries a positive integer label $L(V)$ which we shall call the level of V. The levels of the vertices satisfy the properties:

- $L(V_G^r) = 1$.

obtained by concatenating together j as indicated in Figure 2. (This is a “canonical ordering” of the vertices of G explained later.) Since y denotes the binary string obtained by concatenating y strings of finite positive length. We define ϕ_G to satisfy the properties (a)-(e). Therefore, this graph is a member of \mathcal{G}.

Example 1. The graph given in Figure 1, in which each vertex is labelled by its level, is seen to satisfy the properties (a)-(e). Therefore, this graph is a member of \mathcal{G}.

Let $G \in \mathcal{G}$. Let $V(G)$ be the set of vertices of G. Let $\{0, 1\}^+$ denote the set of all binary strings of finite positive length. We define ϕ_G to be the unique mapping from $V(G)$ into $\{0, 1\}^+$ such that

- $\phi_G(T_G^0) = 0$ and $\phi_G(T_G^1) = 1$.
- If V is a nonterminal vertex of G, if the edge labelled 0 emanating from V terminates at vertex V_0, and the edge labelled 1 emanating from V terminates at vertex V_1, then
 \[
 \phi_G(V) = \phi_G(V_0)^{(2^{L(V_0)}-L(V)}-1) \phi_G(V_1)^{(2^{L(V_1)}-L(V)}-1)
 \]
 (Notation: If y is a binary string and j is a positive integer, then y^j denotes the binary string obtained by concatenating together j copies of y. If y_1 and y_2 are binary strings, then y_1y_2 denotes the binary string obtained by concatenating y_2 onto the right end of y_1.)

Example 2. Let A_1, A_2, \ldots, A_{16} denote the sixteen vertices of the graph G in Figure 1, as indicated in Figure 2. (This is a “canonical ordering” of the vertices of G, which shall be explained later.) Since $A_8 = T_G^0$ and $A_{16} = T_G^1$, we have

\[
\begin{align*}
\phi_G(A_8) &= 0 \\
\phi_G(A_{16}) &= 1 \\
\phi_G(A_9) &= \phi_G(A_8)\phi_G(A_{16}) = 01 \\
\phi_G(A_{10}) &= \phi_G(A_8)^2\phi_G(A_{16})^2 = 0011 \\
\phi_G(A_{11}) &= \phi_G(A_9)\phi_G(A_{10})^2 = 0111 \\
\phi_G(A_{12}) &= \phi_G(A_8)^4\phi_G(A_{16})^4 = 00001111 \\
\phi_G(A_{13}) &= \phi_G(A_9)^2\phi_G(A_{16})^4 = 01011111 \\
\phi_G(A_{14}) &= \phi_G(A_{10})\phi_G(A_{16})^4 = 00111111 \\
\phi_G(A_{15}) &= \phi_G(A_{11})\phi_G(A_{16})^4 = 01111111 \\
\phi_G(A_{14}) &= \phi_G(A_8)^8\phi_G(A_9)^4 = 000000001010101 \\
\phi_G(A_{15}) &= \phi_G(A_{10})^2\phi_G(A_{11})^2 = 0011001101110111 \\
\phi_G(A_{16}) &= \phi_G(A_{12})\phi_G(A_{13}) = 0000111101011111 \\
\phi_G(A_{17}) &= \phi_G(A_{14})\phi_G(A_{15}) = 0011111101111111 \\
\phi_G(A_{18}) &= \phi_G(A_4)\phi_G(A_{5}) = \text{length 32 string} \\
\phi_G(A_{19}) &= \phi_G(A_6)\phi_G(A_{7}) = \text{length 32 string} \\
\phi_G(A_{11}) &= \phi_G(A_2)\phi_G(A_{3}) = \text{length 64 string}
\end{align*}
\]

The following is clear from the definition of ϕ_G and Example 2.
Lemma 1 Let G be any graph in \mathcal{G}. Suppose $L(T_0^G) = L(T_1^G) = k + 1$. Then, for each vertex V of G, the length of $\phi_G(V)$ is $2^{k+1-L(V)}$. In particular, the length of $\phi_G(V_r^G)$ is 2^k.

Definition. We define \mathcal{G}^* to be the set of all graphs $G \in \mathcal{G}$ such that the mapping ϕ_G is one-to-one.

Lemma 2 The following statements hold:

(a) For any $G \in \mathcal{G}^*$, the binary string $\phi_G(V_r^G)$ is a member of S(dyadic).

(b) For each $x \in S$(dyadic), there is a unique $G \in \mathcal{G}^*$ such that $\phi_G(V_r^G) = x$. In the language of [1] [2], this unique graph G is the unique ROBDD representing the Boolean function f_x.

Proof. Part (a) is clear from Example 2. Part (b) (including the uniqueness of the ROBDD representation) may be seen to be true by consulting the papers [1] [2].

Notation. For each $x \in S$(dyadic), we let G_x denote the unique graph in \mathcal{G}^* which represents x in the sense of Lemma 2(b).

Example 3. The graph G in Figure 1 is G_x, where $x \in S$(dyadic) is found from Example 2 by the calculation

$$
x = \phi_G(A_4)\phi_G(A_5)\phi_G(A_6)\phi_G(A_7)
= 00000000101010100110011011011101110000111101011111101111110111111111
$$

III Encoding Method

For each $G \in \mathcal{G}^*$, we shall define in this section a binary codeword $\sigma(G)$ from which G can be recovered. Given $x \in S$(dyadic), we can then losslessly encode x into the binary codeword $\sigma(G_x)$.

We need the following notation. If G is a graph in \mathcal{G}^*, and V is a nonterminal vertex of G, then the notation

$$V \rightarrow V_0, V_1$$

means that V_0 is the vertex of G to which edge 0 from V leads, and V_1 is the vertex of G to which edge 1 from V leads.

Fix $G \in \mathcal{G}^*$, and let j be the number of vertices of G. We define a canonical ordering of the vertices of G. Let A_1, A_2, \ldots, A_j be the enumeration of the vertices of G which is uniquely determined by the two properties

Property(i): $A_1 = V^r$

Property(ii): If $q_1 < q_2 < \ldots < q_{j-2}$ are the integers in $\{1, 2, \ldots, j\}$ such that $A_{q_1}, A_{q_2}, \ldots, A_{q_{j-2}}$ are the nonterminal vertices of G, and if we write

$$
\begin{align*}
A_{q_1} & \rightarrow A_{r_1}, A_{s_1} \\
A_{q_2} & \rightarrow A_{r_2}, A_{s_2} \\
& \quad \ldots \\
A_{q_{j-2}} & \rightarrow A_{r_{j-2}}, A_{s_{j-2}}
\end{align*}
$$
then, if we list the distinct entries of the sequence

\[(A_{r_1}, A_{s_1}, A_{r_2}, A_{s_2}, \ldots, A_{r_j-2}, A_{s_j-2})\]

in order of their first left-to-right appearances in this sequence, we get the list \(A_2, A_3, \ldots, A_j\).

Example 4. The canonical ordering of the vertices of the graph \(G\) in Figure 1 is given in Figure 2. We can determine this ordering by generating the following relations one by one:

\[
\begin{align*}
A_1 & \rightarrow A_2, A_3 \\
A_2 & \rightarrow A_4, A_5 \\
A_3 & \rightarrow A_6, A_7 \\
A_4 & \rightarrow A_8, A_9 \\
A_5 & \rightarrow A_{10}, A_{11} \\
A_6 & \rightarrow A_{12}, A_{13} \\
A_7 & \rightarrow A_{14}, A_{15} \\
A_9 & \rightarrow A_8, A_{16} \\
A_{10} & \rightarrow A_8, A_{16} \\
A_{11} & \rightarrow A_9, A_{16} \\
A_{12} & \rightarrow A_8, A_{16} \\
A_{13} & \rightarrow A_9, A_{16} \\
A_{14} & \rightarrow A_{10}, A_{16} \\
A_{15} & \rightarrow A_{11}, A_{16}
\end{align*}
\]

(3.1)

Notice that in (3.1), vertices \(A_8\) and \(A_{16}\) are missing from the left hand sides. This means that \(A_8\) and \(A_{16}\) are the terminal vertices of the graph in Figure 2. One of these vertices is equal to \(T^0_G\) and the other is equal to \(T^1_G\). We cannot determine which is the case from (3.1) alone. We would need an extra bit of information to determine which of the two possibilities

\[
\begin{align*}
A_8 &= T^0_G & A_{16} &= T^1_G \\
A_8 &= T^1_G & A_{16} &= T^0_G
\end{align*}
\]

holds.

Let \(G \in \mathcal{G}^*\), let \(k\) be the positive integer such that \(L(T^0_G) = L(T^1_G) = k + 1\), and let \(A_1, A_2, \ldots, A_j\) be the canonical ordering of the vertices of \(G\). We will generate strings \(S_1, S_2, \ldots, S_{k+1}\) in which

- \(S_1 = A_1\), and each entry of each \(S_i\) is a member of the set of symbols
 \[
 \{A^q_m : m = 1, 2, \ldots, j, \ q = 1, 2, \ldots\}
 \]
- The strings \(S_1, S_2, \ldots, S_{k+1}\), taken together, allow one to build the graph \(G\) (except for the determination of which of the two terminal vertices equals \(T^0_G\), and which equals \(T^1_G\), which takes one more bit of information, as discussed above).
• Each S_i ($i \geq 2$) is generated recursively from S_{i-1} and certain side information, and the side information from each recursive step is what is encoded to form the overall codeword $\sigma(G)$. From $\sigma(G)$, the decoder can then recursively generate the $\{S_i\}$, from which G is obtained.

Fix i, where $2 \leq i \leq k+1$. The following procedure describes how S_i is recursively generated from S_{i-1}:

Step(i): Write down the string U consisting of the first appearances (from left to right) of each distinct symbol appearing in S_{i-1}.

Step(ii): For each entry of U of form A_{m}^q, where $q > 1$, write below that entry the entry A_{m}^{q-1}.

Step(iii): For each entry of U of form A_{m}, write down below that entry the two entries $A_{m_0}^q, A_{m_1}^q$, where m_0, m_1 are the respective vertices to which edges 0 and 1 from A_m lead, and q_0 and q_1 are the positive integers

$$
q_0 = L(A_m) - L(A_{m_0}) \\
q_1 = L(A_m) - L(A_{m_1})
$$

Step(iv): Concatenate together the sequence of entries written below the entries of U in Steps (ii) and (iii). The resulting sequence is S_i.

Example 5. For the graph G in Figure 2, the strings S_1, S_2, \ldots, S_7 are as follows:

$$
S_1 = A_1 \\
S_2 = (A_2, A_3) \\
S_3 = (A_4, A_5, A_6, A_7) \\
S_4 = (A_8^4, A_9^3, A_{10}^2, A_{11}^2, A_{12}, A_{13}, A_{14}, A_{15}) \\
S_5 = (A_8^3, A_9^2, A_{10}, A_{11}, A_3, A_{16}, A_2^3, A_{16}^3, A_{16}^2, A_{16}, A_{16}^3, A_{16}^2) \\
S_6 = (A_8^2, A_9, A_{16}, A_{16}^2, A_2, A_{16}, A_{16}) \\
S_7 = (A_8, A_9, A_{16}, A_{16})
$$

Let $G \in G^*$, let k be the positive integer such that $L(T_{k+1}^0) = k + 1$, and let A_1, A_2, \ldots, A_j be the canonical ordering of the vertices of G. One easily determines from $S_1, S_2, \ldots, S_{k+1}$ the level of each vertex A_1, A_2, \ldots, A_j. For each A_i, find the unique S_m such that A_i is an entry of S_m. Then, $L(A_i) = m$. To illustrate, from S_1, S_2, \ldots, S_7 in Example 5, we determine that

$$
L(A_1) = 1 \quad L(A_2) = 2 \quad L(A_3) = 2 \quad L(A_4) = 3 \quad L(A_5) = 3 \quad L(A_6) = 3 \quad L(A_7) = 3 \quad L(A_8) = 7 \quad L(A_9) = 6 \quad L(A_{10}) = 5 \quad L(A_{11}) = 5 \quad L(A_{12}) = 4 \quad L(A_{13}) = 4 \quad L(A_{14}) = 4 \quad L(A_{15}) = 4 \quad L(A_{16}) = 7
$$

Referring to Figure 2, we see that this assignment is correct.
One also easily determines from \(S_1, \ldots, S_{k+1} \) where each edge of \(G \) begins and ends. For each nonterminal vertex \(A_i \), find the unique \(m < k+1 \) such that \(A_i \) is an entry of \(S_m \), and then look below in \(S_{m+1} \) to find the corresponding two consecutive entries \(A_{i_0}^0, A_{i_1}^0 \)—vertices \(A_{i_0} \) and \(A_{i_1} \) are then the respective vertices at which edges 0 and 1 from \(A_i \) terminate. To illustrate, from \(S_1, S_2, \ldots, S_7 \) in Example 5, we get the edge description given in (3.1), which we see is correct by referring to Figure 2.

For a graph \(G \in G^* \) such that \(L(T_G^0) = L(T_G^1) = k+1 \), we suppose that the strings \(S_1, S_2, \ldots, S_{k+1} \) have been generated. We now describe how these strings are encoded for transmission to the decoder. The decoder already knows that \(S_1 = A_1 \). In addition to this, the decoder needs to know:

(a) How to obtain \(S_i \) from \(S_{i-1} \), for each \(i = 2, \ldots, k+1 \). This information is transmitted to the decoder using \(M_i \) codebits. In the sequel, we shall explain what these \(M_i \) codebits consist of.

(b) For the two symbols \(A_{j_1} \) and \(A_{j_2} \) comprising the entries of \(S_{k+1} \), the decoder needs to know which of these symbols equals \(T_G^0 \). This information is transmitted to the decoder using one codebit.

From the above description, we see that a total of \((M_2 + \ldots + M_{k+1}) + 1 \) codebits is transmitted to the decoder by the encoder. We need to further explicate Step (a) above, so that it is understood what \(M_i \) is. To do this, we need a number of definitions.

Definition 1. If \(u = (u_1, u_2, \ldots, u_J) \) is any nonempty sequence of finite length over any alphabet \(A \), we define

\[
H(u) \triangleq \sum_{j=1}^{J} - \log_2 \frac{n(u_j)}{J},
\]

where, for each \(a \in A \), \(n(a) \) is the number of \(1 \leq j \leq J \) for which \(u_j = a \). If \(u \) is an empty sequence, we define \(H(u) = 0 \). The quantity \(H(u) \) is important for the following reason: If the set \(\{u_1, u_2, \ldots, u_J\} \) is known, and if the frequencies with which the symbols in this set appear in \(u \) are known, the sequence \(u \) can be losslessly encoded using \(\lceil H(u) \rceil \) codebits. This is because there are no more than \(2^{H(u)} \) sequences having the known symbol frequencies.

Definition 2. If \(u \) is a sequence of finite length, \(|u| \) denotes the length of \(u \).

Definition 3. Let \(u \) be any nonempty sequence of finite length over any alphabet. We define \(\tilde{u} \) to be the (possibly empty) sequence obtained from \(u \) by striking out each term of \(u \) which is making its first left-to-right appearance in \(u \). For example, if

\[
u = (a, a, b, a, b, c, b, c, a),
\]

we strike out the first, third, and sixth terms, obtaining

\[
\tilde{u} = (a, a, b, b, c, a)
\]

It could be that \(u \) is empty. In this case, we define \(\tilde{u} \) to be the empty sequence.

Definition 4. If \(u \) is a sequence of finite length such that \(H(\tilde{u}) > 0 \), we define \(h(u) = |u| + H(\tilde{u}) \). If \(u \) is a sequence of finite length such that \(H(\tilde{u}) = 0 \), we define \(h(u) = 0 \). Here is
why the quantity $h(u)$ is important: If the frequencies with which the symbols appearing in u are known, and if the list of these symbols in order of first left-to-right appearance in u is known, then the sequence u can be losslessly encoded using $\ceil{h(u)}$ codebits. To see this, one can encode \tilde{u} using $\ceil{H(\tilde{u})}$ codebits. Then, one can obtain u from \tilde{u} with an additional $|u|$ codebits (these additional codebits tell the decoder the positions in u where the first left-to-right appearances of the symbols in u occur). This gives us a total of $|u| + \ceil{H(\tilde{u})} = \ceil{h(u)}$ codebits. (We have assumed $H(\tilde{u}) = 0$. The reader can treat the case $H(\tilde{u}) = 0$ separately.) For example, if u is the sequence in (3.2), the additional $|u|$ codebits are $(1, 0, 1, 0, 0, 1, 0, 0, 0, 0)$, the ones indicating first appearances of a, b, c in u in positions 1, 3, 6, respectively.

Definition 5. For each $2 \leq i \leq k + 1$, we let \hat{S}_i be the subsequence of S_i that arises from substituting for the distinct entries of S_{i-1} of form A_m. (Recall that each such entry of S_{i-1} generates two entries of S_i.)

Definition 6. An entry of \hat{S}_i of form A_{m}^q, where A_{m}^{q+1} appears in S_{i-1}, shall be called a Type I entry of \hat{S}_i. We let π_1^i denote the subsequence of \hat{S}_i consisting of all the Type I entries of \hat{S}_i.

Definition 7. An entry of \hat{S}_i of form A_{m}^q, where the symbol A_m does not appear in S_{i-1}, shall be called a Type II entry of \hat{S}_i. We let π_2^i denote the subsequence of \hat{S}_i consisting of all the Type II entries of \hat{S}_i. Suppose that there are r distinct entries of π_2^i, and that A_m is the vertex of highest index m that has appeared in the sequences $S_1, S_2, \ldots, S_{i-1}$. Then, if we list the distinct entries of π_2^i in order of their first left-to-right appearances in π_2^i, this list will take the form

$$A_{m+1}^{q_1}, A_{m+2}^{q_2}, \ldots, A_{m+r}^{q_r}$$

(3.3)

Definition 8. We let Q_i be the nonnegative integer consisting of the sum of all the powers q as A_m^q ranges through all of the distinct terms of π_2^i. (In other words, referring to (3.3), Q_i is equal to $q_1 + q_2 + \ldots + q_r$.)

With the above definitions, we can now stipulate that

$$M_i = |S_i| + |\hat{S}_i| + Q_i + \ceil{H(\pi_1^i)} + \ceil{H(\pi_2^i)},$$

(3.4)

Here is how the different terms in M_i arise:

(a.1) Encoder transmits to decoder $|S_i|$ codebits to let the decoder know the frequency with which each distinct element of S_i appears.

(a.2) Encoder transmits to decoder $|\hat{S}_i|$ codebits so that the decoder will know which entries of \hat{S}_i are of Type I and which entries are of Type II.

(a.3) Encoder transmits to decoder Q_i codebits so that the decoder will know the powers q appearing in the Type II entries A_m^q of \hat{S}_i.

(a.4) The encoder transmits to the decoder $\ceil{H(\pi_1^i)}$ codebits, which tell the decoder what π_1^i is.

(a.5) The encoder transmits to the decoder $\ceil{h(\pi_2^i)}$ codebits, which tell the decoder what π_2^i is.
Definition. We let $\sigma(G)$ be the binary codeword of length $(M_2 + \ldots + M_{k+1}) + 1$ obtained by concatenating together the codebits from Steps (a.1)-(a.5), (b) above.

Example 6. We explain how the decoder can obtain S_5 from S_4 in Example 5. Initially, the decoder will know that S_5 takes the form

$$S_5 = (A_3^8, A_6^2, A_{10}, A_{11}, \hat{S}_5),$$

where the entries of \hat{S}_5 have to be filled in. The decoder knows that the length of S_5 is 12. The decoder looks at the first 12 codebits that are currently in its codebit buffer, to determine the frequencies of the distinct entries of S_5. In this case, these 12 codebits are

$$0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1$$

which tell the decoder that A_3^8 appears twice in S_5, A_6^2 appears twice in S_5, A_{10} appears twice in S_5, A_{11} appears twice in S_5, and an element of form A_q^q, with q unknown, appears four times in S_5. The decoder now knows that π_1^1 is of length one and consists of one appearance of each of the symbols $A_3^8, A_6^2, A_{10}, A_{11}$, and that π_2^2 is of length four and consists of four appearances of the symbol A_q^q. The next $|\hat{S}_5| = 8$ codebits in the decoder’s buffer tell the decoder which entries of \hat{S}_5 are of Type I and which are of Type II. In this case, these codebits are

$$(0, 1, 0, 1, 0, 1, 0, 1),$$

which tell the decoder that the entries of \hat{S}_5 alternate between Type I entries and Type II entries, starting with a Type I entry. The decoder now needs to determine the power q in the symbol A_q^q. In this case, $q = 3$, and the decoder will know this because the codebits

$$(0, 0, 1)$$

will appear at the start of the decoder’s codebit buffer at this point. The next $|H(A_3^3, A_6^2, A_{10}, A_{11})| = 8$ codebits tell the decoder that

$$\pi_1^1 = (A_3^3, A_6^2, A_{10}, A_{11})$$

The decoder already knows that

$$\pi_2^2 = (A_{16}^3, A_{16}^3, A_{16}^3, A_{16}^3),$$

so that, putting π_1^1 and π_2^2 together, the decoder has determined that

$$\hat{S}_5 = (A_3^3, A_{16}^3, A_6^2, A_{16}^3, A_{16}^3, A_{16}^3, A_{16}^3, A_{16}^3)$$

IV Performance Bound

Let $G \in G^*$, and let $L(T_G^0) = k+1$. The binary codeword $\sigma(G)$ results by encoding the sequences $S_2, S_3, \ldots, S_{k+1}$, plus the transmission of an extra codebit to signal the decoder which of the two terminal vertices of G is equal to T_G^0. In this section, we want to upper bound the codeword length $|\sigma(G)|$, in order to see how good the encoder is.
From the previous section, it can be seen that

\[|\sigma(G)| \leq 4|S_1| + |S_2| + \ldots + |S_{k+1}| + \sum_{i=2}^{k+1} \left[|H(\pi_i^1)| + |H(\pi_i^2)| \right] \]

(4.5)

The only tricky part in obtaining this bound is the observation that

\[\sum_{i=2}^{k+1} Q_i \leq |S_2| + |S_3| + \ldots + |S_{k+1}| \]

To see this, notice that if a Type II symbol \(A_m^q \) appears in a sequence \(S_i \), and \(q > 1 \), then the \(q-1 \) symbols \(A_m^{q-1}, A_m^{q-2}, \ldots, A_m \) appear in subsequent sequences \(S_{i+1}, S_{i+2}, \ldots \). Summing the powers \(q \) for all such symbols \(A_m^q \), one must obtain a quantity \(Q_2 + \ldots + Q_{k+1} \) upper bounded by \(|S_2| + \ldots + |S_{k+1}| \).

Let \(x \) be the binary string of length \(2^k \) represented by \(G \) (i.e., \(\phi_G(V_G^x) = x \)). Fix \(i \) satisfying \(2 \leq i \leq k + 1 \). From left to right, partition \(x \) into disjoint substrings of length \(2^{k-i+2} \), and let \(u_1, u_2, \ldots, u_M \) be the list of distinct substrings in this partition, listed in order of first left-to-right appearance in the partition. For each \(u_m \) in this list, let \(u_m(L) \) denote the prefix of \(u_m \) of length \(2^{k-i+1} \), and let \(u_m(R) \) denote the suffix of \(u_m \) of length \(2^{k-i+1} \). (In other words, when we bisect the string \(u_m \), we obtain \(u_m(L) \) on the left, and \(u_m(R) \) on the right.) Replace each \(u_m \) in the sequence \((u_1, \ldots, u_M) \) for which \(u_m(L) \neq u_m(R) \) by the pair of strings \(u_m(L), u_m(R) \); otherwise, if \(u_m(L) = u_m(R) \), replace \(u_m \) by \(u_m(L) \). These replacements yield a new sequence \(v_i \) whose entries are substrings of \(x \) of length \(2^k-i+1 \). The following properties can be proved (see [3]).

Property 1: The sequence \(S_i \) has the same length as the sequence \(v_i \).

Property 2: Writing

\[
S_i = (q_1, q_2, \ldots, q_M) \\
v_i = (r_1, r_2, \ldots, r_M)
\]

the sets \(\{q_1, q_2, \ldots, q_M\} \) and \(\{r_1, r_2, \ldots, r_M\} \) are of the same size, and there is a one-to-one mapping \(\alpha_i \) from the first set onto the second set in which

\[
v_i = (\alpha_i(q_1), \alpha_i(q_2), \ldots, \alpha_i(q_M))
\]

Property 3: There is a partition \(\Pi \) of \(x \) and disjoint subsequences \(s^2, s^3, \ldots, s^{k+1} \) of \(\Pi \) (some of which may be empty), such that

\[s^i = \tilde{v}_i, \quad 2 \leq i \leq k + 1 \]

Definitions. We let \(\Lambda \) denote the family of all mappings \(\lambda : \{0,1\}^+ \to (0,1] \) such that for every sequence \(u \in \{0,1\}^+ \), and every partition \((u_1, u_2, \ldots, u_r) \) of \(u \) into nonempty substrings of \(u \),

\[\lambda(u) \leq \lambda(u_1) \lambda(u_2) \ldots \lambda(u_r) \]

(4.6)
If $\lambda \in \Lambda$, we define

$$|\lambda| = \sup_{n=1,2,\ldots} \sum_{u \in \{0,1\}^n} \lambda(u)$$

Lemma 3 Let λ be a function in Λ for which $|\lambda| < \infty$. Let $G \in \mathcal{G}^*$, let x be the binary string of length 2^k represented by G, and let S_1, S_2, \ldots, S_k be the strings defined for G according to Section II. Then,

$$\sum_{i=2}^{k+1} [H(\pi_i^1) + H(\tilde{\pi}_i^2)] \leq \left(\sum_{i=2}^{k+1} |S_i|\right) \log_2 |\lambda| - \log_2 \lambda(x)$$

(4.7)

Proof. The sequences π_i^1 and $\tilde{\pi}_i^2$ are disjoint subsequences of \tilde{S}_i. Applying Property 2, we have

$$H(\pi_i^1) + H(\tilde{\pi}_i^2) \leq H(\tilde{S}_i) = H(\tilde{v}_i)$$

The entries of $\tilde{v}_i = (w_1, \ldots, w_T)$ are substrings of x of length 2^{k-i+1}. Let $\Sigma \leq |\lambda|$ be the positive constant such that

$$\mu(y) = \lambda(y)/\Sigma, \quad y \in \{0,1\}^{2^{k-i+1}}$$

defines a probability distribution on $\{0,1\}^{2^{k-i+1}}$. Then,

$$H(\tilde{v}_i) \leq -\log_2 \mu(w_1) - \log_2 \mu(w_2) - \ldots - \log_2 \mu(w_T)$$

$$\leq |S_i| \log_2 |\lambda| - \sum_{t=1}^T \log_2 \lambda(w_t)$$

Summing the preceding inequality over i in the range $2 \leq i \leq k + 1$, and using Property 3 together with the property (4.6) of λ, we obtain (4.7).

Lemma 4 There is a sequence of positive numbers $\{\epsilon_k : k = 1,2,\ldots\}$ converging to zero such that the following is true. For any $k = 1,2,\ldots$ and any $G \in \mathcal{G}^*$ representing a binary string of length 2^k, if we let $S_1, S_2, \ldots, S_{k+1}$ be the strings defined from G in Section II,

$$|S_1| + |S_2| + \ldots + |S_{k+1}| \leq \frac{2^{k+1}(2 + \epsilon_k)}{k}$$

(4.8)

Sketch of Proof. Suppose G is any graph in \mathcal{G}^* representing a binary string x of length 2^k. Let $S(x)$ be the set of all binary strings which lie in the partitions of x into substrings of length $1,2,2^2,\ldots,2^k$. Define the graph G' to be the graph in which:

- The set of vertices of G' is $S(x)$. The set of terminal vertices of G' is $\{0,1\}$.
- For each nonterminal vertex u of G', there are two edges emanating from u, one of which, labelled edge 0, terminates at the left half of u, and the other of which, labelled edge 1, terminates at the right half of u.

11
The graph G' is isomorphic to the graph termed by Liaw and Lin [4] the quasi-reduced ordered binary decision diagram corresponding to the ROBDD G. Let $V(G)$ be the set of vertices of G and let $V(G')$ be the set of vertices of G'. It is proved in the paper [4] that there exists a sequence of positive constants $\{\epsilon_k\}$ tending to zero such that for any k and any $G \in G^{*}$ representing a binary string of length 2^k,

$$|V(G)| \leq |V(G')| \leq \frac{2^k(2 + \epsilon_k)}{k} \tag{4.9}$$

For the strings $S_1, S_2, \ldots, S_{k+1}$ defined for this same G as in Section II, it can be shown (we omit the proof here) that

$$|S_1| + |S_2| + \ldots + |S_{k+1}| \leq |V(G')| + |V(G)| \tag{4.10}$$

Combining (4.9) and (4.10), we obtain (4.8).

Here is our main result.

Theorem 1 Consider an arbitrary binary s-state information source. For each binary string x of finite length, let $\mu(x)$ denote the probability assigned to x by the given source. Then, for $n = 2, 4, 8, 16, \ldots$,

$$\max\{x \in \{0, 1\}^n \cap S(\text{dyadic}) : |\sigma(x)| + \log_2 \mu(x)\} \leq \left(\frac{n}{\log_2 n}\right) (16 + 4 \log_2 s + o(1))$$

Proof. Fix a $\lambda \in \Lambda$ such that

- $|\lambda| \leq s$.
- $\mu(y) \leq \lambda(y)$ for every binary string y.

Fix $n \in \{1, 2, 4, 8, \ldots\}$ and $x \in \{0, 1\}^n \cap S(\text{dyadic})$. Let $G \in G^{*}$ be the graph $G = G_x$. Let $k = \log_2 n$, and let $S_1, S_2, \ldots, S_{k+1}$ be the strings constructed from G according to Section II. Applying Lemmas 3 and 4 to (4.5),

$$|\sigma(G)| \leq 4 \left[\frac{2^{k+1}(2 + \epsilon_k)}{k}\right] + \left[\frac{2^{k+1}(2 + \epsilon_k)}{k}\right] \log_2 s - \log_2 \mu(x)$$

which gives us our result.
Figure 1: A ROBDD G from Bryant [1] (left edges labelled 0, right edges labelled 1)
Figure 2: Canonical ordering of vertices of ROBDD G in Figure 1
References

[1] R. Bryant, “Graph-Based Algorithms for Boolean Function Manipulations,” *IEEE Transactions on Computers*, Vol. C-35, pp. 677–691, 1986.

[2] R. Bryant, “Symbolic Boolean Manipulation with Ordered Binary-Decision Diagrams,” *ACM Computing Surveys*, Vol. 24, pp. 293–318, 1992.

[3] J. Kieffer, E.-h. Yang, G. Nelson, and P. Cosman, “Universal Lossless Compression Via Multilevel Pattern Matching,” *IEEE Trans. Inform. Theory*, Vol. 46, pp. 1227–1245, 2000.

[4] H-t. Liaw and C-s. Lin, “On the OBDD-Representation of General Boolean Functions,” *IEEE Transactions on Computers*, Vol. 41, pp. 661–664, 1992.