ORIGINAL CONTRIBUTION

Reference Values for Erythrocyte Sedimentation Rate of Middlescent People as a Function of Altitude

Ge Miao

Department of Geography, Shaanxi Normal University, Xi'an, People's Republic of China

The purpose of this paper is to provide a scientific basic for a unified standard for the reference value of middlescent people’s erythrocyte sedimentation rate (ESR) in China. ESR measurements for healthy middlescent people were collected according to the Wintrobe method and the relationship between the reference value of middlescent people’s ESR and altitude was tested in this paper. It was found that the reference value of middlescent people’s ESR decreases when the altitude gradually increases, and the relationship is quite significant. Univariate regression analysis was used to deduce two regression equations: \[Y_1 = 13.14 - 0.00245X \pm 2.98 \text{ (males)} \] and: \[Y_2 = 22.00 - 0.00397X \pm 4.85 \text{ (females)} \]. If the altitude value of a particular area of China is known, the reference value of middlescent people’s ESR can be calculated by means of these regression equations. Furthermore, depending on the altitude, China can be divided into three biogeographic districts: Qingzang District, Central District, and Eastern District.

INTRODUCTION

Erythrocyte sedimentation rate (ESR)\(^b\) is an important index of hemorheology. Although many local reference values of middlescent (age 26 to 45 years) people’s ESR have been measured [1-61], it is difficult to achieve accuracy in clinical practice, because of the lack of a unified standard of the reference value of middlescent people’s ESR. No reports on the relationship between the reference value of middlescent people’s ESR and altitude were found. By means of correlation and univariate regression analysis, it is shown that there are certain regular dependencies between the reference value of middlescent people’s ESR and altitude.

MATERIALS AND METHODS

Determination of ESR (Wintrobe)

The values of healthy middlescent people’s ESR from various administrative units (hospitals, research institutes and universities) were collected in China. These data include the values of ESR of 23,001 middlescent men tested in 301 units and the values of ESR of 20,028 middlescent women tested in 291 units. The

\(^a\) To whom all correspondence should be addressed: Ge Miao, Department of Geography, Shaanxi Normal University, Xi'an 710062, P. R. China. Tel.: 86-29-5300845; Fax: 86-29-5300963; E-mail: gemiao@snnu.edu.cn.

\(^b\) Abbreviations: ESR, erythrocyte sedimentation rate.

Received: September 16, 2001; Accepted: April 18, 2002.
ages of the volunteers ranged from 26 to 45 years, and 40 to 80 random samples were studied in every area. A mean value of ESR in each area was calculated. These sampling units are located in 34 provinces, cities, special administrative regions, and autonomous regions in China. There are more data from the eastern plain than from the western plateau. The determination of the ESR was performed according to Wintrobe’s method [62]. In this routine method, 2.5 ml venous blood was collected in anticoagulant (heparin). The mixture was then stirred slightly and placed in the Wintrobe test tube filled to the zero graduation mark without any air bubbles. The tube was left for 1 hr at 25°C. The ESR determinations are expressed in mm/hr.

The altitude measurements came from relevant geographical works and dictionaries [63-64], the altitude is the height in meters (m) above sea level.

RESULTS

By using the method of mathematical correlation analysis [65], single correlation coefficients were ascribed to the reference value of middlecent people’s ESR and altitude, respectively. For middlecent men, \(r_1 = -0.610 \), degrees of freedom \(N-2 = 301-2 = 299 \), critical value of correlation coefficient is obtained from tables: \(r_{0.01} = 0.116 \). As \(|r| \) is higher than 0.116, the correlation is quite significant.

For middlecent women, \(r_2 = -0.603 \), degrees of freedom \(N-2 = 291-2 = 289 \), critical value of correlation coefficient is obtained from tables: \(r_{0.01} = 0.116 \). As \(|r| \) is higher than 0.116, the correlation is quite significant.

In the above equations, \(\hat{Y} \) is the reference value of middlecent men’s ESR (mm/hr); \(2 \) is the reference value of middlecent women’s ESR (mm/h); \(X \) is altitude (m); 2.98 and 4.85 are the values of the residual standard deviations, respectively [66].

DISCUSSION

On the basis of correlation coefficients only, it was shown that the decrease in the reference value of middlecent people’s ESR follows the altitude increase. It was found that the ESR reference values of middlecent men are lower than that of middlecent women. As the altitude rises, the partial pressure of oxygen gradually decreases and in response to less available oxygen, the hematocrit increases (Table 1). This increase in red cell concentration is one known factor that contributes to a fall in the value of middlecent people’s ESR.

| Table 1. Red blood cell count of different altitude. |
|-----------------|-----------------|-----------------|-----------------|
| Typical | Altitude (m) | Men’s value | Women’s value |
| Naqu | 4600.0 | \(6.21 \times 10^{12} \) L | \(6.09 \times 10^{12} \) L |
| Lhasa | 3658.0 | \(5.59 \times 10^{12} \) L | \(5.17 \times 10^{12} \) L |
| Xining | 2275.0 | \(5.46 \times 10^{12} \) L | \(4.68 \times 10^{12} \) L |
| Lanzhou | 1517.2 | \(5.13 \times 10^{12} \) L | \(4.58 \times 10^{12} \) L |
| Chongqing | 260.6 | \(4.94 \times 10^{12} \) L | \(4.30 \times 10^{12} \) L |
| Beijing | 31.2 | \(4.75 \times 10^{12} \) L | \(4.25 \times 10^{12} \) L |
[67]. These data show that the relationship between red-cell count and altitude is non-linear and that the male-female difference across all altitudes is about $0.6 \times 10^{12}/L$. While the ESR is clearly correlated to the hematocrit, there is no simple correction of the ESR regression using the red-cell counts that eliminates the observed dependence of the ESR on altitude.

If the altitude of particular area in China is known, a standard reference value of middle-essen’s ESR in this area can be calculated from the regression equations. For example, in the Beijing area where the altitude is 31.2 m, the following reference standards can be calculated:

\[
\hat{V}_1 = 13.14 - 0.00245 \times 31.2 \pm 2.98 = 13.06 \pm 2.98 \\
\hat{V}_2 = 22.00 - 0.00397 \times 31.2 \pm 4.85 = 21.88 \pm 4.85
\]

The topographical outline of China is a three-step, West-East staircase. According to the reference value of middle-essen’s ESR and taking the altitude as the main differentiating factor, China can be divided into three districts, the Qingzang district, the Central district, and the Eastern district.
The highest western area, 4,000 m above sea level, includes the Qingzang plateau. It includes the Tibet Autonomous Region and Qinghai Province. Its altitude is the highest, so its ESR is the lowest in China. For example, in the Lhasa area, the altitude is 3658 m. Using regression equations, the calculated reference value of middlecent people’s ESR can be obtained as follows: the reference value of middlecent men’s ESR is 4.18 ± 2.98 mm/h, the reference value of middlecent women’s ESR is 7.48 ± 4.85 mm/h.

Further to the east, behind the Kunlun Mountains and Qilian Mountains on the plateau’s northern edge and the Hengdian Mountains on its eastern edge, the land slopes down to highlands and basins (2000 to 1,000 m above sea level). This district includes Sichuan Province, Chongqing city, Guizhou Province, Yunnan Province, Shaanxi Province, Gansu Province, the Xinjiang Uighur Autonomous Region, the Ningxia Hui Autonomous Region, the Inner Mongolia Autonomous Region and Shanxi Province. Its altitude is intermediate, so its ESR is intermediate in China. For example, in the Yinchuan area, the altitude is 1,112 m. Using regression equations, the calculated reference value of middlecent people’s ESR can be obtained as follows: the reference value of middlecent men’s ESR is 10.42 ± 2.98 mm/hr, the reference value of middlecent women’s ESR is 17.59 ± 4.85 mm/hr.

Further to the east from second staircase, it descends further eastward to hilly regions and plains mostly below 500 m. This district includes Taiwan Province, Hainan Province, Guangdong Province, Hongkong Special Administrative Region, Macao Special Administrative Region, the Guangxi Zhuang Autonomous Region, Shanghai City, Jiangsu Province, Zhejiang Province, Anhui Province, Fujian Province, Jiangxi Province, Hunan Province, Hubei Province, Beijing City, Tianjin City, Hebei Province, Shandong Province, Henan Province, Liaoning Province, Jilin Province and Heilongjiang Province. Its altitude is the lowest, so its ESR is the highest in China. For example, in the Beijing area the altitude is 31.2 m. Using regression equations, the calculated reference value of middlecent people’s ESR can be obtained as follows: the reference value of middlecent men’s ESR is 13.06 ± 2.98 mm/h, the reference value of middlecent women’s ESR is 21.88 ± 4.85 mm/h.

ACKNOWLEDGEMENTS: This paper is supported by the National Natural Science Foundation of China (49771007,40141002). I wish to acknowledge the assistance of Pei Shuxuan, Sun Zhixing, Liu Chongli, Li Weiping, Chen Ruyi, Feng Yazhong, Wang Yanzhu, Xin Rinjia, Gao Zhongfang, Liang Ruixia, Wang Yanwei, and Yang Shouqin for providing information.

REFERENCES:
1. Pei, S., Huang, Y., and Li, C. Special Lectures of Internal Medicine in Plateau Area [in Chinese]. Beijing: People’s Hygiene Press; 1994, pp. 424.
2. Kong, J., Feng, Y., and Gao, J. Measurement of the normal value of hemorheological indices in Changchun area [in Chinese]. Chin. J. Med. Lab. Technol. 14:307-308, 1991.
3. Li, Z., Su, C., and Xu, Z. Essay and analysis of hemorheology of 319 examples of healthy people in Lanzhou area [in Chinese]. Gansu Med. J. 8:21-23, 1989.
4. Lai, S., Liang, W., and Tan, F. Analysis of hemorheology of 386 examples of healthy adult and old people [in Chinese]. J. Guangzhou Coll. TCM 7:39-42, 1990.
5. Yang, D., Wan, Z., and Zhong, P. Measurement of the normal value of hemorheology in the Zhengzhou area [in Chinese]. Chin. J. Med. Lab. Technol. 12:52-53, 1989.
6. Chen, Q., Liu, S., and Li, Z. Report on the normal value of hemorheology of 120 examples of healthy people [in Chinese]. Hunan Med. J. 7:357-358, 1990.
7. Wang, S., Li, G., and Fan, Y. Assay on the normal values of 10 hemorheology indices of oil worker in Urumchi with cone and plate viscosimeter [in Chinese]. Xinjiang Med. J. 21:154-155, 1991.
8. Pei, S., Zhu, S., and Li, E. Investigation into the value of hemorheology in Lhasa
area [in Chinese]. Chin. J. Appl. Physiol. 2:300-303, 1986.
9. Sun, Z., Yun, S., and Pan, W. Inspection on the normal value of hemorheology of healthy people in plateau area [in Chinese]. Qinghai Med. J. 11: 3-6, 1981.
10. Sun, Z., Yun, S., and Pan, W. Contrast analysis on the value of hemorheology in Zhejiang Hangzhou area with Qinghai Gande area [in Chinese]. Qinghai Med. J. 14(suppl.):24-27, 1984.
11. Sun, Z., Yun, S., and Pan, W. Essay and analysis on hemorheology of different age and sex people lived 4080 m above sea level [in Chinese]. Qinghai Med. J. 13(suppl.):61-67, 1983.
12. Yan, Y., Li, Y., and Sun, L. Investigation into the value of hemorheology of 121 examples of healthy people in Yinchuan area [in Chinese]. Ningxia Med. J. 11:141-143, 1989.
13. Shi, R. Inspection of value of hemorheology of 117 examples in Qinghai area 3200 m above sea level [in Chinese]. Qinghai Med. J. 14(suppl.):8-32, 1984.
14. Liu, X., Tian, Y., and Luo, L. The investigation results of hemorheological indices of 98 examples of healthy young and adult people in the Lanzhou area. Gansu Med. J. 6:23-25, 1987.
15. Fu, R., Wang, D., and Li, J. Clinical Practice in hemorheology [in Chinese]. Acta Acad. Med. Bengbu 14:134, 1989.
16. Guo, D., Wang, X., and Wu, L. Investigation into the value of hemorheology of healthy adult and old peoples [in Chinese]. Xiamen Sci. Technol. 2:13-17, 1990.
17. Shan, Y., Pei, A., and Yang, W. Examination of the value of hemorheology of 100 examples of healthy people [in Chinese]. J. Tianjin Med. Coll. 13:33-35, 1989.
18. Pan, J. and Liu X. The reference value and its physiological reaction of hemorheology indices of healthy people [in Chinese]. J. Hebei Med. Univ. 11:241-243, 1990.
19. Kong, J., Gao, J., and Wang, C. Investigation into the hemorheology index values of 120 examples of healthy people [in Chinese]. J. North Bethune Univ. Med. Sci. 17:385-388, 1991.
20. Wu, X., Ding, L., and Zhu, X. Inspection of eight indices of hemorheology of 40 examples of healthy people [in Chinese]. J. Shihzei Med. Coll. 12:190-191, 1990.
21. Li, Y., Zhang, L., and Li, M. Essay on the normal value of ten hemorheological indices [in Chinese]. J. Southwest Med. 19:43-44, 1991.
22. Gao, P., Qiao, J., and Zhu, X. Measurement of the normal value of hemorheological indices in the Heilongjiang province [in Chinese]. J. Harbin Med. Univ. 27:7-8, 1993.
23. Zhang, J. Report on the normal value of eight hemorheological indices of 285 examples of healthy people [in Chinese]. J. Zhangjiakou Med. Coll. 10:49-50, 1993.
24. Zhang, G., Du, M., and Zhao, L. Investigation into the normal value of hemorheology in the Tianjin area [in Chinese]. J. Snake 5:35-36, 1993.
25. Pu, C., Cheng, Q., and Pu, J. Essay on the normal value of hemorheology and thrombosis [in Chinese]. J. Wannan Med. Coll. 13:50-51, 1994.
26. Xu, Z., Bai, Z., and Xiao, Z. Investigation into the normal value of 10 hemorheological indices [in Chinese]. Yunnan Med. J. 5:271-274, 1988.
27. Caiyin, F.L. and Wang, Q. The normal value of 338 examples of hemorheology in Jinan area [in Chinese]. Shandong Med. J. 2:23-24, 1987.
28. Meng, Q. and Hong, S. The normal value and its practical significance of 7 hemorheological indices of healthy people in Xi’an area [in Chinese]. J. Xi’an Med. Univ. 6:45-47, 1985.
29. Lin, G., He, T., and Tian, Y. Inquiry into the influential of the value of hemorheology 100 examples of healthy people [in Chinese]. J. Guiyang Med. Coll. 11:337-341, 1986.
30. Dong, Y. Analysis on the reference value of hemorheology 300 examples of healthy people and other interrelated questions [in Chinese]. Guizhou Med. J. 6:9-10, 1982.
31. Zhao, W., Ji, H., and Sun, X. Investigation into the hemorheological indices of 350 examples of healthy adult people in Lingyi area [in Chinese]. Shanghai J. Med. Lab. Sci. 7:123, 1992.
32. Sheng, Y. and Tian, Y. Investigation into the normal value of hemorheology and thrombosis of people in Mudanjing area [in Chinese]. Shanghai J. Med. Lab. Sci. 6:96-97, 1991.
33. Sun, Z., Yun, S., and Pan, W. Essay on the changes of olds hemorheology in Xining and Hangzhou area and comparative values between adult and young [in Chinese]. J. High Altitude Med. 4:7-10, 1994.
34. Sun, H. Essay on red blood cell sediment rate of healthy people lived in 3050 m plateau area [in Chinese]. Qinghai Med. J. 12:71, 1982.
35. Fan, Y. and Zhang, G. Report on the normal reference value of hemorheology [in Chinese]. Shanghai J. Med. Lab. S. 9: 240, 1994.
36. Ding, X., Gu, M., and Li, W. Investigation into the normal reference value of hemorheology in Hengyang city [in Chinese]. J. Hengyang Med. Coll. 2:29-34, 1985.
37. Wang, T., Li, J., and Yin, C. Inspection of normal reference value of hemorheology in Shihezi area [in Chinese]. J. Shihezi Med. Coll. 11:23-25, 1989.
38. Ding, P. and Yang, Y. Investigation into the normal reference value of hemorheology in Zuhai area [in Chinese]. Shaanxi J. Med. Lab. Sci. 11:56-57, 1996.
39. Gan, W., Fan, Y., and Zhang, X. Analysis of hemorheology in different time for young lived in 3800-5400 meter sea level [in Chinese]. Lanhouy Hyg. J. 10:9-10, 1989.
40. Gan, W., Fan, Y., and Zhang, X. Changes of hemorheology in different time for people lived in 3.8-5.4 km sea level [in Chinese]. Chinese J. Appl. Physiol. 6:94-95, 1990.
41. Zhao, Y., Li, H., and Feng, Y. Clinical investigation reports on the reference value of 1019 example in hemorheology healthy people [in Chinese]. Lanhouy Hyg. J. 8:1-3, 1987.
42. Song, Y., Gu, K., and Liu, C. Inspection of normal values of hemorheology of 157 examples of healthy people in Hohhot area [in Chinese]. Intern. Mongolia Med. J. 4:179-180, 1984.
43. Zhao, F., Liu, C., and Yu, M. Measurement of some indices of hemorheology of healthy adult in Chongqing area [in Chinese]. Chongqing Med. J. 16:4-5, 1987.
44. Zhao, R., Pu, L., and Ou, Z. Measurement of six indices of hemorheology of 119 examples of adult people in Yan’an City [in Chinese]. Shaanxi Med. J. 18:52, 1989. (Abstract.)
45. Hu, Y., Zhang, J., and Fu, Y. Essay and analysis of hemorheology of 102 examples of healthy adult and old people in Lanzhou area [in Chinese]. J. Snake. 7:22-23, 1995.
46. He, Z., Yi, C., and Ding, Q. Preliminary research on the normal extent of human body’s hemorheological feature and its mechanism [in Chinese]. Chinese J. Hemorheol. 2:16-21, 1992.
47. Yang, C., Xu, H., and Lei, Y. Report on the reference value of hemorheology of 1000 examples of healthy people in the Hanzhong area [in Chinese]. Chinese J. Hemorheol. 2:23-25, 1992.
48. Xu, W. and Meng, X. Measurement of normal reference value of hemorheology of 344 examples of healthy people [in Chinese]. Chinese J. Hemorheol. 3:32-33, 1993.
49. Du, Z., Liu, C., and Yu, Z. Assay on the hemorheological normal value in Golmud area [in Chinese]. Chinese J. Hemorheol. 3:33, 1993.
50. Xu, S., Li, J., and Zhang, S. Investigation into the normal value of hemorheology in different ages in Harbin city [in Chinese]. Chinese J. Hemorheol. 4(suppl.):94-98, 1994.
51. Fang, D. Analysis of the value of hemorheology of adult and old healthy people in Xinjiang area [in Chinese]. Chinese J. Hemorheol. 5:32-34, 1995.
52. Gong, Q. and Huang, X. Analysis on the value of hemorheology of 129 examples of the Uyghur nationality healthy adults [in Chinese]. Chinese J. Hemorheol. 6:52-53, 1996.
53. Lu, Y. and Liu, J. Investigation into normal reference value of hemorheology in Harbin city [in Chinese]. Chinese J. Hemorheol. 7:21-23, 1997.
54. Du, Z., Liu, C., and Zheng, Y. Analysis on the normal value of hemorheology of adult people lived in plateau area [in Chinese]. J. Microcirculatory Technol. 2:134-135, 1994.
55. Yang, C., Yang, Y., and Qiu, X. The Normal references Value of Hemorheology of Healthy People in Harbin Area [in Chinese]. Beijing: Chinese Scientific Technology Press; 1995, pp. 205-206.
56. Xu, L. Investigation into the reference value of hemorheology of the Tujia nationality [in Chinese]. Shanghai J. Med. Lab. Sci. 13:123, 1998.
57. Wei, X. and Yu, H. Investigation into the normal hemorheology in high latitude area [in Chinese]. Chinese J. Hemorheol. 8:152-153, 1998.
58. Liu, Q., Dong, Y., and Huang, S. Research on healthy people’s hemorheology in Guiyang City [in Chinese]. J. Guiyang Med. Coll. 21:304-306, 1996.
59. Zhang, R., Shao, Y., and Guo, H. Investigation into 108 examples of hemorheology in Xining area (above 2300 m sea level) [in Chinese]. J. Qinghai Med. Coll. 3:18-22, 1981.
60. Chai, Y., Wu, Z., and Gao, X. Measurement of hemorheology of 472 examples of the Mongol nationality and Han nationality in different ages [in Chinese]. Baotou Med. J. 21:101-103, 1997.
61. Yang, Y., Guo, Y., and Yang, H. Analysis of hemorheology of 145 examples military student in Guangzhou city [in Chinese]. Chinese Med. Phys. J. 15:28-29, 1998.
62. Weng, W., Wang, Y., and Wang, Y. Practical Clinical Hemorheology [in Chinese]. Beijing: Xueyuan Press; 1994, pp. 34-57.
63. Yan, C., Yan, J., and Song, J. The Big Dictionary of Cities and Counties in China
64. Zhao, J., Chen, Y., and Han, Y. China
Natural Geography [in Chinese]. Beijing:
High Educational Press; 1995, pp. 1-110.

65. Zhang, C. and Yang, B. Basic Theory of
Metrological Geography [in Chinese].
Beijing: High Educational Press; 1991, pp.
86-129.

66. Zhou, S., Yan, Y., and Yang, T. Science of
Hygiene Statistics [in Chinese]. Beijing:
People's Hygiene Press; 1993, pp. 7-31.

67. Ge, M., Yan, Y., Zhang, C., and Li, N.
Discussion on the relationship between
normal hematocrit and geographical factors
in China [in Chinese]. Clin. Hemorheol.
Microcirc. 17:459-465, 1997.