Abstract

In a previous paper [1] a simplified SEIR model applied to COVID-19 cases detected in Italy, including the lockdown period, has shown a good fitting to the time evolution of the disease during the observed period.

In this paper that model is applied to the initial data available for Italy in order to forecast, in a qualitative way, the time evolution of the disease spreading. The values obtained are to be considered indicative.

The same model has been applied both to the data relating to Italy and to some Italian regions (Lombardia, Piemonte, Lazio, Campania, Calabria, Sicilia, Sardegna), generally finding good qualitative results.

The only tuning parameter in the model is the 'incubation period' τ.

In this modelization the tuning parameter, together with the calculated growth rate κ of the exponential curve used to approximate the early stage data, are in strong relationship with the compartments' transfer rates.

The relationships between the parameters simplify modeling by allowing a rough (not supported by statistical considerations) forecast of the time evolution, starting from the first period of growth of the diffusion.
Contents

1 Introduction
2 Conclusions
3 Model parameters and detection criteria
4 Graphic results for Italy
 4.1 Sensibility to the tuning parameter
5 Graphic results for some Italian regions
 5.1 Lombardia
 5.2 Piemonte
 5.3 Lazio
 5.4 Campania
 5.5 Calabria
 5.6 Sicilia
 5.7 Sardegna
1 Introduction

A simplified SEIR compartmental model seems to fit quite well the evolution of COVID-19 during the period of social isolation in Italy [1]. In this paper the model is used to forecast the diffusion behavior starting from the initial stage of infection growth.

The dataset is the same of the previous paper [1] and is available on the website [2] managed by italian government. The model used is a simplification of the Susceptible-Exposed-Infected-Recovered type (see [3], [5], [4]) and the simplification is based on the relationships between the model parameters and the growth rate of the exponential curve in the early stage of diffusion (see [1]). The dataset cover a period where after a initial growth of the COVID-19 diffusion a 'lockdown' period, characterized by strong social isolation rules, were imposed to act effectively against the rapid spread of the disease.

The lockdown period, simplifying, can also be thought of as a type of treatment for infective individuals. We can therefore imagine that infective individuals, detected daily, in general are managed ('treated') in such a way that they cannot infect other susceptible individuals. This 'treatment' includes both hospitalization and isolation. To avoid confusing the SEIR model with this simplification, in this context, we will call T (Treated) the compartment of infected people who are no longer able to transmit the pathogen.

The social isolation, also allows us to neglect any potential transfers between the various departments beyond the required path $S \rightarrow E \rightarrow I \rightarrow T$. The 'treated' compartment in this case can be seen as a sample of individuals in whom the disease has been widespread and the spread is characterized by the model coefficients. The significance of the sample is related to the number of detections of the disease, and their distribution, carried out in the population.

The model can be set up easily once initial the growth rate is calculated and a suitable value for the incubation period is defined. In this work the data used are normalized to 1000 individuals in order to generalize the results. The first part of data, in the growing period, are used to calculate κ, the remaining data are used for comparison with the model’s forecasting.

2 Conclusions

A simplified compartmental model [1] can be used to easily predict a qualitative behavior of a disease diffusion starting from the early stage. It is obviously necessary that the number of detections of the disease and their distribution, carried out in the population, are statistically significant, in this case the simplified model can be used to roughly estimate the qualitative behavior of the spread.

The only tuning parameter in the simplified model is the 'incubation period' τ. In this modelization the tuning parameter, together with the calculated growth rate κ of the exponential curve used to approximate the early stage data, are in strong relationship with the compartments' transfer rates. The relationships between the parameters simplify modeling by allowing a rough (not supported by statistical considerations) forecast of the time evolution, starting from the first period of growth of the diffusion.

3 Model parameters and detection criteria

The key parameters needed to set up a simplified SEIT model are (see [1]):

- the incubation period τ;
- the rate k calculated in the first approximation of the initial exponential growth $y(t) = y_0 e^{\kappa t}$.
It is important to note that the exponential growth k in this simplification appears as a dimensionless number. To avoid confusion we will use κ for the dimensionless parameter.

It is assumed that the number, the quality and the distribution of tests to detect the disease in the population are statistically significant; in this case, using the simplified SEIT model it is possible to easily characterize, in a qualitative way, the disease diffusion in the compartments S,E,I,T over time.

The system of differential equations for the simplified model $S \rightarrow E \rightarrow I \rightarrow T$ is:

$$
\begin{bmatrix}
\dot{S} \\
\dot{E} \\
\dot{I} \\
\dot{T}
\end{bmatrix} =
\begin{bmatrix}
N - \alpha_{SE} \frac{I}{N} S \\
\alpha_{SE} \frac{I}{N} S - \alpha_{EI} E \\
\alpha_{EI} E - \alpha_{IT} I \\
\alpha_{IT} I
\end{bmatrix}
$$

(1)

The temporal evolution follows a disruption of the equilibrium at $t = 0$:

$$
\begin{bmatrix}
S \\
E \\
I \\
T
\end{bmatrix} =
\begin{bmatrix}
N - 1 \\
1 \\
0 \\
0
\end{bmatrix}
$$

(2)

where N is the number of individuals susceptible to the disease. In this work the data are normalized to 1000 individuals.

In this simplification it is assumed (see [1]) a relationship between κ and the transfer rates α_{xy} between the compartments x,y in the unique available path $S \rightarrow E \rightarrow I \rightarrow T$.

$$
\begin{align*}
\alpha_{EI} &= 1/\tau \\
\alpha_{SE} &= \alpha_{EI}/\kappa = 1/(\kappa \tau) \\
\alpha_{IT} &= \kappa \alpha_{EI} = \kappa/\tau \\
\alpha_{IE}^2 &= \alpha_{SE} \alpha_{IT} \\
R_0 &= \alpha_{SE}/\alpha_{IT} = 1/\kappa^2
\end{align*}
$$

(3)

where R_0 is the basic reproduction number calculated as spectral radius of the next generation matrix (see [3], [4], [5]) in the simplified model (see [1]).

In order to estimate κ it is important to define a criteria to detect the initial growth in an effective way.

The criteria used in this context is that a new κ is calculated when the daily variation $\Delta \tilde{T}_t$ of the detected cases exceed the last maximum of daily variation.

$$
\Delta \tilde{T}_t > max(\Delta \tilde{T}_j) ; j = 0...t
$$

(4)

The new κ is calculated as:

$$
\kappa_t = \frac{\log(\tilde{T}_t/\tilde{T}_0)}{t}
$$

(5)

where $\tilde{T}_0 = 229$ individuals ‘treated’ at $t = 0$ corresponding to 2020-02-24 (see table 2).
Table 1: Records corresponding to the days when exceeding the last maximum daily variation value. The growth rate κ is calculated as per (5). The full dataset is in tab. 2.

Day	\tilde{T}_t	$\Delta \tilde{T}_t$	κ
2020-02-25	322	93	0.341
2020-02-27	650	250	0.348
2020-03-01	1694	566	0.334
2020-03-04	3089	587	0.289
2020-03-05	3858	769	0.282
2020-03-06	4636	778	0.273
2020-03-07	5883	1247	0.271
2020-03-08	7375	1492	0.267
2020-03-09	9172	1797	0.264
2020-03-11	12462	2313	0.250
2020-03-12	15113	2651	0.246
2020-03-14	21157	3497	0.238
2020-03-15	24747	3590	0.234
2020-03-18	35713	4207	0.220
2020-03-19	41035	5322	0.216
2020-03-20	47021	5986	0.213
2020-03-21	53578	6557	0.210

Table 2: Dataset of detected cases (\tilde{T}) and daily variations ($\Delta \tilde{T}$) for Italy extracted from [2].

Day	\tilde{T}_t	$\Delta \tilde{T}_t$	
2020-02-24	229	0	
2020-02-25	322	93	
2020-02-26	400	78	
2020-02-27	650	250	
2020-02-28	888	238	
2020-02-29	1128	240	
2020-03-01	1694	566	
2020-03-02	2036	342	
2020-03-03	2502	466	
2020-03-04	3089	587	
2020-03-05	3858	769	
2020-03-06	4636	778	
2020-03-07	5883	1247	
2020-03-08	7375	1492	
2020-03-09	9172	1797	
2020-03-10	10149	977	
2020-03-11	12462	2313	
2020-03-12	15113	2651	
2020-03-13	17660	2547	
2020-03-14	21157	3497	
2020-03-15	24747	3590	
2020-03-16	27980	3233	
2020-03-17	31506	3526	
2020-03-18	35713	4207	
2020-03-19	41035	5322	
2020-03-20	47021	5986	
2020-03-21	53578	6557	
2020-03-22	59138	5560	
2020-03-23	63927	5249	
2020-03-24	69176	5249	
t	Day	\hat{T}_t	$\Delta \hat{T}_t$
----	---------	-------------	-------------------
30	2020-03-25	74386	5210
31	2020-03-26	80539	6153
32	2020-03-27	86498	5059
33	2020-03-28	92472	5974
34	2020-03-29	97689	5217
35	2020-03-30	101739	4050
36	2020-03-31	105792	4053
37	2020-04-01	110574	4782
38	2020-04-02	115242	4686
39	2020-04-03	119827	4585
40	2020-04-04	124632	4805
41	2020-04-05	128948	4316
42	2020-04-06	132547	3599
43	2020-04-07	135586	3039
44	2020-04-08	139422	3836
45	2020-04-09	143626	4204
46	2020-04-10	147577	3951
47	2020-04-11	152271	4694
48	2020-04-12	156363	4092
49	2020-04-13	159516	3153
50	2020-04-14	162488	2972
51	2020-04-15	165155	2667
52	2020-04-16	168941	3786
53	2020-04-17	172434	3493
54	2020-04-18	175925	3491
55	2020-04-19	178972	3047
56	2020-04-20	181228	2256
57	2020-04-21	183957	2729
58	2020-04-22	187327	3370
59	2020-04-23	189973	2646
60	2020-04-24	192994	3021
61	2020-04-25	195351	2357
62	2020-04-26	197675	2324
63	2020-04-27	199414	1739
64	2020-04-28	201505	2091
65	2020-04-29	203501	2086
66	2020-05-01	205463	1872
67	2020-05-02	208478	1965
68	2020-05-03	210717	1389
69	2020-05-04	211938	1221
70	2020-05-05	213013	1075
71	2020-05-06	214457	1444
72	2020-05-07	215858	1401
73	2020-05-08	217185	1327
74	2020-05-09	218268	1083
75	2020-05-10	219070	802
76	2020-05-11	219814	744
77	2020-05-12	221216	1402
78	2020-05-13	222104	888
79	2020-05-14	223096	992
80	2020-05-15	223885	789
81	2020-05-16	224760	875
82	2020-05-17	225435	675
83	2020-05-18	225886	451
84	2020-05-19	226699	813
85	2020-05-20	227364	665
86	2020-05-21	228006	642
87	2020-05-22	228658	652
88	2020-05-23	229327	669
89	2020-05-24	229858	531
90	2020-05-25	230158	300
91	2020-05-26	230555	397
92	2020-05-27	231139	584
93	2020-05-28	231732	593
94	2020-05-29	232248	516
95	2020-05-30	232664	416
96	2020-05-31	233019	355
97	2020-06-01	233197	178
98	2020-06-02	233515	318
99	2020-06-03	233836	321
100	2020-06-04	234013	177
101	2020-06-05	234531	518
102	2020-06-06	234801	270
103	2020-06-07	234998	197
104	2020-06-08	235278	280
105	2020-06-09	235561	283
106	2020-06-10	235763	202
For each record in tab 1, a \(\kappa \) (eq. 5) has been calculated and the corresponding value of the detected cases \(\tilde{T}_t \) is used to synchronize the model. The model parameters are then easily found using eq. 3 with \(\tau \) as tuning parameter. The model results and the available data are normalized to 1000 individuals.

After some trial, good \(\tau \) values has been found within 4 and 6 days.

The next section 4 shows all results for \(\tau = 5.2 \) while in the subsection 4.1 some results for \(\tau = 4 \) and \(\tau = 6 \) are shown.

Table 3: Parameters of the model referring to Italy. Each \(\kappa \) is calculated using the detection criteria and reported in tab. 1. The only tuning parameter is the incubation period \(\tau \) that in this case is assumed to be 5.2 day. The basic reproduction number is calculated as spectral radius of the next generation matrix and in this simplified model (see [1]) and eq. 3) is equal to: \(R_0 = \alpha_{SE}/\alpha_{IT} = 1/\kappa^2 \)

\(t \)	Day	\(\tilde{T}_t \)	\(\Delta \tilde{T}_t \)	\(\kappa \)	\(\tau \)	\(\alpha_{EI} \)	\(\alpha_{SE} \)	\(\alpha_{IT} \)	\(R_0 \)
1	2020-02-25	322	93	0.341	5.2	0.192	0.564	0.066	8.6
3	2020-02-27	650	250	0.348	5.2	0.192	0.553	0.067	8.3
6	2020-03-01	1694	566	0.334	5.2	0.192	0.577	0.064	9.0
9	2020-03-04	3089	587	0.289	5.2	0.192	0.665	0.056	12.0
10	2020-03-05	3858	769	0.282	5.2	0.192	0.681	0.054	12.5
11	2020-03-06	4636	778	0.273	5.2	0.192	0.703	0.053	13.4
12	2020-03-07	5883	1247	0.271	5.2	0.192	0.711	0.052	13.7
13	2020-03-08	7375	1492	0.267	5.2	0.192	0.720	0.051	14.0
14	2020-03-09	9172	1797	0.264	5.2	0.192	0.730	0.051	14.4
16	2020-03-11	12462	2313	0.250	5.2	0.192	0.770	0.048	16.0
17	2020-03-12	15113	2651	0.246	5.2	0.192	0.780	0.047	16.5
19	2020-03-14	21157	3497	0.238	5.2	0.192	0.807	0.046	17.6
20	2020-03-15	24747	3590	0.234	5.2	0.192	0.821	0.045	18.2
23	2020-03-18	35713	4207	0.220	5.2	0.192	0.876	0.042	20.7
24	2020-03-19	41035	5322	0.216	5.2	0.192	0.890	0.042	21.4
25	2020-03-20	47021	5986	0.213	5.2	0.192	0.903	0.041	22.0
26	2020-03-21	53578	6557	0.210	5.2	0.192	0.917	0.040	22.7

The graphical results are shown in the following sections.
4 Graphic results for Italy

In all graphs the orange point represent the day where the daily differences exceeds the previous maximum daily difference. In that day an exponential parameter κ is calculated (see eq. 5).

The simplified SEIT model parameters have been found using the relations in (3) with the only tuning parameter τ corresponding to an 'average' incubation period. All data are normalized and refers to 1000 individuals. The detected data used to estimate the model are represented with a thick gray line ending with an orange point. The remaining data are represented with a thin grey line in order to be compared with the model forecasting (green line).
4.1 Sensibility to the tuning parameter

In order to have a qualitative feedback on the impact of the tuning parameter τ the graphs below represent the model for Italy with the detection κ calculated at $t = 13$ and $t = 19$ and three different τ between 4 to 6 days.
5 Graphic results for some Italian regions

This section contains some results for several regions of Italy referred to two κ detected in the growth phase. The tuning parameter τ is different for each region and is in a range between 4 to 6.5 days.

5.1 Lombardia
5.2 Piemonte
5.3 Lazio

Growth rate k for Lazio at day: 5

Model forecast for Lazio at day: 5

Daily variations for data and model normalized to 1000 Lazio at day: 5

Difference between data and model for Lazio at day: 5

Time average of abs(data-model):

- From start to day 5: 0.3
- From start to end: 68.5
5.4 Campania
5.5 Calabria
5.6 Sicilia
5.7 Sardegna

Growth rate k for Sardegna at day: 25

Model forecast for Sardegna at day: 25

Daily variations for data and model normalized to 1000

Difference between data and model for Sardegna at day: 25

Time average of abs(data-model):
- From start to day: 9.5
- From start to end: 9.2
Daily variations for data and model normalized to 1000
Sardinia at day: 25

Difference between data and model for Sardinia at day: 25
Time average of abs(data-model)
From start to day 25 : 10.4
From start to end : 14.6
References

[1] Roberto Simeone (Preprint 2020)
A simplified model for the analysis of COVID-19 evolution during the lockdown period in Italy.
MedRxiv - Preprint,
url: "https://www.medrxiv.org/content/10.1101/2020.06.02.20119883v2"

[2] Dipartimento della Protezione Civile
COVID-19 Italia - Monitoraggio della situazione
url: "http://opendatadpc.maps.arcgis.com/apps/opsdashboard/index.html#
url: "https://github.compcm-dpc/COVID-19/blob/master/dati-regioni/
dpc-covid19-ita-regioni.csv"

[3] P.van den Driessche, James Watmough (2002)
Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission.
Mathematical Biosciences 180 (2002) 29-48
url: "https://www.sciencedirect.com/science/article/pii/S0025556402001086"

[4] Almbrok Hussin Alsonosi Omar, Yahya Abu Hasan (2013)
Numerical simulations of an SIR epidemic model with random initial states.
Science Asia 39S (2013) 42-47,
doi: 10.2306/scienceasia1513-1874.2013.39S.042.
url: "http://www.scienceasia.org/2013.39S.n1/scias39S_42.pdf"

[5] JChayu Yang and Jin Wang (2020)
A mathematical model for the novel coronavirus epidemic in Wuhan, China.
AIMS Press - Mathematical Biosciences and Engineering,
url: "https://www.aimspress.com/article/10.3934/mbi.2020148"