The morphology and cultural characters of *Pisolithus tinctorius* (Gasteromycetes) in South Africa

G.C.A. van der Westhuizen* and A. Eicker
Department of Botany, University of Pretoria, Pretoria, 0002 Republic of South Africa

Accepted 11 July 1988

Sporocarp morphology as well as surface ornamentation of the basidiospores of South African collections of *Pisolithus tinctorius* agree in respect of those of specimens from Australia. Cultural characters and micromorphology of isolates made from certain of these collections correspond with those of *P. tinctorius* cultures obtained from sporocarps of strains forming mycorrhizal associations with pines in France and the U.S.A. It is concluded that only strains of the fungus which are unable to form mycorrhizas with pines occur in South Africa.

Sporokarp morfologie en oppervlakskulptuur van basidiospore van Suid-Afrikaanse versamelings van *Pisolithus tinctorius* stem ooreen met die eienskappe van monsters verkry uit Australië. In reinkultuur het die kultuureienskappe en mikromorfologie van isolate wat uit sommige Suid-Afrikaanse versamelings gemaak is, ooreengestem met dié van isolate verkry uit sporokarpe van rasse wat met mikorisas van denne in Frankryk en die V.S.A. geassosieer was. Die gevolgtrekking word gemaak dat slegs rasse van die swam wat nie in staat is om mikorisas met denne te vorm nie, in Suid-Afrika voorkom.

Keywords: Fungal symbiont, mycorrhiza, *Pisolithus*

To whom correspondence should be addressed

Introduction

The Gasteromycete, *Pisolithus tinctorius* (Mich.: Pers.) Coker & Couch (1928) was first reported in South Africa by van der Bijl (1918). He noted that fruit-bodies were common in *Eucalyptus* plantations near Pretoria and, on the basis of careful microscopic observations, concluded that this fungus lived symbiotically on the roots of *Eucalyptus* trees. Subsequently Ashton (1976), Marx & Bryan (1970) and Gibson (1969) among others, reported experimental confirmation of this association. In a survey of the host range and world distribution of *P. tinctorius*, Marx (1977) reported its occurrence in 33 countries of the world. Its ability to form ectomycorrhizas on the roots of 11 species of *Eucalyptus*, 30 of *Pinus*, two of *Quercus* and a number of other coniferous and broad-leaved tree species has been demonstrated experimentally (Marx 1977). It has been reported to form mycorrhizas under natural conditions with nine additional species of *Pinus*, two of *Eucalyptus* and eight of *Quercus* as well as with a number of other tree species (Marx 1977). *P. tinctorius* has been shown to have great potential use in afforestation projects because of its wide host range, adaptability to different sites, and ability to improve tree growth in the nursery and survival in the field. Practical techniques for its artificial introduction into nursery soils are also available (Marx 1976; Marx & Bryan 1976; Marx et al. 1976). However, Marx (1981) later reported significant variation in the ability of *P. tinctorius* isolates from oak or pine hosts south of the Tropic of Cancer, to form mycorrhizas with *Pinus taeda*. Some isolates failed to form mycorrhizas under experimental conditions.

South African *P. tinctorius* is common and widely distributed in association with *Eucalyptus* spp. (Bottomley 1948; Doidge 1950; van der Westhuizen & Eicker 1987). It has also been found in association with wattle, *Acasia mearnsii* De Wild., by the present authors. Its fruit-bodies commonly appear under *Eucalyptus* spp. planted as firebelts around pine plantations but rarely occur under the pines. It is known to occur in association with pines on a site in the vicinity of George, Cape Province, that had previously been planted with *Eucalyptus* sp. (van der Westhuizen & Eicker 1987). It has also been seen in an open stand of *Pinus radiata* in Tokai State Forest (Prof. D.T. Mitchell, University College Dublin, pers. comm.). However, fungi isolated from ectomycorrhizas on roots of *Pinus* spp. seedlings grown in a potting mixture containing basidiospores from fruit-bodies of *P. tinctorius* collected from the pine stand near George, did not include isolates of *P. tinctorius* (Viljoen 1987). Mixing basidiospores of *P. tinctorius* into soil of seedling beds is an accepted practice for promoting mycorrhizal formation by this fungus with pines (Marx et al. 1976). These observations together with the general absence of *P. tinctorius* fruit-bodies from pine stands in South Africa, strongly indicate an absence of mycorrhizal relations with pines. These observations raise doubts about the identity of the fungus known as *P. tinctorius* in South Africa. However, they also tend to support a suggestion by Dring (1973) that both saprophytic and mycorrhizal varieties of *P. tinctorius* may exist.

The sporocarp morphology of *P. tinctorius* has been described from South Africa by van der Bijl (1918) and Bottomley (1948), from Australia by Cunningham (1944), and from North America by Coker & Couch (1928), Grand (1976) and Mims (1980). The two latter authors also described the surface ornamentation and
Basidiospores of six collections, including the one from Australia, were indistinguishable from one another when viewed at 5,000 × magnification by SEM. They were globose to sub-globose, and densely covered with short, thick spines mostly with blunt apices (Figures 4, 5 & 6).

Cultures obtained from seven of the fruit-bodies collected by the authors, as well as eight isolates received from the University of Stellenbosch, grew at different rates and showed slight variation in colour of the mat and colour intensity on the reverse of the plates. However, they were very similar in general appearance, colour, texture of the colonies, and in micromorphology (Figure 7).

Sporocarp morphology
Sporocarps variable, pyriform, broadly ovoid, to pulvinate or sub-globose and with a stout rooting base attached to the substratum by yellowish rhizomorphic strands, 3–20 cm tall and 2–17 cm broad; at first hard spongy, later soft in upper parts but hard, woody towards the base. *Peridium* smooth, shiny, whitish to ‘buff’ at first, soon darkening to ‘honey’ or ‘hazel’ with ‘umber’ to ‘fuscous black’ markings in a snake-skin effect, frequently with ‘pure yellow’ colours around the base of fresh specimens, thin, brittle, finally cracking into irregular segments from the top downwards, exposing the mature spores. *Gleba* divided into sub-globose to ovoid or polygonal peridioles, 1.0–5.0× 1.0–3.0 mm, larger in the upper parts, separated by thick, carbonous, persistent trama layers, the peridioles whitish when young and presenting a mottled appearance when cut, exuding a dark brown, staining fluid, later maturing ochraceous to amber, pulverulent (Figure 1). *Spores* globose, verruculose to coarsely echinulate, olivaceous brown, 5.3–10.3 μm diam. overall, echinulae 0.3–1.34 μm (Figures 2–6).

Cultural characters
Colonies on MMN slow growing reaching a radius of 20–35 mm after 6 weeks (Figure 7). Margin even, thin, mycelium raised to limit of growth, sparse, forming numerous thin strands, ‘pale luteous’; aerial mycelium thin over marginal zone, becoming progressively more dense to woolly and raised over the older parts, finally soft felty over the oldest parts and inoculum plug, darkening to ‘honey’. The mat remains soft and easily torn. The reverse is unchanged at first but darkening under the inoculum to ‘isabelline’ then ‘greying seipa’ to finally ‘fuscous black’, the darkened area gradually increasing radially.

Microscopic characters
Advancing zone: hyphae hyaline, unbranched at first, later branching, thin-walled, septate, with simple clamps at the septa, often branching behind a septum with the septum and clamp close to the main hypha, or branching from a clamp with a septum and clamp formed close to the origin, 2.0–3.5 μm in diameter (Figure 8).
Aerial mycelium: hyphae as in the advancing zone,
Figures 1–12 *Pisolithus tinctorius*. 1. Mature sporocarp with exoperidium partly removed to show pulverulent gleba in upper part and peridioles. 2. Basidiospores from sporocarp of PRUM 2212, ×1 200. 3. Basidiospores from sporocarp of PREM 46185, ×1 200. 4. Surface view of basidiospores of PREM 46185, SEM, ×4 000. 5. Surface view of basidiospore of PRUM 2241, SEM, ×4 000. 6. Surface view of basidiospore of Stellenbosch no. 3, SEM, ×4 000. 7. Culture of PRUM 2241, on MMN at 4 weeks. 8. Hypha from advancing zone of culture showing branching and clamp connections, ×1 200. 9. Hypha from aerial mycelium of culture showing paarige branching, ×1 200. 10. Hypha from aerial mycelium of culture showing multiple clamps and branches, ×1 200. 11. Hypha with granular deposits on the surface, ×1 200. 12. Branching, tortuous hypha submerged in the agar, ×1 200.
occasionally showing pairege branching (Figure 9) or with multiple branches and clamps at some septa on older hyphae 2.0–5.6 μm diam. (Figure 10) and small granules on some of the older hyphae (Figure 11). Strands of 3–5 hyphae were present in older parts of the mat.

Submerged mycelium: hyphae as in the advancing zone but more tortuous and more frequently branched with short, tortuous branches, 2.0–3.0 μm (Figure 12).

Material examined

In Herb. PREM: On ground, Bucceugh Orchards, Natal 1916-11-15, 9792; on ground under *Eucalyptus* sp., Pretoria, Feb. 1919, 11815; on ground Lobatsi, Botswana, 1928-05-02, 18040; on ground under *Eucalyptus*, Pretoria–Johannesburg road, Sept. 1925, 20627; on ground under *Eucalyptus* sp., Pretoria, Feb. 2929, 23638; on ground under *Eucalyptus* sp., Klampuits, C.P., 1929-06-23, 24842; on ground, Trappe’s Valley, Bathurst, C.P., 1930-09-26, 25495; on ground under *Eucalyptus*, Pretoria, 1939-04-23, 30781; on ground, Newlands, C.P., April 1921, 31358; on ground under *Eucalyptus*, Johannesburg, April 1946, 35532; on ground in *Eucalyptus* plantation, Lions River, Natal, 1948-05-17, 36693; on ground, Marandellas District, Zimbabwe, June 1960, 42083; on ground over termite nest, Pretoria, 1965-01-15, 42981; on ground under pines, Witfontein Forest Station, George, C.P., March 1981, 45893; on soil, in *Eucalyptus* plantation, Stellenbosch, Jan. 1924, 46125; on sandy soil, French’s Forest, N.S.W., Australia, 46185; on soil under *Eucalyptus*, Pretoria Country Club, 1983-11-20, 47303; on ground, Sabie, Tvl., April 1985, 47763; on soil under trees, Bronkhorstspruit, Tvl., 1985-02-15, 47959; on ground under *Eucalyptus* saligna, Umtamvuna Nature Reserve, Natal, April 1985, 48436; on lawn, Pretoria, 1985-03-14, 48446; among grass at side of track, Mhlambanyaktsi, Swaziland, 1985-01-06, 48437.

In Herb. PRUM: On ground under *Pinus* sp., Witfontein Forest, George, Sept. 1986, 2212; on ground under *Eucalyptus* sp., Boschkop, Pretoria district, March 1987, 2213*; on ground under *Eucalyptus* sp., Clewer, Transvaal, March 1987, 2214*; on ground under *Acacia mearnsii*, Serala Wilderness Area, NE Transvaal, April 1987, 2237*; on ground under *Eucalyptus* sp., Serala Wilderness Area, NE Transvaal, April 1987, 2238*; on ground under *Eucalyptus* sp., Serala Wilderness Area, NE Transvaal, April 1987, 2239*; on ground under *Eucalyptus* sp., Belfast, Transvaal, April 1987, 2240*; on ground under *Eucalyptus* sp., Belfast, Transvaal, April 1987, 2241*; under *Acacia mearnsii*, Kraaibos, near Karatara, C.P., April 1987, 2242; on ground under *Eucalyptus* sp., Kraaibos, near Karatara, C.P., April 1987, 2243; on ground, Saasveld College of Forestry, George, C.P., April 1987, 2244.

* Cultures from Department of Forest Science, University of Stellenbosch:* No. 3*, from *Eucalyptus* sp., Stellenboschberg, Stellenbosch; No. 22, from *Pinus pinaster*, France, (ex Dr D.H. Marx); No. 36*, *Eucalyptus grandis*, Melmoth, Natal; No. 42*, *Eucalyptus grandis*, Elandshoogte, eastern Transvaal; No. 54*, *Eucalyptus* sp., Longmore, Tsitsikamma Forest Region; No. 58, *Pinus taeda*, Georgia, U.S.A.; No. 77*, mixed *Eucalyptus* spp. *Pinus radiata* stand, Wiesenhof, Paarl district; No. 99*, *Eucalyptus diversicolor*, Witellies bos, Knysna Forest Region.

*also studied in culture.

Discussion

The sporocarps of collections examined during the present investigation varied widely in size, shape and general appearance but corresponded with regard to anatomical characters. All correspond with description of sporocarp morphology of *Pisolithus tinctorius* b Bottomley (1948), Cunningam (1944), Grand (1976) an van der Bijl (1918). Basidiospores from all collection from which they were available, were very similar in morphology when viewed under the light microscope although they were mostly smaller than the sizes given by Grand (1976). Basidiospores from South African sporocarps are larger and more coarsely echinulate than those of the related species *Pisolithus microcarpus* (Cooke & Massee) G.H. Cunningham (Cunningham 1944). Spore size of the South African collections are within the ranges given by Bottomley (1948), Cunning ham (1944), Mims (1980) and van der Bijl (1918). Under the light microscope, basidiospores of the Australian specimen, PREM 46185, agree in size and morphology with those of the South African collections. Their surface ornamentation also corresponds with that of the South African collections when examined at 5 000 × magnification by SEM. Characters of these spores turn correspond with the descriptions and electronmicrographs of spores from North American collections (Grand 1976; Mims 1980). They differ however, in surface ornamentation from spores of a collection of *P. tinctorius* reported from Denmark by Hansen (1986) which has sharp-pointed spines. Bronch et al. (1975) also figured spores with sharp-pointed spines from sporocarps of the European species, *Pisolithus arhizus*, and suggested that this character may make it possible to separate European *Pisolithus* from a similar species frequently occurring in Africa. However Grand (1976) figured scanning electron micrographs of basidiospores of *Pisolithus* which show both sharp-pointed and blunt spines from various localities in the U.S.A. He further reported no differences in spore size and ornamentation related to location, habitat or habit of 167 sporocarps of *P. tinctorius*.

Cultural characters and micromorphology of isolates obtained from South African sporocarps are closely similar to those of isolates from *Pinus pinaster* from France and *Pinus taeda* from Georgia, U.S.A., respectively. All the isolates agree in respect of micromorphological and cultural characters with the descriptions by Hile & Hennen (1969) and Miller et al. (1983). However, inflated hyphae as described and figured by the latter authors were not observed in our cultures although this may be due to the use of different media.

The South African collections thus agree in morphology and cultural characters with specimens and cultures that had been referred to *P. tinctorius* from localities outside of this country. Furthermore the
isolates from Eucalyptus were indistinguishable from those obtained from Pinus spp. These observations together with descriptions by Grand (1976), Hile & Hennen (1969) and Mims (1980) of P. tinctiorius associated with Pinus spp., reveal no morphological differences between sporocarps of P. tinctiorius associated with pines and those associated with eucalypts. The absence of P. tinctiorius sporocarps from pine stands in South Africa can therefore not be ascribed to the occurrence of a different Pisolithus species in this country.

Grand (1976) and Marx (1977) reported sporocarps of P. tinctiorius as being widely distributed in the U.S.A., occurring mostly on poor, acid, sandy or clayey soils and usually in association with various tree species. Occasionally sites without trees such as gardens, lawns, pastures and sand dunes were cited as localities. This led Grand (1977) to support the view put forward by Dring (1973) that mycorrhizal as well as saprophytic forms (varieties) of P. tinctiorius may exist. Marx (1981) later reported experimental results supporting this view. On the basis of these reports together with observations described in this paper it appears that strains of P. tinctiorius not generally capable of forming mycorrhizas with pines, generally occur in South Africa.

Acknowledgements

We thank Mr J.M. Theron, Department of Forest Science, University of Stellenbosch, for supplying eight cultures of P. tinctiorius as well as basidiospores of six of these isolates, and the Director, Plant Protection Research Institute for the loan of specimens from the herbarium of the National Collection of Fungi. Mr C. Hentschell, Forester, Witfontein State Forest kindly supplied two collections of sporocarps from a pine stand. Mr André Botha of the Electron Microscopy Unit, University of Pretoria prepared the electron micrographs. The Director General, Department of Environment Affairs permitted collection of specimens in State Forests. Dr D.A. Reid, Royal Botanic Gardens, Kew, U.K. supplied reprints of relevant literature. The Council for Scientific and Industrial Research and the University of Pretoria supported this project financially.

Our colleague, Dr Elzabé Schoonraad, critically reviewed the manuscript.

References

ASHTON, D.H. 1976. Studies of the mycorrhizae of Eucalyptus regnans. Aust. J. Bot. 24: 723–741.
BOTTOMLEY, A.M. 1948. Gasteromycetes of South Africa. Bothalia 4: 473–810.
BRONCHART, R., CALONGE, F.D. & DEMOULIN, V. 1975. Nouvelle contribution à l'étude de l'ultrastructure de la paroi sporale des Gastéromycètes. Bull. Soc. mycol. Fr. 91: 231–246.
COKER, W.C. & COUCH, J.N. 1928. The Gasteromycetes of the eastern United States and Canada. Univ. of North Carolina Press, Chapel Hill.
CUNNINGHAM, G.H. 1944. Gasteromycetes of Australia and New Zealand. G.H. Cunningham, Dunedin, New Zealand.
DOIDGE, E.M. 1950. The South African fungi and lichens. Bothalia 5: 1–1089.
DRING, D.M. 1973. Gasteromycetes. In: The Fungi: an advanced treatise, eds Ainsworth, G.C., Sparrow, F.K. & Sussman, A.S., Vol. IVB, pp. 451–478, Academic Press, New York.
GIBSON, I.A.S. 1969. Diseases of forest trees widely planted as exotics in the tropics and southern Hemisphere. II. The genus Pinus. Commonwealth Forestry Institute, Univ. of Oxford, Oxford, 135 pp.
GRAND, L.F. 1976. Distribution, plant associates, and variation in basidiocarps of Pisolithus tinctiorius in the United States. Mycologia 68: 672–678.
HANSEN, G.R. 1986. Aërtetroffel-et sjaaldent (og) grint syn. Swampe 13: 25–29.
HILE, N. & HENNEN, J.F. 1969. In vitro culture of Pisolithus tinctiorius mycelium. Mycologia 61: 195–198.
MARX, D.H. 1969. The influence of ectotrophic mycorrhizal fungi on the resistance of pine roots to pathogenic infections. I. Antagonism of mycorrhizal fungi to root pathogenic fungi and soil bacteria. Phytopathology 59: 153–163.
MARX, D.H. 1976. Synthesis of ectomycorrhizae on lobolly pine seedlings with basidiospores of Pisolithus tinctiorius. For. Sci. 22: 13–20.
MARX, D.H. 1977. Tree host range and world distribution of the ectomycorrhizal fungus Pisolithus tinctiorius. Can. J. Microbiol. 23: 217–223.
MARX, D.H. 1981. Variability in ectomycorrhizal development and growth among isolates of Pisolithus tinctiorius as affected by source, age and re-isolation. Can. J. For. Res. 11: 168–174.
MARX, D.H. & BRYAN, W.C. 1970. Pure culture synthesis of ectomycorrhizas by Thelephora terrestris and Pisolithus tinctiorius on different conifer hosts. Can. J. Bot. 48: 639–643.
MARX, D.H. & BRYAN, W.C. 1976. Growth and ectomycorrhizal development of lobolly pine seedlings in fumigated soil infested with the fungal symbiont, Pisolithus tinctiorius. For. Sci. 21: 245–254.
MARX, D.H., BRYAN, W.C. & CORDELL, C.E. 1976. Growth and ectomycorrhizal development of pine seedlings in nursery soils infested with the fungal symbiont Pisolithus tinctiorius. For. Sci. 22: 91–100.
MILLER, O.K., MILLER, S.L. & PALMER, J.G. 1983. Descriptions and identification of selected mycorrhizal fungi in pure culture. Mycotaxon 18: 457–481.
MIMS, C.W. 1980. Ultrastructure of basidiospores of the mycorrhizal fungus Pisolithus tinctiorius. Can. J. Bot. 58: 1525–1533.
RAYNER, R.W. 1970. A mycological colour chart. Commonwealth Mycological Institute & British Mycological Society, Kew, Surrey.
VANDER BJUL, P.A. 1918. Notes on Polysaccum crassipes D.C.; a common fungus in Eucalyptus plantations round Pretoria. Trans. R. Soc. S. Afr. 6: 209–214.
VAN DER WESTHUIZEN, G.C.A. 1971. Cultural characters and carphophore construction of some poroid Hymenomycetes. Bothalia 10: 137–328.
VAN DER WESTHUIZEN, G.C.A. & EICKER, A. 1987. Some fungal symbionts of ectomycorrhizae of pines in South Africa. S. Afr. For. J. 143: 20–24.
VILJOEN, D.M. 1987. Identifying van mikorisa-vormende swamme wat met dennewortels geassosieër is, op grond van reinkultuur eienskappe. B.Sc. (Hons)-skripsie, Univ. van Pretoria.