Determination of Potassium in Foodstuffs Consumed in Mamuju Indonesia by Neutron Activation Analysis

A H As’ari, S Yusuf, and T R Mulyaningsih
Center for Science and Technology of Advanced Materials, National Nuclear Energy Agency, Kawasan Nuklir Serpong, Setu, Tangerang Selatan, Indonesia

E-mail: ahmad.hasan@batan.go.id

Abstract. Potassium (K) is an essential nutrient and one of the main minerals in the blood as a counterweight to electrolyte and blood pressure. Decreasing K intake can be one of the causes of increased blood pressure. Mamuju is one area with high hypertension cases. Potassium is widely obtained from foodstuffs. In this study, food was collected from the markets in Mamuju Indonesia and analyzed using neutron activation analysis to determine K concentration. The results for the meat and egg category show that beef has a higher potassium concentration than chicken meat, and Negeri chicken eggs are higher than Kampung chicken eggs. For the vegetable category, six samples have very high concentrations of potassium, namely caisim, kemangi, fern leaves, chinese cabbage, spinach, and beans; and the spices namely turmeric and kencur have high concentrations of potassium. For the fish and seafood category, tilapia has the highest potassium concentration and the lowest shrimp. For staples, the highest concentration of potassium is found in potatoes, the lowest in sticky rice; and the processed soybeans, tempeh has a higher potassium concentration than tofu. Therefore, it is important to pay attention to daily potassium intake by looking at the combination of food and potassium concentration in it, such as by increasing consumption of vegetable foods. On the other hand, high potassium intake needs to be followed by a reduction in sodium and salt intake in food.

1. Introduction
Potassium is an essential nutrient mineral in the body. Potassium plays a role in regulating electrolyte fluid balance and controlling the electrical activity of the heart and other muscles. High potassium intake can reduce blood pressure, prevent stroke, cardiovascular disease, and coronary heart disease [1–3]. The World Health Organization (WHO) reports that the recommended minimum intake (adequate intake) of potassium is 3510 mg/day for adults and children, even the Institute of Medicine (IOM) and the US Department of Health and Human Services suggest the increasing for adequate intake of Potassium 4700 mg/day [4,5]. Potassium intake is mostly obtained through foodstuffs, so the combination of foodstuffs with adequate intake of potassium is crucial.

Mamuju is one area with high cases of hypertension. In 2017, there were 407 cases of hypertension in the North Mamuju region. The percentage of hypertension in men reaches 12.53%, whereas in women it reaches 9.42% [6]. Therefore, in this study, food samples were taken in Mamuju randomly. Samples of various types of food that are commonly consumed by the public were purchased from markets in the Mamuju area. Potassium concentration is measured from each type of food to see its distribution.
Several methods such as AAS [7], ICP-MS [8], laser-induced breakdown spectroscopy (LIBS) [9] are widely used for elemental analysis in foodstuffs. In this study, we used the neutron activation analysis (NAA). NAA is a sensitive analytical technique useful for performing both qualitative and quantitative multi-element analysis in samples. It is accurate and reliable. NAA is widely used for elemental analysis in various fields such as archaeology [10], geology [11], biology [12], and food [13].

2. Materials and Methods

2.1. Sample collection
All food samples were collected from Mamuju, West Sulawesi, Indonesia by random sampling. The sample includes various types of food, such as meat, eggs, fish, vegetables, staple foods, and others. Each sample is kept fresh in the freezer before further preparation is carried out.

2.2. Sample preparation and irradiation
All samples were cleaned and washed with running water. The cleaned samples cut into small pieces and put into plastic clips that have been coded. The sample was frozen and put into individual bottles for the freeze-drying process using a freeze dryer (Snijder Scientific, USA) with the pressure of 0.025 Pa and the temperature of 90 °C for 72 hours to remove its water content. The dried samples were mashed using mortar for homogeneous powder (100 mesh in size). Samples and SRM (±100 mg, respectively) were weighed using sartorius M2P microbalance and put into LDPE vials (low-density polyethylene). SRM 1547 (Peach leaves) and SRM 1573a (Tomato leaves) purchased from the National Institute of Science and Technology (NIST, USA) were used as comparators for quality assurance in terms of accuracy, reliability, and relative standard deviation. Al-0.1% Au (close to 3 mg) purchased from the Institute for Reference Material and Measurement (IRRM, Belgium) was used as a neutron flux monitor. The sample, SRM, and flux monitor were wrapped in aluminum foil and arranged into the same irradiation target. The target was put into the irradiated capsule of polyethylene. The irradiation was carried out at the rabbit system facility located in the Multi-purpose Reactor G.A. Siwabessy with a thermal neutron flux of 5x10^13 neutron.cm^-2.s^-1. Radionuclide parameters, γ energy, half-life, and other detailed analysis are presented in Table 1.

Table 1. Analysis parameters of the elements of interest.

Radionuclide	Element	Half time (h)	γ energy (keV)	Irradiation time (min)	Decay time (d)
40K	K	12.36	1524.6	15-30	2-3

2.3. Gamma-ray spectrometry
After reaching the decay time, all samples, SRM, and flux monitor were analyzed by gamma spectrometry (Canberra, USA) using a high purity germanium detector (HPGe) with a relative efficiency of 30% and a resolution of 1.63 keV for a peak of 1332.5 keV of 60Co. Energy calibration in the system is carried out using two radionuclide sources, Cs-137 and Co-60, to cover the energy range of 661 keV to 1332.5 keV. All samples were counted with a counting time of 1800-3600 s. Qualitative analysis was performed with Genie2000 and Hipermate software, while quantitative analysis was carried out with k0-IAEA software.

2.4. Internal quality control
To check the reliability of this method, we use SRM 1547 and SRM 1573a as Quality Control/Quality Assurance. The aim is to assess the quality of the performance of our laboratory. We evaluated our laboratory performance using three statistical parameters: U-test score, Z-score, and relative standard deviation (RSD,%) commonly used. The evaluation uses the U-test score to...
determine the uncertainty of the measurement against the reference. U-test score is calculated using equation 1.

\[U_{\text{score}} = \frac{|x_m - x_r|}{\sqrt{\mu_m^2 + \mu_r^2}} \]

(1)

where \(x_m, \mu_m, x_r, \) and \(\mu_r \) are the measurement values, measurement uncertainties, the assigned values, and standard uncertainties, respectively. Z-score indicates a measure of the proximity of the measurement value to the assigned value. The Z-score value is calculated using equation 2.

\[Z_{\text{score}} = \frac{x_m - x_r}{\mu_r} \]

(2)

where the laboratory performance is evaluated as satisfactory for \(Z_{\text{score}} \leq 2 \), questionable for \(2 < Z_{\text{score}} < 3 \), and unsatisfactory for \(Z_{\text{score}} \geq 3 \). RSD is a measure of the type of error called random error, the type of error that cannot be controlled very well [14,15].

3. Results and Discussions

The values of three statistical parameters from our laboratory performance are presented in Table 2.

Table 2. Comparison of the concentration value of the measurement results and the value of the certificate on the SRM.

Element	Measured value (mg/kg)	Certified value (mg/kg)	Ratio	RSD	U-test score	Z-score	SRM
K	23945	424	24300	300	0.99	1.5	Peace leaves
K	27221	611	27000	500	1.01	0.8	Tomato leaves

Table 2 shows that the U-test values were 0.68 and 0.28 (<1.64). This result means that there is no significant difference between the value of the measurement results with the value of the certificate [16]. The evaluation based on Z scores gives values of 0.07 and 0.04 (≪2) respectively, indicate that laboratory performance is satisfactory. The calculation result of the RSD of the measurement is less than 2%. This result shows that its accuracy was satisfactory, indicating that the measured and certified values did not differ significantly [17].

Table 3. Potassium concentration in food samples.

Samples	K concentration (mg/kg)	Samples	K concentration (mg/kg)		
Bean	32269	Long beans	22837		
Phaseolus vulgaris	846	Vigna unguiculata ssp. Sesquipedalis	581		
Beef	12091	Mackerel	10881		
Bos primigenius taurus	482	Scomber japonicus	1108		
Black sticky rice	3784	Milkfish	10409		
Oryza sativa var glutinosa	179	Chanos chanos	425		
Indian mackerel (kembung fish)	10988	Moringa leaves	16724		
Rastrelliger faugnhi	1116	Moringa oleifera	454		
Cabbage	13434	Parrot fish	18960		
	571		723		
Food Item	Quantity	Protein	Food Item	Quantity	Protein
---	----------	---------	---	----------	---------
Brassica oleracea var. capitata	10896	512	Oreochromis niloticus	6225	158
Cassava Manihot esculenta			Peanuts Arachis hypogaea		
Cassava Manihot esculenta	22863	679	Potato Solanum tuberosum	22900	1056
Cauliflower Brussica oleracea var. botrytis	22541	740	Red corn Zea mays	14288	365
Celery leaves Apium graveolens	25919	1647	Red onion Allium oschaninii	8745	309
Caisim Brussica chinensis var. parachinensis	58948	1757	Red snapper fish Lutjanus bohar	15452	606
Chayote Sechium edule	18233	483	Rice Oryza sativa	1039	58
Chicken meat Gallus gallus domesticus	9725	399	Shrimp Caridea	5100	403
Chinese cabbage Brassica rapa subsp. Pekinensis	48108	1229	Soybeans Glycine max	13902	679
Cob fish Euthynnus affinis	13847	887	Spinach Amaranthus	38716	1011
Cutchery Kaempferia galanga	32957	850	Squid Decapodiformes	9499	434
Domestic chicken eggs Gallus domesticus	6050	694	Sticky rice Oryza sativa var. glutinosa	622	31
Eggplant Solanum melongena	909	24	Tempeh	4829	139
Fern leaves Diplazium esculentum	49339	1473	Tilapia (mujair) fish Oreochromis mossambicus	10540	1047
Garlic Allium sativum	19042	482	Tofu	1026	29
Ginger Zingiber officinale	15254	402	Tomato Solanum lycopersicum	19568	841
Green beans Vigna radiata	15954	816	Turmeric Curcuma longa	33628	865
Grouper fish Epinephelinae	10195	682	Village chicken eggs Gallus gallus domesticus	4212	328
Kaneke fish Plectortinhchus	8915	595	Water spinach Ipomoea aquatica	23686	2344
Katuk leaves Sauropus androgynus	9642	287	White sweet potato Ipomoea batatas	15219	383
Food samples in Table 3 are grouped into four categories. The first one is the meat and egg category. The result shows that beef has higher potassium concentration than chicken meat, and potassium concentration in Negeri chicken eggs is higher than in Kampung chicken eggs. Distribution of potassium concentration from the first category can be seen in Figure 1.

![Figure 1](image)

Figure 1. Distribution of potassium concentrations in the meat and egg category.

The second category, vegetables and spices, has a relatively higher potassium concentration than the other categories, except eggplants which have a low concentration of potassium only (909 ± 24) mg kg⁻¹. There are six vegetables with a concentration of potassium more than the mean value (~27,195 mg kg⁻¹), sequentially the smallest are beans (32,269 ± 846) mg kg⁻¹, spinach (38,716 ± 1011) mg kg⁻¹, Chinese cabbage (48,108 ± 1229) mg kg⁻¹, fern leaves (49,339 ± 1473) mg kg⁻¹, kemangi (54,703 ± 1605) mg kg⁻¹, and caisim (58,948 ± 1757) mg kg⁻¹. Turmeric and kencur, which are commonly used as spices, also have high enough potassium concentrations of more than 30,000 mg kg⁻¹. Distribution of potassium concentration from vegetables and spices category can be seen in Figure 2.
Figure 2. Distribution of potassium concentrations in the vegetables and spices category.

The third category, fish and seafood, contains potassium which is not far adrift between samples. Tilapia has the highest potassium concentration of \((18,960 \pm 723) \text{ mg kg}^{-1}\), and shrimp has the lowest potassium concentration of \((5,100 \pm 403) \text{ mg kg}^{-1}\). The potassium concentration between sea fish and freshwater fish is not significantly different. Distribution of potassium concentration from the third category can be seen in Figure 3.

Figure 3. Distribution of potassium concentrations in the fish and seafood category.

The last category, staples and preparations, has a variety of potassium content. Rice as a staple food for the majority of Indonesian people has a low potassium concentration of \((1,039 \pm 58) \text{ mg kg}^{-1}\), while potatoes had a high potassium concentration of \((22,900 \pm 1056) \text{ mg kg}^{-1}\). In the world, rice as a staple food contributes to food energy supply by 20%, while corn and potatoes contribute 5% and 2% [18]. The use of potatoes as a staple food is widely consumed in developed countries, such as Russia, UK,
Ukraine, Belarus, Portugal, and countries in the Commonwealth of the Independent States that depend heavily on potatoes for their energy consumption [19]. For processed soy products, tempeh has a higher potassium concentration than tofu.

Figure 4. Distribution of potassium concentration in the staple food and its derivatives category.

The level of consumption of some foodstuffs in a day by the Indonesian people can be seen in Table 4. Several foodstuffs have a relatively high level of consumption followed by high enough potassium concentration, such as rice, chicken, meat, various types of fish and shrimp, and tempeh. On the other hand, several foodstuffs have a low consumption level but have relatively high potassium concentration, such as potatoes, sweet potatoes, cassava, cassava leaves, tomatoes, Chinese cabbage, water spinach, spinach, long beans, and other vegetables. Therefore, it is important to pay attention to daily potassium intake by looking at the combination of food and potassium concentration in it, such as by increasing consumption of vegetable foods.

Table 4. The level of consumption of some foodstuffs and estimated daily potassium intake [20,21]

Foodstuffs	Consumption rate per day (kg)	Estimated daily potassium intake (mg)
Beef	0.0013	16
Chicken meat	0.0173	168
Kampung chicken egg	0.0006	2
Negeri chicken egg	0.0010	6
Red onion	0.0076	66
Garlic	0.0047	90
Soybean	0.0001	2
Long bean	0.0064	147
Spinach	0.0090	348
Bean	0.0026	83
Leek	0.0004	5
Cabbage	0.0040	54
In its function as a blood pressure-lowering, an increase in potassium intake needs to be followed by a reduction in sodium intake in food. Addition of salt in food also needs to be avoided so that sodium intake does not exceed the maximum intake limit per day of 2 g/day sodium (5 g/day salt) [22].

4. Conclusion
The results for the meat and egg category show that beef has a higher potassium concentration than chicken meat, and Negeri chicken eggs are higher than Kampung chicken eggs. For the vegetable category, six samples have very high concentrations of potassium, namely caisim, kemangi, fern leaves, Chinese cabbage, spinach, and beans; and the spices namely turmeric and kencur have high concentrations of potassium. For the fish and seafood category, tilapia has the highest potassium concentration and the lowest shrimp. For staples, the highest concentration of potassium is found in potatoes, the lowest in sticky rice; and the processed soybeans, tempeh has a higher potassium concentration than tofu. Therefore, it is important to pay attention to daily potassium intake by looking at the combination of food and potassium concentration in it, such as by increasing consumption of vegetable foods. On the other hand, high potassium intake needs to be followed by a reduction in sodium and salt intake in food.

Acknowledgment
We thank all NAA laboratory staff at the Neutron Beam Technology Division, the Center for Science and Technology of Advanced Materials, the National Nuclear Energy Agency for their support during this study.

References
[1] Gupta U C and Gupta S C 2014 Sources and Deficiency Diseases of Mineral Nutrients in Human Health and Nutrition: A Review Pedosph. An Int. J. 24 13–38
[2] Tanase C M, Griffin P, Koski K G, Cooper M J and Cockell K A 2011 Journal of Food Composition and Analysis Sodium and potassium in composite food samples from the Canadian Total Diet Study J. Food Compos. Anal. 24 237–43
[3] Weaver C M 2013 Potassium and Health Adv. Nutr. 4 368S-377S
[4] WHO 2012 Guideline: Potassium intake for adults and children (Geneva: World Health Organization (WHO))
[5] Cogswell M E, Zhang Z, Carriquiry A L, Gunn J P, Kuklina E V, Saydah S H, Yang Q and Moshfegh A J 2012 Sodium and potassium intakes among US adults: NHANES 2003-2008 Am. J. Clin. Nutr. 96 647–57
[6] Dinkes 2018 Profil Kesehatan Kabupaten Mamuju Utara Tahun 2017 (Mamuju: Dinas Kesehatan Kabupaten Mamuju Utara)
[7] Manutsewee N, Aeungmaitrepirom W, Varanusupakul P and Imyim A 2007 Food Chemistry Determination of Cd, Cu, and Zn in fish and mussel by AAS after ultrasound-assisted acid leaching extraction 101 817–24
[8] Richter B, Gurk S, Wagner D, Bockmayr M and Fischer M 2019 Food authentication: Multi-elemental analysis of white asparagus for provenance discrimination Food Chem. 286 475–82
[9] Markiewicz-keszycka M, Cama-moncunill X, Casado-gavalda M P, Dixit Y, Cama-moncunill R, Cullen P J and Sullivan C 2017 Trends in Food Science & Technology Laser-induced breakdown spectroscopy (LIBS) for food analysis: A review Trends Food Sci. Technol. 65 80–93
[10] Boulanger M T, Buchanan B, Brien M J O, Redmond B G, Glascock M D and Eren M I 2015 Neutron activation analysis of 12,900-year-old stone artifacts confirms 450-510+ km Clovis tool-stone acquisition at Paleo Crossing (33ME274), northeast Ohio, U.S.A. J. Archaeol. Sci. 53 550–8
[11] Mulyaningsih T R, Kuntori I and Alfian A 2012 Distribusi Unsur Makro dan Mikro dalam Abu Gunung Merapi Yogyakarta Ecolab 6 12–22
[12] Mulyaningsih T R and Yusuf S 2018 Determination of Minerals Content in Leaves of Moringa Oleifera by Neutron Activation Analysis Ganendra J. Nucl. Sci. Technol. 21 11–6
[13] Mulyaningsih T R 2009 Kandungan Unsur Fe dan Zn Dalam Bahan Pangan Produk Pertanian, Pternaman dan Perikanan dengan Metode k0-AANI Indones. J. Nucl. Sci. Technol. 10 71–80
[14] Mansouri A, Alghem L H, Beladel B, Mokhtari O E K, Bendaas A and Benamar M E A 2013 Hair-zinc levels determination in Algerian psoriatics using Instrumental Neutron Activation Analysis (INAA) Appl. Radiat. Isot. 72 177–81
[15] Waheed N S S 2012 Evaluation of laboratory performance using proficiency test exercise results J Radioanal Nucl Chem 291 817–23
[16] Yusuf S 2015 Aplikasi Teknik AAN di Reaktor RSG-GAS pada Penentuan Unsur Esensial dan Toksik di dalam Ikan dan Pakan Ikan J. Nucl. React. Technol. TRI DASA MEGA 16 44–54
[17] Seeprasert P, Anurakpongsatorn P and Laoharojanaphand S 2017 Instrumental neutron activation analysis to determine inorganic elements in paddy soil and rice and evaluate bioconcentration factors in rice Agric. Nat. Resour. J. 51 154–7
[18] FAO 2009 FAO Statistical Databases, Supply Utilization Accounts
[19] Charrondie R, Burlingame B and Mouille B 2009 Nutrients, bioactive non-nutrients and anti-nutrients in potatoes J. Food Compos. Anal. 22 494–502
[20] Sugeng Supriyanto 2018 Pengeluaran untuk Konsumsi Penduduk Indonesia ed N Sahrizal and I Sahara (Jakarta: Badan Pusat Statistik)
[21] Komalasari W B 2018 Statistik Konsumsi Pangan Tahun 2018 ed L Hakim and A Sumantri (Jakarta Selatan: Pusat Data dan Sistem Informasi Pertanian Sekretariat Jenderal Kementerian Pertanian)
[22] WHO 2012 *Guideline: Sodium intake for adults and children* (Geneva: World Health Organization (WHO))