Isogai, Akira; Hänninen, Tuomas; Fujisawa, Shuji; Saito, Tsuguyuki

Review: Catalytic oxidation of cellulose with nitroxy radicals under aqueous conditions

Published in:
Progress in Polymer Science

DOI:
10.1016/j.progpolymsci.2018.07.007

Published: 01/11/2018

Please cite the original version:
Isogai, A., Hänninen, T., Fujisawa, S., & Saito, T. (2018). Review: Catalytic oxidation of cellulose with nitroxy radicals under aqueous conditions. Progress in Polymer Science, 86, 122-148. https://doi.org/10.1016/j.progpolymsci.2018.07.007
Review: Catalytic oxidation of cellulose with nitroxyl radicals under aqueous conditions

Akira Isogai a,*, Tuomas Hänninen b, Shuji Fujisawa a, Tsuguyuki Saito a

a Department of Biomaterials Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
b Department of Forest Products Technology, Aalto University, PO Box 16300, FI-00076 Aalto, Espoo, Finland

A R T I C L E I N F O

Article history:
Received 30 December 2017
Received in revised form 22 June 2018
Accepted 24 July 2018
Available online 29 July 2018

Keywords:
Cellulose
TEMPO
Nanofibril
Catalytic oxidation
N-oxyl radical
Position-selective reaction
Surface modification

A B S T R A C T

2,2,6,6-Tetramethylpiperidine-1-oxyl (TEMPO)-mediated oxidation is a unique reaction to native and regenerated celluloses, and has advantages in terms of position-selective reaction at room temperature under aqueous conditions. When the TEMPO/NaBr/NaClO oxidation is applied to native celluloses in water at pH 10 under suitable conditions, the C6-primary hydroxy groups present on crystalline cellulose microfibril surfaces are mostly converted to sodium C6-carboxylate groups. Anionic sodium glucuronosyl units are densely, regularly, and position-selectively formed on crystalline cellulose microfibril surfaces, while maintaining the original cellulose morphology, cellulose I crystal structure, crystallinity, and crystal width. When TEMPO-oxidized celluloses (TOCs) prepared from, for example, wood cellulose have sodium C6-carboxylate contents >1 mmol/g, transparent highly viscous gels consisting of TEMPO-oxidized cellulose nanofibrils (TOCNs) with homogeneous widths of ≈3 nm and lengths >0.5 μm, dispersed at the individual nanofiber level, are obtained by gentle mechanical disintegration of TOCs in water. Alternative systems are as follows: TEMPO/NaClO/NaClO2 system, TEMPO electro-mediated oxidation, etc. TOCNs are promising new plant-based renewable nanofibers applicable to high-tech material fields.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Contents

1. Introduction .. 123
2. Introduction of carboxy groups into cellulose .. 124
3. TEMPO-mediated oxidation of cellulose and other polysaccharides .. 124
3.1. Chemistry of TEMPO-mediated oxidation .. 124
3.2. Structures and properties of TEMPO-oxidized celluloses ... 125
4. Oxidation of native celluloses by TEMPO/NaBr/NaClO system .. 127
4.1. Structures and properties of TEMPO-oxidized native celluloses .. 127
5. Preparation of TEMPO-oxidized cellulose nanofibrils and nanocrystals .. 129
5.1. TEMPO-oxidized cellulose nanofibrils (TOCNs) .. 129
5.2. TEMPO-oxidized cellulose nanocrystals (TO-NCNs) ... 130

Abbreviations: 4-AcNH-TEMPO, 4-Acetamido-TEMPO; AFM, atomic force microscopy; AZADO, 2-azaadamantane N-oxyl radical; CNC, cellulose nanocrystal; CTA, cellulose triacetate; DMAC, N,N-dimethylacetamide; DMF, N,N-dimethylformamide; DP, degree of polymerization; DS, degree of substitution; ESR, electron spin resonance; H-NBR, hydrogenated butadiene-acrylonitrile rubber; [η], intrinsic viscosity; MALLS, multi-angle laser-light scattering; Mw, viscosity-average molar mass; NaTCC, sodium 2,3,6-tricarboxylate cellulose; NMR, nuclear magnetic resonance; PEG, poly(ethylene glycol); PLA, poly(lactic acid); RH, relative humidity; SEC, size-exclusion chromatography; TEM, transmission electron microscopy; TEMPO, 2,2,6,6-tetramethylpiperidine-1-oxyl radical; TEMPO’, 2,2,6,6-tetramethylpiperidine N-oxoammonium ion; TOC, TEMPO-oxidized cellulose; TOCN, TEMPO-oxidized cellulose nanofibril; TO-CNC, TEMPO-oxidized cellulose nanocrystal; TOCN-PEG, TOCN-COO’ –NH2 –CH2 –CH(OCH2 CH2)n –OCH3; UV, ultraviolet.

* Corresponding author.
E-mail address: aisogai@mail.ecc.u-tokyo.ac.jp (A. Isogai).

https://doi.org/10.1016/j.progpolymsci.2018.07.007
0079-6700/© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Cellulose is a linear homopolysaccharide consisting of β-(1→4)-linked glucosyl units, each of which has one primary hydroxy group (C6-OH) and two secondary hydroxy groups (C2-OH and C3-OH). These hydroxy groups promote a hydrophilic nature of cellulose materials. In addition, abundant C-H groups to the axial direction of glucosyl units in cellulose play a significant role in hydrophobic interactions between cellulose molecules and also between cellulose and other hydrophobic compounds in water (Fig. 1) [1,2]. Native celluloses form tightly packed crystal structures of cellulose I with various crystallinities and crystal sizes, in which numerous intra- and inter-molecular hydrogen bonds and hydrophobic interactions are regularly present [3–5]. The native cellulose I is further classified into two crystal structures of celluloses Iα and Iβ, and most of terrestrial plant celluloses have cellulose Iα [5,6].

Degrees of polymerization (DPs), or corresponding molar masses, of native celluloses vary from DP =800–1~5000, depending on cellulose resources used and isolation/purification conditions. Purity or α-cellulose content of native celluloses is also a significant factor, because non-cellulosic polysaccharides or hemicelluloses present in cellulosic materials can influence chemical reactions and properties of end products. Although the definition of the chemical structure of cellulose is simple, as described above, the properties of commercially available and laboratory-prepared cellulose samples vary in terms of the crystal structure, crystallinity, crystal size, DP/DP distribution, purity, depending on the original plant resource, which should all be taken into account.

Cotton lint and cotton linters celluloses, ramie and sisal fibers, and bleached wood chemical pulps are commercially available as cellulose samples with the native cellulose I structure and DPs >800 [7]. Microcrystalline cellulose powders are industrially produced from the above wood celluloses or cotton linters by dilute acid hydrolysis, and have relatively high cellulose purities and high cellulose I crystallinities, but low DPs of 200–300 [7]. Regenerated cellulose fibers such as viscose rayon, lyocell, and cuprammonium rayon have cellulose II crystal structures with various crystallinities and DPs of 350–800 [7–9]. These regenerated celluloses are prepared from cellulose/NaOH/CS2/water, cellulose/N-methylmorpholine-N-oxide/water, and cellulose/Cu[NH3]4(OH)2/water solutions, respectively, by wet or wet/dry spinning [8,9]. Bacterial cellulose prepared by incubating Acetobacter xylinum, and algal and tunicate celluloses can be used in laboratory experiments after isolation and purification, and each of them has a unique crystal structure, crystallinity, crystal size of cellulose I, and high DP >4000 [10].

Chemical reactions of cellulose have been intensively and extensively studied to add new properties or functions to native celluloses, and some of them have already been used at the industrial level to produce cellulose derivatives, and their films and fibers [4,5,11–14]. Cellulose triacetate, cellulose diacetate, and cellulose nitrate are typical cellulose esters used as functional films or cellulose-based manmade fibers. Carboxymethylcellulose, methylcellulose, and hydroxyethyl- and hydroxypropyl-celluloses are water-soluble cellulose ethers used as stable thickeners.

The typical cellulose reactions such as esterification and etherification are condensations mostly in the presence of organic solvents, which generally require high temperatures for long reaction times. The presence of water in the starting cellulosic materials or in reaction media causes, therefore, preferential side reactions formed between water and an etherifying or esterifying reagent rather than reactions between cellulose hydroxy groups and reagents [4,5]. The reaction efficiencies between cellulose and these reagents are generally low, and simultaneously large amounts of reaction effluents containing byproducts, and other residual chemicals and solvents that require treatment are formed. These cellulose reactions are not environmentally friendly under their present conditions. Although a huge number of publications detailing chemical reactions of cellulose or preparation methods of cellulose derivatives have been reported, only limited cellulose derivatives are industrially produced at present. Some breakthrough processes, such as catalytic reactions at ambient temperatures under aqueous conditions like enzymatic reactions in living bodies, should be developed for further utilizations of chemically modified celluloses. The N-oxyl radical-mediated oxidation using, for example, 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) is one of the promising candidates in new cellulose reactions fitting to the above purpose.

Cellulose is advantageous as the most abundantly present and renewable biomass on the earth. Plants adsorb CO2 and simultaneously emit O2 (or proceed the reduction of CO2, producing carbon-containing plant components and O2) by photosynthesis during growing stage. The effective and continuous cycling of plantation, logging, utilization of plant biomass as materials, and their recycling can, therefore, reduce CO2 in the atmosphere and subsequently retard global warming. The enhancement of qualitative and quantitative utilization of plant cellulose is the key issue for establishment of a sustainable society, partly in place of the present fossil resource-based society.
2. Introduction of carboxy groups into cellulose

Carboxy groups are typical functional moieties, and there are three conventional methods to introduce carboxy groups to cellulose: 1) carboxymethylation of cellulose with monochloroacetic acid and ≈20% NaOH with 2-propanol to form cellulose-OCH2COONa, 2) N2O4 oxidation of gauze in chloroform to prepare fabrics with C6-carboxy groups, and 3) periodate oxidation of cellulose in water to prepare 2,3-dialdehyde cellulose followed by post-oxidation with NaClO2 to form 2,3-dicarboxycellulose (Fig. 2). Although the carboxymethylation and N2O4 oxidation have been used at the industrial level, these reactions are not favourable in terms of reaction efficiency, position selectivity, chemical safety, and environmental issues. Water-soluble carboxymethylcellulose with degrees of substitution of 0.8–1.2 has been industrially produced and used as stable and safe thickeners as food additives, cosmetics, toothpastes, medicines, emulsion stabilizers, etc. Oxidation of viscose rayon gauze with N2O4 in chloroform has been used to produce commercial haemostat fabrics in surgical operation [15–21]. 2,3-Dialdehyde celluloses are prepared in laboratory by oxidizing cellulose with periodate ions in water at room temperature [22–31].

3. TEMPO-mediated oxidation of cellulose and other polysaccharides

3.1. Chemistry of TEMPO-mediated oxidation

de Nooy et al. first reported that catalytic reactions using TEMPO radical can position-selectively oxidize C6–primary hydroxy groups of water-soluble starch, pullulan, and dextran to sodium C6-carboxylate groups in water at pH 10 and ambient temperatures in the presence of NaBr and NaClO, which are used as a co-catalyst and a primary oxidant, respectively [32]. TEMPO is a water-soluble, stable, and commercially available N-oxyl radical with the Ames Test negative data (Ames Test: a fast and sensitive assay of the ability of a chemical compound or mixture to induce mutations in DNA) [33]. The TEMPO-mediated oxidation has opened a new research field of polysaccharide chemistry, because this reaction is different from conventional esterification, etherification, and oxidation of cellulose in terms of reaction efficiency and position selectivity under aqueous and moderate reaction conditions.

The TEMPO/NaBr/NaClO oxidation of saccharides and other compounds has been extensively studied for selective conversion of primary hydroxy groups to carboxy groups [34–36]. In this system, NaClO used as a primary oxidant first oxidizes TEMPO radical to the N-oxoammonium-type structure or TEMPO+, which then oxidize primary hydroxy groups to carboxy groups through C6-aldehydes. The reduced TEMPO or N-hydroxy-TEMPO is then oxidized by NaBrO, which is formed from NaBr by oxidation with NaClO. Thus, TEMPO and NaBr behave as catalysts, and only inexpensive NaClO is consumed during the oxidation. Because acidic carboxy groups are formed by the oxidation, a small amount of 0.5 M NaOH solution is consumed to maintain the aqueous reaction medium at pH 10 (Fig. 3). A part of aldehydes are directly oxidized to carboxy groups with NaClO and/or NaBrO [32,37].

More detailed reaction mechanism for the selective oxidation of primary hydroxy groups is illustrated in Fig. 4 [38]. The cationic TEMPO+ ion reacts with dissociated primary hydroxy groups to form a covalent bond as an intermediate structure. Because of steric hindrance, TEMPO+ ions form the covalent bond with the dissociated primary hydroxy groups much more preferentially than secondary hydroxy groups. Moreover, the dissociation of primary hydroxy groups is enhanced under alkaline conditions so that the formation of covalent bonds proceeds more rapidly under alkaline conditions than neutral or acidic conditions. The cleavage of the covalent bonds forms aldehyde groups and N-hydroxy-TEMPO molecules. The hydration of aldehydes and successive dissociation of the hydroxy groups under alkaline conditions causes the next covalent bond formation with TEMPO+, resulting in the formation of carboxy groups and N-hydroxy-TEMPO molecules. The optimum pH in water at ≈10 to form carboxy groups from primary hydroxy groups in the TEMPO/NaBr/NaClO oxidation is probably caused by a balance between the following two factors. The degrees of dissociation of primary hydroxy groups are enhanced under alkaline conditions, whereas the frequency to form the covalent bonds between dissociated hydroxy groups and TEMPO+ rather than those between OH− ions and TEMPO+ molecules is preferential under weakly alkaline conditions.
3.2. Structures and properties of TEMPO-oxidized celluloses

When the TEMPO/NaBr/NaClO oxidation is applied to cellulose suspended in water at pH 10, it is possible to selectively convert C6–OH groups to sodium C6-carboxylate groups through C6-aldehydes (Fig. 3). If almost all C6–OH groups of water-insoluble cellulose are oxidized to sodium C6-carboxylate groups by oxidation, new water-soluble β-(1→4)-linked sodium polyglucuronates (or cellouronic acid Na salt) with homogeneous chemical structures should be obtained.

However, chemical structures and properties of TEMPO-oxidized products vary, depending on cellulose samples used as starting materials and the oxidation conditions. When regenerated celluloses, mercerized celluloses (prepared from native celluloses by soaking in NaOH solutions at >15% concentrations), and ball-milled/disordered cellulose powders are used as starting materials under suitable conditions, almost all C6–OH groups are oxidized to sodium C6-carboxylate groups to form water-soluble cellouronic acids Na salt (Fig. 5) [39–41]. However, the presence of small and unknown signals in 13C NMR spectrum of sodium cellouronate indicates some side reactions other than the oxidation of C6–OH groups.

Moreover, significant depolymerization is inevitable during the oxidation. The obtained cellouronic acids have DPs of ~60, although the original celluloses used as starting materials have DPs >350 [41]. β-Alkoxyl elimination occurring at C6-aldehyde groups formed as intermediate structures in water under alkaline conditions and/or some radical species formed in situ as byproducts during oxidation probably cause depolymerization [39,41–44].

Water-soluble sodium polyuronates with homogeneous chemical structures consisting of the same uronosyl repeating units are prepared from water-insoluble polysaccharides such as curdlan, paramylon, α-chitin, and starch, in a similar manner to that for sodium cellouronates [45–51]. Amine groups are unstable to the TEMPO-mediated oxidation; therefore, chitosan and proteins are degraded to water-soluble and low-molar-mass compounds, and position-selective oxidation of primary hydroxy groups in these polymers cannot be achieved [39]. When TEMPO-mediated oxidation is applied to native cellulosics, consisting of crystalline cellulose microfibrils as the smallest elements next to cellulose chains, dif-
Fig. 4. TEMPO-mediated oxidation mechanism of primary hydroxyls to carboxyl groups via aldehydes [36,37]. The covalent bond formation between a dissociated primary hydroxyl group and cationized TEMPO$^+$ is the initial key reaction.

Fig. 5. Preparation of sodium β-(1→4)-poly(glucuronate) (or cellouronic acid Na salt) from regenerated cellulose by TEMPO-mediated oxidation, and 13C NMR spectra of cellulose with DP 7 in DMSO-d$_{6}$ and cellouronic acid Na salt in D$_2$O [38,39]. The cellulose C6-OH signal at \approx62 ppm completely disappears, and the C6-carboxylate signal appears for the oxidized product.
different oxidized products are obtained. Details are discussed in the following chapter.

4. Oxidation of native cellulosess by TEMPO/NaBr/NaClO system

4.1. Structures and properties of TEMPO-oxidized native cellulosess

When a commercial softwood bleached kraft pulp (papemaking grade), containing ≈90% cellulose and ≈10% hemicelluloses, is oxidized by the TEMPO/NaBr/NaClO system in water at pH 10, TEMPO-oxidized cellulosess (TOCs) are obtained as water-insoluble products in the yields of ≈90%. The fibrous morphology, crystal structure of cellulose I, crystallinity, and crystal size of the original woodcellulose are maintained during the oxidation. Neutral sugar composition analysis have shown that mannose and xylose originating from hemicellulosess present in the woodcellulose are mostly removed from TOCs during the oxidation and washing processes. Carboxylate content of TOCs increases from 0.01 mmol/g up to ≈1.7 mmol/g with increasing the amount of NaClO added as the primary oxidant; a significant number of sodium C6-carboxylate groups are formed in TOCs (Fig. 6) [52–56]. Small amounts of aldehyde groups are present as intermediate structures in TOCs (Fig. 3).

When TOCs are dissolved in 0.5 M copper ethylenediamine [Cu(EDA)2(OH)2] (EDA: ethylenediamine) solution to determine their viscosity average DPs, TOCs have DPs lower than 300, which corresponds to the levelling-off DPs observed for plant cellulosess by dilute acid hydrolysis [57–59]. However, after the TOCs are post-oxidized with NaClO2 in water at pH 4–5, the TOCs have higher DPs >500. This is because small amounts of C6-aldehydes are formed and remain in the disordered regions periodically present along the cellulose microfibril direction in TOCs. These C6-aldehydes cause depolymerization of TOCs through β-alkoxy elimination in alkaline copper ethylenediamine solution during the DP measurement [60]. However, as shown in Fig. 6, even after post oxidation with NaClO2, significant depolymerization is unavoidable during the TEMPO/NaBr/NaClO oxidation in water at pH 10 [60].

When TOCs are prepared from softwood and hardwood bleached kraft pulps, TOCs have the maximum sodium carboxylate contents of ≈1.7 mmol/g (Fig. 6). The maximum sodium carboxylate contents of TOCs depend on the original native cellulosess used [38,61]. Fig. 7 shows the relationship between the maximum sodium C6-carboxylate content in TOCs and crystal width of cellulose I for various native cellulosess used as starting materials [61].

Moreover, glucose/glucuronic acid alternating co-polysaccharides can be prepared from TOCs by surface peeling with aqueous NaOH (Fig. 8) [62].

These results show that almost all C6–OH groups present on crystalline cellulose microfibrils in native cellulosess are converted to sodium C6-carboxylate groups by TEMPO/NaBr/NaClO oxidation under suitable conditions. The high crystallinities and original crystalline microfibril structures of native cellulosess cause a highly position-selective oxidation of C6–OH groups to sodium C6-carboxylate groups without oxidation of cellulose molecules inside the crystalline cellulose microfibrils (Fig. 9) [38,61–63]. Consequently, sodium C6-carboxylate groups are densely, regularly, and position-selectively formed on native cellulose microfibril surfaces by TEMPO/NaBr/NaClO oxidation, and abundantly present in TOCs. Other hypotheses concerning TEMPO-oxidized cellulose microfibril structures have been also proposed based on small-angle X-ray diffraction data [64–66].

Xylan-removed hardwood cellulose, bacterial cellulose, endo-type cellulase-pretreated nanocellulose films, lyocell fabrics, hemp, and other cellulosic materials have been oxidized by the TEMPO/NaBr/NaClO system in water at pH 10. Yields, carboxylate contents, crystal structures, and thermal properties of the obtained water-insoluble oxidized products have been studied in terms of reaction efficiency, depending on the starting native cellulosess [67–75].

4.2. Kinetics of TEMPO-mediated oxidation of native cellulosess

The conversion mechanism of the C6–OH groups exposed on crystalline cellulose microfibril surfaces of native cellulosess to sodium C6-carboxylate groups by TEMPO/NaBr/NaClO oxidation in water at pH 10 are shown in Figs. 3 and 4, and the corresponding equation is shown in Fig. 10 [48]. The kinetics of oxidation of regenerated cellulose and lignin-containing mechanical pulp have been studied from carboxylate contents of the oxidized cellulosess [75,76]. In the case of TEMPO/NaBr/NaClO oxidation of native cellulosess, the kinetics can be studied indirectly by monitoring changes in NaClO concentration in the reaction media [70,77] or those of 0.5 M NaOH consumption to oxidation time [78]. The NaClO concentration in the reaction media can be determined by iodometric titration/UV–vis spectroscopy [77].

The effect of NaBr addition in TEMPO/NaClO oxidation of wood cellulose (1 g) in water at pH 10 on the formation rates of sodium

Fig. 6. Relationships between the amount of NaClO added and either carboxylate and aldehyde contents or DP, values (before and after post oxidation with NaClO2) of TEMPO-oxidized celluloses prepared from softwood bleached kraft pulp by TEMPO/NaBr/NaClO oxidation in water at pH 10 [38,60,108].

Fig. 7. Relationships between the (2 0 0) crystal size of cellulose I and maximum carboxylate content of TEMPO-oxidized celluloses prepared from various native cellulosess. The dashed line shows relationship between crystal size and content of C6–OH groups present on surfaces of cellulose I crystallites. Crystal sizes were determined from X-ray diffraction patterns [61]. Copyright 2010. Reproduced with permission from the American Chemical Society.
Fig. 8. Schematic model of glucose/glucuronic acid alternating co-polysaccharide prepared from surface peeling of TEMPO-oxidized native cellulose with aqueous NaOH (A). \(^{13}\)C NMR spectrum of the obtained product (measured in D\(_2\)O) is also shown (B) \([62]\).

Fig. 9. Position-selective formation of sodium C6-carboxylate groups on crystalline cellulose microfibril surfaces by TEMPO-mediated oxidation of native cellulose \([38,61,62]\). Copyright 2010. Reproduced with permission from the American Chemical Society.
C6-carboxylate groups in oxidized cellulosics was investigated by monitoring the amount of 0.5 M NaOH consumed in TEMPO/NaBr/NaClO and TEMPO/NaClO oxidations of wood cellulose (1 g) in water at pH 10 [78]. The presence of NaBr as a co-catalyst remarkably improves the oxidation rate.

![Image](https://example.com/image.png)

Fig. 10. Seven reaction formulae participating in catalytic oxidation of primary hydroxyl groups of polysaccharides to sodium C6-carboxylate groups by TEMPO/NaBr/NaClO system in water at pH 10 [48]. TEMPO and NaBr behave as catalysts; these two compounds are therefore not included in the equation below dotted line. Copyright 2003. Reproduced with permission from Elsevier Ltd.

6. Preparation of TEMPO-oxidized cellulose nanofibers and nanocrystals

5.1. TEMPO-oxidized cellulose nanofibrils (TOCNs)

When TOCs prepared from wood cellulosics, cotton, cotton linters, algal, and tunicate cellulosics have sufficient amounts of sodium C6-carboxylate groups, highly viscous transparent gels are obtained by gentle mechanical disintegration of TOC/water slurries [38,60,80–84]. An aqueous slurry of 0.1% (w/v) oxidized cellulose with a sodium carboxylate content of 1.5 mmol/g, prepared from hardwood cellulose by the TEMPO/NaBr/NaClO system in water at pH 10, has been stirred with a magnetic stirring bar at 500 rpm and room temperature (Fig. 12A). The originally fibrous wood TOC subsides at the bottom in the mixture after stirring. The TOC gradually swells in water by stirring, and a transparent dispersion with a 97% cellulose content in the supernatant fraction is obtained after stirring for 10 days [81]. The weight ratio of cellulose present in the supernatant fraction in Fig. 12A has been determined by centrifugation at 12,000g for 30 min to remove fibers or agglomerates present in the mixture.

The sodium carboxylate content of TOCs influences the transparency of the dispersions after mechanical disintegration in water. Fig. 12B shows photographs of a 0.1% (w/v) slurry of the original hardwood cellulose and 0.1% dispersions of hardwood TOCs with various carboxylate contents, after magnetic stirring in water for 10 days. The TOC with a carboxylate content of 1.0 mmol/g is homogeneously dispersed in water, but its dispersion is not transparent. On the other hand, a highly transparent gel can be obtained from the TOC with a carboxylate content of 1.5 mmol/g by disintegration in water under the same conditions.

When an ultrasonic homogenizer is used at the laboratory scale (in place of magnetic stirring in Fig. 12) for mechanical disintegration of the TOC with a carboxylate content of 1.5 mmol/g, transparent highly viscous gels are obtained within 8 min [60]. Disintegration of the TOC/water slurry using a laboratory-scale high-pressure homogenizer (such as Star Burst Labo HJP-2500S, SUGINO, Japan) efficiently gives transparent gels within 4 cycles.

Transmission electron microscopy (TEM) images of the transparent wood TOC dispersions shown in Fig. 12, after dilution with water and air-drying on TEM grids, show that the dispersions consist of mostly individual cellulose fibrils with uniform lateral size of ≈3 nm and lengths >1 μm (the left low TEM image in Fig. 13) [81]. Vascular or terrestrial plant cellulosics have crystalline microfibrils approximately 3 × 3 nm² cross-section in cell walls during biosynthesis [83,84]. Each cellulose microfibril consists of 30–40 fully extended cellulose chains. The TEM observation shows that the fibrous wood TOCs with 20–40 μm widths and 1–3 mm lengths are converted to individualized TOCNs with ≈3-nm widths and lengths >500 nm by gentle mechanical disintegration in water, when the sodium carboxylate contents of wood TOCs are ≈1 mmol/g or higher (Fig. 13).

As shown in Fig. 9, the sodium C6-carboxylate groups are position-selectively, densely, and regularly formed on crystalline cellulose microfibril surfaces in wood cellulose by TEMPO/NaBr/NaClO oxidation in water at pH 10. These surface anionic groups on cellulose microfibrils cause the complete individualization of cellulose microfibrils formed through osmotic effects and electrostatic repulsions efficiently working among surface anionic TOCN elements in water. High degrees of nanofibrillation for aqueous TOCN dispersions are confirmed from their high light
transmittances without any light scattering (Fig. 14A) and birefringence behaviour by observation between cross-polarizers (Fig. 14B) \cite{38,80,81,85}.

Various plant holocelluloses are prepared from Japanese cedar (softwood), eucalyptus and birch (hardwood), ginkgo (gymnosperm), and rice straw and kenaf (grass) by repeated delignification with NaClO$_2$ in water at pH 4–5 and \approx70 °C. These holocelluloses are oxidized to TOCs with carboxylate contents of 1.3–1.7 mmol/g by TEMPO/NaBr/NaClO oxidation in water at pH 10. These TOCs are then converted to TOCNs with homogeneous \approx3-nm widths and high aspect (length/width) ratios >150 by gentle mechanical disintegration in water (Fig. 15 and Table 1) \cite{86}.

Softwood and hardwood celluloses \cite{87–90}, lignin-containing softwood thermomechanical pulp \cite{91}, and hemp bast, corn husk, cotton stalk, palm tree, and other plant celluloses \cite{92–98} have been oxidized to TOCs by the TEMPO/NaBr/NaClO system under various conditions. TOCNs prepared from the TOCs with sufficient amounts of carboxylate contents by gentle mechanical disintegration in water have been characterized. TOCNs with large widths of 5–15 nm are obtained from cotton, bacterial, tunicate, and algal celluloses by the oxidation and subsequent mechanical disintegration in water \cite{80,99}.

TOCs prepared from softwood bleached kraft pulp (papemaking grade) gives the highest efficiency to prepare TOCNs, when TOCs are prepared by the TEMPO/NaBr/NaClO oxidation and subsequent mechanical disintegration in water under the same conditions.

Aqueous 0.1% (w/v) TOCN dispersions prepared from softwood bleached kraft pulp have the highest transmittance ($>90\%$) to visible light with wavelengths ranging 400–800 nm and the highest nanofibrillation yield ($>90\%$), which is determined from dry weight of unfibrillated or partly fibrillated fraction present in the TOCN/water dispersion separated by centrifugation. Glucosaminic molecules, i.e., predominant hemicelluloses in softwood cellulose, have C6–OH groups; therefore, 10–15% hemicelluloses in softwood cellulose are preferentially degraded to water-soluble and low-molar-mass compounds during TEMPO-mediated oxidation, resulting in the formation of almost pure water-insoluble TOCs, consisting of only glucosyl and glucuronosyl units. Because hardwood celluloses and hardwood holocelluloses contain hydrophobic xylan as a predominant hemicellulose, a part of xylan remains in TOCs, resulting lower light transmittances of TOCN/water dispersions and lower nanofibrillation yields \cite{88,100}.

5.2. TEMPO-oxidized cellulose nanocrystals (TO-CNCs)

When wood TOCs with carboxylate contents of 1.2–1.7 mmol/g are sonicated in water for an extended time such as totally 60–120 min with sufficient intervals to maintain the dispersion temperatures at 20–25 °C, needle-like TO-CNCs are obtained in the yields of \approx94% based on the starting wood cellulose weight (Fig. 16). These TO-CNCs have average lengths of 150–200 nm, homogeneous widths of \approx3 nm, and the same sodium carboxylate

Fig. 12. Changes in the dispersion state of 0.1% (w/v) TEMPO-oxidized cellulose (TOC) in water with increased stirring time (A) and dispersion states of TOCs with different carboxylate contents, after stirring in water for 10 days (B) \cite{81}. Copyright 2007. Reproduction with permission from the American Chemical Society.
Fig. 13. Preparation of TEMPO-oxidized cellulose nanofibrils (TOCNs) dispersed in water from fibrous TEMPO-oxidized wood celluloses by mechanical disintegration [38,81].

Table 1
Average widths (nm) of TEMPO-oxidized cellulose nanofibrils prepared from various plant holocelluloses, determined from the AFM height images in Fig. 15 [86].

Sample	Ginkgo	Japanese cedar	Eucalyptus	Birch	Rice straw	Kenaf
Number-average width	3.11 ± 0.38	3.10 ± 0.39	3.12 ± 0.36	3.11 ± 0.42	3.08 ± 0.32	3.13 ± 0.30
Width-average width	3.15	3.14	3.16	3.16	3.11	3.16

Contents of 1.2–1.7 mmol/g on the surfaces as those of the original TOCs [101]. Conventional CNCs are prepared from wood, cotton, tunicate, and algal celluloses with ≈64% H2SO4 at 70 °C, followed by washing with water using centrifugation and dialysis [102]. In the case of conventional wood CNCs with sulfate ester contents of ≈0.3 mmol/g, the yields decrease to ≈40% by acid hydrolysis. These CNCs have spindle-like morphologies with widths of 10–20 nm [103]. Wood TO-CNCs are different from the conventional wood CNCs in terms of yields, sizes, surface charges, and morphologies. Both TOCNs and TO-CNCs are, therefore, prepared from TOCs by controlling sonication time in water.

6. **Characterization of TEMPO-oxidized celluloses (TOCs) and TEMPO-oxidized cellulose nanofibrils (TOCNs)**

Structural characterizations of TOCs and TOCNs are significant for their application as new plant-based renewable nanofibers to high-tech material fields. Establishment of suitable analytical protocols are, therefore, required both in academia and industry. Carboxy and aldehyde contents of TOCs and TOCNs are determined by conductivity titration before and after post-oxidation with NaClO2 [53,54,60,104]. The C6-carboxy groups in TOCs and TOCNs can be position-selectively and completely converted to methyl ester groups with trimethylsilyldiazomethane. These carboxy groups-methylated TOCs and TOCNs as well as the original celluloses and holocelluloses are completely soluble in 8% (w/w) lithium chloride/N,N-dimethylacetamide (LiCl/DMAc) [105–107]. The DPs and DP distributions of TOCs and TOCNs can be then determined using a size-exclusion chromatography system attached with a multi-angle laser-light scattering (SEC-MALLS) detector. The carboxy groups-methylated TOC and TOCN solutions as well as cellulose and hemicellulose-containing holocellulose solutions are diluted to 1% (w/v) LiCl/DMAc and subjected to the SEC-MALLS analysis.
oxidation and removed from the water-insoluble TOCs. This is because plant hemicelluloses such as glucomannan and xylan have low DPs and disordered structures, different from cellulose, and are susceptible to degradation during oxidation.

When the fibrous TOC with a carboxylate content of 1.7 mmol/g (prepared from softwood cellulose) is sonicated in water, the average molar mass decreased with increasing sonication time in water (Fig. 17B) [108]. Significant depolymerization is, therefore, inevitable during the TEMPO/NaBr/NaClO oxidation and subsequent sonication in water.

Small amounts of C6-aldehyde groups and C2/C3 ketones are formed as side reactions in TOCs during TEMPO/NaBr/NaClO oxidation, and are present in TOCs and TOCNs. After post-reduction of TOCs with NaBH₄ in water at pH 8–10, intrinsic viscosities [η] of TOCs obtained using 0.5 M copper ethylenediamine solution as the solvent are convertible to viscosity-average molar-masses \((M_v) \) according to the Mark–Houwink–Sakurada equation of [η] \((\text{mL/g}) = 0.094 \times \text{M}_v^{0.67} \) which is obtained from SEC-MALLS data for carboxy groups-methylated TOCs and TOCNs [108].

Crystallinities and crystal sizes of TOCs and TOCNs are determined from their X-ray diffraction patterns and solid-state \(^{13}\text{C}\) NMR spectra. TEM and AFM are used to determine average widths of TOCNs. The length and length distribution of TOCNs are measured from TEM images, although only a limited number of TOCN elements (<300) is measurable in this case. Dilute TOC/water dispersions consist of completely individualized TOCN elements without agglomeration. Therefore, rheological properties of TOC/water dispersions have been studied to characterize TOCNs [8,109–111]. Average lengths of TOCNs prepared from wood, cotton linters, and algal cellulosers under various conditions can be determined from shear viscosity behaviour of TOCN/water dispersions [110,111]. When intrinsic viscosities [η] are obtained for various TOCNs and acid-hydrolyzed TOCNs, their average lengths are calculated using the following empirical formula, 1.6 \(\times [\eta] = 0.15 \times p^{1.9} \), where \(p \) is the aspect ratio of TOCNs and acid-
hydrolyzed TOCNs (Fig. 18) [111]. The p values are obtained as average lengths of hundreds of millions of TOCN elements present in dispersions; therefore, the length information obtained by the viscosity method is more reliable. However, no suitable method has been developed to date for determination of length distributions. The viscosity method cannot be applied to nanocelluloses with heterogeneous 3–100 nm widths that form network structures without dispersion at the individual nano-element level in water.

Average tensile strengths of TOCNs have been determined for aqueous TOCN dispersions by sonication or cavitation treatment and subsequent AFM analysis to measure limiting fracture lengths (or levelling-off and minimum lengths after sonication) and widths of TOCNs [112]. The validity of this cavitation method has been shown for carbon nanotubes, protein fibrils, and metal nanowires [113,114]. Wood and tunicate TOCNs have average tensile strengths of 1–6 GPa, when determined by the cavitation/AFM method [112]. These values are comparable with those of multi-walled carbon nanotubes and polyamide polymers such as Kevlar® and much higher than that of steel although the density of TOCNs (≈1.6 g/cm³) is ≈1/5 that of steel. Tensile elastic moduli of TOCNs have been measured only for those prepared from tunicate cellulose with large microfibril widths from stress–strain curves obtained using a cantilever in AFM, and are ≈140 GPa [115]. TOCNs are, therefore, new plant-based renewable nanofibers with high mechanical strengths.

Agglomeration behaviour of aqueous TOCN dispersions in the presence of salts or cationic polymers, nanofibrillation of TOCs at high solid concentrations in water, swelling behaviour of TOCN network structures in the presence of salts, simulations of TOCN structures in water, rheological behaviour of aqueous TOCN dispersions, and others have been studied to characterize TOCNs in water [116–122].

7. Effect of TEMPO-analogous compounds on oxidation efficiency of native cellulose

The effect of TEMPO derivatives and analogous compounds on oxidation efficiency of C₆-OH groups of wood cellulose has been studied using the NaBr/NaClO system in water at pH 10 under the same conditions as those of TEMPO/NaBr/NaClO oxidation [123]. Among six- and five-membered N-oxyl radicals tested, 4-acetamido-TEMPO (4-AcNH-TEMPO) and 4-methoxy-TEMPO give TOCs with sufficiently high sodium C₆-carboxylate contents (>1.1 mmol/g) after reaction for 4 h, and afford TOCN/water dispersions with high nanofibrillation yields when disintegrated in water under the same conditions. These two TEMPO derivatives can, therefore, be used as catalysts in place of TEMPO in oxidation of native celluloses with NaBr and NaClO in water at pH 10. The relationship between the sodium carboxylate content of TOCs prepared with various N-oxyl radicals and nanofibrillation yield is shown in Fig. 19 [123]. In contrast, 4-hydroxy-TEMPO and 4-oxo-TEMPO give the lowest efficiency in oxidation; the sodium C₆-carboxylate contents of TOCs prepared with these TEMPO derivatives are lower than 0.3 mmol/g even after oxidation under the same conditions. The redox potentials of the TEMPO-analogous compounds in Fig. 19 have no correlation to the corresponding nanofibrillation yields.
of oxidized celluloses. Degradation behaviour or stability of the TEMPO-analogue compounds in water containing NaBr and NaClO primarily influences the resulting nanofibrillation yield of oxidized celluloses.

When wood cellulose is oxidized with the same amount of 2-azaadamantane N-oxyl (AZADO) or 1-methyl-AZADO as that of TEMPO in NaBr/NaClO system in water at pH 10, the oxidation time required for preparing oxidized celluloses with sodium C6-carboxylate contents of 1.2–1.3 mmol/g can be reduced from 80 to 10–15 min. The oxidation efficiency is, therefore, significantly improved using AZADO or 1-methyl-AZADO in place of TEMPO [124,125]. Moreover, the molar amounts of AZADO or 1-methyl-AZADO added for preparation of oxidized celluloses with sodium C6-carboxylate contents of 1.2–1.3 mmol/g can be reduced to 1/32 or 1/16 that of TEMPO, respectively, when the oxidation times are extended to 80 min as in the case of TEMPO/NaBr/NaClO oxidation. Almost no C6-aldehyde groups are formed in the oxidized celluloses.

The DPₜ values of the AZADO- and 1-methyl-AZADO-oxidized celluloses, irrespective of their sodium C6-carboxylate contents, decrease from 1090 to ≈200, which is determined using 0.5 M copper ethylenediamine solution as the solvent. However, when the AZADO- or 1-methyl-ASADO-oxidized celluloses are post-reduced with NaBH₄, their DPₜ values increase to 600–800. These results indicate that C2/C3 ketones are formed to some extent as side reactions in the oxidized celluloses.

The original crystallinity and crystal width of wood cellulose are unchanged after oxidation. The sodium C6-carboxylate groups and C2/C3 ketones formed as primary and side reactions, respectively, are present on crystalline cellulose microfibril surfaces. Highly transparent AZADO-oxidized cellulose nanofibril/water dispersions consisting of individually dispersed nanofibrils with a
nanofibrillation yield of 89% are obtained from the AZADO-oxidized cellulose with a sodium carboxylate content of 1.2 mmol/g by mechanical disintegration in water. The AZADO and 1-methyl-AZADO oxidations of cellulose microfibrils with NaBr/NaClO in water at pH 10 are schematically illustrated in Fig. 20 [125].

When a regenerated cellulose fiber (Bemliese®) is oxidized by AZADO/NaBr/NaClO in water at pH 10 under suitable conditions, water-soluble sodium 2,3,6-tricarboxylic cellulose (NaTCC) or sodium mesotartarate/monohydrated glyoxilate alternating copolyacetal is obtained in a yield of 82% by one-step oxidation (Fig. 21) [126]. Almost all C6–OH groups are converted to sodium C6-carboxylate groups and also almost all the C–C bonds of C2/C3 are cleaved to form sodium C2- and C3-carboxylate groups by AZADO/NaBr/NaClO oxidation. The weight- and number-average molar-masses of the obtained NaTCC are 10,700 and 7000, respectively; the original DPv (680) of regenerated cellulose decreases to weight- and number-average DPs (DPw and DPn, respectively) of 52 and 34, respectively, for the NaTCC [126]. When AZADO-mediated oxidation is applied to wood cellulose, water-soluble oxidized products are obtained. However, they have more heterogeneous chemical structures indicating that complete oxidation of the C2, C3, and C6 hydroxy groups to carboxy groups is difficult to achieve for wood cellulose [126].

8. TEMPO/NaClO/NaClO2 oxidation of cellulose and other polysaccharides

The TEMPO/NaBr/NaClO oxidation in water at room temperature and pH 10 under suitable conditions efficiently converts native celluloses to TOCs with high sodium carboxylate contents within 90 min. However, significant depolymerization is inevitable on cellulose and oxidized cellulose molecules in TOCs during the oxidation [60,108]. One of the alternative oxidation systems is TEMPO/NaClO/NaClO2 in water at high temperatures under weakly acidic or neutral conditions for long times >1 d (Fig. 22). Here, TEMPO and NaClO behave as catalysts and NaClO2 behaves as a primary oxidant to be consumed [127–130]. In this oxidation system, no C6-aldehyde groups are formed in TOCs, and depolymerization
of oxidized celluloses, caused by β-alkoxy elimination preferentially occurring under alkaline conditions, is avoidable.

When wood cellulose is oxidized by TEMPO/NaClO/NaClO₂ or 4-AcNH-TEMPO/NaClO/NaClO₂ system in a buffer at pH 4.8 or 6.8 and 40 °C for 2 d under suitable conditions, the sodium C₆-carboxylate content in the TOCs increases up to ~1.3 mmol/g. The DPₜ values of the obtained TOCs slightly decrease from 1270 for wood cellulose to ~1100 during the oxidation (Fig. 23) [130]. Depolymerization is, therefore, mostly avoidable for TOCs prepared by TEMPO/NaClO/NaClO₂ oxidation in comparison with TEMPO/NaBr/NaClO oxidation in water at pH 10. The 4-AcNH-TEMPO is better than TEMPO in terms of high amounts of sodium C₆-carboxylate groups introduced and high DPₜ values of the TOCs.

The original crystallinity and crystal width of cellulose I for wood cellulose are maintained during the oxidation, and transparent highly viscous gels are obtained by mechanical disintegration of the wood cellulose-derived TOCs, with sodium C₆-carboxylate contents >0.8 mmol/g, in water [128,130]. Softwood cellulose gives aqueous TOCN gels with higher light transmissions than those from hardwood cellulose when mechanically disintegrated in water under the same conditions. The gels consist of mostly individualized TOCN elements with homogeneous ~3-nm widths similar to those of TOCNs prepared by the TEMPO/NaBr/NaClO system in water at pH 10. However, the obtained TOCNs have higher average lengths >1 μm (Fig. 24) than those of TOCNs prepared by TEMPO/NaBr/NaClO oxidation [128,130].

The TEMPO/NaClO/NaClO₂ oxidation of water-insoluble curdlan with suitable amounts of NaClO₂ in a buffer at pH 4.8 or 6.8 gives the corresponding water-soluble sodium polyuronates with high DPₜs consisting of glucuronosyl repeating units are obtained in high yields [131,132]. However, when commercial regenerated cellulose fibers, beads for chromatographic use, and mercerized celluloses prepared from native cellulose by swelling with 20% aqueous NaOH under various conditions are used as starting materials for TEMPO/NaClO/NaClO₂ oxidation in water at pH 4.8 and 60 °C, weight recovery ratios as water-insoluble fractions and their sodium C₆-carboxylate contents are in the range 67~80% and 1.8~2.2 mmol/g, respectively [133~136]. The sodium C₆-carboxylate content of water-soluble pure sodium cellulouronates consisting of glucuronosyl repeating units is 5.05 mmol/g; therefore, the sodium carboxylate contents of water-insoluble fractions of oxidized regenerated cellulose fibers and beads, and mercerized celluloses are lower than that of sodium cellulouronates. The water-insoluble fractions of the oxidized products are converted to almost transparent dispersions by mechanical disintegration in water, consisting of mostly individualized TEMPO-oxidized CNCs.

![Fig. 23. Relationship between reaction time of wood cellulose by 4-acetamido-TEMPO/NaClO/NaClO₂ oxidation in buffer at pH 4.8 and 40 °C, and carboxylate and aldehyde contents, and viscosity average-degrees of polymerization (DPₜ) of TEMPO-oxidized wood celluloses [130]. Copyright 2012. Reproduction with permission from Elsevier Ltd.](image)

![Fig. 24. Transmission electron microscopy (TEM) images of TEMPO-oxidized cellulose nanofibrils (TOCNs) with carboxylate content of 0.8 mmol/g, prepared from hardwood cellulose by TEMPO/NaClO/NaClO₂ oxidation in buffer at pH 6.8 and 60 °C for 52 h. Observed by diffraction contrast method [128].](image)

9. TEMPO electro-mediated oxidation of cellulose

TEMPO electro-mediated oxidation is another alternative to TEMPO/NaBr/NaClO oxidation for cellulose in water under neutral conditions, in which no chlorine-containing reagents are needed for oxidation (Fig. 25) [135]. When the electro-mediated oxidation is applied to wood cellulose with TEMPO or 4-AcNH-TEMPO in a buffer at pH 6.8 and room temperatures for 2 d, the solid recovery ratio of the water-insoluble oxidized cellulose is more than 90%, and the sodium C₆-carboxylate content increases to ~0.9 mmol/g. A significant amount of C₆-aldehyde groups (~0.4 mmol/g) is formed simultaneously in the oxidized cellulose. The DPₜ value of wood cellulose decreases from 1270 to 810 during the oxidation (Fig. 27) [147]. The original cellulose I crystallinity and crystal width of wood cellulose are maintained after the oxidation, showing that all the sodium C₆-carboxylate and C₆-aldehyde groups are position-selectively formed on crystalline cellulose microfibril surfaces. The oxidized celluloses with carboxylate contents >0.9 mmol/g are convertible to TOCNs dispersed at the individual nanofibril level by disintegration in water, and nanofibrillation yields are more than 80%.

Sodium C₆-carboxylate groups are predominantly formed in the oxidized celluloses prepared by the TEMPO electro-mediated oxidation without using NaClO. This result shows that the oxidized TEMPO or TEMPO⁺ molecules can oxidize not only C₆–OH groups to C₆-aldehydes but also C₆-aldehyde groups, formed as interme-
Fig. 25. Transmission electron microscopy (TEM) images of cellulose II nanocrystals (CNCs) prepared from mercerized wood cellulose (A), mercerized cotton lint (B), regenerated cellulose fiber (C), and regenerated cellulose beads (D) by 4-acetamido-TEMPO/NaClO/NaClO₂ oxidation in buffer at pH 4.8 and 60 °C for 3 d and subsequent sonication in water [136]. Mercerization was performed by soaking in 5 M NaOH at room temperature for 1 d. Copyright 2012. Reproduction with permission from Springer Nature.

Fig. 26. TEMPO electro-mediated oxidation of cellulose in buffer at pH 6.8 [145]. No chlorine-containing primary oxidant is needed in this system. Copyright 2010. Reproduction with permission from the American Chemical Society.
dirates, to C6-carboxylic groups during TEMPO/NaBr/NaClO oxidation. Not only NaClO and/or NaBrO but also TEMPO\(^*\) molecules can, therefore, oxidize C6-carboxylic groups to C6-carboxylic groups, as shown in Fig. 3 in the 2nd chapter.

When water-insoluble curdlan, amylodextrin, and regenerated cellulose fiber are used in electro-mediated oxidation with 4-AcNH-TEMPO in a buffer at pH 6.8, more than 90% of the C6-OH groups of curdlan and amylodextrin are oxidized to sodium C6-carboxylate groups to form corresponding water-soluble sodium polyuronates [145]. Molar masses of the oxidized products prepared are much higher than those prepared from the same polysaccharides by the TEMPO/NaBr/NaClO system in water at pH 10. When a regenerate cellulose fiber (viscose rayon) is treated by TEMPO electro-mediated oxidation in a buffer at pH 6.8 and room temperature for 45 h, sodium C6-carboxylate and C6-aldehyde groups of 1.1 and 0.6 mmol/g, respectively, are formed in the oxidized cellulose fiber. The fine surface morphology and cellulose II crystal structure of the original viscose rayon are maintained, and nearly no weight losses during the oxidation are observed [145]. The TEMPO electro-mediated oxidation is, therefore, a useful chemical modification for regenerated cellulose fibers. Algal celluloses and cotton fabrics have been applied to TEMPO electro-mediated oxidation, and the oxidized products have been characterized [148–150].

10. Other N-oxyl radical-mediated oxidations

10.1. TEMPO/laccase/O\(_2\) oxidation

The TEMPO/laccase/O\(_2\) system in a buffer at pH 4.5 is advantageous, because no chlorine-containing oxidant is used [151]. The optimum conditions for wood cellulose to prepare TOCs with high sodium C6-carboxylate contents have been studied. However, laccase molecules are degraded by oxidized TEMPO or TEMPO\(^*\) molecules formed by laccase-mediated oxidation with O\(_2\), which competes with the oxidation of C6-OH groups in wood cellulose. Consequently, large amounts of laccase and TEMPO, and long reaction times are needed to introduce sodium C6-carboxylate groups of \(\approx 0.6\) mmol/g to wood cellulose. The TEMPO/laccase/O\(_2\) system undergoes a one-way reaction from TEMPO to reduced TEMPO through TEMPO\(^*\) without reconversion to TEMPO [152]. When the TEMPO/laccase/O\(_2\) oxidation is repeated to oxidize and then isolated/purified TOC, the amount of sodium C6-carboxylate groups increases to \(\approx 1.1\) mmol/g, which is sufficient for conversion of the TOC to TOCNs by sonication in water. However, the higher the carboxylate content of the TOCs, the lower their DP\(_v\) values.

Because the TEMPO/laccase/O\(_2\) oxidation in water under neutral conditions efficiently introduces C6-aldehyde groups together with C6-carboxylate groups to cellulose, this oxidation has been used to improve wet strengths of cellulose sheets by formation of interfiber hemiacetal linkages [153–156].

10.2. N-Hydroxyphthalimide/co-catalyst/NaClO oxidation

Coseri et al. have reported other position-selective and nitroxy radical-mediated oxidations of regenerated cellulose fiber (viscose rayon) with catalytic amounts of N-hydroxyphthalimide, a co-catalyst, and NaClO in water or a water/acetonitrile mixture at pH 10 or 10.5 and room temperature [157–160]. The oxidation proceeds via a phthalimide N-oxyl radical intermediate (Fig. 28). The following various co-catalysts have been studied in the N-hydroxyphthalimide/NaClO oxidation in terms of the amounts of sodium C6-carboxylate groups introduced to oxidized fibers, crystallinities, and DP\(_s\): anthraquinone, Pb(OAc)\(_4\), CuCl\(_2\), UV irradiation, Ce(\(\text{NH}_2\))\(_2\)(NO\(_3\))\(_4\), and NaBr. Sodium C6-carboxylate groups up to \(\approx 0.3\) mmol/g are introduced into the regenerated cellulose fibers, which maintain the original cellulose II crystallinities. However, significant depolymerization is unavoidable during the oxidation; the original DP 235 of the viscose rayon decreases to 40–90 after oxidation.

10.3. TEMPO/Na\(_2\)SO\(_4\)/NaClO oxidation

A cotton fabric is oxidized using TEMPO/NaBr/NaClO and TEMPO/Na\(_2\)SO\(_4\)/NaClO systems in water at pH 10 under various conditions [78]. Sodium C6-carboxylate contents increase from 0.06 to 0.30–0.44 mmol/g. DP\(_v\) values decrease from 2200 to 1000–1220 [161]. The degrees of whiteness reduction of TEMPO-oxidized cotton fabrics after heating are clearly decreased by post-NaBH\(_4\) treatment (but not by post-NaClO\(_2\) oxidation); small amounts of C2/C3 ketone groups are likely to be present in the oxidized cotton fabrics, resulting in the whiteness reduction after heating. The TEMPO/Na\(_2\)SO\(_4\)/NaClO-oxidized cotton fabrics with carboxylate contents of 0.3 mmol/g have higher DP\(_v\) values and lower degrees of whiteness reduction after heating than those with similar carboxylate contents prepared by the TEMPO/NaBr/NaClO oxidation [161]. The former oxidation system has, therefore, some advantages in terms of suitable functionalization of cotton fabrics as clothing materials without using expensive NaBr. Scanning electron microscopy combined with energy-dispersive X-ray analysis.

Fig. 27. Relationship between reaction time of wood cellulose by TEMPO electro-mediated oxidation in buffer at pH 6.8 and carboxylate or aldehyde contents and viscosity-average degree of polymerization (DP\(_v\)) of oxidized celluloses [147]. Copyright 2011. Reproduction with permission from Springer Nature.

Fig. 28. N-Hydroxyphthalimide (NHPI)/co-catalyst/NaClO oxidation of cellulose in water at pH 10 [157].
of the oxidized cotton fibers shows that the TEMPO/Na2SO4/NaClO oxidation proceeds homogeneously to the fiber cross section [161]. The TEMPO-oxidized cotton fabrics with sodium C6-carboxylate contents of 0.31–0.32 mmol/g have sufficient burst strength and stiffness values for clothing materials, and deodorizing efficiencies to ammonia and acetic acid gases even after 100 repetitions of laundry treatment. The TEMPO-oxidized cotton fabrics have, therefore, potential application as new functional clothing materials. TEMPO-oxidation behaviour can monitored in terms of time-dependent changes in TEMPO radical concentration of reaction solutions using electron spin resonance (ESR; Fig. 29) [162,163].

10.4. Sonication-assisted TEMPO-mediated oxidation

Sonication-assisted TEMPO-mediated oxidation has been applied to cotton linters, hardwood, bagasse, and palm empty fruit cellulosas to efficiently introduce C6-carboxy groups, in which TEMPO or 4-AcNH-TEMPO is used [164–169]. The sonication of cellulosas during TEMPO-mediated oxidation enhances nanofibrillation of oxidized cellulosas and also formation of CNCs in some cases. TOCNs and TEMPO-oxidized CNCs are, therefore, formed in part and dispersed at the individual nano-element level together with water-insoluble oxidized products in the oxidation mixtures. Isolation and purification processes of these nano-dispersed TOCNs and CNCs from oxidation mixtures are required, separated from TEMPO and other various water-soluble reagents present in the mixtures.

10.5. Other TEMPO-mediated oxidations

Sodium carboxylate groups of 0.9 mmol/g are introduced to xylan-removed hardwood cellulose by the TEMPO/NaClO oxidation in water at pH 9, and the oxidized cellulosas are convertible to TOCNs by mechanical disintegration in water [170]. TEMPO/ClO2 oxidation under neutral conditions [171], 4-AcNH-TEMPO/peracid system [172], and TEMPO/NaBr/NaIO4 system under acidic conditions [173] have been investigated in terms of oxidation efficiency, molar mass, carboxyl group content, etc. These alternative TEMPO-mediated oxidations of cellulose have some advantageous points. However, the TEMPO/NaBr/NaClO system in water at pH 10 and TEMPO/NaClO/NaClO2 system in water under acidic–neutral conditions are advantageous to introduce C6-carboxy groups sufficient in amounts for conversion to TOCNs.

11. Side reactions and nanodispersibility of oven-dried TOCs in water

Never-dried and wet TOCs, that are prepared from wood cellulose by the TEMPO/NaBr/NaClO system in water at pH 10 and have sodium C6-carboxylate contents of 1.0–1.7 mmol/g, can be converted to TOCNs with homogeneous widths of ∼3 nm in high nanofibrillation yields by gentle mechanical disintegration in water. However, oven-dried TOCs have low nanodispersibilities even after harsh disintegration in water. When TOCs are reduced with NaBH4 under suitable conditions, almost all C6-aldehydes and C2/C3 ketones present in low amounts are converted to hydroxy groups. The NaBH4-reduced TOCs, even after oven-drying at 105 °C for 3 h, have sufficiently high nanodispersibilities in water in a similar manner to that of never-dried TOCs [174]. Interfibrillar hemiacetal linkages are formed during heating between hydroxy groups and low amounts of either C6-aldehydes or C2/C3 ketones present on crystalline microfibril surfaces of TOCs, resulting in the low nanodispersibilities in water.

The heat-induced discoloration of TOCs is also avoided using NaBH4-reduced TOCs. The C6-aldehydes and C2/C3 ketones present in oven-dried TOCs can be semi-quantitatively measured from the specific UV absorbance spectra at 260 and 290 nm, respectively, for the corresponding TOCN films heated at 105 °C for 3 h [174]. The UV method can, therefore, be used to determine whether TOC samples undergo NaClO2 post-oxidation or NaBH4 post-reduction. Complete position-selectivity cannot, therefore, be achieved for oxidation of C6 – OH groups of native cellulosas in the TEMPO/NaBr/NaClO oxidation (Fig. 30) [174].

The continuous reactions of TEMPO/NaBr/NaClO oxidation of wood cellulose and subsequent NaBH4-reduction in a one-pot system in water at pH 10 (without intermediate isolation or purification process) converts the C6-aldehyde and C2/C3 ketone groups to hydroxy groups. The TEMPO-oxidized and NaBH4-reduced TOCs can significantly improve nanodispersibilities in water, even after oven drying, and prevent heat-induced discoloration. The post-oxidation of TOCs with NaClO2 can improve the nanodispersibilities to some extent, although the C2/C3 ketones still remain in the NaClO2-treated TOCs [174].

12. Surface modifications of TOCs and TOCNs

TOCNs are different from other nanocellulosas reported previously in terms of completely individual nanofibers with homogeneous widths of ∼3 nm and the presence of abundant sodium C6-carboxylate groups on the surfaces. The sodium carboxylate groups in TOCs and TOCNs are ion-exchangeable to protonated, and various metal and alkylammonium carboxylate groups in water (Fig. 31) [175–191]. The fibrous TOC-COOH cannot be nanodispersed in water or other organic solvents even by harsh mechanical disintegration. TOCN-COOH nanodispersed in water and some organic solvents such as N,N-dimethylformamide (DMF) and N,N-dimethylacetamide (DMAc) can be prepared from TOCN-COOHNa once nanodispersed in water with multiple steps [178,179].

Biodegradability/biological stability and hydrophilic/hydrophobic properties of fibrous TOCs and TOCN films are controllable by controlling their counterions [183,184]. The cast/dried TOCN-COOHNa films have almost no strength in water because of their hydrophilic properties. When the counterions of C6-carboxylate groups in TOCN films are ion-exchanged to Ca2+, Mg2+, Al3+, and Fe3+ ions, the obtained TOCN-COOM films (M: metal ions) have sufficient wet-strengths, depending on the metal counterions introduced (Fig. 32A) [189]. The cast/dried TOCN-COOHNa films decrease in oxygen-barrier properties or increase in oxygen permeabilities at high relative humidity (RH) conditions.
Fig. 30. Schematic models of the effects of C6-aldehydes and C2/C3 ketones slightly present in TEMPO-oxidized celluloses on their nanofibrillation behaviour in water after oven-drying [174]. TEMPO-oxidized and then NaBH₄-reduced celluloses provide high TOCN yields after disintegration in water because neither C6-aldehydes nor C2/C3 ketones, which form inter-fibrillar hemiacetal linkages during drying, are present in the products. Copyright 2014. Reproduction with permission from Springer Nature.

Fig. 31. Counterion-exchanges of TOCs and TOCNs from sodium ion to protonated, metal, and alkylammonium ions [175–191].
because of hydrophilic nature of TOCN–COONa films. When the counterions of TOCN–COONa films are converted to Ca$^{2+}$ and Al$^{3+}$, the TOCN–COOM films have high oxygen-barrier properties even at high RH conditions [Fig. 32B] [189]. The TOCN–COOA and TOCN–COOCu films exhibit significant deodorant performance to H$_2$S and CH$_3$SH gases, which cause serious odor problems in our daily lives [190].

Surface hydrophobization of TOCNs is available by introduction of poly(ethylene)glycol (PEG) chains to almost all carboxylate groups on TOCN surfaces via ammonium salt-type structures, TOCN–COO$^-$/NH$_3$CH$_2$CH$_2$−(OCH$_2$CH$_2$)$_n$OCH$_3$ (TOCN–PEG) (Fig. 31) [186]. Stoichiometric counterion exchange from fibrous TOCN–COO$^-$/NR$_4$ to TOCN–COO$^-$/NR$_4$ is possible by neutralization of the protonated fibrous TOC (TOC–COOH) with quaternary alkylammonium hydroxide (R$_4$N$^+$ OH$^-$) in water. The obtained fibrous TOCN–COO$^-$/NR$_4$ is convertible to transparent and highly-viscous TOCN–COO$^-$/NR$_4$ dispersions by mechanical disintegration in water and some organic solvents [187, 188]. The cast/dried TOCN–COO$^-$/NR$_4$ films are transparent, flexible, and hydrophobic, depending of the alkyl chain lengths introduced [Fig. 33] [188]. These counterion exchanges in water are characteristic and advantageous surface modifications of TOCs and TOCNs.

13. Differences between TOCN and other nanocelluloses

Various nanocelluloses including cellulose nanofibers and nanocrystals are prepared from wood cellulose fibers with or without pretreatment followed by mechanical disintegration in water [38, 82, 102, 192, 193]. Representative morphologies of TOCNs, conventional CNCs, cellulose nanofibers prepared only by mechanical disintegration in water, and microfibrillated celluloses (MFCs) are shown in Fig. 34. Wood CNCs have spindle-like morphologies with heterogeneous widths of 3–15 nm [193]. Cellulose nanofibers prepared only by mechanical disintegration have heterogeneous widths of 10–50 nm with some branches, and intricate network structures [194]. MFCs contain not only nanofibers but also micron-sized fibers.

Characteristic points of wood TOCNs different from other wood nanocelluloses are as follows. TOCNs are completely individualized nanofibers with homogeneous widths of \approx3 nm and high aspect ratios. TOCNs can be prepared from TOCs with low energy consumption for disintegration in water. TOCNs have carboxylate groups densely, regularly, and position-selectively on their surfaces, and diverse cationic counterions with a variety of functions can be introduced to TOCN surfaces through ion-exchange. TOCNs are convertible to TO-CNCs with the same homogeneous widths and carboxylate contents as those of TOCNs through extended sonication in water.

14. Applications of TOCNs as new bio-based nanomaterials

14.1. Preparations and properties of TOCN bulk materials

Numerous fundamental and application studies on films, fibers, hydrogels, aerogels, foams, and nano-sized network structures prepared from TOCNs have been reported for preparing new bio-based and functional TOCN bulk materials (Fig. 35) [195–216]. Because TOCNs have sodium C6-carboxylate groups densely on crystalline cellulose microfibril surfaces, the TOCN elements form self-assemble and nematic-ordered structures in water and some organic solvents through electric repulsion working between TOCN elements [197]. The characteristic self-assembling structures of TOCNs lead to the formation of various TOCN bulk materials with different properties and functions. When TOCN/water dispersions are cast and dried on a plate, transparent and flexible TOCN films with high mechanical strength, high oxygen-barrier, and low coefficient thermal expansion properties are obtained [195]. These properties are accompanied by nano-layered and highly dense film structures formed from the nematic-ordered TOCN/water dispersions during drying [197, 216].

When sodium C6-carboxylate groups of TOCNs are protonated with dilute HCl in TOCN/water dispersions followed by thoroughly washing with water, self-standing TOCN–COOH hydrogels with high stiffness are obtained even at low TOCN
concentrations of ≈0.1% [197]. These TOCN-COOH hydrogels are convertible to transparent aerogels with high strength, bendable, and high thermal insulation properties by solvent exchange and subsequent critical point drying [197,199,208]. When TOCN-COONa/water/tert-butanol dispersions are freeze-dried, spider web-like network structures with nano-sized pores can be obtained, which are applicable to high performance air filters [201].

14.2. TOCN-containing composite materials

Light-weight and highly strong TOCN-containing composite materials are one of the most promising applications for TOCNs. This is because tensile strengths and Young’s moduli of single TOCN elements are ≈3 GPa and ≈140 GPa, respectively, [112,115] regardless of low densities of ≈1.6 g/cm³. TOCNs are, however, highly hydrophilic, owing to the abundant sodium C6-carboxylate-
groups present on the TOCN surfaces, it is generally difficult to prepare TOCN/polymer composite films, in which hydrophilic TOCN elements are individually dispersed without agglomeration in hydrophobic polymer matrices.

The preparation and characterization of TOCN/polymer or inorganic filler/TOCN composite films have been investigated using poly(vinyl alcohol) [217], poly(acrylamide) [218,219], carbon nanotubes [220], and nanoclay [221,222]. The TOCN-COOH/water dispersions and water-soluble polymers dissolved in water or H-NBR latex dispersed in water were mixed at various weight ratios followed by casting and drying to prepare TOCN/polymer composite films. Single-wall carbon nanotube and nanoclay dispersions in water were mixed with TOCN/water dispersions to prepare composite films at various filler/TOCN weight ratios. Some of them have unique mechanical, transparent, excellent oxygen barrier, thermal, and electric properties, owing to sufficiently nanodispersed TOCN elements or filler nanoparticles without agglomeration in polymer or TOCN matrices, which were supported from their TEM images [220–222].

When metal nanoparticle/TOCN and metal-organic framework/TOCN composites were prepared using the abundant C6-carboxylate groups present on TOCN surfaces as scaffolds, efficient, stable, and recyclable catalysts or selective gas-separation membranes were obtained [177,180,223–225].

Some organic solvents were used to prepare TOCN-containing hydrophobic polymer composite films, such as poly(styrene) [226], poly(lactic acid) (PLA) [186,227], and cellulose triacetate (CTA) [228]. The counterions of TOCN-COOH have to be converted to TOCN-COOH nanodispersible in DMF [178,226] or hydrophobic TOCN-PEG nanodispersible in DMAC, toluene, chloroform, and tetrahydrofuran [186,227,228]. Because poly(styrene) and PLA are soluble in DMF and chloroform, respectively, the TOCN-COOH/poly(styrene) and TOCN-PEG/PLA composite films were prepared using DMF and chloroform as the media, respectively, by mixing the two components at various weight ratios and successive casting/drying [186,227,228]. The TOCN-PEG/CTA composite films were prepared by mixing the TOCN-PEG/chloroform dispersion and CTA/dichloromethane-methanol (9:1 by vol.) solution at various ratios and subsequent casting/drying [228]. These composite films exhibited significant improvements in mechanical and thermal properties at low TOCN contents. These preparation methods of TOCN/polymer composite films using organic solvents were performed as model experiments to prepare ideal composite films consisting of individually nanodispersed TOCN elements in polymer matrices (Fig. 36).

However, it is difficult to prepare TOCN/polymer composite films consisting of individually nanodispersed TOCN elements through general melt-molding or melt-extrusion processes without using any organic solvent. The TOCN elements initially nanodispersed in water turn to large agglomerates through water-removal process during thermal molding, resulting in almost no improvement in mechanical properties for the TOCN/polymer composites. Another shortcoming for TOCNs is a decrease in thermal degradation temperature from \(\approx 300^\circ \text{C} \) for the original cellulose to \(\approx 200^\circ \text{C} \), which initially occurs through decarboxylation at the abundant carboxylate groups present in TOCNs.

15. Conclusions and future prospects

N-Oxyl radical-mediated oxidation is a unique reaction and has some advantages in terms of efficiency to introduce anionic sodium C6-carboxylate groups to various cellulose materials under aqueous conditions. The TEMPO/NaBr/NaClO oxidation proceeds
without using any organic solvents, which is different from the conventional cellulose esterifications and etherifications. When native celluloses with cellulose I crystal structures are used as starting materials and TEMPO-mediated oxidation is applied under suitable conditions, the C6–OH groups present on crystalline cellulose microfibril surfaces in native celluloses are position-selectively oxidized to sodium C6-carboxylate groups in TOCs. New cellulose-based nanofibers, TOCNs, with homogeneous widths of ~3 nm and high aspect ratios can be prepared from wood TOCs with sufficient amounts of sodium C6-carboxylate groups by gentle mechanical disintegration in water.

Further efficient surface modifications of TOCs and TOCNs are possible through counterion-exchange of the abundant sodium C6-carboxylate groups with protons, various metal and alkylammonium ions [175–191]. Moreover, numerous fundamental and application studies on TOCN bulk materials and TOCN-containing composite materials have been reported to date for preparing new bio-based and functional materials [195–228].

There are some shortcomings in TEMPO-mediated oxidation of cellulose, which have to be solved for further applications of TOCs and TOCNs in industry. Depolymerization should be controlled to prepare TOCs and TOCNs with high DPs and TOCNs with high aspect ratios. If possible, the use of chlorine-containing oxidants such as NaClO and NaClO3 should be avoided because of environmental aspects. The O2, H2O2, O3, or other chlorine-free compounds are preferable as the primary oxidant, if sufficient amounts of sodium C6-carboxylate groups can efficiently be introduced to oxidized celluloses. Safety issues of TEMPO, TOCs, and TOCNs have to be clarified for their industrial production and application. The treatment or recycling of TEMPO or its related compounds present in effluents formed during industrial production of TOCs and TOCNs should be taken into account for establishing environmentally friendly processes of cellulose modification [229,230].

TOCs and related materials have been commercialized as an ink dispersant of ballpoint pens developed by Daiichi Kogyo Seiyaku and Mitsubishi Pencil since 2013. Nippon Paper Industries and Nippon Paper Crezia have commercialized TOCN-containing disposable diapers for adults with super deodorizing functions that alleviate the burden for care assistants, also since 2013. The world’s largest plant to produce TOCNs at a capacity of 500 t/y was installed in the I shinomaki mill of Nippon Paper Industries, Miyagi, Japan, and TOCN production has started in 2017. Three additional TOCN production plants were installed in Japan (Daiichi-Kogyo Seiyaku Co., Finland (Betulum Oy), and United States (Forest Products Laboratory, Forest Service, United States Department of Agriculture) [231].

TOCs, TOCNs, and their related bulk and composite materials have been developed since 2006, and are, therefore, still new bio-based materials. More fundamental information and data based on experimental and theoretical studies have to be accumulated for further industrial applications of these new materials. The polymer, metal, glass, paper, and other organic and inorganic materials widely used in the present high-tech and commodity fields have long histories of more than several decades. Numerous science and technologies have been accumulated for these materials to be produced and used under the conditions with high reproducibility, runnability, and reliability.

Acknowledgement

This research was supported by Core Research for Evolutional Science and Technology CREST (Grant number JPMJCR13BZ) of the Japan Science and Technology Agency (JST).

References

[1] Lindman R, Karlström G, Stigsson L. On the mechanism of dissolution of cellulose. J Mol Liq 2010;156:76–81.
[2] Medronho B, Romano A, Miguez MC, Stigsson L, Lindman B. Rationalizing cellulose (in)solubility: reviewing basic physicochemical aspects and role of hydrophobic interactions. Cellulose 2012;19:581–57.
[3] Zugenmaier P. Conformation and packing of various crystalline cellulose fibers. Prog Polym Sci 2001;26:1341–471.
[4] Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W. Comprehensive cellulose chemistry: fundamentals and analytical methods. Weinheim: Wiley-VCH Verlag; 2004. p. 9–166.
[5] Atalla RH, Isogai A. Recent developments in spectroscopic and chemical characterization of cellulose. In: Dumitriu S, editor. Polysaccharide. 2nd ed. New York: Marcel Dekker; 2005. p. 123–57.
[6] VanderHart DL, Atalla RH. Studies of microstructure in native celluloses using solid-state 13C NMR. Macromolecules 1984;17:1465–72.
[7] Isogai A, Usuda M, Kato T, Uryu T, Atalla RH. Solid-state CP/MAS 13C NMR study of cellulose polymorphs. Macromolecules 1989;22:3168–72.
[8] Fink HP, Weigel P, Purz HJ, Ganster J. Structure formation of regenerated cellulose materials from NMNO-solutions. Prog Polym Sci 2001;26:1473–524.
[9] Rosenau T, Potthast A, Sixta H, Kosma P. The chemistry of side reactions and byproduct formation in the system NMNO/cellulose (lyocell process). Prog Polym Sci 2001;26:1839–919.
[10] Klemm D, Shumann D, Uthardt U, Marsch S. Bacterial synthesized cellulose — artificial blood vessels for microsurgery. Prog Polym Sci 2001;26:1561–603.
[11] Edgar K, Buchanan CM, Debenham JS, Rundquist PA, Seiler BD, Sholten MC, et al. Advances in cellulose ester performance and application. Prog Polym Sci 2001;26:1605–88.
[12] Heinze T, Liebert U. Unconventional methods in cellulose functionalization. Prog Polym Sci 2001;26:1689–762.
[13] Klemm D, Heublein DB, Fink HP, Bohn A. Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 2005;22:1358–93.
[14] Fox SC, Li X, Xu D, Edgar KJ. Regioselective bacterial deamination and etherification of cellulose: a review. Biomacromolecules 2011;12:1596–72.
[15] Unruh CC, Kenyon WO. Investigation of the properties of cellulose oxidized by nitrosine dioxide. J Am Chem Soc 1942;64:127–31.
[16] Mercer C, Bolker HJ. Kerto groups in cellulose and mannan oxidized by dinitrogen tetroxide. Carbohydr Res 1970;14:109–13.
[17] Painter TJ. Preparation and periodate oxidation of C-6-oxycellulose: conformational interpretation of hemiacetal stability. Carbohydr Res 1977;5:95–103.
[18] Bertocchi C, Konowiec P, Signore Z, Zanetti F, Flabiano A, Paolotti S, et al. Synthesis and characterisation of polylucuronan. Carbohydr Polym 1995;27:295–7.
[19] Zimnitsky DS, Yurkshovich TL, Bychovsky PM. Synthesis and characterization of oxidized cellulose. J Polym Sci Part A: Polym Chem 2004;42:4785–91.
[20] Gert EV, Torgashov VV, Zubets OV, Kuptasov FN. Preparation and properties of enterosorbents based on carboxylated microcrystalline cellulose. Cellulose 2005;12:517–26.
[21] Peng S, Zheng Y, Wu J, Yu Y, Ma Y, Song W, et al. Preparation and characterization of degradable oxidized cellulose reacted with nitrosine dioxide. Polym Bull 2012;68:415–23.
[22] Kim UJ, Kuga S, Wada M, Okano T, Kondo T. Periodate oxidation of crystalline cellulose. Biomacromolecules 2000;1:488–92.
[23] Kim UJ, Wada M, Kuga S. Solubilization of diadhyde cellulose by hot water. Carbohydr Polym 2004;56:7–10.
[24] Calvini P, Gorassini A, Luciano G, Franceschi E. FTR and WAXS analysis of periodate oxy cellulose: evidence for a cluster mechanism of oxidation. Vib Spectros 2006;40:177–83.
[25] Potthast A, Kostic M, Schiebers S, Kosma P, Rosenau T. Studies on oxidative modifications of cellulose in the periodate system: molecular weight distribution and carbonyl group profiles. Holzforschung 2007;61:662–7.
[26] Potthast A, Schiebers S, Rosenau T, Kostic M. Oxidative modifications of cellulose in the periodate system – reduction and beta-elimination reactions. Holzforschung 2009;63:12–7.
[27] Siriwo J, Vyavkkoi U, Liumtamo H, Niinimaki J, Horimi O. Periodate oxidation of cellulose at elevated temperatures using metal salts as cellulose activators. Carbohydr Polym 2011;83:1293–7.
[28] Calvini S, Gorassini A. Surface and bulk reactions of cellulose oxidation by periodate. A simple kinetic model. Cellulose 2012;19:1107–14.
[29] Yang H, Tejado A, Alam N, Antal M, van de Ven TGM. Films prepared from electrostically stabilized nanocrystalline cellulose. Langmuir 2012;28:7834–42.
[30] Liumtamo H, Visanko M, Sierro JA, Horimi O, Niinimaki J. Enhancement of the nanofibrillation of wood cellulose through sequential periodate-chlorite oxidation. Biomacromolecules 2012;13:1592–7.
[31] Visanko M, Liumtamo H, Sierro JA, Haapala A, Sliz R, Niinimaki J, et al. Porous thin film barrier layers from 2,3-dicarboxylic acid cellulose nanofibers for membrane structures. Carbohydr Polym 2014;102:584–9.
de Nooy AEJ, Besemer AC, van Bekkum H. Highly selective nitroxyl radical-mediated oxidation of primary alcohol groups in water-soluble glucans. Carbohydr Res 1995;269:89–98.

Ames BN, McCaen J, Yamazaki E. Methods for detecting carcinogens and mutagens with the salmonella/mammalian-microsome mutagenicity test. Mutat Res 1975;31:347–46.

de Nooy AEJ, Besemer AC, van Bekkum H. Selective oxidation of primary alcohols mediated by nitroxyl radical in aqueous solution. Kinetics and mechanism. Tetrahedron 1995;51:8023–32.

de Nooy AEJ, Besemer AC, van Bekkum H. On the use of stable organic nitroxyl radicals for the oxidation of primary and secondary alcohols. Synthesis 1996:1153–74.

Goldstein SM, Wolf RF, Blumberg PM, Weber KB. Mechanism of the oxidation of alcohols by o xoammonium cations. J Org Chem 2007;72:4504–9.

Goldstein S, Samani A. Kinetics and mechanism of peroxyl radical reactions with nitroxides. J Phys Chem 2007;111:1066–72.

Isogai A, Saito F, Kudzu H. TEMPO-oxidized cellulose nanofibers. Nanoscale 2011;3:71–85.

Isogai A, Kato Y. Preparation of polyuronic acid from cellulose by TEMPO-mediated oxidation. Carbohydr Res 1998;3:153–64.

Tahiri C, Vignon MR. TEMPO-oxidation of cellulose: synthesis and characterisation of polyglucuronans. Carbohydr Polym 2000;7:177–88.

Isogai T, Yanagisawa M, Isogai A. Degrees of polymerization (DP) and DP distribution of cellulose glucans prepared from alkali-treated celluloses and ball-milled native celluloses by TEMPO-mediated oxidation. Carbohydr Polym 2009;76:117–27.

Ibert M, Marsais F, Merboulh N, Brücker C. Determination of the side-products formed during the nitroxyl-mediated oxidation of glucose to gluicaric acid. Carbohydr Res 2002;337:1059–63.

Shibata I, Isogai A. Depolymerization of cellulose acid during TEMPO-mediated oxidation. Cellulose 2003;10:151–8.

Coseri S, Cellulose “To depolymerize... or not to Biotechnol Adv 2017;35:251–66.

Muzzarelli RAA, Muzzarelli C, Cosani A, Terbojevich M. 6-Oxychinolins, novel hyaluronan-like regiospecifically carbonylated chitosans. Carbohydr Polym 1999;39:361–7.

Muzzarelli RAA, Militani M, Cartolari M, Tarsi R, Tosi G, Muzzarelli C. Polyuronans obtained by regiospecific oxidation of polysaccharides from angiosperms niger. Trichodermus reesi and Saprolegnia sp. Carbohydr Polym 2000;43:55–61.

Kato Y, Kaminaga J, Matsuoe R, Isogai A. TEMPO-mediated oxidation of chitin, regenerated chitin and n-acetylated chitosan. Carbohydr Polym 1994;58:421–7.

Kato Y, Matsuoe R, Isogai A. Oxidation process of water-soluble starch in TEMPO-mediated system. Carbohydr Polym 2003:51:69–75.

Delattre C, Rios L, Laroch C, Be NHT, Lecerf D, Picton L, et al. Production and characterisation of new families of polyglucuronic acids from TEMPO-NaOCl oxidation of curdlan. Int J Biol Macromol 2009;45:458–62.

Tamura N, Wada M, Isogai A. TEMPO-mediated oxidation of (1 →3)-β-D-glucans. Carbohydr Polym 2009;77:300–5.

Guillaume P, Christine G, Traikia M, Michaud P, Redouan E, Isogai A. Antioxidant activities of a polyglucuronic acid sodium salt obtained from TEMPO-mediated oxidation of xanthan. Carbohydr Polym 2015;116:34–41.

Saito T, Yanagisawa M, Isogai A, TEMPO-mediated oxidation of cellulose: SEC – MALLS analysis of water-soluble and -insoluble fractions in the oxidized products. Cellulose 2005;12:305–15.

Saito T, Isogai A. TEMPO-mediated oxidisation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 2004;5:1983–9.

Montanari S, Roumani M, Heux L, Vignon MR. Topochemistry of carbosubstituted cellulose nanocrystals resulting from TEMPO-mediated oxidation. Macromolecules 2005;38:1665–71.

Sang X, Qin C, Tong Z, Kong S, Jia Z, Wan G, et al. Mechanism and kinetics studies of carboxyl group formation on the surface of cellulose fiber in a TEMPO-mediated system. Cellulose 2017;24:2415–25.

Dai L, Long Z, Lv Y, Zhang D, Deng H, Liu Q. TEMPO-mediated oxidation of cellulose in carbonate buffer solution. Fiber Polym 2015;16:319–25.

Battista OA. Hydrolysis and crystallization of cellulose. Ind Eng Chem 1950;42:502–7.

Battista OA, Coppick S, Howsmon JA, Morehead FS, Sisson WA. Level-off degree of polymerization. Ind Eng Chem 1956;48:333–5.

Håkansson L, Berglund T. Acid hydrolysis of some industrial pulps: effect of hydrolysis conditions and raw material. Cellulose 2005;12:177–83.

Shinoda R, Saito T, Okita Y, Isogai A. Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibers. Biomacromolecules 2012;13:347–53.

Okita Y, Saito T, Isogai A. Entire surface oxidation of various cellulose microfibrils by TEMPO-mediated oxidation. Biomacromolecules 2010;11:1695–702.

Hirota M, Furuhata K, Saito T, Kawada T, Isogai A. Glucose/glucuronic alternating co-polysaccharides prepared from TEMPO-oxidized native celluloses by surface peeling. Angew Chem Int Ed 2010;49:7670–2.

Sjögren A, Wohleit J, Larsson PT, Wåhberg L. Structural changes during swelling of highly charged cellulose fibres. Cellulose 2015;22:2943–53.
Kekäläinen K, Liimatainen H, Iiikinaik M, Maloney TC, Niinimäki J. The role of hornification in the disintegration behaviour of TEMPO-oxidized bleached hardwood fibres in a high-shear homogenizer. Cellulose 2014;21:1163–74.

Peyre J, Paakkönen T, Reza M, Kontturi E. Simultaneous preparation of cellulose nanocrystals and micron-sized porous colloidal particles of cellulose by TEMPO-mediated oxidation. Green Chem 2015;17:808–11.

Vartelap E, Nechiap S, Khirai R, Durif S, & Belgacem AM. Effect of the oxidation treatment on the production of cellulose nanofiber suspensions from *Posidonia oceanica*: the rheological aspect. Carbohydr Polym 2015;134:664–72.

Saito T, Hirota M, Tamura N, Isogai A. Oxidation of bleached wood pulp by TEMPO/NACIO/NACIO2 system: effect of the oxidation conditions on carbohydrate content and degree of polymerization. J Wood Sci 2010;56:227–32.

Tanaka R, Saito T, Isogai A. Cellulose nanofibrils prepared from softwood cellulose by TEMPO/NACIO/NACIO2 systems in water at pH 4.8 or 6.8. Int J Biol Macromol 2012;51:228–34.

Tamura N, Hirota M, Saito T, Isogai A. Oxidation of curdlan and other polysaccharides by 4-acetamido-TEMPO/NACIO/NACIO2 under acid conditions. Carbohydr Polym 2010;81:592–8.

Watanabe E, Tamura N, Saito T, Habu N, Isogai A. Preparation of completely CG-carboxylated curdlan by catalytic oxidation with 4-acetamido-TEMPO. Carbohydr Polym 2013;99:126–33.

Hirota M, Tamura N, Saito T, Isogai A. Oxidation of regenerated cellulose with NaClO catalyzed by TEMPO and NaClO under acid-neutral conditions. Carbohydr Polym 2009;78:330–5.

Hirota M, Tamura N, Saito T, Isogai A. Surface carboxylation of porous regenerated cellulose beads by 4-acetamido-TEMPO/NACIO/NACIO2 system. Cellulose 2009;16:841–51.

Hirota M, Tamura N, Saito T, Isogai A. Water dispersion of cellulose II nanocrystals prepared by TEMPO-mediated oxidation of mercerized cellulose at pH 4.8. Cellulose 2010;17:279–88.

Hirota M, Tamura N, Saito T, Isogai A. Cellulose II nanofibrils prepared from fully mercerized, partially mercerized and regenerated celluloses by 4-acetamido-TEMPO/NACIO/NACIO2 oxidation. Cellulose 2012;19:435–42.

Lai C, Zhang S, Sheng L, Xiao S, & Zhang Z. TEMPO-mediated oxidation of bacterial cellulose in a bromide-free system. Colloid Polym Phys 2013;129:2985–92.

Gehmayer V, Porthast A, & Sixta H. Reactivity of dissolving pulps modified by TEMPO-mediated oxidation. Cellulose 2012;19:1125–34.

Tanaka C, Yui Y, & Isogai A. TEMPO-mediated oxidation of cotton celluloses fabrics under weakly acidic or neutral conditions. J Fiber Sci Technol 2015;71:191–6.

Belgsir EM, Schäfer HJ. Selective oxidation of carbohydrates on NaFom°-TEMPO-modified graphite felt electrodes. Electrochem Commun 2001;3:32–5.

Laigre D, Breton T, & Belgsir EM. Kinetic and selectivity control of TEMPO-electro-mediated oxidation of alcohols. Electrochem Commun 2005;7:312–6.

Barhdadi C, Comminges C, & Hiraoki T. The electrochemistry of TEMPO-mediated oxidation of alcohols in ionic liquid. J RSC Adv 2017;7:27977–81.

Yoshida T, Kuroboshi M, Oshitani J, Gotoh K, & Tanaka H. Electroorganic synthesis in *in*-water nanoemulsion: TEMPO-mediated electrooxidation of amphiphilic alcohols in water. Synlett 2007;17:2691–4.

Comminges C, Barhdadi C, Doherty AP, & Troupel M. Mechanism of 2,2,6,6'-tetramethylpiperidin-1-oxyl-mediated oxidation of cellulose in alkaline Tanaichi. J Phys Chem A 2008;112:7488–55.

Isogai T, Saito T, & Isogai A. TEMPO electrooxidation of cellulose nanofibrils including regenerated cellulose fiber. Biomacromolecules 2010;11:1593–9.

Parrot P, Servat K, Bettencourt AP, Huse M, & Kokoh KB. TEMPO-mediated oxidation of carbohydrates using electrochemical methods. Cellulose 2010;17:815–24.

Isogai T, Saito T, & Isogai A. Wood cellulose nanofibrils prepared by TEMPO-electro-mediated oxidation. Cellulose 2011;18:421–31.

Carlsson DO, Lindh J, Strehlow H, & Mihrañan A. Susceptibility of L1- and L2- dominated cellulose to TEMPO-mediated oxidation. Biomacromolecules 2015;16:1643–9.

Carlsson DO, Lindh J, Nyholm L, Strømme M, & Mihrañan A. Cooxidant-free TEMPO-mediated oxidation of highly crystalline nanocellulose in water. RSC Adv 2014;4:52289–98.

Yin J, Edler KJ, Marken F, & Scott JL. Voltammetric optimisation of TEMPO-mediated oxidations at cellulose fabric. Green Chem 2016;18:3322–7.

IWCE Arends, Li YX, Sheldon RA. Stabilities and rates in the laccase/TEMPO-catalyzed oxidation of alcohols. Biocatal Biotransform 2006;24:443–8.
Method

Carbohydr

N

hardwood

Cellulose

TEMPO-oxidized

by

TEMPO-mediated

Fujisawa

Okita

Saito

4-AcNH-TEMPO/peracid

Y, JM, Y, Tanaka

SP, xylan

Besemer

in

2017;34:631–9.

Wanrosli

scale-up

cellulose

study

2006;62:8928–32.

GL, L, MA, H, −

A. H.

Functionalization

TEMPO-mediated

salts

Zhou

Polym

supported

Wang

Orelma

Daneault

Song

in

options

phthalimide-

final

H.

H, on

system

2013;20:795–805.

Koba

Klemm

Sone

Homma

Liquid-crystalline

Rep

Chem

Eng

2015;7:19809–15.

Masuchin

N, Park BD, Causin V, Um IC. Characteristics of TEMPO-oxidized cellulose fibril-based hydrogels induced by cationic ions and their properties. Cellulose 2015;22:473–81.

Saito T, Ichiki T. Self-assembling of TEMPO oxidized cellulose nanofibrils by BDPA. Cellulose 2012;19:459–66.

Salajková M, Berglund LA, Zhou Q. Hydrophobic cellulose nanocrystals modified with quaternary ammonium salts. J Mater Chem 2012;22:19798–805.

Homma I, Saito T, Koizumi A. Degradation of TEMPO-oxidized cellulose fibers and nanofibrils by crude cellulase. Cellulose 2013;20:795–805.

Homma I, Fukuzumi H, Saito T, Isogai A. Effects of cellulose counter-ions on biodegradation behaviors of TEMPO-oxidized cellulose fibers and nanofibrils. Carbohydr Polym 2013;97:3331–3.

Shimizu M, Fukuzumi H, Saito T, Isogai A. Preparation and characterization of TEMPO-oxidized cellulose nanofibrils with ammonium carbonate groups. Int J Biol Macromol 2013;59:99–104.

Fujii I, Saito T, Komura S, Iwata T, Isogai A. Surface engineering of ultrafine cellulose nanofibrils toward polymer nanocomposite materials. Biomacromolecules 2013;14:1541–6.

Amizou H, Saito T, Isogai A. Quaternary alkylammonium counterions enhance the dispersibility of 2,2,6,6-tetramethylpiperidine-1-oxyl-oxidized cellulose in diverse solvents. Biomacromolecules 2014;15:1904–9.

Shimizu M, Saito T, Isogai A. Water-resistant and high oxygen-barrier nanocellulose films with interfacial cross-linkages formed through multivalent metal ions. J Membr Sci 2016;500:1–7.

Sone A, Saito T, Isogai A. Preparation of aqueous dispersions of TEMPO-oxidized cellulose nanofibrils with various metal cations and their superreinforcement properties. ACS Macro Lett 2015;4:1402–6.

Lavoine N, Bras J, Saito T, Isogai A. Improvement of the thermal stability of TEMPO-oxidized cellulose nanofibrils by heat-induced conversion of ionic bonds to amide bonds. Biomacromolecules 2013;14:567–70.

Klemm D, Kramer F, Moritz S, Linström T, Ankerfors M, Gray D, et al. Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 2011;50:5438–60.

Moon RJ, Martini A, Nairn J, Simonson JY, Yungblood J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 2011;40:3941–94.

Hult EL, Iversen T, Sugiyama J. Characterization of the supermolecular structure of cellulose in wood pulp fibres. Cellulose 2003;10:103–10.

Fukuzumi H, Saito T, Kumamoto Y, Iwata T, Isogai A. Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 2009;10:162–5.

Iwamoto S, Isogai A, Iwata T. Structure and mechanical properties of wet-spin fibres made from natural cellulose nanofibers. Biomacromolecules 2011;12:831–6.

Saito T, Uematsu K, Fukuzumi H, Isogai A, Isogai T, Isogai A. Self-aligned integration of native cellulose nanofibrils towards producing diverse bulk materials. Soft Matter 2011;7:8804–9.

Silva TCF, Habibi Y, Colodette JL, Elder T, Lucia LA. A fundamental investigation of the microarchitectural and mechanical properties of TEMPO-oxidized nanofibrillated cellulose (NFC)-based aerogels. Cellulose 2012;19:1945–56.

Kobayashi Y, Saito T, Isogai A. Aerogels with 3D ordered nanofibril skeletons of liquid-crystalline nanocellulose derivatives as tough and transparent insulators. Angew Chem Int Ed 2014;53:10394–7.

Jiang F, Hsieh YL. Super water absorbing and shape memory nanocellulose aerogels from TEMPO-oxidized cellulose nanofibrils via cyclic freezing–thawing. J Mater Chem A 2014;2:350–9.

Nemoto J, Saito T, Isogai A. Simple freeze-drying procedure for producing nanocellulose aerogels-containing, high-performance air filters. ACS Appl Mater Interfaces 2014;6:12459–65.

Masuchin N, Park BD, Causin V. Influence of sonication treatment on supramolecular cellulose microfibril-based hydrogels induced by ionic interaction. Ind Eng Chem 2015;29:625–72.

Syverb K, Pettersen SR, Draget K, Chinga-Carrasco G. Controlling the elastic modulus of cellulose nanofibril hydrogels—scaffolds with potential in tissue engineering. Cellulose 2015;22:473–81.

Masuchin N, Park BD, Causin V, Um IC. Characteristics of TEMPO-oxidized cellulose fibril-based hydrogels induced by cationic ions and their properties. Cellulose 2015;22:1993–10.

Tarrés Q, Oliver-Ortega H, Llop M, Péach MA, Delgado-Aguilar M, Mutjé P. Effective and simple methods to produce nanocellulose-based aerogels for selective removal of oil. Cellulose 2016;23:3077–88.

Seanter B, Bendahoud D, Bendahoud A, Grohens Y, Kaddami H. Multi-scale cellulose-based new bioaerogel composites with thermal super-insulating and tunable mechanical properties. Carbohydr Polym 2016;138:335–48.

Kuang Y, Chen G, Ming S, Wu Z, Fang Z. Solvent resistance of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) treated cellulose nanofiber film for flexible electronics. Cellulose 2016;23:1979–87.

Sakai K, Kobayashi Y, Saito T, Isogai A. Partitioned airs at macroscale and nanoscale: thermal diffusivity in ultrahigh porosity solids of nanocellulose. Sci Rep 2016;6:30437.

Lundahl MJ, Cunha AJ, Rojo P, Papageorgiou AC, Rautkari I, Arboleda JC, et al. Strength and water interactions of cellulose I filaments wet-ventilated from cellulose nanofibril hydrogels. Sci Rep 2016;6:30965/1–13.

Jiang F, Hsieh YL. Self-assembled functionalization of TEMPO oxidized cellulose nanofibrils as affected by protonation of surface carboxyls and drying methods. ACS Sustainable Chem Eng 2016;4:1041–9.
[211] Martoja F, Cocheureau T, Dumont FJJ, Orgéas L, Terrien M, Belgacem MN. Cellulose nanofibril foams: links between ice-template conditions, microstructures and mechanical properties. Mater Des 2016;104:376–91.

[212] Liu P, Oksman K, Mathew AP. Surface adsorption and self-assembly of Cu(II) ions on TEMPO-oxidized cellulose nanofibers in aqueous media. J Colloid Interface Sci 2016;464:175–82.

[213] Toivonen MS, Kurki-Suonio S, Wagermaier W, Hynminen V, Hietala S, Ikkala O. Interfacial polyelectrolyte complex spinning of cellulose nanofibrils for advanced bicomponent fibers. Biomacromolecules 2017;18:1293–301.

[214] Wu CN, Cheng KC. Strong, thermal-stable, flexible, and transparent films by self-assembled TEMPO-oxidized bacterial cellulose nanofibers. Cellulose 2017;24:269–87.

[215] Karim Z, Hakalahi M, Tammelin T, Mathew AP. In situ TEMPO surface functionalization of nanocellulose membranes for enhanced adsorption of metal ions from aqueous medium. RSC Adv 2017;7:5232–41.

[216] Zhao M, Ansari F, Takeuchi M, Shimizu M, Saito T, Berglund LA, et al. Nematic structuring of transparent and multifunctional nanocellulose papers. Nanoscale Horiz 2017;3:28–34.

[217] Endo R, Saito T, Isogai A. TEMPO-oxidized cellulose nanofibril/poly(vinyl alcohol) composite drawn fibers. Polymer 2013;54:935–41.

[218] Kurihara T, Isogai A. Properties of poly(acrylamide)/ TEMPO-oxidized cellulose nanofibril composite films. Cellulose 2014;21:291–9.

[219] Kurihara T, Isogai A. Mechanism of TEMPO-oxidized cellulose nanofibril film reinforcement with poly(acrylamide). Cellulose 2015;22:2807–17.

[220] Koga H, Saito T, Kitaoka T, Nogi M, Suganuma K, Isogai A. Transparent, conductive, and printable composites consisting of TEMPO-oxidized nanocellulose and carbon nanotube. Biomacromolecules 2013;14:1160–5.

[221] Wu CN, Saito T, Fujisawa S, Fukuzumi H, Isogai A. Ultrastrong and high gas-barrier nanocellulose/clay-layered composites. Biomacromolecules 2012;13:1927–32.

[222] Wu CN, Yang Q, Takeuchi M, Saito T, Isogai A. Highly tough and transparent layered composites of nanocellulose and synthetic silicate. Nanoscale 2014;6:392–9.

[223] Koga H, Azetsu A, Tokunaga E, Saito T, Isogai A, Kitaoka T. Topological loading of Cu(II) catalysts onto crystalline cellulose nanofibrils for the Huisgen click reaction. J Mater Chem 2012;22:5538–42.

[224] Matsumoto M, Kitaoka T. Ultraselective gas separation by nanoporous metal–organic frameworks embedded in gas-barrier nanocellulose films. Adv Mater 2016;28:1765–9.

[225] Vipin AK, Fugetsu B, Sakata I, Isogai A, Endo M, Li M, et al. Cellulose nanofiber backboned Prussian blue nanoparticles as powerful sorbents for the selective elimination of radioactive cesium. Sci Rep 2016;6, 37009/1-14.

[226] Fujisawa S, Ikeuchi T, Takeuchi M, Saito T, Isogai A. Superior reinforcement effect of TEMPO-oxidized cellulose nanofibrils in polystyrene matrix: optical, thermal and mechanical studies. Biomacromolecules 2012;13:2188–94.

[227] Fujisawa S, Saito T, Kimura S, Iwata T, Isogai A. Comparison of mechanical reinforcement effects of surface-modified cellulose nanofibrils and carbon nanotubes in PLA composites. Compos Sci Technol 2014;90:96–101.

[228] Soeta H, Fujisawa S, Saito T, Berglund LA, Isogai A. Low-birefringent and transparent composites of nanocellulose-reinforced cellulose triacetate. ACS Appl Mater Interfaces 2015;7:11041–6.

[229] Tanaka C, Yui Y, Isogai A. Degradation of N-oxyl radical compounds by Fenton reaction. J Fiber Sci Technol 2017;73:42–8.

[230] Kuutti L, Pajari H, Rovio S, Kokkonen J, Nuopponen M. Chemical recovery in TEMPO oxidation. Bioresources 2016;11:6550–61.

[231] Isogai A. Development of completely dispersed cellulose nanofibers. Proc Jpn Acad Ser B 2018;94:161–79.