Appetite suppression occurs after a meal and in conditions when it is unfavourable to eat, such as during illness or exposure to toxins. A brain region proposed to play a role in appetite suppression is the parabrachial nucleus (PBN), a heterogeneous population of neurons surrounding the superior cerebellar peduncle in the brainstem. The parabrachial nucleus is thought to mediate the suppression of appetite induced by the anorectic hormones amylin and cholecystokinin, as well as by lithium chloride and lipopolysaccharide, compounds that mimic the effects of toxic foods and bacterial infections, respectively. Hyperactivity of the parabrachial nucleus is also thought to cause starvation after ablation of orexigenic agouti-related peptide neurons in adult mice. However, the identities of neurons in the parabrachial nucleus that regulate feeding are unknown, as are the functionally relevant downstream projections. Here we identify calcitonin gene-related peptide-expressing neurons in the outer external lateral subdivision of the parabrachial nucleus that project to the laterocapsular division of the central nucleus of the amygdala as forming a functionally important circuit for suppressing appetite. Using genetically encoded anatomical, optogenetic and pharmacogenetic tools, we demonstrate that activation of these neurons projecting to the central nucleus of the amygdala suppresses appetite. In contrast, inhibition of these neurons increases food intake in circumstances when mice do not normally eat and prevents starvation in adult mice whose agouti-related peptide neurons are ablated. Taken together, our data demonstrate that this neural circuit from the parabrachial nucleus to the central nucleus of the amygdala mediates appetite suppression in conditions when it is unfavourable to eat. This neural circuit may provide targets for therapeutic intervention to overcome or promote appetite.

The parabrachial nucleus (PBN) contains subpopulations of neurons that regulate taste, sodium intake, respiration, pain, thermosensation, and appetite suppression. To identify a specific genetic marker for PBN neurons that suppress appetite, we analysed expression of Fos, a surrogate marker of neuronal excitation, after genetic ablation of agouti-related peptide (AgRP) neurons or injection of lithium chloride (LiCl). AgRP neurons were ablated in mice expressing the human diphtheria toxin receptor (DTR) specifically in AgRP neurons (AgRP-DTR mice). Both AgRP neuron ablation (two diphtheria toxin injections at 50 μg kg⁻¹, intramuscular) and LiCl injection (84 mg kg⁻¹, intraperitoneal) induced Fos expression in the outer external lateral subdivision of the PBN (PBelo; Supplementary Fig. 1). To identify a potential genetic marker for these neurons, we consulted the Allen Brain Explorer (http://mouse.brain-map.org) and searched for genes enriched in the PBelo. The top candidate was Calca, the gene that encodes calcitonin gene-related peptide (CGRP) and calcitonin by alternative splicing. Indeed, Fos expression in the PBN after ablation of AgRP neurons strongly overlapped with immunohistochemical detection of CGRP (Supplementary Fig. 2), similar to previous reports of coincident expression of Fos and CGRP after injection of LiCl or lipopolysaccharide (LPS).

To control gene expression in these neurons, we generated a genetic knock-in mouse expressing Cre recombinase at the Calca locus (Supplementary Fig. 3). When these mice were crossed with Cre-dependent tdTomato reporter mice, ubiquitous red fluorescence was detected throughout the brain, probably because of transient Cre expression during development. However, injection of a Cre-dependent adenovirus (AAV) carrying a mCherry reporter directly into the PBN region of adult Calca Cre²/² mice (Fig. 1a) resulted in specific expression of mCherry in CGRP-positive neurons in the PBelo (Fig. 1b and Supplementary Figs 4 and 5).

To map activity in PBelo CGRP neurons, we compared virally targeted mCherry fluorescence with Fos following an array of environmental conditions that induced appetite suppression (see Supplementary Fig. 6 for specific conditions used). In the lateral PBN, more than 80% of Fos expression co-localized with CGRP neurons after AgRP neuron ablation, intraperitoneal injection of LiCl, injection of LPS (Fig. 1c–h) or injection of the satiety hormones amylin or cholecystokinin (CCK; Supplementary Fig. 7a–d). In contrast, few Fos-positive neurons were observed in animals injected with saline (Fig. 1i, j), fasted for 24 h or after aversive tail pinching (Supplementary Fig. 7e–h). The frequency of CGRP neurons co-expressing Fos significantly correlated with the reduction in food intake relative to baseline conditions (Fig. 1k, l; see figure legends for P values and Supplementary Information for detailed statistical analyses). These results indicate that PBelo CGRP neurons are active during conditions in which appetite is suppressed but not in response to general adverse conditions.

To determine whether transient stimulation of PBelo CGRP neurons is sufficient to reduce food intake, we unilaterally injected AAV carrying a Cre-dependent channelrhodopsin-2 transgene (AAV1 DIO ChR2–mCherry) into the PBN of Calca Cre²/² mice (Fig. 2a). Photostimulation reliably induced action potentials in mCherry-positive neurons in acute brainstem slices at several frequencies (20–40 Hz; Supplementary Fig. 8a) and in vivo photostimulation at 30 Hz was sufficient to induce expression of Fos (Supplementary Fig. 8b, c). Stimulation of CGRP neurons in vivo for 5 min at 30 or 40 Hz (10-ms pulses) significantly and reversibly suppressed food intake during both baseline conditions and after a 24-h fast (Fig. 2b, c and Supplementary Fig. 8d), demonstrating that activating these neurons is sufficient to suppress food intake. Suppression of feeding after photostimulation was rapid (within 5–10 s; Supplementary Video 1) and reversible (mice typically resumed feeding in 5–10 min after photostimulation ceased). Stimulation at these frequencies did not impair movement or cause overt signs of distress (Supplementary Video 1).

To determine whether longer-term stimulation of PBelo CGRP neurons, we unilaterally transduced these neurons with AAV carrying a Cre-dependent hM3Dq–mCherry transgene (Fig. 2d). Stimulation of hM3Dq with clozapine-N-oxide (CNO, 1 mg kg⁻¹) induced Fos expression (Supplementary Fig. 9) and suppressed food intake both during baseline conditions and after a 24-h fast (Fig. 2e, f). Chronic stimulation (once every 12 h for 4 d) resulted in a pronounced reduction

©2013 Macmillan Publishers Limited. All rights reserved
Figure 1 | Co-localization of Pbelo CGRP neurons with Fos following conditions that reduce food intake. a, AAV carrying a Cre-dependent mCherry reporter injected into the PBN. Grey and black triangles represent loxP and lox2272 sites, respectively. b, mCherry expression in the Pbelo. scp, superior cerebellar peduncle; scale bar, 500 μm. c–j, Representative histological examples and quantification of coincidence of mCherry and Fos expression (n = 4 animals per condition). k, Degree to which various conditions reduce food intake (n = 4 animals per condition). l, Appetite suppression correlates with the percentage of Pbelo CGRP neurons expressing Fos. Dashed lines represent 95% confidence intervals. See Supplementary Information for statistical analyses.

in food intake and body weight (Fig. 2g, h), demonstrating that long-term activation of these neurons is sufficient to cause starvation.

To determine the effects of inhibiting Pbelo CGRP neurons, we bilaterally transduced these neurons with AAV carrying a Cre-dependent hM4Di–mCherry transgene (Fig. 3a). In acute brainstem slices, bath infusion of CNO reversibly reduced the firing frequency of hM4Di-expressing neurons to 24.98 ± 8.96% of baseline (Supplementary Fig. 10a, b). There was no change in baseline food intake or body weight after intraperitoneal injection of CNO in either acute or chronic (once every 12 h for 4 d) conditions (Supplementary Fig. 11). However, inhibition of CGRP neurons with CNO decreased the suppression of appetite observed after injection of LiCl or LPS (Fig. 3b). Consistent with this observation, inhibition by hM4Di also blocked the increase of Fos expression in the Pbelo under these conditions (Supplementary Fig. 10c–f). Additionally, inhibition of CGRP neurons with CNO ameliorated appetite suppression after injection of amylalin and CCK, although not to statistical significance (Fig. 3b). Because genetic ablation of AgRP neurons induces Fos expression in Pbelo CGRP neurons and leads to starvation,2, we considered that bilateral inhibition of CGRP neurons would prevent starvation in these animals. To test this hypothesis, we bred AgrpDTR/− mice with CalcaCre/− offspring with AAV virus carrying Cre-dependent hM4Di–mCherry. Indeed, chronic inhibition (injection of CNO every 12 h for 4 d) ameliorated the anorexia and prevented starvation after AgRP neuron ablation (Fig. 3c, d). Taken together, these results demonstrate that inhibition of Pbelo CGRP neurons increases food intake under conditions that normally suppress appetite.

To examine the relevant efferent projections of Pbelo CGRP neurons, we simultaneously injected two AAV vectors carrying either Cre-dependent mCherry or Cre-dependent synaptophysin–green fluorescent protein (Syn–GFP) transgenes into the PBN; bottom, timeline of experiments in a, b, c. The diagram showing AAV DIO hM4Di–mCherry transgene unilaterally injected into the PBN; bottom, timeline of experiments in e, f, g. Pharmacogenetic stimulation of CGRP neurons inhibits food intake in both baseline (e) and fasted (f) conditions (n = 6 animals per group); experiment replicated at least 20 times per animal in three groups of animals. g, h, Chronic administration of CNO (every 12 h for 4 d) suppresses food intake (g) and reduces body weight (h) (n = 6 animals per group; experiment replicated in three groups of animals). *P < 0.05, **P < 0.01, ***P < 0.001; see Supplementary Information for statistical analyses.

Figure 2 | Stimulation of Pbelo CGRP neurons reduces food intake and causes starvation. a, Placement of fibre optic implant in the PBN in a CalcaCre/− animal injected with AAV DIO ChR2–mCherry. b, c, Photostimulation of CGRP neurons reversibly inhibits food intake in both baseline (b) and fasted (c) conditions (n = 8 animals per group); experiment replicated at least 20 times per animal in three groups of animals. d, Top, diagram showing AAV DIO hM4Di–mCherry transgene unilaterally injected into the PBN; bottom, timeline of experiments in e, f, g. Pharmacogenetic stimulation of CGRP neurons inhibits food intake in both baseline (e) and fasted (f) conditions (n = 6 animals per group); experiment replicated at least 20 times per animal in three groups of animals. g, h, Chronic administration of CNO (every 12 h for 4 d) suppresses food intake (g) and reduces body weight (h) (n = 6 animals per group; experiment replicated in three groups of animals). *P < 0.05, **P < 0.01, ***P < 0.001; see Supplementary Information for statistical analyses.
In vivo mCherry.

To demonstrate functional connectivity between the PBelo and the CeAlc, we transduced PBelo CGRP neurons with Cre-dependent ChR2–mCherry and implanted fibre optic cannulae above the CeAlc (Fig. 13).

The PBelO of CalcaCre/+/ mice. mCherry was expressed in more than 95% of retrogradely labelled green fluorescent neurons (Supplementary Fig. 13).

To demonstrate functional connectivity between the PBelo and the CeAlc, we transduced PBelo CGRP neurons with Cre-dependent ChR2–mCherry. In vivo photostimulation of either the PBelo or downstream projections in the CeAlc resulted in an increase in Fos expression in the CeAlc (Supplementary Fig. 14a–f). In acute brain slices, optical stimulation of ChR2–mCherry-positive fibres in the CeAlc resulted in excitatory postsynaptic currents (EPSCs; Fig. 4b and Supplementary Fig. 14g, h) and an increase in firing rate (Supplementary Fig. 14i) in CeAlc neurons (11 out of 25 cells showed an optically evoked response). The EPSCs and the increase in firing rate were blocked by bath application of the glutamate receptor antagonists 6-cyano-7-nitroquinoxaline-2, 3-dione (CNQX; 10 μM) and 6-(d)-2-amino-5-phosphonovaleric acid (AP5; 50 μM), indicating that PBelo CGRP neurons form an excitatory synaptic connection with neurons of the CeAlc (Fig. 4b and Supplementary Fig. 14g–i). To determine the effect of stimulating PBelo-to-CeAlc projections on food intake, we transduced PBelo CGRP neurons with ChR2–mCherry and implanted fibre optic cannulae above the CeAlc (Fig. 4c).

Figure 4 | Efferent projections from PBelo CGRP neurons to the CeAlc mediate appetite suppression. a, Left and middle, mCherry-expressing fibres from the PBelo to the CeAlc; scale bar, 500 μm. Right, PBelo fibres expressing mCherry, synaptophysin–GFP and CGRP. b, EPSC from a CeAlc neuron upon photostimulation of PBelo-to-CeAlc fibres before (black) and after (red) bath application of CNQX and AP5. c, AAV DIO ChR2–mCherry with fibre optic implant above the CeAlc. d, Photostimulation of PBelo fibres in the CeAlc reversibly inhibits food intake (n = 8 animals for each group; experiment replicated at least 20 times per animal in three groups of animals). e, Injection of CAV2 Cre into the CeAlc and AAV DIO hM4Di–mCherry into the PBN. f, Injection of retrogradely targeted PBelo neurons increases food intake (n = 6 animals for each group); experiment replicated at least five times per animal in three groups of animals. *P < 0.05, **P < 0.01; see Supplementary Information for statistical analyses.

Together, these results demonstrate a neural circuit from CGRP-expressing neurons in the PBelo to the CeAlc that mediates appetite suppression. One of our observations was that inhibition of PBN neurons increased food intake when mice did not normally eat (Figs 3b–d and 4f), but did not statistically increase food intake in baseline conditions (Supplementary Fig. 11) or after injection of amylin or CCK (Fig. 3b). These findings are consistent with those of Atasoy et al.27, who did not find any effect on food intake after stimulation of inhibitory projections from AgRP neurons to the PBN. Perhaps inhibitory projections from AgRP neurons do not stimulate food intake in baseline conditions but do decrease the suppression of appetite when the PBN is most active. Thus, ablation of AgRP neurons causes starvation in adult mice because of disinhibition in the PBelO. Additionally, Pbelo CGRP neurons may not mediate the ordinary, routine satiety experienced after a meal, but may mediate more severe forms of satiety experienced during severe overfeeding (gastric distention), illness or other conditions in which it is unhealthy to eat such as dehydration or vertigo.

Although it is well-established that several hypothalamic and brainstem nuclei coordinate appetite and satiety26,29, this study demonstrates the involvement of downstream circuitry that may mediate
the ‘unpleasant feeling’ or discomfort that results from adverse conditions during which it is unfavourable to eat. Indeed, the CeAlc is known to process polymodal information about the internal and external bodily environment including adverse visceral stimuli3–6. Adding to previous results1,2, we propose that PBelo CGRP neurons integrate visceral and energy balance information and communicate with the CeAlc to mediate extreme satiety and malaise (Supplementary Fig. 17).

METHODS SUMMARY

We generated CalcaCre/+ mice and AgrpDGFP/+ mice and backcrossed them onto a C57Bl/6 background. AAV1 vectors were stereotaxically injected into the PBN; in some experiments, CAV2 Cre was also stereotaxically injected into the CeAlc. For photostimulation experiments, mice were implanted with fibre optic cannulae above the PBN, CeAlc or BNST; blue light at 473 nm was delivered in 10-ms pulses at 20 mW intensity through a 1.5-m fibre optic cable. For pharmacogenetic manipulation, CNO was injected at 1 mg kg$^{-1}$, intraperitoneally. To ablate AgRP neurons, mice carrying the AgrpD allele were injected twice with diphtheria toxin (50 µg kg$^{-1}$, intraperitoneally, 2 days apart). LiCl (84 mg kg$^{-1}$, 0.2 M, 10 ml kg$^{-1}$), LPS from Salmonella typhimurium (50 µg kg$^{-1}$), amylin (10 µg kg$^{-1}$) and CCK (10 µg kg$^{-1}$) were all injected intraperitoneally as described in Supplementary Fig. 6. Food intake was monitored using lickometer cages supplied with water and liquid diet available ad libitum.

Online Content Any additional Methods, Extended Data display items and Source Data are available in the online version of the paper; references unique to these sections appear only in the online paper.

Received 1 May; accepted 20 August 2013.

Author Contributions We thank B. Roth for mHm_2,mCherry and hMD_1,mCherry constructs, and K. Deisseroth for mCherry and ChR2-mCherry constructs. E. Allen, J. Resnick, M. Soleiman and S. Padilla assisted with histology, E. Allen and A. Rainwater assisted with animal husbandry, and J. Shulkin provided suggestions and advice. We thank members of the Palmer and Zweifel laboratories for feedback on the manuscript. M.E.C. is financed by a fellowship from the Hilda and Preston Davis Health (R01DA024908) and the Klarman Family Foundation.

Supplementary Information is available in the online version of the paper.

Acknowledgements We thank B. Roth for mHm_2,mCherry and hMD_1,mCherry constructs, and K. Deisseroth for mCherry and ChR2-mCherry constructs. E. Allen, J. Resnick, M. Soleiman and S. Padilla assisted with histology, E. Allen and A. Rainwater assisted with animal husbandry, and J. Shulkin provided suggestions and advice. We thank members of the Palmer and Zweifel laboratories for feedback on the manuscript. M.E.C. is financed by a fellowship from the Hilda and Preston Davis Foundation. L.S.Z. is financed by a grant from the National Institutes of Health (R01MH094536) and R.D.P. is supported in part by grants from the National Institutes of Health (RO1DA024908) and the Klarman Family Foundation.

Author Contributions M.E.C. and R.D.P. conceived and designed the study. M.E.C. performed and analysed histological and behavioural experiments, M.E.S. performed electrophysiology experiments and R.D.P. generated CalcaCre knock-in mice. L.S.Z. and R.D.P. provided equipment, reagents and expertise. M.E.C. wrote the manuscript in collaboration with the other authors.

Author Information Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Readers are welcome to comment on the online version of the paper. Correspondence and requests for materials should be addressed to R.D.P. (palmiter@uw.edu).
METHODS

Mice. All experiments were approved by the University of Washington Institutional Animal Care and Use Committee and were performed in accordance with the guidelines described in the US National Institutes of Health Guide for the Care and Use of Laboratory Animals. We used exclusively heterozygous male CalcaCre+/− and AgrpPirCre−/− mice backcrossed onto a C57Bl/6 background, aged 7–9 weeks at the start of experimental procedures and no more than 18 weeks at the end of experimental procedures. Before stereotaxic surgery, mice were group housed and maintained with rodent diet (Picolab, number 5053) and water available ad libitum. We performed experiments on three or four experimental animals (for example, animals transduced with ChR2, hM4Di, hM3Dq) and three or four control animals (for example, animals only transduced with mCherry) at the same time to avoid differences in results between experimental sessions. Animals were randomly assigned to either the experimental or control groups in each litter.

Generation of CalcaCre mice. A 14-kb BstB1–PacI fragment was isolated from a C57Bl/6 mouse BAC clone. A unique SalI site was introduced at the initiation codon of Calca exon 2 by PCR. Next, a 7-kb SpeI–SalI 3′ fragment was cloned into a targeting vector containing a frt-flanked PkgNeo gene for positive selection and PkgNeo and HSV-TK genes for negative selection. This was followed by insertion of a 3′-kb SalI–PacI fragment. The gene encoding the Cre–GFP fusion protein with an amino (N)-terminal myc-tag and nuclear localization signal was cloned into the unique XhoI site adjacent to frt-PkgNeo. The targeting construct was linearized with Ascl and electroporated into G4 hybrid (C57Bl/6 × Sv129) embryonic stem cells. 16 correctly targeted clones were identified out of 96 by Southern blot of EcoRV-digested DNA using a unique probe outside the targeting vector. Several of these clones gave good chimaeras when injected into C57Bl/6/10 hosts. One chimaera was bred with FLPer (Rosa26-Flip recombinase) to get a positive vector. Several of these clones gave good chimaeras when injected into C57Bl/6/10 hosts. One chimaera was bred with FLPer (Rosa26-Flip recombinase) to get a positive vector. Several of these clones gave good chimaeras when injected into C57Bl/6 hosts. One chimaera was bred with FLPer (Rosa26-Flip recombinase) to remove the frt–PkgNeo gene.

Virus production. Cre-dependent pAAV mCherry and ChR2–mCherry (driven by the EF1α promoter) DNA plasmids were provided by K. Deisseroth, and Cre-dependent pAAV hM4Di–mCherry and hM3Dq–mCherry (driven by the human synapsin promoter) DNA plasmids were provided by B. Roth. pAAV synaptophsyn–GFP was generated by fusing the 3′ end of the mouse Synaptophysin coding region with the 5′ end of the GFP coding region. This sequence was then exchanged with mCherry in the pAAV mCherry plasmid to make the transgene Cre-dependent. Recombination-deficient AAV vectors were prepared in human embryonic kidney (HEK293T) cells with AAV1 coat serotype, purified by sucrose and CsCl gradient centrifugation steps, and re-suspended in 1× Hank’s Balanced Saline Solution (HBSS) at a titre of approximately 2×10^11 viral genomes per microlitre. CAV2 Cre was prepared in dog kidney (DK/E1-1) cells, purified by sucrose and CsCl gradient centrifugation steps, and re-suspended in 1× Hank’s Balanced Saline Solution (HBSS) at a titre of approximately 2×10^11 viral genomes per microlitre as described previously. Viral aliquots were stored at −80 °C before stereotaxic injection.

Stereotaxic surgery. At the start of surgical procedures, mice were anesthetized with isoflurane and placed on a stereotaxic frame (David Kopf Instruments). Stereotaxic coordinates for the anterior–posterior plane were normalized using a correction factor (F = 1; Bregma − Lamda distance)/4.21 on the basis of the coordinates of Paxinos and Franklin. Food and water ports were changed daily at the start of the dark cycle. The mice were allowed to acclimate to lickometer cages for 5 days and then baseline food intake was measured for an extra 5 days before experimental procedures. Acute food intake measurements (Figs 2b, c, e, f, 3b and 4d) occurred at the onset of the active period (lights off). Long-term measurements (Fig. 2g, h and 3c, d) occurred over a 24 h period with total food intake and body weight measured approximately 6 h before the onset of the active period. Measurements were performed by an investigator (M.E.C.) with knowledge of the identity of the experimental versus control groups (that is, without blinding).

Photostimulation. After a 14-day recovery period following surgery, mice were individually housed in lickometer cages (Columbus Instruments) supplied with water and liquid diet (Vanilla Ensure, Abbott Laboratories) available ad libitum. Food and water ports were changed daily at the start of the dark cycle. The mice were allowed to acclimate to lickometer cages for 5 days and then baseline food intake was measured for an extra 5 days before experimental procedures. Acute food intake measurements (Figs 2b, c, e, f, 3b and 4d) occurred at the onset of the active period (lights off). Long-term measurements (Fig. 2g, h and 3c, d) occurred over a 24 h period with total food intake and body weight measured approximately 6 h before the onset of the active period. Measurements were performed by an investigator (M.E.C.) with knowledge of the identity of the experimental versus control groups (that is, without blinding).

Histology. Mice were anesthetized with buprenorphine and perfused transcardially with 1× PBS, pH 7.4, followed by 4% paraformaldehyde in PBS. The brains were extracted, allowed to postfix overnight in the same fixative at 4 °C and cryoprotected with 30% sucrose in PBS for 5 days. Each brain was sectioned on 30 μm on a cryostat (Leica Microsystems) and collected in cold 1× PBS.

For immunohistochemistry experiments, sections were washed three times in PBS with 0.2% Triton X-100 (PBST) for 10 min at room temperature. Sections
were then incubated in a blocking solution composed of PBST with 3% normal donkey serum (Jackson ImmunoResearch, number 017-000-121) for 1 h. For primary antibody exposure, sections were incubated in rabbit anti-c-Fos (1:2000, Calbiochem, number PC38), rabbit anti-GFP (1:1000, Invitrogen, number A11122) and/or goat anti-CGRP (1:500, Abcam, number ab36001) in blocking solution at 4 °C for approximately 20 h. After three 10-min washes in PBST, sections were incubated in Alexa Fluor 594 donkey anti-goat IgG (1:200, Jackson ImmunoResearch, number 705-858-147), Alexa Fluor 488 donkey anti-goat IgG (1:200, Jackson ImmunoResearch, number 705-485-147), DyLight 405 donkey anti-goat (1:200, Jackson ImmunoResearch, number 705-475-147) and/or Alexa Fluor 488 donkey anti-rabbit IgG (1:200 Jackson Immunoresearch, number 711-545-152) in block solution for 1 h at room temperature. Finally, sections were washed three times in 1× PBS.

Sections were mounted in PBS onto SuperFrost Plus glass slides (VWR, number 48311-703) and coverslipped with Dapi Fluoromount-G (Southern Biotech, number 0100-20). Slides were stored in the dark at 4 °C before microscopy and image acquisition.

Quantification of co-localization of Fos and mCherry in the PBN (Fig. 1c–j and Supplementary Fig. 7) was performed on adjacent sections from approximately Bregma -2.40 to -2.50 (exactly 21 sections per mouse). Quantification of Fos in the CeAlc (Supplementary Fig. 14a–f) was performed on adjacent sections from approximately Bregma -2.14 to -2.26 (exactly five sections per mouse). A Fos-positive cell was considered located in the CeAlc if it was in the field of mCherry fluorescence in that particular section. An investigator (M.E.C.) blinded to the identity of the conditions used to induce Fos performed all quantification.

Microscopy. Fluorescent and brightfield images were collected on either a Nikon upright epifluorescent microscope with a QImaging Camera (Figs 1b and 4a and Supplementary Figs 1 and 4) or a Zeiss LSM 510 Meta confocal microscope. Images were minimally processed using Photoshop CS5 (Adobe Systems) to enhance brightness and contrast for optimal representation of the data. Low-magnification brightfield images (Figs 1b and 4a and Supplementary Fig. 4) were montaged together to produce a single coronal section. All digital images were processed in the same way between experimental conditions to avoid artificial manipulation between different data sets.

Statistics. We used an online power and sample size calculator to determine an effective sample size for statistical comparisons34 (http://homepage.cs.uiowa.edu/~rlenth/Power/). Assuming a standard deviation of 1.0 and a significance level of 0.05, this calculator shows that with eight mice per group we had an 80% confidence level of achieving statistical significance between means of 1.5-fold with a two-tailed Student’s t-test. We excluded an animal from data analysis if flagged by a University of Washington veterinarian for health reasons during the experimental period or if post hoc histological analysis showed no viral transduction as indicated by an absence of mCherry fluorescence.

All data were analysed using Prism 6.0 (GraphPad Software) as described in the text and Supplementary Statistical Analysis. Data were exported into Illustrator CS5 (Adobe Systems) for preparation of figures.

31. Kremer, E. J., Boutin, S., Chillon, M. & Danos, O. Canine adenovirus vectors: an alternative for adenovirus-mediated gene transfer. J. Virol. 74, 505–512 (2000).
32. Paxinos, G. & Franklin, K. B. J. The Mouse Brain in Stereotaxic Coordinates 4th edn (Elsevier, 2013).
33. Aravanis, A. et al. An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J. Neural Eng. 4, S143–S156 (2007).
34. Lenth, R. V. Some practical guidelines for effective sample size determination. Am. Stat. 55, 187–193 (2001).