Additions and Corrections

Vol. 279 (2004) 6683–6687

A role for iron in an ancient carbonic anhydrase.

Brian C. Tripp, Caleb B. Bell III, Francisco Cruz, Carsten Krebs, and James G. Ferry

Page 6685, Table I: Two errors appear in this table. The 11th row down from the top needs to be moved down one space so that it aligns with "2.37 ± 0.03 zinc" in the "Molar ratio of metal/trimer" column. Also, in the 2nd to last row from the bottom in the "Molar ratio of metal/trimer" column after the numbers "0.27 ± 0.03" should be the word "zinc" (not "inc").

The corrected table is shown below:

Purification	Growth supplementa	Reconstitution metal	Molar ratio of metal/trimer	Effective k_{cat} (×10⁻³ s⁻¹)	K_m (×10⁻³ M)	Effective k_{cat}/K_m (×10⁻³ M⁻¹ s⁻¹)	
Aerobic	Zn²⁺	Zn²⁺	2.76 ± 0.15 zinc	68.1 ± 4.0b	21.8 ± 2.2	31.3 ± 5.1	
	Zn²⁺	Co³⁺	2.37 ± 0.09 cobalt	118.0 ± 10.5b	15.7 ± 2.8	75.3 ± 19.9	
	Zn²⁺	Cu²⁺	1.47 ± 0.06 copper	9.2 ± 0.4c	7.2 ± 0.8	12.9 ± 1.9	
	Zn²⁺	Mn²⁺	2.34 ± 0.08 manganese	5.8 ± 0.5c	22.5 ± 3.4	12.6 ± 0.6	
	Zn²⁺	Ni²⁺	2.37 ± 0.09 nickel	0.7 ± 0.1c	14.2 ± 3.8	0.5 ± 0.1	
	Zn²⁺	Cd²⁺	2.46 ± 0.12 cadmium	5.5 ± 0.3b	22.1 ± 2.0	2.5 ± 0.4	
	Zn²⁺	Mg²⁺	< 0.01 manganesec	NDd	ND	ND	
	Zn²⁺	Fe²⁺	< 0.01 ironc	NDd	ND	ND	
	Fe³⁺	Fe²⁺	2.79 ± 0.12 iron	243.3 ± 22.8b	44.8 ± 7.4	54.4 ± 15.5	
	Fe³⁺	Zn²⁺,Fe²⁺	2.25 ± 0.12 iron	110.2 ± 9.6b	24.6 ± 3.5	44.8 ± 10.4	
	Fe³⁺	Zn²⁺,Fe²⁺,Co²⁺	2.37 ± 0.03 zinc	0.69 ± 0.06 zinc	55.1 ± 7.7e	24.3 ± 5.7	22.7 ± 8.6
	Fe³⁺	No reconstitution	2.70 ± 0.12 iron	206.4 ± 61.7e	26.1 ± 9.3	79.0 ± 51.8	
	Fe³⁺	No reconstitution	0.30 ± 0.03 zinc	30.6 ± 10.3e	40.7 ± 13.3	46.7 ± 26.2	
	Zn²⁺	No reconstitution	1.17 ± 0.03 zinc	190.1 ± 44.4e	40.7 ± 13.3	46.7 ± 26.2	
	No supplementation	No reconstitution	1.89 ± 0.03 iron	275.1 ± 7.7e	46.0 ± 7.8	59.9 ± 17.5	
			0.27 ± 0.03 zinc	0.04 ± 0.01 copper			

a The enzymes were purified from E. coli cultured in medium supplemented with either 0.01 % (w/v) ferric ammonium citrate or 0.5 mM ZnSO₄.

b Effective k_{cat} and k_{cat}/K_m values were obtained by dividing apparent k_{cat} and k_{cat}/K_m values by the molar ratio of metal/monomer.

c Limit of detection.

d ND, not determined.

e Effective k_{cat} and k_{cat}/K_m values were obtained by dividing apparent k_{cat} and k_{cat}/K_m values by the sum of the molar ratio of metals/monomer.

We suggest that subscribers photocopy these corrections and insert the photocopies at the appropriate places where the article to be corrected originally appeared. Authors are urged to introduce these corrections into any reprints they distribute. Secondary (abstract) services are urged to carry notice of these corrections as prominently as they carried the original abstracts.
Dimorphecolic acid is synthesized by the coordinate activities of two divergent Δ^{12}-oleic acid desaturases.

Edgar B. Cahoon and Anthony J. Kinney

Page 12495, line 21 of the Abstract: The notation for the cis-Δ^{12} isomer of dimorphecolic acid should be 9-OH-18:2Δ^{10,12}trans,12cis.

Page 12500, legend to Fig. 5: The notation for the cis-Δ^{12} isomer of dimorphecolic acid should be 9-OH-18:2Δ^{10,12}trans,12cis.

The notation for dimorphecolic acid should be 9-OH-18:2Δ^{10,12}trans,12trans.

These changes do not affect the results or conclusions reported in the paper.
A role for iron in an ancient carbonic anhydrase. Vol. 279 (2004) 6683-6687
Brian C. Tripp, Caleb B. Bell III, Francisco Cruz, Carsten Krebs and James G. Ferry

J. Biol. Chem. 2004, 279:21677.

Access the most updated version of this article at http://www.jbc.org/content/279/20/21677

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 0 references, 0 of which can be accessed free at http://www.jbc.org/content/279/20/21677.full.html#ref-list-1