Differential impact of IDH1/2 mutational subclasses on outcome in adult AML: Results from a large multicenter study

Tracking no: ADV-2021-004934R3

Jan Míldeke (Universitätsklinikum Carl Gustav Carus, Germany) Klaus Metzeler (Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany, Germany) Christoph Röllig (Universitätsklinikum Dresden, Germany) Michael Kramer (University of Dresden, Germany) Jan-Niklas Eckardt (University Hospital Dresden, Germany) Sebastian Stasik (Universitätsklinikum Carl Gustav Carus, Germany) Philipp Greif (LMU Munich, Germany) Karsten Spiekermann (LMU Munich, Germany) Maja Rothenberg-Thurley (LMU Munich, Germany) Utz Krug (Klinikum Leverkusen, Germany) Jan Braess (Krankenhaus Barnsherzri (Bruder, Germany) Alwin Kraemer (German Cancer Research Center (DKFZ) and University of Heidelberg, Germany) Andreas Hochhaus (Universitätsklinikum Jena, Germany) Tim Brümmondorf (Medizinische Klinik und Poliklinik, Abteilung Innere Medizin V, Germany) Ralph Naumann (St. Marien Krankenhaus Siegen, Germany) Björn Steffen (University Hospital Frankfurt a.M., Germany) Hermann Einsele (Universitätsklinikum Würzburg, Germany) Markus Schaich (Remy-Murr-Klinikum Winnenden, Germany) Andreas Burchert (Philips University Marburg, Germany) Andreas Neubauer (Philips University Marburg, and University Hospital Giessen and Marburg, Germany) Dennis Görlich (Westfälische Wilhelms-Universität Münster, Germany) Cristina Sauерlander (Institut für Medizinische Informatik und Biowinhematik, Universität Munster, Germany) Kerstin Schaefer-Eckart (Medizinische Klinik 5, Klinikum Nürnberg, Paracelsus Medizinische Privatuniversität, Nürnberg, Germany) Christoph Schliemann (University Hospital Münster, Germany) Stefan Krause (Uni-Klinikum Erlangen, Germany) Mathias Hänel (Hospital Chemnitz, Germany) Norbert Frickhofen (University Cancer Center Mainz, Germany) Richard Noppeney (UK Essen, Germany) Ulrich Kaiser (St. Bernward Krankenhaus, Germany) Martin Kaufmann (Robert Bosch Hospital Stuttgart, Germany) Desiree Kunadt (Department of Internal Medicine I, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany, Germany) Bernhard Woermann (Charité University Hospital, Germany) Katja Sockel (University Hospital Dresden, Germany) Malte von Bonin (Department of Internal Medicine I, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany, Germany) Tobias Herold (Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany, Germany) Carsten Müller-Tidow (Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Germany) Uwe Platzbecker (Department of Hematology and Cellular Therapy, Medical Clinic and Polyclinic I, Leipzig University Hospital, Germany) Wolfgang Berdel (Universitätsklinikum Muenster, Germany) Hubert Serve (Goethe University Frankfurt, Germany) Claudia Baldus (University Hospital Schleswig-Holstein, Germany) Gerhard Ehniger (University Hospital, Germany) Johannes Schetelig (DKMS Clinical Trials Unit, Dresden, Germany, Germany) Wolfgang Hiddemann (University of Munich, Germany) Martin Bornhäuser (National Center for Tumor Diseases, Dresden (NCT/UCC); German Consortium for Translational Cancer Research (DKTK), DKFZ, Germany, Germany) Friedrich Stölzel (Department of Internal Medicine I, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany, Germany) Christian Thiede (University Hospital Carl Gustav Carus, Germany)

Abstract:
Mutations of the isocitrate dehydrogenase-1 (IDH1) and IDH2 genes are amongst the most frequent alterations in acute myeloid leukemia (AML) and can be found in ~20% of patients at diagnosis. Among 4930 patients (median age 56 years, interquartile range 45-66) with newly diagnosed, intensively treated AML, we have identified IDH1 mutations (mIDH1) in 423 (8.6%) and IDH2 mutations (mIDH2) in 575 (11.7%) patients. Overall, there were no differences in response rates or survival for patients with mIDH1 or mIDH2 compared to patients without mutated IDH1/2. However, distinct clinical and co-mutational phenotypes of the most common subtypes of IDH1/2 mutations could be associated with differences in outcome. IDH1-R132C was associated with significantly increased age, lower white blood cell count (WBC), less frequent co-mutation of NPM1 and FLT3-ITD as well as lower rate of complete remissions and a trend for reduced overall survival (OS) compared to other mIDH1 variants and wtIDH1/2. In our analysis, IDH2-R172K was associated with significantly lower WBC, more karyotype abnormalities, and less frequent co-mutations of NPM1 and/or FLT3-ITD. Among patients within the ELM2017 intermediate- and adverse-risk groups, RFS and OS were significantly better for patients with IDH2-R172K compared to wtIDH, providing evidence that AML with IDH2-R172K could be a distinct entity with a specific co-mutation pattern and favorable outcome. In summary, the presented data from a large cohort of IDH1/2 mutant AML patients indicate novel and clinically relevant findings for the most common IDH1-mutation subtypes.

Conflict of interest: No COI declared

COI notes:
Preprint server: No;

Author contributions and disclosures: GE and MB provided administrative support. GE, MB, JMM, KHM, FS, and CT designed the study. All authors collected clinical and/or genetic data. JMM, KHM, MK, J-NE, FS, and CT analyzed and interpreted the data and wrote the paper. All authors approved the manuscript, gave their final approval for publication, and agreed to be accountable for all aspects of the work.

Non-author contributions and disclosures: No;

Agreement to Share Publication-Related Data and Data Sharing Statement: For original data, please contact jannoritz.mindeke@ukdd.de

Clinical trial registration information (if any):
Differential impact of IDH1/2 mutational subclasses on outcome in adult AML: Results from a large multicenter study

Jan M. Middeke1,*, Klaus H. Metzeler2,3,*, Christoph Röllig1, Michael Kramer1, Jan–Niklas Eckardt1, Sebastian Stasik1, Philipp A. Greif2, Karsten Spiekermann2, Maja Rothenberg-Thurley2, Utz Krug4, Jan Braess5, Alwin Krämer6, Andreas Hochhaus7, Tim H. Brümmendorf8, Ralph Naumann9, Björn Steffen10, Hermann Einsele11, Markus Schaich12, Andreas Burchert13, Andreas Neubauer13, Dennis Görlich14, Cristina Sauerland14, Kerstin Schäfer-Eckart15, Christoph Schliemann16, Stefan W. Krause17, Mathias Hänel18, Norbert Frickhofen19, Richard Noppeney20, Ulrich Kaiser21, Martin Kaufmann22, Desiree Kunadt1, Bernhard Wörmann22, Katja Sockel1, Malte von Bonin1, Tobias Herold2, Carsten Müller-Tidow6, Uwe Platzbecker3, Wolfgang E. Berdel16, Hubert Serve18, Claudia D. Baldus23, Gerhard Ehninger1, Johannes Schetelig1,24, Wolfgang Hiddemann2, Martin Bornhäuser1,25,26, Friedrich Stölzel14, and Christian Thiede1,27, for the AML Cooperative Group (AMLCG) and Study Alliance Leukemia (SAL)

* contributed equally

Running head: IDH mutations in AML

1 Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, Dresden, Germany; 2 Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany; 3 Klinik und Poliklinik für Hämatologie, Zelltherapie und Hämostaseologie, Universitätsklinikum Leipzig, Leipzig, Germany; 4 Medizinische Klinik III, Klinikum Leverkusen, Leverkusen, Germany; 5 Krankenhaus Barmherzige Brüder Regensburg, Regensburg, Germany; 6 Universität Heidelberg, Medizinische Klinik und Poliklinik, Abteilung Innere Medizin V, Heidelberg, Germany; 7 Klinik für Innere Medizin II, Universitätsklinikum Jena, Jena, Germany; 8 Medizinische Klinik IV, Uniklinik RWTH Aachen, Aachen, Germany; 9 Medizinische Klinik III, St. Marien-Krankenhaus Siegen, Siegen, Germany; 10 Medizinische Klinik 2, Hämatologie/Onkologie, Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany; 11 Medizinische Klinik und Poliklinik II, Universitätsklinikum
Corresponding author: Jan Moritz Middeke, MD

Medizinische Klinik und Poliklinik I
Universitätsklinikum Carl Gustav Carus
Fetscherstr. 74
01307 Dresden
Phone: +49-0351-458-15603
Fax: +49-0351-458-4373
E-mail: janmoritz.middede@ukd.de
Mutations of the isocitrate dehydrogenase-1 (IDH1) and IDH2 genes are amongst the most frequent alterations in acute myeloid leukemia (AML) and can be found in ~20% of patients at diagnosis. Among 4930 patients (median age 56 years, interquartile range 45-66) with newly diagnosed, intensively treated AML, we have identified IDH1 mutations (mIDH1) in 423 (8.6%) and IDH2 mutations (mIDH2) in 575 (11.7%) patients. Overall, there were no differences in response rates or survival for patients with mIDH1 or mIDH2 compared to patients without mutated IDH1/2. However, distinct clinical and co-mutational phenotypes of the most common subtypes of IDH1/2 mutations could be associated with differences in outcome.

IDH1-R132C was associated with significantly increased age, lower white blood cell count (WBC), less frequent co-mutation of NPM1 and FLT3-ITD as well as lower rate of complete remissions and a trend for reduced overall survival (OS) compared to other mIDH1 variants and wtIDH1/2.

In our analysis, IDH2-R172K was associated with significantly lower WBC, more karyotype abnormalities, and less frequent co-mutations of NPM1 and/or FLT3-ITD. Among patients within the ELN2017 intermediate- and adverse-risk groups, RFS and OS were significantly better for patients with IDH2-R172K compared to wtIDH, providing evidence that AML with IDH2-R172K could be a distinct entity with a specific co-mutation pattern and favorable outcome.

In summary, the presented data from a large cohort of IDH1/2 mutant AML patients indicate novel and clinically relevant findings for the most common IDH-mutation subtypes.
Key Points:
- Patients with IDH1-R132C have a lower CR rate and a trend for reduced OS
- Patients with IDH2-R172K in the ELN intermediate/adverse-risk group have a significantly better RFS and OS

Keywords: acute myeloid leukemia, IDH1 mutation, IDH2 mutation
INTRODUCTION

Isocitrate dehydrogenase-1 (IDH1), localized in the cytoplasm and IDH2, localized in mitochondria, belong to a group of catalytic enzymes involved in cellular metabolism and response to oxidative damage. They are encoded by the IDH1 and IDH2 genes located on chromosome 2 band q33 and chromosome 15 band q26, respectively. Physiologically, their main function is the oxidative decarboxylation of isocitrate to α-ketoglutarate (α-KG) as part of the citric acid cycle.

Somatic mutations of IDH1 and IDH2 genes are among the most frequent alterations in acute myeloid leukemia (AML). They can be found in ~20% of patients at diagnosis, with IDH2 mutations occurring more frequently, and appear to be early events in leukemogenesis.

There are inconsistent results regarding the impact of IDH1 and IDH2 mutations on patient outcomes with respect to complete remission (CR) rate, relapse-free survival (RFS) and overall survival (OS). These conflicting results are possibly explained by the differential effects of certain subtypes of mutations. While mutations at the “hotspots” IDH1 codon 132, IDH2 codon R140 and IDH2 codon R172 share the functional consequence of increased 2-HG production, several lines of evidence suggest that there are important differences in the biology of these mutation types.

For example, IDH1 gene mutations in glioma predominantly involve the R132H substitution (found in >80% of patients), while in AML the R132C and R132H mutations are found at comparable frequencies.

In addition, the co-mutation spectrum differs between different types of IDH1/IDH2 mutations. Consequently, IDH2-R172K has recently been suggested to define a
distinct genomic category of AML being mutually exclusive from NPM1 mutations and
other class-defining lesions and yielding favorable outcome²,⁶.

Recently, IDH inhibitors have been established as targeted therapies with Ivosidenib⁸
and Enasidenib⁹ showing promising results in AML patients with relapsed or refractory disease. They are currently under further investigation as mono-therapy as well as in combination with multiple other established treatments in AML.

A detailed analysis of clinical and genetic associations with prognosis is needed to thoroughly assess the impact of the different subtypes of leukemia-associated
IDH1/IDH2 gene mutations, which is only feasible in a large enough cohort of AML patients.

We therefore analyzed a large group of newly diagnosed AML patients receiving intensive treatment to investigate the impact of IDH1/2 mutations on outcome.

PATIENTS AND METHODS

Patient population

All AML patients consecutively enrolled into intensive AML treatment protocols or the patient registries of the SAL and AML-CG study groups with sufficient biomaterial available were included in this analysis. All patients received intensive chemotherapy based on anthracyclines in combination with cytarabine within the following clinical trials: AML96¹⁰, AML2003¹¹, AMLCG1999¹², AML60+¹³, AMLCG2008¹⁴, and SORAML¹⁵ or enrolled onto the prospective SAL AML registry (NCT03188874).

Detailed information on treatment regimens used are provided in the corresponding publications. Patients were not treated with IDH1/2-inhibitors. The study was conducted in accordance to the Declaration of Helsinki and approved by the
responsible ethics committees. Only data from patients who have signed informed consent on analyses of data were included.

Molecular analysis

Screening for *IDH1* and *IDH2* mutations was performed using genomic DNA isolated from pre-treatment bone marrow (BM) or peripheral blood (PB) samples. Patients enrolled in SAL trials were screened by denaturing high performance liquid chromatography (DHPLC) as described previously\(^{16}\). All samples with an aberrant DHPLC-chromatogram were analyzed by Sanger sequencing or by sensitive ultradeep NGS\(^{17}\). In addition, a subset of SAL patients was analyzed using an NGS panel-based approach focusing on genes frequently mutated in hematopoietic disease (TruSight Myeloid Panel, Illumina)\(^{18}\). Both methods were concordant in all samples analyzed with both procedures. The lower limit of detection (LLOD) of these methods was 0.1% (ultradeep NGS) and 1-5% (DHPLC, panel NGS). All patients enrolled in AML-CG trials were analyzed using a custom targeted NGS assay\(^{19}\). Mutations in *FLT3* and *NPM1* were analyzed as described in detail in previous work\(^{20,21}\).

Definitions

De novo AML excludes patients with previous malignancy and treatment with chemotherapy and/or radiotherapy. AML in patients with a documented history of myelodysplasia or myeloproliferative disorders were considered as secondary AML (sAML). Therapy-associated myeloid neoplasm (t-MN) comprised patients with prior exposure to chemotherapy and/or radiation therapy. CR and OS were defined according to the current ELN criteria\(^{22}\).
Statistical analysis

CR rate and OS are reported for the whole cohort. Cox regression, stratified for the different study protocols, was used to compare survival and to estimate univariate and adjusted hazard ratios. For the binary endpoint of complete remission, logistic regression models were fitted to estimate univariate and adjusted odds ratios.

To compare categorical variables between mutational groups, the Chi squared test was used. Continuous variables were compared with the Kruskal-Wallis test.

RESULTS

IDH1 and IDH2 mutations

In the entire cohort (n=4930) we found IDH1 mutations (mIDH1) in 423 (8.6%) and IDH2 mutations (mIDH2) in 575 (11.7%) patients. Fourteen patients (0.3%) harboured both, an IDH1 and IDH2 mutation. The median follow-up for patients alive was 88 months (95%-CI: 85.9-91.0). Table 1 summarizes the patients’ characteristics. The median age for all patients was 56 years (interquartile range (IQR), 45-66). NPM1, FLT3-ITD and CEBPA mutations were found in 32%, 22% and 7% (of which 54% were bi-allelic) of the patients, respectively.

The median variant allele fraction (VAF) for IDH mutations was 38% (IQR: 30-43) with no difference in VAF between mutational subgroups (Supplement Tbl.1).

Compared to wild-type IDH1/2 (wtIDH1/2), patients with mutated IDH1/2 showed significantly lower WBC (p=.002), were more likely to have a normal karyotype (p<.001) and were more often accompanied by mutated NPM1 (p<.001). A detailed table of differences between wtIDH1/2 and mIDH1/2 is provided in the Supplements.
Supplement Tbl.2. Overall, no significant differences were observed between patients with wt IDH and those with mIDH1 or mIDH2 regarding CR rate (73% [95%-CI: 72-75%], 69% [95%-CI: 64-73], and 73% [95%-CI: 69-77%] p=.17), median RFS (17 vs. 17 vs. 18 months, respectively, p=.52) and median OS (20 vs. 18 vs. 22 months respectively, p=.58) as shown in Fig. 1. However, IDH mutational status influenced OS in distinct ELN2017 subgroups (Fig. 2). In the ELN2017 favorable-risk category, mutations in IDH1/2 were associated with worse OS than wt IDH1/2 (mIDH1 HR=1.43 [95%-CI: 1.14-1.79], p<.01 and mIDH2 HR=1.39 [95%-CI: 1.13-1.72], p<.01). In ELN2017 adverse-risk category mIDH2 did not significantly affect OS, while there was a trend towards poorer survival for mIDH1 (HR=1.31 [95%-CI: 1.00-1.73], p=.0542), while mIDH2 did not associate with OS. There was no impact of mIDH1/2 on OS in the ELN2017 intermediate-risk category.

IDH1 mutational variants

The most common IDH1 variants were R132C, (n= 179 patients, 42%) and R132H, (n=177 patients, 42%). Other IDH1 mutations were R132G identified in 7%, R132S in 4%, and R132L in 5% of the IDH1 mutated patients. As previous analyses have suggested differences in outcome according to individual amino acid exchanges⁵, we analyzed these individual groups in more detail.

In IDH1-mutated patients, we observed significant differences in baseline characteristics (Table 2) between the two most common mutational subtypes – R132C and R132H. Patients carrying the R132C mutation were older (60 vs. 54 years, p<.001), had lower WBC (4.3 vs. 22.5 Gpt/L, p<.001) and were less likely to have additional NPM1 (24% vs. 71%, p<.001), and/or FLT3-ITD mutations (10% vs. 27%, p<.001) than those with the R132H variant. **Patients with the R132C mutation**
frequently showed frequent co-mutations in DNMT3A (53%), NPM1 (25%) and RUNX1 (21%). The R132H variant was frequently associated with mutations of NPM1 (78%), DNMT3A (50%), PTPN11 (25%) as well as FLT3-ITD (23%) and -TKD (19%) (Fig. 3A). Further, in patients with an FLT3-ITD mutation the median ITD-to-wildtype ratio was significantly lower in patients with an R132C mutation (0.3 vs. 0.7, \(p = .029 \)). Patients with R132C had more often secondary AML compared to R132H (16% vs. 7%) and were less likely to have a normal karyotype (63.5% vs. 83.5%, \(p < .001 \)). Given this, R132C mutations were underrepresented in ELN2017 favorable-risk category (21% vs. 63%, \(p < .001 \), but were more often grouped into ELN2017 intermediate- (51% vs. 28%, \(p < .001 \)) and adverse-risk categories (28% vs. 9%, \(p < .001 \)) compared to R132H mutations. In a univariate analysis, the CR rate was significantly lower in patients with IDH1-R132C compared to those with the R132H variant (62% [95%-CI: 54-69] vs. 77% [95%-CI: 70-83], OR 0.48 [95%-CI: 0.30-0.76], \(p = .002 \)) and wt IDH1/2 (62% [95%-CI: 54-69] vs. 73% [95%-CI: 72-75], \(p = .003 \)) while RFS and OS did not differ. In multivariate analysis including age, WBC, type of AML, and ELN2017 risk, the CR rate was significantly lower in patients with the IDH1-R132C compared to other mIDH1 (OR = 0.63 [95%-CI: 0.43-0.92], \(p = .016 \), Supplement Tbl. 3.1). For OS, univariate analysis showed reduced survival for R132C compared to R132H mutated patients, without reaching statistical significance (15 months [95%-CI: 12-22] vs. 23 months [95%-CI: 16-36], HR 1.18 [95%-CI: 0.91-1.53] \(p = .22 \)) (Fig. 4A). There was no significant impact of R132C or R132H mutations on OS within the different ELN2017 risk categories.

For the less common mIDH1 mutational variants - R132G, R132S, and R132L - we found significantly lower CR rates in a multivariate analysis including WBC, type of AML, FLT3-ITD, NPM1, and ELN2017 risk (OR = 0.52 [95%-CI: 0.28 to 0.96], \(p = .036 \)).
supplement Tbl. 3.2), with no differences in between the subgroups (Supplement Tbl. 43). For RFS and OS there was no significant difference compared to other mIDH1 variants.

IDH2 mutational variants

Among mIDH2, 438 patients had the R140Q (77%) and 110 patients the R172K (19%) substitution. Rarely found were R140G (1%), R140L (1%), and R172S (0.2%) mutations. For patients with mIDH2, R172K was associated with a significantly lower WBC at diagnosis ($p<.001$), higher platelet count ($p<.001$), a lower rate of normal karyotype ($p<.001$), higher rate of trisomy 8 ($p<.01$), and was less frequently accompanied by NPM1 ($p<.001$) and/or FLT3-ITD ($p<.001$) mutations compared to variants at R140. Patients with IDH2-R172K mutations were less likely to be in the ELN2017 favorable-risk category (2% vs. 43%, $p<.001$) and were more often in the intermediate- (59% vs. 35%, $p<.001$) and adverse-risk category (39% vs. 22%, $p<.001$) compared to those with R140 variants (Table 2). Patients with the R140Q variant often carried co-mutations in NPM1 (50%), DNMT3A (38%), SRSF2 (31%) and FLT3-ITD (28%), while the most frequent co-mutations in patients carrying the R172K variant were DNMT3A (76%) and ASXL1 (20%); (Fig. 3A).

Overall, there was no significant difference when we compared R172K to variants at R140 in CR rate (73% [95%-CI: 63-81] vs. 73% [95%-CI: 69-77], $p=.99$, OR=0.97 [95%-CI 0.61-1.55], $p=.90$). However, Likewise, RFS (28 months [95%-CI: 17-50] vs. 17 months [95%-CI: 14-24], $p=.22$, HR=0.92 [95%-CI: 0.68-1.23], $p=.57$) and OS (26 months [95%-CI: 22-46] vs. 19 months [95%-CI: 16-27], $p=.21$, HR=0.89 [95%-CI: 0.68-1.17], $p=.40$) were not significantly different between the groups. Likewise, for patients with R172K mutation, although this difference was not statistically
significant (Fig. 4B). However, in multivariate analysis including age, WBC, ELN risk, type of AML, and mutational variants of mIDH_1 and mIDH_2, IDH_2-R172K was identified as an independent predictor of improved RFS (HR= 0.675 [95%-CI: 0.50-0.92], $p= .013$) and OS (HR= 0.737 [95%-CI: 0.57-0.95], $p=.018$) compared to other $\text{mIDH}_1/2$ (supplemental Tbl. 3.3).

As only two patients with the IDH_2-R172K mutation were in the favourable-risk group, we focused on the ELN2017 intermediate- and adverse-risk groups in more detail to investigate the impact of different IDH_2 mutations. While again no difference was observed in the CR rate, OS was significantly longer in patients harbouring IDH_2-R172K mutations (n=105) in univariate testing (26 months [95%-CI: 22-49] vs. 13 months [95%-CI: 10-17], HR=0.68 [95%-CI 0.5-0.9], $p=.003$) compared to those with the R140Q mutation (n=231) (Fig. 4). In a multivariate analysis including age, WBC, type of AML, ELN2017 risk as well as the different subtypes of $\text{mIDH}_1/2$, we found that patients harbouring the R172 mutation had a significant improved OS compared to wt $\text{IDH}_1/2$ patients with a HR of 0.72 (95%-CI: 0.56-0.93, $p= .012$, supplemental Tbl. 3.3). In contrast, the R140Q mutation as well as IDH_1 mutations did not have a significant impact. This effect was more pronounced within the ELN2017 adverse-risk category where the IDH_2-R172K was associated with a significantly better OS (HR=0.59 [95%-CI: 0.41-0.86], $p<.015$) while within the ELN2017 intermediate-risk category there was a trend towards improved OS for IDH_2-R172K (HR=0.73 [95%-CI: 0.52-1.04], $p=.3108$) (Fig. 2B, Fig.5) in univariate analysis.

Based on the current ELN2017 classification, the treatment of patients with FLT3 and/or NPM1 mutation is clearly defined. Given the strong correlation between IDH_2 mutation subtypes and NPM1 and FLT3 mutations, we aimed to specific impact of
IDH1/2 mutations in investigated the subset of patients with mIDH2 but without NPM1 or FLT3-ITD mutations \((n=294)\). While again CR rate did not differ for R172K compared to R140Q, RFS (33 months [95%-CI: 17-50] vs. 12 months [95%-CI: 9-18], \(p<.01\)), and OS (27 months [95%-CI: 23-52] vs. 14 months [95%-CI: 10-19], \(p<.01\), \(OR=0.68\) [95%-CI:0.50-0.93], \(p=.02\)) were significantly better for R172K, irrespectively of ELN2017 risk groups (Supplement Fig.1).

Co mutations in IDH1/2 patients and effect on outcome

Due to the heterogenous co-mutation spectrum of the different IDH mutations subtypes, we investigated the impact of these mutations on outcome (restricted to a prevalence of >15% per subgroup). Next-Generation Sequencing showed frequent co-mutations of mIDH variants predominantly in epigenetic modifiers, especially DNMT3A for all variants, while mutations in genes affecting signaling pathway were most frequently found in mIDH1-R132H. NPM1 was frequently associated with mIDH1-R132C, -R132H and mIDH2-R140Q, however it was only very rarely found in patients with it was almost exclusive with mIDH2-R172K (Fig. 3A).

The results of this analysis clearly indicated a profound effect of the presence of NPM1 mutations on outcome, irrespective of the subbed accompaning mutational variant of mIDH. We also saw a negative prognostic effect of the presence of DNMT3a mutations in patients with IDH1 R312C. None of the other common co-mutations tested had a significant effect in any of the given subgroups (Fig. 3B).
DISCUSSION

We have analyzed a cohort of 4930 patients diagnosed with AML with respect to their IDH1/2 mutational status. In concordance with recent reports, we found IDH1/2 to be mutated in ~20% of AML cases with mIDH2 being slightly more common than mIDH1. Overall, mIDH1/2 was associated with a significantly lower WBC, a higher proportion of cases with normal karyotype and was more often accompanied by NPM1 mutations. In general, there was no difference in outcome between mIDH1/2 and wtIDH1/2 patients in our analysis. As previous reports showed conflicting results concerning the prognostic value of IDH1/2 mutational status on outcome with several reports suggesting an adverse impact, while others found a beneficial/favorable or no impact at all, we focused on the mutational variants of mIDH1 and mIDH2.

We found comparable proportions of different IDH gene variants as reported in previous cohorts. Patients with IDH1-R132C were significantly older, had fewer NPM1 and FLT3-ITD mutations and were less likely to have a normal karyotype. Hence, they were underrepresented in the favorable-risk group according to ELN2017 when compared to other mIDH1 variants. While CR rate for patients with mIDH1-R132C was lower in comparison to IDH1-R132H, RFS and OS did not differ. Wagner et al. also did not report an adverse outcome for IDH1-R132C, but identified an adverse impact on outcome for a single nucleotide polymorphism located in codon 105 in the same exon as the IDH1 R132 variant.

The mIDH2 variant R172 was recently suggested as a new provisional AML entity given its co-mutational landscape and improved outcome. Papaemmanuil et al. analyzed 1540 AML samples and found AML with IDH2-R172 (1%) to be mutually exclusive with NPM1 and other class-defining lesions, Meggendorfer et al.
demonstrated a favorable outcome for patients harboring the \textit{IDH2-R172} mutation in a study population of 306 \textit{mIDH1/2} de novo AML patients. These results, however, are not undisputed. The accumulation of the oncometabolite 2-HG leads to enhanced proliferation and blocked differentiation of immature hematopoietic cells and \textit{IDH2-R172} has been shown to induce higher levels of (R)-2-HG than \textit{IDH2-R140}. Serum-2-HG has been shown to be a prognostic indicator with higher levels of 2-HG yielding unfavorable outcome. DiNardo et al. found a trend for inferior OS for AML patients harboring \textit{IDH2-R172} (n=9/223) in CR after induction chemotherapy who showed higher levels of serum-2-HG. Regarding \textit{mIDH1-R132H}, Losman et al. demonstrated increased 2-HG levels compared to wtIDH in an in vitro model with TF-1 erythroleukemia cells and report a blockage of differentiation in hematopoiesis triggered by the R-enantiomer of 2-HG. However, further evidence is needed to provide a better molecular understanding of the interplay between \textit{IDH} mutational subtypes and 2-HG activity, especially with respect to clinical outcomes. Recently, Duchmann et al. reported the impact of \textit{IDH1}, \textit{IDH2-R140} and \textit{IDH2-R172} associated with different co-mutations. The proportions of different \textit{IDH} variants were comparable to our study. In line with our study, Duchmann et al. reported \textit{IDH2-R172} to be associated with fewer co-mutations and to be mutually exclusive with \textit{NPM1}. In their analysis, co-mutations of \textit{NPM1} and \textit{IDH2-R140} or \textit{IDH1-R132} were associated with higher rates of CR and co-mutations of \textit{NPM1} and \textit{IDH2-R140} had significantly prolonged OS, but in contrast to our findings and other recent studies they did not find an association with favorable outcomes for \textit{IDH2-R172}. While Duchmann et al. refer to the ELN2010 classification for subgroup analysis, we used the more recent ELN2017 classification.
In our study, patients with IDH2-R172K showed lower WBC, a lower rate of normal karyotype and were very rarely accompanied by NPM1 and FLT3-ITD mutations. Within the ELN2017 adverse-risk group, IDH2-R172K was associated with a significantly improved RFS and OS, while in ELN2017 intermediate-risk patients there was a trend towards improved RFS and OS, although statistical significance was not reached, even in this large data set. First, this provides further evidence for improved outcome of AML with IDH2-R172K without other class-defining lesions, thereby yielding potential implications in future patient care and treatment selection. Second, this highlights the need for coordinated multicenter ‘big data’ efforts like the HARMONY consortium⁴¹ to illuminate the clinical and biological importance of rare mutations in myeloid neoplasms.

It is important to be noted, that patients in our study were not treated with specific IDH inhibitors. The advent of targeted therapy with mIDH inhibitors like ivosidenib⁸ and enasidenib⁹ warrants new studies to evaluate the outcome for different mutational sub-variants of mIDH1/2 mutations in response to selective inhibitors.

Further, in older AML patients ineligible for intensive chemotherapy IDH mutational status has an impact on response to therapy with hypomethylating agents (HMA) and/or the BCL2 inhibitor venetoclax⁴². For venetoclax, as single agent or in combination with HMA, several recent studies found significantly improved response rates and OS in older AML patients harboring mIDH1/2, especially for mIDH2⁴³-⁴⁷.

A variety of ongoing trials is set to further illuminate the effects of targeted therapies and hypomethylating agents in mIDH AML with some specifically investigating the impact of different mutational variants on treatment response and outcome (NCT 03471260⁴⁸, NCT 02677929⁴⁹, NCT 03683433, NCT 03383575, NCT 02719574, NCT 03173248).
In conclusion, we have analyzed a large cohort of AML patients for the prevalence and prognostic impact of IDH mutations. A detailed analysis of different mutation variants revealed distinct clinical and co-mutational features of miIDH1-R132C and we provide additional evidence in support of delineating miIDH2-R172K as a distinct entity based on its co-mutational landscape and significant impact on outcome. The differences in outcomes of distinct mutation variants of miDH need to be considered in future trials. Our analysis serves as a benchmark for future studies incorporating novel agents to show improvements compared to conventional intensive regimens.

Acknowledgements

The authors thank all patients and caretakers for their support of the trials, and all SAL and AMLCG centres for their commitment in the conduction of the respective trials and registry.

Contribution: GE and MB provided administrative support. GE, MB, JMM, KHM, FS, and CT designed the study. All authors collected clinical and/or genetic data. JMM, KHM, MK, J-NE, FS, and CT analyzed and interpreted the data and wrote the paper. All authors approved the manuscript, gave their final approval for publication, and agreed to be accountable for all aspects of the work.
Conflict-of-interest disclosure: The authors declare no competing financial interests.

Correspondence: Jan Moritz Middeke, Medical Department I, University Hospital Carl Gustav Carus, Fetscherstr. 74, 01307 Dresden, Germany, e-mail: janmoritz.middleke@ukdd.de

REFERENCES

1. Willander K, Falk IJ, Chaireti R, et al. Mutations in the isocitrate dehydrogenase 2 gene and IDH1 SNP 105C > T have a prognostic value in acute myeloid leukemia. Biomarker research. 2014;2:18. doi:10.1186/2050-7771-2-18

2. Papaemmanuil E, Gerstung M, Bullinger L, et al. Genomic Classification and Prognosis in Acute Myeloid Leukemia. New England Journal of Medicine. 2016;374(23):2209-2221. doi:10.1056/NEJMoa1516192

3. Im AP, Sehgal AR, Carroll MP, et al. DNMT3A and IDH mutations in acute myeloid leukemia and other myeloid malignancies: associations with prognosis and potential treatment strategies. Leukemia. 2014;28(9):1774-1783. doi:10.1038/leu.2014.124

4. Yang H, Ye D, Guan KL, Xiong Y. IDH1 and IDH2 mutations in tumorigenesis: Mechanistic insights and clinical perspectives. Clinical Cancer Research. Published online 2012. doi:10.1158/1078-0432.CCR-12-1773

5. Medeiros BC, Fathi AT, Dinardo CD, Pollyea DA, Chan SM, Swords R. Isocitrate dehydrogenase mutations in myeloid malignancies. Leukemia. 2017;31(2):272-281. doi:10.1038/leu.2016.275

6. Meggendorfer M, Cappelli LV, Walter W, et al. IDH1R132, IDH2R140 and IDH2R172 in AML: different genetic landscapes correlate with outcome and may influence targeted treatment strategies. Leukemia. 2018;32(5):1249-1253. doi:10.1038/s41375-018-0026-z

7. Yan H, Parsons DW, Jin G, et al. IDH1 and IDH2 Mutations in Gliomas. New England Journal of Medicine. 2009;360(8):765-773. doi:10.1056/NEJMoa0808710
8. DiNardo CD, Stein EM, de Botton S, et al. Durable Remissions with Ivosidenib in IDH1-Mutated Relapsed or Refractory AML. *New England Journal of Medicine*. 2018;378(25):2386-2398. doi:10.1056/NEJMoA1716984

9. Stein EM, DiNardo CD, Pollyea DA, et al. Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. *Blood*. Published online 2017. doi:10.1182/blood-2017-04-779405

10. Röllig C, Thiede C, Gramatzki M, et al. A novel prognostic model in elderly patients with acute myeloid leukemia: Results of 909 patients entered into the prospective AML96 trial. *Blood*. Published online 2010. doi:10.1182/blood-2010-01-267302

11. Schaich M, Parmentier S, Kramer M, et al. High-dose cytarabine consolidation with or without additional amsacrine and mitoxantrone in acute myeloid leukemia: results of the prospective randomized AML2003 trial. *Journal of clinical oncology: official journal of the American Society of Clinical Oncology*. 2013;31(17):2094-2102. doi:10.1200/JCO.2012.46.4743

12. Buchner T, Berdel WE, Haferlach C, et al. Long-Term Results in Patients with Acute Myeloid Leukemia (AML): The Influence of High-Dose AraC, G-CSF Priming, Autologous Transplantation, Prolonged Maintenance, Age, History, Cytogenetics, and Mutation Status. Data of the AMLCG 1999 Trial. *Blood*. 2009;114(22):485. doi:10.1182/blood.V114.22.485.485

13. Röllig C, Kramer M, Gabrecht M, et al. Intermediate-dose cytarabine plus mitoxantrone versus standard-dose cytarabine plus daunorubicin for acute myeloid leukemia in elderly patients. *Annals of Oncology*. Published online 2018. doi:10.1093/annonc/mdy030

14. Braess J, Amler S, Kreuzer K-A, et al. Sequential high-dose cytarabine and mitoxantrone (S-HAM) versus standard double induction in acute myeloid leukemia—a phase 3 study. *Leukemia*. 2018;32(12):2558-2571. doi:10.1038/s41375-018-0268-9

15. Röllig C, Serve H, Hüttmann A, et al. Addition of sorafenib versus placebo to standard therapy in patients aged 60 years or younger with newly diagnosed acute myeloid leukaemia (SORAML): A multicentre, phase 2, randomised controlled trial. *The Lancet Oncology*. Published online 2015. doi:10.1016/S1470-2045(15)00362-9

16. Damm F, Thol F, Hollink I, et al. Prevalence and prognostic value of IDH1 and IDH2 mutations in childhood AML: a study of the AML-BFM and DCOG study groups. *Leukemia*. 2011;25(11):1704-1710. doi:10.1038/leu.2011.142

17. Stasik S, Schuster C, Ortlepp C, et al. An optimized targeted Next-Generation Sequencing approach for sensitive detection of single nucleotide variants. *Biomol Detect Quantif*. 2018;15:6-12. doi:10.1016/j.bdq.2017.12.001
18. Gebhard C, Glatz D, Schwarzfischer L, et al. Profiling of aberrant DNA methylation in acute myeloid leukemia reveals subclasses of CG-rich regions with epigenetic or genetic association. Leukemia. 2019;33(1):26-36. doi:10.1038/s41375-018-0165-2

19. Metzeler KH, Herold T, Rothenberg-Thurley M, et al. Spectrum and prognostic relevance of driver gene mutations in acute myeloid leukemia. Blood. 2016;128(5):686-698. doi:10.1182/blood-2016-01-693879

20. Thiede C, Creutzig E, Illmer T, et al. Rapid and sensitive typing of NPM1 mutations using LNA-mediated PCR clamping. Leukemia. 2006;20(10):1897-1899. doi:10.1038/sj.leu.2404367

21. Thiede C, Steudel C, Mohr B, et al. Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood. 2002;99(12):4326-4335. doi:10.1182/blood.v99.12.4326

22. Döhner H, Estey E, Grimwade D, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129(4):424-447. doi:10.1182/blood-2016-08-733196

23. Aref S, Kamel Areida ES, Abdel Aaal MF, et al. Prevalence and Clinical Effect of IDH1 and IDH2 Mutations Among Cytogenetically Normal Acute Myeloid Leukemia Patients. Clin Lymphoma Myeloma Leuk. 2015;15(9):550-555. doi:10.1016/j.clml.2015.05.009

24. Marcucci G, Maharry K, Wu Y-Z, et al. Novel molecular subsets within de novo cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol. 2010;28(14):2348-2355. doi:10.1200/JCO.2009.27.3730

25. Feng J-H, Guo X-P, Chen Y-Y, Wang Z-J, Cheng Y-P, Tang Y-M. Prognostic significance of IDH1 mutations in acute myeloid leukemia: a meta-analysis. Am J Blood Res. 2012;2(4):254-264.

26. Yamaguchi S, Iwanaga E, Tokunaga K, et al. IDH1 and IDH2 mutations confer an adverse effect in patients with acute myeloid leukemia lacking the NPM1 mutation. Eur J Haematol. 2014;92(6):471-477. doi:10.1111/ejh.12271

27. Paschka P, Schlenk RF, Gaidzik VI, et al. IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication. J Clin Oncol. 2010;28(22):3636-3643. doi:10.1200/JCO.2010.28.3762

28. Patel JP, Gönen M, Figueroa ME, et al. Prognostic Relevance of Integrated Genetic Profiling in Acute Myeloid Leukemia. New England Journal of Medicine. 2012;366(12):1079-1089. doi:10.1056/NEJMoa1112304
29. Chou W-C, Lei W-C, Ko B-S, et al. The prognostic impact and stability of Isocitrate dehydrogenase 2 mutation in adult patients with acute myeloid leukemia. *Leukemia*. 2011;25(2):246-253. doi:10.1038/leu.2010.267

30. Abbas S, Lugthart S, Kavelaars FG, et al. Acquired mutations in the genes encoding IDH1 and IDH2 both are recurrent aberrations in acute myeloid leukemia: prevalence and prognostic value. *Blood*. 2010;116(12):2122-2126. doi:10.1182/blood-2009-11-250878

31. Wagner K, Damm F, Göhring G, et al. Impact of IDH1 R132 mutations and an IDH1 single nucleotide polymorphism in cytogenetically normal acute myeloid leukemia: SNP rs11554137 is an adverse prognostic factor. *J Clin Oncol*. 2010;28(14):2356-2364. doi:10.1200/JCO.2009.27.6899

32. Chotirat S, Thongnoppakhun W, Promsuwicha O, Boonthimat C, Auewarakul CU. Molecular alterations of isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) metabolic genes and additional genetic mutations in newly diagnosed acute myeloid leukemia patients. *J Hematol Oncol*. 2012;5:5. doi:10.1186/1756-8722-5-5

33. DiNardo CD, Ravandi F, Agresta S, et al. Characteristics, clinical outcome, and prognostic significance of IDH mutations in AML. *Am J Hematol*. 2015;90(8):732-736. doi:10.1002/ajh.24072

34. Losman J-A, Looper RE, Koivunen P, et al. (R)-2-hydroxyglutarate is sufficient to promote leukemogenesis and its effects are reversible. *Science*. 2013;339(6127):1621-1625. doi:10.1126/science.1231677

35. Ward PS, Lu C, Cross JR, et al. The potential for isocitrate dehydrogenase mutations to produce 2-hydroxyglutarate depends on allele specificity and subcellular compartmentalization. *J Biol Chem*. 2013;288(6):3804-3815. doi:10.1074/jbc.M112.435495

36. Wang J-H, Chen W-L, Li J-M, et al. Prognostic significance of 2-hydroxyglutarate levels in acute myeloid leukemia in China. *Proc Natl Acad Sci USA*. 2013;110(42):17017-17022. doi:10.1073/pnas.1315558110

37. Janin M, Mylonas E, Saada V, et al. Serum 2-Hydroxyglutarate Production in IDH1- and IDH2-Mutated De Novo Acute Myeloid Leukemia: A Study by the Acute Leukemia French Association Group. *JCO*. 2013;32(4):297-305. doi:10.1200/JCO.2013.50.2047

38. DiNardo CD, Propert KJ, Loren AW, et al. Serum 2-hydroxyglutarate levels predict isocitrate dehydrogenase mutations and clinical outcome in acute myeloid leukemia. *Blood*. 2013;121(24):4917-4924. doi:10.1182/blood-2013-03-493197

39. Duchmann M, Micol J-B, Duployez N, et al. Prognostic significance of concurrent gene mutations in intensively treated patients with IDH-mutated AML: an ALFA study. *Blood*. 2021;137(20):2827-2837. doi:10.1182/blood.2020010165
40. Döhner H, Estey EH, Amadori S, et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. *Blood*. 2010;115(3):453-474. doi:10.1182/blood-2009-07-235358

41. Lang KM, Harrison KL, Williamson PR, et al. Core outcome set measurement for future clinical trials in acute myeloid leukemia: the HARMONY study protocol using a multi-stakeholder consensus-based Delphi process and a final consensus meeting. *Trials*. 2020;21(1):437. doi:10.1186/s13063-020-04384-1

42. Testa U, Castelli G, Pelosi E. Isocitrate Dehydrogenase Mutations in Myelodysplastic Syndromes and in Acute Myeloid Leukemias. *Cancers*. 2020;12(9). doi:10.3390/cancers12092427

43. Asghari H, Lee D, Deutsch YE, et al. Outcomes of Patients with Relapsed or Refractory Acute Myeloid Leukemia Receiving Hypomethylating Agent and Venetoclax. *Blood*. 2019;134(Supplement_1):1357-1357. doi:10.1182/blood-2019-128958

44. Chyla BJ, Harb J, Mantis C, et al. Response to Venetoclax in Combination with Low Intensity Therapy (LDAC or HMA) in Untreated Patients with Acute Myeloid Leukemia Patients with IDH, FLT3 and Other Mutations and Correlations with BCL2 Family Expression. *Blood*. 2019;134(Supplement_1):546-546. doi:10.1182/blood-2019-128373

45. Chua CC, Reynolds J, Salmon JM, et al. Anti-Leukemic Activity of Single Agent Venetoclax in Newly Diagnosed Acute Myeloid Leukemia: A Sub-Set Analysis of the Caveat Study. *Blood*. 2019;134(Supplement_1):462-462. doi:10.1182/blood-2019-126640

46. DiNardo CD, Tiong IS, Quaglieri A, et al. Molecular patterns of response and treatment failure after frontline venetoclax combinations in older patients with AML. *Blood*. 2020;135(11):791-803. doi:10.1182/blood.2019003988

47. Richard-Carpentier G, DiNardo CD. Venetoclax for the treatment of newly diagnosed acute myeloid leukemia in patients who are ineligible for intensive chemotherapy. *Therapeutic Advances in Hematology*. 2019;10:2040620719882822. doi:10.1177/2040620719882822

48. Lachowiez CA, Borthakur G, Loghavi S, et al. Phase Ib/II study of the IDH1-mutant inhibitor ivosidenib with the BCL2 inhibitor venetoclax +/- azacitidine in iHD1-mutated hematologic malignancies. *JCO*. 2020;38(15_suppl):7500-7500. doi:10.1200/JCO.2020.38.15_suppl.7500

49. Dinardo CD, Schuh AC, Stein EM, et al. Effect of enasidenib (ENA) plus azacitidine (AZA) on complete remission and overall response versus AZA monotherapy in mutant-IDH2 (mIDH2) newly diagnosed acute myeloid leukemia (ND-AML). *JCO*. 2020;38(15_suppl):7501-7501. doi:10.1200/JCO.2020.38.15_suppl.7501
Table 1. Patient characteristics

Characteristic	All patients analyzed for IDH	N = 4930
Age, median (IQR)	56 (45-66)	
Female sex, n/N (%)	2429/4930 (49.3)	
Disease status, n/N (%)		
Table 2. Patient characteristics (A) and outcome (B) by IDH mutation type

IDH1/2 WT	IDH1 R132C	IDH1 R132H	IDH1 other	IDH2 R172C	IDH2 R140A	p-value
N = 3946	N = 179	N = 177	N = 67	N = 110	N = 446	

De novo	sAML	aMDS	WBC (G/L), median (IQR)	PLT (G/L), median (IQR)	Bone marrow blasts (%), median (IQR)	Normal karyotype, n/N (%)	Complex karyotype, n/N (%)	Trisomy 8, n/N (%)	ELN risk 2017, n/N (%)	NPM1 mutated, n/N (%)	FLT3-ITD mutated, n/N (%)	CEBPA mutated, n/N (%)	CEBPA, monoallelic mutations, n/N (%)	CEBPA, biallelic mutations, n/N (%)	IDH1 mutated, n/N (%)	IDH2 mutated, n/N (%)	IDH1/2 mutated, n/N (%)	IDH1 and IDH2 mutated, n/N (%)	IDH VAF, median (IQR)	IDH1 mutation type, n/N (%)	IDH2 mutation type, n/N (%)
3988/4891 (81.5)	626/4891 (12.8)	277/4891 (5.7)	14.7 (3.5-49.4)	53 (29-84)	66 (42-81)	2538/4613 (55)	452/3626 (12.5)	387/3626 (10.6)	1518/4515 (36)	1628/4515 (36.1)	1309/4515 (29)	144/4515 (31.8)	1688/4910 (22.2)	324/4682 (6.7)	108/4682 (24.6)	128/4682 (26.4)	425/4930 (8.6)	515/4930 (10.7)	14/4930 (0.3)	38.3 (30-43.3)	179/423 (42.3)
R132C	R132Q	R132H	R132S	R132S	R132S	R132S	R132S	R132S	R132S	R132S	R132S	R132S	R132S	R132S	R132S	R132S	R132S	R132S	R132S		
179/423 (42.3)	28/423 (6.6)	177/423 (41.8)	18/423 (4.3)	20/423 (4.7)	4/572 (0.7)	8/572 (1.4)	438/572 (76.8)	110/572 (19.3)	1/572 (0.2)												
	65 (44-65)	62 (53-69)	54 (44-66)	60 (51-67)	61 (50-66)	59 (51-64)															
----------------	------------	------------	------------	------------	------------	------------															
Disease status, n/N (%)																					
De novo	318/3913 (81)	149/179 (79.3)	156/176 (88.6)	57/67 (85.1)	94/110 (85.5)	268/441 (63.4)															
sAML	511/3913 (13.1)	26/179 (14.6)	13/176 (7.4)	9/67 (13.4)	14/110 (12.7)	51/441 (11.6)															
AML	234/3913 (6)	11/179 (6.1)	7/176 (4)	1/67 (1.5)	2/110 (1.8)	22/441 (5)															

WBC (G/L), median (IQR)

IDH	15.3 (3.9-50.5)	4.3 (1.6-25.3)	22.5 (3.8-67)	15.2 (3.6-51.9)	2.3 (1.2-9.2)	18.8 (4.1-56.6)
FLT3 ratio, median (IQR)	0.6 (0.2-0.8)	0.3 (0.1-0.5)	0.7 (0.3-0.9)	0.4 (0.2-0.7)	0.5 (0.2-0.7)	0.5 (0.2-0.7)
NPM1	33/152 (21.7)	86/155 (55.6)	31/59 (52.5)	2/8 (25)	3/100 (3)	177/405 (43.7)

PLT (G/L), median (IQR)

IDH	343/3913 (8.8)	71/179 (4.1)	51/277 (5.6)	53/152 (3.5)	27/324 (8.5)	243/441 (5.5)
FLT3 ratio, median (IQR)						

Bone marrow blasts (%), median (IQR)

IDH	63 (40.6)	71 (55.46)	70 (51.84)	64 (60.88)	70 (43.81)	64 (44.46)

Normal karyotype, n/N (%)

IDH	1891/3717 (51)	101/159 (63.3)	132/158 (83.5)	44/61 (72.1)	58/101 (57.4)	304/412 (73.8)

Complex karyotype, n/N (%)

IDH	424/2549 (14.4)	8/127 (6.3)	5/127 (3.9)	1/48 (2.1)	3/74 (4.1)	11/256 (4.3)

Immature, n/N (%)

| | 393/3913 (10.1) | 71/179 (4.1) | 51/277 (5.6) | 53/152 (3.5) | 27/324 (8.5) | 243/441 (5.5) |

ELN risk 2017, n/N (%)

Favorable	1234/3940 (33.9)	33/152 (21.7)	98/155 (63.2)	31/59 (52.5)	2/8 (25)	177/405 (43.7)
Intermediate	1280/3640 (35.2)	78/152 (51.3)	44/155 (28.4)	21/55 (36.8)	63/100 (63)	141/405 (34.8)
Adverse	1126/3640 (30.9)	41/152 (26.7)	13/155 (8.4)	6/38 (10.3)	35/100 (35)	87/405 (21.5)

APM4 mutated, n/N (%)

| | 1110/3914 (28.4) | 43/158 (24.2) | 125/176 (71) | 43/67 (64.2) | 2/110 (1.8) | 220/446 (49.4) |

PLT/THF mutated, n/N (%)

| | 890/3926 (22.7) | 181/179 (10.1) | 47/176 (26.7) | 18/67 (26.9) | 5/110 (4.5) | 106/446 (24.2) |

PLT ratio, median (IQR)

| | 0.6 (0.3-0.8) | 0.3 (0.1-0.5) | 0.7 (0.3-0.9) | 0.4 (0.2-0.7) | 0.5 (0.2-0.7) | 0.5 (0.2-0.7) |

CEBPA4 mutated, n/N (%)

| | 268/3886 (7.4) | 7/177 (4) | 1/175 (0.6) | 4/67 (6) | 6/110 (5.5) | 17/442 (3.8) |

IDH2 VAF, median (IQR)

IDH	37.2 (27.6-41)	31.5 (25.4-42)	40 (28.6-47.6)	38.3 (31.2-45)	39 (32.8-45)	35 (32.8-45)

Allogeneic HSC in CR1, n/N (%)

| | 732/3946 (18.8) | 25/179 (14) | 23/177 (13) | 9/67 (13.4) | 2/110 (19.1) | 65/446 (14.6) |

B) Outcome by IDH mutation type

| | 2830/3946 (73.3) | 110/179 (61.8) | 136/177 (76.6) | 46/67 (68.7) | 80/110 (72.7) | 327/446 (73.3) |

CR1, n/N (%)

| | 19.7 (18.1-21.4) | 14.7 (12.2-21.9) | 23 (16.4-36.1) | 18.7 (13.3-61.4) | 25.6 (21.6-46.3) | 18.9 (15.7-27.4) |

OS (months), median (95% CI)

IDH	0.0674					

Figure legends

644
Fig. 1 Overall survival according to IDH mutations
Kaplan-Meier plot for overall survival of AML patients with mutated IDH1 (green), mutated IDH2 (blue), and wild-type IDH1/2 (orange); time in months.

Fig. 2 Overall survival according to different mutational subtypes of mIDH in ELN2017 risk categories
Kaplan-Meier plots for overall survival of AML patients according to ELN2017 favorable-, intermediate- and adverse-risk categories A) for patients with mutated IDH1 (green), mutated IDH2 (blue), and wild-type IDH1/2 (orange) and B) for respective mutational variants of IDH1/2: IDH1-R132H (green), IDH1-R132C (gold), IDH1-other (R132G, R132S, R132L; turquoise), IDH2-R140 (blue), IDH2-R172 (purple), wild-type IDH (orange). p-values were determined with the log-rank test; time in months.

Fig. 3 Heatmap of frequent co-mutations of mIDH mutational subtypes and impact on survival
A) Heatmap grouped for epigenetic, signaling, splicing, transcription, and cohesion pathways for the IDH1/2 mutational subtypes. B) OS analysis on the impact of frequent co-mutations

Fig. 4 Overall survival for all patients according to IDH1 and IDH2 mutation
Kaplan-Meier plots for overall survival of AML patients with A) mutated IDH1: IDH1-R132C (green), IDH1-R132H (blue), IDH1-other (R132G, R132S, R132L) and wild-type IDH (orange); B) mutated IDH2: IDH2-R140 (green), IDH2-R172 (blue), wild-type IDH (orange); time in months.
Fig. 5 Overall survival according to *IDH2* mutational status in ELN2017 intermediate- and adverse-risk patients

Kaplan-Meier plots for overall survival of AML patients with the ELN2017 intermediate- and adverse-risk group in regard to mutated *IDH2*-R140 (green), *IDH2*-R172 (blue) and wild-type-IDH (orange); time in months.
