Hydrogeological Modelling of Geothermal Waters in Cesme and Environs, Western Anatolia, Turkey

Nevzat Ozgur 1, Saliha Degirmenci 2, Ebru Aras Pala 2, Mehmet Arici

1Suleyman Demirel University, Faculty of Engineering, Department of Geological Engineering, Isparta, Turkey
2Suleyman Demirel University, Institute of Natural and applied Sciences, Isparta, Turkey
nevzatozgur@sdu.edu.tr

Abstract. The geothermal fields of Çeşme are located in the western part of province capital of Izmir and can be considered as important tourist resorts with a great number of thermal hot springs which are used for thermal bathing since several years. Nowadays, the geothermal waters in the fields are used for district heating and greenhouses. In the area of Çeşme, there are sedimentary and volcanic rocks predominantly. The basement rocks are of Devonian age and consists of intercalations of sandstones, greywackes and limestones overline by Upper to Middle Triassic carbonate rocks with intercalations of sandstones and claystones. These rocks are overlain by Neogene volcanic and terrestrial sedimentary rocks. In 1995, we have measured in-situ parameters in many locations of groundwaters and geothermal waters with collection of a great number of samples for these waters. The geothermal waters are of Na-Cl, Na-(Cl)-HCO3, Na-Ca-Cl, Na-Mg-(Cl)-HCO3, Na-Mg-Ca-(Cl)-HCO3 and Ca-Na-Mg-(Cl)-HCO3 type waters during the groundwaters display Na-Cl, Na-HCO3, Na-Mg-(Cl)-HCO3, Na-Mg-HCO3, Na-Mg-Ca-(Cl)-HCO3, Mg-Ca-Na-(Cl)-HCO3 and Mg-Ca-Na-(Cl)-HCO3 type waters. The Na-Cl type waters are originated from deep reservoir during the others can be considered as diluted Cl-HCO3 water type. The plot of $\delta^{18}O$ versus δ^D shows that the geothermal waters are enriched in $\delta^{18}O$ and δ^D and located on the mixing trend between groundwaters and seawaters indicating mixing of these both different waters. The proportion of seawaters in geothermal waters seems to be very higher than groundwaters. The shift in the $\delta^{18}O$ values are related to $\delta^{18}O$ exchange between the deeply circulating meteoric waters and reservoir rocks in the area. The increase of δ^D is related to the contribution of seawaters. The geothermal waters in the area fall into fields of immature to partially equilibrated waters. In general, the reservoir temperature of the area of Çeşme is estimated to be 80 to 120 °C.

1. Introduction
The geothermal waters in Çeşme and environs are located in the western part of province capital of Izmir and represent remarkable potential for green houses, district heating and balneological uses [Figure 1]. In the area, several researchers [1; 2; Figure 1] realized studies on hydrogeological, hydrogeochemical and isotope geochemical features of geothermal waters and groundwaters. The aim of this study is to describe hydrogeological and hydrogeochemical features of geothermal waters, to test the applicability of geothermometers and to develop hydrogeological modelling of geothermal waters.
2. Geologic setting
In Çeşme and environs, the area consists of sedimentary and volcanic rocks [Figure 1; 2; 3; 4]. The basement rocks are of intercalations of sandstones, greywackes and limestones in Devonian age overlain by Mesozoic rocks. Devonian rocks play an important role for the formation of basement rocks due to their lower permeability. Mesozoic rocks are of limestones with intercalations of sandstones and claystones from Middle to Upper Triassic. The most part of the study area is covered by Neogene volcanic rocks and other terrestrial rocks.

3. Material and method
Hydrogeochemical data for geothermal waters have been obtained from geothermal wells and [2; Table 1]. The in-situ parameters such as temperatures, pH, Eh (mV), electrical conductivity (µS/cm), dissolved oxygen (mg/L) and alkalinity were measured in the field at the time of sampling collection. The anions and cations in the water samples were analysed in the Laboratory of Geothermal Energy, Groundwater and Mineral resources within the Department of Geological Engineering of the Faculty of Engineering of the Suleyman Demirel University. A part of the hydrogeochemical and isotope geochemical analyses are based on research work [2]. The cations of Na⁺, Ca²⁺, Mg²⁺, K⁺, Si⁴⁺ and B³⁺ were analysed by ICP-OES methods, while the analyses of anions such as F⁻, SO₄²⁻, Cl⁻ and NO₃⁻ were performed by IC methods. The values of HCO₃⁻ and CO₃²⁻ have been calculated by the alkalinity measurements in the field. The evaluation of the hydrogeochemical data was carried out using Aquachem 3.7 [5].

4. Results
4.1 Hydrogeology
In the study area, the intercalation of sandstones, greywackes and limestones in Devonian age form the impermeable basement rocks overlain by Middle to Upper Triassic limestones which can be considered as reservoir rocks for geothermal waters. These limestones are highly fractured and has karst forms [2]. These fractures and karst formations have given rise to this formation of hydrothermal circulation cells within these rock sequence.

4.2 Hydrogeochemistry
Results of hydrogeochemical analyses are presented in Table 1. A Piper triangular diagram shows that a part of geothermal waters are of Na-Cl type indication a mixing with seawaters [Figure 2]. An another part of geothermal waters are of Na, Ca, Mg and Cl, HCO₃ type. The samples of geothermal waters plot on Cl-SO₄-HCO₃ diagram [Figure 3] that shows deep reservoir originated waters which are confirmed by [2].
Figure 1. Geological map of Çeşme and environs with sample locations of geothermal waters [2]
Table 1. Results of hydrogeochemical analyses of geothermal waters in Çeşme and environs [2; 3; 4]

Sample	Location	T (°C)	pH	Eh (mV)	EC (µS/cm)	Na⁺ (mg/l)	K⁺ (mg/l)	Ca²⁺ (mg/l)	Mg²⁺ (mg/l)	B³⁺ (mg/l)	SO₄²⁻ (mg/l)	Cl⁻ (mg/l)	NO₃⁻ (mg/l)	HCO₃⁻ (mg/l)
SD 1	Çeşme	39.2	7.31	101.3	29700	6052	206	590	408	3.1	1418	10287	5.2	329
SD 2	İlçalar	40	7.46	73	57100	13400	437	855	1187	4.9	2987	21566	0.1	317.2
EB 1	Çumalı	61.4	7.27	92.4	29200	5858	754	546	56.3	14	170	10231	0.1	427
EB 2	Karakoç	55.1	7.27	94.2	6710	1236	93.9	160	52.5	8	187	1765	1.15	847.9
EB 3	Doğanbey	76.1	7.58	112	10830	1985	4.22	195	59.3	9.4	267	3075	0.56	640.5
4	Çeşme	29	6.5	112	1920	112	15	99	34	41	278	429		
5	Çeşme	36	6.3	2370	228	19	61	48	53	379	428			
6	Çeşme	40	7.3	1180	246	13	87	57	146	360	329			
9	Çeşme	28	5.7	1720	155	16	86	31	69	277	273			
13	Çeşme	49	6.6	3750	695	33	132	72	295	894	587			
15	Çeşme	33	6.5	1610	63	5	50	61	45	131	338			
16	Çeşme	42	6.8	6600	579	40	218	62	153	1355	275			
23	Çeşme	37	6.8	79200	11257	792	1298	590	2583	18490	232			
28	Çeşme	36	7.2	1490	134	34	35	14	39	140	348			
57	Çeşme	30	6.9	4210	709	23	173	118	182	1128	622			
91	Çeşme	42	6.6	48400	9150	804	1039	762	2422	16450	183			
92	Çeşme	42	6.6	58200	9922	894	1195	892	2926	20500	159			
95	Çeşme	58	6.5	26600	7108	631	677	367	1665	11530	195			
103	Çeşme	57	5.8	87100	11310	368	938	1203	3092	18550	146			
T24	Çeşme	60	7.8	10875	388	1551	609	2983	20430	152				
FY1	Çeşme	62	7.9	10000	380	1603	486	2422	19850	122				
Table 1. -continue. Results of hydrogeochemical analyses of geothermal waters in Çeşme and environs [2; 3; 4]

Sample	Li (mg/l)	Sr (mg/l)	Mn (mg/l)	Fe (mg/l)	Zn (mg/l)	Cu (mg/l)	SiO$_2$ (mg/l)	Al (mg/l)	Pb (mg/l)	O$_2$ (mg/l)	Cr (mg/l)
SD 1							19.6	0.2	2.7		
SD 2							13.2	0.2	3.7		
EB 1							142	0.2	3		
EB 2							53.5	0.2	3		
EB 3	68.5	0.2									
4											
5											
6	0.026	1.07	0.01	0.29	0.13	0.023	27.21	0.02	0.008		
9	0.098	2.17	0.017	1.46	0.25	0.007	111.8	0.03	0.012		
13	0.046	1.11	0.002	0.34	0.14	0.008	13.7	0.001	0.008		
15	0.127	2.4	0.27	0.7	0.06	0.017	28.71	0.05	0.037		
23	0.495	7.83	0.03	2.13	0.14	0.49	8.1	18	0.67		
28	0.046	1.11	0.002	0.34	0.14	0.008	13.7	0.001	0.008		
57	0.127	2.4	0.27	0.7	0.06	0.017	28.71	0.05	0.037		
91	0.193	2.9	0.28	0.62	0.098	0.028	27.9	0.07	0.037		
92	0.187	5.51	0.025	0.63	0.9	0.025	52.9	0.12	0.33		
95	0.01										
103											
T24									42		
FY1								0.01	21		
Figure 2. Geothermal waters of Çeşme and environs in Piper diagram [2; 3; 4].

Figure 3. Cl-SO₄-HCO₃ triangular diagram of geothermal waters in Çeşme and environs [2; 3; 4].
By the position of geothermal waters of Çeşme and environs on Na-K-Mg [Figure 4] and a great number of geochemical cation thermometers such as Na-K, Na-K-Ca and K-Mg geothermometers, it can be concluded that the reservoir temperatures of geothermal waters range from 80 to 110 °C which are confirmed by [2].

![Figure 4](image)

Figure 4. Na-K-Mg triangular diagram of geothermal waters in Çeşme and environs [2; 3; 4].

4.3 Isotope geochemistry

The isotope geochemical results of geothermal waters and groundwater are presented in Table x which are based on [1, 6; 7]. δ^{18}O versus δD is plotted on Figure 5 which also shows the worldwide meteoric line (δD=8δ^{18}O + 10) of [2] and the Mediterranean meteoric water line (δD=8δ^{18}O + 22) of [9]. Groundwater samples plot between local and worldwide meteoric water lines indicating their meteoric origin [2]. The geothermal waters are enriched in δ^{18}O and δD and located on the mixing trend between groundwater and seawaters. Proportional, the seawater component in geothermal waters seems to be higher than that of groundwater. The shift in the δ^{18}O values are related to the δ^{18}O exchanges between deeply circulating meteoric waters and reservoir rocks.
5. Discussion

In Çeşme and environs, there are two types of geothermal waters. The type one is of deep reservoir of Middle to Upper Triassic limestones heated by convective heat transfer due to deeply circulating geothermal waters and the other is shallow reservoir of sandstones of Middle to Upper Triassic limestones and volcanic rocks heated by convective heat transfer from below [2]. The type one is of Na-Cl type and reflects a very high contribution of seawaters to the geothermal waters. In comparison, the type two is of mixing waters and can be considered as Na- (Ca)-(Mg)-(Cl)-HCO₃ type waters. Geothermal waters in Çeşme and environs have a high proportion of seawaters up to 92 percent [2], which percolate through faults, fractures and karstic structures, are heated in the reservoir and ascent to the surface along the N-S trending faults. The young volcanism in the area is responsible for heating of geothermal waters in both reservoirs. By the position of geothermal waters of Çeşme and environs on Na-K-Mg [Figure 4] and a great number of geochemical cation thermometers such as Na-K, Na-K-Ca and K-Mg geothermometers, it can be concluded that the reservoir temperatures of geothermal waters range from 80 to 110 °C which are confirmed by [2].

Acknowledgements

This study has been funded by the Scientific Research Coordination Office of the Suleyman Demirel University under contract numbers 4492-YL1-15 and 4490-YL1-15.

References

[1] Filiz, Ş., “Ege Bölgesindeki önemli jeotermal alanlardaki O-18, H-2, H-3 C-13 izotoplarıyla incelenmesi,” Doçentlik Tezi, E.Ü.Y.B.F, 95 p., 1982.
[2] Gemici, Ü., Filiz, Ş., “Hydrochemistry of the Çeşme geothermal area in western Turkey,” J. Volcan. Geotherm. Res. 110, pp. 171-187, 2001.
[3] Değirmenci, S., “Sifne (İzmir) ve yakın çevresi jeotermal suların hidrojeolojik, hidrojeokimyasal ve izotop jeokimyasal özellikleri,” M. Sc. thesis, Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü, 56 p., 2017.
[4] Aras Pala, E., “Seferihisar (İzmir) ve yakın çevresi jeotermal suların hidrojeolojik, hidrojeokimyasal ve izotop jeokimyasal özellikleri,” M. Sc. thesis, Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü, 71 p., 2016.
[5] Calmbach, L., “AquaChem Computer code-Version 3.7: Aqueous geochemical analyses, plotting and modelling. Waterloo Hydrogeologic: Waterloo, Canada,” 1999.

[6] Ercan, T., Ölmazı, E., Matsudo, I., Wagoo, K., Kita, I., “Kuzey ve Batı Anadolu’da sıcak ve mineralize sular ile içerdikleri gazların kimyasal ve izotopik değerleri,” Türkiye Enerji Bülteni 1, Jeoloji Mühendisleri Odası, 1984.

[7] Conrad, M.A., Hipfel, B., Satur, M., “Chemical and stable isotopic characteristics of thermal waters from Çeşme-Seferihisar area, İzmir (W-Turkey), “ IESCA Proceedings, p. , 1995.

[8] Craig, H., “Isotopic variations in meteoric waters,” Science 133, p. 1702-1702, 1961.