Early Detection of Spam Domains with Passive DNS and SPF

Simon Fernandez, Maciej Korczynski, Andrzej Duda
WAX - 2022

Laboratoire Informatique de Grenoble, Team Drakkar
Spammers
Spam domain lifecycle

- Register a new domain (or bulks)
- Configure the domain
- Start the spam campaign and wait for victims
- The domain gets blacklisted and/or taken down
- Restart the procedure with a fresh domain
Passive DNS of new domains - Farsight SIE and CZDS

Farsight SIE: Passive DNS feed of multiple sensors around the world

CZDS: ICANN platform to get the full zonefiles of most gTLDs

- Stealth measurement
- No interfering
- See the real traffic
- Detect new domains
Farsight SIE: Passive DNS feed of multiple sensors around the world

CZDS: ICANN platform to get the full zonefiles of most gTLD

- Stealth measurement
- No interfering
- See the real traffic
- Detect new domains
Sender Policy Framework
The situation with Sender Policy Framework (SPF)
The SPF rules

\[<\text{qualifier}> <\text{modifier}>[:<\text{target}>]\]

Qualifier:
- PASS +
- NEUTRAL ~
- SOFTFAIL ?
- FAIL -

Modifier:
- With <target>:
 - ip4, ip6
 - include
 - a, mx (optional)
 - exists (optional)
- Without <target>:
 - ptr
 - all

+ip4:1.2.3.0/24 +a -all
SPF rules

\(<\text{qualifier}\>\,<\text{modifier}\>[\,:<\text{target}\>]

Qualifier:
- PASS +
- NEUTRAL ~
- SOFTFAIL ?
- FAIL -

Modifier:
- With <target>:
 - ip4, ip6
 - include
 - a, mx (optional)
 - exists (optional)
- Without <target>:
 - ptr
 - all

+ip4:1.2.3.0/24 +a -all
Features to detect spammers
Temporal analysis: TXT queries spike

We should see a spike in requests to the TXT record of alice.com
We should see a spike in requests to the TXT record of alice.com
Figure 1: Proportion of domains using a given SPF rule
Graph relations

a.com IN TXT ip4:1.2.3.4 include:b.com

Build the SPF relation graph:

- Nodes: IPs, IP networks, domains
- Edge: A node uses another one as a target in its rules
Graph relations

```
 a.com IN TXT ip4:1.2.3.4 include:b.com
```

Build the SPF relation graph:

- Nodes: IPs, IP networks, domains
- Edge: A node uses another one as a target in its rules
Graph metrics

Mean neighbor degree
Does the domain use widely deployed rules?

Toxicity
Is the target used by known spammers?

Mean neighbor Toxicity
Is the domain using targets mainly present in spam domains configurations?
Results of the Classifier
Two datasets

Static dataset:
- Only SPF rules and graph
- No time analysis
- Less precise
- Needs a single TXT request

Dynamic dataset:
- Uses all properties
- More precise
- Precision increases with time
Two datasets

Static dataset:
- Only SPF rules and graph
- No time analysis
- Less precise
- Needs a single TXT request

Dynamic dataset:
- Uses all properties
- More precise
- Precision increases with time
Two datasets

Static dataset:
- Only SPF rules and graph
- No time analysis
- Less precise
- Needs a single TXT request

Dynamic dataset:
- Uses all properties
- More precise
- Precision increases with time

![Graph showing F1 score over time since first observation](image)
- True Positive Rate: 80%
- False Positive rate: 0.5%
- Faster in 70% of cases
- In 30% of cases, we are more than 24h faster
Conclusion

• Spam domain detection is a race
• Spammers must use SPF to appear legitimate
• We use passive DNS to get the SPF configurations
• Our classifier reaches high detection rates with low false positives
• It can efficiently run on a single TXT query and refine its classification with additional traffic
Thank you for your attention

All questions are welcome