Very Sort Term Load Forecasting Using Interval Type-2 Fuzzy Inference System (IT-2 FIS) (Case Study: Java Bali Electrical System)

by Jamaaluddin Jamaaluddin
Very Short Term Load Forecasting Using Interval Type - 2 Fuzzy Inference System (IT-2 FIS) (Case Study: Java Bali Electrical System)

To cite this article: J Jamaeluddin et al 2018 IOP Conf. Ser.: Mater. Sci. Eng. 384 012078

View the article online for updates and enhancements.
Very Short Term Load Forecasting Using Interval Type - 2 Fuzzy Inference System (IT-2 FIS) (Case Study: Java Bali Electrical System)

J Jamauluddin1*, D Hadidjaja1, I Sulistiyowati1, E A Suprayitno1, I Anshory1, S Syahrorn1 and A G Abdullah2

1Program Studi Teknik Elektro, Universitas Muhammadiyah Sidoarjo, Jl. Raya Gelam no 250, Sidoarjo, Jawa Timur, Indonesia.
2Sekolah Pascasarjana, Universitas Pendidikan Indonesia, Jl. Dr. Setiabudhi 229 Bandung 40154, Indonesia.

*jamauluddin@umsida.ac.id

Abstract. One of the important things to do an electric power system operation is load forecasting. Load forecasting consists of short-term forecasting and short-term forecasting. The very short term load forecasting are required for regulating electrical energy generation, maintenance arrangements and regulating the labor involved. This forecasting is done to decide which plant to operate. The capacity of the plant to be operated adjusts to the load plan to be supplied the next day. The very short-term load forecasting is predicting electrical loads with time intervals every 30 minutes for the next day. In this study using Interval Type-2 Fuzzy Inference System (IT-2FIS) because it delivers a high flexibility that can be developed using other methods (hybrid). Laying out the footprint of uncertainty (FOU) membership function of the Interval Type-2 Fuzzy Inference System (IT-2FIS). This method has been applied for short-term load forecasting and will be employed for very short-term forecasting. In very short-term load forecasting IT-2 FIS has Mean Average Percentage Error (MAPE) around 0.729%.

1. Introduction

Electric power is needed by the world community at this end. In every side of his life always requires electrical energy[1]. Generation, transmission and distribution system in Indonesia also operates this electricity from generated to customer. Handling of this electric power operation, must be professional, meet the quality standards of electrical services and economic factors [2] [3]. On the distribution of electric power that is implementing is PT. PLN through P2B, the agency will generate power generation and load sharing, in which it includes both short loading and very short term loading plans[4]. Very short term load forecasting is required to conduct the generation planning in accordance with the estimated load requirement on the next day. Forecasting a very short term load is to plan the load every 30 minutes from 00.00 until 23.30 the next day. This should be done for economic considerations so that we get the planning of power generation, which should operate and which are not. This problem is related to generating efficiency, maintenance implementation and labor management. In these 2 decades to do load forecasting, have used computing. In this computation has been using Fuzzy Logic for short-term forecasting (Daily)[5] [6]. Both in development using Interval Type 1 - Fuzzy Inference System and Interval Type 2 - Fuzzy Inference System. In forecasting short-
term IT-1 FIS and IT-2 FIS loads have resulted in a pretty good MAPE result. Therefore, at this time will try to do very short term forecasting [7].

2. Experimental Method

This research is done several stages of the process, are: 1. Stage before process, 2. Process, 3. After process with more detail explanation as follows:

2.1. Preprocessing

In this process is the stages grouping daily load data every 30 minutes for 24 hours on a predictable day [8], and three hours before the hour predicted at the same time started 3 years ago. In this study, an example is taken on the first Friday of October. This process is required to find Variation Load Difference (VLDmax). This is done to get the X, Y and Z value [1].

1. For example, to get a very short term forecasting value at 12:00 on the first Friday of October 2015, using data on the first Friday of October 2013, 2014 and 2015.
2. Identify the search for the load on the 4 days before to its at the same hour of the loaded time being analyzed

\[
\text{MaxWD}(i) = \frac{W_{d-4}+W_{d-3}+W_{d-2}+W_{d-1}}{4}
\]

(1)

3. Calculate the difference in load sought (Load Difference) on the clock to be predicted.

\[
LD_{max}(i) = \frac{\text{MaxSD}(i) - \text{MaxWD}(i)}{\text{MaxWD}(i)} \times 100
\]

(2)

4. Looking for load difference characteristics on typical load hours or TLDMAX (i) by averaging the same LDMAX peak load (i) in previous years.

5. Search for Variation Loads on the clock to be predicted (Variation Load Difference) at each hour

\[
VLD_{max}(i) = LD_{max}(i) - TLD_{max}(i)
\]

(3)

2.2. Processing

At this stage of the process, entering the very short-term forecasting forecast on the first Friday of October into IT-2FIS is as follows [1]:

1. The first stage is to build input Membership Function X and Y. The Z is the output membership function for the hour predicted, with the following explanation:

 X: VLDmax (i) Variable Load Difference time that will be predictable

 Y: VLDmax (i) Is a time load at second Friday on October that is adjacent to the same type of time that will be predictable.

 Z: Forecast VLDmax (on) Variable Load Difference of a time load that would be predicted.

 ![Figure 1. Process of IT-2FIS](image)

2. Creating fuzzy rules as follows [6]:

 IF X is Ai AND Y is Bi THEN Z is Ci
3. Applied on the (IT-2 FIS).
4. Applied the MIN function.
5. Applied MAX on each fuzzy, implication results.
6. Get the value Forecast \(VLD_{\text{max}} \).

2.3. Post Processing

The In the post-processing stage calculated result of Very Short Term Load Forecasting for the time predict as follows[1]:

1. Calculating the time load forecasting:
\[
\text{Forecast LD}_{\text{MAX}}(i) = \text{Forecast VLD}_{\text{MAX}}(i) - \text{TLD}_{\text{MAX}}
\] \hspace{1cm} (4)

2. Calculating the difference of time load of forecast
\[
P_{\text{max}}(i) = \text{Max WD}(i) + \frac{(\text{Forecast LD}_{\text{MAX}} \times \text{Max WD}(i))}{100}
\] \hspace{1cm} (5)

3. Comparing the value of forecasting results with the actual situation in the already running, namely in 2013, 2014 and 2015. By making the average value Mean Percentage Error (MAPE) on each year forecasting. The formula used is as follows:
\[
\text{Error} \% = \frac{P_{\text{forecast}} - P_{\text{actual}}}{P_{\text{actual}}} \times 100
\]
\[
\text{Error} \% = \frac{P_{\text{MAX}}(i) - \text{Max SD}(i)}{\text{Max SD}(i)} \times 100
\] \hspace{1cm} (6)

2.4. Flowchart of Forecasting by Using IT-2

![Flowchart of Forecasting by Using IT-2](image)

Figure 2. Flowchart of Forecasting by Using IT-2
2.5. Calculation X Value

X value at 2013, obtained from the calculation as below:

Electrical load at 12.00 First Friday in October 2013 (R1-2013)

\[\text{MaxWD}(R_1-2013) = 19.823 \text{ MW} \]
\[\text{MaxWD}(R_1-2013) = 20.008 \text{ MW} \]
\[\text{MaxWD}(R_1-2013) = 19.763 \text{ MW} \]
\[\text{MaxWD}(R_1-2013) = 19.539 \text{ MW} \]
\[\text{MaxSD} = 19.021 \text{ MW} \]
\[\text{MaxWD}(R_1-2013) = \frac{19.823 + 20.008 + 19.763 + 19.539}{4} = 19.738 \text{ MW} \]
\[\text{LD}_{\text{Max}}(R_1-2013) = \frac{\text{MaxWD}(R_1-2013) - \text{MaxWD}(R_1-2013) \times 100\%}{\text{MaxWD}(R_1-2013)} \]
\[\text{MaxWD}(R1-2013) = \frac{19.021 - 19.738}{19.738} \times 100\% = -3.854 \]

With the same calculation we can find \(\text{MaxWD}(R1-2013) \), \(\text{LD}_{\text{Max}}(R1-2013) \), \(\text{TLD}_{\text{Max}}(R1-2014) \), \(\text{VLD}_{\text{Max}}(R1-2014) \). Then the results obtained as the table below:

Table 1. Calculation Forecasting First Friday on October 2013

day	d-4	d-3	d-2	d-1	d	WMAX 2013	LMAX 2013
1	12.00	19.823	20.008	19.763	19.539	19.021	-3.854
2	11.00	20.768	20.754	20.892	20.465	20.938	1.055
3	10.00	20.459	20.566	20.526	20.096	20.551	2.412
4	09.00	19.812	20.087	20.022	19.935	19.635	0.736

Table 1, above shows the calculations of \(\text{W}_{\text{MAX}} \) and \(\text{L}_{\text{MAX}} \) for the first Friday of 2013, after which the calculations for the first Friday of 2014, 2015 with the results as table 2 below:

Table 2. Calculation Forecasting First Friday on October 2014

day	d-4	d-3	d-2	d-1	d	WMAX 2014	LMAX 2014	TLD 2014	VLD 2014		
1	12.00	23.564	23.169	23.127	21.763	20.536	21.206	-3.160	-3.507	0.347	
2	11.00	21.334	20.275	22.423	23.477	23.447	21.877	-2.013	-0.479	-1.534	
3	10.00	18.675	19.563	21.897	22.845	22.845	21.288	20.745	2.619	1.649	0.970
4	09.00	19.002	19.348	21.458	24.322	24.322	21.030	-0.467	0.134	-0.601	
Table 3. Calculation Forecasting First Friday on October 2015

2.6. Calculation of Value of Input Variable Y
To get the value of Y, then selected second Friday in each year starting 2013, 2014 and 2015, in the same way to get the value of X, then get the results as below:

Table 4. Calculation Forecasting second Friday on October 2013

Table 5. Calculation Forecasting second Friday on October 2014

Table 6. Calculation Forecasting second Friday on October 2015
2.7 Calculation of Value of Input Variable Z
With the same calculation for the second Friday of October between 2013-2015 in get the value (VLDMAX) which results can be seen as table 7 below:

Table 7. Value of WDMAX, LDMAX and VLDMAX 2013-2015

Time	WDMAX	LDMAX	WDMAX	LDMAX	TLDMAX	VLDMAX	WDMAX	LDMAX	TLDMAX	VLDMAX
2013										
First Friday on October										
1.12.00	19.783	(3.854)	21.206	(3.160)	(5.307)	0.347	20.831	2.538	(1.492)	4.030
2.11.00	20.720	1.055	21.877	(2.013)	(0.479)	(1.534)	21.925	1.320	0.120	1.199
3.10.00	20.412	0.679	20.745	2.619	1.649	0.970	22.476	(1.342)	0.652	(1.994)
4.09.00	19.818	0.736	21.030	(0.467)	0.134	0.601	20.603	4.904	1.724	3.179
2014										
Second Friday on October										
1.12.00	19.950	(3.018)	20.533	(1.431)	(2.224)	0.793	20.239	1.072	(1.125)	2.198
2.11.00	20.445	2.300	21.276	2.683	1.491	0.809	21.044	1.079	1.354	(0.275)
3.10.00	20.917	3.742	22.062	1.938	2.840	(0.902)	21.739	2.806	2.929	(0.023)
4.09.00	21.103	3.113	22.886	(3.207)	(0.047)	(3.160)	23.667	(1.926)	(0.674)	(1.254)
2015										
First Friday on October										

3. Results and Discussion
IT-2FIS to forecasting of peak load at the time which forecasting, that the membership function variable input and output of Interval Type-2 Fuzzy Inference System, as follows:

3.1 Membership Function for Input and Output Variable
The set of Interval Type-2 Fuzzy, fuzzy sets similar to type-1. Interval Type-2 Fuzzy, done twice a fuzzy, membership function type-1. Input variables (X, Y) and output variables (Z) consists of 11 fuzzy sets are described as follows:

- Negative Very Big (NVB) range of values -12 s/d -8
- Negative Big (NB) range of values -10 s/d -6
- Negative Medium (NM) range of values -8 s/d -4
- Negative Small (NS) range of values -6 s/d -2
- Negative Very Small (NVS) range of values -4 s/d 0
- Zero (ZE) range of values -2 s/d 2
- Positive Very Small (PVS) range of values 0 s/d 4
- Positive Small (PS) range of values 2 s/d 6
- Positive Medium (PM) range of values 4 s/d 8
- Positive Big (PB) range of values 6 s/d 10
- Positive Very Big (PVB) range of values 8 s/d 12

Translation of antecedent membership functions (X, Y) and consequent (Z) is used for the manufacture of the Rules Base Fuzzy Inference System. Making the basic rules of Fuzzy (Fuzzy Rule Base) very short-term load forecasting in 2014-2015 is shown table 8. Through table 12.
Table 8. Input (X, Y) and output (Z) By VLD_{MAX} in 2014 and 2015

Hour	VLD_{MAX} 2014	VLD_{MAX} 2015	Input (X)	Y	Z	
1:12:00	0.347	-	4.030	0.347	2.198	4.030
2:11:00	-1.534	1.199	-1.534	-0.275	1.199	
3:10:00	0.970	-1.994	0.970	0.023	-1.994	
4:09:00	-0.601	3.179	-0.601	-1.254	3.179	

Table 9. Process Rules for Input X in 2016

Hour	Membership function
1:12:00	0.21, 0.79
2:11:00	0.13, 0.87
3:10:00	0.32, 0.68
4:09:00	0.62, 0.58

Table 10. Process Rules for Input Y in 2016

Hour	Membership function
1:12:00	0.08, 0.92
2:11:00	0.24, 0.76
3:10:00	0.07, 0.93
4:09:00	0.69, 0.91

Table 11. Process Rules for Output Z in 2016

Hour	Membership function
1:12:00	0.93, 0.07
2:11:00	0.83, 0.17
3:10:00	0.72, 0.28
4:09:00	0.85, 0.15

Table 12. Basic Rules table (fuzzy rules) for forecasting the year 2016

X/Y	Membership Function
NVB	ZE, PVS
NS	ZE/PVS
NVS	PVS
ZE	ZE
PVS	PVS
If there is a fuzzy rule is the same for input values X and, but different Z output value, whichever is the greater the value of its output being more removed.

Table 13. Conversion Table Basic Rules Forecasting the Year 2016 for Matlab Software Code

Antecedent	Cons	no rules X	Y	Z
PVS	PVS	1	5	6
ZE	ZE	2	5	7
PVS	ZE	3	7	6
ZE	PVS	4	7	6

Membership Function for Input and Output Variable

3.2 Implementation forecasting of Very Short Term Load On Electrical Systems Java Ball using Method Interval Type-2 Fuzzy Inference System (IT2FIS) at 3 Years of data taking into account the Year Actual Data Forecasting

Very Short-term load forecasting using the Interval Type-2 Fuzzy Inference System (IT2FIS) executed through m.file program in Matlab using the given function in the Toolbox IT-2FLT, to obtain the value of forecasting VLDmax. Value of VLDmax forecasting results continued (post processing) using software MS.Excel to get the time load forecasting and forecasting error value. The results of short-term load forecasting error method IT2FIS in 2013 through 2015 can be seen in Table 14 below.

Table 14. Comparison of Forecasting and Actual load on 2016

Time	h-4	h-3	h-2	h-1	h	TDLMAX	LDMAX	TLDMAK	TLDACK	Output Forecast	Error (%)			
First Friday on October 2016														
1:00	19.835	20.008	19.763	19.559	19.021	20.835	2.558	(1.498)	4.050	-5.763	-2.754	19.3169	19.0202	1.571
2:00	20.768	20.754	20.892	20.465	20.938	21.925	1.320	0.120	1.199	-5.093	-4.882	20.8141	20.3983	0.410
3:00	20.459	20.566	20.526	20.096	20.551	22.476	(1.541)	0.655	1.944	-8.468	-8.016	20.6745	20.5506	0.093
4:00	19.812	20.087	20.022	19.350	19.963	20.603	4.904	1.724	3.179	-3.728	-3.093	20.1904	19.9864	1.118

First Friday on October 2014

Time	h-4	h-3	h-2	h-1	h	TDLMAX	LDMAX	TLDMAK	TLDACK	Output Forecast	Error (%)			
1:00	19.835	20.008	19.763	19.559	19.021	20.835	2.558	(1.498)	4.050	-5.763	-2.754	19.3169	19.0202	1.571
2:00	20.768	20.754	20.892	20.465	20.938	21.925	1.320	0.120	1.199	-5.093	-4.882	20.8141	20.3983	0.410
3:00	20.459	20.566	20.526	20.096	20.551	22.476	(1.541)	0.655	1.944	-8.468	-8.016	20.6745	20.5506	0.093
4:00	19.812	20.087	20.022	19.350	19.963	20.603	4.904	1.724	3.179	-3.728	-3.093	20.1904	19.9864	1.118

While for the error value can be seen in the picture, Fig. 3 below :
4. Conclusions
After doing this research, then get the results forecasting very short-term daily load every hour by using Interval Type-2 Fuzzy Inference System has better results compared if using Interval type-1 Fuzzy Inference System. With MAPE value if using IT1-FIS equal to 0.928%, whereas if using IT2-FIS get MAPE 0.729%. It can be concluded that IT-2 FIS can be used to perform very short-term forecasting forecasting of Java Bali system by making in the form of simple and concise software.

Acknowledgements
We acknowledged P3I Universitas Muhammadiyah Sidoarjo.

References
[1] Jamaahuddin, Imam Robandi 2016 Short Term Load Forecasting of Eid Al Fitr Holiday By Using Interval Type – 2 Fuzzy Inference System (Case Study : Electrical System of Java Bali in Indonesia) in 2016 IEEE Region 10, TENSYM vol. 0, no. x, pp. 237–242.
[2] Damayanti R, Abdullah AG, Purnama W, Nandiyanto AB. Electrical Load Profile Analysis Using Clustering Techniques. InIOP Conference Series: Materials Science and Engineering 2017 Mar (Vol. 180, No. 1, p. 012081), IOP Publishing.
[3] N Amsal, C S Ozveren, and D King 2007 Short term load forecasting using Multiple Linear Regression 2007 42nd Int. Univ. Power Eng. Conf., pp. 1192–1198
[4] P P (PERSERO) P. – B 2015 Perencanaan, Evaluasi Operasi Sistem Tenaga Listrik Jawa Bali
2015. *1st ed. Jakarta: PT PLN (PERSERO) P2B* – Bidang Perencanaan

[5] M F I Khamis, Z Baharudin, N Hamid, M Abdullah, and F Nordin 2011 *Short term load forecasting for small scale power system using fuzzy logic* 2011 Fourth Int. Conf. Model. Simul. Appl. Optim., 2011

[6] I A Dharma, Robandi 2008 *Aplikasi Metode Fuzzy Inference System (FIS) dalam Perramalan Beban Jangka Pendek Untuk Hari-hari libur (Study Kasus di Pulau Bali)* No Title Proceeding 9 thSeminar Intell. Technol. Its Appl., no. 2008, p. 57, 2008.

[7] K Kim, H Youn, S Member, and Y Kang 2000 *Short-term load forecasting for special days in anomalous load conditions using neural networks IEEE Trans. Power Syst.*, vol. 15, no. 2, pp. 559–565

[8] Mulyadi Y, Farida L, Abdullah AG, Rohmah KA. Anomalous STLF for Indonesia power system using Artificial Neural Network. InScience and Technology (TICST), 2015 International Conference on 2015 Nov 4 (pp. 1-4). IEEE.
Very Short Term Load Forecasting Using Interval Type-2 Fuzzy Inference System (IT-2 FIS) (Case Study: Java Bali Electrical System)

ORIGINALITY REPORT

SIMILARITY INDEX % 9
INTERNET SOURCES %
PUBLICATIONS %
STUDENT PAPERS %

PRIMARY SOURCES

1. mafiadoc.com
 Internet Source % 2

2. R Gimazov, S Shidlovskiy. "The architecture of adaptive neural network based on a fuzzy inference system for implementing intelligent control in photovoltaic systems", IOP Conference Series: Materials Science and Engineering, 2018
 Publication % 1

3. Putri harliana, Robbi Rahim. "Comparative Analysis of Membership Function on Mamdani Fuzzy Inference System for Decision Making", Journal of Physics: Conference Series, 2017
 Publication % 1

4. Submitted to School of Business and Management ITB
 Student Paper % 1

5. www.eusflat.org
 Internet Source % 1
S A Rasyid, A G Abdullah, Y Mulyadi. "Short term load forecasting of anomalous load using hybrid soft computing methods", IOP Conference Series: Materials Science and Engineering, 2016