On the Real-rootedness of the Descent Polynomials of $(n - 2)$-Stack Sortable Permutations

Philip B. Zhang
Center for Combinatorics, LPMC-TJKLC
Nankai University, Tianjin 300071, P. R. China
Email: zhangbiaonk@163.com

Abstract. Bóna conjectured that the descent polynomials on $(n - 2)$-stack sortable permutations have only real zeros. Brändén proved this conjecture by establishing a more general result. In this paper, we give another proof of Brändén’s result by using the theory of s-Eulerian polynomials recently developed by Savage and Visontai.

AMS Classification 2010: 26C10, 05A15

Keywords: Eulerian polynomials, descent polynomials, t-stack sortable permutations, real-rootedness, interlacing, compatibility.

1 Introduction

Suppose that $w = w_1 \cdots w_n$ is a permutation of a set of distinct numbers and w_i is the maximal number of $\{w_1, \ldots, w_n\}$. The stack sorting operation s on w can be recursively defined as

$$s(w) = s(w_1 \cdots w_{i-1})s(w_{i+1} \cdots w_n)w_i.$$

Let S_n denote the set of permutations of $[n] = \{1, 2, \ldots, n\}$. We say that $\sigma \in S_n$ is t-stack sortable if $s^t(\sigma)$ is the identity permutation. For more information on t-stack sortable permutations, see Bóna [1], Knuth [7], and West [13].

For $\sigma = (\sigma_1, \sigma_2, \ldots, \sigma_n) \in S_n$, let

$$\text{Des} \, \sigma = \{i \in [n - 1] : \sigma_i > \sigma_{i+1}\}$$

denote the set of descents of σ, and let $\text{des} \, \sigma = |\text{Des} \, \sigma|$. The Eulerian polynomials $A_n(x)$ are usually defined as the descent generating function over S_n, namely,

$$A_n(x) = \sum_{\sigma \in S_n} x^{\text{des} \, \sigma}. \quad (1)$$

Let $W_t(n, k)$ be the number of t-stack sortable permutations in S_n with k descents, and let

$$W_{n,t}(x) = \sum_{k=0}^{n-1} W_t(n, k)x^k$$
be the descent polynomials over t-stack sortable permutations. Bóna [1] showed that for fixed n and t the descent polynomial $W_{n,t}(x)$ is symmetric and unimodal, and proposed the following conjecture.

Conjecture 1.1 ([1]). The descent polynomial $W_{n,t}(x)$ has only real zeros for any integer $1 \leq t \leq n - 1$.

The above conjecture is true for $t = 1, 2, n - 2$, or $n - 1$, see Brändén [2] and references therein. In fact, $W_{n,1}(x)$ are the Narayana polynomials and $W_{n,n-1}(x)$ are the Eulerian polynomials, both of which are known to be real-rooted. Based on a compact and simple form of $W_2(n, k)$ due to Jacquard and Schaeffer [6],

$$W_2(n, k) = \frac{(n + k)!(2n - k - 1)!}{(k + 1)!(n - k)!(2k + 1)!(2n - 2k - 1)!}.$$

Brändén proved the real-rootedness of $W_{n,2}(x)$ by using the tool of multiplier sequences. For $t = n - 2$, it is easy to show that

$$W_{n,n-2}(x) = A_n(x) - x A_{n-2}(x).$$

By using certain real-rootedness preserving linear operators, Brändén proved the real-rootedness of $W_{n,n-2}(x)$. Remarkably, Brändén [2] obtained the following result.

Theorem 1.2 ([2]). For any $n \geq 3$ and $k \geq -2$, the polynomial

$$K_n(x) = A_n(x) + kx A_{n-2}(x)$$

has only real zeros.

The main objective of this paper is to give another proof of the above result by using the theory of s-Eulerian polynomials recently developed by Visontai and Savage [10]. The s-Eulerian polynomials have proven to be a powerful tool for studying the real-rootedness of Eulerian-like polynomials, see also Yang and Zhang [14]. Instead of directly proving Theorem 1.2, we shall prove a slightly general result as shown below.

Theorem 1.3. For any $n > 3$ and $k \geq -n$, the polynomial $A_n(x) + kx A_{n-2}(x)$ has only real zeros.

The remainder of the paper is organized as follows. In Section 2, we shall give a brief overview of the theory of s-Eulerian polynomials and related results. In Section 3, we shall give a proof of Theorem 1.3. In Section 4, we shall present one open problem.
2 The \(s \)-Eulerian polynomials

The aim of this section is to review some terminology and results on \(s \)-Eulerian polynomials.

Let \(s = (s_1, s_2, \ldots) \) be a sequence of positive integers. Following Savage and Visontai [10], we say that an \(n \)-dimensional \(s \)-inversion sequence is a sequence \(e = (e_1, \ldots, e_n) \in \mathbb{N}^n \) such that \(e_i < s_i \) for each \(1 \leq i \leq n \). Let \(\mathcal{I}_n(s) \) denote the set of \(n \)-dimensional \(s \)-inversion sequences. For each \(e \in \mathcal{I}_n(s) \), the ascent set of \(e \) is defined as

\[
\text{Asc } e = \{ i \in [n-1] : \frac{e_i}{s_i} < \frac{e_{i+1}}{s_{i+1}} \}.
\]

Let \(\text{asc } e = |\text{Asc } e| \), and let

\[
E_n^{(s)}(x) = \sum_{e \in \mathcal{I}_n(s)} x^{\text{asc } e}.
\]

Savage and Visontai [10] called \(E_n^{(s)}(x) \) the \(s \)-Eulerian polynomial, and obtained the following theorem.

Theorem 2.1 ([10, Theorem 1.1]). For any positive integer sequence \(s \) and any positive integer \(n \), the \(s \)-Eulerian polynomial \(E_n^{(s)}(x) \) has only real zeros.

Their proof used a refinement of \(E_n^{(s)}(x) \) as follows. Let

\[
E_{n,i}^{(s)}(x) = \sum_{e \in \mathcal{I}_n(s)} \chi(e_n = i) x^{\text{asc } e}.
\]

It is clear that

\[
E_n^{(s)}(x) = \sum_{i=0}^{s_n-1} E_{n,i}^{(s)}(x).
\]

The key point is that these polynomials satisfy certain simple recurrence relation and certain mutually interlacing property. Let us first recall the definition of mutually interlacing. Given two real-rooted polynomials \(f(z) \) and \(g(z) \) with positive leading coefficients, let \(\{r_i\} \) be the set of zeros of \(f(z) \) and \(\{s_j\} \) the set of zeros of \(g(z) \). We say that \(g(z) \) interlaces \(f(z) \), denoted \(g(z) \preceq f(z) \), if either \(\deg f(z) = \deg g(z) = n \) and

\[
s_n \leq r_n \leq s_{n-1} \leq \cdots \leq s_2 \leq r_2 \leq s_1 \leq r_1,
\]

or \(\deg f(z) = \deg g(z) + 1 = n \) and

\[
r_n \leq s_{n-1} \leq \cdots \leq s_2 \leq r_2 \leq s_1 \leq r_1.
\]

We say that a sequence of real polynomials \((f_1(x), \ldots, f_m(x))\) with positive leading coefficients is mutually interlacing if \(f_i(x) \preceq f_j(x) \) for all \(1 \leq i < j \leq m \). Savage and Visontai obtained the following result.
Lemma 2.2 ([10, Lemma 2.1]). For \(n > 1 \) and \(0 \leq i < s_n \), we have

\[
E_{n,i}^{(s)}(x) = \sum_{h=0}^{t_i-1} x E_{n-1,h}^{(s)}(x) + \sum_{h=t_i}^{s_{n-1}-1} E_{n-1,h}^{(s)}(x),
\]

where \(t_i = \lceil is_{n-1}/s_n \rceil \), \(E_{1,0}^{(s)}(x) = 1 \) and \(E_{1,i}^{(s)}(x) = x \) for \(0 < i < s_1 \). Furthermore, the sequence of polynomials \(\{E_{n,i}(x)\}_{i=0}^{n-1} \) is mutually interlacing.

Define the mapping \(\phi : \mathcal{S}_n \to \mathcal{J}_{n}^{(1,2,\ldots)} \) by setting

\[
\phi(\pi) = e = (e_1, e_2, \ldots, e_n)
\]

for \(\pi = (\pi_1, \pi_2, \ldots, \pi_n) \), where

\[
e_i = |\{j : j \in [i-1] \text{ and } \pi_j > \pi_i\}|.
\]

It is easy to show that \(\phi \) is a bijection with \(\text{Des } \pi = \text{Asc } e \). Let

\[
A_{n,i}(x) = \sum_{\pi \in \mathcal{S}_n} \chi(\pi_n = n - i) x^{\text{des } \pi}.
\]

Therefore, we have

\[
E_{n}^{(1,2,\ldots)}(x) = A_n(x),
\]

\[
E_{n,i}^{(1,2,\ldots)}(x) = A_{n,i}(x).
\]

Now, for \(s = (1, 2, \ldots) \), Lemma 2.2 can be restated as follows, which is crucial for our proof of Theorem 1.3.

Lemma 2.3. For \(n \geq 2 \) and \(i = 0, 1, \ldots, n - 1 \),

\[
A_{n,i}(x) = x \sum_{j=0}^{i-1} A_{n-1,j}(x) + \sum_{j=1}^{n-2} A_{n-1,j}(x)
\]

with the initial condition \(A_{1,0}(x) = 1 \). Furthermore, the sequence of polynomials \(\{A_{n,i}(x)\}_{i=0}^{n-1} \) is mutually interlacing.

We shall also need the following result due to Haglund, Ono, and Wagner [5].

Theorem 2.4 ([5, Lemma 8]). Let \(f_1(x), \ldots, f_m(x) \) be real-rooted polynomials with non-negative coefficients, and let \(a_1, \ldots, a_m \geq 0 \) and \(b_1, \ldots, b_m \geq 0 \) be such that \(a_i b_{i+1} \geq b_i a_{i+1} \) for all \(1 \leq i \leq m - 1 \). If the sequence \((f_1(x), \ldots, f_m(x)) \) is mutually interlacing, then

\[
\sum_{i=1}^{m} a_i f_i(x) \preceq \sum_{i=1}^{m} b_i f_i(x), \text{ and } \sum_{i=1}^{m} b_i f_i(x) \preceq x \sum_{i=1}^{m} a_i f_i(x).
\]
It is known that interlacing of two polynomials implies the real-rootedness of their arbitrary linear combination, see Obreschkoff [8] and Dedieu [4].

Theorem 2.5 ([2, Corollary 2.5]). Let \(f(x), g(x) \) be real polynomials. Then \(f(x) \) interlaces \(g(x) \) or \(g(x) \) interlaces \(f(x) \) if and only if the polynomial

\[
\alpha f(x) + \beta g(x)
\]

have only real zeros for any real numbers \(\alpha \) and \(\beta \) with \(\alpha^2 + \beta^2 \neq 0 \).

Therefore, we have the following result.

Corollary 2.6. If \(f_i(x), a_i, b_i \) are given as in Theorem 2.4, then the polynomial

\[
\sum_{i=1}^{m} (a_i x + b_i) f_i(x)
\]

has only real zeros.

3 Proof of Theorem 1.3

In this section we aim to give a proof of Theorem 1.3. Note that

\[
A_{n-2}(x) = A_{n-1,0}(x).
\]

Before proving Theorem 1.3, let us first express \(A_n(x) \) in terms of \(A_{n-1,i}(x) \).

Lemma 3.1. For any integer \(n \geq 2 \), we have

\[
A_n(x) = \sum_{j=0}^{n-2} ((n - j - 1)x + j + 1)A_{n-1,i}(x)
\]

(13)

Proof. By (12), we obtain that

\[
A_n(x) = \sum_{i=0}^{n-1} A_{n,i}(x)
\]

\[
= \sum_{i=0}^{n-1} \left(x \sum_{j=0}^{i-1} A_{n-1,i,j}(x) + \sum_{j=1}^{n-2} A_{n-1,i,j}(x) \right)
\]

\[
= x \sum_{i=0}^{n-1} \sum_{j=0}^{i-1} A_{n-1,i,j}(x) + \sum_{i=0}^{n-1} \sum_{j=i}^{n-2} A_{n-1,i,j}(x).
\]
Then, by interchanging the order of summation for each double summation, we get that

\[A_n(x) = x \sum_{j=0}^{n-2} \sum_{i=j+1}^{n-1} A_{n-1,j}(x) + \sum_{j=0}^{n-2} \sum_{i=0}^{j} A_{n-1,j}(x) \]

\[= x \sum_{j=0}^{n-2} (n - j - 1)A_{n-1,j}(x) + \sum_{j=0}^{n-2} (j + 1)A_{n-1,j}(x) \]

\[= \sum_{j=0}^{n-2} ((n - j - 1)x + j + 1)A_{n-1,i}(x), \]

which leads to the desired equality. This completes the proof. \(\square\)

Now we proceed to give a proof of our main theorem.

Proof of Theorem 1.3. By (13), we have

\[K_n(x) = A_n(x) + kx A_{n-2}(x) \]

\[= \sum_{j=0}^{n-2} ((n - j - 1)x + j + 1)A_{n-1,i}(x) + kx A_{n-1,0}(x) \]

\[= ((n + k - 1)x + 1)A_{n-1,0}(x) + \sum_{j=1}^{n-3} ((n - j - 1)x + j + 1)A_{n-1,i}(x) \]

\[+ (x + n - 1)A_{n-1,n-2}(x). \]

In view of that \(A_{n-1,n-2}(x) = xA_{n-1,0}(x) \), we have

\[K_n(x) = ((n + \frac{k}{2} - 1)x + 1)A_{n-1,0}(x) \]

\[+ \sum_{j=1}^{n-3} ((n - j - 1)x + j + 1)A_{n-1,i}(x) \]

\[+ (x + n + \frac{k}{2} - 1)A_{n-1,n-2}(x). \]

Now we shall use Corollary 2.6 to obtain the real-rootedness of \(K_n(x) \). To this end, let \(m = n - 1 \), \(f_i(x) = A_{n-1,i-1}(x) \) for \(1 \leq i \leq m \) and

\[a_i = \begin{cases}
 n + \frac{k}{2} - 1, & i = 1, \\
 n - i, & 2 \leq i \leq m - 1, \\
 1, & i = m,
\end{cases} \]

and

\[b_i = \begin{cases}
 1, & i = 1, \\
 i, & 2 \leq i \leq m - 1, \\
 n + \frac{k}{2} - 1, & i = m.
\end{cases} \]
It is routine to check that $f_i(x), a_i$ and b_i satisfy the conditions of Corollary 2.6. This completes the proof.

\section{One open problem}

We have shown that for any $n > 3$ and $k \geq -n$, the polynomial $K_n(x)$ in (2) has only real zeros. Stanley [11] advised us to further study under what conditions does the polynomial $K_n(x)$ have only real zeros.

Let T_n be the n-th tangential or “Zag” number, see [12, A000182] and let $a(n) = T_{n+1}/T_n$. Computer evidence suggests the following conjecture.

\textbf{Conjecture 4.1.} For any $n \geq 3$, the polynomial $K_n(x)$ has only real zeros for $k \leq -n(n-1)$ and $k \geq -a([n/2])$, while it is not real-rooted when $-n(n-1) < k < -a([n/2])$. Moreover, this polynomial has only negative real zeros for $k \geq -a([n/2])$.

Note that there is a useful criterion for determining whether a polynomial of degree n has n distinct real zeros. Suppose that

$$f(x) = \sum_{i=0}^{n} a_{n-i}x^i$$

and

$$g(x) = \sum_{i=0}^{n} b_{n-i}x^i$$

are two polynomials with $a_0 \neq 0$. For any $1 \leq k \leq n$, let

$$\Delta_{2k}(f(x), g(x)) = \det \begin{pmatrix}
 a_0 & a_1 & a_2 & \ldots & a_{2k-1} \\
 b_0 & b_1 & b_2 & \ldots & b_{2k-1} \\
 0 & a_0 & a_1 & \ldots & a_{2k-2} \\
 0 & b_0 & a_1 & \ldots & b_{2k-2} \\
 \ldots & \ldots & \ldots & \ldots & \ldots \\
 \ldots & \ldots & \ldots & \ldots & \ldots \\
 0 & 0 & 0 & \ldots & b_k
\end{pmatrix}_{k \times k}.$$

These determinants are known as the Hurwitz determinants of $f(x)$ and $g(x)$. Hermite showed that the real-rootedness of $f(x)$ can be uniquely determined by the signs of $\Delta_{2k}(f(x), f'(x))$. The following is essentially due to Borchardt and Hermite [9, pp. 349].

\textbf{Theorem 4.2.} Suppose that $f(x)$ is a real polynomial of degree n with $a_0 > 0$. Then $f(x)$ has n distinct real zeros if and only if the corresponding Hurwitz determinants satisfy

$$\Delta_{2k}(f(x), f'(x)) > 0, \quad \forall 1 \leq k \leq n.$$
Using this characterization, we have verified that, for $3 \leq n \leq 18$, the polynomial $K_n(x)$ has only real zeros when $k \leq -n(n-1)$ and $k \geq -a([n/2])$.

Acknowledgments. We wish to thank Professor Richard Stanley for his helpful comments. This work was supported by the 973 Project, the PCSIRT Project of the Ministry of Education and the National Science Foundation of China.

References

[1] M. Bóna. Symmetry and unimodality in t-stack sortable permutations. *J. Combin. Theory Ser. A*, 98(1):201–209, 2002.

[2] P. Brändén. On linear transformations preserving the Pólya frequency property. *Trans. Amer. Math. Soc.*, 358(8):3697–3716 (electronic), 2006.

[3] F. Brenti. Unimodal, log-concave and Pólya frequency sequences in combinatorics. *Mem. Amer. Math. Soc.*, 81(413):viii+106, 1989.

[4] J.-P. Dedieu. Obreschkoff’s theorem revisited: what convex sets are contained in the set of hyperbolic polynomials? *J. Pure Appl. Algebra*, 81(3):269–278, 1992.

[5] J. Haglund, K. Ono, and D. G. Wagner. Theorems and conjectures involving rook polynomials with only real zeros. In *Topics in number theory (University Park, PA, 1997)*, volume 467 of *Math. Appl.*., pages 207–221. Kluwer Acad. Publ., Dordrecht, 1999.

[6] B. Jacquard and G. Schaeffer. A bijective census of nonseparable planar maps. *J. Combin. Theory Ser. A*, 83(1):1–20, 1998.

[7] D. E. Knuth. *The Art of Computer Programming. Vol. 1: Fundamental Algorithms*. Second printing. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont, 1969.

[8] N. Obreschkoff. *Verteilung und Berechnung der Nullstellen reeller Polynome*. VEB Deutscher Verlag der Wissenschaften, Berlin, 1963.

[9] Q. I. Rahman and G. Schmeisser. *Analytic Theory of Polynomials*, volume 26 of *London Mathematical Society Monographs. New Series*. The Clarendon Press Oxford University Press, Oxford, 2002.

[10] C. D. Savage and M. Visontai. The s-Eulerian polynomials have only real roots. *Trans. Amer. Math. Soc.*, to appear.

[11] R. P. Stanley. Private communication.
[12] N.J.A. Sloane. On-Line Encyclopedia of Integer Sequences, http://www.oeis.org.

[13] J. West, Permutations with Forbidden Subsequences; and Stack Sortable Permutations, Ph.D. thesis, Massachusetts Institute of Technology, 1990.

[14] A. L.B. Yang and P. B. Zhang, Mutual Interlacing and Eulerian-like Polynomials for Weyl Groups, arXiv:1401.6273 [math.CO].