DATA APPROXIMATION WITH TIME-FREQUENCY INVARIANT SYSTEMS

DAVIDE BARBIERI, C. CABRELLI, E. HERNÁNDEZ, AND U. MOLTER

Abstract. In this paper we prove the existence of a time-frequency space that best approximates a given finite set of data. Here best approximation is in the least square sense, among all time-frequency spaces with no more than a prescribed number of generators. We provide a formula to construct the generators from the data and give the exact error of approximation. The setting is in the space of square integrable functions defined on a second countable LCA group and we use the Zak transform as the main tool.

1. Introduction and main result

Time-frequency systems, also called Gabor or Weyl-Heisenberg systems in the literature, are used extensively in the theory of communication, to analyze continuous signals, and to process digital data such as sampled audio or images.

Time-frequency spaces try to represent features of both a function and its frequencies by decomposing the signal into time-frequency atoms given by modulations and translations of a finite number of functions \[9\]. If one looks at a musical score, on the horizontal axis the composer represents the time, and on the vertical axis the “frequency” given by the amplitude of the signal at that instant. Finding \textit{sparse representations} (i.e. spaces generated by a small set of functions) will be useful for example in classification tasks.

In numerical applications to time-dependent phenomena, one often encounters uniformly sampled signals of finite length, i.e. vectors of \(d\) elements, such as audio signals with a constant sampling frequency. In this case the most direct approach is to consider Fourier analysis on the cyclic group \(\mathbb{Z}_d\).

To include a large variety of situations, our setting will be that of a locally compact abelian (LCA) group. The general construction developed in this paper will be specialised to the cyclic group \(\mathbb{Z}_d\) in Example 2.2.

In this paper \(G = (G,+)\) will be a second countable LCA group, that is, an abelian group endowed with a locally compact and second countable Hausdorff topology for which \((x,y) \mapsto x - y\) is continuous from \(G \times G\) into \(G\). We denote by \(\hat{G}\) the dual group of \(G\), formed by the characters of \(G\): an element \(\alpha \in \hat{G}\) is a continuous homomorphism from \(G\) into \(T = \{z \in \mathbb{C} : |z| = 1\}\). The action of \(\alpha\) on \(x \in G\) will be denoted by \((x,\alpha) := \alpha(x)\), to reflect the fact that the dual of \(\hat{G}\) is isomorphic to \(G\), and therefore \(x\) can also act on \(\alpha\). For \(\alpha_1,\alpha_2 \in \hat{G}\) the group law is denoted by \(\alpha_1 \cdot \alpha_2\), so that \((x,\alpha_1 \cdot \alpha_2) = (x,\alpha_1)(x,\alpha_2)\).

A uniform lattice, \(L \subset G\), is a subgroup of \(G\) whose relative topology is the discrete one and for which \(G/L\) is compact in the quotient topology. The annihilator

\[\text{Key words and phrases.} \quad \text{Time-frequency space; Eckart-Young theorem; LCA groups; Zak transform.}\]
of L is $L^\perp = \{ \alpha \in \hat{G} : \langle \ell, \alpha \rangle = 1 \; \forall \ell \in L \}$. Since $L^\perp \approx \widehat{(G/L)}$ ([1], Theorem 2.1.2) and G/L is compact, L^\perp is discrete ([1], Theorem 1.2.5). In particular, since G is second countable, \hat{G} is also second countable, so both discrete groups L and L^\perp are countable.

Let L be a uniform lattice in the LCA group G and $B \subset L^\perp$ be a uniform lattice in the dual group \hat{G}. For $f \in L^2(G)$, $\ell \in L$, and $\beta \in B$ let $T_\ell f(x) = f(x - \ell), x \in G$, be the translation operator, and $M_\beta f(x) = (x, \beta) f(x), x \in G$, be the modulation operator. The collection

$$\{T_\ell M_\beta f : \ell \in L, \beta \in B\},$$

is the time-frequency system generated by $f \in L^2(G)$.

Since $B \subset L^\perp$, we have $T_\ell M_\beta f = M_\beta T_\ell f$ for all $f \in L^2(G), \ell \in L$, and $\beta \in B$. Thus $\Pi(\ell, \beta) := T_\ell M_\beta$ is a unitary representation of the abelian group $\Gamma := L \times B$, with operation $(\ell_1, \beta_1) \cdot (\ell_2, \beta_2) = (\ell_1 + \ell_2, \beta_1 \cdot \beta_2)$, in $L^2(G)$.

A closed subspace V of $L^2(G)$ is said to be Γ-invariant (or time-frequency invariant) if for every $f \in V$, $\Pi(\ell, \beta) f \in V$ for every $(\ell, \beta) \in \Gamma$. All Γ-invariant subspaces V of $L^2(G)$ are of the form

$$V = S_\Gamma(A) := \text{span}\{T_\ell M_\beta \phi : \phi \in A, (\ell, \beta) \in \Gamma\}$$

for some countable collection A of elements of $L^2(G)$. If A is a finite collection we say that $V = S_\Gamma(A)$ has finite length, and A is a set of generators of V. We call the length of V, denoted length(V), the minimum positive integer n such that V has a set of generators with n elements.

We now state our approximation problem. Let $F = \{f_1, f_2, ..., f_m\} \subset L^2(G)$ be a set of functional data. Given a closed subspace V of $L^2(G)$ define

$$\mathcal{E}(F; V) := \sum_{j=1}^m \|f_j - P_V f_j\|_{L^2(G)}^2$$

as the error of approximation of F by V, where P_V denotes the orthogonal projection of $L^2(G)$ onto V.

Is it possible to find a Γ-invariant space of length at most $n < m$ that best approximates our functions, in the sense that

$$\mathcal{E}(F; S_\Gamma\{\psi_1, ..., \psi_n\}) \leq \mathcal{E}(F; V)$$

for all Γ-invariant subspaces V of $L^2(G)$ with length(V) $\leq n$?

This question is relevant in applications. For example, if $\{f_1, \ldots, f_m\}$ are audio signals, the best Γ-invariant space provides a time-frequency optimal model to represent these signals.

The answer to this question is affirmative, and is given by the main theorem of this work.

Theorem 1.1. Let G be a second countable LCA group, L and B be uniform lattices in G and \hat{G} respectively, with $B \subset L^\perp$. For each set of functional data $F = \{f_1, f_2, ..., f_m\} \subset L^2(G)$ and each $n \in \mathbb{N}, n < m$, there exists $\{\psi_1, ..., \psi_n\} \subset L^2(G)$ such that

$$\mathcal{E}(F; S_\Gamma\{\psi_1, ..., \psi_n\}) \leq \mathcal{E}(F; V)$$

for all Γ-invariant subspaces V of $L^2(G)$ with length(V) $\leq n$.

Remark 1.1. Observe that, in the previous statement, some of the generators \(\{ \psi_1, \ldots, \psi_n \} \) may be zero. In this case, the length of \(S_\Gamma \{ \psi_1, \ldots, \psi_n \} \) would be strictly smaller than \(n \).

The proof of Theorem 1.1 will follow the ideas originally developed in [1] for approximating data in \(L^2(\mathbb{R}^d) \) by shift-invariant subspaces of finite length, and which have also been used in [6, 3].

We reduce the problem of finding the collection \(\{ \psi_1, \ldots, \psi_n \} \), whose existence is asserted in Theorem 1.1, to solve infinitely many approximation problems for data in a particular Hilbert space of sequences. This is accomplished with the help of an isometric isomorphism \(H_\Gamma \) that intertwines the unitary representation \(\Pi \) with the characters of \(\Gamma \). This isometry \(H_\Gamma \) generalizes the fiberization map of [4] used in [1], and has the properties of a Helson map as defined in [2] (Definition 7). The definition and properties of \(H_\Gamma \) are given in Section 2.

The reduced problems are then solved by using Eckart-Young theorem as stated and proved in [1] (Theorem 4.1). The solutions of all of these reduced problems are patched together to finally obtain the proof of Theorem 1.1 in Section 3.

2. An isometric isomorphism

Let \(G \) be a second countable LCA group, \(L \) a uniform lattice in \(G \), and \(B \subset L^\perp \) a uniform lattice in \(\hat{G} \) (see definitions in Section 1). With \(\Gamma = L \times B \), each \(\Gamma \)-invariant subspace \(V \) of \(L^2(G) \) is of the form

\[
V = S_\Gamma(\mathcal{A}) := \text{span}\{ T_\ell M_\beta : \varphi \in \mathcal{A}, (\ell, \beta) \in \Gamma \}^{L^2(G)}
\]

for some countable set \(\mathcal{A} \subset L^2(G) \). Therefore

\[
V = S_L(\{ M_\beta \varphi : \varphi \in \mathcal{A}, \beta \in B \})
\]

is also an \(L \)-invariant subspace, that is \(T_\ell f \in V \) for all \(\ell \in L \) whenever \(f \in V \). The theory of shift-invariant spaces on LCA groups, as developed in [7], can be applied to this situation.

Let \(T_{L^\perp} \subset \hat{G} \) be a measurable cross-section of \(\hat{G}/L^\perp \). The set \(T_{L^\perp} \) is in one to one correspondence with the elements of \(\hat{G}/L^\perp \), and \(\{ T_{L^\perp} + \lambda : \lambda \in L^\perp \} \) is a tiling of \(\hat{G} \).

Let \(\hat{f}(\omega) := \int_G f(x)(x, \omega)dx \) denote the unitary Fourier transform of \(f \in L^2(G) \cap L^1(G) \) and extended to \(L^2(G) \) by density. By Proposition 3.3 in [7] the mapping \(\mathcal{F} : L^2(G) \rightarrow L^2(T_{L^\perp}, \ell^2(L^\perp)) \) given by

\[
\mathcal{F} f(\omega) = \{ \hat{f}(\omega + \lambda) \}_{\lambda \in L^\perp}, \; f \in L^2(G),
\]

is an isometric isomorphism. Moreover, since \(V \subset L^2(G) \) is an \(L \)-invariant space, it has an associated measurable range function

\[
J : T_{L^\perp} \longrightarrow \{ \text{closed subspaces of } \ell^2(L^\perp) \}
\]

such that (See Theorem 3.10 in [7])

\[
J(\omega) = \text{span}\{ \mathcal{F}(M_\beta \varphi)(\omega) : \beta \in B, \varphi \in \mathcal{A} \}^{\ell^2(L^\perp)}, \; \text{a.e } \omega \in T_{L^\perp}.
\]

Using the definition of \(\mathcal{F} \) given in (2.1), for each \(\beta \in B \) and each \(\varphi \in L^2(G) \) we have

\[
\mathcal{F}(M_\beta \varphi)(\omega) = \{ \hat{M_\beta \varphi}(\omega + \lambda) \}_{\lambda \in L^\perp} = \{ \hat{\varphi}(\omega + \lambda - \beta) \}_{\lambda \in L^\perp} = t_\beta(\mathcal{F} \varphi(\omega))
\]
where \(t_\beta : \ell^2(L^+) \to \ell^2(L^+) \) is the translation of sequences in \(\ell^2(L^+) \) by elements of \(\beta \in B \), that is \(t_\beta(\{a(\lambda)\}_{\lambda \in L^+}) = \{a(\lambda - \beta)\}_{\lambda \in L^+} \). Therefore, \(\mathcal{F} \) intertwines the modulations \(\{M_\beta\}_{\beta \in B} \) with the translations by \(B \) on \(\ell^2(L^+) \).

By equations (2.2) and (2.3), for a.e. \(\omega \in T_{L^+} \),

\[
J(\omega) = \text{span} \{t_\beta(\mathcal{F}(\varphi(\omega)) : \beta \in B, \varphi \in \mathcal{A})\}^{\ell^2(L^+)}.\]

Therefore, \(J(\omega) \) is a \(B \)-invariant subspace of \(L^2(L^+) \). We can apply the theory of shift-invariant spaces as developed in [7] to the discrete LCA group \(L^+ \) and its uniform lattice \(B \).

Let \(B^\perp \) be the annihilator of \(B \) in the compact group \(\hat{L}^+ \subset G \), that is

\[
(4.4) \quad B^\perp = \{b \in \hat{L}^+ : (b, \beta) = 1 \forall \beta \in B\}. \]

Observe that \(B^\perp \) is finite, because it is a discrete subgroup of a compact group.

Let \(T_{B^\perp} \subset \hat{L}^+ \) be a measurable cross-section of \(\hat{L}^+/B^\perp \). The set \(T_{B^\perp} \) is in one to one correspondence with the elements of \(\hat{L}^+/B^\perp \) and \(\{T_{B^\perp} + b : b \in B^\perp\} \) is a tiling of \(L^+ \).

Example 2.1. Let \(G = \mathbb{R}/L = \mathbb{Z} \) and \(B = n\mathbb{Z} \subset L^+ = \mathbb{Z} \subset \hat{\mathbb{R}} \). Since \(L^+ = \hat{\mathbb{Z}} \approx [0,1) \), \(\ell \in B^\perp \) if and only if \(\ell \in \{0,1,\ldots,n-1\} \) and \(e^{2\pi i\ell n/k} = 1 \) for all \(k \in \mathbb{Z} \).

Hence

\[
B^\perp = \{0, \frac{1}{n}, \ldots, \frac{n-1}{n}\}.
\]

We can take \(T_{B^\perp} = [0, \frac{1}{n}) \). Notice that as a subgroup of \(\hat{\mathbb{R}} \) the annihilator of \(B \) is \(\mathbb{Z}/n \mathbb{Z} \).

Example 2.2. Let \(p, q \in \mathbb{N}, d = pq \), and \(G = \mathbb{Z}_d = \{0,1,\ldots,d-1\} \). Let \(L = \{0,p,2p,\ldots,p(q-1)\} = \{np : n = 0,\ldots,q-1\} \approx \mathbb{Z}_q \). Its annihilator lattice is

\[
L^+ = \{\lambda \in \{0,1,\ldots,d-1\} : e^{2\pi i\frac{\lambda n}{q}} = 1 \forall n = 0,\ldots,q-1\}
\]

\[
= \{0,2q,\ldots,q(p-1)\} = \{kq : k = 0,\ldots,p-1\} \approx \mathbb{Z}_p.
\]

A fundamental set \(T_{L^+} \) for \(L^+ \) in \(\hat{G} \approx \mathbb{Z}_d \) is \(T_{L^+} = \{0,\ldots,q-1\} \approx \mathbb{Z}_q \). The characters \(\omega \in \hat{L}^+ \) of this group are of the form (see e.g. [8] Lemma 5.1.3) \(\omega_\nu(\lambda) = e^{2\pi i\frac{\lambda \nu}{q}}, \lambda \in L^+ \) for \(\nu \in \{\frac{\lambda}{q} : \ell = 0,\ldots,p-1\} \approx \mathbb{Z}_p \).

Suppose now that \(p = rs \) for some \(r, s \in \mathbb{N} \), and let \(B \subset L^+ \) be

\[
B = \{0, rq, 2rq, \ldots, (s-1)rq\} = \{jqr : j = 0,\ldots,s-1\} \approx \mathbb{Z}_s. \]

The annihilator of \(B \) in \(\hat{L}^+ \) thus reads

\[
B^\perp = \{b \in \frac{\ell}{q} : \ell = 0,\ldots,p-1\} : e^{2\pi i\frac{b j r q}{q}} = 1 \forall j = 0,\ldots,s-1\}
\]

\[
= \{0, \frac{s}{q}, \frac{2s}{q}, \ldots, \frac{s(r-1)}{q}\} = \{\frac{h s}{q} : h = 0,\ldots,r-1\} \approx \mathbb{Z}_r.
\]

A fundamental set in \(\hat{L}^+ = \{\frac{\ell}{q} : \ell = 0,\ldots,p-1\} \) for \(B^\perp \) is

\[
T_{B^\perp} = \left\{0, \frac{1}{q}, \ldots, \frac{s-1}{q}\right\} \approx \mathbb{Z}_s.
\]
By Proposition 3.3 in [7], the mapping \(\mathcal{H} : \ell^2(L^+) \to L^2(T_{B^+}, \ell^2(B^+)) \) given by
\[
\mathcal{H}((a(\lambda))_{\lambda \in L^+})(t) = \left\{ \left((a(\lambda))_{\lambda \in L^+} \right)^\wedge (t + b) \right\}_{b \in B^+}
\]
(2.5)
is an isometric isomorphism. Moreover, each \(B \)-invariant subspace \(J(\omega), \omega \in T_{L^+}, \)
has an associated measurable range function
\[
J(\omega, \cdot) : T_{B^+} \to \{ \text{closed subspaces of } \ell^2(B^+) \},
\]
such that for almost every \(t \in T_{B^+}, J(\omega, t) = \text{span} \left\{ \mathcal{H}(\mathcal{F}\varphi)(\omega))(t) : \varphi \in A \right\}^{\ell^2(B^+)}.
\]
From the definition of \(\mathcal{F} \) given in (2.1) and the definition of \(\mathcal{H} \) given in (2.5) we obtain
\[
\mathcal{H}(\mathcal{F}\varphi)(\omega))(t) = \left\{ \sum_{\lambda \in L^+} \hat{f}(\omega + \lambda)(t + b, \lambda) \right\}_{b \in B^+},
\]
(2.6)
when \(f \in L^2(G), \omega \in T_{L^+}, \) and \(t \in T_{B^+} \).

For \(f \in L^2(G), \omega \in \hat{G}, \) and \(t \in G \) define
\[
Zf(\omega, t) := \sum_{\lambda \in L^+} \hat{f}(\omega + \lambda)(t, \lambda),
\]
(2.7)
the Zak transform of \(\hat{f} \) with respect to the lattice \(L^+ \). Observe that in terms of this map, \(\mathcal{H}(\mathcal{F}\varphi)(\omega))(t) = \{ Zf(\omega, t + b) \}_{b \in B^+} \).

To simplify the statement of the next theorem we write \(X_\beta \) for the character on \(G \) associated to \(\beta \in B \), that is \(X_\beta : G \to \mathbb{T} \) with \(X_\beta(x) = (x, \beta) \) for all \(x \in G \). Similarly \(X_\ell \) will denote the character on \(\hat{G} \) associated to \(\ell \in L \), that is \(X_\ell : \hat{G} \to \mathbb{T} \) with \(X_\ell(\omega) = (\ell, \omega) \) for all \(\omega \in \hat{G} \).

Theorem 2.1. Let \(G \) be a second countable LCA group, \(L \) and \(B \) be uniform lattices in \(G \) and \(\hat{G} \) respectively, with \(B \subset L^+ \). Let \(\Gamma = L \times B \) and for \(f \in L^2(G), \omega \in T_{L^+}, \)
and \(t \in T_{B^+} \) define
\[
H_\Gamma f(\omega, t) = \{ Zf(\omega, t + b) \}_{b \in B^+}.
\]
(2.8)
Then
1) The map \(H_\Gamma \) intertwines \(\Pi \) with the characters of \(\Gamma \), that is \(H_\Gamma \Pi(\ell, \beta)f = \Pi_X X_\ell X_\beta H_\Gamma f \) for all \(f \in L^2(G), \ell \in L, \beta \in B \).
2) The map \(H_\Gamma \) defined in (2.8) is an isometric isomorphism from \(L^2(G) \) onto \(L^2(T_{L^+} \times T_{B^+}, \ell^2(B^+)) \).

Proof. For each \(b \in B^+ \), the definition of \(Z \) given in (2.7) and the properties of the Fourier transform give
\[
Z\Pi(\ell, \beta)f(\omega, t + b) = \sum_{\lambda \in A^l} \overline{T_\ell \mathcal{M}_\beta \hat{f}(\omega + \lambda)(t + b, \lambda)}
\]
\[
= \sum_{\lambda \in A^l} (\ell, \omega + \lambda) \overline{\hat{f}(\omega + \lambda - \beta)(t + b, \lambda)}.
\]
Using that \((\ell, \lambda) = 1\) and the change of variables \(\lambda - \beta = \lambda' \in L^+\) yields
\[
2\Pi(\ell, \beta) f(\omega, t + b) = (\ell, \omega) \sum_{\lambda' \in \Lambda^+} \hat{f}(\omega + \lambda')(t + b, \lambda' + \beta).
\]
Using that \((t + b, \beta) = (t, \beta) \cdot (b, \beta) = (t, \beta)\) we obtain
\[
2\Pi(\ell, \beta) f(\omega, t + b) = (\ell, \omega) \sum_{\lambda' \in \Lambda^+} \hat{f}(\omega + \lambda')(t + b, \lambda') = X_{-\ell}(\omega)X_{-\beta}(t)Z f(\omega, t + b).
\]
This proves 1). To prove 2) observe that by the definition of \(H_T\) given in (2.3) together with (2.6) and (2.7) we have
\[
H_T f(\omega, t) = \mathcal{H}(\mathcal{T} f(\omega))(t).
\]
That \(H_T\) is an isometry now follows from the fact that \(\mathcal{S}\) and \(\mathcal{H}\) are isometries in their respective spaces.

We need to prove that \(H_T\) is onto. Since \(\mathcal{H} : \ell^2(L^+) \to L^2(T_{B^+}, \ell^2(B^+))\) is an isometric isomorphism between Hilbert spaces, by Lemma 4.1 in the Appendix, the isomorphism is given by \(\Phi(\omega, t) = \hat{f}(\omega)\). Moreover, by Fubini's theorem, the Hilbert spaces \(L^2(T_{\Lambda^+}, \ell^2(L^+))\) and \(L^2(T_{\Lambda^+} \times T_{B^+}, \ell^2(B^+))\) are also isomorphic and the isomorphism is given by \(\Phi(f)(\omega, t) = f(\omega)(t)\), for \(f \in L^2(T_{\Lambda^+}, \ell^2(L^+))\).

Let now \(F \in L^2(T_{\Lambda^+} \times T_{B^+}, L^2(\ell^2(B^+)))\). Choose \(g \in L^2(T_{\Lambda^+}, \ell^2(L^+))\) such that \(\Phi \circ Q_{\mathcal{H}}(g) = F\). Hence
\[
F(\omega, t) = \Phi \circ Q_{\mathcal{H}}(g)(\omega, t) = Q_{\mathcal{H}}(g)(\omega)(t) = \mathcal{H}(g(\omega))(t).
\]
Choose now \(f \in L^2(G)\) such that \(\mathcal{T}(f) = g\). Then
\[
H_T f(\omega, t) = \mathcal{H}(\mathcal{T} f(\omega))(t) = F(\omega, t).
\]
This finishes the proof of the theorem. \(\square\)

Example 2.3. For the cyclic group of Example 2.2 recall that, for \(f \in \mathbb{C}^d\)
\[
\hat{f}(\omega) = \frac{1}{\sqrt{d}} \sum_{g=0}^{d-1} f(g)e^{-2\pi i \frac{g \omega}{d}}, \quad \omega \in \{0, \ldots, d - 1\}.
\]
For \(t \in T_{B^+} = \left\{\frac{1}{q}, \frac{2}{q}, \ldots, \frac{d-1}{q}\right\}\), the Zak transform (2.7) thus reads
\[
\mathcal{Z} f(\omega, t) = \sum_{k=0}^{p-1} \hat{f}(\omega + kq)e^{-2\pi i \frac{kq |t|}{d}} = \sum_{k=0}^{p-1} \frac{1}{\sqrt{d}} \sum_{g=0}^{d-1} f(g)e^{-2\pi i \frac{g (\omega + kq)}{d}} e^{-2\pi i \frac{kq}{d}} = \frac{1}{\sqrt{d}} \sum_{g=0}^{d-1} f(g)e^{-2\pi i \frac{g}{d}} K(g + qt) = \frac{e^{2\pi i \frac{\omega}{d}}}{\sqrt{d}} \sum_{g=0}^{d-1} f(g - qt)e^{-2\pi i \frac{g}{d}} K(g)\]
Proof. Observe first that, since \(H \) spaces, then \(D \) the set \(T \) Indeed, this is Fourier uniqueness theorem since \(K \) given by

\[
Z f(\omega, t) = \sqrt{|p|}^{2\pi |m|} \frac{1}{\sqrt{q}} \sum_{n=0}^{q-1} f(pn - qt) e^{-2\pi \frac{imn}{q}} .
\]

Before embarking in the proof of Theorem 1.1 which will be accomplished in Section 3 we need an additional result.

Let \(V = S_\Gamma(A) \) be a \(\Gamma \) invariant subspace of \(L^2(G) \), where \(A \subset L^2(G) \). For each \((\omega, t) \in T_{L^1} \times T_{B^1} \), consider the range function

\[
J_V : \mathcal{F}_{L^1} \times T_{B^1} \rightarrow \{ \text{closed subspaces of } \ell^2(B^1) \}
\]

given by

\[
(2.9) \quad J_V(\omega, t) := \overline{\text{span} \{ H_\Gamma \varphi(\omega, t) : \varphi \in A \}}^{\ell^2(B^1)}.
\]

Proposition 2.1. With \(V = S_\Gamma(A) \) as above, let \(\mathcal{P}_{J_V(\omega, t)} \) be the orthogonal projection of \(\ell^2(B^1) \) onto \(J_V(\omega, t) \). Then, for all \(f \in L^2(G) \) and \((\omega, t) \in T_{L^1} \times T_{B^1} \),

\[
H_\Gamma \mathcal{P}_{S_\Gamma(A)} f(\omega, t) = \mathcal{P}_{J_V(\omega, t)}(H_\Gamma f(\omega, t)).
\]

Proof. Observe first that, since \(H_\Gamma \) is an isometric isomorphism between Hilbert spaces, then

\[
(2.10) \quad H_\Gamma \mathcal{P}_{S_\Gamma(A)} = \mathcal{P}_{H_\Gamma(S_\Gamma(A))} H_\Gamma .
\]

The set \(D := \{ X_\ell X_\beta : (\ell, \beta) \in \Gamma \} \) of characters of \(\Gamma \) is a determining set for \(L^1(T_{L^1} \times T_{B^1}) \) in the sense of Definition 2.2 in [5], because

\[
\int_{T_{L^1} \times T_{B^1}} f(\omega, t) X_\ell(\omega) X_\beta(t) d\omega dt = 0 \Rightarrow f = 0 \quad \forall \ f \in L^1(T_{L^1} \times T_{B^1}) .
\]

Indeed, this is Fourier uniqueness theorem since \(T_{L^1} \) and \(T_{B^1} \) are relatively compact.

By 1) of Theorem 2.1 for all \(f \in L^2(G) \), \(H_\Gamma(T_{\ell} M_\beta f) = X_{-\ell} X_{-\beta}(H_\Gamma f) \). Thus, \(H_\Gamma(S_\Gamma(A)) \) is \(D \)-multiplicative invariant in the sense of Definition 2.3 in [5]. Indeed, if \(X_\ell X_\beta \in D \), \(F \in H_\Gamma(S_\Gamma(A)) \) writing \(H_\Gamma F = F \) we have

\[
X_\ell X_\beta F = X_\ell X_\beta(H_\Gamma f) = H_\Gamma(T_{-\ell} M_{-\beta} f) \in H_\Gamma(S_\Gamma(A)) .
\]

By Theorem 2.4 in [5], \(J_V \) is a measurable range function. By Proposition 2.2 in [5],

\[
\mathcal{P}_{H_\Gamma(S_\Gamma(A))}(H_\Gamma f)(\omega, t) = \mathcal{P}_{J_V(\omega, t)}(H_\Gamma f(\omega, t)) .
\]

The result now follows from (2.10). \(\square \)

3. Solution to the Approximation Problem

This section is dedicated to the proof of Theorem 1.1. Let \(F = \{ f_1, \ldots, f_m \} \subset L^2(G) \) be a collection of functional data. With the notation of Theorem 1.1, for each \(n < m \) we need to find \(\{ \psi_1, \ldots, \psi_n \} \subset L^2(G) \) such that \(\mathcal{E}(F; S_\Gamma(\psi_1, \ldots, \psi_n)) \leq \mathcal{E}(F; V) \) for any \(\Gamma \) invariant subspace \(V \) of \(L^2(G) \) of length less than or equal \(n \). The definition of \(\mathcal{E}(F; V) \) is given in (1.1) and for convenience of the reader we recall it here.

\[
\mathcal{E}(F; V) := \sum_{j=1}^{m} \| f_j - \mathcal{P}_V f_j \|^2_{L^2(G)} .
\]
Proposition 3.1. For any $Q(w,t) := \{H_\Gamma f_1(\omega,t), \ldots, H_\Gamma f_m(\omega,t)\}$.

Let $G_{\Gamma,F}(w,t)$ be the $m \times m$ \mathbb{C}-valued matrix whose (i,j) entry is given by

$$[G_{\Gamma,F}(w,t)]_{i,j} = \langle H_\Gamma f_i(\omega,t), H_\Gamma f_j(\omega,t) \rangle_{\ell^2(B^\perp)}.$$

The matrix $G_{\Gamma,F}(w,t)$ is hermitian and its entries are measurable functions defined on $T_{L^+} \times T_{G^+}$. Write

$$\lambda_1(\omega,t) \geq \lambda_2(\omega,t) \geq \ldots \geq \lambda_m(\omega,t) \geq 0$$

for the eigenvalues of $G_{\Gamma,F}(w,t)$. By Lemma 2.3.5 in [11] the eigenvalues $\lambda_i(\omega,t)$, $i = 1, \ldots, m$, are measurable and there exist corresponding measurable vectors $y_i(\omega,t) = (y_{i,1}(\omega,t), \ldots, y_{i,m}(\omega,t))$ that are orthonormal left eigenvectors of the matrix $G_{\Gamma,F}(w,t)$. That is,

$$y_i(\omega,t) G_{\Gamma,F}(w,t) = \lambda_i(\omega,t) y_i(\omega,t), \quad i = 1, \ldots, m.$$

For $n \leq m$, define $q_1(\omega,t), \ldots, q_n(\omega,t) \in \ell^2(B^\perp)$ by

$$q_i(\omega,t) = \bar{\sigma}_i(\omega,t) \sum_{j=1}^m y_{i,j}(\omega,t) H_\Gamma f_j(\omega,t), \quad i = 1, \ldots, n,$$

where

$$\bar{\sigma}_i(\omega,t) = \begin{cases} 1 \sqrt{\lambda_i(\omega,t)} & \text{if } \lambda_i(\omega,t) \neq 0 \\ 0 & \text{otherwise.} \end{cases}$$

By the Eckart-Young Theorem (see the version stated and proved in Theorem 4.1 of [11]), $\{q_1(\omega,t), \ldots, q_n(\omega,t)\}$ is a Parseval frame for the space it generates $Q(\omega,t) := \text{span}\{q_1(\omega,t), \ldots, q_n(\omega,t)\}$ and $Q(\omega,t)$ is optimal in the sense that

$$E(H_\Gamma(F)(w,t); Q(\omega,t)) := \sum_{i=1}^m \|H_\Gamma f_i(\omega,t) - P_{Q(\omega,t)}H_\Gamma f_i(\omega,t)\|_{\ell^2(B^\perp)}^2$$

$$\leq \sum_{i=1}^m \|H_\Gamma f_i(\omega,t) - P_{Q'}H_\Gamma(F)(w,t)\|_{\ell^2(B^\perp)}^2 := E(H_\Gamma(f_i)(w,t); Q')$$

for any Q' subspace of $\ell^2(B^\perp)$ of dimension less than or equal to n. Moreover,

$$E(H_\Gamma(F)(w,t); Q(\omega,t)) = \sum_{i=n+1}^m \lambda_i(\omega,t).$$

Before continuing with the proof, let us relate the pointwise errors that appear in (3.3) to the error defined in (3.1) for Γ-invariant subspaces.

Proposition 3.1. For $V = S_\Gamma(A)$ as in Proposition 2.3

$$\mathcal{E}(F; V) = \int_{T_{L^+}} \int_{T_{G^+}} E(H_\Gamma(F)(w,t); J_V(\omega,t)) \, dt \, d\omega,$$

where $J_V(\omega,t)$ is defined in (2.10).
Proof. By 2) of Theorem 2.1, H_{Γ} is an isometry from $L^2(G)$ onto the space $L^2(T_{L\perp} \times T_{B\perp}, \ell^2(B^\perp))$. Therefore,

$$
\mathcal{E}(F; V) = \sum_{j=1}^{m} \|f_j - \mathcal{P}_V f_j\|_{L^2(G)}^2
$$

$$
= \sum_{j=1}^{m} \|H_{\Gamma} f_j - H_{\Gamma} \mathcal{P}_V f_j\|_{L^2(T_{L\perp} \times T_{B\perp}, \ell^2(B^\perp))}^2
$$

$$
= \sum_{j=1}^{m} \int_{T_{L\perp}} \int_{B_{L\perp}} \|H_{\Gamma} f_j(\omega, t) - H_{\Gamma} \mathcal{P}_V f_j(\omega, t)\|_{\ell^2(B^\perp)}^2 \, dt \, d\omega.
$$

By Proposition 2.1,

$$
\mathcal{E}(F; V) = \int_{T_{L\perp}} \int_{B_{L\perp}} \sum_{j=1}^{m} \|H_{\Gamma} f_j(\omega, t) - \mathcal{P}_J(\omega, t)(H_{\Gamma} f_j(\omega, t))\|_{\ell^2(B^\perp)}^2 \, dt \, d\omega
$$

$$
= \int_{T_{L\perp}} \int_{B_{L\perp}} E(H_{\Gamma}(F)(\omega, t); J_V(\omega, t)) \, dt \, d\omega. \quad \square
$$

Let us now continue with the proof of Theorem 1.1. By definition 3.2, each $q_i(\omega, t)$ is measurable and defined on $T_{L\perp} \times T_{B\perp}$ with values in $\ell^2(B^\perp)$. Moreover,

$$
\|q_i(\omega, t)\|_{\ell^2(B^\perp)}^2 = \langle q_i(\omega, t), q_i(\omega, t) \rangle_{\ell^2(B^\perp)}
$$

$$
= \bar{\sigma}_i(\omega, t)^2 \sum_{b \in B^\perp} \sum_{j=1}^{m} \sum_{s=1}^{m} y_{i,j}(\omega, t) Z f_j(\omega, t + b) Z f_s(\omega, t + b) \bar{y}_{i,s}(\omega, t)
$$

$$
= \bar{\sigma}_i(\omega, t)^2 \sum_{j=1}^{m} y_{i,j}(\omega, t) \sum_{s=1}^{m} \langle Z f_j(\omega, t), Z f_s(\omega, t) \rangle_{\ell^2(B^\perp)} y_{i,s}(\omega, t).
$$

In matrix form,

$$
\|q_i(\omega, t)\|_{\ell^2(B^\perp)}^2 = \bar{\sigma}_i(\omega, t)^2 \bar{y}_i(\omega, t) G_F(\omega, t) \bar{y}_i(\omega, t)\, dt \, d\omega.
$$

By 3.3, the orthonormality of the vectors $y_i(\omega, t)$, and the definition of $\bar{\sigma}_i(\omega, t)$, we have

$$
\|q_i(\omega, t)\|_{\ell^2(B^\perp)}^2 = \bar{\sigma}_i(\omega, t)^2 \lambda_i(\omega, t) \|y_i(\omega, t)\|^2 \leq 1.
$$

Since $T_{L\perp}$ and $T_{B\perp}$ have finite measure, we conclude that for $i = 1, \ldots, n$, $q_i \in L^2(T_{L\perp} \times T_{B\perp}, \ell^2(B^\perp))$. The mapping H_{Γ} is onto by part 2) of Theorem 2.1. Therefore there exist $\psi_i \in L^2(G)$ such that

$$
H_{\Gamma}(\psi_i) = q_i, \quad i = 1, \ldots, n.
$$

It remains to show that the space $W := S_{\Gamma}(\psi_1, \ldots, \psi_n)$ is the optimal one as required in the statement of Theorem 1.1.

By Proposition 3.1,

$$
\mathcal{E}(F; W) = \int_{T_{L\perp}} \int_{T_{B\perp}} E(H_{\Gamma}(F)(\omega, t); J_W(\omega, t)) \, dt \, d\omega.
$$

By 3.3 and the definitions of ψ_i, $J_W(\omega, t) = Q(\omega, t)$. Therefore, we can write,

$$
(3.5) \quad \mathcal{E}(F; W) = \int_{T_{L\perp}} \int_{T_{B\perp}} E(H_{\Gamma}(F)(\omega, t); Q(\omega, t)) \, dt \, d\omega.
$$
Let now $V = S_\Gamma(\varphi_1, \ldots, \varphi_r)$, $r \leq n$, be any Γ-invariant subspace of length less than or equal to n. Since $J_V(\omega, t)$ has dimension less than or equal to n, (3.3) gives
\[E(\mathcal{F}; W) \leq \int_{T_{\Gamma}} \int_{T_{H}} E(H_\Gamma(\mathcal{F})(w, t); J_V(\omega, t)) \, dt \, \omega = E(\mathcal{F}; V), \]
where the last equality is due to Proposition 3.1. Moreover, by (3.5) and (3.4)
\[E(\mathcal{F}; W) = \sum_{i=n+1}^{m} \int_{T_{\Gamma}} \int_{T_{H}} \lambda_i(\omega, t) \, d\omega \, dt. \]
This finishes the proof of Theorem 1.1. \(\square\)

4. Appendix

We give the proof of the following Lemma that has been used in Section 2 to prove part 2) of Theorem 2.1.

Lemma 4.1. Let $\sigma : \mathbb{H}_1 \rightarrow \mathbb{H}_2$ be an isometric isomorphism between the Hilbert spaces \mathbb{H}_1 and \mathbb{H}_2. For a measure spaces $(X, d\mu)$ the map $Q_\sigma : L^2(X, \mathbb{H}_1) \rightarrow L^2(X, \mathbb{H}_2)$ given by $(Q_\sigma f)(x) = \sigma(f(x))$ is also an isometric isomorphism.

Proof. Let f be a measurable vector function in $L^2(X, \mathbb{H}_1)$, that is, for every $y \in \mathbb{H}_1$ the scalar function $x \rightarrow \langle f(x), y \rangle_{\mathbb{H}_1}$ is measurable. We must prove that Qf is also a measurable vector function in $L^2(X, \mathbb{H}_2)$. For $z \in \mathbb{H}_2$ we have
\[\langle Qf(x), z \rangle_{\mathbb{H}_2} = \langle \sigma(f(x)), z \rangle_{\mathbb{H}_2} = \langle f(x), \sigma^*(z) \rangle_{\mathbb{H}_1}. \]
Since $\sigma^*(z) = \sigma^{-1}(z)$ is a general element of \mathbb{H}_1, this shows that Qf is measurable. Moreover, for $f, g \in L^2(X, \mathbb{H}_1)$,
\[\langle Qf, Qg \rangle_{L^2(X, \mathbb{H}_2)} = \int_X \langle \sigma(f(x)), \sigma(g(x)) \rangle_{\mathbb{H}_2} \, d\mu(x) \]
\[= \int_X \langle f(x), g(x) \rangle_{\mathbb{H}_1} \, d\mu(x) = \langle f, g \rangle_{L^2(X, \mathbb{H}_1)}. \]
This shows that if $f \in L^2(X, \mathbb{H}_1)$, $Q_\sigma f \in L^2(X, \mathbb{H}_2)$ and that Q_σ is isometry.

Finally, it is easy to see that $R : L^2(X, \mathbb{H}_2) \rightarrow L^2(X, \mathbb{H}_1)$ defined by $Rg(x) = \sigma^{-1}(g(x))$ is the inverse and the adjoint of Q. Therefore, Q_σ is onto. \(\square\)

5. Acknowledgements

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 777822.

In addition, D. Barbieri and E. Hernández were supported by Grant MTM2016-76566-P (Ministerio de Ciencia, Innovación y Universidades, Spain). C. Cabrelli and U. Molter were supported by Grants UBACyT 20020170100430BA (University of Buenos Aires), PIP11220150100355 (CONICET) and PICT 2014-1480 (Ministerio de Ciencia, Tecnología e Innovación, Argentina).
References

[1] A. Aldroubi, C. Cabrelli, D. Hardin, and U. Molter, Optimal shift invariant spaces and their Parseval frame generators. Appl. Comput. Harmon. Anal. 23 (2007), pp. 273-283.

[2] D. Barbieri, E. Hernández, V. Paternostro, Spaces invariant under unitary representations of discrete groups. Preprint, https://arxiv.org/abs/1811.02993

[3] D. Barbieri, C. Cabrelli, E. Hernández, U. Molter, Approximation by group invariant subspaces. Preprint, https://arxiv.org/abs/1907.08300

[4] C. de Boor, R. A. DeVore, and A. Ron, Approximation from shift-invariant subspaces of $L^2(\mathbb{R}^d)$. Trans. Amer. Math. Soc. 341 (1994), pp. 787-806.

[5] M. Bownik, K. Ross, The structure of translation-invariant spaces on locally compact abelian groups. J. Fourier Anal. Appl. 21 (2015), pp. 849-884.

[6] C. Cabrelli, C. Mosquera, V. Paternostro, An approximation problem in multiplicatively invariant spaces. In “Functional Analysis, Harmonic Analysis, and Image Processing: A Collection of Papers in Honor of Björn Jawerth”, M. Cwikel and M. Milman (eds.). Contemp. Math. 693 (2017), pp. 143-166.

[7] C. Cabrelli, V. Paternostro, Shift-invariant spaces on LCA groups. J. Funct. Anal. 258 (2010), pp. 2034-2059.

[8] A. Deitmar, A first course in harmonic analysis. Springer, 2nd ed. 2005.

[9] K.-H. Gröchenig, Foundations of Time-Frequency Analysis, Birkhäuser, (2001).

[10] A. Ron, Z. Shen, Frames and stable bases for shift-invariant subspaces of $L^2(\mathbb{R}^d)$, Canad. J. Math., 47, (1995), no. 5, 1051-1094.

[11] W. Rudin, Fourier Analysis on Groups, John Wiley, (1992).

Davide Barbieri and Eugenio Hernández at Universidad Autónoma de Madrid, Campus Cantoblanco, 28049 Madrid, España
E-mail address: davide.barbieri@uam.es, eugenio.hernandez@uam.es

Carlos Cabrelli and Ursula Molter at Departamento de Matemática, Universidad de Buenos Aires, and Instituto de Matemática “Luis Santaló” (IMAS-CONICET-UBA), 1428 Buenos Aires, Argentina
E-mail address: carlos.cabrelli@gmail.com, umolter@gmail.com