SELFCONSISTENT DESCRIPTION OF A THERMAL PION GAS

R. RAPP and J. WAMBACH

Institut für Kernphysik
Forschungszentrum Jülich
D-5170 Jülich, F.R.G

Abstract

We examine a hot pion gas by including medium modifications of the two-body scattering amplitude as well as mean-field effects selfconsistently. In contrast to earlier calculations, the in-medium T-matrix is rather close to the free one while the mean-field potential agrees well with lowest-order estimates. We also discuss the validity of the quasiparticle approximation. It is found that it is reliable for temperatures up to ~ 150 MeV. Above this temperature off-shell effects in the pion selfenergy become important, especially if the pions are strongly out of chemical equilibrium.

PACS Indices: 13.75.Lb
13.85.–t
14.40.Aq

1also: Department of Physics, University of Illinois at Urbana-Champaign, 1100 West Green St., Urbana, IL 61081, USA
and: Institut für theoretische Kernphysik, Universität Bonn, D-5300 Bonn, F.R.G.
1 Introduction

In ultrarelativistic heavy ion collisions several hundred particles are produced in the final state. In the midrapidity region at CERN energies of 200 GeV/A most of them are pions (with a pion-to-baryon ratio of $\sim 6 : 1$). The lifetime of the pionic fireball is a few fm/c and the freeze-out volume is typically 10^3 fm^3. The theoretical understanding of such a thermal 'pion gas' is currently of great interest in connection with possible signals from the quark-gluon plasma (QGP) phase transition [1]. On the other hand a hot and dense Bose gas is also interesting from a many-body point of view since one may expect interesting correlations associated with the statistics.

Several aspects of the thermal pion gas have been discussed previously, including mean-field effects [4] and medium modifications of the $\pi\pi$ cross section [4]. It is the purpose of the present paper to give a unified description of these processes by using a reliable model for the vacuum $\pi\pi$ interaction and requiring selfconsistency at the two-body level. This leads to a Brueckner scheme, familiar from the microscopic many-body theory of nuclear matter. Throughout the discussion we shall assume that the gas is in thermal but not necessarily in chemical equilibrium ($\mu_\pi \neq 0$). The latter seems to be required from fits to pion p_T-spectra, which yield $\mu_\pi \sim m_\pi$ [4]. The assumption of thermal equilibrium, on the other hand, seems reasonable from the following simple estimate: at 200 GeV/A the freeze-out density n_π of pions produced at midrapidity is $\sim 0.3 \text{ fm}^{-3}$. With $N_\pi \approx 400$ this yields a freeze-out radius $R_f \sim 7 \text{ fm}$. Taking an average $\pi\pi$ cross section $\langle \sigma \rangle = 15 \text{ mb}$ gives a mean free path $\lambda = 1/n_\pi \langle \sigma \rangle \sim 2.2 \text{ fm}$ and hence the mean number of collisions is ~ 3. Thermalization is further corroborated in a scenario where initially a quark-gluon plasma (QGP) is formed. Here QCD string breaking models as well as parton cascade simulations also yield thermal equilibration which should survive during the hadronization.
2 The Vacuum $\pi\pi$ Interaction

The starting point for our description of the hot pion gas is the vacuum $\pi\pi$ interaction model of ref. [5] which is based on meson exchange. Here the basic meson-meson interaction is constructed from an effective meson Lagrangian with phenomenological form factors at the vertices. From these vertices two-body pseudopotentials are constructed including the most important s- and t-channel meson exchanges. Among these the t-channel ρ exchange between $\pi\pi$ states and the s-channel ρ pole term will be most important for our discussion. We employ the Blankenbecler-Sugar (BbS) reduction [6] of the 4-dimensional Bethe-Salpeter equation maintaining covariance [7]. The $\pi\pi T$-matrix for given angular momentum J and isospin I is obtained as

$$T_{\pi\pi}^{JI}(Z, q_1, q_2) = V_{\pi\pi}^{JI}(Z, q_1, q_2) + \int_{0}^{\infty} dk \, k^2 \frac{4\omega_k^2}{\omega_k^2 Z^2 - 4\omega_k^2 + i\eta} \, V_{\pi\pi}^{JI}(Z, q_1, k) \, G_{\pi\pi}^0(Z, k) \, T_{\pi\pi}^{JI}(Z, k, q_2),$$

(1)

where $k = |\vec{k}|$ etc.; Z is the CMS energy and $G_{\pi\pi}^0(Z, k)$ the vacuum two-pion propagator in the CMS frame with pions of momenta \vec{k} and $-\vec{k}$ (the Lohse et al. model also contains coupling to the $K\bar{K}$ channel which has been omitted for brevity in eq. (1); but which is included in the calculation). In the BbS form the two-pion propagator is given by

$$G_{\pi\pi}^0(Z, k) = \frac{1}{\omega_k} \frac{1}{Z^2 - 4\omega_k^2 + i\eta},$$

(2)

with $\omega_k^2 = k^2 + m_{\pi}^2$. This model gives a good description of the phase shifts and inelasticities up to ~ 1.5 GeV which is more than sufficient for our purposes.

3 Selfconsistency

The most obvious medium modification of the $\pi\pi$ scattering in the gas surrounding is a change in momentum weight of the intermediate two-pion propagator, first studied in ref. [3]. Identifying the CMS frame with the thermal reference frame one has

$$G_{\pi\pi}(Z, k; \mu_{\pi}, T) = \frac{1}{\omega_k} \frac{1 + 2f_k(\mu_{\pi}, T)}{Z^2 - 4\omega_k^2},$$

(3)

with $f_k$$\mu_{\pi}, T) = \frac{1 + 2f_k(\mu_{\pi}, T)}{Z^2 - 4\omega_k^2}$. This model gives a good description of the phase shifts and inelasticities up to ~ 1.5 GeV which is more than sufficient for our purposes.
where $f_k = (\exp[(\omega_k - \mu_\pi)/T] - 1)^{-1}$ is the thermal Bose factor and μ_π the chemical potential. The identification of the CMS frame with the thermal frame simplifies our calculations considerably (allowing for a relative velocity between the two frames we find that it effectively acts like a change in μ_π which is a parameter for us anyway). At fixed T the pion chemical potential fixes the density via

$$n_\pi(\mu_\pi, T) = g_\pi \int \frac{d^3q}{(2\pi)^3} f_\pi(\mu_\pi, T),$$

(4)

where $g_\pi = 3$ is the isospin degeneracy factor. We use a temperature range of 100-200 MeV. A temperature of 100 MeV is roughly the lowest temperature from thermal fits to p_T-spectra at the AGS. On the other hand 200 MeV should be an upper limit for purely hadronic models since one expects the phase transition into a QGP around this value. While thermal equilibrium seems a reasonable assumption it is not clear whether chemical equilibration is reached during the evolution of the pion gas. Indeed, fits of the CERN p_T-spectra could be improved with $\mu_\pi \sim 125$ MeV [4]. Hence we discuss both cases $\mu_\pi = 0$ and $\mu_\pi = 125$ MeV. At the same temperature the latter gives a higher pion density reaching a maximal density $n_\pi \sim 0.7$ fm$^{-3}$ at 200 MeV.

There is a second effect which needs to be considered [2]. The $\pi\pi$ interaction introduces a pion selfenergy Σ_π (‘mean field’) which changes the single-pion dispersion relation

$$\omega_k^2 = m_\pi^2 + k^2 + \Sigma_\pi(\omega_k, k; \mu_\pi, T)$$

(5)

as a function of density and temperature. In terms of the forward-scattering amplitude $M_{\pi\pi}$, Σ_π is expressed as [2, 3]:

$$\Sigma_\pi(\omega, k; \mu_\pi, T) = \int \frac{d^3p}{(2\pi)^3} \frac{1}{2\omega_p} f_p(\mu_\pi, T) M_{\pi\pi}(k^{(4)}, p^{(4)}).$$

(6)

Relating the forward-scattering amplitude to the T-Matrix as

$$M_{\pi\pi}(E_{\text{cms}}) = (2\pi)^3 E_{\text{cms}}^2 T_{\pi\pi}(E_{\text{cms}}),$$

(7)

where $E_{\text{cms}} = \sqrt{s} = [(p + k)^\mu (p + k)_\mu]^{1/2}$ is the CMS energy of the two colliding pions,
one can transform the selfenergy expression into

\[
\Sigma_{\pi}(\omega, k; \mu_{\pi}, T) = \frac{\pi}{k} \int_{0}^{\infty} dp \frac{p}{\omega_p} f_p(\mu_{\pi}, T) \int_{E_{\text{min}}}^{E_{\text{max}}} dE_{\text{cms}} E_{\text{cms}}^3 T_{\pi\pi}(E_{\text{cms}}) .
\] (8)

Here we have restricted ourselves to the on-shell T-Matrix neglecting the dependence on the total momentum \(\vec{P} = \vec{k} + \vec{p} \) of the pair. Thus the energy integration bounds are given as

\[
E_{\text{max/min}} = (\omega^2 + \omega_p^2 + 2\omega \omega_p - k^2 - p^2 \pm 2kp)^{1/2} .
\] (9)

For the forward-scattering T-Matrix we take the spin-isospin weighted sum including partial waves up to \(J = 2 \):

\[
T_{\pi\pi}(E_{\text{cms}}) = \frac{1}{4\pi} \sum_{I,J=0}^{2} \frac{(2I + 1)}{3} (2J + 1) T_{JI\pi\pi}(E_{\text{cms}}) ,
\] (10)

which saturates the cross section in the relevant energy range.

It should be noted that the rate \(\Gamma_k = -2Im\Sigma_{\pi}/(2(k^2 + m_{\pi}^2)^{1/2}) \) deduced from eq. (8) is not entirely consistent with that obtained from the collision term of the bosonic Boltzmann equation. A correct account of the Bose correlations of the two interacting pions will modify the occupancy factor in (8) [9]. It turns out, however, that this is a small effect [10].

It is now evident that the pion selfenergy and the T-Matrix should be combined in a selfconsistent Brueckner scheme as indicated in Fig. 1. This implies that the selfenergy (8) is to be calculated from the in-medium T-Matrix which, on the other hand, should be obtained from the in-medium 2\(\pi \) propagator including the pion selfenergy:

\[
G_{\pi\pi}(Z, k; \mu_{\pi}, T) = (1 + 2f_k(\mu_{\pi}, T)) \int \frac{id\omega}{2\pi} D_{\pi}(\omega, k) D_{\pi}(Z - \omega, k) ,
\] (11)

where

\[
D_{\pi}(\omega, k) = \left[\omega^2 - m_{\pi}^2 - k^2 - \Sigma_{\pi}(\omega, k; \mu_{\pi}, T) \right]^{-1}.
\] (12)

Together with the in-medium scattering equation,

\[
T_{\pi\pi}(\mu_{\pi}, T) = V_{\pi\pi} + V_{\pi\pi} G_{\pi\pi}(\mu_{\pi}, T) T_{\pi\pi}(\mu_{\pi}, T) ,
\] (13)
equations (8), (11) and (12) define the selfconsistency problem (see also Fig. 1). It should be noticed that the pseudopotential $V_{\pi\pi}$ remains unchanged.

In the following we will discuss two different methods of calculating $G_{\pi\pi}$.

4 Quasiparticle Approximation

The quasiparticle approximation (QPA) is valid if the lifetime is long or more precisely if the quasiparticle energy

$$e_k \equiv (m_\pi^2 + k^2 + Re \Sigma_\pi(e_k, k))^{1/2}$$ (14)

is much larger than its decay width Γ_k. In this case the energy-dependence of $Re \Sigma_\pi$ is expanded to first order around the 'quasiparticle pole' e_k as

$$Re \Sigma_\pi(\omega, k) \approx Re \Sigma_\pi(e_k, k) + \frac{\partial Re \Sigma_\pi(\omega, k)}{\partial \omega^2}|_{e_k} (\omega^2 - e_k^2) .$$ (15)

One can then perform the folding integral (11) analytically which gives

$$G_{\pi\pi}(Z, k; \mu_\pi, T) = \frac{1}{\bar{\omega}_k} \frac{z_k^2 (1 + 2 f_k(\mu_\pi, T))}{Z^2 - 4\bar{\omega}_k^2}$$ (16)

with

$$z_k \equiv (1 - \frac{\partial Re \Sigma_\pi(\omega, k)}{\partial \omega^2}|_{e_k})^{-1} \text{ the polestrength} ,$$

$$\bar{\omega}_k^2 \equiv e_k^2 + i z_k Im \Sigma_\pi(e_k, k) \text{ quasipion dispersion relation} .$$ (17)

Together with this approximation eqs. (8),(11) and (13) are solved by iteration starting from the free pion dispersion relation and the vacuum T-Matrix. We keep the pion density n_π fixed during the iteration by readjusting μ_π in each step (the final μ_π differs from the starting value $\mu_\pi(0)$ by a small amount). The selfconsistent results are shown in Fig. 2. Already for chemical equilibrium ($\mu_\pi(0) = 0$) we find a considerable reduction of the peak values in $Im T_{JI}$ as compared to the vacuum case in both s- and p-wave. This is in agreement with the lowest-order results from refs. [3, 11]. The reduction is mainly caused
by the Bose factors \((1 + 2f)\) leading to a stronger weighting of the lower pion energies.

For the same reason the near threshold region shows an enhancement over the vacuum T-Matrix especially in the s-wave. We define the pion 'optical potential' as

\[
V_\pi(k) \equiv \frac{\Sigma_\pi(e_k, k)}{2(k^2 + m_\pi^2)^{1/2}},
\]

which is shown in the lower part of Fig. 2. In agreement with refs. \[2, 8\] we find attraction in \(ReV_\pi\) for low momenta. The selfconsistent potential, however, is significantly weaker than in lowest order. The maximum in \(ImV_\pi\) is due to formation of the \(\rho\)-resonance, whereas the non-zero values at \(k = 0\) arise from s-wave interaction with thermally moving pions.

5 Off-shell Integration of \(G_{\pi\pi}\)

To check the reliability of the QPA we perform the same calculations as described in the previous section, but the quasiparticle two-pion propagator is now replaced by a numerical integration of (11) accounting for the full off-shell properties of \(\Sigma_\pi(\omega, k)\). Using the symmetry relation

\[
\Sigma_\pi(-\omega, k) = \Sigma_\pi(\omega, k),
\]

the in-medium propagator (11) can be written as

\[
G_{\pi\pi}(Z, k; \mu_\pi, T) = (1 + 2f_k(\mu_\pi, T)) \int \frac{id\omega}{Z/2} D_\pi(\omega, k) D_\pi(|Z - \omega|, k).
\]

Fig. 3 shows the selfconsistent results for a chemically equilibrated pion gas \((\mu_\pi^{(0)} = 0)\). At \(T = 125\) MeV the results coincide with the QPA within a few percent. For \(T > 150\) MeV the deviations become larger: the T-Matrices in s- and p-wave are now enhanced compared to the vacuum curve for most of the energy range (e.g. the peak value of the \(\rho\)-resonance increases by \(\approx 30\%\) at \(T = 200\) MeV). This clearly must be an off-shell effect. From the lower part of Fig. 3 one can conclude that a first-order expansion of \(Re\Sigma_\pi\) around \(e_k\) does not describe the energy dependence correctly; in addition \(\Gamma_k/e_k \sim 0.6\) around
\(k = 300 \text{MeV}/c \), \textit{i.e.} the quasiparticle lifetime becomes very short and renders the QPA invalid. The potentials \(V_{\pi}(k) \) are now very close to the lowest-order results. As compared to the QPA a considerable amount of attraction is restored in the low-momentum region of \(\text{Re}V_{\pi}(k) \). We also investigate a scenario with finite chemical potential \(\mu_{\pi}^{(0)} = 125 \text{MeV} \) as suggested by thermal fits to the SPS \(p_T \)-spectra \cite{4}. The s-wave \(\pi\pi \) interaction now shows a strong accumulation of strength near threshold (Fig. 4) which might lead to quasi-bound \(\pi^+\pi^- \) pairs as suggested in ref. \cite{11}. The latter possibility deserves further study.

In the p-wave the changes of the \(\rho \)-resonance are appreciable: at highest temperatures the width decreases considerably which might be detectable via dilepton pairs coming from the midrapidity region.

6 Summary

Based on a selfconsistent Brueckner theory we have presented a numerical analysis of a hot, interacting pion gas in thermal equilibrium, which may be realized in future experiments at RHIC or LHC (at \(\sqrt{s} \geq 100 \text{GeV}/A \)). The selfconsistent Brueckner scheme accounts for statistical (Bose factors) as well as dynamical (selfenergy) modifications of the pion propagation in the gas. Using a realistic model for the vacuum \(\pi\pi \) interaction we have solved the non-linear problem by iteration. We have compared results from the QPA to those taking full account of the off-shell behavior in the pion selfenergy. It is found that the QPA breaks down for temperatures \(T \geq 150 \text{MeV} \) and finite chemical potentials, \textit{i.e.} high pion densities. In the full calculation we find a slight \textit{increase} of the in-medium T-matrix – in contrast to refs. \cite{3,11}, where only statistical modifications have been taken into account. The main cause of this enhancement is attributed to strong off-shell effects in the pion selfenergy. The single-particle potentials show considerable attraction for low pion momenta, although quantitatively somewhat less than our lowest-order results. As was shown recently by Koch and Bertsch \cite{12}, such an attraction is not able to explain the low-\(p_T \) enhancement in the pion spectra of current experiments. However, as suggested
by numerical simulations of the bosonic transport equation \[13\], an increase of the in-medium T-Matrix, as found in our calculations, is likely to ensure thermalization of the pionic fireball and hence to produce an excess of low-\(p_T\) pions through the \((1 + f)\) factors in the collision integral. This issue and the impact of finite baryon density in the pion gas will be addressed to a future publication.

Acknowledgement

We thank G. F. Bertsch, G. E. Brown, G. Chanfray, M. Prakash, E. V. Shuryak and P. Schuck for useful discussions. This work was supported in part by a grant from the National Science Foundation, NSF-PHY-89-21025.
References

[1] J. Stachel and G. R. Young, Ann. Rev. Nucl. Part. Sci. 42 (1992) 537.

[2] E.V. Shuryak, Nucl. Phys. A533 (1991) 761.

[3] H.W. Barz, G.Bertsch, P.Danielewicz and H. Schulz, Phys. Lett. B275 (1992) 19.

[4] M. Kataja and P.V. Ruuskanen, Phys. Lett. B243 (1990) 181.

[5] D. Lohse, J.W. Durso, K. Holinde and J. Speth, Phys. Lett. B234 (1989) 235;
 Nucl. Phys. A516 (1990) 513.

[6] R. Blankenbecler and R. Sugar, Phys. Rev. 142 (1966) 1051.

[7] B. C. Pearce, K. Holinde and J. Speth, Nucl. Phys. A541 (1992) 663.

[8] A. Schenk, Nucl. Phys. B363 (1991) 97.

[9] G. Chanfray and D. Davesne, to be published.

[10] G. Chanfray, private communication.

[11] Z. Aouissat, G. Chanfray, P. Schuck and G. Welke, Zeit. Phys. A340 (1991) 347.

[12] V. Koch and G. Bertsch, Nucl. Phys. A522 (1992) 591.

[13] H.W. Barz, P. Danielewicz, H. Schulz and G. Welke, Phys. Lett. B287 (1992) 40.
FIGURE CAPTIONS

Fig. 1 Set of selfconsistent equations for an interacting pion gas:
upper part: Dyson equation for in-medium pion propagation
lower part: in-medium $\pi\pi$ T-Matrix equation.

Fig. 2 Selfconsistent pion gas at $\mu_\pi^{(0)} = 0$ in QPA:
upper part: imaginary part of the $\pi\pi$ T-Matrix in the $JI=00$- and $JI=11$-channels for several temperatures (long-dashed lines: $T = 125$ MeV, short-dashed lines: $T = 150$ MeV, dotted lines: $T = 200$ MeV)
lower part: corresponding pion potentials (short-dashed lines: $T = 150$ MeV, dotted lines: $T = 200$ MeV; the dashed-dotted and dashed-double-dotted lines show the lowest-order results calculated with the vacuum T-Matrix for $T = 150$ MeV and $T = 200$ MeV, respectively).

Fig. 3 Selfconsistent pion gas at $\mu_\pi^{(0)} = 0$ with full off-shell integration of $G_{\pi\pi}(eq. (20))$:
upper part: imaginary part of the $\pi\pi$ T-Matrix (see Fig. 2)
lower part: real part of the pion potentials (see Fig. 2) and real part of the off-shell pion selfenergy at $T = 200$ MeV.

Fig. 4 Imaginary part of the selfconsistent $\pi\pi$ T-Matrix with full off-shell integration of $G_{\pi\pi}$ for $\mu_\pi^{(0)} = 125$ MeV (long-dashed lines: $T = 100$ MeV, short-dashed lines: $T = 150$ MeV, dotted lines: $T = 175$ MeV, full lines: free space).