Overview of four *Agaricus subrufescens* strains used in the last 15 years in Brazil and other countries and current potential materials for the future

Diego C. Zied 1 • Wagner G. Vieira Junior 2 • Douglas M. M. Soares 3 • Cassius V. Stevani 3 • Eustáquio S. Dias 4 • Matheus R. Iossi 2 • Arturo Pardo-Giménez 5

Received: 10 March 2021 / Revised: 18 May 2021 / Accepted: 23 May 2021
© German Mycological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
The mushroom *Agaricus subrufescens* has been synonymous with *Agaricus blazei* and *Agaricus brasiliensis* during the last decades, and there has been much discussion with regard to the origin, distribution, and nomenclature of this mushroom. Therefore, we conducted a genetic and morphological characterization of the mycelium and mushroom of four commercial strains currently cultivated in Brazil (ABL CS7, ABL 18/01, ABL 98/11, and ABL 16/01) together with an assessment of their agronomic behavior and compared these results with those published in works using other strains during the last 15 years. All the *A. subrufescens* strains characterized here are phylogenetically related to the Americas/Europe specimens, bearing an internal transcribed spacer region of type A (ABL 16/01) or both types A and B (ABL 18/01, ABL 98/11, and ABL CS7). We did not find any correlation between the morphological characteristics of the mycelial colonies and the agronomic behavior of the strains. Strains ABL 98/11 and ABL 16/01 produced the best yields and morphological characteristics for the mushrooms, indicating their high weight, which enhances the commercialization of the mushroom and justifies their longstanding commercial use over the last 15 years.

Keywords *Agaricus blazei* • *Agaricus brasiliensis* • Genetic characterization • Yield • Screening of mushroom quality

Introduction

Agaricus subrufescens Peck is synonymous with *Agaricus blazei* (Murrill) ss. Heinemann and *Agaricus brasiliensis* Wasser et al. (Dias et al. 2013). Over recent decades, there have been ongoing discussions as to the origin, distribution, and nomenclature of this mushroom (Kerrigan 2005, 2007; Wasser et al. 2002, 2005). *A. subrufescens* is alternatively known as the sun, almond, or medicinal mushroom, and the cultivation history can be divided into three periods. The first period was between approximately 1894 and 1918, as reported by Kerrigan (2005), when the species was cultivated in the USA (Falconer 1894; Anonymous 1904). The second period occurred between 1965 and 1997, based on reports by Iwade and Ito (1982), Iwade and Mizuno (1997), and Mizuno (1997) who described the cultivation in Brazil, Japan, China, and Korea and presented technological advances in the area of mushroom breeding. The final period began with the publication of the use of *A. subrufescens* in Brazil (Colauto et al. 2002; Eira et al. 2005a, b), which allowed an increase of research teams to study this mushroom in a greater range of countries, such as Argentina, Canada, France, Slovenia, Mexico, Taiwan, and Norway, and continues to the present day (Gregori et al. 2008; González Matute et al. 2010; Wasser et al. 2005, 2007; Wasser et al. 2002, 2005).
The strains used in experimental crops in the last 15 years came from Brazil, France, Spain, the USA, Mexico, Taiwan, Belgium, and Italy (Llarena-Hernández et al. 2011). In recent decades, studies have been conducted mainly with strains isolated from commercial crops (Brazil), with several strains collected from the wild (France, Spain, Thailand, and others). Cultivated mushrooms vary in the obtained yield, average weight of the mushrooms, and morphological characteristics (color and format) of the pileus and the stipe of mushrooms (Colauto et al. 2010a, b, c; Llarena-Hernández et al. 2013). To avoid these variations and combine the favorable characteristics of isolates and wild-collected specimens, several hybrids have been developed (Zied et al. 2011a; Jatuwong et al. 2014); however, it is unknown exactly why these hybrids have not yet been used commercially.

Studying the genetic variation of Japanese and Brazilian strains, Figueiredo et al. (2013) reported the low degree of difference between the isolates and suggested that the strains could have come from the same wild-type population of A. brasiliensis. Finally, the authors suggested that the development of studies of genetic divergence among strains should be integrated into several other aspects of growth such as physiology and productivity to enable a precise and consistent strain analysis and efficient development of superior strains for cultivation.

In this sense, the present manuscript studied in detail the commercial strains currently cultivated in Brazil and compared them with the strains used in the last 15 years in several publications. We carried out a genetic and morphological characterization of the mycelium and mushroom of four selected strains and also evaluated their agronomic behavior.

Materials and methods

The experiment was divided into four evaluations. The first referred to genetic characterization, the second to mycelial morphological characterization, the third to morphological characterization of the fruitbodies, and the fourth to the agronomic behavior of the mushroom strains. Four most cultivated commercial strains of *A. subrufescens* were used: ABL CS7 (acquired from the Federal University of Lavras, Brazil – MW200295.2 GenBank number); ABL 18/01 (isolated from a grower in the region of São Paulo, Brazil – MW200293.2 GenBank number); ABL 98/11 (isolated from growers in the region of Mogi das Cruzes, Brazil – MW200294.2 GenBank number); and ABL 16/01 (isolated from commercial spawn lab in Valinhos, Brazil – MW200292.1 GenBank number).

The strains were deposited in the collection of the Centro de Estudos em Cogumelos, from the Universidade Estadual Paulista, Câmpus de Dracena, with open access to other researchers.

Genetic characterization of the A. subrufescens strains

To genetically characterize *A. subrufescens* ABL 16/01, ABL 18/01, ABL 98/11, and ABL CS7 strains, we performed amplification, cloning, and DNA sequencing of the internal transcribed spacer (ITS) region of nuclear ribosomal DNA (rDNA), which is widely used in fungal taxonomy (Schoch et al. 2012). Initially, 100 mg of *A. subrufescens* mycelium was added to 2.0-mL imnuSPEED lysis tubes containing steel beads (5 × 4.7 mm) and 400 μL of buffer AP1 (DNeasy Plant Mini Kit, QIAGEN) for tissue disruption. Samples were homogenized for two cycles of 1 min each in the SpeedMill PLUS equipment (Analytik Jena). Then, 4 μL of RNase A was added to each tube, followed by incubation at 65 °C for 10 min. All following steps on genomic DNA extraction were performed as recommended by the manufacturer (DNeasy Plant Mini Kit, QiaGen).

Genomic DNA samples were eluted in sterile distilled water and quantitated using a NanoPhotometer® (Implen). PCR reactions were carried out in a final volume of 25 μL with Platinum Taq DNA Polymerase (Invitrogen) using 50 ng of genomic DNA and conserved primers that flank a rDNA region containing the ITS sequences: ITS5F (5′-GGAA GTAAAGTCGTAACAAGG-3′) and ITS4R (5′-TCCT CCGCTTAATGATATGC-3′) (White 1990). Reactions were incubated in a SimpliAmp thermal cycler (Applied Biosystems) at 94 °C for 2 minutes, followed by 35 cycles of denaturation at 94 °C for 30 s, primer annealing at 50 °C for 30 s, and DNA extension at 72 °C for 1 min. PCR products were separated by electrophoresis on a 1.5% agarose gel for 35 min at 130 V. DNA bands (~700 bp) were excised, purified using the GenElute™ gel extraction kit (Sigma Aldrich) in a volume of 40 μL, and quantitated with the NanoPhotometer®. Purified PCR amplicons were cloned into pGEM-T Easy Vectors (Promega) at a molar ratio of 5 (insert):1 (vector), according to the manufacturer’s instructions.

Chemocompetent *Escherichia coli* stellar cells were transformed with ligation reactions. Reactions were plated in selective LB media containing ampicillin and incubated at 37 °C for 16 h. Positive clones were confirmed by plasmid DNA extraction, followed by EcoRI digestion and electrophoresis in 1.5% agarose gel. DNA sequencing reactions were prepared with the BigDye® Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems) using 5 μL of plasmid DNA (100 ng/μL) and 2.5 μL of 5 μM sequencing primers M13F (5′-CGCCAGGGTTTTCGATCGAC-3′) or M13R (5′-CAGGAAACAGCTATGAC-3′). Four clones of each sample were sequenced in duplicate using the Sanger method with an ABI 3730 DNA Analyzer (Applied Biosystems), at the Centro
de Pesquisa sobre o Genoma Humano e Células-Tronco da Universidade de São Paulo (CEGH-USP, Brazil).

Consensus sequences for each *A. subrufescens* strain were obtained from the analysis of all DNA sequencing replicates using the software Geneious Prime® 2020.2.4 (Biomatters). MUSCLE multiple alignments were performed using these consensus sequences and 23 *A. subrufescens* ITS sequences from different geographic regions (Table S2). A consensus tree was generated from the Geneious tree builder using the neighbor-joining method and Jukes-Cantor genetic distance model, with 10,000 replicates at the bootstrap resampling method.

Mycelial morphological characterization

For mycelial characterization, a petri dish compost agar was used, following the methodology reported by Jones et al. (2017). Fresh compost used for *A. subrufescens* production was dried for 48 hours at a temperature of 60 °C. A 60 g of dried compost was added with 1 l of distilled water and the mixture boiled for 30 min. The boiled mixture was filtered, and 15 g of agar was added and sterilized at 121 °C for 30 min. Culture medium was transferred to petri dishes (90 mm in diameter) and, after cooling, was inoculated with a mycelium disc (10 mm in diameter) from the respective strains. After 12 days at 28 °C, colonies were classified into different types (Jones et al. 2017), which were determined prior to analysis:

- **Type 1**: Cottony mycelium, with uniform radial distribution, presence of homogeneous aerial mycelia (throughout the colony), with rapid mycelial growth
- **Type 2**: Rhizomorphic mycelium, thick, with uniform radial distribution, presence of partial aerial mycelia (only in the center of the colony), and rapid mycelial growth
- **Type 3**: Cottony mycelium, with uneven radial distribution, presence of homogeneous aerial mycelia, and intermediate mycelial growth
- **Type 4**: Rhizomorphic mycelium, thick, with uneven radial distribution, presence of partial aerial mycelia (only in the center of the colony), with intermediate mycelial growth

Mushroom morphological characterization

For morphological evaluation, 30 mushrooms from each strain were randomly selected before the rupture of the ring (recommended point of harvest), and the following parameters were considered: total length of the mushroom, pileus and stem, width of the stem, stem base, pileus, and ring size. The measurements were performed with the aid of a 150-mm digital caliper with 0.1-mm precision, as shown in Fig. 1.

To assess coloration, a Discovery V20 Binocular Stereoscope and an Axiocam 503 color camera (Zeiss®) were used. Readings were made with two X-shaped lines, each of which had approximately 1000 points. The average of all measured points was obtained, and thus each mushroom constituted a repetition. The color data were obtained in RGB format (red, green, and blue) and analyzed separately according to the color spectrum.

Agronomic behavior

The inoculum was prepared based on sorghum grains following the production steps for selection of mushroom and production of subculture, parent spawn, and grain spawn as described by Zied et al. (2011a, b). The compost formulation consisted of a mixture of wheat straw, chicken manure, and gypsum. The compost was produced using the traditional composting method described by Zied et al. (2014) with phase I (a total of 26 days, with 7 days of prewetting and 19 days of fermentation) and phase II (total of 9 days, with 8 h of pasteurization at 59 °C and 8 days of conditioning at 47 °C).

After the composting process, the substrate was distributed in plastic boxes, in equal amounts of 3.5 kg, with the inoculum added in the measure of 1% of the wet weight of the compost. Subsequently, the compost was incubated in a semi-controlled mushroom chamber (temperature and humidity control) for 20 days at a temperature of 28 ± 2 °C and relative humidity of 80 ± 5%. A casing layer based on peat moss was used to provide high water holding capacity and porosity and less compaction, thus allowing gas exchange between the compost and the environment. The casing layer was added to a thickness of 4 cm over the colonized compost.

After the colonization of the casing layer, ruffling was performed on the 27th day. The primordia induction was carried out by temperature oscillation and control of the relative
humidity. On the 28th day, the temperature was reduced from 28 ± 2 °C to 20 ± 2 °C with a humidity of 90 ± 5%, following the methodology proposed by Pardo-Giménez et al. (2020a) for rapid primordia induction. Then, the temperature was again increased to 28 ± 2 °C, with the same process being performed in each harvest flush. The total growth cycle was 85 days (20 days of mycelial run and 65 days of production phase).

The mushrooms were harvested twice a day manually and weighed after scraping the base of the stipe to remove residues from the casing layer. The yield (fresh weight of mushrooms divided by fresh weight of the compost, multiplied by 100, expressed as a percentage), number of mushrooms (count of mushrooms harvested), weight of mushrooms (fresh weight of mushroom divided by mushroom number), precocity (yield of half the production time, started after harvesting the first mushroom, divided by the total production time multiplied by 100 and expressed as a percentage), and earliness (number of days between adding the casing layer and the time required for the first harvest) were evaluated as described by Zied et al. (2010) and Navarro et al. (2020).

The experiment was carried out in a completely randomized design, with four treatments (strains of A. subrufescens: CS7, ABL 18/01, ABL 98/11, and ABL 16/01) each with eight replicates, which were represented by a 3.5-kg box of compost.

Results

Genetic characterization of the A. subrufescens strains

DNA sequencing analysis of the rDNA region from the four strains of A. subrufescens (ABL 16/01, ABL 18/01, ABL 98/11, and ABL CS7) revealed the successful amplification of a 773-bp genomic region, including a partial sequence of the small subunit ribosomal RNA gene and complete sequences for the ITS 1 5.8S ribosomal RNA gene and for ITS 2, a partial sequence of the large subunit ribosomal RNA gene. Consensus sequences for each A. subrufescens strain were generated from the analysis of nonredundant DNA sequences (Table S1) and deposited in the NCBI nucleotide database under the accession numbers MW200292 (ABL 16/01), MW200293 (ABL 18/01), MW200294 (ABL 98/11), and MW20029 (ABL CS7).

Analysis of the polymorphic regions from a multiple alignment performed between our sequences and A. subrufescens ITS types A, B, A/B, and C, previously characterized by Chen et al. (2016), revealed the occurrence of ITS type A in the ABL 16/01 strain and both ITS types A and B in the ABL 18/01, ABL 98/11, and ABL CS7 strains (Table 1).

In addition to polymorphisms at 13 positions (90, 168, 176, 184, 199, 200, 254, 323, 389, 521, 525, 614, and 704), previously reported by Chen et al. (2016), we found two other new polymorphisms at positions 208 and 644 for ITS type B and for ABL 18/01, ABL 98/11, and ABL CS7 strains. DNA sequencing of more clones is needed to confirm if the polymorphisms at positions 224, 240, and 673 represent true minor variants or PCR/sequencing artifacts.

A consensus tree built from the multiple alignments between the ITS sequences described here and another 23 ITS sequences from 21 A. subrufescens strains native of the Americas, Asia, Europe, and Oceania revealed that all the strains analyzed in this work are phylogenetically closer to the Americas and Europe specimens (ITS types A or B) than to the Asia and Oceania sequences, characterized by specimens bearing the ITS type C (Fig. 2).

Mycelial morphological characterization

Mycelial morphology was classified by the mycelial structure (rhizomorphic or cottony), radial growth distribution (uniform

Polymorphic positions in ITS sequences	90	168	176	184	199	200	208	224	240	254	323	389	521	525	614	644	673	704
ITS A	T	A	A	A	G	A	C	T	T	T	G	A	A	T	G	A	T	T
ABL 16/01	T	A	A	A	G	A	C	T	T	T	G	A	A	T	G	A	T	T
ITS B	-	G	G	G	A	T	Y	T	T	G	A	A	T	G	A	T	T	T
ITS A/B	T/-	A	R	R	R	W	Y	T	T	Y	G	A	A	T	G	R	T	T
ABL 18/01	T/-	A	R	R	R	W	Y	Y	T	Y	G	A	A	T	G	R	Y	T
ABL 98/11	T/-	A	R	R	R	W	Y	T	T	Y	G	A	A	T	G	R	T	T
ABL CS7	T/-	A	R	R	R	W	Y	T	T	Y	G	A	A	T	G	R	T	T
ITS C	-	A	G	G	A	T	C	T	T	C	A	A	C	-	G	A	T	T

© Springer
and uneven), presence of aerial hyphae (homogeneous and partial), and time for colonization of the culture medium (10 and 15 days).

The ABL CS7 strain produced rhizomorphic and aerial mycelia at the beginning of growth (partial) and took longer for colonization (15 days) with uneven radial growth; therefore, this strain was classified as type 4. The ABL 98/11 strain had the same morphological characteristics as type 4 but differed with respect to having cottony mycelium and was therefore classified as type 3 (Fig. 3).

However, the ABL 18/01 strain produced rhizomorphic and aerial mycelia at the beginning of growth (partial), had only a short colonization time (10 days) with radial growth, and was classified as type 2. The ABL 16/01 strain showed the same morphological characteristics but differed with respect to having cottony mycelium and homogeneous aerial hyphae and was therefore classified as type 1.

Mushroom morphological characterization

Evaluation of the morphology of mushrooms revealed a significant difference between the strains, with mushroom length being the only nonsignificant factor. When analyzing the length and width of the pileus, the ABL 16/01 and 98/11 strains had the highest values, and ABL CS7 and ABL 18/01 strains had the lowest. Regarding the size of the ring, the ABL 16/01 strain was the largest, whereas the ABL CS7 and 18/01 strains were smaller. In terms of the length of the stipe, the ABL CS7 strain had the highest value. The widths of the stipe and of the base were largest in ABL 16/01 followed by those of the ABL 98/11 strain, which are considered to have more robust fruit bodies than those of the ABL CS7 and 16/01 strains (Table 2).

Another morphological characteristic evaluated was the color of the pileus. Significant differences were found between all parameters evaluated; the ABL CS7 strain had the lowest values for color and was classified as a strain with a darker pileus. The strains ABL 16/01 and ABL 18/01 had statistically equal values and the intermediate color of the pileus. Finally, the ABL 98/11 strain showed the highest color value, with a clear pileus color. The combination of the three colors can be transformed into a hexadecimal code, which can then be used as a universal color standard (Table 3).

Agronomic behavior

All agronomic variables exhibited significant differences in relation to the strains used, except for precociousness. ABL CS7, 98/11, and 16/01 strains had the highest yields, practically twice that of the ABL 18/01 strain (Table 4). Characterizing these strains, ABL 98/11 had the highest yield.
in the first flush while CS7 had the highest yield in the second flush. The precocity values were 94.98%, 93.44%, and 80.10% for ABL 98/11, ABL 16/01, and ABL CS7, respectively; ABL CS7 had a low value owing to reduced yield in the 1st flush of harvest (Fig. 4).

Regarding the number and weight of mushrooms, two opposite situations were found: in the first, the ABL CS7 strain presented a greater number of mushrooms harvested with reduced weight, whereas, in the second with the ABL 98/11 strain, fewer mushrooms were harvested but with a greater weight. Earliness and precocity complete the range of positive agronomic parameters that a strain must have and help position the ABL 98/11 strain as the best genetic material used in this research (Fig. 4).

Discussion

Agaricus subrufescens is only grown commercially in a few countries, such as Brazil, Japan, China, Taiwan, South Korea, and the USA, and this confined cultivation range has limited technological advancement to increase yield. Japan was the first country to adapt *A. bisporus* cultivation technologies to *A. subrufescens* (1997). Recently, Spanish and French researchers have also applied this type of study (Pardo-Giménez et al. 2020a, b; Llarena-Hernández et al. 2014). A greater diversity of strains was used in the third period (2005 to 2020) of cultivation compared with those used in the second period (1965 to 1997); these more recent strains were

Strain	Mushroom length	Pileus length	Pileus width	Ring size	Stipe length	Stipe width	Base width
ABL CS7	102.35 a	37.34 c	34.92 c	14.22 c	94.35 a	19.12 c	30.24 c
ABL 18/01	95.25 a	37.35 c	28.30 d	10.50 c	83.25 b	18.45 c	27.75 c
ABL 98/11	98.53 a	46.94 b	38.10 b	14.94 b	85.78 b	21.84 b	33.83 b
ABL 16/01	97.29 a	65.15 a	41.10 a	16.61 a	82.24 b	26.68 a	42.46 a
CV (%)	10.28	15.98	12.78	18.75	11.92	19.48	15.66
significantly superior than earlier ones as they included wild, isolated, and hybrid varieties.

In Brazil, the number of strains used commercially has also increased, although only three strains are still cultivated (ABL CS7, ABL 98/11, and ABL 16/01) when comparing the strains used in this study with those used in the last 15 years (Table 5). This selection is justified by the favorable agronomic behavior and morphological characteristics of these mushrooms (Tables 2 and 4). In Argentina, the strains studied came from the commercial laboratory Brasmicel at the beginning of 2010 and were sent by Edson de Souza (González Matute et al. 2010, 2011, Matute et al. 2012).

In Europe, after 2010, two countries led the experimental studies carried out with A. subrufescens. In Spain, studies were carried out using Brazilian strains (Zied et al. 2011a, b; Pardo-Giménez et al., 2016), and, in France, wild and hybrid strains were used (Thongklang et al. 2014a, b; Foulongne-Oriol et al. 2016). Furthermore, French researchers had a great influence on the identification and dissemination of A. subrufescens in Thailand (Wisitrassameewong et al. 2012; Thongklang et al. 2016), whereas North American research influenced the experimental cultivation in Norway (Stoknes et al. 2013).

A. subrufescens mushrooms exhibit a high level of polymorphism in the ITS of the nuclear rDNA region (Kerrigan 2005). Comparing A. subrufescens ITS sequences and samples from different geographic regions, Chen et al. (2016) observed a distribution of ITS type A, B, or both A/B in American and European A. subrufescens specimens, whereas specimens from Asia or Oceania exhibited ITS type C, with the exception of the wild French isolate CA487 that had ITS of all three types.

Our results revealed that all the A. subrufescens strains characterized here were phylogenetically related to the Americas/Europe specimens, bearing an ITS of type A (ABL 16/01) or both types A and B (ABL 18/01, ABL 98/11, and ABL CS7). A previous study carried out with other strains and molecular markers showed that the strains used in Brazil had a substantial genetic similarity, suggesting a common origin (Tomizawa et al. 2007). Similar findings were reported from genetic analysis of both Brazilian and European A. subrufescens cultivars using simple sequence repeat (SSR) markers, a molecular tool widely used to study genetic diversity and reproductive biology (Foulongne-Oriol et al. 2012, 2014). A genetic distance tree from this analysis revealed that the Brazilian cultivars belong to the same cluster, different from those European cultivars where a significant polymorphism was detected (Llarena-Hernández et al. 2013). Thus, any differences in agronomic traits, mainly among Brazilian strains, should be related to other DNA

Table 3 Pileus color and hexadecimal code of A. subrufescens strains

RGB code (0-255)	Hexadecimal code			
Strain	Red	Green	Blue	
ABL CS7	132.41 c	108.82 c	77.13 c	#846c4d
ABL 18/01	198.55 b	169.30 b	145.15 b	#c6a991
ABL 98/11	221.45 a	211.20 a	186.15 a	#ddd3ba
ABL 16/01	188.20 b	161.55 b	123.80 b	#bca17b
CV (%)	16.28	17.13	21.68	

Table 4 Agronomic behavior of A. subrufescens strains after 95 days of cultivation

Strain	Yield, %	Number of mushroom, u	Weight of mushroom, g	Precocity, %	Earliness, days
ABL CS7	11.02 a	20.0 a	18.13 c	80.10 a	34.2 b
ABL 18/01	6.64 b	12.8 b	16.53 c	91.91 a	24.8 a
ABL 98/11	14.94 a	11.6 b	43.05 a	94.98 a	20.0 a
ABL 16/01	13.21 a	13.0 b	34.29 b	93.44 a	23.4 a
CV (%)	29.09	27.98	11.87	15.74	14.71

Note: CV (%) represents the coefficient of variation.
sequences that may be assessed by various molecular methods, including the single-nucleotide polymorphisms (SNPs). Likewise SSR markers, SNPs have become the best choice for population genetic studies (Chattopadhyay et al. 2017), being potentially useful to correlate slight modifications of the genes with phenotypic variations, helping us to understand the genomic and functional diversity of fungi (Kim et al. 2015; Tsykun et al. 2017; Guo et al. 2020).

Studies have shown that the mycelia of *A. subrufescens* have intermediate growth, taking an average of 10 to 20 days to colonize a 90 mm-diameter petri dish, depending on the culture medium and strains used (Neves et al. 2005). This differs from *Pleurotus ostreatus*, which has a more rapid growth, taking only 6 days to colonize a petri dish of the same size (Donini 2006). In the present study, strains ABL 18/01 and ABL 16/01 took 10 days to colonize the entire culture medium, which in a commercial cultivation provides advantages as faster mycelium develops decreases the possibility of contamination of the compost by other fungi and bacteria. We did not find any correlation between the morphological characteristics of the colonies and the agronomic behavior of the strains.

Morphological characteristics of mushrooms are extremely important when selecting strains for commercial production. In Brazil, the commercialization of mushrooms is based on standards such as length (height) of mushroom, width of base and stipe, and level of ring opening (more closed mushrooms have better market value), and mushrooms are classified as extra, grade A and B, and opened, respectively (Zied et al. 2017). Therefore, mushrooms from the ABL 16/01 strain would be classified as extra mushrooms, meeting all quality standards, when the mushroom length reaches above 80 mm and base width is between 35 and 50 mm with a closed pileus. With regard to this last parameter, this strain presented an excellent ring size (16.61 mm) before veil rupture. The ABL 98/11 strain also has favorable morphological characteristics. Given all these results, the weights of harvested mushrooms underlined the excellent commercial quality for strains ABL 16/01 (34.29 g) and ABL 98/11 (43.05 g). However, it should be noted that on some occasions, the weight of the mushroom has a negative correlation with the number of mushrooms harvested (Straatsma et al. 2013).

The color of the mushroom pileus is related to the level of maturation of the mushroom (near the rupture of the mushroom-veil, this becomes clearer) and the number of small scales over the pileus. Pardo-Gimenez et al. (2020a) found that the primordial induction method influences the color of the pileus so that slow induction keeps the pileus darker when using the ABL 99/30 strain.

We found a negative correlation between mushroom weight and mushroom number (r = −0.723 and P = 0.003). This has also been observed in other studies (Chu et al. 2012; Dias et al. 2013) but differs from those obtained in research with Chinese and Japanese cultivars (Wang et al. 2010, 2013; Win and Ohga 2018).

Finally, yield is an important parameter to be considered as an agronomic behavior, being directly related to the cultivation earliness, precocity, and crop time (growth cycle). Wild and hybrid strains from Spain, France, and Thailand have low earliness, with values from 15.1 to 30 days, whereas cultivars from Brazil, China, and Japan are tardy, with earliness values between 26.8 and 48.8 days after the addition of casing (Llarena-Hernández et al. 2014; Horm and Ohga 2008; Wang et al. 2013; Jatuwong et al. 2014).

Nevertheless, the most recent published yields reached 28.16%, with ABL 16/01 strain during a 108-day growth cycle (Zied et al. 2018), and 20.91%, with ABL 99/30 strain during an 83-day growth cycle (Pardo-Giménez et al. 2020b). These yields were similar to the excellent yield obtained by the wild strains CA 487 (24.4%) and 438-A (26.2%), during their 85-day growth cycle, and the M7700 cultivar (21.1%), which had a 130-day growth cycle (Llarena-Hernández et al. 2014). Our current highest yield was 14.94%, with ABL 98/11 strain during an 85-day growth cycle, with commercial quality mushroom grade A, in a semi-controlled mushroom chamber, which allows lower energy expenditure for Brazilian growers. This strain provides more than 90% of the total harvest in the first two flushes (Fig. 3), which opens the possibility of reducing the duration of the growing cycle.

Notable, *A. subrufescens* differs from *A. bisporus* because of the wide variation in yield and other agronomic behaviors obtained with the same strains in different publications. Another important point when producing commercial cultivars from other countries is the period of domestication in...
Table 5 Strains used in the last 15 years in different countries and regions

Strains	Origin	References
ABL-97/11 = CS4	São Paulo, SP, Brazil	Eira et al. (2005a, b)
ABL-97/12	Piedade, SP, Brazil	Braga (1999); Braga et al. (2006)
ABL-98/11 = CA 571	Mogi-da-cruzes, SP, Brazil	Llarena-Hernández et al. (2011)
ABL-99/25 = CS5	Araçatuba, SP, Brazil	Eira et al. (2005a, b); Sousa et al. (2016)
ABL-99/26	São José dos Campos, SP, Brazil	Colauto et al. (2010a, b, c, 2011)
ABL-99/28 = CA 560	Botucatu, SP, Brazil	Eira et al. (2005a, b); Llarena-Hernández et al. (2011); Farnet et al. (2013); Zied et al. (2012a, 2014)
ABL-99/29 = CS7	Porto Alegre, RS, Brazil	Eira et al. (2005a, b); Kopytowski Filho and Minhoni (2004); Colauto et al. (2010c, 2011); Sousa et al. (2016)
ABL-99/30 = CA 561	Piedade, SP, Brazil	Eira et al. (2005a, b); Kopytowski Filho (2006); Kopytowski Filho and Minhoni (2007); Llarena-Hernández et al. (2011, 2013, 2014); Favara et al. (2014); Zied et al. (2012a, 2012b, 2014); Pardo-Giménez et al. (2014, 2020a, b)
ABL-01/29 = CA 570	Rio de Janeiro, RJ, Brazil	Llarena-Hernández et al. (2011, 2013, 2014)
ABL-01/44	São José do Rio Preto, SP, Brazil	Kopytowski Filho et al. (2008)
ABL-03/44 = CA 562	Lençóis Paulista, SP, Brazil	Kopytowski Filho (2006); Llarena-Hernández et al. (2011); Zied et al. (2012a, 2014); Pardo-Giménez et al. (2014);
ABL-03/49 = CA 565	Boituva, SP, Brazil	Llarena-Hernández et al. (2011, 2013, 2014)
ABL-04/49 = CA 563	São José do Rio Preto, SP, Brazil	Kopytowski Filho (2006); Andrade et al. (2007); Llarena-Hernández et al. (2011); Favara et al. (2014); Zied et al. (2010, 2011b, 2012a, 2014); Pardo-Giménez et al. (2014); Martos et al. (2017)
ABL-05/51 = CA 564	Bariri, SP, Brazil	Llarena-Hernández et al. (2011)
ABL-06/53 = CA 566	Brazilia, DF, Brazil	Llarena-Hernández et al. (2011); Zied et al. (2012a)
ABL-06/59	Brazilia, DF, Brazil	Zied et al. (2014)
ABL-07/58 = CA 572	Suzano, SP, Brazil	Llarena-Hernández et al. (2011); Farnet et al. (2013)
ABL-07/59 = CA 574	Atibaia, SP, Brazil	Llarena-Hernández et al. (2011)
ABL-16/01	Valinhos, SP, Brazil	Zied et al. (2018)
ABL-16/02 = ABL 18/01	Valinhos, SP, Brazil	Zied et al. (2018)
ABL-16/03	Minas Gerais, MG, Brazil	Zied et al. (2018)
A. blazei	Fazenda Guirra, SP, Brazil	Gern et al. (2010)
BZ-04	Brasímicel, Suzano, SP, Brazil	Cavalcante and Gornes (2005); Cavalcante et al. (2008)
BZ-ae	Brasímicel, Suzano, SP, Brazil	González Matute (2009)
BZ-7	Brasímicel, Suzano, SP, Brazil	González Matute (2009)
BZ-PL	Brasímicel, Suzano, SP, Brazil	González Matute (2009); González Matute et al. (2011)
CS1	Vitória, ES, Brazil	Silva et al. (2009, 2011); Dias et al. (2013, 2014); Sousa et al. (2016)
CS2	Belo Horizonte, MG, Brazil	Dias et al. (2013, 2014); Martos et al. (2017); Sousa et al. (2016)
CS9	Elói Mendes, MG, Brazil	Sousa et al. (2016)
CS10	UFLA, Brazil	Figueirêdo et al. (2013); Sousa et al. (2016)
WC837 = CA454 = ATTC 76739	Brazil (Penn State Mushroom Spawn Lab)	Bechara et al. (2008); Llarena-Hernández et al. (2011, 2013, 2014); Farnet et al. (2013)
WC838 = CA 455	Brazil (Penn State Mushroom Spawn Lab)	Llarena-Hernández et al. (2011)
CA567	Bois de Berquit, Dion de Val, Belgium	Llarena-Hernández et al. (2011)
M7700 = CA 646	Mycelia BVBA, Belgium	Gregori et al. (2008); Llarena-Hernández et al. (2011); Stoknes et al. (2013); Farnet et al. (2013)
M7703 = CA 647	Mycelia BVBA, Belgium	Llarena-Hernández et al. (2011); Farnet et al. (2013)
PA93 = CA 487	Saint-Léon, Gironde, France	Llarena-Hernández et al. (2011, 2013, 2014); Farnet et al. (2013)
CA 516	Saint-Léon, Gironde, France	Llarena-Hernández et al. (2011)
CA 643	Le Pian Médoc, Gironde, France	Llarena-Hernández et al. (2011, 2013, 2014)
the place where the cultivation has migrated to. We verified
this with the 99/30 strain that was first cultivated in Spain,
with a yield of 4.7% after 80 days of cultivation (Zied et al.
2011a). After re-isolation in several subsequent crops, we ob-
tained a productivity of 20.2% after 85 days of cultivation
(Pardo-Giménez et al. 2020a).

Here, we emphasize the importance of obtaining a high
yield, with morphologically suitable mushrooms (extra
mushroom or mushroom grade A) and high dry matter. All
these characteristics are required in a promising strain for
commercial use with regard to studies published in the last
15 years.

Table 5 (continued)

Strains	Origin	References
ATCC 76739-3 x CA487-100 = CA454-3 x CA487-100	Hybrid, INRA, France	Llarena-Hernández et al. (2011, 2013, 2014)
CA 603	Tlaxcala, Mexico	Llarena-Hernández et al. (2011)
ER-1 = CA 462	Hawái, USA	Llarena-Hernández et al. (2011)
ARAN559 = CA 438-A	Coll. LA Parra, Spain	Llarena-Hernández et al. (2011, 2013, 2014)
24b-01 = CA 536	Comacchio, Italy	Llarena-Hernández et al. (2011)
837	Corvinus University of Budapest, Hungary	Geössel (2011); Geössel and Györfi (2008)
838	Corvinus University of Budapest, Hungary	Geössel (2011); Geössel and Györfi (2008)
853	Corvinus University of Budapest, Hungary	Geössel (2011); Geössel and Györfi (2008)
1105	Corvinus University of Budapest, Hungary	Geössel (2011); Geössel and Györfi (2008)
2603	Corvinus University of Budapest, Hungary	Geössel (2011); Geössel and Györfi (2008)
Brazil	Corvinus University of Budapest, Hungary	Geössel (2011); Geössel and Györfi (2008)
Ma-He	Corvinus University of Budapest, Hungary	Geössel (2011); Geössel and Györfi (2008)
Si-2.2	Corvinus University of Budapest, Hungary	Geössel (2011); Geössel and Györfi (2008)
BCRC36814T	Food Industry Research and Development Institute, Hsinchu, Taiwan	Chu et al. (2012)
CA 276	Coll. W Chen, Taiwan	Llarena-Hernández et al. (2011)
KS-72	Kyushu University, Fukuoka, Japan	Pokhrel and Ohga (2007); Horm and Ohga (2008)
KUMB1221	Kyushu University, Fukuoka, Japan	Win and Ohga (2018)
SH26	Institute of Edible Fungi, Shanghai, China	Wang et al. (2010, 2013)
MFLUCC 11-0653 = CA 918	Chiang Rai, Thailand	Jatuwong et al. (2014); Thongklang et al. (2014a, b)
CA918-075 x CA454-4	Hybrid, Mae Fah Luang University, Thailand	Jatuwong et al. (2014)
CA918-076 x CA454-4	Hybrid, Mae Fah Luang University, Thailand	Jatuwong et al. (2014)
CA918-075 x CA487-35	Hybrid, Mae Fah Luang University, Thailand	Jatuwong et al. (2014)
CA918-076 x CA487-35	Hybrid, Mae Fah Luang University, Thailand	Jatuwong et al. (2014)
VAB	România	Rózsa et al. (2017)

Conclusions

All the A. subrufescens strains characterized in this work are
phylogenetically related to the Americas/Europe specimens
and harbor an ITS of type A (ABL 16/01) or of both types
A and B (ABL 18/01, ABL 98/11, and ABL CS7). We did not
find any correlation between the morphological characteristics
of the mycelial colonies and the agronomic behavior of the
strains. Strains ABL 98/11 and ABL 16/01 obtained the best
yield results and morphological characteristics of the mush-
rooms, including their high weight. These characteristics en-
hance the commercialization of these strains and justify their
continued use over the last 15 years and can additionally be the subject of a breeding program aimed at improving yield and reducing agronomic variability.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s11557-021-01711-x.

Acknowledgements The senior co-author received a scholarship between the Fundação de Amparo à Pesquisa do Estado de São Paulo and Universidade de São Paulo (FAPESP n° 2019/12605-0) and the Fundação de Amparo à Pesquisa do Estado de São Paulo and Universidade Estadual Paulista (FAPESP n° 2019/00419-8).

Author contribution Diego C. Zied, investigation, writing and original draft; Wagner G. Vieira Junior, data collection; Eustáquio S. Dias, formal analysis; Douglas M. M. Soares, formal analysis and design; Diego C. Zied and Arturo Pardo-Giménez, conceptualization, supervision; Cassius V. Stevani and Matheus Rodrigo Iossi, supervision, review, and editing.

Funding This research was funded by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP n° 2017/22501-2 and 2018/21492-2).

Data availability All material is deposited in Sao Paulo State University (Câmpus de Dracena). The partial sequence data generated in this study are deposited in NCBI GenBank with the numbers MW200295.2, MW200293.2, MW200294.2, and MW200292.1.

Declarations

Ethics approval Not applicable.

Conflict of interest The authors declare no competing interests.

References

Andrade MCN, Kopytowski Filho J, Minhoni MTD, Coutinho LN, Figueiredo MB (2007) Productivity, biological efficiency, and number of *Agaricus blazei* mushrooms grown in compost in the presence of *Trichoderma* sp. and *Chaetomium olivacearum* contaminants. Braz J Microbiol 38:243–247

Anonymous (1904) *Agaricus subrufescens*, Peck. Boston Mycol Club Bull 21

Bechara MA, Heinemann PH, Walker PN, Wilkinson VL, Romaine CP (2008) Cultivation of *Agaricus bisporus* and *Agaricus blazei* on substrates composed of cereal grains and oilseeds. Biol Eng 1:65–78. https://doi.org/10.13031/2013.24194

Braga GC (1999) Produtividade de *Agaricus blazei* Murill em função do ambiente de cultivo, massa do substrato e camada de cobertura. *Tese de Doutorado*. Universidade Estadual Paulista, Faculdade de Ciências Agronômicas, Botucatu, Brasil, 83 pp

Braga GC, Montini RMC, Salibe AB (2006) Parâmetros da produção de *Agaricus blazei* sob diferentes condições ambientais de cultivo. Sciencia Agraria Paranaensis 5:47–56. https://doi.org/10.18188/sap.v5i1.2090

Cavalcante JLR, Gomes VFF (2005) Cultivo do *Agaricus blazei* (Murill) no Estado do Ceará. Rev Ciênc Agron 36:255–261

Cavalcante JLR, Gomes VFF, Kopytowski Filho J, Minhoni MTA, Andrade MCN (2008) Cultivation of *Agaricus blazei* in the environmental protection area of the Baturité region under three types of casing soils. Acta Scient Agron 30:513–517. https://doi.org/10.4025/actasciagron.v30i4.5309

Chatopadhyay A, Tiwari KK, Chaudhary K, Prapat D, 2017. Genic molecular markers in fungi: availability and utility for bioprospection. In: Singh B, Gupta V (eds). Molecular Markers in Mycology. Fungal Biology. https://doi.org/10.1007/978-3-319-34106-4_7

Chen J, Moinard M, Xu J, Wang S, Fouloungne-Oriol M, Zhao R, Hyde KD, Callac P (2016) Genetic analyses of the internal transcribed spacer sequences suggest introgression and duplication in the medicinal mushroom *Agaricus subrufescens*. PLoS ONE 11(5): e0156250. https://doi.org/10.1371/journal.pone.0156250

Chu JN, Young CC, Tan CC, Wu SP, Yang LS (2012) Improvement of productivity and polysaccharide-protein complex in *Agaricus blazei*. Pesq Agrop Brasileira 47:96–102. https://doi.org/10.1590/S0100-204X2012000100013

Colauto NB, Dias ES, Gimenes MA, Eira AF (2002) Genetic characterization of isolates of the basidiomycete *Agaricus blazei* by RAPD. Braz J Microbiol 33:131–133. https://doi.org/10.1590/S1517-838220002000006

Colauto NB, SILVEIRA AR, Eira AF, Linde GA (2010a) Tratamentos térmicos do calxisto para uso como camada de cobertura no cultivo de *Agaricus brasiliensis*. Ciência Rural 40:1660–1663. https://doi.org/10.1590/S0100-847820100005000106

Colauto NB, SILVEIRA AR, Eira AF, Linde GA (2010b) Pasteurization of beef for cattle use in the cultivation of *Agaricus brasiliensis*. Semina: Ciências Agrárias, Londrina 31:1331–1336. https://doi.org/10.5433/1679-0359.2010v31n4sUp1p1331

Colauto NB, SILVEIRA AR, Eira AF, Linde GA (2010c) Alternative to peat for *Agaricus brasiliensis* yield. Bioresearch Technol 101:712–716. https://doi.org/10.1016/j.bioretech.2009.08.052

Colauto NB, Silveira AR, Eira AF, Linde GA (2011a) Production flush of *Agaricus bisporus* on Brazilian casing layers. Braz J Microbiol 42:616–623. https://doi.org/10.1590/S1517-83822011000200026

Dias ES, Zied DC, Rinker DL (2013) Physiologic response of *Agaricus subrufescens* using different casing materials and practices applied in the cultivation of *Agaricus bisporus*. Fungal Biol 117:569–575. https://doi.org/10.1016/j.funbio.2013.06.007

Dias ES, Zied DC, AIm G, Rinker DL (2014) Supplementation of compost for *Agaricus subrufescens* cultivation. Ind Biotechnol 10:130–132. https://doi.org/10.1089/ind.2013.0040

Donini LP (2006) In vitro development of *Agaricus brasiliensis* in media supplemented with different brans. Pesq Agrop Brasileira 41(6): 995–999. https://doi.org/10.1590/S0100-204X2006000600015

Eira AF, Kaneno R, Filho ER, Barispan LF, Pascholati SF, Piero RMD, Salvadori DMF, de Lima PLMA, Ribeiro LR (2005a) Farming technology, biochemical characterization, and protective effects of culinary-medicinal mushrooms *Agaricus brasiliensis* S. Wasser et al. and *Lentinus edodes* (Berk.) Singer: Five Years of Research in Brazil. Int J Med Mushrooms 7:281–299. https://doi.org/10.1615/IntJMedMushr.v7i2.260

Eira AF, Nascimento JS, Colauto NB, Celso PG, 2002) Production of *Agaricus blazei* and wheat-straw-based compost by different strains of *Chaetomium olivacearum*. Pesq Agrop Brasileira 37:99–102. https://doi.org/10.1590/S0100-204X20020000200006

Falcóner W (1894) A talk about mushrooms. Trans Massachusetts Hot Soc 1894(1):98–123

Farnet A-M, Qasemian L, Peter-Valence F, Ruaudel F, Savoie JM, Ferré E (2013) Capacity for colonization and degradation of horse manure and wheat-straw-based compost by different strains of *Agaricus subrufescens* during the first two weeks of cultivation. Bioresearch Technol 131:266–273. https://doi.org/10.1016/j.bioretech.2012.12.141
Favara GM, Sales-Campos C, Minhoni MTA, Siqueira OAAP, Andrade MCN (2014) Use of spent compost in the cultivation of Agaricus blazei. Afr J Biotechnol 13:3473–3480. https://doi.org/10.5897/ AJB2014.13978

Figueiredo VR, Martins ET, Siqueira FG, Maciel WP, Silva R, Rinker DL, Dias ES (2013) Microbial inoculation during composting improves productivity of sun mushroom (Agaricus subrufescens Peck). Afr J Microbiol Res 7:4430–4434. https://doi.org/10.5897/ AJMR2013.5944

Foulongne-Oriol M, Spathar C, Moinard M, Callac P, Savoie JM (2012) Development of polymorphic microsatellite markers issued from pyrosequencing technology for the medicinal mushroom Agaricus subrufescens. FEMS Microbiol Lett 334(2): 119–126. https://doi.org/10.1011/j.1574-6968.2012.02627.x

Foulongne-Oriol M, Lapalu N, Féraudon C, Spathar C, Ferrer N, Asmeele J, Savoie JM (2014) The first set of expressed sequence tags (EST) from the medicinal mushroom Agaricus subrufescens delivers resource for gene discovery and marker development. Appl Microbiol Biotechnol 98:7879–7892. https://doi.org/10.1007/s00253-014-5844-y

Foulongne-Oriol M, Brito MR, Cabannes D, Clément A, Spathar C, Moinard M, Dias ES, Callac P, Savoie JM (2016) The genetic linkage map of the medicinal mushroom Agaricus subrufescens reveals highly conserved macrosynteny with the congeneric species Agaricus bisporus, G3: Genes, Genom, Genet 6:1217–1226. https://doi.org/10.1534/g3.115.025718

Geössl A (2011) The cultivation opportunities and complex comparison of Agaricus blazei (Murrill). Thesis of doctoral dissertation. Corvinus University of Budapest, Hungary. 21pp

Geössl A, Györfi J (2008) Growing experiments with a medicinal mushroom Agaricus blazei (Murrill). Int J Horticul Sci 14:45–48. https://doi.org/10.3142/IJHS/14/1532

Germ RMM, Libardi Junior N, Patricio GN, Wisbeck E, Chaves MB, Furlan SA (2010) Cultivation of Agaricus blazei on Pleurotus spp. spent substrate. Braz Arch Biol Technol 53:939–944. https://doi.org/10.1590/S1516-891320100004000024

González Matute R (2009) Biotransformação de cáscara de girassol para produção do hongo comestível e medicinal Agaricus blazei y obtenção de subproductos de valor económico, Tesis doctoral. Departamento de Agronomía de la Universidad Nacional del Sur. Bahía Blanca, Argentina. 254pp

González Matute R, Figlas D, Curvetto N (2011) Agaricus blazei production on non-compostrated substrates based on sunflower seed hulls and spent oyster mushroom substrate. World J Microbiol Biotechnol 27: 1331–1339. https://doi.org/10.1007/s11274-010-0582-5

Gregori A, Pahor B, Glaser R, Pohleven F (2008) Influence of carbon dioxide, inoculum rate, amount and mixing of casing soil on Agaricus blazei fruiting bodies yield. Acta Agriculturae Slovenica 91:371–378. https://doi.org/10.2478/v8v10014-008-0017-2

Guo X, Zhang R, Li Y, Wang Z, Ishchuk OP, Ahmad KM, Wei J, Piskur J, Shapiro JA, Gu Z (2020) Understand the genomic diversity and evolution of fungal pathogen Candida glabrata by genome-wide analysis of genetic variations. Methods 176:82–90. https://doi.org/10.1016/j.ymeth.2019.05.002

Horm V, Olga S (2008) Potential of compost with some added supplemental materials on the development of Agaricus blazei Murrill. J Fac Agric Kyushu Univ 53:417–422

Iwade I, Ito H (1982) Miracle Himematsutake, Chikyu-sha, Tokyo p 1-152

Iwade I, Mizuno T (1997) V. Cultivation of kawariharatake (Agaricus blazei Murrill). Food Rev Int 13:383–390. https://doi.org/10.1080/ 87599129709541122

Jatuwong K, Kakumyan P, Chamuyang S, Chukeatirote E, Hyde K (2014). Optimization condition for cultivation of Agaricus subrufescens hybrid strains. In: The 26th Annual meeting of the Thai Society for Biotechnology and International Conference, Mae Fah Luang University, Chiang Rai, Thailand. pp. 244-251

Jones M, Huynh T, Dekiwadia C, Daver F, John S (2017) Mycelium composites: a review of engineering characteristics and growth kinetics. J Bionanosci 11:241–257. https://doi.org/10.1166/jbns.2017. 1440

Kerrigan RW (2005) Agaricus subrufescens, a cultivated edible and medicinal mushroom, and its synonyms. Mycologia 97:12–24. https:// doi.org/10.1080/15572536.2005.11832834

Kerrigan RW (2007) Inclusive and exclusive concepts of Agaricus subrufescens Peck: a reply to Wasser et al. Int J Med Mushrooms 9:79–84. https://doi.org/10.1615/IntJMedMushr.v9.i1.100

Kim KH, Ka KH, Kang JG, Kim S, Lee JW, Joon B-K, Jk Y, Park SR, Lee HJ (2015) Identification of single nucleotide polymorphism markers in the laccase gene of Shiitake mushrooms (Lentinula edodes). Mycobiology 43:75–80. https://doi.org/10.5941/MYCO. 2015.43.1.75

Kopytowski Filho J, 2006. Produtividade e eficiência biológica de Agaricus blazei (Murrill) Heinemann, em diferentes condições de cultivo. PhD Thesis. Faculdade de Ciências Agronômicas, Câmpus de Botucatu, Universidade Estadual Paulista “Julio de Mesquita Filho”. Botucatu-SP, Brazil. 134 pp

Kopytowski Filho J, Minhoni MTA (2004) Nitrogen sources and C/N ratio on yield of Agaricus blazei. Mushroom Science 16:213–220

Kopytowski Filho J, Minhoni MTA (2007) Produtividade e eficiência biológica da lâminha ABL 99/30 de Agaricus blazei em três tipos de compostos e em dois ambientes de cultivo. Energia Agricult 22: 65–78

Kopytowski Filho J, Minhoni MTA, Andrade MCN, Zied DC (2008) Effect of compost supplementation (soybean meal and ChamFood) at different phases (spawning and before casing) on productivity of Agaricus blazei ss. Heinemann (A. brasiliensis). Mushroom Science 17:260–271

Lisiecka J, Sobiersalski K, Siwulski M, Jasinska A (2013) Almond mushroom Agaricus brasiliensis (Wasser et al.) properties and culture conditions. Acta Scientiarum Polonorum Hortorum Cult 12:27–40

Llarena-Hernández RC, Largeteau ML, Farnet AM, Minvielle N, Regnault-Roger C, Savoie JM, 2011. Phenotypic variability in cultivars and wild strains of Agaricus brasiliensis and Agaricus subrufescens. In: Mushroom Biology and Mushroom Products (Proceedings of the 7th International Conference on Mushroom Biology and Mushroom Products). Savoie, J.-M., Foulongne-Oriol, M., Largeteau, M., Barroso, G. (eds.). pp. 39-49. INRA-Mycologie et Sécurité des Aliments, Francia

Llarena-Hernández RC, Largeteau ML, Farnet AM, Foulongne-Oriol M, Ferrer N, Regnault-Roger C, Savoie JM (2013) Potential of European wild strains of Agaricus subrufescens for productivity and quality on wheat straw based compost. World J Microbiol Biotechnol 29:1243–1253. https://doi.org/10.1007/s11274-013- 1287-3

Llarena-Hernández CR, Largeteau ML, Ferrer N, Regnault-Roger C, Savoie JM (2014) Optimization of the cultivation conditions for mushroom production with European wild strains of Agaricus subrufescens and Brazilian cultivars. J Sci Food Agric 94:77–84. https://doi.org/10.1002/jsfa.6200

Martos ET, Zied DC, Junqueira PG, Rinker DL, Silva R, Toledo RCC, Dias ES (2017) Casing layer and effect of primordia induction in the production of Agaricus subrufescens mushroom. Agric Nat Resour 51:231–234. https://doi.org/10.1016/j.anres.2017.04.003

Matute RG, Figlas D, Mockel G, Curvetto N (2012) Degradation of metsulfuron methyl by Agaricus blazei Murrill spent compost enzymes. Bioremediat J 16:31–37. https://doi.org/10.1080/10889868. 2011.628353
Mizuno T (1997) Breeding and cultivation of medicinal mushroom. Food Rev Int 13:383–390
Navarro MJ, Geo FJ, Pardo-Giménez A, Martínez A, Raz D, Levanon D, Danay O (2020) Agronomic valuation of a drip irrigation system in a commercial mushroom farm. Sci Hortic 265:109234. https://doi.org/10.1016/j.scienta.2020.109234
Neves MA, Kasuya MCM, Araujo EF, Leite CL, Camelini CM, Ribas LCC, Mendonca MM (2005) Physiological and genetic variability of commercial isolates of culinary-medicinal mushroom Agaricus brasiliensis S. Wasser et al. (Agaricomycetidae) cultivated in Brazil. Int J Med Mushrooms 7:553–564. https://doi.org/10.1615/IntMedMush.v7i4.50
Pardo-Giménez A, Catalán L, Carrasco J, Álvarez-Ortí M, Zied D, Pardo J (2016) Effect of supplementing crop substrate with defatted pista-chio meal on Agaricus bisporus and Pleurotus ostreatus production. J Sci Food Agric 96(11):3838-3845
Pardo-Giménez A, Pardo González JEP, Figueirêdo VR, Zied DC (2014) Adaptability of cepas brasileiras de Agaricus subrufescens Peck a la fructificación sobre diferentes capas de cobertura en cultivo comercial. Rev Iberoam Micol 31:125–130. https://doi.org/10.1016/j.riam.2013.05.002
Pardo-Giménez A, Pardo JE, Dias ES, Rinker DL, Caetano CEC, Zied DC (2020a) Optimization of cultivation techniques improves the agronomic behavior of Agaricus subrufescens. Sci Rep 10:8154. https://doi.org/10.1038/s41598-020-65081-2
Pardo-Giménez A, Carrasco J, Pardo JE, Álvarez-Ortí M, Zied DC (2020b) Influence of substrate density and cropping conditions on the cultivation of sun mushroom. Span J Agric Res 18:e0902. https://doi.org/10.5424/sjar/202018-16037
Pokhrel CP, Ogha S (2007) Cattle bedding waste used as a substrate in the cultivation of Agaricus blazei Murill. J Fac Agric Kyushu Univ 52: 295–298
Rózsa S, Mánutiu DN, Gocan TM, Sima R, Rózsa M (2017) Increasing Agaricus blazei Murill production by using Scytalidium thermophilum at compost preparation. J Horticult Forest Biotechnol 21:158–164
Schönherr KA, Siebert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Fungal Barcoding Consortium (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. PNAS 109(16):6241–6246. https://doi.org/10.1073/pnas.1117018109
Siqueira FG, Dias ES, Silva R, Martos ET, Rinker DL (2009) Cultivation of Agaricus blazei ss. Heinemann using different soils as source of casing materials. Agric Sci 66:827–830. https://doi.org/10.1590/S0103-90162009000600016
Siqueira FG, Martos ET, Silva EG, Silva R, Dias ES (2011) Biological efficiency of Agaricus brasiliensis cultivated in compost with nitrogen concentrations. Hortic Bras 29:157–161. https://doi.org/10.1590/S0103-05362011000200004
Sousa MAC, Zied DC, Marques SC, Rinker DL, Alm G, Dias ES (2016) Yield and enzyme activity of different strains of almond mushroom in two cultivation systems. Sysdowia 68:35–40. https://doi.org/10.12950/05380.sysdowia68-2016-0035
Stoknes K, Beyer DM, Norgiaard E (2013) Anaerobically digested food waste in compost for Agaricus bisporus and Agaricus subrufescens and its effect on mushroom productivity. J Sci Food Agric 93:2188–2200. https://doi.org/10.1002/jsfa.6026
Stratamsa G, Sonnenberg AS, Van Griesen LJ (2013) Development and growth of fruit bodies and crops of the button mushroom, Agaricus bisporus. Fungal Biol 117:697–707. https://doi.org/10.1016/j.funbio.2013.07.007
Thongklang N, Hoang E, Estrada AER, Sysoouphanthong P, Moinard M, Hyde KD, Kerrigan RW, Fouloungne-Oriol M, Callac P (2014a) Evidence for amphithallism and broad geographic hybridization potential among Agaricus subrufescens isolates from Brazil, France, and Thailand. Fungal Biol 118:1013–1023. https://doi.org/10.1016/j.funbio.2014.10.004
Thongklang N, Sysoouphanthong P, Callac P, Hyde KD (2014b) First cultivation of Agaricus flocculosipes and a novel Thai strain of A. subrufescens. Mycosphere 5:814–820. https://doi.org/10.5943/mycosphere/5/6/11
Thongklang N, Chen J, Bandara AR, Hyde KD, Raspé O, Parra LA, Callac P (2016) Studies on Agaricus subtilipes, a new cultivatable species from Thailand, incidentally reveal the presence of Agaricus subrufescens in Africa. Mycoscience 57:239–250. https://doi.org/10.1016/j.myc.2016.02.003
Tomizawa MM, Dias ES, Assis LJ, Gomide PH (2007) Genetic variability of mushroom isolates Agaricus blazei using RAPD markers. Ciência e Agrotecnol 31:1242–1249. https://doi.org/10.1590/S1413-70542007000400045
Tsukiy T, Rollstab C, Dutech C, Sipos G, Prospero S (2017) Comparative assessment of SSR and SNP markers for inferring the population genetic structure of the common fungus Armillaria cepistipes. Heredity 119:371–380. https://doi.org/10.1038/hdy.2017.48
Wang Q, Li BB, Li H, Han JR (2010) Yield, dry matter and polysaccharides content of the mushroom Agaricus blazei produced on asparagus straw substrate. Sci Hortic 125:16–18. https://doi.org/10.1016/j.scienta.2010.02.022
Wang JT, Wang Q, Han JR (2013) Yield, polysaccharides content and antioxidative properties of the mushroom Agaricus subrufescens produced on different substrates based on selected agricultural wastes. Sci Hortic 157:84–89. https://doi.org/10.1016/j.scienta.2013.04.006
Wasser SP, Didukh MY, Amazonas MAL, Nevo E, Stamets P, Eira AF (2002) Is a widely cultivated culinary-medicinal royal sun Agaricus (the Himematsutake Mushroom) indeed Agaricus blazei Murill? Int J Med Mushrooms 4:267–290. https://doi.org/10.1615/IntMedMush.v4i4.10
Wasser SP, Didukh MY, Amazonas MAL, Nevo E, Stamets P, Eira AF (2005) Is a widely cultivated culinary-medicinal royal sun Agaricus (Champignon do Brazil, or the Himematsutake Mushroom) Agaricus brasiliensis S. Wasser et al. indeed a synonym of A. subrufescens Peck? Int J Med Mushrooms 7:507–511. https://doi.org/10.1615/IntMedMush.v7i3.70
White TJ, 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols, a Guide to Methods and Applications, 315-322.
Win TT, Ogha S (2018) Study on the cultivation of Agaricus blazei (almond mushroom) grown on compost mixed with selected agro-residues. Adv Microbiol 8:778–789. https://doi.org/10.4236/am.2018.810051
Wisitrassameewong K, Karunarathna SC, Thongklang N, Zhao RL, Callac P, Chukeatirote E, Bahkali AH, Hyde KD (2012) Agaricus subrufescens: new to Thailand. Chiang Mai J Sci 39:281–291
Zied DC, Minhoni MTA, Kopytowski-Filho J, Andrade MCN (2010) Production of Agaricus blazei ss. Heinemann (A. brasiliensis) on different casing layers and environments. World J Microbiol Biotechnol 26:1857–1863. https://doi.org/10.1007/s11274-010-0367-x
Zied DC, Pardo-Gimenez A, Savoie JM, Pardo-Gonzalez JE, Callac P, 2011a. “Indoor” method of composting and genetic breeding of the strains to improve yield and quality of the almond mushroom Agaricus subrufescens. In: The 7th International Conference on Mushroom Biology and Mushroom Products, INRA.
Zied DC, Minhoni MTA, Kopytowski-Filho J, Barbosa L, Andrade MCN (2011b) Medicinal mushroom growth as affected by non-axenic casing soil. Pedosphere 21:146–153. https://doi.org/10.1016/S1002-0160(11)60112-4
Zied DC, Geo FJ, Pardo-Giménez A (2012a) Enhancing the medicinal properties of Agaricus subrufescens by growing practices. In:
Andres S, Baumann N (eds) Mushrooms: Types, Properties, and Nutrition. Nova Science Publishers, Inc, New York, pp 173–194
Zied DC, Pardo-Giménez A, Minhoni MA, Villas RL, Álvarez-Orti M, Pardo-González JE (2012b) Characterization, feasibility and optimization of Agaricus subrufescens growth based on chemical elements on casing layer. Saudi J Biol Sci 19:343–347. https://doi.org/10.1016/j.sjbs.2012.04.002
Zied DC, Pardo-Giménez A, Pardo-González JE, Dias ES, Carvalho MA, Minhoni MT d A (2014) Effect of cultivation practices on the β-glucan content of Agaricus subrufescens basidiocarps. J Agric Food Chem 62:41–49. https://doi.org/10.1021/jf403584g
Zied DC, Caitano CEC, Pardo-Gimenez A, Dias ES, Zeraik ML, Pardo JE (2018) Using of appropriated strains in the practice of compost supplementation for Agaricus subrufescens production. Front Sustain Food Syst 2:26. https://doi.org/10.3389/fsufs.2018.00026
Zied DC, González JEP, Dias ES, Pardo-Giménez A (2017) Characteristics, Production, and Marketing of the Sun Mushroom: The New Medicinal Cultivated Mushroom. In Zied DC, Pardo-Giménez A (Eds) Edible and Medicinal Mushrooms: Technology and Applications. John Wiley & Sons pp. 361–84

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.