RESEARCH ANNOUNCEMENTS

BULLETIN (New Series) OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 11, Number 2, October 1984

TOEPLITZ OPERATORS AND SOLVABLE C*-ALGEBRAS
ON HERMITIAN SYMMETRIC SPACES

BY HARALD UPMEIER

Bounded symmetric domains (Cartan domains and exceptional domains) are higher-dimensional generalizations of the open unit disc. In this note we give a structure theory for the C*-algebra \mathcal{T} generated by all Toeplitz operators $T_f(h) := P(fh)$ with continuous symbol function $f \in C(S)$ on the Shilov boundary S of a bounded symmetric domain D of arbitrary rank r. Here h belongs to the Hardy space $H^2(S)$, and $P : L^2(S) \rightarrow H^2(S)$ is the Szegö projection. For domains of rank 1 and tube domains of rank 2, the structure of \mathcal{T} has been determined in [1, 2]. In these cases Toeplitz operators are closely related to pseudodifferential operators. For the open unit disc, \mathcal{T} is the C*-algebra generated by the unilateral shift.

The structure theory for the general case [12] is based on the fact that D can be realized as the open unit ball of a unique Jordan triple system Z [7, Theorem 4.1]. Denoting the Jordan triple product by $\{uv^*w\}$, a tripotent $e \in Z$ satisfies $\{ee^*e\} = e$. Tripotents generalize the partial isometries of matrix algebras and determine the boundary structure of $D \subset Z$ (cf. [7, Theorem 6.3]). Our principal result ([12]; cf. also [3, 4, 8]) is the following;

THEOREM 1. The Toeplitz C*-algebra \mathcal{T} associated with a bounded symmetric domain $D \subset Z$ of rank r is solvable of length r, i.e. there exists a chain

$$\{0\} = I_0 \subset I_1 \subset I_2 \subset \cdots \subset I_r \subset I_{r+1} = \mathcal{T}$$

of closed two-sided ideals I_k such that for $0 \leq k \leq r$ there is a C*-algebra isomorphism ("k-symbol")

$$\sigma_k : I_{k+1}/I_k \rightarrow C(S_k) \otimes K(H_k),$$

where S_k denotes the compact manifold of all tripotents $e \in Z$ of rank k and $K(H_k)$ denotes the C*-algebra of all compact operators on a Hilbert space H_k. Further, $\dim(H_k) = \infty$ for $k < r$ and $\dim(H_r) = 1$.

Received by the editors August 22, 1983.

1980 Mathematics Subject Classification. Primary 47B35, 47C15; Secondary 32M15, 17C20.

©1984 American Mathematical Society

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
COROLLARY. The spectrum of \(\mathcal{T} \) can be identified with the set of all tripotents of \(Z \). The ideal \(I_r \) is the closed commutator ideal of \(\mathcal{T} \) and \(\mathcal{T}/I_r \cong C(S) \), where \(S = S_r \) is the Shilov boundary. Further, \(I_1 = K(H^2(S)) \).

The proof of Theorem 1 is based on a detailed study of the harmonic analysis in \(H^2(S) \) [10] and of the fine structure of single Toeplitz operators [11]. Since the Toeplitz \(C^* \)-algebra \(\mathcal{T} \) associated with a reducible bounded symmetric domain \(D \) can be realized as a tensor product, we may assume that \(D \) is irreducible. Let \(\mathcal{P}(Z) \) denote the polynomial algebra on \(Z \) and let \(K \) be the largest connected group of biholomorphic automorphisms of \(D \) fixing the origin.

The next result [10], based on ideas from [6], applies to domains equivalent to a tube domain (generalized upper half-plane). In this case the Jordan triple system \(Z \) is actually a unital Jordan algebra.

THEOREM 2. Suppose the domain \(D \) is of tube type. Then
\[
\mathcal{P}(Z) \approx C[N] \otimes \mathcal{H}(Z),
\]
where \(N \) denotes the norm function ("generalized determinant") of the Jordan algebra \(Z \) and \(\mathcal{H}(Z) \) is the space of all harmonic polynomials (for the commutator subgroup of \(K \)).

In order to apply Theorem 2 to a general domain \(D \subset Z \), consider for \(1 \leq k \leq r \) the Jordan algebra \(Z_k := \{z \in Z : \{ee^*z\} = z\} \) of rank \(k \) with unit element \(e := e_{r+1-k} + \cdots + e_r \), where \(\{e_1, \ldots, e_r\} \) denotes a frame of orthogonal minimal tripotents of the Jordan triple system \(Z \) [7, §5]. Denote by \(N_k \) the norm function of \(Z_k \), viewed as a polynomial on \(Z \). The Peter-Weyl decomposition of \(H^2(S) \), determined in [9] and described case by case in [5], can now be realized as follows [10]:

THEOREM 3. The irreducible \(K \)-module \(E_m \subset \mathcal{P}(Z) \) with signature \(m_1 \geq m_2 \geq \cdots \geq m_r \geq 0 \) is generated by the conical polynomial \(N_m = N_1^{l_1} N_2^{l_2} \cdots N_r^{l_r} \), where \(m_k = l_k + \cdots + l_r \) for all \(k \).

The \(K \)-invariant scalar product \((u|v) \) on \(Z \) given by the generic trace [7, 4.15] induces a differential scalar product \((p|q)_Z \) for polynomials \(p, q \in \mathcal{P}(Z) \) [6, III.1]. Let \((\ |\)_S \) be the integral scalar product in \(H^2(S) \). Using integral formulas for semisimple Lie groups, the relationship between these \(K \)-invariant scalar products can be computed explicitly [11]. Let \((r,s,t) \) denote the type of \(D \), defined via the Peirce decomposition of \(Z \) [7, Theorem 3.14].

THEOREM 4. For every signature \(m = (m_1, \ldots, m_r) \) and all \(p, q \in E_m \), we have
\[
\frac{(p|q)_Z}{(p|q)_S} = \prod_{j=1}^r \frac{(m_j + \frac{1}{2}s(r-j) + t)!}{(\frac{1}{2}s(r-j) + t)!}.
\]

As a consequence of Theorem 4, the fine structure of "polynomial" Toeplitz operators (generating \(\mathcal{T} \)) can be related to polynomial differential operators \(h(z)(\partial/\partial z) \), where \(z \) denotes the "coordinate" of \(Z \) (cf. [11]):
THEOREM 5. Suppose \(l(z) = (z|^v) \) is a linear form. Then
\[
T^*_l(p) = \sum_{j=1}^{r} \left(m_j + s \left(\frac{r-j}{2} + t \right) \right)^{-1} \left(\left(v \frac{\partial}{\partial z} \right) p \right)_{m-\varepsilon_j},
\]
\[
T_l(p) = \sum_{j=1}^{r} \left(m_j - s \left(\frac{j-1}{2} \right) \right)^{-1} \left(\left(zv^* z \right) \frac{\partial}{\partial z} \right) p_{m+\varepsilon_j},
\]
for all \(p \in E_m \), the subscript denoting the Peter-Weyl component for signature
\[
m \pm \varepsilon_j = (m_1, \ldots, m_{j-1}, m_j \pm 1, m_{j+1}, \ldots, m_r).
\]

COROLLARY. The commutator \([T^*_l, T_l]\) is a "diagonal" operator respecting the Peter-Weyl decomposition of \(H^2(S) \).

Theorem 5 enables us to construct the irreducible representations of the Toeplitz \(C^* \)-algebra \(T \) [11]. For a tripotent \(e \in Z \), the Jordan triple system \(Z_e := \{ w \in Z : \{ e w e \w = 0 \} \} \) contains the bounded symmetric domain \(D \cap Z_e \) with Shilov boundary \(S_e \). For \(f \in C(S) \) define \(f_e \in C(S_e) \) by \(f_e(w) := f(e+w) \).

Consider the "peaking functions"
\[
h^i_e(z) := c_i(\exp(z|e))^i
\]
for \(i \geq 0 \), where \(c_i > 0 \) is a constant such that \(\|h^i_e\| = 1 \).

THEOREM 6. For each tripotent \(e \in Z \) there exists an irreducible representation \(\sigma_e (\"e-symbol\") \) of \(T \) on the Hardy space \(H^2(S_e) \), such that \(\sigma_e(T_f) = T^*_f e \) for all \(f \in C(S) \) and
\[
\lim_{i \to -\infty} \|A(h^i_e \cdot q) - h^n_e \sigma_e(A)q\| = 0
\]
for all \(q \in P(Z_e) \) and all operators \(A \) in a dense *-subalgebra of \(T \).

For \(0 \leq k \leq r \) let \(I_k \subset \mathcal{T} \) be the joint kernel of all \(e \)-symbol homomorphisms \(\sigma_e \) for tripotents \(e \in S_k \) of rank \(k \). Theorem 1 now follows from the fact that \(I_1 \) consists of compact operators. More generally, the ideals \(I_k \) have an internal characterization [12]:

THEOREM 7. For \(0 \leq k \leq r \) let \(P_k \) denote the orthogonal projection from \(H^2(S) \) onto the Hilbert sum of all \(K \)-modules \(E_m \) satisfying \(m_{k+1} = \cdots = m_r = 0 \). Then \(I_{k+1} \) is the \(C^* \)-algebra generated by all operators \(T^*_p P_k T_q \) for \(p, q \in P(Z) \).

REFERENCES
1. C. A. Berger, L. A. Coburn and A. Korányi, Opérateurs de Wiener-Hopf sur les sphères de Lie, C. R. Acad. Sci. Paris 290 (1980), 989–991.
2. L. A. Coburn, Singular integral operators and Toeplitz operators on odd spheres, Indiana Univ. Math. J. 23 (1973), 433–439.
3. A. Dynin, Inversion problem for singular integral operators: \(C^* \)-approach, Proc. Nat. Acad. Sci. U.S.A. 75 (1978), 4668–4670.
4. _____, Multivariable Wiener-Hopf and Toeplitz operators (preprint).
5. K. D. Johnson, On a ring of invariant polynomials on a hermitian symmetric space, J. Algebra 67 (1980), 72–81.
6. B. Kostant and S. Rallis, *Orbits and representations associated with symmetric spaces*, Amer. J. Math. 93 (1971), 753–809.

7. O. Loos, *Bounded symmetric domains and Jordan pairs*, Univ. of California, Irvine, 1977.

8. P. S. Muhly and J. N. Renault, *C*-algebras of multivariable Wiener-Hopf operators, Trans. Amer. Math. Soc. 274 (1982), 1–44.

9. W. Schmid, *Die Randwerte holomorpher Funktionen auf hermiteschen symmetrischen Räumen*, Invent. Math. 9 (1969), 61–80.

10. H. Upmeier, *Jordan algebras and harmonic analysis on symmetric spaces*, Amer. J. Math. (to appear).

11. ———, *Toeplitz operators on bounded symmetric domains*, Trans. Amer. Math. Soc. 280 (1983), 221–237.

12. ———, *Toeplitz C*-algebras on bounded symmetric domains, Ann. of Math. (to appear).

Department of Mathematics, University of Pennsylvania, Philadelphia, Pennsylvania 19104

Current address: Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle 10, D-7400 Tübingen, Federal Republic of Germany