Table S1: Ensembl transcript IDs, GenBank accession numbers and genomic location information of all Hox genes and relevant regulatory factors used in the present research.

Gene	Chimpanzee	Human	Bushbaby	Mouse	Rabbit					
Hoxa1	ENSPTRG00000019010	ENSG000000105991	ENSOGAG00000012370	ENSMUSG00000029844	ENSOCUG000000015215					
Hoxa2	ENSPTRG00000019011	ENSG000000105996	ENSOGAG00000012372	ENSMUSG00000014704	ENSOCUG000000015205					
Hoxa3	ENSPTRG00000019012	ENSG000000105997	ENSOGAG00000027664	ENSMUSG00000079560	ENSOCUG00000027405					
Hoxa4	ENSPTRG00000023597	ENSG000000197576	ENSOGAG00000028670	ENSMUSG0000000942	ENSOCUG00000015190					
Hoxa5	ENSPTRG00000019015	ENSG000000106004	ENSOGAG00000011153	ENSMUSG00000038253	ENSOCUG00000029580					
Hoxa6	ENSPTRG00000039535	ENSG000000106006	ENSOGAG00000012384	ENSMUSG00000043219	ENSOCUG00000029344					
Hoxa7	ENSPTRG00000019017	ENSG000000122592	ENSOGAG00000032482	ENSMUSG00000038236	ENSOCUG00000015183					
Hoxa9	ENSPTRG00000019018	ENSG00000078399	ENSOGAG00000015000	ENSMUSG00000038277	ENSOCUG00000020585					
Hoxa10	ENSPTRG00000019019	ENSG000000253293	ENSOGAG00000012385	ENSMUSG0000000938	ENSOCUG00000029439					
Hoxa11	ENSPTRG00000019020	ENSG00000005073	ENSOGAG00000038210	ENSMUSG0000000938	ENSOCUG00000015170					
Hoxa12	ENSPTRG000000026843	ENSG000000106031	ENSOGAG00000028983	ENSMUSG00000038203	ENSOCUG00000024694					
Hoxb1	ENSPTRG0000009351	ENSG00000120094	ENSOGAG00000031645	ENSMUSG00000018973	ENSOCUG00000001720					
Hoxb2	ENSPTRG0000009352	ENSG00000173917	ENSOGAG00000029280	ENSMUSG00000075588	ENSOCUG00000024951					
Hoxb3	ENSPTRG00000040097	ENSG00000120093	ENSOGAG00000032090	ENSMUSG00000048763	ENSOCUG00000023337					
Hoxb4	ENSPTRG0000009354	ENSG00000182742	ENSOGAG00000033709	ENSMUSG00000038692	×					
Hoxb5	ENSPTRG0000009355	ENSG00000120075	ENSOGAG00000032432	ENSMUSG00000038700	ENSOCUG00000025093					
Hoxb6	ENSPTRG0000009356	ENSG00000108511	ENSOGAG0000008661	ENSMUSG0000000690	ENSOCUG00000011560					
Hoxb7	ENSPTRG0000009357	ENSG00000260602	ENSOGAG0000008687	ENSMUSG00000038721	ENSOCUG00000019952					
Hoxb8	gi	694966057:190-921	ENSG00000120668	ENSOGAG00000029480	ENSMUSG00000056648	ENSOCUG00000029186				
Hoxb9	ENSPTRG0000009358	ENSG00000170689	ENSOGAG0000008668	ENSMUSG00000020875	ENSOCUG00000027316					
Hoxb13	ENSPTRG0000009360	ENSG00000159184	ENSOGAG00000032643	ENSMUSG00000049604	ENSOCUG00000012816					
Hoxc4	ENSPTRG00000005031	ENSG00000198353	ENSOGAG00000033004	gi	54800434:329-1123	ENSOCUG00000015516				
Hoxc5	ENSPTRG00000005032	ENSG00000172789	ENSOGAG00000036622	ENSMUSG00000022485	gi	65573349:211-825				
Hoxc6	ENSPTRG00000022997	ENSG00000197757	ENSOGAG0000003621	ENSMUSG00000001661	ENSOCUG0000004743					
Hoxc8	ENSPTRG00000005030	ENST00000040584	ENSOGAG0000003619	ENSMICG00000011718	ENSOCUG0000004741					
Hoxc9	ENSPTRG00000005029	gi	24497546:97-879	ENSOGAG0000003616	gi	131810863:632-1414	ENSOCUG00000001160			
Hoxc10	ENSPTRG00000005028	ENSG00000180818	ENSOGAG0000003615	ENSMUSG00000022484	ENSOCUG00000015176					
Hoxc11	ENSPTRG00000005027	ENSG00000123388	gi	395385038:115-1029	ENSMUSG00000001156	ENSOCUG0000001159				
Hoxc12	ENSPTRG00000005026	ENSG00000123407	ENSOGAG00000025383	ENSMUSG00000050328	ENSOCUG0000001157					
Gene	Chimpanzee	Human	Bushbaby	Mouse	Rabbit					
--------	---------------------	------------------	------------------	-----------------------------	--------------					
Hoxc13	ENSPTRG00000005025	ENSG00000123364	ENSOAG00000053091	ENSMUSG0000001655	ENSOCUG0000001156					
Hoxd1	ENSPTRG00000012673	ENSG00000128645	ENSOAG00000015712	ENSMUSG00000042448	ENSOCUG00000015582					
Hoxd3	ENSPTRG00000012672	ENSG00000128652	ENSOAG00000015710	ENSMUSG00000079277	ENSOCUG0000014119					
Hoxd4	ENSPTRG00000012671	ENSG00000170166	ENSOAG00000029168	ENSMUSG00000101174	ENSOCUG0000002413					
Hoxd8	ENSPTRG00000012669	ENSG00000157879	ENSOAG00000015707	ENSMUSG00000027102	ENSOCUG0000002413					
Hoxd9	ENSPTRG00000029132	ENSG00000128709	ENSOAG00000015697	ENSMUSG00000043342	ENSOCUG00000023956					
Hoxd10	ENSPTRG00000012667	ENSG00000128710	ENSOAG00000015694	ENSMUSG00000050368	ENSOCUG0000008964					
Hoxd11	ENSPTRG00000012666	ENSG00000471273	ENSOAG00000029520	ENSMUSG00000042499	ENSOCUG000013942					
Hoxd12	ENSPTRG00000012665	ENSG00000170178	ENSOAG00000015689	ENSMUSG000001823	ENSOCUG000002412					
Hoxd13	ENSPTRG00000012664	ENSG00000128714	ENSOAG00000027055	ENSMUSG0000001819	ENSOCUG000029547					
Bmi1	gi	525345322:470-1450	gi	523462179:507-1487	gi	831220844:30-1439	gi	133893249:472-1446	gi	585859695:330-1310
Mll	ENSPTRG0000004344	ENSG00000118058	ENSOAG0000009345	ENSMUSG0000002028	ENSOCUG000010127					
E2f6	ENSPTRG0000011661	ENSG00000169016	ENSOAG00000013601	ENSMUSG0000057469	ENSOCUG0000025804					

Gene	Walrus	Seal	Giant panda	Cat												
Hoxa1	gi	472355523:ref	XM_004397357.1:86-1084	gi	585158618:ref	XM_006731525.1:86-1084	ENSAMEG00000005924	ENSFCAG00000007937								
Hoxa2	gi	472355528:278-1414	gi	585158622:ref	XM_006731527.1:493-1407	ENSAMEG00000005913	ENSFCAG00000007939									
Hoxa3	gi	585161750:ref	XM_006733016.1:311-1444	gi	472355530:334-1656	ENSAMEG00000005904	ENSFCAG0000028952									
Hoxa4	gi	472355532:ref	XM_004397361.1:42-1016	gi	585158624:ref	XM_006731528.1:6-485	ENSAMEG00000005902	ENSFCAG0000024158								
Hoxa5	gi	472355534:ref	XM_004397362.1:626-1438	gi	585161752:ref	XM_006733017.1:56-868	ENSAMEG0000005898	ENSFCAG0000031542								
Hoxa6	gi	472355538:ref	XM_004397364.1:20-721	gi	585161754:ref	XM_006733018.1:20-721	ENSAMEG0000005892	ENSFCAG0000027995								
Hoxa7	gi	472355540:ref	XM_004397365.1:133-764	gi	585161756:ref	XM_006733019.1:133-764	ENSAMEG0000005891	ENSFCAG0000022150								
Hoxa9	gi	617619492:134-832	gi	585158626:26-1349	gi	585158626:26-1349	ENSAMEG0000005885	ENSFCAG0000007944								
Hoxa10	gi	472355542:25-1260	gi	585158628:25-1269	gi	585158628:25-1269	ENSAMEG0000005883	ENSFCAG0000025359								
Hoxa11	gi	472355547:ref	XM_004397368.1:63-1025	gi	585161760:ref	XM_006731531.1:63-1025	ENSAMEG0000005879	ENSFCAG0000007945								
Hoxa13	gi	472355570:ref	XM_004397379.1:124-912	gi	585161770:ref	XM_006733026.1:565-1278	ENSAMEG0000005877	ENSFCAG0000028938								
Hoxb1	gi	472350948:ref	XM_00439502.1:5-910	gi	585174510:ref	XM_006739051.1:5-919	ENSAMEG0000005893	ENSFCAG0000028151								
Hoxb2	gi	472350950:ref	XM_004395013.1:122-869	gi	585174508:ref	XM_006739050.1:122-1171	ENSAMEG0000005841	ENSFCAG000002111								
Hoxb3	gi	472350952:ref	XM_004395104.1:887-2167	gi	585174506:111-746	ENSAMEG0000004942	ENSFCAG0000006408									
Gene	Walrus	Seal	Giant panda	Cat												
------------	-------------------------	-------------------	-------------------------	-----------												
Hoxb4	gi	472350954	ref	XM_004395105.1	:5-760	gi	585174504	ref	XM_006739048.1	:1-486	ENSAMEG00000004953	ENSFCAG00000023225				
Hoxb5	gi	59466153	ref	XM_007176389.1	:1-810	gi	585197330	ref	XM_006749665.1	:280-1089	ENSAMEG00000004967	ENSFCAG00000002113				
Hoxb6	gi	472350958	ref	XM_004395107.1	:607-1281	gi	585174539	ref	XM_006739065.1		ENSAMEG00000004971	ENSFCAG00000002114				
Hoxb7	gi	472350962	100-753	gi	576650303	ref	NW_006384051.1	:1-1375	ENSAMEG00000004977	ENSFCAG00000002118						
Hoxb8	gi	823396039	397-1128	gi	585197328	391-1122	ENSAMEG00000004982	gi	755790639	1-732						
Hoxb9	gi	472350964	ref	XM_004395110.1	:205-955	gi	585197326	ref	XM_006749654.1	63-813	ENSAMEG00000004990	ENSFCAG000002804				
Hoxb13	gi	469049706	ref		gi	576651209	ref	NW_006383149.1	:618347..619985,	ENSAMEG00000004997	ENSFCAG0000002120					
Hoxc4	gi	472373565	ref	XM_004406194.1	:85-753	gi	585152751	ref	XM_006728700.1	:72-740	ENSAMEG0000000691	ENSFCAG0000002246				
Hoxc6	gi	472373561	ref	XM_004406192.1	:113-820	gi	585152753	ref	XM_006728701.1	:113-820	ENSAMEG0000000686	ENSFCAG00000011201				
Hoxc8	gi	472373567	ref	XM_004406195.1	:167-895	gi	585152744	ref	XM_006728697.1	:129-857	ENSAMEG0000000683	ENSFCAG00000004769				
Hoxc9	gi	472373569	ref	XM_004406196.1	:97-879	gi	585152741	ref	XM_006728696.1	:97-879	ENSAMEG0000000678	ENSFCAG00000031037				
Hoxc10	gi	472373571	ref	XM_004406197.1	:115-1143	gi	585152739	ref	XM_006728695.1	:113-1141	ENSAMEG0000000673	ENSFCAG00000011202				
Hoxc11	gi	472373573	ref	XM_004406198.1	:115-1029	gi	585152736	ref	XM_006728694.1	:115-1029	ENSAMEG0000000668	ENSFCAG00000023232				
Hoxc12	gi	472373575	ref	XM_004406199.1	:1-845	gi	585152734	ref	XM_006728693.1	:1-839	ENSAMEG0000000665	ENSFCAG00000023389				
Hoxc13	gi	472373577	ref	XM_004406200.1	:63-1052	gi	585201026	ref	XM_006751376.1	:114-846	ENSAMEG0000000661	ENSFCAG00000027459				
Hoxd1	gi	472379322	ref	XM_004409017.1	:127-1107	gi	585175610	ref	XM_006739539.1	:184-900	ENSAMEG00000001828	gi	755759773	1-654		
Hoxd3	gi	472379320	84-1382	gi	585175597	ref	XM_006739533.1	:84-1382	ENSAMEG00000001830	gi	755759777	274-1467				
Hoxd4	gi	472379318	ref	XM_004409015.1	:555-1328	gi	585175599	ref	XM_006739531.4	:250-1026	ENSAMEG00000001837	gi	755759780	1421-2188		
Hoxd8	gi	472379314	1-885	gi	585175612	ref	XM_006739540.1	:19-621	ENSAMEG00000001838	ENSFCAG00000023730						
Hoxd9	gi	472379312	31-1059	gi	585175614	22-1002	ENSAMEG00000001843	ENSFCAG00000013346								
Hoxd10	gi	472379310	ref	XM_004409011.1	:65-1087	gi	585175601	ref	XM_006739535.1	:168-1190	ENSAMEG00000001849	ENSFCAG0000006264				
Hoxd11	gi	472379326	ref	XM_004409019.1	:209-921	gi	585175616	ref	XM_006739542.1		ENSAMEG00000001856	ENSFCAG00000030594				
Hoxd12	gi	472379308	ref	XM_004409010.1	:1-813	gi	585175603	ref	XM_006739536.1	:1-813	ENSAMEG00000001858	gi	755759735	ref	XM_011285399.1	
Hoxd13	gi	472379306	ref	XM_004409009.1	:82-1110	gi	585175605	ref	XM_006739537.1	:2-835	ENSAMEG00000001865	ENSFCAG00000030694				
Bmi1	gi	823392672	531-1511	gi	585155017	53-982	gi	752381722	242-1222	gi	755767831	1-11688				
Mll	gi	823429941	793-1141	gi	585180014	1-11295	ENSAMEG00000013007	gi	755767831	1-11688						
E2f6	gi	823409521	228-1076	gi	585176517	225-1073	ENSAMEG00000011667	ENSFCAG00000011952								
Gene	Rhinoceros	Minke whale	Bowhead whale													
------	------------	-------------	---------------													
Hoxa1	gi	594636392	ref	XM_007171517.1	:29-1027											
Hoxa2	gi	478489137	ref	XM_007176394.1	:1-436											
Hoxa3	gi	478489139	ref	XM_007171533.1	:206-897											
Hoxa4	gi	594656150	ref	XM_007176388.1	:316-807											
Hoxa5	gi	545214278	ref	XM_007175241.1	:7-357											
Hoxa6	gi	594656396	ref	XM_007176508.1	:1-850											
Hoxa7	gi	594656148	ref	XM_007176387.1	:1-897											
Hoxa8	gi	478489141	ref	XM_004418894.1	:462-1601											
Hoxa9	gi	478489139	ref	XM_004418890.1	:73-891											
Hoxa10	gi	594656150	ref	XM_007176389.1	:1-810											
Hoxa11	gi	478489137	ref	XM_007176373.1	:115-1111											
Hoxa12	gi	594656396	ref	XM_007176508.1	:1-850											
Hoxa13	gi	478489137	ref	XM_007176373.1	:115-1111											
Hoxa14	gi	594656148	ref	XM_007176387.1	:1-897											
Hoxa15	gi	478489141	ref	XM_004418894.1	:462-1601											
Hoxa16	gi	478489137	ref	XM_007176373.1	:115-1111											
Hoxa17	gi	594656150	ref	XM_007176388.1	:316-807											
Hoxa18	gi	478489137	ref	XM_007176373.1	:115-1111											
Hoxa19	gi	594656148	ref	XM_007176387.1	:1-897											
Hoxa20	gi	478489141	ref	XM_004418894.1	:462-1601											
Hoxa21	gi	478489137	ref	XM_007176373.1	:115-1111											

© 2017 The Authors. Integrative Zoology published by International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Gene	Sperm whale	Baiji	Killer whale	Finless porpoise												
Hoxa1	gi	593734812	ref	XM_007112779.1	:32-1030	gi	602711801	ref	XM_007466074.1	:86-1081	gi	465984997	ref	XM_004265685.1	:86-1084	unpublished
Hoxa2	gi	593734809	ref	XM_007112778.1	:606-1508	gi	602711805	ref	XM_007466076.1	:496-1398	gi	465984981	ref	XM_004265660.1	:495-1397	—
Hoxa3	gi	593734821	ref	XM_007112783.1	:273-1235	gi	602711898	ref	XM_007466122.1	gi	465985108	ref	XM_004265685.1	:190-1302	—	
Hoxa4	gi	593734819	ref	XM_007112782.1	:19-477	gi	602711811	ref	XM_007466079.1	:42-1022	gi	465984983	ref	XM_004265661.1	:42-1022	—
Hoxa5	gi	593734807	ref	XM_007112777.1	:1713-2525	gi	602711809	ref	XM_007466078.1	:627-1439	gi	465984985	ref	XM_004265662.1	:626-1438	—
Hoxa6	gi	593734805	ref	XM_007112776.1	:192-893	gi	465984987	ref	XM_004265663.1	:20-721	gi	465984987	ref	XM_004265663.1	:20-721	—
Hoxa7	gi	472355540	ref	XM_004397365.1	:133-764	gi	471379481	ref	XM_004377481.1	133-830	gi	465984990	ref	XM_004265664.1	133-821	—
Hoxa9	gi	593734798	ref	XM_007112773.1	:112-930	gi	602711815	ref	XM_007466081.1	:1-822	gi	465984999	ref	XM_004265666.1	:81-899	—
Hoxa10	gi	593734800	:713-1951	gi	602711817	ref	XM_007466082.1	gi	593734800	:713-1951	—					
Gene	Sperm whale	Baiji	Killer whale	Finest purpose												
-------	----------------------	----------------	--------------	----------------												
Hoxa1	gi	593734795	ref	XM_007112772.1		gi	602711819	ref	XM_007466083.1	:73-1023	gi	465985004	ref	XM_004265667.1	:73-1035	
Hoxa3	gi	593734816	ref	XM_007112781.1		gi	602711821	ref	XM_007466084.1	:127-894	gi	465985113	ref	XM_004265686.1		
Hoxb1	gi	593727034	ref	XM_007109421.1	:1-897	gi	602709837	ref	XM_007465110.1	:6-902	gi	466072474	ref	XM_004282672.1	:6-902	
Hoxb2	gi	593727032	ref	XM_007109424.1	:1-1059	gi	602709835	ref	XM_007465109.1	:121-1170	gi	466072469	ref	XM_004282671.1	:121-1182	
Hoxb3	gi	593727120:425-1636	gi	602709833	ref	XM_007465108.1		gi	466072449	ref	XM_004282667.1	:877-2151				
Hoxb4	gi	593727030	ref	XM_007109423.1	:54-809	gi	602709831	ref	XM_007465107.1	:1-756	gi	466072464	ref	XM_004282670.1	:63-818	
Hoxb5	gi	593727027	ref	XM_007109422.1	:1-810	gi	602709827	ref	XM_007465105.1	:280-1089	gi	466072459	ref	XM_004282669.1	:278-1087	
Hoxb6	gi	593727025	ref	XM_007109421.1	:1-675	gi	602709829	ref	XM_007465106.1		gi	466072444	ref	XM_004282666.1	:1-675	
Hoxb7	gi	593727023	ref	XM_007109420.1	:14-667	gi	602709825	ref	XM_007465104.1	:4-667	gi	466072439	ref	XM_004282665.1	:100-753	
Hoxb8	gi	593727021	ref	XM_007109419.1		gi	602709823:238-969		gi	466072434:232-963						
Hoxb9	gi	593727018	ref	XM_007109418.1	:89-841	gi	602709821	ref	XM_007465102.1	:203-955	gi	466072430	ref	XM_004282663.1	:62-814	
Hoxb13	gi	593727115	ref	XM_007109460.1	:1-850	gi	602709819	ref	XM_007465101.1	:145-991	gi	466072425	ref	XM_004282662.1	:145-994	
Hoxc4	gi	593740513	ref	XM_007125724.1	:89-883	x	gi	577861026:688-1482								
Hoxc5	gi	593740511	ref	XM_007125723.1	:83-751	x	gi	466030860	ref	XM_004274230.1	:77-745					
Hoxc6	gi	593740505	ref	XM_007125720.1	:889-1596	x	gi	578043747	ref	XM_001289868.1	:113-820					
Hoxc8	gi	593740517	ref	XM_007125726.1	:48-774	x	gi	466030865	ref	XM_004274231.1	:149-875					
Hoxc9	gi	593740519	ref	XM_007125727.1	:180-962	x	gi	466030870	ref	XM_004274232.1	:97-879					
Hoxc10	gi	593740521	ref	XM_007125728.1	:61-1089	x	gi	466030874	ref	XM_004274233.1	:113-1141					
Hoxc11	gi	593740528	ref	XM_007125730.1	:52-969	x	gi	466030879	ref	XM_004274234.1	:115-1032					
Hoxc12	gi	593740523	ref	XM_007125729.1	:1-848	x	gi	466030884	ref	XM_004274235.1	:1-839					
Hoxc13	gi	593740681	ref	XM_007125804.1	:1-699	x	gi	466030889	ref	XM_004274236.1	:63-1064					
Hoxd1	gi	593733188	ref	XM_007112007.1	:1-981	gi	602731503	ref	XM_007451092.1	:1-981	gi	465995037	ref	XM_004267351.1	:1-981	
Hoxd3	gi	593733186:1-1299	gi	602731489	ref	XM_007451085.1	:79-1377	gi	465995033:79-1377							
Hoxd4	gi	593733184	ref	XM_007112005.1	:891-1652	gi	602731491	ref	XM_007451086.1	:557-1327	gi	465995027	ref	XM_004267349.1	:557-1321	
Hoxd8	gi	593733182	ref	XM_007112004.1	:42-834	gi	602731495	ref	XM_007451088.1	:42-843	gi	465995015	ref	XM_004267347.1	:537-1338	
Hoxd9	gi	593733178:22-1053	gi	602731497:115-1152		gi	465995009:115-1146									
Hoxd10	gi	593733176	ref	XM_007112001.1	:227-1249	gi	602731499	ref	XM_007451090.1	:211-1233	gi	465995005	ref	XM_004267345.1	:65-1087	
Hoxd11	gi	593733174	ref	XM_007112000.1	:1-813	gi	602731501:1-1035		gi	465995435	ref	XM_004267414.1				
Hoxd12	gi	593733174	ref	XM_007112000.1	:1-813	gi	602731487	ref	XM_007451084.1	:1-816	gi	465994992	ref	XM_004267343.1	:1-813	
Gene	Sperm whale	Baiji	Killer whale	Finless porpoise												
-------	-------------	-------	--------------	------------------												
Hoxd13	gi	224016300	gb	FJ455478.1	:1-966	gi	602731485	ref	XM_007451083.1	:76-1110	gi	465994989	ref	XM_004267342.1	:76-1107	—
Bmi1	gi	593760098	:215-1195	gi	602683948	:525-1505	gi	821413452	:501-1481	—	—					
Mll	gi	593771755	:11-9316	gi	602688308	:18-11942	gi	466026765	:18-11945	—	—					
E2f6	gi	593744636	:44-742	gi	602689504	:1-855	gi	821399959	:1-855	—	—					

Gene	Bottlenose dolphin	Cow	Pig	Ying fox								
Hoxa1	ENSTTRG00000006761	ENSBTAG00000013263	ENSSSCG00000016707	ENSPVAG00000002476								
Hoxa2	ENSTTRG00000006765	ENSBTAG00000008138	ENSSSCG00000016706	ENSPVAG00000002484								
Hoxa3	ENSTTRG00000006769	ENSBTAG00000008139	ENSSSCG00000016705	ENSPVAG00000002486								
Hoxa4	ENSTTRG00000006775	ENSBTAG00000001063	ENSSSCG00000016704	gi	759124508:52-693							
Hoxa5	ENSTTRG00000006777	ENSBTAG00000012211	ENSSSCG00000016703	ENSPVAG00000002490								
Hoxa6	ENSTTRG00000006778	ENSBTAG00000024341	ENSSSCG00000016702	ENSPVAG00000002491								
Hoxa7	ENSTTRG00000006782	ENSBTAG0000001455	ENSSSCG00000016701	ENSPVAG00000002494								
Hoxa9	gi	460094811	ref	NW_004254427.1	:1794..180	gi	460363619	ref	NW_004198077.1	:287770..286332		
Hoxa10	ENSTTRG00000003476	ENSBTAG00000040082	ENSSSCG00000021204	ENSPVAG00000002499								
Hoxa11	ENSTTRG00000003480	ENSBTAG00000014738	ENSSSCG00000016698	ENSPVAG00000002500								
Hoxa13	gi	470603374	ref	XM_004312987.1		gi	305855193	ref	NM_001195342.1		gi	759124508:1-855
Hoxb1	ENSTTRG000000012240	ENSBTAG00000007603	ENSSSCG00000017532	ENSPVAG00000015520								
Hoxb2	ENSTTRG000000012244	ENSBTAG00000009979	ENSSSCG00000017533	ENSPVAG00000015521								
Hoxb3	ENSTTRG000000012246	ENSBTAG00000021427	ENSSSCG00000017534	ENSPVAG00000015522								
Hoxb4	ENSTTRG000000012249	ENSBTAG00000039599	ENSSSCG00000017535	ENSPVAG00000015523								
Hoxb5	ENSTTRG000000012251	ENSBTAG00000045835	ENSSSCG00000017540	ENSPVAG00000015524								
Hoxb6	ENSTTRG000000012252	gi	741896445:5049-5471	ENSSSCG00000017539	ENSPVAG00000015525							
Hoxb7	gi	460080811	ref	NW_004267563.1	:1284..1	gi	459775095	ref	NW_004347235.1	:853..1		
Hoxb8	ENSTTRG000000012260	gi	741963565:57-485	ENSSSCG00000017537	ENSPVAG00000015529							
Hoxb9	ENSTTRG000000012262	ENSBTAG00000025009	ENSSSCG00000017536	gi	759185596:96-848							
Hoxb13	ENSTTRG000000012314	ENSBTAG00000014663	ENSSSCG00000017541	ENSPVAG00000015531								
Hoxc4	ENSTTRG00000004529	ENSBTAG0000003304	ENSSSCG0000000285	ENSPVAG00000014722								
Gene	Bottlenose dolphin	Cow	Pig	Ying fox								
-------	--------------------	--------------	---------------	----------------								
Hoxc5	ENSTTRG000000004532	ENSBTAG000000009634	ENSSSCG000000027996	ENSPVAG00000014723								
Hoxc6	ENSTTRG000000004534	ENSBTAG000000009238	ENSSSCG000000030585	ENSPVAG00000014724								
Hoxc8	ENSTTRG000000004538	ENSBTAG00000012149	ENSCPG000000024489	ENSPVAG00000014725								
Hoxc9	ENSTTRG000000010853	ENSBTAG00000005606	chr5:19645413..1964667	ENSSSCG00000011039								
Hoxc10	ENSTTRG000000004540	ENSBTAG00000003278	ENSSSCG000000027615	gi	759165771:114-1142							
Hoxc11	gi	470595930:115-1032	gi	545825435[ref	XM_003355425.3]	ENSPVAG00000012298						
Hoxc12	ENSTTRG000000004543	ENSBTAG00000000924	ENSSSCG00000000281	ENSPVAG00000012297								
Hoxc13	ENSTTRG000000004546	ENSBTAG00000000923	ENSSSCG00000000279	ENSPVAG00000012296								
Hoxd1	ENSTTRG00000002522	ENSBTAG00000015840	ENSSSCG00000015986	ENSPVAG00000017425								
Hoxd3	ENSTTRG00000013779	ENSBTAG0000004835	gi	545874786:1227-2525	ENSPVAG00000017421							
Hoxd4	ENSTTRG00000013778	ENSBTAG00000039581	ENSSSCG00000015984	gi	759094456:1238-1999							
Hoxd8	ENSTTRG00000013777	gi	741916274:80-913	ENSSSCG00000015983	ENSPVAG00000017420							
Hoxd9	ENSTTRG00000013773	ENSBTAG00000016033	ENSSSCG00000015982	gi	759094488:481-1497							
Hoxd10	gi	470607996:45-1067	ENSBTAG00000016030	ENSSSCG00000015981	ENSPVAG00000017418							
Hoxd11	gi	459774200[ref	NW_004348130.1]:1..1016	ENSBTAG00000003330	gi	545874814[ref	XM_005671983.1]	ENSPVAG00000017417				
Hoxd12	ENSTTRG00000013772	ENSBTAG0000004314	ENSSSCG00000015980	ENSPVAG00000017416								
Hoxd13	ENSTTRG00000013771	ENSBTAG0000004313	ENSSSCG00000015979	ENSPVAG00000017415								
Bmi1	gi	460361160[ref	NW_004200536.1]:100306..103166	gi	84000132:232-1212	gi	545873578:172-1152	gi	759132282:532-1512			
Mll	ENSTTRG000000004289	ENSBTAG00000018093	ENSSSCG00000023234	ENSPVAG00000006246								
E2f6	ENSTTRG00000013168	ENSBTAG00000048286	ENSSSCG00000026161	ENSPVAG00000008652								

Gene	Little brown bat	Hedgehog	Sloth	Armadillo					
Hoxa1	ENSMULG00000001496	ENSEUEUG000000011144	×	ENSDNOG000000047948					
Hoxa2	ENSMULG000000014499	ENSEUEUG00000000593	ENSCHOG000000009848	ENSDNOG000000010786					
Hoxa3	ENSMULG000000014502	ENSEUEUG00000003189	ENSCHOG000000009854	ENSDNOG00000003211					
Hoxa4	gi	558125085:268-753	ENSEUEUG00000005514	ENSCHOG00000003332	gi	226822844:332075-331463, c330906-330563			
Hoxa5	ENSMULG000000028593	ENSEUEUG00000009904	×	ENSDNOG000000034242					
Hoxa6	ENSMULG000000014517	gi	617619494:20-721	ENSCHOG000000009037	ENSDNOG00000001633				
Hoxa7	ENSMULG000000008289	gi	617619492:134-832	×	ENSDNOG000000048295				
Hoxa9	gi	584040953:85-759	ENSEUEUG00000009872	×	ENSDNOG000000043901				
Gene	Little brown bat	Hedgehog	Sloth	Armadillo					
------------	-----------------	-----------------------	--------------------------------	----------------------------					
Hoxa10	ENSLUG0000000027272	ENSEEU000000009849	×	ENSDOG000000039533					
Hoxa11	ENSLUG000000008300	ENSEEU000000009724	ENSCHO000000007426	ENSDOG000000017503					
Hoxa13	ENSLUG000000008332	gi	617619544	XM_007526917.1	scaffold_1425:33982..32538	ENSDOG000000047528			
Hoxb1	ENSLUG000000008429	gi	61763311	XM_007529991.1	scaffold_8915:25847..23714	ENSDOG00000006826			
Hoxb2	ENSLUG000000008433	gi	61763308:15-1076	scaffold_1425:33982..32538	ENSDOG000000047374				
Hoxb3	ENSLUG000000008445	gi	617633502	XM_007529988.1	×	ENSDOG000000043480			
Hoxb4	gi	58170854:1-540	ENSEEU000000007049	×	ENSDOG000000039782				
Hoxb5	ENSLUG000000014513	gi	617633293	XM_007529985.1	×	ENSDOG000000042538			
Hoxb6	ENSLUG000000010649	ENSEEU000000005642	ENSCHO00000000614	ENSDOG000000006841					
Hoxb7	ENSLUG000000002609	ENSEEU000000014244	ENSCHO00000000646	gi	476582478	NW_004463870.1:492..1925	477468771	NW_004462340.1:216330..217781	ENSDOG000000043480
Hoxb8	×	gi	617633287:242-973	×	gi	476582478	NW_004463870.1:1417..1	ENSDOG0000000043480	
Hoxb9	ENSLUG000000011677	ENSEEU000000014249	×	ENSDOG000000024386					
Hoxb13	ENSLUG000000029480	ENSEEU000000014337	ENSCHO00000002354	ENSDOG000000015177					
Hoxc4	ENSLUG000000017706	ENSMUS000000075394	×	ENSDOG000000046396					
Hoxc5	ENSLUG00000000488	ENSEEU000000012980	scaffold_17321:18344..16692	ENSDOG000000009604					
Hoxc6	ENSLUG00000000485	ENSEEU000000010293	ENSCHO000000013391	gi	476573758	NW_004482590.1:1068037..1069592			
Hoxc8	ENSLUG000000003097	ENSEEU000000008079	×	ENSDOG000000034735					
Hoxc9	ENSLUG00000000483	ENSEEU00000002788	ENSCHO000000005906	ENSDOG000000035825					
Hoxc10	ENSLUG00000000482	gi	617579660:129-1157	×	ENSDOG000000017505				
Hoxc11	ENSLUG00000000470	gi	617580207	XM_007518304.1	scaffold_46159:1049..1	gi	476573758	NW_004482590.1:1011220..1013200	
Hoxc12	ENSLUG000000002698	gi	617580211	XM_007518305.1	×	ENSDOG00000003631			
Hoxc13	ENSLUG000000015050	gi	488552207	XM_004485128.1	×	gi	488552207	XM_004485128.1	ENSDOG000000019807
Hoxd1	ENSLUG000000029447	gi	617609948	XM_007524704.1	scaffold_145246:3646..5404	ENSDOG000000004405			
Hoxd3	ENSLUG000000012510	gi	617609912	XM_007524690.1	scaffold_145246:3646..5404	ENSDOG000000004593			
Hoxd4	ENSLUG000000012508	gi	617609908:169-966	ENSCHO000000004176	ENSDOG000000019807				
Hoxd8	ENSLUG00000002864	gi	617666440	XM_007539198.1	×	ENSDOG000000008112			
Hoxd9	GL429772:7092016..709353	ENSEEU00000003473	×	gi	488583112:1-591	ENSDOG0000000034389			
Hoxd10	ENSLUG000000007048	ENSEEU000000003440	ENSCHO000000011881	ENSDOG000000044260					
Hoxd11	ENSLUG000000007030	gi	617609945	XM_007524703.1	×	ENSDOG000000044260			
Gene	Little brown bat	Hedgehog	Sloth	Armadillo					
-------	-----------------	-----------	--------	-----------					
Hoxd12	ENSMLUG0000007009	gi	617609899	ref	XM_007524686.1	×	ENSDNOG00000047700		
Hoxd13	ENSMLUG0000006997	ENSEEU	0000005384	ENSCHOG00000004807	ENSDNOG00000019799				
Bmi1	gi	581500333:81-1061	gi	617550589:17-997	ENSCHOG00000011962	gi	82130183:43-1020		
Mll	ENSMLUG0000014086	ENSEEU	0000015428	ENSCHOG00000007116	ENSDNOG00000011530				
E2f6	gi	558186255:15-734	ENSEEU	000001403	ENSCHOG00000005114	ENSDNOG0000000258			

© 2017 The Authors. Integrative Zoology published by International Society of Zoological Sciences. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Gene	Manatee	Elephant	Kangaroo									
Hoxc6	gi	46071832	ref	NW_004443963.1	22412137..22410538,22411024..22409517	ENSLAFG0000000117	gi	359754105:99007-99406, 100201-100508				
Hoxc8	gi	471366945	ref	XM_004373948.1	177-905	ENSLAFG00000018140	gi	359754105:77755-78190, 79694-79986				
Hoxc9	gi	471366943	ref	XM_004373947.1	80-832	ENSLAFG0000002366	gi	359754105:67248-67785, 69691-69935				
Hoxc10	gi	471366959	ref	XM_004373955.1	103-1131	ENSLAFG00000018137	gi	359754105:50619-51369, 55062-55339				
Hoxc11	gi	471366961	ref	XM_004373956.1	115-1023	ENSLAFG00000018133	gi	359754105:36794-37460, 38842-39074				
Hoxc12	gi	471366963	ref	XM_004373957.1	1-848	ENSLAFG00000024750	gi	359754105:18156-18750, 19672-19910				
Hoxc13	gi	471366965	ref	XM_004373958.1	1-996	ENSLAFG00000030195	gi	359754105:815-1580, 6845-7101				
Hoxd1	gi	471370046	ref	XM_004375480.1	41-1027	gi	344268815	ref	XM_003406204.1		gi	359754115:103019-103688, 104095-104429
Hoxd3	gi	471370048	87-1379	ENSLAFG00000005477	gi	359754115:82485-83025, 84886-85634						
Hoxd4	gi	471370050	ref	XM_004375482.1	248-1015	ENSLAFG00000005480	gi	359754115:64199-64610, 65210-65514				
Hoxd8	gi	460718322	ref	NW_004443973.1	8263628..8262140,8262949..8261457	ENSLAFG00000004364	gi	359754115:40138-40768, 41213-41508				
Hoxd9	gi	823389162	ref	XM_012555287.1	ENSLAFG000000111494	gi	359754115:32265-33039, 33409-33647					
Hoxd10	gi	471370052	ref	XM_004375483.1	65-1087	ENSLAFG00000013262	gi	359754115:25995-26739, 28186-28463				
Hoxd11	gi	471370258	ref	XM_004375585.1		gi	344268349	ref	XM_003405975.1		gi	359754115:15809-16490, 17298-17536
Hoxd12	gi	471370054	ref	XM_004375584.1	1-816	ENSLAFG00000017497	gi	359754115:7229-7793, 8091-8329				
Hoxd13	gi	471370260	ref	XM_004375586.1	7-753	ENSLAFG00000027629	gi	359754115:121-895, 1981-2231				
Bmi1	gi	460718284	ref	NW_004444011.1	6074600..6071528	gi	731479430:91-1071	ENSMEUG00000011706				
Mll	gi	471408281	18-11918	ENSLAFG00000014805	ENSMEUG0000000157							
E2f6	gi	823387324	1-870	ENSLAFG00000021573	ENSMEUG00000007957							

Note: Sequences marked with overstriking were acquired by local blast from genome data and marked with × were not acquired.
Figure S1 The proportion of repetitive elements numbers to total repeats in different gene regions among species
Table S2 Lineage-specific amino acids changes in regulatory factors and Hox genes among mammals

Gene	Sites	Amino acid change	Species	Qualitative Change†	Total
Hoxa2	295	S-P	Pinnipedia	α, H	2
Hoxa3	341	D-N	Odontoceti	α	1
Hoxa6	34	A-T	Xenarthra	P	1
Hoxb9	72	G-A	Pinnipedia	P α, P, P, F, R, P	3
HOX		G-A	Minke whale	P	1
Hoxc5	86	L-P	Hominoid	P, N, P, K, F, α, α, R, P, H	10
Hoxc11	64	S-P	Cetartiodactyla	α, H	2
Hoxd1	220	E-K	Cetaceans	α	2
Hoxd12	41	P-S	Cetaceans	α, H	2
	68	A-T	Odontoceti	P	1
	186	R-Q	Cetaceans	pH	1

†Radical changes in amino acid properties under category 6-8 derived from TreeSAAP. Amino acid property symbols used: Total non-bonded energy (E), Mean r.m.s. fluctuational displacement(F), Hydrophathy (h), Normalised consensus hydrophobicity (Hnc), Surrounding hydrophobicity (H), Polarity (p), Coil tendency (P), Isoelectric point (ph), Turn tendency (P), Solvent accessible reduction ratio (Ra), Power to be at the N-terminal (an), Bulkiness (B), Buriedness (B), Helical contact area (Ca), Short- and medium-rangenon-bonded energy (Esm), Thermodynamic transfer hydrophobicity (Ht), Compressibility (K0), Molecular weight (Mw), Average number of surrounding residues (Ns), Alpha-helical tendency (pa), Partial specific volume (V0), Power to be at the C-terminal (ac), Refractive index (μ), β-structure tendencies (Pβ), Average number of surrounding residues (Ns), Molecular volume (Mv).
Figure S2 Three-dimensional structure distribution of positively selected sites (red balls) and Lineage-specific radical amino acids change sites (brown balls) in corresponding proteins. Homeodomian of Hox proteins, DNA binding region of E2f6, and transcriptional activation region of MII are colored yellow. N- and C-terminal regions are ocean blue and violet respectively.
Table S3 Parameter estimates under branch models among Hox genes and Regular factors

Families	Genes	In L	Value	LRT(2ΔI)	df	P value	
Hoxa1		0.0808	4930.529558	-	61.644474	51	0.14607
Hoxa2		0.0793	4217.583311	-	64.804038	53	0.128256
Hoxa3		0.05471	7779.334064	-	129.497984	53	2.40E-08
Hoxa4		0.10786	4506.959354	-	69.884778	53	0.059894
Hoxa5		0.05451	2570.157481	-	47.877498	51	0.598438
Hoxa6		0.04696	2630.365348	-	45.234758	53	0.76698
Hoxa7		0.09626	3616.407383	-	74.92431	51	0.016212
Hoxa9		0.0494	3553.334811	-	68.366406	51	0.052596
Hoxa10		0.07754	6060.24929	-	68.907592	51	0.048035
Hoxa11		0.04616	3392.109437	-	50.732684	53	0.562929
Hoxa13		0.0155	2581.109752	-	53.51514	53	0.454368
Hoxb1		0.12032	6234.213766	-	97.26939	53	0.000202
Hoxb2		0.20089	7630.718147	-	74.329654	51	0.028202
Hoxb3		0.0682	6804.491332	-	110.27395	51	2.99E-06
Hoxb4		0.07833	2782.655337	-	57.138408	49	0.198478
Hoxb5		0.04112	2579.845633	-	52.58684	51	0.412382
Hoxb6		0.03218	2999.820039	-	84.948162	53	0.003493
Hoxb7		0.08467	2830.916939	-	46.602752	53	0.719984
Hoxb8		0.04004	2402.740558	-	67.757986	49	0.039088
Hoxb9		0.07068	2396.36351	-	64.193832	51	0.101522
Hoxb10		0.0932	5406.206654	-	80.769248	53	0.00315
Hoxb13		0.07064	2170.920406	-	41.540226	49	0.766477
Hoxc4		0.10072	1750.896785	-	50.6796	51	0.486313
Hoxc5		0.01661	1827.959542	-	23.769784	51	0.999598
Hoxc6		0.024	1866.130626	-	44.012204	49	0.675099
Hoxc8		0.01449	2216.008424	-	34.485182	51	0.963032
Hoxc9		0.10124	3753.924295	-	61.990646	52	0.161679
Hoxc10		0.04165	3590.824608	-	58.260628	53	0.287992
Hoxc12		0.03572	3692.162557	-	59.774452	49	0.139236
Hoxc13		0.01855	3752.850376	-	57.348828	49	0.193184
Hoxd1		0.13913	7337.020964	-	85.486266	53	0.003112
Hoxd3		0.06386	6218.339678	-	137.330584	53	2.07E-09
Hoxd4		0.0646	4485.551914	-	62.522096	53	0.173983
Hoxd8		0.1348	3149.132453	-	57.04469	51	0.260494
Hoxd9		0.07639	3097.579436	-	88.334012	51	0.000918
Hoxd10		0.08759	2981.789559	-	57.755324	53	0.303946
Hoxd11		0.01836	1512.864515	-	30.639238	51	0.98937
Hoxd12		0.0965	5210.424758	-	63.937927	51	0.105418
Hoxd13		0.01608	2585.830293	-	60.171678	53	0.232226

Regular factors							
BMI1	3.880.00777	0.5905	3808.706323	-	142.6025	53	3.80E-10
E2F6	6253.466613	0.12074	6183.366735	-	140.1998	53	8.26E-10
MLL	41867.47573	0.12137	41805.19744	-	124.5566	53	1.08E-07

© 2017 The Authors. Integrative Zoology published by International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Table S4 The parameters of selective pressure for *Hox* genes and *E2f6* among mammals by branch-site models

Gene	Models	-lnL	2ΔlnL	P values	Corrective p	Foreground ω
Branch-site models						
Hoxa2	Terminal branch of Killer whale Null	4222.597508				
	Alternative	4216.189169	12.816678	0.000344	0.014772	
Hoxb2	Terminal branch of Little brown bat Null	7528.180049				
	Alternative	7515.972378	24.41534	0.000001	0.000034	
Hoxb3	Terminal branch of Baiji Null	6636.973254				
	Alternative	6611.310734	51.32504	<<0.0001		
	Terminal branch of Little brown bat Null	6627.499452				
	Alternative	6609.69287	35.613164	<<0.0001		
	Terminal branch of Giant panda Null	6643.340979				
	Alternative	6626.514778	33.652402	<<0.0001		
	Terminal branch of Elephant Null	6643.673152				
	Alternative	6633.659917	20.02647	<<0.0001		
Hoxd1	Terminal branch of Little brown bat Null	7293.998357				
	Alternative	7287.529530	12.93765	0.000322	0.016236	
Hoxd3	Terminal branch of Minke whale Null	6165.991917				
	Alternative	6161.51464	8.95464	0.002768	0.040594	
	Terminal branch of Cat Null	6170.362654				
	Alternative	6165.64571	9.433886	0.002130	0.040594	
Hoxd8	Terminal branch of Rabbit Null	3145.02658				
	Alternative	3138.728578	12.59599	0.000387	0.016236	
Hoxd10	Terminal branch of Bowhead whale Null	2982.09969				
	Alternative	2972.687661	18.82406	0.000014	0.000072	
	Terminal branch of Bottlenose dolphins Null	2981.01113				
	Alternative	2975.016449	11.98936	0.000535	0.011236	
Hoxd12	Terminal branch of Bottlenose dolphins Null	5205.61532				
	Alternative	5190.149498	30.93165	<<0.0001		
	Terminal branch of Little brown bat Null	5201.855003				
	Alternative	5188.703934	26.302138	<<0.0001		
E2f6	Terminal branch of Horse Null	6095.192953				
	Alternative	6088.103055	14.179796	0.000166	0.007138	
Table S5 Positively selected sites and quality changes in *Hox* genes and regulatory factors among mammals

Gene	Species	Sites	BEB \(^{†}\)	AA Change	Qualitative Change \(^{‡}\)	Total
Hoxa2	Killer whale	110	0.991**	P-G	B, α, H	3
Hoxb2	Little brown bat	178	0.978*	L-S	N, B, R, F, α, P	7
		180	0.985*	E-R	K, pH, α	3
		213	0.963*	A-L	—	—
		219	0.998**	E-S	P, α, P	4
Hoxb3	Baiji	209	0.827	P-R	α	1
		217	0.999**	L-A	—	—
		219	0.998**	N-C	N, B, p, E	4
	Little brown bat	297	1.000**	L-C	R, α	2
		299	1.000**	S-Q	c	1
Giant panda		61	0.821	A-H	—	—
		151	0.845	E-P	P, α, K, α, P	5
Elephant		152	0.893	G-T	—	—
		153	0.998**	C-T	N	1
Hoxd1	Little brown bat	145	0.897	L-A	—	—
		167	0.981*	E-S	P, α, P	4
Hoxb4	Ancestor node of Primates/cow	236	0.984*	A-S	P, α	3
	Ying fox/Hedgehog/Manatee	236	0.984*	A-T	P	1
Hoxc4	Galago/Rabbit/Finless porpoises	256	0.981*	Q-P	P, c, α, m, H	4
	Little brown bat	256	0.981*	Q-H	—	—
Elephant	Galago/Rabbit/Seal/Horse	179	0.987*	S-G	—	—
	Hedgehog/Manatee/Armadillo					
Hoxc10	Ancestor node of Pinnipeds	212	0.924	N-S	—	—
	Rabbit/Manatee/Manatee					
	Ancestor node of Anthropoid	237	0.820	T-A	P	1
	Little brown bat/Hedgehog					
	Manatee	237	0.820	T-I	N, B, p, K, α, R, H, H	6
Hoxd3	Minke whale	278	0.918	G-A	P, P	2
		397	0.999**	G-L	B, R, F, P	4
		398	0.923	N-S	—	—
	Cat	126	0.994**	L-C	R, c, α	3
	Sloth	153	0.997**	S-L	N, B, R, F, α, P	7
		173	0.998**	Q-H	—	—
		175	0.998**	N-T	—	—
Hoxd8	Rabbit	239	0.950*	D-L	N, R, e, h, F, P, p, α, α, H, E, P	12
Hoxd10	Bowhead whale	321	0.964*	L-M	—	—
	Bottlenose dolphins	326	0.949	R-L	—	—
		9	0.996**	A-N	P, P	2

© 2017 The Authors. *Integrative Zoology* published by International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Gene	Species	Sites	BEB \(^1\)	AA Change	Qualitative Change \(^2\)	Total
Hoxd12	Bottlenose dolphins	114	0.972*	R-L	N\(_i\) B\(_i\) R\(_i\) h pH\(_i\) H\(_{nc}\) p α\(_{nc}\) E\(_{sm}\) E\(_{i}\)	10
		157	0.970*	P-T	K\(_{ah}\) H\(_i\)	2
		193	0.946	L-K	N\(_i\) B\(_i\) R\(_i\) h E\(_i\) F H\(_{nc}\) P\(_{nc}\) p R\(_{nc}\) H\(_{nc}\) E\(_{i}\)	12
		194	0.998**	P-G	B\(_i\) α\(_i\) H\(_i\)	3
		197	0.904	A-G	P\(_{nc}\) P\(_{i}\) P\(_{i}\)	3
		198	0.939	A-G	P\(_{nc}\) P\(_{i}\) P\(_{i}\)	3
Little	brown bat	111	0.999**	E-S	P\(_{nc}\) P\(_{i}\) α\(_i\) P\(_{i}\)	4
brown	bat	112	0.998**	R-V	N\(_i\) B\(_i\) h pH\(_i\) H\(_{nc}\) p E\(_{sm}\) R\(_{nc}\) E\(_{i}\)	9
bat	E2f6	116	0.998**	R-A	C\(_i\) h pH\(_i\) M\(_{nc}\) H\(_{nc}\) V\(_{sm}\) E\(_{sm}\) E\(_{i}\)	8
Horse		70	0.996**	Y-L	α\(_i\) E\(_{sm}\)	2
E2f6		73	0.997**	R-S	C\(_i\) pH\(_i\) V\(_{sm}\) E\(_{sm}\)	4

\(^1\)Amino acid sites detected by branch-site models with BEB > 0.8 are regarded as candidates for selection. One asterisk is significant and two asterisks are extremely significant.

\(^2\)Radical changes in amino acid properties under category 6-8 derived from TreeSAAP. Amino acid property symbols used: Total non-bonded energy (E\(_i\)), Mean r.m.s. fluctuation displacement (F), Hydrophathy (h), Normalised consensus hydrophobicity (H\(_{nc}\)), Surrounding hydrophobicity (H\(_i\)), Compressibility (K\(_{ah}\)), Polarity (p), Coil tendency (P\(_c\)), Isoelectric point (\(\text{pH}\)), Turn tendency (P\(_t\)), Solvent accessible reduction ratio (R\(_c\)), Chromatographic index (R\(_t\)), Power to be – C-term., α-helix (α\(_i\)), Power to be at the N-terminal (α\(_n\)), Bulkiness (B\(_i\)), Buriedness (B\(_i\)), Composition (c), Helical contact area (C\(_i\)), Long-range non-bonded energy (E\(_i\)) Short- and medium-range non-bonded energy (E\(_{sm}\)), Total non-bonded energy (E\(_i\)), Thermodynamic transfer hydrophobicity (H\(_i\)), Compressibility (K\(_{ah}\)), Molecular weight (M\(_{nc}\)), Average number of surrounding residues (N\(_i\)), Equilibrium constant (ionisation COOH) (pK\(_{a,i}\)), Polar requirement (P\(_r\)), Alpha-helical tendency (P\(_{ah}\)), Partial specific volume (V\(_{sm}\)), Power to be at the C-terminal (α\(_r\)).