THE THUE-MORSE SUBSTITUTIONS AND SELF-SIMILAR GROUPS AND ALGEBRAS

LAURENT BARTHOLDI, JOSÉ MANUEL RODRÍGUEZ CABALLERO, AND TANBIR AHMED

Abstract. We introduce self-similar algebras and groups closely related to the Thue-Morse sequence, and begin their investigation by describing a character on them, the “spread” character.

1. Introduction

Fix an alphabet $X = \{x_0, \ldots, x_{q-1}\}$. The Thue-Morse substitution is the free monoid morphism $\theta : X^* \to X^*$ given by

$$\theta(x_i) = x_ix_{i+1} \ldots x_{q-1}x_0 \ldots x_{i-1},$$

and the Thue-Morse word $W_q \in X^\omega$ is the limit of all words $\theta^n(x_0)$. For example, if $q = 2$ then $\theta(x_0) = x_0x_1$ and $\theta(x_1) = x_1x_0$ and $W_2 = x_0x_1x_0x_1x_0x_0x_1 \ldots$ is the classical, ubiquitous Thue-Morse sequence, see [1,6].

We construct some self-similar algebraic objects — groups and associative algebras — and report on a curious connection between them and the Thue-Morse substitution.

Fix an alphabet $A = \{a_0, \ldots, a_{q-1}\}$. Recall that a self-similar group is a group G endowed with a group homomorphism $\phi : G \to G \wr A \Sigma A$, the decomposition: every element of G may be written, via ϕ, as an A-tuple of elements of G decorating a permutation of A. Likewise, a self-similar algebra is an associative algebra \mathcal{A} endowed with an algebra homomorphism $\phi : \mathcal{A} \to M_q(\mathcal{A})$ also called the decomposition: every element of \mathcal{A} may be written as an $A \times A$ matrix with entries in \mathcal{A}. For more details see [3,9].

We insist that self-similarity is an attribute of a group or algebra, and not a property: it is legal to consider for G or \mathcal{A} a free group (respectively algebra), and then the decomposition ϕ may be defined at will on G or \mathcal{A}’s generators. There will then exist a maximal quotient (called the injective quotient) of G or \mathcal{A} on which ϕ induces an injective decomposition. This is the approach we follow in defining our self-similar group.

Consider the free group $F = \langle x_0, \ldots, x_{q-1} \rangle$, the alphabet $A = \mathbb{Z}/q$, and define $\phi : F \to F \wr A \Sigma A$ by

$$\phi(x_0) = \langle x_0, \ldots, x_{q-1} \rangle(j \mapsto j + 1), \quad \phi(x_i) = \langle 1, \ldots, 1 \rangle(j \mapsto j + 1) \text{ for all } i \geq 1.$$
Here and below we denote by $\langle g_0, \ldots, g_{q-1}\rangle \pi$ the element of $F \wr \mathfrak{S}_A$ with decorations g_i on the permutation π. We denote by G_q the injective quotient of F, with self-similarity structure still written ϕ. Note that it is a proper quotient; for example, the image of x_1 has order q in G_q.

There is a standard construction of a self-similar algebra from a self-similar group, by mapping decorated permutations to monomial matrices. Fix a commutative ring k, consider the free associative (tensor) algebra $T = k \langle x_0, \ldots, x_{q-1} \rangle$, and define $\phi : T \to M_q(T)$ by

$$\phi(x_0) = \begin{pmatrix} 0 & \cdots & 0 & x_{q-1} \\ x_0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & x_{q-2} & 0 \end{pmatrix}, \quad \phi(x_i) = \begin{pmatrix} 0 & \cdots & 0 & 1 \\ 1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 1 & 0 \end{pmatrix}.$$

We denote by \mathcal{A}_q the injective quotient of T, with self-similarity structure still written ϕ. Our main result is a description of a natural character, the “spread”, on \mathcal{A}_q; see Section 3.1; roughly speaking, it measures the number of non-zeros in matrix rows or columns:

Theorem A. The “spread” character on \mathcal{A}_q has image $\mathbb{Z}[1/q] \cap \mathbb{R}_+$.

The proof crucially uses the fact that the decomposition of G_q admits a partial splitting defined using the Thue-Morse endomorphism θ; the same holds for \mathcal{A}_q. This is embodied in the following Lemma, proved in the next section:

Lemma 1.1. For all $w \in F$ we have $\phi(\theta(w)) = \langle w, \gamma(w), \ldots, \gamma^{q-1}(w) \rangle$, where $\gamma : F \to F$ is the automorphism permuting cyclically the generators $x_i \mapsto x_{i+1 \mod q}$.

We conclude with some variants of the construction, and in particular relations to iterated monodromy groups of rational functions in one complex variable.

2. The groups

As sketched in the introduction, a self-similar group is a group G endowed with a homomorphism $\phi : G \to G \wr A \mathfrak{S}_A$, the decomposition. The range of ϕ is the permutational wreath product of G with A; its elements may be represented as permutations of A with a decoration in G on each strand. We write $\phi(g) = \langle g_0, \ldots, g_{q-1} \rangle \pi$.

Starting from the free group $F = \langle x_0, \ldots, x_{q-1} \rangle$ and the alphabet $A = \{a_0, \ldots, a_{q-1}\}$, we define $\phi : F \to F \wr A \mathfrak{S}_A$ by

$$\phi(x_0) = \langle x_0, \ldots, x_{q-1} \rangle(j \mapsto j + 1), \quad \phi(x_i) = \langle 1, \ldots, 1 \rangle(j \mapsto j + 1),$$

turning F into a self-similar group. Write $K_0 = 1$ and $K_{n+1} = \phi^{-1}(K_n A)$; these form an ascending sequence of normal subgroups of F, and $G := F / \bigcup_n K_n$ is again a self-similar group, but now on which the map induced by ϕ is injective. We christen the group G just constructed the qth Thue-Morse group. The decompositions may be written, using permutations, as

$$\phi(x_0) = \begin{pmatrix} x_1 & x_0 & x_{q-1} \end{pmatrix}, \quad \phi(x_i) = \begin{pmatrix} \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots \\ 1 & \ddots & \ddots \end{pmatrix}.$$

Note that in the injective quotient G_q the generators x_1, \ldots, x_{q-1} coincide and have order q. We thus have a presentation

$$G_q = \langle x_0, x_1 \mid x_1^q, [(x_0 x_1^{-1})^q, (x_1^{-1} x_0)^q], \ldots \rangle,$$
where producing an explicit presentation of the group is beyond our current goals, but could be done following the lines of [2].

It is straightforward to prove Lemma 2.1 for generator \(x_i \), we have \(\phi(\theta(x_i)) = \langle x_i, x_{i+1}, \ldots, x_{i-1} \rangle = \langle x_i, \gamma(x_i), \ldots, \gamma^{q^{-1}}(x_i) \rangle \), so

\[
\phi(\theta(w)) = \langle w, \gamma(w), \ldots, \gamma^{q^{-1}}(w) \rangle \quad \text{for all } w \in F.
\]

A self-similar group \(G \) is called contracting if there exists a finite subset \(N \subseteq G \) with the following property: for every \(g \in G \) there exists \(n \in \mathbb{N} \), such that if one iterates the decomposition at least \(n \) times on \(g \) then all entries belong to \(N \). The minimal admissible such \(N \) is called the nucleus.

Lemma 2.1. The Thue-Morse group \(G_q \) is contracting with \(N = \{ x_0^{\pm 1}, x_1^{\pm 1} \} \).

Proof. It suffices to check contraction on words in \(N^2 \), and this is direct. \(\square \)

Let \(G \) be a self-similar group, and consider an element \(g \in G \). Iterating \(n \) times the map \(\phi \) on \(g \) yields a permutation of \(A^n \) decorated by \(\# A^n \) elements. The element \(g \) is called bounded if only a bounded number of these decorations are non-trivial, independently of \(n \). The group \(G \) itself is called bounded if all its elements are bounded; by an easy argument, it suffices to check this property on generators of \(G \). It is classical [5] that if \(G \) is bounded and finitely generated then it is contracting.

2.1. Characters.

Recall that a character \(\chi : G \to \mathbb{C} \) on a group is a function that is normalized (\(\chi(1) = 1 \)), central (\(\chi(gh) = \chi(hg) \) for all \(g, h \in G \)) and positive semidefinite (\(\sum_{j=1}^n \lambda_j g_j^{-1} \bar{\lambda}_j \geq 0 \) for all \(g_j \in G, \bar{\lambda}_j \in \mathbb{C} \)). A model example of character are the “fixed points”: if \(G \) acts on a measure space \((X, \mu) \), set \(\chi(g) = \mu(\{ x \in X : g(x) = x \}) \). By the Gelfand-Naimark-Segal construction, every character may be written as \(\chi(g) = \langle \xi, \pi(g)\xi \rangle \) for some unitary representation \(\pi : G \to \mathcal{U}(\mathcal{H}) \) and some unit vector \(\xi \in \mathcal{H} \).

Let now \(G \) be self-similar, with decomposition \(\phi : G \to G \wr A \mathcal{S}_A \). A character \(\chi \) will be called self-similar if there exists a positive semidefinite kernel \(k(\cdot, \cdot) \in \mathbb{C}^{A \times A} \) such that

\[
(\# A) \chi(g) = \sum_{a \in A} k(a, \pi(a)) \chi(g_a) \quad \text{whenever } \phi(g) = \langle g_a \rangle \pi.
\]

We also note the following easy property of characters:

Lemma 2.2. If \(G \) is a contracting, self-similar group, then every self-similar character on \(G \) is determined by its values on the nucleus. If moreover \(G \) is bounded and finitely generated, then every self-similar character on \(G \) is determined by the kernel \(k \).

Proof. For each element \(g \in G \), write the linear relation imposed on \(\chi(g) \) by self-similarity of the character \(\chi \). Substituting sufficiently many times, \(\chi(g) \) may be expressed in terms of \(\chi \restriction N \).

If \(G \) is bounded, then furthermore the nucleus may be decomposed as \(N = N_0 \sqcup N_1 \) with the property that for every \(g \in N_0 \), all decorations of \(g \) are eventually trivial, while if \(g \in N_1 \), then a single decoration \(g' \) of \(g \) is in \(N_1 \) and all the others are in \(N_0 \). Clearly \(\chi \restriction N_0 \) is determined by \(k \), while for \(g \in N_1 \) we obtain a linear relation \(\chi(g) = \chi(g')/\# A + C_g \) with \(C_g \) depending only on \(k \); this linear system is non-degenerate, yielding a unique solution for \(\chi \restriction N_1 \). \(\square \)
Let us check that G_q is bounded. For the generators x_1, \ldots, x_{q-1} this is obvious, since all their decorations are trivial starting from level $n = 1$. Then x_0 has a single decoration which is x_0 itself on top of the x_1, \ldots, x_{q-1}, so in fact for all $n \in \mathbb{N}$ there are at most q non-trivial decorations in the n-fold decomposition of x_0.

Note that every self-similar group acts on a $\#A$-regular rooted tree, as follows. The group fixes the empty sequence ε. To determine the action of $g \in G$ on a word $v = v_1 v_2 \ldots v_n$, compute $\phi(g) = \langle g_a \rangle \pi$; then define recursively $g(v) = \pi(v_1) g_{v_1}(v_2 \ldots v_n)$.

This action extends naturally to the boundary of the rooted tree, which is identified with the space of infinite sequences A^ω. This space comes naturally equipped with the Bernoulli measure μ, assigning mass $1/\#A$ to each of the elementary cylinders $C_{v,a} = \{v \in A^\omega : v_1 = a\}$, and G acts by measure-preserving transformations. It is easy to see that the constant kernel $(k(a,b) = 1/\#A$ for all $a,b)$ induces the trivial self-similar character $\chi(g) = 1$, and that the identity kernel $(k(a,b) = \delta_{a=b})$ induces the fixed-point self-similar character $\chi(g) = \mu\{v \in A^\omega : g(v) = v\}$.

Recall that every self-similar group G admits an injective quotient, on which the decomposition ϕ induces an injection $G \hookrightarrow G /_A \mathfrak{S}_A$. The group G also admits a faithful quotient, defined as the quotient of G by the kernel of the natural map to \mathfrak{S}_A^{ω} given by the action defined above; it is the largest self-similar quotient of G that acts faithfully on A^ω. Clearly the faithful quotient is a quotient of the injective quotient, but they need not coincide.

It is easy to see that, for G_q, the injective and faithful quotients coincide, using the contraction property and the fact that the action on A^ω is faithful on the nucleus.

3. The algebras

We fix once and for all a commutative ring k. We are particularly interested in the example $k = \mathbb{F}_q$.

As in the case of groups, we start by considering the free associative (tensor) algebra $T = k\langle x_0, \ldots, x_{q-1} \rangle$, and define $\phi : T \to M_q(T)$ by

$$
\phi(x_0) = \begin{pmatrix} 0 & \cdots & 0 & x_{q-1} \\
 & & & \\
x_0 & & 0 \\
 & \ddots & \ddots & \\
 & & \ddots & \\
 & & & 0 \\
 & & & x_{q-2} \\
 & & & 0 \\
\end{pmatrix}, \quad \phi(x_i) = \begin{pmatrix} 0 & \cdots & 0 & 1 \\
 & & & \\
1 & \ddots & \ddots & \\
 & \ddots & \ddots & \\
 & & \ddots & \\
 & & & 0 \\
\end{pmatrix}.
$$

Write $J_0 = 0$ and $J_{n+1} = \phi^{-1}(M_q(J_n))$; these form then an ascending sequence of ideals in T, and $A_q := T / \bigcup_{n} J_n$ is a self-similar algebra, on which the map induced by ϕ is injective.

The construction of A_q from G_q should be transparent: both algebraic objects have the same generating set, and if $\phi(g) = \langle g_a \rangle \pi$ in G_q, then the decomposition $\phi(g)$ in A_q is a monomial matrix with permutation π and non-zero entries g_a.

It may be convenient to extend A_q into a *-algebra, namely an algebra B_q equipped with an anti-involution $x \mapsto x^*$. This may easily be done by extending T.
to \(kF \), the group ring of \(F \), and extending the decomposition by

\[
\phi(x_0^{-1}) = \begin{pmatrix} 0 & x_0^{-1} & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & x_{q-2}^{-1} \\ x_{q-1}^{-1} & 0 & \cdots & 0 \end{pmatrix}, \quad \phi(x_i^{-1}) = \begin{pmatrix} 0 & 1 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & 1 \\ 1 & 0 & \cdots & 0 \end{pmatrix}. \]

We then have a natural group homomorphism \(G_q \to B_q^* \) given by \(x_i \mapsto x_i \) on the generating set. In particular, \(B_q \) is a quotient of the group ring \(kG_q \). A presentation of \(B_q \) begins as

\[B_q = \langle x_0^\pm 1, x_1^q - 1, (x_0x_1^{-1})^q - 1, (x_1^{-1}x_0)^q - 1, \ldots \rangle; \]

we see in particular that \(B_q \) is a proper quotient of \(kG_q \), since in \(kG_q \) the elements \((x_0x_1^{-1})^q - 1 \) and \((x_1^{-1}x_0)^q - 1 \) commute while in \(B_q \) their product vanishes, being a product of two matrices each with a single non-zero entry. As in the case of groups, a presentation of \(A_q \) and of \(B_q \) could be computed following the techniques in [3], but this is beyond our purposes.

We naturally extend the Thue-Morse endomorphism \(\theta \) to \(T \); and note then, similarly to Lemma 1.1, the easy

Lemma 3.1. We have

\[\phi(\theta(w)) = \begin{pmatrix} w & 0 & \cdots & 0 \\ 0 & \gamma(w) & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & \gamma^{-1}(w) \end{pmatrix}, \]

where \(\gamma \) is the endomorphism of \(T \) permuting cyclically the generators \(x_i \mapsto x_{i+1} \text{ mod } q \). \(\square \)

A self-similar algebra \(A \) is called contracting if there exists a finite-rank submodule \(N \leq A \) with the following property: for every \(s \in A \) there exists \(n \in \mathbb{N} \), such that iterating the decomposition at least \(n \) times on \(s \) gives a matrix with all entries in \(N \). The minimal admissible such \(N \) is called the nucleus.

Lemma 3.2. The Thue-Morse algebras \(A_q \) and \(B_q \) are contracting, with respective nuclei \(k\{x_0, x_1\} \) and \(k\{x_0^\pm 1, x_1^\pm 1\} \).

Proof. It suffices to check contraction on monomials in \(N^2 \), and this is direct. \(\square \)

Let \(A \) be a self-similar algebra, and consider an element \(x \in A \). Iterating \(n \) times the map \(\phi \) on \(x \) yields an \(A^n \times A^n \)-matrix with entries in \(A \). The element \(x \) is called row-bounded if only a bounded number of entries are non-trivial on each row of that matrix, independently of \(n \) and the row; and is called column-bounded if the same property holds for columns. The algebra \(A \) itself is called bounded if all its elements are bounded. Evidently, the product of row-bounded elements in row-bounded, and the same holds for column-bounded elements; so it suffices, to prove that \(A \) is bounded, to check that property on its generators. The same argument as in the case of groups shows that row-bounded or column-bounded self-similar algebras are contracting.

It is again easy to see that the algebras \(A_q \) and \(B_q \) are bounded. This will play a major role in the computations below.
3.1. **Characters.** We begin by introducing some concepts. A character on \(k \) is a semigroup homomorphism \(\chi : (k, \cdot) \rightarrow \mathbb{C} \) satisfying \(\chi(1) = 1 \) and \(\chi(0) = 0 \). Recall that the group of units in \(\mathbb{F}_q \) is cyclic; so may be embedded in \(\mathbb{C}^\times \) by mapping a generator to a primitive \((q - 1) \)th root of unity. The trivial character, mapping all non-zero elements to 1, is also a valid choice.

By characters we think of extensions to a group ring \(kG \) of Brauer characters, rather than algebra homomorphisms. For our purposes, the following definition suffices:

Definition 3.3. A character on a \(k \)-self-similar algebra \(\mathcal{A} \) is a map \(\chi : \mathcal{A} \rightarrow \mathbb{C} \) satisfying, for some character \(\chi_0 \) on \(k

\begin{enumerate}
\item \(\chi(1) = 1 \);
\item \(\chi(\lambda s) = \chi_0(\lambda)\chi(s) \) for all \(\lambda \in k, s \in \mathcal{A} \);
\item \(\chi(x^* x) \geq 0 \) for all \(x \in \mathcal{A} \), if \(\mathcal{A} \) is a \(*\)-algebra.
\end{enumerate}

\(\triangle \)

Note in particular that we do not require \(\chi(xy) = \chi(x)\chi(y) \) (this holds only for “linear characters”) nor \(\chi(x + y) = \chi(x) + \chi(y) \) (this would be meaningless if \(k \) has positive characteristic), and we also do not require \(\chi(xy) = \chi(yx) \) (this holds only for “diagonalizable elements”).

A character \(\chi \) on \(\mathcal{A} \) is called self-similar if there is a character \(\chi_0 \) on \(k \) and a positive semidefinite kernel \(k(\cdot, \cdot) \in \mathbb{C}^{\mathcal{A} \times \mathcal{A}} \) such that

\[
q \cdot \chi(s) = \sum_{i,j=0}^{q} k(i,j)\chi(\phi_i(s)_{i,j}).
\]

We also note the following easy property of characters:

Lemma 3.4. If \(\mathcal{A} \) is a contracting, self-similar algebra, then every self-similar character on \(\mathcal{A} \) is determined by its values on the nucleus. If moreover \(\mathcal{A} \) is row- or column-bounded, then every self-similar character on \(\mathcal{A} \) is determined by the kernel \(k \).

\(\square \)

We concentrate on two specific characters, which are both self-similar, with trivial character \(\chi_0(\lambda) = 1 - \delta_{\lambda = 0} \), and determined (via Lemma 3.4) respectively by the kernels \(k(i,j) = \delta_{i = j} \) and \(k(i,j) = 1 \). We denote the first character by \(\chi_f \) since it measures in some sense the fixed points of an element, and the second one by \(\chi_s \) since it measures in some sense the “spread” of an element. For ease of reference, the “spread” character is characterized by

\[
q \cdot \chi_s(\lambda s) = \sum_{i,j=0}^{q} \chi_s(\phi_i(s)_{i,j}) \text{ for all } \lambda \in k^\times.
\]

3.2. **The “spread” character.** We embark in the proof of Theorem [A] which will occupy this whole subsection.

The “spread” character is in fact tightly connected to the boundedness property of \(\mathcal{A} \). In the case of \(\mathcal{B}_q \), or more generally self-similar algebras whose generators decompose as monomial matrices, the recursion formula of \(\chi_s \) implies \(\chi_s(x_0) = \chi_s(x_1) = 1 \), and in fact in \(\mathcal{B}_q \) we have \(\chi_s(x) = 1 \) for any monomial \(x \in G_q \).

It follows that \(\chi_s \) may be related to the growth of languages in \((A \times A)^* \): for each \(x \in \mathcal{A} \), set

\[
L_x = \{(u,v) \in A^k \times A^k \mid \phi^k(x)_{u,v} \in k^\times \cup k^\times x_0 \cup k^\times x_1\}.
\]
Lemma 3.5. For all $x \in \mathcal{A}$, the language L_x is related to the “spread” character $\chi_s(x)$ as follows: there is a constant C such that

$$\#((A \times A)^k \cap L_x) = q^k \chi_s(x) - C$$

for all k large enough.

Proof. This follows from a slight refinement of the contraction property: in fact, for every $x \in \mathcal{A}$, if one iterates sufficiently many times ϕ on x then the resulting matrix (of size $q^k \times q^k$) has entries in $k \times k \mathbb{x}_0 \cup k \mathbb{x}_1$, and the language L_x counts those entries that are not trivial. On the other hand, the “spread” character also counts (up to normalizing by a factor q^k) the number of non-trivial entries. From then on, increasing k multiplies the number of words in L_x by q so the relationship between the growth of L_x and $\chi_s(x)$ remains the same. \hfill \Box

Note that we could have considered a large number of different other languages: counting the number of entries $(u, v) \in A^k \times A^k$ such that the (u, v)-coefficient of $\phi^k(x)$ is, at choice,

- a scalar in \mathcal{A};
- a non-zero element in \mathcal{A};
- an element not in the augmentation ideal $\langle x_i - 1 \rangle$ of \mathcal{A};
- a monomial in \mathcal{A};
- an invertible element of \mathcal{A};
- a unitary element of \mathcal{A}.

All these choices would yield essentially equivalent languages, with comparable growth.

Lemma 3.6. For all integers $k \geq 1$, the “spread” character satisfies

$$\chi_s(1 - x_0^q) = 2/q^{k-1}, \quad \chi_s(1 - \gamma^i(x_0 \cdots x_{q-1})q^k) = 2/q^k.$$

Proof. We compute recursively some values of χ_s. First, $\chi_s(x_1) = 1$ since $\phi(x_1)$ is a permutation matrix. Then $\chi_s(x_0) = 1$ since self-similarity of χ_s yields $q \chi_s(x_0) = \chi_s(x_0) + q - 1$. We next note $\chi_s(1 - x_0) = \chi_s(1 - x_1) = 2$; indeed self-similarity yields $q \chi_s(x_0) = 2q = q \chi_s(x_1)$.

Next, $\phi(x_0^q) = \langle x_0 \cdots x_{q-1}, x_1 \cdots x_{q-1}x_0, \ldots, x_{q-1}x_0 \cdots x_{q-2} \rangle$, and $\phi(x_0 \cdots x_{q-1}) = \langle x_0, \ldots, x_{q-1} \rangle$ and similarly for its cyclic permutations; so self-similarity yields

$$q \chi_s(1 - \gamma^i(x_0 \cdots x_{q-1})) = 2q, \quad q \chi_s(1 - x_0^q) = 2q$$

so $\chi_s(1 - \gamma^i(x_0 \cdots x_{q-1})) = \chi_s(1 - x_0^q) = 2$.

This is the beginning of induction: for $k \geq 1$, the matrix $\phi(x_0^{q^{k+1}})$ is diagonal, with diagonal entries $\gamma^i(x_0 \cdots x_{q-1})q^k$, and $\phi(\gamma^i(x_0 \cdots x_{q-1})q^k)$ is also diagonal, with diagonal entries $x_0^{q^k}, \ldots, x_{q-1}^{q^k}$; so self-similarity yields

$$q \chi_s(1 - x_0^{q^{k+1}}) = \sum_{i=0}^{q-1} \chi_s(1 - \gamma^i(x_0 \cdots x_{q-1})q^k),$$

$$q \chi_s(1 - (x_0 \cdots x_{q-1})q^k) = \chi_s(1 - x_0^{q^k}) + q(q - 1) \chi_s(1 - x_0^{q^k}).$$

Now $x_1^q = 1$ so the last term vanishes because $k \geq 1$, and we get $\chi_s(1 - x_0^{q^{k+1}}) = \chi_s(1 - \gamma^i(x_0 \cdots x_{q-1})q^k) = \chi_s(1 - x_0^{q^k})/q$. \hfill \Box
Consider next the map $\sigma : T \times \cdots \times T \to T$ given by

$$\sigma(s_0, \ldots, s_{q-1}) = \theta(s_0) + x_1 \theta(s_1) + \cdots + x_{q-1} \theta(s_{q-1}).$$

Recalling that γ is the automorphism of T permuting cyclically all generators, we get

$$\phi(\sigma(s_0, \ldots, s_{q-1})) = \begin{pmatrix} s_0 & \gamma(s_{q-1}) & \cdots & \gamma^{q-1}(s_1) \\ s_1 & \gamma(s_0) & \cdots & \gamma^{q-1}(s_2) \\ \vdots & \vdots & \ddots & \vdots \\ s_{q-1} & \gamma(s_{q-2}) & \cdots & \gamma^{q-1}(s_0) \end{pmatrix}.$$

We are ready to prove Theorem A. Define subsets Ω_n of T by

$$\Omega_0 = \{0, 1 - \gamma^i(x_0 \cdots x_{q-1})^{\frac{q}{k}} \text{ for all } i, k\},$$

and finally $\Omega = \bigcup_{n \geq 0} \Omega_n$.

Lemma 3.7. For all $x \in \Omega$ and all i the matrix $\phi(x)$ is diagonal and $\chi_x(s) = \chi_x(\gamma^i(x))$.

Lemma 3.8. For all $s_0, \ldots, s_{q-1} \in \Omega$ we have

$$\chi_x(\sigma(s_0, \ldots, s_{q-1})) = \chi_x(s_0) + \cdots + \chi_x(s_{q-1}).$$

Proof. This follows directly from the form of $\phi(\sigma(s_0, \ldots, s_{q-1}))$ given above, and the fact that χ_x is γ-invariant on Ω. \hfill \Box

Proof of Theorem A. Since H_q is contracting, every element $s \in A$ decomposes in finitely many steps into elements of the nucleus; and χ_x takes values in $\mathbb{Z}[1/q] \cap \mathbb{R}_+$ on the nucleus; so $\chi_x(A)$ is contained in $\mathbb{Z}[1/q] \cap \mathbb{R}_+$.

On the other hand, by Lemma 3.6 the values of χ_x include all $2/q^k$, and Lemma 3.8 its values form a semigroup under addition. It follows (considering separately q even and q odd) that all fractions of the form i/q^k with $i, k \geq 0$ are in the range of χ_x. \hfill \Box

4. Variants

Essentially the same methods apply to numerous other examples; we have concentrated, here, on the one with the closest connection to the Thue-Morse sequence.

Here is another example we considered: write the alphabet $A = \{a_0, \ldots, a_{q-1}\}$, and define $\phi : F \to \mathcal{F}_A \mathcal{G}_A$ by

$$\phi(x_0) = \langle x_0, \ldots, x_{q-1} \rangle(a_i \mapsto a_{i-1} \mod q), \quad \phi(x_1) = \langle 1, \ldots, 1 \rangle(a_0 \leftrightarrow a_1),$$

or in terms of matrices

$$\phi(x_0) = \begin{pmatrix} 0 & x_1 & 0 & \cdots & 0 \\ 0 & 0 & x_2 & \cdots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ 0 & \ddots & \ddots & \ddots & \ddots \\ x_0 & \ddots & \ddots & \ddots & 0 \end{pmatrix}, \quad \phi(x_1) = \begin{pmatrix} 0 & \cdots & 1 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 1 & \cdots & 0 & \ddots & 0 \\ 0 & \cdots & 0 & \ddots & 1 \end{pmatrix}.$$
If furthermore one applies the automorphism that inverts every generator (noting that the \(x_i\) are involutions for \(i \geq 1\)), we may define an injective self-similar group \(H_q\), isomorphic to the above, by

\[
\phi(x_0) = \langle x_0^{-1}, \ldots, x_{q-1}^{-1} \rangle(a_i \mapsto a_{i-1} \mod q), \quad \phi(x_i) = \langle 1, \ldots, 1 \rangle(a_0 \mapsto a_i).
\]

We now note that \(H_q\) is a contracting “iterated monodromy group”. As such, it possesses a limit space — a topological space equipped with an expanding self-covering, whose iterated monodromy group is isomorphic to \(H_q\). Note that \(H_2\) and \(G_2\) are isomorphic. It is tempting to try to “read” the Thue-Morse sequence, and in particular the Thue-Morse word, within the dynamics of the self-covering map.

4.1. Iterated monodromy groups. Let \(f\) be a rational function, seen as a self-map of \(\mathbb{P}^1(\mathbb{C})\), and write \(P = \{f^n(z) : n \geq 1, f'(z) = 0\}\) the post-critical set of \(f\). For simplicity, assume that \(P\) is finite. Choose a basepoint \(* \in \mathbb{P}^1(\mathbb{C})\backslash P\), and write \(F = \pi_1(\mathbb{P}^1(\mathbb{C})\backslash P, *)\), a free group of rank \(#P - 1\).

The choice of a family of paths \(\lambda_x : [0, 1] \to \mathbb{P}^1(\mathbb{C})\backslash P\) from * to \(x \in f^{-1}(*)\) for all choices of \(x\) naturally leads to a self-similar structure on \(F\), following [7]: the decomposition of \(\gamma \in F\) has as permutation the monodromy action of \(F\) on \(f^{-1}(*)\), and the \(\text{deg}(f)\) elements of \(F\) are all \(\lambda_x \# f^{-1}(\gamma) \# \lambda^{-1}_x\), with \# denoting concatenation of paths. The faithful quotient of \(F\) is called the iterated monodromy group of \(G\).

Proposition 4.1. The Thue-Morse group \(H_q\) is the iterated monodromy group of a degree-\(q\) branched covering of the sphere.

Proof. This follows from the general theory of [4]. The branched covering, and its iterated monodromy group, may be explicitly described as follows.

Consider as post-critical set \(\{0, \infty, \zeta^0, \ldots, \zeta^{q-2}\}\) for the primitive \((q - 1)\)th root of unity \(\zeta = \exp(2\pi i/(q - 1))\). Put the basepoint * inside the unit disk, in such a way that it sees \(\zeta^0, \zeta^1, \ldots, \zeta^{q-2}, 0, \infty\) in cyclic CCW order. Put the preimages of * at * and points \(*_i\) inside the unit disk but very close to \(\zeta^i\). As connections between * and its preimages choose paths \(\ell_i\) as straight lines. Consider as generators \(g_x\) a straight path from * to \(x\), following by a small CCW loop around \(x\), and back, in the order mentioned above.

The lift of each \(g_x\) will be two homotopic paths exchanging * and \(*_i\) (all other lifts are trivial) and the lifts of \(g_x\) will be \(g_0\) and a straight path from \(*_i\) to \(\zeta_i\) encircling it once CCW before coming back. It is clear that we have defined a branched covering of the sphere with the appropriate recursion.

Conjecture 4.2. The branched covering described above is isotopic to a rational map of degree \(q\).
We could verify this conjecture for small q; the maps corresponding to $q \leq 5$ are

\[f_2 \approx \frac{1}{z - 0.5z^2}, \]
\[f_3 \approx \frac{0.128775 + 0.0942072i}{z + (-1.74702 + 0.285702i)z^2 + (0.831347 - 0.190468i)z^3}, \]
\[f_4 \approx \frac{0.0232438 + 0.0757918i}{z + (-2.67804 + 1.10938i)z^2 + (2.37852 - 1.93187i)z^3 + (-0.694865 + 0.89421i)z^4}, \]
\[f_5 \approx \frac{0.00877156 + 0.0526634i}{z + (-3.22614 + 2.0417i)z^2 + (3.13076 - 5.12089i)z^3 + (-0.677772 + 4.35662i)z^4 + (-0.245783 - 1.22944i)z^5}. \]

For $q = 2$, when the groups H_2 and G_2 agree, it would be particularly interesting to relate the Thue-Morse word W_2 with the geometry of the Julia set of f_2. Here is a graph approximating this Julia set; the path W_2 may be traced in it, and may be seen to explore neighbourhoods of the large Fatou regions:

Acknowledgments

Caballero is supported by the Air Force Office of Scientific Research through the project “Verification of quantum cryptography” (AOARD Grant FA2386-17-1-4022).

References

[1] Jean-Paul Allouche and Jeffrey Shallit, *The ubiquitous Prouhet-Thue-Morse sequence*, Sequences and their applications (Singapore, 1998), Springer Ser. Discrete Math. Theor. Comput. Sci., Springer, London, 1999, pp. 1–16. MR1843077
[2] Laurent Bartholdi, *Endomorphic presentations of branch groups*, J. Algebra 268 (2003), no. 2, 419–443, DOI 10.1016/S0021-8693(03)00268-0, available at arXiv:math/0007062 MR2009317 (2004h:20044)

[3] ______, *Branch rings, thinned rings, tree enveloping rings*, Israel J. Math. 154 (2006), 93–139, available at arXiv:math.RA/0410226 MR2254535 (2007k:20051)

[4] Laurent Bartholdi and Dzmitry Dudko, *Algorithmic aspects of branched coverings II/V. Sphere bisets and their decompositions* (2016), submitted, available at arXiv:math/1603.04059.

[5] Ievgen V. Bondarenko and Volodymyr V. Nekrashevych, *Post-critically finite self-similar groups*, Algebra Discrete Math. 4 (2003), 21–32. MR2070400 (2005d:20041)

[6] Machgielis Euwe, *Mathematics—set-theoretic considerations on the game of chess*, New Math. Nat. Comput. 12 (2016), no. 1, 11–20, DOI 10.1142/S1793005716500022. Translated from the 1929 German original by Magnus Fabian Nissel. MR3483410

[7] Volodymyr V. Nekrashevych, *Self-similar groups*, Mathematical Surveys and Monographs, vol. 117, American Mathematical Society, Providence, RI, 2005. MR2162164 (2006e:20047)

[8] Ignacio Palacios-Huerta, *Tournaments, fairness and the Prouhet-Thue-Morse sequence*, Economic Inquiry 50 (2012), no. 3, 848-849, DOI 10.1111/j.1465-7295.2011.00435.x, available at https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1465-7295.2011.00435.x

[9] Said N. Sidki, *A primitive ring associated to a Burnside 3-group*, J. London Math. Soc. (2) 55 (1997), no. 1, 55–64. MR97m:16006

GEORG-AUGUST UNIVERSEITAT ZU GOTTINGEN
E-mail address: laurent.bartholdi@gmail.com

UNIVERSITY OF TARTU, TARTU
E-mail address: jose.manuel.rodriguez.caballero@ut.ee

UNIVERSITÉ DU QUÉBEC À MONTRÉAL, QUÉBEC
E-mail address: tanbir@gmail.com