In vitro regeneration of Mirabilis jalapa L.

M. S. Rahman¹, N. C. Nandi² and B. Goswami ³*

¹ Industrial Botany Research Division, BCSIR laboratories Chittagong, Bangladesh Council of Scientific and Industrial Research (BCSIR)
² Medicinal and Aromatic Plant Research Division BCSIR Laboratories Chittagong, Bangladesh Council of Scientific and Industrial Research (BCSIR)
³ Plant Tissue Culture Section, Biological Research Division, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka-1205

Abstract

In vitro regeneration of *Mirabilis jalapa* L., an important medicinal plant, has been successfully established from nodal explants. Maximum numbers of shoots (8.1) were obtained using Murashige and Skoog (MS) medium containing BAP (3.0 mg/l). Next to the highest response by nodal explants of *M. jalapa* was shown on MS medium supplemented with 2.0 mg/l BAP + 1.0 mg/l IAA + 1.0 mg/l Kn. In it, the mean value of shoot number was 7.3. The highest frequency of root induction (80%) were obtained on MS medium supplemented with IAA (0.5 mg/l) and 40 ml/l coconut water. The rooted plantlets were transferred for hardening following acclimatization and finally were successfully planted in the field.

Keywords: Mirabilis; In vitro regeneration; Nodal explants; Multiple shoots

Introduction

Mirabilis jalapa L. (Fam.: Nyctaginaceae) is commonly known as ‘four o’clock plant’ produces beautiful flowers that usually open at around 4 o’clock in the afternoon. It is a popular ornamental plant grown worldwide for the beauty of its flowers (which can be white, pink, yellow, or multicolored), and having a sweet fragrance (Siddiqui et al., 1990). It is a perennial herb, which reaches a height of 50-100 cm from the tuberous root. Apart from its ornamental value, it has also medicinal properties and is used in the herbal medicine practices around the world. The plant has successful uses for the treatment of diarrhea, dysentery, conjunctivitis, edema, swellings, muscular pain and abdominal colics (Daniel, 2006; Holdsworth, 1992). And its leaf extract has antibacterial, antiviral, and antifungal activities. It is also used to control viruses and yeast. *M. jalapa* is rich in many active compounds where each important compound found by researchers is a group of amino acid-based proteins, called mirabils antiviral proteins (Wang et al., 2002). This plant also contains alanine, alpha-amyrlins, arabinose, beta-amyrlins, brassica-sterol, beta-sitosterols, campesterol, stigma-sterol, tartaric acid, trigonelline etc. (Kataoka et al., 1992).

Conventionally, *M. jalapa* reproduces via viable seed but low percentage (50%) of seed viability and the hawk-moth populations are the only species that act as its pollinator thus limiting its natural propagation (Rio and Burquez, 1986). In this context, an alternative way for large scale propagation is tissue culture, a well-known biotechnological tool for the mass propagation of rare, endangered and threatened medicinal plants which are facing the danger of extinction. Though *M. jalapa* currently is not under any risk of being threatened in Bangladesh, yet to ensure any mass scale propagation for extracting medicinal ingredients, tissue culture can be implemented. By using plant tissue culture technique, genetically similar plantlets can be produced in relatively short time. Besides, by maintaining genetic stability, tissue cultured plants are also valuable in speeding up conventional breeding and propagation, reducing space, labor requirement and achieving manipulative goals that cannot be carried out via *in vivo* conditions. *In vitro* propagation

*Corresponding author e-mail: barnagdu@gmail.com
is also a powerful tool for the production of medicinal secondary metabolites as well as for the purpose of conservation (Nadeem et al., 2000) and commercialization. There are very limited reports on in vitro regeneration of M. jalapa (Zaccaci et al., 2007; Xu et al., 2005). So, to develop an in vitro regeneration protocol for this plant is urgent. Therefore, the present study was conducted to develop an efficient protocol for in vitro regeneration of M. jalapa using nodal explants.

Material and methods

The present experiment was conducted in Bangladesh Council of Scientific and Industrial Research (BCSIR), Chattogram, Bangladesh. Nodal explants with axillary buds of M. jalapa were collected from BCSIR research field. Nodal segments (1-2 cm long) without leaves were surface sterilized initially with mild detergent and washed with tap water for 30 min. After that, explants were surface sterilized with 70% (v/v) ethanol for 1 min, followed by 0.1% HgCl₂ by gentle shaking for 8-10 min, and rinsed four times with autoclaved distilled water. Isolated explants were cultured on MS media (Murashige and Skoog, 1962) containing BAP, NAA, IAA and Kn singly or in combinations for in vitro regeneration of shoots. MS media supplemented with coconut water in combination with hormones were also used for shoot regeneration. In vitro regenerated shoots were sub-cultured regularly to fresh medium at an interval of 12-15 d for further multiplication. Elongated shoots were separated and cultured on rooting medium for root formation. About 2-3 cm long shoots were separated and cultured on rooting medium containing full strengths of MS without hormonal supplement or with different concentrations of IAA and IBA. All in vitro grown cultures were maintained under illumination on a 12 h photoperiod at 25 ± 2°C. The plantlets with sufficient root system were then transplanted to small plastic pots containing sterilized soil for their establishment. Twenty plantlets were transplanted into small plastic pot for hardening. After 30 days, the acclimatized plants were transferred to larger pots containing of sterile peat and sand in a ratio of 1:1 and the acclimatized plantlets were watered and fertilized as needed.

Results and discussion

For in vitro regeneration of shoots, nodal explants were used in this experiment. Different concentrations and combinations of BAP, IAA, Kn and NAA were used in MS medium to determine the optimum media composition for initiation and development of multiple shoots from node explants of M. jalapa. Among the media components used in this study, the highest (80%) percentage of response was obtained on MS medium supplemented with 3.0 mg/l BAP using nodal explants (Table I). Initiation of shoots were found within 7-11 days of inoculation (Fig. 1a). The mean number of shoots/explants was found 8.1 (Table I). The initiation of multiple shoots (Fig. 1b) was obtained after one week of culture. For further multiplication, regenerated shoots were sub-cultured on the same media. At this stage the shoots were found to proliferate (Fig. 1c) in same media combination (MS+ 3.0 mg/l BAP). Elongation of such shoots were obtained after 40 days of culture (Fig.1e). Ling et al. (2009) also reported that different concentrations of BAP (0.25 -20.00 µM) showed best response for callus and shoot induction in M. jalapa from leaf explants. Banu et al. (2017) observed better response in Gymura procumbens (Lour.) Merr. on MS with 3.0 mg/l BAP from nodal explants. Khan et al. (2018) reported that best callus induction and multiple shoots formation was found on MS with 2.0 mg/l BAP in R. serpentina. According to Gaber (2015), combinations of 3.0 mg/l Kn and 0.25 mg/l NAA showed highest response for multiple shoot induction in M. jalapa.

BAP (mg/l)	IAA (mg/l)	Kn (mg/l)	NAA (mg/l)	Responses of explants (%)	Days required to get response	Mean no. of shoots/explants
0.5	-	-	-	-	-	-
1	0.2	-	-	30	4-6	1.7
1	-	0.2	-	27	9-11	2.5
1	-	0.2	-	52	11-15	5.0
2	0.5	-	-	40	8-9	5.5
2	-	0.5	-	60	5-11	5.8
2	1	-	-	70	5-13	7.3
2	-	0.5	-	64	8-10	6.5
3	-	-	-	80	7-11	8.1
amino acid-based proteins, called mirabilis antiviral proteins. M. abdomina colics (Daniel, 2006; Holdsworth, 1992). And its flowers (which can be white, pink, yellow, or usually open at around 4 o'clock in the afternoon. It is a perennial herb, which reaches a height of its roots.

Introduction

In vivo conditions. In vivo space, labor requirement and achieving manipulative goals that speeding up conventional breeding and propagation, reducing genetic stability, tissue cultured plants are also valuable in populations are the only species that act as its pollinator thus reproduces via viable seed but low

Material and methods

M. jalapa et al. is also a powerful tool for the production of medicinal secondary ingredients, tissue culture can be implemented. By using plant regeneration of shoots. MS media supplemented with NAA, IAA and Kn singly or in combinations for MS media (Murashige and Skoog, 1962) containing BAP, water for 30 min. After that, explants were surface sterilized nodal segments (1-2 cm long) without leaves were surface collected from BCSIR research field.

Results and discussion

Regeneration protocol. So, to develop an regeneration of M. jalapa. M. jalapa plant regeneration from leaf explants Banu et al., 2005). So, to develop an regeneration of M. jalapa. M. jalapa from leaf explants. Banu Goswami C. The plantlets initiation and development of multiple shoots from node explants. Banu et al. (2017) also showed that the best shoot elongation of M. jalapa. According to Merr. on MS with 3.0 mg/l BAP from nodal explants. Khan et al. (2005) also showed that 1.0 mg/l BAP, 1.0 mg/l Kn and 1.0 mg/l NAA supplemented MS medium with 0.5 mg/l IBA. After sufficient growth of the plant. Mukarlina et. al. (2009) also reported that auxin was effective for root induction in Paraphalaconopsis serpentina (J. J. Sm.) A. D. Hawkes. Gaber (2015) also reported that auxin was effective for root induction in M. jalapa. Jain et. al. (2003) reported best rooting of R. serpentina by supplemented MS medium with 0.5 mg/l IBA. After sufficient development of roots, rooted plantlets were transferred to plastic pots having soil and kept in culture room (Fig. 1f, g). After hardening, plants were successfully planted into lager plastic pots. For their further growth and establishment the survived plantlets were transferred to small field plots.

Next to the highest response, (Table I) nodal explants of M. jalapa also showed better response on MS medium supplemented with 2.0 mg/l BAP +1.0 mg/l IAA + 1.0 mg/l Kn. The percentage of responsive explants was 70% (Table I). Shoot initiation was observed within 5 - 13 days of inoculation for nodal explants. The mean number of shoot was found 7.3 (Table I). Xu et al. (2005) also reported that MS medium in combination with 1.0 mg/l of IAA showed good response in shoot induction of M. jalapa. Rani et al. (2014) also showed that the best shoot elongation of R. serpentina was found on MS media supplemented with 3.0 mg/l IAA+ 3.0 mg/l BAP. Khan (2017) demonstrated that best shoot proliferation response was observed from nodal explants in MS medium with a combination of 1.0 mg/l BAP and 1.0 mg/l IAA in Piper nigrum L.

Combinations of 2.0 mg/l BAP + 1.0 mg/l Kn + 1.0 mg/l NAA also showed good response from the node explants of M. jalapa. In the same media combination as mentioned above, 64% nodal explants showed response with mean value 6.5 shoots (Table I). Gaber (2015) reported combinations of BAP, Kn, NAA with MS medium showed best response for shoot multiplication and callus induction of M. jalapa. Goswami et al. (2018) found responses on shoot regeneration of B. juncea in combination of BAP and NAA using hypocotyl as explants. Banu et al. (2017) observed better response in G. procumbens on MS with BAP and Kn supplemented medium. Pandiyan and Selvaraj (2012) showed that 1.0 mg/l BAP, 1.0 mg/l Kn and 1.0 mg/l NAA was the most suitable combination for obtaining maximum number of shoots from Bacopa monnieri (L.) Pennell.

Root induction is an essential step after elongation of multiple shoots. After 40 days, regenerated shoots were isolated and used for root induction. It was tried in a number of experiments. MS media with various concentrations and combinations of IAA, IBA (mg/l) were tried first for root initiation. But no response was observed. To get better response MS media with various concentrations and combinations of IAA (mg/l) with coconut water (ml/l) were used. Among all combination MS medium with 0.5 mg/l IAA+ 40 ml/l coconut water showed best rooting response, which required 7-14 days for root formation (Fig. 1e).

Coconut water contains different types of plant growth regulator and mineral (Yong et. al., 2009) which may be responsible for growth of the plant. Mukarlina et al. (2010) also reported that coconut water in combination with NAA was found to be effective in root induction in case of Paraphalaconopsis serpentina (J. J. Sm.) A. D. Hawkes. Gaber (2015) also reported that auxin was effective for root induction in M. jalapa.
Introduction
It can be concluded that, the present in vitro regeneration protocol of _M. jalapa_ is efficient and reproducible. This regeneration protocol reported in the present study can be used for the large scale production of this medicinal plant within a short time and to yield important secondary metabolites for pharmaceutical industries with a range of further biotechnological applications.

References
Banu TA, Goswami B, Akter S, Islam M, Tanjin T, Habib A and Khan S (2017), High Frequency In vitro Regeneration of Gynura procumbens (Lour.) Merr., _Plant Tissue Cult. & Biotech._ 27(2): 207-216. DOI: https://doi.org/10.3329/ ptcb.v27i2.35026
Daniel M (2006), Medicinal plants chemistry and properties, Science Publishers, Enfield, NH, U.S.A. p 107
Gaber MK (2015), _In Vitro_ Propagation and Somatic Embryogenesis of _Marcel L_(Mirabilis jalapa L.) from Nodal and Leaf Explants, _Alexandria science exchange journal_. 36: 314-323. https://www.researchgate.net/ publication/271844095.
Goswami B, Hoque MI and Sarker RH (2018), _Agrobacterium_ mediated Genetic Transformation of _oilseed Brassica juncea_(L), _Journal of Natural Sciences Research_, 8: 21-28. https:// www.iiste.org/ Journals/ index.php/ JNSR/ article/ view/ 44099/45483
Holdsworth DK (1992), A preliminary study of medicinal plants of Easter Island, South Pacific, _Int. J. Pharmacognosy_ 30: 27-32. https://doi.org/10.3109/13880209209054626.
Jain V, Singh D, Swarnalata S and Saraf S (2003), In-vitro micro propagation of _Rauwolfia serpentina_ through multiple shoot generation, _Anc Sci Life_. 23(1): 44-49. DOI: 10.3923/ijb.2011.249.254
Kataoka, J (1992), Adenine depurination and inactivation of plant ribosomes by an antiviral protein of _Mirabilis jalapa_ (MAP), _Plant Mol. Biol._ 20(6):111–119.
Khan S, Akhtar B, Habib A, Islam M, Ferdousi A, Das N, and Akter S (2017). In vitro regeneration of _Piper nigrum_, _Bangladesh Journal of Botany_ 46(2): 789-793. https://www.researchgate.net/publication/317971873.
Khan S, Banu TA, Akter S, Goswami B, Islam M, Hani U and Habib A (2018), In vitro regeneration protocol of _Rauwolfia serpentina L._, _Bangladesh J. Sci. Ind. Res._ 53(2): 133-138. DOI: http://dx.doi.org/10.3329/bjsir.v53i2.36674.
Ling APK, Kuok YT, Juulang AG and Sobri H (2009), Induction and maintenance of callus from leaf explants of _Mirabilis jalapa_, _Medicinal and Aromatic Plant Science and Biotechnology_. 3:42-47.
Mukarlin , Listiawati A and Mulyani S (2010), The effect of coconut water and naphthalene acetic acid (NAA) application on the in vitro growth of _Paraphalaenopsis serpentina_ from West Kalimantan, _Bioscience_ 2(2): 62-66. DOI: 10.13057/mushbosci/n020202.
Murashige T and Skoog F (1962), A revised medium for rapid growth and bioassays with tobacco tissue culture, _Plant Physiol._ 15: 473-497.https://doi.org/10. 1111/j.1399-3054. 1962.tb08052.x
Nadeem M, Palmi LMS, Purohit AN, Pandey H and Nandi SK (2000), Propagation and conservation of Podophyllum hexadrum Royle: an important medicinal herb, _Biol. Conserv._ 92: 121–129. DOI: 10.1016/ S0006-3207 (99)00059-2.
Pandiyyan P and Selvaraj T (2012), In vitro multiplication of _Bacopa monnieri_ (L.) Pennell from shoot tip and nodal explants, _Int J Environ Agric Res._ 8(3): 1099-1108.
Rani A, Kumar M and Kumar S (2014), Effect of growth regulators on micropropagation of _Rauwolfia serpentina_ (L.) _Benth._, _Journal of Applied and Natural Science_. 6(2): 507-511. DOI: 10.31018/jans.v6i2.490.
Rio C M and Burquez A (1986), Nectar Production and Temperature Dependent Pollination in _Mirabilis jalapa_ L., _Biotropica_. 18: 28-31. DOI: 10.2307/2388358.
Siddiqui S, Siddiqui BS, Adil Q and Begum S (1990), Constituents of _Mirabilis jalapa_, _Fitoterapia_. 61: 471.
Wang Y, Chen J, Yang Y, Zheng Y, Tang S and Luo S (2002), Newrotenoids from roots of _Mirabilis jalapa_, _HelyChim Acta_. 1, 85: 2342–2348.
Xu X , Hunter D and Reid SM(2005), An Efficient Regeneration System for Four O’clocks (_Mirabilis jalapa_), _Proc. VIIIth IS Postharvest Phys. Ornamentals Eds. N. Marissen et al. Acta Hort. 669_. ISHS, pp-153-156.
Yong JWH, Ge L, Ng YF and Tan SN (2009), The chemical composition and biological properties of coconut (_Cocos nucifera_ L.) water, _Molecules_ 14(12): 5144-5164.
Zaccai M, Jia G, Chen X, Genis O, Feibin D and Gesua R (2007), Regeneration and transformation system in _Mirabilis jalapa_. , _Scientia Horticulturae_. 111: 304-309.