Detection of initial level of Brillouin frequency shift in optical fibres of different types

I V Bogachkov

Omsk State Technical University, 11, Mira Ave., Omsk, 644050, Russia

E-mail: bogachkov@mail.ru

Abstract. The paper presents results of researches of the hyper-acoustic wave velocity on characteristics of the optical fiber core. The values of Brillouin frequency shifts for various types of optical fibers at room temperature and without longitudinal tensile force are presented. Database of profiles of the Mandelstam – Brillouin backscattering spectrums for fibers of different kinds and manufacturers allows one to classify the optical fibers in the optical cables and detect “problem” sections of fiber optical communication line.

1. Introduction
To ensure a longstanding operation of the fiber optical communication line (FOCL), it is necessary to eliminate the longitudinal mechanical strains (upward of 0.2 %) in its optical fibers (OF).

To detect sections of FOCL with high strain of the OF or changed temperature, Brillouin optical time domain reflectometry (BOTDR) and Brillouin optical time domain analysis (BOTDA) [1 – 3] are applied.

The Mandelstam – Brillouin backscattering spectrum (MBBS) along OF is logged and evaluated in BOTDR.

An important advantage of BOTDR compared to BOTDA in the search for “problem” sections of OF that are within the optical cables is sufficient access to only one end of the OF.

2. The theory
The electromagnetic wave from the light signal source is partly dissipated in the back direction with change of frequency in the Mandelstam – Brillouin scattering (MBS) by acoustic phonons.

The Brillouin frequency shift \(f_B \) in OF is defined by:

\[
f_B = f_L - f_S = 2f_Lv_An/c = 2v_An/\lambda_L ,
\]

where \(f_L \) is the laser radiation frequency \((\lambda_L – laser radiation wavelength) \), \(f_S \) – frequency of Stokes component, \(c \) is the light velocity, \(n \) is the refractive index of the OF core, \(v_A \) is the hyper-acoustic wave velocity in OF:

\[
v_A = \sqrt{\frac{\varepsilon_Y(1-\mu_p)}{\rho(1+\mu_p)(1-2\mu_p)}},
\]

where \(\varepsilon_Y \) is the Young’s modulus of OF, \(\mu_p \) is the Poisson’s ratio for OF, \(\rho \) is the OF core density.
A dependence graph of the hyper-acoustic wave velocity of the optical fiber on the Poisson’s ratio is presented in Fig. 1.

If \(\mu_P = 0.17 \ldots 0.22 \) for fused quartz, then the substitution of \(\mu_P \) values in (2) gives the equation:

\[
v_A = (1.03 \ldots 1.07) \sqrt{\varepsilon_f / \rho} ,
\]

which improves the generally accepted equation [1 – 3]:

\[
v_A = \sqrt{\varepsilon_f / \rho} ,
\]

as it includes a number of factors related to the OF core structure.

![Figure 1. The dependence of \(v_A(\mu_P) \)](image)

The relative change in the core density of quartz OF at small strains is connected to the relative stretching by the formula [4]:

\[
\Delta \rho / \rho = -0.66 \Delta L / L .
\]

The change of Brillouin frequency shift \((\Delta f_B) \) with OF temperature \((T) \) is characterized by a linear dependence:

\[
\Delta f_B(T) = f_B(T) - f_{B0} = C_i \cdot (T - T_0) ,
\]

where \(C_i \) is the linearization factor depending on wavelength with particular Young's modulus, \(f_B(T) \) is the frequency of MBBS maximum; \(T_0 \) is an initial temperature (e.g., typical room temperature), \(f_{B0} = f_B(T_0) \).

The change of Brillouin frequency shift \((\Delta f_B) \) with a degree of strain \((\varepsilon_e) \) at a specific OF section is also described by a linear dependence:
\[s_e - s_{e0} = \Delta s_e = \frac{f_B(s_e) - f_{B0}}{f_{B0} \cdot C_T} = \frac{\Delta f_B(s_e)}{f_{B0} \cdot C_T}, \tag{7} \]

where \(\Delta s_e \) is the change of OF strain with respect to initial value \((s_{e0}) \); \(f_B(s_e) \) is Brillouin frequency shift as a function of strain; \(f_{B0} \) is the initial value of \(f_B \) \((f_{B0} = f_B(s_{e0})) \); \(C_T \) is a linearization coefficient at a certain temperature depending on wavelength; \(\Delta f_B(z) \) is the \(f_B \) as a function of initial value of \(f_{B0} \).

The investigation of MBBS in OF from different manufacturers, OF with different laws of dispersion behavior and with various structures of the OF core [5 – 9] are of particular interest, since the power levels of the signal injected into OF are significant in Brillouin reflectometry.

3. Statement of the problem
Experimental researches with BOTDR “Ando AQ 8603” with the cooperation of CJSC “Moskabel–Fujikura” were performed to examine the MBS features in single mode optical fibers of different types, the MBBS profiles of optical fibers, the temperature dependencies, and MBBS behavior from various influences.

4. Experimental results
The theoretical and experimental investigations show that the “initial level” \((f_{B0}) \) for normal conditions (at room temperature and in the absence of mechanical stresses – longitudinal strains) is varied based on different types of OF and manufacturers [5 – 9].

It is necessary to define the “initial level” of \(f_{B0} \) and the coefficients for temperature and strain changes of OF for each kind of OF.

Table 1 below presents the values of \(f_{B0} \) for all studied varieties of OF.

Type of OF	\(f_{B0} \) values, GHz	recommended value of \(f_{B0} \), GHz \((n = 1.468) \)	\(v_A \), km/s \((n = 1.468) \)	\(n_e \) \((v_A = 5.7 \text{ km/s}) \)
G.652	10.82 ... 10.86	10.84	5.71	1.468
G.653 (DSF)	10.47 ... 10.49	10.47	5.53/5.63/5.72	1.42/1.45/1.47
G.655 (NZDSF)	10.61 ... 10.64	10.63	5.61	1.443
G.657	10.77 ... 10.80	10.79	5.70	1.466
“Panda”	10.40 ... 10.42	10.41	5.50	1.413
EDF	10.68 ... 10.70	10.70	5.64	1.450

G.652 is a standard widespread single mode fiber [1].
G.653 is a dispersion-shifted single mode fiber (DSF) [2].
NZDSF (G.655) is a non-zero dispersion-shifted single mode optical fiber [2].
G.657 is a single mode fiber with high resistance to bending.
“Panda” is a kind of polarization maintaining fiber (PMF) [6 – 8].
EDF is an erbium-doped fiber [9].

In use of calculations \(f_{B0} \) from table 1, the strain dependencies on temperature for various OF are practically identical.

The values of \(v_A \) are obtained by formula (1) for the values of \(f_{B0} \) from table 1 (in case of \(n = 1.468 \)).

Values \(n_e \) (equivalent values of \(n \)) are obtained by formula (1) for the values of \(f_{B0} \) from table 1 (in case of \(v_A = 5.7 \text{ km/s} \)).

The findings of researches indicate that the MBBS profiles of optical fibers of various types and manufacturers are different.
In addition, with different impacts on the fiber (the temperature changes or the changes of the longitudinal tensile force) in its profile, not only the value of Brillouin frequency shift (f_B), but the form of the MBBS can be changed.

For example, MBBS profiles of the G.653-DSF for normal conditions (at room temperature and in the absence of mechanical stresses) are presented in Fig. 2

Figure 2. The DSF profile without longitudinal tensile force

The first peak is observed on a frequency of 10.46 GHz, the second peak – on a frequency of 10.66 GHz and the third peak – on a 10.86 GHz.

Under the influence of the longitudinal tensile force of 2 N, not only shift of the first peak on a frequency of 10.55 GHz, but some change in the MBBS shape is observed, that is shown in Fig. 3 (relative levels of the second and the third peaks have changed).

Figure 3. The DSF profile with longitudinal tensile force of 2 N

By increasing the longitudinal tensile force to 5 N (or in case of significant temperature changes) the MBBS graphs near the second and the third peaks can be “smoothed” that is presented in Fig. 4

Figure 4. The DSF profile with longitudinal tensile force of 5 N
This effect can be explained by the presence of different layers in the OF core structure that have the most pronounced in DSF.

The example of the usual DSF core structure is shown in Fig. 5.

![Figure 5. The dependence of the DSF core refractive index on core radius \(n(r) \)](image)

The dependence of the core refractive index on the core radius \(n(r) \) demonstrates that some layers have different refractive indexes \((n_1, n_2, n_3) \) (Fig. 5).

This effect can be explained by the presence of different layers in the core structure of the fiber that are most pronounced in the DSF. Multiple acoustic modes are generated in the DSF. Each of these modes exerts the influence on the shape of the MBBS (the appearance of additional peaks) of the light signal.

Analysis of equation (1) shows that the velocity change of hyper-acoustic wave or the refractive index value of the fiber core affect the changes of the \(f_B \). In external influence on OF (the temperature change, the transverse or longitudinal force), the reaction of the different layers in the fiber core structure may be different. In this case, for each layer the conditions (the layer density, the refractive index of the material and the hyper-acoustic wave velocity in the layer) are changed in their own way, leading to change of the shape of the MBBS in OF.

5. Conclusion
Presence of database of MBBS profiles for different OF types and manufacturers provides an opportunity to classify OF in FOCL, and to detect fault sections [1 – 6].

The possibility of structure and composition determination of the layers forming the OF core, according to the obtained MBBS profiles and frequencies of all MBBS peaks is of practical value, since the introduction of doping material and change in their concentration affect the hyper-acoustic wave velocity in OF and the effective refractive index.

To detect sections with modified temperature and strain, it is desirable to have a reference BOTDR-trace for the investigated OF in normal conditions (at room temperature and in the lack of mechanical stress). Such trace facilitates the timely detection of the “problem” section in FOCL, and therefore, the elimination of this situation prior to the fiber breaking of FOCL.

6. Acknowledgments
The author would like to thank partners from CJSC “Moskabel–Fujikura” for assistance in carrying out the experiments.
The work was performed with the financial support of the Ministry of Education and Science of the Russian Federation within the scope of the base part of a State Assignment within the sphere of scientific activity (Project No. 8.9334.2017/8.9).

References

[1] Bogachkov I V, Gorlov N I 2014 Experimental Examination of the Strain Characteristics of Optical Fibers IEEE 12th International Conference on Actual Problems of Electronic Instrument Engineering (APEIE–2014) Proceedings (Novosibirsk) vol 1 pp 223–227

[2] Bogachkov I V 2015 Researching of Influence of the Strain Degree of Optical Fibers on the Brillouin Backscattering Characteristics International Siberian Conference on Control and Communications (SIBCON–2015) Proceedings (Omsk) pp 1–6

[3] Gorshkov B G, Gorbatov I E, Danileiko Y K, Sidorin A V 1990 Luminescence, Scattering and Absorption of Light in Quartz Optical Fibers and Prospects of Their Use in Distributed Lightguide Sensors Quantum Electronics 17, 3 pp 345–350

[4] Bao X, Chen L 2011 Recent Progress in Brillouin Scattering Based Fiber Sensors Sensors 11 pp 4152–4187

[5] 2015 BOTDR Measurement Techniques and Brillouin Backscatter Characteristics of Corning Single-Mode Optical Fibers Retrieved from: http://www.corning.com/media/worldwide/coc/documents/Fiber/RC-%20White%20Papers/WP-General/WP4259_01-15.pdf

[6] Kompaneets O E, Trukhina A I, Bogachkov I V 2017 Experimental Researches of Mandelstam – Brillouin Backscattering Features in “Panda” Optical Fiber Systems of Signal Synchronization, Generating and Processing in Telecommunications (SINKHROINFO-2017) Proceedings (Kazan) pp 1–6

[7] Smirnov A S, Burdin V V, Petukhov A S, Drozdov I R, Kuz’minykh Y S, Besprozvannykh V G, Konstantinov Y A 2015 Birefringence in anisotropic optical fibres studied by polarised light brillouin reflectometry Quantum Electronics 45, 1 66–68

[8] Kim Y H, Song K Y 2015 Characterization of Nonlinear Temperature Dependence of Brillouin Dynamic Grating Spectra in Polarization-Maintaining Fibers Journal of Lightwave Technology, 33, 23, pp 4922–4927

[9] Trukhina A I, Bogachkov I V 2017 Experimental Testing of the Mandelstam – Brillouin Scattering Features in the Erbium-Doped Optical Fiber Systems of Signal Synchronization, Generating and Processing in Telecommunications (SINKHROINFO-2017) Proceedings (Kazan) pp 1–6