Multicomponent Macrocyclic IL-17a Modifier

Published as part of the ACS Medicinal Chemistry Letters virtual special issue “New Drug Modalities in Medicinal Chemistry, Pharmacology, and Translational Science”.

Eman Abdelraheem, Max Lubberink, Wenja Wang, Jingyao Li, Atilio Reyes Romero, Robin van der Straat, Xiaochen Du, Matthew Groves, and Alexander Dömling*

ACCESS

ABSTRACT: IL-17a is a major inflammation target, with several approved antibodies in clinical use. Small-molecule IL-17a antagonists are an emerging hot topic, with the recent advancement of three compounds into clinical trials. Here, we describe the design, discovery, synthesis, and screening of macrocyclic compounds that bind to IL-17a. We found that all currently described IL-17a modifiers belong to the same pharmacophore model, likely resulting in a similar receptor binding mode on IL-17a. A pipeline of pharmacophore analysis, virtual screening, resynthesis, and protein biophysics resulted in a potent IL-17a macrocyclic modifier.

KEYWORDS: interleukin 17a, IL-17a, multicomponent reaction, Ugi, isocyanide, MST, pharmacophore

The cytokine interleukin 17a (IL-17a) is involved in pathogenesis of several immunoinflammatory diseases, including psoriasis, psoriatic arthritis, and rheumatoid arthritis. After binding to the receptor on the surface of T helper cells, IL-17 activates several signaling cascades that, in turn, lead to the induction of chemokines. The chemokines act as chemoattractants and recruit immune cells, such as monocytes and neutrophils, to the site of inflammation to help eliminate invading pathogens. Activation of IL-17 signaling is also observed in the pathogenesis of various autoimmune disorders, such as psoriasis. Antagonizing the IL-17−receptor interaction can abrogate the inflammatory overreaction of this cytokine in a pathogenic setting. The potential applications of IL17-directed drugs could go well beyond the above-mentioned indications, e.g., multiple sclerosis (MS), Alzheimer’s disease, or ischemic brain injury; however, they are limited by the mAb nature of the currently available drugs.

With an extensive buried surface area between the receptor and the IL-17 dimer of ~2220 Å², not surprisingly, all current anti-IL-17a therapies are based on antibodies. Given the success of the marketed antibody drugs secukinumab (Cosentyx) and ixekizumab (Talz) in psoriasis, psoriatic arthritis, and anklyosing spondylitis, the race to a commercial small-molecule IL-17a antagonist has started (Figure 1). While the early attempts to discover IL-17a modifiers were focused on macrocycles, with the idea to cover a large surface area (1−4), more recent attempts successfully discovered non-macrocyclic small molecules (5−7). It started as early as 2016, when screening a macrocyclic DEL-derived library

Figure 1. Timeline of macrocyclic and small-molecule IL-17a modifier discovery. The smallest common denominator α-aminoacyl amide substructure is marked in blue.

Received: May 27, 2022
Accepted: August 10, 2022
Published: August 12, 2022
yielded the 18-membered compound 1. Several years later, the co-crystal structures of related macrocycles 2 (20-membered) and 3 (21-membered), with the IL-17a homodimer, were published, revealing that these compounds bind at the interface of the monomers of the IL-17a dimer, thereby allosterically reducing its ability to engage the IL-17 receptor. Another interesting IL-17a-modifying macrocycle is the 18-membered 4, which is built on a macrolide scaffold. Recently, three small non-macrocyclic molecules, 5, 6, and 7, entered early clinical trials. In parallel, several peptides potently binding IL-17a were disclosed. Here we describe our efforts to discover yet another macrocyclic IL-17a modifier, based on our recently developed efficient multi-component reaction-based macrocycle chemistry.

Analysis of the co-crystal structure of the two macrocycles, 2 and 3, bound to the interface of the IL-17a dimer revealed in both structures four key hydrogen bonds of the bis-amide substructure with the backbone of Leu97A and Leu97B (Figure 2B). We figured that these hydrogen bonds could be used to anchor moieties into the IL-17a dimer interface. Interestingly, all currently described IL-17a modifiers (Figure 1) contain the same bis-amide substructure or a bioisostere thereof. Our bis-hydrogen bond donor/hydrogen bond acceptor pharmacophore model (Figure 2C) serves to screen a compound library of ~1000 macrocycles by virtual screening (VS). To test our VS hypothesis in a timely manner, we focused on a recently described (by us) short and convergent two-step macrocycle syntheses of 6-SS, 7-SS, and 8-SS. To further characterize the most active compound, we separated the stereoisomers using semi-preparative supercritical fluid chromatography (SFC) on a Chiralpak IC chiral column, 10.0 × 250 mm (Figure 3). We were able to separate two isomers, 6C and 6D. Rescreening of the two isolated stereoisomers and the remaining inseparable mix revealed 6AB and showed that the isomer 6C gave the best affinity, at 170 nM.

Among the four possible stereoisomers of 6, the SS one shows the best cooperativity score (14.6), followed by RS (12.8), SR (11.6), and RR (7.2). Figure 4A shows a dense network of van der Waals interactions between 6-SS and hydrophobic residues like Ile-96, Leu-97, Val-98, Leu-99, Leu-112, and Leu-117. Similarly, these types of interactions are also prevalent among the other three stereoisomers (Figure SI-7). To a lesser but still present extent, there are π–π contacts with Tyr-62 and Leu-99 (Figure 4B). Interestingly, the four hydrogen bonds with Leu-97A/B are shared only by the three compounds to the IL-17a dimer using microscale thermophoresis (MST). The mixture of stereoisomers of 6, 7, and 8 showed promising binding affinities of 507 nM, 94 μM, and 51.1 μM, respectively. To further characterize the most active compound, we separated the stereoisomers using semi-preparative supercritical fluid chromatography (SFC) on a Chiralpak IC chiral column, 10.0 × 250 mm (Figure 3). We were able to separate two isomers, 6C and 6D. Rescreening of the two isolated stereoisomers and the remaining inseparable mix revealed 6AB and showed that the isomer 6C gave the best affinity, at 170 nM.

Among the four possible stereoisomers of 6, the SS one shows the best cooperativity score (14.6), followed by RS (12.8), SR (11.6), and RR (7.2). Figure 4A shows a dense network of van der Waals interactions between 6-SS and hydrophobic residues like Ile-96, Leu-97, Val-98, Leu-99, Leu-112, and Leu-117. Similarly, these types of interactions are also prevalent among the other three stereoisomers (Figure SI-7). To a lesser but still present extent, there are π–π contacts with Tyr-62 and Leu-99 (Figure 4B). Interestingly, the four hydrogen bonds with Leu-97A/B are shared only by the SS...
A 17a MST assay was performed. Purified IL-17a protein was considered crucial for macrocycle binding to IL-17a.

Figure 3. SFC-MS chromatograms of the separation of the stereoisomers of 6 on a Chiralpak IC chiral column and their respective binding affinities, \(K_d \): (A) (rac)-6, (B) 6AB, (C) 6C, and (D) 6D.

The compounds described in this application were tested for their ability to bind IL-17. The biophysical data obtained from testing the above representative examples revealed binding affinities of 507 nM, 94 \(\mu \)M, and 51.1 \(\mu \)M for the diastereomeric meso mixture of compounds 6, 7, and 8, respectively (Figure 3). Subsequent separation of compound 6 into 6AB, 6C, and 6D revealed \(K_d \) values of 328 nM, 170 nM, and 309 nM, respectively.

Using a rational drug design approach, enabled by computational macrocycle screening and a very short, two-step macrocycle synthesis, we were able to discover low nM binders to the important anti-inflammatory target IL-17a. Moreover, pharmacophore analysis of currently described small-molecule IL-17a antagonists revealed a common multifurcated hydrogen-bonding pattern. Our findings are significant and will be of help for future design of small-molecule IL-17a antagonists to test medical indications which are out of reach of the current mAb-based therapeutics.

ASSOCIATED CONTENT

Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsmedchemlett.2c00257.

Experimental procedures and full characterization for compounds, including Figures SI-1–SI-8 and Tables SI-1 and SI-2 (PDF).

AUTHOR INFORMATION

Corresponding Author
Alexander Dömling — Department of Pharmacy, Drug Design Group, University of Groningen, Groningen 9700 AV, The Netherlands; orcid.org/0000-0002-9923-8873; Email: a.s.s.domling@rug.nl

Authors
Eman Abdelraheem — Department of Pharmacy, Drug Design Group, University of Groningen, Groningen 9700 AV, The Netherlands; Chemistry Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
Max Lubberink — Department of Pharmacy, Drug Design Group, University of Groningen, Groningen 9700 AV, The Netherlands
Wenja Wang — Department of Pharmacy, Drug Design Group, University of Groningen, Groningen 9700 AV, The Netherlands
Jingyao Li — Department of Pharmacy, Drug Design Group, University of Groningen, Groningen 9700 AV, The Netherlands
Attilio Reyes Romero — Department of Pharmacy, Drug Design Group, University of Groningen, Groningen 9700 AV, The Netherlands
Robin van der Straat — Department of Pharmacy, Drug Design Group, University of Groningen, Groningen 9700 AV, The Netherlands
Xiaochen Du — Department of Pharmacy, Drug Design Group, University of Groningen, Groningen 9700 AV, The Netherlands
Matthew Groves — Department of Pharmacy, Drug Design Group, University of Groningen, Groningen 9700 AV, The Netherlands

Complete contact information is available at: https://pubs.acs.org/10.1021/acsmedchemlett.2c00257

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS
This research has been supported by a Sanofi Type 2 Innovation Grant and Innovatief Actieprogramma Groningen (IAG 4) to A.D. and M.G. X.D. and J.L. were supported by the Chinese Scholarship Council.
REFERENCES

(1) Ruiz de Morales, J. M. G.; Puig, L.; Daudén, E.; Cañete, J. D.; Pablos, J. I.; Martín, A. O.; Juanatey, C. G.; Adán, A.; Montalbán, X.; Borrell, N.; Ortí, G.; Holgado-Martín, E.; García-Vidal, C.; Vizcaya-Morales, C.; Martín-Vázquez, V.; González-Gay, M. A. Critical role of interleukin (IL)-17 in inflammatory and immune disorders: An updated review of the evidence focusing in controversies. Autoimmunity Reviews 2020, 19 (1), 102439.

(2) Milovanovic, J.; Arsenijevic, A.; Stojanovic, B.; Kanjevac, T.; Arsenijevic, D.; Radosavljevic, G.; Milovanovic, M.; Arsenijevic, N. Interleukin-17 in Chronic Inflammatory Neurological Diseases. Front Immunol 2020, 11, 947.

(3) Espada, A.; Broughton, H.; Jones, S.; Chalmers, M. J.; Dodge, J. A. A binding site on IL-17A for inhibitory macrocyles revealed by hydrogen/deuterium exchange mass spectrometry. Journal of medicinal chemistry 2016, 59 (5), 2255–2260.

(4) Liu, S.; Desharnais, J.; Sahasrabudhe, P. V.; Jin, P.; Li, W.; Oates, B. D.; Shanker, S.; Banker, M. E.; Chunryk, B. A.; Song, X. Inhibiting complex IL-17A and IL-17RA interactions with a linear peptide. Sci. Rep. 2016, 6 (1), 26071.

(5) Liu, S.; Dakin, L. A.; Xing, L.; Withka, J. M.; Sahasrabudhe, P. V.; Li, W.; Banker, M. E.; Balbo, P.; Shanker, S.; Chunryk, B. A.; et al. Binding site elucidation and structure guided design of macrocyclic IL-17A antagonists. Sci. Rep. 2016, 6, 30859.

(6) Wang, W.; Groves, M. R.; Dömling, A. Artificial Macrocycles as IL-17A/IL-17RA Antagonists. Medchemcomm 2018, 9 (1), 22–26.

(7) Wadsworth, S. S.; Scaria, A.; Chan, C.-C. Use of an il17 inhibitor for treating and preventing macular degeneration. Patent CA290706A1, 2013.

(8) Schmidt, M. M.; Kovalchin, J. T.; Furline, E. S.; Celniker, A. C.; Erbe, D. V. Local delivery of il17 inhibitors for treating ocular disease. Patent WO2014107737, 2014.

(9) Dömling, A.; Li, X. TNF-α: The shape of small molecules to come? Drug Discovery Today 2022, 27 (1), 3–7.

(10) Langley, R. G.; Elewski, B. E.; Lebwohl, M.; Reich, K.; Griffiths, C. E.; Papp, K.; Puig, L.; Nakagawa, H.; Spelman, L.; Sigurgeirsson, B.; et al. Secukinumab in plaque psoriasis—results of two phase 3 trials. New England Journal of Medicine 2014, 371 (4), 326–338.

(11) Griffiths, C. E.; Reich, K.; Lebwohl, M.; van de Kerkhof, P.; Paul, C.; Menter, A.; Cameron, G. S.; Erickson, J.; Zhang, L.; Secrest, R. J.; et al. Comparison of ixekizumab with etanercept or placebo in moderate-to-severe psoriasis (UNCOVER-2 and UNCOVER-3): results from two phase 3 randomised trials. Lancet 2015, 386 (9993), 541–551.

(12) Lebwohl, M.; Strober, B.; Menter, A.; Gordon, K.; Weglowska, J.; Puig, L.; Papp, K.; Spelman, L.; Toth, D.; Kerdel, F.; et al. Phase 3 studies comparing brodalumab with ustekinumab in psoriasis. New England Journal of Medicine 2015, 373 (14), 1318–1328.

(13) Liu, S.; Desharnais, J.; Sahasrabudhe, P. V.; Jin, P.; Li, W.; Oates, B. D.; Shanker, S.; Banker, M. E.; Chunryk, B. A.; Song, X.; et al. Inhibiting complex IL-17A and IL-17RA interactions with a linear peptide. Sci. Rep. 2016, 6, 26071.

(14) Ting, J. P.; Tung, F.; Antonysamy, S.; Wasserman, S.; Jones, S. B.; Zhang, F. F.; Espada, A.; Broughton, H.; Chalmers, M. J.; Woodman, M. E.; Bina, H. A.; Dodge, J. A.; Benach, J.; Zhang, A.; Groshong, C.; Manglicmot, D.; Russell, M.; Afshar, S. Utilization of peptide phase display to investigate hotspots on IL-17A and what it means for drug discovery. PLoS One 2018, 13 (1), No. e0190850.

(15) Madhavachary, R.; Abdelraheem, E. M. M.; Rossetti, A.; Twarda-Clapa, A.; Musielak, B.; Kurpiewska, K.; Kalinowska-Tlusćik, J.; Holak, T. A.; Dömling, A. Two-Step Synthesis of Complex Artificial Macrocyclic Compounds. Angew. Chem., Int. Ed. 2017, 56 (36), 10725–10729.

(16) Liao, G. P.; Abdelraheem, E. M.; Neochoritis, C. G.; Kurpiewska, K.; Kalinowska-Tlusćik, J.; McGowan, D. C.; Dömling, A. Versatile multicomponent reaction macrocycle synthesis using α-isocyno-ω-carboxylic acids. Org. Lett. 2015, 17 (20), 4980–4983.