HPLC Method for Simultaneous Quantitative Detection of Quercetin and Curcuminoids in Traditional Chinese Medicines

Lee Fung Ang*, Mun Fei Yam, Yvonne Tan Tze Fung, Peh Kok Kiang, Yusrida Darwin

School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia

Key Words
curcuminoid, high-performance liquid chromatography (HPLC), international conference harmonisation (ICH), quercetin

Abstract

Objectives: Quercetin and curcuminoids are important bioactive compounds found in many herbs. Previously reported high performance liquid chromatography ultraviolet (HPLC-UV) methods for the detection of quercetin and curcuminoids have several disadvantages, including unsatisfactory separation times and lack of validation according the standard guidelines of the International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use.

Methods: A rapid, specific, reversed phase, HPLC-UV method with an isocratic elution of acetonitrile and 2% v/v acetic acid (pH 2.6) at a flow rate of 1.3 mL/minutes, a column temperature of 35°C, and ultraviolet (UV) detection at 370 nm was developed. The method was validated and applied to the quantification of different types of market available Chinese medicine extracts, pills and tablets.

Results: The method allowed simultaneous determination of quercetin, bisdemethoxycurcumin, demethoxycurcumin and curcumin in the concentration ranges of 0.00488 — 200 μg/mL, 0.625 — 320 μg/mL, 0.07813 — 320 μg/mL and 0.03906 — 320 μg/mL, respectively. The limits of detection and quantification, respectively, were 0.00488 and 0.03906 μg/mL for quercetin, 0.62500 and 2.50000 μg/mL for bisdemethoxycurcumin, 0.07813 and 0.31250 μg/mL for demethoxycurcumin, and 0.03906 and 0.07813 μg/mL for curcumin. The percent relative intra day standard deviation (% RSD) values were 0.432 — 0.806 μg/mL, 0.576 — 0.723 μg/mL, 0.635 — 0.752 μg/mL, and 0.655 — 0.732 μg/mL for quercetin, bisdemethoxycurcumin, demethoxycurcumin and curcumin, respectively, and those for intra day precision were 0.323 — 0.806 μg/mL, 0.805 — 0.854 μg/mL, 0.078 — 0.844 μg/mL and 0.275 — 0.829 μg/mL, respectively. The intra day accuracies were 99.589% — 100.821%, 98.588% — 101.084%, 9.289% — 100.88%, and 98.292% — 101.022% for quercetin, bisdemethoxycurcumin, demethoxycurcumin and curcumin, respectively, and the inter day accuracy were 99.665% — 103.06%, 97.669% — 103.513%, 99.569% — 103.617%, and 97.929% — 103.606%, respectively.

Conclusion: The method was found to be simple, accurate and precise and is recommended for routine quality control analysis of commercial Chinese medicine products containing the flour flavonoids as their principle components in the extracts.

1. Introduction

Quercetin is a category in the class of flavonoids, and...
Ginkgo biloba, botanicals, such as flowers, barks and leaves. It is also found in medicinal licis found as pigments in fruits, vegetables, seeds, nuts, flowers, barks and leaves. It is also found in medicinal products like Chinese medicinal materials (because such products normally contain more than one herb). For simultaneous determination of quercetin and curcuminoids, HPLC method is the recommended technique because it uses separation, identification and quantification of the analytes from plant extracts, foods, pharmaceutical products, and body fluids.

In the present study, a simple isocratic reversed phase HPLC method was developed according to international conference harmonisation (ICH) guidelines [52] for the simultaneous quantitative detection of quercetin and curcuminoids. The method was also validated by using market available traditional Chinese medicine materials such as granules, pills and tablets.

2. Materials and Methods

Curcumin (mixture of curcumin, demethoxycurcumin, and bisdemethoxycurcumin) was obtained from Acros Organics, USA. Quercetin anhydrous was obtained from Sigma, USA. The HPLC grade acetonitrile and methanol were purchased from JT Baker, USA. Analytical grade acetic acid was obtained from QRëC, Malaysia. Nylon membrane filters 0.45 µm were purchased from Whatman, England.

HPLC analysis was performed using a Shimadzu-LC system (Shimadzu, Japan) equipped with an CBM-20A controller, LC-20AT pump, DGU-20A5 prominence degasser, SIL-20A auto sampler, SPD-20AV detector and CTO-10ASvp column oven.

Chromatographic separations were achieved using a Thermo Hypersil Gold column (250 mm x 4.6 mm I.D.: 5 µm). A security guard column (Zorbax Eclipse Plus) packed with a replaceable C-18 cartridge (12.5 mm x 4.6 mm ID.: 5 mm) was used to protect the analytical column. A reverse phase HPLC assay was carried out using an isocratic elution with a flow rate of 1.3 mL/minutes, a column temperature of 35°C, a mobile phase of acetonitrile and 2% v/v acetic acid (pH 2.60) (40% : 60% v/v) and a detection wavelength of 370 nm. The injection volume was 20 µL of each solutions. The total run time was 18.5 minutes for each injection. Data were acquired and processed with LC-Solution Software. Solvents and distilled water were prior filtered through a 0.45-µm nylon membrane by using a set of glass bottles with the aid of a vacuum pump (Fisherbrand FB 70155, Fisher Scientific, UK).

Twenty mg of a mixture of curcumin (containing mainly curcumin, demethoxycurcumin and bisdemethoxycurcumin) and 20 mg of quercetin were accurately weighed using a microbalance (Sartorius, MC5, Germany) and dissolved in 20 mL of HPLC grade methanol in a 20 mL volumetric flask. The mixtures were diluted to 320 µg/mL with HPLC grade methanol; and were then serially doubling diluted to 1.22 ng/mL. These solutions were used as calibration standards for the quantitative determinations of the...
Figure 1 Chemical structures of quercetin, and the curcuminoids: curcumin, demethoxycurcumin and bisdemethoxycurcumin.

limit of detection (LOD), the limit of quantification (LOQ) and the limit of linearity (LOL), and for the linear range analysis. Three quality control (QC) samples at concentrations of 3.75 µg/mL, 100 µg/mL and 160 µg/mL, respectively, were prepared from the stock solution. All solutions were stored in tightened screw cap bottles to avoid evaporation and were protected from light, and were kept in a refrigerator (4°C) for not more than two weeks.

Standard solutions with concentrations in the range from 1.22 ng/mL to 320 µg/mL were injected in duplicate into the HPLC unit. The LOD and LOQ of quercetin (QUE), bisdemethoxycurcumin (BDMC), demethoxycurcumin (DMC) and curcumin (CUR) were determined in a at the lower concentration range based on the signal to noise ratio. According to The United States Pharmacopeia (USP), the LOD and the LOQ are in terms of 2 or 3 times, and 10 times the noise level respectively. The LOL was determined by plotting a calibration curve (mean value of the peak areas against the concentrations) beginnings with the LOQ concentration and proceeding to the data point that deviated from the regression line. The coefficient of determination ($R^2 \geq 0.999$) was used as a guideline to evaluate the model fit of a regression equation.

Linear ranges for quercetin, bisdemethoxycurcumin, demethoxycurcumin and curcumin included concentrations of 1.25, 5, 20, 40, 80, 140 and 200 µg/mL. Separate calibration curves were constructed for quercetin, bisdemethoxycurcumin demethoxycurcumin and curcumin by plotting the peak areas against the concentrations, and the methods were evaluated by determining the coefficient of determination (R^2). Unknown assay samples were quantified by referencing them to these calibration curves. QC samples (3.75, 100 and 160 µg/mL) were used to validate intra day and inter day accuracies and precisions. Intra day precisions and accuracies were determined by using a replicate analysis ($n = 6$) of the QC samples on the same day under the same analytical conditions. Inter day

3. Results

The LOD and the LOQ were determined based on the signal to noise (S/N) ratio, with the S/N > 3 and the S/N
> 10 for the LOD and the LOQ, respectively. The LODs of quercetin, bisdemethoxycurcumin, demethoxycurcumin and curcumin were 0.00488, 0.62500, 0.07813 and 0.03906 µg/mL, respectively. The LOQs of quercetin, bisdemethoxycurcumin, demethoxycurcumin and curcumin were 0.03906, 2.5000, 0.31250 and 0.07813 µg/mL, respectively (Table 1). The linearity for detecting quercetin, bisdemethoxycurcumin, demethoxycurcumin and curcumin was tested against a mixture of calibration standards with concentration ranging from 1.22 ng/mL to 320 µg/mL. The LOL of each compound was determined from a separate calibration curve. Quercetin was linear up to 200 µg/mL, while bisdemethoxycurcumin, demethoxycurcumin and curcumin were linear up to 320 µg/mL.

Linear calibration curves in the range from 1.25 to 200 µg/mL were constructed for each compound by plotting the peak area against the concentration. The retention times and the peak areas are tabulated in Table 2. The values of R², the y-intercept and the slope for each compound’s calibration plot are shown in Table 1. A regression analysis of the data showed a linear relationship for quercetin, bisdemethoxycurcumin, demethoxycurcumin and curcumin, with excellent R² values of 0.99993, 0.99984, 0.99985 and 0.99993 µg/mL, respectively.

The peaks of quercetin, bisdemethoxycurcumin, demethoxycurcumin and curcumin were well separated at different retention times with resolutions of 32.195, 2.887 and 2.830 for quercetin-bisdemethoxycurcumin, bisdemethoxycurcumin-demethoxycurcumin and demethoxycurcumin-curcumin, respectively. No interferences or excipient peaks co eluted with the analytes were observed, indicating the method is selective and specific in relation to the medium and excipients used in this study (Fig. 2, Table 2).

Precision and accuracy data for the intraday and the inter-day variations for the three QC samples are summarized in Table 3. The RSD values for the intraday and the inter day precisions were < 1%. For the accuracy test, the intraday and the inter day accuracies ranges from 98.292% to 103.617%, confirming the accuracy of the method.

Robustness is a measure of the method’s capability to remain unaffected by small, but deliberate, variations in the method parameters [52]. The robustness parameters tested were the mobile phase’s composition, the concentration of acetic acid (pH effect), the flow rate and the column temperature. The results are tabulated in Table 4(a-d). The retention times for all four compounds due to variations in the parameters were significantly different compared to those for the normal parameters. The peak area for curcumin was not significantly different after changing the acetic acid concentration from 2% to 3%, but was significantly different after changing the concentration from 2% to 1%. Quercetin, bisdemethoxycurcumin and demethoxycurcumin were shown to have significant differences in their peak area when the concentration of acetic acid was changed. Changes in the acetonitrile’s composition and temperature were shown not to cause significant differences in quercetin’s peak areas, however significant differences were seen in curcumin, bisdemethoxycurcumin and demethoxycurcumin peak areas. Increasing or decreasing the flow rate by 0.1 mL/min from normal conditions significantly raised or reduced the values of the peak areas of quercetin, bisdemethoxycurcumin, demethoxycurcumin and curcumin. Although changes in experimental conditions changed the retention time, the peak area and the values of the system’s suitability parameters, the four analyzed peaks were still well resolved from each other and from additional small peaks and showed good resolution in the tested parameters (Fig. 3).

The system suitability criteria were in accordance with the Centre for Drug Evaluation and Research (CDER) guidelines [53] and are summarized in Table 5. The mean values of the six replicate injections of 160 µg/mL QC standards

![Figure 2 Chromatograms of quercetin and curcuminoids. QUE, quercetin; BDMC, bisdemethoxycurcumin; DMC, demethoxycurcumin; CUR, curcumin.](http://www.journal.ac/039)

Compounds	LOD (µg/mL)	LOQ (µg/mL)	LOL (µg/mL)	Regression analysis (1.25 — 200 µg/mL)		
	slope	y-intercept	Coefficient of determination (R²)			
QUE	0.00488	0.03906	200	70055.85913	1521.41433	0.99993
BDMC	0.62500	2.50000	320	1807.72930	— 440.28180	0.99984
CUR	0.07813	0.31250	320	10011.55795	40.13501	0.99985
DMC	0.03906	0.07813	320	34176.44088	3645.08890	0.99993

LOD, limit of detection; LOQ, limit of quantification; LOL, limit of linearity; QUE, quercetin; BDMC, bisdemethoxycurcumin; DMC, demethoxycurcumin; CUR, curcumin.
Table 2 Retention times and responses data of calibration standards of QUE, BDMC, DMC, and CUR

Concentration (µg/mL)	Retention time (n = 5)	Peak area (n = 5)
	Mean (min) RSD (%)	Mean (min) RSD (%)
QUE		
1.25	3.970 0.117	94937 0.676
5	3.972 0.066	367965 0.739
20	3.972 0.041	1438240 0.624
40	3.973 0.055	2781685 0.508
80	3.972 0.029	5582929 0.437
140	3.972 0.048	9735618 0.866
200	3.972 0.053	14073938 0.368
BDMC		
1.25	13.823 0.308	1859 1.611
5	13.840 0.095	8843 1.181
20	13.842 0.093	37086 1.089
40	13.843 0.087	71560 1.044
80	13.846 0.117	143659 1.073
140	13.846 0.134	249462 1.835
200	13.849 0.060	363457 0.850
DMC		
1.25	15.214 0.227	14705 0.273
5	15.229 0.096	52692 0.540
20	15.230 0.074	204602 0.665
40	15.232 0.073	398446 0.436
80	15.237 0.099	798153 0.867
140	15.236 0.120	1384220 1.416
200	15.242 0.039	2015583 0.158
CUR		
1.25	16.708 0.199	46645 0.856
5	16.718 0.077	182515 0.901
20	16.719 0.061	701982 0.700
40	16.720 0.064	1358591 0.299
80	16.725 0.096	2737751 0.423
140	16.725 0.108	4749355 0.897
200	16.734 0.067	6866971 0.313

RSD, relative standard deviation; QUE, quercetin; BDMC, bisdemethoxycurcumin; DMC, demethoxycurcumin; CUR, curcumin.

were used to evaluate the retention time, the peak area, the resolutions for the analyte peaks, the tailing factor, the number of theoretical plates and the capacity factor. The results for the system suitability parameters are shown in Table 6. The RSD values for the tested parameters were < 1%, indicating the precision of the method. The tested parameters passed the criteria under the CDER guidelines except for the capacity factor value for quercetin (< 2) [53]. This is because the retention time of quercetin was quite fast and just 1 minute behind the solvent peak. However, the quercetin peak was well resolved from the solvent peak and from the front additional small peak.

The proposed method was applied to quantitatively detect the quercetin and curcuminoids in Chinese medicines.
Table 3 Precisions and accuracies for intraday and interday repetitions for the quantitative detection of QUE, BDMC, DMC and CUR

Concentration (µg/mL)	Peak Response	Intra day* Precision (RSD, %)	Accuracy (%)	Peak Response	Inter day† Precision (RSD, %)	Accuracy (%)
QUE						
3.75 263151	0.432	99.589		263350	0.323	99.665
100 7064599	0.717	100.821		7221470	0.646	103.060
160 11221611	0.806	100.010		11218287	0.968	100.070
BDMC						
3.75 6243	0.576	98.588		6181	0.854	97.669
100 182293	0.723	101.084		186683	0.878	103.513
160 286851	0.654	99.32746		288040	0.805	99.738
DMC						
3.75 37700	0.635	100.310		37687	0.466	100.276
100 1010004	0.752	100.880		1037410	0.078	103.617
160 1590498	0.651	99.5584		1594989	0.844	99.569
CUR						
3.75 129618	0.655	98.292		129152	0.297	97.929
100 3456218	0.732	101.022		3545353	0.275	103.606
160 5448675	0.711	99.5764		5454012	0.829	99.673

*Intra day repetitions for each concentration were analyzed on the same day. †Inter day repetitions for each concentration, were analyzed on six consecutive days. RSD, relative standard deviation; QUE, quercetin; BDMC, bisdemethoxycurcumin; DMC, demethoxycurcumin; CUR, curcumin.

Table 4(a) Robustness – change in organic composition

System suitability	Compound	Change in the normal organic composition of acetonitrile: 2% acetic acid					
		(A) Normal condition Mean (n = 6) RSD (%)					
Retention time, tR (minutes)		(B) 38% : 62% v/v Mean (n = 6) RSD (%)					
QUE	3.993	0.690					
BDMC	13.951	0.342					
DMC	15.340	0.291					
CUR	16.829	0.245					
Peak area		(C) 42% : 58% v/v Mean (n = 6) RSD (%)					
QUE	68.53044	0.433					
BDMC	167.417	0.647					
DMC	94.0836	0.404					
CUR	330.2593	0.236					
Resolution, R		(Continued)					
QUE	32.498	0.379					
BDMC	2.908	0.208					
DMC	2.850	0.237					
CUR	1.371	0.254					
Tailing factor, Tf		(Continued)					
QUE	1.533	0.364					
BDMC	1.160	0.484					
DMC	1.094	0.094					
CUR	1.371	0.115					
System suitability	Compound	Change in the normal organic composition of acetonitrile: 2% acetic acid					
--------------------	----------	**					
		(A) Normal condition	(B) 38% : 62% v/v	(C) 42% : 58% v/v			
		Mean (n = 6)	RSD (%)	Mean (n = 6)	RSD (%)	Mean (n = 6)	RSD (%)
Theoretical plate, N	QUE	8752.133	1.463	8857.791	0.312	8520.171	0.238
	BDMC	15931.889	1.147	16311.011	0.058	16303.130	0.103
	DMC	14298.287	1.761	16569.474	1.029	14210.321	0.233
	CUR	16000.049	1.120	16543.754	0.535	15157.508	0.340
Peak area	QUE	0.680	0.344	0.777	0.906	0.601	0.327
	BDMC	4.878	0.020	3.800	0.209	3.800	0.209
	DMC	5.463	0.232	7.214	1.592	4.247	0.206
	CUR	6.097	0.253	8.038	0.481	4.729	0.209

Table 4(b) Robustness – change in acetic acid concentration

System suitability	Compound	Change in the acetic acid concentration (% v/v)					
--------------------	----------	**					
		(A) Normal condition	(B) 1.0% (pH 2.73)	(C) 3.0% (pH 2.48)			
		Mean (n = 6)	RSD (%)	Mean (n = 6)	RSD (%)	Mean (n = 6)	RSD (%)
Retention time, t0 (minutes)	QUE	3.972	0.175	4.054	0.064	3.893	0.071
	BDMC	13.868	0.310	14.549	0.086	13.177	0.167
	DMC	15.255	0.265	16.017	0.085	14.542	0.153
	CUR	16.743	0.213	17.590	0.084	16.028	0.141
Peak area	QUE	7039483	0.562	6966950	0.525	6952833	0.630
	BDMC	180475	0.541	176885	0.575	152439	0.895
	DMC	1000716	0.736	987128	0.551	956266	0.670
	CUR	3433379	0.754	3428762	0.533	3428762	0.558
Resolution, R	QUE	3.166	0.077	3.136	0.215	1.370	0.110
	BDMC	32.327	0.172	33.254	0.244	31.950	0.268
	DMC	2.900	0.370	2.974	0.303	3.033	0.527
	CUR	2.840	0.429	2.904	0.339	2.966	0.608
Tailing factor, T0	QUE	1.366	0.077	1.364	0.215	1.370	0.110
	BDMC	1.493	1.377	1.463	0.331	1.060	0.139
	DMC	1.160	1.075	1.137	0.103	1.325	0.823
	CUR	1.085	0.148	1.092	0.050	1.083	0.108
Theoretical plate, N	QUE	8711.993	0.267	8877.546	0.460	8548.948	0.269
	BDMC	15740.557	0.397	16067.808	0.689	16308.146	0.664
	DMC	14041.181	0.701	14691.580	0.675	14241.082	1.031
	CUR	15793.019	0.472	16098.239	0.701	15531.342	0.811
Capacity factor, k'	QUE	6.056	1.783	0.680	1.484	0.610	0.803
	BDMC	4.798	1.202	5.036	0.658	4.449	0.511
	DMC	5.333	0.988	5.637	0.698	5.014	0.478
	CUR	6.016	1.416	6.295	0.628	5.629	0.443

(Continued)
Table 4(c) Robustness – change in flow rate

| System suitability | Compound | (A) Normal condition | | | (B) 1.2 mL/minutes | | | (C) 1.4 mL/minutes | |
|-------------------|----------|---------------------|-----------------|---------------------|-----------------|-----------------|-----------------|-----------------|
| | | Mean (n = 6) | RSD (%) | Mean (n = 6) | RSD (%) | Mean (n = 6) | RSD (%) |
| Retention time, t_R (minutes) | QUE | 3.972 | 0.175 | 4.291 | 0.105 | 3.696 | 0.130 |
| | BDMC | 13.868 | 0.310 | 14.953 | 0.321 | 12.909 | 0.333 |
| | DMC | 15.255 | 0.265 | 16.442 | 0.284 | 14.235 | 0.279 |
| | CUR | 16.743 | 0.213 | 18.038 | 0.262 | 15.668 | 0.298 |
| Peak area | QUE | 7039483 | 0.562 | 7606272 | 0.662 | 6530571 | 0.497 |
| | BDMC | 180475 | 0.541 | 194216 | 0.753 | 167111 | 1.593 |
| | DMC | 1000716 | 0.736 | 1078076 | 0.714 | 928707 | 1.345 |
| | CUR | 3433379 | 0.754 | 3700134 | 0.690 | 3185325 | 1.198 |
| Resolution, R | QUE | - | - | - | - | - | - |
| | BDMC | 32.327 | 0.172 | 32.779 | 0.199 | 32.047 | 0.928 |
| | DMC | 2.900 | 0.370 | 2.921 | 0.608 | 2.936 | 2.014 |
| | CUR | 2.840 | 0.429 | 2.864 | 0.723 | 2.868 | 1.647 |
| Tailing factor, T_f | QUE | 1.366 | 0.077 | 1.360 | 0.183 | 1.371 | 0.287 |
| | BDMC | 1.493 | 1.377 | 1.490 | 1.891 | 1.539 | 1.614 |
| | DMC | 1.160 | 1.075 | 1.157 | 1.447 | 1.181 | 2.364 |
| | CUR | 1.085 | 0.148 | 1.081 | 0.101 | 1.087 | 0.207 |
| Theoretical plate, N | QUE | 8711.993 | 0.267 | 9148.347 | 0.429 | 8249.430 | 0.420 |
| | BDMC | 15740.557 | 0.397 | 16035.103 | 1.342 | 15696.046 | 2.851 |
| | DMC | 14041.181 | 0.701 | 14374.944 | 1.036 | 13420.220 | 0.844 |
| | CUR | 15793.019 | 0.472 | 16216.013 | 1.854 | 15379.165 | 2.364 |
| Capacity factor, k' | QUE | 0.656 | 1.783 | 0.661 | 0.832 | 0.627 | 0.762 |
| | BDMC | 4.798 | 1.202 | 4.780 | 0.942 | 4.750 | 3.067 |
| | DMC | 5.351 | 0.661 | 5.355 | 0.497 | 5.350 | 2.846 |
| | CUR | 5.966 | 0.632 | 5.985 | 0.500 | 5.862 | 0.427 |

Table 4(d) Robustness – change in column temperature

| System suitability | Compound | (A) Normal condition | | | (B) 30°C | | | (C) 40°C | |
|-------------------|----------|---------------------|-----------------|-----------------|----------------|----------------|----------------|----------------|
| | | Mean (n = 6) | RSD (%) | Mean (n = 6) | RSD (%) | Mean (n = 6) | RSD (%) |
| Retention time, t_R (minutes) | QUE | 3.956 | 0.031 | 4.063 | 0.074 | 3.861 | 0.162 |
| | BDMC | 13.673 | 0.070 | 14.647 | 0.174 | 12.810 | 0.268 |
| | DMC | 15.037 | 0.064 | 15.980 | 0.153 | 14.167 | 0.236 |
| | CUR | 16.502 | 0.064 | 17.423 | 0.143 | 15.657 | 0.196 |
| Peak area | QUE | 7628483 | 0.252 | 7620525 | 0.254 | 7633341 | 0.259 |
| | BDMC | 196493 | 0.261 | 202870 | 0.253 | 172397 | 0.136 |
| | DMC | 1091099 | 0.300 | 1124567 | 0.281 | 1058404 | 0.205 |
| | CUR | 3738544 | 0.244 | 3836306 | 0.285 | 3643910 | 0.196 |
| Resolution, R | QUE | - | - | - | - | - | - |
| | BDMC | 31.946 | 1.437 | 32.560 | 0.233 | 31.471 | 0.267 |
| | DMC | 2.872 | 1.359 | 2.698 | 0.334 | 3.155 | 0.481 |
| | CUR | 2.829 | 0.575 | 2.718 | 0.305 | 3.106 | 0.559 |
such as plant granule extracts, tablets and pills. The results of 19 samples are summarized in Table 7. In the tested samples, BDMC had the highest concentration compared to the other two curcuminoids tested (DMC and CUR), and was found in the formulations of granule extracts, tablets and pills (such as samples 12, 13, 15, 16, 18 and 19) (Table 7). The preference of BDMC over CUR in the medicine might be due to its strong biological properties, which

Table 5 System suitability parameters, calculation formula and recommendations

Parameter	Formula	Recommendation
Precision	\(\text{RSD} = \frac{S}{x} \times 100 \)	\(\text{RSD} \leq 1\% \text{ for } n \geq 5 \)
Resolution, \(R \)	\(R = \frac{(t_{R2} - t_{R1})}{1/2(t_{w1} - t_{w2})} \)	\(R > 2 \)
Tailing factor, \(T_f \)	\(T_f = \frac{W_x}{2f} \)	\(T_f \leq 2 \)
Theoretical plates, \(N \)	\(N = 16(t_s/t_w)^2 \)	\(N \geq 2000 \)
Capacity factor, \(k' \)	\(k' = \frac{(t_R - t_0)}{t_0} \)	\(k' > 2 \)

S, standard deviation; \(\bar{x} \), mean of the data; \(t_s \), retention time of analyte 1; \(t_w \), peak width measured to the baseline of the extrapolated straight sides to baseline; \(W_x \), width of the peak determined at either 5\% (0.05) or 10\% (0.10) from the baseline of the peak height; \(f \), distance between peak maximum and peak front at \(W_x \); \(t_0 \), elution time of the void volume or non retained components.

Table 6 System suitability testing

Parameter	QUE Mean (n = 6)	RSD (%)	QUE Mean (n = 6)	RSD (%)	QUE Mean (n = 6)	RSD (%)	QUE Mean (n = 6)	RSD (%)	BDMC Mean (n = 6)	RSD (%)	DMC Mean (n = 6)	RSD (%)	CUR Mean (n = 6)	RSD (%)
Retention time, \(t_s \)	3.970	0.021	13.840	0.027	15.230	0.025	16.723	0.021	15.230	0.025	16.723	0.021		
Peak area	11221611	0.806	286851	0.654	1590498	0.651	5448675	0.711	5448675	0.711	5448675	0.711		
Resolution, \(R \)	-	-	32.195	0.321	2.887	0.364	2.830	0.370	2.830	0.370	2.830	0.370		
Tailing factor, \(T_f \)	1.369	0.108	1.501	0.261	1.165	0.144	1.081	0.051	1.081	0.051	1.081	0.051		
Theoretical plate, \(N \)	8803.785	0.359	15552.398	0.865	13763.145	0.646	15568.252	0.910	15568.252	0.910	15568.252	0.910		
Capacity factor, \(k' \)	0.684	0.846	4.870	0.415	5.460	0.406	5.093	0.391	5.093	0.391	5.093	0.391		

RSD, relative standard deviation; QUE, quercetin; BDMC, bisdemethoxycurcumin; DMC, demethoxycurcumin; CUR, curcumin. N, number of theoretical plates; \(k' \), capacity factor; Mean of six replicate injections of quality control (QC) standard of 160 \(\mu \)g/mL.
its use as a cure for diseases or as a supplement for certain purposes. Quercetin was found in most of the tested samples, indicating that this compound is common and useful for treatment. Fig. 4 shows the chromatograms for the quercetin and the curcuminoids found in the tested samples.

4. Discussion

The HPLC method was developed by optimization of the mobile phase conditions so that quercetin, bisdemethoxycurcumin, demethoxycurcumin and curcumin peaks could be simultaneously detected by using the same solvent system and an isocratic method. The flow rate, acetic acid concentration and column temperature were varied to determine the chromatographic conditions giving the best separation and the shortest analysis time. UV visible spectrophotometry in the wavelength from 200 to 500 nm was used for the detection of quercetin and curcuminoids; 370 nm was chosen as appropriate wavelength for the analysis of quercetin and curcumin derivatives.

The retention times for quercetin (3.97 minutes), bisdemethoxycurcumin (13.84 minutes), demethoxycurcumin (15.23 minutes) and curcumin (16.72 minutes) were reasonable because the method is simple and general. The chromatograph peaks for mixtures of curcumin were identified based on their percentages in the mixtures. Most of the commercially available curcumin/turmeric products contain mixtures of curcumin, demethoxycurcumin and bisdemethoxycurcumin. Among these, curcumin (46% — 72%) is the major compound, followed by demethoxycurcumin (11% — 28%) and bisdemethoxycurcumin (3% — 14%). All four analyte peaks were well separated from each other and from small additional peaks.

The linear ranges of quercetin (0.039 — 200 μg/mL), bisdemethoxycurcumin (2.500 — 320 μg/mL), demethoxycurcumin (0.313 — 320 μg/mL) and curcumin (0.078 — 320 μg/mL) are suitable for the analysis of most the pharmaceutical products, containing the compounds and for the analysis of crude herbs. The low LOD and LOQ values indicate that the method provides adequate sensitivity. The R² values > 0.999 for the regression model for the calibration curves confirm the good linearity of the method.

The accuracies ranged from 98.292% — 103.617%, and the precisions were less than 1% which indicate that the proposed method is well validated and suitable for quantitatively detecting curcuminoids and quercetin simultaneously in pharmaceutical products, herb materials and various turmeric and quercetin containing products.

System suitability testing is important to ensure the performance of the system before and during the analysis. As defined in the United States Pharmacopeia/National Formulary (USP/NF) [54] system suitability parameters were established as a direct result of the ruggedness and the robustness of the experiments. The system suitability testing proved that the proposed method will allow the separation of all four analytes and will produce satisfactory peak shapes.
Table 7 Concentration of QUE, CUR, DMS and BDMC in Chinese medicines

No	Chinese medicine	Type	Concentration (mean ± S.D.) (µg/100 mg)			
		QUE	BDMC	DMC	CUR	
1	Gao liang jiang (高良姜)	Single plant granule extract	0.7532	N.D	134.8739	0.5270
2	Jin qian cao (金钱草)	Single plant granule extract	4.0618	N.D	N.D	0.8263
3	Yu jin (莪术)	Single plant granule extract	0.3195	69.1060	27.2286	27.1020
4	E su (莪术)	Single plant granule extract	0.5983	79.5922	42.6982	8.6812
5	Jiang huang (姜黄)	Single plant granule extract	3.6523	N.D	933.8122	796.0621
6	Yu xing cao (鱼腥草)	Single plant granule extract	1.7930	N.D	N.D	1.3424
7	Ting li zi (薏苡子)	Single plant granule extract	1.3604	N.D	N.D	N.D
8	Tu si zi (菟丝子)	Single plant granule extract	3.9300	N.D	N.D	N.D
9	Di yu (地榆)	Single plant granule extract	0.8962	N.D	N.D	N.D
10	Kui hua (槐花)	Single plant granule extract	311.0307	N.D	N.D	N.D
11	Sang ju yin (桑菊饮)	Formulation granule extract	0.7402	N.D	0.3558	0.2537
12	Chai hu su gan san (柴胡疏肝散)	Formulation granule extract	0.2029	126.8843	48.3408	1.6417
13	Xiao yao san (逍遥散)	Formulation granule extract	0.4991	97.9203	2.5534	0.4301
14	Long dan xie gan tang (龙胆泄肝汤)	Formulation granule extract	11.1482	5.2111	1.2817	0.1236
15	Sang ju gan mao pian (桑菊感冒片)	Tablet	17.3489	173.6155	2.8579	N.D
16	Dan zhi xiao yao pian (丹栀逍遥片)	Tablet	7.8101	135.1892	1.0883	0.2624
17	Long dan xie gan pian (龙胆泄肝片)	Tablet	N.D	5.5352	6.7428	0.2378
18	Bu zhong yi qi (补中益气)	Tablet	0.9052	623.1338	5.9485	0.5964
19	Xiao yao wan (逍遥丸)	Pill	12.015	79.7951	11.7471	1.1516

‘n = 3; N.D, not detected; QUE, quercetin; BDMC, bisdemethoxycurcumin; DMC, demethoxycurcumin; CUR, curcumin.

Figure 4 Chromatograms for Chinese medicinal plant extracts (a) containing quercetin and (b) containing curcuminoids. QUE, quercetin; BDMC, bisdemethoxycurcumin; DMC, demethoxycurcumin; CUR, curcumin.

5. Conclusions

A simple isocratic RP-HPLC method with UV detection has been developed for simultaneous detection of quercetin, curcumin, demethoxycurcumin and bisdemethoxycurcumin. The analytes were well separated and detected
within 19 minutes. This method was validated for specificity, linearity, precision, accuracy and robustness as per ICH guidelines. The data showed good selectivity and sensitivity, a wide linear range, precision and accuracy. The method was sensitive to HPLC conditions; that is, changes in the mobile phase's composition, the pH, the column temperature and the flow rate affected the retention time and response, but did not affect the separation of the compounds. In addition, each parameter showed good repeatability of the retention time and response. In conclusion, the proposed method is simple, easy and cost effective, no specific solvent is involved and it utilizes common HPLC instruments with UV detectors. Hence, this UV-HPLC method is suitable for routine analysis of quercetin and curcuminoid formulations or products.

Conflict of interest

The authors declare that there are no conflict of interest.

References

1. Kelly GS. Quercetin. Altern Med Rev. 1998;3:140-43.
2. Harwood M, Danielewska-Nikiel B, Borzelleca JE, Flamm GW, Williams GM, Lines TC. A critical review of the data related to the safety of quercetin and lack of evidence of in vivo toxicity, including lack of genotoxic/carcinogenic properties. Food Chem Toxicol. 2007;45(11):2179-205.
3. Materska M. Quercetin and its derivatives: chemical structure and bioactivity - a review. Pol J Food Nutr Sci. 2008;58(4):407-13.
4. Larson AJ, Symons JD, Jallili T. Therapeutic potential of quercetin to decrease blood pressure: review of efficacy and mechanisms. Am Soc Nutrition. 2012;3:39-46.
5. Phan TT, Lim IJ, Sun L, Chan SY, Bay BH, Tan EK, et al. Quercetin inhibits fibroblast production by keratin-derived fibroblasts. Implication for the treatment of excessive scars. J Dermatol Sci. 2003;33(3):192-4.
6. Huang BF, Wang W, Fu YC, Zhou XH, Wang X. The effect of quercetin on neo-intima formation in a rat artery balloon injury model. Pathol Res Pract. 2009;205(8):515-23.
7. Zhu JX, Wang Y, Kong LD, Yang C, Zhang X. Effects of Biota orientalis extract and its flavonoid constituents, quercetin and rutin on serum uric acid levels in oxonate-induced mice and xanthine dehydrogenase and xanthine oxidase activities in mouse liver. J Ethnopharmacol. 2004;93(1):133-40.
8. Park HJ, Lee CM, Jung ID, Lee JS, Jeong YI, Chang JH, et al. Quercetin regulates Th1/Th2 balance in a murine model of asthma. Int Immunopharmacol. 2009;9(3):261-7.
9. Gomathi K, Gopinath D, Ahmed MR, Jayakumar R. Quercetin incorporated collagen matrices for dermal wound healing processes in rat. Biomaterials. 2003;24(16):2767-72.
10. Sandur SK, Pandey MK, Sung B, Ahn KS, Murakami A, Sethi G, et al. Curcumin, demethoxycurcumin, bis-demethoxycurcumin, tetrahydrocurcumin and turmerones differentially regulate anti-inflammatory and anti-proliferative responses through a ROS-independent mechanism. Carcinogenesis. 2007;28(8):1765-73.
11. Pothirat W, Gritsanapan W. Quantitative analysis of curcumin, demethoxycurcumin and bisdemethoxycurcumin in the crude curcuminoid extract from Curcuma longa in Thailand by TLC-densitometry. Warasan Phesatchasat. 2005;32(1-2):23-30.
12. Bhawana RK, Buttar HS, Jain VK, Jain N. Curcumin nanoparticles: preparation, characterization and antimicrobial study. J Agric Food Chem. 2011;59(3):2056-61.
13. Parvathy KS, Negi PS, Srinivas P. Antioxidant, antimutagenic and antibacterial activities of curcumin-β-diglycoside. Food Chem. 2009;115(1):265-71.
14. Wang Y, Lu Z, Wu H, Lv F. Study on the antibiotic activity of microcapsule curcumin against foodborne pathogens. Int J Food Microbiol. 2009;136(1):71-4.
15. Barzegar A. The role of electron-transfer and H-atom donation on the superb antioxidant activity and free radical reaction of curcumin. Food Chem. 2012, 135(3):1369-76.
16. Grinberg LN, Shalev O, Tennesen HH, Rachmilewitz EA. Studies on curcumin and curcuminoids: XXVI. Antioxidant effects of curcumin on the red blood cell membrane. Int J Pharm. 1996;132(1-2):251-7.
17. Khan MA, El-Khatib R, Rainsford KD, Whitehouse MW. Synthesis and anti-inflammatory properties of some aromatic and heterocyclic aromatic curcuminoids. Bioorg Chem. 2012:40-30:8.
18. Ravindran J, Subbaraju GV, Ramani MV, Sung B, Aggarwal BB. Bisdemethylcurcumin and structurally related hispolon analogues of curcumin exhibit enhanced prooxidant, anti-proliferative and anti-inflammatory activities in vitro. Biochemical Pharmacology. 2010;79(11):1658-66.
19. Anto RJ, Kuttan G, Babu KVD, Rajasekharan KN, Kuttan R. Anti-tumour and free radical scavenging activity of synthetic curcuminoids. Int J Pharm. 1996;131(1):1-7.
20. Ruby AJ, Kuttan G, Babu D, Rajasekharan KN, Kuttan R. Anti-tumour and antioxidant activity of natural curcuminoids. Cancer Letter. 1995;94(1):79-83.
21. Simon A, Allais DP, Duroux JL, Basly JP, Durand-Fontanier S, Delage C. Inhibitory effect of curcuminoids on MCF-7 cell proliferation and structure-activity relationship. Cancer Letters. 1998;129(1):111-16.
22. Ahmed T, Gilani AH. Inhibitory effect of curcuminoids on acetylcholinesterase activity and attenuation of scopolamine-induced amnesia may explain medicinal use of turmeric in Alzheimer's disease. Pharmacol Biochem Behav. 2009;91(4):554-9.
23. Villaflores OB, Chen YJ, Chen CP, Yeh JM, Wu TY. Curcuminoids and resveratrol as anti-Alzheimer agents. Taiwan J Obstet Gynecol. 2012;51(4):515-25.
24. Kunnumakkara AB, Anand P, Aggarwal BB. Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Letters. 2008;269(2):199-225.
Comparison of the effects of curcumin and curcumin glucuronide in human hepatocellular carcinoma HepG2 cells. Food Chem. 2014;151:126-32.

Kim T, Davis J, Zhang AJ, He X, Mathews ST. Curcumin activates AMPK and suppresses gluconegine gene expression in hepatoma cells. Biochem Biophys Res Commun. 2009;388(2):377-82.

Mahattanadul S, Nakamura T, Panichayupakaranant P, Phdoongsombut N, Tungsinnmunkong K, Bouking P. Comparative antiulcer effect of bisdemethoxycurcumin and curcumin in a gastric ulcer model system. Phytotherapy. 2009;16(4):342-51.

Jain K, Sood S, Gowthamarajan K. Modulation of cerebral malaria by curcumin as an adjunctive therapy. Braz J Infect Dis. 2013;17(3):579-91.

Nayak A, Tiyaboonchai W, Patankar S, Madhusudhan B, Soute EB. Curcuminoids-loaded lipid nanoparticles: novel approach towards malaria treatment. Colloids Surf B. 2010;81(1):263-73.

Jageta GC, Rajanikant GK. Role of curcumin, a naturally occurring phenolic compound of turmeric in accelerating the repair of excision wound, in mice whole-body exposed to various doses of γ-radiation. J Surg Res. 2004;120(1):127-38.

Li X, Nan K, Li L, Zhang Z, Chen H. In vivo evaluation of curcumin nanoformulation loaded methoxy poly(ethylene glycol)-graft-chitosan composite film for wound healing application. Carbohydr Polym. 2012;88(1):84-90.

Panchatcharam M, Miriyala S, Gayathri VS, Suguna L. Curcumin improves wound healing by modulating collagen and decreasing reactive oxygen species. Mol Cell Biochem. 2006;290(1-2):87-96.

Aneja G, Dave U, Vadodaria K. Simultaneous estimation of piperine, quercetin, and curcumin in a mixture using u.v-visible spectrophotometer and method validation. International Journal of Therapeutic Applications. 2012;8:14-7.

Askal HF, Saleh GA, Backheet EY. A selective spectrophotometric method for determination of quercetin in the presence of other flavonoids. Talanta. 1992;39(3):259-63.

Kuntić V, Pejić N, Mićić S, Vukojević V, Vujić Z, Malešev D. Determination of quercetin in pharmaceutical formations via its reaction with potassium tita-

Kulkarni SJ, Maske KN, Budre MP, Mahajan RP. Extraction and purification of curcuminoids from Turmeric (curcuma longa L.). Int J Pharm Technol. 2012;4(2):81-4.

Revathy S, Elumalai S, Benny M, Antony B. Isolation, purification and identification of curcuminoids from turmeric (Curcuma longa L.) by column chromatography. Journal of Experimental Sciences. 2011;2(7):21-5.
Reviewer guidance-validation of chromatographic methods [internet]. USA: Center for Drug Evaluation and Research (CDER). U.S. FDA; 1994. Available from: http://www.fda.gov/downloads/Drugs/Guidances/UCM134409.pdf.

54. General chapters <621> Chromatography Glossary of Symbols [internet]. USA: USP Pharmacists’ Pharmacopeia; 2008. Available from: http://www.usp.org/sites/default/files/usp_pdf/EN/products/usp2008p2supplement3.pdf.