The American Heart Association Classification of Blood Pressure and the Determinants of Hypertension among Medical Practitioners in Bayelsa State: A Cross-Sectional Study

Okoro TE, Edafe EA, Leader JT.
Department of Internal Medicine, Niger Delta University Teaching Hospital, Okolobiri, Bayelsa, Nigeria.

*Correspondence: Tamaraemumoemi Emmanuella Okoro
Email: nuellaokoro@gmail.com, Phone no: +234-8033091319

ABSTRACT

Hypertension is a major risk factor for cardiovascular diseases (CVD). Objective was to assess prevalence of hypertension using 2017 American Heart Association/American College of Cardiology (AHA/ACC) guideline and it's determinants among Medical Practitioners in Bayelsa State, Nigeria. Two hundred and forty-four apparently healthy medical doctors were recruited. A structured self-administered questionnaire was used to gather data on CVD risk factors. Anthropometric and blood pressure measurements were taken. Association between hypertension and sociodemographic features, anthropometric measures, smoking, alcohol, fruit and salt intake, exercise was explored with chi-square for proportions. Predictors of hypertension were identified by two-step binary logistic regression. A third of participants were women (29.9%), most were below age 30 years (40.2%) and married (54.9%). One fifth was consultant/professor cadre (18.9%) and a third had worked ≥11 years as medical practitioners. Almost 2 in every 3 of the participants (63.1%) were considered hypertensive by the AHA 2017 classification. However, using a cut off of ≥140/90mmHg used by other guidelines gave a prevalence of 25%. Only 13.5% had been diagnosed hypertensive prior to this study. The most important predictor of occurrence of hypertension was age, although marital status, salt intake, work cadre and duration of practice were also significantly associated with the occurrence of hypertension. The use of the 2017 ACC/AHA hypertension guidelines for diagnosis of hypertension with a blood pressure cut off ≥ 130/80 mmHg resulted in a marked increase in the prevalence of hypertension in medical doctors compared to other guidelines that use a cut off value of 140/90mmHg (63.1% versus 25%). Increasing age is a significant predictor of hypertension in medical doctors. Guidelines that are best suited for our local settings for diagnosis of hypertension are recommended.

Keywords: ACC/AHA Guidelines, Hypertension, Medical Doctors, Prevalence, Sociodemographic features

INTRODUCTION

In 2017, the American College of Cardiology (ACC) and the American Heart Association (AHA) released guideline recommendations for the diagnosis and treatment of hypertension with lower blood pressure values used for the definition of hypertension and lower treatment thresholds, than previously recommended in other guidelines. The ACA/AHA 2017 guideline defined hypertension as a
systolic blood pressure of 130 mm Hg or more or a diastolic blood pressure of 80 mm Hg or more\(^1\) in contrast to other guidelines which have used systolic blood pressure of 140 mm Hg or more and or a diastolic blood pressure of 90 mm Hg or more to define hypertension.\(^2,4\) It further recommends that high risk patients with stage 1 hypertension (BP between 130/80 to <140/90 mmHg), with ASVD risk score of greater than 10% or cardiovascular disease (CVD), should be considered for drug treatment.\(^1\) However, both the recent European and the 2017 American guidelines recommend the same therapeutic BP goal of <130/80 mm Hg.\(^1,3,4\)

There is strong evidence that intensive BP lowering is highly beneficial in lowering the risk of major CV events with markedly significant reductions in the risks of coronary heart disease, stroke, heart failure and all-cause mortality.\(^7\) Lee et al. using the National Health Insurance Service Health Examination Database of Korea for 2005-2006, analyzed 148,761 low risk, treated stage 1 hypertensive subjects (systolic BP of 140 to 159 mm Hg or diastolic BP of 90 to 99 mm Hg). They found that the lowest adjusted risk of all-cause mortality was observed in subjects with an average SBP of 120 to <130 mmHg and an average DBP of 70 to <80 mmHg.\(^1\) These findings support the generalization of the recommended target BP of <130/80 mmHg of the latest ACC/AHA and ESH/ESC guidelines in the general hypertensive population.\(^1,3,4\)

Systemic hypertension leads globally among causes of cardiovascular mortality and morbidity despite its easy diagnosis and availability of treatment options (pharmacologic and non-pharmacologic). Uncontrolled hypertension promotes target organ damage (eyes, brain, heart, kidneys, coronary and peripheral vessels) and confers a significant disease burden to the community.

Prevalence of hypertension in Nigeria is estimated at 30.6% and 26.4% among urban and rural dwellers, respectively in a population of over 170 million\(^9,10\) with 48% of this large population residing in cities while the remaining 52% reside in rural areas.\(^12\)

The prevalence of hypertension in Nigeria may form a substantial proportion of the total burden of hypertension in Africa because Nigeria is the most populous and the most populated country in Africa.\(^6,12\) Several studies in Nigeria have shown a high prevalence of hypertension in medical doctors, similar to levels found in the general population.\(^9,14\) But these studies used a cut off value of ≥140/90 mmHg which is the recommendation of several guidelines.\(^2,3,5,6\) Medical doctors are a selected group of adult population often missing in the literature, as the focus of most studies is on the general population or patients presenting to health facilities.

The present study assessed the prevalence of hypertension using the 2017 AHA/ACC guideline and determinants of hypertension among Medical Practitioners in Bayelsa State, Nigeria.

MATERIALS AND METHODS

Study setting

The study held in Bayelsa state, Nigeria. Bayelsa state is one of the six states in the Niger Delta region, created in the year 1996 from Rivers State, in the south-southern region of Nigeria. It is bounded by Delta state on the north, Rivers state on the east and the Atlantic Ocean on the western and southern parts. There are 8 local government areas in the state of which Yenagoa local government area (LGA) accommodates the state's administrative headquarters. It is the traditional home of the Ijaw people with an approximated total population of 1,703,984 (projected from the 2006 census) and an annual growth rate of 3%. The Primary Health Care Board, State Ministry of Health, and Hospitals Management Board manage the healthcare system in the state. The healthcare service delivery system is organized along three levels of care – primary, secondary, and tertiary in the private and public sectors. The primary level is made up of a network of primary healthcare (PHC) centres with at least 1 PHC in 105 local administrative wards of the...
state. There are least 2 general hospitals in each of the 8 LGAs of the state which make up the secondary level of care. The state has 2 tertiary health facilities – the Federal Medical Centre, Yenagoa and the Niger Delta University Teaching Hospital, Okolobiri – that serve as referral centres for the network of general hospitals and primary health centres distributed across the state and hospitals in neighboring states such as Delta, Rivers, Akwa-Ibom, Edo, and Imo in Nigeria. There is a mal-distribution of medical doctors across the different levels of care with a very high concentration of doctors in the tertiary centres to the detriment of the other levels of care.

Study design
A cross-sectional study

Study population
Two hundred and forty-four apparently healthy medical doctors were recruited. There are about seven hundred medical doctors registered to practice in the three levels of healthcare service delivery in both public and private health sectors of Bayelsa state. Participants included house officers, resident doctors, medical officers, consultants and professors in various specialties and sub-specialties of medical practice. The study excluded visibly pregnant female medical doctors.

Sample Size
Sample size for studying proportions with population <10,000

\[nf = \frac{n}{1 + \frac{n}{N}} \]

where \(nf \) = the desired sample size when population is less than 10,000

\(n = \frac{z^2pq}{d^2} \)

\(z \) = the standard normal deviate (using 95% confidence level = 1.96)

\(p \) = the proportion in the target population estimated to be obese (the prevalence of hypertension is 26.4% to 30.6%\(^{9,10}\), therefore, midpoint = 28.5%)

\(q \) = 1.0 - \(p \)

\(d \) = degree of accuracy desired, set at 0.05 therefore,

\[n = \frac{(1.96)^2 \times 0.285 \times 0.715}{(0.05)^2} = 313.13 \]

Hence, \(nf = \frac{313.13}{1 + 313.13/700} = 216 \)

The sample size appropriately powered and calculated for this study was 216.

Sampling Technique
Three clusters of doctors were created based on their work places in Bayelsa state. Doctors working at the Federal Medical Centre, Yenagoa formed Cluster One. Cluster Two comprised of doctors working at the Niger Delta University Teaching Hospital, Okolobiri, while doctors working at the secondary and primary levels of care in the private and public sectors of the state formed the third cluster. The doctors in the third cluster were members of the Association of General Medical Practitioners of Nigeria (Bayelsa state chapter) and that avenue was used for their sampling. Using a simple random sampling technique (Balloting), eighty-two doctors each were selected from the three clusters. Any doctor who declined participation was replaced by picking a new name from the balloting box in each of the clusters. The management of Federal Medical Centre, Yenagoa and Niger Delta University Teaching Hospital Okolobiri, provided the lists of doctors in their institutions while the doctors' list in the Association of General Medical Practitioners of Nigeria was obtained from the Association's officials.
Study procedures

Questionnaire

The study used a self-administered questionnaire developed using the WHO STEP wise (2018) approach to surveillance guidelines, which has been used in studies of total cardiovascular risk in several populations. This was used to gather information on selected demographic characteristics including gender, age, number of years of medical practice and staff cadre, dietary intake, physical activity, tobacco and alcohol use, systolic and diastolic blood pressures (measured using a stethoscope & Accoson mercury sphygmomanometer), and the presence or absence of diabetes mellitus.

Physical examination

This included measurements of height and weight (to determine the body mass index), waist circumference, pulse rate, blood pressure, and collection of blood samples for random blood sugar using standard protocols. Height was measured in meters using a standardized stadiometer with each participant standing feet together without shoes on. They stood upright on the scale, not leaning on any support/wall with their heads up before the readings were taken. Weight was measured in kilograms with the participants wearing light clothing. Each participant removed everything in their pockets such as phones and keys, dropped their handbags, and were relieved of any material that could have increased their weight temporarily. Also, it was ensured that the weight scale was on the zero mark before each participant climbed on it for the measurement. A standardized weight scale was used. Body mass index was calculated as weight in kg divided by the square of the height in meters (kg/m²). Obesity was defined as a BMI of ≥30 kg/m² using the WHO categorization. A BMI of <18.5, 18.5–24.9, and 25–29.9 kg/m² was characterized as underweight, normal, and overweight, respectively. Measurement for the waist circumference (WC) (to the nearest 0.1cm) was done using a non-stretch linear tape, which was placed at the approximate midpoint between the lower margin of the last palpable rib and the top of the iliac crest. A WC cutoff of 94 cm for European men and 80 cm for European women was regarded as elevated and indicative of abdominal obesity.

Random blood glucose levels were determined before participant’s lunch using Accucheck glucometers. Diabetes mellitus and impaired glucose tolerance were defined by random blood glucose of ≥11.1 and ≥7.8 mmol/L, respectively or if there was a prior diagnosis of DM with use of insulin or oral hypoglycemic drugs at the time of survey. The measurements were taken by either the principal investigator or 3 well-trained house officers and a resident doctor. Systolic blood pressure was measured using an Accoson mercury sphygmomanometer with the mean of two measurements taken in rested participants in sitting position. Blood pressure was measured at the same time of the day (by 9am). Participants were instructed to avoid alcohol consumption, cigarette smoking, coffee/tea, and exercise for at least 30 minutes prior to these measurements.

All participants provided written informed consent and the study was approved by the Ethics Committee of the Niger Delta University Teaching Hospital (NDUTH), Okolobiri, Bayelsa State in line with the Helsinki Declaration of 1975 that was revised in 2000. (Ethical Clearance certificate no. NDUTH REC/0039b/2017, approved 6th July 2018)

Data Analysis

Collected responses were checked and fed into an excel sheet on a personal computer. Data analysis was done after data cleaning and completeness were ascertained. Analyses were done to determine the sociodemographic characteristics and hypertensive status of medical practitioner in the study. Participants were classified as hypertensive with a systolic blood pressure reading of ≥ 130 mmHg and/or diastolic blood pressure of ≥ 80 mmHg according to the 2017...
AHA/ACA classification. Participants receiving antihypertensive medications were also classified as hypertensive. Data was presented as frequency distribution tables and descriptive statistics like means, standard deviation were calculated. Association between hypertension (dependent variable) and explanatory variables like sociodemographic features, anthropometric measures, smoking, alcohol, fruit and salt intake, exercise was explored with Chi-square for proportions. Predictors of Hypertension were identified by a two-step binary logistic regression. In the first step of the binary logistic regression, the dependent variable Hypertension) was dichotomized by coding the presence of Hypertension as '1' and otherwise was coded as '0'. The explanatory variables were thereafter tested with dependent variable one after the other (univariate binary logistic regression). All factors found statistically significant in the univariate logistic regression were afterward used in a multivariate logistic regression (Stage 2) to identify the predictors of hypertension in the study population. All analyses were conducted with SPSS version 22 and p-values < 0.05 were considered significant.

RESULTS

Sociodemographic characteristics of participants
A total of 244 doctors participated in the study, of which about a third were women (29.9%), most were below age 30 years (40.2) and married (54.9%). About one fifth were very senior doctors in the consultant/professor cadre (18.9) and a third have worked for eleven years and more as medical practitioners. The mean age of participants in the study is 37.4 years (SD – 11.3 years) and mean duration of practice is 9 years (SD – 11.1 years).
Blood pressure categories as classified by AHA 2017

Table 2 shows that almost 2 in every 3 of the participants (63.1%) were considered hypertensive by the AHA 2017 classification. While about 169 participants (69.2%) had normal or elevated systolic blood pressure, only 95 participants (38.9%) were so classified by the diastolic blood pressure. Most participants (61.1%) were classified as hypertensive because of their diastolic blood pressure.

Table 1: Sociodemographic information of Study participants

Characteristics	Frequency (N = 244)	Percent (%)
Sex of Respondents		
Male	171	70.1
Female	73	29.9
Age of Respondents		
< 30 years	98	40.2
31 - 40 years	68	27.9
41 - 50 years	44	18.0
51 - 60 years	25	10.2
> 60 years	9	3.7
Mean age	37.4 ± 11.3 years	
Marital Status		
Single	110	45.1
Married	134	54.9
Professional Cadre		
House Officer	98	40.2
Resident/MO	100	41.0
Consultant/Prof	46	18.9
Duration of Practice		
< 1 years	88	36.1
1 - 5 years	55	22.5
6 - 10 years	24	9.8
11 - 20 years	36	14.8
21 - 30 years	28	11.5
> 30	13	5.3
Mean duration of practice	9.0 ± 11.1 years	

Blood pressure categories as classified by AHA 2017

Table 2 shows that almost 2 in every 3 of the participants (63.1%) were considered hypertensive by the AHA 2017 classification. While about 169 participants (69.2%) had normal or elevated systolic blood pressure, only 95 participants (38.9%) were so classified by the diastolic blood pressure. Most participants (61.1%) were classified as hypertensive because of their diastolic blood pressure.
Table 2: Distribution of BP categories as classified by AHA 2017 among participants

Characteristics	Classification (in mmHg)	Frequency (N = 244)	Percent (%)
Systolic blood pressure			
Normal	< 120	75	30.7
Elevated	120 – 129	94	38.5
Hypertension stage 1	130 – 139	41	16.8
Hypertensive stage 2	≥ 140	34	13.9
Diastolic Blood pressure			
Normal/Elevated	< 80	95	38.9
Hypertension stage 1	80 – 89	88	36.1
Hypertensive stage 2	≥ 90	61	25.0
Hypertension	SBP ≥130 ± DBP ≥ 80	154	63.1

History of Hypertension among study participants

Prior to the study 13.5% of medical practitioners who participated in the study have been diagnosed as hypertensive and have managed hypertension for a mean duration of 8.7 years (SD – 5.6 years) with calcium channel blockers (72.7%) and thiazide diuretics (54.5%) as the commonly used drugs (Table 3).

Table 3: Features of Hypertension among the study participants

Characteristics	Frequency (N = 244)	Percent (%)
Known Hypertensives		13.5
Duration of Hypertension among known hypertensives (N = 33)		
≤ 5 years	14	42.4
6 – 10 years	7	21.2
≥ 11 years	12	36.4
Mean duration of hypertension = 8.7 ± 5.6 years		
Medication used for Hypertension among known hypertensives		
Calcium channel blockers	24	72.7
Thiazide diuretics	18	54.5
Angiotensin II receptor blocker	9	27.2
ACE Inhibitors	4	12.1
Beta-receptor blocker	3	9.1
Centrally-acting	1	3.0
Modifiable risk factors

Table 4 reveals that about a third of participants consume alcohol (33.2%), take fruits daily (33.2%) and engage in exercise (31.1%). Two in every five participants consider their salt intake as moderate (41.0%) and perceive their level of stress as severe (42.2%). More than half sometimes take soda drinks (52.5%). Only 2 study participants had been diagnosed diabetic and were on anti-diabetic medications.

Table 4: Distribution of modifiable risk factors for hypertension among participants

Characteristics	Frequency (N = 244)	Percent (%)
Smoking	13	5.3
Alcohol Consumption	81	33.2
Daily Fruit Intake	81	33.2
Exercise	76	31.1
Estimation of Routine salt intake		
None	13	5.3
Little	128	52.5
Moderate	100	41.0
A lot	3	1.2
Extra salt on Table	19	7.8
Perception of stress level		
Mild	25	10.2
Moderate	116	47.5
Severe	103	42.2
Frequency of Soda intake		
Rarely	60	24.6
Sometimes	128	52.5
Frequently	56	23.0
History of Diabetes		
Yes	2	0.8
No	242	99.2
Family History of Hypertension		
Yes	142	58.2
No	102	41.8
Family history of Diabetes mellitus		
Yes	70	28.7
No	174	71.3
Sociodemographic characteristic and hypertension as classified by AHA 2017

From Table 5, sex ($X^2 = 4.20; df = 1; p = 0.040$), age ($X^2 = 11.73; df = 4; p = 0.020$), marital status ($X^2 = 6.32; df = 1; p = 0.012$), work cadre ($X^2 = 6.18; df = 1; p = 0.045$) and duration of practice ($X^2 = 17.69; df = 5; p = 0.003$) were significantly associated with the occurrence of hypertension in the study.

| Table 5: Association between Sociodemographic characteristic and Hypertension as classified by AHA 2017 |
|---------------------------------|------------------|------------------|------|-----|
| Characteristics | Total N = 244 (%) | Hypertensive N = 154 (%) | Non-Hypertensive N = 90 (%) | X^2 | df | pValue |
|--------------------------------|------------------|------------------|------|-----|
| **Sex** | | | | |
| Male | 171 (70.1) | 115 (74.7) | 56 (62.2) | 4.20 | 1 | 0.040 |
| Female | 73 (29.9) | 39 (25.3) | 34 (37.2) | | | |
| **Age** | | | | |
| < 30 years | 98 (40.2) | 51 (33.1) | 47 (52.2) | 11.73 | 4 | 0.020 |
| 31 – 40 years | 68 (27.9) | 43 (27.8) | 25 (27.8) | | | |
| 41 – 50 years | 44 (18.0) | 33 (21.4) | 11 (12.2) | | | |
| 51 – 60 years | 25 (10.2) | 20 (13.0) | 5 (5.6) | | | |
| >60 years | 9 (3.7) | 7 (4.5) | 2 (2.2) | | | |
| **Marital Status** | | | | |
| Single | 110 (45.1) | 60 (39.0) | 50 (55.6) | 6.32 | 1 | 0.012 |
| Married | 134 (54.9) | 94 (61.0) | 40 (44.4) | | | |
| **Medical Cadre** | | | | |
| House officer | 98 (40.2) | 54 (35.1) | 44 (48.9) | 6.18 | 2 | 0.045 |
| Resident/MO | 100 (41.0) | 65 (42.2) | 35 (38.9) | | | |
| Consultant/Prof | 46 (18.9) | 35 (22.7) | 11 (12.2) | | | |
| **Duration of Practice** | | | | |
| < 1 year | 88 (36.1) | 47 (30.5) | 41 (45.6) | 17.69 | 5 | 0.003 |
| 1 – 5 years | 55 (22.5) | 29 (18.8) | 26 (28.9) | | | |
| 6 – 10 years | 24 (9.8) | 19 (12.3) | 5 (5.6) | | | |
| 11 – 20 years | 36 (14.8) | 24 (15.6) | 12 (13.3) | | | |
| 21 – 30 years | 28 (11.5) | 24 (15.6) | 4 (4.4) | | | |
| >30 years | 13 (5.3) | 11 (7.1) | 2 (2.2) | | | |

Modifiable Risk factors and hypertension as classified by AHA 2017

Only intake of salt ($X^2 = 8.02; df = 3; p = 0.046$) demonstrates a statistically significant association with hypertension (Table 6)
Table 6: Association between Modifiable Risk factors and Hypertension as defined by AHA2017

Characteristics	Hypertensive status	X^2	df	pValue	
	Total N = 244 (%)				
	Hypertensive N = 154 (%)				
	Non-hypertensive N = 90 (%)				
Smoking					
Yes	13 (5.3)	9 (5.8)	0.22	1	0.639
No	231 (94.7)	145 (94.2)			
Alcohol intake					
Yes	81 (33.2)	53 (34.4)	0.28	1	0.597
No	163 (66.8)	101 (62.0)			
Daily fruit intake					
Yes	81 (33.2)	48 (31.2)	0.77	1	0.379
No	163 (66.8)	106 (68.8)			
Extra salt on Table					
Yes	19 (7.8)	10 (6.5)	0.97	1	0.324
No	225 (92.2)	144 (93.5)			
Exercise					
Yes	76 (31.1)	51 (33.1)	0.76	1	0.385
No	168 (68.9)	103 (66.9)			
Salt intake					
None	13 (5.3)	4 (2.6)	8.02	3	0.046*
Little	128 (52.5)	88 (57.1)			
Moderate	100 (41.0)	60 (39.0)			
A lot	3 (1.2)	2 (1.3)			
Perceived Stress level					
Mild	25 (10.2)	13 (8.4)	1.52	1	0.469
Moderate	116 (47.5)	74 (48.1)			
Severe	103 (42.2)	67 (43.5)			
Any existing medical condition					
Yes	19 (7.8)	11 (7.1)	0.24	1	0.623
No	225 (92.2)	143 (92.9)			

Predictors of hypertension among study participants

Table 7 displays the results of the univariate binary logistic regression between explanatory variable in the study and the occurrence of hypertension. Men (OR – 1.79;95%CI:1.02 – 3.13;p-0.041) and married participants (OR – 1.96;95% CI: 1.16 – 3.32;p – 0.012) are more likely to be hypertensive than the women and single participants respectively. Table 7 further shows that with increasing age (OR – 1.05;95%CI:1.02 – 1.08;p – 0.001), duration of practice (OR – 1.04;95%CI:1.01 – 1.07;p – 0.001), BMI (OR – 1.09;95%CI:1.01 – 1.17;p – 0.021) and waist circumference (OR – 1.03;95%CI:1.01 – 1.05; p – 0.021) the likelihood of hypertension is higher.
Table 7: Result of univariate logistic regression

Independent Variable	B	UOR	95% CI	pValue	
			Min	Max	
Sex – (Female)	0.58	1.79	1.02	3.13	
Male					0.041*
Marital Status – (Single)	0.67	1.96	1.16	3.32	
Married					0.012*
Medical Cadre – (House Officer)	0.41	1.51	0.85	2.68	
Resident/Medical Officer					0.156
Consultant/Professor	0.95	2.59	1.18	5.69	
Smoking – (No)	0.29	1.33	0.39	4.46	
Yes					0.640
Alcohol intake (No)	0.15	1.16	0.67	2.03	
Yes					0.597
Exercise (No)	0.25	1.29	0.73	2.28	
Yes					0.385
Frequency of Soda intake – (Frequently)	0.26	1.30	0.62	2.73	
Rarely					0.496
Salt intake – (None)	0.36	1.43	0.75	2.72	
Little intake	1.60	4.95	1.44	17.03	
Moderate	1.22	3.38	0.97	11.71	
A lot	1.50	4.50	0.31	65.23	
Perceived stress level – (Mild)	0.49	1.63	0.68	3.89	
Moderate					0.274
Any existing medical condition – (No)	0.54	1.72	0.71	4.15	
Yes					0.230
Family history of hypertension – (No)	0.24	1.27	0.49	3.28	
Yes					0.624
	0.03	1.03	0.61	1.74	

* Significant at p < 0.05
However, in the multivariate binary logistics regression, in which all variables statistically significant in the univariate regression were used, the age of participant (OR $= 1.05; 95\% CI: 1.02 - 1.08; p = 0.001$) was the only statistically significant variable showing age as the most important predictor of occurrence of hypertension in this study (Table 8).

Table 8: Predictors of hypertension among study participants

Independent Variable (Reference category)	B	aOR	95%CI	pValue	
Sex — (Female)					
Male	0.45	1.56	0.85	2.88	0.155
Marital Status — (Single)					
Married	0.05	1.05	0.49	2.28	0.896
Medical Cadre — (House Officer)					
Resident/Medical Officer	-0.35	0.70	0.32	1.54	0.382
Consultant/Professor	-0.62	0.54	0.13	2.17	0.384
Age	0.05	1.05	1.02	1.08	0.001*
Duration of Practice	0.01	1.01	0.92	1.10	0.975
Body Mass Index	0.07	1.07	0.97	1.18	0.190
Waist Circumference	-0.01	0.99	0.96	1.03	0.582
Constant	-1.22	0.29			0.014

aOR — adjusted odd ratio

DISCUSSION

Using the AHA 2017 classification, almost 2 in every 3 of the participants (63.1%) were classified hypertensive. However, using a cut off of $\geq 140/90$ mmHg used by other guidelines would have given a prevalence of 25%. Similar finding was reported by Ofori et al who compared the prevalence of hypertension among staff of a multinational oil/gas company in Niger-Delta, Nigeria using the 2017 ACC/AHA guidelines and the Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure (JNC7) guidelines. The result was a doubling of the prevalence of hypertension from 25.9% to 53.9%. The difference in prevalence of hypertension using the cut off blood pressure levels of $SBP \geq 130$ mmHg and $DBP \geq 80$ mmHg is quite significant. Intensive BP lowering to achieve target BP below 130/80 mmHg is beneficial in reducing CV outcomes, and is advisable for most patients with hypertension especially high risk hypertensive patients with coronary artery disease, congestive heart failure, CKD with proteinuria and diabetes mellitus with CVD. Although BP $< 140/90$ mm Hg is associated with significant reductions in the...
risks of mortality, stroke, and end-stage renal disease, BP ranges of 120 to <130 and 70 to <80 mm Hg are associated with the lowest mortality risk.\(^{26}\)

Prior to the study, only 13.5% of medical practitioners who participated in the study had been diagnosed as hypertensive using BP cut off ≥140/90mmHg and had managed hypertension for a mean duration of 8.7 years (SD – 5.6 years) using mostly calcium channel blockers (72.7%) and thiazide diuretics (54.5%). Community surveys in Nigeria show less than 30% of the general population are aware of their blood pressure status.\(^{29,30}\)

Calcium channel blockers and thiazide diuretics are the most prescribed anti-hypertensive classes in Nigeria according to several studies\(^ {31-33} \) and are first line drugs in the treatment of hypertension.\(^ {5,34,35} \)

Higher work cadre and duration of practice were significantly associated with the occurrence of hypertension in the study. The association of higher work cadre and duration of practice has been demonstrated in several studies.\(^ {1,36-39} \) This is likely because of advancing age that comes with seniority\(^ {40} \) and less physically demanding routines of senior cadre doctors.\(^ {1,40-45} \)

Advancing age was shown to be the most important predictor of occurrence of hypertension in the study. Advancing age is an established risk factor for hypertension and cardiovascular disease.\(^ {42-44} \)

Also significantly associated with the occurrence of hypertension in the study was salt intake. Added salt to prepared meals has been shown to increase the risk of hypertension and CVD.\(^ {46-48} \)

The study also showed men and married participants are more likely to be hypertensive than the women and single participants. This is in contrast with several studies which show higher risk of hypertension in single persons, with never married men having on average, higher SBP and DBP than married men and higher risk of hypertension.\(^ {49,50} \) Protective role of marriage has been linked to the social and psychological support it may offer.\(^ {51,52} \) However, several other studies have also found a high prevalence of hypertension in married persons.\(^ {53,54} \)

Possible reasons included obesity, short nighttime sleep duration, stress related to a high number of children/dependents, discordance in marriage leading to stress, abnormal eating and drinking behavior.\(^ {54,55} \)

Increasing waist circumference was also associated with an increased likelihood of hypertension on univariate analysis. This finding agrees with several studies showing WC (which is an indirect measure of visceral obesity) is a useful predictor of hypertension.\(^ {56-58} \)

CONCLUSION

The use of the 2017 ACC/AHA hypertension guidelines for diagnosis of hypertension with a blood pressure cut off ≥ 130/80 mmHg resulted in a marked increase in the prevalence of hypertension in medical doctors compared to other guidelines that use a cut off value of 140/90mmHg (63.1% versus 25%). Increasing age is a significant predictor of hypertension in medical doctors. Careful consideration needs to be given to what guidelines are best suited for our local settings to diagnose hypertension and intervene early enough and appropriately.

Limitations of the study

The population from which our sample was drawn is the Medical Doctors practicing their profession in the state of Bayelsa in the Niger Delta region of Nigeria. We think a sample size of 244 participants spread across different segments of practice and cadre of physicians is not too small to study the population in question. However, generalization of the findings from this study on the entire population of Bayelsans should be done with caution.

REFERENCES

1. Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Dennison Himmelfarb C, *et al.* 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/AS H/ASPC/NMA/PCNA guideline for the
prevention, detection, evaluation, and management of high blood pressure in adults: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol 2018; 71:e127-248.

2. James PA, Oparil S, Carter BL, Cushman WC, Himmelfarb CD, Handler J, et al. 2014 Evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA 2014; 311:507-20.

3. Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, et al.; ESC Scientific Document Group. 2018 ESC/ESH guidelines for the management of arterial hypertension. Eur Heart J. 2018; 39:3021–3104.

4. Chopra HK, Ram CS. Recent Guidelines for Hypertension. Circulation Research. 2019;124(7): 984-986

5. Chobanian AV, Bakris GL, Black HR, Cushman WC, Lee A. Green LA, et al and the National High Blood Pressure Education Program Coordinating Committee Seventh Report Of The Joint National Committee On Prevention, Detection, Evaluation, And Treatment Of High Blood Pressure. Hypertension. 2003; 42:1206–1252.

6. Unger T, Borghi C, Charchar F, Khan NA, Poulter NR, Prabhakaran D, et al. 2020 International Society of Hypertension Global Hypertension Practice Guidelines. Hypertension. 2020; 75:1334–1357

7. Brunstrøm M, Carlberg B. Association of Blood Pressure Lowering With Mortality and Cardiovascular Disease Across Blood Pressure Levels: A Systematic Review and Meta-analysis. JAMA Intern Med. 2018; 178(1):28-36.

8. Lee CJ, Ryu J, Kim HC, Ryu DR, Ihm SH, Kim YJ, et al. Clinical Benefit of Treatment of Stage-1, Low-Risk Hypertension Korean National Health Insurance Database. Hypertension 2018; 72:1285-1293.

9. Adeloye D, Basquill C, Aderemi AV, Thompson JY, Obi FA. An estimate of the prevalence of hypertension in Nigeria: a systematic review and meta-analysis. J Hypertens 2015; 33: 230–242.

10. Akinlua JT, Meakin R, and Freemantle N. Current Prevalence Pattern of Hypertension in Nigeria: A Systematic Review. Plos One 2015; 10(10): e0140021

11. National Population Commission website. Available: www.population.gov.ng. Accessed on 2015 Feb 19.

12. World Bank Nigeria 2013. Available: http://data.worldbank.org/country/nigeria. Accessed 2015 Jan 29.

13. Ambakederemo TE, Chikezie UE. Assessment of some traditional cardiovascular risk factors in medical doctors in Southern Nigeria. Vascular Health and Risk Management. 2018; 14: 299–309

14. Ordinioha B. The prevalence of hypertension and its modifiable risk factors among lecturers of a medical school in Port Harcourt, south-south Nigeria: Implications for control effort. Nigerian Journal of Clinical Practice. 2013; 16: 1-4

15. Yenagoa Local Government Area in Nigeria. National Population Commission of Nigeria and National Bureau of Statistics. (Accessed 2015 March 17) https://www.citypopulation.de/php/nigeria-admin.php?adm2id=NGA006008.

16. Bayelsa State government Strategic Health Development plan (2010-2015) https://docplayer.net/1887540-Bayelsa-state-government-strategic-health-development-plan-2010-2015-bayelsa-state-ministry-of-health.html

17. Major I. Bayelsa state health service scheme and health care delivery service in Yenagoa, Bayelsa state, Nigeria. Equatorial Journal of Social Sciences and Human Behaviour 2017; 2 (1):10-24

18. Kish, L. (1965) Survey sampling. John Wiley and Sons, Inc., New York. The WHO STEPwise approach to Surveillance of non-communicable
19. Otgontuya D, Oum S, Palam E, Rani M, Buckley BS: Individual-based primary prevention of cardiovascular disease in Cambodia and Mongolia: early identification and management of hypertension and diabetes mellitus. BMC Public Health 2012; 12:254.

20. World Health Organization. Waist Circumference and Waist–Hip Ratio: Report of a WHO Expert Consultation. Geneva; 2008:8–11.

21. Choi S, Cooper RS, Liao Y, Okosun IS, Rotimi CN. Predictive values of waist circumference for dyslipidemia, type 2 diabetes and hypertension in overweight white, Black, and Hispanic American adults. Journal of Clinical Epidemiology. 2000; 53(4):401–408.

22. Okosun IS, Rotimi CN, Forrester TE, Fraser H, Osotimehin B, Muna WF, Cooper RS. Predictive value of abdominal obesity cut-off points for hypertension in Blacks from West African and Caribbean island nations. International Journal of Obesity, 24(2):180–186.

23. World Health Organization. Obesity: preventing and managing the global epidemic. 2000. http://www.who.int/nutrition/publications/obesity/WHO_TRS_894/en/. Accessed 8 May 2017.

24. Ofori SN, Obosi J. Prevalence of hypertension among office workers in a multi-national company in the Niger-Delta with the 2017 American College of Cardiology/American Heart Association Blood Pressure Guidelines Prev Med Rep 2019; 18;15:100899

25. Kim HC, Kim YJ, Lee CJ, Ryu J, Ryu DR, et al. Clinical Benefit of Treatment of Stage-1, Low-Risk Hypertension Korean National Health Insurance Database. Hypertension. 2018: 72, 1285-1293.

26. Ram CS. Latest guidelines for hypertension: adopt and adapt. Journal of American Society of Hypertension. 2018;12;67–68.

27. Ihm SH, Kim GH, Kim HC, Kim JH, Kim K, Lee HY, et al. Korean society of hypertension guidelines for the management of hypertension: part III-hypertension in special situations. Clinical Hypertension. 2019; 25(19): 9 pages.

28. Arodiwe E, Ijoma CK, Okafor C, Onodugo O, Onwubere BJ, Ulasi I. High prevalence and low awareness of hypertension in a market population in Enugu, Nigeria. International Journal of Hypertension. 2011; Article ID 869675: 5 pages.

29. Agunyenwa C, Anakwue R, Chijioke C, Ekwe E, Eze C, Okolo T, et al. Awareness, Treatment, and Control of Hypertension in Primary Health Care and Secondary Referral Medical Outpatient Clinic Settings at Enugu, Southeast Nigeria. International Journal of Hypertension. 2016; Article ID 5628453: 5 pages

30. Olowofela A, Isah AO. Antihypertensive medicines prescriptions before and after the Nigerian hypertension society guidelines and prescriber’s awareness of the guideline. Nigerian Medical Journal. 2017; 58:107-13

31. Akinyinka MR, Adeniran A, Bakare OQ, Goodman O, Odusanya OO, Osibogun A, Kuyinu YA, Wright OK. Antihypertensive use, prescription patterns, and cost of medications in a Teaching Hospital in Lagos, Nigeria. Nigerian Journal of Clinical Practice. 2016; 19: 668-72

32. Akuche J, Ali M, Chika A, Etuk E, Isezuo SA. Prescription pattern of anti-hypertensive drugs in a tertiary health institution in Nigeria. Annals of African Medicine. 2008; 7: 128-32

33. ALLHAT Collaborative Research Group. Major cardiovascular events in hypertensive patients randomized to doxazosin vs. chlorthalidone: The antihypertensive and lipid-lowering treatment to prevent heart attack trial (ALLHAT). JAMA 2000;283:1967-75

34. Bovet P, Lemogoum D, Mabadeje AF, Mendis S, Onwubere B, Seedat YK, et al. Recommendations for prevention, diagnosis and management of
hypertension and cardiovascular risk factors in sub-Saharan Africa. Journal of Hypertension. 2003; 21:1993-2000.

35. Fawole O, Nguku P, Oladimeji AM, Nsubuga P. Prevalence and factors associated with hypertension and obesity among civil servants in Kaduna, Kaduna State. Pan African Medical Journal. 2014; 18(Suppl 1), 13

36. Charles-Davies M, Fasanmade A, Olaniyi J, Oyewole OE, Owolabi MO, Adebussuyi JR, et al. Metabolic alterations in different stages of hypertension in an apparently healthy Nigerian population. Int J Hypertens. 2013; 2013:351–357.

37. Adedoyin RA, Afolabi A, Adegoke OO, Akintomide AO, Awotidebe TO. (2013). Relationship between socioeconomic status and metabolic syndrome among Nigerian adults. Diabetes Metabolic Syndrome. 2013; 7(2):91–4.

38. Adedoyin RA, Awofolu OO, Mbada CE, Oyebami OM. The influence of socio-economic status on casual blood pressures of the adult Nig’ scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Circulation. 2008; 117(25), e510–e526

39. Avezum A, Dans T, Hawken S, Lanas F, Öunpuu S, Yusuf S, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet. 2004; 364(9438):937–952.

40. Blair SN, Franklin BA, Haskell WL, Lee IM, Pate RR, Powell KE, et al. Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Circulation. 2007; 116(9): 1081–1093.

41. Barengo N, Hu G, Lakka T, Nissinen A, Pekkarinen H, Tuomilehto J. Low physical activity as a predictor for total and cardiovascular disease mortality in middle-aged men and women in Finland. European Heart Journal. 2004; 25(24), 2204–2211.

42. Adeloye D, Basquill C, Schnabel RB. Estimating the prevalence and awareness rates of hypertension in Africa: a systematic analysis. PLoS One. 2014; 9(8): e104300.

43. Shukuri A, Tewelde T, Shaweno T. Prevalence of old age hypertension and associated factors among older adults in rural Ethiopia. (2019). Integrated Blood Pressure Control. 2019; Sep 10(12), 23-31.

44. Okoro TE, Edafe E. Association of socio-demographic characteristics of Nigerian medical doctors with cardiovascular disease risk factors. Niger Delta Medical Journal. 2019; 3(4), 31-48

45. Millen BE, Abrams S, Adams-Campbell L, Anderson CA, Brenna JT, Campbell WW, et al. The 2015 Dietary Guidelines Advisory Committee scientific report: development and major conclusions. Advances in Nutrition. 2016; 7(3): 438–444.

46. Bowman BA, Dunet DO, Gunn JP, Mugavero KL. Sodium reduction: an important public health strategy for heart health. Journal of Public Health Management Practice. 2014; 20(1 Suppl 1): S1–S5.

47. Appel LJ, Bray GA, Harsha D, Sacks FM, Svetkey LP, Vollmer WM, et al; DASH-Sodium Collaborative Research Group. Effects on blood pressure of reduced dietary sodium and the dietary approaches to stop hypertension (DASH) diet. New England Journal J Med Overseas Ed. 2001; 344(1):3–10.

48. Lipowicz A, Lopuszanska M. Marital differences in blood pressure and the risk of hypertension among Polish men. European Journal of Epidemiology. 2005; 20, 421–427

49. Ramezankhani A, Azizi F, Hadaegh F. Associations of marital status with diabetes, hypertension, cardiovascular disease and all-cause mortality: A long term follow-up study. PLoS ONE. 2019;14(4), e0215593.

50. Hemingway H, Marmot M. Psychosocial factors
in the aetiology and prognosis of coronary heart disease: Systematic review of prospective cohort studies. British Medical Journal 1999; 318:1460–1467.

51. Brunner EJ, Marmot MG, Carroll D, Shipley MJ, Smith GD, Steptoe A. Blood pressure reactions to acute psychological stress and future blood pressure status: A10-year follow-up of men in the Whitehall II Study. Psychosomatic Medicine. 2001; (63), 737–743

52. Anyabolu EN, Desmond OE, Nkechinyere CA, Okoye IC. Hypertension and its Socioeconomic Factors in a Market Population in Awka, Nigeria. American Journal of Medical Sciences and Medicine 2017; 5 (3): 40-48.

53. Anyabolu EN, Okoye IC. Association of Marital Status with Cardiovascular Risks in Urban Dwellers in Nigeria. International Journal of Internal Medicine. 2017; 6(3):43-48.

54. Carlson J, Nye I, Garrett G. Family Size, Interaction, Affect and Stress. Journal of Marriage and Family. 1970; 32 (2): 216-226.

55. Kim SG & Park SH. Comparison of Hypertension Prediction Analysis Using Waist Measurement and Body Mass Index by Age Group. Osong Public Health Res Perspective. 2018; 9 (2):45–49.

56. Woo JH, Yu AL, Sham A. Is waist circumference a useful measure in predicting health outcomes in the elderly? Internal Journal of Obese Related Metabolic Disorders. 2002; 26 (10):1349–55.

57. Olinto MT, Nacul LC, Gigante DP. Waist circumference as a determinant of hypertension and diabetes in Brazilian women: a population-based study. Public Health Nutrition. 2004; 7(5): 629–35.