Clinical characteristics of hyponatremia in patients receiving nutrition support: A cross-sectional study evaluated by bioelectrical impedance analysis

Mayumi Yano¹, Arisa Inoue¹, Akiyo Toda², Michiko Takahashi², Makoto Usami², and Yasuhiro Hamada¹

¹Department of Therapeutic Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan, ²Department of Clinical Nutrition and Dietetics, Konan Women’s University, Kobe, Japan

Abstract: Background & aims: We investigated the contributing factors of hyponatremia in patients on nutrition support using bioelectrical impedance analysis (BIA). Methods: Thirty patients administered enteral or parenteral nutrition support for at least 72 hours were studied. We collected nutritional and electrolyte intake, serum biochemical parameters, and body composition measured by BIA. Patients were classified into two groups according to their serum sodium levels: (1) Normonatremia group, 135–145 mEq/L (n = 18) and (2) Hyponatremia group, less than 135 mEq/L (n = 12), and their characteristics were analyzed. Results: There were no significant differences between the Normonatremia and Hyponatremia groups in terms of energy, protein, and sodium intake. Serum biochemical parameters other than serum sodium and chloride levels were comparable between the two groups. On the other hand, the ratio of extracellular water to total body water (ECW/TBW) obtained by BIA was significantly higher in the Hyponatremia group than in the Normonatremia group. Further, an elevated ECW/TBW significantly and negatively correlated with serum albumin level. Conclusions: Regardless of sodium intake, higher ECW/TBW was associated with hyponatremia in patients on nutrition support. ECW/TBW may be an important clinical parameter relevant to the nutritional care of hyponatremia. J. Med. Invest. 68:112-118, February, 2021

Keywords: Hyponatremia, bioelectrical impedance analysis, fluid volume imbalance, the ratio of extracellular water to total body water

INTRODUCTION

Hyponatremia, the most common electrolyte abnormality in hospitalized patients (1), has recently emerged as a risk factor for mortality (2-10). An increased morbidity and mortality rate has been observed in hyponatremia in hemodialysis patients (2-4) and patients with medical conditions such as heart failure (5), myocardial infarction (6), stroke (7), liver cirrhosis (8), pulmonary embolism (9), and cancer (10). In the clinical setting, many patients receiving nutrition support have these diseases, and hyponatremia has been often seen in these patients. Indeed, we reported that approximately 50% of hospitalized patients on nutrition support had hyponatremia (11).

Hyponatremia might point to a “frail phenotype” or “volume overload.” In hemodialysis patients, hyponatremia has been associated with low body mass index (BMI) (2), intradialytic weight loss (2), low lean tissue index (9), and low serum albumin level (2, 4). In addition, hyponatremia has been associated with weight loss in patients on peritoneal dialysis (12) and with disease severity in patients with pulmonary embolism (9). As highlighted by previous studies, hyponatremia is a marker of underlying severe disease that carries a poor prognosis (13), and hyponatremia itself may contribute to adverse outcomes such as mortality and heightened consumption of health care resource (14, 15). Therefore, the treatment of hyponatremia is very important.

In the clinical treatment of hyponatremia in patients with edema, overly rapid corrections of hyponatremia may worsen the hyponatremia condition. Also, inappropriate treatment of hyponatremia may lead to destructive consequences such as osmotic demyelination syndrome that leads to permanent brain damage or even death (1, 16). Hence, appropriate assessment of the causative factor of hyponatremia is important for the subsequent management of hyponatremia and avoidance of treatment pitfalls.

Bioelectrical impedance analysis (BIA) is widely used in the clinical setting for the evaluation of nutritional status and fluid status (17, 18). BIA is a simple, noninvasive, rapid, portable, and convenient method, which indirectly estimates the body composition and fluid distribution by sending a weak electric current throughout the body (19). Hyponatremia has been often seen in patients receiving nutrition support (11), but no study has revealed the clinical characteristics of hyponatremia in patients on nutrition support. Therefore, we investigated the contributing factor of hyponatremia in patients on nutrition support using BIA. Our study aimed to reveal the clinical characteristics of hyponatremia in patients on nutrition support and to play a constructive part in the appropriate nutritional care of hyponatremia.

MATERIALS AND METHODS

Study Design and Participants

We performed a cross-sectional study of patients who were admitted in general ward at Kobe University Hospital from October 2011 to September 2012. Patients were included if they were administered enteral nutrition (EN) or parenteral nutrition (PN) with the same quality and quantity for at least 72
results

patients characteristics

we included 30 patients (normonatremia vs. hyponatremia: n = 18 vs. 12), and their demographic characteristics are shown in Table 1. There were no significant differences in demographic characteristics between the Normonatremia and Hyponatremia groups. Approximately 50% or more patients in the two groups received a combination of PN and EN. The most common underlying disease in the two groups was malignancy. The prescribed medication which affected serum sodium level was loop-diuretics alone.

nutritional intake · electrolyte intake

Sodium intake seemed to be higher in the Hyponatremia group than in the Normonatremia group but no significant differences were observed (Figure 1). Table 2 shows the nutritional and electrolyte intake calculated from the total amount of PN and EN. The ratio of energy to body weight (BW), protein to BW, and sodium to BW were comparable between the two groups.

biochemical parameters

In the Normonatremia and Hyponatremia groups, the serum sodium levels were 140 ± 3 mEq/L and 132 ± 2 mEq/L, respectively, while the serum chloride levels were 103 ± 4 mEq/L and 98 ± 4 mEq/L, respectively. Serum potassium, total protein, serum albumin, blood urea nitrogen, serum creatinine, total lymphocyte count, C-reactive protein, and estimated glomerular filtration rate were comparable between the two groups (Table 3).

body composition analysis

The ratio of skeletal muscle mass to BW, body fat mass to BW, body cell mass to BW, and lean body mass to BW were comparable between the two groups (Table 4). As shown in Figure 2, the ratio of extracellular water to total body water (ECW/TBW) was significantly higher in the Hyponatremia group than in the Normonatremia group 0.420 ± 0.009 and 0.407 ± 0.011, respectively (P < 0.01). In addition, ECW/TBW in the two groups was higher than the standard value (0.36–0.39).
Clinical Characteristics of Hyponatremia

Table 1. Patients characteristics

	Normonatremia (n = 18)	Hyponatremia (n = 12)	P-values	
Sex	Men/Woman			
	13/5	10/2	NSa	
Age	year	70.0 (62.8-76.8)	72.0 (69.3-81.8)	NSb
Body height	cm	159.8 ± 8.0	160.6 ± 9.3	NSc
Body weight	kg	54.0 ± 15.3	50.6 ± 9.7	NSc
BMI	kg/m²	21.0 ± 5.3	19.6 ± 3.3	NSc
Routes of nutrition support	n (%)			
PN only	5 (27.8%)	6 (50%)	NSa	
EN only	1 (5.6%)	0 (0%)	NSa	
PN + EN	12 (66.7%)	6 (50%)	NSa	
Underlying disease	n (%)			
Malignancy	9 (50.0%)	4 (33.3%)	NSa	
Clinical stage				
Ⅲ	2 (11.1%)	1 (8.3%)	NSa	
Ⅳ	1 (5.6%)	2 (16.7%)	NSa	
Postoperative	5 (27.8%)	0 (0%)	NSa	
Unknown	1 (5.6%)	1 (8.3%)	NSa	
Cancer diagnosis				
Head	0 (0%)	1 (8.3%)	NSa	
Pharyngeal/laryngeal	2 (11.1%)	0 (0%)	NSa	
Lung	2 (11.1%)	1 (8.3%)	NSa	
Esophageal	2 (11.1%)	1 (8.3%)	NSa	
Gastric	2 (11.1%)	1 (8.3%)	NSa	
Duodenal	1 (5.6%)	0 (0%)	NSa	
Chronic kidney disease	6 (33.3%)	3 (25.0%)	NSa	
Hemodialysis	2 (11.1%)	1 (8.3%)	NSa	
Diabetes	3 (16.7%)	4 (33.3%)	NSa	
Cirrhosis	2 (11.1%)	1 (8.3%)	NSa	
Cerebrovascular disease	2 (11.1%)	2 (16.7%)	NSa	
Cardiovascular disease	0 (0%)	2 (16.7%)	NSa	
Medication	n (%)			
Loop-diuretics	2 (11.1%)	1 (8.3%)	NSa	

BMI, Body mass index; PN, parenteral nutrition; EN, enteral nutrition; NS, not significant.

Data are presented as mean ± standard deviation, median (interquartile amplitude), or frequency.

*χ² test.

*Mann–Whitney U-test.

'Student’s t-tests.

*Each patient was staged according to the TNM classification by the Union for International Cancer Control and/or Japanese General Rules for Clinical and Pathological Classification of Cancer.

Table 2. Nutritional intake · Electrolyte intake

	Normonatremia (n = 18)	Hyponatremia (n = 12)	P-values	
energy	kcal/day	1262 ± 487	1136 ± 515	NSa
energy/BW	kcal/kg (BW)/day	24.4 ± 10.3	23.5 ± 12.4	NSa
protein	g/day	49.6 ± 20.5	38.7 ± 21.5	NSa
protein/BW	g/kg (BW)/day	1.0 ± 0.5	0.8 ± 0.5	NSa
sodium	mEq/day	127.7 (100.3-180.0)	162.7 (101.7-245.1)	NSb
sodium/BW	mEq/kg (BW)/day	3.1 ± 2.0	3.5 ± 1.6	NSa

BW, Body weight; NS, not significant.

Data are presented as mean ± standard deviation, median (interquartile amplitude).

*Student’s t-tests.

*Mann–Whitney U-test.
Correlation of ECW / TBW with Serum Albumin Level in All Patients

The relationships between ECW / TBW and serum albumin level were investigated using partial correlation accounting for the influence of age. As shown in Figure 3, ECW / TBW had a significant negative correlation with serum albumin level (r = −0.643, P < 0.01). Meanwhile, ECW content and the ratio of ECW to BW had no correlation with serum albumin level (r = 0.004, P = 0.984; r = 0.237, P = 0.208).

DISCUSSION

In this study, we found that ECW / TBW was significantly higher in the Hyponatremia group than in the Normonatremia group, regardless of sodium intake. Furthermore, an elevated ECW / TBW significantly and negatively correlated with serum albumin level as would be expected with patients with excess ECW. Thus, ECW / TBW may be an important clinical parameter for the evaluation of hyponatremia and fluid status.

Hyponatremia has been associated with low BMI (2), weight loss (2, 12), low lean tissue index (3), and low serum albumin (2, 4) in patients with different diseases, which might result from “fluid volume imbalance”. In this study, ECW / TBW in the

Table 3. Biochemical parameters	Normonatremia (n = 18)	Hyponatremia (n = 12)	P-values
Sodium mEq / L	140 ± 3	132 ± 2	P < 0.01*
Potassium mEq / L	4.3 ± 0.5	4.0 ± 0.8	NS
Chloride mEq / L	103 ± 4	98 ± 4	P < 0.01*
Total protein g / dL	5.6 ± 1.0	5.9 ± 1.0	NS
Albumin g / dL	2.5 ± 0.5	2.2 ± 0.5	NS
Blood urea nitrogen mg / dL	21.0 (13.0 - 26.3)	13.0 (11.3 - 23.8)	NS
Creatinine mg / dL	0.75 (0.58 - 1.24)	0.62 (0.45 - 1.11)	NS
Total lymphocyte count cell / μL	765 (470 - 886)	744 (373 - 1124)	NS
C-reactive protein mg / dL	2.5 (1.4 - 5.7)	4.1 (2.0 - 6.0)	NS
estimated glomerular filtration rate ml/min/1.73 m²	74.4 ± 39.6	86.7 ± 48.2	NS

NS, not significant.

Data are presented as mean ± standard deviation, median (interquartile amplitude).

*aStudent’s t-tests.

*bMann–Whitney U-test.

Table 4. Body composition analysis	Normonatremia (n = 18)	Hyponatremia (n = 12)	P-values
Skeletal muscle mass kg/kg (BW)	0.41 ± 0.06	0.40 ± 0.06	NS
Body fat mass kg/kg (BW)	0.21 (0.14 - 0.24)	0.21 (0.15 - 0.25)	NS
Body cell mass kg/kg (BW)	0.50 (0.49 - 0.53)	0.49 (0.42 - 0.52)	NS
Lean body mass kg/kg (BW)	0.79 (0.76 - 0.86)	0.79 (0.75 - 0.85)	NS
ECW L	12.6 ± 2.8	12.1 ± 2.4	NS
TBW L	31.0 ± 6.9	28.9 ± 5.7	NS
ECW / TBW	0.407 ± 0.001	0.420 ± 0.009	P < 0.01*

BW, Body weight; NS, not significant

Data are presented as mean ± standard deviation, median (interquartile amplitude).

*aStudent’s t-tests.

*bMann–Whitney U-test.

Correlation of ECW / TBW with Serum Albumin Level in All Patients

ECW / TBW was significantly higher in the Hyponatremia group than in the Normonatremia group, respectively (P < 0.01). ECW / TBW standard value (0.36–0.39).
Normonatremia and Hyponatremia groups was higher than the standard value, which indicated that fluid imbalance between intracellular water (ICW) and ECW was present in the two groups. The cause of fluid volume imbalance is multifactorial and may be associated with systemic inflammation, hypoalbuminemia, capillary leakage, and a decline in lean and/or fat tissue mass (21-24). These factors may have contributed to an elevated ECW/TBW in the two groups. Moreover, the higher ratio of ECW/TBW was associated with hyponatremia, regardless of sodium intake. Literature suggests that hyponatremia with chronically ill patients is caused by impaired renal free water excretion which results from inappropriate release of vasopressin such as syndrome of inappropriate antidiuretic hormone and reset osmostat (25). These diseases may have further exacerbated the fluid volume imbalance. However, since they were not diagnosed in this study, it was unclear whether they contributed to hyponatremia. Although hyponatremia is often multifactorial, very interestingly, ECW/TBW showed a significant difference between the two groups.

Previous researchers have shown that the BIA data are associated with patient’s nutritional status or clinical outcomes (17, 18). In particular, ECW/TBW, which represents fluid status, has also been found to be a good prognostic factor for diseases such as acute heart failure (26), renal disease (27), liver disease (28), and malignancy (29). The subjects of this study included patients with systemic inflammation such as malignancy or chronic kidney disease. The higher ECW/TBW ratio in these patients has been reported to have common characteristics as follows. First, fluid retention, such as pleural effusion, ascites, or edema in the peripheral extremities is often seen in patients with malignancy (30) or chronic kidney disease (31) and is generally associated with disease progression, which is indicated as ECW excess. Second, fluid volume imbalance may be closely associated with systemic inflammation, hypoalbuminemia, vascular permeability, protein catabolism, and muscle wasting (21-24). Notably, systemic inflammation seems to play a pivotal role in the fluid volume imbalance by the following mechanisms: Hypoalbuminemia and increased vascular permeability caused by systemic inflammation will enhance extravascular fluid shift, resulting in ECW volume overload (21, 22). In addition, increased protein catabolism and muscle wasting caused by systemic inflammation could deplete body cell mass, which eventually leads to the decrease in ICW, and relative increase in ECW/TBW (23, 24).

In this study, an elevated ECW/TBW showed a significant negative correlation with serum albumin level even after accounting for age. In contrast, ECW content and the ratio of ECW to BW had no correlation with serum albumin level. These findings would support the clinical picture of relative excess ECW due to fluid volume imbalance, regardless of age. Previous studies reported that patients with decreased ICW and relatively increased ECW (ie, relative increase in ECW/TBW) were susceptible to volume overload (29, 32). Therefore, ECW/TBW may be useful as an important clinical parameter for the evaluation of hyponatremia and fluid status.

The final treatment for hyponatremia in patients receiving nutritional support is corrective treatment for serum sodium concentration and fluid balance to improve their prognosis. Based on our results, we suggest ECW/TBW as an indicator of fluid balance. Although clinical assessment of fluid status has been applied as one of the diagnostic parameters of algorithm for the diagnosis of hyponatremia (1), the method for the assessment has not been clarified. The indicator of fluid balance using ECW/TBW may help the evaluation of hyponatremia in the clinical setting.

One of the clinical practice pitfalls, which could endanger hyponatremic patients, is overly rapid correction of hyponatremia. NST patients often receive PN management. They often already have a fluid volume imbalance. Excessive serum sodium correction with PN can cause a rapid rise in serum sodium level, eventually resulting in overcorrection of hyponatremia, and exposes the patients to harmful risks such as edema and worsening of hyponatremia. Therefore, we suggest prioritizing corrective treatment for fluid balance before sodium replenishment. In other words, we suggest interventions aimed at improving ECW/TBW ratio, rather than interventions aimed solely at increasing serum sodium concentration. Assessment of fluid status by ECW/TBW may prevent excessive serum sodium correction and may help the evaluation of hyponatremia in patients on nutrition support.

Our study had some limitations. First, our study was limited by its observational nature, which allowed us to establish associations, but not causality. Further studies are needed to demonstrate causality between hyponatremia and fluid volume imbalance. Second, it was not possible to classify the patients according to ECW/TBW owing to the small sample size. It would be better to compare the ECW/TBW with various indicators such as nutritional status and clinical outcomes and to monitor them in clinical practice.

In conclusion, regardless of sodium intake, higher ECW/TBW was associated with hyponatremia in patients on nutrition support. Further, an elevated ECW/TBW significantly and negatively correlated with serum albumin level, as would be expected with patients with excess ECW. ECW/TBW may be an important clinical parameter relevant to the nutritional care of hyponatremia.

CONFLICTS OF INTEREST

None declared.
The Journal of Medical Investigation Vol. 68 February 2021 117

FUNDING
This work was partly supported by JSPS KAKENHI Grant Number JP18K11100.

ACKNOWLEDGEMENTS
The authors would like to thank the staff of Nutrition Support Team, Kobe University Hospital (Kobe, Japan) for their assistance in this study.

REFERENCES
1. Spasovski G, Vanholder R, Allocco B, Annane D, Ball S, Bichet D, Decaux G, Fenske W, Hoorn ED, Ichai C, Jonardidi M, Soupart A, Zietse R, Haller M, Veer S van der, Biesen WV, Nagler E: Clinical practice guideline on diagnosis and treatment of hyponatraemia. Eur J Endocrinol 170(3): G1-47, 2014
2. Hecking M, Karaboyas A, Saran R, Sen A, Horl WH, Pisoni RL, Robinson BM, Sunder-Plassmann G, Port FK: Predialysis serum sodium level, dialysate sodium, and mortality in maintenance hemodialysis patients: the Dialysis Outcomes and Practices Patterns Study (DOPPS). Am J Kidney Dis 59(2): 238-48, 2012
3. Dekker MJ, Marcelli D, Canaud B, Konings CJ, Leunissen RL, Robinson BM, Sunder-Plassmann G, Port FK: Unraveling the relationship between mortality, hyponatraemia, inflammation and malnutrition in hemodialysis patients: results from the international MONDO initiative. Eur J Clin Nutr 70(7): 779-84, 2016
4. Waikar SS, Curhan GC, Brunelli SM: Mortality associated with low serum sodium concentration in maintenance hemodialysis. Am J Med 124(1): 77-84, 2011
5. Gheorghiade M, Abraham WT, Albert NM, Gottis Stough W, Greenberg BH, O’Connor CM, She L, Yancy CW, Young J, Fonarow GC: Relationship between admission serum sodium concentration and clinical outcomes in patients hospitalized for heart failure: an analysis from the OPTIMIZE-HF registry. Eur Heart J 28(8): 980-8, 2007
6. Singla I, Zaidi M, Good CB, Macioce A, Sonel AF: Effect of hyponatremia (< 135 mEq/L) on outcome in patients with non-ST-elevation acute coronary syndrome. Am J Cardiol 100(3): 406-8, 2007
7. Rodrigues B, Staff I, Fortunato G, McCullough LD: Hyponatremia in the prognosis of acute ischemic stroke. J Stroke Cerebrovasc Dis 23(5): 850-4, 2014
8. Yu C, Sharma N, Saab S: Hyponatremia: clinical associations, prognosis, and treatment in cirrhosis. Exp Clin Transplant (11): 3-11, 2013
9. Scherz N, Labarere J, Mena M, Ibrahim SA, Fine MJ, Aujesky D: Prognostic importance of hyponatremia in patients with acute pulmonary embolism. Am J Respir Crit Care Med 182(9): 1178-83, 2010
10. Doshi SM, Shah P, Lei X, Lahoti A, Salahudeen AK: Hyponatremia in hospitalized cancer patients and its impact on clinical outcomes. Am J Kidney Dis 59(2): 222-8, 2012
11. Ikuta T, Hamada Y, Satake K, Sakamoto M, Tanaka K, Yano M, Neguchi M, Toda A, Hirai M, Usami M: The beneficial effects of nutrition support on electrolyte abnormalities in patients with malnutrition. JPEN 20(4): 1111-7, 2011
12. Dimitriadis C, Sekercioglu N, Pipili C, Oreopoulos D, Bargman JM: Hyponatremia in peritoneal dialysis: epidemiology in a single center and correlation with clinical and biochemical parameters. Perit Dial Int 34(3): 260-70, 2014
13. Baran D, Hutchinson TA: The outcome of hyponatremia in a general hospital population. Clin Nephrol 22(2): 72-6, 1984
14. Wald R, Jaber BL, Price LL, Upadhyay A, Madias NE: Impact of hospital-associated hyponatremia on selected outcomes. Arch Intern Med 170(3): 294-302, 2010
15. Holland-Bill L, Christiansen CF, Heide-Jorgensen U, Ulrichsen SP, Ring T, Jorgensen JO, Sorensen HT: Hyponatremia and mortality risk: a Danish cohort study of 279 508 acutely hospitalized patients. Eur J Endocrinol 173(1): 71-81, 2015
16. Verbalis JG, Goldsmith SR, Greenberg A, Korzelius C, Schrirr RW, Sterns RH, Thompson CJ: Diagnosis, evaluation, and treatment of hyponatremia: expert panel recommendations. Am J Med 126(10 Suppl 1): S1-42, 2013
17. Lee Y, Kwon O, Shin CS, Lee SM: Use of bioelectrical impedance analysis for the assessment of nutritional status in critically ill patients. Clin Nutr Res 4(1): 32-40, 2015
18. da Silva AT, Hauschild DB, de Almeida Oliveira LD, de Fragas Hinnig P, Moreno YMF, Wadlawik E: Association of hypertension evaluated by bioelectrical impedance analysis and mortality in patients with different medical conditions: systematic review and meta-analyses. Clin Nutr ESPEN 28: 12-20, 2018
19. Kyle UG, Bosaues I, De Lorenzo AD, Deurenberg P, Elia M, de Oliveira J, Port FK: Association between height and body cell mass assessed by bioelectrical impedance analysis-part II: utilization in clinical practice. Clin Nutr 23(6): 1430-53, 2004
20. Detsky AS, McLaughlin JR, Baker JP, Johnston N, Whittaker S, Mendelsson RA, Jeejeebhoy KN: What is subjective global assessment of nutritional status? JPEN J Parenter Enteral Nutr 11(1): 8-13, 1987
21. Limthongkul S, Charoenlap N, Nuchprayoon C, Songkha YN: Relationships between pleural fluid pH, PCO2 to pleural fluid PO2, amylase, protein, glucose and white cells in tuberculous and malignant effusions. J Med Assoc Thai 73(8): 429-32, 1990
22. Achinger SG, Ayus JC: Inflammation from dialysis, can it be removed?. Nephrol Dial Transplant 28(4): 770-3, 2013
23. Earthman C, Troughder D, Dobratt J, Howell B: Bioimpedance spectroscopy for clinical assessment of fluid distribution and body cell mass. Nutr Clin Pract 22(4): 389-405, 2007
24. Johansen KL, Dalrymple LS, Delgado C, Kaysen GA, Cornak J, Grimes B, Chertow GM: Association between body composition and frailty among prevalent hemodialysis patients: a US Renal Data System special study. J Am Soc Nephrol 25(2): 391-9, 2014
25. Leggott J, Almond D: Reset osmostat in a 47-year-old patient. Cerebrovasc Dis 23(4): 3-11, 2013
26. Liu MH, Wang CH, Huang YY, Tung TH, Lee CM, Yang NI, Liu PC, Cherg WJ: Edema index established by a single-center, rearward-looking and wavelength-based model. Nephrol Dial Transplant 28(4): 317-9, 2001
27. Logan J, Almond D: Osmotic state in a 47-year-old woman with cerebral palsy. J Am Board Fam Pract 14(4): 317-9, 2001
28. Liu MH, Wang CH, Huang YY, Tung TH, Lee CM, Yang NI, Liu PC, Cherg WJ: Edema index established by a segmental multifrequency bioelectrical impedance analysis provides prognostic value in acute heart failure. J Cardiovasc Med (Hagerstown) 13(5): 299-306, 2012
29. Fan S, Sayed RH, Davenport A: Extracellular volume expansion in peritoneal dialysis patients. Int J Artif Organs 35(5): 338-45, 2012
30. Sawaka M, Kawauchi T, Taniguchi E, Nakayama A, Ishizaki S, Sonaka I, Nakamura T, Itou M, Orishia Te, Abe Mi, Yamagimoto C, Koga H, Sata M: Oxidized albumin is associated with water retention and severity of disease in
patients with chronic liver diseases. E Spen Eur E J Clin Nutr Metab 5(6) : e247-53, 2010
29. Lee JY, Ryu HS, Yoon SS, Kim EH, Yoon SW : Extracellular-to-intracellular fluid volume ratio as a prognostic factor for survival in patients with metastatic cancer. Integr Cancer Ther 18 : 1-7, 2019
30. Keraliya AR, Rosenthal MH, Krajevski KM, Jagannathan JP, Shinagare AB, Tirumani SH, Ramaiya NH : Imaging of fluid in cancer patients treated with systemic therapy : chemotherapy, molecular targeted therapy, and hematopoietic stem cell transplantation. AJR Am J Roentgenol 205(4) : 709-19, 2015
31. Stegmayr BG : Ultrafiltration and dry weight-what are the cardiovascular effects?. Artif Organs 27(3) : 227-9, 2003
32. Ohashi Y, Tai R, Aoki T, Mizuiri S, Ogura T, Tanaka Y, Okada T, Aikawa A, Sakai K : The associations of malnutrition and aging with fluid volume imbalance between intra- and extracellular water in patients with chronic kidney disease. J Nutr Health Aging 19(10) : 986-93, 2015