Clinical effectiveness of convalescent plasma in hospitalized patients with COVID-19: a systematic review and meta-analysis

Authors:
Abeldaño Zuñiga, Roberto Ariel¹; González Villoria, Ruth Ana María¹; Elizondo, María Vanesa²; Nicolás Osorio, Anel Yaneli¹; Coca, Silvia Mercedes¹.

Institutional Affiliations:
1. University of Sierra Sur, Mexico.
2. Catholic University of Cuyo, Argentina.

Corresponding author:
Dr. Roberto Ariel Abeldaño Zuñiga
University of Sierra Sur. Oaxaca, Mexico. rariel@unsis.edu.mx

Authorship
RAAZ Contributed to the development of the research project.
RAAZ, MVE, SCM, AYNO and RAMGV performed data collection, analyzed, and interpreted the results.
RAAZ, SCM and RAMGV wrote the article. All authors reviewed and approved the final version.

Clinical effectiveness of convalescent plasma in COVID-19 infections

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Given the variability of previously reported results, this systematic review aims to determine the clinical effectiveness of convalescent plasma employed in the treatment of hospitalized patients with diagnosis of COVID-19.

We conducted a systematic review of controlled clinical trials assessing treatment with convalescent plasma for hospitalized patients with a diagnosis of SARS-CoV-2 infection. The outcomes were mortality, clinical improvement, and ventilation requirement.

A total of 50 studies were retrieved from the databases. Four articles were finally included in the data extraction, qualitative and quantitative synthesis of results. The meta-analysis suggests that there is no benefit of convalescent plasma compared to standard care or placebo in the reduction of the overall mortality and in the ventilation requirement; but there could be a benefit for the clinical improvement in patients treated with plasma.

We can conclude that the convalescent plasma transfusion cannot reduce the mortality or ventilation requirement in hospitalized patients diagnosed with SARS-CoV-2 infection. More controlled clinical trials conducted with methodologies that ensure a low risk of bias are still needed.

Keywords: Convalescent plasma; Clinical improvement; Mortality; COVID-19; SARS-CoV-2.
Introduction

The SARS-CoV-2 virus first detected in Wuhan China has caused a global pandemic (1). What is known about the microorganism is established by genomic analysis as the disease spreads (2,3). The pandemic still represents a global health threat, in mid-January 2021, the total number of COVID-19 cases reported by the World Health Organization (WHO) is close to 100 million, while deaths have exceeded 2 million (4). One year after the onset of the disease, it is known that there are cases with different degrees of severity ranging from asymptomatic cases to critical patients, in whom respiratory failure, septic shock or multi-organ failure occurs, requiring various hospital care and supportive treatment (5). WHO points out that there are more than 200 vaccines under investigation, only some in phase three and four are being distributed currently (6–9).

The distribution of these vaccines is subject to the production, acquisition, storage, and distribution capacities of each country. As of January 2021, 90% of the vaccines produced are concentrated in 9 countries (10). These problems limit a large percentage of the world population to be vaccinated as soon as possible and therefore reach herd protection, this limitation being even greater in low-income countries, which will have to wait a considerable time longer. This is due to the fact that the pre-order manufacturing contracts for vaccines to 13% of the population mainly in the European Union (6). All this implies that people will continue to be infected and will continue to die from this infection in low-income countries. Therefore, to find a treatment that reduces the severity of the disease and reduces the incidence of fatality is still a major public health concern.
On the other hand, in addition to the limitations of access to the vaccine, their efficacy has been established in a very wide range, from 50% to 95% (8,9). Therefore, in countries where there will not be prompt protection of the population, it is necessary to use treatments for the recovery of hospitalized patients when the effectiveness of the vaccines is not as expected.

Among the repurposed treatments, the use of passive immunity has been suggested as an alternative since the beginning of the pandemic (11). The use of convalescent plasma as a treatment against COVID-19 was approved in March 2020 by the FDA (12). The treatment uses the administration of antibodies collected from people recently infected and recovered from COVID-19. The results of the use of plasma are variable, reporting efficacy if its use is in the first sixteen days of illness was associated with an improvement in the first days after treatment, as well as lower requirements for ventilatory support, on the other hand there are studies that show that the disease is in a moderate phase plasma treatment does not show evidence of preventing disease progression (13–19). Given the variability of previously reported results, the present work aims to determine the clinical effectiveness of convalescent plasma employed in the treatment of hospitalized patients with diagnosis of COVID-19.
Methods

A systematic review was conducted adhering to the PRISMA guidelines for conducting systematic reviews (20). The question in this review was:

What is the clinical effectiveness of convalescent plasma employed in the treatment of hospitalized patients with diagnosis of COVID-19? To conduct the review, the PICOS structure was followed according to these points:

- Patients: Adults hospitalized with a diagnosis of SARS-CoV-2 infection.
- Intervention: Treatment with convalescent plasma.
- Comparison: Placebo or standard care.
- Outcomes: Overall mortality, clinical improvement at seven days, clinical improvement at 14 days, clinical improvement at 28 days, duration of ventilation (days), duration of hospitalization (days), virological clearance, and severe adverse events.
- Studies (type of): Clinical trials published in peer-reviewed journals.

The search was carried out in PubMed, Scopus, and Web of Science databases, between November 20th, 2020, and January 9th, 2020. The references of the selected articles were also reviewed for an integral reading to include additional studies not indexed in these databases. The clinicaltrials.gov website was also scanned to obtain potential published reports of registered trials. The search strategies included the following keywords: convalescent plasma, COVID-19, SARS-CoV2, and hospitalized. See the supplemental file for more details on the search strategies.
Studies that met the following criteria were included: I) Controlled clinical trials, II) Studies that included hospitalized patients with SARS-CoV-2 infection, III) Published in 2020 and 2021, IV) Published in English, Chinese, Spanish, or Portuguese. The exclusion criteria were I) Not being a clinical controlled trial, II) Not treating hospitalized patients, and III) Nos using convalescent plasma.

All references were managed with Mendeley® software. The selection of the articles began with the removal of duplicate articles and proceeded with the reading of the title and abstract, carried out independently by reviewers 1, 2, and 3. The final decision in cases of disagreement was based on the criteria of a fourth reviewer. In the second phase, the same reviewers read the full text of the studies to define which would be included for the extraction and synthesis of data. The data were stored in Microsoft Office Excel spreadsheets and organized in an instrument constructed by the authors considering: Characteristics of the study (author, year, country), sample, study design, and characteristics of the results.

The risk of bias of the studies was evaluated using the ROB2 tool (21). The included studies were independently assessed by reviewers 1 and 5 (See supplemental file).

The qualitative synthesis was developed following the assessed outcomes: Overall mortality, clinical improvement at seven days, clinical improvement at 14 days, clinical improvement at 28 days, ventilation requirement, hospital stay (days), virological clearance, and severe adverse events.

Statistical analysis
Meta-analyses of inverse variance were conducted for three outcomes: clinical improvement at day 7, ventilation requirement and overall mortality. Meta-analyses were conducted with Revman v5.4 using pooled fixed effects odds ratios. The significance and the magnitude of heterogeneity across studies were calculated using the Q and I² statistics. Odds ratios with 95% CIs were plotted for the association between convalescent plasma compared with standard care or placebo. Subgroup analyses were performed to examine differences according to the population (All adults and older adults) in the treatment with convalescent plasma for the ventilation requirement and the overall mortality in patients diagnosed with SARS-Cov-2 infection.

The review protocol was registered on the PROSPERO platform (CRD42020184436).

Results

Following the described PICOS structure, this systematic review retrieved 50 studies from the databases. After the removal of 4 duplicates, 46 articles were read in title and abstract. Forty-two were eliminated, resulting in 4 articles for full-text reading. Four articles were finally included in the data extraction, qualitative and quantitative synthesis of results (Figure 1).

The overall risk of bias in the reviewed articles was established at low-risk only in one randomized, open-label clinical trial (17). The remaining three studies were established at high risk of bias due to issues in the randomization process (16,18,19). More details can be seen in the supplemental file.
Patient samples ranged from 103 (the study with the fewest patients) to 464 (the study with the most patients); three clinical trials included adult patients (16,18,19), while the fourth study was focused only in older adult patients (17). The retrieved results were: Mortality, clinical improvement at 7, 14, and 28 days (defined by clinical scales), ventilation requirement, the mean duration of hospitalization (in days), virological clearance (by laboratory tests), progression to severe disease and severe adverse events (Table 1). The four studies reported using convalescent plasma at different dosage. Li (19) reported a 4 to 13 mL/kg of recipient body weight dose, with possibility of receiving a second dose (96% received a single dose transfusion). Agarwal (18) reported 2 doses of 200 ml, transfused 24 hours apart. Abolghasemi (16) reported 1 dose of 500 ml followed by a second dose of 500 ml if the patient did not show any improvement after 24 hours. The study developed by Libster (17) in Argentina was the only one that reported 250 ml of convalescent plasma with IgG titer greater than 1:1000. Also, it is important to highlight that 2 studies used antiviral drugs in both groups (16,19), one study used antiviral treatment in the control group (18), and one study did not reported the use of drugs in any group (17).

Outcomes assessed

The main outcome assessed by this systematic review was the mortality in hospitalized patients diagnosed with SARS-CoV-2 infection. Two clinical trials assessed the mortality of hospitalized patients at day 28 (18,19), and two studies reported mortality at any time from randomization (16,17) (Table 1).
The clinical improvement was reported by two studies. Li (19) has measured this outcome at days 7, 14 and 28 using the National Early Warning Score (NEWS) 2 (22), while Agarwal (18) has measured this outcome at day 7 as the proportion of participants showing resolution of symptoms of fever, shortness of breath, or fatigue. Abolghasemi (16) and Libster (17) did not assessed clinical improvement (Table 1).

The progression to severe disease was assessed by Agarwal and Libster (17, 18). The definitions of this outcome differed in both clinical trials: PaO2/FiO2 ratio <100 mm Hg any time within 28 days of enrolment (18); and respiratory rate of 30 bpm or more, SpO2 <93% at ambient air, or both (17) (Table 1).

The virological clearance was reported by two studies (18, 19) using different criteria, and all studies reported adverse events identified in patients (16–19). The study published by Li was the only one that assessed subgroups: all patients, patients with severe disease, and patients with life-threatening disease (19). Other assessed outcomes are shown in table 1.

Table 2 shows the main results from the four articles included in the qualitative synthesis. The reduction in overall mortality is supported by Li (19) and Abolghasemi (16), but Agarwal (18) and Libster (17) did not found statistically significant differences.

Li and Agarwal conclusions state that the convalescent plasma transfusion did not result in benefit for the intervention groups (18, 19), while the studies published by Abolghasemi and Libster stated that convalescent plasma was clinically effective in COVID-19 patients (16, 17). Since the conclusions reported by the included studies
differed, we decided to conduct the meta-analysis to obtain global estimations for the outcomes of our interest.

Meta-analysis
The result of two studies was integrated into the fixed-effects meta-analysis for comparing convalescent plasma versus standard care in the clinical improvement of patients diagnosed with SARS-CoV-2 infection (18,19). In this case, convalescent plasma has shown a benefit for patients (OR: 1.86; CI: 1.19-2.91) (Figure 2).

Three studies reporting ventilation requirement outcomes (16–18) were compared to test the overall effect of convalescent plasma. The results of the random-effects meta-analysis show no association with ventilation requirement (OR: 1.34; CI: 0.48-3.72) (Figure 3).

Finally, the results of 3 studies (16,18,19) were meta-analyzed to establish comparisons on the overall mortality. The meta-analysis of fixed effects suggests no benefits using the convalescent plasma transfusion for reducing the risk of overall mortality (OR: 0.83; CI: 0.56-1.22) (Figure 4).

Discussion
This systematic review was focused on of adults hospitalized patients diagnosed with SARS-CoV-2 infection, treated with convalescent plasma transfusion. The studies included in this review were quite heterogeneous regarding the doses of plasma administered, the co-treatment with repositioned antiviral drugs in the experimental group and in the control group, and in the results obtained by each
clinical trial. Considering only controlled clinical trials published in peer-reviewed journals, 916 patients were included in hospitals from China, India, Iran, and Argentina.

Regarding the overall quality of the studies, it must be noted that 3 out of 4 clinical trial were considered at high risk of bias due to the lack of blinding. This is a common characteristic of many clinical studies that started to run under emergency conditions due to the persistent health crisis, with recurring waves in some countries in Latin America, and other countries (23).

There are four published systematic reviews on convalescent plasma that have shown that this treatment could reduce the mortality (24–27), but did not included only controlled trials and did not included the last study published by Libster (17). The current systematic review did not showed any benefit on the mortality reduction, consistent with other three published systematic reviews (28–30), while other systematic reviews were focused on other infectious diseases such as Ebola, influenza or SARS (31–33), or other target populations (34).

The use of convalescent plasma was associated with clinical improvement, which is consistent with other previously published study (24,27,29), however, Li (6) has stated that plasma treatment has not been effective in critically ill patients, which suggests that more stratified analysis are needed in primary studies. In addition, the plasma transfusion has not been effective for avoiding the ventilation requirement, as stated previously by Chai (29). All this could suggest that the clinical effects of an earlier transfusion of convalescent plasma should be continue to be assessed in subsequent clinical trials, just like Libster (17) suggests in mildly ill patients in early stages of the infection. In the decade of 1970, one study on
hemorrhagic fever in Argentina has shown more effectiveness of convalescent plasma in the first days of the clinical course (35). Still, the optimal dosage and the best time point for the convalescent plasma transfusion need to be determined in well-designed clinical trials (36).

Something that has been sufficiently proven before is that convalescent plasma administration does not have many severe adverse events in transfusion (16–19,27,31). In contrast, more research is needed on the synergistic effect that plasma could have with other repositioning drugs, as has been demonstrated, for example, with the use of remdesivir as has been published in other studies (19,27,37).

Among the limitations of this study, the rapid generation of new knowledge in times of the pandemic, can potentially affect the timeliness of this review in a few months. The second limitation is the heterogeneity and high risk of bias in the studies. In this review, we chose not to issue recommendations with the GRADE methodology, due to heterogeneity and high risk of bias. Another limitation is that not all studies have used the same dosage of convalescent plasma in infected patients. The fourth limitation that must be considered is regarding the use of antiviral drugs in the control groups or both groups of patients in three out of four clinical trials included in this review.

In times of recurring waves of the COVID-19 pandemic, the analysis of potential treatments proposed for hospitalized patients is still necessary since the procurement and logistics of vaccines are still seen within a complex scenario for many low-income countries. In many low-income countries, people are likely to continue to be infected and to continue to die, where vaccination would occur two
to four quarters later partly due to logistical issues, as stated The World Bank (38); so the search for a clinically effective treatment is still a major concern globally.

In the clinicaltrials.gov platform are currently registered dozens of clinical trials that are assessing the treatment with plasma, so the addition of new evidence in the coming months could change the direction of the analyzes in this review.

Conclusion

The transfusion with convalescent plasma cannot reduce the mortality or ventilation requirement in hospitalized patients diagnosed with SARS-CoV-2 infection. More controlled clinical trials conducted with methodologies that ensure a low risk of bias are still needed.

All authors declare that there are no conflicts of interest.

There was no funding for this project.

All data are available upon request to the corresponding author.

References

1. Hsu LY, Chia PY, Lim JF. The Novel Coronavirus (SARS-CoV-2) Epidemic. Ann Acad Med Singapore [Internet]. 2020;49(3):105–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/32200398

2. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet [Internet]. 2020 Feb;395(10224):565–74.
3. Hoque MN, Chaudhury A, Akanda MAM, Hossain MA, Islam MT. Genomic diversity and evolution, diagnosis, prevention, and therapeutics of the pandemic COVID-19 disease. PeerJ [Internet]. 2020 Sep 1;8:e9689. Available from: https://peerj.com/articles/9689

4. World Health Organization. WHO Coronavirus Disease (COVID-19) Dashboard | WHO Coronavirus Disease (COVID-19) Dashboard [Internet]. 2021 [cited 2021 Jan 16]. Available from: https://covid19.who.int/

5. Gattinoni L, Chiumello D, Caironi P, Busana M, Romitti F, Brazzi L, et al. COVID-19 pneumonia: different respiratory treatments for different phenotypes? Intensive Care Med [Internet]. 2020 Jun 14;46(6):1099–102. Available from: http://link.springer.com/10.1007/s00134-020-06033-2

6. Mullard A. How COVID vaccines are being divvied up around the world. Nature. 2020 Nov 30;

7. Korang SK, Juul S, Nielsen EE, Feinberg J, Siddiqui F, Ong G, et al. Vaccines to prevent COVID-19: a protocol for a living systematic review with network meta-analysis including individual patient data (The LIVING VACCINE Project). Syst Rev [Internet]. 2020 Dec 20;9(1):262. Available from: https://systematicreviewsjournal.biomedcentral.com/articles/10.1186/s13643-020-01516-1
8. Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med [Internet]. 2020 Dec 30;NEJMoa2035389. Available from: http://www.nejm.org/doi/10.1056/NEJMo2035389

9. Zhang Y, Zeng G, Pan H, Li C, Hu Y, Chu K, et al. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18-59 years: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet Infect Dis [Internet]. 2020 Nov 17; Available from: http://www.ncbi.nlm.nih.gov/pubmed/33217362

10. Our World in Data. COVID-19 vaccine doses administered per 100 people [Internet]. 2021 [cited 2021 Jan 16]. Available from: https://ourworldindata.org/grapher/covid-vaccination-doses-per-capita

11. Marano G, Vaglio S, Pupella S, Facco G, Catalano L, Liumbergo GM, et al. Convalescent plasma: new evidence for an old therapeutic tool? Blood Transfus [Internet]. 2016 Mar;14(2):152–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26674811

12. Tanne JH. Covid-19: FDA approves use of convalescent plasma to treat critically ill patients. BMJ [Internet]. 2020 Mar 26;m1256. Available from: https://www.bmj.com/lookup/doi/10.1136/bmj.m1256

13. Murphy M, Estcourt L, Grant-Casey J, Dzik S. International Survey of Trials of Convalescent Plasma to Treat COVID-19 Infection. Transfus Med Rev [Internet]. 2020 Jul;34(3):151–7. Available from:
14. Liu STH, Lin H-M, Baine I, Wajnberg A, Gumprecht JP, Rahman F, et al. Convalescent plasma treatment of severe COVID-19: a propensity score–matched control study. Nat Med [Internet]. 2020 Nov 15;26(11):1708–13. Available from: http://www.nature.com/articles/s41591-020-1088-9

15. Erkurt MA, Sarici A, Berber İ, Kuku İ, Kaya E, Özgül M. Life-saving effect of convalescent plasma treatment in covid-19 disease: Clinical trial from eastern Anatolia. Transfus Apher Sci [Internet]. 2020 Oct;59(5):102867. Available from: http://www.ncbi.nlm.nih.gov/pubmed/32620409

16. Abolghasemi H, Eshghi P, Cheraghali AM, Imani Fooladi AA, Bolouki Moghaddam F, Imanizadeh S, et al. Clinical efficacy of convalescent plasma for treatment of COVID-19 infections: Results of a multicenter clinical study. Transfus Apher Sci [Internet]. 2020 Oct 22;59(5):102875. Available from: https://www.bmj.com/lookup/doi/10.1136/bmj.m3939

17. Libster R, Pérez Marc G, Wappner D, Coviello S, Bianchi A, Braem V, et al. Early High-Titer Plasma Therapy to Prevent Severe Covid-19 in Older Adults. N Engl J Med [Internet]. 2021 Jan 6;NEJMoia2033700. Available from: http://www.nejm.org/doi/10.1056/NEJMoia2033700

18. Agarwal A, Mukherjee A, Kumar G, Chatterjee P, Bhatnagar T, Malhotra P. Convalescent plasma in the management of moderate covid-19 in adults in India: open label phase II multicentre randomised controlled trial (PLACID Trial). BMJ [Internet]. 2020 Oct 22;371:m3939. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0887796320300316
1. Li L, Zhang W, Hu Y, Tong X, Zheng S, Yang J, et al. Effect of Convalescent Plasma Therapy on Time to Clinical Improvement in Patients With Severe and Life-threatening COVID-19. JAMA [Internet]. 2020 Aug 4;324(5):460. Available from: https://jamanetwork.com/journals/jama/fullarticle/2766943

2. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med [Internet]. 2009 Jul 21;6(7):e1000097. Available from: https://dx.plos.org/10.1371/journal.pmed.1000097

3. Sterne JAC, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ [Internet]. 2019 Aug 28;l4898. Available from: http://www.bmj.com/lookup/doi/10.1136/bmj.l4898

4. Royal College of Physicians. National Early Warning Score (NEWS) 2 | RCP London [Internet]. 2017 [cited 2020 Sep 8]. Available from: https://www.rcplondon.ac.uk/projects/outputs/national-early-warning-score-news-2

5. United Nations Office for the Coordination of Humanitarian Affairs. Epidemiological Alert: Recurring waves and outbreaks of COVID-19 [Internet]. 2020 [cited 2021 Jan 14]. Available from: https://reliefweb.int/report/world/epidemiological-alert-recurring-waves-and-outbreaks-covid-19-9-october-2020
24. Sarkar S, Soni KD, Khanna P. Convalescent plasma is a clutch at straws in COVID-19 management! A systematic review and meta-analysis. J Med Virol [Internet]. 2021 Feb 21;93(2):1111–8. Available from: https://onlinelibrary.wiley.com/doi/10.1002/jmv.26408

25. Meher BR, Padhy BM, Das S, Mohanty RR, Agrawal K. Effectiveness of Convalescent Plasma Therapy in the Treatment of Moderate to Severe COVID 19 Patients: A Systematic Review and Meta-Analysis. J Assoc Physicians India [Internet]. 2020 Dec;68(12):35–43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/33247641

26. Shao S, Wang Y, Kang H, Tong Z. Effect of convalescent blood products for patients with severe acute respiratory infections of viral etiology: A systematic review and meta-analysis. Int J Infect Dis [Internet]. 2021 Jan;102:397–411. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1201971220321597

27. Wenjing L, Yuanzheng F, Li J-Y, Tang L V., Yu H. Safety and efficacy of convalescent plasma therapy in severely and critically ill patients with COVID-19: A systematic review with meta-analysis. Aging (Albany NY) [Internet]. 2020 Nov 16; Available from: http://www.aging-us.com/article/202195/text

28. Bakhtawar N, Usman M, Khan MMU. Convalescent Plasma Therapy and Its Effects On COVID-19 Patient Outcomes: A Systematic Review of Current Literature. Cureus [Internet]. 2020 Aug 3; Available from:
Chai KL, Valk SJ, Piechotta V, Kimber C, Monsef I, Doree C, et al. Convalescent plasma or hyperimmune immunoglobulin for people with COVID-19: a living systematic review. Cochrane Database Syst Rev [Internet]. 2020 Oct 12; Available from: http://doi.wiley.com/10.1002/14651858.CD013600.pub3

Wang Y, Huo P, Dai R, Lv X, Yuan S, Zhang Y, et al. Convalescent plasma may be a possible treatment for COVID-19: A systematic review. Int Immunopharmacol [Internet]. 2021 Feb;91:107262. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1567576920337292

Devasenapathy N, Ye Z, Loeb M, Fang F, Najafabadi BT, Xiao Y, et al. Efficacité et innocuité du plasma de convalescent en cas de forme grave de COVID-19, extrapolée de données relatives à d’autres formes graves d’infections respiratoires virales : revue systématique et méta-analyse. Can Med Assoc J [Internet]. 2020 Nov 23;192(47):E1559–70. Available from: http://www.cmaj.ca/lookup/doi/10.1503/cmaj.200642-f

Zhu T, Xu A, Bai X, He Y, Zhang H. Effect of convalescent plasma and immunoglobulin on patients with severe acute respiratory syndrome: a systematic review. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue [Internet]. 2020 Apr;32(4):435–8. Available from:
http://www.ncbi.nlm.nih.gov/pubmed/32527348

33. Sun M, Xu Y, He H, Zhang L, Wang X, Qiu Q, et al. A potentially effective treatment for COVID-19: A systematic review and meta-analysis of convalescent plasma therapy in treating severe infectious disease. Int J Infect Dis [Internet]. 2020 Sep;98:334–46. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1201971220305427

34. Zaffanello M, Piacentini G, Nosetti L, Franchini M. The use of convalescent plasma for pediatric patients with SARS-CoV-2: A systematic literature review. Transfus Apher Sci [Internet]. 2020 Dec;103043. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1473050220303761

35. Maiztegui J, Fernandez N, De Damilano A. Efficacy of immune plasma in treatment of Argentine Hemorrhagic fever and association between treatment and a late neurological syndrome. Lancet [Internet]. 1979 Dec;314(8154):1216–7. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0140673679923353

36. Saverino D. Hyper-immune/convalescent plasma: an old option and a valid strategy for treatment of COVID-19? Minerva Med [Internet]. 2020 Oct;111(4). Available from: https://www.minervamedica.it/index2.php?show=R10Y2020N04A0362

37. Wang Y, Zhang D, Du G, Du R, Zhao J, Jin Y, et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet [Internet]. 2020 May;395(10236):1569–78. Available
from: https://linkinghub.elsevier.com/retrieve/pii/S0140673620310229

38. The World Bank. Different scenarios for global growth, in five charts [Internet]. 2021 [cited 2021 Jan 16]. Available from: https://blogs.worldbank.org/developmenttalk/different-scenarios-global-growth-five-charts
Figure 1. Prisma flowchart of the inclusion process in the systematic review.

50 records identified through database searching

46 records screened

4 full-text articles assessed for eligibility

4 studies were included in qualitative synthesis

4 studies were included in quantitative synthesis (meta-analysis)
Author	Study site	Design	Sample	Intervention	Control	Antiviral treatment	Primary outcomes	Secondary outcomes
Li (19)	China	Randomized, open label, multicentre, clinical trial	52	Convalescent plasma 4 to 13 mL/kg of recipient body weight. 96% received a single dose transfusion.	Standard care: symptomatic control	Yes, both groups	Clinical improvement at day 7, 14 and 28	mortality at day 28, hospital stay, virological clearance, mortality at day 28
Agarwal (18)	India	Randomized, open label, multicentre, clinical trial	235	2 doses of 200 ml convalescent plasma, transfused 24 hours apart	Standard care following institutional protocol	Yes, only the control group.	Progression to severe disease and mortality at day 28	Clinical improvement at day 7, O2 requirement, respiratory support, ventilation requirement, organ failure, virological clearance, levels of biomarkers, and vasopressor support
Abolghasemi (16)	Iran	Non-randomized, multicentre, clinical trial	115	1 dose of 500 ml of convalescent plasma. Second dose of 500 ml was administered if the patient did not show any improvement after 24 hours	Standard care	Yes, both groups	Mortality and hospital stay	Ventilation requirement and adverse events
Libster (17)	Argentina	Randomized, open label, multicentre, clinical trial	80	250 ml of convalescent plasma with IgG titer greater than 1:1000	250 ml of placebo (0.9% normal saline)	Not reported	Progression to severe disease	Life threatening respiratory disease, ventilation requirement, admission to ICU, critical systematic illness, multiple organ disfunction, mortality and adverse events
Table 2. Reported outcomes in the included studies.

Outcomes	Li (19)	Agarwal (18)	Abolghasemi (16)	Libster (17)	
	Intervention group	Intervention group	Intervention group	Intervention group	
	Control group	Control group	Control group	Control group	
Overall mortality	8/51 (15.7%)	12/50 (24%)	34/235 (15%)	17/115 (14.8%)	
			31/229 (14%)	18/74 (24.3%)	
				2/80 (2%)	
				1/80 (1%)	
Clinical improvement at day 7	5/52 (9.6%)	5/51 (9.8%)	140/176 (76%)	Not reported	
			119/181 (66%)	Not reported	
				Not reported	
				Not reported	
Clinical improvement at day 14	17/52 (32.7%)	9/51 (17.6%)	Not reported	Not reported	
				Not reported	
				Not reported	
				Not reported	
Clinical improvement at day 28	27/52 (51.9%)	22/51 (43.1%)	Not reported	Not reported	
				Not reported	
				Not reported	
				Not reported	
Progression to severe disease	Not reported	not reported	17/235 (7.2%)	Not reported	
			17/229 (7.4%)	Not reported	
				13/80 (16%)	
				25/80 (31%)	
Hospital stay	Median 41 (IQR 31-	Median 53 (IQR 35-	Median 14 (IQR 10-19)	Mean 9.54 (SD 5.07)	
	indeterminate)	indeterminate)		Mean 12.88 (SD 7.19)	Not reported
Ventilation requirement	Not reported	not reported	19/227 (8%)	19/224 (8%)	
				107/115 (93%)	
				59/74 (79.7%)	
				2/80 (2%)	
				4/80 (5%)	
Severe adverse events	1/51 (1.9%)	0/50 (0%)	2/235 (0.8%)	0/115 (0%)	
				0/74 (0%)	
				0/80 (0%)	
				0/80 (0%)	
Figure 2. Forest plot of convalescent plasma transfusion for hospitalized patients with SARS-CoV-2 infection

Comparison “Convalescent plasma versus standard care”.

Outcome: Clinical improvement at day 7.

Study or Subgroup	Experimental Events	Total	Control Events	Total	Weight	Odds Ratio IV, Fixed, 95% CI
Agarwal 2020	140	176	119	181	88.2%	2.03 [1.26, 3.27]
Li 2020	5	52	5	51	11.8%	0.98 [0.27, 3.61]
Total (95% CI)	228	232	100.0%		1.86	[1.19, 2.91]

Total events 145, 124

Heterogeneity: \(\chi^2 = 1.05, \text{df} = 1 \) (\(P = 0.30 \)); \(I^2 = 5\%

Test for overall effect: \(Z = 2.71 \) (\(P = 0.007 \)
Figure 3. Forest plot of convalescent plasma transfusion for hospitalized patients with SARS-CoV-2 infection.

Comparison “Convalescent plasma versus standard care”.

Outcome: Ventilation requirement.

Study or Subgroup	Experimental	Control	Weight	Odds Ratio IV, Random, 95% CI	
	Events	Total	Events	Total	
All adults					
Abolghasemi 2020	107	115	59	74 36.6%	3.40 [1.36, 8.49]
Agarwal 2020	19	227	19	224 42.5%	0.99 [0.51, 1.92]
Subtotal (95% CI)	342	298	79.1%	1.76 [0.52, 5.89]	
Total events	126	78			
Heterogeneity: Tau² = 0.60; Chi² = 4.61, df = 1 (P = 0.03); I² = 70%					
Test for overall effect Z = 0.81 (P = 0.46)					

2.1.2 Older adults

Study or Subgroup	Experimental	Control	Weight	Odds Ratio IV, Random, 95% CI	
	Events	Total	Events	Total	
Libster 2021	2	80	4	80 20.9%	0.49 [0.09, 2.74]
Subtotal (95% CI)	80	80	20.9%	0.49 [0.09, 2.74]	
Total events	2	4			
Heterogeneity: Not applicable					
Test for overall effect Z = 0.62 (P = 0.41)					

Total (95% CI) 422 378 100.0% 1.34 [0.48, 3.72]

Total events 128 82

Heterogeneity: Tau² = 0.53; Chi² = 6.11, df = 2 (P = 0.05); I² = 67%

Test for overall effect Z = 0.56 (P = 0.58)

Test for subgroup differences: Chi² = 1.42, df = 1 (P = 0.23), I² = 20.6%
Figure 4. Forest plot of convalescent plasma transfusion for hospitalized patients with SARS-CoV-2 infection

Comparison “Convalescent plasma versus standard care”.

Outcome: Overall mortality.

Study or Subgroup	Experimental Events	Control Events	Total	Weight	Odds Ratio IV, Fixed, 95% CI	Odds Ratio IV, Fixed, 95% CI
3.1.1 All adults						
Abolghasemi 2020	17	18	27.5%	0.54	[0.26, 1.13]	
Agarwal 2020	34	31	54.7%	1.08	[0.64, 1.83]	
Li 2020	8	12	15.2%	0.59	[0.22, 1.59]	
Subtotal (95% CI)	401	353	97.4%	0.81	[0.55, 1.20]	
Total events	59	61				
Heterogeneity: Chi² = 2.71, df = 2 (P = 0.26); I² = 26%						
Test for overall effect: Z = 1.06 (P = 0.29)						

3.1.2 Older adults						
Libster 2021	2	1	2.6%	2.03	[0.18, 22.80]	
Subtotal (95% CI)	80	80	2.6%	2.03	[0.18, 22.80]	
Total events	2	1				
Heterogeneity: Not applicable						
Test for overall effect: Z = 0.57 (P = 0.57)						

| Total (95% CI) | 481 | 433 | 100.0%| 0.83 | [0.56, 1.22] | |
| Total events | 61 | 62 | | | | |
| Heterogeneity: Chi² = 3.25, df = 3 (P = 0.36); I² = 8% |
| Test for overall effect: Z = 0.96 (P = 0.34) |
| Test for subgroup differences: Chi² = 0.54, df = 1 (P = 0.46), I² = 0% |
Table 1. Search strategies

1	COVID-19
2	SARS-CoV-2
3	1 OR 2
4	plasma
5	convalescent plasma
6	4 OR 5
7	3 AND 6

FILTER | Clinical Trial
Figure 1.

N	Study ID	Experimental	Comparator	Outcome	Randomization process	Deviations from intended interventions	Missing outcome data	Measurement of the outcome	Selection of the reported result	Overall
1	Li 2000	Convalescent plasma	Standard care	Overall mortality	* ? + + + +				+ + + + + + + +	Low risk
2	Agarwal 2020	Convalescent plasma	Standard care	Overall mortality	* ? + + + +				+ + + + + + + +	Low risk
3	Abolghasemi 2020	Convalescent plasma	Standard care	Overall mortality	* ? + + + +				+ + + + + + + +	Low risk
4	Libster 2021	Convalescent plasma	Placebo	Overall mortality	* ? + + + +				+ + + + + + + +	Low risk
5	Li 2000	Convalescent plasma	Standard care	Clinical improvement	* ? + + + +				+ + + + + + + +	Low risk
6	Agarwal 2020	Convalescent plasma	Standard care	Clinical improvement	* ? + + + +				+ + + + + + + +	Low risk
7	Agarwal 2020	Convalescent plasma	Standard care	Progression to severe disease	* ? + + + +				+ + + + + + + +	Low risk
8	Libster 2021	Convalescent plasma	Placebo	Progression to severe disease	* ? + + + +				+ + + + + + + +	Low risk
9	Li 2000	Convalescent plasma	Standard care	Virological clearance	* ? + + + +				+ + + + + + + +	Low risk
10	Agarwal 2020	Convalescent plasma	Standard care	Virological clearance	* ? + + + +				+ + + + + + + +	Low risk
11	Li 2000	Convalescent plasma	Standard care	Hospital stay	* ? + + + +				+ + + + + + + +	Low risk
12	Agarwal 2020	Convalescent plasma	Standard care	Hospital stay	* ? + + + +				+ + + + + + + +	Low risk
13	Agarwal 2020	Convalescent plasma	Standard care	Ventilation requirement	* ? + + + +				+ + + + + + + +	Low risk
14	Abolghasemi 2020	Convalescent plasma	Standard care	Ventilation requirement	* ? + + + +				+ + + + + + + +	Low risk
15	Libster 2021	Convalescent plasma	Placebo	Ventilation requirement	* ? + + + +				+ + + + + + + +	Low risk
16	Li 2000	Convalescent plasma	Standard care	Adverse events	* ? + + + +				+ + + + + + + +	Low risk
17	Agarwal 2020	Convalescent plasma	Standard care	Adverse events	* ? + + + +				+ + + + + + + +	Low risk
18	Abolghasemi 2020	Convalescent plasma	Standard care	Adverse events	* ? + + + +				+ + + + + + + +	Low risk
19	Libster 2021	Convalescent plasma	Placebo	Adverse events	* ? + + + +				+ + + + + + + +	Low risk
Reference	Author	Reason for excluding								
-----------	-------------------------------	--------------------------								
(1)	Salazar	single arm								
(2)	Wang	no control group								
(3)	Skendros	in vitro study								
(4)	Choudhuru	protocol								
(5)	Olivares-Gazca	no control group								
(6)	Teofili	protocol								
(7)	Bradfute	single arm								
(8)	Mayer	data science study								
(9)	Mo	not trial								
(10)	Rodríguez-Rubio	protocol								
(11)	Ragnesola	single arm								
(12)	Johansson	another drug								
(13)	Li	duplicated								
(14)	Agarwal	duplicated								
(15)	Kumar	not trial								
(16)	Omrani	no control group								
(17)	Moore	case report								
(18)	Khamis	case series								
(19)	Meo	not trial								
(20)	Snawerdt	not trial								
(21)	Moniuszko-Malinowska	case report								
(22)	Ibrahim	single arm								
(23)	Liu	retrospective								
(24)	González	Observational								
(25)	Liu	case report								
(13)	Li	duplicated								
(26)	Saverino	not trial								
(27)	Chen	not trial								
(28)	Korper	protocol								
(29)	Bobek	case report								
(30)	Perotti	protocol								
(31)	Shen	case report								
(32)	Duan	case series								
(14)	Agarwal	duplicated								
(33)	Devos	protocol								
(34)	Lou	another drug								
(35)	Salazar	not trial								
(36)	Su	not trial								
(37)	Jorgensen	not trial								

Table 2. Excluded studies with reasons
Reference	Title and Details
1.	Salazar E, Perez KK, Ashraf M, Chen J, Castillo B, Christensen PA, et al. Treatment of Coronavirus Disease 2019 (COVID-19) Patients with Convalescent Plasma. Am J Pathol [Internet]. 2020 Aug;190(8):1680–90. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0002944020302571
2.	Wang Y, Zhang L, Sang L, Ye F, Ruan S, Zhong B, et al. Kinetics of viral load and antibody response in relation to COVID-19 severity. J Clin Invest [Internet]. 2020 Aug 31;130(10):5235–44. Available from: https://www.jci.org/articles/view/138759
3.	Skendros P, Mitsios A, Chrysanthopoulou A, Mastellos DC, Metallidis S, Rafailidis P, et al. Complement and tissue factor–enriched neutrophil extracellular traps are key drivers in COVID-19 immunothrombosis. J Clin Invest [Internet]. 2020 Oct 19;130(11):6151–7. Available from: https://www.jci.org/articles/view/141374
4.	Chowdhury FR, Hoque A, Chowdhury FUH, Amin MR, Rahim A, Rahman MM, et al. Convalescent plasma transfusion therapy in severe COVID-19 patients: a safety, efficacy and dose response study: A structured summary of a study protocol of a phase II randomized controlled trial. Trials [Internet]. 2020 Dec 26;21(1):883. Available from: https://trialsjournal.biomedcentral.com/articles/10.1186/s13063-020-04734-z
5.	Olivares-Gazca JC, Priesca-Marín JM, Ojeda-Laguna M, Garces-Eisele J, Soto-Olvera S, Palacios-Alonso A, et al. Infusion of Convalescent Plasma is Associated with Clinical Improvement in Critically Ill Patients with COVID-19: A Pilot Study. Rev Investig Clinica [Internet]. 2020 Jun 23;72(3). Available from: http://www.clinicalandtranslationalinvestigation.com/frame_esp.php?id=285
6.	Teofili L, Landolfi R, Cingolani A, Antinori A, Vecchiet J, Sanguinetti M, et al. “Early transfusion of convalescent plasma in older patients with COVID-19 to prevent disease progression: A structured summary of a study protocol for a randomised controlled trial.” Trials [Internet]. 2020 Dec 22;21(1):875. Available from: https://trialsjournal.biomedcentral.com/articles/10.1186/s13063-020-04821-1
7.	Bradfute SB, Hurwitz I, Yingling A V, Ye C, Cheng Q, Noonan TP, et al. Severe Acute Respiratory Syndrome Coronavirus 2 Neutralizing Antibody Titers in Convalescent Plasma and Recipients in New Mexico: An Open Treatment Study in Patients With Coronavirus Disease 2019. J Infect Dis [Internet]. 2020 Oct 13;222(10):1620–8. Available from: https://academic.oup.com/jid/article/222/10/1620/5890960
8. Mayer CS, Huser V. Computerized monitoring of COVID-19 trials, studies and registries in ClinicalTrials.gov registry. PeerJ [Internet]. 2020 Oct 23;8:e10261. Available from: https://peerj.com/articles/10261

9. Mo L, Zheng P. [Chloroquine phosphate: therapeutic drug for COVID-19]. Nan Fang Yi Ke Da Xue Xue Bao [Internet]. 2020 Apr 30;40(4):586–94. Available from: http://www.ncbi.nlm.nih.gov/pubmed/32895128

10. Rodríguez-Rubio M, Figueira JC, Acuña-Castroviejo D, Borobia AM, Escames G, de la Oliva P. A phase II, single-center, double-blind, randomized placebo-controlled trial to explore the efficacy and safety of intravenous melatonin in patients with COVID-19 admitted to the intensive care unit (MelCOVID study): a structured summary of a study protocol. Trials [Internet]. 2020 Dec 5;21(1):699. Available from: https://trialsjournal.biomedcentral.com/articles/10.1186/s13063-020-04632-4

11. Ragnesola B, Jin D, Lamb CC, Shaz BH, Hillyer CD, Luchsinger LL. COVID19 antibody detection using lateral flow assay tests in a cohort of convalescent plasma donors. BMC Res Notes [Internet]. 2020 Dec 6;13(1):372. Available from: https://bmcresearchnotes.biomedcentral.com/articles/10.1186/s13104-020-05212-0

12. Johansson PI, Bestle M, Søe-Jensen P, Kristiansen KT, Stensballe J, Clausen NE, et al. The effect of prostacyclin (Iloprost) infusion at a dose of 1 ng/kg/min for 72 hours compared to placebo in mechanically ventilated patients with COVID-19: A structured summary of a study protocol for a randomized controlled trial. Trials [Internet]. 2020 Aug 26;21(1):746. Available from: http://www.ncbi.nlm.nih.gov/pubmed/32847626

13. Li L, Zhang W, Hu Y, Tong X, Zheng S, Yang J, et al. Effect of Convalescent Plasma Therapy on Time to Clinical Improvement in Patients With Severe and Life-threatening COVID-19. JAMA [Internet]. 2020 Aug 4;324(5):460. Available from: https://jamanetwork.com/journals/jama/fullarticle/2766943

14. Agarwal A, Mukherjee A, Kumar G, Chatterjee P, Bhatnagar T, Malhotra P. Convalescent plasma in the management of moderate covid-19 in adults in India: open label phase II multicentre randomised controlled trial (PLACID Trial). BMJ [Internet]. 2020 Oct 22;371:m3939. Available from: https://www.bmj.com/lookup/doi/10.1136/bmj.m3939

15. Kumar P, Sah AK, Tripathi G, Kashyap A, Tripathi A, Rao R, et al. Role of ACE2 receptor and the landscape of treatment options from convalescent plasma therapy to the drug repurposing in COVID-19. Mol Cell Biochem [Internet]. 2020 Oct 7; Available from: http://link.springer.com/10.1007/s11010-020-03924-2

16. Omrani AS, Zaqout A, Baiou A, Daghfal J, Elkum N, Alattar RA, et al. Convalescent plasma for the treatment of patients with severe coronavirus disease 2019: A preliminary report. J Med Virol [Internet]. 2020 Oct 5;jmv.26537. Available from: https://onlinelibrary.wiley.com/doi/10.1002/jmv.26537

17. Moore JL, Ganapathiraju P V., Kurtz CP, Wainscoat B. A 63-Year-Old Woman with a History of Non-Hodgkin Lymphoma with Persistent SARS-CoV-2 Infection Who Was Seronegative and Treated with Convalescent Plasma. Am J Case Rep [Internet]. 2020 Sep 24;21. Available from: https://www.amjcaserep.com/abstract/index/idArt/927812
18. Khamis F, Al-Zakwani I, Al Hashmi S, Al Dowaiki S, Al Bahrani M, Pandak N, et al. Therapeutic plasma exchange in adults with severe COVID-19 infection. Int J Infect Dis [Internet]. 2020 Oct;99:214–8. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1201971220304999

19. Meo SA, Zaidi SZA, Shang T, Zhang JY, Al-Khlaiwi T, Bukhari IA, et al. Biological, molecular and pharmacological characteristics of chloroquine, hydroxychloroquine, convalescent plasma, and remdesivir for COVID-19 pandemic: A comparative analysis. J King Saud Univ - Sci [Internet]. 2020 Oct;32(7):3159–66. Available from: https://linkinghub.elsevier.com/retrieve/pii/S101836472030269X

20. Svoorert J, Finoli L, Bremmer DN, Cheema T, Bhanot N. Therapeutic Options for the Treatment of Coronavirus Disease (COVID-19). Crit Care Nurs Q [Internet]. 2020 Oct;43(4):349–68. Available from: https://journals.lww.com/10.1097/CNQ.0000000000000321

21. Moniuszko-Malinowska A. A 63-Year-Old Woman with SARS-CoV-2 Infection, Who Developed Severe COVID-19 Pneumonia and Was Supported with Convalescent Plasma Therapy. Am J Case Rep. 2020;21(e927662).

22. Ibrahim D, Dulipsingh L, Zapatka L, Eadie R, Crowell R, Williams K, et al. Factors Associated with Good Patient Outcomes Following Convalescent Plasma in COVID-19: A Prospective Phase II Clinical Trial. Infect Dis Ther [Internet]. 2020 Dec 20;9(4):913–26. Available from: http://link.springer.com/10.1007/s40121-020-00341-2

23. Liu STH, Lin H-M, Baine I, Wajnberg A, Gumprecht JP, Rahman F, et al. Convalescent plasma treatment of severe COVID-19: a propensity score–matched control study. Nat Med [Internet]. 2020 Nov 15;26(11):1708–13. Available from: http://www.nature.com/articles/s41591-020-1088-9

24. González SE, Regairaz L, Ferrando NS, González Martínez V V, Salazar MR, Estenssoro E. [Convalescent plasma therapy in COVID-19 patients, in the Province of Buenos Aires]. Medicina (B Aires) [Internet]. 2020;80(5):417–24. Available from: http://www.ncbi.nlm.nih.gov/pubmed/33048783

25. Liu M, Chen Z, Dai M, Yang J, Chen X, Chen D, et al. Lessons learned from early compassionate use of convalescent plasma on critically ill patients with <scp>Covid-19</scp>. Transfusion [Internet]. 2020 Oct 8;60(10):2210–6. Available from: https://onlinelibrary.wiley.com/doi/10.1111/trf.15975

26. Saverino D. Hyper-immune/convalescent plasma: an old option and a valid strategy for treatment of COVID-19? Minerva Med [Internet]. 2020 Oct;111(4). Available from: https://www.minervamedica.it/index2.php?show=R10Y2020N04A0362

27. Chen B, Xia R. Early experience with convalescent plasma as immunotherapy for COVID-19 in China: Knowns and unknowns. Vox Sang [Internet]. 2020 Aug 8;115(6):507–14. Available from: https://onlinelibrary.wiley.com/doi/10.1111/vox.12968

28. Körner S, Jahrsdörfer B, Appl T, Klüter H, Seifried E, Schrezenmeier H. Rekonvaleszentenplasma zur Behandlung von schwerem COVID-19: Rationale und Design einer randomisierten, offenen klinischen Studie von
Rekonvaleszenzplasma verglichen mit bestmöglicher supportiver Behandlung (CAPSID-Studie). Transfusionsmedizin · Immunhämatologie · Hämotherapie · Transplantationsimmunologie · Zelltherapie [Internet]. 2020 Aug 25;10(03):143–9. Available from: http://www.thieme-connect.de/DOI/DOI?10.1055/a-1090-0408

29. Bobek I, Gopcsa L, Réti M, Bekő G, Hancz L, Lakatos B, et al. Az első két sikeres, convalescens friss fagyasztott plazmával történő terápia hazai alkalmazása intenzív osztályon kezelt, kritikus állapotú, COVID–19-fertőzésben szenvedő betegekben. Orv Hetil [Internet]. 2020 Jul;161(27):1111–21. Available from: https://akjournals.com/view/journals/650/161/27/article-p1111.xml

30. Perotti C, Del Fante C, Baldanti F, Franchini M, Percivalle E, Vecchio Nepita E, et al. Plasma from donors recovered from the new Coronavirus 2019 as therapy for critical patients with COVID-19 (COVID-19 plasma study): a multicentre study protocol. Intern Emerg Med [Internet]. 2020 Aug 28;15(5):819–24. Available from: http://link.springer.com/10.1007/s11739-020-02384-2

31. Shen C, Wang Z, Zhao F, Yang Y, Li J, Yuan J, et al. Treatment of 5 Critically Ill Patients With COVID-19 With Convalescent Plasma. JAMA [Internet]. 2020 Apr 28;323(16):1582. Available from: https://jamanetwork.com/journals/jama/fullarticle/2763983

32. Duan K, Liu B, Li C, Zhang H, Yu T, Qu J, et al. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc Natl Acad Sci [Internet]. 2020 Apr 28;117(17):9490–6. Available from: http://www.pnas.org/lookup/doi/10.1073/pnas.2004168117

33. Devos T, Geukens T, Schauwvlieghe A, Ariën KK, Barbezange C, Cleeren M, et al. A randomized, multicentre, open-label phase II proof-of-concept trial investigating the clinical efficacy and safety of the addition of convalescent plasma to the standard of care in patients hospitalized with COVID-19: the Donated Antibodies Working again. Trials [Internet]. 2020 Dec 27;21(1):981. Available from: https://trialsjournal.biomedcentral.com/articles/10.1186/s13063-020-04876-0

34. Lou Y, Liu L, Yao H, Hu X, Su J, Xu K, et al. Clinical Outcomes and Plasma Concentrations of Baloxavir Marboxil and Favipiravir in COVID-19 Patients: An Exploratory Randomized, Controlled Trial. Eur J Pharm Sci [Internet]. 2021 Feb;157:105631. Available from: https://linkinghub.elsevier.com/retrieve/pii/S092809872030419X

35. Salazar E, Kuchipudi S V., Christensen PA, Edgar T, Yi X, Zhao P, et al. Convalescent plasma anti–SARS-CoV-2 spike protein ectodomain and receptor-binding domain IgG correlate with virus neutralization. J Clin Invest [Internet]. 2020 Nov 16;130(12):6728–38. Available from: https://www.jci.org/articles/view/141206

36. Su Y, Chen D, Yuan D, Lausted C, Choi J, Dai CL, et al. Multi-Omics Resolves a Sharp Disease-State Shift between Mild and Moderate COVID-19. Cell [Internet]. 2020 Dec;183(6):1479-1495.e20. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0092867420314446

37. Jøntvedt Jørgensen M, Holter JC, Christensen EE, Schjalm C, Tonby K, Pischke SE, et al. Increased interleukin-6 and macrophage chemoattractant protein-1 are associated with respiratory failure in COVID-19. Sci Rep [Internet]. 2020 Dec
38. Blot M, Bour J-B, Quenot JP, Bourredjem A, Nguyen M, Guy J, et al. The dysregulated innate immune response in severe COVID-19 pneumonia that could drive poorer outcome. J Transl Med [Internet]. 2020 Dec 3;18(1):457. Available from: https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-020-02646-9

39. Dulipsingh L, Ibrahim D, Schaefer EJ, Crowell R, Diffenderfer MR, Williams K, et al. SARS-CoV-2 serology and virology trends in donors and recipients of convalescent plasma. Transfus Apher Sci [Internet]. 2020 Dec;59(6):102922. Available from: http://www.ncbi.nlm.nih.gov/pubmed/32883593

40. Dushianthan A, Clark H, Madsen J, Mogg R, Matthews L, Berry L, et al. Nebulised surfactant for the treatment of severe COVID-19 in adults (COV-Surf): A structured summary of a study protocol for a randomized controlled trial. Trials [Internet]. 2020 Dec 10;21(1):1014. Available from: https://trialsjournal.biomedcentral.com/articles/10.1186/s13063-020-04944-5

41. Perreault J, Tremblay T, Fournier M-J, Drouin M, Beaudoin-Bussières G, Prévost J, et al. Waning of SARS-CoV-2 RBD antibodies in longitudinal convalescent plasma samples within 4 months after symptom onset. Blood [Internet]. 2020 Nov 26;136(22):2588–91. Available from: https://ashpublications.org/blood/article/136/22/2588/463996/Waning-of-SARSCoV2-RBD-antibodies-in-longitudinal

42. Wang Y, Zhong W, Salam A, Tarning J, Zhan Q, Huang J, et al. Phase 2a, open-label, dose-escalating, multi-center pharmacokinetic study of favipiravir (T-705) in combination with oseltamivir in patients with severe influenza. EBioMedicine [Internet]. 2020 Dec;62:103125. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2352396420305016

43. Lee YY, Park HH, Park W, Kim H, Jang JG, Hong KS, et al. Long-acting nanoparticulate DNase-1 for effective suppression of SARS-CoV-2-mediated neutrophil activities and cytokine storm. Biomaterials [Internet]. 2021 Jan;267:120389. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0142961220306359

44. Erkurt MA, Sarici A, Berber İ, Kuku İ, Kaya E, Özugül M. Life-saving effect of convalescent plasma treatment in covid-19 disease: Clinical trial from eastern Anatolia. Transfus Apher Sci [Internet]. 2020 Oct;59(5):102867. Available from: http://www.ncbi.nlm.nih.gov/pubmed/32620409