AI Ethics Issues in Real World: Evidence from AI Incident Database

Mengyi Wei
Technical University of Munich
mengyi.wei@tum.de

Zhixuan Zhou
University of Illinois at Urbana-Champaign
zz78@illinois.edu

Abstract

With the powerful performance of Artificial Intelligence (AI) also comes prevalent ethical issues. Though governments and corporations have curated multiple AI ethics guidelines to curb unethical behavior of AI, the effect has been limited, probably due to the vagueness of the guidelines. In this paper, we take a closer look at how AI ethics issues take place in real world, in order to have a more in-depth and nuanced understanding of different ethical issues as well as their social impact. With a content analysis of AI Incident Database, which is an effort to prevent repeated real world AI failures by cataloging incidents, we identified 13 application areas which often see unethical use of AI, with intelligent service robots, language/vision models and autonomous driving taking the lead. Ethical issues appear in 8 different forms, from inappropriate use and racial discrimination, to physical safety and unfair algorithm. With this taxonomy of AI ethics issues, we aim to provide a perspective for guideline makers to formulate more operable guidelines when trying to deploy AI applications ethically.

Keywords: Artificial Intelligence Ethics, Real-world Incident, Content Analysis, Taxonomy of AI ethics Issues

1. Introduction

The comprehensive promotion of Artificial Intelligence (AI) technology has become a mega trend. AI has achieved satisfactory performance in some applications, yet suffers from many ethical issues, e.g. privacy violation (Cohen and Mello, 2019) and fake news (Zhou, Guan, et al., 2019). Given the powerful transformative force of AI, and its profound influence on various sectors of society, AI ethics has drawn intense attention. More and more governments, corporations, and organizations have issued relevant guidelines to regulate AI technology and reduce ethical risks (Hagendorff, 2020). European Commission has appointed the High-Level Expert Group on Artificial Intelligence to produce reports and guidance documents on AI (Smuha, 2019). In 2020, companies such as IBM and Microsoft also publicly released AI guidelines and principles (Roe, 2020). Declarations and principles have also been issued by professional associations and non-profit organizations such as the Association of Computing Machinery (ACM) (Gotterbarn et al., 2018) and UNI Global Union (Union, 2018).

Nevertheless, in practice, the ethical guidelines of AI are too theoretical and disjointed from practical problems, which makes it difficult to achieve the expected governance effects. For example, most AI ethics guidelines concerning transparency, justice and fairness, responsibility, and privacy, are too vague for AI practitioners to identify problems in practical applications and solve them (Goffi, 2022). More often, system developers are unaware of the problems that will arise after the system is deployed in the real world, leading to repetitive ethical risks that are never properly addressed.

To address the above mentioned issues with general AI guidelines, we seek to build a taxonomy of AI ethics issues in real world, including the applications areas where AI ethics issues stick out, as well as the dimensions of AI ethics issues. We approach this by conducting a comprehensive content analysis on AI Incident Database which is a catalogue of repetitive AI failures in real world (McGregor, 2020).

In the end, 150 AI ethics incidents were analyzed. A sharp increase of AI ethics incidents was seen
after 2010, with most of them happening in the US, China, and the UK. The application areas which see most unethical behavior of AI include intelligent service robots (N=31), language/vision models (N=27), and autonomous driving (N=17), followed by intelligent recommendation (N=14), identity authentication (N=14), and AI supervision (N=14). AI ethics issues come in 8 different ways, including inappropriate use (bad performance), racial discrimination, physical safety, unfair algorithm (evaluation), gender discrimination, privacy, unethical use (illegal use), and mental health. To illustrate how this taxonomy can be used to guide the deployment of AI systems, we showcase the specific AI ethics issues of four different application areas.

The contribution of this work is two-fold. First, we build the first taxonomy of AI ethics issues in real world to our knowledge. Second, we provide AI practitioners an intuitive display of ethical guidelines corresponding to AI ethical issues, and what the consequences of such issues will be, which is helpful to give them a more practical understanding of the vague AI guidelines.

In the following sections, we will first discuss prior literature in AI ethics issues and AI ethics guidelines. Then we elaborate on our method and results. We conclude by relating our taxonomy to existing AI ethics guidelines, and reflecting on how repetitive AI failures can be mitigated.

2. Related Work

AI has been applied in all areas of life (Harper and Konstan, 2015; Lee and Kwon, 2008; Zhou, Cai, et al., 2019), achieving satisfactory performance, yet suffers from numerous ethical issues, ranging from racial/gender discrimination to physical safety. Here we summarize the state-of-the-art research in AI ethics issues as well as AI ethics guidelines.

2.1. AI Ethics Issues

AI ethics issues manifest in various forms. While there has been no comprehensive taxonomy of unethical use of AI, here we only reflect on some outstanding AI failures which have been frequently reported and discussed.

Security and privacy are probably the most prominent issues arising from AI (Oseni et al., 2021). Vision and language models have long been known to be susceptible to adversarial attacks (Qiu et al., 2019), which is a malicious attempt trying to perturb data points to make them misclassified by the classifier. Though researchers worked hard to propose defenses (e.g., (Liao et al., 2018), new attacks constantly emerge (Zhang et al., 2021), creating an arms force between attackers and defenders.

While user data are collected in AI-based systems for either a more precise recommendation (Badsha et al., 2017), or a more personalized healthcare (Bartoletti, 2019), privacy leakage can be expected. People hold different views and perceptions toward AI privacy. For example, it was found that US people express more concerns about AI privacy, focusing more on privacy disclosure by AI applications; in contrast, Chinese people are more optimistic about AI’s role in promoting privacy protection (Xing et al., 2022).

In recent year, language and vision models have always been reported to contain or amplify gender and racial bias. For example, the performance of AI-driven human facial applications is often biased toward the majority demographic group due to the data imbalance issue (Kou et al., 2021). Nadeem et al. found that contributing factors of gender bias in AI include lack of diversity in both data and developers, programmer bias, and the existing gender bias in society which can be amplified through AI (Nadeem et al., 2020).

Despite the expanding applications of AI, and the increasing number of AI failures, there has not been a comprehensive taxonomy of AI ethics issues in real

Content Category	Krippendorff’s Alpha
AI supervision	0.79
AI recruitment	0.44
Identity Authentication	1
Language/vision model	0.98
Intelligent recommendation	0.96
Autonomous Driving	1
Intelligent Service Robots	1
Smart Healthcare	1
AI Education	1
Predictive policing	1
Smart Home	1
AI Game	1
Smart Finance	1
Privacy	1
Inappropriate Use(Bad Performance)	0.90
Unethical Use(illegal Use)	0.97
Racial Discrimination	1
Gender Discrimination	0.98
Unfair Algorithm (Evaluation)	0.94
Mental Health	0.86
Physical Safety	1
Average	0.94
world, which is a missed opportunity to help prevent these repeated failures in the deployment of new AI systems. We bridge this research gap with the current qualitative content analysis.

2.2. AI Ethics Guidelines

There have long been moral concerns regarding AI systems, especially those closely knitted with people’s daily life. Awad et al. deployed the Moral Machine, an online experimental platform designed to explore the moral dilemmas faced by autonomous vehicles (Awad et al., 2018). Given the increasing number of AI failures, governments and companies have made an effort to issue AI ethics guidelines, seeking to guide the ethical design, deployment, and use of AI (Hagendorff, 2020; Jobin et al., 2019; Union, 2018).

Jobin et al. analysed the current corpus of principles and guidelines on ethical AI, and revealed a global convergence emerging around five ethical principles (transparency, justice and fairness, non-maleficence, responsibility, and privacy), as well as a substantive divergence regarding how these principles are interpreted, why they are deemed important, what issue, domain or actors they pertain to, and how they should be implemented (Jobin et al., 2019).

The number of general AI ethics guidelines is increasing, and there is a large degree of convergence regarding the principles upon which these guidance documents are based. However, it is not always clear how these principles should be translated into practice. Ryan et al. tried to clarify which ethical principles could guide the development or use of AI systems, yet thought the guidelines were unlikely to have much practical effect (Ryan and Stahl, 2020). In response to the limitation of previous AI ethics guidelines, we provide a more practical and nuanced understanding of how AI ethics issues happen in real world.

3. Method

3.1. Data Collection

We collected AI ethics incidents mainly from the AI Incident Database (McGregor, 2020).

Time refers to when the AI ethics incident occurred. The changing trends over time could help people understand how AI ethics issues evolve and gain/lose public attention.

Geographic locations provide an overview of the global distribution of AI ethics incidents, showing the relationship between AI ethics incidents and the countries’ level of development of AI technology.

Application areas summarize the scope of AI technology, which gives a glimpse of which areas of AI are most prone to ethical issues, and encourages more measures to solve ethical issues in these fields.

Taxonomy of AI ethics issues can be inferred from AI ethical incidents, which comprehensively show the unethical behavior of AI technology and the consequences for people.

3.2. Content Analysis

Since there was relatively little relevant research, especially regarding AI ethics issues in real world, we used a conventional approach to content analysis (Hsieh and Shannon, 2005). Content analysis of the 150 AI ethic incidents was independently conducted by two authors in two cycles of manual coding. The news text of AI Incident Database were selected as the range of coded materials to ensure that both coders were referencing the same units. The two authors independently coded the data, meeting regularly and discussing to refine the coding. After the first cycle of categorizing incidents, the codebook was updated to a good inter-coder reliability. Each incident was observed for corresponding content categories: if the category was applicable, it was labeled accordingly, resulting in a nominal dataset. We did not have preconceived categories of AI ethics issues, but instead let them emerge during the analysis.

Two authors independently coded the data, and ensured the reliability by calculating Krippendorff’s alpha (Krippendorff, 2018). In the end, they reached a high agreement, with Krippendorff’s Alpha larger than 0.8 on most variables, and averaging 0.94 on all variables. The rare divergence of the two coders is on the categories of AI supervision (alpha=0.79) and AI recruitment (alpha=0.43). While one coder thought AI-decided dismissals of employees belonged to the AI supervision category, the other coder believed they were more suitable in the AI supervision category. The subsequent results are based on the first author’s coding. The agreement of the identified thirteen application areas and eight AI ethics issues is summarized in Table 1.

4. Results

Based on the content analysis, we will report on four main descriptive attributes, namely, time, geographic locations, application areas, and AI ethics issues (Figure 1).

Time and location are useful attributes for understanding temporal evolution and geographical distribution of AI failures, which are rarely examined in existing research. Then we present the taxonomy of
application areas and AI ethics issues. In addition, we show how AI failures in certain application areas have specific social impact, which may serve as examples to guide AI practitioners to avoid repetitive ethical issues in their work.

4.1. Temporal Evolution of AI Ethics Incidents

The 150 AI ethics incidents ranged from 2010 to 2021. From Figure 2, we can see that the number of AI ethics incidents gradually increased from 2010 to 2016, and reached a peak in 2016. The trend may be related to the fast development of AI during that time period: Google’s AlphaGo beat world Go champion Lee Sedol; Microsoft’s AI device outperformed humans in language understanding; AI made significant breakthroughs in the medical field; Tesla’s self-driving vehicle sent patients to hospitals. After 2016, the number of AI ethics incidents declined until 2019, and then increased again, reaching a maximum in 2020. The trend is consistent with the heated discussion of AI ethics issues in society in recent years, which reflects people’s sensitivity to the risk of AI ethics issues (European-Commission, 2019).

4.2. Geographic Distribution of AI Ethics Incidents

Regarding geographic distribution, we find that the most AI ethics incidents happen in the United States, China, and the United Kingdom, which account for 89 of the 150 ethical incidents (Figure 3). These countries are also where most AI companies are located, such as Google (US), Tesla (US) and Baidu (China).

One of the geographic location categories is global, which means some ethical incidents occur across the world instead of being confined to a certain country. For example, Incident 14 reports gender bias embedded in the most common NLP techniques, which are used by people all over the world. The total number of global incidents is 40, demonstrating the universal nature of AI ethics failures, which deserve due attention from all countries and companies.

4.3. Application Areas of AI Ethics Incidents

Our content analysis yielded thirteen application areas of AI which have seen ethical issues, which are, by frequency of the number of incidents: intelligent service robots, language/vision model, autonomous driving, intelligent recommendation, identity authentication, AI supervision, smart healthcare, AI recruitment, predictive policing, smart finance, AI game, smart home, and AI education (see Figure 4).

Intelligence service robots refer to a large range of robots, from manufacturing robots (Incident 5, Incident 63, Incident 64, Incident 114) to chatbots (Incident 9, Incident 56, Incident 141). The most AI ethics issues are associated with this application area (N=31, 20.4%). Service robots pose a threat to human physical safety, causing injury or even death of workers whom they
are supposed to assist. Inappropriate/biased speech of chatbots may harm the mental health of their owners.

With the prevalence of language/vision models also come numerous ethical failures (N=27, 17.8%). For example, word embedding is a building block for many NLP applications, and is known to contain gender bias (Incident 14). Facebook apologized after its vision model put the ‘primate’ label on videos of black men (Incident 134).

The third-ranked application area is autonomous driving (N=17, 11.2%). The incidents mainly report on AI ethics issues caused by the autonomous driving technology itself instead of human factors. Traffic accidents are most often caused by self-driving cars developed by Tesla (Incident 90), Uber (Incident 11), and Apple (Incident 66).

Intelligent recommendation is closely related to people’s daily life (N=14, 9.2%), which has been broadly applied in online shopping (Lee and Kwon, 2008), movie recommendation (Harper and Konstan, 2015), etc. Online shopping sees the most unethical use of AI. In Ctrip, a Chinese application for booking flights and hotels, users are recommended the same products with different prices given their different portraits (Incident 2). Amazon assigned lower sales rankings for books containing gay themes (Incident 17).

Identity authentication refers to using face recognition technologies to confirm people’s identity (N=14, 9.2%). The facial recognition system of iPhone was found susceptible to manipulation, which could be bypassed with 3D generated faces, or faces of twins (Incident 28, Incident 31). Facial recognition may also contain racial bias: a robot passport checker in New Zealand rejected an Asian man’s photo for having his eyes ‘closed’ (Incident 46). In general, unethically behaviors such as racism and sexism are often found during the authentication process (Incident 70, Incident 133, Incident 138).

AI supervision is used by companies to oversee, evaluate, and even monitor their employees (N=14, 9.2%). Starbucks (Incident 3) and Amazon (Incident 91, Incident 123. Incident 131) were found using AI technology to monitor their employees’ behavior, and generate excessive punishment.

Other application areas, smart healthcare (N=10, 6.6%), AI recruitment (N=10, 6.6%), predictive policing (N=5, 3.3%), smart finance (N=4, 2.6%), AI game (N=2, 1.3%), smart home (N=2, 1.3%), and AI education (N=2, 1.3%), also contain more or less AI ethics issues. Though the occurrences of AI ethics incidents in these application areas are relatively rare, the prevalence of AI ethics issues is clear.

Among the 150 incidents, inappropriate use (bad performance) is the most common issue (N=48, 25.8%). AI technologies or algorithms often do not achieve expected performance, and even cause serious consequences. For example, some enterprises and organizations hoped to adopt AI technology to improve work efficiency (Incident 103) or provide more convenient services (Incident 63), but it turned out to be inefficient and counterproductive, for two reasons. Firstly, AI technology may not achieve the performance expected by developers. For example, Elon Musk admitted that Tesla’s production rate had been reduced due to the restriction of robots (Incident 30). Secondly,
AI Ethics Issues	Incident Ratio	Explanation	Example
Inappropriate Use (Bad Performance)	25.8%	AI technologies or algorithms often do not achieve expected performance, and	Correctional Offender Management Profiling for Alternative Sanctions (COMPAS), a recidivism risk-assessment algorithmic tool used in the judicial system to assess likelihood of defendants’ recidivism, is found to be less accurate than random untrained human evaluators.
Racial Discrimination	20.4%	It refers to bias, stereotyping, and imbalance against any individual based on	Facebook’s automatic language translation software incorrectly translated an Arabic post saying “Good morning” into Hebrew saying “hurt them,” leading to the arrest of a Palestinian man in Beitar Illit, Israel.
Physical Safety	17.2%	AI technology may greatly threaten the public’s physical safety if not properly	A Tesla Model S on autopilot crashed into a white articulated tractor-trailer on Highway US 27A in Williston, Florida, killing the driver.
Unfair Algorithm (Evaluation)	11.8%	The unfair treatment caused by evaluating, assessing, or scoring people	From 2011 to 2018, Google has been sued in multiple countries on charges of defamation, as its autocomplete feature for its search engine would imply defamatory statements for businesses and people in China, Ireland, and Germany, and its image search associated an Australian man with the Melbourne criminal underworld.
Gender Discrimination	10.2%	Gender discrimination is similar to racial discrimination, which refers to	LinkedIn search engine feature potentially possessed gender bias, as the LinkedIn search function would present any male users before female users when users would search for names that possess both male and female profiles. In addition, when a user would search a female name, a prompt would ask if the user was searching for the male equivalent of the name. The same did not occur when searching the 100 most common male names.
Privacy	6.5%	The privacy issue is often related to companies’ or organizations’ desire to use	Ctrip APP provided familiar users with a price higher than the normal market price in order to achieve the purpose of earning more benefits.
Unethical (illegal) Use	5.9%	It often conducted by adversaries to satisfy their needs.	The content filtering system for YouTube’s children’s entertainment app, which incorporated algorithmic filters and human reviewers, failed to screen out inappropriate material, exposing an unknown number of children to videos that included sex, drugs, violence, profanity, and conspiracy theories.
Mental Health	2.2%	It refers to the emotional, psychological, and social well-being harm caused by	Amazon Echo smart speaker Alexa suggest Dann Morritt for suicide attempts to save the earth’s resources.
users may not have the knowledge to harness and utilize AI properly, thus fail to improve their work efficiency and performance.

Our statistics show the prevalence of racial discrimination (N=38, 20.4%), including bias, stereotyping, and imbalance against any individual based on their skin color, racial, or ethnic origin. In the scenario of predictive policing, AI technology may lean toward identifying black teenagers as criminals (Incident 139). Language/vision models deployed by tech giants such as Google, Amazon, and Facebook also make ethnic minorities unfairly treated or harmed (Incident 70, Incident 115, Incident 133, Incident 134).

The physical safety category focuses on risks to people’s health and safety caused by AI. This issue ranks third out of eight ethics issues (N=32, 17.2%), showing that AI technology may greatly threaten the public’s physical safety if not properly designed or deployed. For example, traffic accidents are repeatedly caused by autonomous driving cars (Incident 27, Incident 90, Incident 142), and robots have been reported to hurt their human co-workers in factories (Incident 5, Incident 122).

Unfair algorithm (evaluation) happens when AI is used to evaluate, assess, or score people automatically (N=22, 11.8%). Some teachers complained that their schools’ AI-based evaluation algorithms unfairly gave them an ‘unsatisfactory’ rating, which was not transparent and interpretable (Incident 12). Using AI to predict crimes has also been reported to be inaccurate, even worse than untrained human evaluators, which may cause injustice (Incident 39).

Gender discrimination is similar to racial discrimination, which refers to prejudice or discrimination based on one’s sex or gender (N=19, 10.2%). This issue is mainly manifested in the stereotypes embedded in algorithms. For example, in word embedding, men are associated with computer programmers, and women are associated with homemakers (Incident 14). AI algorithms may also give female candidates a lower pass rate when screening resumes in the recruitment process (Incident 20, Incident 36, Incident 45). There is also discrimination against homosexual populations (Incident 17).

The privacy issue is often related to companies’ or organizations’ desire to use personal information of users to make high profits or achieve their own goals, violating individuals’ data protection rights (N=12, 6.5%). For instance, the University of Illinois developed a remote testing software used during exams to monitor students, resulting in a privacy violation (Incident 110).

Unethical (illegal) use of AI is often conducted by adversaries to satisfy their needs (N=11, 5.9%). For example, researchers used AI tools to create fake Obama videos (Incident 38). Such Deepfake techniques have long been utilized to bypass identity authentication systems, among many other malicious use cases (Westerlund, 2019). Programmers created a Decentralized Autonomous Organization (DAO) in the Ethereum blockchain to steal 3.7m Ether valued at $70m (Incident 48).

Mental health refers to the emotional, psychological, and social well-being harm caused by AI technology through influencing people’s cognition, perception, and behavior (N=4, 2.2%). For example, the products recommended by Amazon’s algorithm have persuaded users to commit suicide (Incident 92), and a GPT-3 bot on Reddit has a strong learning ability to manipulate and deceive users of the social networking site (Incident 127).

4.5. AI Ethics Issues in Specific Application Areas

To understand how AI ethics issues occur in the real world, we further analyzed the proportion of AI ethics issues in each application area.

It can be seen that the most common ethical issue in intelligent service robots is inappropriate use (N=19, 48.7%). While people expect service robots to provide better life quality or improve their work efficiency, in nearly half of the incidents, they do not achieve the expected results. Physical safety is the second most common issue in this field (N=8, 20.5%), showing the high risk posed by service robots on users’ physical safety.

The top three ethics issues in language/vision models have been inappropriate use (N=10, 31.3%), racial discrimination (N=10, 31.3%), and gender discrimination (N=7, 21.9%). Current language models have certain limitations and cannot achieve ideal results. Meanwhile, the algorithms are prone to racism or sexism. For example, Google cloud’s Natural Language API provided racist, homophobic, and anti-Semitic sentiment analyses (Incident 16).

Ethical issues in autonomous driving only involve physical safety (N=14, 77.8%) and inappropriate use (N=4, 22.2%), which is related to the characteristics of the field of autonomous driving. Once ethical issues arise in this field, most of them will threaten people’s physical safety. Moreover, there is a class of incidents where unsatisfactory performance is caused by substandard technologies in autonomous driving, such as recognizing red words as traffic lights (Incident 90).

The most common ethical issues in the field of intelligent recommendation are racial discrimination
(N=5, 26.3%), inappropriate use (bad performance) (N=3, 15.8%), and unethical use (illegal use) (N=3, 15.8%). For example, in Incident 82, Google Images showed anti-Semitic images when a user searched “Jewish baby stroller,” since anti-Semitic online groups have tagged these anti-Semitic images with “Jewish baby stroller.” The data points were unfortunately learned by Google’s AI algorithm. Additionally, recommendation algorithms adopted by some enterprises will misidentify products, which are difficult to have desired effect. Facebook routinely misidentifies adaptive fashion products and blocks them from their platforms (Incident 106). The incidents related to unethical use are often misuse and even illegal use of AI technology. For example, algorithms may recommend inappropriate content to children (on YouTube) (Incident 4) or products that make users suicidal (Incident 92).

5. Discussion

5.1. Recap of Findings

We describe AI ethics incidents from four attributes: time, geographic locations, application areas, and AI ethics issues. From the time perspective, we analyze the trend of the number of AI ethics incidents over time and explore the reasons for their increased attention. Regarding geographical distribution, the USA, China, and the UK are the countries with the most AI ethics incidents, which are also related to the degree of AI technology development in these countries.

We divide the application areas into 13 dimensions. Intelligent service robots, language/vision models, and autonomous driving are the areas with the most AI ethics incidents.

Finally, we use eight categories to differentiate AI ethics issues. Among them, the most prominent problem is inappropriate use (bad performance), which explains the significant repercussions caused by the current AI technology, primarily because of the limitations of the technology itself, which cannot achieve the convenience that people expect. The issues of racial discrimination and physical safety also need to be taken seriously. Racial discrimination is relatively hidden in the algorithm, making it easy for vulnerable groups to be mistreated without even knowing. Physical safety is closely related to the (lack of) protection of human beings. If we ignore this aspect, people will be attacked by AI especially service/manufacturing robots.

5.2. AI Ethics Incidents vs. Guidelines

By matching AI ethics issues in real world to AI guidelines, we find that there is consistency between them. Jobin et al. presented an overview analysis of AI guidelines. While they compiled 84 AI guideline documents, we selected the most three principles with the highest frequency for a comparison (Jobin et al., 2019) (table 2).

The number one ethical principle identified in (Jobin et al., 2019) is transparency. The most common AI ethics issue in the real world is inappropriate use (bad performance). Through analysis, we find that this type of issue is mainly caused by a lack of transparency. For example, in Incident 39, Judges, probation, and parole officers used COMPAS to assess the likelihood of defendants’ recidivism and it is found to be less accurate than random untrained human evaluators. This algorithm tool did not achieve the expected results. The U.S. Supreme Court might soon take up the case of a Wisconsin convict who says his right to due process was violated when the judge who sentenced him consulted COMPAS because the workings of the system were opaque to the defendant. Using a risk assessment system such as COMPAS is not necessarily a bad idea, but often we don’t know enough about how ADM systems work that even AI developers can’t explain the exact mechanics behind black box algorithms, their performance and consequence after deployment cannot be predicted and guaranteed, which leads to numerous incidents of either poor performance or malicious exploitation.

The second most frequent ethical principle occurring in AI ethics guidelines has been justice and fairness, which also corresponds to the second most common AI ethics issue — racial discrimination (Jobin et al., 2019). According to our statistics, the area where racial discrimination occurs the most is language/vision models (N=10), which makes developers aware of which areas and applications to focus on when implementing justice and fairness guidelines. We can refer to Incident 67, Facebook’s automatic language translation software incorrectly translated an Arabic post saying “Good morning” into Hebrew saying “hurt them,” leading to the arrest of a Palestinian man in Beitar Illit, Israel.

The third most frequent ethical principle in previous AI guidelines is non-maleficence, relating to security, safety, harm, and protection. In our analysis, the third most common ethical issue is physical safety, echoing the ethical guidelines. The most common incidents of this issue are the collision of robots out of control against a person (Incident 5, Incident 123, etc.), and traffic accidents in the field of autonomous driving.
(Incident 7, Incident 11, etc.). The main reason for safety issues is that the sensor fails to correctly identify the target. Therefore, improving technical performance is an important means to solve safety issues.

Though existing ethical guidelines match ethical issues in the real world, the ethical rules are too theoretical and vague, and in most situations, people know the rules but do not know how to implement them or what the consequences will be if they do not follow the guidelines. Through analyzing AI ethics incidents in the real world, our research makes AI developers aware of the consequences of improper operation under the corresponding ethical guidelines and provides a practical and intuitive demonstration. Besides, it provides what are the technical means that need attention, so that developers can avoid behaviors that violate ethical guidelines from the source.

5.3. Limitations and Outlook

There are three main limitations of this work. Firstly, the analysis is mostly based on an existing AI incident database (McGregor, 2020), the size and variety of which is limited. As a follow-up work, one may want to collect more AI ethics incidents in real world, for example, in news and social media, for a more thorough analysis. Secondly, we only manually analyze the AI incident database, without applying NLP models to analyze topics and sentiments in related news articles collected in the database, which is a missed opportunity. Thirdly, though the current research matches AI ethics issues with AI ethics guidelines, showing the consistency between them, and tries to solve the ambiguity of the principles, considerably more work is needed to refine the theoretical and operable parts of the guidelines. With the analysis of AI ethics incidents in real world, we make the first step toward assisting principle makers in understanding the vague AI guidelines.

6. Conclusion

In this paper, we picture the landscape of real-world AI ethics incidents with an exploratory content analysis. Intelligent service robots, language/vision models, and autonomous driving are the three application areas where AI failures occur most frequently. AI ethics issues span all dimensions of people’s life, including racial/gender discrimination, physical safety, privacy leakage, etc. By closely inspecting AI ethics issues associated with the top four application areas, we provide an example for AI practitioners to mitigate AI ethics issues in their work. We also relate AI ethics incidents to AI ethics guidelines, and provide a perspective for guideline makers to formulate more operable guidelines by analyzing real-world incidents corresponding to the rules.

References

Awad, E., Dsouza, S., Kim, R., Schulz, J., Henrich, J., Shariff, A., Bonnefon, J.-F., & Rahwan, I. (2018). The moral machine experiment. Nature, 563(7729), 59–64.

Badsha, S., Yi, X., Khalil, I., & Bertino, E. (2017). Privacy preserving user-based recommender system. 2017 IEEE 37th international conference on Distributed Computing Systems, 1074–1083.

Bartoletti, I. (2019). Ai in healthcare: Ethical and privacy challenges. Conference on Artificial Intelligence in Medicine in Europe, 7–10.

Cohen, I. G., & Mello, M. M. (2019). Big data, big tech, and protecting patient privacy. Jama, 1141–1142.

European-Commission. (2019). Ethics guidelines for trustworthy ai. https://www.aepd.es/sites/default/files/2019-12/ai-ethics-guidelines.pdf

Goffi, E. R. (2022). Real ai ethicists are urgently needed. Centro de Estudos Sociedade e Tecnologia, 7, 1–2.

Gotterbarn, D., Brinkman, B., Flick, C., Kirkpatrick, M. S., Miller, K., Vazansky, K., & Wolf, M. J. (2018). Acm code of ethics and professional conduct.

Hagendorff, T. (2020). The ethics of ai ethics: An evaluation of guidelines. Minds and Machines, 30(1), 99–120.

Harper, F. M., & Konstan, J. A. (2015). The movielens datasets: History and context. Acm transactions on interactive intelligent systems, 5(4), 1–19.

Hsieh, H. F., & Shannon, S. E. (2005). Three approaches to qualitative content analysis. Qualitative health research, 15(9), 1277–1288.

Jobin, A., Ienca, M., & Vayena, E. (2019). The global landscape of ai ethics guidelines. Nature Machine Intelligence, 389–399.

Kou, Z., Shang, L., Zeng, H., Zhang, Y., & Wang, D. (2021). Exgfair: A crowdsourcing data exchange approach to fair human face datasets augmentation. 2021 IEEE International Conference on Big Data, 1285–1290.

Krippendorff, K. (2018). Content analysis: An introduction to its methodology. Sage publications.
Lee, K. C., & Kwon, S. (2008). Online shopping recommendation mechanism and its influence on consumer decisions and behaviors: A causal map approach. Expert Systems with Applications, 35(4), 1567–1574.

Liao, F., Liang, M., Dong, Y., Pang, T., Hu, X., & Zhu, J. (2018). Defense against adversarial attacks using high-level representation guided denoiser. Proceedings of the IEEE conference on computer vision and pattern recognition, 1778–1787.

McGregor, S. (2020). Preventing repeated real world ai failures by cataloging incidents: The ai incident database. arXiv:2011.08512.

Nadeem, A., Abedin, B., & Marjanovic, O. (2020). Gender bias in ai: A review of contributing factors and mitigating strategies. ACIS 2020 proceedings.

Oseni, A., Moustafa, N., Janicke, H., Liu, P., Tari, Z., & Vasilakos, A. (2021). Security and privacy for artificial intelligence: Opportunities and challenges. arXiv preprint.

Qiu, S., Liu, Q., Zhou, S., & Wu, C. (2019). Review of artificial intelligence adversarial attack and defense technologies. Applied Sciences 9, no. 5.

Roe, D. (2020). Ibm and microsoft sign ‘rome call for ai ethics’: What happens next? https://www.cmswire.com/information-management/ibm-and-microsoft-sign-rome-call-for-ai-ethics-what-happens-next/

Ryan, M., & Stahl, B. C. (2020). Artificial intelligence ethics guidelines for developers and users: Clarifying their content and normative implications. Journal of Information, Communication and Ethics in Society.

Smuha, N. A. (2019). The eu approach to ethics guidelines for trustworthy artificial intelligence. Computer Law Review International, 20(4), 97–106.

Union, U. G. (2018). 10 principles for ethical artificial intelligence. http: // www . thefutureworldofwork . org / media / 35420 / uni_ethical_ai.pdf

Westerlund, M. (2019). The emergence of deepfake technology: A review. Technology Innovation Management Review.

Xing, Y., He, W., Zhang, J. Z., & Cao, G. (2022). Ai privacy opinions between us and chinese people. Journal of Computer Information Systems, 1–15.

Zhang, C., Benz, P., Lin, C., Karjauv, A., Wu, J., & Kweon, I. S. (2021). A survey on universal adversarial attack. arXiv preprint.

Zhou, Z., Cai, H., & Zhou, Z. (2019). An analysis of pedestrians’ behavior in emergency evacuation using cellular automata simulation. IEEE 17th International Conference on Smart City, 2644–2650.

Zhou, Z., Guan, H., Bhat, M., & Hsu, J. (2019). Fake news detection via nlp is vulnerable to adversarial attacks. arXiv:1901.09657.