Complete chloroplast genome and evolutionary analysis of *Acer paihengii* (Sapindales:Aceraceae)

Yiping Liua,b, Yunru Zhaia, Dan Hea,b, Hongli Liua,b, Man Zhanga,b and Dezheng Konga,b

aCollege of Landscape Architecture and Art, Henan Agricultural University, Henan, China; bHenan High-quality Flower and Vegetable Seedling Engineering Technology Center, Henan, China

ABSTRACT

In this study, the complete chloroplast genome of *Acer paihengii*, a tree species native to China, was sequenced and assembled through second-generation sequencing. The complete chloroplast genome of *A. paihengii* is 155,967 bp in length with a typical quadripartite structure, encompassing 130 genes including 85 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. Phylogenetic analysis of 22 related species indicated that *A. paihengii* was more closely related to *Acer coriaceifolium* and *Acer sino-oblongum*.

Acer paihengii is a unique deciduous tree species with high ornamental value in China. It is mainly distributed in Yunnan Province, China, where it is a provincial key protected wild plant species (Zhou 2010; Qin et al. 2017). Most studies on Aceraceae plants in China mainly focus on genetic breeding, introduction and domestication, cultivation techniques, economic uses, and landscape ecological applications, among other aspects. However, few studies have focused on *A. paihengii*. The research involved in this species mainly focused on resource investigation and biodiversity.

The chloroplast (cp) genome is highly conserved among plants due to its semi-autonomous and maternal inheritance characteristics, and can thus provide important molecular data onto the characterization of plant systematic evolution and biogeography research (Gao et al. 2020; Yang et al. 2020). Here, the complete chloroplast genome of *A. paihengii* was assembled, annotated, and phylogenetically analyzed, thus providing crucial insights into the evolutionary relationship between *A. paihengii* and other members of the *Acer* genus such as *Acer miaotaiense* (Zhang et al. 2016), *Acer buergerianum* (Xu et al. 2017), *Acer saccharum* (Deng et al. 2019), *Acer truncatum* (Chen et al. 2019), and *Acer tataricum* subsp. ginnala (Yang et al. 2020).

Acer paihengii Fang was first mentioned in Act. Phytotax. Sin. 11: 169. 1966. Leaf samples of *A. paihengii* were collected from Henan Agricultural University (Henan, China, 113°67’E, 34°79’N) and the specimens were deposited in the Herbarium of Henan Agricultural University (http://bbg.henau.edu.cn/), Liu Yiping and E-mail: Lyp_163@163.com) under the voucher number YJ20210325. Total genomic DNA was extracted using the OMEGA kit, after which an Illumina MiSeq sequencer (Illumina, San Diego, CA, USA). The raw data was approximately 5.26 G and low-quality sequences were filtered out to obtain clean and high-quality data. The chloroplast genome was assembled using the NOVOPlasty4.2 software (Nicolas et al. 2017). Gene annotation was performed using the PGA annotation software (https://github.com/quxiaojian/PGA) (Qu et al. 2019).

The whole length of the *A. paihengii* chloroplast genome (GenBank accession: MZ934750) is 155,967 bp, including a pair of 26,063 bp inverted repeat regions (IRa and IRb), a large single-copy (LSC) 85,798 bp region, and a small single-copy (SSC) 18,043 bp region. Furthermore, the total GC content of this circular DNA molecule was 35.62%. A total of 130 functional genes were annotated, including 85 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. These three types of genes accounted for 65.39, 28.46, and 6.15% of all annotated functional genes, respectively. Among them, a total of 15 genes (*trnK-UUU, trnG, trnL-UAA, trnV-UCU, trnL-GUA, trnA-UGC, rps16, rps17, atpF, petB, petD, rpl16, rpl2*, ndhA, and *ndhB*) contained one intron. In contrast, *clpP* and *rps12* possess two introns. Among which *trnL-GUA, trnA-UGC, rpl2, ndhB*, and *rps12* exist as double copies.

To study the phylogenetic position of *A. paihengii*, 22 complete chloroplast genome sequences were downloaded from the NCBI GenBank. Sequence alignment was performed using MAFFT v7.158b (Katoh and Standley 2013). A phylogenetic tree was then generated via maximum likelihood analysis in RaxML (Stamatakis 2014). The development analysis results indicated that most nodes in the phylogenetic tree were strongly supported and all 23 *Acer* plants were clustered in an evolutionary branch. *A. paihengii*, *A. coriaceifolium*, and
A. sino-oblongum clustered together, indicating a close evolutionary relationship (Figure 1). In summary, the complete chloroplast genome of A. paihengii obtained in this study provides a robust basis for future phylogenetic studies of the Acer genus.

The following sequences were used: Acer truncatum NC_037211.1 (Chen et al. 2019), Acer miaotaiense NC_030343.1 (Zhang et al. 2016), Acer amplum subsp. catalpifolium NC_041080.1 (Wang et al. 2019), Acer tataricum subsp. ginnala MN790641.1 (Yang et al. 2020), Acer wilsonii NC_040988.1, Acer tutcheri NC_051542.1 (Shi et al. 2020), Acer buergerianum NC_034744.1 (Xu et al. 2017), Acer palmatum NC_034932.1, Acer laevigatum NC_042443.1, Acer tsinglingense MN393475.1 (Dong et al. 2019), Acer yangbiense MN652924.1 (Ling and Zhang 2020), Acer macrophyllum NC_056217.1, Acer saccharum NC_051960.1 (Deng et al. 2019), Acer sutchuenense NC_049166.1 (Zhang et al. 2020), Acer paihengii MZ934750.1, Acer sino-oblongum NC_040106.1, Acer cinnamomifolium MN414240.1 (Chen et al. 2019), Acer nikoense NC_049165.1 (Fu et al. 2020), Acer griseum NC_034346.1 (Wang et al. 2017), Acer davidii NC_030331.1 (Jia et al. 2016), Acer morrissonense NC_029371.1 (Li et al. 2017), Acer tegmentosum MK942342.1 (Kim et al. 2019), Aesculus wangi NC_035955.1 (Zheng et al. 2018).

Author contributions

Yiping Liu: Conceptualization; Project administration; Resources; Supervision; Review and editing. Yunru Zhai: Resources; Data curation; Software; Formal analysis; Original draft; Review and editing; Visualization. Dan He: Methodology; Conceptualization. Hongli Liu: Conceptualization; Review and editing. Man Zhang: Methodology; Conceptualization. Dezheng Kong: Supervision; Project administration; Funding acquisition.

Disclosure statement

No potential conflict of interest was reported by the author(s). We guarantee that this article has not been submitted to other journals at the same time, and that all content has not been published. All authors agree to the publication of the article and have no conflict of interest, financial or otherwise.

Funding

This work was supported by the National Natural Science Foundation of China [No. 31600568], the Major Research Project of Henan University [21A220003], and the Scientific and Technological Innovation Foundation of Henan Agricultural University [KJCX2017C01].

Data availability statement

The genome sequence data supporting the findings of this study are openly available in the NCBI GenBank database at https://www.ncbi.nlm.nih.gov/ under the accession no. MZ934750. The associated BioProject, SRA, and Bio-Sample numbers are PRJNA767933, SRR16970252, and SAMN22253490, respectively.
References

Chen SJ, Liu BB, Zhang SX, Huang J. 2019. The complete chloroplast genome of *Acer truncatum* Bunge (Aceraceae). Mitochondrial DNA Part B. 4(1):607–608.

Chen MH, Zhang HJ, Jiang M. 2019. The complete chloroplast genome sequence of *Acer cinnamomifolium* (Aceraceae), a plant species endemic to China. Mitochondrial DNA B Resour. 4(2):3450–3451.

Deng X, Jiang ZX, Huang JC, Zhang XZ. 2019. Characterization of the complete chloroplast genome of sugar maple (*Acer saccharum*). Mitochondrial DNA B Resour. 5(1):21–22.

Dong PB, Liu Y, Gao QY, Yang T, Chen XY, Yang JY, Shang QH, Fang MF. 2019. Characterization of the complete plastid genome of *Acer tsinlingense*, an endemic tree species in China. Mitochondrial DNA B Resour. 4(2):4065–4066.

Fu QD, Yu XD, Xia XH, Zheng YQ, Zhang CH. 2020. Complete chloroplast genome sequence of *Acer nikoense* (Sapindaceae). Mitochondrial DNA Part B. 5(3):3136–3137.

Gao J, Yu T, Li JQ. 2020. Phylogenetic and biogeographic study of *Acer L.* section Palmata Pax (Sapindaceae) based on three chloroplast DNA fragment sequences. Acta Ecologica Sinica. 40(17):5992–6000.

Jia Y, Yang J, He YL, He Y, Niu C, Gong LL, Li ZH. 2016. Characterization of the whole chloroplast genome sequence of *Acer davidii* Franch (Aceraceae). Conservation Genet Resour. 8(2):141–143.

Katoh K, Standley DM. 2013. Mafft multiple sequence alignment software version 7: Improvements in performance and usability. Mol Biol Evol. 30(4):772–780.

Kim SC, Shin S, Lee MW, Lee JW. 2019. Complete chloroplast genome of *Acer tegmentosum* and phylogenetic analysis. Mitochondrial DNA B Resour. 4(2):2555–2556.

Li ZH, Xie YS, Tao Z, Jia Y, He YL, Yang J. 2017. The complete chloroplast genome sequence of *Acer morrisonense* (Aceraceae). Mitochondrial DNA. Part A. Mitochondrial DNA A DNA Mapp Seq Anal. 28(3):309–310.

Ling LZ, Zhang SD. 2020. The complete chloroplast genome of an endangered and endemic species, *Acer yangbiense* (Aceraceae). Mitochondrial DNA Part B. 5(1):224–225.

Nicolas D, Patrick M, Guillaume S. 2017. NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucleic Acids Res. 45(4):e18.