1. Introduction. Tail behavior of a probability distribution plays an important role in various applications including hydrology, aerospace engineering, meteorology, insurance, and finance. Lehmann (1988) proposed a pure-tail ordering in connection with the comparison, in terms of efficiency, of location experiments. In classical extreme value theory, the Extremal Types Theorem (ETT), (the Three Type Theorem as it is also known), classifies the right tail of a distribution according to the asymptotic distribution of the standardized maximum. Thus, the distribution F is short-, medium-, or long-tailed depending on whether F is in the domain of attraction of the Weibull, Gumbel, or Fréchet distributions. It is well-known, however, that the limiting distribution for the standardized maximum does not exist for all distributions. For instance, any distribution that assigns positive mass to the right endpoint of its support cannot be classified by the ETT. Another possible drawback of the classical categorization of probability laws using the ETT is that the class of medium-tailed distributions may be too large. For instance, Schuster (1984) argues that, "the statistician considers the normal distribution shorter than the exponential which is in turn shorter than the lognormal distribution". Yet all three are in the domain of attraction of the Gumbel distribution. Thus, there is a need to classify distributions by alternative schemes.

Another possible avenue for such classification may be obtained through the tail-heaviness of a distribution. There exists a robust literature on orderings that attempt to order distributions according to tail-heaviness. Some of the early work allows for the middle part of the distribution to affect the tail ordering. See, e.g., Loh (1984), Doksum (1969), and Lehmann (1988). By contrast,
in a series of papers, Rojo (1988, 1992, 1993, 1996) proposes pure-tail orderings which allow for
pure-tail comparisons without many of the technical assumptions required by other approaches.

Various methods for distinguishing between exponential and power-tails have been proposed
in the literature and are used in practice. The more popular ones are based on plotting various
quantities whose behavior depend on the tail-behavior of the underlying distribution. For example,
Heyde and Kou (2004) discuss methods based on plotting the mean residual life function, Q-Q
plots, conditional moment generating functions, Hill estimation, and likelihood methods. Heyde
and Kou (2004) argue that these methods are qualitative without any support for their "statistical
precision". The Hill estimator is popular in practice but it has its share of problems, including
its undesirable behavior as represented by the "Hill’s horror plots" as illustrated in Embrechts et
al (1997), in spite of the various results concerning its asymptotic properties; moreover, its use
should be restricted to the case of power-tails since the Hill estimation may be misleading, as it
does not provide alerts, when applied to other types of tails. Thus the use of Hill estimation may
be inappropriate for distinguishing power tails from other classes of tails. Somewhat surprisingly,
Heyde and Kou (2004) conclude that it may be necessary to have sample sizes in the tens, and
sometimes in the hundreds, of thousands to be able to differentiate between power and exponential
tails. The main reason for this is that the large quantiles of exponentially-tailed distributions may
actually exceed the counterpart quantiles of power-like tails. This characteristic will be observed in
our simulation work. One way to ameliorate this problem is by blocking the data.

The purpose of this paper is to develop methodologies to test hypotheses about the tail-heaviness
of a distribution based on the results of Rojo (1996). The paper will focus on the right tail of the
distribution, but analogous results are easily seen to hold for the left tail by considering instead
the behavior of random variables \{-X_i, \ldots, i = 1, \ldots, n\}. When the underlying distribution is
symmetric about zero, one may take \{|X_i|, \ldots, i = 1, \ldots, n\} in effect doubling the sample size.

Theorem 3.1 and Corollary 4.2 in Rojo (1996) provide the results needed to develop methodologies
to test the hypothesis that data arises from a medium-tailed distribution against an alternative
of a short- or long-tailed distribution based on the asymptotic distribution of the extreme spacing
X(n) - X(n-1), where X(k) represents the k^{th} order statistic from a random sample X_1,\ldots,X_n from
F. The distribution F is assumed to be continuous and strictly increasing throughout this work.

The organization of the paper is as follows: Sections 1 and 2 provide the introductory material
and a brief discussion of classification schemes developed by Parzen (1979) and Schuster (1984).
Section 3 discusses the most relevant results from Rojo (1996) and section 4 discusses a new test for
tail-heaviness. The test is consistent against short- and long-tailed alternatives and the level of the
test is point-wise robust. Simulation results indicate that for small sample sizes the test exhibits
good control of the probability of Type I error, and has good power properties. A comparison
with a test proposed by Bryson (1974) concludes that, although Bryson’s test behaves well against
distributions with linear mean residual life functions, its power is not good against distributions
with quadratic mean residual life functions and its probability of type I error is close to 1 for the
gamma and log-gamma distributions (which are medium-tailed) and hence may not be a good
choice for the testing situation of interest in this work. A simulation study is discussed where that
data is blocked to increase the power of the test. Finally, the methodology is illustrated by applying
it to several published data sets: maximum discharge of the Feather river, glass breaking strength,
and the Belgian Secure Re claim size data.
2. Classification Based on the Density-quantile Function. Parzen (1979) argued that many distributions have density-quantile functions of the form,

\[fQ(u) \sim (1 - u)^\alpha, \quad \alpha > 0, \]

where \(f \) denotes the density function, \(Q \) is the quantile function (the left-continuous inverse of \(F \)), and \(g_1(u) \sim g_2(u) \) means \(g_1(u)/g_2(u) \) tends to a positive finite constant as \(u \to 1 \). The parameter \(\alpha \) is called the tail exponent, and Parzen (1979) defined a distribution to be short-, medium-, or long-tailed according to whether \(\alpha < 1, \alpha = 1, \) or \(\alpha > 1 \). When \(\alpha = 1 \) the relation indicated by (1) may be written, in many cases, more precisely as

\[fQ(u) \sim (1 - u)^{-1} \{\ln(1 - u)^{-1}\}^{-1} \beta, \quad 0 \leq \beta \leq 1 \]

where \(\beta \) is a shape parameter. Let \(L \) denote a slowly varying function from the left at 1. The precise statement associated with equation (1) is provided by

\[fQ(u) = L(u)(1 - u)^\alpha. \]

Relationship (1) is motivated by results of Andrews (1973) for approximating the area under the tail of the distribution \(F \). It turns out that this density-quantile representation applies for many common distributions but not all. An example from Parzen (1979) of a distribution which does not have this density-quantile representation is \(1 - F(x) = \exp(-x - .75 \sin x) \). To ensure that (3) holds, one must restrict attention to tail-monotone densities as discussed by Parzen (1979). In addition, Parzen (1979) states that the lognormal distribution is an example with (3) holds, one must restrict attention to tail-monotone densities as discussed by Parzen (1979). In addition, Parzen (1979) states that the lognormal distribution is an example with \(\alpha = 1 \) but an expression for its density-quantile function similar to (2) is not possible. Table 1 (see Parzen (1979)) gives the density-quantile function and classification for many common distributions. Although the classification scheme defined through (3) is of theoretical interest, a major drawback for our purpose is that it does not lend itself for a direct use in classifying distributions based on data. It is difficult to check the technical assumptions needed for (3) to hold and the various issues associated with estimating a density arise here as well. In some cases, it is possible to estimate the tail exponent \(\alpha \) in (1) under a restricted form for \(fQ(u) \). For instance, under the assumption that \(fQ(u) \sim \gamma^{-1}(1 - u)^{1+\gamma} \) for \(\gamma > 0 \), one can estimate \(\gamma \) using, for instance, the commonly used Hill estimator. As discussed earlier, however, this approach is not without problems in the case that in fact \(fQ(u) \sim \gamma^{-1}(1 - u)^{1+\gamma} \) for \(\gamma > 0 \).

Distribution	Density-quantile function, \(fQ(u) \)	Classification
Uniform(0,1)	\(1 \)	Short
Exponential(\(\gamma \))	\(\frac{1}{2}(1 - u) \)	Medium
Logistic	\(u(1 - u) \)	Medium
Weibull(\(\gamma \))	\(\gamma(1 - u)(\log\frac{1}{1-u})^{1-\frac{1}{\gamma}} \)	Medium
Extreme Value	\((1 - u)\log\frac{1}{1-u} \)	Medium
Normal	\(\frac{1}{\sqrt{2\pi}} \exp\{-\frac{1}{2}(\Phi^{-1}(u))^2\} \sim (1 - u)(2\log\frac{1}{1-u})^\frac{1}{2} \)	Medium
Cauchy	\(\frac{1}{\pi}\sin^2\pi u \sim (1 - u)^2 \)	Long
Pareto(\(\gamma \))	\(\frac{1}{\pi}(1 - u)^{1+\gamma} \)	Long
Burr(\(\gamma, \tau \))	\((1 - u)^{1+\frac{\tau}{\gamma}} \)	Long

However, as the classification based on (1) yields the same results as those obtained using the ETT, when the necessary technical conditions apply for both schemes (see Parzen (1980)), methodologies based on the asymptotic distribution of the standardized maximum can be used to classify...
distributions based on a random sample. In this case, however, the challenge is to come up with the correct sequences of constants to standardize the maximum. As F is unknown, these will have to be estimated from the data thus complicating the analyses. Section 4 discusses results that circumvent many of these technical problems. The resulting methodology is easy to implement and possesses good operating characteristics. Another possible drawback of a classification scheme based on (3) is that the "medium-tailed" category may be too large as discussed next.

3. Refinements and a Classification based on Extreme Spacings. As the classification scheme based on (1) is not sensitive enough to distinguish, for example, among the normal, exponential, and lognormal distributions, Schuster (1984) refined Parzen’s density-quantile approach for the medium tail class. This refinement classifies distributions such as the normal, exponential, and lognormal into separate categories. The following definitions using the limiting value of the failure rate function $r_F(x) = f(x)/(1 - F(x))$ give the following Refined-Parzen (RP) Classification. Let

\[
\alpha = \lim_{u \to 1^-} -(1 - u)f'Q(u)/[fQ(u)]^2, \text{ and}
\]

\[
c = \lim_{u \to 1^-} (1 - u)/fQ(u) = \lim_{u \to 1^-} 1/r_F(Q(u)).
\]

A distribution belongs to one of the following categories when the given conditions hold:

- Short: $\alpha < 1$
- Medium-Short: $\alpha = 1$, $c = 0$
- Medium-Medium: $\alpha = 1$, $0 < c < \infty$
- Medium-Long: $\alpha = 1$, $c = \infty$
- Long: $\alpha > 1$

The RP method classifies the normal, exponential, and lognormal distributions as medium-short, medium-medium, and medium-long respectively. Unfortunately, as with Parzen’s classification scheme, the RP classification cannot be implemented easily to classify distributions from data, as it requires estimating $fQ(u)$ and $f'Q(u)$ for values of u close to one.

Schuster (1984) provided a scheme to classify distributions by tail behavior through the asymptotic behavior of the extreme spacing (ES). That is, the difference between the maximum and second largest data point. When the quantile function Q is differentiable in an open left interval of 1 and if c defined by (5) exists, Schuster categorizes distributions by the ES as follows.

Theorem 1 Let $X_1, X_2, ..., X_n$ be a random sample from the distribution $F(x)$. Define $S_n = X_{(n)} - X_{(n-1)}$, and assume that c defined by equation (5) exists. Then,

\[
(i) \quad c = 0 \quad \text{if and only if} \quad S_n \sim o_p(1),
\]

\[
(ii) \quad c = a, \quad 0 < a < \infty \quad \text{if and only if} \quad S_n = O_p(1), \quad S_n \neq o_p(1),
\]

\[
(iii) \quad c = \infty \quad \text{if and only if} \quad S_n \overset{p}{\to} \infty,
\]

where $o_p(1)$ denotes the sequence of random variables converges to zero in probability, and $O_p(1)$ means that the sequence is bounded in probability.

The distribution F is then said to be ES short, ES medium, or ES long, when (i), (ii), or (iii) hold respectively. Theorem 1 makes the connection between the behavior of the extreme spacing
and the limiting behavior of the failure rate function when \(c \) defined by (5) exists. The failure rate goes to zero, (e.g. Pareto distribution \(\bar{F}(x) = x^{-\alpha} \), with \(\alpha > 0 \)), if and only if the extreme spacing \(S_n \) converges to infinity in probability, and the failure rate goes to infinity (e.g. \(\bar{F}(x) = e^{-e^x} \)) if and only if the extreme spacing goes to zero in probability. Otherwise, the failure rate converges to a finite positive value (e.g. \(\bar{F}(x) = e^{-x} \)) if and only if the extreme spacing does not converge to zero but remains bounded in probability.

Schuster (1984) also made a connection between the RP classification and the ES classification method. Using the density quantile representation (3) and properties of slowly varying functions, it follows that

\[
\lim_{u \to 1^{-}} \frac{fQ(u)}{1-u} = \lim_{u \to 1^{-}} L(u)(1-u)^{\alpha-1} = \begin{cases}
0 & \text{if } \alpha > 1, \\
0 & \text{if } 0 \leq \lim_{u \to 1^{-}} L(u) \leq \infty & \text{if } \alpha = 1, \\
\infty & \text{if } \alpha < 1.
\end{cases}
\]

Therefore the ES short category consists of the RP short and RP medium-short categories; the ES medium category corresponds to the RP medium-medium class; and the ES long category consists of the RP medium-long and RP long categories.

Thus, equation (6) provides a simple intuitive interpretation of the ES classification. As long as the appropriate assumptions are upheld, a distribution is

- ES short if \(1 - F(x) \to 0 \) faster than \(f(x) \to 0 \),
- ES medium if \(1 - F(x) \to 0 \) at the same rate as \(f(x) \to 0 \),
- ES long if \(1 - F(x) \to 0 \) slower than \(f(x) \to 0 \).

The Weibull distribution provides an example where depending on the value of the shape parameter, the Weibull distribution may be short-, medium-, or long-tailed.

Example 1: For the Weibull distribution \(\bar{F}(x) = e^{-x^\gamma} \),

\[
\lim_{u \to 1^{-}} \frac{1-u}{fQ(u)} = \gamma^{-1}[-\ln(1-u)]^{\frac{1}{\gamma}-1} = \begin{cases}
\infty, & 0 < \gamma < 1, \\
1, & \gamma = 1, \\
0, & \gamma > 1.
\end{cases}
\]

Therefore the Weibull distribution is ES short for \(\gamma > 1 \), ES medium for \(\gamma = 1 \), and ES long for \(\gamma < 1 \).

Additional examples of distributions classified according to the asymptotic behavior of the extreme spacing are given in Table 2.

There is still some degree of lack of precision in Theorem 1, and the information provided by (6), in the sense that the case \((ii)\) in Theorem 1 and the case of \(\alpha = 1 \) in (6) includes medium-, short-, and long-tailed distributions. The connection between the asymptotic behavior of the failure rate and tail-heaviness of the distribution \(F \) will be made precise in Lemma 5 below.

The ES classification method suggests the possibility of utilizing the asymptotic behavior of \(S_n \) to differentiate among short, medium, and long-tailed distributions, but more specific results on the asymptotic distribution of \(S_n \) are needed.

4. Tail Classification using the Residual Lifetime Distribution

Rojo (1996) proposed a classification scheme based on the asymptotic behavior of the residual life distribution. This approach circumvents many of the technical assumptions required by previous approaches, and provides a more precise characterization of class membership.
Definition 2 Define \(h(t) = \lim_{x \to \infty} H_x(t) = \lim_{x \to \infty} \frac{F(t+x)}{F(x)}, \) \(t > 0, \) when the limit exists. The distribution function \(F \) is considered short-tailed if \(h(t) = 0, \) medium-tailed if \(0 < h(t) < 1, \) and long-tailed if \(h(t) = 1, \) for all \(t. \)

Although the limit \(h(t) \) given in Definition 2 exists for a fairly large class of distribution functions, this is not always the case. The limit does not exist, for example, when there is an oscillatory behavior in the tail of the residual life density. Examples of distributions for which \(h(t) \) does not exist include: \(F(x) = \exp(-x - 0.75 \sin(x)) \) and \(F(x) = c(1+(1+x)^{-1/2}+\sin((1+x)^{1/2}))e^{-x}, \) \(x > 0, \) where \(c = (2+\sin(1))^{-1}. \)

The following results are consequences of Definition 2. Theorem 3 below combines Theorem 4.1 and Corollary 4.2 in Rojo (1996). Hereafter, \(\text{Exp}(\theta) \) will denote the exponential distribution with parameter \(\theta, \) i.e. mean \(\frac{1}{\theta}. \)

Theorem 3 Let \(F(x) \) be a distribution function and let \(h(t) \) be as in Definition 2. Then,

\[
\begin{align*}
F \text{ is short-tailed} & \iff S_n = X_n - X_{n-1} \xrightarrow{a.s.} 0, \\
F \text{ is medium-tailed} & \iff S_n = X_n - X_{n-1} \xrightarrow{a.s.} \text{Exp}(\theta), \\
F \text{ is long-tailed} & \iff S_n = X_n - X_{n-1} \xrightarrow{a.s.} \infty.
\end{align*}
\]

Note that the results of Theorem 3 provide a more precise characterization of the various classes of distributions which are in agreement with a classification based on the asymptotic behavior of the extreme spacing \(S_n. \) More importantly, Theorem 3 delineates the asymptotic distribution of the ES for the medium class. This is precisely the result that will lead to a methodology for testing the hypothesis of medium tail against either short- or long-tails in the next section. The asymptotic distribution of \(S_n \) for medium-tailed distributions is perhaps not surprising since for the baseline medium distribution, the exponential distribution, \(S_n \) has an exponential distribution, for every \(n, \) with the same parameter as the underlying distribution \(F. \) (see, e.g. Barlow and Proschan (1996)).

Example 1 (cont): For the Weibull(\(\gamma \)) distribution

\(h(t) = \lim_{x \to \infty} \frac{F(t+x)}{F(x)} = \lim_{x \to \infty} e^{-(x+t)\gamma+x\gamma} = \begin{cases} 1 & 0 < \gamma < 1, \\
e^{-t} & \gamma = 1, \\
0 & \gamma > 1. \end{cases} \)

Therefore, for \(\gamma = 1, \) the Weibull(1) distribution is medium-tailed.

For \(0 < \gamma < 1, \) it is long-tailed, and for \(\gamma > 1, \) the Weibull distribution is short-tailed.

Example 2: The Pareto(\(\gamma \)) distribution has

\(h(t) = \lim_{x \to \infty} \frac{F(t+x)}{F(x)} = \lim_{x \to \infty} \frac{(x+t)^\gamma}{x^\gamma} = 1 \)

for all \(t > 0. \) Therefore the Pareto distribution is ES long by Definition 2.

It is possible to refine the classification given in Definition 2 by subdividing the short- and long-tailed distributions into three subclasses. This can be done by considering, instead, the asymptotic behavior of \(M(x) = F^{-1}(e^{F(x)}) \) in the short-tailed case and the behavior of \(N(x) = F^{-1}(-1/\ln F(x)) \)
Refined Parzen (RP), Extreme Spacing (ES), and Rojo’s Classifications of Distributions by Tail Behavior

Distribution	RP	ES	Rojo
Exponential	Medium-Medium	Medium	Medium
Normal	Medium-Short	Short	Weakly-Short
Lognormal	Medium-Long	Long	Weakly-Long
Uniform	Short	Short	Super-Short
Cauchy	Long	Long	Weakly-Long
Extreme Value	Medium-Short	Short	Moderately-Short
Pareto (\(\alpha < 1\))	Long	Long	Super-Long
Pareto (\(\alpha = 1\))	Long	Long	Moderately-Long
Pareto (\(\alpha > 1\))	Long	Long	Weakly-Long
Weibull (\(\alpha < 1\))	Medium-Long	Long	Weakly-Long
Weibull (\(\alpha = 1\))	Medium-Medium	Medium	Medium
Weibull (\(\alpha > 1\))	Medium-Short	Short	Weakly-Short
Logistic	Medium-Medium	Medium	Medium
Standard Extreme Value	Medium-Short	Short	Moderately-Short

in the long-tailed case. Table 2, as given in Rojo (1996), classifies several common distributions using the various schemes discussed so far.

Note that the classification scheme based on the asymptotic behavior of the extreme spacings, and consequently the residual life function, is location and scale invariant. Henceforth, short−, medium−, and long− tail will mean tail-heaviness in the sense of Theorem 3.

5. Testing for an ES medium tail. Let \(X_1, X_2, \ldots, X_n\) represent a random sample from the distribution function \(F\), and let \(\overline{F}_n\) denote the empirical survival function. Consider the test statistic

\[
T_n = -\frac{\ln \overline{F}_n(\ln X_{(n)})(X_{(n)} - X_{(n-1)})}{\ln X_{(n)}}.
\]

This section examines the operating characteristics of this statistic in the context of testing hypotheses about the tail behavior of \(F\).

The intuition guiding the choice of (10) as a test statistic arises from the following argument starting with a result of Rojo (1996). Since for a medium-tailed distribution \(X_{(n)} - X_{(n-1)} \to \text{Exp}(\theta)\), with probability one, for some \(\theta > 0\), with \(\theta\) unknown, the need arises to estimate \(\theta\) to construct a test statistic whose asymptotic distribution does not depend on the unknown \(\theta\). Now note that, see Rojo (1996), for a medium-tailed distribution,

\[
\overline{F}(\ln y) = y^{-\theta}l(y), \ \theta > 0,
\]

where \(l(y)\) is some (unknown) slowly varying function. Therefore

\[
-\frac{\ln \overline{F}(\ln y)}{\ln y} = \theta - \frac{\ln l(y)}{\ln y}.
\]

The slowly varying function \(l\) becomes a nuisance here, but fortunately it disappears in the limit since \(\ln(l(y))/\ln(y)\) converges to zero as \(y \to \infty\). Therefore,

\[
\theta = \lim_{y \to \infty} -\frac{\ln \overline{F}(\ln y)}{\ln y},
\]
Lemma 5 Suppose that F has a density f and let $r_F = f/F$ denote its failure rate. Then,

(i) The distribution F is short-tailed if and only if $r_F(t) \to \infty$ as $t \to \infty$.

(ii) The distribution F is medium-tailed if and only if $r_F(t) \to \theta$ as $t \to \infty$, for some $0 < \theta < \infty$.

(iii) The distribution F is long-tailed if and only if $r_F(t) \to 0$ as $t \to \infty$.

The following Lemma shows that the condition $\bar{F}(y)/(\bar{F}(\ln y))^\delta \to 0$, as $y \to \infty$, is achieved by all medium-tailed and most long- and short-tailed distributions.

Lemma 6 Let F be short-, medium- or long-tailed so that $F(\ln x) \in R_{-\infty}$, $F(\ln x) = x^{-\theta} l_1(x)$, or $F(\ln x) = l_2(x)$, respectively, for some slowly varying functions $l_i(x)$, $i = 1, 2$ and some $\theta > 0$.

(i) If F is long-tailed, then, without loss of generality, $\bar{F}(\ln x) = \exp\{\int_1^x \frac{\varepsilon(t)}{t} dt\}$, with $\varepsilon(t) \to 0$ as $t \to \infty$, so that $\bar{F}(\ln x)$ is a normalized slowly varying function and $r_F(\ln x) = -\varepsilon(x)$.

(ii) If F is short-tailed, then without loss of generality, $\bar{F}(\ln x) = \exp\{\int_1^x \frac{z(u)}{u} du\}$, for some $z(u) \to -\infty$ and then, $r_F(\ln x) = -z(x)$.

(iii) Let F be short- or long-tailed with $z(x)/z(e^x) = o(x)$ or $\varepsilon(x)/\varepsilon(e^x) = o(x)$ respectively; or suppose that F is medium-tailed. Then,

(17) $\bar{F}(y)/(\bar{F}(\ln y))^\delta \to 0$ as $y \to \infty$ for all $\delta > 0$.
Recall that a distribution G is in the domain of attraction of the Frechet distribution if and only if it satisfies the von-Mises condition ($\gamma r_G(y) \to \lambda$ for some $\lambda > 0$), or if G is tail-equivalent to one such distribution. Therefore, if F is long-tailed, the conditions that $\varepsilon(\ln x)/\varepsilon(x) = o(x)$ is satisfied, in particular, by all those distributions satisfying the von-Mises condition. Thus, for example any F with $F \in R_{-\alpha}$ with density f eventually monotone satisfies (17). In the case of short-tailed distributions, any distribution F for which $-\ln F(x)$ is convex in a neighborhood of infinity, will satisfy the condition that $z(\ln x)/z(x) = o(x)$ since then r_F is increasing in such neighborhood and the result follows since $\tau_F(\ln x) = -z(x)$. An example of a short-tailed distribution that satisfies the conditions on z without having increasing failure rate in a neighborhood of infinity is provided by a distribution F with failure rate $r_F(x) = x + \ln(x) * (1 + \sin(x))/x^{1/5}$.

A level α test of the hypothesis of an ES medium-tailed distribution can, therefore, be introduced using the asymptotic behavior of the test statistic T_n, defined by (10), with critical values being the α and $1 - \alpha$ percentiles of the $\text{Exp}(1)$ distribution. The null hypothesis to be tested is that F is ES Medium-tailed vs either of the alternative hypotheses $H_{a_1}: F$ is ES Short-tailed or $H_{a_2}: F$ is ES Long-tailed. The decision rules with significance levels α are: (1) Reject H_0 in favor of H_{a_1} if $T_n < -\ln(1 - \alpha)$, and (2) Reject H_0 in favor of H_{a_2} if $T_n > -\ln(\alpha)$. Otherwise do not reject H_0.

It is clear that the asymptotic levels of the tests equal α, and, thus, the test has point-wise robust levels. The following two theorems prove consistency against short- and long-tailed alternatives. In the case of short-tailed alternatives we further sub-classify them, as in Rojo (1996), according to the asymptotic behavior of the cumulative hazard function. Thus, a short-tailed distribution F is said to be super-, moderately-, or weakly-short when $-\ln F(\ln x)$ is rapidly-, regularly-, or slowly-varying. The following Theorem provides the consistency of the test for short-tailed alternatives.

Theorem 7 Let F be short-tailed so that $-\ln F(\ln x) = h(x)$ with h a regularly varying function with index $0 \leq \gamma \leq \infty$. When $\gamma = 0$, suppose in addition that $\frac{r_F(\ln x)}{r_F(x)} \to 0$ as $x \to \infty$. Under the assumptions of Theorem 4, the test defined by the test statistic T_n that rejects when $T_n < -\ln(1 - \alpha)$ is consistent against the class of short-tailed alternatives.

The condition that $\frac{r_F(\ln x)}{r_F(x)} \to 0$ as $x \to \infty$ when F is a weakly-small distribution is rather mild, and it is satisfied, for example, by all distributions with survival functions of the form $F(x) = \exp(-x^{1+\alpha})$, for $\alpha > 0$; $F(x) = \exp(-x \ln_k x)$, where \ln_k denotes the kth iterated natural log; and $F = \exp(-\exp(x^\alpha))$, $0 < \alpha < 1$.

Similar results hold for long-tailed distributions as stated in the next theorem. As in the case of short-tailed distributions, a condition is imposed on the tail of F and it is seen that this condition is satisfied by a large class of distributions with either regularly or slowly varying tails. The case of long-tails with F rapidly varying, e.g. $F(x) = \text{Exp}(-(x)^\alpha)$ with $0 < \alpha < 1$, seems to also satisfy the condition as demonstrated by many examples, but we are unable to prove the result in general.

Theorem 8 Let F be long-tailed and suppose that $r_F(x)$ is eventually decreasing with

$$r_F(x) \frac{r_F(x)}{r_F(\ln x)} = o(1).$$

Under the assumptions of Theorem 4, the test defined by the test statistic T_n that rejects when $T_n > -\ln(\alpha)$ is consistent against this class of long-tailed alternatives.

Other examples that satisfy the conditions of Theorem 8 include: $F(x) = e^{-(\ln x)^\alpha}$, for $0 < \alpha < 1$, and regularly varying functions of the form $F(x) = \int_1^x \frac{1}{t} dt$, where $-\varepsilon(t) \to \alpha > 0$ and $-\varepsilon(t)$ is
Again 10,000 simulations were used for each sample size. Table 4 gives classification probabilities been classified as long-tailed or vice-versa. Thus, both ES short and long percentages are given.

The next section provides results from a simulation study that examines the power properties for finite samples from various distributions.

Table 3 shows good performance of the test statistic $-\ln F_n[\ln X(n)](X(n) - X(n-1))/\ln X(n)$. Most of the values are close to the desirable value of $\alpha = .05$ except in the $Exp(100)$ and in the $\text{Gamma}(100)$ cases, as well as for a few instances, $Exp(1)$ and $Exp(.01)$, when the sample size was extremely small, $n = 10$.

The case of $\text{Gamma}(100)$ illustrates the fact that the convergence of $\ln l(y)/\ln(y)$ in (12) can be very slow. When this happens, the estimator $-\ln F_n[\ln X(n)]/\ln X(n)$, although converging to δ, it will do so rather slowly and this will be reflected on the probability of Type I error as seen in Table 3. Despite this, the test statistic performs very well under various ES medium-tailed distributions.

We now turn our attention to the power of this test statistic when sampling from various ES short- and long-tailed distributions. Besides tracking the power of detecting an ES short- or long-tailed distribution, it may be just as important to notice the probability of a serious misclassification error. A serious misclassification error is one in which an ES short-tailed distribution sample has been classified as long-tailed or vice-versa. Thus, both ES short and long percentages are given. Again 10,000 simulations were used for each sample size. Table 4 gives classification probabilities decreasing. It is possible to obtain the consistency results for regularly varying tails by replacing the conditions Theorem 6 by a different condition. This is the content of the following theorem.

Theorem 9 Let F be long-tailed with F regularly varying of exponent $\alpha \geq 0$, so that $F(x) = c(x)\exp(\int_{x}^{c} \frac{\varepsilon(t)}{t} dt) \equiv L(x)$, where $\varepsilon(t) \rightarrow -\alpha$, and suppose that $c(x) \rightarrow c > 0$, with $c(x)$ nondecreasing, and $-L'/L$ eventually non-increasing. Then, when Theorem 4 holds, the test defined in the previous theorem is consistent against these long-tailed alternatives.

Thus the test defined by T_n is consistent against short- and long-tailed alternatives. These are asymptotic results. The next section provides results from a simulation study that examines the power properties for finite sample sizes.

6. Simulation Results.

The previous section discussed the asymptotic properties of Type I error control and consistency of the test against long- and short-tailed distributions. This section investigates the type I error, and power properties of the test for finite samples from various distributions.

Table 3 gives the rejection probabilities when sampling from various exponential distributions as well as the logistic distribution and the gamma distribution with scale=1 and shape=.7. The values given are Type I errors since all distributions are ES medium-tailed. The probabilities for each sample size are found from 10,000 simulations of the chosen sampling distribution.

Table 3 shows good performance of the test statistic $-\ln F_n[\ln X(n)](X(n) - X(n-1))/\ln X(n)$. Most of the values are close to the desirable value of $\alpha = .05$ except in the $Exp(100)$ and in the $\text{Gamma}(100)$ cases, as well as for a few instances, $Exp(1)$ and $Exp(.01)$, when the sample size was extremely small, $n = 10$.

The previous section discussed the asymptotic properties of Type I error control and consistency of the test against long- and short-tailed distributions. This section investigates the type I error, and power properties of the test for finite samples from various distributions.

n	$E(100)$ S	$E(100)$ L	$E(1)$ S	$E(1)$ L	$E(.01)$ S	$E(.01)$ L	$Lgis$ S	$Lgis$ L	$G(7)$ S	$G(7)$ L
10	.0443	.0000	.0541	.0805	.5742	.1146	.0382	.1427	.1057	.1113
50	.0509	.0001	.0485	.0563	.1085	.0686	.0447	.0730	.0387	.0979
100	.0515	.0017	.0491	.0517	.0675	.0642	.0477	.0623	.0428	.0928
250	.0532	.0053	.0506	.0541	.0530	.0590	.0471	.0559	.0382	.0908
500	.0536	.0085	.0542	.0517	.0545	.0545	.0490	.0594	.0384	.0859
1000	.0544	.0100	.0501	.0503	.0526	.0546	.0402	.0568	.0411	.0904
2500	.0554	.0153	.0514	.0507	.0502	.0480	.0572	.0417	.087	
5000	.0523	.0179	.0498	.0463	.0477	.0499	.0428	.0590	.0392	.0853
10k	.0514	.0200	.0516	.0458	.0526	.0549	.0476	.0558	.042	.0906
20k	.0544	.0248	.0487	.0508	.0498	.0459	.0485	.0546	.0377	.083
for various shifted Pareto(\(\gamma\)) distributions with survival functions \(\overline{F}(x) = \frac{1}{1+x^\gamma}, \ x > 0\). The test statistic shows great power against Pareto(1) and Pareto(2) alternatives. As expected from the results of Heyde and Kou (2004), power decreases as \(\gamma\) increases.

Table 5 gives the classification probabilities for a Weibull(\(\gamma\)) distribution with survival function \(\overline{F}(x) = e^{-x^{\gamma}}, \ x > 0\). As stated previously, the Weibull is ES short-tailed for \(\gamma > 1\) while ES long for \(0 < \gamma < 1\). The simulations show good power against the Weibull(5) distribution and reasonable power for the Weibull(1/2) distribution. The power decreases as \(\gamma\) nears 1 as expected.

Table 6 shows the power against \(U(0,1)\), extreme value, and normal distributions. For a sample size of 100 or larger. The test is almost perfect for detecting a \(U(0,1)\) sample as ES short. The power is unfortunately not that high for the extreme value and normal distributions. At least in both cases for \(n > 10\) the percentage ES short classifications did outnumber the ES long ones, but the percentage of simulations that were rejected as ES medium and classified as short-tailed from a normal distribution was approximately 10% for a sample size as large as 5000. The lack of power in this case is addressed in the next section.

Finally Table 7 gives the power of the test for a few common ES long-tailed distributions. The percentage of correct classification for the lognormal is less than desirable, slightly better for a \(t(3)\) sample, while excellent for a Cauchy sample.

7. Blocking the Data for Increased Power

The previous section introduced a test to distinguish among ES short-, medium-, and long-tailed distribution samples by tail behavior, using the Extreme Spacing. The test shows good power in distinguishing significantly different tail behaviors. But the test showed less capability for distinguishing a lognormal sample from an
exponential sample and a normal sample from an exponential sample. This section addresses the low power values seen in the previous section when sampling from distributions with tails which do not differ much from the exponential. The procedure of blocking the data, finding the test statistic for each block, and combining the block test statistics into one test increases the power substantially.

Notice from Table 6 that the power of detecting a ES short-tail when sampling from a normal distribution is approximately 10% for \(n \leq 20,000 \). Blocking the data into \(k \) separate blocks may give rise to additional power. Each block of size approximately \(m = \frac{n}{k} \) is its own independent subsample which will produce independent values for the test statistic \(T_m \). Under the null hypothesis of an ES medium tail, the sum of the \(k \) block statistics can be used as the overall test statistic.

Under the null hypothesis, the sum of the \(k \) block statistics has an asymptotic \(\text{gamma}(k,1) \) distribution. Let \(TS_j \) be the block test statistic for block \(j \) where \(j = 1, \ldots, k \). The hypotheses to be tested and corresponding decision rules are then given by \(H_o : F \) is ES Medium-tailed vs \(H_{a_1} : F \) is ES Short-tailed or \(H_{a_2} : F \) is ES Long-tailed. The decision rules with significance level \(\alpha = 5\% \) is Reject \(H_o \) in favor of \(H_{a_1} \) if \(\sum_{j=1}^{k} TS_j < q_{\text{gamma}}(\alpha,k,1) \); Reject \(H_o \) in favor of \(H_{a_2} \) if \(\sum_{j=1}^{k} TS_j > q_{\text{gamma}}(1-\alpha,k,1) \); otherwise do not reject \(H_o \), where \(q_{\text{gamma}}(p,k,1) \) is the \(p \)th percentile of the \(\text{gamma}(k,1) \) distribution.

Table 8 gives the Type I errors found when sampling from the Exp(1) and logistic distributions for the sample sizes of 500, 5000, and 20000 using various numbers of blocks. As shown in the table the suggested number of blocks to use is somewhere between 5 and 10, otherwise too few points are in each block leading to large Type I errors. For a sample size of 5000, it appears that up to 25

Table 6

Power against short- and long-tails – sampling from ES short distributions

\(n \)	\(\text{Unif}(0,1) \) S	\(\text{Unif}(0,1) \) L	ExtVal S	ExtVal L	Normal S	Normal L
10	.3194	0	.1145	0	.0465	.0533
50	.7766	0	.1308	.0002	.0629	.0148
100	.9459	0	.1467	0	.0666	.0083
250	.9988	0	.1722	0	.0816	.0041
500	1	0	.1816	0	.0846	.0029
1000	1	0	.1914	0	.0913	.0018
2500	1	0	.2077	0	.0952	.0018
5000	1	0	.2283	0	.0984	.0006
10k	1	0	.2335	0	.1018	.0006
20k	1	0	.2401	0	.1032	.0005

Table 7

Power against short- and long-tails – sampling from ES Long distributions

\(n \)	\(\text{Lnorm} \) S	\(\text{Lnorm} \) L	\(t(3) \) S	\(t(3) \) L	Cauchy S	Cauchy L
10	.0426	.1775	.0353	.1833	.0154	.4640
50	.0253	.2828	.0265	.2549	.0054	.7187
100	.0200	.3329	.0242	.3022	.0028	.8161
250	.0187	.3910	.0165	.3741	.0016	.9042
500	.0154	.4437	.0159	.4322	.0008	.9437
1000	.0134	.4953	.0135	.4934	.0005	.9701
2500	.0089	.5441	.0091	.5740	.0002	.9855
5000	.0014	.5826	.0087	.6363	.0002	.9935
10k	.0074	.6292	.0076	.6879	.0000	.9935
20k	.0063	.6574	.0058	.7361	.0000	.9977
blocks can be used without causing significant Type I errors. In what follows En stands for Exp(1) sampling with sample size n and Ln stands for Logistic sampling with sample size n.

Tables 9-11 show that for as little as 5 or 10 blocks the power of detecting an ES short- or long-tailed sample can increase substantially.

Table 8

Type I Errors while Blocking the Data for Sample Sizes $n = 500$ and 5000, and 20000

blocks	$E500S$	$E500L$	$L500S$	$L500L$	$E500S$	$E500L$	$L500S$	$L500L$
1	.0541	.0545	.0490	.0594	.0498	.0463	.0428	.0590
5	.0497	.0538	.0365	.0823	.0549	.0488	.0381	.0639
10	.0509	.0660	.0246	.1218	.0499	.0546	.0332	.0734
25	.0393	.1058	.0050	.3469	.0463	.0558	.0252	.0994
50	.0313	.1344	.0048	.8164	.0455	.0674	.0122	.1691

Table 9

Power against Short- and Long-tailed alternatives when Blocking the Data; $n = 500$

blocks	Norm S	Norm L	ExtVal S	Lnorm L	Par(5) L	Weib(2)
1	.0846	.0029	.1816	.4437	.2660	.1840
5	.1653	0	.7722	.7485	.4439	.8473
10	.1887	0	.9635	.9721	.5113	.9941
25	.0950	.0133	.9978	.9483	.4740	1

Not shown: Power of 0 when testing for long tails and the distribution is Extreme Value, or Weibull(2); Not shown: Power < .01 when testing for short tails and sampling from Lognormal, or Pareto(1)

Table 10

Power against Short- and Long-tailed alternatives while Blocking the Data; $n = 5000$

blocks	Norm S	ExtVal S	Lnorm L	Par(5) L	Weib(2)
1	.0984	.2283	.5826	.3865	.1943
5	.3120	.9406	.9287	.7041	.8907
10	.5172	.9994	.9921	.8372	.9986
20	.7339	1	.9996	.9404	1
50	.8960	1	1	.9924	1

Not shown: 0 Long Tail Classifications for Ext Value, Weibull(2), Normal; less than 1% Short Tail Classifications for Lognormal, Pareto(1)

Table 11

Power against Short- and Long-tailed alternatives while Blocking the Data; $n = 20000$

blocks	Norm S	ExtVal S	Lnorm L	Par(5) L	Weib(2)
1	.1071	.2442	.6573	.4607	.2080
5	.3804	.9771	.9715	.8222	.9160
10	.6552	1	.9975	.9360	.9985
20	.9435	1	1	.9902	1
50	.9966	1	1	.9999	1

13
For a sample size of \(n = 500 \) blocking the data (Table 9) increases the correct classification to a desirable value, > 90%, for the extreme value, lognormal, and Weibull(2) distributions. The power increases for the normal and Pareto(5) distributions. The reason why the percentage does not increase over 90% is twofold. First, the normal and Pareto(5) are very similar to an exponential in tail behavior, and since there are few points in each block, the standard error of \(\{-\ln F_n[\ln X_{(n)}]/\ln X_{(n)}\} \) increases. In other words, it is difficult with a sample size as small as 500 to be able to consistently distinguish a normal or Pareto(5) tail from an exponential. The selection of the number of blocks is driven by a trade-off between bias and power of the tests. Table 10 does show significant power improvement for a sample size of 5000. More improvement is shown in Table 11 for \(n = 20,000 \).

8. Comparison with Bryson test. Bryson (1974) proposed a procedure to test the hypothesis of an underlying exponential distribution against long-tailed distributions with (increasing) linear mean residual lifetime functions. Examples of these long-tailed distributions are the Lomax distributions. Based on invariance considerations, the Bryson test is defined as

\[
T^* = \frac{\bar{X} X_{(n)}}{(n - 1)X_{GA}^2}, \tag{19}
\]

where

\[
X_{GA} = (\prod_{i=1}^{n}(X_i + A_n))^{1/n}
\]

with \(A_n = X_{(n)}/(n - 1) \). It follows from (19) that the asymptotic behavior of the test based on \(T^* \) will be affected by the asymptotic behavior of \(X_{(n)} \). One drawback of Bryson’s test is that its asymptotic distribution is not known and the critical values have to be simulated. Bryson (1974) provides the critical values for several small sample sizes and three levels for the test (\(\alpha = .01, .05 \) and .10). For the purpose of the present problem, this means that since we do not know that the levels of the test defined through \(T^* \) are robust (for the class of medium-tailed distributions) then it is difficult to apply the test for our purposes. Nevertheless simulation work shows that the test has good power, sometimes higher power than the test proposed here, for those distributions for which it was developed. In addition, its power is competitive with the power of the test defined through (20) below. Its main drawback, however, is that it may have probability of error of Type I close to 1 when the underlying distribution is the gamma or log-gamma distributions. Thus the test may reject the null hypothesis of medium-tail in favor of a long-tail when the shape parameter of the gamma distribution is larger than 1; on the other hand, it will reject the null hypothesis in favor of a short-tailed distribution, with probability of error of Type I close to 1, in the case that the shape parameter of the gamma is smaller than 1. For the case of the log-gamma distribution, which is long-tailed, Bryson’s test may reject in favor of the decision of short-tail with high probability. The reason this happens is that, since for the gamma distribution the centering sequence to achieve a limiting distribution for \(X_{(n)} \) is given by \(\log n + (\alpha - 1) \log \log n - \log \Gamma(\alpha) \), then depending on whether \(\alpha \) is smaller or greater than 1, the test statistic will favor a short-tail or long-tail alternative. The case of the log-gamma distribution follows in a similar manner. The following Table 12 shows the simulated quantiles for the distribution of the test statistic \(T^* \) under the gamma distribution for various values of the shape parameter. In all cases, the scale parameter is set to 1. Table 13 shows the simulated quantiles for the distribution of the test statistic \(T^* \) under the log-gamma distribution for various values of the scale parameter. In all cases, the shape parameter is set to 1/2.
Table 12
Quantiles for the Bryson Test for Sample Sizes $n = 50, 100, 500, 5000, 10000,$ and 20000 for the gamma Distribution: Shape$=2, 1, 1/2$; Scale$=1$

	.025	.05	.05	.95	.95	.95	.95	.95				
50	0.0611	0.0643	0.1246	0.1336	0.1035	0.1104	0.2371	0.2546	0.2042	0.2212	0.4588	0.4852
100	0.0386	0.0407	0.0752	0.0807	0.0745	0.0791	0.1624	0.1749	0.1751	0.1889	0.3768	0.3968
500	0.0114	0.0119	0.0194	0.0205	0.0271	0.0283	0.0506	0.0543	0.0947	0.0996	0.1794	0.1902
5000	0.0016	0.0016	0.0024	0.0025	0.0044	0.0045	0.0071	0.0075	0.0224	0.0232	0.0368	0.0390
10000	0.0008	0.0009	0.0012	0.0013	0.0024	0.0025	0.0038	0.0040	0.0133	0.0137	0.0212	0.0224
20000	0.0004	0.0004	0.0006	0.0007	0.0013	0.0013	0.0020	0.0021	0.0077	0.0079	0.0119	0.0126

Table 13
Quantiles for the Bryson Test for Sample Sizes $n = 50, 100, 500, 1000, 5000, 10000,$ and 20000 for the log-gamma Distribution: Shape$=1/2$; Scale$=1/6, 1$

	.025	.05	.05	.95	.95	.95	.95	.95
50	0.0239	0.0245	0.0419	0.0461	0.0682	0.0783	0.6478	0.7257
100	0.0132	0.0136	0.0240	0.0267	0.0624	0.0722	0.7082	0.7866
500	0.0033	0.0034	0.0064	0.0071	0.0558	0.0671	0.7655	0.8515
1000	0.0018	0.0019	0.0035	0.0039	0.0564	0.0681	0.7902	0.8745
5000	0.0004	0.0004	0.0009	0.0010	0.0558	0.0678	0.8247	0.9056
10000	0.0002	0.0002	0.0005	0.0005	0.0559	0.0676	0.8346	0.9188
20000	0.0001	0.0001	0.0002	0.0003	0.0564	0.0689	0.8407	0.9215

The quantiles in Table 12 for shape$=1$, are the critical values used to implement Bryson’s test. It becomes evident at once, that Bryson’s test will reject, with probability close to 1, the hypothesis of medium tail in favor of short tail when the (medium-tailed) underlying distribution is gamma with shape equal to 2 and scale equal to 1 for sample sizes 100 or higher since the 97.5th quantile for the test statistic in this case is smaller than the 2.5th quantile of the test statistic under the standard exponential distribution. Similarly, the Bryson’s test would reject the null hypothesis of medium tails with high probability if the true underlying distribution is gamma with scale $= 1/2$ and shape$=1$. This is also obvious from Table 12 since the 97.5th quantile for the test statistic under the null hypothesis is smaller than the 2.5th quantile of the test statistic under the gamma with scale $= 1/2$ and shape$=1$. Similar observations hold for the case of the log-gamma distribution.

9. Illustrations of Data Analysis. This section is devoted to the analysis of three data sets illustrating the methodologies of previous sections. The first data set is the Secura Belgian Re data set and consists of 371 automobile claims from 1988 - 2001 from numerous European insurance companies. Each claim was at least 1.2 million Euros. This data, adjusted for inflation is discussed in Beirlant et al. (2004). Figures 1 and 2 show the histogram and exponential q-q plot. Since the empirical quantiles in the right tail are greater than the corresponding exponential quantiles, the right tail appears to be longer than exponential, i.e. long-tailed. This has been confirmed by classical techniques in Beirlant et al. (2004). A Pareto-type distribution was fitted to the data and the long-tailed behavior of the data was also observed in the empirical mean residual life plots.

We consider testing for a medium tail versus a long-tail. The data, expressed in millions of Euros, was first shifted by subtracting 1.2 million. The test statistic is

$$
(20) \quad -\frac{\ln F_n[\ln X_{(n)}]}{\ln X_{(n)}}[X_{(n)} - X_{(n-1)}].
$$

For claims above 1.2 million Euros the value of the test statistic is 70.40. Since under the null
Figure 1 – Claim size (in millions of euros)

Figure 2 – Standard exponential quantiles

Figure 3 – Breaking strength

Figure 4 – Standard exponential quantiles

Figure 5 – Flood level in thousands of cubic feet per second

Figure 6 – Standard exponential quantiles
hypothesis of an ES medium-tailed the test statistic is distributed like an $Exp(1)$, the p-value is $< .001$. Thus the distribution is classified as long-tailed.

The next example is depicted in Figure 3 and 4 that show the histogram of breaking strengths of 63 glass fibers of 1.5 cm in length. This data appeared in Smith and Naylor (1987) and the left tail was analyzed by Coles (2001). Here, the the right tail is considered. The q-q plot suggests, at first glance, a short right tail since the empirical quantiles fall below the exponential quantiles.

The value for test statistic is .014 which under the null hypothesis of a medium right tail gives a p-value of .014. Therefore the test rejects the null hypothesis of a medium tail in favor of the alternative of a short right tail.

The third example analyzes the annual maximum discharge, in thousands of cubic feet, of the Feather River from 1902 to 1960. This data set has been described and analyzed with classical extreme value methods by Reiss and Thomas (2000). A Gumbel distribution was fitted to the data. The histogram and q-q plot are shown in Figures 5 and 6.

The q-q plot suggests a medium right tail. After subtracting the smallest observation from the data, the test statistic yields a value of .35 with a corresponding p-value of .7 therefore not rejecting the null hypothesis of medium-tail.

10. Appendix.

Proof of Theorem 4: Suppose that $F(y)/(F(\ln y))^{\delta} \rightarrow 0$ for some $\delta > 2$, and let $0 < \gamma < \frac{1}{2}$, $\varepsilon_n = n^{\gamma - \frac{1}{2}}$ and define $A_n = \{\|F_n - F\| \geq \varepsilon_n\}$ and $B_n = \{F(\ln X_n) \leq \varepsilon_n\}$, where $\|F_n - F\| = \sup_x |F_n(x) - F(x)|$. Let $Z_n = -\ln F_n(\ln X_n)/-\ln F(\ln X_n)$ and consider first, for $\varepsilon > 0$,

$$P(Z_n > 1 + \varepsilon) = P(Z_n > 1 + \varepsilon, A_n) + P(Z_n > 1 + \varepsilon, A_n^c) \leq 2e^{-2n\varepsilon^2} + P(Z_n > 1 + \varepsilon, A_n^c).$$

Thus, it is enough to show that the second term in the last expression goes to zero as $n \rightarrow \infty$. Now, the second term in the last expression may be bounded from above as follows:

$$P((Z_n > 1 + \varepsilon) \cap A_n^c \cap B_n) \leq P\left(\frac{\ln F(\ln X_n) - \varepsilon_n}{-\ln F(\ln X_n)} > 1 + \varepsilon\right) \cap A_n^c \cap B_n^c.$$

Now, note that $P(B_n) = P\left(\ln X_n \geq F^{-1}(\varepsilon_n)\right) = 1 - P\left(X_n < \exp\left(F^{-1}(n^{\gamma - \frac{1}{2}})\right)\right) = 1 - \{1 - \exp\left(F^{-1}(n^{\gamma - \frac{1}{2}})\right)\}^n.

But, $n\bar{F}\left(\exp\left(F^{-1}(n^{\gamma - \frac{1}{2}})\right)\right) = o(1)$ as a consequence of the assumption that $\bar{F}(y)/(\bar{F}(\ln y))^{\delta} \rightarrow 0$ as $y \rightarrow \infty$, for some $\delta > 2$. To see this, set $\kappa = \gamma - 1/2$ and $u = F^{-1}(n^{\kappa})$, so that $u \rightarrow \infty$ as $n \rightarrow \infty$, and $n\bar{F}(\exp(F^{-1}(n^{\kappa}))) = (F(u))^{1/\kappa}\bar{F}(e^u)$. Finally setting $y = e^u$, then the last expression is seen to be equal to $\bar{F}(y)/(\bar{F}(\ln y))^{-1/\kappa} \rightarrow 0$ as $y \rightarrow \infty$ since $-1/\kappa > 2$. Therefore, $P(B_n) \rightarrow 0$ as $n \rightarrow \infty$. It remains to prove that

$$P\left(\frac{\ln F(\ln X_n) - \varepsilon_n}{-\ln F(\ln X_n)} > 1 + \varepsilon\right) \cap A_n^c \cap B_n^c \rightarrow 0 \text{ as } n \rightarrow \infty.$$
Write \(-\ln(\bar{F}(\ln X_{(n)}) - \varepsilon_n) = -\ln \bar{F}(\ln X_{(n)}) + \frac{\varepsilon_n}{1 - \xi_n}\) where \(F\left(\ln X_{(n)}\right) < 1 - \xi_n < F\left(\ln X_{(n)}\right) + \varepsilon_n\) so that, for \(0 < a < 1\), after setting \(C_n = A_n^{c} \cap B_n^{c}\),

\[
P\left(\frac{-\ln(\bar{F}(\ln X_{(n)}) - \varepsilon_n)}{\ln \bar{F}(\ln X_{(n)})} > 1 + \varepsilon\right) \cap \left\{ \frac{\varepsilon_n}{1 - \xi_n}(-\ln F(\ln X_{(n)})) > \varepsilon \right\} \leq P\left(\frac{\varepsilon_n}{(1 - \xi_n)(-\ln F(\ln X_{(n)}))} > \varepsilon\right)
\]

\[
\leq P\left(\frac{\varepsilon_n}{(\bar{F}(\ln X_{(n)}) - \varepsilon_n)(-\ln \bar{F}(\ln X_{(n)}))} > \varepsilon\right) \cap \left\{ n^{\frac{1}{2} - \gamma}\bar{F}(\ln X_{(n)}) > 1 + a\right\}
\]

\[
+ P\left(\frac{1}{\bar{F}(\ln X_{(n)})} > \varepsilon\right) \cap \left\{ n^{\frac{1}{2} - \gamma}\bar{F}(\ln X_{(n)}) > 1 + a\right\}
\]

Since \(a > 0\) while \(-\ln \bar{F}(\ln X_{(n)}) \to \infty\) almost surely, the first term on the right side of the last inequality goes to zero. For the second term, note that

\[
P\left(\frac{n^{\frac{1}{2} - \gamma}\bar{F}(\ln X_{(n)}) < 1 + a\right) = P\left(\exp\left(\frac{\bar{F}^{-1}(c n^{\gamma - \frac{1}{2}})}{n}\right) = 1 - \left(1 - \exp\left(\frac{\bar{F}^{-1}(c n^{\gamma - \frac{1}{2}})}{n}\right)\right) = 1 - \left(1 - \exp\left(\frac{\bar{F}^{-1}(c n^{\gamma - \frac{1}{2}})}{n}\right)\right) n
\]

where \(c = 1 - a\). It then follows as before, that \(\bar{F}(y)/(\bar{F}(\ln y))^{\gamma} \to 0\) for some \(\gamma > 2\) implies that \(n\bar{F}\left(\exp\left(\bar{F}^{-1}(c n^{\gamma - \frac{1}{2}})\right)\right) \to 0\) as \(n \to \infty\). Therefore \(P\left(\frac{n^{\frac{1}{2} - \gamma}\bar{F}(\ln X_{(n)}) < 1 + a\right) \to 0\) and hence

\[
P\left(\frac{-\ln F_{n}(\ln X_{(n)})}{\ln \bar{F}(\ln X_{(n)})} > 1 + \varepsilon\right) \to 0.
\]

The case \(P\left(\frac{-\ln F_{n}(\ln X_{(n)})}{\ln \bar{F}(\ln X_{(n)})} < 1 - \varepsilon\right) = P\left(Z_{n} < 1 - \varepsilon\right)\) is handled in a similar fashion.

Consider now

\[
P\left(Z_{n} < 1 - \varepsilon\right) = P\left(\left(Z_{n} < 1 - \varepsilon\right) \cap A_{n}\right) + P\left(\left(Z_{n} < 1 - \varepsilon\right) \cap A_{n}^{c}\right)
\]

\[
\leq 2e^{-2n\varepsilon_{n}^{2}} + P\left(\left(\frac{-\ln F_{n}(\ln X_{(n)}) + \varepsilon_{n}}{\ln \bar{F}(\ln X_{(n)})} < 1 - \varepsilon\right) \cap A_{n}^{c}\right)
\]

\[
\leq 2e^{-2n\varepsilon_{n}^{2}} + P\left(\left(\frac{-\ln F_{n}(\ln X_{(n)}) + \varepsilon_{n}}{\ln \bar{F}(\ln X_{(n)})} < 1 - \varepsilon\right) \cap A_{n}^{c}\right).
\]
As before, write \(-\ln(\overline{F}(\ln X) + \varepsilon_n) = -\ln(\overline{F}(\ln X(n))) - \varepsilon_n/\xi_n\) where \(\xi_n\) satisfies \(\overline{F}(\ln X(n)) < \xi_n < \overline{F}(\ln X(n)) + \varepsilon_n\). Then

\[
P\left(\frac{-\ln(\overline{F}(\ln X(n)) + \varepsilon_n)}{-\ln \overline{F}(\ln X(n))} < 1 - \varepsilon\right) = P\left(1 - \frac{\varepsilon_n}{\xi_n(-\ln \overline{F}(\ln X(n)))} < 1 - \varepsilon\right) = P\left(\frac{\varepsilon_n}{\xi_n(-\ln \overline{F}(\ln X(n)))} > \varepsilon\right) \leq P\left(\frac{\varepsilon_n}{\overline{F}(\ln X(n))(-\ln \overline{F}(\ln X(n)))} > \varepsilon\right) = P\left(\frac{1}{(n^{1/\gamma} \overline{F}(\ln X(n))(-\ln \overline{F}(\ln X(n)))} > \varepsilon\right) \leq P\left(\frac{1}{-\ln \overline{F}(\ln X(n))} > \varepsilon, n^{1/\gamma} \overline{F}(\ln X(n)) > 1\right) + P\left(n^{1/\gamma} \overline{F}(\ln X(n)) < 1\right).
\]

Similar arguments to those used before then yield the result that both terms on the right side of the above inequality go to zero as \(n \rightarrow \infty\). Thus,

\[-\ln \overline{F}_n(\ln X(n)) \rightarrow 1.\]

Proof of Lemma 5 Without loss of generality it is assumed that \(F\) is a life distribution. The proof follows easily by writing, after a one-step Taylor’s expansion

\[(21)\]

\[-\ln\{\overline{F}(t+x)/\overline{F}(x)\} = \int_x^{t+x} r_F(u)du = t*r_F(\xi),\]

where \(x < \xi < x+t\). Consider first (i). Then \(\overline{F}(t+x)/\overline{F}(x) \rightarrow 0\), for all \(t\) as \(x \rightarrow \infty\). Thus \((21)\) is equivalent to \(t*r_F(\xi) \rightarrow \infty\), as \(x \rightarrow \infty\) for all \(t > 0\). In the case of (ii), \(\overline{F}(\ln x) = x^{-\theta} l(x)\) for some \(\theta > 0\) and some slowly varying function \(l(x)\). Using \((12)\), it is clear that, by L’Hopital’s rule,

\[
\lim_{y \rightarrow \infty} r_F(y) = \lim_{y \rightarrow \infty} \frac{-\ln \overline{F}(y)}{\ln y} = \theta - \lim_{y \rightarrow \infty} \frac{\ln l(y)}{\ln y}.
\]

The result follows immediately since, for slowly varying \(l\), \(\ln l(y)/\ln y \rightarrow 0\). The converse follows immediately from \((21)\) after taking the limit as \(x \rightarrow \infty\).

Case (iii) also follows directly from \((21)\), since \(F\) being long-tailed is equivalent to the expressions in \((21)\) converging to 0.

Proof of Lemma 6 Consider first (i). Let \(\overline{F}(\ln x) = c(x) \exp \int_1^x \frac{\varepsilon(t)}{t} dt\), with \(c(x) \rightarrow c > 0\) and \(\varepsilon(x) \rightarrow 0\), as \(x \rightarrow \infty\). Since \(F\) is long-tailed, \(r_F(x) \rightarrow 0\) as \(x \rightarrow \infty\). Therefore,

\[
\frac{r_F(\ln x)}{x} = \frac{c'(c)}{c(x)} - \frac{\varepsilon(x)}{x}.
\]
This then implies that \(\frac{\ln x}{c(x)} \rightarrow 0 \), and therefore, \(xc'(x)/c(x) \rightarrow 0 \). Writing \(\varepsilon(t) = \varepsilon(t) + tc'(t)/c(t) \) it follows that \(\frac{\ln x}{c(x)} \rightarrow 0 \), and therefore, \(xc'(x)/c(x) \rightarrow 0 \). Writing \(\varepsilon^*(t) = \varepsilon(t) + tc'(t)/c(t) \) it follows that \(F(\ln x) = \exp\int_1^x \frac{\varepsilon^*(t)}{t} dt \) and the result follows since then \(r_F(\ln x) = -\varepsilon^*(x) \).

The proof of \((ii)\) is similar to that of \((i)\) after writing, for short-tailed \(F \),

\[
\mathcal{F}(\ln x) = c(x) \exp\left\{ \int_1^x \frac{z(t)}{t} dt \right\}
\]

with \(c(x) \rightarrow c > 0 \) and \(z(t) \rightarrow -\infty \), as \(x \rightarrow \infty \), and recalling, from Lemma \((5)\), that \(r_F(x) \rightarrow \infty \).

To prove \((iii)\), note that \((17)\) holds if and only if

\[
-\ln \mathcal{F}(y) + \delta \ln \mathcal{F}(\ln y) \rightarrow \infty, \quad \text{as} \quad y \rightarrow \infty.
\]

Writing

\[
-\ln \mathcal{F}(y) + \delta \ln \mathcal{F}(\ln y) = -\ln \mathcal{F}(y)(1 - \frac{\ln \mathcal{F}(\ln y)}{\ln \mathcal{F}(y)}),
\]

and then noticing that

\[
\lim_{y \rightarrow \infty} \frac{\ln \mathcal{F}(\ln y)}{\ln \mathcal{F}(y)} = \lim_{y \rightarrow \infty} \frac{r_F(\ln y)}{yr_F(\ln y)} = \lim_{y \rightarrow \infty} \frac{\varepsilon'(y)}{y\varepsilon(y)} = \lim_{y \rightarrow \infty} \frac{z(y)}{y\varepsilon(y)},
\]

where the third and fourth terms in the string of identities correspond to the cases of short- and long-tails respectively. The result for medium-tailed distributions follows immediately from Lemma \((5)\) since in that case \(r_F(\ln(y))/yr_F(\ln y) \rightarrow 0 \), and for the short- and long-tailed distributions the results follow from the assumptions.

Proof of Theorem 7 Since \(F \) is short-tailed \(X_{(n)} - X_{(n-1)} \frac{a.s.}{\rightarrow} 0 \) and \(h(x) = -\ln \mathcal{F}(\ln x) \) is regularly varying with index \(\gamma \). That is,

\[
\ln \mathcal{F}(\ln y) = \frac{\ln \mathcal{F}(\ln x)}{\ln \mathcal{F}(x)} \rightarrow 1
\]

for some slowly varying function \(l(x) \). The case \(\gamma = \infty \) represents the case where \(h(x) \) is rapidly varying. It follows that

\[
\mathcal{F}^{-1}(u) = \ln h^{-1}(-\ln u)
\]

with \(h^{-1} \) regularly varying with index \(\frac{1}{\gamma} \). Thus, when \(\gamma = 0 \), \(h^{-1} \) is rapidly varying. Under the assumptions of Theorem \((4)\) \(\frac{\ln \mathcal{F}(\ln x_{(n)})}{\ln \mathcal{F}(X_{(n)})} \rightarrow 1 \) and it is enough to consider the behavior of

\[
\frac{-\ln \mathcal{F}(\ln X_{(n)})}{\ln X_{(n)}}(X_{(n)} - X_{(n-1)}).
\]

We prove that \((26)\) converges to zero in probability. The cases when \(\gamma = 0 \) or \(\infty \) follow immediately from properties of slowly and rapidly varying functions. The case of \(0 < \gamma < \infty \) presents the most technical challenges and will be considered first. Recall that a positive function \(g \) defined on some neighborhood of \(\infty \), varies smoothly with index \(\eta \in R, g \in SR_\eta \), if \(H(x) = \ln g(e^x) \in C_\infty \) with \(H'(x) \rightarrow \eta, H^{(n)}(x) \rightarrow 0 \), for \(n = 2, 3, \ldots \) as \(x \rightarrow \infty \).

The following theorem, (see Bingham, Goldie, and Teugels \((4)\)) will allow us to assume, without loss of generality, that \(h(x) \) is smoothly varying, so that, as a consequence, \(\lim_{t \rightarrow \infty} h'(t)/h(t) = \gamma \).
Theorem Let \(g \in R_n \). Then there exists \(g_1, g_2 \in SR_n \) with \(g_1 \sim g_2 \) and \(g_1 \leq g \leq g_2 \) on some neighborhood of \(\infty \). In particular, if \(g \in R_n \), there exists \(g^* \in SR_n \) with \(g^* \sim g \).

Let then \(0 < \gamma < \infty \) and let \(U(1), \ldots, U(n) \) represent the order statistics from a uniform distribution on \((0, 1)\). Since \(X(n) \overset{D}{=} F^{-1}(1-U(n)) \overset{D}{=} F^{-1}(U(1)) \) and \(X(n-1) \overset{D}{=} F^{-1}(1-U(n-1)) \overset{D}{=} F^{-1}(U(2)) \), where \(\overset{D}{=} \) denotes equality in distribution, expression (26) has the same distribution as

\[
\frac{(F^{-1}(U(1)))^\gamma \log(F^{-1}(U(1)))}{\log F^{-1}(U(1))} (F^{-1}(U(1)) - F^{-1}(U(2)))
\]

where (27) follows from (24) and the fact that \(h(x) = -\log F(\log x) \). Using a one-step Taylor’s expansion, we get

\[
F^{-1}(U(1)) - F^{-1}(U(2)) = \log h^{-1}(-\log U(1)) - \log h^{-1}(-\log U(2))
\]

\[
= \frac{U(2) - U(1)}{\xi_n h^{-1}(-\log \xi_n) h'(h^{-1}(-\log \xi_n))},
\]

where \(U(1) < \xi_n < U(2) \).

Therefore, (27) is bounded above by

\[
\frac{(F^{-1}(U(1)))^\gamma \log(F^{-1}(U(1)))}{\log F^{-1}(U(1))} U(2) - U(1) \cdot \frac{1}{h^{-1}(-\log \xi_n) h'(h^{-1}(-\log \xi_n))}
\]

(28)

\[
= \frac{(\log h^{-1}(-\log U(1)))^\gamma \log h^{-1}(-\log U(1))}{\log \log h^{-1}(-\log \xi_n) h'(h^{-1}(-\log \xi_n))} \frac{U(2) - U(1)}{U(1)}.
\]

Since

\[
\frac{U(2) - U(1)}{U(1)} \overset{D}{=} \frac{1}{V} - 1,
\]

where \(V \sim U(0, 1) \), and since \(\log \log h^{-1}(-\log U(1)) \to \infty \) a.s., while, as a consequence of Theorem 10

(29)

\[
\frac{h'(h^{-1}(-\log \xi_n)) h^{-1}(-\log \xi_n)}{h(h^{-1}(-\log \xi_n))} \to \gamma > 0
\]

then, to show that

\[
\frac{-\log F(\log X(n))}{\log X(n)} (X(n) - X(n-1)) \overset{P}{\to} 0
\]

it is enough to show that

(30)

\[
\frac{(\log h^{-1}(-\log U(1)))^\gamma \log h^{-1}(-\log U(1))}{-\log \xi_n} \overset{P}{\to} 0.
\]

To verify (29), write \(h(x) = -\log F(\log x) \) so that \(h'(x) = \frac{r_F(\log x)}{x} \) and \(h^{-1}(t) = \exp\{F^{-1}(e^{-t})\} \), it follows that, after setting \(t = F^{-1}(\xi_n) \),

\[
\frac{h'(h^{-1}(-\log \xi_n)) h^{-1}(-\log \xi_n)}{-\log \xi_n} = \frac{r_F(t)}{-\log F(t)} = \frac{d}{dt} \log(-\log F(t))|_{t=F^{-1}(\xi_n)} = \frac{d}{dt} \log h(t).
\]
Thus, (29) follows from Theorem 10 with \(\eta = \gamma \). To prove (30) rewrite as

\[
\frac{(\ln h^{-1}(-\ln U(1)))^\gamma l(\ln h^{-1}(-\ln U(1)))}{-\ln U(1)} - \frac{-\ln U(1)}{-\ln(\xi_n)}
\]

which is bounded above by

\[
\frac{(\ln h^{-1}(-\ln U(1)))^\gamma l(\ln h^{-1}(-\ln U(1)))}{-\ln U(1)} - \frac{-\ln U(1)}{-\ln U(1)} = \frac{(\ln h^{-1}(-\ln U(1)))^\gamma l(\ln h^{-1}(-\ln U(1)))}{-\ln U(1)}.
\]

Now observe that \(P(-\ln U(1) > 2) = o(1) \) and in fact, \(P(-\ln U(1) > 3 \, i.o.) = 0. \) Therefore, writing \(t_n = -\ln U(1), \)

\[
\frac{(\ln h^{-1}(t_n))^{\gamma l(\ln h^{-1}(t_n))}}{t_n} \to 0
\]

since \(h^{-1} \) is \(R_L \), so that \(\ln h^{-1} \) is slowly varying, and hence \(l(\ln h^{-1}(t_n)) \) and \((\ln h^{-1}(t_n))^\gamma \) are slowly varying. It follows that (30) is true since \(l(x)/x \to 0 \) for slowly varying \(l \).

Consider now the case of \(\gamma = 0 \). Since \(\frac{1}{\xi_n} \to 1 \) in probability, it follows from (28) that to show that (26) converges to zero in probability, it is enough to show that

\[
\frac{h(\ln h^{-1}(-\ln U(1)))}{\ln h^{-1}(-\ln U(1))} \to 0,
\]

and this follows directly, after writing \(y = \ln h^{-1}(-\ln U(1)), \) from the assumptions in the case of \(\gamma = 0 \), since in this case, \(r_F(x) = e^x h'(e^x) \) and \(-\ln F(\ln x)/\ln x \sim r_F(\ln x) \).

Finally, consider the case of \(\gamma = \infty \). That is, suppose that \(-\ln F(\ln x) \) is rapidly varying. The condition given by (31) is seen to be equivalent to

\[
\frac{h(x)}{e^x h'(e^x) \ln x} \to 0, \quad x \to \infty.
\]

Recall that a rapidly varying function \(h(x) \) may be written as \(c(x) \exp(\int_1^x z(t)\,dt) \), with \(c(x) \to c \) and \(z(t) > 0, z(t) \to \infty, \) as \(t \to \infty \). Assuming without loss of generality that \(c(x) = c \), it is clear that \(e^x h'(e^x) = c \star z(e^x) h(e^x) \), and hence,

\[
\frac{h(x)}{e^x h'(e^x) \ln x} = \frac{h(x)}{z(e^x) h(e^x) \ln x}.
\]

Since \(z(x) \to \infty, \) as \(x \to \infty, \) while \(h(x) \) is non-decreasing, it follows that (32) holds.

Proof of Theorem 8: For long-tailed \(F, \) \(F(\ln x) = L(x) \) for some slowly varying \(L. \) Therefore, \(-\ln F(\ln x) = -\ln L(x) \) and hence \(r_F(\ln x) = -x L'(x)/L(x), \) where \(L(x) = c(x) \exp(\int_1^x \frac{z(t)}{t} \,dt). \)

Under the conditions of Theorem 4 consider \(-\ln F(\ln X(n)) \in X(n) \) instead of \(-\ln F(\ln X(n)) \in X(n) \) and write

\[
\frac{-\ln F(\ln X(n))}{\ln X(n)} = \frac{-\ln F(\ln X(n-1))}{\ln X(n-1)} + (X(n) - X(n-1))\left\{\frac{r_F(\ln \xi_n)}{\xi_n \ln \xi_n} + \frac{\ln F(\ln \xi_n)}{\xi_n (\ln \xi_n)^2}\right\}
\]
for some ξn with \(X_{(n-1)} < \xi_n < X_{(n)} \). Note that, almost surely, as \(n \to \infty \)

\[
\frac{\ln F(\ln \xi_n)}{\xi_n (\ln \xi_n)^2} \sim -r_F(\ln \xi_n) \xi_n (2 \ln \xi_n + (\ln \xi_n)^2).
\]

Therefore, almost surely, for sufficiently large \(n \),

\[
T_n \geq -\frac{\ln F(\ln X_{(n-1)})}{\ln X_{(n-1)}}(X_{(n)} - X_{(n-1)}).
\]

Since \(F^{-1}(u) = \ln(L^{-1}(u)) \), we can write, using a one-step Taylor’s expansion,

\[
-\frac{\ln F(\ln X_{(n-1)})}{\ln X_{(n-1)}}(X_{(n)} - X_{(n-1)}) = -\frac{\ln L(X_{(n-1)})}{\ln X_{(n-1)}}(\ln L^{-1}(U_{(1)}) - \ln L^{-1}(U_{(2)}))
\]

\[
= -\frac{\ln L(\ln L^{-1}(U_{(2)}))}{\ln L^{-1}(U_{(2)})} \frac{(U_{(1)} - U_{(2)})}{L'(L^{-1}(\psi_n))L^{-1}(\psi_n)},
\]

where \(U_{(1)}, U_{(2)} \) are the first and second order statistics from a \(U \sim (0,1) \) random sample, and \(U_{(1)} < \psi_n < U_{(2)} \). Writing \(U_{(1)} - U_{(2)} = -(1-V)U_{(2)} \), where \(V \sim U(0,1) \) with \(V \) independent of \(U_{(2)} \), and since \(\psi_n < U_{(2)} \), and \(L'(x) < 0 \), it follows that \(T_n \) is at least as large as

\[
(34)
\frac{-\ln L(\ln L^{-1}(U_{(2)}))}{\ln L^{-1}(U_{(2)})} \frac{(1-V)LL^{-1}(\psi_n)}{-L'(L^{-1}(\psi_n))L^{-1}(\psi_n)}.
\]

Since \(r_F \) is eventually decreasing, \(-xL'(x)/L(x) \) is eventually decreasing and since \(L^{-1}(\psi_n) \geq L^{-1}(U_{(2)}) \), it follows that

\[
\frac{-L^{-1}(U_{(2)})L' L^{-1}(U_{(2)})}{LL^{-1}(U_{(2)})} \geq -\frac{L^{-1}(\psi_n)L'L^{-1}(\psi_n)}{LL^{-1}(\psi_n)},
\]

and hence, \((34) \) implies that, almost surely, for large \(n \), after setting \(Y_n = L^{-1}(U_{(2)}) \),

\[
(35)
T_n \geq -\frac{\ln L(\ln Y_n)}{\ln Y_n} \frac{(1-V)L(Y_n)}{-L'(Y_n)Y_n}
\]

with \(V \) independent of \(Y_n \), and \(Y_n \to \infty \) almost surely. Now

\[
\frac{L(y)}{-L'(y)y} = \frac{1}{r_F(\ln y)}, \text{ while } -\frac{\ln L(\ln y)}{\ln \ln y} \sim -\frac{L'(\ln y) \ln y}{L(\ln y)} = r_F(\ln \ln y).
\]

Therefore, it follows that the right side of \((35) \) is asymptotically equivalent, almost surely, to

\[
(1-V) \frac{r_F(\ln Y_n)}{r_F(\ln Y_n)}.
\]

The result then follows from the assumption that \(r_F(y) = o(r_F(\ln y)) \).

Proof of Theorem As in the proof of the previous theorem, we can write, almost surely, for sufficiently large \(n \)

\[
(36)
T_n \geq -\frac{\ln F(\ln X_{(n-1)})}{\ln X_{(n-1)}}(X_{(n)} - X_{(n-1)}).
\]
Since \(F^{-1}(u) = L^{-1}(u) \), we can write, using a one-step Taylor’s expansion,

\[
\frac{-\ln F(\ln X_{(n-1)})}{\ln X_{(n-1)}}(X_{(n)} - X_{(n-1)})
\]

\[= -\ln L(\ln L^{-1}(U(2))) \frac{(U(1) - U(2))}{\ln L^{-1}(U(2))} \frac{U(2)}{L'(L^{-1}(\psi_n))},\]

\[= -\ln L(\ln L^{-1}(U(2))) \frac{(1 - V)U(2)}{-L'(L^{-1}(\psi_n))},\]

where \(U(1), U(2) \) are the first and second order statistics from a \(U \sim (0, 1) \) random sample, and \(U(1) < \psi_n < U(2) \), with \(V \) independent of \(U(2) \).

But, since \(L^{-1} \) is decreasing and, therefore, \(L^{-1}(\psi_n) > L^{-1}(U(2)) \), and \(-L'/L\) is eventually decreasing, then

\[
\frac{U(2)}{-L'(L^{-1}(\psi_n))} \geq \frac{L(L^{-1}(\psi_n))}{-L'(L^{-1}(\psi_n))} \geq \frac{L(L^{-1}(U(2)))}{-L'(L^{-1}(U(2)))}.
\]

It follows from (37) that, after setting \(Y_n = L^{-1}(U(2)) \)

\[
\frac{-\ln F(\ln X_{(n-1)})}{\ln X_{(n-1)}}(X_{(n)} - X_{(n-1)}) \geq \frac{-\ln L(\ln Y_n)L(Y_n)}{-\ln Y_n L'(Y_n)} = \frac{-\ln L(\ln Y_n)}{-\ln Y_n \left(\frac{-\epsilon(Y_n)}{c(Y_n)} - \frac{\epsilon(Y_n)}{Y_n} \right)}
\]

\[
\geq \frac{-\ln L(\ln Y_n)}{\ln Y_n (-\epsilon(Y_n))} \to \infty,
\]

since \(-\epsilon(Y_n) \to \alpha \geq 0\) and \(-\ln L(\ln Y_n)Y_n \to \infty\), almost surely.

Acknowledgements

Thanks to David J. Kahle for helpful discussions.

REFERENCES

[1] D. Andrews. A general method for the approximation of tail areas. *Annals of Statistics*, 1:367–372, 1973.
[2] R. Barlow and F. Proschan. *Mathematical Theory of Reliability*. SIAM, Philadelphia, 1996.
[3] J. Beirlant, Y. Goegebeur, J. Segers, and J. Teugels. *Statistics of Extremes, Theory and Applications*. Wiley, England, 2004.
[4] N. Bingham, C. Goldie, and J. Teugels. *Regular Variation*. Cambridge University Press, New York, 1987.
[5] M.C. Bryson. Heavy-tailed distributions: properties and tests. *Technometrics*, pages 61–68, 1974.
[6] S. Coles. *An Introduction to Statistical Modeling of Extreme Values*. Spring-Verlag, London, 2001.
[7] K. Doksum. Starshaped transformations and the power of rank tests. *The Annals of Mathematical Statistics*, 40:1167–1176, 1969.
[8] P. Embrechts, C. Kluppelberg, and T. Mikosch. *Modelling Extremal Events for Insurance and Finance*. Springer, New York, 2003.
[9] C. C. Heyde and S. G. Kou. On the controversy over tailweight of distributions. *Operations Research Letters*, 32:399–408, 2004.
[10] E. Lehmann. Comparing location experiments. *The Annals of Statistics*, 16:521–533, 1988.
[11] E. L. Lehmann and W. Y. Loh. Pointwise versus uniform robustness of some large-sample tests and confidence intervals. *Scandinavian Journal of Statistics*, 17:177–187, 1990.

[12] E. L. Lehmann and J. P. Romano. *Testing Statistical Hypotheses*. Springer-Verlag, New York, 2005.

[13] W-Y. Loh. Bounds on are's for restricted classes of distributions defined vai tail-orderings. *Annals of Statistics*, 12:685–701, 1984.

[14] E. Parzen. Nonparametric statistical data modeling. *Journal of the American Statistical Association*, 74:105–121, 1979.

[15] E. Parzen. Quantile functions, convergence in quantile, and extreme value distribution theory. *Technical Report No. B-3, Texas A & M University*, 1980.

[16] R. D. Reiss and M. Thomas. *Statistical Analysis of Extreme Values*. Birkhauser, Basel, 2000.

[17] J. Rojo. On the concept of tail heaviness. Technical Report 175, University of California at Berkely, 1988.

[18] J. Rojo. A pure-tail ordering based on the ratio of the quantile functions. *The Annals of Statistics*, 20:570–579, 1992.

[19] J. Rojo. On the preservation of some pure-tail orderings by reliability operations. *Statistics and Probability Letters*, 17:189–198, 1993.

[20] J. Rojo. On tail categorization of probability laws. *Journal of the American Statistical Association*, 91:378–384, 1996.

[21] E. Schuster. Classification of probability laws by tail behavior. *Journal of the American Statistical Association*, 79:936–939, 1984.

[22] J. Smith and J. Naylor. A comparison of maximum likelihood and bayesian estimators for the three-parameter weibull distribution. *Applied Statistics*, 36:358–369, 1987.