Three-Year Impacts Of The Affordable Care Act: Improved Medical Care And Health Among Low-Income Adults

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters.

Citation	Sommers, Benjamin D., Bethany Maylone, Robert J. Blendon, E. John Orav, and Arnold M. Epstein. 2017. “Three-Year Impacts Of The Affordable Care Act: Improved Medical Care And Health Among Low-Income Adults.” Health Affairs 36 (6) (May 17): 1119–1128. doi:10.1377/hlthaff.2017.0293.
Published Version	10.1377/hlthaff.2017.0293
Citable link	http://nrs.harvard.edu/urn-3:HUL.InstRepos:33330546
Terms of Use	This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
Three-Year Impacts of the Affordable Care Act:

Improved Medical Care and Health
Among Low-Income Adults in Two States

Benjamin D. Sommers, MD, PhD
Bethany Maylone, MEd
Robert J. Blendon, ScD
E. John Orav, PhD
Arnold M. Epstein, MD, MA

DATE: May 1, 2017

Affiliations: From the Department of Health Policy and Management, Harvard T.H. Chan School of Public Health, Boston, MA (B.D.S., B.M, R.J.B., A.M.E.), and the Department of Medicine, Brigham & Women’s Hospital, Boston, MA (B.D.S., E.J.O.)

Corresponding author: Dr. Benjamin D. Sommers, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue Room 406, Boston, Massachusetts 02115, bsommers@hsph.harvard.edu, 617-432-3271.

Funding/Disclosures: This project was supported by a research grant from the Commonwealth Fund. Dr. Sommers’ work on this project was supported in part by grant number K02HS021291 from the Agency for Healthcare Research and Quality (AHRQ). The authors have no financial conflicts of interest to report.
ABSTRACT:

Significant policy uncertainty continues to surround the Affordable Care Act (ACA) at both the state and federal level. We assessed changes in health care use and self-reported health after three years of the ACA’s coverage expansion, using survey data collected from low-income adults through the end of 2016 in three states: Kentucky, which expanded Medicaid; Arkansas, which expanded private insurance to low-income adults using the federal marketplace; and Texas, which did not expand coverage. We used a difference-in-differences model with a control group, and an instrumental variables model to provide individual-level estimates of the effects of gaining insurance. By the end of 2016, the uninsured rate in the two expansion states had dropped by more than 20 percentage points relative to the non-expansion state. For uninsured individuals gaining coverage, this change was associated with a 41 percentage-point increase in having a usual source of care, a $337 reduction in annual out-of-pocket spending, significant increases in preventive health visits and glucose testing, and a 23 percentage-point increase in “excellent” self-reported health. Among adults with chronic conditions, we found improvements in affordability of care, regular care for those conditions, medication adherence, and self-reported health.
Introduction

The Affordable Care Act (ACA) has produced the largest gains in insurance coverage in nearly 50 years,¹ but its future is uncertain after the 2016 election. While initial attempts to repeal the law in 2017 failed in Congress, leading policymakers remain committed to substantial changes. Estimates are that as many as 20 million Americans have obtained insurance under the ACA,² with more than half via Medicaid and the remainder largely from health insurance marketplaces.³ Meanwhile, several states that have yet to expand Medicaid are in the midst of a renewed debate over this possibility.⁴ The impact of the ACA’s coverage expansion on medical care and health is critical to evaluating future policy efforts related to the law.

National studies of the full non-elderly population have detected improvements in trends for coverage, satisfaction with insurance, and access to care.⁵,⁶ Research specifically comparing Medicaid expansion versus non-expansion states have shown important clinical changes including increased primary care visits,⁷ improved blood pressure control and Pap testing rates,⁸ and suggestive evidence of improved self-reported health.⁹,¹⁰ However, published analyses have been limited to 2014 or 2015 data,¹¹ and since insurance expansions extend their reach gradually,¹² updated analyses with more recent data could provide valuable insights.

Meanwhile, patients with chronic medical conditions may have the most to gain from coverage expansion. These conditions affect nearly half of all Americans, disproportionately those who have gained coverage under the ACA.¹³ Given the high costs of care for this group¹⁴ and the public health implications of these conditions,¹⁵ there is substantial policy interest in whether expanding coverage improves quality of care and health in this population.

Our objective was to assess ongoing changes in health care use and self-reported health among low-income adults, including those with chronic conditions, after three full years of the
ACA’s coverage expansion. Using survey data in three states collected through the end of 2016, we provide timely evidence of the law’s ongoing impact on patient care.

METHODS

Study Design

We conducted a difference-in-differences analysis, which compares pre- versus post-expansion outcomes in two expansion states, with one non-expansion state as the control group. Our study states were Kentucky, which expanded coverage to low-income adults via Medicaid beginning in 2014; Arkansas, which used federal Medicaid funding to provide private insurance from the health insurance marketplace to low-income adults beginning in 2014; and Texas, which did not expand coverage to low-income adults. Thus, our study captures elements of both private marketplace insurance expansion and Medicaid expansion under the ACA; for brevity, we refer below to “ACA expansions” to describe Kentucky’s Medicaid expansion and Arkansas’s “private option” approach. In sensitivity analyses, we test for differences between these two approaches.

We selected Texas as a comparison state for Kentucky and Arkansas because it is a non-expansion state in the same Census region that had a similarly restrictive set of Medicaid eligibility criteria prior to the ACA (Texas covered parents only up to 26% of poverty as of 2012, compared to 17% for Arkansas and 59% in Kentucky, versus the national median of 81%). Our study design relies on the assumption that if not for Medicaid expansion, trends in coverage and other outcomes would have been similar across these three states. Data from the U.S. Census Bureau show that coverage trends for our study population were similar in all three states from 2010-2013 (see Appendix Figure 1), offering support for this assumption.
For our primary difference-in-differences model, we separately identified the expansion effects for each year of expansion – 2014, 2015, and 2016 – all compared to the pre-expansion 2013 data. This approach allows us to trace out differential changes over time. We also tested a model that pooled 2015-2016 together to increase statistical power.

We then conducted an instrumental variables (IV) analysis, in order to estimate individual-level changes in health care outcomes for uninsured individuals who acquired coverage under the ACA. We repeated this analysis among the subset reporting at least one chronic condition. The IV approach uses a quasi-experimental source of variation in a key predictor to identify the treatment effect of that predictor; in our case, the variation was the state ACA expansion policy, and the key predictor of interest was having health insurance. This approach builds on the underlying quasi-experimental design of our difference-in-differences model, but provides more directly interpretable estimates of patient-level outcomes, similar to the local average treatment effect estimated using an IV model in the Oregon Health Insurance Experiment. This approach does not change the causal inference for our study, which still relies on the assumption that in the absence of the ACA expansion, trends in our outcomes would have been similar in Texas versus the expansion states.

One key assumption for an IV analysis is that the instrument has a significant relationship with the predictor of interest; here, the state expansion decisions clearly had large effects on insurance coverage. The other key assumption is that the instrument (state expansion) only affects outcomes via the predictor of interest (insurance coverage). While this seems plausible in our case, other potential aspects of coverage expansions might affect access to care and health, even among those who did not gain insurance. For instance, there could be positive spillovers of expansion via better funding to safety net institutions, which would bias our IV estimates
upwards; or negative spillovers via reduced health system capacity to care for previously-covered populations,20 which would have the opposite effect on our estimates. In addition, some people may not have gone from uninsured to insured, but simply switched types of coverage due to expansion. While these influences are likely swamped by the individual-level effects of gaining insurance, they are nonetheless potential sources of bias.

Data

We contracted with a research firm to conduct a random-digit dialing telephone survey from November to December each year, from 2013-2016. The survey sample contained U.S. citizens ages 19-64, with family incomes below 138\% of the federal poverty level (FPL), the ACA’s Medicaid expansion eligibility threshold. The survey was available in Spanish and English, and the sample included cellphone and landline users. Each year, we recruited a new sample split equally across our three study states. Annual sample sizes ranged from 2,209 to 3,011, for an overall total of 10,885. The study was exempted from review by the Harvard Chan Institutional Review Board since the investigators only had access to deidentified data.

The overall response rate was 22\%, which compares favorably to several other surveys that have been used to evaluate the ACA.21-23 Previous research demonstrates that the use of population-weighting in random-digit telephone surveys can mitigate non-response bias and produce estimates similar to those from government surveys.24-26 Accordingly, our analyses were weighted to demographic targets for low-income adults in our study states based on age, gender, education, marital status, race/ethnicity, geographic region, population density, and cell-phone use. Our survey has been previously validated against two large government-sponsored sources, the American Community Survey and the Behavioral Risk Factor Surveillance System.
In that validation, we compared estimates for low-income adults in our three study states for coverage and several measures of access to care in our survey and the government datasets. We found moderate-to-strong correlations and a range of absolute differences in estimates consistent with analogous differences between various federal surveys.9,21

Statistical Analysis

For each outcome, we estimated a linear regression model including binary indicators for each year and state, plus interaction terms between “expansion state” and each post-expansion year (2014, 2015, and 2016). These interaction terms capture the changes attributable to coverage expansion for each year of the expansion, compared to the non-expansion state. All models adjusted for age, sex, race/ethnicity, education, family size, income, urban versus rural residence, and state. Regression equations are in the Appendix Methods.27

Our study outcomes spanned seven domains: 1) health insurance (uninsured, Medicaid, and private insurance, in which each individual was assigned a primary type of insurance [see Appendix Methods],27 as well as any coverage changes within 12 months); 2) access to care (having a personal doctor, usual location of care, difficulty obtaining primary care and specialty appointments, and reasons for ED use); 3) affordability (skipping needed care or medications due to cost, trouble with medical bills, and medical out-of-pocket spending); 4) utilization (outpatient, emergency department, and inpatient care in the prior 12 months); 5) preventive care (receipt of a check-up, cholesterol test, or glucose test in the prior 12 months); 6) quality of care (cholesterol and glucose testing for high-risk patients, regular care for chronic conditions, and self-rated quality of care); and 7) health status (self-reported health on a five-point scale28 and a two-item depression score29).

We then examined the same outcomes (other than coverage) in an instrumental variables
(IV) analysis. We used a two-stage least-squares regression,30 in which the first stage predicted the likelihood of a person having any health insurance (i.e. $I – uninsured$) as a function of state expansion decisions and the year, using the difference-in-differences model described above (see Appendix Table 1).27 The second stage then provided an estimate of the impact of gaining insurance from the ACA expansion on individual-level health care outcomes. This method also has the advantage of using all four years of data simultaneously to produce a single estimated policy effect from expansion.

We used Stata 14.0 for all analyses. All regression models used county-level robust clustered standard errors to account for the non-independence of observations within the same state and county.

Sensitivity and Subgroup Analyses

We repeated our IV analysis for the subset of respondents who reported having been diagnosed with any of nine chronic conditions: hypertension, coronary artery disease, stroke, asthma / chronic obstructive pulmonary disease (COPD), kidney disease, diabetes, depression, cancer (other than skin cancer), or substance abuse. We also tested whether the prevalence of these conditions changed in association with expansion status.

We conducted several sensitivity analyses. We tested the impact of pooling 2015 and 2016 expansion state data together to increase statistical power. To account for multiple hypothesis testing within each domain of outcomes, we estimated “family-wise” p-values using a step-down bootstrapping approach similar to other recent analyses.11,31 We also tested a spatial correlation model described below.

Finally, we repeated our primary model with the expansion states divided into
Kentucky’s Medicaid expansion versus Arkansas’s private option. This produced separate estimates for expansion effects in Arkansas and Kentucky.

Limitations

Our analysis has several limitations. Our study includes only three states. This means our results may not generalize to the nation as a whole. It also affects our estimation of standard errors and the possibility of idiosyncratic changes in any given state exerting an outsized influence on our findings. In studies with a larger number of states, the use of state-clustered standard errors can limit this risk, but standard methods to estimate correlation within states are biased when there are only three states. Instead, we used county-level clustering to estimate standard errors as in our previous work with this dataset, and also present results using spatial correlation across counties similar to other health care analyses using small numbers of states.

Our main findings were similar under both alternatives.

As discussed earlier, the response rate for random digit telephone surveys like ours is lower than that for government interview surveys. However, we believe that the tradeoff of timeliness and ability to design our own comprehensive survey outweighed those concerns, particularly given the previous validation of our survey instrument.

Other limitations are inherent to our study’s quasi-experimental design, which helps control for secular trends and takes advantage of a comparison group using a non-expansion state, but is still subject to unmeasured confounders that vary over time across states. Our IV analyses produced estimates with fairly wide confidence intervals, which means that the exact magnitudes of change should be interpreted cautiously. Finally, the possibility of recall or social desirability bias may affect our survey-based results. However, our findings in several domains
are consistent with ACA studies using non-survey data such as pharmacy claims, lab results, and community health center reports.

RESULTS

Exhibit 1 presents descriptive statistics by state for our full sample and for those with chronic conditions. Respondents in Texas were disproportionately Latino and urban compared to Arkansas and Kentucky. Chronic conditions affected 69% in Arkansas, 72% in Kentucky, and 55% in Texas. Changes in disease prevalence between 2013 and 2016 by state were non-significant for all but kidney disease, which showed a small decline in expansion states (-2.2 percentage points, p=0.06) (Appendix Table 2). Individuals with chronic conditions were older and less likely to be male or Latino. Among those with a condition, the mean number of conditions ranged from 2.0 to 2.3 by state, with depression (57-64%), hypertension (52-54%), asthma/COPD (32-43%), and diabetes (22-26%) the most common.

Exhibit 2 presents the percentages of respondents in each state that were uninsured from 2013-2016. The three states began with similar pre-ACA uninsured rates of approximately 40% among low-income adults in 2013. This fell steeply in 2014 in Kentucky and Arkansas and declined more gradually in 2015 and 2016. Meanwhile the uninsured rate fell moderately in 2014 in Texas and then plateaued. By the end of the study period, the uninsured rate was 7.4% in Kentucky, 11.7% in Arkansas, and 28.2% in Texas.

Exhibit 3 presents regression-based estimates for differential changes in our study outcomes, comparing expansion to non-expansion states (Appendix Table 3 presents unadjusted mean values for each outcome in each year, by state). Compared to Texas, the ACA expansion to low-income adults was associated with an increase in coverage of 14 percentage points in
2014, 22.9 percentage points in 2015, and 20.7 percentage points in 2016 (all p<.01). By 2016, in our main model, the expansions had led to significant increases in multiple measures of access to care and affordability, including having a personal doctor and reductions in cost-related delays in care and medication use. Expansion was associated with a decline in difficulty paying medical bills, but an increase in difficulty obtaining appointments with specialists in 2016.

Exhibit 3 also presents changes in utilization and preventive care. Compared to Texas, ACA coverage expansion in 2015 and 2016 was associated with a significantly reduced likelihood of any emergency department visits and an increased likelihood of a checkup within the prior 12 months, but no significant changes in hospitalizations. Our two measures of clinical screening tests – glucose screening and cholesterol monitoring – significantly increased in association with coverage expansion in 2015 or 2016, respectively. Perceived quality of care showed some improvement in 2015 that did not persist. Finally, coverage expansion led to improvements in self-reported health (for “excellent”, p<0.05 in 2015; for both “excellent” and “fair/poor” p<0.10 in 2016).

Appendix Tables 4 and 5 present sensitivity analyses for our difference-in-differences model. When we used bootstrapped “family-wise” p-values that accounted for multiple variables within each domain of outcomes, we continued to find significant changes in 2016 for outcomes related to coverage, access, affordability, and prevention (p<.05) and quality (p<.10), but not for utilization and self-reported health. Pooling 2015-2016 data together strengthened the statistical significance of some 2016 findings such as private insurance gains, having a usual source of care, out-of-pocket spending, and excellent self-reported health, and outcomes in 5 of 7 domains were significant at p<.05 and the other two at p<.10 using family-wise p-values. Difficulty obtaining an appointment to see a specialist was no longer significant in the pooled
model. In models using spatially-correlated standard errors, several estimates were affected by the lack of weighting, but overall this approach yielded similar precision as the main model, offering support for our primary method using county-level clustering.

Exhibit 4 presents individual-level estimates of changes in these outcomes for patients acquiring insurance using our IV model. For the full sample, we estimated that expansion led to significant changes including a 41 percentage-point increase in having a usual source of care among those gaining coverage, a $337 reduction in medical out-of-pocket spending, a 28 percentage-point reduction in the likelihood of any emergency department visits, and a 25 percentage-point increase in glucose testing. The proportion in excellent health increased by nearly 23 percentage points.

Exhibit 4 also shows IV results for adults with chronic conditions. While out-of-pocket spending and cholesterol and glucose testing among high-risk patients (those with diabetes, stroke, hypertension, or heart disease) did not change significantly, we otherwise found similar results for most outcomes as in the full sample, including a 51 percentage-point decrease in skipping medications due to cost and a 20 percentage-point increase in excellent health. In a question asked only of this subgroup, we estimated a 56 percentage-point increase in obtaining regular care for chronic conditions.

Comparisons of the 2016 effects of private versus public insurance approaches in Arkansas and Kentucky (Appendix Table 6) showed no significant differences for most outcomes.27 As expected, health insurance type differed, with more private coverage gains in Arkansas and more Medicaid in Kentucky. The only other significant difference was a greater decline in “fair/poor quality of care” in Arkansas compared to Kentucky. Both expansions were associated with significant improvements in numerous outcomes compared to Texas, including
access to a personal doctor and medications, trouble with medical bills, checkups and cholesterol testing, and self-reported health.

DISCUSSION

In our analysis of survey data of low-income adults in three states, we note three key contributions to the growing body of research on the ACA. First, we provide the earliest published estimates using data through the law’s third year of expansion (2016), allowing us to document the expansions’ changing impact on health care outcomes over time. Second, we use an instrumental variables model to provide individual-level estimates of the ACA’s coverage impacts, showing large improvements in self-reported health status and other outcomes directly relevant to patients. Third, we document benefits in numerous previously-unstudied outcomes for adults with chronic conditions, a vulnerable and high-cost population.

Our 4 years of data indicate that the ACA’s coverage expansion to low-income adults was associated with significant improvements in access to primary care and medications, affordability of care, preventive visits, screening tests, and self-reported health. Though coverage gains in the two expansion states were largest in the first two years with little additional change in 2016, the time course was more variable for access and utilization measures. While some changes were present in 2014 or 2015, others changes such as increased cholesterol testing and reduced fair/poor health did not become evident until 2016.

Individual-level estimates indicate large and policy-relevant changes for those gaining coverage. The average newly-covered adult experienced savings of $337 per year in out-of-pocket medical spending, a 41 percentage-point increase in the likelihood of having a usual source of care, and a 23 percentage-point increase in the likelihood of being in excellent health.
The validity of these estimates is supported by their similarity to those from the IV analyses in the randomized Oregon Health Insurance Experiment, which showed an average reduction of $390 in medical debt, a 34 percentage-point increase in office-based usual source of care, and a 13 percentage-point change in the share in excellent, very good, or good health. These latter results are particularly noteworthy given policy interest in the impact of the ACA on health status. For context, prior research indicates that a self-reported health rating of fair or poor confers a mortality risk 2-4 times higher than those in the healthiest category. Our finding of improved self-reported health is consistent with results in the Oregon study and other pre-ACA Medicaid expansions, though the evidence on similar changes under the ACA has been more mixed. In part, this likely reflects differences in sample frame and timing. Studies that have not found significant changes in self-reported health after the Medicaid expansion have typically used only 1-2 years of post-expansion data and have studied expansion-related coverage gains on the order of 3 to 8 percentage points. Here, we assessed 3 full years of post-expansion data and studied a population experiencing a much larger coverage change of over 20 percentage points.

Adults with chronic conditions experienced numerous improvements in both access and quality of care, including more checkups, improved adherence to medications, higher rates of regular care for chronic disease, and – perhaps as a consequence of these changes – improved self-reported health. These findings build on a previous study using national data through 2014 showing gains in two access measures for adults with chronic conditions (having a check-up and no cost-related delays in care); however, our study included a much richer set of outcomes and two additional years of data.

We detected an increased rate of difficulty obtaining specialist appointments in 2016 in
the expansion states, particularly in Kentucky. This is consistent with a recent national study that showed an increase in appointment wait times after expansion, as well as some studies showing greater barriers to specialty care in Medicaid than primary care. However, in part this may also reflect that patients without coverage are less likely to attempt to make appointments with specialists; thus, coverage expansion may increase the share who try but experience difficulties in doing so, even as their overall access to care has improved.

Our results also offer insights into alternative state approaches to coverage expansion. With increased interest under the new administration in state flexibility and innovation, we find that either a private insurance expansion via marketplace coverage (as in Arkansas) or a Medicaid expansion (as in Kentucky) produce similar benefits across most study outcomes. Consistent with prior comparisons, the results imply that coverage expansion is quite important for patients, but the type of coverage obtained is less critical.

Conclusion

Over three years of coverage expansion in two states, the ACA was associated with statistically significant and clinically relevant improvements for low-income adults’ access to care, preventive services utilization, and self-reported health. Among those with chronic conditions, coverage expansion was linked to improved medication adherence, more regular communication with physicians, and improved perceived health status. As policymakers debate the ACA’s future and additional states consider whether to expand Medicaid, our findings demonstrate the benefits associated with coverage expansion for two particularly vulnerable populations – low-income adults and those with chronic conditions.
REFERENCES
1. Cohen RA, Martinez ME, Zammitti EP. Health Insurance Coverage: Early Release of Estimates From the National Health Interview Survey, 2015. Hyattsville, MD: National Center for Health Statistics; 2016.
2. The Economic Record of the Obama Administration: Reforming the Health Care System. Washington, DC: White House Council of Economics Advisers; 2016.
3. Frean M, Gruber J, Sommers BD. Premium Subsidies, the Mandate, and Medicaid Expansion: Coverage Effects of the Affordable Care Act. Cambridge, MA: National Bureau of Economic Research; 2016.
4. Fox, M. "Medicaid Expansion Becomes Trendy With Death of GOP Health Bill." NBC News. Accessed 31 Mar 2017, at <http://www.nbcnews.com/health/health-care/medicaid-expansion-becomes-trendy-death-gop-health-bill-n740846>
5. Collins SR, Gunja M, Doty MM, Beutel S. Americans’ Experiences with ACA Marketplace and Medicaid Coverage: Access to Care and Satisfaction. New York, NY: The Commonwealth Fund; 2016.
6. Sommers BD, Gunja MZ, Finegold K, Musco T. Changes in Self-reported Insurance Coverage, Access to Care, and Health Under the Affordable Care Act. Jama 2015;314:366-74.
7. Wherry LR, Miller S. Early Coverage, Access, Utilization, and Health Effects Associated With the Affordable Care Act Medicaid Expansions: A Quasi-experimental Study. Ann Intern Med 2016.
8. Cole MB, Galarraga O, Wilson IB, Wright B, Trivedi AN. At Federally Funded Health Centers, Medicaid Expansion Was Associated With Improved Quality Of Care. Health Aff (Millwood) 2017;36:40-8.
9. Sommers BD, Blendon RJ, Orav EJ, Epstein AM. Changes in Utilization and Health Among Low-Income Adults After Medicaid Expansion or Expanded Private Insurance. JAMA Intern Med 2016.
10. Simon K, Soni A, Cawley J. The Impact of Health Insurance on Preventive Care and Health Behaviors: Evidence from the First Two Years of the ACA Medicaid Expansions. Journal of Policy Analysis and Management 2017.
11. Miller S, Wherry L.R. Health and Access to Care during the First 2 Years of the ACA Medicaid Expansions. New England Journal of Medicine 2017;376:947-56.
12. Sommers BD, Kenney GM, Epstein AM. New evidence on the affordable care act: coverage impacts of early medicaid expansions. Health Aff(Millwood) 2014;33:78-87.
13. Karaca-Mandic P, Jena AB, Ross JS. Health and Health Care Use Among Individuals at Risk to Lose Health Insurance With Repeal of the Affordable Care Act. JAMA Intern Med 2017;doi:10.1001/jamainternmed.2016.9541.
14. Dieleman JL, Baral R, Birger M, et al. US Spending on Personal Health Care and Public Health, 1996-2013. Jama 2016;316:2627-46.
15. Benjamin RM. Multiple chronic conditions: a public health challenge. Public Health Rep 2010;125:626-7.
16. Kaiser. Where are states today? Medicaid and state-funded coverage eligibility levels for low-income adults. Washington, D.C.: Kaiser Family Foundation; 2012.
17. McClellan M, McNeil BJ, Newhouse JP. Does more intensive treatment of acute myocardial infarction in the elderly reduce mortality? Analysis using instrumental variables. Jama 1994;272:859-66.
18. Baicker K, Taubman S, Allen H, et al. The Oregon Experiment - Effects of Medicaid on Clinical Outcomes. N Engl J Med 2013;368:1713-22.
19. Pauly MV, Pagan JA. Spillovers and vulnerability: the case of community uninsurance. Health Aff (Millwood) 2007;26:1304-14.
20. Sabik LM. The effect of community uninsurance rates on access to health care. Health Serv Res 2012;47:897-918.
21. Skopec L, Musco T, Sommers BD. A Potential New Data Source for Assessing the Impacts of Health Reform: Evaluating the Gallup-Healthways Well-Being Index. Healthcare: Journal of Delivery Science and Innovation 2014;2:113-20.
22. Long SK, Kenney GM, Zuckerman S, et al. The health reform monitoring survey: addressing data gaps to provide timely insights into the affordable care act. Health Aff (Millwood) 2014;33:161-7.
23. Finegold K, Gunja MZ. Survey Data on Health Insurance Coverage for 2013 and 2014. Washington, DC: ASPE; 2014.
24. Assessing the Representativeness of Public Opinion Surveys. Washington, D.C.: Pew Research Center; 2012.
25. Davern M. Nonresponse rates are a problematic indicator of nonresponse bias in survey research. Health Serv Res 2013;48:905-12.
26. Keeter S, Kennedy C, Dimock M, Best J, Craighill P. Gauging the impact of growing nonresponse on estimates from a national RDD telephone survey. Public Opinion Quarterly 2006;70:759-79.
27. To access the Appendix, click on the Appendix link in the box to the right of the article online.
28. Miilunpalo S, Vuori I, Oja P, Pasanen M, Urponen H. Self-rated health status as a health measure: the predictive value of self-reported health status on the use of physician services and on mortality in the working-age population. J Clin Epidemiol 1997;50:517-28.
29. Kroenke K, Spitzer RL, Williams JB. The Patient Health Questionnaire-2: validity of a two-item depression screener. Med Care 2003;41:1284-92.
30. Angrist J, Pischke J. Mostly Harmless Econometrics. Princeton, NJ: Princeton University Press; 2009.
31. Finkelstein A, Taubman S, Wright BJ, et al. The Oregon Health Insurance Experiment: Evidence from the First Year. Quarterly Journal of Economics 2012;127:1057-106.
32. Cameron AC, Miller DL. A Practitioner’s Guide to Cluster-Robust Inference. Journal of Human Resources 2015;50:317-73.
33. Mazumder B, Miller S. The Effects of the Massachusetts Health Reform on Household Financial Distress. Am Econ J: Economic Policy 2016;8:284-313.
34. Mulcahy AW, Eibner C, Finegold K. Gaining Coverage Through Medicaid Or Private Insurance Increased Prescription Use And Lowered Out-Of-Pocket Spending. Health Aff (Millwood) 2016;35:1725-33.
35. Ghosh A, Simon K, Sommers BD. The Effect of State Medicaid Expansions on Prescription Drug Use: Evidence from the Affordable Care Act Cambridge, MA: National Bureau of Economic Research; 2017.
36. Kaufman HW, Chen Z, Fonseca VA, McPhaul MJ. Surge in Newly Identified Diabetes Among Medicaid Patients in 2014 Within Medicaid Expansion States Under the Affordable Care Act. Diabetes care 2015;38:833-7.
37. Sommers BD, Baicker K, Epstein AM. Mortality and access to care among adults after state Medicaid expansions. N Engl J Med 2012;367:1025-34.
38. Courtemanche C, Marton J, Ukert B, Yelowitz A, Zapata D. Early Effects of the Affordable Care Act on Health Care Access, Risky Health Behaviors, and Self-Assessed Health. Cambridge, MA: National Bureau of Economic Research; 2017.
39. Torres H, Poorman E, Tadepalli U, et al. Coverage and Access for Americans With Chronic Disease Under the Affordable Care Act. Ann Intern Med 2017;164.
40. Nguyen KH, Sommers BD. Access and Quality of Care by Insurance Type for Low-Income Adults Before the Affordable Care Act. Am J Public Health 2016;106:1409-15.
41. Sommers BD, Blendon RJ, Orav EJ. Both The 'Private Option' And Traditional Medicaid Expansions Improved Access To Care For Low-Income Adults. Health Aff (Millwood) 2016;35:96-105.
42. Shartzler A, Long SK, Anderson N. Access To Care And Affordability Have Improved Following Affordable Care Act Implementation; Problems Remain. Health Aff (Millwood) 2016;35:161-8.
EXHIBIT LIST

Exhibit 1 (Table)
Caption: Descriptive Statistics for Full Sample (N=10,885) and Adults with Chronic Conditions (N=7,734), by State
Source/Notes:
SOURCE: Survey of U.S. citizens aged 19-64 with income < 138% of the federal poverty level in Arkansas, Kentucky, and Texas.
NOTES: The table reflects pooled estimates for the years 2013-2016.

Exhibit 2 (Figure)
Caption: Percentage of Low-Income Adults without Health Insurance Coverage By State and Year
Source/Notes:
SOURCE: From a telephone survey of 10,885 U.S. citizens ages 19-64, with family income below 138% of the federal poverty level. The survey was conducted in November-December of each year with a new sample, divided evenly between the three states – Arkansas (AR), Kentucky (KY), and Texas (TX).

Exhibit 3 (Table)
Caption: Year-by-Year Changes in Health Care Outcomes After Coverage Expansion, Compared to Non-Expansion
Source/Notes:
SOURCE: From a telephone survey of U.S. citizens ages 19-64, with family income below 138% of the federal poverty level, in Arkansas, Kentucky, and Texas. The sample contained 10,885 adults (minus item non-response for each specific outcome), except where otherwise noted below.
NOTES:
*** p<0.01, ** p<0.05, *p<0.10
ED = Emergency Department. Results show differences-in-differences estimates for expansion states (Arkansas and Kentucky) versus Texas, by year. All analyses adjusted for sex, age, race/ethnicity, marital status, family size, education, income, urban vs. rural residence, county annual unemployment rate, state, and year.

a – All estimates are reported as percentage-point changes for binary outcomes, other than number of office and ED visits and out-of-pocket spending.
b - Usual source of care was grouped into 3 categories – those reporting an office-based usual source of care, those without any usual source of care, and those using the ED as the usual source of care.
c – Sample limited to patients reporting heart disease, stroke, diabetes, or hypertension (n=5,611).
d – Sample limited to patients reporting a history of diabetes (n=2,213).
e – Sample limited to patients reporting at least one of the following conditions: hypertension, heart attack/coronary artery disease, stroke, asthma/COPD, kidney disease, diabetes, depression, cancer, and substance abuse (n=7,734).

Exhibit 4 (Table)
Caption: Instrumental Variables (IV) Analysis – Individual-Level Change Per Person Gaining Insurance

Source/Notes:

SOURCE: From a telephone survey of U.S. citizens ages 19-64, with family income below 138% of the federal poverty level, in Arkansas, Kentucky, and Texas. The sample contained 10,885 adults (minus item non-response for each specific outcome), except where otherwise noted below.

NOTES:

*** p<0.01, ** p<0.05, *p<0.10
ED = Emergency Department. IV = Instrumental Variables.
Results show local average treatment effect from gaining coverage via expansion in Arkansas and Kentucky, compared to Texas (which did not expand) using two-stage least squares IV regression. All analyses adjusted for sex, age, race/ethnicity, marital status, family size, education, income, urban vs. rural residence, state, and year.

a – All estimates are reported as percentage-point changes for binary outcomes, other than number of office and ED visits and out-of-pocket spending.

b – Sample limited to patients (n=7,734 adults) reporting at least one of the following conditions: hypertension, heart attack/coronary artery disease, stroke, asthma/COPD, kidney disease, diabetes, depression, cancer, and substance abuse.

c – Usual source of care was grouped into 3 categories – those reporting an office-based usual source of care, those without any usual source of care, and those using the ED as the usual source of care.

d – Sample limited to patients reporting heart disease, stroke, diabetes, or hypertension (n=5,611).

e – Sample limited to patients reporting a history of diabetes (n=2,213).
Exhibit 1: Descriptive Statistics for Full Sample (N=10,885) and Adults with Chronic Conditions (N=7,734), by State

VARIABLE	Full Sample	Adults with Chronic Conditions				
	Arkansas 3,623	Kentucky 3,639	Texas 3,623	Arkansas 2,666	Kentucky 2,825	Texas 2,243
Sample size (N)						
Female	57%	56%	58%	60%	61%	62%
Age 19-34	41%	39%	46%	34%	31%	33%
35-44	19%	20%	18%	19%	21%	18%
45-54	16%	17%	16%	19%	19%	20%
55-64	23%	24%	20%	28%	29%	29%
Race/ethnicity						
White non-Latino	66%	84%	36%	66%	85%	41%
Latino	4%	2%	40%	3%	1%	32%
Black non-Latino	25%	11%	19%	26%	11%	22%
Other	5%	3%	5%	5%	3%	4%
Education						
Less than High School Degree	20%	25%	23%	22%	28%	25%
High school graduate	47%	43%	40%	49%	44%	40%
Some college/college graduate	33%	32%	38%	29%	28%	35%
Family Income						
Under 50% of Poverty	32%	33%	30%	33%	35%	32%
50%-100% of Poverty	36%	36%	37%	37%	36%	36%
100%-138% Poverty	25%	23%	25%	24%	22%	24%
Don’t know/Refused	7%	7%	8%	6%	7%	8%
Married or Living with a Partner	41%	42%	40%	40%	40%	37%
Family Size (number)	2.9	2.9	3.2	2.8	2.7	3.0
Rural	56%	55%	14%	58%	57%	15%
Chronic Conditions						
Hypertension	37%	39%	28%	54%	54%	52%
Coronary Artery Disease	8%	11%	6%	12%	16%	12%
Stroke	5%	6%	4%	7%	8%	8%
Asthma/COPD	26%	31%	18%	37%	43%	32%
Kidney Disease	2%	4%	2%	4%	5%	4%
Diabetes	15%	17%	14%	22%	23%	26%
Depression	41%	46%	32%	60%	64%	57%
Cancer	5%	6%	3%	7%	8%	6%
Substance Abuse	4%	5%	4%	6%	7%	7%
≥1 condition	69%	72%	55%	100%	100%	100%
Mean # Conditions	1.4	1.6	1.1	2.1	2.3	2.0

SOURCE: Survey of U.S. citizens aged 19-64 with income < 138% of the federal poverty level in Arkansas, Kentucky, and Texas.

NOTES: The table reflects pooled estimates for the years 2013-2016.
Exhibit 2:
Percentage of Low-Income Adults without Health Insurance Coverage By State and Year

SOURCE: From a telephone survey of 10,885 U.S. citizens ages 19-64, with family income below 138% of the federal poverty level. The survey was conducted in November-December of each year with a new sample, divided evenly between the three states – Arkansas (AR), Kentucky (KY), and Texas (TX).
Exhibit 3: Year-by-Year Changes in Health Care Outcomes After Coverage Expansion, Compared to Non-Expansion

OUTCOME	2014*Expansion a	2015*Expansion a	2016*Expansion a
Coverage			
Uninsured	-14.0***	-22.9***	-20.7***
Medicaid	9.5***	12.2***	17.6***
Private insurance	7.7**	8.5**	5.9*
Coverage change within past year	5.8*	1.2	1.9
Access to Care			
Has a personal doctor	7.6*	12.1***	16.7***
Usual source of care	3.8	10.4***	6.8
Trouble obtaining primary care appointment	3.6	0.1	2.1
Trouble obtaining specialist appointment	2.5	1.1	6.4**
ED is usual location of care b	-5.1*	-5.9***	-3.7
ED visit because office visit unavailable	4.9**	5.0*	3.5
Affordability			
Cost-related delay in care	-4.3	-18.4***	-12.8***
Skipped medication due to cost	-9.9***	-12.0***	-10.5***
Trouble paying medical bills	-8.9***	-14.1***	-10.9***
Annual out-of-pocket medical spending	-$33	-$88**	-$62*
Utilization			
Any office visits in past year	2.3	2.7	4.3
Any ED visits in past year	-1.8	-5.8**	-6.6**
# office visits in past year	0.51	0.66**	0.60
# ED visits in past year	-0.12	-0.09	0.13
Any hospitalization in past year	-1.6	1.9	2.9
Prevention			
Checkup in past year	6.9*	16.0***	11.1**
Cholesterol check in past year	-1.1	1.4	9.9***
Glucose check in past year	2.2	6.3**	4.3
Quality of Care			
Cholesterol check in high-risk patients c	2.3	1.1	2.7
Glucose check in those with diabetes d	4.5	11.1**	6.3
Regular care for chronic condition e	11.3**	11.5**	11.2**
Excellent quality of care	4.1	1.3	2.0
Fair/poor quality of care	-2.5	-7.3**	-2.3
Health Status			
Excellent self-reported health	2.4	5.0**	5.1*
Fair/poor self-reported health	0.6	-3.7	-6.0*
Positive depression screen (PHQ2 ≥2)	2.0	-6.9*	-1.8
SOURCE: From a telephone survey of U.S. citizens ages 19-64, with family income below 138% of the federal poverty level, in Arkansas, Kentucky, and Texas. The sample contained 10,885 adults (minus item non-response for each specific outcome), except where otherwise noted below.

NOTES:
*** p<0.01, ** p<0.05, *p<0.10
ED = Emergency Department. Results show differences-in-differences estimates for expansion states (Arkansas and Kentucky) versus Texas, by year. All analyses adjusted for sex, age, race/ethnicity, marital status, family size, education, income, urban vs. rural residence, county annual unemployment rate, state, and year.

a – All estimates are reported as percentage-point changes for binary outcomes, other than number of office and ED visits and out-of-pocket spending.
b – Usual source of care was grouped into 3 categories – those reporting an office-based usual source of care, those without any usual source of care, and those using the ED as the usual source of care.
c – Sample limited to patients reporting heart disease, stroke, diabetes, or hypertension (n=5,611).
d – Sample limited to patients reporting a history of diabetes (n=2,213).
e – Sample limited to patients reporting at least one of the following conditions: hypertension, heart attack/coronary artery disease, stroke, asthma/COPD, kidney disease, diabetes, depression, cancer, and substance abuse (n=7,734).
Exhibit 4: Instrumental Variables (IV) Analysis – Individual-Level Change Per Person Gaining Insurance

OUTCOMEa	Effect of Any Insurance, Full Sample	Effect of Any Insurance, Adults with Chronic Conditionsb
Access to Care		
Has a personal doctor	62.1***	40.9*
Usual source of care	41.1**	20.0
Trouble obtaining primary care appointment	3.3	-6.5
Trouble obtaining specialist appointment	13.7	25.1*
ED is usual location of carec	-23.1**	-0.9
ED visit because office visit unavailable	20.2	29.8
Affordability		
Cost-related delay in care	-74.7***	-74.6***
Skipped medication due to cost	-52.3***	-50.8**
Trouble paying medical bills	-58.6***	-66.6***
Annual out-of-pocket medical spending	-$337**	-$361
Utilization		
Any office visits in past year	14.7	-8.2
Any ED visits in past year	-27.6**	-29.5*
# office visits in past year	2.86*	2.68
# ED visits in past year	-0.05	-0.06
Any hospitalization in past year	10.5	18.0
Prevention		
Checkup in past year	64.7***	56.8***
Cholesterol check in past year	20.2	15.7d
Glucose check in past year	25.4**	92.0e
Quality of Care		
Regular care for chronic condition	N/A	55.9***
Excellent quality of care	9.7	31.5
Fair/poor quality of care	-29.8	-27.2
Health Status		
Excellent self-reported health	22.7**	20.4**
Fair/poor self-reported health	-20.6	-38.3*
Positive depression screen (PHQ2 ≥2)	-21.9	-31.5

SOURCE: From a telephone survey of U.S. citizens ages 19-64, with family income below 138% of the federal poverty level, in Arkansas, Kentucky, and Texas. The sample contained 10,885 adults (minus item non-response for each specific outcome), except where otherwise noted below.

NOTES:

*** p<0.01, ** p<0.05, *p<0.10

ED = Emergency Department. IV = Instrumental Variables.

Results show local average treatment effect from gaining coverage via expansion in Arkansas and Kentucky, compared to Texas (which did not expand) using two-stage least squares IV regression. All analyses
adjusted for sex, age, race/ethnicity, marital status, family size, education, income, urban vs. rural residence, state, and year.
a – All estimates are reported as percentage-point changes for binary outcomes, other than number of office and ED visits and out-of-pocket spending.
b – Sample limited to patients (n=7,734 adults) reporting at least one of the following conditions: hypertension, heart attack/coronary artery disease, stroke, asthma/COPD, kidney disease, diabetes, depression, cancer, and substance abuse.
c - Usual source of care was grouped into 3 categories – those reporting an office-based usual source of care, those without any usual source of care, and those using the ED as the usual source of care.
d – Sample limited to patients reporting heart disease, stroke, diabetes, or hypertension (n=5,611).
e – Sample limited to patients reporting a history of diabetes (n=2,213).
Appendix Methods

Regression Equation – Year-by-Year Difference-in-Differences Model (Exhibit 3)

\[\text{Uninsured}_{icst} = \beta_0 + \beta_1 X_i + \beta_2 \text{Arkansas}_s + \beta_3 \text{Kentucky}_s + \beta_4 \text{Year2014}_t + \beta_5 \text{Year2015}_t \]
\[+ \beta_6 \text{Year2016}_t + \beta_7 \text{Expansion States}_s * \text{Year2014}_t + \beta_8 \text{Expansion States}_s * \text{Year2015}_t \]
\[+ \beta_9 \text{Expansion States}_s * \text{Year2016}_t + \epsilon_{icst} \]

(1)

where \(i \) indexed individuals, \(c \) county, \(s \) state, and \(t \) year. \(X_i \) was a vector of demographics (age, sex, race/ethnicity, marital status, family size, education, income, and urban vs. rural status). \(\beta_2 \) and \(\beta_3 \) capture the direct effects of each state at baseline compared to Texas, and \(\beta_4-\beta_6 \) adjust for the year. \(\beta_7 \) measures the difference-in-differences estimate for the change in outcome in the expansion states (Arkansas and Kentucky) in 2014, compared to the control group (Texas), while \(\beta_8 \) and \(\beta_9 \) provide the comparable estimates for 2015 and 2016, respectively. The error terms, \(\epsilon_{icst} \), were assumed to be correlated between individuals within counties, which we addressed using robust clustered standard errors. For the 1.9% of our sample that did not report a county of residence, we created a residual county for each state (e.g. “missing county in Arkansas”) that served as its own unit for clustering. We used linear regression models to allow for easy interpretation of the magnitude of the interaction terms \(\beta_7-\beta_9 \).

Regression Equations – Instrumental Variables (Exhibit 4)

1st Stage:

\[\text{AnyInsurance}_{icst} = \beta_0 + \beta_1 X_i + \beta_2 \text{Arkansas}_s + \beta_3 \text{Kentucky}_s + \beta_4 \text{Year2014}_t + \beta_5 \text{Year2015}_t \]
\[+ \beta_6 \text{Year2016}_t + \beta_7 \text{Expansion States}_s * \text{Year2014}_t + \beta_8 \text{Expansion States}_s * \text{Year2015}_t \]
2nd Stage:

PersonalDoctor_{icst} = \beta_0 + \beta_1 X_i + \beta_2 Arkansas_s + \beta_3 Kentucky_s + \beta_4 Year2014_t + \beta_5 Year2015_t

+ \beta_6 Year2016_t + \beta_7 PREDICTED_AnyInsurance_{icst} + \epsilon_{icst} \quad (3)

This IV model uses a standard two-stage least squares approach (2SLS). The first-stage regression (Equation 2) was analogous to the model specified above for Equation 1, except that the outcome was inverted (1-Uninsured), so that the results would be expressed as the impact of acquiring insurance. The interaction terms between each post-expansion year and Expansion State were the three instrumental variables in this regression for having any insurance. The second-stage regression (Equation 3) then used the predicted value for “AnyInsurance” from the first-stage to then estimate a local average treatment effect of gaining insurance from the ACA on each outcome (e.g. PersonalDoctor). The full regression results for the first-stage model are presented in Appendix Table 1. The IV model was implemented using the “ivregress 2sls” command in Stata.

Regression Equation – Difference-in-Differences Model Pooling 2015-2016 (Appendix Table 5)

Uninsured_{icst} = \beta_0 + \beta_1 X_i + \beta_2 Arkansas_s + \beta_3 Kentucky_s + \beta_4 Year2014_t + \beta_5 Year2015_t

+ \beta_6 Year2016_t + \beta_7 Expansion States _ Year2014_t

+ \beta_8 Expansion States _ (Year2015_t + Year2016_t) + \epsilon_{icst} \quad (4)

This model is the same as Equation 1 except that the expansion effects for 2015 and 2016 are pooled together. In essence, this treats 2014 as a transitional year and 2015-2016 as the long-
run effects of expansion, pooling those years for added statistical power at the expense of year-to-year differences in effect sizes.

Regression Equations – Medicaid Expansion in Kentucky vs. Private Option in Arkansas
(Appendix Table 6)

Our comparison between Arkansas and Kentucky used the following regression equation:

\[\text{Uninsured}_{icst} = \beta_0 + \beta_1 X_i + \beta_2 \text{Arkansas}_s + \beta_3 \text{Kentucky}_s + \beta_4 \text{Year2014}_t + \beta_5 \text{Year2015}_t + \beta_6 \text{Year2016}_t + \beta_7 \text{Arkansas}_s * \text{Year2014}_t + \beta_8 \text{Arkansas}_s * \text{Year2015}_t + \beta_9 \text{Arkansas}_s * \text{Year2016}_t + \beta_10 \text{Kentucky}_s * \text{Year2014}_t + \beta_11 \text{Kentucky}_s * \text{Year2015}_t + \beta_12 \text{Kentucky}_s * \text{Year2016}_t + \epsilon_{icst} \]

(5)

where the terms were all defined as in Equation 1, but with the replacement of the Expansion State * Year variables (which pooled the two expansion states together) with two sets of interaction terms in \(\beta_7-\beta_9 \) (which captures the year-by-year changes in Arkansas, compared to Texas) and \(\beta_{10}-\beta_{12} \), (which captures the year-by-year changes in Kentucky, compared to Texas). We then used a post-estimation Wald test to determine whether \(\beta_9 \) and \(\beta_{12} \) (the 2016 estimates) differed significantly from one another; these results are reported in the last column of Appendix Table 6. Comparisons between Arkansas and Kentucky in 2014 and 2015 have been published previously – see references 9 and 41.

Spatial Correlation Model

As an alternative to our primary model using county-based robust clustered standard errors, we also test the effects of using a spatial correlation model described by Conley (1999),

1 Conley, T. (1999). Gmm estimation with cross sectional dependence. Journal of Economet-
and following Mazumder and Miller (2016). This approach measures the distance between each county’s centroid and uses that distance to account for geographical correlation in outcomes; for observations with missing county identifiers (1.9%), we used the state’s overall centroid for this calculation. We adapted Stata code from Hsiang (2010) to implement this model. One limitation of this approach is that it does not allow for the use of survey weights, so while it provided a sensitivity test of our standard errors, it also affected our point estimates due to the lack of weighting. We used a spatial correlation cutoff of 100 kilometers and a time lag of 4 years to allow for correlation across all years of our study.

Family-Wise P-Values

To account for multiple hypothesis testing within each domain of our survey, we conducted the step-down bootstrapping approach developed by Westfall and Young (1993), adapting Stata code written and made available by Finkelstein and colleagues (2012). We used 1000 iterations within each family to generate the p-values listed in Appendix Tables 4 and 5.

Survey Outcome Measurement: Health Insurance and Out-of-Pocket Spending

Respondents were asked to answer “yes/no” to whether they currently had any of seven distinct types of health insurance: Medicaid (with state specific name), Medicare, military health

2 Mazumder B, Miller S. The Effects of the Massachusetts Health Reform on Household Financial Distress. Am Econ J: Economic Policy 2016;8:284-313.

3 Hsiang, S. (2010). Temperatures and cyclones strongly associated with economic production in the Caribbean and Central America. Proceedings of the National Academy of Sciences of the United States 107 (35), 15367-15372. Stata code accessed 14 April 2017 from: <http://www.fight-entropy.com/2010/06/standard-error-adjustment-ols-for.html>

4 Westfall PH, Young SS. Resampling based multiple testing: examples and methods for p-value adjustment. New York: John Wiley & Sons, 1993.

5 Finkelstein A, Taubman S, Wright BJ, et al. The Oregon Health Insurance Experiment: Evidence from the First Year. Quarterly Journal of Economics 2012;127:1057-106. Stata code accessed 16 April 2017 from: <http://www.nber.org/oregon/4.data.html>, in the “tables_analysis.do” file.
care, employer or union coverage, insurance from a health insurance marketplace (with state specific name), health plan purchased directly from an insurance company, and other insurance. Respondents answering no to all seven were asked a confirmation question, “Does this mean you have no health insurance of any kind?” before being classified as “uninsured.” Respondents who indicated having more than one type of coverage were assigned a primary insurance type based on the following hierarchy: Medicaid, Medicare, employer-sponsored insurance, Marketplace coverage, non-Marketplace direct purchase, and other. The exception to this hierarchy was for individuals in Arkansas and Texas who reported both marketplace and Medicaid coverage. In these states, which did not expand Medicaid but did offer marketplace coverage to some (Texas) or all (Arkansas) adults with incomes below 138% of the federal poverty level, such individuals were classified as having marketplace insurance.

Out-of-pocket spending was asked in 6 categories: <$50, $50-$99, $100-$199, $200-$499, $500-$999, and $1000 or more. We took the midpoint of each bin and top-coded the higher bin as $1250. In previous work, we have tested the sensitivity of our results to alternative approaches, including using the minimum amount in each bin, and results are largely similar. For all regression analyses, we excluded observations with missing values for the dependent variables.
Appendix Figure 1: State Uninsured Rates Among Low-Income Citizens, Ages 19-64, in the 2010-2013 American Community Survey

Notes: From the authors’ analysis of the 2010-2013 American Community Survey (ACS). Outcome shows the percent uninsured by year and state. The sample was limited to U.S. citizens ages 19-64, with family incomes less than or equal to 138% of the federal poverty level. Analyses used ACS survey weights. The time trend for the uninsured rate did not differ significantly for the two expansion states, Arkansas and Kentucky, versus the non-expansion state, Texas (β=.0018, p=0.65)
Appendix Table 1: First-Stage Regression for IV Model of Any Insurance (N=10,885)

Variable	Coefficient	95% Confidence Interval	p-value
Instruments			
Year2014*Expansion	0.140	0.069 - 0.211	<.001
Year2015*Expansion	0.229	0.158 - 0.300	<.001
Year2016*Expansion	0.207	0.133 - 0.280	<.001
Year 2014	0.113	0.052 - 0.173	<.001
Year 2015	0.063	0.003 - 0.124	.04
Year 2016	0.106	0.044 - 0.169	<.001
Female	0.066	0.044 - 0.089	<.001
Married/Partnered	0.032	0.008 - 0.057	.009
HouseholdSize	-0.012	-0.019 - -0.004	.001
Age19_34	-0.112	-0.137 - -0.087	<.001
Age35_44	-0.055	-0.084 - -0.026	<.001
Latino	-0.037	-0.077 - 0.003	.07
BlackNonLatino	0.044	0.013 - 0.074	.005
OtherNonLatino	-0.030	-0.081 - 0.021	.26
LessthanHS	-0.048	-0.078 - -0.017	.002
HSGrad	-0.030	-0.056 - -0.004	.03
Income <50% FPL	-0.051	-0.081 - -0.021	.001
Income 50-100% FPL	-0.024	-0.051 - 0.004	.09
Income Missing	-0.011	-0.056 - 0.034	.64
Rural	0.006	-0.017 - 0.030	.61
Arkansas	-0.073	-0.133 - -0.014	.02
Kentucky	-0.023	-0.083 - 0.037	.45
Intercept (constant)	0.718	0.663 - 0.773	<.001
F-Statistic	28.98	N/A	<.001

Notes:
Results from Equation 2 in the Appendix Methods.
Appendix Table 2: Change in Prevalence of Chronic Conditions After Coverage Expansion from 2013-2016, Compared to Non-Expansion (N=10,885)

Variable	Expansion * 2016 Effect	95% Confidence Interval	p-value	
Hypertension	-0.7	-7.0	5.7	.84
Coronary Artery Disease	1.0	-2.4	4.3	.57
Stroke	-2.5	-5.7	0.7	.13
Asthma/COPD	2.0	-5.2	9.3	.58
Kidney Disease	-2.2	-4.4	0.1	.06
Diabetes	-2.1	-7.9	3.7	.47
Depression	1.3	-6.1	8.8	.73
Cancer	-0.1	-3.3	3.1	.97
Substance Abuse	1.5	-2.4	5.5	.45
≥1 condition	-0.1	-6.5	6.2	.97
Total # Conditions	-0.02	-0.21	0.17	.87

Notes:
Results from Equation 1 in the Appendix Methods. All analyses adjusted for sex, age, race/ethnicity, marital status, family size, education, income, urban vs. rural residence, state, and year. The sample contained 10,885 adults (minus item non-response for each specific outcome). All estimates are reported as percentage-point changes, other than total number of conditions.
Appendix Table 3: Unadjusted State-By-State Changes for Each Study Outcome

OUTCOME	Arkansas 2013	Arkansas 2014	Arkansas 2015	Arkansas 2016	Kentucky 2013	Kentucky 2014	Kentucky 2015	Kentucky 2016	Texas 2013	Texas 2014	Texas 2015	Texas 2016
Coverage												
Uninsured	41.8	19.4	14.2	11.7	40.2	12.4	8.6	7.4	38.5	27.1	31.8	28.2
Medicaid	25.1	30.7	30.1	37.5	24.8	44.5	51.1	50.6	22.0	25.4	26.7	24.2
Private Insurance	19.3	36.0	39.5	33.8	22.1	28.2	20.9	24.0	28.7	32.4	28.9	30.3
Coverage change within past year	22.9	26.0	21.0	26.5	21.6	27.4	21.4	26.4	25.2	23.6	22.8	27.4
Access to Care												
Has a personal doctor	57.2	60.8	63.8	67.7	56.6	63.6	71.7	66.1	52.4	50.9	51.3	44.9
Usual source of care	78.4	82.8	86.8	84.4	83.1	86.1	85.5	85.5	79.5	79.8	74.4	76.5
Trouble obtaining primary care appointment	16.0	13.9	13.1	9.9	15.4	15.1	12.7	14.2	19.8	14.8	17.2	14.2
Trouble obtaining specialist appointment	12.1	11.8	12.3	10.3	15.8	15.7	14.8	19.4	18.6	15.8	17.3	13.1
ED is usual location of care	9.9	8.0	5.7	4.7	9.3	5.3	7.9	6.4	8.1	10.0	11.3	7.9
ED visit because office visit unavailable	12.7	12.2	11.8	10.2	13.1	14.9	13.7	13.5	15.6	11.3	10.9	11.4
Affordability												
Cost-related delay in care	39.5	32.1	29.8	29.3	39.6	30.8	25.1	29.5	31.7	27.9	38.4	34.4
Skipped medication due to cost	40.9	30.0	29.5	28.0	37.5	25.8	26.1	29.0	28.3	26.9	29.2	27.9
Trouble paying medical bills	43.1	35.5	31.4	29.6	42.7	28.4	27.4	34.2	31.9	30.0	32.9	31.6
Annual out-of-pocket medical spending	$446	$367	$373	$376	$423	$330	$318	$345	$380	$334	$372	$356
Utilization												
Any office visits in past year	55.3	56.7	53.4	60.4	55.7	59.3	59.4	62.1	44.1	44.7	42.5	45.3
Any ED visits in past year	21.7	19.0	18.5	17.1	20.4	21.5	21.9	19.0	17.1	18.2	22.3	20.8
# office visits in past year	2.61	2.80	2.89	3.15	2.98	3.02	3.31	3.72	2.06	1.69	1.74	2.07
# ED visits in past year	1.04	1.08	1.11	1.17	1.27	1.29	1.23	1.19	0.87	0.99	1.00	0.77
Any hospitalization in past year	14.7	16.6	16.4	19.1	19.0	18.4	20.2	21.7	15.8	18.2	15.5	16.3
Prevention												
Checkup in past year	45.3	53.6	54.7	56.7	46.3	54.5	59.8	58.4	50.7	52.6	46.0	50.8
Cholesterol check in past year	38.1	39.3	39.9	47.0	45.8	47.4	55.2	58.1	44.2	47.6	47.9	43.9
Glucose check in past year	41.5	43.3	44.5	49.7	44.5	49.1	54.7	52.9	46.7	48.4	46.5	49.5
Quality												
Cholesterol check among high-risk patients	60.7	59.0	58.6	63.9	66.2	64.4	73.0	73.5	67.0	60.9	66.1	69.3
Glucose check among those with diabetes	88.5	83.3	87.9	86.3	84.1	84.9	95.7	89.5	90.0	82.5	84.5	86.3
Regular care for chronic condition	61.8	70.1	73.6	74.1	69.4	76.1	78.6	78.3	65.3	61.7	63.8	64.3
Excellent quality of care	27.9	30.7	28.0	29.1	28.3	30.5	29.8	31.8	27.8	26.5	27.4	28.4
Fair/poor quality of care	22.5	18.9	17.3	18.1	17.2	18.0	15.1	20.4	20.1	20.9	24.1	21.8
Health Status												
Excellent self-reported health	13.5	11.7	11.5	11.0	11.0	11.4	8.6	8.2	20.0	16.7	12.6	12.5

35
| Fair/poor self-reported health | 39.7 | 36.2 | 40.1 | 35.1 | 39.6 | 40.4 | 38.1 | 40.9 | 32.4 | 30.5 | 36.0 | 36.6 |
| Positive depression screen (PHQ2 score ≥ 2) | 48.1 | 43.2 | 47.2 | 44.9 | 46.8 | 46.1 | 46.4 | 49.8 | 38.4 | 33.6 | 45.4 | 40.5 |

NOTES:

a - All estimates are reported as percentages for binary outcomes, other than number of office and ED visits and out-of-pocket spending.

b - Usual source of care was grouped into 3 categories – those reporting an office-based usual source of care, those without any usual source of care, and those using the ED as the usual source of care.

c – Sample limited to patients reporting heart disease, stroke, diabetes, or hypertension (n=4,446).

d – Sample limited to patients reporting a history of diabetes (n=1,768).

e – Sample limited to patients reporting at least one of the following conditions: hypertension, heart attack/coronary artery disease, stroke, asthma/COPD, kidney disease, diabetes, depression, cancer, and substance abuse (n=6,103).
Appendix Table 4: Sensitivity Analyses of Difference-in-Differences Estimates, for 2016 vs. 2013 Estimates

OUTCOME	2016* Expansion Effect	Standard p-value	Family-Wise p-value	2016* Expansion Effect (unweighted)	Spatial-correlation p-value
Coverage					
Uninsured	-20.7	<.001	<.001	-17.7	<.001
Medicaid	17.6	<.001	<.001	13.3	<.001
Private insurance	5.9	.091	.20	6.7	.015
Coverage change within past year	1.9	.67	.68	0.2	.94
Access to Care					
Has a personal doctor	16.7	<.001	.003	9.8	.002
Usual source of cared	6.8	.12	.42	5.6	.005
Trouble obtaining primary care appointment	2.1	.41	.41	1.8	.38
Trouble obtaining specialist appointment	6.4	.045	.22	3.4	.14
ED is usual location of cared	-3.7	.18	.46	-3.2	.049
ED visit because office visit unavailable	3.5	.22	.42	0.0	.99
Affordability					
Cost-related delay in care	-12.8	<.001	.001	-12.5	<.001
Skipped medication due to cost	-10.5	.002	.004	-14.1	<.001
Trouble paying medical bills	-10.9	.003	.004	-12.5	<.001
Annual out-of-pocket medical spending	-$62	.071	.087	-$70	.004
Utilization					
Any office visits in past year	4.3	.26	.62	0.8	.79
Any ED visits in past year	-6.6	.021	.12	-1.8	.48
# office visits in past year	0.60	.19	.57	-0.08	.82
# ED visits in past year	0.13	.41	.43	-0.11	.33
Any hospitalization in past year	2.9	.37	.62	-0.2	.95
Prevention					
Checkup in past year	11.1	.023	.065	8.2	.002
Cholesterol check in past year	9.9	.003	.019	8.4	.001
Glucose check in past year	4.3	.27	.30	4.6	.062
Quality of Care					
Cholesterol check in high-risk patients e	2.7	.64	.64	2.4	.45
Glucose check in those with diabetes f	6.3	.37	.86	1.2	.75
Regular care for chronic condition e	11.2	.02	.099	3.3	.20
Excellent quality of care	2.0	.57	.82	1.0	.73
Fair/poor quality of care	-2.3	.53	.90	-1.5	.50
Health Status					
Excellent self-reported health	5.1	.067	.21	3.5	.087
Fair/poor self-reported health	-6.0	.082	.19	-5.2	.041
Positive depression screen (PHQ2 score≥2)	-1.8	.69	.67	-4.6	.14
Notes:

ED = Emergency Department. Results show estimated change per year of expansion in Arkansas and Kentucky, compared to the baseline time trend in Texas, which did not expand. All analyses adjusted for sex, age, race/ethnicity, marital status, family size, education, income, urban vs. rural residence, state, and year. The sample contained 10,885 adults (minus item non-response for each specific outcome).

a – All estimates are reported as percentage-point changes for binary outcomes, other than number of office and ED visits and out-of-pocket spending.

b - Family-Wise p-values use step-down bootstrapping within each family of outcomes, following Finkelstein et al. (2012). See Appendix Methods for additional detail.

c – p-values derived from county-level spatial correlation models, following Conley (1999) and using Stata code from Hsiang (2010), which does not allow for survey weights. See Appendix footnotes for additional detail.

d - Usual source of care was grouped into 3 categories – those reporting an office-based usual source of care, those without any usual source of care, and those using the ED as the usual source of care.

e – Sample limited to patients reporting heart disease, stroke, diabetes, or hypertension (n=5,611).

f – Sample limited to patients reporting a history of diabetes (n=2,213).

g – Sample limited to patients reporting at least one of the following conditions: hypertension, heart attack/coronary artery disease, stroke, asthma/COPD, kidney disease, diabetes, depression, cancer, and substance abuse (n=7,734).
Appendix Table 5: Sensitivity Analyses of Difference-in-Differences Estimates, Pooling 2015-2016 Estimates

OUTCOME	(2015-2016)* Expansion Effecta	Standard p-value	Family-Wise p-valueb	(2015-2016)* Expansion Effect (unweighted)	Spatial-correlation p-valuec
Coverage					
Uninsured	-21.9	<.001	<.001	-18.4	<.001
Medicaid	14.5	<.001	.001	13.0	<.001
Private insurance	7.4	.031	.085	5.3	.055
Coverage change within past year	1.5	.67	.67	-1.2	.55
Access to Care					
Has a personal doctor	14.0	<.001	<.001	7.7	.003
Usual source of care					
Trouble obtaining primary care appointment	0.9	.70	.70	0.0	.99
Trouble obtaining specialist appointment	3.3	.17	.33	1.4	.48
ED is usual location of care	-5.0	.014	.069	-3.4	.007
ED visit because office visit unavailable	4.3	.11	.30	0.5	.75
Affordability					
Cost-related delay in care	-16.1	<.001	<.001	-13.4	<.001
Skipped medication due to cost	-11.4	<.001	<.001	-13.0	<.001
Trouble paying medical bills	-12.7	<.001	<.001	-12.0	<.001
Annual out-of-pocket medical spending	-$77	.013	.016	-$63	.003
Utilization					
Any office visits in past year	3.4	.26	.60	2.6	.28
Any ED visits in past year	-6.1	.014	.092	-3.0	.15
# office visits in past year	0.63	.064	.25	0.23	.49
# ED visits in past year	0.00	.98	.98	-0.08	.41
Any hospitalization in past year	2.4	.34	.57	2.2	.25
Prevention					
Checkup in past year	13.9	<.001	<.001	10.1	<.001
Cholesterol check in past year	5.0	.088	.097	6.7	.002
Glucose check in past year	5.5	.074	.14	5.3	.013
Quality of Care					
Cholesterol check in high-risk patients	1.8	.68	.70	2.6	.34
Glucose check in those with diabetes	9.0	.055	.20	3.8	.22
Regular care for chronic condition	11.4	.006	.036	4.0	.052
Excellent quality of care	1.6	.61	.85	2.8	.21
Fair/poor quality of care	-5.2	.069	.20	-4.1	.024
Health Status					
Excellent self-reported health	5.0	.021	.066	3.1	.098
Fair/poor self-reported health	-4.7	.14	.24	-4.4	.030
Positive depression screen (PHQ2 score ≥2)	-4.7	.21	.29	-4.8	.073
Notes:

ED = Emergency Department. Results show estimated change per year of expansion in Arkansas and Kentucky, compared to the baseline time trend in Texas, which did not expand. All analyses adjusted for sex, age, race/ethnicity, marital status, family size, education, income, urban vs. rural residence, state, and year. The sample contained 10,885 adults (minus item non-response for each specific outcome).

a – All estimates are reported as percentage-point changes for binary outcomes, other than number of office and ED visits and out-of-pocket spending.

b - *Family-Wise* p-values use step-down bootstrapping within each family of outcomes, following Finkelstein et al. (2012). See Appendix Methods for additional detail.

c – p-values derived from county-level spatial correlation models, following Conley (1999) and using Stata code from Hsiang (2010), which does not allow for survey weights. See Appendix footnotes for additional detail.

d - Usual source of care was grouped into 3 categories -- those reporting an office-based usual source of care, those without any usual source of care, and those using the ED as the usual source of care.

e – Sample limited to patients reporting heart disease, stroke, diabetes, or hypertension (n=5,611).

f – Sample limited to patients reporting a history of diabetes (n=2,213).

g – Sample limited to patients reporting at least one of the following conditions: hypertension, heart attack/coronary artery disease, stroke, asthma/COPD, kidney disease, diabetes, depression, cancer, and substance abuse (n=7,734).
OUTCOME	2016 Expansion * Arkansas	2016 Expansion * Kentucky	P-value for Arkansas vs. Kentucky difference		
	Estimate	p	Estimate	p	
Coverage					
Uninsured	-21.7	<0.001	-24.4	<0.001	.45
Medicaid	11.0	.008	23.5	<0.001	.001
Private insurance	12.8	.004	0.9	.80	.006
Coverage change within past year	2.0	.68	3.5	.45	.71
Access to Care					
Has a personal doctor	16.9	.001	14.6	.001	.63
Usual source of care	10.6	.022	6.6	.16	.30
Trouble obtaining primary care appointment	-1.4	.65	3.1	.30	.18
Trouble obtaining specialist appointment	2.8	.38	7.6	.028	.14
ED is usual location of care	-5.9	.019	-3.3	.24	.34
ED visit because office visit unavailable	2.3	.50	4.7	.15	.43
Affordability					
Cost-related delay in care	-15.7	.001	-16.5	<0.001	.87
Skipped medication due to cost	-13.0	.001	-9.5	.011	.43
Trouble paying medical bills	-13.9	<0.001	-9.8	.022	.38
Annual out-of-pocket medical spending	-$73	.064	-$82	.019	.82
Utilization					
Any office visits in past year	5.2	.29	5.9	.12	.89
Any ED visits in past year	-9.4	.012	-6.2	.068	.46
# office visits in past year	0.61	.18	0.70	.20	.87
# ED visits in past year	0.22	.24	-0.02	.92	.27
Any hospitalization in past year	5.0	.14	2.9	.41	.54
Prevention					
Checkup in past year	13.6	.016	14.0	.002	.94
Cholesterol check in past year	8.2	.047	11.0	.006	.54
Glucose check in past year	5.9	.20	5.4	.17	.92
Quality					
Cholesterol check among high-risk patients	0.7	.91	3.3	.57	.68
Glucose check among those with diabetes	2.2	.78	10.0	.18	.33
Regular care for chronic condition	12.9	.022	9.0	.093	.41
Excellent quality of care	1.0	.81	3.0	.48	.67
Fair/poor quality of care	-7.4	.05	0.4	.90	.028
Health Status					
Excellent self-reported health	5.4	.12	5.9	.037	.89
Fair/poor self-reported health	-9.2	.019	-4.5	.25	.24
Positive depression screen (PHQ2 ≥2)	-7.9	.10	-2.7	.59	.24
Notes:

ED = Emergency Department. Results show estimated change from 2013 to 2016 in Arkansas and Kentucky, compared to Texas, which did not expand. All analyses adjusted for sex, age, race/ethnicity, marital status, family size, education, income, urban vs. rural residence, state, and year. The sample contained 10,885 adults (minus item non-response for each specific outcome), except where otherwise noted below.

a – All estimates are reported as percentage-point changes for binary outcomes, other than number of office and ED visits and out-of-pocket spending.

b - Usual source of care was grouped into 3 categories – those reporting an office-based usual source of care, those without any usual source of care, and those using the ED as the usual source of care.

c – Sample limited to patients reporting heart disease, stroke, diabetes, or hypertension (n=5,611).

d – Sample limited to patients reporting a history of diabetes (n=2,213).

e– Sample limited to patients reporting at least one of the following conditions: hypertension, heart attack/coronary artery disease, stroke, asthma/COPD, kidney disease, diabetes, depression, cancer, and substance abuse (n=7,734).