Building Bilingual Lexicons Using Lexical Translation Probabilities via Pivot Languages

Takashi Tsunakawa†, Naoaki Okazaki†, Jun’ichi Tsujii‡

† Department of Computer Science, Graduate School of Information Science and Technology, University of Tokyo 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
‡ School of Computer Science, University of Manchester / National Centre for Text Mining 131 Princess Street, Manchester, M1 7DN, UK
{tuna, okazaki, tsujii} at is.s.u-tokyo.ac.jp

Abstract

This paper proposes a method of increasing the size of a bilingual lexicon obtained from two other bilingual lexicons via a pivot language. When we apply this approach, there are two main challenges, ambiguity and mismatch of terms; we target the latter problem by improving the utilization ratio of the bilingual lexicons. Given two bilingual lexicons between language pairs \(L_c-L_p \) and \(L_p-L_e \), we compute lexical translation probabilities of word pairs by using a statistical word-alignment model, and term decomposition/composition techniques. We compare three approaches to generate the bilingual lexicon: exact merging, word-based merging, and our proposed alignment-based merging. In our method, we combine lexical translation probabilities and a simple language model for estimating the probabilities of translation pairs. The experimental results show that our method could drastically improve the number of translation terms compared to the number of methods mentioned above. Additionally, we evaluated and discussed the quality of the translation outputs.

1. Introduction

Bilingual lexicon is a crucial resource for cross-lingual applications of natural language processing (NLP) including machine translation (Brown et al., 1990), and cross-lingual information retrieval (Nie et al., 1999). Thus, a number of bilingual lexicons were constructed despite its expensive compilation costs. However, it is unrealistic to construct a bilingual lexicon for every language pair; the number of language pairs would be as many as 4,950, given that there were 100 languages in the world. Moreover, it is difficult to maintain a bilingual lexicon with the rapid growth of neologism. Consequently, comprehensible bilingual lexicons are available only for small subsets of language pairs, and are unavailable for most language pairs.

To address this problem, researchers have proposed the use of pivot languages (third languages) as an intermediary language to construct bilingual lexicons automatically (Tanaka and Umemura, 1994; Bond et al., 2001; Shirai and Yamamoto, 2001; Paik et al., 2001; Schafer and Yarowsky, 2002; Zhang et al., 2005; Goh et al., 2005), and recently, a commercial machine translation system1 implemented the pivot approach for automatically searching phrase or sentence pairs. The basic idea of this approach is to create a bilingual lexicon between two languages \(L_c \) and \(L_f \) by merging two large bilingual lexicons, \(L_c-L_p \) and \(L_p-L_f \), where \(L_p \) is the pivot language. The advantage to this approach is that we can obtain a bilingual lexicon between \(L_c \) and \(L_f \) even if no bilingual lexicon exists between these languages. However, the approach also presents two major challenges; these are ambiguity and mismatch.

In general, it is not guaranteed that the word \(w_c \) (in language \(L_c \)), translated from a word \(w_f \) (in language \(L_f \)) via a pivot word \(w_p \) (in language \(L_p \)), is correct, especially when the pivot word \(w_p \) is polysemous. For example, a Japanese term "土手," dote: embankment, levee, may be associated with a Chinese term "银行," yìng háng: banking institution, finance institution, using the pivot word "bank" in English. In order to solve the ambiguity problem in pivot terms, Tanaka et al. (1994) proposed the use of the structure of bilingual dictionaries to select correct translation equivalents. Bond et al. (2001) utilized semantic classes to rank translation equivalents; word pairs with compatible semantic classes are preferred to those with dissimilar classes. Shirai et al. (2001) measured the number of words in a pivot language shared by a translation pair to measure the similarity of the two words in the target languages. Paik et al. (2001) used multiple pivot languages (English and Chinese) to improve the accuracy of dictionary construction. Schafer et al. (2002) presented a method for inducing translation lexicons between two distant languages via a bridge language, using cross-language context similarity, weighted Levenshtein distance, relative frequency, and burstiness similarity measures.

Another issue arises in merging terms in the pivot language \(L_p \) from different bilingual lexicons. Since two bilingual lexicons \(L_f-L_p \) and \(L_p-L_e \) are constructed independently, we cannot assume that the two lexicons use the identical term to describe a single entity. For example, it is impossible to associate two translation pairs (“地球温暖化 (chikyū-onendantaka),” “global warming”), and (“全球变暖 (quānqì–biànnuǎn)” because of the different terms in the pivot language. In addition, bilingual lexicons developed for technical terms may contain a number of terms that cannot be associated with other lexicons. For example, even if a Japanese–English lexicon is large enough to include a technical term, “石炭転換プロセス (sekitan-tenkan-purosesu)” (coal conversion process), we can obtain its Chinese translation, “煤炭转化过程 (méizhuánhuà–guóchéng)” only when the Chinese-English lexicon includes the English term as it is.

This paper presents a solution to the latter problem, that is, to increase the number of translation pairs obtained from

1http://www.esteam.se
two bilingual lexicons, assuming that the former problem should be dealt with within the succeeding step. Given two large bilingual lexicons \(L_f-L_p \) and \(L_p-L_e \), we compute the translation probability from a word, \(w_f \), to \(w_e \) by using a statistical word-alignment model, and term decomposition/composition techniques. After collecting term pairs, the evaluation of the correctness of translations, an intelligent suggestion system for dictionary editors, etc. might be necessary for constructing a more sophisticated system. These topics are beyond the scope of this paper.

2. Merging Two Bilingual Lexicons

Let \(L_f \), \(L_p \), and \(L_e \) be monolingual lexicons in source, pivot, and target languages, respectively. Suppose that we have two bilingual lexicons \(L_f-L_p \) and \(L_p-L_e \):

\[
\begin{align*}
L_f-L_p &= \{(\bar{w}_f, \bar{w}_p) | \bar{w}_f \text{ is a translation of } \bar{w}_p \} \\
L_p-L_e &= \{(\bar{w}_p, \bar{w}_e) | \bar{w}_p \text{ is a translation of } \bar{w}_e \},
\end{align*}
\]

where \(\bar{w}_f, \bar{w}_p, \) and \(\bar{w}_e \) denotes the terms in the lexicons \(L_f, L_p, \) and \(L_e \) respectively.

The simplest method for constructing the \(L_f-L_e \) lexicon is to connect source and target terms that share a common translation term in the pivot language:

\[
L_f-L_e^{(c)} = \{(\bar{w}_f, \bar{w}_e) | \exists \bar{w}_p ((\bar{w}_f, \bar{w}_p) \in L_f-L_p \land (\bar{w}_p, \bar{w}_e) \in L_p-L_e) \}.
\]

We call this algorithm exact merging.

It is a straightforward extension to decompose a source term into a sequence of constituent words, and to consult the lexicon built by the above method in order to translate the words in the source term into target words one by one.

\[
L_f-L_e^{(w)} = \{(\bar{w}_f, \bar{w}_e) | \forall i = 1, \ldots, l \\
((\bar{w}_f, \bar{w}_e) \in L_f-L_e^{(c)}) \cup L_f-L_e^{(e)} \},
\]

where \(w_f, \ldots, w_f \) and \(w_e, \ldots, w_e \) are sequences of constituent words of \(\bar{w}_f \) and \(\bar{w}_e \) respectively. We call this algorithm word-based merging.

However, the constituent words of source terms are not always included in the lexicon \(L_f-L_e^{(c)} \). In addition, neither exact merging nor word-based merging provides a confidence value that indicates that two words are translation equivalents, useful for machine translation systems.

Recently, several researchers proposed the use of the pivot language for phrase-based statistical machine translation (Utiyama and Isahara, 2007; Wu and Wang, 2007). In these approaches, the translation probabilities between source and target terms are calculated via the pivot terms. Similarly, we introduce a statistical word-alignment model for estimating the translation probabilities between source and target terms. We calculate the term translation probabilities by using the product of translation probabilities of constituent words.

We obtain word alignments \(a_{e-p} \) and \(a_{p-f} \) of the lexicons \(L_e-L_p \) and \(L_p-L_f \) by GIZA++ and the refinement method (Och and Ney, 2003). The lexical translation probabilities are calculated as follows:

\[
p(w_p | w_e; a_{e-p}) = \frac{C(w_p, w_e; a_{e-p})}{C(w_e)}, \quad (6)
\]

\[
p(w_f | w_p; a_{p-f}) = \frac{C(w_p, w_f; a_{p-f})}{C(w_p)}, \quad (7)
\]

In these equations, \(C(w_e) \) denote the frequency of the word \(w_e \) in the lexicon \(L_e-L_p \), \(C(w_p) \), the frequency of the word \(w_p \) in the lexicon \(L_p-L_f \), and \(C(w_e, w_p; a_{e-p}) \), and the co-occurrence frequency of \(w_e \) and \(w_p \) when they are aligned by \(a_{e-p} \).

Equation (8) computes the translation probability from \(\bar{w}_e \) to \(\bar{w}_f \):

\[
p(\bar{w}_f | \bar{w}_e; a_{e-p}, a_{p-f}) = \prod_{i=1}^{l} p(w_f | w_e; a_{e-p}, a_{p-f}). \quad (8)
\]

Finally, we obtain the probability of \(p(\bar{w}_e | \bar{w}_f) \) by using the noisy-channel model:

\[
p(\bar{w}_e | \bar{w}_f) = \frac{p(\bar{w}_f | \bar{w}_e; a_{e-p}, a_{p-f})p(\bar{w}_e)}{p(\bar{w}_f)} \propto p(\bar{w}_f | \bar{w}_e; a_{e-p}, a_{p-f})p(\bar{w}_e). \quad (9)
\]

In order to estimate the monolingual language model \(p(\bar{w}_e) \), we use the Google\(^2\) hit count (the number of retrieved pages) by querying the term \(\bar{w}_e \). Assuming that the total number of Web pages is a constant \(N \), we estimate the probability \(p(\bar{w}_e) \),

\[
p(\bar{w}_e) = \frac{\text{(hit count of } \bar{w}_e)}{N}. \quad (10)
\]

We can thus generate the merged lexicon with translation probabilities by using:

\[
L_f-L_e^{(a)} = \{ (\bar{w}_f, \bar{w}_e, p(\bar{w}_e | \bar{w}_f), p(\bar{w}_f | \bar{w}_e)) | p(\bar{w}_e | \bar{w}_f) > 0 \land p(\bar{w}_f | \bar{w}_e) > 0 \}.
\]

We call this algorithm alignment-based merging.

3. Experiment

3.1. Data

We used Japanese-English and English-Chinese lexicons to build a Japanese-Chinese lexicon. The Japanese-English lexicon, which was released by the Japan Science and Technology Agency (JST)\(^3\), consists of 527,206 translation equivalents (465,572 Japanese terms and 418,044 English terms) extracted from academic papers on science and technology. It covers a wide range of named entities such as company, place, and chemical names that may be difficult to translate into English and Japanese terms. The Chinese-English lexicon, which was compiled by Wanfang Data Co., Ltd\(^4\), includes 525,259 translation equivalents (441,710 Chinese terms and 430,501 English terms) in the field of scientific research.

\[\text{\textcopyright 2021 John Wiley & Sons, Inc.} \]
English and Chinese-English lexicons were lowercased in We generated three lexicons merged by exact, word-based, and alignment-based methods. All terms in Japanese-English and Chinese-English lexicons were lowercased in advance. We employed the following word tokenizers: JUMAN³ for Japanese, a Maximum Entropy Markov Model (MEMM)-based part-of-speech tagger⁴ (Tsuruoka and Tsujii, 2005) for English, and the morphological tokenizer "cjma" (Nakagawa and Uchimoto, 2007) for Chinese. Table 1 shows the distinct numbers of terms in the original and merged lexicons, and the utilization ratio in parentheses (the number of terms in the original lexicon used for building the merged lexicon).

The exact merging translated 103,437 (22.2%) of Japanese terms into Chinese, and 98,537 (22.4%) of Chinese terms into Japanese. These figures imply that about 80% of the terms remained unused in building the Japanese-Chinese lexicon. The word-based merging translated 124,945 (26.8%) of Japanese terms and 167,929 (38.1%) of Chinese terms; this brings 4.62% of the Japanese terms and 15.8% of Japanese terms and 167,929 (38.1%) of Chinese terms into the bilingual lexicon. In contrast, the alignment-based merging constructed a Japanese-Chinese bilingual lexicon with 438,976 (94.2%) Japanese terms and 342,229 (77.8%) Chinese terms.

The exact merging translated 103,437 (22.2%) of Japanese terms into Chinese, and 98,537 (22.4%) of Chinese terms into Japanese. These figures imply that about 80% of the terms remained unused in building the Japanese-Chinese lexicon. The word-based merging translated 124,945 (26.8%) of Japanese terms and 167,929 (38.1%) of Chinese terms; this brings 4.62% of the Japanese terms and 15.8% Chinese terms into the bilingual lexicon. In contrast, the alignment-based merging constructed a Japanese-Chinese bilingual lexicon with 438,976 (94.2%) Japanese terms and 342,229 (77.8%) Chinese terms.

3.3. Accuracy of Merged Lexicon

We evaluated the accuracy of the bilingual translation pairs obtained by the proposed method. 50 Japanese and 50 Chinese evaluation terms were chosen at random from a set of terms that were not translated into another language by the word-based method. Obtaining the top-10 translation equivalents with high scores for each evaluation term, we asked two human subjects⁷ who are fluent in both Japanese and Chinese to judge the correctness of the translation equivalents. We employed the precision and mean reciprocal rank (MRR) (Voorhees, 1999). We define the precision as the ratio of source terms that are successfully mapped to its translation only if one of ten translation equivalents includes the correct translation. MRR is calculated as follows. We

\[\text{MRR} = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{r_i} \]

where \(r_i \) is the rank of the correct translation for the \(i \)-th term.

Table 2 shows the MRR scores and the precisions. “Prec1” is the precision of the highest ranked terms, and “Prec10” is the precision that the 10-best outputs include the correct translation.

Table 3 shows an example of translation of “角膜 实质 炎” (keratitis parenchymatosa) according to alignment-based merging: \([T]\) is the correct translation, \(P = \log_{10} p(w_f|w_e; \alpha_{w-p}, \alpha_{p-f})\), \(H = \text{hit count}\), and Score = \(p \times H\).

Table 4 shows an example of translation of “充育 状态” (growth status) according to alignment-based merging.
The proposed method generated correct translations for half of terms that could not be associated by the word-based merging. The MRR score indicated that the proposed method ranked the correct translations at the 4th place on average.

Tables 3 and 4 illustrate examples of translation pairs obtained by the proposed method. In Table 3, the correct translation for the source term, “角膜実質炎,” (keratitis parenchymatosa) appeared on the top. In contrast, the correct translation could not appear on higher ranks but ranked 6th and 8th in Table 4. This is because incorrect translations are used frequently in Chinese to represent other senses.

There were several kinds of errors in the outputs, and the most frequent errors are caused by inappropriate tokenization, and errors from data sparseness. For example, a Chinese input term “大孢子吸器 (megaspore haustorium)” should be tokenized into “大孢子 (megaspore),” and “吸器 (haustorium),” for finding the correct translation. Similarly, the tokenizer could not split “ターンシングルフラッシャ (turn signal flasher)” into “ターン (turn),” “シングナル (signal),” and “フラッシャ (flasher),” and the system could not find appropriate word alignments. This problem could be solved by improving the accuracy of the tokenizers, and introducing phrase-based model for machine translation.

4. Conclusion

This paper presented an approach to increase the number of translation pairs obtained from two bilingual lexicons via a pivot language. The experimental results confirmed that the proposed method improves the utilization ratio of the existing bilingual lexicons drastically. The proposed method does not include a mechanism to improve the precision, e.g., to choose a correct translation by examining the context or semantic classes of source and target terms.

A future direction of this study would be to combine more sophisticated scoring methods for translation equivalents to improve the precision of the merged bilingual lexicon. We are also planning on evaluating a machine translation system with this lexicon integrated to confirm the contribution of the bilingual lexicon.

5. Acknowledgements

This work was partially supported by Grant-in-Aid for Specially Promoted Research (MEXT, Japan) and Japanese/Chinese Machine Translation Project in Special Coordination Funds for Promoting Science and Technology (MEXT, Japan). We thank the Japan Science and Technology Agency (JST) for providing a useful bilingual lexicon.

6. References

Francis Bond, Ruhaida Binti Sulong, Takefumi Yamazaki, and Kentaro Ogura. 2001. Design and construction of a machine-tractable Japanese-Malay dictionary. In Proc. of MT Summit VIII, pages 53–58.

Peter F. Brown, John Cocke, Stephen A. Della Pietra, Vincent J. Della Pietra, Fredrick Jelinek, John D. Lafferty, Robert L. Mercer, and Paul S. Roossin. 1990. A statistical approach to machine translation. Computational Linguistics, 16(2):79–85.

Chooi-Ling Goh, Masayuki Asahara, and Yuji Matsumoto. 2005. Building a Japanese-Chinese dictionary using kanji/hanzi conversion. In Proc. of the 2nd International Joint Conference on Natural Language Processing, pages 670–681.

Tetsuji Nakagawa and Kiyotaka Uchimoto. 2007. Hybrid approach to word segmentation and POS tagging. In Companion Volume to the Proc. of the 45th Annual Meeting of the Association for Computational Linguistics, pages 217–220.

Jian-Yun Nie, Michel Simard, Pierre Isabelle, and Richard Durand. 1999. Cross-language information retrieval based on parallel texts and automatic mining of parallel texts from the Web. In Proc. of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 74–81.

Franz Josef Och and Hermann Ney. 2003. A systematic comparison of various statistical alignment models. Computational Linguistics, 29(1):19–51.

Kyonghee Paik, Francis Bond, and Shirai Satoshi. 2001. Using multiple pivots to align Korean and Japanese lexical resources. In Proc. of the Workshop on Language Resources in Asia, Natural Language Processing Pacific Rim Symposium 2001, pages 63–70.

Charles Schafer and David Yarowsky. 2002. Inducing translation lexicons via diverse similarity measures and bridge languages. In Proc. of the 6th Conference on Natural Language Learning, volume 20, pages 1–7.

Satoshi Shirai and Kazuhide Yamamoto. 2001. Linking English words in two bilingual dictionaries to generate another language pair dictionary. In Proc. of 19th International Conference on Computer Processing of Oriental Language, pages 174–179.

Kumiko Tanaka and Kyoji Umemura. 1994. Construction of a bilingual dictionary intermediated by a third language. In Proc. of the 15th International Conference on Computational Linguistics, pages 297–303.

Yoshimasa Tsuruoka and Jun’ichi Tsujii. 2005. Bidirectional inference with the easiest-first strategy for tagging sequence data. In Proc. of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing, pages 467–474.

Masao Utiyama and Hitoshi Isahara. 2007. A comparison of pivot methods for phrase-based statistical machine translation. In Proc. of Human Language Technologies 2007: The Conference of the North American Chapter of the Association for Computational Linguistics, pages 484–491.

Ellen M. Voorhees. 1999. The TREC-8 question answering track report. In Proc. of TREC-8, pages 77–82.

Hua Wu and Haifeng Wang. 2007. Pivot language approach for phrase-based statistical machine translation. In Proc. of the 45th Annual Meeting of the Association for Computational Linguistics, pages 856–863.

Yujie Zhang, Qing Ma, and Hitoshi Isahara. 2005. Construction of a Japanese-Chinese bilingual dictionary using English as an intermediary. International Journal of Computer Processing of Oriental Languages, 18(1):23–39.