The Serine 814 of TRPC6 Is Phosphorylated under Unstimulated Conditions

Simon M. Bousquet, Michael Monet, Guylain Boulay*

Department of Pharmacology, Université de Sherbrooke, Sherbrooke, Quebec, Canada

Abstract

TRPC are nonselective cation channels involved in calcium entry. Their regulation by phosphorylation has been shown to modulate their routing and activity. TRPC6 activity increases following phosphorylation by Fyn, and is inhibited by protein kinase G and protein kinase C. A previous study by our group showed that TRPC6 is phosphorylated under unstimulated conditions in a human embryonic kidney cells line (HEK293). To investigate the mechanism responsible for this phosphorylation, we used a MS/MS approach combined with metabolic labeling and showed that the serine at position 814 is phosphorylated in unstimulated cells. The mutation of Ser814 into Ala decreased basal phosphorylation but did not modify TRPC6 activity. Even though Ser814 is within a consensus site for casein kinase II (CK2), we showed that CK2 is not involved in the phosphorylation of TRPC6 and does not modify its activity. In summary, we identified a new basal phosphorylation site (Ser814) on TRPC6 and showed that CK2 is not responsible for the phosphorylation of this site.

Introduction

Calcium homeostasis is crucial for every cell type, and its tight regulation allows intracellular calcium to be a widely used second messenger [1]. This regulation is a fine balance between calcium entry from the extracellular medium, release from intracellular stores, and extrusion through the activity of pumps or exchangers. TRP (transient receptor potentials) are plasma membrane-embedded calcium channels that were first discovered in Drosophila melanogaster. Up to 28 mammalian isoforms of dTRP have been cloned so far and have been distributed into six subfamilies (TRPC, TRPV, TRPM, TRPP, TRPML, and TRPA) [2]. TRPCs are the closest subfamily to dTRP and include seven members (TRPC1 to TRPC7). Their role as calcium channels has been well characterized, but their exact activation and regulation mechanisms have yet to be fully understood. Along with STIM and Orai, TRPCs are involved in store-operated and receptor-operated calcium entry following hormonal stimulation of G protein coupled receptor or receptor tyrosine kinase [3]. These receptors activate phospholipase Cβ or phospholipase Cγ, which hydrolyze phosphatidylinositol-4,5-bisphosphate into diacylglycerol and inositol 1,4,5-trisphosphate, inositol 1,4,5-trisphosphate activates its receptor on the endoplasmic reticulum to induce calcium release. Store depletion and diacylglycerol formation activate channels located at the plasma membrane to induce Ca2+ entry as long as the stimulation is maintained. TRPC6 is one of these Ca2+ entry channels [4]. A dysregulation of TRPC6 has been associated with idiopathic pulmonary arterial hypertension [5,6], focal segmental glomerulosclerosis [7,8], and hyperproliferation of cancer cells [9]. Understanding the mechanisms regulating TRPC6 activity and routing is thus essential to better treat or prevent these pathologies.

Post-translational modification of TRPCs has been shown to influence their activity and routing. Following EGFR activation, TRPC6 is phosphorylated by Fyn, a Src family protein tyrosine kinase. Phosphorylation by Fyn allows optimal activation of TRPC6 [10]. Protein kinase G phosphorylates TRPC6 on Thr69, thus decreasing its channel activity [11]. Protein kinase C phosphorylates TRPC6 on Ser768 [12] and Ser448 [13]. We have shown that protein kinase C-dependent phosphorylation of TRPC6 on Ser448 decreases its activity and that TRPC6 is phosphorylated under basal conditions [13]. The purpose of the present study was to investigate the mechanism responsible for this basal phosphorylation of TRPC6. Using a mass spectrometry approach, we found out that the Ser814 was phosphorylated and contributed to 50% of the basal phosphorylation state of TRPC6. Surprisingly, mutant TRPC6(S814A) displayed an activity similar to that of wild-type TRPC6. As Ser814 is within a consensus sequence for phosphorylation by CK2, we used two CK2 inhibitors to investigate the possible involvement of this kinase. However, the inhibition of CK2 did not modify the phosphorylation state or activity of TRPC6. Thus, we have identified a new phosphorylation site on TRPC6.

Results

HEK293 cells stably expressing TRPC6 (HEK293 T6.11) were solubilized, and TRPC6 was immunoprecipitated using an anti-hemagglutinin (HA) antibody and size fractionated by SDS-PAGE. The gel was stained with colloidal Brilliant Blue, and the...
bands corresponding to TRPC6 (Fig. 1A) were excised and in-gel digested with trypsin. Tryptic fragments were analyzed by LC-MS/MS and identified by database searches using the Mascot search engine. Sequence coverage of TRPC6 totaled 60.1% (77.9% of intracellular regions) (n = 2) (Fig. 1B). Nano-LC-MS/MS analyses and MS spectra revealed that Ser^{314}, located in the C-terminus, was phosphorylated with an Ascore of 57.75. An Ascore of 20 or more means that the phosphorylation is on that particular residue with a probability of 99%, and not on another serine, threonine, or tyrosine that may be present on the peptide [18]. Figure 1C shows the tandem mass spectrometry (MS/MS) spectrum of phospho-Ser^{314}.

To confirm that Ser^{314} was phosphorylated under unstimulated conditions, we substituted it for an alanine. HEK293 cells were transiently transfected with the HA-tagged TRPC6 or TRPC6S814A mutant and metabolically labeled with inorganic ^32P. HA-tagged proteins were then immunoprecipitated with an anti-HA antibody and size fractionated by SDS-PAGE. The phosphorylation states of the proteins were revealed by autoradiography. Under basal conditions, the level of phosphorylation of mutant TRPC6S814A corresponded to 52.8±28.0% of that of WT TRPC6 (Fig. 2A and 2B). Mutation did not significantly alter the overall expression of TRPC6 (Fig. 2A, lower panel). Thus, as the substitution of Ser^{314} for Ala decreased the basal phosphorylation of TRPC6 by only 50%, these results suggested that Ser^{314} is a major phosphorylation site under unstimulated conditions. These results further suggest the existence of another unknown phosphorylation site on TRPC6.

We next assessed the effect of the phosphorylation of Ser^{314} on the activity of TRPC6. HEK293 cells were transiently transfected with the M5 muscarinic receptor and with TRPC6 or its mutant TRPC6S814A. Ca^{2+} entry through TRPC6 was analyzed using the standard Ca^{2+} depletion/restoration protocol [4]. Cells were incubated for 30 s in Ca^{2+}-free medium containing 0.5 mM EGTA before depleting the intracellular Ca^{2+} stores with 5 mM carbachol (CCh). Once the [Ca^{2+}]_i had returned to the basal level (2 min after the addition of CCh), the extracellular medium was replaced with medium containing 1.8 mM CaCl_2. Figure 3A shows that, in the absence of extracellular Ca^{2+}, CCh-induced Ca^{2+} release was similar in TRPC6-, TRPC6S814A- and mock-transfected cells. When 1.8 mM CaCl_2 was added to TRPC6- and TRPC6S814A-transfected cells, Ca^{2+} entry rose to a plateau level of approximately 250 nM and 260 nM, respectively (Fig. 3A). In mock-transfected cells, Ca^{2+} entry raised the [Ca^{2+}]_i to a plateau level of approximately 210 nM. Figure 3B shows the relative net [Ca^{2+}]_i entry, which was calculated by subtracting the basal [Ca^{2+}]_i from the maximal [Ca^{2+}]_i, recorded after the extracellular Ca^{2+} had been restored. Compared to the endogenous net Ca^{2+} entry in mock-transfected cells, the expression of TRPC6 enhanced CCh-induced net Ca^{2+} entry to 127±15% (n = 6). Expression of TRPC6S814A gave similar results, with an increase of CCh-induced net Ca^{2+} entry reaching 131±17% (n = 6). The substitution of Ser^{314} for Ala did not modify the level of expression of TRPC6 nor its amount at the plasma membrane (Fig. 4). These results suggested that the basal phosphorylation of TRPC6 on Ser^{314} does not affect channel activity.

An analysis of the amino acid sequence surrounding Ser^{314} of TRPC6 revealed that this region is a consensus site for CK2 substrate recognition (Ser/Thr-X-X-Glu/Asp) [24]. To verify whether CK2 is responsible for the phosphorylation of Ser^{314} of TRPC6 under basal conditions, we used two selective CK2 inhibitors, DMAT (2-dimethylamino-1,5,6,7-tetrambrom-oH-benzimidazole) and TBCA ([E,E,Z]-3-(2,3,4,5-tetra bromophenyl)acrylic acid). T6.11 cells were metabolically labeled with inorganic ^32P for 4 h in the presence of either 10 ^6 DMAT or 10 ^6 TBCA. TRPC6 was then immunoprecipitated with an anti-HA antibody and size fractionated by SDS-PAGE, and its phosphorylation state was revealed by autoradiography. Figure 5A shows that neither DMAT nor TBCA prevented or attenuated the phosphorylation state of TRPC6. The relative phosphorylation of TRPC6 incubated with DMAT and TBCA was 0.95±0.22% and 1.06±0.32%, respectively, of its phosphorylation state in unstimulated cells (Fig. 5B).

Despite the fact that CK2 did not directly alter the phosphorylation state of TRPC6, we investigated whether this kinase could have a possible indirect role in Ca^{2+} signaling. In T6.11 cells, incubation for 4 h with DMAT and TBCA potentiated CCh-induced Ca^{2+} release by approximately 30%. However, after calcium restoration, DMAT and TBCA did not significantly alter CCh-induced Ca^{2+} entry (Fig. 6A). Compared to untreated cells, net CCh-induced Ca^{2+} entry in DMAT-treated cells was 89±5%, whereas it was 99±11% in TBCA-treated cells. A possible role for CK2 was also investigated in A7r5 cells. These cells endogenously express a high level of TRPC6, and their vasopressin (AVP)-induced Ca^{2+} entry is mostly through TRPC6 [25,26,27]. In A7r5 cells, a 4 h preincubation with 10 ^6 DMAT did not modify AVP-induced Ca^{2+} release (data not shown) or AVP-induced Ca^{2+} entry (Fig. 6C). These results thus exclude a role for CK2 in the direct and/or indirect regulation of TRPC6 activity.

Discussion

Basal phosphorylation of TRPC6 has been previously observed in resting platelets and in TRPC6 stably expressed in HEK293 cells [28,29], but the phosphorylated residue has not been identified. Using a mass spectrometry approach, we found out that Ser^{314} was phosphorylated under basal conditions in HEK293 cells. Mutation of the Ser^{314} into alanine caused a 50% decrease of basal incorporation of ^32P in TRPC6. This phosphorylation occurred during metabolic labeling experiments, in which cells were serum starved for 4 hours and not exposed to any kind of stimulus. The 50% decrease of basal incorporation of ^32P in TRPC6S814A suggests that Ser^{314} is a major phosphorylation site under unstimulated conditions and that at least one other site is phosphorylated. Our MS/MS approach yielded 78% coverage of the intracellular regions of TRPC6. However, due to technical limitations, some large peptides were not identified. Of these, three peptides were located in the N-terminus, two peptides were located in intracellular loops, and one peptide was located in the C-terminus. Overall, these uncovered regions contained 17 phosphorylatable residues (Ser, Thr, or Tyr). Further studies are needed to verify whether one of these residues is phosphorylated under unstimulated conditions.

A recent study, which used an MS/MS approach similar to ours, revealed that Drosophila TRP is phosphorylated under unstimulated (dark) conditions [30]. They showed that Ser^{211} and Ser^{236} are highly phosphorylated in the dark, and that Ser^{236} is dephosphorylated in the presence of light, a phenomenon that requires the activation of the phototransduction cascade. Our study showed that Ser^{314} of TRPC6 is phosphorylated under unstimulated conditions. However, the mutation of Ser^{314} into Ala did not significantly modify the activity, the level of expression, nor the trafficking of TRPC6. Ser^{314} is localized in a highly hydrophilic region within the C-terminus of TRPC6, between the proline rich motif (amino acids 759-770), which binds FKBP12 [31], and the CIRB domain (amino acids 838-872), which binds calmodulin and inositol 1,4,5-trisphosphate receptor [32,33,34].
Thus, the phosphorylated Ser814 might play a role in the interaction of those proteins with TRPC6 or the folding and trafficking of the protein, which could be masked in recombinant cell model. To demonstrate the significance of this phosphorylation event in a non-recombinant cell model, we need to identify the kinase involved in the phosphorylation of Ser814. A sequence analysis of TRPC6 revealed that Ser814 is within a consensus site for phosphorylation by CK2 (S/T-X-X-D/E). Furthermore, CK2 favors an acidic environment as indicated by the results of Meggio et al. [24], who showed that any acidic residue in positions 2 to 7 favors phosphorylation by CK2. In TRPC6, a glutamate in position +2 and an aspartate in position +3 of Ser814 constitute a favorable acidic environment for CK2. CK2 is also known to exhibit constitutive activity, making it a potential kinase for the basal phosphorylation of Ser814. Moreover, the subcellular location and functioning of TRPP2 is modulated by the phosphorylation by CK2 [35,36]. CK2 can phosphorylate the NR2B subunit of NMDAR, decreasing its surface expression [37], or NHE3, stimulating its basal activity [38]. However, we showed that the inhibition of CK2 by DMAT and TBCA does not reduce

Figure 1. MS/MS identification of potential phosphorylated residues on TRPC6. A. Untreated T6.11 cells were lysed before TRPC6 was immunoprecipitated using an anti-HA antibody. The immunoprecipitated proteins were then deglycosylated with PNGaseF or not, before being separated by SDS-PAGE and stained with Colloidal Brilliant Blue. B. Sequence coverage of TRPC6 by nano-LC-MS/MS after tryptic digestion is highlighted. Ser814 is shown in white on a black background. The transmembrane segments are underlined. Residues 931 to 939 represent the HA epitope. Total sequence coverage is 68%. C. Simplified LC-MS/MS spectrum of the FGISGpHEDLSK peptide from TRPC6 phosphorylated at Ser814. The phosphorylation of Ser814 was confirmed by the mass assignments of fragmentation ions b5, b6, y6, and y7. doi:10.1371/journal.pone.0018121.g001
Ca²⁺ showed that inhibition of CK2 does not modify CCh-induced following calmodulin phosphorylation by CK2 [39]. However, we inhibition of CK2 with DMAT did not affect AVP-induced Ca²⁺
Similarly, in A7r5 cells expressing high levels of TRPC6, the phosphorylation of Ser814 under unstimulated conditions and to further studies are needed to demonstrate the significance of the phosphorylation sites. Our results further showed that CK2 is phosphorylated under basal conditions in HEK293 cells, and that it accounts for one of two distinct basal calcium-sensitive potassium channel KCa₂.2 loses Ca²⁺ sensitivity despite the fact that it does enhance CCh-induced Ca²⁺ release.

In summary, we showed that the serine in position 814 of TRPC6 is phosphorylated under basal conditions in HEK293 cells, and that it accounts for one of two distinct basal phosphorylation sites. Our results further showed that CK2 is not the kinase responsible for these phosphorylations, and that CK2 does not directly or indirectly modify TRPC6 activity. Further studies are needed to demonstrate the significance of the phosphorylation of Ser⁸¹⁴ under unstimulated conditions and to identify the kinase responsible for this phosphorylation.

Materials and Methods

Material

Cell culture media, serum, Hepes, trypsin, Opti-MEM I, LipofectAMINE 2000, and Zero Blunt Topo PCR cloning kits were purchased from Invitrogen (Burlington, ON, Canada). Phosphate-free culture media and G418 were from Wisent (St-Bruno, QC, Canada). NP-40 was from Roche (Laval, QC, Canada). HEK293 and A7r5 cell lines were from ATCC (Manassas, VA, USA). DMAT, TBCA, CCh, AVP, phosphatase cocktail inhibitor set #2, and fura 2/AM were from Calbiochem (San Diego, CA, USA). Rabbit polyclonal and mouse monoclonal anti-HA antibodies were from Covance (Berkeley, CA, USA). Peroxidase-conjugated donkey anti-rabbit antibodies, peroxidase-conjugated sheep anti-mouse antibodies, protein A-agarose CL-4B, and Biomax MR films were from GE Healthcare (Baie d’Urfé, QC, Canada). Western Lightning Chemiluminescence Reagent Plus, 0.2 μm nitrocellulose membranes, and 32P-orthophosphoric acid were from Perkin–Elmer Life Sciences (Woodbridge, ON, Canada). All primers and oligonucleotides were from Integrated DNA Technologies (Coralville, IA, USA). Phusion High-Fidelity DNA polymerase was from Finnzymes (Espoo, Finland); Restriction enzymes, PNGase F, and T4 DNA ligase were from New England Biolabs (Fickering, ON, Canada). Unless otherwise stated, all other reagents were from Sigma (Oakville, ON, Canada) or Laboratoire MAT (Quebec City, QC, Canada).

Mass spectrometry

Protein in-gel digestion. Excised acrylamide bands containing immunoprecipitated and separated TRPC6 were sent to the Proteomics Platform of the Eastern Quebec Genomics Center (CHUL Research Center, Quebec City, QC, Canada) for MS/MS analysis. Proteins were extracted from gels, placed in 96-well plates, and washed with water. Tryptic digestion was performed using a MassPrep liquid handling robot (Waters, Milford, USA) according to the manufacturer’s specifications and the protocol of Shevchenko et al. [14] with the modifications suggested by Havlis et al. [15]. Briefly, proteins were reduced with 10 mM DTT and alkylated with 55 mM iodoacetamide. The trypsin digestion was performed using 105 mM modified porcine trypsin (sequencing grade, Promega, Madison, WI, USA) at 58°C for 1 h. Digestion products were extracted using 1% formic acid and 2% acetonitrile followed by 1% formic acid and 50% acetonitrile. The recovered extracts were pooled, vacuum centrifuge dried, resuspended in 8 μl of 0.1% formic acid, and 2 μl was analyzed by mass spectrometry.

Mass spectrometry. Peptide samples were separated by online reversed-phase nanoscale capillary liquid chromatography and analyzed by electrospray mass spectrometry. The experiments were performed using a Thermo Surveyor MS pump connected to
a LTQ linear ion trap mass spectrometer (ThermoFisher, San Jose, CA, USA) equipped with a nanoelectrospray ion source (ThermoFisher). The peptides were separated on a PicoFrit column (BioBasic C18, 10 cm×0.075 mm internal diameter, New Objective, Woburn, MA, USA) with a 2-50% linear gradient of solvent B (acetonitrile, 0.1% formic acid) for 30 min at a flow rate of 200 nL/min (obtained by flow-splitting). Mass spectra were acquired using a data dependent acquisition mode using Xcalibur software version 2.0. Each full scan mass spectrum (400 to 2000 m/z) was followed by collision-induced dissociation of the seven most intense ions. The dynamic exclusion (30 s exclusion duration) function was enabled, and the relative collisional fragmentation energy was set at 35%. All MS/MS samples were analyzed using Mascot (Matrix Science, London, UK; version 2.2.0) set up to search for the sequence of mouse TRPC6 assuming trypsin as the digestion enzyme. Mascot was searched with a fragment ion mass tolerance of 0.50 Da and a parent ion tolerance of 2.0 Da. The iodoacetamide derivative of cysteine was specified as a fixed modification, and the oxidation of methionine and the phosphorylation of serine, threonine, and

Figure 3. The S814A mutation does not alter TRPC6 activity. [Ca^{2+}]_{i} was recorded in HEK293T transiently transfected with pcDNA3 (open circles), TRPC6 WT (open diamonds), or TRPC6 S814A (closed squares). The cells were incubated in the absence of extracellular Ca^{2+} (in the presence of 0.5 mM EGTA) for 30 s before being stimulated with 5 μM CCh. External Ca^{2+} (1.8 mM) was restored at 180 s. The graphs represent the average of 103 to 165 cells from one representative experiment. B, CCh-induced net Ca^{2+} entry (average of [Ca^{2+}]_{i} values after 174–177 s subtracted from [Ca^{2+}]_{i} values after 222–228 s) were calculated and graphed as averages ± SD of six independent experiments. * P<0.01.
doi:10.1371/journal.pone.0018121.g003

Figure 4. The mutation of Ser814 into Ala does not modify the level of expression nor the trafficking of TRPC6. TRPC6 and TRPC6 S814A were transfected in HEK293T cells. The cells were biotinylated with sulfo-NHS-SS-biotin, lysed, and incubated with streptavidin-agarose beads as described in Experimental Procedures. Proteins precipitated by streptavidin-agarose were separated by SDS-PAGE and detected with an anti-HA antibody (top). Aliquots of the cell lysates were collected before the incubation with streptavidin-agarose and analyzed directly by immunoblotting to determine the total amount of TRPC6 (middle) and actin (bottom) in the samples. Representative immunoblot of three independent experiments.
doi:10.1371/journal.pone.0018121.g004

Figure 5. CK2 does not phosphorylate TRPC6. A, T6.11 cells were labeled in the presence or not of 10 μM DMAT or 10 μM TBCA for 4 h before the cells were lysed and TRPC6 was immunoprecipitated and separated by SDS-PAGE. The autoradiogram is representative of six independent experiments. B, The densitometric analyses of autoradiograms and Western blots (not shown) from A and the calculated ratios are relative to the control (100%). The histogram represents the average ± SD of six independent experiments.
doi:10.1371/journal.pone.0018121.g005
Protein identifications were accepted if they exceed 95% probability and contained at least two identified peptides. Protein probabilities were assigned by the Protein Prophet algorithm [17]. Proteins that contained similar peptides and could not be differentiated based on the MS/MS analysis alone were grouped to satisfy the principles of parsimony. For phosphopeptides, a pronounced neutral loss of phosphoric acid from the precursor ion and/or fragment ions was required as well as extensive coverage of the b and y series. In addition, the phosphopeptide spectra were submitted to Ascore to identify the phosphorylation site(s) on the peptide. Ascore measures the probability of correct phosphorylation site localization based on the presence and intensity of site-determining ions in MS/MS spectra [18].

Molecular biology

Standard molecular biology techniques were used to isolate, analyze, and clone DNA [19,20]. Point mutations in mouse TRPC6 were introduced using a PCR-based site-directed mutagenesis approach. The PCR fragments were subcloned and amplified in the pCR-Blunt II-TOPO vector using a Zero Blunt TOPO PCR cloning kit. The fragments were sequenced and reinserted into HA-tagged TRPC6 in pcDNA3.1 using the appropriate restriction enzymes and T4 DNA ligase. All constructs were confirmed by sequencing from double-stranded DNA templates using the dideoxynucleotide termination method [21].

Cell culture and transfection

HEK293T cells and A7r5 vascular myocytes were maintained at subconfluence in DMEM supplemented with 10% fetal bovine serum, 50 U/ml of penicillin, and 50 µg/ml of streptomycin at 37°C in a humidified atmosphere containing 5% CO2. T6.11 cells (HEK293 stably transfected with mouse TRPC6) [4] were cultured in the same medium supplemented with 400 µg/ml G418. For transient transfections, six-well plates were treated with 0.1 mg/ml poly-L-lysine for 30 min, rinsed with PBS (137 mM NaCl, 3.5 mM KCl, 10 mM sodium phosphate buffer, pH 7.4), and air-dried. Plasmid DNA (1 µg) in 250 µl Opti-MEM I was placed in each well, to which 2.5 µl of LipofectAMINE 2000 diluted in 250 µl of Opti-MEM I was added and thoroughly mixed. After a 20 min incubation, 8 × 10^4 HEK293T cells discharged in 1.5 ml of culture medium without antibiotics were added to each well. The cells were incubated for 16 h at 37°C in a humidified atmosphere containing 5% CO2. Twenty-four hours after the transfection, the cells from one well were transferred into a 60-mm Petri dish for metabolic labeling assays or deposited on three poly-L-lysine-treated coverslips for [Ca^{2+}]i measurements.

Metabolic labeling

Stably or transiently transfected cells grown in 60 mm Petri dishes were washed once with phosphate-free DMEM and incubated for 4 h in phosphate-free DMEM supplemented with 250 µCi/ml of [32P]inorganic phosphate. The cells were then washed twice on ice with ice-cold PBS-EDTA (137 mM NaCl, 3.5 mM KCl, 1 mM EDTA, 17.4 mM Na2HPO4, 3.5 mM NaH2PO4) prior to being lysed.

Immunoprecipitation and protein separation

The cells were lysed with 1 ml of ice-cold lysis buffer (1.25% NP-40, 1.25% sodium deoxycholate, 2 mM EDTA, 12.5 mM sodium phosphate, pH 7.2, 1 µg/ml of soybean trypsin inhibitor, 5 µg/ml of leupeptin, 100 µM phenylmethylsulfonyl fluoride) supplemented with a phosphatase inhibitor cocktail for 30 min on

Figure 6. The inhibition of CK2 with specific inhibitors does not alter TRPC6 activity. A, Fura-2-loaded T6.11 cells were left untreated (circles) or were treated for 4 h with 10 µM DMAT (squares) or 10 µM TBCA (triangles). CCh (5 µM) induced Ca^{2+} release in the absence of extracellular Ca^{2+} while Ca^{2+} restoration 2 min later induced Ca^{2+} entry. DMAT and TBCA concentrations were maintained during the assay. The graphs are representative of 176 to 227 cells from one typical experiment. B, Net maximal Ca^{2+} entries from A were calculated as in Figure 3 and are relative to the control (100%). The histogram represents the average ± SD of four independent experiments. C, The same protocol was carried out on A7r5 cells using 100 nM AVP instead of CCh. The net maximal Ca^{2+} entry was calculated relative to the control (100%). The histogram is the average ± SD of three independent experiments.

doi:10.1371/journal.pone.0018121.g006

Criteria for protein identification. Scaffold (version 2.00.05, Proteome Software Inc., Portland, OR, USA) was used to validate MS/MS-based peptide and protein identifications. Peptide identifications were accepted if they exceeded 95% probability as specified by the Peptide Prophet algorithm [16].

tyrosine were specified as variable modifications. Four missed cleavages were allowed.

Molecular biology

Standard molecular biology techniques were used to isolate, analyze, and clone DNA [19,20]. Point mutations in mouse TRPC6 were introduced using a PCR-based site-directed mutagenesis approach. The PCR fragments were subcloned and amplified in the pCR-Blunt II-TOPO vector using a Zero Blunt TOPO PCR cloning kit. The fragments were sequenced and reinserted into HA-tagged TRPC6 in pcDNA3.1 using the appropriate restriction enzymes and T4 DNA ligase. All constructs were confirmed by sequencing from double-stranded DNA templates using the dideoxynucleotide termination method [21].

Cell culture and transfection

HEK293T cells and A7r5 vascular myocytes were maintained at subconfluence in DMEM supplemented with 10% fetal bovine serum, 50 U/ml of penicillin, and 50 µg/ml of streptomycin at 37°C in a humidified atmosphere containing 5% CO2. T6.11 cells (HEK293 stably transfected with mouse TRPC6) [4] were cultured in the same medium supplemented with 400 µg/ml G418. For transient transfections, six-well plates were treated with 0.1 mg/ml poly-L-lysine for 30 min, rinsed with PBS (137 mM NaCl, 3.5 mM KCl, 10 mM sodium phosphate buffer, pH 7.4), and air-dried. Plasmid DNA (1 µg) in 250 µl Opti-MEM I was placed in each well, to which 2.5 µl of LipofectAMINE 2000 diluted in 250 µl of Opti-MEM I was added and thoroughly mixed. After a 20 min incubation, 8 × 10^4 HEK293T cells discharged in 1.5 ml of culture medium without antibiotics were added to each well. The cells were incubated for 16 h at 37°C in a humidified atmosphere containing 5% CO2. Twenty-four hours after the transfection, the cells from one well were transferred into a 60-mm Petri dish for metabolic labeling assays or deposited on three poly-L-lysine-treated coverslips for [Ca^{2+}]i measurements.

Metabolic labeling

Stably or transiently transfected cells grown in 60 mm Petri dishes were washed once with phosphate-free DMEM and incubated for 4 h in phosphate-free DMEM supplemented with 250 µCi/ml of [32P]inorganic phosphate. The cells were then washed twice on ice with ice-cold PBS-EDTA (137 mM NaCl, 3.5 mM KCl, 1 mM EDTA, 17.4 mM Na2HPO4, 3.5 mM NaH2PO4) prior to being lysed.

Immunoprecipitation and protein separation

The cells were lysed with 1 ml of ice-cold lysis buffer (1.25% NP-40, 1.25% sodium deoxycholate, 2 mM EDTA, 12.5 mM sodium phosphate, pH 7.2, 1 µg/ml of soybean trypsin inhibitor, 5 µg/ml of leupeptin, 100 µM phenylmethylsulfonyl fluoride) supplemented with a phosphatase inhibitor cocktail for 30 min on

Figure 6. The inhibition of CK2 with specific inhibitors does not alter TRPC6 activity. A, Fura-2-loaded T6.11 cells were left untreated (circles) or were treated for 4 h with 10 µM DMAT (squares) or 10 µM TBCA (triangles). CCh (5 µM) induced Ca^{2+} release in the absence of extracellular Ca^{2+} while Ca^{2+} restoration 2 min later induced Ca^{2+} entry. DMAT and TBCA concentrations were maintained during the assay. The graphs are representative of 176 to 227 cells from one typical experiment. B, Net maximal Ca^{2+} entries from A were calculated as in Figure 3 and are relative to the control (100%). The histogram represents the average ± SD of four independent experiments. C, The same protocol was carried out on A7r5 cells using 100 nM AVP instead of CCh. The net maximal Ca^{2+} entry was calculated relative to the control (100%). The histogram is the average ± SD of three independent experiments.

doi:10.1371/journal.pone.0018121.g006

Criteria for protein identification. Scaffold (version 2.00.05, Proteome Software Inc., Portland, OR, USA) was used to validate MS/MS-based peptide and protein identifications. Peptide identifications were accepted if they exceeded 95% probability as specified by the Peptide Prophet algorithm [16].
ice with gentle agitation. They were then scraped from the surface of the Petri dish and centrifuged at 15,000xg for 15 min at 4°C. The supernatant was collected and immunoprecipitated with 50 μl of protein A-sepharose beads (50% slurry) and anti-HA rabbit antibody (1:1000 dilution for 2 h at 4°C. The samples were then centrifuged for 1 min at 4°C at 800xg and washed twice with 500 μl of ice-cold lysis buffer. Immunoprecipitated proteins were dissolved in 40 μl of 2X Laemmli buffer and boiled for 5 min before being separated on 8% SDS-polyacrylamide gels. The gels were then either stained, dried, and exposed to a film for autoradiography, or the protein bands were transferred onto a nitrocellulose membrane (400 mA for 2 h or 100 mA overnight in 150 mM glycine, 20 mM Tris-base, 20% methanol) for immunoblotting. For MS/MS analyses, stained bands corresponding to TRPC6 were excised.

Immunoblot

The nitrocellulose membranes to which the whole cell lysates and immunoprecipitated proteins had been transferred were stained with Poncette S (0.1% in 5% acetic acid) to visualize the marker proteins, destained in TBST (20 mM Tris-HCL, pH 7.5, 157 mM NaCl, 0.1% Tween 20) and blocked in TBST containing 5% (w/v) nonfat dry milk for either 1 h at room temperature or overnight at 4°C. The membranes were then washed and incubated in TBST for 2.5 h at room temperature or overnight at 4°C with specific primary antibodies (mouse anti-HA 1:1000). After three washes with TBST, the membranes were incubated for 1.5 h at room temperature with TBST containing 1:10,000 peroxidase-conjugated sheep anti-mouse IgG. The blots were washed three times with TBST and, with the immune complexes detected with a Western Lightning Chemiluminescence Reagent Plus kit using the manufacturer’s protocol.

References

1. Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nature Reviews Molecular Cell Biology 1:11–21.
2. Nilus B, Owaniak G, Voets T, Peters JA (2007) Transient receptor potential channels and calcium signaling. Physiological Reviews 87: 163–217.
3. Liao X, Erkelens C, Yildirim E, Abramowiz J, Armstrong DL, et al. (2007) Orca regulation of TRPC channels and control responsiveness to store depletion. Proceedings of the National Academy of Sciences of the United States of America 104: 4612–4617.
4. Boulad G, Zhu X, Peyton M, Jiang MS, Hurst R, et al. (1997) Cloning and expression of a novel mammalian homolog of Drosophila transient receptor potential receptor (Trp) involved in calcium entry secondary to activation of receptors coupled by the G(q) class of G protein. Journal of Biological Chemistry 272: 29672–29680.
5. Yu Y, Fantozzi L, Remillard CV, Landsberg JW, Kunichika N, et al. (2004) Enhanced expression of transient receptor potential channels in idiopathic pulmonary arterial hypertension. Proceedings of the National Academy of Sciences of the United States of America 101: 13861–13866.
6. Yu Y, Keller S, Remillard C, Safritta O, Nicholson A, et al. (2009) A functional single-nucleotide polymorphism in the TRPC6 gene promoter associated with idiopathic pulmonary arterial hypertension. Circulation 119: 2313–2322.
7. Winn MP, Cournon JY, Lynn KL, Farrington MK, Creazzo T, et al. (2005) A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science 308: 1801–1804.
8. Reisier J, Polu KR, Moller CC, Kenal P, Akintum M, et al. (2005) TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nature Genetics 37: 739–744.
9. El Boustany C, Bidaux G, Enfissi A, Delcourt P, Prevarskaya N, et al. (2008) Regulation of TRPC6 channel activity by tyrosine phosphorylation. Journal of Biological Chemistry 273: 18887–18894.
10. Yu Y, Fantozzi L, Remillard CV, Landsberg JW, Kunichika N, et al. (2004) Basal Phosphorylation of Serine 814 of TRPC6
11. Beausoleil S, Villet J, Gerber S, Rush J, Gygi S (2006) A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nat Biotechnol 24: 1205–1292.
12. Konig P, Krutchen JG, Kesavan N, Eberhard T, Blankenburg RG (2002) A statistical model for estimating protein masses by tandem mass spectrometry. Anal Chem 75: 4646–4658.
13. Beausoleil S, Villet J, Gerber S, Rush J, Gygi S (2006) A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nat Biotechnol 24: 1205–1292.
14. Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass-spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68: 5524–5535.
15. Jung S, Strotmann R, Schultz N, Plant TD (2002) TRPC6 is acandidate channel involved in receptor-stimulated cation currents in A7r5 smooth muscle cells. American Journal of Physiology-Cell Physiology 282: C347–C359.
16. Sanger F, Nicklen S, Coulson A (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74: 5463–5467.
17. Zhu X, Jiang MS, Peyton M, Boulad G, Hurst R, et al. (1996) A novel mammalian gene family essential for agonist-activated capacitative Ca2+ entry. Cell 85: 661–671.
18. Bousquet S, Monet M, Boulad G (2010) Protein kinase C-dependent phosphorylation of transient receptor potential canonical 6 (TRPC6) on serine 448 causes channel inhibition. Journal of Biological Chemistry. 19. Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass-spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68: 5524–5535.
20. Meggio F, Marin O, Pinna L (1994) Substrate specificity of protein kinase CK2. J Biol Chem 269: 13768–13774.
21. El Boustany C, Bidaux G, Enfissi A, Delcourt P, Prevarskaya N, et al. (2008) Regulation of TRPC6 channel activity by tyrosine phosphorylation. Journal of Biological Chemistry 273: 18887–18894.
22. Zhu X, Jiang MS, Peyton M, Boulad G, Hurst R, et al. (1996) A novel mammalian gene family essential for agonist-activated capacitative Ca2+ entry. Cell 85: 661–671.
23. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. Journal of Biological Chemistry 260: 3440–3450.
24. Hemmingsen KG, Poulsen NW, Grulke C, Klose J, Nilsen HW, et al. (1998) A novel mammalian gene family essential for agonist-activated capacitative Ca2+ entry. Cell 85: 661–671.
25. Meggio F, Marin O, Pinna L (1994) Substrate specificity of protein kinase CK2. J Biol Chem 269: 13768–13774.
26. Sanger F, Nicklen S, Coulson A (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74: 5463–5467.
27. Zhu X, Jiang MS, Peyton M, Boulad G, Hurst R, et al. (1996) A novel mammalian gene family essential for agonist-activated capacitative Ca2+ entry. Cell 85: 661–671.
28. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. Journal of Biological Chemistry 260: 3440–3450.
29. Meggio F, Marin O, Pinna L (1994) Substrate specificity of protein kinase CK2. J Biol Chem 269: 13768–13774.
30. Sanger F, Nicklen S, Coulson A (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74: 5463–5467.
31. Zhu X, Jiang MS, Peyton M, Boulad G, Hurst R, et al. (1996) A novel mammalian gene family essential for agonist-activated capacitative Ca2+ entry. Cell 85: 661–671.
32. Meggio F, Marin O, Pinna L (1994) Substrate specificity of protein kinase CK2. J Biol Chem 269: 13768–13774.
33. Sanger F, Nicklen S, Coulson A (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74: 5463–5467.
34. Zhu X, Jiang MS, Peyton M, Boulad G, Hurst R, et al. (1996) A novel mammalian gene family essential for agonist-activated capacitative Ca2+ entry. Cell 85: 661–671.
35. Meggio F, Marin O, Pinna L (1994) Substrate specificity of protein kinase CK2. J Biol Chem 269: 13768–13774.
36. Sanger F, Nicklen S, Coulson A (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74: 5463–5467.
spiking responses in A7r5 vascular smooth muscle cells. Cell Calcium 45: 400–411.

28. Bousquet S, Monet M, Boulay G (2010) Protein kinase C-dependent phosphorylation of transient receptor potential canonical 6 (TRPC6) on serine 448 causes channel inhibition. J Biol Chem.

29. Hassock S, Zhu M, Trost C, Flockerzi V, Authi K (2002) Expression and role of TRPC proteins in human platelets: evidence that TRPC6 forms the store-independent calcium entry channel. Blood 100: 2001–2011.

30. Voodstra O, Beck K, Oberregelshacher C, Pfannstiel J, Huber A (2010) Light-dependent phosphorylation of the drosophila transient receptor potential ion channel. J Biol Chem 285: 14273–14284.

31. Sinkins WG, Goel M, Estacion M, Schilling WP (2004) Association of immunophilins with mammalian TRPC channels. Journal of Biological Chemistry 279: 34521–34529.

32. Boulay G, Brown DM, Qin N, Jiang MS, Dietrich A, et al. (1999) Modulation of Ca2+ entry by polypeptides of the inositol 1,4,5-trisphosphate receptor (IP3R) that bind transient receptor potential (TRP): Evidence for roles of TRP and IP3R in store depletion-activated Ca2+ entry. Proceedings of the National Academy of Sciences of the United States of America 96: 14953–14960.

33. Boulay G (2002) Ca2+-calmodulin regulates receptor-operated Ca2+ entry activity of TRPC6 in HEK-293 cells. Cell Calcium 32: 201–207.

34. Tang J, Lin YK, Zhang ZM, Tikunova S, Birnbaumer L, et al. (2001) Identification of common binding sites for calmodulin and inositol 1,4,5-trisphosphate receptors on the carboxyl termini of Trp channels. Journal of Biological Chemistry 276: 21303–21310.

35. Kottgen M, Benting T, Simmen T, Tauber R, Buchholz B, et al. (2005) Trafficking of TRPP2 by PACS proteins represents a novel mechanism of ion channel regulation. EMBO J 24: 705–716.

36. Cai Y, Anyatoomwu G, Okuhara D, Lee K, Yu Z, et al. (2004) Calcium dependence of polycystin-2 channel activity is modulated by phosphorylation at Ser912. J Biol Chem 279: 19967–19975.

37. Chung H, Huang Y, Lau L, Hagan R (2004) Regulation of the NMDA receptor complex and trafficking by activity-dependent phosphorylation of the NR2B subunit PDZ ligand. J Neurosci 24: 10248–10259.

38. Sarker R, Grossberg M, Chia B, Mohan S, Chen Y, et al. (2008) Casein kinase 2 binds to the C terminus of Na+/H+ exchanger 3 (NHE3) and stimulates NHE3 basal activity by phosphorylating a separate site in NHE3. Mol Biol Cell 19: 3859–3870.

39. Billi W, Strausmaier T, Thurm H, Andersen J, Eble S, et al. (2004) Protein kinase CK2 is coassembled with small conductance Ca2+-activated K+ channels and regulates channel gating. Neuron 43: 847–858.