A Bilateral Version of the Shannon-McMillan-Breiman Theorem

Pierre Tisseur
Laboratoire Génome et Informatique
Université d’Evry, Tour Evry 2.
March 29, 2022

Abstract

We give a new version of the Shannon-McMillan-Breiman theorem in the case of a bijective action. For a finite partition α of a compact set X and a measurable action T on X, we denote by $C_{n,m,\alpha}^T(x)$ the element of the partition $\alpha \lor T^1 \alpha \lor \ldots \lor T^m \alpha \lor T^{-1} \alpha \lor \ldots \lor T^{-n} \alpha$ which contains a point x. We prove that for μ-almost all x,

$$\lim_{n+m \to \infty} \left(\frac{-1}{n+m} \right) \log \mu(C_{n,m,\alpha}^T(x)) = h_{\mu}(T, \alpha),$$

where μ is a T-ergodic probability measure and $h_{\mu}(T, \alpha)$ is the metric entropy of T with respect to the partition α.

1 Introduction

The Shannon-McMillan-Breiman theorem [2], [3] is used in many problems related to the metric entropy map of an ergodic measure. We extend this well-known result to the case of a bijective dynamical system. Our proof follows the line of Petersen’s proof [3]. We illustrate this new result with an example that gives an inequality between shifts and cellular automata entropies and some analog of the Lyapunov exponents. Our bilateral version of the Shannon-McMillan-Breiman theorem is expected to be useful in other areas of dynamical systems.
2 Background material

Let X be a compact space, μ a probability measure on X and T a measurable map from X to X. We denote by α a finite partition of X and by $C_{n,\alpha}^T(x)$ the element of the partition $\alpha \lor T^{-1} \alpha \lor \ldots \lor T^{-n} \alpha$ which contains the point x. For all point x the information map I is defined by

$$ I(\alpha)(x) = -\log \mu(C_{\alpha}^T(x)) = \sum_{A \in \alpha} -\log \mu(A) \chi_A(x), $$

where $C_{\alpha}^T(x)$ is the element of α which contains x and χ_A is the characteristic function defined by

$$ \chi_A(x) = \begin{cases} 1 & \text{if } x \in A, \\ 0 & \text{otherwise.} \end{cases} $$

The information map satisfies

$$ I(\alpha \lor \beta) = I(\alpha) + I(\beta|\alpha), $$

$$ I(T\alpha|T\beta) = I(\alpha|\beta) \circ T^{-1}. $$

These two properties are easily proved from the definition of I and the fact that T is a surjective map. We refer to [3, p. 238], [4, Chap.8] for a detailed proof of (1) and (2).

A simple formulation of the metric entropy with respect to the partition α is given by

$$ h_\mu(T, \alpha) = \lim_{n \to \infty} \frac{1}{n} \int_X I(\alpha \lor \sum_{k=1}^n T^k \alpha)(x) \, d\mu(x), $$

where

$$ I(\alpha|\beta)(x) = -\sum_{A \in \alpha, B \in \beta} \chi_{A \cap B}(x) \log \left(\frac{\mu(A \cap B)}{\mu(B)} \right) $$

is the conditional information map representing the quantity of information given by the partition α knowing the partition β about the point x.

We recall the Shannon-McMillan-Breiman theorem [2, 3].

Theorem 1 (Shannon-McMillan-Breiman’s theorem) If μ is a T-ergodic measure, then for μ-almost all x in a compact X we have

$$ \lim_{n \to \infty} \frac{1}{n} \log \mu(C_{n,\alpha}^T(x)) = h_\mu(T, \alpha). $$
3 A bilateral version of Shannon-McMillan-Breiman’s theorem

In order to prove the main result (Theorem 2) we need to expose two technical lemmas. The proof of Lemma 2 and Theorem 2 requires a bilateral version of the Birkhoff pointwise ergodic theorem: for a T-ergodic measure μ one has

$$\lim_{n+m \to \infty} \frac{1}{n + m + 1} \sum_{k=-m}^{n} f \circ T^k(x) = \int_{X} f(x) d\mu(x)$$

for almost all x with a map f in L_1. This result is easily deduced from the Birkhoff pointwise ergodic theorem (see [2 Chap.10]) by breaking up the infinite sum in two proportional parts.

Lemma 1 For all integers m and n we have

$$\sum_{k=-m}^{n-1} I(\alpha | \vee_{j=1}^{n-k} T^{-j} \alpha) \circ T^k = I(\vee_{j=-n}^{m} T^j \alpha) - I(T^{-n} \alpha).$$

Proof: Note that $I(\vee_{j=-n}^{m} T^j \alpha) = I(\vee_{j=0}^{m+n} T^{m-j} \alpha)$. Using [1 Background materialequation.1] we have

$$I(\vee_{j=0}^{m+n} T^{m-j} \alpha) = I(\vee_{j=1}^{m+n} T^{m-j} \alpha) + I(T^{m} \alpha | \vee_{j=1}^{m+n} T^{m-j} \alpha)$$

and from [2 Background materialequation.1] we get

$$I(T^{m} \alpha | \vee_{j=1}^{m+n} T^{m-j} \alpha) = I(\alpha | \vee_{j=1}^{m+n} T^{m-j} \alpha) \circ T^{-m}.$$

Hence,

$$I(\vee_{j=-n}^{m} T^j \alpha) = I(\vee_{j=1}^{m+n} T^{m-j} \alpha) + I(\alpha | \vee_{j=1}^{m+n} T^{m-j} \alpha) \circ T^{-m}.$$

The same operations on $I(\vee_{j=1}^{m+n} T^{m-j} \alpha)$ yields

$$I(\vee_{j=1}^{m+n} T^{m-j} \alpha) = I(\vee_{j=2}^{m+n} T^{m-j} \alpha) + I(\alpha | \vee_{j=1}^{m+n} T^{m-j} \alpha) \circ T^{-m+1}$$

$$= I(\vee_{j=1}^{m+n-1} T^{m-1-j} \alpha) + I(\alpha | \vee_{j=1}^{m+n-1} T^{m-1-j} \alpha) \circ T^{-m+1}.$$

Hence,

$$I(\vee_{j=-n}^{m} T^j \alpha) = I(\vee_{j=1}^{m+n-1} T^{m-1-j} \alpha) + I(\alpha | \vee_{j=1}^{m+n-1} T^{m-1-j} \alpha) \circ T^{-m+1} + I(\alpha | \vee_{j=1}^{m+n} T^{m-j} \alpha) \circ T^{-m}.$$
Iterating similarly $t - 1$ times on $I(\vee_{j=1}^{m+n-1} T^{m-1-j} \alpha)$ leads to

$$I(\vee_{j=-n}^{m} T^{j} \alpha) = I(\vee_{j=1}^{m+n-t} T^{m-t-j} \alpha) + \sum_{k=0}^{t} I(\alpha| \vee_{j=1}^{m+n-k} T^{-j} \alpha) \circ T^{-m+k}.$$

Taking $t = m + n - 1$ gives

$$I(\vee_{j=-n}^{m} T^{j} \alpha) = +I(T^{-n} \alpha) + \sum_{k=0}^{m+n-1} I(\alpha| \vee_{j=1}^{m+n-k} T^{-j} \alpha) \circ T^{-m+k}$$

which completes the proof.

Lemma 2: If μ is a T ergodic measure then for almost all x in X,

$$\lim_{m+n \to \infty} \frac{1}{m + n + 1} \sum_{k=-m}^{n-1} I(\alpha| \vee_{j=1}^{s} T^{-j} \alpha) \circ T^{k}(x) = \lim_{m+n \to \infty} \frac{1}{m + n + 1} \sum_{k=-m}^{n-1} I(\alpha| \vee_{j=1}^{n-k} T^{-j} \alpha) \circ T^{k}(x).$$

Proof: For notational convenience, we introduce

$$f = \lim_{s \to \infty} I(\alpha| \vee_{j=1}^{s} T^{-j} \alpha) \quad \text{and} \quad F_{N} = \sup_{s \geq N} |I(\alpha| \vee_{j=1}^{s} T^{-j} \alpha) - f|.$$

It is well known that the sequence $(I(\alpha| \vee_{j=1}^{s} T^{-j} \alpha))_{s \in \mathbb{N}}$ converge almost everywhere and in L_{1}. The proof of this convergence (see [4, Chap.8] and [3, p.262]) requires the increasing martingale theorem.

We need to show that

$$\lim_{m+n \to \infty} \frac{1}{m + n + 1} \sum_{k=-m}^{n-1} |I(\alpha| \vee_{j=1}^{n-k} T^{-j} \alpha) \circ T^{k} - f \circ T^{k}| = 0.$$

Note that

$$\frac{1}{m + n + 1} \sum_{k=-m}^{n-1} |I(\alpha| \vee_{j=1}^{n-k} T^{-j} \alpha) \circ T^{k} - f \circ T^{k}| \leq$$

$$\frac{1}{m + n + 1} \sum_{k=n-N}^{n-1} |I(\alpha| \vee_{j=1}^{n-k} T^{-j} \alpha) \circ T^{k} - f \circ T^{k}| + \frac{1}{m + n + 1} \sum_{k=-m}^{n-N-1} |F_{N} \circ T^{k}|.$$
If we fix N and let $n + m$ tend to infinity then the first term in the right-hand side of the above inequality goes to zero. Since the map F_N belongs to L_1 (see [3]), the bilateral version of Birkhoff’s ergodic theorem applies and we can assert that

$$\lim_{m+n \to \infty} \frac{1}{m+n+1} \sum_{k=-m}^{n-N-1} |F_N| \circ T^k = \int_X F_N \, d\mu.$$

Since $\lim_{N \to \infty} F_N = 0$, the dominated convergence theorem implies that $\int_X F_N \, d\mu$ tends to zero which completes the proof.

Theorem 2 For a bijective map T from X to X and a T-ergodic measure μ, we have for μ-almost all x

$$\lim_{m+n \to \infty} \frac{-1}{n+m} \log \mu(C_{n,m,\alpha}^T(x)) = h_{\mu}(T, \alpha),$$

where $C_{n,m,\alpha}^T(x)$ represents the element of the partition $\alpha \lor T\alpha \ldots \lor T^m\alpha \lor T^{-1}\alpha \lor \ldots \lor T^{-n}\alpha$ containing the point x.

Proof. Since the sequence $\left(I(\alpha | \lor_{j=1}^s T^{-j}\alpha) \right)_{s \in \mathbb{N}}$ converges to a L_1 map and by using the dominated convergence theorem, it follows that

$$h_{\mu}(T, \alpha) = \lim_{s \to \infty} \int_X I(\alpha | \lor_{j=1}^s T^{-j}\alpha)(x) \, d\mu(x) = \int_X \lim_{s \to \infty} I(\alpha | \lor_{j=1}^s T^{-j}\alpha)(x) \, d\mu(x)$$

for μ-almost all x. The bilateral version of Birkhoff’s ergodic theorem implies that for almost all x

$$h_{\mu}(T, \alpha) = \lim_{m+n \to \infty} \frac{1}{m+n+1} \sum_{k=-m}^{n-1} \lim_{s \to \infty} I(\alpha | \lor_{j=1}^s T^{-j}\alpha) \circ T^k(x).$$

From Lemma [2] it follows that

$$h_{\mu}(T, \alpha) = \lim_{m+n \to \infty} \frac{1}{m+n+1} \sum_{k=-m}^{n-1} I(\alpha | \lor_{j=1}^{n-k} T^{-j}\alpha) \circ T^k(x).$$

Using Lemma [1] for almost all x we obtain

$$h_{\mu}(T, \alpha) = \lim_{m+n \to \infty} \frac{1}{m+n+1} \left(I(\lor_{j=-n}^m T^j\alpha)(x) - I(T^{-n}\alpha)(x) \right).$$
Since \((I(T^{-n})_{n\in\mathbb{N}} \) is bounded for \(\mu \)-almost all point \(x \), the sequence \(\frac{I(T^{-n})}{n+m+1} \) tends almost surely to zero. Hence,

\[
 h_{\mu}(T, \alpha) = \lim_{m+n \to \infty} \frac{1}{m+n+1} I(\bigvee_{j=-n}^{m} T^j \alpha)(x)
\]

\[
 = - \lim_{m+n \to \infty} \frac{1}{m+n} \log \mu(C_{n,m,\alpha}^{T}(x)). \quad \square
\]

4 An illustration

In this example we do not give a definition of the particular discrete dynamical systems called cellular automata; the reader can find a survey in [1] and the complete proof of this illustration in [2]. The bilateral version of the Shannon-McMillan-Breiman theorem is needed to establish an inequality between the entropy of a cellular automaton \(F \) denoted by \(h_{\mu}(F, \alpha) \), the entropy \(h_{\mu}(\sigma) \) of a particular bijective cellular automaton \(\sigma \) called the shift, and some discrete analog of the Lyapunov exponents. Here the measure \(\mu \) is \(F \)-invariant and \(\sigma \)-ergodic.

The standard Shannon-McMillan-Breiman theorem [1, Chap.10] says that in the case of an invariant measure \(\mu \),

\[
 h_{\mu}(F, \alpha) = \int \lim_{n \to \infty} \frac{-1}{n} \log \mu \left(C_{n,\alpha}^{F}(x) \right) \, d\mu(x).
\]

In [2] one proves that there exists some integer and bounded maps \(f_n \) and \(g_n \) such that, for all point \(x \), one has

\[
 C_{n,\alpha}^{F}(x) \supset C_{f_n(x),g_n(x),\alpha}^{\sigma}(x)
\]

with \(\lim_{n \to \infty} f_n(x) + g_n(x) = +\infty \) for \(\mu \)-almost all point \(x \) for a certain class of cellular automata. For those that do not belong to this class, the entropy is equal to zero (see [2]). With these properties we obtain

\[
 h_{\mu}(F, \alpha) \leq \int \lim_{n \to \infty} \frac{-1}{n} \log \mu \left(C_{f_n(x),g_n(x),\alpha}^{\sigma}(x) \right) \, d\mu(x)
\]

and

\[
 h_{\mu}(F, \alpha) \leq \int \liminf_{n \to \infty} \frac{-1}{f_n(x) + g_n(x) + 1} \log \mu \left(C_{f_n(x),g_n(x),\alpha}^{\sigma}(x) \right) \times \frac{g_n(x) + f_n(x) + 1}{n} \, d\mu(x).
\]
The bilateral version of the Shannon-McMillan-Breiman theorem implies that

\[h_\mu(F, \alpha) \leq h_\mu(\sigma, \alpha) \int \liminf_{n \to \infty} \frac{f_n(x) + g_n(x) + 1}{n}. \]

Using the Fatou lemma, we have

\[h_\mu(F, \alpha) \leq h_\mu(\sigma, \alpha) \times (\lambda^\mu + \lambda^\mu -), \]

where

\[\lambda^\mu = \liminf \int \frac{f_n(x)}{n} d\mu(x) \quad \text{and} \quad \lambda^- = \liminf \int \frac{g_n(x)}{n} d\mu(x) \]

are called the left and right average Lyapunov exponents.

References

[1] François Blanchard, Petr Kurka, and Alejandro Maass, *Topological and measure-theoretic properties of one-dimensional cellular automata*, Phys. D, 103 (1997), pp. 86–99. Lattice dynamics (Paris, 1995).

[2] Leo Breiman, *The individual ergodic theorem of information theory*, Ann. Math. Stat., 28 (1957), pp. 809–811.

[3] Karl Petersen, *Ergodic theory*, Cambridge Studies in Advanced Mathematics, 2, Cambridge University Press, Cambridge, UK, 1983.

[4] Mark Pollicott and Michiko Yuri, *Dynamical systems and ergodic theory*, vol. 40 of London Mathematical Society Student Texts, Cambridge University Press, Cambridge, UK, 1998.

[5] Pierre Tisseur, *Aspects ergodiques des automates cellulaires*, PhD thesis, Université d’Aix-Marseille II, 1999.