Molecular signals that govern tuber development in potato

KIRTIKUMAR R. KONDHARE, BHAVANI NATARAJAN and ANJAN K. BANERJEE*

Indian Institute of Science Education and Research (IISER), Biology Division, Pune, India

ABSTRACT The potato serves as the fourth most important food crop on the planet after the three cereal crops. It is rich in starch, storage proteins and important vitamins, dietary antioxidants and minerals. Potato is a modified stem (stolon) that grows underground, at the base of the plant, under favourable conditions. Perception and processing of signals occur in leaves and the corresponding information is transported to the stolon-tip. The elongation of the stolon-tip ceases and the plane of cell division changes from transverse to longitudinal, causing swelling of the sub-apical region of the stolon. This is accompanied by synthesis of starch in leaves, followed by its transport to and accumulation in the stolon. The initiation of tuber developmental signals and the subsequent stolon-to-tuber transition (tuberization) is undoubtedly a dynamic process which involves integration of multiple molecular factors, environmental cues and crosstalk between various pathways, including phytohormones. Understanding the tuberization process has been an aim of many plant biologists across the globe. Recent discoveries have shown that apart from photoperiod and hormonal metabolism, there are crucial transcription factors, small RNAs, full-length mobile mRNAs and proteins that regulate tuberization in potato. Although we have gained significant knowledge about the tuberization process, many questions on the underlying mechanisms of tuber development remain to be answered. In this review, we summarize the crucial molecular signals that govern tuber formation and propose an updated tuberization network along with future research directions.

KEY WORDS: small RNA, StBEL5, StSP6A, POTH1, mobile RNA

Introduction

Potato (Solanum tuberosum L.), a member of the Solanaceae, is the fourth most important food crop in the world. The genus S. tuberosum is classified into two subspecies, andigena and tuberosum. Subspecies andigena forms tubers only under short-day photoperiod conditions (SD; 8 h light/16 h dark) and is mainly grown in the Andes, while the widely cultivated subspecies tuberosum is adapted to long-day conditions (LD; 16 h light/8 h dark) (Ewing and Struik, 1992). Under favourable conditions, starch synthesized in the compound leaves is mobilized to an underground modified stem (stolon) that finally develops into a mature tuber. Potato tubers accumulate large quantities of starch, protein and dietary fibre, and are low in fat. They are also enriched with micronutrients (vitamin C, niacin, thiamine, folate, pantothenic acid and riboflavin), dietary antioxidants, and minerals, such as, iron, potassium, phosphorus and magnesium. In food industry, tubers are used in chip and fries production, whereas their non-food usage includes the production of starch, fuel-grade ethanol and glue. Numerous potato varieties with diversity in tuber size, shape, colour, texture, cooking characteristics and taste are grown worldwide.

Tuber formation is a unique developmental process, where stolon originates from the base of the main stem and continues to grow horizontally, and if exposed to sufficient light, it becomes green and emerges from the soil to form a new shoot that behaves...
like a mature plant (Fig. 1). While under inductive conditions, stolon elongation is arrested, radial swelling is triggered at the subapical region of the stolon, and eventually develops into a mature tuber (Xu et al., 1998a; 1998b) (Fig. 1) with many dormant axillary buds known as tuber “eyes”. After a period of dormancy, tuber eyes sprout (Fig. 1) and develop to a new plant. Hence, tubers serve the dual role of storage organ as well as vegetative propagation system.

At the onset of tuberization, growth of stolon apical meristem cells becomes determinate, and cell division ceases after a few rounds. However, growth is initiated in a specific layer of cells in the perimedullary zone just below the stolon apex and in close proximity to vascular tissue (Xu et al., 1998b). In the stolon tip, the orientation of cell division changes from transverse to longitudinal leading to radial expansion. Most of the cell division and expansion occurs in the stolon sub-apical region between the cortex and pith of the developing tuber (Xu et al., 1998b) and an alteration of hormone levels (gibberellic acid [GA], auxin and cytokinin [CK]) seem to be critical for such dynamic changes (Xu et al., 1998a). As a result, the stolon sub-apical region acts as a strong sink, the mechanism of sucrose unloading shifts from apoplastic to symplastic, and it starts to accumulate a large amount of starch and storage proteins. Thus, it appears that in order to control the initiation of stolon-to-tuber transition, a simultaneous activation/suppression model needs to be functional in specific cell types during the development of a new tuber from the stolon tip (Ghate et al., 2017).

Stolon-to-tuber transition in potato is an important developmental phase governed by many environmental, biochemical and hormonal cues. Over the years, many researchers have been investigating the molecular mechanism of tuber development in order to improve tuber yield. Potato genome sequencing (~850Mb) has further paved the way for the rapid progress in functional analysis of genes regulating tuber development. It is believed that tuber formation mainly involves three phases—induction, initiation and proliferation (Gregory, 1956). Tuber induction is associated with suppression of axillary branching, frequent abortion of flower buds, and enlargement of leaf size (Ewing and Struik, 1992). The factors involved in the initiation and subsequent proliferation of growth at the stolon sub-apical region are explained in the later sections.

Tuberization mechanism has been studied for a number of decades. In past, it was believed that tuberization was controlled by specific stimuli produced in the terminal leaf cluster (Chapman, 1958), and also in old and young leaves (Hammes and Beyers, 1973) under inducing conditions of photoperiod and temperature (Nitsch, 1965; Menzel, 1985). The signal that causes the plant to develop potatoes has been elusive to potato biologists until the report of Chailakhyan et al., (1981); where authors demonstrated that grafting of flowering tobacco (Nicotiana tabacum) shoots (scion) onto non-tuberizing potato stocks resulted in an induction of tuber formation, suggesting the presence of common regulatory factors between flowering and tuberization processes. In post-potato genome era, this report (Chailakhyan et al., 1981) prompted researchers to search for potential mobile signals involved in potato development that are elaborated in the later sections of this review.

Photoperiod, temperature, light intensity, nitrogen supply and sucrose status decide tuber development

It is now established that short days, cool temperatures (Gregory, 1956), high light intensities (Bodlaender, 1964; Wheeler and Tibbits, 1986), and low levels of nitrogen application (Gao et al., 2014) stimulates tuber formation, whereas long days, high temperatures (Gregory, 1956), low light intensities (Ewing and Struik, 1992), and high nitrogen application (Gao et al., 2014) delays tuberization in potato. Sucrose functions as an indispensable metabolic signal that regulates the demand of source-sink relationship during tuber development. Several studies have established that by increasing sugar accumulation or by exogenous sucrose application (Xu et al., 1998a), tuber numbers can be increased, but tuber size remained smaller than wild-type. Moreover, sugars and phytohormones (especially GA, auxin and CK) regulate each other’s metabolism, transport and signalling pathways, and their cross-talks play a crucial role in tuber formation (Jackson, 1999).

Role of plant hormones in tuber development

As explained above, the graft transmissible nature of tuberization signals and the accompanied morphological changes in the potato plant convinced researchers that plant hormones could be the stimulus for the tuber induction process. Different hormonal groups, such as GA (Xu et al., 1998a; Xu et al., 1998b; Martinez-Garcia et al., 2001; Ewing and Struik, 1992; Kloosterman et al., 2007; Rosin et al., 2003), CK (Tao et al., 2010; Eviatar-Ribak et al., 2013), auxin (Xu et al., 1998a; Roumeliotis et al., 2012), abscisic acid (ABA) and strigolactone (SL) are implicated in tuber formation, and the changes in hormonal metabolism could be correlated with the onset of tuberization. It is likely that many of these hormones function in the stolon tissue and they regulate the stolon transitional stages.
KNOTTED1-LIKE (KNOX) and BEL1-LIKE (BEL) transcription factors (TFs) belong to the Three Amino Acid Loop Extension (TALE) superfamily of homeobox TFs and they are ubiquitous in plants. KNOX and BEL genes are implicated in diverse processes of plant growth and development (Reviewed in Hamant and Pautot, 2010; Hay and Tsiantis, 2010) and they interact with each other to form heterodimers that regulate the expression of target genes (Chen et al., 2003; Hamant and Pautot, 2010). This BEL/KNOX interaction is selective and different heterodimers govern unique set of target genes in plants (Hay and Tsiantis, 2010). Based on expression patterns and sequence divergences, KNOX genes are grouped into two sub-classes; class-I and -II. Class-I KNOX TFs function as either transcriptional activators or repressors (Hay and Tsiantis, 2010) and are involved in shoot apical meristem (SAM) maintenance, leaf development, hormone homeostasis and tuberization (reviewed in Hay and Tsiantis 2010). Although functions of class-II KNOX genes are less explored than class-I KNOX genes, there are few reports that show their involvement in regulation of root development (Truermit and Haseloff, 2007) as well as in seed dormancy (Chai et al., 2016).

Seven KNOX genes have been identified in potato, named as Potato Homeobox 1 (POTH1), POTH15, POTH20, SfKn1, SHox1, SHox2 and SfPetroselinum (Rosin et al., 2003; Mahajan et al., 2012; 2016). Of them, the role of POTH1 and POTH15 (class-I KNOX genes) in leaf development and tuberization has been characterized (Rosin et al., 2003; Mahajan et al., 2012; 2016), whereas the role of other KNOX genes in potato are not yet investigated. POTH1 over-expression lines of andigena tuberized earlier and produced more tubers at a faster rate than controls under both SD and LD photoperiods in in vitro conditions (Rosin et al., 2003). Later, Mahajan et al. (2012) through a hetero-grafting experiment showed that transcript of POTH1 moves basipetally through the phloem (Mahajan et al., 2012). The promoter of POTH1 was found to be active in the mid-vein of leaves, mature stamens (Fig. 2A), roots and stolon tip, and its promoter activity was also found to be light inducible (Mahajan et al., 2012). In the stolon, POTH1 and its BEL partner (SfBEL5) binds to a tandem TTGAC motif in the promoters of GA20ox1 and GA2ox, and these interactions have been shown to reduce GA levels that is required for tuber formation (Chen et al., 2003; 2004). KNOX genes also regulate levels of CK and auxin (reviewed in Hay and Tsiantis, 2010). Previous studies by Bolduc et al., (2012) and Mahajan et al., (2016) reported that KNOX-I genes target other homeobox TFs as well as hormone metabolism genes. Mahajan et al., (2016) showed that POTH15 over-expression affected diverse developmental processes in potato (e.g. Fig. 2 C,D). In this study, authors further revealed that ~87% of randomly chosen POTH15 target genes had at least one tandem TGAC core motif in the 3.0 kb upstream sequence of the transcription start site, suggesting a possible BEL/KNOX interaction with the target genes (Mahajan et al., 2016). Many questions still remain to be answered regarding the functions of KNOX genes in potato. For example, like POTH1, are the mRNAs of other class-I KNOX genes phloem mobile? Do other KNOX genes have a role to play in tuber formation?

BEL TFs contain two conserved domains essential for their functionality: the homeobox domain and the BEL domain. In potato, thirteen BEL TFs have been identified (Sharma et al., 2014). Of them, SfBEL5, -11 and -29 are the highly expressing BELs and they constitute nearly two-thirds of the total transcript values for the entire BEL family in potato (Sharma et al., 2014). By yeast two-hybrid study,
authors further demonstrated that different BELs interact with KNOX proteins in potato (Sharma et al., 2014). StBEL5 was the first BEL protein identified in potato and its full-length mRNA was shown to function as a long-distance mRNA signal that is transcribed in leaves and moves into roots and stolons to stimulate growth (Banerjee et al., 2006, Lin et al., 2013). It has also been demonstrated that both 3’ and 5’ Untranslated Regions (UTRs) affect the movement of StBEL5 mRNA (Banerjee et al., 2009). StBEL5 over-expression plants exhibited a reduction in GA levels in stolons and leaves (Chen et al., 2003; Rosin et al., 2003), which was associated with the earliness in tuberization under in vitro conditions and an increased tuber yield in soil-grown plants under SD conditions. Moreover, StBEL5 RNAi lines showed 30-40% reduction in tuber yield in soil-grown plants (Sharma et al., 2016). All these studies established that StBEL5 acts as a positive regulator of tuberization. Similar to StBEL5, the transcripts of StBEL11 and -29 (two close homologs of StBEL5) are recently shown to be phloem mobile from leaf to root and stolon tissues, but they suppress tuber growth (Ghate et al., 2017). It is also shown that all these three BELs regulate a common target gene StISP6A (Sharma et al., 2016; Ghate et al., 2017). Based on their RNA profiling in phloem cells, it appears that there is a crosstalk between StBEL5, -11 and -29 in the stolon and this tripartite module could govern the activation of the tuber development process.

In potato, a BEL/KNOX heterodimer (StBEL5/POTH1) has been shown to bind to the promoter of GA20ox1 through a tandem TTGAC motif to repress its expression, resulting in reduced GA levels in the stolon (Chen et al., 2003). Even single base pair mutation in this tandem TTGAC motif completely abolished the binding of StBEL5/POTH1 heterodimer to GA20ox1 promoter (Chen et al., 2004). These results established the importance of tandem TTGAC motifs for regulation of target genes by the BEL/KNOX complex.

Although the full-length mRNAs of POTH1, StBEL5, -11 and -29 were shown to be phloem mobile (Mahajan et al., 2012; Banerjee et al., 2006; 2009; Ghate et al., 2017), what aids in their mobility was not known until 2014. Later, RNA binding proteins (RBPs), also known as polypyrimidine tract-binding proteins (PTBs), were identified as helpers in transport, stability and metabolism of mobile mRNAs (Lucas et al., 2001). CmRBP50 from the pumpkin phloem was the first RBP protein to be identified as a long-distance transport carrier for six different full-length mRNA molecules (Ham et al., 2009). CmRBP50 was found to bind specifically to ‘Cytosine Uracil’ (CU) motifs in the 5’ and 3’ UTRs of the target mRNAs. Six PTBs have been identified in potato: StPTB1, StPTB6, StPTB7, StPTB7.1, StPTB7.2 and StPTB7.3 (Cho et al., 2015). StPTB1 and -6 are induced in leaves and RNA gel shift assays have reported that they bind preferentially to CU motifs in the 3’ and 5’ UTRs of the target mRNAs. Six PTBs have been identified in potato: StPTB1, StPTB6, StPTB7, StPTB7.1, StPTB7.2 and StPTB7.3 (Cho et al., 2015). Moreover, StPTB1 or -6 mRNA suppression lines exhibited 50-80% reduction in tuber yield, whereas their individual over-expression lines showed enhanced tuber yield (Cho et al., 2015), indicating that STBPTBs act as positive regulators of tuber development possibly by enhancing the transport of StBEL5 mRNA in to the stolons.

The phloem mobile FT protein StISP6A forms the tuberization activation complex (TAC) in the stolon to regulate tuber initiation

Flowering and tuberization pathways are known to share common molecular players, e.g. CONSTANS1/2 (StCO1/2) and a Flowering Locus T protein (StSP6A; Self-Pruning 6A) (Martinez-Garcia et al., 2002; Navarro et al., 2011), and are regulated by red light receptors, phytochrome A/B (PHYA/B) and blue light receptor, cryptochromes (CRY) (Endo et al., 2007). PHYB operates upstream in the photoperiod-mediated tuberization pathway and PHYB silenced andigena lines showed increased RNA levels of SISP6A, StBEL5 and miR172 in stolons, and tuberized even under non-inductive LD conditions (Martin et al., 2009). Based on hetero-grafting experiments, it appeared that during light signalling, PHYB indirectly induces a tuberization repressor StCO1/2 (Jackson et al., 1998; Martinez-Garcia et al., 2002). It is also proposed that PHYB could exert its effects on tuber formation through GAs (Jackson et al., 2000). PHYA is less studied as compared to PHYB for its role in tuber formation. A study by Yanovsky et al., (2000) showed that PHYA resets the circadian clock, and its antisense lines tuberized early under non-inductive LD photoperiodic conditions, suggesting that like PHYB (Jackson et al., 1998), PHYA also functions as an inhibitor of tuberization, however, the signalling network of PHYA remains to be investigated. Apart from PHYA/B, the role of other photoreceptors like CRY1/2, phototropins and ultraviolet-B UVr8 in tuberization is not known.

FT is a member of the phosphatidylethanolamine-binding (PEPB) family protein that interacts with the bZIP transcription factor FLOWERING LOCUS D (FD) at the shoot meristem to form the floral activation complex (FAC) that initiates flowering pathway in Arabidopsis (Abe et al., 2005). Three FT orthologs StISP6A, StISP3D and StISP5G are present in potato (Navarro et al., 2011). StISP6A and StISP5G are involved in tuberization, whereas StISP3D is involved in flowering (Navarro et al., 2011). Hetero-grafting studies with StISP6A over-expression line as scion and wild-type as stock have demonstrated that StISP6A protein is mobile, and tuber yield was increased in hetero-grafted plants (Navarro et al., 2011). StISP6A protein accumulates in leaves and stolons in response to SD conditions, which is in direct correlation with StBEL5 activity in leaves. It has been shown that the promoter sequence of StISP6A has five tandem TTGAC motifs, and StISP6A activity in leaves was completely abolished in TTGAC promoter mutant lines under SD conditions (Sharma et al., 2016). Under SD conditions, StBEL5 induces StISP6A in leaves as well as in stolons. Over-expression lines of StISP6A tuberized even under LD conditions, whereas its suppression lines showed a decrease in tuber yield (Navarro et al., 2011), confirming that StISP6A protein acts as a tuber activator. Moreover, a recent study by Abelenda et al., (2019) identified a sugar transporter StSWEET11 as the potential interactor of StISP6A and this heterodimer in the stolon helps in establishing source-sink relationship during tuber swelling. Another study suggested that the tuber activation complex (TAC) is formed in the stolon tip via the heterodimeric interaction of StISP6A and FD-like protein (StFDL1) with St 14-3-3-3, which regulates the onset of tuberization (Teo et al., 2017). However, if downstream tuber marker genes, such as SIGA20ox1 (Chen et al., 2004), SIGA20x1 (Kloosterman et al., 2007) and StIPT (Lin et al., 2013), are regulated by the TAC are not known.

StBEL5 functions upstream to StCDF1 during photoperiodic pathway in potato

CYCLING DOF FACTORs (CDFs) are transcriptional regulators from the ZINC FINGER DOF family of proteins. Three allelic StCDF1 forms have been identified in different potato genotypes - StCDF1.1
(very late tuberizing variant), StCDF1.2 and StCDF1.3 (very early tuberizing variants) (Kloosterman et al., 2013). StCDF1 acts as a central regulator between the circadian clock genes (GIANTANEA [STGI] and FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 [STFKF1]) and a mobile tuberization signal, SISP6A, to control plant maturity and tuberization (Navarro et al., 2011; Kloosterman et al., 2013). Precisely, StCDF1 stimulates tuberization by repressing the levels of STCO1/2, thereby increasing the levels of a positive regulator of tuber development SISP6A (Martinez-Garcia et al., 2002; Navarro et al., 2011; Kloosterman et al., 2013). It is proposed that during LD conditions, the circadian clock proteins (STGI and STFKF1) bind to the STCDF1 protein and catalyse its degradation by the 26S proteasome (Sawa, 2007), resulting in inhibition of tuber formation. An interesting report by Sharma et al. (2016) suggested that STCDF1 could be a target of STBEL5. Preliminary observation revealed the presence of six tandem TGAC core motifs in the STCDF1 promoter sequence. Using transgenic potato lines harboring the wild-type or the TGAC mutated promoter STCDF1 fused to a reporter gene GUS, we showed that wild-type promoter STCDF1:GUS transgenic potato lines exhibit a widespread GUS activity, whereas mutated promoter STCDF1:GUS transgenic lines exhibited a complete abolishment of GUS activity. Moreover, yeast one-hybrid assay showed that STBEL5 protein interacts with the wild-type STCDF1 promoter, but not with the TGAC mutated STCDF1 promoter (Kondhare et al., 2019). During different stolon-to-tuber transitional stages, the transcript levels of STBEL5 and STCDF1 were significantly higher under SD photoperiodic conditions compared to LD (Kondhare et al., 2019). GUS activity was also seen in the tuber pith, tuber-stalk junction and 3-months old tuber sprouts of STCDF1::GUS promoter transgenic lines, suggesting that STBEL5-STCDF1 module is functional during tuber development (Kondhare et al., 2019). These results establish that STBEL5 functions upstream to STCDF1 gene in potato.

Small RNAs and their targets function as crucial regulators of tuberization

Small RNAs (sRNAs), such as microRNAs (miRNAs) and short-interfering RNAs (siRNAs) (Xia et al., 2017) function as crucial regulators of plant growth and development (Bartel, 2004). They are also involved in different abiotic and biotic stress responses (Axtell, 2013). miRNAs are generally 21 nt long single stranded endogenous sRNAs (Bartel, 2004), whereas siRNAs (20-22, 24 nt long) are produced from double stranded endogenous RNAs (Axtell, 2013). Specific siRNA groups, i.e. phased siRNAs (phasiRNAs) or trans-acting siRNAs (tasiRNAs), are mainly identified in plants (Xia et al., 2017) and their mechanism of action is similar to miRNAs.

As miRNAs target multiple families of transcription factors to control developmental decisions of cell differentiation or organ patterning (Rhoades et al., 2002), it was intriguing to hypothesize if sRNAs govern the early stages of stolon-to-tuber transitions in a photoperiod-dependent manner. Although two studies (Zhang et al., 2013; Lakhota et al., 2014) were reported, they were limited to identification of miRNAs involved in overall tuber formation and did not emphasize the influence of photoperiod in governing the early stages of stolon transitions. Recently, our small RNA profiling revealed 7 conserved and 12 novel miRNAs to be differentially expressed in early stolon stages under SD vs. LD photoperiodic conditions (Kondhare et al., 2018). qRT-PCR analysis showed that putative target genes of some of these miRNAs, such as STGRAS, STTCP2/4 and STPTB6, exhibited differential expression in early stolon stages under SD vs. LD photoperiodic conditions, suggesting that miRNAs and their putative targets could regulate the tuberization process.

miRNAs and tuber development

Although miRNAs have been implicated in regulation of diverse developmental and defence related processes in plants (Bartel, 2004; Islam et al., 2018), so far only selective miRNAs are shown to be involved in tuber development. A cross-talk between two miRNAs, miR156 and miR172, controls the transition from juvenile to reproductive phases in Arabidopsis (Wu et al., 2009). The levels of miR156 and miR172 were significantly higher in stolons and swollen stolons under SD conditions compared to LD conditions in wild-type andigena plants (Martin et al., 2009; Bhogale et al., 2014), suggesting the influence of photoperiod on differential expression of these miRNAs as well as their role in stolon-to-tuber transitions. In andigena background, the over-expression of miR172 promoted both flowering as well as tuberization under long days (Martin et al., 2009), whereas that of miR156 over-expression lines repressed underground tuber yield but induced aerial tuber formation under SD (Fig. 2B) (Bhogale et al., 2014). These studies also demonstrated that both miR156 and miR172 could function as phloem mobile signals involved in tuber development. Currently, a model for miRNA-mediated tuberization is apparent in the field. In this model, PHYB acts upstream to miR156-SISPL9 module. SISPL9 induces miR172. Potato RELATED TO APETALA2 1 (STRAP1) is a putative target gene of miR172, and it functions as a repressor of STBEL5 gene (Martin et al., 2009; Bhogale et al., 2014). Under SD conditions, the induction of aerial tubers from the nodal-regions, but reduced underground tuber yield in miR156 over-expression lines poses an interesting question if miR156 functions as an inducer or inhibitor during tuberization pathway (Bhogale et al., 2014). Authors proposed that the tissue-specific threshold level of miR156 could be required for underground tuber development, whereas over-expression of miR156 imposed every above ground nodes with the capacity to develop aerial tubers under short day conditions (Bhogale et al., 2014).

Calcium signalling has been implicated in control of plant development, and Calcium Dependent Protein Kinases (CDPKs) transduce calcium signatures into specific responses including tuberization (Raices et al., 2003). The protein activity of CDPK increases at the onset of tuber formation with STCDPK1 expression showing a significant increase during stolon-to-tuber transitions in potato (Raices et al., 2003). In silico analysis and Agrobacterium co-infiltration experiments have established that a conserved miRNA (miR390) cleaves STCDPK1mRNA in potato. STCDPK1 protein phosphorylates an auxin transporter, SIPIN4, a potential downstream target involved in tuber development. These results suggest that the crosstalk between miR390 and STCDPK1 could serve as a regulator of tuber formation (Santin et al., 2017).

Phased siRNAs and tuber development

So far, three studies reported the presence of phased siRNAs in non-tuber organs of potato plants, and they are predicted to be involved in defense responses (Shivaprasad et al., 2012). Using sRNA profiling of early stolon stages under LD and SD photoperiodic conditions, we identified 830 TAS-like loci in potato (Kondhare et al., 2018). Out of 830, 24 TAS-like loci were predicted to be cleaved by novel and conserved miRNAs and generated nearly 200 phased
siRNAs. Many of these siRNAs targeted crucial tuberization genes, such as StGA2ox1, StGA3ox1, StPTB1, POTH1 and StCDPKs (Kondhare et al., 2018). This study suggests a new layer of regulation for tuberization pathway by siRNAs and their putative targets. Further research is needed for their functional characterization in potato development.

Is the tuberization mechanism epigenetically regulated?

Polycomb Group (PcG) proteins are implicated in regulating the transition from juvenile-to-adult phase in plants. Pico et al., (2015) reported that the suppression of one of the PRC1 (Polycomb Repressive Complex 1) members, AtBMI1, results in up-regulation of miR156 in Arabidopsis. Moreover, another PRC1 member, EMBRYONIC FLOWER (EMF1) participates in the regulation of SPL and miR172 genes (Pico et al., 2015), and its mutants produce early flowering phenotype (Kim et al., 2012). During photoperiodic and vernalization pathways, a PRC2 member MULTICOPY SUPPRESSOR OF IRA (MSI1) governs the transition to flowering time, possibly by functioning upstream of crucial flowering genes, like FT, CO, Flowering Locus C (FLC; flowering repressor) and agamous-like 19 (AGL19) (Steinbach and Hennig, 2014). Hence, it would be worth investigating if PcG proteins mediate the regulation of miR156 and miR172 or any other tuber marker genes (LOG, IPT, GA2ox1, GA20ox1, PIN1/4) in potato.

An updated tuberization pathway

Considering the recent advancement in tuber development pathway, we propose an updated model for tuberization (Fig. 3). As shown in this model, under SD photoperiod, PHYB indirectly regulates StBEL5 gene expression in leaf via miR156-StSPL9 and miR172-StRAP1 modules. Simultaneously, POTH1 mRNA and PTB proteins (StPTB1 and -6) are also induced in the leaves. The majority of StBEL5 and POTH1 mRNAs are transported from leaf to stolons via the RNP complex with StPTB1/6, and both RNAs get translated in the stolon. StBEL5 mRNA seems to translate in the leaf also, where its protein possibly along with a KNOX partner induces StSP6A and StCDF1 gene expression. Moreover, StCDF1 protein activity in leaf is regulated by the interaction with circadian clock proteins StGI and StFKF1 that indirectly induces StSP6A protein levels, by removing tuber repressors such as StCO1/2 and StSP5G. StSP6A protein as well as mRNAs of StBEL11 and -29 move from leaf to stolon. StPTB1/6’s role as positive regulators of tuberization is demonstrated, however, it appears that they increase tuber yield indirectly by enhancing the accumulation of StBEL5 and POTH1 mRNAs in the stolon. StBEL5-POTH1 protein complex in the stolon is shown to regulate the expression of tuber marker genes, such as StGA20ox1, StGA3ox2 and StGA2ox1. StBEL11 and StBEL29 possibly along with a KNOX partner repress StSP6A gene expression to inhibit tuber formation. How this StBEL5/11/29 tripartite activator/repressor module works need further research. StSP6A protein has been shown to induce StGA2ox1 in the stolon tip that reduces bioactive GA levels to stimulate tuber induction. Similar to the FAC complex at the SAM, StSP6A protein forms a TAC complex by interacting with SIFDL1 and St 14-3-3 in the stolon. However, downstream components of TAC complex that regulate tuber development are not known. Silencing one of the
potato sucrose transporters, StSUT4, induced tuber formation, possibly by regulating StCO1/2, StSP6A and GA metabolism genes (StGA20ox1, StGA3ox2 and StGA2ox1) (Chincinska et al., 2013). GA metabolism seems to be regulated by both photoperiod-dependent as well as -independent pathways. Under LD conditions, the levels of StBEL5 and StSP6A are reduced. As a result, GA levels increase causing inhibition of tuberization. Similar to PHYB, PHYA also functions as a repressor of tuberization. However, its downstream signalling pathway is less investigated. Blue light receptor’s (CRY1/2) role in tuber development is also not known.

Although we have gained a significant knowledge about the majority of the molecular signals, there are still many questions that need to be answered in near future to shed more light on the tuber development pathways. Some of these are listed below.

- What is the protein partner(s) of StSP6A that helps in its phloem mobility from leaf to stolon? Does StBEL5 protein interact with StSP6A protein in the stolon?
- StBEL5 induces StSP6A gene in both leaf as well as in stolon/ tuber. Does tissue specific activation have any direct correlation with the process of stolon to tuber transitions?
- Is StCDI1 mRNA or protein phloem mobile?
- Do novel miRNAs/phased siRNAs and their target genes control stolon-to-tuber transitions?
- Are there any epigenetic modifiers, such as polycistron or trithorax group proteins, involved in SD-mediated induction of tuber activation pathways?
- Which molecular players distinguish photoperiod-sensitive potato cultivars from the day-neutral ones?
- A stolon develops into a tuber or a new shoot depending on whether it senses light or not. How does the fate of the stolon apical meristem (STAM) change?

Acknowledgements

Authors are thankful to the present and past members of Molecular Plant Biology Lab (Biology, IISER Pune) who contributed directly or indirectly to the understanding of the tuberization pathway in potato. Special thanks to Dr. Ameya Mahajan and Dr. Sneha Bhogale for initiating tuber development work at IISER Pune as well their significant contributions in this regard. Our decade long collaboration with Prof. David Hannapel (Iowa State University, USA) and his group in investigating the tuber development mechanism is gratefully acknowledged. Greenhouse technician, Mr. Nitish Lahigude’s help is also appreciated in potato germplasm maintenance at IISER Pune. We apologise to colleagues whose work we could not cite in this review because of space constraints.

Funding

Financial support received from Indian Institute of Science Education and Research (IISER) Pune, Dept. of Science and Technology (DST), Council of Scientific & Industrial Research (CSIR), Dept. of Biotechnology (DBT), Govt. of India is gratefully acknowledged.

References

ABE M, KOBAYASHI Y, YAMAMOTO S, DAIMON Y, YAMAGUCHI A, IKEDA Y, ICHINOKI H, NOTAGUCHI M, GOTO K, ARAKI T (2005). FD, a BZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309: 1052-1056.

ABLENDA JA, BERGONZI S, OOWIJN M, SONNEWALD S, DU M, VISSER RGF, SONNEWALD U, BACHEM CWB (2019). Source-Sink Regulation Is Mediated by Interaction of an FT Homolog with a SWEET Protein in Potato. Curr Biol 29: 1178-1186.E6.

AXTELL MJ (2013). Classification and comparison of small RNAs from plants. Annu. Rev. Plant Biol. 64: 137-159.

BANERJEE AK, CHATTERJEE M, YU Y, SUH SG, MILLER WA, HANNAPEL DJ (2006). Dynamics of a mobile RNA of potato involved in a long-distance signaling pathway. Plant Cell 18: 3443-3457.

BANERJEE AK, LIN T, HANNAPEL DJ (2009). Untranslated regions of a mobile transcript mediate RNA metabolism. Plant Physiol. 151: 1831-1843.

BARTEL DP (2004). MicroRNAs: genomics biogenesis mechanism and function. Cell 116: 281-297.

BOLDAENDER KBA, LUGT C, MARINUS J (1964). The induction of second-growth in potato tubers. Eur Potato J. 7: 57-71.

BHOGALE S, MAHAJAN AS, NATARAJAN B, RAJABHOJ M, THULASIRAM HV, BANERJEE AK (2014). MicroRNA156A: A potential graft-transmissible microRNA that modulates plant architecture and tuberization in Solanum tuberosum ssp. andigena. Plant Physiol. 164: 1011-1027.

BOLDUC N, YILMAZ A, MEJIA-GUERRA MK, MOROHASHI K, O’CONNOR D, GROEWOLDE H, HAKE S (2012). Unraveling the KNOTTED1 regulatory network in maize meristems. Genes Dev. 26: 1685-1690.

CHAI M ZHOU C, ZHOU M, MOLINA I, FU C, NAKASHIMA J, LI G, ZHANG W, PARK J, TANG Y, JIANG Q, WANG Z-Y (2016). A class II KNOX gene, KNOX4, controls seed physical dormancy. Proc. Natl. Acad. Sci. USA 113: 6997-7002.

CHALIKHAHYAN MKH, YANINIA LI, DAVEDZHIAN AG, LOTOVA GN (1981). Photoperiodism and tuber formation in grafting of tobacco onto potato. Dokl. Akad. Nauk SSSR 257: 1276-1280.

CHAPMAN HW (1958). Tuberization in the potato plant. Physiol. Plant. 11: 215-224.

CHEN H, ROSIN FM, HANNAPEL DJ (2003). Interacting transcription factors from the three amino acid loop extension superclass regulate tuber formation. Plant Physiol. 132:1391-1404.

CHEN H, BANERJEE AK, HANNAPEL DJ (2004). The tandem complex of BEL and KNOX partners is required for transcriptional repression of ga20ox1. Plant J. 38: 276-284.

CHINICINSKA I, GIER K, KRUGEL U, LIESCHE J, HE H, GRIMM B, HARREN FJ, MÜLLER OERTEL H, HE H, BANERJEE AK (2014). MicroRNA156A: A potential graft-transmissible microRNA that modulates plant architecture and tuberization in Solanum tuberosum ssp. andigena. Plant Physiol. 164: 1011-1027.

CHINESE KNOLL A, KRUGEL U, LIESCHE J, HE H, GRIMM B, HARREN FJ, MÜLLER OERTEL H, BANERJEE AK (2014). MicroRNA156A: A potential graft-transmissible microRNA that modulates plant architecture and tuberization in Solanum tuberosum ssp. andigena. Plant Physiol. 164: 1011-1027.

CHINESE KNOLL A, KRUGEL U, LIESCHE J, HE H, GRIMM B, HARREN FJ, BANERJEE AK (2014). MicroRNA156A: A potential graft-transmissible microRNA that modulates plant architecture and tuberization in Solanum tuberosum ssp. andigena. Plant Physiol. 164: 1011-1027.

CHINESE KNOLL A, KRUGEL U, LIESCHE J, HE H, GRIMM B, HARREN FJ, MÜLLER OERTEL H, BANERJEE AK (2014). MicroRNA156A: A potential graft-transmissible microRNA that modulates plant architecture and tuberization in Solanum tuberosum ssp. andigena. Plant Physiol. 164: 1011-1027.

CHO SK, SHARMA P, BUTLER NM, KANG IH, SHAH S, RAO AG, HANNAPEL DJ (2015). Polypyrrole actin-binding proteins of potato mobile tuberization through an interaction with StBEL5 RNA. J. Exp. Bot. 66(21): 6835-47.

CHUKOMO H, NAGATANI K, NAGATANI (2017). Cryptochrome2 in vascular bundles regulates flowering in Arabidopsis. Plant Cell 19: 84-93.

CHINCINSKA I, GIER K, KRUGEL U, LIESCHE J, HE H, GRIMM B, HARREN FJ, MÜLLER OERTEL H, BANERJEE AK (2014). MicroRNA156A: A potential graft-transmissible microRNA that modulates plant architecture and tuberization in Solanum tuberosum ssp. andigena. Plant Physiol. 164: 1011-1027.

CHINESE KNOLL A, KRUGEL U, LIESCHE J, HE H, GRIMM B, HARREN FJ, MÜLLER OERTEL H, BANERJEE AK (2014). MicroRNA156A: A potential graft-transmissible microRNA that modulates plant architecture and tuberization in Solanum tuberosum ssp. andigena. Plant Physiol. 164: 1011-1027.

CHINESE KNOLL A, KRUGEL U, LIESCHE J, HE H, GRIMM B, HARREN FJ, MÜLLER OERTEL H, BANERJEE AK (2014). MicroRNA156A: A potential graft-transmissible microRNA that modulates plant architecture and tuberization in Solanum tuberosum ssp. andigena. Plant Physiol. 164: 1011-1027.

CHINESE KNOLL A, KRUGEL U, LIESCHE J, HE H, GRIMM B, HARREN FJ, MÜLLER OERTEL H, BANERJEE AK (2014). MicroRNA156A: A potential graft-transmissible microRNA that modulates plant architecture and tuberization in Solanum tuberosum ssp. andigena. Plant Physiol. 164: 1011-1027.
NITSCH J (1965). Existence d’un stimulus photopériodique non-spécifique capable de provoquer la tubérisation chez Helianthus tuberosus L. Bull. Soc. Bot. Fr. 112: 333-340.

PICO S, ORTIZ-MARCHENA MI, MERINI W, CALONJE M (2015). Deciphering the role of Polycomb Repressive Complex 1 (PRC1) variants in regulating the acquisition of flowering competence in Arabidopsis. Plant Physiol. 168: 1286-1297.

RAICES M, GARGANTINI PR, CHINCHILLA D, CRESPI M, TELLEZ-INON MT, ULLOA RM (2003). Regulation of CDPK isoforms during tuber development. Plant Mol. Biol. 52: 1011-1024.

RHOADES MW, REINHART BJ, LIM LP, BURGE CB, BARTELB, BARTELDP (2002). Prediction of plant microRNA targets. Cell 110: 513-520.

ROSIN FM, HART JK, HORNTER HT, DAVIES PJ, HANNAPEL DJ (2003). Over-expression of a Knotted1-Like Homeobox gene of potato alters vegetative development by decreasing gibberellin accumulation. Plant Physiol. 132: 106-117.

ROULEMLOITS E, VISSER RG, BACHEM CW (2012). A crosstalk of auxin and GA during tuber development. Plant Signal. Behav. 7: 1360-1363.

SANTIN F, BHOGLAE S, FANTINO E, GRANDELLES C, BARNBARJE AK, ULLOA RM (2017). Solanum tuberosum StSCDK1 is regulated by miR390 at the post-transcriptional level and phosphorylates the auxin efflux carrier PIN1 in vitro, a potential downstream target in potato development. Physiol. Plant. 159: 244-261.

SARKAR D (2010). Photoperiodic inhibition of potato tuberization: an update. Plant Growth Regul. 62: 117-125.

SAWA M, NUSINOWA D, KAY SA, IMAIZUMI T (2007). FK1 and Gigantea complex formation is required for day-length measurement in Arabidopsis. Science 318: 261-265.

SHARMA P, LIN T, GRANDELLES C, YU M, HANNAPEL DJ (2014). The BEL1-like family of transcription factors in potato. J. Exp. Bot. 65: 709-723.

SHARMA P, LIN T, HANNAPEL DJ (2016). Targets of the StBEL5 transcription factor include the FT ortholog StSIP6A. Plant Physiol. 170: 310-324.

SHIVAPRASAD PV, CHEN-HAN M, PATELK, BOND DM, SANTOS BACM, BAULCOMBE DC (2012). Amicor-miRNA superfamily regulates nucleotide binding site-leucine-rich repeats and other miRNAs. Plant Cell 24: 859-874.

STEINBACH Y, HENNIG L (2014). Arabidopsis MS11 functions in photoperiodic flowering time control. Front. Plant. Sci. 5: 77.

TAO G, LETHAMS D, YONG JW, ZHANG K, JOHN PCL, SCHWARTZ O, WONG SC, FARQUHAR GD (2010). Promotion of shoot development and tuberisation in potato by expression of a chimaeric cytokinin synthesis gene at normal and elevated CO2 levels. Funct. Plant Biol. 37: 43-54.

TEO CJ, TAKAHASHI K, SHIIZUKA K, SHIMIZUKO M, TAOQ KI (2017). Potato tuber induction is regulated by interactions between components of a tuberigen complex. Plant Cell Physiol. 58: 365-374.

TRUERNIT E, HASELOFF J (2007). A role for KNAT Class II genes in root development. Plant Signal. Behavior. 2: 10-12.

WHEELER RM, TIBBITTS TW (1986). Growth and tuberization of potato (Solanum tuberosum L.) under continuous light. Plant Physiol. 80: 801-804.

WU G, PARK MY, CONWAY SR, WANG J-W, WEIGEL D, POETHEG RS (2009). The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138: 750-759.

XIA R, XU J, MEYERS BC (2017). The emergence evolution and diversification of the miR390-TAS3-ARF pathway in land plants. Plant Cell 29: 1232-1247.

XU X, VAN LAMMENR AAM, VERMEER E, VREUDENHILE D (1998a). The role of gibberellin, abscisic acid, and sucrose in the regulation of potato tuber formation in vitro. Plant Physiol. 117: 575-584.

XU X, VREUDENHILE D, VAN LAMMENR AAM (1998b) Cell division and cell enlargement during potato tuber formation. J. Exp. Bot. 49: 573-582.

YANOFSKY M, IZAGUIRRE M, WAGMAISTER JA, JACKSON SD, THOMAS B, CASAL JJ (2000). Phytochrome A resets the circadian clock and delays tuber formation under long days in potato. Plant J. 23: 223-232.

ZHANG R, MARSHALL D, BRYAN GJ, HORNINCK C (2013). Identification and characterisation of miRNA transcriptome in potato by high-throughput sequencing. PLoS ONE 8: e57233.
Further Related Reading, published previously in the *Int. J. Dev. Biol.*

Plant Developmental Biology in Spain: from the origins to our days and prospects for the future
José-Pío Beltrán
Int. J. Dev. Biol. (2009) 53: 1219-1234
https://doi.org/10.1387/ijdb.072456jb

Chromatin remodeling in plant development
José A. Jarillo, Manuel Piñeiro, Pilar Cubas and José M. Martinez-Zapater
Int. J. Dev. Biol. (2009) 53: 1581-1596
https://doi.org/10.1387/ijdb.072460jj

Historical perspectives on plant developmental biology
Mieke Van Lijsebettens and Marc Van Montagu
Int. J. Dev. Biol. (2005) 49: 453-465
http://www.intjdevbiol.com/web/paper/041927ml

Long-range signalling in plant reproductive development
Paula Suárez-López
Int. J. Dev. Biol. (2005) 49: 761-771
http://www.intjdevbiol.com/web/paper/052002ps

Regulation of potato tuberization by daylength and gibberellins
V Amador, J Bou, J Martinez-Garcia, E Monte, M Rodriguez-Falcon, E Russo, S Prat
Int. J. Dev. Biol. (2001) 45: S37-S38
http://www.intjdevbiol.com/web/paper/01450037