An Amish founder population reveals rare-population genetic determinants of the human lipidome

May E. Montasser1, Stella Aslibekyan2,7, Vinodh Srinivasasainagendra2, Hemant K. Tiwari2, Amit Patki2, Minoo Bagheri2,3, Tobias Kind4, Dinesh Kumar Barupal4, Sili Fan4, James Perry1, Kathleen A. Ryan1, Alan R. Shuldiner5, Donna K. Arnett6, Amber L. Beitelshees1, Marguerite Ryan Irvin2 & Jeffrey R. O’Connell1

Identifying the genetic determinants of inter-individual variation in lipid species (lipidome) may provide deeper understanding and additional insight into the mechanistic effect of complex lipidomic pathways in CVD risk and progression beyond simple traditional lipids. Previous studies have been largely population based and thus only powered to discover associations with common genetic variants. Founder populations represent a powerful resource to accelerate discovery of previously unknown biology associated with rare population alleles that have risen to higher frequency due to genetic drift. We performed a genome-wide association scan of 355 lipid species in 650 individuals from the Amish founder population including 127 lipid species not previously tested. To the best of our knowledge, we report for the first time the lipid species associated with two rare-population but Amish-enriched lipid variants: APOB_rs5742904 and APOC3_rs76353203. We also identified novel associations for 3 rare-population Amish-enriched loci with several sphingolipids and with proposed potential functional/causal variant in each locus including GLTPD2_rs536055318, CERSS_rs771033566, and AKNA_rs531892793. We replicated 7 previously known common loci including novel associations with two sterols: androstenediol with UGT locus and estriol with SLC22A8/A24 locus. Our results show the double power of founder populations and detailed lipidome to discover novel trait-associated variants.

1Division of Endocrinology, Diabetes and Nutrition and Program for Personalized and Genomic Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA. 2Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA. 3Department of Cardiovascular Medicine, Vanderbilt University Medical center, Nashville, TN, USA. 4West Coast Metabolomics Center, Davis, CA, USA. 5Regeneron Genetics Center, LLC., Tarrytown, NY, USA. 6Department of Epidemiology, University of Kentucky, Lexington, KY, USA. 7Present address: 23andMe Inc., Sunnyvale, CA, USA. Email: mmontass@som.umaryland.edu
Cardiovascular disease is the leading cause of death worldwide\(^1\). Besides the well-known role of traditional lipids (total [TC], low-density lipoprotein [LDL], and high-density lipoprotein [HDL] cholesterol and triglycerides [TG]) in CVD risk and progression, molecular lipid species (lipidome) were also found to be an independent contributors\(^2\). Previous studies identified ceramides as a key player in atherogenesis\(^3\), found variable effects of phospholipids and TG species on CVD based on the degree of saturation\(^4,7\), and was able to improve risk prediction by adding lipid species\(^6,8\). Identifying the genetic determinants of inter-individual variation in lipidome may provide deeper understanding beyond traditional lipids, and may lead to additional insight into the mechanistic effect of lipid variants and their role in CVD risk and progression\(^2\). Previous studies tested lipidome genetic determinants either as a small part of large metabolite studies or in a small number of candidate lipid species (full list of studies available in Hagenbeek\(^9\)), with the exception of a published study that performed a focused lipidome genome-wide association scan (GWAS) for 141 lipid species in 2181 Finnish individuals. Here, we performed a GWAS in 650 individuals from the Old Order Amish (OOA) founder population using an expanded number of 355 lipid species from 14 classes that included 127 not previously tested for genetic association. Founder populations can facilitate the identification of previously unknown disease associations with variants that are enriched to a higher frequency through genetic drift. Multiple examples have been recently reported of highly enriched variants with large effect sizes associated with complex diseases and traits in homogenous populations in Iceland\(^10\), Sardinia\(^11\), Greenland\(^12\), Samoa\(^13\) and OOA\(^14,21\). While such drifted variants are often rare or absent in the general population, their associations can inform biological mechanisms and therapeutic targets relevant to all humans. The population-based Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) study\(^22–25\) was used for replication and fine mapping, and publicly available association results databases from several large biobanks were used to look up the top results. We identified five rare-population but Amish-enriched loci, three of which are novel, and replicated 7 previously known common loci including two loci with novel trait associations. These results demonstrate the power of detailed lipidome profiling in a founder population to identify novel rare variants enriched through genetic drift to accelerate lipid loci discovery and substantially advance our understanding of the genetic role in lipid biology.

Results

Additive and dominant heritability. The narrow sense heritability, defined as the ratio of additive variance to phenotypic variance, was estimated for each lipid species and traditional lipid using a mixed model with pedigree kinship covariance matrix. We also tested if dominance variance contributes to lipidome genetic architecture by comparing the additive model to a model that included a dominance and additive effect using a likelihood ratio test. No lipid species or traditional lipid showed significant dominance variance after Bonferroni correction, indicating that the lipidomic genetic architecture is primarily additive.

The full list of heritability estimates of the 355 lipid species measured in 650 individuals from the Old Order Amish (OOA) founder population (Supplementary Data 1) with and without adjustment for 4 Amish-enriched large effect lipid variants (APOB\(^*_\)rs5742904\(^15\), APOC3\(^*_\)rs76353203\(^14\), B4GALTL1\(^*_\)rs5515646831, TIMD4\(^*_\)rs898956003\(^20\)) (4 variants) is provided in Supplementary Data 2. Figure 1a shows that the heritabilities range between 0 and 0.7, with significant attenuation when adjusting for the 4 variants as they account for a significant proportion of the phenotypic variance. The (near-) zero estimates reflect potential lack of genetic contribution to the lipid species. The histogram suggests a bi-modal distribution with second mode near 0.55 driven mainly by sphingolipids including ceramides (Cer), sphingomyelins (SM) and glycosphingolipids (GlcCer). Figure 1b shows heritability estimates for each lipidome class with and without 4 variants adjustment. Each class has non-zero median heritability, and most classes show considerable variability. The highest heritability was reported for GlcCer (0.35 – 0.69) while acylcarnitines (ACT) was the lowest (0.01 – 0.22). Consistent with previous reports\(^26–28\), we found sphingolipids to have higher heritability than glycerolipids. The contribution of the 4 variants varied across class. The classes with the biggest difference were cholesteryl ester (CE), Cer, GlcCer, SM and phosphatidylethanolamine (PE) primarily driven by the LDL-increasing APOB\(^*_\)rs5742904 variant. Many classes showed little change in median or variation, including triglycerides (TAG), where the overall impact of APOC3\(^*_\)rs76353203 null variant on heritability...
was small. The difference between the two variants can be explained by their different impact on traditional lipids: APOC3/rs76353203 accounts for ~3% of the TG variance (h2 = 0.368 adjusted) whereas APOB/rs5742904 accounts for ~18% of LDL-C variance (h2 = 0.68 vs 0.5 adjusted).

Genetic contribution of traditional lipids to lipidome. To estimate the genetic contribution of previously identified traditional lipid GWAS variants to lipidome variance, a SNP genetic relationship matrix (SNP GRM) was constructed using the variants and included with the kinship matrix in the mixed model for joint variance estimation. The impact of SNP GRM on the heritability estimates in the joint model compared to baseline heritability estimates in the mixed model. The impact of SNP GRM on the heritability estimates in the joint model compared to baseline heritability estimates in the mixed model.

Genetic and phenotype correlation. Pairwise genetic and phenotypic correlation for 355 lipid species and 4 traditional lipids combined are shown in Supplementary Data 3 and Supplementary Fig. 1 (heatmap). In general, genetic and phenotypic correlation were lower between classes than within classes. SMs, TAGs, and diglycerides (DAGs) exhibited the strongest within class correlation, and as expected the strongest between class correlation was found for TAGs with DAGs. While TAGs exhibited the strongest within class correlation, we found that the correlation between TAG pairs where both species have > = 54 carbons and >= 4 double bonds were significantly stronger and less variable (p < 2.2E-16) than correlation between pairs where one or both species have <54 carbons and <4 double bonds (Supplementary Fig. 2). The phenotypic correlations have both smaller median values and less variance than genetic correlations even with larger number of pairs due to phenotypic correlations having greater precision since there is no maximum likelihood estimation required.

The correlation with traditional lipids were also generally limited, with the exception of TAGs and DAGs that had the strongest positive genetic correlations with traditional TG, and the strongest negative correlation with HDL. These results are in line with a previous finding and explain the limited contribution of traditional lipid genetics to the lipid species (Fig. 1b). This limited overlap highlights the value that lipid species would contribute to understanding CVD risk factors beyond traditional lipids.

Lipidome contribution to traditional lipids. Understanding the relative contribution of each lipid species to traditional lipid and the interplay between components will help us to gain insight into their architecture. The estimated proportion of each traditional lipid variance explained by kinship and each lipidome class are shown in Supplementary Fig. 3. The lipidome class was included in the mixed model by constructing covariance matrix between their architecture. The estimated proportion of each traditional lipid variance explained by kinship and each lipidome class are shown in Supplementary Fig. 3. The lipidome class was included in the mixed model by constructing covariance matrix between their architecture. The estimated proportion of each traditional lipid variance explained by kinship and each lipidome class are shown in Supplementary Fig. 3. The lipidome class was included in the mixed model by constructing covariance matrix between their architecture.

We also performed a sequential analysis to determine which lipidome classes jointly with the kinship explain the greatest amount of variance of each traditional lipid. Supplementary...
Data 5 shows the decomposition with the class, remaining unexplained heritability, and residual error variance estimates. HDL maxed out at 3 classes, LDL and TC at 5 classes and TG at 4 classes. Compared to the single class model in Supplementary Data 4 the magnitude and precision of the estimates in the multi-class models may differ due to potential correlation between classes. The heritability estimates in the multi-class are reduced to less than 0.16 as more of the additive variance is accounted for by additional lipoprotein classes. The decomposition differs by lipid. TG is primarily composed of TAG (34%) with DAG and PC, accounting for ~ 5%, while the 3 other lipids have at least two classes with high proportions. HDL has the lowest residual variance at 20% indicating the phenotypic architecture of LDL may be more influenced by lipid than other lipids. Overall, the variance component analyses show that lipoprotein classes contribute a significant portion of the variance of traditional lipids but there remains 10-15% heritability unexplained by lipidome, which again indicate the differences in genetic architecture.

GWAS results. We performed a GWAS for 355 lipid species with ~8 million genetic variants in 639 Amish individuals with both phenotype and genotype information. We identified 12 significantly associated signals (p < 4.5E-10, using 5E-08/110, based on the first 110 principal components explaining > 95% of the variance in the 355 lipid species), five were Amish-enriched rare-population variants, three of which have not been previously reported, and seven were common variants that were previously associated with lipid species (Table 1, Figs. 3 and 4).

The genetic architecture of the Amish is characterized by long runs of homozygosity as a result of founder effects, so the Amish-enriched associated loci are usually long haplotypes with many variants in strong LD, making it difficult to statistically separate variants to identify the potential causal variant. All results with p < 5E-08 are listed in Supplementary Data 6.

Rare-general population but Amish-enriched loci. The most interesting finding among the five Amish-enriched loci is a rare population missense variant rs356055318 (A263T) (MAF = 0.07 vs 0.01 in the general European population) in an active transcription start site (aTSS) within the promoter region of the glycolipid transfer protein domain containing 2 (GLTPD2) gene on chromosome 17 that was strongly associated with lower level of SM(d40:0) (p = 1.1E-12) and suggestively associated with SM(d36:0, d38:0). To the best of our knowledge, these 3 SMs have never been previously interrogated for genetic association. Another independent African enriched (rs73339979) downstream of GLTPD2 was previously associated with lower total and LDL cholesterol[30]. Also, a Finnish-enriched GLTPD2 intronic variant (rs79202680) was recently associated with lower level of several SMs and reduced atherosclerosis[30].

The second interesting Amish-enriched but rare-population finding (MAF = 0.04 vs 0.01) was on a 5 Mb long haplotype on the short arm of chromosome 12 that was significantly and suggestively associated with lower levels of SM(d32:2) and SM(d30:1), respectively. Other independent variants in this region were previously associated with alanine, 1,5-anhydroglucitol (1,5-AG), and creatine, but not with any lipid species. One of the top variants is a splice donor missense variant (rs771033566, Val344Leu, p = 2.2E-14) in the ceramide synthase 5 (CERS5) gene and classified as disease-causing by the Mutation Taster software[31]. Another common coding variant in this gene was previously associated with increased systolic/diastolic blood pressure and hypertension[32,33]. The sphingolipid metabolic pathway has been previously linked to blood pressure regulation and...
response to thiazide diuretics34–36, suggesting that CERS5 may affect blood pressure level through alteration of sphingolipids.

Another Amish-enriched 8 Mb long haplotype (MAF = 0.04 vs 0.01 for the top variant) on the long arm of chromosome 9 was strongly associated with lower levels of all tested glucosylceramide species (GlcCer(d38:1), (d40:1), (d41:1), (d42:1), (d42:2)) except the one with the shortest acyl chain (GlcCer(d34:1)), which reflects the strong phenotypic correlation between the first 5 ($r = 0.6–1.0$) compared to their much lower correlation with GlcCer(d34:1) ($r < 0.2$). Other independent variants in this region were previously associated with total cholesterol37, urate, p-acetamidophenylglucuronide, and LPC(28:0)A9. Based on the pattern of the association results (Fig. 4b), we expect the functional variant to be one of the top 27 variants with p-values < 8.5E-16 and $r^2 > 0.75$ with the top variant (Supplementary Data 7). These 27 variants are located within 9 genes (LINC00474, ATP6V1G1, C9orf91, LOC100505478, DFNB31, LOC101928775, DEC1, AKNA, and COL27A1), none of which are obvious candidate genes. Formal fine mapping analysis using PAINTOR38 with different parameters and functional information consistently identified the top associated variant (rs7863920, $p = 6.2E-18$) to have the highest posterior probability of causality at 0.87. Functional annotation highlighted one intronic variant (rs531892793, $p = 3.9E-17$) as a strong potentially functional variant (Supplementary Table 1). This variant is highly enriched in the Amish (MAF = 0.04 vs 0.0001) and located in a promoter flanking region in the AT-hook transcription factor (AKNA) gene; it has the top ENCODE DNase score of 1000 indicating very strong evidence of a DNase I hypersensitivity site39, an eigenPC score of 3.5 (top 1%)
indicating a strong functional prediction based on conservation and allele frequency, and is predicted to affect transcriptional factor binding with a 2a RegulomeDB classification. The variant is located in a weak transcription site in the islet and skeletal muscle, in a genic enhancer region in liver tissue, and in an active enhancer region in adipose tissue.

We also have two well-established Amish-enriched variants that we previously reported their strong association with traditional lipids, but have never been interrogated for association with lipid species. The first is the missense variant R19X (rs76353203) in the APOC3 gene (MAF = 0.02 vs 0.0008) that we first reported its association with lower TG, higher HDL, and cardioprotection. In this analysis, we report significant association of this variant with lower levels of 3 phosphatidylethanolamines (PE(36:2), (38:6), (34:2)) and suggestive association with lower level of another PE, one di- and three triglyceride species. The second is the well-established Amish-enriched familial hypercholesterolemia (FH) causing variant R3527Q (rs5742904) in the APOB gene (MAF = 0.06 vs 0.0004) that was previously linked to LDL and TC by our group and others. As expected, this variant was significantly associated with increased levels of several cholesterol esters, sphingolipids and phospholipids while there was no association with acylcarnitine, fatty acids, sterols, and glycerolipids.

Common known loci. We also replicated 7 previously well-known lipid signals including UGT1A3/10 genes on chromosome 2, ELOVL2 gene on chromosome 6, SLC22A8/A24 genes and FADS genes on chromosome 11, LIPC region on

Fig. 4 Rare-population but Amish-enriched loci. Locus zoom for 5 loci in a, chromosome 2 with SM(d34:1) b, chromosome 9 with GlcCer(d42:2) c, chromosome 11 with PE(36:2) d, chromosome 12 with SM(d32:2) and e, chromosome 17 with SM(d40:0). All p-values based on t-test using additive genetic model. GlcCer Glycosphingolipids, PE Phosphatidylethanolamine, SM Sphingomyelin.
variants were not significant in GOLDN. Our top variant (rs887829) was previously absent in GOLDN, and all R19X LD-driven significant variant rs76353203_R19X on chromosome 11, which was also associated variant (rs184061227, MAF = 0.001) within the fatty acid elongase 2 (FADS) gene on chromosome 6 (p = 6.9E-10) genes was strongly associated with higher levels of androstenediol. FADS transforms small lipophilic molecules, such as steroids, bilirubin, hormones, and drugs, into water-soluble, excretable metabolites. Our top variant (rs887829) was previously associated with lower LDL-cholesterol and higher bilirubin14, however the association with androstenediol is novel.

We also identified a novel strong association for a 300 kb haplotype on chromosome 11 with increased estriol level. The top associated variant (rs184061227, p = 1.0E-15) located in a previously known region encompassing SLC22A8/A24, which are expressed only in kidney. This region was previously associated with etiocholanolone glucuronide (ETIO-G), which is an endogenous, naturally occurring metabolite of testosterone15.

The nearby FADS region on chromosome 11 was the most significant (p = 6.3E-36) and associated with 29 different lipid species including many phosphatidylcholines and cholesterol esters consistent with previous reports9,26.

We also replicated 2 additional known common loci. The first within the fatty acid elongase 2 (ELOVL2) gene on chromosome 6 was associated with PC(42:5) consistent with the previous association of the same variant with DHA_DPAN3 (docosahexaenoic acid, or DHA(22:5)), and (docosapentaenoic acid (DPA) (22:6) omega)9.) The second was the well-known lipid loci lipase C, hepatic type (LIPC) gene on chromosome 15, associated with several phosphatidylethanolamines (PEs), similar to previous reports9,26.

Finally, we replicated two overlapping but independent signals on chromosome 20 within the serine palmitoyltransferase long chain base subunit 3 (SPTLC3) gene that encodes a subunit of the SPTLC complex which catalyzes the rate-limiting step in sphingolipid biosynthesis. Consistent with previous reports9,26 both signals were associated with several ceramides and sphingomyelins, the first signal is very common (MAF = 0.47) and associated with decreased levels, while the second was less common (MAF = 0.07) and associated with increased levels of lipid species.

RepliCation/fine mapping in GOLDN. Replicating Amish-enriched rare population loci can be a challenge due to the rarity or absence of variants in outbred populations. However, outbred populations can provide evidence of exclusion when only a few copies are present as the LD between the causal and non-causal variants that confounds the Amish signal is absent or reduced. If the causal variant is present, it will generally show strong validation with few copies depending on effect size, but non-causal variants will not replicate even if expected replication power is extremely high. The familial hypercholesterolemia causing APOB variant rs5742904, R3527Q15,43 which is enriched in the Amish provides an extreme example. The variant increases LDL by \textasciitilde 50 mg/dl and has a p-value7.8E-25 in our 639 Amish, and through LD generates genome-wide significant signals at 441 surrounding variants in a 10MB region. Those associations disappear when the Amish LD is accounted for in a conditional analysis with rs5742904 (Supplementary Data 7). Fifty out of the 441 variants were absent in GOLDN, including rs5742904. The remaining 391 variants (MAF: 0.001-0.48) were non-significant in GOLDN, providing confidence they are non-causal. We also performed the same analysis with the APOC3 TG lowering causal variant rs67533203_R19X on chromosome 11, which was also absent in GOLDN, and all R19X LD-driven significant Amish variants were not significant in GOLDN. These two examples support applying this approach to the other 3 Amish-enriched loci that we identified, where the causal variant is unknown and most likely not in GOLDN. Power calculations using the observed Amish effect size (or half to adjust for winner’s curse) can quantify exclusion thresholds for given variants found in outbred samples. The fine-mapping approach provides a reduced set of potential variants for future follow-up.

For common variants, look up in GOLDN provides direct replication. The basic demographic and clinical characteristics of the GOLDN replication cohort are presented in Supplementary Data 1. All GOLDN association results for our top results are listed in Supplementary Data 6. We had two novel trait associations for androstenediol and estriol. These two sterol lipids did not replicate, however, these two variants had p-values of 1.9E-04 and 2.9E-04 with PC(36:4)A, and PC(38:4), respectively in GOLDN. The other five known significant common loci in the Amish had p-values between 7.5E-03 and 1.4E-35 in GOLDN.

Full data for the 5 Amish-enriched loci with the GOLDN results are shown in Supplementary Data 7. The table and the locus zoom plots in Fig. 4 show that each of these 5 loci is a long haplotype ranging from 4 Mb to 10 Mb.

The GLTPD2 locus on chromosome 17 has 13 variants with P < 5.0E-08 (3 significant), 12 of which were not significant in GOLDN, despite all being common (MAF > 0.07) and some with more carriers than Amish (MAC 110-389), while the missense top variant rs536055318 was absent. More importantly this top variant was the only one out of the 13 variants that was suggestively associated with lower level of TG in UKBB (p = 6.9E-08), further supporting our hypothesis that it is the most probable functional variant in this region, pending experimental validation.

The chromosome 12 locus haplotype extends \textasciitilde 5 Mb with 38 significant variants, 15 of which have similar p-values7-E-14 due to the strong LD. The top variant was among 30 variants that did not replicate in GOLDN and hence can be excluded as potential functional/causal variants (in particular 18 variants with MAF > 0.015 and power between 0.79 and 0.99 for significant replication). The splice donor missense variant (rs771033566, p = 2.2E-14, Val344Leu) in the ceramide synthase 5 (CERS5) gene which is our best candidate for causal variant is absent in GOLDN.

The chromosome 9 locus is an 8 Mb long haplotype with 202 significant variants, 27 of which were prioritized based on p-value and LD with the top variant. Only 4 of these 27 variants were present in GOLDN and none was significant including the top variant. Our best candidate causal variant AKNA_r531892793 based on functional annotation was absent in GOLDN.

Suggestive associations. The GWAS yielded 246 suggestive associations (4.5E-10 < p < 5E-08) within 31 loci, 30 of which were previously reported. Among the top suggestive results, we identified an association between ACT(10.0) (p = 3.5E-08) and common variants in the ACDAM gene which encodes the medium-chain specific acyl-Coenzyme A dehydrogenase that plays a role in the fatty acid beta-oxidation pathway and was previously associated with several carnitines (Supplementary Data 6). We also identified an association (p = 3.5E-08) between GlcCer(d40:1) and common variants in the ATPase phospholipid transporting 10D (ATP10D) gene. Another independent signal in ATP10D was previously associated with several glycosphingolipids46. These 2 signals were also replicated in GOLDN (p = 8.4E-07 and p = 2.1E-05, respectively). These results provide added confidence that other signals in our suggestive interval may be true associations but require larger sample size to achieve significance. The only locus that may be considered novel, if replicated, was an association between Cer(d42:2)B and a rare variant (rs79384120, MAF = 0.018,
$p = 8.3E-09$ in the synuclein alpha interacting protein (SNCAIP) gene on chromosome 5, that is linked with Parkinson’s disease27,48, but no known link in this locus to any lipid trait. Ceramides play a role in the physiology and pathophysiology of the central nervous system49, this role may be genetically determined, at least partially, by SNCAIP. This variant did not replicate in GOLDN, indicating that it is either a false positive or the functional variant is another linked variant.

Lookup of previously identified loci in our results. While there are many published GWAS for metabolomics, Tabassum26 is the only published large GWAS that focused on lipidomics and has the most overlap with our study. Thus, we report our results for their top associated variant in Supplementary Data 8. In their Supp Data 2, Tabassum et al.26 reported 3754 lipidic variant pair associations with $p < 5.0 \times 10^{-8}$ comprising 820 variants and 80 lipid species. For 702 variants present in our data, the top associated traits had p-values ranging from 0.051 to 6.3E-36, of which 219 (31%) met the Bonferroni replication significance threshold (0.05/702 = 7.1E-05). We also report our association results for the same trait and variant for 1476 trait-variant pairs, of which 359 (24%) have a p-value less than the Bonferroni replication threshold of 3.3E-05, and 1082 (73%) with $p < 0.05$. These Bonferroni thresholds are conservative as they do not account for the correlation between lipid species and the LD between variants. This high level of consistency with previously reported loci highlights the quality of our data and confirms the generalizability of findings in a founder population to outbred populations.

Association testing using lipidome compared to traditional lipids. To assess the power of the lipidome to identify genetic signals compared to traditional lipids we tested the association of 226 known lipid associated variants available in Amish with both lipidomic and traditional lipids using the same 639 Amish subjects. As previously reported26, the lipidome showed higher power in identifying the association signals compared to traditional lipids where only APOB had stronger association with LDL using the same sample size (Supplementary Fig. 4). Similarly, when we tested the association between 1,602 variants with $p < 5.0 \times 10^{-8}$ in any lipid species with traditional lipids in the same sample size, we found strong signals only for APOB and APOC3 (Supplementary Data 9) and only APOB had stronger association with LDL.

Discussion

Here we report the GWAS results for 355 lipid species, the largest number tested in a single study to date.

We identified three novel rare-population variants that are enriched in the Amish on chromosomes 9,12 and 17 that have not been previously associated with any lipid species or traditional lipids. Leveraging results from the GOLDN study we were able to finemap large numbers of variants present on long Amish-enriched haplotypes to identify a potentially functional variant in a biologically plausible gene for each of the three loci.

The first is a missense variant in the promoter of the GLTPD2 gene that is mainly expressed in liver and kidney and plays a role in the intermembrane transfer of glycolipids but not neutral or phospholipids50, consistent with its association only with SM(d40:0) in this study. While two independent studies previously pointed to this gene26,30, neither identified variant had an obvious functional mechanism. The position of this rare missense variant rs536055318 (A263T) in an aTSS within the promoter region of GLTPD2 can alter its expression leading to lower levels of SM and reduced atherosclerosis26. Moreover, rs536055318 was recently associated with lower levels of TG in UKBB with a suggestive p-value of 6.9E-08. This finding is consistent with previously observed changes in cellular lipid metabolism as a result of up and down regulating GLTP protein51. Several SM species were previously associated with CVD4,52,53. Collectively, these findings suggest GLTPD2 as a potential therapeutic target for CVD prevention. Future Mendelian Randomization studies may help to disentangle the direction of causality. This strong association ($p = 1.1E-12$) with a lower level of SM(d40:0) was identified using only 650 Amish subjects, while it required 461,140 UKBB subjects to find a suggestive association with TG.

The second is a potentially disease-causing splice donor missense variant (rs771035366, Val344Leu) in the CERS5 gene, associated with lower SM(32:2). Another common coding variant in this gene was previously associated with increased systolic/diastolic blood pressure and hypertension32,33. The sphingolipid metabolic pathway was previously linked to blood pressure regulation and response to thiazide diuretics34-36, suggesting that CERS5 may affect blood pressure level and drug response through alteration of sphingolipids, which may have personalized medicine implications. CERS5 is one of the six members of the ceramide synthase gene family which plays a major role in the sphingolipid metabolic salvage pathway37, and while many genetic variants in CERS4 have been previously associated with several SMs2, this is the first association of a SM species with a CERS5 genetic variant.

The third is an intronic variant (rs531892793) that was associated with lower levels of five glucosylceramide species with acyl chains of 38 or more carbons, but not with the species with 34 carbons. This result is consistent with a recent study that found significantly increased serum levels of only glucosylceramide species with acyl chains of 38 or more carbons among CAD cases compared to controls8, but not with 2 shorter carbon species. This variant has very strong regulatory function prediction and is located in the widely expressed AKNA gene that encodes AT-hook transcription factor. This transcription factor is essential for normal development and immune function, as indicated by the gene name that means ‘mother’ in Inuit and Mayan language54. AKNA knock out mice were weak, short lived and suffered from systemic inflammation55. Other common variants in AKNA were previously associated with TG, HDL, ApoA1, ALT, AST, and testosterone56–58. Collectively these data support our hypothesis that AKNA_r531892793 is the best potential functional gene and variant in this locus, however more work is needed to confirm this result as we cannot rule out the possibility that some other variant that may failed genotyping or imputation is the real causal variant driving this association signal.

Two well-known rare-population lipid variants that are Amish-enriched and previously reported by our group are the FH variant APOB_R3527Q and the cardioprotective APOC3_R19X. Given the rarity of these variants in the general population they have never been interrogated for association with lipid species. While this is, to the best of our knowledge, the first report for the associations of these variants with lipidomics as detailed herein, these associations are not unexpected based on the structure and function of associated traditional lipids. The association of the missense rare population variant APOC3_R19X with lower TG, higher HDL, and cardioprotection14 was first reported by us and was later replicated in other studies59–62 and led to the development of APOC3 antisense molecules that are currently in phase III clinical trials for the treatment of hypertriglyceridemia63,64. Similarly, the three novel variants reported here may lead to novel treatment and/or personalized medicine once there is a large enough general population study for replication and functional study to prove causation. Replicating the association of these three novel variants would require larger sample sizes with
similar lipid species measured and whole genome sequence data, which currently does not exist but may soon be available through large consortia like TOPMed.25

We also replicated seven previously well-known lipid signals including UGT, ELOVL2, SLC22A8/A24, FADS, LIPC, and two independent signals in the SPTLC3 gene, among these seven, we have two cases of novel trait associations in UGT and SLC22A8/A24. First, we found in addition to previous associations of UGT_r887829 with lower LDL27 and higher bilirubin14, we also found an association with higher androstenediols. This pleiotropic effect may explain the inverse association of bilirubin with LDL66 and CVD protection67,68. However, androstenediol taken as a dietary supplement was associated with increased LDL and unfavorable CVD risk in men participating in a high-intensity resistance training program99, pointing to the potential difference between beneficial endogenous effects of a genetic variant that both decreases LDL and increases androstenediols compared to the potential deleterious opposite exogenous effects of androstenediol as a dietary supplement. Second, we found the SLC22A8/A24 locus that was previously associated with ETIO-G to be associated with higher eLC.

Estriol is a weaker form of estrone and, interestingly, in UKB, this region was associated with cholecystitis without cholelithiasis (inflamed gallbladder without gallstones). This association may be the underlying inflammatory first step in the process that leads to two-fold increase gallstone formation in women of reproductive age or on birth control medication that have estrogen compared to males,70 and maybe informative in personalized medicine. This association is independent of the nearby FADS gene region that has been associated with gallstones21 and assumed to work through its effect on lipids. However, given the lack of replication in GOLDN, further investigation is warranted.

The phenotype and genotype correlation pattern as well as the heritability estimates in our study were generally in line with other general population studies. This study also replicated many of previously identified common variants which highlight the generalizability of the Amish results to the general population, besides its added value in identifying rare population variants enriched by drift. While traditional lipids explained a small proportion of the variance of the lipidome, and the lipidome enriched by drift. While traditional lipids explained a small proportion of the genetic variance in traditional lipids, the overlap was incomplete leaving a significant proportion in both sides remained to be explained. This limited overlap highlights the difference in the genetic architecture and the complimentary value in using both traditional lipids and lipidome in understanding lipid genetic architecture.

While this study may be limited by a relatively small sample size, we were still able to identify three novel rare-population variants. Larger sample size in Amish and other founder population will undoubtedly identify more rare variants which would be challenging to identify in the general population and can inform biological mechanisms and therapeutic targets relevant to all humans. While this GWAS included 355 lipid species, the largest to date, we excluded lipid species with low quality data, so more complete profiling is warranted for comprehensive interrogation.

Methods

Study populations. The Old Order Amish (OOA) population of Lancaster County, PA immigrated to the Colonies from Central Europe in the early 1700’s. There are currently around 40,000 OOA individuals in the Lancaster area, nearly all of whom can trace their ancestry back about 15 generations to approximately 750 founders. Investigators at the University of Maryland Baltimore have been studying the genetic determinants of cardiometabolic health in this population since 1993. To date, over 7000 Amish adults have participated in one or more of our studies as part of the Amish Complex Disease Research Program.22 The samples used in this study were participants of Heredity and Phenotype Intervention (HAPI) Heart Study.73 Briefly, HAPI was initiated in 2002 to identify the genetic and environmental determinants of responses (blood pressure, triglyceride excursion and platelet aggregation) to four short-term interventions including a cold pressor stress test, a high salt diet, a high fat challenge, and an aspirin therapy in a four-week time period. HAPI recruited 1003 OOA, and the interventions were carried out in 868 relatively healthy OOA adults (>20 years of age). Participants were asked to discontinue the use of all medications, vitamins, and herbal supplements for at least 7 days prior to the first intervention, to fast to at least 12 h prior to their visit, and to refrain from themselves to doing excessive physical activity on the morning of their appointment. Baseline blood drawn from 650 participants was used for the lipidomic profiling in this study. The study protocol was approved by the institutional review board at the University of Maryland. Informed consent was obtained from each of the study participants.

GOLDN (Genetics of Lipid Lowering Drugs and Diet Network), the largest study of postprandial lipodyslipidemia that offers NMR, clinical lipid, and lipidomic measures, was initiated to assess the interaction of genetic factors with environmental interventions (intake of a high-fat meal and/or fenofibrate treatment)74. Briefly, the study recruited European American families with at least two siblings from two field centers (Minneapolis, MN and Salt Lake City, UT) of the Family Heart Study (FHS). Participants were excluded if they (1) had fasting triglycerides (TGs) ≥ 1500 mg/dL, (2) had a history of kidney, liver, pancreas, or gallbladder disease, recent myocardial infarction or revascularization, or nutrient malabsorption, (3) reported a current use of insulin, and (4) were pregnant or lactating. Of the 1327 participants who were initially screened, 1048 (including 546 women) met the eligibility criteria and were included in the study. A written consent form was provided for each participant and the protocol of the study was reviewed and approved by the institutional review boards at the University of Utah, University of Minnesota, and Tufts University/New England Medical Center.

Lipidomic profiling. The technical details of the laboratory protocols and methods of the lipidomics experiments are described in our previous paper15 and reproduced here for completeness.

Baseline HAPI and GOLDN lipids data includes neutral lipids and phospholipids that were collected using UPLC–QTOFMS at the West Coast Metabolomics Center at University of California Davis. The protocol for this measurement was described in detail elsewhere15,76. Briefly, the whole process was divided into three steps: lipid extraction and separation, data acquisition and lipid identification. Methyl tert-butyl ether (MTBE), methanol, and water were used to extract plasma lipids. The quality control (QC) samples were method blanks and pooled human plasma (BioreclamationIVT). The separated non-polar phase was injected into a Waters Acquity UPLC CHN C18 (100 mm length × 2.1 mm id, 1.7 μm particle size) with an additional Waters Acquity Vanguard CHN C18 pre-column (5 mm × 2.1 mm id; 1.7 μm particle size) maintained at 65°C was coupled to an Agilent 1290 Infinity UHPLC (Agilent Technologies) for ESI positive and negative modes. Mobile phase modifiers included ammonium formate and formic acid for positive mode and ammonium acetate (Sigma-Aldrich) for negative mode. The same mobile phase composition of (A) 60:40 v/v acetonitrile:water (LC-MS grade) and (B) 90:10 v/v isopropanol:acetonitrile was used for both positive and negative modes. An Agilent 6550 QTOF with a jet stream electrospray source was employed for acquiring full scan data in the mass range m/z 65–1700 in positive and negative modes with scan rate of 2 spectra/second. Instrument parameters were as follows for the ESI (+) mode – gas temperature 325 °C, gas flow 8 l/min, nebulizer 35 psig, sheath gas temperature 350 °C, sheath gas flow 11, capillary voltage 3500 V, nozzle voltage 1000 V, fragmentor voltage 120 V and skimmer 65 V. In negative ion mode, gas temperature 200 °C, gas flow 14 l/min, fragmentor 175 V, with the other parameters identical to positive ion mode. Data are collected in centroid mode at a rate of 2 scans per second. Injection volume was 1.7 μl for the positive mode and 5 μl for the negative mode. The gradient started at 15% B, ramped to 30% at 2 min, 48% at 2.5 min, 82% at 11 min, 99% at 11.5 min and kept at 99% B until 12 min before ramping down to 15% B at 12.1 min which was kept isocratic until 15 min to equilibrate the column. The total run time was 15 min and the run speed was 0.6 ml/min. Data was acquired in MS-MS (transitions were acquired in top 10 transitions) mode. In quality control samples, one quality control sample was analyzed. MS1 data were acquired for all samples, and MS/MS data were acquired for a set of pooled samples. Data were processed with the Agilent Quan 7.0 software. Lipid levels were reported as chromatographic peak heights. Stringent quality control was performed for the lipidomics data using eight previously reported measures.75 We observed very low missing data rate of approximately 0.5% for known profiled lipids in positive ionization mode. The missing data rate was higher for certain molecular weight of the lipid compound and retention behavior. For example for a few low intensity compounds such as high molecular weight triacylglycerols (TG (62:4) or TG (60:6)) the missing data rate was up to 20%. Missing value imputation was performed using our previously developed computational routine78 before SERRF normalization78. After normalization, the relative standard deviation of quality control samples is 4.7% and 3.4% for negative and positive mode respectively. Lipid identification was performed by converting the acquired MS/MS spectra to the mascot search engine by a library search tool (NCI LIPIDBlast). For quality control, 355 lipid compounds were included in the HAPI lipidomic GWAS and 328 in the GOLDN replication study.
HAPI chip genotyping and imputation. Genomic DNA was extracted from whole blood from 1856 individuals of the OOA and quantitated using Picogreen. Genomic wide gene chip was performed using the Illumina Human6600K (660K) chip, including all HAPI participants and Affymetrix 6.0 (n = 604) arrays at the University of Maryland Biopolymer Core Facility. The BRLMM algorithm was used for genotyping calling. Prior to imputation, the two chips were merged into a single file. Samples with call rate <0.93, high level of Mendelian error, or gender mismatch were excluded. Variants with >2% missing data were excluded. For all HWE (HWE) p-value < 1E-10, Mendelian errors >1% or with MAF < 0.01 (N = 366,169) were excluded. We also excluded variants on the Y chromosome and mitochondrial genome, palindromic variants with frequency >0.4, and variants that were not in the 1000 Genomes Project. The QC procedures left 1,833 participants and 307,238 variants in the genotype file for imputation. The genotype data were uploaded to the Michigan Imputation Server where the pre-phasing was performed using Eagle v2.40. Then, and imputation to the TOPMed Freeze 5b reference panel was performed using Minimac4. Following imputation, we excluded variants with imputation quality/INdoor < 0.5, MAF < 0.01 or deviation from HWE at p < 1.0E-09. This procedure left 7,917,357 variants for the association analysis with 639 samples with both phenotypes and genotypes.

Whole-genome sequencing for GOLDN. Whole-genome sequencing (WGS) for the Trans-Omics in Precision Medicine (TOPMed) program was supported by the National Heart, Lung and Blood Institute (NHLBI). WGS for “NHLBI TOPMed: Genetic and Lipid Lowering Drugs and Diet Network” (ph0183599) was performed at the North West Genomics Center, University of Washington. Centralized read mapping and genotype calling, along with variant quality metrics and filtering were provided by the TOPMed Informatics Research Center. Data management, sample-identity QC, and general study coordination were provided by the TOPMed Data Coordinating and Analysis Center. Whole-genome sequencing were performed on 967 GOLDN samples by North West Genomics Center, University of Washington. The NHLBI Informatics Resource Core at the University of Michigan performed alignment, base calling, and sequence quality scoring and variant calling of all TOPMed samples using the GATK pipeline. Variant calling used a support vector machine (SVM) trained using known variants. Variants passing all quality filters with read depth at least 10 were delivered in BCF format and used for association analysis. Further variant QC included removing all sites in low-complexity regions, and on the X chromosome. There were 835 GOLDN samples with both lipidome and WGS data and used for the GWAS.

Phenotype preparation. In HAPI, to adjust for potential technical artifacts and non-normality of raw lipidomic values, each lipidomic was first regressed in a linear model adjusting for age, age squared, sex, and experimental technical artifacts including batch, box, row, position and plate, then the regression residuals were inverse normalized. No adjustment for medication was included as none of the HAPI subjects were on lipid lowering medication. These transformed lipidomic values were used in all Amish analyses. The identical procedure was applied to lipid phenotypes, excluding technical artifacts from the linear regression, to standardize analyses combining both lipidomic and lipid.

In GOLDN the exact same lipid panel was completed and an inverse rank normal transformation was used on each lipid class phenotypes.

Variance decomposition. Mixed model variance component analysis was used to partition observed phenotypic variance \(\sigma^2_p \) into causal components \(\sigma^2_c \) and residual error \(\sigma^2_e \), that is,

\[
\sigma^2_p = \sigma^2_c + \sigma^2_e = \sigma^2_a + \sigma^2_d + \sigma^2_e
\]

The variance components \(\sigma^2_a \) correspond to random effects \(\mathbf{b} \) assumed to follow multivariate Gaussian distribution \(\mathbf{b} \sim \mathcal{N}(0, \mathbf{X} \mathbf{X}' \mathbf{K}^{-1}) \), with mean zero, covariance matrix \(\mathbf{K} \). The matrix \(\Sigma \) contains pairwise covariance values between subjects and the variance components \(\sigma^2_a \) are estimated using mixed model maximum likelihood methods incorporating corresponding covariance matrices. For interpretability the estimated variance \(\sigma^2_a \) are converted to the proportion of phenotypic variance explained, called \(\lambda_a \), by dividing the phenotypic variance \(\sigma^2_p \), that is, \(\lambda_a = \sigma^2_a / \sigma^2_p \). Likelihood ratio test (LRT) p-values can be used to compare nested models of different random effects to determine if the model with more components provides significantly better fit of the data. The LRT is applied using standard sequential procedures to build the most parsimonious causal component decomposition of the phenotypic variance using a predefined p-value threshold to stop LRT p-value thresholding. LRT p-values can be used to select the best model with that model plus one of the remaining random effects. The current model is then updated with the remaining random effect with the smallest p-value. The procedure is repeated until no LRT p-value is less than 0.05.

Additive and dominant heritability. The pedigree kinship coefficient measures the expected probability that two subjects share an allele identical by descent given the pedigree structure. An Amish kinship covariance matrix was constructed using an 14-generation pedigree that connects all 650 subjects back to their 18th century founders. The Amish population structure provides unique opportunities to separate genetic and environmental effects important in lipidome as many distant relative pairs, such as cousins, share genes from the same founder but not common grandparents which as diet and lifestyle. A dominance covariance matrix was also constructed using the pedigree structure that measures the probability that two subjects share a genotype identical by descent.

Data-derived covariance matrices. In multivariate statistics the sample covariance matrix can be constructed using any set of variables measured across subjects. In GOLDN we performed a parallel linear mixed model analysis on the inverse normally transformed lipid phenotypes in Saige-0.29 pipeline deployed in Encore.

Lipidome variance explained by known lipid variants. To measure the proportion of lipidomic and traditional lipid variance due to genetic markers associated with HDL, LDL, TC and TG lipid levels, genetic relatedness matrices (GRM) were constructed using SNPs identified from the literature as being genome-wide significant for each lipid plus known Amish-specific variants (APOB_rs574290415, APOC3_rs7653320314, B4GALT1_rs5515646831, TIMD4_rs989560503050, 4 variants). The number of literature SNPs that were present in the Amish genotype data and used were 99 for HDL, 77 for LDL, 97 for TC, and 87 for TG. This analysis was restricted to 194 lipid species with baseline significance for heritability (Kinship + V heritability p-value < 0.05) to use as input to the Kinship + V base model in this analysis to focus on the effect of common known lipid variants rather than the strong effect of these 4 Amish-enriched random population variants, however, we included APOB, B4GALT1 and TIMD4 variants in the LDL and TC GRMs and the APOC3 variant in the TG and HDL GRMs to account for confounding effects of other common variants, if any. SNP genotyping was available on the 639 subjects with lipidomics. To estimate the genetic contribution of GWAS SNPs associated with lipidomic and traditional lipids as phenotypes a mixed model analysis was performed including kinship and lipid SNP GRM as random effects.

Genetic and phenotypic correlation. The software bHiMM73 was used to calculate genetic correlations between lipidomic and traditional variables (35 lipidomics and 4 traditional lipids (HDL, LDL, TC, TG)) on data from 639 subjects using the Amish kinship matrix. bHiMM returns bivariate mixed model maximum likelihood estimates of genetic and environmental correlation that includes estimates of heritability of each trait genetic correlation between them allowing for residual errors between traits. bHiMM does not constrain genetic correlation estimates to be in the range [-1,1], thus out-of-range correlations, which were common when one or both traits have low heritability, were set to missing as estimates were not deemed reliable. There were 7428 with values < -1.0 and 9020 with values > 1.0. Out-of-range estimates are represented by white squares in the heatmap, and only 64,621 correlations included in Supplementary Data 3.86 was used to evaluate the pairwise genetic and lipids correlations for lipid species and traditional lipids.

Traditional lipid variance explained by lipid class phenotypes. Covariance matrices were constructed for each of the 13 lipid classes (ACT, CE, Cer, DAG, FA, GlcCer, LPC, LPE, PE, PI, SM, TAG) using mean centered and normalized raw lipidomic values from each class in the data matrix X. These covariance matrices were used in a mixed model with traditional lipid (HDL, LDL, TG and TC) as the trait and kinship and lipidomic class as random effects. We estimated the marginal contribution of each lipid class separately and also performed a sequential analysis as described above to determine the best multi-class model fit for each lipid which estimates the joint proportion of traditional lipid variance accounted for by the lipid class.

Association analyses. In HAPI, genetic association analysis of inverse normalized lipid species was performed using linear mixed models to account for familial correlation using the genetic relationship matrix (GRM) as implemented in the Mixed Model Analysis for Pedigree and population (MMAP). For 180 lipid species that showed nominal association (p < 0.05-03) with any of the 4 Amish enriched lipid variants (APOB_rs5742904, APOC3_rs76533203, B4GALT1_rs5515646831, TIMD4_rs98956050) in Supplementary Data 2. The effect size for all traits is reported in standard deviation units for comparability. Multiple testing adjusted significance threshold of 4.5E-10 was determined by dividing the standard GWAS level of SE=0.08 by the number of principle components (110) that explained >99% of the variance in the 355 metabolomic variables. All associations between SE-08 and 4.5E-10 were considered suggestive. The number of independent signals at each locus was determined using sequential conditional analysis. The novel loci were determined by conditioning on preidentified variants within 100kb of the top associated variant. In GOLDN we performed a parallel linear mixed model analysis on the inverse normally transformed lipid phenotypes in Saige-0.29 pipeline deployed in Encore.
analytics framework (i.e. Fast linear mixed model with kinship adjustment (saige)). Pre-derived top 10 PCs from TOPMed WGS cohort was adjusted as covariates along with age, sex and center. Bonferroni corrected p-value of 1.3E-05 was used for GOLDN replication accounting for 3631 trait-variant pairs of GOLDN association results included in Supplementary Data 6

Annotation and biobank lookup. Look ups of top results in publicly available PheWAS databases including UK Biobank96–99, FinnGen100 and Biobank Japan101 was performed using the “Omics Analysis, Search and Information System” (OASIS)102, a web-based application for mining and visualizing GWAS results via integration with a broad spectrum of available databases for functional annotation such as dbSNP103, gnomAD104, GTEx105, Open Targets Genetics106,107, eigenPC108, RegulomeDB109. The ensemble regulatory build110 chromatin state in four different tissue111, and the UCSC Genome Browser102 to visualize their proximity to functional regions (e.g. binding sites, Dnase hypersensitivity sites, enhancer/promoter regions).

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability

Amish phenotype, genotype, and tissue data are available to academic investigator via a Data Use Agreement with UMB. GOLDN phenotype, genotype, and lipidome data are available to academic investigator via a Data Use Agreement with UAB. Please contact the corresponding author to initiate the data request. Source data underlying Figs 1b and 2 are presented in Supplementary Data 2. Summary statistics are available through the GWAS Catalog (https://www.ebi.ac.uk/gwas/home) under accession GCP00029.

Received: 27 August 2021; Accepted: 17 March 2022;
Published online: 07 April 2022

References

1. World Health Organization https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds).
2. Tabassum, R. & Ripatti, S. Integrating lipidomics and genomics: emerging tools to understand cardiovascular diseases. Cell Mol. Life Sci. 78, 2565–2584 (2021).
3. Biswas, J. et al. Ceramide: A common pathway for atherosclerosis? Atherosclerosis 196, 497–504 (2008).
4. Sigruneur, A. et al. Glycero phospholipid and sphingolipid species and mortality: the Ludwigshafen Risk and Cardiovascular Health (LURIC) study. PLoS One 9, e85724 (2014).
5. Würzt, P. et al. Metabolite profiling and cardiovascular event risk: A prospective study of 3 population-based cohorts. Circulation 131, 774–785, (2015).
6. Alshehry, Z. H. et al. Plasma lipidomic proﬁles improve on traditional risk factors for the prediction of cardiovascular events in Type 2 diabetes mellitus. Circulation 134, 1637–1650 (2016).
7. Razaquin, C. et al. Plasma lipidome patterns associated with cardiovascular risk in the PREMED trial: A case-cohort study. Int J. Cardiol. 253, 126–132 (2018).
8. Poss, A. M. et al. Machine learning reveals serum sphingolipids as cholesterol-independent biomarkers of coronary artery disease. J. Clin. Invest. 130, 1363–1376 (2020).
9. Hagenbeck, F. A. et al. Heritability estimates for 361 blood metabolites across 8. Poss, A. M. et al. Machine learning reveals serum sphingolipids as cholesterol-independent biomarkers of coronary artery disease. J. Clin. Invest. 130, 1363–1376 (2020).
10. Minster, R. L. et al. A thrifty variant in CREBF strongly influences body mass index in Samoans. Nat. Genet. 48, 1049–1054 (2016).
11. Pollin, T. I. et al. A null mutation in human APOC3 confers a favorable plasma lipid profile and apparent cardioprotection. Science (N.Y.) 322, 1702–1705 (2008).
12. Shen, H. et al. Familial defective apolipoprotein B-100 and increased low-density lipoprotein cholesterol and coronary artery calcification in the old order amish. Arch. Intern. Med. 170, 1850–1855 (2010).
13. Horenstein, R. B. et al. The ABCG8 G574R variant, serum plant sterol levels, and cardiovascular disease risk in the Old Order Amish. Arteriosclerosis, Thrombosis, Vasc. Biol. 33, 413–419 (2013).
14. Daley, E. et al. Variable bone fragility associated with an Amish COL1A2 variant and a knock-in mouse model. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 25, 247–261 (2010).
15. Albert, J. S. et al. Null mutation in hormone-sensitive lipase gene and risk of insulin resistance and type 2 diabetes. N. Engl. J. Med. 370, 2307–2315 (2014).
16. Welty, F. K. et al. Identification and molecular analysis of two apoB gene mutations causing low plasma cholesterol levels. Circulation 92, 2036–2040 (1995).
17. Montasser, M. E. et al. An APOO Pseudogene on Chromosome 5q is Associated With Low-Density Lipoprotein Cholesterol Levels. Circulation 138, 1343–1355 (2018).
18. Montasser, M. E. et al. Genetic and functional evidence links a missense variant in. Science 374, 1211–1221 (2021).
19. Liu, Y. et al. The SCARB1 gene is associated with lipid response to dietary and pharmaceutical interventions. J. Hum. Genet. 53, 709–717 (2018).
20. Tsai, M. Y. et al. Comparison of ultracentrifugation and nuclear magnetic resonance spectroscopy in the quantification of triglyceride-rich lipoproteins after an oral fat load. Clin. Chem. 50, 1201–4 (2004).
21. Bagheri, M. et al. A lipidome-wide association study of the lipoprotein insulin resistance index. Lipids Health Dis. 19, 153 (2020).
22. Döring, B. et al. Age and sex are associated with the plasma lipidome: findings from the GOLDN study. Lipids Health Dis. 20, 30 (2021).
23. Tabassum, R. et al. Genetic architecture of human plasma lipids and its link to cardiovascular disease. Nat. Commun. 10, 4329 (2019).
24. Frahnow, T. et al. Heritability and responses to high fat diet of plasma lipidomics in a twin study. Sci. Rep. 7, 3790 (2017).
25. Beall, C. et al. Human plasma lipids is pleiotropically associated with cardiovascular risk factors and death. Circ. Cardiovasc. Genet. 7, 854–863 (2014).
26. Joshi, P. K. et al. Directional dominance on stature and cognition in diverse human populations. Nature 523, 459–462 (2015).
27. Klarin, D. et al. Genetics of blood lipids among ~300,000 multi-ethnic participants of the Million Veteran Program. Nat. Genet. 50, 1514–1523 (2018).
28. Schwarz, J. M. et al. MutationTaster2: mutation prediction for the deep-sequencing age. Nat. Methods 13, 361–362 (2014).
29. Liu, C. et al. Meta-analysis identifies common and rare variants influencing blood pressure and overlapping with metabolic trait loci. Nat. Genet. 48, 1162–1170 (2016).
30. Surendran, P. et al. Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension. Nat. Genet. 48, 1151–1161 (2016).
31. Fenger, M., Linneberg, A. & Jeppesen, J. Network-based analysis of the Sphingolipid metabolism and hypertension. Front. Genet. 6, 84 (2015).
32. Spijkers, L. J. et al. Hypertension is associated with marked alterations in sphingolipid biology: A potential role for ceramide. PLoS One 6, e21817 (2011).
33. Shahin, M. H. et al. Sphingolipid metabolic pathway impacts thiazide diuretics blood pressure response: Insights from genomics, metabolomics, and lipidomics. J. Am. Heart Assoc. 7 (2017).
34. Liu, D. J. et al. Exome-wide association study of plasma lipids in >300,000 individuals. Nat. Genet. 49, 1758–1766 (2017).
35. Kichaev, G. et al. Integrating functional data to prioritize causal variants in statistical fine-mapping studies. PLoS Genet. 10, e1004722 (2014).
36. Snyder, M. P. et al. Perspectives on ENCODE. Nature 583, 693–698 (2020).
37. Ionita-Laza, I. et al. A spectral approach integrating functional genomic annotations for coding and noncoding variants. Nat. Genet. 48, 214–220 (2016).
38. Boyle, A. P. et al. Annotation of functional variation in personal genomes using RegulomeDB. Genome Res. 22, 1790–1792 (2012).
39. Varshney, A. et al. Genetic regulatory signatures underlying islet gene expression and type 2 diabetes. Proc. Natl. Acad. Sci. USA. 114, 2301–2306 (2017).
40. Peloso, G. M. et al. Association of low-frequency and rare coding-sequence mutations causing low plasma cholesterol levels. Circulation 138, 1343–1355 (2018).
41. The Human Metabolome Database, http://www.hmdb.ca/metabolites.
48. Chung, K. K. et al. Parkin ubiquitiﬁes the alpha-synuclein-interacting protein, synphilin-1: Implications for Lewy-body formation in Parkinson disease. Nat. Med. 17, 1144–50 (2011).

49. Jana, A., Hogan, E. L. & Pahan, K. Ceramide and neurodegeneration: Susceptibility of neurons and oligodendrocytes to cell damage and death. J. Neurol. Sci. 278, 5–15 (2009).

50. Malinina, L. et al. Sphingolipid transfer proteins de

51. Kjellberg, M. A. et al. Alternation in the glycolipid transfer protein expression causes changes in the cellular lipidome. PLoS One 9, e97263 (2014).

52. Yang, L. et al. Serum lipids proﬁling perturbances in patients with ischemic heart disease and ischemic cardiomyopathy. Lipids Health Dis. 19, 89 (2020).

53. Lemaitre, R. N. et al. Plasma ceramides and sphingomyelins in relation to heart failure risk. J. Am. Heart Fail. 12, e005708 (2019).

54. Moliterno, A. R. & Resar, L. M. AKNA: another AT-hook transcription factor “hooking-up” with inﬂammation. Cell Res. 21, 1528–30 (2011).

55. Ma, W. et al. Coordinate activation of inﬂammatory gene networks, alveolar destruction and neonatal death in AKNA deﬁcient mice. Cell Res. 21, 1564–77 (2011).

56. Richardson, T. G. et al. Evaluating the relationship between circulating lipoprotein lipids and apolipoproteins with risk of coronary heart disease: A multivariable Mendelian randomisation analysis. PLoS Med. 17, e1003062 (2020).

57. Ruth, K. S. et al. Using human genetics to understand the disease impacts of testosterone in men and women. Nat. Med. 26, 252–258 (2020).

58. Kanai, M. et al. Genetic analysis of quantitative traits in the Japanese population links cell types to complex human diseases. Nat. Genet. 50, 390–400 (2018).

59. Tachmazidou, I. et al. A rare functional cardioprotective APOC3 variant has risen in frequency in distinct population isolates. Nat. Commun. 4, 2873 (2013).

60. Tg et al. Loss-of-function mutations in APOC3, triglycerides, and coronary disease. N. Engl. J. Med. 371, 22–31 (2014).

61. Saleheen, D. et al. Human knockouts and phenotypic analysis in a cohort with a high rate of consanguinity. Nature 544, 235–239 (2017).

62. Wulff, A. B., Nordestgaard, B. G. & Tybjærg-Hansen, A. Loss-of-Function Mutations, Remnant Cholesterol, Low-Density Lipoprotein Cholesterol, and Cardiovascular Risk: Mediation and Meta-Analyses of 137,895 Individuals. Arterioscler. Thromb. Vasc. Biol. 38, 660–668 (2018).

63. Taskinen, M. R., Packard, C. J. & Borén, J. Emerging Evidence that ApoC-III Inhibitors Provide Novel Options to Reduce the Residual CVD. Curr. Atheroscler. Rep. 21, 27 (2019).

64. Alexander, V. I. et al. N-acetylglucosamine-conjugated antisense drug to APOC3 mRNA, triglycerides and atherogenic lipoprotein levels. Eur. Heart J. 40, 2785–2796 (2019).

65. Talou, D. et al. Sequencing of 53,831 diverse genomes from the NHBLI TOPMed Program. Nature 590, 290–299 (2021).

66. Onda, E. A decrease in total bilirubin predicted hyper-LDL cholesterolemia in a health screening population. Atherosclerosis 235, 334–338 (2014).

67. Novotný, L. & Vítek, L. Inverse relationship between serum bilirubin and high-Density Lipoprotein Cholesterol, and the participants of the GOLDN study. We also thank Simeon I. Taylor for insightful suggestions, comments and discussions. The HAPI Heart study was supported by U01HL072515. The analysis methods and software were supported by U01HL084736 and U01HL137181. The GOLDN study was supported by the NHBLI grant U01HL072524–04 and R01HL91357.

68. Acknowledgements

69. Broeder, C. E. et al. The Andro Project: physiological and hormonal inﬂuences of androstenedione supplementation in men 35 to 65 years old participating in a high-intensity resistance training program. Arch. Intern. Med. 160, 1093–104 (2000).

70. Jones M. W., W.C., Ghassemzadeh S., Gallstones (Cholelithiasis). 2020: In: StatPears [Internet]. Treasure Island (FL): StatPears Publishing.

71. Ferkingstad, E. et al. Genome-wide association meta-analysis yields 20 loci associated with gallstone disease. Nat. Commun. 9, 5101 (2018).

72. Amish Research Program http://www.medschool.umaryland.edu/ endocrinology/Aub Research Program/.

73. Mitchell, B. D. et al. The genetic response to short-term interventions affecting testosterone in men and women. Int. J. Andrology 38, 568–573 (2015).

74. Franchini, M., Targher, G. & Luppi, G. Serum bilirubin levels and cardiovascular disease risk: A Janus Biﬁrons? Adv. Clin. Chem. 50, 47–63 (2010).

75. Bezeichnet als „Endocrinology“. Cub Research Program/.

76. Showalter, M. R. et al. Obesogenic diets alter metabolism in mice. PloS One 13, e0190632–e0190632 (2018).

77. Casper, J. et al. The UCSC genome browser database: 2018 update. Nucleic Acids Res. 46, D762–D769 (2017).

78. Author contributions

79. MEIM reports funding from Regeneron Pharmaceutical unrelated to this work. SA reports employment and equity in 23andMe, Inc. ARS is a current employee of Regeneron Pharmaceuticals Inc. and also a part-time faculty member at the University of Maryland School of Medicine. No competing interests for all other authors.
