2022

Remarkably enhanced dielectric stability and energy storage properties in BNT-BST relaxor ceramics by A-site defect engineering for pulsed power applications

Zhipeng LI
Energy Storage and Conversion Ceramic Materials Engineering Laboratory of Jiangxi Province, China National Light Industry Key Laboratory of Functional Ceramic Materials, School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China

Dong-Xu LI
Energy Storage and Conversion Ceramic Materials Engineering Laboratory of Jiangxi Province, China National Light Industry Key Laboratory of Functional Ceramic Materials, School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China

Zong-Yang SHEN
Energy Storage and Conversion Ceramic Materials Engineering Laboratory of Jiangxi Province, China National Light Industry Key Laboratory of Functional Ceramic Materials, School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China

Xiaojun ZENG
Energy Storage and Conversion Ceramic Materials Engineering Laboratory of Jiangxi Province, China National Light Industry Key Laboratory of Functional Ceramic Materials, School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China

Fusheng SONG
Energy Storage and Conversion Ceramic Materials Engineering Laboratory of Jiangxi Province, China National Light Industry Key Laboratory of Functional Ceramic Materials, School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China

See next page for additional authors

This Research Article is brought to you for free and open access by Tsinghua University Press: Journals Publishing. It has been accepted for inclusion in Journal of Advanced Ceramics by an authorized editor of Tsinghua University Press: Journals Publishing.
Remarkably enhanced dielectric stability and energy storage properties in BNT-BST relaxor ceramics by A-site defect engineering for pulsed power applications

Authors
Zhipeng LI, Dong-Xu LI, Zong-Yang SHEN, Xiaojun ZENG, Fusheng SONG, Wenqin LUO, Xingcai WANG, Zhumei WANG, and Yueming LI

This research article is available in Journal of Advanced Ceramics: https://dc.tsinghuajournals.com/journal-of-advanced-ceramics/vol11/iss2/4
Remarkably enhanced dielectric stability and energy storage properties in BNT–BST relaxor ceramics by A-site defect engineering for pulsed power applications

Zhipeng LIa,†, Dong-Xu LIa,h,†, Zong-Yang SHENa,*, Xiaojun ZENGa, Fusheng SONGa, Wenqin LUOa, Xingcai WANGc, Zhumei WANGa, Yueming Lia

aEnergy Storage and Conversion Ceramic Materials Engineering Laboratory of Jiangxi Province, China National Light Industry Key Laboratory of Functional Ceramic Materials, School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China

bState Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China

cChengdu Hongke Electronic Technology Co., Ltd, Chengdu 610000, China

Received: June 26, 2021; Revised: August 20, 2021; Accepted: August 31, 2021 © The Author(s) 2021.

Abstract: Lead-free bulk ceramics for advanced pulsed power capacitors show relatively low recoverable energy storage density (W_{rec}) especially at low electric field condition. To address this challenge, we propose an A-site defect engineering to optimize the electric polarization behavior by disrupting the orderly arrangement of A-site ions, in which Ba$_{0.105}$Na$_{0.325}$Sr$_{0.245-1.5x0.5x}^x$Bi$_{0.325+}^x$TiO$_3$ (BNS$_{0.245-1.5x0.5x}B_0.325^xT$, $x = 0, 0.02, 0.04, 0.06, \text{and} 0.08$) lead-free ceramics are selected as the representative. The BNS$_{0.245-1.5x0.5x}B_0.325^xT$ ceramics are prepared by using pressureless solid-state sintering and achieve large W_{rec} (1.8 J/cm3) at a low electric field (@110 kV/cm) when $x = 0.06$. The value of 1.8 J/cm3 is super high as compared to all other W_{rec} in lead-free bulk ceramics under a relatively low electric field (< 160 kV/cm). Furthermore, a high dielectric constant of 2930 within 15% fluctuation in a wide temperature range of 40–350 $^\circ$C is also obtained in BNS$_{0.245-1.5x0.5x}B_0.325^xT$ ($x = 0.06$) ceramics. The excellent performances can be attributed to the A-site defect engineering, which can reduce remnant polarization (P_r) and improve the thermal evolution of polar nanoregions (PNRs). This work confirms that the BNS$_{0.245-1.5x0.5x}B_0.325^xT$ ($x = 0.06$) ceramics are desirable for advanced pulsed power capacitors, and will push the development of a series of Bi$_{0.5}$Na$_{0.5}$TiO$_3$ (BNT)-based ceramics with high W_{rec} and high-temperature stability.

Keywords: relaxor ferroelectrics; energy storage ceramics; ceramic capacitor; Bi$_{0.5}$Na$_{0.5}$TiO$_3$ (BNT); defect engineering

† Zhipeng Li and Dong-Xu Li contributed equally to this work.

* Corresponding author.

E-mail: shenzongyang@163.com

www.springer.com/journal/40145
1 Introduction

Dielectric capacitor is an indispensable component in contemporary electronic devices, which fulfills different functions such as direct current blocking, coupling, filtering, and pulse discharge [1–3]. Considering the complicated working environment, especially under relatively low electric field, the energy storage density, recoverable energy storage field, polarization increment at density, energy efficiency, applied external electric

\[W = \int_{0}^{P_{\text{max}}} E dP \]

\[W_{\text{rec}} = \int_{P_{r}}^{P_{\text{max}}} E dP \]

\[\eta = \frac{W_{\text{rec}}}{W} \times 100\% \]

where \(W, W_{\text{rec}}, \eta, E, dP, P_{\text{max}}, \) and \(P_{r} \) denote total energy storage density, recoverable energy storage density, energy efficiency, applied external electric field, polarization increment at \(E \), maximum polarization, and remnant polarization, respectively. Therefore, high \(P_{\text{max}} \), low \(P_{r} \), and high breakdown strength \(E_{b} \) are important factors to achieve high \(W_{\text{rec}} \) [6,7]. However, high applied electric field may limit its application in integrated electronic circuits, as well as in wearable or implantable devices requiring low electric field. Pb-based relaxor ferroelectric and antiferroelectric ceramics had been considered as potential candidates, while the toxicity of Pb limits its application [8,9]. It is urgent to design and develop new Pb-free systems with high \(W_{\text{rec}} \) especially under relatively low electric field.

Bismuth sodium titanate (\(\text{Bi}_{0.5}\text{Na}_{0.5}\text{TiO}_{3}, \text{BNT} \)) possesses characteristics of complicated phase structure with high \(P_{\text{max}} \), and hence is considered as a promising energy storage ferroelectric material [9–13]. Noted that a high \(P_{r} \) and poor sintering behavior of pure BNT ceramic result in a low \(W_{\text{rec}} \). Different methods, therefore, are utilized to improve \(W_{\text{rec}} \) such as chemical doping, glass modification, multilayer structure design, and advanced sintering technology [14–22]. For chemical doping, it can be divided into chemical equivalent and aliovalent doping. Especially, the chemical aliovalent doping includes “donor” and “acceptor” doping, which can induce different types of defects and improve the properties of materials. For example, Cao et al. [23] used Mn\(^{2+} \) as acceptor dopant to substitute B-site ions of 0.7[0.94\text{NBT}–0.06\text{BT}]–0.3\text{SST} ceramic, and acquired a high \(W_{\text{rec}} \) of 1.06 J/cm\(^3\). Xu et al. [24] found a pinched \(P–E \) loop behavior in Ta donor doped BNT–0.06BT ferroelectric ceramic. It can be observed that defect engineering can effectively improve energy storage properties by forming different types of defect dipoles. For vacancy defect, on the one hand, it can influence internal electric field to reduce \(P_{r} \), and on the other hand, it may pin domain wall to inhibit its switching. However, a few reports pointed out the chemical defects by adjusting the element ratio in composition to optimize the energy storage properties of BNT-based ceramics.

Based on our previous work, a binary solid solution of \((\text{Bi}_{0.3}\text{Na}_{0.5})_{0.65}(\text{Ba}_{0.3}\text{Sr}_{0.7})_{0.35}\text{TiO}_{3} \) (BNT–BST) is considered as a good energy storage material due to “clamped” behavior in \(P–E \) loop and high dielectric constant \(\varepsilon_{r} \) (~4000) at room temperature [25,26]. However, its relatively high \(P_{r} \) and poor dielectric temperature stability make it hard to obtain high \(W_{\text{rec}} \). Based on the above considerations, we propose an A-site defect engineering, i.e., adjusting the Bi/Sr ratio by generating different concentrations of Sr\(^{2+} \) vacancy to enhance \(W_{\text{rec}} \) in this work. Consequently, the phase structure, micrograph, dielectric temperature stability, and energy storage properties of \(\text{Ba}_{0.105}\text{Na}_{0.325}\text{Sr}_{0.245–x}\text{Bi}_{0.325+x}\text{TiO}_{3} \) ceramics are investigated.

2 Experimental

\(\text{Ba}_{0.105}\text{Na}_{0.325}\text{Sr}_{0.245–1.5x}\text{Bi}_{0.325–x}\text{TiO}_{3} \) (\(\text{BNS}_{0.245–1.5x}^{0.5} \)) ceramics were fabricated using a solid-state process. Raw materials \(\text{Bi}_{2}\text{O}_{3} \) (99.9%), \(\text{Na}_{2}\text{CO}_{3} \) (99.8%), \(\text{TiO}_{2} \) (99.9%), \(\text{BaCO}_{3} \) (99.0%), and \(\text{SrCO}_{3} \) (99.9%) (purchased from Sinopharm Chemical Reagent Co., Ltd., Shanghai, China) were weighted according to stoichiometric formula and mixed in planetary ball mill for 24 h with zirconia balls in ethanol. After separating the balls, the mixtures were dried, calcined at 800 °C for 3 h, and then milled again for 24 h. The powder was compacted into pellets of 13 mm in diameter and about 1 mm in thickness under the pressure of 120±10 MPa after granulated by adding polyvinyl alcohol solution (PVA, 5 wt%). The disks were preheated at 650 °C for 2 h to remove PVA binder, and finally sintered at 1180–1240 °C for 2 h in air following by furnace cooling.
The phase structure evolution was identified using the X-ray diffraction (XRD, D8-Advance, Bruker, Germany) with Cu Kα radiation and the Raman spectroscope (in Via, Renishaw, UK). The microstructure features of the ceramic sample were observed by a scanning electron microscope (SEM, JSM-6700F, JEOL, Japan) after polishing and thermally etching. For electrical performance testing, ceramic samples were polished to smooth and parallel in both surfaces and then painted Ag electrode on both sides. The dielectric properties of ceramics were measured using a precision impedance analyzer (HP4294A, Agilent, USA) over a temperature range from −100 to 400 °C. For P–E loop and charge–discharge measurements, the ceramic samples were polished to 0.3–0.35 mm and covered a central electrode with margin blank on both sides. The P–E hysteresis loops and J–E curves were examined using a ferroelectric analyzer at 10 Hz (Trek model 609B, USA) based on a standard sawyer-tower circuit. The temperature dependent charge–discharge capability was tested using a designed RLC circuit (CFD-003, Tongguo Technology, Shanghai, China) being connected to a temperature controlled chamber.

3 Results and discussion

Figure 1(a) shows XRD patterns of BNS0.245−xT ceramics at 2θ = 20°–80°. All samples are pure pseudocubic perovskite structure without trace of any other secondary phases. As seen from Fig. 1(b), the diffraction peak (200) slightly shifts toward a high angle with the increase of x value, indicating that the cell volume gradually decreases. This phenomenon should be attributed to the following reasons: One is the replacement of Bi3+ ions with a smaller ionic radius (r1 = 1.35 Å, coordination number = 12) to Sr2+ (r1 = 1.44 Å, CN = 12) with a larger one; and the other is that Sr vacancy content gradually increases with x value, while the existence of vacancy provides a space for lattice contraction.

It is well known that the Raman spectroscope is an effective tool to investigate the crystalline structure information and phase transition. Figure 2(a) shows Raman spectra of BNS0.245−x−0.5xB0.325+T ceramics at room temperature. Generally, BNT material possesses 16 active phonon modes, and the irreducible representation is ΓRaman = 4A1 + 1B1 + 3B2 + 8E based on the group theory [27,28]. Figure 2(b) displays the fitted Raman pattern only including eight modes for pure BNT–BST ceramics at room temperature, which should be attributed to disorder occupation of ions at A-site and polycrystalline feature of ceramics. In order to better illustrate the results, four main regions can be classified into the Raman spectra: (1) The modes below 200 cm−1 (v1, v2) are related to A-site cation vibration, including Bi3+, Na+, Ba2+, and Sr2+ ions; (2) the modes around 200–400 cm−1 (v3, v4) should be associated with the vibration of Ti–O bond; (3) the modes from 400 to 700 cm−1 (v5, v6) are related to [TiO6] vibrations, namely the breathing and stretching of the oxygen octahedron; (4) the modes above 700 cm−1 (v7, v8) are ascribed to the super-position of vibration A1 (longitudinal optical) and E (longitudinal optical) overlapping bands [28–31]. The Raman patterns are decomposed by Lorentz peak fitting to investigate the effect of x value on the vibration modes. The fitted Raman patterns for the represented BNS0.245−x−0.5xB0.325+T ceramics with x = 0 and x = 0.06 are shown in Figs. 2(b) and 2(c), respectively. With the increase of x value, the v2 phonon mode’s wavenumber presents an obvious shifting upward tendency, and signal intensity enhances as shown in Fig. 2(d). Meanwhile, the v3 phonon mode’s wavenumber also shows a similar tendency. The results may be ascribed to the enhancement of the polarity of unit cell by the increase of Sr vacancy [32,33]. Furthermore, it can be seen that the gap of wavenumber between v5 and v6 gradually increases, and the intensity of the v6 phonon mode has a slight enhancement, which should be related to the strengthening of the TiO6 octahedral distortion, as shown in Fig. 2(d).

Figure 3 displays the micrograph feature of polished and thermally-etched BNS0.245−x−0.5xB0.325+T ceramics.
It can be seen from Figs. 3(a)–3(e) that BNS$_{0.245-1.5x0.5}B_{0.325+x}$ ceramics possess uniform grains and extremely high density. As x value increases, the grain size gradually increases (Fig. 3(f)), which should be attributed to the following two reasons: One is that Bi$^{3+}$ replaces the A-site ion, and the lattice shrinkage will cause stress; and the other is that Bi$^{3+}$ replaces Sr$^{2+}$, in order to maintain charge balance, defects such as Sr vacancy and empty lattices will be formed, and stress will also be generated, which accelerates the mass transfer rate between particles and weakens the competition with the adjacent grains, leading to accelerated grain growth and densification promotion of ceramics during the sintering process [34].

Fig. 2 (a) Raman patterns of BNS$_{0.245-1.5x0.5}B_{0.325+x}$ ceramics at room temperature. Lorentz peak fitting of Raman pattern for represented BNS$_{0.245-1.5x0.5}B_{0.325+x}$ ceramics with (b) $x = 0$ and (c) $x = 0.06$. (d) Wavenumbers of Raman peaks from ν_1 to ν_8 of BNS$_{0.245-1.5x0.5}B_{0.325+x}$ ceramics as a function of x value.
Figures 4(a)–4(e) show temperature dependence of dielectric properties for BNS$_{0.245}$−$1.5x$0.5$xB_{0.325+x}$T ceramics with different x values at frequencies of 1 kHz, 10 kHz, 100 kHz, and 1 MHz. It should be mentioned that relaxor ferroelectric has two obvious characteristics: One is that T_m, the absolute temperature corresponding to the maximum dielectric constant ε_m, shifts toward high temperature with increasing frequency, and the other one is that dielectric constant at T_m decreases with the increase of frequency whereas that of loss tangent follows the reverse order. Meanwhile, a modified Curie–Weiss law is applied to evaluate the relaxor characteristic [35]:

$$\frac{1}{\varepsilon_t} - \frac{1}{\varepsilon_m} = \frac{(T - T_m)^\gamma}{C}$$

(4)

where ε_t and C are the relative dielectric constant T is the measured actual temperature and the Curie constant, respectively. The diffuseness factor γ decreases with decreasing relaxor degree and varies between 1 (for normal ferroelectric) and 2 (for ideal relaxor ferroelectric) [36]. With increasing x value, γ value increases from 1.71 to 2.00, indicating that relaxor characteristic is effectively enhanced. For pure BNT–BST ceramics, one dielectric peak at T_m is obvious relaxor behavior below T_m can be observed. After composition modification, wave-like double peaks can be found in dielectric spectra, and corresponding temperatures are named as T_{m1} and T_{m2}. Noted that dielectric relaxor behavior only exists at a temperature below T_{m1}, and thus dielectric peak at T_{m1} is similar to that at T_m. Thus, a new dielectric peak at T_{m2} should be induced by the Bi–Sr ratio change. In addition, it can be seen that T_{m1} and T_{m2} correspond to the transition from relaxor to ferroelectric phase and ferroelectric to paraelectric phase, respectively. Actually, a similar phenomenon can also be observed in other BNT-based systems while the related reason is still controversial [32,37–40].

Temperature coefficient of capacitance (TCC) is a crucial factor to influence its application scenes. In general, it can be calculated by Eq. (5):

$$\text{TCC} = \frac{\varepsilon - \varepsilon_{\text{base}}}{\varepsilon_{\text{base}}}$$

(5)

where $\varepsilon_{\text{base}}$ denotes dielectric constant at a based temperature. As x value increases, the dielectric peak at T_{m1} is suppressed, while the temperature difference $\Delta T = T_{m2} - T_{m1}$ is gradually enhanced, which is beneficial for enhancing temperature stability. Figure 4(f) shows TCC of BNS$_{0.245}$−$1.5x$0.5$xB_{0.325+x}$T ceramics with different x values by choosing 150 °C as the based temperature. With increasing x value, dielectric temperature stability is effectively enhanced especially at high temperatures, which is attributed to the appearance of a new dielectric peak at T_{m2}. For $x = 0.06$ composition, a wide temperature range of TCC $\leq \pm 15\%$ at the temperature range of 40–350 °C.

In order to further explore the reason for generating dielectric peak at T_{m2}, a variable Raman spectrum is used. Figure 5 shows Raman spectra and wavenumber

www.springer.com/journal/40145
of Raman peaks of BNS$_{0.245-1.5x0.5}$B$_{0.325+x}$T ceramics with $x = 0.06$ over a temperature range from room temperature to 275 $^\circ$C. As temperature increases, the signals of modes v_2 and v_6 gradually present a disappeared tendency, while other modes change slightly, as shown in Fig. 5(a). All modes display a decreased tendency, with no abrupt change in wavenumber (Fig. 5(b)). The result illustrates that modes v_2 and v_6 are sensitive to phase structure of BNS$_{0.245-1.5x0.5}$B$_{0.325+x}$T ceramics with $x = 0.06$. The slow transitions of modes v_2 and v_6 both demonstrate that phase structure of $x = 0.06$ composition has a slight change. Therefore, it can be concluded that the new dielectric peak at T_m2 should be attributed to the thermal evolution of polar nanoregions (PNRs) affected by the concentration of Sr vacancy [40]. Furthermore, it should be noted that T_m2 has a slowly increased tendency as x increases, and this may due to the decrease of structural stability by increasing Sr vacancy. And then higher temperature is needed to adjust the structural stability because T_m2 corresponds to ferroelectric–paraelectric phase transition temperature.

Figure 6(a) shows P–E loops of BNS$_{0.245-1.5x0.5}$B$_{0.325+x}$T ceramics at 60 kV/cm and room temperature. As x
value increases, $P–E$ loops gradually go slim, which is beneficial for improving energy storage property, and the maximum polarization at a given electric field slightly decreases with the increase of x value. Combined with $I–E$ loops at the same conditions, current peaks gradually diffuse, and corresponding intensity decreases, indicating the relaxor characteristic is enhanced [41]. In addition, $P_{\text{max}}, P_{r},$ and $P_{\text{max}}–P_{r}$ versus x value for BNS$_{0.245−1.5x}B_{0.325+x}T$ ceramics at 60 kV/cm are exhibited in Fig. 6(b). A relatively high $P_{\text{max}}–P_{r}$ of 27.52 μC/cm2 can be obtained at $x = 0.06$ composition due to a rapid decrease in P_{r}, because the PNRs are dynamic sensitive to external electric field stimuli. Figures 6(c) and 6(d) show energy efficiency η and recoverable energy density W_{rec} of BNS$_{0.245−1.5x}B_{0.325+x}T$ ceramics at different electric fields, respectively. As x value increases, η presents an increased tendency obtaining a high value for $x = 0.06$ composition, and then decreases again with further increasing x value. Meanwhile, BNS$_{0.245−1.5x}B_{0.325+x}T$ ceramics with $x = 0.06$ possess a maximum W_{rec} of 1.8 J/cm3 only at a low electric field of 110 kV/cm, as shown in Fig. 6(d).

In order to investigate the working stability at different external fields, temperature, frequency, and electric fatigue dependent energy storage properties of BNS$_{0.245−1.5x}B_{0.325+x}T$ ceramics with $x = 0.06$ have been examined. Figure 7(a) shows $P–E$ loops of $x = 0.06$ ceramics over a temperature range of 30–150 °C at 60 kV/cm and 10 Hz. As temperature increases, $P–E$ loops gradually go slim, and keep a high P_s and low P_r. Therefore, W_{rec} and η of $x = 0.06$ ceramics possess good temperature stability, as exhibited in Fig. 7(b). Meanwhile, frequency dependent $P–E$ loops of $x = 0.06$ ceramics at 60 kV/cm are displayed in Fig. 7(c). It can be seen that energy loss has a slight increase tendency during discharge process, which may be related to vacancy defect pin domain wall. W_{rec} and η of $x = 0.06$ ceramics, therefore, show a slight decrease at frequencies of 1–100 Hz, as shown in Fig. 7(d). Finally, $P–E$ loops as a function of cycle number and
corresponding W_{rec} and η for $x = 0.06$ ceramics are illustrated in Figs. 7(e) and 7(f), respectively. Noted that polarization of $x = 0.06$ ceramics keeps a stable value at 10 Hz after 10^5 electric cycles. Obviously, $x = 0.06$ ceramics possess a good fatigue endurance, and W_{rec} and η as functions of cycles are illustrated in Fig. 7(f).

Charge–discharge characteristic is an essential factor for dielectric materials to evaluate its energy storage capabilities, and thus charge–discharge measurement is fulfilled at a specified circuit. Generally, discharge energy density W_d can be calculated by the equation as Eq.(6) [42]:

$$ W_d = \frac{R}{V} \int i^2 dt $$

where R is the load resistance (100 Ω), i is the maximum discharge current, and V is the effective volume of
ceramic between two electrodes. Figures 8(a) and 8(b) show room-temperature overdamped discharge waveform and corresponding W_d of BNS$_{0.245-1.5_0.5}B_0.325_+T$ ceramics with $x = 0.06$ at different electric fields. As the electric field increases, the maximum discharge current I_{max} and W_d both gradually enhance. It should be mentioned that W_d is less than W_{rec} at the same electric field for $x = 0.06$ composition. This may be attributed to the following two reasons [43]: One is that the domain cannot switch quickly to respond to the external electric field; and the other is that equivalent series resistance (ESR) generates Joule heat during charge–discharge process. The discharge rate is characterized by evaluating factor $t_{0.9}$ (the dashed line in Fig. 8(b)), which represents the time needed for releasing 90% of all stored energy [44]. Figure 8(b) shows that $t_{0.9}$ is about 0.1 µs for $x = 0.06$ ceramics at room temperature, which illustrates that energy can be released by a pulse current way in a short time. Variable temperature discharge current curves as a function of time for BNS$_{0.245-1.5_0.5}B_0.325_+T$ ceramics with $x = 0.06$ are displayed in Fig. 8(c). As temperature increases, the maximum discharge current I_{max} basically keeps a stable value while W_d possesses an obvious enhancement as shown in Fig. 8(d). The discharge capability of $x = 0.06$ ceramics possesses good temperature stability, which is beneficial for the application in high-temperature environment.

To better evaluate the energy storage properties of BNS$_{0.245-1.5_0.5}B_0.325_+T$ ceramics, we compared W_{rec} and E_{max} of $x = 0.06$ and 0.08 compositions with some lead-free ceramic bulks reported previously [45–55].

![Fig. 8](image)

Fig. 8 (a) Overdamped discharge current curves and (b) corresponding discharge density W_d as a function of electric field for $x = 0.06$ ceramics at room temperature, (c) overdamped discharge current curves, and (d) corresponding discharge density W_d as a function of temperature for $x = 0.06$ ceramics at 80 kV/cm.
ceramics possess a relatively high W_{rec} (> 1.5 J/cm3), together with a high η (> 70%) under relatively low electric field (< 160 kV/cm), demonstrating that it is potential to obtain both high W_{rec} and η, which should be a promising candidate for power ceramic capacitor application.

4 Conclusions

In this work, an A-site defect engineering is proposed to improve the energy storage performance of BNS$_{0.245-1.5x}Bi_{0.325+0.5x}$ lead-free ceramics. High recoverable energy density of 1.8 J/cm3 under low electric field (@110 kV/cm) and energy efficiency of 72% are achieved simultaneously in the sample with $x = 0.06$. This good energy storage performance is attributed to the A-site defect engineering that can reduce P_r. The ceramic also exhibits satisfactory temperature, frequency, and cycling stabilities as well as a high charge–discharge rate. BNS$_{0.245-1.5x}Bi_{0.325+0.5x}$ ($x = 0.06$) ceramics show a high dielectric constant of 2930 within 15% fluctuation in a wide temperature range of 40–350 °C. This high-temperature stability is attributed to the A-site defect engineering, which can improve the thermal evolution of PNRs. All these advantages indicate that BNS$_{0.245-1.5x}Bi_{0.325+0.5x}$ ceramics are suitable for solid-state pulse power ceramic capacitors, and the A-site defect engineering is a robust strategy to improve the W_{rec} and high-temperature stability of lead-free ceramics.

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51767010) and the Key Project of Natural Science Foundation of Jiangxi Province of China (No. 20212ACB204010).

References

[1] Li DX, Zeng XJ, Li ZP, et al. Progress and perspectives in dielectric energy storage ceramics. J Adv Ceram 2021, 10: 675–703.
[2] Sarjeant WJ, Clelland IW, Price RA. Capacitive components for power electronics. Proc IEEE 2001, 89: 846–855.
[3] Khanhaitit P, Han K, Gadinski MR, et al. Ferroelectric polymer networks with high energy density and improved discharged efficiency for dielectric energy storage. Nat Commun 2013, 4: 2845.
[4] Yao ZH, Song Z, Hao H, et al. Homogeneous/inhomogeneous-structured dielectrics and their energy-storage performances. Adv Mater 2017, 29: 1601727.
[5] Palneedi H, Peddigari M, Hwang GT, et al. High-performance dielectric ceramic films for energy storage capacitors: Progress and outlook. Adv Funct Mater 2018, 28: 1803665.
[6] Pan H, Li F, Liu Y, et al. Ultrahigh-energy density lead-free dielectric films via polymorphic nanodomain design. Science 2019, 365: 578–582.
[7] Yan J, Wang Y, Wang CM, et al. Boosting energy storage performance of low-temperature sputtered CaBi$_2$Nb$_2$O$_9$ thin film capacitors via rapid thermal annealing. J Adv Ceram 2021, 10: 627–635.
[8] Peng BL, Tang SL, Lu L, et al. Low-temperature-poling awakened high dielectric breakdown strength and outstanding improvement of discharge energy density of (Pb,La)(Zr,Sn,Ti)O$_3$ relaxor thin film. Nano Energy 2020, 77: 105132.
[9] Dong GZ, Fan HQ, Liu LJ, et al. Large electrostrain in Bi$_{1.2}$Na$_{1.2}$TiO$_3$-based relaxor ferroelectrics: A case study of Bi$_{1.2}$Na$_{1.2}$TiO$_3$–Bi$_{1.2}$K$_{1.2}$TiO$_3$–Bi(Ni$_{2/3}$Nb$_{1/3}$)O$_3$ ceramics. J Adv Ceram 2022, 11(2): 283–294.
J Adv Ceram 2022, 11(2): 283–294

Materiomics 2021, 7: 593–602.

[10] Rödel J, Jo W, Seifert KTP, et al. Perspective on the development of lead-free piezoceramics. J Am Ceram Soc 2009, 92: 1153–1177.

[11] Suchaniz J, Kluuczewska-Chmielarz K, Sitko D, et al. Electrical transport in lead-free Na0.5Bi0.5TiO3 ceramics. J Adv Ceram 2021, 10: 152–165.

[12] Li DX, Shen ZY, Li ZP, et al. P–E hysteresis loop going slim in Ba0.3Sr0.7TiO3-modified Bi0.5Na0.5TiO3 ceramics for energy storage applications. J Adv Ceram 2020, 9: 183–192.

[13] Zhao NS, Fan HQ, Ning L, et al. Temperature-stable dielectric and energy storage properties of La(Ti0.35Mg0.35)O3-doped (Bi0.1Na0.9)TiO3–(Sr0.7Bi0.2)TiO3 lead-free ceramics. J Am Ceram Soc 2018, 101: 5578–5585.

[14] Sung YS, Kim JM, Cho JH, et al. Effects of Bi nonstoichiometry in (Bi0.5−xNa0.5)0.94Ba0.06TiO3 solid solutions with a nonstoichiometric (Bi0.5−xNa0.5)x(Ti1−xSnx)O3 quasiferroelectric state. J Phys Condens Matter 2004, 16: 7219–7231.

[15] Lu XP, Xu JW, Yang L, et al. Energy storage properties of 0.89Bi0.5Na0.5TiO3–0.06Bi2O3–0.05K0.3Na0.7NbO3 lead-free anti-ferroelectric ceramics. J Adv Ceram 2011, 94: 4382–4386.

[16] Chen XL, Li X, Zhou HF, et al. Phase evolution, microstructure, electric properties of (Ba0.67Bi0.33)0.67(Bi0.33Na0.67)0.33TiO3–Srb0.7Bi0.2O3 lead-free relaxor ceramics. J Adv Ceram 2017, 8: 427–437.

[17] Lu XP, Xu JW, Yang L, et al. Energy storage properties of (Bi0.4Na0.6)0.93Ba0.07TiO3 lead-free ceramics modified by La and Zr co-doping. J Materiomics 2016, 2: 87–93.

[18] Li JF, Li F, Xu Z, Zhang SJ. Multilayer lead-free ceramic capacitors with ultrahigh energy density and efficiency. Adv Mater 2018, 30: 1802155.

[19] Shen ZY, Wang Y, Tang YX, et al. Glass modified Barium strontium titanate ceramics for energy storage capacitor at elevated temperatures. J Materiomics 2019, 5: 641–648.

[20] Yan BB, Fan HO, Yadav AK, et al. [(Ba0.5Na0.5)0.94K0.06]0.93Ba0.07TiO3 relaxor ceramics with high energy storage density and thermally stable dielectric properties. J Mater Sci 2013, 48: 14728–14739.

[21] Ke SM, Fan HO, Huang HT, et al. Dielectric dispersion behavior of Ba(Zr,Ti1−x)O3 solid solutions with a quasi-ferroelectric state. J Appl Phys 2008, 104: 034108.

[22] Liu ZY, Fan HO, Lei SH, et al. Duplex structure in K0.5Na0.5NbO3−SrZrO3 ceramics with temperature-stable dielectric properties. J Eur Ceram Soc 2017, 37: 115–122.

[23] Cao WP, Li WL, Feng Y, et al. Defect dipole induced large recoverable strain and high energy-storage density in lead-free Na0.5Bi0.5TiO3-based systems. Appl Phys Lett 2016, 108: 202902.

[24] Xu YH, Liu XM, Wang GD, et al. Antiferroelectricity in tantalum doped (Bi0.5Na0.5)0.93Ba0.07TiO3 lead-free ceramics. Ceram Int 2016, 42: 4313–4322.

[25] Li DX, Shen ZY, Li ZP, et al. Structural evolution, dielectric and ferroelectric properties of (1−x)Bi0.5Na0.5TiO3−xBa0.5Sr0.5TiO3 ceramics. J Mater Sci: Mater Electron 2019, 30: 5917–5922.

[26] Li DX, Shen ZY, Li ZP, et al. Effect of (Nb2/3Mg1/3)4+ complex on the dielectric and ferroelectric properties of (Bi0.5Sr0.7)0.35(Bi0.5Na0.7)0.65TiO3 ceramics for energy storage. J Mater Sci: Mater Electron 2020, 31: 3648–3653.

[27] Li Q, Wang C, Zhang WM, et al. Influence of compositional ratio K/Na on structure and piezoelectric properties in [Na1−xKx]0.5Bi0.5Ti0.985Sn0.015O3 ceramics. J Mater Sci 2019, 54: 4523–4531.

[28] Rout D, Moon KS, Kang SJL, et al. Dielectric and Raman scattering studies of phase transitions in the (100−x)Na0.5Bi0.5Ti0.975Ta0.025O3 lead-free ceramics. J Appl Phys 2010, 108: 084102.

[29] McLaughlin K, Pascual-Gonzalez C, Wang DW, et al. Site occupancy and electric-field induced strain response of Er-doped (Bi0.4Na0.6)0.7Sr0.3TiO3 ceramics. J Alloys Compd 2019, 779: 7–14.

[30] Tripathy SN, Mishra KK, Sen S, et al. Dielectric and Raman spectroscopic studies of Na0.5Bi0.5TiO3−BaSnO3 ferroelectric system. J Am Ceram Soc 2014, 97: 1846–1854.

[31] Petzelt J, Kamba S, Fáby J, et al. Infrared, Raman and high-frequency dielectric spectroscopy and the phase transitions in Na1/2Bi1/2TiO3. J Phys: Condens Matter 2004, 16: 2719–2731.

[32] Schütz D, Deluca M, Krauss W, et al. Lone-pair-induced covalency as the cause of temperature- and field-induced instabilities in bismuth sodium titanate. Adv Funct Mater 2012, 22: 2285–2294.

[33] Li F, Zhai JW, Shen B, et al. Influence of structural evolution on energy storage properties in Bi0.5Na0.5TiO3−SrTiO3−NaNbO3 lead-free ferroelectric ceramics. J Appl Phys 2017, 121: 054103.

[34] Xu Q, Ding SH, Song TX, et al. Effect of Nd2O3 doping on microstructure and dielectric properties of BCZT ceramics. J Chin Ceram Soc 2013, 41: 292–297. (in Chinese)

[35] Li DX, Shen ZY, Li ZP, et al. Optimization of polarization behavior in (1−x)BSBN–xNbO3 ceramics for pulsed power capacitors. J Mater Chem C 2020, 8: 7650–7657.

[36] Huang Y, Li F, Hao H, et al. (Bi0.5Na0.47)TiO3 based lead free ceramics with high energy density and efficiency. J Materiomics 2019, 5: 385–393.

[37] Hu B, Fan HO, Ning L, et al. Enhanced energy-storage performance and dielectric temperature stability of (1−x)(0.65Bi0.5Na0.5)TiO3−xSn0.95Nb0.05O4 ceramics. J Eur Ceram Soc 2018, 44: 10968–10974.

[38] Dong GZ, Fan HO, Jia YX, et al. Electro-mechano-optical properties of the Er3+ modified Bi0.5Na0.5TiO3 versatile ceramic. J Eur Ceram Soc 2021, 41: 2488–2496.

[39] Xu CG, Lin DM, Kwok KW. Structure, electrical properties and depolarization temperature of (Bi0.5Na0.5)TiO3−BaTiO3 lead-free piezoelectric ceramics. Solid State Sci 2008, 10: 934–940.
[40] Jo W, Schaab S, Sapper E, et al. On the phase identity and its thermal evolution of lead free (Bi1/2Na1/2)TiO3–6 mol% BaTiO3. J Appl Phys 2011, 110: 074106.

[41] Xu Q, Li TM, Hao H, et al. Enhanced energy storage properties of NaNbO3 modified Bi6.5Na8.5TiO3 based ceramics. J Eur Ceram Soc 2015, 35: 545–553.

[42] Tian J, Wang SJ, Jiang T, et al. Dielectric characterization of a novel Bi2O3–Nb2O5–SiO2–Al2O3 glass–ceramic with excellent charge–discharge properties. J Eur Ceram Soc 2019, 39: 1164–1169.

[43] Yang LT, Kong X, Li F, et al. Perovskite lead-free dielectrics for energy storage applications. Prog Mater Sci 2019, 102: 72–108.

[44] Ahn CW, Amarsanaa G, Won SS, et al. Antiferroelectric thin-film capacitors with high energy-storage densities, low energy losses, and fast discharge times. ACS Appl Mater Interfaces 2015, 7: 26381–26386.

[45] Hu QY, Jin L, Wang T, et al. Dielectric and temperature stable energy storage properties of 0.88BaTiO3–0.12Bi(Mg1/2Ti1/2)O3 bulk ceramics. J Alloys Compd 2015, 640: 416–420.

[46] Benyoussf M, Zannen M, Belhadi J, et al. Dielectric, ferroelectric, and energy storage properties in dysprosium doped sodium bismuth titanate ceramics. Ceram Int 2018, 44: 19451–19460.

[47] Wei M, Zhang JH, Wu KT, et al. Effect of Bi3MO3 (M = Al, In, Y, Sm, Nd, and La) doping on the dielectric properties of BaTiO3 ceramics. Ceram Int 2017, 43: 9593–9599.

[48] Wang BY, Luo LH, Jiang XJ, et al. Energy-storage properties of (1−x)Bi6.5Na8.5TiO3–xBi(Zn0.5Ti0.5)O3 lead-free ceramics. J Alloys Compd 2014, 585: 14–18.

[49] Zhang M, Yang HB, Li D, et al. Excellent energy density and power density achieved in KNbO3–NaNO3-based ceramics with high optical transparency. J Alloys Compd 2020, 829: 154565.

[50] Yang ZT, Gao F, Du HL, et al. Grain size engineered lead-free ceramics with both large energy storage density and ultrahigh mechanical properties. Nano Energy 2019, 58: 768–777.

[51] Zhao XB, Zhou ZY, Liang RH, et al. High-energy storage performance in lead-free (1−x)BaTiO3–xBi(Zn0.5Ti0.5)O3 relaxor ceramics for temperature stability applications. Ceram Int 2017, 43: 9060–9066.

[52] Wu LW, Wang XH, Li LT. Lead-free BaTiO3–Bi(Zn0.5Nb0.5)O3 weakly coupled relaxor ferroelectric materials for energy storage. RSC Adv 2016, 6: 14273–14282.

[53] Shao TQ, Du HL, Ma H, et al. Potassium–sodium niobate based lead-free ceramics: Novel electrical energy storage materials. J Mater Chem A 2017, 5: 554–563.

[54] Wang T, Jin L, Li CC, et al. Relaxor ferroelectric BaTiO3–Bi(Mg0.83Nb0.17)O3 ceramics for energy storage application. J Am Ceram Soc 2015, 98: 559–566.

[55] Qi H, Zuo RZ. Linear-like lead-free relaxor antiferroelectric (Bi6.5Na8.5)TiO3–NaNbO3 with giant energy-storage density/efficiency and super stability against temperature and frequency. J Mater Chem A 2019, 7: 3971–3978.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.