Nitrogen and Carbon Nitride-Doped TiO₂ for Multiple Catalysis and Its Antimicrobial Activity

Atif Ashfaq¹, Muhammad Ikram¹*, Ali Haider², Anwar Ul-Hamid³*, Iram Shahzadi⁴ and Junaid Haider⁵

Abstract
Nitrogen (N) and carbon nitride (C₃N₄)-doped TiO₂ nanostructures were prepared using co-precipitation route. Fixed amount of N and various concentrations (0.1, 0.2, 0.3 wt%) of C₃N₄ were doped in TiO₂ lattice. Through multiple techniques, structural, chemical, optical and morphological properties of samples were thoroughly investigated. XRD results verified anatase TiO₂ presence along the substitutional doping of N, while higher degree of crystallinity as well as increased crystallite size were noticed after doping. HR-TEM study revealed formation of nanostructures incorporated on two dimensional (2D) C₃N₄ nanosheet surface. Elemental composition was checked out using EDS technique which confirmed the presence of dopant in product. Optical characteristics were evaluated with UV–vis spectroscopy which depicted representative redshift in absorption spectra resulted in a reduction in bandgap energy in N/C₃N₄-doped TiO₂ samples. The formation of Ti–O–Ti bonds and different molecular vibrations were disclosed by FTIR. Trap sites and charge carrier’s migration in the materials were evaluated with PL spectroscopy. Multiple catalytic activities (photo, sono and photo-sono) were undertaken to evaluate the dye degradation performance of prepared specimen against methylene blue and ciprofloxacin. Further, antimicrobial activity was analyzed against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) bacteria.

Keywords: Co-precipitation, Photocatalysis, Sonocatalysis, Dye degradation, Methylene blue

Introduction
In the past few years, researchers and scientists have paid greater attention to energy crisis and environmental and aquatic pollution. In today’s technology driven society, relentless consumption of fossil fuels is serving to make these issues worse [1]. Fossil fuels, the rich energy-generation source, are contracting worldwide and developed countries are switching to sustainable and environment-friendly technologies. On the other hand, textile industry produces wastewater containing 5–15% of untreated organic dyes. Around 1 × 10⁵ dyes are in use globally and 7 × 10⁵ ton dyestuff is generated by the textile industry worldwide annually. Discharge of these untreated dyes not only affects the oxygen and nitrogen cycle connected to photosynthesis but also causes grave esthetic deterioration [2]. These are some of the serious environmental issues that need to be addressed to sustain human society in the long term.

Properties of bulk materials depend a lot on size and structure [3]. In this regard, nano-scaled semiconductors with diverse properties are used for photocatalytic and dye degradation applications [4]. Various transition metals (TM) Ti, Cu, Fe, Co and non-metals (NM) N, C, S etc., exhibit distinct physical and chemical properties [5]. In this regard, a combination of TM (titanium–dioxide) and NM (nitrogen) exhibit additive properties. Combination of semiconductors (with metals and metal oxides) that bear appropriate band arrangements possess striking...
applications in energy production and water treatment [6]. Rare earth metals oxides such as TiO₂, CdO, CoO, ZnO, etc., are leading candidates for many such applications. Amongst these, TiO₂ holds limited activity in visible region due to its high band gap value (3.0 eV for rutile phase, 3.2 eV for anatase phase) [7], low surface area and high electron-hole recombination [8]. In 1972, TiO₂ was used for the decomposition of water using UV light [9]. Since then, photocatalysis with semiconductors has gained much attention due to their potential applications such as in hydrogen production and environmental cleaning [10]. Semiconductors with unique band gap (occupied valence band and unoccupied conduction band) serve as suitable catalysts for photochemical reactions. Currently, the main focus is visible light region through band gap tuning of inorganic semiconductor.

TiO₂ is a semiconductor with prominent features including tunable band gap, simple synthesis routes and ecological-friendly nature. Therefore, to improve the photocatalytic activity of TiO₂ nanostructures, modulation of its band gap was undertaken by adding nitrogen (N) for better absorption of solar spectrum. N was added through CH₃N₂O source which contains 46% of its concentration [7, 11]. As a result, bandgap of TiO₂ varied from 3.2 to 3.06 eV (substitutional replacement of N with oxygen) or it can also be varied from 3.2 to 2.46 eV (interstitial doping) which is more preferable for visible light [12–14]. Dopant C₃N₄ is a 2D material which resolves the impediment of low surface area of TiO₂ to enhance photocatalytic activity upon addition in various concentrations and exhibit broader spectral response near the visible region compared to pristine TiO₂. Moreover, C₃N₄ has promising applications due to a suitable band gap (2.7 eV) which has the ability to enhance photocatalytic activity of TiO₂ for use in dye degradation [15–18].

TiO₂ nanostructures can also be utilized as antibacterial agent. The antibacterial activity of TiO₂ nanostructures is assigned to reactive oxygen species (ROS) such as hydroxyl radicals and hydrogen peroxide, which induce severe oxidative stress on bacterial strain generated under illumination. Therefore, TiO₂ is a potential candidate for antibacterial agent. The generated ROS provide a contact between TiO₂ and cells which kills the cell due to damage aroused in DNA and cell membrane that ultimately results in termination of cell cycle [19]. The antimicrobial activity of prepared antibiotic also depends on surface area, morphology, crystallinity, concentration/dosage, pH of the solution, capping agent, and also the nature of microorganisms. Combining the merits of C₃N₄ with TiO₂ and N, prepared composite is important to solve the problems of the environmental crisis in worldwide including organic water pollutants and pathogenic microbial contaminations [20, 21]. Few studies have been reported for the antibacterial activity and degradation of different dyes [5, 8, 11], best of our knowledge, this novel study report the efficiency of C₃N₄-doped N/TiO₂ nano-composites synthesized by co-precipitation route.

In this paper, co-precipitation method was used to synthesize pristine and doped TiO₂ nanostructures. This study revealed the strong contact formation of TiO₂ with dopants (N and C₃N₄) which efficiently increased the photocatalytic activities against methylene blue and ciprofloxacin as well as antibacterial property against E. coli and S. aureus bacteria.

Experimental Details

Materials

Urea (CH₃N₂O) (99%) and titanium (IV) butoxide (Ti(C₄H₉O)₄) (98%) were received from Sigma-Aldrich, Germany while ethanol (C₂H₅OH) (95%) was purchased from Panreac. Carbon nitride (C₃N₄) was obtained from pyrolysis of CH₃N₂O in the laboratory (Fig. 1a). All the reagents were used without further purification.

Preparation of TiO₂ Nanostructures

Titanium-dioxide (TiO₂) was prepared by adopting co-precipitation method where 55 mL of ethanol, 13 mL of Ti(C₂H₆O)₄ and 5 mL of deionized water (DI water) were mixed and stirred vigorously for 30 min. Ethanol (~100 mL) and DIW (~100 mL) were added to the stirred solution for 2 h at 50 °C. The pH of solution was maintained up to ~10 using NaOH (0.5 M) solution. Then, solution was centrifuged and dried at 90 °C for 10 h. After that, sample was annealed at 450°C for 4 h to achieve stable anatase nanostructures (Fig. 1b).

Preparation of C₃N₄ Doped N-TiO₂

Various concentrations (0.1, 0.2, 0.3 wt%) of C₃N₄ was doped into N-TiO₂ mixture. Ti(C₄H₆O)₄ (17.45 mL), CH₃N₂O (3 g), C₂H₅OH and DI water were added under vigorous stirring. Samples were sonicated for homogeneous mixing. Sonicated samples were centrifuged at 4000 rpm and dried at 90 °C for 10 h and annealed at 450 °C for 4 h to obtain stable nanostructures. Six samples were prepared and named as TiO₂, nitrogen-doped TiO₂ (N-TiO₂ as 0:1), pristine carbon nitride (C₃N₄ 1:0) and different concentrations of C₃N₄ in N-TiO₂ named as 0.1:1, 0.2:1, 0.3:1.

Evaluation of Photocatalytic Activity

The photocatalytic activity (PCA) of synthesized catalysts was assessed by estimating the degradation rate of a combination of two toxic dyes namely methylene blue (MB) and ciprofloxacin (CF) in aqueous solution. The stock solution of dyes was prepared in DIW (10 mg/1000 mL) and 10 mg of prepared catalyst (pristine TiO₂, C₃N₄, 0:1,
0.1:1, 0.2:1, 0.3:1) was added to 50 mL stock solution. After homogeneous stirring, solution was placed in a sealed box under mercury (Hg) lamp (wavelength 400 to 700 nm and power 400 W) at ~15 cm distance to avoid overheating. After 20 min interval, 3 mL solution was separated to check concentration of dyes present in the solution by utilizing UV–Vis spectroscopy. The degradation efficiency was determined by the formula given as:

\[
\text{Degradation efficiency (\%)} = \frac{C_0 - C_t}{C_0} \times 100
\]

where \(C_0\) and \(C_t\) initial and final concentration of dye at time \(t=0\) and at final time \(t\), respectively [22].

2-Diphenyl-1-Picrylhydrazyl (DPPH) Radical Scavenging Assay

Free radical scavenging activity of all samples was examined using the method reported by Kibiti and Afolayan [23] with certain modifications. Various concentrations of pristine TiO\(_2\), C\(_3\)N\(_4\), and C\(_3\)N\(_4\) doped TiO\(_2\) nanoparticles (0–500 µg/mL) were prepared and mixed with equal volume of 0.1 mM DPPH solution. The reaction mixture was vortex and incubated for 30 min in dark at ambient
temperature. Ascorbic acid was employed as a reference antioxidant. Absorbance of mixture was measured at 517 nm using spectrophotometer. The % scavenging ability was calculated using equation:

\[
\text{DPPH scavenging rate(\%)} = \left(\frac{A_0 - A_1}{A_0} \right) \times 100
\]

where \(A_0\) is absorption of control (Methanol + DPPH) and \(A_1\) is absorbance of sample.

Bacterial Segregation and Identification

With ovine mastitic milk specimen's antibacterial evaluation was undertaken on S. aureus and E. coli isolated after initial screening at ovine blood agar (5%) and finally on mannotol salt agar (MSA) and MacConkey agar (MCA), respectively. Coagulase, catalase, and Gram' staining protocols were used to classify extracted commodities (biochemically and morphologically).

Antimicrobial Activity

Well diffusion procedure was adapted to assess antibacterial effects of N and C\textsubscript{3}N\textsubscript{4} co-doped TiO\textsubscript{2} by swabbing. Various dilutions of doped nanomaterial's e.g., 500 and 1000 \(\mu\)g/50 \(\mu\)L were placed into wells as minimum and maximum dosages of doped nanomaterial's e.g., 500 and 1000 \(\mu\)g/50 \(\mu\)L and DIW (50 \(\mu\)L) as negative control. The sensitivity of all prepared samples was measured with a Vernier caliper after overnight incubation (37 °C) of Petri plates. Antibacterial evaluation was contemplated by utilizing one-way analysis of variance [24].

Material Characterization

Phase transition and crystal structure of binary-doped TiO\textsubscript{2} was examined with XRD utilizing spectrum Bruker system with monochromatic Cu K-\(\alpha\) (\(\lambda=0.154\) nm and 2\(\theta=10°−80°\)) with a scan rate of 0.05° per minute. The study of functional groups and chemical analysis was undertaken utilizing FTIR spectrometer (PerkinElmer 3100) with range of spectra from 4000 to 400 cm\(^{-1}\) in 32 scans and a resolution of 0.2 cm\(^{-1}\). The optical study was carried out with Genesy 10S spectrophotometer (ranging from 200 to 800 nm). Interlayer spacing and surface morphology of prepared products were inspected through HR-TEM and EDS spectrometer, JSM-6460LV, and HRTEM Philips CM30 and JEOL JEM 2100F. Photoluminescence spectroscopy was carried out to inquire transfer and recombination of e\(^{-}\) to h\(^{+}\) pairs utilizing a spectrofluorometer (JASCO, FP-8300).

Results and Discussion

To analyze the structure of the crystal, phase purity and size of crystallites, XRD was employed on control and N/C\textsubscript{3}N\textsubscript{4}-doped TiO\textsubscript{2} in 2\(\theta\) range of 10°–80° (Fig. 2a). Acquired spectra revealed peaks at 25.4°, 37.8°, 48.1°, 53.9°, 55.1°, 62.7°, 68.6°, 70.3° and 75.1° attributed to (101), (004), (200), (105), (211), (204), (116), (220), (215) planes of tetragonal anatase formation, respectively (JCPDS no. 21-1272). For N-TiO\textsubscript{2} composite, no significant change in XRD spectrum was observed which might be referred to relatively lower concentration of N in the composite. Hexagonal structure for C\textsubscript{3}N\textsubscript{4} was confirmed from peaks generated at 13.2° (100) and 27.4° (002) reflecting the standard spectrum (JCPDS no. 87–1526). No shift in peaks was observed upon doping for 0:1 (lower) and 0:2:1 (intermediate) and 0:3:1 (higher) concentration samples, however the sharpness in peaks indicated the successful coupling of C\textsubscript{3}N\textsubscript{4}:N/TiO\textsubscript{2}, resulting in enhanced crystallinity and structural quality [25, 26].

The interlayer spacing of pristine TiO\textsubscript{2} (\(-0.352\) nm) and N-TiO\textsubscript{2} (\(-0.35\) nm) were calculated from the most intense peak (101) using Debye-Scherer formula which were further verified by HR-TEM observation.

SAED (Selected Area Electron Diffraction) profiles of pristine TiO\textsubscript{2}, 0:1 (N-TiO\textsubscript{2}) and 0:1:1 sample are given in Fig. 2b–d. Images were indexed with diffraction planes (004), (101), (105), (116), (200), (204), (211) confirmed by XRD results, showing the tetragonal crystal structure of TiO\textsubscript{2}.

Various functional groups and chemical compositions present in as prepared samples were identified using FTIR analysis (Fig. 2e). In acquired spectra, it can be seen that absorption band stationed at 400–700 cm\(^{-1}\) corresponds to Ti–O and Ti–O–Ti stretching vibration modes, which indicated TiO\textsubscript{2} formation. This vibration band has been linked with physiosorbed water protons in synthesized samples [27–29]. Band observed at about 1635 and 3200–3500 cm\(^{-1}\) referred to hydroxyl (O–H) group and physically absorbed water on pristine TiO\textsubscript{2} surface, respectively [30, 31]. In C\textsubscript{3}N\textsubscript{4} spectrum, absorption band at 1624 cm\(^{-1}\) was attributed to C-N heterocycle stretching vibration modes [32], while four bands at 1232, 1304, 1411, 1556 cm\(^{-1}\) were referred to aromatic C–N stretching vibrational modes [33, 34]. Notably, all characteristic peaks of TiO\textsubscript{2} and C\textsubscript{3}N\textsubscript{4} can be observed, validating the formation of C\textsubscript{3}N\textsubscript{4}:N/TiO\textsubscript{2} nanostructure.

The morphology and crystal structure of pristine TiO\textsubscript{2} (Fig. 3a), 0:1, 1:0, 0:1:1 and 0:3:1 nanostructure were studied by TEM analysis. Figure 3b represents N-TiO\textsubscript{2} composite with a high surface energy that leads to aggregation [35] and Fig. 3c is the illustration of C\textsubscript{3}N\textsubscript{4}.
a mesoporous nanosheet (NS). Upon C$_3$N$_4$ addition, N-TiO$_2$ composite was embedded and well distributed on NS which also roughly confirmed the C$_3$N$_4$ wrapping, as illustrated in Fig. 3d. This intimate interfacial contact between N-TiO$_2$ composite and NS was necessary for photocatalytic activity. Upon doping, crystallinity of prepared nanostructures improved and after higher doping, NS wrapped N-TiO$_2$ composite and ultimately made an efficient interfacial contact (Fig. 3e). In HR-TEM image of 0.1:1 (Fig. 3c’), interlayer spacing was calculated to be 0.35 and 0.33 nm pertaining to (101) and (002) crystal planes of N-TiO$_2$ composite and C$_3$N$_4$, respectively, in consistence with XRD results. Interlayer spacing has been measured for each sample using Gatan software, given in Fig. 3a–d.

In order to check further interfacial contact, EDX mapping of as-prepared C$_3$N$_4$ (1:0) and 0.3:1 (higher doping) samples was conducted to inspect distribution pattern of its components. As revealed in Fig. 4a, five components (C, N, Ti, O, Na) were found to be uniformly dispersed in higher doped specimen. Sodium (Na) came from sodium hydroxide (NaOH) added for maintaining pH of solution up to ~10. Combined with HR-TEM and XRD results, it recommended that within 0.3:1 sample, N and TiO$_2$ nanoparticles are certainly well dispersed inside wrapped C$_3$N$_4$ NS and indicated intimate contact as well.

Elemental composition was evaluated by EDX to confirm the purity of 0.3:1 (higher doping) and 1:0 (Fig. 4b–c). As illustrated in Fig. 4b, Ti indicated peaks at 4.5 and 4.95 keV, oxygen (O) peak at 0.5 keV, C and N peaks at 0.3 and 0.4 keV, along with several other positions were detected, confirming successful incorporation of binary-dopant species with anatase TiO$_2$.

To determine optical performance of undoped and doped TiO$_2$, UV–vis spectroscopy was used in the range 300–550 nm. TiO$_2$ has characteristic absorbance peak found around ~350 nm, with N-doping, slight redshift was observed in absorption spectra caused by overlapping of 2p orbitals of O$_2$ and N, as shown in Fig. 5a [36]. An increase in spectral absorbance was observed upon C$_3$N$_4$ doping into N-TiO$_2$ composite, attributed to complete planarization of C$_3$N$_4$ (non-overlapping of adjacent orbitals). Enhanced absorptive ability in UV-region was assigned to internal scattering and harmonious effect from N-TiO$_2$ and C$_3$N$_4$’s π to π* and n to π* transitions, respectively, as depicted in Fig. 5b [37]. Peaks redshifted due to molecular engineering of C$_3$N$_4$ in N-TiO$_2$ composite that potentially advanced absorption and transition ability of charge carriers [38]. Tuac transformation was applied to calculate bandgaps of prepared samples. For TiO$_2$ bandgap was calculated to be 3.2 eV and gradual decrease in bandgap energies were observed close to
Fermi level after adding N and C$_3$N$_4$ to ~2.9 eV, as given in Fig. 5c–h [39].

PL emission spectra of TiO$_2$ and its composites were computed from 410 to 520 nm with an excited wavelength of 350 nm at room temperature, as illustrated in Fig. 6a. Spectra unveiled migration and electron–hole (e$^-$ to h$^+$) pairs recombination efficiency [40]. Characteristic peak of TiO$_2$ at 455 nm showed the highest recombination of e$^-$ to h$^+$ pairs which significantly limited PCA of TiO$_2$ whereas recombination rate was decreased upon
co-doping (N and C\textsubscript{3}N\textsubscript{4}). Shockley–Read–Hall (SRH) process explains bandgap transitions from valence band to sub-band and then to conduction band [41]. Sub-band at the edge of conduction band facilitated PCA [42], so for higher doping sample, lower recombination rate proposed higher photo-generated charge transportation that internally enhanced PCA of 0.3:1.

Reaction Mechanism and Kinetics

The following mechanism was involved in PCA of prepared catalyst (see Fig. 7):

1. Photoexcitation: The PCA first involves photoexcitation that initiates by the photons processing equal or greater energy than bandgap energy (E\textsubscript{g}) of material. These photons stimulate electrons of valence/lower band (VB) and migrate them to conduction/higher band (CB). Electrons leave holes behind in VB resulting in e--h+ pairs generation, as shown in equation below.

 \[\text{TiO}_2 + \text{hv} \rightarrow \text{TiO}_2(\text{e}^-) + \text{h}^+ \]

2. Ionization of water: Holes create OH- free radicals after coming into contact with water (H\textsubscript{2}O).

 \[\text{H}_2\text{O} + \text{h}^+ \rightarrow \text{OH}^- + \text{H}^+ \]

The OH- radical act as an oxidizing agent on the surface of semiconductor that targets adsorbed molecules and takes part in mineralization.

3. Oxygen ionosorption: Photogenerated es- comes into contact with water molecules and generate OH- (hydroxyl group) while es- are trapped by molecules of O\textsubscript{2} to produce O\textsubscript{2}- (superoxide radical) [43].

 \[\text{O}_2 + \text{e}^- \rightarrow \text{O}_2^- \]

The superoxide radical contributes in oxidation cycles and inhibits the recombination of e- and h+ while keeping the TiO\textsubscript{2} neutral.

4. Superoxide protonation: Superoxide ions (O\textsubscript{2}-) gives H\textsubscript{2}O• (protonated hydroperoxylate radical) and finally H\textsubscript{2}O\textsubscript{2} generate OH• radical that is highly reactive.

 \[\text{O}_2^- + \text{H} \rightleftharpoons \text{HOO}^- \]

 \[2\text{HOO}^- \rightarrow \text{H}_2\text{O}_2 + \text{O}_2 \]

 \[\text{H}_2\text{O}_2 \rightarrow 2\text{OH}^- \]

 \[\text{Dye} (\text{MB and CF}) + \text{OH}^- \rightarrow \text{CO}_2 + \text{H}_2\text{O} (\text{dye intermediates}) \]

 \[\text{Dye} + \text{h}^+ (\text{VB}) \rightarrow \text{oxidation products} \]

 \[\text{Dye} + \text{e}^- (\text{CB}) \rightarrow \text{reduction products} \]

Oxidation/reduction reactions occurred on photo-excited photocatalysts surface [44, 45].
The PCA of as-prepared samples was evaluated for degradation of MB and CF dye under replicated visible light irradiation (Fig. 6b). The blank test demonstrated that MB and CF could not be degraded under irradiation of light in the absence of catalyst thus it can be deduced that MB and CF were stable. As indicated in Fig. 6c, C3N4 degraded the targeted dye up to 45% and enhanced photocatalytic activity of nanostructures was observed with increasing C3N4 concentration which effectively degraded MB and CF. In case of N-TiO2, relatively higher extent of degradation (58%) occurred as compared to TiO2 (32%) while highest doped sample (0.3:1) showed maximum degradation of 85% within 80 min. The apparent reaction rate constants (k) were determined for all specimens by measuring slopes of ln (C_o/C_t) against time plot. Moreover, k value of 0.3:1 was also higher than others, which was ~2.5 times higher than pristine TiO2 (Fig. 6d).

The enhanced PCA of nanostructures may be attributed to these measures: firstly, the C3N4 sheet has a larger surface that encouraged broad adsorption within catalyst and furnished additional active sites for surrounding reactants. Secondly, after incorporation of N and C3N4 in TiO2, increased charge separation efficiency by inducing new energy levels within the forbidden band gap of TiO2. These induced levels act as trapping sites for photo induced electrons increasing the electron transfer efficiency which ultimately improved the degradation.

Fig. 5 a Optical absorbance spectra (b) possible transitions and internal scattering in UV-vis spectroscopy (c-h) determination of bandgap of TiO2, N-TiO2, C3N4, 0.1:1, 0.2:1 and 0.3:1, respectively
performance of nano-catalysts. Thirdly, due to intimate and well-matched band edge, N-TiO$_2$ collects photo-induced electrons from the CB of C$_3$N$_4$ thus improving the charge separation efficiency. In general, C$_3$N$_4$ produces e$^-$ to h$^+$ pairs under visible light that quickly recombine and only a small fraction of e$^-$ participate in PCA. Whereas when TiO$_2$ was modified by binary dopants to form a nanocomposite, photo-generated electrons in CB of C$_3$N$_4$ can directly move to CB of N-TiO$_2$ composite, as shown in Fig. 7, because CB edge of C$_3$N$_4$ was more negative than N-TiO$_2$. The above-mentioned parameters eventually increased overall photocatalytic activity of as-prepared nano-composites [46–48].

Sonocatalytic activity (SCA) was also measured by degrading MB and CF via ultra-sonication route. Same as for PCA, samples were collected after 20 min interval in SCA. As illustrated in Fig. 8c, C$_3$N$_4$, TiO$_2$, N-TiO$_2$ composites degraded the MB and CF up to 36%, 20% and 27% in 80 min while for lower doping, activity of 0.1:1 nanostructure increased up to 60% and then decreased for further and higher doping concentrations. For lower doping, catalyst formed the microbubbles and bore more active sites for growth of nucleation, further generated more reactive radicals [49] and for further doping, active sites of prepared catalysts were insufficient to be occupied by dye molecules. Second possible reason could be surplus of C$_3$N$_4$ amount that have restricted the energy obtained from ultrasound wave [50].

The rate constants (k) have been calculated for sono-degradation kinetics by measuring slopes on ln(C_o/C_t) against time as shown in Fig. 8b. PCA and SCA of pristine TiO$_2$ and C$_3$N$_4$ were less efficient, thus N/C$_3$N$_4$-doped TiO$_2$ composite turned up as potential catalyst for dye degradation.

The combined effect of PCA and SCA has been evaluated further by adjusting sonometer under light source.

![Fig. 6](image_url) a PL spectra (b) Plot of concentration ratio (C_t/C_o) versus time (c) percentage (%) degradation of all samples (d) plot of ln(C_t/C_o) versus time spectra for dye reduction
for all synthesized samples. The earned results unveiled that pristine C₃N₄, TiO₂ and N-TiO₂ composite degraded dye up to 60%, 40% and 55%, respectively. For lower doping, 0.1:1 nanostructure degraded MB and CF up to 86% caused by combined effect of PCA and SCA. But for further and higher doping (although assisted by PCA) active sites were insufficient that might be ascribed to dominant effect of SCA that subsequently decreased the degradation performance. Also, surplus amount of C₃N₄ and inhomogeneous mixing of catalysts can cause agglomeration which might limit the energy obtained from ultrasound wave and visible light source (Fig. 9c).

Fig. 7 Mechanism for degradation of dyes in the presence of prepared photocatalyst

For photo-sono degradation kinetics, the rate constants (k) have been estimated by computing slopes on ln (C₀/Cₜ) against time, as manifested in Fig. 9b.

Antioxidant characteristics of compounds is tied to their electron or hydrogen atom donating capability to DPPH free radical, such that they create stable diamagnetic compounds [51]. This DPPH free radical’s reduction capability can be examined by lowering the absorbance at 517 nm.

All synthesized compounds were evaluated for antioxidant activity using a DPPH radical scavenging assay. Using ascorbic acid as a reference, DPPH disappearance was evaluated spectrophotometrically at 517 nm. In this study, it was discovered that the DPPH activity of the nanoparticles increased in a dose-dependent manner (Fig. 10). It is confirmed that Pristine TiO₂ showed high scavenging activity (50.22%) at concentration of 500 µg/mL compare to C₃N₄. Because TiO₂ may form OH⁻, O₂⁻ and ¹O₂ reactive oxygen species, which have the potential to bond with the DPPH free radical [51– 53]. Some recent studies have reported ¹O₂ to be the dominant active specie in the degradation of MB dye under solar irradiation [53, 54]. While N-TiO₂ showed DPPH scavenging up to 57.34% that is 7% higher than that of TiO₂. This considerable increase is resulted from the addition of a doping agent which lowers the size of TiO₂ nanoparticles and increases their reactivity [55, 56]. In case of C₃N₄ doped TiO₂ with mass ratio of 0.1:1, scavenging activity increased up to 84.45% that might be the availability of sufficient amount of nitrogen from doped C₃N₄. But increasing the concentration of doped C₃N₄ on N-TiO₂ scavenging activity was decreased. This was due to high C₃N₄ concentration caused an increase in turbidity of test sample, which in turn caused an antagonistic interaction resulted in a decrease scavenging activity (84.45–70.75%) [50].
Antimicrobial activity of binary doped TiO₂ was conducted using well diffusion technique (Fig. 11) against *S. aureus* and *E. coli* as depicted in Table 1. Statistically, significant inhibition areas ($p < 0.05$) for minimum and maximum concentrations of doped nanostructures, respectively against *Escherichia coli* (1.05–2.00 mm) and (1.35–2.25 mm) were attained. Broadly, zero activity was observed for TiO₂ and N-TiO₂ against *Staphylococcus aureus* at minimum and maximum concentrations while binary-doped samples showed substantial activity against *Escherichia coli* at both concentrations. Similarly, C₃N₄ depicted 1.60 mm inhibition area at maximum concentration only against *Escherichia coli*.

Anti-bacterial effectiveness is swayed by the scale of nanoparticles so oxidative stress of invented nanocomposites is dependent on scale and concentration [57]. An electrostatic contact between bacteria and nanoscale structures results in the generation of reactive oxygen species, which are lethal to cells [24, 58]. Oxygen reactive species (ROS) encircle bacteria external membrane and through extrusion and bulge of cytoplasmic components bacteria death occurs [59]. Micro pathogens ruin also proceeds when cations strongly bind with negative components of bacterial cells. Cations cause dysfunction in bacterial ribosomal activities and enzymatic degradation resulting collapse [60]. Two reactions have been identified as feasible for the bactericidal mechanism of nanomaterials, one of which involves strong interaction between the cations Ti⁺⁴ and bacterial cells, resulting in the formation of negativized sections and subsequent collapse, and the other of which involves electronic excitation of the TiO₂ valance band surface via irradiation. Additionally, the electrical O₂ reaction generates O⁻² radicals, which results in the production of H₂O₂. The

![Fig. 8](image_url) a Plot of concentration ratio (C_t/C_0) versus time, b plot of ln(C_0/C_t) versus time spectra for dye reduction, c percentage (%) degradation of prepared specimens.
resultant O^{2-} species play a critical role in the breakdown of lipid or protein molecules on the bacteria’s external cell membrane [61, 62].

Conclusion

Binary-doped TiO$_2$ was synthesized through co-precipitation method and synthesized samples were evaluated for photo, sono and photo-sono catalytic degradation of MB and CF dyes and bactericidal activities. The strong contact formation between dopants and TiO$_2$ efficiently increased e^- to h^+ pairs separation efficiency induced by light. The narrow bandgap of C$_3$N$_4$:N/TiO$_2$ composite was accredited to N as well as C$_3$N$_4$ incorporation in pristine TiO$_2$. The prepared samples showed efficient degradation performance under visible light as well as under ultrasonic waves (SCA). Moreover, the combined effect of photo and sono catalysis was also evaluated for prepared catalysts for comparative study. Furthermore, prepared nanocomposites exhibited notable efficacy against *S. aureus* and *E. coli* bacteria as well. We believe that this study will open new insights into the fabrication of novel, binary doped heterojunctions for effective dye degradation and bactericidal applications in the future.
Abbreviations
C3N4: Carbon nitride; EDS: Energy dispersive X‑ray spectroscopy; FTIR: Fourier transform infrared spectroscopy; FESEM: Field emission scanning electron microscopy; G+ve: Gram-positive; G−ve: Gram negative; GO: Graphene; HR‑TEM: High resolution transmission electron microscopy; JCPDS: Joint committee on powder diffraction standards; TiO2: Titanium dioxide; UV–vis: Ultra‑violet visible spectroscopy; XRD: X‑ray diffraction.

Acknowledgements
Support provided by the Core Research Facilities at the King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia is greatly appreciated.

Authors’ contributions
AI and MI performed the whole experiments and AI wrote the manuscript. AH performed antimicrobial and participated in the data analysis of the results and discussion portion. JH and IS worked on schematic diagram and reviewed the manuscript, corrected the English. AUH carried out the FESEM and HRTEM analysis. All authors read and approved the final manuscript.

Funding
Authors are thankful to Higher Education Commission, HEC through start research grant project # 21-1669/SRGP/R&D/HEC/2017 Pakistan for financial support.

Availability of Data and Materials
All data are fully available without restriction.

Declarations
Conflict of interest
The authors declare that they have no conflict of interest.

Table 1

Sample	Inhibition zonea (mm)	Sample	Inhibition zoneb (mm)
	0.5 mg/50 µL		0.5 mg/50 µL
TiO2	0	1.0 mg/50 µL	0
N-TiO2	0	0	0
C3N4	0	0	0
0.1:1	0	0	0
0.2:1	0	0	1.05
0.3:1	0	0	1.50
Ciprofloxacin	4.45	4.45	2.0
DN	0	0	2.25

Inhibition zone for Staphylococcus aureus. Inhibition zone determination of binary-doped TiO2 for Escherichia coli.

Fig. 11 Illustration of antimicrobial activity of prepared sample
References

1. Bettini M, Dallacasa V, Falcomer D, Fornasiero P, Gombac V, Montini T, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences. 1 Solar Cell Application Research Lab, Department of Physics, Government College University Lahore, Lahore, Punjab 54000, Pakistan. 2 Core Research Facilities, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia. 3 Punjab University College of Pharmacy, University of the Punjab, Lahore 54000, Pakistan. 4 Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.

2. Miller RE, Shenoy VB (2000) Size-dependent elastic properties of nanostructures. In: Nanoscale Res Lett 16:119.

3. Mathews NR, Cortes-Jacome MA, Angeles-Chavez C, Toledo Antonio JA (2019) Titanium dioxide: from structure to photocatalytic characterization. J Mater Sci Mater Electron 30.1039/c7ra06786k.

4. Maness PC, Aflatoonian AJ (2015) Preliminary photochemical screening and biological activities of Bulbine abyssinica used in the folk medicine in the Eastern Cape Province, South Africa. Evid Based Complement Altern Med. https://doi.org/10.1155/2015/617607.

5. Bremner JM (1995) Recent research on problems in the use of urea as a nitrogen fertilizer. In: Nitrogen economic tropical soils, Springer, Netherlands, pp 321–329. https://doi.org/10.1007/978-94-009-1706-4_30.

6. Marques J, Games TD, Forte MA, Silva RF, Tavares CJ (2019) A new route for the synthesis of highly-active N-doped TiO2 nanoparticles for visible light photocatalysis using urea as nitrogen precursor. Catal Today 326:36–45. https://doi.org/10.1016/j.cattod.2018.09.002.

7. Ansari SA, Khan MM, Ansari MO, Cho MH (2016) Nitrogen-doped titanium dioxide (N-doped TiO2) for visible light photocatalysis. New J Chem 40:3000–3009. https://doi.org/10.1039/c5nj03478g.

8. Dunmill CW, Parkin IP (2011) Nitrogen-doped TiO2 thin films: Photocatalytic applications for healthcare environments. Dalt Trans 40:1635–1640. https://doi.org/10.1039/c0dt00494d.

9. D'Oleastro C, Piochioni G, Selloni A (2004) Origin of the different photocatalytic activity of N-doped anatase and rutile TiO2. Phys Rev B Condens Mater Mater Phys. https://doi.org/10.1103/PhysRevB.70.085116.

10. Yang Y, Mao B, Gong G, Li D, Liu Y, Cao W, Xing L, Zeng J, Shi W, Yuan S (2019) In-situ growth of Zn2GeSnS8 quantum dots on c-GaN towards OD/2D heterostructured photocatalysts with enhanced hydrogen production. Int J Hydrogen Energy 44:15882–15891. https://doi.org/10.1016/j.ijhydene.2019.01.102.

11. Abebe B, Murthy HCA, Amare E (2020) Enhancing the photocatalytic efficiency of ZnO defects, heterojunction, and optimization. Environ Nanotechnol Monit Manag 14:100336. https://doi.org/10.1016/j.enmm.2020.100336.

12. Zhang X, Yuan X, Jiang L, Zhang J, Yu H, Wang H, Zeng G (2020) Powerful combination of 2D g-C3N4 and 2D nanomaterials for photocatalysis: recent advances. Chem Eng J 390:24475. https://doi.org/10.1016/j.cej.2020.124475.

13. Abebe B, Zerefa EA, Murthy HCA (2021) Synthesis of poly(vinyl alcohol)-aided ZnO/Mn/ZnO3 nanocomposites for acid orange-8 dye degradation: mechanism and antibacterial activity. ACS Omega 6:994–964. https://doi.org/10.1021/acsomega.0c05597.

14. Maness PC, Smolinski S, Blake DM, Huang Z, Wolfrum EJ, Jacoby WA (1999) Bacterial activity of photocatalytic TiO2 reaction: toward an understanding of its killing mechanism. Appl Environ Microbiol 65:4094–4098. https://doi.org/10.1128/aem.65.9.4094-4098.1999.

15. Finegold L, Cude JL (1972) Biological sciences: One and two-dimensional structures of alpha-helix and beta-sheet forms of poly(L-Alanine) shown by specific heat measurements at low temperatures (15–20 K). Nature 238:38–40. https://doi.org/10.1038/238038a0.

16. Ansari SA, Umar A, Foudad H, Ansari SG (2015) Dye sensitized solar cells fabricated using Cu-Doped TiO2 nanopowder with anchocyanin as sensitizer. J Nanoelectron Optoelectronics 10:290–294. https://doi.org/10.1166/jno.2015.1749.

17. Álvaro RJ, Diana ND, Marantes&Maria A (2017) Effect of Cu on optical properties of TiO2 nanoparticles. Contemp Eng Sci 10:1539. https://doi.org/10.12988/ces.2017.111182.

18. Han C, Wang Y, Lei Y, Wang B, Wu N, Shi Q, Li Q (2015) In situ synthesis of graphite-C3N4 nanosheet hybridized N-doped TiO2 nanofibers for efficient photocatalytic H2 production and degradation. Nano Res 8:1199–1209. https://doi.org/10.1007/s12274-014-0600-2.

19. Song X, Hu Y, Zheng M, Wei C, (2016) Solvent-free in situ synthesis of g-C3N4/600TiO2 composite with enhanced UV- and visible-light photocatalytic activity for NO oxidation. Appl Catal B Environ 182:587–597. https://doi.org/10.1016/j.apcata.2015.10.007.

20. Liu C, Huang H, Du X, Zhang T, Tian N, Guo Y, Zhang Y (2015) In situ co-crystallization for fabrication of g-C3N4/BiO2TiO2 heterojunction for enhanced visible-light photocatalysis. J Phys Chem C 119:17156–17165. https://doi.org/10.1021/acs.jpcc.5b03707.

21. Tan X, Zeng Z, Zhang J, Li Z, Wu X, Cui J, Kuang J, Yin J, Zhou W (2017) Mesoporous g-C3N4/g-C3N4 nanosheets lamineated homojunctions as efficient visible-light photocatalysts. Int J Hydrogen Energy 42:25969–25979. https://doi.org/10.1016/j.ijhydene.2017.08.202.
34. Kong HJ, Won DH, Kim J, Woo SI (2016) Sulfur-doped g-C3N4/BiVO4 composite photocatalyst for water oxidation under visible light. Chem Mater 28:1318–1324. https://doi.org/10.1021/acs.chemmater.5b04178

35. Wang Y, Rao L, Wang P, Shi Z, Zhang L (2020) Photocatalytic activity of Ni-TiO2/O-doped N vacancy g-C3N4 and the intermediate toxicity evaluation under tetracycline hydrochloride and Cr(VI) coexistence environment. Appl Catal B Environ 262:118308. https://doi.org/10.1016/j.apcatb.2019.118308

36. Le P, Hieu L, Lam T-N, Hang N, Tuyen L, Phong P, Leu J (2018) Enhanced photocatalytic performance of nitrogen-doped TiO2 nanotube arrays using a simple annealing process. Micromachines 9:618. https://doi.org/10.3390/mi90200618

37. Raja V, JaffarAli BM (2021) Synergy of photon up-conversion and Z-scheme mechanism in graphitic carbon nitride nanoparticles decorated g-C3N4-TiO2. Colloids Surf A Physicochem Eng Asp 611:125862. https://doi.org/10.1016/j.colsurfa.2020.125862

38. Chen Z, Fan T, Shao M, Yu X, Wu Q, Li J, Fang W, Yi X (2019) Simultaneously enhanced photon absorption and charge transport on a distorted graphitic carbon nitride toward visible light photocatalytic activity. Appl Catal B Environ 242:40–50. https://doi.org/10.1016/j.apcatb.2018.09.080

39. Abebe B, Murthy HCA, Zerefa EA (2020) Synthesis and characterization of PVA-assisted metal oxide nanomaterials: surface area, poreosity, and electrochemical property improvement. J Nanomater. https://doi.org/10.1155/2020/6532835

40. Li P, Zhang X, Qu L, Xu X, Si Y, Liang T, Liu H, Chu J, Guo J, Duo S (2020) MOF-derived TiO2modified with g-C3N4nanosheets for enhanced visible-light photocatalytic performance. New J Chem 44:6958–6964. https://doi.org/10.1039/D0NJ00746C

41. Shockley W, Read WT (1952) Statistics of the recombinations of holes and electrons. Phys Rev 87:835–842. https://doi.org/10.1103/PhysRev.87.835

42. Cushing SK, Meng F, Zhang J, Ding B, Chen CK, Chen CJ, Liu RS, Bristow AD, Bright J, Zheng P, Wu N (2017) Effects of defects on photocatalytic activity of hydrogen-treated titanium oxide nanobelts. ACS Catal 7:1742–1748. https://doi.org/10.1021/acscatal.6b02177

43. Gurlo A (2006) Interplay between O2 and SnO2: oxygen ionosorption and spectrophotometric evidence for adsorbed oxygen. ChemPhysChem 7:2041–2052. https://doi.org/10.1002/cphc.200600292

44. Ajmal A, Majeed I, Malik RN, Idrees H, Nadeem MA (2014) Principles and mechanisms of photocatalytic dye degradation on TiO2 2 based photocatalysts: a comparative overview. RSC Adv 4:37003–37026. https://doi.org/10.1039/c4ra06655b

45. Pang X, Chen C, Ji H, Che Y, Ma W, Zhao J (2014) Unraveling the photocatalytic mechanisms on TiO2 surfaces using the oxygen-18 isotopic label technique. Molecules 19:16291-16311. https://doi.org/10.3390/molecules191016291

46. Yu J, Park J, Van Wyk A, Rumbles G, Deren P (2018) Excited-state electronic properties in Zr-based metal-organic frameworks as a function of a topological network. J Am Chem Soc 140:10488–10496. https://doi.org/10.1021/jacs.8b04980

47. Younis SA, Kwon EE, Qasim M, Kim KH, Kim T, Kukkar D, Dou X, Ali I (2020) photocatalytic mechanisms on TiO2 surfaces using the oxygen-18 isotopic label technique. Molecules 19:16291-16311. https://doi.org/10.3390/molecules191016291

48. Dhakshinamoorthy A, Li Z, Garcia H (2018) Catalysis and photocatalysis by metal organic frameworks. Chem Soc Rev 47:8134–8172. https://doi.org/10.1039/c8cs00526h

49. Wang J, Jiang Z, Zhang Z, Xie Y, Li Y, Li J, Deng Y, Zhang X (2009) Study on inorganic oxidants assisted sonocatalytic degradation of Acid Red B in presence of nano-sized ZnO powder. Sep Purif Technol 67:38–43. https://doi.org/10.1016/j.seppur.2009.03.005

50. Xin Ying G, Tunku Abdul Rahman U (2018) Synthesis of TiO2/G-C3N4 composite for sonocatalytic degradation of organic dye

51. Isorno R, Yoshimura T, Esumi K (2003) Preparation of Au/TiO2 nanocomposites and their catalytic activity for DPPH radical scavenging reaction. J Colloid Interface Sci 288:177–183. https://doi.org/10.1016/j.jcis.2005.02.078

52. Morsella M, D'Alessandro N, Lanterna AE, Scalaio J (2016) Improving the sunscreen properties of TiO2 through an understanding of its catalytic properties. ACS Omega 1:464–469. https://doi.org/10.1021/acsomega.6b00177

53. Huang CW, Wu MC (2020) Photocatalytic degradation of methylene blue by UV-assistant TiO2 and natural sericite composites. J Chem Technol Biotechnol 95:2715–2722. https://doi.org/10.1002/jctb.6392

54. Su J, Zhu L, Geng P, Chen G (2016) Self-assembly graphitic carbon nitride quantum dots anchored on TiO2 nanotube arrays: an efficient hetero-junction for pollutants degradation under solar light. J Hazard Mater 316:159–168. https://doi.org/10.1016/j.jhazmat.2016.05.004

55. Javed R, Ahmed M, Ullah I, Nisa S, Zia M (2017) PVP and PEG doped CuO nanoparticles are more biologically active: antibacterial, antioxidant, anti-diabetic and cytotoxic perspective. Mater Sci Eng C 79(2017):108–115. https://doi.org/10.1016/j.msec.2017.05.006

56. Javed R, Usman M, Tabassum S, Zia M (2016) Effect of capping agents: structural, optical and biological properties of ZnO nanoparticles. Appl Surf Sci 386:319–326. https://doi.org/10.1016/j.apsusc.2016.06.042

57. Ahmed B, Solanki B, Zaidi A, Khan M, Musarrat J (2019) Bacterial toxicity of biomimetic green zinc oxide nanoantibiotic: insights into ZnONP uptake and nanocolloid–bacteria interface. Toxicol Res (Camb) 8:246–261. https://doi.org/10.1039/C8TX00267C

58. Ahmed B, Hashmi A, Khan M, Musarrat J (2018) ROS mediated destruction of cell membrane, growth and biofilms of human bacterial pathogens by stable metallic AgNPs functionalized from bell pepper extract and quercetin. Adv Powder Technol 29:1601–1616. https://doi.org/10.1016/j.apt.2018.03.025

59. Ikrham M, Tabassum R, Qamar U, Ali S, UH-Hamid A, Haider A, Raza A, Imran M, Ali S (2020) Promising performance of chemically exfoliated Zr-doped MoS2nanosheets for catalytic and antibacterial applications. RSC Adv. 10:20559–20571. https://doi.org/10.1039/d0ra02458a

60. Altaf S, Haider A, Naz S, UH-Hamid A, Haider J, Imran M, Shahzadi A, Naz M, Ajaz H, Ikrham M (2020) Comparative study of selenides and tellurides of transition metals (Nb and Ta) with respect to its catalytic, antimicrobial, and molecular docking performance. Nanoscale Res Lett 15:1–16. https://doi.org/10.1186/s11671-020-03375-0

61. Haider A, Ijaz M, Ali S, Haider J, Imran M, Majeed H, Shahzadi I, Ali MM, Khan JA, Ikrham M (2020) Green synthesized photocatalytically (Zingiber officinale and Alium sativum) reduced nickel oxide nanoparticles confirmed bactericidal and catalytic potential. Nanoscale Res Lett 15:1–11. https://doi.org/10.1186/s11671-020-03283-5

62. Iyyappa Rajan P, Judith Vijaya J, Jesudoss SK, Kaviyarasu K, John Kennedy L, Jothiramalingam R, Al-Lohedan HA, Vaali-Mohammed MA (2017) Green-fuel-mediated synthesis of self-assembled NIO nano-sticks for dual applications-photocatalytic activity on Rose Bengal dye and antimicrobial action on bacterial strains. Mater Res Express 4:85030. https://doi.org/10.1088/2053-1591/aa7e3c

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.