Modeling goal chances in soccer: a Bayesian inference approach

Gavin A. Whitaker1,2*, Ricardo Silva1,3 and Daniel Edwards2

1Department of Statistical Science, University College London, London, WC1E 6BT
2Stratagem Technologies, 19 Eastbourne Terrace, London, W2 6LG
3The Alan Turing Institute, 96 Euston Road, London, NW1 2DB

Abstract

We consider the task of determining the number of chances a soccer team creates, along with the composite nature of each chance—the players involved and the locations on the pitch of the assist and the chance. We propose an interpretable Bayesian inference approach and implement a Poisson model to capture chance occurrences, from which we infer team abilities. We then use a Gaussian mixture model to capture the areas on the pitch a player makes an assist/takes a chance. This approach allows the visualization of differences between players in the way they approach attacking play (making assists/taking chances). We apply the resulting scheme to the 2016/2017 English Premier League, capturing team abilities to create chances, before highlighting key areas where players have most impact.

Keywords: Bayesian inference; Gaussian mixture model; Soccer.

1 Introduction

Within this paper we look to explain an English Premier League team’s style of attacking play; determining the number of chances a team creates, along with identifying the players involved and from where on the pitch the chance took place.

The Premier League is an annual soccer league established in 1992 and is the most watched soccer league in the world (Yueh, 2014; Curley and Roeder, 2016). It consists of 20 teams, who, over the course of a season, play every other team twice (both home and away), giving a total of 380 fixtures. It is the top division of English soccer, and every year the bottom 3 teams are relegated to be replaced by 3 teams from the next division down (the Championship). In recent times the Premier League has also become known as the richest league in the world (Deloitte, 2016), through both foreign investment and a lucrative deal for television rights (Rumsby, 2016; BBC Business, 2016). To compete in the Premier League, teams employ different styles of play, often determined by the manager’s personal preferences and the players who make up the team. Examples of attacking styles of play include counter attacking (quickly moving the ball into scoring range) or passing-build-up (many short passes to find a weakness in the oppositions defense). For further discussion of styles of play, we direct the reader to (Wendichansky, 2016; Huddleston and Huddleston, 2018).

Methods to model a soccer team’s style of play/behavior have been explored previously by a number of authors. Lucey et al. (2013) use occupancy maps defined using a given metric, for example, the mean or an entropy measure, to determine a team’s style of play with the aim of showing that a team will aim to “win home games and draw away ones.” Occupancy maps are also used by Bialkowski et al. (2014), who take spatio-temporal player tracking data and develop a method to automatically detect formation and player roles. Bojinov and Bornn (2016)
utilize Gaussian processes to form a spatial map to capture each team’s defensive strengths and weaknesses. Peña and Touchette (2012); Peña (2014); Peña and Navarro (2015) employ methods from the Network analysis toolbox to draw conclusions about a team/player’s use of possession. How the player’s on a team interact is discussed in Grund (2012), and Kim et al. (2010) estimate the global movements of all players to predict short term evolutions of play. Outside of soccer, Miller et al. (2014) investigate shot selection amongst basketball players in the NBA, combining matrix factorization techniques with an intensity surface, modeled using a log-Gaussian Cox process. Defensive play in basketball is captured by Franks et al. (2015), who take player tracking data and apply spatio-temporal processes, matrix factorization techniques and hierarchical regression models.

More generally, the statistical modeling of sports has become a topic of increasing interest in recent times, as more data is collected on the sports we love, coupled with a heightened interest in the outcome of these sports, that is, the continuous rise of online betting. Soccer is providing an area of rich research, with the ability to capture the goals scored in a match being of particular interest, see (Dixon and Coles, 1997; Karlis and Ntzoufras, 2003; Baio and Blangiardo, 2010). A player performance rating system (the EA Sports Player Performance Index) was developed by McHale et al. (2012), which aims to represent a player’s worth in a single number, whilst McHale and Szczepański (2014) identify the goal scoring ability of players. Whitaker et al. (2017) rate players for a number of abilities, before using them to aid the prediction of goals scored. Finally Kharrat et al. (2017) develop a plus-minus rating system for soccer.

In this paper we propose a method to capture the number of chances a team creates during a given section of a match, along with determining the players involved in a chance, where on the pitch the chance was created and where it was taken from. Our work differs from previous studies in this area in a number of ways. Firstly, previous work has used complete touch data (where every location that a player touches the ball in a game is recorded), to model a team’s attacking play. Here, we use only the location of the assist and the chance. Thus, our proposed method is less computationally intensive and allows inferences from coarser and significantly cheaper data. Previous work has also focused on modeling the spatial dynamics of a team as a whole, whereas our method identifies the individual spatial contributions of players. Where specific players have been modeled in the past, this is often not accompanied by spatial analysis, instead player-to-player relationships are considered. We note that the model proposed within this paper has a wide variety of applications, of which we illustrate a few.

The remainder of this article is organized as follows. The data is presented in Section 2. In Section 3 we outline our model to capture a teams chances, before discussing an approach to identify the players involved with each chance and from which spatial locations. Applications are considered in Section 4 and a discussion is provided in Section 5.

2 The data

The data available to us is Stratagem Technologies’ Analyst data. This is a collection of data which marks the significant events during a soccer match; including goals, cards (both yellow and red) and chances created. For each of these events a time is recorded (in minutes), the team and player involved with the event, and for the goals/chances the location on the pitch is marked. If the event is a goal/chance, both the player taking the chance and the player assisting the chance are recorded (along with the spatial location of the chance and the assist). From here on in, we consider goals and chances to be the same for our purposes (a goal being a chance which is scored after all)—we refer to them collectively as chance. A section of the data is shown in Table 1. The data covers the 2016/2017 English Premier League season and consists of roughly 32K events in total, which equates to approximately 85 events for each fixture in the dataset. We also have the date of each fixture.

Locations on the pitch are represented by \((x, y)\)-coordinates with the \(x\)-axis running between
fixture	date	team	time	type	event	assist player	assist x	assist y	chance x	chance y
2241765	2016-08-13	725	82.35	Yellow card	94174	—	—	—	—	—
2241765	2016-08-13	725	81.38	Chance	38569	38569	-108	21	-98	34
2241765	2016-08-13	682	75.65	Chance	5724	11180	136	41	26	45
2241765	2016-08-13	682	72.48	Chance	156662	159732	47	76	48	39

Table 1: A section of Stratagem Technologies’ analyst data

Figure 1: Map of the pitch, the point (0,0) represents the center of the defended goal (shaded box). Further key reference points are detailed in Table 2

Point	x	y
Center of defended goal	0	0
Right goalpost	15	0
Left goalpost	-15	0
6-yard box, right corner	37	22
6-yard box, left corner	-37	22
Penalty spot	0	44
18-yard box, right corner	81	66
18-yard box, left corner	-81	66
Center spot	0	210

Table 2: Key reference points

the two touch-lines (width of the pitch) and the y-axis representing the length of the pitch between the goalposts. The spatial location is always recorded from the perspective of the attacking team, meaning the coordinate system does not need to be rotated to account for the second team, or to accommodate the fact that teams switch ends at half-time. The point (0, 0) marks the center of the defended goal, with the width of the pitch going from -136 to 136 (left to right), and the pitch length running from 0 to 420. Explicitly, $x \in [-136, 136]$ and $y \in [0, 420]$. A map of the pitch is shown in Figure 1, with some key reference points given in Table 2.

Further to the above, it is possible to extract additional statistics from the dataset. These include the game state and the red card state for a team at a given time point. The game state is the number of goals a team is winning or losing by at that point in time, for example, a team...
winning 1-0 would have a game state of +1, a team losing 1-3 would be -2, and, if the game is currently a draw, both teams would have a game state of 0. The red card state is defined similarly, and is the difference in the number of players on each team. To elucidate, if a team has a player sent off their red card state would be -1, whilst the opposition would be +1.

3 The model

In this section we define our model to capture a team’s chances, before discussing an approach to determine the composite nature of each individual chance. Each chance consists of an assist player, a player taking the chance (chance player), the spatial location from which the assist was made and the location of the chance. First, the number of chances a team has in a given period \((N)\) is sampled using a Poisson model. Then for each chance \((E)\), we draw an assist player \((A)\) and a chance player \((C)\) from discrete distributions, with an assist location \((x^a, y^a)\) and the difference between the assist and chance locations \((\Delta x, \Delta y)\) being captured through Gaussian mixture models. A diagram of the model is given in Figure 2. We begin by looking at the number of chances each team generates.

3.1 A team’s number of chances

Consider the case where we have \(K\) matches, numbered \(k = 1, \ldots, K\). We denote the set of teams in fixture \(k\) as \(T_k\), with \(T^H_k\) and \(T^A_k\) representing the home and away teams respectively. Explicitly, \(T_k = \{T^H_k, T^A_k\}\). We take \(P\) to be the set of all players who feature in the dataset, and \(P^j \in P\) to be the subset of players who play for team \(j\).

For simplicity we outline the model for a single fixture first. We split a fixture into blocks—one possibility being to split a fixture into 15 minute blocks, giving 6 blocks in total (see Figure 3). Of course the widths of these blocks is arbitrary, and could equally be set to be either a half of soccer (45 minutes) or indeed every minute. After discussion with expert soccer analysts the authors feel that a block of 15 minutes provides sufficient granularity without introducing large levels of redundancy. Typically, a soccer match will have a small amount of extra time at the end of each half; throughout this paper, any chances which occur within these periods of extra time are included in either \(t_3\) or \(t_6\) (using the block structure illustrated in Figure 3).

Taking \(N^j_{t_r,k}\) to be the number of chances for team \(j\), in match \(k\), and block \(t_r, r = 1, \ldots, 6\), we have

\[
N^j_{t_r,k} \sim Pois \left(\lambda^j_{t_r,k} \right),
\]
where

\[\lambda_{t_{r},k}^j = \exp \left\{ \theta_{t_{r}}^j - \theta_{t_{r}}^{T_k \backslash j} + \left(\delta_{T_k \backslash j} \right) \gamma_{t_{r}} + \alpha G_{t_{r},k}^j + \beta R_{t_{r},k}^j \right\}. \]

(2)

A team’s propensity to create chances is represented by \(\theta_{t_{r}} \), \(\theta_{t_{r}}^{T_k \backslash j} \) is the opposition’s ability to create chances, \(\gamma_{t_{r}} \) is a home effect for the corresponding block and \(\delta_{a,b} \) is the Kronecker delta. The home effect reflects the (supposed) advantage the home team has over the away team. A home effect for the number of goals a team scores has been discussed by numerous authors, see for example (Dixon and Coles, 1997; Karlis and Ntzoufras, 2003). The current game state at the start of a block for a team is \(G_{t_{r},k}^j \), with \(R_{t_{r},k}^j \) being the red card state. For identifiability purposes, we follow Karlis and Ntzoufras (2003) (amongst others) and impose the constraint that the \(\theta_{t_{r}} \) must sum-to-zero, specifically

\[\sum_{i \in j} \theta_{t_{r}}^i = 0. \]

The thinking behind this model construction is that if a team is creating chances, the other team cannot. Whilst this assumption is limiting by construction, given defensive tactics and other tangential aspects of play, it is the easiest (and possibly most meaningful) set-up derived from the data, which consists of attacking instances only. From (1) and (2), the likelihood is given by

\[L_N = \prod_{r=1}^{6} \prod_{k=1}^{K} \prod_{j \in T_k} \left(\lambda_{t_{r},k}^j N_{t_{r},k}^j \right)^{N_{t_{r},k}^j} \exp \left(-\lambda_{t_{r},k}^j \right) \frac{1}{N_{t_{r},k}^j !}. \]

(3)

We note that it is possible to model the number of chances a team creates using an approach similar to the one implemented by (Dixon and Coles, 1997; Karlis and Ntzoufras, 2003; Baio and Blangiardo, 2010; Whitaker et al., 2017) (albeit for goals a team scores). However, we find little or no difference in the sum-of-squares, bias or empirical predictive distributions under the two set-ups. Thus, we proceed with the simpler model (in terms of the number of parameters) given by (1)–(3).

3.2 Chance composition

Once the number of chances created by a team is determined by the above, we break \(N_{t_{r},k}^j \) into separate events, \(E_s \), where \(s = 1, \ldots, N_{t_{r},k}^j \) and

\[E = \left(E_1, \ldots, E_{N_{t_{r},k}^j} \right). \]

Each \(E_s \) is a composition of the assist player (A), the chance player (C), the \((x,y)\)-coordinates for the assist location \((x^a, y^a)\) and the difference between the assist and chance locations \((\Delta x, \Delta y)\), where

\[\Delta x = x^c - x^a \]
\[\Delta y = y^c - y^a, \]
with \((x^r, y^r)\) being the \((x, y)\)-coordinates of the chance. By using the difference between the assist and chance locations we aim to model any dependence we may observe between the assist and chance locations. Explicitly \(E_a = [A, C, x^a, y^a, \Delta x, \Delta y] \).

First, let us consider the task of determining the assist and chance player involved with each event. We make the assumption that a player cannot assist a player on an opposing team (such as assisting an own goal, by forcing the error), and neither can they take a chance created by a player from the opposition (for example, running onto a bad back pass). In the context of soccer these events are reasonably rare, and by implementing this assumption we can consider the players of one team to be independent from the players of another team. A player can switch teams part way through a season (in January) or at the end of a season by means of a transfer; however, we consider them to be a new player to be learned, as they may have different dynamics with their new team mates and possibly play in a different system, for example, playing in a new position to the one at their previous team. We model the probability of each assist player (and chance player) using a Multinoulli (or categorical) distribution.

Let, \(Z_{s, i, t_r}^a\) be a one-hot vector, with a 1 in position \(i\), representing the assist player for event \(s\), in a given block \(t_r\), with \(i \in P^j\). Denote the probability of each player making an assist for a given event by \(\phi_{i, t_r}^a\), where

\[
\sum_{i \in P^j} \phi_{i, t_r}^a = 1.
\]

Setting \(\phi_{i, t_r}^a\) to be the vector of \(\phi_{i, t_r}^a\)s, \(\phi^a\) to be the vector of \(\phi_{i, t_r}^a\)s, \(Z_{s, t_r}^a\) as the vector of \(Z_{s, i, t_r}^a\)s, the vector of \(Z_{i, t_r}^a\)s, then

\[
Z_{s, i, t_r}^a \sim \text{Multinoulli} \left(\phi_{i, t_r}^a \right), \quad (4)
\]

with

\[
\pi \left(Z^a \mid \phi^a \right) = \prod_{r=1}^{6} \prod_{i=1}^{N_{t_r}^j} \pi \left(Z_{s, i, t_r}^a \mid \phi_{i, t_r}^a \right).
\]

Similarly, for the chance player

\[
Z_{s, i, t_r}^c \sim \text{Multinoulli} \left(\phi_{i, t_r}^c \right), \quad (6)
\]

where

\[
\pi \left(Z^c \mid \phi^c \right) = \prod_{r=1}^{6} \prod_{s=1}^{N_{t_r}^j} \pi \left(Z_{s, i, t_r}^c \mid \phi_{i, t_r}^c \right).
\]

Next, we consider the spatial locations, which we model using a mixture model. For a general discussion of mixture models we refer the reader to McLachlan and Peel (2004). Given the nature of the spatial locations we implement a Gaussian mixture model, with \(M\) components. Denote the weighting of the mixture components (for a given player \(i\), in a given block \(t_r\)) by \(\kappa_{i, t_r}^a\) and \(\kappa_{i, t_r}^\Delta\) for the assist and \(\Delta\) locations respectively, with \(\kappa_{i, t_r}^* = (\kappa_{i, t_r}^{a, 1}, \ldots, \kappa_{i, t_r}^{a, M})\) and

\[
\sum_{m=1}^{M} \kappa_{i, t_r, m}^* = 1.
\]

Furthermore, let the observations for a given player, in a specific block, be \(X_{i, t_r}^a\) and \(X_{i, t_r}^\Delta\), with \(X_{i, t_r}^* = (X_{i, t_r, 1}^*, \ldots, X_{i, t_r, L_{i, t_r}^*})\). Whence, the likelihood for the assist locations is

\[
L_a = \prod_{r=1}^{6} \prod_{i \in P^j} \prod_{l=1}^{L_{i, t_r}^a} \sum_{m=1}^{M} \kappa_{i, t_r, m}^a \times N \left\{ \left(x_{i, t_r, l}^a, y_{i, t_r, l}^a \right) \mid \left(\mu_{x, m}^a, \mu_{y, m}^a \right), \Sigma_m^a \right\}, \quad (8)
\]
where $N(\cdot; m, V)$ denotes the multivariate Gaussian density with mean m and variance V. Similarly

$$L_\Delta = \prod_{r=1}^{6} \prod_{i \in P} \prod_{l=1}^{L_{\Delta, r}} \sum_{m=1}^{M} \kappa_{\Delta, r, m} \times N \left\{ \left(x_{\Delta, r, l}, y_{\Delta, r, l} ; \mu_{\Delta, r, m}, \Sigma_{\Delta, r, m} \right) \right\}.$$ \hfill (9)

To simplify our approach we choose to predetermine the number of components which make up our mixture model. After discussion with expert soccer analysts we decided upon 8 components, whose locations we determine through k-means clustering. Thus, we set $\mu_{\Delta, m}, m = 1, \ldots, M$, to be the cluster centroids defined using all the observed assist locations (by all players), and $\mu_{\Delta, m}, m = 1, \ldots, M$, using the Δ locations (deterministically constructed using the chance and assist locations). We leave $\Sigma_{\Delta, m}, m = 1, \ldots, M$, as parameters to infer, rather than taking the variances of clusters per se. The locations of the cluster centroids are shown in Figure 4 (indicated by a cross), where we also plot the data, colored according to cluster assignment (under k-means).

To add some context to the cluster centroids, for the assist locations, the furthest right centroid ($0, 240$) (own half, OH) is likely to represent a long ball forward for a player to run on to. For the leftmost column, the widest centroids ($x = -115, 115$) (left corner [LC], right corner [RC]) are assists from corners or crosses into the box, whilst the middle two (left box [LB], right box [RB]) show cutbacks across goal and knock-downs. The middle column is slightly more ambiguous, although the center cross (center opposition half, CH) is most likely short through-ball assists, with the wider centroids being free-kicks and further crosses into the box (left opposition half [LH], right opposition half [RH]). The Δ centroids are the inverse of the assist centroids (in shape) and are simply the distance the ball traveled for the assist, for example, a larger magnitude of x and a smaller magnitude of y represents a cross into the box.

Having outlined the two components of our model, namely, the number of chances a team generates and the composition of these chances, we must consider the best way to fit the model, which is the subject of the next section.

3.3 Bayesian inference

To estimate the parameters in the model we use a Bayesian inference approach. The joint posterior is given by

$$\pi \left(\theta, \alpha, \beta, \tau, \phi^a, \phi^c, \kappa^a, \Sigma^a, \Sigma^\Delta \mid N, Z^a, Z^c, x^a, y^a, \Delta^x, \Delta^y \right) \propto \pi \left(\alpha \right) \pi \left(\beta \right) \pi \left(\tau \right) \pi \left(\theta \right) \pi \left(N \mid \theta, \alpha, \beta, \gamma \right) \times \pi \left(\phi^a \right) \pi \left(Z^a \mid \phi^a \right) \pi \left(\phi^c \right) \pi \left(Z^c \mid \phi^c \right) \times \pi \left(\kappa^a \right) \pi \left(\Sigma^a \right) \pi \left(x^a, y^a \mid \kappa^a, \mu^a, \Sigma^a, \phi^a \right) \times \pi \left(\kappa^\Delta \right) \pi \left(\Sigma^\Delta \right) \pi \left(\Delta^x, \Delta^y \mid \kappa^\Delta, \mu^\Delta, \Sigma^\Delta, \phi^c \right),$$ \hfill (10)

where $\pi \left(N \mid \theta, \alpha, \beta, \gamma \right)$ follows (3), $\pi \left(Z^a \mid \phi^a \right)$ is given by (5) and $\pi \left(Z^c \mid \phi^c \right)$ by (7), $\pi \left(x^a, y^a \mid \kappa^a, \mu^a, \Sigma^a, \phi^a \right)$ is governed by (8) and $\pi \left(\Delta^x, \Delta^y \mid \kappa^\Delta, \mu^\Delta, \Sigma^\Delta, \phi^c \right)$ follows (9). Furthermore, $\pi \left(\theta \mid \tau \right)$ is the prior density ascribed to θ, dependent upon τ, which we take to follow a $N(0, \tau)$ distribution.

To fully specify the model, we implement the following priors

$$\pi \left(\alpha \right) \sim N \left(0, 10^2 \right), \quad \pi \left(\beta \right) \sim N \left(0, 10^2 \right), \quad \pi \left(\tau \right) \sim \text{Gamma} \left(1, 0.01 \right),$$

$$\pi \left(\phi^a \right) \sim \text{Dirichlet} \left(1_P \right), \quad \pi \left(\phi^c \right) \sim \text{Dirichlet} \left(1_P \right),$$

$$\pi \left(\kappa^a \right) \sim \text{Dirichlet} \left(1_M \right), \quad \pi \left(\kappa^\Delta \right) \sim \text{Dirichlet} \left(1_M \right),$$

$$\pi \left(\Sigma^a \right) \sim \mathcal{W}^{-1} \left(I_2, 2 \right), \quad \pi \left(\Sigma^\Delta \right) \sim \mathcal{W}^{-1} \left(I_2, 2 \right).$$ \hfill (11)
where 1_q is a vector of 1s with length q, I_q is the identity matrix with dimension q and \mathcal{W}^{-1} is the inverse Wishart distribution. By assuming ϕ^* follows a Dirichlet distribution a priori, we are modeling the assist and chance players as a mixture of Multinomials, which is in line with techniques used in topic modeling, as part of a hierarchical Bayesian model. Where topic models (usually) capture the words for a particular topic, here, we determine the players for an assist or chance.

The form of (10) admits a Gibbs sampling strategy with blocking, which we can extend to form five independent full conditionals for the number of chances, the assist player, the chance player, the location of the assist and the Δ location. Further blocking strategies that exploit the conditional dependencies between the model parameters and the data can also be used. To elucidate, the assist player, ϕ^a, can be updated separately for each team. On top of this, all parameters can be updated separately for each block, t_r. We fit the model in Python using the package PyMC3.
Abbreviation / Team

BOU	AFC Bournemouth	EVE	Everton	MUN	Manchester United	SWA	Swansea City
ARS	Arsenal	HUL	Hull City	MID	Middlesbrough	TOT	Tottenham Hotspur
BUR	Burnley	LEI	Leicester City	SOU	Southampton	WAT	Watford
CHE	Chelsea	LIV	Liverpool	STK	Stoke City	WBA	West Bromwich Albion
CRY	Crystal Palace	MCI	Manchester City	SUN	Sunderland	MCI	West Ham United

Table 3: 2016/2017 English Premier League teams and abbreviations

![Figure 5: Trace plot for γ_{t_1}](image)

4 Applications

Having outlined our approach to determine the number of chances a team will generate in a given fixture—accounting for the opposition’s ability to create chances, the game and red card states and a home effect—plus a model for the composition of these chances, we wish to test the proposed methods in real world scenarios. Given the independence between the components which constitute the model we consider two applications. In the first we learn a team’s ability to create chances and in the second we examine which players are involved, and where on the pitch these events occur. For both applications we use the data described in Section 2, namely the 2016/2017 English Premier League. Throughout this section, to aid table/figure aesthetics, we refer to teams by the abbreviations given in Table 3. We note that CHE won the league, with TOT, MCI and LIV getting UEFA Champions League places, therefore, we may expect these 4 teams to be the best. On the other hand, SUN, MID and HUL were relegated at the end of the season, meaning these 3 teams were perhaps the worst.

4.1 Determining a team’s chance ability

We fit the model defined by (1)–(3), using the priors specified in (11). We found little difference in results for alternative priors. We ran the model for 2000 iterations, after an initial burn-in of 100 iterations. A trace plot for γ_{t_1} is given in Figure 5, where we see reasonable mixing (this trace plot is typical for all parameters in the model).

The posterior means for a team’s ability to create chances (θ_{t_r}) over the entire 2016/2017 season are presented in Table 4, for each of the 6 blocks. Those teams which we identified as possibly being “better” at creating chances, namely CHE, TOT, MCI and LIV, all have higher values in the table. Noticeably, they have higher values for blocks t_5 and t_6, when compared to other teams.
Table 4: A team’s mean ability to create chances, θ^j_t, in the 2016/2017 English Premier League for each block

Team	t_1	t_2	t_3	t_4	t_5	t_6
BOU	-0.043	-0.004	-0.211	-0.231	-0.003	-0.075
ARS	0.043	0.122	0.238	0.201	0.086	0.150
BUR	-0.098	-0.174	-0.280	-0.166	-0.178	-0.291
CHE	0.040	0.036	0.310	0.307	0.183	0.384
CRY	-0.023	-0.079	-0.200	-0.106	-0.020	-0.126
EVE	-0.024	0.030	0.233	0.015	0.069	0.284
HUL	-0.143	-0.057	-0.304	-0.147	-0.183	-0.125
LEI	-0.058	-0.080	-0.303	-0.121	-0.139	-0.174
LIV	0.118	0.207	0.414	0.390	0.130	0.333
MCI	0.201	0.401	0.375	0.268	0.249	0.465
MUN	0.111	0.234	0.341	0.033	0.112	0.253
MID	-0.065	-0.263	-0.255	-0.162	-0.208	-0.198
SOU	0.092	0.075	0.090	0.132	0.020	0.091
STK	-0.053	-0.182	-0.162	0.028	-0.081	-0.113
SUN	-0.296	-0.080	-0.200	-0.156	-0.194	-0.531
SWA	0.047	-0.139	-0.042	-0.093	-0.106	-0.236
TOT	0.169	0.220	0.360	0.254	0.208	0.332
WAT	-0.095	-0.153	-0.189	-0.197	0.020	-0.211
WBA	-0.001	-0.183	-0.160	-0.171	-0.015	-0.138
WHU	0.077	0.071	-0.056	-0.076	0.051	-0.075

This suggests they are able to find a way to win (by creating more chances) in the closing moments of a game (or a way to recover if they are losing), which is perhaps why they had a successful season. MCI have the highest value in t_1, t_2 and t_6, meaning they started and finished games well. These values highlight Pep Guardiola’s playing style, along with the quality of MCI’s substitutes (they can replace good players with equally good players). CHE do not have as high values as some of the other top teams (even though they won the league), suggesting they did not create as many chances as other teams but they were more clinical with the ones they did create. Unsurprisingly, the teams who were relegated at the end of the season (SUN, MID, HUL) have some of the lowest values in the table. SUN have the worst ability to create chances in t_1 and t_6, with MID having a similar ability across all blocks, leading to them being the 2 lowest scoring teams in the league.

Figure 6 shows the posterior mean for the home effect in each block over the entire 2016/2017 season, along with 95% credible intervals. The credible intervals in each block are of near identical size, meaning we have similar levels of uncertainty surrounding all γ_t,s. For all blocks we see a positive home effect, showing a team tends to create more chances at home than when playing away. This is in line with other findings concerning home effects. There is a rise in the home effect in t_3 (the end of the first half), this is possibly due to fan pressure to perform well. If a team is losing going into half time, fans want to see their team trying to get back into the game (by creating more chances), if they are drawing they want to try to gain an advantage, or if they are winning, they want to see them press home their advantage. This level of home effect carries into the second half (t_4, t_5) before a similar rise is observed in t_6. The rise at the end of the game corresponds to a home team’s desperateness to achieve a positive result (and please their fans). It is also possible that the home team is able to draw more energy from the crowd, and therefore out perform the away team. The trend seen in Figure 6 compliments the findings of Lucey et al. (2013), that a team will play more defensively away from home, with the suggestion that if an away team is winning or
drawing in the final 15 minutes of a game (t_6), they will attempt to hold onto what they have (by defending more and creating less chances).

4.2 Determining locations

Having determined the number of chances a team will create, we now fit the model defined through (5) and (7)–(9) to capture the composition of these chances. Initially, we focus our attention on the assist and Δ locations.

Christian Eriksen created the most chances in the 2016/2017 English Premier League. Figure 7 illustrates the locations of these assists in each block through a Voronoi diagram, colored according to the weighting of each mixture component (κ_{t,t_r}^a). It clearly shows that Eriksen changes his style of play (or at least the location of his play, and possibly effectiveness) during different periods of the game, for example, the plots for t_1 and t_2.

As we are implementing the model within the Bayesian paradigm, we can fit the model to a certain point in the season, before updating our beliefs once more data becomes available (more matches are played). To this end, we learn the model parameters using data up until 1/1/2017 (roughly half the season), and then proceed to update our beliefs after each subsequent month. Voronoi diagrams for Riyad Mahrez’s assists in t_5 after each of these months (along with the season as a whole) are shown in Figure 8. Mahrez was one of the stars for Leicester City when they won the league in 2015/2016, however he was not playing as well under manager Claudio Ranieri in 2016/2017 (our dataset); this is evidenced by the top row of plots where high weights are only assigned to the left corner. Ranieri was sacked in February and Craig Shakespeare became manager, who was seen to get Mahrez back playing somewhere near his best. The figure supports this, with the bottom 4 plots showing assists coming from more areas of the pitch, those being, the left-hand side, drifting to more central positions. This approach (through Figures 7 and 8) illustrates that we can model how a player plays throughout a game and over a season. Given we can update as more data becomes available, this allows us to capture when a player changes their style of play or when they start to become more/less important to a team.

Integrating over the posterior uncertainty of the spatial locations gives the marginal posterior densities for κ^Δ, from which we can ascertain differences in how certain players take chances. Radar plots of the mean κ_{t,t_r}^Δ (at each centroid) for Harry Kane (scored the most goals) and Sergio Agüero

![Figure 6: Mean home effect (solid line) and 95% credible intervals (dotted line) in each block in the 2016/2017 English Premier League](image)
Figure 7: Eriksen assist locations for each block in the 2016/2017 English Premier League, colored according to the weighting of each mixture component
Figure 8: Mahrez assist locations in t_5 after different periods of time, colored according to the weighting of each mixture component.
Figure 9: Radar plots of the mean $\kappa_{i,t}^\Delta$ for Kane (solid) and Agüero (dashed) for each block in the 2016/2017 English Premier League.
Figure 10: Eriksen assist locations under the Gaussian mixture model for t_1 in the 2016/2017 English Premier League

(had the most chances) are shown in Figure 9. For simplicity we number the centroids 1–8. The meaning of each centroid is subtle, and explanation is beyond the scope of this paper. However, it is clear from Figure 9 that it is easy to visualize (and distinguish) between how certain players take chances, for instance, the differences in the shape of each player’s radar plot.

By marginalizing over the mixture weights (κ^*), along with the uncertainty within the mixture components, we can construct a surface under the Gaussian mixture model for each player. One such surface is presented in Figure 10. This is the surface for Christian Eriksen’s assists in t_1 over the entire 2016/2017 English Premier League. Note, these surfaces can be constructed at any point in the season and updated once more data becomes available. From the figure it is easy to see where this player had most influence, and we observe a similar pattern to the one seen in the top left plot of Figure 7. Such plots are a useful way to convey information to a team, an application of which we consider below.

4.2.1 Identifying a team’s strengths and weaknesses

During the 2016/2017 English Premier League many pundits questioned the ability of LIV’s defense, highlighting a weakness on the left-hand side. Looking at the data, this criticism appears fair. Of the goals LIV concede, the assist leading to the goal is most likely to come from the left-hand side of the box (LB), with a $\Delta (x, y)$-location of approximately (50,0), see Figure 4 for cluster locations. Moreover, they are most likely to concede from these positions in blocks t_3 and t_5. Therefore, when approaching a game, LIV may want to know which of the opposition players are most likely to be involved in chances at these locations for each block, so that they can attempt to reduce their impact.

Let us consider the match LIV vs CRY (23/4/17)—CRY are a team who in recent years have caused LIV problems. We fit our model using all data available before the match is played. From the model, in both t_3 and t_5 we expect CRY to have 1 chance against LIV (in the match they had 2 chances in both t_3 and t_5). By integrating over ϕ^*, κ^*, Σ^* and by applying Bayes theorem we can calculate the probability of each player being involved in a chance, for each block, at LIV’s weak locations. Christian Benteke is the most likely CRY player in t_3 to have a chance at the Δ location (with probability 0.166). Andros Townsend is the most likely in t_5, although there is little difference between the probability of Townsend and Benteke. Assists are likely to come from
Figure 11: Benteke ∆ locations under the Gaussian mixture model in t_3 using data to 22nd April 2017

James McArthur in t_3, or Yohan Cabaye or Jason Puncheon in t_5 (with probabilities 0.134 and 0.121 respectively). The ∆ surface for Benteke in t_3 is shown in Figure 11, with the assist surfaces for Cabaye and Puncheon in t_5 given in Figure 12. In both figures we see the highlighted ability of these players at the locations LIV are most susceptible. During the game LIV did not stop these players adequately enough, with Benteke scoring in both t_3 and t_5, Cabaye assisting in t_3 and Puncheon assisting in t_5.

5 Discussion

Within this paper we have provided a framework to determine the number of chances a team creates, along with the players and locations which make up a chance, in a Bayesian inference setting. Our approach is computationally efficient and utilizes the combination of a Poisson and Gaussian mixture model. We have shown in Section 4 that inferences under the model are reasonably accurate and have close ties to reality, along with implementable applications (of which we only illustrate a few). In contrast to previous work, we exploit coarser data to identify individual player contributions, rather than modeling the spatial dynamics of a team as a whole.

There are a number of ways in which the current work can be extended. Firstly, smoothing techniques can be applied to ϕ^* and κ^* so that the probabilities of players and mixture components vary smoothly over time (this was not implemented here for computational simplicity). Also, there is some dependence between the player assisting the chance and the player taking the chance. To elucidate, some players link up better with some players than others (often determined by the areas on the pitch in which they play). This dependence between A and C needs incorporating into the model; which could also allow some network analysis techniques to be implemented. Finally, as an extension to the applications for the proposed methods, an interesting area of future work is anomaly detection. This would allow us to detect a change in a player’s level, for instance, becoming a starting player rather than a substitute could increase a player’s contribution in the earlier blocks of a game (t_1–t_4). Techniques discussed in Heard et al. (2010) could be used as inspiration for methods to detect these changes.
Figure 12: Assist locations under the Gaussian mixture model in t_5 using data to 22nd April 2017. Top Cabaye, bottom Puncheon

References

Baio, G. and Blangiardo, M. (2010). Bayesian hierarchical model for the prediction of football results. *Journal of Applied Statistics*, 37(2):253–264. 2, 5

BBC Business (2016). Premier League in record £5.14bn TV rights deal. Accessed 30 May 2017. 1

Bialkowski, A., Lucey, P., Carr, P., Yue, Y., Sridharan, S., and Matthews, I. (2014). Identifying team style in soccer using formations learned from spatiotemporal tracking data. In *Data Mining Workshop (ICDMW), 2014 IEEE International Conference on*, pages 9–14. IEEE. 1

Bojinov, I. and Bornn, L. (2016). The pressing game: Optimal defensive disruption in soccer. In *MIT Sloan Sports Analytics Conference*. MIT SSAC. 1

Curley, J. P. and Roeder, O. (2016). English soccer’s mysterious worldwide popularity. Accessed 26 May 2017. 1

Deloitte (2016). Deloitte’s annual review of football finance. Accessed 30 May 2017. 1
Dixon, M. J. and Coles, S. G. (1997). Modelling association football scores and inefficiencies in the football betting market. *Journal of the Royal Statistical Society: Series C (Applied Statistics)*, 46(2):265–280. 2, 5

Franks, A., Miller, A., Bornn, L., and Goldsberry, K. (2015). Characterizing the spatial structure of defensive skill in professional basketball. *The Annals of Applied Statistics*, 9(1):94–121. 2

Grund, T. U. (2012). Network structure and team performance: The case of English Premier League soccer teams. *Social Networks*, 34(4):682–690. 2

Heard, N. A., Weston, D. J., Platanioti, K., and Hand, D. J. (2010). Bayesian anomaly detection methods for social networks. *The Annals of Applied Statistics*, 4(2):645–662. 16

Huddleston, D. and Huddleston, K. (2018). Soccer styles of play. Accessed 20 January 2018. 1

Karlis, D. and Ntzoufras, I. (2003). Analysis of sports data by using bivariate Poisson models. *Journal of the Royal Statistical Society: Series D (The Statistician)*, 52(3):381–393. 2, 5

Kharrat, T., Peña, J. L., and McHale, I. (2017). Plus-minus player ratings for soccer. *arXiv preprint arXiv:1706.04943*. 2

Kim, K., Grundmann, M., Shamir, A., Matthews, I., Hodgins, J., and Essa, I. (2010). Motion fields to predict play evolution in dynamic sport scenes. In *Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on*, pages 840–847. IEEE. 2

Lucey, P., Oliver, D., Carr, P., Roth, J., and Matthews, I. (2013). Assessing team strategy using spatiotemporal data. In *Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining*, pages 1366–1374. ACM. 1, 10

McHale, I. G., Scarf, P. A., and Folker, D. E. (2012). On the development of a soccer player performance rating system for the English Premier League. *Interfaces*, 42(4):339–351. 2

McHale, I. G. and Szczepański, L. (2014). A mixed effects model for identifying goal scoring ability of footballers. *Journal of the Royal Statistical Society: Series A (Statistics in Society)*, 177(2):397–417. 2

McLachlan, G. and Peel, D. (2004). *Finite Mixture Models*. Wiley Series in Probability and Statistics. Wiley. 6

Miller, A., Bornn, L., Adams, R., and Goldsberry, K. (2014). Factorized point process intensities: A spatial analysis of professional basketball. In *Proceedings of the 31st International Conference on Machine Learning - Volume 32*, ICML’14, pages 235–243. JMLR.org. 2

Peña, J. L. (2014). A Markovian model for association football possession and its outcomes. *arXiv preprint arXiv:1403.7993*. 2

Peña, J. L. and Navarro, R. S. (2015). Who can replace Xavi? A passing motif analysis of football players. *arXiv preprint arXiv:1506.07768*. 2

Peña, J. L. and Touchette, H. (2012). A network theory analysis of football strategies. *arXiv preprint arXiv:1206.6904*. 2

Rumsby, B. (2016). Premier League clubs to share £8.3 billion TV windfall. Accessed 30 May 2017. 1

Wendichansky, N. (2016). 6 very different styles of football from across the world. Accessed 20 January 2018. 1
Whitaker, G. A., Silva, R., and Edwards, D. (2017). A Bayesian inference approach for determining player abilities in soccer. *arXiv preprint arXiv:1710.00001*. 2, 5

Yueh, L. (2014). Exporting football. Why does the world love the English Premier League? Accessed 26 May 2017. 1