REVIEW ON OPTIMIZATION TECHNIQUES EMPLOYED IN DISTRIBUTION GENERATION

Srikanth Goud B1, B Loveswara Rao2, B Neelima Devi3, K Suresh Kumar4, N Keerthi5

1,2,5Department of Electrical and Electronics Engineering, Koneru Lakshmaiah Education Foundation, Guntur, India 522502
3 Department of Electrical and Electronics Engineering, Nalanda Institute of Engineering and Technology, Guntur, India, 522438
4Department of Electrical and Electronics Engineering, Anurag College of Engineering, Ghatkesar, India 501301

Received: 15.11.2019 Revised: 20.12.2019 Accepted: 23.01.2020

Abstract
Distributed Generators are playing a vital role and had achieve lot of attention due to their greater impact on various distribution systems. This approach encourages small scale technologies to produce electricity to the need at consumer end by utilizing the renewable energy sources. Power quality and reliability of distributed power can be attained by proper placing of Distributed Generators at appropriate location. Optimization tools were predominantly increasing their importance in integration of distributed generation. This paper proposes various reviews on recent optimization techniques being used over the years to the problem solving and sizing of DG units. In contrast this paper analyses the economical, technological, environmental etc., which are rapidly growing interest on integration of distributed generation by overcoming all the challenges. At last it presents several optimization techniques of the integration of distribution generation from renewable energy sources.

Keywords: DGs, RES, Optimization Techniques

© 2019 by Advance Scientific Research. This is an open-access article under the CC BY license [http://creativecommons.org/licenses/by/4.0/]
DOI: http://dx.doi.org/10.31838/jcr.07.02.117

INTRODUCTION
Renewable energy sources are inexhaustible, clean and free from pollution so they are considered widely rather than fossil fuels in distribution generation. Energy sources like solar, wind, biomass, geothermal, ocean energy etc., among all these solar and wind energies are gaining importance in very wide range applications. However, there is some drawback is that all these sources are non linear in nature due to which maximum power generation is difficult. In order to overcome from such drawback optimization techniques were developed to track maximum power from these sources. Several optimization techniques were proposed since 1960s and gained importance in various applications like distribution generation is one among them.

Optimization technique are being rapidly growing during the past few decades. Many recent theoretical and computational algorithms have been contributed for various problem solving in engineering. Basically they are divided into deterministic and heuristic approaches. Deterministic approach takes advantage of the analytical properties of problem solving to produce a sequence of points that converge to a global optimal solution. Heuristic approach is flexible and efficient but the quality of the produced solution cannot be guaranteed. However, the chances of getting the global solution decreases when the problem size increases.

The main objective of the system is to create net zero Greenhouse gas emissions by using renewable energy sources. These sources faced many challenges like intermittent in nature, economic and technical issues during their initial setup. They were concentrated at only some specific locations where the resources were available for power generation but they face difficulty with the distribution system which are very far away from their location. In order to overcome all such constraints optimization techniques has gained a greater importance which helped in proper planning and decision making like plant size, location etc., To enhance the importance and development of RES the investment cost have been reduced, and Distributed Generations are developed in order to encourage huge investments by creating competitiveness for the usage of renewable energy. Distributed generators are optimized with a greater impact in reducing the technical challenges which are associated with grid integration. Proper Location of DGs not only reduces the losses but improves reliability and voltage which is one important objectives for the power utilities which are planning for new installation for generating power.

Increasing in demand for electricity, DGs are were widely being developed because they are installed at less risk and also change in the traditional system which transforms to a decentralised system. To achieve this various optimization technique were developed with good benefits with multiple objectives.

In this proposed paper various existing optimization techniques which are implemented for installation and integration of distribution generation from renewable energy sources. A brief of all these techniques are discussed which provides information about the most effective technique can be used.

REVIEW OF OPTIMIZATION TECHNIQUES
Literature survey of various optimization techniques utilized in distribution generation for various applications like maximum power tracking from renewable energy sources as these sources are intermittent in nature. Optimal location of distribution generation and various technical issues can be resolved. Table 1 gives the analysis of various optimization techniques and their performances under various parameters are studied.
until there is no change then it do

True

value is obtained to

ms.

ompares with the particular

True

False

V

V

I

I

PV

V

t

V

t

PV

V

() (1) 0

V

() (1) 0

V

PV

 = − −

 = − −

 





True

Voltage

Drop in Voltage

False

True

False

False

Drop in Voltage

Raise in Voltage

Drop in Voltage

True

Raise in Voltage

Return

Voltage

Start

Evaluate V(t),I(t)

P(t)=V(t)*I(t)

() (1)P P t P t = − −...

Voltage

Drop in Voltage

False

True

False

False

Voc

Y

A/D-D/A

Y

V

Y

Moderate

Low

Low

N

Isc

Y

A/D-D/A

Y

I

Y

Moderate

Moderate

Low

N

Inc

Y

Digital

N

V, I

Y

Varies

Moderate

Moderate

Y

RCC

N

Analog

Y

V, I

N

Fast

Low

Moderate

Y

P &O

N

A/D-D/A

N

V

N

Varies

Low

Moderate

Y

PSO

N

Digital

N

V, I

Y

Fast

Low

High

Y

Cuckoo

N

Digital

N

V, I

Y

Fast

High

Moderate

Y

GA

N

Digital

N

Varies

Y

Fast

High

Moderate

Y

GSA

N

Digital

N

Varies

Y

Fast

High

Moderate

Y

BBO

N

Digital

N

Varies

Y

Very Fast

High

High

Y

GW

N

Digital

N

Varies

Y

very fast

High

High

Y

ESA

N

Digital

N

Varies

Y

Fast

High

High

Y

MPPT	Array Dependent	A/D	Tuning	Detected Parameter	Starting Parameter requirement	Processing Speed	Difficulty	Sensitivity	Maximum Tracking
Voc	Y	A/D-D/A	Y	V	Y	Moderate	Low	Low	N
Isc	Y	A/D-D/A	Y	I	Y	Moderate	Moderate	Low	N
Inc	Y	Digital	N	V, I	Y	Varies	Moderate	Moderate	Y
RCC	N	Analog	Y	V, I	N	Fast	Low	Moderate	Y
P &O	N	A/D-D/A	N	V	N	Varies	Low	Moderate	Y
PSO	N	Digital	N	V, I	Y	Fast	Low	High	Y
Cuckoo	N	Digital	N	V, I	Y	Fast	High	Moderate	Y
GA	N	Digital	N	Varies	Y	Fast	High	Moderate	Y
GSA	N	Digital	N	Varies	Y	Fast	High	Moderate	Y
BBO	N	Digital	N	Varies	Y	Very Fast	High	High	Y
GW	N	Digital	N	Varies	Y	very fast	High	High	Y
ESA	N	Digital	N	Varies	Y	Fast	High	High	Y

*Y Yes *No A Analog D Digital

Incremental conductance MPPT Technique
IC is commonly used MPPT in PV system to track maximum power. It frequently compares with the particular conductance i.e., I/V and di/dv to the solar PV array. It computes I_{PV} and V_{PV} until there is no change then it do not generate the duty pulses required to the converter. The algorithm is as shown in figure 1.

Perturb and Observe MPPT Technique
Generally, MPPT techniques are commonly used track maximum power from sources which are intermittent in nature like renewable energy sources. P&O is most commonly used techniques which continuously compares and computes the reference voltages until a best value is obtained to generate duty pulses which is required to operate the converter. In order to maintain less power loss, the size of P&O is set to a very small value. The main drawback is it fails to derive maximum power under fast change atmospheric conditions. It's very easy and popular technique. [25-40]

Fig 1. Incremental Conductance algorithm

Fig 2. Perturb and Observe algorithm

PSO MPPT Technique
PSO is an intelligent technique majorly used for evaluating optimization which functions on the movement of swarms. Problem solving such as social communication is applied using PSO. It utilizes number of particles which constitute swarms moving in a specified search space to track the best solution. Each particle tries to track its neighboring particles in the search space which is accomplished with the best solution P_{best}. PSO tracks another best values among the best values.
obtained which is called global best G_{best}. Both the G_{best} and P_{best} are saved and determined by the following velocity:\[15-56]\]

Velocity function:

\[
V_{i(k+1)} = V_{i(k)} + t_1(P_i - X_i(k)) + t_2(G - X_i(k))
\]

Cuckoo search algorithm

Generally, this algorithm works on random search in the search region depending upon the problem to be computed. Generally, the search is not random but these is some mechanism in the algorithm which provide guidelines during the search so that the result gets improved with iterations. Exploitation and exploration are two basic characteristics of this algorithm. Voltage, current, power and number of variables are set to the value during initializing. By computing the present values of voltage and current the power which is calculated has fitness and stored. It repeats every time by checking the samples either achieved convergence if not then the power evaluated is stored in the fitness array until the best solution is obtained the process repeats.\[56-60\]

\[
V^{t+1} = V^t + \alpha \oplus \text{levy}(\lambda)
\]

\[
S = \alpha_0(V_{best} - V_i) \oplus \text{levy}(\lambda)
\]

Genetic Algorithm

It is a natural computational procedure which is considered to prove the optimization problems so it is generally known as heuristic search algorithm. It is initialized from a set of population with N, size in which every individual regulates a point in search space and thus their solution is called chromosome which indicates list of genes. Selection, crossover and mutation are the three operators is used to compute the genetic composition. During each cycles new generation which has highest fitness function with best solution is produced from the existing population during selection process. Cross over operator produces two off spring by rejoining the information from two parents. Gene values in individuals are changed using random process using mutation. The allele of each gene is a candidate for mutation, and the function is determining by mutation. Until the optimization criteria is reaches the process keeps on repeating.\[57-58\]
Bio-Geography Based optimization

BBO is an evolutionary optimization which is again motivated from Swarm behavior in the nature. Biological species and their activities are observed. Immigration and emigration are the characteristics of any algorithm. Usually the area has land, rainfall, vegetation, temperature etc. which indicates high habitat suitability index so the species shifts from one island to the other. Suitability Index Variables which indicates the habitability. Species with large number indicates HIS is called emigration and less indicates low HIS is called immigration. Compared to high HIS low HIS are ready to accept a lot of new features from good solutions and results in praise of the quality of those solutions. BBO optimization is a latest approach to problem solving.[61-62]

Gravitational Search algorithm

GSA is an evolutionary algorithm which is also a population based which works on mass and gravity. Solutions in GSA is known as Agents which generally interact with neighbor agents through force of gravity and their characteristics is measured by their masses. The agent with higher mass would be the best solution. Global movement of every agent is considered as object and all objects movements towards the other agents which has higher mass. Agent or object with more mass will move slowly which denotes exploitation step of the algorithm and leads to best solutions. [57-58]

Extended Search Algorithm:

In order to keep dc link voltage like a regular we used ESA with some set of rules. Here reference voltage and regular dc link voltages are fed as inputs to the set of guidelines used in ESA. Generally, ESA is the advanced optimization technique generally applied to crossover, mutation and genetic operators. Quality factor is strongly used in the considered set of rules in order to supply contemporary individual a set of first rate men or women used to produce in the crossover operation by considering a fantastic individual part of the person.[66]

ESA is used to keep a DC-Link voltage in the converter by reducing the errors.
I Grey Wolves algorithm:
Grey Wolves are generally called as apex predators which means they are at the top of the food chain. They generally live in groups on an average size of 5-12 and has strict social dominant hierarchy. They generally categorized into three levels:
First level: Alphas
Second level: Betas
Lowest level: Omega

Alphas: Here the leaders are a male and female which are most responsible to take decision about hunting, place for shelter, when to wake up and so on. The decision is dictated among the group and sometimes the behaviors of other among the wolf group is also followed by alphas. The rest of the wolf acknowledges the alpha by holding their tails down as the alpha is the dominant one. This shows how organized and discipline of the group.

Bet: They are the subordinate’s wolves that helps alpha in decision making or the other activities of the group. They can be either male/female which is the best candidate in case of the alpha wolves dies or become very old. In other words, they have to respect alpha and also have command over the lowest level and also acts as a feedback to the alpha.

Omega: They are ranked as the lowest which play the role of scape goat. They are allowed to eat at the last as all other were dominant. Even though they are not having an individual importance but due to to cause problems they are not lost in the group. Sometimes they are called as babysitters in the group. [63-65]

REFERENCES
1. Saravanan S, and N. R Babu. “RBFN based MPPT algorithm for PV system with high step up converter.” Energy Conversion and management vol 122,2016.
2. Liang, Tsong-Juo, Jian-Hsieng Lee, Shih-Ming Chen, Jiann-Fuh Chen, and Lung-Sheng Yang. “Novel isolated high-step-up DC–DC converter with voltage lift.” IEEE Trans. Ind. Electron., vol. 60, no. 4, 2013.
3. Sitbon, M., Schacham, S., Suntio, T., &Kuperman, A. “Improved adaptive input voltage control of a solar array interfacing current mode controlled boost power stage.” Energy Convers. Manag., vol. 98, pp. 369–375, 2015.
4. Lodfi ME, Senjyu T, Farahat MA, Abdel-Gawad AF, Yona A. —Enhancement of a Small Power System Performance Using Multi-Objective Optimization||, IEEE Access, vol. 5, pp. 6212-6224, 2017.
5. Pathan NT, Adhau SP, Adhau PG, Sable MM. —MPPT for grid connected Hybrid Wind Driven PMSG-Solar PV Power Generation System with Single Stage Converter‖. J Electric Power Sys Engineering, vol. 3, no. 1, pp. 41-59, 2017.
6. Srikanth Goul,B., B. Lovewsara Rao,” Review of Optimization Techniques for Integrated Hybrid Distribution Generation‖, International Journal of Innovative Technology and Exploring Engineering (IJITEE) ISSN: 2278-3075, Volume-8 Issue-5 March, 2019
7. G. Spiazzi, S. Buso, and P. Mattavelli, ”Analysis of MPPT algorithms for photovoltaic panels based on ripple correlation techniques in presence of parasitic components;” in Proceedings of the Brazilian Power Electronics Conference, September-October 2009
8. S.Patel and W.Shireen, “Fast converging digital MPPT control for photovoltaic applications;” in Proceedings of the IEEE Power and Energy Society General Meeting, San Diego, Calif, USA, July 2011.
9. A.Trejos, C. A. Ramos-Paja, and S. Serna, “Compensation of DC-link voltage oscillations in grid-connected PV...
systems based on high order dc/dc converters,” in Proceedings of the IEEE International Symposium on Alternative Energies and Energy Quality (SFAE ’12), pp. 1–6, Barranquilla, Colombia, October 2012.

10. Z.Liang, A. Q. Huang, and R.Guo, “High efficiency switched capacitor buck-boost converter for PV application,” in Proceedings of the 27th Annual IEEE Applied Power Electronics Conference and Exposition (APEC ’12), pp. 1951–1958 Orlando, Fla, USA, February 2012.

11. A.F.Cupertino, J.T.de Resende, H.A.Pereira, and S.I. Selemo Jr., “A grid-connected photovoltaic system with a maximum power point tracker using passivity-based control applied in a boost converter,” in Proceedings of the 10th IEEE/IAS International Conference on Industry Applications (INDUSCON’12), Fortaleza, Brazil, November 2012.

12. Li, Shengquan, and Juan Li. “Output Predictor based Active Disturbance Rejection Control for a Wind Energy Conversion System with PMSG,” IEEE Access, 2017.

13. Srikanth Goud B., B. Loveswara Rao,”PV-Wind Integrated Grid with P&O and PSO MPPT Techniques” International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-3878, Volume-8, Issue-1, May 2019.

14. H.Koizumi and K.Kurukawa, “A novel maximum power point tracking method for PV module integrated converter,” in Proceedings of the IEEE 36th Power Electronics Specialists Conference, IEEE, Recife, Brazil, June 2005.

15. K.Harada and G.Zhao, “Controlled power interface between solar cells and AC source,” IEEE Transactions on Power Electronics, vol. 8, no. 4, 1993.

16. K.Krissawa, T.Saito, I.Takano, and Y.Sawada, “Maximum power point tracking control of photovoltaic generation system under non-uniform isolation by means of monitoring cells,” in Proceedings of the 28th IEEE Conference on Photovoltaic Specialists,September 2000.

17. K.Kobayashi, I.Takano, and Y.Sawada, “A study on a two stage maximum power point tracking control of a photovoltaic system under partially shaded insolation conditions,” in Proceedings of the IEEE Power Engineering Society General Meeting, vol. 4, Toronto, Canada, July 2003.

18. K. Mounika Lakshmi Prasanna, J. Somlal, R. James Ranjith Kumar and Amit Jain, “Load Flow Studies for Distribution System with and without Distributed Generation”, WATER and ENERGY INTERNATIONAL, Vol.57, No.12, pp.34-38, March-2015.

19. Q.Mei, M. Shan, L.Liu, and J. M. Guerrero, “A novel improved variable step-size incremental-resistance MPPT method for PV systems,” IEEE Transactions on Industrial Electronics, vol. 58, no. 6, 2011.

20. F. Liu, S.Duan, F.Liu, B.Liu, and Y.Kang, “A variable step size INC MPPT method for PV systems,” IEEE Transactions on Industrial Electronics, vol.55, 2008.

21. A.Safavi and S.MeKhlef,“Simulation and hardware implementation of incremental conductance MPPT with direct control method using cuk converter,” IEEE Transactions on Industrial Electronics, vol.58, no. 4, 2011.

22. Y.Zhou, F. Liu, J.Yin, and S.Duan, “Study on realizing MPPT by improved incremental conductance method with variable stepsize,” in Proceedings of the 3rd IEEE Conference on Industrial Electronics and Applications,IEEE, Singapore, June 2008.

23. B.C.Chen and C.L.Lin, “Implementation of maximum-power- point-tracker for photovoltaic arrays,” in Proceedings of the 6th IEEE Conference on Industrial Electronics and Applications IEEE, Beijing, China, June 2011.

24. N.Boat, “Recent developments in maximum power point tracking technologies for photovoltaic systems,” International Journal of Photoenergy, vol. 2010.
Voltage Over Reactive Power at Balanced Islanding," Journal of Electrical Engineering & Technology 14.2 (2019): 527-534.

42. C.Y. Lee, Y. X. Shen, J.-C. Cheng, C. W. Chang, and Y. Y. Li, “Optimization method based MPPT for wind power generators,” in Proc. World Acad. Sci. Eng. Technol., 2009.

43. Xin-Sheng Yang, Suash Deb, and Engineering Optimisation by Cuckoo Search”, International Journal of Mathematical Modelling and Numerical Optimisation Vol. 1, No.4,2010.

44. Sangita Roy, Sheli Sinha Chaudhuri, Cuckoo Search Algorithm using Levy Flight: A Review", International Journal of Modern Education and Computer Science,2013.

45. T. Vijay Muni, S. V. N. L. Lalitha, “Fast Acting MPPT Controller for Solar PV with Energy Management for DC Microgrid”, International Journal of Engineering and Advanced Technology, Volume 8, Issue 5, pp:1539-1544.

46. Ravi Teja, S. Moulali, S. Nikhil, M. Ventaka Srinivas, B. “A dual wireless power transfer-based charging system for electric vehicles”, International Journal of Engineering and Advanced Technology 8 (4) .pp.1211, 2019.

47. D. Ravi Kishore, and T. Vijay Muni, “Efficient energy management control strategy by model predictive control for standalone dc micro grids”, AIP Conference Proceedings 1992, 030012 (2018); doi: 10.1063/1.5047963

48. K Venkata Kishore, T Vijay Muni, P Bala Krishna, “Fuzzy Control Based bi-IPQC Controller to improve the Network of a Grid Organization”, Int. J. Modern Trends Sci. Technol. 2019,5(11). 40-44.

49. T Vijay Muni; Kishore, K.V. Experimental Setup of Solar–Wind Hybrid Power System Interface to Grid System. Int. J. Modern Trends Sci. Technol. 2016, 2, 1–6.

50. Sudarsharan Reddy, K, Sai Priyanka, A, Duraslapudi, K, Vijay Muni, T, “Fuzzy logic based bi-IPQC for grid voltage regulation at critical load bus”, International Journal of Innovative Technology and Exploring Engineering, 8(5). pp. 721-725

51. Swapna Sai, P, Rajasekhar, G.G., Vijay Muni, T, Sai Chand, M, “Power quality and custom power improvement using UPQC", International Journal of Engineering and Technology(UAE) 7(2). pp. 41-43.

52. T. Vijay Muni, S V N L Lalitha, B Rajasekhar Reddy, T Shivaprasad, K Sai Mahesh, “Power Management System in PV Systems with Dual Battery”, International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 1 (2017), pp.523-529.

53. T. Vijay Muni, G Sai Sri Vidya, N Rini Susan, “Dynamic Modeling of Hybrid Power System with MPPT under Fast Varying of Solar Radiation", International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 1 (2017), pp.530-537.

54. T. Vijay Muni, A Satya Pranav, A Amara Srinivas, "IoT Based Smart Battery Station using Wireless Power Transfer Technology", International Journal of Scientific and Technology Research, volume 9, issue 01, January 2020, pp.2676-2681.

55. Mohamed Imran A, Kowsalya "Optimal size and siting of multiple distributed generators in distribution system using bacterial foraging optimization", Swarm and evolutionary computation 15(2014)

56. Modeling and control for smart Grid Integration of Solar/Wind Energy Conversion System, E.M.Natshere Member IEEE, A Albarbar, Member IEEE, J.Yadani, Member IEEE, 2012 2nd IEEE PES International Conference.

57. K Sarker, D. Chatterjee, S.K. Goswami, “Grid integration of photovoltaic and Wind based hybrid distributed generation system with low harmonic injection and power quality improvement using biogeography based optimization”, Renewable Energy Focus,2017

58. Research Survey on Various MPPT Performance Issues to Improve the Solar PV System Efficiency, B. Pakkirirajah and G. Durga Sukumar, Hindawi Publishing Corporation Journal of Solar Energy Volume 2016.

59. K Agbossou, M. Kolhe, J. Hamelin, and T. K. Bose, “Performance of a stand-alone renewable energy system based on energy storage as hydrogen,” IEEE Trans. Energy Convers., vol. 19, no. 3, Sep. 2004.

60. G.Petrone, G.Spagnuolo, and M.Villili, “A multivariable perturb-and-observe maximum power point tracking technique applied to a single-stage photovoltaic inverter,” IEEE Transactions on Industrial Electronics, vol. 58, no. 1, 2011.

61. J.Suganya and M.Carolin Mabel, “Maximum power point tracker for a photovoltaic system,” in Proceedings of the International Conference on IEEE Computing, Electronics and Electrical Technologies (ICCEET) ’12, March 2012.

62. Manchalla Harshini Bhargavi, Jarupula Somali, “Modeling and Analysis of Deadbeat Controller Based Split Capacitor DSTATCOM For DC Voltage Regulation”, International Journal of Recent Technology and Engineering (IJRTE), Vol17, Issue 6; March 2019.

63. MPPT Design Using PSO Technique for Photovoltaic System Control Comparing to Fuzzy Logic and P&O Controllers, O.Ben Belgith, L.Shiba, F.Bettaher in Energy and Power Engineering, 2016.

64. A MPPT strategy based on cuckoo search for wind energy conversion system, C. Centhilkumar, I. Jacob Ragland, International Journal of Engineering & Technology, 7 (4) (2018) 2298-2303.

65. Goel, L.Singhal, SMishra, & Mohanty, S Hybridization of gravitational search algorithm and biogeography based optimization and its application on grid scheduling problem. 2016 Ninth International Conference on Contemporary Computing (IC3).

66. Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S. GSA: A Gravitational search algorithm, Information Sciences 179 2232–2248, 2009

67. J.H. Holland, Adaptation in Natural and Artificial Systems: An IntroductoryAnalysis with Applications to Biology, Control, and Artificial Intelligence, U.Michigan Press, 1975

68. C. Centhilkumar, I. Jacob Ragland , "A MPPT strategy based on cuckoo search for wind energy conversion system", International Journal of Engineering & Technology,7(4)(2018)

69. Rahmati, Seyed Habib A, and Zandieh. “A new biogeography-based optimization (BBO) algorithm for the flexible job shop scheduling problem.” The International Journal of Advanced Manufacturing Technology 58:9-12 (2012): 1115-1129.

70. Gong, Wenyin, Zhihua Cai, and Charles X. Ling, "DE/BBO: a hybrid differential evolution with biogeography-based optimization for global numerical optimization." Soft Computing 15.4 (2010): 645-665.

71. Farih, Hossam, et al. "Grey wolf optimizer: a review of recent variants and applications." Neural computing and applications 30.2 (2018): 413-435.

72. Tawhid, Mohamed A., and Ahmed F. Ali. “A hybrid grey wolf optimization for global numerical optimization.” Memetic Computing 9.4 (2017): 347-359.

73. Jayakumar, N., et al. "Grey wolf optimization for combined heat and power dispatch with cogeneration systems." International Journal of Electrical Power & Energy Systems 74 (2016): 252-264.

74. Yin, Su, and Jonathan Cagan. “An extended pattern search algorithm for three-dimensional component layout.” J. Mech. Des. 122.1 (2000): 102-108.