A note on the homology of Σ_n, the Schwartz genus, and solving polynomial equations

Gregory Arone

Abstract. We calculate a certain homological obstruction introduced by De Concini, Procesi and Salvetti in their study of the Schwartz genus of the fibration $F(\mathbb{C}, n) \to F(\mathbb{C}, n)\Sigma_n$. We show that their obstruction group vanishes in almost all, but not all, the hitherto unknown cases. It follows that if n is not a power of a prime, or twice the power of a prime, then the genus is less than n. The case of $n = 2p^k$ where p is an odd prime remains undecided for some p and k.

1. Introduction

Let $q : E \to B$ be a covering map (or, more generally, a fibration). By a trivialization of q one means a decomposition of B as a finite union of open subsets $B = \bigcup_{i=1}^t U_i$ such that the restriction of q to $q^{-1}(U_i)$ is the trivial covering for all $1 \leq i \leq t$. The Schwartz genus of q is the minimal t among all such trivializations of q. The Schwartz genus is also known as the category of a fibration. In this paper we will refer to the Schwartz genus as, simply, the genus. Let $g(q)$ be our notation for the genus of q.

This paper is a contribution to the study of the genus of the quotient map

$q_n : F(\mathbb{C}, n) \to F(\mathbb{C}, n)\Sigma_n$

where $F(\mathbb{C}, n)$ is the configuration space of ordered n-tuples of distinct points in the plane. The interest in the genus of this covering map stems from its relationship with polynomial equations: The genus of q_n gives a lower bound on the “topological complexity” of any algorithm for finding the roots of a complex degree-n polynomial $[S87]$. Another way to put it is to say that the Schwartz genus of q_n gives a lower bound on the number of functions needed to write the solutions of a polynomial equation of degree n in terms of the coefficients.

Let us first survey what can be said about the genus of q_n from general considerations. Suppose $q : E \to B$ is a normal covering with group G. It is well known that the genus of q is less or equal than n if and only if the classifying map $B \to BG$ factors through the $n-1$-th stage in the Milnor construction for BG, 1991 Mathematics Subject Classification. 55R80.

Key words and phrases. Schwartz genus, homology of symmetric group.

The author was supported in part by NSF Grant #0307069.
i.e., through the $n - 1$-dimensional space G^n/G. It follows that if B is equivalent to an $n - 1$-dimensional complex, then the genus is at most n. In our case, it is known that $F(\mathbb{C}, n)_{\Sigma_n}$ is homotopy equivalent to a CW-complex of dimension $n - 1$ \[\text{[FN62]}, \text{and therefore } g(q_n) \leq n. \] So, the next interesting question that one may ask about the genus of q_n is: For which n does $g(q_n) = n$, and for which values of n does the genus satisfy $g(q_n) < n$?

We build on the recent work of De Concini, Procesi and Salvetti, who launched an investigation into the cohomological obstruction for lowering the genus of q_n below the bound given by dimensional considerations \[\text{[dCPS04]}. \] One of their achievements was that they succeeded to convert the rather inaccessible standard cohomological obstruction into a much more tractable homological obstruction.

We now recall their main result. Let Br_n be the braid group on n strings. It is well known that the space $F(\mathbb{C}, n)_{\Sigma_n}$ can be identified with the classifying space $B\text{Br}_n$ of the braid group. Furthermore, the map $\rho_n : B\text{Br}_n \to BS_n$, induced by the standard group homomorphism, can serve as a model for the classifying map of q_n. Let M be a module over Σ_n. We consider M as a module over Br_n by pulling back in the obvious way. Standard obstruction theory implies the following theorem:

Theorem 1.1. $g(q_n) < n$ if and only if the induced homomorphism on cohomology

$$\rho_n^* : H^{n-1}(\Sigma_n; M) \to H^{n-1}(\text{Br}_n; M)$$

is zero for all Σ_n-modules M.

De Concini, Procesi and Salvetti went further than this in that they showed that it is enough to test that the corresponding homomorphism on homology is zero for a certain universal Σ_n-module. In more detail, let $L_n := H^{n-1}(F(\mathbb{C}, n))$ be the top cohomology of the configuration space. It is well known that $L_n \cong \mathbb{Z}((n-1)!$. The action of Σ_n on $F(\mathbb{C}, n)$ endows L_n with the structure of a Σ_n-module. We are interested in the group homology $H_{n-1}(\Sigma_n; L_n)$. It turns out that this group serves as a home for a universal obstruction for the Schwartz genus of q_n. The following theorem summarizes, and rephrases slightly, the discussion on page 611 of \[\text{[dCPS04]}\] all the way up to Theorem 3.2.

Theorem 1.2. (De Concini-Procesi-Salvetti) The Schwartz genus of q_n is less than n if and only if the induced homomorphism on homology

$$\rho_* : H_{n-1}(\text{Br}_n; L_n) \to H_{n-1}(\Sigma_n; L_n)$$

is zero.

The proof of theorem \[\text{[dCPS04]}\] utilizes a specific model for the equivariant topology of $F(\mathbb{C}, n)$ (namely, the authors of \[\text{[dCPS04]}\] use the Salvetti complex). The theorem does not seem to follow solely from the fact that L_n is the top cohomology of $F(\mathbb{C}, n)$.

As a corollary, we have the following theorem.

Theorem 1.3. If $H_{n-1}(\Sigma_n; L_n) = \{0\}$ then $g(q_n) < n$.

Our goal in this note is to describe the calculation of the homology groups $H_*(\Sigma_n; L_n)$, with special attention to the group $H_{n-1}(\Sigma_n; L_n)$. Our main result (corollary \[\text{[dCPS04]}\]) is the following:
Theorem 1.4. If n is not a power of a prime, or twice the power of a prime, then $H_i(\Sigma_n; L_n) \cong \{0\}$ for all i. Therefore, if n is not a power of a prime or twice the power of a prime, then $g(q_n) < n$.

On the other hand, Vassiliev showed that if n is a prime power then $g(q_n) = n$. This leaves the case $n = 2p^k$ where p is an odd prime. In this case the groups $H_i(\Sigma_{2p^k}; L_{2p^k})$ do not vanish for all i. Of course, the question that really interests us is whether the group $H_{2p^k-1}(\Sigma_{2p^k}; L_{2p^k})$ vanishes. It turns out that sometimes it does and some times it does not. We offer the following partial results to make this point:

Theorem 1.5. (1) For all odd primes p, $H_{2p-1}(\Sigma_{2p}; L_{2p}) = \{0\}$. Therefore, if $n = 2p$ then $g(q_n) < n$.
(2) $H_{17}(\Sigma_{18}; L_{18}) \neq \{0\}$

Part (2) of the theorem says that the obstruction group does not vanish for $n = 2 \cdot 32$. We are unable to make any conclusions about the genus of q_{2p^k} for those p and k for which $H_{2p^k-1}(\Sigma_{2p^k}; L_{2p^k}) \neq \{0\}$.

Theorem 1.5 is almost implicit in [V92]. However, it is not made explicit there, and the reader will see that there are a couple of technicalities to be sorted out. In particular, we will use a not entirely trivial lemma about Spanier-Whitehead duality, which is probably of some independent interest (lemma [AM99]). The lemma has the following little history: I posted it as a question to Don Davis' discussion list. There were a few responses, and the best solution (the one that used least and proved most) was offered by Goodwillie, whose proof we reproduce in section [G04]. It is archived on the internet.

In any case, the main purpose of this note is to give a concise description of what is known about $H_*(\Sigma_n; L_n)$, and of what we can conclude about the Schwartz genus at the moment. Perhaps the most interesting aspect of the paper is the question that it leaves open: what can one say about the genus of q_{2p^k} when $H_{2p^k-1}(\Sigma_{2p^k}; L_{2p^k})$ does not vanish? In view of Theorem 1.5 this can be reformulated as a question about differentials in the Serre spectral sequence for the homology of the fibration sequence

$$F(\mathbb{C}, 2p^k) \to F(\mathbb{C}, 2p^k)_{\Sigma_{2p^k}} \to B \Sigma_{2p^k}$$

taken with coefficients in L_n. More precisely, there is a Serre spectral sequence

$$H_i(\Sigma_n; H_j(F(\mathbb{C}, n)) \otimes L_n) \Rightarrow H_{i+j}(\text{Br}_n; L_n)$$

Taking $n = 2p^k$, $i = 2p^k - 1$, $j = 0$, we see that there is a copy of $H_{2p^k-1}(\Sigma_{2p^k}; L_{2p^k})$ at location $(2p^k - 1, 0)$ of the E^2 term of the spectral sequence. Theorem 1.5 can be rephrased as saying that $g(q_{2p^k}) < 2p^k$ if and only if this copy of $H_{2p^k-1}(\Sigma_{2p^k}; L_{2p^k})$ gets wiped out by differentials in the spectral sequence. The author’s guess is that whenever this group is non-zero, it does not get hit by differentials. In other words, we would like to offer the following conjecture.

Conjecture 1.6. $g(q_n) = n$ for all n for which $H_{n-1}(\Sigma_n; L_n)$ is non-trivial.

There also is the larger question of determining $g(q_n)$ precisely, rather than just saying whether $g(q_n) < n$. The author hopes that someone will take up these challenges.

Organization of the paper: Our starting point for studying $H_*(\Sigma_n; L_n)$ is the identification of L_n with the homology of a certain familiar space of partitions.
We prove this identification in section 2, proposition 2.1. We then prove our main results about $H_\ast(\Sigma_n; L_n)$ in section 3. The reader will see that our way to get at $H_\ast(\Sigma_n; L_n)$ is somewhat roundabout, in that we first consider the homology of Σ_n with coefficients in the module $L_n \otimes \mathbb{Z}[-1]$ where $\mathbb{Z}[-1]$ is the sign representation of Σ_n. Then we relate $H_\ast(\Sigma_n; L_n)$ with $H_\ast(\Sigma_n; L_n \otimes \mathbb{Z}[-1])$ using homotopy theory in a slightly sneaky way. Finally, in section 4 we do some calculations in the non-vanishing case and prove theorem 1.5.

Acknowledgement: I would like to thank Corrado De Concini, Claudio Procesi and Mario Salvetti for getting me interested in the question and for explaining me their work on the subject. I also thank Tom Goodwillie for the proof of Lemma 3.4.

2. Relation with the poset of partitions

In this section we recall that $H^{n-1}(F(\mathbb{C}, n))$, also known in this paper as L_n, is isomorphic, as a Σ_n-module, to the homology of the familiar space of partitions. Let us recall the definition of the space of partitions. Let $n = \{1, \ldots, n\}$. Let Λ be the poset (or category) of partitions (equivalence relations) on n ordered by refinements, where we adopt the convention that $\lambda_1 \leq \lambda_2$ if λ_2 is a refinement of λ_1. Clearly, Λ has an initial and a final object. Let Λ^i, Λ^f, and Λ^i_f be the posets obtained from Λ by deleting the initial object, the final object, and both the initial and final object respectively. For $n \geq 2$, let K_n be the unreduced suspension of the geometric realization of Λ^i_f. K_n is homeomorphic to the join $S0 \ast |\Lambda^i_f|$. It is well-known that K_n is homotopy equivalent to a wedge of $(n-1)!$ spheres of dimension $n - 2$. We define K_1 to be the empty set. We will also need the following generalization of K_n: let λ be a partition of n (and assume λ is not the final partition). Consider the category of partitions of n that are refinements of λ. Again, this category has an initial and a final object and we let K_λ be the unreduced suspension of the geometric realization of the category obtained by removing the initial and final object. It is easy to see that K_λ is homeomorphic to the join $K_{\lambda_1} \ast K_{\lambda_2} \ast \cdots \ast K_{\lambda^i}$, where $\lambda_1, \lambda_2, \ldots, \lambda^i$ are the components of λ (so $i = |c(\lambda)|$, where $c(\lambda)$ is the set of components of λ). In particular, K_λ is easily seen to be equivalent to a wedge sum of spheres of dimension $n - |c(\lambda)| - 1$.

Clearly, the symmetric group Σ_n acts on K_n, thus making $H_{n-2}(K_n)$ (the only non-trivial reduced homology group of K_n) into a Σ_n-module. The purpose of this section is to prove the following proposition:

Proposition 2.1. There is an isomorphism of Σ_n-modules

$$L_n \cong H_{n-2}(K_n)$$

The proposition is folklore knowledge, but we are not aware of a precise reference, although it can easily be deduced from various facts scattered in the literature. Another reason we give our proof here is that we would like to have a reference to lemma 2.2 and remark 2.3 below.

Proof of proposition 2.1. Consider $F(\mathbb{C}, n)$ as a subspace $F(\mathbb{C}, n) \subset \mathbb{C}^n \subset S^{2n}$. Let $\Delta^n S2$ be the complement of $F(\mathbb{C}, n)$ in S^{2n}. More generally, for a pointed space X, let $\Delta^n X$ be the “fat diagonal” in $X^{\times n}$. It follows from duality, together with the fact that Σ_n acts trivially on $H_{2n}(S^{2n})$ that the top cohomology of $F(\mathbb{C}, n)$ is isomorphic, as a Σ_n-module, to the bottom homology of $\Delta^n S2$. This bottom
homology occurs in dimension n of $\Delta^n S2$. Thus, there are isomorphisms of Σ_n-modules

$$L_n \cong H^{n-1}(F(C, n)) \cong \text{H}_n(\Delta^n S2)$$

The space $\Delta^n S2$, or more generally $\Delta^n X$, can in turn be thought of as a homotopy colimit over the category Λ^f. Indeed, for an object λ of Λ, let $c(\lambda)$ be the set of components of λ. It is easy to see that for a pointed space X, diagonal inclusion defines a functor from Λ to spaces given on objects by $\lambda \mapsto X^{\wedge c(\lambda)}$. It is easy to see that for a well-pointed X there are equivalences

$$\Delta^n X \cong \text{colim}_{\lambda \in \Lambda^f} X^{\wedge c(\lambda)} \simeq \text{hocolim}_{\lambda \in \Lambda^f} X^{\wedge c(\lambda)}$$

where we take the colimit and homotopy colimit in the based category. Taking $X = S2$, we obtain that

$$\Delta^n S2 \cong \text{colim}_{\lambda \in \Lambda^f} S^{2c(\lambda)} \simeq \text{hocolim}_{\lambda \in \Lambda^f} S^{2c(\lambda)}$$

We will now introduce a filtration of the functor $\Delta^n X$, with properties given in the following lemma:

Lemma 2.2. There exist functors (from spaces to spaces with an action of Σ_n) $\Delta^n_1 X$ and Σ_n-equivariant natural transformation

$$* = \Delta^n_0 X \to \Delta^n_1 X \to \Delta^n_2 X \to \cdots \to \Delta^n_{n-1} X = \Delta^n X$$

where the homotopy cofiber of the map $\Delta^n_{i-1} X \to \Delta^n_i X$ is Σ_n-equivalent to

$$\bigvee_{|\lambda| = n-i} K_{\lambda} \wedge X^{\wedge c(\lambda)}$$

Remark 2.3. If we apply Σ^∞ to the filtration above then the subquotients become homogeneous functors of X. It follows that the previous lemma is giving a model for the Taylor tower of $\Sigma^\infty \Delta^n X$. In particular, the j-th homogeneous layer of this functor is

$$\bigvee_{|\lambda| = j} \Sigma^\infty K_{\lambda} \wedge X^{\wedge j}$$

Let X be k-connected, $k \geq 1$. It follows from the lemma there is a Σ_n-equivariant map

$$\Delta^n X \xrightarrow{\sim} \Delta^n_{n-1} X \to \Delta^n_{n-1} X/\Delta^n_{n-2} X \xrightarrow{\sim} K_n \wedge X$$

which is $n + 2k - 1$ connected. In particular, if X is 1-connected the map is $n + 1$-connected. Taking $X = S2$ we see that there is an $n + 1$-connected map $\Delta^n S2 \to S2 \wedge K_n$. In particular, it induces an isomorphism on $\pi_n(\text{--})$ which by Hurewicz theorem is the same as $\text{H}_n(\text{--})$. Thus, we have an isomorphism of Σ_n-modules $L_n \cong \text{H}_{n-2}(K_n)$. This completes the proof of proposition 2.1. □

Proof of Lemma 2.2. We will filter the category Λ by the number of components. For $1 \leq i \leq j \leq n$ let Λ^i_j be the full subcategory of Λ consisting of partitions λ such that $i \leq |c(\lambda)| \leq j$. Thus $\Lambda^j_j = \Lambda_1^1$, and we have a system of subcategories

$$\Lambda_{n-1}^n \hookrightarrow \Lambda_{n-2}^n \hookrightarrow \cdots \hookrightarrow \Lambda_1^n$$

Notice that at each stage the poset is enlarged by throwing in minimal objects, or to put it differently, there are morphisms from objects of $\Lambda_j^n \setminus \Lambda_j^{n+1}$ to objects of Λ_j^{n-1}, but not the other way around.
We define
\[\Delta^n_i X := \mathrm{colim}_{\Lambda_n^{i-1}} X^{\wedge c(\lambda)} \]

It is clear that there are \(\Sigma_n \)-maps \(\Delta_{n-1}^n X \to \Delta^n_i X \) induced by inclusions of categories. It is not hard to see that in this case colimit is equivalent to homotopy colimit, so \(\Delta^n_i X \simeq \mathrm{hocolim}_{\Lambda_n^{i-1}} X^{\wedge c(\lambda)} \). It remains to analyze the homotopy cofiber of the map \(\Delta_{n-1}^n X \to \Delta^n_i X \). It is easy to see that \(\Delta_{n-1}^n X \) can be thought of as a homotopy colimit over the category \(\Lambda_n^{n-i} \) rather than \(\Lambda_n^{n-i+1} \) where one extends the functor \(\lambda \mapsto X^{\wedge c(\lambda)} \) to have value \(\lambda \mapsto * \) if \(c(\lambda) = n-i \). It follows that the cofiber is equivalent to the homotopy colimit \(\mathrm{hocolim}_{\Lambda_n^{n-i}} G(\lambda) \), where the functor \(G : \Lambda_n^{n-i} \to \text{Spaces} \) is defined by

\[G(\lambda) = \begin{cases} X^{\wedge c(\lambda)} & \text{if } |c(\lambda)| = n-i \\ * & \text{otherwise} \end{cases} \]

It remains to analyze the homotopy colimit of \(G \). Consider again the poset \(\Lambda_n^n \). Its minimal elements are partitions \(\lambda \) which have exactly \(n-i \) components. For a partition \(\lambda \), let \(\Lambda_{\leq \lambda} \) the the poset of partitions greater (finer) or equal to \(\lambda \). Then the poset \(\Lambda_n^{n-i} \) can be thought of as a union

\[\Lambda_n^{n-i} = \bigcup_{\{\lambda | |c(\lambda)| = n-i \}} \Lambda_{\leq \lambda} \]

It follows that any homotopy colimit over \(\Lambda_n^{n-i} \) can be written as a homotopy colimit over the category of non-empty collections of minimal elements of \(\Lambda_n^{n-i} \), where to each such collection \(\{\lambda_i\} \) one associates the homotopy colimit over the intersection \(\bigcap_i \Lambda_{\leq \lambda_i} \). In particular, for our functor \(G \), we can write

\[\mathrm{hocolim}_{\Lambda_n^{n-i}} G(\lambda) = \mathrm{hocolim}_{\lambda_1, \ldots, \lambda_k} \mathrm{hocolim}_{\lambda \in \bigcap_{i=1}^k \Lambda_{\geq \lambda_i}} G(\lambda) \]

where the outer homotopy colimit is over finite (non-empty) collections \(\lambda_1, \ldots, \lambda_k \) of distinct minimal elements of \(\Lambda_n^{n-i} \) (i.e., partitions with \(n-i \) components). Now observe that for any such collection

\[\bigcap_{i=1}^k \Lambda_{\geq \lambda_i} = \Lambda_{\geq \bigwedge_{i=1}^k \lambda_i} \]

where by \(\bigwedge_{i=1}^k \lambda_i \) we mean the coarsest common refinement of \(\lambda_1, \ldots, \lambda_k \). Note, moreover, that if \(k > 1 \) then \(\bigwedge_{i=1}^k \lambda_i \) has more than \(n-i \) components, so \(G(\lambda) = * \) for all \(\lambda \in \Lambda_{n-i}^{n-i} \). It follows that whenever \(k > 1 \),

\[\mathrm{hocolim}_{\lambda \in \Lambda_{n-i}^{n-i}} \Lambda_{\geq \lambda_i} G(\lambda) = \mathrm{hocolim}_{\lambda \in \bigwedge_{i=1}^k \Lambda_{\geq \lambda_i}} * = * \]

(because we are taking pointed homotopy colimit). It follows, finally, that

\[\mathrm{hocolim}_{\lambda \in \Lambda_{n-i}^{n-i}} G(\lambda) \simeq \bigvee_{\{\lambda | |c(\lambda)| = n-i \}} \mathrm{hocolim}_{\Delta \in \Lambda_{\geq \lambda}} G(\Delta) \]

It remains to point out that if for each minimal \(\lambda, \Lambda_{\geq \lambda} \) is a category with an initial object, and \(G \big| \Lambda_{\geq \lambda} \) is a functor which takes value \(X \) on the initial object and the value \(* \) on all other objects. It follows easily that

\[\mathrm{hocolim}_{\Delta \in \Lambda_{\geq \lambda}} G(\Delta) \simeq X \wedge \Lambda_{\geq \lambda} \]
for every partition \(\lambda \) with \(n - i \) components. So

\[
\hocolim_{\lambda \in \mathcal{A}_n} G(\lambda) \simeq \bigvee_{\{\lambda || e(\lambda) = n-i\}} X \wedge K_\lambda
\]

This completes the proof of the lemma.

\[\square\]

3. Proof of the main results

We think of \(K_n \) as a topological realization of the module \(L_n \). Since the reduced homology of \(K_n \) is concentrated in dimension \(n - 2 \), it follows from proposition 2.1 and a Serre spectral sequence argument that

\[
H_*(\Sigma_n; L_n) \cong H_{*+n-2}((K_n)_h \Sigma_n)
\]

where by \((K_n)_h \Sigma_n\) we mean the reduced Borel construction: \((K_n)_h \Sigma_n = K_n \wedge \Sigma_n \wedge \Sigma_n \). In particular, \(H_{n-1}(\Sigma_n; L_n) \cong H_{2n-3}((K_n)_h \Sigma_n) \).

We will want to relate \(H_*(\Sigma_n; L_n) \) with \(H_*(\Sigma_n; L_n \otimes \mathbb{Z}[-1]) \) where \(\mathbb{Z}[-1] \) is the sign representation of \(\Sigma_n \). Our topological realization of the module \(L_n \otimes \mathbb{Z}[-1] \) is the space \(K_n \wedge S^n \) with the diagonal action of \(\Sigma_n \). Obviously, the homology of this space is concentrated in dimension \(2n - 2 \), and its non-trivial homology gives the representation \(L_n \otimes \mathbb{Z}[-1] \) since the action of \(\Sigma_n \) on \(H_n(S^n) \) gives the sign representation. We will also have an occasion to use the desuspension of this space, which is space \(K_n \wedge S^{n-1} \), where \(S^{n-1} \) has an action of \(\Sigma_n \) via the standard action on \(\mathbb{R}^{n-1} \). This space realizes the module \(L_n \otimes \mathbb{Z}[-1] \) in dimension \(2n - 3 \).

The following theorem is part of [AD01] Theorem 1.1:

Theorem 3.1. If \(n \) is not a power of a prime, then

\[
(K_n \wedge S^n)_h \Sigma_n \simeq *
\]

(and therefore also \((K_n \wedge S^{n-1})_h \Sigma_n \simeq *\)). Moreover, if \(n = p^k \) with \(k > 0 \), then the homology of this space is all \(p \)-torsion.

Next, there is the following theorem, which relates \((K_n)_h \Sigma_n\) and \((K_n \wedge S^n)_h \Sigma_n\).

Theorem 3.2. For all \(n \), there is a cofibration sequence

\[
(K_\mathbb{Z} \wedge S^\mathbb{Z})_h \Sigma_n \rightarrow (K_n)_h \Sigma_n \rightarrow (K_n \wedge S^{n-1})_h \Sigma_n
\]

(where \(K_\mathbb{Z} \) is understood to be a point if \(n \) is odd).

The following corollary lists some immediate consequences of theorems 3.1 and 3.2 put together.

Corollary 3.3. (1) Unless \(n \) is either a power of a prime or twice the power of a prime, the space \((K_n)_h \Sigma_n\) is contractible, and therefore all the homology groups \(H_*(\Sigma_n; L_n) \) vanish.

(2) If \(n = 2^k \), with \(k \geq 1 \), then there is a long exact sequence of homology groups

\[
\cdots \rightarrow H_i(\Sigma_\mathbb{Z}; L_\mathbb{Z}) \rightarrow H_i(\Sigma_n; L_n) \rightarrow H_{i-n+1}(\Sigma_n; L_n \otimes \mathbb{Z}[-1]) \rightarrow \]

\[
H_{i-1}(\Sigma_\mathbb{Z}; L_\mathbb{Z}) \rightarrow \cdots
\]

(3) For every odd prime \(p \) there are isomorphisms

\[
H_*(\Sigma_p; L_p^h) \cong H_{*+p^k-1}(\Sigma_p; L_p^h \otimes \mathbb{Z}[-1])
\]

In particular, \(H_i(\Sigma_p; L_p^h) \cong \{0\} \) for \(i < p^k - 1 \).
(4) For every odd prime \(p \) there are isomorphisms

\[
H_*(\Sigma_p^k; L_p^k \otimes \mathbb{Z}[-1]) \to H_*(\Sigma_{2p}^k; L_{2p}^k)
\]

Proof of theorem 3.2. The theorem is almost proved in [AM99, Section 4.2], but not quite. What is proved there is that there is a kind of dual cofibration sequence

\[
[D(K_{\frac{n}{2}} \wedge S_{\frac{n}{2}}^n)]_{h\Sigma_n} \leftarrow [D(K_n)]_{h\Sigma_n} \leftarrow [D(K_n \wedge S^{n-1})]_{h\Sigma_n}
\]

Where \(D(-) \) denotes the Spanier-Whitehead dual of a spectrum. The proof of the dual cofibration sequence uses calculus of functors and the EHP sequence. Here by the EHP sequence we mean the sequence of functors \(X \to \Omega \Sigma X \to \Omega \Sigma X \wedge 2 \). This sequence is a fibration sequence in a stable range, and is an actual fibration sequence if \(X \) is an odd-dimensional sphere. Passing to layers in the Goodwillie tower gives the dual cofibration sequence (details are given in [op. cit.]). We have a slightly interesting situation here: there is in fact a sequence of \(\Sigma_n \)-equivariant maps

\[
\Sigma_{n+} \wedge \Sigma_{\frac{n}{2}} D(K_{\frac{n}{2}} \wedge S_{\frac{n}{2}}^n) \leftarrow D(K_n) \leftarrow D(K_n \wedge S^{n-1})
\]

where the composite map is null-homotopic, but which is not equivalent to a cofibration sequence. However, upon passing to homotopy orbits, the sequence becomes equivalent to a cofibration sequence. We would like to conclude that the Spanier-Whitehead dual sequence has the same property. It is easy to see that the proof boils down to the following lemma, which may be of some independent interest:

Lemma 3.4. Let \(G \) be a finite group (actually, \(G \) can be any Lie group whose adjoint representation is orientable) and let \(E \) be a finite spectrum with an action of \(G \). Suppose that \(E_{hG} \simeq \ast \). Then \(D(E)_{hG} \simeq \ast \).

Remark 3.5. The above lemma is trivially true if, for instance, \(E \) is itself contractible, or if \(E \) is equivalent to a finite spectrum with a free action of a finite group \(G \).

Remark 3.6. One nice consequence of the lemma is that if a collection of subgroups of a finite group is ample in the sense of [AD01, Definition 3.6], then, automatically, it is reverse ample in the sense of the same definition.

Goodwillie’s proof of lemma 3.4 reproduced from [G04]. The key is to start with the case when \(G \) is connected. If the connected group \(G \) acts on the spectrum \(E \) and \(E \) is bounded below then the only way \(E_{hG} \) can be contractible is if \(E \) is itself contractible (The first nontrivial homotopy group of \(E \) must be the same as that of \(E_{hG} \)).

Now let \(G \) be any compact Lie group and embed it as a subgroup of a compact connected Lie group \(U \). If \(G \) acts on \(E \) (a spectrum non-equivariantly equivalent to a finite one), then consider the induced \(U \)-spectrum \(\text{Ind}(E) = U_+ \wedge G E \). The homotopy orbit spectrum \(\text{Ind}(E)_{hU} \) is the same as \(E_{hG} \), so the latter is contractible if and only if \(\text{Ind}(E) \) is contractible.

The same applies to the \(G \)-action on the dual spectrum \(D(E) \). And

\[
D(\text{Ind}(D(E))) = \text{Coind}(E) = \text{Map}^G(U_+, E)
\]

so the question becomes: If the induced \(U \)-spectrum \(\text{Ind}(E) \) is contractible, must the co-induced \(U \)-spectrum \(\text{Coind}(E) \) be contractible, too? The answer is ‘yes’: the two spectra are not quite the same, but they differ by a little twist that doesn’t matter.
for our purposes. Namely, \(\text{Coind}(E) \simeq \text{Ind}(S^{-1}V E) \) where \(V \) is a representation of \(G \). More precisely, \(V \) the difference between the adjoint representation of \(U \) (restricted to \(G \)) and that of \(G \) (this is, essentially, the Wirthm"uller isomorphism). And that means that the homology of \(\text{Coind}(E) \) and of \(\text{Ind}(E) \) are related by a Thom isomorphism as long as the adjoint representation of \(G \) is orientable. So if one is contractible then the other has no homology and therefore (being bounded below) is contractible.

This completes the proof of theorem \(^{32}\).

4. Some calculations in the non-vanishing case

The purpose of this section is to do some calculations of

\[
H_{2p^k-1}(\Sigma_{2p^k}; L_{2p^k}) = H_{4p^k-3}((K_{2p^k})_{h\Sigma_{2p^k}})
\]

for \(k = 1, 2 \), and to prove theorem \(^{36}\).

Let \(n = 2p^k \), with \(p \) and odd prime. By theorems \(^{33}\) and \(^{34}\),

\[
(K_{2p^k})_{h\Sigma_{2p^k}} \simeq (K_{p^k} \wedge S^{p^k})_{h\Sigma_{p^k}}
\]

and so

\[
H_{4p^k-3}((K_{2p^k})_{h\Sigma_{2p^k}}) \cong H_{4p^k-3}((K_{p^k} \wedge S^{p^k})_{h\Sigma_{p^k}}).
\]

The homology groups \(H_*(((K_{p^k} \wedge S^{p^k})_{h\Sigma_{p^k}}; \mathbb{F}_p) \) are calculated in \(\text{AM99} \). What basically happens is this: in the standard simplicial model for \(K_{p^k} \), the set of simplices of dimension \(k-1 \) contains a set isomorphic to \(\Sigma_{p^k}/^0 \Sigma_p, \) and the homology groups \(H_*(((K_{p^k} \wedge S^{p^k})_{h\Sigma_{p^k}}; \mathbb{F}_p) \) are isomorphic to the subquotient of \(H_*(S^{p^k}_{h\Sigma_{p^k}}; \mathbb{F}_p) \) given by the “completely inadmissible” words of length \(k \) in the Dyer-Lashof algebra, shifted up by \(k-1 \) degrees.

For instance, in the case \(k = 1 \)

\[
H_4((K_1 \wedge S^1)_{h\Sigma_1}; \mathbb{F}_p) \cong H_4(S^1_{h\Sigma_p}; \mathbb{F}_p)
\]

The right hand side is, in turn, generated by symbols of the form \(Q^s u \) and \(\beta Q^s u, \)

\(s \geq 1, \) where \(u \) is of degree 1 (\(u \) is a generator of \(H_1(S^1) \), \(Q^s \) is a Dyer-Lashof operation raising degree by \(2s(p-1) \) and \(\beta \) is the homology B"ockstein, lowering degree by 1. Thus \(H_4((K_1 \wedge S^1)_{h\Sigma_1}; \mathbb{F}_p) \) has a generator \(Q^s u \) in every positive dimension that is 1 modulo \(2(p-1), \) has a generator \(\beta Q^s \) in every positive dimension that is 0 modulo \(2(p-1), \) and is zero otherwise. It follows that the integral homology \(H_4((K_1 \wedge S^1)_{h\Sigma_1}) \) is non-zero only in dimensions that are 0 modulo \(2(p-1). \) In particular \(\{0\} \cong H_{4p-3}((K_{p^2} \wedge S^{p^2})_{h\Sigma_p}; \mathbb{F}_p) \cong H_{2p-1}(\Sigma_{2p}; L_{2p}). \) This proves part (a) of theorem \(\text{AM99}. \)

Now consider the case \(k = 2. \) The homology groups \(H_*(((K_{p^2} \wedge S^{p^2})_{h\Sigma_{p^2}}; \mathbb{F}_p) \) are generated by words of the form \(\beta^i Q^{s_1} \beta^j Q^{s_2} u \) where \(\epsilon_i \in \{0, 1\}, \) \(s_2 \geq 1 \) and the words are “inadmissible” in the Dyer-Lashof algebra, meaning that \(s_1 > ps_2 - \epsilon_2. \)

The dimension of such a word is \(1 - \epsilon_1 + 2s_1(p-1) - \epsilon_2 + 2s_2(p-1) + 1 = 2(s_1 + s_2)(p-1) - (\epsilon_1 + \epsilon_2) + 2. \) In particular, take \(p = 3 \) and consider the word \(\beta Q^2 Q^1 u. \) It gives an element of \(H_{31}((K_9 \wedge S^9)_{h\Sigma_9}; \mathbb{F}_3) \). Moreover, this element is in the image of the B"ockstein, so it must be a reduction of an integral element. It

\(^{1}\)To be precise, the homology calculated in \(\text{AM99} \) is that of the spectrum \((D(K_{p^2}) \wedge S^{p^2})_{h\Sigma_{p^2}} \), but the same method of calculation applies to the case that interests us here.
follows that \(\{0\} \neq H_{43}((K_9 \wedge S^9)_{\Sigma^0} \cong H_{17}(\Sigma_{18}; L_{18}). \) This completes the proof of part (b) of theorem 1.5.

References

[AD01] G. Arone and W. Dwyer, Partition complexes, Tits buildings and symmetric products Proc. London Math. Soc. (3) 82 (2001) 229-256.
[AM99] G. Arone and M. Mahowald, The Goodwillie tower of the identity functor and the unstable periodic homotopy of spheres Invent. Math 135 (1999) 733-788.
[dCPS04] C. De Concini, C. Procesi and M. Salvetti, On the equation of degree 6 Comment. Math. Helv. 79 (2004), 605-617.
[FN62] R. Fox and L. Neuwirtz, The braid group Math. Scand. 10 (1962), 119–126.
[G04] T. Goodwillie, Informal communication, http://www.lehigh.edu/~dmd1/tg2273.txt
[OT92] P. Orlik and H. Terao, Arrangements of hyperplanes (Springer, Berlin, 1992).
[S87] S. Smale, On the topology of algorithms I Journal of Complexity 3 (1987) 81-89.
[V92] V. Vassiliev, Complements of discriminants of smooth maps: topology and applications Translations of Mathematical Monographs, 98. American Mathematical Society, Providence, RI, 1992.