SUPPLEMENTARY MATERIAL

Comparative secondary metabolites profiling and biological activities of aerial, stem and root parts of *Salvadora oleoides* Decne (Salvadoraceae)

Hammad Saleem¹²*, Irshad Ahmad³, Gokhan Zengin⁴, Fawzi M. Mahomoodally⁵, Kashif-ur-Rehman Khan¹, Hafiz Muhammad Ahsan⁶⁷*, Syafiq Asnawi Zainal Abidin⁸, Nafees Ahmed²

¹Institute of Pharmaceutical Sciences (IPS), University of Veterinary & Animal Sciences (UVAS), Lahore, Pakistan.
²School of Pharmacy, School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway Selangor Darul Ehsan, Malaysia.
³Department of Pharmacy, The Islamia University of Bahawalpur, Pakistan.
⁴Department of Biology, Faculty of Science, Selcuk University, Campus/Konya, Turkey.
⁵Department of Health Sciences, Faculty of Science, University of Mauritius, Mauritius.
⁶School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, P.R. China 212013.
⁷Faculty of Pharmacy, University of Central Punjab, 54000, Lahore, Pakistan.
⁸Liquid Chromatography Mass Spectrometry (LCMS) Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway Selangor Darul Ehsan, Malaysia.

*Corresponding authors: H. Saleem (hammad.saleem@uvas.edu.pk); H.M. Ahsan (dr.ahsan@ucp.edu.pk)

Abstract

In this study, different parts (aerial, stem and root) of *Salvadora oleoides* Decne were investigated in order to explore their phytochemical composition and biological potential. The bioactive contents were evaluated by conventional spectrophotometric methods. Additionally, the secondary metabolite compounds were identified by UHPLC-MS analysis. Biological potential was evaluated by determining antioxidant (DPPH, FRAP and Phosphomolybdenum) and enzyme inhibitory (butrylcholinesterase and lipoxygenase) effects. Higher total bioactive contents were found in methanolic extracts which tend to correlate with higher radicalscavenging and reducing potential of these extracts. LC/MS spectrum revealed the presence of 16 different secondary metabolites belonging to terpene, glucoside and sesquiterpenoid derivatives. Glucocleomin and emotin A were the main compounds present in all three parts. The strongest butrylcholinesterase and lipoxygenase inhibitory activity was observed for root and stem DCM extracts. Demonstrated biological potential of *S. oleoides* plant can trace a new road map for developing newly designed bioactive pharmaceuticals.

Keywords: *Salvadora oleoides*, antioxidant, enzyme inhibition, phytochemical, LC-MS
Experimental

1. **Plant collection and extraction**

Aerial, stem and root parts of *S. oleoides* were collected in July from Bahawalpur, Pakistan and identified by Dr. H. Waris, Taxonomist at Cholistan Institute of Desert Studies, The Islamia University of Bahawalpur, Pakistan. In addition a voucher specimen number (SO-WP-01-15-116) were also deposited in the herbarium of Department of Pharmacy and Alternative Medicines, The Islamia University of Bahawalpur. The shade-dried parts were subjected for extraction by maceration (72 hrs) successively with dichloromethane and methanol at room temperature with occasionally shaking for 24 hrs. The resultant extracts were concentrated by Rotavapor-R20 at 35 °C.

2. **Total phenolic and flavonoid contents**

Total phenolic content assay was done by utilizing well-established Folin–Ciocalteu reagent method (Kahkonen et al. 1999). The total phenolic content was expressed as mg gallic acid equivalent per gram of fresh sample (mg GAE/g). Total flavonoid contents was determined with the aluminium chloride colorimetric method as described by Chew et al. (Chew et al. 2009). The flavonoid concentration was expressed as mg quercetin equivalent per gram sample (mg QE/100).

3. **LC-MS analysis**

UHPLC Accurate-Mass Q-TOF (Agilent 1290 Infinity LC system coupled to Agilent 6520) mass spectrometer with dual ESI source was used. Column specifications were as: XDB-C18 Agilent Zorbax Eclipse, narrow-bore 2.1 x 150 mm, 3.5 micron (P/N: 930990-902). The temperature of column was maintained at 25 °C, while auto-sampler temperature was 4 °C. The following two mobile phases used were: A (0.1% formic acid in water), B (0.1% formic acid in acetonitrile) at flow rate of 0.5 mL/min. Injection volume was 1.0 µL. Run time was 25 min and post-run time was 5 min. MS analysis full scan was carried out over a range of m/z 100-1000 employing electrospray ion source in the negative ionization mode. Flow rate for nitrogen as nebulizing and drying gas was 25 and 600 L/hour, respectively with drying gas temperature of 350 °C. The fragmentation voltage was optimized to 125. Capillary voltage for analysis was 3500 V.
4. Antioxidant assays

4.1. DPPH assay

In this method, 1 mL of plant extract of different concentrations (1000-15.625 µg/mL) was added to 2 mL of DPPH solution (0.059 mg/mL methanol). Absorbance was measured at 517 nm after 30 min incubation, (Miliauskas et al. 2004). Data was expressed as:

\[
\text{RSC} \, (\%) = 100 - \frac{(\text{abs}_c - \text{abs}_s)}{\text{abs}_c}
\]

\(\text{Abs}_s\) = absorbance of sample, \(\text{Abs}_c\) = absorbance of control.

4.2. FRAP assay

Plant sample (1000 µg/mL) was added to 2.5 mL of phosphate buffer (0.2 M, pH 6.6) and 2.5 mL of potassium ferricyanide (1% w/v), incubated for 20 min at 50°C. After 20 min, trichloroacetic acid (2.5 mL, 10% w/v) was added. The contents were divided into two halves; equal volume of water was added in one half of 2.5ml and then 0.5 mL of FeCl₃ solution (0.1% w/v) was added. The contents were incubated for 30 min at 25 ºC and the absorbance was measured at 700 nm (Chan et al. 2010). The results were expressed as mg GAE/g.

4.3. Phosphomolybdenum assay

Total antioxidant capacity (TAC) of was determined by phosphomolybdenum method (Prieto et al. 1999). Briefly, Plant extract solution (0.3 mL, 1 mg/mL) was mixed with 3 ml of molybdate reagent solution, incubated at 95 ºC for 90 min and the absorbance of the solution was measured at 695 nm against blank. TAC was expressed as equivalent of gallic acid (mg GAE/g) (Prieto et al. 1999).

5. Enzyme inhibition studies

5.1. Butrylcholinesterase assay

The BChE inhibition activity was performed according to the method (Ellman et al. 1961) with slight modifications. Total volume of the reaction mixture was 100 µl. It contained 60 µl Na₂HPO₄ buffer with concentration of 50 mM and pH 7.7. 10 µl test compound (0.5 mM well⁻¹) was added, followed by the addition of 10 µl (0.005 unit/ well) enzyme. The contents were mixed and pre-read at 405 nm. Then, contents were pre-incubated for 10 min at 37 ºC. The
reaction was initiated by the addition of 10 µl of 0.5 mM/well substrate (butyrylthiocholine chloride), followed by the addition of 10 µl DTNB (0.5 mM/well). After 30 min of incubation at 37 ºC absorbance was measured at 405 nm using 96-well plate reader (Synergy HT, Biotek, USA). All experiments were carried out with their respective controls in triplicate. Eserine (0.5 mM/well) was used as a positive control. The percent inhibition was calculated with the help of following equation 1.

\[
\text{Inhibition (\%)} = \left(\frac{\text{Control} - \text{Test}}{\text{Control}} \right) \times 100 \quad \ldots \ldots \ldots \text{Eq. 1}
\]

Where,

\[
\text{Control} = \text{Total enzyme activity without inhibitor.}
\]

\[
\text{Test} = \text{Activity in the presence of test compound.}
\]

IC\textsubscript{50} values were calculated using EZ–Fit Enzyme kinetics software (Perrella Scientific Inc. Amherst, USA).

5.2. Lipoxygenase assay

Lipoxygenase (LOX) activity was performed according to the method (Baylac and Racine 2003) with slight modifications. A total volume of 200 µl lipoxygenase assay mixture contained 140 µl sodium phosphate buffer (100 mM, pH 8.0), 20 µl test compound and 15 µl purified lipoxygenase enzyme (600 units/well, Sigma Inc.). The contents were mixed and pre-read at 234 nm and pre-incubated for 10 minutes at 25 ºC. The reaction was initiated by addition of 25 µl substrate solution. The change in absorbance was observed after 6 min at 234 nm using 96-well plate reader. All reactions were performed in triplicates. The positive and negative controls were included in the assay. Baicalin (0.5 mM/well) was used as a positive control. The percentage inhibition (\%) was calculated by Eq. 1.

6. Statistical analysis

All the experiments were carried out in triplicates to calculate the mean values which are expressed as the mean ± standard deviation (SD). The results were analysed employing one way analysis of variance (ANOVA). Tukey’s test was used for the post hoc treatment using SPSS (Statistical Package for Social Science) 24.0 for windows.
References

Baylac S, Racine P. 2003. Inhibition of 5-lipoxygenase by essential oils and other natural fragrant extracts. Int. J. Aromather. 13: 138-142.

Chan E, Lim Y, Chong K, Tan J, Wong S. 2010. Antioxidant properties of tropical and temperate herbal teas. J Food Compost Anal. 23: 185-189.

Chew Y-L, Goh J-K, Lim Y-Y. 2009. Assessment of in vitro antioxidant capacity and polyphenolic composition of selected medicinal herbs from Leguminosae family in Peninsular Malaysia. Food Chem. 116: 13-18.

Ellman GL, Courtney KD, Andres V, Featherstone RM. 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 7: 91-95.

Kahkonen MP, Hopia AI, Vuorela HJ, Rauha J-P, Pihlaja K, Kujala TS, Heinonen M. 1999. Antioxidant activity of plant extracts containing phenolic compounds. J Agric Food chem. 47: 3954-62.

Miliauskas G, Venskutonis P, Van Beek T. 2004. Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chem. 85: 231-237.

Prieto P, Pineda M, Aguilar M. 1999. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem. 269: 337-341.
Figure captions

Figure S1. LC-MS total ion chromatograms (TICs) of aerial methanol extract of *S. oleoides*.
Figure S2. LC-MS total ion chromatograms (TICs) of stem methanol extract of *S. oleoides*.
Figure S3. LC-MS total ion chromatograms (TICs) of root methanol extract of *S. oleoides*.
Figure S4. *In vitro* enzyme inhibition (%) of different parts of *S. oleoides*.
Tables and Figures

Table S1. Extraction yield and total bioactive contents of *S. oleoides* different parts

Plant part	Solvents	Abbr.	Yield (%)	Total phenolic content (mg GAE/g)	Total Flavonoid content (mg QE/g)
Aerial	Methanol	SA-M	21%	0.4±0.78	167.55±0.21
	DCM	SA-D	16%	0.34±0.61	158.51±3.51
Stem	Methanol	SS-M	19%	0.46±1.05	88.06±1.48
	DCM	SS-D	14%	0.13±0.45	42.87±1.70
Root	Methanol	SR-M	18%	0.82±1.21	154.76±2.21
	DCM	SR-D	11%	0.01±1.21	45.21±0.64

SA-M: *S. oleoides* aerial methanol extract; SA-D: *S. oleoides* aerial DCM extract; SS-M: *S. oleoides* stem methanol extract; SA-D: *S. oleoides* stem DCM extract; SR-M: *S. oleoides* root methanol extract; SR-D: *S. oleoides* root DCM extract. Data from three repetitions, with mean ± standard deviation; GAE: gallic acid equivalent; QE: quercetin equivalent;
Table S2: Secondary metabolites identified in different parts of *S. oleoides*

S.no	RT (min)	B. peak m/z	Compound Identified	Compound class	Mol. formula	Mol. Mass
			S. oleoides aerial methanol extract (negative ionization mode)			
1	0.791	317.06	Prekinamycin	Napthalene	C18 H10 N2 O4	318.06
2	7.411	404.07	Glucocleomin	Glucoside	C12 H23 N O10 S2	405.07
3	7.636	315.11	Hydroxytyrocol 1-O-glucoside	Oleuropein	C14 H20 O8	316.11
4	14.005	675.36	(S)-Nerolidol 3-O-[a-L-Rhamnopyranosyl-(1->4)-a-L-rhamnopyranosyl-(1->2)-b-D-glucopyranoside]	Terpene	C33 H56 O14	676.36
5	15.781	595.29	Salannin	Limonoid	C34 H44 O9	596.29
6	16.826	571.29	Ganoderic acid H	Triterpenoid	C32 H44 O9	572.29
			S. oleoides aerial methanol extract (positive ionization mode)			
7	15.233	331.27	1-Monopalmitin	Fatty acid	C19 H38 O4	330.27
8	17.173	278.15	Emmotin A	Sesquiterpenoid	C16 H22 O4	278.15
9	18.65	279.22	9Z,12Z,15E-octadecatrienoic acid	Fatty acid	C18 H30 O2	278.22
10	19.543	625.26	Kanokoside D	Terpene	C27 H44 O16	624.26
			S. oleoides stem methanol extract (negative ionization mode)			
11	8.961	404.07	Glucocleomin	Glucoside	C12 H23 N O10 S2	405.07
			S. oleoides stem methanol extract (positive ionization mode)			
12	10.502	331.13	Gambirtannine	Alkaloid	C21 H18 N2 O2	330.13
13	17.155	279.15	Emmotin A	Sesquiterpenoid	C16 H22 O4	278.15
			S. oleoides root methanol extract (negative ionization mode)			
14	7.371	404.07	Glucocleomin	Glucoside	C12 H23 N O10 S2	405.07
			S. oleoides root methanol extract (positive ionization mode)			
15	0.714	317.20	Cyrneine A	Terpene	C20 H28 O3	316.20
16	17.161	279.15	Emmotin A	Sesquiterpenoid	C16 H22 O4	278.15

RT: retention time; B. peak: base peak
Table S3. Antioxidant activities of *S. oleoides* different parts.

Plant code	Radical scavenging activity	Reducing antioxidant power	Total antioxidant capacity
	DPPH (%) inhibition	FRAP (mg GAE/g)	Phosphomolybdenum (mg GAE/g)
SA-M	51.66±0.41	37.08±1.24	11.59±0.13
SA-D	11.20±0.45	9.42±0.96	30.12±1.43
SS-M	37.18±0.70	26.42±1.59	10.24±3.04
SS –D	29.90±1.05	16.75±0.45	18.32±0.25
SR-M	41.07±0.93	22.33±1.45	2.02±0.14
SR-D	31.72±0.38	17.92±0.12	16.64±0.35
Quercetin	93.21±0.97	nd	nd

* Values are expressed as means ± S.D. of three replicates; nd: not determined, FRAP: ferric reducing anti-oxidant power; GAE: gallic acid equivalent
Figure S1. LC-MS total ion chromatograms (TICs) of aerial methanol extract of *S. oleoides*.
Figure S2. LC-MS total ion chromatograms (TICs) of stem methanol extract of *S. oleoides*.
Figure S3. LC-MS total ion chromatograms (TICs) of root methanol extract of *S. oleoides*.
Figure S4. *In vitro* enzyme inhibition (%) of different parts of *S. oleoides*.