INTRODUCTION

The term “Lessepsian migration” was coined by Por (1978) for the migration of organisms from the Red Sea into the eastern Mediterranean through the Suez Canal. Many species, which were able to adapt rapidly to the new environment, spread into the Mediterranean and established new populations. Information on the comparative life histories of the immigrants is necessary (a) for an understanding of the selective mechanisms controlling the passage through the Suez Canal, (b) for an assessment of the adaptive changes of the newly established “neopopulations”, and (c) for an evaluation of the extensive ecological changes which invading species may produce in their new areas of distribution (Ben-Tuvia 1978). The number of Lessepsian migrant species exceeds by far the number of species, which have passed from the Mediterranean into the Red Sea; these are named anti-Lessepsian migrants (Por 1978).

The fish fauna of the Mediterranean has already undergone considerable change, as can be illustrated by the following selected case studies. Papaconstantinou (1990) reported that 11 species had reached the Aegean Islands (Dodecanese, Cyclades) through swimming along the coast of Anatolia. Twenty-two Lessepsian fish species live on the coasts of the eastern Mediterranean- and Aegean seas, with some of them becoming commercially important (Torcu and Mater 2000). In 2002, thirty-three Lessepsian fish species were documented on the Anatolian coast (Bilecenoglu and Taškavak 2002). For the Egyptian coast, several authors have recorded Lessepsian...
fish species (Ben-Tuvia 1976, El-Sayed 1994). Two Lessepsian fish species were recorded in Italy: Siganus luridus (Rüppell, 1829) appeared along the shallow waters of the Pelagic Islands (Azzurro and Andaloro 2004), whilst Fistularia commersonii Rüppell, 1838 was recorded on the eastern coast of Lampedusa (Azzurro et al. 2004). Ktari and Boualal (1971) reported S. luridus for the first time on the Tunisian coast. In 1974, S. luridus and S. rivulatus Forsskål 1775 were recorded for the first time in the Gulf of Gabes (Ktari and Ktari 1974). After that, six Indo-Pacific fish species were recorded in Tunisian waters as newcomers (Parexocoetus mento (Valenciennes, 1847); Pempheris vanicolensis Cuvier, 1831; Stephanolepis diaspros Fraser-Brunner, 1940; S. luridus; S. rivulatus; and Priacanthus hamrur (Forsskål 1775)) (Bradai et al. 2004). The bluespotted cornetfish, F. commersonii, was also recorded along the Tunisian coast (Ben-Souissi et al. 2004). In the Adriatic Sea, Sphyraena pinguis Günther, 1874 was recorded in 2001 (Pallaoro and Dulcic 2001), and afterwards S. rivulatus was recorded for the first time in the same area (Dulic and Pallaoro 2004). The silver-stripe blason, Lagocephalus sceleratus (Gmelin, 1789), has become an abundant species in the eastern Mediterranean, immediately after its first record (Akyol et al. 2005, Bilecenoglu et al. 2006). More recently, the following alien species were included to Mediterranean ichthyofauna: Japanese threadfin bream, Nemipterus japonicus (Bloch, 1791); teira batfish, Platax teira (Forsskål, 1775); peacock wrasse, Inistius pavo (Valenciennes, 1840); Red Sea goatfish, Parupeneus forsskali (Fournonair et Guézé, 1976); and Indian scad, Decapterus russelli (Rüppell, 1830) (cf. Bilecenoglu and Kaya 2006, Çinar et al. 2006, Corsini et al. 2006, Golani 2006, Golani and Sonin 2006).

Although it is clear that migrant Lessepsian fish species have had an enormous impact on the eastern Mediterranean ecosystem, there has been no thorough study to assess this impact (Golani 2002). Many Lessepsian fish species have been recorded in Libyan waters (Stirm 1970, Zupanovic and El-Buni 1982, Al-Hassan and El-Silini 1999, Ben-Abdallah et al. 2005, Shakman and Kinzelbach 2006, Shakman and Kinzelbach 2007). There is no comprehensive study of the Lessepsian marine species in this area, particularly of the fish species, and so the objectives of this paper are to present the distribution and characterization of fish species along the almost 2000 km of Libyan coast and a general contribution to knowledge of exotic marine fish species in the Mediterranean Sea.

MATERIALS AND METHODS

This study was carried out on samples collected between January 2005 and March 2006 along the Libyan coast at the depths of 1–50 m. The pelagic and benthic samples were collected with a trammel net (inner mesh 26 mm, outer mesh 120 mm). The study area was divided to three main regions according to topography and environment (east region, Sirt Gulf, west region). Two sites were selected in the east region (Tubruk, Benghazi), one site in the Sirt Gulf (Musrata), and two sites in the west region.

![Map of the Libyan coast, showing cities adjacent to the sampling sites](image-url)
Fig. 2. Characterization of Lessepsian fish species along the Libyan coast

Fig. 3. Distribution of Lessepsian fish species along the Libyan coast

Fig. 4. The distribution in percentage of each Lessepsian fish species along the Libyan coast
Scientific name	English name	Libyan name	Family
Siganus luridus (Rüppell, 1829)	dusky spinefoot	Batata Khahla, Shifsha	Siganidae
Siganus rivulatus Forsskål 1775	marbled spinefoot	Batata beda	Siganidae
Sphyraena obtusata Cuvier, 1829	obtuse barracuda	Moshta, Maghizil Asfar	Sphyraenidae
Sphyraena pinguis Günther, 1874	red barracuda	Moshta, Maghizil Magrgab	Sphyraenidae
Herklotsichthys punctatus (Rüppell, 1837)	spotback herring	Sridna	Clupeidae
Saurida undosquamis (Richardson, 1848)	brushtooth lizardfish	Makarona	Synodontidae
Hemiramphus far (Forsskål 1775)	blackbarred halfbeak	Abo-meshfa	Hemiramphidae
Fistularia commersonii Rüppell, 1838	bluespotted cornetfish	Gaeta	Fistularidae
Atherinomorus lacunosus (Forster, 1801)	hardyhead silverside (silverside fish)	Namousa, Owzaf	Atherinidae
Alepse djedaba (Forsskål 1775)	shrimp scad	Saurou Asfar, Saurou Imperially	Carangidae
Upeneus pori Ben-Tuvia et Golani, 1989	Por’s goatfish	Treellya Khadra	Mullidae
Crenidens crenidens (Forsskål 1775)	karenteen seabream (porgie)	Sparus Masrny	Sparidae
Pempheris vanicolensis Cuvier, 1831	Vanikoro sweater (sweeper fish)	Sank deal, Gasaetlla	Pempheridae
Liza carinata (Valenciennes, 1836)	keeled mullet (roving grey mullet)	Buri	Mugilidae
Scomberomorus commerson (Lacepède, 1800)	narrow-barred Spanish mackerel	Balameta Yamania	Scombridae
Stephanolepis diasplos Fraser-Brunner, 1940	reticulated leatherjacket (filefish)	Halof boresha, Halof Abo shuka	Monacanthidae
(Tripoli, Zwarat); these were considered to be the most active sites for catches and were investigated monthly. Albardiah in the east region and Farwah in the west region were also selected as border sites and were investigated seasonally (Fig. 1) in order to standardize sampling bench-marks and fishing effort, two fishing boats of the same size and fishing gears were considered from each sampling site. A total of 4273 specimens were collected, including 1901 specimens of *S. luridus*, 1885 specimens of *S. rivulatus*, and 487 specimens of fourteen other Lessepsian fish species. The samples were immediately washed with fresh water, and were identified using Whitehead et al. (1984–1986) and Golani et al. (2002). Specimens from each sample were kept in a solution of formaldehyde and ethanol mixture. The samples were subsequently washed with fresh water and stored in 5-% formaldehyde. Standard morphometric measurements and meristic counts were taken and documented. The abundance, habitat type, depth range, maximum size, and commercial value were recorded.

The abundance is divided into two levels: rare and common, according to Bilecenoglu and Taşkavak (2002). If the species is represented by less than 1% of the total Lessepsian fish collected during the fieldwork, the species is designated as rare. The general habitat type for each sample was classified as vegetated (including rocks with algae, sand with algae, and grass with algae), pelagic, rocky, and sandy. The sizes (maximum total lengths) were placed in three categories, as small (TL < 10 cm), medium (10 ≤ TL < 50 cm), and large (TL ≥ 50 cm). The commercial value was based on commercial information received from the fishermen’s union and was roughly divided into “commercial value” and “no commercial value”.

Table 2

Morphological and meristic characters for *Herklotsichthys punctatus* and *Liza carinata*

Scientific name	Coordinate	Number	Total length [cm]	Meristic	Habitat	Average Temperature [°C]	Depth [m]
H. punctatus	32°03´50´´N 23°59´02´´E	1	7.2	D15, A17, P16, V8	Pelagic	15	1–3
L. carinata	32°04´43´´N 23°58´50´´E	2	16.3–23.3	D1, IV, D2 1 + 8, A III + 9P 15, V I + 5	Pelagic	17	5–7

Table 3

Abundance and habitat occupation for each species according to the main regions

Species	Habitat	West Region % abundance	Sirt Region % abundance	East Region % abundance
S. luridus	Vegetation	87.74	81.27	6.52
S. rivulatus	Vegetation	9.91	11.46	75.18
S. obtusata	Pelagic	0.21	0.77	2.43
S. pinguis	Pelagic	0.36	3.41	7.82
H. punctatus	Pelagic	—	—	0.04
S. undosquamis	Sandy	—	0.31	0.99
H. far	Pelagic	—	—	3.24
F. commersonii	Sandy	0.07	0.15	0.04
A. lacunosus	Sandy	—	0.46	0.76
A. djedaba	Pelagic	0.36	0.62	1.62
U. port	Sandy	—	—	0.09
C. crepidens	Sandy	—	—	0.09
P. vanicolensis	Rocky	—	—	0.09
L. carinata	Pelagic	—	—	0.09
S. commerson	Pelagic	1.07	1.08	0.54
S. diaspros	Rocky	0.29	0.46	0.45
Total		100	100	100

— species absent.
RESULTS

A total of 16 Lessepsian fish species were found (Table 1). Two of them are recorded for the first time on the Libyan coast: *H. punctatus* (Rüppell, 1837) and *L. carinata* (Valenciennes, 1836). Their morphological and meristic characters are given (Table 2). The species names *Sphyraena obtusa* Cuvier, 1829 and *S. pinguis* Günther, 1874 are consistent with those provided by Doiuchi and Nakabo (2005) in their recent revision.

As regards the abundance, the majority (9) of the Lessepsian fish species studied (56.25%) were rare, constituting fewer than 1% of the total number of the Lessepsian fish collected, while the remaining seven species (43.75%) were common. In terms of the habitat occupation, the fish were found on vegetation (12.5%), in the water column (=pelagic; 43.75%), on sandy bottom (31.25%), and on rocky bottom (12.5%).

According to size, 75% of the Lessepsian species were categorized as medium, followed by small (6.25%), and large (18.75%). More than one-third (37.5%), were species known for their commercial value, whilst 62.50% were species with no commercial value (Fig. 2).

Regarding the distribution, the 50% of the fishes surveyed were caught along the entire Libyan coast, 37.5% in the eastern part, and 12.5% in the east and central part (Fig. 3).

The abundance and the habitat occupation of the species in each of the main regions are presented in Table 3. The commercial value, size, and distribution of the species in each of the main regions are presented in Table 4. Fig. 4 illustrates the distribution of each species along the Libyan coast.

DISCUSSION

Sixteen Lessepsian fish species were found, two of them are additions to the Libyan fish fauna and are also additions to the list of Lessepsian fish migrants in Libya: *H. punctatus* (Rüppell, 1837) and *L. carinata* (Valenciennes, 1836) (Tables 1, 2). These species have been recorded in many areas of the eastern Mediterranean Sea by Kosswig (1956), Mouneimné (1977), Whitehead et al. (1984–1986) and El-Sayed (1994). When a species is found to be rare, or as single specimen only, this is considered to be the first step in establishing a successful population, as expressed by an increase in the population (Golani and Ben-Tuvia 1989). Three species have also been recorded from Libya by other authors: *Parexocoetus mento* (Valenciennes, 1846) (cf. Ben-Tuvia 1966), *Sargocentron rubrum* (Forsskal, 1775), and *Upeneus moluccensis* (Bleeker, 1855) (cf. Stirn 1970), but they were not found during the present study.

The abundance indicates that seven species can be considered as common, namely *Siganus luridus*; *S. rivulatus*; *Sphyraena obtusa* Cuvier, 1829; *Alepis djedaba* (Forsskal 1775); *Hemirampus far* (Forsskal 1775); *Sphyraena pinguis*; *Scomberomorus commerson* (Lacepède, 1800) (43.75%), while most of the Lessepsian fish species were rare, such as *Fistularia commersonii*; *Stephanolepis diaspros* Fraser-Brunner, 1940; *Herklotssichys punctatus* (Rüppell, 1837); *Upeneus pori* Ben-Tuvia et Golani, 1989; *Crenidens crenidens* (Forsskal 1775); *Pempheris vanicolensis*; *Liza carinata* (Valenciennes, 1836); *Saurida undosquamis* (Richardson, 1848); and *Atherinomorus lacunosus* (Forster, 1801) (56.25%) (Fig. 2). The abundance of these species differs between the main regions (Table 3), which may be due to a relation between the species’ early

Species	Size [cm]	West Region Distribution	Commercial value	Sirt Region Distribution	Commercial value	East Region Distribution	Commercial value
S. luridus	Medium	+	Commercial	+	Commercial	+	Commercial
S. rivulatus		+	None	+	Commercial	+	Commercial
S. obtusata	Large	+	None	+	None	+	Commercial
S. pinguis	Medium	+	None	+	None	+	Commercial
H. punctatus	Small	—	—	—	—	+	Commercial
S. undosquamis	Medium	—	—	—	—	+	Commercial
H. far	Medium	—	—	—	—	+	Commercial
E. commersonii	Large	+	None	+	None	+	None
A. lacunosus	Medium	—	—	+	None	+	None
A. djedaba	Medium	+	None	+	None	+	Commercial
U. pori	Medium	—	—	—	—	+	None
C. creidens	Medium	—	—	—	—	+	None
P. vanicolensis	Medium	—	—	—	—	+	None
L. carinata	Medium	—	—	—	—	+	None
S. commerson	Large	+	Commercial	+	Commercial	+	Commercial
S. diaspros	Medium	+	None	+	None	+	None

+ present, — absent.
arrival and the species abundance. Golani (1998) showed that there is a correlation between species that arrived earlier in the Mediterranean and their greater abundance. This can be explained by (a) the longer they are in the Mediterranean, the greater the opportunity for them to build up their populations, or (b) the greater research effort, which was much less intense in the past (Golani 2002). On the Turkish coast, the abundance of the Lessepsian fish has the following proportions: 5 species (15%) are categorized as rare and the remaining 28 species (84.8%) as common (Bilecenoglu and Taşkavak 2002). The proportions are different in the presently reported study.

Regarding habitat occupation, the majority of the Lessepsian migrant fish species were found in the coastal area and usually at depths of 1–50 m (Fig. 2, Table 3), while only two species were found in the vegetation habitat, namely S. rivulatus and S. luridus (12.5%). S. rivulatus was found in several different overgrown habitats (rocks with algae, sand with algae, and grass with algae) whereas S. luridus was found in one specific vegetation habitat (rocks with algae). Both Siganus species are considered to be strictly herbivorous, and in the Mediterranean only two fish species belong to a similar trophic guild—Sarpa salpa (L.) (Sparidae) and Sparisoma cretense (L.) (Scaridae)—both in the eastern and central basins (Azzurro and Andaloro 2004). Bariche et al. (2004) showed that S. rivulatus is able to settle on a large range of substrates and habitats, including rock pools, muddy harbours, and sea-grass beds. In the eastern Mediterranean, S. rivulatus has a wider settlement range than that of S. luridus, probably due that S. rivulatus has benefited from the low diversity of native herbivorous species (Bariche et al. 2004). Five species were found in the sand habitat: S. undosquamis, F. commersonii, A. lacunosus, U. pori, and C. crenidens (31.25%), and two species were on rocks: P. vanicolensis and S. diadromus (12.5%). The many potential rock habitat site-related species from the Red Sea would not succeed, or would only rarely succeed, in reaching that habitat in the sand habitat:

As regards of their size, twelve species (75%) were classified as medium, followed by three species considered large (18.75%) and one species—small (6.25%) (Fig. 2, Table 4). This result is similar to the results in the Turkish seas, where 78.8% of species were medium-sized, followed by large (12.5%) and small (9.1%) (Bilecenoglu and Taşkavak 2002). However, these figures differ from the results in the eastern Mediterranean where more than half of the Lessepsian migrants were of medium size; small- and large species were more or less equal in number (13 and 12, respectively) (Golani 2002).

As far as their commercial value is concerned, six species (37.5%) have become commercially valuable on the Libyan coast, and ten species (62.5%) are characterized as having no commercial value (Fig. 2). Of these six, three (S. pinguis, H. far, and A. djedaba) were found in the east part of the Libyan coast, two (S. luridus, S. commerson) all along the Libyan coast, and one (S. rivulatus) in the east part and the Sirt Gulf only (Table 4). These species are now found regularly in the Libyan catches; most of them have been recorded as commercially valuable in many areas in the eastern and central-south Mediterranean Sea (Torcu and Mater 2000, Bilecenoglu and Taşkavak 2002, Golani 2002, Shakhman and Kinzelbach 2006).

The distribution observed, implies that half of the species (50%) are present all along the Libyan coast (Fig. 3). There is a different concentration for the different species: S. luridus is concentrated more in the west part and the Sirt Gulf rather than in the east part of the Libyan coast, whilst S. rivulatus is concentrated in the east part and decreases in the Sirt Gulf and the west part (Fig. 4). There may be competition between S. luridus and S. rivulatus in the east region, as these species together are less concentrated in the area from Zwara up to the Tunisian border, although there is an appropriate habitat for herbivorous species in this area especially on the Farwah coast. Two species are distributed in the east part and Sirt Gulf (S. undosquamis, A. lacunosus) and six species are distributed only in the east part (H. punctatus, H. far, U. pori, C. crenidens, P. vanicolensis, L. carinata) (Fig. 4). For a better understanding of Lessepsian immigration, additional taxonomic and biological investigations are required (Ben-Tuvia, 1978). It is expected that in some cases the exchange of fauna and flora may have taken place before the opening of the Suez Canal, as a result of the elevation of sea levels and undulations of the Isthmus during the Pleistocene (Ben-Tuvia 1978).

The presently reported study has shown that some of the Lessepsian migrants have successfully adapted to the different topography and environments of Libyan coast and two fish species are also recorded for the first time. Many species have become widespread along this coast, which means that they are contributing to the commercial fish catch in Libya.

ACKNOWLEDGEMENTS

We would like to thank the Administration of the Marine Biology Research Center (MBRC) in Libya (Mr. Noureddin Ehsarbout, Head of the Center, and Abdulbaset Abussa, Head of Studies and Consultation Director) for their support of this study. We would also like to thank the fishermen and the fishermen’s union for their collaboration with us. We would like to express our thanks to Dr. H. Winkler (Zoology Institute, Rostock University, Germany) for his advice and to Dr. A. Pont, London, for the linguistic revision of the text. This article constitutes a part of a PhD project.
REFERENCES

Akyol O., Ünal V., Ceyhan T., Bilecenoglu M. 2005. First record of Lagoscomorphus siculus (Gmelin, 1789), in the Mediterranean Sea. Journal of Fish Biology 66: 1183–1186.

Al-Hassan L.A.J., El-Silini O.A. 1999. Check-list of bony fishes collected from the Mediterranean coast of Benghazi, Libya. Revista de Biologia Marina y Oceanografía 34: 291–301.

Azzurro E., Pizzicori P., Andaloro F. 2006. New record of Herklotsichthys punctatus (Günther, 1870) in the eastern Mediterranean. CIESM Atlas of Exotic species in the Mediterranean. Vol. 1. Fishes. CIESM publishers, Monaco.

Ben-Tuvia A. 1976. Occurrence of Red Sea fishes Herklotsichthys punctatus, Autistes puta and Rhonciscus stridens in the eastern Mediterranean. Israel Journal of Zoology 25: 212–213.

Ben-Tuvia A. 1978. Immigration of fishes through the Suez Canal. Fishery Bulletin 76: 249–255.

Bilecenoglu M., Kaya M. 2006. First record of the Indian scad Decapterus russelli (Rüppell, 1829) et de Ptychozonus japonicus (Klunzinger, 1884) (Pisces, Sphyraenidae) parasites by Pseudohalietrematodes polymorphus. Bulletin de l’Institut national scientifique et technique d’Océanographie et de pêche de Salammbo 2: 49–52.

Ktari-Chakroun F., Boualal M. 1971. Capture de Siganus luridus (Rüppell, 1829) dans le golfe de Tunis. Bulletin de l’Institut national scientifique et technique d’Océanographie et de pêche de Salammbo 2: 49–52.

Kosswig C. 1956. Facts and problems offered by the Erythrean invaders into the Mediterranean. Balk. et Balkçılık (Istanbul) 4 (9): 31–37.

Ktari-F., Ktari M.H. 1974. Présence dans le Golf de Gabès de Siganus luridus (Rüppell, 1829) et de Siganus rivulatus (Forsskål, 1775) (Poissons, Siganidae) parasités par Pseudohalietrematodes polymorphus. Bulletin de l’Institut national scientifique et technique d‘Océanographie et de pêche de Salammbo 3: 95–98.

Mouineim N. 1977. Liste des poissons de la côte du Liban (Méditerranée orientale). Cibium 1: 37–86.

Pallaoro A., Dulčić J. 2001. First record of the Sphyraena chrysotaenia (Kunzinger, 1884) (Pisces, Sphyraenidae) from the Adriatic Sea. Journal of Fish Biology 59: 179–182.

Papacostantinou C. 1990. The spreading of Lessepsian fish migrants into the Aegean Sea (Greece). Scientia Marina 54: 313–316.

Por F.D. 1978. Lessepsian migration. Ecological studies. Springer Verlag, Berlin.

Shakman E.A., Kinzelbach R. 2006. Halfbeak fish Hemiramphus far (Forsskål, 1775) in coastal waters of Libya. Zoology in the Middle East (Heidelberg) 39: 111–112.
Shakman E.A., Kinzelbach R. 2007. First record of the sweep-er fish *Pempheris vanicolensis* Cuvier, 1821 in the eastern part of the Libyan coast. Rostocker Meereskundliche Beiträge 18: 1–3.

Stirn J. 1970. Some notes on western trends of Lessepsian migration. Pp. 187–190. Journées Ichthyologiques, Rome, 30 Nov.–1 Dec., CIESM, Monaco.

Torcu H., Mater S. 2000. Lessepsian fishes spreading along the coasts of the Mediterranean and the Southern Aegean Sea of Turkey. Turkish Journal of Zoology 24: 139–148.

Zupanovic S., El-Buni A.A. 1982. A contribution to demersal fish studies off the Libyan coast. Bulletin of Marine Research Centre (Tripoli-Libya) 3: 77–122.

Whitehead P.J.P., Bauchot M.L., Hureau J.C., Nielsen J., Tortonese E. (eds.) 1984–1986. Fishes of the north-eastern Atlantic and the Mediterranean. Vols. I, II, III, UNESCO, Paris.

Received: 15 February 2007
Accepted: 9 May 2007
Published electronically: 15 July 2007