Abstract. We study the simple Bershadsky–Polyakov algebra \(W_k = W_k(sl_3, f_\theta) \) at positive integer levels and classify their irreducible modules. In this way, we confirm the conjecture from [9]. Next, we study the case \(k = 1 \). We discover that this vertex algebra has a Kazama–Suzuki-type dual isomorphic to the simple affine vertex superalgebra \(L_{k'}(osp(1|2)) \) for \(k' = -5/4 \). Using the free-field realization of \(L_{k'}(osp(1|2)) \) from [3], we get a free-field realization of \(W_k \) and their highest weight modules. In a sequel, we plan to study fusion rules for \(W_k \).

1. Introduction

In recent years, minimal affine \(W \) algebras have attracted a lot of interest. They are obtained using quantum hamiltonian reduction from affine vertex algebras, and they can be described using generators and relations (cf. [29], [31]).

The Bershadsky–Polyakov algebra \(W_k = W_k(sl_3, f_\theta) \) ([15], [39]) is the simplest minimal affine \(W \)-algebra. T. Arakawa proved in [12] that \(W_k \) is rational for \(k + 3/2 \in \mathbb{Z}_{\geq 0} \), while in other cases it is a nonrational vertex algebra. More recently, for \(k \) admissible and nonintegral, irreducible \(W_k \)-modules were classified in [9] in some special cases, and in [21] in full generality. A realization of \(W_k \), when \(2k + 3 \notin \mathbb{Z}_{\geq 0} \), and its relaxed modules are presented in [8], which gives a natural generalization of the realization of the affine vertex algebra \(V_k(sl(2)) \) from [3]. Let us now mention certain problems for Bershadsky–Polyakov vertex algebras, which remain unsolved in the papers listed above.

DOI: 10.1007/s00031-022-09721-z
*The authors are supported by the QuantiXLie Centre of Excellence, a project cofinanced by the Croatian Government and European Union through the European Regional Development Fund – the Competitiveness and Cohesion Operational Programme (KK.01.1.1.01.0004).

Received December 10, 2020. Accepted October 11, 2021.
Published online March 29, 2022.
Corresponding Author: Ana Kontrec, e-mail: ana.kontrec@math.hr
A. Classification of ordinary irreducible \mathcal{W}_k-modules for integer levels $k, k + 2 \in \mathbb{Z}_{\geq 0}$

In [21], authors classified irreducible highest weight \mathcal{W}_k-modules for k admissible, nonintegral. They showed that every irreducible highest weight module for \mathcal{W}_k is obtained as an image of the admissible modules for $L_k(sl(3))$ (which are classified by T. Arakawa in [13]). However, when we pass to integral k, the methods of [21] are no longer applicable, since in this case quantum hamiltonian reduction sends $L_k(sl(3))$-modules to zero.

In [9], we began the study of the representation theory of \mathcal{W}_k for integer levels $k, k + 2 \in \mathbb{Z}_{\geq 0}$. The starting point was explicit formulas for singular vectors in \mathcal{W}_k (which generalized those of Arakawa in [12]). Using these singular vectors, one concludes that on any weak \mathcal{W}_k-module M, we should have the relation

$$G^\pm(z)^{k+2} = 0.$$

This implies that if M is $\mathbb{Z}_{\geq 0}$-graded and irreducible, then the top level M_{top} is at most a $(k + 2)$-dimensional irreducible module for the Zhu’s algebra $A(\mathcal{W}_k)$, and therefore M is an ordinary module. Therefore, the classification of irreducible ordinary \mathcal{W}_k-modules also solves the problem of classification of all irreducible $\mathbb{Z}_{\geq 0}$-graded \mathcal{W}_k-modules. In particular, \mathcal{W}_k has no irreducible, relaxed highest weight modules (see also [8, Rem. 6.4]).

We presented in [9] a conjecture on the classification of ordinary irreducible \mathcal{W}_k-modules for $k + 2 \in \mathbb{Z}_{\geq 0}$, which we proved in cases $k = -1, 0$ using explicit realizations of \mathcal{W}_k. One of the main results in this paper is the proof of this conjecture.

B. Free-field realization of \mathcal{W}_k and their modules for $k + 2 \in \mathbb{Z}_{\geq 0}$

In [8], the Bershadsky–Polyakov algebra \mathcal{W}_k is realized as a vertex subalgebra of $Z_k \otimes \Pi(0)$ (where $Z_k = \mathcal{W}_k(sl(3), f_{\text{prime}})$ is the Zamolodchikov W-algebra [43]), for $2k + 3 \notin \mathbb{Z}_{\geq 0}$. A realization of \mathcal{W}_k, when $2k + 3 \in \mathbb{Z}_{\geq 0}$, requires a different approach. In [9] we constructed a free-field realization of \mathcal{W}_0, but the cases when $k > 0$ were not solved either in [9] or [8].

In the current paper, we continue with our study of the Bershadsky–Polyakov algebra $\mathcal{W}_k = \mathcal{W}_k(sl_3, f_\theta)$ at positive integer levels k and completely solve problem (A) for $k \geq 0$. We also partially solve problem (B) for $k = 1$ and find duality relation of \mathcal{W}_1 with the affine vertex superalgebra associated to $osp(1|2)$.

Classification of irreducible representations

In [9], we found a necessary condition for \mathcal{W}_k-modules, parametrizing the highest weights as zeroes of certain polynomial functions (cf. Proposition 4.5)

$$h_i(x, y) = \frac{1}{i} (g(x, y) + g(x + 1, y) + ... + g(x + i - 1, y))$$

$$= -i^2 + ki - 3xi + 3i - 3x^2 - k + 2kx + 6x + ky + 3y - 2,$$

and conjectured that this provides the complete list of irreducible modules for the Bershadsky–Polyakov algebra \mathcal{W}_k when $k \in \mathbb{Z}, k \geq -1$. This conjecture was
proved in cases \(k = -1 \) and \(k = 0 \) in [9], using explicit realizations of \(\mathcal{W}_{-1} \) and \(\mathcal{W}_0 \) as the Heisenberg vertex algebra and a subalgebra of lattice vertex algebra, respectively. In this paper, we prove this conjecture for \(k \in \mathbb{Z}, k \geq 1 \), thus obtaining a classification of irreducible modules for \(\mathcal{W}_k \) at positive integer levels.

Let \(L(x, y) \) denote the irreducible highest weight representation of \(\mathcal{W}^k \) generated by a highest weight vector \(v(x, y) \) with highest weight \((x, y) \) (cf. Section 3 and 4.1).

Theorem 1.1. The set \(\{ L(x, y) \mid (x, y) \in S_k \} \) is the set of all irreducible ordinary \(\mathcal{W}_k \)-modules, where

\[
S_k = \left\{ (x, y) \in \mathbb{C}^2 \mid \exists i, \ 1 \leq i \leq k + 2, \ h_i(x, y) = 0 \right\}.
\]

In order to prove Theorem 1.1, we need to show that \(L(x, y), (x, y) \in S_k \), are indeed \(\mathcal{W}_k \)-modules. Idea of the proof is to construct an infinite family of irreducible \(\mathcal{W}_k \)-modules \(L(x, y) \) such that \(h_i(x, y) = 0 \) for arbitrary \(1 \leq i \leq k + 2 \), using spectral flow construction of \(\mathcal{W}_k \)-modules (cf. Section 4).

- We first consider a family of simple-current \(\mathcal{W}_k \)-modules \(\Psi^n(\mathcal{W}_k), n \in \mathbb{Z}_{\geq 0} \).
- We show that they are highest weight \(\mathcal{W}_k \)-modules satisfying

\[
\Psi^n(\mathcal{W}_k) = L(x_n, y_n) \quad \text{and} \quad h_1(x_{2n}, y_{2n}) = h_{k+2}(x_{2n+1}, y_{2n+1}) = 0.
\]

- Using a certain version of algebraic continuation (based on the fact that highest weights of modules for Zhu’s algebra must be zeros of finitely many curves in \(\mathbb{C}^2 \)), we conclude that \(L(x, y) \) are \(\mathcal{W}_k \)-modules whenever \(h_1(x, y) = 0 \) or \(h_{k+2}(x, y) = 0 \).
- Next, for every \(2 \leq i \leq k + 1 \), we find special points \((x^i, y^i) \) such that \(h_i(x^i, y^i) = h_{k+2}(x^i, y^i) = 0 \), and again apply the spectral-flow automorphism \(\Psi^n \). In this way we are able to construct infinitely many highest weight \(\mathcal{W}_k \)-modules \(L(x^i_{2n}, y^i_{2n}) \) such that \(h_i(x^i_{2n}, y^i_{2n}) = 0 \).
- Again using the algebraic continuation, we conclude that \(L(x, y) \) are \(\mathcal{W}_k \)-modules for each point of the curve \(h_i(x, y) = 0 \).

Realization of \(\mathcal{W}_1 \) and duality with \(L_{-5/4}(osp(1|2)) \)

Next, we give an indepth study of the case \(k = 1 \). First we show that the Bershadsky–Polyakov vertex algebra \(\mathcal{W}_1 \) can be embedded into the tensor product of the affine vertex superalgebra \(L_{k'}(osp(1|2)) \) at level \(k' = -5/4 \) and the Clifford vertex superalgebra \(F \). The affine vertex algebra \(V^k(osp(1|2)) \) associated to the Lie superalgebra \(osp(1, 2) \) was realized by the first named author in [3]. Using this result, and the fact that at level \(k' = -5/4 \) there is a conformal embedding of \(L_{k'}(sl(2)) \) into \(L_{k'}(osp(1|2)) \) (cf. [7], [19, Sect.10]), we obtain a realization of the Bershadsky–Polyakov algebra \(\mathcal{W}_1 \) (cf. Theorem 5.2).

Let \(F_{-1} \) be the lattice vertex superalgebra associated to the negative definite lattice \(\mathbb{Z}_\sqrt{-1} \). We show that the simple affine vertex superalgebra \(L_{-5/4}(osp(1|2)) \) can be realized as a subalgebra of \(\mathcal{W}_1 \otimes F_{-1} \) (cf. Theorem 5.4). Moreover, there is a duality between \(\mathcal{W}_1 \) and the affine vertex superalgebra \(L_{k'}(osp(1|2)) \) for \(k' = -5/4 \), in the sense that

\[
\mathcal{W}_1 = \text{Com} \left(M_{1,1}(1), L_{k'}(osp(1|2)) \otimes F \right),
\]

\[
L_{k'}(osp(1|2)) = \text{Com} \left(M_{-1}(1), \mathcal{W}_1 \otimes F_{-1} \right).
\]
where $M_0(1)$ and $M_0^\perp(1)$ are Heisenberg vertex algebras defined in Section 5.

In [3] it was proved that $L_{-5/4}(\mathfrak{osp}(1, 2))$ can be realized on the vertex superalgebra $F^{1/2} \otimes \Pi^{1/2}(0)$, where $\Pi^{1/2}(0)$ is a lattice type vertex algebra, and $F^{1/2}$ is a Clifford vertex superalgebra (cf. Subsection 2.2). Using the fact that all irreducible $L_{-5/4}(\mathfrak{osp}(1|2))$-modules can be constructed in this way, we can construct an explicit realization of irreducible \mathcal{W}_1-modules.

Consequences of duality and future work

The notion of Kazama–Suzuki dual was first introduced in the context of the duality of the $N = 2$ superconformal algebra and affine Lie algebra $\widehat{\mathfrak{sl}}(2)$ (cf. [22], [1], [2]). Later it was shown that analogous duality relations hold for some other affine vertex algebras and \mathcal{W}-algebras (cf. [4], [5], [17], [16]). Our result shows that $L_k(\mathfrak{osp}(1|2))$ is the Kazama–Suzuki dual of \mathcal{W}_1. Relaxed modules for $L_k(\mathfrak{osp}(1|2))$ are mapped to the ordinary \mathcal{W}_1-modules, for which one expects it is easier to obtain the tensor category structure and calculate the fusion rules. Recent results [10], [16] show compelling evidence that fusion rules and (vertex) tensor category structure can be transferred onto duals. We expect that the duality between $L_k(\mathfrak{osp}(1|2))$ and \mathcal{W}_1 could be used to study fusion rules in the category of relaxed modules for $L_k(\mathfrak{osp}(1|2))$ (conjectured in [40]).

Acknowledgment. We would like to thank D. Ridout for useful discussions. We also thank the referees for their comments.

Setup

- The universal Bershadsky–Polyakov algebra of level k will be denoted with $\mathcal{W}_k(\mathfrak{sl}_3, \mathfrak{f}_\theta)$ or \mathcal{W}_k^k, and its unique simple quotient with $\mathcal{W}_k(\mathfrak{sl}_3, \mathfrak{f}_\theta)$ or \mathcal{W}_k.
- The spectral flow automorphism of \mathcal{W}_k is denoted by Ψ.
- Modes of fields with respect to Virasoro vector ω: J_n, L_n, G^\pm_n.
- $L_{x,y}$ denotes the irreducible highest weight representation with highest weight (x, y) with respect to (J_0, L_0) and highest weight vector $v_{x,y}$.
- Modes of fields with respect to Virasoro vector $\overline{\omega} = \omega + \frac{1}{2} DJ$: $J(n) = J_n$, $L(n) = L_n - \frac{n+1}{2} J_n$, $G^+(n) = G^+_n$, $G^-(n) = G^-_{n+1}$.
- $L(x, y)$ denotes the irreducible highest weight representation with highest weight (x, y) with respect to $(J(0), L(0))$ and highest weight vector $v(x, y)$.
- We have $L(x, y) = L_{x,y+x/2}$.
- The Zhu algebra associated to the vertex operator algebra V with the Virasoro vector ω will be denoted with $A_\omega(V)$.
- The Smith algebra corresponding to the polynomial $g(x, y) \in \mathbb{C}[x, y]$ is denoted with $R(g)$.
- F_{-1} is the lattice vertex superalgebra associated to the lattice $\mathbb{Z}\sqrt{-1}$ defined in Section 2.4.
- $F^{1/2}$ is the Clifford vertex superalgebra, also called the free fermion algebra (cf. Section 2.2). It has an automorphism $\sigma_{F^{1/2}}$ of order two which is lifted from the automorphism $\Phi(r) \mapsto -\Phi(r)$ of the Clifford algebra $\mathbb{C}l^{1/2}$. The $\sigma_{F^{1/2}}$-twisted $F^{1/2}$-modules are denoted by M_F^\pm.
• F is the Clifford vertex superalgebra, also called the charged fermion algebra or the bc system (cf. Section 2.3). It has an automorphism σ_F of order two which is lifted from the automorphism $\Psi^+(r) \mapsto -\Psi^+(r), \Psi^-(r) \mapsto -\Psi^-(r)$ of the Clifford algebra Cl. The σ_F-twisted F module is denoted by M_{F}^{tw}.

• $L_k(\text{osp}(1|2))$ is the simple affine vertex superalgebra associated to the Lie superalgebra $\text{osp}(1|2)$ at level k. The spectral flow automorphism of $L_k(\text{osp}(1|2))$ is denoted by ρ.

2. Preliminaries

In this section, we review certain properties of Clifford vertex superalgebras (cf. [24], [23]) and a construction of twisted modules for vertex superalgebras by H. Li (cf. [35]). Twisted modules for Clifford vertex superalgebras (cf. [24]) will play a key role in the realization of the Bershadsky–Polyakov algebra \mathcal{W}_1.

2.1. Twisted modules for vertex superalgebras

Let $V = V_{\bar{0}} \oplus V_{\bar{1}}$ be a vertex superalgebra (cf. [23], [42]), with the vertex operator structure given by

$$Y : V \to (\text{End } V)[[z, z^{-1}]], \quad Y(v, z) = \sum_{n \in \mathbb{Z}} v_n z^{-n-1},$$

for $v \in V$, $v_n \in \text{End } V$. Then any element in $V_{\bar{0}}$ (resp. $V_{\bar{1}}$) is said to be even (resp. odd). For any homogenous element u, we define $|u| = 0$ if $u \in V_{\bar{0}}$ and $|u| = 1$ if $u \in V_{\bar{1}}$.

We say that a linear automorphism $\sigma : V \to V$ is a vertex superalgebra automorphism if it holds that

$$\sigma Y(v, z)\sigma^{-1} = Y(\sigma v, z)$$

for $v \in V$. Then $\sigma V_{\alpha} \subset V_{\alpha}$ for $\alpha \in \{\bar{0}, \bar{1}\}$.

Let V be a vertex superalgebra and σ an automorphism of V with period $k \in \mathbb{Z}_{\geq 0}$ (that is, $\sigma^k = 1$). Let us now recall a construction of σ-twisted V-modules (cf. [35]).

Let $h \in V$ be an even element such that

$$L(n)h = \delta_{n,0}h, \quad h_n h = \delta_{n,1}\gamma \mathbb{1} \quad \text{for} \quad n \in \mathbb{Z}_{>0},$$

for fixed $\gamma \in \mathbb{Q}$. Assume that h_0 acts semisimply on V with rational eigenvalues. It follows that h_n satisfies

$$[L(m), h_n] = -nh_{m+n}, \quad [h_m, h_n] = m\gamma \delta_{m+n,0},$$

for $m, n \in \mathbb{Z}$.

Set

$$\Delta(h, z) = z^{h_0}\exp \left(\sum_{k=1}^{\infty} \frac{h_k}{-k} (-z)^{-k} \right).$$

Note that $e^{2\pi ih_0}$ is an automorphism of V. Set $\sigma_h = e^{2\pi ih_0}$ and assume that σ_h is of finite order. The following was proved in [35].
Proposition 2.1 ([35]). Let V be a vertex superalgebra and let $h \in V$ be an even element such that (1) holds and h_0 acts on V with rational eigenvalues. Let $(M, Y_M(\cdot, z))$ be a V-module. Then $(M, Y_M(\Delta(h, z) \cdot, z))$ carries the structure of a σ_h-twisted V-module.

2.2. Clifford vertex superalgebra $F^{1/2}$ and its twisted modules
Let $C^{1/2}$ be the Clifford algebra with generators $\Phi(r), \ r \in \frac{1}{2} + \mathbb{Z}$ and commutation relations
\[
\{ \Phi(r), \Phi(s) \} = \delta_{r+s,0}, \quad r, s \in \frac{1}{2} + \mathbb{Z}.
\]

The fields
\[
\Phi(z) = \sum_{n \in \mathbb{Z}} \Phi(n + \frac{1}{2}) z^{-n-1}
\]
generate on
\[
F^{1/2} = \wedge (\Phi(-n - \frac{1}{2}) \mid n \in \mathbb{Z}_{\geq 0})
\]
a unique structure of a vertex superalgebra with conformal vector
\[
\omega_{F^{1/2}} = \frac{1}{2} \Phi(-\frac{3}{2}) \Phi(-\frac{1}{2}) \mathbb{1},
\]
of central charge $c_{F^{1/2}} = 1/2$ (cf. [26], [28]). Note also that the field $\Phi(z)$ is usually called neutral fermion field, and $F^{1/2}$ is called free-fermion theory in physics literature.

A basis of $F^{1/2}$ is given by
\[
\Phi(-n_1 - \frac{1}{2}) \cdots \Phi(-n_r - \frac{1}{2}),
\]
where $n_1 > \cdots > n_r \geq 0$.

The vertex superalgebra $F^{1/2}$ has the automorphism $\sigma_{F^{1/2}}$ of order two, which is lifted from the automorphism $\Phi(r) \mapsto -\Phi(r)$ of the Clifford algebra. The fixed points of this automorphism is the Virasoro vertex algebra $L^{\text{Vir}}(\frac{1}{2}, 0)$. Moreover, $F^{1/2} = L^{\text{Vir}}(\frac{1}{2}, 0) \oplus L^{\text{Vir}}(\frac{1}{2}, \frac{1}{2})$.

We briefly recall the properties of twisted modules for Clifford vertex superalgebras, while details can be found in [24].

Define the twisted Clifford algebra $C_{tw}^{1/2}$ generated by $\Phi(m), \ m \in \mathbb{Z}$, and relations
\[
\{ \Phi(m), \Phi(n) \} = \delta_{m+n,0}, \quad m, n \in \mathbb{Z}.
\]

Let
\[
M_{F^{1/2}}^\pm = \bigoplus_{n=0}^{\infty} M_{F^{1/2}}^\pm(n)
\]
be the two irreducible modules for the Clifford algebra $C_{tw}^{1/2}$, such that $\Phi(0)$ acts on the one-dimensional top component $M_{F^{1/2}}^\pm(0)$ as $\pm \frac{1}{\sqrt{2}} \text{Id}$.

Let
\[
\Phi_{tw}(z) = \sum_{m \in \mathbb{Z}} \Phi(m) z^{-m-1/2},
\]
and
\[Y\left(\Phi(-n_1 - \frac{1}{2}) \cdots \Phi(-n_r - \frac{1}{2}), z \right) =: \partial_{n_1} \Phi^{tw}(z_1) \cdots \partial_{n_r} \Phi^{tw}(z_r), \]
and extend by linearity to all of \(F^{1/2} \).

Define the twisted operator
\[Y^{tw}_{F^{1/2}}(v, z) := Y(e^{\Delta_z} v, z), \]
where
\[\Delta_z = \frac{1}{2} \sum_{m,n \in \mathbb{Z}_{\ge 0}} C_{m,n} \Phi(m + \frac{1}{2}) \Phi(n + \frac{1}{2}) z^{-m-n-1}, \]
and
\[C_{m,n} = \frac{1}{2} \frac{m-n}{m+n+1} \begin{pmatrix} -1/2 \\ m \end{pmatrix} \begin{pmatrix} -1/2 \\ n \end{pmatrix}. \]
It holds that (cf. [23], [24])
\[e^{\Delta_z} \omega_{F^{1/2}} = \omega_{F^{1/2}} + \frac{1}{16} z^{-2} \mathbb{1}. \]

Then \((M^{\pm}_{F^{1/2}}, Y^{tw}_{F^{1/2}}) \) has the structure of a \(\sigma_{F^{1/2}} \)-twisted module for the vertex superalgebra \(F^{1/2} \).

Recall also that as a \(L^{Vir}(\frac{1}{2}, 0) \)-module, we have (cf. [24])
\[M^{\pm}_{F^{1/2}} \cong L^{Vir}(\frac{1}{2}, \frac{1}{16}). \]

2.3. Clifford vertex superalgebra \(F \) and its twisted modules
Consider the Clifford algebra \(Cl \) with generators \(\Psi^{\pm}(r), \ r \in \frac{1}{2} + \mathbb{Z} \) and relations
\[\{ \Psi^{+}(r), \Psi^{-}(s) \} = \delta_{r+s,0}, \quad \{ \Psi^{\pm}(r), \Psi^{\pm}(s) \} = 0, \quad r, s \in \frac{1}{2} + \mathbb{Z}. \]
The fields
\[\Psi^{\pm}(z) = \sum_{n \in \mathbb{Z}} \Psi^{\pm}(n + \frac{1}{2}) z^{-n-1} \]
generate on
\[F = \wedge \left(\Psi^{\pm}(- n - 1/2) \mid n \in \mathbb{Z}_{>0} \right) \]
a unique structure of a simple vertex superalgebra. This vertex algebra is sometimes called \(bc \)-system.

Let \(\alpha =: \Psi^{+} \Psi^{-} :. \) Then
\[\omega_{F} = \frac{1}{2} : \alpha \alpha : \]
is a conformal vector for \(F \) of central charge \(c_{F} = 1 \).

A basis of \(F \) is given by
\[\Psi^{+}(- n_1 - \frac{1}{2}) \cdots \Psi^{+}(- n_r - \frac{1}{2}) \Psi^{-}(- k_1 - \frac{1}{2}) \cdots \Psi^{-}(- k_s - \frac{1}{2}), \]
where \(n_i, k_i \in \mathbb{Z}_{\geq 0}, n_1 > \cdots > n_r, k_1 > \cdots > k_s \).

Note that by the boson-fermion correspondence, the Clifford vertex superalgebra \(F \) is isomorphic to the lattice vertex superalgebra \(V_{\mathbb{Z}^{\alpha}} \) (cf. [25], [28]), that is,

\[
F \cong V_{\mathbb{Z}^{\alpha}}.
\]

The vertex superalgebra \(F \) has an automorphism \(\sigma_F \) of order two which is lifted from the automorphism \(\Psi^+(r) \mapsto -\Psi^+(r), \Psi^-(r) \mapsto -\Psi^-(r) \) of the Clifford algebra.

Let \((M_{F, tw}, Y_{F, tw}(-, z)) \) so that \(M_{F, tw} = F \) as a vector space, and the vertex operator is defined by

\[
Y_{F, tw}(v, z) = Y(\Delta(\alpha/2, z)v, z).
\]

By Proposition 2.1, we have that \((M_{F, tw}, Y_{F, tw}) \) has the structure of a \(\sigma_F \)-twisted module for the vertex superalgebra \(F \).

2.4. Lattice vertex superalgebras \(F_{-1} \)

Consider rank one lattice \(L = \mathbb{Z}\varphi, \langle \varphi, \varphi \rangle = -1 \). Let \(F_{-1} \) be the associated vertex algebra. This vertex superalgebra is used for a construction of the inverse of Kazama–Suzuki functor in the context of duality between affine \(\widehat{sl}(2) \) and \(N = 2 \) superconformal algebra (cf. [22], [1], [2]).

As a vector space \(F_{-1} = \mathbb{C}[L] \otimes M_{\varphi}(1) \), where \(\mathbb{C}[L] \) is a group algebra of \(L \), and \(M_{\varphi}(1) \) the Heisenberg vertex algebra generated by the Heisenberg field \(\varphi(z) = \sum_{n \in \mathbb{Z}} \varphi(n)z^{-n-1} \) such that

\[
[\varphi(n), \varphi(m)] = -n\delta_{n+m,0}.
\]

\(F_{-1} \) is generated by \(e^{\pm \varphi} \). We shall need the relations

\[
\begin{align*}
e_{n}^{\pm \varphi}e_{m}^{\pm \varphi} &= 0 \quad \text{for } n \geq 1, \\
e_{-m}^{\pm \varphi}e_{m}^{\pm \varphi} &= S_m(\pm \varphi)e^{2\varphi} \quad \text{for } m \geq 0, \\
e_{n}^{\varphi}e^{-\varphi} &= 0 \quad \text{for } n \geq -1, \\
e_{-m}^{-\varphi}e^{\varphi} &= S_m(\varphi) \quad \text{for } m \geq 0,
\end{align*}
\]

where \(S_m(\varphi) := S_m(\varphi(-1), \varphi(-2), \ldots) \) is the \(m \)-th Schur polynomial in variables \(\varphi(-1), \varphi(-2), \ldots \).

2.5. Kazama–Suzuki duality

In this subsection, we will define a duality of vertex algebras which is motivated by the duality between \(N = 2 \) superconformal vertex algebra and affine vertex algebra \(L_k(sl(2)) \).

Recall first that if \(S \) is a vertex subalgebra of \(V \), we have the commutant subalgebra of \(V \) (cf. [37])

\[
\text{Com}(S, V) := \{ v \in V \mid a_n v = 0, \forall a \in S, \forall n \in \mathbb{Z}_{\geq 0} \}.
\]
Assume that U, V are vertex superalgebras. We say that V is the Kazama–Suzuki dual of U if there exist injective homomorphisms of vertex superalgebras

$$\varphi_1 : V \rightarrow U \otimes F, \quad \varphi_2 : U \rightarrow V \otimes F_{-1},$$

so that

$$V \cong \text{Com}(H^1, U \otimes F), \quad U \cong \text{Com}(H^2, V \otimes F_{-1}),$$

where H^1 (resp. H^2) is a rank one Heisenberg vertex subalgebra of $U \otimes F$ (resp. $V \otimes F_{-1}$).

3. Bershadsky–Polyakov algebra $W_k(sl_3, f_\theta)$

Bershadsky–Polyakov vertex algebra $W_k(= W_k^{sl_3, f_\theta})$ is the minimal affine W-algebra associated to the minimal nilpotent element f_θ (cf. [12], [27], [31], [29], [33]). The algebra W_k is generated by four fields T, J, G^+, G^-, of conformal weights $2, 1, 3/2, 3/2$ and is a $\frac{1}{2}\mathbb{Z}$-graded VOA.

Definition 3.1. Universal Bershadsky–Polyakov vertex algebra W_k is the vertex algebra generated by fields T, J, G^+, G^-, which satisfy the following relations:

$$J(x)J(y) \sim \frac{2k + 3}{3}(z - w)^{-2}, \quad G^\pm(z)G^\pm(w) \sim 0,$$

$$J(z)G^\pm(w) \sim \pm G^\pm(w)(z - w)^{-1},$$

$$T(z)T(w) \sim -\frac{c_k}{2}(z - w)^{-4} + 2T(w)(z - w)^{-2} + DT(w)(z - w)^{-1},$$

$$T(z)G^\pm(w) \sim \frac{3}{2}G^\pm(w)(z - w)^{-2} + DG^\pm(w)(z - w)^{-1},$$

$$T(z)J(w) \sim J(w)(z - w)^{-2} + DJ(w)(z - w)^{-1},$$

$$G^+(z)G^-(w) \sim (k + 1)(2k + 3)(z - w)^{-3} + 3(k + 1)J(w)(z - w)^{-2} + (3 : J(w)J(w) : + \frac{3(k + 1)}{2}DJ(w) - (k + 3)T(w))(z - w)^{-1},$$

where $c_k = (3k + 1)(2k + 3)/(k + 3)$.

Vertex algebra W_k is called the universal Bershadsky–Polyakov vertex algebra of level k. For $k \neq -3$, W_k has a unique simple quotient which is denoted by W_k.

Let

$$T(z) = \sum_{n \in \mathbb{Z}} L_n z^{-n-2},$$

$$J(z) = \sum_{n \in \mathbb{Z}} J_n z^{-n-1},$$

$$G^+(z) = \sum_{n \in \mathbb{Z}} G^+_n z^{-n-1},$$

$$G^-(z) = \sum_{n \in \mathbb{Z}} G^-_n z^{-n-1}.$$
The following commutation relations hold:
\[[J_m, J_n] = \frac{2k + 3}{3} m \delta_{m+n,0}, \quad [J_m, G^\pm_n] = \pm G^\pm_{m+n}, \]
\[[L_m, J_n] = -n J_{m+n}, \]
\[[L_m, G^\pm_n] = \left(\frac{1}{2} m - n + \frac{1}{2} \right) G^\pm_{m+n}, \]
\[[G^+_m, G^-_n] = \frac{3(J^2)_{m+n-1} + \frac{3}{2}(k+1)(m-n)J_{m+n-1} - (k+3)L_{m+n-1}}{2} \]
\[+ \frac{(k+1)(2k+3)(m-1)}{2} \delta_{m+n,1}. \]

By applying results from [29], we see that for every \((x,y) \in \mathbb{C}^2\) there exists an irreducible representation \(L_{x,y}\) of \(\mathcal{W}^k\) generated by a highest weight vector \(v_{x,y}\) such that
\[J_0 v_{x,y} = xv_{x,y}, \quad J_n v_{x,y} = 0 \text{ for } n > 0, \]
\[L_0 v_{x,y} = yv_{x,y}, \quad L_n v_{x,y} = 0 \text{ for } n > 0, \]
\[G^+_n v_{x,y} = 0 \text{ for } n \geq 1. \]

3.1. Structure of the Zhu algebra \(A(\mathcal{W}^k)\)

Let \(A_\omega(V)\) denote the Zhu algebra associated to the VOA \(V\) (cf. [44]) with the Virasoro vector \(\omega\), and let \([v]\) be the image of \(v \in V\) under the mapping \(V \mapsto A_\omega(V)\).

For the Zhu algebra \(A_\omega(\mathcal{W}^k)\), it holds the following.

Proposition 3.2 ([9, Prop. 3.2.]). There exists a homomorphism \(\Phi : \mathbb{C}[x, y] \rightarrow A_\omega(\mathcal{W}^k)\) such that
\[\Phi(x) = [J], \quad \Phi(y) = [T]. \]

It can be shown that the homomorphism \(\Phi : \mathbb{C}[x, y] \rightarrow A_\omega(\mathcal{W}^k)\) is in fact an isomorphism, i.e., that \(A_\omega(\mathcal{W}^k) \cong \mathbb{C}[x, y]\).

If we switch to a shifted Virasoro vector \(\overline{\omega} = \omega + \frac{1}{2} DJ\), the vertex algebras \(\mathcal{W}^k\) and \(\mathcal{W}_k\) become \(\mathbb{Z}_{\geq 0}\)-graded with respect to \(L(0) = \overline{\omega}_1\). In this case, the Zhu algebras are no longer commutative, and they carry more information about the representation theory. The Zhu algebra associated to \(\mathcal{W}^k\) is then realized as a quotient of another associative algebra, the so-called Smith algebra \(R(g)\) (introduced in [41], see also [20]). These algebras were used by T. Arakawa in [12] to prove rationality of \(\mathcal{W}_k(sl_3, f_p)\) for \(k = p/2 - 3, p \geq 3, p \text{ odd}\).

We expand the original definition of Smith algebras \(R(f)\) by adding a central element.

Definition 3.3. Let \(g(x, y) \in \mathbb{C}[x, y]\) be an arbitrary polynomial. Associative algebra \(R(g)\) of Smith type is generated by \(\{E, F, X, Y\}\) such that \(Y\) is a central element and the following relations hold:
\[XE - EX = E, \quad XF - FX = -F, \quad EF - FE = g(X,Y).\]

In fact, Zhu algebra associated to \(\mathcal{W}^k\) is a quotient of the Smith-type algebra \(R(g)\) for a certain polynomial \(g(x, y) \in \mathbb{C}[x, y]\).
Proposition 3.4 ([9, Prop. 4.2.]). Zhu algebra $A_{\bar{\omega}}(W^k)$ is a quotient of the Smith algebra $R(g)$ for $g(x, y) = -(3x^2 - (2k + 3)x - (k + 3)y)$.

4. Vertex algebra W_k for $k + 2 \in \mathbb{Z}_{\geq 1}$

In this section, we study the representation theory of the Bershadsky–Polyakov algebra W_k at positive integer levels. In [9], we parametrized the highest weights of irreducible W_k-modules as zeroes of certain polynomial functions (cf. Proposition 4.5), and conjectured that this provides the complete list of irreducible modules for the Bershadsky–Polyakov algebra W_k when $k \in \mathbb{Z}$, $k \geq -1$. This conjecture was proved in cases $k = -1$ and $k = 0$ in [9]. In this paper, we will prove this conjecture for $k \in \mathbb{Z}$, $k \geq 1$.

4.1. Setup

Let us choose a new Virasoro field

$$L(z) := T(z) + \frac{1}{2} DJ(z).$$

Then $\bar{\omega} = \omega + \frac{1}{2} DJ$ is a conformal vector $\bar{\omega}_{n+1} = L(n)$ with central charge

$$\bar{c}_k = -\frac{4(k+1)(2k+3)}{k+3}.$$

The fields J, G^+, G^- have conformal weights $1, 1, 2$, respectively. Set $J(n) = J_n$, $G^+(n) = G^+_n$, $G^-(n) = G^-_{n+1}$. We have

$$L(z) = \sum_{n \in \mathbb{Z}} L(n) z^{-n-2}, \ G^+(z) = \sum_{n \in \mathbb{Z}} G^+(n) z^{-n-1}, \ G^-(z) = \sum_{n \in \mathbb{Z}} G^-(n) z^{-n-2}.$$

This defines a $\mathbb{Z}_{\geq 0}$-gradation on W^k.

Let $L(x, y)$ denote the irreducible highest weight representation with highest weight (x, y) with respect to $(J(0), L(0))$ and highest weight vector $v(x, y)$. We have $L(x, y) = L_{x,y+x/2}$ (cf. [9]).

Define

$$\Delta(-J, z) = z^{-J(0)} \exp \left(\sum_{k=1}^{\infty} \frac{(-1)^{k+1} J(k)}{k z^k} \right),$$

and let

$$\sum_{n \in \mathbb{Z}} \psi(a_n) z^{-n-1} = Y(\Delta(-J, z)a, z),$$

for $a \in W^k$.

The operator $\Delta(h, z)$ associates to every V-module M a new structure of an irreducible V-module (cf. [34]). Let us denote this new module (obtained using the mapping $a_n \mapsto \psi(a_n)$) with $\psi(M)$. As the Δ-operator acts bijectively on the set of irreducible modules, there exists an inverse $\psi^{-1}(M)$.

Remark 4.1. Operators ψ^m are also called the spectral flow automorphisms of \mathcal{W}_k (see [8, Sect. 2] and [21, Subsect. 2.2] for more details).

From the definition of $\Delta(-J,z)$ we have that

$$\psi(J(n)) = J(n) - \frac{2k + 3}{3} \delta_{n,0}, \quad \psi(L(n)) = L(n) - J(n) + \frac{2k + 3}{3} \delta_{n,0},$$

$$\psi(G^+(n)) = G^+(n - 1), \quad \psi(G^-(n)) = G^-(n + 1).$$

Let

$$L(x, y)_{\text{top}} = \{v \in L(x, y) : L(0)v = yv\},$$

and denote

$$\widehat{x}_i = x + i - 1 - \frac{2k + 3}{3}, \quad \widehat{y}_i = y - x - i + 1 + \frac{2k + 3}{3}.$$

The following was proved in [12].

Lemma 4.2 ([12, Prop. 2.3]). Let $\dim L(x, y)_{\text{top}} = i$. Then it holds that

$$\psi(L(x, y)) \cong L(\widehat{x}_i, \widehat{y}_i).$$

4.2. Necessary condition for \mathcal{W}_k-modules

Starting point in the classification of irreducible \mathcal{W}_k-modules for integer levels k is the following formula for singular vectors (cf. [9]). These generalize a construction of a family of singular vectors by T. Arakawa in [12], where he found a similar formula for singular vectors in \mathcal{W}_k at levels $k = p/2 - 3$, $p \geq 3$, p odd.

Lemma 4.3 ([9, Lem. 8.1]). Vectors

$$G^+(-1)^n \mathbb{1}, \quad G^-(-2)^n \mathbb{1}$$

are singular in \mathcal{W}_k for $n = k + 2$, where $k \in \mathbb{Z}$, $k \geq -1$.

Let

$$g(x, y) = -(3x^2 - (2k + 3)x - (k + 3)y) \in \mathbb{C}[x, y]$$

and define polynomials $h_i(x, y)$, for $i \in \mathbb{N}$ (cf. [12]) as

$$h_i(x, y) = \frac{1}{i} (g(x, y) + g(x + 1, y) + \ldots + g(x + i - 1, y))$$

$$= -i^2 + ki - 3xi + 3i - 3x^2 - k + 2kx + 6x + ky + 3y - 2.$$

The next technical lemma follows immediately from the definition of $h_i(x, y)$ and $\widehat{x}_i, \widehat{y}_i$.

Lemma 4.4. Assume that $i + j = k + 3$. Then it holds that

$$h_i(x, y) = h_j(\widehat{x}_i, \widehat{y}_i).$$
Proof. We have
\[
\begin{align*}
 h_{k+3-i}(\tilde{x}_i, \tilde{y}_i) &= (-3x^2 - 9x + 12x + 6x - 3x + 3xi - 3kx - 6xi + 4kx + 2kx - kx) \\
 &+ (ky + 3y) + (-i^2 + 2ki + 6i^2 - 6k - 9 + k^2 + 3k - k + 3i^2) \\
 &- 5ki - 15i + 2k^2 + 12k + 18 + 3k + 9 - 3i - 3i^2 + 4ki \\
 &+ 12i - \frac{4}{3}k^2 - 8k - 12k + 2ki - 2k - \frac{4}{3}k^2 + 6i - 6 - 4k \\
 &- 6 - ki + k + \frac{2}{3}k^2 + k - 3i + 3 + 2k + 1) \\
 &= (-3x^2 - 3ix + 2kx + 6x) + (ky + 3y) + (-i^2 + ki + 3i - k - 2) \\
 &= h_i(x, y). \quad \square
\end{align*}
\]

Define the set
\[
S_k = \{(x, y) \in \mathbb{C}^2 \mid \exists i, 1 \leq i \leq k + 2, \ h_i(x, y) = 0\}.
\]

In [9] we proved that in order for \(L(x, y) \) to be an irreducible ordinary \(\mathcal{W}_k \)-module, \((x, y)\) needs to belong to the set \(S_k \).

Proposition 4.5 ([9]). Let \(k \in \mathbb{Z}, k \geq -1 \). Then we have:

1. The set of equivalency classes of irreducible ordinary \(\mathcal{W}_k \)-modules is contained in the set
 \[
 \{L(x, y) \mid (x, y) \in S_k\}.
 \]

2. Every irreducible \(\mathcal{W}_k \)-module in the category \(\mathcal{O} \) is an ordinary module.

We stated the following conjecture (and proved it for \(k = -1 \) and \(k = 0 \)).

Conjecture 4.6 ([9]). The set \(\{L(x, y) \mid (x, y) \in S_k\} \) is the set of all irreducible ordinary \(\mathcal{W}_k \)-modules.

The proof of Conjecture 4.6 is reduced to showing that \(L(x, y), (x, y) \in S_k \), are indeed \(\mathcal{W}_k \)-modules. In what follows, we shall prove Conjecture 4.6.

4.3. Simple current \(\mathcal{W}_k \)-modules

First step in the proof is to construct an infinite family of irreducible \(\mathcal{W}_k \)-modules \(L(x, y) \) satisfying the conditions \(h_1(x, y) = 0 \) or \(h_{k+2}(x, y) = 0 \). We have the following important lemma.

Lemma 4.7. Assume that \(n \in \mathbb{Z}_{\geq 0} \). Define
\[
\begin{align*}
 x_{2n} &= -n \frac{k + 3}{3}, \\
 x_{2n+1} &= -n - 1 - \frac{(n + 2)k}{3}, \\
 y_{2n} &= n \frac{3(2k + (k + 3)n)}{3}, \\
 y_{2n+1} &= n + 1 \frac{3(n(k + 3) + 2k + 3)}{3}.
\end{align*}
\]

Then for each \(n \in \mathbb{Z}_{\geq 0} \) we have
\[L(x_n, y_n) \text{ is irreducible } \mathcal{W}_k\text{-module.} \]
\[\Psi^n(\mathcal{W}_k) \cong L(x_n, y_n). \]
\[h_1(x_{2n}, y_{2n}) = h_{k+2}(x_{2n+1}, y_{2n+1}) = 0. \]

Proof. By direct calculation we have

\[h_i(x_{2n}, y_{2n}) = 0 \iff i \in \{1, k + 2 + n(k + 3)\}, \]
\[h_i(x_{2n+1}, y_{2n+1}) = 0 \iff i \in \{k + 2, 2(k + 2) + n(k + 3)\}. \]

We see that \((x_n, y_n)\) is the unique solution of the following recursive relations:

\[
\begin{align*}
 x_0 &= y_0 = 0, \\
 x_{2n+1} &= x_{2n} - \frac{2k + 3}{3}, \\
 y_{2n+1} &= \hat{y}_{2n} = y_{2n} - x_{2n+1}, \\
 x_{2n+2} &= \hat{x}_{2n+1} = x_{2n+1} + \frac{k}{3}, \\
 y_{2n+2} &= \hat{y}_{2n+1} = y_{2n+1} - x_{2n+2}.
\end{align*}
\]

Then for each \(n \in \mathbb{Z}_{\geq 0}\) we have

\[L(x_n, y_n) = \Psi^n(L(0, 0)) = \Psi^n(\mathcal{W}_k). \]

So \(L(x_n, y_n)\) is an irreducible \(\mathcal{W}_k\)-module. \(\square\)

Lemma 4.8. Assume that \(n \in \mathbb{Z}_{<0}\). Define

\[
\begin{align*}
 x_{2n} &= -n \frac{k + 3}{3}, \\
 x_{2n-1} &= 1 - n - \frac{(n - 2)k}{3}, \\
 y_{2n} &= -\frac{n}{3}(k - (k + 3)n), \\
 y_{2n-1} &= -\frac{n}{3}(2k + 3 - n(k + 3)).
\end{align*}
\]

Then for each \(n \in \mathbb{Z}_{<0}\) we have

\[L(x_n, y_n) \text{ is irreducible } \mathcal{W}_k\text{-module.} \]
\[\Psi^n(\mathcal{W}_k) \cong L(x_n, y_n). \]
\[h_{k+2}(x_{2n}, y_{2n}) = h_1(x_{2n+1}, y_{2n+1}) = 0. \]

Proof. By direct calculation we have

\[h_i(x_{2n}, y_{2n}) = 0 \iff i \in \{k + 2, 1 + n(k + 3)\}, \]
\[h_i(x_{2n-1}, y_{2n-1}) = 0 \iff i \in \{1, -1 - k + n(k + 3)\}. \]

We see that \((x_n, y_n)\) is the unique solution of the following recursive relations:

\[
\begin{align*}
 x_0 &= y_0 = 0, \\
 x_{2n-1} &= x_{2n} + \frac{2k + 3}{3}, \\
 y_{2n-1} &= y_{2n} + x_{2n}, \\
 x_{2n-2} &= x_{2n-1} - \frac{k}{3}, \\
 y_{2n-2} &= y_{2n-1} + x_{2n-1}.
\end{align*}
\]
We have
\[\Psi^{-1}(L(0,0)) = \Psi^{-1}(W_k) = L \left(\frac{2k + 3}{3}, 0 \right). \]
Then for each \(n \in \mathbb{Z}_{\leq 0} \) we have
\[L(x_n, y_n) = \Psi^n(L(0,0)) = \Psi^n(W_k). \]
Hence \(L(x_n, y_n) \) is an irreducible \(W_k \)-module. \(\square \)

By using \([34, \text{Thm. 2.15}] \) (see also \([10, \text{Prop. 3.1}] \)) we get the following.

Corollary 4.9. In the fusion algebra of \(W_k \), \(L(x_n, y_n) \) are simple-current modules, i.e., the following fusion rules hold:
\[\Psi^n(W_k) \times L(x, y) = L(x_n, y_n) \times L(x, y) = \Psi^n(L(x, y)). \]

4.4. Modules \(L(x, y) \) such that \(h_1(x, y) = 0 \) or \(h_{k+2}(x, y) = 0 \)

Theorem 4.10. Assume that \(h_1(x, y) = 0 \) or \(h_{k+2}(x, y) = 0 \). Then \(L(x, y) \) is an irreducible ordinary \(W_k \)-module.

Proof. The solution of the equation \(h_1(x, y) = 0 \) is
\[y = g_1(x) = \frac{-3x - 2kx + 3x^2}{3 + k} \quad (x \in \mathbb{C}). \]

So we need to prove that \(L(x, g_1(x)) \) is an \(W_k \)-module for every \(x \in \mathbb{C} \). On the other hand, the Zhu’s algebra \(A_\omega(W_k) \) is isomorphic to a certain quotient of \(\mathbb{C}[x, y] \) by an ideal \(I \). Since \(\mathbb{C}[x, y] \) is Noetherian, the ideal \(I \) is finitely generated by finitely many polynomials, say \(P_1, \ldots, P_\ell \). Hence the highest weights \((x, y) \) of irreducible \(W_k \)-modules are solutions of the equations
\[P_i(x, y + x/2) = 0, \quad i = 1, \ldots, \ell. \]

It remains to prove that
\[P_i(x, g_1(x) + x/2) = 0, \quad \forall x \in \mathbb{C}. \]

By Lemma 4.7, we have that \(L(x, g(x)) \) are \(W_k \)-modules for \(x = x_{2n} = -n \frac{k + 3}{3} \). So we have
\[P_i(x_{2n}, g_1(x_{2n}) + x_{2n}/2) = 0, \quad i = 1, \ldots, \ell. \]

Since each \(P_i(x, g_1(x) + x/2) \) is a polynomial in one variable, and given that it already has infinitely many zeros, it follows that \(P_i(x, g_1(x) + x/2) \equiv 0 \). This proves that \(L(x, g_1(x)) \) is \(W_k \)-module for every \(x \in \mathbb{C} \).

Applying Lemma 4.4, we get that \(L(x, y) \) is a \(W_k \)-module for each solution of the equation \(h_{k+2}(x, y) = 0 \). \(\square \)

4.5. Proof of Conjecture 4.6

The proof of the conjecture is reduced to the existence of irreducible \(W_k \) modules \(L(x, y) \) such that \(h_i(x, y) = 0 \) for arbitrary \(1 \leq i \leq k + 2 \).
Lemma 4.11. Let $1 \leq i \leq k+2$. There exists an irreducible \mathcal{W}_k-module $L(x^i, y^i)$ with highest weight
\[
(x^i, y^i) = \left(\frac{1-i}{3}, \frac{(-1+i)(-1+i-k)}{3(3+k)} \right)
\]
such that $\dim L(x, y)_{\text{top}} = i$.

Proof. Note that
\[
h_j(x^i, y^i) = (i-j)(-2+j-k) = 0 \iff j \in \{i, k+2\}.
\]
By Theorem 4.10, we know that $L(x^i, y^i)$ is an \mathcal{W}_k-module. But since $h_i(x^i, y^i) = 0$ and $h_j(x^i, y^i) \neq 0$ for $j < i$, we conclude that $\dim L(x^i, y^i)_{\text{top}} = i$. The proof follows.

Now we shall continue as in the previous subsection. We will apply the automorphism Ψ and construct new infinite family of \mathcal{W}_k-modules.

Lemma 4.12. For each $n \in \mathbb{Z}_{\geq 0}$, $\Psi^n(L(x^i, y^i)) = L(x_n^i, y_n^i)$, where
\[
x_{2n}^i = \frac{1-i}{3} - \frac{k+3}{3n},
\]
\[
y_{2n}^i = \frac{(i-1)^2+k-ik+12n-3in+10kn-ikn+2k^2n+n^2(k+3)^2}{3(3+k)},
\]
\[
x_{2n+1}^i = \frac{-5+2i-3n-k(2+n)}{3},
\]
\[
y_{2n+1}^i = \frac{(i-4)^2+12k-3ik+2k^2+21n-3in+16kn-ikn+3k^2n+n^2(k+3)^2}{3(3+k)}.
\]

Proof. Using direct calculation, we get
\[
h_j(x_{2n}, y_{2n}) = (i-j)(-2+j-3n-k(1+n)),
\]
\[
h_j(x_{2n+1}, y_{2n+1}) = -(3+i+j-k)(-5+i+j-2k-3n-kn),
\]
which implies that
\[
\dim L(x_{2n}, y_{2n})_{\text{top}} = i, \quad \dim L(x_{2n+1}, y_{2n+1})_{\text{top}} = k+3-i.
\]
We see that (x_n^i, y_n^i) is the unique solution of the following recursive relations:
\[
x_0^i = x^i, \quad y_0^i = y^i,
\]
\[
x_{2n+1}^i = x_{2n}^i + (i-1) - \frac{2k+3}{3}, \quad y_{2n+1}^i = y_{2n}^i - x_{2n+1}^i,
\]
\[
x_{2n+2}^i = x_{2n+1}^i + k + 2 - i - \frac{2k+3}{3}, \quad y_{2n+2} = y_{2n+1}^i - x_{2n+2}^i.
\]
This proves that for each $n \in \mathbb{Z}_{\geq 0}$ we have
\[
L(x_n^i, y_n^i) = \Psi^n(L(x^i, y^i)).
\]
Since $L(x^i, y^i)$ is a \mathcal{W}_k-module, we have that $L(x_n^i, y_n^i)$ is an irreducible \mathcal{W}_k-module. The proof follows.
Theorem 4.13. Assume that $h_i(x, y) = 0$ for $1 \leq i \leq k + 2$. Then $L(x, y)$ is an irreducible ordinary \mathcal{W}_k-module.

Proof. By Lemma 4.12, we have that $L(x_{2n}, y_{2n})$ are \mathcal{W}_k-modules for every $n \in \mathbb{Z}_{\geq 0}$. Since $h_i(x_{2n}, y_{2n}) = 0$, we conclude that there is an infinite family of points (x, y) of the curve $h_i(x, y) = 0$ such that $L(x, y)$ is a \mathcal{W}_k-module. Applying the same argument as in the proof of Theorem 4.10, we get that $L(x, y)$ is a \mathcal{W}_k-module for every (x, y) such that $h_i(x, y) = 0$. □

Theorem 4.13 concludes the proof of Conjecture 4.6.

5. The duality of \mathcal{W}_1 and $L_{-5/4}(osp(1|2))$

In this section, we construct an embedding of the Bershadsky–Polyakov vertex algebra \mathcal{W}_1 into the tensor product of the affine vertex superalgebra $L_k(osp(1|2))$ at level $k = -5/4$ and the Clifford vertex superalgebra F. The affine vertex superalgebra $V^k(osp(1|2))$ and its modules were realized by the first named author in [3]. Moreover, we will show that $L_{-5/4}(osp(1|2))$ is the Kazama–Suzuki dual of \mathcal{W}_1 by proving that there is an embedding of \mathcal{W}_1 into F, where F is the vertex superalgebra associated to the lattice $\mathbb{Z}\sqrt{-1}$.

5.1. Affine vertex superalgebra $V^k(osp(1|2))$

Recall that $g = osp(1, 2)$ is the simple complex Lie superalgebra with basis $\{e, f, h, x, y\}$ such that the even part is $g^0 = \text{span}_\mathbb{C}\{e, f, h\}$ and the odd part is $g^1 = \text{span}_\mathbb{C}\{x, y\}$.

The anti-commutation relations are given by

\begin{align*}
[e, f] &= h, \quad [h, e] = 2e, \quad [h, f] = -2f, \\
[h, x] &= x, \quad [e, x] = 0, \quad [f, x] = -y, \\
[h, y] &= -y, \quad [e, y] = -x, \quad [f, y] = 0, \\
\{x, x\} &= 2e, \quad \{x, y\} = h, \quad \{y, y\} = -2f.
\end{align*}

Choose the nondegenerate super-symmetric bilinear form (\cdot, \cdot) on g such that nontrivial products are given by

\begin{align*}
(e, f) &= (f, e) = 1, \quad (h, h) = 2, \quad (x, y) = -(y, x) = 2.
\end{align*}

Let $\hat{g} = g \otimes \mathbb{C}[t, t^{-1}] + CK$ be the associated affine Lie superalgebra, and $V^k(g)$ (resp. $L_k(g)$) the associated universal (resp. simple) affine vertex superalgebra. As usual, we identify $x \in g$ with $x(-1)1$.

The Sugawara conformal vector of $V^k(osp(1, 2))$ is given by

$$\omega_{\text{sug}} = \frac{1}{2K + 3} \left(: ef : + : fe : + \frac{1}{2} : hh : - \frac{1}{2} : xy : + \frac{1}{2} : yx : \right).$$

The notion of Ramond–twisted modules is defined as usual in the case of affine vertex superalgebras [30] (see also [40]).
Recall also the spectral flow automorphism ρ for $\widetilde{osp}(1|2)$:
\[
\rho e(n) = e(n - 2), \quad \rho x(n) = x(n - 1), \quad \rho f(n) = f(n + 2), \\
\rho y(n) = y(n + 1) \quad \rho h(n) = h(n) - 2\delta_{n,0}K, \quad (n \in \mathbb{Z}).
\]

As in the case of the automorphism Ψ of the \mathcal{W}_k, one shows that for any $L_k(osp(1|2))$-module $(M, Y_{\rho^n(1)}(\cdot, z))$ and $n \in \mathbb{Z}$, $\rho^n(M)$ is again a $L_k(osp(1|2))$-module with vertex operator structure given by
\[
Y_{\rho^n(M)}(\cdot, z) := Y_M(\Delta(-n h, z)\cdot, z)
\]
(see also [4, Prop. 2.1] for the proof of similar statement for spectral-flow automorphism of $L_k(sl(2))$, and [10, Prop. 3.1] in the case of $\beta - \gamma$ system).

5.2. Embedding of \mathcal{W}_1 into $L_{-5/4}(osp(1|2)) \otimes F$

The free field realization of $L_k(osp(1|2))$ is presented in [3]. In what follows, we will show that the simple Bershadsky–Polyakov algebra \mathcal{W}_1 can be embedded into $L_{-5/4}(osp(1|2)) \otimes F$, where F is the Clifford vertex superalgebra introduced in Section 2.3.

Set
\[
\tau^+ =: \Psi^+ x :, \quad \tau^- =: \Psi^- y :.
\]

Let $\alpha =: \Psi^+ \Psi^- :$. Then
\[
\omega_F = \frac{1}{2} : \alpha \alpha :.
\]

Denote by $M_{h^\perp}(1)$ the Heisenberg vertex algebra generated by $h^\perp = \alpha - h$. For $s \in \mathbb{C}$, denote by $M_{h^\perp}(1,s)$ the irreducible $M_{h^\perp}(1)$-module on which $h^\perp(0)$ acts as s. Note that $h^\perp(1)h^\perp = -\frac{3}{2}$. The Virasoro vector of central charge $c = 1$ in $M_{h^\perp}(1)$ is $\omega^\perp = -\frac{1}{3} h^\perp(-1)^2$. The following lemma can be proved easily using results from [34], [36].

Lemma 5.1. Consider the $M_{h^\perp}(1)$-module $M_{h^\perp}(1,s)$ with the vertex operator $Y_s(\cdot, z)$. Then for every $n \in \mathbb{Z}$
\[
(\overline{M_{h^\perp}(1,s)}, \overline{Y_s(\cdot, z)}) := (M_{h^\perp}(1,s), Y_s(\Delta(-\frac{2n}{3} h^\perp, z)\cdot, z))
\]
is an irreducible $M_{h^\perp}(1)$-module isomorphic to $M_{h^\perp}(1, n + s)$.

Theorem 5.2.

(i) There is a nontrivial homomorphism of vertex algebras
\[
\Phi : \mathcal{W}_1 \rightarrow L_{-5/4}(osp(1|2)) \otimes F
\]
uniquely determined by

\[G^+ = 2\tau^+ = 2 : \Psi^+ x : , \]
\[G^- = 2\tau^- = 2 : \Psi^- y : , \]
\[J = \frac{5}{3} \alpha - \frac{2}{3} h , \]
\[T = \omega_{\text{sug}} + \omega_F - \omega^\perp . \]

(ii) \(\text{Im}(\Phi) \) is isomorphic to the simple vertex algebra \(W_1 \).

(iii) As a \(W_1 \otimes M_{h^+}(1) \)-module,

\[
L_{-5/4}(osp(1|2)) \otimes F \cong \bigoplus_{n \in \mathbb{Z}} \Psi^{-n}(W_1) \otimes M_{h^+}(1, n) \\
= \bigoplus_{n \in \mathbb{Z}} L(x_n, y_n) \otimes M_{h^+}(1, -n).
\]

(iv) We have \(\text{Com}(M_{h^+}(1), L_{-5/4}(osp(1|2)) \otimes F) \cong W_1 \).

Proof. Let \(k = 1 \). Using the formula

\[
(\Psi^+_1 x)_n = \sum_{i=0}^{\infty} (\Psi^+_{1-i} x(n + i) - x(n - i - 1) \Psi^+_i)
\]

we obtain

\[
\tau_2^+ \tau^- = -2k' \mathbb{1},
\]
\[
\tau_1^+ \tau^- = -2k' \alpha - h ,
\]
\[
\tau_0^+ \tau^- = -\alpha h : xy : -2k' : D \Psi^+ \Psi^- : .
\]

From the above formulas and OPE relations for \(\mathcal{W}^k \), it follows that for \(k = 1 \), \(k' \)
needs to be equal to \(-5/4\). For level \(k' = -5/4 \), there exists a conformal embedding
of \(L_{k'}(sl(2)) \) into \(L_{k'}(osp(1|2)) \) (cf. [7]), that is,

\[\omega_{\text{sug}} = \omega_{sl(2)} , \]

where

\[
\omega_{sl(2)} = \frac{1}{2(k' + 2)} \left(: e f : + : f e : + \frac{1}{2} : h h : \right) .
\]

We have

\[
G_2^+ G^- = 4\tau_2^+ \tau^- = 10 \mathbb{1} = (k + 1)(2k + 3) \mathbb{1},
\]
\[
G_1^+ G^- = 4\tau_1^+ \tau^- = -4 \left(-\frac{5}{2} \alpha + h \right) = 10 \alpha - 4h = 6J = 3(k + 1)J,
\]
\[
G_0^+ G^- = 4\tau_0^+ \tau^- = -4 : h \alpha : -4 : xy : +5 : \alpha \alpha : +5D \alpha .
\]
Using the realization in [3] and the fact that there is a conformal embedding of \(L_{-5/4}(sl(2)) \) into \(L_{-5/4}(osp(1|2)) \), it follows that

\[
\omega_{\text{sug}} = \frac{1}{2}(xy : -yx :) =: xy : -\frac{1}{2} Dh.
\]

This implies that

\[
T =: xy : -\frac{1}{2} Dh + \frac{1}{2} : \alpha \alpha : + \frac{1}{3} (\alpha \alpha : + hh : -2 : \alpha h :)
\]

\[
=: xy : -\frac{1}{2} Dh + \frac{5}{6} : \alpha \alpha : + \frac{1}{3} : hh : -\frac{2}{3} : \alpha h : .
\]

Hence

\[
G^+_0 G^- = -4 : h\alpha : -4 : xy : + 5 : \alpha \alpha : + 5D\alpha
\]

\[
= 3 : J^2 : + 3 : DJ : -4T
\]

\[
= 3 : J^2 : + \frac{3(k + 1)}{2} : DJ : -(k + 3)T.
\]

This proves assertion (i).

Let us prove that \(\overline{W}_1 = \text{Im}(\Phi) \) is simple.

Let \(\overline{W} = \text{Ker}_{L_{-5/4}(osp(1,2)) \otimes Fh^\perp}(0) \). It is clear that \(\overline{W} \) is a simple vertex algebra which contains \(\overline{W}_1 \otimes M_{h^\perp}(1) \).

The simplicity of \(\overline{W}_1 \) follows from the following claim.

Claim 1. \(\overline{W} \) is generated by \(G^+, G^-, J, T, h^\perp \).

For completeness, we shall include a proof of Claim 1.

Let \(U \) be the vertex subalgebra of \(\overline{W} \) generated by \(\{G^+, G^-, J, T, h^\perp\} \). Then clearly \(U \cong \overline{W}_1 \otimes M_{h^\perp}(1) \).

Let \(U^{(n)} \) be the \(U \)-module obtained by the simple current construction

\[
(U^{(n)}, Y^{(n)}(\cdot, z)) := (U, Y(\Delta(n\alpha, \cdot), z)).
\]

Note next that \(\alpha = J - \frac{2}{3} h^\perp \), which implies that

\[
\Delta(\alpha, z) = \Delta\left(-\frac{2}{3} h^\perp, z\right) \Delta(J, z).
\]

- For a \(\overline{W}_1 \)-module \(W \), by applying the operator \(\Delta(nJ, z) \), we get the module \(\Psi^{-n}(W) \).
- Using Lemma 5.1, we see that by applying the operator \(\Delta(-\frac{2}{3} n h^\perp, z) \) on \(M_{h^\perp}(1) \), we get the module \(M_{h^\perp}(1) \)-module \(M_{h^\perp}(1, n) \).

We get

\[
U^{(n)} = \Psi^{-n}(\overline{W}_1) \otimes M_{h^\perp}(1, n).
\]
Since by the boson-fermion correspondence F is isomorphic to the lattice vertex superalgebra $V_{2\alpha}$, we get that $U^{(n)}$ is realized inside of $L_{-5/4}(osp(1|2)) \otimes F$:

$$U^{(n)} \cong U.e^{n\alpha}.$$

Note that $h^\perp(0) \equiv n \text{Id}$ on $U^{(n)}$. Using H. Li construction from [36] (see also [28]), we get that

$$U = \bigoplus U^{(n)}$$

is a vertex subalgebra of $L_{-5/4}(osp(1|2)) \otimes F$. But one shows that U contains all generators of $L_{-5/4}(osp(1|2)) \otimes F$, so

$$U = L_{-5/4}(osp(1|2)) \otimes F.$$

This proves that $U = \overline{W} \cong \overline{W}_1 \otimes M_{h^\perp}(1)$. Since \overline{W} is simple, we have that \overline{W}_1 is simple, and therefore isomorphic to W_1. This proves Claim 1.

The decomposition (iii) follows from relations (3)–(5). The assertion (iv) follows directly from (iii). □

The proof of the following result is similar to the one given in [4, Thm. 6.2] and [10, Thm. 5.1].

Theorem 5.3. Assume that N (resp. N^{tw}) is an irreducible, untwisted (resp. Ramond twisted) $L_{-5/4}(osp(1|2))$-module such that $h(0)$ acts semisimply on N and N^{tw}:

$$N = \bigoplus_{s \in \mathbb{Z} + \Delta} N^s, \quad h(0)|N^s \equiv s \text{Id} \quad (\Delta \in \mathbb{C}),$$

$$N^{tw} = \bigoplus_{s \in \mathbb{Z} + \Delta'} (N^{tw})^s, \quad h(0)|(N^{tw})^s \equiv s \text{Id} \quad (\Delta' \in \mathbb{C}).$$

Then $N \otimes F$ and $N^{tw} \otimes M^{tw}_F$ are completely reducible W_1-modules:

$$N \otimes F = \bigoplus_{s \in \mathbb{Z}} \mathcal{L}_s(N), \quad \mathcal{L}_s(N) = \{ v \in N \otimes F \mid h^\perp(0)v = (s + \Delta)v \},$$

$$N^{tw} \otimes M^{tw}_F = \bigoplus_{s \in \mathbb{Z}} \mathcal{L}_s(N^{tw}), \quad \mathcal{L}_s(N^{tw}) = \{ v \in N^{tw} \otimes M^{tw}_F \mid h^\perp(0)v = (s + \Delta')v \},$$

and each $\mathcal{L}_s(N)$ and $\mathcal{L}_s(N^{tw})$ are irreducible W_1-modules.

5.3. Embedding of $L_{-5/4}(osp(1|2))$ into $W_1 \otimes F_{-1}$

In this section, we consider the tensor product of W_1 with the lattice vertex superalgebra F_{-1} (defined in Section 2.4). We will show that the simple affine vertex superalgebra $L_{-5/4}(osp(1|2))$ can be realized as a subalgebra of $W_1 \otimes F_{-1}$.

Let $\overline{h} = J + \varphi$. Then for $n \geq 0$ we have $\overline{h}(n)\overline{h} = \frac{2}{3} \delta_{n,1}1$. Let $M_{\overline{h}}(1)$ be the Heisenberg vertex algebra generated by \overline{h}, and $M_{\overline{h}}(1, s)$ the irreducible highest weight $M_{\overline{h}}(1)$-module on which $\overline{h}(0) \equiv s \text{Id}$.

1345
There is a homomorphism of vertex algebras $\Phi^{\text{inv}} : L_{-5/4}(osp(1|2)) \to \mathcal{W}_1 \otimes F_{-1}$ uniquely determined by

$$
\begin{align*}
 x &= \frac{1}{2} : G^+ e^{\varphi} :, \\
 y &= -\frac{1}{2} : G^- e^{-\varphi} :, \\
 e &= \frac{1}{8} : (G^+) e^{2\varphi} :, \\
 f &= -\frac{1}{8} : (G^-) e^{-2\varphi} :, \\
 h &= -\frac{3}{2} J - \frac{5}{2} \varphi.
\end{align*}
$$

We have $\mathcal{W}_1 \otimes F_{-1} \cong \bigoplus_{n \in \mathbb{Z}} \rho^n(L_{-5/4}(osp(1|2))) \otimes M_{\mathcal{F}}(1,-n)$.

Direct calculation shows that

$$
\begin{align*}
 x(1)y &= -\frac{1}{4} G_2^+ G = -\frac{(k + 1)(2k + 3)}{4} = -\frac{5}{4} (x,y) \mathbf{1} = -\frac{5}{2} \mathbf{1}, \\
 x(0)y &= -\frac{1}{4} (\varphi(-1)G_2^+ G + G_1^+ G) = -\frac{(k + 1)(2k + 3)}{4} \varphi - \frac{3(k+1)}{4} J \\
 &= -\frac{5}{2} \varphi - \frac{3}{2} J = h, \\
 x(0)x &= 2e, \\
 x(0)e &= 0, \\
 y(0)y &= -2f, \\
 y(0)e &= 0, \\
 y(0)f &= 0 \\
 (\text{note that above we used relations } (G^\pm)^3 = 0), \\
 h(0)x &= x, \\
 h(0)y &= -y, \\
 h(1)h &= \frac{9}{4} J_1 J + \frac{25}{4} \varphi(1) \varphi = \left(\frac{9}{4} \frac{2k+3}{3} - \frac{25}{4} \right) = -\frac{5}{2} \mathbf{1} = -\frac{5}{4} (h,h) \mathbf{1}, \\
 h(0)e &= -\frac{3}{16} J_0 (G^+) e^{2\varphi} - \frac{5}{16} (G^+) \varphi(0) e^{2\varphi} \\
 &= -\frac{3}{8} (G^+) e^{2\varphi} + \frac{5}{8} (G^+) e^{2\varphi} = \frac{1}{4} (G^+) e^{2\varphi} = 2e, \\
 h(0)f &= \frac{3}{16} J_0 (G^-) e^{-2\varphi} + \frac{5}{16} (G^-) \varphi(0) e^{-2\varphi} \\
 &= -\frac{3}{8} (G^-) e^{-2\varphi} + \frac{5}{8} (G^-) e^{-2\varphi} = \frac{1}{4} (G^-) e^{-2\varphi} = -2f.
\end{align*}
$$

Proof. We need to show that the following relations hold for $n \geq 0$:

$$
\begin{align*}
 h(n)x &= \delta_{n,0} x, \\
 e(n)x &= 0, \\
 x(n)f &= \delta_{n,0} y, \\
 h(n)y &= -\delta_{n,0} y, \\
 e(n)y &= -\delta_{n,0} x, \\
 f(n)y &= 0, \\
 x(n)x &= 2\delta_{n,0} e, \\
 y(n)y &= -2\delta_{n,0} f, \\
 x(0)y &= h, \\
 x(1)y &= -\frac{5}{2} \mathbf{1}, \\
 h(0)e &= 2e, \\
 h(0)f &= -2f, \\
 e(0)f &= h.
\end{align*}
$$

Theorem 5.4.
We use the formula (cf. [9, Sect. 8.1])
\[G_2^+(G^-)^n = 2n(k - (n - 2))(k - (n - 2) + n/2)(G^-)^{n-1}, \]
\[G_1^+(G^-)^n = 3n(k - (n - 2))J_1(G^-)^{n-1} + n(n - 1)(k - (n - 2))G_{-2}(G^-)^{n-2}, \]
which implies that for \(n = 2 \) and \(k = 1 \) we get
\[G_2^+(G^-)^2 = (4 \ast 1 \ast 2)G^- = 8G^- .\]

We have
\[x(0)f = -\frac{1}{16} G_2^+(G^-)^2 e^{-\varphi} = -\frac{1}{16} 8G^- e^{-\varphi} = -\frac{1}{2} G^- e^{-\varphi} = y, \]
\[e(0)y = -\frac{1}{16} (2G_{-1} G_2^+ G^- e^\varphi - 2G_0^+ G_1^+ G^- e^\varphi) \]
\[= -\frac{1}{16} (2(k + 1)(2k + 3)G^+ e^\varphi + 6(k + 1)G_0^+ J_1 e^\varphi) \]
\[= -\frac{1}{16} (20G^+ e^\varphi - 12G^+ e^\varphi) = -\frac{1}{2} G^+ e^\varphi = -x, \]
\[e(0)f = -\frac{1}{64} (2G_1^+ G_2^+(G^-)^2 + (G_2^+)^2(G^-)^2 2\varphi) = -\frac{1}{64} (16G_1^+ G^- + 16G_2^+ G^- \varphi) \]
\[= -\frac{1}{64} (16 \cdot 3(k + 1)J + 16(k + 1)(2k + 3)\varphi) = -\frac{3}{2} J - \frac{5}{2} \varphi = h. \]

The operator \(\overline{h}(0) \) acts semisimply on \(W_1 \otimes F_{-1} \) and we have the following decomposition:
\[W_1 \otimes F_{-1} = \bigoplus_{n \in \mathbb{Z}} Z^{(n)}, \quad Z^{(n)} = \{ v \in W_1 \otimes F_{-1} \mid \overline{h}(0)v = nv \}. \]

We have that \(Z^{(0)} \) is a simple vertex superalgebra and each \(Z^{(n)} \) is a simple \(Z^{(0)} \)-module. The rest of the proof follows from the following claim.

Claim 2. \(Z^{(0)} = \ker_{W_1 \otimes F_{-1}} \overline{h}(0) \) is generated by \(\{ x, y, e, f, h, \overline{h} \} \).

The proof of Claim 2 is completely analogous to the proof of Claim 1. These arguments are also similar to those in [4, Thm. 6.2], [6, Prop. 5.4], [18, Sect. 5] in a slightly different setting.

Claim 2 implies that
\[Z^{(0)} \cong L_{-5/4}(osp(1|2)) \otimes M_{\overline{h}}(1). \]

As in the proof of Theorem 5.2, using formula
\[\Delta(n\varphi, z) = \Delta(-nh, z) \Delta\left(-\frac{3n}{2} \overline{h}, z \right), \]
we get
\[Z^{(-n)} = \rho^n(L_{-5/4}(osp(1|2))) \otimes M_{\overline{h}}(1, -n). \]

The decomposition (ii) follows now from relations (6) and (7). The assertion (iii) is a direct consequence of (ii).

This concludes the proof of the theorem. □
5.4. Parafermion subalgebras
Following [11] we define
\[C_\ell = \text{Com}(M_J(1), \mathcal{W}_{\ell-3/2}(sl(3), f_{\text{min}})), \]
where \(M_J(1) \) is the Heisenberg subalgebra of \(\mathcal{W}_{\ell-3/2}(sl(3), f_{\text{min}}) \) generated by the Heisenberg field \(J(z) \). For \(g = sl(2) \) or \(g = osp(1|2) \), let
\[N_k(g) = \text{Com}(M_h(1), L_k(g)) \]
be the parafermion subalgebra of \(L_k(g) \), where \(M_h(1) \) is the Heisenberg subalgebra generated by the field \(h(z) \). Set \(k' = -5/4 \) as before. Using the following decomposition of the conformal embedding from [7],
\[L_{k'}(osp(1|2)) = L_{k'}(sl(2)) \oplus L_{k'}(\omega_1), \]
we get \(N_{k'}(osp(1|2)) = N_{k'}(sl(2)) \).
The results of our paper give an explicit realization of the isomorphism
\[N_{k'}(sl(2)) \cong C_{5/2}. \]
Indeed, from Theorem 5.2 we get the embedding
\[\Phi|_{N_{k'}(sl(2))} : N_{k'}(sl(2)) \hookrightarrow C_{5/2}. \]
Theorem 5.4 gives the opposite embedding
\[\Phi^{\text{inv}}|_{C_{5/2}} : C_{5/2} \hookrightarrow N_{k'}(sl(2)). \]
The same conclusion can be also obtained from [38]:
- [38, Thm. 10.3] implies that \(N_{k'}(sl(2)) = \mathcal{W}_{k'}(sl(5), f_{\text{princ}}) \),
- [38, Thm. 10.4] implies that \(C_{5/2} = \mathcal{W}_{k'}(sl(5), f_{\text{princ}}) \).

6. From relaxed \(L_{-5/4}(osp(1|2)) \)-modules to ordinary \(\mathcal{W}_1 \)-modules

The free-field realization of the affine vertex superalgebra \(L_{k'}(osp(1|2)) \) and its irreducible modules was obtained in [3]. Specifically for \(k' = -5/4 \), it holds that \(L_{k'}(osp(1|2)) \) can be realized on the vertex superalgebra \(F^{1/2} \otimes \Pi^{1/2}(0) \), where \(\Pi^{1/2}(0) \) is a certain lattice type vertex algebra (cf. [3, Thm. 11.3]). All irreducible \(L_{k'}(osp(1|2)) \)-modules can be constructed using this realization.

In this section, we will construct an explicit realization of irreducible \(\mathcal{W}_1 \)-modules, using the fact that the Bershadsky–Polyakov algebra \(\mathcal{W}_1 \) can be embedded into \(L_{k'}(osp(1|2)) \otimes F \), where \(F \) is a Clifford vertex superalgebra (cf. Theorem 5.2).

6.1. Relaxed \(L_{k'}(osp(1|2)) \)-modules

The vertex algebra \(\Pi^{1/2}(0) \) was introduced in [3], where
\[\Pi^{1/2}(0) = M(1) \otimes \mathbb{C}[\mathbb{Z}^C_2]. \]
It is closely related to the lattice-type vertex algebra \(\Pi(0) \) from [14]. Here \(c := \frac{2}{k}(\mu - \nu) \), where \(\mu, \nu \) satisfy \(\langle \mu, \mu \rangle = -\langle \nu, \nu \rangle = \frac{k}{2}, \langle \mu, \nu \rangle = \langle \nu, \mu \rangle = 0 \). It is easy to see that \(g = \exp(\pi i \mu(0)) \) is an automorphism of order two for \(\Pi^{1/2}(0) \).

We will need the following fact about \(\Pi^{1/2}(0) \)-modules from [3].
Proposition 6.1 ([3, Prop. 4.1]). Let $\lambda \in \mathbb{C}$ and $g = \exp(\pi i \mu(0))$. Then $\Pi_{-1}^{1/2}(\lambda) := \Pi_{-1}^{1/2}(0)e^{-\mu + \lambda c}$ is an irreducible g-twisted $\Pi^{1/2}(0)$-module.

Using the realization of \mathcal{W}_1, we have the following.

Lemma 6.2. If U^{tw} is any g-twisted $\Pi^{1/2}(0)$-module, then $F \otimes M_{F^{1/2}}^\pm \otimes U^{tw}$ and $M_{F^w}^\pm \otimes F^{1/2} \otimes U^{tw}$ are \mathcal{W}_1-modules.

Proof. In [3, Cor. 13.1] it was proved that if U^{tw} is any g-twisted $\Pi^{1/2}(0)$-module, then $M_{F^{1/2}}^\pm \otimes U^{tw}$ is an untwisted $L_{-5/4}(osp(1,2))$-module, and $F^{1/2} \otimes U^{tw}$ is a Ramond twisted $L_{-5/4}(osp(1,2))$-module. The claim now follows from the realization of the vertex algebra \mathcal{W}_1 in Theorem 5.2. \qed

We will consider the following $F^{1/2} \otimes \Pi(0)$-modules:

- $\sigma_{F^{1/2}} \otimes g$-twisted module $\mathcal{F}_\lambda := M_{F^{1/2}}^\pm \otimes \Pi_{-1}^{1/2}(\lambda)$,
- $g = 1 \otimes g$-twisted module $\mathcal{E}_\lambda := F^{1/2} \otimes \Pi_{-1}^{1/2}(\lambda)$.

First we recall the result from [3].

Proposition 6.3 ([3, Thm. 13.2]). \mathcal{F}_λ is an untwisted, relaxed $L_{-5/4}(osp(1,2))$-module. \mathcal{F}_λ is irreducible if and only if $\lambda \notin \frac{1}{2} + \frac{1}{2}\mathbb{Z}$.

Using irreducibility of relaxed $L_{-5/4}(sl(2))$-modules we get the following proposition.

Proposition 6.4.

1. \mathcal{E}_λ is a Ramond twisted $L_{-5/4}(osp(1,2))$-module.
2. $\mathcal{E}_\lambda = \mathcal{E}_\lambda^0 \oplus \mathcal{E}_\lambda^1$, where as $L_{-5/4}(sl(2))$-modules
 \[
 \mathcal{E}_\lambda^0 = L^{Vir}(\frac{1}{2}, 0) \otimes \Pi_{-1}(\lambda) \bigoplus L^{Vir}(\frac{1}{2}, \frac{1}{2}) \otimes \Pi_{-1}(\lambda + \frac{1}{2}),
 \]
 \[
 \mathcal{E}_\lambda^1 = L^{Vir}(\frac{1}{2}, 0) \otimes \Pi_{-1}(\lambda + \frac{1}{2}) \bigoplus L^{Vir}(\frac{1}{2}, \frac{1}{2}) \otimes \Pi_{-1}(\lambda).
 \]
3. \mathcal{E}_λ^0 (resp. \mathcal{E}_λ^1) is irreducible Ramond twisted $L_{-5/4}(osp(1,2))$-modules if $\lambda \notin \mathbb{Z} \cup (-\frac{1}{4} + \frac{1}{2}\mathbb{Z})$ (resp. $\lambda + \frac{1}{2} \notin \mathbb{Z} \cup (-\frac{1}{4} + \frac{1}{2}\mathbb{Z})$).

Proof. Using Proposition 6.1 and Lemma 6.2, we see that \mathcal{E}_λ is Ramond twisted $L_{-5/4}(osp(1|2))$-module. This proves (1). Since as a module for the Virasoro vertex algebra $L^{Vir}(\frac{1}{2}, 0)$
\[
F^{1/2} = L^{Vir}(\frac{1}{2}, 0) \oplus L^{Vir}(\frac{1}{2}, \frac{1}{2}),
\]
and as a $\Pi(0)$-module
\[
\Pi_{-1}^{1/2}(\lambda) = \Pi_{-1}(\lambda) \oplus \Pi_{-1}(\lambda + \frac{1}{2}),
\]
we easily get the decomposition in (2). Using the irreducibility results from [3] and [32], we get that as $L_{-5/4}(sl(2))$-modules:

- $L^{Vir}(\frac{1}{2}, 0) \otimes \Pi_{-1}(\lambda)$ is irreducible iff $\lambda \notin -\frac{1 \pm 1}{8} + \mathbb{Z}$,
- $L^{Vir}(\frac{1}{2}, \frac{1}{2}) \otimes \Pi_{-1}(\lambda + 1)$ is irreducible iff $\lambda + \frac{1}{2} \notin -\frac{1 \pm 1}{8} + \mathbb{Z}$,
- $L^{Vir}(\frac{1}{2}, \frac{1}{2}) \otimes \Pi_{-1}(\lambda)$ is irreducible iff $\lambda \notin -\frac{1 \pm 5}{8} + \mathbb{Z}$,
- $L^{Vir}(\frac{1}{2}, \frac{1}{2}) \otimes \Pi_{-1}(\lambda + 1)$ is irreducible iff $\lambda + \frac{1}{2} \notin -\frac{1 \pm 5}{8} + \mathbb{Z}$.

One easily see that all the modules appearing above are irreducible as \(L_{-5/4}(sl(2)) \)-modules if and only if \(\lambda \notin \frac{1}{4} \mathbb{Z} \). Using the decomposition

\[
L_{-5/4}(osp(1\,|\,2)) = L_{-5/4}(sl(2)) \oplus L_{-5/4}(\omega_1),
\]

we easily see that as (Ramond twisted) \(L_{-5/4}(osp(1\,|\,2)) \)-modules

- \(\mathcal{E}^0_\lambda \) is irreducible iff \(\lambda \notin \mathbb{Z} \cup (-\frac{1}{4} + \mathbb{Z}) \),
- \(\mathcal{E}_\lambda^1 \) is irreducible iff \(\lambda + \frac{1}{2} \notin \mathbb{Z} \cup (-\frac{1}{4} + \mathbb{Z}) \).

The proof follows. \[\square\]

6.2. Explicit realization of \(\mathcal{W}_1 \)-modules

From Theorem 4.13 it follows that the set

\[
\{ L(x, y) \mid (x, y) \in \mathbb{C}^2, \ h_i(x, y) = 0, \ 1 \leq i \leq 3 \}
\]

is the set of all irreducible ordinary \(\mathcal{W}_1 \)-modules. Now we will construct explicit realizations of these modules, using results from the previous subsection.

Lemma 6.5. The irreducible highest weight \(\mathcal{W}_1 \) modules

\[
T_{(2)} := \{ L(x, y) \mid (x, y) \in \mathbb{C}^2, \ h_2(x, y) = 0 \}
\]

are realized as irreducible quotients of

\[
U_{(2)}(\lambda) = \mathcal{W}_1.E^\lambda_2, \ \ \lambda \in \mathbb{C},
\]

where \(E^\lambda_2 = 1_F \otimes 1_M^{tw}_{F^{1/2}} \otimes e^{-\mu + \lambda c} \) are highest weight vectors for \(\mathcal{W}_1 \) of highest weight

\[
(x_\lambda, y_\lambda) := \left(-\frac{2}{3}(-k + 2\lambda), -\frac{1}{4} + \frac{1}{3}(-k + 2\lambda)^2 + \frac{1}{3}(-k + 2\lambda) \right). \quad (8)
\]

Proof. Consider the \(\sigma_{F^{1/2}} \otimes g \)-twisted \(F \otimes F^{1/2} \otimes \Pi^{1/2}(0) \)-module \(\mathcal{F}_{(2)}(\lambda) := F \otimes M_{F^{1/2}}^{\pm} \otimes \Pi^{1/2}_{-1}(\lambda) \). Then \(\mathcal{F}_{(2)}(\lambda) \) is an untwisted \(\mathcal{W}_1 \)-module. It holds that (cf. [3])

\[
h(n)E^\lambda_2 = \delta_{n,0}(-k + 2\lambda)E^\lambda_2,
\]

\[
L_{sug}(n)E^\lambda_2 = -\frac{1}{4} \delta_{n,0}E^\lambda_2, \quad n \in \mathbb{Z}_{\geq 0}.
\]

We have

\[
J(0)E^\lambda_2 = -\frac{2}{3}(-k + 2\lambda)E^\lambda_2,
\]

\[
L(0)E^\lambda_2 = \left(-\frac{1}{4} + \frac{1}{3}(-k + 2\lambda)^2 + \frac{1}{3}(-k + 2\lambda) \right) E^\lambda_2
\]

\[
= \frac{1}{12} (2(-k + 2\lambda) + 3)(2(-k + 2\lambda) - 1) E^\lambda_2.
\]
Set $x_{\lambda} := -\frac{2}{3}(-k + 2\lambda)$ and $y_{\lambda} := \frac{1}{12}(2(-k + 2\lambda) + 3)(2(-k + 2\lambda) - 1)$, so that

$$J(0)E_2^\lambda = x_{\lambda}E_2^\lambda, \quad L(0)E_2^\lambda = y_{\lambda}E_2^\lambda.$$

Since $y = \frac{3}{4}x^2 - \frac{1}{2}x - \frac{1}{4}$, the pair $(x_{\lambda}, y_{\lambda}) \in \mathbb{C}^2$ satisfies the relation

$$h_2(x, y) = -3x^2 + 2x + 1 + 4y = 0.$$

Hence W_1 has a family of highest weight modules $U_{(2)}(\lambda), \lambda \in \mathbb{C}$, with highest weights (x, y). In particular, their irreducible quotients $L(x, y)$ are also modules for W_1. □

We have the following irreducibility result.

Proposition 6.6. Assume that $\lambda \notin \frac{1}{8} + \frac{1}{2}\mathbb{Z}$. Then $F_\lambda \otimes F$ is a completely reducible $W_1 \otimes M_{h_+}(1)$-module:

$$F_\lambda \otimes F \cong \bigoplus_{n \in \mathbb{Z}} \Psi^{-n}(L(x_{\lambda}, y_{\lambda})) \otimes M_{h_+}(1, \Delta + n)$$

where $\Delta = k - 2\lambda$ and weights $(x_{\lambda}, y_{\lambda})$ are given by (8). In particular, $U_{(2)}(\lambda)$ is an irreducible W_1-module and it holds that

$$U_{(2)}(\lambda) = L(x_{\lambda}, y_{\lambda}).$$

Proof. Since F_λ is an irreducible $L_{-5/4}(osp(1, 2))$-module for $\lambda \notin \frac{1}{8} + \frac{1}{2}\mathbb{Z}$, (cf. Proposition 6.3), by applying Theorem 5.3 we see that $F_\lambda \otimes F$ is a completely reducible $W_1 \otimes M_{h_+}(1)$-module:

$$F_\lambda \otimes F \cong \bigoplus_{n \in \mathbb{Z}} \mathcal{L}_n(F_\lambda),$$

where

$$
\mathcal{L}_n(F_\lambda) = \{v \in F_\lambda \otimes F \mid h_+^+ (0)v = (n + \Delta)v \}
$$
is an irreducible $W_1 \otimes M_{h_+}(1)$-module. By using Lemma 6.5, we see that $\mathcal{L}_0(F_\lambda)$ must be isomorphic to the irreducible highest weight module $L(x_{\lambda}, y_{\lambda}) \otimes M_{h_+}(1, \Delta)$. Since $\Psi^{-n}(W_1) \otimes M_{h_+}(1, n)$ are simple-current $W_1 \otimes M_{h_+}(1)$-modules, we get that

$$
\mathcal{L}_n(F_\lambda) = (\Psi^{-n}(W_1) \otimes M_{h_+}(1, n)) \times (L(x_{\lambda}, y_{\lambda}) \otimes M_{h_+}(1, \Delta))
= \Psi^{-n}(L(x_{\lambda}, y_{\lambda})) \otimes M_{h_+}(1, \Delta + n)
$$

for every $n \in \mathbb{Z}$. (Here “×” denotes the fusion product in the category of $W_1 \otimes M_{h_+}(1)$-modules).

The proof follows. □

Lemma 6.7. W_1 has a family of irreducible highest weight modules

$$T_{(1)} := \{L(x, y) \mid (x, y) \in \mathbb{C}^2, \ h_1(x, y) = 0\}$$

which are realized as irreducible quotients of

$$U_{(1)}(\lambda) = W_1.E_1^\lambda, \quad \lambda \in \mathbb{C},$$

where $E_1^\lambda := 1_{F_1^0} \otimes 1_{F_{1/2}} \otimes e^{-\mu + \lambda c}$ are highest weight vectors for W_1.

Proof. Consider the $\sigma_F \otimes g$-twisted $F \otimes F^{1/2} \otimes \Pi^{1/2}(0)$-module $\mathcal{F}(\lambda) := M_{F}^{tw} \otimes F^{1/2} \otimes \Pi^{1/2}(\lambda)$, $\lambda \in \mathbb{C}$. Then $\mathcal{F}(\lambda)$ is an untwisted \mathcal{W}_1-module.

Let $Y^{tw}_F(\omega, z) = Y(\Delta(h, z)\omega, z)$ and set $h = \frac{a}{2}$. We have

$$\Delta\left(\frac{\alpha}{2}, z\right)\omega = \omega + \frac{\alpha}{2} z^{-1} + \frac{1}{2} \frac{\alpha}{2} (1) \frac{\alpha}{2} z^{-2} = \omega + \frac{\alpha}{2} z^{-1} + \frac{1}{8} z^{-2}\mathbb{I},$$

hence $L(0)^{tw} = 1/8\mathbb{I}^{tw}$.

Similarly,

$$\Delta\left(\frac{\alpha}{2}, z\right)\alpha = \alpha + \frac{1}{2} \alpha(1)\alpha(-1) z^{-1} = \alpha + \frac{1}{2} z^{-1}\mathbb{I},$$

hence $\alpha(0)^{tw} = 1/2\mathbb{I}^{tw}$.

It holds that

$$h(n)E_1^{\lambda} = \delta_{n, 0}(\delta + 2\lambda)E_1^{\lambda},$$

$$L_{sug}(n)E_1^{\lambda} = -\frac{5}{16} \delta_{n, 0}E_1^{\lambda}, \quad n \in \mathbb{Z}_{\geq 0}.$$

We have

$$J(0)E_1^{\lambda} = \left(\frac{5}{6} - \frac{2}{3}(\delta + 2\lambda)\right)E_1^{\lambda},$$

$$L(0)E_1^{\lambda} = \left(\frac{5}{16} + \frac{1}{8} + \frac{1}{3}(\frac{1}{2} - (\delta + 2\lambda))^2 - \frac{5}{12} + \frac{1}{3}(\delta + 2\lambda)\right)E_1^{\lambda}$$

$$= \frac{1}{48}(4(\delta + 2\lambda) - 5)(4(\delta + 2\lambda) + 5)E_1^{\lambda}.$$

Set

$$x := x_\lambda = \frac{5}{6} - \frac{2}{3}(\delta + 2\lambda),$$

$$y := y_\lambda = \frac{1}{48}(4(\delta + 2\lambda) - 5)(4(\delta + 2\lambda) + 5)$$

so that

$$J(0)E_1^{\lambda} = x_\lambda E_1^{\lambda}, \quad L(0)E_1^{\lambda} = y_\lambda E_1^{\lambda}.$$

Since $y = \frac{3}{4}x^2 - \frac{5}{4}x$, the pair $(x_\lambda, y_\lambda) \in \mathbb{C}^2$ satisfies the relation

$$h_1(x, y) = -3x^2 + 5x + 4y = 0.$$

Hence \mathcal{W}_1 has a family of highest weight modules $U_{(\lambda)}$, $\lambda \in \mathbb{C}$ with highest weights (x, y). In particular, their irreducible quotients $L(x, y)$ are also modules for \mathcal{W}_1. \qed

Using a twisted variant of Theorem 5.3 and Proposition 6.4, we get the following irreducibility result.
Proposition 6.8. Assume that $\lambda \notin \mathbb{Z} \cup (-\frac{1}{4} + \mathbb{Z})$. Then $E^0_\lambda \otimes M^w_F$ is a completely reducible $W_1 \otimes M_{h_\perp}(1)$-module:

$$E^0_\lambda \otimes M^w_F \cong \bigoplus_{n \in \mathbb{Z}} \Psi^{-n}(L(x_\lambda, y_\lambda)) \otimes M_{h_\perp}(1, \Delta' + n)$$

where $\Delta' = \frac{1}{2} + k - 2\lambda$ and weights (x_λ, y_λ) are given by (10)-(11). In particular, $U(1)(\lambda)$ is an irreducible W_1-module and it holds that

$$U(1)(\lambda) = L(x_\lambda, y_\lambda).$$

Remark 6.9. Theorem 4.13 implies that there exists another family of irreducible highest weight W_1-modules $L(x, y)$, for which it holds that $h_3(x, y) = 0$. Indeed, these modules can be obtained from $T(1)$ using the spectral flow automorphism ψ^{-1} as

$$T(3) := \{\psi^{-1}(L(\bar{x}_1, \bar{y}_1)) \mid (x, y) \in \mathbb{C}^2, h_1(x, y) = 0\}.$$

From Lemma 4.4, it easily follows that $T(3) = \{L(x, y) \mid (x, y) \in \mathbb{C}^2, h_3(x, y) = 0\}$. These modules also appear in the decomposition in Proposition 6.8.

References

[1] D. Adamović, Representations of the $N = 2$ superconformal vertex algebra, Int. Math. Res. Not. 1999 (1999), no. 2, 61–79.

[2] D. Adamović, Vertex algebra approach to fusion rules for $N = 2$ superconformal minimal models, J. Algebra 239 (2001), no. 2, 549–572.

[3] D. Adamović, Realizations of simple affine vertex algebras and their modules: the cases $\widehat{sl}(2)$ and $\widehat{osp}(1, 2)$, Commun. Math. Phys. 366 (2019), no. 3, 1025–1067.

[4] D. Adamović, Lie superalgebras and irreducibility of $A_1^{(1)}$ modules at the critical level, Commun. Math. Phys. 270 (2007), 141–161.

[5] D. Adamović, A family of regular vertex operator algebras with two generators, Centr. Europ. J. Math. 5 (2007), no. 1, 1–18.

[6] D. Adamović, V. G. Kac, P. Möseneder Frajria, P. Papi, O. Perše, Conformal embeddings of affine vertex algebras in minimal W-algebras I: structural results, J. Algebra 500 (2018), 117–152.

[7] D. Adamović, P. Möseneder Frajria, P. Papi, O. Perše, Conformal embeddings in affine vertex superalgebras, Adv. Math. 360 (2020), 106918.

[8] D. Adamović, K. Kawasetsu, D. Ridout, A realisation of the Bershadsky–Polyakov algebras and their relaxed modules, Lett. Math. Phys. 111 (2021), no. 2, article number 38.

[9] D. Adamović, A. Kontrec, Classification of irreducible modules for Bershadsky–Polyakov algebra at certain levels, J. Algebra Appl. 20 (2021), no. 6, 2150102.

[10] D. Adamović, V. Pedić, On fusion rules and intertwining operators for the Weyl vertex algebra, J. Math. Physics 60 (2019), no. 8, 081701.

[11] T. Arakawa, T. Creutzig, A. Linshaw, Cosets of Bershadsky–Polyakov algebras and rational W-algebras of type A, Selecta Math. (N.S.) 23 (2017), no. 4, 2369–2395.
[12] T. Arakawa, *Rationality of Bershadsky–Polyakov vertex algebras*, Commun. Math. Phys. 323 (2013), no. 2, 627–633.

[13] T. Arakawa, *Rationality of admissible affine vertex algebras in the category O*, Duke Math. J. 165 (2016), no. 1, 67–93.

[14] S. Berman, C. Dong, S. Tan, *Representations of a class of lattice type vertex algebras*, J. Pure Appl. Algebra, 176 (2002), no.1, 27–47.

[15] M. Bershadsky, *Conformal field theories via Hamiltonian reduction*, Commun. Math. Phys. 139 (1991), no. 1, 71–82.

[16] T. Creutzig, R. McRae, J. Yang, *Tensor structure on the Kazhdan–Lusztig category for affine gl(1|1)*, Int. Math. Res. Not. 2021 (2021), rnab080, 1073–7928.

[17] T. Creutzig, N. Genra, S. Nakatsuka, *Duality of subregular W-algebras and principal W-superalgebras*, Adv. Math. 383 (2021), paper no. 107685, 52 pp.

[18] T. Creutzig, S. Kanade, A. Linshaw, D. Ridout, *Schrödinger-Weyl duality for Heisenberg cosets*, Transform. Groups 24 (2019), no. 2, 301–354.

[19] T. Creutzig, D. Ridout, *Modular data and Verlinde formulae for fractional level WZW models II*, Nuclear Physics B 875 (2013), 423–458.

[20] C. Dong, H.-S. Li, G. Mason, *Certain associative algebra similar to U(sl2) and Zhu’s algebra A(V_L)*, J. Algebra 196 (1997), 532–551.

[21] Z. Fehily, K. Kawasetsu, D. Ridout, *Classifying relaxed highest-weight modules for admissible-level Bershadsky–Polyakov algebras*, Commun. Math. Phys. 385 (2021), no. 2, 859–904.

[22] B. L. Feigin, A. M. Semikhatov, I. Y. Tipunin, *Equivalence between chain categories of representations of affine sl(2) and N = 2 superconformal algebras*, J. Math. Phys. 39 (1998), no. 7, 3865–3905.

[23] A. J. Feingold, I. B. Frenkel, J. F. X. Ries, *Spinor Construction of Vertex Operator Algebras, Triality, and E8*, Contemporary Mathematics, Vol. 121, American Mathematical Society, Providence, RI, 1991.

[24] A. J. Feingold, J. F. X. Ries, M. Weiner, *Spinor construction of the c = 1/2 minimal model*, in: *Moonshine, the Monster and Related Topics* (South Hadley, MA, 1994), Contemporary Mathematics, Vol. 193, American Mathematical Society, Providence, RI, 1996, pp. 45–92.

[25] I. Frenkel, J. Lepowsky, A. Meurman, *Vertex Operator Algebras and the Monster*, Pure and Appl. Math., Vol. 134, Academic Press, Boston, 1988.

[26] E. Frenkel, D. Ben-Zvi, *Vertex Algebras and Algebraic Curves*, Math. Surv. Monogr., Vol. 88, American Mathematical Society, Providence, RI, 2004.

[27] M. Gorelik, V. G. Kac, *On complete reducibility for infinite-dimensional Lie algebras*, Adv. Math. 226 (2011), no. 2, 1911–1972.

[28] V. G. Kac, *Vertex Algebras for Beginners*, University Lecture Series, Vol. 10, American Mathematical Society, Providence, RI, 1998.

[29] V. G. Kac, M. Wakimoto *Quantum reduction and representation theory of superconformal algebras*, Adv. Math. 185 (2004), no. 2, 400–458.

[30] V. G. Kac, M. Wakimoto, *Quantum reduction in the twisted case*, in: *Infinite Dimensional Algebras and Quantum Integrable Systems*, Progr. Math., Vol. 237, Birkhäuser, Basel, 2005, 89–131.
[31] V. G. Kac, S. S. Roan, M. Wakimoto, *Quantum reduction for affine superalgebras*, Commun. Math. Phys. **241** (2003), no. 2–3, 307–342.

[32] K. Kawasetsu, D. Ridout, *Relaxed highest-weight modules I: rank 1 cases*, Commun. Math. Phys. **368** (2019), no. 2, 627–663.

[33] A. Kontrec, *Representations of Certain Irrational W-algebras*, PhD Dissertation, University of Zagreb, 2019.

[34] H. Li, *The physics superselection principle in vertex operator algebra theory*, J. Algebra **196** (1997), no. 2, 436–457.

[35] H. Li, *Local systems of twisted vertex operators, vertex superalgebras and twisted modules*, in: *Moonshine, the Monster, and Related Topics* (South Hadley, MA, 1994), Contemp. Math., Vol. 193, Amer. Math. Soc., Providence, RI, 1996, pp. 203–236.

[36] H. Li, *Certain extensions of vertex operator algebras of affine type*, Commun. Math. Phys. **217** (2001), no. 3, 653–696.

[37] J. Lepowsky, H. Li, *Introduction to Vertex Operator Algebras and Their Representations*, Progress in Math., Vol. 227, Birkh"auser, Boston, 2004.

[38] A. Linshaw, *Universal two-parameter \(W_{\infty} \)-algebra and vertex algebras of type \(W(2,3,\ldots,N) \)*, Compos. Math. **157** (2021), no. 1, 12–82.

[39] A. M. Polyakov, *Gauge transformations and diffeomorphisms*, Intl. J. Mode. Phys. A **5** (1990), no. 5, 833–842.

[40] D. Ridout, J. Snadden, S. Wood, *An admissible level \(\hat{\mathfrak{osp}}(1|2) \)-model: modular transformations and the Verlinde formula*, Lett. Math. Phys. **108** (2018), no. 11, 2363–2423.

[41] S. P. Smith, *A class of algebras similar to the enveloping algebra of \(sl(2) \)*, Trans. Amer. Math. Soc. **322** (1990), no. 1, 285–314.

[42] X. Xu, *Introduction to Vertex Operator Superalgebras and Their Modules*, Mathematics and Its Applications, Vol. 456, Kluwer Academic Publishers, Dordrecht, 1998.

[43] A. Zamolodchikov, *Infinite additional symmetries in two-dimensional conformal quantum field theory*, Theor. Math. Phys. **65** (1985), no. 3, 1205–1213.

[44] Y. Zhu, *Modular invariance of characters of vertex operator algebras*, J. Amer. Math. Soc. **9** (1996), no. 1, 237–302.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.