Better $s–t$-tours by Gao trees

Corinna Gottschalk1 · Jens Vygen2

Abstract We consider the $s–t$-path TSP: given a finite metric space with two elements s and t, we look for a path from s to t that contains all the elements and has minimum total distance. We improve the approximation ratio for this problem from 1.599 to 1.566. Like previous algorithms, we solve the natural LP relaxation and represent an optimum solution x^* as a convex combination of spanning trees. Gao showed that there exists a spanning tree in the support of x^* that has only one edge in each narrow cut [i.e., each cut C with $x^*(C) < 2$]. Our main theorem says that the spanning trees in the convex combination can be chosen such that many of them are such “Gao trees” simultaneously at all sufficiently narrow cuts.

Keywords Traveling salesman problem · Approximation algorithm · Convex combination · Spanning tree · T-join

Mathematics Subject Classification 90C27 · 90C59 · 05C05 · 68Q25 · 68R05

Most of this work was done during the trimester program on combinatorial optimization at the Hausdorff Research Institute for Mathematics in Bonn. A preliminary version appeared in the IPCO 2016 proceedings.
1 Introduction

The traveling salesman problem (TSP) is one of the best-known NP-hard problems in combinatorial optimization. In this paper, we consider the s–t-path variant: given a finite metric space (V, c) and two elements $s, t \in V$, the goal is to find a sequence v_1, \ldots, v_n containing every element exactly once and with $v_1 = s$ and $v_n = t$, minimizing $\sum_{i=1}^{n-1} c(v_i, v_{i+1})$. For $s = t$, this is the well-known metric TSP; but in this paper we assume $s \neq t$.

The classical algorithm by Christofides [4] computes a minimum-cost spanning tree (V, S) and then does parity correction by adding a minimum-cost matching on the vertices whose degree in S has the wrong parity (here: even for s or t, odd for other vertices).

While Christofides’ algorithm is still the best known approximation algorithm for metric TSP (with ratio $\frac{3}{2}$), there have recently been improvements for special cases and variants (see e.g. the survey [21]) including the s–t-path TSP.

1.1 Previous work

For the s–t-path TSP, Christofides’ algorithm has only an approximation ratio of $\frac{5}{3}$ as shown by Hoogeveen [14]. An, Kleinberg and Shmoys [1] were the first to improve on this and obtained an approximation ratio of $\frac{1+\sqrt{5}}{2} \approx 1.618$. They first solve the natural LP relaxation and represent an optimum solution x^* as a convex combination of spanning trees. This idea, first proposed by Held and Karp [13], was exploited earlier for different TSP variants by Asadpour et al. [2] and Oveis Gharan et al. [15]. Given this convex combination, An et al. [1] do parity correction for each of the contributing trees and output the best of these solutions. Sebő [17] improved the analysis of this best-of-many Christofides algorithm and obtained the approximation ratio $\frac{8}{5}$. Gao [9] gave a unified analysis. Vygen [22] suggested to “reassemble” the trees: starting with an arbitrary convex combination of spanning trees, he computed a different one, still representing x^*, that avoids certain bad local configurations. This led to the slightly better approximation ratio of 1.599.

In this paper, we will reassemble the trees more systematically to obtain a convex combination with strong global properties. This will enable us to control the cost of parity correction much better, leading to an approximation ratio of 1.566.

This also proves an upper bound of 1.566 on the integrality ratio of the natural LP. The only known lower bound is 1.5. Sebő and Vygen [18] proved that the integrality ratio is indeed 1.5 for the graph s–t-path TSP, i.e., the special case of graph metrics [where $c(v, w)$ is the distance from v to w in a given unweighted graph on vertex set V]. Gao [8] gave a simpler proof of this result, which inspired our work: see Sect. 1.4.

1.2 Notation and preliminaries

Throughout this paper, (V, c) is the given metric space, $n := |V|$, and E denotes the set of edges of the complete graph on V. For any $U \subseteq V$ we write $E[U]$ for the set...
of edges with both endpoints in \(U \) and \(\delta(U) \) for the set of edges with exactly one endpoint in \(U \); moreover, \(\delta(v) := \delta(\{v\}) \) for \(v \in V \). If \(F \subseteq E \) and \(U \subseteq V \), we denote by \((V, F)[U]\) the subgraph \((U, F \cap E[U])\) of \((V, F)\) induced by \(U \). For \(x \in \mathbb{R}^E_{\geq 0} \) we write \(c(x) := \sum_{e=[v, w] \in E} c(v, w)x_e \) and \(x(F) := \sum_{e \in F} x_e \) for \(F \subseteq E \). Furthermore, \(\chi^F \in \{0, 1\}^E \) denotes the incidence vector of a subset \(F \subseteq E \), and \(c(F) := c(\chi^F) \) the cost of \(F \). For \(F \subseteq E \) and \(f \in E \), we write \(F + f \) and \(F - f \) for \(F \cup \{f\} \) and \(F \setminus \{f\} \), respectively. By \(\bigcup \) we denote the disjoint union of sets, i.e., \(F_1 \cup F_2 \) is a multiset containing the elements of \(F_1 \cap F_2 \) twice.

For \(T \subseteq V \) with |\(T \)| even, a \(T \)-join is a set \(J \subseteq E \) for which \(|\delta(v) \cap J| \) is odd if and only if \(v \in T \). Edmonds [6] proved that a minimum cost \(T \)-join can be computed in polynomial time. Moreover, the minimum cost of a \(T \)-join is the minimum over \(c(y) \) for \(y \) in the \(T \)-join polyhedron \(\{y \in \mathbb{R}^E_{\geq 0} : y(\delta(U)) \geq 1 \ \forall U \subset V \text{ with } |U \cap T| \text{ odd}\} \) as proved by Edmonds and Johnson [7].

To obtain a solution for the \(s \rightarrow t \)-path TSP, it is sufficient to compute a connected multigraph with vertex set \(V \) in which exactly \(s \) and \(t \) have odd degree. We call such a graph an \((s, t) \)-tour. As an \((s, t) \)-tour contains an Eulerian walk from \(s \) to \(t \), we can obtain a Hamiltonian \(s \rightarrow t \)-path (i.e., an \(s \rightarrow t \)-path with vertex set \(V \)) by traversing the Eulerian walk and shortcutting when the walk encounters a vertex that has been visited already. Since \(c \) is a metric, it obeys the triangle inequality. Thus, the resulting path is not more expensive than the \((s, t) \)-tour.

By \(S \) we denote the set of edge sets of spanning trees in \((V, E)\). For \(S \in S \), \(T_S \) denotes the set of vertices whose degree has the wrong parity in \((V, S)\), i.e., even for \(s \) or \(t \) and odd for \(v \in V \setminus \{s, t\} \). Christofides’ algorithm computes an \(S \in S \) with minimum \(c(S) \) and adds a \(T_S \)-join \(J \) with minimum \(c(J) \); this yields an \((s, t) \)-tour.

1.3 Best-of-many Christofides

Like [1], we begin by solving the natural LP relaxation:

\[
\begin{align*}
\min \ c(x) \\
\text{subject to } x(\delta(U)) & \geq 2 \ (\emptyset \not= U \subset V, \ |U \cap \{s, t\}| \text{ even}) \\
x(\delta(U)) & \geq 1 \ (\emptyset \not= U \subset V, \ |U \cap \{s, t\}| \text{ odd}) \\
x(\delta(v)) &= 2 \ (v \in V \setminus \{s, t\}) \\
x(\delta(v)) &= 1 \ (v \in \{s, t\}) \\
x_e & \geq 0 \ (e \in E)
\end{align*}
\]

whose integral solutions are precisely the incidence vectors of the edge sets of the Hamiltonian \(s \rightarrow t \)-paths in \((V, E)\). This LP can be solved in polynomial time (either by the ellipsoid method [12] or an extended formulation). Let \(x^* \) be an optimum basic solution; then \(x^* \) has at most \(2n - 3 \) positive variables [11]. Moreover, \(x^* \) (in fact, every feasible solution) satisfies \(x^*(E) = n - 1 \) and \(x^*(E[U]) \leq |U| - 1 \) for all \(\emptyset \not= U \subset V \). Therefore \(x^* \) can be written as convex combination of spanning trees, i.e. as \(x^* = \sum_{S \in S} p_S x^S \), where \(p \) is a distribution on \(S \), i.e., \(p_S \geq 0 \) for all \(S \in S \) and \(\sum_{S \in S} p_S = 1 \).
As \(x^* \) has at most \(2n - 3 \) positive variables, we can assume that \(p_S > 0 \) for at most \(2n - 2 \) spanning trees \((V, S)\) by Carathéodory’s theorem. Such spanning trees and numbers \(p_S \) can be computed in strongly polynomial time: first one writes \(x^* \) as arbitrary convex combination of polynomially many spanning trees, for example using Cunningham’s [5] algorithm or the splitting-off technique (cf. [10]); then one reduces the number of spanning trees by Gaussian elimination: as long as \(x^* = \sum_{i=1}^k p_i x^*_i \) with \(k > 2n - 2 \), there are linearly dependent vectors \((x^*_i)_1 \) in \(\mathbb{R}^{E+1}_{\geq 0} \), so by Gaussian elimination we can find \(\lambda_i \in \mathbb{R} (i = 1, \ldots, k) \), not all zero, with \(\sum_{i=1}^k \lambda_i (x^*_i)_1 = 0 \), set \(p_i := p_i + \min_{|j|} \lambda_j \) for all \(i \), and eliminate trees \(S_i \) with \(p_i = 0 \).

The best-of-many Christofides algorithm does the following. Compute an optimum solution \(x^* \) for (1) and obtain a distribution \(p = \sum_{S \in \mathcal{S}} p_S x^*_S \) as above. For each tree \((V, S)\) with \(p_S > 0 \), compute a minimum weight \(T_S \)-join \(J_S \). Then, the multigraph \((V, S \cup J_S)\) is an \((s, t) \)-tour. Output the best of these.

We will fix \(x^* \) henceforth. An important concept in [1] and the subsequent works are the so-called narrow cuts, i.e., the cuts \(C = \delta(U) \) with \(\emptyset \neq U \subset V \) and \(x^*(C) < 2 \). We denote by \(\mathcal{C} \) the set of all narrow cuts. We are going to exploit their structure as well.

Lemma 1 [1] The narrow cuts form a chain: there are sets \(\{s\} = U_0 \subset U_1 \subset \cdots \subset U_{\ell-1} \subset U_\ell = V \setminus \{t\} \) so that \(\mathcal{C} = \{\delta(U_i) : i = 0, \ldots, \ell\} \). These sets can be computed in polynomial time.

We number the narrow cuts in this order, so \(\mathcal{C} = \{C_0, C_1, \ldots, C_\ell\} \) with \(C_i = \delta(U_i) \) \((i = 0, \ldots, \ell) \).

1.4 Gao trees

Our work was inspired by the following idea of Gao [8]:

Theorem 1 [8] There exists a spanning tree \(S \in \mathcal{S} \) with \(x^*_S > 0 \) for all \(e \in S \) and \(|C \cap S| = 1 \) for all \(C \in \mathcal{C} \).

In fact, Gao [8] showed this for any vector \(x \in \mathbb{R}^E_{\geq 0} \) with \(x(\delta(U)) \geq 1 \) for all \(\emptyset \neq U \subset V \) and \(x(\delta(U)) \geq 2 \) for all \(\emptyset \neq U \subset V \) with \(|U \cap \{s, t\}| \) even. For graph \(s-t \)-path TSP, the LP uses only variables corresponding to edges of the given graph. Then every spanning tree has cost \(n - 1 \). The approximation guarantee of \(\frac{5}{2} \) then follows from the fact that for a tree \((V, S)\) with \(|S \cap C| = 1 \) for all \(C \in \mathcal{C} \), the vector \(\frac{1}{2} x^* \) is in the \(T_S \)-join polyhedron. But, as shown by Gao [9], for the general \(s-t \)-path TSP there may be no tree as in Theorem 1 whose cost is bounded by the LP value.

Let us call a tree \(S \in \mathcal{S} \) a local Gao tree at \(C \) if \(|C \cap S| = 1 \). We call \(S \) a global Gao tree if it is a local Gao tree at every narrow cut.

An et al. [1] and Held and Karp [17] observed that for every distribution \(p \) with \(x^* = \sum_{S \in \mathcal{S}} p_S x^*_S \) and every narrow cut \(C \in \mathcal{C} \), at least a \(2 - x^*(C) \) fraction of the trees will be local Gao trees at \(C \). However, in general none of these trees will be a global Gao tree.

© Springer
1.5 Our contribution

Our main contribution is a new structural result: Starting from an arbitrary distribution of trees representing x^*, we can compute a new distribution in which a sufficient number of trees are local Gao trees simultaneously for all sufficiently narrow cuts. For example, if $x^*(C) \leq \frac{3}{4}$ for all $C \in C$, at least half of our new distribution will be made of global Gao trees. Here is our main structure theorem:

Theorem 2 For every feasible solution x^* of (1), there are $S_1, \ldots, S_r \in S$ and $p_1, \ldots, p_r > 0$ with $\sum_{j=1}^r p_j = 1$ such that $x^* = \sum_{j=1}^r p_j x^{S_j}$ and for every $C \in C$ there exists an $k \in \{1, \ldots, r\}$ with $\sum_{j=1}^k p_j \geq 2 - x^*(C)$ and $|C \cap S_j| = 1$ for all $j = 1, \ldots, k$.

Note that this result immediately implies Theorem 1, simply by taking S_1. We can even show a more general result: given a vector $x \in \mathbb{R}^E_{\geq 0}$ which is close to x^*, the above structure theorem still holds approximately. More precisely, we require that

$$x(\delta(s)) = x(\delta(t)) = 1 \quad \text{and} \quad |x(F) - x^*(F)| \leq \epsilon \text{ for all } F \subseteq E.$$ \hspace{1cm} (2)

Then we can prove:

Theorem 3 Given $S_1, \ldots, S_r \in S$, a feasible solution x^* of (1) and $\epsilon \geq 0$ such that $x = \frac{1}{r} \sum_{j=1}^r x^{S_j}$ satisfies (2), we can find $\hat{S}_1, \ldots, \hat{S}_r \in S$ in polynomial time such that $x = \frac{1}{r} \sum_{j=1}^r \hat{x}^{\hat{S}_j}$, and for every $C \in C$ there exists an $k \in \{1, \ldots, r\}$ with $\frac{k}{r} \geq 2 - x^*(C) - \epsilon$ and $|C \cap \hat{S}_j| = 1$ for all $j = 1, \ldots, k$.

This may lead to a faster algorithm because we do not need to solve the LP (1) exactly.

Theorem 3 implies Theorem 2, by letting $\epsilon = 0$ and $x = x^* = \sum_{S \in S} p_S x^S = \sum_{j=1}^r \frac{1}{r} x^{S_j}$ where all p_S are integer multiples of $\frac{1}{r}$ for some (possibly superexponentially large) natural number r and taking $r p_S$ copies of each $S \in S$.

In the next section, we will prove Theorem 3. A vector x with (2) and polynomially many spanning trees S_1, \ldots, S_r with $x = \frac{1}{r} \sum_{j=1}^r x^{S_j}$ can be obtained by rounding an arbitrary distribution representing x^* (or an approximate LP solution); see Sect. 3.

Then the constructive proof of Theorem 3 yields a strongly polynomial-time algorithm. One can also obtain a distribution as in Theorem 2 in polynomial time by solving an LP; see Sect. 3.

Finally, in Sect. 4, we explain how this leads to an improved approximation guarantee of the best-of-many Christofides algorithm. The intuition is as follows. For each tree T in our list, we find a vector y^T in the T-join polyhedron and use it to bound the cost of parity correction. We aim to bound the average cost of these vectors by an as small as possible multiple of $c(x^*)$. Following [17], we design y^S as follows. If $S = I_S \cup J_S$, where I_S is the s-t-path in $S \in S$, then x^{J_S} is in the T_S-join polyhedron. Moreover, $\frac{1}{2} x^*$ satisfies all constraints of the T_S-join polyhedron except those of narrow cuts C with $|S \cap C|$ even. We choose y^S as a convex combination of x^{J_S} and $\frac{1}{2} x^*$ but need to add a correction term for even narrow cuts. For this we can use some

\odot Springer
Lemma 3 Let $S \subseteq S'$, possibly of a different tree S'. The $s-t$-paths of the early trees in our list, which are global Gao trees and thus do not need correction at narrow cuts, can thus help pay for the late trees.

2 Proof of the structure theorem

We will start with an arbitrary convex combination $x = \frac{1}{r} \sum_{j=1}^{r} \chi_{S_j}^*$ satisfying (2). Starting from this list $S_1, \ldots, S_r \in S$, we will successively exchange a pair of edges in two of the trees. We will first satisfy the properties for the first tree S_1, then for S_2, and so on. For each S_j, we will work on the narrow cuts $C_1, \ldots, C_{\ell-1}$ in this order; note that $|C_0 \cap S_j| = |C_\ell \cap S_j| = 1$ always holds for all $j = 1, \ldots, r$ due to the first property in (2). In the following we write

$$\theta_i := \lceil r(2 - x^*(C_i) - \epsilon) \rceil$$

for $i = 0, \ldots, \ell$. Note that $\theta_0 \geq \theta_i$ for all $i = 1, \ldots, \ell$ because $x^*(C_i) \geq 1 = x^*(C_0) = x^*(\delta(s))$. Our goal is to obtain $|S_j \cap C_i| = 1$ whenever $j \leq \theta_i$.

Note that $|S_j \cap C_i| = 1$ implies that $(V, S_j)[U_i]$ is connected, and we will first obtain this weaker property by Lemma 6, before obtaining $|S_j \cap C_i| = 1$ by Lemma 7.

We need a few preparations. Throughout our paper, we use indices g, h, h', i, i' for cuts and j, j', k for trees.

As mentioned already in Sect. 1.4, many trees are local Gao trees at a narrow cut:

Lemma 2 Let $S_1, \ldots, S_r \in S$ and $\epsilon \geq 0$ such that $x = \frac{1}{r} \sum_{j=1}^{r} \chi_{S_j}^*$ satisfies (2). Let $1 \leq i \leq \ell - 1$ and $1 \leq j \leq r$ with $j \leq \theta_i$. Then there exists an index $k \geq j$ such that $|C_i \cap S_k| = 1$.

Proof Suppose there exists no such k. Then we get $r x(C_i) = \sum_{j'=1}^{r} |C_i \cap S_{j'}| \geq (r - \theta_i + 1)2 + \theta_i - 1 = 2r - \lceil r(2 - x^*(C_i) - \epsilon) \rceil + 1 > 2r - r(2 - x^*(C_i) - \epsilon) = r(x^*(C_i) + \epsilon)$, which is a contradiction to (2).

Next we observe that a sufficient number of trees is connected in every section between two narrow cuts.

Lemma 3 Let $S_1, \ldots, S_r \in S$ and $\epsilon \geq 0$ such that $x = \frac{1}{r} \sum_{j=1}^{r} \chi_{S_j}^*$ satisfies (2). Let $0 \leq h < i \leq \ell$ and $1 \leq j \leq r$ with $j \leq \theta_h$ and $j \leq \theta_i$. Let $M = U_i \setminus U_h$. Then there exists an index $k \geq j$ such that $(V, S_k)[M]$ is connected.

Proof Assume the above is not true. Then $|E[M] \cap S_{j'}| \leq |M| - 1$ for all $j' < j$, and $|E[M] \cap S_{j'}| \leq |M| - 2$ for $j' \geq j$. Therefore,

$$x(E[M]) = \frac{1}{r} \sum_{j'=1}^{r} |E[M] \cap S_{j'}|$$

$$\leq \frac{1}{r} ((j - 1)(|M| - 1) + (r - j + 1)(|M| - 2))$$

$$= |M| - 2 + \frac{j - 1}{r}.$$
On the other hand, we have (using $x^*(\delta(v)) = 2$ for $v \in M$)

\[
x^*(E[M]) = \frac{1}{2} \left(\sum_{v \in M} x^*(\delta(v)) - x^*(\delta(M)) \right)
= |M| - \frac{1}{2} (x^*(C_h) + x^*(C_i)) + x^*(C_h \cap C_i)
\geq |M| - \frac{1}{2} (x^*(C_h) + x^*(C_i)).
\]

Now, $j \leq \theta_h$ and $j \leq \theta_i$ implies $x^*(C_h) < 2 - \frac{i-1}{r} - \epsilon$ and $x^*(C_i) < 2 - \frac{j-1}{r} - \epsilon$. Thus,

\[
x^*(E[M]) > |M| - \frac{1}{2} (2 - \frac{i-1}{r} - \epsilon + 2 - \frac{j-1}{r} - \epsilon) = |M| - 2 + \frac{j-1}{r} + \epsilon. \tag{4}
\]

We conclude $x(E[M]) < x^*(E[M]) - \epsilon$, contradicting (2). \hfill \square

Next, a similar argument shows that, for any pair of narrow cuts, sufficiently many trees have no edge in their intersection:

Lemma 4 Let $S_1, \ldots, S_r \in S$ and $\epsilon \geq 0$ such that $x = \frac{1}{r} \sum_{j=1}^{r} \chi^{S_j}$ satisfies (2). Let $0 \leq h < i \leq \ell$ and $1 \leq j \leq r$ with $j \leq \theta_h$ and $j \leq \theta_i$. Then there exists an index $k \geq j$ such that $S_k \cap C_h \cap C_i = \emptyset$.

Proof Using first (2) and then $x^*(C_{i'}) < 2 - \frac{i'-1}{r} - \epsilon$ for $i' \in \{h, i\}$ and $x^*(\delta(U)) \geq 2$ for $|U \cap \{s, t\}|$ even, we obtain

\[
x(C_h \cap C_i) - \epsilon \leq x^*(C_h \cap C_i) = \frac{1}{2} (x^*(C_h) + x^*(C_i) - x^*(\delta(U_i \setminus U_h)))
< 2 - \frac{i-1}{r} - \epsilon - 1 = \frac{r-j+1}{r} - \epsilon.
\]

Therefore, $\frac{1}{r} \sum_{j=1}^{r} |S_j \cap C_h \cap C_i| = x(C_h \cap C_i) < \frac{r-j+1}{r}$, i.e. at most $r - j$ of the trees can contain an edge in $C_h \cap C_i$. \hfill \square

Now we proceed to the main components of the proof of Theorem 3. Recall that, in order to obtain $|S_j \cap C_i| = 1$, we plan to first get the weaker condition that $(V, S_j)[U_i]$ is connected. While it is not, we exchange a pair of edges with a later tree. We split the proof into two parts, beginning with the following lemma:

Lemma 5 Let $1 \leq i \leq \ell - 1$ and $M \subseteq U_i$ and $S_j, S_k \in S$ such that $(V, S_j)[M]$ is disconnected and $(V, S_k)[M]$ is connected and $|S_j \cap \delta(U_i \setminus M)| \leq 1$. Then there exist edges $e \in S_j$ and $f \in S_k$ such that $S_j - e + f \in S$ and $S_k + e - f \in S$ and $e \notin E[U_i]$ and $f \in E[M]$.

Note that the case $M = U_i$ is not excluded; then $|S_j \cap \delta(U_i \setminus M)| = 0$.

Proof Let A_1, \ldots, A_q be the vertex sets of the connected components of $(V, S_j)[M]$; note that $q \geq 2$ (see Fig. 1).
Let $F := S_k \cap \bigcup_{p=1}^q (\delta(A_p) \setminus \delta(M))$ be the set of edges of S_k between the sets A_1, \ldots, A_q. Note that $F \subseteq E[M]$. For $p = 1, \ldots, q$, let B_p be the set of vertices reachable from A_p in $(V, S_k \setminus F)$. Trivially, $A_p \subseteq B_p$ for all p, and $\{B_1, \ldots, B_q\}$ is a partition of V because $(V, S_k)[M]$ is connected and (V, S_k) is a tree.

Let Y be the union of the edge sets of the unique v-w-paths in S_j for all $v, w \in M$. Note that $Y \subseteq E[V \setminus (U_i \cup M)]$ because $|S_j \cap \delta(U_i \setminus M)| \leq 1$.

Claim: There exists an index $p \in \{1, \ldots, q\}$ and an edge $e \in Y \cap \delta(B_p)$ such that for every $p' \in \{1, \ldots, q\} \setminus \{p\}$ and $v' \in A_{p'}, v'' \in A_p$, the v'-v''-path in S_j contains e.

To prove the Claim, observe that (V, Y) consists of a tree and possibly isolated vertices. Choose an arbitrary root z in this tree and take an edge $e \in Y \cap \bigcup_{p'=1}^q \delta(B_{p'})$ with maximum distance from z.

Let $D := \{v \in V : v$ is reachable from z in (V, Y) but not in $(V, Y - e)\}$. We will show that $A_p \subseteq D \subseteq B_p$ for some $p \in \{1, \ldots, q\}$. This will immediately imply that p and e satisfy the properties of the Claim.

As $e \in Y$, there are $v, w \in M$ such that the v-w-path in S_j contains e. Then exactly one of these two vertices belongs to D, so w.l.o.g. $v \in D \cap M$. Let p be the index with $v \in A_p$.

Since $(V, S_j)[A_p]$ is connected, this implies $A_p \subseteq D$. Next, $(D, Y \cap E[D])$ is a tree and by the choice of e, it contains no edge from $\bigcup_{p'=1}^q \delta(B_{p'})$. Therefore, $D \subseteq B_p$.

The Claim is proved.

Now, take an index p and an edge e as in the Claim. Consider the path P in S_k that connects the endpoints of e. Since $e \in \delta(B_p)$, P has an edge $f \in \delta(B_p) \cap S_k = \delta(A_p) \cap F$. Thus, $(V, S_k + e - f)$ is a tree. The path in S_j that connects the endpoints of f contains e by the Claim. Thus, $(V, S_j - e + f)$ is a tree. We have $f \in E[M]$ since $f \in F$, and $e \notin E[U_i]$ as $e \in Y \cap \delta(B_p)$. \qed

Fig. 1 Proof of Lemma 5. Edges of tree S_j are green/thin, edges of S_k are red/bold. Note that e could belong to C_i (but not to $\delta(U_i \setminus M)$). Also note that $U_i \setminus M$ could be empty.
Now we make \((V, S_j)[U_i]\) connected without destroying previously obtained properties:

Lemma 6 Let \(S_1, \ldots, S_r \in \mathcal{S}\) and \(e \geq 0\) such that \(x = \frac{1}{r} \sum_{j'=1}^{r} \chi_{S_j'}\) satisfies (2). Let \(1 \leq j < r\) and \(1 \leq i \leq \ell - 1\) such that \(j < \theta_e\) and \(|S_j \cap C_h| = 1\) for all \(h < i\) with \(j \leq \theta_h\). Then we can find \(\hat{S}_1, \ldots, \hat{S}_r \in \mathcal{S}\) in polynomial time such that \(x = \frac{1}{r} \sum_{j'=1}^{r} \chi_{\hat{S}_j'}\), and \(\hat{S}_j' = S_{j'}\) for all \(j' < j\), and \(|\hat{S}_j \cap C_h| = 1\) for all \(h < i\) with \(j < \theta_h\), and \((V, \hat{S}_j')[U_i]\) is connected.

Proof Assume that \((V, S_j)[U_i]\) is disconnected, i.e., \(|S_j \cap E[U_i]| < |U_i| - 1\). Let \(h\) be the largest index smaller than \(i\) with \(j \leq \theta_h\). Such an index must exist because \(\theta_0 \geq \theta_t \geq j\).

Case 1 \(|S_j \cap E[U_i \setminus U_h]| < |U_i \setminus U_h| - 1\).

Let \(M := U_i \setminus U_h\). Note that \(|S_j \cap \delta(U_i \setminus M)| = |S_j \cap C_h| = 1\). Since \((V, S_j)[M]\) is not connected, by Lemma 3 there exists an index \(k > j\) such that \((V, S_k)[M]\) is connected.

Now we apply Lemma 5 and obtain two trees \(\hat{S}_j := S_j - e + f\) and \(\hat{S}_k := S_k + e - f\) with \(e \notin E[U_i]\) and \(f \in E[M]\).

We have \(|\hat{S}_j \cap E[U_i]| = |S_j \cap E[U_i]| + 1\) and \(|\hat{S}_j \cap C_{h'}| \leq |S_j \cap C_{h'}|\) for all \(h' \leq h\) and hence \(|\hat{S}_j \cap C_{h'}| = 1\) for \(h' \leq h\) with \(j \leq \theta_{h'}\). Note that \(j > \theta_{e'}\) for all \(h < i' < i\), so a new edge \(f\) in such cuts \(C_{h'}\) does no harm.

We replace \(S_j\) and \(S_k\) by \(\hat{S}_j\) and \(\hat{S}_k\) and leave the other trees unchanged. If \((V, S_j)[U_i]\) is still not connected, we iterate.

Case 2 \(|S_j \cap E[U_i \setminus U_h]| = |U_i \setminus U_h| - 1\).

Note that \((V, S_j)[U_h]\) is connected since \(|S_j \cap C_h| = 1\). Moreover, \((V, S_j)[U_i \setminus U_h]\) is connected, but \((V, S_j)[U_i]\) is disconnected. Therefore, \(S_j\) must contain an edge in \(C_h \cap C_i\) and \(S_j \cap C_h \subset S_j \cap C_i\) and \((V, S_j)[U_i]\) has exactly two connected components: \(U_h\) and \(U_i \setminus U_h\). We will consider two cases which are illustrated in Fig. 2.

Case 2a \(h > 0\). Let \(g\) be the largest index smaller than \(h\) with \(j \leq \theta_g\). Set \(M := U_i \setminus U_g\). Note that \(|S_j \cap \delta(U_i \setminus M)| = |S_j \cap C_g| = 1\). By Lemma 3 there exists an index \(k \geq j\) with \((V, S_k)[M]\) connected. As \((V, S_j)[M]\) is not connected, we have \(k > j\).
Case 2b: \(h = 0 \). As \((V, S_j)[U_i]\) is disconnected, \(|C_i \cap S_j| \geq 2\). Set \(M := U_i \). By Lemma 2 there exists an index \(k > j \) such that \(|C_i \cap S_k| = 1\), and hence \((V, S_k)[M]\) is connected.

Note that in both cases 2a and 2b, \((V, S_j)[M]\) is disconnected. Now we apply Lemma 5 to \(S_j \) and \(S_k \) and obtain two trees \(\hat{S}_j := S_j - e + f \) and \(\hat{S}_k := S_k + e - f \) with \(e \notin E[U_i] \) and \(f \in E[M] \). We replace \(S_j \) and \(S_k \) by \(\hat{S}_j \) and \(\hat{S}_k \) and leave the other trees unchanged. Then \((V, \hat{S}_j)[U_i]\) is connected. We have \(|\hat{S}_j \cap C_{h'}| = 1\) for all \(h' < h \) with \(j \leq \theta_{h'} \), but we may have \(|\hat{S}_j \cap C_{h}| = 2\) since \(E[M] \cap C_h \neq \emptyset \).

Assume \(|\hat{S}_j \cap C_h| = 2\) (otherwise we are done). Then \(\hat{S}_j \cap C_h \cap C_i = S_j \cap C_h \cap C_i = S_j \cap C_h \), and this set contains precisely one edge \(\hat{e} = \{v, w\} \) (where \(v \in U_h \) and \(w \in V \setminus U_i \)), see Fig. 3. By Lemma 4 there exists an index \(k' > j \) with \(\hat{S}_{k'} \cap C_h \cap C_i = \emptyset \).

Let \(W \) be the set of vertices reachable from \(w \) in \((V, \hat{S}_j \setminus C_i)\). Since \((V, \hat{S}_j)[U_i]\) is connected, \(\hat{S}_j \cap \delta(W) = \{\hat{e}\} \). The unique path in \((V, \hat{S}_{k'})\) from \(v \) to \(w \) contains at least one edge \(\hat{f} \in \delta(W) \). Note that \(\hat{f} \notin C_h \) by the choice of \(\hat{S}_{k'} \). We replace \(\hat{S}_j \) and \(\hat{S}_{k'} \) by \(\hat{\hat{S}}_j := \hat{S}_j - \hat{e} + \hat{f} \) and \(\hat{\hat{S}}_{k'} := \hat{S}_{k'} + \hat{e} - \hat{f} \). Then \((V, \hat{\hat{S}}_j)[U_i]\) is still connected and \(|\hat{\hat{S}}_j \cap C_{h'}| = 1\) for all \(h' < i \) with \(j \leq \theta_{h'} \). \(\square \)

This was the most difficult part. We now proceed to the final step of our proof.

Lemma 7 Let \(S_1, \ldots, S_r \in \mathcal{S} \) and \(\epsilon \geq 0 \) such that \(x = \frac{1}{r} \sum_{j'=1}^r \chi^{S_j'} \) satisfies (2). Let \(1 \leq i \leq \ell - 1 \) and \(j \leq \theta_i \) such that \((V, S_j)[U_i]\) is connected and \(|S_j \cap C_h| = 1\) for all \(h < i \) with \(j \leq \theta_h \). Then we can find \(\hat{S}_1, \ldots, \hat{S}_r \in \mathcal{S} \) in polynomial time such that \(x = \frac{1}{r} \sum_{j'=1}^r \chi^{\hat{S}_j'} \) and \(\hat{S}_j' = S_j' \) for all \(j' < j \) and \(|\hat{S}_j \cap C_{h}| = 1\) for all \(h \leq i \) with \(j \leq \theta_{h} \).

Proof Suppose \(|S_j \cap C_i| \geq 2\). Then by Lemma 2 there exists an index \(k > j \) with \(|S_k \cap C_i| = 1\). We will swap a pair of edges, reducing \(|S_j \cap C_i|\) and increasing \(|S_k \cap C_i|\) while maintaining the other properties.

Let \(S_k \cap C_i = \{(x, y)\} \) with \(x \in U_i \) and \(y \in V \setminus U_i \). Let \(A \) be the set of vertices reachable from \(y \) in \((V, S_j \setminus C_i)\) (see Fig. 4). Note that \(A \cap U_i = \emptyset \). We have \(|\delta(A) \cap S_j \cap C_i| = 1\) because \((V, S_j)[U_i]\) is connected and \((V, S_j)\) is a tree. So let \(e = \{v, w\} \in (S_j \cap C_i) \setminus \delta(A) \), with \(v \in U_i \) and \(w \in V \setminus U_i \). Let \(B \) be the set of vertices reachable from \(w \) in \((V, S_j \setminus C_i)\). We have \(w \in B \), \(y \in A \), and \(A \cap B = \emptyset \) by the...
choice of e. Consider the path P in S_k from w to y. Note that P does not contain any vertex in U_i because $|S_k \cap C_i| = 1$. But P contains at least one edge $f \in \delta(B)$.

We will swap e and f. Since $S_k \cap C_i = \{x, y\}$, the w-v-path in S_k contains P. Therefore, $\hat{S}_k := S_k + e - f$ is a tree. On the other hand, the path in S_j connecting the endpoints of f must use an edge in $\delta(B)$. Since $S_j \cap E[V \setminus U_i]$ is connected and $S_j \cap (\delta(B) \setminus C_i) = \emptyset$, e is the only edge in $\delta(B) \cap S_j$ and thus, $\hat{S}_j := S_j + f - e$ is a tree.

Since $f \in E[V \setminus U_i]$ and $e \in C_i$, we have $|\hat{S}_j \cap C_i| = |S_j \cap C_i| - 1$ and $|\hat{S}_j \cap C_h| = |S_j \cap C_h|$ for all $h < i$ with $j \leq \theta_i$. Moreover, $(V, \hat{S}_j)[U_i]$ is still connected. As before, we replace S_j and S_k by \hat{S}_j and \hat{S}_k and leave the other trees unchanged. If we then still have $|S_j \cap C_i| > 1$, we iterate.

Now the proof of Theorem 3 is a simple induction. We scan the indices of the trees $j = 1, \ldots, r$ in this order. For each j, we consider all narrow cuts C_i with $j \leq \theta_i$. Since x satisfies (2), we always have $|S_j \cap C_0| = 1$ and $|S_j \cap C_\ell| = 1$ for all $j = 1, \ldots, r$. Now let $i \in \{1, \ldots, \ell - 1\}$ with $j \leq \theta_i$. Assuming $|S_j \cap C_h| = 1$ for all $h < i$ with $j \leq \theta_i$, we first apply Lemmas 6 and 7. The new tree then satisfies $|S_j \cap C_h| = 1$ for all $h \leq i$ with $j \leq \theta_i$, and S_1, \ldots, S_{j-1} remain unchanged.

3 Obtaining the distribution in polynomial time

The proof in the previous section contains a strongly polynomial-time algorithm. However, it is not obvious that the number r of trees in the initial (and hence final) distribution in Theorem 3 can be bounded by a polynomial in n. In this section we show two solutions to this question.

First, one can start with an arbitrary distribution p with at most $2n - 2$ trees S with $p_S > 0$ (cf. Sect. 1.3) and round the coefficients down to integral multiples of $\frac{\epsilon}{2n^2}$, for a sufficiently small constant $\epsilon > 0$, and then scale up all coefficients so that their sum is 1 again. This way we will get a vector x close to x^* that we can write as $x = \sum_{j=1}^r \frac{1}{r} \chi^{S_j}$, where $r \leq \frac{2n^2}{\epsilon}$ and $S_j \in S$ for $j = 1, \ldots, r$.

 Springer
It is not difficult to show that this vector \(x \) satisfies (2): As every tree contains \(n - 1 \) edges, rounding down loses less than \(\frac{\epsilon}{2n^2} (n-1)(2n-2) < \epsilon \) on any edge set. Scaling up (by a factor at least \(1 - \frac{1}{2n^2} (2n-2) \)) loses less than \(\frac{\epsilon}{n-\epsilon} (n-1) \leq \epsilon \) on any edge set, assuming \(\epsilon \leq 1 \).

Since \(x \) satisfies (2), we can apply the algorithm described in Sect. 2 to \(S_1, \ldots, S_r \) and obtain a solution as in Theorem 3. This is sufficient to obtain the claimed approximation ratio if \(\epsilon \) is chosen small enough (\(\epsilon = 0.0006 \) works).

However, Kanstantsin Pashkovich [private communication, 2015] suggested a more elegant solution: Theorem 2 implies a stronger version in which \(r \) can be chosen to be less than \(2n^2 \) and the trees and \(p \) can be found in polynomial time. We now explain how.

As before, fix an optimum basic solution \(x^* \) of (1). Let \(\xi^1 > \cdots > \xi^k = 1 \) be the distinct values among \(\{x^*(C) : C \in \mathcal{C}\} \) and \(\xi^0 := 2 \). Note that \(k \leq \ell \leq n - 2 \) by Lemma 1. Then Theorem 2 implies that the polytope defined by

\[
\sum_{h=1}^{k} ((\xi^{h-1} - \xi^h)x^h = x^*
\]

\[
x^h(C_i) = 1 \quad (1 \leq h \leq k, \ 0 \leq i \leq \ell, \ x^*(C_i) \leq \xi^h)
\]

\[
x^h(E) = n - 1 \quad (1 \leq h \leq k)
\]

\[
x^h(E[U]) \leq |U| - 1 \quad (1 \leq h \leq k, \ \emptyset \neq U \subset V)
\]

\[
x^h_e \geq 0 \quad (1 \leq h \leq k, \ e \in E)
\]

is nonempty: if \(S_1, \ldots, S_r \) and \(p_1, \ldots, p_r \) are as in Theorem 2, then

\[
x^h = \sum_{j=1}^{r} \max \left\{ 0, \min \{2 - \xi^h, \sum_{j' \leq j} p_{j'}\} - \max \{2 - \xi^{h-1}, \sum_{j' < j} p_{j'}\} \right\} \chi^{S_j}
\]

defines a feasible solution. We can find a vector \(x \) in this polytope in polynomial time by the ellipsoid method because the separation problem can be solved in polynomial time. Then, writing each \(x^h \) as convex combination \(x^h = \sum_{j=1}^{2n-2} p_j^h \chi^{S_j} \) of \(2n - 2 \) spanning trees (cf. Sect. 1.3), and setting \(S_{(h-1)(2n-2)+j} := S_j^h \) and \(p_{(h-1)(2n-2)+j} := (\xi^{h-1} - \xi^h)p_j^h \) for \(h = 1, \ldots, k \) and \(j = 1, \ldots, 2n - 2 \), yields a decomposition \(x^* = \sum_{j=1}^{k(2n-2)} p_j \chi^{S_j} \) with at most \((2n-2)(n-2) \) spanning trees and the properties of Theorem 2.

4 Analysis of the approximation ratio

In this section, we will analyze the best-of-many Christofides algorithm on a distribution as in Theorem 2. Essentially the same analysis works for a distribution as in
Theorem 3, but the details are a bit more complicated (see [arXiv:1511.05514v1]), and we do not present them here.

We follow the framework from [22] (based on [1,17]), which we briefly sketch here in a slightly simplified form. The average cost of the spanning trees is $c(x^*)$. To bound the average cost of parity correction, we partition every tree S into its s–t-path I_S and its T_S-join J_S. Then we define a vector y^S in the T_S-join polyhedron, by writing

$$y^S = \beta x^* + (1 - 2\beta) \chi^S + z^S,$$

where $0 \leq \beta \leq \frac{1}{2}$, $z^S \in \mathbb{R}^E_{\geq 0}$ with

(i) $z^S(C) \geq \beta(2 - x^*(C))$ for all $C \in \mathcal{C}$ with $|S \cap C|$ even, and

(ii) the average cost of the vectors z^S is at most $(1 - 2\beta)$ times the average cost of the paths I_S.

Then the average cost for parity correction is at most $(1 - \beta)c(x^*)$, yielding a $(2 - \beta)$-approximation. Therefore, we would like to maximize β.

In order to compose the vectors z^S ($S \in \mathcal{S}$) of fractions of $(1 - 2\beta)\chi^I_S$ ($S \in \mathcal{S}$), we proceed as follows. For a constant $0 \leq \gamma_S \leq 1$ to be determined later,

- a $\gamma_S(1 - 2\beta)$ fraction of each $e \in I_S$ goes to z^S (for the same tree S, helping it to obtain (i) for narrow cuts C with $|S \cap C|$ even), and

- if there is a narrow cut C with $S \cap C = \{e\}$ (there can be at most one such cut per edge), then a $(1 - \gamma_S)(1 - 2\beta)$ fraction of e goes to vectors $z^{S'}$ for other trees S', helping them to obtain $z^S(C) \geq \beta(2 - x^*(C))$.

Up to the factor $1 - 2\beta$, the following definition summarizes how much a tree contributes to the requirements of a cut (property (i)).

Definition 1 [22] Given numbers $0 \leq \gamma_S \leq 1$ for $S \in \mathcal{S}$ and $\beta < \frac{1}{2}$, we define the *benefit* of $(S, C) \in \mathcal{S} \times \mathcal{C}$ to be $b_{S,C} := \min\{\frac{\beta(2 - x^*(C))}{1 - 2\beta}, \gamma_S\}$ if $|S \cap C|$ is even, $b_{S,C} := 1 - \gamma_S$ if $|S \cap C| = 1$, and $b_{S,C} = 0$ otherwise.

The total requirement of a narrow cut C is $\beta(2 - x^*(C)) \sum_{S \in \mathcal{S} : |S \cap C| \text{ even}} p_S$. Therefore:

Lemma 8 [22] Let $0 \leq \beta < \frac{1}{2}$ and $0 \leq \gamma_S \leq 1$ for $S \in \mathcal{S}$. Let p be a distribution on S with $x^* = \sum_{S \in \mathcal{S}} p_s \chi^S$. If

$$\sum_{S \in \mathcal{S}} p_S b_{S,C} \geq \frac{\beta}{1 - 2\beta} (2 - x^*(C)) \sum_{S \in \mathcal{S} : |S \cap C| \text{ even}} p_S$$

for all $C \in \mathcal{C}$, then the best-of-many Christofides algorithm run on the trees $S \in \mathcal{S}$ with $p_S > 0$ returns a solution of cost at most $(2 - \beta)c(x^*)$.

We now show how to set the γ-constants in order to maximize the benefits, with the ultimate goal to choose β as large as possible.
Lemma 9 Let $S_1, \ldots, S_r \in S$ such that $x^* = \sum_{j=1}^r p_{S_j} x^{S_j}$, there exists a $\tilde{k} \in \{1, \ldots, r\}$ with $\sum_{j=1}^{\tilde{k}} p_{S_j} = \frac{1}{2}$, and for every $i = 0, \ldots, \ell$ there exists an $k_i \in \{1, \ldots, r\}$ with $\sum_{j=1}^{k_i} p_{S_j} = 2 - x^*(C_i)$ and $|C_i \cap S_j| = 1$ for all $j = 1, \ldots, k_i$.

We set $\delta := 0.126$, and $\gamma_{S_j} = \delta$ if $j \leq \tilde{k}$ and $\gamma_{S_j} = 1 - \delta$ otherwise. Choose β such that $\frac{\beta}{1 - 2\beta} = 3.327$. Then

$$\sum_{j=1}^r p_{S_j} b_{S_j, C_i} \geq \frac{\beta}{1 - 2\beta} (2 - x^*(C_i)) \sum_{S \in S: |S \cap C_i| \text{ even}} p_S$$

for all $i = 0, \ldots, \ell$.

Proof Fix $i \in \{0, \ldots, \ell\}$. By Definition 1, inequality (8) is equivalent to

$$\sum_{j: |S_j \cap C_i| = 1} p_{S_j} (1 - \gamma_{S_j}) \geq \sum_{j: |S_j \cap C_i| \text{ even}} p_{S_j} \max \left\{0, \frac{\beta(2 - x^*(C_i))}{1 - 2\beta} - \gamma_{S_j}\right\}. \quad (9)$$

As all summands are nonnegative, it suffices to show (9) when $|S_j \cap C_i|$ is even (and hence 2) for all $j = k_i + 1, \ldots, r$. We assume this henceforth.

Moreover, we may assume that the right-hand side is positive, so in particular

$$\frac{\beta(2 - x^*(C_i))}{1 - 2\beta} > \delta. \quad (10)$$

Case 1 $x^*(C_i) \leq \frac{3}{2}$. Then $k_i \geq \tilde{k}$ and $\frac{\beta(2 - x^*(C_i))}{1 - 2\beta} - (1 - \delta) > 0$ by the choice of β and δ. Using our definition of γ_{S_j}, the inequality (9) reads

$$\frac{1}{2} (1 - \delta) + (\frac{3}{2} - x^*(C)) \delta \geq (x^*(C_i) - 1) \left(\frac{\beta(2 - x^*(C_i))}{1 - 2\beta} - (1 - \delta)\right)$$

or, equivalently,

$$2\delta - \frac{1}{2} + x^*(C)(1 - 2\delta) \geq \frac{\beta}{1 - 2\beta} (x^*(C_i) - 1)(2 - x^*(C_i)). \quad (11)$$

This inequality is easily verified for $\delta = 0.126$ and $\frac{\beta}{1 - 2\beta} = 3.327$; the inequality is almost tight for $x^*(C_i) \approx 1.39$.

Case 2 $x^*(C_i) > \frac{3}{2}$. Then $k_i \geq \tilde{k}$. Write

$$\mu := \max\left\{0, \frac{\beta(2 - x^*(C_i))}{1 - 2\beta} - (1 - \delta)\right\}. \quad (12)$$

Then (using (10)), the inequality (9) reads

$$(2 - x^*(C))(1 - \delta) \geq (x^*(C_i) - \frac{3}{2}) \left(\frac{\beta(2 - x^*(C_i))}{1 - 2\beta} - \delta\right) + \frac{1}{2} \mu$$
or, equivalently,
\[
2 - \frac{7}{2} \delta - \frac{1}{2} \mu + \xi^*(C_i)(2\delta - 1) \geq \frac{\beta}{1 - 2\beta} (\xi^*(C_i) - \frac{3}{2})(2 - \xi^*(C_i)).
\] (13)

If \(\mu = \frac{\beta(2 - \xi^*(C_i))}{1 - 2\beta} - (1 - \delta) \), then (13) is
\[
\frac{5}{2} - 4\delta + \xi^*(C_i)(2\delta - 1) \geq \frac{\beta}{1 - 2\beta} (\xi^*(C_i) - 1)(2 - \xi^*(C_i)).
\]

Again, this is easily verified; one can also reduce it to (11) by substituting \(\xi^*(C_i) \) for \(3 - \xi^*(C_i) \).

If \(\mu = 0 \), then (13) is again easily verified; the inequality is almost tight for \(\xi^*(C_i) \approx 1.86 \).

Now we obtain our approximation guarantee:

Theorem 4 There is a 1.566-approximation algorithm for the s–t-path TSP.

Proof Let \(\xi^* \) be an optimal solution to (1). Let \(S_1, \ldots, S_{r'} \in S \) and rational \(p_1, \ldots, p_{r'} > 0 \) as in Theorem 2. We showed in Sect. 3 how to obtain this in polynomial time. By duplicating some trees we obtain a \(\tilde{k} \) with \(\sum_{j=1}^{\tilde{k}} p_{S_j} = \frac{1}{2} \) and a \(k_i \) with \(\sum_{j=1}^{k_i} p_{S_j} = 2 - \xi^*(C_i) \) for all \(i = 0, \ldots, \ell \). Therefore, we can apply Lemma 9 and obtain inequality (7) for \(\frac{\beta}{1 - 2\beta} = 3.327 \). Equivalently, \(\beta = \frac{3.327}{7.654} > 0.434 \).

Thus, the conditions in Lemma 8 are met and best-of-many Christofides yields an approximation ratio of at most \(2 - \beta < 1.566 \). \(\square \)

5 Conclusion

The approximation ratio can probably be improved slightly by choosing the \(\gamma_{S_j} \) differently, but still depending only on \(\sum_{j'=1}^{j} p_{S_{j'}} \). However, using an analysis based on Lemma 8, one cannot obtain a better approximation ratio than \(\frac{14}{9} \) because the benefit can never be more than one and there can be cuts \(C \) with \(\xi^*(C) = \frac{3}{2} \) and \(\sum_{S \in S : |S \cap C| \text{ even}} p_S = \frac{1}{2} \); therefore \(\frac{\beta}{1 - 2\beta} \leq 4 \). Our ratio is already close to this threshold.

On the other hand, it is not impossible that the best-of-many Christofides algorithm on a distribution like the one obtained in Theorem 2, or even on an arbitrary distribution, has a better approximation ratio, maybe even \(\frac{3}{2} \).

Very recently, [19] combined our Theorem 2 with a new idea to delete some edges before parity correction and obtained an approximation ratio of \(\frac{26}{17} \approx 1.53 \). Moreover, Schalekamp et al. [16] gave a different proof of Theorem 2. Finally, Traub and Vygen [20] devised a \((\frac{3}{2} + \epsilon) \)-approximation algorithm for any \(\epsilon > 0 \).

We finally remark that Theorem 2, and even Theorem 1, does not generalize to \(T \)-tours (connected multigraphs with vertex set \(V \) in which exactly the elements of a given subset \(T \) have odd degree). We give an example in Fig. 123.
Fig. 5 An instance of the minimum cost T-tour problem (edge costs are not shown); T is the set of filled vertices. The first figure shows an LP solution x^*: thick edges e have $x^*_e = 1$, thin edges e have $x^*_e = \frac{1}{2}$, other edges e (not shown) have $x^*_e = 0$. If G denotes the support graph of x^*, we see that $G - T$ is disconnected, so G contains no spanning tree in which all elements of T are leaves. However, $\delta(t)$ is narrow for all $t \in T$, so G contains no global Gao tree. The second figure shows that x^* is an extreme point: suppose $x^* = \sum_{i=1}^{k} \lambda_i x^i$, where $k \in \mathbb{N}$, $\lambda_i > 0$ ($i = 1, \ldots, k$), $\sum_{i=1}^{k} \lambda_i = 1$, and x^i is a convex combination of spanning trees with $x^i(U) \geq 2$ for all $\emptyset \neq U \subseteq V$ with $|U \cap T|$ even ($i = 1, \ldots, k$). Then, for all $i = 1, \ldots, k$, we have $x^i(e) = 1$ for each thick edge e. The figure shows some tight cuts $\delta(U)$, that is $x^i(\delta(U)) \equiv 2$ if $|U \cap T|$ is even and $x^i(\delta(U)) \equiv 1$ if $|U \cap T|$ is odd. Each of them must be a tight cut for each x^i. Therefore, the red/dashed singleton cuts show that every x^i must have the form shown, for some $0 \leq \rho, \sigma \leq 1$. The tight green/dotted cut shows $2\rho + 2\sigma = 2$, and the blue/dashdotted cut shows $1 - \rho + \sigma = 1$. Together we get $\rho = \sigma = \frac{1}{2}$ and hence $x^i = x^*$ (color figure online)
References

1. An, H.-C., Kleinberg, R., Shmoys, D.B.: Improving Christofides’ algorithm for the s–t path TSP. J. ACM 62, 34 (2015)
2. Asadpour, A., Goemans, M.X., Mądry, A., Oveis Gharan, S., Saberi, A.: An $O((\log n / \log \log n))$-approximation algorithm for the asymmetric traveling salesman problem. In: Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 379–389 (2010)
3. Cherian, J., Friggstad, Z., Gao, Z.: Approximating minimum-cost connected T-joins. Algorithmica 72, 126–147 (2015)
4. Christofides, N.: Worst-case analysis of a new heuristic for the traveling salesman problem. Technical Report 388, Graduate School of Industrial Administration, Carnegie-Mellon University, Pittsburgh (1976)
5. Cunningham, W.H.: Testing membership in matroid polyhedra. J. Comb. Theory B 36, 161–188 (1984)
6. Edmonds, J.: The Chinese postman’s problem. Bull. Op. Res. Soc. Am. 13, B-73 (1965)
7. Edmonds, J., Johnson, E.L.: Matching, Euler tours and the Chinese postman. Math. Program. 5, 88–124 (1973)
8. Gao, Z.: An LP-based $\frac{3}{2}$-approximation algorithm for the s–t path graph traveling salesman problem. Oper. Res. Lett. 41, 615–617 (2013)
9. Gao, Z.: On the metric s–t path traveling salesman problem. SIAM J. Discret. Math. 29, 1133–1149 (2015)
10. Genova, K., Williamson, D.P.: An experimental evaluation of the best-of-many Christofides’ algorithm for the traveling salesman problem. In: Bansal, N., Finocchi, I. (eds.) Algorithms–ESA 2015; LNCS 9294, pp. 273–282. Springer, Berlin (2015)
11. Goemans, M.X.: Minimum bounded-degree spanning trees. In: Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 273–282 (2006)
12. Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and its consequences in combinatorial optimization. Combinatorica 1, 169–197 (1981)
13. Held, M., Karp, R.M.: The traveling-salesman problem and minimum spanning trees. Oper. Res. 18, 1138–1162 (1970)
14. Hoogeveen, J.A.: Analysis of Christofides’ heuristic: some paths are more difficult than cycles. Oper. Res. Lett. 10, 291–295 (1991)
15. Oveis Gharan, S., Saberi, A., Singh, M.: A randomized rounding approach to the traveling salesman problem. In: Proceedings of the 52nd Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 550–559 (2011)
16. Schalekamp, F., Sebő, A., Traub, V., van Zuylen, A.: Layers and matroids for the traveling salesman’s paths. arXiv:1703.07170
17. Sebő, A.: Eight fifth approximation for TSP paths. In: Correa, J., Goemans, M.X. (eds.) Proceedings of the 16th IPCO Conference; LNCS 7801, Integer Programming and Combinatorial Optimization, pp. 362–374. Springer (2013)
18. Sebő, A., Vygen, J.: Shorter tours by nicer ears: $7/5$-approximation for graph-TSP, $3/2$ for the path version, and $4/3$ for two-edge-connected subgraphs. Combinatorica 34, 597–629 (2014)
19. Sebő, A., van Zuylen, A.: The salesman’s improved paths: $3/2 + 1/34$ integrality gap and approximation ratio. In: Proceedings of the 57th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2016), pp. 118–127
20. Traub, V., Vygen, J.: Approaching $\frac{3}{2}$ for the s–t-path TSP. In: Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms (2018) (to appear)
21. Vygen, J.: New approximation algorithms for the TSP. OPTIMA 90, 1–12 (2012)
22. Vygen, J.: Reassembling trees for the traveling salesman. SIAM J. Discrete Math. 30, 875–894 (2016)