ON KREBES’ TANGLE

SUSAN M. ABERNATHY

Abstract. A genus-1 tangle \(G \) is an arc properly embedded in a standardly embedded solid torus \(S \) in the 3-sphere. We say that a genus-1 tangle embeds in a knot \(K \subseteq S^3 \) if the tangle can be completed by adding an arc exterior to the solid torus to form the knot \(K \). We call \(K \) a closure of \(G \). An obstruction to embedding a genus-1 tangle \(G \) in a knot is given by torsion in the homology of branched covers of \(S \) branched over \(G \). We examine a particular example \(A \) of a genus-1 tangle, given by Krebes, and consider its two double-branched covers. Using this homological obstruction, we show that any closure of \(A \) obtained via an arc which passes through the hole of \(S \) an odd number of times must have determinant divisible by three. A resulting corollary is that if \(A \) embeds in the unknot, then the arc which completes \(A \) to the unknot must pass through the hole of \(S \) an even number of times.

1. Introduction

We choose a standardly embedded solid torus \(S^1 \times D^2 \subset S^3 \), denoted by \(S \). Then a genus-1 tangle is a properly embedded arc in \(S \). Just as we may discuss embedding ordinary tangles in \(B^3 \) into knots and links (see [1], [2], and [3]), we may consider embedding genus-1 tangles in knots. We say that a genus-1 tangle \(G \) embeds in a knot \(K \) if \(G \) can be completed by an arc exterior to \(S \) to form the knot \(K \); that is, there exists some arc in \(S^3 - \text{Int}(S) \) such that upon gluing this arc to \(G \) along their boundary points, we have a knot in \(S^3 \) which is isotopic to \(K \). We say that \(K \) is a closure of \(G \).

Let \(l \) denote a longitude for \(S \) which is contained in \(\partial S \) and avoids the genus-1 tangle. A closure \(K \) of \(G \) is called odd (respectively, even) with respect to \(l \) if \(lk(K,l) \) is odd (respectively, even). If \(l \) is chosen to be the longitude which circles the central hole of \(S \) as in Fig. [1] and we span the longitude \(l \) by a disk \(\Delta \) filling the hole, then \(lk(K,l) \) is the number of transverse intersections counted with sign of the arc which completes \(G \) to \(K \) with \(\Delta \). Thus, in this case we can say more colloquially that \(K \) is an odd (respectively, even) closure with respect

Key words and phrases. Tangle, knot, branched cover, determinant.
to \(l \) if the arc which completes \(G \) to \(K \) passes through the hole of \(S \) an odd (respectively, even) number of times.

In \([1]\), Krebes asks whether the genus-1 tangle given in Fig. 1 embeds in the unknot. We denote this tangle by \(A \), and when discussing this example, we always use the longitude \(l \) drawn in Fig. 1. Using the following results from \([4]\), we are able to partially answer the question posed by Krebes.

Theorem 1.1 (Ruberman). Suppose \(M \) is an orientable 3-manifold with connected boundary, and \(i : M \hookrightarrow N \) where \(N \) is an orientable 3-manifold with \(H_1(N) \) torsion. Then the inclusion map \(i_* \) induces an injection of the torsion subgroup \(T_1(M) \) of \(H_1(M) \) into \(H_1(N) \).

This theorem has a useful corollary which can easily be proved directly using a Meyer-Vietoris sequence.

Corollary 1.2 (Ruberman). Let \(M \) and \(N \) be as in Theorem 1.1 but suppose \(H_1(N) = 0 \). Then \(H_1(M) \) is torsion-free.

One obtains an obstruction to embedding genus-1 tangles in knots from Theorem 1.1 by applying the result to branched covers of \(S \) branched over genus-1 tangles.

Recall, for a given \(n \), each \(n \)-fold cover of \(S \) branched over a genus-1 tangle \(G \) is associated to a homomorphism \(\varphi : H_1(S - G) \to \mathbb{Z}_n \) which maps the meridian \(m \) of \(G \) to one. The remaining generator \(l \) of \(H_1(S - G) \) may be sent to any element of \(\mathbb{Z}_n \); we use \(\varphi(l) \) to index the \(n \)-fold branched covers. So, \(Y_{G,i} \) denotes the \(n \)-fold cover of \(S \) branched over \(G \) associated to the homomorphism \(\varphi \) which maps \(l \) to \(i \).

If a genus-1 tangle \(G \) embeds in a knot \(K \), then the \(n \)-fold cover \(X_K \) of \(S^3 \) branched over \(K \) restricts to some \(n \)-fold cover \(Y_{G,i} \) of \(S \) branched over \(G \). In this case, we say that the closure \(K \) induces the cover \(Y_{G,i} \). Then according to Theorem 1.1, the torsion subgroup \(T_1(Y_{G,i}) \) of \(H_1(Y_{G,i}) \) injects into \(H_1(X_K) \).

Note that if \(K \) is the unknot, then \(X_K \) is \(S^3 \) and according to Corollary 1.2, the torsion subgroup \(T_1(Y_{G,i}) \) is trivial. Thus, if there is any
torsion in the homology of $Y_{G,i}$, then any closure of G which induces the cover $Y_{G,i}$ is not the unknot.

After applying this obstruction to the double-branched covers of S branched over A, we prove the following results:

Theorem 1.3. If a knot K in S^3 is an odd closure of A, then $\det(K)$ is divisible by 3.

Corollary 1.4. If A embeds in the unknot, then the unknot is an even closure of A.

Before further discussion, we need to make a remark about the definition of genus-1 tangles.

Remark 1.5. Note that when defining genus-1 tangles, we fix a standardly embedded solid torus S in the 3-sphere. The reason that we restrict to a fixed embedding is that there are many ways to re-embed a solid torus inside S^3.

For instance, if we perform a meridional twist on S along the disk indicated in Fig. 2, the image of A under this twist can be easily seen to embed in an unknot via the exterior arc pictured in Fig. 2. Thus it is necessary to specify the embedding of $S^1 \times D^2$ in the case of genus-1 tangles, and we restrict to a fixed standardly embedded solid torus in our definition.

2. **Surgery descriptions for double-branched covers**

For the purposes of this paper, we restrict our attention to double-branched covers of S branched over A. Since a homomorphism $\varphi : H_1(S - A) \to \mathbb{Z}_2$ must map the specified longitude l to either zero or one, there are two double-branched covers, $Y_{A,0}$ and $Y_{A,1}$. We call $Y_{A,0}$ the even double-branched cover because it is induced by all even
closures of A (with respect to l). Similarly, since $Y_{A,1}$ is induced by all odd closures of A, we call it the odd double-branched cover.

In this section, we adapt Rolfsen’s technique to find surgery descriptions for these double-branched branched covers.

Following [3], we perform surgery near a carefully selected crossing (see Fig. 3) in such a way that after surgery we may essentially unwind A (via sliding its endpoints around the boundary in the complement of l) so that it looks trivial. This process, illustrated in Fig. 4, results in a nice surgery description of A inside S. Note that in the last drawing of Fig. 4, we choose to draw this surgery description in a particular way because it makes constructing branched covers easier.
Figure 5. Constructing the odd double-branched cover $Y_{A,1}$ of S branched over A.

Now we construct the odd cover, $Y_{A,1}$. Construction is dictated by the homomorphism $\varphi : H_1(S - A) \to \mathbb{Z}_2$ corresponding to the cover. If φ maps a generator of $H_1(S - A)$ to a non-zero element, then we cut the solid torus along a disk transverse to that generator. Thus, we have two cuts to make in the case of the odd cover.

First, we cut S along a disk which is transverse to the meridian m of A and whose boundary is made up of the unwound genus-1 tangle A together with an arc in ∂S. Then, because φ sends l to one, we cut S along a disk which is transverse to l and whose boundary is contained in ∂S. We then take two copies of the resulting manifold and glue them together carefully to obtain a surgery description for $Y_{A,1}$. This process is illustrated in Fig. 5.

Although it is not needed in the proof of Theorem 1.3, we also give a surgery description of the even double-branched cover $Y_{A,0}$ in Fig. 6.

3. Homology of the covers

Now we compute the homology of the odd double-branched cover. From Fig. 5 we see that the surgery description for $Y_{A,1}$ is given by
Figure 6. Obtaining a surgery description of $Y_{A,0}$.

Figure 7. A surgery description of $Y_{A,1}$

a 2-component surgery link inside a genus-2 handlebody. We denote the components of the surgery link by σ and τ, and let H denote the genus-2 handlebody. The complement of H in S^3 is a neighborhood of the handcuff graph G, pictured in Fig. 7 which is composed of loops α_1 and α_2 joined together by an arc. Then the complement of $\sigma \cup \tau$ in H can be viewed as the complement of $\sigma \cup \tau \cup G$ in S^3. One can see that $H_1(S^3 - (\sigma \cup \tau \cup G))$ is isomorphic to $H_1(S^3 - (\sigma \cup \tau \cup \alpha_1 \cup \alpha_2))$ which is free on four generators: the meridians of σ, τ, α_1, and α_2.

Completing the surgery by gluing in two solid tori according to σ and τ introduces two relations on these four generators, which are given by the linking numbers of σ and τ with each of σ, τ, α_1, and α_2. Then $H_1(Y_{A,1})$ is isomorphic to $H_1(S^3 - (\sigma \cup \tau \cup \alpha_1 \cup \alpha_2))$ modulo these two relations, and we can get a presentation for $H_1(Y_{A,1})$ using linking
numbers. Thus, we have the following presentation matrix for $H_1(Y_{A,1})$:

$$\begin{bmatrix}
\sigma & \tau & \alpha_1 & \alpha_2 \\
\sigma & 1 & 2 & 0 & 0 \\
\tau & 2 & 1 & 0 & 0 \\
\end{bmatrix}.$$

Using row and columns operations we obtain a simpler presentation matrix:

$$\begin{bmatrix}
\sigma & \tau & \alpha_1 & \alpha_2 \\
\sigma & 1 & 0 & 0 & 0 \\
\tau & 0 & 3 & 0 & 0 \\
\end{bmatrix}.$$

Therefore, $H_1(Y_{A,1}) = \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}_3$ and we are now able to prove the main theorem. Corollary 1.4 follows immediately.

Proof of Theorem 1.3 Let K be an odd closure of A, and let X_K denote the double cover of S^3 branched over K. Since K is an odd closure of A, it induces a restriction from X_K to $Y_{A,1}$. Then according to Theorem 1.1, we have that $T_1(Y_{A,1}) = \mathbb{Z}_3 \hookrightarrow H_1(X_K)$. Thus $|T_1(Y_{A,1})| = 3$ divides $|H_1(X_K)| = \det(K)$. □

We are unable to use this method to restrict all closures of A because $Y_{A,0}$ has a torsion-free first homology group. Indeed, the statement in Remark 1.5 allows us to see that the even cover does embed in S^3 and so must have torsion-free first homology. Of course, this can be verified by deriving a presentation for the homology of $Y_{A,0}$ using the procedure above.

References

[1] D. A. Krebes, An obstruction to embedding 4-tangles in links, *J. Knot Theory and its Ramifications* 8 (1999) 321-352.

[2] J.H. Przytycki, D.S. Silver and S.G. Williams, 3-manifolds, tangles, and persistent invariants, *Math. Proc. Camb. Phil. Soc.* 139 (2005) 291–306.

[3] D. Rolfsen, *Knot and Links* (Publish or Perish, Berkeley, CA, 1976).

[4] D. Ruberman, Embedding tangles in links, *J. Knot Theory and its Ramifications* 9 (2000) 523-530.

Mathematics Department, Louisiana State University, Baton Rouge, Louisiana

E-mail address: sabern1@tigers.lsu.edu