A Comprehensive Survey of Machine Learning Applied to Radar Signal Processing

Ping Lang, Student Member, IEEE, Xiongjun Fu, Member, IEEE, Marco Martorella, Fellow, IEEE, Jian Dong, Rui Qin, Xianpeng Meng, and Min Xie

Abstract—Modern radar systems have high requirements in terms of accuracy, robustness and real-time capability when operating on increasingly complex electromagnetic environments. Traditional radar signal processing (RSP) methods have shown some limitations when meeting such requirements, particularly in matters of target classification. With the rapid development of machine learning (ML), especially deep learning, radar researchers have started integrating these new methods when solving RSP-related problems. This paper aims at helping researchers and practitioners to better understand the application of ML techniques to RSP-related problems by providing a comprehensive, structured and reasoned literature overview of ML-based RSP techniques. This work is amply introduced by providing general elements of ML-based RSP and by stating the motivations behind them. The main applications of ML-based RSP are then analysed and structured based on the application field. This paper then concludes with a series of open questions and proposed research directions, in order to indicate current gaps and potential future solutions and trends.

Index Terms—Radar signals classification and recognition, SAR/ISAR images processing, radar anti-jamming, machine learning, deep learning

I. INTRODUCTION

RADAR offers special advantages with respect to other types of sensors including all-day, all-weather operations, long detection distance and, depending on the frequency used, penetration. Moreover, radar can often be carried by a number of platforms, spanning from classic naval and airborne to more recent space-borne, UAVs, such as drones, and high-altitude platforms (HAPs). The ensemble of these characteristics can be exploited for military scenarios, such as target detection, tracking and recognition, and for civil scenarios, such as land use and classification, disaster assessment, urban and non-urban monitoring, making radar the perfect sensor for dual use applications [1], [2]. Radar signal processing (RSP) is one of the key aspects that characterize the radar field [3] as its development allows for radar performances to be maximised and for several capabilities to be enabled, including the ability to operate in spectrally congested and contested scenarios and complex and dynamically changing environment [4], [106]. Artificial Intelligence (AI) has pushed the research and development in many fields [5], including, among others, speech signal processing (SSP), computer vision (CV) and natural language processing (NLP). Such domains include logic programming, expert system, pattern recognition, machine learning (ML) and reinforcement learning [6]. Machine learning (ML), and especially deep learning (DL) [7], [8], has achieved great breakthroughs thanks to large investments from a number of countries and through a pervasive cooperation of the scientific community. More specifically, ML-based RSP has been targeted by many to attempt to improve traditional RSP solutions and overcome their limitations. As a demonstration of the interest in this field, in the recent years, the Defense Advanced Research Projects Agency (DARPA) has launched many projects in this field, such as the radio frequency machine learning system (RFMLS) project [9]–[12], the behavior learning for adaptive electronic warfare (BLADE) project [13], [14], and the adaptive radar countermeasures (ARC) project [15]. In addition to DARPA’s projects, there is ample support from the scientific literature, such as radar emitter recognition and classification [110], [114], [150], [152], radar image processing (e.g., synthetic aperture radar (SAR) image denoising [273], [276], [279], data augmentation [251]–[255], automatic target recognition (ATR) [304], [310]–[316], [320], target detection [585], [587], also with specific emphasis on ship detection [472]–[474], [476], [477], anti-jamming [876], optimal waveform design [880], array antenna selection [886], and cognitive electronic warfare (CEW) [584]. These ML algorithms include traditional machine learning (e.g., support vector machines (SVMs), decision tree (DT), random forest (RF), boosting methods), and deep learning (e.g., deep belief networks (DBNs), autoencoders (AEs), convolutional neural networks (CNNs), recurrent neural networks (RNNs), generative adversarial networks (GANs)). This survey paper has comprehensively reviewed state-of-the-art of ML-based RSP algorithms, including traditional ML and DL.

A. Motivation

Due to the large success of ML in many domains, the radar community has started applying ML-based algorithms to classic and new radar research domains to tackle traditional and new challenges from a novel prospective. Being ML a relatively new paradigm, the research results that have been obtained have not been systematically surveyed and analyzed. A thorough and reasoned review of new technologies is key for providing

i) a solid basis for new researchers and practitioners who are approaching this field for the first time;

ii) an important reference for more experienced researchers who are working in this field;

iii) existing terms for comparison for newly developed ML-based algorithms;

iv) means to identify gaps;
v) a full understanding of strengths and limitations of ML-based approaches.

B. Related works

This section will briefly survey some this topic-related review scientific literatures.

i) ML algorithms and applications There are many review papers either about the development of ML algorithms, such as DL [8], [17], [19], deep reinforcement learning (DRL) [16], transfer learning (TL) [18], GANs [20], developments of CNNs [38], efficient processing technologies of DNN [39], adversarial learning for DNN classification [40], neural networks model compression and hardware acceleration [41] or applications in special topics such as ML applied to medical image processing [42], [43], robotics [25], agriculture [23], sentiment analysis [24], object detection [42], [43].

As a most popular DNN model, CNN has been successfully applied in most of ML tasks. In [38], the authors comprehensively investigated the state-of-the-art technologies about the development of CNN. This paper systematically introduced the CNN models from LeNet to latest networks such as GhostNet, including one-dimension (1D), two-dimension (2D), and multi-dimension (multi-D) convolutional models and their applications, such as 1D, 2D and multi-D models can be applied in time series prediction and signal identification, image processing, and human action recognition, X-ray, computation tomography (CT), respectively. Besides, some prospective trends have been proposed such as model compression [41], security, network architecture search [594], and capsule neural network [25].

TL aims to solve insufficient training data problem, which also used in RSP domain, such as radar emitter recognition [206], micro-doppler for motion classification [542], [544], SAR image processing with limited labeled data [305], [306], [329]. A TL-related review was developed in [18], which categorized the TL techniques as four classes: instances-based, mapping-based, network-based, and adversarial-based, respectively.

Object detection, as one of most important tasks of CV, is a fundamental and challengeable task, which not only concentrates on classifying different images but also tries to precisely estimate the concepts and locations of objects contained in each image [42]. The authors in [42], [43] have studied the latest development of object detection in the past few years. These review papers have covered many aspects of object detection, including detection frameworks (such as R-CNN, Fast R-CNN, Faster R-CNN, Mask R-CNN, YOLOv1-v4), training strategy, evaluation metrics, and the analysis of some typical object detection examples, such as salient object detection, face detection and pedestrian detection.

ii) Remote sensing Besides, some review papers, focused on ML applied to remote sensing (RS) domain, have been published in [27], [31]. These survey papers investigated the state-of-the-art technologies of ML to solve the challenges in RS domain, such as RS image processing (e.g., hyperspectral image, SAR image, hyper resolution satellite image, 3D reconstruction), target recognition, scene understanding, object detection and segmentation.

The challenges of using DL for RS data analysis were analyzed in [27], and then the recent advances in images classification, recognition, detection, multi-model data fusion, and 3D reconstruction were reviewed. The DL models mainly included AEs and CNNs. The authors in [28] surveyed the recent developments of RS field with DL and provided a technique tutorial on the design of DL-based methods for processing the optical RS data, including image preprocessing, pixel-based classification, target recognition, and scene understanding. The comprehensive survey of state-of-the-art DL in RS research was developed in [29], which focused on theories, tools, challenges for the RS community, and specifically discussed unsolved challenges and opportunities, such as inadequate data sets, human understandable solutions for modeling physical phenomena. In [31], the authors systematically reviewed the DL in RS applications by meta-analysis method containing image fusion, registration, scene classification and object detection, semantic segmentation, and even accuracy assessment. The recent progress of RS image scene classification, especially DL-based methods was surveyed in [32]. In addition, a large-scale remote sensing image scene classification (RESISC) benchmark data set, termed “NWP-RESISC45” was proposed. The traditional ML algorithms applied to classification of RS research was also investigated in [30], including SVM, boosted DTs, RF, artificial neural network (ANN), K nearest neighbor (K-NN). The study aspects contained the selection of classifier, the requirements of training data, definition of parameters, feature space operation, model interpretability, and computation costs. Some key findings such as SVM, RF, and boosted DTs have higher accuracy for classification of remotely sensed data, compared to alternative machine classifiers such as a single DT and K-NN.

A comprehensive state-of-the-art survey for SAR-ATR techniques was developed in [34], which was categorized to model-based, semi-model-based, and feature-based. These SAR-ATR techniques, however, were unilaterally based on pattern recognition or prior knowledge. The AE model and its variants applied to RS and SAR images interpretation was investigated in [35], including original AE, sparse AE, denoising AE, convolutional AE, variational AE, and contrastive AE. The authors in [35] surveyed temporal developments of optical satellite characteristics and connected these with vessel detection and classification after analyzed 119 selected literatures. Although there are some review papers about RS domain based on ML algorithms, as a subset of RS, the comprehensive survey of ML algorithms applied to RSP has not emerged so far.

iii) Multi-representation learning algorithms There are also some other survey papers related the topic of this area, such as multi-view learning (MVL) [36], multi-task learning (MTL) [37].

MVL and MTL have rapidly grown in ML and data mining in the past few years, which can obviously improve performance of model learning. In RSP domain, these related methods are popular in DL-based SAR-ATR, e.g., [325], [328], [331], [336], [337], [340], [343], [347]. Therefore, it is necessary to make a brief introduction about the review papers in MVL [36] and MTL [37]. MVL is concerned as the
problem of learning representations (or features) of the multi-view data that facilitates extracting readily useful information when developing prediction models.\cite{ref36}

According to the state-of-the-art overview on MVL studied in \ref{ref36}, multi-view representation alignment and multi-view representation fusion were two categories of MVL. The former aims to capture the relationships among multiple different views through feature alignment, including multi-modal topic learning, multi-view sparse coding, and multi-view latent space Markov networks. The latter seeks to fuse the separate features, learned from multiple different views, into a single compact representation, including multi-modal AEs, multi-view CNNs, and multi-modal RNNs.

MTL can be roughly defined as: a some task learning can improve generalization capability by shared representation between related tasks or optimize multi-loss function simultaneously. A comprehensive survey on MTL in deep neural networks (DNNs) was developed in \ref{ref37}, which introduced (i) two common MTL methods in DL, i.e., hard and soft parameters sharing, (ii) MTL neural network models and non-NN models, such as block-sparse regularization, learning tasks relationship, and (iii) auxiliary tasks in order to reap the benefits of multi-task learning.

C. Contributions and Organization

Motivated by the research community and our research interests, this article collects state-of-the-art achievements about ML-based RSP algorithms from public databases such as \textit{IEEE Xplore, Web of Science, and dblp}, most of which come from recent 5 years, i.e., from 2015 to 2020. We systematically analyze these findings on this research domain, to pave the access to promising and suitable directions for future research. Hopefully, this paper can help relative researchers and practitioners to quickly and effectively determine potential facts of the this topic by clearly knowing about key aspects and related body of research.

In this consideration, we make three main contributions:

(i) Based on a deep literatures analysis of more than 600 papers, we firstly provide an systematical overview of the existing approaches of ML-based RSP domain from different perspectives;

(ii) We propose a comprehensive background regarding the main concepts, motivations, and implications of enabling intelligent algorithm in RSP;

(iii) A profound discussion about the future promising research opportunities and potential trends in this field is proposed.

Accordingly, the reminder of this review article is organized as follows. Section II briefly introduces the basic principles of typical ML algorithms; section III surveys the latest developments in radar radiation sources classification and recognition; section IV investigates state-of-the-art achievements in radar image processing; section V investigates the developments of anti-jamming and interference mitigation; other RSP-related research that does not fall in previous categories, such as waveform design, anti-interference, has been reviewed in section VI; section VII profoundly discusses open problems and possible promising research directions, in order to indicate current gaps and potential future solutions and trends. Finally, the conclusion of this article is drawn in section VIII. The overview contents of this paper is shown in Fig. 1.

II. THE BASIC PRINCIPLES OF TYPICAL MACHINE LEARNING ALGORITHMS

ML has achieved great success in many domains, mainly related to three determining factors: data, model algorithm, and computation power. As a data-driven pattern, big data is the basic motivation for development of ML. Computation power is supported by hardware equipments to drive ML model training, such as graphical processing units (GPUs), tensor processing units (TPUs), Kunpeng 920 produced by Huawei corporation. This section will briefly introduce the RSP-related typical ML model algorithms.

A. Traditional Machine Learning Models

1) Support Vector Machines (SVMs).

Support Vector Machines are the most popular ML algorithms for binary classification \cite{ref43} especially high-efficiently in solving non-linear binary classification issues, through the projection of low dimensional feature space to a higher one with kernel function \cite{ref45} (e.g., polynomial kernels, radial basis function (RBF) kernel, Gaussian kernel). SVMs address the classification problem by finding an optimal hyperplane in
the feature space to maximize the samples margin between the support vectors of two classes, as shown in Fig. 2. The optimal problem can be expressed as in Eq.(1), which is a convex optimization problem, and the sequence minimization optimization (SMO) [47] can be used as an optimization algorithm. SVMs have been widely applied to radar emitter classification and recognition [170, 192–194].

Fig. 2. The diagram of SVM. $d_1 = d_2$.

$$\begin{align*}
\min & \quad \frac{1}{2} \| \omega \|^2 \\
\text{s.t.} & \quad y^{(i)}(\langle \omega, x^i \rangle + b) \geq 1 \quad (i = 1, 2...m),
\end{align*}$$

where ω and b are the hyperplane parameters, m is the number of samples, x, y are the samples and the labels, respectively. When the classes do not have an explicit classification hyperplane, i.e., inherently not separable. Soft-SVMs can be used to tackle this issue. This means that a small number of samples is allowed to fall into the wrong side. The objective of soft-SVMs adds a penalty term based on SVMs to restrict the slack term ε, as follow:

$$\begin{align*}
\min & \quad \left(\frac{1}{2} \| \omega \|^2 + C \sum \varepsilon_i \right) \\
\text{s.t.} & \quad y^{(i)}(\langle \omega, x^i \rangle + b) \geq 1 - \varepsilon_i \quad (i = 1, 2...m) \\
\varepsilon_i & \geq \max \left\{ 0, 1 - y^{(i)}(\langle \omega, x^i \rangle + b) \right\},
\end{align*}$$

where C is the penalty term.

2) Decision Trees (DTs).

Decision Trees are intuitively the simplest case of ML algorithm. They are suitable for addressing these situations where the labels of data are non-continuous. DTs adopt if-then rules to split the input data according to features and suitable threshold values based on a binary tree structure [48]. The root nodes, middle nodes, and leaf nodes represent input data, features and threshold attributes and outputs, respectively. Each branch represents an output of the discrimination process. The loss function is usually implemented as a mean square error (MSE) for regression and cross entropy (CE) for classification. DTs typically use a limitation of the tree structure depth and pruning operations to address the overfitting problem. Although pruning will reduce the task accuracy to some extent, it generally improves the generalization. Information entropy-based ID3 [48], C4.5 [49], and Gini coefficient-based classification and regression tree (CART) [50] are usually the optimization algorithms that are implemented during the training process. DTs has been applied to radar emitter classification and recognition [203].

3) Boosting Ensemble Learning.

The Ensemble Learning (EL) [51] builds multi-classifier to jointly make prediction of inputs. The advantages of ensemble learning are as follow: (i) improving prediction accuracy with joint decision; (ii) can easily deal with either large or small datasets, i.e., large dataset can be divided into multiple subsets to build a multi-classifier, small dataset can be sampled to reform multiple datasets to establish a multi-classifier; and (iii) suitable to address the complex decision boundary problems, homologous and heterogeneous datasets. EL can be categorized into two classes: bootstrap (such as random forest) and boosting (such as adaboost [53], gradient boosting decision tree (GBDT) [55], extreme GBDT (XGBoost) [54]). Gradient boosting methods [55, 207] were used as classification model in radar emitter recognition.

Random forest (RF) As one of the ensemble learning algorithms [52]. RF is a bootstrap ensemble classifier, consisting of relatively independent multi-CART, to overcome the high prediction error problem with a single DT. Every sub-DT is a weak learning model as a part of an over learning task, trained by a random subset bootstrapped from the training dataset, and determined splitpoint with random features. The final prediction output is determined by voting rules with all DTs. RF may reach the global optimum, instead of a local optimum as in the case of a single tree. The radar signals recognition based on RF models was proposed in [170] to obtain comparable performance.

Adaboost Adaboost, i.e., adaptive boosting, which firstly produce a set of hypothesis functions by repeatedly using basic learning algorithm based on multi-sampled training data. Then, these hypothesis functions are connected to ultimately form an ensemble learner via linear weighted vote rules [53]. An AdaBoost algorithm was employed as a classifier in [209] to complete the different types recognition of radar signals with 1D harmonic amplitude data sets.

Given the hypothesis function $H = \{ h(x) : x \rightarrow R \}$ and unknown data x, $h(x)$ donates weak learners or base learners, then the ultimate ensemble learner can be given by:

$$F(x) = \sum_{t=1}^{T} \alpha_t h_t(x),$$

where α_t is the connection coefficients of t-th iteration, T is the number of iteration. $\alpha = [\alpha_1, \alpha_2, ..., \alpha_T]$ and $h(x)$ are optimally generated during the minimization of loss function C, as showed in Eq.(4). Initially, the weight of every sample is set equal to $\frac{1}{N}$, N being the number of samples. When the sample is misclassified, it gets a larger weight in the following iterations, the base learner is forced to focus on
these hard-to-classify cases in the subsequent training steps. This characterizes the adaptation of boosting methods.

\[
C = \frac{1}{N} \sum_{n=1}^{N} \exp(-y_n F(x_n)),
\]

where \(y_n \in \{+1, -1\} \) is the label of data \(x_n \).

GBDT As a residual learning type, the prediction score of GBDT [55] is determined by summing up the scores of a multi-CART regression tree, instead of a classification tree. In detail, adding a new tree structure to learn the residual (i.e., the gap between the prediction and the actual value) of previous tree at each iteration based on negative gradient learning, to iteratively approach the actual value. For a given dataset with \(n \) samples and \(m \) features \(D = \{(x_i, y_i)\} \) \((i = 1...n, x_i \in \mathbb{R}^m, y_i \in \mathbb{R})\) which uses \(K \) additive tree functions to predict the output (take a regression tree as an example) [54]:

\[
\hat{y}_i = \phi(x_i) = \sum_{k=1}^{K} f_k(x_i), f_k \in \Gamma,
\]

where \(\Gamma = \{f(x) = \omega_q(x)\} \ (q : \mathbb{R}^m \rightarrow T, \omega \in \mathbb{R}^T\) is the space of regression tree. \(q \) represents the structure of each tree that maps an example to the corresponding leaf index. \(T \) is the number of leave nodes in the tree. Each \(f_k \) corresponds to an independent tree structure \(q \) and leaf weights \(\omega \). Let \(y_i \) and \(\hat{y}_i \) be the actual and prediction values, then we minimize the following loss function:

\[
L(\phi) = \sum_i l(y_i, \hat{y}_i) \ (i = 1...n, y_i \in \mathbb{R}),
\]

where \(l \) is a loss function, usually the MSE.

XGBoost As an implementation of gradient tree boosting, XGBoost [54], an end-to-end scalable tree boosting system, is widely used in data mining. As one of the most popular ML model, it provides the state-of-the-art performance in many Kaggle competitions in recent years. For example, 17 solutions used XGBoost (eight solely used XGBoost, while others combined XGBoost with neural networks) among the 29 challenging winning solutions at 2015 Kaggle competition [54]. XGBoost was also used in the top-10 in the KDDCup 2015 by each award-winning team [54]. In addition, the authors in [180] used weighted-XGBoost for Radar emitter classification. XGBoost’s widespread scalability as its one of the most important factor of success, which can scale to billions of examples in distributed or memory-limited setting and have higher computation efficiency than existing popular solutions on a single machine. Compared to GBDT, XGBoost adds a penalty term (i.e., regularized term) in objective function to overcome overfitting, and introduces the first and second order gradient in objective based on Taylor expansion. The XGBoost minimizes the following objective,

\[
L(\phi) = \sum_i l(y_i, \hat{y}_i) + \sum_k \Omega(f_k),
\]

\[
\Omega(f) = \gamma T + \frac{1}{2}\lambda \|\omega\|^2,
\]

where \(\Omega \) is the regularized term to penalize the complexity of the model, usually \(l_1 \) norm or \(l_2 \) norm. The optimization algorithm is residual learning iteratively between the adjacent sub-model, and let \(\hat{y}_i^{t-1} \) be as the prediction of \(t \)-th instance at \((t-1)\)-th iteration, we minimize the following objective,

\[
L^{(t)} = \sum_{i=1}^{n} l(y_i, \hat{y}_i^{t-1} + f_t(x_i)) + \Omega(f_t),
\]

where \(f_t \) represents the residual between \((t-1)\)-th and \(t \)-th iterations. Inspired with Taylor expansion (the second order expansion): \(f(x + \Delta x) = f(x) + f'(x)\Delta x + \frac{1}{2} f''(x)\Delta x^2 \). The above equation can be rewritten as follow,

\[
L^{(t)} \approx \sum_{i=1}^{n} [l(y_i, \hat{y}_i^{t-1}) + g_i f_t(x_i) + \frac{1}{2} \omega_i^T f''(x_i) + \Omega(f_t)], \tag{9}
\]

where \(g_i = \partial \hat{y}_i^{t-1} l(y_i, \hat{y}_i^{t-1}) \) and \(h_i = \partial^2 \hat{y}_i^{t-1} l(y_i, \hat{y}_i^{t-1}) \) are the first and second order gradient statistics on the loss function, respectively. Removing the constant term \([l(y_i, \hat{y}_i^{t-1})]\) to simplify the Eq.(7) by

\[
L^{(t)} = \sum_{i=1}^{n} [g_i f_t(x_i) + \frac{1}{2} \omega_i^T f''(x_i)] + \Omega(f_t). \tag{10}
\]

Define \(C = \{j | q(x_i) = j\} \) as the set of leaf nodes \(j \), Eq.(8) can be rewritten as

\[
L^{(t)} = \sum_{i=1}^{n} [g_i f_t(x_i) + \frac{1}{2} \omega_i^T f''(x_i)] + \gamma T + \frac{1}{2} \lambda \sum_{j=1}^{T} \omega_j^2
\]

\[
= \sum_{j=1}^{T} \left[(\sum_{i \in C} g_i) \omega_j + \frac{1}{2} (\sum_{i \in C} h_i) \omega_j^2\right] + \gamma T + \frac{1}{2} \lambda \sum_{j=1}^{T} \omega_j^2 \tag{11}
\]

When fixing a tree \(q(x) \), the optimal score \(\omega_j^* \) of leaf nodes \(j \) is given by

\[
\omega_j^* = -\frac{\sum_{i \in C} g_i}{\sum_{i \in C} h_i + \lambda}.
\]
The optimal objective at t-th iteration is given by

$$L^t(q) = \frac{1}{2} \sum_{j=1}^T \left(\sum_{i \in C} g_i \right)^2 + \frac{1}{2} \sum_{i \in C} h_i + \lambda + \gamma T. \quad (13)$$

Eq.(10) can be used as a scoring function to measure the quality of a tree structure q. A greedy algorithm is used to search for optimal tree structure C_L and $C_R (C = C_L \cup C_R)$ are sets of left and right nodes after being split. The reduction of loss after being split is given by

$$L_{\text{split}} = \frac{1}{2} \left(\sum_{i \in C_R} g_i \right)^2 + \frac{1}{2} \left(\sum_{i \in C_L} g_i \right)^2 - \frac{1}{2} \left(\sum_{i \in C} g_i \right)^2 - \lambda - \gamma. \quad (14)$$

4) Artificial Neural Networks (ANNs).

Inspired by human’s brain neural network, ANN, a simplified mathematical analogue of human’s neural network [56], is used to process the input information by the layer-wise style for regression and classification tasks, as shown in Fig. 3. A basic ANN has one input layer, one hidden layer, and output layer, each of which has many artificial neurons. The number of neurons is determined by dimension of input data for input layer, number of classes for output layer, and alternative for hidden layer. All neurons in one layer are connected to all neurons in all adjacent layers (i.e., fully connection) with weights, bias, and non-linear activation function for every neuron. Obviously, more neurons in hidden layer or more hidden layers, will rapidly increase the ability of information processing because of improved power of feature extraction of data, which characterizes the deep learning algorithm (will be introduced in next subsection). The optimal training method is backpropagation algorithm to iteratively update the parameters of ANN. ANNs were widely used in radar emitter recognition [197]–[201].

![Fig. 4. The diagram of K-NN.](image)

5) K-Nearest Neighbors (K-NNs).

As an instance-based learning style, K-NNs are not like other classifiers to explicitly train a classification model to classify unknown samples [57]. Instead, samples have aforesaid classes and features, and the class of unknown sample is determined by K nearest neighbors surrounding it, which is evaluated by the distances between feature spaces of aforesaid samples and unknown samples (such as Euclidean distance, cosine distance, correlation, Manhattan distance). The unknown sample belongs to the class where the highest frequency in K nearest neighbor samples. For example, in Fig. 4, when $K = 3$, the color of yellow cycle classified to red, and the color of yellow cycle is classified to blue when $K = 7$. K is very significant for classification, which usually starts with $K = 1$, iteratively finding the smallest error with increment 1. K-NN is adopted to classify instantaneous transient signals based on radio frequency fingerprint extraction in [181].

B. Deep Learning Models

DL models, also called DNN, consist of multi-layer ANN, i.e., input layers, multi-hidden layer, and output layer, which transform input data (e.g., images, sequences) to outputs (e.g., classes) with the high-level feature representation learning by multi-hidden layers.

In 2006, Hinton has successfully achieved training of DBN with gradient decent backpropagation algorithm, and experiments results determined promising performance in CV tasks [58]. This breakthrough quickly draw insights from the industrial and academics. Especially, CNN-based AlexNet architecture has firstly won the human in the competition of ImageNet contest in 2012 [59]. DL has developed rapidly in many domains, such as speech recognition [60], image processing [59], [61]–[63], audio signal processing [64], [65], video processing [66], [67], and NLP [68]–[70]. In the following years, many novel DL architectures and domain achievements have developed, including CNNs, RNNs, and GANs.

The remainder of this section is contributed to briefly introduce several commonly used DL models in RSP, including unsupervised AEs, DBNs and GANs, and supervised CNNs, RNNs.

1) Restricted Boltzmann Machines (RBMs) and Deep Belief Networks (DBNs).

A restricted Boltzmann machine (RBM), composed by a visible layer x and a hidden layer h, and symmetric connections between these two layers represented by a weight matrix W, is a generative stochastic undirectional neural network [64]. The joint distribution of visible and hidden units is defined by its energy function as follow [71], [72]

$$P(v, h) = \frac{1}{Z} e^{-(E(v, h))}, \quad (15)$$

where Z is the partition function. If the visible units are binary-value, $E(v, h)$ can be defined as

$$E(v, h) = - \sum_{i,j} v_i W_{ij} h_j - \sum_j b_j h_j - \sum_i c_i v_i, \quad (16)$$

where b_j and c_i are hidden unit bias and visible unit bias respectively. b, c, W are the parameters of RBM model.

A DBN can be viewed as a stacked structure of multi-RBM model [58], [64], [73], which is regarded as a generative probabilistic graphical model. DBN can break the limitation of RBM representation with a fast training algorithm [58]. The RBM and DBN examples are shown in Fig. 5. In RSP
domain, DBN has been used to radar emitter recognition and classification [234, 236], HRRP-ATR [517], [518], SAR-ATR [512].

2) Autoencoders (AEs).

AEs are basically unsupervised learning algorithms, which normally accomplish the tasks of data compression and dimensionality reduction in unsupervised manner. An AE model consists of three opponents: encoder, activation function, and decoder, as shown in Fig. 6 and Fig. 7 [33].

Fig. 6. The general autoencoder model.

Encoder f can be regarded as a linear feed-forward filter of input x determined by weight matrix W and bias b, i.e., $f = Wx + b$.

Activation function σ performs a non-linear mapping that transforms the f into latent representation h of input x at the range of $[0, 1]$, i.e., $h = \sigma(Wx + b)$.

The decoder g is a reverse linear filter to produce the reconstruction \hat{x} of the input x, i.e., $\hat{x} = g(W^T h + b')$.

A loss function L is used to measure how close the AE can reconstruct the output \hat{x}, i.e., $L(\hat{x}, x)$. The training processing is minimizing the loss between \hat{x} and x, i.e., $\min(L(\hat{x}, x))$.

Sparse autoencoder (SAE) In order to accelerate the training of AE model, SAE characterizes by adding sparsity constraints to the hidden layers, and only activating the neurons whose outputs are close to 1. Therefore, the only small amount of parameters was needed to learn greatly reduce training time.

Denoising autoencoder (DeAE) To increase the robustness of AE with small various input data, DeAE has been proposed in [74]. Before entering into the input layer, the original input x is corrupted as x'. Binary noisy and Gaussian noise are usually the two corruption methods.

Variational autoencoder (VAE) Different from original AE model, VAE [75], [76] is a probabilistic generative model. The latent representation h of inputs is not directly learned by encoder, but being encoded learning by encoder to generate a desired latent probabilistic distribution at condition of probabilistic constraint. Generally, this constraint is standard normal distribution, i.e., N(0,1). In phase of decoding, sampling from the latent distribution representation \hat{h}, the decoder generates the output. Therefore, the VAE has two loss function: one for encoder to evaluate the similarity between generated distribution by encoder and standard distribution, the other is for measuring how close between the original input and the output data. The idea of generator of GANs is also from the VAE. Please refer to related literature [33] for other AEs, such as, contractive autoencoder [77], convolutional autoencoder [78].

3) Convolutional Neural Networks (CNNs).

Inspired by animal’s visonial neural information processing system, CNNs are extensively applied to many research domains [33], including CV, NLP, speech recognition. Specialized convolution layer and pooling layer, CNNs can quickly extract latent features of data by shared convolutional kernel and downsampling with pooling operation, which characterizes with the positive properties of partiality, identity, and invariance. Up to now, many famous CNNs architectures have emerged, (including one-dimension, two-dimension, and multi-dimension, the relative diagrams showed in Fig. 9), such as LeNet-5 [79], AlexNet [80], VGGNet [81], GoogleNetv1-v4 [82, 83], ResNet [84], MobileNetv1-v3 [87, 89], ShuffleNetv1-v2 [90, 91], and the latest GhostNet [93]. The developments of classic CNNs models are shown in Fig. 8. The increasing depth of model is a main fashion at
the starting time of DL, e.g., from the starting with a 5-layer (two convolution-pooling layers and three fully connection layers) of LeNet in 1998 to hundreds of layers of ResNet in 2015 [86]. In recent years, the lightweight models design, i.e., small volume of parameters, is increasingly popular, e.g., ShuffleNet, MobileNet, EfficientNet [92].

LeNet-5 has been successfully applied to handwritten digits recognition [79], which is equipped with two convolution-pooling layers (convolution kernel: 3∗3, and 5∗5) and three fully connection layers, but without activation function. This structure pattern was widely used in most of CNNs models. A 8-layer AlexNet has firstly won the championship in ImageNet large-scale visual recognition challenge (ILSVRC) in 2012 [80], which quickly expands the intensive research interest of deep learning from the industrials and academics. This competition verified that the deeper the model is, the better performance will be. The structure of AlexNet has 5-convolution-pooling layers (convolution kernel: 3∗3, 5∗5, and 11∗11), 3-fully connection layers, others containing Relu activation function, dropout. To increase the depth of model, VGGNet of has been proposed for in ILSVRC 2014 [81], won the second place, including VGG-11, VGG-13, VGG-16, VGG-19. Its convolutional kernels are all 3∗3, instead of 11∗11 and 5∗5.

Inception module), a 22-layer GoogleNet has won the champion in the competition of ILSVRC 2014 [82], whose number of parameters is 12 times less than AlexNet, but has higher performance. GoogleNet firstly verified that the deep model can work well by increasing the width of model, not just depth, including GoogleNet-v1-v4 [82]–[85]. With the increasing of layers, the problem of difficult training of model is more and more obvious, i.e., gradient exploding and vanishing. To address this issue, in [86], the authors proposed a 34-layer of ResNet, which won the ILSVRC 2015 as a champion model. The excellent design of ResNet is the skip connection operation of input to directly output, not through the hidden layer. In this way, the model just learns the residual part between the ultimate output and original input, which can keep the gradient existing in a suitable range during all training process to efficiently train more deeper networks. ResNet makes extreme deep network possible, such as, ResNet-152.

Although ResNet can improve the computation efficiency, a large volume of parameters remains a challenge for optimally training the model in some practical applications, because of the insufficient computing power and low efficient performance. In recent years, the lightweight DL models have become the main research direction, including the design of lightweight model (such as MobileNets(v1-v3) [87]–[89], ShuffleNets(v1-v2) [90], [91]), EfficientNet [92], model compression and hardware acceleration technique [41]. For example, MobileNets was proposed by Google corporation to embed in portable devices, such as mobile phones.

To solve the problem of redundant features extraction of existing CNNs, Ghost module was proposed in [93], which can be embedded in existing CNNs models to construct a high computation efficiency model, i.e., GhostNet, to achieve state-of-the-art performance results in DL tasks.

4) Recurrent Neural Networks (RNNs).

Different from the CNNs, RNNs, inspired by the memory function of animal-based information processing system, are used to solve the problem of data prediction with the temporal memory series. In other words, the current output results are related to previous data sequences. The memory unit, as the basic module of RNNs, is shown as in Fig. 10. This unit includes one-layer fully connected neural network, two input: state s (i.e., the memory of previous unit has m dimensions) and data feature x (n dimensions), and output as the state input of next memory unit. One-layer RNN consists of multi-
memory units sequently connected, as shown in Fig. 11. The number of memory units is determined by the length of data series \((x^{(0)}, x^{(1)}, ..., x^{(R-1)}) \), \(R \) is the length of input sequence). The output of last memory unit is the ultimate results of RNN learning. All memory units share identical parameters in the same layer of RNN: weights \(W \) of \(m + n \) dimensions, bias \(b \) of \(m \) dimensions. Multiple one-layer RNN stacks to form multi-layer RNN.

\[
\text{output of each gate is short time memory} \\
\text{The activation functions are sigmoid} \\
\text{gate is tanh} \\
\text{stacks to form multi-layer RNN.}
\]

Fig. 10. The memory unit in RNNs.

![Fig. 11. The one layer RNN.](image)

Although the RNNs architecture can achieve the function of memory, the gradient vanishing issue is obvious with the increasing length of time series during the training process. To address this problem, long short-term memory (LSTM) architecture is proposed in [94]. Compared to original memory unit, a LSTM module has two states: long-term memory unit \((C)\) and short-term memory unit \((h)\), both are \(m\) dimensions. \(C\) can selectively memorize valuable information of long temporal series, which efficiently transmit the early information to current unit. LSTM consists of four gate units: forget, memory, information and output, respectively. Each gate unit includes a fully connection neural network layer with \(m\) neurons, and the output of each gate is short time memory \(h\) and data features.

The activation functions are sigmoid, except for information gate is tanh function, since the output of sigmoid ranges from 0 to 1, contributing to the functions of forget, memory, and output dramatically. The structure of LSTM is shown in Fig. 12 and the main relationship is shown as the follow.

Firstly, the forget gate unit determines which kind of information should be discarded from the input

\[
f_t = \text{sigmoid}(W_f[h_{t-1}, x_t]) + b_f. \quad (17)
\]

The following is the memory and information gate units to determine the input of new information, i.e, input gate unit

\[
i_t = \text{sigmoid}(W_i[h_{t-1}, x_t]) + b_i. \quad (18)
\]

\[
\tilde{C}_t = \text{Tanh}(W_c[h_{t-1}, x_t]) + b_c. \quad (19)
\]

The new long time memory \((C)\) is acquired by

\[
C_t = C_{t-1} * f_t + i_t * \tilde{C}_t. \quad (20)
\]

The output gate unit is

\[
\tilde{o}_t = \text{sigmoid}(W_o[h_{t-1}, x_t]) + b_o. \quad (21)
\]

Lastly, the short time memory \((h)\) is given by

\[
h_t = o_t * \text{Tanh}(\tilde{C}_t). \quad (22)
\]

![Fig. 12. The LSTM module.](image)

![Fig. 13. The GRU module.](image)

Accordingly, LSTM architecture can solve the gradient vanishing issue, thanking to the long time memory unit \((c)\) and forget gate unit. forget gate discards much non-valuable redundant information and \(c\) can preserve valuable information with large numerical value, therefore, the gradient will not become smaller after layer-by-layer gradient decent training, and avoid emerging gradient vanishing to some extent. As a
variant of LSTM, gated recurrent unit (GRU), which combines `forget` gate with `input` gate (i.e., `memory` and `information` gates aforementioned) as a single `update` gate, is more simple than LSTM [92]. The GRU module is shown in Fig. 13. The relationships of variables are shown as following,

\[r_t = \text{sigmoid}(W_r [h_{t-1}, x_t]) + b_r, \] (23)
\[z_t = \text{sigmoid}(W_z [h_{t-1}, x_t]) + b_z, \] (24)
\[\tilde{h}_t = \text{Tanh}(W_h [h_{t-1} * r_t, x_t]) + b_h, \] (25)
\[h_t = (1 - z_t) * h_{t-1} + z_t * \tilde{h}_t. \] (26)

Although the performance of GRU is similar to LSTM, the structure of GRU is simpler than that of LSTM. The amount of parameters of GRU is only one third of LSTM. Therefore, GRU converges fast and does not cause overfitting.

5) Generative Adversarial Networks (GANs).

Similar to VAE, GANs are also unsupervised generative models, which consist of `Generator` G and `Discriminator` D [92–98], as shown in Fig. 14. The input of G is usually noise with standard normal distribution, i.e., \(N(0, 1) \), to generate a new sample (e.g., image) as output. The D is an two-class classifier, to discriminate whether the generated sample is true or not. So the inputs are new generated sample and true sample, and the output is the probability of classification. The loss function of D has two parts: \(\text{loss}_1 \), determined by true sample and true labels, and \(\text{loss}_2 \) is for generated sample and its label. The D makes correct discrimination between generated and true samples by minimizing the \((\text{loss}_1 + \text{loss}_2) \). The G has just one loss function \(\text{loss} \) determined by generated sample and true label, to try to trick the D. The loss function of GAN is as follow

\[
\min_G \max_D V(G, D) = E_{x \sim p_{\text{data}}(x)} [\log D(x)] + E_{z \sim p_z(z)} [\log (1 - D(G(z)))]
\] (27)

where \(p_{\text{data}}(x) \), \(z \), \(p_z(z) \), and \(G(z) \) represent true distribution of sample, noise signal, distribution of noise signal, and generated new sample, respectively. The distribution of \(G(z) \) is \(p_G(x) \), \(D(x) \) and \(1 - D(G(z)) \) denote the loss of discriminator and generator respectively.

GAN firstly trains discriminator to maximize the expectation of discrimination, which tries to correctly discriminate the true and generated samples. Then, fix the parameters of generator to minimize the divergence (i.e., Jensen-Shannon (JS) divergence [96]) between the true and generated samples. In other words, the purpose of this phase is making the distribution of the generated sample close to distribution of true sample as close as possible. So the discriminator is used to measure the gap between the generated and true distribution, instead of directly computing the generated distribution of generator \(p(G(x)) \). The training process will not stop until the discriminative probability of true and generated sample is equal, i.e., 0.5.

![Fig. 14. The diagram of GAN.](image)

Although supervised learning representation with CNNs has developed many achievements in CV domain, the labeled datasets remains a great challenge. GANs have been demonstrated huge potentials in unsupervised learning, which bridges the gap between supervised learning and unsupervised learning with deep CNNs architecture. Deep convolutional GANs (DCGANs) were proposed in [99]. However, GANs suffer from training instability, and it is difficult to adjust the discriminator to an optimal state.

To address this issue, the authors proposed Wasserstein GAN (WGAN) model in [100], [101] to make the process of training easier by using a different formulation of the training objective that does not suffer from the gradient vanishing problem. WGAN replaces JS divergence in original GAN model with Wasserstein distance as objective loss function, which transforms the binary classification into regression model to fit Wasserstein distance. The discriminator of WGAN must satisfy the space of 1-Lipschitz functions, which enforces through weight clipping. The objective of WGAN is as follow [101]

\[
\min_G \max_D W(p_r, p_g) = E_{x \sim p_r(x)} [D(x)] - E_{z \sim p_z(z)} [D(G(z))],
\] (28)

where \(\Omega \) is the set of 1-Lipschitz functions, \(p_g(z) \) is the distribution of generator, and \(p_r(x) \) is the true distribution of sample.

Moreover, there are also some other GANs like condition GAN [102], cycle GAN [103], conditional cycle GAN [104], InfoGAN [105].

6) Reinforcement Learning (RL).

Reinforcement learning (RL) system is also an unsupervised learning framework concerning on iteratively making optimal tactical actions act on environment to obtain maximum total amount of rewards [16]. RL is a Markov decision process (MDP) with the interactions between the artificial agent and complex and uncertain environment regarding the sets of states and actions. The exploration-exploitation trade-off is a typical training processing of RL. The former is to explore the whole space to aggregate more information while the latter is to exploit the information with more value at the conditions of current information. As the usual RL algorithm, Q-learning (also action value function) aims to obtain a Q function to model the action-reward relationship. Bellman equation is used to calculate the reward in Q learning. The neural network is often used to model the Q function in deep Q network (DQN).
III. RADAR RADIATION SOURCES CLASSIFICATION AND RECOGNITION

Electronic warfare (EW) is one of the crucial aspects of modern warfare [106]. EW receivers are passive systems that receive emission from various platforms that operate in the relative vicinity. The received signals are typically analysed [163] to obtain valuable information about characteristics and intentions of various elements that are presented in the battlefield. A significant example in modern military warfare is represented by radar radiation sources classification and recognition (RRSCR) [109], [151], which is one of the tasks that are associated to electronic support measures and electronic signal intelligence systems (ESM/ELINT) [107], [108]. The former (ESM) focuses on classifying different radar types, such as military or civil radar, surveillance or fire control radar, whereas the latter further concerns the identification of individual radar emitter parameters of the same classification, also called specific emitter identification (SEI) [110], [147], [150], [152]. Such operations are based on radio frequency distinct native attribute (RF-DNA) fingerprint features analysis methods [111], such as pulse repetition interval (PRI) modulations analysis, intra-pulse analysis. For example, kernel canonical correlation analysis [146] and nonlinear dynamical characteristics analysis [147] have been used to recognize radar emitters. In addition, analysis of out-of-band radiation and fractals theory were reported in [148], [149]. These radar radiation sources (RRSs) include signal carrier frequency (SCF), linear frequency modulation (LFM), non-LFM, sinusoidal frequency modulation (SFM), even quadratic frequency modulation (EQFM), binary frequency-shift keying (2FSK), 4FSK, dual linear frequency modulation (DLFM), monopulse (MP), multiple linear frequency modulation (MLFM), binary phase-shift keying (BPSK), Frank, LFM-BPSK and 2FSK-BPSK [153], [215]. In this section, RRSCR include the classification and recognition of radar signal automatic modulations (such as intra-pulse modulations, PRI modulations), radar emitter types, radar waveforms, and jamming or interference, as shown in Fig. 15. Examples of time-frequency images of RRSs were shown in Fig. 16.

RRSCR mainly concerns the following four aspects:

i) denoising and deinterleaving (or separation) of collected pulse streams;

ii) improving accuracy of recognition in low SNR scenarios, in conditions of missing and spurious data and in real-time;

iii) boosting robustness and generalization of algorithms;

iv) identification of unknown radiation sources.

The methods of RRSCR mainly have three classes:

i) knowledge based;

ii) statistical modeling based;

iii) ML based.

The knowledge-based methods depend on the prior radar knowledge summarized from the collected raw data by radar experts to achieve RESCR-related works. A novel knowledge-related radar emitter database was built by relational modeling in [155]. In [108], the authors proposed radar signal knowledge representation determined by rules with semantic networks. The authors also analyzed signal parameters, feature extraction using linear Karhunen-Loeve transformation and applied knowledge-based techniques to recognize the intercepted radar signals [154]. Concerning traditional statistical modeling methods, an autocorrelation spectrum analysis was applied to [156] for modulation recognition of multi-input and multi-output (MIMO) radar signals. In [157], a joint sparse and low-rank recovery approach was proposed for radio frequency identification (RFI), i.e., radar signal separation. In addition, a feature vector analysis based on a fuzzy ARTMAP classifier for SEI was developed in [159], a wavelet-based sparse signal representation technique was defined for signal separation of helicopter radar returns in [160], and an entropy-based theoretical approach for radar signal classification was developed in [161].

The increasingly growing complexity of electromagnetic environment demonstrates severe challenges for RRSCR, such as the increasingly violent electronic confrontation and the emergence of new types of radar signals generally degrade the recognition performance of statistic modeling techniques, especially at low signal noise ratio (SNR) scenario. Although these aforementioned technologies can improve performances, they are not sufficient to face these challenges. Knowledge-based methods spend considerable time to extract signal features. Conventional statistical modeling methods depend on statistical features of the collected data. However, this operation pattern do not have competitive performance.

In recent years, because of the high-efficiency of ML algorithms and the rapid development of novel RSP technology, ML-based methods have been successfully applied to RRSCR to face some critical challenges. To better understand these research developments and grasp future research directions in this domain, we provide a comprehensive survey on ML-
related RRSCR in this section. This is roughly divided into two parts: one concerning traditional ML algorithms and the other is DL-based methods. A concise summary of some examples of the existing algorithms is shown in Table I and Table II for traditional ML and DL-based algorithms, respectively. A generic pipeline of ML-based methods is also shown in Fig. 17, to represent a visual framework of ML algorithms.

A. Preprocessing

Data preprocessing is the first step, which processes collected raw data (i.e., sequence data) to prepare for the following classification or recognition tasks, including denoising, deinterleaving [164], data missing processing [170], [182], unbalanced dataset [180], [183], noise and outliers, features encoding and transformation [170], [183], [184], and data scaling. We will introduce the denoising, deinterleaving, and features transformation.

Because of complex electromagnetic environment, amount of interfering radio signals are hard to classify and recognize directly in short time, so deinterleaving is the first step. Multi-parameter cluster deinterleaving methods are usually adopted for deinterleaving the pulse streams (such as pulse repetition interval (PRI) deinterleaving methods [165], time of arrival (TOA) deinterleaving methods [166]). Some novel methods have emerged based on ML algorithms in recent years. Parameter clustering technology was proposed to deinterleave the receptive radar pulses based on Hopfield-Kamgar [162] and Fuzzy ART neural network [163]. To solve the deinterleaving problems of pulse streams, a group of forward/backward prediction RNNs was established in [164] to understand the current context of the pulses and predict features of upcoming pulses. The cluster and SVM classifier were employed to interleave mixed signals with similar pulse parameters in [167]. In [168], MLP structure was used to deinterleave the radar pulse train. As for denoising aspects, RNNs was used for denoising the pulse train in [165], AEs are also used to address pulse denoising problem by extracting features from TOA sequences [169].

As for features transformation, the one-dimension and two-dimension features are usually the inputs of DNN models. The former are encoded IQ time sequences [138], [210], [218], [569], and the latter usually are time-frequency distribution (TFD) images, which are produced by short time Fourier transformation (STFT) [212], Choi-Williams time-frequency distribution (CWTFD) [212], [218], and Cohen’s time-frequency distribution (CTFD) image [221], [222]. In addition, there are some other two-dimension feature images, such as amplitude-phase shift image [211], the spectrogram of the time domain waveform based on STFT [230], bispectrum of signals [237], ambiguity function images [140], [141], and autocorrelation function (ACF) features [213], [215].

B. Traditional Machine Learning in RRSCR

Traditional ML algorithms based in RRSCR usually includes features selection, classifier design, classifier training and evaluation. Two-phase method of feature extraction and classification based on common machine learning algorithm, is a typical pattern in RRSCR reported in many literatures. There are many classifier models applied to RRSCR, such as supervised learning methods: ANN [56], SVMs [44], [45], decision DT [48], RF [52], as shown in Table I.

Features	Models	Accuracy
PWDs [170], [175], [176], [179]; entropy theory [161]; spectrum features [112], [171], [172]; wavelet packets [172]; dynamic parameters searching [173]; rough sets [174]; energy envelope [181]; time-frequency analysis [183]; autocorrelation images [113], [156], [189], [190]; CWTFD [114], [117], PCA [191], ambiguity function images [130],	SVMs [170], [192], [194], [196], ANNs [161], [170], [171], [182], [177], [179], DT [118], [119], [203], RF [170], Adaboost [120]; clustering [121], [124], [161]; K-NN [120]	84% (-5 dB) [161]; 97.3% (-6 dB) [117]

Features	Models	Accuracy
IQ 1D time sequences [138], [210], [218], [228], [230]; STFT [139], [139], [140], [214], [220], [227]; amplitude-phase shift [211]; CWTFD [131], [221], [222]; bivariate image with FST [132]; bispectrum [237]; autocorrelation features [222], [223], ambiguity function images [140], [141], fusion features [130],	CNNs [223], [210], [211], [217], [222], [228], [229], [231], [233], [237], [569], RNNs [142], [144], [155], DBNs [155], [136], [235], [236], AEs [222], SENet [145], ACSENet [214], [215], CAE + CNN [222], CNN + DQN [131], CNN + LSTM [145], [224], CNN + TPOT [225], CNN + SVM [227]	94.5% (-2 dB) [218]; more than 95% (-9 dB) [222], 93.7% (-2 dB) [227], over 96.1% (-6 dB) [221], 96% (-2 dB) [135]; more than 90% (-6 dB) [145]; more than 94% (-6 dB) [131], 95.4% (-7 dB) [223], 94.42% (-4 dB) [225], 97.58% (-6 dB) [228].
The accuracy rate of the traditional two-step methods is mainly determined by the feature extraction algorithm. Artificial feature extraction regarding specific types of radar signals, however, depend mostly on the experience of the experts. Compared to two-step method, DL-based methods can develop feature extraction automatically and potentially learn the latent features of data, so it has higher accuracy. Challenges on generalization, big dataset, and optimal training algorithm, however, are main problems for DL-based methods.

Feature extraction is used to extract signal features from the preprocessed data for classification model training and recognition [184]. These features include pulse description words (PDWs) of radar signal [170], [175], [176], [179], information entropy theory [161], high order spectra [171], wavelet packets [172], dynamic parameters searching [173], rough sets [174], acousto-optic spectrums [177], energy envelope [181], time-frequency analysis [185]–[188], autocorrelative functions [189], [190], principal component analysis (PCA) method [191]. Parameters of signal, however, is time-variable, which can lead to uncertainty of signal. Vector neural network was reported in [178] to deal with the uncertainty of parameters.

1) SVMs classifiers.

With the typical advantage of efficiently using kernel function to deal with non-linear binary classification, SVMs are mainstream of ML methods applied to RRSCR [170], [192]–[194], which maximizes the distance or margin between the support vectors of classes to search for an optimal hyperplane in feature space of samples.

In [170], SVM was used in radar signal classification and source identification based on the PDWs of radar, including continuous, discrete and grouped radar data signal train pulse sources. To simplify SVM structure and improve recognition accuracy, SVM with binary tree architecture was proposed in [192], a roughly pre-classification method was used before SVM with resemblance coefficient classifier. Transient energy trajectory-based SVM method was proposed in [193] for specific emitter identification with robustness to Gaussian-noise, which used PCA to deduce dimensions of features space. To address the non-linear classification, there are lots of researches on kernel-SVM in RRSCR with different kernel functions. However, optimal kernel function is basically relative to excellent performances in stability and accuracy. In [194], the authors developed the comprehensive estimation method for choosing optimal kernel functions of SVM for radar signal classifier, which used separability, stability and parameter numbers as evaluation indexes.

To identify the radar emitter sources with high accuracy rate at low SNR scenario, a SVM classifier based on the scale-invariant feature transform (SIFT) in position and scale features was employed in [196]. The SIFT scale and position features of the time-frequency image were extracted based on the Gaussian difference pyramid. The extracted noise feature points were suppressed based on the scale features. Finally, SVM was used for the automatic identification of radiation sources based on the SIFT position features.

However, SVM classifier does not good at learning new knowledge in real-time. Hull vector and Parzen window density estimation [195] were reported for online learning of radar emitter recognition.

2) Artificial Neural Networks (ANNs) classifiers.

This part will review ANNs-based methods popularly applied to RRSCR, only considering superficial layer NNs, which have not more than 3 hidden layers, including vector neural network [197], [198], SPDS-neural network [199], radial basis function neural network (RBF-NN) [200], and fusion neural network [201]. The DNNs-based related works will be surveyed in later section.

To guarantee the accuracy rate of approximately 100% in exacting one-dimensional parameter, a modified back propagation (BP) neural network was proposed in [199] for radar emitter recognition with uncomplicated data and enough train time. RBF-NN was developed in [200] to classify radar emitter signals. The decision rules of RBF-NN, to determine signal types, are extracted from rough sets and the cluster center of RBF-NN by rough K-means cluster method. A what-and-where neural network architecture was developed for recognizing and tracking multiple radar emitters in [201].

The multi-layer perceptron (MLP) achieved more than 99% recognition rate at SNR \geq 0 dB, only six features were selected by genetic algorithm (GA) algorithm [202]. One hidden layer with a full connected layer as classifier model for classification of 11 classes radar signals was developed in [170]. Neural network classifier based on three types of entropy features to achieve 100% recognition rate at high SNR, and 84% at -5dB for 4-class signals in [161]. An ANN was trained to detect and identify the low probability intercept (LPI) radar signal whose type was unknown at the received SNR of -3 dB in [171]. Different from one-hidden layer feedforward neural network topologies were developed in [182] to classify 2-class and 11-class civil and military radar emitters, and achieved accuracy rate of 82%, 84%, and 67% for civil, military, and other classes, respectively.

In addition, other classification learning models were also researched in RRSCR, such as DT [203], RF [170], weighted-XGBoost [180], Hidden Markov Models (HMMs) [204], Adaboost [120], clustering [121]–[124], [161], K-NN [126]–[129].

The SVM classifier is suitable for binary classification, whose labels of classes are continuous distributed and have the strict boundary. However, when the label of class is nonlinear, the SVM do not function. It is convenient to split the feature space into unique subsets, containing similar radar functions and parameters, to reduce recognition time and simplify classifier design. For this type of classification task, the DT classifier is working. In [203], a DT model was developed for a classification system, containing 15,000 signal vectors from 125 radars about different applications. To address the high error rate of single DT, a RF model was employed in [170] to recognize radar signals with better performance, compared to NN and SVM classifiers.

Relevant vector machine (RVM) model-based methods has been also applied to radar emitters classification [205], [206]. A hybrid method of rough k-Means classifier combining with three-dimensional distribution feature was proposed in [205]. The robust RVM was developed in [206]. In addition, gradient boost [55], [207] was used as classification model, K-NN as
a classifier to classify instantaneous transient signals based on RF fingerprint extraction [181]. As for unknown radar signals recognition, class probability output network (CPON) was proposed in [208] for classification of trained and untrained radar emitters signal types.

When classifying intercepted radar signals, there exists a data deviation in practical application. Weighted-xgboost algorithm was applied to [180] to address this problem. Compared to existing methods, this novel method achieved 98.3% accuracy rate, while the SVM, RVM [206], the gradient boost methods, and DBN obtained 89.1%, 79.6%, 91.9%, 95.4%, respectively.

In [209], AdaBoost algorithm was developed as a classifier based on fast correlation-based filter solution (FCBF) feature selection, to complete the recognition of different types of radar signals with 1D harmonic amplitude datasets. These datasets were decomposed by frequency-domain analysis from radar time-domain signals. The simulation results showed that this method was more effective than the SVM algorithm in accuracy rate and stability.

C. Deep learning in RRSCR

Compared to statistics-based analysis methods, traditional ML-based have developed many achievements in RRSCR introduced in section B, which can improve the classification and recognition performance dramatically. However, the weakness of standard 2-phase-method is hard to further extract latent features by domain experts to facilitate classification model training, because of the limitation of expert knowledge and lots of time costs in general.

Nowadays with the advantages of deeply automatic feature extraction, radar experts exploit apply DL in RRSCR to improve the classification performance based on DNN models. In general, the 1D and 2D features are as the inputs of DNN models aforementioned. Since the CNNs have excellent performance and have been applied widely to image classification and recognition. In this section, we mainly make a comprehensive survey on radar signals classification based on CNNs architecture. In addition, RNNs [210], DBNs [235], and AEs [224] are also briefly investigated.

A novel unidimensional convolutional neural network (UCNN) was proposed in [210] to classify radar emitters, which is based on encoded high dimension sequences as extracted features. The U-CNN has three independent convolution parts followed by a fully-connected part. Three encoded sequences: RF, PRI, PW, act as inputs of the corresponding convolution parts. Experiments on a large radar emitter classification (REC) dataset, including 67 types of radars and 227,843 samples, demonstrated that U-CNN can achieve the highest accuracy rate and competitive computation cost for classification, compared with other classifier models, such as NN, SVM, DT.

A CNN model with five convolution-maxpooling layers, two fully connection layers, and one softmax output layer, was proposed in [211] to classify radar bands from mixed radar signals. Experiments results showed that amplitude-phase shift property as inputs of CNN achieved 99.6% of accuracy rate, compared to that of 98.6% when spectrograms as inputs. Squeeze-and-excitation network (SENet) was proposed in [212] to identify five kinds of radar signals, each of which has 4,000 training samples. This novel model achieved accuracy rate of 99% with time, frequency, and TFD images as the inputs. Combining with autocorrelation functions, SENet was also used in [213] to recognize PRI modulations. Moreover, in [214], asymmetric convolutional squeeze-and-excitation network (ACSENet) and autocorrelation features were proposed for PRI modulations. Also, in [215], multi-branch ACSENet and multi-dimension features based on SVM fusion strategy were developed for multiple radar signal modulation recognition. Similarly, a CNN model was employed in [229] based on multiple zero-means scaling denoised TFD images of radar emitter intra-pulse modulated signals.

A cognitive CNN model was proposed in [217] to recognize 8 kinds of radar waveforms based on CWTFD-based TFD images. More than probability of successful recognition (PSR) of 90% was achieved when the SNR was -2 dB. To improve the accuracy rate, an automatic radar waveform recognition system was exploited in [218] to detect, track and locate the LPI radars. This novel system achieved overall PSR of 94.5% at an SNR of -2 dB by a hybrid classifier. The model includes two relatively independent subsidiary networks, mainly CNN and Elman neural network (ENN) as auxiliary.

In [219], the authors proposed a deep CNN based automatic detection algorithm for recognizing radar emitter signals, which leveraged on the structure estimation power of deep CNN and the CWTFD-based TFD images as inputs of model. This architecture had competitive performance compared with BP and SVM models. Combining CNN model with the new kernel function, CTFD as the inputs of model for identifying 12 kinds of modulation signals to achieve more than PSR of 96.1% at the SNR of -6 dB [221].

To make full use of the features of inputs, a feature fusion strategy based on CNN architecture was proposed in [220] to classify intra-pulse modulation of radar signals with fused frequency and phase features. Two independent CNNs learned frequency and phase related inputs respectively, and then followed by feature fusion layer to fuse the individual outputs as ultimate output. Similarly, two different neural networks were developed in [220] with spectrogram of the time domain waveform by STFT for radar emitter recognition.

In order to accelerate feature learning of CNN, a PCA based CNN architecture was proposed in [231] to reduce dimensionality of TFD images. After feature extraction with CNN, random vector functional link (RVFL) was employed in [233] to promote feature learning ability, and picked out the maximum of RVFL as identification results of signals.

In general, TFD images remove noise by preprocessing process before them are as inputs of CNN, such as binarization and wiener filtering [220], [221], [229]. Although this preprocessing pattern can reduce the impact of noise, it may cause a loss of information details contained in images to some extent. To address this problem, an end-to-end DL method was developed in [222] to recognize 12 classes of intra-pulse modulation signals based on convolutional denoising autoencoder (CDAE) and deep CNN with CTFD-based TFD images. CDAE was used to denoise and repair TFDs, and Inception [82] based deep CNN was used for identification.
The simulations showed that the proposed approach had good noise immunity and generalization and achieved PSR of more than 95% at SNR of -9 dB for twelve kinds of modulation signals classification. An end-to-end RNN architecture was proposed in [216] for classification, denoising and deinterleaving of pulse streams. This structure used RNNs to extract long term patterns from previous collected streams by supervised learning and understand the current contexts of pulses to predict features of upcoming pulses.

Pulse repetition interval (PRI) is a vital feature parameter of radar emitter signals. It is possible to recognize radar emitter only based on PRI of signals. Due to the high ratio of lost and spurious pulses in modern complex electromagnetic environments, however, PRI modulations are more difficult to separate and recognize. To address this issue, a CNN model was proposed in [237] to recognize the PRIs modulations of radar signals. Simulation results showed that the recognition accuracy is 96.1% with 50% lost pulses and 20% spurious pulses in simulation scenario.

A more efficient threat library was generated in [235] for radar signal classification based on DBN model, consisted of independent RBMs of frequency, pulse repetition interval, pulse width respectively, and a RBM fused the pervious results again. The experiments results showed more than 6% performance improvement over the existing system. To accurately address the complex electromagnetic environment and various signal styles, a robust novel method based on the energy accumulation of STFT and reinforced DBN was developed in [235] to recognize radar emitter intra-pulse signals at a low SNR. Deep network based hierarchical extreme learning machine (H-ELM) was explored in [236] for radar emitter signal representation and classification with high order spectrum. After extracting the bispectrum of radar signals, the SAE in H-ELM was employed for feature learning and classification.

Although DL has high accuracy and generalization for RRSCR, its black-box property makes it difficult to apply in practical applications, such as military and medical applications. To alleviate this issue, a novel method was presented in [222] based on tree-based pipeline optimization tool (TPOT) and local interpretable model-agnostic explanations (LIME). The experimental results showed that the proposed method can not only efficiently optimize the ML pipeline for different datasets, but determine the types of indistinguishable radar signals in the dataset according to the interpretability.

In summary, this subsection has done a comprehensive survey on the RRSCR based on ML algorithms, including the classification and recognition of radar signal modulations, LPI waveform, and radar emitters. The ML algorithms include traditional ML and DL, such as SVM, DT, adaboost, CNN, RNN, AE, DBN. The features include statistic, 1D, 2D, and fusion features.

IV. RADAR IMAGES PROCESSING

Active radar imaging is an important tool for detection and recognition of targets as well as the analysis of natural and man-made scenes. Radar images in a broader sense include unidimensional high-resolution range profiles (HRRP), two-dimensional SAR and ISAR images, micro-doppler images and range-doppler images. Several ML-based techniques have been developed for radar image processing, particularly for what concerns Synthetic Aperture Radar (SAR) and Inverse Synthetic Aperture Radar (ISAR). This section will review the scientific literatures that focus on radar image processing based on ML technology, including image preprocessing (e.g., denoising), feature extraction and classification.

A. SAR Images Processing

Operating conditions of all weather, day-and-night and high-resolution imaging, synthetic aperture radar (SAR) is a popular research domain on remote sensing domain in military and civil applications. SAR is an active remote sensor, i.e., it carries its own illumination and does not depend on sunlight like optical imaging. With the rapid development of military and science technology, various types of SAR sensors have been appeared, which can be roughly divided into three main categories based on the carrier platform: satellite-borne SAR, airborne SAR, and ground-based SAR. Different SAR sensors can have different configured properties, even though within the same category, such as carrier frequency/wavelength, imaging mode (e.g., stripmap SAR, spotlight SAR, scanSAR, inverse SAR, bistatic SAR and interferometric SAR (InSAR)), polarization (e.g., horizontal (H) or vertical (V) polarization), resolutions in range and azimuth directions, antenna dimensions, synthetic aperture, and focusing algorithm (e.g., range doppler algorithm, chirp scaling algorithm, and the SPECAN algorithm).

Focused SAR image is the 2D high resolution image, i.e., range and azimuth directions. At range direction, SAR transmits LFM waveform with huge product of pulse width and bandwidth, and obtains high resolution of the range direction by adopting pulse compression technology; as for azimuth, a long synthetic aperture, formed along the trajectory of relative motion between detected target and radar platform, to store the magnitude and phase of successive radar echoes to guarantee the high resolution at azimuth direction. Therefore, one of the vital conditions of forming SAR image is that there should exist relative motion between target and radar platform.

The multiple configurations of SAR potentially characterize the distinctiveness of SAR imagery, which vastly contributes to classification and recognition of targets. Compared to optical counterparts, SAR images have distinctive characteristics including i) an invariant target size with the various distance between the SAR sensor and the target, ii) the imaging scene information is determined by the magnitude and phase of the radar backscatter (i.e., for a single-channel SAR and multi-channel SAR), iii) high sensitivity to the changes of target’s postures and configurations such as the shadowing effect, the interaction of the target’s backscatter with the environment (e.g., clutter, adjacent targets, etc.), projection of the 3-D scene (including the target) onto a slant plane (i.e., SAR’s line of sight (LOS)), and the multiplicative noise (known as speckle) due to the constructive and destructive interference of the coherent returns scattered by small reflectors within...
each resolution cell \(^{239}\), and iv) SAR imagery can easily observe the hidden targets with the well penetration of suitable wavelength of electromagnetic wave.

SAR imagery processing methodologies includes denoising, classification and recognition, detection and segmentation. In recent years, with the rapid development of ML in image processing, ML-based, especially DL, has applied to SAR image processing widely and successfully (such as \(^{251}\), \(^{252}\), \(^{273}\), \(^{279}\), \(^{343}\), \(^{493}\)). In this section, we make a comprehensive survey for SAR image processing techniques based on DL algorithms, such as CNN, DBN, SAE.

1) Datasets and Augmentation.

Datasets Dataset is one of the important factors for the success of DL, including training datasets, validation datasets, and testing datasets, respectively. The collection of data and the building of formatted datasets are challengeable tasks, generally requiring huge human and economic costs. Since especially military backgrounds, the public big SAR datasets are not easily collected, compared with general CV datasets, such as ImageNet, COCO, CFAR-10, which depends on big data easily collected from the Internet. Luckily, with the cooperation and endeavor of radar community, there are still some public SAR datasets in military and civil application for target classification and recognition, detection, and segmentation. These targets include military vehicles, farmland, urban streets, and ships. Such as moving and stationary target acquisition and recognition (MSTAR) \(^{238}\), \(^{239}\), \(^{245}\) TerraSAR-X high resolution imagery \(^{240}\), \(^{298}\), San Francisco \(^{240}\), Flevoland \(^{240}\)–\(^{244}\). Ship datasets includes SSDD \(^{247}\), SAR-Ship-Dataset \(^{248}\), AIR-SARShip-1.0 \(^{239}\), HRSID \(^{250}\).

MSTAR is a typical widely applied as a baseline SAR imagery dataset, including 10 classes of ground targets. The dataset consists of X-band SAR images with 0.3 m \(*\) 0.3 m resolution of multiple targets, which includes BMP2 (infantry combat vehicle), BTR70 (armored personnel carrier), T72 (main tank), etc. All images are size of 128 \(*\) 128. The samples are as shown in Fig. 18.

SSDD dataset \(^{247}\) includes 1,160 images and 2,456 ships totally, which follows a similar construction procedure as PASCAL VOC \(^{260}\), SAR-Ship-Dataset \(^{248}\) constructed with 102 Chinese Gaofen-3 images and 108 Sentinel-1 images. It consists of 43,819 ship chips of 256 pixels in both range and azimuth directions. These ships mainly have distinct scales and backgrounds. It can be used to develop object detectors for multi-scale and small object detection.

AIR-SARShip-1.0 \(^{249}\) firstly released 31 images, scale of 3,000 \(*\) 3,000 pixels, the resolution of SAR images is 1 m and 3 m, imaging pattern including spotlight mode, stripemap mode, and single polarization mode. The landscapes including port, island, the sea surface with different sea conditions. The targets have almost thousands of ships with ten classes, including transport ship, oil ship, fisher boat, and so on.

High resolution SAR images dataset (HRSID) \(^{250}\) is used for ship detection, semantic segmentation, and instance segmentation tasks in high-resolution SAR images. This dataset contains a total of 5,604 high-resolution SAR images and 16,951 ship instances. ISSID draws on the construction process of the Microsoft common objects in context (COCO) dataset, including SAR images with different resolutions, polarizations, sea conditions, sea areas, and coastal ports. This is a benchmark dataset for researchers to evaluate their approaches. The resolution of ISSID is 0.5 m, 1 m, and 3 m.

Data augmentation Although there exist some public available datasets, the number of labeled samples is relatively small, which do not always satisfy the requirements of DL algorithm. Therefore, the SAR targets recognition and classification can be regarded as small samples recognition problem. To address the deficiency samples of datasets, many researchers have proposed novel methods to augment the dataset, such as GANs \(^{251}\), \(^{252}\), or design novel efficient model to learn with limited labeled data, such as TL based methods \(^{252}\), \(^{253}\), \(^{256}\).

Wasserstein GAN, with a gradient penalty (WGAN-GP), was proposed to generate new samples based on existing MSTAR data in \(^{251}\), which can improve the recognition rate from 79\% to 91.6\%, from 57.48\% to 79.59\%, for three-class and ten-class recognition problem, respectively, compared to original MSTAR. In \(^{252}\), the authors proposed least squares generative adversarial networks (LSGANs) combined with TL for data augmentation. Different from \(^{251}\), \(^{252}\), some image processing methods were utilized in \(^{253}\) i.e., manual-extracting sub-images, adding noise, filtering, and flipping, to produce new samples based on the original data. In \(^{257}\), the authors generate noisy samples at different SNRs, multiresolution representations, and partially occluded images with the original images, to enhance the robustness of CNN at various extended operating conditions (EOCs). In addition, three types of data augmentation based on MSTAR were developed in \(^{258}\), \(^{310}\), translation of target, adding random speckle noise to the samples, and posture synthesis. Image reconstruction with sparse representation was proposed in \(^{254}\), \(^{307}\), \(^{827}\) for data augmentation based on attributed scattering
A accuracy-translation map based on domain-specific data augmentation method was developed in \cite{311}, which can achieve a state-of-the-art classification accuracy rate of 99.6% on MSTAR dataset. In \cite{322}, the authors used a flexible mean to generate adequate multi-view SAR data with limited raw data. An electromagnetic simulation approach was proposed in \cite{331} as an alternative to generate enough bistatic SAR images for network training. In \cite{448}, amplitude and phase information of SAR image was also used to generate multi-channel images as the inputs of CNN model to alleviate the over-fitting during the training phase.

Except for data augmentation methods, high efficient classification model design is also adopted to alleviate the small samples challenge. In \cite{255}, the authors proposed a new deep feature fusion framework to fuse the feature vectors, which were extracted from different layers of the model based on Gabor features and information of raw SAR images. A TL based method was employed in \cite{256} to transfer knowledge learned from sufficient unlabeled SAR scene images to labeled SAR target data. A-ConvNet was proposed in \cite{259} to vastly reduce the number of free parameters and the degree of overfitting with small datasets. The novel architecture replaced the fully-connected layers with sparsely-connected convolutional layers, which obtained average accuracy of 99.1% on classification of 10-class targets on MSTAR dataset.

2) SAR Images Denoising.

As a coherent imaging modality, SAR images are often contaminated by the multiplicative noise known as speckle, which severely degrades the processing and interpretation of SAR images. It is hard to balance performances between speckle noise reduction and detail preservation. In general, traditional despeckling methods \cite{277, 278}, (such as multi-look processing \cite{262}, filtering \cite{263, 264, 282, 284}, blocking matching 3D (BM3D) \cite{265}, \cite{280}, wavelet-based \cite{266, 269, 282}, separated component-based \cite{270},) transform the multiplicative noise into additive noise by logarithm operation of observed data. These methods, however, can introduce more or less bias into denoised image. In addition, the local processing of these methods fails to preserve sharply useful features, e.g., edges, texture, detailed information, and often contains artifacts \cite{271}. Another problem is that most of traditional methods require statistics modeling. To address the problems of SAR image despeckling aforementioned, and inspired by the advantages of DL algorithm, DL-based algorithm has been applied to this field, especially CNN-based model algorithm.

CNN-based supervised methods A residual learning strategy with residual CNN model was firstly employed in \cite{273} for SAR imagery despeckling, which achieved better performance on multi-synthetic and real SAR data and guaranteed a faster convergence in the presence of limited training data, compared to state-of-the-art techniques. A probability transition CNN (PTCNN) was proposed in \cite{274} to increase noise-robustness and generalization for patch-level SAR image classification with noisy labels. The authors in \cite{275} developed an end-to-end learning architecture (i.e., image despeckling convolutional neural network (ID-CNN)) to automatically remove speckle from noisy SAR images. In particular, this architecture contained a component-wise division-residual layer with skip-connection to estimate the denoised image. Similarly, in \cite{292}, the authors proposed a SAR dilated residual network (SAR-DRN) to learn a non-linear end-to-end mapping between the noisy and clean SAR images. DRN could both enlarge the receptive field while maintaining the filter size and layer depth with a lightweight structure to conduct image details and reducing the gradient vanishing problem. In addition, combined with ensemble learning method, the authors proposed a despeckling CNN architecture in \cite{272}.

To deal with the random noisy SAR imagery, despeckling and classification coupled CNNs (DCC-CNNs) was proposed in \cite{276}, to classify ground targets in SAR images with strong and varying speckle. DCC-CNNs contained a despeckling subnetwork to firstly mitigate speckle noise, and a classification subnetwork for noise robustness learning of target information, which could achieve more than 82% of overall classification accuracy rate for ten ground target classes at various speckle noise levels. A novel method to directly train modified U-Net \cite{287} with given speckled images was developed in \cite{286}. An extra residual connection in each convolution-block of U-Net, and the operations of replacing the transposed convolution with parameter free binary linear interpolation were also introduced. A DNN based approach was proposed in \cite{294} for speckle filtering, which based on DNN’s application in super-resolution reconstruction, iteratively improved the first low resolution filtering results by recovering lost image structures.

To overcome the problem of collecting a large number of speckle-free SAR images, a CNNs-based Gaussian denoiser was developed in \cite{285}, which was based on multi-channel logarithm and Gaussian denoising (MuLoG) approaches. The TL-based pre-trained CNN models, trained by datasets with additive white Gaussian noise (AWGN), was also directly employed to process SAR speckle.

Thanks to the excellent ability of exploiting image self-similarity with nonlocal methods, a CNN-powered nonlocal despeckling method was investigated in \cite{288} to improve nonlocal despeckling performance \cite{289} on man-synthetic and real SAR data. The trained CNN was used to discover useful relationships among target and predictor pixels and were converted into the weights of plain nonlocal means filtering. In \cite{293}, the authors proposed CNN model combined with guided filtering based fusion algorithm for SAR image denoising. Five denoised images were firstly obtained via a seven-layer CNN denoiser acts on an noisy SAR image, then a final denoised image is acquired by integrating five denoised images with a guided filtering-based fusion algorithm.

However, the DL model remains very sensitive to the inputs. To address the non-invariant denoising capability of DL-based methods, a novel automatical two-component DL network with texture level map (TLM) of images was proposed in \cite{291} to achieve satisfactory denoising results and strong robustness for SAR imagery invariant denoising capability. Texture estimation subnetwork produced the TLM of images. Noise removal subnetwork learned a spatially variable mapping between the noise and clean images with the help of TLM.

DNN-based unsupervised methods Except for CNN-based
supervised learning model methods, the DNN-based unsupervised methods are also developed in SAR images denoising. To solve the notorious problem of gradients vanishing and accelerate training convergence, a AE model was employed in [295] to denoise multisource SAR images, which adopted residual learning strategy by skip-connection operation. AE-CNN architecture was developed in [279] for InSAR images denoising in the absence of clean ground truth images. This method can reduce artefact in estimated coherence through intelligent preprocessing of training data. To solve the trade-off of speckle suppression and information preservation, a CNN-based unsupervised learning solution scheme was proposed in [281], [282]. Taking into account of both spatial and statistical properties of noise, this model could suppress the noise while simultaneously preserve spatial information details by a novel cost function. In addition, a MLP model was elaborated in [290] for SAR image despeckling by using a time series of SAR images. The greatest advantage of MLP was that once the despeckling parameters were determined, they can be used to process not only new images in the same area, but also images in completely different locations.

3) SAR Automatic Target Recognition (SAR-ATR).

Originated from the military, the goal of ATR is to infer or predict the classes of detected targets via acquired sensory data with computer processing technology. Today, ATR technology is significantly applied to both military and civil domains, such as valuable military target recognition (e.g., missile, airplane, ship), human pose, gait, and action recognition. Due to the unique characteristics of SAR images aforementioned, it is difficult to easily interpret the SAR imagery with the common ATR system. Research on SAR-ATR system has increasingly absorbed attention from the researchers around the RSP community. The problems of SAR-ATR research domain based on ML algorithms mainly focus on improving performances in the following four aspects: i) accuracy with DNNs model, ii) generalization with limited labeled data [343], iii) robustness with speckle denoising, scale-variance and adversarial samples attack, and iv) real-time or alleviating computation cost at practical strict situations. Furthermore, interpretability of deep models are also studied. SAR-ATR has two main categories based on ML: traditional ML based methods, such as SVM [304], [314]–[316], genetic programming [317], boosting [318], Markov random field (MRF) [319]–[322], ELM [338], and DNN based methods, such as CNNs [310], [311], DBNs [312], SAE [313], RNNs [326]. Besides, three classes of SAR-ATR methods have been categorized in a surveyed paper [34], i.e., feature-based, semi-model-based, and model-based, respectively. This section presents an understanding survey for SAR-ATR based on model-based DL algorithms, which is roughly categorized into four classes based on research aspects aforementioned. These state-of-the-art algorithms including basic CNNs, fusion models, highway model, multi-view, multi-task learning networks models, RNNs based spatial SAR image sequences learning, AEs, and DBNs.

i) Boosting Accuracy with DL Model

General DL models Similarly, CNNs are also widely applied to SAR-ATR. To understand the relationship between the convolution layers and feature extraction capability, a weighted kernel CNN (WKCNN) was presented in [345]. By modeling the interdependence between different kernels, this model integrated a weighted kernel module (WKM) into the common CNN architecture to improve the feature extraction capability of the convolutional layer. The CNN models were designed for MSTAR data [324] and polarimetric Flevoland SAR dataset (15 classes) [299] classification, which achieved recognition accuracy of 99.5% and 92.46% respectively. In [451], the authors proposed a dual channel feature mapping CNN (DFCM-CNN) for SAR-ATR, which achieved a average recognition accuracy of 99.45% on MSTAR. In order to extract spatial discriminative features of SAR images, a DCNN was proposed to extract gray level-gradient co-occurrence matrix and Gabor features in [418], [419] for SAR image classification. A novel neighborhood preserved DNN (NPDNN) was proposed in [350] to exploit the spatial relation between pixels by a jointly weighting strategy for PolSAR image classification. An convolution kernel of the fire module based effective max-fire CNN model, called MF-SarNet, was constructed in [351] for effective SAR-ATR tasks.

Combining DNN and traditional ML algorithm is also investigated. A unsupervised discriminative learning method based on AE and SVM models was proposed in [349], called patch-sorted deep neural network (PSDNN), which firstly adopted sorted patches based on patch-sorted strategy to optimize CNN model training for extracting the high-level spatial and structural features of SAR images, and a SVM classifier as the final classification task. The combination of CNN and SVM was developed in [357], [358]. A modified stacked convolutional denoising auto-encoder (MSCDAE) was proposed in [359] to extract hierarchical features for complex SAR target recognition, and SVM as final object classification with features extracted by MSCDAE model. To enhance the learning of target features, a novel deep learning algorithm based on a DCNN trained with an improved cost function, and combined with a SVM was proposed in [360] for SAR image target classification. A TL based pre-trained CNN was employed to extract learned features in combination with a classical SVM for SAR images target classification in [361]. Deep kernel learning method was employed in [362] for SAR image target recognition, which optimized layer by layer with the parameters of SVM and a gradient descent algorithm. A novel oil spill identification method was proposed in [355] based on CNN, PCA, and RBF-SVM, which could improve the accuracy of oil spill detection, reduce the false alarm rate, and effectively distinguish an oil spill from a biogenic slick. To take the advantage of manifold learning with modeling core variables of the target, and separate different data’s manifold as much as possible, the authors proposed nonlinear manifold learning integrated with FCN for PoI SAR image classification in [378].

In [354], the authors proposed an ensemble transfer learning framework to incorporate manifold polarimetric decompositions into a DCNN to jointly extract the spatial and polarimetric information of PoI SAR image for classification. In order to effectively classify single-frequency and multi-frequency PoI SAR data, the authors proposed a single-hidden
layer optimized Wishart network (OWN) and extended OWN, respectively in [354], which outperformed DL-based architecture involving multiple hidden layers. To exploit the spatial information between pixels on PolSAR images and preserve the local structure of data, a new DNN based on sparse filtering and manifold regularization (DSMR) was proposed for feature extraction and classification of PolSAR data in [364]. In [380], the authors made full use of existing expert knowledge to construct a novel deep learning architecture for deep polarimetric feature extraction, and a superpixel map was used to integrate contextual information. This model consisted of multiple polarimetric algebra operations, polarimetric target decomposition methods, and CNN to extract deep polarimetric features.

A 20-layers (with 3 dense block and 2 transition layers) DenseNet was built to implement polarimetric SAR image classification in [371]. Inception v3 model was adopted in [372] to develop an efficient and accurate method to detect and classify key geophysical phenomena signature among the whole sentinel-1 wave mode SAR dataset. In [372], the authors proposed an end-to-end framework for the dense, pixel-wise classification of GF-3 dual-pol SAR imagery with convolutional highway unit network (U-net) to extract hierarchical contextual image features. To concern about the estimation of depression angle and azimuth angle of targets in SAR-ATR tasks, the authors proposed a new CNN architecture with spatial pyramid pooling(SPP) in [385], which could build high hierarchy of features map by dividing the convolved feature maps from finer to coarser levels to aggregate local features of SAR images.

To address the redundant parameters and the negligence of channel-wise information flow, group squeeze excitation sparsely connected CNN was developed in [346]. Group squeeze excitation performed dynamic channel-wise feature recalibration with less parameters, and sparsely connected CNN demonstrated the concatenation of feature maps from different layers. This model achieved accuracy rate of 99.79% on MSTAR, outperformed the most common skip connection models, such as ResNet and densely connected CNN. TL-based pre-trained ResNet50 and VGGNet model were employed in [305], [306] for SAR image classification. Pre-trained models can deeply extract multiscale features of data samples in short training time, and convolutional predictor were added after the pre-trained model for the target classification. The experiment results showed that the pre-trained model achieved accuracy rate of 98.95% in [305] and higher performance with the suitable data augmentation technology than other methods in [306]. TL was developed in [309] to overcome the problem of difficulty in convergence.

Instead of directly outputting the class of SAR image with the DNN, a class center metric based method with CNN model was proposed in [333]. This method used CNN to extract features from SAR images to calculate class center of each class under the new features representation. Then, the class of test sample was identified by the minimum distance between the center of class and learned features space of test sample. Similarly, a DNN model was employed in [450] to directly classify targets with slow-time and fast-time sampled signals. The decision-making strategy of classification is determined by the distance between the optimized sets of vectors and classes. Each of class represented a new sample.

As for complex SAR imagery, the complex-value CNN (CV-CNN) architecture was proposed in [300], [301]. All components of CNNs were extended to the complex domain. CV-CNN achieved accuracy rate of 95% on Flevoland dataset [300], and 96% with enough samples in [301]. Moreover, a deep FCN was also employed in [302] that used real-valued weight kernels to perform pixel-wise classification of complex-valued images. A CV-CAE was proposed in [303] for complex PolSAR images classification. In order to sufficiently extract physical scattering signatures from PolSAR and explore the potentials of different polarization modes on this task, a contrastive-regulated CNN was proposed in the complex domain, attempting to learn a physically interpretable deep learning model directly from the original backscattered data in [379]. A novel deep learning framework, deep SAR-Net, was constructed in [377] to take complex-valued SAR images into consideration to learn both spatial texture information and backscattering patterns of objects on the ground.

To exploit the performance of generative models in SAR-ATR based on unsupervised learning, an SAE model with feature fusion strategy was adopted in [339] for SAR target recognition. The local and global features of 23 baselines and three patch local binary pattern (TPLBP) features were extracted from the SAR image, which achieved an classification accuracy rate of 95.43% on MSTAR. A single-layer CNN model combined with features extraction by SAE was developed in [313], which achieved accuracy rate of 90.1% and 84.7% for 3-class and 10-class targets classification on MSTAR. A novel framework for PolSAR classification based on multilayer projective dictionary pair learning (MPDPL) and SAE was proposed in [384]. To learn more discriminative features of SAR images, an ensemble learning based discriminant DBN (DisDBN) was proposed in [312] to learn high-level discriminant features of SAR images for classification. Some weak classifiers were trained by several subsets of SAR image patches to generate the projection vectors, which were then input into DBN to learn discriminative features for classification. An unsupervised deep generative network-poisson gamma belief network (PGBN) was proposed to extract multi-layer feature from SAR images data for targets classification tasks in [352]. An unsupervised PolSAR image classification method using deep embedding network-SAEs was built in [353], which used SVD method to obtain low-dimensional manifold features as the inputs of SAEs, and the clustering algorithm determined the final unsupervised classification results. As for In-SAR data, a DBN was used to model data in [360] for classification, which could fully explore the correlation between intensity and the coherence map in space and time domain, and extract its effective features. Inspired by DL and probability mixture models, a generalized gamma deep belief network (g-DBN) was proposed for SAR image statistical modeling and land-cover classification in [383]. Firstly, a generalized Gamma-Bernoulli RBM (g-B-RBM) was developed to capture high-order statistical characterizes from SAR images. Then a g-DBN was constructed to learn high-
level representation of different SAR land-covers. Finally, a discriminative network was used to classify. In addition, the deep RNN based model was adopted in [386] for agricultural classification using multimodal SAR Sentinel-1.

Multi-aspect fused learning methods Multi-aspect fused learning methods are very popular in improving the accuracy of SAR-ATR tasks such as multi-view, multi-task, multi-scale, multi-dimension. To fully extract features of images, a CNN based fusion framework was proposed in [308], including a preprocessing module initialized with Gabor filters, an improved CNN and a feature fusion module. This model could achieve an average accuracy rate of 99% on MSTAR, even obtained a high recognition accuracy on limited data and noisy data. The authors developed concurrent and hierarchy target learning architecture in [444]. Three CNN models simultaneously extracted features of SAR images in two scenarios, final classification was finished by different combination and fusion approaches based on extracted features. Based on multi-view learning manner, the authors proposed a multi-input DCNN for bistatic SAR-ATR system in [331]. A multi-stream CNN (MSCNN) was proposed in [343] for SAR-ATR by leveraging SAR images from multiple views. A Fourier feature fusion framework derived from kernel approximation based on random Fourier features, to unravel the highly nonlinear relationship between images and classes, which fused information from multi-view of the same target in different aspects.

To capture the spatial and spectral information of a SAR target simultaneously with kernel sparse representation (KSR) technology, multi-task kernel sparse representation framework was developed in [339] for SAR target classification. SAR target recognition was formulated as a joint covariate selection problem across a group of related tasks. A multi-task weight optimization scheme was developed to compensate for the heterogeneity of the multi-scale features and enhance the recognition performance. A two-stage multi-task learning representation method was also proposed in [340]. After finding an effective subset of training samples and constructing a new dictionary by multi-feature joint sparse representation learning as the first stage, the authors utilized multi-task collaborative representation to perform target images classification based on the new dictionary in second stage. A multi-level deep features-based multi-task learning algorithm was developed in [347] for SAR-ATR. This architecture employed joint sparse representation as the basic classifier and achieved an recognition rate of 99.38% on MSTAR under standard operating conditions (SOCs).

A mixed framework based on multimodal, multidiscipline, and data fusion strategy was proposed in [449] for SAR-ATR. An adaptive elastic net optimization method was applied to balance the advantages of $l_1 - \text{norm}$ and $l_2 - \text{norm}$ optimization on scene SAR imagery by a clustered AlexNet with sparse coding. The clustered AlexNet with a multiclass SVM classification scheme was proposed to bridge the visual-SAR modality gap. This framework achieved 99.33% and 99.86% for the three and ten-class problems on MSTAR, respectively. A SAR and infrared (IR) sensors based multistage fusion stream strategy with dissimilarity regularization using CNN architecture was developed in [363] to improve the performance of SAR target recognition. In order to make full use of phase information of PolSAR images and extract more robust discriminative features with multidirection, multiscale, and multiresolution properties, a complex Contourlet CNN was proposed in [376].

However, most of DL based SAR-ATR methods present a limitation that each learning process only handles static scattering information with prepared SAR image, while missing the space-varying information. To involve space-varying scattering information to improve the accuracy rate of recognition, a novel multi-aspect-aware method was proposed in [326] to learn space-varying scattering information through the bidirectional LSTM model. The Gabor filter and three-patch local binary patterns were progressively implemented to extract comprehensive spatial features of multi-aspect space-varying image sequences. After dimensionality reduction with MLP, a bidirectional LSTM learned the multi-aspect features to achieve target recognition. This method achieved accuracy rate of 99.9% on MSATR data.

To fully exploit the characteristics of continuous SAR imaging instead of utilizing single image for recognition, a bidirectional convolution-recurrent network (BCRN) was developed in [334] for SAR image sequence classification. Spatial features of each image were extracted through CNNs without the fully connected layer, and then sequence features were learned by bidirectional LSTM networks to obtain the classification results. In order to exploit the spatial and temporal features contained in the SAR image sequence simultaneously, a spatial-temporal ensemble convolutional network (STEC-Net) was proposed for a sequence SAR target classification in [365], which achieved a higher accuracy rate (99.93%) in the MSTAR dataset and exhibited robustness to depression angle, configuration, and version variants. A SAR sequence image target recognition network based on two-dimensional (2D) temporal convolution was proposed in [374], including three stages: feature extraction, sequence modeling and classification. To use rotation information of PolSAR image for improving classification performance, the authors built a convolutional LSTM (ConvLSTM) along a sequence of polarization coherent matrices in rotation domain for PolSAR image classification in [375].

In order to automatically and precisely extract water and shadow areas in SAR imagery, the authors proposed multi-resolution dense encoder and decoder (MRDED) network framework in [381], which integrated CNN, ResNet, DenseNet, global convolutional network (GCN), and ConvLSTM. MRDED outperformed by reaching 80.12% in pixel accuracy (PA) and 73.88% in intersection of union (IoU) for water, 88% in PA and 77.11% in IoU for shadow, and 95.16% in PA and 90.49% in IoU for background classification, respectively. A feature recalibration network with multi-scale spatial features (FRN-MSF) was built in [382], which achieved high accuracy in SAR-based scene classification. FRN was used to learn multi-scale high-level spatial features of SAR images, which integrated the depthwise separable convolution (DSC), SE-Net block and CNN.

In order to make full use of pose angle information and intensity information of SAR data for boosting target recog-
nition performance, a CNN-based SAR target recognition network with pose angle marginalization learning, called SPAM-Net was proposed in [367] that marginalized the conditional probabilities of SAR targets over their pose angles to precisely estimate the true class probabilities. A combination of multi-source and multi-temporal remote sensing imagery was proposed in [368] for classifying PolSAR images, which used CNN and visual geometry group (VGG) to classify crops based on the different numbers of input bands composed by optical and SAR data. Deep bimodal autoencoders were proposed for classification of fusing SAR and multispectral images in [369], which was trained to discover both independencies of each modality and correlations across the modalities. Combining polarimetric information and spatial information, a dual-branch DCNN (dual-DCNN) was proposed to realize the classification of PolSAR images in [370]. The first branch was used to extract the polarization features from the 6-channel real matrix, which are derived from the complex coherency matrix. The other was utilized to extract the spatial features of a Pauli RGB (Red Green Blue) image. These extracted features were first combined into a fully connected layer sharing the polarization and spatial property. Then, the softmax classifier was employed to classify these features.

ii) Enhancing Generalization with Limited Labeled Data

Data augmentation based technology To eliminate the overfitting of small dataset in SAR-ATR, a CNN model with feature extractor and softmax classifier, combining with data augmentation technique, was proposed in [310]. An improved DQN method for PolSAR image classification was proposed in [388], which could generate amounts of valid data by interacting with the agent using the ε-greedy strategy. A multi-view DL framework was proposed in [325] for SAR-ATR with limited data, which introduced a unique parallel deep CNN topology to generate multi-view data as inputs of model. The distinct multi-view features were fused in different layers progressively. A Gabor-DCNN was proposed to overcome the overfitting problem due to limited data in [399]. Multiscale and multi-direction-based Gabor features and a DCNN model were used for data augmentation and for SAR image target recognition, respectively. A novel adversarial AE was proposed to improve the orientation generalization ability for SAR-ATR tasks in [400], which learned a code-image-code cyclic network by adversarial training for the purpose of generating new samples at different azimuth angles. A new dual-channel CNN was developed in [403] for PolSAR image classification when labeled samples were small, which firstly used a neighborhood minimum spanning tree to enlarge the labeled sample set and then extracted spatial features by DC-CNN model.

A DNN-based semi-supervised method was proposed in [408] to tackle the PolSAR image classification when labeled samples was limited. The class probability vectors were used to evaluate the unlabeled samples to construct an augmented training dataset. The feature augmentation and ensemble learning strategies were proposed in [398] to address the limited samples issue in SAR-ATR tasks. The cascaded features from optimally selected convolutional layers were concatenated to provide more comprehensive representation for the recognition. The adaboost rotation forest was introduced to replace the original softmax layer to realize a more accurate limited sample-based recognition task with cascaded features. In [420], a superpixel restrained DNN-based multiple decisions strategy, including nonlocal decision and local decision, was developed to select credible testing samples. The final classification map was determined by the deep network, which was updated by the extended training set.

Fine-grained DNN structure design-based technology In [300], [309], the authors used convolutional layer to replace full connection layer and proposed deep memory CNNs (M-Net) to overcome overfitting caused by small samples data, which achieved accuracy rate of more than 99% on MSTAR. Aiming to improve the classification performance with greatly reduced annotation cost, the authors proposed an active DL approach for minimally-supervised PolSAR image classification [401], which integrated active learning and fine-tuning CNN into a principled framework. A microarchitecture called CompressUnit-based deeper CNN was proposed in [404]. Compared with the fewest parameters-based networks for SAR image classification, this architecture was deeper with only about 10% of parameters. An efficient transferred max-slice CNN with L2-regularization term was proposed in [409] for SAR-ATR, which could enrich the features and recognize the targets with superior performance with small samples. An asymmetric parallel convolution module was constructed in [410] to avoid severe overfitting. In [411], the authors developed a systematic approach, based on sliding-window classification with compact and adaptive CNNs, to overcome drawbacks of limited labelled data whilst achieving state-of-the-art performance levels for SAR land use/cover classification.

TL methods are significantly used in DNN design to solve the problems caused by limited data. A TL-based algorithm was proposed in [329] to transfer knowledge, learned from sufficient unlabeled SAR scene images, to labeled SAR target data. The proposed CNN architecture consisted of a classification pathway and a reconstruction pathway (i.e., stacked convolutional auto-encoders), together with a feedback bypass additionally. A large number of unlabeled SAR scene images were used to train the reconstruction pathway at first. Then, these pre-trained convolutional layers were reused to transfer knowledge to SAR target classification tasks, combining with reconstruction loss introduced by feedback bypass.

TL strategy was used to effectively transfer the prior knowledge of the optical, non-optical, hybrid optical and non-optical domains to the SAR target recognition tasks in [440]. The approach of transferring knowledge from electro-optical domains to SAR domains was developed in [406] to eliminate the need for huge labeled data in the SAR classification. This method learned a shared domain-invariant embedding by cross-domain knowledge transfer pattern. The embedding was discriminative for both related electro-optical and SAR tasks, while the latent data distributions of both domains remained similar. Two TL strategies, based on FCN and U-net architecture, were proposed in [422] for high-resolution PolSAR image classification with only 50 image patches. The distinct pretraining datasets were also applied to different
scenarios. To adapt deep CNN model for PolSAR target detection and classification with limited training samples while keeping better generalization performance, expert knowledge of target scattering mechanism interpretation and polarimetric feature mining were incorporated into CNN to assist the model training and improve the final application performance [416].

The semi-supervised and unsupervised learning methods are also the significant technologies to alleviate the overfitting with small labeled data. A semi-supervised TL method based on GAN was presented in [387] to address the insufficient labeled SAR data. Firstly, A GAN was trained by various unlabeled samples to learn generic features of SAR images. Subsequently, the learned parameters were readopted to initialize the target network to transfer the generic knowledge to specific SAR target recognition task. Lastly, the target network was fine-tuned by using both the labeled and unlabeled training samples with a semi-supervised loss function. In [389], an unsupervised multi-level domains adaptation method based on adversarial learning was proposed to solve the problem of time-consuming for multi-band labeled SAR images classification. A semi-supervised recognition method combining GAN with CNN was proposed in [390]. A dynamic adjustable multi-discriminator GAN architecture was used to generate unlabeled images together with original labeled images as inputs of CNN. In order to alleviate the time-consuming problems of obtaining the labels of radar images, a semi-supervised learning method based on the standard DCGANs was presented in [415]. Two discriminators sharing the same generators for joint training.

To alleviate the burden of manual labeling, a CNN-based unsupervised domain adaptation model was proposed in [393] to learn the domain-invariant features between SAR images and optical aerial images for SAR image retrieving. An unsupervised learning method to achieve SAR object classification with no labeled data was introduced in [405]. This approach regarded object clustering as a recurrent process, in which data samples were gradually clustered together according to their similarity, and feature representations of them were obtained simultaneously. To address the problem of insufficient labelled training, an unsupervised DL model was implemented in the encoding-decoding architecture to learn feature maps at different scale and combine them together to generate feature vectors for SAR object classification in [402].

In [391], the authors employed an extension of Wasserstein AE as deep generative model for SAR image generation to achieve SAR image target recognition with high accuracy. A novel generative-based DNN framework was proposed in [392] for zero-shot learning of SAR-ATR. A generative deconvolutional neural network was referred to as a generator to learn a faithful hierarchical representation of known targets, while automatically constructing a continuous SAR target feature space spanned by orientation-invariant features and orientation angle. In [407], the authors proposed a new few-shot SAR-ATR method based on conv-biLSTM prototypical networks. A conv-biLSTM network was trained to map SAR images into a new feature space where it was easy for classification. Then, a classifier based on Euclidean distance was utilized to obtain the recognition results. A virtual adversarial regularization term was introduced in a neural nonlocal stacked SAEs architecture to regularize the network for keeping the network from being overfitting [413]. A multilayer AE, combining with Euclidean distance as a supervised constraint, to be used in [394] for SAR-ATR tasks with the limited training images.

A new deep network in the form of a restricted three-branch denoising auto-encoder (DAE) was proposed in [395] to take the full advantage of limited training samples for SAR object classification. In this model, a modified triplet restriction, that combined the semi-hard triplet loss with the intra-class distance penalty, was devised to learn discriminative features with a small intra-class divergence and a large inter-class divergence. In order to solve overfitting problem, the authors introduced a dual-input Siamese CNN into the small samples oriented SAR target recognition in [396]. The recognition accuracy rate of this method outperformed the SVM, A-ConvNet, and 18-layers ResNet by 31%, 13%, and 16%, respectively, in the experiment of 15 training samples and 195 testing data. A novel method of target classification of SAR imagery based on the target pixel grayscale decline with a graph CNN was introduced in [397], which transformed the raw SAR image from Euclidean data to graph-structured data by a graph structure and these transformed data were as the inputs of graph CNN model. To balance the anti-overfitting and features extraction abilities with small training samples for SAR targets images classification, the authors proposed a novel hinge loss (HL)-based CAE semi-greedy network in [412], i.e., CAE-HL-CNN. Compared with existing state-of-the-art network, the CAE-HL-CNN had best performances in classification accuracy and computation costs with the SOC and EOC MSTAR datasets.

ii) Improving Robustness of Recognition Algorithms

The speckle noise, clutter, scale-variation of inputs, and adversarial samples can severely cause unstability of DNN algorithm in SAR-ATR. Therefore, the robustness improvement of DNN algorithms is very vital. A new multi-view sparse representation classification algorithm based on joint supervised dictionary and classifier learning was developed in [336] for SAR image classification. During training process, classification error was back propagated to the dictionary learning procedure to optimize dictionary atoms. In this way, the representation capability of the sparse model was enhanced. This new architecture was more robust for depression variation, configuration variants, view number, dictionary size, and noise corruption, compared to other state-of-the-art methods, such as SVM.

SAR-ATR is performed on either global or local features of acquired SAR images. The global features can be easily extracted and classified with high efficiency. However, they lack of reasoning capability thus can hardly work well under the EOCs. The local features are usually more difficult to extract and classify, but they can provide reasoning capability for target recognition. To make full use of global and local features of SAR-ATR at the EOCs, a hierarchical fusion scheme of the global and local features was proposed in [330] to jointly achieve high efficiency and robustness in ATR system. The global random projection features can be extracted and
classified by sparse representation-based classification method effectively. The physical related local descriptors, i.e., ASCs, were employed for local reasoning to handle various EOCs like noise corruption, resolution variance, and partial occlusion.

To improve robustness of model for noise and invariance of models, a multiple feature-based CNN model was employed in [332] to recognize the SAR image in an end-to-end learning way. The strong features more affected by noise and smoothed features less influenced were aggregated into a single column vector to build complementary relationships for recognition by a full connection network. As for target rotation behavior recognition, a rotation awareness based self-supervised DL model was proposed in [335]. This model suggested that more attention should be paid on rotation-equivariant and label-invariant features. To explore the property of translation-invariance of CNNs, the authors verified that ResNet could achieve translation-invariance with aligned SAR images [311], even ResNet do not adopt data augmentation. A scale-invariant framework based on CNN was proposed in [427] to improve the robustness of model with respect to scale and resolution variations in dataset. This architecture developed an uniform representation method to enlarge the feature space for the variants of data by concatenating scale-variant and scale-invariant features.

Luminance information of SAR images was used to form the target’s profile in [417] to significantly reduce the influence of speckle noise on CNN model. A scale transformation layer was embedded in deep convolutional autoencoder model to reduce the influence of noise in [418]. To restrain the influence of speckle noise and enhance the locally invariant and robustness of the encoding representation, the operations of contractive restriction and graph-cut-based spatial regularization in DSCNN were adopted in [419]. A SRDNN-based SAE was proposed to capture superpixel correlative features to reduce speckle noises in [420]. A speckle-noise-invariant CNN was developed in [421], which employed regularization term to improve Lee sigma filter performance, i.e., minimizing feature variations caused by speckle noise.

A TL-based top-2 smooth loss function with cost-sensitive parameters was introduced to tackle the problems of label noise and imbalanced classes in [422]. A CNN-based recognition method of synthetic SAR dataset with complex background was proposed in [423]. As for noise and signal phase errors, the authors proposed a advanced DL based adversarial training method to mitigate these influence in [424]. A pointwise discriminative auto-encoder was proposed in [425] to extract noise and clutter robust features from the target area of SAR images. In order to alleviate the speckle influence on the scattering measurements of individual pixels in PolSAR images, local spatial information was introduced into stacked sparse autoencoder to learn the deep spatial sparse features automatically in [426].

Moreover, The DL-based SAR target recognition algorithms are potentially vulnerable to adversarial examples [428]. In [424], the authors involved a adversarial training technology to ensure the robustness of DL algorithm under the attacks of adversarial samples. HySARNet, as a hybrid ML model, was proposed in [429] to determine the robustness of model when faced variations in graze angle, resolution, and additive noise in SAR-ATR tasks. A wavelet kernel sparse deep coding network under unbalanced dataset was proposed in [430] for unbalanced PolSAR classification.

The issue of different characters of heterogeneous SAR images will lead to poor performances of TL algorithm in SAR image classification. To address this problem, a semi-supervised model named as deep joint distribution adaptation networks was proposed in [431] for TL model, which learning from a source SAR images to similar target SAR images. In order to increase the stability of GANs model training in SAR targets recognition, the authors proposed a new semi-supervised GANs with multiple generators and a classifier in [414]. Multiple generators were employed to keep stability of training.

iv) Promoting the Real-Time or Reducing Computation Costs

A CNN-based framework consisted of SqueezeNet network and a modified wide residual network was developed in [298] to build real-time damage mapping for classifying different damaged regions on the SAR image. A direct ATR method was employed in [346] for large-scene SAR-ATR task, which directly recognized targets on large-scene SAR images by encapsulating all of the computation in a single DCNN. Experiments on MSTAR and large-scene SAR images (with resolution 1478 * 1784) showed this model outperformed other methods, such as CFAR+SVM, region-based CNN, and YOLOv2 [466]. The PCANet was employed in [348] for SAR-ATR to achieve more than 99% accuracy rate on MSTAR. A-ConvNet was proposed in [259] to achieve an average accuracy rate of 99.1% on MSTAR. A novel stacked deep convolutional highway unit network was proposed in [323] for SAR imagery classification, which achieved accuracy rate of 99% with all MSTAR data, and still reached 94.97% when the training data was reduced to 30%.

The complex multi-view processing of images, however, can cause huge computation costs for multi-view learning method. To address this problem, a optimal target viewpoints selection based multi-view ATR algorithm was developed in [328]. This algorithm used two-channel CNNs as multi-view classifiers, which was based on ensemble learning [51]. A direct graph structure-based single source shortest path search algorithm was also adopted to represent the tradeoff between the recognition performance and flight distance of SAR platform. A heterogeneous CNN-based ensemble learning method was employed in [447] to construct noncomplete connection scheme and multiple filters stacked.

A lightweight CNN model was designed in [341] to recognize the SAR images. The channel attention by-pass and spatial attention by-pass were introduced to enhance the feature extraction ability. Depthwise separable convolution was used to reduce the computation costs and heighten the recognition efficiency. In addition, a new weighted distance measured loss function was introduced to weaken the adverse effects of data imbalance on accuracy rate of minority class. This architecture has better performance than ResNet, A-ConvNet [259], [422].

A one-layer based novel incremental Wishart broad learning system was specifically designed in [432] to achieve PolSAR
image classification, which could effectively transfer essential Wishart distribution and other types of polarimetric decomposition and spatial features to establish feature map and enhancement nodes in just one layer without DL structures. Therefore, the training consumption could be decreased significantly. Similarly, a superpixel-driven optimized Wishart network was introduced in [433] for fast PolSAR image classification. In [434], the authors applied some tricks (such as BN, drop-out strategy) and concatenated ReLU to reduce computation cost of DL algorithm. A spatial-anchor graph based fast semi-supervised classification algorithm for PolSAR image was introduced in [435].

In [436], the authors proposed a novel method based on target pixel grayscale decline by a graph representation network to accelerate the training time and achieve classification accuracy rate of 100%. In order to speed up computation and improve classification accuracy, a classification method of full-polarization SAR images, based on DL with shallow features, was proposed in [437]. Aiming to solve the problems of energy consumption, so as to deploy the DL model on embedded devices conveniently and train the model in real-time, a custom AI streaming architecture was employed in [438] for SAR maritime target detection. A more flexible structure as the new implementation of CNN classifier was proposed in [439], which had less free parameters to reduce training time. An atrous-inception module-based lightweight CNN was proposed in [440], which combined both atrous convolution and inception module to obtain rich global receptive fields, while strictly controlling the parameter amount and realizing lightweight network architecture. In [441], apache spark clustering framework was presented for classification of high-speed denoised SAR image patches. An asymmetric parallel convolution module was constructed in [442] to alleviate the computation cost. In order to alleviate the trade-off between real-time and high performance, the authors proposed a semi-random DNN to exploit random fixed weights for real-time training with comparable accuracy of general CNNs in [443].

To tackle the issues of low memory resources and low calculation speed in SAR sensors, the authors proposed a a micro CNN for real-time SAR recognition system in [444], which only had two layers, compressed from a 18-layer DCNN by a novel knowledge distillation algorithm, i.e., gradual distillation. Compared with the DCNN, the memory footprint of the proposed model was compressed 177 times, and the computation costs was 12.8 times less. In order to deploy a real-time SAR platform, three strategies of network compression and acceleration were developed in [445] to decrease computing and memory resource dependencies while maintaining a competitive accuracy. Firstly, weight-based network pruning and adaptive architecture squeezing method were proposed to reduce the consumption of storage and computation time of inference and training process of DL model. Then weight quantization and coding were employed to compress the network storage space. In addition, a fast approach for pruning convolutional layers was proposed to reduce the number of multiplication by exploiting the sparsity of the inputs and weights.

At present, most of neutral network-based classification methods need to expand the dataset by data augmentation technology or design the light-weighted network model to improve their classification performance. However, optimal training and generalization are two main challenges for DNN model. Instead of DNN model, a novel deep forest model was constructed in [446] by multi-grained cascade forest (gcForest) to classify 10-class targets on MSTAR. This was the first attempt to classify SAR targets using the non-neural network model. Compared with DNN-based methods, gcForest had better performances in calculation scale, training time, and interpretability.

4) Ship Targets Detection based on SAR Images.

In section 3) we make a comprehensive survey on SAR-ATR based on DL algorithm. From the overview in published literatures, the SAR-ATR is a very important research domain widely involved in military and civil applications. The SAR-based ship targets detection (STD), one of the important research aspects in maritime surveillance (such as marine transportation safety), is an another significant research direction for SAR image processing. Of course, optical imagery-based ship detection and classification is also a hot research direction, please refer to [35]. The SAR images of the STD usually have a large scale, which contains many different scale ship targets. The goal of STD is detection and recognition of each target on the SAR image.

Traditional STD approaches include constant false alarm rates (CFAR) based on the distributions of sea clutter [453], extracted features manually based on ML algorithm [455]–[458], dictionary-based sparse representation, SVM, template matching, K-NN, Bayes, saliency object detection models. Traditional methods, however, intensively depend on the statistics modeling and the experts’ feature extraction ability, which degrades the detection performances of SAR imagery to some extent.

In recent years, DL-based methods have produced many great achievements in objects detection domain. These DL algorithms can be roughly categorized into two classes: two-stage methods and one-stage methods. The former firstly generates positive region proposals to discard the most of negative samples, then performs the candidate regions classification, such as region convolutional neural networks (R-CNN) [459], fast R-CNN [460], faster R-CNN [461], mask R-CNN [462], cascade R-CNN [463], feature pyramid networks (FPNs) [464]. The latter directly detects the objects by obtaining objects’ coordinate values and the class probability, which considers both accuracy and computation costs, such as You Only Look Once (YOLOs: v1-v4, poly-v3) [465]–[469], single shot multiBox detector (SSD) [470], RetinaNet [471]. The two-stage methods have higher accuracy, but slower training than one-stage methods.

Nowadays, the SAR researchers have successfully applied DL algorithms in STD. Some challenges, however, have occurred in this domain even though applied DL algorithms, which mainly focus on three aspects: (i) ships often have a large aspect ratio and arbitrary directionalities in SAR images. Traditional detection algorithms can unconsciously cause redundant detections, which make it difficult to accurately locate the target in complex scenes (such as background interference,
features of images. This model also used attention mechanism to rule out false alarms in complex scenarios. A new training strategy was adopted in [481] to reduce the weights of easy examples in the loss function, so that more attention focused on the hard examples in training process to reduce false alarm. Two parallel sub-channels based multi-feature learning framework was proposed in [482], including DL-based extracted features and hand-crafted features. Two sub-channels features were concatenated to extract fused deep features to achieve high performance.

ii) Accurately Detection of Densely Arranged Ships

As for second problem, it is difficult to detect densely arranged ships. Non-maximum suppression (NMS) method was widely used to address this issue. A soft-NMS method was introduced into the detection network model in [485], [492] to reduce the number of missed detections of ship targets in the presence of severe overlap for improving the detection performance of the dense ships. In addition, the modified rotation NMS was developed in [488] to solve the problem of the large overlap ratio of the detection box.

iii) Solving the Problems of Multi-scale Variations

More importantly, it is very vital to design a optimal solution to solve the problems of multi-scale variations in design of STD algorithms. A FPN was used in [480] to extract multi-scale features for both ship location and classification, and focal loss was also used to address the class imbalance to increase the importance of the hard examples during training process. A densely connected multi-scale neural network based on faster R-CNN was proposed in [481] to densely connect one feature map to each other feature maps from top to down. In this way, the positive proposals were generated from each fused feature map based on multi-scale SAR images in multi-scene. Similarly, combining with densely connecting convolutional block attention module, a dense attention pyramid network was developed in [487], [490] to concatenate feature maps from top to bottom of the pyramid network. In this way, sufficient resolution and semantic information features were extracted. In addition, convolutional block attention module refined concatenated feature maps to fuse highlight salient features with global unblurred features of multi-scale ships, and the fused features were as the inputs of detection network to accurately obtain the final detection results.

To address the diverse scales of ship targets, a loss function incorporated the generalized intersection over union (GloU) loss to reduce the scale sensitivity of the network [485]. In [486], a new bi-directional feature fusion module was incorporated in a lightweight feature optimizing network to enhance the salient features representation of both low and high features representation layers. Aiming to fast achieve positioning rotation detection, the authors proposed a multiscale adaptive recalibration network in [488] to detect multiscale and arbitrarily oriented ships in complex scenarios. The recalibration of the extracted multiscale features improved the sensitivity of the network to the target angle through global information. In particular, a pyramid anchor and a loss function were designed to match the rotated target to accelerate the rotation detection.

To eliminate the missing detection of small-sized ships...
targets in SAR imagery, a contextual region convolutional hierarchical neural network with multilayer fusion strategy was designed in [476], which consisted of a high resolution RPN and an object detection network to extract contextual features. This framework fused the deep contextual semantic features and shallow high-resolution features to improve the detection performance for small-sized ships. A novel split convolution block was used in [474] to enhance the feature representation of small targets, which divided the SAR images into smaller sub-images as the inputs of the network. Also, a spatial attention block was embedded in FPN to reduce the loss of spatial information during the dimensionality reduction process.

Based on TL method, a pre-trained YOLOv2 model [466] was applied to STD in [483]. The experiments on three different datasets showed the effectiveness of the pre-trained YOLOv2. TL strategy was also used to train the detection model in [478] due to the limited number of datasets. Instead of a single feature map, a scale-transferable pyramid network was employed in [489] for multi-scale detection. A latent connection based FPN was constructed to inject more semantic information into feature maps with high resolution, and densely connected each feature maps from top to down by using scale-transfer layer. Therefore, the dense scale-transfer connection could expand the resolution of feature maps and explicitly explore valuable information contained in channels. A scale transfer module was also used in [484] to connect with several feature maps to extract multiscale features for STD. In addition, RoIAlign was adapted to calibrate the accuracy of the bounding boxes, and the context features were employed to assist the detection of complex targets in detection subnetwork.

Nowadays, the existing methods of SAR STD mainly depend on low-resolution representations obtained by classification networks or recover high-resolution representations from low-resolution representations in SAR images. These methods, however, are difficult to obtain accurate prediction results in spatial accuracy of region-level. Based on a high-resolution STD network, a novel framework was proposed in [492] for high-resolution SAR imagery ships detection. This architecture adopted a novel high-resolution FPN connecting with several high-to-low resolution subnetworks in parallel, to make full advantage of the high-resolution feature maps and low-resolution convolutions to maintain high resolution STD. In addition, soft-NMS was also used to improve the detection performance of the dense ships and the Microsoft COCO evaluation metrics was introduced for performance evaluation.

Most of STD algorithms are focus on detection accuracy. Detection speed, however, is usually neglected. The speed of SAR STD is extraordinarily important, especially in real-time maritime rescue and emergency military decision-making. To improve the detection speed, a pyramid anchor and a loss function were designed in [488] to match the rotated targets to speed up the arbitrary ships rotation detection. A novel grid CNN was developed in [493] for high-speed STD, which mainly consisted of a backbone CNN and a detection CNN. Inspired by the idea of YOLO algorithm, this method improved the detection speed by meshing the input images and using the depthwise separable convolutions. The experiments results on SSDD dataset and two SAR images from RadarSat-1 and Gaofen-3 showed that the detection speed of this model was faster than the other existing methods, such as faster R-CNN, SSD, and YOLO under the same computing resource, and the detection accuracy was kept within an acceptable range. To infer a large volume of SAR images with high detection accuracy and relatively high speed, SSD was adopted in [478] to address STD in complex backgrounds. TL strategy was also adopted to train the detection model.

In sections 3) and 4), we make a comprehensive survey of SAR-ATR and STD based on SAR imagery. In addition, SAR imagery segmentation is also researched. Targets segmentation tries to separate the target from the background thus eliminating the interference of background noises or clutters. However, it may also discard a part of the target characteristics and target shadows during the segmentation process, which also contains discriminative information for target recognition. Then the tradeoff between interference elimination and discriminability loss will degrade target recognition to some extent [496]. Therefore, the comprehensive evaluation for the effectiveness of segmentation on target recognition is very important. A novel architecture for SAR segmentation based on convolutional wavelet neural network (CWN) and MRF [495] were proposed in [494], which could suppress the noise and keep the structures of the learned features complement. In addition, a ship detection and segmentation method based on an improved mask R-CNN model was developed in [491], which could accurately detect and segment ships at the pixel level. To allow lower layers features to be more effectively utilized at the top layer, a channel-wise and spatial attention mechanisms based bottom-up structure was added to FPN structure of mask R-CNN, so as to shorten the paths between lower layers and the topmost layer. The experiments results showed that the MAPs of detection and segmentation increased from 70.6% and 62.0% to 76.1% and 65.8%, respectively.

B. ISAR Images Processing

1) ISAR Imaging

To address the problem of low-resolution (LR) ISAR imaging, the authors employed deep ResNet as an end-to-end framework to directly learn the mapping between the input LR images and the output high-resolution (HR) images with respect to the point spread function (PSF) in [497]. An amount of multiplicative noise or clutter may be present in real-world ISAR measurement scenarios. The current linear imaging methods are not generally well suitable to alleviate the effects of noise, such as MUSIC, compressive sensing (CS). Since these algorithms rely on phase information significantly which can be heavily distorted or randomized under the imaging process. The authors introduced CNNs model to deal with this issue in [498]. In order to exploit a real-time ISAR imaging algorithm, the authors proposed an efficient sparse aperture ISAR autofocus algorithm in [499], which adopted divided simpler subproblems by alternating direction method of multipliers and auxiliary variable to alleviate the complex computation of ISAR imaging used sparse Bayesian learning (SBL) method. This method achieved 20-30 times faster than the SBL-based approach.
To address the problem of basis mismatch of CS based HR ISAR imaging of fast rotating targets, a pattern-coupled sparse Bayesian learning method for multiple measurement vectors, i.e., the PC-MSBL algorithm, was proposed in [500]. A multi-channel pattern-coupled hierarchical Gaussian prior was introduced to model the pattern dependencies among the neighboring range cells and correct the migration through range cells problem. The expectation-maximization (EM) algorithm was used to infer the maximum a posterior estimate of the hyperparameters. To tackle the issue of destroyed coherence between the undersampled pulses caused by sparse aperture radar echoes, the authors proposed a novel Bayesian ISAR autofocusing and scaling algorithm for sparse aperture in [501].

2) ISAR Targets Detection and Recognition.

In order to tackle the challenges of ISAR objects detection, a fast and efficient weakly semi-supervised method, called deep ISAR object detection (DIOD), was proposed in [502], which was based on advanced region proposal networks (ARPNs) and weakly semi-supervised deep joint sparse learning. This framework used (i) ARPN to generate high-level region proposals and localize potential ISAR objects robustly and accurately in minimal time, (ii) a convenient and efficient weakly semi-supervised training method was proposed to solve the problem of small annotated training data, and (iii) a novel shareable-individual mechanism and a relational-regularized joint sparse learning strategy were introduced to further improve the accuracy and speed of the whole system. Similarly, the authors proposed a novel DIOD method, which was based on fully convolutional region candidate networks and DCNNs in [503].

A TL-based novel method of multiple heterogeneous pre-trained DCNN (P-DCNN) ensemble with stacking algorithm was firstly proposed in [504], which could realize automatic recognition of space targets in ISAR images with high accuracy under the condition of the small samples. The stacking algorithm was used to realize the ensemble of multiple heterogeneous P-DCNNs, which effectively overcame weak robustness and difficulty in classification accuracy existing in a single weights fine-tuned P-DCNN. A semantic knowledge based deep relation graph learning was proposed in [505] for real-world ISAR object recognition and relation discovery. Dilated deformable CNN was introduced to greatly improve sampling and transformation ability of CNN, and increase the output resolutions of feature maps significantly. Deep graph attribute-association learning method was proposed to obtain semantic knowledge to exploit inter-modal relationships among features, attributes, and classes. Multi-scale relational-regularized convolutional sparse learning was employed to further improve the accuracy and speed of the whole system. In addition, CNNs and CAEs were also used to classify ISAR objects in [506].

Three ML algorithms were introduced in [507] for ISAR targets classification, i.e., DT, Bayes, and SVM. A SAE learning algorithm was employed in [508] to solve the classification issue of non-cooperative airplane targets with ISAR images.

C. HRRP-based Automatic Target Recognition

With the advantages of easily acquisition, processing and abundant target feature information, unidimensional high resolution range profile (HRRP) is a specially concern research direction of ATR. HRRP is the projection of target echo scatter vectors in the direction of radar sight line, at the condition of big transmitted signal bandwidth and big target shape. The HRRP-ATR research domain mainly concerns solving three aspect problems: noise robustness, discriminative and informative features extraction, and optimal classifier design. In practice, the first two problems are usually tackled simultaneously.

There are three stages for HRRP-ATR: image preprocessing [515], feature extraction and classifier design respectively. Image preprocessing mainly includes denoising [512], [514], [521], [522] and alleviates sensitivity problems: gesture, translation, and amplitude [513], [514], [519]. [528]. Feature extraction process extracts low dimensional inherent features from preprocessed HRRP, which are easily identifiable for HRRP of the target, including PCA, expert-based feature engineering. A fine classifier is used to achieve ATR tasks, such as SVM, DNNs.

Three stages are not rigorously operated sequentially. Some algorithms can achieve multi-operation simultaneously, e.g., PCA has denoise and dimensionality reduction functions. Take DNNs as an example, the DNNs are end-to-end learning architectures, operating the feature extraction and classification simultaneously [519], [528], [529].

1) Feature Extraction.

Probabilistic principal component analysis (PPCA) model was proposed in [509], [510] for noise robust feature extraction, which provided prior information for robust features from statistic modeling perspective. In [511], the authors adopted Bernoulli-Beta prior to learn the needed atoms to determine relatedness between frames of training data. A feature extraction dictionary was used to extract the local and global features of target’s HRRP [512], [523] for multi-feature joint learning method based on sparse representation and low-rank representation. Support vector data description was developed in [513] to extract non-linear boundary of dataset as classification features. In addition, orthogonal maximum margin projection subspace (OMMPS) was employed in [514] for HRRP’s feature extraction to reduce redundancy. To improve recognition performance, multiple kernel projection subspace fusion method was introduced in [514], [516] for feature extraction of HRRP, this method can guarantee the integrity of target information and robustness.

As for dealing with the challenge of noncooperative target recognition with imbalanced training datasets, t-distributed stochastic neighbor embedding (t-SNE) and synthetic sampling for data preprocessing were utilized in [517] to provide a well segmented and balanced HRRP dataset. Scatter matching algorithm was proposed in [521], [522] for dominant scatters features extraction of HRRP with noise robustness. Multi-scale fusion sparsity preserving projections approach was also proposed in [524] to construct multi-scale fusion features in each scale and their sparse reconstructive relationship,

Three stages are not rigorously operated sequentially. Some algorithms can achieve multi-operation simultaneously, e.g., PCA has denoise and dimensionality reduction functions. Take DNNs as an example, the DNNs are end-to-end learning architectures, operating the feature extraction and classification simultaneously [519], [528], [529].

1) Feature Extraction.

Probabilistic principal component analysis (PPCA) model was proposed in [509], [510] for noise robust feature extraction, which provided prior information for robust features from statistic modeling perspective. In [511], the authors adopted Bernoulli-Beta prior to learn the needed atoms to determine relatedness between frames of training data. A feature extraction dictionary was used to extract the local and global features of target’s HRRP [512], [523] for multi-feature joint learning method based on sparse representation and low-rank representation. Support vector data description was developed in [513] to extract non-linear boundary of dataset as classification features. In addition, orthogonal maximum margin projection subspace (OMMPS) was employed in [514] for HRRP’s feature extraction to reduce redundancy. To improve recognition performance, multiple kernel projection subspace fusion method was introduced in [514], [516] for feature extraction of HRRP, this method can guarantee the integrity of target information and robustness.

As for dealing with the challenge of noncooperative target recognition with imbalanced training datasets, t-distributed stochastic neighbor embedding (t-SNE) and synthetic sampling for data preprocessing were utilized in [517] to provide a well segmented and balanced HRRP dataset. Scatter matching algorithm was proposed in [521], [522] for dominant scatters features extraction of HRRP with noise robustness. Multi-scale fusion sparsity preserving projections approach was also proposed in [524] to construct multi-scale fusion features in each scale and their sparse reconstructive relationship,
which contained more discriminative information. To exploit potential features of HRRP, scale space theory based feature extraction method was employed in [525], which extended from single scale to multiple scales.

2) Classifier Design.

The classifiers of HRRP-based classification mainly include SVMs [524], [525], DBNs [517], SAEs [520], [532], and RNNs [528]. The learning strategies of classifier include multitask learning [511], multi-feature learning [512], and multi-scale learning [524], [526].

PPCA based dictionary learning method was proposed in [510] for HRRP recognition. OMMPS is used to maximize the margin of inter-class by increasing the scatter distance of interclass and reducing the scatter distance of intra-class simultaneously [514], to improve the recognition performance. T-SNE based discriminant DBN was proposed in [517] as an efficient recognition framework with imbalanced HRRP data, which not only made full use of dataset inherent structure among HRRP samples for segmentation, but also utilized high-level features for recognition. Moreover, the model shared latent information of HRRP data globally, which could enhance the ability of modeling the aspect sectors with few HRRP data.

In order to reduce preprocessing works, discriminative infinite RBM (Dis-iRBM) was proposed in [518] as an end-to-end adaptive feature learning model to recognize HRRP data. Concatenated DNN was used in [519] for HRRP recognition. Multi-evidence fusion strategy was also adopted for recognition of multiple samples to improve performance.

Although the deep structure has high accuracy, it is hard to achieve the performance of good generalization and fast learning. In [520], the authors combined SAE with regularized ELM to recognize HRRP data with a fast learning speed and better generalization performance. SVM was employed to verify the classification performance of features extracted by MSFSPP and related feature extraction methods in [524]. SVM and three nearest neighbor classifiers demonstrated that the application of scale-space theory in multi-scale feature extraction could effectively enhance the classification performance [525]. A TL-based feature pyramid fusion lightweight CNN model was proposed in [526] to conduct multi-scale representation of HRRP target recognition with small samples at low SNR scenario. Reconstructive and discriminative dictionary learning based on sparse representation classification criteria was developed in [527], which incorporated the reconstructive and discriminative powers of atoms during the update of atoms. This algorithm was more robust to the variation of target aspect and noise effect.

To extract fine discriminative and informative features of HRRP, target-aware recurrent attentional network (TARAN) was used in [528] to make use of temporal dependence and find the informative areas in HRRP. This network utilized RNN to explore the sequential relationship between the range cells within a HRRP sample, and employed the attention mechanism to weight up each time step in the hidden state, so as to discover the target area. To extract high dimensional features and generally contain more target inherent characteristics, discriminant sparse deep AE framework was proposed in [529] to classify HRRPs with small data samples. This framework was inspired by multitask learning and trained by the radar HRRP samples to share inherent structure patterns among the targets. In [532], the authors built stacked corrective AE to recognize HRRP, which employed the average profile of each HRRP frame as the correction term.

Considering the noise robust recognition of noncooperative targets, Gaussian kernel and Morlet wavelet kernel were combined in [530] to form a multiscale kernel sparse coding-based classifier to recognize radar HRRP, which had comparable performance with well-studied template based methods, such as SVM, sparse coding-based classifiers (SCCs) and kernel SCCs. To classify the FFT-magnitude features of complex HRRP, least square support vector data description classifier was developed in [531] to classify HRRP with low computational complexity and overcome the shortcoming of poor capacity of variable targets in support vector data description.

D. Micro-doppler Signature Recognition

Micro-doppler (MD) technique aims to extract the micro-motions of subjects, that may be unique to a particular subject class or activity, to distinguish probable false alarms from real detections or to increase the valuable information extracted from the sensor. Using the available MD returns from sensor for recognition can significantly reduce the false alarm rate, thereby improving the utility of the sensor system [549]. Radar MD signatures, derived from these motions, illustrate the potential ability of the joint time-frequency analysis for exploiting kinetic and dynamic properties of objects [550], such as drones [551]–[553], unmanned aerial vehicle (UAV) [551], human motion [555], deceptive jamming [554].

The MD-based classification and recognition of object’s postures and activities has widely absorbed research concerns in the past few years, such as human detection and activity classification [533], human motion [539] and gait recognition [537], [538], UAV detection [551]. This section will review the achievements of ML-based radar MD signature processing in target classification and recognition.

Similar to HRRP-ATR, feature extraction and classifier design are mainly stages for MD signature based recognition tasks. The features of targets’ activities are extracted from the radar MD spectrogram, such as single vector decomposition (SVD) vectors of raw data [536], [538]. The optimal classifier design is based on ML models, such as SVM [533], ANN [534], CNN [535], [539], [541], [548], CAE [541], [543], [545], RNN [547].

A novel robust MD signal representation method based on both magnitude and phase information of the first Fourier transform was proposed in [540] for UAV detection, i.e., 2D regularized complex-log-Fourier transform and an object-oriented dimensionality reduction technique-subspace reliability analysis. The latent space representation was extracted and interpreted in [541] from 2D CAEs and t-SNE, respectively. In addition, CAE architecture was employed in [545] for MD feature extraction. Three features extraction algorithms were proposed in [546], spectrogram frequency profile (SFP) algorithm, cadence velocity diagram frequency profile (CVDFP) algorithm, and SFP-CVDFP-PCA algorithm, respectively.
As for classifier design, the SVM and ANN classifier were developed in [533], [534] for seven-class human activities classification based on six features extracted from radar doppler spectrogram, respectively. These features included running, walking, walking while holding a stick, crawling, boxing while moving forward, boxing while standing in place, and sitting still. Compared to SVM classifier, a 3-layer AE structure was proposed in [537], which achieved a accuracy rate of 89%, 17% improvement compared to the benchmark SVM with 127 pre-defined features. SVM was also used in [546] based on multi-feature integration.

Deep CNN structure was proposed in [535] for human detection and activities classification, jointly learned the necessary features and classification boundaries. MD-based human hand gestures recognition achieved accuracy rate of 98% using CNN in [539]. A 50-layer ResNet was trained to identify the walking subject based on the 2D signature [541]. TL-based DNN model was also used to classify MD signatures of gait motion in [542].

To seek the efficient MD analysis algorithm to distinguish the gaits of subjects, even the MD signatures of those gaits are not visually distinguishable, a 3-layer deep CAE was proposed in [543], which utilized unsupervised pre-training to initialize the weights in the subsequent convolutional layers, and yielded a correct classification rate of 94.2%, 17.3% improvement over the SVM. These MD signatures were measured from the 12 different human indoors activities using a 4 GHz continuous wave radar. CAE is more efficient than other deep models, such as CNN, AE, and traditional classifiers, such as SVM, RF and Xgboost. To compare the efficiency of ANN initialization technologies in classification of MD signals, an unsupervised TL-based pretraining method was applied to CAE [544]. VGGNet and GoogleNet were employed to classify human activities with small training samples. In order to address the measurements of a variable observation time and transition between classes over time, a sequence-to-sequence classification method, i.e., RNN with LSTM architecture, was developed in [547]. In addition, to make full use of time and frequency domain features of MD signatures, merging time and frequency-cadence-velocity diagram was proposed in [548] for drone classification with GoogleNet.

E. Range-doppler Image Processing

Range-doppler (RD) images is also used for classification and recognition of target’s motions. A RD image contains information of range units and doppler features. In linear frequency modulation continuous wave (LFMCW) radar, the RD imaging process is as the following: firstly removing the slope of echo signal, then obtaining the radical range information by FFT of fast time domain signal, after that, acquiring the energy distribution of doppler domain by FFT of slow time direction in the same range unit.

Two different classification architectures based on SAE were developed in [550] for human fall detection and classification, which used RD images and MD images as the inputs of the cascade and parallel connection models, respectively. Firstly, RD images and MD images were as the inputs of initial SAEs to extract identifiable features, respectively. Then, the extracted features were fused as the inputs of a final SAE to finish classification task. The results of experiment showed that the detection probabilities were 89.4% and 84.1% for cascade and parallel detection architecture on same dataset, respectively.

Combining with convolutional and memory functions, an end-to-end learning architecture based on CNN and LSTM was developed in [557] for 11 kinds of dynamic gestures recognition. The RD images of gestures at a time point were as the inputs of CNN and then the RD images sequences at different time points were as inputs of LSTM to finish recognition. This novel recognition model achieved average accuracy rate of 87% on a 11 kinds of dynamic gestures data and generalized well across 10 users.

A novel detection method was developed in [558] for remotely identifying a potential active shooter with a concealed rifle/shotgun based on radar MD and RD signatures analysis. Special features were extracted and applied for detecting people with suspicious behaviors. ANN model was also adopted for the classification of activities, and achieved an accuracy rate of 99.21% in distinguishing human subjects carrying a concealed rifle from other similar activities.

V. Anti-jamming and Interference Mitigation

This section will review the radar anti-jamming and interference mitigation technologies in ML-related RSP domain, including jamming or interference classification and recognition and anti-jamming and interference mitigation strategies. The examples of 2D time-frequency images of traditional jamming signals (including radio frequency (RF) noise, frequency-modulation (FM) noise, amplitude-modulation (AM) noise, constant range gate pull off (RGPO), velocity gate pull off (VGPO), convolutional modulation (CM), intermittent sampling (IS)) and the time and frequency domain images of novel jamming signals (including smeared spectrum (SMSP), chopp- ping and interleaving (CI), smart noise jamming (SNJ), range deception jamming signal - amplitude modulation noise (RD-AM), and range deception jamming - frequency modulation noise (RD-FM)) are shown in Fig. 19 and Fig. 20 respectively.

A. Jamming or Interference Classification and Recognition

Jamming or interference recognition is very important in radar target detection, tracking, recognition, and anti-jamming...
or interference suppression tasks. In [559], the authors employed SVM classifier to classify six different types of radar-to-radar interference waveforms, including time-frequency domain signal and range-doppler profiles of different types of interference. As the black-and-white problem of jammer classification in Global Navigation Satellite System (GNSS), SVM and CNN were used to classify six types jammed signals, which achieved an accuracy rate of 94.90% and 91.36%, respectively in [560]. A method of dense false targets jamming recognition was proposed in [561], which was based on a Gabor time-frequency atomic decomposition and SVM classifier. SVMs were also used to recognize the satellite interference [563] and radio ground-to-air interference signals [564]. A robust neural network classifier was employed in [562] for classification of frequency-modulated wideband radar jammer signals. In [565], the neural networks were also developed to recognize compound jamming signals based on features extracted in time domain, frequency domain and fractal dimensions. These signals included additive, multiplicative and convolution signals of typical blanket jamming and deception jamming.

DL algorithms were also exploited to apply in jamming signals classification and recognition. In [566], the authors proposed an automatic jamming signal classification method based on CNN model, including audio jamming, narrowband jamming, pulse jamming, sweep jamming and spread spectrum jamming. CNN model, based on time-frequency image as the inputs, was developed in [567] to classify 9 typical jamming signals with an accuracy rate of 98.667% under the jammer-to-noise ratio (JNR) of 0dB-8dB. A LeNet-5 model based on spectrum waterfall was proposed to recognize the jamming patterns in [568]. Similarly, a fine tuning LeNet, with 1D sequences (size of 1*896) as inputs, also employed for 7 kinds of jamming identification in [569], which achieved an accuracy rate of 98%. In [570], a DL architecture was proposed to identify the jamming factors of electronic information system. The recognition method of four active jamming signal, based on CNN and STFT images as inputs, was proposed in [571], which achieved an accuracy rate of 99.86%, including blanket jamming, multiple false target jamming, narrow pulse jamming, and pure signal. The shadow features based on CNN algorithm were proposed for SAR deception jamming recognition in [572]. As a multi-user automatic modulation classification task, compound jamming signals recognition based on multi-label CNN model was proposed in [573]. In addition, a jamming prediction method based on DNN and LSTM algorithm was proposed in [574]. The jamming features extracted from PWDs list by DNN and were as the inputs of LSTM for jamming prediction. The AE network consisted of several layers of RNNs was proposed to detect interference signals based on time-frequency images in [575].

B. Anti-jamming and Interference Mitigation Strategies

As a strategy-making process, RL algorithms are usually adopted to make anti-jamming and interference strategies for designing intelligent algorithms. A DQN-based Q-learning algorithm was employed in [576] to learn the jammer’s strategies to design optimal frequency hopping strategies as the anti-jamming strategy of cognitive radar. Spatial anti-jamming scheme for Internet of satellites based on deep RL and Stackelberg game was proposed in [577], which regarded routing anti-jamming problem as a hierarchical anti-jamming Stackelberg game. The available routing subsets for fast anti-jamming decision-making were determined by deep RL algorithm to meet high dynamics caused by the unknown interrupts and the unknown congestion.

As for interference mitigation, a decentralized spectrum allocation strategy was developed in [578], which was based on RL and LSTM model to avoid mutual interference among automotive radars. LSTM was used to aggregate the radar’s observations for obtaining more information contributed to RL algorithm. Similarly, a GRU-based RNN algorithm was used for interference mitigation of automotive radar in [579].

Fig. 20. The novel jamming signals, time domain (left) and frequency (right), (a)SMSP, (b)CI, (c)SNJ, (d)RD-AM.

VI. OTHER ML-BASED RSP-RELATED RESEARCH

In addition to the applications detailed in sections III-V, there are some other that are worth , such as radar waveform optimization design by RL [580], [581], radar spectrum allocation [578], [582], [583], CEW [584], cognitive radar detection [585], antenna array selection via DL [586], and moving target indication (MTI) using CNN [587].

Compared to DL, RL performs well when used for cognitive decision-making. Therefore, RL is suitable for strategy-making based RSP and radar system design, such as waveform design,
anti-jamming, CEW. An intelligent waveform optimization design based on RL method was developed in [580] for multi-target detection of MIMO radar. The sum of target detection probability in range and azimuth cells was as the reward of the learning agent in each learning iteration, to estimate the target detection range and azimuth information. The optimized weighted vector matrix of the transmitted waveform was as the action space of the learning agent. This novel method can improve the performance in detection probability, compared to all-direction waveform design methods. In addition, an end-to-end learning method for joint design the waveform detector was proposed in [581]. Both transmitter and receiver were implemented as feedforward neural networks, while the detector and the transmitted waveform were trained alternately. This algorithm achieved better robustness in clutter and colored noise scenario than traditional methods.

In [584], the authors applied deep RL in CEW for target searching, which built a 3D simulation CEW environment to address the spatial sparsity, continuous action, and partially observable environment existing in CEW. A method of ML-based adaptive optimal target detection threshold estimation in non-Gaussian clutter environment was proposed in [585], which was effective even when the clutter distribution is unknown. A DL method was used for phased array antenna selection to better estimate direction-of-arrival (DOA) in [586], which constructed a CNN as a multi-class classification framework. The network determined a new antenna subarray for each radar echo data in a cognitive operation pattern. A CNN-MTI structure was developed in [587] to overcome the constraints of STAP-MTI, which performed feature extraction and classification directly from airborne radar echo. CNN-MTI has proven more robust compared to traditional STAP-CNN and POLY methods.

VII. DISCUSSION AND FUTURE PROMISING TRENDS

Most of the current researches effort has concentrated on the applications of ML to classification and recognition problems. Nevertheless, ML can be further exploited for different RSP applications, such as target detection and tracking. Moreover, unified architectures for detection, tracking and recognition may be conceived that exploit ML as a common framework. This chapter will firstly put forward the future research directions, i.e., possible promising research topics. Then, the detail research contents related to above research topics will be profoundly discussed.

A. Research Topics

1) End-to-End Unified Intelligent Detection Architecture.

In [589], the authors certified that the outputs of neural network with MSE or cross entropy as loss function satisfied the Neyman-Pearson detection criterion. Therefore, it is promising to exploit an intelligent end-to-end architecture by taking full use of the general non-linear fitting ability of DNNs for radar target detection. The functions of this scheme include pulse compression, coherent accumulation, and CFAR in an unified end-to-end learning manner. The challengeable research problems include the intelligent CFAR, environment identification (such as noise and clutter background automatic classification [588]) techniques. For example, because of the extensive distributed mapping ability of RNN with attention mechanism, problems such as target sidelobe masking, multi-target interference, and target model mismatch may be solved using RNN-related architecture.

2) Target Detection and Tracking-Unified Intelligent Processing.

Building an effective closed loop network of unified target detection and tracking can improve the performance of stable target tracking with clutter in the background. It is important to study on the performance evaluation metrics and parameter optimization techniques of target detection and tracking. For example, it is possible to optimally adjust the detection threshold via prior knowledge-based online learning techniques, which is based on the feedback from target tracking information (such as motion trends, covariance estimation) to target detection units. This operation maybe contribute to track the target flight trajectory and improve the detection probability of subsequent point trajectory for confirmed targets.

3) End-to-End Framework of Unified Target Detection, Tracking and Recognition.

Based on previous two research, it is promising to study an end-to-end architecture to achieve unified intelligent processing for clutter suppression, radar target detection, tracking, and recognition by ANNs-based multi-task learning. Because of powerful non-linear fitting ability, ANNs have high performance in classification and recognition tasks. According to the targets (valuable targets, clutter or noise background) recognition information, radar can program the optimal tracking route based on the ANNs-based prediction of target flight trajectory. In addition, target detection is a special type of target recognition, therefore, it can assist target detection task. However, it is extremely changeable about how to effectively build integrated signal processing mechanism and detection framework, which can promote each other, uniformly make decision-making.

B. Promising Research Contents

1) The Solutions of the Limitation of Dataset.

Classification and recognition of radar targets suffers of the typical problem of a small amount of labeled samples. To improve the performance with limited data samples, it is necessary to augment the limited data or design effective learning algorithms with limited data. In addition, in order to reduce the cost of obtaining real data, simulation dataset, closely to simulate real complex electromagnetic environment, is also needed to train DL model by transfer learning pattern. Data augmentation The existing data augmentation methods mainly focus on the manipulation of original data samples, e.g., manual extraction of sub-images, add noise, filtering, and flipping [253]. In addition, a method of generating new data samples with GANs was also used in [251], [252]. Practical operational conditions, however, are usually neglected when applying these methods to some extent, which make the new data retain the same characteristics. Environmental conditions are a significant component in the radar echo signal, such as
different scattering centers with different illuminating directions, which produce different amplitude and phases in the echo signal. Therefore, data augmentation techniques with consideration of radar practical operational conditions (such as SOCs and EOCs) are required. For example, the combination of electromagnetic scattering computation with dynamic or static measurements may be used to improve the accuracy and robustness of target recognition algorithms. Moreover, exploiting the evaluation metrics of generated data equality to efficiently assist the data generations. In this way, the learning model can learn more discriminative features of unknown targets and improve performances in terms of accuracy and generalization.

Few/zero shot learning This research direction mainly exploits how to effectively extract discriminative features out of small training samples, to improve accuracy and generalization performances. At present, some achievements in this direction have been obtained, such as the design efficient learning model. For example, a feature fusion framework was presented in [255] based on the Gabor features and information of raw SAR images, to fuse the feature vectors extracted from different layers of the proposed neural network. A TL method was employed in [256] to transfer knowledge learned from sufficient unlabeled SAR scene images into labeled SAR target data. A-ConvNets was proposed in [259] to significantly reduce the number of free parameters and the degree of overfitting with small datasets. Group squeeze excitation sparsely connected CNN was developed in [346] to perform dynamic channel-wise feature recalibration with less model parameters. To balance the feature extraction and anti-overfitting, a CAE-HL-CNN model was proposed in [412] to perform effective learning for the classification of MSTAR targets with small training samples.

However, this research direction is just at the beginning, and needs to have prolonged insight into it. Based on few/zero-shot learning methods from the DL domain, some works [590]–[593] has been done to design effective learning algorithms to address learning issues with small data samples. Few-shot learning can rapidly generalize to new tasks of limited supervised experience by turning to prior knowledge, which mimics human’s ability to acquire knowledge from few examples through generalization and analogy [590]. Zero-shot learning aims to precisely recognize unseen categories through a shared visual-semantic function, which is built on the seen categories and expected to well adapt to unseen categories [593].

2) The Design of Lightweight Algorithms

Since the requirements of real-time signal processing and high sampling rate in RSP domain are quite demanding, a large volume of parameters of DL model is still a severe challenge for real-time optimal training, which results in high storage and computation complexity. Lightweight DL models have been proposed, such as MobileNets (v1-v3) [87]–[89]), ShuffleNets (v1-v2) [90], [91]), to be embedded in mobile phones or other portable device. Nevertheless, these models are do not fully meet the requirements of RSP, such as low memory resource and strict latency requirements. Therefore, the design of lightweight models or efficient DNN models [89] is necessary for DL model to be efficiently applied to RSP domain. Research on novel lightweight architecture design and deep model compression and accelerating methods, specialized for RSP, is mandatory for enabling this technology.

Neural architecture search (NAS) Currently employed architectures in DL have mostly been developed manually by human experts, which is a time-consuming and error-prone process. NAS provides a promising solution to alleviate this issue [594], being an automatical architecture design system. NAS includes three steps: search space, search strategy, and performance estimation. The purpose of NAS is typically to find the best architectures from a search space that can highly achieve predictive performance on unknown data. The application of NAS to identify optimal architectures for RSP is an interesting future trend.

Deep model compression and accelerating methods DNNs have achieved great success in many CV tasks. Computation costs and storage intensity, however, are the main challenges of existing DNN models that hinder their deployment in devices with low memory resources or in applications with strict latency requirements. Deep model compression and accelerating methods have been developed to address these challenges in recent years, including parameter pruning and sharing, low-rank factorization, transferred/compact convolutional filters, and knowledge distillation [41], [595]. These methods are still in the early stages, as most of techniques only aim at CNN models and classification tasks. It is critical to extensively develop these compression and accelerating techniques in RSP domain.

3) Explainable Machine Learning Algorithms.

ML has achieved great success in many domains. Black-box property of the DNN model [596], however, demonstrates a severe challenge in practical applications of ML algorithms, such as medical image precessing domain and bank investment decision making. For example, a special doctor needs to clearly know the model how to make decisions in a explainable manner. When we do some ML-based works, especially DNNs, some questions naturally emerge in our mind. For example, how does the network model work? What does the inner structure of the model do about the inputs? Why does the model have the ability to classify, detect, liked human brain does? These questions are triggered by the black box property of non-interpretalbe ML models. Therefore, to widely apply ML in practice, explainable artificial intelligence (XAI) is a key factor [597], [598]. Especially, XAI techniques are extremely important in RSP, such as the classification and recognition of valuable targets and recognition of jamming types in situation awareness domain. A military commander needs to clearly understand the process of decision-making of ML models to believe the model, so as to deploy highly effective decision strategies, e.g., anti-jamming countermeasures, weapon deployment strategies in electronic warfare.

The present published literatures about XAI can be roughly categorized into four classes:

i) post-hoc explanations, such as local/global proxy models assisting explanation [599], [601], visualization of latent presentation [602]–[604], analysis of attributes for prediction [605], [606];
ii) transparent/interpretable model design, such as embedding transparent/interpretable model in DNNs\[607]–\[609]\, regularization-based design\[609]–\[611]\, disentangled representation learning\[612]–\[613]\, attention mechanism based design\[614]–\[615]\; iii) interdisciplinary knowledge embedded, such as information theory\[616]–\[617]\, physics theory\[618]–\[619]\, human brain cognitive science\[620]–\[622]\; iv) combining symbolism and connectionism\[623]–\[624].

In this section, we will take a brief discussion for combining symbolism and connections as an extremely promising method for XAI. The present ML algorithms are just used in an information sensing (i.e., pattern recognition) domain to large extent, which do not have the abilities of casual reasoning\[625] and interpretability. Therefore, it has many challenges in practical applications, such as the requirement of large training data, overfitting, robustness, adversarial attacks\[40]. The deep model has an excellent ability to learn features with large dataset. These features, however, are usually high dimensional and redundant.

Good representation of data should be that these features, extracted from the learning model, are low-dimensional, abstract, and discrete\[626]\, i.e., concept features\[622]\, which are similar to the characteristics of the symbolism learning representation method. Symbolism learning\[627]\, has the ability, through logical reasoning, to produce semantic features, which can be logically understood by human beings. Therefore, it is possible to combine symbolism learning (with the ability of logical reasoning) with connectionism learning (i.e., deep learning with ability of powerful features extraction) to achieve human-level concept learning\[622]. Yoshua Bengio has recently proposed consciousness prior as a suitable tool to bridge the gap between the symbolism and connectionism\[628]\, which can combine attention mechanism to extract consciousness features from semantic features of RNNs with consciousness prior.

4) Cognitive Waveform Design.

As the main situation awareness sensing system in EW, a radar system is primarily responsible for surveillance and tracking of the EW environment, including target detection and recognition, jamming/interference countermeasures, and counter-countermeasures, which are consistent with the missions of EW, i.e., electronic support measure (ESM), electronic countermeasure (ECM), and electronic counter-countermeasure (ECCM) systems\[629]. With the development of the cognitive electronic warfare (CEW) in recent years\[384]–\[386]\, many challenges have emerged that affect radar systems. As a possible solution, cognitive radar (CR) has been proposed in \[630]\, which is an interdisciplinary research domain of neuroscience, cognitive science, brain science and RSP\[631]. Three basic ingredients of CR are i) intelligent signal processing; ii) feedback from receiver to transmitter; and iii) preservation of information content of radar returns\[630]. The basic concepts of CR mainly focus on knowledge-based adaptive radar\[632]\. With the rapid development of ML, especially DL and RL, CR should have novel promising research contents based on advanced ML algorithms in the future.

Radar waveform design is one of the significant tasks in the design of radar system. Traditional radar usually transmits only one or few types of waveforms to optimise target detection. As a key task of CR, cognitive waveform optimization design has attracted a lot of attention\[633]. CR makes full use of the knowledge of the external environment and targets, to design optimal waveforms to optimise the tasks of target detection, anti-jamming/interference, at the conditions of radar constraints, objective optimization principles, and advanced optimization theory. The optimization problem of waveform design, however, is a non-convex, high dimension, and multi-constraint optimization problem, whose global optimal solution is usually difficult to find at low computational costs. ML-based optimization methods may indicate alternative directions to address this challenge. Moreover, the optimization process is an iterative search procedure to find the optimal solution, which can be regarded as a problem of sequence decision-making. RNN and RL are good at sequential data processing and optimal strategy-making, respectively. Therefore, it is possible to combine optimization theory with ML to improve the performance in radar waveform optimization design. Some initial works about this theme have emerged, such as branch-and-bound algorithm of mixed-integer linear programming with ML technologies in \[634]–\[636]\, ML for combinatorial optimization\[637]–\[638]\, RL for solving the vehicle routing problem\[639]–\[640]\, and pointer networks with one-layer RNN\[640].

5) Intelligent Anti-jamming.

The efficient anti-jamming techniques are concerned with toward challenges in an increasingly complex electromagnetic environment. It is difficult for traditional anti-jamming techniques to face current requirements of modern radar systems equipments. The vision of intelligent anti-jamming methods is increasingly intensive with the rapid development of artificial intelligence. In recent years, a new research wave has advanced in this field based on ML algorithms, such as RL-based anti-jamming or interference\[576]–\[577]. This new direction needs to be deeply exploited to address the existing challenges, including jamming recognition, anti-jamming strategy, and the definition of performance metrics.

Jamming recognition This aspect has been deeply discussed in the first three parts, which is similar to radar target recognition tasks. Multi-task, multi-view, multi-scale learning techniques, and attention mechanism learning method should be considered.

Anti-jamming strategy The selection of efficient anti-jamming measurements is a decision-making process. Deep RL seems to be a promising research lead when training an agent to automatically select adaptive anti-jamming measures with the assistance of knowledge of external environment and targets.

Performance Evaluation metrics Although some RL-based achievements in terms of intelligent anti-jamming have been reached, there is little research done in terms of performance evaluation metrics. This direction is vital to evaluate the performances of anti-jamming techniques, which also can assist to select optimal anti-jamming measures.
VIII. Conclusion

There is a strong evidence of the extensive development of ML-based RSP algorithms that have found application in several radar-related fields. Some areas seem to be more targeted than others due to the direct application of ML-based techniques and because of the strong interest of many researchers, which is likely driven by strong interests from stakeholders. Particularly radar image processing and relative classification is one area where ML-based algorithms may prove a valid solution to current challenges. In this paper, we have provided a structured and amply commented literature survey, followed by indications about future leads, which may be used by many researchers and practitioners to inspire them and help them progressing with their work in this field.

Appendix A
List of Acronyms

ACF autocorrelation function
AWGN additive white Gaussian noise
ASCs attributed scattering centers
Adaboost adaptive boosting
ANN artificial neural network
AEs autoencoders
ATR automatic target recognition
ARPNs advanced region proposal network
BCRN bidirectional convolution-recurrent network
BM3D blocking matching 3D
CNNs convolutional neural networks
CEW cognitive electronic warfare
CDAE convolutional denoising autoencoder
CV computer vision
COCO common objects in context
CWNN convolutional wavelet neural network
CTFD Cohen’s time-frequency distribution
CVDFP cadence velocity diagram frequency profile
CR cognitive radar
CV-CNN complex-value CNN
CFAR constant false alarm rates
CPON class probability output network
CWTFD Choi-Williams time-frequency distribution
ConvLSTM convolutional LSTM
CS compressive sensing
DT decision tree
Dis-iRBM discriminative infinite RBM
DeAE denoising autoencoder
DRL deep reinforcement learning
DBNs deep belief networks
DLFM dual linear frequency modulation
DNNs deep neural networks
DCGANs Deep convolutional GANs
DQN deep Q network
DCC-CNNs despeckling and classification coupled CNNs
DCF-NN dual channel feature mapping CNN
DARPA Defense Advanced Research Projects Agency
DSC depthwise separable convolution
EW electronic warfare
EL Ensemble Learning
ESM electronic support measure
ECM electronic countermeasure
ECCM electronic counter-countermeasure
ECOs extended operating conditions
EQFM even quadratic frequency modulation
ENN Elman neural network
FCN fully convolutional network
FCBF fast correlation-based filter
FPNs feature pyramid networks
FRN-MSF feature recalibration network with multi-scale spatial features
GNN graphical neural network
GloU generalized intersection over union
GF-3 Gaofen-3
GRU gated recurrent unit
GBDT gradient boosting decision tree
GANs generative adversarial networks
GPUs graphical processing units
GCN global convolutional network
HAPs high-altitude platforms
HMMs Hidden Markov Models
HR high-resolution
HRRP high resolution range profile
HL hinge loss
IDCNN image despeckling convolutional neural network
InSAR interferometric SAR
IDCNN image despeckling convolutional neural network
ILSVRC ImageNet large-scale visual recognition challenge
ICS iterative censoring scheme
ISAR inverse synthetic aperture radar
IoU intersection of union
JSDC joint supervised dictionary and classifier
JNR jammer-to-noise ratio
K-NN K-nearest neighbor
KSR kernel sparse representation
LSTM long short-term memory
LIME local interpretable model-agnostic explanations
LSGANs least squares generative adversarial networks
LFM linear frequency modulation
LFO-Net lightweight feature optimizing network
LPI low probability intercept
LFMCW linear frequency modulation continuous wave
LOS line of sight
ML machine learning
MS-CNN multi-stream CNN
MDP Markov decision process
MSTAR moving and stationary target acquisition and recognition
MP mono-pulse
MLP multi-layer perceptron
MTI moving target indication
MRF Markov random field
MLF multiple linear frequency modulation
MIMO multi-input and multi-output
MVL multi-view learning
MAP mean average precision
MTL multi-task learning
MSCDAE modified stacked convolutional denoising auto-encoder
MPDPL multilayer projective dictionary pair learning
MRDED multi-resolution dense encoder and decoder
NLP natural language processing
NN neural network
NAS neural architecture search
NMS non-maximum suppression
OMMPD orthogonal maximum margin projection subspace
OWN optimized Wishart network
PRI pulse repetition interval
PRI Pulse repetition interval
PSR probability of successful recognition
PTCNN probability transition convolutional neural network
PWS pulse description words
PPCA probabilistic principal component analysis
PCA principal component analysis
PSDDN patch-sorted deep neural network
PGBN poisson gamma belief network
PSF point spread function
RSF radar signal processing
RFMLS radio frequency machine learning system
RRSACR radar radiation sources classification and recognition
RVM relevant vector machine
RL reinforcement learning
RF random forest
R-CNN regional convolutional neural network
RFI radio frequency identification
RMA range migration algorithm
RNNs recurrent neural networks
RS radio-sensing
RESISRC remote sensing image scene classification
RBF radial basis function
REC radar emitter classification
RBML restricted Boltzmann machine
RVFL random vector functional link
RAD range doppler algorithm
SSP speech signal processing
SFM sinusoidal frequency modulation
SAR synthetic aperture radar
SEI specific emitter identification
SCR signal-to-clutter ratio
STAP-MTI spatial time adaptive processing and motion
target indication
SSD shot multiBox detector
STD ship targets detection
SNR signal noise ratio
SE-Net squeeze-and-excitation network
SVMs support vector machines
SAR-DRN SAR dilated residual network
SCCs sparse coding-based classifiers
SOCs standard operating conditions
SMO sequence minimization optimization
SAE sparse autoencoder
SVD single vector decomposition
SFP spectogram frequency profile
STFT short time fourier transformation

SPP spatial pyramid pooling
SRDNN superpixel restrained DNN
SBL sparse Bayesian learning
TL transfer learning
TARAN Target-aware recurrent attentional network
TPLPB three path local binary pattern
t-SNE t-distributed stochastic neighbor embedding
TFD time-frequency distribution
TPOT tree-based pipeline optimization tool
TOA time of arrival
TLM texture level map
TPUs tensor processing units
U-CNN unidimensional convolutional neural network
UAV unmanned aerial vehicle
VAE variational autoencoder
WGAN Wasserstein GAN
WGAN-GP Wasserstein GAN with a gradient penalty
WKCNN weighted kernel CNN
WKLM weighted kernel module
XGBoost extreme gradient boosting decision tree
XAI explainable artificial intelligence
YOLO You Only Look Once

REFERENCES

[1] George W. Stimson, Introduction to airborne radar, second edition, SciTech Publishing, Inc.ISBN: 1-891121-01-4, 1998.
[2] Bassem R. Mahafza, Radar systems analysis and design using MATLAB, Chapman and Hall/CRC Publishing, 2000.
[3] Mark A. Richards, Fundamentals of radar signal processing, second edition, McGraw-Hill Publishing, ISBN: 13: 978007198327, 2014.
[4] Sergei A. Vakin, Lev N. Shustov, Robert H. Dunwell, Fundamentals of electronic warfare, Artech House Publishing, Inc.ISBN: 1-58053-052-4, 2001.
[5] D. Yu, L. Deng, “Deep learning and its applications to signal and information processing [Exploratory DSP],” IEEE Signal Processing Magazine, vol. 28, no. 1, pp. 145-154, Jan. 2011. Doi: 10.1109/MSP.2010.939038.
[6] Christopher M. Bishop, Pattern recognition and machine learning, Springer India Publishing, ISBN: 9788132209065, 2013.
[7] L. Goodfellow, Y. Bengio, A. Courville, Deep learning, MIT Press, ISBN: 9780262035613, 2016.
[8] LeCun, Y., Bengio, Y., Hinton, G., “Deep learning,” Nature, 521 (7553), pp. 436–444, 2015.
[9] “Radio frequency machine learning systems,” [online]. Available: http://www.darpa.mil/program/radio-frequency-machine-learning-systems Aug. 2018.
[10] “Cognitive electronic warfare: Radio frequency spectrum meets machine learning,” [online]. Available: http://wwwinteractive.aviationtoday.com/cognitive-electronic-warfare -radio-frequency-spectrum-meets-machine-learning, Aug. 2018.
[11] “DARPA. Contact to apply machine learning to the radio frequency spectrum,” [online]. Available: http://wwwbaessystems.com/en-us/article/darpa-contact-to-apply-machine-learning -to-the-radio-frequency-spectrum, Nov. 2018.
[12] “The radio frequency spectrum + machine learning = a new wave in radio technology,” [online]. Available: http://www.darpa.mil/news-events/2017-08-11a Aug. 2017.
[13] “DARPA. Behavior learning for adaptive electronic warfare (BLADE),” (DARPA-BAA-10-79) [P/OL], [online] Available: http://www.darpa.mil/2o/solicit/solicit-closed.aspx. Jul. 2010.
[14] “DARPA. Notice of intent to award sole contract: Behavioral learning for adaptive electronic warfare (BLADE) phase 3 (DARPA-SN-14-24) [P/OL], [online] Available: http://www.fbo.gov Feb. 2014.
[15] “DARPA. Adaptive radar countermeasures (ARC),” (DARPA-BAA-12-34) [P/OL], [online] Available: http://www.darpa.mil Aug. 2012.
[16] Aunukumar K, Deisenroth M P, Brundage M, et al., “Deep reinforcement learning: A brief survey,” IEEE Signal Processing Magazine, vol. 34, no. 6, pp. 26-38, 2017.
JOURNAL OF IFIP CLASS FILES, VOL. X, NO. X, SEP 2020

[71] H. Lee, R. Grosse, R. Ranganath, et al., “Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations,” in Proc. International Conference on Machine Learning (ICML), 2009, 609-616.

[72] N. Srivastava, R. Salakhutdinov, “Multimodal learning with deep boltzmann machines,” in Proc. Neural Information Processing Systems, 2014, pp. 2222-2230.

[73] E. Geoffrey, Hinton, “Deep belief networks,” Scholardemia, vol. 4, no. 5, 5947, 2009.

[74] M. Ranzato, C. Poultney, S. Chopra, et al., “Efficient learning of sparse representations with an energy-based model,” in Proc. Advances in Neural Information Processing Systems, Vancouver, Canada, 2007, pp. 1337-1344.

[75] D. Kingma, S. Mohamed, D. Rezende, et al., “Semisupervised learning with deep generative models,” in Proc. Advances in Neural Information Processing Systems, Montreal, Canada, 2014, pp. 3581-3589.

[76] D. Rezende, S. Mohamed, and D. Wierstra, “Stochastic backpropagation and approximate inference in deep generative models,” in Proc. ACM 31st Int. Conf. Machine Learning, Jun. 2014, pp. 1278-1286.

[77] S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio, “Contractive auto-encoders: Explicit invariance during feature extraction,” in Proc. 28th Int. Conf. Machine Learning, Bellevue, Washington, 2011, pp. 833-840.

[78] J. Masci, U. Meier, D. Cirea, and J. Schmidhuber, “Stacked convolutional auto-encoders for hierarchical feature extraction,” in Proc. Int. Conf. Artificial Neural Networks, 2011, pp. 52-59.

[79] B. L. Lecun Y., Bengio Y., et al., “Gradient-based learning applied to document recognition,” IEEE Proceedings, vol. 86, no. 11, pp. 2278-2324, 1998.

[80] A. Krizhevsky, I. Sutskever, and G. Hinton, “ImageNet classification with deep convolutional neural networks,” Advances in neural information processing systems, vol. 25, no. 2, 2012.

[81] K. Simonyan, and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” in Proc. Neural Information Processing Systems, 2014, pp. 2224-2320.

[82] D. Kingma, S. Mohamed, D. Rezende, et al., “Stochastic backpropagation and approximate inference in deep generative models,” in Proc. ACM 31st Int. Conf. Machine Learning, Jun. 2014, pp. 1278-1286.

[83] S. Ioffe, and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal covariate shift,” in Proc. 3rd Int. Conf. Learning Representations, 2015, pp. 52-59.

[84] S. Ioffe, and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal covariate shift,” in Proc. 3rd Int. Conf. Learning Representations, 2015, pp. 52-59.

[85] A. G. Howard, M. Zhu, B. Chen, et al., “V-Net: Convolutional networks for biomedical image segmentation,” in Proc. IEEE Medical Image Computing and Computer-Assisted Intervention, 2017, pp. 248-256.

[86] K. Han, Y. Wang, Q. Tian, et al., “GhostNet: More features from cheap operations,” in Proc. 3rd Int. Conf. Learning Representations, 2015, pp. 52-59.

[87] S. Ioffe, and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal covariate shift,” in Proc. 3rd Int. Conf. Learning Representations, 2015, pp. 52-59.

[88] J. Yang, J. Hu, Y. Fu, K. Yang, et al., “Searching for MobileNetV3,” ArXiv, 2019, 1005.02244, 2019.

[89] Z. Wang, Q. She, T. E. Ward, et al., “Generative adversarial networks: A survey and taxonomy,” ArXiv, 2019.

[90] A. Radford, L. Metz, S. Chintala, et al., “Unsupervised representation learning with deep convolutional generative adversarial networks,” ArXiv, 2015.

[91] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein gan,” ArXiv, 2017, 1007.07875, 2017.

[92] A. Krizhevsky, I. Sutskever, and G. Hinton, “ImageNet classification with deep convolutional neural networks,” in Proc. 23rd Int. Conf. Neural Information Processing Systems, 2010, 1137-1144.

[93] L. T. Sun, Z. T. Huang, X. Wang, et al., “Overview of radio frequency fingerprint extraction in specific emitter identification,” Journal of Radars, in press. Doi: 10.1200/JR19115. (in Chinese).

[94] J. Matuszewski and L. Paradowski, “The knowledge based approach for emitter identification,” in Proc. 12th International Conference on Microwaves and Radar, Krakow, Poland, 1998, pp. 810-814.

[95] Z. Yang, Z. Wu, Z. Yin, et al., “Hybrid radar emitter recognition based on rough k-means classifier and relevance vector machine,” Sensors, vol. 13, no. 1, pp. 848-864, 2013.

[96] J. Matuszewski and L. Paradowski, “The knowledge based approach for emitter identification,” in Proc. 12th International Conference on Microwaves and Radar, Krakow, Poland, 1998, pp. 810-814.
F. C. Akyon, Y. K. Alp, G. Gok, et al., “Deep learning in electronic warfare,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 8, pp. 1185-1196, Aug. 2005. DOI: 10.1109/TPAMI.2005.166.

J. Sui, Z. Liu, L. Liu, et al., “Online non-cooperative radar emitter classification from evolving and imbalanced pulse streams,” IEEE Sensors Journal. DOI: 10.1109/JSEN.2020.2981976.

Z. Yang, Z. Wu, Z. Yin, et al., “Hybrid radar emitter recognition based on rough k-means classifier and relevance vector machine,” Sensors, vol. 13, no. 1, pp. 846-864, 2013.

Y. Zhai, S. Fang, Z. Cheng and X. Ji, “Radar emitter recognition with recurrent neural networks,” IEEE Access, vol. 8, pp. 57426-57436, 2020. DOI: 10.1109/ACCESS.2020.3002654.

S. A. Shapero, A. B. Dill, B. O. Odelowo, “Identifying agile waveforms with neural networks,” in Proc. 2018 21st International Conference on Information Fusion (FUSION), Cambridge, 2018, pp. 745-752. DOI: 10.23919/ICIF.2018.8455370.

J. Li, Z. Liu, Z. Huang, “Attention-based radar PRI modulation recognition with recurrent neural networks,” IEEE Access, vol. 8, pp. 57426-57436, 2020. DOI: 10.1109/ACCESS.2020.3002654.

X. Li, Z. Liu, Z. Huang, “Attention-based radar PRI modulation recognition with recurrent neural networks,” IEEE Access, vol. 8, pp. 57426-57436, 2020. DOI: 10.1109/ACCESS.2020.3002654.

Y. Huang, W. Jin, B. Li, et al., “Automatic modulation recognition based on neural network-based scheme for radar emitter recognition,” in Proc. 2019 IEEE Radar Conference (RadarConf), Oklahoma City, OK, 2018, pp. 0286-0291. DOI: 10.1109/RADAR.2018.8378572.

Z. Y. Huang, W. Jin, B. Li, et al., “Automatic modulation recognition based on feature extraction using deep learning architecture,” in Proc. 2016 CIE International Conference on Radar (RADAR), Guangzhou, 2016, pp. 1-5. DOI: 10.1109/RADAR.2016.8059512.

X. Qin, X. Zha, J. Huang, et al., “Radar waveform recognition based on deep residual network,” in Proc. 2019 IEEE 8th International Conference on Artificial Intelligence and Artificial Intelligence Conference (IAIC), Chongqing, China, 2019, pp. 892-896. DOI: 10.1109/IAIC.2019.8785588.

H. P. Khanh Nguyen, V. Long Do, Q. T. Dong, “A parallel neural network-based scheme for radar emitter recognition,” in Proc. 2020 14th International Conference on Ubiquitous Information Management and Communication (ICUMC), Taichung, Taiwan, 2020, pp. 1-8. DOI: 10.1109/ICUMC48794.2020.9001727.

F. Wang, C. Yang, S. Huang, et al., “Automatic modulation classification based on joint feature map and convolutional neural network,” IET Radar, Sonar and Navigation, vol. 13, no. 6, pp. 998-1003, Jun. 2019. DOI: 10.1049/iet-rsn.2018.5549.

H. Sun, “Automatic modulation classification using stacked sparse auto-encoders,” in Proc. 2016 IEEE 13th International Conference on Signal Processing (ICSP), Chengdu, 2016, pp. 248-252. DOI: 10.1109/ICSP.2016.7787834.
[612] T. D. Kulkarni, W. F. Whitney, P. Kohli, et al., "Deep convolutional inverse graphics network," in Proc. Neural Information Processing Systems (NIPS), 2015, pp. 2539-2547.

[613] K. Hyunjik, M. Andry, "Disentangling by factorising," ArXiv: 1802.05983v3, 2019.

[614] M. David, T. Philip, et al., "Transparency by design: Closing the gap between performance and interpretability in visual reasoning," ArXiv: 1803.05268, 2018.

[615] Xiaoran X., Songpeng Z., and et al. Modeling Attention Flow on Graphs. ArXiv:1811.00497, 2018.

[616] N. Tishby, N. Zaslavsky, "Deep learning and the information bottleneck principle," in Proc. Information Theory Workshop, 2015, pp. 1-5.

[617] R. Shwartzziv, N. Tishby, "Opening the black box of deep neural networks via information," ArXiv: Learning, 2017.

[618] Q. Li, B. Wang, M. Melucci, et al., "CNM: An interpretable complex-valued network for matching," ArXiv: Computation and Language, 2019.

[619] Y. P. Lu, Z. H. Li, et al., "Understanding and improving transformer from a multi-particle dynamic system point of view," Arxiv: 1906.02762, 2019.

[620] P. Vincke, "Analysis of multicriteria decision aid in europe," European Journal of Operational Research, vol. 25, no. 2, pp. 160-168, 1986.

[621] M.Z. Guo, Q.P. Zhang, X.W Liao, et al., "An interpretable machine learning framework for modelling human decision behavior," ArXiv: 1906.01233, 2019.

[622] B. M. Lake, R. Salakhutdinov, J. B. Tenenbaum, et al., "Human-level concept learning through probabilistic program induction," Science, vol. 350, no. 6266, pp. 1332-1338, 2015.

[623] S. Murray, N. Kyriacos, C. Antonia, et al., "An explicitly relational neural network architecture," ArXiv: 1905.10307v1, 2019.

[624] Y. Bengio, "Deep learning of representations: Looking forward," in Proc. International Conference on Learning Representation (ICLR), 2019.

[625] D. Goldfarb, S. C. Evans, “Causal inference via conditional Kolmogorov complexity using MDL Binning," ArXiv: Learning, 2019.

[626] Y. Bengio, "Deep learning of representations: Looking forward," in Proc. International Conference on Statistical Language and Speech Processing, Springer, 2013, pp. 1-37.

[627] M. Garnelo, M. Shanahan, "Reconciling deep learning with symbolic artificial intelligence: representing objects and relations," in Proc. Current Opinion in Behavioral Sciences 29, 2019, pp. 1723.

[628] Y. Bengio, "The consciousness prior," ArXiv: 1709.08568, 2017.

[629] G.N.Rao, C.V.S.Sastry, N.Divakar, "Trends in electronic warfare," IETE Tech. Rev., vol. 20, no. 2, pp. 139C150, Feb. 2003.

[630] S. Haykin, “Cognitive radar: a way of the future,” IEEE Signal Processing Magazine, vol. 23, no. 1, pp. 30-40, 2006.

[631] S. Haykin, Y. Xue, P. Setoodeh, “Cognitive radar: Step toward bridging the gap between neuroscience and engineering,” in Proc. of the IEEE, vol. 100, no. 11, pp. 3102-3130, Nov. 2012. Doi: 10.1109/JPROC.2012.2203089.

[632] J. R. Guerci, “Cognitive radar: A knowledge-aided fully adaptive approach,” in Proc. 2010 IEEE Radar Conference, Washington, DC, 2010, pp. 1365-1370. Doi: 10.1109/RADAR.2010.5494403.

[633] W. Huleihel, J. Tabrikian, R. Shavit, et al., “Optimal adaptive waveform design for cognitive MIMO Radar,” IEEE Transactions on Signal Processing, vol. 61, no. 20, pp. 5075-5089, 2013.

[634] A. Lodi, G. Zarpellon, “On learning and branching: A survey,” Top, vol. 25, no. 2, pp. 207-236, 2017.

[635] N. Balcan, T. Dick, T. Sandholm, et al., “Learning to Branch,” in Proc. International Conference on Machine Learning (ICML), 2018, pp. 344-353.

[636] Y. Tang, S. Agrawal, Y. Faenza, et al., “Reinforcement learning for integer programming: Learning to cut,” ArXiv: Learning, 2019.

[637] Y. Bengio, A. Lodi, A. Proutovst, et al., “Machine learning for combinatorial optimization: A methodological tour d’Horizon,” ArXiv: Learning, 2018.

[638] H. J. Dai, B. K. Elias, Z. Yuyu, et al., “Learning combinatorial optimization algorithms over graphs,” ArXiv: 1704.01665v4, 2018.

[639] M. Nazari, A. Oroojlooy, L. V. Snyder, et al., “Reinforcement learning for solving the vehicle routing problem,” in Proc. Neural Information Processing Systems (NIPS), 2018, PP. 9861-9871.

[640] O. Vinyals, M. Fortunato, N. Jaitly, et al., “Pointer networks,” in Proc. Neural Information Processing Systems (NIPS), 2015, pp. 2692-2700.