NATURALLY OF THE HYPERHOLOMORPHIC SHEAF OVER THE
CARTESIAN SQUARE OF A MANIFOLD OF $K3^{[n]}$-TYPE

EYAL MARKMAN

Abstract. Let M be a $2n$-dimensional smooth and compact moduli space of stable sheaves
on a $K3$ surface S and U a universal sheaf over $S \times M$. Over $M \times M$ there exists a natural
reflexive sheaf E of rank $2n - 2$, namely the first relative extension sheaf of the two pullbacks
of U to $M \times S \times M$. We prove that E is $\omega \boxplus \omega$-slope-stable with respect to every Kähler class
ω on M. The sheaf E is known to deform to a sheaf E' over $X \times X$, for every manifold X
deformation equivalent to M, and we prove that E' is $\omega \boxplus \omega$-slope-stable with respect to every
Kähler class ω on X. This triviality of the stability chamber structure combines with a result of
S. Mehrotra and the author to show that the deformed sheaf E' is canonical; each component
of the the moduli space of marked triples (X, η, E'), where η is a marking of $H^2(X, \mathbb{Z})$, maps
isomorphically onto the component of the moduli space of marked pairs (X, η) by forgetting E'.
Consequently, the pretriangulated $K3$ category associated to the pair $(X \times X, E')$ in MM_2
depends only on the isomorphism class of X.

Contents

1. Introduction 1
 1.1. Stability of modular sheaves 1
 1.2. Stability in terms of the singularities along the diagonal 2
 1.3. An isomorphism of two moduli spaces 3
2. Restriction to the blown-up diagonal 4
3. Proof of Theorem 1.4 8
4. References 10

1. Introduction

1.1. Stability of modular sheaves. An irreducible holomorphic symplectic manifold is a
simply connected compact Kähler manifold, such that $H^0(X, \Omega^2_X)$ is one dimensional spanned
by an everywhere non-degenerate holomorphic 2-form. Every Kähler manifold X deformation
equivalent to the Hilbert scheme $S^{[n]}$ of length n subschemes of a $K3$ surface S is an irreducible
holomorphic symplectic manifold [Be]. Such X is said to be of $K3^{[n]}$-type. Every smooth and
projective moduli space \mathcal{M} of stable sheaves on a $K3$ surface is an irreducible holomorphic
symplectic manifold of $K3^{[n]}$-type, by results of Huybrechts, Mukai, O’Grady, and Yoshioka
[O’G, Y].

Let S be a $K3$ surface, H an ample line bundle on S, v a primitive Mukai vector, and
$\mathcal{M} := \mathcal{M}_H(v)$ a smooth and compact moduli space of H-stable sheaves on S of Mukai vector
v. Assume that $2n := \dim_\mathbb{C} \mathcal{M} \geq 4$. Denote by π_S and $\pi_\mathcal{M}$ the two projections from $S \times \mathcal{M}$.

Date: April 14, 2018.
Let \(\mathcal{U} \) be a universal sheaf over \(S \times \mathcal{M} \). There is a Brauer class \(\theta \) in the cohomology group \(H^2_{an}(\mathcal{M}, \mathcal{O}^*_\mathcal{M}) \), with respect to the analytic topology of \(\mathcal{M} \), such that \(\mathcal{U} \) is \(\pi^*_\mathcal{M} \theta \)-twisted. Let \(\pi_{ij} \) be the projection from \(\mathcal{M} \times S \times \mathcal{M} \) onto the product of the \(i \)-th and \(j \)-th factors. Let

\[
E := \text{Ext}^1_{\pi_{13}^* \mathcal{U}} (\pi_{12}^* \mathcal{U}, \pi_{23}^* \mathcal{U})
\]

be the relative extension sheaf over \(\mathcal{M} \times \mathcal{M} \). Let \(f_i \) be the projection from \(\mathcal{M} \times \mathcal{M} \) onto the \(i \)-th factor. \(E \) is a reflexive \(f_1^* \theta^{-1} f_2^* \theta \)-twisted sheaf of rank \(2n - 2 \), which is locally free away from the diagonal, by [M2 Prop. 4.1]. Given a Kähler class \(\omega \) on \(\mathcal{M} \), denote by \(\tilde{\omega} := f_1^* \omega + f_2^* \omega \) the corresponding Kähler class over \(\mathcal{M} \times \mathcal{M} \).

Definition 1.1. Let \(X \) be a \(d \)-dimensional compact Kähler manifold and \(\omega \) a Kähler class on \(X \). The \(\omega \)-degree of a coherent sheaf \(G \) on \(X \) is \(\deg_\omega(G) := \int_X \omega^{d-1} c_1(G) \). If \(G \) is torsion free of rank \(r \), its \(\omega \)-slope is \(\mu_\omega(G) := \deg_\omega(G) / r \). Let \(E \) be a torsion free coherent sheaf over \(X \), which is \(\theta \)-twisted with respect to some Brauer class \(\theta \). The sheaf \(E \) is \(\omega \)-slope-semistable, if for every subsheaf \(F \) of \(E \), satisfying \(0 < \text{rank}(F) < \text{rank}(E) \), we have

\[
\deg_\omega(\text{Hom}(E, F)) \leq 0.
\]

\(E \) is said to be \(\omega \)-slope-stable if strict inequality holds above. \(E \) is said to be \(\omega \)-slope-polystable, if it is \(\omega \)-slope-semistable as well as the direct sum of \(\omega \)-slope-stable sheaves.

Theorem 1.2. The sheaf \(E \), given in Equation (1.1), is \(\tilde{\omega} \)-slope-stable with respect to every Kähler class \(\omega \) on \(\mathcal{M} \).

The Theorem follows from the more general Theorem [1,4] stated below. The Chern class \(c_2(\text{End}(E)) \), of the sheaf \(E \) in Theorem [1,2] flatly deforms to a class of Hodge type \((2,2) \) on the cartesian square \(X \times X \) of every manifold of \(K3^{[n]} \)-type [M2 Prop. 1.2]. This fact combines with Theorem [1,2] to imply that the sheaf \(E \) is \(\tilde{\omega} \)-hyperholomorphic in the sense of Verbitsky [V] (see also [M2 Cor. 6.11]). Verbitsky proved a very powerful deformation theoretic result for such sheaves [V Theorem 3.19]. Associated to a Kähler class \(\omega \) on \(\mathcal{M} \) is a twistor family \(\mathcal{X} \rightarrow \mathbb{P}^1_\omega \) deforming \(\mathcal{M} \) [Hu1]. Verbitsky’s theorem implies that \(E \) extends to a reflexive sheaf over the fiber square \(\mathcal{X} \times_{\mathbb{P}^1_\omega} \mathcal{X} \) of the twistor family associated to every Kähler class \(\omega \) on \(\mathcal{M} \). Verbitsky’s theorem, applied to the sheaf \(E \) in Theorem [1,2] is central to our proof with F. Charles of the Standard Conjectures for projective manifolds of \(K3^{[n]} \)-type and to our work with S. Mehrotra on pretriangulated K3-categories associated to manifolds of \(K3^{[n]} \)-type [CM1, MM1, MM2].

The first example of a moduli space \(\mathcal{M} \), for which the above Theorem holds, was given in [M2 Theorem 7.4]. In that example the order of the Brauer class was shown to be equal to the rank of \(E \), and so \(E \) does not have any non-zero subsheaf of lower rank. Such a maximally twisted reflexive sheaf is thus \(\tilde{\omega} \)-slope-stable with respect to every Kähler class \(\omega \) on \(X \).

The special case of Theorem [1,2] where \(\mathcal{M} = S^{[n]} \) is the Hilbert scheme of length \(n \) subschemes of a K3 surface \(S \) with a trivial Picard group, was proven earlier in [M3 Theorem 1.1(1)]. In that case it was proven that, though untwisted, \(E \) again does not have any non-zero subsheaf of lower rank.

1.2. Stability in terms of the singularities along the diagonal. Let \(X \) be an irreducible holomorphic symplectic manifold of complex dimension \(2n > 2 \). Let \(\beta : Y \rightarrow X \times X \) be the
are isomorphic as sheaves of algebras. The sheaf E isomorphism f and the forgetful morphism sending a triple (X, η, E) to the corresponding connected component of \tilde{M} of Λ, which implies Assumption 1.3 above. Fix a connected component $K\tilde{\Lambda}$ of Λ with a lattice Λ. The moduli space \tilde{M} of isomorphism classes of Λ-marked irreducible holomorphic symplectic manifolds (X, η) is a non-Hausdorff manifold of dimension $\text{rank}(\Lambda) - 2$ [H].

The pair $(M \times M, E)$ in Theorem 1.2 is known to deform to all cartesian squares $X \times X$ of manifolds of $K3^{[\text{type}]}$ [M2 Theorem 1.3]. The sheaf E is infinitesimally rigid, $\text{Ext}^1(E, E) = 0$, by [MM2 Lemma 5.2]. We describe next a global analogue of these two facts.

In [MM] we constructed a moduli space $\tilde{\mathcal{M}}_{\Lambda}$ of equivalence classes of triples (X, η, E), where X is of $K3^{[\text{type}]}$, $n \geq 2$, η is a Λ-marking for X, and E is a rank $2n - 2$ reflexive infinitesimally rigid twisted sheaf over $X \times X$, which is ω-slope-stable with respect to some Kähler class ω on X. Two pairs (X, η, E) and (X', η', E') are equivalent, if there exists an isomorphism $f : X \to X'$, such that $\eta' = \eta \circ f^*$, and the sheaves $\mathcal{E}nd(E)$ and $(f \times f)^*\mathcal{E}nd(E')$ are isomorphic as sheaves of algebras. The sheaf E of every triple in $\tilde{\mathcal{M}}_{\Lambda}$ is assumed to satisfy [MM] Condition 1.6], which implies Assumption 1.3 above. Fix a connected component $\tilde{\mathcal{M}}^0_{\Lambda}$ of $\tilde{\mathcal{M}}_{\Lambda}$ and let

$$\phi : \tilde{\mathcal{M}}^0_{\Lambda} \to \mathcal{M}^0_{\Lambda}$$

be the forgetful morphism sending a triple (X, η, E) to the marked pair (X, η), where \mathcal{M}^0_{Λ} is the corresponding connected component of \mathcal{M}_{Λ}. The forgetful morphism ϕ is a surjective local

1In [MM] it was also assumed that the sheaf $\mathcal{E}nd(E)$ is ω-slope-polystable, but the latter property follows from the ω-slope-stability of E, as was proven later in [M2 Prop. 6.5] for twisted sheaves (and is well known for untwisted sheaves).
Corollary 1.6. The above morphism \(\phi \) is an isomorphism.

The Corollary is proven in Section 3 (conditional on [MM1, Conj. 1.12]). Taking the quotient by the monodromy action, Corollary 1.6 may be reformulated as follows.

Corollary 1.7. On the cartesian square \(X \times X \) of every manifold \(X \) of \(K^3[n] \)-type there exists a canonical pair of isomorphism classes of sheaves of algebras \(\mathcal{E}_{nd}(E) \) and \(\mathcal{E}_{nd}(E^*) \), where \(E \) is a reflexive rank \(2n - 2 \) twisted sheaf, locally free away from the diagonal, which satisfies Assumption 1.3 and is \(\omega \)-slope-stable with respect to every Kähler class \(\omega \) on \(X \).

The Corollary is proven in Section 3 (conditional on [MM1, Conj. 1.12]). Following is the main application of Theorem 1.4. Let \(E \) be the sheaf in Theorem 1.4 and let \(F \) be a saturated subsheaf of \(E \) of rank in the range \(0 < \text{rank}(F) < 2n - 2 \). Let \(\hat{G} \) be the image of the composition \((\beta^* F)(D) \to (\beta^* E)(D) \to V \). Denote by \(G \) the saturation of \(\hat{G} \) as a subsheaf of \(V \). The sheaf \(G \) is reflexive, since \(V \) is locally free. The restriction of \(G \) to \(D \) maps to the restriction \(\ell^t / \ell \) of \(V \) and we denote by \(G' \) the saturation of its image as a subsheaf of \(\ell^t / \ell \). We provide in this section an upper bound for \(\deg_{\ell^t} (\text{Hom}(E, F)) \) in terms of the first Chern class of \(G' \) (Lemma 2.5). We then provide information on \(c_1(G') \) (Lemma 2.6).

Lemma 2.1. The equality \(c_1(\text{Hom}(E, F)) = \beta_*(c_1(\text{Hom}(V, G))) \) holds.

Proof. The higher direct image \(R^i \beta_*(\text{Hom}(V, G)) \), \(i > 0 \), is supported on the diagonal and so its first Chern class vanishes. The equality \(c_1(\beta_* \text{Hom}(V, G)) = c_1(R\beta_* \text{Hom}(V, G)) \) follows. Similarly, \(c_1(\beta_* \text{Hom}(V, G)) = c_1(\text{Hom}(E, F)) \), as the two sheaves coincide away from the diagonal. Hence, \(c_1(\text{Hom}(E, F)) \) is the graded summand in degree 2 of \(\beta_*(\text{ch}(\text{Hom}(V, G))^t d_{\beta}) \), by Grothendieck-Riemann-Roch [OTT]. We have \(c_1(TY) = (1 - 2n)[D] \) and so
\[
\begin{align*}
\text{td}_{\beta} &= \text{td}(TY)/\text{td}(T[X \times X]) = 1 + \frac{1}{2n} [D] + \ldots
\end{align*}
\]
The statement follows, by the vanishing of \(\beta_*([D]) \). \(\Box \)

Set \(h := c_1(\ell^{-1}) \in H^2(D, \mathbb{Z}) \).

Lemma 2.2. \(p_*(h^i) = \begin{cases} 0 & \text{if } i < 2n - 1 \text{ or } i \text{ is even}, \\ 1 & \text{if } i = 2n - 1, \end{cases} \) and

\[
(2.1) \quad p_*(h^{2n+k}) = -c_{k+1}(TX) - \sum_{j=2}^{k-1} c_j(TX)p_*(h^{2n+k-j}),
\]

where \(c_j \) is the \(j \)th Chern class.
for any positive odd integer k.

Proof. The statement is well known. The vanishing of $p_i(h^i)$, for $i < 2n - 1$, follows for dimension reasons. The equality $p_*(h^{2n-1}) = 1$ is proven in [F, Appendix B.4 Lemma 9]. Consider the short exact sequence $0 \to \ell \to p^*TX \to q \to 0$ defining q. Then $c_{2n}(q) = 0$, since rank(q) = $2n - 1$. On the other hand, the Chern polynomial of q satisfies

$$c_t(q) = p^*c_t(TX)/c_t(\ell) = p^*c_t(TX)(1 + h + h^2 + \cdots + h^{4n-1}).$$

Consequently, $0 = c_{2n}(q) = \sum_{j=0}^{2n} p^*c_j(TX)h^{2n-j}$ and

$$h^{2n} = -\left[\sum_{j=1}^{2n} p^*c_j(TX)h^{2n-j} \right].$$

The projection formula yields

$$p_*(h^{2n+k}) = -p_*\left(\sum_{j=1}^{2n} p^*c_j(TX)h^{2n+k-j} \right) = -c_{k+1}(TX) - \sum_{j=1}^{k} c_j(TX)p_*(h^{2n+k-j}),$$

for every positive integer k. The vanishing of $p_*(h^i)$ for even i follows, by induction, from the vanishing of $c_j(TX)$ for odd j. The recursive formula (2.1) follows. \square

Lemma 2.3. The t-th symmetric power $\text{Sym}^t(TX)$ of the tangent bundle is ω-slope-stable with respect to every Kähler class ω on X, for all $t \geq 0$. The space $H^0(X, (\wedge^3 TX) \otimes \text{Sym}^t(T^*X))$ vanishes, for all $j \geq 0$ and all $t > 1$.

Proof. The vector bundle TX admits a Hermite-Einstein metric whose $(1,1)$-form represents ω, for every Kähler class ω on X, by Yau’s proof of the Calabi Conjecture [H2, Cor. 4.8.22]. In particular, TX is ω-slope-polystable with respect to every Kähler class ω. The holonomy group of the tangent bundle of an irreducible holomorphic symplectic manifold of complex dimension $2n$ is the symplectic group $Sp(n)$ [B1, Prop. 4]. Consequently, the vector bundle TX is slope-stable with respect to every Kähler class, its tensor powers are poly-stable, and the indecomposable direct summands of the tensor powers correspond to irreducible representations of $Sp(n)$. Let U be the standard representation of $Sp(n)$. The symmetric powers $\text{Sym}^t(U)$ are irreducible representations, for all $t \geq 0$. If $t > 1$ then $\text{Sym}^t(U)$ does not appear as a subrepresentation of the exterior product $\wedge^3 U$, for any $j \geq 0$. Hence, $H^0(X, (\wedge^3 TX) \otimes \text{Sym}^t(T^*X))$ vanishes, for $t > 1$. \square

Lemma 2.4. Let Z be a non-zero effective divisor on D and $[Z] \in H^2(D, \mathbb{Z})$ its class. Then

$$\int_D p^*(\omega)^{2n-1}h^{2n-1}[Z] > 0,$$

for every Kähler class ω on X.

Proof. We have a direct sum decomposition $\text{Pic}(D) = p^*\text{Pic}(X) \oplus \mathbb{Z}\ell$. The restriction of $\mathcal{O}_D(Z)$ to each fiber of p is effective. Hence, $\mathcal{O}_D(Z)$ is isomorphic to $\ell^{-a} \otimes p^*L$, for some line bundle $L \in \text{Pic}(X)$ and for some nonnegative integer a. The space $H^0(D, \mathcal{O}_D(Z))$ does not vanish and is isomorphic to $H^0(X, L \otimes \text{Sym}^a T^*X)$. Hence, L^{-1} is a subsheaf of $\text{Sym}^a T^*X$. The vector bundle $\text{Sym}^a T^*X$ is an ω-slope-stable bundle with a trivial determinant, by Lemma 2.3. If $a > 0$, then L^{-1} is a subsheaf of lower rank. If $a = 0$, then L^{-1} is the ideal sheaf of a non-zero
effective divisor on X, since Z was assumed to be such. In both cases we get the inequality $\text{deg}_\omega(L) > 0$ and so
\[
\int_D p^*(\omega)^{2n-1}h^{2n-1}[Z] = \int_X \omega^{2n-1}p_*(h^{2n-1}(ah + p^*c_1(L))) = \int_X \omega^{2n-1}c_1(L) = \text{deg}_\omega(L) > 0,
\]
where the second equality is due to the vanishing of $p_*(h^{2n})$ and the equality $p_*(h^{2n-1}) = 1$ of Lemma 2.2.

Recall that the restriction of V to D is isomorphic to ℓ^\perp/ℓ, by Assumption 1.3. Let G' be the saturation of the image in ℓ^\perp/ℓ of the restriction to D of the subsheaf G of V. Note that the sheaves ℓ^\perp/ℓ and G' are untwisted.

Lemma 2.5. The following inequality holds for every Kähler class ω on X.

\[
\text{deg}_\omega(\text{Hom}(E, F)) \leq (2n - 2) \left(\frac{4n - 1}{2n}\right) \left(\int_X \omega^{2n}\right) \int_D (p^*\omega)^{2n-1}h^{2n-1}c_1(G').
\]

Proof. Let $a, b \in H^2(X, \mathbb{Z})$ be the classes satisfying $c_1(\text{Hom}(E, F)) = f_1^*a + f_2^*b$. We have
\[
\text{deg}_\omega(\text{Hom}(E, F)) = \int_{X \times X} \tilde{\omega}^{4n-1}c_1(\text{Hom}(E, F))
\]
\[
= \int_{X \times X} (f_1^*\omega + f_2^*\omega)^{4n-1}(f_1^*a + f_2^*b)
\]
\[
= \left(\frac{4n - 1}{2n}\right) \left(\int_X \omega^{2n}\right) \int_X \omega^{2n-1}(a + b)
\]
\[
= \left(\frac{4n - 1}{2n}\right) \left(\int_X \omega^{2n}\right) \int_X \omega^{2n-1}\delta^*c_1(\text{Hom}(E, F))
\]
\[
(2.2)
\]
where the last equality is by Lemma 2.1. Lemma 2.2 yields
\[
\delta^*\beta_*c_1(\text{Hom}(V, G)) = p_* \left[h^{2n-1}p^*\delta^*(\beta_*c_1(\text{Hom}(V, G)))\right] = p_* \left[h^{2n-1}\iota^*\beta^*(\beta_*c_1(\text{Hom}(V, G)))\right].
\]
The equality $\beta_*\beta^*\beta_* = \beta_*$ implies that the difference between the classes $\beta^*(\beta_*c_1(\text{Hom}(V, G)))$ and $c_1(\text{Hom}(V, G))$ belongs to the kernel of β_* and is hence a multiple of $[D]$. The vanishing $p_*(h^{2n-1}\iota^*[D]) = -p_*(h^{2n}) = 0$ yields the equality
\[
\delta^*\beta_*c_1(\text{Hom}(V, G)) = p_* \left[h^{2n-1}\iota^*(c_1(\text{Hom}(V, G)))\right].
\]

We have $\iota^*c_1(\text{Hom}(V, G)) = c_1(L\iota^*\text{Hom}(V, G)) = c_1([\ell^\perp/\ell]^* \otimes L^*(G))$. The sheaf G is reflexive, by construction, and hence its singular locus has codimension ≥ 3 in Y. It follows that $c_1(L\iota^*G) = c_1(\iota^*G) = c_1(\iota^*G)|_Y$. The subscheme of Y, where the rank of the homomorphism $G \to V$ is lower than the rank of G, has codimension at least 2 in Y, since G is a saturated subsheaf of V. Hence, the natural homomorphism $(\iota^*G)|_Y \to G'$ is injective. We conclude that $c_1(L\iota^*G) + [Z] = c_1(G')$, for some effective divisor Z on D. The rank $2n - 2$ vector bundle ℓ^\perp/ℓ is symplectic, and hence $c_1(\ell^\perp/\ell) = 0$. Hence
\[
\iota^*c_1(\text{Hom}(V, G)) = (2n - 2) (c_1(G') - [Z]).
\]
The Projection Formula and the two displayed formulas above yield
\[\int_X \omega^{2n-1} \delta^s \beta_s c_1(\operatorname{Hom}(V, G)) = (2n - 2) \int_D (p^* \omega)^{2n-1} h^{2n-1} (c_1(G') - [Z]). \]
Lemma 2.4 yields the inequality
\[\int_X \omega^{2n-1} \delta^s \beta_s c_1(\operatorname{Hom}(V, G)) \leq (2n - 2) \int_D (p^* \omega)^{2n-1} h^{2n-1} c_1(G'). \]
Lemma 2.5 follows from the above inequality and Equation (2.2). \(\square\)

Lemma 2.6. \(c_1(G') = p^* \alpha - kh,\) for a non-zero class \(\alpha \in H^2(X, \mathbb{Z})\) and a positive integer \(k.\)

Proof. There exist an integer \(k\) and a class \(\alpha \in H^2(X, \mathbb{Z})\) satisfying \(c_1(G') = p^* \alpha - kh,\) since \(H^2(D, \mathbb{Z}) = p^* H^2(X, \mathbb{Z}) \oplus \mathbb{Z} h.\) The integer \(k\) is positive, since the restriction of \(\ell^{-1}/\ell\) to each fiber of \(p : D \to X\) is slope-stable, by [MM1, Lemma 7.4].

The rest of the proof is by contradiction. Assume that \(\alpha = 0.\) Let \(g\) be the rank of \(G.\) Then \(0 < g < 2n - 2\) and the top exterior power of \(G'\) yields a line subbundle of \(\Lambda^g[\ell^{-1}/\ell]\) isomorphic to \(\ell^k.\) In particular, the vector space
\[(2.3) \quad H^0(D, \Lambda^g[\ell^{-1}/\ell] \otimes \ell^{-k})\]
contains a non-zero section.

We have the short exact sequence
\[0 \to \ell^{-1} \to p^* TX \to \ell^{-1} \to 0.\]
Dualizing, we get
\[0 \to \ell \to p^* T^* X \to (\ell^{-1})^* \to 0.\]
Hence also the short exact
\[0 \to \ell \otimes \Lambda^{j-1}(\ell^{-1})^* \to p^* \Lambda^j (T^* X) \to \Lambda^j (\ell^{-1})^* \to 0.\]
Dualizing the latter and tensoring by \(\ell^{-t}\) we get the short exact sequence
\[0 \to \Lambda^j(\ell^t) \otimes \ell^{-t} \to p^* (\Lambda^j T^* X) \otimes \ell^{-t} \to \Lambda^{j-1}(\ell^t) \otimes \ell^{-t-1} \to 0.\]
The inclusion of \(\Lambda^{j-1}(\ell^t) \otimes \ell^{-t-1}\) in \(p^* (\Lambda^j T^* X) \otimes \ell^{-t-1}\) yields the left exact sequence
\[0 \to p_* \left[\Lambda^j(\ell^t) \otimes \ell^{-t} \right] \to \left(\Lambda^j T^* X \right) \otimes \operatorname{Sym}^t(T^* X) \to \left(\Lambda^{j-1} T^* X \right) \otimes \operatorname{Sym}^{t+1}(T^* X).\]
The vector space \(H^0 \left(X, (\Lambda^j T^* X) \otimes \operatorname{Sym}^t(T^* X) \right)\) vanishes, for \(t > 1,\) by Lemma 2.3. We conclude that \(H^0 \left(D, \Lambda^j(\ell^t) \otimes \ell^{-t} \right)\) vanishes, for all pairs \((j, t)\) of integers satisfying \(j \geq 0\) and \(t > 1.\) The short exact sequence \(0 \to \ell \to \ell^t \to [\ell^{-1}/\ell] \to 0\) yields
\[0 \to \ell \otimes \Lambda^{j-1}[\ell^{-1}/\ell] \to \Lambda^j \ell^t \to \Lambda^j[\ell^{-1}/\ell] \to 0.\]
Tensoring by \(\ell^{-t}\) we get
\[(2.4) \quad 0 \to \Lambda^{j-1}[\ell^{-1}/\ell] \otimes \ell^{-t} \to \left(\Lambda^j \ell^t \right) \otimes \ell^{-t} \to \Lambda^j[\ell^{-1}/\ell] \otimes \ell^{-t} \to 0.\]
We conclude that \(H^0 \left(D, \Lambda^{j-1}[\ell^{-1}/\ell] \otimes \ell^{-t} \right)\) vanishes, for all pairs \((j, t)\) of integers satisfying \(j \geq 1\) and \(t > 1.\) The vanishing of the space \((2.3)\) follows, by taking \(j = g + 1\) and \(t = k + 1.\) This provides the desired contradiction. \(\square\)

3Under the identification of \(TX\) with \(T^* X\) via the symplectic form, the rightmost homomorphism is the homomorphism \((\Lambda^j T^* X) \otimes \operatorname{Sym}^t(T^* X) \to (\Lambda^{j-1} T^* X) \otimes \operatorname{Sym}^{t+1}(T^* X)\) appearing in the Koszul complex. We will not use this fact.
3. Proof of Theorem 1.4

The proof of Theorem 1.4 reduces to that of the inequality
\[\int_D (p^* \omega)^{2n-1} h^{2n-1} c_1(G') < 0, \]
for every Kähler class \(\omega \) and for every non-zero saturated proper subsheaf \(G' \) of \(\ell \perp / \ell \), by Lemma 2.5. Set \(c_1(G') = p^* \alpha - kh \) as in Lemma 2.6. The left hand side of the above inequality is equal to \(\int_X \omega^{2n-1} \alpha \), by the projection formula and the vanishing of \(p_*(h^{2n}) \).

Given a positive integer \(N \) we have the sequence of inclusions
\[p_*(G' \otimes \ell^{-N}) \subset p_*([\ell^1/\ell] \otimes \ell^{-N}) \subset p_* (\wedge^2(\ell^1) \otimes \ell^{-N-1}) \subset p_* (\wedge^2(p^*TX) \otimes \ell^{-N-1}), \]
where the second inclusion follows from the sequence (2.4). The projection formula yields the inclusion \(p_*(G' \otimes \ell^{-N}) \subset (\wedge^2TX) \otimes \text{Sym}^{N+1}T^*X \). The latter is an \(\omega \)-polystable vector bundle with zero first Chern class. We conclude the inequality
\[\int_X \omega^{2n-1} c_1(p_*(G' \otimes \ell^{-N})) \leq 0, \]
for every Kähler class \(\omega \) on \(X \).

The higher direct images \(R^i p_*(G' \otimes \ell^{-N}) \) vanish, for all \(N \) sufficiently large. Hence, there exists an integer \(N_0 \), such that
\[c_1(p_*(G' \otimes \ell^{-N})) = c_1(Rp_*(G' \otimes \ell^{-N})), \]
for all \(N > N_0 \). The right hand side is the graded summand \(P(N) \) in \(H^2(X, \mathbb{Z})[N] \) of the polynomial
\[p_*(\text{ch}(G') \exp(Nh)td_p) \in H^*(X, \mathbb{Q})[N] \]
in the variable \(N \) with coefficients in the cohomology ring. Let \(g \) be the rank of \(G' \). We have \(c_1(T_p) = 2nh \),
\[\begin{align*}
 td_p &= 1 + nh + \ldots, \\
 \text{ch}(G') &= g + (p^* \alpha - kh) + \ldots \\
 \exp(Nh) &= \sum_{j=0}^{4n-1} h^j N^j ./ j!.
\end{align*} \]
Hence, the graded summand of \(\text{ch}(G') \exp(Nh)td_p \) in \(H^{4n}(D, \mathbb{Q}) \) is a polynomial of degree 2n in \(N \) whose first two leading terms are
\[gh^{2n} N^{2n}/2n! + [(p^* \alpha - kh) + gn]h^{2n-1} N^{2n-1}/(2n-1)! + \ldots \]
The polynomial \(P(N) \) is the image of the above polynomial under \(p_* \). The vanishing of \(p_*(h^{2n}) \) yields that \(P(N) \) has degree 2n - 1 in \(N \) and its leading term is
\[P(N) := c_1(Rp_*(G' \otimes \ell^{-N})) = N^{2n-1}/(2n-1)! \alpha + \ldots \]
The values of the left hand side of the inequality (3.1) for \(N > N_0 \) are thus the values of a polynomial in \(\mathbb{R}[N] \) of degree \(2n - 1 \), whose leading coefficient is
\[\frac{1}{(2n-1)!} \int_X \omega^{2n-1} \alpha. \]
The inequality (3.1) thus implies the inequality

\[\int_X \omega^{2n-1} \alpha \leq 0, \]

for every Kähler class \(\omega \).

Let \(K_X \) be the Kähler cone of \(X \). The map \(K_X \to H^{2n-1,2n-1}(X, \mathbb{R}) \) sending \(\omega \) to \(\omega^{2n-1} \) is an open map. Indeed, its differential at \(\omega \) is the cup product

\[(2n-1)\omega^{2n-2} : H^{1,1}(X, \mathbb{R}) \to H^{2n-1,2n-1}(X, \mathbb{R}), \]

which is an isomorphism by the Hard Lefschetz Theorem. The class \(\alpha \) does not vanish, by Lemma 2.6. Hence, the linear functional

\[H^{2n-1,2n-1}(X, \mathbb{R}) \to \mathbb{R}, \]

sending \(\lambda \) to \(\int_X \lambda \alpha \), is an open map as well. We conclude that the image of \(K_X \) under the composition of these two open maps is an open subset and the inequality (3.2) is strict. This completes the proof of Theorem 1.4. \(\square \)

Proof of Corollary 1.6. Any two points \((X, \eta, E_1) \) and \((X, \eta, E_2) \) in the fiber of \(\phi \) are inseparable, by [MM1, Theorem 6.1]. If, furthermore, \(E_1 \) and \(E_2 \) are \(\tilde{\omega} \)-slope-stable, with respect to the same Kähler class \(\omega \) on \(X \), then \(\mathcal{E}nd(E_1) \) and \(\mathcal{E}nd(E_2) \) are isomorphic as sheaves of algebras, by [MM1, Lemma 5.3]. The sheaves \(E_i \), \(i = 1, 2 \), are assumed to satisfy [MM1, Condition 1.6], which implies Assumption 1.3 by [MM1, Lemma 7.6]. Hence, the sheaves \(E_i \), \(i = 1, 2 \), are \(\tilde{\omega} \)-slope-stable with respect to every Kähler class \(\omega \) on \(X \), by Theorem 1.4. It follows that \(\mathcal{E}nd(E_1) \) and \(\mathcal{E}nd(E_2) \) are isomorphic as sheaves of algebras, and the two triples \((X, \eta, E_i) \), \(i = 1, 2 \), represent the same equivalence class in \(\mathfrak{M}_A \). \(\square \)

Proof of Corollary 1.7. The isometry group \(O(\Lambda) \) of \(\Lambda \) acts on \(\mathfrak{M}_A \) by \(g(X, \eta) \mapsto (X, g\eta) \). Let \(\text{Mon}(\Lambda) \subset O(\Lambda) \) be the subgroup leaving the connected component \(\mathfrak{M}^0_\Lambda \) invariant. \(\text{Mon}(\Lambda) \) is determined in [M1, Theorem 1.2], which implies, in particular, that elements of \(\text{Mon}(\Lambda) \) act on the discriminant group \(\Lambda^*/\Lambda \cong \mathbb{Z}/(2n-2)\mathbb{Z} \) as \(\pm 1 \). Denote by

\[\text{cov} : \text{Mon}(\Lambda) \to \{\pm 1\} \]

the corresponding character. The set of \(\text{Mon}(\Lambda) \)-orbits in \(\mathfrak{M}^0_\Lambda \) is in bijection with the set of isomorphism classes of manifolds of \(K3^{[n]} \)-type. Conjugating the \(\text{Mon}(\Lambda) \)-action via the isomorphism \(\phi \) of Corollary 1.6 lifts it to an action on \(\mathfrak{M}^0_\Lambda \). The latter action is given by \(g(X, \eta, E) \mapsto (X, g\eta, E^{\text{cov}(g)}) \), where \(E^{\text{cov}(g)} = E \), if \(\text{cov}(g) = 1 \), and \(E^{\text{cov}(g)} = E^* \), if \(\text{cov}(g) = -1 \), by the proof of [MM1, Theorem 1.11]. The inverse image under \(\phi \) of the \(\text{Mon}(\Lambda) \) orbit of \((X, \eta_0) \) in \(\mathfrak{M}^0_\Lambda \) consists of equivalence classes of triples \((X, \eta, E) \) in a unique \(\text{Mon}(\Lambda) \) orbit of, say, \((X, \eta_0, E_0) \), by Corollary 1.6. The above description of the monodromy action on \(\mathfrak{M}^0_\Lambda \) implies that \(\mathcal{E}nd(E) \) is isomorphic as a sheaf of algebras to \(\mathcal{E}nd(E_0) \) or \(\mathcal{E}nd(E_0^*) \). \(\square \)

Acknowledgements: I would like to thank Sukhendu Mehrotra and Misha Verbitsky for stimulating conversations. I thank Sukhendu Mehrotra for his careful reading of an early draft and for his helpful comments.
References

[Be] Beauville, A.: Varieties Kähleriennes dont la première classe de Chern est nulle. J. Diff. Geom. 18, p. 755–782 (1983).

[CM] Charles, F., Markman, E.: The Standard Conjectures for holomorphic symplectic varieties deformation equivalent to Hilbert schemes of K3 surfaces. Compos. Math. 149 (2013), no. 3, 481–494.

[F] Fulton, W.: Young Tableaux. London Math. Soc. Student Texts 35, Cambridge Univ. Press, Cambridge, 1997.

[Hu1] Huybrechts, D.: Compact Hyperkähler Manifolds: Basic results. Invent. Math. 135 (1999), no. 1, 63-113 and Erratum: Invent. Math. 152 (2003), no. 1, 209–212.

[Hu2] Huybrechts, D.: Complex Geometry: An introduction. Universitext. Springer-Verlag, Berlin, 2005.

[M1] Markman, E.: Integral constraints on the monodromy group of the hyperkähler resolution of a symmetric product of a K3 surface. Internat. J. of Math. Vol. 21, Issue: 2 (2010) pp. 169–223.

[M2] Markman, E.: The Beauville-Bogomolov class as a characteristic class. Electronic preprint arXiv:1105.3223v3.

[M3] Markman, E.: Stability of a natural sheaf over the cartesian square of the Hilbert scheme of points on a K3 surface. Electronic preprint arXiv:1506.06191v2.

[MM1] Markman, E., Mehrotra, S.: A global Torelli theorem for rigid hyperholomorphic sheaves. Electronic preprint, arXiv: 1310.5782v1.

[MM2] Markman, E., Mehrotra, S.: Integral transforms and deformations of K3 surfaces. Electronic preprint, arXiv: 1507.03108v1.

[O’G] O’Grady, K.: The weight-two Hodge structure of moduli spaces of sheaves on a K3 surface. J. Algebraic Geom. 6 (1997), no. 4, 599–644.

[OTT] O’Brian, N. R.; Toledo, D.; Tong, Y. L.: Grothendieck-Riemann-Roch for complex manifolds. Bull. Amer. Math. Soc. (N.S.) 5 (1981), no. 2, 182–184.

[V] Verbitsky, M.: Hyperholomorphic sheaves and new examples of hyperkaehler manifolds, alg-geom/9712012 In the book: Hyperkähler manifolds, by Kaledin, D. and Verbitsky, M., Mathematical Physics (Somerville), 12, International Press, Somerville, MA, 1999.

[Y] Yoshioka, K.: Moduli spaces of stable sheaves on abelian surfaces. Math. Ann. 321 (2001), no. 4, 817–884.

Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003, USA

E-mail address: markman@math.umass.edu