Research Article

Altered thyroid profile in metabolic syndrome

Naiyar Azam1, Ashish Shukla1, Naved Ahmad2 and Akash Gupta*1

1Department of Biochemistry, Subharti Medical College, Meerut, U.P. India
2Department of Biochemistry, FH Medical College, Tundla, U.P. India

*Correspondence Info:
Dr. Akash Gupta
Assistant Professor,
Department of Biochemistry,
Subharti Medical College, Meerut, U.P. India
E-mail: akash_inspace@yahoo.com

Abstract

Objectives: The study was intended to access metabolic syndrome in hypothyroid patients and to investigate the association between hypothyroidism and metabolism syndrome in Meerut district.

Methods: The study was done on patients with symptoms of hypothyroidism or follow up cases of hypothyroidism having metabolic syndrome. T3, T4 and TSH were analysed by enzyme linked fluorescent assay (ELFA) technique using Minividas auto analyser from Biornerieux, France. Fasting blood sugar and lipid profile were estimated by Vitros-250 auto analyser using readymade dry chemistry kits from Ortho-Clinical diagnostics, Johnson & Johnson, USA. The data was analysed using SPSS-16 software package.

Result: In overt hypothyroid cases T3 values were found to be negatively correlated with waist circumference (WC), diastolic BP, FBS and TG level and positively correlated with FBS (p=0.03, r=0.24) in subclinical hypothyroidism. T4 values negatively correlated with FBS and TG level in overt hypothyroid group and with WC, systolic and diastolic BP in subclinical group. But there was significant positive correlation with TG levels (p=0.04, r = 0.23).

TSH values shows negative correlation with WC, FBS, TG and HDL levels in overt hypothyroidism.

Conclusion: This study on metabolic syndrome in thyroid dysfunction population may help us to plan management strategies, resulting in significant reduction in cardiovascular morbidity and mortality due to metabolic syndrome.

Keywords: T3, T4, TSH, Hypothyroidism, Metabolic Syndrome

1. Introduction

Thyroid hormones play an important role in regulating energy homeostasis, glucose and lipid metabolism1. Hypothyroidism is a major cause of secondary dyslipidemia, the cause of which resides in decrease of cholesterol catabolism and excretion2. Thyroid function affect metabolic syndrome (Met Syn) parameters including high density lipoprotein cholesterol (HDL-C), triglycerides (TG), blood pressure (BP) and fasting blood glucose (FBS). It is known that overt hypothyroidism lead to an increase in plasma cholesterol levels and blood pressure. Thyroid hormones appear to serve as a general pacemaker accelerating metabolic process and may be associated with metabolic syndrome3. The Met Syn is one of the major public health issues of this country. Met Syn is a cluster of physical condition and metabolic abnormalities commonly found in association with increased risk for development of Type 2 Diabetes Mellitus (Type 2 DM), cardiovascular disease and other medical conditions4,5. According to most recent definitions proposed by the International Diabetes Federation (IDF) 2005, a person is identified as having the metabolic syndrome if they have central obesity (defined as waist circumference with ethnicity specific values) plus any two of the following: raised TG; reduced HDL-C; raised BP, or raised fasting blood glucose6. Considerable overlap occurs in the pathogenic mechanism of atherosclerotic cardiovascular disease by Met Syn and hypothyroidism7. Perhaps TSH elevation stimulates the secretion of inflammatory cytokines, which lead to increase in the component of the Met Syn8. This study was intended to access metabolic syndrome in hypothyroidism patients and to investigate the association between hypothyroidism and metabolism syndrome in Meerut district.

2. Material and Methods

The present study was undertaken on the patients attending medicine OPD of Chatrapati Shivaji Subharti hospital associated with Subharti Medical College, Meerut, with symptoms of hypothyroidism or follow up cases of hypothyroidism. After obtaining the informed consent each patient was subjected to detailed history and clinical examination which include anthropometric measurements, blood pressure, fasting blood sugar and lipid profile. On this basis only those patients were selected who were having hypothyroidism with or without metabolic syndrome. T3, T4 and TSH were analysed by enzyme linked fluorescent assay (ELFA) technique using Minividas auto analyser from Biornerieux, France. Fasting blood sugar and lipid profile were estimated by Vitros-250 auto analyser using readymade dry chemistry kits from Ortho-Clinical diagnostics, Johnson & Johnson, USA.

The data was analysed using SPSS-16 software package. Mean, Standard deviation and correlation coefficient (r) were applied. Correlation coefficient was calculated for evaluating the strength of association between each components of metabolic syndrome and thyroid function test parameters (T3, T4 & TSH). A p value < 0.05 was considered as statistically significant.

3. Results

Our study was a hospital based cross sectional study in which 100 hypothyroid subjects, with or without metabolic syndrome, were recruited. Of the 100 hypothyroid patients in the study group, 62 were females and 38 were males with mean age of 41.5 ± 11.2 years.

Patients were distributed in to different age groups. The percentage of hypothyroidism and metabolic syndrome in each group were determined.
Table 1: Age wise distribution of subjects in metabolic syndrome

Age group (in years)	Hypothyroid (total no patients)	Non metabolic syndrome	Metabolic syndrome				
	Male	Female	Total	No of patients	% in age group	No of patients	% in age group
20-29	11	18	29	7	63.6 %	4	36.3 %
30-39	42	18	60	18	42.8 %	24	57.1 %
40-49	22	9	31	9	40.9 %	13	59.1 %
50-59	15	6	21	6	40%	9	60%
60-69	10	3	13	3	30%	7	70%
Total	100	43	143	57			43%

The percentage of metabolic syndrome is increasing with age with maximum (70 %) in age group 60-69 years and we have observed that maximum percentage of overt and subclinical hypothyroid patients were in age group of 30-39 years with 57.14 % (n=24) of metabolic syndrome. (Table 1)

Table 2: Distribution of subjects on the basis of disease

Hypothyroid	Metabolic syndrome	Non metabolic syndrome	Total						
	Male	Female	Total	No of patients	% in age group	Male	Female	Total	% in age group
Overt	3	9	12	2	16.63%	5	5	10	30%
Subclinical	9	27	45	18	39.56%	18	18	36	44%
Total	21	36	57	20	35%	23	43	66	66%

Out of total 100 subjects 19 were overt hypothyroid group and 81 in subclinical hypothyroid group. Among these groups Met Syn is almost equally distributed, 63 % in overt hypothyroidism and 56% in subclinical hypothyroidism. Whereas more number of females (n=9 and n=27) in overt and subclinical hypothyroid groups than male (n=3 and n=81). (Table 2)

In overt hypothyroid group, both T3, T4 are comparably decreased but TSH is significantly increased in both metabolic and non-metabolic syndrome group. In subclinical hypothyroid group, T3 and T4 are in normal range but TSH is raised in both metabolic and non-metabolic syndrome. (Table 3)

Table 3: Thyroid function parameter

Sex group	T3 values	T4 values	TSH values	
Overt hypothyroid	Male (9)	0.67 ± 0.19	53.03 ± 5.18	15.46 ± 2.73
	Female (3)	0.81 ± 0.12	46.46 ± 4.87	18.71 ± 2.52
	Male (5)	0.87 ± 0.03	51.24 ± 6.49	17.22 ± 2.84
	Female (2)	0.80 ± 0.09	55.45 ± 4.88	18.12 ± 5.66
Subclinical hypothyroid	Male (18)	1.67 ± 0.68	103.8 ± 19.81	12.89 ± 4.64
	Female (27)	1.79 ± 0.64	99.58 ± 21.09	13.98 ± 6.53
	Male (18)	1.70 ± 0.54	108.1 ± 19.06	10.34 ± 3.53
	Female (18)	1.61 ± 0.33	106.1 ± 21.2	11.93 ± 4.29

In the present study we observed that out of total 19 overt hypothyroidism patients, 12 were having metabolic syndrome. Out of 81 subclinical hypothyroidism patients 45 were having Met Syn. Only 5 (42%) patients amongst overt hypothyroidism were showing 3 diagnostic criteria of Met Syn, 4 (33%) were showing 4 components, while remaining 3 (25%) was having all the 5 components of Met Syn in overt hypothyroidism. The 20 patients (45%) amongst subclinical hypothyroidism was having showing 3 diagnostic criteria of Met Syn, 15 (33%) were showing 4 components, while remaining 3 (22%) were having all the 5 components of Met Syn in subclinical hypothyroidism.

Among these combinations Met Syn was almost equally distributed 42% overt & 45% subclinical in 3 components; 33% in both overt & subclinical in 4 components and 25% overt & 22% subclinical in 5 components.

In overt hypothyroid cases T3 values were found to be negatively correlated with waist circumference (WC), diastolic BP, FBS and TG level. There was positive correlation between T4 level and all the parameters in subclinical hypothyroidism cases and was statistically significant correlation with FBS (p=0.03, r=0.24), T3 values negatively correlated with FBS and TG level in overt hypothyroid group. Similarly in subclinical group there were negative correlation with WC, systolic and diastolic BP and statistically significant positive correlation with T4 level (p=0.04, r = 0.23).

TSH values shows negative correlation with WC, FBS, TG and HDL levels in overt hypothyroidism. In subclinical hypothyroid group negative correlation was obtained with HDL and significant positive correlation with WC (p=0.004, r=0.31,) and systolic BP (p=0.02, r=0.25).

4. Discussion

Thyroid hormones have a profound on energy homeostasis, lipid and glucose metabolism and BP10,11. Thyroid hormones also have influence on various aspects of lipid metabolism including synthesis, mobilization and degradation12. Thyroid hormone affect thermogenesis13 and body energy expenditure, so low T3 and T4 may potentially lead to obesity and associated increased WC14. In the study of Roos et al14 showed positive relationship of low T3 and T4 with WC in both men and women. Serum level of TSH is a reliable index of the biological activity of thyroid hormones. Some studies showed adipocytes and pre-adipocytes expressed TSH receptors, TSH bounded with TSH receptors and induced pre-adipocytes to produce and release adipokines, some of them such as leptin played a very important role in the onset of metabolic syndrome and cardiovascular disease15. Researchers still argued the relationship between serum TSH and blood pressure in subjects with hypothyroidism16. Abnormal thyroid function can increase peripheral vascular resistance and activate the sympathetic-adrenal system, leading to increase in BP17. Our findings are also in agreement with some researchers like Salkiti et al18. Waterhouse et al and Nagasaki et al19 who found that TSH positively correlated with systolic BP and or diastolic BP. Waterhouse et al, found that with TSH increasing by 1 mIU/L, systolic BP increased by 1.53 mm Hg, but no correlation was found between TSH and diastolic BP20. They also found, when TSH was within normal range; TG increased by 0.115 mg/dl with every 1 mIU/L increase in TSH. In the study by Park et al, correlation analysis showed a positive relationship of TSH with BP, in post menopausal women21. Park et al20 found that higher levels of TSH predict the prevalence and risk of metabolic syndrome in overt hypothyroidism and subclinical hypothyroidism22. Pirjo et al23 found that the prevalence of metabolic syndrome increase with age in both men and women.

IJBR (2014) 05 (11) www.ssjournals.com
5. Conclusion

Most studies available in literature concerning hypothyroidism show their association between the thyroid function and components of metabolic syndrome. A study on metabolic syndrome in thyroid dysfunction population may help us to know the magnitude of overlap of these two groups and may highlight the importance of metabolic syndrome parameter tests to identifying metabolic syndrome in hypothyroid cases. This can lead to proper planning and adequate management strategies, resulting in significant reduction in cardiovascular morbidity and mortality due to metabolic syndrome by effective management.

References
1. Pearce EN, Farwell AP, Braverman LE. Thyroiditis. N Engl J Med. 2003; 348(26):2646-2655.
2. Danese MD, Ladenson PW, Meintert CL, Powe NR. Clinical review 115: Effect of thyroxine therapy on serum lipoproteins in patients with mild thyroid failure: a quantitative review of the literature. J Clin Endocrinol Metab. 2000; 85(9):2993-3001.
3. Dillmann WH. Mechanism of action of thyroid hormones. Med Clin North Am. 1985; 69 (5):849-61.
4. Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel HR, Franklin BA, et al. Diagnosis and management of the metabolic syndrome: An American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement: executive summary. Circ 2005; 112(17):2735-2752.
5. Meher JK, Ravendranathan SK, Kota SK, Sarangi J, Jali SN. Prevalence of hypothyroidism in patients with metabolic syndrome. Thyroid Res Pract. 2013; 10(2):60-4.
6. Hak AE, Pols HA, Visser TJ, Drexhage HA, Hofman A, Witteman JC, et al. Subclinical hypothyroidism is an independent risk factor for atherosclerosis and myocardial infarction in elderly women: The Rotterdam Study. Ann Intern Med. 2000; 132(4):270-8.
7. Fernández-Real JM, López-Bermejo A, Castro A, Casamitjana R, Ricart W. Thyroid function is intrinsically linked to insulin sensitivity and endothelium-dependent vasodilation in healthy euthyroid subjects. J Clin Endocrinol Metab. 2006; 91(9):3337-43.
8. Alberti SG, Zimmet P, Shaw J, Grundy SM. The IDF consensus worldwide definition of the metabolic syndrome. International Diabetes Federation 2006. www.idf.org
9. Lai Y, Wang J, Jiang F, Wang B, Chen Y, Li M, et al. The relationship between serum thyrotropin and components of metabolic syndrome. Endocr J. 2011; 58(1):23-30.
10. Fommei E, Lervasi G. The role of thyroid hormone in blood pressure homeostasis: evidence from short-term hypothyroidism in humans. J Clin Endocrinol Metab. 2002; 87(5):1996-2000.
11. Krotkiewski M. Thyroid hormones in the pathogenesis and treatment of obesity. European Journal of Pharmacology. 2002; 440(2-3):85–98.
12. Zhu X, Cheng SY. New insights into regulation of lipid metabolism by thyroid hormone. Current Opinion Endocrinology Diabetes Obesity. 2010; 17(5):408-413.
13. Saleem MS, Shirwany TAK, Khan KA. Relationship of Thyroid-Stimulating Hormone with Metabolic Syndrome in a sample of Euthyroid Pakistani Population. J Ayub Med Coll Abbottabad. 2011; 23(2):63-8.
14. Roos A, Bakker SJ, Links TP, Gans RO, Wolfenbuttel BH. Thyroid function is associated with components of the metabolic syndrome in euthyroid subjects. J Clin Endocrinol Metab. 2007; 92(2):491-496.
15. Bastemir M, Akin F, Akhanoglu B. Obesity is associated with increased serum TSH level, independent of thyroid function. Swiss Med Wkly. 2007; 137(29-30):431-434.
16. Saltiki K, Voidonikola P, Stamatelopoulos K, Mantzou E, Papamichael C, Alevizaki M, et al. Association of thyroid function with arterial pressure in normotensive and hypertensive euthyroid individuals: A cross-sectional study. Thyroid Research. 2008; 11(1): 3.
17. Waterhouse DF, McLaughlin AM, Walsh CD, Sheehan F, O’shea D. An examination of the relationship between normal range thyrotropin and cardiovascular risk parameters: a study in healthy women. Thyroid. 2007; 17(3):243-248.
18. Nagasaki T, Inaba M, Kumeda Y, Hiura Y, Shirakawa K, Yamada S, et al. Increased pulse wave velocity in subclinical hypothyroidism. J Clin Endocrinol Metab. 2006; 91(1):154-158.
19. Park HT, Cho GJ, Ahn KH, Shin JH, Hong SC, Kim T, et al. Thyroid stimulating hormone is associated with metabolic syndrome in euthyroid post menopausal women. Maturitas. 2009; 62(3):301-305.
20. Park SB, Choi HC, Joo NS. The relation of thyroid function to components of the metabolic syndrome in Korean Men and Women. J Korean Med Sci. 2011; 26(4):450-45.