Phylogeny and differentiation of the St genome in *Elymus* L. sensu lato (Triticeae; Poaceae) based on one nuclear DNA and two chloroplast genes

Zhen-Zhen Dong¹,², Xing Fan¹, Li-Na Sha¹, Yi Wang¹, Jian Zeng³, Hou-Yang Kang¹, Hai-Qin Zhang¹, Xiao-Li Wang⁴, Li Zhang⁴, Chun-Bang Ding⁴, Rui-Wu Yang⁴ and Yong-Hong Zhou¹,²*

Abstract

Background: Hybridization and polyploidization can be major mechanisms for plant evolution and speciation. Thus, the process of polyploidization and evolutionary history of polyploids is of widespread interest. The species in *Elymus* L. sensu lato are allopolyploids that share a common St genome from *Pseudoroegneria* in different combinations with H, Y, P, and W genomes. But how the St genome evolved in the *Elymus* s. l. during the hybridization and polyploidization events remains unclear. We used nuclear and chloroplast DNA-based phylogenetic analyses to shed some light on this process.

Results: The Maximum likelihood (ML) tree based on nuclear ribosomal internal transcribed spacer region (nrITS) data showed that the *Pseudoroegneria*, *Hordeum* and *Agropyron* species served as the St, H and P genome diploid ancestors, respectively, for the *Elymus* s. l. polyploids. The ML tree for the chloroplast genes (*matK* and the intergenic region of *trnH-psbA*) suggests that the *Pseudoroegneria* served as the maternal donor of the St genome for *Elymus* s. l. Furthermore, it suggested that *Pseudoroegneria* species from Central Asia and Europe were more ancient than those from North America. The molecular evolution in the St genome appeared to be non-random following the polyploidy event with a departure from the equilibrium neutral model due to a genetic bottleneck caused by recent polyploidization.

Conclusion: Our results suggest the ancient common maternal ancestral genome in *Elymus* s. l. is the St genome from *Pseudoroegneria*. The evolutionary differentiation of the St genome in *Elymus* s. l. after rise of this group may have multiple causes, including hybridization and polyploidization. They also suggest that *E. tangutorum* var. *tangutorum* and *E. breviaristatus* should be transferred into *Campeostachys*. We hypothesized that the *Elymus* s. l. species origined in Central Asia and Europe, then spread to North America. Further study of intraspecific variation may help us evaluate our phylogenetic results in greater detail and with more certainty.

Keywords: *Elymus* s. l., St genome, nr DNA, Chloroplast gene, Phylogeny, Molecular evolution

Background

Hybridization and polyploidization is a major mechanism in plant evolution and speciation [1, 2]. Polyploidization by itself has many consequences for genome evolution, particularly for gene expression and gene organization [3–5]. These changes may result in full fertility and stabilization of the hybrid condition and assist in establishing the phenotype in nature, which allows polyploids to adapt to new ecological niches or to be competitively superior to the parental donor [2, 6, 7].

Evolution under polyploidization alone and/or hybridization and polyploidization together can give rise to a complex of lineages whose phylogenetic relationships are unclear. For such groups, molecular genetic analysis is often necessary to elucidate the genome evolution patterns and the phylogenetic relationships among taxa [8].
The wheat tribe Triticeae (Poaceae) includes many different auto- and allopolyploid taxa, and has received considerable study of its systematics, genetics and speciation [9–11]. One example of a polyploid complex within that tribe Triticeae is the genus *Elymus* L. sensu lato delimited by Löve [12]; it is an important perennial genus with approximately 150 species worldwide. It includes the traditional species of *Elymus L.*, *Roegneria C. Koch*, *Hystrix Moench*, *Sitanion Raf.*, and *Kengyilia C. Yen et J. L. Yang*. Since *Elymus L.* was first described as a genus by Linnaeus [13], its circumscription and taxonomy has changed through times but is still uncertain because of the huge morphological variation within and between species, the polyploid origin of the genus and the frequent spontaneous hybridizations between species [12, 14–16]. Löve [12] suggested that the taxonomic treatment for Triticeae species should be based on genomic constitution, recognizing StH to be the genomes of *Elymus*. Dewey [9] accepted Löve's opinion but note the Y genome was represented in many Asiatic species, recommending that the genomic constitutions of *Elymus* should be StH, StY or StYH. *Roegneria C. Koch*, *Hystrix L.*, and *Kengyilia C. Yen et J. L. Yang* were established by Moench with the type based on morphological characters: tufted plants; similar spikelets, one spikelet per node; lemma lanceolate-oblong, rounded ab-axially, 5-veined and veins connivent at apex; also they have a limited genomic relationship [10, 17, 18]. Although *Roegneria* shares one or more characteristics with *Agropyron*, *Elymus*, and *Kengyilia*, none have them in the same combination. Therefore, Baum et al. [19, 20] concluded that the genus *Roegneria* should be treated as a strictly separate from *Agropyron*, *Elymus*, and *Kengyilia*. The genus *Hystrix* was established by Moench with the *Hy. patula* as the type based on morphological character of lacking glumes, or possessing subulate or linear-setiform ones [21]. Dewey [9] and Löve [12] proposed to put *Hystrich* in *Elymus* based on the fact that *Hy. patula* contains the StH genome. However, it was suggested that species of *Hystrich* containing NsXm genomes, such as *Hystrich coreana*, *Hy. duthiei ssp. duthiei* and *Hy. duthiei* ssp. longearistata should be transferred into *Leymus* Hochst [22, 23]. The genus *Sitanion Rafinesque* was erected in 1819, and the type species was *Sitanion hystrich*. However, *Sitanion hystrich* and its varieties were treated as *Elymus hystrich* on the basis of cytogenetic studies [9, 24, 25]. The genus of *Kengyilia C. Yen et J. L. Yang* was described with *Kengyilia gobicola C. Yen et J. L. Yang* as the type species, which contains StYP genomes [26]. Based on the principle that taxonomic treatment should reflect phylogenetic history, Yen et al. [27] suggested that the genus *Elymus s. l.* should be split into *Elymus sensu stricto* (StH genome), *Roegneria C. Koch* (StY genome), *Australroegneria C. Yen & J. L. Yang* (later renamed *Anthosachne Steudel*) (StYW genome), *Campeostachys Drob.* (StYH genome), *Douglas deweya C. Yen, J. L. Yang & B. R. Baum* (StP genome), and *Kengyilia C. Yen et J. L. Yang* (StYP genome) [28]. This change has been supported by a few taxonomists [8, 18, 27–32]. Also, some systematists have treated *Elymus s. l.* species as different genera, based on differences in morphology and the regional distribution of those polyploid species [27, 30, 32].

All *Elymus s. l.* species are allopolyploids ranging from tetraploids, hexaploids to octaploids [12]. Cytogenetic analyses suggested that the St-, H-, P-, W-genome originated from *Pseudoroegneria (Nevski) A. Löve, Hordeum L.*, *Agropyron J. Gaertn.*, and *Australopyrum (Tzvelev) Á. Löve*, respectively [9, 12, 33]. No putative Y genome diploids have yet been identified [6, 9, 27, 33–35]. The St genome is the shared donor genome of the *Elymus s. l.* species which have StH, StY, StP, StYP, StYW and StYW genomes.

Several dioploid species with St genome in *Pseudoroegneria* occur from Ciscaucasica to the Middle East and Northern China, and on to western North America [12]. However, the evolutionary pathway of the St genome from diploid *Pseudoroegneria* to *Elymus s. l.* via hybridization and polyploidization is still unclear.

Gaining a better understanding of the evolutionary history of polyploids is important to the study of plant evolution [1]. Molecular phylogenetic analyses have aided in this process [1, 36, 37]. Nuclear internal transcribed spacer (nrITS) DNA sequences have been used to study phylogenetic and genomic relationships at lower taxonomic levels [38–41]. The chloroplast DNA (cpDNA) sequences, including coding and non-coding regions such as *rbcL* gene, *matK* gene, the intron of *trnL* and the intergenic spacer of *trnL-trnF* and *trnH-psbA* are also valuable source of markers for identifying the maternal donors of polyploids with additional capacity to reveal phylogenetic relationships of related species [38, 42–45]. In *Elymus s. l.*, both nuclear and chloroplast genes have been used to identify genome donors, to demonstrate hybridization events or introgression, to examine duplicate gene evolution, and to reveal the evolutionary history and origin of its species [38, 2, 3, 6–49].

In the present study, we analyzed the 6 accessions of 4 *Pseudoroegneria* species with St genome, 35 accessions of 12 other diploid species with P, W, V, H, I, E, Xp, Ns monogene, and 28 *Elymus s. l.* allotetraploids using one internal transcribed spacer region of nuclear gene (nrDNA ITS) and two chloroplast genes (*matK* and the intergenic region of *trnH-psbA*). The objectives of this study are: (1) to elucidate the phylogenetic relationships of some *Elymus s. l.* polyploid species; (2) to examine the genetic differentiation of St genome in *Pseudoroegneria*; (3) to investigate the genetic differentiation of St genome in polyploid *Elymus s. l.* relative to each other and *Pseudoroegneria*; (4) to compare the nucleotide diversity of the St-genome sequences of nrITS, *matK*,...
and trnH-psbA between Elymus s. l. and its putative diploid donors and among Elymus s. l. species.

Results
Phylogeny analysis

nrITS analysis

With the assumed nucleotide frequencies A: 0.21490, C: 0.26170, G: 0.27980, T: 0.24360, the nrITS data yielded a single phylogenetic tree (−Lnlikelihood = 3004.4870), the proportion of invariable sites = none, gamma shape parameter = 0.5849. Likelihood settings from best-fit model (GTR + G) selected by Akaike information criterion (AIC) in Modeltest 3.7. The ML tree with bootstrap support (BS) above branches was illustrated in Fig. 1. We obtained St-, P-, H-type nrITS sequences from our Elymus s. l. species.

The nrITS sequences from polyploidy were split into five clades (Clade A-E). Clade A included the St-genome sequences of Pseudoroegneria spicata, Pse. stipifolia, and nineteen Elymus s. l. species (Anthosachne australasica, An. scabra except PI533213; Campeiosachtys breviaristata ZY0465, C. dahurica var. clyndrica, C. dahurica var. tangutorum Pr88-89 110, C. kamoji, Campeiosachtys nutans; Kengyilia melanthera Y9509; Roegneria anthosachnoides, R. grandis, R. stricta Y2388; Elymus canadensis PI531567, E. caninus PI531570, E. elymoides, E. hystrix except PI372546, E. mutabilis, E. sibiricus except ZY09243 and ZY09301, E. virginitus except Pr88-89-114, E. wawawaiensis) and the Ee genome sequence of Lophopyrum elongatum and Ee genome sequences of L. bessarabicum. Clade B consisted of the P-genome sequences of Agropyron cristatum and four Kengyilia species (K. gobicola, K. kokonorica, K. melanthera Y2078, Y3044 and K. hirsuta Y3068) species (76 % BS). In the Clade C, Dasypyrum villosum and nine Elymus s. l. species (Roegneria ciliaris, R. ciliaris var. japonensis, R. ugamica, R. pendulina, R. stricta Y2137 and Y2157; Campeiosachtys dahurica var. tangutorum Y2546; Elymus canadensis POT121, E. caninus PI499413, PI564910 and E. virginicus Pr88-89-114) were gathered together. Two Pseudoroegneria species (Pse. libanotica, Pse. strigosa ssp. aegilopoides) and two Elymus s. l. species (Campeiosachtys breviiastata PI262533; Elymus repens) formed Clade D. Hordeum species (H. bogdani and H. chilense) and the H-genome sequences of six Elymus s. l. species (Campeiosachtys breviiastata ZY13036, C. dahurica var. tangutorum ZY09246; Elymus caninus PI314621 and PI499412, E. canadensis PI236805, E. hystrix PI327546, E. sibiricus ZY09243 and ZY09301) comprised Clade E.

matK analysis

The ML analysis of the matK sequence data yielded a single phylogenetic tree (−Lnlikelihood = 1787.3855), with the assumed nucleotide frequencies A: 0.36600; C: 0.15890; G: 0.17570; T: 0.29940, the proportion of invariable sites = none, gamma shape parameter = 0.8381. Likelihood settings from best-fit model (TVM + G) were selected by AIC in Modeltest 3.7. We found all matk sequences from Elymus s. l. species corresponded to the St-type.

The tree illustrated in Fig. 2 was ML tree for the matK data with BS above branches. All the Elymus s. l. species and some diploid species of the Triticeae formed Clade I. The other diploid species were put outside Clade I. Within Clade I, the St-genome sequences of the following formed one subclade: all Pseudoroegneria species, the Ee genome
sequence of Lophopyrum elongatum, the E^b genome sequence of L. bessarabicum, the V genome sequence of Dasypyrum villosum and twenty-three Elymus s. l. species (Campeiostachys breviaristata, C. dahurica var. tangutorum except Y2147, C. kamoji; Kengyilia gobicola, K. kokonorica, K. melanthera except Y9059, K. hirsuta; Roegneria anthosachnoides, R. ciliaris, R. ciliaris var. japonensis except Pr87-88-322, R. glaberrima, R. grandis, R. pendulina except Pr87-88-373, R. ugamica, R. stricta; Elymus repens except Y1662, E. canadensis POT121, E. caninus except Pr499412 and Pr531570, E. hystrix Pr531615; E. mutabilis, E. sibiricus except ZY90243, E. virgincus Pr88-89-114, E. wawawaiensis). The other fourteen Elymus s. l. species (Anthosachne australasia, An. scabra; Campeiostachys dahurica var. cylindrica, C. dahurica var. tangutorum Y2147, C. nutans; Roegneria pendulina, R. ciliaris var. japonensis Pr87-88-322; Elymus canadensis except POT121, E. caninus except Pr499412 and Pr531570, E. elymoides, E. hystrix except Pr531615, E. repens Y1662, E. sibiricus ZY90243, E. virgincus except Pr88-89-114) were placed outside the subclade and formed a paraphyletic grade with a number of zero-length branches in the Clade I.

trnH-psbA analysis
Likelihood settings from best-fit model (K81uf + G) were selected by AIC in Modeltest 3.7 (−Ln likelihood = 1174.7281). The assumed nucleotide frequencies A: 0.35970; C: 0.17790; G: 0.18010; T: 0.28230, the proportion of invariable sites = none, gamma shape parameter = 0.1481. The ML tree with BS above branches was illustrated in Fig. 3. We obtained two different St-type trnH-psbA sequences from Elymus s. l. species.

Pseudoroegneria stipifolia, Pse. strigosa ssp. aegilopoides Pr531752 and twelve Elymus s. l. species (Anthosachne. An. australasia Pr533055, An. scabra except Pr533186 and Pr533213; Campeiostachys: C. breviaristata except ZY3036, C. kamoji and C. nutans Y0744; Kengyilia: K. gobicola, K. hirsuta, K. kokonorica, K. melanthera except Y2708; Elymus: E. wawawaiensis Pr610982, E. virginicus PI372542 and E. sibiricus except ZY90243) were placed outside the Clade One, forming a paraphyletic grade with a number of zero-length branches in the ML tree inferred from the trnH-psbA data. Within Clade One, Pse. libanotica, Pse. strigosa ssp. aegilopoides Pr595164, Pse. spicata, E^e genome sequence of Lophopyrum elongatum and the E^b genome sequence of Lo. bessarabicum were grouped with the other Elymus s. l. species. The H and I genome sequence of Hordeum species (H. bogdanii, H. chilense, H. vulgare) and the V genome sequence of Dasypyrum villosum were placed at the bottom of the Clade One.

MJ-network analysis
As no recombination was detected using the GARD recombination-detection method within the HyPhy package, nrITS, matK, and trnH-psbA sequences obtained in this study were used to generate MJ network. Each circular network node represents a single sequence haplotype, with node size being proportional to number of isolates with that haplotype. Median vectors (mv representing...
missing intermediates) show unsampled nodes inferred by MJ network analysis, and the number along the branches shows the position of mutations. Different species sharing a same haplotype circular network node were represented by distinct colors. Network loops represent either true reticulation events or alternative genealogies in closely related lineages.

Seventy-six, forty-eight, and thirty-three haplotypes were derived from 98 nrITS sequences (Fig. 4), 102 matK sequences (Fig. 5), and 95 trnH-psbA sequences (Fig. 6), separately. We found median-joining (MJ) network showed a consistent phylogenetic reconstruction with ML tree. We identified those clusters into names shown in the Mt tree and make it clearly concerted. In the nrITS MJ network analysis, five clusters (Cluster N-A to Cluster N-E) representing three distinct types of haplotypes (St-, P-, and H-type) of Elymus s. l. In the matK MJ-network analysis, all the species with St genome clustered together with St diploid species in Cluster N-I. The trnH-psbA MJ network analysis recognized two different St-types of haplotypes of Elymus s. l. species, grouped in Cluster N-One and N-Two.

Nucleotide diversity analysis in St genome

Two measures of nucleotide diversity π and θw, were separately calculated for each set of sequence data for the St genome of the diploid species (Pseudoroegneria), tetraploid StH and StY species and hexaploid StYW, StYH, StYP and StStH species. The Tajima’s test and Fu and Li’s test were conducted on each of different genome composing data sets (Table 1).
The St-type nrITS sequence of StYP species is missing from our data, thus we cannot report nucleotide diversity for that category. trnH-psbA sequences obtained from the StStH species (*Elymus repens*) were identical, in that case nucleotide diversity was zero. Tajima's and Fu and Li's D estimate for the *trnH-psbA* sequences from St genome species and Tajima's D estimate for the *trnH-psbA* sequences from StYW genome species were
positive, indicating a departure from the equilibrium neutral model at this locus, with an excess of rare sequence variants in the St genome diploid species and StYW genome hexaploid species based on \textit{trnH-psbA} sequences.

Discussion

Phylogenetic relationships among the polyploids in \textit{Elymus} s. l.

\textit{Elymus} s. l. consists of allopolyploids that are widely distributed and includes a number of endemic species. Analyses of nrITS, \textit{matK} and \textit{trnH-psbA} sequences collected from a wide range of \textit{Elymus} s. l. species and related genera can shed light on their phylogenetic relationships, ancestral donors and the polyploidization events in the speciation processes on the basis of orthologous comparison.

The genus \textit{Campeioastachys} was established using morphology based on a single species \textit{Campeioastachys schrenkiana} (Fisch. & Mey. ex Schrenk) Drobov [50]. Baum et al. [32] suggested keeping the genus name \textit{Campeioastachys} Drobov for the allohexaploid species with the genomic constitution StStHHYY which admittedly cannot be separated morphologically from the traditional genus \textit{Elymus}. For example, based on the genome constitution, \textit{Elymus breviaristatus} Keng was treated as \textit{Campeioastachys breviaristata} (Keng) Y. H. Zhou, H. Q. Zhang et C. R. Yang. According to Yen et al. [51], \textit{Elymus tangutorum} (Nevski) Hand. -Mazz was treated as \textit{Campeioastachys dahurica} var. \textit{tangutorum} in the \textit{C. dahurica} complex [52]. Subtle morphological differences have often formed the basis for taxon recognition within the complex, resulting in different taxonomic treatments of the \textit{Elymus dahurica} complex. The species complex possesses three haploines St, Y, and H with 2\textit{n} = 6\textit{x} = 42 chromosomes and has an Asiatic distribution, ranging from Iran to Japan and from southern Siberia to central China [12].

Fig. 5 Median-joining networks based on \textit{matK} locus haplotype of species of \textit{Elymus} sensu lato, its diploid donor and affinitive species. Haplotypes in network are represented by circles. Different species sharing a same haplotype circular network node were represented by distinct colors. Numbers along network branches indicate the position of mutation between nodes. Abbreviations of species names are listed in Additional file 1: Table S1. The numbers after species names represent different accessions of the same species.
[54], and other considerations [55] in the *Elymus dahurica* complex supported the genomic constitution of St, Y, and H haplotypes. The ML tree and MJ network based on nrITS data from this study, combined with unpublished GISH (Genomic in situ hybridization) results, confirms the genomic constitution of St, Y, and H haplotypes in *E. tangutorum* and *E. breviaristatus*. Morphologically, *E. tangutorum* and *E. breviaristatus* are similar to the species in *Campeiostachys* in that they share the characteristic of palea and lemma having equal length [51]. Despite subtle morphological differences in these species, we strongly support the taxon treatment based on both genomic constitution and morphology. Thus, *E. tangutorum* should be treated as *C. dahurica* var. *tangutorum* and *E. breviaristatus* should be transferred into *Campeiostachys*.

It has been found recently that incomplete concerted evolution of nrDNA is widespread among angiosperms [56]. The frequency of heterogeneity among rDNA sequences is higher in allopolyploids than that in diploid and autopolyploid species [57]. The main cause of heterogeneity is slowed concerted evolution due to hybridization and polyploidy. Concerted evolution in an allopolyploid may lead to a novel combination of nrITS sequences representing a mixture of the two original parental nrITS sequences that occur within a single individual. It is also possible that unidirectional concerted evolution could subsequently occur, leading to the loss of one copy and fixation of the new nrITS type. Furthermore, both types of parental sequences of the nrITS region could be maintained, especially in the case in young hybrid-derived taxa that have had little opportunity for concerted evolution [57–59]. In the present ML analysis, *Anthosachne scabra* (StYW, PI533213, Australia) was placed at abnormal branches site with St-type nrITS sequences obtained from *Pse. libanotica* (St, Middle East), *Pse. strigosa* ssp. *aegilopoides* (St, PI595164, Central Asia; PI531752, Middle East), *Roegneria* (StY, Central Asia), *Campeiostachys* (StYH, Central Asia) and *Elymus* (StH, Central Asia and StStH, Central Asia). Additionally, a GA/GT insert at position 119–122 in the ITS sequence was detected for

![Fig. 6 Median-joining networks based on nrH-psbA locus haplotype of species of Elymus sensu lato, its dioploid donor and affinitive species. Haplotypes in network are represented by circles. Different species sharing a same haplotype circular network node were represented by distinct colors. Numbers along network branches indicate the position of mutation between nodes. Abbreviations of species names are listed in Additional file 1: Table S1. The numbers after species names represent different accessions of the same species.](image-url)
the Roegneria species in Clade C. At the same position, a GGT/AT insert in the nrITS sequence was detected for the Elymus, Pseudoroegneria and Anthosachne scabra (StYW, PI533213, Australia) species in Clade D. A CCAC insert at position 417−420 was detected for all species mentioned. And, these two clades were very close to each other. Thus, we hypothesized that the nrITS type obtained from this group might be a mid-type, representing a mixture of the two ancestral nrITS sequences (St- and St-Y-type). This situation may be due to inter-genome recombination, following hybridization either before or after the chromosome doubling event. Furthermore, Pseudoroegneria from Central Asia might have acted as an ancestor in the hybrid history of Roegneria (StY, Central Asia), resulting recombination sequences. Previous findings on the evolution of nrITS sequences in allopolyploids are typically similar to our findings; sequences that represent some combination of ancestral input [60, 61].

The differentiation of St genome in Elymus s. l.
Prior research has demonstrated the evolutionary differentiation of the St genome in different diploid species. Considering the morphological differentiation of Pseudoroegneria, Pse. stipifolia has rough rachis densely covered by prickles; P. spicata has slender awns and unequal glumes; Pse. strigosa has long awns with equal glumes; but Pse. tauri and Pse. libanotica have no awns with unequal glumes [62]. The molecular data also shows differentiation in Pseudoroegneria. Sun et al. [63] reported a 39 bp MITE stowaway element insertion in the region of nuclear RNA polymerase II (RPB2) gene for Pse. spicata and Pse. stipifolia; Pse. tauri and Pse. libanotica lack this insertion. The Pseudoroegneria diploid species are widely distributed extending from Ciscaucasia to Middle East and Central Asia, and on to western of North America [12]. In our study, Pse. libanotica (Middle East), Pse. strigosa ssp. aegilopoides (PI595164, Central Asia; PI531752, Middle East), Pse. stipifolia (Central Asia), and Pse. spicata (North America) were used in the phylogenetic analysis based on the nrITS, matK and trnH-psbA data. All Elymus s. l. species grouped with the Pseudoroegneria species in the ML tree and MJ network using the matK data. Although in the ML tree and MJ network based on the trnH-psbA data, Pse. stipifolia from Central Asia and Pse. strigosa ssp. aegilopoides (PI531752) from Middle East were closely placed with six Elymus s. l. tetraploids and sixteen Elymus s. l. hexaploids, Pseudoroegneria

Table 1 Estimates of nucleotide diversity and test statistics at nrITS, matK and trnH-psbA locus on St-genome in species of Elymus sensu lato

Gene	n	s	n	θ_w	Fu & Li’s D	Tajima’s D	
StH species	nrITS	512	46	0.0142	0.0250	−2.2572 (0.10 > P > 0.05)	−1.7192 (0.10 > P > 0.05)
	matK	750	20	0.0035	0.0069	−2.5829 (P < 0.05)	−1.7801 (0.10 > P > 0.05)
	trnH-psbA	559	10	0.0039	0.0046	−1.2038 (P > 0.10)	−0.5366 (P > 0.10)
StY species	nrITS	499	22	0.0108	0.0133	−0.8768 (P > 0.10)	−0.7672 (P > 0.10)
	matK	751	11	0.0024	0.0043	−1.8900 (P > 0.10)	−1.6981 (0.10 > P > 0.05)
	trnH-psbA	559	9	0.0026	0.0048	−2.5326 (P > 0.05)	−1.6134 (0.10 > P > 0.05)
StYW species	nrITS	516	14	0.0077	0.0105	−1.4635 (P > 0.10)	−1.3534 (P > 0.10)
	matK	751	8	0.0032	0.0039	−0.7308 (P > 0.10)	−0.7695 (P > 0.10)
	trnH-psbA	565	9	0.0062	0.0059	−0.1073 (P > 0.10)	0.2621 (P > 0.10)
StYP species	nrITS	–	–	–	–	–	–
	matK	754	4	0.0019	0.0020	−0.2642 (P > 0.10)	−0.0754 (P > 0.10)
	trnH-psbA	564	5	0.0020	0.0033	−1.8812 (0.10 > P > 0.05)	−1.6775 (0.10 > P > 0.05)
StYH species	nrITS	513	18	0.0104	0.0129	−0.7412 (P > 0.10)	−0.9514 (P > 0.10)
	matK	750	6	0.0018	0.0027	−1.7133 (P > 0.10)	−1.1962 (P > 0.10)
	trnH-psbA	560	10	0.0059	0.0060	−0.5505 (P > 0.10)	−0.0104 (P > 0.10)
StStH species	nrITS	515	6	0.0062	0.0064	−0.3145 (P > 0.10)	−0.3145 (P > 0.10)
	matK	754	4	0.0027	0.0029	−0.7801 (P > 0.10)	−0.7801 (P > 0.10)
	trnH-psbA	–	–	–	–	–	–
Pseudoroegneria	nrITS	514	9	0.0079	0.0077	−0.0922 (P > 0.10)	−0.1890 (P > 0.10)
	matK	753	5	0.0022	0.0029	−1.3683 (P > 0.10)	−1.3370 (P > 0.10)
	trnH-psbA	564	8	0.0066	0.0062	0.0777 (P > 0.10)	0.3865 (P > 0.10)

The n is the number of the sites (excluding sites with gaps/missing data), s is the number of segregating sites, n is the average pairwise diversity, and θ_w is the diversity based on the number of segregating sites.
libanotica and Pse. strigosa ssp. aegiloides (PI595164) from Middle East and Central Asia, Pse. spicata from North America were grouped with the rest Elymus s. l. species. Similar results were obtained in the ML tree and MJ network based on the nrITS sequence data. Collectively, the results implied that the Pseudoroegneria species from Central Asia and Middle East are more ancient than those from North America. Obviously, the differentiation exists in the diploid Pseudoroegneria species from Middle East, Central Asia and North America. The formation of Pseudoroegneria species appear to have originated in the Central Asia and Europe, later spreading to North America.

In this study, based on the matK data, all the Elymus s. l. species were grouped with the Pseudoroegneria species (with sub-clades) in the ML tree and MJ network. In contrast, the ML tree and MJ network based on the trnH-psbA data closely placed Pse. stipifolia from Central Asia and Pse. strigosa ssp. aegiloides (PI531752) from Middle East with three tetraploids (E. wawawaensis, E. virginicus and E. sibiricus) and nine hexaploids (C. breviaristata, C. kamoji, C. nutans, An. australasica, An. scabra, K. gobicola, K. hirsuta, K. kokonorica and K. melanthera). Pseudoroegneria libanotica and Pse. strigosa ssp. aegiloides (PI595164) from Middle East and Central Asia, Pse. spicata from North America were grouped with the rest Elymus s. l. species. Similar results were obtained from the ML tree based on the nrITS sequence data. The evolution of Elymus s. l. species might appears to parallel that of the Pseudoroegneria species, originating in Central Asia and Europe, then spreading to the North America via recurrent hybridization and polyploidization events. In addition, Elymus s. l. species were split into different St-groups. For instance, two accessions of hexaploid C. breviaristata were placed in separate St-genome clade in the ML tree based on the nrITS and trnH-psbA sequence data. The same situation was also detected in the tetraploid E. canadensis in the ML tree based on the matK and trnH-psbA sequence data. Such patterns indicate that differentiation of St genome existed in the species of Elymus s. l. at both the genus and species after polyploidization event based on the nrDNA ITS and the chloroplast matK and trnH-psbA molecular data. We also found non-coding cpDNA sequences (trnH-psbA) provided more phylogenetic information than coding cpDNA sequences (matK), revealing the differentiation of St genome in Elymus s. l. species more clearly.

Evolutionary dynamics of duplicate genes can provide a better understanding of the processes of polyploidization and subsequent rapid diversification [1, 4]. In this study, nrITS and matK nucleotide sequence diversity of the St genome of tetraploid StH and StY tetraploid species was higher than in the St genome of diploid Pseudoroegneria. Tajima’s and Fu and Li’s D estimate for the trnH-psbA in the St genome of diploid Pseudoroegneria was positive. This result indicated a departure from the equilibrium neutral model at this locus, with an excess of rare sequence variants in the diploid Pseudoroegneria species. This finding is compatible with a genetic bottleneck created by recent polyploidization during radiation of Pseudoroegneria species. The values of Tajima’s and Fu and Li’s D statistic for nrITS, matK and trnH-psbA sequence on StH and StY genome were all negative, indicating that the observed number of rare variations exceeds the expected number in an equilibrium neutral model. These estimates indicated that the excess of rare variants in tetraploid StH and StY species might be created by different independent hybridization event or introgression of St genome during polyploidization.

Our phylogenetic results support the possibility that StY tetraploid species was the direct ancestor of the StYW, StYP and StYH hexaploid species during the allohexaploid speciation process (see next discussion section). We compared the nucleotide sequence diversity of the nrITS, matK and trnH-psbA between the St genome of StY tetraploid species and the StYW, StYP and StYH hexaploid species, respectively. As the narrow distribution of StYW and StYP species and rare species of StYH species compared with StY species, the nucleotide sequence diversity in the St genome of tetraploid StY species were higher than in the St genome of hexaploid species (StYH and StYW for nrITS, matK sequence, and StYP for matK and trnH-psbA sequence). In addition, the values of Tajima’s and Fu and Li’s D statistic for nrITS, matK and trnH-psbA gene loci of the St genome of hexaploid StYW, StYP and StYH species (except the Tajima’s D for trnH-psbA gene on the St genome of hexaploid StYW species) were negative, indicating that the observed number of rare variations exceeds the expected number in an equilibrium neutral model. These estimates indicated that the excess of rare variants in hexaploid StYH, StYW and StYP species also have been created by different independent hybridization or introgression events of St genome during polyploidization.

Putative origins of the polyploids in Elymus s. l.
Cytogenetical studies have concluded that Pseudoroegneria, Hordeum, Australopyrum, and Agropyron species have served as the St, H, W, and P genome diploid donors, respectively, during the polyploid speciation of Elymus s. l. species [9, 17, 35]. In the ML tree based on the nrITS data, three types of nrITS sequences (St-, H- and P-type) were obtained from all the polyploidy Elymus s. l. species (except the An. scabra PI533213) in the present study. This result indicated that nrITS sequences in different Elymus s. l. species were very similar to their diploid ancestors, confirming that Elymus s. l. is closely
related to *Pseudoroegneria*, *Hordeum* and *Agropyron*. Combined with the prior cytogenetic results, we can conclude that the *Pseudoroegneria*, *Hordeum* and *Agropyron* species served as the St, H and P genome diploid donors during the allopolyploid speciation of *Elymus* s. l. species. Our conclusion is partly consistent with prior the single-copy nuclear gene data (Acc1 and Pgk1) studies [8]. Those studies also proposed that *Australopyrum* species served as the W genome diploid donors during the polyploid speciation of *Anthosachne* species. We did not obtain W-type nrITS sequences in this study. In a future study the W-type nrITS sequences from *Anthosachne* might be obtained by screening a larger number positive clones with the nrITS sequence insert to test whether *Australopyrum* contributed to the evolution of *Elymus* s. l. species.

Phylogenetic analysis of our nrITS data revealed each homoeologous sequence grouped with those from the corresponding diploid progenitors. Similarly, the homoeologous loci of nrITS from sampled StYH genome *Campeistachys* species (*C. komoji* and *C. nutans*), StYP genome *Kenyvilia* species (*K. melanterha*) and StYW genome *Anthosachne* species (*An. scabra* and *An. australasica*) were recovered, with each homoeologous locus also grouping with the StY genome *Roegneria* species (*R. anthosachnoid*, *R. grandis* and *R. stricta*) and StH genome *Elymus* sensu stricto species (*E. canadensis*, *E. caninus*, *E. elymoides*, *E. hystric*, *E. mutabilis*, *E. sibiricus*, *E. virginiicus* and *E. wawawaiensis*). These results strongly support the suggestion that the StYH, StYP and StYW genome species had their allohexaploid origin via StY as one of the hybridizing ancestors. Combined with the previous cytogenetic evidence, relatively large population size of the StY genome *Roegneria* species and the failure to discover the diploid Y-genome donor, it can be concluded that the StY genome species might serve as a direct donor of the StYH, StYP and StYW genome species during the allohexaploid speciation. These results also suggested a multiple origin of some polyploid species resulting from independent origin. This conclusion is compatible with the hypothesis of Yen et al. [27] and the results of Fan et al. [8]

Conclusion

In this study, the nrITS sequence analysis in different *Elymus* s. l. species showed a clear linkage between nrITS sequences of polyploid *Elymus* s. l. species and those of their diploid ancestors. Combined with the previous cytogenetic results, our data supported the premise that *Pseudoroegneria*, *Hordeum* and *Agropyron* species served as the St, H and P genome diploid donors during the polyploid speciation of *Elymus* s. l. species. Analyses of phylogenetic relationships based on nrITS data also showed that it is reasonable to treat the *E. tangutorum* as *C. dahurica* var. *tangutorum* and transfer the *E. breviaristatus* into *Campeistachys* in spite of subtle morphological differences in these species. We strongly support the taxonomy according to both genomic constitution and morphology. Sequence diversity patterns analyses of the two chloroplast genes suggested that the *Pseudoroegneria* (St genome donor) served as the maternal donor during the polyploidization events that gave rise to *Elymus* s. l. Those patterns also suggested that *Pseudoroegneria* species from Central Asia and Europe were more ancient than those from North America. *Elymus* s. l. species appear to have originated in Central Asia and Europe, then spread to the America after the recurrent hybridization and polyploidization events. Furthermore, differentiation of St genome existed at both genus and species level based on the nrDNA ITS and the chloroplast *matK* and *trnH-psbA* sequences. The molecular diversity of the two chloroplast genes and one nuclear DNA sequence in the St genome reflect the evolution of the St genome in the *Elymus* s. l. The molecular evolution in the St genome may go into a period of non-random evolution following the polyploidization event and introgression of St genome departing from the equilibrium neutral model due to a genetic bottleneck caused by recent polyploidization.

Methods

Taxon sampling

Twenty-eight *Elymus* s. l. species were included in this study and were analyzed together with sixteen diploid taxa representing nine basic genomes in the tribe Triticeae (See Additional file 1: Table S1). *Bromus inermis* Leyss was used as outgroup. The seed materials with PI numbers were kindly provided by American National Plant Germplasm System (Pullman, Washington, USA). We collected the seed materials with Pr, ZY, and Y numbers. The plants and voucher specimens were deposited at Herbarium of Triticeae Research Institute, Sichuan Agricultural University, China (SAUTI).

DNA extraction, amplification and sequencing

The CTAB (Cetyltrimethyl Ammonium Bromide) procedure [64] was used to isolate total DNA. The nuclear nrITS sequence, chloroplast *matK* and *trnH-psbA* spacer sequence were amplified with primers listed in Table 2. PCR amplification of the cpDNA was carried out in a 50 μL reaction mixture, containing 10× ExTaq polymerase buffer, 2 mM MgCl2, 200 μM of dNTP, 1 μM of each primer, 1.5 U ExTaq and about 30 ng of template DNA. Amplifications were performed on Mastercycler (Pro S, Eppendorf, Germany) using protocols described in Table 3. The PCR products were visualized on 1.0 % agarose gels, purified by an ENZAG™ gel extraction kit (Omega Bio-Tech, Georgia, USA) and then cloned into pMD19-T vector (TaKaRa, Dalian, China) according to the
manufacturer’s instructions. Three random clones per diploid were chosen to sequence. As there are at least three to five accessions for each allopolyploid in this study, only one random clone for each accession of allopolyploid was picked and sequenced. All clones were sequenced in both directions in Beijing Genomics Institute (BGI, Beijing, China).

Phylogenetic analysis
Multiple sequences alignments were made using ClustalX [65], with additional manual adjustment. Phylogenetic analyses were performed using Maximum likelihood (ML). Maximum likelihood analyses of the nrITS data, matK data and trnH-psbA data were performed in PAUP*4.0b10 (Swofford D L, Sinauer Associates, http://www.sinauer.com). The evolutionary model used for the phylogenetic analyses was determined using ModelTest v3.0 with Akaike information criterion (AIC) [66]. The optimal model were GTR + G for nrITS data, TVM + G for matK data, and K81uf + G for trnH-psbA data. Maximum likelihood heuristic searches were performed with 100 random addition sequence replications and Tree Bisection-Reconnection (TBR) branch swapping algorithm. In order to infer the robustness of clades, bootstrap support (BS) values were calculated with 1000 replications [67].

Network analysis
Taking into consideration the potential for reticulation in the evolution of polyploids, phylogenetic reconstruction method was used to study the relationship between ancestral and derived haplotypes in this study. Because we used known gene genealogies in our simulation studies, the median-joining (MJ) network method was performed [68]. The MJ network method has already been successfully used to study the specific progenitor-descendant relationship of polyploidy Triticeae species [69, 70, 11]. The MJ network analysis was generated by the Network 4.6.1.3 program (Fluxus Technology Ltd, Clare, Suffolk, UK). Because the program infers median-joining networks from non-recombining DNA [71], the GARD recombination detection method within the HyPhy package [72] was used to test for recombination.

Nucleotide diversity estimate
To assess the gene divergence and genetic relationships in the St genome between polyploids and its diploid progenitor, nucleotide diversity was estimated by Tajima’s π [73], and Watterson’s θ [74, 75]. Tajima’s π quantifies the mean percentage of nucleotide differences among all pairwise comparisons for a set of sequences, while Watterson’s θ is simply an index of the number of segregating (polymorphic) sites. Tests of neutrality including Tajima’s and Fu and Li’s D statistic were performed as described by Tajima [73], and Fu and Li [76]. Significance of D-values was estimated with the simulated distribution of random samples (1000 steps) using a coalescence algorithm assuming neutrality and population equilibrium [77]. These parameters were calculated with DnaSP 4.10.9 [78].

Availability of supporting data
The data sets supporting the results of this article were deposited in the GenBank (http://www.ncbi.nlm.nih.gov) repository. The phylogenetic trees were deposited in treebase (http://treebase.org) under following URL: http://purl.org/phylo/treebase/phylovs/study/TB2:S17529?x-access-code=6966b2e62a8ab50894460721ce2f4b7 &format=html. The data sets supporting the results of

Gene	Name of primers	Sequence of primer (5′-3′)	Reference
nrITS	ITS4	TCCTCCGTATATGATAGCC	White et al. [71]
	ITS5	GGAAGTAAAGTGCCTAC6G	
matK	W	TACCTATCCTATCCCAT	Hiliu et al. [72]
	9R	GCTAGAACCTCTGTCCTGA	
trnH-psbA	trnH1	GTTATGCACTGAACTGACTGCTC	Shaw et al. [73]
	trnH2	CGCCGATGTAATGCTACATCC	

Table 2 Names, sequences, and references of primers used in this study

Gene	Name of primers	Sequence of primer (5′-3′)	Reference
nrITS	ITS4	TCCTCCGTATATGATAGCC	White et al. [71]
	ITS5	GGAAGTAAAGTGCCTAC6G	
matK	W	TACCTATCCTATCCCAT	Hiliu et al. [72]
	9R	GCTAGAACCTCTGTCCTGA	
trnH-psbA	trnH1	GTTATGCACTGAACTGACTGCTC	Shaw et al. [73]
	trnH2	CGCCGATGTAATGCTACATCC	

Table 3 Thermocycling conditions for amplification of genes using the PCR

Gene	Protocol
nrITS	1 cycle: 5 min 95 °C
	35 cycles: 1 min 94 °C, 1 min52 °C, 1 min 72 °C
	1 cycle: 8 min72 °C
matK	1 cycle: 4 min 95 °C
	35 cycles: 1 min 94 °C, 1 min50 °C, 1.5 min 72 °C
	1 cycle: 10 min72 °C
trnH-psbA	1 cycle: 4 min 95 °C
	25 cycles: 1 min 94 °C, 1 min36 °C, 1 min 72 °C
	1 cycle: 7 min72 °C
this article are included within the article and its additional file.

Additional file

Additional file 1: Table S1. Species of Elymus sensu lato and the related species used in this study.

Abbreviations
ML: Maximum likelihood; nrITS: Nuclear ribosomal internal transcribed spacer; GISH: Genomic in situ hybridization; CTAB: Cetyltrimethyl ammonium bromide; AIC: Akaike information criterion; TBR: Tree bisection-reconnection; BS: Bootstrap support; MJ: Median-joining.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
DZZ designed the study, and wrote the manuscript; DZZ, FX and SLJ carried out data analyses; DZZ, ZJ and WY carried out part of experiments; KYH and ZHQ participated in its design and coordination and helped to draft the manuscript. WXL, ZL and DCB collected seed materials; YRW gave the good suggestions in the experiments and manuscript; ZHY planned the study, participate in the design of the experiments, and revised the manuscript. All authors read and approved the final manuscript.

Acknowledgements
We thank Dr. Norman Ellstrand, University of California Riverside, for copyediting and polishing the style of written English. We also thank three anonymous reviewers for their very useful comments on this manuscript. In addition, the authors are thankful to the National Natural Science Foundation of China (Nos. 30901052, 31200252, 31270243, 31470305), Special Fund for Agro-Scientific Research in the Public Interest of China (No. 201003021), and the Science and Technology Bureau (No. 20060503) and Education Bureau of Sichuan Province, China for the financial support.

Author details
Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Chengdu, Sichuan, China. 2Key Laboratory of Genetic Resources and Crop Improvement, Ministry of Education, Sichuan Agricultural University, Wenjiang 611130, Chengdu, Sichuan, China. 3College of Resources and Environment, Sichuan Agricultural University, Wenjiang 611130, Chengdu, Sichuan, China. 4College of Life Science, Sichuan Agricultural University, Yaan 625014, Sichuan, China.

Received: 8 December 2014 Accepted: 29 April 2015
Published online: 12 July 2015

References
1. Soltis DE, Soltis PS, Tate JA. Advances in the study of polyploidy since plant speciation. New Phytol. 2003;161:173–91.
2. Otto SP. The evolutionary consequences of polyploidy. Cell. 2007;131:452–62.
3. Soltis PS, Soltis DE. The role of genetic and genomic attributes in the success of polyploids. Proc Natl Acad Sci U S A. 2000;97:7051–7.
4. Wendel JF. Genome evolution in polyploids. Plant Mol Biol. 2000;42:225–49.
5. Symonds W, Soltis PS, Soltis DE. Dynamics of polyploid formation in Tripsogopon (Asteraceae): recurrent formation, gene flow, and population structure. Evolution. 2010;64:1984–2003.
6. Yan C, Sun GL. Multiple origins of allopolyploid wheatgrass Elymus caninus revealed by RPB2, PpC and TrnD/T genes. Mol Phylogenet Evol. 2012;64:441–51.
7. Fan X, Sha LN, Dong ZZ, Zhang HQ, Kang HY, Wang Y, et al. Phylogenetic relationships and Y genome origin in Elymus L. sensu lato (Triticeae, Poaceae) based on single-copy nuclear Acc1 and Pgm1 gene sequences. Mol Phylogenet Evol. 2013;69(3):919–28.
8. Yan C, Sun GL, Sun DF. Distinct origin of the Y and St genome in Elymus species: evidence from the analysis of a large sample of St genome species using two nuclear genes. PLoS One. 2011;6:e26853.
9. Dewey DR. The genomic system of classification as a guide to intergeneric hybridization with the perennial Triticeae. In: Gustafson JP, editor. Gene Manipulation in Plant Improvement. New York: Plenum Press; 1984. p. 209–80.
10. Lu BR. The genus Elymus L. in Asia. taxonomy and biosystematics with special reference to genome relationships. In: Wang RRC, Jensen KB, Jaussi C, editors. Proc 2nd Intem Triticeae Symp. Logan, Utah, USA: The Utah State University Press; 1994. p. 219–33.
11. Dong ZZ, Fan X, Sha LN, Zeng J, Wang Y, Chen Q, et al. Phylogeny and molecular evolution of the stb genome of St genome in Elymus sensu lato (Poaceae: Triticeae). Biochem Syst Ecol. 2013;50:322–30.
12. pérdiving J acidum. and molecular evolution of the Triticeae. Feddes Repert. 1984;95:425–521.
13. Linnaeus C. Species plantarum. L. Salvius: Stockholm; 1733.
14. Yen YL. Flora illustris plantarum primarum sinicarum (garmieae). Beijing: Science Press; 1959.
15. Tzvelev NN. Tribe 3. Triticeae durnot. In: Fedorov AA, editor. Poaceae URSS. Leningrad, USSR: Navka Publishing House; 1976. p. 147–81.
16. Barkworth ME. Taxonomy of the Triticeae: a historical perspective. Hereditas. 1992;116:1–14.
17. Jensen KB. Cytology and taxonomy of Elymus kengi, E. grandalum, E. alatovicus and E. batilinal (Triticeae: Poaceae). Genome. 1990;33:668–73.
18. Chen SL, Zhu GH. Elymus Linn. In: Wu ZY, Raven PH, Hong DY, editors. Flora of China. vol. 22. St. Louis: Science Press, Beijing and Missouri Botanical Garden Press; 2006. p. 400–29.
19. Baum BR, Yen C, Yang JL. Roegneria: its generic limits and justification for its recognition. Canad J Bot. 1991;69(2):282–94.
20. Baum BR, Yen C, Yang JL. Taxonomic separation of Kengyilia (Poaceae: Triticeae) in relation to nearest relative Roegneria, Elymus, and Agropyron, based on some morphological characters. Plant Syst Evol. 1995;194:123–32.
21. Moench C. Methodus plantas horti botanici et Agri marburgensis a situ primo describentis, Marginburgi Cattorum. 1794.
22. Jensen KB, Wang RC. Cytological and molecular evidence for transferring Elymus coreanus from the genus Elymus to Leymus and molecular evidence for Elymus californicus (Poaceae: Triticeae). Intern J Plant Sci. 1997;158(6):872–7.
23. Zhang HQ, Yang RW, Dou QW, Tsujimoto H, Zhou YH. Genome constitutions of Hystrix patula, H. duthiei ssp. duthiei and H. duthiei ssp. longearistata (Poaceae: Triticeae) revealed by meiotic pairing behavior and genomic in-situ hybridization. Chromosome Res. 2006;14(6):595–604.
24. Church GL. Taxonomic and genetic relationships of eastern North American species of Elymus with setaceous glumes. Rhodora. 1967;69:121–62.
25. Barkworth ME. Taxonomic and nomenclatural comments on the Triticeae in North America. Phytologia. 1997;83:302–11.
26. Yen C, Yang JL. Kengyilia gobicola, a new taxon from west China. Canad J Bot. 1990;68:1894–7.
27. Yen C, Yang JL, Yen Y. Hitoshi Kihara, Askell Löve and the modern genetic concept of the genera in the tribe Triticeae (Poaceae). Acta Phytotax Sin. 2005;43:82–93.
28. Yen C, Yang JL. Historical review and prospect of taxonomy of tribe Triticeae Dumortier (Poaceae). Breeding Sci. 2009;59:513–8.
29. Zhang HQ, Zhou YH. Meiotic analysis of the interspecific and intergeneric hybrids between Hystrix patula Moench and H. duthiei ssp. longearistata, Pseudoroegneria, Elymus, Roegneria, and Psathyrostachys species (Poaceae, Triticeae). Bot J Linn Soc. 2007;153:213–9.
30. Barkworth ME, Cutler DR, Rollo JS, Jacobs SM, Rashid A. Morphological identification of genomic genera in the Triticeae. Breed Sci. 2009;59:561–70.
31. Dou QW, Chen ZG, Liu YA, Tsujimoto H. High frequency of karyotype variation revealed by sequential FISH and GISH in plateau perennial grass forage Elymus nutans. Breeding Sci. 2009;59:961–6.
32. Baum BR, Yang JL, Yen J, Agafonov AV. A taxonomic synopsis of the genus Campestrachys drob. J Syst Evol. 2011;49:456–59.
33. Wang RRC, Bothmer RV, Dvorak J, Fedak G, Linde-Laursen I, Muramatsu M. Genome symbols in the Triticeae (Poaceae). In: Wang RRC, Jensen KB, Jaussi C, editors. Proc 2nd Intem Triticeae Symp. Logan, Utah, USA: The Utah State University Press; 1994. p. 29–34.
34. Wang RRC. Genome relationships in the perennial Triticeae based on diploid hybrids and beyond. Hereditas. 1992;116:133–6.
35. Torabinnejad J, Mueller RJ. Genome constitution of the Australian hexaploid grass, Elymus scabriflorus (Poaceae: Triticeae). Genome. 1993;36:147–51.
36. Sang T. Utility of low-copy nuclear gene sequences in plant phylogenetics. Crit Rev Biochem Mol Biol. 2002;37:121–47.
37. Mason-Gamer RJ. Reticulate evolution, introgression, and intertribal gene capture in an allohexaploid grass. Syst Biol. 2004;53:25–37.
38. Liu QL, Ge S, Tang HB, Zhang XL, Zhu GF, Lu BR. Phylogenetic relationships in *Elymus* (Poaceae: Triticeae) based on the nuclear ribosomal internal transcribed spacer and chloroplast *trn*F sequences. New Phytol. 2006;170:411–20.

39. Wendel JF, Schnabel A, Seelanan T. An unusual ribosomal DNA sequence from *Gossypium* gossypioideae reveals ancient, cryptic, intergenic intron, Mol Phylogenet Evol. 1995;2:238–313.

40. Mahella V, Kopecký D. Gene capture from across the grass family in the alloploid *Elymus repens* (L.) Gould (Poaceae: Triticeae) as evidenced by ITS, GBSSI, and molecular cytogenetics. Mol Biol Evol. 2010;27:1370–90.

41. Fan X, Liu J, Sha LN, Sun GL, Hu QZ, Zeng J, et al. Evolutionary pattern of *rDNA* following polyploidy in *Leymus* (Triticeae: Poaceae). Mol Phylogenet Evol. 2014;77:296–306.

42. Redinbaugh MG, Jones TA, Zhang Y. Ubiquity of the *St* chloroplast genome in *St*-containing Triticeae polyploids. Genome. 2000;43:846–52.

43. Mason-Gamer RJ, Orme NL, Anderson CM. Phylogenetic analysis of North American *Elymus* and the monogenomic Triticeae (Poaceae) using three chloroplast DNA data sets. Genome. 2002;45:991–1002.

44. Budak H, Sheenman CR, Dweikat I. Evolution of *bChl c* dactylocides based on cloning and sequencing of *rbcL*, *rbcS*, and *cbb* genes from plastid and mitochonadial genomes. Genome. 2005;48(3):411–6.

45. Luo XM, Tinker NA, Fan X, Zhang HQ, Sha LN, Kang HY, et al. Phylogeny and maternal donor of *Xenaglo* species (Poaceae: Triticeae) based on three cpDNA (*matK, rbcL, and trn*F-*psaA*) sequences. Biochem Syst Ecol. 2012;46:61–9.

46. Mason-Gamer RJ. Origin of North America *Elymus* (Poaceae: Triticeae) allopolyploids based of granule-bound starch synthase gene sequences. Syst Bot. 2001;26:757–8.

47. Fan X, Sha LN, Zeng J, Kang HY, Zhang HQ, Wang XL, et al. Evolutionary dynamics of the *Afkt* gene in the polyploid genus *Xenaglo* (Triticeae: Poaceae) and its diploid relatives. PLoS One. 2012;7:e31122.

48. Sun GL, Ni Y, Daley T. Molecular phylogeny of *RBB2* gene reveals multiple origin, geographic differentiation of *H* genome, and the relationship of the *Y* genome to other genomes in *Elymus* species. Mol Phylogenet Evol. 2008;46:997–1007.

49. Wang XL, Fan X, Zeng J, Sha LN, Zhang HQ, Kang HY, et al. Phylogeny and molecular evolution of the *DMC1* gene within the *StH* genome species in Triticeae (Poaceae). Genes Genom. 2012;34:237–44.

50. Drozdov VP. Campioeqtachys. In: Flora Uzbekistana (Vol 1). Tashkent: Schroeder RP. 1941. p. 300–1. 540.

51. Yen C, Yang JL, Baum BR. Systematics of Triticeae (Vol. 4). Bejing: Agriculture Publishing. 2013.

52. Agafonov AV, Baum BR, Bailey LG, Agafonova OV. Differentiation in the *Elymus dahuricus* complex (Poaceae): evidence from grain proteins, DNA, and crossability. Hereditas. 2001;135:277–89.

53. Baum BR, Bailey LG, Johnson DA, Agafonov AV. Molecular diversity of the 5S rDNA units in the *Elymus dahuricus* complex (Poaceae) supports the genomic constitution of *St*, *Y*, and *H* haploids. Canad J Bot. 2003;81:1091–103.

54. Savchikova EP, Bailey LG, Baum BR, Agafonov AV. Differentiation of the *SHY- genomic Elymus dahuricus* complex (Triticeae: Poaceae), revealed with the use of SDS electrophoresis of storage seed proteins and the AFLP analysis. Siberis Biological Zhurnal (Siberian Journal of Ecology). 2003;133–42.

55. Agafonov AV, Baum BR, Bailey LG, Agafonova OV, Plushk ER. *Elymus dahuricus* complex (Poaceae): Variation, crossability, taxonomy, In: Hernandez P, Moreno MT, Cubero JLA, Martin A, editors. Proceedings of the 4th International Triticeae Symposium: 10–12 September 2001; Cordoba Spain. Cordoba Spain: Vicerconcejeria Servicio de Publicaciones y Divulgacion (Vicerconcejeria Service Publications & Disclosure); 2002. p. 31–6.

56. Bailey CD, Cant TG, Harris SA, Hughes CE. Characterization of *Angiosperm* nDNA polymorphism, paralogy, and pseudogenes. Mol Phylogenet Evol. 2003;29:435–55.

57. Koch M, Al-Shehbaz IA. Molecular systematics of the Chinese *Yitshunhua* (Brassicaceae): evidence from plastid *trnL* intron and nuclear ITS DNA sequence data. Ann Missouri Botanical Garden. 2000;87:246–72.

58. Frantz M, Mummenschhoff K. Recent hybrid speciation in *Cardamine* (Brassicaceae): invention of nuclear ribosomal ITS sequences in status rauscos. Theor Appl Genet. 1999;98:831–4.

59. Popp M, Oxelman B. Inferring the history the polyploid *Silene aegae* (Caryophyllaceae) using plastid and homoeologous nuclear DNA sequences. Mol Phylogenet Evol. 2001;20:474–81.

60. Wendel JF, Schnabel A, Seelanan T. Bi-directional interlocus concerted evolution following allopolyploid speciation in cotton (*Gossypium*). Proc Natl Acad Sci U S A. 1995;92:280–4.

61. Rauscher JT, Doyle JJ, Brown AH. Multiple origins and nDNA internal transcribed spacer homoeologue evolution in the *Glycine tomentella* (Leguminosae) allopolyploid complex. Genetics. 2004;166:987–98.

62. Yen C, Yang JL, Baum BR. Systematics of Triticeae (Vol. 4). Bejing: Agriculture Press; 2011.

63. Sun GL. Genetic diversity of *rbl* gene in *Elymus trachycaulus* complex and their phylogenetic relationships to several Triticeae species. Genet Resour Crop Evol. 2007;54:137–46.

64. Doyle JJ, Doyle JL. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Photochem Bull. 1987;19:11–5.

65. Thompson JD, Plevniak F, Poch O. A comprehensive comparison of multiple sequence alignment programs. Nucleic Acids Res. 1999;27:2682–90.

66. Posada D, Crandall KA. Modeltest: testing the model of DNA substitution. Bioinformatics. 1998;14:817–8.

67. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985;39:783–91.

68. Casens I, Marduply P, Milinkovitch MC. Evaluating intraspecific “network” construction methods using simulated sequence data: do existing algorithms outperform the global maximum parsimony approach? Syst Biol. 2005;54:363–72.

69. Kilián B, Žískan H, Deusch O, Effgen S, Brandolini A, Kohl J, et al. Independent wheat B and G genome origins in outcrossing Aeglops progenitor haplotypes. Mol Biol Evol. 2007;24:217–27.

70. Fan X, Sha LN, Yang RW, Zhang HQ, Kang HY, Zhang L, et al. Phylogeny and evolutionary history of *Leymus* (Triticeae: Poaceae) based on a single-copy nuclear gene encoding plastid acetyl-CoA carboxylase. BMC Evol Biol. 2009;9:247.

71. Bandelt HJ, Forster P, Röhl A. Median-joining networks for inferring intraspecific phylogenies. Mol Phylogenet Evol. 1999;16:37–48.

72. Pond SL, Frost SD, Mose SV. HyPhy: hypothesis testing using phylogenies. Bioinformatics. 2005;21:676–9.

73. Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1983;123:585–59.

74. Watterson GA. On the number of segregating sites in genetical models without recombination. Theor Popul Biol. 1975;7:256–76.

75. Wakeley J, Hey J. Estimating ancestral population parameters. Genetics. 1997;145:847–55.

76. Fu YX, Li WH. Statistical tests of neutrality of mutations. Genetics. 1993;133:693–709.

77. Hudson RR. Gene genealogies and the coalescent process. In: Futuyma D, Antonovics J, editors. Oxford Surveys in Evolutionary Biology. New York: Oxford University Press; 1990. p. 1–44.

78. Rozas J, Sánchez-DelBarrio JC, Meseguer X, Rozas R. DNA Sequence Polymorphism, version 4.10;4; DNAps4 Computer Software. Barcelona, Spain: Barcelona University; 2005.