Mitochondrial gene polymorphisms alter hepatic cellular energy metabolism and aggravate diet-induced non-alcoholic steatohepatitis

Torsten Schröder 1,2, David Kucharczyk 1, Florian Bär 1, René Pagel 1,4, Stefanie Derer 1, Sebastian Torben Jendrek 1,4, Aninka Sünderhauf 1, Ann-Kathrin Brethack 1, Misa Hirose 3, Steffen Möller 3,7, Axel Künstner 8,12, Julia Bischof 3, Imke Weyers 3, Jörg Heeren 5, Dirk Koczan 6, Sebastian Michael Schmid 1, Senad Divanovic 7, Daniel Aaron Giles 7, Jerzy Adamski 6,9,10, Klaus Fellermann 1, Hendrik Lehner 1, Jörg Köhn 4,7, Saleh Ibrahim 8, Christian Sina 1,4

ABSTRACT

Objective: Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease and is associated with an enhanced risk for liver and cardiovascular diseases and mortality. NAFLD can progress from simple hepatic steatosis to non-alcoholic steatohepatitis (NASH). However, the mechanisms predisposing to this progression remain undefined. Notably, hepatic mitochondrial dysfunction is a common finding in patients with NASH. Due to a lack of appropriate experimental animal models, it has not been evaluated whether this mitochondrial dysfunction plays a causative role for the development of NASH.

Methods: To determine the effect of a well-defined mitochondrial dysfunction on liver physiology at baseline and during dietary challenge, C57BL/6J-mtFVB/N mice were employed. This conplastic inbred strain has been previously reported to exhibit decreased mitochondrial respiration likely linked to a non-synonymous gene variation (nt7778 G/T) of the mitochondrial ATP synthase protein 8 (mt-ATP8).

Results: At baseline conditions, C57BL/6J-mtFVB/N mice displayed hepatic mitochondrial dysfunction characterized by decreased ATP production and increased formation of reactive oxygen species (ROS). Moreover, genes affecting lipid metabolism were differentially expressed, hepatic triglyceride and cholesterol levels were changed in these animals, and various acyl-carnitines were altered, pointing towards an impaired mitochondrial carnitine shuttle. However, over a period of twelve months, no spontaneous hepatic steatosis or inflammation was observed. On the other hand, upon dietary challenge with either a methionine and choline deficient diet or a western-style diet, C57BL/6J-mtFVB/N mice developed aggravated steatohepatitis as characterized by lipid accumulation, ballooning of hepatocytes and infiltration of immune cells.

Received January 6, 2016 • Revision received January 18, 2016 • Accepted January 25, 2016 • Available online 2 February 2016

http://dx.doi.org/10.1016/j.molmet.2016.01.010

1University of Lübeck, Department of Medicine I, Ratzeburger Allee 160, D-23538 Lübeck, Germany 2University of Lübeck, Institute for Systemic Inflammation Research, Ratzeburger Allee 160, D-23538 Lübeck, Germany 3University of Lübeck, The Lübeck Institute of Experimental Dermatology, Ratzeburger Allee 160, D-23538 Lübeck, Germany 4University of Lübeck, Institute of Anatomy, Ratzeburger Allee 160, D-23538 Lübeck, Germany 5University Hospital Hamburg-Eppendorf, Department of Biochemistry and Molecular Cell Biology, Martinistraße 52, D-20246 Hamburg, Germany 6University of Rostock, Institute of Immunology, Schillingallee 70, D-18057 Rostock, Germany 7Cincinnati Children’s Hospital Research Foundation, University of Cincinnati, Division of Immunobiology, 3333 Bument Avenue, Cincinnati, OH 45229-3026, USA 8Helmholtz Center, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, Ingolstaedter Landstraße 1, D-85764 Neunheverberg, Germany 9Technische Universität München, Lehrstuhl für Experimentelle Genetik, Liesel-Beckmann-Straße 4, 85350 Freising-Weihenstephan, Germany 10German Center for Diabetes Research (DZD), Ingolstaedter Landstraße 1, 85764 Neunheverberg, Germany 11Rostock University Medical Center, Institute for Biostatistics and Informatics in Medicine and Ageing Research, Ernst-Heydemann-Straße 8, D-18057 Rostock, Germany 12Max Planck Institute for Evolutionary Biology, Guest Group Evolutionary Genomics, August-Thienemann-Straße 2, 24306 Plön, Germany

*Corresponding author. Tel.: +49 451 500 4015; fax: +49 451 500 6242. E-mail: Christian.Sina@uksh.de (C. Sina).

List of abbreviations: ALT, alanine aminotransferase; Arg, arginine; AMP, adenosine monophosphate; AMPK, AMP-activated protein kinase; pAMPK, phosphorylated AMP-activated protein kinase; Asp, aspartic acid; ATP, adenosine triphosphate; ATP8, ATP synthase protein 8; Asp, aspartic acid; C18, hexadecanoyl-carnitine; CD, control diet; C39, cluster of differentiation receptor 3; CYP51A1, cytochrome P450, family 51, subfamily A, polypeptide 1; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; Gr1, granulocyte differentiation antigen 1; H&E, hematoxylin and eosin staining; H2O2, hydrogen peroxide; Hsd17b7, 17-beta-hydroxysteroid dehydrogenase type 1; IDI1, isopentenyl-diphosphate delta isomerase 1; IPA, ingenuity pathway analysis; IL, interleukin; Ly6G, lymphocyte antigen 6 complex, locus G; mitochondria; Met, methionine; MCM5, mitochondrial complex 5; MCM5, mitochondrial complex 5; NAFL, non-alcoholic liver steatosis; NASH, non-alcoholic fatty liver disease; NAS, NAFLD activity score; NASH, non-alcoholic steatohepatitis; OCR, oxygen consumption rate; OXPHOS, oxidative phosphorylation system; ROS, reactive oxygen species; PBS, phosphate buffered saline; SNPs, single nucleotide polymorphisms; SOD2, superoxide dismutase 2; STRING, Search Tool for the Retrieval of Interacting Genes/Proteins; KEGG, Kyoto Encyclopedia of Genes and Genomes; TNFα, tumor necrosis factor alpha; Ty, tyrosine; WD, western-style diet;
1. INTRODUCTION

Along with the worldwide obesity pandemic, the prevalence of non-alcoholic fatty liver disease (NAFLD) is constantly rising [1,2]. The NAFLD disease spectrum encompasses simple steatosis (NASH), steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma [3]. NAFL is characterized by an accumulation of hepatocellular lipids — mainly triglycerides [4,5], whereas NASH is identified by the addition of inflammation [6]. In contrast to simple hepatic steatosis, the incidence of NASH substantially increases the risk for hepatic diseases as well as cardiovascular complications and overall mortality [7–12]. It is estimated that 10–20% of NAFL patients progresses to NASH, but the risk factors and mechanisms involved in this progression are still poorly understood [6].

An increasing body of literature supports the observation that mitochondrial dysfunction is involved in the development of NASH. This is based on the frequent detection of the abundant formation of hepatic reactive oxygen species (ROS), lipid peroxidation, cellular energy depletion, increased expression of pro-inflammatory cytokines and ultrastructural lesions of mitochondria [13,14]. Additionally, it was recently demonstrated that patients with NASH, but not with simple hepatic steatosis, exhibit reduced mitochondrial respiration [15]. However, whether hepatic mitochondrial dysfunction plays a causative role in the progression to NASH or is a consequence of hepatic inflammation remains uncertain due to a lack of appropriate experimental animal models [16,17].

Mitochondrial function is affected by both exogenous and endogenous factors. Exogenous factors include drugs, nutritional residues, aging, and lack of exercise, all of which are frequently present in modern societies [14]. With regard to endogenous factors, mitochondrial dysfunction is frequently induced by single nucleotide polymorphisms (SNPs) of the mitochondrial genome and insufficient mitochondrial DNA repair mechanisms [18]. In fact, a variation of the mitochondrial genome has already been linked to advanced stages of NAFLD in a case-control association study [19].

To further evaluate the association between mitochondrial gene polymorphisms and NASH, we used an established mouse model of mitochondrial dysfunction linked to a non-synonymous gene variation (nt7778 G/T) of the mitochondrially encoded ATP8, a complex V protein of the mitochondrial respiratory chain [20]. This gene polymorphism has been previously demonstrated to contribute to experimental diseases such as autoimmunity, neurodegeneration and β-cell dysfunction [21–23]. Here, we demonstrate initial evidence for the possible impact of this mitochondrial gene polymorphism on experimental NASH.

2. MATERIAL AND METHODS

2.1. Animal treatment and induction of experimental non-alcoholic steatohepatitis

Mice of the congenic inbred strain C57BL/6J-mtFVB/N (B6-mtFVB) exhibit a non-synonymous variation of the mitochondrial encoded mt-ATP8 of the complex V of the mitochondrial respiratory chain as well as synonymous variations of mt-ND3 (complex I) and mt-RRN4.95 (Table 1). Next generation sequencing technology was used to exclude other mutations as well as heteroplasmacy. The nuclear genome was identical between B6-mtFVB and C57BL/6J (B6-6mFVB), which were used as control strain [20,21]. Mice were maintained in a regular 12-h light–dark cycle under standard conditions and were provided with food and water ad libitum. After weaning, at the age of 4 weeks, mice of both sexes were offered free access to control diet (CD; Altromin 1324) or methionine and choline deficient diet (MCDD; Ssniff MCD TD.90262) for 8 weeks. For a second dietary intervention, B6-mtFVB and B6-mtB6 mice of both sexes were fed either the CD as above or a western-style diet for a period of 12 weeks (WD; Ssniff EF R/M acc. TD88137 mod.), which contained 40% of calories derived from butter fat and cholesterol and which was enriched by fructose-sweetened water (30% fructose, Sigma Aldrich, Germany). All experiments were performed in accordance with the animal care guidelines of the University of Lübeck, Germany (acceptance no.: 73-5/12). Procedures involving animals and their care were conducted in accordance with national and international laws and policies.

2.2. ROS and ATP measurement

For detection of reactive oxygen species (ROS), hydrogen peroxide (H2O2) levels in liver tissue were determined using a commercially available kit (Amplex® Red Hydrogen Peroxide/Peroxidase Assay Kit, Invitrogen). ATP production was assessed as oxygen consumption rate (OCR) used to drive mitochondrial ATP production. For this, hepatocytes (2 × 10^5/100 μl) were isolated as described previously [24] and cultivated overnight in hepatocyte growth medium (DMEM, Gibco # 11966-025, 1% penicillin/streptomycin, 10% FCS). The XF Cell Mito Stress Test assay and the Seahorse Bioscience XF® Extracellular Flux analyzer were used following the manufacturer’s instructions.

2.3. Lipid peroxidation measurements

Lipid peroxidation products were determined utilizing a lipid peroxidation assay that measured malondialdehyde (MDA) in liver tissue according to the manufacturer’s protocol (Eagle Biosciences, LIP39-K01).

2.4. Western blot

Western blot analysis was performed according to standard protocols as described previously [25], see Supporting information for more details.

2.5. Metabolomics

Metabolic analysis was performed at the genome analysis center of the Helmholtz Center Munich, Germany as reported previously [26,27]. In brief, liver and plasma samples from CD fed B6-mtFVB and B6-mtB6 mice at the age of 12 weeks, 5 males and 5 females each, were analyzed. The spectrum of metabolites included acyl-carnitines, N-glycans, and nucleosides.

Position	Variation	Gene	Amino acid change
nt7778	G/T	mt-ATP8 (complex V)	Asp → Tyr
9821	8A/9A	mt-RRN4.95	syn.
9461	T/C	mt-ND3 (complex I)	syn.

The C57BL/6J-mtFVB/N mice are congenic inbred mice and genetically differ only in the mitochondrial genome. Variations concern the mt-ATP8 of complex V (nt7778, G/T) and mt-ND3 of complex I (9821, 8A/9A). Mice were fed control diet (CD) or methionine and choline deficient diet (MCDD) for 8 weeks. The list shows a summary of the more relevant mitochondrial genotypes analyzed in the study, where the corresponding variable was the one that also present the required amino acid change.
glycerophospholipids, sphingolipids, amino acids, and sugars. See Supporting information for more details.

2.6. Whole genome expression analysis
Total RNA was isolated from liver samples of 4 male mice per strain (12 weeks old, C57BL/6J CD feeding) and used for genome wide expression analysis. These samples were hybridized on Affymetrix GeneChip Mouse Gene1.0 ST arrays in cooperation with the core facility for microarray analysis of the Rostock University Medical Center. Hybridization, washing, and scanning of the arrays were performed according to Affymetrix protocols using the WT Labeling procedure. Analysis of mRNA levels, all mRNAs were filtered based on expression and variance to exclude genes with a high variability of expression. As a result, 4347 transcripts out of a total of 35556 measured transcripts could be used for further clustering and were analyzed for statistical significance between B6-mt^{FVB} and B6-mt^{B6} mice using the Mann–Whitney U test (p-value < 0.05). Following this, a KEGG pathway analysis was performed with 327 significantly regulated transcripts utilizing the STRING database (http://string-db.org/). See Supporting information for further details on statistical analysis.

2.7. Lipid content of liver tissues
Liver tissue (100 mg) was homogenized, lysed using lysis buffer (50 mM Tris; 2 mM CaCl₂; 80 mM NaCl; 1% Triton X-100; pH 8.0) and centrifuged to remove the cell debris. A supernatant was collected for further analysis. The protein content was determined by SDS-Lowry assay. Liver cell lipids were extracted with chloroform/methanol (8:5). Total concentration of liver cholesterol concentration (free cholesterol and cholesteryl esters) was measured using the enzymatic Amplex Red Cholesterol Assay Kit (A12216 Invitrogen) according to the manufacturer’s recommendations. Total triglyceride concentration was determined using commercially available enzymatic kits (Roche 11488872 and 11285874122) and the Amersham Biotrak² plate reader (540 nm).

2.8. Histopathological and immunohistochemical analysis of mouse liver tissue
Preparation of liver sections and histopathological techniques was performed according to standard protocols. Two independent observers performed all histological assessments in a blinded fashion. NASH was determined using the established NAFLD activity score (NAS) on H&E stained random liver sections as described elsewhere [28]. Briefly, a score of 0—2 excludes NASH, a score of 3—4 defines “borderline NASH”, and a score of 5 or higher warrants histological diagnosis of NASH. Furthermore, frozen sections of liver were stained using the lipid-specific Oil red O (Sigma Aldrich, Germany) or stained with the secondary antibody anti-rat Alexa 555 after incubating with anti-Ly6G or CD3 primary antibodies. Ly6G- and CD3-positive cells were counted per high-power field (magnification 200×) in 10 different areas chosen by chance on each slide (3 per mouse).

2.9. Quantitative real-time PCR
RNA extraction, reverse transcription and PCR using SYBR green were performed according to standard protocols and as described previously [25]. See Supporting information for details on procedures and primer sequences.

2.10. Statistical analysis
Results are expressed as mean with SEM. If not stated otherwise, p-values were calculated for two groups by a 2-tailed, non-parametric Mann–Whitney U test and for more than two groups by a 2-way ANOVA with Bonferroni post-test, both using GraphPad Prism version 5.03 for Windows, GraphPad Software, San Diego California USA, www.graphpad.com. p-values < 0.05 were considered statistically significant and marked with *, p-values < 0.01 were considered highly statistically significant and marked with ** and in case of p < 0.001 with ***.

3. RESULTS
3.1. B6-mt^{FVB} mice exhibit hepatic mitochondrial dysfunction and hepatocellular energy deficiency
Previous reports have demonstrated that B6-mt^{FVB} mice exhibit reduced mitochondrial function in the brain, spleen and pancreatic β-cells [21–23]. Thus, we assed whether these B6-mt^{FVB} mice exhibit hepatic mitochondrial dysfunction and whether this dysfunction plays a causal role in liver steatosis and inflammation. Comparable levels of basal metabolic parameters, such as weight and serum levels of fasting glucose and lipids, were observed between B6-mt^{FVB} and B6-mt^{B6} mice at baseline (Figure S1A–B). To confirm mitochondrial dysfunction in the liver of B6-mt^{FVB}, we assessed hepatic ROS formation and ATP production [29]. It was determined that...
ROS formation was increased more than 5-fold in B6-mtFVB as compared to control B6-mtB6 mice. Further, ATP production was reduced by more than 2-fold in B6-mtFVB mice (Figure 1A–B). Generation of oxidative radicals, such as ROS, typically leads to lipid peroxidation, which has been reported to be involved in the progression of NAFLD [30]. We found that levels of malondialdehyde, the representative cytotoxic lipid peroxide, were similar between B6-mtFVB and B6-mtB6 mice (Figure 1C). Additionally, hepatic mRNA expression of SOD2, a ROS clearing agent, was increased nearly 2-fold in the liver tissue of B6-mtFVB mice (Figure S1C). Thus, no oxidative stress appeared to be functionally present in liver tissue under the baseline condition. Decreased ATP production indicates low energy supply and is known to influence the key energy sensor AMP-activated protein kinase (AMPK), which genuinely plays a crucial role in the pathogenesis of NAFLD [31,32]. Interestingly, we observed a 3.5-fold increase in the phosphorylated, and thereby activated, pAMPK in liver of B6-mtFVB versus B6-mtB6 mice (Figure 1D). While a combination of low ATP production and an increase of pAMPK implies a defective hepatic energy supply, the unchanged basal metabolic parameters suggest no eminent impact of the hepatic mitochondrial dysfunction on systemic metabolism as measured by body weight, serum glucose, and lipid levels.

3.2. B6-mtFVB mice display unaffected hepatic morphology but alterations in metabolic profiling

The presence of hepatic mitochondrial dysfunction in B6-mtFVB mice suggested susceptibility to spontaneous hepatic steatosis or inflammation. However, histological analysis revealed normal liver tissue architecture in mice at 3 months of age. No differences were detected regarding the shape of hepatocytes, infiltration of immune cells or lipid accumulation (Figure 2A). Monitoring the liver tissue architecture of B6-mtFVB and B6-mtB6 control mice until the age of 12 months generated similar histological results (Figure 2B). B6-mtFVB mice presented features of hepatic energy deficiency, although no basal effect on liver morphology could be detected. To investigate for further consequences of mitochondrial dysfunction on energy homeostasis, we performed both hepatic and plasma metabolic profiling [33], which allows for a snapshot of in vivo energy metabolism. The wide spectrum of metabolic adaptations that occurred in B6-mtFVB mouse liver is illustrated in Figure 2.
screened metabolites included acyl-carnitines, glycerophospho- and sphingolipids, amino acids, and sugars. We found various acyl-carnitines were altered in liver and plasma. Specifically, C6 (C4:1-DC), C3-0H, C3, C18:2, C18:1, and C16 were significantly changed in liver tissue, and C3-DC (C4-0H) and C18:2 were significantly changed in plasma of B6-mtFVB mice compared to B6-mtB6 control mice (Figure 3A). Applying the ratio of free carnitine and the sum of the long-chain acyl-carnitines C16 and C18 (C0/[C16 + C18]) reflects function of carnitine-palmitoyltransferase I (CPT I), the enzyme necessary for free fatty acid transport into the mitochondria for β-oxidation [34,35]. Interestingly, the carnitine ratio was increased nearly 4-fold in the liver tissue but not in plasma of B6-mtFVB mice compared to control B6-mtB6 mice (Figure 3B), suggesting hepatic CPT I deficiency in B6-mtFVB mice. In addition to the altered acyl-carnitines, 5 out of 92 screened glycerophospholipids, 2 out of 15 hepatic sphingolipids, and the amino acids serine and methionine were altered in B6-mtFVB livers, but no sugars were altered (Figures S2–S3). In summary, the observed changes point towards an impact of the mitochondrial genome on hepatocellular energy metabolism in B6-mtFVB mice.

3.3. Alterations of metabolic pathways and the hepatic lipid content in liver tissue of B6-mtFVB mice under baseline conditions

To further determine the mechanisms and specific genes that may be altered by hepatic mitochondrial dysfunction, we performed a genome-wide mRNA expression analysis of liver samples from control diet (CD) fed B6-mtFVB and B6-mtB6 mice. This analysis revealed that 327 out of the initially screened 35556 transcripts were expressed differentially. KEGG pathway analysis using the STRING database revealed 56 transcripts to be jointly involved in 15 significantly changed pathways in B6-mtFVB versus B6-mtB6 mice (Figure 4A). Remarkably, 24 of these 56 transcripts are involved in metabolic pathways. Considering that Cyp51, Idi1 and Hsd17b7 are involved in lipid metabolism and lipid accumulation is one central feature of the NAFLD/NASH pathology, we wanted to assess the functional relevance of these findings and therefore analyzed the lipid content of liver samples collected from CD fed B6-mtFVB and B6-mtB6 control mice. Quantification of triglyceride levels in the livers of B6-mtFVB mice revealed a significant increase (1.4 times) compared to

![Figure 3: Altered levels of acyl-carnitines in liver and plasma of B6-mtFVB versus B6-mtB6.](image-url)
B6-mtB6 mice (Figure 4B). Additionally, liver cholesterol was 1.4 times decreased in these mice (Figure 4B). Taken together, these findings point towards a functional impact of the mitochondrial genome on hepatocellular lipid metabolism and lipid composition in B6-mtFVB mice at baseline, although it is effectively compensated under baseline conditions.

3.4. MCD diet-induced steatohepatitis was aggravated in B6-mtFVB mice

To determine whether hepatic mitochondrial dysfunction and subsequent energy deficiency influences the development of NASH, B6-mtFVB and B6-mtB6 mice were fed the NASH-inducing methionine and choline deficient diet (MCDD) [36]. After 8 weeks of feeding NASH progression was quantified based on histological analysis determining lipid accumulation, infiltration of immune cells and hepatocellular ballooning. Each of these criteria contributes to the NAFLD activity score (NAS) [28]. We observed that liver tissue from B6-mtFVB mice fed MCDD displayed increased hepatic lipid deposition and increased numbers of immune cells and ballooned hepatocytes, resulting in a significantly higher NAS as compared to B6-mtB6 mice (Figure 5A). To quantify levels of hepatic lipid deposition, we stained liver sections with Oil red O. Lipid content was found to be 1.5 times higher in liver sections of B6-mtFVB as compared to control mice (Figure 5B).

Hepatic inflammation is known to drive hepatocellular damage. In fact, serum levels of alanine transaminase (ALT), a clinical marker of hepatocellular damage, were increased (1.4 times) in B6-mtFVB as compared to B6-mtB6 mice (Figure 5C). Considering the changes in liver content of cholesterol and triglycerides under baseline conditions, we also quantified cholesterol and triglyceride levels in the liver after MCDD. Interestingly, both cholesterol and triglyceride levels were significantly increased in B6-mtFVB liver tissue samples as compared to those from either MCDD fed B6-mtB6 mice (Figure 5D) or CD fed B6-mtB6 mice (Figure 4B).

Figure 4: Gene expression analysis of hepatic lipid content under baseline conditions in B6-mtFVB mice. (A) Genome-wide mRNA expression analysis of liver samples revealed 327 transcripts to be expressed significantly different in B6-mtFVB mice compared to B6-mtB6 control mice (12 weeks old, control diet feeding). KEGG pathway analysis using the STRING database revealed 56 transcripts to be jointly involved in 15 significantly changed pathways in B6-mtFVB versus B6-mtB6 mice. The list (blue box) shows 24 genes involved in metabolic pathways, of which Cyp51, Idi1, and Hsd17b7 (in bold) affect lipid metabolism. (B) Hepatic content of triglycerides (left) and cholesterol (right) measured under baseline conditions in 12 weeks old mice, n = 23 (B6-mtB6), n = 29 (B6-mtFVB), data from 2 independent experiments.
We further explored immune cell infiltration by incubating liver sections with antibodies against immune cell surface markers (Ly6G, marker for neutrophils; CD3, marker for T cells). A 1.5-times higher infiltration of Ly6G- or CD3-positive cells in B6-mtFVB versus B6-mtB6 mice indicated increased hepatic infiltration of neutrophils and T cells (Figures S4A). In addition, we analyzed the expression of pro-inflammatory cytokines. Of note, under baseline conditions, the expression of TNF-α was increased 3-fold in B6-mtFVB mice at the
age of 12 weeks (Figure 6A), while similar mRNA expression levels were detected for Gr1, IL-17, IL-6, IL-1β, and IL-18 (Figures 6C, E, S4B). However, in line with findings from histological analyses of MCDD-induced steatohepatitis, the expression of the pro-inflammatory cytokines such as TNFα, Gr1, and IL-17 were significantly increased in liver tissue of B6-mtFVB mice compared to B6-mtB6 upon MCDD feeding (Figure 6B, D, F).

3.5. B6-mtFVB mice are more prone to the metabolic challenge of a western-style diet

Considering that the well-established MCDD model directly affects hepatocellular function but leads to decreased body weight and malnutrition, we next evaluated whether the observed phenotype persisted during a calorie-enriched dietary feeding. To test this, we used a fructose-enriched high-fat western-style diet (WD) for a short metabolic intervention to detect early changes in liver physiology [37]. WD feeding resulted in higher body and liver weights in female B6-mtFVB mice compared to female B6-mtB6 control mice, but no changes in body or organ weight of male B6-mtFVB mice were observed (Figure S5A). Fasting glucose levels of both male and female B6-mtFVB mice were increased compared to B6-mtB6 control mice, indicating a disturbed systemic glucose tolerance (Figure 7A). The expression levels of TNFα mRNA transcripts as well as the serum levels of ALT in B6-mtFVB mice were significantly increased in both males and females, indicating exacerbated hepatic inflammation (Figure 7B–C). However, levels of hepatic Gr1

Figure 6: Pro-inflammatory cytokine expression in B6-mtFVB at baseline and upon MCDD feeding. Relative mRNA abundance of TNFα after 8 weeks CD feeding (A) and 8 weeks MCDD feeding (B), Gr1 after 8 weeks CD feeding (C) and MCDD feeding (D), and IL-17 after 8 weeks control diet (E) and MCDD feeding (F); each in relation to beta-2 microglobulin, n = 12 (B6-mtB6), n = 16 (B6-mtFVB), 2 independent experiments.
and IL-17 mRNA expression as well as the amount of liver lipids were similar in WD fed B6-mtFVB and B6-mtB6 mice of both sexes (Figures 7D–E, S5B). Of note, the levels of hepatic lipids in B6-mtFVB mice after WD feeding were as high as the levels after MCDD feeding (male and female). Further, histological analysis was employed to determine NAS in male and female B6-mtFVB versus B6-mtB6 control mice (Figure 7E). We detected stronger lipid accumulation and immune cell infiltration in liver sections of B6-mtFVB mice compared to B6-mtB6 control mice. Despite the short period of feeding, we found sporadic signs of hepatic ballooning that were accompanied by an increased (1.9 times) NAS in B6-mtFVB versus B6-mtB6 mice (Figure 7E). In summary, B6-mtFVB mice show a higher susceptibility to the metabolic challenge of a WD feeding.

4. DISCUSSION

Due to the frequent detection of indicators of mitochondrial dysfunction, such as ROS and low ATP levels, in patients or mouse models with NASH [13,16,38–40], mitochondrial dysfunction is widely thought to be a key promoter in the pathology of NASH. However, considering that NASH represents an inflammatory disease, which itself might induce these indicators of mitochondrial dysfunction, it is still a matter of debate whether hepatic mitochondrial dysfunction is a cause or consequence of the development of NASH [16]. Currently, the leading hypothesis concerning the development of NASH is the two-hit or multiple-hit hypothesis, which states that multiple adverse events jointly contribute to the full pathogenesis of NAFLD [41,42]. It is widely accepted that hepatic accumulation of triglycerides represents the first hit; the second hit is thought to potentially be a variety of environmental...
stressors, such as dietary residues, hyperglycemia or hyperlipidemia. Of note, all of these are associated with the induction of mitochondrial dysfunction [43]. Mitochondrial gene polymorphisms frequently occur and can lead to mitochondrial dysfunction, whose impact is observed in various human diseases [18,19,44–46]. Due to the lack of recombination of mitochondrial DNA, mitochondrial gene variations are difficult to be mapped in experimental animal models [20]. Thus, consplicuous inbred strains uniquely allow to analyze the impact of mitochondrial gene variations on mitochondrial function and disease outcome.

The B6-mtFVB mice carry a non-synonymous variation of the mt-ATP8 gene as well as synonymous gene variations of mt-ND3 and mt-IRNA9 (Table 1). The mutation in the mt-ATP8 gene is the only one involving an amino-acid change, so it is the most likely cause of the observed alterations. However, an impact of the other variations certainly cannot be ruled out. In agreement with previous reports in other tissues [21–23], we could verify that B6-mtFVB mice display hepatic mitochondrial dysfunction. In addition, at baseline we detected increases in TNFα as a key feature of NASH reflecting the first hit [14,47]. However, we did not observe spontaneous lipid accumulation or signs of hepatic inflammation at baseline. Hence, this finding supports the idea that mitochondrial dysfunction alone is not sufficient to induce NASH. Indeed, upon dietary challenge, as a second hit, B6-mtFVB mice displayed an aggravated shape of NASH/NASH. Most strikingly, we already observed a NASH-like phenotype after a short 12 weeks period of WD feeding. This represents approximately half of the time principally needed to evoke the full picture of NASH in wild-type mice [37].

Thus, as the most salient finding of this study we could show that hepatic mitochondrial dysfunction due to naturally occurring mitochondrial gene polymorphisms in combination with a dietary stimulus is sufficient to jointly induce the whole range of NASH. Notably, during the short WD feeding we observed that female B6-mtFVB mice had a higher body and liver weight compared to female B6-mtB6 mice, whereas the weight of the males was similar between the two groups. Nonetheless, the NAS, ALT and glucose levels were similarly increased in male and female B6-mtFVB mice compared to B6-mtB6 control mice. The gender effect with respect to weight development remains to be elucidated, but, interestingly, similar gender-specific differences have already been described in humans in terms of NAFLD [48].

Oxidative stress has been shown to be involved in NASH patholgy and is usually linked with mitochondrial dysfunction [38,49]. However, malondialdehyde, the major lipid peroxidation product, was unaltered in livers from B6-mtFVB mice. Thus, we hypothesized that oxidative stress might not be involved in promoting the exacerbated NASH phenotype in B6-mtFVB mice, most likely due to successful compensation. However, future experiments involving ROS clearing procedures are needed to finally dissect the impact of the higher ROS formation in this model. Considering that perturbed hepatic energy metabolism is described as part of the pathophysiology in NASH and that B6-mtFVB mice displayed low hepatic levels of ATP and increased levels of pAMPK, we propose that changes in energy metabolism may be present in B6-mtFVB mice [50]. In particular, metabolomics analysis indicated that various acylcarnitines were altered [33]. Since these metabolites are crucially involved in different energy pathways, this finding suggests a disturbance in energy homeostasis [51]. Moreover, the considerably increased hepatic carnitine ratio suggests a reduced CPT I activity in liver of B6-mtFVB mice, in accordance with the literature [34,35]. This may account for increased hepatic, but not serum, triglyceride levels at baseline and upon diet, most likely resulting from defective free fatty acids transport into the mitochondria by the CPT I dependent carnitine shuttle [35]. With respect to the glucose-fatty acid cycle described by Randle, it remains to be elucidated why the observed increased levels of activated AMPK do not account for an increased CPT I activity in B6-mtFVB mice [52]. Interestingly, propionyl-L-carnitine (C3) was previously demonstrated to improve liver respiratory chain activity [53]. In fact, levels of hepatic propionyl-L-carnitine were increased in B6-mtFVB mice indicating a potential compensatory mechanism at baseline. A recent study suggested that the nuclear genome is the major determinant of disease outcome in a mouse model of NAFLD [54]. In agreement, we show that the expression of various nuclear genes was changed in B6-mtFVB mice. These findings highlight the likely importance of mitochondria—nucleus crosstalk [18].

Figure 8: Proposed explanatory scheme. The figure shows the hepatic alterations due to the mitochondrial gene polymorphisms at baseline. These prerequisite alterations remain silent under regular diet; however, environmental stress (e.g. dietary challenge) leads to the NAFLD sequelae.
ACKNOWLEDGMENTS

This work was supported by the DFG-funded International Research Training Group 1911. We are very grateful for fruitful discussions with Jens Mittag, Department of Medicine I, University of Lübeck. The study was in part supported by the Deutsche Forschungsgemeinschaft (DFG) by a grant to Jörg Heeren (SFB 841). We are also very thankful for the excellent technical assistance of Petra Langstrassen, Heidi Schlichting, and Sandra Ehret. We thank Dr. Cornelia Pfehr, Dr. Werner Römisch-Margi, Julia Scarpa and Katharina Fischinger for support with the metabolomics measurements performed at the Heilmoltz Centrum München, Genome Analysis Center, Metabolomics Core Facility.

CONFLICT OF INTEREST

The authors have no actual or potential conflicting interests.

APPENDIX A. SUPPORTING INFORMATION

Supporting information related to this article can be found at http://dx.doi.org/10.1016/j.molmet.2016.01.010.

REFERENCES

[1] Williams, C.D., Stengel, J., Asike, M.I., Torres, D.M., Shaw, J., Contreras, M., et al., 2011. Prevalence of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis among a largely middle-aged population utilizing ultrasound and liver biopsy: a prospective study. Gastroenterology 140(1):124–131. http://dx.doi.org/10.1053/j.gastro.2010.09.038.

[2] Ratzia, V., Bellentani, S., Cortez-Pinto, H., Day, C., Marchesini, G., 2010. A position statement on NAFLD/NASH based on the EASL 2009 special conference. Journal of Hepatology 53(2):372–384. http://dx.doi.org/10.1016/j.jhep.2010.04.008.

[3] Adams, L.A., Sanderson, S., Lindor, K.D., Angulo, P., 2005. The histological course of nonalcoholic fatty liver disease: a longitudinal study of 103 patients with sequential liver biopsies. Journal of Hepatology 42(1):132–138. http://dx.doi.org/10.1016/j.jhep.2004.09.012.

[4] Neuschwander-Tetri, B.A., Caldwell, S.H., 2003. Nonalcoholic steatohepatitis: summary of an AASLD Single Topic Conference. Hepatology 37(5):1202–1219. http://dx.doi.org/10.1053/jhep.2003.50132.

[5] Polo, A.P., Teodoro, J.S., Palmeira, C.M., 2012. Role of oxidative stress in the pathogenesis of nonalcoholic steatohepatitis. Free Radical Biology & Medicine 52(1):59–69. http://dx.doi.org/10.1016/j.freeradbiomed.2011.10.003.

[6] Schuppan, D., Schattenberg, J.M., 2013. Non-alcoholic steatohepatitis: pathogenesis and novel therapeutic approaches. Journal of Gastroenterology and Hepatology 28(Suppl. 1):S1–S7. http://dx.doi.org/10.1111/jgh.12121.

[7] Alexander, J., Torbenson, M., Wu, T.-T., Yeh, M.M., 2013. Nonalcoholic fatty liver disease contributes to hepatocellular carcinoma in non-cirrhotic liver: a clinical and pathological study. Journal of Gastroenterology and Hepatology. http://dx.doi.org/10.1111/jgh.12116.

[8] Adams, L., Lymp, J., Sauver, J.S., 2005. The natural history of nonalcoholic fatty liver disease: a population-based cohort study. Gastroenterology, 113–121. http://dx.doi.org/10.1053/j.gastro.2005.04.014.

[9] Musso, G., Cassader, M., De Michieli, F., Rosina, F., Orlandi, F., Gambino, R., 2012. Nonalcoholic steatohepatitis versus steatosis: adipose tissue insulin resistance and dysfunctional response to fat ingestion predicts liver injury and altered glucose and lipoprotein metabolism. Hepatology (Baltimore, Md.) 56(3):933–942. http://dx.doi.org/10.1002/hep.25739.

[10] Targher, G., Day, C.P., Bonera, E., 2010. Risk of cardiovascular disease in patients with nonalcoholic fatty liver disease. The New England Journal of Medicine 363(14):1341–1350. http://dx.doi.org/10.1056/NEJMoa0912063.
[11] Goessling, W., Massaro, J., 2008. Aminotransferase levels and 20-year risk of metabolic syndrome, diabetes, and cardiovascular disease. Gastroenterology 135(6):1935–1944. http://dx.doi.org/10.1053/j.gastro.2008.09.018. Aminotransferase.

[12] Fracanzani, A.L., Valenti, L., Bugianesi, E., Andreolli, M., Colli, A., Vanni, E., et al., 2008. Risk of severe liver disease in nonalcoholic fatty liver disease with normal aminotransferase levels: a role for insulin resistance and diabetes. Hepatology (Baltimore, Md.) 48(3):792–798. http://dx.doi.org/10.1002/hep.22429.

[13] Fromenty, B., Robin, M.A., Igoudjil, A., Mansouri, A., Pessayre, D., 2004. The ins and outs of mitochondrial dysfunction in NASH. Diabetes & Metabolism 30(2):121–138.

[14] Pessayre, D., Fromenty, B., 2005. NASH: a mitochondrial disease. Journal of Hepatology 42(6):928–940. http://dx.doi.org/10.1016/j.jhep.2005.03.004.

[15] Klaunig, J.E., Goldblatt, P.J., Hinton, D.E., Lipsky, M.M., Trump, F., et al., 2012. Mitochondrial DNA polymorphisms specifically modify cerebral β-amyloid proteostasis Katja. Acta Neuropathologica 124(2):199–206. http://dx.doi.org/10.1007/s00401-012-1296-8.

[16] almond, E., Tottori, M., Vidi, M., Švejfar, K., Krohn, M., Dunkelmann, T., Stenzel, J., Miroux, B., Ibrahim, S., et al., 2011. Fast food diet mouse: novel small animal model of obesity-induced fatty liver disease. Gastroenterology 146(1):46–62. http://dx.doi.org/10.1053/j.gastro.2013.11.001.

[17] Garcia-Caraballo, S.C., Comhair, T.M., Verheyen, F., Gaemers, I., Schaap, F.G., et al., 2012. Mitochondrial involvement in non-alcoholic fatty liver disease. Mitochondrial DNA 30(2):121-138.

[18] Wallace, D.C., 1999. Mitochondrial diseases man and mouse. Science 283(5407):1482–1488. http://dx.doi.org/10.1126/science.283.5407.1482.

[19] Ren, J., Pulakat, L., Whaley-Connell, A., Sowers, J.R., 2010. Mitochondrial biogenesis in the metabolic syndrome and cardiovascular disease. Journal of Molecular Metabolism 5 (2016) 283–295. © 2016 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license | http://creativecommons.org/licenses/by-nc-nd/4.0/ | www.molecularmetabolism.com
Auger, C., Alhasawi, A., Contavadoo, M., Appanna, V.D., 2015 June. Dysfunctional mitochondrial bioenergetics and the pathogenesis of hepatic disorders. Frontiers in Cell and Developmental Biology 3:1–11. http://dx.doi.org/10.3389/fcell.2015.00040.

Tomita, K., Tamiya, G., Ando, S., Ohsumi, K., Chiyo, T., Mizutani, A., et al., 2006. Tumour necrosis factor alpha signalling through activation of Kupffer cells plays an essential role in liver fibrosis of non-alcoholic fatty liver disease in mice. Gut 55(3):415–424. http://dx.doi.org/10.1136/gut.2005.071118.

Ayonrinde, O.T., Olynyk, J.K., Beilin, L.J., Mori, T.A., Pennell, C.E., de Klerk, N., et al., 2011. Gender-specific differences in adipose distribution and adipocytokines influence adolescent nonalcoholic fatty liver disease. Hepatology 53(3):800–809. http://dx.doi.org/10.1002/hep.24097.

Albano, E., Mottaran, E., Occhino, G., Reale, E., Vidali, M., 2005. Review article: role of oxidative stress in the progression of non-alcoholic steatosis. Alimentary Pharmacology & Therapeutics 22(Suppl. 2):71–73. http://dx.doi.org/10.1002/apt.1365-2036.2005.02601.x.

Koliaki, C., Roden, M., 2013. Hepatic energy metabolism in human diabetes mellitus, obesity and non-alcoholic fatty liver disease. Molecular and Cellular Endocrinology 379(1–2):35–42. http://dx.doi.org/10.1016/j.mce.2013.06.002.

Koves, T.R., Usher, J.R., Noland, R.C., Slentz, D., Mosedale, M., Ilkayeva, O., et al., 2008. Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metabolism 7(1):45–56. http://dx.doi.org/10.1016/j.cmet.2007.10.013.

Hue, L., Taegtmeyer, H., 2009. The Randle cycle revisited: a new head for an old hat. American Journal of Physiology. Endocrinology and Metabolism 297: E578–E591. http://dx.doi.org/10.1152/ajpendo.00093.2009.

Mingorance, C., Duluc, L., Chalopin, M., Simard, G., Ducruzeau, P.-H., Herrera, M.D., et al., 2012. Propionyl-L-carnitine corrects metabolic and cardiovascular alterations in diet-induced obese mice and improves liver respiratory chain activity. PLoS One 7(3):e34268. http://dx.doi.org/10.1371/journal.pone.0034268.

Betancourt, A.M., King, A.L., Fetterman, J.L., Millender-Swain, T., Finley, R.D., Olivera, C.R., et al., 2014. Mitochondrial–nuclear genome interactions in non-alcoholic fatty liver disease in mice. The Biochemical Journal 461(2):223–232. http://dx.doi.org/10.1042/BJ20131433.

Musso, G., Gambino, R., Cassader, M., 2013. Cholesterol metabolism and the pathogenesis of non-alcoholic steatohepatitis. Progress in Lipid Research 52(1):175–191. http://dx.doi.org/10.1016/j.plipres.2012.11.002.

Wong, V.W.-S., Tse, C.-H., Lam, T.T.-Y., Wang, G.L.-H., Chim, A.M.-L., Chu, W.C.-W., et al., 2014. Molecular characterization of the fecal microbiota in patients with nonalcoholic steatohepatitis — a longitudinal study. PLoS One 9(4):e62885. http://dx.doi.org/10.1371/journal.pone.0062885.

Mouzaki, M., Cornelli, E.M., Arendt, B.M., Bonengel, J., Fung, S.K., Fischer, S.E., et al., 2013. Intestinal microbiota in patients with nonalcoholic fatty liver disease. Hepatology (Baltimore, Md.) 58(1):175–191. http://dx.doi.org/10.1002/hep.26319.

Wieland, A., Frank, D.N., Hamke, B., Bambha, K., 2015. Systematic review: microbial dysbiosis and nonalcoholic fatty liver disease. Alimentary Pharmacology & Therapeutics 42(9):1051–1063. http://dx.doi.org/10.1111/apt.13376.

Boursier, J., Mueller, O., Barret, M., Machado, M., Fizanne, L., Araujo-Perez, F., et al., 2015. The severity of NAFLD is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. Hepatology (Baltimore, Md.) 61(1):1–32. http://dx.doi.org/10.1002/hep.28356, (early view).