Citation for published version (APA):
Tolmeijer, E., Kumari, V., Peters, E., Williams, S. C. R., & Mason, L. (2018). Using fMRI and machine learning to predict symptom improvement following cognitive behavioural therapy for psychosis. *NeuroImage: Clinical.* https://doi.org/10.1016/j.nicl.2018.10.011
Accepted Manuscript

Using fMRI and machine learning to predict symptom improvement following cognitive behavioural therapy for psychosis

Eva Tolmeijer, Veena Kumari, Emmanuelle Peters, Steven C.R. Williams, Liam Mason

PII: S2213-1582(18)30321-8
DOI: doi:10.1016/j.nicl.2018.10.011
Reference: YNICL 1573
To appear in: *NeuroImage: Clinical*

Received date: 20 June 2018
Revised date: 20 September 2018
Accepted date: 9 October 2018

Please cite this article as: Eva Tolmeijer, Veena Kumari, Emmanuelle Peters, Steven C.R. Williams, Liam Mason, Using fMRI and machine learning to predict symptom improvement following cognitive behavioural therapy for psychosis. Ynicl (2018), doi:10.1016/j.nicl.2018.10.011

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Using fMRI and machine learning to predict symptom improvement following cognitive behavioural therapy for psychosis.

Eva Tolmeijera, Veena Kumariab, Emmanuelle Petersaad, Steven C R Williamsc, and Liam Masonaad,fd

aKing’s College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychology, London UK
bBrunel University London, Centre for Cognitive Neuroscience, College of Life and Health Sciences, Uxbridge, UK
dSouth London and Maudsley NHS Foundation Trust, PICuP (Psychological Interventions Clinic for outpatients with Psychosis)
eKing’s College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Neuroimaging, London UK
fUniversity College London, Max Planck Centre for Computational Psychiatry and Ageing Research, London UK.

Correspondence: Miss Eva Tolmeijer, King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychology, Henry Wellcome Building, De Crespigny Park, London SE5 8AF, UK; e-mail: eva.1.tolmeijer@kcl.ac.uk
Abstract

Cognitive behavioral therapy for psychosis (CBTp) involves helping patients to understand and reframe threatening appraisals of their psychotic experiences to reduce distress and increase functioning. Whilst CBTp is effective for many, it is not effective for all patients and the factors predicting a good outcome remain poorly understood. Machine learning is a powerful approach that allows new predictors to be identified in a data-driven way, which can inform understanding of the mechanisms underlying therapeutic interventions, and ultimately make predictions about symptom improvement at the individual patient level. Thirty-eight patients with a diagnosis of schizophrenia completed a social affect task during functional MRI. Multivariate pattern analysis assessed whether treatment response in those receiving CBTp (n=22) could be predicted by pre-therapy neural responses to facial affect that was either threat-related (ambiguous ‘neutral’ faces perceived as threatening in psychosis, in addition to angry and fearful faces) or prosocial (happy faces). The models predicted improvement in psychotic (r=0.63, p=0.003) and affective (r=0.31, p=0.05) symptoms following CBTp, but not in the treatment-as-usual group (n=16). Psychotic symptom improvement was predicted by neural responses to threat-related affect across sensorimotor and frontal-limbic regions, whereas affective symptom improvement was predicted by neural responses to fearful faces only as well as prosocial affect across sensorimotor and frontal regions. These findings suggest that CBTp most likely improves psychotic and affective symptoms in those endorsing more threatening appraisals and mood-congruent processing biases, respectively, which are explored and reframed as part of the therapy. This study improves our understanding of the neurobiology of treatment response and provides a foundation that will hopefully lead to greater precision and tailoring of the interventions offered to patients.
Keywords: schizophrenia, cognitive behavioral therapy, affective processing, neuroimaging, positive psychotic symptoms, depressive symptoms
Introduction

The functional neurobiological underpinning of positive psychotic and affective symptoms in schizophrenia has been extensively studied\(^1\)–\(^9\) and there is considerable promise in using these neurobiological markers to improve the precision of interventions at the individual patient level\(^10\). To date, four studies have examined the neural predictors of cognitive behavioral therapy for psychosis (CBTp) treatment outcomes\(^{11}\)–\(^{14}\), the primary psychological intervention for this patient group\(^15\). However, none of these studies used machine learning methods to investigate neural predictors at the individual patient level. Currently, only three studies have made successful predictions about individual CBT treatment outcomes using such analytical approaches, none of which was in schizophrenia patients\(^{16}\)–\(^{18}\). However, individual predictions are an important step towards better tailoring of treatment by utilising patient-specific markers to provide an objective estimate of treatment outcomes. Incorporation of neural predictors into existing assessment procedures can inform clinical decision-making regarding the use of additional psychological therapies to improve treatment effectiveness\(^19\) and the resources that support CBTp. This is crucial considering that only approximately 50% of patients may experience clinically significant improvement following CBTp\(^20\) and limited clinical service resources mean that, even in the UK where it is a NICE\(^21\)-recommended treatment, only approximately 10% of patients receive therapy in routine services\(^22\).

Supervised machine learning methods, such as multivariate pattern analysis, are a powerful tool for identifying the neural predictors of treatment response since the analysis involves building an algorithm that can make predictions at the individual patient level\(^23\). This data-
driven approach can detect subtle patterns of distributed activity predicting clinical outcomes, such as treatment outcomes or disorder course. Brain responses to clinically relevant stimuli may be most likely to yield meaningful predictions about symptom improvement. A highly replicated finding in psychosis is a bias towards perceiving facial expressions as threatening, including evidence for the misattribution of threat to neutral facial expressions, which has been put forward as one route to paranoia. Neuroimaging markers for this bias include elevated responses in a number of regions involved in threat perception and emotion processing. This network includes a number of limbic regions, including the amygdala, hippocampus and insula, as well as visual and motor areas. The amygdala and insula are part of the ventral network which includes the anterior cingulate and the ventrolateral prefrontal cortex (PFC), whereas the hippocampus belongs to the dorsal system which includes the dorsolateral and dorsomedial PFC. The latter is involved in the regulation of emotions whereas the former is important for threat appraisal. Sensorimotor regions, together with frontal regions, are crucial for the development of behavioural responses in a context-dependent matter. Neuroimaging studies on affective face processing have reported reduced activation in frontal areas, but increased activation in threat and sensorimotor regions in patients with psychosis in comparison to healthy controls. In particular, the misattribution of threat to neutral stimuli has been associated with increased activation in the precentral and postcentral gyrus as well as the parietal lobule. Elevated threat-related activity in response to neutral facial expressions suggests they are not neutral in psychosis, which seems consistent with the interpretation of a heightened tendency to perceive threat when facial expressions are ambiguous. The evidence for increased activation for both ambiguous and threatening affect suggests the facial affect task is highly sensitive to aberrant threat and salience processing in psychosis. Additionally, evidence for reduced brain activation responses to happy facial expressions in major depression.
suggests the task is sensitive to altered processing of prosocial affect in those who experience depressive symptoms. Moreover, differences in task activation have been shown to relate to both the type and severity of symptoms, making the facial affect task a potential assay for predicting post-therapy improvement in psychotic and affective symptoms.

CBTp is an effective intervention for psychosis and is accompanied by improvements in social, occupational, and psychological functioning. The primary aim of CBTp is helping patients to understand and reframe threatening appraisals of their psychotic experiences, become less distressed and live a personally meaningful life. Affective symptoms are frequently reported in psychosis and are a common target of therapy by emphasising techniques that help patients recognise and change mood-congruent biases and unhelpful thinking styles, with evidence of reduced depression following CBTp. One neural mechanism proposed to underlie treatment effects in CBTp involves an increased recruitment of higher-order brain networks to regulate brain regions involved in threat and salience perception. This has been probed experimentally using the facial affect processing task, which has shown that improvement in positive psychotic symptoms and depressive symptoms correlates with changes in functional neurobiology. In particular, CBTp-led reductions in activation of the threat network in response to affective stimuli and concomitant increases in connectivity between the left amygdala and inferior parietal lobule correlated with improvement in positive symptoms of psychosis. These post-CBTp connectivity changes between the amygdala and the inferior parietal lobule as well as the dorsolateral PFC have also been found to be predictive of long-term affective and psychotic symptoms across several years. Whilst these studies have provided insight into the neural mechanisms underlying therapeutic change, they have not provided neural predictors of treatment outcomes for individual patients. The dorsolateral PFC might be a particularly
promising region, since increased activity in this area in response to a working memory task predicted good outcomes following CBTp12. Additionally, activation in networks including the amygdala and parietal lobule, which have been implicated in the neural mechanism of CBTp, have been found to predict individual response to CBT for social anxiety disorder16. However, no study to date has examined whether pre-therapy neural responses to facial affect can be used to make individual predictions about CBTp outcomes.

The present study used the dataset of a case-controlled study that previously found that CBTp led to significant changes in the functional neurobiology of social threat processing, compared to treatment-as-usual48. Here, we employ multivariate pattern analysis to identify predictors of response to CBTp from pre-therapy functional MRI. We employed a two-step methodology. The first step involved identification of potentially predictive regions and the second step involved formation of a predictive model that utilised region-specific activation patterns to make a function that can make predictions at the individual patient level. We examined all available forms of facial affect processing, allowing the machine learning model to identify the specificity of the activation patterns for each facial condition for predicting treatment response in different symptom domains. We hypothesised that improvement in positive psychotic symptoms and depressive symptoms would be uniquely predicted by neural responses to threat-related (including ambiguous ‘neutral’ faces in addition to angry and fearful faces) and prosocial affect (happy faces), respectively. Caveated by the data-driven approach and the absence of studies investigating predictors of CBTp outcomes from social affective neural processing, we hypothesised that the dorsolateral PFC and the amygdala, suggested to be implicated in the neurobiological mechanism underlying CBTp47, would predict post-CBTp improvement in both positive psychotic and affective symptoms.
Materials & methods

Participants & design

Participants were 38 patients who received either treatment-as-usual (TAU group) or CBTp on top of their regular care (+CBTp group), in a case-control cohort study described in detail elsewhere (see48). This previous study identified changes both in symptoms and in neurobiology in the +CBTp group (n=22) that were not found in the TAU group (n=16). The present study focused on the +CBTp group and the TAU group was used for validation of the predictive model in an independent sample. Diagnosis was established at baseline using the Structured Clinical Interview for DSM-IV (SCID)50. Symptoms were assessed using the Positive and Negative Syndrome Scale (PANSS)51 for psychotic symptoms and the Beck Depression Inventory (BDI)52 for depressive symptoms. All participants were scanned at the start of the study. Symptoms were reassessed after approximately six to eight months of TAU or TAU +CBTp. All participants were taking a stable dose of antipsychotic medication for a minimum of three months before the start of the study, which remained unchanged during the study. The study was approved by the joint research ethics committee of South London and Maudsley NHS trust and the Institute of Psychiatry in London (ref: 209/02). All participants provided written informed consent after explanation of the study procedures. Study procedures are reported in full elsewhere48.

Functional MRI task

A detailed description of the task and functional MRI acquisition can be found in the original study48. Participants performed an implicit facial affect task during the scanning session, in
which they were presented with monochrome faces portraying fear (signalling sources of threat in the environment, i.e. indirect threat), anger (direct threat), happiness (prosocial affect), or neutral (ambiguous threat) expressions48. Participants had to press a button to indicate the gender of the face upon each facial presentation. The task was set up as a block design. Each block consisted of 8 trials in which the same facial expression was presented (3.75 s per face, 30 seconds in total). Participants were presented with four blocks of each condition (i.e. fearful, angry, happy, and neutral faces), fully counterbalanced. Between these blocks there were 4 baseline trials in which empty oval frames matched for luminance but without the face inside were shown (3.75 s per oval frame), and a left/right button press was required on each trial.

Functional MRI data acquisition and analysis

Data were collected on a widely available 1.5 Tesla General Electric Signa clinical system (echo time 40 ms, repetition time 3 s, flip angle 90°, field of view 240 mm, slice thickness 7.0 mm, interslice gap 0.7 mm). Two hundred and forty T2*-weighted images were acquired. Image pre-processing and data analyses were conducted using Statistical Parametric Mapping (SPM) version 12 (Wellcome Department of Imaging Neuroscience, www.fil.ion.ucl.ac.uk/spm). The multivariate pattern analysis was implemented in the Pattern Recognition for Neuroimaging Toolbox (PRoNTo) (www.mlnl.cs.ucl.ac.uk/pronto/53), a machine learning toolbox that permits multivariate regression and classification analyses on neuroimaging data. Images were smoothed, normalized, slice time corrected and realigned. See the Supplementary Materials for further details on image pre-processing.
Activation associated with baseline symptoms

To optimize accuracy and generalisability of model predictions, feature reduction techniques were employed before training of the machine learning model54. Feature selection involves selecting voxels that are considered informative and excluding those considered less or non-informative about predictions, resulting in less noise and increased predictive power. We constrained our analyses16,55 to symptom-locked activation, given our focus on predicting symptom improvement. We also report an unconstrained (whole-brain) analysis in the Supplementary Materials. In a first step, univariate regression analysis was used to identify clusters associated with baseline positive psychotic and depressive symptoms, with baseline symptom scores being regressed separately onto activation for each facial condition. The regions included in the functionally defined masks are presented in the Supplementary Tables 1 and 2. Functional masks were identified in the +CBTp group, which were then also independently evaluated in the separate TAU group, using a voxel-wise threshold of $p < 0.001$ with a cluster size of at least 10 active voxels56. The resulting masks were used to constrain the multivariate pattern analysis that involved building of a predictive model at the group level to make predictions about symptom change (from pre- to post-intervention) at the individual patient level.

Predicting symptom improvement following CBTp

Multivariate regression models for neuroimaging data decode patterns of voxel values from the input images that continuously predict variability in the predicted variable53. Here, the inputs were contrast images for neutral, angry, fearful and happy faces to predict
improvement in positive psychotic symptoms (PANSS-P) and depressive symptoms (BDI) for each patient. To assess the contribution of each condition to the prediction of improvement in positive psychotic and depressive symptoms, brain responses to the facial conditions were simultaneously assessed in a multiple kernel learning model57. We also report follow-up analyses of models including only one facial condition in the Supplementary Materials. In the current study, the input voxels (features) were mean centred and normalized using the training data, and an indication of the model’s generalizability was obtained using cross-validation and permutation testing. Cross-validation allows for assessment of the generalizability of the model using the available data by partitioning the data into training and testing sets58. We report the Pearson’s correlation coefficient (r), the Mean Squared Error (MSE), and the $\sqrt{\text{MSE}}$ to assess the agreement between the predicted and actual symptom scores. The MSE reflects the sum of squared differences between the actual and predicted change in symptoms for each patient divided by the total number of patients53 and the $\sqrt{\text{MSE}}$ can be interpreted as the standard deviation of the variance in symptom scores that is unexplained by the model59. A nested-k-fold scheme was used. Permutation testing over 1000 iterations was used to derive a p-value for the accuracy of the decision function58. Further details on model optimization, the cross-validation scheme, and permutation testing are reported in the Supplementary Materials. To visualise the decision function, voxel-wise weights were computed for all significant models. Additionally, a list of regions ranked according to their contribution to the decision function was provided using the atlas60 as implemented within PRoNTo.
Results

Socio-demographic and clinical characteristics of the patient group

Demographic, clinical and task performance characteristics have been reported in full elsewhere48. In the +CBTp group, participants were on average 35.7 (SD=7.8) years old and had completed an average of 13.9 (SD=3.3) years of education. Twenty participants were on atypical and 2 were on both atypical and typical antipsychotics. In the TAU group, participants were on average 39.2 (SD=9.37) years old and had completed an average of 13.6 (SD=1.7) years of education. Fourteen participants were on atypical and 2 were on both atypical and typical antipsychotics. Both patient groups showed high gender discrimination accuracy (≥84.7\%) across all conditions (i.e. fearful, angry, happy, and neutral faces)48. Performance was comparable to healthy controls, reported separately47. Depressive symptoms were frequently experienced in addition to positive psychotic symptoms, with over 65\% of participants experiencing symptoms in the mild to severe range. From pre-therapy to post-therapy time points, both groups showed variation in positive psychotic (+CBTp M=3.2, SD=3.9; TAU M=0.5, SD=4.0) and in depressive symptom scores (+CBTp M=5.3, SD=10.9, TAU M=0.1, SD=6.9). However, symptoms improved significantly in the +CBTp group only (Table 1).

Predicting symptom improvement following CBTp

Improvement in positive psychotic symptoms was uniquely predicted by activation elicited by all types of threat-related affect (i.e. ambiguous ‘neutral’ faces that are often perceived as
threatening in psychosis, in addition to angry, and fearful faces) \(r=0.63, p=0.003\) (Table 2). Activation in frontal, sensorimotor, and hippocampal regions contributed most strongly to the predictive model (Table 3). However, the profile of activation was confined to fewer regions for angry and fearful faces compared to the more widespread profile of activation for neutral faces (Supplementary Table 3). Activation elicited by neutral faces contributed most strongly to the model followed by equivalent contributions from activation for angry and fearful faces (Figure 1). Follow-up analyses of models including only one facial condition revealed that activation elicited by angry, fearful, and neutral faces was predictive of improvement in positive psychotic symptoms, but activation elicited by happy faces was not (Supplementary Table 4).

Improvement in depressive symptoms was uniquely predicted by activation elicited by fearful and happy faces \(r=0.31, p=0.05\) (Table 2). Activation in frontal and motor regions contributed most strongly to the predictive model (Table 3). Activation in the superior frontal gyrus solely contributed to the predictive model for fearful faces whereas a widespread pattern of activation across frontal, sensorimotor, limbic, and occipital regions contributed to the predictive model for happy faces (Supplementary Table 5). Activation elicited by fearful faces contributed most strongly to the model followed by activation for happy faces (Figure 2). Follow-up analyses of models including only one facial condition revealed that activation elicited by fearful and happy faces was predictive but activation elicited by neutral faces was not (Supplementary Table 4). Activation elicited by angry faces could not be assessed since no activation was associated with symptoms at baseline.
Assessment of predictive models in independent treatment-as-usual group

The assessment of the predictive models in the TAU group revealed that changes in both positive psychotic ($r=-0.39, p=0.46$) and depressive symptoms ($r=-0.05, p=0.31$) following TAU could not be predicted using the multiple kernel learning model (Table 4). Whilst the pattern was similar in terms of which facial conditions predicted changes in positive psychotic and depressive symptoms, with activation for neutral and fearful faces being the strongest predictor for changes in positive psychotic and depressive symptoms, respectively, the overall model did not reach significance (Supplementary Figure 1, 2).

Discussion

This proof-of-concept study set out to establish novel predictors from neural processing of social affective information by applying multivariate pattern analysis to pre-treatment functional MRI data. This research strategy bridges the gap between studies revealing associations between brain changes and CBTh outcomes61 and potentially clinically useful biomarkers that can inform understanding of treatment mechanisms and provide a step towards predictions of outcome and treatment planning for individual patients. The findings showed, to our knowledge for the first time, that machine learning methods can be used to build a model that can predict response to CBTh for each patient from pre-therapy neural responses to social affective information. In line with our hypotheses, we found a double dissociation between the valence of social affective information and the type of symptoms predicted. Whereas the brain activation pattern in response to angry (direct threat) and neutral (ambiguous threat) faces uniquely predicted improvement in positive psychotic symptoms,
the brain activation pattern in response to happy faces (prosocial affect) uniquely predicted improvement in depressive symptoms. In contrast, neural responses to fearful faces (indirect threat) predicted improvement in both positive psychotic and depressive symptoms.

These findings also highlight the potential for this approach to inform clinical decision-making. Caveated by a need for more research with larger samples, it may be possible to use limited predicted symptom improvement for a given patient to better tailor their treatment plan. One possibility is that CBTp may be augmented with other interventions\(^1\). Alternatively, it may be possible to use baseline neurobiological responses to social affect to plan and tailor the focus of therapy, such as spending more time engaging the client or a specific focus on modifying bias towards threatening social information. Considering the protracted duration of psychological therapy in which clinical signs of improvement may not be apparent for many weeks from the start of therapy, a robust biomarker may also act as an incentive to motivate the patient and increase compliance in addition to increasing the response rate in a stratified population. The clinical promise of this approach is underlined by the finding that clinically relevant stimuli can be used as assays for making specific predictions about different symptom domains and is supported by the growing interest in machine learning to optimise treatment outcomes\(^{16,62,63}\).

It is interesting that processing of ambiguous ‘neutral’ faces was a stronger predictor of treatment response for positive psychotic symptoms than more directly threatening angry faces. One possible explanation for this finding is that processing of ambiguous stimuli particularly involves activation related to appraisals that are re-framed as part of CBTp. Namely, ambiguous stimuli have sensory characteristics that are less defined, thereby
allowing appraisals to have a stronger influence on their perception and interpretation. Evidence suggests that patients with psychosis appraise even mildly anomalous experiences as more threatening compared to healthy individuals, remitted patients, and individuals with similar psychotic experiences but without a need for care64–66. Therefore, processing of ambiguous stimuli might most strongly reflect threatening appraisals. Neural evidence for an over- or misattribution of threat involves elevated activation to neutral or ambiguous stimuli24,25,67, which has been attributed to aberrant salience perception68. This suggests that neutral or ambiguous stimuli may convey subtle information to which patients with psychosis are particularly sensitive, resulting in brain responses to ambiguous facial expressions not only reliably differentiating patients from healthy controls24 but also those who will respond well from those who will respond poorly. Processing of ambiguous stimuli might therefore most strongly reflect threatening appraisals. Since recent studies have shown that appraisals of symptoms mediate changes in outcome69, the finding that threat-related activation, in particular, activation in response to ambiguous ‘neutral faces’, predicted improvement in positive psychotic symptoms suggests that CBTp most likely improves psychotic symptoms in those endorsing more threatening appraisals of neutral or ambiguous stimuli25. However, this claim is at present speculative and requires more sophisticated measures to be substantiated.

Brain activation in response to prosocial affect (happy faces) was unique in predicting improvement in depressive symptoms and not positive psychotic symptoms. However, brain activation in response to fearful faces emerged as an additional, and stronger, predictor of improvement in depressive symptoms than brain activation in response to happy faces. Enhanced brain responses to fearful faces were found to be associated with baseline depressive symptoms in this clinical group9 and reduced following CBTp in previous
analyses48. Additionally, the finding that processing of both happy and fearful faces could predict improvement in depressive symptoms is in line with neuroimaging studies revealing both hypo-responses to positive and hyper-responses to negative facial expressions in depression36. These findings suggest that CBTp most likely improves depressive symptoms in those with mood-congruent processing biases that are reduced by exploring the impact of thoughts and behaviours on depressive symptoms.

Supporting our predictions, activity in the dorsolateral prefrontal cortex was important for predicting improvement in both positive psychotic and depressive symptoms. However, contrary to our hypothesis, the hippocampus emerged as a stronger predictor of improvement in positive psychotic symptoms than the amygdala. The dorsolateral prefrontal cortex and hippocampus are part of the dorsal system, which is involved in the regulation of emotions27. The predictive power of activation in the dorsal system supports the idea that CBTp may improve positive psychotic symptoms by facilitating patients’ ability to re-appraise their threatening experiences27. Interestingly, a number of sensorimotor regions, including the supplementary motor area, as well as visual regions, including the occipital and fusiform gyrus, also emerged as important predictors of improvement in both positive psychotic and depressive symptoms. Sensorimotor regions are, together with frontal regions, important for generating situation-specific behavioural responses33. The contribution of sensorimotor regions to predictions suggests an important role for behavioural techniques in improving both positive psychotic and depressive symptoms, by promoting change in unhelpful behaviours that contribute to the maintenance of delusional beliefs and mood worsening. Together, these findings suggest that a combination of threat-regulation and action preparation, as well as higher-order cognitive processes are key to predicting improvement in positive psychotic and depressive symptoms.
Whilst the dorsolateral PFC was an important predictor of symptom improvement, it was not a stronger predictor than a large number of regions across sensorimotor and midbrain regions. One possibility is that the present task did not actively recruit higher-order cognitive processes such as reappraisal because participants were not explicitly prompted to process the affective component of the stimuli. Additionally, these findings need to be caveated by the focus on symptom-locked activation, which omitted other areas from the analysis. A Supplementary whole-brain analysis addressed this issue, and although the pattern was similar in terms of which facial conditions predicted changes in symptoms, the overall model did not reach significance (Supplementary Table 6, 7). Despite these constraints, the finding that activation in the dorsal system, including the dorsolateral PFC and hippocampus, was important for predicting improvement in positive psychotic symptoms, supports the idea that CBTp facilitates reappraisal through resources in higher-order brain regions that regulate those involved in threat and salience detection47.

Although the present study successfully predicted symptom improvement, future studies including additional measurements would provide more encompassing predictions of treatment effects. The PANSS as an instrument has been criticised for only providing a measure of the presence and severity of psychotic symptoms, rather than the considerable variation in impact and quality of these experiences across individuals41. This is in line with previous work, which has shown that CBTp-led changes in brain responses to indirect threat were uncorrelated with the PANSS48. Future studies should explore measures that consider symptom dimensions such as power beliefs and distress to provide further insight into the predictors of treatment outcomes. Additionally, there is promise in exploring whether threat
processing as a predictor is a state or trait marker. State and trait features are likely to influence the development and maintenance of threatening appraisals along different pathways, including attentional, attributional, and reasoning biases as well as safety behaviours27. Elucidating these features might help guide effective treatment strategies at the individual patient level.

Whilst the model identified predicted response to CBTp, it did not predict response in the independent TAU group. Caveated by the limited change in symptoms in the TAU group, these results may speak to the specificity of the findings in predicting response to CBTp rather than symptom changes per se. Future research with two active treatment groups can provide further insight into the specific predictors of response to CBTp. Additionally, the specificity of the facial conditions for predicting improvement in different symptom domains is further underlined by the similar contribution of the facial conditions to predictions in the +CBTp and independent TAU group (Supplementary Figure 1, 2).

Although the sample size of the present study is comparable to other machine learning studies in psychiatry16,55,70, future studies with larger samples are warranted. The patient group reported here is likely to be representative of routine clinical practice, having been recruited from a clinic as part of routine care. However, further research with larger and independent samples of patients receiving CBTp should be undertaken to further establish the utility of machine learning approaches to predicting treatment response. Additionally, the use of higher resolution functional MRI to investigate subcortical predictors should be further explored as well as the inclusion of behavioural and clinical measures into predictive models.
considering that the most optimal predictions likely require different sources of information.

In summary, the present study supports the utility of machine learning methods to predict how people will respond when offered CBTp. The clinical utility of this approach is further underscored by the finding that neural responses to threat-related affect (i.e. ambiguous ‘neutral’ faces that are typically perceived as threatening in psychosis, in addition to angry and fearful faces) specifically predicted improvement in positive psychotic symptoms, whereas neural responses to fearful and happy faces predicted improvement in depressive symptoms. These findings suggest that CBTp most likely improves psychotic and affective symptoms in those endorsing more threatening appraisals and mood-congruent processing biases, respectively, which are explored and reframed as part of the therapy. Caveated by further research in larger and independent samples of patients receiving CBTp, baseline activation patterns in response to social affective information may assist in individual therapy formulations by informing the focus of the therapy on threat or mood-congruent processing biases that are addressed through different techniques including the generation of alternative explanations for psychotic experiences and the exploration of mood on thinking styles. Machine learning methods may therefore become a valuable tool for mapping the neural correlates of these biases to make predictions about treatment outcomes for each patient. This promising approach may be further refined, for example by including additional predictors, such as structural and connectivity measures. It is our hope that these methods may ultimately go beyond treatment selection and be used to tailor and refine the psychological intervention offered to individual patients.

Conflict of Interest
None of the authors report any financial interests or potential conflict of interest.

Funding

This work was supported by the Wellcome Trust (Senior Research Fellowship in Basic Biomedical Science to V.K., grant no. 067427).

Acknowledgements

We would like to acknowledge Dr Dominic Fannon for his time to do blind PANSS assessments, the MRI staff for accommodating the scanning procedures, and the PRoNTo team for their consultation in conducting the analyses. We would also like to acknowledge the participants of the study for their commitment to this research. SW would also like to thank the NIHR for their ongoing support of neuroimaging and the Biomedical Research Centre at the South London & Maudsley Hospital, UK.
References

1. Birur B, Kraguljac NV, Shelton RC, Lahti AC. Brain structure, function, and neurochemistry in schizophrenia and bipolar disorder — a systematic review of the magnetic resonance neuroimaging literature. npj Schizophr 2017; 3: 1-14.

2. Karlsgodt KH, Sun D, Cannon TD. Structural and functional brain abnormalities in schizophrenia. Curr Dir Psychol Sci 2010; 19: 226-231.

3. Henseler I, Falkai P, Gruber O. Disturbed functional connectivity within brain networks subserving domain-specific subcomponents of working memory in schizophrenia: relation to performance and clinical symptoms. J Psychiatr Res 2010; 44: 364-372.

4. Rolland B, Amad A, Poulet E, et al. Resting-state functional connectivity of the nucleus accumbens in auditory and visual hallucinations in schizophrenia. Schizophr Bull 2014; 41: 291-299.

5. Northoff G, Duncan NW. How do abnormalities in the brain’s spontaneous activity translate into symptoms in schizophrenia? From an overview of resting state activity findings to a proposed spatiotemporal psychopathology. Prog Neurobiol 2016; 145: 26-45.

6. Sorg C, Manoliu A, Neufang S, et al. Increased intrinsic brain activity in the striatum reflects symptom dimensions in schizophrenia. Schizophr Bull 2013; 39: 387-395.

7. Rotarska-Jagiela A, Oertel-Knoechel V, DeMartino F, et al. Anatomical brain connectivity and positive symptoms of schizophrenia: A diffusion tensor imaging study. Psychiatry Res - Neuroimaging 2009; 174: 9-16.
8. Skelly LR, Calhoun V, Meda SA, Kim J, Mathalon DH, Pearlson GD. Diffusion tensor imaging in schizophrenia: relationship to symptoms. *Schizophr Res* 2008; 98: 157-162.

9. Kumari V, Peters E, Guinn A, et al. Mapping depression in schizophrenia: a functional magnetic resonance imaging study. *Schizophr Bull* 2016; 42: 802-813.

10. Woo C-W, Chang LJ, Lindquist MA, et al. Building better biomarkers: brain models in translational neuroimaging. *Nat Neurosci Rev* 2017; 20: 365-377.

11. Kumari V, Antonova E, Fannon D, et al. Beyond dopamine: functional MRI predictors of responsiveness to cognitive behaviour therapy for psychosis. *Front Behav Neurosci* 2010; 4: 1-15.

12. Kumari V, Peters ER, Fannon D, et al. Dorsolateral prefrontal cortex activity predicts responsiveness to cognitive-behavioral therapy in schizophrenia. *Biol Psychiatry* 2009; 66: 594-602.

13. Premkumar P, Fannon D, Kuipers E, et al. Structural magnetic resonance imaging predictors of responsiveness to cognitive behaviour therapy in psychosis. *Schizophr Res* 2009; 115: 146-155.

14. Premkumar P, Fannon D, Sapara A, et al. Orbitofrontal cortex, emotional decision-making and response to cognitive behaviour therapy for psychosis. *Psychiatry Res - Neuroimaging* 2015; 231: 298-307.

15. National Collaborating Centre for Mental Health. *Schizophrenia: Core Interventions in the Treatment and Management of Schizophrenia in Primary and Secondary Care (Update).* British Psychological Society; 2009.

16. Månsson KNT, Frick A, Boraxbekk CJ, et al. Predicting long-term outcome of
internet-delivered cognitive behavior therapy for social anxiety disorder using fMRI and support vector machine learning. *Transl Psychiatry* 2015; 5: 1029-1039.

17. Klumpp H, Fitzgerald JM, Kinney KL, et al. Predicting cognitive behavioral therapy response in social anxiety disorder with anterior cingulate cortex and amygdala during emotion regulation. *NeuroImage Clin.* 2017; 15: 25-34.

18. Reggente N, Moody TD, Morfini F, et al. Multivariate resting-state functional connectivity predicts response to cognitive behavioral therapy in obsessive–compulsive disorder. *Proceedings of the National Academy of Sciences* 2018; 115(9): 2222-2227.

19. Drake RJ, Day CJ, Picucci R, et al. A naturalistic, randomized, controlled trial combining cognitive remediation with cognitive-behavioural therapy after first-episode non-affective psychosis. *Psychol Med.* 2014; 44(9):1889-1899.

20. Wykes T, Steel C, Everitt B, Tarrier N. Cognitive behavior therapy for schizophrenia: effect sizes, clinical models, and methodological rigor. *Schizophr Bull* 2008; 34: 523-537.

21. National Institute for Health and Care Excellence (NICE). *Psychosis and Schizophrenia in Adults: Treatment and Management.* NICE; 2014.

22. Schizophrenia Commission. *The abandoned illness: a report from the schizophrenia commission.* London: Rethink Mental Illness; 2012.

23. Orrù G, Pettersson-Yeo W, Marquand AF, et al. Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review. *Neurosci Biobehav Rev* 2012; 36: 1140-1152.
24. Potvin S, Tikàsz A, Mendrek A. Emotionally neutral stimuli are not neutral in schizophrenia: A mini review of functional neuroimaging studies. *Front Psychiatry*. 2016; 7: 1-9.

25. Underwood R, Peters E, Kumari V. Psychobiology of threat appraisal in the context of psychotic experiences: A selective review. *Eur Psychiatry*. 2015;30(7):817-829.

26. Green MJ, Phillips ML. Social threat perception and the evolution of paranoia. *Neurosci Biobehav Rev* 2004; 28: 333-342.

27. Underwood R, Kumari V, Peters E. Cognitive and neural models of threat appraisal in psychosis: a theoretical integration. *Psychiatry Res* 2016; 239: 131-138.

28. Taylor SF, Kang J, Brege IS, et al. Meta-analysis of functional neuroimaging studies of emotion perception and experience in schizophrenia. *Biol Psychiatry* 2012; 71:136-145.

29. Hall J, Whalley HC, McKirdy JW, et al. Overactivation of fear systems to neutral faces in schizophrenia. *Biol Psychiatry* 2008; 64: 70-73.

30. Delvecchio G, Sugranyes G, Frangou S. Evidence of diagnostic specificity in the neural correlates of facial affect processing in bipolar disorder and schizophrenia: a meta-analysis of functional imaging studies. *Psychol Med* 2012; 43: 553-569.

31. Li H, Chan RCK, McAlonan GM, et al. Facial emotion processing in schizophrenia: a meta-analysis of functional neuroimaging data. *Schizophr Bull* 2010; 36: 1029-1039.

32. Phillips ML, Drevets WC, Rauch SL, Lane R. Neurobiology of emotion perception I: The neural basis of normal emotion perception. *Biol Psychiatry*. 2003;54(5):504-514.

33. Janak PH, Tye KM. From circuits to behaviour in the amygdala. *Nature*.
34. Habel U, Chechko N, Pauly K, et al. Neural correlates of emotion recognition in schizophrenia. *Schizophr Res*. 2010;122(1-3):113-123.

35. Groenewold NA, Opmeer EM, de Jonge P, et al. Emotional valence modulates brain functional abnormalities in depression: evidence from a meta-analysis of fMRI studies. *Neurosci Biobehav Rev*. 2013; 37:152-163.

36. Stuhrmann A, Suslow T, Dannlowski U. Facial emotion processing in major depression: a systematic review of neuroimaging findings. *Biol Mood Anxiety Disord* 2011; 1: 1-17.

37. Gur RE, Loughead J, Kohler CG, et al. Limbic activation associated with misidentification of fearful faces and flat affect in schizophrenia. *Arch Gen Psychiatry* 2007; 64: 1356-1366.

38. Michalopoulou PG, Surguladze S, Morley LA, et al. Facial fear processing and psychotic symptoms in schizophrenia: functional magnetic resonance imaging study. *Br J Psychiatry* 2008; 192: 191-196.

39. Bighelli I, Salanti G, Reitemeir C, et al. Psychological interventions for positive symptoms in schizophrenia: Protocol for a network meta-Analysis of randomised controlled trials. *BMJ*. 2018; 8(3). 1-9.

40. Pfammatter M, Junghan UM, Brenner HD. Efficacy of psychological therapy in schizophrenia: Conclusions from meta-analyses. *Schizophr Bull* 2006; 32: s64-s80.

41. Birchwood M, Trower P. The future of cognitive – behavioural therapy for psychosis: not a quasi-neuroleptic. 2012:107-108.
42. Garety PA, Hardy A. The clinical relevance of appraisals of psychotic experiences. *World Psychiatry* 2017; 16: 140-141.

43. American Psychiatric Association. *Diagnostic and Statistical Manual of Mental Disorders: DSM-V*; 2013.

44. Kuipers E, Garety P, Fowler D, et al. Cognitive, emotional, and social processes in psychosis: Refining cognitive behavioral therapy for persistent positive symptoms. *Schizophr Bull.* 2006; 32 (SUPPL.1): 24-33.

45. Garety PA, Fowler DG, Freeman D, Bebbington P, Dunn G, Kuipers E. Cognitive--behavioural therapy and family intervention for relapse prevention and symptom reduction in psychosis: randomised controlled trial. *Br J psychiatry J Ment Sci.* 2008; 192 (6): 412-423.

46. Peters E, Landau S, McCrone P, et al. A randomised controlled trial of cognitive behaviour therapy for psychosis in a routine clinical service. *Acta Psychiatr Scand.* 2010; 122(4): 302-318.

47. Mason L, Peters E, Dima D, et al. Cognitive behavioral therapy normalizes functional connectivity for social threat in psychosis. *Schizophr Bull* 2016; 42: 684-692.

48. Kumari V, Fannon D, Peters ER, et al. Neural changes following cognitive behaviour therapy for psychosis: a longitudinal study. *Brain* 2011; 134: 2396-2407.

49. Mason L, Peters E, Williams SC, et al. Brain connectivity changes occurring following cognitive behavioural therapy for psychosis predict long-term recovery. *Transl Psychiatry* 2017; 7: 1-7.

50. First M, Spitzer R, Williams J, et al. *Structured Clinical Interview for DSM-IV (SCID).*
Kay S, Fiszbein A, Opler L. The Positive and Negative Syndrome Scale for schizophrenia. *Schizophr Bull* 1987; 13: 261-276.

Beck A, Steer R, Brown G. *Manual for the Beck Depression Inventory-II*. San Antonio, TX: Psychological Corporation; 1996.

Schrouff J, Rosa MJ, Rondina JM, et al. PRoNTo: Pattern recognition for neuroimaging toolbox. *Neuroinformatics* 2013; 11: 319-337.

Mwangi B, Tian TS, Soares JC. A review of feature reduction techniques in Neuroimaging. *Neuroinformatics* 2014; 12: 229-244.

Yang D, Pelphrey KA, Sukhodolsky DG, et al. Brain responses to biological motion predict treatment outcome in young children with autism. *Transl Psychiatry*. 2016; 6: 1-8.

Takano Y, Aoki Y, Yahata N, et al. Neural basis for inferring false beliefs and social emotions in others among individuals with schizophrenia and those at ultra-high risk for psychosis. *Psychiatry Res - Neuroimaging* 2017; 259: 34-41.

Schrouff J, Monteiro J, Rosa M, et al. Can we interpret linear kernel machine learning models using anatomically labelled regions? *Organ Hum Brain Mapp*. 2014.

Mourao-Miranda J, Reinders AATS, Rocha-Rego V, et al. Individualized prediction of illness course at the first psychotic episode: a support vector machine MRI study. *Psychol Med* 2012; 42: 1037-1047.

Willmott, C. J. (1981). On the validation of models. *Physical Geography*, 2(2), 184–194.
60. Schrouff J, Cremers J, Garraux G, et al. Localizing and comparing weight maps generated from linear kernel machine learning models. *Proc - 2013 3rd Int Work Pattern Recognit Neuroimaging, PRNI 2013*. 2013; 124-127.

61. Kumari V, Terca T. Cognitive Behaviour Therapy for Psychosis: Insights from Neuroimaging. *J Neuroimaging Psychiatry Neurol*. 2017;2(1):11-19.

62. Redlich R, Opel N, Grotegerd D, et al. Prediction of individual response to electroconvulsive therapy via machine learning on structural magnetic resonance imaging data. *JAMA Psychiatry*. 2016; 73(6): 557-564.

63. van Waarde JA, Scholte HS, van Oudheusden LJB, et al. A functional MRI marker may predict the outcome of electroconvulsive therapy in severe and treatment-resistant depression. *Mol Psychiatry*. 2015; 20(5): 609-614.

64. Ward TA, Gaynor KJ, Hunter MD, et al. Appraisals and responses to experimental symptom analogues in clinical and nonclinical individuals with psychotic experiences. *Schizophr Bull*. 2014; 40: 845-855.

65. Underwood R, Kumari V, Peters E. Appraisals of psychotic experiences: An experimental investigation of symptomatic, remitted and non-need-for-care individuals. *Psychol Med*. 2016; 46: 1249-1263.

66. Peters E, Ward T, Jackson M, et al. Clinical relevance of appraisals of persistent psychotic experiences in people with and without a need for care: an experimental study. *The Lancet Psychiatry*. 2017; 4: 927-936.

67. Lakis N, Mendrek A. Individuals diagnosed with schizophrenia assign emotional importance to neutral stimuli: an fMRI study. *ISRN Psychiatry*. 2013; 1-7.
68. Kapur S. Psychosis as a state of aberrant salience: A framework linking biology, phenomenology, and pharmacology in schizophrenia. *Am J Psychiatry*. 2003; 160: 13-23.

69. Birchwood M, Dunn G, Meaden A, et al. The COMMAND trial of cognitive therapy to prevent harmful compliance with command hallucinations: predictors of outcome and mediators of change. *Psych Medicine* 2017; 1-9.

70. Johnston BA, Steele JD, Tolomeo S, Christmas D, Matthews K. Structural MRI-based predictions in patients with treatment-refractory depression (TRD). *PLoS One* 2015; 10: 1-16.

71. McMahon FJ. Prediction of treatment outcomes in psychiatry—where do we stand? *Dialogues Clin Neurosci* 2014; 16(4): 455-464.
Table 1. Means and standard deviations for positive psychotic and depressive symptoms pre- and post-therapy.

	Depressive symptoms^a	Positive psychotic symptoms^b
	Mean (SD)	Mean (SD)
CBTp		
Pre-therapy	16.2 (8.3)	18.1 (4.8)
Follow-up	11.5* (9.9)	14.9* (4.1)
TAU		
Pre-therapy	15.9 (10.4)	18.6 (3.2)
Follow-up	15.8 (12.1)	18.1 (3.3)

^aDepressive symptoms were assessed using the Beck Depression Inventory⁵²

^bPositive psychotic symptoms were assessed using the positive psychotic symptom rating on the Positive and Negative Syndrome Scale⁵¹

*Significant symptom reduction (p < 0.05) at follow up relative to baseline
Table 2. Predictive accuracy of multivariate models for response to cognitive behavioral therapy for psychosis.

	r	$P_{(r)}$	MSE	$P_{(MSE)}$	\sqrt{MSE}
Positive psychotic symptoms	0.63	0.003*	8.65	0.003*	2.94
Neutral faces (57.6%)					
Angry faces (22.2%)					
Fearful faces (20.2%)					
Happy faces (0%)					
Depressive symptoms	0.31	0.05*	103.73	0.04*	10.18
Fearful faces (73.1%)					
Happy faces (25.7%)					
Neutral faces (1.2%)					
Angry faces c					

Neutral faces (ambiguous threat). Angry faces (direct threat). Fearful faces (indirect threat). Happy faces (prosocial affect). Abbreviations: MSE, mean squared error.

*Positive psychotic symptoms were assessed using the positive psychotic symptom rating on the Positive and Negative Syndrome Scale51

*Depressive symptoms were assessed using the Beck Depression Inventory52

*Not included in multivariate analysis because no symptom-locked activity at baseline

*p ≤ 0.05
Table 3. Top 3 predictors for positive psychotic and depressive symptoms and their relative weights in predictive power (percentage of the total weights in the decision function); clusters < 10 active voxels excluded.

Anatomical region	MNI coordinates	Brodmann area	weight (%)	size (voxels)
Positive psychotic symptoms				
‘Neutral’ faces (57.6%)				
R superior frontal gyrus	14 25 51	8	5.4	21
R cerebellum	10 -76 -22		5.4	46
L supplementary motor area	-42 -12 16	6	4.4	26
Fearful faces (22.2%)				
L precentral gyrus	-26 32 26	4	9.9	81
L superior frontal gyrus	-32 -10 58	6	9.9	40
R middle cingulum	10 22 36	8	7.8	16
Angry faces (20.2%)				
R inferior occipital gyrus	42 -76 -12	19	44.6	39
R hippocampus	28 -12 -20		38.5	23
R inferior temporal gyrus	48 -64 -10	37	16.9	21
Happy faces (0%)				
R inferior frontal gyrus	56 32 8	45	0	14
Depressive symptoms				
‘Fearful faces (73.1%)				
L superior frontal gyrus	-10 28 52	8	74.0	20
Happy faces (25.7%)				
L inferior frontal gyrus	-52 24 28	44	12.7	84
R precentral gyrus	42 0 52	6	9.8	21
L fusiform gyrus	-40 -38 -20	37	5.8	62
‘Neutral’ faces (1.2%)				
R hippocampus	28 -22 -14	54	13.7	25
L precentral gyrus	-10 -34 -30	6	9.6	48
R parahippocampal gyrus	28 -11 -27	36	7.1	16
Neutral faces (ambiguous threat). Angry faces (direct threat). Fearful faces (indirect threat). Happy faces (prosocial affect). \(^2\)No predictors for angry faces because no symptom-locked activity at baseline.
Table 4. Assessment of predictive models in independent treatment-as-usual group.

	r	$P(r)$	MSE	$P_{(MSE)}$	\sqrt{MSE}
Positive psychotic symptomsa	-0.39	0.46	21.21	0.67	4.60
Neutral faces (62.9%)					
Fearful faces (33.8%)					
Happy faces (3.3%)					
Angry faces (0%)					
Depressive symptomsb	-0.05	0.31	52.24	0.67	7.23
Fearful faces (61.1%)					
Happy faces (26.5%)					
Neutral faces (11.9%)					
Angry facesc					

Neutral faces (ambiguous threat). Angry faces (direct threat). Fearful faces (indirect threat).

Happy faces (prosocial affect). Abbreviations: MSE, mean squared error.

aPositive psychotic symptoms were assessed using the positive psychotic symptom rating on the Positive and Negative Syndrome Scale51.

bDepressive symptoms were assessed using the Beck Depression Inventory52.

cNot included in multivariate analysis because no symptom-locked activity at baseline.

*p ≤ 0.05
Figure 1. Baseline brain responses to threat-related affect (ambiguous ‘neutral’ faces that are typically perceived as threatening in psychosis, in addition to fearful and angry faces) predict improvement in positive psychotic symptoms following CBTp. The multiple kernel learning model is significant ($r=0.63$, $p=0.003$). The bar graph shows the relative contribution of each facial condition to the decision function. Top, from left to right: x=48, 26, y=-12. Bottom, from left to right: y=-18, 39, 56.

Figure 2. Baseline brain responses to fearful faces (indirect threat) and happy faces (prosocial affect) predict improvement in depressive symptoms following CBTp. The multiple kernel learning model is significant ($r=0.31$, $p=0.05$). The bar graph shows the relative contribution of each condition to the decision function. Top, from left to right: x=14, 41, 53. Bottom, from left to right: y=4, 17, 29.
Highlights

- Machine learning models using neuroimaging data can predict response to CBTp.
- Neural responses to social threat predicted improvement in psychotic symptoms.
- Activation related to different social stimuli predicted distinct symptom domains.
- Predictors included activity in the hippocampus, frontal, and sensorimotor regions.
Figure 1
