On reduction and separation of projective sets in Tychonoff spaces

D.I. Saveliev

In what follows \mathcal{F}, \mathcal{G}, \mathcal{K}, and \mathcal{L} denote the classes of closed, open, compact, and zero sets (preimages of $0 \in [0,1] \subseteq \mathbb{R}$ under continuous maps), and \mathcal{S} denotes an unspecified class. The classes are treated as operators: $\mathcal{F}(X)$ consists of all closed sets in X, and so on; $\mathcal{S}(X) = \mathcal{F} \cap \mathcal{P}(X)$. Let $\mathcal{S}(Y) \upharpoonright X = \{S \cap X : S \in \mathcal{S}(Y)\}$. For an $F: X \rightarrow Y$, let FA and $F^{-1}A$ denote the image and preimage of A. We say that Φ is an ω-ary Hausdorff (or δs-) operation if there is an $S \subseteq \omega^\omega$ (the base of Φ) such that $\Phi(A_s)_{s \in \omega^{<\omega}} = \bigcup_{f \in S} \bigcap_{n \in \omega} A_{f|n}$ for all $s \in \omega^{<\omega}$ ([6], [5], [1]; for the operation with base κ^ω, see [9] and [8]). For example, if $S = \omega^\omega$, then Φ is the A-operation. A Φ-set is a set obtained by Φ. Let $\Phi(\mathcal{S}, X)$ be the class of Φ-sets generated by $\mathcal{S}(X)$ and let $\Phi(\mathcal{S})$ denote the union of the $\Phi(\mathcal{S}, X)$ for all X.

The Borel hierarchy generated by $\mathcal{S}(X)$ is defined by alternating countable unions and complements, and $\Sigma^0_n(\mathcal{S}, X)$ and $\Pi^0_n(\mathcal{S}, X)$ are its nth additive and multiplicative classes. For example, $\Sigma^0_2(\mathcal{F}, X)$ is $\mathcal{F}_\sigma(X)$ and $\Pi^0_0(\mathcal{F}, X)$ is $\mathcal{G}_0(X)$.

By induction on α, each Borel class is of the form $\Phi(\mathcal{S}, X)$ for some Φ. The projective hierarchy generated by $\mathcal{S}(X)$ for Polish spaces X is defined by alternating the projections of subsets of $X \times \omega^\omega$ onto X and complements, and $\Sigma^1_n(\mathcal{S}, X)$ and $\Pi^1_n(\mathcal{S}, X)$ are its nth additive and multiplicative classes. For example, $\Sigma^1_1(\mathcal{F}, \mathbb{R})$ and $\Pi^1_1(\mathcal{F}, \mathbb{R})$ consist of the A-sets and CA-sets of reals. By the Fundamental Theorem on Projections ([6], I, p. 264), if X is Polish, then the class of projections of sets in $\Phi(\mathcal{F}, X \times \omega^\omega)$ onto X is of the form $\Psi(\mathcal{F}, X)$ for Ψ with a base in $\Phi(\mathcal{F}_\sigma, \omega^\omega)$.

So, by induction on n, each projective class is of the form $\Phi(\mathcal{F}, X)$ for some Φ.

For an arbitrary X, we define projective classes as $\Phi(\mathcal{S}, X)$ for Φ such that the corresponding projective class in \mathbb{R} is $\Phi(\mathcal{S}, \mathbb{R})$. One can define σ-projective classes in a similar manner (see [2] and [7]).

We say that $\mathcal{S}(X)$ has the reduction property if for any $A, B \in \mathcal{S}(X)$, there are $C, D \in \mathcal{S}(X)$ such that $C \subseteq A$, $D \subseteq B$, $C \cap D = \varnothing$, and $C \cup D = A \cup B$. It has the separation property if for any $A, B \in \mathcal{S}(X)$ such that $A \cap B = \varnothing$, there is a $C \in \mathcal{S}(X)$ such that $C \subseteq A$ and $B \subseteq C$. If $\mathcal{S}(X)$ has the reduction property, then the dual class $\{X \setminus S : S \in \mathcal{S}(X)\}$ has the separation property. The classes $\Sigma^0_\alpha(\mathcal{F}, \mathbb{R})$, $\alpha > 1$, $\Pi^1_1(\mathcal{F}, \mathbb{R})$, $\Sigma^1_2(\mathcal{F}, \mathbb{R})$ have the pre-well-ordering property (we do not formulate it here), which is stronger than reduction. Furthermore, $V = L$ implies reduction in $\Sigma^1_n(\mathcal{F}, \mathbb{R})$ for all $n \geq 2$, and under PD (the projective determinacy axiom), $\Sigma^1_2(\mathcal{F}, \mathbb{R})$ and $\Pi^1_2(\mathcal{F}, \mathbb{R})$ have the pre-well-ordering property (a fact known as the First Periodicity Theorem), and so the reduction property [7], [9], [4], [8]. If $\mathcal{S}(Y)$ has the reduction (separation)
property, then so does \(\mathcal{J}(Y) \upharpoonright X \). We have \(\Phi(\mathcal{J}(Y) \upharpoonright X) = \Phi(\mathcal{J}, Y) \upharpoonright X \) for all \(\Phi \), whence we obtain the following result.

Lemma 1. Let \(X \subseteq Y \) and \(\mathcal{J}(X) = \mathcal{J}(Y) \upharpoonright X \). Then \(\Phi(\mathcal{J}, X) = \Phi(\mathcal{J}, Y) \upharpoonright X \), and if \(\Phi(\mathcal{J}, Y) \) has the reduction (separation) property, then so does \(\Phi(\mathcal{J}, X) \).

For example, \(\mathcal{J}(X) = \mathcal{J}(Y) \upharpoonright X \) holds if \(\mathcal{J} \) is \(\mathcal{F} \) or \(\mathcal{G} \), and also if \(\mathcal{J} = \mathcal{L} \) for Tychonoff \(X \) and \(Y \) (Lemma 4). Given \(F : X \to Y \), \(F \) preserves \(\mathcal{J} \) if \(A \in \mathcal{J}(X) \) implies that \(FA \in \mathcal{J}(Y) \), and \(F^{-1} \) preserves \(\mathcal{J} \) if \(B \in \mathcal{J}(Y) \) implies that \(F^{-1}B \in \mathcal{J}(X) \). For example, \(F \) is closed if and only if \(F \) preserves \(\mathcal{F} \), continuous if \(F^{-1} \) preserves \(\mathcal{F} \) (or \(\mathcal{G} \)), compact if and only if \(F^{-1} \) preserves \(\mathcal{H} \), and perfect if and only if it is closed, continuous, and compact. Since \(F^{-1}\Phi(A_s)_{s \in \omega < \omega} = \Phi(F^{-1}A_s)_{s \in \omega < \omega} \) for all \(\Phi, F \), and \((A_s)_{s \in \omega < \omega} \), we have the following assertion.

Lemma 2. If \(F^{-1} \) preserves \(\mathcal{J} \), then \(F^{-1} \) preserves \(\Phi(\mathcal{J}) \).

For example, if \(F \) is continuous, then \(F^{-1} \) preserves \(\Phi(\mathcal{F}), \Phi(\mathcal{G}) \), and \(\Phi(\mathcal{L}) \), and if \(F \) is compact, then \(F^{-1} \) preserves \(\Phi(\mathcal{H}) \). Given \(F : X \to Y \), define its kernel by \(\ker F = \{ F^{-1}\{y\} : y \in Y \} \) and the algebra of preimages by \(\text{alg} F = \{ F^{-1}B : B \subseteq Y \} \). Clearly, \(\text{alg} F = \{ A \subseteq X : F^{-1}FA = A \} \). It is the complete subalgebra of \(\mathcal{P}(X) \) generated by \(\ker F \), so it is closed under all \(\Phi \). By using the diagonal product of maps which show that the \(A_s \) are zero sets, we obtain the following proposition.

Proposition 1. If \((A_s)_{s \in \omega < \omega} \) is in \(\mathcal{L}(X) \), then there is a continuous \(F : X \to [0, 1]^\omega \) such that \(A_s \in \text{alg} F \) for all \(s \in \omega < \omega \), and so \(\Phi(A_s)_{s \in \omega < \omega} \in \text{alg} F \) for all \(\Phi \).

Given \((I, \leq) \), a family \((A_i)_{i \in I} \) is decreasing if \(A_i \supseteq A_j \) for all \(i \leq j \). A map \(F : X \to Y \) is closed-to-one if \(\ker F \subseteq \mathcal{F}(X) \). It can be shown that for such an \(F \), \(F \bigcap_{i \in I} A_i = \bigcap_{i \in I} FA_i \) for all directed \((I, \leq) \) and decreasing \((A_i)_{i \in I} \) in \((\mathcal{F} \cap \mathcal{H})(X) \), and so \(F \Phi(A_s)_{s \in \omega < \omega} = \Phi(FA_s)_{s \in \omega < \omega} \) for all decreasing \((A_s)_{s \in \omega < \omega} \) in \((\mathcal{F} \cap \mathcal{H})(X) \) and all \(\Phi \), whence we obtain the following lemma.

Lemma 3. If \(\mathcal{J}(X) \subseteq (\mathcal{F} \cap \mathcal{H})(X) \) is closed under finite intersections and \(F : X \to Y \) is closed-to-one and preserves \(\mathcal{J} \), then \(F \) preserves \(\Phi(\mathcal{J}) \).

For example, for Hausdorff \(X \) and \(Y \) and a continuous \(F : X \to Y \), if \(X \) is compact, then \(F \) preserves \(\Phi(\mathcal{F}) \). If, moreover, \(Y \) is perfectly normal, then \(F \) also preserves \(\Phi(\mathcal{L}) \). Lemmas 2 and 3 allow one to transfer reduction (separation) to the preimage side.

Proposition 2. Let \(\mathcal{J}(X) \subseteq (\mathcal{F} \cap \mathcal{H})(X) \) be closed under finite intersections, and for any \((A_s)_{s \in \omega < \omega} \) in \(\mathcal{J}(X) \) let there be a \(Y \) and a closed-to-one \(F : X \to Y \) such that \(F \) and \(F^{-1} \) preserve \(\mathcal{J} \), \((A_s)_{s \in \omega < \omega} \) is in \(\text{alg} F \), and \(\Phi(\mathcal{J}, Y) \) has the reduction (separation) property. Then \(\Phi(\mathcal{J}, X) \) has the same property.

Lemma 4. If \(X \subseteq Y \) are Tychonoff, then \(\Phi(\mathcal{Z}, X) = \Phi(\mathcal{Z}, Y) \upharpoonright X \), and whenever \(\Phi(\mathcal{Z}, Y) \) has the reduction (separation) property, then so does \(\Phi(\mathcal{Z}, X) \).

For \(\mathcal{Z}(X) \subseteq \mathcal{Z}(Y) \upharpoonright X \), note that all \(F : X \to [0, 1] \) extend continuously to \(\beta X \), the Čech–Stone compactification of \(X \), and then to \([0, 1]^\kappa \) for a suitable \(\kappa \) (see [3]). The main result of this note is as follows.
Theorem 1. Let X be a Tychonoff space and let Φ be a Hausdorff operation. If $\Phi(\mathcal{F}, \mathbb{R})$ has the reduction (separation) property, then so does $\Phi(\mathcal{F}, X)$.

By Lemma 4, it suffices to consider $X = [0, 1]^\kappa$. Using Proposition 1, we verify the assumptions of Proposition 2 for $\mathcal{F} = \mathcal{F}$ and $Y = [0, 1]^\omega$, the same for all $(A_s)_{s \in \omega^\omega}$ in $\mathcal{F}([0, 1]^\kappa)$.

Corollary 1. If X is Tychonoff, then $\Sigma^0_\alpha(\mathcal{F}, X)$, $\Pi^1_1(\mathcal{F}, X)$, and $\Sigma^1_2(\mathcal{F}, X)$ have the reduction property for all $\alpha < \omega_1$ such that $\alpha > 1$. Under PD, $\Sigma^1_{2n}(\mathcal{F}, X)$ and $\Pi^1_{2n+1}(\mathcal{F}, X)$ have the reduction property for all $n < \omega$ such that $n > 0$.

Under σ-PD, Corollary 1 extends to the σ-projective classes generated by $\mathcal{F}(X)$.

Bibliography

[1] M. M. Choban, General topology III, Sovr. Probl. Mat. Fund. Napravl., vol. 51, VINITI, Moscow 1989, pp. 173–237; English transl. in Encyclopaedia Math. Sci., vol. 51, Springer, Berlin 1995, pp. 157–219.

[2] C. A. di Prisco and W. Marek, Z. Math. Logik Grundlagen Math. 28:33-38 (1982), 525–538.

[3] R. Engelking, General topology, Monogr. Mat., vol. 60, Polish Scientific Publishers, Warsaw 1977, 626 pp.

[4] A. Kanamori, The higher infinite. Large cardinals in set theory from their beginnings, Springer-Verlag, Berlin 1994, xxiv+536 pp.

[5] V. G. Kanovei, Uspekhi Mat. Nauk 43:6(264) (1988), 93–128; English transl. in Russian Math. Surveys 43:6 (1988), 111–155.

[6] L. Kantorovitch and E. Livenson, I, Fund. Math. 18 (1932), 214–279; II 20 (1933), 54–97.

[7] A. S. Kechris, Classical descriptive set theory, Springer-Verlag, New York 1995, xviii+402 pp.

[8] A. S. Kechris, B. L"owe, and J. R. Steel (eds.), Games, scales, and Suslin cardinals. The Cabal seminar, vol. I, Lect. Notes Log., vol. 31, Association for Symbolic Logic, Chicago, IL; Cambridge Univ. Press, Cambridge 2008, xii+445 pp.

[9] Y. N. Moschovakis, Descriptive set theory, 2nd ed., Amer. Math. Soc., Providence, RI 2009, xiv+502 pp.