A simple high-throughput approach to identify actionable drug responses in patient-derived tumor organoids

Nhan Phan1, Jenny J. Hong1, Bobby Tofig2, Matthew Mapua1, Jin Huang3, Sanaz Memarzadeh3–7, Robert Damoiseaux3,8 and Alice Soragni1,7*

1Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, CA, 90095
2Molecular Screening Shared Resource, California NanoSystems Institute, University of California Los Angeles, CA 90095
3Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, CA, 90095
4Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, CA, 90095
5The VA Greater Los Angeles Health Care System, Los Angeles, CA, 90073
6Department of Biological Chemistry, University of California Los Angeles, CA 90095
7Molecular Biology Institute, University of California Los Angeles, CA 90095
8Department of Molecular and Medicinal Pharmacology, David Geffen School of Medicine, University of California Los Angeles, CA, 90095
9Present address: Laboratory of Stem Cell Research and Application, University of Science, Vietnam National University, HCM City, Vietnam

*Correspondence to AS (alices@mednet.ucla.edu)

Abstract
There is increasing interest in developing 3D tumor organoid models for drug development and personalized medicine applications. While tumor organoids are in principle amenable to high-throughput drug screenings, progress has been hampered by technical constraints and extensive manipulations required by current methodologies. Here, we introduce a miniaturized, fully automatable, flexible high-throughput method using a simplified geometry to rapidly establish 3D organoids from cell lines and primary tissue and robustly assay drug responses.

Introduction
Cancer therapy is rapidly progressing toward individualized regimens not based on the organ of origin, but rather on the molecular characteristics of tumors. Next generation sequencing (NGS) is typically regarded as the key to access this potentially actionable molecular information1,2. However, recent studies showed how only a small number of cancers can be singled out and targeted with this approach, in part because very few gene alteration-drug pairs are unequivocally established3–7. Thus, functional precision therapy approaches where the primary tumor tissue is directly exposed to drugs to determine which may be efficacious have the potential to boost personalized medicine efforts and influence clinical decisions4,6. Establishing patient-derived xenografts (PDX) is a costly and time-consuming option that only allows to screen very few potential drugs. Conversely, ex vivo 3D tumor spheroids or organoids derived from primary cancers can be easily established and potentially scaled to screen hundreds to thousands of different conditions.

3D cancer models have been consistently shown to faithfully recapitulate features of the tumor of origin in terms of cell differentiation, heterogeneity, histochi-
Results and Discussion

Mini-ring setup and assays optimization

In order to rapidly screen organoids, we first established a miniaturized system that allows to setup hundreds of wells and perform assays with minimal manipulation. We adapted the geometry used to plate tumor cells in Matrigel to generate mini-rings around the rim of the wells. This is attained by plating single cell suspensions obtained from a cell line or a surgical specimen pre-mixed with cold Matrigel (3:4 ratio) in a ring shape around the rim in 96 well plates (Fig. 1a). The combination of small volume plated (10 µl) and surface tension holds the cells in place until the Matrigel solidifies upon incubation at 37°C and prevents 2D growth at the center of the wells. This configuration allows for media addition and removal so that changes of conditions or treatment addition to be easily performed by pipetting directly in the center of the well, preventing any disruption of the gel. Cancer cell lines grown in mini-ring format give rise to organized tumor organoids that recapitulate features of the original histology (Fig 1b and S1; Table S1). Similarly, we can routinely establish patient-derived tumor organoids (PDTOs) using the same geometry. Primary patient samples grow and maintain the heterogeneity of the original tumor as expected (Fig. 1b).

Next, we optimized treatment protocols and readouts for the mini-ring approach. Our standardized paradigm includes: seeding cells on day 0, establishing organoids for 2-3 days followed by two consecutive daily drug treatments, each performed by complete medium change (Fig. 1c). As an example, small scale screenings were performed using three drugs at five different concentrations in triplicates, ReACp5, Staurosporine and Doxorubicin (Fig. 1d-g). We optimized different readouts in order to adapt the method to a specific research question or instrument availability. After seeding cells in standard white plates, we performed a lumines-
Figure 1. The mini-ring method for 3D tumor cell biology. (a) Schematics of the mini-ring setup. Cells are plated in Matrigel around the rim of the wells to form a solid thin ring as depicted in 1 and photographed in 2, which has decreasing thickness. The picture in 3 acquired with a cell imager shows tumor organoids growing at the periphery of the well as desired, with no invasion of the center. (b) Proliferation of primary tumor cells as measured by ATP release. Different seeding densities were tested and compared (5, 10 and 15K cells). The mini-ring method allowed the patient sample to grow and maintain the heterogeneity and histology of the original ovarian tumor which had a high-grade serous carcinoma component (H&E left picture) and a clear cell component (H&E right picture). (c) Schematic of the drug-treatment experiments performed in the mini-ring setting. The pictures are representative images as acquired using a Celigo cell imager. (d - g) Assays to monitor drug response of cell lines using the mini-ring configuration. Three drugs (ReAcG53, Staurosporine and Doxorubicin) were tested at five concentrations in triplicates for all cell lines. (d) ATP release assay (CellTiter-Glo 3D) readout. (e) and (f) Calcein/PI readout. (e) Representative image showing staining of MCF7 cells with the dyes and segmentation to quantify the different populations (live / dead). (f) Quantification of Calcein/PI assay for three-drug assay. (g) Quantification of cleaved caspase 3/7 assay. Doxorubicin was omitted due to its fluorescence overlapping with the caspase signal. For all graphs, symbols are individual replicates, bars represent the average and error bars show SD.

Identification of actionable drug responses in PDTOs

A rapid functional assay to determine drug sensitivities of primary specimens can offer actionable information to help tailoring therapy to individual cancer patients.

We tested suitability of our approach to rapidly and effectively identify drug susceptibilities of three primary ovarian cancer samples and one high-grade serous peritoneal cancer specimen obtained from the operating room (Table S1; Fig. 2 and 3). In all cases, ascites or tumor samples were processed after surgery (see Methods) and then plated as mini-rings as described above. In order to maximize the amount of information we also implemented assays to quantify drug response by measuring cell viability after staining of live organoids with specific dyes followed by imaging. A calcein-release assay coupled to propidium iodide (PI) staining as well as a caspase 3/7 cleavage assay can be readily performed after seeding the cells in standard black plates (Fig. 1e-g and S4). Tumor organoids are stained with the reagents after dispase release. After a 30-45 minute incubation, organoids can be imaged, followed by segmentation and quantification of the pictures (Fig. 1e-g and S4). All the assays described here are performed by measuring cell status in within the same well in which spheroids are seeded. Although the various assays we introduce are testing different aspects of cell viability and measure distinct biological events, results were mostly concordant across the methods for the three drugs tested (Fig. 1, S4).

Figure 2. Mini-ring approach to unveil drug response patterns in PDTOs. (a) Morphology of the PDTOs established in this study as visualized by brightfield microscopy. (b) Results of kinase screening experiment. Three readouts were used for this assay: ATP quantification as measured by CellTiter-Glo 3D and organoid number or size quantification evaluated by brightfield imaging. Brightfield images were segmented and quantified using the Celigo S Imaging Cell Cytometer Software. Both organoid number as well as total area were evaluated for their ability to capture response to drugs. In this plot, each vertical line is one drug, all 252 tested are shown. Values are normalized to the respective vehicle controls for each patient, with bars representing the average and error bars showing SD.
extracted from irreplaceable clinical samples, we investigated the possibility to concurrently perform multiple assays on the same plate. To do so, we first optimized the initial seeding cell number (5000 cells/well) to couple an ATP metabolic assay to 3D tumor count and total organoid area measurement. This seeding density yields a low-enough number of organoids to facilitate size distribution analysis but sufficient ATP signal to be within the dynamic range of the CaspaseGlo 3D assay. For each patient sample, we seeded six 96 well plates and tested 252 different kinase inhibitors at two different concentrations (120 nM and 1 µM). We used the same experimental paradigm optimized above. All steps (media change, drug treatment) were automat-

Figure 3. Individualized response of PDTOs to tyrosine kinase inhibitors. (a), (c) and (e) Results of kinase screening experiment on Patients 2–4 organoids. Each vertical line represents one of 252 tested drugs. Values are normalized to the respective vehicle controls (DMSO) for each method and expressed as %. (b) Expression of the multi-drug efflux protein ABCB1 in PDTOs as visualized by IHC. Patient #2 expresses very high levels of the ABC transporter. Scale bar: 60 µm. (d) Table of drug leads causing ~75% cell death. For Patient #2, we included drugs inducing a response comparable to the Staurosporine control (~60% cell death). (f) Diagram illustrating limited overlap between the detected patterns of response identified through the mini-ring assay for all patients.
ed and performed in less than 2 minutes/plate using a Beckman Coulter Biomek FX integrated into a Thermo Spinnaker robotic system. At the end of each experiment, PDTOs are first imaged in brightfield mode for organoid count/size distribution analysis followed by the ATP assay. The measurements yielded high quality data that converged on several hits, highlighting the feasibility of our approach to identify potential leads (Fig. 2 and 3).

Cells obtained from Patient #1 at the time of cytoreductive surgery were chemo-naïve, and the heterogenous nature of this clear cell/HGSC tumor was recapitulated in the PDTOs (Table 1 and Fig. 1b). The organoids were sensitive to 16/252 molecules tested and responded mostly to a variety of cyclin-dependent kinase (CDK) inhibitors with a stronger response to inhibitors hitting CDK1/2 in combination with CDK 4/6 or CDK 5/9 (Fig. 2b-d and S5a-b). Interestingly, CDK inhibitors have found limited applicability in ovarian cancer therapy so far. Based on the profiles of the CDK inhibitors tested and on the response observed (Fig. S5a-b), we selected four untested molecules to assay. We anticipated that Patient #1 would not respond to Palbociclib (targeting only CDK4/6) and THZ1 (CDK7) while expecting a response to JNJ-7706621 (CDK1/2/3/4/6) and AZD54338 (CDK1/2/9; Fig. S5a-b). However, we observed a strong response to THZ1 (Fig. 2e). Both THZ1 and BS-181 HCI specifically target CDK7. Nevertheless, Patient #1 PDTOs showed a strong response to the former but no response to the latter which could be attributed to the different activity of the two as recently observed in breast cancer. We also attempted to establish patient-derived xenografts (PDX) in vivo by injecting Patient #1 cells injected in NSG mice (500K/mouse, 12 mice). Only three mice developed PDXs over the course of several months, with xenografts closely resembling the original tumors (Fig. 2f). Organoids established from one of Patient #1 PDXs qualitatively recapitulated the response to CDK inhibitors, confirming that our strategy can be successfully used to test patient samples that are recalcitrant to grow in vivo, reducing time and costs (Fig. 2e).

Patient #2 was diagnosed with progressive, platinum-resistant HGSC and was heavily pretreated prior to sample procurement (Table S1). Patient #2 PDTOs showed a strong response to only 3/252 drugs tested (Fig. 3a and S5c). Moderate responses (50-60% residual cell viability at 1 µM) were observed for EGFR inhibitors and we could detect high expression of EGFR at the plasma membrane of the tumor cells (Fig. 3a, 3d and S5f). Remarkably, Patient #2 PDTOs showed a very moderate response to our positive control, Staurorosporine, a pan-kinase inhibitor with very broad activity. The significant lack of response to multiple therapies observed for Patient #2 led us to hypothesize that there could be over-expression of efflux membrane proteins. Indeed, the PDTOs showed a high level of expression of ABCB1 (Fig. 3b). High expression of the ATP-dependent detox protein ABCB1 is frequently found in chemoresistant ovarian cancer cells and recurrent ovarian cancer patients’ samples and has been correlated with poor prognosis.

Patient #3 presented with carcinosarcoma of the ovary, an extremely rare and aggressive ovarian tumor which has not been fully characterized at the molecular level yet. Patient #4 was diagnosed with a high-grade peritoneal tumor and responded to only 2/252 drugs, one Akt inhibitor (GSK690693) and a PI3K/mTOR inhibitor (BGT226; Table 1, Fig. 3d, 3e and Fig. S5e). Overall, there was very little overlap in the response observed from the four clinical samples, with the exception of BGT226 which showed activity in all tumors (Fig. 3f). A Phase I basket trial of this PI3K/mTOR inhibitor highlighted moderate responses in unstratified patients. Overall, patient with or without PI3K alterations have been shown to respond to PI3K inhibitors. Our assay could supersede the lack of predictors of response to PI3K inhibitors, and identify responsive tumors from a functional standpoint.

Conclusions
We devised and optimized a facile high-throughput approach to establish and screen tumor organoids. While we applied the mini-ring setup to drug screenings, the same methodology is suitable for studies aiming at characterizing organoids’ biological and functional properties with medium to high throughput. Complete automation, scalability to 384 well plates, and flexibility to use different supports beside Matrigel can further extend the applicability of our mini-ring approach. Our methodology can be a robust tool to standardize functional precision medicine efforts, given its ease of applicability to many different systems and drug screening protocols, as well as its limited cell requirement which allows testing of samples as obtained from biopsies/surgical specimens without the need for expansion in vitro or in vivo which can lead to substantial divergence from the tumor of origin.

As demonstrated above, the method rapidly allowed us to pinpoint individual drug sensitivities and identify a tumor “fingerprint”, with multiple inhibitors converging on a given pathway. Interestingly, many of the drugs identified in our screening do not have a specific, unequivocal biomarker or genomic signature predictive
of response. Thus, patients may greatly benefit from PDTO testing prior to therapy selection, either to identify a suitable therapy or to facilitate patient selection for clinical trials3,4,13,15,36.

Acknowledgments
This project was supported by a Worldwide Cancer Research grant to AS (#16-0253). We acknowledge support by the Hirshberg Foundation (to AS), the UCLA SPORE in Prostate Cancer (NIH P50CA092131, PI: Robert Reiter) and a Jonsson Cancer Center Foundation Impact Award (to SM).

Author Contributions
AS and NP designed the project and carried out the experiments. JJH and MM performed experiments on clinical samples. SM obtained the patient samples. JH contributed to feasibility experiments. BT and RB generated the kinase inhibitor drug library and optimized automation for primary sample assays. AS analyzed the data and wrote the paper with contributions from all authors.

References
1. Cummings, C., Peters, E., Lacroix, L., Andre, F. & Lackner, M. The Role of Next-Generation Sequencing in Enabling Personalized Oncology Therapy. Clinical And Translational Science 9, 283–292 (2016).
2. Simon, R. & Roychowdhury, S. Implementing personalized cancer genomics in clinical trials. Nature Reviews Drug Discovery 12, ndr3979 (2013).
3. Letai, A. Functional precision cancer medicine—moving beyond pure genomics. Nat Med 23, 1028–1035 (2017).
4. Vlachogiannis, G. et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science 359, 920–926 (2018).
5. Voest, E. E. & Bernards, R. DNA-Guided Precision Medicine for Cancer: A Case of Irrational Exuberance? Cancer Discov 6, 130–132 (2016).
6. Prasad, V., Fojo, T. & Brada, M. Precision oncology: origins, optimism, and potential. Lancet Oncol. 17, e81–e86 (2016).
7. Tannock, I. F. & Hickman, J. A. Limits to Personalized Cancer Medicine. New England Journal of Medicine 375, 1289–1294 (2016).
8. Leitao, M. M. et al. Mutation and expression of the TP53 gene in early stage epithelial ovarian carcinoma. Gynecol. Oncol. 93, 301–306 (2004).
9. Pickl, M. & Ries, C. H. Comparison of 3D and 2D tumor models reveals enhanced HER2 activation in 3D associated with an increased response to trastuzumab. Oncogene 28, 461–468 (2008).
10. Katt, M. E., Placone, A. L., Wong, A. D., Xu, Z. S. & Searson, P. C. In Vitro Tumor Models: Advantages, Disadvantages, Variables, and Selecting the Right Platform. Front Bioeng Biotechnol 4, (2016).
11. Tanner, K. & Gottesman, M. M. Beyond 3D culture models of cancer. Sci Transl Med 7, 283ps9 (2015).
12. Nyga, A., Cheema, U. & Loizidou, M. 3D tumour models: novel in vitro approaches to cancer studies. J Cell Commun Signal 5, 239–248 (2011).
13. Fong, S., Debs, R. J. & Desprez, P.-Y. Id genes and proteins as promising targets in cancer therapy. Trends in Molecular Medicine 10, 387–392 (2004).
14. Kimlin, L. C., Casagrande, G. & Virador, V. M. In vitro three-dimensional (3D) models in cancer research: an update. Mol. Carcinog. 52, 167–182 (2013).
15. Pauli, C. et al. Personalized In Vitro and In Vivo Cancer Models to Guide Precision Medicine. Cancer Discov 7, 462–477 (2017).
16. Halfter, K. & Mayer, B. Bringing 3D tumor models to the clinic - predictive value for personalized medicine. Biotechnol J 12, (2017).
17. Soragni, A. et al. A Designed Inhibitor of p53 Aggregation Rescues p53 Tumor Suppression in Ovarian Carcinomas. Cancer Cell 29, 90–103 (2016).
18. Breslin, S. & O'Driscoll, L. Three-dimensional cell culture: the missing link in drug discovery. Drug Discovery Today 18, 240–249 (2013).
19. Breslin, S. & O'Driscoll, L. The relevance of using 3D cell cultures, in addition to 2D monolayer cultures, when evaluating breast cancer drug sensitivity and resistance. Oncotarget 7, 45745–45756 (2016).
20. Friedrich, J., Seidel, C., Ebner, R. & Kunz-Schughart, L. A. Spheroid-based drug screen: considerations and practical approach. Nat Protoc 4, 309–324 (2009).
21. Zanoni, M. et al. 3D tumor spheroid models for in vitro therapeutic screening: a systematic approach to enhance the biological relevance of data obtained. Sci Rep 6, 19103 (2016).
22. Kelm, J. M., Timmins, N. E., Brown, C. J., Fussenerger, M. & Nielsen, L. K. Method for generation of homogeneous multicellular tumor spheroids applicable to a wide variety of cell types. Biotechnol. Bioeng. 83, 173–180 (2003).
23. Boj, S. F. et al. Organoid models of human and mouse ductal pancreatic cancer. Cell 160, 324–338 (2015).
24. Walsh, A. J. et al. Quantitative optical imaging of primary tumor organoid metabolism predicts drug response in breast cancer. Cancer Res. 74, 5184–5194 (2014).
25. Francies, H. E., Barthorpe, A., McLaren-Douglas, A., Barendt, W. J. & Garnett, M. J. Drug Sensitivity Assays of Human Cancer Organoid Cultures. Methods Mol. Biol. (2016). doi:10.1007/77651_2016_10
26. Janzen, D. M. et al. An apoptosis-enhancing drug overcomes platinum resistance in a tumour-initiating subpopulation of ovarian cancer. Nat Commun 6,
Cell lines are cultured in their recommended medium in the presence of 10% FBS (Life Technologies #10082-147) and 1% Antibiotic-Antimycotic (Gibco). DU145, PC3, PAN1 and HUTP4 were cultured in DMEM (Life Technologies #1195-065). PAN03.27, MDA-MB-468 and MCF-7 was cultured in RPMI (Life Technologies #22400-089). SKNEP-1 was cultured in McCoy medium (ATCC #30-2007). S9 GODL cells are derived from HGSOC primary samples and cultured in RPMI. All treatments are performed in serum-free medium (PrEGM, Lonza #CC-3166, MammoCult, StemCell Technologies # 05620).

Primary samples: Primary ovarian cancer specimens were dissociated to single cells and cryopreserved or plated right after processing. In short, fresh tumor specimens or ascites samples are obtained from consented patients (UCLA IRB 10-000727). Solid tumor specimens are minced, then enzymatically digested with collagenase IV (200 U/ml). The resulting cell suspension is filtered through a 40 μM cell strainer.

Chemicals: Doxorubicin hydrochloride was purchased from Sigma (#44583). Staurosporine was purchased from Cell Signaling Technology (#9953S). ReAcP53 was synthesized by GL Biochem and prepared as described in Soragni et al, 2016.

3D organoids seeding/treatment procedure: Single-cell suspensions (2K-10K/well) were plated around the rim of the well of 96 well plates in a 3:4 mixture of PrEGM medium and Matrigel (BD Bioscience CB-40324). White plates (Corning #3610) were used for ATP assays while black ones (Corning #3603) were used for caspase or calcein assays. Plates are incubated at 37°C with 5% CO2 for 15 minutes to solidify the gel before addition of 100 μl of pre-warmed PrEGM to each well using an EpMotion (Eppendorf). Two days after seeding, medium is removed and replaced with fresh PrEGM containing the indicated drugs. The same procedure is repeated daily on two consecutive days. 24h after the last treatments, media is removed and wells are washed with 100 μl of pre-warmed PBS. To prepare for downstream experiments, organoids are then released from Matrigel by 40 minutes of incubation in 50 μl of 5mg/mL dispase (Life Technologies #17105-041). All steps are performed with the EpMotion for small scale experiments and medium is removed/added from the center of the wells. For the high-throughput kinase screening experiment, we utilized a Beckman Coulter Biomek FX system with 96 channel head integrated into a Thermo Spinnaker robotic system with Momentum scheduling software. In short, an intermediary dilution plate (Axxygen P-96-450V-C-S) was filled with 100 μl/well of media and pre-warmed to 37°C. Using pre-sterilized p50 tips, 1 μl of drug is transferred from a library compound plate to the intermediary plate and thoroughly mixed. Next, the robot gently removed 100 μl of media from the matrigel/cell plate. The liquid handler was set up to hit the dead center of each well with no contact to the Matrigel and cell plate. The result was synthesized by GL Biochem and prepared as described in Soragni et al, 2016.

AFT assay: After the organoid release, 75 μl of Cell-titer-Glo 3D Reagent (Promega #G968B) is added to

Methods

Cell lines and primary samples: Cell lines are cultured in their recommended medium in the presence of 10% FBS (Life Technologies #10082-147) and 1% Antibiotic-Antimycotic (Gibco). DU145, PC3, PAN1 and HUTP4 were culture in DMEM (Life Technologies #1195-065). PAN03.27, MDA-MB-468 and MCF-7 was cultured in RPMI (Life Technologies #22400-089). SKNEP-1 was cultured in McCoy medium (ATCC #30-2007). S9 GODL cells are derived from HGSOC primary samples and cultured in RPMI. All treatments are performed in serum-free medium (PrEGM, Lonza #CC-3166, MammoCult, StemCell Technologies # 05620).

Primary samples: Primary ovarian cancer specimens were dissociated to single cells and cryopreserved or plated right after processing. In short, fresh tumor specimens or ascites samples are obtained from consented patients (UCLA IRB 10-000727). Solid tumor specimens are minced, then enzymatically digested with collagenase IV (200 U/ml). The resulting cell suspension is filtered through a 40 μM cell strainer.

Chemicals: Doxorubicin hydrochloride was purchased from Sigma (#44583). Staurosporine was purchased from Cell Signaling Technology (#9953S). ReAcP53 was synthesized by GL Biochem and prepared as described in Soragni et al, 2016.

3D organoids seeding/treatment procedure: Single-cell suspensions (2K-10K/well) were plated around the rim of the well of 96 well plates in a 3:4 mixture of PrEGM medium and Matrigel (BD Bioscience CB-40324). White plates (Corning #3610) were used for ATP assays while black ones (Corning #3603) were used for caspase or calcein assays. Plates are incubated at 37°C with 5% CO2 for 15 minutes to solidify the gel before addition of 100 μl of pre-warmed PrEGM to each well using an EpMotion (Eppendorf). Two days after seeding, medium is removed and replaced with fresh PrEGM containing the indicated drugs. The same procedure is repeated daily on two consecutive days. 24h after the last treatments, media is removed and wells are washed with 100 μl of pre-warmed PBS. To prepare for downstream experiments, organoids are then released from Matrigel by 40 minutes of incubation in 50 μl of 5mg/mL dispase (Life Technologies #17105-041). All steps are performed with the EpMotion for small scale experiments and medium is removed/added from the center of the wells. For the high-throughput kinase screening experiment, we utilized a Beckman Coulter Biomek FX system with 96 channel head integrated into a Thermo Spinnaker robotic system with Momentum scheduling software. In short, an intermediary dilution plate (Axxygen P-96-450V-C-S) was filled with 100 μl/well of media and pre-warmed to 37°C. Using pre-sterilized p50 tips, 1 μl of drug is transferred from a library compound plate to the intermediary plate and thoroughly mixed. Next, the robot gently removed 100 μl of media from the matrigel/cell plate. The liquid handler was set up to hit the dead center of each well with no contact to the Matrigel and cell plate. The result was synthesized by GL Biochem and prepared as described in Soragni et al, 2016.

AFT assay: After the organoid release, 75 μl of Cell-titer-Glo 3D Reagent (Promega #G968B) is added to
each well followed by 1 minute of vigorous shaking.
After a 30 minute incubation at room temperature and
an additional minute of shaking, luminescence is mea-
sured with a SpectraMax iD3 (Molecular Devices) over
500 ms of integration time. Data is normalized to vehicle
and plotted and EC50 values are calculated with Prism
7. For the high-throughput drug screening, DMSO and
Staurosporine (1 µM) are used as negative and pos-
itive control respectively. Values are normalized to ve-
Hic Reds are determined following two criteria: (1) cell
death shows concentration-dependency and (2) resid-
ual cell viability at 1 µM is ≤ 25%. For Patient #2, partial
hits are defined as drugs giving response comparable
to Staurosporine (50-60% residual viability at 1 µM).

Caspase 3/7/Hoechst assay: After dispase treatment,100 µl of Nexcelom ViaStain™ Live Caspase 3/7 stain-
ing solution is added to each well. The staining solu-
tion consists of 2.5 µM Caspase reagent (Nexcelom
#CSK-V0002) and 3 µg/ml Hoechst (Nexcelom #CS1-
0128) in serum-free RPMI medium. Plates are incu-
bated 37°C/5% CO2 for 45 minutes and imaged with a
Celigo S Imaging Cell Cytometer (Nexcelom). Data is
normalized to vehicle values and plotted with Prism 7.

Calcein-AM/Hoechst/Viability assay: For this assay,100 µl of Calcein-AM/Hoechst/PI viability staining solu-
tion are added to each well containing the released
organoids. The staining solution includes the Calce-
in-AM reagent (Nexcelom CS1 #0119; 1:2000 dilution),
Propidium Iodide (Nexcelom #CS1-0116; 1:500 dilu-
tion), Hoechst (Nexcelom #CS1-0126; 1:2500 dilution)
in serum-free RPMI medium. Samples are incubated
for 15 minutes at 37°C with 5% CO2 before imaging
with a Celigo S Imaging Cell Cytometer (Nexcelom).

Immunohistochemistry: Cells processed for fixation
were seeded in 24 well plates to facilitate collection.
Rings are washed with pre-warmed PBS, followed by
30-minute fixation at room temperature with 4% Form-
aldehyde EM-Grade (Electron Microscopy Science
#15710). Samples are collected in a conical tube and
centrifuged at 2000g for 10 minutes at 4°C. Pellets are
washed with PBS followed by a second spin. After dis-
carding the supernatant, pellets are mixed in 10 µl of
HistoGel (ThermoScientific #HG-40000-012). The mix-
ture is shortly incubated on ice for 5 minutes to solidify
the pellets before transferring to a histology cassette
for standard embedding and sectioning.
The slides are baked at 45oC for 20 minutes and
de-paraffinized in xylene followed by washes in ethanol
and D.I. water. Endogenous peroxidases are blocked
with Peroxidazed-1 (Biocare Medical #PX968M) at RT
for 5 minutes. Antigen retrieval is performed in a Nx-
GEN Deloaking Chamber (Biocare Medical) using Diva
Decloacker (Biocare Medical #DV2004LX) at 110oC
for 15 minutes for Ki-67/Caspase-3, PAX8 and p53
(Biocare Medical #PPM240DSAA) staining or using
Borg Decloacker (Biocare Medical #BD1000 S-250) at
90oC for 15 minutes for Anti-P Glycoprotein (Abcam
#EPR10364-57) staining. For EGFR staining, antigen
retrieval is performed enzymatically with Carezyme III
Pronase (Biocare Medical #PRT957) at 37oC for 5
minutes.
Blocking is performed at RT for 30 minutes with Back-
ground Punisher (Biocare Medical #BP947H) at RT for
15 minutes for the EGFR staining. Primary antibodies
are diluted in Da Vinci Green Diluent (Biocare Medical
#PD900L) for Anti-P Glycoprotein (1:300), p53 (1:200,
Biocare Medical #CME298A) and PAX8 (1:1000,
Proteintech #10336-1-A) incubated at 4°C overnight
or Van Gogh Diluent (Biocare Medical #PD902H) for EGFR
(1:30) incubated at RT for 30 minutes. The combo
Ki-67/Caspase-3 solution is pre-diluted and added to
the sample for 60 minutes at room temperature. Sec-
dary antibody staining is performed with Rabbit on
Rodent HRP-polymer (Biocare Medical #RMR622G)
for the Anti-P Glycoprotein, p53 and PAX8 staining or
with Mouse on Mouse HRP-polymer (Biocare Medical
#MM620G) for EGFR. MACH 2 double Stain 2 (Biocare
Medical #MRCT525G) is used for Ki-67/Caspase-3
combinatorial staining. All secondary antibodies are in-
cubated at RT for 30 minutes.
Chromogen development is performed with Betazoid
DAB kit (Biocare Medical #BD90204) for Anti-P Glyco-
protein, pTEN and EGFR and Ki-67 or Warp Red Chro-
mogen Kit (Biocare Medical #WR806) for Caspase-3.
The reaction is quenched by dipping the slides in D.I
water. Hematoxylin-1 (Thermo Scientific #7221) is
used for counterstaining. The slides are mounted with
Permount (Fisher Scientific #SP15-100). Images are
acquired with a Revolve Upright and Inverted Micro-
scope System (Echo Laboratories).
SUPPLEMENTARY MATERIAL

A simple high-throughput approach to identify actionable drug responses in patient-derived tumor organoids

Nhan Phan, Jenny J. Hong, Bobby Tofig, Matthew Mapua, Jin Huang, Sanaz Memarzadeh, Robert Damoiseaux and Alice Soragni
Supplementary Table:

Table S1. Characteristics of samples included in this study.

Stable Lines:

Specimen	Tumor Classification	Base Medium
MCF7	Invasive breast ductal carcinoma	RPMI
MD-MBA-468	Breast adenocarcinoma	RPMI
PANC1	Pancreatic ductal adenocarcinoma	DMEM
PANCO3.27	Pancreatic adenocarcinoma	RPMI
HUPT4	Pancreatic adenocarcinoma	DMEM
PC3	Prostatic adenocarcinoma	DMEM
DU145	Prostatic carcinoma	DMEM
SK-NEP-1	Ewing sarcoma	McCoy
S9 GODL	High grade serous ovarian carcinoma	RPMI

Clinical Specimens:

Specimen	Tumor Classification	Stage	Sample Type	Therapy
Patient #1	High-grade mixed type carcinoma with a high grade serous (40%) and a clear cell	IIC	Ascites	None
	carcinoma (60%) component			
Patient #2	High grade serous ovarian carcinoma	IIIC	Ascites	Carboplatin / Taxol / Avastin
Patient #3	Carcinosarcoma of the ovary with heterologous component	IIIC	Tumor	Carboplatin / Taxol
Patient #4	High grade serous carcinoma, primary peritoneal carcinoma	IIIC	Tumor	None
Figure S1. Morphology of 3D tumor models. Tumor cell lines used in this study grown in 3D processed for histology. The corresponding cells grown in 2D are shown on the left (40x magnification). On the right, H&E and Caspase/Ki67 staining on sections from embedded 3D tumor organoid samples (60x magnification).
Figure S2. ATP readout and EC$_{50}$ values for three-drug assay. (a) ATP quantification as measured by CellTiter-Glo 3D. Data from 2 independent experiments, n=3 for each are plotted. Error bars represent standard deviation; bars represent mean values. (b) EC$_{50}$ values as calculate from the ATP quantification data. All values are expressed in µM.
Figure S3. Adaptability of miniring assay to different treatment schedules. ATP quantification as measured by CellTiter-Glo 3D of prostate cancer organoids treated for 5 consecutive days with either vehicle or 20 nM Staurosporine.
Figure S4. Additional optimized readouts for miniring assay (a) Quantification of the calcein release / PI uptake experiment. Two independent experiments shown, n=3 for each. Error bars are standard deviation while bars represent mean values. (b) and (c) Example of outcome for the caspase 3/7 cleavage experiment. DU145 prostate cancer cells are shown. A substrate becomes fluorescent when cleaved by caspase 3 or 7. Treatment induces high levels of caspase activation. Histograms of fluorescence intensity are shown in (c). (d) Quantification of active caspase 3/7 activity normalized to control. Doxorubicin has intrinsic fluorescence that masks the caspase signal hence was excluded from this analysis.
Table a

Targets:	CDK1	CDK2	CDK3	CDK4	CDK5	CDK6	CDK7	CDK9	Other Targets
Flavopiridol (Alvocidib)	+++	+++	+++	+++	+++	+			
R547	++++	++++	++++	+++	+				
Dinaciclib (SCH772965)	++++	+++	+	++++	+++	+		++++	GSK-3β
AT7519	++	++	+	++	++	+		++++	GSK-3β
BMS-255246	++++	+++	+	+	+	++	++	++++	GSK-3β
Flavopiridol (Alvocidib) HCl	++++	+++	+++	+++	+++	+			GSK-3β,GSK-3β
SNS-032 (BMS-387032)	+	+++	+	+	+	++	+++	++++	

Table b

Targets:	CDK1	CDK2	CDK3	CDK4	CDK5	CDK6	CDK7	CDK9	Other Targets
Roscovitine (Seliciclib,CYC202)	+		++						ERK2,GST-ERK1,ERK1
Milciclib (PHA-848125)	+	++	++	+					TriA
PHA-793887	++	++++	++	+++	++++	++			GSK-3β
BS-181 HCl								++++	

Images

Patient #2
- **Vehicle**
- **Degrasyn**
- **Staurosporine**
- **BG7226**

Patient #3
- **Vehicle**
- **CUDC-907**
- **Alvocidib**
- **BG7226**

Patient #4
- **Vehicle**
- **Degrasyn**
- **Staurosporine**
- **GSK690693**
- **BG7226**

Patient #1
- **EGFR**
- **Patient #2**
- **EGFR**
Figure S5. Results and validation of PDTO kinase screening. (a) Kinase inhibitors to which the HGSC control patient-derived line S1 GODL responded to. (b) List of CDK inhibitors that induced cell death in >75% Patient #1’s organoids. Targets and specificity of each is listed. The patient responded to CDK inhibitors hitting CDK1/2 in combination with CDK 4/6 or CDK 5/9. (c), (d) and (e) Representative images of post-treatment and post-dispase PDTOs (e) Expression of EGFR in S1 GODL, Patient #1 and Patient #2 3D tumors. Magnification: 40x.