IRREDUCIBILITY OF NEWTON STRATA IN GU(1, n − 1) SHIMURA VARIETIES

JEFFREY D. ACHTER

ABSTRACT. Let \(L \) be a quadratic imaginary field, inert at the rational prime \(p \). Fix an integer \(n \geq 3 \), and let \(\mathcal{M} \) be the moduli space (in characteristic \(p \)) of principally polarized abelian varieties of dimension \(n \) equipped with an action by \(\mathcal{O}_L \) of signature \((1, n - 1)\). We show that each Newton stratum of \(\mathcal{M} \), other than the supersingular stratum, is irreducible.

1. INTRODUCTION

For a complex abelian variety \(X \), the isomorphism class of its \(p \)-torsion group scheme \(X[p] \) and of its \(p \)-divisible group \(X[p^\infty] \) depend only on the dimension of \(X \). In contrast, in characteristic \(p \), there are different possibilities for the corresponding isomorphism (or even isogeny) class. Each such invariant provides a stratification of a family of abelian varieties in positive characteristic.

The isogeny class of \(X[p^\infty] \) is called the Newton polygon of \(X \). The goal of the present note is to prove that the space of abelian varieties with given Newton polygon and a certain, specified endomorphism structure is irreducible.

More precisely, let \(L \) be a quadratic imaginary field, inert at the rational prime \(p \). Fix an integer \(n \geq 3 \), and let \(\mathcal{M} \) be the moduli space (over \(\mathbb{F}_{p^2} \)) of principally polarized abelian varieties of dimension \(n \) equipped with an action by \(\mathcal{O}_L \) of signature \((1, n - 1)\). Our main result is:

Theorem 1.1. Let \(\xi \neq \sigma \) be an admissible Newton polygon for \(\mathcal{M} \) which is not supersingular. Then the corresponding stratum \(N^\xi \) is irreducible.

The proof of Theorem 1.1 is modelled on, but considerably easier than, that of [4, Thm. A]. This is possible because the Newton and Ekedahl-Oort stratifications on \(\mathcal{M} \) are much simpler than those of \(\mathcal{A}_g \).

In the special case where \(L = \mathbb{Q}(\zeta_3) \) and \(n \) is 3 or 4, \(\mathcal{M} \) essentially coincides with a component of the moduli space of cyclic triple covers of the projective line. Theorem 1.1 provides a crucial base case for forthcoming work of Ozman, Pries and Weir on such covers [11], and that work was the initial impetus for the present study.

For a topological space \(T \), let \(\Pi_0(T) \) denote the set of irreducible components of \(T \). If \(T \subset \mathcal{M} \), then \(\overline{T} \) is its closure in \(\mathcal{M} \). The symbol \(k \) will denote an arbitrary algebraically closed field of characteristic \(p \).

2. BACKGROUND ON \(\mathcal{M} \)

2.1. Moduli spaces. Let \(\mathcal{M} \) be the moduli stack (over \(\mathcal{O}_L/p \cong \mathbb{F}_{p^2} \)) of principally polarized abelian varieties of dimension \(n \) with an action by \(\mathcal{O}_L \) of signature \((1, n - 1)\). Somewhat more precisely, \(\mathcal{M}(S) \) consists of isomorphism classes of data \((X, \iota, \lambda) \), where \(X \to S \) is an abelian variety of relative dimension \(n \), \(\iota : \mathcal{O}_L \to \text{End}_S(X) \) is an embedding taking \(1_L \) to \(\text{id}_X \) such that \(\text{Lie}(X) \),

This work was partially supported by a grant from the Simons Foundation (204164).
as a module over $\mathcal{O}_L \otimes \mathcal{O}_S$, has signature $(1, n − 1)$; and $\lambda : X \rightarrow X^c$ is a principal polarization such that, if (\dagger) is the induced Rosati involution on $\text{End}(X)$, then for each $a \in \mathcal{O}_L$ one has $\iota(\pi) = \iota(a)^{(\dagger)}$. It is standard that $\dim \mathcal{M} = 1 \cdot (n − 1) = n − 1$.

In fact, \mathcal{M} is the moduli stack attached to the Shimura (pro-)variety constructed from a certain group G, as follows.

Let V be an n-dimensional vector space over L, equipped with a Hermitian pairing of signature $(1, n − 1)$. Let G / O be the group of unitary similitudes of V, and let U be the unitary group of V. Fix a hyperspecial subgroup $\mathbb{K}_p \subset G(\mathbb{Q}_p)$. For each sufficiently small open compact subgroup $\mathbb{K}^p \subset G(\mathbb{A}_f^p)$, there is a moduli space $\mathcal{M}_{\mathbb{K}^p} = \mathcal{M}_{\mathbb{K}^p, \mathbb{K}^p}$ of abelian varieties of dimension n as above with \mathbb{K}^p structure; see [7] for more details. If \mathbb{K}^p is sufficiently small, then $\mathcal{M}_{\mathbb{K}^p}$ is a smooth, quasiprojective variety; and \mathcal{M} may be constructed as the quotient of any $\mathcal{M}_{\mathbb{K}^p}$ by an appropriate finite group.

2.2. Newton polygons in \mathcal{M}. Newton and Ekedahl-Oort stratifications on $GU(1, n − 1)$ Shimura varieties are well understood [2]. There are exactly $1 + \lfloor n/2 \rfloor$ (“admissible”) Newton polygons which occur, and the poset of admissible Newton polygons is actually totally ordered. Let σ be the supersingular Newton polygon, so that $\sigma \preceq \xi$ for any admissible Newton polygon ξ for \mathcal{M}. For a Newton polygon ξ, let \mathcal{M}^ξ denote the locally closed locus corresponding to abelian varieties with Newton polygon ξ. Then \mathcal{M}^σ is pure of dimension $\lfloor n/2 \rfloor$. By purity [5, 9], if $Z_\sigma \in \Pi_0(\mathcal{M}^\sigma)$ and $\sigma \preceq \xi$, then there exists some $Z_\xi \in \Pi_0(\mathcal{M}^\xi)$ such that $Z_\sigma \subseteq Z_\xi$, the closure of Z_ξ in \mathcal{M}.

The Newton stratification of \mathcal{M} is described in [2], as follows. Each admissible Newton polygon is determined by its smallest slope. For each integer $1 \leq j \leq \lfloor n/2 \rfloor$, there is a Newton polygon $\tilde{\xi}_{2j}$, with smallest slope

$$\lambda(2j) = \frac{1}{2} - \frac{1}{2(\lfloor n/2 \rfloor + 1 - j)};$$

then $\mathcal{M}^\tilde{\xi}_{2j}$ has codimension $\lfloor n/2 \rfloor − j$ in \mathcal{M}. (Admittedly, in many ways this normalization is more awkward than that of [2], in which $\mathcal{M}^\tilde{\xi}_{2j}$ is labeled $\mathcal{M}_{2(\lfloor n/2 \rfloor − j)}$; but it will be more convenient for the deformation theory below.)

Away from the supersingular locus \mathcal{M}^σ, the Newton, Ekedahl-Oort, and final stratifications coincide; a p-divisible group is determined by its mod p truncation [2 Thm. 5.3]. This is recalled in greater detail in Section 2.3 below.

The Newton polygon and Ekedahl-Oort type of a polarized \mathcal{O}_L-abelian variety with prime-to-p level structure do not depend on the level structure, and we set $\mathcal{M}^\xi_{\mathbb{K}^p} = \mathcal{M}_{\mathbb{K}^p} \times_\mathcal{M} \mathcal{M}^\xi$.

2.3. p-divisible groups. In contrast to the Siegel case, it is possible to write down a finite, explicit collection of those principally quasipolarized p-divisible groups with \mathcal{O}_L-action which occur as $(X, t, \lambda)[p^\infty]$ for $(X, t, \lambda) \in \mathcal{M}(k)$. Following Wedhorn, we describe such p-divisible groups in terms of their covariant Dieudonné modules, as follows.

For $m \in \mathbb{N}$, let $M(m)$ be the following Dieudonné module.

- As a $W(k)$-module, $M(m)$ admits basis $\{u_1, \cdots, u_m, v_1, \cdots, v_m\}$.
2.4. Hecke operators. An inclusion $\mathbb{K}_1^p \to \mathbb{K}_2^p$ of open compact subgroups of $G(\mathbb{A}_f^p)$ induces a cover of Shimura varieties $\mathcal{M}_{\mathbb{K}_1^p} \to \mathcal{M}_{\mathbb{K}_2^p}$. More generally, an element $g \in G(\mathbb{A}_f^p)$ induces, for each open compact \mathbb{K}^p, a natural morphism $\mathcal{M}_{\mathbb{K}^p} \to \mathcal{M}_{\mathbb{K}^p g}$.

Let $z \in \mathcal{M}_{\mathbb{K}_0^p}(k)$. Its prime-to-$p$ (unitary) Hecke orbit, $\mathcal{H}^p(z)$, is defined as follows. Consider the pro-variety $\tilde{\mathcal{M}}_{\mathbb{K}_0^p} = \lim_{\mathbb{K}^p \subset \mathbb{K}_0^p} \mathcal{M}_{\mathbb{K}^p}$. Choose a lift \tilde{z} of z to $\tilde{\mathcal{M}}_{\mathbb{K}_0^p}$. Then $\mathcal{H}^p(z)$ is the projection to $\mathcal{M}_{\mathbb{K}_0^p}$ of $U(\mathbb{A}_f^p)\tilde{z}$. (One can also construct the “similitude” Hecke orbit of \tilde{z}, by replacing the orbit $U(\mathbb{A}_f^p)\tilde{z}$ with $G(\mathbb{A}_f^p)\tilde{z}$. However, the unitary Hecke orbit is both the output of [12] Thm. 4.6 and the input to [6] Thm. 1.4], and thus better suited to the task at hand.)
3. Closures of Newton strata

Let ξ be an admissible Newton polygon for \mathcal{M} such that $\xi \neq \sigma$.

Lemma 3.1. The locus \mathcal{M}^ξ is smooth.

Proof. The isomorphism class of $(X[p^\infty], \iota[p^\infty], \lambda[p^\infty])$ for $(X, \iota, \lambda) \in \mathcal{M}^\xi(k)$ is independent of the choice of point (Theorem 2.1). By the Serre-Tate theorem, the formal neighborhoods of all points of \mathcal{M}^ξ are thus isomorphic. Since \mathcal{M}^ξ is by definition equipped with the reduced subscheme structure, it must be smooth. \hfill \Box

Lemma 3.2. If $Z_\xi \in \Pi_0(\mathcal{M}^\xi)$, then there exists $Z_\sigma \in \Pi_0(\mathcal{M}^\sigma)$ such that $Z_\sigma \subset Z_\xi$.

Proof. We prove the following apparently stronger result. Suppose ν and ξ are admissible Newton polygons with $\nu \prec \xi$, and $Z_\xi \in \Pi_0(\mathcal{M}^\xi)$. We show that there exists $Z_\nu \in \Pi_0(\mathcal{N}^\sigma)$ such that $Z_\nu \subset Z_\xi$. It suffices to prove this statement under the assumption that ν is the immediate predecessor of ξ, so that $\dim \mathcal{M}^\nu = \dim \mathcal{M}^\xi - 1$. The statement is trivially true if $\xi = \xi_{2|n/2}$ is the locus with positive p-rank; henceforth, we assume that ξ is strictly smaller than $\xi_{2|n/2}$.

It is slightly more convenient to work with fine moduli schemes. Let $\mathcal{K}^p \subset G(\mathcal{A}_f^p)$ be an open compact subgroup which is small enough that $\mathcal{M}_{\mathcal{K}^p}$ is a smooth, quasiprojective variety. Let $W_\xi \in \Pi_0(Z_\xi \times \mathcal{M}_{\mathcal{K}^p})$ be an irreducible component of $\mathcal{M}_{\mathcal{K}^p}^\xi$ lying over Z_ξ. It suffices to show that the closure of W_ξ in $\mathcal{M}_{\mathcal{K}^p}$ contains an irreducible component of $\mathcal{M}_{\mathcal{K}^p}^\nu$.

Let $\overline{\mathcal{M}}_{\mathcal{K}^p}$ be a toroidal compactification of $\mathcal{M}_{\mathcal{K}^p}$ (e.g., [8] 6.4.1.1). It is a smooth, projective variety. Let \overline{W}_ξ be the closure of W_ξ in $\overline{\mathcal{M}}_{\mathcal{K}^p}$, and let $\partial W_\xi = \overline{W}_\xi \setminus W_\xi$. Newton strata (other than the supersingular stratum) coincide with Ekedahl-Oort strata, and the latter are known to be affine (e.g., [9]). Because W_ξ is positive dimensional, ∂W_ξ is nonempty. The first slope of ξ is positive, while the boundary of $\overline{\mathcal{M}}_{\mathcal{K}^p}$ parametrizes semiabelian varieties with nontrivial toric part. Consequently, $\partial W_\xi \cap (\overline{\mathcal{M}}_{\mathcal{K}^p} \setminus \mathcal{M}_{\mathcal{K}^p})$ is empty, and $\partial W_\xi \subset \mathcal{M}_{\mathcal{K}^p}$. Again by purity ([9]), $\dim \partial W_\xi = \dim W_\xi - 1$. By semicontinuity of Newton polygons, there is an a priori containment $\partial W_\xi \subset \cup_{\tau \prec \nu} \mathcal{M}_{\mathcal{K}^p}^\tau$. The result now follows from dimension counts: $\mathcal{M}_{\mathcal{K}^p}^\nu$ is pure of dimension $\dim W_\xi - 1$, while if $\tau \prec \nu$ then $\dim \mathcal{M}_{\mathcal{K}^p}^\tau < \dim W_\nu = \dim \partial W_\xi$. \hfill \Box

Conversely,

Lemma 3.3. If $Z_\sigma \in \Pi_0(\mathcal{M}^\sigma)$, then there is a unique $Z_\xi \in \Pi_0(\mathcal{M}^\xi)$ such that $Z_\sigma \subset Z_\xi$.

Proof. The existence of such a Z_ξ follows from purity and dimension-counting. If there were two such components, then they would intersect along $Z_\sigma \cap \mathcal{M}^{\sigma^0}$, which would contradict the smoothness shown in Lemma 4.1. \hfill \Box

4. Local calculations

Lemma 4.1. Let ξ be an admissible Newton polygon which is not supersingular, and suppose $z \in \mathcal{M}^{\sigma^0}(k)$. Then $\overline{\mathcal{M}}^\xi$ is smooth at z.

Proof. This follows directly from the explicit calculation (Lemmas 4.3 and 4.8) of the Newton stratification on the formal neighborhood \mathcal{M}^{iz} of z. \hfill \Box

The necessary calculations are somewhat sensitive to the parity of n. We first work out the details when n is odd, and then indicate the changes necessary to accommodate even n.

4. Local calculations

Lemma 4.1. Let ξ be an admissible Newton polygon which is not supersingular, and suppose $z \in \mathcal{M}^{\sigma^0}(k)$. Then $\overline{\mathcal{M}}^\xi$ is smooth at z.

Proof. This follows directly from the explicit calculation (Lemmas 4.3 and 4.8) of the Newton stratification on the formal neighborhood \mathcal{M}^{iz} of z. \hfill \Box

The necessary calculations are somewhat sensitive to the parity of n. We first work out the details when n is odd, and then indicate the changes necessary to accommodate even n.
4.1. The case of n odd. Throughout this section, assume that n is odd.

4.1.1. Explicit deformations. Suppose $z = (X, t, \lambda) \in \mathcal{M}^{\omega}(k)$. Our goal is to understand the Newton stratification on the formal neighborhood $\mathcal{M}/z = \text{Spf} \mathcal{R}$ of z in \mathcal{M}. This will be accomplished using (covariant) Dieudonné theory. Suppose $z = (X, t, \lambda) \in \mathcal{M}^{\omega}(k)$. Then the Dieudonné module $\mathcal{D}_s(X[p^\omega])$ is isomorphic to $\mathcal{M} := M(n)$ (Theorem 2.1).

Deformations of $X[p^\omega]$ are parametrized by $\text{Hom}(VM/pM, M/VM)$; those which preserve the \mathcal{O}_L-structure are classified by $\text{Hom}_{\mathcal{O}_L \otimes k}(VM/pM, M/VM)$ (e.g., [1]). The display we have chosen gives coordinates on VM/pM and M/VM:

$$VM/pM = k\{v_1, u_2, u_3, \cdots, u_n\}$$

$$M/VM = k\{u_1, v_2, v_3, \cdots, v_n\}$$

Consequently,

$$\text{Hom}_{\mathcal{O}_L \otimes k}(VM/pM, M/VM) = k\{v_1^i v_2, v_1^i v_3, \cdots, v_1^i v_n, u_2^i u_1, u_3^i u_1, \cdots, u_n^i u_1\}$$

$$\subset \text{Hom}_k(VM/pM, M/VM) = (VM/pM)^* \otimes (M/VM),$$

and the universal equicharacteristic deformation ring of $(X[p^\omega], t[p^\omega])$ is

$$\mathcal{R}' = k[[t(v_1 v_2), t(v_1 v_3), \cdots, t(v_1 v_n), t(u_2 u_1), \cdots, t(u_n u_1)]].$$

For $t(xy) \in \mathcal{R}'$, let $t(xy)$ be its Teichmuller lift to $W(\mathcal{R}')$. Then $X[p^\omega]$ is displayed over \mathcal{R}' by

$$\tilde{F}u_1 = -v_n$$

$$\tilde{F}v_2 = u_1$$

$$\tilde{F}v_3 = u_2 + t(u_2 u_1)u_1$$

$$\vdots$$

$$\tilde{F}v_n = u_{n-1} + t(u_{n-1} u_1)u_1$$

The pairing $\langle \cdot, \cdot \rangle$ extends to $\tilde{M} = M \otimes_{W(k)} W(\mathcal{R}')$ by linearity. We would like to identify the largest quotient \tilde{R} of \mathcal{R}' to which $\langle \cdot, \cdot \rangle$ extends as a pairing of Dieudonné modules; for then $\mathcal{M}/z \cong \text{Spf} \mathcal{R}$.

The quasipolarization extends to a ring R if and only if, for each $x, y \in \tilde{M}_R := \tilde{M} \otimes_{W(\mathcal{R}')} W(R)$, one has

$$\langle \tilde{F}x, y \rangle = \langle x, \tilde{V}y \rangle^\sigma.$$

Suppose $3 \leq j \leq n$, and let $(x, y) = (v_j, v_1 + \sum_{2 \leq k \leq n} t(v_1 v_k) v_k)$. Then

$$\langle \tilde{F}x, y \rangle = \langle u_{j-1} + t(u_{j-1} u_1) u_1, v_1 + \sum_{2 \leq k \leq n} t(v_1 v_k) v_k \rangle$$

$$= t(v_1 v_{j-1}) \langle u_{j-1}, v_{j-1} \rangle + t(u_{j-1} u_1) \langle u_1, v_1 \rangle$$

$$= (-1)^{j-1} t(v_1 v_{j-1}) - t(u_{j-1} u_1),$$

while

$$\langle x, \tilde{V}y \rangle = \langle v_j, u_2 \rangle$$

$$= 0.$$

Consequently, if \tilde{M}_R is quasipolarized by $\langle \cdot, \cdot \rangle$, then for each $2 \leq k \leq n-1$, the image of $(-1)^k t(v_1 v_k) - t(u_k u_1)$ in R is zero.
Similarly, by considering \((x, y) = (v_1, v_2 + \sum f(v_2 v_j)v_j)\), we see that the image of \(f(v_1 v_n)\) in such an \(R\) must be zero.

The quotient \(\overline{R}'\) by these relations is a smooth, local ring of dimension \(n - 1\), and thus we identify \(\overline{R}\) with

\[
\overline{R} = k[[s_2, \ldots, s_n]],
\]

where \(s_j\) is the image of \(t(u_j u_1)\) in \(\overline{R}\). We record these calculations as follows.

Lemma 4.2. The formal neighborhood \(\mathcal{M}^{/z}\) of \(z\) is isomorphic to \(\overline{R} = \text{Spf} k[[s_2, \ldots, s_n]]\). Over \(\overline{R}\), the Dieudonné module \(\overline{M} = \overline{M}_k\) of the universal deformation of \((X[p^\infty], \iota[p^\infty], \lambda[p^\infty])\) is displayed by

\[
\begin{align*}
\tilde{F}u_1 &= -v_n & v_1 &= \tilde{V}(u_n - s_n u_1) \\
\tilde{F}v_2 &= u_1 & u_2 &= \tilde{V}(v_1 + \sum_{2 \leq j \leq n} (-1)^j s_j v_j) \\
\tilde{F}v_3 &= u_2 + s_2 u_1 & u_3 &= \tilde{V}v_2 \\
\vdots & & \vdots \\
\tilde{F}v_n &= u_{n-1} + s_{n-1} u_1 & u_n &= \tilde{V}v_{n-1}
\end{align*}
\]

4.1.2. **Newton strata in local coordinates.** In this choice of coordinates, it is easy to calculate the Newton stratification on \(\mathcal{M}^{/z}\). For \(1 \leq j \leq \lfloor n/2 \rfloor\), let

\[
\mathcal{M}^{/z}_{< j} := \mathcal{M}^{/z} \cap (\mathcal{M}^o \cup \bigcup_{1 \leq i < j} \mathcal{M}^{\tilde{s}_{2i}})
\]

be the locus in \(\mathcal{M}^{/z}\) parametrizing those deformations whose first slope is strictly larger than \(\lambda(2j)\).

Lemma 4.3. Suppose \(1 \leq j \leq \lfloor n/2 \rfloor\). Then

\[
\mathcal{M}^{/z}_{\leq j} = \text{Spf} \frac{k[[s_2, \ldots, s_n]]}{(s_{2j}, s_{2(j+1)}, \ldots, s_{2\lfloor n/2 \rfloor})} \subseteq \mathcal{M}^{/z} = \text{Spf} k[[s_2, \ldots, s_n]].
\]

Before proceeding with the proof, we construct a graph to encode part of the structure of (a deformation of) \(M\). Initially, construct a graph \(\Gamma\) as follows (see Figure 4.1.2). With a slight abuse of notation, let the vertex set be \(\{u_1, \ldots, u_n, v_1, \ldots, v_n\}\). For \(2 \leq i \leq n\), draw a (light) gray arrow from \(v_i\) to \(u_{i-1}\), to encode the fact that \(Fv_i = u_{i-1}\). Similarly, draw a gray arrow from \(u_1\) to \(v_n\).

Also, for each \(2 \leq i \leq n\), draw a black arrow from \(u_i\) to \(v_{i-1}\), to encode the fact that \(Fu_i = pv_{i-1}\). Similarly, draw a black arrow from \(v_1\) to \(u_n\).

Note that \(\Gamma\) is a (colored) cycle. In fact, starting from vertex \(u_1\), one successively visits

\[
\{u_1, v_n, u_{n-1}, v_{n-2}, u_{n-3}, \ldots, v_1, u_n, v_{n-1}, u_{n-2}, \ldots, v_2, u_1\}.
\]
Now let S be an integral domain equipped with a surjection $\phi: k[[s_2, \ldots, s_n]] \to S$, and let K be the field of fractions of S. Construct a graph Γ_S by (possibly) augmenting the edge set of Γ, as follows.

For each $2 \leq i \leq n - 1$, if $\phi(s_i) \neq 0$, then add a gray edge from v_i to u_1. (For the sake of completeness, if $\phi(s_n) \neq 0$, then add a black edge from v_n to u_1. For each $2 \leq i \leq n - 1$, if $\phi(s_i) \neq 0$, then add a black edge from u_2 to v_i. These additional black edges will not affect the final calculation.)

Let C be a cycle or path in Γ_S. The length of C is the number of edges in C, while the weight of C is the number of black edges in C. Define the slope of C to be

$$\lambda(C) = \frac{\text{weight}(C)}{\text{length}(C)}.$$

Note that for the trivial deformation, corresponding to Γ itself, we have $\lambda(\Gamma) = \frac{n-1}{2n} = \frac{1}{2}$.

Lemma 4.4. If $C \subset \Gamma_S$ is a cycle through u_1, then the smallest slope of the Newton polygon is at most $\lambda(C)$.

Proof. It is harmless, and convenient, to replace K by its perfection. Suppose there is a cycle C of length b and weight a; let $\tilde{N}_K = W(K)\{u_2, \ldots, u_n, v_1, \ldots, v_n\}$. Then $F^b u_1 \in p^a W(K)\{u_1\} + \tilde{N}_K$ but $F^b u_1 \notin \tilde{N}_K$, and \tilde{M}_K/\tilde{N}_K is an F-σ^a-crystal of slope at most a/b. Therefore, the smallest slope of \tilde{M}_K is at most a/b.

Remark 4.5. Let $B(K) = \text{Frac} W(K)$; then the $B(K)[F]$-span of u_1 in $\tilde{M}_K \otimes B(K)$ is all of $\tilde{M}_K \otimes B(K)$. Therefore, one can in fact show that the smallest slope of \tilde{M}_K is

$$\min\limits_{C \subset \Gamma \text{ a cycle through } u_1} \lambda(C).$$

Lemma 4.6. If $\phi(s_{2j}) \neq 0$, then there is a cycle in Γ_S of length $n + 1 - 2j$ and weight $\frac{n-1}{2} - j$.

Proof. In Γ, the unique path P from u_1 to v_{2j+1} has length $n + 1 - (2j + 1) = n - 2j$ and weight $\frac{n-(2j+1)}{2} = \frac{n-1}{2} - j$. If $\phi(s_{2j}) \neq 0$, then in Γ_S there is a cycle, obtained by concatenating u_1 to P, of length $\text{length}(P) + 1$ and weight $\text{weight}(P)$.

Lemma 4.7. If the smallest slope of \tilde{M}_K is greater than $\lambda(2j)$, then

$$\phi(s_{2j}) = \phi(s_{2(j+1)}) = \cdots = \phi(2\lceil n/2 \rceil) = 0.$$

Proof. The contrapositive follows immediately from Lemmas 4.6 and 4.4 if there is some $i \geq j$ with $\phi(s_{2i}) \neq 0$, then the smallest slope of \tilde{M}_K is at most $\lambda(2i)$.

Proof of Lemma 4.3 By Lemma 4.7, the sought-for neighborhood $\mathcal{N}_{<j}/\mathcal{M}_{<j}$ is the formal spectrum of a quotient of $R_{<j} := k[[s_1, \ldots, s_n]]/(s_{2j}, s_{2(j+1)}, \ldots, s_{2\lceil n/2 \rceil})$. We thus have $\mathcal{N}_{<j} \hookrightarrow \text{Spf } R_{<j} \hookrightarrow \mathcal{M}_{<j}/\mathcal{N}_{<j}$. Since both $\mathcal{M}_{<j}/\mathcal{N}_{<j}$ and $\text{Spf } R_{<j}$ have codimension $\lceil n/2 \rceil - j + 1$, the result follows.
4.2. The case of \(n \) even. We now indicate the changes which must be made in order to perform the calculations of Section 4.1 in the case where \(n \) is even.

Suppose \(z = (X, \iota, \lambda) \in \mathcal{M}^{\infty}(k) \). The quasipolarized Dieudonné module \(M \) of \(X[p^{\infty}] \), as a \(p \)-divisible group with \(O_{L} \)-action, is \(M(n - 1) \oplus N \) (Theorem 2.1). A calculation exactly like that in Section 4.1.1 shows \(\mathcal{M}^{/z} \cong \text{Spf} R = \text{Spf} k[[s_{0}, s_{2}, \cdots, s_{n-1}]] \); the corresponding deformation \(\bar{M} \) of \(M \) is displayed by

\[
\begin{align*}
\bar{F}v_{0} &= -u_{0} - \bar{s}_{0}u_{1} & u_{0} &= \bar{V}v_{0} \\
\bar{F}u_{1} &= -v_{n-1} & v_{1} &= \bar{V}(u_{n-1} - \bar{s}_{n-1}u_{1}) \\
\bar{F}v_{2} &= u_{1} & u_{2} &= \bar{V}(v_{1} + \sum_{2 \leq j \leq n-1} (-1)^{j}\bar{s}_{j}v_{j}) \\
\bar{F}v_{3} &= u_{2} + \bar{s}_{2}u_{1} & u_{3} &= \bar{V}v_{2} \\
\vdots \\
\bar{F}v_{n-1} &= u_{n-2} + \bar{s}_{n-2}u_{1} & u_{n-1} &= \bar{V}v_{n-2}
\end{align*}
\]

Construction and analysis of graphs \(\Gamma \) and \(\Gamma_{S} \), for quotients \(S \) of \(\bar{R} \), shows that Lemma 4.3 holds for even \(n \), too:

Lemma 4.8. Suppose \(1 \leq j \leq n/2 \). Then

\[
\mathcal{M}^{/z} \cap (\cup_{1 \leq i \leq j} \mathcal{M}^{s_{2i}}) = \text{Spf} \frac{k[[s_{0}, s_{2}, s_{3}, \cdots, s_{n}]]}{(s_{2j}, s_{2(j+1)}, \cdots, s_{n})}.
\]

5. HECKE ORBITS FOR THE SUPERSINGULAR LOCUS

Lemma 5.1. Let \(\mathbb{K}^{p} \subset G(A_{f}^{p}) \) be a compact open subgroup. The \(\text{U}(A_{f}^{p}) \)-Hecke operators act transitively on \(\Pi_{0}(\mathcal{M}^{p}_{K^{p}}) \).

Proof. Let \((X, \iota, \lambda) = \bar{\eta} \) be a geometric generic point of \(\mathcal{M}^{p}_{K^{p}} \). The central leaf \(C([\bar{\eta}]) \), which in a general PEL Shimura variety context parametrizes those \((Y, j, \mu)\) with \((Y[p^{\infty}], j[p^{\infty}], \mu[p^{\infty}]) \cong (X[p^{\infty}], j[p^{\infty}], \lambda[p^{\infty}])\), in this case coincides with (the union of a choice of geometric point over each generic point of) \(\mathcal{M}^{\infty} \). There is an a priori inclusion \(\mathcal{H}^{p}(\bar{\eta}) \subseteq C([\bar{\eta}]) \). Since \(\bar{\eta} \) is basic and \(G \), the reductive group defining \(\mathcal{M} \), has simply connected derived group, the prime-to-\(p \) Hecke orbit of \(\bar{\eta} \) coincides with the central leaf \(C([X[p^{\infty}], j[p^{\infty}], \lambda[p^{\infty}]] \) [12] Thm. 4.6(1) and Rem. 4.7(3)].

6. IRREDUCIBILITY OF NEWTON STRATA

Proof of Theorem 1.1. Chai and Oort identify nine steps in their proof of [4] Thm. 3.1], which is the analogue for \(A_{g}^{p} \) of Theorem 1.1. We proceed here in a similar fashion. Fix an open compact subgroup \(\mathbb{K}^{p} \subset G(A_{f}^{p}) \); it suffices to prove that \(\mathcal{M}^{p}_{K^{p}} \) is irreducible.

Steps 1-6: By Lemma 3.3 there is a well-defined map of sets

\[
\Pi_{0}(\mathcal{M}^{p}) \longrightarrow \Pi_{0}(\mathcal{M}^{\infty}).
\]

It is surjective, by Lemma 3.2. From it, we deduce the existence of a surjective

\[
\Pi_{0}(\mathcal{M}^{p}_{K^{p}}) \longrightarrow \Pi_{0}(\mathcal{M}^{\infty}_{K^{p}}),
\]

visibly \(\text{U}(A_{f}^{p}) \)-equivariant.

Steps 7-8: By Lemma 5.1 the action of \(\text{U}(A_{f}^{p}) \) on \(\Pi_{0}(\mathcal{M}^{p}_{K^{p}}) \) is transitive.
Step 9: Taken together, this shows that $U(A_f^p)$ acts transitively on $\Pi_0(\mathcal{M}_{K_0}^\epsilon)$. By [6, Thm. 1.4], which is the PEL analogue of [3], $\mathcal{M}_{K_0}^\epsilon$ is connected. Since $\mathcal{M}_{K_0}^\epsilon$ is also smooth (Lemma [3.1]), it is irreducible.

□

REFERENCES

[1] Jeffrey D. Achter, Hilbert-Siegel moduli spaces in positive characteristic, Rocky Mountain J. Math. 33 (2003), no. 1, 1–25.
[2] Oliver Bülter and Torsten Wedhorn, Congruence relations for Shimura varieties associated to some unitary groups, J. Inst. Math. Jussieu 5 (2006), no. 2, 229–261.
[3] Ching-Li Chai, Monodromy of Hecke-invariant subvarieties, Pure Appl. Math. Q. 1 (2005), no. 2, 291–303.
[4] Ching-Li Chai and Frans Oort, Monodromy and irreducibility of leaves, Ann. of Math. (2) 173 (2011), no. 3, 1359–1396.
[5] A. J. de Jong and F. Oort, Purity of the stratification by Newton polygons, J. Amer. Math. Soc. 13 (2000), no. 1, 209–241.
[6] Ralf Kasprowitz, Monodromy of subvarieties of PEL-Shimura varieties, arXiv preprint arXiv:1209.5891 (2012).
[7] Robert E. Kottwitz, Points on some Shimura varieties over finite fields, J. Amer. Math. Soc. 5 (1992), no. 2, 373–444.
[8] Kai-Wen Lan, Arithmetic compactifications of PEL-type Shimura varieties, London Math. Soc. Monographs, no. 36, Princeton University Press, Princeton, NJ, 2013.
[9] Marc-Hubert Nicole, Adrian Vasiu, and Torsten Wedhorn, Purity of level m stratifications, Ann. Sci. Éc. Norm. Supér. (4) 43 (2010), no. 6, 925–955.
[10] Peter Norman, An algorithm for computing local moduli of abelian varieties, Ann. Math. (2) 101 (1975), 499–509.
[11] Ekin Ozman, Rachel Pries, and Colin Weir, The p-rank of cyclic covers of the projective line, 2014, in preparation.
[12] Chia-Fu Yu, Simple mass formulas on Shimura varieties of PEL-type, Forum Math. 22 (2010), no. 3, 565–582,
10.1515/FORM.2010.030.
[13] T. Zink, The display of a formal p-divisible group, Astérisque (2002), no. 278.

E-mail address: j.achter@colostate.edu

DEPARTMENT OF MATHEMATICS, COLORADO STATE UNIVERSITY, FORT COLLINS, CO 80523
URL: http://www.math.colostate.edu/~achter