The Worst-Case Interference in DSL Systems Employing Dynamic Spectrum Management

Mark H. Brady and John M. Cioffi

Received 1 December 2004; Revised 28 July 2005; Accepted 31 July 2005

Dynamic spectrum management (DSM) has been proposed to achieve next-generation rates on digital subscriber lines (DSL). Because the copper twisted-pair plant is an interference-constrained environment, the multiuser performance and spectral compatibility of DSM schemes are of primary concern in such systems. While the analysis of multiuser interference has been standardized for current static spectrum-management (SSM) techniques, at present no corresponding standard DSM analysis has been established. This paper examines a multiuser spectrum-allocation problem and formulates a lower bound to the achievable rate of a DSL modem that is tight in the presence of the worst-case interference. A game-theoretic analysis shows that the rate-maximizing strategy under the worst-case interference (WCI) in the DSM setting corresponds to a Nash equilibrium in pure strategies of a certain strictly competitive game. A Nash equilibrium is shown to exist under very mild conditions, and the rate-adaptive waterfilling algorithm is demonstrated to give the optimal strategy in response to the WCI under a frequency-division (FDM) condition. Numerical results are presented for two important scenarios: an upstream VDSL deployment exhibiting the near-far effect, and an ADSL RT deployment with long CO lines. The results show that the performance improvement of DSM over SSM techniques in these channels can be preserved by appropriate distributed power control, even in worst-case interference environments.

1. INTRODUCTION

In recent years, increased demands on data rates and competition from other services have led to the development of new high-speed transmission standards for digital subscriber line (DSL) modems. Dynamic spectrum management (DSM) is emerging as a key component in next-generation DSL standards. In DSM, spectrum is allocated adaptively in response to channel and interference conditions, allowing mitigation of interference and best use of the channel. As multiuser interference is the primary limiting factor to DSL performance, the potential for rate improvement by exploiting its structure is substantial.

DSM contrasts with current DSL practice, known as static spectrum management (SSM). In SSM, masks are imposed on transmit power spectrum densities (PSDs) to bound the amount of crosstalk induced in other lines sharing the same binder group [1]. As SSM masks are fixed for all loop configurations, they can often be far from optimal or even prudent spectrum usage in typical deployments. Standardized tests for “spectral compatibility” [1] assess “new technology” by defining PSD masks and examining the impact on standardized systems using the 99th-percentile crosstalk scenario. Such methods are useful when a reasonable estimate of spectrum of all users can be assumed priori. However, if spectrum is instead allocated dynamically, not only is this knowledge not available priori, but also because of loop unbundling, other users’ spectrum may not even be known during operation. Spectral compatibility between different operators using DSM is a primary concern because new pathologies may arise with adaptive operation. Moreover, it is not unreasonable to suspect that each competing service provider sharing a binder would perform DSM in a greedy fashion, at the possible expense of other providers’ users. However, in DSM, a worst-case interference analysis based on maximum allowable PSDs is overly pessimistic, so existing spectral compatibility techniques cannot be fruitfully employed. A new paradigm is needed to assess the impact of DSM on multiuser performance of the overall system.

1.1. Prior results

The capacity region of the AWGN interference channel (IC) is in general unknown, even for the 2-user case [2]. Communication in the presence of hostile interference has been studied from a game-theoretic perspective in numerous
applications, for example, [3, 4]. A simple and relevant IC achievable region is that attained by treating interference as noise [5]. Capacity results for frequency-selective interference channels satisfying the strong interference condition are also known [6].

DSM algorithms have been proposed for the cases of distributed and centralized control scenarios. This paper considers what has been termed “Level 0–2 DSM” [7], wherein cooperation may be allowed to manage spectrum, but not for multiuser encoding and decoding. A centralized DSM center controlling multiple lines offers both higher potential performance and improved management capabilities [8]. Distributed DSM schemes based on the iterative waterfilling (IW) algorithm [9] have been presented. IW has also been studied from a game-theoretic viewpoint [10]. Numerous algorithms for centralized DSM have been proposed. Reference [11] presents a technique to maximize users’ weighted sum-rate. Rate maximization subject to frequency-division and fixed-rate proportions between users has been considered [12]. Optimal [13] and suboptimal [14] algorithms to minimize transmit power have been studied.

An extensive suite of literature on upstream power-backoff techniques to mitigate the “near-far” problem has been developed for static spectrum-management systems [13, 15–17]. A power-backoff algorithm for DSM systems implementing iterative waterfilling has been proposed [18].

In current DSL standards, upstream and downstream transmissions use either distinct frequency bands or shared bands. In the latter case, “echo” is created between upstream and downstream transmissions [9]. As analog hybrid circuits do not provide sufficient isolation, echo mitigation is essential in practical systems [19]. Numerous echo-cancellation structures have been proposed for DSL transceivers [20–22].

1.2. Outline

This paper formulates the achievable rate of a single “victim” modem in the presence of the worst-case interference from other interfering lines in the same binder group. The performance under the WCI is a guaranteed-achievable rate that can be used, for example, in studying multiuser performance of DSM strategies and establishing spectral compatibility of DSM systems.

Section 2 defines the channel and system models. The WCI problem is formalized and studied in Section 3 from a game-theoretic viewpoint. Certain properties of the Nash equilibrium of this game are explored. Section 4 considers numerical examples in VDSL and ADSL systems. Concluding remarks are made in Section 5.

A word on notation: vectors are written in boldface, where \(\mathbf{v} \) denotes the \(k \)th element of the vector \(\mathbf{v} \), and \(\mathbf{v} \geq 0 \) denotes that each element is nonnegative. The notation \(\mathbf{v}^{(n)} \) denotes a vector corresponding to tone \(n \). For the symmetric matrix \(X \), \(X \geq 0 \) denotes that \(X \) is positive semidefinite. \(\mathbf{1} \) is a column vector with each element equal to 1. \(\text{int}(X) \) denotes the (topological) interior, \(\text{cl}(X) \) the closure, and \(\partial X \) the boundary of the set \(X \).

2. SYSTEM MODEL

2.1. Channel model

A copper twisted-pair DSL binder is modelled as a frequency-selective multiuser Gaussian interference channel [9, 23]. The binder contains a total of \(L + 1 \) twisted pairs, with one DSL line per twisted pair, as shown in Figure 1. The effect of NEXT and FEXT interferences generated by \(L \) “interfering” users that generate crosstalk into one “victim” user is considered. This coupling is illustrated for downstream transmission in Figure 1.

2.2. DSL modem model

2.2.1. Modem architecture

The standardized [24] discrete-multitone (DMT)-based modulation scheme is employed, so that transmission over the frequency-selective channel may be decoupled into \(N \) independent subcarriers or tones. Both FDM and overlapping bandplans are considered. As overlapping bandplans require echo cancellation that is imperfect in practice, error that is introduced acts as a form of interference and is of concern. Echo-cancellation error is modelled assuming a prevalent echo-cancellation structure utilizing a joint time-frequency LMS algorithm [19] is employed.\(^1\) Using the terminology of [19], let \(\mu \) denote the LMS adaptive step size parameter. The “excess MSE” for a given tone is modelled [25, equation

\[^1\] Other models may be more applicable to different echo-cancellation structures.
(12.74) as proportional to the product of the LMS adaptive step size parameter μ and the transmit power on that tone. The constant of proportionality is absorbed by defining β as the ratio of excess MSE to transmitted energy on a given tone.

2.2.2. Achievable rate region

This section discusses an achievable rate region for a DSL modem based on the preceding channel and system model. The following analysis applies to both upstream and downstream transmissions. For specificity, the following refers to downstream transmission: first, consider the case where echo cancellation is employed. Denote the victim modem’s downstream transmit power on tone n, $n \in \{1, \ldots, N\}$, as x_n. Let element $l, l \in \{1, \ldots, L\}$, of the vector $\hat{y}^{(n)} \in \mathbb{R}_+^L$ denote the downstream transmit power of interfering modem l on tone n. Similarly, let element $l, l \in \{L + 1, \ldots, 2L\}$, of $y^{(n)}$ denote the upstream transmit power of interfering user $l - L$. Define element $l, l \in \{1, \ldots, L\}$, of the row vector $h^{(n)} \in \mathbb{R}_+^L$ as the FEXT power gain from interfering user l on tone n (necessarily, $h^{(n)} \geq 0$). Similarly, define element $l, l \in \{L + 1, \ldots, 2L\}$, of $h^{(n)}$ to be the NEXT power gain from interfering user $l - L$. Let element n of $\hat{h}_n \in \mathbb{R}_N^N$ denote the victim line’s insertion gain on tone n ($\hat{h}_n \geq 0$).

Independent AWGN (thermal noise) with power $\sigma_n^2 > 0$ is present on tone n. Let β_n denote the echo-cancellation ratio on tone n as described above. Echo-cancellation error is treated as AWGN. Let Γ denote the SNR gap-to-capacity. Then the following bit loading 2 is achievable on tone n [9]:

$$b_n = \log \left(1 + \frac{\hat{h}_nx_n}{\Gamma(h^{(n)}y^{(n)} + \beta_nx_n + \sigma_n^2)}\right).$$

(1)

Observe that if $\hat{h}_n = 0$, then it is necessarily the case that $b_n = 0$, implying that tone n is never loaded. Thus, in the sequel, $\hat{h}_n > 0$ for all $n \in \{1, \ldots, N\}$ is considered without loss of generality by removing those tones with zero direct gain ($\hat{h}_n = 0$). Defining $\alpha_n = \Gamma/\hat{h}_n$, $\beta_n = \Gamma\beta_n/\hat{h}_n$, and $N_n = \Gamma\sigma_n^2/\hat{h}_n$, and substituting

$$b_n = \log \left(1 + \frac{x_n}{\alpha_nh^{(n)}y^{(n)} + \beta_nx_n + N_n}\right),$$

(2)

because $\Gamma \geq 1$, it follows that $\alpha_n \geq 0$, $\beta_n \geq 0$, and $N_n > 0$.

2.2.3. Achievable rate region for FDM

When an FDM scheme is employed, NEXT and echo cancellation are eliminated because transmission and reception occur on distinct frequencies. As a common configuration in ADSL and VDSL standards [9], this represents the important special case of the preceding model, where $\beta_n = 0$ (due to no echo cancellation) and $h^{(n)} = 0$ for all $n, L + 1 \leq l \leq 2L$ (due to frequency division). Additional technical results will be shown to hold in the FDM setting, as detailed in Section 3.

3. THE WORST-CASE INTERFERENCE

3.1. Game-theoretic characterization of the WCI

This section introduces and motivates the concept of the worst-case interference (WCI). Suppose that a “victim” modem desires to keep its data rate at some level. Such a scenario is commonplace as carriers widely offer DSL service at fixed data rates. The objective is to bound the impact that multiuser interference can have on this victim modem, thereby determining whether service may be guaranteed. To this end, one considers interferences that are the most harmful in the sense of minimizing the achievable rate of a “victim” modem. However, it is not clear what form such interferences might take, nor how they might be best responded to.

Examining this problem from the standpoint of game theory leads to substantial insight. Consider a worst-case interference game where one player jointly optimizes the spectrum of all the interfering modems, irrespective of the data rate they achieve in doing so, to cause the most deleterious interference to the victim modem. Thus in this game, all the interfering modems act as one player, while the victim modem acts as the other player, with the channel and noise known to all. Although such an arrangement may appear pathological, it will be shown numerically that such a situation is quite close to what occurs in certain loop topologies. Neither is assuming such coordination of the interferers unreasonable in practice as under “Level 2” DSM [7, 8], each collocated carrier may individually coordinate its own lines, nor may collocated equipment be centrally controlled by a competing carrier. Channels may be estimated in the field, approximated by standardized models [9], and in the future, potentially published by operators [26].

A Nash equilibrium in this game may be interpreted as characterizing a worst-case interference as an optimal response (power-allocation policy) to it. The structure of the Nash equilibrium lends insight into the problem as well as suggesting techniques that may be implemented in practical systems.

3.2. Formalization of the WCI game

Consider the following two-player game: let Player 1 control the spectrum allocation of victim modem, and let Player 2 control the spectrum allocations of all the interfering modems. Referring again to downstream transmission for specificity, let the total (sum) downstream power of the victim modem $\sum_n x_n$ be upper bounded by P^x, where $0 < P^x < \infty$. Player 1 is also subject to a positive power constraint C^x on each tone, so that $x \leq C^x$. Note that this constraint may be redundant by setting, for example, $C^x \geq 1P^x$. The requirement that $C^x > 0$ is without loss of generality by

2 The achieved data rate of a given modem is proportional to the number of bits loaded (less overhead); this constant of proportionality is normalized to 1 in the theoretical development.

3 Effects arising from implementation issues that may lead to crosstalk between upstream and downstream bands are not explicitly considered.
disregarding all unusable tones \(n \) for which \(C^N_n = 0 \). Similarly, for Player 2, consider per-line power constraints \(0 < P^n < \infty \), where the total downstream power of the \(l \)th interfering modem \(l \in \{ 1, \ldots, L \} \) is upper bounded by the \(l \)th element of \(P^n \in \mathbb{R}^{L \times 1} \) and the total upstream power of interfering modem \(l \) is upper bounded by element \(l \) of \(P^l \). Further, consider positive power constraints \(C^{y(n)}_n \in \mathbb{R}^{L \times 1} \) for \(n = 1, \ldots, N \) such that \(y^{(n)} \leq C^{y(n)}_n \) for each \(n \); any such power constraints equal to zero may be equivalently enforced by zeroing respective element(s) of \(\{ h^{(n)} \} \).

The strategy set of Player 1 is the set of all feasible power allocations for the victim modem, \(\delta_1 = \{ x : 0 \leq x \leq C^1, 1^T x \leq P^1 \} \), and the strategy set of Player 2 is the set of all feasible power allocations for the interferring mods, \(\delta_2 = \{ [y^{(1)}, \ldots, y^{(N)}] : 0 \leq y^{(n)} \leq C^{y(n)}_n, n = 1, \ldots, N, [y^{(1)}, \ldots, y^{(N)}] \in \mathbb{R}^N \} \). Define \(\delta = \delta_1 \times \delta_2 \). This is a strictly competitive or zero sum two-player game \((\delta_1, \delta_2, J)\), where the objective function \(J : \delta \rightarrow \mathbb{R} \) is defined to be the achievable data rate of the victim user:

\[
J(x, [y^{(1)}, \ldots, y^{(N)}]) = \sum_{n=1}^{N} \log \left(1 + \frac{x_n}{a_n h^{(n)} y^{(n)} + \beta_n x_n + N_n} \right) .
\] (3)

The game \(\mathcal{G} = (\delta_1, \delta_2, J) \) is defined to be the worst-case interference game.

3.3. Derivation of Nash equilibrium conditions

A Nash equilibrium in pure strategies in the WCI game \(\mathcal{G} \) is defined to be any saddle point \((x, [y^{(1)}, \ldots, y^{(N)}]) \in \delta \) satisfying

\[
J(\tilde{x}, [y^{(1)}, \ldots, y^{(N)}]) \leq J(x, [y^{(1)}, \ldots, y^{(N)}]) \leq J(x', [y^{(1)}, \ldots, y^{(N)}]),
\] (4)

for all \(\tilde{x} \in \delta_1, [y^{(1)}, \ldots, y^{(N)}] \in \delta_2 \). Condition (5) immediately implies the claim that Player 1 rate at a Nash equilibrium of \(\mathcal{G} \) lower bounds the achievable rate with any other feasible interference profile. This bound also extends to other settings: in the noncooperative IFW game [10], a (possibly non-unique) Nash equilibrium is known to always exist in pure strategies; condition (5) again yields a lower bound rate at every Nash equilibrium of the IFW game for the line corresponding to Player 1.

It is now shown that a Nash equilibrium of \(\mathcal{G} \) always exists due to certain properties of the objective and strategy sets. First, the convex-concave structure of the objective is established.

Theorem 1. If \(\alpha \geq 0, \beta \geq 0, \gamma > 0, h \in \mathbb{R}^{2L}, \alpha, \beta, \gamma, h \) are bounded, then the function \(g : \mathbb{R}_+ \times \mathbb{R}_+ \times \mathbb{R}_+ \rightarrow \mathbb{R}_+ \) defined by

\[
g(x, y) = \log \left(1 + \frac{x}{ah^T y + \beta x + \gamma} \right) \] (6)

is strictly concave in \(x \) and is convex in \(y \).

Proof. It is first shown that \(f : \mathbb{R}_+ \times \mathbb{R}_+ \rightarrow \mathbb{R}_+ \), \(f(x, \eta) = \log((1 + \beta)x + \alpha \eta + \gamma) - \log(\alpha \eta + \beta x + \gamma) \) is convex in \(\eta \) and strictly concave in \(x \). It is sufficient [27] to show that for all \(\eta \geq 0, \beta > 0, \gamma > 0 \),

\[
\frac{\partial^2 f}{\partial \eta^2} = \frac{\partial f}{\partial x} < 0,
\] (7)

\[
\frac{\partial^3 f}{\partial x \partial \eta^2} = \frac{\partial^2 f}{\partial x^2} < 0,
\] (8)

\[
\frac{\partial^2 f}{\partial \eta^2} = -\frac{\partial f}{\partial x} = -\frac{\alpha x}{ah^T y + \beta x + \gamma},
\] (9)

\[
\frac{\partial^3 f}{\partial x^2} = -\frac{\alpha x}{ah^T y + \beta x + \gamma} \leq 0,
\] (10)

where \(\epsilon = \gamma/(4 \beta (\beta + 1)) \) in (8), \(\epsilon = \gamma/(2 \alpha) \) when \(\alpha > 0 \), and \(\epsilon = 1 \) when \(\alpha = 0 \) in (10). For all \((x, y) \in \mathbb{R}_+ \times \mathbb{R}_+ \), it must be that \(h^T y \geq 0 \). Thus \(g(x, y) = f(x, h^T y) \). By the affine mapping composition property [27], it follows that \(g(x, y) \) is convex in \(y \) and strictly concave in \(x \).

Because the objective (3) is a sum of functions that are strictly concave in \(x \) and convex in \(y^{(n)} \), \(J \) is strictly concave in \(x \) and convex in \([y^{(1)}, \ldots, y^{(N)}] \).

Theorem 2. The WCI game \(\mathcal{G} \) has a Nash equilibrium existing in pure strategies, and a value \(R^* \).

Proof. Because \(\delta_1 \subset \mathbb{R}^N \) and \(\delta_2 \subset \mathbb{R}^{2L} \) are closed and bounded, by the Heine-Borel theorem, they are both compact. Also, the objective is a composition of continuous functions, hence continuous, and \(J \) is strictly concave in \(x \) and convex in \([y^{(1)}, \ldots, y^{(N)}] \). The conditions of [28, Theorem 4.4] are thus satisfied, and therefore a pure-strategy saddle point exists. Note that the saddle point need not be unique, in general. Because a saddle point exists in pure strategies, the game has a value [28, Theorem 4.1], which will be denoted as \(R^* \). Thus,

\[
\max_{x \in \delta_1} \min_{[y^{(1)}, \ldots, y^{(N)}] \in \delta_2} J = \min_{[y^{(1)}, \ldots, y^{(N)}] \in \delta_2} \max_{x \in \delta_1} J = R^* .
\] (11)

3.4. Structure of the worst-case interference

The previous section showed that under very general conditions, a Nash equilibrium exists. However, it is not immediately clear whether there exists a unique Nash equilibrium, or whether Nash equilibria of the WCI game might possess any simplifying structure.

The former question may be addressed by considering the following example: \(N = 2, L = 2, h^{(1)} = h^{(2)} = [1 1 0 0], P^1 = P^2 = [1 1 0 0], N_1 = N_2 = 0, \alpha_1 = \alpha_2 = 1, \Gamma = 1, \) and suppose that the FDM condition is satisfied and the per-tone power constraints are redundant. Then it may be readily verified by symmetry arguments that with \(x = [1/2 1/2]^T \), both \(y^{(1)} = [1 0 0 0]^T \), \(y^{(2)} = [0 1 0 0]^T \),
and \(y^{(1)} = y^{(2)} = [1/2 \ 1/2 \ 0 \ 0]^T \) (and convex combinations thereof) form saddle points \((x, [y^{(1)}, y^{(2)}])\). Thus, Player 2 may have an uncountably infinite number of optimal strategies even under the FDM condition, and hence the saddle point need not to be unique in general.

Given that the Nash equilibrium is not generally unique, its structure is explored in the following results. Some basic intuition is first established showing that “waterfilling” is Player 1 optimal strategy in response to the interference induced at a given Nash equilibrium where the FDM condition holds and the individual-tone constraints are inactive.

Theorem 3. Let \((\tilde{x}, [\tilde{y}^{(1)}, \ldots, \tilde{y}^{(n)}])\) be a Nash equilibrium of the WCI game \(g\). If the FDM condition holds for \(g\) and \(C^* \geq P^x\) for all \(n\), then the Nash equilibrium strategy of Player 1 (namely, \(\tilde{x}\)) is given by “waterfilling” against the combined noise and interference \(\alpha_n h^{(n)}(\tilde{y}^{(n)}) + N_n\) from Player 2.

Proof. Let \((\tilde{x}, [\tilde{y}^{(1)}, \ldots, \tilde{y}^{(n)}])\) be any saddle point of \(J\). The condition \(C^* \geq P^x\) ensures that the per-tone constraints are trivially satisfied whenever the power constraint \(P^x\) is. Evaluating the right-hand side of (11), if \(\beta_n = 0\) (from FDM assumption), then

\[
R^* = \max_{x \in \mathcal{S}} \sum_{n=1}^{N} \log \left(1 + \frac{\tilde{x}_n}{\alpha_n h^{(n)}(\tilde{y}^{(n)}) + N_n} \right).
\]

(12)

The optimization problem (12) is seen to be precisely the same as single-user rate maximization with parallel Gaussian channels [23], and hence the (modified) waterfilling spectrum is optimal and unique (for fixed \([\tilde{y}^{(1)}, \ldots, \tilde{y}^{(n)}]\)). In particular, the modified AWGN noise level on tone \(n\) is seen to be \(\alpha_n h^{(n)}(\tilde{y}^{(n)}) + N_n\). This is the same modified noise level used in the rate-adaptive IW algorithm [9].

Considering the structure of the general WCI game \(g\), it is possible to establish uniqueness of Player 1 optimal strategy and strong properties of Player 2 optimal strategy. Henceforth, the set of all Nash equilibria of \(g\) is denoted by \(P\).

Theorem 4. The Nash equilibrium strategy of Player 1 is unique; that is, there exists some \(\hat{x} \in \mathcal{S}\) such that for each \((x, [y^{(1)}, \ldots, y^{(N)}]) \in P\), it is the case that \(x = \hat{x}\). Moreover, for Player 2, the induced “active” interference at each Nash equilibrium is unique; in particular, \((x, [y^{(1)}, \ldots, y^{(N)}]), (\tilde{x}, [\tilde{y}^{(1)}, \ldots, \tilde{y}^{(N)}]) \in P\) imply that \(\alpha_n h^{(n)}(y^{(n)}) = \alpha_n h^{(n)}(\tilde{y}^{(n)})\) for each \(n = 1, \ldots, N\) satisfying \(\tilde{x}_n > 0\).

Proof. To show that Player 1 optimal strategy is identical for all Nash equilibria, consider the saddle points \((x, [y^{(1)}, \ldots, y^{(N)}]) \in P\) and \((\tilde{x}, [\tilde{y}^{(1)}, \ldots, \tilde{y}^{(N)}]) \in P\), which are not necessarily distinct. By Theorem 1 and separability over tones, the objective (3) is strictly concave in \(x\), and therefore has a unique maximizer [27], namely \(\hat{x}\), when one fixes \([y^{(1)}, \ldots, y^{(N)}] = [\tilde{y}^{(1)}, \ldots, \tilde{y}^{(N)}]\). Observe that \((x, [y^{(1)}, \ldots, y^{(N)}]) \in P\) by the exchangeability property of saddle points [28]. Consequently, \(x\) is also the unique maximizer of (3) for \([y^{(1)}, \ldots, y^{(N)}] = [\tilde{y}^{(1)}, \ldots, \tilde{y}^{(N)}]\). This implies that \(x = \hat{x}\). Taking \(\hat{x} = \tilde{x}\) establishes the result.

To show the second claim, define \(I = \{i : \hat{x}_i > 0\}\), where \(\hat{x}\) is the unique Nash equilibrium strategy of Player 1 as per the first claim, and suppose that there exists a nonempty set \(D = \{n \in I : \alpha_n h^{(n)}(y^{(n)}) \neq \alpha_n h^{(n)}(\tilde{y}^{(n)})\}\). Consider \((\tilde{x}, [\tilde{y}^{(1)}, \ldots, \tilde{y}^{(N)}]) \in P\) and \((\tilde{x}, [\tilde{y}^{(1)}, \ldots, \tilde{y}^{(N)}]) \in P\), where \(\tilde{x} = x = \hat{x}\). Define \(\delta_n = [y^{(1)}, \ldots, y^{(N)}] = [(1/2)[y^{(1)}, \ldots, y^{(N)}] + (1/2)[\tilde{y}^{(1)}, \ldots, \tilde{y}^{(N)}]]\). The function \(g : \mathbb{R}^n \to \mathbb{R}_+\) defined by

\[
g([i_1, \ldots, i_N]) = \sum_{n=1}^{N} \log \left(1 + \frac{\tilde{x}_n}{\alpha_n h^{(n)}(y^{(n)}) + N_n} \right)
\]

(13)

is convex in each variable \(i_n\) and strictly convex in each variable \(i_n\) for which \(n \in I\) due to (10). By the fact that \(\emptyset \neq D \subset I\) and the convexity properties, it follows that \(g([\alpha_n h^{(n)}(y^{(n)})]) < (1/2)g([\alpha_n h^{(n)}(y^{(n)})]) + (1/2)g([\alpha_n h^{(n)}(y^{(n)})])\), and consequently

\[
f(\tilde{x}, \alpha_n h^{(n)}(y^{(n)}) \leq \frac{1}{2} f(\tilde{x}, \alpha_n h^{(n)}(y^{(n)}) \leq \frac{1}{2} f(\tilde{x}, \alpha_n h^{(n)}(y^{(n)})
\]

(14)

which contradicts (5). Therefore \(D = \emptyset\).

As a corollary, Theorem 4 implies that the “interference profile” \(\alpha_n h^{(n)}y^{(n)} + \beta_n x_n + N_n\) is invariant on each active tone \(n : x_n > 0\) at every Nash equilibrium. Even though the Nash equilibrium need not be unique, one therefore has a strong sense in which to speak of a worst-case interference profile that is most deleterious to Player 1. It is possible to strengthen Theorem 4 by restricting attention to the FDM setting: in Theorem 5, it is shown that in this case the structure of \(P\) is polyhedral. Moreover, once one has obtained a single Nash equilibrium point, the set of all Nash equilibria may be readily deduced. This implies that the set of worst-interference profiles may be explicitly computed by practitioners for use in offline system design or dynamic operation.

Theorem 5. If the FDM condition is satisfied, then the set \(P\) of all Nash equilibria of the WCI game \(g\) is a polytope.\(^4\)

Proof. The result is proven by constructing a polytope, \(Q\) and subsequently showing that \(P = Q\). To construct \(Q\), take any \((x, [y^{(1)}, \ldots, y^{(N)}]) \in P\) (such a point must exist by Theorem 2). Define \(D = \{n : \tilde{x}_n = 0\}, E = \{n : 0 < \tilde{x}_n < C^*_n\}, F = \{n : \tilde{x}_n = C^*_n\}\), and \(I = E \cup F\). Equation (4) holds that

\(^4\) Different definitions of polytopes exist in the literature; this paper defines a polytope as the bounded intersection of a finite number of half-spaces [27].
\(\hat{x} \) must be an optimal solution of the convex optimization problem:

\[
\max_{x} \sum_{n=1}^{N} \log \left(1 + \frac{x_n}{\alpha_n h_n(y_n) + N_n} \right),
\]

subject to \(x \geq 0, \quad n = 1, \ldots, N, \)

\[
\sum_{n} x_n \leq P^x,
\]

\(C^x \succeq x. \)

Associate Lagrangian dual variables \(\lambda \in \mathbb{R} \) and \(v \in \mathbb{R}_+^N \) with constraints (17) and (18), respectively. Because the objective is concave in \(x \) and Slater’s constraint qualification condition is satisfied [27], the Karush-Kuhn-Tucker (KKT) conditions are necessary and sufficient for optimality (for fixed \([y^{(1)}, \ldots, y^{(N)}] = [\hat{y}^{(1)}, \ldots, \hat{y}^{(N)}] \)):

\[
\frac{1}{\alpha_0 h_0(y_0) + x_0 + N_0} - \lambda \leq 0, \quad v_0 = 0 \quad \text{if} \ x_0 = 0,
\]

\[
\frac{1}{\alpha_n h_n(y_n) + x_n + N_n} - \lambda = 0, \quad v_n = 0 \quad \text{if} \ 0 < x_n < C_n^v,
\]

\[
\frac{1}{\alpha_n h_n(y_n) + x_n + N_n} - \lambda - v_n = 0, \quad \text{if} \ x_n = C_n^v,
\]

\[
\lambda \left(\sum_{n} x_n - P^x \right) = 0, \quad x \in \delta_1, \quad \lambda \geq 0, \quad v \geq 0.
\]

Suppose that the KKT conditions are satisfied by the triplet \((\hat{x}, \hat{\lambda}, \hat{v})\). The triplet \((\hat{x}, \hat{\lambda}, \hat{v})\) need not be unique, in general. However, the first element is unique (by Theorem 4), and thus it remains to be seen whether the ordered pair \((\hat{\lambda}, \hat{v})\) is unique. If \(E \neq \emptyset \), then the pair is unique. To see this, consider \(n_0 \in E \) which by (20) uniquely determines \(\hat{\lambda}^{0} \) and along with (19) and (21) uniquely determines \(\hat{v}^{0} \). Because \(1/(\alpha_0 h_0(y_0) + x_0 + N_0) > 0 \) for all \(x \in \delta_1 \), in account of (20) it must be that \(\hat{\lambda}^{0} > 0 \). In this case, we define \(\hat{\lambda} = \hat{\lambda}^{0} \) and \(\hat{v} = \hat{v}^{0} \).

In the event that \(E = \emptyset \), observe that because the objective (15) is strictly increasing in \(x \), it must be that \(I \neq \emptyset \). Also, because \(E \subset E \cup F = I \neq \emptyset \), one has \(F \neq \emptyset \). Define

\[
\hat{\lambda} = \hat{\lambda}^{0} + \min_{m \in F} \hat{v}_m,
\]

\[
\hat{v}_n = \begin{cases}
\hat{v}_n^0 - \min_{m \in F} \hat{v}_m, & n \in F, \\
0 & \text{else}.
\end{cases}
\]

It may be readily verified that \((\hat{x}, \hat{\lambda}, \hat{v})\) also satisfies the KKT conditions. Observe that by (24), \(\hat{v}_n = 0 \) for at least one \(n \in I \). Because \(1/(\alpha_0 h_0(y_0) + x_0 + N_0) > 0 \) for all \(n \in I \neq \emptyset \), \(x \in \delta_1 \), (21) implies that \(\hat{\lambda} > 0 \). It is therefore the case that the triplet \((\hat{x}, \hat{\lambda}, \hat{v})\) satisfies the KKT conditions and \(\hat{\lambda} > 0 \) whether \(E = \emptyset \) or \(E \neq \emptyset \).

For each \(n \in D \), define \(\varphi_n \) as the solution of the equation \(1/(\alpha_n h_n(y_n) + N_n) = \lambda + \nu_n \), namely \(\varphi_n = 1/\hat{\lambda} - \hat{x}_n \). Define the polytope

\[
Q = \{ (x, [y^{(1)}, \ldots, y^{(N)}]) : x = \hat{x}, \quad \alpha_n h_n(y_n) = \alpha_n h_n(y_n) \quad \forall n \in I, \quad \alpha_n h_n(y_n) + N_n \geq \varphi_n \quad \forall n \in D \}.
\]

It remains to be shown that \(P = Q \); it is first argued that \(Q \subset P \). Recall that \((\hat{x}, [\hat{y}^{(1)}, \ldots, \hat{y}^{(N)}]) \in P \) was used to construct \(Q \), and consider any \((\bar{x}, [\bar{y}^{(1)}, \ldots, \bar{y}^{(N)}]) \in Q \). Note that \(\bar{x} = \hat{x} \) by construction of \(Q \). The inequality (5) requires that \([\hat{y}^{(1)}, \ldots, \hat{y}^{(N)}]\) be an optimum solution of the convex optimization problem:

\[
\min_{[y^{(1)}, \ldots, y^{(N)}]} \sum_{n=1}^{N} \log \left(1 + \frac{x_n}{\alpha_n h_n(y_n) + \beta_n \hat{x}_n + N_n} \right)
\]

subject to \([y^{(1)}, \ldots, y^{(N)}] \in \delta_2 \).

However since by Theorem 4, \(\alpha_n h_n(y_n) = \alpha_n h_n(y_n) \) for all \(n \in I \), the objective value is equal, and hence (5) is satisfied. Equation (4) is equivalent to requiring the KKT conditions (19)–(22) to be satisfied for some ordered pair \((\lambda, v)\), where \(x = \hat{x} \) and \([y^{(1)}, \ldots, y^{(N)}] = [\hat{y}^{(1)}, \ldots, \hat{y}^{(N)}] \) are fixed. It is now argued that the choice of \((\lambda, v) = (\hat{\lambda}, \hat{v})\) satisfies the conditions. For each \(n \in \{1, \ldots, N\} \), if \(n \in I \), then \(\alpha_n h_n(y_n) + N_n \geq \varphi_n \) implies that \((x_n + \alpha_n h_n(y_n) + N_n)^{-1} - \hat{\lambda} \leq 0 \) by monotonicity of \(1/(x + a) \) in \(x \geq 0 \) for \(a > 0 \). If \(n \in I \), then \(\alpha_n h_n(y_n) + N_n = \alpha_n h_n(y_n) + N_n \) by construction of \(Q \), and accordingly (20) or (21) is satisfied. Because both (4) and (5) are satisfied, it follows by definition that \((\hat{x}, [\hat{y}^{(1)}, \ldots, \hat{y}^{(N)}]) \in P \), and hence \(Q \subset P \).

It is now argued that \(P \subset Q \). Recall that \((\hat{x}, [\hat{y}^{(1)}, \ldots, \hat{y}^{(N)}]) \in P \) was used to construct \(Q \) and consider any \((\bar{x}, [\bar{y}^{(1)}, \ldots, \bar{y}^{(N)}]) \in P \). By Theorem 4, \(\bar{x} = \hat{x} \). Also by Theorem 4, one has \(\alpha_n h_n(y_n) = \alpha_n h_n(y_n) \) for all \(n \in I \), and therefore it remains only to prove that \(\alpha_n h_n(y_n) + N_n \geq \varphi_n \) for all \(n \in D \).

Because \((\bar{x}, [\bar{y}^{(1)}, \ldots, \bar{y}^{(N)}]) \in P \), there must exist a pair \((\hat{\lambda}, \hat{v})\) such that the triplet \((\bar{x}, \hat{\lambda}, \hat{v})\) satisfies the KKT conditions (for fixed \([y^{(1)}, \ldots, y^{(N)}] = [\hat{y}^{(1)}, \ldots, \hat{y}^{(N)}] \)).

In the event that \(E \neq \emptyset \), define \(\hat{\lambda} = \hat{\lambda}^{0} + \min_{m \in F} \hat{v}_m \),

\[
\hat{v}_n = \begin{cases}
\hat{v}_n^0 - \min_{m \in F} \hat{v}_m, & n \in F, \\
0 & \text{else}.
\end{cases}
\]

It may be readily verified that \((\bar{x}, \hat{\lambda}, \hat{v})\) satisfies the KKT conditions (for fixed \([y^{(1)}, \ldots, y^{(N)}] = [\hat{y}^{(1)}, \ldots, \hat{y}^{(N)}] \)). By (28), there must exist some \(n' \in F \) such that \(\hat{v}_{n'} = 0 \). Similarly, recall that there must exist some \(m' \in F \) such that
...m = 0 and \(y_m = 0 \). In particular, let \(m = m' \).

Then by (21) and the fact that the triplet \((\tilde{x}, \lambda, \tilde{y})\) satisfies the KKT conditions for \([y_1^{(1)}, \ldots, y_N^{(1)}] = [\tilde{y}_1^{(1)}, \ldots, \tilde{y}_N^{(1)}]\), one has

\[
1/(\alpha_m h_m^{(m)} + \tilde{x}_m + N_m) \leq 1/(\alpha_m h_m^{(m)} + \tilde{x}_m + N_m) \leq 1/(\alpha_m h_m^{(m)} + \tilde{x}_m + N_m)
\]

for all \(n \in F \). However, \(\alpha_m h_m^{(n)} y_m^{(n)} = \alpha_m h_m^{(n)} y_m^{(n)} \) for all \(n \in F \), and therefore

\[
1/(\alpha_m h_m^{(n)} + \tilde{x}_m + N_m) \leq 1/(\alpha_m h_m^{(n)} + \tilde{x}_m + N_m)
\]

for all \(n \in F \). This (along with the fact that \(\tilde{y}_n = 0 \) for some \(n' \in F \)) implies that \(\tilde{y}_m = 0 \). Then, (21) for this choice of \(m \) implies that \(\tilde{\lambda} = \tilde{\lambda} \).

Because it is always the case that \(\tilde{\lambda} = \tilde{\lambda} \), the triplet \((\tilde{x}, \lambda, \tilde{y})\) satisfies the KKT conditions (for \([y_1^{(1)}, \ldots, y_N^{(1)}] = [\tilde{y}_1^{(1)}, \ldots, \tilde{y}_N^{(1)}]\)). Therefore, \(1/(\alpha_m h_m^{(n)} + \tilde{x}_m + N_m) - \tilde{\lambda} \leq 0 \) for all \(n \in D \) implies that \(\alpha_m h_m^{(n)} y_m^{(n)} + N_m \geq \varphi_n \) for all \(n \in D \). Thus \((\tilde{x}, [\tilde{y}_1^{(1)}, \ldots, \tilde{y}_N^{(1)}]) \in Q\).

\[\square \]

3.5. Numerical computation of the saddle point

In order to apply the WCI bound in practical settings, it is necessary to develop numerical algorithms to solve for Nash equilibrium strategies and \(R^* \). The methodology considered herein is that of interior-point optimization techniques such as the "infeasible start Newton method" [27, Section 10.3]. The general approach of interior-point techniques is to replace the (power and positivity) constraints with barrier functions that become large as the (power and positivity) constraints become tight. By making the increase in the barrier functions progressively sharper, one solves a sequence of problems whose solutions converge to a Nash equilibrium of \(\tilde{g} \). We now formally cast the problem (11) in the interior-point setting and argue that it satisfies certain necessary properties needed for convergence. Logarithmic barrier functions are employed to enforce the positivity and power constraints and a Newton-step central path algorithm is used to compute \(R^* \) to arbitrary accuracy [27].

Let the central path parameter be denoted by \(t \in \mathbb{R}^{+} \) and define \(\delta_1 = \text{int}(\delta_1) \), \(\delta_2 = \text{int}(\delta_2) \), and \(\tilde{f} : \delta_1 \times \delta_2 \to \mathbb{R}_+ \), where

\[
\tilde{f}(x, [y_1^{(1)}, \ldots, y_N^{(1)}]) = \begin{align*}
t^{-1} \log \left(p_x - \sum_{n=1}^{N} x_n \right) + \sum_{n=1}^{N} t^{-1} \log \left(c_n - x_n \right) \\
+ \sum_{n=1}^{N} \left\{ \log \left(1 + \frac{x_n}{\alpha_m h_m^{(n)} y_m^{(n)} + \beta_n x_n + N_n} \right) + t^{-1} \log \left(x_n \right) \right\} \\
- t^{-1} \sum_{l=1}^{2L} \left[\log \left(y_l^{(n)} \right) + \log \left(c_l^{(n)} - y_l^{(n)} \right) \right] \\
- t^{-1} \sum_{l=1}^{2L} \log \left(p_l^{(n)} - \sum_{n=1}^{N} y_l^{(n)} \right) .
\end{align*}
\]

(29)

To establish convergence, it is necessary only to show that \(\tilde{f} \) satisfies the following sufficient conditions [27, Section 10.3.4] that the sublevel sets of \(\| \nabla \tilde{f} \|_2 \) are closed, and that the Hessian of \(\tilde{f} \) is Lipschitz continuous with bounded inverse.

The partial derivatives of \(\tilde{f} \),

\[
\begin{align*}
\frac{\partial \tilde{f}}{\partial x_n} &= \frac{\alpha_m h_m^{(n)} y_m^{(n)} + N_n}{1/(x_n - t (p_x - 1^T x) - t(C_n - x_n) - 1)} \\
\frac{\partial \tilde{f}}{\partial y_m^{(n)}} &= \frac{1}{t y_m^{(n)} + t(C_m^{y(n)} - y_m^{(n)}) + t(P_m - \sum_{n=1}^{N} y_m^{(n)})}.
\end{align*}
\]

(30)

are continuous on \(\delta_1 \times \delta_2 \), implying by continuity of the norm that \(\| \nabla \tilde{f} \|_2 \) is continuous on \(\delta_1 \times \delta_2 \). Consequently, the sublevel sets \(S_\alpha \) for each \(\alpha \in \mathbb{R}_+ \),

\[
S_\alpha = \left\{ (x, [y_1^{(1)}, \ldots, y_N^{(1)}]) \in \delta_1 \times \delta_2 : \| \nabla \tilde{f}(x, [y_1^{(1)}, \ldots, y_N^{(1)}]) \|_2 \leq \alpha \right\},
\]

(31)

are closed relative to \(\delta_1 \times \delta_2 \). To show that \(S_\alpha \) is closed, suppose that \(\{z_n\} \) is any sequence in \(S_\alpha \) with \(\lim_{n \to \infty} z_n = z \). If \(z \in \delta_1 \times \delta_2 = \text{int}(\delta_1 \times \delta_2) \), then \(z \in S_\alpha \) by relative closure. Therefore, there remains only to observe that there does not exist any \(z_n \to z \) with \(z \in \partial \text{c}(\delta_1 \times \delta_2) \). This follows from examining (30), where it can be seen that \(\| \nabla \tilde{f}(z_n) \|_2 \) increases without bound for any such \(z_n \to z \). This contradicts the assumption that \(\{z_n\} \) is a sequence in \(S_\alpha \).

In order to show for arbitrary \(\alpha \in \mathbb{R} \) that the Hessian is Lipschitz continuous on \(S_\alpha \), it is enough to show that each element of \(\nabla^2 \tilde{f} \) is continuously differentiable on \(S_\alpha \). The partial derivatives of (30) may be readily computed and seen to be continuous functions on \(S_\alpha \subset \delta_1 \times \delta_2 \). However, \(\delta_1 \times \delta_2 \) is bounded, therefore \(S_\alpha \) is also bounded (and closed), hence compact. Therefore, each partial derivative of \(\nabla^2 \tilde{f} \) as a continuous function on a compact set, is bounded. Finally, the bounded inverse condition on the Hessian follows from the fact that the barrier functions are strictly concave in \(x \) and strictly convex in \([y_1^{(1)}, \ldots, y_N^{(1)}]\). In particular, computation of the Hessian reveals that

\[
\nabla^2 \tilde{f} \preceq \begin{pmatrix} t^{-1}/(p_x^2) & I \\ I & t^{-1}/\max(p_x^2) \end{pmatrix} \]

on \(\delta_1 \times \delta_2 \), and hence \(S_\alpha \).

4. Simulation Results

The scope of the WCI analysis extends generally to DMT-based DSL systems. This section examines two particular cases that are deployed prevalently: VDSL and ADSL. In VDSL, a prominent interference issue is the upstream

\[5 \text{ The expressions are lengthy and omitted for space.} \]
near-far effect, which is caused by crosstalk from short-("near") lines FEXT coupling into longer("far") lines. In ADSL, the issue of RT FEXT injection into longer CO lines is similarly of concern. Numerical results for these sample deployments demonstrate the practicality of the WCI analysis and show surprising commonalities between the different scenarios. In all simulations, the interior-point technique is used with an error tolerance of less than 0.1%.

4.1. VDSL upstream

The WCI rate bound is first applied to two different upstream VDSL scenarios exhibiting the near-far effect. The binder configuration is illustrated in Figure 2. For all simulations, 19 × 300 m lines, 10 × 1200 m lines, and one line of varying length occupy the binder of 24 AWG twisted-pairs. The FTEx M2 (998 FDM) bandplan is employed with HAM bands notched and the usual PSD constraints removed. Tones below 138 kHz are disabled for ADSL compatibility, and the normal PSD masks are not applied. The FDM condition is satisfied for this configuration, hence $\beta_n = 0$. For 10^{-7} BER, assume coding gain of 3 dB, with 6 dB margin, thus $\Gamma = 12.5$ dB. Each line is limited to 14.5 dBm power ($P^v = 14.5$ dBm, $P^r = 1 \cdot 14.5$ dBm).

4.1.1. WCI rate as a function of line length

First, consider the WCI rate bound when the variable-length line is the victim line (Player 1). Numerical results are shown in Figure 3, where a lower bound rate as well as the rate obtained when all lines execute full-power rate-adaptive (RA) IW are plotted as a function of victim line length. Note that full-power RA IW is quite different from fixed-margin (FM) IW, where power is minimized while achieving a fixed rate and margin [18]. To investigate practical bit loading constraints numerically, RA IW with discrete bit constraints [9] is executed on the victim modem assuming the WCI (11). Player 1 achieved rate with discrete bit loading is plotted as R^*_d. Evidently, $R^*_d \leq R^*$, and therefore R^*_d is also a lower bound to the achievable rate under the WCI.

Observe that for most line lengths, the rate achieved by RA IW is fairly close to the WCI bound, particularly near 200 m and 900 m. For intermediate lengths (≈ 650 m), rate-adaptive IW can perform up to $\approx 75\%$ better than the WCI bound, though the absolute difference is small. As a corollary, the interference generated by IW in this configuration is deleterious in the sense that it is close in rate to the WCI saddle point. This finding is consistent with results [11] showing that other centralized DSM strategies can significantly outperform IW in such cases. Furthermore, fixed-margin (FM) IW can also be seen to perform significantly better than the WCI bound when rates are adjudicated reasonably [18].

4.1.2. WCI rate as a function of PBO

Motivated by the results of the previous section showing that the full-power WCI rate bound can decrease precipitously as loop length increases, the efficacy of upstream power backoff (UPBO) at mitigating this effect is considered. This section examines a simple power-backoff strategy in the form of power-constrained RA IW for Level 0–1 DSM. Though the use of RA IW is retained, an effect similar to fixed-margin (rate-constrained) IW [18] is induced by imposing various tighter sum power constraints. In particular, the variable-length line is set to length 300 m, and (sum) power backoff is imposed on all (20) 300 m lines with full power retained on the (10) 1200 m lines. By taking the victim line to be one of the 300 m lines, the 300 m WCI curve in Figure 4 is generated, yielding a lower bound to the achievable data rate for all 300 m lines in the binder. The 1200 m WCI curve represents the case where the victim modem is instead taken to be one of the 1200 m lines. To compare standardized SSM techniques to DSM, the rates achieved using the SSM VDSL
ing conditions, that is, operating with between short and long lines to best match desired operat-

Level 1 DSM, one can dynamically control the tradeo

the 300 m lines, as expected. The WCI bound is again fairly

file. However, further PBO decreases the achievable rates of

300 m line FEXT no longer dominates the interference pro-

−

Figure 4: Achievable rates in upstream VDSL as a function of short-

line (300 m) power backo

UBPO masking technique defined for the noise A environ-

ment [29] are illustrated by dashed horizontal lines.

The results illustrate that a tradeoff exists between the rates of the short and long lines. Examining the 1200 m lines, the proposed technique improves both the RA IW-achieved and WCI bounds significantly up to approximately −30 dBm, with diminishing returns for further PBO as the 300 m line FEXT no longer dominates the interference profile. However, further PBO decreases the achievable rates of the 300 m lines, as expected. The WCI bound is again fairly tight. Thus by employing such a simple PBO scheme with Level 1 DSM, one can dynamically control the tradeoff between short and long lines to best match desired operating conditions, that is, operating with guaranteed ≈ 4 MBps on the 1200 m lines and ≈ 7.75 MBps on the 300 m lines. In this example, the SSM technique achieves approximately the same performance as this simple DSM technique at one tradeoff point (≈ −22 dB PBO).

4.2. ADSL downstream with remote terminals (RTs)

The WCI rate bound is also applicable to ADSL. This section considers an RT ADSL configuration as illustrated in Figure 5. For all simulations, 25 ADSL lines are located 2000 m from a fiber-fed RT 4000 m from the CO. Addition-

ally, 5 × 5000 m lines are present in the binder. The FDM ADSL standard [30] parameters are assumed. As in the VDSL simulations, Γ = 12.5 dB. Each line is limited to 20.4 dBm downstream power (P = 20.4 dBm, P = 1 · 20.4 dBm), and the standard PSD masks are neglected.

A common problem of such configurations is that the signal from the CO to the non-RT (7000 m) modems will be saturated by FEXT from the RT lines. As in the VDSL example, the efficacy of (sum) power backoff for the RT lines as a means of improving the rate of the CO lines is studied. Figure 6 shows the dependence of rates on the level of

power backoff (relative to 20.4 dBm) for the RT lines. The horizontal lines represent the performance obtained by SSM with the standardized PSD masks.

The WCI bound is reasonably close to actual power-controlled RA IW performance on both RT and CO lines. Figure 7 shows the spectrum adopted at the (approximate) Nash equilibrium, as well as the power allocation chosen by discrete IW against the noise induced by Player 2, yielding (in discrete IW, tones above 47 are not used because they correspond to fractional bit loadings). The simulation shows that Player 1 interference is dominated by interference from the RT modems; these modems induce a “kindred-like” noise while the CO lines concentrate their power at low frequen-

cies. Also illustrated by example is that the Player 2 optimal strategy may be highly frequency-selective, and therefore the existing interference analysis technique of setting tight PSD masks for each modem cannot capture the WCI unless the masks are set very high. As in VDSL, a wide range of useful operating points may be attained; for example, it is possible (through proper power control) to guarantee 3 MBps service on all lines, whereas this rate point was far from being feasible with SSM or with full-power rate-adaptive IW. However

Doing so would consistently overestimate interference power, and under-

estimate achievable DSM performance.
without any power backoff, the performance of RA IW and the WCI bound is near that of SSM, showing the key role of power control in obtaining DSM gains in this setting.

5. CONCLUSION

This paper has studied the worst-case interference encountered when deploying Level 0–2 DSM techniques for next-generation DSL. A game-theoretic analysis has shown that under mild conditions, a pure-strategy Nash equilibrium exists in the WCI game, and can be computed using standard optimization techniques. The Nash equilibrium provides a useful lower bound to the achievable rate for a DSL modem employing DSM under any power-constrained interference profile. Furthermore, the structure of the Nash equilibrium reveals that for FDM systems, IW is optimal in a maximin sense.

The WCI bound was applied to a Level 0–1 upstream near-far VDSL scenario and was found to be numerically tight. The utility of a simple DSM UPBO strategy employing RA IW was compared to SSM UPBO, were it was found that control of rate tradeoffs is possible with DSM, which may allow significantly preferable operating rates. A similar tradeoff was observed in RT ADSL systems, where CO line performance benefits significantly from proper power control. These results suggest that the parameter of transmit power is important to DSM performance, in the sense that proper power control can beget large performance gains in this setting.

ACKNOWLEDGMENT

The research was supported by NSF under Contract CNS-0427677 and by the Stanford Graduate Fellowship Program.

REFERENCES

[1] “Spectrum management for loop transmission systems,” ANSI Std. T1.417, 2002.
[2] I. Sason, “On achievable rate regions for the Gaussian interference channel,” IEEE Transactions on Information Theory, vol. 50, no. 6, pp. 1345–1356, 2004.
[3] W. C. Peng, Some communication jamming games, Ph.D. thesis, University of Southern California, Los Angeles, Calif, USA, 1986.
[4] M. V. Hegde, W. E. Stark, and D. Teneketzis, “On the capacity of channels with unknown interference,” IEEE Transactions on Information Theory, vol. 35, no. 4, pp. 770–783, 1989.
[5] T. Han and K. Kobayashi, “A new achievable rate region for the interference channel,” IEEE Transactions on Information Theory, vol. 27, no. 1, pp. 49–60, 1981.
[6] S. T. Chung and J. M. Cioffi, “The capacity region of frequency-selective Gaussian interference channels under strong interference,” in Proceedings of IEEE International Conference on Communications (ICC ’03), vol. 4, pp. 2753–2757, Anchorage, Alaska, USA, May 2003.
[7] K. B. Song, S. T. Chung, G. Ginis, and J. M. Cioffi, “Dynamic spectrum management for next-generation DSL systems,” IEEE Communications Magazine, vol. 40, no. 10, pp. 101–109, 2002.
[8] K. J. Kerpez, D. L. Waring, S. Galli, J. Dixon, and P. Madon, “Advanced DSM management,” IEEE Communications Magazine, vol. 41, no. 9, pp. 116–123, 2003.
[9] T. Starr, M. Sorbara, J. M. Cioffi, and P. J. Silverman, DSL Advances, Prentice-Hall PTR, Upper Saddle River, NJ, USA, 2003.
[10] S. T. Chung, S. J. Kim, J. Lee, and J. M. Cioffi, “A game-theoretic approach to power allocation in frequency-selective Gaussian interference channels,” in Proceedings of IEEE International Symposium on Information Theory (ISIT ’03), pp. 316–316, Pacifico Yokohama, Kanagawa, Japan, June–July 2003.
[11] R. Cendrillon, M. Moonen, J. Verlinden, T. Bostoen, and W. Yu, “Optimal multiuser spectrum management for digital subscriber lines,” in Proceedings of IEEE International Conference on Communications (ICC ’04), vol. 1, pp. 1–5, Paris, France, June 2004.
[12] D. Statović and T. Nordström, “Adaptive subcarrier allocation, power control, and power allocation for multiuser FDD-DMT systems,” in Proceedings of IEEE International Conference on Communications (ICC ’04), vol. 1, pp. 11–15, Paris, France, June 2004.
[13] G. Cherubini, “Optimum upstream power back-off and multi-user detection for VDSL,” in Proceedings of IEEE Global Telecommunications Conference (GLOBECOM ’01), vol. 1, pp. 375–380, San Antonio, Tex, USA, November 2001.
[14] J. Lee, R. V. Sonalkar, and J. M. Cioffi, “Multi-user discrete bit-loading for DMT-based DSL systems,” in Proceedings of IEEE Global Telecommunications Conference (GLOBECOM ’02), vol. 2, pp. 1259–1263, Taipei, Taiwan, November 2002.
[15] K. S. Jacobsen, “Methods of upstream power backoff on very high speed digital subscriber lines,” IEEE Communications Magazine, vol. 39, no. 3, pp. 210–216, 2001.
[16] S. Schelstraete, “Defining upstream power backoff for VDSL,” IEEE Journal on Selected Areas in Communications, vol. 20, no. 5, pp. 1064–1074, 2002.
[17] K.-M. Kang and G.-H. Im, “Upstream power back-off method for VDSL transmission systems,” IEEE Electronics Letters, vol. 39, no. 7, pp. 634–635, 2003.

Figure 7: Spectral allocations ($x, [y^{(1)}, \ldots, y^{(N)}]$) of players 1 and 2 for the rightmost lower (0 dB PBO) operating point in Figure 6, where player 1 is a CO line. Note that the RT line spectrum overlaps x on most tones.
[18] W. Yu, G. Ginis, and J. M. Cioffi, “Distributed multiuser power control for digital subscriber lines,” IEEE Journal on Selected Areas in Communications, vol. 20, no. 5, pp. 1105–1115, 2002.

[19] M. Ho, J. M. Cioffi, and J. A. C. Bingham, “Discrete multitone echo cancellation,” IEEE Transactions on Communications, vol. 44, no. 7, pp. 817–825, 1996.

[20] K. Van Acker, M. Moonen, and T. Pollet, “Per-tone echo cancellation for DMT-based systems,” IEEE Transactions on Communications, vol. 51, no. 9, pp. 1582–1590, 2003.

[21] G. Ysebaert, K. Vanbleu, G. Cuypers, M. Moonen, and J. Verlinden, “Echo cancellation for discrete multitone frame-asynchronous ADSL transceivers,” in Proceedings of IEEE International Conference on Communications (ICC ’03), vol. 4, pp. 2421–2425, Anchorage, Alaska, USA, May 2003.

[22] D. C. Jones, “Frequency domain echo cancellation for discrete multitone asymmetric digital subscriber line transceivers,” IEEE Transactions on Communications, vol. 43, no. 2–4, pp. 1663–1672, 1995.

[23] T. M. Cover and J. A. Thomas, Elements of Information Theory, John Wiley & Sons, New York, NY, USA, 1991.

[24] S. Schelestrate ed., “Very high speed digital subscriber lines, part 3: Multicarrier modulation (MCM) specification,” ANSI Std. T1.424, 2002.

[25] B. Widrow and S. D. Streams, Adaptive Signal Processing, Prentice-Hall, Englewood Cliffs, NJ, USA, 1985.

[26] J. M. Cioffi, “Incentive-based spectrum management,” T1.1E1 Contribution 2004/480R2, August 2004.

[27] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, Cambridge, UK, 2004.

[28] T. Basar and G. J. Olsder, Dynamic Noncooperative Game Theory, Academic Press, New York, NY, USA, 1982.

[29] “Very high speed digital subscriber lines, part 1: Metallic interface,” ANSI T1.424 (Draft), February 2004.

[30] ITR Recommendations G.992.1, "Asymmetric digital subscriber line (ADSL) transceivers," ITU, June 1999.

Mark H. Brady received his B.S.E.E degree in 2001 from the University of Illinois at Urbana-Champaign, and his M.S.E.E degree from Stanford University in 2003. He is presently a Doctoral candidate at Stanford University under the supervision of Professor John Cioffi. His research interests include DSL systems, optimization theory, and information theory.

John M. Cioffi received his B.S.E.E. degree in 1978 from University of Illinois and he received his Ph.D.E.E. degree in 1984 from Stanford University. He was with Bell Laboratories from 1978 to 1984 and with IBM Research from 1984 to 1986. He has been a Professor of electrical engineering at Stanford University since 1986. He founded Amati Com. Corp. in 1991 (purchased by TI in 1997) and was Officer/Director from 1991 to 1997. He currently is on the Board of Directors of Marvell, ASSIA, Inc. (Chair), Teranetics, and ClariPhy. He is on the Advisory Board of Portview Ventures and Wavion. His specific interests are in the area of high-performance digital transmission. He is the holder of Hitachi America Professorship in Electrical Engineering at Stanford (2002); he is a Member of the National Academy of Engineering (2001); IEEE Kobayashi Medal (2001); IEEE Millennium Medal (2000); IEEE Fellow (1996); IIE J. Tomson Medal (2000); 1999 University of Illinois Outstanding Alumnus, 1991 IEEE Communications Magazine Best Paper; 1995 ANSI T1 Outstanding Achievement Award; NSF Presidential Investigator (1987–1992), ISSLS 2004 Outstanding Paper Award. He has published over 250 papers and holds over 40 patents.
Special Issue on
Transforming Signal Processing Applications into Parallel Implementations

Call for Papers

There is an increasing need to develop efficient “system-level” models, methods, and tools to support designers to quickly transform signal processing application specification to heterogeneous hardware and software architectures such as arrays of DSPs, heterogeneous platforms involving microprocessors, DSPs and FPGAs, and other evolving multi-processor SoC architectures. Typically, the design process involves aspects of application and architecture modeling as well as transformations to translate the application models to architecture models for subsequent performance analysis and design space exploration. Accurate predictions are indispensable because next generation signal processing applications, for example, audio, video, and array signal processing impose high throughput, real-time and energy constraints that can no longer be served by a single DSP.

There are a number of key issues in transforming application models into parallel implementations that are not addressed in current approaches. These are engineering the application specification, transforming application specification, or representation of the architecture specification as well as communication models such as data transfer and synchronization primitives in both models.

The purpose of this call for papers is to address approaches that include application transformations in the performance, analysis, and design space exploration efforts when taking signal processing applications to concurrent and parallel implementations. The Guest Editors are soliciting contributions in joint application and architecture space exploration that outperform the current architecture-only design space exploration methods and tools.

Topics of interest for this special issue include but are not limited to:

- modeling applications in terms of (abstract) control-dataflow graph, dataflow graph, and process network models of computation (MoC)
- transforming application models or algorithmic engineering
- transforming application MoCs to architecture MoCs
- joint application and architecture space exploration
- joint application and architecture performance analysis
- extending the concept of algorithmic engineering to architecture engineering
- design cases and applications mapped on multiprocessor, homogeneous, or heterogeneous SOCs, showing joint optimization of application and architecture

Authors should follow the EURASIP JASP manuscript format described at http://www.hindawi.com/journals/asp/. Prospective authors should submit an electronic copy of their complete manuscript through the EURASIP JASP manuscript tracking system at http://www.hindawi.com/mts/, according to the following timetable:

Event	Date
Manuscript Due	September 1, 2006
Acceptance Notification	January 1, 2007
Final Manuscript Due	April 1, 2007
Publication Date	3rd Quarter 2007

GUEST EDITORS:

F. Deprettre, Leiden Embedded Research Center, Leiden University, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands; edd@liacs.nl

Roger Woods, School of Electrical and Electronic Engineering, Queens University of Belfast, Ashby Building, Stranmillis Road, Belfast, BT9 5AH, UK; r.woods@qub.ac.uk

Ingrid Verbauwhede, Katholieke Universiteit Leuven, ESAT-COSIC, Kasteelpark Arenberg 10, 3001 Leuven, Belgium; Ingrid.verbauwhede@esat.kuleuven.be

Erwin de Kock, Philips Research, High Tech Campus 31, 5656 AE Eindhoven, The Netherlands; erwin.de.kock@philips.com
Special Issue on
Video Adaptation for Heterogeneous Environments

Call for Papers

The explosive growth of compressed video streams and repositories accessible worldwide, the recent addition of new video-related standards such as H.264/AVC, MPEG-7, and MPEG-21, and the ever-increasing prevalence of heterogeneous, video-enabled terminals such as computer, TV, mobile phones, and personal digital assistants have escalated the need for efficient and effective techniques for adapting compressed videos to better suit the different capabilities, constraints, and requirements of various transmission networks, applications, and end users. For instance, Universal Multimedia Access (UMA) advocates the provision and adaptation of the same multimedia content for different networks, terminals, and user preferences.

Video adaptation is an emerging field that offers a rich body of knowledge and techniques for handling the huge variation of resource constraints (e.g., bandwidth, display capability, processing speed, and power consumption) and the large diversity of user tasks in pervasive media applications. Considerable amounts of research and development activities in industry and academia have been devoted to answering the many challenges in making better use of video content across systems and applications of various kinds.

Video adaptation may apply to individual or multiple video streams and may call for different means depending on the objectives and requirements of adaptation. Transcoding, transmoding (cross-modality transcoding), scalable content representation, content abstraction and summarization are popular means for video adaptation. In addition, video content analysis and understanding, including low-level feature analysis and high-level semantics understanding, play an important role in video adaptation as essential video content can be better preserved.

The aim of this special issue is to present state-of-the-art developments in this flourishing and important research field. Contributions in theoretical study, architecture design, performance analysis, complexity reduction, and real-world applications are all welcome.

Topics of interest include (but are not limited to):

- Signal, structural, and semantic-level video adaptation
- Content analysis and understanding for video adaptation
- Video summarization and abstraction
- Copyright protection for video adaptation
- Crossmedia techniques for video adaptation
- Testing, field trials, and applications of video adaptation services
- International standard activities for video adaptation

Authors should follow the EURASIP JASP manuscript format described at http://www.hindawi.com/journals/asp/. Prospective authors should submit an electronic copy of their complete manuscript through the EURASIP JASP manuscript tracking system at http://www.hindawi.com/mts/, according to the following timetable:

Event	Date
Manuscript Due	September 1, 2006
Acceptance Notification	January 1, 2007
Final Manuscript Due	April 1, 2007
Publication Date	3rd Quarter 2007

GUEST EDITORS:

Chia-Wen Lin, Department of Computer Science and Information Engineering, National Chung Cheng University, Chiayi 621, Taiwan; cwlin@cs.ccu.edu.tw

Yap-Peng Tan, School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798, Singapore; eyptan@ntu.edu.sg

Ming-Ting Sun, Department of Electrical Engineering, University of Washington, Seattle, WA 98195, USA; sun@ee.washington.edu

Alex Kot, School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798, Singapore; eackot@ntu.edu.sg
Anthony Vetro, Mitsubishi Electric Research Laboratories, 201 Broadway, 8th Floor, Cambridge, MA 02138, USA; avetro@merl.com
Special Issue on

Knowledge-Assisted Media Analysis for Interactive Multimedia Applications

Call for Papers

It is broadly acknowledged that the development of enabling technologies for new forms of interactive multimedia services requires a targeted confluence of knowledge, semantics, and low-level media processing. The convergence of these areas is key to many applications including interactive TV, networked medical imaging, vision-based surveillance and multimedia visualization, navigation, search, and retrieval. The latter is a crucial application since the exponential growth of audiovisual data, along with the critical lack of tools to record the data in a well-structured form, is rendering useless vast portions of available content. To overcome this problem, there is need for technology that is able to produce accurate levels of abstraction in order to annotate and retrieve content using queries that are natural to humans. Such technology will help narrow the gap between low-level features or content descriptors that can be computed automatically, and the richness and subjectivity of semantics in user queries and high-level human interpretations of audiovisual media.

This special issue focuses on truly integrative research targeting of what can be disparate disciplines including image processing, knowledge engineering, information retrieval, semantic, analysis, and artificial intelligence. High-quality and novel contributions addressing theoretical and practical aspects are solicited. Specifically, the following topics are of interest:

- Semantics-based multimedia analysis
- Context-based multimedia mining
- Intelligent exploitation of user relevance feedback
- Knowledge acquisition from multimedia contents
- Semantics based interaction with multimedia
- Integration of multimedia processing and Semantic Web technologies to enable automatic content sharing, processing, and interpretation
- Content, user, and network aware media engineering
- Multimodal techniques, high-dimensionality reduction, and low level feature fusion

Authors should follow the EURASIP JASP manuscript format described at http://www.hindawi.com/journals/asp/. Prospective authors should submit an electronic copy of their complete manuscript through the EURASIP JASP manuscript tracking system at http://www.hindawi.com/mts/ according to the following timetable:

Deadline	Date
Manuscript Due	September 1, 2006
Acceptance Notification	January 15, 2007
Final Manuscript Due	April 1, 2007
Publication Date	3rd Quarter, 2007

GUEST EDITORS:

Ebroul Izquierdo, Department of Electronic Engineering, Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom; ebroul.izquierdo@elec.qmul.ac.uk

Hyoung Joong Kim, Department of Control and Instrumentation Engineering, Kangwon National University, 192 1 Hyoja2 Dong, Kangwon Do 200 701, Korea; khj@kangwon.ac.kr

Thomas Sikora, Communication Systems Group, Technical University Berlin, Einstein Ufer 17, 10587 Berlin, Germany; sikora@nue.tu-berlin.de
Special Issue on
Super-resolution Enhancement of Digital Video

Call for Papers

When designing a system for image acquisition, there is generally a desire for high spatial resolution and a wide field-of-view. To achieve this, a camera system must typically employ small f-number optics. This produces an image with very high spatial-frequency bandwidth at the focal plane. To avoid aliasing caused by undersampling, the corresponding focal plane array (FPA) must be sufficiently dense. However, cost and fabrication complexities may make this impractical. More fundamentally, smaller detectors capture fewer photons, which can lead to potentially severe noise levels in the acquired imagery. Considering these factors, one may choose to accept a certain level of undersampling or to sacrifice some optical resolution and/or field-of-view.

In image super-resolution (SR), postprocessing is used to obtain images with resolutions that go beyond the conventional limits of the uncompensated imaging system. In some systems, the primary limiting factor is the optical resolution of the image in the focal plane as defined by the cut-off frequency of the optics. We use the term “optical SR” to refer to SR methods that aim to create an image with valid spatial-frequency content that goes beyond the cut-off frequency of the optics. Such techniques typically must rely on extensive a priori information. In other image acquisition systems, the limiting factor may be the density of the FPA, subsequent postprocessing requirements, or transmission bitrate constraints that require data compression. We refer to the process of overcoming the limitations of the FPA in order to obtain the full resolution afforded by the selected optics as “detector SR.” Note that some methods may seek to perform both optical and detector SR.

Detector SR algorithms generally process a set of low-resolution aliased frames from a video sequence to produce a high-resolution frame. When subpixel relative motion is present between the objects in the scene and the detector array, a unique set of scene samples are acquired for each frame. This provides the mechanism for effectively increasing the spatial sampling rate of the imaging system without reducing the physical size of the detectors.

With increasing interest in surveillance and the proliferation of digital imaging and video, SR has become a rapidly growing field. Recent advances in SR include innovative algorithms, generalized methods, real-time implementations, and novel applications. The purpose of this special issue is to present leading research and development in the area of super-resolution for digital video. Topics of interest for this special issue include but are not limited to:

- Detector and optical SR algorithms for video
- Real-time or near-real-time SR implementations
- Innovative color SR processing
- Novel SR applications such as improved object detection, recognition, and tracking
- Super-resolution from compressed video
- Subpixel image registration and optical flow

Authors should follow the EURASIP JASP manuscript format described at http://www.hindawi.com/journals/asp/. Prospective authors should submit an electronic copy of their complete manuscript through the EURASIP JASP manuscript tracking system at http://www.hindawi.com/mts/, according to the following timetable:

Manuscript Due	September 1, 2006
Acceptance Notification	February 1, 2007
Final Manuscript Due	April 15, 2007
Publication Date	3rd Quarter, 2007

GUEST EDITORS:

Russell C. Hardie, Department of Electrical and Computer Engineering, University of Dayton, 300 College Park, Dayton, OH 45469-0026, USA; rhardie@udayton.edu

Richard R. Schultz, Department of Electrical Engineering, University of North Dakota, Upson II Room 160, P.O. Box 7165, Grand Forks, ND 58202-7165, USA; RichardSchultz@mail.und.nodak.edu

Kenneth E. Barner, Department of Electrical and Computer Engineering, University of Delaware, 140 Evans Hall, Newark, DE 19716-3130, USA; barner@ee.udel.edu
Special Issue on

Advanced Signal Processing and Computational Intelligence Techniques for Power Line Communications

Call for Papers

In recent years, increased demand for fast Internet access and new multimedia services, the development of new and feasible signal processing techniques associated with faster and low-cost digital signal processors, as well as the deregulation of the telecommunications market have placed major emphasis on the value of investigating hostile media, such as powerline (PL) channels for high-rate data transmissions.

Nowadays, some companies are offering powerline communications (PLC) modems with mean and peak bit-rates around 100 Mbps and 200 Mbps, respectively. However, advanced broadband powerline communications (BPLC) modems will surpass this performance. For accomplishing it, some special schemes or solutions for coping with the following issues should be addressed: (i) considerable differences between powerline network topologies; (ii) hostile properties of PL channels, such as attenuation proportional to high frequencies and long distances, high-power impulse noise occurrences, time-varying behavior, and strong inter-symbol interference (ISI) effects; (iv) electromagnetic compatibility with other well-established communication systems working in the same spectrum, (v) climatic conditions in different parts of the world; (vii) reliability and QoS guarantee for video and voice transmissions; and (vi) different demands and needs from developed, developing, and poor countries.

These issues can lead to exciting research frontiers with very promising results if signal processing, digital communication, and computational intelligence techniques are effectively and efficiently combined.

The goal of this special issue is to introduce signal processing, digital communication, and computational intelligence tools either individually or in combined form for advancing reliable and powerful future generations of powerline communication solutions that can be suited with for applications in developed, developing, and poor countries.

Topics of interest include (but are not limited to)

- Multicarrier, spread spectrum, and single carrier techniques
- Channel modeling
- Channel coding and equalization techniques
- Multiuser detection and multiple access techniques
- Synchronization techniques
- Impulse noise cancellation techniques
- FPGA, ASIC, and DSP implementation issues of PLC modems
- Error resilience, error concealment, and Joint source-channel design methods for video transmission through PL channels

Authors should follow the EURASIP JASP manuscript format described at the journal site http://asp.hindawi.com/. Prospective authors should submit an electronic copy of their complete manuscripts through the EURASIP JASP manuscript tracking system at http://www.hindawi.com/mts/, according to the following timetable:

Event	Date
Manuscript Due	October 1, 2006
Acceptance Notification	January 1, 2007
Final Manuscript Due	April 1, 2007
Publication Date	3rd Quarter, 2007

GUEST EDITORS:

Moisés Vidal Ribeiro, Federal University of Juiz de Fora, Brazil; mribeiro@ieee.org
Lutz Lampe, University of British Columbia, Canada; lampe@ece.ubc.ca
Sanjit K. Mitra, University of California, Santa Barbara, USA; mitra@ece.ucsb.edu
Klaus Dostert, University of Karlsruhe, Germany; klaus.dostert@etec.uni-karlsruhe.de
Halid Hrasnica, Dresden University of Technology, Germany; hrasnica@ifn.et.tu-dresden.de

Hindawi Publishing Corporation
http://asp.hindawi.com
Special Issue on
Numerical Linear Algebra in Signal Processing Applications

Call for Papers
The cross-fertilization between numerical linear algebra and digital signal processing has been very fruitful in the last decades. The interaction between them has been growing, leading to many new algorithms.

Numerical linear algebra tools, such as eigenvalue and singular value decomposition and their higher-extension, least squares, total least squares, recursive least squares, regularization, orthogonality, and projections, are the kernels of powerful and numerically robust algorithms.

The goal of this special issue is to present new efficient and reliable numerical linear algebra tools for signal processing applications. Areas and topics of interest for this special issue include (but are not limited to):

- Singular value and eigenvalue decompositions, including applications.
- Fourier, Toeplitz, Cauchy, Vandermonde and semi-separable matrices, including special algorithms and architectures.
- Recursive least squares in digital signal processing.
- Updating and downdating techniques in linear algebra and signal processing.
- Stability and sensitivity analysis of special recursive least-squares problems.
- Numerical linear algebra in:
 - Biomedical signal processing applications.
 - Adaptive filters.
 - Remote sensing.
 - Acoustic echo cancellation.
 - Blind signal separation and multiuser detection.
 - Multidimensional harmonic retrieval and direction-of-arrival estimation.
 - Applications in wireless communications.
 - Applications in pattern analysis and statistical modeling.
 - Sensor array processing.

Authors should follow the EURASIP JASP manuscript format described at http://www.hindawi.com/journals/asp/. Prospective authors should submit an electronic copy of their complete manuscript through the EURASIP JASP manuscript tracking system at http://www.hindawi.com/mts/, according to the following timetable:

Event	Date
Manuscript Due	October 1, 2006
Acceptance Notification	February 1, 2007
Final Manuscript Due	May 1, 2007
Publication Date	3rd Quarter, 2007

GUEST EDITORS:

Shivkumar Chandrasekaran, Department of Electrical and Computer Engineering, University of California, Santa Barbara, USA; shiv@ece.ucsb.edu

Gene H. Golub, Department of Computer Science, Stanford University, USA; golub@sccm.stanford.edu

Nicola Mastronardi, Istituto per le Applicazioni del Calcolo “Mauro Picone,” Consiglio Nazionale delle Ricerche, Bari, Italy; n.mastronardi@ba.iac.cnr.it

Marc Moonen, Department of Electrical Engineering, Katholieke Universiteit Leuven, Belgium; marc.moonen@esat.kuleuven.be

Paul Van Dooren, Department of Mathematical Engineering, Catholic University of Louvain, Belgium; vdooren@csam.ucl.ac.be

Sabine Van Huffel, Department of Electrical Engineering, Katholieke Universiteit Leuven, Belgium; sabine.vanhuffel@esat.kuleuven.be
Special Issue on
Wavelets in Source Coding, Communications, and Networks

Call for Papers
Wavelet transforms are arguably the most powerful, and most widely-used, tool to arise in the field of signal processing in the last several decades. Their inherent capacity for multiresolution representation akin to the operation of the human visual system motivated a quick adoption and widespread use of wavelets in image-processing applications. Indeed, wavelet-based algorithms have dominated image compression for over a decade, and wavelet-based source coding is now emerging in other domains. For example, recent wavelet-based video coders exploit techniques such as motion-compensated temporal filtering to yield effective video compression with full temporal, spatial, and fidelity scalability. Additionally, wavelets are increasingly used in the source coding of remote-sensing, satellite, and other geospatial imagery. Furthermore, wavelets are starting to be deployed beyond the source-coding realm with increasing interest in robust communication of images and video over both wired and wireless networks. In particular, wavelets have been recently proposed for joint source-channel coding and multiple-description coding. This special issue will explore these and other latest advances in the theory and application of wavelets.

Specifically, this special issue will gather high-quality, original contributions on all aspects of the application of wavelets and wavelet theory to source coding, communications, and network transmission of images and video. Topics of interest include (but are not limited to) the theory and applications of wavelets in:

- Scalable image and video coding
- Motion-compensated temporal filtering
- Source coding of images and video via frames and overcomplete representations
- Geometric and adaptive multiresolution image and video representations
- Multiple-description coding of images and video
- Joint source-channel coding of images and video
- Distributed source coding of images and video
- Robust coding of images and video for wired and wireless packet networks

Authors should follow the IJIVP manuscript format described at http://www.hindawi.com/journals/ijivp/. Prospective authors should submit an electronic copy of their complete manuscript through the IJIVP manuscript tracking system at http://www.hindawi.com/mts/, according to the following timetable:

Event	Date
Manuscript Due	August 15, 2006
Acceptance Notification	November 1, 2006
Final Manuscript Due	December 15, 2006
Publication Date	1st Quarter, 2007

GUEST EDITORS:

James E. Fowler, Department of Electrical & Computer Engineering, Mississippi State University, Mississippi State, MS 39762, USA; fowler@ece.msstate.edu

Béatrice Pesquet-Popescu, Département Traitement du Signal et des Images, Ecole Nationale Supérieure des Télécommunications, 75634 Paris, France; pesquet@tsi.enst.fr