Draft Genome Sequence of the Chronic, Nonclonal Cystic Fibrosis Isolate Pseudomonas aeruginosa Strain 18A

Jerry K. K. Woo, Kerensa McElroy, Scott A. Rice, Sylvia M. Kirov, Torsten Thomas, Staffan Kjelleberg

School of Biotechnology and Biomolecular Sciences, Centre for Marine Bio-Innovation, University of New South Wales, Sydney, Australia; The Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore; School of Medicine, University of Tasmania, Tasmania, Australia

* Present address: Jerry K. K. Woo, University of Illinois at Chicago, College of Pharmacy, Center for Pharmaceutical Biotechnology, Chicago, Illinois, USA.

Pseudomonas aeruginosa strain 18A is a clinical, nonclonal isolate retrieved from the sputum of a chronically infected cystic fibrosis patient. The genome of 18A was sequenced for comparison with environmental and clinical isolates to identify genes that might facilitate its persistence during infection.

The draft genome of P. aeruginosa 18A yielded a total of 6,093,587 bp, with a 66.4% GC content, consistent with the GC content of the PAO1 strain (66.2% to 66.6%) for 6,093,587 bp, with a 66.4% GC content, consistent with the GC content of the PAO1 strain. The genome of 18A was sequenced for comparison with environmental and clinical isolates to identify genes that might facilitate its persistence during infection.

Acknowledgments

The genome-sequencing project was funded by the Australian Cystic Fibrosis Foundation.

Sequencing was performed by the Ramaciotti Centre for Gene Function Analysis.

References

1. Lee DG, Urbach JM, Wu G, Liberati NT, Feinbaum RL, Miyata S, Diggins LT, He J, Saucier M, Déziel E, Friedman L, Li L, Grills G, Montgomery K, Kucherlapati R, Rahme LG, Ausubel FM. 2006. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959–964.

Received 12 January 2013 Accepted 18 February 2013 Published 21 March 2013

Citation Woo JKK, McElroy K, Rice SA, Kirov SM, Thomas T, Kjelleberg S. 2013. Draft genome sequence of the chronic, nonclonal cystic fibrosis isolate Pseudomonas aeruginosa strain 18A. Genome Announc. 1(2):e00001-13. doi:10.1128/genomeA.00001-13.

Copyright © 2013 Woo et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 Unported license.

Address correspondence to Torsten Thomas, t.thomas@unsw.edu.au.
Rokas A, Yandava CN, Engels R, Zeng E, Olavarietta R, Doud M, Smith RS, Montgomery P, White JR, Godfrey PA, Kodira C, Birren B, Galagan JE, Lory S. 2008. Dynamics of *Pseudomonas aeruginosa* genome evolution. Proc. Natl. Acad. Sci. U. S. A. 105:3100–3105.

4. Winstanley C, Langille MGI, Fothergill JL, Kukavica-Ibrulj I, Paradis-Bleau C, Sanschagrin F, Thomson NR, Winsor GL, Quail MA, Lennard N, Bignell A, Clarke L, Seeger K, Saunders D, Harris D, Parkhill J, Hancock REW, Brinkman FSL, Levesque RC. 2009. Newly introduced genomic prophage islands are critical determinants of *in vivo* competitiveness in the Liverpool epidemic strain of *Pseudomonas aeruginosa*. Genome Res. 19:12–23.

5. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes K, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Puschn GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O, Zagnitko O. 2008. The RAST server: rapid annotations using subsystems technology. BMC Genomics 9:75.

6. Delcher AL, Bratke KA, Powers EC, Salzberg SL. 2007. Identifying bacterial genes and endosymbiotic DNA with glimmer. Bioinformatics 23:673–679.

7. Roy PH, Tetu SG, Larouche A, Elbourne L, Tremblay S, Ren Q, Dodson R, Harkins D, Shay R, Watkins K, Mahamoud Y, Paulsen IT. 2010. Complete genome sequence of the multiresistant taxonomic outlier *Pseudomonas aeruginosa* PA7. PLoS ONE 5:e8842.

8. Hunt JC, Phibbs PV, Jr.. 1983. Regulation of alternate peripheral pathways of glucose catabolism during aerobic and anaerobic growth of *Pseudomonas aeruginosa*. J. Bacteriol. 154:793–802.

9. Swanson BL., Hager PW, Phibbs PV, Jr., Ochsner UA, Vasil ML, Hamood AN. 2000. Characterization of the 2-ketogluconate utilization operon in *Pseudomonas aeruginosa* PAO1. Mol. Microbiol. 37:561–573.

10. Jackson KD, Starkey M, Kremer S, Parsek MR, Wozniak DJ. 2004. Identification of *psl*, a locus encoding a potential exopolysaccharide that is essential for *Pseudomonas aeruginosa* PAO1 biofilm formation. J. Bacteriol. 186:4466–4475.

11. Arora SK, Wolfgang MC, Lory S, Ramphal R. 2004. Sequence polymorphism in the glycosylation island and flagellins of *Pseudomonas aeruginosa*. J. Bacteriol. 186:2115–2122.

12. Liang X, Pham XQ, Olson MV, Lory S. 2001. Identification of a genomic island present in the majority of pathogenic isolates of *Pseudomonas aeruginosa*. J. Bacteriol. 183:843–853.

13. Zegans ME, Wagner JC, Cady KC, Murphy DM, Hammond JH, O'Toole GA. 2009. Interaction between bacteriophage DMS3 and host CRISPR region inhibits group behaviours of *Pseudomonas aeruginosa*. J. Bacteriol. 191:210–219.