CONVERGENT SEQUENCES IN MINIMAL GROUPS

DMITRI SHAKHMATOV

Abstract. A Hausdorff topological group G is minimal if every continuous isomorphism $f : G \to H$ between G and a Hausdorff topological group H is open. Clearly, every compact Hausdorff group is minimal. It is well known that every infinite compact Hausdorff group contains a non-trivial convergent sequence. We extend this result to minimal abelian groups by proving that every infinite minimal abelian group contains a non-trivial convergent sequence. Furthermore, we show that “abelian” is essential and cannot be dropped. Indeed, for every uncountable regular cardinal κ we construct a Hausdorff group topology \mathcal{T}_κ on the free group $F(\kappa)$ with κ many generators having the following properties:

(i) $(F(\kappa), \mathcal{T}_\kappa)$ is a minimal group;
(ii) every subset of $F(\kappa)$ of size less than κ is \mathcal{T}_κ-discrete (and thus also \mathcal{T}_κ-closed);
(iii) there are no non-trivial proper \mathcal{T}_κ-closed normal subgroups of $F(\kappa)$.

In particular, all compact subsets of $(F(\kappa), \mathcal{T}_\kappa)$ are finite, and every Hausdorff quotient group of $(F(\kappa), \mathcal{T}_\kappa)$ is minimal (that is, $(F(\kappa), \mathcal{T}_\kappa)$ is totally minimal).

We denote by \mathbb{N} the set the set of natural numbers.

Let X be a topological space. A convergent sequence in X is a sequence $S = \{x_n : n \in \mathbb{N}\}$ of points of X such that there exists a point $x \in X$ (called the limit of S) so that $S \setminus U$ is finite for every open subset U of X containing x. (We also say that S converges to x.) A sequence S is non-trivial provided that the set S is infinite.

The identity element of a group G is denoted by 1. When G is abelian, the additive notation is used, and so 1 is replaced by the zero element 0 of G.

1. Results

Our starting point in this manuscript is the following folklore fact.

Fact 1.1. Every infinite compact Hausdorff group contains a non-trivial convergent sequence.

This result is a consequence of the theorem of Ivanovskii [14] and Kuz'minov [15] that every compact group is dyadic. We refer the reader to [20] for the proof of Fact 1.1 based on Michael’s selection theorem in the spirit of [25].

In Fact 1.1 compactness cannot be weakened to pseudocompactness or countable compactness, even in the abelian case. Indeed, there exists an example (in ZFC) of a pseudocompact abelian group without non-trivial convergent sequences [21]. Furthermore, there are numerous consistent examples of countably compact abelian groups

1991 Mathematics Subject Classification. Primary: 22A05; Secondary: 22C05, 54A10, 54A20, 54A25, 54D25, 54H11.

Key words and phrases. convergent sequence, minimal group, totally minimal group, compact group, abelian group, free group.

The author was partially supported by the Grant-in-Aid for Scientific Research no. 19540092 by the Japan Society for the Promotion of Science (JSPS).
without non-trivial convergent sequences, see \cite{12, 11, 16, 23, 3, 9, 24, 7}. However, the existence of a countably compact group without non-trivial convergent sequences in ZFC alone remains a major open problem in the area \cite[Problem 22]{8}.

Another well-known generalization of compactness in the class of topological groups is related to the fundamental fact that the topology of a Hausdorff compact space X is a minimal element in the set of all Hausdorff topologies on the set X.

Definition 1.2. A Hausdorff group topology \mathcal{T} on a group G is called minimal provided that every Hausdorff group topology \mathcal{T}' on G such that $\mathcal{T}' \subseteq \mathcal{T}$ satisfies $\mathcal{T}' = \mathcal{T}$. In such a case the pair (G, \mathcal{T}) is called a minimal group.

The notion of a minimal group was introduced independently by Choquet (see Do¨ıtchinov \cite{10}) and Stephenson \cite{22}. We refer the reader to \cite{6, 4} for additional information on minimal groups.

While compactness cannot be replaced by pseudocompactness or countable compactness in the statement of Fact \ref{FA1}, our first result demonstrates that compactness can be weakened to minimality provided that the group in question is commutative.

Theorem 1.3. Every infinite minimal abelian group contains a non-trivial convergent sequence.

The particular version of Theorem \ref{TH1} for countably compact groups has been announced without proof on page 393 of \cite{8} (see the text preceding \cite[Problem 23]{8}).

As usual, we say that a group G is non-trivial provided that $|G| \geq 2$.

Our second result shows that the word “abelian” in Theorem \ref{TH1} is essential and cannot be omitted.

Theorem 1.4. For every uncountable regular cardinal κ there exists a Hausdorff group topology \mathcal{T}_κ on the free group $F(\kappa)$ with κ many generators having the following properties:

(i) $(F(\kappa), \mathcal{T}_\kappa)$ is a minimal group;
(ii) every subset of $F(\kappa)$ of size less than κ is \mathcal{T}_κ-discrete (and thus also \mathcal{T}_κ-closed);
(iii) there are no non-trivial proper \mathcal{T}_κ-closed normal subgroups of $F(\kappa)$.

In particular,

(a) all compact subsets of $(F(\kappa), \mathcal{T}_\kappa)$ are finite, and
(b) every Hausdorff quotient group of $(F(\kappa), \mathcal{T}_\kappa)$ is minimal; that is, $(F(\kappa), \mathcal{T}_\kappa)$ is totally minimal.

2. Proof of Theorem \ref{TH1}

Lemma 2.1. An infinite subgroup of a compact metric group has a non-trivial convergent sequence.

Proof. Assume that G is an infinite subgroup of a compact metric group K. Then G cannot be discrete, and thus the identity 1 of G is a non-isolated point of G. Let $\{U_n : n \in \mathbb{N}\}$ be a decreasing local base at 1. By induction on $n \in \mathbb{N}$ choose $x_n \in U_n \setminus \{x_0, \ldots, x_{n-1}\}$. Then $\{x_n : n \in \mathbb{N}\}$ is a non-trivial sequence in G converging to 1. \hfill \Box
Definition 2.2. [17] [22] A subgroup \(G \) of a topological group \(K \) is said to be essential in \(K \) provided that \(G \cap H \) is a non-trivial subgroup of \(K \) for every non-trivial closed normal subgroup \(H \) of \(K \).

If \(K \) is abelian, then every subgroup \(H \) of \(K \) is normal, and so the word “normal” can be omitted in the above definition.

The notion of an essential subgroup is a crucial ingredient of the so-called “minimality criterion”, due to Prodanov and Stephenson [17] [22], describing dense minimal subgroups of compact groups.

Fact 2.3. ([17] [22]; see also [5] [6]) A dense subgroup \(G \) of a Hausdorff compact group \(K \) is minimal if and only if \(G \) is essential in \(K \).

The straightforward proof of the following lemma is left to the reader.

Lemma 2.4. If \(G \) is an essential subgroup of an abelian topological group \(K \), then
\[
K[p] = \{ x \in K : px = 0 \} \subseteq G
\]
for every prime number \(p \).

Lemma 2.5. Let \(I \) be an infinite set, \(\{ K_i : i \in I \} \) a family of non-trivial topological groups and \(G \) an essential subgroup of the product \(K = \prod_{i \in I} K_i \). Then \(G \) has a non-trivial convergent sequence.

Proof. We identify each \(K_i \) with the closed normal subgroup
\[
\{ 1 \} \times \cdots \times \{ 1 \} \times K_i \times \{ 1 \} \times \cdots \times \{ 1 \}
\]
of \(K \), where \(K_i \) occupies the \(i \)th place. For each \(i \in I \), use essentiality of \(G \) in \(K \) to fix \(g_i \in G \cap K_i \) with \(g_i \neq 1 \). Since \(K_i \cap K_j = \{ 1 \} \) whenever \(i, j \in I \) and \(i \neq j \), it follows that \(\{ g_i : i \in I \} \) is a a faithfully indexed family of elements of \(G \). Choosing a faithfully indexed subset \(\{ i_n : n \in \mathbb{N} \} \) of \(I \), we obtain an infinite sequence \(\{ g_{i_n} : n \in \mathbb{N} \} \) of elements of \(G \) converging to \(1 \).

Lemma 2.6. An essential subgroup of a non-trivial Hausdorff compact torsion-free abelian group contains a non-trivial convergent sequence.

Proof. Assume that \(G \) is an essential subgroup of a non-trivial compact torsion-free abelian group \(K \). Since \(K \) is torsion-free, the Pontryagin dual of \(K \) is divisible, and from [13, Theorem 25.8] we conclude that there exists a sequence of cardinals \(\{ \sigma_p : p \in \mathbb{P} \cup \{ 0 \} \} \) such that
\[
K = \hat{\mathbb{Q}}^{\sigma_0} \times \prod_{p \in \mathbb{P}} \mathbb{Z}_p^{\sigma_p},
\]
where \(\hat{\mathbb{Q}} \) denotes the Pontryagin dual of the discrete group \(\mathbb{Q} \) of rational numbers, \(\mathbb{P} \) is the set of all prime numbers, and \(\mathbb{Z}_p \) denotes the group of \(p \)-adic integers.

If the product (1) can be (re-)written as a product of infinitely many non-trivial topological groups, then the conclusion of our lemma follows from Lemma 2.5. In the remaining case \(K \) is metrizable being a finite product of compact metric groups. Since \(K \) is non-trivial and \(G \) is essential in \(K \), there exists \(g \in G \cap K \) with \(g \neq 0 \). Since \(K \) is torsion-free, \(g \) has an infinite order, and so \(G \) is an infinite group. Applying Lemma 2.1, we obtain a non-trivial convergent sequence in \(G \).
Proof of Theorem 1.3. Assume that G is an infinite minimal abelian group. Then its completion K is a compact Hausdorff abelian group [18] (see also [6]). Moreover, G is essential in K by Fact 2.3. We consider two cases, depending on the size of the torsion part

$t(K) = \{ x \in K : nx = 0 \text{ for some } n \in \mathbb{N} \setminus \{0\} \}$

of K.

Case 1. $t(K)$ is uncountable. Then the p-rank $r_p(K)$ of K must be uncountable for some $p \in \mathbb{P}$. In particular, $K[p]$ is uncountable. Being a closed subgroup of the compact group K, the group $K[p]$ is compact. Hence $K[p]$ contains a non-trivial convergent sequence by Fact 1.1. Finally, $K[p] \subseteq G$ by Lemma 2.4.

Case 2. $t(K)$ is at most countable. Then $U = K \setminus (t(K) \setminus \{0\})$ is a G_δ-subset of K containing 0. Therefore, there exists a closed G_δ-subgroup N of K satisfying $N \subseteq U$ (see, for example, [13, Chapter II, Theorem 8.7] or [1]). In particular, $N \cap t(K) = \{0\}$. This means that N is torsion-free.

If $N \neq \{0\}$, then N is a non-trivial compact abelian group. Since G is essential in K, $G \cap N$ is essential in N. Since N is torsion-free, Lemma 2.6 yields that $G \cap N$ (and thus G as well) has a non-trivial convergent sequence.

If $N = \{0\}$, then $\{0\}$ is a G_δ-subset of K, and so K is metrizable. Applying Lemma 2.1 we obtain a non-trivial convergent sequence in G. \hfill \Box

3. Proof of Theorem 1.4

The construction in this section is inspired by an old construction of the author [19].

Given a set X, the symbol $S(X)$ denotes the symmetric group of X, i.e., the set of all bijections of the set X with the composition of maps as the group operation. We equip $S(X)$ with the topology of pointwise convergence on X whose base is given by the family

$\mathcal{W}(X) = \{ W(X, Z, \varphi) : Z \text{ is a finite subset of } X \text{ and } \varphi : Z \to X \text{ is an injection} \}$,

where

(2) $W(X, Z, \varphi) = \{ f \in S(X) : f \upharpoonright Z = \varphi \}$.

As usual, an ordinal α is considered to be the set consisting of all smaller ordinals; that is, $\alpha = \{ \beta : \beta < \alpha \}$. In what follows, $F(\alpha)$ denotes the free group with the alphabet α. For special emphasis, we use $*_{\alpha}$ to denote the group operation of $F(\alpha)$ and e_{α} to denote the identity element of $F(\alpha)$.

Fix an uncountable regular cardinal κ. For $\gamma \in \kappa + 1$ define

(3) $T_\gamma = \{ (\alpha, \beta) \in (\kappa \setminus \omega) \times \gamma : \beta < \alpha \}$

and

(4) $X_\gamma = \bigcup_{\alpha \in \gamma} \{ \alpha \} \times F(\alpha)$.

For every $\gamma \in \kappa \setminus \omega$ we have $|T_{\gamma+1}| = |\gamma|$, so we can fix an injection $j_\gamma : T_{\gamma+1} \to \gamma$.

Claim 1. The unique homomorphism $J_\gamma : F(T_{\gamma+1}) \to F(\gamma)$ extending j_γ is an injection.
For each $\gamma \in \kappa \setminus \omega$, the family H_γ of all bijections of X_γ that move only finitely many elements of X_γ, is dense in $S(X_\gamma)$ and has size $|X_\gamma| = |\gamma|$, so we can fix an enumeration

\[(5) \quad H_\gamma = \{h_{\gamma \beta} : \beta \in \gamma\}.
\]

For $(\alpha, \beta) \in T_\kappa$ define $f_{\alpha, \beta} \in S(X_\kappa)$ by

\[(6) \quad f_{\alpha, \beta}(\gamma, g) = \begin{cases} h_{\alpha \beta}(\gamma, g), & \text{for } \gamma \in \alpha \\ (\gamma, g \ast_\gamma j_\gamma(\alpha, \beta)), & \text{for } \gamma \in \kappa \setminus \alpha \end{cases} \text{ for } (\gamma, g) \in X_\kappa.
\]

Define

\[(7) \quad Y_\kappa = \{f_{\alpha, \beta} : (\alpha, \beta) \in T_\kappa\} \subseteq S(X_\kappa),
\]

and let G_κ to be the subgroup of $S(X_\kappa)$ generated by Y_κ. Define the map $\theta : T_\kappa \to Y_\kappa$ by

\[(8) \quad \theta(\alpha, \beta) = f_{\alpha, \beta} \text{ for } (\alpha, \beta) \in T_\kappa,
\]

and let $\Theta : F(T_\kappa) \to G_\kappa$ be the unique homomorphism extending θ.

Claim 2. $\Theta(g)(\gamma, e_\gamma) = (\gamma, J_\gamma(g))$ whenever $\gamma \in \kappa \setminus \omega$ and $g \in F(T_\gamma)$.

Proof. The conclusion of our claim obviously holds for the identity element of $F(T_\gamma)$, so we will assume that g is not the identity of $F(T_\gamma)$. Then there exist $n \in \mathbb{N}$, $(\alpha_k, \beta_k) : k \leq n \in T_\gamma$ and $\{\varepsilon_k : k \leq n\} \subseteq \{-1, 1\}$ such that

$$g = \prod_{k=0}^{n} (\alpha_k, \beta_k)^{\varepsilon_k}.$$

Together with (8) this yields

\[(9) \quad \Theta(g) = \Theta\left(\prod_{k=0}^{n} (\alpha_k, \beta_k)^{\varepsilon_k}\right) = \prod_{k=0}^{n} \theta(\alpha_k, \beta_k)^{\varepsilon_k} = \prod_{k=0}^{n} (f_{\alpha_k, \beta_k})^{\varepsilon_k} = f_{\alpha_n, \beta_n}^{\varepsilon_n} \circ f_{\alpha_{n-1}, \beta_{n-1}}^{\varepsilon_{n-1}} \circ \ldots \circ f_{\alpha_0, \beta_0}^{\varepsilon_0}.
\]

From (9) and (6) we get

$$\Theta(g)(\gamma, e_\gamma) = f_{\alpha_n, \beta_n}^{\varepsilon_n} \circ f_{\alpha_{n-1}, \beta_{n-1}}^{\varepsilon_{n-1}} \circ \ldots \circ f_{\alpha_0, \beta_0}^{\varepsilon_0}(\gamma, e_\gamma) = f_{\alpha_n, \beta_n}^{\varepsilon_n} \circ f_{\alpha_{n-1}, \beta_{n-1}}^{\varepsilon_{n-1}} \circ \ldots \circ f_{\alpha_1, \beta_1}^{\varepsilon_1}(\gamma, j_\gamma(\alpha_0, \beta_0)^{\varepsilon_0}) \ldots$$

$$= f_{\alpha_n, \beta_n}^{\varepsilon_n}\left(\gamma, \prod_{k=0}^{n-1} j_\gamma(\alpha_k, \beta_k)^{\varepsilon_k}\right)$$

$$= \left(\gamma, \prod_{k=0}^{n} j_\gamma(\alpha_k, \beta_k)^{\varepsilon_k}\right) = (\gamma, J_\gamma(g)).$$

\[\square\]

Claim 3. $\Theta : F(T_\kappa) \to G_\kappa$ is an isomorphism.
Proof. Since \(Y_\kappa \) generates \(G_\kappa \) and \(\Theta(T_\kappa) = \theta(T_\kappa) = Y_\kappa \) by (7) and (8), it follows that \(\Theta \) is a surjection.

To prove that \(\Theta \) is an injection, assume that \(g \in F(T_\kappa) \) and \(\Theta(g) \) is the identity map of \(S(X_\kappa) \). From (3) we have
\[
(10) \quad F(T_\kappa) = \bigcup_{\alpha \in \kappa \setminus \omega} F(T_\alpha),
\]
and so there exists some \(\gamma \in \kappa \setminus \omega \) with \(g \in F(T_\gamma) \). Since \(\Theta(g) \) is the identity map of \(S(X_\kappa) \), from Claim 2 we get \(J_\gamma(g) = e_\gamma \). Then \(g = 1 \) by Claim 1. Therefore, \(\ker \Theta = \{1\} \), and so \(\Theta \) is an injection. \(\square \)

Claim 4. \(\Theta(F(T_\gamma)) \) is discrete for every \(\gamma \in \kappa \setminus \omega \).

Proof. For each \(g \in F(T_\gamma) \) let \(\varphi_g : \{ (\gamma, e_\gamma) \} \to X_\kappa \) be the map defined by
\[
(11) \quad \varphi_g(\gamma, e_\gamma) = (\gamma, J_\gamma(g)),
\]
so that \(W(X_\kappa, \{ (\gamma, e_\gamma) \}, \varphi_g) \in \mathcal{W} \).

(i) For every \(g \in F(T_\gamma) \) one has
\[
\Theta(g)(\gamma, e_\gamma) = (\gamma, J_\gamma(g)) = \varphi_g(\gamma, e_\gamma)
\]
by Claim 2 and (11), which yields
\[
\Theta(g) \in W(X_\kappa, \{ (\gamma, e_\gamma) \}, \varphi_g).
\]

(ii) Suppose that \(g_0, g_1 \in F(T_\gamma) \) and \(g_0 \neq g_1 \). Then \(J_\gamma(g_0) \neq J_\gamma(g_1) \) by Claim 4 which together with (11) yields \(\varphi_{g_0}(\gamma, e_\gamma) \neq \varphi_{g_1}(\gamma, e_\gamma) \), and thus
\[
W(X_\kappa, \{ (\gamma, e_\gamma) \}, \varphi_{g_0}) \cap W(X_\kappa, \{ (\gamma, e_\gamma) \}, \varphi_{g_1}) = \emptyset.
\]

Since \(\mathcal{W} \) is a base for the topology of \(S(X_\kappa) \), from (i) and (ii) we conclude that the family
\[
\{ W(X_\kappa, \{ (\gamma, e_\gamma) \}, \varphi_g) : g \in F(T_\gamma) \}
\]
witnesses that the set \(\Theta(F(T_\gamma)) \) is discrete. \(\square \)

Claim 5. If \(D \subseteq G_\kappa \) and \(|D| < \kappa \), then \(D \) is discrete.

Proof. Since \(\Theta \) is a bijection by Claim 3, \(|\Theta^{-1}(D)| = |D| < \kappa \). By (3), \(F(T_\lambda) \subseteq F(T_\mu) \) whenever \(\omega \leq \lambda < \mu < \kappa \), so using (10) and regularity of \(\kappa \) we can find \(\gamma \in \kappa \setminus \omega \) such that \(\Theta^{-1}(D) \subseteq F(T_\gamma) \) and so \(D \subseteq \Theta(F(T_\gamma)) \). Now Claim 4 applies. \(\square \)

Claim 6. \(Y_\kappa \) is dense in \(S(X_\kappa) \). In particular, \(G_\kappa \) is dense in \(S(X_\kappa) \).

Proof. Let \(Z \) be a finite subset of \(X_\kappa \) and \(\varphi : Z \to X_\kappa \) be an injection. From (4) we get \(X_\kappa = \bigcup_{\gamma \in \kappa} X_\gamma \), and \(X_\lambda \subseteq X_\mu \) whenever \(\omega \leq \lambda < \mu < \kappa \). Since \(\kappa \) is uncountable and \(Z \cup \varphi(Z) \) is a finite subset of \(X_\kappa \), we have
\[
(12) \quad Z \cup \varphi(Z) \subseteq X_\alpha
\]
for some \(\alpha \in \kappa \setminus \omega \). The bijection \(\varphi \) between two finite subsets \(Z \) and \(\varphi(Z) \) of \(X_\alpha \) can be extended to a bijection of the whole \(X_\alpha \). Therefore, \(W(X_\alpha, Z, \varphi) \) is a non-empty open subset of \(S(X_\alpha) \). Since \(H_\alpha \) is dense in \(S(X_\alpha) \), using (5) we can find \(\beta \in \alpha \) such that \(h_{\alpha\beta} \in W(X_\alpha, Z, \varphi) \). That is, \(h_{\alpha\beta}(\gamma, g) = \varphi(\gamma, g) \) for every \((\gamma, g) \in Z \). Combining
this with (12) and (6), we conclude that $f_{\alpha,\beta}(\gamma, g) = h_{\alpha,\beta}(\gamma, g) = \varphi(\gamma, g)$ whenever $(\gamma, g) \in Z$. Together with (2) and (7) this yields

$$f_{\alpha,\beta} \in W(X_\kappa, Z, \varphi) \cap Y_\kappa \neq \emptyset.$$

Since $\mathcal{W}(X_\kappa)$ is a base for the topology of $S(X_\kappa)$, we conclude now that Y_κ is dense in $S(X_\kappa)$. □

Proof of Theorem 1.4. Since $|T_\kappa| = \kappa$, the groups $F(\kappa)$ and $F(T_\kappa)$ are isomorphic. Combining this with Claim 3, we conclude that the groups $F(\kappa)$ and G_κ are isomorphic. Let \mathcal{T}_κ be the topology on $F(\kappa)$ obtained by transferring the subgroup topology that G_κ inherits from $S(X_\kappa)$ via the isomorphism between $F(\kappa)$ and G_κ.

Every dense subgroup of an infinite symmetric group $S(X)$ is minimal and has no proper non-trivial closed normal subgroups [2]. Combining this with Claim 4, we get (i) and (iii). Claim 5 yields (ii). Finally, (a) follows from (ii), and (b) follows from (iii). □

References

[1] A. V. Arhangel’skiı, Cardinal invariants of topological groups, embeddings and condensations, Dokl. Akad. Nauk SSSR 132 (1981), 980–981 (Russian; English translation in Soviet. Math. Dokl. 23 (1981), 279–284.)
[2] S. Dierolf and U. Schwanengel, Un exemple d’un groupe topologique q-minimal mais non précompact, Bull. Sci. Math., 2e série, 101 (1977), 265–269.
[3] J. Dijkstra and J. van Mill, Groups without convergent sequences, Topology Appl. 74 (1996), 275–282.
[4] D. Dikranjan, Recent advances in minimal topological groups, Topology Appl. 85 (1998) no. 1–3, 53–91.
[5] D. Dikranjan and I. Prodanov, Totally minimal groups, Ann. Univ. Sofia, Fac. Math. Méc. 69 (1974/75), 5–11.
[6] D. Dikranjan, Iv. Prodanov and L. Stoyanov, Topological Groups: Characters, Dualities and Minimal Group Topologies, Pure and Applied Mathematics, vol. 130, Marcel Dekker Inc., New York-Basel (1989).
[7] D. Dikranjan and D. Shakhmatov, Forcing hereditarily separable compact-like group topologies on Abelian groups, Topology Appl. 151 (2005), no. 1-3, 2–54.
[8] D. Dikranjan and D. Shakhmatov, Selected topics from the structure theory of topological groups, pp. 389–405 in: Open Problems in Topology II (E. Pearl, Ed.), North-Holland, Amsterdam, 2007.
[9] D. Dikranjan and M. Tkachenko, Algebraic structure of small countably compact Abelian groups, Forum Math. 15 (2003), no. 6, 811–837.
[10] D. Doitchinov, Produits de groupes topologiques minimaux, Bull. Sci. Math. (2) 97 (1972), 59–64.
[11] E. K. van Douwen, The product of two countably compact topological groups, Trans. Amer. Math. Soc. 262 (1980), 417–427.
[12] A. Hajnal and I. Juhász, A normal separable group need not be Lindelöf, Gen. Top. Appl. 6 (1976), 199–205.
[13] E. Hewitt and K. A. Ross, Abstract harmonic analysis I, Springer-Verlag, Berlin-Heidelberg-New York, 1963.
[14] L. N. Ivanovskiı, On a hypothesis of P. S. Alexandroff, Dokl. AN SSSR 123 (1958), no. 4, 785–786 (in Russian).
[15] V. I. Kuz’minov, On a hypothesis of P. S. Alexandroff in the theory of topological groups, Dokl. AN SSSR 125 (1959), no. 4, 727–729 (in Russian).
[16] V. I. Mal’ykhin, An example of a topological group, in: Topological spaces and their mappings (Latv. Gos. Univ., Riga, 1981), pp. 120–123 (in Russian, with English summary).
[17] I. Prodanov, Precompact minimal group topologies and p-adic numbers, Annaire Univ. Sofia Fac. Math. Méc. 66 (1971/72), 249–266.
[18] I. Prodanov and L. Stoyanov, *Every minimal abelian group is precompact*, C. R. Acad. Bulgare Sci. 37 (1984), 23–26.

[19] D. B. Shakhmatov, *Character and pseudocharacter in minimal topological groups*, Mat. Zametki 38 (1985), no. 6, 908–914, 959; (in Russian; English translation in: Math. Notes 39 (1986), 465–470).

[20] D. B. Shakhmatov, *A direct proof that every infinite compact group G contains \(\{0, 1\}^{w(G)} \)*, in: Papers on general topology and applications (Flushing, NY, 1992), Ann. New York Acad. Sci., 728, New York Acad. Sci., New York, 1994, pp. 276–283.

[21] S. M. Sirota, *A product of topological groups and extremal disconnectedness*, Mat. Sb. (N.S.) 79(121) (1969), 179–192.

[22] R. M. Stephenson, Jr., *Minimal topological groups*, Math. Ann. 192 (1971), 193–195.

[23] M. G. Tkachenko, *On countably compact and pseudocompact topologies on free Abelian groups*, Soviet Math. (Izv. VUZ) 34 (5) (1990), 79–86. Russian original in: Izv. Vyssh. Uchebn. Zaved. Ser. Matem. 5 (1990), 68–75.

[24] A. H. Tomita, *Two countably compact topological groups: One of size \(\aleph_\omega \) and the other of weight \(\aleph_\omega \)*, Proc. Amer. Math. Soc. 131 (2003), no. 8, 2617–2622.

[25] V. V. Uspenskii, *Why compact groups are dyadic*, in: General Topology and its Relations to Modern Analysis and Algebra VI (Proc. Sixth 1986 Prague Topol. Symposium) (Z. Frolík, Ed.) Heldermann Verlag, Berlin, 1988, pp. 601–610.

Graduate School of Science and Engineering, Division of Mathematics, Physics and Earth Sciences, Ehime University, Matsuyama 790-8577, Japan

E-mail address: dmitri@dpc.ehime-u.ac.jp