(p, q, r)-GENERATIONS FOR THE JANKO GROUPS J_1 and J_2

JAMSHID MOORI

Department of Mathematics and Applied Mathematics
University of Natal
P.O.Box 375, Pietermaritzburg
3200 South Africa

1. Introduction

Suppose that G is a group which is generated by two elements a and b such that $o(a) = l$ and $o(b) = m$ and their product ab has order n. We say that G is a (l, m, n)-generated group and it is obvious that in this case G must be a quotient of the triangle group $\Delta(l, m, n)$ given by the presentation

$$\Delta(l, m, n) = \langle a, b, c \mid a^l = b^m = c^n = abc = 1 >. $$

If G is a (l, m, n)-generated group, then it is also a (r, s, t)-generated group whenever (r, s, t) is a rearrangement of (l, m, n). Thus we may assume that $l \leq m \leq n$. It is well-known that $\Delta(l, m, n)$ is finite if and only if $1/l + 1/m + 1/n > 1$. (see [11] and [4]). Finite $\Delta(l, m, n)$ are $\Delta(1, n, n)$ the cyclic group of order n, $\Delta(2, 2, n)$ the dihedral group of order $2n$, $\Delta(2, 3, 3)$ the alternating group A_4, $\Delta(2, 3, 4)$ the symmetric group S_4, and $\Delta(2, 3, 5)$ the alternating group A_5. If $1/l + 1/m + 1/n = 1$, namely in the cases of $\Delta(2, 3, 6)$, $\Delta(2, 4, 4)$ and $\Delta(3, 3, 3)$, then the triangle group is infinite but soluble. In the case when $1/l + 1/m + 1/n < 1$, then the triangle group is infinite and insoluble. These triangle groups have a remarkable wealth of interesting finite quotient groups. We encourage reader to consult [4], [14] and [15] for discussion and background material on the triangle groups. A $(2, 3, 7)$-generated group G which give rise to compact Riemann surfaces of genus greater than 2 with automorphism groups of maximal order, are called Hurwitz groups ([7] and [15]).

Woldar in [16] determined that $J_1, J_2, He, Ru, Co_3, HN, Ly$ are Hurwitz, while $M_{11}, M_{12}, M_{22}, M_{23}, HS, J_3, M_{24}, McL, Suz, O’N, Co_1, Co_2$ are not.

1991 Mathematics Subject Classification. 20D08, 20F05.

supported by a research grant from the University of Natanl.
are non-Hurwitz. In [8] Kleidman, Parker and Wilson proved that F_{23} is not Hurwitz, while Linton [9] and Wilson [10] showed that T_h and F'_{24} are Hurwitz. In [17] Woldar completes the problem, except for B and M where the question is unresolved, by proving that J_4 and F_{22} are Hurwitz.

If G is a finite group, C_1, C_2, C_3 conjugate classes of G, and c a fixed representative of C_3, then $\xi_G(C_1, C_2, C_3)$ denotes the structure constant of the group algebra $Z(C[G])$ which is equal to the number of distinct ordered pairs (a, b) with $a \in C_1, b \in C_2$ and $ab = c$. Using the character table of G, the number $\xi_G(C_1, C_2, C_3)$ can be calculated by the formula

$$\xi_G(C_1, C_2, C_3) = \frac{|C_1| |C_2|}{|G|} \sum_{i=1}^{k} \frac{\chi_i(a)\chi_i(b)\chi_i(c)}{\chi_i(1)}$$

where $\chi_1, \chi_2, \ldots, \chi_k$ are the irreducible complex characters of G. Let $\xi_G(C_1, C_2, C_3)$ denote the number of distinct ordered pairs (a, b) with $a \in C_1, b \in C_2, ab = c$ and $G = < a, b >$. Obviously G is a (l, m, n)-generated group if and only if there exist conjugacy classes C_1, C_2, C_3 with representatives a, b, c, respectively such that $o(a) = l, o(b) = m$ and $o(c) = n$, for which $\xi_G(C_1, C_2, C_3) > 0$. In this case we say that G is (C_1, C_2, C_3)-generated. If H is a subgroup of G containing c and B is a conjugacy class of H such that $c \in B$, then $\sigma_H(C_1, C_2, B)$ denotes the number of distinct ordered pairs (a, b) such that $a \in C_1, b \in C_2, ab = c$ and $< a, b > \leq H$.

It is well-known that every finite non-abelian simple group can be generated by two suitable elements. (For details see [5]). If G is non-abelian finite simple group and l, m, n are divisors of $|G|$ such that $1/l+1/m+1/n < 1$, then the following question arises: Is G a (l, m, n)-generated group? We are a great distance away from a complete answer to the question, however we are aiming at a partial answer to it by considering the case when $l = p, m = q$ and $n = r$ are primes and the group G is isomorphic to one of the sporadic simple groups.

In the present paper we investigate (p, q, r)-generations for the Janko groups J_1 and J_2 where p, q and r are distinct primes satisfying $p < q < r$.

We prove the following results.

Theorem 2.8. The group J_1 is (p, q, r)-generated for $p, q, r \in \{2, 3, 5, 7, 11, 19\}$ with $p < q < r$, except when $(p, q, r) = (2, 3, 5)$.

Theorem 2.9. The group J_1 is generated by three involutions $a, b, c \in 2A$ such that $abc \in 11A$.

Theorem 3.5. (a) The group J_2 is $(2B, 3B, 7A)$-, $(2A, 5C, 7A)$-, $(2B, 5A, 7A)$-, $(2B, 5C, 7A)$-, $(2A, 5C, 7A)$-, and $(2B, 5C, 7A)$-generated.

(b) The group J_2 is not $(2A, 3A, 7A)$-, $(2A, 3B, 7A)$-, $(2B, 3A, 7A)$-, $(2A, 5A, 7A)$-, or $(3A, 5A, 7A)$-generated.
The remaining cases, namely when $p = q = r$, $p \neq q = r$ or $p = q \neq r$ will be treated separately in another paper by the author.

For the description of the conjugacy classes, the character tables and information on the maximal subgroups readers are referred to ATLAS [3]. Computations were performed with the aid of CAYLEY and GAP (see [1] and [13]) running on a SUN GX2 computer.

1.1. Acknowledgments. I am very grateful to the referee for his valuable and constructive remarks, and to Jonathan Hall for several of the arguments in this paper. I also thank Andrew Woldar for his private communication on the Lemma 2.1.

2. (p,q,r)-generations for J_1

We list bellow the structure constants for the Janko group J_1.

$\xi_{J_1}(C_1, C_2, C_3)$	C_1	C_2	C_3
49	2A	3A	7A
55	2A	3A	11A
38	2A	3A	19A
49	2A	5A	7A
44	2A	5A	11A
57	2A	5A	19A
209	2A	7A	11A
209	2A	7A	19A
133	2A	11A	19A
189	3A	5A	7A
198	3A	5A	11A
171	3A	5A	19A
858	3A	7A	11A
836	3A	7A	19A
494	3A	11A	19A
858	5A	7A	11A
836	5A	7A	19A
513	5A	11A	19A
2299	7A	11A	19A

We would also like to mention here that if G is a (p,q,r)-generated group where p, q and r are distinct primes, then G has no soluble quotient. This is an obvious consequence of the following elementary result:

Lemma 2.1. Let G be a (l,m,n)-generated group with l, m, n pairwise co-prime. Then G has no soluble quotient.
Proof. Assume that G is generated by a, b such that $o(a) = l, o(b) = m$ and $o(ab) = n$. If G has soluble quotient, then it also has a non-trivial abelian quotient A. Let \bar{a}, \bar{b} and \overline{ab} be the respective images of a, b and ab in A. Then $o(ab)$ divides lm and n. Since lm and n are relatively prime, $\overline{ab} = \bar{e}$, where e is the identity of G. This implies that $\bar{a} = (\bar{b})^{-1}$. So if $\bar{b} \neq \bar{e}$ then $o(b)$ divides both l and m, a contradiction to co-primeness. But if $\bar{b} = \bar{e}$, then $\bar{a} = \bar{e}$. Hence $A = \langle \bar{a}, \bar{b} \rangle = \{\bar{e}\}$, contradicting the non-triviality of A. This completes the proof of the lemma. \hfill \box

We now deal with the (p, q, r)-generations of J_1.

Lemma 2.2. The group J_1 is $(2, 3, 7)$-generated.

Proof. The fact that J_1 is $(2A, 3A, 7A)$-generated is given by Woldar in [16]. \hfill \box

Lemma 2.3. The group J_1 is $(2, 3, 11)$-generated.

Proof. The only non-soluble maximal subgroups of J_1 with order divisible by 11 are isomorphic to the group $L_2(11)$. If $H \leq J_1$ with $H \cong L_2(11)$, then

$$\sigma_H(2A, 3A, 11A) = \xi_H(2A, 3A, 11A) = 11.$$

We also observe that $N_H(11A) = 11:5$ and $N_{J_1}(11A) = (11:5):2$. Let $2 = \langle \alpha \rangle$. Then a fixed element in $11A$ is contained in H and H^g for $g \in J_1 - H$ if and only if $g = h^{-1}\beta\alpha$ for some $h \in H$ and $\beta \in N_H(11A)$. Thus a fixed element of order 11 in J_1 is contained in precisely two copies of H, namely H and H^g. Hence H and its conjugates contribute $11 \times 2 = 22$ to the $\xi_{J_1}(2A, 3A, 11A)$. Since $\xi_{J_1}(2A, 3A, 11A) = 55 > 22$, $\xi_{J_1}(2A, 3A, 11A) \geq 33$. Therefore J_1 is $(2A, 3A, 11A)$-generated. \hfill \box

Lemma 2.4. The group J_1 is $(2, 3, 19)$-generated.

Proof. The only maximal subgroup of J_1 with order divisible by 19, up to isomorphism, is the group $19:6$. Since a $(2, 3, 19)$-generated group cannot have a soluble quotient, J_1 posses no proper $(2, 3, 19)$-generated subgroup. Now the result follows from the fact that $\xi_{J_1}(2A, 3A, 19A) = \xi_{J_1}(2A, 3A, 19A) = 38$. \hfill \box

Lemma 2.5. The group J_1 is $(2, 5, 11)$-generated.

Proof. Up to isomorphism, $L_2(11)$ is the only non-soluble maximal subgroup of J_1 with order divisible by $11 \times 10 = 110$. We also have $\sigma_{L_2(11)}(2A, 5A, 11A) = \xi_{L_2(11)}(2A, 5A, 11A) = 11$, and as in Lemma 2.3, $L_2(11)$ and it’s conjugates contribute $11 \times 2 = 22$ to the $\xi_{J_1}(2A, 5A, 11A)$. Since $\xi_{J_1}(2A, 5A, 11A) = 55$, result follows. \hfill \box
Lemma 2.6. The group \(J_1 \) is \((2, 5, 7)\)-, \((2, 5, 19)\)-, \((2, 7, 11)\)-, \((2, 7, 19)\)-, \((2, 11, 19)\)-, \((5, 7, 11)\)-, \((5, 7, 19)\)-, \((5, 11, 19)\)-, \((3, 5, 7)\)-, \((3, 5, 19)\)-, \((3, 7, 11)\)-, \((3, 7, 19)\)-, \((3, 11, 19)\)-, and \((7, 11, 19)\)-generated.

Proof. The group \(J_1 \) has no proper subgroups of order divisible by \(2 \times 5 \times 7, 2 \times 5 \times 19, 2 \times 7 \times 11, 2 \times 7 \times 19, 2 \times 11 \times 19, 5 \times 7 \times 11, 5 \times 7 \times 19, 5 \times 11 \times 19, 3 \times 5 \times 7, 3 \times 5 \times 19, 3 \times 7 \times 11, 3 \times 7 \times 19, 3 \times 11 \times 19, \) and \(7 \times 11 \times 19 \) respectively. Since \(\xi_{J_1}(C_1, C_2, C_3) \) for the corresponding conjugacy classes are positive, the result follows.

Lemma 2.7. The group \(J_1 \) is \((3, 5, 11)\)-generated.

Proof. Up to isomorphism, \(L_2(11) \) is the only maximal subgroup of \(J_1 \) with order divisible by \(3 \times 5 \times 11 \). Now \(\sigma_{L_2(11)}(3A, 5A, 11A) = \xi_{L_2(11)}(3A, 5A, 11A) = 22 \) implies that \(L_2(11) \) and its conjugates contribute \(22 \times 2 = 44 \) to the \(\xi_{J_1}(3A, 5A, 11A) \). Since \(\xi_{J_1}(3A, 5A, 11A) = 198 \), the result follows.

Theorem 2.8. The group \(J_1 \) is \((p, q, r)\)-generated for \(p, q, r \in \{2, 3, 5, 7, 11, 19\} \) with \(p < q < r \), except when \((p, q, r) = (2, 3, 5) \).

Proof. This follows from the Lemmas 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8 and the fact \(\Delta(2, 3, 5) \cong A_5 \).

If \(C_1, C_2, C_3, C_4 \) are conjugacy classes of a group \(G \), and \(d \) a fixed representative of \(C_4 \) then \(\xi_G(C_1, C_2, C_3, C_4) \) denotes the number of distinct triples \((a, b, c)\) with \(a \in C_1, b \in C_2 \) and \(c \in C_3 \) such that \(abc = d \). This number is computed using the formula

\[
\xi_G(C_1, C_2, C_3, C_4) = \frac{|C_1||C_2||C_3|}{|G|} \sum_{i=1}^{k} \frac{\chi_i(a)\chi_i(b)\chi_i(c)\chi_i(d)}{(|\chi_i(1)|)^2}
\]

when \(\chi_1, \chi_2, \ldots, \chi_k \) are the irreducible complex characters of \(G \). We use this fact to prove the following theorem.

Theorem 2.9. The group \(J_1 \) is generated by three involutions \(a, b, c \in 2A \) such that \(abc \in 11A \).

Proof. Using the character table of \(J_1 \) we have \(\xi_{J_1}(2A, 2A, 2A, 11A) = 17908 \). In \(J_1 \) we have two maximal subgroups, up to isomorphism, with order divisible by \(11 \), namely \(11:10 \) and \(L_2(11) \). Here \(N_{J_1}(11A) = 11:10 \). We also have

\[
\sigma_{L_2(11)}(2A, 2A, 2A, 11A) = \xi_{L_2(11)}(2A, 2A, 2A, 11A) = 242.
\]

A fixed element of order 11 in \(J_1 \) lies in two conjugates of \(L_2(11) \). Hence \(L_2(11) \) contributes \(242 \times 2 = 484 \) to the number \(\xi_{J_1}(2A, 2A, 2A, 11A) \).
It is routine to compute the character table of the group $11:10$. We represent a part of this character table, giving the values of irreducible characters on the classes $1A$, $2A$, and $11A$ in Table 1.

Centralizer	110	10	11
Class	$1A$	$2A$	$11A$
χ_1	1	1	1
χ_2	1	-1	1
χ_3	1	1	1
χ_4	1	-1	1
χ_5	1	1	1
χ_6	1	-1	1
χ_7	1	1	1
χ_8	1	-1	1
χ_9	1	1	1
χ_{10}	1	-1	1
χ_{11}	10	0	1

Table 1. Partial character table of $11:10$

Using Table 1 we have

$$
\sigma_{11:10}(2A, 2A, 2A, 11A) = \frac{|2A|^3}{11 \times 10} \sum_{i=1}^{k} \frac{(\chi_i(2A))^3 \chi_i(11A)}{(\chi_i(1))^2} \\
= \frac{|2A|^3}{11 \times 10} \sum_{i=1}^{10} (-1)^{i+1} \\
= 0.
$$

Hence $11:10$ does not contribute to the number $\xi_{J_1}(2A, 2A, 2A, 11A)$. Since $\xi_{J_1}(2A, 2A, 2A, 11A) = 17908 > 484$, the group J_1 is $(2A, 2A, 2A, 11A)$-generated. This completes the theorem.

3. (p, q, r)-generations for J_2

We list below the structure constants for the group J_2.

\[\square\]
Lemma 3.1. The group J_2 is not $(2A, 3A, 7A)$-, $(2B, 3A, 7A)$-, $(2A, 5A, 7A)$-,
or $(3A, 5A, 7A)$-generated.

Proof. This follows trivially since $\xi_{J_2}(C_1, C_2, C_3) = 0$ for the corresponding conjugacy classes of J_2. \hfill \Box

Lemma 3.2. The group J_2 is $(2A, 5C, 7A)$-, $(2B, 5A, 7A)$-, $(2B, 5C, 7A)$-,
$(3A, 5C, 7A)$-, $(3B, 5A, 7A)$-, $(3B, 5C, 7A)$-generated.

Proof. The only maximal subgroups of J_2 with order divisible by 7, up to isomorphism, are the groups $U_3(3)$ and $L_3(2) : 2$. Since $|U_3(3)| = 2^5.3^2.7$ and $|L_3(2) : 2| = 2^4.3.7$ and 5 does not divide neither $|U_3(3)|$ nor $|L_3(2) : 2|$, we can say that no proper subgroup of J_2 is $(p, 5, 7)$-generated when $p \in \{2, 3\}$. As

$$
\xi_{J_2}(2A, 5C, 7A) = \xi_{J_2}(2B, 5A, 7A) = 7 \quad \xi_{J_2}(2B, 5C, 7A) = 49
$$
$$
\xi_{J_2}(3A, 5C, 7A) = 14 \quad \xi_{J_2}(3B, 5A, 7A) = 56 \quad \xi_{J_2}(3B, 5C, 7A) = 343
$$

the result will immediately follow. \hfill \Box

Lemma 3.3. The group J_2 is $(2B, 3B, 7A)$-generated.

Proof. This is given in [6]. \hfill \Box

Lemma 3.4. The group J_2 is not $(2A, 3B, 7A)$-generated.

Proof. Here we use a theorem of Ree (see [12] and [2]) which states: If G
is a transitive permutation group generated by permutations g_1, g_2, \ldots, g_s
acting on a set of n elements such that $g_1g_2\cdots g_s$ is the identity permutation, and if generator g_i has exactly c_i cycles for $1 \leq i \leq s$, then

$$
c_1 + c_2 + \cdots + c_s \leq (s - 2)n + 2.
$$
The group J_2 acts as a transitive rank-3 group on a set X of 100 elements. The point stabilizer is isomorphic to the group $U_3(3)$ with orbits of lengths 1, 36, and 63. If we denote the character of the permutation representation of J_2 on the set X by χ, then by referring to the character table of J_2 we obtain $\chi = 1a + 36a + 63a$ where ma is the first irreducible character of degree m in the ATLAS character table of J_2. It is easy to verify that $\chi(2A) = 20$, $\chi(3B) = 4$, and $\chi(7A) = 2$. This implies that, in the action of J_2 on the set X, the elements in $2A$, $3B$ and $7A$ induce permutations with cycle types $1^{20}2^{40}$, 1^43^{32} and 1^27^{14} respectively. Now

$$c_1 + c_2 + c_3 = (20 + 40) + (4 + 32) + (2 + 14) = 112$$

and

$$(s - 2)n + 2 = (3 - 2) \times 100 + 2 = 102$$

imply that $c_1 + c_2 + c_3 > (s - 2)n + 2$. This contradicts Ree’s theorem stated above. Hence J_2 is not $(2A, 3B, 7A)$-generated. \hfill \Box

Theorem 3.5. For the Janko group J_2 we have the following.

(a) J_2 is $(2B, 3B, 7A)$-, $(2A, 5C, 7A)$-, $(2B, 5A, 7A)$-, $(2B, 5C, 7A)$-, $(3A, 5C, 7A)$-, $(3B, 5A, 7A)$-, and $(3B, 5C, 7A)$-generated.

(b) J_2 is not $(2A, 3A, 7A)$-, $(2A, 3B, 7A)$-, $(2B, 3A, 7A)$-, $(2A, 5A, 7A)$-, or $(3A, 5A, 7A)$-generated.

Proof. This follows from the Lemmas 3.1, 3.2, 3.3 and 3.4. \hfill \Box

REFERENCES

[1] J. J. Cannon, *An introduction to the group theory language CAYLEY*, Computational Group Theory (M. Atkinson, ed.), Academic Press, San Diego, 1984, pp. 145–183.

[2] M. D. E. Conder and J. McKay, *A necessary condition for transitivity of a finite permutation group*, Bull. London Math. Soc. **20** (1988), 235–238.

[3] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Wilson, *Atlas of Finite Groups*, Oxford Univ. Press (Clarendon), Oxford, 1985.

[4] H. S. M. Coxeter and W. O. J. Moser, *Generators and Relations for Discrete Groups*, Springer-Verlag, 1980.

[5] L. Di Martino and M. C. Tamburini, *2-Generation of finite simple groups and some related topics*, Generators and Relations in Groups and Geometries (A. Barlotti et al, eds.), Kluwer Academic Publishers, Dordrecht, 1991, pp. 195–233.

[6] L. Finkelstein and A. Rudvalis, *Maximal subgroups of the Hall-Janko-Wales group*, J. Algebra **24** (1973), 486–493.

[7] A. Hurwitz, *Über algebraische Gebilde mit eindeutigen Transformationen in sich*, Math. Ann. **41** (1893), 408–442.
[8] P. B. Kleidman, R. A. Parker and R. A. Wilson, The maximal subgroups of F_{i23}, J. London Math. Soc. (2) 39 (1989), 89–101.
[9] S. A. Linton, The maximal subgroups of the Thompson group, J. London Math. Soc. (2) 39 (1989), 79–88.
[10] S. A. Linton and R. A. Wilson, The maximal subgroups of the Fischer groups F_{i24} and F_{i24}', Proc. London Math. Soc. (3) 63 (1991), 113–164.
[11] G. A. Miller, Groups defined by the orders of two generators and the order of their product, Amer. J. Math. 24 (1902), 96–100.
[12] R. Ree, A theorem on permutations, J. Comb. Theory A 10 (1971), 174–175.
[13] M. Schönert et al., GAP—Groups, Algorithms and Programming, Lehrstul D für Mathematik, RWTH, Aachen, 1992.
[14] D. Singerman, Subgroups of Fuchsian groups and finite permutation groups, Bull. London Math. Soc. 2 (1970), 319–323.
[15] T. W. Tucker, Finite groups acting on surfaces and the genus of a group, J. Comb. Theory B 34 (1983), 82–98.
[16] A. J. Woldar, On Hurwitz generation and genus actions of sporadic groups, Illinois Math. J. (3) 33 (1989), 416–437.
[17] ———, Sporadic simple groups which are Hurwitz, J. Algebra 144 (1991), 443–450.