Influence of slicing parameters on surface quality and mechanical properties of 3D-printed CF/PLA composites fabricated by FDM technique

N. Vinoth Babu, N. Venkateshwaran, N. Rajini, Sikiru Oluwarotimi Ismail, Faruq Mohammad, Hamad A. Al-Lohedan and Siengchin Suchart

ABSTRACT
This present study focuses on evaluation of mechanical properties of three dimensional (3D)-printed carbon fiber/polyactic acid (CF/PLA) composites, using fused deposition modeling (FDM) technique. The composites were prepared with different slicing parameters: layer heights or thicknesses, infill densities and layer patterns. The 3D-printed composite samples were subjected to tensile, flexural and interlaminar shear strength (ILSS) tests to assess the influence of the process parameters on their mechanical characteristics. Further investigations were carried out to evaluate the effect of surface roughness of the samples. From the test results, it was evident that both rectilinear and hexagonal layer patterns exhibited better mechanical properties at infill density and layer thickness of 60% and 0.64 mm, respectively. The scanning electron microscopy (SEM) images depicted that lesser layer thickness produced poor CF/PLA interfacial bonding and major failure mode was traced to fiber pull-out. Therefore, engineering application of the composite samples depends on their slicing parameters.

Introduction
With advent of Industry 4.0, new digital industrial revolution, additive manufacturing (AM) or three-dimensional (3D) printing plays a major role in manufacturing engineering. It is the next phase in digitisation of the manufacturing sector [1]. AM is also a challenging process, because of the trial-and-error method that is used to identify the combination of factors: material, printer, process parameters, post-processing in a quest to obtain a desired output of the end product [2]. AM enables quicker manufacturing of physical models directly from 3D computer-aided design (CAD) data without any conventional tooling or huge programming requirements. It also offers greater flexibility in design, which allows creation and visualisation of design ideas into successful prototypes and final products [3].

AM is one of the major components of Industry 4.0, due to the necessity of mass customisation, lesser prototype construction, fewer dies, less post processing, among other benefits. Various 3D printing technologies include, but are not limited to, fused deposition modeling (FDM), selective laser sintering (SLS), stereolithography (SL), photopolymerisation (PPT), laminated object manufacturing (LOM) and solid ground curing (SGC). A wide variety of polymeric materials are available for AM process, based on their applications. Commonly used liquid polymeric materials are epoxy resin, acrylic resin and binder/powder hybrids. Powdered form of polymers include polyamides (PA12 and PA111), polycarbonate (PC), polystyrene (PS), acryl butadiene styrene (ABS), ABS–PC blend, polypropylene (PP), polyphenyl sulphone (PPSU), starch, elastomer/ cellulose, polylactic acid (PLA), thermoplastic polyur- ethane (TPU), poly ether ether ketone (PEEK), high- density polyethylene (HDPE), polyethyleneimine (PEI). Solid sheet polymeric materials widely used are poly- ester film, polyolefin and poly vinyl copolymer films as well as thermosetting and thermoplastic films. Due to growing concern for environmental pollution and reduction in the availability of petroleum-based plastics, researchers have focused on the filaments from bioplastics, in particular PLA for various structural and biomedical applications. In order to increase the strength of the PLA, reinforcements are also being used. The PLA is environmentally friendly material, when compared with petroleum-based ABS, polyethylene and polypropylene [4]. The structure of PLA is harder than that of ABS and has melting temperature in

CONTACT: N. Rajini rajini01@gmail.com. Centre for Composite Materials, Department of Mechanical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil 626112, Tamil Nadu, India; N. Venkateshwaran venkateshwaran.nrrajalakshmi.edu.in. Department of Mechanical Engineering, Rajalakshmi Engineering College, Thandalam, Chennai, Tamil Nadu, India.

This article has been corrected with minor changes. These changes do not impact the academic content of the article.

© 2021 Informa UK Limited, trading as Taylor & Francis Group
the range of 180–220°C, which is lower than that of ABS [5]. The filament-based technology, FDM with wide variety of material in the form of filament is being frequently used across various sectors, especially for functional parts [6–9].

Moreover, various studies have been carried out with respect to FDM technology. To start with, Chacon et al. [10] investigated into the effect of build orientation, layer thickness and mechanical performance of PLA samples, using FDM technology. It was observed that on-edge orientation provided better strength, stiffness and ductility. The results obtained by Gianluca et al. [11] showed that unmodified polymer filaments were not good choice for FDM process, by correlating the rheology and thermo-mechanical properties. Leipeng [12] studied the optimisation of some parameters, such as nozzle diameter, liquefer temperature, extrusion velocity, filling velocity and layer thickness. They were varied to achieve higher tensile strength and lower surface roughness with less build time on FDM PLA printed parts. Yash et al. [13] investigated into the influence of various parameters: infill densities of 50, 75 and 100%, layer thicknesses of 0.1, 0.2 and 0.3 mm as well as shell thicknesses of 0.6, 0.8 and 1.0 mm of PLA material through FDM. The results showed that the mechanical properties increased with an increase in layer thickness. The influence of printing temperature, printing speed, layer thickness and filling ratio on mechanical properties of PLA filament was carried out by Boddula et al. [14] and recorded optimal printing speed of 60 mm/s, layer thickness of 0.25 mm, printing temperature of 210°C and filling rate of 60%. Jose et al. [15] studied the mechanical properties of 3D-printed composites, using PLA-graphene filament with honeycomb infill pattern, flat build orientations and different infill percentages of 22, 78, 10 and 50% and layer heights of 0.13, 0.27 and 0.20 mm. The results showed that tensile strength was significantly influenced by infill and layer thickness. The carbon fibre reinforced with polyethylene terephthalate glycol (PETG) composites by Halil et al. [16] depicted that addition of fibres reduced the voids in 3D-printed samples, whereas the orientation of fibres was better in moulded samples.

In addition, Fuda et al. [17] investigated into the carbon fibre reinforced with ABS to fabricated various composites, using FDM by varying the reinforcement weight percentages: 3, 5, 7.5, 10 and 15. It was observed that 5 wt.% of carbon fibre content had a better tensile strength and 7.5 wt.% counterpart recorded a higher tensile modulus. Comparative study carried out by Ryosuke et al. [18] on carbon fibre/PLA and jute fibre/PLA composite showed that the addition of carbon fibre tremendously increased their mechanical properties, when compared with neat PLA. The study on various process parameters: infill densities of 20, 40 and 60%, extrusion temperatures of 200 and 220°C, raster angles of 0°/90° and 45°/+45° and layer thicknesses of 0.1 and 0.2 mm of PLA has been carried out by Joao Fernandes [19]. The results showed that a better tensile strength was achieved with an infill of 60%, extrusion temperature of 220°C, raster angle of 0°/90° and layer thickness of 0.1 mm. Miguel et al. [20] investigated into the effect of graphene and nano-platelet added PLA on the mechanical properties of corresponding composites with three different orientations: flat edge, on-edge and upright. The results depicted that flat edge and on-edge orientations showed better mechanical properties, when compared with upright orientation.

Moving forward, Vigneshwaran et al. [21] carried out statistical analysis of mechanical properties of biodegradable wood/PLA composites. Various layer heights of 0.08, 0.16 and 0.24 mm, infill of 30, 60 and 90% and patterns of layer: triangle and hexagon were studied. It was reported that better properties were achieved with an increase in both infill percentage and layer pattern. The effect of different patterns on the energy absorption capability of the tubes made of PLA and carbon fibre reinforced PLA composite has been investigated by Quanjin et al. [22]. The results revealed that the triangular and square patterns showed negative effect on the energy absorption.

Besides, surface finish quality of AM is becoming more and more vital with more printed parts being used by end-users. It is critical not only for better functionality and appearance of the end products, but also for cost reduction regarding reduced post-processing of 3D-printed parts and overall prototyping time reduction. The dimensional accuracy of the parts produced with FDM 400MC machine was less accurate in producing a circular-shaped parts, as reported by Sudin et al. [23]. Additional studies on dimensional accuracy and surface quality of 3D-printed structure, using FDM technology are subsequently elucidated.

Bakar et al. [24] investigated into the dimensional accuracy and surface quality of multiple features with various process parameters of FDM. Dyrbus [25] studied the dimensional accuracy by FDM process and
obtained dimensional accuracies of 0.1 mm and 0.4°. With the help of design of experiments, Galantucci et al. [26] analysed the dimensional accuracy on rectangular test samples, minimising changes in length, width and height for both industrial 3D printing system and an open-source type. Habeeb et al. [27] studied the tensile strength and porosity of open-source fused filament fabrication (FFF) machine and observed that it was comparable with the parts manufactured by mid-range commercial machine. One of the main problems in the AM parts included obtaining good surface quality and this was greatly affected, due to complex geometries [28], chordal error attributed to tessellation and slicing [29], layered deposition of material [30], layer height and wall thickness [31] as well as print orientation angle [32].

A review on challenges and opportunities of using magnesium and its alloy in biomedical application was done by Kumar et al. [33]. They discussed how the surface characteristics of magnesium alloy can be improved so that it can be a successful implant. The effect of raster angle on tensile properties and microstructure on PLA was investigated by Naveed [34] and concluded that at the raster angle of 45° better tensile strength was achieved and at other angle of investigation using SEM shows series of air gap and voids. Burcin Ozbay and I.Ersin Serhath [35] studied the addition of hallow glass (HG) over the density and modulus of the polyamide 12 composite. It showed that the addition of HG decreases the density with rise in modulus due to faster crystallisation ratio of HG. Yashwant and Navneet [36] uses the reverse engineering concept to build the patient-specific splint and found that this methodology of fabricating splint has lesser weight and has better comfort that the conventional one. Nawal et.al [37] evaluated the influence of build angle on the flexural properties of hybrid resin by SLA method and observed that the build angle has minimal effect of the properties. The Carbon fibres are extremely stronger, stiffer and light when compared with synthetic and natural fibres. They also possess high thermal stability and less prone to wear and tear and corrosion.

From the afore-reported studies, it was observed that the poor surface finish quality in final products of the FDM process has been attributed to the layer-upon-layer deposition and improper process parameters, such as an infill pattern. Furthermore, the end product quality depends on the following parameters: layer thickness, infill density and pattern, air gaps, build orientation, flow rate, fibre orientation, extrusion temperature, deposition speed, number of shells/perimeter, fibre volume fraction as well as raster angle and width. To ensure better surface integrity, the manufacturing process parameters must be carefully selected. Also, the effect of printing parameters on the surface roughness and wettability of 3D-printed materials must be investigated, especially with reference to layer thickness. Therefore, this present work investigated into the effect of process parameters, such as infill pattern, infill percentage and layer thickness on mechanical properties and surface roughness of 3D-printed carbon fibre/poly lactic acid (CF/PLA) composites. The fractured surfaces of the samples were examined to obtain various relevant SEM images required to describe the failure modes associated with the 3D-printed CF/PLA composite samples and establish possible reasons.

Materials and methods
Materials
The material utilised was PLA reinforced with carbon fibre. It was purchased from NANOVIA Smart Chemicals Advance Materials, France. The properties of the PLA filament are presented in Table 1.

FFF of composite
Figure 1 shows the schematic of FFF process, where filaments on the spools were fed into the liquefier head through a driven gear and grooved bearing, and extruded above the glass transition temperature. The first layer was deposited over the print bed, which moved downward of one desired layer thickness. The process was repeated in the same manner till the part was completed. Using Raise 3D V2 N2 Hot end 3D printer, the tensile, flexural and interlaminar shear strength (ILSS) samples were printed, using CF/PLA composite filament. Before printing, the model was checked to have stereolithography (STL) file format and avoid errors during printing. Generally, CAD application produce error in STL files include gaps, normal faces, self-convergence, noise shells and manifold errors.

Additionally, the problems in the model can be corrected during first stage of the STL generation process, known as fix. The STL file opens in a dedicated slicer and this slider chops up STL file into numerous horizontal layers, based on the machine setting and process parameter conditions. All these data are bundled up into a G Code file, and it was uploaded into the 3D printer. Then, this printer separated two dimensional (2D) layers to resemble
Figure 1. Schematic view of FDM process.

Figure 2. Sequential steps used during fabrication of the 3D-printed composite samples, using FDM.
a 3D object on the print bed by successive deposition of layer upon layer. The sequential steps used during fabrication of all the 3D-printed composite samples are shown in Figure 2. The machine process parameters are presented in Table 2.

The geometries of all the prepared samples for this work are tabulated in Table 3, they were used to conduct the various mechanical tests. In the matrix Table, the samples with rectilinear pattern are designated as R_1, R_2, R_3, ..., R_{12} for various infill percentages (%) and different layer thicknesses (mm). Similarly, samples with triangular and hexagonal patterns are designated as T_1, T_2, T_3, ..., T_{12} and H_1, H_2, H_3, ..., H_{12}, respectively, for various infill percentages (%) and different layer thicknesses (mm). Figure 3 shows the different test samples and various in fill patterns used in this work.

Testing methods

The tensile, flexural and ILSS properties of the samples, prepared using FFF process were evaluated in accordance with the American society for testing and materials (ASTM) standards; D638, D790 and D2344. The prepared samples and experimental set-ups for tensile, flexural and ILSS tests are shown in Figure 4, Figure 5 and Figure 6, respectively.

Table 2. FDM machine process parameters.

Parameters	Units	Values
Nozzle diameter	Mm	0.4
Nozzle temperature	°C	240
Print bed temperature	°C	90
Contours	Shell	02

Table 3. Matrix data for the 3D-printed composite samples, showing their combined process parameters.

Layer height/thickness (mm)	Infill density (%)	Types of pattern and their designations		
		Rectilinear	Triangular	Hexagonal
0.08	20	R_1	T_1	H_1
	40	R_2	T_2	H_2
	60	R_3	T_3	H_3
	80	R_4	T_4	H_4
0.25	20	R_5	T_5	H_5
	40	R_6	T_6	H_6
	60	R_7	T_7	H_7
	80	R_8	T_8	H_8
0.64	20	R_9	T_9	H_9
	40	R_{10}	T_{10}	H_{10}
	60	R_{11}	T_{11}	H_{11}
	80	R_{12}	T_{12}	H_{12}

Figure 3. Selected infill patterns: (a) rectilinear, (b) triangular and (c) hexagonal.

Figure 4. (a) 3D-printed tensile test samples and (b) tensile test set-up.
One of the main problems associated with the additive-manufactured parts is the surface roughness, when compared with conventional counterparts. Surface roughness plays a major role in engineering applications. Therefore, the effects of printing parameters, such as layer pattern, layer thickness and infill density on the surface roughness of the samples were investigated (Figure 7).

Measurements of how surface component deviated with actual surface in the direction normal to the surface were taken. A Taylor Hobson stylus surface profilometer (Figure 7) was used to obtain the surface roughness values, \(R_a \) – arithmetic mean deviation of the roughness profile, 2D and 3D forms, contour and other parameters. The measurements and their corresponding values were recorded, as displayed on the screen and tabulated.

Results and discussion

The tensile, flexural and shear properties of all the 3D-printed samples with selected combination of infill density, layer thickness and layer pattern were determined, evaluated according to the ASTM standards and subsequently elucidated.

Tensile properties of CF/PLA composites

From the experimentation, the stress-strain plots for the various samples were obtained. Therefore, the stress-strain plots for rectilinear, triangular and honeycomb or hexagonal patterns are shown in Figure 8(a), (Figure 8b) and (Figure 8c), respectively. The tensile
Figure 8. Stress-strain plots for (a) rectilinear, (b) triangular and (c) hexagonal patterns, with layer height of 0.25 mm and infill density of 20%.
Figure 9. Tensile strengths of the various patterned 3D-printed composite samples.

Figure 10. Tensile moduli of the various patterned 3D-printed composite samples.
Table 4. Consolidated values of tensile strengths and moduli, flexural strengths and moduli as well as ILSS for the various combinations of parameters.

Sample	Layer pattern	Layer height/thickness (mm)	Infill density (%)	Tensile strength (MPa)	Tensile modulus (MPa)	Flexural strength (MPa)	Flexural modulus (GPa)	Shear strength (MPa)
R₁	Rectilinear	0.08	20	1.18	18.351	33.33	5.007	4.444
R₂	Rectilinear	0.08	40	2.84	29.583	33.33	5.007	4.722
R₃	Rectilinear	0.08	60	7.34	68.406	30.00	2.003	4.722
R₄	Rectilinear	0.08	80	11.13	87.984	36.67	5.007	5.000
R₅	Rectilinear	0.25	20	8.05	52.103	36.67	3.004	4.444
R₆	Rectilinear	0.25	40	4.97	21.703	36.67	5.007	5.000
R₇	Rectilinear	0.25	60	8.52	27.689	40.00	4.507	5.278
R₈	Rectilinear	0.25	80	4.97	19.490	40.000	2.927	5.556
R₉	Rectilinear	0.64	20	24.62	171.210	40.000	1.502	5.000
R₁₀	Rectilinear	0.64	40	22.96	157.800	36.67	3.254	4.500
R₁₁	Rectilinear	0.64	60	23.20	233.635	43.33	5.341	6.111
R₁₂	Rectilinear	0.64	80	28.41	228.192	43.33	4.507	5.270
T₁	Triangular	0.08	20	11.41	104.967	40.000	3.338	3.500
T₂	Triangular	0.08	40	8.32	241.159	36.67	2.504	4.250
T₃	Triangular	0.08	60	8.45	229.619	36.67	2.504	4.500
T₄	Triangular	0.08	80	15.22	262.438	36.67	4.507	4.250
T₅	Triangular	0.25	20	9.41	48.959	36.67	6.510	4.000
T₆	Triangular	0.25	40	7.25	40.730	30.000	6.677	4.500
T₇	Triangular	0.25	60	9.00	65.549	43.33	5.007	4.750
T₈	Triangular	0.25	80	8.11	85.638	43.33	2.504	5.000
T₉	Triangular	0.64	20	15.07	161.176	40.000	2.604	5.000
T₁₀	Triangular	0.64	40	12.08	138.8506	33.33	2.671	3.750
T₁₁	Triangular	0.64	60	12.40	129.166	46.67	5.759	4.250
T₁₂	Triangular	0.64	80	11.21	184.3750	43.33	6.343	4.000
H₁	Hexagonal	0.08	20	15.55	168.472	43.33	2.504	3.750
H₂	Hexagonal	0.08	40	15.30	102.891	43.33	2.003	3.750
H₃	Hexagonal	0.08	60	15.79	122.8794	43.33	3.004	4.250
H₄	Hexagonal	0.08	80	16.78	117.1788	56.67	1.602	4.000
H₅	Hexagonal	0.25	20	7.90	49.5298	53.33	1.502	4.250
H₆	Hexagonal	0.25	40	8.90	56.4103	53.33	2.114	3.500
H₇	Hexagonal	0.25	60	8.39	49.4111	60.000	3.672	4.500
H₈	Hexagonal	0.25	80	10.86	57.8275	60.000	3.255	4.500
H₉	Hexagonal	0.64	20	24.93	216.7826	56.67	3.561	4.250
H₁₀	Hexagonal	0.64	40	24.43	248.0203	60.000	2.754	3.750
H₁₁	Hexagonal	0.64	60	25.42	235.8071	60.000	4.674	4.250
H₁₂	Hexagonal	0.64	80	22.95	269.0504	56.67	1.558	4.500

Properties namely, tensile strengths and moduli of the samples are presented graphically, as depicted in Figure 9 and Figure 10 for different layer patterns.

Moving forward, from the stress-strain plots, it was observed that the adhesion between PLA and carbon fibres was quite good. However, the fibres detached after it reached a maximum load. This further showed that the added fibres carried the load till it was pulled out from the matrix. At a lower infill percent, it can be assumed that voids were created during the printing, which became stress concentration areas and allowed initiation of cracks. This crack grew rapidly during testing and reached a critical length that resulted into sudden failure. This failure mechanism can be ascribed to the presence of porosity, cracks and local deformation [38]. In general, the tensile strength and modulus increased with an increase in the percentage of infill density, as earlier reported from similar studies [38–40].

Summarily, Table 4 presents the complete values of all the tests conducted under different combinations of the parameters used. Also, it was observed from sample H₁₁ of hexagonal pattern that the combination of layer height of 0.64 mm and infill density of 60% produced better tensile strength and modulus of 28.41 MPa and 2.3581 MPa, respectively (Table 4). The result showed that high level of infill density resulted to a lesser amount of void and subsequently higher strength [18]. In addition, the results implied that both infill density and layer height were proportional to the strengths of the 3D-printed composite samples. Both layer height and infill percentage increased progressively with the tensile values. The hexagonal pattern samples showed an increased tensile strength, when compared with both rectilinear and triangular patterns. This can be attributed to their due to their honey comb structure, which is very strong, occupied large space, light in weight and not buckle easily when bent. Also, it can be observed that the bonding zone between different layers were different on each pattern. In honey comb pattern, each layer laid down on a similar previous layer, whereas the bonding zone between each layer corresponded only with the points.
where the filament crossed the previous layer filaments in rectilinear pattern. These characteristics can similarly be traced to the honeycomb patterns with higher tensile moduli [19]. The stress-strain plots further showed that the hexagonal pattern exhibited a large strain to failure, because of the addition of carbon fibre and it consequently reduced the stiffness of the composite samples. Hence, the 3D-printed composite can be used for the strength application rather than stiffness.

Flexural properties of CF/PLA composites

The flexural strength values were plotted as a function of layer height, infill density and patterns, as shown in Figure 11(a), (Figure 11b) and (Figure 11c) for rectilinear, triangular and hexagonal patterns, respectively, and similarly plots for modulus values are presented in Figure 12(a), (Figure 12b) and (Figure 12c) for rectilinear, triangular and hexagonal patterns, respectively.

From the results obtained, it was evident that the samples with higher layer thickness and highest infill density recorded the highest flexural strength. For instance, rectilinear pattern of layer thickness of 0.64 mm and infill density of 60% yielded flexural strength of 60 MPa. Similarly, high flexural strength of 60 MPa was obtained from both triangular and hexagonal layer patterns with different infill densities of 60 and 80%, respectively. In general, an increase in both strength and modulus was obtained when the percentage of infill density of the sample increased. Furthermore, samples with larger layer thickness required more cooling time, which resulted to a better adhesion between the layers. Additional reason behind decrease in the strength and modulus include the direction of the geometry during deposition [37]. From this, it can be established that the layer pattern with more infill percentage provided a better bending strength.
ILSS properties of CF/PLA composite

The rationale behind ILSS test was to analyse the effect of the presence of carbon fibre reinforcement on the bonding performance of CF/PLA composites of different layer patterns, layer thicknesses and infill densities. The ultimate shear strengths were obtained and plotted for the samples with various layer patterns, layer thicknesses and infill densities, as shown in Figure 13(a), (Figure 13b) and (Figure 13c) for rectilinear, triangular and hexagonal patterns, respectively.

From the plotted values, it was observed that maximum shear strength of 5.556 MPa was obtained with rectilinear pattern of 0.25 mm layer thickness and 80% infill density, as shown in Figure 13(a). Similarly, rectilinear pattern with layer thickness of 0.25 mm as well as 60 and 80% infill densities recorded same maximum shear strength of 5.556 MPa. Then, the triangular pattern followed closely next to the rectilinear pattern with 60 and 80% infill densities, as depicted in Figure 13(b) and previously presented in Table 4. The samples H6 and H10 of hexagonal pattern recorded the lowest shear strength value of 3.500 MPa (Figure 13c), similar to that of T1. From these results, layer thickness and infill density largely influence the shear strength. An increase in infill density and layer height reduces the formation of void and increases the inter-facial adhesion and thereby provided enhanced shear strength [37]. Hence, layer thickness and/or height determined the strength of the additive manufactured/3D-printed parts. As discussed earlier that an increased layer thickness resulted to better mechanical properties. Therefore, by increasing the layer thickness, the number of joints between layers was reduced, which resulted to a lesser stress concentration and consequently, a greater strength of the 3D-printed composite sample was obtained. More also, deposited material with
a larger layer thickness had more cooling time, which resulted to a stronger adhesion between the layers [41].

SEM characterisation of fractured CF/PLA composite

Figure 14(a) shows that an improved mechanical strength was achieved with a rectilinear pattern, due to a better interfacial adhesion between carbon fibre and PLA matrix. Figure 14(b) depicts that the main reason for the failure can be attributed to the fibre pull-out, due to the poor adhesion at interface, as rampantly evident in triangular pattern. However, due to an increase in infill percent, a better adhesion at their interface was also observed from the SEM images. Besides, SEM image showed a large number of voids and poor interfacial adhesion between the matrix and fibre on the fractured surface area. Figure 14(c) shows that hexagonal pattern strained in a larger manner before the ultimate failure. Hence, the reason behind better mechanical properties achieved with hexagonal pattern, especially after the fibre failure can be attributed to the capability of the PLA matrix to take up the applied load and exhibited a larger elongation before a complete failure finally occurred.

Surface roughness and its effects on properties

The surface finish of the AM-fabricated samples was unduly rough, due to layered pattern of material deposition. Because of this problem, material properties were affected significantly and hence analyses on how surface roughness affected the properties of the fabricated samples were obtained. Therefore, Figures 15, Figure 16 and Figure 17 show the roughness values of the surfaces of tensile, flexural and ILSS fractured 3D-printed composite samples. From Figure 15(a), (Figure 15b) and (Figure 15c), it was observed that the surface roughness values of the tensile samples were 28.76, 36.41 and 65.7 µm for hexagon, rectilinear and triangular patterns, respectively.
Similarly, for flexural fractured samples, the roughness values were 29.30, 35.50 and 45.90 µm for hexagon, rectilinear and triangular patterns, as shown in Figure 16(a), Figure 16(b) and Figure 16(c), respectively. The ILSS samples recorded surface roughness values of 42.00, 47.10 and 53.80 µm for rectilinear, hexagon and triangular patterns, as depicted in Figure 17(a), Figure 17(b), and Figure 17(c), respectively. This analysis evidently showed that the surface roughness directly influenced the tensile, flexural and ILSS of the 3D-printed CF/PLA composite samples. It was observed that the lower roughness values produced better mechanical properties and vice versa.

Conclusions

In this work, the effects of FFF process parameters (layer patterns, layer thicknesses and infill densities) on mechanical properties of 3D-printed CF/PLA composite samples have been systematically studied, by conducting tensile, flexural and ILSS tests. The influences of surface roughness on these properties were elucidated and confirmed, using SEM. Therefore, the following conclusions can be drawn based on the results obtained from this innovative study:

- Mechanical properties were greatly influenced by the infill density, pattern and layer thickness (process/slicing parameters). Therefore, these parameters played a major role towards improving the performance of PLA material reinforced with carbon fibre.
- SEM images depicted that the lower infill percent can be attributed to the formation of voids, while the low layer thickness was the main reason for the occurrence of poor bonding at the layer interface as well as between the matrix and the reinforcement.
Figure 15. Surface roughness of the tensile-fractured surfaces of various patterned 3D-printed composite samples.
Figure 16. Surface roughness of the flexural fractured surfaces of various patterned 3D-printed composite samples.
Figure 17. Surface roughness of ILSS-fractured surfaces of various patterned 3D-printed composite samples.

(a) Rectilinear pattern.

(b) Hexagon pattern.

(c) Triangular pattern.
Surface roughness played significant role in determining the mechanical properties of the 3D-printed CF/PLA composite samples, as a higher surface roughness value exhibited a decrease in the mechanical properties of the composites.

Finally, surface roughness significantly depended on the layer height and infill percent. Hence, an extensive study is required to reduce the surface roughness of the AM parts, which consequently contributes to the mechanical strengths of the fabricated structures.

Acknowledgments

We hereby acknowledge and sincerely appreciate unalloyed supports from the managements of the following institutions: Rajalakshmi Engineering College, Thandalam, Chennai, TamilNadu, India, as well as the Kalasalingam Academy of Research and Education, Krishnankoil 626126, Tamil Nadu, India. The King Saud University author is grateful to the Deanship of Scientific Research, King Saud University for funding through Vice Deanship of Scientific Research Chairs.

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

Disclosure statement

No potential conflict of interest was reported by the author(s).

ORCID

N. Rajini http://orcid.org/0000-0002-2337-3470
Siengchin Suchart http://orcid.org/0000-0002-6635-5686

References

[1] Tofial SAM, Koumolous EP, Bandyopadhyay A, et al. Additive manufacturing: scientific and technological challenges, market uptake and opportunities. Mater Today. 2018;21(1):22–37.
[2] Astm F. 2792–12a, standard terminology for additive manufacturing technologies. West Conshohocken, PA: ASTM International; 2015.
[3] Gao W, Zhang Y, Ramanujan D, et al. The status, challenges, and future of additive manufacturing in engineering. Comput Aided Des. 2019;69:65–89.
[4] Wang Y, Weng Y, Wang L. Characterization of interfacial compatibility of poly lactic acid and bamboo flour (PLA/BF) in biocomposites. Polym Test. 2014;36:119–125.
[5] Gokhate VG, Raut DN, Shinde DK. A review paper on 3D-printing aspects and various processes used in the 3D-printing. Int J Eng Res Technol. 2017;6:953–958.
[6] Fafmini S, Grimmelsmann N, Wortmann M, et al. Three-dimensional (3D) printing of polymer-metal hybrid materials by fused deposition modeling. Materials. 2017;10(10):1199.
[7] Comotti C, Regazzoni D, Rizzi C, et al. Additive manufacturing to advance functional design: an application in the medical field. J Comput Inf Sci Eng. 2017;17(3):031006.
[8] Yu YZ, Lu JR, Liu J. 3D printing for functional electronics by injection and package of liquid metals into channels of mechanical structures. Mater Des. 2017;122:80–89.
[9] Tronvoll SA, Welo T, Elverum CW. The effects of voids on structural properties of fused deposition modelled parts: a probabilistic approach. Int J Adv Manuf Technol. 2018;97 (9–12):3607–3618.
[10] Chacon JM, Caminero MA, Garcia-Plaza E, et al. Additive manufacturing of PLA structures using fused deposition modeling: effect of process parameters on mechanical properties and their optimal selection. Mater Des. 2017;124:143–157.
[11] Cicala G, Giordano D, Tosto C, et al. Polylactide (PLA) filaments a biobased solution for additive manufacturing: correlating rheology and thermomechanical properties with printing quality. Materials. 2018;11(7):1191–1204.
[12] Yang L, Li S, Li Y, et al. Experimental investigations for optimizing the extrusion parameters on fdm pla printed parts. J Mater Eng Perform. 2019;28 (1):169–182.
[13] Magdum Y, Pandey D, Harshe ABS, et al. Process parameter optimization for FDM 3D printer. Int Res J Eng Technol. 2019;6(4):1–6.
[14] Vikas B, Hussain MM, Reddy CS. Optimization of 3D printing process parameters of poly lactic acid materials by fused deposition modeling process. 2019;7 (3):2321–9939. Int J Eng Dev Res.
[15] Camargo JC, Machado AR, Almeida EC, et al. Mechanical properties of PLA-graphene filament for FDM 3D printing. Int J Adv Manuf Technol. 2019;103(5–8):2423–2443.
[16] Tekinalp HL, Kunc V, Velez-Garcia GM, et al. Highly oriented carbon fiber–polymer composites via additive manufacturing. Compos Sci Technol. 2014;105:144–150.
[17] Ning F, Cong W, Qiu J, et al. Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling. Compos Part B Eng. 2015;80:369–378.
[18] Matsuzaki R, Ueda M, Namiki M, et al. Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation. Sci Rep. 2016;6(1):1–7.
[19] Fernandes J, Deus AM, Reis L, et al., Study of the influence of 3printing parameters on the mechanical properties of PLA. In Proceedings of the 3rd International Conference on Progress in Additive Manufacturing, Singapore, (2018) 14–17.
[20] Caminero MA, Chacon JM, Garcia-Plaza E, et al. Additive manufacturing of PLA-based composites using fused filament fabrication: effect of graphene nano platelet reinforcement on mechanical properties, dimensional accuracy and texture. Polymers. 2019;11(5):799.
[21] Vigneshwaran K, Venkateshwaran N. Statistical analysis of mechanical properties of wood–PLA prepared via additive manufacturing. Int J Polym Anal Charact. 2019;24(7):584–596.
[22] Quanjin MA, Sahat IM, Rejab MRM, et al. The energy absorbing characteristics of filament wound hybrid carbon fiber reinforced plastic/polylactic acid tubes with different infill pattern structures. J Reinf Plas Compos. 2019;38(23–24):1067–1088.
[23] Sudin MN, Shamsudin SA, Abdullah MA. Effect of part features on dimensional accuracy of FDM model. J Eng Appl Sci. 2016;11(13):8067–8072.
[24] Bakar NSA, Alkahari MR, Boejiang H. Analysis on fused deposition modeling performance. J Zhejiang Univ Sci A. 2010;11(12):972–977.
[25] Dyrbuš G, Investigation on quality of rapid prototyping FDM method, 14th international research. In Expert Conference, Trends in the Development of Machinery and Associated Technology, (2010) Mediterranean Cruise:TMT (2010), 11–18.
[26] Galantucci LM, Bodi I, Kacani J. Analysis of dimensional performance for a 3D open-source printer based on fused deposition modeling technique. Proced CIRP. 2015;28: 82–87.
[27] Habeeb HA, Ramli FR, Hasan R, Strength and porosity of additively manufactured PLA using a low cost 3D printing. Conference: Mechanical Engineering Research Day 2016: Malaysia.
[28] Strano G, Hao L, Everson RM, et al. Surface roughness analysis, modeling and prediction in selective laser melting. J Mater Process Technol. 2013;213(4):589–597.
[29] Pandey PM, Reddy N, Dhande SG. Slicing procedures in layered manufacturing: a review. Rapid Prototyping J. 2003;9(5):274–288.
[30] Aultan M, Eryildiz M, Gumus B, et al. Effects of process parameters on the quality of PLA products fabricated by fused deposition modeling (FDM): surface roughness and tensile strength. Mater Test. 2018;60 (5):471–477.
[31] Pérez M, Medina-Sánchez G, García-Collado A, et al. Surface quality enhancement of fused deposition modeling (FDM) printed samples based on the selection of critical printing parameters. Materials. 2018;11 (8):1382–1395.
[32] Buj-Corral I, Dominguez-Fernández A, Durán-Llucià R. Influence of print orientation on surface roughness in fused deposition modeling (FDM) processes. Materials. 2019;12(23):3834–3849.
[33] Kumar K, Gill RS, Batra U. Challenges and Opportunities for biodegradable magnesium alloy implants. Mat.Tech. 2017;33(2):153–172.
[34] Naveed N. Investigate the effects of process parameters on material properties and micro-structural changes of 3D printed specimens using FDM. Mat.Tech. 2020. DOI:10.1080/1067857.2020.1824149.
[36] Modi YK, Khare N. Patient-specific polyamide wrist splint using reverse engineering and selective laser sintering. Mat.Tech. 2020;1–8. DOI:10.1080/1067857.2020.1810926.
[37] Nawal Alharbia B, Van De Veenc AJ, Wismeijera D, et al. Build angle and its influence on the flexure strength of stereolithography printed hybrid resin material. An in vitro study and a fractographic analysis. Mat.Tech. 2019;34(1):12–17.
[38] Taborda-Rios JA, Lopez-Botello O, Zambrano-Robledo P, et al. Mechanical characterisation of a bamboo fibre/poly lactic acid composite produced by fused deposition modeling. J Reinf Plast Compos. 2020;39(23–24):932–944.
[39] Dickson AN, Barry JN, McDonnell KA, et al. Fabrication of continuous carbon, glass and kevlar fibre reinforced polymer composites using additive manufacturing. Addit Manuf. 2017;16:146–152.
[40] Mazzanti V, Malaguti L, Mollica F. FDM 3D printing of polymers containing natural fillers: a review of their mechanical properties. Polymers. 2019;11 (7):1094.
[41] Depuydt D, Balthazar M, Hendrickx K, et al. Production and characterization of bamboo and flax fiber reinforced polylactic acid filaments for fused deposition modeling (FDM). Polym Compos. 2019;40(5):1951–1963.