CHAPTER 6

Grappling with Diversity in Livestock-Related, Non-Agriculturist Archaeology in the Light of Genetic Research into the Lactase Persistence Allele, -14010*C, in Southern Africa

Thembi Russell and Faye Lander

1 Introduction

The paper by Breton et al. (2014) demonstrating a shared ancestry between an eastern Africa population and the Khoe-speaking Nama of southern Africa has freed archaeologists to consider once again the place of demic diffusion in the spread of the first domestic animals without agriculture, to southern Africa. This follows its unpopularity as an explanation for change amongst the southern Africanist archaeological community in the 1990s and early 2000s (Kinahan, 1991; Sadr, 1998, 2003, 2008; Orton, 2015). It is difficult to separate demic diffusion from cultural diffusion using archaeology, as evidenced in debates worldwide.

This paper looks at the livestock-related, non-agriculturist archaeology in southern Africa in the light of the new genetic insights into the distribution of the lactase persistence allele in southern Africa. We focus on the spread of livestock without agriculture, a process that is connected to Khoe-language speakers. Agro-pastoralism, the spread of farming with speakers of Bantu-languages, is occasionally mentioned for comparative purposes. We briefly review the archaeological evidence for the last 3000 years BP in southern Africa. We then present the modern day southern African distribution of lactose persistence and compare this with the archaeological evidence for livestock-keeping. Finally we consider ethnographic and historic sources for milk-drinking in southern Africa.

2 Review of the Archaeological Evidence from Approximately 3000 BP, Southern Africa

Southern Africa is here defined as countries to the south of Congo, the Democratic Republic of Congo and Tanzania. From about 2100 years ago, the
first, very slight evidence for pottery and domestic stock appears at sites that are conventionally associated with the spread of livestock-keeping without agriculture (referred to as Later Stone Age (LSA) sites in this chapter) (see Lander and Russell (2018) for a detailed review of the data from 551 BC to AD 1056). The most securely identified and directly dated sheep specimen derives from the site Spoegrivier on the western half of southern Africa and dates to around 2100 years ago (Coutu et al., 2021). The earliest appearance of domestic cattle at sites conventionally associated with the spread of farmers speaking Bantu-languages occurs from about 1750 BP onwards (referred to as farmer sites in this chapter). At around 1500 years BP livestock counts reach a peak at Later Stone Age sites, with evidence of caprines outweighing cattle, whilst in the summer rainfall area, on the eastern side of southern Africa, many farmer sites have evidence of livestock-keeping in the form of cattle bones (Figure 6.1). From 1300 years BP, the number and distribution of farmer-related sites steadily increase, whilst the number of Later Stone Age livestock-related sites remain constant from this period onwards. Notably LSA sites have consistently low numbers of domestic livestock (Russell and Lander, 2015). Cattle are rare. The total cattle count (MNI) at all LSA sites is just 21, whilst that for caprines (mainly sheep) is 365 (Russell and Lander, 2015).

Figure 6.1 Archaeological evidence for livestock in Southern Africa, 551 BC to AD 1058
Contemporary with the first appearance of livestock is pottery. However, attempts to link it with the spread of livestock at Later Stone Age sites based on stylistic analysis have been unfruitful (Sadr and Sampson, 2006; Sadr, 2008; see also Smith, 2008, 2017). Lander and Russell (2020) suggest that pottery spread rapidly amongst hunter-gatherers from its first appearance in a process of cultural diffusion, which might also have carried domestic livestock, particularly sheep, across South Africa along already established exchange networks (see also Sadr, 2004; Russell, 2017).

3 Distribution of the Southern African Lactase Persistence Allele, -14010*C Compared to the Archaeological Evidence for Livestock

The presence of the east African lactase persistence allele, -14010*C, amongst present-day southern African populations is important because it signifies the presence of a proto-historic, fresh-milk-drinking pastoral population in southern Africa, and in the case of the Nama, a degree of relatedness to an East African source population (Breton et al., 2014; Macholdt et al., 2014). In southern Africa, 59 ethnic population groups have been screened for the LP allele (Table 6.1 and Figure 6.2) (Coelho et al., 2009; Tornianen et al., 2009; Breton et al., 2014; Macholdt et al., 2014; Jones et al., 2015; Pinto et al., 2016). These include Afrikaans-, Khoesan- and Bantu- language-speakers from agro-pastoralist, hunter-gatherer and agriculturist communities. The geographical coverage includes parts of Angola, Namibia, Botswana, Zambia, Kingdom of Eswatini, Mozambique and South Africa (Figure 6.3).

The lactase persistence allele reflects the continuous consumption of fresh milk from one generation to the next (Tishkoff et al., 2007; Breton et al., 2014; Ranciaro et al., 2014). Its presence is thus indicative of a group that either keeps livestock and drinks fresh milk or gets fresh milk regularly from a continuous relationship with livestock-keepers.

In the review of LP -14010*C allele amongst extant southern African population groups, twelve have the allele at frequencies of 10% or above (Table 6.1). The highest incidence is found amongst the Namibian Nama Khoe-speaking pastoralists (35.7%) (Breton et al., 2014; Macholdt et al., 2014). Nine of these groups are found in northern/north-western parts of southern Africa. The remaining three are distinctive. Two are eastern Bantu-language speaking groups (Map Code 15 and 35, Figure 6.4). The third is an Afrikaans-speaking community of mixed Khoesan ancestry, sampled in the western Cape, South Africa (Breton et al., 2014) (map code 3, Figure 6.4).
Map code	Ethnic group	Subsistence base, language group, ref.	N of individuals		
1	Nama	Pastoralist Khoe Breton et al. 2014	22		
2	Askham Coloured	Not provided Khoe – North Breton et al. 2014	20		
3	Wellington Coloured	Not provided Afrikaans Breton et al. 2014	20		
4	Colesberg Coloured	Not provided Afrikaans Breton et al. 2014	20		
5	/Gui and //Gana	Hunter-gatherer Khoe Breton et al. 2014	20		
5	//Gana	Hunter-gatherer Khoe Macholdt et al. 2014	10		
5	/Gui	Hunter-gatherer Khoe Macholdt et al. 2014	17		
6	Khwe	Hunter-gatherer Khoe Breton et al. 2014	19		
6	Khwe	Hunter-gatherer Khoe Breton et al. 2014	19		
7	Ju/'hoansi	Hunter-gatherer Ju - Northeast - Ju/'hoan Breton et al. 2014	20		
8	Ju/hoan_ North	Hunter-gatherer Kx'a Macholdt et al. 2014	21		
Sample region	Decimal latitude	Decimal longitude	\(-14010^\circ C\) freq.	Ref.	
-----------------------------------	------------------	-------------------	-------------------------	-------------------------------	
Windhoek, Namibia	-22.5624	17.06599	0.357	Breton et al. (2014) Macholdt et al. (2014)	
Askham, Northern Cape, South Africa	-26.9834	20.78333	0.225	Breton et al. (2014)	
Wellington, Western Cape, South Africa	-33.6818	19.01023	0.1	Breton et al. (2014)	
Colesberg, Northern Cape, South Africa	-30.8388	25.07629	0.025	Breton et al. (2014)	
Kutse Game Reserve, Kalahari, Botswana	-23.4223	24.04879	0.071	Breton et al. (2014)	
Kutse Game Reserve, Kalahari, Botswana	-23.4223	24.04879	0.2	Macholdt et al. (2014)	
Kutse Game Reserve, Kalahari, Botswana	-23.4223	24.04879	0.088	Macholdt et al. (2014)	
Schmidtsdrif Northern Cape, South Africa	-28.8134	24.10132	0.029	Breton et al. (2014)	
Rootfontein, Namibia	-19.6113	18.10939	0.029	Breton et al. (2014)	
Tsumkwe, Namibia	-19.6009	20.50384	0.029	Breton et al. (2014)	
North West, Botswana	-20.5814	21.67013	0.024	Macholdt et al. (2014)	
Map code	Ethnic group	Subsistence base, language group, ref.	N of individuals		
----------	--------------	--------------------------------------	------------------		
9	Ju	hoan South	Hunter-gatherer Kx’a Macholdt et al. 2014	26	
10	!Xun	Hunter-gatherer Ju - Northwest - /Xũu Breton et al. 2014	20		
10	!Xun	Hunter-gatherer Ju - Northwest - /Xũu Breton et al. 2014	-		
20	!Xuun	Hunter-gatherer Kx’a Macholdt et al. 2014	19		
47	!Xuun	Hunter-gatherer Kx’a Pinto et al. 2016	-		
11	Karretjie People	Hunter-gatherer and herder /Xam descendants Breton et al. 2014	20		
12	≠Khomani	Hunter-gatherer herders Germanic Tuu Breton et al. 2014	20		
13	Herero	Farmer and herder western Bantu Breton et al. 2014	14		
14	Herero	Pastoralist western Bantu Macholdt et al. 2014	21		
38	Kuvale/ Herero	Pastoralist west Savanna Bantu Coelho et al. 2009	-		
42	Kuvale	Farming with some pastoralism west Savanna Bantu Pinto et al. 2016	-		
Sample region	Decimal latitude	Decimal longitude	-14010*C freq.	Ref.	
--	------------------	-------------------	----------------	-------------------------------	
Ghanzi, Botswana border with Namibia	-21.1943	21.0619	0.058	Macholdt et al. (2014)	
Schmidtsdrif, Northern Cape, South Africa	-28.8134	24.1011	0.038	Breton et al. (2014)	
Grootfontein, Namibia	-19.6113	18.1939	0.038	Breton et al. (2014)	
Nyae Nyae, Namibia	-19.7057	20.4973	0.053	Macholdt et al. (2014)	
Mupa, Angola	-16.1831	15.7670	0.014	Pinto et al. (2016)	
Colesberg, Northern Cape, South Africa	-30.8388	25.0762	0.083	Breton et al. (2014)	
Askham, Northern Cape, South Africa	-26.9834	20.7833	0.11	Breton et al. (2014)	
Windhoek, Namibia	-17.0624	17.0659	0	Breton et al. (2014)	
Windhoek, Namibia	-22.5624	17.0659	0.071	Macholdt et al. (2014) (see Torniainen et al. 2009 and Breton et al. 2014)	
Namibe, Angola	-16.0277	12.4363	0.06	Coelho et al. (2009) (see Alves et al. 2011)	
Namibe, Angola [1 sample location]	-14.5436	13.1968	0.037	Pinto et al. (2016) (see Coelho et al. 2009)	
Map code	Ethnic group	Subsistence base, language group, ref.	N of individuals		
----------	--------------------------------------	--	------------------		
42	Kuvale	Farming with some pastoralism west Savanna Bantu	-		
42	Kuvale	Farming with some pastoralism west Savanna Bantu	-		
15	Sotho-Tswana and Zulu	Agropastoralist farmer southeastern Bantu	16 (Sotho-Tswana) 25 (Zulu)		
16	Taa-East	Hunter-gatherer Tuu	11		
17	Taa-North	Hunter-gatherer Tuu	11		
18	Taa-West	Hunter-gatherer Tuu	20		
19			Hoan	Hunter-gatherer Kx’a	7
21			Ani	Hunter-gatherer Khoe	11
22	Buga	Hunter-gatherer Khoe	9		
23			Xo	Hunter-gatherer Khoe	19
Sample region	Decimal latitude	Decimal longitude	-14010*C freq.	Ref.	
------------------------------------	------------------	-------------------	----------------	-------------------------------	
Namibe, Angola [2 sample location]	-15.3969	12.83899	0.037	Pinto et al. (2016) (see Coelho et al. 2009)	
Namibe, Angola [3 sample location]	-15.5753	12.76128	0.037	Pinto et al. (2016) (see Coelho et al. 2009)	
Various regions, South Africa	-27.9865	29.86269	0.1	Breton et al. (2014)	
Kgalagadi, Botswana	-24.3548	22.81767	0.045	Macholdt et al. (2014)	
Kgalagadi, Botswana	-23.59	21.61049	0	Macholdt et al. (2014)	
Kgalagadi, Botswana	-24.7803	20.10442	0.025	Macholdt et al. (2014)	
Kgalagadi, Botswana	-24.3368	22.34	0	Macholdt et al. (2014)	
North West, Botswana	-18.5167	21.94934	0.091	Macholdt et al. (2014)	
North West, Botswana	-18.3716	21.85806	0	Macholdt et al. (2014)	
Caprivi Strip	-17.9231	22.72381	0.079	Macholdt et al. (2014)	
Map code	Ethnic group	Subsistence base, language group, ref.	N of individuals		
----------	--------------	--------------------------------------	-----------------		
24	Damara	Hunter-gatherer and pastoralist Khoe Macholdt et al. 2014	34		
25	Hailom	Hunter-gatherer Khoe Macholdt et al. 2014	40		
26	Naro	Hunter-gatherer Khoe Macholdt et al. 2014	19		
27	Shua	Hunter-gatherer Khoe Macholdt et al. 2014	27		
28	Tshwa	Hunter-gatherer Khoe Macholdt et al. 2014	15		
29	Himba	Pastoralist west Savanna Bantu Macholdt et al. 2014	16		
30	Kgalagadi	Agropastoralist southeastern Bantu Macholdt et al. 2014	20		
31	Tonga	Agriculturist southeastern Bantu Macholdt et al. 2014	17		
Sample region	Decimal latitude	Decimal longitude	-14010°C freq.	Ref.	
-----------------------------	------------------	-------------------	----------------	-----------------------	
Kunene Region, Namibia	−20.4608	14.0402	0.044	Macholdt et al. (2014)	
Kunene Region, Namibia	−19.6687	14.70835	0.088	Macholdt et al. (2014)	
Ghanzi, Botswana	−22.01	21.2326	0.053	Macholdt et al. (2014)	
Makgadikgadi, Botswana	−20.5509	25.8031	0.074	Macholdt et al. (2014)	
Makgadikgadi, Botswana	−21.3433	26.0438	0.167	Macholdt et al. (2014)	
Skeleton Coast, Namibia	−19.5689	13.67961	0.125	Macholdt et al. (2014)	
Namibe, Angola [1 sample location]	−17.0017	12.43598	0.087	Pinto et al. (2016) (see Macholdt et al. 2014)	
Namibe, Angola [2 sample location]	−16.8911	12.43598	0.087	Pinto et al. (2016) (see Macholdt et al. 2014)	
Kgalagadi, Botswana	−24.7289	22.70295	0	Macholdt et al. (2014)	
southern Zambia	−17.7183	26.82519	0	Macholdt et al. (2014)	
Map code	Ethnic group	Subsistence base, language group, ref.	N of individuals		
----------	---------------------	---	------------------		
32	Tswana	Agropastoralist southeastern Bantu Macholdt et al. 2014	18		
33	Nkoya	Agropastoralist eastern Bantu Macholdt et al. 2014	16		
34	Wambo	Agriculturist western Bantu Macholdt et al. 2014	8		
35	!Xhosa	Agropastoralist southeastern Bantu Torniainen et al. 2009	109		
35	!Xhosa	Agropastoralist southeastern Bantu Ranciaro et al. 2014	16		
36	Venda	Agropastoralist southeastern Bantu Ranciaro et al. 2014	18		
37	Ovim-bundu	Mostly agriculturists (cattle raising not crucial for subsistence) west Savanna Bantu Coelho et al. 2009	-		
39	Nyaneka-Nkhumbi	Agropastoralist (predominantly cattle raisers) west Savanna Bantu Coelho et al. 2009	-		
40	Guang-uela	Agropastoralist west Savanna Bantu Coelho et al. 2009	-		
Sample region	Decimal latitude	Decimal longitude	-14010°C freq.	Ref.	
---	------------------	-------------------	----------------	--	
Kweneng, southern Botswana	−24.3324	25.6049	0.028	Macholdt et al. (2014) (see Breton et al. 2014)	
Zambia	−14.6633	25.50005	0.031	Macholdt et al. (2014)	
Northern Nambia	−17.7569	16.63925	0	Macholdt et al. (2014)	
Eastern Cape and western Cape, South Africa	−33.1477	26.54454	0.128	Torniainen et al. (2009)	
Western Cape, South Africa	−34.079	19.10157	0.1429	Ranciaro et al. (2014)	
Thohoyandou, South Africa	−23.1016	30.59716	0	Ranciaro et al. (2014)	
Namibe, Angola	−14.733	13.24521	0.01	Coelho et al. (2009)	
Namibe, Angola	−15.1194	12.71634	0.03	Coelho et al. (2009)	
Namibe, Angola	−15.44	12.92882	0	Coelho et al. (2009)	
Map code	Ethnic group	Subsistence base, language group, ref.	N of individuals		
---------	---------------------	--	------------------		
43	Kwepe	Shepherd/livestock-keeper Khoe-Kwadi (recently replaced by Kuvale) Pinto et al. 2016	-		
43	Kwepe	Shepherd/livestock-keeper Khoe-Kwadi (recently replaced by Kuvale) Pinto et al. 2016	-		
44	Kwisi	Hunter-gatherer (recently cattle-keepers) west Savanna Bantu Pinto et al. 2016	-		
44	Kwisi	Hunter-gatherer (recently cattle-keepers) west Savanna Bantu Pinto et al. 2016	-		
45	Twa	Hunter-gatherer (recently cattle-keepers) west Savanna Bantu Pinto et al. 2016	-		
45	Twa	Hunter-gatherer (recently cattle-keepers) west Savanna Bantu Pinto et al. 2016	-		
46	Tjimba	Hunter-gatherer (cattle-less pastoralists) west Savanna Bantu Pinto et al. 2016	-		
48	Yao	Agriculturist Kaskazi–speaking Pinto et al. 2016	-		
49	Nyanja	Agriculturist southeastern Bantu Pinto et al. 2016	-		
Sample region	Decimal latitude	Decimal longitude	-14010°C freq.	Ref.	
--	------------------	-------------------	----------------	--------------------	
Namibe, Angola [1 sample location]	-15.8062	12.1081	0.044	Pinto et al. (2016)	
Namibe, Angola [2 sample location]	-15.8274	12.45268	0.044	Pinto et al. (2016)	
Namibe, Angola [1 sample location]	-15.7196	12.45046	0.175	Pinto et al. (2016)	
Namibe, Angola [2 sample location]	-15.5978	12.73733	0.175	Pinto et al. (2016)	
Namibe, Angola [1 sample location]	-15.8536	12.12054	0.194	Pinto et al. (2016)	
Namibe, Angola [2 sample location]	-16.8092	12.50899	0.194	Pinto et al. (2016)	
Namibe, Angola	-17.1096	12.69041	0.233	Pinto et al. (2016)	
Northern Mozambique	-12.9998	35.30324	0	Pinto et al. (2016) (see Alves et al. 2011)	
Mozambique	-14.9577	34.16792	0	Pinto et al. (2016) (see Alves et al. 2011)	
Map code	Ethnic group	Subsistence base, language group, ref.	N of individuals		
----------	--------------	--	-----------------		
50	Makua	Agriculturist southeastern Bantu	-		
		Pinto et al. 2016			
51	Tswa	Mixed agriculturist southeastern Bantu	-		
		Pinto et al. 2016			
52	Shangaan	Mixed agriculturist southeastern Bantu	-		
		Pinto et al. 2016			
53	Chopi	Agriculturist southeastern Bantu	3		
		Coelho et al. 2009			
54	Ronga	Agriculturist southeastern Bantu	15		
		Coelho et al. 2009			
55	Sena	Agriculturist southeastern Bantu	2		
		Coelho et al. 2009			
56	Ndau	Mixed agriculturist southeastern Bantu	15		
		Coelho et al. 2009			
57	Chwabo	Agriculturist southeastern Bantu	4		
		Coelho et al. 2009			
58	Shona	Mixed agriculturist southeastern Bantu	1		
		Coelho et al. 2009			
59	Swazi	Agropastoralist southeastern Bantu	12		
		Segal et al. 1987			
Sample region	Decimal latitude	Decimal longitude	-14010°C freq.	Ref.	
----------------------	------------------	-------------------	----------------	---	
Mozambique	−15.2267	39.23246	0	Pinto et al. (2016) (see Alves et al. 2011)	
Mozambique	−21.4492	35.00139	0	Pinto et al. (2016) (see Alves et al. 2011)	
Mozambique	−24.8958	32.98332	0.022	Pinto et al. (2016) (see Alves et al. 2011)	
Mozambique	−24.792	34.37146	0	Coelho et al. (2009) (see Alves et al. 2011; Pinto et al. 2016)	
Southern Mozambique	−26.345	32.50994	0	Coelho et al. (2009) (see Alves et al. 2011; Pinto et al. 2016)	
Mozambique	−17.7261	34.95491	0	Coelho et al. (2009) (see Alves et al. 2011; Pinto et al. 2016)	
Mozambique	−19.3029	34.55766	0	Coelho et al. (2009) (see Alves et al. 2011; Pinto et al. 2016)	
Mozambique	−17.1928	36.45974	0	Coelho et al. (2009) (see Alves et al. 2011; Pinto et al. 2016)	
Harare, Zimbabwe	−17.9233	30.95264	0	Coelho et al. (2009)	
Mbabane, Eswatini	−26.3323	31.15249	0	Segal et al. (1987) (see Holden and Mace 2009).	
Three patterns in the distribution of the LP allele stand out. These are considered in relation to the archaeological evidence for livestock-keeping.

1. The lactase persistence allele occurs in its highest frequencies amongst livestock-keepers without agriculture or recent livestock-keepers without agriculture, irrespective of the language group.

People have retained the ability to digest milk in the western, drier half of southern Africa for at least the last 1300 years (Breton et al., 2014). This area is unsuitable for the cultivation of the indigenous summer rainfall crops, sorghum and millet, due to the low rainfall. This confirms Simoons (1970, 695) argument that the “Low incidence of intolerance, it is held, would develop over time in a group that has an abundant milk supply, that has alternate foodstuffs inadequate in amount and quality, and that consumes milk in lactose-rich forms.” The contemporary distribution of groups with lactase persistence matches the distribution of Later Stone Age sites with evidence of livestock (Figure 6.5) – confirming the strong
The Lactase persistence allele, -14010*C, in southern Africa

Figure 6.3 Map showing the distribution of the East African lactase persistence allele in Southern African

Figure 6.4 Map showing Southern African populations with the highest prevalence of LP Allele -14010*C
Figure 6.5 Archaeological evidence for livestock-keeping with and without agriculture compared to the distribution of the lactase persistence allele.

Figure 6.6 Archaeological evidence for livestock-keeping at approximately 1000 – 1200 BP and the lactase persistence allele overlaid on the present-day distribution of African trypanosomiasis.
association of the ability to digest lactose with pastoralism (Holden and Mace, 1997). The ethnographic and historic record of milk consumption – in its fresh lactose-rich form - amongst the Khoe supports this association (Lombard and Parson, 2015).

Unique to the southernmost part of southern Africa is a winter rainfall zone that stretches from the Cape northwards into Namibia (Figure 6.1). Seasonal movement across its boundaries to the summer rainfall zone would have provided pastoralists with all year round rainfall that would be necessary for specialized milch pastoralism to flourish, mimicking the bimodal rainfall that is seen as central to the rise of pure milch pastoralism in East Africa 3000 years ago (Marshall, 1990; Marchant et al., 2018; Russell, 2020).

2. Southern Africa's Bantu-language speaking groups have a low incidence of the allele as compared to Khoe-speaking groups.

This low incidence might reflect (1) the absence of a history of livestock-keeping. The trypanosomiasis belt excludes much of tropical Africa as a cattle-keeping area (Simoons, 1974). Where it is endemic in southern Africa we find Bantu-language speaking matrilineal farmers without livestock (Holden and Mace, 2003) (Figure 6.6), or (2) the absence of fresh milk consumption rather than the absence of livestock. The cultural practice of drinking sour milk products is well documented amongst southern African Bantu-speaking peoples (Table 6.2). It is hard to find any record of the consumption of fresh milk by southern Bantu-language speakers with the exception of herd boys, who may drink milk directly from cows when out herding, and fresh milk sometimes given to children. Fermented, sour milk products have a reduced lactose content making them more digestible to lactase deficient groups (Holden and Mace, 1997). Segal et al. (1983), in their study of lactase persistence in southern African population groups show that raw milk, fermented in a gourd in the traditional way, contains 2.6% lactose, compared to the 4.7% lactose of full cream fresh milk. Thirdly, (3) those southern African Bantu-language speakers without the LP allele might represent a demic migration from the area of northern Angola, Gabon, and Congo in a southeastward direction towards South Africa, rather than from an origin in East Africa. The archaeological evidence, whilst fairly robust for the connection between East Africa and South Africa (Parkington and Hall, 2012), is unhelpful for tracing connections to western-central Africa. Such evidence for a western stream of demic migration from Angola to South Africa, as suggested by Huffman (2007) on the basis of pottery styles is weak and must be revisited (Parkington and Hall, 2012; Lander...
Group	Country	Sour cows's milk	Fresh cows's milk	Reference
Swazi	Eswatini	Emasi (mainly drunk by children)	Herdboys in the veld milk directly into their mouths (Jones 1963: 75)	Simatende et al. 2015; Kuper 1986: 44; Jones 1963
Xhosa	Eastern Cape, South Africa	Amasi	Milk 'always used sour' (Hunter 1961:105)	Beukes et al. 2001; Hunter 1961; Shaw and van Wermelo 1974: 247, 250
Zulu	South Africa	Amasi	Hardly ever drank "green milk"	Beukes et al. 2001
Southern Sotho	South Africa	Mafi		Beukes et al. 2001
Botswana		Madila		Ohiokpehai and Jagow 1998
South Africa	Zambia	Sethemi		Kebede et al. 2007
Zambia		Mabisi		Jans et al. 2017
Nharo	Ghanzi, Botswana		Fresh goats' milk	Guenther 1986
Gwi	Kutse, Botswana		Fresh goats' milk	Ikeya 1993, Sugwara 1991
Gana	Kutse, Botswana		Fresh goats' milk	Ikeya 1993, Sugwara 1991
Hunter-gatherer stock-keepers	Nyae Nyae, Nambia	Sour milk products		Marshall and Ritchie, 1984
Nama	Richtersveld, Northern Cape, South Africa	Soured milk		Schapera 1930
and Russell, 2018). The Kalundu pottery tradition of the western stream, purporting to link pottery found at the coastal midden site of Benfica, in Angola to sites in the eastern half of South Africa, includes very few sites and the basis of the argument is unclear (cf. Huffman, 2007) (Table 6.3).

And lastly, (4) it might reflect interaction and proximity with a milch pastoralist group. The high incidence of the LP allele among the Xhosa, Sotho-Tswana and Zulu agro-pastoralists is suggestive of a long history of interaction between their ancestral groups and Khoe pastoralists. These Bantu-language speaking agro-pastoralists lived close to the historically known territory of Khoe pastoralists along the natural boundary to farmer expansion, the summer rainfall boundary. This boundary is also seen in the archaeological distribution of LSA sites as compared to farmer sites (Figure 6.1) (Parking and Hall, 2012). Genetic and linguistic studies reflect a similar pattern of the long interaction of Khoisan and Bantu-speaking groups (Pakendorf et al., 2017).

3. Non-Khoe-speaking hunter-gatherers have low levels of the allele. This is not unexpected as this is one of the few examples of foragers who resisted and rejected the more labour intensive economies of animal domestication and crop production (Russell and Lander, 2015). More interesting and requiring further investigation is why Khoe-speaking hunter-gatherers, in particular, have the LP allele. Examples of hunter-gatherers with the LP allele, in frequencies of up to 20%, are the Khoe-speaking Gui and Gana of the Kutse Game Reserve, in central Botswana (Table 6.1). Although they live by hunting and gathering, their livestock keeping is well-documented (Ikeya, 1993; Osaki, 1984; 1990; Sugawara, 1991; Tanaka, 1969, 1976). Livestock, predominately goats, are never slaughtered but are kept as a social rather than a subsistence strategy, to build alliances and to use in economic exchanges (Russell, 2017). The low levels of livestock at LSA sites might reflect such a livestock-keeping and circulating system. Milking would fit easily within such a system, although little milking was recorded amongst these ethnographically observed hunter-gatherer groups (Ikeya (1993) records 200 ml of milk being collected on a particular day), there is evidence of them following milking practices. For example, young animals are separated from their mothers during the day and dung is applied to their udders to deter feeding. Goat-keeping within a similar system is also mentioned by Guenther (1986), who notes the drinking of fresh goats’ milk among the Nharo of Ghanzi, Botswana.
Table 6.3 Sites with pottery which fit Huffman’s (2007) western stream of demic diffusion among Bantu-language speaking farmers

Site, Country, site type	Radiocarbon date	Calibrated Date	Reference	
Benfica, Angola Coastal shell midden	1810±50 Pta-212	AD 212–322	Kalundu	Dos Santos and Ervedosa 1970; Vogel and Marais 1971; Huffman 2005, 2007
Gundu, Zambia Inland open-air	1510±85 GX-114	AD 480–658	Kamangoza type pottery showing affiliation to Kalundu, Dambwa and Kumadzulo ware and has origins with Naviundu pottery in the Congo.	Huffman 1989, 2007
Wosi, South Africa Inland open-air riverside	1460±50 Pta-4100	AD 592–662	Msuluzi	Van Schalkwyk 1994
Lydenburg Head site, South Africa Inland open-air	1460±50 Pta-328	AD 592–662	Kalundu or Matola	Maggs 1980, Evers et al. 1982, Whitelaw 1996
Zambezi Farm, Zambia Inland open-air	1410±130 N-1140	AD 544–856	Pottery similar to Kalundu, Dambwa and Kumadzulo ware.	Vogel 1973
Mhlopeni, South Africa Inland open-air riverside	1400±50 Pta-2878	AD 636–765	Msuluzi	Maggs and Ward 1984
Table 6.3 Sites with pottery which fit Huffman’s (2007) western stream of demic diffusion among Bantu-language speaking farmers (cont.)

Site, Country, site type	Radiocarbon date	Calibrated Date	Western stream, kalundu tradition, pottery type	Reference
Divuyu, Botswana	1400±70 Beta-13260	AD 635–766	Divuyu	Turner 1987; Denbow 2011
KwaGandaganda, South Africa	1395±60 Wits-1918	AD 639–765	Msuluzi	Whitelaw 1994 a,b.
Mamba, South Africa	1390±50 Pta-4093	AD 643–765	Msuluzi	Van Schalkwyk 1994
Msuluzi Confluence, South Africa	1370±30 Pta-2193	AD 654–763	Msuluzi	Maggs 1980
Magogo, South Africa	1360±50 Pta-2874	AD 659–765	Msuluzi	Maggs 1984
Magarape, Botswana	1350±80 KN-2641	AD 648–841	Mzonjani type pottery or Kalundu type pottery.	Cambpell et al. 1996; Huffman 2009
Mpame, South Africa	1340±60 Pta-2019	AD 657–830	Msuluzi	Vogel and Fuls 1999
Bisoli, Botswana	1340±60 Wits-1099	AD 657–830	Bisoli	Denbow and Wilmsen 1986; Campbell et al. 1996; Huffman 2007
Table 6.3
Sites with pottery which fit Huffman’s (2007) western stream of demic diffusion among Bantu-language speaking farmers
(cont.)

Site, Country, site type	Radiocarbon date	Calibrated Date	Western stream, kalundu tradition, pottery type	Reference
Nqoma, Botswana Inland open-air	1290±60 Beta-13257	AD 685–860	Divuyu and Xaro	Wilmsen 1989, 2011; Denbow 2011
Ntsitsana, South Africa Inland open-air riverside	1290±50 Pta-4684	AD 685–858	Mzuluzi and Ndondondwane	Prins and Granger 1993
Nanda, South Africa Inland open-air riverside	1275±60 Wits-1917	AD 690–880	Msuluzi	Whitelaw 1993
Kulubele, South Africa Inland open-air riverside	1250±40 Pta-5865	AD 773–881	Mzuluzi pottery and/or Ndondondwane	Binneman et al. 1992
Kanono Mulapo, Namibia shell midden site	1230±50 Pta-8656	AD 770–960	Kalomo pottery showing similarities to Kalundu and Gundu	Kinahan 2013; Huffman 1989
Ndondondwane, South Africa Inland open-air riverside	1220±50 Pta-238	AD 774–819	Ndondondwane	Maggs 1984, Van Schalkwyk et al. 1997
SK17, South Africa Inland open-air	1210±50 Pta-3507	AD 777–967	Garonga pottery or Kalundu (Ndondondwane/Lydenburg) pottery	Meyer 1984; Plug 1989; Huffman 2007
Kalundu Mound, Zambia Inland open-air	1160±90 SR-41	AD 780–1020	Kalundu	Fagan 1967
Table 6.3

Site, Country, site type	Radiocarbon date	Calibrated Date	Western stream, kalundu tradition, pottery type	Reference
Dombashaba, Botswana Inland hilltop	1150±80	AD 859–1024	Bisoli	Huffman 2005, 2007
Ntshekane, South Africa Inland open-air riverside	1150±45	AD 893–989	Ntshekane	Maggs and Michael 1976
Kamangoza, Zambia Inland open-air	1015±105	AD 987–1185	Kamangoza pottery showing affiliation to Kalundu, Dambwa and Kumadzulo ware.	Vogel 1971
Isamu Pati, Zambia Inland open-air	910±90	AD 1046–1265	Kalomo pottery showing similarities to Kalundu and Gundu (Naviundu from Congo (western origin) is an ancestor to Gundu pottery)	Huffman 1989, 2005

Conclusions

The archaeological distribution for livestock remains over the last 2100 years shows the predominance of cattle-keeping among farmers in the eastern half of the sub-continent and sparser, yet continuous, caprine-keeping among Later Stone Age livestock-keepers in the low rainfall areas to the west. We might at a first glance expect that lactase persistence might dominate on the
eastern side of southern Africa. Genetic research shows that the reverse is true. The east African lactase persistence allele, -14010*C, is overwhelmingly found among pastoralist people in the western parts, irrespective of their language group. To explain this pattern, we turn to the ethnographic and historic record, which show the cultural practice among Bantu-speakers of drinking milk only in its fermented, lactose-reduced form. This is sometimes through its spontaneous fermentation in a gourd, at room temperature over a number of days, or through the addition of certain plants. Ethnography helps to explain why some hunter-gatherers have a high incidence of lactase persistence: they are those who have seen the social value of livestock in exchange networks, with small quantities of milk drinking. They remain overwhelmingly foragers for subsistence.

Archaeological evidence for the large herds of Khoe-owned cattle, observed historically, from the late 16th century onwards in the western and eastern Cape, which drew sailors and then settlers to southern Africa, has not been found. The archaeological picture is incomplete. For example, from 1652 to 1699, careful mercantile records show that 20,000 cattle and 40,000 sheep were traded with the Cape Khoe by the passing ships of the Dutch East India Company (VOC) (Ross, 2012). The contrast with the total 21 cattle and 365 caprine bones found across the entire 2100 year period of the archaeology of the Later Stone Age livestock-keepers, is useful as an example of just how fragmentary the archaeological record can be (Russell and Lander 2015).

There are unresolved differences between and within the genetic and the archaeological findings. For example, the timing of the arrival of the LP allele, -14010*C, is estimated to be at 1300 years BP by geneticists (Breton et al., 2014). This is 800 years later than the earliest archaeological discovery of remains of livestock in this region. On the basis of Y chromosomal evidence, Henn et al. (2009) estimate that pastoralism arrived in southern Africa from eastern Africa at around 2000 years ago. How accurate are the genetic clock estimations? Why do they differ? The ethnic identities of modern day southern African populations are complicated and complex: it would be useful to attempt to re-trace the histories of those groups sampled by geneticists.

Yet it is only by boldly confronting and challenging discrepancies between and within different disciplines that a fuller understanding of the complex history of Africa’s past will be achieved. And what satisfaction when, as in the recognition of the importance of milch pastoralism in the drier western half of southern Africa for over a millennium by scholars from genetics, ethnography and archaeology, they concur.
References

Alves, I., Coelho, M., Gignoux, C., Damasceno, A., Prista, A., and Rocha, J. 2011. Genetic homogeneity across Bantu-speaking groups from Mozambique and Angola challenges early split scenarios between East and West Bantu populations. *Human Biology* 83(1): 13–38. https://doi.org/10.3378/027.083.0102.

Beukes, E.M., Bester, B.H., and Mostert, J.F. 2001. The microbiology of South African traditional fermented milks. *International Journal of Food Microbiology* 63(3): 189–197. https://doi.org/10.1016/S0168-1605(00)00417-7.

Binneman, J.N.F., Webley, L., and Biggs, V. 1992. Notes and reports: preliminary notes on an Early Iron Age site in the Great Kei River valley, Eastern Cape. *Southern African Field Archaeology* 1(2): 108–109.

Breton, G., Schlebusch, C.M., Lombard, M., Sjödin, P., Soodyall, H., and Jakobsson, M. 2014. Lactase persistence alleles reveal partial East African ancestry of southern African Khoe pastoralists. *Current Biology* 24(8): 852–858. https://doi.org/10.1016/j.cub.2014.02.041.

Brun, R., Don, R., Jacobs, R.T., Wang, M.Z., and Barrett, M.P. 2011. Development of novel drugs for human African trypanosomiasis. *Future Microbiology* 6(6): 677–691. https://doi.org/10.2217/fmb.11.44.

Campbell, A.C., van Waarden, C., and Holmberg, G. 1996. Variation in the Early Iron Age of southeastern Botswana. *Botswana Notes and Records* 1: 1–22.

Coelho, M., Sequeira, F., Luiselli, D., Beleza, S., and Rocha, J. 2009. On the edge of Bantu expansions: mtDNA, Y chromosome and lactase persistence genetic variation in southwestern Angola. *BMC Evolutionary Biology* 9(1): 80. https://doi.org/10.1186/1471-2148-9-80.

Coutu, A. N., Taurozzi, A., Mackie, M., Trolle Tensen, T.Z., Collins, M. J. and Sealy, J. 2021. Palaeoproteomics confirm earliest domesticated sheep in southern Africa ca. 2000 BP. *Scientific Reports* 11(1): 1–11. https://doi.org/10.1038/s41598-021-85756-8.

Denbow, J. 2011. Excavations at Divuyu, Tsodilo Hills. *Botswana Notes and Records* 43: 76–94.

Denbow, J.R. and Wilmsen, E.N. 1986. Advent and course of pastoralism in the Kalahari. *Science* 234(4783): 1509–1515.

Dos Santos Júnior, J.R. and Ervedosa, C.M. 1970. A estação arqueológica de Benfica: Luanda-Angola. *Ciencias Biologicas* 1(1): 31–51.

Evers, T.M., Voigt, E.A., and de Villiers, H. 1982. Excavations at the Lydenburg Heads site, eastern Transvaal, South Africa. *South African Archaeological Bulletin* 1: 16–33.

Fagan, B.M. 1967. *Iron Age cultures in Zambia (Kalomo and Kangila)*. Chatto and Windus: London.

Guenther, M.G. 1986. *The Nharo Bushmen of Botswana: tradition and change*. Helmut Buske Verlag: Hamburg, Germany.
Henn, B.M., Gignoux, C., Lin, A.A., Oefner, P.J., Shen, P., Scozzari, R., Cruciani, F., Tishkoff, S.A., Mountain, J.L., and Underhill, P.A. 2008. Y-chromosomal evidence of a pastoralist migration through Tanzania to southern Africa. Proceedings of the National Academy of Sciences of the USA 105(31): 10693–10698. https://doi.org/10.1073/pnas.0801184105.

Holden, C.J. and Mace, R. 1997. Phylogenetic Analysis of the Evolution of Lactose Digestion in Adults. Human Biology 8(5/6): 597–619.

Holden, C.J. and Mace, R. 2003. Spread of cattle led to the loss of matrilineal descent in Africa: a coevolutionary analysis. Proceedings of the Royal Society of London. Series B: Biological Sciences 270(1532): 2425–2433. https://doi.org/10.1098/rspb.2003.2535.

Holden, C. and Mace, R. 2009. Phylogenetic analysis of the evolution of lactose digestion in adults. Human Biology 81(5/6): 597–619.

Huffman, T.N. 1989. Iron Age migrations. Witwatersrand University Press: Johannesburg, South Africa.

Huffman, T.N. 2005. The stylistic origin of Bambata and the spread of mixed farming in southern Africa. Southern African Humanities 17(1): 57–79.

Huffman, T.N. 2007. Handbook to the Iron Age. University of KwaZulu-Natal Press: Pietermaritzburg, South Africa.

Huffman, T.N. 2009. A cultural proxy for drought: ritual burning in the Iron Age of southern Africa. Journal of Archaeological Science 36(4): 991–1005. https://doi.org/10.1016/j.jas.2008.11.026.

Hunter, M. 1961. Reaction to conquest. Effects of contact with Europeans on the Pondo of South Africa. Oxford University Press: London, UK.

Ikeya, K. 1993. Goat raising among the San in the central Kalahari. African Study Monographs 14(1): 39–52. https://doi.org/10.14989/68100.

Jans, C., Meile, L., Kaindi, D.W.M., Kogi-Makau, W., Lamuka, P., Renault, P., Kreikemeyer, B., Lacroix, C., Hattendorf, J., Zinsstag, J., Schelling, E., Fokou, G., and Bonfoh, B. 2017. African fermented dairy products: Overview of predominant technologically important microorganisms focusing on African Streptococcus infantarius variants and potential future applications for enhanced food safety and security. International Journal of Food Microbiology 250: 27–36. https://doi.org/10.1016/j.ijfoodmicro.2017.03.012.

Jones, S.M. 1963. A study of Swazi nutrition: report of the Swaziland Nutrition Survey 1961–62. Institute for Social Research, University of Natal: Durban, South Africa.

Jones, B.L., Oljira, T., Liebert, A., Zmarz, P., Montalva, N., Tarekeyn, A., Ekong, R., Thomas, M.G., Bekele, E., Bradman, N., and Swallow, D.M. 2015. Diversity of lactase persistence in African milk drinkers. Human Genetics 134(8): 917–925. https://doi.org/10.1007/s00439-015-1573-2.

Kebede, A, Viljoen, B.C., Gadaga, T.H., Narvhus, J.A., and Lourens-Hattingh, A. 2007. The effect of container type on the growth of yeast and lactic acid bacteria during
production of Sethemi, South African spontaneously fermented milk. *Food Research International* **40**: 33–38. https://doi.org/10.1016/j.foodres.2006.07.012.

Kinahan, J. 1991. Pastoral nomads of the central Namib Desert: the people that time forgot. Namibia Archaeological Trust and New Namibia Books: Windhoek, Namibia.

Kinahan, J. 1994. A new archaeological perspective on nomadic pastoralist expansion in south-western Africa. *Azania: Archaeological Research in Africa* **29**(1): 211–226. https://doi.org/10.1080/00672709409511677.

Kinahan, J. 2013. The Acquisition of ceramics by hunter-gatherers on the Middle Zambezi in the first and second millennium AD. *Journal of African Archaeology* **11**(2): 197–209. https://doi.org/10.3213/2191-5784-10243.

Kuper, H. 1986. The Swazi. A South African kingdom. Holt, Rinehart and Winston: London.

Lander, F. and Russell, T. 2018. The archaeological evidence for the appearance of pastoralism and farming in southern Africa. *Plos One* **13**(6): e0198941. https://doi.org/10.1371/journal.pone.0198941.

Lander, F. and Russell, T. 2020. A southern African archaeological database of organic containers and materials, 800 cal BC to cal AD 1500: Possible implications for the transition from foraging to livestock-keeping. *Plos One* **15**(7): e0235226. https://doi.org/10.1371/journal.pone.0235226.

Lombard, M. and Parsons, I. 2015. Milk not meat: The role of milk amongst the Khoe peoples of southern Africa. *Journal of African Archaeology* **13**(2): 149–166. https://doi.org/10.3213/2191-5784-10272.

Ohiokpehai, O. and Jagow, J. 1998. Improving Madila–a traditional fermented milk from Botswana. *Intermediate Technol Food Chain* **23**(6).

Orton, J. 2015. The introduction of pastoralism to southernmost Africa: Thoughts on new contributions to an ongoing debate. *Azania: Archaeological Research in Africa* **50**(2): 250–258. https://doi.org/10.1080/0067270X.2015.1019262

Osaki, M. 1984. The social influence of change in hunting technique among the Kalahari San. *African Study Monographs* **5**: 49–62.

Osaki, M. 1990. The influence of sedentism on sharing among the central Kalahari hunter-gatherers. *African Study Monographs, Supplementary* **12**: 59–87.

Macholdt, E., Slatkin, M., Pakendorf, B., and Stoneking, M. 2014. New insights into the history of the C-14010 lactase persistence variant in Eastern and Southern Africa. *American Journal of Physical Anthropology* **156**(4): 661–664. https://doi.org/10.1002/ajpa.22675.

Maggs, T.1980. Msuluzi confluence: a seventh century Early Iron Age site on the Tugela River. *Annals of the Natal Museum* **24**(1): 111–145.

Maggs, M.A. and Michael, M.A. 1976. Ntshekane: an Early Iron Age site in the Tugela Basin, Natal. *Annals of the Natal Museum* **22**(3): 705–740.
Maggs, T. and Ward, V. 1984. Early Iron Age sites in the Muden area of Natal. *Annals of the Natal Museum* 26(1): 105–40.

Marchant, R., Richer, S., Boles, O., Capitani, C., Courtney-Mustaphi, C.J., Lane, P., Prendergast, M.E., Stump, D., De Cort, G., Kaplan, J.O., Phelps, L., Kay, A., Olago, D., Petek, N., Platts, P.J., Punwong, P., Widgren, M., Wynne-Jones, S., Ferro-Vázquez, C., ..., and Wright, D. 2018. Drivers and trajectories of land cover change in East Africa: Human and environmental interactions from 6000 years ago to present. *Earth-Science Reviews* 178: 322–378. https://doi.org/10.1016/j.earscirev.2017.12.010

Marshall, F. 1990. Origins of specialized pastoral production in East Africa. *American Anthropologist* 92(4): 873–894. https://doi.org/10.1525/aa.1990.92.4.02a00020

Marchall, J. and Ritchie, C. 1984. Where are the JU/WASI of Nyae Nyae? Changes in a Bushman society: 1958–1981. Centre for African Studies, University of Cape Town: Cape Town, South Africa.

Meyer, A. 1984. A profile of the Iron Age in the Kruger national park. In: Hall, M., Avery, G., Avery, D.M., Wilson, M.L., and Humphreys, A.J.B. (eds) *Frontiers: Southern African Archaeology Today*. British Archaeological Reports International Series 207: Oxford, UK, pp. 215–227.

Pakendorf, B., Gunnink, H., Sands, B., and Bostoen, K. 2017. Prehistoric Bantu-Khoisan language contact: A cross-disciplinary approach. *Language Dynamics and Change* 7(1): 1–46. https://doi.org/10.1163/22105832-00701002

Parkington, J. and Hall, S. 2012. The appearance of food production in southern Africa 1,000 to 2,000 years ago. In: Hamilton, C., Mbenga, B.K., and Ross, R. (eds) *The Cambridge History of South Africa, Volume 1: from early times to 1885*. Cambridge University Press: Cambridge, UK, pp. 63–111.

Pinto, J.C., Oliveira, S., Teixeira, S., Martins, D., Fehn, A.M., Aço, T., Gayà-Vidal, M., and Rocha, J. 2016. Food and pathogen adaptations in the Angolan Namib desert: Tracing the spread of lactase persistence and human African trypanosomiasis resistance into southwestern Africa. *American Journal of Physical Anthropology* 161(3): 436–447. https://doi.org/10.1002/ajpa.23042

Plug, I. 1989. Aspects of life in the Kruger National Park during the early Iron Age. *South African Archaeological Society: Goodwin Series* 1: 62–68.

Prins, F.E., and Granger, J.E. 1993. Early farming communities in northern Transkei: the evidence from Ntsitsana and adjacent areas. *Natal Museum Journal of Humanities* 5(10): 153–172.

Ranciaro, A., Campbell, M.C., Hirbo, J.B., Ko, W.Y., Froment, A., Anagnostou, P., Kotze, M.J., Ibrahim, M., Nyambo, T., Omar, S.A., and Tishkoff, S.A. 2014. Genetic origins of lactase persistence and the spread of pastoralism in Africa. *The American Journal of Human Genetics* 94(4): 496–510. https://doi.org/10.1016/j.ajhg.2014.02.001

Russell, T. 2017. ‘Where goats connect people’: Cultural diffusion of livestock not food production amongst southern African hunter-gatherers during the Later Stone Age. *Journal of Social Archaeology* 17(2): 115–137. https://doi.org/10.1177/1469605317701596
Russell, T. 2020. The role of the Cape’s unique climatic boundaries in sustaining specialized pastoralists in southern Africa during the last 2000 years. *Azania: Archaeological Research in Africa* 55(2): 242–257. https://doi.org/10.1080/0067270X.2020.1757887

Russell, T. and Lander, F. 2015. ‘What is consumed is wasted’: From foraging to herding in the southern African Later Stone Age. *Azania: Archaeological Research in Africa* 50(3): 267–317. https://doi.org/10.1080/0067270X.2015.1079082

Ross, R. 2012. Khoesan and immigrants: the emergence of colonial society in the Cape, 1500 – 1800. In: Hamilton, C., Mbenga, B.K., and Ross, R. (eds) The Cambridge History of South Africa, Volume 1: from early times to 1885. Cambridge University Press: Cambridge, UK, pp. 168–210.

Sadr, K. 1998. The first herders at the Cape of Good Hope. *African Archaeological Review* 15(2): 101–132. https://doi.org/10.1023/A:1022158701778.

Sadr, K. 2003. The Neolithic of southern Africa. *Journal of African History* 44: 195–209.

Sadr, K. 2004. Feasting on Kasteelberg? Early herders on the west coast of South Africa. *Before Farming* 3: 1–17.

Sadr, K. 2008a. Invisible herders? The archaeology of Khoekhoe pastoralists. *Southern African Humanities* 20(1): 179–203.

Sadr, K. 2008b. An ageless view of first millennium AD southern African ceramics. *Journal of African Archaeology* 6(1): 103–129. https://doi.org/10.3213/1612-1651-10105

Sadr, K. and Sampson, C.G. 2006. Through thick and thin: early pottery in southern Africa. *Journal of African Archaeology* 4(2): 235–252. https://doi.org/10.3213/1612-1651-10074.

Sugawara, K. 1991. The economics of social life among the central Kalahari San (G//ana-khwe and G/wikhwe) in the sedentary community at !Koikom. *Senri Ethnological Studies* 30: 91–116. http://doi.org/10.15021/00003135.
Tanaka, J. 1969. The ecology and social structure of central Kalahari Bushmen: A preliminary report. *Kyoto University African Studies* 3: 1–26.

Tanaka, J. 1976. Subsistence ecology of Central Kalahari San. In: Lee, R.B. and DeVore, I. (eds) *Kalahari hunter–gatherers: studies of the !Kung San and their neighbors*. Harvard University Press: Cambridge, MA, USA, pp. 98–119.

Tishkoff, S.A., Reed, F.A., Ranciaro, A., Voight, B.F., Babbitt, C.C., Silverman, J.S., Powell, K., Mortensen, H.M., Hirbo, J.B., Osman, M., and Ibrahim, M. 2007. Convergent adaptation of human lactase persistence in Africa and Europe. *Nature Genetics* 39(1): 31–40. https://doi.org/10.1038/ng1946

Torniainen, S., Parker, M.I., Holmberg, V., Lahtela, E., Dandara, C., and Jarvela, I. 2009. Screening of variants for lactase persistence/non-persistence in populations from South Africa and Ghana. *BMC Genetics* 10: 31. https://doi.org/10.1186/1471-2156-10-31.

Turner, G. 1987. Early Iron Age herders in northwestern Botswana: the faunal evidence. *Botswana Notes and Records* 19(1): 7–23.

Van Schalkwyk, L. 1994. Wosi: an early Iron Age village in the lower Thukela Basin, Natal. *Southern African Humanities* 6(10): 65–117.

Van Schalkwyk, L.O., Greenfield, H., and Jongsma, T. 1997. The early Iron Age site of Ndondondwane, KwaZulu-Natal, South Africa: preliminary report on the 1995 excavations. *Southern African Field Archaeology* 6(2): 61–77.

Vogel, J.O. 1971. Kamangoza: An introduction to the Iron Age cultures of the Victoria Falls region. Oxford University Press: Oxford, UK.

Vogel, J.O. 1973. Some Early Iron Agesites in southern and western Zambia. *Azania: Archaeological Research in Africa* 8(1): 25–54. https://doi.org/10.1080/0067270730951571

Vogel, J.C. and Morais, M. 1971. Pretoria Radiocarbon dates I. *Radiocarbon* 13: 378–394.

Vogel, J.C. and Fuls, A. 1999. Spatial distribution of radiocarbon dates for the Iron Age in southern Africa. *South African Archaeological Bulletin* 54: 97–101.

Whitelaw, G. 1993. Customs and settlement patterns in the first millennium AD: evidence from Nanda, an Early Iron Age site in the Mngeni Valley, Natal. *Southern African Humanities* 5(10): 47–81.

Whitelaw, G. 1994a. Towards an Early Iron Age worldview: some ideas from KwaZulu-Natal. *Azania: Archaeological Research in Africa* 29(1): 37–50.

Whitelaw, G. 1994b. KwaGandaganda: settlement patterns in the Natal Early Iron Age. *Southern African Humanities* 6(10): 1–64.

Whitelaw, G. 1996. Lydenburg revisited: another look at the Mpumalanga Early Iron Age sequence. *South African Archaeological Bulletin* 1: 75–83.

Wilmsen, E.N. 1989. The Antecedents of Contemporary Pastoralism in Western Ngamiland. *Botswana Notes and Records* 20: 29–39.

Wilmsen, E.N. 2011. Nqoma: an abridged review. *Botswana Notes and Records* 43: 95–114.