Review of stem cells as promising therapy for perianal disease in inflammatory bowel disease

Francis E Dailey, Erica P Turse, Maliha Naseer, Jack D Bragg, Veysel Tahan

First decision: April 10, 2018
Revised: April 22, 2018
Accepted: June 8, 2018
Article in press: June 9, 2018
Published online: August 9, 2018

Abstract

Those patients with perianal Crohn’s disease or ulcerative colitis experience a difficult to treat disease process with a delayed state and often inability to heal despite current therapies. The approaches currently used to treat these patients with corticosteroids, antibiotics, immunomodulators, anti-tumor necrosis factor-α drug, and surgical repair are limited in their healing ability. This review presents all current literature since emergence in the early 2000s of stem cell therapy for patients with perianal inflammatory bowel disease and analyzes the efficacy, outcomes and safety within these studies.

Key words: Crohn’s disease; Stem cells; Mesenchymal; Perianal disease; Fistula; Inflammatory bowel disease

© The Author(s) 2018. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Allogeneic and autologous mesenchymal stem cells (MSCs) are being researched for use in patients with refractory perianal Crohn’s disease. Studies from 2003 until now demonstrate efficacy and safety of MSC therapy in this patient population. Up until now, there are no large multi-center, randomized double-blind, placebo-controlled studies examining this.

Dailey FE, Turse EP, Naseer M, Bragg JD, Tahan V. Review of stem cells as promising therapy for perianal disease in inflammatory bowel disease. World J Transplant 2018; 8(4): 97-101 Available from: URL: http://www.wjgnet.com/2220-3230/full/v8/i4/97.htm DOI: http://dx.doi.org/10.5500/wjt.v8.i4.97
INTRODUCTION

Crohn’s disease (CD) is a chronic inflammatory condition of the gastrointestinal tract that can disturb anywhere from the mouth to the anus. One of the most common manifestations of CD includes perianal disease, specifically including fistulas, abscesses, fissures, and stenosis. These complications frequently result in a significant burden for the patient due to abscess formation, perianal leakage, pain, and an overall decreased quality of life. Treatment options for perianal CD have traditionally included symptomatic management, antibiotics, and medications including immunomodulators and anti-tumor necrosis factor agents, or surgery in cases with persistent refractory disease. However, surgical options are often limited and come with their own risks, which include incontinence and recurrence of disease. Recently, however, mesenchymal stem cells (MSCs) have been studied in perianal CD and results have been quite promising. This paper provides an up-to-date review on the use of MSC for perianal CD.

MSC therapy has been demonstrated to be a potentially effective treatment for perianal CD in a variety of ways. These stem cells are non-hematopoietic multipotent cells that can depress immune activation and encourage healing of inflamed tissue. MSCs have been found to hinder dendritic cell formation from monocytes, restrict naïve and memory CD4+ cells, stop T cell activation via inhibitory effects on mature dendritic cells, and encourage proliferation of regulatory T cells[1-6].

In addition, MSCs can travel to the site of inflammation and there contribute to local healing[7]. Over the last several years, multiple studies have evaluated autologous and allogeneic MSCs, to determine the safety and efficacy of treating perianal CD. The results are promising demonstrating significantly increased rates of healing for perianal disease refractory to conventional therapy alone. Here we will present studies involving autologous adipose, then autologous bone marrow studies, and then allogeneic adipose and bone marrow studies.

AUTOLOGOUS ADIPOSE STEM CELL STUDIES

The first report describing MSCs for perianal CD was a case report by García-Olmo et al[8] in 2003. Here, a rectovaginal fistula in CD was successfully healed seven days after the injection of adipose-derived MSCs. This same author then executed a phase I clinical trial involving four individuals suffering from refractory complex Crohn’s fistulas, again injecting the fistula tracts with autologous adipose-derived MSCs. Tissue repair was reported in three of four of patients at eight weeks, without adverse events during the one and two year follow up visits[9].

Garcia-Olmo et al[10] then led a third study, a phase IIb trial, involving 49 patients with complex perianal cryptoglandular and CD fistulas comparing fibrin glue therapy to fibrin glue plus adipose-derived MSCs. Individuals in this latter group received a second dose of MSC if fistula healing did not appear after two months. In those with CD, fistula healing at twelve months occurred in five of seven (71%) in those given fibrin glue plus MSC as opposed to one of seven (14%) in those given fibrin glue alone[10]. Quality of life was also found to be better in the combined treatment group[10]. These early positive findings for MSCs treating perianal CD laid the groundwork for further work. In a dose-escalation phase I trial led by Cho et al[11], ten individuals affected by perianal CD fistulas were given autologous adipose-derived MSCs. Following two months of treatment, fistula healing marked by epithelization was detected in three in ten (30%), with continued results at the eight month visit.

Lee et al[12] performed a follow-up phase II study, including 33 treated subjects given injections of fibrin glue and adipose-derived MSCs with doses proportionate to fistula sizes, followed by repeat injections of increased doses if fistula closure did not complete by two months. Fistula healing was found in twenty-seven of thirty-three (82%) individuals by two months, with continued healing to twelve months in twenty-three of twenty-six (88%)[12]. The other six subjects of the original group developed an incomplete closure, five of which had a > 50% closure and decreased drainage[12].

Cho et al[13] did a further follow up study from their 2013 phase I trial. Here adipose-derived MSC in fistulizing CD analyzed forty-one of forty-three patients for 12 mo and 24 mo weeks showing complete healing in 80.8% (21 of 26) patients in the complete healing pool and 75% (27 of 36) patients in the modified intention to treat pool[13]. The modified intention to treat pool included those patients who had efficacy data at one year in the phase II study. Interestingly, regarding maintenance of complete closure, 27 patients achieved this at eight weeks, twenty-three of 26 (88.5%) at twelve months, twenty of 24 (83.3%) to twenty-four months[13]. Recurrence was seen in 11.5% at one year and 16.7% at two years. For the modified intention to treat group nine patients (25%) demonstrated an incomplete response at two years. Thus, the authors concluded that the use of MSC is safe and efficacious in perianal fistulizing disease.

For the Cho et al[13] study, one of the most unique aspects is the analysis of patients with MSC therapy and anti-TNF therapy. Of the twenty-four month group of twenty-seven patients showing complete healing, four patients receiving infliximab were documented. This was used due to enteric CD exacerbation, with 75% of these patients having complete closure prior to treatment with infliximab and having continued resolution of their fistula after infusion.

More recently, Dietz et al[14] led a phase I clinical trial over a six month period assessing the safety and feasibility of autologous stem cell therapy for persistent,
Ref.	Study year	Stem cell therapy type	Type of study	Type of perianal disease	Method and amount of administration	Concurrent therapies	Outcome
[8]	2003	Autologous Adipose Stem Cell Studies	Case Report	Complex recurrent rectovaginal CD fistula	Local injection of 9 × 106 MSCs (previously failed immunomodulators and biologics)	Olsalazine	Healed 7 d after injection; no serious adverse events from MSC therapy were observed
[9]	2005	Autologous Adipose Stem Cell Studies	Phase I Clinical Trial	Complex refractory CD fistulas, refractory to medical therapy and failing surgical therapy at least twice	Local injection of 3 × 106 MSCs	Immunosuppression without infliximab	Tissue repair in 75% (3 of 4) patients at 8 wk, no AE at 1 and 2 yr follow up; no serious adverse events from MSC therapy were observed
[10]	2009	Autologous Adipose Stem Cell Studies	Phase IIb Clinical Trial	Complex perianal cryptoglandular and CD fistulas, refractory to medical and surgical therapy (including at least one induction with anti-TNF)	Local injection of 2 × 106 MSCs plus fibrin glue vs fibrin glue alone; second local injection of 4 × 106 MSCs if no healing seen at 8 wk	Immunosuppression without infliximab, cyclosporine, or tacrolimus	71% (5 of 7) with fistula healing at 12 mo vs 14% healing in control group; higher quality of life in those with stem cell treatment; 1 serious adverse event from therapy (anal abscess)
[11]	2013	Autologous Adipose Stem Cell Studies	Dose-escalation Phase I Clinical Trial	Perianal CD fistula, with CD confirmed by biopsy; 5 patients with previously unsuccessful surgical therapy	Local injection of 1 × 107, 2 × 107, 4 × 107 MSC, based on fistula size (total of 3-40 × 107 MSC)	Immunosuppression including infliximab	30% (3 of 10) patients with complete healing at two months and then continued eight month follow up; no serious adverse events from MSC therapy were observed
[12]	2013	Autologous Adipose Stem Cell Studies	Dose-proportional Phase II Clinical Trial	Perianal CD fistula, less than 2 cm in length	Local injection of 3 × 107 or 6 × 107 MSC, per 1 cm of fistula length; average 15.8 × 107 MSC, followed by second injection of 1.5 × previous dose if incomplete closure at 8 wk	Immunosuppression including infliximab, but no infliximab within three months prior to MSC therapy	82% (27 of 33) patients with healing at 2 mo and continued healing of 88% these individuals (23 of 26) at 12 mo; of the 6/33 patients with incomplete closure, 5 had > 50% closure; no serious adverse events from MSC therapy were observed
[13]	2015	Autologous Adipose Stem Cell Studies	Phase II Clinical Trial	Perianal CD fistulas	Local injection of 3 × 107 MSC, per 1 cm of fistula length; if second dose needed, 1.5 × previous dose administered	Immunosuppression including biologics	80.8% (21 of 26) patients with complete healing at 12 and 24 mo; recurrence in 11.5% at 12 mo and 16.7% at 24 mo; no serious adverse events from MSC therapy were observed
[14]	2017	Autologous Adipose Stem Cell Studies	Phase I Clinical Trial	Refractory Perianal Fistulas in CD	Intra-operative placement of fistula plug, consisting of 20 × 106 MSC per plug attached to a bioabsorbable matrix	Biologic therapies (patients had failure to immunomodulators)	Healing in 83% (10 of 12) of patients at 6 mo; no serious adverse events from MSC therapy were observed
[15]	2011	Autologous Bone Marrow Stem Cell Studies	Phase II Clinical Trial	Active complex perianal CD fistulas, refractory to medical and surgical therapies (including biologics)	Local injection of 1.5-3 × 107 MSC every 3 wk until improvement or until no longer available (2-5 injections total)	All patients took mesalamine and azathioprine, except for 2 taking prednisone with mesalamine and 2 on mesalamine monotherapy	Complete closure 67% (6 of 9) patients at 2 mo with continued closure at 12 mo; no serious adverse events from MSC therapy were observed
refractory perianal CD. This trial, dubbed Stem Cells on Matrix Plugs (STOMP), delivered concentrated, adipose-derived MSC attached to a biodegradable matrix to 12 patients. By three months, 9 of 12 patients (75%) achieved complete healing through clinical and radiographic determination; by six months, 10 of 12 of patients (83%) achieved this. There were no serious adverse events due to MSC therapy nor plug placement, and the study authors found these matrix plugs to be safe and effective for refractory perianal CD[14].

AUTOLOGOUS BONE MARROW STEM CELL STUDIES

There is much less data available regarding autologous bone marrow MSC treatment, compared to adipose-derived MSC treatment, in CD. A study led by Cicccioppo utilized nine subjects with actively draining complex perianal fistulas who received intrafistular injections of bone marrow-derived MSC once monthly until healing was achieved or until they were no longer accessible. In all subjects, MSC expansion was successful. The fistulas were wholly closed in six of nine (67%) subjects at two months, with continued results at twelve months; in the other three cases incomplete closure was achieved[15].

ALLOGENEIC ADIPOSE STEM CELL STUDIES

A longer-term study evaluating allogeneic adipose-derived MSC for perianal CD was recently published with encouraging results. Led by Panes, this phase III randomized clinical trial included 212 patients across 49 hospitals in Israel and Europe; 107 were given one injection of MSCs and 105 were given placebo with a saline injection. These participants had complex, medically refractory perianal fistulas draining for at least 6 wk, with a maximum of 2 internal and 3 external openings. The patients were kept on concurrent therapy during this study with biologics or immunomodulators or antibiotics. Twenty-four weeks after one local injection, those given MSC had significant clinical improvement delineated by closure of the external fistula tract and no fluid collections > 2 cm on magnetic resonance imaging (MRI). The authors found 53 of 107 subjects (50%) treated with MSC healed as opposed to 36 of 105 subjects (34%) given placebo (n = 36). Additionally, those given MSC experienced a much shorter time to remission of their disease: 6.7 wk as opposed to 14.6 wk. Explanations for why those in the placebo group experienced such high rates of fistula closure and remission include the fact that all patients received fistula curettage, internal orifice closure, and surgical drainage. While this study did not address the potential benefits of repeat injections of MSCs or dosage of injections based on size of fistula tract, it did provide large-scale, sustained positive results of MSCs for perianal CD. An expansion of this project has been developed in the United States, which is also a phase III multicenter, randomized clinical trial evaluating allogeneic adipose-derived MSC for perianal CD[16].

ALLOGENEIC BONE MARROW STEM CELL STUDIES

Finally, Molendijk et al[17] studied allogeneic MSCs derived from bone marrow in a phase IIa randomized clinical trial in the Netherlands. There were twenty-one patients with refractory perianal fertilizing CD included; five were given a single shot of 1 × 107 MSCs, five were given 3 × 107 MSCs, five were given 9 × 107 MSCs, and six were given placebo. These injections were placed around the internal openings of fistula walls. Fistula healing was determined to be cessation of drainage and absence of fluid collections > 2 cm on MRI, and was observed in peritonitis, abscess, fistula, and proctalgia. AE: Adverse events; MSC: Mesenchymal stem cell; CD: Crohn’s disease; TNF: Tumor necrosis factor.
CONCLUSION

Perianal CD is quite challenging for both patients and providers with delayed and difficult healing, despite current standard therapy including antibiotics, immunomodulators, anti-TNF treatment, and surgical repair. Need for novel treatment options to improve outcomes in these patients is obvious. Here, the promising results of recent and ongoing studies utilizing stem cell therapy—either allogeneic or autologous—for treatment of this patient population are presented. Given this data, the authors conclude that future randomized double-blind, placebo-controlled multi-center studies on the efficacy and safety of stem cell therapy for perianal disease in CD are warranted.

REFERENCES

1. Jiang XX, Zhang Y, Liu B, Zhang SX, Wu Y, Yu XD, Mao N. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. *Blood* 2005; **105**: 4120-4126 [PMID: 15962068 DOI: 10.1182/blood-2004-02-0586]

2. Belay S, Borovsky Z, Mevorach D, Liebergall M, Gazit Z, Aslan H, Galun E, Rachmilewitz J. Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. *Blood* 2005; **105**: 2214-2219 [PMID: 15514012 DOI: 10.1182/blood-2004-07-20921]

3. Spaggiari GM, Abdelnazi H, Becchetti F, Moretta L. MSCs inhibit monocyte-derived DC maturation and function by selectively interfering with the generation of immature DCs: central role of MSC-derived prostaglandin E2. *Blood* 2009; **113**: 6576-6583 [PMID: 19398717 DOI: 10.1182/blood-2009-02-203943]

4. Melief SM, Geutskens SB, Fibbe WE, Roelofs H. Multipotent stromal cells skew monocytes towards an anti-inflammatory function: the link with key immunoregulatory molecules. *Haematologica* 2013; **98**: e121-e122 [PMID: 24006414 DOI: 10.3324/haematol.2013.093864]

5. Melief SM, Geutskens SB, Fibbe WE, Roelofs H. Multipotent stromal cells skew monocytes towards an anti-inflammatory interleukin-10-producing phenotype by production of interleukin-6. *Haematologica* 2013; **98**: 888-895 [PMID: 23349310 DOI: 10.3324/haematol.2012.070855]

6. Melief SM, Schrama E, Brugman MH, Tiemessen MM, Hoogduijn MJ, Fibbe WE, Roelofs H. Multipotent stromal cells induce human regulatory T cells through a novel pathway involving skewing of monocytes towards anti-inflammatory macrophages. *Stem Cells* **2013**: 31: 1980-1991 [PMID: 23712682 DOI: 10.1002/stem.1432]

7. Chapel A, Bertho JM, Bensidhoum M, Fouillard L, Young RG, Frick J, Demarquay C, Cuvelier F, Mathieu E, Trompier F, Dudoignon N, Germain C, Mazurier C, Aiguespere J, Borneman J, Gorin GC, Gourmelon P, Thierry D. Mesenchymal stem cells home to injured tissues when co-infused with hematopoietic cells to treat a radiation-induced multi-organ failure syndrome. *J Gene Med* 2003; **5**: 1028-1038 [PMID: 14661178 DOI: 10.1002/jgm.452]

8. García-Olmo D, Garcia-Arranz M, García LG, Cuelar ES, Blanco IF, Prianes LA, Montes JA, Pinto FL, Marcos DH, García-Sancho L. Autologous stem cell transplantation for treatment of rectovaginal fistula in perianal Crohn’s disease: a new cell-based therapy. *Int J Colorectal Dis* 2003; **18**: 451-454 [PMID: 12755690 DOI: 10.1007/s00384-003-0490-3]

9. García-Olmo D, García-Arranz M, Herreros D, Pascual I, Peiro C, Rodríguez-Montes JA. A phase I clinical trial of the treatment of Crohn’s fistula by adipose mesenchymal stem cell transplantation. *Dis Colon Rectum* 2005; **48**: 1416-1423 [PMID: 15933795 DOI: 10.1007/s10350-005-0052-6]

10. García-Olmo D, Herreros D, Pascual I, Valva, E, Zorillia J, De-La-Quintana P, Garcia-Arranz M, Pascual M. Expanded adipose-derived stem cells for the treatment of complex perianal fistula: a phase II clinical trial. *Dis Colon Rectum* 2009; **52**: 79-86 [PMID: 19273960 DOI: 10.1007/D0160313181973487]

11. Cho YB. Lee WY, Park JK, Kim M, Yoo HW, Yu CS. Autologous adipose tissue-derived stem cells for the treatment of complex Crohn’s fistula: a phase I clinical study. *Cell Transplant* 2013; **22**: 279-285 [PMID: 23066344 DOI: 10.3727/096982812X566457]

12. Lee WY, Park JK, Cho YB, Yoon SN, Song KH, Kim DS, Jung SH, Kim M, Yoo HW, Kim I, Ha H, Yu CS. Autologous adipose tissue-derived stem cells treatment demonstrated favorable and sustainable therapeutic effect for Crohn’s fistula. *Stem Cells* 2013; **31**: 2575-2581 [PMID: 23404825 DOI: 10.1002/stem.1357]

13. Cho YB, Park JK, Yoon SN, Song KH, Kim DS, Jung SH, Jeong HY, Yu CS. Long-term results of adipose-derived stem cell therapy for the treatment of Crohn’s fistula. *Stem Cells Transl Med* 2015; **4**: 532-537 [PMID: 25829404 DOI: 10.5966/sctm.2014-0199]

14. Dietz AB, Doozois EJ, Fletcher JG, Butler GW, Radel D, Lightner AL, Dave M, Friton J, Nair A, Camilleri ET, Dadakovic A, van Wijnen AJ, Faubion WA. Autologous Mesenchymal Stem Cells, Applied in a Bioabsorbable Matrix, for Treatment of Perianal Fistulas in Patients With Crohn’s Disease. *Gastroenterology* 2017; **153**: 59-62.e2 [PMID: 28400193 DOI: 10.1053.j.gastro.2017.04.001]

15. Ciccioppo R, Bernardo ME, Sgarella A, Maccario R, Avanzini MA, Ubezio C, Minelli A, Alvisi C, Vanoli A, Calliada F, Dionigi P, Perrotti C, Locatelli F, Corazza GR. Autologous bone marrow-derived mesenchymal stromal cells in the treatment of fistulising Crohn’s disease. *Gut* 2011; **60**: 788-798 [PMID: 21257987 DOI: 10.1136/gut.2010.218481]

16. Panés J, García-Olmo D, Van Asche G, Colombel JF, Reinisch W, Baumgart D, Dingnass A, Nachury M, Ferrante K, Kazemi-Shirazi L, Grimaud JC, de la Portilla F, Goldin E, Richard MP, Diez MC, Tagaro I, Leseaum A, Danese S; ADMIRE CD Study Group Collaborators. Long-term efficacy and safety of Stem Cell Therapy (Cx601) for Complex Perianal Fistulas in Patients With Crohn’s Disease. *Gastroenterology* 2018; **154**: 1334-1342.e4 [PMID: 29277560 DOI: 10.1053.j.gastro.2017.12.020]

17. Molendijk I, Bos sing BA, Roelofs H, Peeters KC, Dijstra G, van der Woude CJ, Ueberoi C, De Groot J, Van Assche G, Colombel JF, Reinisch W, Baus E, Hermans J, Vermeire S, De Vos M, van Biesen W, Hering RJ, van de Velde CJ, van den Boogaard WM, Jacobs S, Vermeire S; AMIDIRE CD Study Group Collaborators. Long-term efficacy and safety of Stem Cell Therapy (Cx601) for Complex Perianal Fistulas in Patients With Crohn’s Disease. *Gastroenterology* 2015; **149**: 918-927.e6 [PMID: 26116801 DOI: 10.1053.j.gastro.2015.06.014]
