Transfer excitation reactions in fast proton-helium collisions

M.S. Schöffler†, O.Chuluunbaatar‡§, S. Houamer†, J. Titze*, T. Jahnke*, L.Ph.H. Schmidt*, A. Galstyan†, Yu.V. Popov†

*Institut für Kernphysik, University Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt, Germany
†Joint Institute for Nuclear Research, Dubna, Moscow region 141980, Russia
‡ School of Mathematics and Computer Science, National University of Mongolia, UlaanBaatar, Mongolia
§Département de physique, Faculté des Sciences, Université Ferhat Abbas, Sétif, 19000, Algeria
¶Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
†Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow 119991, Russia

Synopsis

Fully differential cross section (FDCS) for the transfer excitation (H + He → H + He*) at high proton energies (630 - 1200 keV) is studied both experimentally and theoretically within the simplest Plane Wave First Born Approximation (PWFBA). The role of angular correlations in a trial helium ground state wave function is demonstrated.

Nowadays the modern experimental technique of COLTRIMS (Cold Target Recoil Ion momentum spectroscopy) allows to measure the final electronic states in electron transfer reactions even at high impact energies. As the total energy balance (Q-value) is encoded in the ion’s longitudinal momentum \(K_l = -Q/v_p - v_p/2 \) an extreme high momentum resolution is necessary. They key to achieve a resolution of 0.04 a. u. (measured!) in the longitudinal direction was the construction of a thee dimensional time and space focussing spectrometer. All electron transfer events were recorded in a two particle coincidence (He+ and H). Momentum conservation was applied to get rid of false coincidences. During off-line analysis a certain gate on \(K_l \) selects only those events where the He+ ion is found in an excited state, while the neutral projectile H is in its ground state.

The FDCS in the laboratory frame looks like

\[
\frac{d\sigma_{n>2}}{d\theta_p} = \frac{m^2 \theta_p}{(2\pi)^3} \sum_{n=2}^{\infty} \sum_{l=0}^{l} \sum_{m=-l}^{l} |T_{nlm}|^2
\]

Here the proton mass \(m = 1836.15 \), and \(\theta_p \) is the scattering angle of the hydrogen atom being in the ground state. For calculations we take \(n = 2, 3 \). It is enough to reach wholly satisfactory convergence at small (a few mrad) scattering angles.

A few trial helium wave functions are used for calculations. These are two highly angular correlated wave functions [1] and [2], the loosely angular correlated function [3] and one of 1s2 function. Results for \(E_p = 1 \) MeV are presented in Fig. 1. At whole, shapes of curves obtained with correlated functions remind that for charge transfer case leaving the ion in the ground state [4]. We also see that PWFBA is able to describe the experiment only at very small scattering angle around the peak, and only at energies \(E_p > 0.6 \) MeV. At lower impact energies PWFBA fails.

![Figure 1. Experimental (full squares) and theoretical data for transfer excitation 1 MeV p + He. Solid (black) line, highly correlated helium wave function [1]; dotted (green) line (exactly on top of the black solid line), Mitroy CI highly correlated wave function [2]; dash-and-dot (blue) line, SPM CI wave function [3]; dash line (red), 1s2 wave function.](image)

References

[1] O. Chuluunbaatar et al 2006 Phys. Rev. A 74 014703
[2] J. Mitroy et al 1985 J. Phys. B 18 4149
[3] J.N. Silverman et al 1960 J. Chem. Phys. 32 1402
[4] H.-K. Kim et al 2012 Phys. Rev. A 85 022707