MOST IRREDUCIBLE REPRESENTATIONS OF THE 3-STRING BRAID GROUP

LIEVEN LE BRUYN

1. Introduction

With \textit{iss}_n B_3 we denote the affine variety of all isomorphism classes of semi-simple \(n\)-dimensional representations of the 3-string braid group

\[B_3 = \langle \sigma_1, \sigma_2 \mid \sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2 \rangle \]

It is well-known, see for example [8], [4] and [5], that any irreducible components \(X_\sigma\) of \textit{iss}_n B_3 containing a Zariski open subset of irreducible representations is determined by a dimension-vector \(\sigma = (a, b; x, y, z)\) satisfying

\[n = a + b = x + y + z \quad \text{and} \quad x = \max(x, y, z) \leq b = \min(a, b) \]

with \(\dim X_\sigma = n_\sigma = 1 + n^2 - (a^2 + b^2 + x^2 + y^2 + z^2)\). As \(B_3\) is of wild representation type one cannot expect a full classification of all its finite dimensional irreducible representations. In fact, such a classification is only known for \(n \leq 5\) by work of Imre Tuba and Hans Wenzl [7]. Still, one can aim to describe ‘most’ irreducible representations by constructing for each component \(X_\sigma\) an explicit minimal (étale) rational map

\[f_\sigma : \mathbb{A}^n_\sigma \longrightarrow X_\sigma \longrightarrow \text{iss}_n B_3 \]

having a Zariski dense image. Such rational dense parametrizations were constructed in [4] for all components when \(n < 12\). The purpose of the present paper is to extend this to all finite dimensions \(n\).

2. Linear systems and some rational quiver settings

A linear control system \(\Sigma\) is determined by the system of linear differential equations

\[
\begin{aligned}
\dot{x} &= Ax + Bu \\
y &= Cx
\end{aligned}
\]

where \(\Sigma = (A, B, C) \in M_n(\mathbb{C}) \times M_{m \times n}(\mathbb{C}) \times M_{p \times n}(\mathbb{C})\) and \(u(t) \in \mathbb{C}^m\) is the control at time \(t\), \(x(t) \in \mathbb{C}^n\) is the state of the system and \(y(t) \in \mathbb{C}^p\) its output. Equivalent control systems differ only by a base change in the state space, that is \(\Sigma' = (A', B', C')\) is equivalent to \(\Sigma\) if and only if there exists a \(g \in GL_n(\mathbb{C})\) such that

\[A' = gAg^{-1}, \quad B' = gB \quad \text{and} \quad C' = Cg^{-1} \]

\(\Sigma\) is said to be \textit{canonical} if the matrices

\[c_\Sigma = [B \ AB \ A^2B \ldots \ A^{n-1}B] \quad \text{and} \quad o_\Sigma = [C \ CA \ CA^2 \ldots \ CA^{n-1}] \]

are of maximal rank.
Michiel Hazewinkel proved in [1] that the moduli space $\text{sys}_{m,n,p}$ of all such canonical linear systems is a smooth rational quasi-affine variety of dimension $(m+p)n$. We will give another short proof of this result and draw some consequences from it (see also [6]).

Consider the quiver setting with m arrows $\{b_1, \ldots, b_m\}$ from left to right and p arrows $\{c_1, \ldots, c_p\}$ from right to left.

To a system $\Sigma = (A, B, C)$ we associate the quiver-representation V_Σ by assigning to the arrow b_i the i-th column B_i of the matrix B, to the arrow c_j the j-th row C_j of C and the matrix A to the loop. As the base change group $\mathbb{C}^* \times GL_n$ acts on these quiver-representations by

$$(\lambda, g).V_\Sigma = (gAg^{-1}, gB_1\lambda^{-1}, \ldots, gB_m\lambda^{-1}, \lambda C_1 g^{-1}, \ldots, \lambda C_p g^{-1})$$

with the subgroup $\mathbb{C}^*(1, 1_n)$ acting trivially, there is a natural one-to-one correspondence between equivalence classes of linear systems Σ and isomorphism classes of quiver-representations V_Σ. Under this correspondence it is easy to see that canonical systems correspond to simple quiver-representations, see [6, Lemma 1]. Hence, the moduli-space $\text{sys}_{m,n,p}$ is isomorphic to the Zariski-open subset of the affine quotient-variety classifying isomorphism classes of semi-simple quiver-representations, proving smoothness, quasi-affineness as well as determining the dimension by general results, see for example [3].

Lemma 1. A generic canonical system Σ is equivalent to a triple (A_n, B_{nm}, C_{pn}) with

$$A_n = \begin{bmatrix} 0 & 0 & \ldots & x_n \\ 1 & 0 & \ldots & x_{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & 0 & \ldots & x_2 \\ 1 & \end{bmatrix}, \quad B_{nm} = \begin{bmatrix} 1 & b_{12} & \ldots & b_{1m} \\ 0 & b_{22} & \ldots & b_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & b_{n2} & \ldots & b_{nm} \end{bmatrix}$$

that is, where A_n is a companion $n \times n$-matrix, B_{nm} is the generic $n \times m$-matrix with fixed first column and C_{pn} a generic $p \times n$-matrix.

Proof. A generic representation of the quiver-setting

$$\xymatrix{ & v \ar[dl] \ar[dr]_{A_n} \\
1 & & A}$$

will have the property that v is a cyclic-vector for the matrix A, that is, $\{v, Av, A^2v, \ldots, A^{n-1}v\}$ are linearly independent. But then, performing a base-change we get a representation of the form

$$\xymatrix{ & [1 \ 0 \ \ldots \ 0]^t \ar[dl] \ar[dr]_{A_n} \\
1 & & A}$$

where A_n is a companion matrix whose n-th column expresses the vector $-A^n v$ in the new basis. As the automorphism group of this representation is reduced to $\mathbb{C}^*(1, 1_n)$, any general representation V_Σ is isomorphic to one with
\[B_1 = \begin{bmatrix} 1 & 0 & \ldots & 0 \end{bmatrix}^T, \quad A = A_n \text{ and the other columns of } B \text{ and all rows of } C \text{ generic vectors.} \]

Lemma 2. The following representations give a rational parametrization of the isomorphism classes of simple representations of these quiver-settings

\[
R_k : \begin{bmatrix} 1 & 0 & \ldots & 0 \end{bmatrix}^T \xrightarrow{A_k} \begin{bmatrix} y_1 & y_2 & \ldots & y_k \end{bmatrix} \quad \text{and} \quad S_k : \begin{bmatrix} 1 & 0 & \ldots & 0 \end{bmatrix}^T \xrightarrow{A_k^\dagger} \begin{bmatrix} 0 \\ 1_{k-1} \end{bmatrix}
\]

where \(A_k \) (resp. \(A_k^\dagger \)) is the generic \(k \times k \) companion matrix (resp. the reduced \(k-1 \times k \) companion matrix)

\[
A_k = \begin{bmatrix}
0 & 0 & \ldots & x_k \\
1 & 0 & \ldots & x_{k-1} \\
\vdots & \ddots & \ddots & \vdots \\
\vdots & \ddots & 0 & x_2 \\
& & 0 & x_1 \\
\end{bmatrix} \quad \text{and} \quad A_k^\dagger = \begin{bmatrix}
1 & 0 & \ldots & x_{k-1} \\
\vdots & \ddots & \ddots & \vdots \\
\vdots & \ddots & 0 & x_2 \\
& & 1 & x_1 \\
\end{bmatrix}
\]

Proof. By invoking the first fundamental theorem of \(GL_n \)-invariants (see for example [2] Thm. II.4.1) we can in case \(R_k \) eliminate the base-change action in the right-most vertex, giving a natural one-to-one correspondence between isoclasses of representations

\[
\begin{array}{ccc}
\begin{array}{c}
1 \\
\uparrow v \\
\downarrow w^r \\
\end{array} & \xrightarrow{X} & \begin{array}{c}
2 \\
\uparrow \tau \\
\downarrow Y \\
\end{array} & \leftrightarrow & \begin{array}{c}
1 \\
\uparrow v \\
\downarrow w^r \\
\end{array} & \xrightarrow{Y.X} & \begin{array}{c}
2 \\
\uparrow \tau \\
\downarrow Y \\
\end{array}
\end{array}
\]

and hence the claim follows from the previous lemma. As for case \(S_k \) we can again apply the first fundamental theorem for \(GL_n \)-invariants, now with respect to the base-change action in the middle vertex, to obtain a natural one-to-one correspondence between isoclasses of representations

\[
\begin{array}{ccc}
\begin{array}{c}
1 \\
\uparrow v \\
\downarrow w^r \\
\end{array} & \xrightarrow{X} & \begin{array}{c}
3 \\
\uparrow \tau \\
\downarrow Y \\
\end{array} & \leftrightarrow & \begin{array}{c}
1 \\
\uparrow v \\
\downarrow w^r \\
\end{array} & \xrightarrow{X.Y} & \begin{array}{c}
2 \\
\uparrow \tau \\
\downarrow Y \\
\end{array}
\end{array}
\]

and again the claim follows from the previous lemma, taking into account the extra free loop in the left-most vertex, which corresponds to \(y_1 \). \qed
Lemma 3. The following representations give a rational parametrization for the isomorphism classes of simple representations of the quiver-setting

\[
\begin{pmatrix}
1 & 0 & \cdots & 0 \\
y_1 & y_2 & \cdots & y_k
\end{pmatrix} \rightarrow \begin{pmatrix}
A^i_k \\
0 & 1_{k-1}
\end{pmatrix}
\]

where \(B \) is a generic \(k-1 \times k-1 \) matrix and, as before, \(A^i_k \) is a reduced generic companion matrix.

Proof. Forgetting the end-vertices (and maps to and from them) we are in the situation of the previous lemma. For general values these are simple quiver-representations and hence the automorphism group is reduced to \(\mathbb{C}^\ast(1, 1_k, 1_k^{-1}) \). If we now add the end vertices we can use base-change in them to force one of the two arrows to be the identity map, leaving the remaining map generic. Alternatively, we can use the first fundamental theorem of \(GL_n \)-invariants as before, to obtain the claimed result. \(\square \)

3. Luna slices and the action map

We quickly recall the basic strategy of \([4]\). As the central generator \(c = (\sigma_1 \sigma_2)^3 = (\sigma_1 \sigma_2 \sigma_1)^2 \) of \(B_3 \) acts via a scalar \(\lambda \in \mathbb{C}^\ast \) on any irreducible \(B_3 \)-representation it suffices to study irreducible representations of the quotient group \(B_3/\langle c \rangle \simeq C_2 \ast C_3 = \langle s, t \mid s^2 = e = t^3 \rangle \) where \(s \) is the class of \(\sigma_1 \sigma_2 \sigma_1 \) and \(t \) that of \(\sigma_1 \sigma_2 \). Note that this quotient-group is isomorphic to the modular group \(\text{PSL}_2(\mathbb{Z}) \). The action of \(s \) and \(t \) on a finite dimensional \(C_2 \ast C_3 \)-representation \(V \) induce two decompositions of \(V \) into eigen-spaces

\[V_+ \oplus V_- = V = V_1 \oplus V_\rho \oplus V_{\rho^2} \]

where \(\rho \) is a primitive 3-nd root of unity. Hence \(V \) is fully determined by a base-change matrix \(B = (B_{ij})_{1 \leq i, j \leq 2} \) from a fixed basis compatible with the first decomposition to a fixed basis compatible with the second, that is by a representation of the quiver-setting

Bruce Westbury observed in \([8]\) that under this correspondence isoclasses of \(C_2 \ast C_3 \)-representations coincide with isoclasses of quiver-representations, and that irreducible group-representations correspond to stable quiver-representations wrt. the stability structure \(\theta = (-1, -1; 1, 1, 1) \). It then follows from this stability condition that the dimension-vectors \(\sigma = (a, b; x, y, z) \) containing a Zariski open subset of irreducible \(n \)-dimensional \(C_2 \ast C_3 \)-representations must satisfy \(a + b = n = x + y + z \) as well as \(\max(x, y, z) \leq \min(a, b) \).
Working backwards, we obtain for each \(\lambda \in \mathbb{C}^* \) an irreducible \(B_3 \)-representation determined by the above base-change matrix \(B \) via

\[
\begin{align*}
\sigma_1 & \mapsto \lambda^{1/6} B^{-1} \begin{bmatrix} 1_x & 0 & 0 \\ 0 & \rho^{2_1} y & 0 \\ 0 & 0 & \rho^{1_z} \end{bmatrix} B \begin{bmatrix} 1_a & 0 \\ 0 & -1_b \\ 0 & \rho^{1_z} \end{bmatrix} \\
\sigma_2 & \mapsto \lambda^{1/6} \begin{bmatrix} 1_a & 0 \\ 0 & -1_b \end{bmatrix} B^{-1} \begin{bmatrix} 1_x & 0 & 0 \\ 0 & \rho^{2_1} y & 0 \\ 0 & 0 & \rho^{1_z} \end{bmatrix} B
\end{align*}
\]

Observe that in lifting irreducibles from \(C_2 \times C_3 \) to \(B_3 \) we get an action by multiplication of 6-th roots of unity on the components which contain irreducibles, which accounts for the fact that the irreducible components \(X_\sigma \) containing irreducible \(B_3 \)-representations are classified by the dimension vectors \(\sigma = (a, b; x, y, z) \) as above with the extra condition that \(b = \min(a, b) \) and \(x = \max(x, y, z) \). We will now construct special semi-simple \(C_2 \times C_3 \)-representations \(M_0 \) in every component, with all its irreducible factors being 1- or 2-dimensional.

There are 6 one-dimensional irreducible \(C_2 \times C_3 \)-representations, corresponding to the quiver-representations \(S_i \) for \(1 \leq i \leq 6 \):

and three one-parameter families of two-dimensional irreducibles corresponding to the quiver-representations \(T_i(q) \) for \(q \neq 0, 1 \) and \(1 \leq i \leq 3 \)

The semi-simple representation

\[
M_0 = S_1^{\oplus a_1} \oplus S_2^{\oplus a_2} \oplus S_3^{\oplus a_3} \oplus S_4^{\oplus a_4} \oplus S_5^{\oplus a_5} \oplus S_6^{\oplus a_6} \oplus T_1(q)^{\oplus b_0} \oplus T_2(q)^{\oplus b_3} \oplus T_3(q)^{\oplus b_2}
\]

clearly belongs to the component \(X_\sigma \) with dimension vector \(\sigma = (a, b; x, y, z) \) where

\[
\begin{align*}
a &= a_1 + a_3 + a_5 + b_0 + b_3 \\
b &= a_2 + a_4 + a_6 + b_0 + b_3 \\
x &= a_1 + a_4 + b_0 + b_3 \\
y &= a_2 + a_5 + b_0 + b_3 \\
z &= a_3 + a_6 + b_0 + b_3
\end{align*}
\]
and is fully determined by the base-change matrix B_0 with block-form as above

\[
\begin{bmatrix}
1_{a_1} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & q_{1b_a} & 0 & 0 \\
0 & 0 & 0 & 0 & q_{1b_d} & 0 \\
0 & 0 & 0 & 0 & 0 & 1_{b_d} \\
0 & 0 & 0 & 0 & 0 & 1_{b_d}
\end{bmatrix}
\begin{bmatrix}
1_{a_2} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
1_{a_5} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1_{b_a} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1_{b_a}
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

We will now determine the structure of the base-change matrices B of isoclasses of $C_2 \ast C_3$-representations M in a Zariski open neighborhood of $[M_0]$ in $\text{iss}_\sigma C_2 \ast C_3$.

As M_0 is semi-simple, its isomorphism class forms a Zariski closed orbit $\text{O}(M_0)$ in the smooth irreducible component $\text{rep}_\sigma C_2 \ast C_3$ under the action of $GL(\sigma) = GL_a \times GL_b \times GL_c \times GL_d$. The stabilizer subgroup $\text{Stab}(M_0)$ is the automorphism group and is the subgroup of $GL(\sigma)$ we will denote by $GL(\tau) = GL_{a_1} \times GL_{a_2} \times GL_{a_3} \times GL_{a_4} \times GL_{a_5} \times GL_{a_6} \times GL_{b_a} \times GL_{b_b} \times GL_{b_c} \times GL_{b_d}$. The normal space to the orbit $\text{O}(M_0)$ can be identified as $GL(\tau)$-representation with the vectorspace of self-extensions $\text{Ext}^1_{C_2 \ast C_3}(M_0, M_0)$, see for example [2] II.2.7. The Luna slice theorem, see for example [2] §4.2, asserts that the action map

\[
GL(\sigma) \times^{GL(\tau)} \text{Ext}^1_{C_2 \ast C_3}(M_0, M_0) \longrightarrow \text{rep}_\sigma C_2 \ast C_3
\]

sending the class of (γ, \vec{n}) in the associated fibre bundle to the $C_2 \ast C_3$-representation $g.(M + \vec{n})$ is a $GL(\sigma)$-equivariant étale map with a Zariski dense image. Taking $GL(\sigma)$-quotients on both sides we obtain an étale map

\[
\text{Ext}^1_{C_2 \ast C_3}(M_0, M_0)/GL(\tau) \longrightarrow \text{iss}_\sigma C_2 \ast C_3
\]

with a Zariski dense image. The crucial observation to make is that it follows from the theory of local quivers, [2] §4.2], that as a $GL(\tau)$-representation $\text{Ext}^1_{C_2 \ast C_3}(M_0, M_0)$ is isomorphic to $\text{rep}_\tau Q$ for the quiver Q having 9 vertices (one for each of the distinct simple factors of M_0) and having as many directed arrows from the vertex corresponding to the simple factor S to that of the simple factor T as is the dimension of the space $\text{Ext}^1_{C_2 \ast C_3}(S, T)$. This then allows to identify the quotient variety $\text{Ext}^1_{C_2 \ast C_3}(M_0, M_0)/GL(\tau)$ with the affine variety $\text{iss}_\tau Q$ whose points are the isoclasses of semi-simple representations of Q of dimension-vector $\tau = (a_1, a_2, a_3, a_4, a_5, a_6, b_a, b_b, b_c)$, and the action map induces an étale map with dense image

\[
\text{iss}_\tau Q \longrightarrow \text{iss}_\sigma C_2 \ast C_3
\]

Computing the normal space to the orbit $\text{O}(M_0)$ as in the proof of [4] Thm. 4] but for the more complicated representation M_0 one obtains that the sub quiver of Q on the 6 vertices corresponding to the 1-dimensional simple components S_1, \ldots, S_6
coincides with that of [H], that is corresponds to the quiver-setting

The additional quiver-setting depending on the 3 vertices corresponding to the 2-dimensional simple factors $T_1(q)$, $T_2(q)$ and $T_3(q)$ can be verified to be

which concludes the proof of the following:

Theorem 1. The étale action map $GL(\sigma) \times GL(\tau) \rightarrow \text{rep}_\sigma Q \rightarrow \text{rep}_\tau C_2 \ast C_3$ sends a τ-dimensional Q-representation to the $C_2 \ast C_3$-representation determined by the base-change matrix B

1_{a_1} 0 0 0	0 0	0 0 1_{a_4} 0 0 0	0 0
0 C_{34} C_{34} 0 0 D_{a_4}	q_{1_{b_{1_\alpha}}} + E_{a_1} q_{1_{b_{1_\beta}}} F_{a_{1_\beta}}	0	0
0 D_{3_{b_1}} 0 0 0	q_{1_{b_{1_\alpha}}} + E_{a_1} q_{1_{b_{1_\beta}}} F_{a_{1_\beta}}	0 0	
C_{1_{2_\beta}} 0 0 0	D_{a_2} 0	0 0 1_{a_4} 0 0 0	0 0
0 0 1_{a_{1_\beta}} 0 0 0	F_{a_{1_\beta}} q_{1_{b_{1_\alpha}}} + E_{a_1} q_{1_{b_{1_\beta}}} F_{a_{1_\beta}}	0	0
0 0 0 0 0	F_{a_{1_\gamma}} q_{1_{b_{1_\alpha}}} + E_{a_1} q_{1_{b_{1_\beta}}} F_{a_{1_\beta}}	0	0
0 1_{a_3} 0 0 0	D_{a_3} 0	0 0 1_{a_4} 0 0 0	0 0
0 0 D_{a_3} 0 0 0	1_{b_{1_\alpha}} + E_{a_1} 0	0	0
0 0 0 0 0	F_{a_{1_\gamma}} 0 1_{b_{1_\gamma}}	0	0
0 0 0 0 0	F_{a_{1_\gamma}} 0 1_{b_{1_\gamma}}	0	0

Under this map, simple Q-representations are mapped to irreducible $C_2 \ast C_3$-representations, and if the coefficients of the block-matrices C_{ij}, D_{ij}, E_i and F_{ij} occurring in B give a parametrization of a Zariski open subset of the quotient variety $\text{iss}_\tau Q$, then the n-dimensional representations of the 3-string braid group B_3
given by

\[
\begin{align*}
\sigma_1 &\mapsto \lambda^{1/6} B^{-1} \begin{bmatrix} 1_x & 0 & 0 \\ 0 & \rho^2 1_y & 0 \\ 0 & 0 & \rho 1_z \end{bmatrix} B \begin{bmatrix} 1_a & 0 \\ 0 & -1_b \end{bmatrix} \\
\sigma_2 &\mapsto \lambda^{1/6} \begin{bmatrix} 1_x & 0 & 0 \\ 0 & \rho^2 1_y & 0 \\ 0 & 0 & \rho 1_z \end{bmatrix} B^{-1} \begin{bmatrix} 1_x & 0 & 0 \\ 0 & \rho^2 1_y & 0 \\ 0 & 0 & \rho 1_z \end{bmatrix} B
\end{align*}
\]

contain a Zariski dense set of irreducible B_3-representations in the component X_σ of $\text{iss}_n B_3$.

4. The main result

In view of the previous section it remains to find for each $\sigma = (a, b; x, y, z)$ satisfying

\[a + b = n = x + y + z \quad \text{and} \quad x = \text{max}(x, y, z) \leq b = \text{min}(a, b)
\]
a judiciously chosen dimension-vector $\tau = (a_1, a_2, a_3, a_4, a_5, a_6, b_\alpha, b_\beta, b_\gamma)$ of type σ together with an explicit rational parametrization of $\text{iss}_\tau Q$. We will separate this investigation in two cases, sharing the same underlying strategy. First we choose $a_1, a_2, a_3, a_4, a_5, a_6$ such that $\sigma_1 = (a_1 + a_3 + a_5, a_2 + a_4 + a_6; a_1 + a_4, a_2 + a_5, a_3 + a_6)$ is a component containing simples and such that we have an explicit rational parametrization of the isoclasses of the quiver-setting

\[
\begin{array}{c}
1 \\
2 \\
3 \\
4 \\
5 \\
6
\end{array}
\]

The upshot being that for a general representation the stabilizer subgroup reduces to $\mathbb{C}^*(1_{a_1} \times \ldots \times 1_{a_6})$. But then, the additional arrows D_{ij} and E_{ij}, that is the quiver setting

\[
\begin{array}{c}
7 \\
8 \\
9 \\
10 \\
11 \\
12
\end{array}
\]

give three settings corresponding to quiver settings of canonical linear systems with $m = p = a_i + a_{i+3}$ and the results of section 2 give a rational parametrization of the isoclasses and further reduces the stabilizer subgroup to $\mathbb{C}^*(1_{a_1} \times \ldots \times 1_{a_6} \times$
1_{b_a} \times 1_{b_b} \times 1_{b_c})$. This then leaves the trivial action on the remaining arrows F_{ij} and hence these generic matrices conclude the desired rational parametrization.

4.1. **Case 1: $a > b$.** Define

\[d = a - b, \quad e = d - 1, \quad f = b - z, \quad g = b - y, \quad h = b - x,\]

then the dimension-vector

\[\tau = (a_1, a_2, a_3, a_4, a_5, a_6, b_\alpha, b_\beta, b_\gamma) = (d, e, e, 0, 1, 1, f, g, h)\]

is of type σ. If we denote by

\[
\begin{bmatrix}
* & \text{a generic matrix} \\
\text{the column vector} & \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \\ 0 \end{bmatrix} \\
\text{T}_n & \text{the } n + 1 \times n \text{ matrix} \\
\end{bmatrix}
\]

and the (reduced) companion matrices as in lemma \[a\] then using lemma \[b\] a rational parametrization of the first stage is given by the representations

By lemma \[c\] a rational parametrization of the second stage is then given by the representations

This concludes the proof of
Theorem 2. A Zariski dense rational parametrization of the component X_σ of $\text{iss}_n B_3$ where $\sigma = (a,b;x,y,z)$ with $a > b$ is given by the representations

$$
\begin{align*}
\sigma_1 \mapsto \lambda^{1/6} B^{-1} \begin{bmatrix}
1_x & 0 & 0 \\
0 & \rho^2 y & 0 \\
0 & 0 & \rho z
\end{bmatrix} B \begin{bmatrix}
1_a & 0 \\
0 & -1_b
\end{bmatrix}
\end{align*}
$$

and

$$
\begin{align*}
\sigma_2 \mapsto \lambda^{1/6} \begin{bmatrix}
1_x & 0 \\
0 & -1_b
\end{bmatrix} B^{-1} \begin{bmatrix}
1_x & 0 \\
0 & \rho^2 y & 0 \\
0 & 0 & \rho z
\end{bmatrix} B
\end{align*}
$$

for all $n \times n$ matrices B of the form

1_d	0	0	0	0	$\overline{1_e}$	0	0	$*$
0	$*$	$q_{1f} + A_f$	0	0	0	$*$	0	1_g
0	0	0	q_{1g}	$*$	$1_f + A_f$	0	$*$	$*$
$*$	0	0	0	$* $	$q_{1h} + A_h$	0	0	1_h

where $d = a - b$, $e = d - 1$, $f = b - z$, $g = b - y$ and $h = b - x$.

4.2. Case $2: a = b$. Define $c = x + y + 1 - a$, $g = a - y - 1$ and $h = a - x$, which corresponds to the decomposition

If c is odd, define $c = 2d + 1$, $e = d + 1$ and $f = d - 1$, then the dimension vector

$$
\tau = (a_1, a_2, a_3, a_4, a_5, a_6, b_\alpha, b_\beta, b_\gamma) = (c, e, 1, d, f, 0, 0, g, h)
$$

is of type σ. Then, using lemma 2, a rational parametrization for the first stage is given by the representations

$$
\begin{align*}
\sigma_1 \mapsto \lambda^{1/6} B^{-1} \begin{bmatrix}
1_x & 0 & 0 \\
0 & \rho^2 y & 0 \\
0 & 0 & \rho z
\end{bmatrix} B \begin{bmatrix}
1_a & 0 \\
0 & -1_b
\end{bmatrix}
\end{align*}
$$

and

$$
\begin{align*}
\sigma_2 \mapsto \lambda^{1/6} \begin{bmatrix}
1_x & 0 \\
0 & -1_b
\end{bmatrix} B^{-1} \begin{bmatrix}
1_x & 0 \\
0 & \rho^2 y & 0 \\
0 & 0 & \rho z
\end{bmatrix} B
\end{align*}
$$

for all $n \times n$ matrices B of the form
Using lemma 1 we then get that a rational parametrization of the second stage is given by the following representations

If \(c \) is even, we can define \(c = 2e \) and \(f = e - 1 \) in which case the dimension vector

\[
\tau = (a_1, a_2, a_3, a_4, a_5, b_a, b_6, b_7) = (e, e, 1, e, f, 0, 0, g, h)
\]

is of type \(\sigma \) and exactly the same representations give a rational parametrization of both stages if we replace all occurrences of \(d \) by \(e \). This then concludes the proof of

Theorem 3. A Zariski dense rational parametrization of the component \(X_{\sigma} \) of \(\text{iss}_nB_3 \) where \(\sigma = (a, b, x, y, z) \) with \(a = b \) is given by the representations

\[
\left\{
\begin{align*}
\sigma_1 & \mapsto \lambda^{1/6} B^{-1} \begin{bmatrix} 1_x & 0 & 0 \\ 0 & \rho^2 1_y & 0 \\ 0 & 0 & \rho_1 z \end{bmatrix} B \begin{bmatrix} 1_a & 0 \\ 0 & -1_b \\ 1 \end{bmatrix} \\
\sigma_2 & \mapsto \lambda^{1/6} \begin{bmatrix} 1_a & 0 \\ 0 & -1_b \end{bmatrix} B^{-1} \begin{bmatrix} 1_x & 0 & 0 \\ 0 & \rho^2 1_y & 0 \\ 0 & 0 & \rho_1 z \end{bmatrix} B
\end{align*}
\right.
\]

for all \(n \times n \) matrices \(B \) of the form

\[
\begin{array}{c|cccc}
1_e & 0 & 0 & 0 & 0 \\
0 & T_f & 0 & * & 0 \\
0 & 0 & q_{1g} & * & 0 \\
1_e & 0 & * & 0 & 0 \\
0 & 1_f & 0 & 0 & 0 \\
| & 0 & 0 & q_{1h} & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1_g + A_g & 0 & |* & 0 & 1_g & 0 \\
0 & 0 & 0 & 1_h & 0 & 0 & 0 & 1_h
\end{array}
\]

where \(g = a - y - 1, h = a - x \) and if \(c = x + y + 1 - a \) is odd we take \(c = 2d + 1, \)
\(e = d + 1 \) and \(f = d - 1 \) whereas if \(c = x + y + 1 - a \) is even we take \(c = 2e \) and \(f = e - 1 \) and we replace all occurrences of \(d \) in the matrix to \(e \).
References

[1] Michiel Hazewinkel, *Moduli and canonical forms for linear dynamical systems III*, Proceedings 1976 NASA-AMES conference on geometric control theory (1977) Math. Sci. Press
[2] Hanspeter Kraft, *Geometrische Methoden in der Invariantentheorie*, Aspects of Mathematics D1 (1985) Vieweg
[3] Lieven Le Bruyn, *Noncommutative geometry and Cayley-smooth orders*, Pure and Applied Mathematics 290, Chapman & Hall/CRC (2008)
[4] Lieven Le Bruyn, *Dense families of B_3-representations and braid reversion*, Journal of Pure and Appl. Algebra 215 (2011) 1003-1014, math.RA/1003.1610
[5] Lieven Le Bruyn, *Matrix transposition and braid reversion*, Journal of Pure and Appl. Algebra 217 (2013) 75D81, math.RA/1102.4188
[6] Lieven Le Bruyn and Markus Reineke, *Canonical systems and non-commutative geometry*, (2003) math.AG/0303304
[7] Imre Tuba and Hans Wenzl, *Representations of the braid group B_3 and of $SL(2,\mathbb{Z})$*, arXiv:9912013
[8] Bruce Westbury, *On the character varieties of the modular group*, preprint Nottingham University (1995)

Department of Mathematics, University of Antwerp, Middelheimlaan 1, B-2020 Antwerp (Belgium), lieven.lebruyn@ua.ac.be