Differential modulation of human GABA_C-p1 receptor by sulfur-containing compounds structurally related to taurine

Lenin David Ochoa-de la Paz^{1,2,*}, Martin González-Andrade¹, Herminia Pasantes-Morales³, Rodrigo Franco⁴, Rubén Zamora-Alvarado², Edgar Zenteno¹, Hugo Quiroz-Mercado², Roberto Gonzales-Salinas² and Rosario Gulias-Cañizo²

Abstract

Background: The amino acid taurine (2-Aminoethanesulfonic acid) modulates inhibitory neurotransmitter receptors. This study aimed to determine if the dual action of taurine on GABA_C-p1R relates to its structure. To address this, we tested the ability of the structurally related compounds homotaurine, hypotaurine, and isethionic acid to modulate GABA_C-p1R.

Results: In *Xenopus laevis* oocytes, hypotaurine and homotaurine partially activate heterologously expressed GABA_C-p1R, showing an increment in its deactivation time with no changes in channel permeability, whereas isethionic acid showed no effect. Competitive assays suggest that hypotaurine and homotaurine compete for the GABA-binding site. In addition, their effects were blocked by the ion-channel blockers picrotixin and Methyl(1,2,5,6-tetrahydropyridine-4-yl) phosphinic acid. In contrast to taurine, co-application of GABA with hypotaurine or homotaurine revealed that the dual effect is present separately for each compound: hypotaurine modulates positively the GABA current, while homotaurine shows a negative modulation, both in a dose-dependent manner. Interestingly, homotaurine diminished hypotaurine-induced currents. Thus, these results strongly suggest a competitive interaction between GABA and homotaurine or hypotaurine for the same binding site. “In silico” modeling confirms these observations, but it also shows a second binding site for homotaurine, which could explain the negative effect of this compound on the current generated by GABA or hypotaurine, during co-application protocols.

Conclusions: The sulfur-containing compounds structurally related to taurine are partial agonists of GABA_C-p1R that occupy the agonist binding site. The dual effect is unique to taurine, whereas in the case of hypotaurine and homotaurine it presents separately; hypotaurine increases and homotaurine decreases the GABA current.

Keywords: Receptor modulation, GABA receptor, Xenopus oocytes, Sulfur-containing compounds, Taurine, Homotaurine, Hypotaurine, Isethionic acid

*Correspondence: lochoa@unam.mx
1 Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Copilco Universidad, Cd. Universitaria, 04510 México City, México
Full list of author information is available at the end of the article

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Background
Incorporation of sulfur into amino acids, proteins, enzymes, vitamins, and other biomolecules makes sulfur essential for biological systems [1]. In mammals, methionine is an essential amino acid, whereas cysteine, homocysteine, and taurine are semi-essential amino acids because they can be synthesized from methionine, sulfur, and serine via trans-sulfuration [1, 2].

Taurine (2-ethanosulfonic acid) is a ubiquitous, non-protein β-amino acid that abounds in different mammalian tissues. In the central nervous system (CNS) and retina, taurine is the second most abundant amino acid after glutamic acid, with a concentration in different species that ranges from 10 to 90 mM [3]. Taurine plays a role in different cell functions, as well as in neuronal migration and CNS development. In general, extensive experimental evidence reported relates taurine with cell volume and osmolality regulation [4–6]. In addition, taurine is involved in other physiological processes of the CNS and retina, such as modulation of Ca2+ channels and neurotransmission [7–11]. Other physiological functions of taurine not described in retina are antioxidant defense, phase II detoxification reactions and a role as a neurotrophic factor. GABA (γ-aminobutyric acid) plays a key role in neurotransmission. For example, in the retina, GABA modulates transmission of information flowing from photoreceptors to the brain. GABA performs its inhibitory action via two types of receptors: (1) ionotropic, designated GABA A and GABA C (also known as GABA A–ρ); and, (2) metabotropic, named GABA B, all of them with different molecular and pharmacological properties [12–15]. GABA C receptor is particularly interesting because it is insensitive to barbiturates, benzodiazepines, bicuculline, and baclofen (modulators and inhibitors of GABA A and GABA B receptors, respectively) [16–20] but sensitive to picrotoxin and Methyl(1,2,5,6-tetrahydropyridine-4-yl) phosphinic acid (TPMPA) [21].

GABA A receptors are heteropentamers, constituted by α, β, γ, and δ subunits; the combinations of these subunits determine the pharmacological and physiological properties of the receptor, and the α1/β2/γ2 is the most common combination found in the CNS and retina [22, 23]. GABA C receptors are composed of the ρ1, ρ2, and ρ3 subunits, each of them capable of forming homomeric functional receptors when expressed heterologously. However, the native composition of these receptors in neurons is unknown. In the CNS, evidence of the expression of GABA C receptors has been demonstrated in cerebellar Purkinje neurons and in the amygdala [24–26]. Experiments “in vivo” using specific antagonists of GABA C receptors directly applied into the amygdala, suggest that GABA C–mediated activity participates in the modulation of fear and anxiety [26]. Although the role of GABA C receptors in the retina is still poorly understood, its function is tightly modulated by intracellular cascades triggered by neuroactive molecules and their receptors, and they are thought to play a major role in visual signaling [19, 20, 27, 28]. While GABA A receptors (α1/β2/γ2) are distributed in all neuronal types of the retinal circuit, GABA C conformed by ρ1 and ρ2 subunits are located in bipolar neurons, where they downregulate NMDA receptors and, consequently, modulate transient glutamate release in response to light. In addition, amacrine and ganglion cells express GABA C receptors [29–31].

Taurine exerts its inhibitory effect via activation of GABA A and glycine receptors, but has less affinity compared to the specific agonists of each receptor [10, 11]. However, the mechanisms by which taurine regulates ionotropic GABA receptors remain to be determined. A negative and positive modulation of the GABA-induced current in oocytes heterologously expressing human GABA C–ρ1 receptor, exposed at lower and higher taurine concentrations was reported [32]. These results suggest that taurine acts in a dual way and may compete with GABA for the same binding site. Our study aimed to determine if the dual effect of taurine observed on GABA C–ρ1R was associated with the molecular structure of taurine. To confirm this hypothesis, we used homotaurine (Homo), hypotaurine (Hypo), and isethionic acid (IA), all sulfur-containing compounds structurally related to taurine (SCC-tau), but with some differences in their chemical structure. For instance, unlike taurine, Homo has one additional carbon and the sulfonic group (SO3H) is in cis position with respect to the amino (NH2) group; Hypo has a sulfenic group (SO2H) in trans position with respect to the NH2 group, and IA has a hydroxyl group instead of NH2. Some of these compounds have been widely used to better understand the physiological functions of taurine and, likewise, to evaluate compounds that may be therapeutically applied in some diseases such as diabetes, alcoholism, ischemia, and others [33–35]. Although a variety of taurine analogues have been developed, their effects are still unknown in terms of structure–function in various systems [36].

Results
GABA C–ρ1 receptor (GABA C–ρ1R) heterologously expressed in oocytes generated typical non-desensitizing GABA currents (Fig. 1a) when SCC-tau was perfused onto the same oocyte; Homo- and Hypo- elicited a response in a concentration dependent manner. Both compounds gate the ion-channel at micromolar concentrations (Fig. 1b, c). In contrast, IA did not show any affect at the concentrations tested (Fig. 1d). Similar to the currents induced by GABA, Homo- and Hypo-induced well-maintained currents and did not desensitize, even
after long exposure. Despite the lack of differences between the magnitude of the current elicited by Homo and Hypo, these SCC-tau show a clear difference in the EC\textsubscript{50} of 70 ± 1.1 µM for Homo and 3 ± 1.5 mM for Hypo (Fig. 2a). The response induced by Homo and Hypo did not correlate with changes in the activation time of the currents (τ\textsubscript{act}). Nevertheless, Homo showed an increase in deactivation time (τ\textsubscript{deac}). The τ\textsubscript{act} and τ\textsubscript{deac} for GABA alone were 1 ± 0.2 min and 1.7 ± 0.5 min, respectively. In the presence of Hypo, τ\textsubscript{act} was 1.5 ± 0.1 min and τ\textsubscript{deac} was 3.4 ± 1.1 min, whereas for Homo τ\textsubscript{act} was 1.8 ± 0.2 min and τ\textsubscript{deac} was 6.7 ± 2.2 min (Fig. 2b). However, we did not observe any permeability changes of the channel activated, as suggested by their inversion potential, which was −21 ± 1.0 mV for 3.5 µM GABA and −25 ± 2.1 mV and −26 ± 1.0 mV for 70 µM Homo and 3 mM Hypo, respectively (Fig. 2c). In all cases, the current–voltage (I–V) relationship was linear within the range explored (−120 to +40 mV), indicating that activation of GABA\textsubscript{C-ρ1R} by SCC-tau was voltage-independent and did not change the ion selectivity of the channel.

We also analyzed if the currents activated by Homo and Hypo were sensitive to TPMPA, a highly specific and selective antagonist of GABA\textsubscript{C-ρ1R} [21]. Figure 3 shows an IC\textsubscript{50} of 1.2 ± 0.1 µM, 1.4 ± 0.1 µM or 2.0 ± 0.2 µM TPMPA when the receptor was activated by 3 µM GABA, 70 µM Homo or 3 mM Hypo, respectively (Fig. 3a). Hill coefficients were 1.3 ± 0.2 µM (GABA), 1.0 ± 0.1 µM (Homo), and 1.1 ± 0.8 µM (Hypo). It is well known that TPMPA competes with GABA for the same binding site, so since the IC\textsubscript{50} of TPMPA values are similar; it is probable that SCC-tau, Homo and Hypo, share the same binding site as GABA in the GABA\textsubscript{C-ρ1R}. As expected, picrotoxin, an allosteric antagonist of ionotropic GABA receptors [37, 38], irreversibly inhibits the currents activated by 3 µM GABA, 70 µM Homo or 3 mM Hypo in a dose-dependent manner, with an IC\textsubscript{50} of 100 ± 0.1 µM, 105 ± 0.3 µM, and 100 ± 0.8 µM, respectively (Fig. 3b).

Figure 4 shows that during GABA-induced activation of the receptor, Homo reduced the currents when co-applied at different concentrations (3 µM to 30 mM). The effect of Homo on the GABA-induced current changes...
Fig. 2 GABA- and SCC-tau-induced currents in oocytes heterologously expressing GABA_C-ρ1R. a Dose-response relationship showing the EC₅₀ and Hill coefficient for each agonist. Data were normalized to the maximal current (I) obtained for each agonist. b Deactivation constant (∆t_{deac}) of currents activated by GABA, Hypo, and Homo. The difference in the deactivation constants between, GABA-, Hypo- or Homo-induced currents, was significant when P < 0.05. c Current–voltage relationship of GABA-, Homo-, and Hypo-induce currents at the indicated concentrations.

Dose-response relationship (a) was constructed by measuring the maximum response evoked by each agonist concentration (see methods), for b and c, data are given as the mean ± S.E. from at least 8 oocytes (n = 8) from 3 frogs (N = 3).

Fig. 3 Pharmacological modulation of GABA- and SCC-tau-induced currents by TPMPA (a) and picrotoxin (b). Currents were normalized to the maximum amplitude elicited by GABA or SCC-tau in absence of inhibitors. Data points are the mean ± S.E. from at least 7 oocytes (n = 7) from 3 frogs (N = 3).
depended on GABA concentrations. Figure 4a shows that at a concentration of 1.5 µM and 3 µM of GABA, Homo decreased GABA-activated currents. However, at a higher concentration of GABA (6 µM), the effect of Homo diminished; the IC\textsubscript{50} for Homo were 40 ± 1.0 µM, 90 ± 1.5 µM, and 410 ± 2.9 µM at 1.5 µM, 3 µM and 6 µM GABA, respectively (Fig. 4b). In all cases, the GABA-induced currents without SCC-tau, increased in a dose-concentration fashion.

We also analyzed whether the stimulatory effect of Hypo changed by the extracellular GABA concentration and we found that unlike Homo, Hypo potentiated GABA currents. As observed in Fig. 5a, at 1.5 µM GABA, Hypo induced a current increase, that was even greater than the current activated by GABA alone. At 3 µM GABA, the effect of Hypo was still present almost with the same characteristics as 1.5 µM GABA; however, at 6 µM GABA, the increase induced by Hypo on GABA currents diminished. GABA-induced current increased in a dose-concentration fashion. The EC\textsubscript{50} values obtained for Hypo were 87 ± 1.5 µM, 170 ± 1.7 µM, and 480 ± 2.1 µM for 1.5 µM, 3 µM, and 6 µM GABA, respectively (Fig. 5b). These results suggest a competitive action of SCC-tau with GABA for the same binding site (Additional file 1: Figure S1). In the case of IA, we did not observe any effect (data not shown).

Molecular modeling

To prove theoretical studies on the interactions of the different ligands with the human GABA\textsubscript{C-\rho1} receptor, we performed homology modeling. We selected as target the structure of the GABA\textsubscript{C-\rho1} R-beta3 homopentamer, since it has coverage of around 70% and an identity of 48%. The original sequence of this gene (GenBank: AAA52509.1) has an initial segment of 44 amino acids with a disordered/unstructured identity. We constructed this segment using an “ab initio” modeling, which shows good structural correlation. With this segment and the crystallographic structure, the GABA\textsubscript{C-\rho1}R model was constructed and validated (Additional file 2: Figure S2). This model presents an initial segment corresponding to the transmembrane section, which may have an effective recognition function. Subsequently, using this constructed model, we performed docking studies with different ligands (GABA, Homo, Hypo), IA, and one GABA\textsubscript{A} receptor antagonist (picrotoxin). For docking probes, we included taurine to compare the binding sites with SCC-tau and GABA. Figure 6 shows the results obtained after
performing 1000 runs for each compound, observing three different binding sites. In the first one we located (BS1) GABA, taurine, Homo, Hypo, and IA; the second binding site (BS2) apparently is exclusive for Homo, additional to the site it shares with GABA and SCC-tau, and the third one (BS3) corresponds to picrotoxin, located inside the receptor. The binding parameters (Ki) obtained by AutoDock4 are in the mM range, except for picrotoxin that is of a lesser order of magnitude. The order of affinity predicted is as follows: picrotoxin (0.012 mM) < IA (3.25 mM) < Homo (3.56 mM) < GABA (8.48 mM) < Hypo (10.50 mM) < taurine (10.86 mM). There are different binding sites at the GABA-C-ρ1R that function as modulators of the activity of this receptor. Therefore, we complemented the experimental results with theoretical studies, observing some correlation, such as: (1) the structural relationship between Homo and Hypo to activate GABA-C-ρ1R, demonstrates that Homo is a more potent agonist than Hypo; also, it has a lower Ki than Hypo; (2) competition experiments between TPMPA and GABA by GABA-C-ρ1R indicate that Homo and Hypo (even taurine), interact at the same site (BS1), supporting the data obtained by docking; (3) Homo has a second binding site (BS2), that is not used by GABA or SCC-tau; and (4) picrotoxin, an allosteric antagonist of ionotropic GABA receptors, its binding was predicted in the anion channel of the receptor (BS3), a unique site not used by the SCC-tau compounds with a strong affinity according to literature reports for this blocker [37, 38].

Discussion

The use of SCC-tau, that possesses only some of the properties of taurine, has increased our understanding about the role of this β-amino acid in the cell physiology. Previous reports show that SCC-tau modulates the inhibitory action triggered by GABA [39–41]. However, the structural characteristics that determine these effects are unclear. In this work, we report that even though Homo, Hypo, and IA share similar core structures, Homo was a potent partial agonist of GABA-C-ρ1R compared to Hypo. This observation could indicate that the presence of an additional carbon and the SO3H group in Cis position with respect to the NH2 group in Homo’s structure allows it to form a moiety that enhances the affinity and binding of Homo for GABA-C-ρ1R. In contrast, it is probable that the absence of an NH2 group and the short
carbon skeleton are responsible for the non-response effect with IA.

Oocytes that heterologously express the GABAC-ρ1R can generate currents when exposed to GABA, Homo, or Hypo. When SCC-tau and GABA were co-applied, we observed a concentration-dependent decrease (Homo) or increase (Hypo) of GABA induced-currents. Interestingly, in both cases, we did not observe a dual action of Homo and/or Hypo in the modulation of GABA-induced currents, as in the case of taurine [32]. In this sense, unlike the human glycine receptor (Gly-α1R), where taurine and other β-amino acids act like agonists or antagonists [42], in GABAC-ρ1R only taurine follows this pattern. One interpretation for this lack of dual effect is that the action of these compounds is not associated to a change in the molecular structure of the compounds [42], and the positive and negative modulation on the GABA-induced current could be a result of the occupation of the agonist binding sites in the binding pocket by each of these compounds. A second possibility is that effect of either negative or positive cooperativity between GABA-Homo and GABA-Hypo.

In the case of taurine, it was previously reported that it generates a dual effect on GABA-induced currents, suggesting that this β-amino acid (at low concentrations) can compete with GABA for the same binding site [32]. This hypothesis is reinforced with our molecular model, where Hypo, Homo, IA, taurine and GABA share the same binding site. The fact that taurine inhibits GABA response at high concentrations [32], just like Homo in this work, could be due to an interaction of taurine and Homo with a second binding site.

These data suggest a competitive behavior of SCC-tau and, thus, reflects an antagonistic binding within
a common ligand-binding pocket. The Hill coefficient obtained in both the negative and positive modulations generated by Homo and Hypo, respectively, indicates a contribution of GABA displacement despite its affinity to the binding site. This structural phenomenon would allow the interaction of SCC-tau in different binding conformations, inducing agonist or antagonist effects.

GABA induced-currents were modulated when SCC-tau and GABA were co-applied, while Homo reduced, Hypo increased the currents. This effect is explained with the data obtained from the docking, where Homo presents a second site with a greater binding probability, different from the binding site it shares with GABA; these two sites are located at different places of the receptor. Therefore, considering that GABA shares the same binding site as Hypo and Homo, this would confirm the fact that they compete for the same binding site as reflected in the experimental protocol. However, in the case of Homo, it does not share the second binding site with GABA, so there is no competition between them. Therefore, it is likely that this second Homo binding site may act as a negative regulatory site of the GABA_C·ρ1R, when GABA activates the receptor.

Homo acts like an antagonist of GABA_A- and Hypo-induced currents; however, it is a partial agonist at high concentrations without GABA or Hypo. This could be explained by negative cooperativity between Homo and GABA or Hypo, and this interaction is possibly due to a dependence of the second Homo binding site on the action of the agonist, that is available only when the first site (BS1) is previously occupied by GABA or Hypo. Therefore, it is likely that the affinity of Homo depends on the previous binding of a first agonist, which changes the conformational structure of the receptor.

Conclusions
Interest in receptors for γ-aminobutyric acid, the major inhibitory transmitter in the central nervous system, has been development over the last four decades. Given their widespread distribution, lower abundance and relative simplicity compared to GABA_A and GABA_B receptors, GABA_C receptors are attractive drug targets. GABA_C receptors pharmacology is different from GABA_A and GABA_B receptors, therefore, the development or characterization of novel compounds for GABA_C receptor is imperative. This will allow to determine with certainty the function of this receptor in the central nervous system. In this sense, small molecules such as SCC-tau are compounds with great potential for this purpose. Here, we observed that SCC-tau are partial agonists of the GABA_C·ρ1R that occupy the agonist binding site. The dual effect observed with SCC-tau was present in a separate way: while Hypo increases, Homo decreases the GABA-currents. These observations suggest that taurine could induce the dualistic effect by a change in the molecular structure in response to taurine concentration. However, the fact that Hypo and Homo act differently on GABA-currents could potentially be used to design pharmacological tools for the modulation of GABAergic receptors.

Methods
Expression of homomeric human GABA_C·ρ1 receptors in Xenopus laevis oocytes
All the animals were handled in accordance with guidelines of the National Institutes of Health Guide for Care and Use of Laboratory Animals and with the approval of the Institutional Animal Care and Use Committee of the National University of Mexico. We used Ethyl 3-aminobenzoate methanesulfonate (MS-222) at 0.17% for 30 min, to anesthetize the Xenopus laevis frogs. The oocytes were manually removed and enzymatically defolliculated at room temperature using collagenase type I (0.3 μg/μl) for 45 min. Later, oocytes were kept in Barth’s medium (in mM): 88, NaCl; 1, KCl; 0.33, Ca₂ (NO)₃; 0.41, CaCl₂; 0.82, MgSO₄; 2.4, NaHCO₃; 5, HEPES; pH 7.4 and 0.1 mg/ml gentamicin sulfate. After 24 h, 0.5 μg/μl of human GABA_C·ρ1R mRNA was injected in vegetal hemisphere of the oocyte, and electrophysiological recordings were obtained 2–3 days after injection.

Voltage-clamp recordings
Membrane currents elicited by GABA and SCC-tau were recorded using the two-microelectrode voltage-clamp technique. Oocytes were placed in a chamber, with a volume of 500 μl, and impaled with two microelectrodes previously filled with 3 M KCl (0.5–2.5 MΩ) and clamped at −60 mV. To determine the equilibrium membrane potential of the agonist action, I–V relationships were constructed by stepping the oocyte’s membrane potential from −60 to −120 mV for 1 s and then from −60 to +40 mV (in 20 mV steps) in the absence or presence of GABA or SCC-tau (Homo, Hypo, IA). All recordings were done at 20–23 °C in a chamber continuously perfused at 5–10 ml/min of Ringer solution (in mM): 115, NaCl; 2, KCl; 1.8, CaCl₂; 5, HEPES; pH 7.4. All drugs were purchased from SIGMA-ALDRICH (San Louis Missouri, USA). The stock solution of GABA (1 M), Homo (0.5 mM), Hypo (0.5 mM) or IA (0.5 mM) was kept frozen until thawed for the experiments. The pH of all solutions was adjusted to 7.4.

Data analysis
Results are reported as mean ± S.E. of the values obtained from several cells, each value being the average of measurements in different cells. Data from each experiment
were collected from at least seven oocytes. Agonist concentration–response curves were constructed by measuring the maximum response evoked by each agonist concentration. The half-maximal concentration (EC\textsubscript{50}) and Hill coefficient (n\textsubscript{H}) of GABA\textsubscript{A}, Hypo, and Homo were estimated for each curve by fitting the data to the logistic type equation (Origin 6.0, Northampton, MA): \[A = A_{\text{max}}/(1 + 10^{(\log\text{EC}_{50} - \text{log} \text{agonist})/n}) \]. The half-inhibitory concentration (IC\textsubscript{50}) of Homo was estimated by fitting the following equation: \[A = A_{\text{max}}/(1 + 10^{(\log\text{IC}_{50} - \text{log} \text{agonist})/n}) \]. Differences among groups were statistically analyzed by ANOVA and Tukey–Kramer post-test, and were considered significant when P < 0.05. Control responses to GABA were obtained before and after each drug application to account for possible shifts in the amplitude of the control current. To determine the time constants for the activation (\(\tau_{\text{act}}\)) and deactivation (\(\tau_{\text{deac}}\)) of GABA\textsubscript{A}, Homo- and Hypo-currents responses, a decay function of the form: \[I(t) = \exp(-t/\tau) + C \], where I is the current and t is time, was fit to the experimental data (Origin 6.0 software; Northampton, MA). Differences between groups were statistically analyzed by ANOVA and a Tukey–Kramer post-test, and were considered significant at the level P < 0.05.

Homology modeling of Type A gamma-aminobutyric acid (GABA\textsubscript{A}) receptors (Homo sapiens)

This homology modeling started with the retrieval of the amino acid sequence of GABA\textsubscript{A} (GenBank: AAA52509.1). The mature protein, predicted from this cDNA sequence in 458 amino acids, displays between 30 and 38% amino acid similarity to the previously identified GABA\textsubscript{A} subunits [29]. Using the program Basic Local Alignment Search Tool (BLAST; https://blast.ncbi.nlm.nih.gov/Blast.cgi) [43], and the database of the Protein Data Bank, the structural model was built based on the structure of a human gamma-aminobutyric acid receptor, the Gaba(a) r-beta3 homopentamer (4COF.pdb) [44], which revealed a coverage of 70% and the highest sequence identity (48%) with the target. A multiple alignment was performed using the constraint-based multiple alignment tool (COBALT; https://www.ncbi.nlm.nih.gov/tools/cobalt/re_cobalt.cgi) server, where an initial segment of 44 amino acids with no structural identity appears. An ab initio model of this fragment was made using the Rosetta 3.4 program [45]; 1000 models of this segment were made. Subsequently, using MODELER 9.17 r10881 with the multiple models protocol, 500 GABA\textsubscript{A} models were constructed, using the most stable model of the peptide and the 4COF.pdb file as a template. Later, a simple structural refinement of full atom was performed using “relax” application of Rosetta. The final model was validated using the Verify-3D (structure evaluation software) and Whatcheck (protein verification tools software) computer programs [46, 47].

Docking protocol

Docking was made with the previously constructed three-dimensional structure (Type A gamma-aminobutyric acid receptors—GABA\textsubscript{A}), and the ligands were built with HyperChem 8 software. The ligands were minimized employ Gaussian 09, revision A.02 (Gaussian Inc., Wallingford, CT) at DTF B3LYP/3-21G level of theory. AutoDockTools 1.5.4 (http://mgltools.scripps.edu/), it was used to prepare the structures before carrying out the docking. The preparation of the structures consisted in adding all hydrogen atoms as well as the Kollman united-atom partial charges to the receptor, while Gasteiger–Marsili charges and rotatable groups were assigned automatically to the ligands. AutoGrid4 was occupying to generate the electrostatic grid maps for each atom type. The initial grid box size was 60 Å × 60 Å × 60 Å in the x, y, and z dimensions. Docking was produced out with AutoDock4 version 4.2 (http://autodock.scripps.edu/) [48, 49] using default parameters; for the Lamarckian genetic algorithm with local search, number of individuals in population (150), maximum number of energy evaluations (2.5 million), maximum number of generations (27,000), rate of gene mutation (0.02), rate of crossover (0.8), and 1000 runs for docking. Finally, the docking was analyzed with AutoDockTools using cluster analysis and PyMOL software [50].

Additional files

Additional file 1: Figure S1. Effect of Homo on Hypo-induced currents in oocytes heterologously expressing GABA\textsubscript{A}–pR. (A) Representative traces of currents induced by 30 µM, 3 mM and 30 mM Hypo and co-applied with Homo at the indicated concentrations. (B) Homo dose-response relation of currents elicited by 30 µM, 3 mM and 30 mM Hypo. The currents were normalized to the maximum amplitude elicited by the agonist in the absence of modulators. Data points are the means ± S.E. from at least 9 oocytes (n = 9) from 4 frogs (N = 4).

Additional file 2: Figure S2. Three-dimensional models of GABA\textsubscript{A} and template. In slate blue cartoon (GABA\textsubscript{A}), split pea green cartoon (template) (Protein Data Bank [PDB] code: 4COF). The structures were drawn using the PyMOL program.

Abbreviations

- GABA: γ-aminobutyric acid; Taurine: 2-Aminoethanesulfonic acid; Homotaurine: 3-Aminopropane-1-sulfonic acid; Hypotaurine: 2-Aminoethanesulfonic acid; Isethionic acid: 2-Hydroxyethanesulfonic acid; TPMPA: Methyl(1,2,5,6-tetrahydrodipyridine-4-yl) phosphonic acid; MS-222: Ethyl 3-aminobenzoate methanesulfonate; NMDA: N-methyl-D-aspartate; HEPES: 4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid; SCC-tau: sulfur-containing compounds structurally related to taurine.

Authors’ contributions

LOPO conceived the project and coordinate the experiments, and did the electrophysiology and pharmacology assays in oocytes; RF did microinjections of mRNA into the oocytes; MG-A did the “in silico” model and docking probes;
Acknowledgements

Authors want to thank Dr. Rogelio Arellano for electrophysiology equipment and Dr. Ataulfo Martinez-Torres for plasmids carrying the human GABAC-ρ1 receptor, and the facilities granted by Departamento de Bioquímica, Facultad de Medicina, UNAM and Departamento de Investigación APEC-UNAM, Asociación para Evitar la Ceguera en México I.A.P. Hospital Dr. Luis Sánchez Bulnes. The authors are very grateful to Mrs. Maria Josefina Bolado Garza from the División de Investigación, Facultad de Medicina, UNAM for the review and edition of the English version of this manuscript.

Competing interests

The authors declare that they have no competing interests.

Availability of data and materials

The data set during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Consent for publication

Not applicable.

Ethics approval and consent to participate

All the animals were handled in accordance with guidelines of the National Institutes of Health Guide for Care and Use of Laboratory Animals and with the approval of the Institutional Animal Care and Use Committee of the National University of Mexico.

Funding

This work was supported by grants from PAPIIT-UNAM (IA208116 and IA205918), LANCAD-UNAM-DGTC-313 and Departamento de Investigación APEC-UNAM, Asociación para Evitar la Ceguera en México I.A.P. Hospital Dr. Luis Sánchez Bulnes.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 6 February 2018 Accepted: 27 July 2018

Published online: 03 August 2018

References

1. Komaritsky LA, Christopherson RJ, Basu TK. Sulfur: its clinical and toxicologic aspects. Nutrition. 2003;19(1):54–61.
2. Atmaca G. Antioxidant effects of sulfur-containing amino acids. Yonsei Med J. 2004;45(5):776–88.
3. Sturman JA. Taurine in development. Physiol Rev. 1993;73(1):119–47.
4. Pasantes-Morales H, Franco R, Torres-Valdez ME, Hernandez-Forseca K, Ortega A. Amino acid osmolytes in regulatory volume decrease and isovolumetric regulation in brain cells: contribution and mechanisms. Cell Physiol Biochem. 2000;10(5–6):361–70.
5. Pasantes-Morales H. Volume regulation in brain cells: cellular and molecular mechanisms. Metab Brain Dis. 1996;11(3):187–204.
6. Pasantes-Morales H, Schousboe A. Release of taurine from astrocytes during potassium-evoked swelling. Glia. 1989;2(1):45–50.
7. Del Olmo ND, Galareta M, Bustamante J, Martin del Rio R, Solis JM. Taurine-induced synaptic potentiation: dependence on extra- and intracellular calcium sources. Adv Exp Med Biol. 2000;483:285–92.
8. Lombardini JB. Taurine: retinal function. Brain Res Brain Res Rev. 1991;16(2):151–69.
9. Pasantes-Morales H, Gamboa A. Effect of taurine on Ca2+ accumulation in rat brain synaptosomes. J Neurochem. 1980;34(1):244–6.
10. Bureau MH, Olsén RW. Taurine acts on a subclass of GABA receptors in mammalian brain in vitro. Eur J Pharmacol. 1991;207(1–9).
11. Horikoshi T, Asanuma A, Yanagisawa K, Goto S. Taurine modulates glycine response in Xenopus oocytes injected with messenger RNA from mouse brain. Brain Res. 1988;464(3):243–6.
12. Polenzani L, Woodward RM, Miledi R. Expression of mammalian gamma-aminobutyric acid receptors with distinct pharmacology in Xenopus oocytes. Proc Natl Acad Sci U S A. 1991;88(10):4316–22.
13. Woodward RM, Polenzani L, Miledi R. Effects of steroids on gamma-aminobutyric acid receptors expressed in Xenopus oocytes by pol(A)+ RNA from mammalian brain and retina. Mol Pharmacol. 1992;41(1):89–103.
14. Woodward RM, Polenzani L, Miledi R. Effects of hexachlorocyclohexanes on gamma-aminobutyric acid receptors expressed in Xenopus oocytes by RNA from mammalian brain and retina. Mol Pharmacol. 1992;41(6):1107–15.
15. Zhu WJ, Vicini S. Neurosteroid prolongs GABA channel deactivation by altering kinetics of desensitized states. J Neurosci. 1997;17(11):4022–31.
16. Woodward RM, Polenzani L, Miledi R. Characterization of bicuculline/baclofen-insensitive gamma-aminobutyric acid receptor expressed in Xenopus oocytes. I. Effects of Cl− channel inhibitors. Mol Pharmacol. 1992;42(1):165–73.
17. Feigenspan A, Bormann J. Differential pharmacology of GABA and GABAC receptors on rat retinal bipolar cells. Eur J Pharmacol. 1994;288(1):97–104.
18. Lukasiewicz PD, Maple BR, Werblin FS. A novel GABA receptor on bipolar cell terminals in the tiger salamander retina. J Neurosci. 1994;14(3):Pt 1:1202–12.
19. Lukasiewicz PD, Wong RO. GABAC receptors on ferret retinal bipolar cells: a diversity of subtypes in mammals? Vis Neurosci. 1997;14(5):989–94.
20. Pan ZH, Lipton SA. Multiple GABA receptor subtypes mediate inhibition of calcium influx at retinal bipolar cell terminals. J Neurosci. 1995;15(4):2688–79.
21. Ragozzino D, Woodward RM, Murata Y, Eusebi F, Overman LE, Miledi R. Design and in vitro pharmacology of a selective gamma-aminobutyric acid C receptor antagonist. Mol Pharmacol. 1996;50(4):1024–30.
22. McKernan RM, Whiting PJ. Which GABA-A receptor subtypes really occur in the brain? Trends Neurosci. 1996;19(4):139–43.
23. Wasse H, Koulén P, Brandstatter JH, Eaton J, Clark GM. Glycine and GABA receptors in the mammalian retina. Vis Res. 1998;38(10):1411–30.
24. Harvey VL, Duguid IC, Krasel C, Stephens G. Evidence that GABAC subunits contribute to functional ionotropic GABA receptors in mouse Purkinje cells. J Physiol. 2006;577(1):127–39.
25. Mejia C, García-Alcocer G, Benum PK, Rosas-Arellano A, Miledi R, Martínez-Torres A. Expression of GABArho subunits during rat cerebellum development. Neurosci Lett. 2008;452(1):1–6.
26. Flores-Garcia C, Nuché-Bricaire A, Crespo-Ramírez M, Miledi R, Fuxe K, Pérez de la Mora M. GABA(A) receptor mechanisms in the rat amygdala and its role in the modulation of fear and anxiety. Psychopharmacology. 2010;212(4):475–84.
27. Koulén P, Brandstatter JH, Enz R, Bormann J, Wasse H. Synaptic clustering of GABAC(A) receptor rho-subunits in the rat retina. Eur J Neurosci. 1998;10(1):115–27.
28. Qian H, Dowling JE. GABA responses on retinal bipolar cells. Biol Bull. 1993;185(2):312.
29. Cutting GR, Lu L, O’Hara BF, Kasch LM, Montrose-Rafizadeh C, Donovan IA205918), LANCAD-UNAM-DGTC-313 and Departamento de Investigación APEC-UNAM, Asociación para Evitar la Ceguera en México I.A.P. Hospital Dr. Luis Sánchez Bulnes.
30. Ochoa-de la Paz et al. BMC Neurosci (2018) 19:47
31. Olsen RW, Bureau M, Khestchakisky M, MacLennan AJ, Chiang MY, Tobin
 AJ, Xu W, Jackson M, Sternini C, Brecha N. Isolation of pharmacologi‑
 cally distinct GABA-benzodiazepine receptors by protein chemistry and
 molecular cloning. Adv Biochem Psychopharmacol. 1990;46:35–49.
32. Ochoa-de la Paz LD, Martinez-Davila IA, Miledi R, Martinez-Torres A.
 Modulation of human GABA rho1 receptors by taurine. Neurosci Res.
 2008;61(3):302–8.
33. Wilde MI, Wagstaff AJ. Acamprosate. A review of its pharmacology and
 clinical potential in the management of alcohol dependence after
 detoxification. Drugs. 1997;53(6):1038–53.
34. McCarty MF. The reported clinical utility of taurine in ischemic disorders
 may reflect a down-regulation of neutrophil activation and adhesion.
 Med Hypotheses. 1999;53(4):290–9.
35. Kendler BS. Recent nutritional approaches to the prevention and therapy
 of cardiovascular disease. Prog Cardiovasc Nurs. 1997;12(3):3–23.
36. Della Corte L, Crichton RR, Duburs G, Nolan K, Tipton KF, Tirzitis G, Ward
 RJ. The use of taurine analogues to investigate taurine functions and their
 potential therapeutic applications. Amino Acids. 2002;23(4):367–79.
37. Zhang D, Pan ZH, Zhang X, Brideau AD, Lipton SA. Cloning of a gamma‑
 amino butyric acid type C receptor subunit in rat retina with a methionine
 residue critical for picrotoxinin channel block. Proc Natl Acad Sci U S A.
 1995;92(25):11756–60.
38. Wang TL, Hackam AS, Guggino WB, Cutting GR. A single amino acid
 in gamma-aminobutyric acid rho 1 receptors affects competitive and
 noncompetitive components of picrotoxin inhibition. Proc Natl Acad Sci
 U S A. 1995;92(25):11751–5.
39. Fariello RG, Golden GT. Homotaurine: a GABA agonist with anticonvulsant
 effects. Brain Res Bull. 1980;5:691–9.
40. Frosini M, Sesti C, Dragoni S, Valoti M, Palmi M, Dixon HB, Machetti F,
 Sgaragli G. Interactions of taurine and structurally related analogues
 with the GABAergic system and taurine binding sites of rabbit brain. Br J
 Pharmacol. 2003;138(6):1163–71.
41. El Idrissi A, Trenkner E. Taurine as modulator of excitatory and inhibitory
 neurotransmission. Neurochem Res. 2004;29(1):189–97.
42. Schmieden V, Betz H. Pharmacology of the inhibitory glycine receptor:
 agonist and antagonist actions of amino acids and piperidine carboxylic
 acid compounds. Mol Pharmacol. 1995;48(5):919–27.
43. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman
 DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database
 search programs. Nucleic Acids Res. 1997,25(17):3389–402.
44. Miller PS, Aricescu AR. Crystal structure of a human GABA receptor.
 Nature. 2014;512(7514):270–5.
45. Bradley P, Misura KM, Baker D. Toward high-resolution de novo structure
 prediction for small proteins. Science. 2005;309(5742):1868–71.
46. Luthy R, Bowie JU, Eisenberg D. Assessment of protein models with three‑
 dimensional profiles. Nature. 1992;356(6364):83–5.
47. Hooft RW, Vriend G, Sander C, Abola EE. Errors in protein structures.
 Nature. 1996;381(6580):272.
48. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ.
 Automated docking using a Lamarckian genetic algorithm and an empir‑
 ical binding free energy function. J Comput Chem. 1998;19(14):1639–62.
49. Huey R, Morris GM, Olson AJ, Goodsell DS. A semiempirical free
 energy force field with charge-based desolvation. J Comput Chem.
 2007;28(6):1145–52.
50. Delano WL. Use of PYMOL as a communications tool for molecular sci‑
 ence. Abstr Pap Am Chem Soc. 2004;228:U313–4.