Snake venom L-amino acid oxidases: an overview on their antitumor effects

Tássia R Costa1, Sandra M Burin1, Danilo L Menaldo1, Fabiola A de Castro1 and Suely V Sampaio1,2*

Abstract

The L-amino acid oxidases (LAAOs) constitute a major component of snake venoms and have been widely studied due to their widespread presence and various effects, such as apoptosis induction, cytotoxicity, induction and/or inhibition of platelet aggregation, hemorrhage, hemolysis, edema, as well as antimicrobial, antiparasitic and anti-HIV activities. The isolated and characterized snake venom LAAOs have become important research targets due to their potential biotechnological applications in pursuit for new drugs of interest in the scientific and medical fields. The current study discusses the antitumor effects of snake venom LAAOs described in the literature to date, highlighting the mechanisms of apoptosis induction proposed for this class of proteins.

Keywords: Snake venoms, L-amino acid oxidases, Antitumor effects, Apoptosis

Introduction

The L-amino acid oxidases (LAAOs, EC 1.4.3.2) are flavoenzymes found in such diverse organisms as bacteria, fungi, algae, fish, snails as well as venoms of snakes from the families Viperidae, Crotalidae and Elapidae [1-6].

Almost all LAAOs described to date are flavoproteins of dimeric structure, with each subunit presenting a non-covalent bond with flavin mononucleotide (FMN) or flavin adenine dinucleotide (FAD). The latter co-factor is commonly found in snake venom L-amino acid oxidases (SV-LAAOs). Flavins present in LAAOs are responsible for the characteristic yellow color of many snake venoms and contribute to their toxicity because of the oxidative stress that results from the production of H2O2 [7]. This feature allows the classification of LAAOs as FAD-dependent oxidoreductases. They are capable of catalyzing the stereospecific oxidative deamination of L-amino acid substrates to α-keto acids. The catalytic cycle, as shown in Figure 1, starts with a reduction half-reaction involving the conversion of FAD to FADH2 and the concomitant oxidation of the amino acid into an imino acid, which subsequently undergoes a non-enzymatic hydrolysis releasing α-keto acid and ammonia. Another half-reaction completes the cycle with the oxidation of FADH2 by molecular oxygen, producing hydrogen peroxide [8-13].

LAAOs from various sources have been isolated and characterized biochemically, enzymatically and biologically, with the snake venom L-amino acid oxidases (SV-LAAOs) being the most studied enzymes of this family of proteins [2].

In general, SV-LAAOs are homodimers with molecular masses ranging from 120 to 150 kDa in their native form and 50 to 70 kDa in their monomeric forms, and isoelectric point (pI) between 4.4 and 8.12 [2,14]. Interestingly, acidic, neutral and basic forms of SV-LAAOs can coexist in the same snake venom and may present distinct pharmacological properties [15].

Until the 1990s, the studies of SV-LAAOs mainly focused on their physicochemical and enzymatic activities whereas more recent studies have shown that SV-LAAOs present numerous biological and pharmacological effects, such as induction of apoptosis, cytotoxicity, inhibition and induction of platelet aggregation, hemorrhage, hemolysis, edema, as well as microbicidal, antiparasitic and anti-HIV activities [2,7,12,16-21].

Although several SV-LAAOs have been characterized with diverse biological functions, the mechanisms by which these enzymes exert their activities are not fully understood. It is believed that the biological effects of...
SV-LAAOs is, at least partially, due to the hydrogen peroxide generated during the enzymatic reaction, since the presence of catalase, an agent that degrades H₂O₂, can inhibit the action of these enzymes [2].

Nowadays, there is great interest in the clinical use of substances from plants and animals for the treatment of diseases, leading to a search for compounds with modulating actions on the carcinogen metabolism, induction of DNA repair systems and activation or suppression of the cell cycle and apoptosis [22]. Apoptotic processes and cell damage are some of the action mechanisms proposed for many SV-LAAOs, suggesting that these enzymes could be used as models for the development of more effective chemotherapeutic and other antitumor agents [2,13,23,24].

Therefore, this review aims to discuss the cytotoxic effects and the induction of apoptosis in tumor cells by SV-LAAOs. This analysis can serve as an important tool for future research studies on L-amino acid oxidases from snake venoms with antitumor activity.

Review

Antitumor potential of SV-LAAOs

Numerous studies of snake venoms show that SV-LAAOs are capable of promoting cytotoxicity in different cell lines, such as S180 (murine sarcoma 180 tumor), SKBR-3 (breast adenocarcinoma), Jurkat (human acute T cell leukemia), EAT (Ehrlich ascites tumor), B16F10 (murine melanoma), PC12 (rat adrenal gland pheochromocytoma), as well as in non-tumor cells (lymphocytes and macrophages) [7]. It is noteworthy that the damage in normal cells is usually negligible when compared to the damage caused in tumor cells [20,25-27]. Although the cytotoxicity mechanisms of SV-LAAOs have not been fully clarified, it is known that lipids present in cell membranes can be damaged by reactive oxygen species (ROS) [28,29]. Considering that membranes of tumor cells present higher concentrations of lipids than normal cells, it is speculated that the hydrogen peroxide produced by LAAOs exerts direct action on the membrane of tumor cells, with lower toxicity on normal cells [30].

Araki et al. [31] reported for the first time the apoptosis in vascular endothelial cells caused by hemorrhagic venoms. Shortly afterwards, two other groups of researchers showed that LAAOs from hemorrhagic venoms were primarily responsible for the apoptotic effect on these endothelial cells [32,33]. Since then, many studies have described the apoptotic effect of LAAOs in different cell lines, suggesting this enzyme class is directly linked to the cytotoxic action of venoms [11,13,14,27,33,34].

The effects of SV-LAAOs can be studied by analyzing the cell cycle, which is a set of processes through which a cell passes during its division. This process is divided into two phases: interphase and mitosis, with the interphase being subdivided into G0, G1, S and G2 [35,36]. During the cell cycle, certain stops (checkpoints) occur in order to verify the conditions of the genetic material at the time of cell division; these verifications involve multiple cellular repair proteins (CDK, CKI; CHK), which control the inhibition or the progression of the cycle by different pathways [37]. The generated DNA damage in G1, S or G2 must be repaired as it is the last possible defense against damaged DNA, and if not repaired, the cell proceeds to mitosis and shall initiate the production of defective cells (tumor cells) or undergo cell death by apoptosis [35,36].

The term apoptosis has been proposed by Kerr et al. [38] in 1992 to describe the pathway of programmed cell death during cell development, which plays an important role in the development and maintenance of higher organisms. This process is triggered by DNA damage caused by physical, chemical and/or biological agents, and can be defined by various morphological and biochemical characteristics, such as the exposure of phosphatidylserine to the outer leaflet of the plasma membrane, nuclear condensation and the cleavage of chromatin in oligonucleosomal fragments [34,39,40].

Once unleashed, the phenomenon of apoptosis activates molecular events that culminate in the activation of caspases, which are responsible for cell dismantling and death. The process of apoptosis can occur by two major pathways: the intrinsic (mitochondrial) and extrinsic (death receptor). The intrinsic pathway can be triggered by...
the action of different intracellular stress signals, such as irradiation, chemotherapeutic agents, viruses, bacteria and absence of cell growth factors, which converge on the mitochondria to induce the translocation of cytochrome c and SMAC (second mitochondria-derived activator of caspasess) from these organelles to the cytosol, resulting in the presence of APAF-1 and activation of caspase-9. The extrinsic pathway is initiated by the binding of death receptors (DR) – such as Fas/CD95, TNFRI, DR3, DR4, DR5 and DR6 – to their respective ligands. The existing DR are cell surface molecules that have a cysteine-rich extracellular domain and an intracellular domain denominated DD (death domain) [41,42].

The binding of Fas associated with DD (FADD) allows the recruitment of pro-caspase 8 to form the DISC (death-inducing signaling complex). Pro-caspase 8 is self-cleaved and transformed into active caspase 8, and then released into the cytoplasm, where it may act directly on the activation of caspase 3 (executioner phase of apoptosis), or act in the cleavage of Bid molecules that will reach the mitochondria, inducing the release of cytochrome c and SMAC. The cleavage of Bid represents the connection between the extrinsic and intrinsic pathways of apoptosis [41,43].

The mitochondrial pathway is regulated by members of the Bcl-2 family, which are cytoplasmic proteins capable of integrating signals of survival or cell death generated in the intra- and extracellular medium [44]. This family is divided into two classes: anti-apoptotic proteins (Bcl-2, Bcl-xL, Bcl-w, A1 and Mcl-1), whose function is to protect cells from death, and pro-apoptotic proteins (Bax, Bak, Bad, Bid, Bmf etc.) that sensitize or lead cells to apoptosis [44]. The executioner pathway of apoptosis is common to both initiating pathways and is characterized by the activation of effector caspasess, namely caspase-3, −6 and −7, and the cell-dismantling characteristic of apoptosis [45-47]. The balance of the interactions between pro- and anti-apoptotic proteins may define the occurrence of cell death.

Numerous studies have reported that apoptotic processes induced by LAAOs are partially explained by the generation of hydrogen peroxide (H2O2), a reactive oxygen species (ROS) that accumulates on the surface of cell membranes. It is widely accepted that increasing ROS concentrations promotes mitochondrial derangements that cause cell death [2,7,11,13,23,27,32-34,48,49]. In this context, several studies with SV-LAAOs evaluated their cytotoxic effects in the absence of catalase (known for its ability to degrade H2O2 to H2O and O2), revealing that in fact the toxic action of SV-LAAOs is practically annulled by this agent [2,7,50].

To evaluate the cytotoxic activity of SV-LAAOs, most studies make use of the colorimetric method for cytotoxicity proposed by Mosmann [51]. Ahn et al. [25] showed that the LAAO isolated from Ophiophagus hannah (king cobra) venom is cytotoxic for stomach cancer cells (SNU-1). LAAOs from Agkistrodon acutus (ACTX-6) and Bungarus fasciatus (BF-LAAO) showed cytotoxic effects on A549 cells (lung adenocarcinoma), with ACTX-6 presenting an IC50 of 20 μg/mL [23,49]. Alves et al. [27] assessed the cytotoxic effects of an LAAO isolated from Bothrops atrox venom (named BatroxLAAO) on various tumor cell lines, such as HL-60 (IC50 50 μg/mL), PC12, B16F10 and JURKAT (IC50 of 25 μg/mL for the three cell lines). Also, in the presence of catalase (150 U/mL), BatroxLAAO did not induce significant cell death on any of the tumor cell lines tested [13].

One study revealed the toxin Bl-LAAO from Bothrops leucurus venom presented a cytotoxic effect on the tumor cell lines MKN-45 (stomach cancer), RKO (colorectal cancer) and LL-24 (human fibroblasts), whereas around 25% of this cytotoxicity was inhibited in the presence of catalase (100 μg) [19].

Bregge-Silva et al. [52] evaluated the cytotoxic effect of an LAAO (denominated LmLAAO) isolated from Lachesis muta snake venom on AGS (gastric adenocarcinoma) and MCF-7 (breast tumor) cells, with IC50 of 22.7 μg/mL and 1.41 μg/mL, respectively. The catalase (0.1 mg/mL) completely abolished the cytotoxic effects of LmLAAO on MCF-7 tumor cells.

Several SV-LAAOs isolated from different snake venoms have been described as able to induce cell death in different cell lines [14,20,53,54]. A study with the LAAO isolated from Agkistrodon halys snake venom demonstrated the apoptotic action of this protein on murine lymphoblastic leukemia cells (L1210) by quantitatively analyzing the DNA fragmentation after treatment of cells with the protein. Twenty-four hours after treatment, death by necrosis was observed, suggesting that higher amounts of H2O2 were released during the enzymatic reaction. When cells were treated concomitantly with catalase, cell viability was not fully restored, indicating that the apoptotic activity of LAAOs cannot be explained completely by the generation of hydrogen peroxide [32].

Torii et al. [33] evaluated the apoptotic effects of Apoxin I, an LAAO from Crotalus atrox snake venom. Authors showed that Apoxin I at 10 μg/mL of this venom induced condensation and fragmentation of chromatin in human umbilical endothelial cells, HL-60, A2780 (human ovarian carcinoma) and NK-3 (rat endothelial cells). At a concentration of 2.5 μg/mL, Apoxin I induced oligonucleosomal DNA fragmentation in HL-60; however, at lower concentrations, the toxin did not induce apoptosis in this lineage. This study also showed that the induction of apoptosis was completely abolished when the LAAO was inactivated by changes in temperature (70°C) or in the presence of catalase. It was also found that in the presence of a membrane antioxidant (trolox), the Apoxin I was not able...
to induce apoptosis in the tested cell lines. These findings suggest that the apoptotic effect caused by Apoxin I is related to the catalytic activity of the enzyme, which is responsible for the production and release of H_2O_2, that may be related to the oxidation of the cell membrane [33].

ACL LAO, isolated from *Agkistrodon contortrix laticinctus* venom, was also capable of inducing apoptosis in HL-60 cells. Twenty-four hours after treatment with 25 μg/mL of the toxin, a typical pattern of DNA fragmentation in apoptotic cells was observed [14]. Low concentrations of another protein of this class, the VB-LAAO from *Vipera berus berus* venom, induced apoptosis in K562 and HeLa tumor cell lines, whereas at higher concentrations, this enzyme also induced necrosis in K562 cells [55].

To examine the apoptotic and necrotic effects induced by SV-LAAOs, two flow cytometry methods have been employed: Annexin V FITC and HFS (hypotonic fluorescent solution, containing 50 μg/mL of propidium iodide in 0.1% sodium citrate plus 1.0% Triton X-100). Cells in early apoptosis are positive for annexin V and negative for propidium iodide (PI), which indicates phosphatidylserine externalization and membrane integrity. The assessment of DNA content detected by the HFS method

Table 1 Summary of some SV-LAAOs and the tumor cell lines in which they were tested

Snake species	LAAO	Tumor cell lines	Methodology	References
Agkistrodon acutus	ACTX-6	A549	MTT	[23]
	ACTX-8	HeLa	MTT, DNA fragmentation	[57]
Agkistrodon contortrix laticinctus	ACL LAO	HL-60	DNA fragmentation	[14]
Agkistrodon halys	L1210	MOLT-4	DNA fragmentation	[32]
	HL-60			
Agkistrodon halys pallas	A549		DNA fragmentation	[59]
Bothrops atrox	BatroxLAAO	HL-60	MTT	[13,27]
	PC12	PC12	Annexin V	
	B16F10	Jurkat	Activation of caspases	
Bothrops mojensi	BmooLAAO-I	HL-60 and EAT	MTT and DNA fragmentation	[60]
Bothrops pirajai	BpirLAAO-I	S180	MTT	[20,26]
			DNA fragmentation	
			HFS	
			Activation of caspases 3, 8 and 9	
Bungarus fasciatus	BF-LAAO	A549	[49]	
Calloselasma rhodostoma	CR-LAAO	Jurkat	[34]	
Crotalus atrox	Apoxin-I	HL-60	DNA fragmentation	[33,54]
	A2780			
	HUVEC			
	KN-3			
Eristocophis macmahoni	LNV-LAO	MM6	DNA fragmentation	[53]
Ophiophagus hannah	LNV-LAO	SNU-1	MTT	[25,61]
		B16F10	DNA fragmentation	
		MCF-7	Activation of caspases	
		AS49		
Vipera berus berus		HeLa and K562	DNA fragmentation	[55]
The authors declare that there are no competing interests.

Authors’ contributions
DLM and SMB contributed equally to the conceiving and writing of this review. DLM participated in the writing and FAC and SVS supervised and critically discussed the review. All authors read and approved the final manuscript.

Acknowledgments
The authors would like to thank the State of São Paulo Research Foundation (FAPESP – grants n. 2011/02645-3, 2011/23236-4 and 2012/11963-1), the National Council for Scientific and Technological Development (CNPq – grant n. 159632/2011-0) and the Support Nucleus for Research on Animal Toxins (NAP-TOXAN-USP – grant n. 12–125432.1.3) for funding our research. FAC and SVS hold a CNPq Scholarship in Research Productivity levels 2 and 1B, respectively.
References
1. Vallon O, Buttl L, Kuras R, Olive J, Wollman FA: Extensive accumulation of an extracellular L-amino acid oxidase during gametogenesis of Chlamydomonas reinhardtii. Eur J Biochem 1993, 215(3):351–360.
2. Du X, Clementson KJ: Snake venom L-amino acid oxidases. Toxicon 2002, 40(6):659–666.
3. Kamio M, Ko KC, Zheng S, Wang B, Collins SL, Gadda G, Tai PC, Derby CD: The chemistry of escapin: identification and quantification of the components in the complex mixture generated by an L-amino acid oxidase in the defensive secretion of the sea snail Aplysia californica. Chemistry 2009, 15(7):1597–1603.
4. Chen WM, Sheu FS, Sheu SY: Novel L-amino acid oxidase with algidal activity against toxic cyanobacterium Microcystis aeruginosa synthesized by a bacterium Aquamin. Enzyme Microb Technol 2011, 49(3):372–379.
5. Wang F, Li R, Xie M, Li A: The serum of rabbitfish (Siganus oramin) has antimicrobial activity to some pathogenic organisms and a novel serum L-amino acid oxidase is isolated. Fish Shellfish Immunol 2011, 30(4):5105–1108.
6. Nustinen JT, Marttinen E, Sollymari R, Hilden K, Timonen S: L-amino acid oxidase of the fungus Helobela cylindrosporum displays substrate preference towards glutamate. Microbiology 2012, 158(Pt 1):272–283.
7. Guo C, Liu S, Yao Y, Zhang Q, Sun MZ: Past decade study of snake venom L-amino acid oxidase. Toxicon 2012, 60(3):302–311.
8. Curti B, Ronchi S, Pilone Simonetta M, D- and L-amino acid oxidases. In Chemistry and biochemistry of poisons, Volume 3. Edited by Muller F. Boca Raton: CRC Press; 1992:69–94.
9. Komoju PR, Machereoux P, Ghita S: Molecular cloning, expression and purification of L-amino acid oxidase from the Malayan pit viper Calloselasma rhodostoma. Protein Expr Purif 2007, 52(1):89–95.
10. Li R, Zhu S, Wu J, Wang W, Lu Q, Clementson KJ: L-amino acid oxidase from Naja atra venom activates and binds to human platelets. Acta Biochim Biophys Sin (Shanghai) 2008, 40(1):19–26.
11. Rodrigues RS, da Silva JF, Boldrini França J, Fonseca FP, Otaviano AR, Henrique Silva F, Hamaguchi A, Magro AJ, Bazz AS, dos Santos JH, Homsi-Brandenburgi ML, Fontes MR, Fully AL, Soares AM, Rodrigues VM: Structural and functional properties of Bp-LAAO, a new L-amino acid oxidase isolated from Bothrops pauloensis snake venom. Biochemistry 2009, 49(1):400–411.
12. Sun MZ, Guo C, Tian Y, Chen D, Greenaway FT, Liu S: Biochemical, functional and structural characterization of Akbu-LAAO: a novel snake venom L-amino acid oxidase from Agkistrodon bilineatus ussurensis. Biochemistry 2010, 92(4):343–349.
13. de Melo Alves-Paiva R, de Freitas Figueiredo R, Antonucci GA, Paiva HH, de Lourdes Pires Bianchi M, Caetano RC, Linhari Rodrigues Pietro RC, Gomes Martins CH, de Albuquerque S, de Lourdes Pires Bianchi M, Rodrigues KC, Lucarini R, Caetano RC: Antibacterial effects of different snake venoms and isolated toxins on human lymphocyte DNA. Toxicol 2010, 65:94–104. doi:10.1016/j.toxicon.2012.02.001.
14. Ahn MY, Lee BM, Kim YS: Characterization and cytotoxicity of L-Amino acid oxidase from the venom of King Cobra (Ophiophagus hannah). Int J Biochem Cell Biol 1997, 29(11):911–919.
15. Izdoro LFM, Ribeiro MC, Souza GR, Sant’Ana CD, Hamaguchi A, Homsi-Brandenburgi ML, Goulart LR, Beleoboni RD, Nimozic A, Sampaio SV: Evidence of caspase-mediated apoptosis induced by L-amino acid oxidase isolated from Bothrops atrox snake venom. Comp Biochem Physiol A Mol Physiol 2008, 151(4):562–569.
16. Imlay JA: Pathways of oxidative damage. Annu Rev Microbiol 2003, 57:395–418.
17. Okubo BM, Silva ON, Migliolo L, Gomes DG, Porto WF, Batista CL, Ramos CS, Holanda HHS, Dias SC, Franco OL, Moreira SE: Evaluation of an antimicrobial L-amino acid oxidase and peptide derivatives from Bothropoides mattogeben시스 venom on pathogen. PLoS ONE 2012, 7(5):e36309.
18. Yang CA, Cheng CH, Liu SY, Lo CT, Lee JW, Peng KC: Identification of antibacterial mechanism of L-amino acid oxidase derived from Trichodema harzianum ETS 332. FEBS J 2011, 278(13):3381–3394.
19. Araki S, Ishida T, Yamamoto T, Kaji K, Hayashi H: Induction of apoptosis by hemorrhagic snake venom in vascular endothelial cells. Biochim Biophys Acta 1995, 1220(1):148–153.
20. Suhr SM, Kim DS: Identification of the snake venom substance that induces apoptosis. Biochem Biophys Res Commun 1996, 224(1):134–139.
21. Torii S, Naito M, Tsuruo T: Apoxin I, a novel apoptosis-inducing factor with L-amino acid oxidase activity purified from Western diamondback rattlesnake venom. J Biol Chem 1997, 272(14):9539–9542.
22. Ande SR, Komoju PR, Draal S, Murikov M, Machereau P, Ghita S, Ferrando-May E: Mechanism of cell death induction by L-amino acid oxidase, a major component of opidian venom. Apoptosis 2006, 11(8):1439–1451.
23. Schafer KA: The cell cycle: a review. Vet Pathol 1998, 35(6):461–478.
24. Douglas RM, Haddad GG: Invited review: effect of oxygen deprivation on cell cycle activity: a profile of delay and arrest. J Appl Physiol 2003, 94(5):2068–2083.
25. Vermeulen K, van Bockstael DR, Bemerman ZH: The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Proli 2003, 36(3):131–149.
26. Kerr JF, Winterford CM, Harmon BW: Apoptosis, Its significance in cancer and cancer therapy. Cancer 1994, 73(8):2013–2026.
27. Dybukht JM, Anicaionoa M, Burkitt M, Sjoholm A, Strom K, Orenius S, Nicotera P: Different prooxidant levels stimulate growth, trigger
apoptosis, or produce necrosis of insulin-secreting RINm5F cells. The role of intracellular polyamines. J Biol Chem 1994, 269(48):30553–30560.

40. Bonuccio E, Krainc D, Ankarctoma M, Nicotera P, Lipton SA. Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc Natl Acad Sci U S A 1995, 92(16):7163–7166.

41. Amarante-Mendes GP, Green DR. The regulation of apoptotic cell death. Braz J Med Biol Res 1999, 32(9):1053–1061.

42. Pereira WO, Amarante-Mendes GP. Apoptosis: a programme of cell death or cell disposal? Scand J Immunol 2011, 73(5):401–407.

43. Zivny J, Klener P Jr, Pytlik R, Andera L. Apoptosis: a programme of cell death. COSTA. 42. Pereira WO, Amarante-Mendes GP: Apoptosis—A programme of cell death or cell disposal? Scand J Immunol 2011, 73(5):401–407.

44. Zivny J, Klener P Jr, Pytlik R, Andera L. The role of apoptosis in cancer development and treatment: focusing on the development and treatment of hematologic malignancies. Curr Pharm Des 2010, 16(1):11–33.

45. Bonuccio E, Krainc D, Ankarctoma M, Nicotera P, Lipton SA. Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc Natl Acad Sci U S A 1995, 92(16):7163–7166.

46. Amarante-Mendes GP, Green DR. The regulation of apoptotic cell death. Braz J Med Biol Res 1999, 32(9):1053–1061.

47. Zivny J, Klener P Jr, Pytlik R, Andera L. Apoptosis: a programme of cell death or cell disposal? Scand J Immunol 2011, 73(5):401–407.

48. Suvir J, Kienz P Jr, Pytlik R, Andera L. The role of apoptosis in cancer development and treatment: focusing on the development and treatment of hematologic malignancies. Curr Pharm Des 2010, 16(1):11–33.