Research Article

Trends in Medicinal Uses of Edible Wild Vertebrates in Brazil

Rômulo Romeu Nóbrega Alves,1 Tacyana Pereira Ribeiro Oliveira,2 and Maria Franco Trindade Medeiros3

1Departamento de Biologia, Universidade Estadual da Paraíba, 58429-500 Campina Grande, PB, Brazil
2Centro de Ciências Biológicas e Sociais Aplicadas (CCBSA), Universidade Estadual da Paraíba, 58071-160 João Pessoa, PB, Brazil
3Unidade Acadêmica de Biologia e Química, Universidade Federal de Campina Grande, 58175-000 Cuité, PB, Brazil

Correspondence should be addressed to Maria Franco Trindade Medeiros; mariaftm@hotmail.com

Received 5 April 2017; Accepted 3 July 2017; Published 15 August 2017

1. Introduction

Wildlife represents an immeasurable source of raw materials that support health systems of different human cultures that depend on nature as a source of medicines to treat and cure illnesses [1]. Plants and animals have been used as medicinal sources since ancient times, and even today animal- and plant-based pharmacopeias continue to play an essential role in health care. Although plants and plant-derived materials make up the majority of the ingredients used in most traditional medical systems globally, whole animals, animal parts, and animal-derived products also constitute important elements of the materia medica [2–6].

The use of animal species as remedies, although representing an important component of traditional medicines (sometimes in association with plant species), has been much less studied than medicinal plants [1]. However, the importance of nonbotanical remedies (those of animal and mineral origin) is emerging [7], resulting in a recent boom in publications focusing on zootherapy [8–11].

Brazil is well known for its rich social/cultural diversity, as represented by more than two hundred indigenous people and a range of local communities, which in turn have contributed to the high diversity of traditional knowledge and practices which include the use of medicinal animals. Indeed, animals have been used as a source of medicine in the country and have played a significant role in healing practices as many people have used animals as medicines or alternative or supplementary treatments [12,13].

Hence, Brazil can be considered a model to extensive zootherapeutic studies, since the use of animals and animal-derived products is widespread among the country’s human cultures, as predicted by the zootherapeutic universality hypothesis [14]. Furthermore, the concomitant use of wild animals for nutritional and medicinal purposes is also diffuse in several localities in the country, thus highlighting their important role as food medicine in well-established folk medical practices [15].

Recent research has highlighted the predominant use of vertebrates as medicinal fauna in different medical systems
worldwide [1]. As remarked by Perry [16], this is an expected trend, considering the frequent interactions between people and vertebrates—typically large-bodied animals, which may provide a wide range of medicinal products. This raises particular conservation concerns, as some of these taxa are overharvested for their medicinal uses and are now threatened [1].

In this article, we provide an assessment of the uses of wild edible vertebrate species in Brazilian Traditional Medicine. The study focused on the following questions: (1) which edible vertebrate taxa are mostly used in the Brazilian Traditional Medicine? (2) Do the conditions treated by medicinal resources vary with taxonomical group and/or animal’s habitat?

2. Methods

Data used in this research resulted from an extensive analysis of the ethnozoological database provided by the Laboratório de Etnozoologia, Universidade Estadual da Paraíba. The database comprises information from ethnozoological studies on faunal medicinal use performed in all Brazilian regions. Additional data was gathered through information available in reviews published by the laboratory researchers [17–19].

Data analysis comprised information on species of edible vertebrates used as medicines, their family classification, habitats, conservation status, and conditions to which animals were prescribed. We only considered those taxa that could be identified to species level, and the scientific nomenclature of the taxa recorded (fishes, amphibians, reptiles, and mammals) and/or habitats were in accordance with the following databases: Fishbase (Froese and Pauly, 2016; http://www.fishbase.org/), Amphibian Species of the World (http://research.amnh.org/herpetology/amphibia/index.php), The Reptile Database (http://www.reptile-database.org/), and Mammal Species of the World [20]. With regard to habitat analysis, marine and estuarine species were grouped in the same category (i.e., coastal and marine); if a marine species was also reported to freshwater environments, it habitat was categorized as coastal and marine/freshwater. Moreover, continental species which could inhabit both terrestrial and aquatic systems were considered as semi-aquatic species.

The conservation status of the analysed species follows the International Union for the Conservation of Nature [21], the Convention on International Trade in Endangered Species of Wild Fauna and Flora [22], and the Brazilian red lists (decrees 444 and 445, Brazilian Ministry of Environment, 2014). Health conditions considered in this research were categorized by the International Statistical Classification of Diseases and Related Health Problems (ICD-10 Version: 2016; http://apps.who.int/classifications/icd10/browse/2016/en).

2.1. Data Analysis. All data were verified for normal distribution (Shapiro–WilK’s test) and homogeneity of variance (Levene’s test) and nonparametric tests were performed when those assumptions were not met.

A Kruskal–Wallis test (followed by Dunn’s post hoc test) and an ANOVA were performed to determine whether the number of health conditions treated per species varied among vertebrate taxonomic groups or habitat types, respectively. Resemblance between health conditions treated (grouped into ICDs categories) and taxonomic groups or animals’ habitat types were assessed based on Jaccard’s similarity index, where resulting matrices were used to perform cluster analyses. Due to low number of species recorded (n = 3), amphibians were excluded from all statistical analysis regarding taxonomic groups.

3. Results

At least 204 edible vertebrate species have been used in Brazilian Traditional Medicine (see Table 1). Fishes were the most represented group (n = 97 species), followed by mammals (n = 48), reptiles (n = 29), birds (n = 27), and amphibians (n = 3). Most medicinal animals are aquatic (58.9%), mostly inhabiting freshwater (27.0% of total counts) and coastal/marine (26.5% of total counts) environments (Figure 1). Terrestrial and semiaquatic vertebrates corresponded to 38.7% and 2.5% of medicinal vertebrates recorded, respectively.

Edible medicinal vertebrates were reportedly used to treat 165 health conditions/diseases (see Table 2). A single illness could be treated by various animal species (e.g., 67 animal species were used in the treatment of asthma and 60 in the treatment of rheumatism), and although most species (particularly fishes, mammals, and birds) were used to treat only one (n = 85; 41.7%) or up to five illnesses (n = 156; 76.5%), several were prescribed for treating multiple illnesses (>5 conditions; n = 48, 23.5%), as shown in Figure 2. Reptiles were the most versatile group, as they were mostly used in the treatment of multiple conditions, with almost half of the species (n = 14) being used to treat more than 10 illnesses (Figure 2). Indeed, from the 10 most expressive species in the treatment of multiple conditions (see Table 1), seven are reptiles, for instance, the “teju” and the boa snake (Salvator teguixin and Boa constrictor, resp.; n = 28 health conditions prescribed, each), the Neotropical rattlesnake (Crotalus durissus; n = 27 conditions), the green sea turtle (Chelonia mydas; n = 25 conditions), and the common caiman (Caiman crocodilus; n = 24 conditions). Moreover,
Table 1: Vertebrate species (scientific and common names, when available) used as medicine food in Brazil, with remarks to habitats, conservation status, and health conditions to which each animal is prescribed. Families and species name in alphabetical order.

Taxa	Health conditions treated	Habitat
Fishes		
Anostomidae		
Leporinus friderici (Bloch, 1794), threespot leporinus	Earache	Freshwater
Schizodon kneri (Steindachner, 1875), “piau-branco”	Leucoma, edema	Freshwater
Arapaimidae		
Arapaima gigas (Schinz, 1822), “arapaima,” “pirarucu,” “pirosca”	Asthma, pneumonia	Freshwater
Arhynchobatidae		
Atlantoraja cyclophora (Regan, 1903), eyespot skate	Haemorrhage after delivery	Marine
Ariidae		
Aspistor luniscutis (Valenciennes, 1840), “bagre-amarelo”	Pain relief in injuries caused by the species’ sting	Marine/brackish
Bagre bagre (Linnaeus, 1766), coco sea catfish, “bagre-fidalgo”	Injuries caused by itself	Marine/brackish
Genidens barbus (Lacepède, 1803), white sea catfish, “bagre-do-mangue”	Pain relief in injuries caused by the species’ sting	Marine/brackish
Genidens genidens (Cuvier, 1829), sea catfish, “bagre”	Injuries caused by itself	Marine/brackish
Aspredinidae		
Aspredinichthys tibicen (Valenciennes, 1840), tenbarbed banjo, “viola”	Asthma	Freshwater/brackish
Aspredo aspedo (Linnaeus, 1758), banjo catfish, “banjo,” “viola”	Asthma	Freshwater/brackish
Auchenipteridae		
Trachelyopterus galeatus (Linnaeus, 1766), “cumbá”	Umbilical hernia, asthma, sexual impotence	Freshwater
Balistidae		
Balistes capriscus Gmelin, 1789, grey triggerfish, “peixe-porco”	Bronchitis	Marine/reef
Balistes vetula Linnaeus, 1758, queen triggerfish, “cangulo,” “capado,” “peroá”	Stroke, asthma, thrombosis, earache, pain relief in injuries caused by the species’ sting, hemorrhage, ascites, schistosomiasis, appendicitis, menstrual cramps, gastritis	Marine/reef
Batrachoididae		
Thalassophryne nattereri Steindachner, 1876, venomous toadfish, “niquim”	Pain relief caused in injuries by the species’ sting	Marine/brackish
Bryconidae		
Brycon nattereri Günther, 1864, “pirapitinga,” “matrinchá”	Flu	Freshwater
Callichthyidae		
Callichthys callichthys (Linnaeus, 1758), “cascarudo,” “caboge”	Asthma, umbilical hernia	Freshwater
Lamnidae		
Carcharodon carcharias (Linnaeus, 1758), great white shark	Osteoporosis	Marine/brackish
Isurus oxyrinchus Rafinesque, 1810, shortfin mako	Osteoporosis	Marine
Taxa	Health conditions treated	Habitat
---------------------------	--	---
Carcharhinidae		
Carcharhinus falciformis (Müller & Henle, 1839), silky shark	Osteoporosis	Marine/reef
Carcharhinus leucas (Müller & Henle, 1839), bull shark, “tubarão-cabeça-chata”	Osteoporosis	Marine/brackish/reef/freshwater
Carcharhinus limbatus (Müller & Henle, 1839), blacktip shark, “sucuri preto”	Osteoporosis	Marine/brackish/reef
Carcharhinus obscurus (Lesueur, 1818), dusky shark		
Carcharhinus porosus (Ranzani, 1839), smalltail shark, “junteiro,” “caçã-galha-preta”	Asthma, rheumatism, wounds, inflammations, osteoporosis, anemia	Marine/brackish
Galeocerdo cuvier (Péron & Lesueur, 1822), tiger shark, “jaguará”		
Negaprion brevirostris (Poey, 1868), lemon shark		
Rhizoprionodon lalandii (Müller & Henle, 1839), Brazilian sharpnose shark, “caçao”	Rheumatism, osteoporosis	Marine
Rhizoprionodon porosus (Poey, 1861), Caribbean sharpnose shark, “caçao”	Rheumatism, osteoporosis	Marine/brackish/reef/freshwater
Sphyrnidae		
Sphyrna lewini (Griffith & Smith, 1834), scalloped hammerhead, “peixe-martelo,” “caçao-paná,” “caçao-chapeu”	Asthma, wounds, rheumatism, inflammation	Marine/brackish/reef
Sphyrna mokarran (Rüppell, 1837), great hammerhead		
Sphyrna zygaena (Linnaeus, 1758), smooth hammerhead		
Squalidae		
Squalus cubsensis Howell Rivero, 1936, Cuban dogfish		
Rhinobatidae		
Rhinobatos percellens (Walbaum, 1792), Chola guitarfish		
Centropomidae		
Centropomus parallelus Poey, 1860, fat snook		
Centropomus undecimalis (Bloch, 1792), common snook, “rubalão”		
Characidae		
Astyanax bimaculatus (Linnaeus, 1758), twospot astyanax, “piaba-mirim,” “machadinha,” “piaba chata”	Alcoholism, leishmaniosis, skin burns, wounds, rheumatism	Freshwater
Clupeidae		
Harengula jaguana (Poey, 1865), scaled herring, “sardinha”		
Opisthonema oglinum (Lesueur, 1818), Atlantic thread herring, “sardinha”		
Cynodontidae		
Hydrolycus scomberoides (Cuvier, 1816), Payara, “cachorra”		
Table 1: Continued.

Taxa	Health conditions treated	Habitat
Dasyatidae		
Dasyatis guttata (Bloch & Schneider, 1801), longnose stingray, “raia branca”	Asthma, pain relief in injuries caused by the species’ sting, burns	Marine
Dasyatis manieranae Gomes, Rosa & Gadig, 2000, Brazilian large-eyed stingray, “raia mariaquita,” “raia de fogo”	Asthma, pain relief in injuries caused by the species’ sting, burns	Marine/reef
Diodontidae		
Chilomycterus antillarum Jordan & Rutter, 1897, web burrfish	Wounds, lump	Marine/reef
Chilomycterus spinosus spinosus (Linnaeus, 1758)	Wounds, lump	Marine/brackish
Doradidae		
Franciscodoras marmoratus (Lütken, 1874), “Urutu”	Injuries caused by itself	Freshwater
Lithodoras dorsalis (Valenciennes, 1840), Rock-bacu	Swelling	Freshwater
Megalodoras uranoscopus (Eigenmann & Eigenmann, 1888), “cuiu-cuiu”	Rheumatism	Freshwater
Oxydoras niger (Valenciennes, 1821), ripsaw catfish, “cuiu-cuiu”	Rheumatism	Freshwater
Platydoras costatus (Linnaeus, 1758), Raphael catfish, “cuiu-cuiu”	Rheumatism	Freshwater
Pterodoras granulosus (Valenciennes, 1821), granulated catfish, “cuiu-cuiu”	Rheumatism	Freshwater
Echeneidae		
Echeneis naucrates Linnaeus, 1758, live shark sucker, “rêmora,” “pegador”	Asthma, bronchitis	Marine/brackish/reef
Remora remora (Linnaeus, 1758), shark sucker, “rêmora”	Osteoporosis	Marine/reef
Erythrinidae		
Erythrinus erythrinus (Bloch & Schneider, 1801), ”Matròe”	Asthma	Freshwater
Hoplias malabaricus (Bloch, 1794),trahira, “traíra”	Ophthalmological problems, rheumatism, cataracts, wounds, snake bite, conjunctivitis, stroke, thrombosis, asthma, toothache, fever, earache, diarrhoea, deafness, boils, bleeding, alcoholism, tetanus, sore throat, itching, sprains, leucoma	Freshwater
Hoplias aimara (Valenciennes, 1847)	Earache	Freshwater
Cichlidae		
Cichla melaniæ Kullander & Ferreira, 2006	Pain relief in injuries caused by the ray sting	Freshwater
Gadidae		
Gadus morhua Linnaeus, 1758, Atlantic cod, “bacalhau”	Boils	Marine/brackish
Ginglymostomatidae		
Ginglymostoma cirratum (Bonnaterre, 1788),nurse shark, “cação-lixa”	Rheumatism, osteoporosis	Marine/brackish/reef
Taxa	Health conditions treated	Habitat
----------------------	---	------------------------------
Gymnotidae		
Electrophorus electricus (Linnaeus, 1766), electric eel, “poraquê”	Sprains, bruises, insect bites, snake bite, asthma, flu, pain in general, muscle strain, rheumatism, osteoporosis, deafness, pneumonia, itching	Freshwater
Heptapteridae		
Pimelodella brasiliensis (Steindachner, 1876), “mandim”	Injuries caused by that fish species	Freshwater
Holocentridae		
Holocentrus adscensionis (Osbeck, 1765), squirrelfish, “jaguaricá”	Wounds	Marine/reef
Megalopidae		
Megalops atlanticus Valenciennes, 1847, tarpon, “camurupim,” “cangurupim”	Stroke, headache, asthma, shortness of breath, thrombosis, chest pain, injuries caused by bang	Marine/brackish/reef/freshwater
Monacanthidae		
Cantherhines macrocerus (Holland, 1853), American whitespotted filefish	Asthma	Marine/reef
Monacanthus ciliatus (Mitchell, 1818), fringed filefish	Asthma	Marine/reef
Muraenidae		
Gymnothorax funebris Ranzani, 1839, green moray, “moréia verde”	Bleeding (wounds)	Marine/reef
Gymnothorax moringa (Cuvier, 1829), spotted moray, “moréia pintada”	Bleeding (wounds)	Marine/reef
Gymnothorax vicinus (Castelnau, 1855), purplemouth moray, “moréia”	Bleeding (wounds)	Marine/reef
Myliobatidae		
Aetobatus narinari (Euphrasen, 1790), spotted eagle ray, "raia-chita"	Asthma, pain relief in injuries caused by the species' sting, burns, haemorrhage	Marine/reef
Narcinidae		
Narcine bancraffiti (Griffith & Smith, 1834), lesser electric ray	Pain	Marine
Narcine brasiliensis (Olfers, 1831), Brazilian electric ray, “raia elétrica”	Toothache	Marine/reef
Pimelodidae		
Practocephalus hemiolopterus (Bloch & Schneider, 1801), redtail catfish, “Pirarara”	Asthma, wounds, hernia, burns in the skin, rheumatism, flu, cough	Freshwater
Pseudoplaty stigma corruscans (Spix & Agassiz, 1829), spotted sorubim, “sorubim”	Flu, removal of wrath	Freshwater
Pseudoplaty stigma fasciatum (Lunnaeus, 1776), barred sorubim, “sorubim”	Cold	Freshwater
Sorubimichthys planiceps (Spix & Agassiz, 1829), firewood catfish, “sorubim chicote”	Leishmaniosis, tuberculosis	Freshwater
Zungaro zungaro (Humboldt, 1821), gilded catfish, black manguruyu, “jaú”	Asthma, toothache, earache, wounds, athlete's foot, burns in the skin, rheumatism, flu	Freshwater
Taxa	Health conditions treated	Habitat
--------------------------	---	----------------------
Potamotrygonida		
Paratrygon aiereba (Müller & Henle, 1841), discus ray, “arraia”	Asthma, hernia, flu, pneumonia, cough, earache, burns	Freshwater
Plesiodyction iwamae Rosa, Castello & Thorson, 1987, long-tailed river stingray	Pain relief in injuries caused by the species’ sting, wounds, cracks in the sole of the feet	
Potamotrygon hystric (Müller & Henle, 1834), porcupine river stingray, “arraia”	Asthma, hernia, flu, pneumonia, cough, earache, burns	Freshwater
Potamotrygon motoro (Müller & Henle, 1841), South American freshwater stingray, ocellate river stingray, “arraia”	Asthma, hernia, flu, pneumonia, cough, earache, burns	Freshwater
Potamotrygon orbignyi (Castelnau, 1855), smooth back river stingray, “arraia”	Pain relief in injuries caused by that species’ sting	Freshwater
Pristidae		
Pristis pectinata Latham, 1794, smalltooth sawfish, “espadarte,” “peixe-serra”	Asthma, rheumatism, arthritis	Marine/brackish/freshwater
Pristis perotteti Müller & Henle, 1841, largemouth sawfish, “espadarte”	Asthma, rheumatism, arthritis	Marine/brackish/freshwater
Prochilodontidae		
Prochilodus argenteus Spix & Agassiz, 1829, ”curimatá-pacá,” “curimatá”	To avoid swelling of the breast feeding, mycosis	Freshwater
Prochilodus niger Spix & Agassiz, 1829, black prochilodus, “curimatá”	Chilblain, skin burns, wounds, rheumatism, eye pains	Freshwater
Serrasalmidae		
Colossoma macropomum (Cuvier, 1818), cachama, “tambaqui”	Paralysis of arms and legs	Freshwater
Mylossoma duriventre (Cuvier, 1818), pacu, “pacu-manteiga”	Venereal disease	Freshwater
Serrasalmus brandtii Lütken, 1875, white piranha, “pirambeba”	Inflammations, sexual impotence	Freshwater
Sciaenidae		
Cynoscion acoupa (Lacepède, 1801), acoupa weakfish, “pescada amarela”	Renal failure	Marine/brackish/freshwater
Cynoscion leidreus (Cuvier, 1830), smooth weakfish, “pescada branca”	Renal failure	Marine/brackish
Micropogonias furnieri (Desmarest, 1823), whitemouth croaker, “corvina”	Pain relief in injuries caused by the species’ sting, cough, asthma, bronchitis	Marine/brackish
Pachyurus francisci (Cuvier, 1830), San Francisco croaker, “crvina-de-bico”	Asthma, urinary incontinence, backache	Freshwater
Plagioscion squamosissimus (Heckel, 1840), South American silver croaker, “curvina”	Urinary disorders, haemorrhage, snake bites	Freshwater
Plagioscion surinamensis (Bleeker, 1873), Bashaw, “pacora,” “curvina”	Urinary disorders, haemorrhage, snake bites	Freshwater
Sparidae		
Calamus penna (Valenciennes, 1830), sheephead porgy, “peixe-pena”	Asthma	Marine/reef
Table 1: Continued.

Taxa	Health conditions treated	Habitat
Synbranchidae		
Synbranchus marmoratus	Bronchitis	Freshwater/brackish
Bloch, 1795, marbled swamp eel, “muçum”		
Tetraodontidae		
Colomesus psittacus	Breast cancer, backache, warts	Marine/brackish/freshwater
(Bloch & Schneider, 1801), banded puffer, “baiacu”		
Sphoeroides testudineus	Rheumatism	Marine/brackish/reef
Linnaeus, 1758, checkered puffer, “baiacu”		
Trichiuridae		
Trichiurus lepturus	Asthma	Marine/brackish
Linnaeus, 1758, largehead hairtail		
Urotrygonidae		
Urotrygon microphthalmum	Asthma, pain relief in injuries caused by the species’ sting, burns	Marine
Delsman, 1941, small eyed round stingray, “raia”		
Amphibians		
Bufonidae		
Rhinella jimi (Stevaux 2002)	Urinary incontinence, dental caries, cancer, wounds, boils, erysipelas acne, inducing abortion	Semiaquatic
Leptodactylidae		
Leptodactylus cf. labyrinthicus (Spix, 1824), South American pepper frog, “jia-de-pelito,” “rá–pimenta”	Earache, rheumatism, joint pain, cancer, sore throat	Semiaquatic
Leptodactylus vastus	Sore throat, cough, asthma, arthritis, backache, tonsillitis, hoarseness	Semiaquatic
Lutz, 1930, South American pepper frog, ra-pimenta		
Reptiles		
Iguanidae		
Iguana iguana (Linnaeus, 1758), Common iguana, “camaleão”	Earache, erysipelas, asthma, rheumatism, edema, abscesses, joint pain, wounds, acne, athlete’s foot, sore throat, swelling, burn, tumour, sucking a splinter out of skin or flesh, boil, injuries caused by the spines of the “arraia” and others fishes, inflammation, hernia	Terrestrial
Teiidae		
Tupinambis merianae	Earache, deafness, rheumatism, erysipelas, skin thorns and wounds, respiratory diseases, sore throat, snake bite, asthma, tumour, swelling, infection, bronchitis	Terrestrial
(Duméril & Bibron, 1839), Lizard, “tegu,” “tejuacú”	Sexual impotence, rheumatism, erysipelas, dermatitis, snake bites, asthma, tetanus, earache, thrombosis, wounds, infection of nail, swelling, herpes zoster, irritation when milk teeth are erupting, jaundice, inflammation, tumour, sore throat, infection, bronchitis, injuries caused by the spines of the “arraia,” pain relief in injuries caused by snake bites, toothache, sucking a splinter out of skin or flesh, headache, cough, stroke, coarse throat	Terrestrial
Tupinambis teguixin		
Linnaeus, 1758, Lizard, “tegu,” “tejuacú”		
Taxa	Health conditions treated	Habitat
---------------------------	--	---------------
Boidae		
Boa constrictor (Linnaeus, 1758),*Boa, “jibóia”*	Rheumatism, lung disease, thrombosis, boils, tuberculosis, stomach ache, edema, snake bite, cancer, ache, swelling, helping to prevent abortion, pain in the body, inflammation, athlete's foot, calluses, tumours, cracks in the sole of the feet, goitre, sore throat, arthrosis, insect sting, dog bite, erysipelas, thrombosis, asthma, neck strain, strain muscle	Terrestrial
Corallus hortulanus (Linnaeus, 1758), snake	Assisting in removing spines or other sharp structures from the skin, rheumatism	Terrestrial
Eunectes murinus (Linnaeus, 1758), anaconda, ”sucurujú,” ”sucuri”	Wounds, skin problems, bruises, sprains, arthrosis, rheumatism, boils, sexual impotence, headache, sore throat, thrombosis, swelling, tumour, asthma, muscle strain, numbness, syphilis, reducing pain, luxation	Semiaquatic
Epicrates cenchria (Linnaeus, 1758), Brazilian rainbow boa, ”salamanta”	Rheumatism, pain in articulations, injuries caused by itself, sore throat, earache	Terrestrial
Crotalidae		
Crotalus durissus (Linnaeus, 1758), Neotropical rattlesnake, ”cascavel”	Asthma, snake bite, thrombosis, wounds, luxation, rheumatism, pain in the legs, erysipelas, deafness, epilepsy, skin diseases, tuberculosis, hanseniasis, backache, tumour, boil, headache, earache, osteoporosis, sore throat, toothache, pain relief in injuries caused by sting of insects and snake bite, irritation when milk teeth are erupting, tonsillitis, impotence, fatigue	
Chelidae		
Phrynops geoffroanus (Schweigger, 1812), Geoffroy's side-necked turtle, ”cágado”	Asthma, sore throat, swelling, earache, rheumatism, arthrosis, healing of umbilical cord of newborn baby, mumps	Freshwater
Phrynops tuberosus (Peters, 1870)	Diphtheria, headache, earache, pain in the breast, wounds, furuncle, gastritis, swelling, haemorrhoids, sore throat, backache, eye problems, sucking a splinter out of skin or flesh, rheumatism, deafness	Freshwater
Mesoclemmys tuberculata (Luederwaldt, 1926), tuberculate toadhead turtle, ”cágado,” ”cágado-d’água”	Rheumatism, discharge, thrombosis, bronchitis, diarrhoea, haemorrhage, asthma, sore throat, hoarseness, muscle aches	Freshwater
Taxa	Health conditions treated	Habitat
--------------------------	---	---------------
Cheloniididae		
Caretta caretta (Linnaeus, 1758), loggerhead turtle, “tartaruga cabecuda”	Injuries caused by bang, toothache, diabetes, headache, backache, wounds, cough, bronchitis, asthma, thrombosis, rheumatism, stroke, hoarseness, flu, backache, earache, sore throat, swelling	Marine
Chelonia mydas (Linnaeus, 1758), green sea turtle, “tartaruga verde,” “aruana”	Injuries caused by bang, toothache, diabetes, headache, backache, wounds, cough, bronchitis, asthma, flu, thrombosis, rheumatism, toothache, stroke, hoarseness, earache, sore throat, swelling, whooping cough, arthritis, erysipelas, boil, wounds, arthrosis, inflammation	Marine
Eretmochelys imbricata (Linnaeus, 1766), Atlantic hawksbill, “tartaruga de pente”	Injuries caused by bang, toothache, diabetes, headache, backache, wounds, cough, bronchitis, asthma, thrombosis, stroke, hoarseness, flu, rheumatism, earache, sore throat, swelling	Marine
Lepidochelys olivacea (Eschscholtz, 1829), olive ridley	Injuries caused by bang, toothache, diabetes, headache, backache, wounds, cough, bronchitis, asthma, thrombosis, rheumatism, stroke, hoarseness	Marine
Dermochelyidae		
Dermochelys coriacea (Vandelli, 1761), leatherback turtle, “tartaruga de couro”	Rheumatism, earache, sore throat, swelling	Marine
Geoemydidae		
Rhinoclemmys punctularia (Daudin, 1802), spot-legged turtle	Wounds, tumour, erysipelas, earache, rheumatism	Semiaquatic
Podocnemididae		
Podocnemis expansa (Schweiger, 1812), Amazon river turtle, "tartaruga da amazônia"	Inflammation, acne, tumour, boil, rheumatism, pterygium, skin spots, backache, earache, arthrosis, arthritis, swelling, wrinkle	Freshwater
Podocnemis unifilis (Troschel, 1848), yellow-spotted river turtle, "tracajá"	Wounds, tumour, erysipelas, earache, rheumatism	Freshwater
Podocnemis sextuberculata Cornalia, 1849, six-tubercled Amazon River turtle	Blackhead, acne	Freshwater
Peltoccephalus dumeriliana Schweigger 1812, “Cabeçuda”	Blackhead, acne	Freshwater
Testudinidae		
Chelonoidis carbonaria (Spix, 1824), red-footed tortoise, “jabuti”	Catarrh, erysipelas, bronchitis, stopping the sensation of getting thirsty, asthma	Terrestrial
Chelonoidis denticulata (Linnaeus, 1766), yellow-footed tortoise, “jabuti”	Sore throat, rheumatism, hernia, wounds, leishmaniosis, varicocele, earache	Terrestrial
Taxa	Health conditions treated	Habitat
----------------	--	-----------
Kinosternidae		
Kinosternon acutum (Linnaeus 1766), Tabasco Mud Turtle	Muscle aches	Freshwater
Alligatoridae		
Caiman crocodilus (Linnaeus, 1758), common cayman, “jacaré tinga”	Asthma, stroke, bronchitis, backache, earache, rheumatism, thrombosis, sexual impotence, snake bites (antidote), evil eye, irritation when milk teeth are erupting, discharge, swelling, scratch, athlete’s foot, ophthalmological problems, asthma, sore throat, amulet used as a protection against snake bite, rheumatism, hernia, prostate problems	Freshwater
Caiman latirostris (Daudin, 1801), broad-snouted cayman, “jacaré-do-papo-amarelo”	Asthma, sore throat, amulet used as a protection against snake bite, rheumatism, irritation when milk teeth are erupting, hernia, prostate problems	Freshwater
Melanosuchus niger (Spix, 1825), black cayman, “jacare açú”	Thrombosis, infection, swelling, asthma, amulet used as a protection against snake bite, injuries caused by spines of the “arraia,” pain relief in injuries caused by snake bites	Freshwater
Paleosuchus palpebrosus (Cuvier, 1807), dwarf cayman, “jacaré coroa,” “jacaré,” “jacaré-preto,” “crocodilo”	Irritation when milk teeth are erupting, snake bite (antidote), discharge, sore throat, amulet used as a protection against snake bite, hernia, prostate problems	Freshwater
Paleosuchus trigonatus (Schneider, 1801), smooth-fronted cayman, “Jacaré coroa”	Rheumatism	Freshwater
Birds		
Anatidae		
Sarkidiornis sylvicola H. Ihering & R. Ihering, 1907, American Comb Duck, “putrião”	Bleeding (wounds)	Terrestrial
Anhimidae		
Anhima cornuta (Linnaeus, 1766), horned screamer, "anuhma"	Intoxication from poisonous animals	Terrestrial
Ardeidae		
Ardea cocoi (Linnaeus, 1766), white-necked Heron	Swelling, inflammation, injuries caused by the spines of the “arraia” and others fishes, asthma, boil, tumour, inflammation, rheumatism, earache	Terrestrial
Caprimulgidae		
Nyctidromus albicollis (Gmelin, 1789), pauraque, “bacurau”	Amulets, snake bite	Terrestrial
Taxa	Health conditions treated	Habitat
--------------	---	----------
Cracidae		
Penelope jacuca (Spix, 1825), white-browed guan, “jacu”	Insomnia, epilepsy	Terrestrial
Pauxi tuberosa (Spix, 1825), razor-billed Curassow	Bleeding, snakebite, indigestion, stroke, lack of appetite in children, pneumonia	Terrestrial
Ciconiidae		
Ciconia maguari (Gmelin, 1789), maguari stork	Injuries caused by the spines of the “arraia” and others fishes, thrombosis	Terrestrial
Columbidae		
Columbina minuta (Linnaeus, 1766), plain-breasted ground dove	Lack of appetite, nausea during pregnancy	Terrestrial
Columbina picui (Temminck, 1813), Picui Dove	Lack of appetite, nausea during pregnancy, deafness	Terrestrial
Columbina talpacoti (Temminck, 1810), Ruddy Ground Dove, “rolinha-caldo-de-feijão”	Lack of appetite, nausea during pregnancy, deafness	Terrestrial
Leptotila rufaxilla (Richard & Bernard, 1792), Grey-Fronted Dove, “juriti”	Lack of appetite, nausea during pregnancy, deafness, sty, thrombosis	Terrestrial
Corvidae		
Cyanocorax cyanopogon (Wied, 1821), white-naped jay, “can-can”	Asthma	Terrestrial
Cuculidae		
Crotophaga ani Linnaeus, 1758, smooth-billed ani	Bronchitis, thrombosis, asthma, whooping cough	Terrestrial
Guira guira (Gmelin, 1788), guira cuckoo, “anum branco”	Asthma	Terrestrial
Charadriidae		
Vanellus chilensis (Molina, 1782), southern lapwing, “quero-quero”	Helping to stay awake	Terrestrial
Emberizidae		
Coereba flaveola (Linnaeus, 1758), bananquit, “caga-sebo”	Thrombosis	Terrestrial
Furnariidae		
Furnarius rufus (Gmelin, 1788), rufous hornero, “maria-barreira”	Mumps	Terrestrial
Podicipedidae		
Tachybaptus dominicus (Linnaeus, 1766), Least Grebe, “mergulhão-pequeno,” “mergulhão,” “mergulhão-preto”	Eye problems	Semiaquatic
Rallidae		
Aramides cajanea (Statius Müller, 1776), grey-necked wood-rail, “saracura”	Evil eye	Terrestrial
Rheidae		
Rhea americana (Linnaeus, 1758), greater rhea, “ema”	General aches, rheumatism, thrombosis, strokes	Terrestrial
Table 1: Continued.

Taxa	Health conditions treated	Habitat
Tinamidae		
Crypturellus noctivagus	Thrombosis, stroke	Terrestrial
(Wied, 1820), yellow-legged tinamou, “zabele”		
Crypturellus tataupa	Assisting children who take longer than usual to start walking	Terrestrial
(Temminck, 1815), Tataupa Tinamou		
Crypturellus parvirostris	Assisting children who take longer than usual to start walking	Terrestrial
(Wagler, 1827), small-billed Tinamou		
Nothura boraquira	Thrombosis, stroke, earache	Terrestrial
(Spix, 1825), white-bellied nothura, “codorna”		
Nothura maculosa	Snake bite	Terrestrial
(Temminck, 1815), Spotted Nothura, “lambú espanta-boiada,” “lambú-de-capoeira”		
Tinamus tao	Assisting children who take longer than usual to start walking	Terrestrial
Temminck, 1815, Grey Tinamou		
Rhynchotus rufescens	Thrombosis, snake bites (antidote)	Terrestrial
(Temminck, 1815), red-winged tinamou, “perdiz”		

Mammals

Agoutidae		
Cuniculus paca	Wound in the breast caused by suckling, ophthalmological problems, stomach disorders, pterygium, sucking a splinter out of skin or flesh, injuries caused by the spines of “arraia,” control of cholesterol level	Terrestrial
(Linnaeus, 1766), spotted paca, “paca”		

Bovidae

| Bubalus bubalis | Rheumatism, osteoporosis, thrombosis | Terrestrial |
| (Linnaeus, 1758), water buffalo (feral), “búfalo” | | |

Bradypodidae		
Bradypus variegatus	Thrombosis	Terrestrial
Shinz, 1825, brown-throated three-toed sloth, “Preguiça pequena”		
Bradypus tridactylus	Thrombosis, insects bite, scorpions bite	Terrestrial
Linnaeus, 1758, pale-throated three-toed sloth, “Preguiça”		

Canidae

Cerdocyon thous	Rheumatism, flu, haemorrhoids, disorders after parturition (to accelerate recovery after parturition)	Terrestrial
(Linnaeus, 1766), crab-eating fox, “raposa”		
Chrysocyon brachyurus	Epilepsy	Terrestrial
(Illiger, 1815), maned wolf, “lobo-guará”		
Dusicyon thous	Alcoholism, thrombosis, rheumatism, ophthalmological problems, diabetes, urinary infection	Terrestrial
Linnaeus, 1766, crab-eating fox, “raposa”		

Caviidae

Cavia aperea	Inflammation	Terrestrial
Erxleben, 1777, Brazilian Guinea Pig, “Preá”		
Galea spixii	Inflammation	Terrestrial
(Wagler, 1831), Spix’s Yellow-Toothed Cavy		
Kerodon rupestris	Constipation	Terrestrial
(Wied-Neuwied, 1820), Rock Cavy, “Mocó”		

Cebidae

| Alouatta belzebul | Whooping cough, sore throat, asthma | Terrestrial |
| (Linnaeus, 1766), red-handed howler monkey, “guariba,” “macaco” | | |
Table 1: Continued.

Taxa	Health conditions treated	Habitat
Alouattanigerrima Lönningberg, 1941, Black Howler Monkey	Whooping cough, inflammation	Terrestrial
Alouatta macconnelli (Linnaeus, 1766), red howler monkey, "guariba vermelho"	Whooping cough, inflammation, accelerating parturition	Terrestrial
Sapajus apella (Linnaeus, 1758), brow capuchin, “capuchin,” “macaco,” “macaco-prego”	Insect sting	Terrestrial
Cervidae		
Blastocerus dichotomus (Illiger, 1815), marsh deer, “cervo-do-pantanal”	Diarrhoea, vomit	Terrestrial
Mazama americana (Erxleben, 1777), red brocket, “veado gaedo”	Stroke	Terrestrial
Mazama simplicicornis (Illinger, 1811)	Diarrhoea, verminosis, evil eye	Terrestrial
Mazama gouazoupira (G. Fischer, 1814), grey brocket, “veado-catingueiro”	Asthma, edema, rheumatism, snake bite, thrombosis, assisting children who take longer than usual to start walking, toothache, wounds, sprains	Terrestrial
Ozotocerus bezoarticus (Linnaeus, 1758), Pampas Deer, veado campineiro	Diarrhoea, verminosis, evil eye	Terrestrial
Dasypodidae		
Dasypus novemcinctus (Linnaeus, 1758), nine-banded armadillo, “tatu galinha”	Thrombosis, insects bite, scorpions bite, edema, asthma, deafness, earache, evil eye	Terrestrial
Euphractus sexcinctus (Linnaeus, 1758), six-banded armadillo “tatu peba”	Wounds, earache, evil eye, asthma, sore throat, pneumonia, sinusitis, deafness, coarse throat	Terrestrial
** Tolypeutes tricinctus** (Linnaeus, 1758), Brazilian three-banded armadillo, “tatu-bola”	Thrombosis, rheumatism	Terrestrial
Priodontes maximus (Kerr, 1792), giant armadillo, tatu-canastra	Snake bite	Terrestrial
Dasyproctidae		
Dasyprocta prymnolopha Wagler, 1831, black-rumped agouti, “Cutia”	Asthma, thrombosis, earache	Terrestrial
Dolphinidae		
Sotalia fluviatilis Gervais & Deville (1853), grey dolphin, grey river dolphin, “boto”	Asthma, headache, rheumatism, hernia, womb disorders, sore throat, injuries caused by the spines of the “arraia,” swelling, haemorrhoids inflammation, wounds, earache, erysipelas, athlete’s foot, tumour, cancer	Freshwater
Sotaliaguianensis (P. J. Van Béne dén, 1864), Guianan River Dolphin, “boto”	Asthma, headache, rheumatism, hernia, womb disorders, sore throat, injuries caused by the spines of the “arraia,” swelling, haemorrhoids inflammation, wounds, earache, erysipelas, athlete’s foot, tumour, cancer	Marine
Didelphidae		
Didelphis albiventeris (Lund, 1840), White-Eared Opossum, “timbú”	Boils	Terrestrial
Didelphis marsupialis (Linnaeus, 1758), Black-Eared Opossum, “mucura,” “gamba,” “sarué”	Acne, wounds, bronchitis, joint pain, stomach ache, rheumatism, diarrhoea, inflammation, erysipelas, pain in gestation, asthma, headache, toothache, earache, sore throat	Terrestrial
Taxa	Health conditions treated	Habitat
-------------------	--	-------------
Echimyidae		
Thrichomys laurentius Thomas, 1904, “punaré”	Diarrhoea	Terrestrial
Erethizontidae		
Coendou prehensilis (Linnaeus, 1758), Brazilian porcupine, “coandú,” “porco espinho”	Bronchitis, thrombosis, epilepsy, stroke, abscesses, conjunctivitis, asthma	Terrestrial
Hydrochaeridae		
Hydrochaeris hydrochaeris (Linnaeus, 1766), capybara, “capibara,” “capivara”	Thrombosis, conjunctivitis, venereal disease, rheumatism, earache, strengthen bones, liver pain, bronchitis, asthma, wounds, erysipelas, cough	Terrestrial
Iniidae		
Inia geoffrensis (Blainville, 1817), Amazon river dolphin, “boto rosa”	Asthma, headache, rheumatism, hernia, womb disorders, sore throat, injuries caused by the spines of the “arraia,” swelling, haemorrhoids inflammation, wounds, earache, erysipelas, athlete’s foot, tumour, cancer	Freshwater
Leporidae		
Sylvilagus brasiliensis (Linnaeus, 1758), forest rabbit, tapeti, “coelho,” “coelho-do-mato”	Thrombosis, conjunctivitis, boils, burns	Terrestrial
Mustelidae		
Conepatus semistriatus (Boddaert, 1785), striped hog-nosed skunk, “cangambá,” “gambambá,” tacaca	Rheumatism	Terrestrial
Lontra longicaudis (Olfers, 1818), Neotropical Otter, “Lontra”	Thrombosis	Terrestrial
Myrmecophagidae		
Myrmecophaga tridactyla Linnaeus, 1758, giant anteater, “tamanduá-bandeira”	Thrombosis, stroke	Terrestrial
Myrmecophaga tetradactyla (Linnaeus, 1758), collared anteater, “tamanduá”	Edema, thrombosis	Terrestrial
Procyonidae		
Nasu nasua (Linnaeus, 1766), South American coati, “coati,” “quati”	Sexual impotence, wounds, skin burns, snake bites, backache	Terrestrial
Procyon cancrivorus (G. [Baron] Cuvier, 1798), crab-eating raccoon, “guaxinim”	Rheumatism, epilepsy, thrombosis, snake bite	Terrestrial
Tapiridae		
Tapirus terrestris (Linnaeus, 1758), Brazilian tapir, “anta”	Rheumatism, arthrosis, osteoporosis, bursitis, muscular pain, asthma, tonsillitis	Terrestrial
Tayassuidae		
Pecari tajacu Linnaeus 1758, collared peccary, “porco-do-mato,” “caititu”	Thrombosis, bronchitis, stroke	Terrestrial
Table 1: Continued.

Taxa	Health conditions treated	Habitat
Tayassu pecari (Link, 1795),	Thrombosis, stroke	Terrestrial
white-lipped peccary “porco-do-mato,”	“queixada”	
Trichechidae	Sprains, vaginal discharge, injuries caused by bang, burns, asthma, menstrual cramps, rheumatism, sore throat, wounds, muscle strain, sucking a splinter out of skin or flesh, tumour, backache, hernia, arthrosis, luxation, menstrual cramps, insects bite	Freshwater
Trichechus inunguis (Natterer, 1883), Amazonian manatee, “peixe-boi”	Sprains, vaginal discharge, injuries caused by bang, burns, asthma, menstrual cramps, rheumatism, sore throat, wounds, muscle strain, sucking a splinter out of skin or flesh, tumour, backache hernia, arthrosis, luxation, menstrual cramps, insects bite	Marine
Trichechus manatus (Linnaeus, 1758), West Indian Manatee, “peixe-boi”	Sprains, vaginal discharge, injuries caused by bang, burns, asthma, menstrual cramps, rheumatism, sore throat, wounds, muscle strain, sucking a splinter out of skin or flesh, tumour, backache hernia, arthrosis, luxation, menstrual cramps, insects bite	Marine
Felidae		
Puma concolor (Linnaeus, 1771), mountain lion, “onça”	Wounds, leishmaniosis	Terrestrial
Panthera onca (Linnaeus, 1758), jaguar, “onça”	Wounds, leishmaniosis	Terrestrial
Herpailurus yagouaroundi (É. Geoffroy Saint-Hilaire, 1803), “gatovermelho,” “gato-azul,” Jaguarundi	Wounds	Terrestrial
Leopardus pardalis (Linnaeus, 1758), ocelot, “gato-maracajá,”	Headache, sore throat, backache, wounds	Terrestrial
Leopardus tigrinus (Schreber, 1775), oncilla, “gato-mirim”	Wounds, urinary incontinence, injuries, sore throat, sucking a splinter out of skin or flesh	Terrestrial

the trahira fish (*Hoplias malabaricus*; n = 23 prescriptions) and the two manatee species recorded (*Trichechus inunguis* and *T. manatus*; n = 18 prescriptions, each) also stand out for being indicated to the treatment of multiple illnesses. Each species was prescribed to treat a mean of \(4.4 \pm 0.78\) (mean ± confidence interval) health conditions. Reptiles contributed with the highest mean number of diseases treated per species, while birds and fishes comprised the groups with the lowest means (Kruskal-Wallis test: \(H = 53.209; n = 201; p < 0.01\); Dunn’s post hoc test: \(p < 0.01\); Figure 3). Nonetheless, species showed similar number of prescriptions according to habitat type (\(F_{4,199} = 1.36; p = 0.247\)).

Prescriptions of edible medicinal vertebrates were generalised in 20 disease categories, according to ICD-10. From those, “symptoms, signs, and abnormal clinical and laboratory findings” were the most recorded category in terms of therapeutic quotes recorded, followed by “infectious and parasitic diseases” and “injuries, poisoning, and other consequences of external causes” (Table 2).

With regard to the number of species associated with ICD-10 categories, most animals were prescribed for treating problems associated with the “musculoskeletal system and connective tissue” and the “respiratory system” (each: n = 80 species; 39.2%), “injuries, poisoning, and other consequences of external causes” (67 species, 32.8%), and “symptoms, signs, and abnormal clinical and laboratory findings” (58 species, 28.4%) (Table 2).

Despite most medicinal vertebrates provide raw materials for remedies, medicinal products often have magical-religious purposes, particularly for the prevention of diseases of spiritual cause (e.g., evil eye); they were also used as amulets to prevent diseases (e.g., amulet used as a protection against snake bite). It is worth noting that many animals involved in poisoning accidents, such as stingrays and snakes,
Table 2: Medicinal uses of edible fishes and game species in Brazil. Health condition categories follow the International Statistical Classification of Diseases and Related Health Problems (ICD-10 Version: 2016). \(N = \) total number of conditions treated in each category.

ICD 10	Indication of use and therapeutic properties	\(N \)
Symptoms, signs, and abnormal clinical and laboratory findings, not elsewhere classified \((n = 58\) species)	Ascites; chest pain; cough; cracks in the sole of the feet; edema (also quoted as edema in the legs); fatigue; fever; headache; hoarseness; inflammation; jaundice; lack of appetite (also quoted as lack of appetite in children); numbness; pain (also quoted as pain in the body; pain in the breast; pain in the legs; to reduce pain); shortness of breath; swelling; assisting children who take longer than usual to start walking; vomiting.	24
Certain infectious and parasitic diseases \((n = 40\) species)	Abscesses; athlete’s foot; diphtheria; erysipelas; herpes zoster; infection; leishmaniosis; leprosy; mumps; mycosis; schistosomiasis; syphilis; tetanus; tuberculosis; venereal disease; verminosis; warts; whooping cough.	18
Injury, poisoning, and certain other consequences of external causes \((n = 67\) species)	Bruises; burns (also quoted as burns in the skin); chilblains; injuries caused by bang; injuries caused by the animal itself; injuries caused by the spines of fishes (also quoted as injuries caused by the spines of rays); intoxication from poisonous animals; pain relief in injuries caused by the species’ sting; pain relief in injuries caused by snake bites; pain relief in injuries caused by sting of insects; scratch; assisting in removing spines or other sharp structures from the skin (also quoted as to suck a splinter out of skin or flesh); wounds.	16
Diseases of the digestive system \((n = 40\) species)	Appendicitis; constipation; dental caries; diarrhoea; gastritis; haemorrhoids; hernia (also quoted as umbilical hernia); indigestion; irrigation when milk teeth are erupting; liver pain; stomach ache; stomach disorders; toothache.	14
Diseases of the musculoskeletal system and connective tissue \((n = 80\) species)	Arthritis; arthrosis; backache; bursitis; luxation; muscular pain; neck strain; osteoporosis; pain in joint; rheumatism; sprains; helping to strengthen bones.	13
Diseases of the respiratory system \((n = 80\) species)	Asthma; bronchitis; catarrh; coarse throat; cold; flu; lung disease; pneumonia; respiratory diseases; sinusitis; sore throat; tonsillitis.	12
Diseases of the skin and subcutaneous tissue \((n = 21\) species)	Acne; blackhead; boils; calluses; dermatitis; itching; paronychia; skin diseases; skin spots; skin thorns and wounds; wrinkles.	11
Diseases of the genitourinary system \((n = 19\) species)	Menstrual cramps; nephritis; prostate problems; renal failure; urinary disorders; urinary incontinence; urinary infection; discharge (also quoted as vaginal discharge); womb disorders.	10
Pregnancy, childbirth, and the puerperium \((n = 12\) species)	Disorders after parturition (to accelerate recovery after parturition); haemorrhage after delivery; nausea during pregnancy; pain in gestation; helping to accelerate parturition; helping to avoid swelling of the breast feeding; helping to induce abortion; helping to prevent abortion; wound in the breast caused by sucking.	9
Diseases of the eye and adnexa \((n = 13\) species)	Cataracts; conjunctivitis; eye pains; ophthalmological problems (also quoted as eye problems); leucoma; pterygium; stye.	8
External causes of morbidity and mortality \((n = 25\) species)	Dog bite; insect sting; scorpions sting; snake bite; helping to stop the sensation of getting thirsty.	5
Undefined \((n = 11\) species)	Amulet; amulet used as a protection against snake bite; evil eye; helping to remove wrath.	4
Diseases of the blood and blood-forming organs and certain disorders involving the immune mechanism \((n = 12\) species)	Anaemia; bleeding (also quoted as wounds bleeding); haemorrhage.	4
Diseases of the circulatory system \((n = 42\) species)	Stroke; thrombosis; varicocele.	3
Diseases of the nervous system \((n = 5\) species)	Epilepsy; insomnia; paralysis of arms and legs.	3
Mental and behavioural disorders \((n = 13\) species)	Alcoholism; sexual impotence; helping to stay awake.	3
Table 2: Continued.

ICD 10	Indication of use and therapeutic properties	N
Endocrine, nutritional, and metabolic diseases	Diabetes, goitre; helping to control cholesterol level.	3
(n = 7 species)		
Neoplasms	Breast cancer; cancer (also quoted as tumour).	3
(n = 18 species)		
Diseases of the ear and mastoid process	Deafness; earache.	2
(n = 40 species)		
Certain conditions originating in the perinatal period	Healing of umbilical cord of newborn baby.	1
(n = 1 species)		

Figure 2: Number of health conditions treated by each taxonomic group of edible vertebrates used in traditional medicines in Brazil, according to their taxonomic group. Numbers above bars: number of animal species analysed.

are also used in folk medicine, particularly to treat injuries caused by themselves (see Table 1).

Fishes and birds appear to have most similar use according to ICD-10 categories (Jaccard index: 94.4), as well as reptiles and mammals (Jaccard index: 90.0), resulting in two distinct clusters (Figure 4(a)). When considering resemblance between the disease categories recorded and animals’ habitat types, two distinct clusters were also formed (terrestrial, freshwater, coastal, and marine; costal and marine/freshwater and semi-aquatic) (Figure 4(b)), thus reflecting highest similarities between continental habitats (terrestrial and freshwater; Jaccard index: 90.0).

With regard to species conservation status, 160 animals figure in at least one of the three red lists assessed (see Table 1). In the ICUN red list, 33 species (mainly fishes and mammals) are classified into threatened categories, mostly as vulnerable (VU; n = 27) ones. Endangered (EN) and critically endangered (CR) species comprised six fishes and reptiles, namely, *Narcine bancroftii* and *Pristis pectinata* (CR) and *Sphyrna lewini*, *S. mokarran*, *Chelonia mydas*, and *Eretmochelys imbricata* (EN). In Brazilian red lists, most threatened animals are also considered VU (n = 22); EN species (n = 9) comprise mainly fishes and mammals; and CR ones (n = 8) comprise mainly fishes and marine reptiles. In CITES, 58 species are listed, especially in its Appendix II (n = 37), mammals and reptiles being the most expressive groups.
4. Discussion

The high number of vertebrates used as medicine is not surprising given the important role played by wildlife as a source of medicines in different traditional medicine systems [8, 10, 23, 24]. The predominance of fishes and mammals in the Brazilian Traditional Medicine confirms our expectations, given that those groups comprise major targets in Brazil [25–28]. Although these two taxa have been primarily harvested for alimentary purposes, they generate a series of the inedible parts [such as bone, skin, tail, feather, liver, and bile ("fel")], rattle (from rattlesnakes), spine, scale, penis, carapace, beak, teeth, head, nails, and horn that can be used in popular medicines. According to Moura and Marques [29] the use of leftover/secondary products derived from the fauna seems to be one of the most conspicuous features on the Brazilian popular zootherapy.

Zootherapeutic products, however, do not include inedible parts solely: flesh, eggs, and viscera are among some animal products used for both medicinal and alimentary purposes [1, 12, 13, 30, 31]. This corroborates the assumption that the consumption of wild vertebrates meat is often related to the purported medicinal or cultural benefits derived from the animal parts [32–35]. In a recent review study, Alves et al. [15] pointed out that at least 354 wild animal species are used in Brazilian Traditional Medicine, of which 157 are also used as food, evidencing that a close connection between eating and healing is common in Brazilian zootherapy. This is in line with several studies in ethnobiology and ethnopharmacology that have observed how difficult the clear separation between
medicines and foods can be [36–38] and this situation includes plants and animals, essential items for the preparation of traditional medicine.

Whether for food or medicinal purposes, the consumption of wild animals can lead to the transmission of various human diseases [39]. Van Vliet et al. [40] highlighted that the consumption of bushmeat for either purpose may lead to human infection by several zoonotic pathogens. Armadillos, for example, are widely used in folk medicine and are a natural reservoir of etiological agents of several zoonotic diseases that affect humans, such as leprosy, trichinosis, coccidioidomycosis or Valley Fever, Chagas disease, and typhus [41]. Therefore, it is essential that traditional drug therapies are submitted to an appropriate benefit/risk analysis [39].

It was found that several medicinal vertebrates used in the Brazilian Traditional Medicine have multiple therapeutic indications. The possibility of using various remedies for the same ailment is popular because it allows adapting to the availability of the animals. The fact that some medicinal animals are being used for the same purpose suggests that different species can share similar medicinal properties and might indicate the pharmacological effectiveness of those zootherapeutic remedies [8].

Multiple medicinal uses become even more evident when considering reptiles, as this group comprises one of the most important animal resources related to the medicine history [42] and is widely used in the most important traditional pharmacopoeias worldwide [35]. Indeed, the use in traditional medicines is the human practice that involves the highest diversity of reptile species in Brazil [17], some of which play important roles in traditional medicines, such as the “teju” (Tupinambis teguixin) and the boa snake (Boa constrictor), which are one of the most used medicinal animals in Brazil [42, 43]. Curiously, there is a general aversion to consuming some reptile groups, such as snakes and lizards, in the country. Nonetheless, this fact does not impair the use of these animals as medicines, as it is mainly associated with popular beliefs known as "simpatias," which, in most of the cases, state that "a person receiving a given treatment cannot know what he/she is taking, otherwise the effect ceases" [18]. Hence, this fact seems to favour the high use of reptile species, despite widespread aversion to those animals.

On the other hand, despite presenting the highest diversity of medicinal species, fishes were recommended to treat a comparatively low number of health conditions. This may be related to the fact that most parts of a fish are consumed as food; thus fewer products are left to be used in medicinal practices. Similarly, when considering major hunted taxa in Brazil, that is, mammals and birds [25, 26, 44], most species are also mostly consumed as food. However, the inedible parts generate “leftovers” (e.g., skin, tail, spine, scale, teeth, nails, and horn) which are among the main products used in traditional medicine. Indeed, according to Moura and Marques [29], the zootherapeutic use of the fauna is mainly based on derived leftovers/secondary products. Those authors also emphasise that, from the ecological theory point of view, the use of leftovers could be justified as an attempt to leverage the resources obtained from ecosystems which are inappropriate for alimentary consumption due to the mechanical difficulty of ingesting these parts, such as horns, feather, and scales. Therefore, one can expect that the diversity of leftovers provided by a species may support the potential to treat multiple diseases.

Animals from continental habitats (i.e., terrestrial and freshwater) were found to treat similar disease categories; the same could be found within coastal and marine animals. This may be related to the local distribution of the diseases treated, thus leading people to use local resources in the traditional medicine of each region. For instance, in coastal areas, the occurrence of diseases classified into the category “external causes of morbidity and mortality” is very common, due to sting/poisoning accidents caused by fishes (e.g., stingrays, catfish, and toadfish), which are often treated by zootherapeutic products derived from the animals that caused the lesions [45–48].

Natural resources play an essential role in health care in traditional medical systems, as well as in bioprosppecting for new drugs [49, 50], and the interest in animal-based products has raised [49, 51, 52]. Hence, despite the available information on the chemical components and actions of some of these products, studies on fauna traditional uses still are potentially very important to shed light on several aspects of their therapeutic applications [33].

The comprehension of the multiplicity and trends in therapeutic uses of several vertebrate species is of particular interest from a conservation perspective, as threatened animals, such as those recorded in this and other studies [30] could be replaced by nonthreatened species with similar properties. However, it is important to highlight that the use of animals for both food and medicinal purposes may impose higher pressure on those species under overexploitation conditions. For instance, if the animal is solely sought for medicinal purposes, it can lead the hunter/fisher to use selective capture techniques or even release nontargeted species. On the other hand, if an animal is captured for feeding reasons and is not the main target of the hunting or fishery (e.g., due to size), it can be kept by the hunter/fisher due to some medicinal property. Hence, understanding such complex interactions and trends in the use of fauna for nutritional and medicinal purposes evidences the important role that ethnobiological and ethnopharmacological studies may play in crucial discussion on the trade-offs between animal harvesting and its sustainability towards better regulation of those practices.

5. Conclusion

Wild edible vertebrates, particularly those inhabiting aquatic environments, are used to treat a wide range of health conditions in Brazil, with reptiles consisting of the most versatile group in multiple disease prescriptions. Moreover, a trend in prescriptions was found according to animals’ habitats, as disease categories were similar within continental and within coastal and marine habitats. Several consumed species are under threat, leading to a raise in conservation concerns, particularly due to the dual function (as food and medicines) those species present.
Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] R. R. N. Alves and I. L. Rosa, *Animals in Traditional Folk Medicine: Implications for Conservation*, Springer, Berlin, Germany, 2013.
[2] F. Alakbarli, *Medical Manuscripts of Azerbaijan*, Heydar Aliyev Foundation, Baku, Azerbaijan, 2006.
[3] A. Moquin-Tandon, *Elements of Medical Zoology*, Baillière, 1861.
[4] A. Scarpa, “Pre-scientific medicines: their extent and value,” *Social Science and Medicine. Part A Medical Psychology and Medical*, vol. 15, no. 3, pp. 317–326, 1981.
[5] J. Stephenson, *Medical Zoology, And Mineralogy; Or, Illustrations and Descriptions of the Animals and Minerals Employed in Medicine, and of the Preparations Derived from Them: Including Also an Account of Animal and Mineral Poisons*, John Wilson, London, UK, 1832.
[6] E. Unnikrishnan, *Materia Medica of the Local Health Traditions of Payyamnur*, Centre for Development Studies, 2004.
[7] K. P. Groark, “To warm the blood, to warm the flesh: the role of the steambath in Highland Maya (Tzeltal-Tzotzil) ethnomedicine,” *Journal of Latin American Lore*, vol. 20, no. 1, pp. 3–96, 1997.
[8] R. R. N. Alves and H. N. Alves, “The faunal drugstore: animal-based remedies used in traditional medicines in Latin America,” *Journal of Ethnobiology and Ethnomedicine*, vol. 7, article 9, 2011.
[9] G. J. Martínez, “Use of fauna in the traditional medicine of native Toba (qom) from the Argentine Gran Chaco region: an ethnozoological and conservationist approach,” *Ethnobiology and Conservation*, vol. 2, no. 2, pp. 1–43, 2013.
[10] M. M. Mahawar and D. P. Jaroli, “Traditional zootherapeutic studies in India: a review,” *Journal of Ethnobiology and Ethnomedicine*, vol. 4, no. 1, article 17, 2008.
[11] F. B. Barros, S. A. M. Varela, H. M. Pereira, and L. Vicente, “Medicinal use of fauna by a traditional community in the Brazilian Amazonia,” *Journal of Ethnobiology and Ethnomedicine*, vol. 8, article 37, 2012.
[12] F. S. Ferreira, H. Fernandes-Ferreira, N. A. Léo Neto, S. V. Brito, and R. R. N. Alves, “The trade of medicinal animals in Brazil: current status and perspectives,” *Biodiversity and Conservation*, vol. 22, no. 4, pp. 839–870, 2013.
[13] F. S. Ferreira, U. P. Albuquerque, H. D. M. Coutinho, W. D. O. Almeida, and R. R. D. N. Alves, “The trade in medicinal animals in Northeastern Brazil,” *Evidence-Based Complementary and Alternative Medicine*, vol. 2012, Article ID 126938, 20 pages, 2012.
[14] J. G. W. Marques, “A fauna medicinal dos indios Kuna de San Blas (Panamá) e a hipótese da universalidade zooterapica,” in *Proceedings of the Anais da 46a Reunião Anual da SBPC*, Vitória, Brazil, 1994.
[15] R. R. N. Alves, T. P. R. Oliveira, and I. L. Rosa, “Wild animals used as food medicine in Brazil,” *Evidence-Based Complementary and Alternative Medicine*, vol. 2013, Article ID 670352, 12 pages, 2013.
[16] A. Perry, “Global survey of marine medicinals,” in *Proceedings of the 1st International Workshop on the Management and Culture of Marine Species Used in Traditional Medicines*, M.-A. Moreau, H. J. Hall, and A. C. J. Vincent, Eds., pp. 35–43, Project Seahorse, Montreal, Canada, 2000.
[17] R. R. N. Alves, N. A. Léo Neto, G. G. Santana, W. L. S. Vieira, and W. O. Almeida, “Reptiles used for medicinal and magical religious purposes in Brazil,” *Applied Herpetology*, vol. 6, no. 3, pp. 257–274, 2009.
[18] R. R. N. Alves, I. L. Rosa, and G. G. Santana, “The role of animal-derived remedies as complementary medicine in Brazil,” *BioScience*, vol. 57, no. 11, pp. 949–955, 2007.
[19] R. R. N. Alves, G. G. Santana, and I. L. Rosa, “The role of animal-derived remedies as complementary medicine in Brazil,” in *Animals in Traditional Folk Medicine: Implications for Conservation*, R. R. N. Alves and I. L. Rosa, Eds., pp. 289–301, Springer, Berlin, Germany, 2013.
[20] D. E. Wilson and D. M. Reeder, *Mammal Species of the World, a Taxonomic and Geographic Reference*, The Johns Hopkins University Press, Baltimore, MD, USA, 3rd edition, 2005.
[21] IUCN, “IUCN 2015. IUCN Red List of Threatened Species. Version 2015.2,” http://www.iucnredlist.org/.
[22] CITES, “CITES species database,” http://www.cites.org/eng/resources/species.html.
[23] D. Ashwell and N. Walston, *An Overview of the Use and Trade of Plants and Animals in Traditional Medicine Systems in Cambodia, TRAFFIC Southeast Asia, Greater Mekong Programme*, Ha Noi, Vietnam, 1st edition, 2008.
[24] V. L. Williams, A. B. Cunningham, R. K. Bruyns, and A. C. Kemp, “Birds of a feather: quantitative assessments of the diversity and levels of threat to birds used in African traditional medicine,” in *Animals in Traditional Folk Medicine: Implications for Conservation*, R. R. N. Alves and I. L. Rosa, Eds., pp. 383–420, Springer, 2013.
[25] R. R. Barboza, S. F. Lopes, W. M. S. Souto, H. Fernandes-Ferreira, and R. R. N. Alves, “The role of game mammals as bushmeat In the Caatinga, northeast Brazil,” *Ecology and Society*, vol. 21, no. 2, article 2, 2016.
[26] R. S. de Melo, O. C. da Silva, A. Souto, R. R. N. Alves, and N. Schiel, “The role of mammals in local communities living in conservation areas in the Northeast of Brazil: an ethnozoological approach,” *Tropical Conservation Science*, vol. 7, no. 3, pp. 423–439, 2014.
[27] M. S. P. Rocha, J. S. Mourão, W. M. S. Souto, R. R. D. Barboza, and R. R. N. Alves, “Uso dos recursos pesqueiros no Estuário do Rio Mamanguape, Estado da Paraíba, Brasil,” *Interciência*, vol. 33, no. 12, pp. 903–909, 2008.
[28] M. C. Sousa, I. M. Martins, and N. Hanazaki, “Trophic relationships between people and resources: fish consumption in an artisanal fishers neighborhood in southern brazil,” *Ethnobiology and Conservation*, vol. 5, no. 4, article 4, 2016.
[29] F. B. P. Moura and J. G. W. Marques, “Zooterapia popular na Chapada Diamantina: uma Medicina incidental?” *Ciência & Saúde Coletiva*, vol. 13, pp. 2179–2188, 2008.
[30] F. S. Ferreira, S. V. Brito, W. de Oliveira Almeida, and R. R. N. Alves, “Conservation of animals traded for medicinal purposes in Brazil: can products derived from plants or domestic animals replace products of wild animals?” *Regional Environmental Change*, vol. 16, no. 2, pp. 543–551, 2016.
[31] E. M. Costa-Neto, “Healing with animals in Feira de Santana City, Bahia, Brazil,” *Journal of Ethnopharmacology*, vol. 65, no. 3, pp. 225–230, 1999.
[32] J. B. Thorbjarnarson, C. J. Lagueux, D. Bolze, M. W. Klemens, and A. B. Meylan, “Human use of turtle: a worldwide perspective,” in *Turtle Conservation*, M. W. Klemens, Ed., pp. 33–84, Smithsonian Institution Press, London, UK, 2000.
[33] M. W. Klemens and J. B. Thorbjarnarson, “Reptiles as a food resource,” *Biodiversity and Conservation*, vol. 4, no. 3, pp. 281–298, 1995.

[34] E. L. Bennett and J. G. Robinson, “Hunting of wildlife in tropical forests,” The World Bank Environment Department Papers 76, 2000.

[35] R. R. Da Nóbrega Alves, W. L. Da Silva Vieira, and G. G. Santana, “Reptiles used in traditional folk medicine: conservation implications,” *Biodiversity and Conservation*, vol. 17, no. 8, pp. 2037–2049, 2008.

[36] N. L. Etkin, *Eating on the Wild Side: The Pharmacologic, Ecologic and Social Implications of Using Noncultigens*, University of Arizona Press, 2000.

[37] V. Reyes-García, “Eating and Healing. Traditional Food as Medicine,” *Economic Botany*, vol. 60, no. 4, pp. 389–389, 2006.

[38] A. Pieroni and A. Grazzini, “Alimenti-medicina di origine animale,” in *Herbs, Humans and Animals/Erbe, Uomini e Bestie*, A. Pieroni, Ed., pp. 155–171, VDM, London, UK, 1999.

[39] P. A. G. M. De Smet, “Is there any danger in using traditional remedies?” *Journal of Ethnopharmacology*, vol. 32, no. 1–3, pp. 43–50, 1991.

[40] N. Van Vliet, J. Moreno, J. Gómez et al., “Bushmeat and human health: assessing the Evidence in tropical and sub-tropical forests,” *Ethnobiology and Conservation*, vol. 6, pp. 1–45, 2017.

[41] E. A. Silva, P. S. Rosa, M. S. Arruda, and E. M. Rúbio, “Determination of Duffy phenotype of red blood cells in Dasypus novemcinctus and Cabassous sp,” *Brazilian Journal of Biology*, vol. 65, no. 3, pp. 555–557, 2005.

[42] R. R. N. Alves, W. L. S. Vieira, G. G. Santana, K. S. Vieira, and P. F. G. P. Montenegro, “Herpetofauna used in traditional folk medicine: conservation implications,” in *Animals in Traditional Folk Medicine: Implications for Conservation*, R. R. N. Alves and I. L. Rosa, Eds., pp. 109–133, Springer, Berlin, Germany, 2013.

[43] H. Fernandes-Ferreira, S. V. Mendonça, R. L. Cruz, D. M. Borges-Nojosa, and R. R. N. Alves, “Hunting of herpetofauna in montane, coastal and dryland areas of Northeastern Brazil,” *Herpetological Conservation and Biology*, vol. 8, no. 3, pp. 652–666, 2013.

[44] G. P. Mesquita and L. N. Barreto, “Evaluation of mammals hunting in indigenous and rural localities in Eastern Brazilian Amazon,” *Ethnobiology and Conservation*, vol. 4, no. 2015, article 2, 2015.

[45] R. R. N. Alves and I. L. Rosa, “Zootherapeutic practices among fishing communities in North and Northeast Brazil: a comparison,” *Journal of Ethnopharmacology*, vol. 111, no. 1, pp. 82–103, 2007.

[46] A. Begossi, “Food taboos at Búzios Island (SE Brazil): their significance and relation to folk medicine,” *Journal of Ethnobiology*, vol. 12, no. 1, pp. 117–139, 1992.

[47] E. N. Anderson, D. Pearsall, E. Hunn, and N. Turner, “Ethnozoology of caicaras from Aventureiro, Ilha Grande,” *Journal of Ethnobiology*, vol. 21, no. 1, pp. 107–135, 2001.

[48] A. Begossi and M. Ramires, “Fish folk medicine of Caicara (Atlantic Coastal forest) and Caboclo (Amazon forest) communities,” in *Animals in Traditional Folk Medicine: Implications for Conservation*, R. R. N. Alves and I. L. Rosa, Eds., pp. 91–108, Springer, Berlin, Germany, 2013.

[49] R. R. N. Alves and U. P. Albuquerque, “Animals as a source of drugs: bioprospecting and biodiversity conservation,” in *Animals in Traditional Folk Medicine: Implications for Conservation*, R. R. N. Alves and I. L. Rosa, Eds., pp. 67–89, Springer, Berlin, Germany, 2013.

[50] J. Rose, C. L. Quave, and G. Islam, “The four-sided triangle of ethics in bioprospecting: pharmaceutical business, international politics, socio-environmental responsibility and the importance of local stakeholders,” *Ethnobiology and Conservation*, vol. 1, no. 2012, article 3, 2012.

[51] E. Chivian, *Biodiversity: Its Importance to Human Health*, Center for Health and the Global Environment, 2002.

[52] A. T. Dossay, “Insects and their chemical weaponry: new potential for drug discovery,” *Natural Product Reports*, vol. 27, no. 12, pp. 1737–1757, 2010.

[53] A. Pieroni, C. Quave, S. Nebel, and M. Heinrich, “Ethnopharmacy of the ethnic Albanians (Arbëreshë) of northern Basilicata, Italy,” *Fitoterapia*, vol. 73, no. 3, pp. 217–241, 2002.