Fear of hypoglycaemia in paediatric diabetes: a literature review

ABIRAMY FERNANDO,1 VINOD PATEL2

Abstract
Background: Type 1 diabetes mellitus is one of the most common chronic childhood illnesses and, despite ongoing technological advances, hypoglycaemia remains an inevitable therapeutic risk. Hypoglycaemia results in unpleasant physiological outcomes, social embarrassment and – in extremis – life-threatening consequences. Overlying this inescapable clinical risk is a fear of this risk, ranging from fleeting to overwhelming, and substantially impacting the trajectory of diabetes.

Aim: The aim of this literature review is to identify, summarise and critically appraise works pertaining to the development, impact and management of paediatric fear of hypoglycaemia (FoH).

Methods: A search was conducted on Embase, MEDLINE and PsycINFO for studies published between 2000 and 2020, with cross-referencing searches for articles not detected in the original keyword search. Study quality was assessed using recognised tools, and relevant data were extracted systematically.

Results: Forty-three studies met the inclusion criteria. FoH was a moderate problem throughout the studies, increased by a history of hypoglycaemia and predisposition to psychological stress. There was conflicting evidence on the influence of age, diabetes duration, technology and parental demographics. Some studies showed a significant impact on glycaemic control and quality of life (QoL), more consistently for the latter. Only 13 intervention trials were included, showing mixed success with cutting-edge technology, and decent gains with psychological interventions.

Conclusions: FoH is clearly a ubiquitous issue among some families with type 1 diabetes. Prospective longitudinal studies are required to assess potential risk factors at diagnosis, monitor for the development of FoH at regular intervals, and enable a more comprehensive assessment of the long-term impact on glycaemic control and QoL. Further randomised controlled trials must demonstrate the value of technological and psychological therapies in order to make such interventions commonplace offerings for families suffering from intractable fear.

Key words: diabetes, hypoglycaemia, fear, HbA1c, quality of life

Introduction
Type 1 diabetes mellitus (T1DM) is one of the most common chronic childhood illnesses, affecting 196 per 100,000 children aged 0–15 years in England and Wales.3 Despite rapid technological advances in diabetes therapy,2 hypoglycaemia remains the commonest acute complication of diabetes care.2 Intensive insulin therapy can increase hypoglycaemic frequency three-fold,4 and individuals with a <5-year T1DM duration experience on average 1.1 severe hypoglycaemic episodes per patient per year.3 Hypoglycaemia can result in unpleasant physiological symptoms, social embarrassment and – in extremis – life-threatening consequences. Overlying this inescapable clinical risk is a fear of this risk. This construct has been labelled a fear of hypoglycaemia (FoH) and can substantially impact the trajectory of diabetes. Individuals with strong FoH indulge in compensatory mechanisms to avoid hypoglycaemia, maintaining a ‘safe’ hyperglycaemia while carrying increased diabetes distress (DD) and poorer quality of life (QoL).

The aim of this literature review is to identify, summarise and critically appraise works pertaining to the development, impact and management of paediatric FoH. This will encompass examining FoH measurement tools, identifying predictive factors, exploring its impact and evaluating minimisation strategies. Prior works include a systematic review in parents of young children (PYC) containing six eligible studies5 and a broader review of children, adolescents and parents, comprising 16 studies.6 Although both highlighted the significance of FoH, its consequences were not fully explored, technology was less abundant, and paediatric behavioural trials non-existent. The current review aims to clearly delineate the impact of FoH on glycated haemoglobin (HbA1c) and QoL, underscoring the need for resource allocation. Moreover, diabetes care has been transformed by a decade of technological innovation, from
continuous subcutaneous insulin infusions (CSII) and continuous glucose monitors (CGM) to sensor-augmented pump therapy (SAPT) and closed-loop systems, and the debate deserves reinvigoration.8-10

Methods
The research question was generated using the Population, Intervention, Comparator and Outcome (PICO) approach.11 The population comprised children and young people (CYP) aged 0–18 years with T1DM or their parents, and whether FoH influenced glycaemic control and QoL. A literature search was conducted on Embase, MEDLINE and PsycINFO. The bibliographies of retrieved papers were also reviewed. Letters to the editor, abstracts and scientific meeting proceedings were excluded. The search was restricted to English language publications from 2000 to 2020, to capture recent changes in technology (see Appendix 1, available online www.bjd-abcd.com, for full search strategy).

Titles and abstracts were examined for inclusion. All study designs meeting PICO parameters were eligible. Exclusion criteria included primarily adult-based studies, a failure to quantitatively assess FoH or either primary outcome. Included studies were critically appraised using recognised tools: the Centre for Evidence Based Medicine criteria for cross-sectional studies,12 the National Heart, Lung, Blood Institute checklist for pre-post prospective studies,13 and the Critical Appraisal Skills Programme checklist for randomised controlled trials (RCTs)14 and systematic reviews15 (Appendix 2 available online www.bjd-abcd.com).

Data extracted included study design, demographics, diabetes duration, insulin mode, HbA1c, FoH and QoL assessments, hypoglycaemia prevalence, pertinent results, strengths and limitations (Appendix 3 available online www.bjd-abcd.com). Due to differences in populations, treatment regimens and outcome measures, a meta-analysis was not conducted. Instead, a narrative synthesis is presented.

Results
Search results
Of the 395 abstracts screened, 43 papers were included in the final analysis (see Figure 1).

The majority were cross-sectional studies (n=28), of which two datasets were used twice17-20 and three papers aggregated several studies.21-23 There were two literature reviews,6,7 five pre-post prospective studies and eight RCTs. Sample size ranged from 16 to 549 (mean 142) and 90% were of Western origin (Figure 2).

Eleven studies investigated parent-child dyads. Nineteen explored parental FoH, with 11 focusing on PYC, facing specific challenges of irregular eating and activities, difficulty matching insulin, greater aberrant glycaemia and subtleties in detection. Seven of 11 studies examining children’s FoH explored adolescents, confronting the complexities of puberty, subversion and peer influences.

Figure 1. PRISMA flow diagram of study selection process.16

Figure 2. Geographical distribution of selected studies.
Measurement of fear of hypoglycaemia

The Hypoglycaemia Fear Survey (HFS) is the most well-established measure assessing FoH, using a worry (HFS-W) and behaviour (HFS-B) subscale with 33 items graded from never to always on a Likert scale.24 The tool was modified to 25 items for parents (HFS-P)25 and revised for PYC (HFS-PYC).26 An adaptation for 6–18-year-olds also exists (HFS-C).27

The HFS-P demonstrates acceptable reliability with an internal consistency range of 0.88–0.91 for the HFS-W and 0.72–0.76 for the HFS-B.27 The HFS-B often displays slightly reduced internal consistency, registering appropriate hypoglycaemia avoidance strategies alongside inappropriate FoH-driven actions.27 Modified versions also show sufficient test-retest reliability.21 Although less used, the HFS-C has similarly been shown to have an internal consistency of 0.86 and good convergent validity.28 A key limitation of all HFS versions is the absence of established clinical cut-offs, making clinical interpretability challenging.7

The Children’s Hypoglycaemic Index (CHI) is a contemporary alternative, encompassing a fear, situation and behaviour subscale, demonstrating a good internal consistency of 0.89, decent test-retest reliability with a Pearson’s correlation coefficient of 0.76 and strong convergent validity among its various subscales. It was purposefully developed for children, explores more areas and comprises FoH-specific behaviours.29 However, it is less popular and requires further validation in practice.

Predictors of fear of hypoglycaemia

Hypoglycaemic frequency and severity is a key factor in FoH development.18,28 In a large Australian study of 325 parents of 8–18-year-olds, severe hypoglycaemia (SH) conveyed a 6.3 higher HFS-P score (p=0.004),30 while a Slovenian work linked SH with maternal hypoglycaemia preventative behaviours (r=0.25; p=0.03).31 SH also positively correlated with HFS-C helplessness scores (r=0.19; p=0.01) in an aggregated US study of 259 6–18-year-olds.32 SH clearly has a major role in the construct of FoH, although it can of course flourish irrespective of hypoglycaemic experience: in a large US study of PYC, recent SH was wholly unrelated to 549 HFS-P worry scores.32 Other studies show adolescent emergency glucose carriage (F=6.36; p=0.05)28 or diabetes management confidence (r=0.3; p<0.01) to be more predictive,33 highlighting the ability to deal with SH to be at least as important as experience of SH in the development of FoH.

A second hypothesis is that predisposition to stress, anxiety and depression contributes to FoH.34 Less mindful parenting was associated with higher HFS-P scores (p=0.006) for 421 Dutch parents,35 and a Norwegian study correlated the Hopkins Symptom Checklist-25 (HSCL-25) for depression and anxiety with HFS-P worry scores among 200 mothers (r=0.04; p=0.001) and fathers (r=0.28; p=0.006).36 Among CYP social anxiety and HFS-C scores positively correlated for North American boys (r=0.45; p<0.01) and girls (r=0.30; p=0.005),36 as did emotional disorders and HFS-B scores among Saudi adolescents.37 Of course, such psychological co-morbidities are also associated with certain sociodemographic factors, compounding vulnerability to FoH. For instance, parenting stress has been linked to having younger children, lower socioeconomic status and a non-Caucasian background, factors all also independently associated with FoH.38

The most noteworthy demographic variable was gender. Several international studies demonstrated significantly higher maternal HFS scores.18,19,26,31 Girls had higher HFS-C helplessness scores (F=4.33; p=0.039) than boys,7 and twice as high FoH scores (p<0.0001) in a 453-strong adolescent Swedish study.39 Few studies depicted no gender disparity.40 Age was also influential: parents of 6–11-year-olds had higher HFS-P scores than parents of children aged 0–5 years (p=0.003) or >12 years (p=0.003), perhaps reflecting care transition from parent to school,40 and adolescent age correlated with higher HFS-C social consequence scores.72 However, associations between age and FoH were inconsistent.31,41 The impact of technology was also indeterminate, ranging from higher HFS-P behaviour scores with multiple daily injections,19 and lower HFS-C worry scores with CSII (p=0.05),42 to no impact28,42 or moderate FoH encouraging CSII use.43

Impact of fear of hypoglycaemia

FoH is postulated to cause hypoglycaemia-avoidant behaviour, prolonged hyperglycaemia, poor glycaemic control and increased HbA1c levels. Hyper-vigilant parents admit to accepting higher target ranges where such vigilance is implausible,44 as do adolescents seeking to avoid humiliating public hypoglycaemia. Several studies confirmed significant associations between FoH scores and HbA1c.19,30,41 Others demonstrated no correlations between HFS-P,18,26,32 HFS-C,17,37 and HbA1c. In some cases, despite high maternal HFS-B,45 or HFS-C maintain high blood glucose factor scales correlating with hyperglycaemia, there was no corresponding rise in Hba1c.45 It is clear that Hba1c is a multi-factorial derivation, often poorly reflective of everyday blood glucose excursions. More detailed glycaemic data are required to truly capture the impact of FoH on glycaemic control. Contrary to the initial hypothesis, FoH can also intensify diabetes control, negating any negative impact on Hba1c, or even improving glycaemic control,71,23 although this was a far less common pattern.

The second key FoH impact is upon QoL, although few studies cite QoL as a primary outcome. It is challenging to deduce whether predisposition to stress, anxiety and depression increases FoH, or if FoH intensifies pre-existing psychological burden. In reality, this relationship is bi-directional and there is likely to be an element of reverse causality.34 Parents and children in the highest fear quartile have been shown to have lower scores on the Paediatric Quality of Life Inventory (PedsQL) by 20–22%,39 and significant associations have been demonstrated between FoH and DD in adolescent girls (p=0.044) and boys (p=0.026).39

Minimisation of fear of hypoglycaemia

The 13 paediatric intervention trials identified highlight the ambiguity of using technology to reduce hypoglycaemia risk and fear. The Juvenile Diabetes Research Foundation CGM RCT failed to exhibit appreciable reductions in HFS-P and HFS-C scores across 10 UK sites,36 while a smaller UK study of 16 adolescents did show HFS-P (98.69 vs 66.69; p=0.0021) and HFS-C (97.38 vs 59.75; p=0.003) reductions with 12 months’ CGM,45 as did an Australian...
crossover RCT evaluating remote monitoring mobile CGM. In a multicentre German observational study, CSII use for 6 months conferred significant reductions in HFS-P worry scores (d=0.4-0.6; p<0.01), with replicable results a decade later, and in Saudi Arabia, flash glucose monitoring improved adolescent HFS-C scores (p=0.0001). A replicate study involving Israel, Slovenia and Germany comparing an artificial pancreas system with SAPT for 4 nights demonstrated significant HFS-C worry reductions (1.04 vs 0.90; p=0.017), whereas a UK crossover RCT comparing closed loop systems with SAPT did not, nor did a multicentre Australian RCT comparing predictive low glucose management versus SAPT.

A comprehensive adult literature review showcased blood glucose awareness training and cognitive behavioural therapy (CBT) as effective interventions. A US multisite RCT involving 258 adolescents evaluated the Flexible Lifestyles Empowering Change (FLEX) programme of motivational interviewing and problem-solving skills. Significant improvements were found in adolescent worry/helplessness criteria (−0.16; p=0.04), adolescent health-related QoL (3.18; p=0.009) and parents’ behaviours to maintain high blood glucose (−0.21; p=0.005). Another American intervention using video-based telehealth (REDCHiP) involved 36 parents of 2–6-year-olds. REDCHiP comprised a 10-week programme applying CBT principles to recognise FoH-related thoughts and behaviours, refining coping strategies and practising exposures to challenging situations. At 3 months there were significant reductions in HFS-PYC and DD scores.

Discussion

Main findings

FoH is a pervasive problem, dependent on a range of factors. Negative hypoglycaemic experience is clearly key, with psychological comorbidity serving as both a predictive and confounding factor. Greater female FoH prevalence undoubtedly reflects a higher female psychological burden with double the DD and greater anxiety levels, although paternal FoH is poorly represented with the only dedicated study displaying low FoH and state anxiety. FoH often results in deteriorating glycaemic control, which is sometimes reflected in increased HbA1c levels. The impact of FoH on QoL is also more nuanced, as innumerable variables contribute to QoL, not least of which is chronic illness itself. Technology has a definitive role in minimising FoH, which is most beneficial in conjunction with psychological gains. Successful intervention studies reveal significant reductions in PedsQL, parental health-related QoL, stress and anxiety, alongside FoH reductions. Psychological intervention is clearly vital, but requires significant buy-in. A UK pilot of problem-solving workshops highlighted significant recruitment issues: although over 90% of the 89 families approached had high HFS-P scores, only 25% participated, citing reluctance to miss school, lack of time, interest or travel difficulties. Lessons must be learnt for future directives and further statistically powered RCTs are needed to confirm the validity of this approach.

Strengths and limitations

The majority of papers were cross-sectional studies, relatively quick, low-cost undertakings, useful in displaying prevalence, associations and new hypotheses, but unable to establish causality or temporality. Only seven studies performed power calculations to justify sample size; others were likely woefully underpowered. Inter-study variability also rendered some comparisons or aggregations redundant. For instance, a third of studies lacked a definition for SH, definitions varied widely, and most SH was self-reported. Only four intervention trials listed FoH as a primary outcome, nevertheless 92% provided significant p values with precise confidence intervals. Sadly, all lacked a cost-benefit analysis (Appendix 2).

Although FoH measurement was largely comparable and robust, with 93% of studies using the psychometrically strong HFS, this questionnaire is subject to recall bias, requires literacy, self-assessment and abstract reasoning. Age-specific considerations include the ability of younger children to hypothecate, adolescents to be candid and parental engagement in diabetes care. The impact of FoH was chiefly assessed upon HbA1c and QoL. The validity of the former was marred by historic clinic records, different laboratories, self-report and missing data. It is also likely that time spent in range is a more useful marker than HbA1c. QoL was assessed using an array of established tools, limiting comparability, and was coloured with recall bias.

Selection bias was a fundamental limitation: most recruited opportunistically from diabetes clinics or camps, 22 were restricted to single centres and only a handful accessed national registries. Participants were self-selected by virtue of attending clinic, answering calls or adverts, reflecting a motivated cohort. Further commitment involved questionnaire completion, regular self-monitoring of blood glucose or embracing technology. Response rates across 27 studies ranged from 21% to 96% (mean 61%). Engaged respondents generally revealed better glycaemic control than non-respondents, with a mean study participant HbA1c of 66 mmol/mol and CSII use of 5–86%, often deviating markedly from UK rates of 36.7%. Studying populations with better glycaemic control potentially skews the FoH burden and its confounders.

Reviewing only English language publications delivered populations fairly reflective of the UK. Middle Eastern studies relied on questionnaire translation and back-translation, as did many European studies. This may have introduced inaccuracies and cultural inconsistencies. Study cohorts reflected narrow socioeconomic groups: 20 of 23 studies describing ethnicity were 71–97% Caucasian, 15 had a 69–98% married population and 22 demonstrated higher parental education, employment or income (Appendix 3). This diminishes the wider applicability of the results while highlighting the time, interest and literacy often decisive in study participation. Future studies need selection processes which overcome these biases. Mothers represented 52–98% of parent participants (mean 80%) across 20 studies, excluding exclusively maternal or paternal studies. Achieving gender parity is challenging, as mothers are usually the primary caregivers whereas fathers undertake <20% of diabetes-related tasks. It is nevertheless important that future studies are more representative.

Implications for future research and practice

There has been a substantial body of work evaluating the scope of
paediatric FoH, but to truly capture the natural history of an often transient phenomenon, large-scale prospective longitudinal studies are required. An assessment of FoH should include the validated HFS and an objective psychological evaluation. The outcome of glycaemic control should be broadened to include CGM data, acute and secondary complications. QoL should be assessed by both subjective questionnaires and objective psychological appraisal. To limit selection bias, studies must aim to include both parents of all patients within a named diabetes centre, with efforts to minimise language and travel barriers. Further statistically powered RCTs must confirm the validity and applicability of interventions. Awareness of FoH should be raised among local paediatric diabetes multidisciplinary teams, CYP and their parents, with a view to including HFS-P, HFS-PYC and HFS-C surveys within the annual diabetes review so at-risk families can be offered appropriate interventions.

Conclusions

This review indicates that FoH is an important issue among CYP with T1DM and their parents. There are several factors involved in the development of FoH. Personal experience of hypoglycaemia and psychological vulnerability are core features in the construct, but the weight of these factors depends on a host of other sociodemographic variables. The true causality and burden of FoH can be better established in prospective longitudinal studies, assessing these potential risk factors at diagnosis and monitoring for the development of FoH at regular intervals. Significant FoH can invariably impact diabetes management and glycaemic control; longitudinal results with CGM data will enable a subtler evaluation of this relationship. Study spans over decades can also assess the psychological burden of FoH more comprehensively than snapshot cross-sectional data. Although such studies are costly and susceptible to high dropout rates, they are necessary to accurately define the long-term impact of FoH. This enables at-risk individuals to be identified more readily, and intervention measures to be better tailored. Despite a recent expansion in paediatric FoH intervention trials, numbers are still small. A greater volume of such trials, with larger study numbers, are desperately needed to demonstrate the value of technological and psychological therapies in order to make such interventions commonplace offerings for families suffering from intractable fear.

Conflict of interest None.

Author contributions AF conducted the literature review and wrote the first draft. VP reviewed the content and suggested amendments which AF incorporated.

Funding None.

References

1. National Paediatric Diabetes Audit (2018–19) National Paediatric Diabetes Report. Health Quality Improvement Partnership, Royal College of Paediatrics and Child Health. 2018–19: 7. https://www.rcpch.ac.uk/sites/default/files/2020-03/final_npa_core_report_2018-2019.pdf
2. Diabetes UK. Type 1 Diabetes Technology: A Consensus Guideline. June 2018. https://www.diabetes.org.uk/resources-c3/2018-06/Diabetes%20UK%20consensus%20guideline%20for%20type%201%20diabetes%20technology.pdf
3. Abraham MB, Jones TW, Naranjo D, et al. ISPAD Clinical Practice Consensus Guidelines 2018: Assessment and management of hypoglycaemia in children and adolescents with diabetes. Pediatr Diabetes 2018;27:178–92. https://cdn.ymaws.com/www.ispad.org/resource/resmgr/consensus_guidelines_2018/_12.assessment_and_management.pdf
4. The Diabetes Control and Complications Trial Research Group. Hypoglycaemia in the Diabetes Control and Complications Trial. Diabetes 1997; 46(2):271–86. https://doi.org/10.2337/db97-0599-y
5. UK Hypoglycaemia Study Group. Risk of hypoglycaemia in types 1 and 2 diabetes: effects of treatment modalities and their duration. Diabetologia 2007; 50:1140–7. http://dx.doi.org/10.1007/s00125-007-0599-y
6. Barnard K, Thomas S, Royle P, Noyes K, Waugh N. Fear of hypoglycaemia in parents of young children with type 1 diabetes: a systematic review. BMC Paediatri 2010;10:50. http://dx.doi.org/10.1186/1471-2334-10-50
7. Driscoll KA, Raymond J, Naranjo D, Patton SR. Fear of hypoglycaemia in children and adolescents and their parents with type 1 diabetes. Current Diabetes Reports 2016;16(8):77. http://dx.doi.org/10.1007/s11892-016-0762-2
8. National Institute for Clinical Excellence. Continuous subcutaneous insulin infusion for the treatment of diabetes mellitus. Technology appraisal guideline [TA151]. July 2008. https://www.nice.org.uk/guidance/ta151
9. National Institute for Clinical Excellence. Diabetes (type 1 and type 2) in children and young people: diagnosis and management. NICE guideline [NG18]. August 2015. https://www.nice.org.uk/guidance/ng18
10. National Institute for Clinical Excellence. Integrated sensor-augmented pump therapy systems for managing blood glucose levels in type 1 diabetes. (the MiniMed Paradigm Veo system and the Vibe and G4 PLATINUM CGM system). Diagnostics guidance [DG21]. February 2016. https://www.nice.org.uk/guidance/dg21/resources/integrated-sensor-augmented-pump-therapy-systems-for-managing-blood-glucose-levels-in-type-1-diabetes-the-miniMed-paradigm-veo-system-and-the-vibe-and-g4-platinum-cgm-system-pdf-1053685217221
11. Huang X, Lin K, Demner-Fushman D. Evaluation of PICO as a knowledge base tool for clinical questions. AMIA Annual Symposium Proceedings Archive 2006;359–63.
12. Center for Evidence Based Management. Critical Appraisal Checklist for Cross-Sectional Study. 2014. https://cebma.org/wp-content/uploads/Critical-Appraisal-Questions-for-a-Cross-Sectional-Study-July-2014-1.pdf
13. National Heart, Lung and Blood Institute. Quality Assessment Tool for Before-After (Pre-Post) Studies with No Control Group. 2018. https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools
14. Critical Appraisal Skills Programme. CASP Randomised Controlled Trial Checklist. 2018. https://casp.ac.uk/wp-content/uploads/2018/03/
Critical Appraisal Skills Programme. CASP Systematic Review Checklist.

Gonder-Frederick L, Nyer M, Shepard JA, Vajda K, Clarke W. Assessing fear of hyperglycemia in parents of young children with type 1 diabetes. Can J Diabetes 2015;39(4):302–7. http://dx.doi.org/10.1016/j.jcjd.2014.12.011

Amiri F, Mohammadreza V, Gonder-Frederick L. Glycemic control, self-efficacy and fear of hypoglycemia among Iranian children with type 1 diabetes. Can J Diabetes 2015;39(4):302–7. http://dx.doi.org/10.1016/j.jcjd.2014.12.011

Amiri F, Vafa M, Gonder-Frederick L, et al. Evaluating fear of hypoglycaemia, pediatric parenting stress, and self-efficacy among parents of children with type 1 diabetes and their correlation with glycemic control. Med J Islamic Republic of Iran 2018;32(1):119. http://dx.doi.org/10.14196/mjiri.32.119

Haugstvedt A, Wentzel-Larsen, Aarflot M, Rokne B, Graue M. Assessing fear of hypoglycemia in a population-based study among parents of children with type 1 diabetes: psychometric properties of the hypoglycaemic fear survey- parent version. BMC Endocrine Disord 2015;15(2).

Gonder-Frederick L, Nyer M, Shepard JA, Vajda K, Clarke W. Assessing fear of hypoglycemia in children with type 1 diabetes and their parents. Diabetes Manage 2011;1(6):627–39. http://dx.doi.org/10.2211dtm.11.60

Shepard JA, Vajda K, Nyer M, Larke W, Gonder-Frederick L. Understanding the construct of fear of hypoglycemia in pediatric type 1 diabetes. J Pediatr Psychol 2013;39(10):1115–25. http://dx.doi.org/10.1097/psp.0b013e31827a9068

Patton SR, Noser AE, Clements MA, Dolan LM, Powers SW. Reexamining the hypoglycemia dear survey for parents of young children in a sample of children using insulin pumps. Pediatr Diabetes 2017;18(2):103–8. http://dx.doi.org/10.1111/pedi.12525

Cox DJ, Irvine A, Gonder-Frederick L, Nowacze G, Butterfield J. Fear of hypoglycemia: quantification, validation and utilization. Diabetes Care 1987;10(5):617–21. http://dx.doi.org/10.2373/diacare.10.5.617

Clarke WL, Gonder-Frederick A, Snyder AL, Cox DJ. Maternal fear of hypoglycaemia in mothers and fathers of children with type 1 diabetes. BMJ 1998;311:189–94. http://dx.doi.org/10.1136/bmj.311.7007.189

Patton SR, Dolan LM, Henry R, Powers SW. Parental fear of hypoglycemia in parents of young children with type 1 diabetes. J Paediatr Child Health 2014;50(8):639–42. http://dx.doi.org/10.1111/jpc.12621

Vaene A, Van Daele T, Bloys D, Faust K, Massa GG. Fear of hypoglycaemia, parenting stress, and metabolic control for children with type 1 diabetes and their parents. J Clin Psychol Med Settings 2008;15(3):252–9. http://dx.doi.org/10.1007/s10880-008-9123-4

Green LB, Wysocki T, Reineck BM. Fear of hypoglycemia in children and adolescents with diabetes. J Pediatr Psychol 1990;15(5):633–41. http://dx.doi.org/10.1176/jpp.15.5.633

Gonder-Frederick LA, Fisher CD, Ritterband LM, et al. Predictors of fear of hypoglycemia in adolescents with type 1 diabetes and their parents. Pediatr Diabetes 2006;7(4):215–22. http://dx.doi.org/10.1111/j.1399-5448.2006.00182.x

Kamps L, Roberts MC, Varela RE. Development of a new fear of hypoglycaemia scale: preliminary results. J Pediatr Psychol 2005;30(3):287–91. http://dx.doi.org/10.1093/jpepsy/jsi038

Johnson SR, Cooper MN, Davis EA, Jones TW. Hypoglycemia, fear of hypoglycemia and quality of life in children with type 1 diabetes and their parents. Diabet Med 2013;30(9):1126–31. http://dx.doi.org/10.1111/dme.12247

Pate T, Klemencic S, Battelino T, Bratina N. Fear of hypoglycemia, anxiety, and subjective well-being in parents of children and adolescents with type 1 diabetes. J Health Psychol 2019;24(2):209–18. http://dx.doi.org/10.1177/1359105316650931

Van Name MA, Hilliard ME, Boyle CT, et al. Nighttime is the worst time: parental fear of hypoglycemia in young children with type 1 diabetes (T1D). Paediatric Diabetes 2018;19(1):114–20. http://dx.doi.org/10.1111/pedi.12525

Herbert LJ, Monaghan M, Cogan F, Streisand R. The impact of parents’ sleep quality and hypoglycemia worry on diabetes self-efficacy. Behavioral Sleep Med 2015;13(4):308–23. http://dx.doi.org/10.1080/15402002.2014.989303

Patton SR, Dolan LM, Smith LB, Thomas IH, Powers SW. Pediatric parenting stress and its relation to depressive symptoms and fear of hypoglycemia in parents of young children with type 1 diabetes mellitus. Diabetes Technol Ther 2006;8(9):b2535. http://dx.doi.org/10.1089/dia.2009.02867.x

Al Hayek AA, Robert AA, Braham RB, Issa BA, Sabaan FS. Predictive risk factors of hypoglycaemia and anxiety-related emotional disorders among adolescents with type 1 diabetes. Medical Principles and Practice 2015;24(3):222–30. http://dx.doi.org/10.1159/000375306

Streisand R, Swift E, Markwick T, Chen R, Holmes C. Pediatric parenting stress and fear of hypoglycemia in parents of children with type 1 diabetes: the role of self-efficacy. J Pediatr Psychol 2010;35(1):513–21. http://dx.doi.org/10.1093/jpepsy/js076

Forsander G, Bøgelund M, Haas J, Samuelsson U. Adolescent life with diabetes: gender matters for level of distress. Experiences from the National TODS study. Pediatr Diabetes 2017;18(7):651–9. http://dx.doi.org/10.1111/pedi.12478

Havens CP, McDarby V, Cody D. Fear of hypoglycemia in parents of children with type 1 diabetes. J Pediatr Child Health 2014;50(8):639–42. http://dx.doi.org/10.1111/jpc.12621

Lawton J, Waugh N, Barnard KD, et al. Challenges of optimizing glycemic control in children with type 1 diabetes: a qualitative study of parents’ experiences and views. Diabet Med 2015;32(8):1036–70. http://dx.doi.org/10.1111/dme.12660

Freckleton E, Sharpe L, Mullan B. The relationship between maternal fear of hypoglycaemia and adherence in children with type-1 diabetes. Int J Behav Med 2013;21(5):804–10. http://dx.doi.org/10.1007/s12215-013-9360-8

Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study Group. Quality-of-life measures in children and adults with type 1 diabetes. Juvenile Diabetes Research Foundation Continuous Glucose Monitoring randomized trial. Diabetes Care 2013;36(10):2175–7. http://dx.doi.org/10.2337/dc13-0331

Ng SM, Moore HS, Clemente MF, Pintus D, Soni A. Continuous glucose monitoring in children with type 1 diabetes improves well-being, alleviates worry and fear of hypoglycemia. Diabetes Technol Ther 2019;21(3):1–5. http://dx.doi.org/10.1089/dia.2018.0347

Burckhardt M, Roberts A, Smith GJ, Abraham MB, Davis EA, Jones TW. The use of continuous glucose monitoring with remote monitoring improves psychosocial measures and fear. J Pediatr Diabetes 2015;36(1):209–18. http://dx.doi.org/10.1111/j.1399-5448.2015.00622.x

Muller-Godeffroy E, Treichel S, Wagner VM, German Working Group for Paediatric Pump Therapy. Investigation of quality of life and family burden issues during insulin pump therapy in children with type 1 diabetes mellitus: a large-scale multicentre pilot study. Diabet Med 2009;
50. Mueller-Godeffroy, Vonthein R, Ludwig-Seibold C, et al, German Working Group for Pediatric Pump Therapy. Psychosocial benefits of insulin pump therapy in children with diabetes type 1 and their families: the Pumpkin multicentre randomized controlled trial. Pediatr Diabetes 2018;19(8):1471–80. http://dx.doi.org/10.1111/pedi.12777

51. Al Hayek AA, Robert AA, Dawish MAA. Evaluation of FreeStyle Libre flash glucose monitoring system on glycemic control, health-related quality of life, and fear of hypoglycaemia in patients with type 1 diabetes. Endocrinol Diabetes 2017;10:1–6. http://dx.doi.org/10.1177/1179551417746957

52. Ziegler C, Lieberman A, Nimri R, et al. Reduced worries of hypoglycaemia, high satisfaction, and increased perceived ease of use after experiencing four nights of MD-Logic artificial pancreas at home (DREAM4). J Diabetes Res 2015;2015:590308. http://dx.doi.org/10.1155/2015/590308

53. Barnard KD, Wysocki T, Allen JM, et al. Closing the loop overnight at home setting: psychosocial impact for adolescents with type 1 diabetes and their parents. BMJ Open Diabetes Res Care 2014;2(1):e000025. http://dx.doi.org/10.1136/bmjdrcc-2014-000025

54. Abraham MB, Nicholas JA, Smith GJ, et al, PLGM Study Group. Reduction in hypoglycaemia with the predictive low-glucose management system: a long-term randomized controlled trial in adolescents with type 1 diabetes. Diabetes Care 2018;41(2):303–10. http://dx.doi.org/10.2337/dc17-1604

55. Wild D, Maltzahn R, Brohan E, Christensen T, Clauson P, Gonder-Frederick L. A critical review of the literature on fear of hypoglycaemia in diabetes: Implications for diabetes management and patient education. Patient Education and Counselling 2007;68(1):10–15. http://dx.doi.org/10.1016/j.pec.2007.05.003

56. Mayer-Davis EJ, Maahs DM, Seid M, et al. Efficacy of the Flexible Lifestyles Empowering Change intervention on metabolic and psychosocial outcomes in adolescents with type 1 diabetes (FLEX): a randomised controlled trial. Lancer Child Adolesc Health 2018;2(9):635–46. http://dx.doi.org/10.1016/S2352-4642(18)30208-6

57. Patton SR, Clements MA, Marker AM, Nelson E. Intervention to reduce hypoglycaemia fear in parents of young kids using video-based telehealth (REDCHiP). Pediatr Diabetes 2019;21(1):112–9. http://dx.doi.org/10.1111/pedi.12934

58. Mitchell SJ, Hilliard ME, Mednick L, Henderson C, Cogen FR, Streisand R. Stress among fathers of young children with type 1 diabetes. Family System Health 2009;27(4):314–24. http://dx.doi.org/10.1037/a0018191

59. Grey M. Coping and psychosocial adjustment in mothers of young children with type 1 diabetes. Child Health Care 2009;38(2):91–106. http://dx.doi.org/10.1080/02739610902813229

60. Cai RA, Holt RIG, Casdagli L, et al. Development of an acceptable and feasible self-management group for children, young people and families living with type 1 diabetes. Diabet Med 2017;34(6):813–20. http://dx.doi.org/10.1111/dme.13341

Testosterone and Type 2 Diabetes Worldwide Audit

ABCD has launched a Worldwide Audit of Testosterone and Diabetes in the UK and Internationally to assess real clinical efficacy and safety & inform future practice and guidelines

Symptomatic Testosterone Deficiency is present in approximately 40% of men with Type 2 diabetes. Data from patients who are testosterone deficient and not treated can also be entered.

Does your centre diagnose Testosterone Deficiency?

If yes, **REGISTER YOUR CENTRE!**

at https://abcd.care/application-join-abcd-worldwide-testosterone-and-diabetes-audit

- you are invited to enter your patients’ data into the bespoke online tool
- you will be able to analyse your local data easily
- the data will be automatically added to the national data in anonymised form
- we can provide easy-to-complete paper proformas for use in clinic if preferred

Please remember:

- the more data, the more complete our understanding of Testosterone in real clinical practice
- all contributors will be listed in publications arising from data submission
Appendix 1. Search Strategies

A. Embase
1. type 1 diabetes mellitus.mp. or insulin dependent diabetes mellitus/ (117090)
2. (T1DM or T1D or IDDM).mp. [mp=title, abstract, heading word, drug trade name, original title, device manufacturer, drug manufacturer, device trade name, keyword, floating subheading word, candidate term word] (30663)
3. 1 or 2 (122864)
4. hypoglycemia/ or fear of hypoglycaemia.mp. or fear/ (150043)
5. hypoglycemia/ or FoH.mp. or fear/ (150230)
6. 4 or 5 (150251)
7. HbA1c.mp. or hemoglobin A1c/ (113493)
8. glycosylated hemoglobin/ or glycemic control.mp. or glycemic control/ or glucose blood level/ (323176)
9. 7 or 8 (376656)
10. (depression or anxiety).mp. [mp=title, abstract, heading word, drug trade name, original title, device manufacturer, drug manufacturer, device trade name, keyword, floating subheading word, candidate term word] (566645)
11. 10 or 11 (879500)
12. 3 and 6 and 9 and 12 (1501)
13. limit 13 to (english language and yr="2000 - 2020" and child <unspecified age>) (286)

B. Medline
1. type 1 diabetes mellitus.mp or Diabetes Mellitus, Type 1/ (77260)
2. (T1DM or T1D or IDDM).mp (16468).
3. 1 or 2 (80748)
4. Hypoglycaemia/ or fear of hypoglycaemia.mp (27064)
5. Fear/ or FoH.mp. or Hypoglycemia/ (57847)
6. 4 or 5 (57902)
7. HbA1c.mp. or Glycated Hemoglobin A/ (51919)
8. Glycated Hemoglobin A/ or Blood Glucose/ or glycemic control.mp. (190137)
9. 7 or 8 (202638)
10. “quality of life.mp. or “Quality of Life”/ (317349)
11. Depression/ or Anxiety/ (525114)
12. 10 or 11 (803362)
13. 3 and 6 and 9 and 12 (303)
14. Limit 13 to (English language and yr="2000-2020" and “all child (0 to 18 years)” and last 20 years) (120)

C. PsycINFO
1. (type 1 diabetes mellitus or diabetes mellitus).mp. [mp=title, abstract, heading word, table of contents, key concepts, original title, tests & measures, mesh] (11675)
2. (T1DM or T1D or IDDM).mp. [mp=title, abstract, heading word, table of contents, key concepts, original title, tests & measures, mesh] (785)
3. 1 or 2 (11928)
4. exp Hypoglycemia/ or exp Fear/ or hypoglycaemia.mp. (21131)
5. exp Fear/ or exp Hypoglycemia/ or FoH.mp. (20993)
6. 4 or 5 (21147)
7. HbA1c.mp. (1750)
8. exp Glucose/ or exp Blood Sugar/ or glycemic control.mp. (5846)
9. 7 or 8 (7008)
10. quality of life.mp. or exp “Quality of Life”/ or QoL.mp. (45348)
11. 10 or 11 or 12 (519192)
12. (depression or anxiety).mp. [mp=title, abstract, heading word, table of contents, key concepts, original title, tests & measures, mesh] (456241)
13. 10 or 11 or 12 (519192)
14. 9 or 13 (524970)
15. 3 and 6 and 14 (89)
16. limit 15 to (english language and (childhood <birth to 12 years> or adolescence <13 to 17 years>) and last 20 years) (17)
Appendix 2. Quality Assessment Tables

A. Cross-Sectional Studies (n = 28)
CEBM Critical Appraisal of a Cross-Sectional Study (CEBM, 2014)

Question
1. Did the study address a clearly focused question/issue?
2. Is the research method (study design) appropriate for answering the research question?
3. Is the method of selection of the subjects (employees, teams, divisions, organizations) clearly described?
4. Could the way the sample was obtained introduce (selection) bias?
5. Was the sample of subjects representative with regard to the population to which the findings will be referred?
6. Was the sample size based on pre-study considerations of statistical power?
7. Was a satisfactory response rate achieved?
8. Are the measurements (questionnaires) likely to be valid and reliable?
9. Was the statistical significance assessed?
10. Are confidence intervals given for the main results?
11. Could there be confounding factors that haven’t been accounted for?
12. Can the results be applied to your organization?
Appendix 2. Quality Assessment Tables (continued)

Study	1	2	3	4	5	6	
First Author	Publication Year	Clearly focused question	Appropriate research method	Clear study design	Selection bias	Representative sample characteristics	Power calculation
1.	2018	Yes	Mindfulness and parental FoH	Yes	Yes	Partially: locally based population 3% non-Dutch; 85% married 83% paid job	No
2.	2015	Yes	FoH and anxiety	Yes	Yes	Randomized controlled trial with a follow-up of 1 year	No
3.	2014	Yes	FoH, self-efficacy and HbA1c	Yes	Yes	Reflective of local population 100% Iranian	No
4.	2018	Yes	FoH, self-efficacy and parenting stress	Yes	Yes	Reflective of local population 100% Iranian	No
5.	2009	Yes	Effect of FoH on social anxiety, adherence and QoL	Yes	Yes	Representative of clinic population 82% white; 12% African-American but higher SEE	No
6.	2016	Yes	Gender and DD, including FoH	Yes	Yes	Qualitatively-rational database 68% married; 90% economic status above average; more girls	No
7.	2014	Yes	Maximised FoH and adherence	Yes	Yes	Yes	No
8.	2011	Yes	FoH and diabetes self-management	Yes	Yes	Yes	No
9.	2006	Yes	Influence of trait anxiety and hypoglycaemic history on FoH	Yes	Yes	Yes	No
10.	2011	Yes	FoH and diabetes control	Yes	Yes	Unclear 88% Caucasian	No
11.	2009	Yes	Anxiety & depression in mothers related to FoH, coping and metabolic control	Yes	Yes	Baseline data from an RCT on coping skills training	No
12.	2019	Yes	FoH, hypoglycaemia and parental emotional distress	Yes	Yes	Baseline data from an RCT on coping skills training	No
13.	2015	Yes	Examine psychometric properties of HFS-IP	Yes	Yes	Baseline data from an RCT on coping skills training	No
14.	2014	Yes	Parental FoH and glycaemic control	Yes	Yes	Baseline data from an RCT on coping skills training	No
15.	2014	Yes	Relationship of sleep, FoH and diabetes self-efficacy	Yes	Yes	Baseline data from an RCT on coping skills training	No
16.	2013	Yes	Evaluate FoH, hypoglycaemia and quality of life	Yes	Yes	Baseline data from an RCT on coping skills training	No
17.	2005	Yes	Provision of preliminary psychometric data on CHI	Yes	Yes	Baseline data from an RCT on coping skills training	No
18.	2012	Yes	Comparison of psychological characteristics: CGM v. SMBG	Yes	Yes	Baseline data from an RCT on coping skills training	No
19.	2009	Yes	Correlates of fathers parenting stress including FoH	Yes	Yes	Baseline data from an RCT on coping skills training	No
20.	2019	Yes	Parental FoH, anxiety and well-being	Yes	Yes	Baseline data from an RCT on coping skills training	No
21.	2007	Yes	Parental FoH & BG levels	Yes	Yes	Baseline data from an RCT on coping skills training	No
22.	2008	Yes	Development of HFS-PYC	Yes	Yes	Baseline data from an RCT on coping skills training	No
23.	2011	Yes	Parenting stress & FoH depression	Yes	Yes	Baseline data from an RCT on coping skills training	No
24.	2017	Yes	Update psychometric properties of HFS-PYC	Yes	Yes	Baseline data from an RCT on coping skills training	No
25.	2016	Yes	Exploring constructs of HFS-P and HFS-C	Yes	Yes	Baseline data from an RCT on coping skills training	No
26.	2006	Yes	Parenting stress and its correlates (including FoH)	Yes	Yes	Baseline data from an RCT on coping skills training	No
27.	2017	Yes	FoH in parents of young children	Yes	Yes	Baseline data from an RCT on coping skills training	No
28.	2017	Yes	Parenting stress, FoH and metabolic control	Yes	Yes	Baseline data from an RCT on coping skills training	No
Appendix 2. Quality Assessment Tables (continued)

Study	7	8	9	10	11	12	
Authors	**Year**	**Satisfactory response rate**	**Valid & reliable measures (Cronbach’s alpha)**	**Statistical significance assessed**	**Confidence intervals given**	**Confounders accounted for**	**Results applicable locally**
1. Ausbun	2013	Yes - 75%	Yes-HFS-P, MISP score (α = 0.88)	Yes	Yes	Partially	
2. Al Hayek	2015	Unknown	Yes-HFS-P (α = 0.60) Literacy translated	Yes	Yes	Less so - Saudi Arabia based	
3. Armit	2014	Yes - 81%	Yes-HFS-P (α = 0.85) Persian translated	Yes	Yes	Less so - Iran based	
4. Armit	2015	Yes - 81%	Yes-HFS-P (α = 0.85) Persian translated	Yes	Yes	Less so - Iran based	
5. Di Battista	2005	No - 23% US, 45% Canada	Yes-HFS-P (α = 0.87) Self-report demographics	Yes	Yes	Partially	
6. Fransesfontein	2015	No - 71%	No-scale 0 to 10 to assess FPI	Yes	Yes	Partially	
7. Freedenstien	2015	Yes - 66%	Yes-HSP (α = 0.85) Illness Perception Questionnaire	Yes	Yes	Partially	
8. Friedlander	2015	Unknown	Yes-CHI (α = 0.89) Diabetes Behavioural Rating Scale (DBRS)	Yes	Yes	Partially	
9. Gonder-Frederick	2005	Yes - 63%	Yes-HSP (α = 0.85) & HFS-C (α = 0.86)	Yes	Yes	Partially	
10. Gonder-Frederick	2011	NA	Yes-HSP (α = 0.86) & HFS-C (α = 0.85)	Yes	No	Yes	
11. Iwai	2015	No - 40%	Yes-HFS-P, MISP (α = 0.85)	Yes	Yes	Partially	
12. Haukswald	2015	Yes - 71%	Yes-HSP (α = 0.85) & HFS-C (α = 0.86)	Yes	Yes	Partially	
13. Haukswald	2015	Same data 2015	Yes-HSP (α = 0.85) & HFS-C (α = 0.86)	Yes	Yes	Partially	
14. Hawkins	2014	Unknown	Yes-HPS-PY, Demographic questionnaire & self-report hypoglycaemia	Yes	No	Yes	
15. Herbst	2014	No - 47%	Yes-HPS-PY (α = 0.92) Pittsburgh Sleep Quality Index (PSQI); Sed-P (α = 0.76)	Yes	No	Yes	
16. Johnson	2014	No - 49%	Yes-HPS-PY, Decisional Conflict Questionnaire	Yes	No	Yes	
17. Kampe	2005	Yes - 66%	Yes-HPS-PY, Demographic Questionnaire	Yes	No	Yes	
18. Markel	2015	16% of participants already recruited to JDRF-CGM trial	Yes-HPS-PY, Pediatric QOL Inventory; Short Form Health Survey Center for Epidemiologic Studies Depression scale (CES-D), BDM Communication Questionnaire, Diabetes Family Conflict Scale (DFCS), STAI & Pain, quality of life	Yes	No	Partially	
19. Mitchell	2009	Yes - 85%	Yes-HPS-PY (α = 0.85), Demographic questionnaire, self-report interview	Yes	No	Partially	
20. Patel	2019	Yes - 62%	Yes-HPS-PY (α = 0.85),	Yes	No	Partially	
21. Patton	2007	Yes - 88%	Yes-HPS-PY (α = 0.85)	Yes	No	Partially	
22. Patton	2008	Yes - 75%	Yes-HPS-PY (α = 0.91)	Yes	No	Partially	
23. Patton	2011	Judy - 51%	Yes-HPS-PY, Behavioral Assessment Scale	Yes	No	Partially	
24. Patton	2017	NA	Yes-HPS-PY	Yes	No	Unclear	
25. Shepard	2014	NA	5 studies	Yes-HPS-PY	Yes	No	Partially
26. Sheppard	2005	Yes - 70%	Yes-HPS-PY (α = 0.85)	Yes	No	Yes	
27. Vani	2017	Yes - 71% at site level	Yes-HPS-PY, Demographic Questionnaire, Diabetes Family Responsibility Questionnaire (DFRQ)	Yes	No	Yes	
28. Vaune	2016	Yes - 74%	Yes-HPS-PY	Yes	No	Yes	

Notes:
- VOLUME 21 ISSUE 1 • JUNE 2021
Appendix 2. Quality Assessment Tables (continued)

B. Randomised Controlled Trials (n = 8)
CASP Randomised Control Trial Checklist (CASP, 2018)

1.	Did the trial address a clearly focused issue?
2.	Was the assignment of patients to treatments randomised?
3.	Were all of the patients who entered the trial properly accounted for at its conclusion?
4.	Were patients, health workers and study personnel ‘blind’ to treatment?
5.	Were the groups similar at the start of the trial?
6.	Aside from the experimental intervention, were the groups treated equally?
7.	How large was the treatment effect?
8.	How precise was the estimate of the treatment effect?
9.	Can the results be applied to the local population, or in your context?
10.	Were all clinically important outcomes considered?
11.	Are the benefits worth the harms and costs?
Appendix 2. Quality Assessment Tables (continued)

First Author	Clearly focused issue	Assignment randomised	Patient accountability	Blinded intervention	Similar baseline characteristics	Equal treatment of two groups				
1. Abraham (2018)	Yes	PGM v. SAPT	Yes	Minimisation at randomisation	Yes	19% loss (withdrawal deviation)	No	Yes	Yes	
2. Barnard (2014)	Yes	CLS v. SAPT	Yes	Permutated block four approach	Yes	52% recruitment; 1 withdrawal	No	not to patient Allocation concealed to staff	Unclear	Almost CLS- extra supervision
3. Burchardt (2018)	Yes	CGM v. SMBG	Yes	Computer generated	No	No	No	Unclear	Yes	
4. JDF CWM (2010)	Yes	CGM v. SMBG	Yes	Permutated block design	Yes	95-100% completion rate	No	No	Almost CGM- additional direction	
5. Mayer-Davis (2018)	Yes	PLEX v. control	Yes	Automated block method	Yes	18-5% eligible; 51% refused final sample; 93% retention rate	No	not to patient Allocation concealed to staff	Yes	Yes
6. Mueller-Godfrey (2018)	Yes	CGS v. MID	Yes	Software; stratified by centre	Yes	32% recruitment; 18% excluded final analysis	No	not to patient Allocation concealed to staff	Yes	Yes
7. Patton (2019)	Yes	RECHP v. control	Yes	Block assignment by child sex	No	No	Unclear	Yes		
8. Ziegler (2019)	Yes	AP v. SAPT	Yes	Computer software blocked randomisation	No	No	Unclear	Unclear		

Study

First Author	Publication Year	Treatment Effect	Precision Estimate	Applicable Results	Significant outcomes explored	Benefits outweigh harms/ costs
1. Abraham (2018)	Primary outcome: time spent in hypoglycaemia	Reduction in time spent in hypoglycaemia (mean difference -0.95% CI 1.30 to -0.61)	somewhat	5 Australian centres Limited demographics	Yes	No adverse events Cost not explored
2. Barnard (2014)	Primary outcome: time spent in target BG range	Time spent in target increased from 47% to 64% with CLS than CGM 10%	Least square mean difference between CGM and CLS			
3. Burchardt (2018)	Primary outcome: parental FPI on HFS	Least square mean difference control v CGM: 38.9% CI 12.2 to -4.4, p<0.005				
4. JDF CWM Study Group (2010)	Primary outcome: HbA1c	No significant HbA1c changes in youth or parents				
5. Mayer-Davis (2018)	Primary outcome: HbA1c	No significant HbA1c changes in youth or parents				
6. Mueller-Godfrey (2018)	Primary outcome: time spent in hypoglycaemia	Only significant HbA1c reductions in children maintaining high BG in parents (p<0.005) and those exposed to high HbA1c levels (p<0.04)				
7. Patton (2019)	Primary outcome: HbA1c					
8. Ziegler (2019)	Primary outcome: time spent in hypoglycaemia					
Appendix 2. Quality Assessment Tables (continued)

C. Pre-Post Prospective Studies (n = 5)

NIH Quality Assessment Tool for Before-After (Pre-Post) Studies (NIH, 2018)

Study	1	2	3	4	5	6	
First Author	**Publication Year**	**Clearly stated objective**	**Clearly described eligibility criteria**	**Study participants representative**	**All eligible participants enrolled**	**Sample size sufficient**	**Intervention clear and consistent**
1. Al Hayek (2017)	Yes (3m) FGM- Foh/Qol HbA1c	Yes: 13-19 years Minimum 6m T1DM No current SH/ DKA	Yes- of Saudi Arabia Limited demographics	Unclear	No (n=47)	No power calculation	Yes
2. Ca (2017)	Yes (3m) Workshop- Foh/HbA1c	Yes: 8-16 years Minimum 6m T1DM No co-morbidity	Yes- of UK clinic population Ethnically diverse	No-pilot study Only 89 of 300- 33% recruitment	Almost (n= 22) Aimed 32 for pilot	Yes	
3. Ng (2019)	Yes (18m) CGM- Foh/ HbA1c	Yes: <8 years Minimum 12m CGM English speaking	Yes- of UK clinic population Limited demographics	Unclear	No (n=16)	No power calculation	Clear intervention 58% uncompliant
4. Kamps (2010)	Yes Trauma- Foh/Angiopathy HbA1c	Yes: 4-16 years Minimum 6m T1DM No chronic illness	Yes- of US clinic population Higher income, education, duration in x2 completers	Most 89% recruitment	Moderate (n= 158) No power calculation	No	No measure of exposure/ stress
5. Muller- Goddefroy (2009)	Yes (6m) CSII-Psychosocial	Yes: 18 years Minimum 6m T1DM Sufficient literacy	Yes-18 centres in Germany Limited demographics	Unclear	Almost (n=117) 80% power = 120	Yes	

Study	7	8	9	10	11	12		
First Author	**Publication Year**	**Outcomes defined, valid, reliable & consistent**	**Assessors blinded**	**Loss to follow up <20% and accounted for**	**P values provided for pre- to post- changes**	**Outcomes measured multiple times**	**Group-level intervention v. individual data**	
1. Al Hayek (2017)	Yes	HFS-C, Peds QL	No	Yes	Yes	No	NA	
2. Ca (2017)	Yes	HFS, Peds QL	No	Accounted for but high: 34% loss to follow-up	No Pilot intervention	Yes-outcomes at 1 and 3m	NA	
3. Ng (2019)	Yes	HFS/HbA1c	No	Yes	Only 8% loss to follow-up	Yes	Yes- HbA1c at 3, 6, 9, 12m	NA
4. Kamps (2010)	Yes	CHI, RCMA/ HbA1c	No	Accounted for but high: 25% loss to follow-up	Yes	No	NA	
5. Muller- Goddefroy (2009)	Yes	HRQOL, RIP, HFS HbA1c	No	Accounted for but high: 23% in CYP 18% in parents	Yes	No	NA	
Appendix 2. Quality Assessment Tables (continued)

D. Literature Reviews/Systematic Reviews (n = 2)

CASP Systematic Review Checklist (CASP, 2018)

Study	1	2	3	4	5
First Author Publication Year	Focused question	Appropriate papers	Important relevant studies included	Quality assessment	Results combination
1. Bamford (2010)	Yes FoH in parents of young children	Yes Cross-sectional	Mostly CRD principles; 2 reviewers Multiple databases, meeting abstracts, bibliographies, experts, But only 6 studies; nil interventional	Yes: Cronbie criteria 2 reviewers X1 7/7 quality indicators x3 3 met 6/7; x2 met 4/7	No Dissimilar cohorts/ outcomes Lack of data Narrative synthesis
2. Driscoll (2016)	Yes FoH in CYP and parents Literature review	Yes Cross-sectional	Greater breadth- 16 studies	Unclear	No Narrative analysis

Study	6	7	8	9	10															
First Author Publication Year	Overall results	Result precision	Locally applicable	All-important outcomes considered	Benefits worth harms and costs															
1. Bamford (2010)	Parental FoH/ anxiety/ depression are common Hypoglycaemia severity predicts FoH > frequency	Some results precise p values given	Somewhat 4 studies representative Mostly US studies; similar to UK	Yes Except intervention/ education	NA															
2. Driscoll (2016)	Parent report of SH was the most common predictor o Most studies failed to find an association with Hba1c	Unclear	Somewhat 16 studies- mainly US/ European	Yes Associated factors, behavioural interventions, technology	NA															
Paper First author	Study Design	Target population	Country	Recruitment site	Response rate	Number of participants	Exclusion criteria	Mean diabetes duration (range)	Mean HbA1c (range)	Insulin regime	Ethnicity	Marital Partner	SES							
--------------------	--------------	--------------------	---------	-----------------	---------------	------------------------	-------------------	--------------------------	----------------	---------------	-----------	----------------	------							
1. Alders (2018)	Cross-sectional	Parents	Netherlands	MILES Youth data	421/533	79%	F 359 (85%) M 62 (15%) 43y (25-66)	NR	4.6y (0-16)	MDAI 114 (27%) CSII 307 (73%)	7.8% - parent report 355	Non-Dutch 3%	89%	High education 38% Paid job 83%						
2. Al Hayek (2015)	Cross-sectional	Adolescents	Saudi Arabia	Diabetes Centre	Jun 13-Feb 14	NR	NA	187	M 95 (51%) M 92 (49%) 15.3y (13-18)	<1y T1DM	7.1y	MDAI 15 (61%) CSII 36 (19%)	NR	Arabic 100%	NR	NR				
3. Amiri (2014)	Cross-sectional	Young children	Iran	Diabetes Education Assoc 2000-12	61	75	81%	F 60 (57%) 36.2y (25-49) 45 M (43%) 42y (30-55)	<6m T1DM	5.1y (5-10.5)	MDAI 61 (100%) CSII 0	9.4% - initiation (6.1-13.7)	Iranian 100%	NR	High School 66% Employed 25% F 95% M					
4. Amiri (2018)	Cross-sectional	Same data 2014	Iran	Diabetes Education Assoc	61	75	81%	F 60 (57%) 36.2y (25-49) 45 M (43%) 42y (30-55)	<6m T1DM	5.1y (5-10.5)	MDAI 61 (100%) CSII 0	9.4% - initiation (6.1-13.7)	Iranian 100%	NR	High School 66% F 64% M Employed 25% F 95% M					
5. Di Battista (2009)	Cross-sectional	Adolescents	North America	Nashville/Toronto May 04-Apr 07	72	307	23% US 10 of 22 45%Canada	NA	7.6	M 43 (57%) M 33 (43%) 15.9y (13-18)	<6m T1DM	6.4y	NA	8.9% - initiation	White 82% African 12% Other 4%	NR	Average income $40,000-$59,999			
6. Forsander (2016)	Cross-sectional	Adolescents	Sweden	DIABKIDS database	453	212	21%	F 59 (66%) 154 M (34%) 17.1y (15-18)	NR	6.6y	MDAI 23 (53%) CSII 216 (47%)	7.7% - current	NR	69%	Economic status above average 90%					
7. Freckleton (2014)	Cross-sectional	Parents	Australia	Diabetes camp JDAF advised	71	115	62%	F 71 (100%) M 0	71	M 39 (52%) M 33 (47%) 9y (2-12)	NR	3.1y (1-22)	MDAI 71 (100%) CSII 0	8.1% - initiation (5.6-12.9)	Australian born 63%	NR	NR			
8. Frederick (2011)	Cross-sectional	Children	US	Diabetes camp	Clinic Atlanta	NR	127	F 75 (59%) M 52 (41%) 11.8y (8-15)	<5y T1DM	4.9y (1-13)	MDAI 60 (47%) CSII 67 (53%)	8.0% - current	White 66% Black 32% Hispanic 2%	NR	NR					
9. Gonder - Frederick (2006)	Cross-sectional	Parents	US	Clinic Virginia	78	124	63%	F 38 (97%) 1M (3%)	39	F 12 (44%) M 22 (56%) 15.3y (12-17)	<1y T1DM	7.0y	MDAI 25 (64%) CSII 14 (36%)	7.85% - 6-8 asks	Caucasian 87% of African 13%	70%	Beyond high school 75%			
10. Gonder-Frederick (2011)	Literature review	Aggregated data Parents & CYP	US	Literature review	94	24 articles	US lab Several datasets over 10y	NR	2.55	M 203 (81%) M 47 (19%)	<1y T1DM	5.24y	MDAI 16 (62%) CSII 98 (38%)	8.01%	Caucasian 88%	NR	Mean education 15.5y			
Study (Year)	Design	Country	Participants	Gender	Type	Data	Mean Age	N	Mean	SD	Mean	SD	%	%	Income	Notes				
-------------	--------	---------	--------------	--------	------	------	----------	---	------	----	------	----	----	----	---------	-------				
Grey (2009)	Cross-sectional	UK	Clinics	70% of 177	40%	F 67 (10%)	M 105 (60%)	27.2 (26-51)	67	F 67 (35%)	M 55 (44%)	8.2	3.9	22	>80,000	27%				
Haugstedt (2010)	Cross-sectional	Norway	University Hospital	Dec 2006	115% of 161	71%	F 103 (52%)	M 97 (48%)	15	F 55 (50%)	M 57 (50%)	8.1	1.0	28	Norwegian	14%				
Haugstedt (2015)	Cross-sectional	Norway	University Hospital	Dec 2006	115% of 161	71%	F 91 (52%)	M 60 (48%)	102	F 50 (49%)	M 52 (51%)	5.3	1.4	28	College	67%				
Hawkes (2014)	Cross-sectional	Ireland	3 clinics	325 of 539	49%	325	NR	325	3.0	1.0	28	3.0	1.0	28	NA (not applicable)	70%				
Herbert (2014)	Cross-sectional	US	3 clinics	134 of 285	47%	134	NR	3.0	1.0	28	3.0	1.0	28	NA (not applicable)	70%					
Johnson (2013)	Cross-sectional	Western Australia	Clinic	Aug 09-Aug 10	325 of 539	49%	325	NR	3.0	1.0	28	3.0	1.0	28	NA (not applicable)	70%				
Kamps (2005)	Cross-sectional	US	ADA Summer Camp	Mid-West	109 of 168	65%	109	NR	109	1.0	28	1.0	28	NA (not applicable)	70%					
Morkowitz (2012)	Cross-sectional	UK	Single-site of JDRF GCM trial	100 of 141	88%	100	NR	7.2	1.0	28	7.2	1.0	28	NA (not applicable)	70%					
Mitchell (2009)	Cross-sectional	US	Clinic Mid-Atlantic	100 of 141	88%	100	NR	7.2	1.0	28	7.2	1.0	28	NA (not applicable)	70%					
Pate (2019)	Cross-sectional	Slovenia Clinic Ljubljana	125	120 of 215	62%	125	NR	4.9	1.0	28	4.9	1.0	28	NA (not applicable)	70%					
Patton (2007)	Cross-sectional	US	Clinic in Cincinnati	24 of 28	86%	24	NR	8.3	1.0	28	8.3	1.0	28	NA (not applicable)	70%					
Patton (2008)	Cross-sectional	US	Clinic in Cincinnati	81 of 109	75%	81	NR	8.1	1.0	28	8.1	1.0	28	NA (not applicable)	70%					
Patton (2011)	Cross-sectional	US	2 clinics in the Midwest	39	77 of 39	51%	39	NR	8.3	1.0	28	8.3	1.0	28	NA (not applicable)	70%				
Study ID	Number of Children	Type of Study	Country/Region	Number of Centres	Data Source	Data Collection Period	Targets	Outcomes	Duration	Conclusion	Further Information									
---------------	--------------------	---------------	----------------	-------------------	-------------	------------------------	---------	----------	----------	------------	---------------------									
24. Patton (2017)	16	Cross-sectional data analysis	Parents	3 datasets over 5 years	NA	116, 106 (93%)	116, 58 (50%)	59 (50%)	<6m T1DM	No English	8.2% -last 3 m (5-12.7)	White 91%	NR	NR						
25. Shepard (2016)	114	Cross-sectional factor analysis	Parents + CYP	Virginia Lab 5 studies 2002-10	NA	250, 220 (8.8%)	124 (48%)	135 (52%)	<1y T1DM	Comorbidities	MDI 155 (60%)	8.01%	Caucasian 93%	African 4%	87%	Mean education 15y				
26. Strens (2011)	68	Cross-sectional	Parents	2 city clinics	80%	134, 115 (86%)	64 (48%)	70 (52%)	<6m T1DM		MDI 107 (90%)	8.5% (5.6-14)	-last 6 m	Caucasian 79%	84%	Hollinghead Class Ill 46%				
27. Van Name (2017)	41	Cross-sectional Parents of young children	US T1DM Exchange	56 centres	419	149 (31%)	254 (46%)	205 (54%)	<1y T1DM		MDI 23 (42%)	8.2% (2.6-6)	White 7 mm Hispanic 10%	Black 6%	NA	Income >$75,000 52%				
28. Vlaseanu (2017)	63	Cross-sectional	Parents	Belgium Single clinic centre	63	53 (84%)	26 (44%)	35 (56%)	<6m T1DM	Non-Dutch speaking	MDI 17 (64%)	8.2% (10%)	-last clinic	NR	76%	NR				
29. Abraham (2016)	49	RCT	PLGM vs. SAPT	CYP	49	31 (63%)	18 (37%)	2.5 (2.12)	<1y T1DM	6m CSii use	MDI 16 (100%)	8.2% <10%	+4 BGid	NR	NR	NR				
30. Barnard et al. (2014)	45	Open label Crossover RCT	CLS vs. SAPT Adolescents	England Clinic UCLH & Cambridge	17 of 33	12 (92%)	1 (6%)	5 (18%)		5 (6%)	15.6 (12-18)	Complications	TDD >20U/kg	MDI last 1m Pregnancy	BF	7.2	5% -last clinic	NR	NR	NR
31. Burchardt (2018)	5	Open label Crossover RCT	CYP	Australia	5	49	31 (63%)	18 (37%)	2.5 (2.12)	<1y T1DM	6m CSii last 6m	MDI 16 (100%)	8.2% <10%	+4 BGid	NR	NR	NR			
32. DOJF CQM Study Group (2010)	223	RCT	CYP	5	49	31 (63%)	18 (37%)	2.5 (2.12)	<1y T1DM	6m CSii last 6m	MDI 16 (100%)	8.2% <10%	+4 BGid	NR	NR	NR				
33. Mayer-Davis (2018)	256	Open label Crossover RCT	CYP	US Clinic Colorado	256	187 (74%)	128 (50%)	130 (50%)	<1y T1DM	6m CSii last 6m	MDI 75 (29%)	9.5% (8-13)	White 7% Hispanic 13%	Black 4%	87%	Public health insurance 18%				
34. Mueller-Godfrey (2016)	211	RCT	Open label	Germany	211	77 (43%)	102 (57%)	119 (56%)	<1y T1DM	insufficient literacy	MDI 69 (49%)	7.5%	NR	69% medium-high SES	NR					
35. Patton (2018)	36	RCT	REDCh v. conventional	US	36	34 (98%)	M 2 (2%)	52 (35.2)	<6m T1DM		MDI 8 (22%)	8.01% -last clinic	Caucasian 95%	Hispanic 5%	81%	Hollinghead index SES >47.6%				
36. Ziegler (2015)	59	RCT	CYP	International Clinic Germany, Israel, Slovenia	59	75 (79%)	45 (43%)	25 (55%)	<6m T1DM	Comorbidities	MDI 9 (29%)	8.12% (7-10)	8.9% (4-18)	NR	NR	NR				
37. Al Hamzeh (2017)	4.7	Prospective	Pre-JSP	GDM Adolescents	4.7	27 (57%)	20 (43%)	<6m T1DM	Skin issue	SHI DKA	MDI 20 (62%)	8.5%	NR	NR	NR	NR	NR			
Study Code	Study Type	Location	Participants	Follow-up	Main Findings	Co-morbidity	Comorbidities	Co-morbidity	Co-morbidity											
------------	-------------------------------------	----------	--------------	-----------	---------------	--------------	---------------	--------------	--------------											
38.Cai	Prospective pre-plant workshop	UK	22 of 89	22		6.2y	NR	8.2%	White 77%											
			25%						Asian 14%											
39.Ng	Prospective pre-plant CGM study	UL, NW England Single centre	NR	16		<12m	7.8y	Min 12m	14.6%											
									-3.6,12m											
40.Kamps	Longitudinal pre-plant trauma study	US	221 of 248	158		<6m TDm	NR	8.35%	Caucasian 71%											
			89%			Chronic Illness, T2DM			African 23%											
			8 excluded			LD			Hispanic 4%											
41.Muller-	Prospective pre-plant study	Germany	117 of 143	117		3.9y	MDI 117	7.7%	NR											
Godeffroy			completed						NR											
	(2009)		82%						NR											
42.Barnard	Systematic review of young children	6 studies	NA	79	NA	<3.5y	MDI + CSI	8.19%	NR											
				(24-114)					NR											
				F 60-100%					NR											
43.Dreisal	Literature review	16 studies	NA	NA	NR	NA	NR	NR	NR											

Notes:
- NA (not applicable), NR (not recorded)
- MDI: Medical Device Identification
- <6m: <6 months
- T1DM: Type 1 Diabetes Mellitus
- T2DM: Type 2 Diabetes Mellitus
- LD: Language Difficulty
- MDI: Medical Device Identification
- MDI 117: Medical Device Identification 117
- MDI + CSI: Medical Device Identification + Continuous Self-Management
- Recent: Recent study
- Not recorded (NR): Not recorded in the study
- Not applicable (NA): Not applicable in the study

THE BRITISH JOURNAL OF DIABETES
Paper	First Author	FoH Tool	Other assessment tools	Hypoglycaemia (Hypo) Definition	Frequency	Results	Strengths & Limitations	
1.	Alders	HFS-P	Parent-reported questionnaire	SH: requiring glucose, hospital admission or an emergency call	>1 SH in last 12m: 7%	Demographics, mindfulnlessness, clinical characteristics accounted for 19% FoH variance; younger parental age (p=0.006), low parental educational level (p=0.016), non-Italian nationality (p=0.003), higher number of BG readings/day (p=0.001) and less mindful parenting (p=0.006) were related to higher parental FoH. SH was not related	Only 35.5% parent-reported HbA1c levels; No data available on non-responders; Sample had higher employment, higher CSI use and lower HbA1c levels	
2.	Al Hayek	HFS-C	Socio-demographic clinical questions Screen for Child Anxiety-Related Disorders (SACRED)	American Diabetes Association Hypo definition: <3.9 mmol/L, Hypo <12/12m: 41.8%, Hypo at school: 80.7%, Low BG big problem: 63.1%	Females had higher scores on HFS & SACRED (p=0.05) 16-18y had higher HFS & SACRED SAD scale scores (p=0.05) CSI users had lower levels of worry, panic, SAD (p=0.05) DM duration >7 years correlated with greater HFS & SACRED scores Higher hypo frequency had higher HFS scores (p=0.05) HFS scores correlated with SACRED scores; no effect HbA1c Risk factors for FoH = age, MLI, older DM duration, higher SH	Single centre study; Limited socio-demographic factors; No control group; Arabic translation of questionnaires		
3.	Amiri	HFS-C	Diabetes History Questionnaire Self-Efficacy for Diabetes Scale-Child version (SED-C)	SH: requiring assistance	Hypo in the last 3m: 97%, Hypo at school: 7.2%	CYP <9y had higher HFS scores than those >10y (p=0.0001) CYP <9y also had lower mean SED scores (p=0.0005) CYP with significant FoH concerns had higher HFS scores (p=0.004) No significant association with HbA1c, demographics or SH	Selection of children from a database; SED-C not designed for 6-16y-adapted Questions read aloud- verbal answers; Persian translation of questionnaires	
4.	Amiri	HFS-P	Diabetes History Questionnaire Paediatric Inventory for Parents (PIP)	SH: requiring assistance	Hypo in the last 3m: 97%, Hypo at school: 7.2%	HFS-P scores were higher for mothers than fathers (p=0.0022) HFS-P scores correlated positively with several PIP scores HFS scores did not correlate with number of hypo episodes Mothers with child DM duration >2 years had lower HFS-B (p=0.008) No significant association between HbA1c and HFS-P or SED	Persian translation of questionnaires; Lack of cultural adaptation of questionnaires; Reduced completion rate among fathers	
5.	Di Battista	HFS	Self-report demographics/HbA1c Social Anxiety Scale for Adolescents (SAS-AQoL, Measure [SAS-AQoL]) Summary of Diabetes Self-Care		NR	Social anxiety was positively correlated with HFS for boys (p=0.01) and girls (p=0.05) FoH = independent correlate of lower adherence (p=0.046)	Significant missing data for 6 CYP 10% incentive to participants; Self-report measures; Majority Caucasian US sample	
6.	Fossero	FoH scale 1 to 10	Selected items from Diabetes Distress Scale	NR	Females scored twice as high on FoH scale (p=0.0001) Twice the proportion of females had moderate-severe DD FoH was associated with DD (p=0.044 F; 0.26 M)	No validity for FoH scale; 21% uptake; Participants had low HbA1c and tended to be female (p=0.0001)	No validity for FoH scale; 21% uptake; Participants had low HbA1c and tended to be female (p=0.0001)	
7.	Frackton	HFS	Illness Perception Questionnaire 7 day diabetes diary management	Hypo <5mmol/L, IF 6-12y	HFS/P behaviour associated with high BG but not with hypo Model not significant in predicting HbA1c	Poor HbA1c record = different centres; Participants volunteers; only mothers	Pover HbA1c record; different centres; Participants volunteers; only mothers	
8.	Frederik	CHB	Diabetes Behaviour Rating Scale	CHB	CHB was reduced by 7.4% for re-pet campers (>2 years) than those who had attended <2 years Total CHB reduced by 6.6% for every 1 year over 12 years age Lower self-management correlated with higher HbA1c	Convenience sample from camps/clinic; Socioeconomic data not collected	Convenience sample from camps/clinics; Socioeconomic data not collected	
9.	Goederen-Frederik	HFS-P 0.89	HFS-C 0.86	State specific questionnaire State Traet Personality Inventory (STPI) State Traet Anxiety Inventory for Children (STAI)	MH: affecting functioning SH: requires assistance	MH 6.74/ year SH 0.46/ year	HFS-worry score higher for girls than boys (p=0.02) Adolescent trait anxiety and SH frequency (p=0.01) account for 45% variance in HFS score; nil predicted HFS-II HFS-P influenced by provision of emergency glucose (p=0.05) History of unconsciousness to higher HFS-C (p=0.011) Hypo at school → higher HFS-P (6.4 v. 43.8; p= 0.007) Parental & a adolescent anxiety scores correlated (p=0.01) No difference with CSI or MDEV; no correlation with HbA1c	22 families failed to return questions; No demographic data on non-participating families; Only one father included
10.	Goederen-Frederik	HFS-P 0.86	HFS-C 0.86	STPI- STAI	NR	Good correlation between STPI and HFS scores Higher HFS-S scores vs 9.11y than 6-6y (p=0.04)	Cross-sectional design; Narrow sample sizes; No clear outcome measures	NA (not applicable), NR (not recorded)
Reference	Methodology	Measurement	Outcome	Notes				
-----------	-------------	-------------	---------	-------				
[11]	HFS	Center for Epidemiological Studies Depression Scale (CES-D) an = 0.88	Variance in maternal depression: 27% of demographics, 7% FoH	Parents required to commit to 6-weeks RCT Only 2 fathers, so excluded in analysis				
[12]	HFS-P	Hopkins Symptom Checklist-25 (HSCL-25) an = 0.92	Problematic/hyp: as perceived by parent > 7 problematic/12m; 23% Unconsciousness: 21%	Higher HFS-P worry score associated with HBA1c and more problematic hyps, but not with hyp severity HFS-B score higher in MDI use, HSCL-25 correlated with maternal (p = 0.001) & paternal (p = 0.001) HFS-W; mothers HFS scores > fathers				
[13]	HFS-P	HSCL-25	> 7 problematic episodes/12m: 22% Unconsciousness: 24%	Worry subscale is a valid instrument to measure anxiety provoking aspects of hypoglycaemia; validity of behaviour scale is more questionable; weak correlations between the 2 HFS-B reflects both inappropriate behaviours related to fear and appropriate behaviour to avoid hypoglycaemia				
[14]	HFS-PYC	Demographic questionnaire	Hypo-seizure 19.8% Hypo-disorientation 51.9%	Mean scores for parents of children 6-11y were higher at 70.7 versus 67.6 in 0’y (p = 0.025) and 61.6 >12y (p = 0.003) HBA1c > 7.5% associated with lower total scores (p = 0.025) No difference mothers versus fathers or CIIL versus MDI				
[15]	HFS-PYC	Demographic medical questionnaire 24h recall interview of DM tasks Pittsburgh Sleep Quality Index (PSQI) SED-P (an = 0.76)	NR	36% parents indicated overall sleep quality was fairly bad or very bad 34% performed daily night-time BG checks FoH worry was negatively correlated with parents confidence in managing diabetes (p = 0.01), and higher scores > greater PSQI scores				
[16]	HFS	PerQDL Diabetes Module Clarke’s questionnaire Clinical data from W Australia Childhood Diabetes Database	MH: requiring assistance SH: seizure/ coma SH: 19%	Primary outcome: PerQDL score; primary variable: HFS Patients & children with highest FoH had 20% & 22% lower QOL, compared to those in lowest fear quartile; not associated with SHMH Children with highest FoH had 0.6% higher HBA1c (+ in 13-18y) Parents with SH children had 6.3 point higher FoH (p = 0.004)				
[17]	HFS-C	RocAMAS Hypoglycaemia History Form	NR	CHI positively correlated with HFS-C and ROCAMAS Demonstrated good convergent validity and internal consistency Good test/retest reliability SH consistent predictor of situation and general fear scale of CHI				
[18]	HFS	Pediatric GQL Inventory STAI, PAID, CDI, CES-D, DPCS BGM Communication Questionnaire	NR	No differences in reported FoH between CUM and BGM Parents reported more FoH than youth (p = 0.01)				
[19]	HFS	Pediatric QOL Inventory STAI, SED, Hope Scale SED-P (an = 0.76)	NR	Low levels of FoH 16 (7–44) and low state anxiety compared to mothers in other studies. However, fathers completed <20% of diabetes related tasks				
[20]	HFS-P	Positive and Negative Affect Schedule (PANAS) Satisfaction with Life Scale (SWLS)	STAI and DOL	SH: 8.5% parents Higher parental FoH associated with higher HBA1c Higher FoH more frequent monitoring at night (p < 0.01) At least one SH +: more preventivive behaviours p < 0.03 Mothers > FoH than fathers and more engaged in daily tasks				
[21]	HFS-PYC	Self-report demographics Self-report hypoglycaemia history SMBG for 2 weeks using study meter HBA1c at enrolment + 3 months later	Hypo: BG <60mg/dl 3-5 hypo/week: 50% Hypo seizure in 6m: 25%	Mean total HFS-SPYC score 81 (26-130) moderate FoH FoH correlated positively with mean daily BG level (p = 0.05) Parents with hypo seizures worried more (50.7 vs 41.7) HFS-B score correlated with HBA1c at 3m (p = 0.04) Higher socioeconomic status protected from FoH				
[22]	HFS-PYC	Self-report demographics Self-report hypoglycaemia history SMBG for 2 weeks using study meter	Hypo: <600mg/dl U/RX 3-5 hypo/week: 38% Hypo seizure: 32% Average 4.1 hpy/2 weeks	Mothers’ HFS-SPYC score > fathers (75 y 65.6; p = 0.006) Positive correlation between mothers HFS-W and frequency of hypoglycaemic events (p = 0.05) Higher scores with seizures No correlation with HBA1c average BG readings and internal consistency & test/retest reliability for HFS-SPYC				
[23]	HFS-PYC	Behavioural Pediatric Feeding Scale Pediatric Inventory for Parents (PPIP) Beck Depression Inventory (BDI)	NR	RFS associated with greater HFS scores and higher BDI Parents’ depressive symptoms and FoH accounted for 68% of the variance in parents stress difficulty				

Appendix 3. Data Extraction Table (continued)
Paper Authors	Project Title	Description	Methodology	Reference	
24. Patton	HFS-PYC	Self-report demographics	SMAI for 2 weeks using glucometer	NR	
25. Shepard	HFS-C HFS-P	Self-report hypoglycaemic history	STAI an 0.8-0.87	Hypo HbA1c 70mg/dL Mean number of hypog	2017
26. Snead	HFS-C	Demographic and Medical History	Diabetes Family Responsibility Questionnaire (DFRQ) 86.82 PIP 94.6 SEAI an 0.87	NR	
27. Van Name	HFS-P	Worry scale	Self-report DKA & SH history	SH: seizure loss of consciousness >1SH in 3m: 7%	
28. Viswanath	HFS-P	Njgun Parenting Stress Index: Short form (NPSI-S) an 0.96	Greater FSH associated with greater parenting stress: Greater stress associated with increased HBA1c Parental FSH not directly related to metabolic control	Higher age, diabetes duration not linked to FSH	
29. Abraham	HFS-P	Clarke’s hypoglycaemia awareness	Pump satisfaction questionnaire	HbA1c score decreased for CYP but increased in parents Night BG >60mg/dL less in closed loop (10% v17%; p<0.01) No difference in HBA1c levels, HFS and PediQL scores	
30. Bernard	HFS-P	Semi-structured interviews	Diabetes Technology Questionnaire	Hypo <70mg/dL Tired spent hypo: very low	
31. Burchardt	HFS-P	PedriQL	Depression Anxiety Stress Scale	NR	
32. DORF CCM	HFS-W	PedriQL	Problem Areas in Diabetes (PAID-P) CCM Satisfaction Questionnaire	SH: requires assistance	
33. Mayer-Osav	HFS-P	Diabetes-specific module of KINDL-R	Social Problem-Solving Inventory Diabetes Self-Management Profile CES-D, PediQL, DICS	Hypo <3.5mmol/L	Hypo experienced: 37.48% Median time spent hypo:24h: 17.30 minutes
34. Mueller	HFS-P	Diabetes specific module of KINDL-R	HRQL questionnaire	NR	
35. Patton	HFS-PYC	PIP	PIP-PR	1-2 hypo/ week: 60%	
36. Zerger	HFS-P	Technology Acceptance Model Questionnaire (TAM) a = 0.91	Satisfaction with use of an AP	NR	
Reference	Design	Tool/Screening	Outcome	Description	Sample Characteristics
-----------	--------	----------------	---------	-------------	------------------------
Al-Nayek (2017)	HFS-C	PeqQL Diabetes Module	SH: BG <70mg/dL 1-2/mo	Use of flash glucose monitor resulted in significant reduction in HFS (p = 0.0001), HbA1c (p = 0.008), QoL (p = 0.02) and hypoglycaemia (p = 0.023) - reduced to 0.37 per month; monitoring 0.84d to 6.76d	Small sample, single centre; Arabic translation; 3m use of sensor
Cai (2017)	HFS	Acceptability rating 1 to 10 Follow-up questionnaires / feedback	Hypo last 1m: 9	Primary outcomes: acceptability and feasibility of intervention HFS scores reduced in adolescents post sessions High Foh: 68% CYP and 91% parents	11 failed to complete follow up; No1 powered to detect pre-post test differences
Ng (2019)	HFS-HFS-P	NA	SH: 3rd party assistance/ hospitalization	Primary outcomes: HFS/ HbA1c (no power calculation) Significant improvements in parental (p = 0.001) and patient (p = 0.003) Foh scores. No change in HbA1c	Small sample size; Poor compliance in 58%
Kamps (2010)	CHE	Revised Children’s Manifest Anxiety Scale (RCMAS) a = 0.87	%time BG <70mg/dL: 11.6%	Hurricane-Interrupted group higher % of BG readings >300mg/dL (p = 0.05) and higher RCMAS scores (p = 0.05) High Foh in specific situations at time 1 associated with higher HbA1c at time 2 if hurricane-interupted	Participants: higher income (p = 0.01), paternal education (p = 0.05), duration diabetes (p = 0.05); no difference age; HbA1c; hurricane exposure unmeasured
Muller-Godeffroy (2009)	HFS-P	KIDSSCREEN10-Index (HRQOL) PIP, DPICS a = 0.7 in all scales translated except KINDOLOM (a = 0.99) and MC frequency subscale of PIP (a = 0.44)	Hypo: ISPAD definitions	Sample of 100 for 80% power on 0.05 probability level DRiQOL improved in all age groups (p = 0.001) Reduced frequency/difficulty of parenting stress & HFS-W (p = 0.001) No significant decrease in SH frequency; HbA1c reduction only teens	Required 3m commitment to CSIs; No demographics on 8 nonresponders; German translation questionnaires; Loss to follow up 23% CYP/15% parents; No difference between groups: no control
Barnard (2010)	HFS-P	Multiple	Multiple	Severity more important than frequency in predicting Foh Maternal depression & anxiety associated with greater Foh Fear of nocturnal hypoglycaemia independent of hypo risk	Only 6 studies; no intervention's Lack of power calculation Poor response rates
Dissoldt (2016)	HFS-ChI	Multiple	Multiple	Most common predictor of Foh was parent report of their children experiencing SH episodes (not verified on downloads) Majority of studies failed to find a relationship with HbA1c interventions focused on CBT/ BG awareness training/technology	Cross-sectional studies; No behavioral intervention studies in CYP