A New Tool to Guide Halofunctionalization Reactions: the Halenium Affinity (HalA) Scale

Kumar Dilip Ashtekar,‡ Nastaran Salehi Marzijarani,‡ Arvind Jaganathan, Daniel Holmes, James E. Jackson* and Babak Borhan*.

Department of Chemistry, Michigan State University, East Lansing, MI 48824

babak@chemistry.msu.edu, jackson@chemistry.msu.edu

Table of Contents:

I. General remarks: ... S2
II. Guide to halenium affinity (HalA) calculations: .. S3
III. Interpreting the halenium affinity table: ... S6
IV. Equilibrium and titration studies on halopyridinium salts: S12
 a. Screening of chlorenium sources for the formation of chloropyridinium
 complexes of 1a: ... S12
 b. Titration studies of pyridine derivatives with CDSC: S15
 c. Qualitative analysis of competition experiments between pyridine
 derivatives: ... S17
 d. 1H-NMR analysis of chlorination of 1c: ... S21
 e. Formation of halopyridinium salts of 1c with different halenium donors: ... S22
 f. Quantitative analysis via competition experiments: S24
 g. Competition study for chlorenium ion transfer from 1c-Cl to pyridine
 derivatives (a quantitative trend): ... S29
 h. Control experiments: ... S32
V. Synthesis of substrates and intramolecular chlorocyclization of alkenes: S36
 a. Synthesis of substrates 2, 4 and 9: ... S36
 b. Chlorocyclization of alkenes 2, 4 and 9: ... S39
VI. Quantum mechanical modeling studies: ... S44
VII. NMR spectra: .. S104
VIII. References: .. S110
I. General remarks:

All reactions were carried out in flame-dried glassware under an atmosphere of dry nitrogen or argon. Molecular sieves (4Å) were dried at 160 °C under 0.25 mtorr pressure prior to use. Unless otherwise mentioned, solvents were purified as follows. THF was distilled from sodium benzophenone ketyl. NMR spectra were obtained using a 500 MHz Varian NMR spectrometer and referenced using the residual 1H peak from the deuterated solvent. Infrared spectra were measured on a Nicolet IR/42 spectrometer FT-IR (thin film, NaCl cells). For HRMS (ESI) analysis, a Waters 2795 (Alliance HT) instrument was used and referenced against Polyethylene Glycol (PEG-400-600).

Column chromatography was performed using Silicycle 60Å, 35-75 µm silica gel. Pre-coated 0.25 mm thick silica gel 60 F254 plates were used for analytical TLC and visualized using UV light, iodine, potassium permanganate stain, p-anisaldehyde stain or phosphomolybdic acid in EtOH stain.

Halenium sources used in this study: N-chlorosuccinimide (NCS), N-bromosuccinimide (NBS), N-iodosuccinimide (NIS), 1,3-dichloro-5,5-dimethylhydantoin (DCDMH), 1,3-dibromo-5,5-dimethylhydantoin (DBDMH) and N-chlorophthalimide (NCP) were re-crystallized prior to use. Chlorodiethylsulfonium hexachloroantimonate (CDSC), bromodiethylsulfonium bromopentachloroantimonate (BDSB), iododiethylsulfonium iodopentachloroantimonate (IDSI) were synthesized as reported previously.1 Substituted pyridines were distilled and stored over KOH prior to use (except 4-bromopyridine which was distilled immediately after basification of its commercially available HCl salt and used right away). All other commercially available reagents and solvents were used as received unless otherwise mentioned.
II. Guide to halenium affinity (HalA) calculations:

Since we have derived parallels between protonation and halogenation chemistry, the evaluation of gas phase Halenium Affinity (HalA) is essentially similar to the reported methods used for derivation of Proton Affinity (PA). We define the computationally evaluated HalA as the molar enthalpy change for a given Lewis base (:LB) upon its attachment to a halenium ion (X⁺), as shown below:

$$\text{HalA} = -\Delta E(\text{elec}) - \Delta ZPE - \Delta E'(\text{vib}) + \frac{5}{2}RT;$$

$$E'(\text{vib})(T) = \sum_{i=1}^{3n-6} \frac{Nh\nu_i}{e^{Nh\nu_i/RT} - 1}$$

where; $\Delta E_{(elec)} = E_{(\text{electronic})(X\text{-LB adduct})} - [E_{(\text{electronic})(:LB)} + E_{(\text{electronic})(X^+)}]$; zero point energy change $\Delta ZPE = ZPE(X\text{-LB adduct}) - ZPE(:LB)$; $\Delta E'(\text{vib}) = E'(\text{vib})(X\text{-LB adduct}) - E'(\text{vib})(:LB)$ i.e. difference in temperature dependence of vibrational energy; N is Avogadro’s number, h is Planck’s constant, and n_i is the i^{th} vibrational frequency. Finally, the $5/2$ RT quantity accounts for translational degrees of freedom and the ideal gas value for the change from two particles to one.

The acceptor fragment (Lewis base) may be neutral or anionic (i.e. the X-LB complex is cationic or neutral), leading to two distinct cases:

$$\Delta H_{\text{rxn}}(X^+ + :LB \rightarrow X\text{-LB}^+) \text{ or } \Delta H_{\text{rxn}}(X^+ + :LB^- \rightarrow X\text{-LB})$$
The HalA values (gas phase) in kcal/mol are derived at $T = 298.15$ K (unless noted otherwise) assuming ideal gas behavior.

$\textit{Ab initio}$ assessments may provide accurate HalA values, but their computational expense quickly becomes impractical with increasing molecular size. A Density Functional Theory (DFT) approach is affordable and widely available to most organic chemists who wish to evaluate HalA values and apply them in the planning of halofunctionalization reactions. Our combined theoretical-experimental optimizations for the best compromise between computational expense and reliability of HalA values, have led us to the application of the following basis sets based on the halenium ion under consideration: a.) for fluorenium, chlorenium and bromenium ions - B3LYP/6-31G*. b.) for iodenum ion – B3LYP/6-31G*/LANL2DZ. To calculate HalA values from theory for gas phase reactions (appropriate solvent models can be applied if necessary) the following steps were followed:

1. An appropriate basis set must be chosen based on the halenium ion under consideration.

2. The Lewis base is initially subjected to a conformational search at the level of theory decided from step 1. To confirm that each structure was a true minimum, vibrational analyses were performed. If necessary, the lowest energy conformer can be re-subjected to a full geometry optimization to verify convergence.

3. The halenium ion (in its triplet state) is also subjected to the same level of theory for a geometry optimization.
4. The Lewis base-halenium ion adduct is then subjected to step 2 as described above.

If there are multiple nucleophilic sites within the same molecule (Lewis base), then separate calculations must be initiated with appropriate attachment of the halenium ion to each nucleophilic site.

5. The following three values are extracted from each of the output files for geometry minimized Lewis base (lowest energy conformer) and the Lewis base-halenium ion adduct/complex: a.) electronic energy \(E \), b.) zero point energy \(ZPE \) and, c.) temperature dependence of vibrational energy \(E'_{(vib)} \).

The electronic energy of the halenium ion is also obtained from its corresponding output file.

6.) Finally, these values (converted to kcal/mol) are then substituted in the following equation to obtain the \(HalA \) (X) for the Lewis base.

\[
HalA = -\Delta E_{(elec)} - \Delta ZPE - \Delta E'_{(vib)} + \frac{5}{2}RT
\]

Alternatively, the excel file template provided as a separate section of supporting information can be used to obtain the \(HalA \) value by simply entering the six values obtained from the output files for geometry minimized Lewis base (lowest energy conformer) and the Lewis base-halenium ion adduct/complex.
III. Interpreting the halenium affinity table:

The Halenium affinity table (attached as a separate section of supporting information) provides over 500 HalA (Cl) values for various halenium acceptors that are categorized based on functional groups. Each category includes an organized trend of HalA values for acceptors based on their ring size, substitution pattern, nucleophilicity etc. For searching a category of acceptors or even a particular acceptor, the table also provides labels and molecular formulas. The labels are based on the functionalities and/or the acceptor atom. For instance, the HalA (Cl) of morpholine can be found by searching the document for molecular formula- $\text{C}_4\text{H}_9\text{NO}$. Since, morpholine incorporates nitrogen and oxygen atoms serving as halenium ion acceptors, searching the document under the label ‘NO’ will lead to a quick recognition of compounds incorporating Nitrogen and Oxygen atoms that have been evaluated for halenium affinity (e.g. N-methyl morpholine, 4-hydroxypyridine, methoxypyridines, amides etc.). Apart from simply being a listing of HalA (Cl) values, the table also provides the reader with useful and handy trends that can be interpreted based on their ring size, steric strain etc. The following four examples illustrate a few of several trends.
Example 1

The relationship of sterics incorporated in substituted phosphines to their electron donating ability can be best described by the Tolman’s concept of cone angles. To represent the trend of halenium affinity in phosphines, we have employed the cone angle where the metal center is replaced by a chlorine atom. As shown above, the increasing steric demand of the substituents on phosphine leads to an increased internal angle (θ_1) for R-P-R ($\text{P1}-93.4^\circ < \text{P2}-93.0^\circ < \text{P6}-102.6^\circ < \text{P8}-103.0^\circ < \text{P5}-107.4^\circ$) eventually shifting the trigonal pyramidal geometry of the phosphine towards trigonal planar. Thus in sterically bulky phosphines, the R-P bond gains more ‘s’ character leading to higher ‘p’ character in the lone pair. A lone pair with more ‘p’ character is less bound to the nucleus and displays enhanced nucleophilicity for the free phosphine. Meanwhile, as substituent bulk increases, the strain in the larger cone angle (θ_2) cases of the halo-phosphonium ion opposes this effect, leading to a leveling off of the rate of increase in the HalA (Cl) values.
Example 2

As described for example 1 above, a similar trend of HalA (Cl) is observed for compounds S13 to S16 and N58 to N61. With increasing ring size, the angle strain for C-N-C or C-S-C (θ) is relieved. The increase in ‘p’ character of the lone pair with increasing ring size enhances the nucleophilicity of the heteroatoms and hence their halenium affinity. In contrast, as we go from left to right the increasing ‘p’ character of the lone pair results in a longer bond to the chlorine atom (intrinsic effect due to the geometry). This can be seen from increasing N-Cl distance in the chlorinated analogs. Among the compounds shown above, the lone pair electrons in S13 and N58 are tightly
bound to the nucleus as they have the highest ‘s’ character and hence the resulting S-Cl or N-Cl bond is the strongest.

Example 3

The ascending trend of HalA (Cl) values in this example (as anticipated) displays the increasing reluctance of chlorenium ion to form a three membered cyclic intermediate (chloriranium ion) with the increasing inductive and hyperconjugative donating effects of the substituent on the terminal olefin. Ethylene (A44) by itself forms a symmetrically bridged chloriranium ion A44-Cl. The increasing donating effect of the substituents (A45-A48) distorts this symmetry as indicated by the C-Cl distances and the bond angles θ_1 and θ_2. The phenyl ring in styrene (A49) stabilizes the chlorenium ion via resonance electron donation. The delocalization of this positive charge results in the corresponding chloromethyl carbenium ion A49-Cl.4
Example 4

Forming a chlorenium ion adduct of the above cycloalkenes leads to re-hybridization of the olefinic carbons from sp\(^2\) (\(\angle C-C=C = 120^\circ\)) to hybridization between sp\(^2\) and sp\(^3\) (similar to oxirane carbons). The initial strain introduced due to presence of olefinic carbons (in the parent cycloalkene) can be relieved to a certain extent if the concomitant re-hybridization in its chlorenium adduct leads to a bond angle (\(\theta_2\)) that is close to the corresponding bond angle (\(\theta\)) in the parent cycloalkane. As shown above, the \(HalA\) (Cl) value of the cycloalkenes increase with the ring size, except for A88 and A89. Cyclopropene (A86) incorporates a higher ring strain and angular strain \(\theta_1 = 64.6^\circ\) (55.4° deviation from the normal bond angle of 120° for an sp\(^2\) carbon). Formation of the chlorenium ion adduct A86-Cl, alleviates this strain to a certain extent as \(\theta_2 (61.7^\circ)\)
approaches the natural bond angle in cyclopropane ($\theta = 60.0^\circ$) via partial hybridization of the sp2 carbons. Though cyclobutene undergoes similar changes in its bond angles upon formation of A87-Cl, it has a relatively higher $HalA$ (Cl). A switch in the trend of $HalA$ (Cl) values is observed for cyclopentene (A88) and cyclohexene (A89). Their orbital energies being similar, the only difference arises due to the change in angle strain upon formation of A88-Cl and A89-Cl. The resulting hybridization in A88-Cl brings θ_2 (109.2°) closer to the bond angle in the parent cyclopentane ($\theta = 103.3^\circ$, $\theta_2 - \theta = 5.9^\circ$) in comparison to formation of A89-Cl, which results in elevated angle strain as θ_2 (120.8°) deviates further from cyclohexane ($\theta = 111.5^\circ$, $\theta_2 - \theta = 9.3^\circ$). Finally, as θ_1 increases with increasing ring size (θ_1-A91), the corresponding change in the geometry of the olefin escalates its nucleophilicity.
IV. Equilibrium and titration studies on halopyridinium salts:

a. Screening of chlorenium sources for the formation of chloropyridinium complexes of 1a:

To test the validity of theoretically evaluated halenium affinity values, we studied the possibility for the formation of chloropyridinium complexes via 1H NMR. In this respect, 2,4,6-trimethylpyridine 1a was initially chosen as a model substrate and acetone-d_6 was identified as the optimum solvent of choice. The corresponding halopyridinium salts of 1a displayed low solubility in other commercially available deuterated solvents. Halo-pyridinium salts of 1a were found to be soluble in tetrahydrofuran-d_8 (THF), but this solvent was prohibitively expensive for the large number of planned experiments. Furthermore, the possibility of chlorination of acetone under reaction conditions was ruled out based on three control experiments (see section III-h for further discussion), thus assuring that acetone is not a reactive solvent.

The formation of halo-pyridinium complex (1a-X) was monitored by observing the

![Figure S1](image)

Figure S1. Plot for titration of 1a with various halenium ion sources representing the chemical shift change of C3-H (ppm, 1a) as a function of added halenium ion source.
chemical shift (ppm) change of the C3-H aromatic hydrogens of 1a upon treatment with various amounts of halenium sources (X⁺). As seen in Figure S1, halenium ion sources such as NCS, NCP, dichloramine-T and TCCA with HalA values lower than 1a did not fully transfer halenium ion to 1a, whereas XtalFluor-E®, CDSC, BDSB, and IDSI did form the halo-pyridinium salts. A significant downfield shift of C3-H (approximately 0.9 ppm) is evident when 1.0 equivalent of the latter halenium sources are added to 1a (since the extent of positive charge localized on the pyridine nucleus is the same in the halo-pyridinium salts 1a-F, 1a-Cl, 1a-Br and 1a-I, the extent of downfield chemical shift observed for C3-H was also the same upon addition of 1.0 equiv of halenium sources). After addition of 1.0 equivalent of halenium ion source to 1a, there no further observable change in the chemical shift of C3-H (of 1a-Cl) as the titration is extended beyond 1.0 equiv of the halenium source (indication for the formation of 1:1 complex). Based on the HalA values, TCCA and DAST do not have the ability to completely transfer X⁺ ion, resulting only in stronger halogen bonding that leads to a 0.16 and 0.34 ppm downfield shift of C3-H, respectively. No chemical shift changes were observed when NCS, DCDMH, dichloramine-T, and N-chlorophthalimide sources were used. Addition of up to 5.0 equiv of TCCA (i.e. 15.0 equiv of active chlorenium ion) did not shift C3-H further downfield. However, with this excess of halogenating reagent, new peaks appeared in the aromatic region of the ¹H-NMR spectrum, suggesting side reactions such as benzylic chlorination. EI-MS studies on the crude mixture displayed masses for mono, di- and tri-chlorinated 1a). Radical chlorination of the aromatic ring can be ruled out since the same product was obtained when the experiment was repeated in the dark.
Table S1. Absolute and relative $HalA$ values (gas phase) of 1a in comparison to different halenium sources. Since SM8 is not compatible for elements $>$Kr, the gas phase $HalA$ values are depicted for comparison of the halenium (F, Cl, Br and I) sources.

Entry	Halenium source	Halenium Ion (X)	$HalA$ (X) of 1a (kcal/mol)	$HalA$ (X) of halenium ion source (kcal/mol)	$\Delta HalA$ (kcal/mol)
1	DAST	F$^+$	288.8	432.2	143.4
2	XfF	F$^+$	288.8	294.7	5.9
3	NCS	Cl$^+$	168.2	290.1	121.9
4	DCDMH	Cl$^+$	168.2	275.7	107.5
5	NCP	Cl$^+$	168.2	286.7	118.5
6	Dichloramine-T	Cl$^+$	168.2	273.3	105.1
7	TCCA	Cl$^+$	168.2	253.0	84.8
8	CDSC	Cl$^+$	168.2	161.3	-6.9
9	BDSB	Br$^+$	179.4	133.2	-46.2
10	IDSI	I$^+$	141.1	96.7	-44.4

NCS, DCDMH, NCP and Dichloramine-T, and have 121.9, 107.5, 118.5, and 105.1 (kcal/mol) higher gas phase chlorenium affinities than trimethyl pyridine, respectively (Table S1, entries 3-6). These large differences are corroborated by the experimental data and explain why the corresponding halo-pyridinium complexes are not formed. In organic solvents, conversion of neutral species into charged products is typically uphill in energy, so the conjugate anion of the halenium ion donor will always be more potent acceptor than 1a. Thus, it is no surprise that chlorenium ion transfer from neutral donors to substituted pyridines to yield halo-pyridiniums is unlikely. Therefore, for all subsequent experiments, CDSC was employed as the chlorenium donor, BDSB as the Br$^+$ donor and IDSI as the I$^+$ donor; the corresponding gas phase $HalA$ values (gas phase) are 161.3, 133.2, and 96.7 kcal/mol, respectively (Table S1, entries 8-10).
b. Titration studies of pyridine derivatives with CDSC:

Substituted pyridines 4-phenylpyridine (1h), 4-cyanopyridine (1f), pyridine 4-carbaldehyde (1i), 4-trifluoromethylpyridine (1e), and 4-dimethylaminopyridine (1j) were titrated with CDSC (0.0-2.0 equiv) in acetone-d_6 at room temperature (Figure S2). The range of HalA (Cl) values (gas phase) for these pyridines spans from 145.2 to 176.0 kcal/mol. B3LYP/6-31G*/SM8 is not compatible for the antimony (VI) chloride counterion associated with CDSC, hence we resorted comparing gas phase HalA (Cl) values of diethyl sulfide and substituted pyridines. The gas phase HalA (Cl) values are 161.3 for diethyl sulfide and 168.2 for 1a. Figure S2 depicts the downfield shifts of the pyridines’ C3-H resonances as they are titrated with CDSC (0.0-2.0 equiv), forming chloropyridinium complexes. In all cases the formation of a 1:1 complex of Lewis base:halonium ion was confirmed on the basis of the unchanged chemical shifts of C3-H beyond addition of a stoichiometric equivalent of CDSC.

Figure S2. Plot for titration of pyridines 1a-i with various CDSC representing the chemical shift change of C3-H (ppm) as a function of added CDSC. The biphasic nature of the data for the titration of 1a is illustrated by two straight lines.
As Table S2 shows, halenium ion transfer to substituted pyridines can be easily monitored from the downfield chemical shift change of the aromatic proton (meta proton, C3-H). The most electron rich pyridine 1j (DMAP) shows an attenuated shift as a result of the electron donating C4-N,N-dimethylamine, which prior to chlorenium transfer alters the chemical shift of the C3-H significantly in comparison to other substituted pyridines. The observed chemical shift change between the free pyridine derivatives and their protonated analogs (~1 ppm downfield), closely matches those observed upon treatment of pyridine derivatives 1a-j with 1.0 equiv of CDSC. This clearly suggests complete chlorenium atom transfer to the nitrogen in all these pyridines to form the corresponding chloropyridinium salts. However, the exact chemistry of Cl+ delivery by CDSC is not completely understood. The range of $\text{HalA} \ (\text{Cl})$ values (SM8-acetone) for the pyridines in Table S2 spans from 137.2 to 154.3 kcal/mol, while that simply calculated for diethyl sulfide is 151.6, yet as noted above, complete chlorenium transfer is clearly indicated by the NMR results. Exploratory studies of possible explanations

Table S2. Absolute and relative HalA values in kcal/mol obtained from gas phase and (SM8-acetone) calculation of pyridine derivatives 1a-j in comparison to diethyl sulfide–mimicking CDSC. aThe ΔHalA values displayed below represent the difference in $\text{HalA} \ (\text{Cl})$ values between the pyridine derivatives and diethyl sulfide. The HalA value of diethyl sulfide is 161.3 kcal/mol (gas phase) and 151.6 kcal/mol (SM8-acetone).

Entry	Pyridine derivatives	HalA gas phase	HalA	ΔHalA	ΔHalA SM8-acetone	Δppm (C3-H)
1	1j (4-NMe2)	176.0	154.3	14.7	2.7	0.576
2	1a (2,4,6-trimethyl)	168.2	148.2	6.9	-3.4	0.868
3	1h (4-Ph)	165.7	145.7	4.4	-5.9	0.936
4	1i (4-CHO)	150.8	140.8	-10.5	-10.8	0.921
5	1f (4-CN)	145.2	138.0	-16.1	-13.6	1.048
6	1e (4-CF3)	149.3	137.2	-12.0	-14.4	1.050
involving differential ion pairing of the SbCl_6^- counterion with Et_2SCl^+ vs the chloropyridinium cations are not accessible to the present method as the SM8 solvent model included in the Spartan code does not extend to antimony. Hence, we focus our analysis on comparisons of the HalA values within the same class (i.e. the pyridine derivatives in this case) of Lewis bases.

c. Qualitative analysis of competition experiments between pyridine derivatives:

To validate the HalA scale on a more conclusive manner, the equilibrium of various substituted chloropyridiniums were investigated. In a typical experiment, a stock solution of CDSC (1.0 equiv) was added at room temperature to an acetone-d_6 solution of pyridine A (1.0 equiv), which has a lower calculated HalA than diethyl sulfide. Complete formation of the chloro-pyridinium complex (A-Cl) was then confirmed by ^1H NMR analysis. To this complex (A-Cl), pyridine B (1.0 equiv), chose to have a higher calculated HalA value than A was added to generate B-Cl via abstraction of chlorenium.

Entry	Pyridine derivatives (A)	HalA (kcal/mol) of pyridines (A)	(A$_C$/A)	Pyridine derivatives (B)	HalA (kcal/mol)	(B$_C$/B)
1	1e (4-CF$_3$)	137.2	0.35	1a (2,4,6-trimethyl)	148.2	0.80
2	1f (4-CN)	138.0	0.37	1a (2,4,6-trimethyl)	148.2	0.80
3	1f (4-CN)	138.0	0.52	1e (4-CF$_3$)	137.2	0.56
4	1e (4-CF$_3$)	137.2	0.04	1j (4-NMe$_2$)	154.3	0.75
5	1a (2,4,6-trimethyl)	148.2	0.29	1j (4-NMe$_2$)	154.3	0.79
6	1i (4-CHO)	150.8	0.29	1h (4-Ph)	165.7	1.0
7	1h	165.7	0.28	1a	168.2	0.70

Table S3. Absolute and relative HalA values in kcal/mol (SM8-acetone) of pyridine derivatives 1a-j.
ion from A-Cl. The established equilibrium was then analyzed via 1H-NMR analysis. The amount of each chlorinated pyridine derivative was determined by examining the chemical shift change of C3-H and correlating it with the titration data of each substituted pyridine with CDSC (Figure S2). For example, in the competition between 1e and 1a, C3-H for 1e-Cl under the equilibrium mixture resonates at 8.27 ppm. Using linear interpolation based on the biphasic behavior seen between the limiting shifts observed for unchlorinated and chlorinated pyridines in titrations with CDSC, this shift indicates that 0.35 mol fraction of 1e is chlorinated. Similarly, C3-H of 1a, resonating at 7.67 ppm correlates to a 0.80 mol fraction of 1a. (Note: the sum of the individual mole fractions is over 100% (0.35 + 0.80 = 1.15) and this can be attributed to the fact that the actual chemical shift observed for C3-H under sub-stoichiometric amounts of halenium source is influenced by dimerization). Table S3 shows the fraction of chlorinated pyridine A and B, extracted from the titration curves in Figure S2 based on the changes in the chemical shifts of C3-H aromatic proton of the substituted pyridines. This shows a correlation between the calculated chlorenium affinities and experimental results. As anticipated, pyridine B with higher HalA value yields a greater ratio of BCl:B. This is a fair qualitative comparison to display the transfer of chlorenium ion from pyridine A (with a relatively lower HalA) to pyridine B exhibiting a relatively higher HalA value. Pyridine derivative 1a has 18.9 and 23.0 kcal/mol higher HalA than 1e and 1f, respectively, and thus the chlorenium ion is mostly transferred to 1a (with 0.80 equivalents chlorinated, Table S3, entry 1 and 2). The smallest difference in the fraction of chlorinated complex is observed between 1f and 1e (0.56 versus 0.52, Table S3, entry 3). This is in
complete agreement with the HalA values of the two pyridines. HalA (Cl) of 1f is 138.0 kcal/mol and HalA (Cl) of 1e is 137.2 kcal/mol.

These experiments qualitatively display the correlation between theoretically calculated HalA values and the fraction of chlorinated pyridine observed by 1H NMR. However, these experimental results cannot be used for quantitative analysis. As shown in Figures S1 and S2, the titration curves are nonlinear prior to addition of full stoichiometric equivalent amounts of halenium ion sources (CDSC, BDSB and IDSI), clearly suggesting the possibility of dimerization. This dimerization was confirmed when treatment of 1a with 0.5 equivalents of BDSB (or IDSI) in CDCl$_3$ displayed a downfield shift of the C3-H to 7.2 ppm. The extent of this shift is in accordance to the reported halogenated dimers of 1a.5 The tendency of halo-pyridinium to undergo dimerization with the free base when subjected to sub-stoichiometric amounts of halenium source limits the quantitative analysis.6 Moreover, the rapid exchange of chlorenium ion between the chlorinated and non-chlorinated acceptors leads to an averaged NMR signal, which does not allow for a direct measure of each species via integration.

Seeking reliable means for qualitative and quantitative analysis, we attempted to block pyridine-halogen-pyridine dimerization and the fast exchange of halenium ion in order to observe the chlorinated and non-chlorinated species under NMR timescale. Our rigorous optimizations identified pyridines 1b and 1c as model candidates for this study. Chlorinated 1b-Cl and 1c-Cl and their non-chlorinated counterparts 1b and 1c could be observed by 1H NMR at -90 °C in acetone-d_6. This enables the integration of each
individual species (free base and its chlorinated analog) such that the ratios of chlorinated and non-chlorinated counterparts could be obtained.
d. 1H-NMR analysis of chlorination of 4-methyl-2,6-di-tert-butyl pyridine (1c):

To rigorously confirm HalA assessments on a quantitative scale, we resorted to equilibrium studies of chloropyridinium salts. Addition of 0.5 equiv of CDSC to 1c in acetone-d_6 at room temperature led to the observation of two species (broad peaks) by 1H NMR (Figure S3). Lowering the temperature to -30 °C, resulted in two sharp peaks corresponding to 1c and chlorinated 1c-Cl in a 1:1 ratio. This demonstrates that 1c has a slow exchange with its chlorinated form (1c-Cl) under the NMR timescale; thus enabling the observation of the chlorinated pyridine and its free base by 1H-NMR analysis at -30 °C. The bulky t-butyl substituents on the ortho positions efficiently inhibited the dimerization and the rapid intermolecular transfer of halenium ions. 1c was

![Chemical reaction diagram](image)

Figure S3. 1H NMR spectra of 1c at different temperatures under sub-stoichiometric amounts (0.5 equiv) of CDSC.
then titrated with CDSC to observe the ratios of 1c and 1c-Cl at -30 °C. Figure S4 shows the overlay of 1H NMR spectra (C3-H) with different amounts of CDSC. The resonance at 7.06 ppm corresponds to the free base, while the downfield peak at 8.06 ppm corresponds to 1c-Cl. Upon addition of 1.0 equiv of CDSC, the resonance at 7.06 ppm disappears, and only 1c-Cl is observed (8.06 ppm, Figure S4, entry 6).

e. Formation of halopyridinium salts of 1c with different halenium donors:

![Diagram showing the formation of halopyridinium salts](image)

Entry	CDSC (equiv)	1c (%)	1c-Cl (%)
1	0.0	100	0.0
2	0.3	69.0	30.0
3	0.5	53.0	50.0
4	0.7	31.0	70.0
5	0.9	3.0	90.0
6	1.0	0.0	100
7	1.5	0.0	100
8	2.0	0.0	100

Figure S4. Titration data for chlorination of 1c with CDSC.
Since 1c and 1c-Cl can be observed as separate entities under the NMR timescale at -30 °C, we initiated similar studies with different halenium sources to observe the formation of 1c-X and validate the theoretical HalA estimates. The counter anions of DAST and TCCA have a higher HalA than 1c (Table S4, entries 1 and 3) therefore, as anticipated, ¹H NMR showed no evidence of their transferring halenium ion. Similarly, as expected from the HalA values, only CDSC, BDSCB and IDSI led to a complete transfer of halenium ion to 1c forming the corresponding halo-pyridinium salts (Table S4, entries 4-6).

Table S4. Absolute HalA values and experimentally observed ratios of 1c and 1c-X using different halenium ion sources. Since SM8 is not compatible for elements >Kr, the gas phase HalA values are depicted for comparison of the halenium (F, Cl, Br and I) sources.

Entry	Halenium source	Halenium ion (X)	HalA (X) of 1c gas phase (kcal/mol)	HalA of Halenium source gas phase (kcal/mol)	(1c-Cl)%
1	DAST	F⁺	287.9	432.2	0.0
2	XIF	F⁺	287.9	294.7	47.0
3	TCCA	Cl⁺	153.1	253.0	0.0
4	CDSC	Cl⁺	153.1	161.3	100
5	BDSB	Br⁺	160.4	133.2	100
6	IDSI	I⁺	118.4	96.7	100
f. Quantitative analysis via competition experiments:

The optimized conditions mentioned above were employed to study the competition for chlorenium ion capture between 1a and 1c. Since, 1a has a 15.0 kcal/mol higher chlorenium affinity than 1c, halenium ions should preferentially bind to 1a over 1c with an equilibrium constant $> 10^{10}$. As shown by the 1H-NMR spectra overlay (Figure S5), titration of the pre-formed 1c-Cl complex with 1a leads to a corresponding decrease in the concentration of 1c-Cl as the chlorenium ion is now transferred onto the stronger Lewis base 1a (intensity of the peak at 8.06 ppm for 1c-Cl decreases while the intensity of the peak at 7.06 ppm which corresponds to free 1c, increases). Moreover, a careful inspection of Figure S5 indicates a downfield shift of the

Figure S5. Quantification of HalA assessment via competitive chlorination between 1c and 1a.
chlorinated species \(1\text{a}-\text{Cl}\) and \(1\text{c}-\text{Cl}\) until the mixture is titrated with 1.0 equiv of \(1\text{a}\), a Lewis base capable of undergoing dimerization (as discussed earlier). The fraction of \(1\text{c}-\text{Cl}\) listed in Table S5 is derived from the integration of these two peaks corresponding to \(1\text{c}\) and \(1\text{c}-\text{Cl}\). Formation of \(1\text{a}-\text{Cl}\) is also revealed by the downfield shift of C3-H of \(1\text{a}\). The fraction of \(1\text{a}-\text{Cl}\) (Table S5) is derived by correlating its observed chemical shift to its titration data (Figure S2). Similarly, as shown below (Figure S6), the fraction of \(1\text{c}-\text{Cl}\) and \(1\text{a}\) was plotted against the number of equivalents of \(1\text{a}\) added.

![Plot](image.png)

Figure S6. Plot for mol fraction (%) of \(1\text{a}-\text{Cl}\) and \(1\text{c}-\text{Cl}\) vs equiv of \(1\text{a}\) added.
Table S5. Data for titration of 1c-Cl with 1a. \(\text{HalA (Cl)}_{1c} = 127.2 \text{ kcal/mol (SM8-acetone)} \). \(\text{HalA (Cl)}_{1a} = 148.2 \text{ kcal/mol (SM8-acetone)} \).

Entry	1a (equiv)	(1c-Cl)%	(1a-Cl)%
1	0.0	100	0.0
2	0.5	67.0	37.0
3	0.7	44.0	58.0
4	1.0	16.0	85.0
5	1.5	0.0	100

Note: Although our NMR analysis conditions were chosen to minimize exchange and dimerization of 1c and 1c-Cl, the formation of hetero-dimers of 1c-Cl with free 1a is possible, and dimerization of 1a with 1a-Cl certainly occurs even under low temperature.

Figure S7. Overlay of \(^1\text{H} \) NMR spectra displaying the titration of 1b-Cl with 1c.
condition in the presence of sub-stoichiometric amounts of halenium ion source.

To thwart the competing dimerization, we resorted on competition studies using 2,6-di-tert-butylpyridine (1b) and 1c. At -90 °C in acetone-d_6 the free bases 1b and 1c were distinctly observed from the corresponding chloropyridiniums 1b-Cl and 1c-Cl by 1H-NMR. The fraction of free bases 1b and 1c was derived simply by integration of the corresponding peaks at 7.06 (1c) and 8.06 (1c-Cl) ppm (see Figure S7). Furthermore, the C3-H resonances of 1b and 1b-Cl were distinctly observable at 7.24 and 8.16 ppm, respectively, whereas the corresponding C4-H could be observed at 7.69 and 8.73 ppm. The overlay of 1H-NMR spectra at different equivalents of 1c is shown in Figure S7. As the spectra show, addition of the stronger Lewis base 1c depletes 1b-Cl, confirming the equilibrium shift anticipated by HalA calculations. When an equimolar mixture of 1b and 1c was treated with 1.0 equiv of CDSC, an equilibrium mixture of 1b-Cl and 1c-Cl (in a 1:7 ratio, Table S6, entry 8) was observed by 1H-NMR. The experimental result is in complete accord with the theoretical HalA predictions at the B3LYP/6-31G*/SM8 (acetone) level of theory (ΔHalA at -90 °C = 1.1 kcal/mol; predicting a 1:7 ratio).

Table S6. Data for titration of 1c-Cl with 1b. HalA (Cl)$_{1c}$ = 127.2 kcal/mol. HalA (Cl)$_{1b}$ = 126.1 kcal/mol (B3LYP/6-31G*/SM8-acetone).

Entry	1c (equiv)	(1b-Cl)%	(1c-Cl)%
1	0.0	100	0.0
2	0.2	82.0	100.0
3	0.3	69.0	97.0
4	0.5	58.0	98.0
5	0.6	37.0	93.0
6	0.7	36.7	95.0
7	0.9	19.8	86.2
8	1.0	12.0	88.0
9	1.5	0.0	56.0
fraction of chlorinated 1b and 1c were plotted against the equivalents of added 1c (Figure S8). This study not only validates quantification via HalA but also highlights its value in predicting the outcome of reactions involving subtle steric and electronic changes.

The competition reaction between 1b and 1c was repeated at different temperatures (ranging from -90 °C to -30 °C) to probe the effect on chlorenium ion

Table S7. Effect of temperature on equilibrium ratios of 1b-Cl and 1c-Cl in presence of their free bases 1b and 1c.

Entry	Temperature (°C)	ΔHalA (kcal/mol) at T °C	(1b-Cl)%	(1c-Cl)%
1	-30	1.104	17.0	88.0
2	-50	1.094	20.0	87.0
3	-70	1.091	22.0	85.0
4	-90	1.081	21.0	83.0
transfer. Table S7 displays the fraction of chlorinated 1b and 1c at different temperatures (listed HalA values were calculated using the SM8 model to simulate acetone). The calculated ΔHalA values decrease upon lowering the temperature, which is in agreement with the experimental results (fraction of 1c that is chlorinated drops from 88.0 to 83.0 %). Note that a slight excess of chlorenium donor is reflected in the >100% sum of these percentages.

g. **Competition study for chlorenium ion transfer from 1c-Cl to pyridines derivatives (a quantitative trend):**

Having qualitatively and quantitatively validated the chlorenium ion transfers, 1c was subjected to similar competition studies with a series of pyridines exhibiting different electronic and steric profiles. Pyridine derivative (A) with a lower inherent HalA than 1c was chlorinated by its reaction with CDSC. To this chloropyridinium complex A-

Entry	Pyridine Derivatives (A)	HalA_1 (A) (kcal/mol)	HalA_1 (1c) (kcal/mol)	ΔHalA (kcal/mol)	(1c-Cl)%
1	1f (4-CN)	138.0	127.2	+10.8	100
2	1e (4-CF$_3$)	137.2	127.2	+10.0	97
3	1b (2,6-di-t-Bu)	126.1	127.2	-1.1	88
4	1g (4-Br)	138.8	127.2	+11.6	53
5	1d (4-t-Bu)	146.3	127.2	+19.1	4
6	1a (2,4,6-trimethyl)	148.2	127.2	+21.0	0
7	1h (4-Ph)	145.7	127.2	+18.5	32
8	1j (4-NMe$_2$)	154.3	127.2	+27.1	30
Cl, 1.0 equiv of 1c was added and the corresponding ratio at equilibrium was evaluated by 1H NMR. As shown in Table S8 (entry 1-3), the difference in $HalA$ between 1c and the corresponding pyridine derivative 1f, 1e, and 1b correlates to the observed equilibrium ratio of 1c-Cl by 1H NMR. Thus, the fraction of 1c-Cl calculated from experimental results compliments the theoretical $HalA$ estimates. On the other hand, 4-bromopyridine (1g), 4-tert-butylpyridine (1d), and 2,4,6-trimethylpyridine (1a), which have higher $HalA$ values than 1c also demonstrate experimental results that comply with the theoretical estimations (entry 4-6). The calculated $\Delta HalA$ values decrease upon

Figure S9. Overlay of 1H NMR spectra displaying equilibrium ratios when chloropyridinium derivatives 1(a-f)-Cl were treated with 1.0 equiv of 1c.
lowering the temperature, which is in agreement with the experimental results (fraction of 1c that is chlorinated drops from 88.0 to 83.0 %). The identity of this precipitated could not established due to instability of the chlorinated complexes, hence reliable experimental results were not obtained upon chlorination of 1h and 1j.

The overlay of 1H-NMR spectra of 1c-Cl in competition with other pyridines is shown in Figure S9. These examples clearly demonstrate the validity of HalA as an efficient tool that allows quantitative ranking of halenium ion affinities for Lewis bases.

Figure S10. Overlay of 1H NMR spectra of 1c-Cl, 1c-HCl and 1c displaying their relative chemical shifts.
h. Control experiments:

The halo-pyridinium salts with antimony (VI) halide as the counter anion were insoluble in most of the commercially available deuterated solvents. Although THF-\(d_6\) was efficient in dissolving these salts, it was not economically viable for the entire set of planned experiments. Furthermore, use of acetonitrile-\(d_3\) led to Ritter-type reactions causing decomposition of the halo-pyridinium salts. Hence, for all the above experiments involving analyses of halo-pyridinium salts, acetone-\(d_6\) was identified as the optimum solvent. We were aware of the possibility that treatment of pyridines with halenium sources in acetone might lead to protonation (rather than chlorination) of the pyridinium nitrogen atom yielding \(\alpha\)-chloroacetone as the end product. The protonated pyridines would exhibit a similar downfield shift of the C3-H and thus lead to an erroneous result. This possibility was ruled out based on our control experiments - 1.) by observing no change in chemical shift of the chloropyridiniums upon addition of K\(_2\)CO\(_3\),

![Figure S11. Overlay of \(^1\)H NMR spectra displaying the protonated salt (1c-HSbCl\(_6\)) and the analogous chlorinated salt (1c-Cl) in presence of the free base (1c) in acetone-\(d_6\) at room temperature.](image)
2.) by employing THF as a solvent and observing identical behavior as seen with acetone-\textit{d}_6, and, 3.) by successfully initiating a chlorolactonization of alkenoic acid using the \textit{in situ} generated chloro-pyridinium 1a-Cl.

1.) To verify whether the species under consideration were chloro-pyridinium salts, we deliberately synthesized their protonated analogs by bubbling HCl gas in the ethereal solution of 1c at 0 °C followed by filtration of the precipitated salt (1c-HCl). The salt was dried and suspended in 1,2-dichloroethane and treated with 1.5 equiv of SbCl$_5$ at -40 °C. This yielded the protonated pyridinium-SbCl$_6$ salt. Having the same counter anion - SbCl$_6^-$, 1H NMR spectra of 1c-H (protonated salt) and 1c-Cl (chlorinated salt) were compared in acetone-\textit{d}_6 at room temperature (Figure S11). The equilibrium mixture of 1c and 1c-Cl at room temperature shows a set of poorly resolved peaks between 7.0-7.6 ppm. In contrast, the equilibrium mixture of 1c and 1c-HSbCl$_6$ displays a set of two sharp peaks at 7.06 and 8.06 ppm corresponding to the protonated salt and the free base, respectively. The difference in their chemical shifts (ppm) and broadness of the peak clearly confirms the identity of two different species (protonated and chlorinated) and the relative rate of exchange (compared to NMR timescale) under similar conditions. Furthermore, the protonated and chlorinated species shown above were subjected to 1.0 equiv of K$_2$CO$_3$ and the resulting mixtures were analyzed by 1HNMR. Upon addition of K$_2$CO$_3$ at room temperature, the peak corresponding to 1c-HSbCl$_6$ disappeared instantaneously with increased intensity for the peak due to free 1c. However, addition of K$_2$CO$_3$ to the equilibrium mixture of 1c and 1c-Cl did not lead to any immediate observable change in the intensity or ratio of the free base and its
chlorinated counterpart. When this solution was left at room temperature for over 30 min, some evidence of decomposition of 1c-Cl was observed by 1H NMR. This clearly shows that under the standard optimized conditions, the addition of halenium source leads to the formation of halo-pyridinium salts rather than simple protonation.

2.) Chlorination of 1c with CDSC was performed using non-deuterated THF as a solvent (1H NMR spectrum at -90 °C was obtained using suppression of THF resonances). A similar behavior (when acetone-d_6 was employed) of 1c and 1c-Cl was observed leading to two distinct peaks in 1H NMR at 7.06 ppm for 1c and 8.06 ppm for

![Chemical Structures](image)

Figure S12. Competition for chloremium ion capture between 1b and 1c at -90 °C in THF as a solvent. The chemical shifts (ppm) for the free bases (1b and 1c) and the corresponding chloremium salts (1b-Cl and 1c-Cl) are identical to those observed in acetone-d_6 at -90 °C.
1c-Cl (Figure S12). Since there are no enolizable protons available in THF, the appearance of the downfield peak at 8.06 ppm clearly demonstrates formation of 1c-Cl.

3.) Finally, the *in-situ* generated complex – 1a-Cl (using 1.0 equiv each, 1a and CDSC) in CDCl₃ was treated with 1.0 equiv of alkenoic acid (17) at room temperature (Figure S13). The chlorenium ion from 1a-Cl was transferred to the alkenoic acid (17), successfully initiating a chlorolactonization reaction yielding the chlorolactone (17a).

![Figure S13. Chlorolactonization of 17 using 1c-Cl as an active chlorenium source.](image-url)
V. Synthesis of substrates and intramolecular chlorocyclization of alkenes:

a. Synthesis of substrates 2, 4 and 9:

\[\text{NH}_2 \quad \xrightarrow{(i) \text{Ph} \quad \text{CHO}} \quad \text{Ph} \quad \xrightarrow{(ii) \text{NaBH}_4, \quad \text{H}_3\text{BO}_3} \quad \text{MeO} \quad \xrightarrow{\text{TsCl, NEt}_3, \quad \text{DMAP} \quad (10 \text{ mol\%})} \quad \text{MeO} \]

\(2\)

\(N\)-cinnamyl-\(N\)-(4-methoxyphenyl)-4-methylbenzenesulfonamide (2):

Intermediate \(A\) was synthesized as reported previously.\(^7\) \(p\)-Anisidine (1.0 g, 8.12 mmol) was placed in a porcelain mortar along with freshly distilled \textit{trans}-cinnamaldehyde (1.02 mL, 1.0 equiv, 8.12 mmol). This mixture was grinded using a pestle for about 10 min until a bright yellow solid was obtained. Part of this mixture was analyzed by \(^1\text{H}\) NMR to verify completion of the reaction (imine formation is quantitative). To this crude imine, a 1:1 mixture (pre-mixed) of \text{NaBH}_4 (768 mg, 2.5 equiv, 20.3 mmol) and \text{H}_3\text{BO}_3 (1.26 g, 2.5 equiv, 20.3 mmol) were added at once. Mixing was continued using mortar and pestle for another 20 min until a dry yellow solid was obtained. The reaction mixture was then transferred to a separatory funnel. The motor was washed with \text{CH}_2\text{Cl}_2 (15 mL) and the washings were transferred to the same separatory funnel. This solution was then washed with 50% aqueous \text{NaHCO}_3 solution following by 5 mL of brine. The organics were separated, dried over anhydrous \text{Na}_2\text{SO}_4, filtered, concentrated and then subjected to the next step without further purification. The crude amine \(A\) was transferred to a 100 mL round bottom flask and dissolved in dry \text{CH}_2\text{Cl}_2 (10 mL). To this mixture were added \text{NEt}_3 (2.3 mL, 2.0 equiv, 16.24 mmol) and...
4-(N,N-dimethylamino)pyridine (91 mg, 0.1 equiv, 0.81 mmol) followed by tosyl chloride (1.86 g, added in 3 portions). This mixture was allowed to stir for 5 h at room temperature and the progress of the reaction was monitored by thin layer chromatography (TLC). Upon completion of the reaction, the organics were poured in a separatory funnel and washed with satd. aqueous NaHCO₃ solution. The organics were separated, dried over anhydrous Na₂SO₄, filtered, concentrated and subjected to purification using silica gel column chromatography employing 20% ethyl acetate in hexanes as eluent. Pure product 2 was obtained as a white solid (2.14 g, 67% overall yield).

Analytical data for 2: White solid, mp 79 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.54-7.51 (2H, m.), 7.26-7.20 (7H, m.), 6.98-6.94 (2H, m.), 6.79-6.76 (2H, m.), 6.35 (1H, dd, J = 16.0, 5.0 Hz), 6.13-6.06 (1H, m.), 4.29 (2H, ddd, J = 1.5, 5.0, 11.0 Hz), 3.76 (3H, s.), 2.42 (3H, s.) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 159.0, 143.3, 136.4, 135.7, 133.7, 131.7, 129.4, 129.4, 128.5, 127.8, 126.4, 124.2, 114.1, 55.3, 53.6, 21.6 ppm; IR (film) 3019, 2932, 2837, 1595, 1507 (s), 1447, 1346 (s), 1249, 1162 (s), 684 cm⁻¹. HRMS (ESI) Calculated Mass for C₂₃H₂₄NO₃S: ([M+H]⁺) = 394.1477, Found ([M+H]⁺) = 394.1478.
N-cinnamyl-4-methyl-N-(3,4,5-trimethoxyphenyl)benzenesulfonamide (4):

The same procedure used for the synthesis of 2 (as described above) was employed for the synthesis of 4. Using 1.0 g (5.5 mmol) of 3,4,5-trimethoxyaniline, pure product (4) was isolated (2.14 g, 74% overall yield).

Analytical data for 4: White solid, mp 121 °C; \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.58 (2H, dd, \(J = 8.0\) Hz.), 7.27-7.19 (7H, m.), 6.38 (1H, d, \(J = 16.0\) Hz.), 6.23 (2H, s.), 6.10 (1H, ddd, \(J = 6.5, 13.5, 16.0\) Hz), 4.27 (2H, dd, \(J = 1.0\) Hz, 7.0 Hz), 3.80 (3H, s.), 3.66 (6H, s.), 2.41 (3H, s.) ppm; \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 153.0, 143.6, 137.7, 136.3, 135.7, 134.8, 133.9, 129.4, 128.6, 127.9, 127.8, 126.4, 124.1, 106.5, 60.9, 56.1, 53.7, 21.5 ppm; IR (film) 3000, 2938, 2837, 1595 (s), 1503, 1454, 1416, 1347, 1232, 1163 (s), 1128 (s), 661 cm\(^{-1}\). HRMS (ESI) Calculated Mass for C\(_{25}\)H\(_{28}\)NO\(_5\)S: ([M+H\(^+\)]) = 454.1688, Found ([M+H\(^+\)]) = 454.1685.
N-cinnamyl-4-methyl-N-(2-phenylallyl)benzenesulfonamide (9):

![Chemical structure image]

Substrate 9 was synthesized as reported previously.8

Analytical data for 9: Crystalline white solid, mp 130 °C; 1H NMR (500 MHz, CDCl3) δ 7.66 (2H, d, J = 8.0 Hz.), 7.39-7.37 (2H, m.), 7.31-7.19 (8H, m.), 7.13 (2H, d, J = 6.5 Hz.), 6.30 (1H, d, J = 15.5 Hz.), 5.78 (1H, ddd, J = 7.0, 14.0 and 16.0 Hz.), 5.45 (1H, apparent singlet.), 5.24 (1H, d, J = 1.0 Hz.), 4.26 (2H, s.), 3.86 (2H, d, J = 7.0 Hz.), 2.41 (3H, s.) ppm; 13C NMR (125 MHz, CDCl3) δ 143.3, 142.8, 138.5, 137.0, 136.2, 134.1, 129.6, 128.5, 128.4, 128.0, 127.8, 127.4, 126.6, 126.3, 123.4, 116.3, 50.6, 48.9, 21.5 ppm; IR (film) 3056, 3031, 2922, 1599, 1495, 1447, 1340 (s), 1159 (s), 1093, 910, 738, 659 cm⁻¹. HRMS (ESI) Calculated Mass for C25H26NO2S: ([M+H]+) = 404.1684, Found ([M+H]+) = 404.1687.

b. Chlorocyclization of alkenes 2, 4 and 9:

![Chemical reaction image]

trans-3-chloro-6-methoxy-4-phenyl-1-tosyl-1,2,3,4-tetrahydroquinoline (3):

A 5 mL round bottom flask containing a stir bar was charged with 2 (100 mg, 0.25 mmol) and dissolved in a 9:1 mixture of 1,2-dichloroethane:hexafluoroisopropanol (2.5
mL). To this solution 1,4-diazabicyclo[2.2.2]octane (1.5 mg, 0.05 equiv, ~0.01 mmol) was added and the reaction mixture was placed in an ice bath for about 5 min. Subsequently, 1,3-dichloro-5,5-dimethylhydantoin (DCDMH) (60 mg, 1.2 equiv, 0.31 mmol) was added and stirring was continued for another 3.5 h. The progress of the reaction was monitored by TLC and upon complete consumption of substrate 2, the reaction was quenched with 10% aqueous sodium sulfite (1 mL). The organics were then separated, dried over anhydrous Na₂SO₄, filtered, concentrated and subjected to purification using silica gel column chromatography employing 10% ethyl acetate in hexanes as eluent. After purification, pure product 3 was obtained as a white solid (101 mg, 93%).

Analytical data for 3: White solid, mp 118 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.82 (1H, d, J = 9.0 Hz.), 7.55 (2H, d, J = 8.5 Hz.), 7.27 (2H, d, J = 8.0 Hz.), 7.19 (1H, t, J = 8.0 Hz.), 7.11 (2H, t, J = 7.0 Hz.), 6.70 (1H, dd, J = 3.0 and 9.5 Hz.), 6.47 (2H, d, J = 7.5 Hz.), 6.13 (1H, d, J = 2.0 Hz.), 4.65 (1H, dd, J = 4.0 and 13.5 Hz.), 3.89 (1H, d, J = 9.5 Hz.), 3.76-3.70 (1H, m.), 3.60-3.56 (4H, m.), 2.44 (3H, s.) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 157.4, 144.2, 141.1, 136.3, 133.5, 130.0, 128.8, 128.6, 128.3, 127.5, 127.4, 126.5, 114.9, 113.1, 57.0, 55.2, 54.2, 52.3, 21.5 ppm; IR (film) 3030, 2928, 2838, 1610 (s), 1493 (s), 1356 (s), 1248, 1163 (s), 1037, 910, 801, 736 cm⁻¹. HRMS (ESI) Calculated Mass for C₂₃H₂₃NO₃ClS: ([M+H]+) = 428.1087, Found ([M+H]+) = 428.1087.
Attempted chlorocyclization of substrate 4:

Compound 4 (100 mg, 0.22 mmol) was subjected to the same chlorocyclization conditions (as described above for substrate 2) and 79 mg (73% yield) of the ring-chlorinated product 5 was obtained as pale yellow oil.

Analytical data for 5: Pale yellow oil; 1H NMR (500 MHz, CDCl$_3$) two rotamers (~2.5:1 ratio) along N-Ts were observed at room temperature. Heating the sample to 50 °C did not lead to complete convergence of the spectral lines corresponding to the rotamers.

Major rotamer: δ 7.68 (1H, d, $J = 8.0$ Hz.), 7.27-7.19 (10H, m.), 6.54 (1H, s.), 6.30 (1H, d, $J = 16.0$ Hz.), 6.18 (1H, ddd, $J = 7.0$, 13.5 and 16.0 Hz.), 4.41-4.38 (1H, m.), 4.20-4.14 (1H, m.), 3.86 (3H, s.), 3.80 (3H, s.), 3.68 (3H, s.), 2.41 (3H, s.) ppm; 13C NMR (125 MHz, CDCl$_3$) δ 151.5, 150.4, 143.6, 136.3, 134.2, 131.5, 129.6, 129.5, 128.5, 127.9, 127.3, 126.4, 123.9, 111.7, 61.1, 56.1, 53.1, 21.6 ppm; IR (film) 3023, 2940, 1596, 1576, 1485 (s), 1444, 1396, 1351, 1240, 1163 (s), 1112 (s), 1016, 870, 661 cm$^{-1}$.

HRMS (ESI) Calculated Mass for C$_{25}$H$_{27}$NO$_5$ClS: ([M+H]$^+$) = 487.1220, Found ([M+H]$^+$) = 487.1221.
Chlorocyclization of substrate 9:

In a 5 mL round bottom flask containing a stir bar, 9 (100 mg, 0.25 mmol) was dissolved in a 9:1 mixture of 1,2-dichloroethane:hexafluoroisopropanol (2.5 mL). Then, 1,3-dichloro-5,5-dimethylhydantoin (DCDMH) (54 mg, 1.1 equiv, 0.27 mmol) was added and the reaction mixture was stirred for 24 h. The progress of the reaction was monitored by TLC and upon complete consumption of substrate 9, the reaction was quenched with 10% aqueous sodium sulfite (1 mL). The organics were then separated, dried over anhydrous Na₂SO₄, filtered, concentrated and subjected to purification using silica gel column chromatography employing 20% ethyl acetate in hexanes as eluent. After purification, product 10 was obtained as a white solid (60 mg, 55% yield). Crude ¹H NMR analysis indicated a 5:1 dr for 10. Although complete conversion of 9 was attained (as judged by TLC and ¹H NMR), the mass balance was accounted by a complex mixture of products, which were inseparable by chromatography (identity of these products could not be assigned due to overlapping peaks in NMR). An analytically pure sample of 10 was obtained via preparative TLC. The relative stereochemistry of the major diastereomer could not be assigned with the aid of NOESY experiments owing to the nature of cis-(5,5) fusion in the tricyclic framework of 10.
Analytical data for 10: White waxy solid; 1H NMR (500 MHz, CDCl$_3$) 5:1 dr, major diastereomer: δ 7.67 (2H, d, $J = 8.0$ Hz.), 7.32-7.20 (8H, m.), 7.07 (2H, d, $J = 7.5$ Hz.), 6.89 (1H, d, $J = 8.0$ Hz.), 4.15 (1H, d, $J = 5.5$ Hz.), 3.67 (2H, s.), 3.47 (2H, dd, $J = 3.5$ and 9.5 Hz.), 3.34 (1H, d, $J = 9.5$ Hz.), 3.28 (1H, dd, $J = 6.5$ and 9.5 Hz.), 2.88 (1H, ddd, $J = 2.5$, 6.5 and 8.5 Hz.), 2.42 (3H, s.) ppm; 13C NMR (125 MHz, CDCl$_3$) δ 145.4, 144.1, 144.0, 143.9, 132.0, 129.7, 128.8, 128.8, 128.1, 127.9, 127.0, 125.7, 123.3, 60.0, 57.5, 56.7, 53.9, 49.9, 21.6 ppm; IR (film) 3928, 2961, 2867, 1598, 1453, 1349 (s), 1260, 1165 (s), 1099, 1026, 911, 807, 702, 665 cm$^{-1}$. HRMS (ESI) Calculated Mass for C$_{25}$H$_{25}$NO$_2$ClS: ([M+H]$^+$) = 438.1295, Found ([M+H]$^+$) = 438.1297.
VI. Quantum mechanical modeling studies:

Based on the nature of halenium ion (F, Cl, Br or I), full optimizations for all conformations of the ‘halenium ion’ acceptors and the corresponding ‘Lewis base-halenium ion’ complexes were performed using density functional calculations at the B3LYP/6-31G* level (with the LANL2DZ(d) pseudopotential and basis used for iodine) as implemented in the Spartan-10 software running on Macintosh and Linux platforms. To confirm that each structure was a true minimum, vibrational analyses were performed. For structures presented in Figure 2, Figure 5b and Figure 6 in the manuscript, the \(\text{HalA (Cl)} \) values were calculated using the energies obtained from a full geometry optimization of the structures in simulated acetone at B3LYP/6-31G*/SM8 level of theory. Alternatively, when the \textit{gas phase} energies of the same structures were corrected for solvation in simulated acetone using the SM8 model available in the Spartan code to run single point (i.e. B3LYP/6-31G*/SM8) calculations, the resulting data led to the same conclusion. To verify convergence and consistency of the optimizations, a number of examples were re-optimized from multiple starting points; energetic variations of 0.02 kcal/mol or less were found among these calculated structures. Relative enthalpies \(\Delta H^\circ_{\text{rel}} \) were calculated for the \textit{gas phase} structures by including zero-point and thermal corrections to 298.15 K. Importantly, neither the vibration nor the solvation corrections introduced differences between relative \(E^\circ \) and relative \(H^\circ \) values that were large enough to reorder the relative energy structures; thus, either set of data led to the same conclusions.
Cartesian coordinates for geometry minimized styrene:

Atom	X	 Y	 Z
1 H H1	3.8906963	-0.1039465	0.0006791
2 C C1	2.8698467	0.2657609	0.0010817
3 C C2	1.8324097	-0.5808014	-0.0009399
4 H H2	2.7517904	1.3461327	0.0033224
5 H H3	2.0454119	-1.6501016	-0.0027489
6 C C3	0.3985202	-0.2467405	-0.0006402
7 C C4	-2.3724006	0.2865908	0.0003848
8 C C5	-0.0834339	1.0750850	-0.0010208
9 C C6	-0.5422606	-1.2906386	0.000292
10 C C7	-1.9121771	-1.0300166	0.0005909
11 C C8	-1.4498423	1.3375891	-0.0004488
12 H H6	0.6174931	1.9048299	0.0018638
13 H H7	-0.1890770	-2.3197190	0.0002462
14 H H8	-2.6188624	-1.8558522	0.0012169
15 H H9	-1.7991778	2.3669659	-0.0007321
16 H H10	-3.4389364	0.4948622	0.0008431

Cartesian coordinates for geometry minimized styrene + F cation:

Atom	X	 Y	 Z
1 H H2	2.8006008	0.8488801	0.6519632
2 C C1	2.7085660	0.2902544	-0.2938554
3 C C2	1.5334306	-0.6181780	-0.2430910
4 H H3	2.5850185	1.0299477	-1.1015570
5 H H4	1.7830570	-1.6715264	-0.3782480
6 C C3	0.2035457	-0.2816827	-0.0507188
Cartesian coordinates for geometry minimized styrene + Cl cation:

Atom	X	Y	Z
Cl 1	3.2758162	0.0329725	-1.8063251
H 2	3.5289469	-0.0248172	0.5680118
C 1	2.7218866	0.2924718	-0.0971674
C 2	1.5507764	-0.6129596	0.1816959
C 3	0.2067354	-0.2710434	0.0403656
C 4	-2.5261721	0.2862665	0.1816959
C 5	-0.2565230	1.0888791	0.0506730
C 6	-0.7568595	-1.3372371	0.0969362
C 7	-2.1046711	-1.0552540	0.1714872
C 8	-1.6064943	1.3533468	0.1197515
C 9	0.4526671	1.9073041	-0.0037532
C 10	-0.4056968	-2.3653040	0.0845860
C 11	-2.8352386	-1.8558000	0.2181726
C 12	-1.9665647	2.3766974	0.1247055
C 13	-3.5887611	0.5076062	0.2363835
Cartesian coordinates for geometry minimized styrene + Br cation:

![Image]

Atom	X	Y	Z	
1	H H2	3.5697360	-0.0504926	0.5475900
2	C C1	2.7137838	0.2913182	-0.0319186
3	C C2	1.5582490	-0.6125257	0.0299976
4	H H3	2.5259948	1.3517069	0.1031904
5	H H4	1.8038016	-1.6736580	0.0441067
6	C C3	0.2050238	-0.2699339	0.0549767
7	C C4	-2.5422655	0.2870390	0.1691956
8	C C5	-0.2622947	1.0902243	0.0582713
9	C C6	-0.7607195	-1.3372320	0.1043399
10	C C7	-2.1141792	-1.0555682	0.1637094
11	C C8	-1.6177899	1.3545758	0.1150925
12	H H6	0.4442188	1.9103845	0.0134268
13	H H7	-0.4108292	-2.3647834	0.0969540
14	H H8	-2.8416681	-1.8570948	0.2036541
15	H H9	-1.9764367	2.3767833	0.1182231
16	H H10	-3.6039676	0.5069392	0.2149216
17	Br Br1	3.3093428	0.0523175	-2.0057309

Cartesian coordinates for geometry minimized styrene + I cation at the B3LYP/6-31G*/LANL2DZ level:

![Image]
Cartesian coordinates for geometry minimized α-methylstyrene:

Atom	X	Y	Z
1 H	0.0543720	2.2503769	-0.1497244
2 C	-0.4286364	1.3767145	0.3754165
3 C	-1.4766033	-0.8504688	1.6715387
4 C	0.0410623	1.002697	0.0136178
5 C	-1.3892479	1.5375872	1.3704535
6 C	-1.9175001	0.423843	2.0275127
7 C	-0.5145509	-1.009413	0.6737549
8 C	-1.7367171	2.5357278	1.6248454
9 C	-2.6712871	0.5487679	2.8002426
10 H	-0.1837947	-2.0110102	0.4172445
11 H	-1.8819748	-1.7273009	2.1701069
12 C	1.0786076	-0.071543	-1.0405486
13 C	1.9807647	0.8846413	-1.3109147
14 H	2.0297302	1.8131783	-0.7504886
15 C	1.0973650	-1.3792354	-1.8012150
16 H	1.3966913	-2.2169699	-1.1577300
17 H	0.1063311	-1.6244976	-2.2022647
18 H	2.7179693	0.7566693	-2.0985613
Cartesian coordinates for geometry minimized α-methylstyrene + F cation:

Atom	X	Y	Z
1 H	0.8268993	1.9386516	0.7763814
2 C	-0.0748199	1.3466181	0.7544581
3 C	-2.4366449	-0.1956646	0.6883418
4 C	-0.0841211	0.0831349	0.0673998
5 C	-1.2177010	1.8098166	1.3786756
6 C	-2.3929706	1.0458066	1.3506329
7 C	-1.3092163	-0.6698768	0.0553704
8 H	-1.2039172	2.7654028	1.8921011
9 H	-3.2856129	1.4171075	1.8467243
10 H	-1.3499687	-1.6261442	-0.4517926
11 H	-3.3548840	-0.7733159	0.6769108
12 C	1.0490968	-0.4357215	-0.5833723
13 C	2.4079159	0.1818604	-0.6473422
14 H	2.6411853	0.3464377	-1.7126624
15 C	1.0223894	-1.7419414	-1.3223742
16 H	0.8367010	-2.5681402	-0.6235004
17 H	0.2232622	-1.7632673	-2.0709981
18 H	3.1285884	-0.5680494	-0.2826502
19 H	1.9694056	-1.9432586	-1.8291552
20 F	2.6044127	1.3505437	0.0368513
Cartesian coordinates for geometry minimized α-methylstyrene + Cl cation:

Atom	X	Y	Z
1 H	0.8524194	1.8777405	0.7165050
2 C	-0.0810083	1.3318856	0.6510305
3 C	-2.5061903	-0.0938857	0.5581270
4 C	-0.1230751	0.0425115	0.0205688
5 C	-1.2133218	1.8736161	1.2232405
6 C	-2.4269518	1.1669125	1.1725448
7 C	-1.3752485	-0.6575056	0.0027165
8 H	-1.1682477	2.8411187	1.7119204
9 H	-3.3174398	1.6013467	1.6185220
10 H	-1.4492442	-1.6287982	-0.4703050
11 H	-3.4520204	-0.6242397	0.5260742
12 C	1.0279102	-0.5162342	-0.5687384
13 C	2.3205086	0.2521563	-0.6608431
14 H	2.1970268	1.3308190	-0.7283068
15 C	1.0981013	-1.8830376	-1.1487562
16 H	2.0446183	-2.3540930	-0.8564681
17 H	0.2761186	-2.5452394	-0.8848084
18 H	2.9264954	-0.0974754	-1.4974917
19 H	1.1388190	-1.7911799	-2.2469288
20 Cl	3.2307301	-0.1264182	0.8613968

Cartesian coordinates for geometry minimized α-methylstyrene + Br cation:

Atom	X	Y	Z
1 H	0.8327779	1.9119966	0.7084753
Cartesian coordinates for geometry minimized α-methylstyrene + I cation at the B3LYP/6-31G*/LANL2DZ level:

Atom	X	Y	Z
1 H	0.8216134	1.9349950	0.6952996
2 C	-0.0974624	1.3649121	0.6285659
3 C	-2.4905437	-0.1062810	0.5325283
4 C	-0.1048925	0.0669882	0.0276392
5 C	-1.2518304	1.8998675	1.1662200
6 C	-2.4499482	1.1694591	1.1156606
7 C	-1.3372975	-0.6571308	0.0060733
8 H	-1.2329263	2.8812592	1.6283797
9 H	-3.3559224	1.5960944	1.5368294
10 H	-1.3795844	-1.6426269	-0.4422513
11 H	-3.4228396	-0.6601748	0.4999604
12 C	1.0635820	-0.4921789	-0.5559665
13 C	2.3305740	0.2606205	-0.6583741
14 H	2.2610386	1.3417721	-0.5902834
15 C	1.0721913	-1.8617905	-1.1622284
Cartesian coordinates for geometry minimized *trans*-β-methylstyrene:

Atom	X	Y	Z
1 H	0.3032617	1.4434338	-1.2951095
2 C	-0.2150847	1.3742470	-0.2145948
3 C	-0.0084324	1.2430075	2.5620160
4 C	0.0119607	0.1209177	0.3934372
5 C	-0.3097799	2.5340009	0.5486210
6 C	-0.2062783	2.4766153	1.9417906
7 C	0.0862075	0.0823323	1.7954828
8 H	-0.4670086	3.4895036	0.0544467
9 H	-0.2816820	3.3841314	2.5347258
10 H	0.2416392	-0.8755999	2.2871534
11 H	0.0722434	1.1821635	3.6443459
12 C	0.1021490	-1.1377356	-0.3598294
13 H	0.2068386	-2.0296220	0.2601989
14 C	0.0986798	-1.3016486	-1.6911815
15 H	0.0036050	-0.4336465	-2.3438352
16 C	0.2234347	-2.6262418	-2.3843957
17 H	0.3212531	-3.4486447	-1.6676358
18 H	-0.6515615	-2.8292254	-3.0174953
19 H	1.0989995	-2.6479705	-3.0481412

Cartesian coordinates for geometry minimized *trans*-β-methylstyrene + F cation:
Cartesian coordinates for geometry minimized trans-β-methylstyrene + Cl cation:

Atom	X	Y	Z
1 H	1.27197	0.76397	-1.9816
2 C	1.4255	0.8629	0.3293
3 C	0.3502	0.4903	1.3908
4 C	0.1727	0.1512	0.7149
5 C	0.2195	0.0283	0.1235
6 C	0.1316	0.5607	-0.0567
7 C	0.8351	0.5375	-1.1506
8 C	1.0636	0.7922	-0.4044
9 C	0.4535	0.7105	0.4822
10 H	1.0832	0.3957	0.5044
11 H	0.7733	0.1064	0.0823
12 H	0.9756	0.2255	-0.0835
13 H	0.5850	0.9035	0.3793
14 H	0.2185	0.3601	0.7852
15 H	0.1486	0.6192	0.1937
16 H	0.2576	0.1093	0.3126
17 H	0.1096	0.0086	0.6989
18 H	0.3786	0.0086	0.4872
19 H	0.9323	-0.0086	0.9872
20 F	-0.2586	-0.0086	1.3582

S53
Cartesian coordinates for geometry minimized *trans*-β-methylstyrene + Br cation:

Atom	X	Y	Z
1 H	1.8574729	0.3830576	-0.5330532
2 C	1.2617372	0.6444875	0.3333469
3 C	-0.2904247	1.3409636	2.5990273
4 C	-0.1292304	0.2929226	0.3901490
5 C	1.8468260	1.3248348	1.3859169
6 C	1.0756437	1.6724980	2.5167296
7 C	-0.8910606	0.6634599	1.5511735
8 H	2.8957440	1.5930012	1.3471919
9 H	1.5456894	2.2057584	3.3365620
10 H	-1.9439914	0.4038623	1.590776
11 H	-0.8644809	1.6179014	3.4748436
12 C	-0.7866125	-0.4129093	-0.6258795
13 H	-1.8380584	-0.6510893	-0.4669806
14 C	-0.2356687	-0.9020513	-1.9008857
15 H	0.8341550	-0.7594681	-2.0334701
16 C	-0.7310299	-2.2520803	-2.3839682
17 H	-0.2724791	-3.0425599	-1.7753894
18 H	-1.8184063	-2.3407703	-2.3106930
19 H	-0.4376409	-2.4160850	-3.4232182
20 Br	-1.0781843	0.6342663	-3.0774805
Cartesian coordinates for geometry minimized \textit{trans}-\(\beta\)-methylstyrene + I cation:

![Image of trans-\(\beta\)-methylstyrene + I cation]

Atom	X	Y	Z	
1 H	H1	1.8494486	0.4237718	-0.5496064
2 C	C1	1.2515656	0.6678248	0.3201486
3 C	C4	-0.2852244	1.3201876	2.5871639
4 C	C2	-0.1321358	0.3299062	0.3668280
5 C	C6	1.8402660	1.3137967	1.3850405
6 C	C5	1.0759639	1.6379051	2.5175545
7 C	C3	-0.8879579	0.6788587	1.5236835
8 H	H6	2.8924886	1.5702541	1.3530702
9 H	H5	1.5503198	2.1431802	3.3521744
10 H	H3	-1.9428120	0.4287196	1.5638640
11 H	H4	-0.8598802	1.5772193	3.4689331
12 C	C7	-0.7883929	-0.3803678	-0.6546760
13 H	H7	-1.8324835	-0.6314673	-0.4804312
14 C	C8	-0.2316178	-0.9099972	-1.894633
15 H	H8	0.8369943	-0.7660635	-2.0198083
16 C	C9	-0.7154934	-2.2725801	-2.3491641
17 H	H2	-0.2478077	-3.0362309	-1.7185189
18 H	H10	-1.7985210	-2.3752239	-2.2697020
19 H	H14	-0.4223518	-2.4638129	-3.3810689
20 I	I1	-1.1523684	0.7441194	-3.1205218

Cartesian coordinates for geometry minimized \textit{cis}-\(\beta\)-methylstyrene:

![Image of cis-\(\beta\)-methylstyrene]

Atom	X	Y	Z

S55
Cartesian coordinates for geometry minimized cis-β-methylstyrene + F cation:

Atom	X	Y	Z
H1	1.1119258	1.1495487	-0.8902513
C1	0.6798624	1.0649594	0.1012788
C4	-0.4077372	0.8127077	2.7050387
C2	0.1023642	-0.1792678	0.5297595
C6	0.6954936	2.1448640	0.9555887
C5	0.1540619	2.0187079	2.2521613
C3	-0.4347183	-0.2773156	1.8595014
H6	1.1295815	3.0884175	0.6421690
H5	0.1787208	2.8758949	2.9197088
H3	-0.8642102	-1.2203051	2.1858766
H4	-0.8128270	0.7434694	3.7089588
C7	0.0403306	-1.2998401	-0.2845878
H7	-0.3913257	-2.2105820	0.1331818
C8	0.4378418	-1.4373396	-1.7109923
H8	1.3519814	-0.8768709	-1.9421268
C9	-0.7141760	-0.9792857	-2.6296449
H2	-1.6356511	-1.5198861	-2.3977861
Cartesian coordinates for geometry minimized cis-β-methylstyrene + Cl cation:

Atom	X	Y	Z
1 H	-0.0963462	1.2459008	-1.0864510
2 C	-0.0647157	1.1065062	-0.0152871
3 C	0.0356081	0.7524627	2.7927693
4 C	0.0453575	-0.2127516	0.5403547
5 C	-0.1271382	2.2019182	0.8192681
6 C	-0.0778132	2.0280931	2.2163611
7 C	0.0943225	-0.3541759	1.9711455
8 H	-0.2119710	3.2004379	0.4035825
9 H	-0.1272708	2.9013878	2.8611325
10 H	0.1757665	-1.3497128	2.3980117
11 H	0.0731585	0.6416445	3.8712205
12 C	0.1210474	-1.3932821	-0.1967684
13 H	0.2200235	-2.3019809	0.3954807
14 C	0.0444923	-1.6943180	-1.6568612
15 H	0.7119536	-2.5366193	-1.8602527
16 C	0.1760078	-0.6378408	-2.7380225
17 H	-0.6311985	0.0971960	-2.7078397
18 H	1.1451344	-0.1327757	-2.6531436
19 H	0.1401085	-1.1278607	-3.7143236
20 Cl	-1.6465270	-2.4342294	-1.6403767
Cartesian coordinates for geometry minimized cis-β-methylstyrene + Br cation:

Atom	X	Y	Z
1 H	-0.1242977	1.2525088	-1.0822717
2 C	-0.0805535	1.1087581	-0.0132837
3 C	0.0438337	0.7574816	2.7966616
4 C	0.0456347	-0.2117892	0.5387691
5 C	-0.1436356	2.2077448	0.8251486
6 C	-0.0823670	2.0375338	2.2248518
7 C	0.1049413	-0.3519290	1.9714021
8 H	-0.2385979	3.2035717	0.4091723
9 H	-0.1326469	2.9086491	2.8698093
10 H	0.1967266	-1.3455523	2.3983420
11 H	0.0897453	0.6443622	3.8729635
12 C	0.1359628	-1.3976990	-0.2044704
13 H	0.2593054	-2.3034865	0.3879168
14 C	0.0964777	-1.6778479	-1.6551731
15 H	0.6841846	-2.5711030	-1.8747749
16 C	0.2170468	-0.6317856	-2.7410982
17 H	-0.5843437	0.1094068	-2.7182471
18 H	1.1862720	-0.1222955	-2.6580732
19 H	0.1860556	-1.1185417	-3.7187228
20 Br	-1.8597441	-2.4979874	-1.6289216
Cartesian coordinates for geometry minimized cis-β-methylstyrene + I cation at the B3LYP/6-31G*/LANL2DZ level:

Atom	X	Y	Z
1	1.2570456	-0.8310066	-0.7161051
2	-0.9804834	-0.4643835	0.2609092
3	-0.3075297	0.4980664	2.8219562
4	0.2425273	0.2419302	0.4558242
5	1.8346219	-0.6719027	1.3230695
6	1.5009766	-0.1977252	2.6008649
7	-0.5528466	0.7174189	1.7662658
8	-2.7678775	-1.2016890	1.1725929
9	2.1809933	-0.3714524	3.4279800
10	1.4820386	1.2538936	1.9274982
11	-0.0619948	0.8601786	3.8130887
12	1.1749812	0.5523158	-0.5538332
13	1.9956325	1.1862742	-0.2286387
14	1.2384836	0.2443922	-1.9843568
15	1.7953812	1.0219839	-2.5039000
16	0.1006584	-0.2994382	-2.8159743
17	0.2671061	1.2667538	-2.4774542
18	-0.7254075	0.4203349	-2.8108847
19	0.4280237	-0.4139104	-3.8490132
20	2.8734633	-1.2785270	-1.6298892

Cartesian coordinates for geometry minimized 2,4,6-trimethyl pyridine (1a):
Cartesian coordinates for geometry minimized 2,4,6-trimethyl pyridine (1a) at the B3LYP/6-31G*//SM8 (acetone) level:

Atom	X	Y	Z
1 C	-1.4232569	-0.0123923	-0.0000003
2 N	1.3924566	0.0055747	0.0000006
3 C	-0.6932652	-0.0105984	1.1928980
4 C	-0.6932644	-0.0105946	1.1928982
5 C	0.7035880	-0.0000109	1.1576148
6 C	0.7035875	-0.0000113	1.1576158
7 H	-1.2090640	-0.0188997	-2.1492029
8 H	-1.209681	-0.0189057	2.1492009
9 C	1.5214692	0.0026874	2.4232737
10 H	2.1790071	-0.8736897	2.4638131
11 H	0.8876639	-0.0014102	3.3143907
12 H	2.1697001	0.8859043	2.4653907
13 C	1.5214683	0.0026782	2.4232731
14 H	2.1789699	-0.8737259	2.4638298
15 H	2.1697355	0.8858690	2.4653754
16 H	0.8876623	-0.0013784	3.3143898
17 C	-2.9293029	0.0102676	-0.0000001
18 H	-3.3390691	-0.4830526	0.8870475
19 H	-3.3390684	-0.4830271	-0.8870619
20 H	-3.3012808	1.0438393	0.0000153
Cartesian coordinates for geometry minimized 2,4,6-trimethyl pyridine + F cation

(1a-F):

Atom	X	Y	Z
1 C	-0.4605306	-0.0037852	-1.3936822
2 N	0.3959968	-0.0043049	1.1699148
3 C	-0.2329322	-1.2069616	-0.7084838
4 C	-0.2268752	1.2011880	-0.7085148
5 C	0.2111258	1.2174310	0.6072769
6 C	0.2061741	-1.2237407	0.6092894
7 H	-0.3969880	-2.1606090	-1.1982709
8 H	-0.3866077	2.1554514	-1.1992386
9 C	0.4775200	-2.4441823	1.4309164
10 C	0.4873300	2.4365565	1.4296020
11 C	-0.9531236	0.0049386	-2.8123576
12 H	-0.3643753	0.6938957	-3.4271886
13 H	-1.9943060	0.3504879	-2.8471818
14 H	-0.9121060	-0.9891229	-3.2627882
15 H	0.2625566	-3.3362828	0.8412759
16 H	1.5244478	-2.4751041	1.7519449
17 H	-0.1455202	-2.4548581	2.3316222
18 H	1.5339301	2.4630265	1.7519018
19 H	-0.1370456	2.4505478	2.3293070
20 H	0.2771937	3.3295574	0.8395081
21 F	0.8341353	-0.0041291	2.4651471
Cartesian coordinates for geometry minimized 2,4,6-trimethyl pyridine + Cl cation

(1a-Cl):

Atom	X	Y	Z
1 C	-0.4587553	-0.0039247	-1.3860869
2 N	0.4160348	-0.0044046	1.2281940
3 C	-0.2278196	-1.1992827	-0.6959907
4 C	-0.2214938	1.1932565	-0.6962449
5 C	0.2166656	1.2116364	0.6184780
6 C	0.2118328	-1.2180391	0.6205759
7 H	-0.3910220	-2.1538065	-1.1843174
8 H	-0.3799483	2.1481905	-1.1855733
9 Cl	0.9620075	-0.0043125	2.8758940
10 C	0.4605612	-2.4885560	1.3717030
11 C	0.4704970	2.4810328	1.3702715
12 C	-0.9549018	0.0046660	-2.8024847
13 H	-0.3678287	0.6934960	-3.4192827
14 H	-1.9957340	0.3518944	-2.8340770
15 H	-0.9166225	-0.9895156	-3.2503273
16 H	0.2497825	-3.3405299	0.7235766
17 H	1.5014445	-2.5568983	1.7067503
18 H	-0.1795422	-2.5589923	2.2580331
19 H	1.5119483	2.5464022	1.7039618
20 H	-0.1685648	2.5536607	2.2571103
21 H	0.2614589	3.3337983	0.7225462
Cartesian coordinates for geometry minimized 2,4,6-trimethyl pyridine + Cl cation

(1a-Cl) at the B3LYP/6-31G*/SM8 (acetone) level:

Atom	X	Y	Z
C1	-0.4559613	-0.0048480	-1.3816389
N1	0.4159178	-0.0046638	1.2261837
C2	-0.2255991	-1.2002788	-0.6946727
C6	-0.2207756	1.1927408	-0.6948392
C5	0.2164722	1.2125342	0.6191172
C3	0.2128388	-1.2195999	0.6214042
H2	-0.3878407	-2.1548634	-1.1818630
H6	-0.3803688	2.1472686	-1.1837641
Cl1	0.9646636	-0.0041663	2.8807573
C4	0.4601370	-2.4886766	1.3693577
C10	0.4678066	2.4808341	1.3675074
C14	-0.9523920	0.0057120	-2.7959546
H7	-0.3598737	0.6865478	-3.4158629
H22	-1.9890795	0.3634138	-2.8301598
H23	-0.9251701	-0.9887968	-3.2463149
H24	0.2438912	-3.3368015	0.7188772
H25	1.5015671	-2.5660677	1.6991569
H26	-0.1787264	-2.5644022	2.2555277
H27	1.5095090	2.5557429	1.6968617
H28	-0.1708472	2.5589875	2.2535668
H29	0.2538312	3.3293832	0.7167522

Cartesian coordinates for geometry minimized 2,4,6-trimethyl pyridine + Br cation

(1a-Br):

![3D structure of the molecule](image)

Atom	X	Y	Z
C1	-0.5085398	-0.0016614	-1.3774365
N1	0.4439891	-0.0027266	1.2220452
Cartesian coordinates for geometry minimized 2,4,6-trimethyl pyridine + I cation

(1a-I) at the B3LYP/6-31G*/LANL2DZ level:

Atom	X	Y	Z
1 C	-0.4641932 0.0083029 -1.3901767		
2 N	0.4078970	0.0024977	1.2422231
3 C	-0.2246739	-1.1848352	-0.7031872
4 C	-0.2124777	1.1958822	-0.7038429
5 C	0.2216503	1.2058075	0.6138388
6 C	0.2081600	1.2155932	0.6154715
7 H	-0.4290950	-2.1534307	-1.1806020
8 H	-0.4376370	2.1513820	-1.1749086
9 C	0.4950209	-2.5000639	1.3417112
10 C	0.4859306	2.4951871	1.3478531
11 Br	1.0961805	-0.0033691	3.0796683
12 C	-1.0170364	0.0034186	-2.7910386
13 H	-0.1929687	0.1941550	-3.4918370
14 H	-1.7590922	0.7930121	-2.9439227
15 H	-1.4667739	-0.9543223	-3.0624677
16 H	1.5341897	2.5731946	1.6573596
17 H	-0.1330370	2.5792812	2.2481237
18 H	0.2594518	3.3428033	0.6997847
19 H	0.2716547	-3.3466338	0.6912466
20 H	1.5434864	-2.5752096	1.6513179
21 H	-0.1236955	-2.5885957	2.2417710
Cartesian coordinates for geometry minimized 2,6-di-tert-butyl pyridine (1b):

Atom	X	Y	Z
C	-0.7108567	0.0218167	-2.5990573
N	0.0215260	-0.0006476	0.0675877
C	-0.5264361	-1.1870869	-1.9336875
C	-0.5270256	1.2193147	-1.9131182
C	-0.1565644	1.1709519	-0.5626801
C	-0.1561866	-1.1613723	-0.5824331
H	-0.6699041	-2.1246244	-2.4577590
C	0.0749097	-2.4292451	0.2564900
C	1.5395838	-2.4319098	0.7507208
H	1.7605028	-1.5156513	1.3050322
H	2.2402534	-2.4997350	-0.0904048
H	1.7171826	-3.2910537	1.4092421
C	-0.1854748	-3.7185630	-0.5422495
H	0.4887314	-3.8089299	-1.4020010
H	-1.2179519	-3.772915	-0.9073025
H	-0.0171941	-4.5901615	0.1002301
C	-0.8725708	-2.3946492	1.4767446
H	-0.7137117	-1.4859947	2.0633833
H	-0.6929792	-3.2637641	2.1212907
H	-1.9231185	-2.4174559	1.1624936
C	0.0748656	2.4241997	0.2977723
C	-0.8684097	2.3669328	1.5203620
H	-0.7060186	1.4492478	2.0917641
H	-1.9200240	2.3928464	1.2099448
H	-0.6881079	3.2260124	2.1778977
Cartesian coordinates for geometry minimized 2,6-di-tert-butyl pyridine (1b) at the B3LYP/6-31G*/SM8 (acetone) level:

Atom	X	Y	Z
1 C	-0.6976228	0.0218416	-2.5978550
2 N	0.0232949	-0.0007424	0.0730001
3 C	-0.5164122	-1.1870101	-1.9316710
4 C	-0.5170915	1.2192235	-1.9109971
5 C	-0.1528030	1.1733293	-0.5596962
6 C	-0.1523930	-1.1638580	-0.5795889
7 H	-0.6584949	-2.1235922	-2.4568693
8 H	-0.6600756	2.1644802	-2.4202576
9 H	-0.9805322	0.0308844	-3.6467636
10 C	0.0732644	-2.4368880	0.2555882
11 C	1.5379310	-2.4567669	0.7473401
12 H	1.7757813	-1.5506580	1.3131499
13 H	2.2408825	-2.5243401	-0.0920335
14 H	1.7115489	-3.3232595	1.3968737
15 C	-0.1972043	-3.7203930	-0.5478623
16 H	0.4752553	-3.8167970	-1.4078288
17 H	-1.2298864	-3.7689506	-0.9120559
18 H	-0.0353894	-4.5969813	0.0895222
19 C	-0.8692403	-2.4075368	1.4789386
20 H	-0.7077716	-1.5079568	2.0802919
21 H	-0.6952668	-3.2830763	2.1158943
22 H	-1.9227674	-2.4225039	1.1736151
23 C	0.0731915	2.4317642	0.2971174
24 C	-0.8652168	2.3799751	1.5227846
25 H	-0.6998838	1.4716424	2.1097797
26 H	-1.9197355	2.3972385	1.2210483
27 H	-0.6910147	3.2460906	2.1722965
28 C	1.5393723	2.4456210	0.7843487
29 H	1.7804060	1.5304629	1.3340306
30 H	1.7137353	3.3012601	1.4479078
31 H	2.2395967	2.5283922	-0.0559094
32 C	-0.2029202	3.7290858	-0.4818121
33 H	0.4671020	3.8450745	-1.3413420
34 H	-0.0430390	4.5940425	0.1717877
35 H	-1.2247959	3.7841369	-0.8380848
Cartesian coordinates for geometry minimized 2,6-di-tert-butyl pyridine + F cation

(1b-F):

Atom	X	Y	Z
1 C	-0.8153856	0.0018584	-2.5292359
2 N	-0.0076080	0.0000015	0.0069609
3 C	-0.6056235	-1.2059500	-1.8717847
4 C	-0.6050219	1.2086951	-1.8701861
5 C	-0.1824163	1.2349054	-0.5444135
6 C	-0.1830476	-1.2340843	-0.5460274
7 H	-0.7666090	2.1466724	-2.3821219
8 H	-0.7666090	2.1466724	-2.3821219
9 H	-1.1439983	0.0026314	-3.5627262
10 C	0.0811380	-2.5143276	0.2620033
11 C	1.5672427	-2.5733125	0.6994424
12 H	1.8412775	-1.7831052	1.4008763
13 H	2.2362648	-2.5138774	-0.1655373
14 H	1.7544688	-3.5326748	1.1925066
15 C	-0.8663260	-2.5817913	1.4866062
16 H	-0.6904016	-1.7811859	2.2072537
17 H	-0.7120474	-3.5333416	2.0061081
18 H	-1.9167325	-2.5431799	1.1788333
19 C	-0.1962408	-3.7474929	-0.6229126
20 H	0.4620842	-3.7847549	-1.4961540
21 H	-1.2370333	-3.7954905	-0.9578081
22 H	-0.0034497	-4.6496875	-0.0348991
23 C	0.0824153	2.5139597	0.2652872
24 C	1.5686052	2.5716721	0.7026211
25 H	2.2374939	2.5128958	-0.1625067
26 H	1.8423233	1.7805161	1.4031180
27 H	1.7563872	3.5303618	1.1967832
28 C	-0.8648432	2.5802038	1.4901203
29 H	-0.6893206	1.7784212	2.2095554
30 H	-1.9153143	2.5427052	1.1824361
31 H	-0.7098988	3.5308809	2.0110284
32 C	-0.1945323	3.7484215	-0.6179541
33 H	0.4637766	3.7865983	-1.4911685
Cartesian coordinates for geometry minimized 2,6-di-tert-butyl pyridine + Cl cation (1b-Cl):

Atom	X	Y	Z
1 C	-0.8375940	0.0018043	-2.4068683
2 N	0.0065405	-0.0001172	0.1780200
3 C	-0.6109334	-1.1967978	-1.7493376
4 C	-0.6104954	1.1994141	-1.7476744
5 C	-0.1742322	1.2384747	-0.4241244
6 C	-0.1746757	-1.2378117	-0.4258099
7 H	-0.7744358	-2.125625	-2.2710596
8 H	-0.7737061	2.129383	-2.2681431
9 Cl	0.4827766	-0.0013802	1.8545350
10 H	-1.1840302	0.0025913	-3.4357701
11 C	0.0865667	-2.603961	0.2679741
12 C	1.5771690	-2.7495031	0.6844715
13 H	1.8947323	-2.0798011	1.4816704
14 H	2.2364015	-2.6001653	-0.175470
15 H	1.7299133	-3.7726734	1.0409613
16 C	-0.8934461	-2.8460161	1.4491616
17 H	-0.7509982	-2.1821728	2.2999487
18 H	-0.7463517	-3.8694111	1.8076945
19 H	-1.9325252	-2.7596699	1.1137842
20 C	-0.1779716	-3.7546293	-0.7376907
21 H	0.4798385	-3.7112225	-1.6117440
22 H	-1.2203331	-3.7947152	-1.0696885
23 H	0.0314141	-4.6984392	-0.2280347
24 C	0.0878939	2.6027141	0.2714171
25 C	1.5786859	2.7477473	0.6876000
26 H	2.2375553	2.5995897	-0.1748268
27 H	1.8961614	2.0764722	1.4835755
Cartesian coordinates for geometry minimized 2,6-di-tert-butyl pyridine + Cl
cation (1b-Cl) at the B3LYP/6-31G*/SM8 (acetone) level:

Atom	X	Y	Z
1 C	-0.8403860	0.0018033	-2.4067225
2 N	0.0051419	-0.0001151	0.1761942
3 C	-0.6130383	-1.1961978	-1.7497632
4 C	-0.6125882	1.1988138	-1.7481071
5 C	-0.1763412	1.2371096	-0.4265391
6 C	-0.1768860	-1.2364431	-0.4282175
7 H	-0.7767653	-2.1251510	-2.2730114
8 H	-0.7760135	2.1285285	-2.2701066
9 Cl	0.4804495	-0.0013820	1.8588655
10 H	-1.1875700	0.0025877	-3.4343923
11 C	0.0863240	-2.6006941	0.2668197
12 C	1.5742177	-2.7469990	0.6854239
13 H	1.8900100	-2.0834877	1.4890025
14 H	2.2381001	-2.5867091	-0.1709681
15 H	1.7355224	-3.7719481	1.0342031
16 C	-0.8905225	-2.8463750	1.4473577
17 H	-0.7457491	-2.1877271	2.3022757
18 H	-0.7518997	-3.8717997	1.8047519
19 H	-1.9309392	-2.7530957	1.1182573
20 C	-0.1760444	-3.7517532	-0.7380087
21 H	0.4805046	-3.7073350	-1.6121810
22 H	-1.2173957	-3.7937083	-1.0710380
23 H	0.0337907	-4.6981544	-0.2321012
24 C	0.0876613	2.6003121	0.2702526
25 C	1.5757425	2.7452555	0.686125
26 H	2.2392535	2.5862554	-0.1683051
27 H	1.8914924	2.0800840	1.4908294
28 H	1.7376023	3.7694927	1.0392180
29 C	-0.8869294	2.8449803	1.4514113
30 H	-0.7434706	2.1856836	2.3057492
31 H	-1.9292613	2.7519179	1.1227279
32 H	-0.7499614	3.8701294	1.8095427
33 C	-0.1744052	3.7528130	-0.7330044
34 H	0.4818500	3.7093111	-1.6074280
35 H	0.0361081	4.6984469	-0.2259483
36 H	-1.2158415	3.7957301	-1.0656523
Cartesian coordinates for geometry minimized 2,6-di-tert-butyl pyridine + Br cation (1b-Br):

Atom	X	Y	Z	
1	C1	-0.9251432	0.0017925	-2.3610830
2	N1	-0.0335458	-0.0001516	0.2259457
3	C2	-0.6738107	-1.1981399	-1.7100091
4	C6	-0.6732567	1.2007286	-1.7083771
5	C5	-0.2084019	1.2402906	-0.3879434
6	C3	-0.2090079	-1.2396769	-0.3896139
7	H2	-0.8387886	-2.1263680	-2.2295835
8	H6	-0.8378412	2.1297126	-2.2267366
9	H7	-1.3016699	0.0025765	-3.3776333
10	C4	0.0923253	-2.6258999	0.2613572
11	C7	1.5894350	-2.7330317	0.6870791
12	H1	1.8860423	-2.0475144	1.4778788
13	H8	2.2446075	-2.5730100	-0.1761527
14	H9	1.7655337	-3.7493022	1.0531535
15	C8	-0.8976335	-2.9522238	1.4228763
16	H4	-0.7985797	-2.3104939	2.2950903
17	H10	-0.7110853	-3.9802206	1.7493049
18	H11	-1.9327860	-2.8982012	1.0688652
19	C9	-0.1185754	-3.7601258	-0.7864801
20	H3	0.5322622	-3.6527297	-1.6602535
21	H12	-1.1599691	-3.8426683	-1.1137469
22	H13	0.1407849	-4.7065565	-0.3054912
23	C10	0.0936889	2.6255039	0.2648601
24	C11	1.5909260	2.7313168	0.6904570
25	H5	2.2458728	2.5719686	-0.1730705
26	H16	1.8872672	2.0446865	1.4803920
27	H17	1.7676420	3.7470566	1.0577039
28	C12	-0.8958848	2.9508331	1.4269801
29	H14	-0.7966978	2.3082028	2.2985140
30	H18	-1.9311508	2.8973885	1.0732164
31	H19	-0.7090312	3.9784555	1.7544062
32	C13	-0.1168537	3.7611966	-0.7814617
Cartesian coordinates for geometry minimized 2,6-di-tert-butyl pyridine + I cation (1b-I) at the B3LYP/6-31G*/LANL2DZ level:

Atom	X	Y	Z
1 C	-0.4391450	-0.0006867	-2.5328415
2 N	0.4356437	-0.0009252	0.0503267
3 C	-0.3167948	-1.1938785	-1.8414288
4 C	-0.3101791	1.1930383	-1.8432877
5 C	0.1067361	1.2193629	0.5165189
6 C	0.0999141	-1.2201592	0.5145197
7 H	-0.5408065	-2.1246544	-2.3341821
8 H	-0.5365337	2.1240960	-2.3378114
9 H	-0.6993825	0.0007661	3.5855831
10 C	0.0672006	-2.5630347	0.2659293
11 C	1.4316376	-3.2959964	0.2569615
12 H	2.1949738	2.8039015	0.8539289
13 H	1.8141320	-3.4082796	-0.7603967
14 H	1.2932110	-4.2979368	0.6686024
15 C	-0.4671951	-2.3587095	1.7037328
16 H	0.1887293	-1.7835733	2.3524893
17 H	-0.5844486	-3.3376336	2.1717722
18 H	-1.4487696	-1.8786890	1.6942843
19 C	-0.9437548	-3.5149194	-0.4289093
20 H	-0.5860813	-3.8934831	-1.3882338
21 H	-1.9231480	-3.0533890	-0.5736734
22 H	-1.0859853	-4.3874804	0.2098904
23 C	0.0806072	2.5630108	0.2628786
24 C	1.4506084	3.2859680	0.2630515
25 H	1.8443961	3.3884109	-0.7510301
Cartesian coordinates for geometry minimized 4-methyl-2,6-di-tert-butyl pyridine (1c):

Atom	X	Y	Z
1 C	-0.6284016	0.0187703	-2.2477325
2 N	0.1242676	-0.0038483	0.4408914
3 C	-0.4366253	-1.1830914	-1.5616066
4 C	-0.4373023	1.2089264	-1.5411106
5 C	-0.0592428	1.1640502	0.0084256
6 C	-0.0588919	-1.1607703	0.2141019
7 H	-0.5858641	-2.1236251	-2.0807194
8 H	-0.5874527	2.1580282	-2.0442575
9 C	0.1727253	-2.4328237	0.6190273
10 C	1.6388383	-2.4385614	1.1088571
11 H	1.8622217	-1.5244278	1.6656124
12 H	2.3366234	-2.5036738	0.2650820
13 H	1.8180384	-3.3004130	1.7634867
14 C	-0.0907855	-3.7203686	-0.1815422
15 H	0.5796658	-3.8086575	-1.0444375
16 H	-1.1247757	-3.7735015	-0.5423196
17 H	0.0804665	-4.5932806	0.4584769
18 C	-0.7708848	-2.4013599	1.8423063
19 H	-0.6099456	-1.4942609	2.4307592
20 H	-0.5901002	-3.2723577	2.4841196
Atom	X	Y	Z
------	-------	-------	-------
1 C	-0.6212014	0.0187613	-2.2470346
2 N	0.1241599	-0.0039484	0.4471678
3 C	-0.4309204	-1.1827829	-1.5582805
4 C	-0.4316626	1.2085313	-1.5377253
5 C	-0.0581096	1.1662310	-0.1909117
6 C	-0.0577181	-1.1630742	-0.2106811
7 H	-0.5782762	-2.1229461	-2.0775189
8 H	-0.5800082	2.1572810	-2.0409609
9 C	0.1702272	-2.4405863	0.6178154
10 C	1.6373152	-2.4636483	1.1022307
11 H	1.8791879	-1.5592625	1.6690420
12 H	2.3357535	-2.5297244	0.2589213
13 H	1.8134056	-3.3321755	1.7483926
14 C	-0.1049135	-3.7221002	-0.1872315
15 H	0.5617607	-3.8159295	-1.0519857
16 H	-1.1399494	-3.7703071	-0.5447142
17 H	0.0616943	-4.6001431	0.4469714
18 C	-0.7659766	-2.4148220	1.0461063
19 H	-0.6012597	-1.5170582	2.4492828
20 H	-0.5896234	-3.2924115	2.4796697
21 H	-1.8210542	-2.4282420	1.5459234
22 C	0.1701966	2.4292858	0.6592582
23 C	-0.7623323	2.3813374	1.8895945
24 H	-0.5941020	1.4748336	2.4785829
25 H	-1.8182743	2.3971480	1.5926132
26 H	-0.5857981	3.2496116	2.5356762
27 C	1.6386002	2.4461427	1.1397547

Cartesian coordinates for geometry minimized 4-methyl-2,6-di-tert-buty pyridine

(1c) at the B3LYP/6-31G*SM8 (acetone) level:
Atom	X	Y	Z	
28	H H5	1.8832117	1.5326777	1.6906227
29	H H18	1.8153437	3.3038783	1.7999909
30	H H19	2.3346826	2.5272480	0.2958409
31	C C13	-0.1100037	3.7246628	-0.1214590
32	H H15	0.5544337	3.8378720	-0.9856993
33	H H20	0.0548059	4.5911320	0.5289689
34	H H21	1.1459397	3.7763282	-0.0124983
35	C C14	0.0103782	0.0314527	3.7072396
36	H H4	0.3959265	0.0408316	-0.9856993
37	H H22	-1.5788784	0.9191163	-3.8625977
38	H H23	-1.5725123	-0.8552012	-3.9825581

Cartesian coordinates for geometry minimized 4-methyl-2,6-di-tert-butyl pyridine

+ F cation (1c-F):

![Diagram of the molecule]
Cartesian coordinates for geometry minimized 4-methyl-2,6-di-tert-butyl pyridine

+ Cl cation (1c-Cl):

![Molecular Structure](image)

Atom	X	Y	Z
1 C	-0.7323920	-0.0026391	-2.0920847
2 N	0.1203104	-0.0029836	0.5231432
3 C	-0.4948810	-1.1928246	-1.4085605
4 C	-0.4890660	1.1893390	-1.4086707
5 C	-0.0569179	1.2324233	-0.0892231
6 C	-0.0604620	-1.2358068	-0.0872536
7 H	-0.6544210	-2.1266098	-1.9252725
8 H	-0.6437656	2.1236661	-1.9266022
9 C1	0.5782652	-0.0022435	2.2039077
10 C	0.2025356	-2.6029612	0.6030984
11 C	1.6903658	-2.7426481	1.0307164
12 H	1.9988597	-2.0701274	1.8290800
Cartesian coordinates for geometry minimized 4-methyl-2,6-di-tert-butyl pyridine

+ Cl cation (1c-Cl) at the B3LYP/6-31G*SM8 (acetone) level:

Atom	X	Y	Z
1 C	-0.7321229	-0.0032640	-2.0917719
2 N	0.1211046	-0.0033231	0.5206143
3 C	-0.4943470	-1.1937572	-1.4096610
4 C	-0.4903184	1.1891562	1.4092914
5 C	-0.0579421	1.2312254	-0.0916995
6 C	-0.0606379	-1.2352426	-0.0897907
7 H	-0.6537221	-2.1269697	-1.9275283
8 H	-0.6476660	2.1223756	-1.9286416
9 C	0.5797063	0.0032829	2.2062999
10 C	0.2025965	-2.6016394	0.6019078
11 C	1.6878499	-2.7428057	1.0310239
12 H	1.9958122	-2.0767939	1.8355615
13 H	2.3571422	-2.5813527	0.1790149
14 H	1.8503839	-3.7665878	1.3820914
15 C	-0.7814430	-2.8524004	1.7753399
16 H	-0.649283	-2.1919951	2.6306486
17 H	-0.6403048	-3.8768399	2.1346810
18 H	-1.8197373	-2.7645944	1.4380504

S76
Cartesian coordinates for geometry minimized 4-methyl-2,6-di-tert-butyl pyridine

+ Br cation (1c-Br):

Atom	X	Y	Z
1 C	-0.8268129	-0.0005627	-2.0434049
2 N	0.0901652	-0.0019158	0.5662924
3 C	-0.5545282	1.1937201	-1.3711676
4 C	1.1930933	1.930933	-1.3666207
5 C	1.2354396	-1.2354396	-0.0538007
6 C	1.2371064	-1.2371064	-0.0567113
7 H	2.1252105	-2.1252105	0.871348
8 H	2.1254017	2.1254017	0.871348
9 C	0.5662924	-0.0019158	0.5662924
10 C	-0.0005627	-0.0005627	-0.0005627
11 H	1.871348	0.871348	0.871348
Atom	X	Y	Z
------	---------	---------	---------
1 H	2.3799112	-2.5566088	0.1597923
12 H	-2.5566088	2.3799112	0.1597923
13 H	1.9047864	-3.7337231	1.3903955
14 C	-0.7644797	-2.9636272	1.7451397
15 H	-0.6700909	-2.3267630	2.6215076
16 H	-0.5747408	-3.9929265	2.0657710
17 H	-1.7989347	-2.9118488	1.3888042
18 C	0.0301437	-3.7574104	-0.4634727
19 H	-0.0096640	3.8498960	-0.7929522
20 H	0.2986435	-4.7027179	0.0148659
21 C	0.2171316	-3.6220345	0.1546524
23 C	1.7122773	2.7206109	1.0277159
24 H	2.3707914	3.5565880	0.0676984
25 H	2.0007676	3.0322439	1.1820545
26 H	1.8934405	3.7353850	1.3955073
27 C	-0.7753186	2.9565145	1.7513660
28 C	-0.6830437	2.3148271	2.6244472
29 C	-1.8093279	2.9068986	1.3932001
30 H	-0.5850571	3.9838745	2.0780045
31 C	0.0185905	3.7564639	-0.4552144
32 H	0.6884338	3.6396024	-1.3284809
33 H	0.2870295	4.7013736	0.0239501
34 H	-1.0216900	3.8487668	-0.7836160
35 Br	0.5184882	-0.0029731	2.5054794
36 C	0.3481808	0.0047148	-3.4531967
37 H	-0.5308437	0.1915462	-4.1626623
38 H	-2.0898648	0.7960051	-3.5998015
39 H	-1.8044302	-0.9518875	-3.7190667

Cartesian coordinates for geometry minimized 4-methyl-2,6-di-tert-butyl pyridine

+ I cation (1c-I) at the B3LYP/6-31G*/LANL2DZ level:
| | | | | |
|---|---|---|---|---|
| C | C2 | -0.2514858 | -1.1868603 | -1.4884587 |
| C6 | -0.2436710 | 1.1868304 | -1.4899658 |
| C5 | 0.1702778 | 1.2151586 | -0.1668479 |
| C3 | 0.1626493 | -0.1668479 | 1.2162254 |
| H2 | 0.4941952 | -2.1204654 | -1.9719039 |
| H6 | -0.4801908 | 2.1214325 | -1.9745711 |
| C4 | 0.1241351 | -2.5581825 | -0.1668479 |
| C7 | 1.4792944 | -3.3066383 | 0.5820558 |
| H1 | 2.2622653 | -2.8149741 | 1.1538343 |
| H8 | 1.8349824 | -3.4329114 | -0.4434773 |
| H9 | 1.3418492 | -4.3029015 | 1.0078142 |
| C8 | -0.3761179 | -2.3471726 | 2.0651387 |
| H4 | 0.3046516 | -1.7844696 | 2.6992220 |
| H10 | -0.5005094 | -3.3243176 | 2.5351804 |
| H11 | -1.3485646 | -1.8490435 | 2.0779785 |
| C9 | -0.9127685 | -3.4971948 | -0.0568739 |
| H3 | -0.5788561 | -3.8812114 | -1.0225426 |
| H12 | -1.8876794 | -3.0211431 | -0.1836318 |
| H13 | -1.0551328 | -4.3673756 | 0.5853273 |
| C10 | 0.1390957 | 2.5580220 | 0.6138149 |
| C11 | 1.4988105 | 3.2984513 | 0.5812490 |
| H5 | 1.8509179 | 3.4189626 | -0.4434310 |
| H16 | 2.2768526 | 2.8044417 | 1.1577008 |
| H17 | 1.3656545 | 4.2970321 | 1.0028629 |
| C12 | -0.3647605 | 2.3508979 | 2.0617100 |
| H14 | 0.3107190 | 1.7828233 | 2.6966899 |
| H18 | -1.3411058 | 1.8604126 | 2.0731828 |
| H19 | -0.4821969 | 3.3289701 | 2.5316498 |
| C13 | -0.8908952 | 3.5029135 | -0.0618815 |
| H15 | -0.5530784 | 3.8845282 | -1.0271680 |
| H20 | -1.0290923 | 4.3741829 | 0.5797348 |
| H21 | -1.8684414 | 3.0327026 | -0.1901052 |
| I1 | 2.1988780 | -0.0053861 | 1.7551371 |
| C14 | -0.6589015 | -0.000189 | 3.6793782 |
| H7 | 0.2832533 | -0.0015435 | 4.2397791 |
| H22 | -1.2142006 | 0.8878465 | -3.9847444 |
| H23 | -1.2169808 | -0.8862339 | -3.9844013 |
Cartesian coordinates for geometry minimized 4-tert-butyl pyridine (1d) at the B3LYP/6-31G*/SM8 (acetone) level:

Atom	X	Y	Z
1 C	-0.0162441	-0.0280881	0.5708035
2 N	0.0243695	-0.0018726	3.4198254
3 C	-0.5088386	-1.0960941	1.3311343
4 C	0.4993514	1.0556825	1.3013208
5 C	0.4975842	1.0242972	2.6915516
6 C	-0.4668378	-1.0371726	2.7243038
7 H	-0.9283441	-1.9776933	0.8610756
8 H	0.9028770	1.9285990	0.7981336
9 H	0.8961523	1.8643753	3.2572091
10 H	-0.8503401	-1.8678842	3.3141297
11 C	-0.0144542	-0.0110348	-0.9661056
12 C	-0.7888372	1.2299156	-1.4673411
13 H	-0.3446463	2.1649996	-1.1113799
14 H	-1.8337108	1.2107073	-1.1370778
15 H	-0.7839552	1.2609468	-2.5633546
16 C	-0.6719191	-1.2680469	-1.5631408
17 H	-0.1363641	-2.1846107	-1.2911561
18 H	-0.6661800	-1.2022387	-2.6567102
19 H	-1.7163327	-1.3756291	-1.2487450
20 C	1.4474883	0.0643320	-1.4656700
21 H	2.0287576	-0.8023252	-1.1306587
22 H	1.9561794	0.9648568	-1.1064045
23 H	1.4742446	0.0839779	-2.5617435
Cartesian coordinates for geometry minimized 4-tert-butyl pyridine + Cl cation

(1d-Cl) at the B3LYP/6-31G*/SM8 (acetone) level:

Atom	X	Y	Z
1 C	-0.0168800	0.0238236	0.3580877
2 N	0.0199414	-0.0655038	3.1236867
3 C	0.4582897	-1.1034779	1.0558977
4 C	-0.4696841	1.1018311	1.1355522
5 C	-0.4476572	1.0494411	2.5159949
6 C	0.4731570	-1.1421331	2.4330715
7 H	0.8264225	-1.9786320	0.5342313
8 H	-0.8519122	2.0086900	0.6850832
9 H	-0.7871592	1.8573793	3.1512649
10 H	0.8276820	-1.9877491	3.0080262
11 Cl	0.0414484	-0.1229053	4.8591048
12 C	-0.0173859	0.0407103	-1.1713867
13 C	1.4469948	-0.0881652	-1.6607719
14 H	1.9117556	-1.0226243	-1.3314806
15 H	2.0656503	0.7418628	-1.3027446
16 H	1.4747249	-0.0774781	-2.7560186
17 C	-0.8430916	-1.1638530	-1.6861646
18 H	-0.4247953	-2.1235718	-1.3678808
19 H	-0.8534684	-1.1630856	-2.7815281
20 H	-1.8825476	-1.1179576	-1.3433862
21 C	-0.6223383	1.3366583	-1.7401576
22 H	-0.0491923	2.2254824	-1.4535975
23 H	-1.6639914	1.4785291	-1.4309968
24 H	-0.6159630	1.2927287	-2.8338872
Cartesian coordinates for geometry minimized 4-trifluoromethyl pyridine (1e) at the B3LYP/6-31G*/SM8 (acetone) level:

Atom	X	Y	Z
C1	-0.0222821	-0.0106755	-0.4744081
N1	0.0267116	0.0033123	2.3239245
C2	-0.5036816	-1.015115	0.2453358
C6	0.4847055	1.0895113	0.2199553
C5	0.4861782	1.0448612	1.6120285
C3	-0.4564999	-1.0422108	1.6391966
H2	-0.9062120	-1.9736740	0.2564578
H6	0.8676625	1.9591618	0.3035633
H5	0.8741630	1.8832196	2.1853080
H3	-0.8256281	-1.8753595	2.2324071
C4	-0.0139667	-0.0025448	-1.9816058
F1	-0.6038592	1.1107440	-2.4726993
F2	-0.6570396	-1.0663946	-2.5049903
F3	1.2497487	-0.0184396	-2.4644314

Cartesian coordinates for geometry minimized 4-trifluoromethyl pyridine + Cl cation (1e-Cl) at the B3LYP/6-31G*/SM8 (acetone) level:

Atom	X	Y	Z
C1	-0.0261847	0.0278727	-0.7328823
N1	0.0206052	-0.0475513	1.9879863
Cartesian coordinates for geometry minimized 4-cyanopyridine (1f) at the B3LYP/6-31G*/SM8 (acetone) level:

Atom	X	Y	Z	
1	N N1	0.0000000	0.0000000	2.1997659
2	C C4	0.0000000	0.0000000	-0.5971539
3	C C2	1.1474557	0.0000000	1.5039004
4	C C6	-1.1474557	0.0000000	1.5039004
5	C C5	-1.2094198	0.0000000	0.1121569
6	C C3	1.2094198	0.0000000	0.1121569
7	H H2	2.0636346	0.0000000	2.0887390
8	H H6	-2.0636346	0.0000000	2.0887390
9	H H5	-2.1624575	0.0000000	-0.4040951
10	H H3	2.1624575	0.0000000	-0.4040951
11	C C1	0.0000000	0.0000000	-2.0309621
12	N N2	0.0000000	0.0000000	-3.1988059
Cartesian coordinates for geometry minimized 4-cyanopyridine + Cl cation (1f-Cl)

at the B3LYP/6-31G*/SM8 (acetone) level:

```
| Atom | X         | Y         | Z         |
|------|-----------|-----------|-----------|
| 1 N  | 0.000000  | 0.000000  | 1.2123809 |
| 2 C  | 0.000000  | 0.000000  | -1.5124756|
| 3 C  | 1.1942669 | 0.000000  | 0.5726390 |
| 4 C  | -1.1942669| 0.000000  | 0.5726390 |
| 5 C  | -1.2129175| 0.000000  | -0.8096542|
| 6 C  | 1.2129175 | 0.000000  | -0.8096542|
| 7 H  | 2.0911625 | 0.000000  | 1.1785270 |
| 8 H  | -2.0911625| 0.000000  | 1.1785270 |
| 9 H  | 2.1683554 | 0.000000  | -1.3199379|
| 10 H | 2.1683554 | 0.000000  | -1.3199379|
| 11 C | 0.000000  | 0.000000  | -2.9430404 |
| 12 N | 0.000000  | 0.000000  | -4.1101481 |
| 13 Cl| 0.000000  | 0.000000  | 2.9496747  |
```

Cartesian coordinates for geometry minimized 4-bromopyridine (1g) at the B3LYP/6-31G*/SM8 (acetone) level:

```
| Atom | X         | Y         | Z         |
|------|-----------|-----------|-----------|
| 1 N  | 0.000000  | 0.000000  | 2.9013478 |
| 2 C  | 0.000000  | 0.000000  | 0.1105270 |
| 3 C  | 1.1431628 | 0.000000  | 2.2001341 |
| 4 C  | -1.1431628| 0.000000  | 2.2001341 |
| 5 C  | -1.2058464| 0.000000  | 0.8057399 |
```
Cartesian coordinates for geometry minimized 4-bromopyridine (1g) at the B3LYP/6-31G*/SM8 (acetone) level:

Atom	X	Y	Z
1 N	0.000000	0.000000	2.9013478
2 C	0.000000	0.000000	0.1105270
3 C	1.1431628	0.000000	2.2001341
4 C	-1.1431628	0.000000	2.2001341
5 C	-1.2058464	0.000000	0.8057399
6 C	1.2058464	0.000000	0.8057399
7 H	2.0633399	0.000000	2.7801079
8 H	-2.0633399	0.000000	2.7801079
9 H	-2.1618483	0.000000	0.2948206
10 H	2.1618483	0.000000	0.2948206
11 Br	0.000000	0.000000	-1.8055126

Cartesian coordinates for geometry minimized 4-bromopyridine + Cl (1g-Cl) at the B3LYP/6-31G*/SM8 (acetone) level:

Atom	X	Y	Z
1 N	0.000000	0.000000	1.9983709
Cartesian coordinates for geometry minimized succinimide anion at the B3LYP/6-31G*/SM8 (acetone) level:

Atom	X	Y	Z
N1	0.0000000	-0.0000001	-1.6430693
C2	1.1154878	0.0000020	-0.8517536
C3	0.7624587	-0.0000015	0.6543592
C4	-0.7624590	0.0000015	0.6543592
C6	-1.1154881	-0.0000019	-0.8517539
H2	1.2117654	-0.8791951	1.1310469
H5	1.2117711	0.8791874	1.1310524
H7	-1.2117663	0.8791950	1.1310476
H8	-1.2117695	-0.8791875	1.1310528
O1	-2.2901120	-0.0000053	-1.2431711
O2	2.2901119	0.0000051	-1.2431703
 Cartesian coordinates for geometry minimized \textit{N}-chlorosuccinimide (NCS) at the B3LYP/6-31G*/SM8 (acetone) level:

Atom	X	Y	Z
1 N	0.0000000	0.0000000	0.3164687
2 C	1.1937515	0.0000000	-0.434312
3 C	0.7701646	0.0000000	-1.8896497
4 C	-0.7701646	0.0000000	-1.8896497
5 C	-1.1937515	0.0000000	-0.434312
6 H	1.2017538	0.8800770	-2.3749307
7 H	1.2017538	-0.8800770	-2.3749307
8 H	-1.2017538	-0.8800770	-2.3749307
9 H	-1.2017538	0.8800770	-2.3749307
10 O	-2.3092282	0.0000000	0.0392154
11 O	2.3092282	0.0000000	0.0392154
12 Cl	0.0000000	0.0000000	2.0320450

 Cartesian coordinates for geometry minimized phthalimide anion at the B3LYP/6-31G*/SM8 (acetone) level:
Cartesian coordinates for geometry minimized N-chlorophthalimide (NCP) at the B3LYP/6-31G*/SM8 (acetone) level:

Atom	X	Y	Z
1 H H1	-2.5094267	0.0000000	-1.9981670
2 C C1	-1.4246386	0.0000000	-2.0071608
3 C C4	1.4246386	0.0000000	-2.0071608
4 C C2	-0.7003910	0.0000000	-0.8246524
5 C C6	-0.6994171	0.0000000	-3.2067501
6 C C5	0.6994171	0.0000000	-3.2067501
7 C C3	0.7003910	0.0000000	-0.8246524
8 H H6	-1.2337089	0.0000000	-4.1513571
9 H H5	1.2337089	0.0000000	-4.1513571
10 H H4	2.5094267	0.0000000	-1.9981670
11 C C7	-1.1885780	0.0000000	0.5794528
12 C C8	1.1885780	0.0000000	0.5794528
13 N N1	0.0000000	0.0000000	1.3548439
14 O O1	-2.3178198	0.0000000	1.0194892
15 O O2	2.3178198	0.0000000	1.0194892
16 C1 C11	0.0000000	0.0000000	3.0595670
Cartesian coordinates for geometry minimized 1-chloro-5,5-dimethylhydantoin anion at the B3LYP/6-31G*/SM8 (acetone) level:

Atom	X	Y	Z
1 N	0.6348933	0.0196044	0.3935199
2 C	-0.6531504	0.6392987	0.0309234
3 C	-1.5052790	-0.6642301	-0.0227940
4 N	-0.7208693	-1.7740805	-0.0182634
5 C	0.5910462	-1.3817227	0.0862221
6 O	1.6019229	-2.0704046	0.0071321
7 C	2.1122480	0.8730693	-0.0155140
8 O	-2.7385370	-0.6168048	-0.0837156
9 C	-1.1419147	1.5967263	1.1165117
10 H	-2.1772458	1.8873707	0.9139982
11 H	-0.5224837	2.5002971	1.1491672
12 H	-1.1044665	1.1195958	2.1019300
13 C	-0.6779273	1.3096456	-1.3495440
14 H	-1.7126081	1.5648848	-1.5992339
15 H	-0.2943829	0.6407735	-2.1284128
16 H	-0.0789338	2.2256011	-1.3557543
Cartesian coordinates for geometry minimized 1,3-dichloro-5,5-dimethylhydantoin (DCDMH) at the B3LYP/6-31G*/SM8 (acetone) level:

Atom	X	Y	Z
1 N	0.9282227	-0.4666650	0.1325938
2 C	0.8021885	1.0067936	0.0069192
3 C	-0.7369431	1.1495839	-0.0022491
4 N	-1.2394160	-0.1435735	-0.0110006
5 C	-0.2432908	-1.1677794	0.0380491
6 O	-0.4438673	-2.3600104	0.0133999
7 C1	-2.9051737	-0.5190372	-0.0053392
8 C1	2.4338512	-1.2747265	-0.0064335
9 O	-1.3715844	2.1802447	-0.0088350
10 C	1.3958776	1.7246436	1.2215635
11 H	1.1803832	2.7940166	1.1572922
12 H	2.4811459	1.5890967	1.2404434
13 H	0.9801868	1.3368335	2.1559728
14 C	1.3704076	1.5323056	-1.3174170
15 H	1.1316766	2.5941448	-1.4168392
16 H	0.9534980	0.9969963	-2.1756197
17 H	2.4581197	1.4194055	-1.3299791
Cartesian coordinates for geometry minimized dichloroisocyanuric acid anion at the B3LYP/6-31G*/SM8 (acetone) level:

Atom	X	Y	Z
1 N	1.1975822	-0.2247672	0.000000
2 N	-0.7933257	0.9247690	0.000000
3 N	-0.8359088	-1.4478491	0.000000
4 C	-1.5565342	-0.3094036	0.000000
5 C	0.5102035	-1.5032357	0.000000
6 C	0.5986729	1.0367859	0.000000
7 O	1.1895880	-2.5203278	0.000000
8 O	-2.7770002	-0.2295546	0.000000
9 O	1.2055501	2.0885643	0.000000
10 Cl	-1.6594540	2.4145250	0.000000
11 Cl	2.9206261	-0.2295063	0.000000

Cartesian coordinates for geometry minimized trichloroisocyanuric acid (TCCA) at the B3LYP/6-31G*/SM8 (acetone) level:
Atom	X	Y	Z
N1	1.3469650	0.0000000	0.0000000
N2	-0.6734825	1.1665059	0.0000000
N4	-0.6734825	-1.1665059	0.0000000
C10	-1.4589410	0.0000000	0.0000000
C8	0.7294705	-1.2634800	0.0000000
C7	-2.6624057	1.26348	0.0000000
O1	1.3312028	2.3057110	0.0000000
O3	1.3312028	-2.3057110	0.0000000
Cl1	3.0624432	0.0000000	0.0000000
Cl2	-1.5312216	-2.6521536	0.0000000
Cl3	-1.5312216	2.6521536	0.0000000

Cartesian coordinates for geometry minimized N-cinnamyl-N-methylmethanesulfonamide (6):

Atom	X	Y	Z
H1	-1.0305135	2.8665909	0.2373861
C1	-0.8216126	2.8025379	1.3014642
C4	-0.3076293	2.6799012	4.0400905
C2	-0.5060062	1.5598968	1.8819111
C6	-0.8759614	3.9582720	2.0742966
C5	-0.6187115	3.9037641	3.4477347
C3	-0.2538330	1.5229252	3.2643776
H6	-1.1218425	4.9072444	1.6048414
H5	-0.6626065	4.8082310	4.0483011
H3	-0.0090709	0.5717361	3.7314987
H4	-0.1065007	2.6241747	5.1065983
C7	-0.4305058	0.3056322	1.1187739
H7	-0.2254035	-0.5807294	1.7203402
C8	-0.5762908	0.1369422	-0.2039278
H8	-0.7743776	0.9896481	-0.8511283
C9	-0.4950434	-1.2136049	-0.8658559
H2	-0.5170834	-1.9941192	-0.1038638
Cartesian coordinates for geometry minimized N-cinnamyl-N-methylmethanesulfonamide + Cl cation (6-Cl):

Atom	X	Y	Z
1 H	1.696809	0.089600	2.023526
2 C	2.332408	0.307593	1.169557
3 C	3.992070	0.892344	-1.004801
4 C	1.830245	0.221613	-0.138968
5 C	3.655330	0.682201	1.384550
6 C	4.486524	0.971503	0.298089
7 C	2.665650	0.525013	-1.223308
8 H	4.040476	0.745197	2.395753
9 H	5.519885	1.258081	0.469166
10 H	2.281007	0.464077	-2.238175
11 H	4.636648	1.116080	-1.849071
12 C	0.421433	-0.175635	-0.410150
13 H	0.231330	-0.268935	-1.481678
14 C	-0.162246	-1.365370	0.353177
15 C	-1.658009	-1.566799	0.082392
16 H	-1.830369	-1.801693	-0.976270
17 H	-2.021154	-2.406688	0.678479
18 N	-2.475689	-0.389740	0.515604
19 C	-3.939658	-0.642526	0.438464
Atom	X	Y	Z
------	----------	----------	----------
1 H	-0.8280239	0.7464126	-1.6579833
2 C	-0.5385586	0.8203226	-0.6141097
3 C	0.2194106	0.9770287	2.0610019
4 C	-0.1258567	-0.3300109	0.0536762
5 C	-0.5839693	2.0532117	0.0407250
6 C	-0.2037210	2.1333012	1.3857781
7 C	0.2561821	-0.2422025	1.4006387
8 H	0.5951375	-1.1321139	1.9236242
9 H	0.5187042	1.0646910	3.1005799
10 N	-0.1399570	-1.5884436	-0.6547433
11 S	1.4026110	-2.2684655	-0.9778075
12 C	-1.1403989	-2.5640997	-0.1868703
13 H	-0.9272789	-2.9506061	0.8170278
14 H	-1.1874974	-3.4098397	-0.8787659
15 H	-2.1119680	-2.0640287	-0.1865897
16 O	1.6165569	-3.4481067	-0.1276428
17 O	2.3706445	-1.1724327	-0.9986819
18 C	1.1818779	-2.8512269	-2.6716374
19 H	0.3468644	-3.5529778	-2.7153607
20 H	2.1084281	-3.3572086	-2.9529498
21 H	1.0026214	-1.9882426	-3.3137483
22 H	-0.9097852	2.9325063	-0.5026876

Cartesian coordinates for geometry minimized N-(4-methoxyphenyl)-N-methylethanesulfonamide (7):
Cartesian coordinates for geometry minimized N-(4-methoxyphenyl)-N-methylmethanesulfonamide + Cl cation (7-Cl-1):

Atom	X	Y	Z
1 H	-1.1679408	0.5393404	-1.6202229
2 C	-0.7071932	0.6233359	-0.6415009
3 C	0.5938769	0.9454410	1.8844954
4 C	-0.1605279	-0.4538131	-0.0349923
5 C	-0.6757176	1.9887666	-0.0350380
6 C	0.0082726	2.0832961	1.3096646
7 C	0.4923162	-0.2733502	1.2515724
8 H	0.9038626	-1.1467847	1.7464521
9 H	1.0860336	1.0455490	2.8458153
10 N	-0.2327809	-1.7339681	-0.6523380
11 S	1.2837435	-2.5734204	-0.7285060
12 C	-1.4212535	-2.5671320	-0.3583811
13 H	-1.4486017	-2.9059666	0.6821118
14 H	-1.4129427	-3.4419995	-1.0160684
15 H	2.3161982	-1.9823760	-0.5824029
16 O	1.1695434	-3.8118467	0.0372507
17 O	2.2815977	-1.5497212	-0.3886037
18 C	1.4185300	-2.9705831	-2.4755154
19 H	0.5695161	-3.5913106	-2.7678497
20 H	2.3499476	-3.5302390	-2.5933903
21 H	1.4500789	-2.0411476	-3.0452141
22 H	1.6969950	2.3825780	0.0524142
23 O	0.0497280	3.1756452	2.0069334
24 C	-0.5504572	4.4498204	1.6323065
25 H	0.1334203	4.9750858	0.9663904
26 H	-0.6623669	4.9808296	2.5756889
27 H	1.5216109	4.2987124	1.1561738
28 Cl	0.1841190	3.0888881	-1.2126455
Cartesian coordinates for geometry minimized N-(4-methoxyphenyl)-N-methylmethanesulfonamide + Cl cation (7-Cl-2):

Atom	X	Y	Z
1 H	0.7545233	0.5200014	-1.4597529
2 C	-0.0171488	0.6432198	-0.7030059
3 C	-0.2950814	1.2157281	2.0530766
4 C	0.0577609	-0.4652841	0.3395080
5 C	-0.0488950	2.0403395	-0.2017802
6 C	-0.1979156	2.3151498	1.1178931
7 C	-0.1857158	-0.0996765	1.6977841
8 H	-0.2395970	-0.8544463	2.4698079
9 H	-0.4455950	1.4789221	3.0969806
10 N	0.2818921	-1.7366073	0.0086877
11 S	1.0417889	-2.3347658	-1.5918841
12 C	0.1865904	-2.8096704	1.0275572
13 H	0.9900449	-2.7123523	1.7627925
14 H	0.2946411	-3.7766796	0.5418474
15 H	-0.7893717	-2.7567642	1.5143265
16 O	1.9001411	-3.4131185	-1.1385160
17 O	1.5596151	-1.1591264	-2.2712309
18 C	-0.3869241	-2.9984357	-2.4562879
19 H	-0.8553384	-3.7604173	-1.8312377
20 H	0.0140180	-3.4519453	-3.3680495
21 H	-1.0684675	-2.1809029	-2.6904622
22 H	0.0142887	2.8116955	-0.9591045
23 O	-0.2622823	3.5162128	1.7088567
24 C	-0.1872241	4.6844471	0.8791927
25 H	0.7691045	4.7145086	0.3449722
26 H	-0.2587461	5.5313609	1.5600164
27 H	-1.0198338	4.7053353	0.1672088
28 Cl	-1.6062723	0.3332715	-1.6191967
Cartesian coordinates for geometry minimized \(N\)-methyl-\(N\)-(3,4,5-trimethoxyphenyl) methanesulfonamide:

Atom	X	Y	Z
1 C	-1.0309926	-0.1353219	1.3399131
2 C	1.2672646	-0.2438739	-0.2635019
3 C	0.2375798	-0.1321330	1.9427107
4 C	-1.1547915	-0.1516611	-0.0556783
5 C	-0.0017465	-0.2103991	-0.8502877
6 C	1.3836172	-0.1881716	1.1293493
7 H	-2.1333625	-0.1301962	-0.5156833
8 O	-2.0863011	-0.1074981	2.2031059
9 C	-3.3959952	-0.0835119	1.6622379
10 H	-3.5647534	0.8124029	1.0494296
11 H	-4.0714074	-0.0639328	2.5194953
12 H	-3.6033941	-0.9772719	1.0579932
13 O	0.3476819	-0.0293952	3.3049787
14 C	0.5303604	-1.2732688	3.9835550
15 H	-0.3256224	-1.9401431	3.8189956
16 H	0.6017975	-1.0324363	5.0469483
17 H	1.4531692	-1.7686339	3.6598364
18 H	2.1360535	-0.3046660	-0.9015499
19 O	2.5705937	-0.2044372	1.7957345
20 C	3.7687652	-0.2124201	1.0303176
21 H	3.8605057	-1.1293497	0.4338031
22 H	4.5825460	-0.1705282	1.7563869
23 H	3.8254452	0.6572571	0.3645174
24 N	-0.1141312	-0.2770905	-2.2810391
25 C	-1.2980093	-0.9250009	-2.8606351
26 H	-1.1011638	-1.1416912	-3.903918
27 H	-2.2127137	-0.3170400	-2.7910372
28 H	-1.4578432	-1.8614691	-2.3210899
29 S	0.5770077	0.9726944	-3.2100336
30 O	0.2609094	0.6636564	4.6058365
31 O	1.9615227	1.1592723	-2.7768471
32 C	-0.3295774	2.4691429	-2.7488351
33 H	0.1200532	3.2962346	3.3025786
34 H	-0.2250918	2.6290482	1.6742912
35 H	-1.3779757	2.3518328	-3.0309924

S97
Cartesian coordinates for geometry minimized \(N\)-methyl-\(N\)-(3,4,5-trimethoxyphenyl) methanesulfonamide + Cl cation:

Atom	X	Y	Z
1	-0.138405	1.082979	1.305737
2	-0.340888	-1.137890	-0.432317
3	-0.233881	-0.220594	1.906811
4	-0.003333	1.300556	-0.086200
5	-0.006754	0.239999	-0.971432
6	-0.312871	-1.304612	1.067177
7	0.169988	2.306836	-0.435328
8	-0.136328	2.066960	2.181463
9	-0.076789	3.451629	1.775274
10	0.877992	3.664001	1.286200
11	-0.154226	4.017311	2.702239
12	-0.916787	3.690375	1.117889
13	-0.326434	-0.333941	3.261283
14	0.888728	-0.121459	4.010964
15	1.648936	-0.859964	3.730307
16	0.612188	-0.253388	5.057248
17	1.275079	0.889413	3.858424
18	-0.406258	-2.584299	1.370218
19	-0.616412	-3.090793	2.713036
20	0.274392	-2.928774	3.322122
21	-0.786580	-4.156939	2.569003
22	-1.485142	-2.615119	3.166789
23	0.156790	0.426542	-2.312556
24	0.165627	1.799552	-2.854713
25	0.130623	1.759667	-3.941817
26	1.074295	2.338836	-2.567688
27	-0.721019	2.323165	-2.489781
28	0.883255	-0.790652	-3.424970
29	1.363667	-1.889502	-2.595545
30	1.780538	-0.009760	-4.260439
31	-0.530337	-1.326943	-4.396542
32	-0.133603	-2.033737	-5.130623
33	-0.961701	-0.461553	-4.902453
34	-1.252046	-1.809942	-3.737307
35	-2.048707	-1.519402	-0.986314
36	0.286395	-1.908558	-0.876161
Cartesian coordinates for geometry minimized *N*-cinnamyl-*N*-(2-phenylallyl)methanesulfonamide (9):

Atom	X	Y	Z
1	-3.566164	-1.288921	0.001150
2	-3.086618	-1.326162	-0.972973
3	-1.823591	-1.353055	-3.451814
4	-1.937901	-2.118310	-1.141664
5	-3.602261	-0.570975	-2.025066
6	-2.974204	-0.583002	-3.271561
7	-1.306663	-2.107323	-2.398482
8	-4.490656	0.035172	-1.867224
9	-3.372990	0.007050	-4.092311
10	-0.411133	-2.699010	-2.563266
11	-1.326074	-1.371414	-4.418072
12	-1.415929	-2.944957	-0.020240
13	-2.227222	-3.513929	0.885049
14	-1.830236	-4.094874	1.713473
15	-3.308773	-3.446626	0.815148
16	0.082527	-3.161655	0.076511
17	0.304048	-3.798152	0.944391
18	0.459573	-3.686248	-0.803156
19	0.809548	-1.879215	0.170155
20	2.285718	-1.758489	-0.665970
21	2.104954	-0.236950	-1.614194
22	1.969792	0.596333	-0.924302
23	1.245919	-0.342398	-2.277913
24	3.028173	-0.118284	-2.186659
25	3.384012	-1.560137	0.288852
26	2.326176	-2.868048	-1.628568
27	0.747034	-1.189784	1.481361
28	1.641703	-1.405607	2.077861

S99
Cartesian coordinates for geometry minimized N-cinnamyl-N-(2-phenylallyl)methanesulfonamide $+\text{Cl cation (11):}$

Atom	X	Y	Z			
1	H H1	0.4549913	2.0183789	1.7077815		
2	C C1	0.5066882	1.0313050	2.1604949		
3	C C4	0.6975914	-1.4359402	3.4106276		
4	C C2	1.1993595	-0.0113499	1.5084218		
5	C C6	-0.0786043	0.8433627	3.4143703		
6	C C5	0.0158508	-0.3955723	4.0451046		
7	C C3	1.2847970	-1.2487676	2.1561092		
8	H H6	-0.5923547	1.6691832	3.8978753		
9	H H5	-0.4308388	-0.5502060	5.0225903		
10	H H3	1.7824480	-2.0921076	1.6947347		
11	H H4	0.7759200	-2.4067240	3.8910208		
---	---	---	---	---	---	---
12	C	C7	1.7851769	0.2794130	0.1099132	
13	C	C8	2.8139646	1.4281692	0.1885687	
14	C	C9	2.4345817	-0.9373404	-0.6425019	
15	H	H2	3.3671011	-0.6085093	-1.1123530	
16	H	H10	2.6765158	-1.7876940	-0.0128273	
17	N	N1	1.5130468	-1.3435279	-1.7137435	
18	C	C10	0.8269234	-0.1459696	-2.1619329	
19	H	H12	-0.0960951	-0.3784577	-2.6949177	
20	H	H13	1.4837303	0.4176882	-2.8350368	
21	S	S1	0.5769296	-2.7702302	-1.4858746	
22	O	O1	1.1976880	-3.5179864	-0.3930321	
23	O	O2	-0.8447235	-2.3823087	-1.4216509	
24	C	C11	0.8465008	-3.6522302	-3.0259219	
25	H	H9	1.9115313	-3.8709640	-3.1142946	
26	H	H16	0.4989974	-3.0365016	-3.8574062	
27	H	H17	0.2646101	-4.5753398	-2.9670175	
28	C1	C11	4.2727823	0.9555377	1.1415987	
29	H	H7	3.1647131	1.7030058	-0.8104295	
30	H	H8	2.3999105	2.3137482	0.6722100	
31	C	C12	0.6120050	0.7374592	-0.8630435	
32	C	C13	-0.7222052	0.4169234	-0.3143275	
33	C	C14	-1.8931821	1.1946979	-0.3583255	
34	C	C15	-4.3173697	2.5869618	-0.4463631	
35	C	C16	-3.1171917	0.5640554	0.0392914	
36	C	C17	-1.9296688	2.5524898	-0.7973009	
37	C	C18	-3.1308509	3.2333717	-0.8384861	
38	C	C19	-4.3094075	1.2550129	-0.0094144	
39	H	H11	-3.0830762	-0.4712906	0.3664428	
40	H	H18	-1.0151519	3.0569078	-1.0910547	
41	H	H19	-3.1635573	4.2663023	-1.1693814	
42	H	H20	-5.2349387	0.7720893	0.2859926	
43	H	H21	-5.2563291	3.1322903	-0.4824387	
44	H	H14	0.6980765	1.7942684	-1.1269414	
45	H	H15	-0.8522859	-0.6035739	0.0328690	
Cartesian coordinates for geometry minimized \(N \)-cinnamyl-\(N \)-(2-phenylallyl)methanesulfonamide + Cl cation (11'):

Atom	X	Y	Z		
1 H	-3.2829057	-1.2992582	1.4088336		
2 C	-3.1287234	-0.3289719	1.8773291		
3 C	-2.7785524	2.1528531	3.1025715		
4 C	-1.8923738	0.3259241	1.7693848		
5 C	-4.1749707	0.2482735	2.5937201		
6 C	-4.0023543	1.4919498	3.2084540		
7 C	-1.7317067	1.5755984	2.3822455		
8 H	-5.1239514	-0.2734148	2.6760318		
9 H	-4.8178121	1.9395918	3.7686355		
10 H	-0.7748707	2.0877958	2.3175731		
11 H	-2.6333389	3.1150808	3.5848418		
12 C	-0.7417111	-0.2802080	0.9891320		
13 C	-0.2601987	-1.6293813	1.5575898		
14 C	0.6602368	-2.4782880	0.6392513		
15 H	1.3005567	-3.0881135	1.2791047		
16 H	0.0261732	-3.1684705	0.0640496		
17 N	1.4870992	-1.7366961	-0.3134464		
18 C	0.9089934	-1.3860597	-1.6110930		
19 H	0.2885380	-2.2112378	-1.9902566		
20 H	1.7032570	-1.2086742	-2.3301670		
21 S	3.1875234	-1.6542560	-0.1189567		
22 O	3.6323624	-0.7031560	-1.1422493		
23 O	3.4375913	-1.4547759	1.2995091		
24 C	3.8006000	-3.2879854	-0.5819418		
25 H	3.5274466	-3.4943721	-1.6184087		
26 H	3.3884834	-4.0361355	0.0976473		
27 H	4.8879798	-3.2509778	-0.4779862		
28 Cl	0.5478180	-1.3038265	3.1501563		
29 H	-1.1241145	-2.2515945	1.8055946		
---	---	---	---	---	
30	C	C12	0.0226030	-0.1709775	-1.4061625
31	C	C13	-1.1648650	-0.4211315	-0.5586246
32	C	C14	0.3592331	1.1164985	-1.8903380
33	C	C15	1.0165054	3.6771755	-2.8664472
34	C	C16	-0.5651384	2.2097330	-1.7909891
35	C	C17	1.6359519	1.3764363	-2.4898543
36	C	C18	1.9509414	2.6376679	-2.9623704
37	C	C19	-0.2398920	3.4598021	-2.2768567
38	H	H14	-1.5440470	2.0644575	-1.3516639
39	H	H18	2.3983170	0.6083968	-2.5087901
40	H	H19	2.9283056	2.8222721	-3.3957091
41	H	H20	-0.9554010	4.2725332	-2.2072737
42	H	H21	1.2676636	4.6637969	-3.2456570
43	H	H15	-1.5636142	-1.4257587	-0.7305025
44	H	H11	-1.9684687	0.2874998	-0.7407650
45	H	H7	0.1048300	0.4103848	1.0348538
VI. NMR spectra
VIII. References:

(1) Snyder, S. A.; Treitler, D. S.; Brucks, A. P. *J. Am. Chem. Soc.* **2010**, *132*, 14303.

(2) (a) Smith, B. J.; Radom, L. *J. Am. Chem. Soc.* **1993**, *115*, 4885; (b) Delbene, J. E. *J. Phys. Chem.* **1993**, *97*, 107; (c) Curtiss, L. A.; Raghavachari, K.; Pople, J. A. *J. Chem. Phys.* **1993**, *98*, 1293.

(3) Tolman, C. A. *J. Am. Chem. Soc.* **1970**, *92*, 2956.

(4) (a) Yousefi, R.; Ashtekar, K. D.; Whitehead, D. C.; Jackson, J. E.; Borhan, B. *J. Am. Chem. Soc.* **2013**, *135*, 14524; (b) Haubenstock, H.; Sauers, R. R. *Tetrahedron* **2005**, *61*, 8358.

(5) Homsi, F.; Sylvie, R.; Rousseau., G. *Org. Synth.* **2000**, *77*, 206.

(6) Baruah, S. K.; Baruah, R. *Asian J. Chem.* **2004**, *16*, 688.

(7) Esteves-Souza, A.; Rodrigues-Santos, C. E.; Del Cistia, C. D.; da Silva, D. R.; Sant'Anna, C. M. R.; Echevarria, A. *Molecules* **2012**, *17*, 12882.

(8) Oppolzer, W. *Helv. Chim. Acta* **1974**, *57*, 2610.