CpxR negatively regulates the production of xenocoumacin 1, a dihydroisocoumarin derivative produced by *Xenorhabdus nematophila*

Shujing Zhang1 | Xiangling Fang2,3 | Qian Tang1 | Jing Ge1 | Yonghong Wang1 | Xing Zhang1

1Research and Development Center of Biorational Pesticides, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Northwest A & F University, Yangling, Shaanxi, China
2State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
3School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Crawley, Western Australia, Australia

Abstract

Xenocoumacin 1 (Xcn1), a major antimicrobial compound produced by *Xenorhabdus nematophila*, has great potential for use in agricultural productions. In this study, we evaluated the effects of CpxR, a global response regulator associated with the mutualism and pathogenesis of *X. nematophila*, on the antimicrobial activity and Xcn1 production. The mutation of *cpxR* could promote the production of Xcn1 significantly with its level in Δ*cpxR* mutant being 3.07 times higher than that in the wild type. Additionally, the expression levels of *xcnA-L* genes, which are responsible for the production of Xcn1, were increased in Δ*cpxR* mutant while the expression levels of *xcnMN*, which are required for the conversion of Xcn1 into Xcn2 was reduced. Noticeably, Xcn2 was also enhanced on account of the conversion of excessive Xcn1 in spite of low expression levels of *xcnM* and *xcnN* in Δ*cpxR* mutant. The transcriptional levels of *ompR* and *lrp*, encoding the global response regulators OmpR and Lrp which negatively and positively regulate the production of Xcn1 were concurrently decreased and increased, respectively. Correspondingly, Δ*cpxR* mutant also exhibited increased antimicrobial activities in vitro and in vivo. Together, these findings suggest that CpxR negatively regulates *xcnA-L* genes expression while positively regulating *xcnMN* expression in *X. nematophila* YL001, which led to a high yield of Xcn1 in Δ*cpxR* mutant.

KEYWORDS

antimicrobial activity, biosynthesis regulation, CpxR, *X. nematophila*, xenocoumacin 1

1 | INTRODUCTION

*Xenorhabdus nematophila*, a mutualistic symbiont of the soil-dwelling nematode *Steinernema carpocapsae*, is a potent producer of natural bioactive compounds. Whole-genome sequencing programs have revealed that *X. nematophila* had great biosynthetic potential in secondary metabolites. In *X. nematophila* ATCC 19061 7.5% of the genomic genes encode the proteins involving in secondary metabolism. The majority of these encoded molecules, however, are cryptic (Bisch et al., 2016; Chaston et al., 2011). Until now, *X. nematophila* has been known to produce several secondary metabolites with antimicrobial activity, including xenocoumacins (Xcs) (Huang et al., 2005; Lang, Kalvelage, Peters, Wiese, & Imhoff, 2008; Yang et al., 2011; Zhou, Yang, Qiu, & Zeng, 2017), indole derivatives (Li, Chen,
a sensor of intracellular metabolic status and thus generally as-
responsive protein), a global regulator of transcription, serves as
the fermentation conditions (Cowles, Cowles, Richards, Martens,
Ettema, De Vos, & Van Der Oost, 2003; Hart & Blumenthal, 2011).

Many previous researches have confirmed
that the antimicrobial activity of

Xcn1 in X. nematophila

was attenuated, an increase in Xcn1 is observed, along with a 20-fold
reduction in cell viability, suggesting that the conversion of Xcn1 into
Xcn2 is a resistance mechanism utilized by the bacteria to avoid
self-toxicity (Park et al., 2009). Although Xcn1 has great potential for
using as a new biopesticide in agricultural productions, its low yield
in X. nematophila wild strains is a substantial limitation for its prac-
tical applications.

X. nematophila can adapt to the changing environmental condi-
tions to modulate the pathogenic and mutualistic behaviors to its
host, which is closely associated with the production of bioactive
substances (Herbert, Cowles, & Goodrich-Blair, 2007; Herbert &
Goodrich-Blair, 2007). Many previous researches have confirmed
that the antimicrobial activity of X. nematophila varies according to
the fermentation conditions (Cowles, Cowles, Richards, Martens,
& Goodrich-Blair, 2007; Furusawa et al., 2008; Goodrich-Blair,
2007; Wang, Fang, An, Wang, & Zhang, 2011; Wang, Fang, Li, &
Zhang, 2010; Wang, Li, Zhang, & Zhang, 2008). But it still remains
unclear how X. nematophila recognizes these changes or how these
signals are associated with the antimicrobial activity. Lrp (leucine-
responsive protein), a global regulator of transcription, serves as
a sensor of intracellular metabolic status and thus generally as-
associates with the response to nutrient availability (Brinkman,
Ettema, De Vos, & Van Der Oost, 2003; Hart & Blumenthal, 2011).

In X. nematophila, as a global regulator as well, Lrp can regulate
the pathogenic and mutualistic interactions, especially affect
the production of secondary metabolites (Cowles et al., 2007;
Goodrich-Blair, 2007; Hussa, Casanovatorres, & GoodrichBlair,
2015). Lrp is predominantly a positive regulator of secondary me-
tabolite production. The mutation of lrp could significantly reduce
the production of antibiotics, including xenortides, xenematides,
and Xcn1. Correspondingly, its mutant exhibited no antimicrobial
activities against Micrococcus luteus and Bacillus subtilis (Cowles
et al., 2007; Engel, Windhorst, Lu, Goodrich-Blair, & Bode, 2017;
Goodrich-Blair, 2007). Both two-component systems, CpxRA and

2 | EXPERIMENTAL PROCEDURES

2.1 | Bacterial strains and growth conditions

X. nematophila YL001 was isolated from its nematode symbiont,
Steinernema sp. YL001 obtained from the soil from Yangling, China,
and had been identified according to its morphological and molecu-
lar characteristics.

Details of the strains and plasmids used in this study were pro-
vided in Table 1. X. nematophila strain was grown in TSB medium
(tryptic soy broth) at 28°C. Escherichia coli was grown at 37°C either
in Luria-Bertani medium (LB: 1.0% Bacto tryptone, 0.5% yeast ex-
tact, and 1% NaCl) by shaking at 180 rpm or on corresponding solid
agar media (1.5% agar) as needed.
Antibiotics were used when needed at the following concentrations: ampicillin (150 μg/ml for _X. nematophila_ and 50 μg/ml for _E. coli_), chloramphenicol (25 μg/ml for both _X. nematophila_ and _E. coli_), and kanamycin (50 μg/ml for both _X. nematophila_ and _E. coli_).

### 2.2 | DNA manipulation

DNA and plasmid isolation, restriction digests, PCR, ligation reactions, and gel electrophoresis were conducted according to the standard protocols of molecular Cloning. PCR amplification was conducted using Ex Taq (Takara Otsu, Shiga, Japan) according to the manufacturer’s directions. Prime STAR® Max was used as the DNA Polymerase (Takara Otsu, Japan). PCR-amplified fragments were recovered from agarose gels using the Mini- Best DNA Fragment Purification Kit (Takara Otsu, Japan). Primers for PCR amplification were designed using Primer Premier 5.0 software (Table S1). Recombinant constructs were verified by DNA sequencing.

### 2.3 | Construction of cpxR mutant strain

Fragments, carrying upstream (1105-bp) and downstream (1192-bp) of cpxR, were amplified with primer pairs cpxR-up-F/cpxR-up-R and cpxR-down-F/cpxR-down-R, which contained engineered restriction enzyme sites, from YL001 chromosomal DNA. The PCR fragment containing kanamycin-resistant cassette (973-bp) was amplified using compatible restriction sites with primer pairs Km-F/Km-R from pJCV53. Fused PCR was performed in an additional amplification step via complementary DNA regions and its product was cloned into a pMD19T via the SphI and SacI restriction sites to create a pMD19TcpxR Km′. The fused fragment of upstream and downstream of cpxR and Km′ was PCR screened from pMD19TcpxR Km′ and cloned into the suicide vector pDM4 using SacI and SphI sites, creating pDM4cpxR Km′. The resulted plasmids were transformed into _E. coli_ S17–λpir and conjugally transferred into the wild-type strain of _X. nematophila_ YL001. The mutant strain was identified based on the described method (Park et al., 2009).

### 2.4 | Measurement of the growth rate

YL001 and ΔcpxR cells were grown overnight in TSB medium at 28°C by shaking at 180 rpm. Then, the cells were resuspended in TSB medium with an initial OD 600 value of 0.01, respectively. Under the identical conditions, the growth rates were monitored every 6 hr during the 72-hr period using a UV-3310 spectrophotometer (Hitachi, Japan). Before testing, each sample solution was fully dispersed using a moderate ultrasonic amplitude (50%) for 5 min to avoid the probable cell aggregation. Each experiment was performed in triplicate.

### 2.5 | Cell-free filtrate and methanol extract preparation

Nine percent (v/v) of the seed culture was used as the inoculum. Cultures of the wild type and ΔcpxR mutant of _X. nematophila_ YL001 were conducted in 250 ml flask containing 100 ml TSB medium (Wang et al., 2010, 2011). Each flask was incubated on a
TABLE 2 The relative amount of xenocoumacins (Xcn1 and Xcn2) in the wild type and the ΔcpxR mutant

| Strain     | Xcn1 (Arbitrary units OD−1) | Xcn2 (Arbitrary units OD−1) |
|------------|-----------------------------|-----------------------------|
| Wild type  | 1                           | 1                           |
| ΔcpxR      | 3.07 ± 0.52*                | 10.05 ± 1.97*               |

*The peak area of extracted ion chromatogram (EIC) of Xcn in ΔcpxR mutant/the peak area of extracted ion chromatogram (EIC) of Xcn in the wild type, the peak area was calibrated by its OD600 value, and the relative amount of Xcn of the wild type was referred to 1. Data are presented as the average ± SD for three replicates. An asterisk indicates a significant difference in Xcn level between the wild type and the ΔcpxR mutant (p < 0.05, Student’s t-test).

2.7 | Assay of antimicrobial activity

The antimicrobial activities of the cell-free filtrate of the wild-type and the ΔcpxR strain against five bacteria species (Table S2) were determined using an agar diffusion plate assay (Ji et al., 2004). The cell-free filtrate samples were sterilized by filtration (0.22 μm) before use. Molten sterile NA medium (100 ml) in a flask was inoculated with a bacterial suspension (1.5 ml, 107–108 cfu/ml) at 45°C. Then, the mixture was poured into six sterile 9-cm Petri dishes (15 ml each Petri dish) to form uniform plates. Sixty μl of the sterile samples was pipetted on sterile filter paper disks (Whatman No.1, 6 mm in diameter), which were allowed to dry in the sterile air. The dry disks were arranged on the inoculated plates for diffusion (each plate with three disks of a sample). The plates with paper disks were incubated at 28°C for 48 hr to determine the sizes of the inhibition zones. Paper disks impregnated with TSB medium were used as controls. Each experiment was repeated three times under the same conditions.

The inhibitory effects of the cell-free filtrates of the wild-type and ΔcpxR strain on different oomycete and fungal pathogens (Table 4) were determined according to the previously described methods (Fang et al., 2014). The pathogens were obtained from the Agricultural Culture Collection Institute, Northwest A & F University, China. Briefly, 1 ml of the cell-free filtrate was mixed with 9-ml potato dextrose agar (PDA) at 40°C and then the obtained mixture was poured into a 9-cm Petri dish to form a PDA plate. One mycelial disk (0.4 × 0.4 cm) from the edge of 4-day colony of a pathogen (Table 4) was put onto the PDA plate. There were three independent replications (three plates per replicate) for each experiment. PDA plates with fermentation medium were used as controls. The plates were incubated at 25°C under dark. After 7 days, the colony diameter of each plate was measured in two perpendicular directions and the inhibitory rate of the mycelial growth was determined according to the following formula: 

\[ \text{Inhibitory rate} = \frac{\text{average colony diameter of control} - \text{average colony diameter of treatment}}{\text{average colony diameter of control} - 4 \text{ mm}} \times 100. \]

In vivo efficiencies of the methanol extracts of the wild-type and ΔcpxR strain against B. cinerea were determined on tomato fruits according to the previously described methods (Fang et al., 2014). To determine the therapeutic effect, three tomato fruits with the similar size were placed at the bottom of a closed plastic container with moisture filter papers at the bottom to maintain high humidity. One mycelia agar disk (4 mm diameter) from the edge of 4-day colony of B. cinerea was placed in the middle side of each fruit with mycelia side facing the surface of the fruit. The containers were placed in a climate chamber at 25°C. After 24 hr, the fruits were immediately sprayed with the methanol extract (1,000, 500, and 250 μg/ml) or the cell-free filtrate. There were three replications (three fruits per replication) for each treatment. The controls for comparison were sprayed with water or 1,000 times dilution of the 50% carbendazim (Bianjing Plant Protection Technology Co., Ltd, Suzhou, China). To determine the protective effect, three tomato fruits were sprayed with each solution and kept under the same conditions as above. After 24 hr, the fruits were inoculated with B. cinerea as described...
above. After 7 days, lesion diameter of each fruit was measured in two perpendicular directions. The efficiency rate was determined by the formula as above.

2.8 | Reverse transcription PCR (RT-PCR) and quantitative real-time PCR (qRT-PCR) analysis

The ΔcpxR and wild-type strains were cultured in 50-ml fresh TSB media in a 250-ml flask until to the logarithmic growth phase. The cells were harvested after incubation for 48 hr and their concentrations were diluted to OD<sub>600</sub> of 0.6. Total RNA was extracted using SV Total RNA Isolation System (Promega) and the concentration was determined by optical density at 260 nm. The total RNA was treated with RNase-free DNase I (Promega) to eliminate genomic DNA contamination before the reverse transcription. The control PCR reaction was conducted to examine if there was DNA contamination before RT-PCR analysis. The quality of cDNA samples synthesized from 3-μg DNase-treated RNA was evaluated by the spectrophotometric method and agarose gel electrophoresis.

The primer sequences and accession numbers for all target and reference genes were provided in Table S1. qRT-PCR was conducted using a SYBR Premix ExTaq II kit (TaKaRa, Dalian) on a thermoycler CFX96 real-time PCR detection system (Bio-Rad, USA). cDNA served as the template for qRT-PCR. The qRT-PCR reactions were performed using 1 × SYBR Premix ExTaqTM, 0.4 μmol L<sup>−1</sup> of each primer, and 2.5 μl RT reaction solutions in a final volume of 25 μl in triplicate. All qRT-PCRs were performed in three technical replicates. The recA gene was used as the reference gene according to previous research (Park & Forst, 2006). The fold changes in the amount of xcnA, xcnM, and xcnN (target gene) transcript expression relative to the recA transcript (control gene) were determined using the previously described methods (Livak & Schmittgen, 2001; Park et al., 2009). The means of ΔΔCt and fold changes were calculated from three independent RNA samples.

2.9 | Data analyses

All data analyses were performed using the SPSS statistical package (version 18.0 for windows; SPSS Inc., the USA). Subsequent multiple comparisons between treatments were evaluated according to the least significant differences (l.s.d) at p < 0.05.

3 | RESULTS

3.1 | Construction of ΔcpxR strain

The DNA sequence lengths of downstream, Km, and upstream flanking regions were 1,198 bp, 974 bp, and 1,111 bp, respectively. The fusion PCR product of three parts was 3,283 bp in length (Supporting Information Figure S1). The confirmation of ΔcpxR mutant was performed with internal primers and the results showed that the DNA amplified from the wild type (693 bp) was in the expected position (between 500 and 750 bp) and the mutant strain did not have the gene cpxR (Supporting Information Figure S2). The PCR products of external primers were 1,202 bp long for the wild type and 1,040 bp long for the mutant strain (Supporting Information Figure S2). The PCR product of the mutant was sequenced. As shown in Supporting Information Figure S3, the upstream and downstream DNA fragments were complete and the gene cpxR in the X. nematophila was replaced with the screening tag, indicating that the gene cpxR was knocked out from X. nematophila YL001 successfully. The mutant was named as ΔcpxR.

3.2 | Effect of CpxR on the growth pattern

In contrast to the wild type, ΔcpxR mutant displayed a slightly prolonged logarithmic phase, and the cell densities were lower at early and mid stages (Supporting Information Figure S4). These findings were consistent with the previous report, in which deleting cpxR resulted in taking longer to begin logarithmic growth (Herbert et al., 2007). At the late stage of fermentation, the cell density of ΔcpxR was higher than that of the wild type, whereas in previous study, no significant difference was observed between them (Herbert et al., 2007). This discrepancy may attribute to differences in growth conditions (LB vs. TSB) or strain identities (ATCC19061 vs. YL001). Besides, the growth pattern variations between the wild type and the ΔcpxR mutant may be associated with the ability to adapt rapidly to changing environmental conditions. CpxRA could sense the changing environment, and regulate the growth and metabolisms to adapt the environment of insect hemolymph (Herbert et al., 2007; Herbert & Goodrich-Blair, 2009), deficiency of which may make it difficult to adapt its metabolism quickly to the nutrients available in hemolymph or various mediums.

3.3 | Effect of CpxR on the production of Xcns

Previous study showed that deletion of cpxR in X. nematophila affected the production of antibiotics (Herbert et al., 2007). Thus, we investigated the variations in Xcns, the major antimicrobial compounds produced by X. nematophila, in ΔcpxR strain and the wild type by HPLC-MS analysis. The results showed that the levels of Xcn1 and Xcn2 in ΔcpxR were 3.07- and 10.05-fold higher than those in the wild-type strain, respectively (Table 2, Supporting Information Figure S5).

3.4 | Roles of CpxR in xcn genes regulation

The biosynthetic gene cluster associated with the production of Xcns contains 14 genes (xcnA-xcnN). To evaluate the functions of CpxR on xcn genes expression, we first determined the expression of the main genes required for Xcn biosynthesis by RT-PCR. The levels of mRNA for xcnA-L were increased while the expression of xcnM and xcnN was decreased in the ΔcpxR strain. Furthermore, the expression levels of three key genes (xcnA, xcnM, and xcnN) were verified by qRT-PCR analysis (Figure 1). Compared with the wild-type strain, the ΔcpxR strain exhibited a 1.80-fold increase in the expression level of xcnA, while the expression levels of xcnM and xcnN were decreased by 0.42% and 0.20%, respectively. Meanwhile, in the ΔcpxR strain, the expression levels of...
envZ and ompR genes, encoding the protein of the OmpR/EnvZ two-component system were decreased by 0.62% and 0.82%, respectively (Figure 2a). Besides, the transcript level of lrp, encoding the leucine-responsive regulatory protein was increased 2.47-fold relative to that of the wild strain (Figure 2b).

3.5 | Antimicrobial activity of ΔcpxR mutant and wild-type strain

Based on the finding of Herbert et al. (2007) that deleting cpxR resulted in a significant increase in antibacterial activity against B. subtilis, we determined the antibacterial activities of ΔcpxR mutant and wild-type strain against five bacterial species. The cell-free filtrate of the ΔcpxR mutant showed higher inhibitory effects than the wild type against Bacillus cereus, B. subtilis, E. coli, and R. solanacearum (Table 3). Especially, the antibacterial activity of ΔcpxR mutant against B. subtilis increased 33.32% relative to the parent strain.

Furthermore, ΔcpxR strain also exhibited higher antimicrobial activities against 15 agricultural pathogenic fungi and oomycetes relative to the wild type (Table 4). Among the fungal and oomycete pathogens tested, the cell-free filtrate of the ΔcpxR mutant showed inhibitory effects greater than 80% against B. cinerea, P. capsici, and R. solani with the inhibition rates increasing 20.31%, 19.54%, and 58.52% relative to the parent strain, respectively.

Given the fact that ΔcpxR mutant had a significant inhibitory effect against B. cinerea of a 90.26% inhibition rate in vitro (Table 4), we determined the in vivo efficiency of ΔcpxR and wild-type strain on tomato fruits infected with B. cinerea. The results showed that there was a significant efficiency of the cell-free filtrates of ΔcpxR and wild-type

### Table 3 Inhibitory effect of the cell-free filtrate of the wild type and the ΔcpxR mutant on five test bacteria

| Bacteria               | Inhibition zone diameter (mm) a |
|------------------------|---------------------------------|
|                        | YL001                           |
| Bacillus cereus        | 26.56 ± 0.53                    |
| Bacillus subtilis      | 23.17 ± 0.63                    |
| Staphylococcus aureus  | 34.83 ± 0.61                    |
| Escherichai coli       | 26.76 ± 0.48                    |
| Ralstonia solanacearum | 23.06 ± 0.68                    |
|                        | ΔcpxR                           |
| Bacillus cereus        | 28.30 ± 0.58*                   |
| Bacillus subtilis      | 30.89 ± 0.23*                   |
| Staphylococcus aureus  | 35.17 ± 0.25                    |
| Escherichai coli       | 29.37 ± 0.51*                   |
| Ralstonia solanacearum | 29.03 ± 0.85*                   |

aData are presented as the average ± SD for three replicates. An asterisk indicates a significant difference in the inhibitory effect between the wild type and the ΔcpxR mutant (p < 0.05, Student's t-test). Double asterisks denote a significant difference at the 0.01 level.
TABLE 4  Inhibitory effects of the cell-free filtrate of the wild type and the ΔcpxR mutant on the mycelial growth of 15 plant pathogens

| Pathogenic fungi          | Inhibition rate (%)a |
|---------------------------|----------------------|
|                           | Wild type  | ΔcpxR    |
| Botrytis cinerea          | 75.02 ± 0.30 | 90.26 ± 0.67* |
| Phytophthora capsici      | 72.05 ± 0.18 | 86.13 ± 0.18* |
| Rhizoctonia solani        | 51.18 ± 1.42 | 81.13 ± 0.25* |
| Exserohilum turcicum      | 66.67 ± 0.94 | 72.84 ± 0.21* |
| Physalospora piricola     | 67.39 ± 1.68 | 70.48 ± 1.58 |
| Curvularia lunata         | 56.70 ± 1.10 | 67.68 ± 1.22* |
| Gaeumannomyces graminis   | 56.13 ± 0.46 | 63.95 ± 0.43* |
| Magnaporthe grisea        | 36.02 ± 1.37 | 62.60 ± 1.12* |
| Fusarium graminearum      | 48.83 ± 1.79 | 56.37 ± 0.79* |
| Verticillium dahliae       | 34.09 ± 0.68 | 53.79 ± 1.02* |
| Alternaria alternate      | 40.30 ± 0.59 | 42.06 ± 0.86 |
| Fusarium oxysporum f. sp. | 35.71 ± 0.09 | 41.28 ± 0.38* |
| Gaeumannomyces graminis   | 19.39 ± 1.56 | 41.16 ± 0.96* |
| Colletotrichum lagenarium | 20.53 ± 1.06 | 27.64 ± 0.73* |

aThe inhibitory rates of cell-free filtrate of the wild type and the ΔcpxR mutant on the mycelial growth of the pathogens were tested after 1 week. Data are presented as the average ± SD for three replicates. An asterisk indicates a significant difference, the inhibitory effect between the wild type and the ΔcpxR mutant (p < 0.05, Student’s t-test).

4 | DISCUSSION

To elucidate the role of CpxR in the antibiotic production of X. nematophila, we construct a mutant strain of cpxR and determined the production of Xcns and the expression levels of xcn genes cluster (xcnA-M) required for Xcn synthesis in ΔcpxR mutant. Also, the strain on detached tomato fruits infected with B. cinerea. The cell-free filtrate of the ΔcpxR mutant strain exhibited higher therapeutical and protective effects than the wild type, and the therapeutic and protective effects increased 26.42% and 13.74% relative to the parent strain (Figure 3, Supporting Information Figure S6). There were significant effects (p < 0.05) of the methanol extracts of ΔcpxR and wild-type strain at 250, 500, and 1,000 μg/ml on detached tomato fruits infected with B. cinerea (Figure 4, Supporting Information Figure S6). The therapeutic and protective effects of ΔcpxR were higher than those of the wild type, and the protective efficacy was higher than the therapeutic efficacy at each treatment. At 250 and 500 μg/ml, both of the therapeutic and protective effects had significant differences between ΔcpxR and the wild type. At 1,000 μg/ml, the methanol extracts of ΔcpxR and wild-type strain exhibited the therapeutic and protective effects greater than 70% but no significant differences were observed between ΔcpxR and the wild type (Figure 4).

4 | DISCUSSION

To elucidate the role of CpxR in the antibiotic production of X. nematophila, we construct a mutant strain of cpxR and determined the production of Xcns and the expression levels of xcn genes cluster (xcnA-M) required for Xcn synthesis in ΔcpxR mutant. Also, the antimicrobial activities of the wild type and the ΔcpxR mutant were tested in vitro and in vivo.

Global regulators typically affect the production of small molecules in bacteria (Martinez-Antonio & Collado-Vides, 2003). Identification and manipulation of these global regulators could provide a powerful approach for discovery of new secondary metabolites and increase the production of useful molecules (Engel et al., 2017). As a response regulator, when the cpxR gene is deleted in X. nematophila, the level of Xcn1 in ΔcpxR was significantly increased compared to the wild type. Correspondingly, at the transcription level of xcn genes cluster (xcnA-M), higher expression levels of xcnA-xcnL were observed in ΔcpxR strain than those in the wild type while xcnM and xcnN were expressed at lower levels in ΔcpxR strain (Figure 1). As xcnA-xcnL genes are responsible for the production of Xcn1 and other two genes, xcnM and xcnN, are responsible for the conversion of Xcn1 into Xcn2, the increased Xcn1 level in ΔcpxR may be the combined effects. These results may explain why the antimicrobial activity of ΔcpxR was increased in vitro and in vivo. Unexpectedly, Xcn2 in ΔcpxR strain was also increased, despite the low transcription levels of xcnM and xcnN. This may be related to the resistance mechanism utilized by the bacteria to avoid self-toxicity (Park et al., 2009). In ΔcpxR, elevated Xcn1 levels might exceed a threshold for resistance, which stimulated the conversion of Xcn1 into Xcn2 based on xcnM and xcnN to maintain Xcn1 levels below a threshold of self-toxicity. In spite of this, the level of Xcn1 was still enhanced in ΔcpxR mutant. Moreover, as described above, the cell density of ΔcpxR was higher than that of the wild type at the late stage of fermentation (Supporting Information Figure S4). These contradictory results seem to suggest that the deletion of cpxR can not only improve the production of Xcn1 but also increase the Xcn1 resistance of YL001. Similar phenomenon was also observed...
in the ompR mutant of X. nematophila (Park et al., 2009). As Xcn1 has greater potential in agricultural productions due to its excellent antibacterial activity (Mcinerney et al., 1991; Zhou et al., 2017), it is crucial to inhibit the conversion of Xcn1 into Xcn2. The addition of adsorber resin to the culture during the fermentation of ΔcpxR strain may be a practicable way to remove the excessive Xcn1 to reduce its conversion as well as cell toxicity (Gerth, Pradella, Perlova, Beyer, & Müller, 2003).

Xcn1 is a major antimicrobial compound of X. nematophila exhibiting a broad antimicrobial activity against Alternaria alternata, Botrytis cinerea, Rhizoctonia solani, and Phytophthora species (Huang et al., 2005, 2006; Zhou et al., 2017). Xcn2, however, shows substantially reduced bioactivities (Mcinerney et al., 1991; Yang et al., 2011; Zhou et al., 2017). Thus, the increased antimicrobial activity of ΔcpxR mainly depends on the elevated level of Xcn1. Besides, as other biosynthetic pathways of secondary metabolites may also be induced in the ΔcpxR strain, their contributions for antimicrobial activity need to be further explored.

Within xcn gene cluster (xcnA-M), CpxR negatively regulates xcnA-L but positively regulates xcnMN expression (Figure 1). As global regulator of transcription, CpxR binds to a specific promoter sequence upstream of their regulon and controls their expression. In E. coli, cpxR expression is autoregulated and CpxR binding site contains a consensus DNA sequence (5’-GTAAA-(N)4-8-GTAAA-3′) (Yamamoto & Ishihama, 2006). In X. nematophila, the Cpx system is similar to that of the E. coli and the genetic structures of the cpx operon are similar in these two organisms (Herbert, Cowles, & Goodrich-Blair, 2007). In this direction, we used the consensus DNA sequence (5’-GTAAA-(N)4-8-GTAAA-3′) as a probe to scan the genome of X. nematophila ATCC 19061 by FIMO software to search for sequence similarities and CpxR binding sites upstream of xcn genes (Grant, Bailey, & Noble, 2011). Unfortunately, no strong CpxR consensus sequences were found, which may indicate that CpxR indirectly regulates xcn genes and other regulators are involved. Consistent with the discussion above, OmpR and Lrp, the global response regulators, also negatively and positively regulate the production of Xcn1, respectively (Engel et al., 2017; Park et al., 2009). As CpxR also positively regulates ompR and negatively controls lrp (Figure 2b), the likely regulatory hierarchy for Xcn production is one in which CpxR positively regulates OmpR, as well as negatively regulates Lrp, which in turn exerts certain effects on the expression of xcn biosynthetic clusters. However, members of the CpxR regulon that are either directly or indirectly regulated by CpxR remain to be distinguished.
ACKNOWLEDGMENTS

This work was supported by the Natural Science Foundation of China (No. 31171910), Basic Scientific Research Innovation Key Program of Central Colleges and Universities (No. ZD2013003) and Natural Science Foundation of Shaanxi Province (No. 2014JZ004).

We thank the Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education (Northwest A&F University, Shaanxi, China) for assisting in the HPLC-MS analyses.

CONFLICT OF INTEREST

The authors have no conflicts of interest.

ORCID

Yonghong Wang http://orcid.org/0000-0002-8388-2664

REFERENCES

Bisch, G., Ogier, J.-C., Médigue, C., Rouy, Z., Vincent, S., Tailliez, P., ... Gaudriault, S. (2016). Comparative genomics between two Xenorhabdus bovienii strains highlights differential evolutionary scenarios within an entomopathogenic bacterial species. Genome Biology and Evolution, 8(1), 148–160. https://doi.org/10.1093/gbe/evv248

Boszormenyi, E., Ersek, T., Fodor, A., Fodor, A. M., Foldes, L. S., Hevesi, M., ... Pekár, S. (2009). Isolation and activity of Xenorhabdus anti-microbial compounds against the plant pathogens Erwinia amylovora and Phytophthora nicotianae. Journal of Applied Microbiology, 107(3), 746–759. https://doi.org/10.1111/j.1365-2672.2009.04249.x

Brinkman, A. B., Ettema, T. J., De Vos, W. M., & Van Der Oost, J. (2003). The Lrp family of transcriptional regulators. Molecular Microbiology, 48(2), 287–294. https://doi.org/10.1046/j.1365-2958.2003.03442.x

Chaston, J. M., Suen, G., Tucker, S. L., Andersen, A. W., Bhasin, A., Bode, E., ... Darby, C. (2011). The entomopathogenic bacterial endosymbionts Xenorhabdus and Photorhabdus: Convergent lifestyles from divergent genomes. PLoS ONE, 6(11), 1–13. https://doi.org/10.1371/journal.pone.0027909

Cowles, K. N., Cowles, C. E., Richards, G. R., Martens, E. C., & Goodrich-Blair, H. (2007). The global regulator Lrp contributes to mutualism, pathogenesis and phenotypic variation in the bacterium Xenorhabdus nematophila. Cellular Microbiology, 9(5), 1311–1323. https://doi.org/10.1111/j.1462-5817.2006.00873.x

Crawford, J. M., Kontnik, R., & Clardy, J. (2010). Regulating alternative lifestyles in entomopathogenic bacteria. Current Biology, 20(1), 69–74. https://doi.org/10.1016/j.cub.2009.10.059

Engel, Y., Windhorst, C., Lu, X., Goodrich-Blair, H., & Bode, H. B. (2017). The global regulators Lrp, LeuO, and HexA control secondary metabolism in entomopathogenic bacteria. Frontiers in Microbiology, 8(209), https://doi.org/10.3389/fmicb.2017.00209

Fang, X., Li, Z., Wang, Y., & Zhang, X. (2011). In vitro and in vivo antimicrobrial activity of Xenorhabdus bovienii YL002 against Phytophthora capsici and Botrytis cinerea. Journal of Applied Microbiology, 111(1), 145–154. https://doi.org/10.1111/j.1365-2672.2011.05033.x

Fang, X., Zhang, M., Tang, Q., Wang, Y., & Zhang, X. (2014). Inhibitory effect of Xenorhabdus nematophila TB on plant pathogens Phytophthora capsici and Botrytis cinerea in vitro and in planta. Scientific Reports, 4(6175), 1–7. https://doi.org/10.1038/srep04300

Forst, S., & Boylan, B. (2002). Characterization of the pleiotropic phenotype of an ompR strain of Xenorhabdus nematophila. Antonie van Leeuwenhoek, 81(1–4), 43–49. https://doi.org/10.1023/A:1020517307743

Fuchs, S. W., Proschak, A., Jaskolla, T. W., Karas, M., & Bode, H. B. (2011). Structure elucidation and biosynthesis of lysine-rich cyclic peptides in Xenorhabdus nematophila. Organic & Biomolecular Chemistry, 9(9), 3130–3132. https://doi.org/10.1039/C1OB05097D

Furusawa, T., Rakwal, R., Nam, H. W., Hirano, M., Shibato, J., Kim, Y. S., ... Agrawal, G. K. (2008). Systematic investigation of the hemolymph proteome of Manduca sexta at the fifth instar larvae stage using one-and two-dimensional proteomics platforms. Journal of Proteome Research, 7(3), 938–959. https://doi.org/10.1021/pr070405j

Gerth, K., Pradella, S., Perlova, O., Beyer, S., & Müller, R. (2003). Myxobacteria: Proficient producers of novel natural products with various biological activities-past and future biotechnological aspects with the focus on the genus Sorangium. Journal of Bacteriology, 106(2–3), 233–253. https://doi.org/10.1128/jb.2003.07.015

Goodrich-Blair, H. (2007). They’ve got a ticket to ride: Xenorhabdus nematophila-Steinernema carpocapsae symbiosis. Current Opinion in Microbiology, 10(3), 225–230. https://doi.org/10.1016/j.mib.2007.05.006

Grant, C. E., Bailey, T. L., & Noble, W. S. (2011). FIMO: Scanning for occurrences of a given motif. Bioinformatics, 27(7), 1017–1018. https://doi.org/10.1093/bioinformatics/btr064

Guaitieri, M., Aumelas, A., & Thaler, J. O. (2009). Identification of a new antimicrobial lysine-rich cyclolipopeptide family from Xenorhabdus nematophila. Journal of Antibiotics, 62(6), 295–302. https://doi.org/10.1038/ja.2009.31

Hart, B. R., & Blumenthal, R. M. (2011). Unexpected coregulator range for the global regulator Lrp of Escherichia coli and Proteus mirabilis. Journal of Bacteriology, 193(5), 1054–1064. https://doi.org/10.1128/jb.01183-10

Herbert, E. E., Cowles, K. N., & Goodrich-Blair, H. (2007). CpxRA regulates mutualism and pathogenesis in Xenorhabdus nematophila. Applied and Environmental Microbiology, 73(24), 7826–7836. https://doi.org/10.1128/AEM.01586-07

Herbert, E. E., & Goodrich-Blair, H. (2007). Friend and foe: The two faces of Xenorhabdus nematophila. Nature Reviews Microbiology, 5(8), 634–646. https://doi.org/10.1038/nrmicro1706

Herbert, E. E., & Goodrich-Blair, H. (2009). CpxRA contributes to Xenorhabdus nematophila virulence through regulation of IrhA and modulation of insect immunity. Applied and Environmental Microbiology, 75(12), 3998–4006. https://doi.org/10.1128/AEM.02657-08

Huang, W., Yang, X., & Yang, H. (2006). Identification and activity of an antibacterial compound, benzylideneacetone, against major plant-pathogenic Phytophthora capsici, Botrytis cinerea, and Xanthomonas oryzae pv. oryzae. Applied and Environmental Microbiology, 72(20), 9413–9419. https://doi.org/10.1128/AEM.01586-07

Hussa, E. A., Casanovatorres, M., & Goodrichblair, H. (2015). The global transcription factor Lrp controls virulence modulation in Xenorhabdus nematophila. Journal of Bacteriology, 197(18), 3015–3025. https://doi.org/10.1128/jb.00272-15

Ji, D., Yi, Y., Kang, G. H., Choi, Y. H., Kim, P., Baek, N. I., & Kim, Y. (2004). Identification of an antibacterial compound, benzylideneacetone, from Xenorhabdus nematophila against major plant-pathogenic
bacteria. Fems Microbiology Letters, 239(2), 241-248. https://doi.org/10.1016/j.femsle.2004.08.041

Jubelin, G., Vianney, A., Beloin, C., Ghigo, J. M., Lazzaroni, J. C., Lejeune, P., & Dorel, C. (2005). CpxR/OmpR interplay regulates curli gene expression in response to osmolarity in Escherichia coli. Journal of Bacteriology, 187(6), 2038-2049. https://doi.org/10.1128/JB.187.6.2038-2049.2005

Lang, G., Kalvelage, T., Peters, A., Wiese, J., & Imhoff, J. F. (2008). Linear and cyclic peptides from the entomopathogenic bacterium Xenorhabdus nematophilus. Journal of Natural Products, 71(6), 1074-1077. https://doi.org/10.1021/np800053n

Li, J., Chen, G., & Webster, J. M. (1997). Nematophin, a novel antimicrobial substance produced by Xenorhabdus nematophilus (Enterobacteriaceae). Canadian Journal of Microbiology, 43(8), 770-773. https://doi.org/10.1139/m97-110

Li, J., Chen, G., Webster, J. M., & Czyzewska, E. (1995). Antimicrobial metabolites from a bacterial symbiont. Journal of Natural Products, 58(7), 1081-1086. https://doi.org/10.1021/np50121a016

Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods, 25(4), 402-408. https://doi.org/10.1006/meth.2001.1262

Martinez-Antonio, A., & Collado-Vides, J. (2003). Identifying global regulators in transcriptional regulatory networks in bacteria. Current Opinion in Microbiology, 6(5), 482-489. https://doi.org/10.1016/j.mib.2003.09.002

Mcinerney, B. V., Taylor, W. C., Lacey, M. J., Akhurst, R. J., & Gregson, R. P. (1991). Biologically active metabolites from Xenorhabdus spp., Part 2. Benzopyran-1-one derivatives with gastroprotective activity. Journal of Natural Products, 54(3), 785–795. https://doi.org/10.1021/np50075a006

Park, D., Ciezki, K., Van Der Hoeven, R., Singh, S., Reimer, D., Bode, H. B., & Forst, S. (2009). Genetic analysis of xenocoumacin antibiotic production in the mutualistic bacterium Xenorhabdus nematophilus. Molecular Microbiology, 73(5), 938–949. https://doi.org/10.1111/j.1365-2958.2009.06817.x

Park, D., & Forst, S. (2006). Co-regulation of motility, exoenzyme and antibiotic production by the EnvZ-OmpR-FlhDC-FliA pathway in Xenorhabdus nematophilus. Molecular Microbiology, 61(6), 1397–1412. https://doi.org/10.1111/j.1365-2958.2006.05320.x

Sundar, L., & Chang, F. N. (1993). Antimicrobial activity and biosynthesis of indole antibiotics produced by Xenorhabdus nematophilus. Journal of General Microbiology, 139(12), 3139–3148. https://doi.org/10.1099/00221287-139-12.3139

Wang, Y., Fang, X., An, F., Wang, G., & Zhang, X. (2011). Improvement of antibiotic activity of Xenorhabdus bovienii by medium optimization using response surface methodology. Microbial Cell Factories, 10(1), 1-15. https://doi.org/10.1186/1475-2859-10-98

Wang, Y. H., Fang, X. L., Li, Y. P., & Zhang, X. (2010). Effects of constant and shifting dissolved oxygen concentration on the growth and antibiotic activity of Xenorhabdus nematophilus. Bioresource Technology, 101(19), 7529–7536. https://doi.org/10.1016/j.biortech.2010.04.070

Wang, Y. H., Li, Y. P., Zhang, Q., & Zhang, X. (2008). Enhanced antibiotic activity of Xenorhabdus nematophilus by medium optimization. Bioresource Technology, 99(6), 1708–1715. https://doi.org/10.1016/j.biortech.2007.03.053

Yamamoto, K., & Ishihama, A. (2006). Characterization of copper-inducible promoters regulated by CpxA/CpxR in Escherichia coli. Bioscience Biotechnology and Biochemistry, 70(7), 1688–1695. https://doi.org/10.1271/bbb.60024

Yang, X., Qiu, D., Yang, H., Liu, Z., Zeng, H., & Yuan, J. (2011). Antifungal activity of xenocoumacin 1 from Xenorhabdus nematophilus var. pekinensis against Phytophthora infestans. World journal of Microbiology & Biotechnology, 27(3), 523–528. https://doi.org/10.1007/s11274-010-0485-5

Zhou, T., Yang, X., Qiu, D., & Zeng, H. (2017). Inhibitory effects of xenocoumacin 1 on the different stages of Phytophthora capsici and its control effect on Phytophthora blight of pepper. BioControl, 62(2), 151–160. https://doi.org/10.1007/s10526

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.

How to cite this article: Zhang S, Fang X, Tang Q, Ge J, Wang Y, Zhang X. CpxR negatively regulates the production of xenocoumacin 1, a dihydroisocoumarin derivative produced by Xenorhabdus nematophilus. MicrobiologyOpen. 2019;8(e674). https://doi.org/10.1002/mbo3.674