Kanishka Perera

On the existence of ground state solutions to critical growth problems nonresonant at zero

Volume 359, issue 9 (2021), p. 1161-1164

<https://doi.org/10.5802/crmath.270>
On the existence of ground state solutions to critical growth problems nonresonant at zero

Kanishka Perera

Abstract. We prove the existence of ground state solutions to critical growth p-Laplacian and fractional p-Laplacian problems that are nonresonant at zero.

2020 Mathematics Subject Classification. 35B33, 35J92, 35R11.

Manuscript received 23rd June 2021, accepted 8th September 2021.

Consider the problem

\[
\begin{aligned}
-\Delta_p u &= \lambda |u|^{p-2} u + |u|^{p^*-2} u & \text{in } \Omega \\
 u &= 0 & \text{on } \partial \Omega,
\end{aligned}
\]

where Ω is a bounded domain in \mathbb{R}^N, $1 < p < N$, $\Delta_p u = \text{div}(\nabla |\nabla u|^{p-2} \nabla u)$ is the p-Laplacian of u, $\lambda \in \mathbb{R}$, and $p^* = Np/(N - p)$ is the critical Sobolev exponent. Solutions of this problem coincide with critical points of the C^1-functional

\[
E(u) = \frac{1}{p} \int_{\Omega} |\nabla u|^p \, dx - \frac{\lambda}{p} \int_{\Omega} |u|^p \, dx - \frac{1}{p^*} \int_{\Omega} |u|^{p^*} \, dx, \quad u \in W^{1,p}_0(\Omega).
\]

Let $K = \{ u \in W^{1,p}_0(\Omega) \setminus \{0\} : E'(u) = 0 \}$ be the set of nontrivial critical points of E and set

\[
c = \inf_{u \in K} E(u).
\]

Recall that $u_0 \in K$ is called a ground state solution if $E(u_0) = c$. For each $u \in K$,

\[
E(u) = E(u) - \frac{1}{p^*} E'(u) u = \frac{1}{N} \int_{\Omega} |u|^{p^*} \, dx > 0,
\]

so $c \geq 0$, and $c > 0$ if there is a ground state solution. Let

\[
S = \inf_{u \in D^{1,p}(\mathbb{R}^N) \setminus \{0\}} \frac{\int_{\mathbb{R}^N} |\nabla u|^p \, dx}{\left(\int_{\mathbb{R}^N} |u|^{p^*} \, dx \right)^{p/p^*}}
\]

be the best Sobolev constant. Denote by $\sigma(-\Delta_p)$ the Dirichlet spectrum of $-\Delta_p$ in Ω consisting of those $\lambda \in \mathbb{R}$ for which the eigenvalue problem

\[
\begin{aligned}
-\Delta_p u &= \lambda |u|^{p-2} u & \text{in } \Omega \\
 u &= 0 & \text{on } \partial \Omega
\end{aligned}
\]

ISSN (electronic) : 1778-3569
https://comptes-rendus.academie-sciences.fr/mathematique/
has a nontrivial solution. We have the following theorem.

Theorem 1. If problem (1) has a nontrivial solution u with

$$E(u) < \frac{1}{N} S^{N/p}$$

and $\lambda \notin \sigma(-\Delta_p)$, then it has a ground state solution.

Proof. Let $(u_j) \subset K$ be a minimizing sequence for c. Then (u_j) is a (PS)$_c$ sequence for E. Since problem (1) has a nontrivial solution satisfying (3), $c < S^{N/p}/N$. So E satisfies the (PS)$_c$ condition (see Guedda and Véron [6, Theorem 3.4]). Hence a renamed subsequence of (u_j) converges to a critical point u_0 of E with $E(u_0) = c$. We claim that u_0 is nontrivial and hence a ground state solution of problem (1). To see this, suppose $u_0 = 0$. Then $\rho_j := \|u_j\| \to 0$. Let $\tilde{u}_j = u_j/\rho_j$. Since $\|\tilde{u}_j\| = 1$, a renamed subsequence of (\tilde{u}_j) converges to some \tilde{u} weakly in $W^{1,p}_0(\Omega)$, strongly in $L^p(\Omega)$, and a.e. in Ω. Since $E'(u_j) = 0$,

$$\int_\Omega |\nabla u_j|^{p-2} \nabla u_j \cdot \nabla v \, dx = \lambda \int_\Omega |u_j|^{p-2} u_j v \, dx + \int_\Omega |u_j|^{p^*-2} u_j v \, dx \quad \forall \, v \in W^{1,p}_0(\Omega),$$

and dividing this by ρ_j^{p-1} gives

$$\int_\Omega |\nabla \tilde{u}_j|^{p-2} \nabla \tilde{u}_j \cdot \nabla v \, dx = \lambda \int_\Omega |\tilde{u}_j|^{p-2} \tilde{u}_j v \, dx + o(\|v\|) \quad \forall \, v \in W^{1,p}_0(\Omega).$$

Passing to the limit in (4) gives

$$\int_\Omega |\nabla \tilde{u}|^{p-2} \nabla \tilde{u} \cdot \nabla v \, dx = \lambda \int_\Omega |	ilde{u}|^{p-2} \tilde{u} v \, dx \quad \forall \, v \in W^{1,p}_0(\Omega),$$

so \tilde{u} is a weak solution of (2). Taking $v = \tilde{u}_j$ in (4) and passing to the limit shows that $\lambda \int_\Omega |\tilde{u}|^p \, dx = 1$, so \tilde{u} is nontrivial. This contradicts the assumption that $\lambda \notin \sigma(-\Delta_p)$ and completes the proof. \qed

Combining this theorem with the existence results in García Azorero and Peral Alonso [5], Egnell [4], Guedda and Véron [6], Arioli and Gazzola [1], and Degiovanni and Lancelotti [3] gives us the following theorem for the case $N \geq p^2$.

Theorem 2. If $N \geq p^2$ and $\lambda \in (0, \infty) \setminus \sigma(-\Delta_p)$, then problem (1) has a ground state solution.

For $N < p^2$, combining Theorem 1 with Perera et al. [10, Corollary 1.2] gives the following theorem, where $(\lambda_k) \subset \sigma(-\Delta_p)$ is the sequence of eigenvalues based on the \mathbb{Z}_2-cohomological index introduced in Perera [8] and $|\cdot|$ denotes the Lebesgue measure in \mathbb{R}^N.

Theorem 3. If $N < p^2$ and

$$\lambda \in \bigcup_{k=1}^{\infty} \left(\lambda_k - \frac{S}{|\Omega|^{p/N}}, \lambda_k \right) \setminus \sigma(-\Delta_p),$$

then problem (1) has a ground state solution.

Remark 4. In the semilinear case $p = 2$, Theorem 2 was proved in Szulkin et al. [11] using a Nehari–Pankov manifold approach, and Theorems 1 and 3 were proved in Chen et al. [2] using a more direct approach. Moreover, they allow λ to be an eigenvalue when $N \geq 5$. However, their proofs are strongly dependent on the fact that $H^1_0(\Omega)$ splits into the direct sum of its subspaces spanned by the eigenfunctions of the Laplacian that correspond to eigenvalues that are less than or equal to λ and those that are greater than λ. Those proofs do not extend to the p-Laplacian since it is a nonlinear operator and hence has no linear eigenspaces.

Remark 5. We conjecture that the assumption $\lambda \notin \sigma(-\Delta_p)$ can be removed from Theorems 1 and 2 when $N^2/(N+1) > p^2$.
Our argument can be easily adapted to obtain ground state solutions of other types of critical growth problems as well. For example, consider the nonlocal problem
\[
\begin{cases}
(-\Delta)^s_p u = \lambda |u|^{p-2} u + |u|^{p^*_s - \gamma} u & \text{in } \Omega \\
u = 0 & \text{in } \mathbb{R}^N \setminus \Omega,
\end{cases}
\] (5)
where \(\Omega\) is a bounded domain in \(\mathbb{R}^N\) with Lipschitz boundary, \(s \in (0, 1), 1 < p < N/s, (-\Delta)^s_p\) is the fractional \(p\)-Laplacian operator defined on smooth functions by
\[
(-\Delta)^s_p u(x) = 2 \lim_{r \to 0} \int_{\mathbb{R}^N \setminus B_r(x)} \frac{|u(x) - u(y)|^p}{|x-y|^{N+sp}} \, dy, \quad x \in \mathbb{R}^N,
\]
\(\lambda \in \mathbb{R}\), and \(p^*_s = Np/(N-sp)\) is the fractional critical Sobolev exponent. Let \(\| \cdot \|_p\) denote the norm in \(L^p(\mathbb{R}^N)\), let
\[
\|u\|_{s,p} = \left(\int_{\mathbb{R}^N} \frac{|u(x) - u(y)|^p}{|x-y|^{N+sp}} \, dx \, dy \right)^{1/p}
\]
be the Gagliardo seminorm of a measurable function \(u : \mathbb{R}^N \to \mathbb{R}\), and let
\[W^{s,p}(\mathbb{R}^N) = \{ u \in L^p(\mathbb{R}^N) : \|u\|_{s,p} < \infty \}\]
be the fractional Sobolev space endowed with the norm
\[
\|u\|_{s,p} = (\|u\|_p^p + \|u\|_{s,p}^p)^{1/p}.
\]
We work in the closed linear subspace
\[W^{s,p}_0(\Omega) = \{ u \in W^{s,p}(\mathbb{R}^N) : u = 0 \ \text{a.e. in } \mathbb{R}^N \setminus \Omega \}
\]
equivalently renormed by setting \(\| \cdot \| = \| \cdot \|_{s,p}\). Solutions of problem (5) coincide with critical points of the \(C^1\)-functional
\[
E_s(u) = \frac{1}{p} \int_{\mathbb{R}^N} \frac{|u(x) - u(y)|^p}{|x-y|^{N+sp}} \, dx \, dy - \frac{\lambda}{p} \int_{\Omega} |u|^p \, dx - \frac{1}{p^*_s} \int_{\Omega} |u|^{p^*_s} \, dx, \quad u \in W^{s,p}_0(\Omega).
\]
As before, a ground state is a least energy nontrivial solution. Let
\[\dot{W}^{s,p}(\mathbb{R}^N) = \{ u \in L^{p^*_s}(\mathbb{R}^N) : \|u\|_{s,p} < \infty \}\]
edowed with the norm \(\| \cdot \|\) and let
\[
S = \inf_{u \in \dot{W}^{s,p}(\mathbb{R}^N) \setminus \{0\}} \frac{\int_{\mathbb{R}^N} \frac{|u(x) - u(y)|^p}{|x-y|^{N+sp}} \, dx \, dy}{\left(\int_{\mathbb{R}^N} |u|^{p^*_s} \, dx \right)^{p/p^*_s}}
\]
be the best fractional Sobolev constant. Denote by \(\sigma((-\Delta)^s_p)\) the Dirichlet spectrum of \((-\Delta)^s_p\) in \(\Omega\) consisting of those \(\lambda \in \mathbb{R}\) for which the eigenvalue problem
\[
\begin{cases}
(-\Delta)^s_p u = \lambda |u|^{p-2} u & \text{in } \Omega \\
u = 0 & \text{in } \mathbb{R}^N \setminus \Omega
\end{cases}
\]
has a nontrivial solution. Following theorem can be proved arguing as in the proof of Theorem 1.

Theorem 6. If problem (5) has a nontrivial solution \(u\) with
\[
E_s(u) < \frac{s}{N} S^{N/s}
\]
and \(\lambda \in \sigma((-\Delta)^s_p)\), then it has a ground state solution.

Combining this theorem with the existence results in Mosconi et al. [7] and Perera et al. [9] gives us the following theorem, where \((\lambda_k) \subset \sigma((-\Delta)^s_p)\) is the sequence of eigenvalues based on the \(\mathbb{Z}_2\)-cohomological index.
Theorem 7. Problem (5) has a ground state solution in each of the following cases:

(i) $N > sp^2$ and $\lambda \in (0, \infty) \setminus \sigma((-\Delta)_p^s)$,
(ii) $N = sp^2$ and $\lambda \in (0, \lambda_1)$,
(iii) $N \leq sp^2$ and

$$\lambda \in \bigcup_{k=1}^{\infty} \left(\Lambda_k - \frac{S}{|\Omega|^{sp/N}}, \lambda_k \right) \setminus \sigma((-\Delta)_p^s).$$

Remark 8. Theorems 6 and 7 are new even in the semilinear case $p = 2$.

Remark 9. We conjecture that problem (5) has a ground state solution for all $\lambda > 0$ when $N^2/(N + s) > sp^2$.

References

[1] G. Arioli, F. Gazzola, "Some results on p-Laplace equations with a critical growth term", Differ. Integral Equ. 11 (1998), no. 2, p. 311-326.

[2] Z. Chen, N. Shioji, W. Zou, "Ground state and multiple solutions for a critical exponent problem", NoDEA, Nonlinear Differ. Equ. Appl. 19 (2012), no. 3, p. 253-277.

[3] M. Degiovanni, S. Lancelotti, "Linking solutions for p-Laplace equations with nonlinearity at critical growth", J. Funct. Anal. 256 (2009), no. 11, p. 3643-3659.

[4] H. Egnell, "Existence and nonexistence results for m-Laplace equations involving critical Sobolev exponents", Arch. Ration. Mech. Anal. 104 (1988), no. 1, p. 57-77.

[5] J. P. García-Azorero, I. Peral Alonso, "Existence and nonuniqueness for the p-Laplacian: nonlinear eigenvalues", Commun. Partial Differ. Equations 12 (1987), no. 12, p. 1389-1430.

[6] M. Guedda, L. Véron, "Quasilinear elliptic equations involving critical Sobolev exponents", Nonlinear Anal., Theory Methods Appl. 13 (1989), no. 8, p. 879-902.

[7] S. Mosconi, K. Perera, M. Squassina, Y. Yang, "The Brezis–Nirenberg problem for the fractional p-Laplacian", Calc. Var. Partial Differ. Equ. 55 (2016), no. 4, article no. 105 (25 pages).

[8] K. Perera, "Nontrivial critical groups in p-Laplacian problems via the Yang index", Topol. Methods Nonlinear Anal. 21 (2003), no. 2, p. 301-309.

[9] K. Perera, M. Squassina, Y. Yang, "Bifurcation and multiplicity results for critical fractional p-Laplacian problems", Math. Nachr. 289 (2016), no. 2-3, p. 332-342.

[10] ———, "Bifurcation and multiplicity results for critical p-Laplacian problems", Topol. Methods Nonlinear Anal. 47 (2016), no. 1, p. 187-194.

[11] A. Szulkin, T. Weth, M. Willem, "Ground state solutions for a semilinear problem with critical exponent", Differ. Integral Equ. 22 (2009), no. 9-10, p. 913-926.