Beyond pure state entanglement for atomic ensembles

Julia Stasińska¹,³, Simone Paganelli¹ and Anna Sanpera¹,²

¹ Departament de Física. Grup de Física Teòrica: Informació i Fenòmens Quàntics, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
² ICREA-Institució Catalana de Recerca i Estudis Avançats, Spain
E-mail: julst@iafe.es

New Journal of Physics 14 (2012) 033034 (23pp)
Received 9 November 2011
Published 23 March 2012
Online at http://www.njp.org/
doi:10.1088/1367-2630/14/3/033034

Abstract. We analyze multipartite entanglement between atomic ensembles within quantum matter–light interfaces. In our proposal, a polarized light beam crosses sequentially several polarized atomic ensembles impinging on each of them at a given angle α_i. These angles are crucial parameters for shaping the entanglement since they are directly connected to the appropriate combinations of the collective atomic spins that are squeezed. We exploit such a scheme to go beyond the pure state paradigm proposing realistic experimental settings to address multipartite mixed state entanglement in continuous variables.
1. Introduction

Experiments exploiting the quantum character of atom–light interactions are often carried out in the regime of cavity-QED where, due to the cavity, the coupling between individual atoms and photons is highly enhanced. Efficient atom–photon couplings can also be achieved in atomic ensembles where large optical depths are obtained due to the macroscopic or mesoscopic number of atoms of the sample as proposed initially by Kuzmich et al [1].

Atomic ensembles typically refer to samples composed of 10^6–10^{12} atoms. In these, the individual spin of each atom, \hat{j}_i, originating either from its hyperfine structure or from its nuclear spin (e.g. alkaline-earth fermions), can be disregarded and the sample can instead be characterized by its collective spin $\hat{J} = (\hat{J}_x, \hat{J}_y, \hat{J}_z) = \sum_i \hat{j}_i$. If the sample is polarized, the component of \hat{J} along the polarization axis can be approximated by a c-number, let us say $\hat{J}_x = \sum_i \hat{j}_i \approx \langle \hat{J}_x \rangle$, while the orthogonal components behave as conjugate canonical variables $[\hat{J}_y, \hat{J}_z] = i\hbar \langle \hat{J}_x \rangle$. Such an elegant and simple description of polarized atomic ensembles makes them extremely appealing for quantum information processing in the domain of continuous variables.

The interaction between a polarized atomic ensemble and an off-resonant linearly polarized laser beam results—at the classical level—in a Faraday rotation. The latter refers to the rotation experienced by the polarization of light when it propagates through a magnetic medium, in our case the polarized atomic ensemble. Furthermore, this interaction leads to a quantum interface, i.e. an exchange of quantum fluctuations between matter and light. Seminal results exploiting such an interface include the generation of atomic spin squeezed states produced by the interaction between a coherent atomic sample and a squeezed light beam [1, 2], the realization of the atomic quantum memory [3] and the achievement of an entangled state of two spatially separated atomic ensembles [4]. The above situations require a final projective measurement on the light (homodyne detection) that projects the atomic ensembles into their desired final state. This ‘measurement induced’ mapping of fluctuations between different physical systems provides a powerful tool to design quantum correlations. The potential applications of such a genuine quantum tool have just started. Among them are the applications in quantum metrology [5, 6], quantum magnetometry [7] and quantum spectroscopy for the detection of...
magnetic ordering in spinor Bose–Einstein condensates [8], or strongly correlated spin systems realized with ultracold atomic gases [9–13]. An alternative scheme using atomic ensembles has been proposed recently in [14], where dissipation has been successfully tailored to generate entanglement between two samples.

In the atomic-ensemble experiment, entanglement between samples, mediated by a single light beam propagating sequentially through both of them [4], is established as soon as the light is measured, independently of the outcome of the measurement. However, detection of the entanglement thus generated, based on variance inequalities criteria [15, 16], is rather challenging. As shown in [4] its verification can be made feasible with the help of external magnetic fields applied to the ensembles. Nonetheless, it has been shown in [17] that entanglement verification without external magnetic fields is also possible if the light crosses through each sample at a given angle α_i. In this setup, which we name ‘geometrical’, the incident angles play a critical role since they can be used to shape both quantitatively and qualitatively the entanglement between the atomic ensembles. Furthermore, this geometrical scheme of entangling atomic systems can be extended beyond the bipartite pure state setting by including both several parties and noise. Until now, multipartite mixed state entanglement has been mainly addressed in finite-dimensional Hilbert spaces and is poorly understood in all but the simplest situations. For instance, recent results suggesting the potential supremacy of noisy quantum computation versus pure state multipartite quantum computation [18–20] are highly intriguing. For continuous variables even less is known.

Atomic-ensemble systems belong to the important class of continuous variable states known as Gaussian, whose characterization and mathematical description is relatively simple. For instance, the complete classification of three-mode Gaussian systems was provided a long time ago [21, 22], but even in the simplest multipartite Gaussian scenario, the verification of the entanglement using variance inequalities [16] becomes very intricate. Here we address the generation and detection of multipartite entanglement in Gaussian mixed states in experimentally feasible systems using the geometrical scheme. In particular, we provide experimentally accessible physical bounds on the atomic ensembles’ parameters that lead to the generation of bound entanglement. Bound entanglement refers to the entanglement which cannot be distilled, i.e. no pure state entanglement can be obtained from it by means of local operations and classical communication (LOCC). In the multipartite setting, a state can be bound entangled with respect to certain parties while distillable with respect to others. Although bound entanglement may seem useless for quantum information processing, it has been shown that for discrete systems it can be used for certain tasks (e.g. channel discrimination) or activated [23–28]. Recently, the generation of a four-mode unconditionally bound entangled state was achieved with photons [29]. A particular example of bound entanglement we are going to deal with is the so-called Smolin state [30]. In the discrete case, this state corresponds to a four-qubit mixed state formed by an equal-weight mixture of Bell states that has the property that its entanglement can be unlocked. Moreover, it has been shown that it violates maximally a Bell inequality, being at the same time useless for secret key distribution [25]. The Smolin state with continuous variables has very recently been addressed mathematically using the stabilizer formalism [31]. Here we use a different approach to provide a deeper physical insight into the nature of this state and to demonstrate how it can be experimentally realized using quantum light interfaces with atomic ensembles.

Since both the atomic ensembles and the light assume a unified continuous-variable description and given the inherent Gaussian character of the setting we are considering, we use a
covariance matrix formalism [32] to describe in a compact way the generation and manipulation of entanglement. Such a formalism, as we shall see, enlightens the possibilities offered by atomic samples as a quantum toolbox to generate many different types of continuous variables entangled states in an experimentally accessible way.

This paper is organized as follows. In section 2 we review, for completeness, the description of matter and light as continuous variables systems, and describe the matter–light interaction in terms of an effective Hamiltonian and the corresponding evolution equations. Then we discuss possible sources of imperfections in the atomic-ensemble setup and consider a standard model of decoherence due to the decay of the atomic spin state. Finally, in the same section we derive explicitly all the steps of the matter–light interface in terms of covariance matrices, symplectic transformations and Gaussian operations. In section 3, we analyze the properties of the interface leading to mixed state entanglement with atomic ensembles. First, for completeness we consider the bipartite case in section 3.1, setting the bounds on the system parameters that produce mixed state entanglement. In section 3.2, we move to the multipartite bound entanglement in continuous variables. Here, we consider the general frame in which initially the atomic samples are in a thermal state with different amounts of noise. This allows us to set physical bounds on the generation of such a type of entanglement in the CV scenario. In section 3.3, we analyze the much more involved Smolin state [31]. We show that the geometrical setup we propose provides all the tools needed to generate and unlock the Smolin state, including a (quantum) random number generator. In all those situations, we consider the effect of possible imperfections on the protocols. Finally, in section 4 we present our conclusions.

2. Continuous variables systems

2.1. The Faraday interaction

The setting we are considering consists of several atomic ensembles and light beams, the latter playing the role of information carriers between the atomic samples. At a time, only a single light beam interacts with the atomic ensembles. In previous proposals, the light beam after interacting with the atomic ensembles was measured, inducing entanglement between the different samples (see e.g. [4, 17, 32, 33]). Here, we will have a closer look at the situation in which the light beam is not measured after the interaction. Such an action, as we will see, acts as a truly quantum Gaussian random number generator. We will show that through such a procedure one can generate multipartite mixed states, in particular bound entangled states.

As pointed out in the introduction, each atomic ensemble is described by its collective angular momentum \(\mathbf{\hat{J}} = (\mathbf{\hat{J}}_x, \mathbf{\hat{J}}_y, \mathbf{\hat{J}}_z) \). Atoms are assumed to be all polarized along the \(x \)-direction (e.g. prepared in a particular hyperfine state) so that fluctuations in the \(\mathbf{\hat{J}}_x \) component are very low and this variable can be treated as a classical number \(\mathbf{\hat{J}}_x \approx \langle \mathbf{\hat{J}}_x \rangle = h N_{at} \). By appropriate normalization the orthogonal spin components are made to fulfill the canonical commutation relation \[[\mathbf{\hat{J}}_y / \sqrt{\hbar \mathbf{\hat{J}}_x}, \mathbf{\hat{J}}_z / \sqrt{\hbar \mathbf{\hat{J}}_x}] = i \hbar \]. Note that they have nonzero fluctuations. To stress the continuous variable character of the system, we rename the above variables as ‘position’ and ‘momentum’:

\[
\hat{x}_A = \frac{\mathbf{\hat{J}}_y}{\sqrt{\hbar \mathbf{\hat{J}}_x}}, \quad \hat{p}_A = \frac{\mathbf{\hat{J}}_z}{\sqrt{\hbar \mathbf{\hat{J}}_x}}.
\]
From now on, we will use only the canonical variables \hat{x}_A, \hat{p}_A to refer to the atomic sample, where the subscript A stands for atomic ensemble. Later on, when dealing with different atomic ensembles the notation $\hat{x}_{A,n}$, $\hat{p}_{A,n}$, when we refer to the nth atomic sample, will be used.

Light is taken to be out of resonance from any relevant atomic transition and linearly polarized along the x-direction. We use the Stokes description $\hat{S} = (\hat{S}_x, \hat{S}_y, \hat{S}_z)$ for the light polarization. The components \hat{S}_k ($k = x, y, z$) correspond to the differences between the number of photons (per unit time) with x and y linear polarizations, $\pm \pi/4$ linear polarizations and the two circular polarizations, i.e.

\[
\hat{S}_x = \frac{\hbar}{2}(\hat{n}_x - \hat{n}_y) = \frac{\hbar}{2}(\hat{a}_x^\dagger \hat{a}_x - \hat{a}_y^\dagger \hat{a}_y), \\
\hat{S}_y = \frac{\hbar}{2}(\hat{n}_y - \hat{n}_x) = \frac{\hbar}{2}(\hat{a}_y^\dagger \hat{a}_y + \hat{a}_x^\dagger \hat{a}_x), \\
\hat{S}_z = \frac{\hbar}{2}(\hat{n} - \hat{n}) = \frac{\hbar}{2i}(\hat{a}_y^\dagger \hat{a}_y - \hat{a}_x^\dagger \hat{a}_x).
\]

The Stokes operators are well suited for the microscopic description of interaction with atoms; however, in effect, only the following macroscopic observables will be relevant: $\hat{S}_k = \int_0^T \hat{S}_k(t) \, dt$, where T is the duration of the light pulse. The so defined operators obey standard angular momentum commutation rules. The assumption of linear polarization along the x-direction allows for the approximation $\hat{S}_x \approx \langle \hat{S}_x \rangle = N_{ph} \hbar / 2$. Once more, the remaining orthogonal components \hat{S}_y and \hat{S}_z are appropriately rescaled in order to make them fulfil the canonical commutation rule $[\hat{S}_y/\sqrt{\hbar S_x}, \hat{S}_z/\sqrt{\hbar S_x}] = i\hbar$. Straightforwardly, an equivalent equation to equation (1) arises:

\[
\hat{S}_L = \frac{\hat{S}_y}{\sqrt{\hbar S_x}}, \quad \hat{p}_L = \frac{\hat{S}_z}{\sqrt{\hbar S_x}},
\]

which allows us to treat the light polarization degrees of freedom on the same footing as the atomic variables.

In the situation in which a light beam propagates in the YZ plane and passes through a single ensemble at angle α with respect to the direction z, the atom–light interaction can be approximated to the following quantum non-demolition (QND) effective Hamiltonian (see [34] and references therein for a detailed derivation):

\[
\hat{H}_\text{int}^{\text{eff}}(\alpha) = -\kappa \hat{p}_L (\hat{p}_A \cos \alpha + \hat{x}_A \sin \alpha).
\]

The parameter κ is the coupling constant with the dimension of the inverse of an action. Note that such a Hamiltonian leads to a bilinear coupling between the Stokes operator and the collective atomic spin operators. The evolution can be calculated through the Heisenberg equation for the atoms and using the Maxwell–Bloch equation for light, neglecting retardation effects. The variables characterizing both systems (atom and light) transform according to the following equations ([34] and references therein):

\[
\hat{x}_A^{\text{out}} = \hat{x}_A^{\text{in}} - \kappa \hat{p}_L^{\text{in}} \cos \alpha, \\
\hat{p}_A^{\text{out}} = \hat{p}_A^{\text{in}} + \kappa \hat{p}_L^{\text{in}} \sin \alpha, \\
\hat{x}_L^{\text{out}} = \hat{x}_L^{\text{in}} - \kappa (\hat{p}_A^{\text{in}} \cos \alpha + \hat{x}_A^{\text{in}} \sin \alpha), \\
\hat{p}_L^{\text{out}} = \hat{p}_L^{\text{in}}.
\]
where the subscript in/out refers to the variable before/after the interaction. The above equations can be generalized to the case in which a single light beam \((\hat{x}_L, \hat{p}_L)\) propagates through many samples shining at the \(n\)th sample at a certain angle \(\alpha_n\).

Due to the strong polarization constraint, both the atomic ensembles and the light are initially Gaussian modes. Moreover, the Hamiltonian is linear in both atomic and light quadratures, and therefore quadratic in creation and annihilation operators. Such interaction Hamiltonians correspond to Gaussian transformations preserving the Gaussianity of the input state. These facts enable us to tackle the quantum atom–light interface within a covariance matrix formalism.

2.2. The atom–light interface in the covariance matrix formalism

We start by reviewing the most basic concepts needed to describe Gaussian continuous-variable systems. For further reading, see [35–37] and references cited therein. For a general quantum system of \(N\) pairs of canonical degrees of freedom ('position' and 'momentum'), the commutation relations fulfilled by the canonical coordinates \(\hat{R} = (\hat{x}_1, \hat{p}_1, \ldots, \hat{x}_N, \hat{p}_N)\) can be represented in a matrix form by the symplectic matrix \(J_N : [\hat{R}_i, \hat{R}_j] = i\hbar(J_{ij}), i, j = 1, \ldots, 2N\), where

\[
\mathcal{J}_N = \bigoplus_{\mu=1}^{N} \mathcal{J}, \quad \mathcal{J} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}. \tag{6}
\]

Gaussian states are, by definition, fully described by the first and second moments of the canonical coordinates. Hence, rather than describing them by their infinite-dimensional density matrix \(\rho\), one can use the Wigner function representation

\[
W(\zeta) = \frac{1}{\pi^N \sqrt{\det \gamma}} \exp \left[- (\zeta - d)^T \gamma^{-1} (\zeta - d) \right], \tag{7}
\]

which is a function of the first moments through the displacement vector \(d\), and of the second moments through the covariance matrix \(\gamma\), defined as

\[
d_i = \text{Tr}(\rho \hat{R}_i), \quad \gamma_{ij} = \text{Tr}(\rho \{ \hat{R}_i, \hat{R}_j \}). \tag{8}
\]

The variable \(\zeta = (x_1, p_1, \ldots, x_N, p_N)\) is a real phase space vector with probability distribution given by the Wigner function. The covariance matrix corresponding to a quantum state must fulfill the positivity condition

\[
\gamma + i\mathcal{J}_N \succeq 0. \tag{9}
\]

In the particular case of a physical system consisting of several atomic ensembles and a single light beam, the most general covariance matrix takes the form

\[
\gamma = \begin{pmatrix} \gamma^A & C \\ C^T & \gamma^L \end{pmatrix}, \tag{10}
\]

where the submatrix \(\gamma^L\) corresponds to the light mode, \(\gamma^A\) corresponds to the atomic ensembles, which initially reads \(\gamma^A_{in} = \gamma^A_{1i} \oplus \cdots \oplus \gamma^A_{ni}\), and \(C\) accounts for the correlations between the atomic ensembles and the light.
If a Gaussian state undergoes a unitary evolution preserving its Gaussian character, as is the case here, then the corresponding transformation at the level of the covariance matrix is represented by a symplectic matrix S acting as

$$y_{\text{out}} = S^T y_{\text{in}} S.$$ \hspace{1cm} (11)

Let us illustrate how to reconstruct the evolution of the covariance matrix from the propagation equations (5a)--(5d). Note that the variables describing the system after interaction (out) are expressed as a linear combination of the initial ones (in). Let us denote this linear transformation by K:

$$K : (\hat{x}_{\text{out}}^A, \hat{p}_{\text{out}}^A, \hat{x}_{\text{out}}^L, \hat{p}_{\text{out}}^L)^T = K(\hat{x}_{\text{in}}^A, \hat{p}_{\text{in}}^A, \hat{x}_{\text{in}}^L, \hat{p}_{\text{in}}^L)^T.$$ \hspace{1cm} (12)

In our case, K can be straightforwardly obtained from the evolution equations (5a)--(5d). For a single atomic mode the transformation reads

$$\begin{pmatrix} \hat{x}_{\text{out}}^A \\ \hat{p}_{\text{out}}^A \\ \hat{x}_{\text{out}}^L \\ \hat{p}_{\text{out}}^L \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & -\kappa \cos \alpha \\ 0 & 1 & 0 & \kappa \sin \alpha \\ -\kappa \sin \alpha & -\kappa \cos \alpha & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \hat{x}_{\text{in}}^A \\ \hat{p}_{\text{in}}^A \\ \hat{x}_{\text{in}}^L \\ \hat{p}_{\text{in}}^L \end{pmatrix}.$$ \hspace{1cm} (13)

Since the interaction Hamiltonian is bilinear, the matrix K can be directly applied to a phase space vector ζ and correspondingly to the covariance matrix; however, the sign of the coupling constant κ should be changed. This is so because the phase space variables evolve according to the Schrödinger picture, whereas the quadratures, being operators, transform according to the Heisenberg picture. Therefore, we define $\tilde{K} = K|_{\kappa \to (-\kappa)}$, which we apply to the phase space vector and covariance matrix as

$$\zeta_{\text{out}}^T \gamma_{\text{out}}^{-1} \zeta_{\text{out}} = \zeta_{\text{in}}^T \tilde{K}^T \gamma_{\text{in}}^{-1} \tilde{K} \zeta_{\text{in}} = \zeta_{\text{in}}^T (\tilde{K} \gamma_{\text{in}} (\tilde{K}^T)^{-1})^{-1} \zeta_{\text{in}} = \zeta_{\text{in}}^T \gamma_{\text{out}}^{-1} \zeta_{\text{in}},$$ \hspace{1cm} (14)

leading to $S = (\tilde{K}^T)^{-1}$. The above formalism has been explicitly developed for a single sample and a single beam, but it easily generalizes to an arbitrary number of atomic ensembles and light beams, as well as to different geometrical settings.

Finally, the last ingredient essential to describe the matter–light interface at the level of the covariance matrix is the effect of the homodyne detection of light [35]. A homodyne measurement on the light quadratures acts as a Gaussian map on the atomic covariance matrix. Assuming a zero initial displacement and covariance matrix of the form (10), the measurement of the quadrature \hat{x}_L with outcome \tilde{x}_L leaves the atomic system in a state described by a covariance matrix [13, 32, 35, 38]

$$\gamma^A = \gamma^A - C(X \gamma^L X)^{-1} C^T$$ \hspace{1cm} (15)

and displacement

$$d^A = C(X \gamma^L X)^{-1} (\tilde{x}_L, 0),$$ \hspace{1cm} (16)

where the inverse is understood as an inverse on the support whenever the matrix is not of full rank and X is a two-dimensional (2D) diagonal matrix with diagonal entries $(1, 0)$. The measurement of the quadrature \hat{p}_L affects the system analogously. Let us note here that if the light is not measured after the interaction, the state of the atomic sample is characterized by the covariance matrix γ^A obtained after tracing out the light degrees of freedom, with the
displacement being a Gaussian random variable according to equations (5a) and (5b)

\[d_A = -\kappa \bar{p}_L \cos \alpha, \bar{p}_L \sin \alpha, \]

(17)

where \(\bar{p}_L \) denotes a Gaussian random variable associated with the momentum operator.

An important step in the matter–light interface when several atomic ensembles are present is the analysis of the quantum correlations between the different atomic samples once the light beam has been measured. The symplectic formalism provides the whole information about the atomic covariance matrix and displacement vector after the interaction. This makes verification of entanglement amenable to covariance matrix entanglement criteria (see also [32, 33]).

An operational separability criterion, i.e. state-independent, which can be only applied when the full covariance matrix is available, is the positive partial transposition (PPT) criterion [39, 40]. For continuous-variable systems, it corresponds to partial time reversal of the covariance matrix [41], i.e. a change of the sign of the momentum for the chosen modes. If the partially time reversed covariance matrix does not fulfill the positivity condition (9), the corresponding state is entangled. This test, however, checks only bipartite entanglement. For Gaussian states this criterion is necessary and sufficient to detect entanglement in all partitions of \(1 \times N \) modes. In the multipartite scenario, a state may be PPT with respect to all its bipartite divisions and still not be fully separable. Such states are bound entangled states. For three-mode Gaussian states, an operational separability criterion distinguishing a fully separable state from a fully PPT entangled state was given in [22]. We will use such a criterion together with the PPT criterion in section 3.2 to demonstrate how different types of entanglement arise in tripartite cluster-like states at finite temperature.

Experimentally, however, it is more convenient to check separability via variances of the collective observables, originally proposed for two-mode states in [15] and generalized to many-mode states in [16]. Such a criterion states that if an \(N \) mode state is separable, then the sum of the variances of the following operators:

\[\hat{u} = h_1 \hat{x}_1 + \cdots + h_N \hat{x}_N \]

\[\hat{v} = g_1 \hat{p}_1 + \cdots + g_N \hat{p}_N \]

is bounded from below by a function of the coefficients \(h_1, \ldots, h_N, g_1, \ldots, g_N \). Mathematically, the inequality is expressed as

\[(\Delta \hat{u})^2 + (\Delta \hat{v})^2 \geq f(h_1, \ldots, h_N, g_1, \ldots, g_N) \hbar, \]

(19)

where

\[f(h_1, \ldots, h_N, g_1, \ldots, g_N) = \left| h_1 g_1 + \sum_{r \in I} h_r g_r \right| + \left| h_m g_m + \sum_{s \in I'} h_s g_s \right|. \]

(20)

In the above formula, the two modes, \(l \) and \(m \), are distinguished and the remaining ones are grouped into two disjoint sets \(I \) and \(I' \). The criterion (19) holds for all bipartite splittings of a state defined by the sets of indices \(\{l\} \cup I \) and \(\{m\} \cup I' \). For two-mode states, the criterion becomes a necessary and sufficient entanglement test, but only after the state is transformed into its standard form by local operations [15]. These local transformations, however, are determined by the form of the covariance matrix. In this sense, knowledge of the full covariance matrix is essential to determine whether the state is entangled. Since in experiments usually one does not have access to the full covariance matrix, one cannot assume that this criterion decides unambiguously about separability.
2.3. Imperfections in the system

So far, the system introduced in subsection 2.1 has been errorless, but in practice systems are always subject to certain imperfections due to particle loss, fluctuations of the laser amplitude, population of atomic excited states due to photon absorption, inhomogeneities of the sample and light beam and so on. Moreover, the polarized atomic samples have also a lifetime due to collisions and spin relaxation.

A complete description of the effects due to inhomogeneities on atom–light interfaces is provided in [42]. Here, we assume our systems to be homogeneous and analyze the errors due to the decay of the atomic spin-polarized state [32, 33, 43] modeled as

\[
\hat{x}_{\Lambda,i}^{\text{in}} = \sqrt{1 - \eta} \hat{x}_{\Lambda,i}^{\text{in}} + \sqrt{\eta} \hat{V}_x,
\]

\[
\hat{p}_{\Lambda,i}^{\text{in}} = \sqrt{1 - \eta} \hat{p}_{\Lambda,i}^{\text{in}} + \sqrt{\eta} \hat{V}_p,
\]

(21)

where \(\hat{V}_p \) and \(\hat{V}_x \) are the vacuum modes. The parameter \(\eta \) is time dependent and its value is bounded as \(0 \leq \eta \leq 1 \). Since the interaction time is much shorter than the atomic spin relaxation, we safely assume the interaction to be instantaneous. Thus, the atomic decoherence corresponds to the time window between the different pulses acting in the protocol. In such a case, it is safe to consider \(\eta \ll 0.1 \). At the level of the covariance matrix, the effect of decoherence results in

\[
\gamma'(\eta) = (1 - \eta)\gamma + \eta \hat{1}.
\]

(22)

One sees that it increases the diagonal elements with respect to off-diagonal correlation terms, thus decreasing the amount of entanglement. Moreover, we also analyze the effects due to the uncertainty in the coupling constant \(\kappa \pm \delta \kappa \) and the uncertainty in the homodyne detection measuring process. Typical values and uncertainties for the coupling strengths and for the light and spin variances are based on recent experimental results [44].

3. Beyond the pure state entanglement

Here we analyze mixed state entanglement for atomic ensembles. We start our analysis with bipartite states and show that the entanglement induced by the measurement of light, despite its irreversible nature, can be erased by making the samples interact with a second light beam, in a similar fashion as happens for the pure states [17]. We then address multipartite entanglement and show how bound entanglement can be created in a tripartite setting (cluster state) using thermal states. Finally, we analyze the effect of randomness introduced in the multipartite setting by the action of the light which interacts with all the atomic samples but is not measured. We show that through such a procedure one may produce unlockable bound entanglement.

3.1. Bipartite entanglement of thermal states

Let us start with the setup in which the atomic samples are not in the minimum-fluctuation coherent state (vacuum), but in a general thermal state. Under such assumptions, the initial state of the composite system is given by the following covariance matrix for atoms and light:

\[
\gamma_{\text{in}} = n_1 \hat{1}_2^{\text{\Lambda}} \oplus \cdots \oplus n_N \hat{1}_2^{\text{\Lambda}} \oplus \hat{1}_2^{\text{L}}.
\]

(23)

where the identity \(\hat{1}_2 \) stands for a single mode and parameters \(n_1, \ldots, n_N \) are related to temperature through \(n_i = 1/\tanh(\beta_i \omega/2) \) \((i = 1, \ldots, N) \), where \(\beta \) is the inverse of the temperature and \(\omega \) is the effective frequency of the single sample.

New Journal of Physics 14 (2012) 033034 (http://www.njp.org/)
The QND Hamiltonian (4) for the many-mode setup reduces to
\[\hat{H}_{\text{int}}^{\text{eff}}(\alpha) = -\sum_{i} \kappa_{i} \hat{p}_{L} (\hat{p}_{A,i} \cos \alpha_{i} + \hat{x}_{A,i} \sin \alpha_{i}) \] (24)
where \(\alpha_{i} \) refers to the incident angle at which the light impinges on the atomic sample \(i \). The corresponding symplectic matrix describing this interaction is given by
\[
S_{\text{int}} = \begin{pmatrix}
\hat{A}_{1} & G_{1} \\
\vdots & \vdots \\
M_{1} & \cdots \\
G_{N} & M_{N}
\end{pmatrix},
\] (25)
with
\[
G_{i} = \begin{pmatrix}
-\kappa_{i} \sin \alpha_{i} & 0 \\
-\kappa_{i} \cos \alpha_{i} & 0
\end{pmatrix}, \quad M_{j} = \begin{pmatrix}
0 & 0 \\
-\kappa_{j} \cos \alpha_{j} & \kappa_{j} \sin \alpha_{j}
\end{pmatrix}.
\] (26)
For the two-mode atomic states, the covariance matrix of the atomic samples after the interaction (the setup in figure 1(b)) can be straightforwardly calculated from equation (11):
\[
\gamma_{\text{out}} = \begin{pmatrix}
n_{1} + \kappa^{2} & \kappa^{2} & 0 & 0 & \kappa \\
\kappa^{2} & n_{1} & 0 & 0 & n_{1} \kappa \\
0 & 0 & n_{2} + \kappa^{2} & 0 & 0 \\
0 & 0 & 0 & n_{2} \kappa & 0 \\
\kappa & 0 & 0 & 0 & 1 + n_{1} \kappa^{2} + n_{2} \kappa^{2}
\end{pmatrix}.
\] (27)
Due to the atom–light interaction, both atomic modes are entangled with light; however, the reduced state of the two ensembles is separable as one can easily check by applying the PPT
fluctuations still present in \hat{x}_L to be $\tilde{x}_{L,1}$, the covariance matrix describing the final state of the samples is given by (see (15) and (16))

$$
\gamma_{\text{fin}} = \begin{pmatrix}
 n_1 + \kappa^2 & 0 & \kappa^2 & 0 \\
 0 & \frac{n_1\kappa^2}{(n_1+n_2)\kappa^2+1} & 0 & \frac{-n_1\kappa^2}{(n_1+n_2)\kappa^2+1} \\
 \kappa^2 & 0 & n_2 + \kappa^2 & 0 \\
 0 & \frac{-n_1\kappa^2}{(n_1+n_2)\kappa^2+1} & 0 & \frac{n_1\kappa^2}{(n_1+n_2)\kappa^2+1}
\end{pmatrix},
$$

(28)

and the displacement of the final state is

$$
d_{\text{fin}} = \left(0, -\frac{\tilde{x}_{L,1} \kappa n_1}{(n_1+n_2)\kappa^2+1}, 0, -\frac{\tilde{x}_{L,1} \kappa n_1}{(n_1+n_2)\kappa^2+1}\right),
$$

(29)

For what follows it is important to note that the covariance matrix is independent of the measurement outcome, but the latter is clearly present in the displacement vector of the atomic modes. To check the entanglement between the atomic samples after the light has been measured, we use the separability criterion based on the variances of the two commuting operators [15], which states that for any separable state the total variances fulfill

$$
\left[\Delta(\lambda |\hat{p}_{A,1} + \frac{1}{\lambda} \hat{p}_{A,2})\right]^2 + \left[\Delta(\lambda |\hat{x}_{A,1} - \frac{1}{\lambda} \hat{x}_{A,2})\right]^2 \geq 2\hbar.
$$

(30)

This is a sufficient but not necessary condition for separability.

We restrict our analysis to a single inequality involving the collective observables with $\lambda = 1$ in (30) since it is the one applicable experimentally [4]. The way to measure such a combination of variances has been described in detail in [17].

Extracting the variances from the elements of the final covariance matrix (28), we obtain

$$
\frac{1}{\hbar} \left[\Delta(\hat{p}_{A,1} + \hat{p}_{A,2})\right]^2 = \frac{1}{2} \left(\gamma_{\text{fin},22} + \gamma_{\text{fin},44} + 2\gamma_{\text{fin},24}\right) = \frac{n_1 + n_2}{2(n_1 + n_2)\kappa^2+2},
$$

$$
\frac{1}{\hbar} \left[\Delta(\hat{x}_{A,1} - \hat{x}_{A,2})\right]^2 = \frac{1}{2} \left(\gamma_{\text{fin},11} + \gamma_{\text{fin},33} - 2\gamma_{\text{fin},13}\right) = \frac{1}{2}(n_1 + n_2).
$$

(31)

Substitution of the above expressions into equation (30) leads to the violation of the separability criterion for the values of n_1, n_2 and κ fulfilling

$$
\kappa^2 > \frac{2(n_1 + n_2 - 2)}{(4 - n_1 - n_2)(n_1 + n_2)}, \quad n_1 + n_2 < 4.
$$

(32)

For $n_1 + n_2 > 4$, the inequality can never be violated. In figure 2, we compare the complement of the set defined by (32) (states that are not detected) with the set of separable (PPT) states. This shows that the variance inequality does not detect all entangled states. This is due to the fact that only one combination of variables, i.e. $\hat{p}_{A,1} + \hat{p}_{A,2}$, is squeezed. In this case, the thermal fluctuations still present in $\hat{x}_{A,1} - \hat{x}_{A,2}$ do not allow the sum in equation (30) to violate the bound.

In the case of initially pure states an arbitrary coupling produces entanglement [17]. Here we see that for initially thermal states this is not the case and the generation of entanglement requires a stronger coupling with light.

In order to increase the amount of entanglement and improve its detectability through the variance inequality criterion, a sequence of steps displayed in figures 1(a) and (b) is required.
Figure 2. Comparison of the sets of parameters κ, n_1, n_2 for which the state of two ensembles remains separable (brown inner region), with the ranges of parameters for which it is not detected by the spin variance inequality (30) with $\lambda = 1$ (gray outer region). In panel (a), we consider the state produced in the setup in figure 1(a), whereas in panel (b) the one produced in two steps schematically depicted in figures 1(a) and (b).

These introduce squeezing in two commuting combinations of quadratures. Calculations similar to those from the previous paragraph lead to

$$\frac{1}{\hbar} \left[\Delta (\hat{p}_{A,1} + \hat{p}_{A,2}) \right]^2 = \frac{1}{\hbar} \left[\Delta (\hat{x}_{A,1} - \hat{x}_{A,2}) \right]^2 = \frac{n_1 + n_2}{2 (n_1 + n_2) \kappa^2 + 2},$$

and the violation of the variance’s inequality (30) for $\lambda = 1$ is now obtained for a much lower coupling:

$$\kappa^2 > \frac{n_1 + n_2 - 2}{2n_1 + 2n_2}.$$ (34)

The set of states detected by the spin variance inequality is compared in figure 2(b) to the set of separable (equivalently PPT) states. Again the spin variance inequality does not detect all entangled states; however, now it is much more efficient than in the previous case since the fluctuations in both combinations of variables were suppressed.

If we consider the decay of atomic spin in the course of the protocol, as in equation (22), we see that the amount of entanglement is not affected significantly. For the decay constant $\eta \approx 0.05$, the region of entangled states shrinks very little, especially for the admissible parameter $\kappa \approx 1$.

Let us have a look at the detection of entanglement through the variance inequality (for details see [17]). The fluctuations of the system parameters, i.e. the number of particles, laser intensity, etc, culminate in the fluctuations of the coupling constant. We assume its relative error to be $\delta \kappa = 0.05$. Another source of error is the uncertainty of the homodyne measurement. The variance of light quadrature measured in this way has a relative error of $\delta ((\Delta \hat{x}_L)^2) = 0.1$. Using these values we have calculated the error of the measurement of the lhs of the inequality (30). The obtained values suggest that in order to be certain that the generated state is entangled, the measured value must be smaller than 1.5.

For feasible parameters, i.e $\kappa \approx 1$ and $\eta \approx 0.05$, detection is always feasible in a setup consisting of two light beams, but is limited to $n_1 + n_2 \approx 2$ (initial vacuum state) if only
one entangling beam is used. If, instead, one applies two entangling beams, the lhs of the inequality (30) achieves lower values due to a reduction of fluctuations in both combinations of variables. In this case, we see that it is possible to detect entanglement for arbitrary n_1, n_2 if $\kappa \approx 1$ even if the system is subject to decoherence.

Interestingly enough, such a measurement-induced entanglement between two atomic samples can be erased by exploiting the squeezing and anti-squeezing effects produced by the laser beams for pure state entanglement [17]. Here we demonstrate that this is also true when the initial states are thermal; however, the procedure has to be slightly modified. Let us consider the state represented by the covariance matrix (28). Interaction with a second light beam impinging on each atomic sample at $\alpha_1 = \alpha_2 = \pi/2$ (as depicted in figure 1(c)) followed by the light measurement will erase the entanglement produced by the interaction with the first light beam if the properties of light are appropriately adjusted. To achieve this aim, it is sufficient to impose a second light beam characterized by the covariance matrix

$$\gamma_L = \begin{pmatrix} 2(\Delta x_1)^2 & 0 \\ 0 & 2(\Delta p_1)^2 \end{pmatrix} ,$$

with

$$2(\Delta x_1)^2 = \kappa^2 n_1 + \kappa^2 n_2 + n_1 n_2,$$

$$2(\Delta p_1)^2 = \frac{n_1 n_2}{\kappa^2 n_1 + \kappa^2 n_2 + 1}$$

and interaction coupling κ. The covariance matrix of the final state is given by

$$\gamma_{\text{er}} = \begin{pmatrix} \frac{\kappa^2 n_2 + n_1 (\kappa^2 + n_2)}{2\kappa^2 + n_2} & 0 & 0 & 0 \\ 0 & \frac{n_1 (2\kappa^2 n_2 + 1)}{\kappa^2 (n_1 + n_2) + 1} & 0 & 0 \\ 0 & 0 & \frac{\kappa^2 n_2 + n_1 (\kappa^2 + n_2)}{2\kappa^2 + n_1} & 0 \\ 0 & 0 & 0 & \frac{n_2 (2\kappa^2 n_1 + 1)}{\kappa^2 (n_1 + n_2) + 1} \end{pmatrix} ,$$

and the corresponding displacement is

$$d_{\text{er}} = \begin{pmatrix} \tilde{x}_{L,1} \kappa n_1 & -\frac{\tilde{x}_{L,2} \kappa}{2\kappa^2 + n_2}, & \frac{\tilde{x}_{L,2} \kappa}{\kappa^2 (n_1 + n_2) + 1} - \frac{\tilde{x}_{L,1} \kappa n_1}{\kappa^2 (n_1 + n_2) + 1} \end{pmatrix} .$$

where $\tilde{x}_{L,2}$ is the measurement outcome. Note that the state (37) is separable. It will be identical to the initial one, but, only if $n_2 = n_1$.

3.2. Multipartite bound entanglement

We now move to the truly multipartite entanglement and focus on the simplest case of the three atomic samples. We aim at analyzing bound entanglement, which exists only in the mixed state case. The classification of tripartite entanglement in CV was given by Giedke et al [22], where five classes of states were distinguished. Following their classification, inseparable states with respect to every bipartite splitting are denoted as class 1. States which are biseparable with respect to one (and only one) bipartition belong to class 2. States that are biseparable with respect to two or three bipartitions, but still entangled, belong to class 3 and class 4, respectively. These two classes of states are bound entangled. Finally, class 5 are the separable states.
Table 1. Parameters for tripartite cluster states and the four-partite Smolin state.

Beam	Linear	Triangular	Smolin state							
	α_1	α_2	α_3	α_1	α_2	α_3	α_1	α_2	α_3	α_4
1	0	$\pi/2$	$\pi/2$	0	$\pi/2$	$\pi/2$	0	π	π	
2	$\pi/2$	0	$\pi/2$	$\pi/2$	$\pi/2$	$\pi/2$	$\pi/2$	$-\pi/2$	$-\pi/2$	
3	$-\pi/2$	0	$\pi/2$	$\pi/2$	$\pi/2$	$\pi/2$	$\pi/2$	$-\pi/2$	$-\pi/2$	

Continuous-variable cluster-like states can be a universal resource for optical quantum computation [45–47]. They are defined in analogy to the discrete cluster states generated via Ising interactions between qubits [47]. One can associate the modes of the N-mode (CV) system with the vertices of a graph G. And the cluster corresponds to a connected graph [48]. For continuous variables, cluster states are defined only asymptotically as those with infinite squeezing in the variables

$$\hat{p}_a - \sum_{b \in N_a} \hat{\chi}_b$$

for all the modes belonging to the graph, where N_a denotes the set of neighbors of vertex a. Cluster-like states are defined when the squeezing is finite.

It is possible to create such states with atomic ensembles in the proper geometrical setup [17] taking the samples in the initial vacuum state. The protocol consists of interaction with light passing through the samples at specified angles (see table 1) plus a homodyne detection of light. Here we check the properties of the states obtained through the same procedure, but for initially thermal samples, i.e. $\gamma^{(0)} = \hat{n}_1 \oplus \hat{n}_2$. We demonstrate that in such a setup bound entangled states are produced for certain choices of temperature and coupling. The presence of undistillable entanglement in thermal finite-dimensional systems has been considered in [49].

We analyze the two cluster states, the linear one and the triangular one, focusing on how the temperature destroys the genuine tripartite entanglement. To discriminate classes 1, 2 and 3, the PPT criterion is enough. To discriminate between classes 4 and 5 we will use the operational necessary and sufficient criterion for full separability given in [22].

The results we obtain are summarized in figure 3 where we depict, as a function of the temperature T through $n(T) = 1/\tanh(\omega/2T)$ and coupling κ, the different entanglement types created between the atomic samples.

For the linear cluster state (figure 3(a)), for a fixed value of the parameter κ, the state is NPT with respect to all three cuts in the interval $0 < T < T_a$, meaning that it belongs to class 1. For $T_a < T < T_b$ the state is PPT with respect to the bipartition $2 - (1, 3)$ and NPT with respect to the others. Hence, it belongs to bound entangled class 3. For $T > T_b$ the state becomes PPT with respect to all the cuts. Using the separability criterion found in [22], we find that within the range $T_b < T < T_c$ the state is class 4, while for $T > T_c$ it becomes fully separable.

Figure 3(b) corresponds to the different entanglement classes for a triangular cluster state. In this case, because of the permutational invariance, class 3 is never recovered. Nevertheless, a class-4 region still appears between the genuine tripartite and the fully separable states.

Even though at the level of covariance matrix we are able to distinguish all the entanglement classes, it may be challenging to recover them in experiment. On the one hand,
the fluctuations of the coupling constant ($\delta \kappa \approx 0.05$) that are always present in the system due to particle loss, spontaneous emission, fluctuations of laser intensity, etc make the states belonging to class 4 practically indistinguishable from those belonging to classes 3 and 5 (see figure 3(a)). On the other hand, bound entangled states belonging to entanglement class 3 are well separated from other types of states and hence are experimentally distinguishable.

3.3. Multipartite unlockable bound entanglement

Here we propose to exploit the Gaussian randomness that is inherently present in the system, due to uncertainty of the outcome of the light measurement, for generating other types of bound entanglement. In particular, we will show that it is essential to generate the bound entangled Smolin state.

The Smolin state introduced in [30] using qubits is an interesting example of an undistillable multipartite entangled state that can be unlocked if several parties carry out a collective measurement and send the outcome to the remaining parties. The Smolin state is formed by an equal-weight mixture of products of the four Bell states ψ_i ($i = 1, \ldots, 4$)

$$\rho_{\text{Smolin}} = \sum_{i=1}^{4} |\psi_i\rangle \langle \psi_i|_{AB} \otimes |\psi_i\rangle \langle \psi_i|_{CD}. \quad (40)$$

One sees that parties AB and CD share the same Bell state but neither of the pairs know which one it is. Such a state is clearly separable with respect to the partition $AB|CD$. Moreover, since it is permutationally invariant, the above statement also holds for every two pairs, not only for AB and CD. Hence, according to the definition, the state is undistillable with respect to two arbitrary parties, since there always exists a separable bipartition dividing them.

The fact that two arbitrary pairs share the same unknown Bell state makes the entanglement present in the Smolin state unlockable. Imagine a situation in which two of the parties, say C and D, meet in one laboratory and made collectively a measurement in the Bell basis, identifying thus the state they possess. This measurement projects the state shared by AB on the one corresponding to the outcome of the parties CD. Hence, if A and B, still being in separate laboratories, obtain (by classical communication) information about the outcome of CD, they
can use their maximally entangled state. We emphasize that the otherwise unknown Bell state is useless.

The Smolin state possesses many other interesting features. Apart from being unlockable, its entanglement can be activated [50] through the cooperation of five parties sharing two copies of the state. Despite being bound entangled, this state can be used in the remote quantum information concentration protocol [51] and maximally violates a Bell inequality being at the same time useless for secret key distillation [25].

Recently, Zhang [31] generalized the discrete Smolin state to the Gaussian CV scenario using the mathematical formalism of stabilizers. It turns out that the state proposed by Zhang can be understood as some mixture of products of the continuous variables EPR-like states. Let us consider two EPR(-like) states with known reference displacement and randomly displace both of them in opposite unknown directions in the phase space, as schematically depicted in figure 4. The only constraint imposed on the random displacement is that it has a Gaussian distribution. In this way, we obtain a Gaussian mixture of two displaced EPR pairs.

The properties of the CV Smolin state are slightly different from those of the qubit state. Firstly and most importantly, we lose the permutational invariance [31]. Secondly, since the maximally entangled EPR state corresponds to infinite squeezing in the CV and is not physical, we will always have to deal with ‘EPR-like’ states and therefore it is necessary to analyze the effect of the finite squeezing on the properties of the final Smolin-like state. Both of the above constraints force the Smolin-like state to be undistillable only with respect to chosen parties and within a particular range of the squeezing parameter.

Let us demonstrate how the setup generating the Smolin-like state proposed in [31] greatly simplifies in the atomic-ensemble realization. We characterize each step of the procedure using the covariance matrix and the displacement vector. Finally, using the symplectic formalism, we demonstrate the unlocking of entanglement and analyze possible errors that may affect this part of the protocol.

From now on, we will distinguish the parties (modes) with Latin numbers. As demonstrated by Zhang, the Smolin-like state can be generated in two steps:

(i) Generate two EPR-like pairs with reduced fluctuations (squeezing) in $\hat{x}_1 + \hat{x}_2$ and $\hat{p}_1 - \hat{p}_2$ ($\hat{x}_3 + \hat{x}_4$ and $\hat{p}_3 - \hat{p}_4$ for modes 3 and 4) and known displacement.

(ii) Displace the EPR pairs by random Gaussian variables λ_1 and λ_2 such that the quadratures
transform in the following way:

\[
\hat{x}_1 + \hat{x}_2 + \hat{x}_3 + \hat{x}_4 \rightarrow (\hat{x}_1 - \lambda_1) + (\hat{x}_2 - \lambda_1) + (\hat{x}_3 + \lambda_1) + (\hat{x}_4 + \lambda_1)
\]

(41)

and

\[
\hat{p}_1 - \hat{p}_2 + \hat{p}_3 - \hat{p}_4 \rightarrow (\hat{p}_1 + \lambda_2) - (\hat{p}_2 - \lambda_2) + (\hat{p}_3 - \lambda_2) - (\hat{p}_4 + \lambda_2).
\]

(42)

Note that indeed the squeezed combinations in modes 1–2 and 3–4 are displaced in opposite directions. Implementation of each of these steps is experimentally feasible in the geometrical setup of atomic ensembles. Step (i) concerns the generation of EPR-like states with known displacement, which is easily achieved (see also [17]). Step (ii) concerns the generation of random Gaussian variables in the displacements. In our geometrical setup this can be achieved by shining two light beams at some given angles as summarized in table 1. A straightforward application shows that the procedure modifies the quadratures of atomic spin ensembles in the following way:

\[
\hat{x}_1 + \hat{x}_2 + \hat{x}_3 + \hat{x}_4 \rightarrow (\hat{x}_1 - \kappa \hat{p}_{L,1}) + (\hat{x}_2 - \kappa \hat{p}_{L,1}) + (\hat{x}_3 + \kappa \hat{p}_{L,1}) + (\hat{x}_4 + \kappa \hat{p}_{L,1})
\]

(43)

and

\[
\hat{p}_1 - \hat{p}_2 + \hat{p}_3 - \hat{p}_4 \rightarrow (\hat{p}_1 + \kappa \hat{p}_{L,2}) - (\hat{p}_2 - \kappa \hat{p}_{L,2}) + (\hat{p}_3 - \kappa \hat{p}_{L,2}) - (\hat{p}_4 + \kappa \hat{p}_{L,2}).
\]

(44)

Comparing now equations (41) and (42) to equations (43) and (44), respectively, one observes that our setup reproduces the required displacements precisely. Now, if the output light is not measured, \(\kappa \hat{p}_{L,1}\) and \(\kappa \hat{p}_{L,2}\) remain unknown random Gaussian variables with expectation value and variance that can be easily adjusted by choosing the input light with specific properties (vacuum squeezed, thermal, etc). From now on, we will denote these random variables by \(\hat{p}_{L,1}\) and \(\hat{p}_{L,2}\).

We switch to the covariance matrix formalism that allows us to get a better insight into the process and the properties of the final state. We begin directly with two EPR pairs with zero reference displacement and characterized by the squeezing parameter \(r\), and a general light mode characterized by the variances \((\Delta \hat{x}_{L,1})^2\), \((\Delta \hat{p}_{L,1})^2\) and zero displacement. The initial state of the setup is described by

\[
\gamma^{\text{in}}_{1} = \gamma_{\text{EPR}_1} \oplus \gamma_{\text{EPR}_2} \oplus \begin{pmatrix} 0 & 0 \\ 2(\Delta \hat{x}_{L,1})^2 & 2(\Delta \hat{p}_{L,1})^2 \end{pmatrix}.
\]

(45)

The interaction between the atomic ensembles and the light leads to the following CM for atoms:

\[
\gamma^{\text{out}}_{1} = \begin{pmatrix} a_1 & 0 & c_1 & 0 & e_1 & 0 & e_1 & 0 \\ 0 & b & 0 & d & 0 & 0 & 0 & 0 \\ c_1 & 0 & a_1 & 0 & e_1 & 0 & e_1 & 0 \\ 0 & d & 0 & b & 0 & 0 & 0 & 0 \\ e_1 & 0 & e_1 & 0 & a_1 & 0 & c_1 & 0 \\ 0 & 0 & 0 & 0 & b & 0 & d & 0 \\ e_1 & 0 & e_1 & 0 & c_1 & 0 & a_1 & 0 \\ 0 & 0 & 0 & 0 & d & 0 & b & 0 \end{pmatrix}.
\]

(46)
with

\[a_1 = 2\kappa^2 (\Delta \hat{p}_{L,1})^2 + \text{ch}2r, \quad b = \text{ch}2r \quad c_1 = 2\kappa^2 (\Delta \hat{p}_{L,1})^2 - \text{sh}2r, \]
\[d = 2\kappa^2 (\Delta \hat{p}_{L,1})^2 - \text{ch}2r \quad e_1 = -2\kappa^2 (\Delta \hat{p}_{L,1})^2. \]

Interaction with a second mode of light characterized by variances \((\Delta \hat{x}_{L,2})^2, (\Delta \hat{p}_{L,2})^2\) leads to the CM:

\[
\gamma^{(\text{out})}_2 = \begin{pmatrix}
 a_1 & 0 & c_1 & 0 & e_1 & 0 & e_1 & 0 \\
 0 & a_2 & 0 & -c_2 & 0 & e_2 & 0 & -e_2 \\
 c_1 & 0 & a_1 & 0 & e_1 & 0 & e_1 & 0 \\
 0 & -c_2 & 0 & a_2 & 0 & -e_2 & 0 & e_2 \\
 e_1 & 0 & e_1 & 0 & a_1 & 0 & c_1 & 0 \\
 0 & e_2 & 0 & -e_2 & 0 & a_2 & 0 & -c_2 \\
 e_1 & 0 & e_1 & 0 & c_1 & 0 & a_1 & 0 \\
 0 & -e_2 & 0 & e_2 & 0 & -c_2 & 0 & a_2
\end{pmatrix}, \quad (47)
\]

\[
a_1 = 2\kappa^2 (\Delta \hat{p}_{L,1})^2 + \text{ch}2r, \quad a_2 = 2\kappa^2 (\Delta \hat{p}_{L,2})^2 + \text{ch}2r,
\]
\[
c_1 = 2\kappa^2 (\Delta \hat{p}_{L,1})^2 - \text{sh}2r, \quad c_2 = 2\kappa^2 (\Delta \hat{p}_{L,2})^2 - \text{sh}2r,
\]
\[
e_1 = -2\kappa^2 (\Delta \hat{p}_{L,1})^2, \quad e_2 = -2\kappa^2 (\Delta \hat{p}_{L,2})^2.
\]

and the displacement of the final state is given by

\[
ad^{(\text{out})}_2 = (-\kappa \tilde{p}_{L,1}, \kappa \tilde{p}_{L,2}, -\kappa \tilde{p}_{L,1}, -\kappa \tilde{p}_{L,2}, \kappa \tilde{p}_{L,1}, -\kappa \tilde{p}_{L,2}, \kappa \tilde{p}_{L,1}, \kappa \tilde{p}_{L,2}). \quad (48)
\]

We verify the separability of the obtained state using the partial time reversal criterion and see that the state

(i) is always PPT with respect to the partition 12|34,
(ii) is always NPT with respect to the partition 13|24,
(iii) is PPT with respect to the partition 14|23 only if

\[
\kappa^2 (\Delta \hat{p}_{L,1})^2 \geq \frac{1}{8} (e^{2r} - e^{-2r}) \quad \text{or} \quad \kappa^2 (\Delta \hat{p}_{L,2})^2 \geq \frac{1}{8} (e^{2r} - e^{-2r}), \quad (49)
\]

(iv) all the partitions of one versus three modes are always NPT, in agreement with the results obtained in [31].

An important thing to notice is that the state is unlockable bound entangled only if the partition 14|23 is PPT, since only in this case is the entanglement between modes 1 and 2 bound and the unlocking procedure makes sense.

In order to show the unlockability of the obtained state, we write the CM and displacement in the basis in which the EPR states are diagonal, i.e. \((1/\sqrt{2}) (\hat{x}_1 + \hat{x}_2, \ldots, \hat{p}_3 - \hat{p}_4)\). For
simplicity we also assume that \((\Delta \hat{x}_{L,1})^2 = (\Delta \hat{x}_{L,2})^2 = (\Delta \hat{x}_L)^2 \) and \((\Delta \hat{p}_{L,1})^2 = (\Delta \hat{p}_{L,2})^2 = (\Delta \hat{p}_L)^2 \); then

\[
\gamma_s = \begin{pmatrix}
 e^{-2r} + f & 0 & 0 & 0 & -f & 0 & 0 & 0 \\
 0 & e^{2r} & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & e^{2r} & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & e^{-2r} + f & 0 & 0 & 0 & -f \\
 -f & 0 & 0 & 0 & e^{-2r} + f & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & e^{2r} & 0 & 0 & 0 \\
 0 & 0 & 0 & -f & 0 & 0 & 0 & e^{-2r} + f \\
 0 & 0 & 0 & 0 & 0 & e^{-2r} & 0 & 0 \\
\end{pmatrix},
\]

(50)

\[
f = 4\kappa^2 (\Delta \hat{p}_L)^2,
\]

\[
d_s = \{-\sqrt{2\kappa} \tilde{p}_{L,1}, 0, 0, \sqrt{2\kappa} \tilde{p}_{L,2}, \sqrt{2\kappa} \tilde{p}_{L,1}, 0, 0, -\sqrt{2\kappa} \tilde{p}_{L,2}\}.
\]

(51)

Now inspection of \(\gamma_s\) shows clearly that we have two correlated EPR pairs displaced by random vectors pointing in opposite directions in the phase space of the squeezed variables, exactly as depicted in figure 4. Since we do not know where in the phase space the EPR pairs are, we cannot use them for quantum tasks. Therefore, in analogy to the discrete case \([25, 30]\), unlocking of entanglement is understood as learning which of the displaced EPR pairs is shared by pairs 1–2 by measuring the displacement of the other EPR pair shared by pairs 3–4.

For completeness we also demonstrate all the steps of the unlocking protocol with the atom–light interface using the symplectic formalism. The measurement of \(\hat{x}_3 + \hat{x}_4\) and \(\hat{p}_3 - \hat{p}_4\) can be made with two probe light beams with reduced fluctuations in \(x_p\), i.e. \((\Delta \hat{x}_p)^2 < \hbar/2\) (QND measurement) \([52]\). The probe beams pass through samples 3–4 at the angles \(\alpha_3^{(1)} = \alpha_4^{(1)} = \pi/2\) and \(\alpha_3^{(2)} = 0, \alpha_4^{(2)} = \pi\) respectively, and are measured afterwards. If the measurement outcomes are, respectively, \(x_+, \ p_−\), the final state of modes 1–2 is characterized by the following CM and displacement (still in the EPR basis):

\[
\gamma_{12} = \begin{pmatrix}
 f\left(2\kappa^2 + 2e^{2r} (\Delta \hat{x}_p)^2\right) & e^{-2r} & 0 & 0 & 0 \\
 e^{2r} & 0 & 0 & 0 & 0 \\
 0 & e^{-2r} & 0 & 0 & 0 \\
 0 & 0 & e^{2r} & 0 & 0 \\
 0 & 0 & 0 & e^{-2r} & 0 \\
\end{pmatrix},
\]

(52)

\[
d_{12} = \sqrt{2\kappa} \times \left[x_+ g - \tilde{p}_{l,1}, 0, 0, p_- g + \tilde{p}_{l,2}\right],
\]

\[
g = \frac{f(2\kappa^2 + 2e^{2r} (\Delta \hat{x}_p)^2)}{2(\Delta \hat{x}_p)^2 + 2e^{2r} (\Delta \hat{x}_p)^2 + e^{-2r}}.
\]

(53)

If the variables \(\hat{x}_3 + \hat{x}_4\) and \(\hat{p}_3 - \hat{p}_4\) are squeezed strongly enough, the obtained outcome approximates well the displacement of \(\hat{x}_1 + \hat{x}_2\) and \(\hat{p}_1 - \hat{p}_2\). Therefore, we may put \(2\kappa \tilde{p}_{l,1} = -x_+\) and \(2\kappa \tilde{p}_{l,2} = -p_-\) (see equation (51)). In this way, the resulting displacement is a function of the known parameters

\[
\tilde{d}_{12} = \sqrt{2} \left[x_+ \left(\kappa g + \frac{1}{2}\right), 0, 0, p_- \left(\kappa g - \frac{1}{2}\right)\right].
\]

(54)
In comparison with the initial EPR state, the covariance matrix (52) has an additional positive term in diagonal elements, which reads

$$\delta = \frac{f \left(2\kappa^2 + 2e^{2r} (\Delta \hat{x}_P)^2\right)}{e^{2r} \left(2\kappa^2 f + 2 (\Delta \hat{x}_P)^2\right) + 2\kappa^2}. \quad (55)$$

It increases the variance of the squeezed variables and therefore makes the state mixed and less entangled. In order to quantify the entanglement in the final unlocked state, we assume that the coupling constants κ used in the preparation of the EPR states and the ones used for the generation and unlocking of the Smolin state are equal, and we express them in terms of the squeezing parameter r

$$\kappa^2 = \frac{(1 + e^{2r})}{2}. \quad (56)$$

Further, we assume that the squeezing of the probe light beam is half the squeezing of initial EPR pairs, i.e. $(\Delta \hat{x}_P)^2 = e^{-2r}/4$. In this way, the properties of the final state depend only on two parameters: r and $(\Delta \hat{p}_L)^2$. In figure 5, we plot the negativity of the unlocked state as a function of these parameters. For the admissible values of r, the negativity of the final state is roughly half the value for the initial EPR pair.

Finally, let us assume that the measurements of x_+ and p_- (see equation (54)) are subject to an error proportional to the square root of the variance of the \hat{x} quadrature of the probe beam. Assuming strong squeezing, the fluctuations can be suppressed down to 0.03. Additional sources of error are fluctuations of the coupling constant and the properties of light beams used for producing the Smolin state. In a worst case scenario, the cumulative error of the measured displacement of the EPR state is about 30% and depends strongly on the squeezing of the probe.
beam. Reduction of the fluctuations of the probe beam down to 0.01 would greatly improve the unlocking procedure.

4. Conclusions

Our results can be summarized as follows. We have shown that, unlike in the pure state case, if the atomic ensembles are initially in a thermal state the entangling procedure only succeeds for certain choices of the coupling parameter. In this way, we have provided bounds on the experimental parameters leading to mixed state entanglement. Further, we have shown that tripartite continuous cluster-like states are robust against initial thermal noise present in the atomic ensembles, meaning that there exists a finite range of temperatures for which the final state remains genuine tripartite entangled. We have also demonstrated that with an increase in temperature, the states become bound entangled and finally fully separable.

Finally, we have also shown that a mixed state of atomic ensembles can be produced from an initial pure state if the light beam is not measured after the interaction. In this case, the interaction with the light beam mixes all possible outcomes with a Gaussian weight. Using this procedure, starting from two pure bipartite entangled states, it is possible to produce the so-called Smolin state, which is an example of an unlockable bound entangled state. It should be emphasized that, since this procedure does not involve the final projective measurement, it cannot produce extra entanglement. Its only effect is to introduce randomness in the system, making the entanglement bound.

Summarizing, our analysis shows that atomic ensembles offer a versatile toolbox for the generation and manipulation of multipartite entanglement in both the pure and mixed state cases. By exploiting further the geometrical setting introduced in [17] we have been able to assess the robustness of the entangling schemes to set guidelines for future experiments, in both the bipartite and the multipartite case. Moreover, we have demonstrated that the very same setting provides experimentally feasible schemes for the generation of bound entanglement, broadening the applicability of atomic ensembles for quantum information studies. In particular, our results provide, to the best of our knowledge, the first experimentally feasible realization of the Smolin state with continuous variables (for qubit realization see [53]).

Acknowledgments

We are grateful to Carles Rodó for his valuable comments and Remigiusz Augusiak for discussion. We acknowledge support from the Spanish MICINN grant no. FIS2008-01236, Generalitat de Catalunya (SGR2009:00343), Consolider Ingenio 2010 (CDS2006-00019) and European Regional Development Fund. JS is supported by the Spanish Ministry of Education through the program FPU. SP is supported by the Spanish Ministry of Science and Innovation through the program Juan de la Cierva.

References

[1] Kuzmich A, Mølmer K and Polzik E S 1997 Spin squeezing in an ensemble of atoms illuminated with squeezed light Phys. Rev. Lett. 79 4782
[2] Kuzmich A, Mandel L and Bigelow N P 2000 Generation of spin squeezing via continuous quantum nondemolition measurement Phys. Rev. Lett. 85 1594

New Journal of Physics 14 (2012) 033034 (http://www.njp.org/)
[1] Julsgaard B, Sherson J, Cirac J I, Fiurášek J and Polzik E S 2004 Experimental demonstration of quantum memory for light Nature **432** 482
[2] Julsgaard B, Kozhekin A and Polzik E S 2001 Experimental long-lived entanglement of two macroscopic objects Nature **413** 400
[3] Napolitano M and Mitchell M W 2010 Nonlinear metrology with a quantum interface New J. Phys. **12** 093016
[4] Napolitano M, Koschorreck M, Dubost B, Behbood N, Sewell R J and Mitchell M W 2011 Interaction-based quantum metrology showing scaling beyond the Heisenberg limit Nature **471** 486
[5] Wolfgramm F, Cerè A, Beduini F A, Predojević, Koschorreck M and Mitchell M W 2010 Squeezed-light optical magnetometry Phys. Rev. Lett. **105** 053601
[6] Eckert K, Zawitkowski L, Sanpera A, Lewenstein M and Polzik E 2007 Quantum polarization spectroscopy of ultracold spinor gases Phys. Rev. Lett. **98** 100404
[7] Eckert K, Romero-Isart O, Rodriguez M, Lewenstein M, Polzik E S and Sanpera A 2007 Quantum non-demolition detection of strongly correlated systems Nature Phys. **4** 50
[8] Roscilde T, Rodríguez M, Eckert K, Romero-Isart O, Lewenstein M, Polzik E and Sanpera A 2009 Quantum polarization spectroscopy of correlations in attractive fermionic gases New J. Phys. **11** 055041
[9] De Chiara G, Romero-Isart O and Sanpera A 2011 Probing magnetic order in ultracold lattice gases Phys. Rev. A **83** 021604
[10] Greif D, Tarruell L, Uehlinger T, Jördens R and Esslinger T 2011 Probing nearest-neighbor correlations of ultracold fermions in an optical lattice Phys. Rev. Lett. **106** 145302
[11] Romero-Isart O, Rizzi M, Muschik C A, Polzik E S, Lewenstein M and Sanpera A 2011 Quantum memory assisted probing of dynamical spin correlations arXiv:1105.6308
[12] Krauter H, Muschik C A, Jensen K, Wasilewski W, Petersen J M, Cirac J I and Polzik E S 2011 Entanglement generated by dissipation and steady state entanglement of two macroscopic objects Phys. Rev. Lett. **107** 080503
[13] Duan L-H, Giedke G, Cirac J I and Zoller P 2000 Inseparability criterion for continuous variable systems Phys. Rev. Lett. **84** 2722
[14] van Loock P and Furusawa A 2003 Detecting genuine multipartite continuous-variable entanglement Phys. Rev. A **67** 052315
[15] Stasińska J, Rodó C, Paganelli S, Birkl G and Sanpera A 2009 Manipulating mesoscopic multipartite entanglement with atom–light interfaces Phys. Rev. A **80** 062304
[16] Bruß D and Macchiavello C 2011 Multi-partite entanglement in quantum algorithms Phys. Rev. A **83** 052313
[17] Memarzadeh L, Macchiavello Ch and Mancini S 2011 Recovering quantum information through partial access to the environment New J. Phys. **13** 103031
[18] Bremner M, Mora C and Winter A 2009 Are random pure states useful for quantum computation? Phys. Rev. Lett. **102** 11
[19] Dür W, Cirac J I and Tarrach R 1999 Separability and distillability of multiparticle quantum systems Phys. Rev. Lett. **83** 3562
[20] Giedke G, Kraus B, Lewenstein M and Cirac J I 2001 Separability properties of three-mode Gaussian states Phys. Rev. A **64** 052303
[21] Vollbrecht K G H and Wolf M M 2002 Activating distillation with an infinitesimal amount of bound entanglement Phys. Rev. Lett. **88** 247901
[22] Horodecki K, Horodecki M, Horodecki P and Oppenheim J 2005 Secure key from bound entanglement Phys. Rev. Lett. **94** 160502
[23] Augusiak R and Horodecki P 2006 Bound entanglement maximally violating Bell inequalities: quantum entanglement is not fully equivalent to cryptographic security Phys. Rev. A **74** 010305
[24] Masanes L 2006 All bipartite entangled states are useful for information processing Phys. Rev. Lett. **96** 150501
[25] Masanes Ll, Liang Y-C and Doherty A C 2008 All bipartite entangled states display some hidden nonlocality Phys. Rev. Lett. **100** 090403

New Journal of Physics 14 (2012) 033034 (http://www.njp.org/)
[28] Piani M and Watrous J 2009 All entangled states are useful for channel discrimination Phys. Rev. Lett. 102 250501
[29] DiGuglielmo J, Sambolowski A, Hage B, Pineda C, Eisert J and Schnabel R 2011 Experimental unconditional preparation and detection of a continuous bound entangled state of light Phys. Rev. Lett. 107 240503
[30] Smolin J A 2001 Four-party unlockable bound entangled state Phys. Rev. A 63 032306
[31] Zhang J 2011 Continuous-variable multipartite unlockable bound entangled Gaussian states Phys. Rev. A 83 052327
[32] Sherson J and Mølmer K 2005 Entanglement of large atomic samples: a Gaussian-state analysis Phys. Rev. A 71 033813
[33] Madsen L B and Mølmer K 2004 Spin squeezing and precision probing with light and samples of atoms in the Gaussian description Phys. Rev. A 70 052324
[34] Hammerer K, Sørensen A S and Polzik E S 2010 Quantum interface between light and atomic ensembles Rev. Mod. Phys. 82 1041
[35] Giedke G and Cirac J I 2002 Characterization of Gaussian operations and distillation of Gaussian states Phys. Rev. A 66 032316
[36] Braunstein S L and van Loock P 2005 Quantum information with continuous variables Rev. Mod. Phys. 77 513
[37] Adesso G and Illuminati F 2007 Entanglement in continuous-variable systems: recent advances and current perspectives J. Phys. A: Math. Theor. 40 7821
[38] Eisert J, Scheel S and Plenio M B 2002 Distilling Gaussian states with Gaussian operations is impossible Phys. Rev. Lett. 89 137903
[39] Horodecki M, Horodecki P and Horodecki R 1996 Separability of mixed states: necessary and sufficient conditions Phys. Lett. A 223 1
[40] Peres A 1996 Separability criterion for density matrices Phys. Rev. Lett. 77 1413
[41] Simon R 2000 Peres–Horodecki separability criterion for continuous variable systems Phys. Rev. Lett. 84 2726
[42] Koschorreck M and Mitchell M W 2009 Unified description of inhomogeneities, dissipation and transport in quantum light–atom interfaces J. Phys. B: At. Mol. Opt. Phys. 42 195502
[43] Julsgaard B 2003 Entanglement and quantum interactions with macroscopic gas samples PhD Thesis University of Aarhus, Denmark
[44] Appel J, Windpassinger P J, Oblak D, Hoff U B, Kjærgaard N and Polzik E S 2009 Mesoscopic atomic entanglement for precision measurements beyond the standard quantum limit Proc. Natl Acad. Sci. USA 106 10960
[45] Nielsen M A 2004 Optical quantum computation using cluster states Phys. Rev. Lett. 93 040503
[46] Ohliger M, Kieling K and Eisert J 2010 Limitations of quantum computing with Gaussian cluster states Phys. Rev. A 82 042336
[47] Aolita L, Roncaglia A, Ferraro A and Acín A 2011 Gapped two-body Hamiltonian for continuous-variable quantum computation Phys. Rev. Lett. 106 090501
[48] Briegel H J and Raussendorf R 2001 Persistent entanglement in arrays of interacting particles Phys. Rev. Lett. 86 910
[49] Cavalcanti D, Aolita L, Ferraro A, García-Saez A and Acín A 2010 Macroscopic bound entanglement in thermal graph states New J. Phys. 12 025011
[50] Shor P W, Smolin J A and Thapliyal A V 2003 Superactivation of bound entanglement Phys. Rev. Lett. 90 107901
[51] Murao M and Vedral V 2001 Phys. Rev. Lett. 86 352
[52] Sørensen J L, Hald J and Polzik E S 1998 Quantum noise of an atomic spin polarization measurement Phys. Rev. Lett. 80 3487
[53] Amselem E and Bourennane M 2009 Experimental four-qubit bound entanglement Nature Phys. 5 748