Two-step Quantum Spin Flop Transition in Spin Ladders

T Sakai1, K Okamoto2 and T Tonegawa3

1Japan Atomic Energy Agency (JAEA), SPring-8, Hyogo 679-5148, and Department of Material Science, University of Hyogo, Kamigori, Hyogo 678-1297, Japan
2Department of Physics, Tokyo Institute of Technology, Tokyo 152-8551, Japan
3Department of Mechanical Engineering, Fukui University of Technology, Fukui 910-8505, Japan

E-mail: sakai@spring8.or.jp

Abstract.

The magnetization process of the $S = 1/2$ spin ladder system with ferromagnetic rung exchange interaction is investigated by the numerical exact diagonalization of finite-size clusters. It is found that in the presence of an easy-axis anisotropy the system exhibits a two-step field induced phase transition corresponding to the spin flop. Due to large quantum fluctuation, each step is a second-order transition and the second step occurs between two different Tomonaga-Luttinger liquid phases. Some phase diagrams are also presented.

It is well known that the antiferromagnet with easy-axis anisotropies exhibits a field-induced first-order phase transition, the so-called spin flop. In one-dimensional quantum spin systems, instead of it, a second-order phase transition occurs because of large quantum fluctuations [1]. Particularly the $S=1$ antiferromagnetic chain with the easy-axis single-ion anisotropy was revealed to exhibit two successive field-induced second-order transitions by our previous numerical analysis [2]. However, such transitions have not been observed yet. Recently a two-step spin flop transition was observed in the spin ladder system IPA-CuCl$_3$ [3], which has ferromagnetic rung coupling. In order to clarify the mechanism of the two-step field-induced transition, we investigate the anisotropic spin ladder using the numerical diagonalization and the finite-size scaling analysis. As a result, we revealed that two different field-induced second-order quantum phase transitions possibly occur. Several phase diagrams will be also presented. Such a two-step spin flop transition was also predicted in the spin alternating chain [4] which is a theoretical model of the compound [Mn(saltmen)Ni(pao)$_2$(bpy)]PF$_6$ [5].

We consider the $S = 1/2$ spin ladder system described by the Hamiltonian

$$\mathcal{H} = J_1 \sum_{i=1,2} \sum_{j=1}^L \vec{S}_{i,j} \cdot \vec{S}_{i,j+1} - \sum_{j=1}^L [\gamma (S_{1,j}^x S_{2,j}^x + S_{1,j}^y S_{2,j}^y) + S_{1,j}^z S_{2,j}^z] - H \sum_{i=1,2} \sum_{j=1}^L S_{i,j}^z,$$ \quad (1)$$

where γ is an anisotropy parameter of the ferromagnetic rung exchange interaction.

In the absence of an external magnetic field, the system has a spin gap for $\gamma \sim 1$, while the Néel order along z-axis appears for $\gamma \sim 0$. The critical point γ_c can be estimated by the phenomenological renormalization. According to the method, the size-dependent critical point
\(\gamma_{c,L} \) is determined by the form of the scaled gaps

\[
(L + 2)\Delta_{L+2}(\gamma_{c,L}) = L\Delta_L(\gamma_{c,L}),
\]

where \(\Delta_L(\gamma) \) is the lowest excitation gap with \(k = \pi \). The scaled gap \(L\Delta_L(\gamma) \) is plotted versus \(\gamma \) for \(J_1 = 0.5 \) and 1.0 in Figs. 1 (a) and (b), respectively. The critical point \(\gamma \) is estimated by an extrapolation of \(\gamma_{c,L} \) to the infinite length limit.

Since the ground state is in the Haldane phase for \(\gamma > \gamma_c \), a phase transition occurs at some critical field \(H_{c1} \) and the gapless Tomonaga-Luttinger liquid phase is realized for \(H > H_{c1} \) [6]. On the other hand, starting from the Néel ordered phase for \(\gamma < \gamma_c \), the magnetization process is expected to be similar to the \(S = 1/2 \) Ising-like XXZ chain. In this case the Tomonaga-Luttinger liquid phase is also realized at some critical field \(H_{c1} \). The quasiparticle excitation, however, is different between these two Tomonaga-Luttinger liquids. Each elementary magnon excitation should occur by \(\delta S_z = 2 \) due to strong Ising-like ferromagnetic rung exchange interaction for \(\gamma < \gamma_c \), while \(\delta S_z = 1 \) for \(\gamma > \gamma_c \). The former Tomonaga-Luttinger liquid phase is denoted as TLL2, while the latter TLL1. The \(2k_F \) soft mode is also different between the two phases; \(2k_F = m\pi \) in TLL2 and \(2k_F = 2m\pi \) in TLL1. In general \(\gamma_c \) depends on the magnetization \(m \equiv \sum_{i=1,2} \sum_{j} \langle S_{i,j}^z \rangle / L \). Since the \(\delta S_z = 1 \) \((2k_F = m\pi) \) excitation is gapless (gapped) in TLL1, while gapped (gapless) in TLL2, the crossing point of the two excitation gaps \((\Delta_1 \text{ and } \Delta_{2k_F}) \) as functions of \(\gamma \) should correspond to \(\gamma_c \) in the thermodynamic limit. These two scaled gaps \(L\Delta_1 \) and \(L\Delta_{2k_F} \) calculated for \(L = 8 \) and 12 by the numerical diagonalization are plotted versus \(\gamma \) with \(m \) fixed to 1/2 for \(J_1 = 0.5 \) in Fig. 2. It suggests that the \(\delta S_z = 1 \) \((2k_F = m\pi) \) excitation is gapless in TLL1 (TLL2) and the crossing point of the two gaps gives a good estimation of \(\gamma_c \) because the size dependence is small.

All the intersections of the two gaps \(\Delta_1 \) and \(\Delta_{2k_F} \) with available values of \(m \) for \(L = 8, 10, 12 \) and 14 are shown as a phase boundary between TLL1 and TLL2 in Figs. 3 (a) for \(J_1 = 0.5 \) and (b) for \(J_1 = 1.0 \). The system size dependence of each point is so small that Figs. 3 (a) and (b) are useful as the phase diagrams. The phase boundaries look singular around \(m = 1/2 \), but they may be due to finite-size effects.

The phase diagrams in Figs. 3 (a) and (b) suggest that a field-induced phase transition occurs from TLL2 to TLL1 in a wide region of \(\gamma \). In such a region the system is expected to exhibit a two-step field-induced transition; the first one occurs at \(H_{c1} \) from the Néel state with \(m = 0 \) to the gapless magnetized phase TLL2, and the second one at \(H_{c2} \) to TLL1. Both transitions...
are of the second-order \cite{2}. In contrast, the same model (1) of the classical Heisenberg spins exhibits only a first-order transition, so-called spin flop, from the nonmagnetic ground state to the canted Néel ordered phase corresponding to TLL1 for $\gamma < 1$. Thus we should note that TLL2 is a new phase and the transition at H_{c2} is a new field-induced quantum phase transition induced by large quantum fluctuation.

Finally, the ground-state magnetization curves for several values of γ for $J_1 = 0.5$ obtained by the numerical diagonalization of $L = 12$ are shown in Fig. 4. According to the phase diagram in Fig. 3 (a), H_{c2} should be about $m = 0.3$ for $\gamma = 0.4$. There is no jump-like behavior around H_{c2} in the magnetization curve for $\gamma = 0.4$ in Fig. 4. It is consistent with the second-order transition.

In conclusion, it is theoretically predicted that a two-step field induced quantum phase transition occurs in the $S = 1/2$ spin ladder system with ferromagnetic rung couplings in the presence of an easy-axis anisotropy. However, the compound IPA-CuCl$_3$ was reported to be in the Haldane phase. Therefore, the two-step field-induced transition observed on this material
cannot be explained by the present mechanism.

We would like to thank Professors T. Goto, H. Manaka, and T. Masuda for invaluable discussions. This work has been partly supported by Grants-in-Aid for Scientific Research (B) (No. 17340100, No. 20340096), Scientific Research (C) (No. 18540340) and and Priority Areas “Invention of Anomalous Quantum Materials -New Physics through Innovation Materials-”, “Physics of New Quantum Phases in Superclean Materials” and “High Field Spin Science in 100T” from the Ministry of Education, Culture, Sports, Science and Technology of Japan, and also by FUT Research Promotion Fund. We further thank the Supercomputer Center, Institute for Solid State Physics, University of Tokyo, the Cyberscience Center, Tohoku University, and the Computer Room, Yukawa Institute for Theoretical Physics, Kyoto University for computational facilities.

References

[1] Yang C N and Yang C P 1966 Phys. Rev. 151 258
[2] Sakai T 1998, Phys. Rev. B 58 6268
[3] Masuda T, Zheludev A, Manaka H, Regnault L -P, Chung J -H and Qiu Y 2006 Phys. Rev. Lett. 96 047210
[4] Sakai T, Okamoto K and Tonegawa T 2007, Physica E 40 359
[5] Miyasaka H, Clerac R, Mizushima K, Sugiura K, Yamashita M, Wernsdorfer W and Coulon C 2003 Inorg. Chem. 42 8203
[6] Sakai T and Takahashi M 1991 Phys. Rev. B 43 13383; 1991 J. Phys. Soc. Jpn. 60 3615

Figure 4. Ground-state magnetization curves for $\gamma = 0.4, 0.6, 0.8$ and 1.0 with J_1 fixed to 0.5.