Exploration of Clinical Breakpoint of Danofloxacin for Glaesserella parasuis in Plasma and in PELF

Zihui Xu 1,2,†, Anxiong Huang1,2,*, Xun Luo 1,2, Peng Zhang1, Lingli Huang1,2, Xu Wang 1,2, Kun Mi1,2, Shiwei Fang1,2, Xiao Huang1,2, Jun Li1,2, Zonghui Yuan1,2 and Haihong Hao1,2,†

1 National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; xuzihui@webmail.hzau.edu.cn (Z.X.); anxionghuang@webmail.hzau.edu.cn (A.H.); luoxun@webmail.hzau.edu.cn (X.L.); cxyzhangpeng@163.com (P.Z.); huanglingli@mail.hzau.edu.cn (L.H.); wangu@mao.hzau.edu.cn (X.W.); mikun@webmail.hzau.edu.cn (K.M.); vivifang@mao.hzau.edu.cn (S.F.); HuangAnXiong@163.com (X.H.); lijun@webmail.hzau.edu.cn (J.L.); yuan5802@mail.hzau.edu.cn (Z.Y.)
2 MOA Laboratory for Risk Assessment of quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
* These authors contributed equally to this work.
† These authors contributed equally to this work.

Abstract: Background: In order to establish the clinical breakpoint (CBP) of danofloxacin against G. parasuis, three cutoff values, including epidemiological cutoff value (ECV), pharmacokinetic-pharmacodynamic (PK-PD) cutoff value (CO\textsubscript{PD}) and clinical cutoff value (CO\textsubscript{CL}), were obtained in the present study. Methods: The ECV was calculated using ECOFFinder base on the MIC distribution of danofloxacin against 347 G. parasuis collected from disease pigs. The CO\textsubscript{PD} was established based on in vivo and ex vivo PK-PD modeling of danofloxacin both in plasma and pulmonary epithelial lining fluid (PELF) using Hill formula and Monte Carlo analysis. The CO\textsubscript{CL} was established based on the relationship between the possibility of cure (POC) and MIC in the clinical trials using the “WindoW” approach, nonlinear regression and CART analysis. Results: The MIC\textsubscript{50} and MIC\textsubscript{90} of danofloxacin against 347 G. parasuis were 2 \mu g/mL and 8 \mu g/mL, respectively. The ECV value was set to 8 \mu g/mL using ECOFFinder. Concentration-time curves of danofloxacin were fitted with a two-compartment PK model. The PK parameters of the maximum concentration (C\textsubscript{max}) and area under concentration-time curves (AUC) in PELF were 3.67 ± 0.25 \mu g/mL and 24.28 ± 2.70 h·\mu g/mL, respectively. The ECV value was then calculated by WindoW approach, nonlinear regression and CART analysis. The MIC\textsubscript{50} and MIC\textsubscript{90} were 0.67 ± 0.01 \mu g/mL and 4.47 ± 0.51 h·\mu g/mL, respectively. The peak time (T\textsubscript{max}) in plasma was 0.23 ± 0.07 h, shorter than that in PELF (1.61 ± 0.15 h). The CO\textsubscript{PD} in plasma and PELF were 0.125 \mu g/mL and 0.5 \mu g/mL, respectively. The CO\textsubscript{CL} calculated by WindoW approach, nonlinear regression and CART analysis were 0.125–4 \mu g/mL, 0.428 \mu g/mL and 0.56 \mu g/mL, respectively. The 0.5 \mu g/mL was selected as eligible CO\textsubscript{CL}. The ECV is much higher than the CO\textsubscript{PD} and CO\textsubscript{CL}, and the clinical breakpoint based on data in plasma was largely different from that of PELF. Conclusions: Our study firstly established three cutoff values of danofloxacin against G. parasuis. It suggested that non-wild-type danofloxacin-resistant G. parasuis may lead to ineffective treatment by danofloxacin. Keywords: danofloxacin; Glaesserella parasuis; epidemiological cutoff values; PK-PD cutoff values; clinical cutoff values; clinical breakpoint

1. Introduction

Glaesserella parasuis, a gram-negative respiratory pathogen, can colonize the upper respiratory tract in swine and cause Glasser’s disease with clinical manifestations such as fibrinous polyserositis, arthritis, meningitis and pneumonia [1]. The serotypes 1, 5, 10, 12, 13 and 14 exhibit higher virulence and pathogenicity [2]. Serotypes 5 and 4 are dominant in China [3]. With the abuse of antibiotics, antimicrobial-resistant G. parasuis emerge in different degrees, which bring serious threat to the global economy and public health [4].
Quinolones are effective for treating *G. parasuis* infection because of their strong bactericidal activity and good absorption into the blood and great distribution in the lung [5]. When intravenous injection of danofloxacin 2.5 mg/kg, the distribution half-life was 0.21 ± 0.004 h and Vd area was 6.41 ± 0.94 L/kg in sheep plasma [6]. Danofloxacin, one of the most important fluoroquinolones, has a broad spectrum of antimicrobial activity and has been widely used in different animals, such as in sheep [7], bees [8], rabbits [9], turkeys [10], cattle and swine [11]. However, the clinical breakpoint (CBP) for danofloxacin against *G. parasuis* had not yet been established by the clinical laboratory of standard Institute (CLSI) and the European Commission of antimicrobial susceptibility testing (EUCAST).

CBP is set on the basis of epidemiological cutoff values (ECV) or wide-type cutoff (CO\textsubscript{WT}), PK-PD cutoff values (CO\textsubscript{PD}) and clinical cutoff values (CO\textsubscript{CL}) [12]. For a given microbial species and antimicrobial agent, the ECV is the upper bound of the wild-type MIC distribution for organisms with no detectable acquired resistance mechanisms, which can be calculated by nonlinear regression analysis using ECOFFinder software [13–15]. CO\textsubscript{PD} considers the PK-PD parameters of special antimicrobial agents in target animals and uses Monte Carlo simulation to determine the MIC with a 90% possibility of reaching the PK-PD target [16]. CO\textsubscript{CL} is decided based on the relationship between clinical outcomes and antimicrobial susceptibility using several statistical approaches [17]. The present study aimed to establish the ECV, CO\textsubscript{PD} and CO\textsubscript{CL} values for the decision of the final CBP of danofloxacin against *G. parasuis* and evaluation of the efficiency of danofloxacin for treatment of *G. parasuis*.

2. Materials and Methods

2.1. Strains

From March to May in 2017, a total of 347 *G. parasuis* strains were collected from disease animals. Thirty-five *G. parasuis* strains were isolated from pig lungs provided by Keqian clinical diagnostic center; 8 *G. parasuis* strains were donated by Xiaojuan Xu from State Key Laboratory of Agricultural Microbiology in Huazhong Agricultural University; 204 *G. parasuis* strains were isolated from disease pigs by Peng Zhang in China Agricultural University; 100 *G. parasuis* strains were stored in National Reference Laboratory of Veterinary Drug Residues. All these strains were isolated from the lungs and pericardium of weak or moribund pigs showing respiratory distress or arthritis in different provinces of China. All bacterial isolates were confirmed by PCR amplification of 16S rRNA (Figure S1) [18]. *E. coli* (ATCC 25922) was used as the quality control strain (QC).

2.2. Animals

Seventy-eight six-week-old healthy crossbred (Duroc × Large × white × Landrace) pigs weighing 20 ± 2 kg were purchased from Huazhong Agricultural University pig breeding farm. Prior to experiments, pigs were raised for 7 days to acclimatize. Sixteen-twenty g healthy Balb/c mice were purchased from the Experimental Animal Center of Huazhong Agricultural University. Prior to experiments, mice were raised for 7 days to acclimatize. All the animal experiments were approved by the Animal Ethics Committee of Huazhong Agricultural University (hzauch 2014-003) and the Animal Care Center, Hubei Science and Technology Agency in China (SYXK2013-0044). All animal experiments were conducted according to the committee guidelines for the Laboratory Animal Use and Care Committee in Hubei Science and Technology Agency. All efforts were used to reduce the pain and adverse effect of the animals.

2.3. Establishment of ECV

Susceptibility testing was performed by agar dilution method according to CLSI M07-A9 standard with some modification [19]. A 2 µL *G. parasuis* suspension (107 CFU/mL measured by Mcfarland Turbidimetric Method) was inoculated onto TSA-FCS-NAD agar plates containing two-fold dilutions (0.008, 64 µg/mL) of danofloxacin (Dr. Ehrenstorfer
Standards, Augsburg, Germany). The MICs were converted to Log scale, ECV was simulated using ECOFFinder software [20]. ECV at 95%, 97.5%, 99%, 99.5% and 99% confidence intervals were simulated. Generally, the ECV with the 95% confidence interval is selected as the final ECV.

2.4. Establishment of CO\textsubscript{PD} Based on PK-PD Modeling

2.4.1. Selection of Pathogenic \textit{G. parasuis}

The serotype of 81 strains whose MIC was the same as MIC\textsubscript{90} and higher than MIC\textsubscript{90} were determined by ERIC-PCR (Enterobacterial Repetitive Intergenic Consensus - PCR) using ERIC primer (5′-ATG TAA GCT CCT GGG GAT TCA C-3′ and 5′-AAG TAA GTG ACT GGG GTG AGC G-3′) following previous study (Figure S2) [21,22]. SH 0165 (serotype 5) was the positive control.

The 18 strains of serotype 5 were selected for the mouse pathogenicity test. The 16–20 g healthy Balb/c mice were randomly divided into 19 groups (5 mice/group) with one blank control group. The mice were inoculated with \(1 \times 10^9\) cfu bacteria by abdominal cavity injection, and the control group was injected with TSB broth. Mice were monitored daily for 7 days post-inoculation (dpi). The pathogenicity of \textit{G. parasuis} was compared according to the survival time [23].

2.4.2. Pharmacodynamics In Vitro and Ex-Vivo

The MIC and MBC of \textit{G. parasuis} H80 in broth and pulmonary epithelial lining fluid (PELF) were determined using the broth dilution method according to the CLSI M07-A9 standard with some modification.

The in vitro and ex vivo killing curves of danofloxacin in broth and in PELF were drawn by monitoring the Colony formed unite (CFU) changes during the incubation of \textit{G. parasuis} H80 under a series concentration of danofloxacin (1/2 to 32 MIC) for a continuous time period (0, 1, 2, 4, 6, 8, 12 and 24 h).

2.4.3. Animal Experiment and Sample Collection for Pharmacokinetics Study

Danofloxacin was administrated to twelve pigs at a single dose of 2.5 mg/kg b.w. by intramuscular injection. After administration, 2 mL blood samples were obtained at 0, 0.08, 0.17, 0.25, 0.5, 0.75, 1, 1.5, 2, 3, 4, 6, 8, 10, 12, 24, 36 and 48 h. Plasma was obtained by centrifuging the blood sample at 3500 r/min for 10 min, and the sample was stored at \(-80^\circ\)C before processing.

To collect PELF samples, atropine (0.05 mg/kg) and propofol (9–15 mg/kg) were given intramuscularly and intravenously for 30 min for anesthesia. Standardized Bronchoalveolar Lavage (BAL) was performed as previously described [24,25], with an electronic fiber optic bronchoscope (KangmeiGU-180VET) inserted in the right middle lung lobe. The 50 mL of normal saline was instilled into the lobe and was aspirated into a 50 mL centrifugal tube. The PELF samples were collected at 0, 0.5, 1, 1.5, 2, 4, 6, 8, 10, 12, 24, 36 and 48 h. The PELF was centrifuged at 800 r/min for 10 min, and the sample was stored at \(-80^\circ\)C before processing.

2.4.4. Quantitation Analysis of Danofloxacin by HPLC

Quantitation analyses of danofloxacin in PELF and plasma were conducted using high-performance liquid chromatography (HPLC). Agent SB-Aq reverse-phase column (250 mm, 4.6 mm i.d., 5 mm; Agilent) was used to perform HPLC at 30 °C. The detection wavelength was 280 nm. The mobile phase consisted of 0.05% phosphoric acid (phase A) and acetonitrile (phase B) with gradient elute. The peak time of danofloxacin was 10.64 min. 0.5 mL Plasma and 0.5 mL PELF were extracted with 2 mL acetonitrile twice.

The urea dilution method was used to determine the volume of PELF as described previously [26,27]. The concentration of urea in plasma (Urea\textsubscript{PLASMA}) and PELF (Urea\textsubscript{PELF}) were determined by using a urea test kit (Urea test kit; Sigma Chemical, St. Louis, MO, USA) and the absorbance values measured by using a spectrophotometer (Agilent 8453,
Wuhan, China). The final concentration of danofloxacin in PELF (C_{PELF}) was derived from the following equation: $C_{PELF} = C_{BAL} \times \left(\frac{\text{Urea}_{PLASMA}}{\text{Urea}_{PELF}} \right)$; C_{BAL} was the diluted concentration of danofloxacin in PELF determined by the HPLC method.

2.4.5. Pharmacokinetics-Pharmacodynamics Modeling

PK-PD parameters were estimated using Winnonlin (v.5.2.1 US Certara Pharsight®) with a two-compartment model. According to the ex vivo time-killing curve, the Sigmoid E_{max} model ($E = E_0 - \frac{PD_{\text{max}} \times X}{X + EC_{50}}$) was used to calculate the AUC$_{24}$/MIC (AUIC) of danofloxacin at different concentrations, E is the summary PD endpoint, and E_0 is the effect representing the value of the PD endpoint without drug treatment (i.e., the value of the summary endpoint when the PK-PD index is 0). X is one of the three PK-PD indices as defined above, and PD_{max} is the maximum effect (in relation to E_0) indicated by the plateau where increased exposures result in no further kill. EC_{50} is the magnitude of X that is needed to achieve 50% of PD_{max}, and γ is the sigmoidicity factor. The PD target under different efficiency ($E = 0, -3$ and -4 (bacteriostasis, bactericidal and eradication)) was determined with Sigmoid E_{max} equation [28,29]. The dosage regimen was derived from the concentration-dependent dosage equation ($Dose = \text{MIC} \times \text{AUCfu} \times \text{CL/F}$) [30–32]. In the equation, the CL (mL/h) was the plasma (total) clearance per day, AUIC (h) was the targeted endpoint for optimal efficacy, fu was the free fraction of the drug in PELF (from 0 to 1), and F was the bioavailability factor (from 0 to 1). In this study, fu was 0.8974, which was obtained by measuring the protein binding rate by the equilibrium dialysis method.

2.4.6. Monte Carlo Simulation to Set up COPD

Crystal Ball v7.2.2 was used to perform the Monte Carlo simulation. The distribution of the PK-PD parameter was assumed to be log-normal. A total of 10,000 subjects were simulated. The PD target was selected to calculate the probability of target attainment (PTA). COPD was defined as the MIC at which the PTA was ≥90%.

2.5. Clinical Trial and Establishment of COCL

2.5.1. Infection Model and Clinical Trials

Sixty-six healthy weaned piglets (20 ± 2 kg) were divided into 11 groups: 5 groups were the experimental group, 5 groups were the negative control group, and 1 group was the blank control group, with 6 piglets in each group. The 5 experimental groups and 5 negative control groups were challenged with 5 representative strains, H42, H80, H12, H83 and H17, by intranasal inoculation of 1×10^{10} CFU bacterial suspension twice a day. The blank control group was inoculated with blank TSB broth. The dosage regimens were recommended by the PK-PD therapeutic dosage regimen. After challenging, these pigs were monitored daily for two weeks.

2.5.2. Statistical Analysis for Establishment of COCL

The probability of cure (POC) was calculated based on the clinical outcomes and bacteriological prognosis. Clinical outcomes included treatment success and failure, and each MIC should have a corresponding clinical outcome. The bacteriological prognosis was to determine the presence or eradication of the bacteria after administration. The data were analyzed by three different analysis methods.

The “WindoW” approach [17] included two parameters: “MaxDiff” and “CAR”. “MaxDiff (the method of maximum difference, MaxDiff)” represents the difference between higher and lower POC at a certain MIC. “CAR” was based on the clinical outcome and the corresponding MIC distribution. “CAR” could not be set as the lowest MIC or the highest MIC if “CAR” was gradually increasing with MIC, then the “CAR” should choose the second small “CAR”.

Nonlinear regression analysis was a new method based on the formula between EUCAST proposed POC with MIC. \log_2MIC was the independent variable, and the POC
was the dependent variable. The model with the highest correlation coefficient was selected to simulate its COCL.

The classification and regression tree (CART) model (Salford Predictive Modeler software) was also used for the establishment of COCL. MIC was used as the predictive variable, and the POC was the target variable. The Gini coefficient minimization criterion was used to select the MIC node automatically.

3. Results
3.1. ECV for Danofloxacin against G. parasuis

The MIC distribution for danofloxacin against G. parasuis is shown in Figure 1. The MIC of danofloxacin ranged from 0.008 to 64 μg/mL. As shown in Figure 1, the MIC distribution was as follows: 0.008 μg/mL (2.88%), 0.015 μg/mL (1.15%), 0.03 μg/mL (5.19%), 0.06 μg/mL (6.34%), 0.125 μg/mL (7.20%), 0.25 μg/mL (5.48%), 0.5 μg/mL (2.88%), 1 μg/mL (8.36%), 2 μg/mL (27.09%), 4 μg/mL (19.60%), 8 μg/mL (8.65%), 16 μg/mL (4.33%), 32 μg/mL (0.58%) and 64 μg/mL (0.29%). The MIC50 and MIC90 were 2 μg/mL and 8 μg/mL, respectively.

![Figure 1. Nonlinear regression of MIC distribution for danofloxacin against G. parasuis.](image)

Using the ECOFFinder software, the fitted MIC distribution of danofloxacin against G. parasuis was shown in Figure 1. The ECV at 95%, 97.5%, 99%, 99.5% and 99.9% confidence intervals were 8, 8, 16, 16 and 32 μg/mL, respectively (Table S1).

3.2. COCL for Danofloxacin against G. parasuis
3.2.1. Pathogenic G. parasuis

Eighteen strains belonging to serotype 5 were selected from ERIC-PCR amplification and pathogenicity test in mice, and five strains (H42, H80, H12, H83 and H17) showed the highest pathogenicity and exhibited different MIC. The strain H80 with MIC close to MIC50 was selected for the PK-PD study. The five respective strains H42 (MIC = 16 μg/mL), H80 (MIC = 4 μg/mL), H12 (MIC = 1 μg/mL), H83 (MIC = 0.125 μg/mL) and H17 (MIC = 0.015 μg/mL) were selected for clinical trial.

3.2.2. Pharmacodynamics of Danofloxacin against G. parasuis

The MICs of danofloxacin in broth and pulmonary epithelial lining fluid (PELF) were 4 μg/mL and 2 μg/mL, respectively. The MBC in broth and PELF were 8 μg/mL and...
4 μg/mL, respectively. The antibacterial activity of danofloxacin in PELF is stronger than that of in broth.

As displayed in Figure 2, the in vitro and ex vivo bactericidal effect of danofloxacin against G. parasuis was similar. The lower concentrations (≤MIC) of danofloxacin exhibited similar antibacterial activity to G. parasuis. However, when danofloxacin concentrations were higher than MIC, the inhibitory efficiency gradually strengthened following the increased drug concentration. The time-killing curve showed that the activity of danofloxacin against G. parasuis was concentration-dependent. The Area Under Curve/Minimum Inhibitory Concentration (AUC/MIC) was selected as the PK-PD parameter.

Figure 2. The killing curve of G. parasuis in PELF and plasma. (A) is the killing curve of G. parasuis in TSB broth, and (B) is the killing curve of G. parasuis in PELF.

3.2.3. Sensitivity and Accuracy of HPLC Method for Determination of Danofloxacin

The limit of determination (LOD) was 0.01 μg/mL, and the limit of quantification (LOQ) was 0.025 μg/mL in PELF. The LOD was 0.02 μg/mL, and the LOQ was 0.05 μg/mL in plasma. Standard curves were linear from 0.05 μg/mL to 5 μg/mL in plasma (R² = 0.9994) and 0.025 μg/mL to 2.5 μg/mL in PELF (R² = 0.9996). The inter-day variation for determination in plasma and PELF ranged from 1.94% to 2.37% and 1.36% to 2.71%, respectively. The recovery of danofloxacin in plasma and PELF ranged from 90.79 ± 2.15 to 94.36 ± 1.83 and 91.91 ± 2.49 to 95.73 ± 1.30, respectively.
3.2.4. PK Characteristics of Danofloxacin in Plasma and PELF

The concentration-time curves in plasma and PELF after administration of danofloxacin at a single dose of 2.5 mg/kg b.w. are shown in Figure 3. Concentrations of danofloxacin in plasma and PELF at various time points are shown in Table S2. A striking difference is observed between drug concentrations in plasma and in PELF.

![Figure 3. The mean concentration versus time curves for danofloxacin in PELF and plasma.](image)

The estimated pharmacokinetic parameters in plasma and PELF were shown in Table 1. Distribution of danofloxacin in simulated drug time curve in plasma and in PELF were shown in Figures S3 and S4. In plasma, the peak time (T_{max}) was 0.23 ± 0.07 h, the peak concentration (C_{max}) was 0.67 ± 0.01 μg/mL, the area under the concentration-time curves (AUC) was 4.47 ± 0.51 h·μg/mL; in PELF, T_{max} was 1.61 ± 0.15 h, C_{max} was 3.67 ± 0.25 μg/mL, AUC was 24.28 ± 2.70 h·μg/mL.

Table 1. PK parameters of danofloxacin in plasma and PELF (n = 6).

Parameters	Unit	Plasma (μg/mL)	PELF (μg/mL)
A	μg/mL	0.43 ± 0.16	6.50 ± 2.21
B	μg/mL	0.37 ± 0.18	0.54 ± 0.40
α	1/h	0.40 ± 0.13	0.29 ± 0.04
β	1/h	0.14 ± 0.02	0.06 ± 0.02
K01	1/h	25.04 ± 32.21	1.41 ± 0.50
K10	1/h	0.13 ± 0.03	0.10 ± 0.85
K12	1/h	0.12 ± 0.04	0.17 ± 0.78
K21	1/h	0.13 ± 0.10	0.02 ± 0.18
T_{1/2K01}	h	0.03 ± 0.03	0.49 ± 0.17
T_{1/2x}	h	1.78 ± 0.76	2.39 ± 0.3
T_{1/2β}	h	4.96 ± 0.47	10.46 ± 0.76
T_{max}	h	0.23 ± 0.07	1.61 ± 0.15
AUC_{24}	h·μg/mL	4.47 ± 0.51	24.28 ± 2.70
C_{max}	μg/mL	0.67 ± 0.01	3.67 ± 0.25
CL/F	mL/h/kg	571.49 ± 53.02	89.98 ± 9.7
Vd/F	mL/kg	3531.73 ± 49.12	435.04 ± 45.43

A and B: Y-axis intercept terms; α and β: exponential coefficients; K01: absorption rate constant; K10: central compartment elimination rate constant; K12: distribution rate constant from a central to a peripheral compartment; K21: distribution rate constant from a peripheral to a central compartment; T_{1/2K01}: absorption half-life of the drug; T_{1/2x}: half-life of α phase; T_{1/2β}: half-life of β phase; T_{max}: the time point of maximum plasma concentration of the drug; AUC: area under the curve of plasma concentration-time; C_{max}: the maximum plasma concentration; CL/F: the apparent volume of the central compartment cleared of drug per unit time; Vd/F: Apparent volume of distribution based on the terminal elimination phase.
Combined with the killing curve in PELF, the PD target (AUIC in ex vivo) under different efficiency was calculated by Sigmoid E\textsubscript{max} equation simulation (Table 2). The values of AUIC (h) at E = 0, −3 and −4 (bacteriostasis, bactericidal and eradication) were 12.73, 28.68 and 44.38, respectively.

Table 2. The PD target of danofloxacin against G. parasuis.

Time (h)	C\textsubscript{vivo} (AUIC)\textsubscript{ex}	E (logCFU/mL)	Calculated PD Target
0	0.00	0.00	3.62
0.5	2.11 ± 0.37	25.34 ± 4.39	−3.12
1	3.13 ± 0.35	37.54 ± 4.21	−5.05
1.5	3.89 ± 0.11	46.70 ± 1.37	−5.05
2	3.51 ± 0.33	42.15 ± 3.96	−5.05
3	3.02 ± 0.21	36.28 ± 2.53	−5.05
4	2.23 ± 0.25	26.81 ± 2.95	−3.59
6	1.56 ± 0.45	18.72 ± 5.39	−1.84
8	1.02 ± 0.23	12.28 ± 2.75	−1.07
10	0.69 ± 0.19	8.31 ± 2.33	1.49
12	0.38 ± 0.16	4.56 ± 1.90	3.24
24	0.27 ± 0.03	3.24 ± 0.31	3.34

C\textsubscript{vivo} is the concentration of danofloxacin in PELF; (AUIC)\textsubscript{ex} is selected PK-PD parameters; a represented the bacterial colonies lower than the limit of detection (10 CFU/mL).

3.2.5. Monte Carlo Simulation and CO\textsubscript{PD}

According to the AUC (24.28 ± 2.70 h·µg/mL) and PD target (12.73, 28.68, 44.38) in PELF, Monte Carlo analysis simulated the possibility of target achievement (PTA) under different MICs (Table 3 and Figure S5). When the PTA in PELF was upon 90%, the CO\textsubscript{PD} (E = 0, −3, −4) for danofloxacin against G. parasuis in PELF was 1 µg/mL, 0.5 µg/mL, 0.25 µg/mL, respectively.

Table 3. The PTA of danofloxacin against G. parasuis at different MICs in PELF and plasma.

MIC (µg/mL)	PELF	Plasma				
	PTA% (E = 0)	PTA% (E = −3)	PTA% (E = −4)	PTA% (E = 0)	PTA% (E = −3)	PTA% (E = −4)
0.015	100	100	100	100	100	100
0.03	100	100	100	100	98.46	1.24
0.125	100	100	100	99.94	0	0
0.25	100	100	100	80.97	0.04	0
0.5	100	3.81	0	0	0	0
1	0	0	0	0	0	0
2	0	0	0	0	0	0
4	0	0	0	0	0	0
8	0	0	0	0	0	0
16	0	0	0	0	0	0
32	0	0	0	0	0	0

According to the AUC (4.47 ± 0.51 h·µg/mL) and PD target (12.73, 28.68 and 44.38) in plasma, Monte Carlo analysis simulated the PTA under different MICs (Table 3 and Figure S6). When the PTA in plasma was upon 90%, the CO\textsubscript{PD} (E = 0, −3, −4) for danofloxacin against G. parasuis in plasma was 0.25 µg/mL, 0.125 µg/mL and 0.03 µg/mL, respectively.

3.3. CO\textsubscript{CL} of Danofloxacin against G. parasuis

The dosage under different efficiency (bacteriostasis, bactericidal and eradication) were 4.58 mg/kg, 10.32 mg/kg and 15.97 mg/kg. The given dosages were simulated by Mlxplore software (Figure S7). The modified dosage regimen was 12.49 mg/kg danofloxacin.
twice a day. Three methods were used to obtain \(\text{CO}_{\text{CL}} \) according to the relationship between POC and MIC distribution (Table 4).

Table 4. POC and “WindoW” for danofloxacin against *G. parasuis* at different MIC.

Strain Number	Strain Group	MIC (\(\mu \text{g/mL} \))	Success (%)	Eradication (%)	POC (%)	MaxDiff	CAR
H42	Test	16	67.7	67.7	67.7	0	0.70
	Control	16	16.7	0	0		
H80	Test	4	67.7	83.3	67.7	0	0.79
	Control	4	33.3	16.7	33.3		
H12	Test	1	83.3	83.3	83.3	0.167	0.93
	Control	1	100	100	100		
H83	Test	0.125	33.3	16.7	33.3	0.28	1
	Control	0.125	100	100	100		
H17	Test	0.015	50	33.3	33.3	0.21	1
	Control	0.015	33.3	33.3	33.3		

Following the “WindoW” method, the parameters of MaxDiff (0.28) and CAR (0.78) was corresponding with the MIC of 0.125 \(\mu \text{g/mL} \) and 4 \(\mu \text{g/mL} \), respectively. Therefore, the \(\text{CO}_{\text{CL}} \) selection window range is 0.125 \(\mu \text{g/mL} \) to 4 \(\mu \text{g/mL} \). The nonlinear regression model was set up as \(y = 80.989 - 7.271x + 0.271x^2 + 0.16x^3 \) with a correlation coefficient of 0.996. When POC was 90%, the recommended \(\text{CO}_{\text{CL}} \) (MIC) was less than 0.428 \(\mu \text{g/mL} \). The CART regression tree indicated that the \(\text{CO}_{\text{CL}} \) was less than 0.56 \(\mu \text{g/mL} \) (Figure S8). Combined with the above three results, the \(\text{CO}_{\text{CL}} \) of danofloxacin against *G. parasuis* was selected as 0.25 \(\mu \text{g/mL} \).

4. Discussion

G. parasuis is an important respiratory pathogen in swine. Antimicrobial treatment is the more effective way to control this pathogen due to vaccine deficiency. However, antimicrobial resistance in *G. parasuis* had been found in Germany [33], the United Kingdom, Spain [34] and China [35–37]. In order to rationally use antimicrobials agents to control *G. parasuis*, some studies have been conducted to establish the ECVs and/or \(\text{CO}_{\text{PD}} \) of marbofloxacin, cefquinome and tilmicosin against *G. parasuis* [29,38,39]. Danofloxacin is very effective against *Actinobacillus pleuropneumoniae* [40], *Pasteurella multocida* [41] and *Mannheimia haemolytica* [42]. However, the clinical breakpoint of danofloxacin against *G. parasuis* had not yet been established.

Statistical analysis had been widely used for the determination of ECVs. Turnidge [13] recommends using nonlinear regression to analyze the obtained MIC data and determined the ECVs of various drugs. Kronvall [43] used NRI (Normalized Resistance Interpretation) method to analyze MIC data obtained by E test for the establishment of ECVs. European Commission of Antimicrobial Susceptibility Testing (EUCAST) recommended ECOFFinder software on the basis of Turnidge’s nonlinear regression [44]. Van Vliet [45] used NRI and ECOFFinder analysis method to analyze wild-type cutoff values of ampicillin, florfenicol, gentamicin and enrofloxacin. In our study, the ECV of danofloxacin determined by nonlinear regression analysis was the same as that simulated by ECOFFinder software, suggesting that ECOFFinder software is a convenient tool for the establishment of ECVs. In the present study, the MIC distribution of danofloxacin against *G. parasuis* appeared three peaks (0.008 \(\mu \text{g/mL} \), 0.125 \(\mu \text{g/mL} \) and 2 \(\mu \text{g/mL} \)), suggesting that some *G. parasuis* isolates may be resistant to danofloxacin. Zhang et al. [46] examined the resistance of 138 *G. parasuis* strains against fluoroquinolone drugs and showed that 60.1% of isolates were resistant to enrofloxacin, and 5.8% of isolates were resistant to levofloxacin. It suggested that *G. parasuis* may also be resistant to danofloxacin due to the cross-resistance between fluoroquinolone drugs.
The CO\textsubscript{PD} was established based on pharmacokinetic data, MIC distribution and PK-PD target. Our present study establishes the CO\textsubscript{PD} based on the PK data from healthy animals because of the stability and repeatability of a healthy animal model. Considering the drug concentrations in the target sites were directly correlated with clinical efficacy, the PK-PD target was established based on the PK data from healthy animals because of the stability and repeatability of a healthy animal model. Considering the drug concentrations in the target sites were directly correlated with clinical efficacy, the PK-PD target was subsequently higher than that in plasma [11]. The CO\textsubscript{PD} of danofloxacin in PELF was subsequently higher than the CO\textsubscript{PD} in plasma, indicating that the CO\textsubscript{PD} was different between in the target tissue and in plasma. As danofloxacin can be accumulated at the infection site (lung), the CO\textsubscript{PD} in plasma may not represent the critical value of the target tissue. It was of great significance to establish the CO\textsubscript{PD} in target tissue and plasma simultaneously. The differences in pharmacokinetic parameters between different studies may be due to differences in pig breeds or individuals. In this study, the T\textsubscript{max} of pigs after i.m. administration of danofloxacin at a dose of 2.5 mg/kg b.w. was 0.23 ± 0.07 h, and this result is different from the result reported by Yang [48] at 0.97 ± 0.08 h; C\textsubscript{max} was 0.67 ± 0.01 µg/mL, which is in good agreement with the previously reported 0.76 ± 0.08 µg/mL; the AUC\textsubscript{24h} was 4.47 ± 0.51 h·µg/mL, which is less than 5.25 ± 1.35 h·µg/mL, as reported by Yang et al.

Previously, a study exhibited good clinical outcomes of danofloxacin in the treatment of respiratory disease caused by \textit{Haemophilus somnus} and \textit{Pasteurella multocida} in European cattle [49]. The clinical data in our study also showed the good clinical outcome of danofloxacin in the treatment of \textit{G. parasuis} in pigs because the success rate for treatment of \textit{G. parasuis} with MIC of 1 µg/mL was still as high as 83.33%. The CO\textsubscript{CL} was established based on the relationship between MIC and POC under modified therapeutic dosage. Since there was no standard approach for the establishment of CO\textsubscript{CL}, the CO\textsubscript{CL} in the present study was established by the combination of the three approaches, which included the “WindoW” approach [17], the nonlinear regression [50] and the CART analysis [51,52]. The “WindoW” approach was recommended by CLSI [17]. The nonlinear regression with the formula of POC = 1/(1 + e-a+bf (MIC)) was proposed by VetCAST to calculate the relation between the dependent variable of POC and the independent variable of MIC [50]. The CART method was previously used to develop clinical breakpoints of cefepime [53], and this method was recommended by Dr. Cuesta [54] and Prof. Toutain [12] because the CART obtained the best statistical results when it was compared with other four supervised classifiers (J48, the OneR decision rule, the naïve Bayes classifier and simple logistic regression).

A large difference was observed between three cutoff values with ECV higher than CO\textsubscript{PD} and CO\textsubscript{CL}. In previous studies, there was data that showed the MIC breakpoint of danofloxacin against \\textit{Mannheimia haemolytica} and \textit{Pasteurella multocida} was 1 µg/mL [55], while Yang’s data showed that the epidemiologic cutoff value of danofloxacin against \textit{E. coli} was 8 µg/mL [48], which was in accordance with our study. The difference of ECV between different studies may be due to the epidemiological characteristic of a different bacterial in different geography. Additionally, previous data showed that some of \textit{G. parasuis} isolates exhibited decreased sensitivity to fluoroquinolones [56]. Three peaks of MIC distribution in the present data also suggested that some \textit{G. parasuis} isolates may be resistant to danofloxacin. The higher MIC of the resistant isolates may contribute to the higher ECV value, and further studies may need to confirm the relationship between MIC phenotype and resistance genotype.

5. Conclusions

This study firstly established the ECV (8 µg/mL) at 95% confidence intervals, CO\textsubscript{PD} in PELF (0.5 µg/mL), CO\textsubscript{PD} in plasma (0.125 µg/mL) and CO\textsubscript{CL} (0.25 µg/mL) of danofloxacin against \textit{G. parasuis}. Based on the CLSI decision tree, the final CBP in plasma and PELF was 0.25 µg/mL and 8 µg/mL, respectively (Figure S9). The ECV value was higher than CO\textsubscript{PD} and CO\textsubscript{CL}, indicating that some \textit{G. parasuis} isolates may be resistant to danofloxacin.
Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3390/antibiotics10070808/s1, Figure S1: Amplification of G. parasuis 16S rRNA with PCR, Figure S2: Results of ERI-C-PCR for G. parasuis, Figure S3: Distribution of danofloxacin in simulated drug time curve in plasma, Figure S4: Distribution of danofloxacin in simulated drug time curve in PELF, Figure S5: PTA of danofloxacin against G. parasuis in PELF, Figure S6: PTA of danofloxacin against G. parasuis in plasma, Figure S7: Forecast growth of G. parasuis at different dosage regimens, Figure S8: CART tree showing values of clinical outcome, Figure S9: Susceptibility breakpoint decision tree, Table S1: Epidemiological MIC for danofloxacin against G. parasuis, Table S2: Concentrations of danofloxacin in plasma and PELF at various time points (n = 6).

Author Contributions: Conceptualization, Z.X., A.H., H.H. and Z.Y.; methodology, Z.X. and A.H.; software, Z.X., A.H., X.L. and K.M.; validation, Z.X., A.H., X.L. and K.M.; formal analysis, Z.X., A.H., X.L. and K.M.; investigation, Z.X., A.H., X.L., K.M., S.F., X.H. and J.L.; resources, P.Z., L.H., X.W. and H.H.; data curation, Z.X. and A.H.; writing—original draft preparation, Z.X. and A.H.; writing—review and editing, Z.X., A.H. and H.H.; visualization, Z.X., A.H. and H.H.; supervision, H.H. and Z.Y.; project administration, H.H. and Z.Y.; funding acquisition, H.H. and Z.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by grants from National key research and development program (2016YFD0501302/2017YFD0501406), National natural science foundation of China (31772791), Fundamental Research Funds for the Central Universities (2662018JC001).

Institutional Review Board Statement: The study was conducted according to the guidelines of the Declaration of Helsinki, and approved by the Animal Ethics Committee of Huazhong Agricultural University (hzauch 2014-003).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Data is contained within the article.

Acknowledgments: We appreciated all the participants for their participation and trust and thank Xi-aqujuan Xu and Hongyan Yu from the State Key Laboratory of Agricultural Microbiology in Huazhong Agricultural University for freely providing G. parasuis isolates and epidemic materials.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Oliveira, S.; Pijoan, C. Haemophilus parasuis: New trends on diagnosis, epidemiology and control. Vet. Microbiol. 2004, 99, 1–12. [CrossRef] [PubMed]
2. Kielstein, P.; Rapp-Gabrielson, V.J. Designation of 15 serovars of Haemophilus parasuis on the basis of immunodiffusion using heat-stable antigen extracts. J. Clin. Microbiol. 1992, 30, 862–865. [CrossRef]
3. Cai, X.; Chen, H.; Blackall, P.J.; Yin, Z.; Liu, Z.; Jin, M. Serological characterization of Haemophilus parasuis isolates from China. Vet. Microbiol. 2005, 111, 231–236. [CrossRef]
4. Nedbalcova, K.; Zouharova, M.; Sperling, D. The determination of minimum inhibitory concentrations of selected antimicrobials for porcine Haemophilus parasuis isolates from the Czech Republic. Acta Vet. Brno 2017, 86, 175–181. [CrossRef]
5. Drlíka, K.; Zhao, X.L. DNA Gyrase, Topoisomerase IV, and the 4Quinolones. Microbiol. Mol. Biol. Rev. 1997, 61, 377–392. [PubMed]
6. Manzoor, Z.; Munawar, S.H.; Iqbal, Z. Pharmacokinetics and pharmacokinetic/pharmacodynamic integration of danofloxacin in Lohi sheep. Int. J. Infect. Dis. 2020, 101, 117. [CrossRef]
7. Aliabadi, F.S.; Landoni, M.F.; Lees, P. Pharmacokinetics (PK), pharmacodynamics (PD), and PK-PD integration of danofloxacin in sheep biological fluids. Antimicrob. Agents Chemother. 2003, 47, 626–635. [CrossRef] [PubMed]
8. Cherif, K.T.; Peris-Vicente, J.; Carda-Broch, S.; Esteve-Romero, J. Analysis of danofloxacin, difloxacin, ciprofloxacin and sarafloxacin in honey using micellar liquid chromatography and validation according to the 2002/657/EC decision. Anal. Methods 2015, 7, 6165–6172. [CrossRef]
9. Fernandez-Varon, E.; Marin, P.; Escudero, E.; Vancraeynest, D.; Cárceles, C.M. Pharmacokinetic-pharmacodynamic integration of danofloxacin after intravenous, intramuscular and subcutaneous administration to rabbits. J. Vet. Pharmacol. Ther. 2007, 30, 18–24. [CrossRef]
10. Haritova, A.M.; Rusenova, N.V.; Parvanov, P.R.; Lashev, L.D.; Fink-Gremmels, J. Pharmacokinetic-pharmacodynamic modelling of danofloxacin in turkeys. Vet. Res. Commun. 2006, 30, 775–789. [CrossRef]
11. Mann, D.D.; Frame, G.M. Pharmacokinetic study of danofloxacin in cattle and swine. Am. J. Vet. Res. 1992, 53, 1022–1026.
12. Toutain, P.L.; Bousquet-Méloü, A.; Damborg, P.; Ferrand, A.A.; Mevius, D.; Pelligand, L.; Veldman, K.T.; Lees, P. En Route towards European Clinical Breakpoints for Veterinary Antimicrobial Susceptibility Testing: A Position Paper Explaining the VetCAST Approach. Front. Microbiol. 2017, 8, 2344. [CrossRef] [PubMed]
39. Zhang, P.; Hao, H.H.; Li, J.; Ahmad, I.; Cheng, G.Y.; Chen, D.M.; Tao, Y.F.; Huang, L.L.; Wang, Y.L.; Dai, M.H. The Epidemiologic and Pharmacodynamic Cutoff Values of Tilmicosin against Haemophilus parasuis. *Front. Microbiol.* 2016, 7, 385. [CrossRef] [PubMed]

40. Lauritzen, B.; Lykkesfeldt, J.; Friis, C. Evaluation of a single dose versus a divided dose regimen of danofloxacin in treatment of Actinobacillus pleuropneumoniae infection in pigs. *Res. Vet. Sci.* 2003, 74, 271–277. [CrossRef]

41. Zeng, Z.; Deng, G.; Shen, X.; Rizwan-ul-Haq, M.; Zeng, D.; Ding, H. Plasma and tissue pharmacokinetics of danofloxacin in healthy and in experimentally infected chickens with Pasteurella multocida. *J. Vet. Pharm.* 2011, 34, 101–104. [CrossRef]

42. Fajt, V.R.; Apley, M.D.; Brogden, K.A.; Skogerboe, T.L.; Shostrom, V.K.; Chin, Y.L. Effect of danofloxacin and tilmicosin on body temperatures of beef calves with pneumonia experimentally induced by inoculation with Mannheimia haemolytica. *Am. J. Vet. Res.* 2004, 65, 610–615. [CrossRef] [PubMed]

43. Kronvall, G.; Karlsson, I.; Walder, M.; Nilsson, L.E. Epidemiological MIC cut-off values for tigecycline calculated from Etest MIC values using normalized resistance interpretation. *J. Antimicrob. Chemother.* 2006, 57, 498–505. [CrossRef] [PubMed]

44. Ismail, N.A.; Omar, S.V.; Joseph, L.; Govender, N.; Blows, L.; Ismail, F.; Koornhof, H.; Dreyer, A.W.; Kaniga, K.; Ndjeka, N. Defining Bedaquiline Susceptibility, Resistance, Cross-Resistance and Associated Genetic Determinants: A Retrospective Cohort Study. *EBioMedicine* 2018, 28, 136–142. [CrossRef]

45. Van Vliet, D.; Loch, T.P.; Smith, P.; Faisal, M. Antimicrobial Susceptibilities of Flavobacterium psychrophilum Isolates from the Great Lakes Basin, Michigan. *Microb. Drug Resist.* 2017, 23, 791–798. [CrossRef] [PubMed]

46. Zhang, Q.; Zhou, M.G.; Song, D.S.; Zhao, J.P.; Zhang, A.D.; Jin, M.L. Molecular characterisation of resistance to fluoroquinolones in Haemophilus parasuis isolated from China. *Int. J. Antimicrob. Agents* 2013, 42, 87–89. [CrossRef]

47. Barbour, A.; Scaglione, F.; Derendorf, H. Class-dependent relevance of tissue distribution in the interpretation of anti-infective pharmacokinetic/pharmacodynamic indices. *Int. J. Antimicrob. Agents* 2010, 35, 431–438. [CrossRef]

48. Yang, Y.; Zhang, Y.X.; Li, J.R.; Cheng, P.; Xiao, T.S.; Muhammad, I.; Yu, H.X.; Liu, R.M.; Zhang, X.Y. Susceptibility breakpoint for Danofloxacin against swine Escherichia coli. *BMC Vet. Res.* 2019, 15, 51. [CrossRef]

49. Rowan, T.G.; Sarasola, P.; Sunderland, S.J.; Giles, C.J.; Smith, D.G. Efficacy of danofloxacin in the treatment of respiratory disease in healthy and in experimentally infected chickens with Pasteurella multocida associated with bovine respiratory disease. *J. Vet. Diagn Investig.* 2017, 29, 224–227. [CrossRef] [PubMed]

50. Toutain, P.L. Setting clinical breakpoint Methodological aspects. *European Committee on Antimicrobial Susceptibility Testing*. France. 2015. Available online: https://eucast.org/ast_of_veterinary_pathogens/ (accessed on 30 April 2021).

51. Esterly, J.S.; Wagner, J.; McLaughlin, M.M.; Postelnick, M.J.; Qi, C.; Scheetz, M.H. Evaluation of Clinical Outcomes in Patients with Bloodstream Infections Due to Gram-Negative Bacteria According to Carbapenem MIC Stratification. *Antimicrob. Agents Chemother.* 2012, 56, 4885–4890. [CrossRef]

52. Zheng, X.; Zheng, R.R.; Hu, Y.; Wergren, J.; Forsman, L.D.; Mansjo, M.; Xu, B.; Hoffner, S. Determination of MIC Breakpoints for Second-Line Drugs Associated with Clinical Outcomes in Multidrug-Resistant Tuberculosis Treatment in China. *Antimicrob. Agents Chemother.* 2016, 60, 4786–4792. [CrossRef]

53. Bhat, S.V.; Peleg, A.Y.; Lodise, T.P.; Shutt, K.A.; Capitano, B.; Potoski, B.A.; Paterson, D.L. Failure of current cefepime breakpoints to predict clinical outcomes of bacteremia caused by gram-negative organisms. *Antimicrob. Agents Chemother.* 2007, 51, 4390–4395. [CrossRef] [PubMed]

54. Cuesta, I.; Bielza, C.; Cuenca-Estrella, M.; Larranaga, P.; Rodriguez-Tudela, J.L. Evaluation by data mining techniques of fluconazole breakpoints established by the Clinical and Laboratory Standards Institute (CLSI) and comparison with those of the European Committee on Antimicrobial Susceptibility Testing (EUCAST). *Antimicrob. Agents Chemother.* 2010, 54, 1541–1546. [CrossRef] [PubMed]

55. Sweeney, M.T.; Papich, M.G.; Watts, J.L. New interpretive criteria for danofloxacin antibacterial susceptibility testing against Mannheimia haemolytica and Pasteurella multocida associated with bovine respiratory disease. *J. Vet. Diagn Invest.* 2017, 29, 224–227. [CrossRef] [PubMed]

56. Guo, L.; Zhang, J.M.; Xu, C.G.; Zhao, Y.D.; Ren, T.; Zhang, B.; Fan, H.Y.; Liao, M. Molecular characterization of fluoroquinolone resistance in Haemophilus parasuis isolated from pigs in South China. *J. Antimicrob. Chemother.* 2011, 66, 539–542. [CrossRef]