Image processing in vascular computed tomography
Gratama van Andel, H.A.F.

Citation for published version (APA):
Gratama van Andel, H. A. F. (2010). Image processing in vascular computed tomography

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
BEELDBEWERKING OP HET GEBIED VAN
VASCULAIRE COMPUTED TOMOGRAPHY

Met behulp van computed tomography (CT) kunnen twee-dimensionale doorsnedebeelden van een patiënt worden gemaakt, een zogenaamde CT-scan. Om met CT het vasculaire systeem van een patiënt af te beelden wordt aan de patiënt een contrastmiddel toegediend. Kort na toediening zal voornamelijk het arteriële vaatstelsel aankleuren; het onderzoek wordt dan CT-angiografie (CTA) genoemd. Als de CT-scan iets later wordt gemaakt, dan zal het veneuze vaatstelsel het meest aankleuren; de scan wordt dan CT-venografi (CTV) genoemd. Beeldbewerkingsmethoden kunnen worden toegepast op CTA- of CTV-beelden om het diagnosticeren van vaatafwijkingen of vasculaire ziekten te vergemakkelijken.

Daarnaast wordt er ook vaak CT-perfusieonderzoek (CTP) verricht, dat bestaat uit een serie CT-scans van de hersenen na contrasttoediening. Uit variaties in de aankleuring van het hersenweefsel kunnen verschillende parameters worden bepaald die de doorbloeding van het hersenweefsel beschrijven.

In dit proefschrift zijn beeldbewerkingsmethoden ontwikkeld op de volgende gebieden: (1) het zo goed mogelijk zichtbaar maken van bloedvaten, (2) het meten van bloedvatdiameters en (3) de extractie van CT-angiografiebeelden uit een CT-perfusieonderzoek.

Bij het zichtbaar maken van bloedvaten met een CT-angiografieonderzoek kunnen drie-dimensionale (3D) visualisatietechnieken worden toegepast, zoals maximale-intensiteitsprojectie (MIP) en “volume rendering” (VR). Deze technieken helpen artsen om het vasculaire stelsel sneller te kunnen beoordelen op afwijkingen en geven een beter inzicht in de driedimensionale structuur. Bot in de CTA beelden hindert de weergave van bloedvaten in MIP-beelden omdat de CT-waarden van bot hoger zijn dan die van aangekleurde bloedvaten. Als een resultaat hiervan wordt bot overgeprojecteerd op de bloedvaten in de MIP-beelden. In VR-beelden speelt een soortgelijk probleem. Voor een goed zicht op de bloedvaten met behulp van 3D-visualisatietechnieken in gebieden met bot, zoals het hoofd-halsgebied, zal het bot verwijderd moeten worden uit de CTA-beelden.

In hoofdstuk 2 is een methode beschreven die de weergave van bloedvaten kan
verbeteren door automatisch voxels te maskeren die corresponderen met bot. De methode is een modificatie van een eerder beschreven methode, “matched mask bone elimination” (MMBE). Een nadeel van die methode is dat bloedvaten die dichtbij bot liggen ook gedeeltelijk gemaskeerd worden. In de verbeterde methode, “multiscale”- MMBE, is dit probleem gereduceerd door gebruik te maken van beelden met twee verschillende scherptes: een grotere scherpte dan gebruikelijk voor de beeldbewerking, en de gebruikelijke scherpte voor de visualisatie. Deze multiscale-aanpak is vergeleken met de originele aanpak in een fantoomstudie en in CTA-beelden van patiënten. De fantoomstudie liet zien dat structuren die naast bot lagen minder werden gemaskeerd door de nieuwe methode terwijl de kwaliteit van de botverwijdering gelijk bleef. De patiëntenbeelden toonden dat de bloedvaten in de buurt van bot minder werden aangetast door de botverwijdering en daardoor beter zichtbaar waren.

CT-angiografie wordt steeds vaker toegepast voor het afbeelden van intracraniële aneurysma’s. In vergelijking met digitale subtractie-angiografie (DSA), de referentiestandaard, is CTA sneller, minder invasief en biedt driedimensionale beelden. Om DSA te kunnen vervangen in het diagnosticeren van intracraniële aneurysma’s moet de diagnostische waarde van CTA vergelijkbaar zijn. Dit is onderzocht in hoofdstuk 3 van dit proefschrift. Bij 108 patiënten die werden verdacht van een subarachnoïdale bloeding werd zowel een CTA- als een DSA-onderzoek verricht. De CTA-beelden werden bewerkt met de originele MMBE-methode om het bot te verwijderen en de bloedvaten beter zichtbaar te maken. Twee neuro-radiologen evaluateerden, onafhankelijk van elkaar, 27 voorgedefinieerde vaatlocaties op de aanwezigheid van een aneurysma. Na het bereiken van consensus bij onderlinge meningsverschillen werd de diagnostische waarde van CTA berekend zowel per locatie als per patiënt.

Alle gescheurde aneurysma’s, op één na, werden gedetecteerd (99%). Van alle intacte aneurysma’s werden er 25 van de 35 gedetecteerd (71%). De tien gemiste aneurysma’s waren echter aanzienlijk kleiner (9 kleiner dan 3mm), bevonden zich naast een groter gescheurd aneurysma, en vormden niet de oorzaak van de eventueel aanwezige subarachnoïdale bloeding. CTA in combinatie met MMBE werd geschikt bevonden voor de detectie van gescheurde intracraniële aneurysma’s. De resultaten suggereren dat na detectie van een gescheurd aneurysma, het gebruik van DSA tijdens de endovasculaire behandeling beperkt kan blijven tot het vat met
het gescheurde aneurysma.

CT-venografie is een betrouwbare methode om cerebrale veneuze tromboses vast te stellen. Ook in dit geval wordt vaak het bot verwijderd uit de CT-beelden om een betere afbeelding van de venen en sinussen te verkrijgen. In hoofdstuk 4 is de kwaliteit van de botverwijdering door de originele MMBE-methode onderzocht. Bovendien is ook de variatie in de beoordeling van cerebrale veneuze tromboses tussen twee verschillende beoordelaars bekeken. Scans van 50 patiënten met een klinische verdenking op een cerebrale veneuze trombose zijn met de MMBE-methode bewerkt. De doorsnedebeelden zijn samen met maximale-intensiteitsprojectiebeelden beoordeeld door twee neuro-radiologen op de kwaliteit van de botverwijdering en de eventuele aanwezigheid van een trombose in een van de 9 durale sinussen en 5 diep gelegen venen. CTV in combinatie met MMBE bleek een robuuste techniek om de intracraniële veneuze vaten te visualiseren zonder hinder van bot. Verder bleek dat de twee beoordelaars een hoge mate van overeenstemming hadden in het vaststellen of uitsluiten van een cerebrale veneuze trombose.

Het tweede onderwerp van dit proefschrift is het meten van diameters van bloedvaten in CTA-beelden. Diametermetingen worden gebruikt in beslissingen over therapie bij verschillende vaatziekten. Accurate en precieze diametermetingen zijn daarom van belang. Omdat handmatige diametermetingen leiden tot inter- en intra-observervariaties en omdat systematische fouten aanwezig kunnen zijn, is er een groeiende belangstelling voor automatische meetmethoden. Om een bloedvatdiameter te meten, moeten er twee stappen worden gezet: a) de centrale lumenlijn (CLL) moet worden vastgesteld, omdat metingen haaks op het bloedvat moeten worden gedaan en b) de oppervlakte van de dwarsdoorsnede van het bloedvat moeten worden gemeten. Een geautomatiseerde methode voor het vaststellen van de CLL is beschreven in hoofdstuk 5. Een geautomatiseerde methode om de oppervlakte van een dwarsdoorsnede van een bloedvat te meten is beschreven in hoofdstuk 6.

Automatische methoden voor het bepalen van de centrale lumenlijn hebben vaak problemen met afwijkingen in bloedvaten, maar ook met vertakkende bloedvaten, vaten met veel bochten en vaten die dichtbij andere bloedvaten of botstructuren liggen. In hoofdstuk 5 wordt een nieuwe methode, genaamd VAMPIRE, beschreven die gebaseerd is op een methode voor het volgen van
neuronen in microscopiebeelden. De hiermee verkregen CLL-bepalingen in CTA-beelden zijn vergeleken met handmatige bepalingen van meerdere beoordelaars en met een andere automatische methode. De lijnen verkregen met VAMPIRE volgden beter de loop van het bloedvat dan de lijnen verkregen met de andere automatische methode. VAMPIRE had minder problemen om een bloedvat te volgen in gebieden met vernauwingen, verkalking, en dichtbijgelegen bot of andere bloedvaten. In vergelijking met de handmatige bepalingen waren de bepalingen van VAMPIRE sneller. Echter, er bleek wel een systematische fout in de lijnen van VAMPIRE aanwezig te zijn. De lijnen volgden meestal de binnenbocht van een bloedvat in plaats van het centrum van het vat, iets dat nog verbeterd zal moeten worden.

De beschreven methoden voor de tweede stap in het bepalen van de diameter van bloedvaten, namelijk het meten van de oppervlakte van de dwarsdoorsnede, hebben vaak last van een systematische fout. Onderliggende oorzaak hiervan is de inherente onscherpte van CT-beelden. Men kan deze afwijking verminderen door gebruik te maken van een correctieprocedure of door middel van een modelgebaseerde aanpak. De huidige modelgebaseerde methoden zijn alleen geschikt voor bloedvaten met een cirkelvormige doorsnede. Een nieuwe modelgebaseerde methode, die ook geschikt is voor niet-circulaire doorsnedes, is beschreven en onderzocht in hoofdstuk 6. De niet-circulaire doorsnedes zijn hierin gemodelleerd met behulp van Fourier-descriptors. Wanneer verkalking aanwezig zijn, worden zowel vat als verkalking gemodelleerd. Verder wordt in de methode ook gebruik gemaakt van voorkennis van modellparameters in het gebied van een vatvernauwing, waar de signaal-ruisverhouding laag is. Dat deze aanpak werkte, bleek uit de resultaten van een fantoomexperiment. Accurate en precieze metingen konden worden verkregen van cilinders met diameters tot op 0.4 mm, die bloedvaten moesten nabootsen. Metingen aan niet-circulaire doorsnedes van bloedvaten in twee patiënten lieten zien dat deze methode voor klinische beelden geschikt was en toonden het belang van het mee-modelleren van structuren zoals verkalking.

Het laatste onderwerp van dit proefschrift is de extractie van CTA-beelden uit de beelden van een CT-perfusiestudie. Patiënten die een CT-perfusiestudie moeten ondergaan, krijgen vaak ook een CTA-scan van de cerebrale vaten. Als CTA-beelden uit de CT-perfusiestudie kunnen worden verkregen, zou de CTA-scan overgeslagen kunnen worden. Het voordeel hiervan is dat een patiënt zou
minder aan ioniserende straling bloot hoeft te staan en minder contrastmiddel
toegediend hoeft te krijgen. Individuele beelden uit de CT-perfusiestudie hebben
echter te veel ruis om te kunnen dienen als CTA-studie. In hoofdstuk 7 is een
methode beschreven waarin een gewogen gemiddelde gemaakt wordt van de
reeks beelden uit de CT-perfusiestudie om CTA-achtige beelden te verkrijgen
van voldoende kwaliteit. Om eventuele bewegingen tijdens het onderzoek zoveel
mogelijk te elimineren worden de beelden voor de middeling eerst geregistreerd.
De resulterende beelden zijn vergeleken met echte CTA-beelden.

De kwaliteit van de aldus verkregen beelden benaderde die van de CTA-
beelden, alhoewel de beeldkwaliteit van de CTA niet volledig werd gehaald. Verder
werd een methode ontwikkeld om automatisch te differentiëren tussen arteriën en
venen in de CTP-beelden. Deze methode werd gebruikt om automatisch de venen
te maskeren in de gewogen gemiddelde beelden, hetgeen de zichtbaarheid van de
arteriën ten goede kwam.