First photometric study of the eclipsing binary PS Persei

Jinzhao Yuan

Physics and Information Engineering Institute, Shanxi Normal University, Linfen 041004, China; yuanjz@sxnu.edu.cn

Abstract The CCD photometric observations of the eclipsing binary PS Persei (PS Per) were obtained on two consecutive days in 2009. The 2003 version Wilson-Devinney code was used to analyze the first complete light curves in \( V \) and \( R \) bands. It is found that PS Per is a short-period Algol-type binary with the less massive component accurately filling its inner critical Roche lobe. The mass ratio of \( q = 0.518 \) and the orbital inclination of \( i = 89.86^\circ \) are obtained. On the other hand, based on all available times of primary light minimum including two new ones, the orbital period has been improved.

Key words: stars: binaries: close — stars: binaries: eclipsing — stars: individual: PS Per

1 INTRODUCTION

PS Per (\( \alpha_{2000.0} = 02^h39^m33.3^s \) and \( \delta_{2000.0} = +45^\circ38'05''.5 \)) was designated by Kukarkin et al. (1968). But photographic and visual times of light minimum have been obtained since 1926. Later, Photoelectric and CCD times of light minimum were published by Šafář & Zejda (2000a), Šafář & Zejda (2000b), Zejda (2002), Agerer & Hübischer (2003), Zejda (2004), Diethelm (2005), Hübischer et al. (2006), Zejda et al. (2006), Bráš et al. (2009), and Diethelm (2010). But, no complete light curve of the binary system have been made so far for photometric analysis.

In this paper, the first complete light curves in \( V \) and \( R \) bands were presented. And the absolute physical parameters as well as orbital period were determined.

2 OBSERVATIONS

New CCD photometric observations of PS Per in \( V \) and \( R \) bands were carried out on 2009 November 13 and 14 using the 85-cm telescope at the Xinglong Station of National Astronomical Observatory of China (NAOC), equipped with a primary-focus multicolor CCD photometer. The telescope provides a field of view of about 16.5 × 16.5 at a scale of 0.″96 per pixel and a limit magnitude of about 17 mag in \( V \) band.

The typical exposure times in \( V \) and \( R \) bands were 90s and 60s respectively. The coordinates of the variable, comparison, and check stars are listed in Table 1. The data reduction was performed by using the aperture photometry package IRAF[1] (bias subtraction, flat-field division). Extinction corrections were ignored as the comparison star is very close to the variable. In total, 445 CCD images in the \( V \) band and 446 images in the \( R \) band were obtained. Several new times of light minimum (see Table 2) are derived from the new observation by using a parabolic fitting method.

The first complete light curves in \( V \) and \( R \) bands are obtained, and displayed in the top panel of Figure 1. The new orbital period revised in the next section was used to calculate the phase.

---

[1] IRAF is developed by the National Optical Astronomy Observatories, which are operated by the Association of Universities for Research in Astronomy, Inc., under contract to the National Science Foundation.
Table 1  Coordinates of PS Per and its Comparison and Check Stars.

| Stars  | α2000  | δ2000  |
|--------|--------|--------|
| PS Per | 02°39'33.3'' | 45°38'05.5'' |
| Comparison | 02°39'24.1'' | 45°42'22.1'' |
| Check  | 02°39'22.2'' | 45°43'34.0'' |

Table 2  New CCD Times of Light Minimum for PS Per.

| No. | J.D. (Hel.) (days) | Error (days) | Min. | Filter |
|-----|--------------------|--------------|------|--------|
| 1   | 2455149.2742       | ±0.0004      | I    | V      |
|     | 2455149.2752       | ±0.0005      | I    | R      |
| 2   | 2455149.9768       | ±0.0003      | I    | V      |
|     | 2455149.9768       | ±0.0004      | I    | R      |
| 3   | 2455150.3267       | ±0.0004      | II   | V      |
|     | 2455150.3265       | ±0.0004      | II   | R      |

Fig. 1  Top panel: the light curves of PS Per in the V and R bands obtained on 2009 November 13 and 14. The points in R band has been shifted down by 1.0 mag. Bottom panel: the differential light curves of the comparison star relative to the check star. The points in R band has been shifted up by 0.2 mag.

3 ORBITAL PERIOD STUDY

All available times of primary light minimum seen in literature were collected and listed in Table 3, which also includes the data in the database of eclipsing binaries of Kreiner (2004). For my two-band light minima, a mean time of light minimum is given. The O − C values of all minimum times were computed with the ephemeris given by Kreiner et al. (2001):

$$\text{Min } I = 2424527.2165 + 0^d.70217968 \times E,$$

(1)
and listed in the fifth column of Table 3. The corresponding $O - C$ diagram, Figure 2, shows that the data are distributed around a straight line. So, a linear ephemeris was used to fit the $O - C$ values. The photographic and visual data show large deviation from the straight line for their low quality. In the fitting process, a weight of 10 is used for photoelectric and CCD data, and 1 for photographic and visual data. The CCD times, 2451841.3121 and 2452213.4662, have the weight of 1 for their large errors. A least-squares fit to the data gave the following ephemeris:

$$\text{Min } I = 2424527.2163 + 0.70217977 \times E,$$

(2)

The new ephemeris is plotted in Figure 2 with a solid line. The residuals with respect to Equation (2) are listed in the sixth column of Table 3.

4 PHOTOMETRIC SOLUTIONS WITH THE W-D METHOD

The light curves were analyzed using the 2003 version of the Wilson-Devinney code (Wilson & Devinney 1971; Wilson 1979, 1990). Since the spectral type of PS Per is F5, an effective temperature of $T_1 = 6750$K is assumed for the primary component. Assuming the photospheric surface of the binary star is convective, gravity-darkening coefficients ($g_1 = g_2 = 0.320$) and bolometric albedo ($A_1 = A_2 = 0.5$) were used. According to the tables of van Hamme (1993), the limb-darkening coefficients 0.506 for $V$ band ($x_{1V} = 0.506$) and 0.414 for $R$ band ($x_{1R} = 0.414$) were adopted.

Since no mass ratio has been published in literature, a $q$-search method was used to determine the mass ratio. Solutions were carried out for a series of values of the mass ratio $q = M_2/M_1$ ($q = 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0$). Considering the light curves of EB type, mode 2 (detached mode) is assumed. The behavior of the sum of the residuals squared, $\Sigma$, as a function of mass ratio $q$ is plotted in Figure 3, showing that $\Sigma$ reaches the minimum value near $q = 0.5$. Therefore, the mass ratio was taken as an adjustable parameter and given the initial value of $q = 0.5$. After some differential corrections, the solution converged to mode 5 (semi-detached) and gave the final mass ratio of $q = 0.518$. The derived physical parameters are listed in Table 4. The theoretical light curves computed with the parameters are plotted in Figure 4 as a solid line.
Fig. 3  Relation between $\Sigma$ (the sum of the residuals squared) and $q$ for PS Per.

Fig. 4  Same as the top panel of Figure 1. But the solid curves represent the theoretical light curves computed with the parameters in Table 4.

5 DISCUSSION AND CONCLUSIONS

In this paper, my photometric solution reveals that PS Per is a semi-detached system. The Roche-geometry configuration that the less massive and cool secondary component fills its inner Roche lobe permits a dynamical mass transfer from the secondary to the more massive primary star, suggesting a continuous period increase just as in AI Cru (Zhao et al. 2010) and DD Mon (Qian et al. 2009). The orbital period of PS Per, however, does not show continuous increase in this paper. This may be due to the low quality of photographic and visual times, and the short span of photoelectric and CCD times. In
order to confirm the mass transfer from the secondary to the primary star, long-term orbital timing data are required.

According to the derived physical parameters listed in Table 4 and the Harmanec’s (1988) relation for masses and radii as functions of spectral type, the following orbital parameters can be derived: $M_1 = 1.31 M_\odot$, $R_1 = 1.39 R_\odot$, $L_1 = 3.62 L_\odot$, $M_2 = 0.68 M_\odot$, $R_2 = 1.35 R_\odot$, $L_2 = 0.89 L_\odot$, and $a = 4.19 R_\odot$. In order to further verify the parameters, Spectroscopic observations of the radial velocity curves of both components are needed.

As showed in Figure 1, the second maxima of the light curves are a little higher than the primary maxima. The weak O’Connell effect maybe arises from a hot spot on the primary component as a result of the impact of the gaseous stream from the cooler, less massive secondary component. Such hot spot is often seen in other semi-detached binary systems, such as CL Aur (Lee et al. 2010) and KQ Gem (Zhang 2010). Considering the late spectral type and fast rotation of the secondary star, The asymmetry of the light curves can be also attributed to a cool spot on the secondary star caused by magnetic activity. It is a reasonable trial that the magnetic activity makes the light curves show more variability than the impact of the gaseous stream does. So, in order to tell the two mechanisms of magnetic activity and impact of the gaseous stream, the investigation on long-term behaviour of the light curves is also needed.

Acknowledgements I thank an anonymous referee for some useful suggestions. This work is supported by Natural Science Foundation of Shanxi Normal University (No. ZR09002).

References

Agerer, F., & Hübscher, J. 2002, IBVS, No. 5296
Agerer, F., & Hübscher, J. 2003, IBVS, No. 5484
Bráty, L., Trnka, J., & Lehký, M. 2009, OEJV, No. 107
Diethelm, R. 2003, IBVS, No. 5438
Diethelm, R. 2004, IBVS, No. 5543
Diethelm, R. 2005, IBVS, No. 5653
Hübscher, J., Paschke, A., & Walter, F 2006, IBVS, No. 5731
Diethelm, R. 2010, IBVS, No. 5920
Harmanec, P. 1988, Bull. Astron. Inst. Czechoslovakia, 39, 329
Kukarkin, B. V., Efremov, Yu. N., Frolov, M. S., et al. 1968, IBVS, No. 311
Kreiner, J. M., Kim, C.-H., & Nha, I.-S. 2001, An Atlas of $O-C$ Diagrams of Eclipsing Binary Stars (Kraków: Wydawnictwo Naukowe Akad. Pedagogicznej)
Kreiner, J. M. 2004, Acta Astron., 54, 207
Lee, J. W., Kim, C.-H., Kim, D. H., Lee, C.-U., & Koch, R. H. 2010, AJ, 139, 2669
Qian, S.-B., Zhu, L.-Y., Boonruksar, S., Xiang, F.-Y., & He, J.-J. 2009, PASJ, 61, 333
Šafiáč, J., & Zejda M. 2000a, IBVS, No. 4887
Šafiáč, J., & Zejda M. 2000b, IBVS, No. 4888
van Hamme, W. 1993, AJ, 106, 2096
Wilson, R. E., & Devinney E. J. 1971, ApJ, 166, 605
Wilson, R. E. 1979, ApJ, 234, 1054
Wilson, R. E. 1990, ApJ, 356, 613
Zejda, M. 2002, IBVS, No. 5287
Zejda, M. 2004, IBVS, No. 5583
Zejda, M., Mikulášek, Z., & Wolf, M. 2006, IBVS, No. 5741
Zhang, L.-Y. 2010, PASP, 122, 309
Zhao, E.-G., Qian, S.-B., Fernández Lajús, E., von Essen, C., & Zhu, L.-Y. 2010, RAA(Research Astron. Astrophys.), 10, 438
| JD (Hel.) | Method | Error | E | O – C | Residuals | Ref. |
|----------|--------|-------|---|-------|-----------|------|
| 2424527.250 | p | 0 | 0.03350 | 0.03374 | MVS 2 |
| 2428834.407 | p | 6134 | 0.02034 | 0.02000 | MVS 2 |
| 2430972.531 | p | 9179 | 0.00722 | 0.00660 | MVS 2 |
| 2430991.464 | p | 9206 | -0.01863 | -0.01925 | MVS 2 |
| 2435718.545 | p | 15938 | -0.04404 | -0.04529 | MVS 2 |
| 2435725.534 | p | 15948 | -0.02257 | -0.02412 | MVS 2 |
| 2436114.558 | p | 16502 | -0.02758 | -0.02888 | MVS 2 |
| 2436596.315 | p | 17188 | 0.03416 | 0.03278 | MVS 2 |
| 2436603.330 | p | 17198 | 0.02736 | 0.02598 | MVS 2 |
| 2436850.460 | p | 17550 | -0.00988 | -0.01128 | MVS 2 |
| 2436852.580 | p | 17553 | 0.00358 | 0.00217 | MVS 2 |
| 2436875.438 | p | 17587 | -0.01253 | -0.01393 | MVS 2 |
| 2437002.565 | v | 32045 | 0.00665 | -0.00211 | BBSAG 85 |
| 2447118.446 | v | 32173 | 0.00266 | -0.00011 | BBSAG 86 |
| 2447170.406 | v | 32247 | 0.00136 | -0.00142 | BBSAG 87 |
| 2447384.566 | v | 32552 | 0.00077 | -0.00025 | BBSAG 89 |
| 2447491.294 | v | 32704 | -0.00675 | -0.00957 | BBSAG 90 |
| 2447566.432 | v | 32811 | -0.00198 | -0.00481 | BBSAG 91 |
| 2447894.348 | v | 33278 | -0.00389 | -0.00677 | BBSAG 94 |
| 2448181.659 | v | 33623 | -0.00688 | -0.00979 | BBSAG 96 |
| 2448283.362 | v | 33832 | 0.00257 | -0.00036 | BBSAG 97 |
| 2448509.458 | v | 34154 | -0.00329 | -0.00625 | BBSAG 99 |
| 2448867.573 | v | 34664 | 0.00007 | -0.00294 | BBSAG 102 |
| 2449202.511 | v | 35141 | -0.00163 | -0.00468 | BBSAG 104 |
| 2449456.575 | v | 35631 | -0.00568 | -0.00878 | BBSAG 107 |
| 2449653.312 | v | 35783 | 0.00001 | -0.00310 | BBSAG 108 |
| 2449945.401 | v | 36199 | -0.01774 | -0.02089 | BBSAG 110 |
| 2450713.127 | cc | 0.0114 | 37293 | 0.00939 | Šafář & Zejda (2000a) |
| 2450721.309 | cc | 0.0008 | 37304 | 0.00362 | Šafář & Zejda (2000b) |
| 2450839.298 | cc | 0.021 | 37472 | 0.00463 | Šafář & Zejda (2000b) |
| 2450841.403 | cc | 0.021 | 37475 | 0.00349 | Šafář & Zejda (2000b) |
| 2451077.3366 | cc | 0.0006 | 37811 | 0.00422 | Šafář & Zejda (2000b) |
| 2451088.572 | v | 0.03 | 37827 | 0.00474 | Šafář & Zejda (2000b) |
| 2451515.501 | v | 0.08 | 38435 | 0.00850 | Šafář & Zejda (2000b) |
| 2451810.419 | v | 0.05 | 38855 | 0.01103 | Šafář & Zejda (2000b) |
| 2451841.312 | cc | 0.058 | 38899 | 0.00823 | Šafář & Zejda (2000b) |
| 2451876.4201 | cc | 0.017 | 38949 | 0.00724 | Šafář & Zejda (2000b) |
| 2452187.533 | v | 0.008 | 38952 | 0.01360 | Šafář & Zejda (2000b) |
| 2451899.5900 | cc | 0.003 | 38982 | 0.00521 | Šafář & Zejda (2000b) |
| 2452190.2959 | v | 0.03 | 39396 | 0.00783 | Šafář & Zejda (2000b) |
| 2452204.3365 | cc | 0.010 | 39416 | 0.00573 | Šafář & Zejda (2000b) |
| 2452213.4637 | cc | 0.005 | 39429 | 0.00460 | Šafář & Zejda (2000b) |
| 2452213.4662 | cc | 0.007 | 39429 | 0.00710 | Šafář & Zejda (2000b) |
| 2452260.5160 | v | 0.04 | 39496 | 0.01086 | Šafář & Zejda (2000b) |
| 2452524.525 | v | 0.07 | 39872 | 0.00303 | Šafář & Zejda (2000b) |
| 2452531.5507 | pe | 0.002 | 39882 | 0.00420 | Šafář & Zejda (2000b) |
| 2452885.446 | v | 0.02 | 40386 | 0.00094 | Šafář & Zejda (2000b) |
| 2453302.5428 | cc | 0.010 | 40980 | 0.00301 | Šafář & Zejda (2000b) |
| 2453656.4422 | cc | 0.003 | 41484 | 0.00385 | Šafář & Zejda (2000b) |
| 2453705.5937 | pe | 0.008 | 41554 | 0.00278 | Šafář & Zejda (2000b) |
| 2454398.4293 | cc | 0.001 | 41957 | 0.00197 | Šafář & Zejda (2000b) |
| 2454019.4675 | cc | 0.001 | 42001 | 0.00226 | Šafář & Zejda (2000b) |
| 2455114.8667 | cc | 0.006 | 43561 | 0.00116 | Šafář & Zejda (2000b) |
| 2455149.2747 | cc | 0.003 | 43610 | 0.00236 | Šafář & Zejda (2000b) |
| 2455149.9768 | cc | 0.003 | 43611 | 0.00228 | Šafář & Zejda (2000b) |
First photometric study of PS Per

Table 4 Photometric Solutions for PS Per.

| Parameters          | Photometric elements | Errors    |
|---------------------|----------------------|-----------|
| $g_1 = g_2$         | 0.32                 | assumed   |
| $A_1 = A_2$         | 0.5                  | assumed   |
| $x_{1bol}$          | 0.480                | assumed   |
| $x_{2bol}$          | 0.536                | assumed   |
| $x_{1V}$            | 0.506                | assumed   |
| $x_{1R}$            | 0.414                | assumed   |
| $x_{2V}$            | 0.726                | assumed   |
| $x_{2R}$            | 0.600                | assumed   |
| $T_1$               | 6750K                | assumed   |
| $q (M_2/M_1)$       | 0.518                | 0.003     |
| $\Omega_{in} = \Omega_2$ | 2.8944              | –         |
| $\Omega_{out}$      | 2.5907               | –         |
| $T_2$               | 4822K                | 7K        |
| $i$                 | 89.°86               | 0.°35     |
| $\Omega_2$          | 3.590                | 0.008     |
| $r_1(pole)$         | 0.3229               | 0.0008    |
| $r_1(side)$         | 0.3317               | 0.0009    |
| $r_1(back)$         | 0.3402               | 0.0010    |
| $r_2(pole)$         | 0.3025               | 0.0004    |
| $r_2(side)$         | 0.3159               | 0.0005    |
| $r_2(back)$         | 0.3483               | 0.0005    |
| $\Sigma(O - C)^2$  | 0.0022               |           |