Causal Associations Between Blood Lipids and COVID-19 Risk: A Two-Sample Mendelian Randomization Study

Kun Zhang,* Shan-Shan Dong,* Yan Guo, Shi-Hao Tang, Hao Wu, Shi Yao, Peng-Fei Wang, Kun Zhang, Han-Zhong Xue, Wei Huang, Jian Ding, Tie-Lin Yang

OBJECTIVE: Coronavirus disease 2019 (COVID-19) is a global pandemic caused by the severe acute respiratory syndrome coronavirus 2. It has been reported that dyslipidemia is correlated with COVID-19, and blood lipids levels, including total cholesterol, HDL-C (high-density lipoprotein cholesterol), and LDL-C (low-density lipoprotein cholesterol) levels, were significantly associated with disease severity. However, the causalities of blood lipids on COVID-19 are not clear.

APPROACH AND RESULTS: We performed 2-sample Mendelian randomization (MR) analyses to explore the causal effects of blood lipids on COVID-19 susceptibility and severity. Using the outcome data from the UK Biobank (1221 cases and 4117 controls), we observed potential positive causal effects of dyslipidemia (odds ratio [OR], 1.27 [95% CI, 1.08–1.49], \(P=3.18 \times 10^{-3}\)), total cholesterol (OR, 1.19 [95% CI, 1.07–1.32], \(P=8.54 \times 10^{-4}\)), and ApoB (apolipoprotein B; OR, 1.18 [95% CI, 1.07–1.29], \(P=1.01 \times 10^{-3}\)) on COVID-19 susceptibility after Bonferroni correction. In addition, the effects of total cholesterol (OR, 1.01 [95% CI, 1.00–1.02], \(P=2.29 \times 10^{-2}\)) and ApoB (OR, 1.01 [95% CI, 1.00–1.02], \(P=2.22 \times 10^{-2}\)) on COVID-19 susceptibility were also identified using outcome data from the host genetics initiative (14134 cases and 1284876 controls).

CONCLUSIONS: In conclusion, we found that higher total cholesterol and ApoB levels might increase the risk of COVID-19 infection.

GRAPHIC ABSTRACT: A graphic abstract is available for this article.

Key Words: blood cholesterol coronavirus dyslipidemias lipids

Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) is a global pandemic. This disease progresses from asymptomatic to acute respiratory distress syndrome and multiple organ dysfunction and has become a major threat to public health in >160 countries. As of June 21, 2021, there were >179 million confirmed cases, with total deaths increasing over 3.87 million worldwide. Considering the severity of COVID-19, it is urgent to explore the susceptibility factors of COVID-19, which is helpful to develop effective policies and personalized treatments to control the spread of the disease to susceptible groups.

Dyslipidemia is associated with metabolic syndrome, type 2 diabetes, obesity and so on. It is characterized with the maladjustment of blood lipids pattern which can be evaluated through the levels of LDL-C (low-density lipoprotein cholesterol), HDL-C (high-density lipoprotein cholesterol), triglyceride, total cholesterol (TC), ApoA1 (apolipoprotein A1), ApoB (apolipoprotein B), and others. Recent studies reported that HDL-C, LDL-C, and TC levels were significantly lower in patients with COVID-19 as compared with normal subjects. Another study also showed that levels of TC and LDL-C at admission were negatively correlated with the length of hospital stay of hospitalized patients with COVID-19 pneumonia.
Nonstandard Abbreviations and Acronyms

Acronym	Description
ApoA1	apolipoprotein A1
ApoB	apolipoprotein B
COVID-19	coronavirus disease 2019
GWAS	genome-wide association study
HDL-C	high-density lipoprotein cholesterol
HGI	COVID-19 host genetics initiative
IVs	instrumental variables
IVW	inverse-variance weighted
LDL-C	low-density lipoprotein cholesterol
MR	Mendelian randomization
OR	odds ratio
SARS-Cov-2	severe acute respiratory syndrome coronavirus 2
SNP	single-nucleotide polymorphism
TC	total cholesterol
UKB	UK Biobank

Contrast, Peng et al.11 observed significantly increased level of LDL-C in patients with COVID-19 compared with age- and sex-matched controls where the levels of HDL-C and TC were inversely correlated with the severity of COVID-19.11 Although above evidences demonstrated the associations between blood lipids and COVID-19, these findings were from observational studies which could be misguided by potential confounders,12 whether these associations are causal is still unclear.

Mendelian randomization (MR) is an epidemiological method in which environmental exposure-related genetic variations are used as instrumental variables (IVs) to evaluate the association between exposures and outcomes.13,14 It can avoid the issues of confusion and has been demonstrated as an effective strategy to identify the causal effect.14,15 Two-sample MR uses genetic associations with the exposure and outcome from the summary statistics of nonoverlapping genome-wide association studies (GWAS) and has facilitated the application of the MR methodology.14,17,18

In this study, we conducted a 2-sample MR study to explore the possible causal effects of 7 blood lipids on COVID-19 susceptibility and severity using data from the UK Biobank (UKB) and the host genetics initiative (HGI).

Materials and Methods

The authors declare that all supporting data are available within the article and its Data Supplement. The data sets used in this study are listed in Major Resources Table in the Data Supplement. A step-by-step workflow in this study is presented in Figure 1.

Data Sources

Details of the contributing GWAS summary data are listed in Table 1. The studies were selected for investigating blood lipids or COVID-19 having the largest sample sizes and consisting of similar populations (>70% White population/Europeans).

Single-Nucleotide Polymorphisms Filter and Data Standardization

For each exposure, we filtered single-nucleotide polymorphisms (SNPs) using the following criteria:

1. Remove the SNPs located in the major histocompatibility complex region.
2. Remove the SNPs with minor allele frequency <0.01 in the 1000 genome European data.
3. The estimated standardize the effect size (β) and SE for each GWAS data was obtained with the function of minor allele frequency and sample size as follows:

\[\beta = \frac{z}{\sqrt{2p(1-p)(n+z^2)}} \]

\[SE = \frac{1}{\sqrt{2p(1-p)(n+z^2)}} \]

where \(z = \beta/SE \) from the original summary data, \(p \) is the minor allele frequency, and \(n \) is the total sample size.

IVs Selection

We selected independent and genome-wide significant GWAS SNPs using the clumping algorithm in PLINK (http://pngu.mgh.harvard.edu/purcell/plink/) with \(r^2 \) threshold = 0.001, window size = 1 Mb, \(P \) value threshold = 5×10\(^{-8}\). The 1000 Genomes (http://www.internationalgenome.org/) European data were used as the reference for linkage disequilibrium estimation. For each outcome, we harmonize the data according to the SNPs included in COVID-19 GWAS and their effect allele. After data harmonization, we then removed outlier pleiotropic SNPs using RadialMR26 with the \(P \) value threshold of 0.05. RadialMR26 identified outlier genetic instruments via heterogeneity test (modified Q-statistics). After removal of pleiotropy, the remaining SNPs were used to perform MR analyses.

MR Analyses and Pleiotropy Assessment

We conducted 4 complementary 2-sample MR methods, including inverse-variance weighted (IVW) method, weighted median method, weighted mode method, and MR-Egger method, which make different assumptions about horizontal pleiotropy. The IVW method assumes balanced pleiotropy.27 The pleiotropy is assessed via Cochran \(Q \) statistic and presented as...
excessive heterogeneity which will inflate the estimate of MR analysis.26 MR-Egger is based on the assumption which indicates instrument strength independent of the direct effects.27 It can be evaluated by the regression dilution $P\ (GX)29$ according to the assumption that no measurement error in the SNP exposure effects. $P\ (GX)$ is an adaptative P statistic which proposes to quantify the strength of no measurement error violation for the MR-Egger method. If $P\ (GX)$ was sufficiently low ($P\ (GX)<0.9$), the correction analysis was conducted to assess the causal effect by simulation extrapolation (SIMEX), which can substantially mitigate adverse effects by simulation extrapolation.29 The intercept term of MR-Egger method can be used for evaluating the directional pleiotropic effect.30 When the intercept is zero or its P value was not significant ($P>0.05$) were considered as nonpleiotropy. Moreover, we also used the Rucker Q' statistic31 to measure the heterogeneity for MR-Egger method. If the difference $Q-O'$ is sufficiently extreme with respect to a χ^2 distribution with 1 degree of freedom, we indicated that directional pleiotropy is an important factor, and MR-Egger model provides a better fit than the IVW method.32 All methods of 2-sample MR analyses were measured by TwoSampleMR package in R. For various estimates for different measures, we select the main MR method as following rules:

1. If no directional pleiotropy in MR estimates (Q statistic: $P>0.05$, MR-Egger intercept: intercept$=0$ or $P>0.05$, $Q-O'$: $P>0.05$), IVW method was used.
2. If directional pleiotropy was detected (MR-Egger intercept: intercept$\neq 0$ and $P<0.05$, $Q-O'$: $P<0.05$), and $P>0.05$ for the test of Q', MR-Egger method was used. When MR-Egger was selected as the main method, MR-Egger method adjusted by SIMEX was performed when $P\ (GX)<0.9$.
3. If directional pleiotropy was detected (MR-Egger intercept: intercept$\neq 0$ and $P<0.05$, $Q-O'$: $P<0.05$) and $P<0.05$ for the test of O', weighted median method was used.

Previous observational studies have found that the level of TC was higher in non-O blood group,33–35 and the persons with non-O types associated with greater risks of significant coronary artery disease, myocardial infarction, and SARS-CoV-2 infection.23,36–39 Considering the associations between ABO blood group and blood lipids levels or COVID-19, we also re-run MR analysis after excluding SNPs in the ABO locus to avoid potential pleiotropy.

Sensitivity Analysis

Leave-one-out sensitivity analysis was implemented to assess whether the significant results were driven by a specific SNP.
Multiple Testing Correction

We used the Bonferroni approach to address multiple comparisons issue. The significant threshold was set as $P < 7.14 \times 10^{-3}$ (0.05/7 exposures).

RESULTS

IVs Selection

Details of the IVs after linkage disequilibrium clumping are represented in Table I in the Data Supplement. The number of remained IVs after harmonization and radial MR are shown in Table II in the Data Supplement.

MR Estimates for COVID-19 Infection

Pleiotropy Assessment

As shown in Table III in the Data Supplement, the evidence of pleiotropy was observed in TC to COVID-19 infection with the data from the HGI, thus we chose MR-Egger as the main MR method for this exposure-outcome pair and IVW was used in others. In addition, the assumption of no measurement error was not violated ($I^2 [GX] > 0.9$), therefore, we did not perform SIMEX analysis.

MR Results

For the outcome data from the UKB, the MR estimates (Table 2 and Figure 2) showed that 3 blood lipids had potential causality to COVID-19 susceptibility after Bonferroni correction ($P < 7.14 \times 10^{-3}$), including dyslipidemia (odds ratio [OR], 1.27 [95% CI, 1.08–1.49], $P = 3.18 \times 10^{-3}$), TC (OR, 1.19 [95% CI, 1.07–1.32], $P = 8.54 \times 10^{-4}$), and ApoB (OR, 1.18 [95% CI, 1.07–1.29], $P = 1.01 \times 10^{-3}$). The MR result of dyslipidemia indicates that per doubling of prevalence will increase 18% odds (multiply the causal estimate by 0.693) of COVID-19 susceptibility. The performances of the other 3 MR methods were similar. The potential
causality between these 3 traits and COVID-19 susceptibility was supported by at least 2 of the other 3 methods at the nominal significance level of P<0.05. In sensitivity analyses, the results showed that no single SNP was driving the potential causal estimates (Figure I in the Data Supplement).

We detected suggestive causal effects of LDL-C (OR, 1.13 [95% CI, 1.02–1.24], P=1.46×10^{-3}) in the preliminary results. However, the leave-one-out permutation identified 3 IVs with major effects. After excluding the main influential IVs, the marginal significant association of LDL-C was not observed (P>0.05, Table 2). For the other blood lipids (HDL-C, triglyceride, and ApoA1), we did not detect any association (P>0.05, Table 2).

Since TC is mostly LDL-C and the IVs overlap substantially, we further performed MR analysis after excluding the overlapped IVs between TC and LDL-C. The significant causal effect of TC was remained (OR, 1.25 [95% CI, 1.07–1.46], P=5.08×10^{-3}), but no association was detected for LDL-C (P>0.05, Table IV in the Data Supplement).

For the outcome data from the HGI (Table 1), the MR analyses did not detect significant causal associations on COVID-19 susceptibility after Bonferroni correction (P<7.14×10^{-3}; Table 2). However, we successfully observed the possible causal effects of TC (OR, 1.01 [95% CI, 1.00–1.02], P=2.29×10^{-3}) and ApoB (OR, 1.01 [95% CI, 1.00–1.02], P=2.22×10^{-3}; P<0.05), but the association between dyslipidemia and COVID-19 infection was no longer significant.

Addressing the Potential Pleiotropy Generated by the ABO Locus

If there were IVs located in the ABO locus, we reperformed MR analysis for TC and ApoB after excluding those SNPs. For ApoB, there were no IVs in the ABO locus. As shown in Table V in the Data Supplement, the MR results for TC (OR, 1.18 [95% CI, 1.06–1.31], P=1.68×10^{-3}) were still significant.

We further performed MR analysis after removing IVs on chromosome 9. As shown in Table V in the Data Supplement, the MR results of TC (OR, 1.17 [95% CI, 1.05–1.30], P=3.33×10^{-3}) and ApoB (OR, 1.16 [95% CI, 1.06–1.28] P=2.26×10^{-3}) were still significant. Therefore, we concluded that the potential causality of TC and ApoB on COVID-19 susceptibility were not due to the latent pleiotropy caused by the ABO locus.

MR Estimates for Severe COVID-19

We also measured the associations between blood lipids and severe COVID-19. According to the evidence of pleiotropy (Table III in the Data Supplement), we chose MR-Egger as main MR method for triglyceride (MR-Egger intercept: P<0.05, Q–Q: P<0.05) while the others used IVW as main method. P (G X) test indicated that there was no need for correcting with SIMEX (all P [G X]>0.9). As shown in Table 3, we did not detect any significant association for all 7 traits (P>0.05).

Table 2. Summary of the MR Estimates for Blood Lipids to COVID-19 Susceptibility

Blood lipids	IVW method OR (95% CI)	P value	Weighted median method OR (95% CI)	P value	Weighted mode-based method OR (95% CI)	MR-Egger method OR (95% CI)	P value	Main method
Dyslipidemia	1.00 (0.99–1.02)		1.01 (0.99–1.02)		1.01 (0.99–1.03)	1.02 (0.99–1.05)	1.46×10^{-3}	IVW
HDL cholesterol	1.00 (0.99–1.01)		1.00 (0.99–1.01)		1.00 (0.99–1.01)	1.00 (0.99–1.01)		IVW
LDL cholesterol	1.00 (0.99–1.01)		1.00 (0.99–1.01)		1.00 (0.99–1.01)	1.00 (0.99–1.01)		IVW
Total cholesterol	1.00 (0.99–1.01)		1.00 (0.99–1.01)		1.00 (0.99–1.01)	1.00 (0.99–1.01)		IVW
Triglycerides	0.99 (0.88–1.11)		1.08 (0.89–1.32)		1.09 (0.89–1.33)	3.96×10^{-3}	4.07×10^{-3}	IVW
ApoA1	1.05 (0.92–1.19)		1.09 (0.93–1.28)		1.10 (0.93–1.30)	3.01×10^{-3}	3.24×10^{-3}	IVW
ApoB	1.18 (1.07–1.29)		1.22 (1.07–1.40)		1.22 (1.03–1.45)	3.61×10^{-3}	2.69×10^{-4}	IVW

ApoA1 indicates apolipoprotein A1; ApoB, apolipoprotein B; COVID-19, coronavirus disease 2019; HDL, high-density lipoprotein; IVW, inverse-variance weighted; LDL, low-density lipoprotein; MR, Mendelian randomization; and OR, odds ratio.

P<0.05.

†P<0.05.
DISCUSSION

In this study, we implemented 2-sample MR analyses to investigate the possible causal associations of blood lipids profiles on COVID-19 infection or severity. We detected potential causal effects of dyslipidemia, TC, and ApoB on COVID-19 susceptibility. The clinical manifestation of dyslipidemia includes the maladjustment of TC level, LDL-C level, triglyceride level, HDL-C level, and other lipid and lipoprotein levels. We acknowledge that it is hard to summarize the clinical risk factor for dyslipidemia. However, considering over 70% of the dyslipidemia instruments overlapped with the TC instruments in the same effect direction, and 83.22% of dyslipidemia in UKB subjects are hypercholesterolemia, it is likely that dyslipidemia is relatively homogeneous and the clinical causal risk factor of dyslipidemia might be high TC. The specific MR results of TC and ApoB could contribute to interpret the significant MR finding for dyslipidemia.

We also assessed the phenotypic correlations between TC/ApoB and COVID-19 with baseline plasma lipid measures from the UKB. We selected independent white subjects and removed the individuals with confounders of cardiovascular disease, type 2 diabetes, and the treatment of statin. There were no significant correlations between TC/ApoB and COVID-19 (P>0.05). The reason might be that the UKB lipid data were acquired over a decade before COVID-19 pandemic, and the levels of TC/ApoB may be fluctuated with the influence of dietary habits, physical activity, and other variates in the past decade. Although we have excluded the interference of related diseases, medical treatment, and clinical characteristics as far as possible, the retrospective study may still be disturbed by potential confounders and produce bias in phenotypic associations. However, the MR estimation just relies on genetic determination, and therefore, can avoid these issues.

TC is mainly composed of LDL-C, HDL-C, and VLDL (very-low-density lipoprotein) cholesterol. The VLDL particles mainly carry triglycerides. ApoB is the major protein component of VLDL and LDL. It has been found that the amount of cholesterol and ApoB within LDL particles are heterogeneous between persons, and the amount of LDL-C is lower in hypertriglyceridemia. We did not detect significant effects of LDL-C, HDL-C, and triglyceride. It indicates that the potential causality between TC and COVID-19 susceptibility is not attributed to any single component but acted like a combined effect. Although we detected associations with dyslipidemia and COVID-19 more broadly, and with ApoB and TC more specifically, our findings did not clearly prioritize a specific lipoprotein fraction associated with COVID-19 susceptibility or severity.

The positive association between TC and COVID-19 susceptibility might be related to enhanced virus invasion process. Cholesterol is considered to be involved in fusion of the viral membrane to the host cell.
shown in the study by Guo et al.51 depleting plasma membrane cholesterol can disrupt the lipid rafts of cellular entry, resulting in suppressed infection of an avian coronavirus (infectious bronchitis virus). Consistently, membrane cholesterol has been found to similarly facilitate virus (infectious bronchitis virus). Consistently, membrane cholesterol can disrupt the lipid rafts of cellular entry, resulting in suppressed infection of an avian coronavirus (infectious bronchitis virus). Although a previous study55 detected causal effect of LDL-C on COVID-19 susceptibility, a more recent MR study55 covering more subjects only identified a suggestive association with LDL-C ($P = 0.04$) that does not meet Bonferroni standards of significance. In our study, the MR result between LDL-C and COVID-19 was marginal significant ($P = 0.01$) ignoring Bonferroni standards, but this causal link was driven by 3 influential SNPs which need to be cautious. The different MR estimates of LDL-C are likely due to the fact of different exposure and outcome data. In particular, for COVID-19 GWAS data, both of the 2 previous studies used the HGI data sets and individuals with unknown SARS-CoV-2 infection status was used as controls. In our study, we used the GWAS data from the UKB, and the controls were confirmed by polymerase chain reaction tests. For LDL-C GWAS data, we used data sets from the Million Veteran Program which had more subjects.

STRENGTHS AND LIMITATIONS

This study characterized the potential causality of blood lipids to the susceptibility and severity of COVID-19 using 2-sample MR design. Our findings broaden the understanding of COVID-19 risk and firstly address that higher TC and higher ApoB will increase the odds for COVID-19 susceptibility, which may be helpful to develop effective instructions and policies to control the spread of the disease to susceptible groups. However, the limitations of the current study should be addressed. First, due to the limitation of data resource, our findings are mainly based on the European/White cohort which cannot represent the universal conclusions for other ethnic groups. Second, to minimize the potential bias56 of association analyses and strengthen our results, we have added another GWAS data from the HGI, which contains more subjects (14,134 cases and 1,284,876 controls), and the casual effects of TC and ApoB on COVID-19 susceptibility were also detected. Under current conditions, we included all the available data sets and the consistent results support the causal effects of TC and ApoB on COVID-19. Third, although we have been able to evaluate the causal effects on COVID-19 based on the available data and multiple complementary methods, the findings should be verified by additional clinical resource and in-depth exploration on the potential mechanisms underlying these causalities is needed, as well.

In summary, we performed a 2-sample MR design for blood lipids and COVID-19 and found that higher TC and ApoB levels might increase the susceptibility of COVID-19.

ARTICILE INFORMATION

Received October 31, 2020; accepted August 23, 2021.

Affiliations

Department of Trauma Surgery, Honghui Hospital, College of Medicine (K.Z., Y.G., P.-F.W., K.Z., H.-Z.X., W.H., T.-L.Y.) and Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology (K.Z., S.-S.D., Y.G., S.-H.T., H.W., S.Y., J.D., T.-L.Y.), Xi’an Jiaotong University, Shaanxi, PR China.

Acknowledgments

We thank the Million Veteran Program (MVP) staff, researchers, and volunteers, who have contributed to MVP, and especially participants who previously served their country in the military and now generously agreed to enroll in the study (see https://www.research.va.gov/mvp/ for more details). The GWAS data set of blood lipids we used in this study is available from dbGaP (http://www.ncbi.nlm.nih.gov/gap) under accession number phs001672.v4.p1. We thank the GRASP, the coronavirus disease 2019 (COVID-19) Host Genetics Initiative, and all the genetics consortia for making summary statistics publicly accessible for this analysis. We also thank UK Biobank.

Table 3. Summary of the MR Estimates for Blood Lipids to COVID-19 Severity

Blood lipids	IIV method OR (95% CI)	P value	Weighted median method OR (95% CI)	P value	Weighted mode-based method OR (95% CI)	P value	MR-Egger method OR (95% CI)	P value	Main method
Dyslipidemia	0.83 (0.67–1.02)	0.01	0.81 (0.61–1.08)	0.54	0.83 (0.58–1.17)	0.29	0.69 (0.44–1.06)	0.12	IVW
HDL cholesterol	0.91 (0.81–1.03)	0.08	0.98 (0.81–1.18)	0.09	0.99 (0.79–1.24)	0.40	1.02 (0.82–1.25)	0.78	IVW
LDL cholesterol	0.96 (0.85–1.09)	0.07	0.93 (0.77–1.13)	0.92	0.97 (0.78–1.24)	0.32	0.89 (0.75–1.05)	0.10	IVW
Total cholesterol	1.02 (0.9–1.16)	0.05	0.95 (0.78–1.17)	0.96	0.98 (0.78–1.18)	0.17	0.92 (0.75–1.12)	0.37	IVW
Triglycerides	1.12 (0.98–1.26)	0.04	1.04 (0.86–1.25)	1.02	0.85 (1.22)	0.65	0.94 (0.78–1.15)	0.56	IVW-MR-Egger
ApoA1	1.00 (0.85–1.17)	0.01	1.00 (0.82–1.21)	0.98	0.78 (1.23)	0.86	1.08 (0.64–1.84)	0.73	IVW
ApoB	0.95 (0.84–1.07)	0.09	0.95 (0.84–1.15)	0.95	0.84 (1.20)	0.98	1.01 (0.80–1.27)	0.94	IVW-MR-Egger
for developing and curating their data resources. This research has been conducted using the UK Biobank Resource under Application Number 46387.

Sources of Funding

This study is supported by the National Natural Science Foundation of China (3190569, 31871264, 31771371, and 31903654), Natural Science Basic Research Program of Shaanxi (2021JC-02, and 2019JM-058), Shaanxi Provincial Key Research and Development Project (2019ZDLFS01-09), Science and Technology Planning Project of Xi’an (2019115171YX012SFG052), and the Fundamental Research Funds for the Central Universities.

Disclosures

None.

Supplemental Materials

Major Resources Table

Data Supplement Figure I

Data Supplement Tables I–V

REFERENCES

1. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, Liu L, Shan H, Lei CL, Hui DSC, et al; China Medical Treatment Expert Group for Covid-19. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020;382:1708–1720. doi: 10.1056/NEJMoa2002322

2. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, et al; Clinical characteristics of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395:497–506. doi: 10.1016/S0140-6736(20)31833-5

3. Kassi E, Pervanidou P, Kaltsas G, Chrousos G. Metabolic syndrome: definitions and controversies. BMC Med 2011;9:48. doi: 10.1186/1741-7015-9-48

4. Krist AH, Davidson KW, Mangione CM, Barry MJ, Cabana M, Caughey AB, Donahue K, Doubeni CA, Epling JW Jr, Kubik M, et al. Behavioral counseling to promote a healthy diet and physical activity for cardiovascular risk factors and common diseases inferred from GWAS summary data. Nat Commun 2018;9:224. doi: 10.1038/s41467-017-00317-2

5. Choi Y, Lee SJ, Spiller W, Jung KJ, Lee JY, Kim H, Back JH, Lee S, Jee SH. Causal associations between serum bilirubin levels and decreased stroke risk: a two-sample Mendelian randomization study. Arterioscler Thromb Vasc Biol 2020;40:437–445. doi: 10.1161/ATVBAHA.119.313055

6. Savelieff MG, Callaghan BC, Feldman EL. The emerging role of dyslipidemia in diabetic microvascular complications. Curr Opin Endocrinol Diabetes Obes. 2020;27:115–123. doi: 10.1097/MED.0000000000001053

7. Klop B, Elle JW, Cabezas MC. Dyslipidemia in obesity: mechanisms and potential targets. Nutrients 2013;5:1218–1240. doi: 10.3390/nu5041218

8. Hunter PM, Hegele RA. Functional foods and dietary supplements for the management of dyslipidemia. Nat Rev Endocrinol 2017;13:278–288. doi: 10.1038/nrendo.2016.120

9. Wei X, Zeng W, Su J, Wan H, Yu X, Cao X, Tan W, Wang H. H pylori infection and the severity of COVID-19. J Clin Lepatol 2020;14:297–304. doi: 10.1016/j.jcltp.2020.04.008

10. Hu X, Chen D, Wu L, He G, Ye W. Declined serum high density lipoprotein cholesterol is associated with the severity of COVID-19 infection. Clin Chem Acta 2020;510:105–110. doi: 10.1016/j.cca.2020.07.015

11. Qin C, Minghan H, Zivnen Z, Yukon L. Alteration of lipid profile and value of lipids in the prediction of the length of hospital stay in COVID-19 pneumonia patients. Food Sci Nutr 2020;8:6144–6152. doi: 10.1002/fsn3.1907

12. Peng Y, Wan L, Fan C, Zhang P, Wang X, Sun J, Zhang Y, Yan Q, Gong J, Yang H, et al. Cholesterol metabolism—impacts on SARS-CoV-2 infection progression. medRxiv. Preprint posted online August 13, 2020. doi: 10.1101/2020.04.16.20068528

13. Feng G, Wei WQ, Chauigi S, Leon BGC, Mosley JD, Leon DAC, Jiang L, Ihegword A, Sklar P, de Bakker PI, Daly MJ, et al. Association between low-density lipoprotein cholesterol levels and risk for sepsis among patients admitted to the hospital with infection. JAMA Netw Open. 2019;2:e187223. doi: 10.1001/jamanetworkopen.2018.7223

14. Boef AG, Dekkers OM; Le Cessie S. Mendelian randomization studies: a review of the approaches used and the quality of reporting. Int J Epidemiol 2011;40:755–764. doi: 10.1093/ije/dyr036

15. Burgess S, Thompson SG; CRP CHD Genetics Collaboration. Avoiding bias from weak instruments in Mendelian randomization studies. Int J Epidemiol 2011;40:755–764. doi: 10.1093/ije/dyr036

16. Zhu Z, Zheng Z, Zhang F, Wu Y, Trzaskowski M, Maier R, Robinson MR, McGrath J, Visscher PM, Wyar NR, et al. Causal associations between risk factors and common diseases inferred from GWAS summary data. Nat Commun 2018;9:224. doi: 10.1038/s41467-017-00317-2
35. Li S, Xu RX, Guo YL, Zhang Y, Zhu CG, Sun J, Li JJ. ABO blood group in relation to plasma lipids and proprotein convertase subtilisin/kexin type 9. *Nutr Metab Cardiovasc Dis*. 2015;25:411–417. doi: 10.1016/j.numecd.2014.10.015

36. Wu Y, Feng Z, Li P, Yu Q. Relationship between ABO blood group distribution and clinical characteristics in patients with COVID-19. *Chin Chin Acta*. 2020;50:220–223. doi: 10.1016/j.cca.2020.05.026

37. Zietz M, Tattonetti NP. Testing the association between blood type and covid-19 infection, intubation, and death. *medRxiv*. Preprint posted online April 11, 2020. doi: 10.1101/2020.04.08.20050783

38. Paquette M, Dufour R, Baas A. ABO blood group is a cardiovascular risk factor in patients with familial hypercholesterolemia. *J Clin Lipidol*. 2018;12:383–389.e381

39. Chen Y, Chen C, Ke X, Xiong L, Shi Y, Li J, Tan X, Ye S. Analysis of circulating cholesterol levels as a mediator of an association between ABO blood group and coronary heart disease. *Circ Cardiovasc Genet*. 2014;7:43–48. doi: 10.1161/CIRCGENETICS.113.000299

40. Burgess S, Labrecque JA. Mendelian randomization with a binary exposure: interpretation and presentation of causal estimates. *Eur J Epidemiol*. 2018;33:947–952. doi: 10.1007/s10654-018-0424-6

41. Carson JAS, Lichtenstein AH, Anderson CAM, Appel LJ, Kris-Etherton PM, Meyer KA, Petersen K, Polonsky T, Van Horn L; American Heart Association Nutrition Committee of the Council on Lifestyle and Cardiometabolic Health; Council on Arteriosclerosis, Thrombosis and Vascular Biology; Council on Cardiovascular and Stroke Nursing; Council on Clinical Cardiology; Council on Peripheral Vascular Disease; and Stroke Council. Dietary cholesterol and cardiovascular risk: a science advisory from the American Heart Association. *Circulation*. 2020;141:e39–e53. doi: 10.1161/CIR.0000000000000743

42. O’Connor EA, Evans OV, Rushkin MC, Redmond N, Lin JS. Behavioral counseling to promote a healthy diet and physical activity for cardiovascular disease prevention in adults with cardiovascular risk factors: updated evidence report and systematic review for the US Preventive Services Task Force. *JAMA*. 2020;324:2076–2094. doi: 10.1001/jama.2020.17108

43. Narada R, Kimura M, Sato Y, Taniguchi T, Tomonari T, Tanaka T, Tanaka H, Muguruma N, Shimojima Y, Honda H, et al. APOB codon 4311 polymorphism is associated with Hepatitis C virus infection through altered lipid metabolism. *BMC Gastroenterol*. 2018;18:24. doi: 10.1186/s12876-018-0747-5

44. Morita SY. Metabolism and modification of Apolipoprotein B-containing lipoproteins involved in dyslipidemia and atherosclerosis. *Biopharm Distrib*. 2016;39:1–24. doi: 10.1248/bpdb.15-00716

45. Otvos JD, Mora S, Shalaurova I, Greenland P, Mackey RH, Goff DC Jr. Clinical implications of discordance between low-density lipoprotein cholesterol and particle number. *J Clin Lipidol*. 2011;5:105–113. doi: 10.1016/j.jcll.2011.02.001

46. Meeusen JW, Donato LJ, Jaffe AS. Should apolipoprotein B replace LDL cholesterol as therapeutic targets? *Curr Opin Lipidol*. 2016;27:359–366. doi: 10.1097/MOL.0000000000000313

47. Teng B, Thompson GR, Sniderman AD, Forte TM, Krauss RM, Kwiterovich PO Jr. Composition and distribution of low density lipoprotein fractions in hyperapobetalipoproteinemia, normolipidemia, and familial hypercholesterolemia. *Proc Natl Acad Sci USA*. 1983;80:6662–6666. doi: 10.1073/pnas.80.21.6662

48. Kožar E, Režen T, Rozman D. Cholesterol, lipoproteins, and COVID-19: basic concepts and clinical applications. *Biochim Biophys Acta Mol Cell Biol Lipids*. 2021;1866:158849. doi: 10.1016/j.bbalip.2020.158849

49. Wang H, Yuan Z, Pavel M, Hansen S. The role of high cholesterol in age-related COVID19 lethality. *bioRxiv*. Preprint posted online May 10, 2020. doi: 10.1102/2020.05.09.2086249

50. Abu-Farha M, Thanaraj TA, Qaddoumi MG, Hashem A, Abubaker J, Al-Mulla F. The role of lipid metabolism in COVID-19 virus infection and as a drug target. *Int J Mol Sci*. 2020;21:3E544. doi: 10.3390/ijms21103544

51. Guo H, Huang M, Yuan Q, Wei Y, Gao Y, Mao L, Gu L, Tan YW, Zhong Y, Liu D, et al. The important role of lipid raft-mediated attachment in the infection of cultured cells by coronavirus infectious bronchitis virus beaudette strain. *PLoS One*. 2017;12:e0170123. doi: 10.1371/journal.pone.0170123

52. Khalifa RH, Labib DA, Kamel MA, Shahin RMH, Bhagat DMR, Rad NM, El Khateeb E, El-Deeb AM, Hassan M. Role of ApoB-516C/T promoter gene polymorphism in the risk of Hepatitis C virus infection in Egyptian patients and in gender susceptibility. *J Med Virol*. 2017;89:1584–1589. doi: 10.1002/jmv.24815

53. Mazumdar B, Banerjee A, Meyer K, Ray R. Hepatitis C virus E1 envelope glycoprotein interacts with apolipoproteins in facilitating entry into hepatocytes. *Hepatology*. 2011;54:1149–1156. doi: 10.1002/hep.24523

54. Aung N, Khans MY, Munroe PB, Petersen SE. Causal Inference for genetic obesity, cardiometabolic profile and COVID-19 susceptibility: a Mendelian Randomization Study. *Front Genet*. 2020;11:1417

55. Leong A, Cole JB, Brenner LN, Meigs JB, Florez JC, Mercader JM. Cardiovascular risk factor in patients with familial hypercholesterolemia. *Curr Opin Lipidol*. 2018;33:947–952. doi: 10.1007/s10654-018-0424-6

56. Griffith GJ, Morris TT, Tutball MJ, Herbert A, Mancano G, Pike L, Sharp GC, Sterne J, Palmer TM, Davey Smith G, et al. Collier bias undermines our understanding of COVID-19 disease risk and severity. *Nat Commun*. 2020;11:5749. doi: 10.1038/s41467-020-19479-2