Phylogenetic Diversity of the *Bacillus pumilus* Group and the Marine Ecotype Revealed by Multilocus Sequence Analysis

Yang Liu*, Qiliang Lai*, Chunming Dong, Fengqin Sun, Liping Wang, Guangyu Li, Zongze Shao*

Key Laboratory of Marine Genetic Resources-State Key Laboratory Breeding Base, Third Institute of Oceanography of State Oceanic Administration, Fujian Provincial Key Laboratory of Marine Genetic Resources, Xiamen, China

Abstract

Bacteria closely related to *Bacillus pumilus* cannot be distinguished from such other species as *B. safensis*, *B. stratosphericus*, *B. altitudinis* and *B. aerophilus* simply by 16S rRNA gene sequence. In this report, 76 marine strains were subjected to phylogenetic analysis based on 7 housekeeping genes to understand the phylogeny and biogeography in comparison with other origins. A phylogenetic tree based on the 7 housekeeping genes concatenated in the order of gyrB-rpoB-ycA-pyrE-mutL-aroE-trpB was constructed and compared with trees based on the single genes. All these trees exhibited a similar topology structure with small variations. Our 79 strains were divided into 6 groups from A to F; Group A was the largest and contained 49 strains close to *B. altitudinis*. Additional two large groups were presented by *B. safensis* and *B. pumilus* respectively. Among the housekeeping genes, gyrB and pyrE showed comparatively better resolution power and may serve as molecular markers to distinguish these closely related strains. Furthermore, a recombinant phylogenetic tree based on the gyrB gene and containing 73 terrestrial and our isolates was constructed to detect the relationship between marine and other sources. The tree clearly showed that the bacteria of marine origin were clustered together in all the large groups. In contrast, the cluster belonging to *B. safensis* was mainly composed of bacteria of terrestrial origin. Interestingly, nearly all the marine isolates were at the top of the tree, indicating the possibility of the recent divergence of this bacterial group in marine environments. We conclude that *B. altitudinis* bacteria are the most widely spread of the *B. pumilus* group in marine environments. In summary, this report provides the first evidence regarding the systematic evolution of this bacterial group, and knowledge of their phylogenetic diversity will help in the understanding of their ecological role and distribution in marine environments.

Introduction

Bacillus is an important bacterial genus that consists of a heterogeneous group of aerobic or facultative anaerobic, endospore-forming, Gram-positive, rod-shaped organisms. Owing to their metabolic diversity and spore dispersal, *Bacillus* is ubiquitous in the environment. The genus *Bacillus* comprises 172 species recognized to date (http://www.bacterio.cict.fr/bbacillus.html), most of which are from terrestrial environments. The strains in *Bacillus* are divided into the following 5 groups based on phylogenetic analysis of the 16S rRNA gene sequence: the *B. cereus*, *B. megaterium*, *B. subtilis*, *B. circulans* and *B. brevis* groups. Bacteria of *B. pumilus* belong to the *B. subtilis* group [1].

The bacteria of some *Bacillus* groups usually share high genetic homogeneity despite their phenotypic diversity, including the *B. cereus* group, with over 97% 16S rRNA sequence similarity among *B. anthracis*, *B. cereus*, *B. weihenstephanensis*, *B. thuringiensis*, *B. mycoides*, *B. pseudomycoides*, *B. cytotoxicus*, *B. gaemokensis* and *B. manilapoenis* [2]. However, the discrimination of these closely related bacteria has long been problematic. Many methods have been applied to identify and classify these *Bacillus* bacteria, including phenotypic characteristics, biochemical tests, fatty acid methyl ester (FAME) profiling [3], 16S rRNA...
gene sequencing [4,5], DNA fingerprinting [6], randomly amplified polymorphic DNA (RAPD) [7], restriction fragment length polymorphism (RFLP) [8], amplified fragment length polymorphism PCR (AFLP) [9] and multilocus enzyme electrophoresis (MLEE) typing. Recently, phylogenetic analyses based on single or multilocus sequence typing (MLST) of housekeeping genes, such as rpoB (RNA polymerase β subunit), gyrB (gyrase B subunit), 23S rRNA, gyrA and pycA, have been used frequently for this genus [10,11]. Indeed, these genes can effectively differentiate the strains of the B. cereus group and the B. subtilis group [12-15].

Due to the survivability of spores against harsh conditions, it remains unclear whether such spore-forming bacteria as Bacillus are indigenous to marine habitats. In fact, compared to their terrestrial relatives, little is known about the distribution and ecology of Bacillus, particularly in the deep sea [16,17]. According to biochemical tests, FAME profiling and partial 16S rRNA gene sequencing, B. pumilus was found to be the predominant species of cultivated Bacillus in the coastal environment of Cochin, India, followed by B. cereus and B. sphaericus [17,18].

In recent years, hundreds of Bacillus strains have been isolated in our lab from various marine environments of a wide geographic range, including deep sea, coastal and polar areas. We found that some Bacillus isolates closely related to B. pumilus are not easily distinguished from each other by 16S rRNA gene sequence alone. The B. pumilus group contains 5 species, B. pumilus, B. safensis, B. stratosphericus, B. altitudinis and B. aerophilus, which are nearly identical in 16S rRNA gene sequence, sharing similarity over 99.5%. In a phylogenetic tree of 16S rRNA gene sequences, this group is a neighbor of B. atrophaeus DSM 7264T, sharing similarity of less than 97.6%. Thus far, no systematic data are available to evaluate the diversity and evolution of this group. In an effort to understand the phylogeny, ecology and biogeography of this group, 76 marine strains and 3 type strains of this group were subjected to Multilocus Sequence Analysis (MLSA) based on 7 housekeeping genes and compared to 73 terrestrial isolates.

Materials and Methods

Ethics statement

No specific permissions were required for collection of these bacterial strains used in phylogenetic analysis in this study, as they are isolated from areas beyond national jurisdiction or from areas within the exclusive economic zone of China. Moreover, the sample sampling did not involve endangered or protected species.

Bacterial strains

A total of 76 strains of 5 species close to B. pumilus were chosen for the phylogeny study: 15 from the Pacific Ocean, 7 from the Indian Ocean, 3 from the Atlantic Ocean, 7 from the North Polar Region, 20 from the coast area of Fujian Province, 4 from the East China Sea and the Yellow Sea and 20 from the South China Sea (Table 1 and Figure S1 in File S1). These strains were deposited at Marine Culture Collection of China (MCCC).

In addition, 3 type strains, B. pumilus DSM 27T isolated from soil [19], B. safensis FO-36s isolated by the Jet Propulsion Laboratory spacecraft-assembly facility of California in USA [20] and B. altitudinis 41KF2bT isolated by air samples of high elevations (41,000 m) in India [21], were also included in the phylogeny study; these strains were purchased from DSMZ (Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH) in Germany. Unfortunately, 2 other type strains, B. stratosphericus and B. aerophilus, isolated from the same sample as B. altitudinis 41KF2bT, are no longer available in public collections or from the authors and therefore not included in the our analyses. The gyrB sequences of 73 strains were acquired from the NCBI database, and their detailed information is listed in Table S1 in File S1.

DNA extraction

The strains were reactivated on a modified solid Luria-Bertani medium (10 g peptone, 5 g yeast extract, 10 g NaCl, 15 g agar and 1 L double-distilled water, pH 7.5) [22] and incubated at 37°C for 24 h. A suitable amount of cells on the plates were selected and transferred to 1.5 mL centrifuge tubes using sterile pipette tips. Genomic DNA was extracted using the SBS extraction kit (SBS Genetech Co., Ltd in Shanghai, China) according to the manufacturer’s instructions.

PCR amplification and sequencing of 16S rRNA and housekeeping genes

The 16S rRNA gene was amplified by PCR using universal primers 27F and 1492R, and seven housekeeping genes were amplified using specific primers designed using Primer 5.0 (Table S2 in File S1). The genes were amplified under nearly the same conditions. In brief, each PCR mixture contained 1 μL genomic DNA, 1.25 U Ex Taq™ DNA polymerase (TaKaRa), 4 μL dNTP mixture (2.5 mM of each dNTP), 1 μL each primer (20 μM), 5 μL 10×Ex Taq buffer (Mg2+ Plus) and sterile deionized water to a total volume of 50 μL. PCR was performed using a My Gen™ L Series Peltier Thermal Cycle (Hangzhou Long Gene Scientific Instruments Co., Ltd, China). Each PCR product was separated by electrophoresis on a 1% agarose gel. The target PCR products were purified with the AxyPrep™ PCR Clean up kit (Axygen Scientific, Inc., USA) according to the manufacturer’s instructions and sequenced using the ABI3730xI platform (BGI Co., Ltd, China). Each PCR product was separated by electrophoresis on a 1% agarose gel. The target PCR products were purified with the AxyPrep™ PCR Clean up kit (Axygen Scientific, Inc., USA) according to the manufacturer’s instructions and sequenced using the ABI3730xI platform (BGI Co., Ltd, China). Each PCR product was separated by electrophoresis on a 1% agarose gel. The target PCR products were purified with the AxyPrep™ PCR Clean up kit (Axygen Scientific, Inc., USA) according to the manufacturer’s instructions and sequenced using the ABI3730xI platform (BGI Co., Ltd, China). Each PCR product was separated by electrophoresis on a 1% agarose gel. The target PCR products were purified with the AxyPrep™ PCR Clean up kit (Axygen Scientific, Inc., USA) according to the manufacturer’s instructions and sequenced using the ABI3730xI platform (BGI Co., Ltd, China). Each PCR product was separated by electrophoresis on a 1% agarose gel. The target PCR products were purified with the AxyPrep™ PCR Clean up kit (Axygen Scientific, Inc., USA) according to the manufacturer’s instructions and sequenced using the ABI3730xI platform (BGI Co., Ltd, China). Each PCR product was separated by electrophoresis on a 1% agarose gel. The target PCR products were purified with the AxyPrep™ PCR Clean up kit (Axygen Scientific, Inc., USA) according to the manufacturer’s instructions and sequenced using the ABI3730xI platform (BGI Co., Ltd, China). Each PCR product was separated by electrophoresis on a 1% agarose gel. The target PCR products were purified with the AxyPrep™ PCR Clean up kit (Axygen Scientific, Inc., USA) according to the manufacturer’s instructions and sequenced using the ABI3730xI platform (BGI Co., Ltd, China). Each PCR product was separated by electrophoresis on a 1% agarose gel. The target PCR products were purified with the AxyPrep™ PCR Clean up kit (Axygen Scientific, Inc., USA) according to the manufacturer’s instructions and sequenced using the ABI3730xI platform (BGI Co., Ltd, China).
Table 1. Bacterial isolates of the *B. pumilus* group strains used in MLSA analysis.

Strain No	Accession No	Original No	Species	Origin	Region	Elevation (m)	Types	
1	A000008	HYC-10	*Bacillus* sp.	Intestinal tract contents of fish	Xiamen island	0	B1	
2	A000112	HC21-A	*B. altitudinis*	Intestinal tract contents of fish	Xiamen island	0	A13	
3	A000242	C20	*B. altitudinis*	Sediment	Pacific Ocean	-5246	A1	
4	A000249	C00	*B. altitudinis*	Sediment	Pacific Ocean	-5246	A1	
5	A06451	FO-36b†	*B. safensis*	Clean-room air particulate	California	0	F7	
6	A004000	Mn48	*B. altitudinis*	Sediment	Pacific Ocean	-5000	A5	
7	A004012	NHd5-4	*B. altitudinis*	Sediment	South China Sea	-3649	A15	
8	A004020	02Co-3	*B. altitudinis*	Sediment	Pacific Ocean	-2869	A1	
9	A004043	Co21	*B. pumilus*	Sediment	Pacific Ocean	-5059	D3	
10	A004047	Co11	*B. altitudinis*	Sediment	Pacific Ocean	-5246	A4	
11	A004048	N27	*B. altitudinis*	Sediment	Pacific Ocean	-5059	A1	
12	A004066	Pb29	*B. altitudinis*	Sediment	Pacific Ocean	-5246	A2	
13	A004068	Pb71	*B. altitudinis*	Sediment	Pacific Ocean	-5059	A1	
14	A004822	Cr61	*B. altitudinis*	Sediment	Pacific Ocean	-5059	A1	
15	A01044	PA1A	*B. altitudinis*	Bottom water	Indian Ocean	-2488	A30	
16	A01364	8-C-1	*B. altitudinis*	Surface water	Xiamen island	0	A22	
17	A01381	S70-5-12	*B. altitudinis*	Surface water	Xiamen island	0	A20	
18	A02095	S2-5(2)2	*B. altitudinis*	Sediment	South China Sea	-15	A17	
19	A02227	2007/3/1	*B. altitudinis*	Sediment	Indian Ocean	-2434	A26	
20	A02467	DSD-PW4-OH8	*B. altitudinis*	Bottom water	South China Sea	-1762	A9	
21	A02468	m1-01-PW1-OH23	*B. altitudinis*	Bottom water	South China Sea	-812	A23	
22	A02485	37-PW11-OHB	*B. altitudinis*	Bottom water	South China Sea	-1	A10	
23	A02775	IF1	*B. altitudinis*	Surface water	Yellow Sea	-30	A1	
24	A03121	A019	*B. altitudinis*	Surface water	East China Sea	0	A11	
25	A03126	A025	*B. altitudinis*	Surface water	Yellow Sea	-40	A31	
26	A04035	C16B11	*B. altitudinis*	Bottom water	Pacific Ocean	-1755	A1	
27	A04046	NHdD1	*B. altitudinis*	Sediment	South China Sea	-756	A35	
28	A04073	NH18E1	*B. altitudinis*	Sediment	South China Sea	-1550	A18	
29	A04526	NH21E_2	*B. safensis*	Sediment	South China Sea	-1184	F3	
30	A04568	NH21R_2	*B. altitudinis*	Sediment	South China Sea	-1184	A7	
31	A04638	NH24ET	*B. altitudinis*	Sediment	South China Sea	-1081	A16	
32	A05427	NH65B	*B. altitudinis*	Sediment	South China Sea	-1467	A12	
33	A05787	NH7L_1	*Bacillus* sp.	Sediment	South China Sea	-756	E1	
34	A05840	B204-B1-5	*B. safensis*	Sediment	South China Sea	-1467	F1	
35	A05960	BMJ03-B1-22	*B. safensis*	Sediment	South China Sea	-1100	F2	
36	A06638	CJW7T	*B. safensis*	Sediment	South China Sea	-11	F5	
37	A06692	HSGT11	*B. altitudinis*	Sediment	South China Sea	-11	A27	
38	A06774	HTZ_29	*B. altitudinis*	Sediment	South China Sea	-11	A19	
39	A06831	SCN16	*B. altitudinis*	Sediment	South China Sea	-11	A8	
40	A06858	SLN29	*B. safensis*	Sediment	South China Sea	-11	F4	
41	A06991	sxm20-2	*B. pumilus*	Sediment	Indian Ocean	-2089	D6	
42	A06996	B01-4	*B. pumilus*	Sediment	Surface water	0	D2	
43	A07053	B07-3	*B. pumilus*	Sediment	Surface water	0	D1	
44	A07134	BN04-13	*B. safensis*	Sediment	Surface water	0	F9	
45	A07286	P2-1B	*B. pumilus*	Sediment	Indian Ocean	-4735	D2	
46	A07375	S11-5	*B. altitudinis*	Sediment	Atlantic Ocean	-3217	A14	
47	A07587	C101	*B. altitudinis*	Sediment	Arctic Ocean	-4000	A32	
48	A07588	D21	*B. safensis*	Sediment	Arctic Ocean	-3566	F8	
49	A07590	D95	*B. safensis*	Sediment	Arctic Ocean	-2500	F8	
50	A07613	A1-1	*B. pumilus*	Sediment	Atlantic Ocean	-3310	D5	
51	A07638	A23-8	*B. altitudinis*	Sediment	Indian Ocean	-3879	A36	
52	A07644	A29-3	*B. pumilus*	Sediment	Indian Ocean	-2368	D4	
53	A01287	1A-5	*B. altitudinis*	Sediment	Coral	Dongshan island	-2	A28
using Kimura’s 2-parameter model [26] with the MEGA 5.0 software. The selective pressure on housekeeping gene was evaluated with the calculation of nonsynonymous (Ka) and synonymous (Ks) substitution rates (Ka/Ks) by the DnaSP 5.0 software [27].

The phylogenetic trees were constructed using the neighbor-joining (NJ) algorithm [28] with MEGA 5.0 [29]. The strengths of the internal branches of the resulting trees were statistically evaluated by bootstrap analysis with 1000 bootstrap replications. B. cereus ATCC 14579T (GenBank accession: AE016877) was used as the outgroup.

Results

Phylogenetic diversity revealed by 16S rRNA gene analysis

All the tested bacteria were subjected to a 16S rRNA gene analysis, even though they had been characterized (approximately 600 bp) prior to deposition in MCCC. Nearly the full-length 16S rRNA gene sequences (approximately 1513 bp) were obtained to further assess the taxonomic affiliation and phylogeny of the strains.

The results demonstrated that the genetic distance of the 16S rRNA gene ranged from 0-0.005 (mean 0.002). Moreover, the number of alleles and polymorphic sites were only 7 and 10, respectively, and the proportion of polymorphic sites was 0.7%. In addition, the interspecies similarities of 16S rRNA gene ranged from 99.6% to 100%, while the interspecies similarities were 99.5%-100%. These features of the 16S rRNA gene were presented in Table 2 and Table S4 in File S1. The 16S rRNA genes of the strains were highly conserved, and their similarities had overlap in intraspecies and interspecies, therefore it was unsuitable for the differentiation of these closely related strains.

Despite the high similarity, the phylogenetic tree of the 16S rRNA gene showed that the 79 strains were divided into two groups (Figure 1). The large group contained our 52 isolates, their similarities had overlap in intraspecies and interspecies, which were close to the type strain B. altitudinis; the small group contained 24 strains that we isolated, which were close to the type strain B. pumilus and B. safensis and cannot be distinguished by their 16S rRNA gene.

Table 1 (continued).

Strain No	Accession No	Original No	Speciesa	Origin	Region	Elevation (m)	Types
55	1A07606	2A-2	B. altitudinis	Coral	Dongshan island	-2	A33
56	1A07656	P1C-6	B. altitudinis	Coral	Dongshan island	-2	A25
57	1A07600	P3A-7	B. altitudinis	Coral	Dongshan island	-2	A34
58	1A05459	P6A-8	B. altitudinis	Coral	Dongshan island	-2	A28
59	1A05490	J33-1	B. pumilus	Sediment	Yellow Sea	-31.5	D4
60	1A00023	HYg-9	B. safensis	Intestinal tract contents of fish	Xiamen island	0	F8
61	1A00118	HYG-22	B. altitudinis	Intestinal tract contents of fish	Xiamen island	0	A24
62	1A07052	NP-4	B. safensis	Surface water	Arctic Ocean	0	F8
63	1A06453	DSM 27T	B. pumilus	Soil	/	/	D7
64	1A08385	15-B04 10-15-3	B. safensis	Sediment	Bering Sea	-3873	F6
65	1A08208	R06B32-2	Bacillus sp.	Sediment	Arctic Ocean	-44.5	C1
66	1A08151	C2-2	B. pumilus	Sediment	Atlantic Ocean	-3452	D2
67	1A08152	DW2J2	B. pumilus	White shrimp	Shrimp farm	0	D1
68	1A08153	DW3XJ7	B. pumilus	White shrimp	Shrimp farm	0	D1
69	1A08154	XW1-6	B. pumilus	Aquaculture water	Shrimp farm	0	D1
70	1A08372	DW5-4	Bacillus sp.	Aquaculture water	Shrimp farm	0	C1
71	1A08155	DW3-7	B. safensis	Aquaculture water	Shrimp farm	0	F8
72	1A08373	BS1	B. altitudinis	Bottom water	South China Sea	-1762	A1
73	1A00009	HYC-12	B. altitudinis	Intestinal tract contents of fish	Xiamen island	0	A37
74	1A08369	C70	B. altitudinis	Sediment	Arctic Ocean	-2790	A1
75	1A08156	DW2-3	B. altitudinis	Aquaculture water	Shrimp farm	0	A1
76	1A08157	DW3XJ1	B. altitudinis	White shrimp	Shrimp farm	0	A1
77	1A08370	DW2-4	B. altitudinis	White shrimp	Shrimp farm	0	A32
78	1A08371	XW3XJ7	B. altitudinis	White shrimp	Shrimp farm	0	A6
79	1A06452	41KF2b	B. altitudinis	High-elevation air sample	Hyderabad/India	41000	A21

a. The deposit accession No in MCCC (Marine Culture Collection of China).

b. The name of these isolates were modified after phylogenetic analysis.

T. Three type strains were marked.

/ The detailed information of B. pumilus DSM 27T cannot be found from reference.

doi: 10.1371/journal.pone.0080097.t001
Characteristics of seven housekeeping genes

To discriminate among the closely related bacteria, the housekeeping genes *gyrB*, *rpoB*, *aroE*, *mutL*, *pycA*, *pyrE* and *trpB* were chosen for analysis; 79 strains, including the 3 type strains, were analyzed. The characteristics of each housekeeping gene, such as the gene length, number of alleles, polymorphic sites, the mean G+C content, the genetic distance and the similarity range were shown in Table 2 and Table S4 in File S1.

The correlation of genetic distance between two housekeeping genes was calculated (Table S5 in File S1). An analysis of the characteristics and genetic distance of the housekeeping genes (Table S6 in File S1). For more details, the numbers of strain pairs within different similarity grades of the housekeeping genes of the 79 strains were shown in Table S7.

Locus	Length (bp)	Alleles No	Polymorphic site No / Percentage (%)	Mean G+C content (mol%)	K2P distance range	K2P distance mean
16S rDNA	1513	7	10/0.70	55.03	0.000-0.005	0.002
gyrB	717	35	170/23.71	42.20	0.000-0.110	0.053
rpoB	927	34	94/10.14	45.74	0.000-0.045	0.021
aroE	900	31	253/28.11	42.20	0.000-0.159	0.080
mutL	828	38	202/24.40	45.30	0.000-0.135	0.068
pycA	864	37	197/22.60	42.93	0.000-0.128	0.065
pyrE	546	33	160/29.30	46.51	0.000-0.179	0.085
trpB	867	29	232/26.76	44.77	0.000-0.149	0.072
MLSA	6649	54	1308/23.00	44.20	0.000-0.110	0.053

doi: 10.1371/journal.pone.0080097.t002

Figure 1. Phylogenetic tree based on the 16S rRNA genes of marine bacteria belonging to the *B. pumilus* group. The tree was constructed using the neighbor-joining method with MEGA 5.0. Bootstrap values over 50% (1000 replications) were shown at each node. Bar, % estimated substitution. *B. cereus* ATCC 14579^T was used as the outgroup.

doi: 10.1371/journal.pone.0080097.g001
and Figure S2 in File S1. These data indicates that 16S rDNA and rpoB were inappropriate for species discrimination among the bacteria of this group, while other genes showed a general interspecies similarity gap of 92% to 96%, and can serve in species discrimination, especially pyrE (92%-95%) and aroE (93-95%) Table S7 and Figure S2 in File S1.

In addition, the Ka/Ks ratio of each housekeeping gene of different species and all the 79 strains was calculated, the results were displayed in Table S8 and Figure S3 in File S1. All the genes exhibited low Ka/Ks ratios ranging from 0.0000-0.1200 (Table S8 and Figure S3 in File S1), suggesting that they are under negative selection pressure. However, the ratios of Ka/Ks of each gene in different species were significant differences. The pyrE gene had the highest Ka/Ks ratio (0.1200) in B. altitudinis, while the gene aroE in B. pumilus and B. safensis were the highest, respectively 0.0800 and 0.0561. Even at interspecies level based on all the 79 strains, pyrE had the highest Ka/Ks ratio (0.0731). In contrast, rpoB had the lowest the Ka/Ks ratio, and was the most conserved among the seven housekeeping genes.

Phylogenetic diversity revealed by individual housekeeping genes

Prior to the phylogenetic analysis, these housekeeping genes were subjected to an examination of sequence substitution saturation and recombination events (data not shown). The saturation test of each housekeeping gene with DAMBE showed no sign of substitution saturation, and no recombination events were found in any of their tested housekeeping genes, as determined by program RDP-3.0. These results indicated that these sequences provided essential phylogenetic information.

Phylogenetic analyses based on each of the housekeeping genes were able to distinguish the strains at the species level. Moreover, the phylogenetic trees possessed nearly congruent topology structure (Figure S4-S10 in File S1). Specifically, the 79 strains were divided into 6 groups from A to F. Group A is the largest, containing 49 strains close to B. altitudinis; Group F is the second largest group, containing 13 strains belonging to B. safensis. Group D consisted of 13 strains attributed to B. pumilus. Additional three minor groups were revealed, Groups B, C and E, supported by only 1 to 2 strains each. These minorities represent putative novel taxa.

Slight differences were also observed in some groups among the topologies of the seven trees. For example, B. pumilus was close to B. altitudinis in the phylogenetic tree of gyrB; in contrast, B. pumilus is close to B. safensis in other trees. In addition, the position of Groups B, C and D varied in the trees of gyrB, rpoB and mutL. For instance, Group B was closer to Group A in the phylogenetic trees of gyrB, aroE, mutL, pyrE and trpB, whereas Group B was closer to the groups in the large cluster of B. safensis and B. pumilus in the tree of pycA. Other small differences were also observed in the trees, as shown in the supplementary materials (Figure S4-S10 in File S1).

Phylogeny based on the concatenated housekeeping genes

The seven housekeeping genes were concatenated in the order of gyrB-rpoB-pycA-pyrE-mutL-aroE-trpB (5649 bp) to reexamine the phylogeny of the 79 strains (Figure 3). The new phylogenetic tree showed a similar topology as the trees described above based on a single gene but was more elaborate and stable.

Specifically, Group A consisted of 49 strains belonging to B. altitudinis that could be divided into 37 genetic types from A1 to A37 (Table 1). Group D contained 13 strains belonging to B. pumilus, with 7 genetic types, D1 to D7 (Table 1); Group F also contained 13 strains of 9 genetic types, F1 to F9 (Table 1), and belonging to B. safensis. In contrast, fewer bacteria were allotted into Group B, Group C and Group E and could not be assigned to any the described species due to low similarity. For example, the only strain in Group B showed 92.12%, 89.22% and 89.50% similarity with B. altitudinis, B. pumilus and B. safensis and a genetic distance of 0.079, 0.108 and 0.105, respectively. Both strains in Group C shared 91.04%, 90.21% and 91.02% similarity with the above type strains, with a genetic distance 0.09, 0.098 and 0.09, respectively. Similarly, the only member of Group E shared 89.48%, 91.41% and 93.93% similarity with the three type strains and a genetic
Figure 3. Phylogenetic tree based on seven housekeeping genes concatenated of marine isolates of the *B. pumilus* group. The tree was constructed using the neighbor-joining method with MEGA 5.0. Bootstrap values over 50% (1000 replications) were shown at each node. Bar, % estimated substitution. *B. cereus* ATCC 14579 was used as the outgroup.

doi: 10.1371/journal.pone.0080097.g003
Correlation between phylogenetic and geographic distribution

The geographical distribution of the 76 strains covered various marine environments: a subtropical coastal area, the Pacific Ocean, the Indian Ocean, the Arctic Ocean, the Atlantic Ocean, and the South China Sea. Among these bacteria, those belonging to *B. altitudinis* were in the majority and had the widest geographical distribution; 48 of our isolates were allocated to this group in the concatenated gene tree (Group A in Figure 3). These isolates were mainly from three areas, the coastal area (○), South China Sea (□) and Pacific Ocean (△), though some were isolated from the Indian Ocean (◇), the Atlantic Ocean (●) and the Arctic Ocean. (○). Group D contained twelve strains that were isolated from a Fujian coastal area and pelagic areas; however, no strain originated from the Arctic Ocean (◇) or South China Sea (□). The 12 strains in Group F were mainly from the coastal area (○), South China Sea (□) and Arctic Ocean (◇). Among the above-mentioned special clades composed of putative novel species, two of three are from marine aquiculture environments, one from fish gut (strain 1 in Group B) and another from a shrimp farm (strain 70 in Group C).

In addition, according to the water depth, the habitats were arbitrarily divided into the upper layer (0-1000 m) and deep layer (>1000 m) and marked in green and black, respectively, in the phylogenetic tree (Figure 3). According to the tree, it was observed that the strains tended to cluster together to some extent according to the water depth. For example, in the largest group (Group A, *B. altitudinis*), bacteria from shallow areas tended to cluster together (in green). On the other hand, bacteria from the deep sea (in black) tended to cluster. Further, a principal component analysis (PCA) based on all strains was carried out to examine the key factors influencing their distribution using unweighted UniFrac. However, the correlation of the phylogenetic and geographic distribution was not significant (data not shown). This may be due to the inadequate strain numbers in other species.

To compare with their terrestrial counterparts, more sequences of the *gyrB* gene of the *B. pumilus* group were retrieved from GenBank (much less data for other housekeeping genes are available), and a phylogenetic tree of 152 strains was constructed (Figure 4). In general, the topological structure of the tree was the same as that constructed with our bacteria alone (Figure 3), though the three clades containing the potential novel species remain as minorities in the new tree. Some mistakes in nomenclature were observed for some strains retrieved from NCBI, such as strains 99, 101, 107, 108, 113 and 116, which actually belong to *B. altitudinis* rather than *B. pumilus*, as described in NCBI.

Of note, based on the large tree of *gyrB* genes, the bacteria of marine origin tended to cluster together; with some exceptions, the strains of terrestrial origin also clustered together (Figure 4). Most of our marine isolates were placed in the large cluster of *B. altitudinis*, positioned as a separate clade (numbers in blue); a similar tendency was observed for the *B. pumilus* and *B. safensis* clusters. Most of the terrestrial bacteria were allotted to *B. safensis*, forming a distinct clade (in red).

Discussion

Many *Bacillus* strains have recently been isolated from marine environments, with bacteria of *B. pumilus* being frequently reported, in addition to *B. subtilis, B. licheniformis* and *B. cereus* [17,30-36]. Although the *B. altitudinis, B. pumilus* and *B. safensis* bacteria of the *B. pumilus* group cannot be differentiated by their 16S rRNA gene sequences, according to the data retrieved from PubMed, the bacteria from marine environments are generally placed in the *B. pumilus* group. To understand the diversity and systematic relationship of the bacteria in the *B. pumilus* group, we subjected 76 strains to MLSA based on seven housekeeping genes. Unexpectedly, most of our isolates actually belong to the species of *B. altitudinis* rather than *B. pumilus*. To our knowledge, this is the first report on the diversity and phylogeny of the *B. pumilus* group.

Our phylogenetic analysis showed that different housekeeping genes varied with regard to their discrimination resolution among the bacteria of the *B. pumilus* group. Among the seven housekeeping genes, the *pyrE* gene possessed, on average, the highest percentage of the polymorphic sites (29.30%) and the highest genetic distance (0.085), indicating that *pyrE* has the highest differentiation power. This was reconfirmed by the results of Ka/Ks ratios and intraspecies and interspecies similarity ranges. In addition, both *aroE* and *gyrB* also possesses a relative high resolution power. Considering the popularity of the *gyrB* gene in the GenBank database, we suggest *pyrE* and *gyrB* can be used as a standard marker to differentiate the closely related strains of the *B. pumilus* group. In the *B. subtilis* group, approximately 95% similarity of *gyrB* gene was accordant with 70% of DNA-DNA relatedness [15]. In other genera, for example, the *gyrB* gene also has been used as a marker to assign species. The genetic distance of the *gyrB* gene used to separate two species is 0.014, which was the equivalent of 70% DNA-DNA hybridization in *Micromonaspora* species, as reported by Kasai et al. [36]. As another example, 0.02 genetic distance for the *gyrB* gene was used as a species boundary among the *Amycolatopsis* genus in a study by Everest et al. [37]. Similarly, Curtis et al. proposed using a genetic distance of 0.04 for five concatenated housekeeping genes to distinguish different species in *Kribbeella* [38]. In the *B. pumilus* group, we found 95%-96% similarities of *gyrB* gene was the interspecies gap. Based on these results and further genome sequence data, we proposed three novel species of the genus *Bacillus*, represented by strain 1, 70 and 34. These bacteria shared low *gyrB* gene sequence similarity (89.50%-94.98%) with and large genetic distances (0.05-0.1) from the described type strains. The preliminary draft genome sequence analysis showed that their estimated DNA-DNA values (among 3 novel strains and 3 type strains) were below 70% (data unpublished), suggesting that they are potential novel species. Further phenotypic characterizations are needed to establish these bacteria as novel species.
The correlation analysis of phylogeny with geographical distribution indicated that the strains of Group A (B. altitudinis) were more widespread in marine environments than the other groups (Groups B-F) (Figure 3), suggests that Group A is...
adapted to a wide range of marine environments. Furthermore, our marine isolates tended to form clades corresponding to the water depth (Figure 3), and such distribution is in congruence with other reports. It has been shown that bacteria of *Exiguobacterium* tend to form genetic clusters by niche differentiation in water and sediment environments of the Cuatro Cienegas Basin [39]. As another example, Qian et al. found that there were significant differences in the diversity of microbial communities in the upper (2 and 50 m) and deeper layers (200 and 1500 m) of the Red sea, though there were no obvious differences within the same layer [40]. The distribution of bacteria is significantly influenced by environmental factors, such as salinity, temperature, oxygen and, in particular, water depth and pressure [41-43]. However, the mechanisms of ecological divergence require additional studies.

The phylogeny of the bacteria of diverse origins is shown in the expanded *gyrB* tree (Figure 4), reconfirming that the strains of *B. altitudinis* appear to be more widespread in marine environments, whereas the strains of *B. pumilus* and *B. safensis* tend to reside in terrestrial habitats. In fact, the type strain of *B. altitudinis*, which appeared randomly among our marine isolates, was isolated from an air sample from a high elevation (41 km), and a marine origin with seawater evaporation cannot be excluded. In the clade of *B. altitudinis*, the marine taxa appeared to have evolved from terrestrial taxa. So did a small marine branch (strains 45, 49, 50, 60, 62 and 71) in the *B. safensis* clade (Figure 4).

In summary, we analyzed the phylogeny of marine isolates closely related to the *B. pumilus* group using MLSA based on seven housekeeping genes. The bacteria of the *B. pumilus* group are frequently misnamed at the species level due to the high similarity in their 16S rRNA gene sequence. We found that both the *gyrB* and *pyr*E genes can be used as molecular marker to distinguish these closely related strains. Based on our MLSA results, we conclude that bacteria of *B. altitudinis* are most widely spread among the bacteria of the *B. pumilus* group in marine environment; while most bacteria from terrestrial habitats of this group actually belong to *B. safensis*. The results of this study provide the first report of the phylogenetic analysis of bacteria in this group and will help in the understanding of their ecological role, ecological evolution and adaptation to marine environments. However, the results based on MLSA are not enough to resolve these issues as the housekeeping genes used only occupy 0.1%-0.2% of the genome. Fingerprinting methods like RAPD, AFLP and Rep-PCR, and genome sequence analyses would differentiate them in more details. Currently, genome sequencing of 21 strains representing different branches of the *B. pumilus* group are undergoing, and further analyses will help to determine the taxonomic status of these species in this group, more important to gain insights into the evolution and adaption in marine environments.

Supporting Information

File S1. Supplementary material of Figure S1-S10 and Table S1-S8. (DOCX)

Acknowledgements

We are grateful to Dr. Lei Wang and Dr. Yamin Sun of Nankai University for help with PCA analysis and Ka/Ks analysis.

Author Contributions

Conceived and designed the experiments: ZZS. Performed the experiments: YL QLL. Analyzed the data: YL QLL ZZS. Contributed reagents/materials/analysis tools: CMD FQS LPW GYL. Wrote the manuscript: YL QLL ZZS.

References

1. Berkeley R, Heyndrickx M, Logan N, De Vos P (2008) Applications and systematics of bacillus and relatives. Wiley-Blackwell. 133 pp.
2. Guinebretière MH, Auger S, Galleron N, Contzen M, De Sarrau B et al. (2013) Bacillus cytotoxicus sp. nov. is a novel thermotolerant species of the Bacillus cereus Group occasionally associated with food poisoning. Int J Syst Evol Microbiol 63: 31-40. doi:10.1099/ijs.0.03627-0. PubMed: 22328607.
3. Slabbinck B, De Baets B, Dawnydt P, De Vos P (2008) Genus-wide Bacillus species identification through proper artificial neural network experiments on fatty acid profiles. Antonie Van Leeuwenhoek 94: 187-198. doi:10.1007/s10482-008-9229-z. PubMed: 18322819.
4. Woese CR (1987) Bacterial evolution. Microbiol Rev 51: 221-271. PubMed: 2439888.
5. Vandamme P, Pot B, Gillis M, De Vos P, Kensters K et al. (1996) Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60: 407-438. PubMed: 8801440.
6. Miteva V, Abadjieva A, Grigorova R (1991) Differentiation among strains and serotypes of Bacillus thuringiensis by M13 DNA fingerprinting. J Gen Microbiol 137: 593-600. doi:10.1099/00221287-137-3-593.
7. Kwon GH, Lee HA, Park JY, Kim JS, Lim J et al. (2009) Development of a RAPD-PCR method for identification of Bacillus species isolated from Cheonggukjang. Int J Food Microbiol 129: 282-287. doi:10.1016/j.jfoodmicro.2008.12.013. PubMed: 19157618.
8. Jensen GB, Fisker N, Sparso T, Andrup L (2005) The possibility of discriminating within the Bacillus cereus group using gyrB sequencing and PCR-RFLP. Int J Food Microbiol 104: 113-120. doi:10.1016/j.jfoodmicro.2005.03.015. PubMed: 16005534.
9. Hill KK, Ticknor LO, Okinaka RT, Asay M, Blair H et al. (2004) Fluorescent amplified fragment length polymorphism analysis of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis isolates. Appl Environ Microbiol 70: 1068-1080. doi:10.1128/AEM.70.2.1068-1080.2004. PubMed: 14768590.
10. Helgason E, Okstad OA, Caugant DA, Johansen HA, Fouet A et al. (2000) Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis--one species on the basis of genetic evidence. Appl Environ Microbiol 66: 2627-2630. doi:10.1128/AEM.66.6.2627-2630.2000. PubMed: 10831447.
11. Tournasse NJ, Helgason E, Klevan A, Sylvestre P, Moya M et al. (2011) Extended and global phylogenetic view of the Bacillus cereus group population by combination of MLST, AFLP, and MLEE genotyping data. Food Microbiol 28: 236-244. doi:10.1016/j.fm.2010.06.014. PubMed: 21315970.
12. La Duc MT, Satomi M, Agata N, Venkateswaran K (2004) gyrB as a phylogenetic discriminator for members of the Bacillus anthracis-cereus-thuringiensis group. J Microbiol Methods 56: 383-394. doi:10.1016/j.mimet.2003.11.004. PubMed: 14967230.
13. Qi Y, Patra G, Liang X, Williams LE, Rose S et al. (2001) Utilization of the rpoB gene as a specific chromosomal marker for real-time PCR detection of Bacillus anthracis. Appl Environ Microbiol 67: 3720-3727. doi:10.1128/AEM.67.8.3720-3727.2001. PubMed: 11472984.
14. Helgason E, Tournasse NJ, Meisal R, Caugant DA, Kolste AB (2004) Multilocus sequence typing scheme for bacteria of the Bacillus cereus Group.
group, Appl Environ Microbiol 70: 191-201. doi:10.1128/AEM. 70.1.191-201.2004. PubMed: 14711642.
15. Wang LT, Lee FL, Tai CJ, Kasah H (2007) Comparison of gyrB gene sequences, 16S rRNA gene sequences and DNA-DNA hybridization in the Bacillus subtilis group. Int J Syst Evol Microbiol 57: 1846-1850. doi: 10.1099/ijs.0.64029-0. PubMed: 1748269.
16. Connor N, Sikorski J, Apple AP, Kopac S, Koopf AF et al. (2010) Ecology of speciation in the genus Bacillus. Appl Environ Microbiol 76: 1349-1358. doi:10.1128/AEM.01988-09. PubMed: 20048064.
17. N. Pimenta, J. Seller, A. Nogueira, I. S. Sampaio, and J. M. B. Siqueira (2009) Diversity and phylogeny of culturable spore-forming Bacilli isolated from marine sediments. J Basic Microbiol 49 Suppl 1: S13-23. doi:10.1002/jobm.200800306. PubMed: 19322832.
18. Roman G, Amin S, Berke J, Radaion J, Borkin S, Dafonchio D, Boulaibos A et al. (2009) Diversity and phylogeny of culturable spore-forming Bacilli isolated from marine sediments. J Basic Microbiol 49 Suppl 1: S13-23. doi:10.1002/jobm.200800306. PubMed: 19322832.
19. Roman G, Amin S, Berke J, Radaion J, Borkin S, Dafonchio D, Boulaibos A et al. (2009) Diversity and phylogeny of culturable spore-forming Bacilli isolated from marine sediments. J Basic Microbiol 49 Suppl 1: S13-23. doi:10.1002/jobm.200800306. PubMed: 19322832.