Analysis of Classic Tomato Mutants Reveals Influence of Leaf Vein Density on Fruit BRIX

Authors
Zizhang Chenga, S.D. Rowlandb, Karo Czarneckib, Kristina Zumsteinb, Hokuto Nakayamac, and Neelima R. Sinhab

aSichuan Agricultural University, Chengdu, Sichuan, China
bDepartment of Plant Biology, University of California, Davis, Davis, CA 95616
cUniversity of Tokyo, Tokyo, Japan

ORCID IDs: 0000-0002-6560-0280 (Z.C.); 0000-0002-8633-1710 (S.D.R.); 0000-0001-6245-0558 (K.C.); 0000-0001-9516-8081 (K.Z.); 0000-0002-5724-4861 (H.N.); 0000-0002-1494-7065 (N.R.S.)

Author Contributions
N.R.S. conceived of the research idea, supervised the research, helped to write the manuscript, and agrees to be the author for contact. Z.C. led the research effort, collected and analyzed data, and wrote the initial draft with input from all authors. S.D.R. collected leaf photosynthesis data, helped with field sample collection, gave advice on research and analysis methods, and developed vascular clearing, sugar, and starch extraction protocols. K.C. performed root grafting experiments, gene coexpression network construction, leaf sugar and starch analysis, and led paper editing and data analysis efforts. K.Z. organized the field study and helped with leaf sample collection. H.N. helped with RNA sequencing, field sample collection, and leaf venation analysis.

Corresponding Author
Neelima R. Sinha (nrsinha@ucdavis.edu)

ABSTRACT
Tomato \textit{bipinnate} (\textit{bip}) is a classic leaf mutant, with highly increased leaf complexity resulting from the loss of function of a \textit{BEL-LIKE HOMEODomain} (\textit{BELL}) gene. Here, we analyzed several \textit{bip} mutants and their isogenic wildtype backgrounds for a suite of leaf morphology traits, ranging from leaf complexity, leaflet shape and size, to leaf vascular density to investigate how changes in leaf morphology influence fruit traits. Our analyses showed an unexpected relationship between leaf vein density and fruit sugar levels, where leaf vein density was negatively correlated with fruit BRIX. RNA-Seq analysis suggested variation in \textit{Glucose-6-}
*phosphate translocator*2 (GPT2) gene expression caused correlated changes in leaf vein density and BRIX when *bip* mutant and wildtype were compared, suggesting that the correlation between leaf vein density and fruit sugar may result from the genes regulating leaf vein development that are also involved in regulating leaf sugar biosynthesis. Our results provide a resource for further exploration of the genetic basis for the complex relationship between fruit quality and leaf traits in natural populations.

INTRODUCTION

Tomato (*Solanum lycopersicum*) is one of the highest-value and most extensively used vegetable crops worldwide. However, to meet increasing demand, modern tomato cultivars have been selected for qualities such as size and firmness instead of taste (Beullens et al., 2008; Wang and Seymour, 2017). Consequently, most of modern commercial varieties have lost their flavor and are often tasteless (Klee and Tieman, 2013; Tieman et al., 2017).

Flavor of fruit is the sum of interactions between taste and aroma, whereas sugars and acids are the two of primarily components to activate taste receptors and aroma components such as volatile compounds activate olfactory receptors (Malundo et al., 1996; Baldwin et al., 2008; Tieman et al., 2012). Though the relative contribution of taste and aroma to fruit flavor has not been clearly defined (Malundo et al., 1996), plenty of studies have shown the importance of sugars and acids in determining fresh fruit flavor (Malundo et al., 1996; Baldwin et al., 2008; Beckles et al., 2012). For tomato, the levels of sugars and acids not only contribute to tomato taste (sweetness and sourness), but also are major factors affecting tomato overall flavor intensity (Allen Stevens, 1979; Jones and Scott, 1984), and increasing sugar content of the fruit will enhance tomato flavor (Malundo et al., 1996; Tieman et al., 2017). Recent studies have shown that fruit sugar accumulation in modern tomato is two to three-fold less than that in wild species (Beckles et al., 2012), which can account for the decline in flavor quality of tomato fruit.

Fruits are the primary photosynthetic sinks and over 80% of sugars in the fruit are produced in the leaf through photosynthesis and subsequently translocated through the phloem (Cocaliadis et al., 2014). Therefore, factors involved in regulating leaf photosynthesis, as well as sugar biosynthesis and sugar transport would have an effect on sugar levels in fruit. Leaves are the principle site of plant photosynthesis and leaf traits (e.g. shape and size) directly impact the efficiency of light capture and photosynthetic carbon fixation (Smith et al., 1997; Sarlikioti et al., 2014).
Thus, changes in leaf traits could have an effect on fruit yield and quality. Studies evaluating the influence of leaf area on tomato yield have shown high leaf area index (LAI) can lead to an increase in tomato yield as a result of better light interception (Heuvelink et al., 2005). Recently, leaf shape was shown to be strongly correlated with fruit sugar levels in tomato, with rounder and more circular leaves having higher sugar content in their fruit (Chitwood et al., 2013; Rowland et al., 2019). These studies focused on the influence of leaf morphology on fruit sugar level, and revealed important correlations between leaf shape and fruit sugar accumulation. However, how leaf shape contributes to sugar accumulation in fruit is not yet known (Malundo et al., 1996; Chitwood et al., 2013).

Tomato bipinnate (bip) is a classic leaf mutant, with highly increased leaf complexity (Fig. 1A) resulting from the loss of function of a BEL-LIKE HOMEODomain (BELL) gene (Kimura et al., 2008) called BIPINNATE (BIP, Solyc02g089940) (Fig. 1B), and provides ideal material to investigate the influence of leaf traits on fruit sugars. To investigate the links between leaf complexity and fruit sugar accumulation, we performed an analysis of leaflet shape, leaf complexity, vein density, yield, and fruit BRIX on bip mutants (bip2 and bip0663) and their isogenic backgrounds (M82 and Lukullus, respectively). Results suggested that leaf vein density, and not leaf complexity, was highly correlated to fruit BRIX in bip mutants. RNA-Seq analysis of gene expression in the vegetative apices and leaves of bip mutants and wildtypes shows an association between the expression of genes regulating leaf vein development and carbohydrate metabolism and transport, suggesting that alteration in leaf vein development would also modulate processing of carbohydrate metabolism and transport which, in turn, affects the accumulation of fruit sugar. Our analysis offers insight into how leaf morphology may influence fruit sugar and provides a new direction to improve tomato fruit sugar content.

RESULTS

Leaf Complexity and Fruit BRIX of bip Mutants and Wildtype

To investigate whether changes of leaf complexity caused by mutations at the BIP gene have an effect on fruit BRIX, we measured leaf complexity and fruit BRIX of bip0663 mutants and the corresponding isogenic cultivar, Lukullus. Leaf complexity and fruit BRIX of mutants bip0663 were both significantly increased in comparison to that of Lukullus (Fig.2A and 2B).
However, another *bip* mutant, *bip2*, had significantly increased leaf complexity ([Fig.2A](#fig2a)), but fruit BRIX similar to its isogenic cultivar, M82 ([Fig.2B](#fig2b)). These results indicate changes in leaf complexity are not directly correlated fruit BRIX. Additionally, fruit BRIX of both *bip0663* and Lukullus were respectively higher than that of *bip2* and M82. Fruit yield was also measured, since yield has an impact on fruit BRIX (with a general negative correlation between yield and BRIX) (Caliman et al., 2007). We saw fruit yield in *bip0663* similar to Lukullus, while *bip2* fruit yield was lower than M82, suggesting that the difference between *bip0663* and Lukullus BRIX was not directly related to variation in yield. Similar to fruit BRIX, fruit yield of *bip0663* and Lukullus was also significantly higher than that of *bip2* and M82. This result was confirmed by sampling across two seasons (2016 and 2017) in the field and in greenhouse experiments ([Figure S2](#figs2)).

Influence of Leaf Traits on fruit BRIX between *bip0663* and Lukullus

To validate whether changes in leaf traits contributed to the changes in fruit BRIX between *bip0663* and Lukullus, we performed a grafting assay where the Lukullus and *bip0663* separately functioned as reciprocal scion and rootstock. During flowering and fruiting stage, leaves on scion and flowers and fruits on rootstock were completely removed. Thus, the flowering and fruiting of scion were driven by photosynthate transfer only from the leaves on the rootstock portion. In the control group, the Lukullus and *bip0663* were self-grafted and generated a fruit BRIX ([Fig.3A](#fig3a)) that resemble their nongrafted lines ([Fig.2B](#fig2b)). In treatment group, when *bip0663* served as the rootstock for Lukullus (scion/rootstock: Lukullus/*bip0663*), fruit BRIX of Lukullus was significantly increased compared with its self-grafted line (Lukullus/Lukullus), and when Lukullus served as the rootstock for *bip0663* (*bip0663*/Lukullus), fruit BRIX of *bip0663* was decreased compared with to its self-grafted line (*bip0663/*bip0663*) ([Fig.3A](#fig3a)). In addition, measurements of fruit yield show that there was no significant difference in fruit yield between control and treatment group ([Fig.3B](#fig3b)). These results indicate changes in fruit BRIX between *bip0663* and Lukullus were either caused by photosynthate quantities or efflux from leaves or changes in root sink strength.

It was possible that the grafts containing Lukullus rootstock could have reduced fruit sugar due to increased sink strength of Lukullus roots. To determine if differences in root sink strength could have contributed to the differences in fruit BRIX, a second grafting assay was performed
in which the roots of each genotype were reciprocally grafted. Root grafts with bip0663 scion had the same high fruit BRIX and yield, regardless of the root genotype. Similarly, root grafts with Lukullus scion showed lower fruit BRIX and yield, regardless of the root genotype (Fig.4). There were no significant differences in fruit BRIX or yield when comparing bip0663/bip0663 to bip0663/Lukullus or Lukullus/Lukullus to Lukullus/bip0663 grafts (Fig.4). This supports the hypothesis that the presence of bip0663 source leaves led to increased fruit BRIX of the grafts.

To further examine the differences between bip0663 and Lukullus source leaves, the sugar and starch content of leaves was measured at dusk. The leaves of bip0663 had less sugar (p=0.0939) and less starch (p=0.0074) than the leaves of Lukullus (Fig.5). This suggests that bip0663 source leaves export photosynthate more efficiently than those of Lukullus.

Leaf shape analysis of bip mutants and wildtype

Since the grafting experiment indicated that changes in leaf features could drive changes in fruit BRIX, and recent studies in an introgression population and a selected group of heirloom tomato varieties show leaf shape is strongly correlated with fruit BRIX and sugar accumulation (Chitwood et al., 2013), we did leaf shape analysis on bip mutants and their isogenic wildtype cultivar to see whether changes in fruit BRIX between these genotypes were also correlated with variation in leaf shape. Results from PCA analysis of a total of 1500 primary leaflets showed that PC1 contributes 65% of all variation of leaflet shape, and is strongly correlated with leaflet area (or size) (R²=0.98), suggesting leaf size was the largest source of variation among leaflets of the 4 genotypes. PC4 contributes 3.8% of all variation and is correlation with aspect ratio with an R² of 0.6 (Fig.6A and 6B). PC2, PC3 and PC5 were not correlated with any traditional shape measures, and may describe the overall variation in leaf symmetry (Chitwood et al., 2013; Rowland et al., 2019). Fig.6C show results of traditional leaf shape measurements. Both bip2 and bip0663 shows a similar change in leaf shape compared with their corresponding isogenic wildtype backgrounds: leaflet area and solidity decreased, and leaflet aspect ratio and circularity increased. These results indicate that mutations in the BIP gene not only regulate leaf complexity, but also alter leaflet shape. Lukullus and bip0663 displayed leaflet aspect ratio and circularity significantly higher than that of bip2 and M82. Compared to both isogenic wild genotypes, both bip mutants displayed rounder leaflets, with significantly higher aspect ratios and circularity measures.

Leaf photosynthesis of bip mutants and wildtype
In order to determine leaflet contribution to fruit sugar, we performed leaflet A, \(gst\), PARI, and \(\Phi\)PSII measurements on \(bip\) mutants and their corresponding isogenic wildtype cultivars during fruiting stage (week 17-21). Correlations between A and \(gst\) (Fig.7A), were similar between \(bip2\), \(bip0663\), and their corresponding wildtype cultivars, with photosynthesis reaching a maximum rate between 0.6 to 0.8 \(gst\). All genotypes reached a PARI of greater than 1100 \(\mu\)mol \(m^{-2} \text{s}^{-1}\) over the growing season. Due to differences in determinacy between the cultivars, \(bip2\) and M82 reached this peak 1~2 weeks earlier than \(bip0663\) and Lukullus (Fig.7B). Corresponding to increasing PARI with age, \(\Phi\)PSII had an overall downward trend across the whole fruiting season in all genotypes (Fig.7C). Across the whole season, average photosynthetic rates of \(bip2\) and M82 were higher than those of \(bip0663\) and Lukullus (Fig.7D).

Leaf Vascular Patterning of \(bip\) Mutants and Wildtype

Generally, carbon-compounds (such as sugar) required for fruit development and ripening are primarily synthesized in the leaf and then transported to fruit by phloem (Cocaliadis et al., 2014). Therefore, we determined the leaf vascular density of each genotype (Fig.8A and Fig.8B). While the leaf vascular density of \(bip0663\) was significantly reduced compared with Lukullus, the leaf vascular density of \(bip2\) was the same as M82. In addition, overall leaf vascular density of \(bip0663\) and Lukullus both was lower than that of \(bip2\) and M82. Given that changes in leaf vascular density roughly corresponded with the difference in fruit BRIX, we performed a correlation analysis between leaf vascular density and fruit BRIX in all \(bip\) mutants and isogenic wildtype cultivars (Fig.8C). A negative correlation with \(R^2=0.844\) and \(p\) value<2.2e-16 was detected (Fig.8C). This suggest fruit BRIX is tightly and significantly negatively correlated with leaf vascular density.

Fruit BRIX of \(bip3\) and Genotypes with Altered Leaf Vascular Density

To further confirm the correlation between leaf vascular density and fruit BRIX, we measured the leaf vascular density and fruit BRIX of several other tomato varieties (Fig.9). A mutant phenotype with high fruit BRIX, was found and identified in a mutagenized M82 line, and had rounder fruits, hence we called it M82 “Round” Morph (MRM). MRM had low leaf complexity and big leaflets similar to M82, but with fruit BRIX and yield both significantly higher than M82 (Fig.9A). Genotyping results show that the \(BIP\) gene sequence in this line is identical to that in M82. Leaf vascular density analysis of MRM identified extremely reduced vascular density compared to M82 (Fig.9A and 9B). \(bip3\) is another \(bip\) mutant in the isogenic
M82 background but with a similar leaf vein density as M82. *Silvery Fir Tree (SiFT, an Heirloom tomato) and sf*\(^{ml}\) (*solanifolia, woxl* gene mutant) (Burko and Ori, 2013) both had a low leaf vein density (Fig.9A and Fig.8B). The leaf vein density of *MRM, SiFT* and *sf*\(^{ml}\) was significantly lower than that of *bip3* and M82, while the fruit BRIX was significantly higher than *bip3* and M82 (Fig.9B and C). There was a high correlation (\(R^2=0.855, \text{p-value}=2.2\text{e-16}\) between leaf vein density and fruit BRIX, further indicating a connection between these two traits (Fig.9D).

Differential Gene Expression

To understand global transcriptional alterations between high and low BRIX phenotypes and their possible links to leaf vascular density, we performed RNA-seq analysis on leaves of *bip0663*, Lukullus, M82, and *bip2*. RNA was extracted at three developmental stages (SAM, young leaf and mature leaf) during fruiting stage (17 weeks from germination).

Differentially expressed genes were defined using ANOVA-like test with |logFC|>1 and FDR<0.05. A total of 750 DEGs were obtained between high BRIX genotypes (HB, with low leaf vein density, included *bip0663* and Lukullus) and low BRIX genotypes (LB, with high leaf vein density, included *bip2* and M82) across three stages. Further, 205 genes were defined to be differentially expressed between *bip0663* and Lukullus, and 602 genes were defined to be differentially expressed between HB and LB. We found that 57 genes were shared between these two sets of DEGs (Fig.10A, Table S1). These 57 DEGs were overrepresented in many GOslim categories including cellular process, response to stress, metabolic process, and carbohydrate metabolic process (Table S2).

Many genes regulating developmental related processes exhibit broadly conserved function across plant species, and this is particularly true of genes relating to leaf veins and leaf development (Townsley and Sinha, 2012). Therefore, to narrow down target genes that may be causal for leaf vascular density alterations, we focused on literature curated genes that are already known to regulate leaf vein development in the model species *Arabidopsis thaliana* (Wenzel et al., 2008; Paul et al., 2013, Parsons-Wingerter et al., 2014). Tomato genes that are orthologous to literature curated genes in *Arabidopsis thaliana* were generated and named LCV (the literature-curated vascular related genes, Table S3). Interestingly, a shared LCV gene *Solyc05g045670* (*GLUCOSE-6-PHOSPHATE/PHOSPHATE TRANSLOCATOR 2, GPT2*) was...
detected in both sets of DEGs (Fig.10A). In SAM and YL, expression of GPT2 were down regulated in both bip0663 and Lukullus compared to other genotypes, and the expression of GPT2 in bip0663 was down regulated relative to Lukullus (Fig.10B). Another genotype identified to have low vascular density and high fruit BRIX, SiFT (Fig. 9A and B), also has down regulated GPT2 expression compared to M82 in P4 leaf primordia (Figure S3) (Nakayama et al., 2020). Solanum pennellii, a wild relative of tomato, with high fruit BRIX, has lower expression of GPT2 in leaves compared to M82 (Koenig et al., 2013). Analysis of its promoter sequence compared to M82 shows SNPs in several putative cis-regulatory elements identified by NSITE-PL (Shahmuradov et al., 2015), including the transcription factor binding sites for HVH21 and GT1 (LRE), and the G-box binding site (Figure S4) (Krusell et al., 1997; Hiratsuka et al., 1997; Ezer et al., 2017).

Co-expression analysis of differential expressed genes

To detect changes in the patterns of expression of the DEGs between phenotypes with different fruit BRIX, we performed DiffCorr analysis (Fukushima, 2013; Ichihashi et al., 2014) on all detected DEGs. DiffCorr networks were separately constructed on all DEGs between bip0633 and Lukullus comparison (bipvsLu Diffcorr network, Figure S5A) and also between HB and LB comparisons (HvsL Diffcorr network, Figure S5B) with cutoff adjusted p-value<0.05. In these DiffCorr networks nodes with more connected edges represent genes which have the most differential co-expressions between the two compared co-expression networks. Of the top 20 ranked Diffcorr genes, 11 genes were shared and highly differentially co-expressed between bipvsLu and HvsL Diffcorr networks (Figure S5 and Table S4). The expression patterns of these genes were highly different between bip0663 and Lukullus, and also between HB and LB comparisons. Six of these 11 genes were reported to be involved in regulating cellular processes, cell walls, leaf vein development or sugar metabolism. During leaf development, LTP4 (Non-specific lipid-transfer protein, Solyc08g067500, leaf vascular development related), AHL3 (AT hook motif DNA-binding family protein, Solyc03g007150, leaf vascular development related) and FUT11 (Alpha 1,3 fucosyltransferase, Solyc01g108110, cell, cell wall, and leaf vascular development related) were all down regulated in bip0663 and Lukullus, in young leaves and mature leaves compared with bip2 and M82 (Wenzel et al., 2008; Zhou et al., 2013; Bakker et al., 2001). PGL1 (6-phosphogluconolactonase, Solyc01g010250, cell, cell wall, and leaf vascular development related) was up regulated in bip0663 and Lukullus
in ML (Figure S6). Thus, these genes might play an important role in regulating fruit BRIX and leaf vascular density between bip0663, Lukullus, bip2, and M82.

In addition, many DEGs detected between the HB and LB groups were involved in regulating both development and carbohydrate metabolism (Table S5). We therefore hypothesize that these genes might be co-expressed during leaf vascular development and involved in regulating leaf sugar metabolism either directly or indirectly through vascular transport processes. To validate this hypothesis, we performed correlation analysis and constructed a gene coexpression network across all genotypes using DEGs enriched in “transcription and development” and “carbohydrate and biosynthesis” related GO terms. Correlation analysis showed most of “transcription and development” related DEGs and “carbohydrate and biosynthesis”-related genes are highly correlated, whereas GPT2 was shown to be positively correlated with many genes related to carbohydrate and biosynthetic process (Fig. 10C and Table S6, Pearson correlation with BH adjusted p value<0.05), such as Solyc01g074030 (Beta-glucosidase gene). Interestingly, LTP4 showed significantly positive correlation with GPT2. In the Co-expression network, community C3 shows significant enrichment of the shared top ranked DiffCorr genes (including AHL3, PGL1, XTH5, GAE4 and FUT11) listed in Table S5 and is connected to other two communities (C1 and C2), which compose a core network (with hub genes with >100 edges). C1 was enriched for genes related to transcription initiation and cell fate specification GO terms, and C2 contained genes involved in glucose metabolic process, carbohydrate biosynthetic process, plant organ development, hormone-mediated signaling pathway and shoot system development (Table S7). GPT2 can be found on the border of the core network, within C1 and co-expressed with several genes with hubs >50, revealing it might be an important gene that connects leaf vein development and carbohydrate biosynthetic processes together. C3 contained genes involved in glucose-6-phosphate metabolic process, and C5 was enriched for genes involved in cellular carbohydrate biosynthetic processes.

DISCUSSION

Since sugars synthesized in leaves are the primary source of energy for fruit development and ripening (Cocaliadis et al., 2014), we and others have investigated the link between leaf and fruit. Previous studies have shown leaf traits, such as leaf shape and size, are strongly correlated with fruit quality and yield (Chitwood et al., 2013; Rowland et al., 2019, Gupta et al. 2020). In
this study, we used grafting experiments to analyze the influence of leaf traits on fruit sugar level. Our results show that changes in leaves can cause variation in fruit BRIX. Leaf shape analysis showed that both bip mutants had rounder leaflets, with significantly higher aspect ratios and circularity measures, compared to both isogenic cultivars. This suggests bip mutations caused not only high leaf complexity but also rounder leaves. Results also show that leaflet roundness of bip0663 and Lukullus (HB genotypes) was significantly higher than bip2 and M82 (LB genotypes). These results agree with previous research that showed tomato with rounder and more circular leaves tend to have the highest sugar content in their fruit (Chitwood et al., 2013; Rowland et al., 2019). Although bip2 has rounder leaves than M82 it does not have measurably higher fruit BRIX (Fig. 2B), suggesting that the roundness caused by the bip mutation does not, by itself, lead to increased BRIX.

A previous study (Chitwood et al., 2013) suggested the correlation between leaf shapes and fruit sugar content may be due to the impact of leaf shape on photosynthetic capacity. However, we found that across the whole season, average photosynthetic rates of bip2 and M82 (LB genotypes) were higher than those of bip0663 and Lukullus, perhaps resulting from high vein density (vein length per unit area) in the LB genotypes (Sack and Scoffoni, 2013). Thus, the variation in fruit BRIX between these genotypes was likely due to aspects other than leaf photosynthesis. In addition, while mutations in the BIP gene cause increased leaf complexity, only bip0663 has increased fruit BRIX compared with Lukullus. This suggests that leaf complexity is not the cause of changes in fruit BRIX between bip0663 and Lukullus. This is consistent with the results from path modeling connections between leaf traits and fruit BRIX in multiple heirloom cultivars (Rowland et al., 2019). The same path modeling also indicated that photosynthesis was not a major contributor to fruit BRIX (Rowland et. al., 2019).

In leaves, sugars synthesized through photosynthesis are first loaded into leaf veins and then transported out of the leaves to the rest of the plant sinks, such as fruit. Thus, leaf veins also play an important role in fruit sugar accumulation by contributing to transport of carbohydrates (Cataldo, 1974; Haritatos et al., 2000; Sack and Scoffoni, 2013). Theoretically, higher leaf vein density will increase the contact between vascular and photosynthetic tissues and lower the distance of photosynthate transportation (Adams et al., 2007; Sack and Scoffoni, 2013). Several studies have shown high leaf vein density can not only enable higher K_{leaf} (leaf hydraulic conductance) and higher rates of gas exchange per leaf area (Sack and Frole, 2006; Boyce et al.,
Based on these studies, with all else being equal, plants with high leaf vein density should have higher fruit sugar levels. However, in this study leaf vein density was found to be negatively correlated with fruit BRIX in bip mutants and their corresponding isogenic cultivars. This may be caused by the following factors: Leaves with low leaf vein density can enhance mesophyll light capture in shade and result in increased photosynthate (Brodribb et al. 2007; Zhu et al., 2012; Sack and Scoffoni, 2013). Additionally, many free-ending veins were observed in bip0663 and Lukullus leaves (Fig.9), which can promote sugar export (Adams et al., 2007).

Leaf veins, similar to leaf shapes, also have a remarkable diversity in architecture within and across species. Numerous studies on mutant phenotypes have shown auxin signaling networks play an important role in patterning leaf vasculature. Polar auxin transport (PAT), as a positional cue, determines the sites of vascular cell differentiation, and inhibition of auxin transport can lead to excessive leaf vein growth in Arabidopsis (Enrico et al., 2006). Since auxin also patterns blade outgrowth, leaf morphogenesis and vascular pattern formation can be coupled (Koenig et al., 2009). Genetic and molecular studies have identified many important genes that are involved in regulating vascular pattern formation that are related to auxin transport or biosynthesis (Miyashima et al., 2013; Biedroń and Banasiak, 2018). For example, MONOPTEROS/AUXIN RESPONSE FACTOR 5 (MP/ARF5) and TARGET OF MONOPTEROS 5 (TMO5) are essential for provascular establishment (Han et al., 2018), AT HOMEobox 8 (ATHB8) defines preprocambial cell state that is a prelude to vein formation, and ACAULIS5 (ACL5) and BUSHY AND DWARF 2 (BUD2), which regulate polyamine synthesis, can inhibit auxin-induced xylem differentiation (Baima et al., 2014), while PHLOEM INTERCALATED WITH XYLEM (PXY) and CLAVATA 3/ESR-RELATED 41/44 (CLE41/44) regulate vascular organization (Etchells and Turner, 2010). Moreover, few genes such as VASCULAR-RELATED NAC-DOMAIN 6/7 (VND6/7), NAC SECONDARY WALL THICKENING PROMOTING FACTOR 1/2 (NST1/2) and ALTERED PHLOEM DEVELOPMENT (APL) are also reported to be related to leaf vascular patterning though regulation of phloem or xylem differentiation (Bonke et al., 2003; Mitsuda et al., 2007; Yamaguchi et al., 2010). In addition, using auxin transport inhibitor (NPA) induced vascular overgrowth, Wenzel and coworkers (Wenzel et al., 2008) identified many vascular related genes that were previously not known to have a role in vascular differentiation in Arabidopsis. These include At1g61800 (GLUCOSE-6-PHOSPHATE/
PHOSPHATE TRANSLOCATOR 2, GPT2), At3g16360, At1g07430 (PROTEIN PHOSPHATASE 2C), and At5g17220 (TRANSPARENT TESTA 19, TT19). These genes had vascular-related expression in transgenic Arabidopsis plants and were notably up-regulated in tissue with vascular overgrowth. In our study, GPT2 (Solyc05g04567, a homolog of At1g61800) was significantly down regulated in low leaf vein density genotypes such as bip0663 and Lukullus, suggesting correlation between leaf vein density and expression of GPT2. Recent studies have shown that GPT2 functions in promoting cell proliferation, which would be one way to link GPT2 with leaf development and vascular patterning. Mutants in gpt2 may have accelerated chloroplast differentiation (Van Dingenen et al., 2016). GPT2 is also involved in starch biosynthesis (Bakker et al., 2001; Dyson et al., 2015). In leaves, GPT2 is responsible for transporting of Glucose-6-phosphate (G6P) into plastids where G6P can be used as a carbon source for starch biosynthesis. Therefore, down regulation of GPT2 might decrease transport of glucose into plastids and increase transport of glucose out of the leaf in bip0663 and Lukullus compared with bip2 and M82. Our study showed decreased leaf starch and sugar in bip0063 when compared to Lukullus, which may also be indicative of increased export of sugars from the leaf.

There are two main explanations for the relationship between leaf morphology and fruit sugar content. The first is the purely developmental link between the leaves and the fruit. Studies have shown similarity in morphology (such as size, aspect ratio, etc.) between leaves and fruits (Xiao et al., 2008; Chitwood et al., 2013). This is borne out by the fact that the morphological development of fruits and leaves is regulated by a similar gene regulatory network (Barkoulas et al., 2008). The second is that either genetic changes in overall metabolism alter leaf development or changes in carbon metabolism induce morphological changes in leaves (Hackel et al., 2006; Lawson et al., 2006; Raines and Paul, 2006). For example, ARF4 not only regulates the morphology of leaves and fruits (Yifhar et al., 2012), the accumulation of chloroplasts and the greening of fruits (Jones et al., 2002), but was also recently shown to have influence on fruit sugar levels (Sagar et al., 2013). Because GPT2 has been shown to regulate cell proliferation and is also involved in starch biosynthesis, it could be a common regulator for leaf vein density and carbon allocation. In addition, our analyses show that DEGs enriched in “transcription and development” – GO terms were highly correlated with those enriched in “carbohydrate and biosynthetic”- GO terms. In our gene co-expression network, GPT2 was in the core network involved in biosynthetic and development process and co-expressed with several highly
connected genes (hubs >50), suggesting that it might be an important and conserved gene that connects leaf vein development and carbohydrate biosynthetic process.

METHODS

Plant Materials

The classic bip mutants used in this study and are bip2 (isogenic cultivar: M82) and bip0663 (bip accession number LA0663) (isogenic cultivar: Lukullus). M82, bip0663, and Lukullus seeds were obtained from the Tomato Genetics Resource Center (TGRC, http://tgrc.ucdavis.edu/). bip2 (accession number e0652b) was obtained from the saturated mutation library of tomato (Menda et al., 2004).

Seed germination and plant growth Conditions

Tomato seeds were treated with 50% bleach for 10 min and rinsed 3-5 times with water, then placed on water dampened Phytatrays (Sigma Aldrich). Seeds were moved to the dark and incubated at room temperature for 3 days, then transferred to a growth chamber set at 25°C with 16:8 photoperiod until seedlings had expanded cotyledons (approximately 4-7 days). The seedlings were then transplanted to 72 Seedling Propagation trays and grown in the chamber for 7 days. After that, seedlings were transferred to the greenhouse or grown for 2 weeks and then transplanted to field. The greenhouse plants were watered from the top to encourage hardening. Field plants were watered with furrow irrigation once weekly.

Analysis of leaf complexity and shape

Mature fully expanded leaves from adult nodes (leaf 5 and above) were used for leaf complexity and shape analysis, and at least five leaves were collected from each plant for analysis. Leaf complexity is defined as the number of all leaflets present on the leaf. For leaf shape analysis, intercalary and secondary/tertiary leaflets were ignored due to their irregular shapes. Leaf shape was analyzed using a method previously described (Ichihashi et al., 2014). After leaf complexity was measured, the leaflet images were used for shape and size analysis. Leaflets were imaged using Epson Perfection V600 Photo scanner (Epson America Inc., CA, USA), and each individual leaflet image was saved as a binary image so that the leaflet was black on a white background. The binary images were then processed in R using MOMOCS
After importing and aligning along their axes, leaflet images were then processed using elliptical Fourier (eFourier) analysis based on the number of harmonics calculated from the MOMOCS package (Bonhomme et al., 2014; Rowland et al., 2019). Traditional leaflet shape measures such as leaflet area (size), solidity, circularity, and roundness (aspect ratio) were measured based on figure pixel. PCA analysis was performed on eFourier results and statistical correlations between Principal Components (PCs) and traditional leaflet shape measures were used to determine the leaf characteristics captured by each PC.

Determination of fruit sugar content

To measure the fruit BRIX, approximately nine tomato fruit from each plant were collected and taken to the lab where the juice was collected and BRIX measured using a refractometer (HI 96801 Refractometer, Hanna Instruments Woonsocket, RI).

Analysis of leaf vein density

For leaf vein analysis, leaf discs with an area of 0.28 cm\(^2\) and were collected by a hole puncher from the second lateral primary leaflets of each plant (the sampling sites were located between second-order veins, seen in Figure S1A). Leaf discs were cleared using a modified method from the Ainsworth lab (Bishop et al., 2018; Rowland et al., 2019). Leaf discs were heated in 80% EtOH for 20 minutes at 80\(^\circ\)C and this process repeated twice or until leaf discs turned white. Leaf discs were then placed in 5% NaOH and heated to 80\(^\circ\)C for 5 minutes and were cooled by incubating at room temperature for 10 minutes. After that NaOH was removed and leaf discs were treated with 50% bleach for approximately 30 seconds. Bleach treatment was repeated until leaf discs were clear white. Then leaf discs were washed by ddH\(_2\)O and vacuum infiltrated with 50% glycerol for 20 minutes. Cleared leaf discs were placed on slides and leaf veins of leaf disc were imaged using Eclipse C1 plus microscope (Nikon Instruments Inc., NY, USA) at a fixed magnification (4X). Leaf veins of images were traced and measured by LEAF GUI (Price, 2012), a tool that facilitates improved empirical understanding of leaf veins structure (http://www.leafgui.org). Leaf vein density is measured as leaf vein length per observed leaf area.

Plant photosynthesis

Leaflet A (photosynthesis), \(g_{st}\) (stomatal conductance), transpiration, and \(\Phi_{PSII}\) (percentage of photons entering PSII) were measured weekly using the LI-6400 XT Portable Photosynthesis System (LI-COR, NE, USA) from week 10 through week 15, week 17, and week...
Before measurements were taken, leaflets used for measuring were equilibrated for 2-3 minutes to stabilize photosynthetic rates (Rowland et al., 2019). The measurements were done on terminal leaflets. Light within the chamber was at 2000 µmol m$^{-2}$ s$^{-1}$ PAR, CO$_2$ concentration within the chamber was set at 400 µmols mol$^{-1}$, and air flow volume within chamber was 400 µmols s$^{-1}$. Humidity, leaf, and chamber temperature (not allowed to exceed 36°C) were allowed to adjust to ambient conditions. The amount of intercepted Photosynthetically Active Radiation (PARi) was also measured in four orientations per plant and then the average PARi was calculated (Rowland et al., 2019).

Grafting assay

The grafting assay used self-grafting as controls and reciprocal grafting of the two genotypes. Lukullus (scion) grafted on bip0663 (rootstock), and bip0663 (scion) grafted on Lukullus (stock) at the first internode as the treatments, while Lukullus grafted on Lukullus and bip0663 grafted on bip0663 at the first internode served as controls (experiment setting seen in Figure S1B-D). Thirty-day old plants grown in the chamber were used for grafting. The grafted plants were allowed to recover for about 7 days before being transferred outside into 2-gallon pots. Once the grafts start flowering, leaves from scion and flowers from the stock were continuously removed to ensure that growth of fruit on scion was only driven by root stock leaves as source. The vegetative biomass, leaf shape, leaf complexity and leaf veins (rootstock), fruit yield, and fruit sugar (scion) were measured.

Root Grafts

For the root grafting control group, bip0663 scions were grafted onto bip0663 rootstocks, and Lukullus scions were grafted onto Lukullus rootstocks. For the treatment groups, bip0663 scions were grafted onto Lukullus rootstocks and Lukullus scions were grafted onto bip0663 rootstocks. This grafting was done with 30 day-old plants, and the junction for these grafts was in the internode between the cotyledons and first true leaves. These grafted plants were allowed to recover for 2 weeks before being transferred outside into 2-gallon pots. The grafts were allowed to flower and fruit freely and were regularly checked to assure that there were no leaves emerging from the rootstock portion of the grafts. This allowed us to determine if differences in root sink strength could lead to differences in growth of fruit. The yield and fruit sugar were measured.

Leaf Sugar and Starch Measurements
In order to determine the sugar and starch content of bip0663 and Lukullus, leaf discs with an area of 0.28 cm² and were collected with a hole puncher from the second lateral primary leaflets of each plant (the sampling sites were located between second-order veins, seen in Figure S1A). These samples were taken at dusk and immediately placed into microcentrifuge tubes containing 500ul of 100% EtOH. Samples were heated at 80°C for 20 minutes. Supernatant was immediately removed, stored at -20°C, and used for determination of sugar content (including sucrose, glucose, and fructose). Sugar content was determined as previously described (Rowland et al., 2019). Leaf discs were kept for further processing and starch extraction. Residual sugar was removed from leaves by two additional rounds of heating in 500ul 100% EtOH, discarding the supernatant each time. Leaf discs were resuspended in 500ul 5% NaOH and heated to 80°C for 20 minutes. Samples were cooled and neutralized with 125ul 5M HCl. The supernatant was removed, and leaf discs were rinsed 2X with ddH₂O. Discs were resuspended in 500μL 50mM Sodium Acetate Buffer and bead beaten by hand for 30 seconds after the addition of a small metal bead. Samples were centrifuged for 1 minute at 13K rpm. 25ul of a starch degradation mixture, containing a final concentration of 1.3U Amyloglucosidase and 220U α-Amylase, was added. Samples were incubated at RT for 1 hour, followed by 65°C for 23 hours. Enzymes were deactivated by heating to 80°C for 5 minutes. These samples, now containing glucose were quantified using the same protocol as for sugar samples above.

RNA Extraction

The shoots or leaf primordia were sampled and frozen in liquid nitrogen or stored at -80°C. About 100 mg tissue was ground using a Bead-Beater (Bio Spec Products Inc., OK, USA) and RNA was then extracted using a published protocol in routine use in the laboratory (Townsley et al., 2015).

RNA-seq Library Preparation and Sequencing

Tissue (e.g. shoot apical meristem, young leaf, and mature leaf) used for RNA-seq libraries for Illumina sequencing were collected using the method previously described (Townsley et al., 2015). RNA-seq libraries were prepared from collected tissues using the BrAD-seq method (Townsley et al., 2015). Libraries were prepared from 5 replicates of each type of tissue, collected at fruiting stage (week 17). These RNA-seq libraries were sequenced at the Vincent Coates Genomics facility at University of California, Berkeley on a single lane of the
Illumina Hi-Seq 4000 platform and 50-bp single-end reads were generated. A total of 326 M raw paired-end 100 bp reads were generated, ranging from 5.7 to 16.3 M reads per library.

Preprocessing of Illumina Reads

Illumina Reads were trimmed and mapped to reference using CLC Genomics Workbench (https://www.qiagenbioinformatics.com/). Low-quality reads with average Phred quality score <20 and low-quality bases from 3’ end of the reads were trimmed using the Trim tool in CLC Genomics Workbench. The clean reads were aligned to the tomato reference genomic sequence (ITAG 3.0, *Solanum lycopersicum* Heinz 1706) by using the Large Gap Read Mapping tool in CLC Genomics Workbench, which models the presence of introns in the tomato genome reference sequence, but are expected to be absent from the corresponding transcriptome. We used the Transcript Discovery Plugin in CLC Genomics Workbench to generate a consensus CDS mapping track based on the existing reference genome (ITAG3.2; https://solgenomics.net). The new transcripts tracks were used as reference for subsequent read mapping.

Differential Expression Analysis

Reads from individual libraries were mapped to the annotated transcripts reference using default parameters in the RNA-seq mapping tool in CLC Genomics Workbench. Then differential expression analysis between *bip* mutants and wildtype across three tissues was carried out using limma-voom (Law et al., 2014; Costa-Silva et al., 2017). Transcripts with very low estimated counts (cpm<2) were removed using limma-voom. Genes with |logFC|>1 and FDR<0.05 were considered to be differentially expressed genes (DEGs).

Coexpression and DiffCorr network analysis

DEGs detected between *bip0663* and Lukullus, and between low (M82 and *bip2*) and high (Lukullus and *bip0663*) BRIX phenotypes were used for constructing gene co-expression networks with the cutoff values for Pearson correlation coefficient (adjusted P < 1.0×10⁻⁸) to capture gene interactions (Chitwood et al., 2013). Networks were constructed using the WGCNA package in R, and network communities were determined by the Fast-Greedy modularity optimization algorithm. Network visualization was done in Cytoscape (Shannon et al., 2003). Gene ontology of network communities was explored using PANTHER GO-Slim (Mi et al., 2019).

DiffCorr analysis was performed on all detected DEGs using the DiffCorr Bioconductor package in R (Fukushima, 2013; Ichihashi et al., 2014). In addition, a gene co-expression
network across *bip0663*, Lukullus, *bip2* and M82 was constructed using DEGs enriched in “transcription and development” and “carbohydrate and biosynthetic”-related GO terms.

GO Enrichment Analysis

GO enrichment analysis of the differentially expressed genes was performed using the GOSeq Bioconductor package in R (Young et al., 2012). GO analysis for gene co-expression network communities was performed using PANTHER (Thomas *et al.*, 2003; Mi *et al.*, 2019).

DNA extraction and DNA-seq library preparation

DNA was extracted from 4 week old M82 plants using GeneJET Plant Genomic DNA Purification Mini Kit (Thermo Scientific, Waltham, MA, USA). DNA-Seq libraries were prepared based on BrAD-seq (Townsley *et al.*, 2015) with the following modifications: After DNA fragmentation with Covaris E220 (Covaris, Inc. Woburn, MA, USA), the fragmented DNA was end-repaired, A-tailed, and adapter ligated with Y-adapter. Enrichment PCR was then performed with the adapter ligated product as described Townsley *et al.*, 2015. After final library cleanup with AMPure beads (Beckman Coulter, Brea, CA, USA), DNA-Seq libraries were sequenced at Novogene (Novogene Inc. Sacramento, CA, USA).

WGS Mapping and promoter analysis

Solanum pennellii LA01716 paired-end Illumina reads were acquired from the European Nucleotide Archive (http://www.ebi.ac.uk/ena/; accession number PRJEB5235). *S. pennellii* and M82 reads were mapped to ITAG 3.0, *Solanum lycopersicum* Heinz 1706 genome using BWA (Li *et al.*, 2009). Post-processing of alignment was completed with Samtools (https://github.com/samtools/samtools), and VCF files were generated using Bcftools (http://samtools.github.io/bcftools/bcftools.html). Mapping and VCF files were imported into CLC Genomics Workbench 11.0 software for comparison with M82 sequence. A 3kb region upstream of *GPT2* (Solyc05g045670) was analyzed for promoter motifs using NSITE-PL (Shahmuradov *et al.*, 2015).

Statistical Analysis

Statistical analyses of leaf shape, leaf complexity, and leaf vein density were all performed using JMP (JMP Pro 14.0.0, 2018 SAS Institute Inc.) software. General Linear Regression Model (GLM) and One-Way ANOVA followed by Tukey’s-HSD were used to determine statistical significance in measurements. The BRIX and yield measurements from grafts were analyzed using JMP Pro software. Significance was tested using ANOVA and
Tukey’s-HSD pairwise comparisons. Leaf sugar and starch data was analyzed using JMP Pro software. Significance was tested using Student’s t test.

SUPPLEMENTAL MATERIAL

Figure S1. Diagram of leaf disc sampling and grafting experiment.

Figure S2. Fruit BRIX and yield of bip mutants.

Figure S3. Normalized expression of GPT2 in M82 and SiFT.

Figure S4. Promoter sequence alignment of GPT2.

Figure S5. Diffcorr networks for bip vs. Lu and HB vs. LB.

Figure S6. Gene expression patterns of Diffcorr genes.

Table S1. Differentially expressed genes for bip0663 vs. Lukullus and HB vs. LB.

Table S2. GO analysis of 57 shared DEGs.

Table S3. Literature-curated vascular related genes.

Table S4. 11 shared Diffcorr genes.

Table S5. GO terms for HB vs. LB DEGs.

Table S6. GO terms for genes highly correlated with GPT2.

Table S7. GO analysis of 5 gene co-expression network communities.

DATA DEPOSITION

RNA-seq and WGS libraries are deposited in NCBI’s SRA database (Accession number PRJNA703300). R scripts used for data analysis and network construction can be found on GitHub (https://github.com/karoczar/Sinha-Lab-Scripts).

ACKNOWLEDGMENTS

We acknowledge help from Mary Lee, Kirsten Brand, Gabriel Luis Moreira, Kristina Khuu, Eduardo Ramirez, Divya Kumaria, and Amber M. Flores in field sample, leaf and BRIX data collection, and seed collection. We also thank John Harada, Leonardo Jo, Rie Uzawa, Siyu Li, and members of the Sinha Lab for advice. We also thank CyVerse for online data storage.
Support from USDA-NIFA (grant no. 2014-67013-21700) to NRS, Rosalinde H. Russell Fellowship to SDR, and JSPS KAKENHI (19K23742, 20K06682) and a JSPS Fellowship (13J00161) to HN is gratefully acknowledged.

FIGURE LEGENDS

Fig.1 Leaf morphology of bip mutants and diagram of bip mutations. A, Leaves of bip mutants and their corresponding wildtype cultivars; B, Wildtype BIP gene with ELK and Homeodomain, represented by gray and black boxes, respectively. Diagram of BIP protein of bip0663 and bip2.

Fig.2 Leaf complexity, fruit BRIX, and yield of bip mutants and their corresponding isogenic cultivars. A, Leaf complexity is denoted by the number of all leaflets present on the leaf; B and C, Fruit BRIX (B) and fruit yield (C) of bip mutants and their corresponding isogenic cultivars.

Fig.3 Fruit BRIX and yield of grafts. A, Fruit BRIX; B, Yield. The grafting assay used a standard least squares model of data. Graft junctions are diagramed, bip0663 (blue) and Lukullus (red).

Fig.4 Fruit BRIX and yield of Root Grafts. A, Fruit BRIX; B, Yield. The root grafting assay used a mixed model including random effect of positional data. Graft junctions are diagramed, bip0663 (blue) and Lukullus (red).

Fig. 5 Quantified leaf sugar and starch contents for bip0663 and Lukullus. bip0663 has lower leaf sugar than Lukullus (p=0.0939) and significantly lower leaf starch compared to Lukullus (p=0.0074).

Fig.6 Leaf shape analysis. A and B, PCs of all primary leaflets measured (A) and their relationship to traditional shape measures (B); C, Traditional shape measures of primary leaflets of bip2, bip0663, M82 and Lukullus.

Fig.7 Leaf photosynthesis across the whole field season. A, Photosynthetic rate and stomatal conductance were measured weekly using the LI-6400XT across the whole field growing season. PARi (B) and phiPS2 (C) was measured weekly across the whole field growing season and values are the mean measurements over time and error bars represent standard error. D, The average photosynthetic rate across whole measured season in umol CO$_2$ m$^{-2}$s$^{-1}$.
Fig. 8 Leaf vascular patterning micrographs and density analysis. A, Leaf clearing images of bip mutants and their isogenic wildtype cultivars, micrographs taken at a fixed magnification of 4X. B, Leaf vein density was measured by leaf GUI for each individual leaf disc and a mean value was calculated, error bars represent standard error. C, Correlation between leaf vein density and fruit BRIX across bip mutants and their wildtypes was analyzed using JMP with “Spearman” method.

Fig. 9 Leaf Vascular Density and Fruit BRIX in Other Tested Tomato Varieties. A, Leaf clearing images of bip mutant, and other varieties, taken at a fixed magnification of 4×10. B, Leaf vascular density was measured using leaf GUI for each individual leaf disc and a mean value was calculated, and error bars represent standard error. C, BRIX of tomato fruits. D, Correlation between leaf vein density and fruit BRIX analyzed using JMP with “Pearson” method.

Fig. 10 Gene Co-expression Analysis of Differentially Expressed Genes. A, Venn diagram between bip0663 vs. Lukullus differentially expressed genes, HB vs. LB (High BRIX vs. Low BRIX group) different expressed genes, and literature-curated vascular genes (LCV). B, Normalized expression of GPT2 (Solyco5g045670) in Lukullus, bip0663, M82, and bip2 in mature leaves (ML), young leaves (YL), and shoot apical meristem (SAM). C, Correlation analysis of DEGs enriched in “transcription and development” and “carbohydrate and biosynthetic”-related GO terms, cut off value for Pearson correlation coefficient was “BH” adjusted p value<0.05. G6PT2 was positively correlated with many genes related to carbohydrate and biosynthetic process (| r | value>0.5 and “BH” adjusted p value <0.05). D, Gene co-expression network constructed across bip0663, Lukullus, bip2 and M82 using DEGs enriched in “transcription and development” and “carbohydrate and biosynthetic processes”-related GO terms. Nodes (genes) with at least one edge (298 nodes and 7517 total edges) are represented. The communities are represented by different colored nodes (C1-C5). Top DiffCorr genes (Table S5) are labeled in black, G6PT2 is circled in red.

LITERATURE CITED

Adams WW, Watson AM, Mueh KE, Amiard V, Turgeon R, Ebbert V, Logan BA, Combs AF, Demmig-Adams BJPR (2007) Photosynthetic acclimation in the context of structural constraints to carbon export from leaves. Photosynth Res 94: 455–466
Allen Stevens M (1979) TOMATO QUALITY: POTENTIAL FOR DEVELOPING CULTIVARS WITH IMPROVED FLAVOR. In Symposium on Quality of Vegetables 93, pp 317-330
Baima S, Forte V, Possenti M, Peñalosa A, Leoni G, Salvi S, Felici B, Ruberti I, Morelli G (2014) Negative feedback regulation of auxin signaling by ATHB8/ACL5-BUD2 transcription module. Molecular plant 7:1006-1025
Bakker H, Schijlen E, de Vries T, Schiphorst WECM, Jordi W, Lommen A, Bosch D, van Die I (2001) Plant members of the α1→3/4-fucosyltransferase gene family encode an α1→4
fucosyltransferase, potentially involved in Lewisa biosynthesis, and two core α1→3-fucosyltransferases. FEBS Letters 507: 307-312

Baldwin E, Goodner K, Plotto A (2008) Interaction of volatiles, sugars, and acids on perception of tomato aroma and flavor descriptors. Journal of food science 73: S294-S307

Barkoulas M, Hay A, Kougioumoutzi E, Tsiantis M (2008) A developmental framework for dissected leaf formation in the Arabidopsis relative Cardamine hirsuta. Nature Genetics 40: 1136

Beckles D, Hong N, Stamova L, Luengwilai K (2012) Biochemical factors contributing to tomato fruit sugar content. Fruits 67:49-64

Beullens K, Mészáros P, Vermeir S, Kirsanov D, Legin A, Buysens S, Cap N, Nicolai BM, Lammertyn J (2008) Analysis of tomato taste using two types of electronic tongues. Sensors and Actuators B: Chemical 131: 10-17

Biedroń M, Banasiak A (2018) Auxin-mediated regulation of vascular patterning in Arabidopsis thaliana. Plant Cell Reports 37: 1215-1229

Bishop KA, Lemonnier P, Quebedeaux JC, Montes CM, Leakey AD, Ainsworth EA (2018) Similar photosynthetic response to elevated carbon dioxide concentration in species with different phloem loading strategies. Photosynthesis research 137: 453-464

Bonhomme V, Picq S, Gauchereel C, Claude J (2014) Momocs: Outline Analysis Using R. Journal of Statistical Software 56: 1-24

Bonke M, Thitamadee S, Mähönen AP, Hauser M-T, Helariutta Y (2003) APL regulates vascular tissue identity in Arabidopsis. Nature 426: 181-186

Boyce CK, Brodribb TJ, Feild TS, Zwieniecki MA (2009) Angiosperm leaf vein evolution was physiologically and environmentally transformative. Proceedings of the Royal Society B: Biological Sciences 276: 1771-1776

Brodribb TJ, Feild TS, Jordan GJ (2007) Leaf maximum photosynthetic rate and venation are linked by hydraulics. Plant Physiology 144(4):1890-1898

Brodribb TJ, Feild TS, Sack L (2010) Viewing leaf structure and evolution from a hydraulic perspective. Functional Plant Biology 37: 488-498

Burko Y, Ori N (2013) The tomato leaf as a model system for organogenesis. Methods Mol Biol 959:1-19

Cataldo DA (1974) Vein Loading: The Role of the Symplast in Intercellular Transport of Carbohydrate between the Mesophyll and Minor Veins of Tobacco Leaves. Plant Physiology 53: 912-917

Chitwood DH, Kumar R, Headland LR, Ranjan A, Covington MF, Ichihashi Y, Fulop D, Jimenez-Gomez JM, Peng J, Maloof JN, Sinha NR (2013) A quantitative genetic basis for leaf morphology in a set of precisely defined tomato introgression lines. Plant Cell 25: 2465-2481

Chitwood DH, Maloof JN, Sinha NR (2013) Dynamic transcriptomic profiles between tomato and a wild relative reflect distinct developmental architectures. Plant Physiology 162: 537-552

Cocaliadis MF, Fernandez-Munoz R, Pons C, Orzaez D, Granell A (2014) Increasing tomato fruit quality by enhancing fruit chloroplast function. A double-edged sword? J Exp Bot 65: 4589-4598
Costa-Silva J, Domingues D, Lopes FM (2017) RNA-Seq differential expression analysis: An expanded review and a software tool. PloS one 12

Dyson BC, Allwood JW, Feil R, Xu Y, Miller M, Bowsher CG, Goodacre R, Lunn JE, Johnson GN (2015) Acclimation of metabolism to light in Arabidopsis thaliana: the glucose 6-phosphate/phosphate translocator GPT 2 directs metabolic acclimation. Plant, cell & environment 38: 1404-1417

Scarpella E, Marcos D, Friml J, Berleth T (2006) Control of leaf vascular patterning by polar auxin transport. Genes and development 20(8):1015-1027

Dyson BC, Allwood JW, Feil R, Xu Y, Miller M, Bowsher CG, Goodacre R, Lunn JE, Johnson GN (2015) Acclimation of metabolism to light in Arabidopsis thaliana: the glucose 6-phosphate/phosphate translocator GPT 2 directs metabolic acclimation. Plant, cell & environment 38: 1404-1417

Ezer D, Shepherd SJK, Brestovitsky A, Dickinson P, Cortijo S, Charoensawan V, Box MS, Biswas S, Jaeger KE, Wigge PA (2017) The G-Box Transcriptional Regulatory Code in Arabidopsis. Plant Physiology 175: 628-640

Hackel A, Schauer N, Carrari F, Fernie AR, Grimm B, Kühn C (2006) Sucrose transporter LeSUT1 and LeSUT2 inhibition affects tomato fruit development in different ways. The Plant Journal 45: 180-192

Han S, Cho H, Noh J, Qi J, Jung H-J, Nam H, Lee S, Hwang D, Greb T, Hwang I (2018) BIL1-mediated MP phosphorylation integrates PXY and cytokinin signalling in secondary growth. Nature Plants 4: 605-614

Haritatos E, Medville R, Turgeon RJP (2000) Minor vein structure and sugar transport in Arabidopsis thaliana. Planta 211: 105-111

Heuvelink E, Bakker MJ, Elings A, Kaarsemaker RC, Marcelis LFM (2005) Effect of Leaf Area on Tomato Yield. Acta Horticulturae 691: 43-50

Hiratsuka K, Chua N (1997) Light Regulated Transcription in Higher Plants. J. Plant Res. 110:131-139

Ichihashi Y, Aguilar-Martinez JA, Farhi M, Chitwood DH, Kumar R, Millon LV, Peng J, Maloof JN, Sinha NR (2014) Evolutionary developmental transcriptomics reveals a gene network module regulating interspecific diversity in plant leaf shape. Proc Natl Acad Sci USA 111: E2616-2621

Jones B, Frasse P, Olmos E, Zegzouti H, Li ZG, Latché A, Pech JC, Bouzayen M (2002) Down-regulation of DR12, an auxin-response-factor homolog, in the tomato results in a pleiotropic phenotype including dark green and blotchy ripening fruit. The Plant Journal 32: 603-613

Jones R, Scott S (1984) Genetic potential to improve tomato flavor in commercial F1 hybrids. Journal of the American society for horticultural science 109: 318-321

Kimura S, Koenig D, Kang J, Yoong FY, Sinha N (2008) Natural variation in leaf morphology results from mutation of a novel KNOX gene. Curr Biol 18: 672-677

Klee HJ, Tieman DM (2013) Genetic challenges of flavor improvement in tomato. Trends in Genetics 29: 257-262
Koenig D, Bayer EM, Kang J, Kuhlemeier C, Sinha N. (2009). Auxin patterns Solanum
lycopersicum leaf morphogenesis. Development 136(17): 2997-3006.

Koenig D, Jiménez-Gómez JM, Kimura S, Fulop D, Chitwood DH, Headland LR, Kumar R,
Covington MF, Dvisetty UK, Tat AV, Tohge T, Bolger A, Schneeberger K, Ossowski S,
Lanz C, Xiong G, Taylor-Teeples M, Brady SM, Pauly M, Weigel D, Usadel B, Fernie
AR, Peng J, Sinha NR, Maloof JN (2013) Comparative transcriptomics reveals patterns
of selection in domesticated and wild tomato PNAS 110: E2655-E2662

Krusell L, Rasmussen I, Gausing K (1997) DNA binding sites recognised in vitro by a knotted
class 1 homeodomain protein encoded by the hooded gene, k, in barley (Hordeum
vulgare). FEBS Letters 408: 25-29

Law CW, Chen Y, Shi W, Smyth GK (2014) voom: Precision weights unlock linear model
analysis tools for RNA-seq read counts. Genome biology 15: R29

Lawson T, Bryant B, Lefebvre S, Lloyd J, Raines C (2006) Decreased SBPase activity alters
growth and development in transgenic tobacco plants. Plant, cell & environment 29: 48-58

Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler Transform.
Bioinformatics, 25:1754-60.

Malundo TMM, Baldwin EA, Ware GO, Shewfelt R (1996) Volatile composition and interaction
influence flavor properties of mango (Mangifera indica L.). Proc. Fla. State Hort. Soc 109:
264-268

Menda, N., Semel, Y., Peled, D., Eshed, Y., Zamir, D. (2004). In silico screening of a saturated
mutation library of tomato. Plant J. 38, 861–872.

Mi H, Muruganujan A, Ebert D, Huang X, Thomas PD (2019) PANTHER version 14: more
genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools.
Nucleic Acids Research 47: D419–D426

Mitsuda N, Iwase A, Yamamoto H, Yoshida M, Seki M, Shinozaki K, Ohme-Takagi M (2007)
NAC transcription factors, NST1 and NST3, are key regulators of the formation of
secondary walls in woody tissues of Arabidopsis. The Plant Cell 19: 270-280

Miyashima S, Sebastian J, Lee JY, Helariutta Y (2013) Stem cell function during plant vascular
development. The EMBO journal 32: 178-193

Nakayama H, Rowland SD, Zizhang C, Zumstein K, Kang J, Kondo Y, Sinha NR (2020) Leaf
form diversification in an heirloom tomato results from alterations in two different
HOMEOBOX genes. bioRxiv 226: 851-865

Paul AL, Zupanska AK, Schultz ER, Ferl RJ (2013) Organ-specific remodeling of the
Arabidopsis transcriptome in response to spaceflight. BMC Plant Biol 13:112

Parsons-Wingerter P, Vickerman MB, Paul AL, Ferl RJ (2014) Mapping by VESGEN of Leaf
Venation Patterning in Arabidopsis thaliana with Bioinformatic Dimension of Gene
Expression. Gravitational and Space Research 2: 68-81.

Price CA (2012) LEAF GUI: analyzing the geometry of veins and areoles using image
segmentation algorithms. In High-throughput phenotyping in plants. Springer, pp 41-49

Raines C, Paul M (2006) Products of leaf primary carbon metabolism modulate the
developmental programme determining plant morphology. Journal of experimental
botany 57: 1857-1862

Rowland SD, Zumstein K, Nakayama H, Cheng Z, Flores AM, Chitwood DH, Maloof JN, Sinha
NR (2019) Leaf shape is a predictor of fruit quality and cultivar performance in tomato.
New Phytologist
Russin WA, Evert RF (1984) Studies on the leaf of Populus deltoides (Salicaceae): morphology and anatomy. American Journal of Botany 71: 1398-1415

Sack L, Frole K (2006) Leaf structural diversity is related to hydraulic capacity in tropical rain forest trees. Ecology 87: 483-491

Sack L, Scoffoni C (2013) Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future. New Phytol 198: 983-1000

Sagar M, Chervin C, Mila I, Hao Y, Roustan J-P, Benichou M, Gibon Y, Biais B, Maury P, Latché A (2013) SIARF4, an auxin response factor involved in the control of sugar metabolism during tomato fruit development. Plant physiology 161: 1362-1374

Sarlikioti V, de Visser PH, Buck-Sorlin G, Marcelis L (2011) How plant architecture affects light absorption and photosynthesis in tomato: towards an ideotype for plant architecture using a functional–structural plant model. Annals of Botany 108: 1065-1073

Shahmuradov I, Solovyev V (2015) Nsite, NsiteH and NsiteM Computer Tools for Studying Transcription Regulatory Elements. Bioinformatics 31: 3544–3545

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin A, Schwikowski B, Ideker T (2003) Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res 13: 2498-2504

Smith WK, Vogelmann TC, DeLucia EH, Bell DT, Shepherd KA (1997) Leaf Form and Photosynthesis. BioScience 47: 785-793

Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B, Daverman R, Diemer K, Muruganujan A, Narechania A. 2003. PANTHER: a library of protein families and subfamilies indexed by function. Genome Res 13: 2129-2141

Tieman D, Bliss P, McIntyre LM, Blandon-Ubeda A, Bies D, Odabasi AZ, Rodríguez GR, van der Knaap E, Taylor MG, Goulet C (2012) The chemical interactions underlying tomato flavor preferences. Current Biology 22: 1035-1039

Tieman D, Zhu G, Resende MFR, Lin T, Nguyen C, Bies D, Rambla JL, Beltran KSO, Taylor M, Zhang B, Ikeda H, Liu Z, Fisher J, Zemach I, Monforte A, Zamir D, Granell A, Kirst M, Huang S, Klee H (2017) A chemical genetic roadmap to improved tomato flavor. Science 355: 391

Townsley BT, Covington MF, Ichihashi Y, Zumstein K, Sinha NR (2015) BrAD-seq: Breath Adapter Directional sequencing: a streamlined, ultra-simple and fast library preparation protocol for strand specific mRNA library construction. Front Plant Sci 6: 366

Townsley BT, Sinha NR (2012) A new development: evolving concepts in leaf ontogeny.

Van Dingenen J, De Milde L, Vermeersch M, Maleux K, De Rycke R, De Bruyne M, Storme V, Gonzalez N, Dhondt S, Inzé D (2016) Chloroplasts Are Central Players in Sugar-Induced Leaf Growth. Plant Physiology 171: 590-605

Wang D, Seymour G (2017) Tomato Flavor: Lost and Found? Molecular Plant 10:782-784

Wenzel CL, Hester Q, Mattsson J (2008) Identification of genes expressed in vascular tissues using NPA-induced vascular overgrowth in Arabidopsis. Plant Cell Physiol 49: 457-468

Xiao H, Jiang N, Schaffner E, Stockinger EJ, van der Knaap E (2008) A Retrotransposon-Mediated Gene Duplication Underlies Morphological Variation of Tomato Fruit. Science 319: 1527

Yamaguchi M, Goué N, Igarashi H, Ohtani M, Nakano Y, Mortimer JC, Nishikubo N, Kubo M, Katayama Y, Kakegawa K, Dupree P, Demura T (2010) VASCULAR-RELATED NAC-DOMAIN6 and VASCULAR-RELATED NAC-DOMAIN7 Effectively Induce...
Transdifferentiation into Xylem Vessel Elements under Control of an Induction System.

Yifhar T, Pekker I, Peled D, Friedlander G, Pistunov A, Sabban M, Wachsman G, Alvarez JP, Amsellem Z, Eshed Y (2012) Failure of the tomato trans-acting short interfering RNA program to regulate AUXIN RESPONSE FACTOR3 and ARF4 underlies the wiry leaf syndrome. The Plant Cell 24: 3575-3589

Young MD, Wakefield MJ, Smyth GK, Oshlack A (2012) goseq: Gene Ontology testing for RNA-seq datasets. R Bioconductor 8: 1-25

Zhou J, Wang X, Lee J-Y, Lee J-Y (2013) Cell-to-cell movement of two interacting AT-hook factors in Arabidopsis root vascular tissue patterning. The Plant Cell 25: 187-201

Zhu Y, Kang H, Xie Q, Wang Z, Yin S, Liu C (2011) Pattern of leaf vein density and climate relationship of Quercus variabilis populations remains unchanged with environmental changes, Trees 26:597-607
Fig. 1 Leaf morphology of *bip* mutants and diagram of *bip* mutations. A, Leaves of *bip* mutants and their corresponding wildtype cultivars; B, Wildtype *BIP* gene with ELK and Homeodomain, represented by gray and black boxes, respectively. Diagram of BIP protein of *bip0663* and *bip2*.
Fig. 2 Leaf complexity, fruit BRIX, and yield of bip mutants and their corresponding isogenic cultivars.

A, Leaf complexity is denoted by the number of all leaflets present on the leaf; B and C, Fruit BRIX (B) and fruit yield (C) of bip mutants and their corresponding isogenic cultivars.
Fig. 3 Fruit BRIX and yield of grafts. A, Fruit BRIX; B, Yield. The grafting assay used a standard least squares model of data. Graft junctions are diagramed, *hip0663* (blue) and Lukullus (red).
Fig. 4 Fruit BRIX and yield of Root Grafts. A, Fruit BRIX; B, Yield. The root grafting assay used a mixed model including random effect of positional data. Graft junctions are diagramed, *bip0663* (blue) and Lukullus (red).
Fig. 5 Quantified leaf sugar and starch contents for bip0663 and Lukullus. bip0663 has lower leaf sugar than Lukullus (p=0.0939) and significantly lower leaf starch compared to Lukullus (p=0.0074).
Fig. 6 Leaf shape analysis. A and B, PCs of all primary leaflets measured (A) and their relationship to traditional shape measures (B); C, Traditional shape measures of primary leaflets of bip2, bip0663, M82 and Lukullus.
Fig. 7 Leaf photosynthesis across the whole field season. A, Photosynthetic rate and stomatal conductance were measured weekly using the LI-6400XT across the whole field growing season. PARi (B) and phiPS2 (C) was measured weekly across the whole field growing season and values are the mean measurements over time and error bars represent standard error. D, The average photosynthetic rate across whole measured season in umol CO₂ m⁻²s⁻¹.
Fig.8 Leaf vascular patterning micrographs and density analysis A, Leaf clearing images of *bip* mutants and their isogenic wildtype cultivars, micrographs taken at a fixed magnification of 4X. B, Leaf vein density was measured by leaf GUI for each individual leaf disc and a mean value was calculated, error bars represent standard error. C, Correlation between leaf vein density and fruit BRIX across *bip* mutants and their wildtypes was analyzed using JMP with “Spearman” method.
Fig. 9 Leaf Vascular Density and Fruit BRIX in Other Tested Tomato Varieties. A, Leaf clearing images of *bip* mutant, and other varieties, taken at a fixed magnification of 4×10. B, Leaf vascular density was measured using leaf GUI for each individual leaf disc and a mean value was calculated, and error bars represent standard error. C, BRIX of tomato fruits. D, Correlation between leaf vein density and fruit BRIX analyzed using JMP with “Pearson” method.
Fig. 10 Gene Co-expression Analysis of Differentially Expressed Genes, A, Venn diagram between bip0663 vs. Lukullus differentially expressed genes, HB vs. LB (High BRIX vs. Low BRIX group) different expressed genes, and literature-curated vascular genes (LCV). B, Normalized expression of GPT2 (Solyc05g045670) in Lukullus, bip0663, M82, and bip2 in mature leaves (ML), young leaves (YL), and shoot apical meristem (SAM). C, Correlation analysis of DEGs enriched in “transcription and development” and “carbohydrate and biosynthetic”-related GO terms, cut off value for Pearson correlation coefficient was “BH” adjusted p value <0.05. G6PT2 was positively correlated with many genes related to carbohydrate and biosynthetic process (|r| value >0.5 and “BH” adjusted p value <0.05). D, Gene co-expression network constructed across bip0663, Lukullus, bip2 and M82 using DEGs enriched in “transcription and development” and “carbohydrate and biosynthetic processes”-related GO terms. Nodes (genes) with at least one edge (298 nodes and 7517 total edges) are represented. The communities are represented by different colored nodes (C1-C5). Top DiffCorr genes (Table S5) are labeled in black, G6PT2 is circled in red.
Adams WW, Watson AM, Mueh KE, Amiard V, Turgeon R, Ebbert V, Logan BA, Combs AF, Demmig-Adams BJPR (2007) Photosynthetic acclimation in the context of structural constraints to carbon export from leaves. Photosynth Res 94: 455-466

Allen Stevens M (1979) TOMATO QUALITY: POTENTIAL FOR DEVELOPING CULTIVARS WITH IMPROVED FLAVOR. In Symposium on Quality of Vegetables 93, pp 317-330

Baima S, Forte V, Possenti M, Peñalosa A, Leoni G, Salvi S, Felici B, Ruberti I, Morelli G (2014) Negative feedback regulation of auxin signaling by ATHB8/ACL5-BUD2 transcription module. Molecular plant 7:1006-1025

Bakker H, Schijlen E, de Vries T, Schiphorst WECM, Jordi W, Lommen A, Bosch D, van Die I (2001) Plant members of the α1→3/4-fucosyltransferase gene family encode an α1→4-fucosyltransferase, potentially involved in Lewisa biosynthesis, and two core α1→3-fucosyltransferases1. FEBS Letters 507: 307-312

Baldwin E, Goodner K, Plotto A (2008) Interaction of volatiles, sugars, and acids on perception of tomato aroma and flavor descriptors. Journal of food science 73: S294-S307

Barkoulas M, Hay A, Kougourioumutzi E, Tsiantis M (2008) A developmental framework for dissected leaf formation in the Arabidopsis relative Cardamine hirsuta. Nature Genetics 40: 1136

Beckles D, Hong N, Stamova L, Luengwilai K (2012) Biochemical factors contributing to tomato fruit sugar content. Fruits 67:49-64

Beullens K, Mésszaros P, Vermeir S, Kirsanov D, Legin A, Buysens S, Cap N, Nicolaï BM, Lammertyn J (2008) Analysis of tomato taste using two types of electronic tongues. Sensors and Actuators B: Chemical 131: 10-17

Biedroń M, Banasiak A (2018) Auxin-mediated regulation of vascular patterning in Arabidopsis thaliana leaves. Plant Cell Reports 37: 1215-1229

Bishop KA, Lemonnier P, Quebedeaux JC, Montes CM, Leakey AD, Ainsworth EA (2018) Similar photosynthetic response to elevated carbon dioxide concentration in species with different phloem loading strategies. Photosynthesis research 137: 453-464

Bonhomme V, Picq S, Gaucherel C, Claude J (2014) Momocs: Outline Analysis Using R. Journal of Statistical Software 56: 1-24

Bonke M, Thitamadee S, Mähönen AP, Hauser M-T, Helariutta Y (2003) APL regulates vascular tissue identity in Arabidopsis. Nature 426: 181-186

Boyce CK, Brodribb TJ, Feild TS, Zwieniecki MA (2009) Angiosperm leaf vein evolution was physiologically and environmentally transformative. Proceedings of the Royal Society B: Biological Sciences 276: 1771-1776

Brodribb TJ, Feild TS, Jordan GJ(2007) Leaf maximum photosynthetic rate and venation are linked by hydraulics. Plant Physiology 144(4):1890-1898

Brodribb TJ, Feild TS, Sack L (2010) Viewing leaf structure and evolution from a hydraulic perspective. Functional Plant Biology 37: 488-498

Burko Y, Ori N (2013) The tomato leaf as a model system for organogenesis. Methods Mol Biol 959:1-19

Caliman FRB, Silva DJHd, Stringheta PC, Fontes PCR, Moreira GR, Mattetti AP (2007) Relation between plant yield and fruit quality characteristics of tomato. Biosci J 24:46-52

Cataldo DA (1974) Vein Loading: The Role of the Symplast in Intercellular Transport of Carbohydrate between the Mesophyll and Minor Veins of Tobacco Leaves. Plant Physiology 53: 912-917

Chitwood DH, Kumar R, Headland LR, Ranjan A, Covington MF, Ichihashi Y, Fulop D, Jimenez-Gomez JM, Peng J, Maloof JN, Sinha NR
(2013) A quantitative genetic basis for leaf morphology in a set of precisely defined tomato introgression lines. Plant Cell 25: 2465-2481

Chitwood DH, Maloof JN, Sinha NR (2013) Dynamic transcriptomic profiles between tomato and a wild relative reflect distinct developmental architectures. Plant Physiology 162: 537-552

Cocciadiis MF, Fernandez-Munoz R, Pons C, Orzaez D, Granell A (2014) Increasing tomato fruit quality by enhancing fruit chloroplast function. A double-edged sword? J Exp Bot 65: 4589-4598

Costa-Silva J, Domingues D, Lopes FM (2017) RNA-Seq differential expression analysis: An extended review and a software tool. PloS one 12

Dyson BC, Allwood JW, Feil R, Xu Y, Miller M, Bowsher CG, Goodacre R, Lunn JE, Johnson GN (2015) Acclimation of metabolism to light in Arabidopsis thaliana: the glucose 6-phosphate/phosphate translocator GPT 2 directs metabolic acclimation. Plant, cell & environment 38: 1404-1417

Scarpella E, Marcos D, Friml J, Berleth T (2006) Control of leaf vascular patterning by polar auxin transport. Genes and development 20(8):1015-1027

Etchells JP, Turner SR (2010) The PXY-CLE41 receptor ligand pair defines a multifunctional pathway that controls the rate and orientation of vascular cell division. Development 137: 767-774

Gupta S, Rosenthal DM, Stinchcombe JR and Baucom RS (2020) The remarkable morphological diversity of leaf shape in sweet potato (Ipomoea batatas): the influence of genetics, environment, and G×E. New Phytologist 225: 2183-2195

Hackel A, Schauer N, Carrari F, Fernie AR, Grimm B, Kühn C (2006) Sucrose transporter LeSUT1 and LeSUT2 inhibition affects tomato fruit development in different ways. The Plant Journal 45: 603-613

Han S, Cho H, Noh J, Qi J, Jung H-J, Nam H, Lee S, Hwang D, Greb T, Hwang I (2018) BIL1-mediated MP phosphorylation integrates PXV and cytokinin signalling in secondary growth. Nature Plants 4: 605-614

Haritatos E, Medville R, Turgeon RJP (2000) Minor vein structure and sugar transport in Arabidopsis thaliana. Planta 211: 105-111

Heuvelink E, Bakker MJ, Elinga A, Kaarsemaker RC, Marcelis LFM (2005) Effect of Leaf Area on Tomato Yield. Acta Horticulturae 691: 43-50

Hiratsuka K, Chua N (1997) Light Regulated Transcription in Higher Plants. J. Plant Res. 110:131-139

Ichihashi Y, Aguilera-Martinez JA, Farhi M, Chitwood DH, Kumar R, Millon LV, Peng J, Maloof JN, Sinha NR (2014) Evolutionary developmental transcriptomics reveals a gene network module regulating interspecific diversity in plant leaf shape. Proc Natl Acad Sci USA 111: E2616-2621

Jones B, Frasse P, Olmos E, Zegzouri H, Li ZG, Latché A, Pech JC, Bouzayen M (2002) Down-regulation of DR12, an auxin-response-factor homolog, in the tomato results in a pleiotropic phenotype including dark green and blotchy ripening fruit. The Plant Journal 32: 603-613

Jones R, Scott S (1984) Genetic potential to improve tomato flavor in commercial F1 hybrids. Journal of the American society for horticultural science 109: 318-321

Kimura S, Koenig D, Kang J, Yoong FY, Sinha N (2008) Natural variation in leaf morphology results from mutation of a novel KNOX gene. Curr Biol 18: 672-677
Klee HJ, Tieman DM (2013) Genetic challenges of flavor improvement in tomato. Trends in Genetics 29: 257-262

Koenig D, Bayer EM, Kang J, Kuhlemeier C, Sinha N. (2009). Auxin patterns Solanum lycopersicum leaf morphogenesis. Development 136(17): 2997-3006.

Koenig D, Jiménez-Gómez JM, Kimura S, Fulop D, Chitwood DH, Headland LR, Kumar R, Covington MF, Dvisetty UK, Tat AV, Tohge T, Bolger A, Schneeberger K, Ossowski S, Lanz C, Xiong G, Taylor-Teeples M, Brady SM, Pauly M, Weigel D, Usadel B, Fernie AR, Peng J, Sinha NR, Maloof JN (2013) Comparative transcriptomics reveals patterns of selection in domesticated and wild tomato PNAS 110: E2655-E2662

Krusell L, Rasmussen I, Gausing K (1997) DNA binding sites recognised in vitro by a knotted class 1 homeodomain protein encoded by the hooded gene, k, in barley (Hordeum vulgare). FEBS Letters 408: 25-29

Law CW, Chen Y, Shi W, Smyth GK (2014) voom: Precision weights unlock linear model analysis tools for RNA-seq read counts. Genome biology 15: R29

Lawson T, Bryant B, Lefebvre S, Lloyd J, Raines C (2006) Decreased SBPase activity alters growth and development in transgenic tobacco plants. Plant, cell & environment 29: 48-58

Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler Transform. Bioinformatics, 25:1754-60.

Malundo TMM, Baldwin EA, Ware GO, Shewfelt R (1996) Volatile composition and interaction influence flavor properties of mango (Mangifera indica L.). Proc. Fla. State Hort. Soc 109: 264-268

Menda, N., Semel, Y., Peled, D., Eshed, Y., Zamir, D. (2004). In silico screening of a saturated mutation library of tomato. Plant J. 38, 861–872.

Mitsuda N, Iwase A, Yamamoto H, Yoshida M, Seki M, Shinozaki K, Ohme-Takagi M (2007) NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis. The Plant Cell 19: 270-280

Miyashima S, Sebastian J, Lee JY, Helariutta Y (2013) Stem cell function during plant vascular development. The EMBO journal 32: 178-193

Mi H, Muruganujan A, Ebert D, Huang X, Thomas PD (2019) PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Research 47: D419–D426

Miyashima, S., Sasaki, K., Higuchi, R., Tsuchihashi, K., Nishida, K., Hasebe, T., Konishi, K., Ohme-Takagi, M., Sato, K. (2014) The function of NAC transcription factors in controlling secondary wall formation in Arabidopsis. Plant Cell 26: 1509–1526

Nakayama H, Rowland SD, Zizhang C, Zumstein K, Kang J, Kondo Y, Sinha NR (2020) Leaf form diversification in an heirloom tomato results from alterations in two different HOMEOBOX genes. bioRxiv 226: 851-865

Paul AL, Zupanska AK, Schultz ER, Ferl RJ (2013) Organ-specific remodeling of the Arabidopsis transcriptome in response to spaceflight. BMC Plant Biol 13:112

Price CA(2012) LEAF GUI: analyzing the geometry of veins and areoles using image segmentation algorithms. In High-throughput phenotyping in plants. Springer, pp 41-49

Raines C, Paul M (2006) Products of leaf primary carbon metabolism modulate the developmental programme determining plant morphology. Journal of experimental botany 57: 1857-1862

Rowland SD, Zumstein K, Nakayama H, Cheng Z, Flores AM, Chitwood DH, Maloof JN, Sinha NR (2019) Leaf shape is a predictor of fruit quality and cultivar performance in tomato. New Phytologist

Russin WA, Evert RF (1984) Studies on the leaf of Populus deltoides (Salicaceae): morphology and anatomy. American Journal of
Sack L, Frole K (2006) Leaf structural diversity is related to hydraulic capacity in tropical rain forest trees. Ecology 87: 483-491

Sack L, Scoffoni C (2013) Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future. New Phytol 198: 983-1000

Sagar M, Chervin C, Mila I, Hao Y, Roustan J-P, Benichou M, Gibon Y, Blais B, Maury P, Latché A (2013) SIARF4, an auxin response factor involved in the control of sugar metabolism during tomato fruit development. Plant physiology 161: 1362-1374

Sarlikiovi, de Visser PH, Buck-Sorlin G, Marcelis L (2011) How plant architecture affects light absorption and photosynthesis in tomato: towards an ideotype for plant architecture using a functional-structural plant model. Annals of Botany 108: 1065-1073

Shahmuradov I, Solovyev V (2015) Nsite, NsiteH and NsiteM Computer Tools for Studying Transcription Regulatory Elements. Bioinformatics 31: 3544–3545

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin A, Schwikowski B, Ideker T (2003) Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res 13: 2498-2504

Smith WK, Vogelmann TC, DeLucia EH, Bell DT, Shepherd KA (1997) Leaf Form and Photosynthesis. BioScience 47: 785-793

Thomas PD, Campbell MJ, Kejarival A, Mi H, Karlak B, Daverman R, Diemer K, Muruganujan A, Naarechania A. 2003. PANTHER: a library of protein families and subfamilies indexed by function. Genome Res 13: 2129-2141

Townsley BT, Covington MF, Ichihashi Y, Zumstein K, Sinha NR (2015) BrAD-seq: Breath Adapter Directional sequencing: a streamlined, ultra-simple and fast library preparation protocol for strand specific mRNAlibrary construction. Front Plant Sci 6: 366

Van Dingenen J, De Milde L, Vermeersch M, Maleux K, De Rycke R, van der Knaap E, Taylor MG, Goulet C (2012) The chemical interactions underlying tomato flavor preferences. Current Biology 22: 1035-1039

Wang D, Seymour G (2017) Tomato Flavor: Lost and Found? Molecular Plant 10:782-784

Wenzel CL, Hester Q, Mattsson J (2008) Identification of genes expressed in vascular tissues using NPA-induced vascular overgrowth in Arabidopsis. Plant Cell Physiol 49: 457-468

Xiao H, Jiang N, Schaffner E, Stockinger EJ, van der Knaap E (2008) A Retrotransposon-Mediated Gene Duplication Underlies Morphological Variation of Tomato Fruit. Science 319: 1527

Yamaguchi M, Goué N, Igarashi H, Ohtani M, Nakano Y, Mortimer JC, Nishikubo N, Kubo M, Katayama Y, Kakegawa K, Dupree P, Demura T (2010) VASCULAR-RELATED NAC-DOMAIN6 and VASCULAR-RELATED NAC-DOMAIN7 Effectively Induce Transdifferentiation into Xylem Vessel Elements under Control of an Induction System. Plant Physiology 153: 906-914

Yifhar T, Pekker I, Peled D, Friedlander G, Pistunov A, Sabban M, Wachsman G, Alvarez JP, Amsellem Z, Eshed Y (2012) Failure of the tomato trans-acting short interfering RNA program to regulate AUXIN RESPONSE FACTOR3 and ARF4 underlies the wiry leaf syndrome. The Plant Cell 24: 3575-3589
Young MD, Wakefield MJ, Smyth GK, Oshlack A (2012) goseq: Gene Ontology testing for RNA-seq datasets. R Bioconductor 8: 1-25
Google Scholar: Author Only Title Only Author and Title

Zhou J, Wang X, Lee J-Y, Lee J-Y (2013) Cell-to-cell movement of two interacting AT-hook factors in Arabidopsis root vascular tissue patterning. The Plant Cell 25: 187-201
Google Scholar: Author Only Title Only Author and Title

Zhu Y, Kang H, Xie Q, Wang Z, Yin S, Liu C (2011) Pattern of leaf vein density and climate relationship of Quercus variabilis populations remains unchanged with environmental changes, Trees 26:597-607
Google Scholar: Author Only Title Only Author and Title