Involvement of a Minimal Actin-Binding Region of *Spiroplasma citri* Phosphoglycerate Kinase in Spiroplasma Transmission by Its Leafhopper Vector

Fabien Labroussaa, Marie-Pierre Dubrana, Nathalie Arricau-Bouvery, Laure Béven, Colette Saillard

INRA and Université Bordeaux UMR 1332 Biologie du fruit et pathologie, Villenave d’Omon, France

Abstract

Background: *Spiroplasma citri* is a wall-less bacterium that colonizes phloem vessels of a large number of host plants. Leafhopper vectors transmit *S. citri* in a propagative and circulative manner, involving colonization and multiplication of bacteria in various insect organs. Previously we reported that phosphoglycerate kinase (PGK), the well-known glycolytic enzyme, bound to leafhopper actin and was unexpectedly implicated in the internalization process of *S. citri* into *Circulifer haematoceps* cells.

Methodology/Principal Findings: In an attempt to identify the actin-interacting regions of PGK, several overlapping PGK truncations were generated. Binding assays, using the truncations as probes on insect protein blots, revealed that the actin-binding region of PGK was located on the truncated peptide designated PGK-FL5 containing amino acids 49–154. To investigate the role of PGK-FL5-actin interaction, competitive spiroplasma attachment and internalization assays, in which His6-tagged PGK-FL5 was added to Ciha-1 cells prior to infection with *S. citri*, were performed. No effect on the efficiency of attachment of *S. citri* to leafhopper cells was observed while internalization was drastically reduced. The *in vivo* effect of PGK-FL5 was confirmed by competitive transmission assays as injection of PGK-FL5 into *S. citri* infected leafhoppers significantly affected spiroplasmal transmission.

Conclusion: These results suggest that *S. citri* transmission by its insect vector is correlated to PGK ability to bind actin.

Introduction

The plant pathogenic mollicute *Spiroplasma citri*, available in culture since 1971 [1,2], has emerged as an outstanding model for studying spiroplasma interactions with its two experimental hosts: the periwinkle plant and the insect vector *Circulifer haematoceps* [3]. Due to its circulative and persistent transmission, *S. citri* is a wall-less bacterium that colonizes phloem vessels of a large number of host plants. Leafhopper vectors transmit *S. citri* in a propagative and circulative manner, involving colonization and multiplication of bacteria in various insect organs. Previously we reported that phosphoglycerate kinase (PGK), the well-known glycolytic enzyme, bound to leafhopper actin and was unexpectedly implicated in the internalization process of *S. citri* into *Circulifer haematoceps* cells.

Following electron microscopy observations, it has been hypothesized that leafhopper transmission of spiroplasmas and more precisely the traversal of insect membranes was mediated by the recognition of specific membrane proteins, which led to a process of receptor mediated endocytosis [4,5,6]. Nevertheless, the mechanisms governing these crossings have not been conclusively determined. Earlier reports on *Spiroplasma hunkeliae* describe tip structures piercing the basal laminae of midgut epithelial cells of the leafhopper vector *Dalbulus maidis* [6,7]. In order to bind, penetrate and degrade the basal laminae, these tip structures or attachment organelles very likely contain specialized enzymes, receptors and/or adhesins as for human mycoplasmas [8,9].

A few number of *S. citri* membrane or membrane-associated proteins potentially involved in leafhopper transmission, including the solute binding protein Sc76 [10], the P32 protein [11,12], the adhesion relative proteins ScARPs [13] and spiralin [14] have been identified. Among these proteins, solely spiralin was described as interacting with host proteins. Indeed, spiralin acts as a lectin able to bind, *in vitro*, insect glycoproteins that may serve as receptors for the adherence of spiroplasmas [15].

Recently, we reported that confocal analysis focused on internalization and overall distribution of *S. citri* at the salivary gland level revealed spiroplasmas located along the actin microfilaments [16]. This co-localization was also observed with Ciha-1 cells, a leafhopper cell line from *Circulifer haematoceps*, experimentally infected by *S. citri* [17]. This preferential localization of spiroplasma cells suggested that invasion into host...
cells may involve interactions between S. citri proteins and the actin cytoskeleton. Among phytopathogenic mollicutes, the first interaction with actin was identified in Candidatus Phytoplasma asteris (OY strain) and involved its immunodominant membrane protein (Amp). While this interaction has an unclear mechanism, it seems to be implicated in the insect-vector specificity [10]. The ability to bind to actin microfilaments is a characteristic feature that has been reported for many intracellular bacterial pathogens [19,20] and might represent a general scheme for bacterial invasion into host cells.

For S. citri, we previously reported that phosphoglycerate kinase (PGK), a key enzyme in glycolysis which is thus classified as a cytosolic protein, unexpectedly bound actin and mediated the process leading to internalization of S. citri in eukaryotic cells [16]. Several reports indicate the presence of cytosolic proteins on surfaces of different bacteria but how these proteins are translocated to the surface, remains unanswered especially when conventional secretion or anchoring signals are absent. Thus PGK joins the group of enzymes including enolase [21], glyceraldehyde-3-phosphate dehydrogenase [22], and pyruvate dehydrogenase E1β subunit [23] that besides their apparent metabolic functions may have some other roles to play in bacteria.

PGK enzyme catalyzes the reversible transfer of a phosphate group from 1,3-bisphosphoglycerate to ADP, resulting in the formation of 3-phosphoglycerate and ATP. This function in the glycolysis requires the formation of a PGK ternary complex including its two ligands, 1,3-bisphosphoglycerate and ADP, bound to PGK on the N-terminal domain and C-terminal domain respectively. These two domains are connected by a conserved hinge region which allows the conformational change of the complex structure bringing the two ligands into close proximity during catalysis (Bernstein et al., 1997). Furthermore, the ADP/ATP molecule is well known to interact with actin and could thus play the role of a linking agent between these two proteins. The question whether the interaction between PGK and actin requires the ATP/ADP binding C-terminal moiety and/or the N-terminal 1,3-bisphosphoglycerate binding region remains opened. Aiming at elucidating this point, this study was carried out to identify the PGK parts that mediate binding to actin of C. haematoceps host cells and to determine the in vivo effect of the actin-binding region in the transmission process of spiroplasmas by its insect vector.

Materials and Methods

Bacterial strains, leafhoppers, and cell line culture

Escherichia coli strains DH10B and BL21 (DE3) were grown in Luria-Bertani (LB) medium and used to clone, express, and purify S. citri His6-tagged PGK and its truncated forms. S. citri GII3, originally isolated from its leafhopper vector C. haematoceps captured in Morocco [24], was cultivated in SP4 medium [25] at 32°C.

Healthy C. haematoceps were reared in an insect-proof cage on stock (Matthiola incana) plants at 30°C. Micro-injection of S. citri GII3 into C. haematoceps has been described previously [26].

The non-phagocyte cell line Ciba-L from the Cicadellididae C. haematoceps was cultured at 32°C according to Duret et al. [17].

Cloning, expression, and purification of PGK full length and PGK truncations

Expression and purification of S. citri His6-tagged PGK was previously described and PGK truncations were produced from the pET28 FL plasmid containing the pgk gene, in which the two UGA codons were replaced by TGG codons [16]. The individual truncated fragments pgkFL1 to pgkFL5, were PCR amplified (Table 1) and the resultant DNA fragments were inserted in pET28a(+) vector (Novagen). The recombinant plasmids

Table 1. Primers used for constructions of His6-tagged PGK and PGK truncations

Protein	Primers	Sequence (5’ to 3’)	Position	Amino acid residue numero
PGK	PGK-F	GTGAGAATCCCGATTCTCATATGACAAAC TATGAAAGCTTTTTATTTTTTGGACACG	–19 to +9	1–412
PGK	PGK-R	–1222–1250*		
PGK FL1	PGKpep-F	TGAGAAGATTTGAATCCATATGACAAAC CAAAACCTAAGCTTTTAGTTTGTGTAACTCTTG	–18 to +9	1–302
PGK FL2	PGKpep1-R	CAAACCTAAGCTTTTAGTTTGTGTA	283–303	
PGK FL3	PGKpep2-R	TGAGAAGATTTGAATCCATATGACAAAC CATTGTTGATAGCTTTAAACATTTTACCTCT	–18 to +9	1–205
PGK FL4	PGKpep3-R	TGAGAAGATTTGAATCCATATGACAAAC CCAATAGCTTTATGTTTCTCCTCAAGG	–18 to +9	1–101
PGK FL5	PGKpep4-F	GTAAAAAAT	883–906	
PGK	PGK-R	–1222–1250*		
PGK FL5	PGKpep5-F	TTGATAGAATCCCATATGGCACAAGAAGCAGAAAG	147–168	
	PGKpep5-R	AAATTCCTCCTAAGAAACCTTTTAAGCAGAATC	438–462	

*All regions were amplified using the respective mutagenic forward and reverse primers, as required.

*Introduction EcoRI, HindIII and NdeI sites underlined.

*11 nucleotides are downstream the stop codon localized at position 1239.

doi:10.1371/journal.pone.0017357.t001
(pET28FL1 to pET28FL5) were used to transform E. coli DH10B. The desired sequence of the resulting plasmids was verified by sequencing the insert. Two μg of plasmid representing each truncation was used to transform E. coli BL21 (DE3). Transformants were selected on LB solid medium containing kanamycin (50 μg/ml) at 37°C.

The expression of PGK truncations fused to the N-terminal hexahistidine sequence was carried out as previously described for entire PGK [16]. All proteins, purified by affinity chromatography using Ni²⁺-nitrilotriacetic acid (Ni²⁺-NTA) columns (Qiagen), were desalted using PD-10 columns according to manufacturer’s instructions (GE Healthcare) and protein concentrations were estimated by the Bradford procedure. Two μg of each purified His₆-tagged proteins were subjected to 5–15% linear gradient SDS-PAGE and visualized by gel staining with colloidal blue. Parallel gels were transferred onto membranes and blots were used for (i) immunoblotting performed with anti-His monoclonal (Mab) antibodies (1:3000 dilutions, Sigma), (ii) far Western blotting carried out with a mixture of leafhopper cell proteins.

Identification of PGK truncations that interact with leafhopper actin

Interactions between individual His₆-tagged PGK truncations and leafhopper actin were detected by far Western experiments. Equal amounts (2 μg) of His₆-tagged PGK and its individual truncations were fractionated on a 5–15% linear gradient SDS-PAGE, before transfer onto a nitrocellulose membrane for 45 min at 10 V according to the conditions described by Kolliny et al. [15]. Membrane blots were then overlaid with proteins prepared from Ciha-1 cells as follows: 5 x 10⁶ Ciha-1 cells, cultured into a 24 mm diameter well, were trypsinized with TrypLE (Invitrogen) and centrifuged at 5,000 g for 5 min. Cells were transferred to a Eppendorf tube, mixed with phosphate buffered saline (PBS) and homogenized. Then the mixture was centrifuged twice for 1 min at 500 g. Protein concentration in the supernatant was determined by Bradford procedure and aliquots of 500 μg of proteins were used as overlay for incubation with the blots of His₆-tagged proteins. Interactions were revealed with rabbit polyclonal antibodies against actin (1:600 dilution, Sigma) followed by goat anti-rabbit labeled with peroxidase (1:50,000 dilution, Sigma). All the steps were conducted in the same conditions as those previously published [16].

All individual His₆-tagged truncated proteins were also used as overlay on a leafhopper total protein blot. These far Western experiments were conducted as follows: 20 μg of total proteins prepared from Ciha-1 cell culture (equivalent to 4 x 10⁵ cells), prepared as described above were separated on 12.5% SDS-PAGE and transferred to nitrocellulose membrane. Then each blot was overlaid with 40 μg of individual PGK truncation and interaction with leafhopper actin was revealed using anti-His MAb (1:3,000 dilution, Sigma) followed by peroxidase conjugate goat anti-mouse IgGs (1:20,000 dilution, Sigma).

Effect of recombinant PGK and its truncations on S. citri attachment to and entry into Ciha-1 cells

Monolayers of Ciha-1 cells grown in 24-well plates (2 x 10⁵ cells per well) were incubated with various concentrations of S. citri His₆-tagged PGK and truncations PGK-FL4 and PGK-FL5 diluted in Ciha-1 cell culture medium [17]. Cells without PGK treatment represent positive control. Cells treated with 400 μg/ml of BSA were also included as a control. Each assay was carried out in triplicate. After incubation with proteins for 2 h at 32°C, the cells were infected with a 100-μl S. citri suspension at a multiplicity of infection (MOI) of 15 to 30. After infection with S. citri, spiroplasma attachment to and internalization into Ciha-1 cells were estimated by counting colonies on solid SP4 medium as described previously [16]. Briefly, for attachment assay, cells were incubated for 4 h at 4°C allowing spiroplasma adhesion but at this temperature eukaryotic cell processes required for internalization were inhibited. Then cells were washed three times with 500 μl of Schneider’s Drosophila medium to remove any spiroplasmas that had not attached to the monolayer. After trypsinization for 10 min at 32°C with TrypLE™ (Invitrogen), dilutions of the cells associated with adherent spiroplasmas were directly plated onto solid SP4 medium. After incubation at 32°C for 1 week, the number of spiroplasma colonies on each plate was counted to estimate the number of Ciha-1 cells that had adherent spiroplasmas. Relative percentage of adhesion was calculated as follows: [(number of CFU for cells with protein treatment/number of CFU for untreated control cells) x 100%].

The invasion assay was conducted similarly than the attachment test except that, after infection with a 100-μl S. citri culture for 18 h at 32°C, a gentamicin protection assay was used. Briefly, cells were incubated with 1 ml of fresh culture medium containing 400 μg/ml of gentamicin (10 fold the minimum inhibitory concentration) during 3 h at 32°C in order to kill extracellular bacteria. The cells were thereafter washed three times with 500 μl of Schneider’s Drosophila medium followed by three additional washes with PBS. After washes, a 100-μl aliquot of the last wash was plated onto SP4 medium to ensure that all extracellular bacteria had been killed.

S. citri experimental transmission assays

Female leafhoppers were microinjected with 0.1 μl of a spiroplasma culture (10⁶ spiroplasmas/ml) and caged on healthy stock (Matthiola incana) plants at 30±2°C as previously described [26]. At day 4 after injection when the highest titer of spiroplasmas in the insect hemolymph was reached (10⁶ spiroplasma cells/insect), they were microinjected again with 0.2 μg of His₆-tagged PGK or truncations (PGK-FL4 or PGK-FL5) in phosphate buffer (8 mM NaH₂PO₄, 2 mM Na₂HPO₄, 0.14 M NaCl, 2 mM KCl pH 7.4) containing 1 mM phenylmethanesulphonylfluoride (PMSF) and homogenized. Then the mixture was centrifuged twice for 1 min at 500 g. Protein concentration in the supernatant was determined by Bradford procedure and aliquots of 500 μg of proteins were used as overlay for incubation with the blots of His₆-tagged proteins. Interactions were revealed with rabbit polyclonal antibodies against actin (1:600 dilution, Sigma) followed by goat anti-rabbit labeled with peroxidase (1:50,000 dilution, Sigma). All the steps were conducted in the same conditions as those previously published [16].

All individual His₆-tagged truncated proteins were also used as overlay on a leafhopper total protein blot. These far Western experiments were conducted as follows: 20 μg of total proteins prepared from Ciha-1 cell culture (equivalent to 4 x 10⁵ cells), prepared as described above were separated on 12.5% SDS-PAGE and transferred to nitrocellulose membrane. Then each blot was overlaid with 40 μg of individual PGK truncation and interaction with leafhopper actin was revealed using anti-His MAb (1:3,000 dilution, Sigma) followed by peroxidase conjugate goat anti-mouse IgGs (1:20,000 dilution, Sigma).

Statistical analyses

For attachment to and invasion of S. citri into Ciha-1 cells, Student’s t test was used. For S. citri transmission assay, a chi-square test (two-tailed) was performed to identify significant differences.

Results

Production of recombinant PGK truncations

The predicted amino acids on S. citri PGK involved in substrate binding domains were identified by searches against the conserved domain databases [27] and are indicated on figure 1A.
in an attempt to identify the actin-binding region of PGK, we generated by deletion of the carboxyl-terminal region of the PGK (PGK full length: 412 amino-acids) three truncated polypeptides of varying lengths namely PGK-FL1 (302 aa), PGK-FL2 (205 aa) and PGK-FL3 (101 aa) (Figure 1B). The latter fragment corresponded to the shortest fragment bearing the 1,3-bisphosphoglycerate binding domain that was tested (Figure 1A). PGK-FL4 (312 aa) was the result of the deletion of the first hundred PGK amino acids and represented the PGK ATP/ADP binding site-containing, C-terminal part. A truncated form of PGK-FL2 containing amino acids 49-154 designed PGK-FL5 (106 aa) was also produced (Figure 1B). His$_6$-tagged PGK and all the His$_6$-tagged truncated proteins were expressed in E. coli and purified. His$_6$-tagged proteins, PGK, PGK-FL1, PGK-FL2, PGK-FL3, PGK-FL4 and PGK-FL5 have respectively predicted molecular masses of 44.0, 33.7, 23.5, 12.2, 34.0, 12.5 kDa. On the colloidal blue-stained polyacrylamide gel, His$_6$-tagged PGK, and His$_6$-tagged truncations PGK-FL1, PGK-FL2 and PGK-FL4 matched their predicted molecular masses (Figure 1C, lanes 1). His$_6$-tagged PGK-FL3 and PGK-FL5 migrated higher than their predicted molecular masses of 12.2 and 12.5 kDa and preparations of these two truncations were slightly contaminated by other E. coli proteins (Figure 1C, lanes 1). However, anti-His Mab recognized only the tagged proteins in all cases in spite of protein contaminations in PGK-FL3 and PGK-FL5 preparations (Figure 1C, lanes 2).

Identification of the minimal PGK actin-binding region

To identify the truncated proteins that displayed a significant affinity for actin, a far Western assay was performed on a blot of Ciha-1 cellular proteins overlaid with individual truncated PGK proteins. Ciha-1 cell protein mixture was visualized on a 12.5% colloidal blue-stained polyacrylamide gel (Figure 2A, lane 1), and the presence of actin in the Ciha-1 cell protein mixture was confirmed by Western blotting using anti-actin antibodies (Figure 2A, lane 2). As shown on Figure 2A (lanes 3, 4, 5, 6, 8) for PGK, PGK-FL1 to FL3 and PGK-FL5 truncations, significant binding signals located at approximately 42 kDa corresponding to actin molecular mass were revealed by anti-His Mab. No signal was observed with PGK-FL4 (Figure 2A lane 7). From these results we deduced that the region in PGK from amino acid 49 to 101 possessed the capacity to bind actin.

To verify these findings, a second far Western assay was performed in which a blot of His$_6$-tagged PGK or its truncations was overlaid with a Ciha-1 cells protein mixture (Figure 2B). Binding signals between PGK, its truncations and leaflhopper actin were revealed by polyclonal antibodies against actin. As expected, an interaction signal was detected between PGK and actin (Figure 2B, lane 1). Truncation of PGK from the N-terminal (1-101), resulting in PGK-FL4 truncated protein (101 to 412), abrogated the binding activity (Figure 2B, lane 3), suggesting that this region played an important role for PGK interaction with actin. Binding signals detected with PGK-FL1, PGK-FL2 and PGK-FL3 (Figure 2A, lane 2, 3, 4) indicated that truncation from this region played an important role for PGK interaction with actin. From these results we conclude that the region from amino acids 49 to 101 is the minimal region that possessed the capacity to bind actin.

Competitive binding assay with S. citri and truncated PGK proteins

To determine whether the minimal actin-binding region of PGK (PGK-FL5) is sufficient to interfere with the interactions between spiroplasma PGK and host actin, thus preventing spiroplasma from entering into insect cells, competitive adhesion and invasion assays with PGK truncations were performed. No difference was observed
between the relative percentage of adhesion obtained in Ciha-1 cells without any treatment or treated with BSA prior to infection with \textit{S. citri} (Figure 3A). Competition of His6-tagged PGK (400 μg/ml) with Ciha-1 cells before \textit{S. citri} infection did not reduce the binding of \textit{S. citri} to cells. Competition with 50 and 400 μg/ml of either PGK-FL4, which has no actin-binding activity, or PGK-FL5, which is the minimal actin-binding region, did not noticeably alter the spiroplasmas attachment to cells.

Spiroplasma invasion of Ciha-1 cells was estimated similarly to the attachment test after a gentamicin protection assay. As shown in Figure 3B, the percentage of internalization of \textit{S. citri} in cells incubated with BSA (400 μg/ml) was close to those of the positive controls. Competition with His6-tagged PGK (400 μg/ml) showed the greatest inhibition rate in invasion (85%). Preincubation with two concentrations of PGK-FL4 did not significantly reduce the invasion of \textit{S. citri} in Ciha-1 cells. In contrast, preincubation with 50 and 400 μg/ml of PGK-FL5 significantly reduced \textit{S. citri}
internalization into Ciha-1 cells by 45% and 80% respectively similarly to preincubation with the entire His6-tagged PGK.

Effect of PGK or PGK truncations on *S. citri* transmission

To further assess the effect of PGK in *S. citri* transmission by leafhoppers we compared the ability of *S. citri* to be inoculated in SP4 medium by infected leafhoppers injected with phosphate buffer versus infected leafhoppers injected with PGK or PGK truncations.

Two hundred and fifty seven groups of 3 infected leafhoppers injected with phosphate buffer (positive controls) were allowed to feed for 24 h on SP4 medium. As shown on Table 2, a spiroplasma culture was obtained for 149 out of the 257 batches.

Discussion

In this study we identified regions of *S. citri* PGK protein that interact with leafhopper actin and attempted to determine whether PGK, through its binding with actin, play a role in transmission of *S. citri* by the leafhopper *C. haematoceps*.

Based on our experimental data using PGK truncated derivatives, we determined that the region of the PGK which binds to actin was located on the PGK-FL3 truncation, corresponding to the N-terminal part of PGK (amino acids 1 to 101). Four out of the 5 well defined substrate binding sites of phosphoglycerate during glycolysis are present on this fragment [27,28]. In contrast, the PGK-FL4 fragment (amino acids 101 to 412) corresponding to the C-terminal part of PGK, exhibited no binding to actin. This PGK-FL4 fragment mainly includes the ADP/ATP binding sites and the catalytic site. The fact that the C-terminal part of PGK is not required for actin-binding capacity of PGK seems to prove that the interaction between PGK and actin is not mediated by ATP/ADP. To determine more precisely the actin-binding region, we constructed a PGK-FL5 truncation with an overlapping region of 53 amino acids with PGK-FL4 and in which the first 48 amino acids of PGK-FL3 were missing.

Interestingly, PGK-FL5 repeatedly showed a marked decrease in its actin-binding ability (Figure 2A lane b), especially compared to PGK-FL1, PGK-FL2, and PGK-FL3 (Figure 2A lanes 4, 3, 6). As no significant difference in band intensity was visualized on the reciprocal far-Western (figure 2B lanes 4 and 6) the difference in signal levels between PGK moieties could depend on the relative concentrations of actin and PGK truncations. A difference in actin-binding efficiency of PGK-FL5 and PGK-FL3 could be explained by the occurrence of two distinct actin-interacting sites located in PGK N-terminal part, the first one being specific to PGK-FL3 and located within the amino acids 1-48, and the second site being common to both fragments within amino acids 49-101. Based on sequence similarity, the molecular model proposed for *S. cerevisiae* PGK [29] was used to predict the surface accessibility of the two hypothetical actin-binding domains in *S. citri* PGK. In the modelled *S. cerevisiae* PGK N-terminal part, two blocks of amino acids (M27 to E52 and K63 to Q100) were found to be localized side by side with a majority of the amino acids residues located at the outer surface of the molecule (data not shown). In *S. citri* PGK, the surface exposure of the corresponding amino acids residues would allow their interaction with actin. In addition, except for R37, amino acids that are believed to participate in actin-binding differ from those involved in PGK interactions with its substrate 1,3-biphosphoglycerate.

Previously we have described that PGKs from *S. citri* and *S. cerevisiae* do not interfere with adhesion of spiroplasmas to Cicha-1 cells but inhibit the internalization in the cells in a dose dependant manner [16]. In this study, as expected, PGK-FL4 and PGK-FL5 truncations or PGK full length had no effect on spiroplasmas adhesion to Cicha-1 cells. The fact that PGK-FL5, the minimal actin-binding region, conserved the inhibitory activity on the internalization process reinforces the hypothesis that the actin-binding efficiency of PGK is directly related to the relevance of such an interaction in the internalization process. This is also confirmed by the fact that PGK-FL4, which has no effect on internalization, does not possess any actin-binding activity.

These results prompted us to speculate that PGK and PGK-FL5 fragment are candidates for playing a role in transmission of *S. citri*. The penultimate event before the infectious bite in the phloem is invasion of *C. haematoceps* salivary glands by the spiroplasmas. To ascertain the role of PGK and PGK-FL5 truncation peptide in salivary gland invasion we developed an in vivo spiroplasma invasion blocking assay. Infected leafhoppers were injected with phosphate buffer or tagged proteins on the 4th day after infection. This time period corresponds to the maximum of spiroplasmas in insect [10] and a large majority of them would be expected to still be circulating in the haemolymph that is the main place of multiplication. Because transmission rates of *S. citri* between

Table 2. Effect of PGK and its truncations PGK-FL4 and PGK-FL5 on *S. citri* transmission.

Number of independent experiments	Number of batches (3 leafhoppers per batch)	Number of batches with positive culture	Percentage of batches with positive culture	Relative percentage of batches with positive culture	
Phosphate buffer	12	257	149	58	100
His₆ control	3	100	56	56	96.5
PGK	8	176	52	30^a	51.7^a
PGK FL4	3	82	48	58	100.9
PGK FL5	4	112	38	34^a	58.6^a

^ap<0.0001, chi-square test (two-tailed). doi:10.1371/journal.pone.0017357.t002
infected leafhoppers treated with His\textsubscript{6}-tagged PGK-FL4 and those of control groups (phosphate buffer or tagged protein) were similar, it is highly unlikely that PGK-FL4 inhibits the ability of spiroplasmas to enter in salivary glands. The infected leafhoppers injected with PGK or with PGK-FL5 displayed an average reduction of 50\% in the transmission of S. citri when compared with controls. Therefore PGK-FL5 truncation, with its minimal actin-binding region, sufficient to block the entry of spiroplasmas into Cih\textsubscript{a}1 cells, plays an important role in transmission. The competition between exogenous PGK and PGK-FL5 with the spiroplasmas could reduce the available number of target sites that participate in entry of spiroplasmas in salivary glands.

In summary, our results suggested a correlation between the PGK-actin interaction and the inhibitory effect during internalization in insect cells. In agreement with these data, as we show with our \textit{in vivo} experimental model, \textit{S. citri} could use this interaction for crossing salivary glands barrier and completing its life cycle in insects.

Acknowledgments

Thanks are due to Claire Charenton who kindly provided the His\textsubscript{6}-tagged MSC\textsubscript{618}.

Author Contributions

Conceived and designed the experiments: FL, CS. Performed the experiments: FL, M-PD. Analyzed the data: FL, NA-B, LB, CS. Contributed reagents/materials/analysis tools: FL, M-PD NA-B. Wrote the manuscript: FL, LB, CS.

References

1. Saglio P, Lhospital M, Lalliche D, Dupont G, Bové JM, et al. (1973) Spiroplasma citri gen. and sp. nov.: a mycoplasma-like organism associated with stubborn disease of citrus. Int J Syst Bacteriol 23: 191–204.
2. Saglio P, Lhospital M, Lalliche M, Dupont G, Bové JM, et al. (1971) Culture in vitro des mycoplasmes associés au stubborn des agrumes et leur observation au microscope électronique. CR AcadSciParis 272: 1387–1390.
3. Bové JM, Renaudin J, Saillard C, Foisac X, Garnier M (2003) Spiroplasma citri, a plant pathogenic mollicute: Relationships with its two hosts, the plant and the leafhopper vector. Annual Review of Phytopathology 41: 483–500.
4. Fischer J, J. Waydash-Halász, A, in: the transfer of S. citri when completely in the plant and the leafhopper vector. Phytopathology 89: 1144–1151.
5. Kwon MO, Waydash-Halász J, Fischer J (1999) Spiroplasma citri movement into the intestines and salivary glands of its leafhopper vector, Circulifer tenellus. Phytopathology 89: 1144–1151.
6. Ozekh E, Miller SA, Meulia T, Hogenhout SA (2003) Infection and replication sites of Spiroplasma kunkelii (Class: Mollicutes) in midgut and Malpighian tubules of the leafhopper Dalbulus maidis. J Invertebr Pathol 82: 167–175.
7. Ammar ED, Fulton D, Bai X, Meulia T, Hogenhout SA (2004) An attachment tip and pili-like structures in insect- and plant-pathogenic spiroplasmas of the Class Mollicutes. Arch Microbiol 181: 97–105.
8. Dalo SF, Chavoya A, Baserman JB (1996) Characterization of the gene for a 30-kilodalton adhesion-related protein of Mycoplasma pneumoniae. Infect Immun 65: 4163–4165.
9. Rottam S (2003) Interaction of mycoplasmas with host cells. Physiol Rev 83: 417–432.
10. Bouteaud A, Danet JL, Garnier M, Saillard C (2004) Disruption of a gene predicted to encode a soluble binding protein of an ABC transporter reduces transmission of Spiroplasma citri by the leafhopper Circulifer haematocercus. Appl Environ Microbiol 70: 3960–3967.
11. Berho N, Duret S, Danet JL, Renaudin J (2006) Plasmid pMCP6 from Spiroplasma citri GII-3 confers insect transmissibility to the non-transmissible strain S. citri 44. Microbiology 152: 2703–2716.
12. Killiny N, Batailler B, Foisac X, Saillard C (2006) Identification of a Spiroplasma citri hydrophilic protein associated with insect transmissibility. Microbiology 152: 1221–1230.
13. Berho N, Duret S, Renaudin J (2006) Absence of plasmids encoding adhesion-related proteins in non-insect-transmissible strains of Spiroplasma citri. Microbiology 152: 873–886.
14. Duret S, Berho N, Danet JL, Garnier M, Renaudin J (2003) Spiralin is not essential for helicity, motility, or pathogenicity but is required for efficient transmission of Spiroplasma citri by its leafhopper vector Circulifer haematocercus. Appl Environ Microbiol 69: 6225–6234.
15. Killiny N, Castelejo C, Saillard C (2005) Spiroplasma citri spiralin acts in vitro as a lectin binding to glycoproteins from its insect vector Circulifer haematocercus. Phytopathology 95: 541–548.
16. Labroussa F, Arriac-Bouvery N, Dubreana MP, Saillard C (2010) Entry of Spiroplasma citri into Circulifer haematocercus Cells Involves Interaction between Spiroplasma Phosphoglycerate Kinase and Leafhopper Actin. Appl Environ Microbiol 76: 1879–1886.
17. Duret S, Batailler B, Danet JL, Beven I, Renaudin J, et al. (2009) Infection of the Circulifer haematocercus cell line Cih\textsubscript{a}1 by Spiroplasma citri: the non insect-transmissible strain 44 is impaired in invasion. Microbiology.
18. Suzuki S, Oshima K, Kakikawa S, Arashida R, Jung HY, et al. (2006) Interaction between the membrane protein of a pathogen and insect microfilament complex determines insect-vector specificity. Proc Natl Acad Sci U S A 103: 4252–4257.
19. Cossart P, Pizarro-Cerda J, Lecuit M (2003) Invasion of mammalian cells by Listeria monocytogenes: functional mimicry to subvert cellular functions. Trends Cell Biol 13: 23–31.
20. Gounin E, Welch MD, Cossart P (2005) Actin-based motility of intracellular pathogens. Curr Opin Microbiol 8: 35–45.
21. Yavlovich A, Rechtmüller H, Rotten S (2007) Alpha-enameisol resides on the cell surface of Mycoplasma fermentans and binds plasminogen. Infect Immun 75: 5716–5719.
22. Bergmann S, Rohde M, Hammerschmidt S (2004) Glyceraldehyde-3-phosphate dehydrogenase of Streptococcus pneumoniae is a surface-displayed plasminogen-binding protein. Infect Immun 72: 2416–2419.
23. Dalo SF, Kannan TR, Blaylock MW, Baserman JB (2002) Elongation factor Tu and E1 beta subunit of pyruvate dehydrogenase complex act as fibronectin binding proteins in Mycoplasma pneumoniae. Mol Microbiol 46: 1041–1051.
24. Vignault JC, Bové JM, Saillard C, Vogel R, Farro A, et al. (1988) Mise en culture of spiroplasmas à partir de matériel végétal et d'insectes provenant de pays circums méditerranéens et du Proche Orient. CR Acad Sci Paris 290: 775–780.
25. Tully JG, Whitecomb RF, Clark HF, Williamson DL (1977) Pathogenic mycoplasmas: cultivation and vertebrate pathogenicity of a new spiroplasma. Science 195: 892–894.
26. Foisac X, Saillard C, Gander J, Zveik I, Bové JM (1996) Spiralin polymorphism in strains of Spiroplasma citri is not due to differences in posttranslational palmitoylation. J Bacteriol 178: 2934–2940.
27. Marchler-Bauer A, Lu S, Anderson JB, Chzin F, Derbyshire MK, et al. (2011) CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res 39: 225–229.
28. Sherman MA, Szałkowska BK, Dean SA, Mathiowetz AM, McQueen NL, et al. (1998) Probing the role of arginines and histidines in the catalytic function and activation of yeast 3-phosphoglycerate kinase by site-directed mutagenesis. J Biol Chem 265: 10659–10665.
29. Watson HC, Walker NP, Shaw PJ, Bryant TN, Wendell PL, et al. (1982) Sequence and structure of yeast phosphoglycerate kinase. Embo J 1: 1635–1640.