Towards machine-readable lexicons for South African Bantu languages

Sonja E. Bosch, Laurette Pretorius and Jackie Jones
University of South Africa
PO Box 392, UNISA 0003, Pretoria, South Africa
E-mail: boschse@unisa.ac.za, pretol@unisa.ac.za, jonescjj@unisa.ac.za

Abstract

Lexical information for South African Bantu languages is not readily available in the form of machine-readable lexicons. At present the availability of lexical information is restricted to a variety of paper dictionaries. These dictionaries display considerable diversity in the organisation and representation of data. In order to proceed towards the development of reusable and suitably standardised machine-readable lexicons for these languages, a data model for lexical entries becomes a prerequisite. In this study the general purpose model as developed by Bell and Bird (2000) is used as a point of departure. Firstly, the extent to which the Bell and Bird (2000) data model may be applied to and modified for the above-mentioned languages is investigated. Initial investigations indicate that modification of this data model is necessary to make provision for the specific requirements of lexical entries in these languages. Secondly, a data model in the form of an XML DTD for the languages in question, based on our findings regarding (Bell & Bird, 2000) and (Weber, 2002) is presented. Included in this model are additional particular requirements for complete and appropriate representation of linguistic information as identified in the study of available paper dictionaries.

1. Introduction

For the purposes of this paper the term machine-readable lexicon is understood as “a lexicographic knowledge base from which lexicla of all these different kinds can be derived automatically.” (Van Eynde & Gibbon, 2000:2) Natural language processing (NLP) can be considerably improved by the availability of a complete and accurate lexicon. Most NLP applications depend in some way on a machine-readable lexicon as a basic resource. For example, machine-readable lexicons are an essential component in the development of morphological analysers. The goal in the development of a machine-readable lexicon is to be as inclusive as possible, thus incorporating all relevant information in the most efficient and economical manner, to be reusable and to conform to suitable and appropriate international standards.

For the Bantu languages, which are lesser studied languages, lexical information is not readily available in the form of machine-readable lexicons. In most cases, such lexical resources need to be newly developed. At present the availability of lexical information is restricted to a variety of paper dictionaries. These dictionaries display considerable diversity in the organisation and representation of data. This diversity emanates from factors such as designers’ decisions, user needs, intended mode of delivery and economic considerations.

The purpose of this paper therefore is to address this need in the following way. Firstly, we use a data model proposed by Bell and Bird (2000) as a point of departure and investigate how this model may be applied and modified for the Bantu languages of South Africa. Secondly, we discuss the necessity for modification of the Bell and Bird (2000) model based on the idiosyncrasies of the Bantu languages considering also the recommendations of Weber (2002). We present an excerpt of our XML (Extensible Markup Language) DTD (Document Type Definition) for the languages in question and demonstrate its use by means of examples.

2. Problem Statement

In order to proceed towards the development of reusable and suitably standardised machine-readable lexicons for the South African Bantu languages1, a data model for lexical entries is a prerequisite. However in the design and development of such a data model the characteristics of the languages concerned are relevant and consideration should be given to the current representation of paper dictionary entries.

Paper dictionaries for the nine South African Bantu languages were consulted and examples extracted from a variety of these dictionaries are given below. These examples illustrate the diversity which had to be considered in order to ensure inclusiveness in describing all relevant information for each language. Examples (1) and (2) represent languages belonging to the Nguni group of languages which follow a conjunctive orthography. It should be noted that the examples include similar entries in each case, i.e. the equivalent of the noun for ‘human being’ and the verb for ‘love’.

(1) Xhosa (A New Concise Xhosa-English Dictionary, 1984)
(1a) ntu, um-, n. 1, a human being, a man or woman, a person; pl. abantu, men, persons, people, esp. the native people; ...
(1b) thanda, v. t. like, love, esteem; wish, will, desire; i-thanda, n. 3, a lover of, and isithanda, n. 4, a great lover of, (cattle, money, etc.)... thandana, love each other; ...
thandeka, be lovable, amiable; ... thandela, love for; wish, desire for, ... thandisa, cause to love, wish or desire; ...
(2) Zulu (English-Zulu Zulu-English Dictionary, 2005)

1 The South African Bantu languages are the following: Zulu, Xhosa, Swati and Ndebele (belonging to the Nguni group of languages); Northern Sotho, Southern Sotho and Tswana (belonging to the Sotho group of languages); Tsonga and Venda.
The conjunctive system of word division in the Nguni languages, including Xhosa and Zulu, has given rise to lexicographic representation according to stems while in the case of the other South African Bantu languages such as Northern Sotho, disjunctivism has given rise to lexicographic representation of orthographic words in most dictionaries (Van Wyk, 1995). This discrepancy in lexicographic representations is clearly illustrated in example (1a) in which the single Xhosa stem entry -ntu corresponds to the two Northern Sotho orthographic word entries in examples (3a) motho and (3b) batho.

Secondly, the concept of recursion (which results in nested entries) is found in all paper dictionaries consulted. This is due to the agglutinating morphological structure of Bantu languages according to which series of prefixes and suffixes are built around base forms such as noun stems or verb roots. It should also be noted that due to language idiosyncrasies, rules of derivation are not consistent since for example all verbal extensions are not able to combine with all verb roots. This necessitates the explicit inclusion of known occurrences as subentries under the base form. For example, in Zulu the base form -funda ‘read/learn’ has the following derived forms which we accommodate in subentries under the base form:

(6) -fundela ‘read/learn for’
-funaka ‘readable’
-fundisa ‘teach’.

Typically the causative verbal extension –is-, as in -fundisa, may be further extended with a reciprocal extension –an-, which would be considered a subentry -funakisa ‘teach each other’ under –fundisa ‘teach’.

It would therefore seem appropriate to represent the relationship of a derived form as a subentry under the base form (see for example Weber (2002), regarding the language Huallaga Quechua). Note that we do not include our subentries under the Sense of the base form. We include it under the MSI of the base form.

3. Our Approach

Considering the above-mentioned features of the Bantu languages we concur with the Bell and Bird (2000) basic structure of a lexical entry, namely a 4-tuple <Form, Morpho-syntactic information, Sense(s), Auxiliary information> (Farrar, 2003), where Form includes pronunciation information. Sense(s) contain semantic information such as sense definitions, while information regarding aspects such as, for example, dialects and etymology is included under Auxiliary information. Moreover, the dictionary entries that we propose, adhere to the rules for creating tree-like dictionary entries (Ike, Kilgariff & Romary, 2000).

However, for building some of the first machine-readable lexicons for the South African languages, the Bell and Bird (2000) model is too abstract in the sense of Farrar (2003) and ‘ambiguous’ in the sense that it allows the duplication of information in different places in the model. We prefer to be explicit about what we consider as auxiliary information. Furthermore, initial investigations also indicate that refining and extending this data model are necessary to make provision for the specific requirements of lexical entries in these languages. The inclusion of derived forms as subentries under the

(2a) -ntu (umuntu, 3.2.9, abantu) n. [Ur-B.muntu.ßerdem, umtwana; umonuntu, ubuntu; isintu; u(lu)ntu; umuntakazana; ban] 1. Human being, person; (not of necessity male). ...
(2b) thanda (3.9) v. [perf. –thandle; pass. thandwa; neut. thandeka; ap. thandel; rec. thandana; caus. thanda; int. thandisa; dim. thandathanda; umathandana; isizhandanani; umthandi; intando; u(lu)thando; isithandwa.]

1. Like, love, be fond of; value, esteem, admire; prefer ...
(2c) a-hqa (i(li)hqa, 3.2.9.9, amahqa) n. [shaqa.] hlonipha term for i(li)hodwe, cooking pot.

In examples (1) and (2) it is illustrated that in the case of the Nguni languages all entries are stem entries, possibly due to the conjunctive writing style.

Examples (3) and (4) represent languages belonging to the Sotho group of languages, which follow a disjunctive orthography. The examples again include similar entries in each case, i.e. the equivalent of the noun for ‘human being’ and the verb for ‘love’.

(3) Northern Sotho (The New English-Northern Sotho Dictionary, 1976)

(a) motho, n., human being, a person; ...
(b) batho, n. pl., people; ...

This plural form is a separate entry which is found listed under the letter ‘b’ and is not represented under the singular motho.

(3c) rata, v.t., love, like, wish, will, want to.
(3d) i’thata, v. reflex., rata, love oneself, be selfish, egoistic.

(4) Southern Sotho (Sesuto-English Dictionary, 1976)

(a) motho, n., human being, male or female person; ...
(b) rata, v.t., to love, to like, to will; ratèha, v.n., to be lovely, to be lovable; i’tathà, v.t., to love oneself; to be selfish; ratana, to love one another; ratïsa, v.t., to cause to love; ratiswa, v.t., to be obliged to love, to crave for (of a pregnant woman desiring certain things to eat); ratisana, to cause or teach one another to love; i’tathisa v.r., to cause oneself to love; rati, v.t., to love for; i’tathela, v.r., to love for oneself, to like, to prefer; ratisa, v.t., to like very much.

In examples (3a) and (4a) it is noticeable that the noun motho ‘human being’ is entered as an orthographic word and not as a stem as in the case of the Nguni languages. However, example (5a) differs in representation from other Northern Sotho dictionaries in that the tradition of stem entry is being followed:

(5) Northern Sotho (Comprehensive Northern Sotho Dictionary, 1975)

(a) -tho, mo-bha ... human being, person, man (in general); ...

It becomes evident from these paper dictionary entries that the aspect of disjunctively as opposed to conjunctively written languages as well as the agglutinative characteristics of the Bantu languages become significant in the representation of entries.
original base form, as recommended by Weber (2002) in his reaction to the Bell and Bird (2000) data model, is especially significant for the Bantu languages, as shown in the previous section.

We present an excerpt of our data model in the form of a fragment of our XML DTD for the languages in question, based on our findings regarding (Bell & Bird, 2000) and (Weber, 2002). For a complete and appropriate representation of linguistic information as identified in the study of available paper dictionaries, additional information is explicitly included in this model. Examples of this include the representation of class information, singular and plural, locative formation (derivation) in the case of nouns, and verbal extensions (derivations) in the case of verbs. Further examples are the identification of specific socio-linguistic features in Xhosa and Zulu such as isiHlonipho sabafazi (married women’s language of respect) as illustrated in example (2c) and Xhosa isiKhwetha (male initiates’ language) both features of which would also necessitate explicit representation in the lexicon.

For illustrative purposes, we also show the XML entry for the base form –ntu (noun, class 1-2) and a fragment of the XML entry corresponding to rata (verb).

4. A Model for the South African Bantu Languages

In the development of a general model for the South African languages it is important to take cognisance of other models developed for other languages, and to bear in mind that the Bantu languages that were investigated do differ from those studied by Bell and Bird (2000). According to Wittenburg, Peters and Drude (2000) “It is important to assess these differences and aim at the integration of lexical resources in order to improve lexicon creation, exchange and reuse”. One of the most significant areas where this model seemed inadequate to accommodate the South African Bantu languages was the exclusion of the appropriate nesting of derived forms so prevalent within these languages.

The modifications made to the Bell and Bird (2000) model concerned specific areas due to the differences in the structure and writing styles of the Bantu languages. It was also our aim at the outset to make our DTD precise and to avoid repetition of data which may result in ambiguity and redundancy in computational applications. Before discussing the modifications deemed necessary we would like to concur with Bell and Bird (2000) who express the necessity of minimising the complexity of the Head element by including as much information as possible in the Body. For our purposes and considering the entries of the paper dictionaries consulted, we came to the conclusion that the information in the Head should be limited to base form entries. Information such as phonetic transcriptions and tone which is occasionally included in the Head should be contained in the Body together with other linguistic information.

In an attempt to include all the relevant linguistic information as captured from a variety of paper dictionaries of the South African Bantu languages, the following modifications are implemented in our data model:

- Considering that the majority of the South African Bantu language paper dictionaries follow the stem entry approach it was decided that affix information should not appear in the Head but should be included in the Body element. Since a noun stem may often combine with a variety of different prefixes, it would seem appropriate to include affix information in the Body element as opposed to the Head, which is then reserved for the stem or base form. It is for this reason that we model noun stems, which may combine with prefixes from a number of different classes, as separate lexicon entries, one for each pair of classes (singular and plural) or each class should not have a singular and plural pair. For example, we would have an entry for –ntu, class 1-2 (of which we give the XML entry below), an entry for –ntu class 14, and so on.

- Due to the prominence of the verbal extensions within the Bantu languages, verbal extension information should appear at the level of MS and not merely in a comment as is given for the Shona example in the Bell and Bird (2002) model. It should also be readily extractable from the XML document and not appear as text together with other types of information. The level at which the comment is introduced in Bell and Bird (2000) and which would equate to the level of verbal extensions, would not be overtly visible. This is therefore not appropriate for verb information in the case of the Bantu languages.

- The feature structures of the POS for the Bantu languages should be explicitly included where applicable, specifically for nouns and verbs. Whereas Bell and Bird (2000) defer defining these feature structures, we aim to be overt in describing the crucial issues pertaining to these languages.

- Locative information is idiosyncratic and therefore needs to be specified as #PCDATA. There are no rules that determine whether a Zulu noun for instance suffixes the locative morpheme –ini simultaneously with the locative prefix or not. For example the noun ikhaya ‘home’ is locatised only by means of the prefix e-, that is ekhaya ‘at home’, while the noun intaba ‘mountain’ uses both the prefix e- and the suffix -ini and becomes entabeni ‘at the mountain’.

- The importance of entering the reflexive form of the verb under the base form is emphasised by the fact that in the Sotho languages the base form may change when the reflexive morpheme i- is prefixed, e.g. rata v. ‘love’ becomes ithata v. refl. ‘love oneself’. In example (3d) it is illustrated that ithata appears as a separate entry and not as sub-entry of the base form rata. We see this as a further justification for sub-entries of derived verb forms. Furthermore, the occurrence of an entry ithata, implies affix information (i.e. reflexive i-) in the head, an aspect we want to avoid (cf. Bell & Bird, 2000).

- Transitivity may be influenced by verbal extensions, in other words transitivity may change as extensions are added. Therefore transitivity information should be included for the base form as well as for each subsequent form. The following Zulu examples illustrate this phenomenon by means of the suffixation of the applied verbal extension:

(7) –vuka (intr.) ‘wake up, awake (from sleep)’
–vukela (tr.) ‘awake for, rise for’
–pheka (single tr.) ‘cook’ (as in –pheka ukudla ‘cook food’)
-phemela (double tr.) ‘cook for’ (as in -phemela abantuwa akudla ‘cook food for the children’)

- **In the development of higher human language technology (HLT) and NLP applications we require a precise structure. In the Bell and Bird (2000) model (DTD) Variant, which is present in the Head, contains register and dialect information. Aux, which is found in Body, also contains register and dialect. This information therefore may be accommodated in two places. For our purposes we consider this duplication to be undesirable, particularly from a computational point of view, and therefore include this information in the Body element only where applicable.**

- **One of our main purposes is to mark up lexicon information for logical structure in order to provide essential information for the computational language processing task (Ide, 2000). Our goal is to provide a useful and efficient computational resource.**

- For the purposes of this paper we use a pure hierarchical element-based DTD, without attribute lists and attributes, to exhibit the structure of our data model. This causes the example entries to be rather verbose. We also do not address the important issue of mapping and cross-referencing in this paper.

- Regarding the DTD, our general approach is that #PCDATA is mainly used for “structural units of language” (Wittenburg, Peters & Drude, 2000) as deemed useful in computational applications, not for field linguistics type descriptive purposes.

- Reiterating, there is no recursion at Entry level. The MSI element is obligatory because the Head element contains the stem, which requires morphological completion. We allow for one and only one POS element per lexical entry. The elements Noun-features and Verb-features are obligatory and explicitly included, as mentioned before.

- As extensively discussed in previous sections of this paper, the verbal extensions are accommodated as (recursive) subentries Ext under the entry Verb-exts. Moreover, the Reflexive-baseform may exhibit the full complexity of the recursive subentry structure of Ext under the Verbal-exts* subentry via the Verb-features entry, in accordance with the exposition in example (4b). Also, the sense information of each derivational form is presented in the subentry that represents the specific derivational form.

A fragment of our DTD is as follows:

```xml
<Entry (Head,Body)>
  <Head (Stem)>
    <Stem (#PCDATA)>
      <Body (Phon-transc*,Tone*,MSI+,Sense+,Dialects*,Etymology*)> ...
    </BODY>
  </Head>
  <MSI (POS)> ...
  <Noun (Noun-features)>
    <Noun-features (Class-pf-s?,Class-pf-p?,Class-no,Label,Augmentative?,Diminutive?,Locative?)> ...
    <Class-pf-s (#PCDATA)>
    <Class-pf-p (#PCDATA)>
</Noun>
</Noun-features>
</Entry>
```

In the following two examples the mark up of the “structural units of language” should be noted. The XML entry for the noun –ntu, class 1-2 in example (2a) is as follows:

```xml
<Entry>
  <Head>
    <Stem>ntu</Stem>
  </Head>
  <Body>
    <Tone>3.2.9</Tone>
    <MSI>
      <Noun (Noun-features)>
        <Noun-features (Class-pf-s>umu</Class-pf-s>
        <Class-pf-p>aba</Class-pf-p>
        <Class-no>1-2</Class-no>
        <Label></Label>
        <Augmentative>
```

1725
...of certain languages for computational purposes, which dealing with modelling the structure of the lexical entities arbitrarily complex and unwieldy. However, we are (field linguists, mother-tongue speakers etc.) can become recursively complex by a multitude of contributors. Hence, we consider a somewhat different activity. We argue that in terms of archiving (field) linguistic information, in machine-readable lexicons. We appreciate the view has been written on whether or not recursion is necessary (inside our Entry level under MSI) in the Ext element, sub-element of Verbal-exts, sub-element of Verb-features, sub-element of Verb, for the accurate and intuitive modelling of the mentioned constructs.

5. Conclusion

In this paper we show that previously applied data models (Bell & Bird, 2000) require modification for machine-readable lexicons for the South African Bantu languages. In particular we question the intuition expressed by Bell and Bird (2000) that “a complete model of dictionaries and lexicons should not need to include recursion of entries”. We instead concur in principle with the notion expressed by Weber (2002:8) that “lexical databases should accommodate (1) derived forms having multiple senses and (2) derived forms ... of the bases from which they are derived”. Indeed, we include our recursion in the MSI where from a computational point of view it is available as basic linguistic building blocks for use in, for example, morphological analysis and syntactic analysis. We include the various senses together with their associated derivational forms in the element Ext where they are readily available for use in applications that may require them. We therefore propose an alternative model for machine-readable lexicons, which differs in significant ways to ensure maximum inclusiveness of all linguistic information. The model provides flexibility and handles the various representations applicable to Bantu languages in particular and is therefore applicable to diverse uses of machine-readable lexicons.

The collection of data as well as the model we have developed and proposed, is intended to contribute to further discussion and development of a common scheme for storing lexical data not only for the South African Bantu languages, but for the Bantu language family as a whole. We conclude by emphasising that our purpose is not only descriptive in nature, but is aimed at developing machine-readable lexicons as language resources for use in large-scale HLT/NLP applications and the technological development of the South African Bantu languages.

6. Acknowledgements

This material is based upon work supported by the National Research Foundation under grant number 2053403. Any opinion, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Research Foundation.

References

A New Concise Xhosa-English Dictionary. (1984). Cape Town: Maskew Miller Longman.

Bell, J. & Bird, S. (2000). A Preliminary Study of the Structure of Lexicon Entries. [O] Available. http://www.ldc.upenn.edu/exploration/expl2000/paper
Comprehensive Northern Sotho Dictionary. (1975). Pretoria: J.L. van Schaik and The University of South Africa.

English-Zulu Zulu-English Dictionary. (2005). Johannesburg: Witwatersrand University Press.

Farrar, S. (2002). New ways of thinking about lexical resources: a proposal for the Semantic Web. EMELD Workshop on Digitizing Lexical Information. [O] Available. http://www.u.arizona.edu/~farrar/publications.html Accessed on 3 October 2005.

Ide, N. (2000). The XML Framework and Its Implications for the Development of Natural Language Processing Tools. [O] Available. http://www.cs.vassar.edu/~ide/papers/coling00-ws-final.pdf Accessed on 4 October 2005.

Ide, N., Kilgarriff, A. & Romary, L. (2000). A Formal Model of Dictionary Structure and Content. In Proceedings of EURALEX'00, to appear. [O] Available. http://citeseer.ist.psu.edu/ide00formal.html Accessed on 4 October 2005.

Sesuto-English Dictionary. (1976). Morija: Morija Printing Works.

Southern Sotho-English Dictionary. (1988). Morija: Morija Sesuto Book Depot.

The New English-Northern Sotho Dictionary. (1976). King William’s Town: Educum Publishers.

Van Eynde, F. & Gibbon, D. (2002). Lexicon Development for Speech and Language Processing. Dordrecht, Boston, London: Kluwer Academic Publishers.

Van Wyk, E.B. (1995). Linguistic Assumptions and Lexicographical Traditions in the African Languages. Lexikos 5:82-96.

Weber, D.J. (2002). Reflections on the Huallaga Quechua dictionary: derived forms as subentries. [O] Available. http://emeld.org/workshop/2002/presentations/weber/emeld.pdf Accessed on 3 October 2005.

Wittenburg, P., Peters, W. & Drude, S. (2000). Analysis of OStructures from Field Linguistics and Language Engineering. [O] Available. http://www.mpi.nl/lrec/2002/papers/lrec-pap-08-lexical-structures-talk-final.pdf Accessed on 9 February 2006.