Distance-regular graphs obtained from the Mathieu groups M_{11}, M_{12}, M_{22}, M_{23} and M_{24}

Dean Crnković (deanc@math.uniri.hr)
Nina Mostarac (nmavrovic@math.uniri.hr)
and
Andrea Švob (asvob@math.uniri.hr)

Department of Mathematics
University of Rijeka
Radmile Matejčić 2, 51000 Rijeka, Croatia

Abstract

We construct distance-regular graphs (including strongly regular graphs) admitting a transitive action of the five sporadic simple groups discovered by E. Mathieu, the Mathieu groups M_{11}, M_{12}, M_{22}, M_{23} and M_{24}. We discuss a possibility of permutation decoding of the codes spanned by the adjacency matrices of these graphs and find PD-sets for some of the codes.

AMS classification numbers: 05E18, 05E30, 94B05.

Keywords: Mathieu group, distance-regular graph, strongly regular graph, permutation decoding, PD-set.

1 Introduction

The main motivation for this paper is to give further contribution to the classification of transitive DRGs, especially those admitting a transitive action of a simple group. The research presented in the paper can be seen as a continuation of the work given in [9], in which
transitive structures constructed from the Mathieu group M_{11} were described. Moreover, a construction of distance-regular graphs (DRGs), and especially strongly regular graphs (SRGs), from finite groups gave an important contribution to the graph theory and the design theory (see [4, 6, 25]). There are further examples of the research whose main topic was to give classifications of particular DRGs under the actions of some simple groups, for example [11, 12].

We assume that the reader is familiar with the basic facts of the group theory, the theory of strongly regular graphs and the theory of distance-regular graphs. We refer the reader to [8, 26] for relevant background reading in the group theory, to [4, 28] for the theory of strongly regular graphs, and to [6, 13] for the theory of distance-regular graphs.

In this paper we study the Mathieu groups $M_{11}, M_{12}, M_{22}, M_{23}$ and M_{24} i.e. the sporadic simple groups, which are the simple groups of orders 7920, 95040, 443520, 10200960 and 244823040, respectively. The Mathieu groups $M_{11}, M_{12}, M_{22}, M_{23}$ and M_{24} are belonging to the class of simple sporadic groups, introduced by Emile Mathieu in [21, 22, 23]. The Mathieu groups have been studied so far in various literature. For example, t-designs arising from Mathieu groups M_{22}, M_{23} and M_{24} have been studied in a work by Kramer, Magliveras and Mesner (see [17]) and those arising from M_{11} in [9]. Codes connected with Mathieu group M_{11} have been studied in [24] and those connected with M_{12} in [1]. More about small representations (up to rank 5) of these five sporadic simple groups can be found in [25]. We refer the reader to [8, 30] for more details about these groups.

Using the method outlined in Section 3 we constructed and classified SRGs and DRGs of diameter $d \geq 3$ from above mentioned simple groups as follows:

- up to 2000 vertices and for which the rank of the permutation representation of the group is at most 25 (i.e. the number of orbits of the stabiliser acting on the cosets is at most 25) admitting a transitive action of the group M_{11},
- up to 2000 vertices and for which the rank of the permutation representation of the group is at most 20 admitting a transitive action of the group M_{12},
• up to 2000 vertices and for which the rank of the permutation representation of the group is at most 30 admitting a transitive action of the group M_{22},

• up to 10000 vertices and for which the rank of the permutation representation of the group is at most 20 admitting a transitive action of the group M_{23},

• up to 10000 vertices and for which the rank of the permutation representation of the group is at most 20 admitting a transitive action of the group M_{24}.

We also study codes spanned by the adjacency matrices of the constructed DRGs. Codes with large automorphism groups are suitable for permutation decoding (see [16, 19]), the decoding method developed by Jessie MacWilliams in the early 60's that can be used when a linear code has a sufficiently large automorphism group to ensure the existence of a set of automorphisms, called a PD-set, that has some specific properties. Therefore, the codes constructed in this paper are suitable for permutation decoding, and we were searching for PD-sets for some of the constructed codes.

To find the graphs and compute their full automorphism groups, and to obtain PD-sets and the corresponding information sets of the codes, we used programmes written for Magma [3] and GAP [14]. The constructed DRGs, including the SRGs, and the obtained PD-sets and the corresponding information sets of the codes can be found at the link: http://www.math.uniri.hr/~asvob/DRGs_Mathieu_PD.7z.

2 Preliminaries

In this section we define coherent configurations and association schemes, which are the tools for the construction of graphs presented in this paper. We also give basic definitions and properties of DRGs and SRGs.

Definition 1 A coherent configuration on a finite non-empty set Ω is an ordered pair (Ω, \mathcal{R}) with $\mathcal{R} = \{R_0, R_1, \ldots, R_d\}$ a set of non-empty relations on Ω, such that the following axioms hold.
(i) \(\sum_{i=0}^{t} R_i \) is the identity relation, where \(\{ R_0, R_1, \ldots, R_t \} \subseteq \{ R_0, R_1, \ldots, R_d \} \).

(ii) \(\mathcal{R} \) is a partition of \(\Omega^2 \).

(iii) For every relation \(R_i \in \mathcal{R} \), its converse \(R_i^T = \{ (y, x) : (x, y) \in R_i \} \) is in \(\mathcal{R} \).

(iv) There are constants \(p_{ij}^k \) known as the intersection numbers of the coherent configuration \(\mathcal{R} \), such that for \((x, y) \in R_k \), the number of elements \(z \in \Omega \) for which \((x, z) \in R_i \) and \((z, y) \in R_j \) equals \(p_{ij}^k \).

We say that a coherent configuration is homogeneous if it contains the identity relation, i.e., if \(R_0 = I \). If \(\mathcal{R} \) is a set of symmetric relations on \(\Omega \), then a coherent configuration is called symmetric. A symmetric coherent configuration is homogeneous (see [7]). Symmetric coherent configurations are introduced by Bose and Shimamoto in [2] and called association schemes. An association scheme with relations \(\{ R_0, R_1, \ldots, R_d \} \) is called a \(d \)-class association scheme.

Let \(\Gamma \) be a graph with diameter \(d \), and let \(\delta(u, v) \) denote the distance between vertices \(u \) and \(v \) of \(\Gamma \). The \(i \)th-neighborhood of a vertex \(v \) is the set \(\Gamma_i(v) = \{ w : \delta(v, w) = i \} \). Similarly, we define \(\Gamma_i \) to be the \(i \)th-distance graph of \(\Gamma \), that is, the vertex set of \(\Gamma_i \) is the same as for \(\Gamma \), with adjacency in \(\Gamma_i \) defined by the \(i \)th distance relation in \(\Gamma \). We say that \(\Gamma \) is distance-regular if the distance relations of \(\Gamma \) give the relations of a \(d \)-class association scheme, that is, for every choice of \(0 \leq i, j, k \leq d \), all vertices \(v \) and \(w \) with \(\delta(v, w) = k \) satisfy \(|\Gamma_i(v) \cap \Gamma_j(w)| = p_{ij}^k \) for some constant \(p_{ij}^k \). In a distance-regular graph, we have that \(p_{ij}^k = 0 \) whenever \(i + j < k \) or \(k < |i - j| \). A distance-regular graph \(\Gamma \) is necessarily regular with degree \(p_{i1}^0 \); more generally, each distance graph \(\Gamma_i \) is regular with degree \(k_i = p_{ii}^0 \).

An equivalent definition of distance-regular graphs is the existence of the constants \(b_i = p_{i+1,1}^i \) and \(c_i = p_{i-1,1}^i \) for \(0 \leq i \leq d \) (notice that \(b_d = c_0 = 0 \)). The sequence \(\{ b_0, b_1, \ldots, b_{d-1}; c_1, c_2, \ldots, c_d \} \), where \(d \) is the diameter of \(\Gamma \) is called the intersection array of \(\Gamma \). Clearly, \(b_0 = k \), \(b_d = c_0 = 0 \), \(c_1 = 0 \).
A regular graph is strongly regular with parameters \((v, k, \lambda, \mu)\) if it has \(v\) vertices, degree \(k\), and if any two adjacent vertices are together adjacent to \(\lambda\) vertices, while any two non-adjacent vertices are together adjacent to \(\mu\) vertices. A strongly regular graph with parameters \((v, k, \lambda, \mu)\) is usually denoted by \(\text{SRG}(v, k, \lambda, \mu)\). A strongly regular graph is a distance-regular graph with diameter 2 whenever \(\mu \neq 0\). The intersection array of an SRG is given by \(\{k, k - 1 - \lambda; 1, \mu\}\).

3 DRGs constructed from the Mathieu groups

Let \(G\) be a finite permutation group acting on the finite set \(\Omega\). This action induce the action of the group \(G\) on the set \(\Omega \times \Omega\). For more information see [29]. The orbits of this action are the sets of the form \(\{(\alpha g, \beta g) : g \in G\}\). If \(G\) is transitive, then \(\{(\alpha, \alpha) : \alpha \in \Omega\}\) is one such orbit. If the rank of \(G\) is \(r\), then it has \(r\) orbits on \(\Omega \times \Omega\). Let \(|\Omega| = n\) and \(\Delta_i\) is one of these orbits. We say that the \(n \times n\) matrix \(A_i\), with rows and columns indexed by \(\Omega\) and entries

\[
A_i(\alpha, \beta) = \begin{cases}
1, & \text{if } (\alpha, \beta) \in \Delta_i \\
0, & \text{otherwise.}
\end{cases}
\]

is called the adjacency matrix for the orbit \(\Delta_i\).

Let \(A_0, \ldots, A_{r-1}\) be the adjacency matrices for the orbits of \(G\) on \(\Omega \times \Omega\). These satisfy the following conditions.

(i) \(A_0 = I\), if \(G\) is transitive on \(\Omega\). If \(G\) has \(s\) orbits on \(\Omega\), then \(I\) is a sum of \(s\) adjacency matrices.

(ii) \(\sum_i A_i = J\), where \(J\) is the all-one matrix.

(iii) If \(A_i\) is an adjacency matrix, then so is its transpose \(A_i^T\).

(iv) If \(A_i\) and \(A_j\) are adjacency matrices, then their product is an integer-linear-combination of adjacency matrices.
If A_i is symmetric, then the corresponding orbit is called self-paired. Further, if $A_i = A_j^T$, then the corresponding orbits are called mutually paired.

The graphs obtained in this paper are constructed using the method described in [10] which can be rewritten in terms of coherent configurations in the following way.

Theorem 1 Let G be a finite permutation group acting transitively on the set Ω and A_0, \ldots, A_d be the adjacency matrices for orbits of G on $\Omega \times \Omega$. Let $\{B_1, \ldots, B_t\} \subseteq \{A_1, \ldots, A_d\}$ be a set of adjacency matrices for the self-paired or mutually paired orbits. Then $M = \sum_{i=1}^t B_i$ is the adjacency matrix of a regular graph Γ. The group G acts transitively on the set of vertices of the graph Γ.

Using this method one can construct all regular graphs admitting a transitive action of the group G. We will be interested only in those regular graphs that are distance-regular, and especially strongly regular.

Remark 1 Because of the large number of possibilities for building the first row of the adjacency matrix of a DRG, the only way to obtain the classification of DRGs given in this paper was with the use of computers. The running time complexity of the algorithm used for the construction of graphs depends on a number of parameters, such as the size of the used subgroup, the number of orbits of a vertex stabilizer, the number of vertices of the graphs and the number of self-paired and mutually paired orbits in a particular case.

3.1 DRGs from the group M_{11}

The Mathieu group M_{11} has the order 7920 and up to conjugation has 39 subgroups. In Table[1] we give the list of all the subgroups $H_i^1 \leq M_{11}$ which lead to the construction of SRGs or DRGs of diameter $d \geq 3$.

Using the method described in Theorem 1 we obtained all DRGs with at most 2000 vertices and for which the rank of the permutation representation of the group is at most 25, i.e. we gave the classification of such DRGs.

Theorem 2 Up to isomorphism there are exactly five strongly regular graphs and exactly three distance-regular graphs of diameter $d \geq 3$ with at most 2000 vertices and for which the rank of the permutation representation of the group is at most 25, admitting a transitive action of the group M_{11}. The SRGs have parameters $(55, 18, 9, 4)$, $(66, 20, 10, 4)$, $(144, 55, 22, 20)$, $(144, 66, 30, 30)$ and $(330, 63, 24, 9)$, and the DRGs have 165, 220 and 330 vertices, respectively. Details about the obtained strongly regular graphs are given in Table 2 and details about the obtained DRGs with $d \geq 3$ are given in Table 3.

Subgroup	Structure	Order	Index	Rank	Primitive
H_1^1	S_5	144	55	3	yes
H_2^1	$Z_9 : QD16$	120	66	4	yes
H_3^1	$Z_{11} : Z_3$	55	144	6	no
H_4^1	$GL(2, 3)$	48	165	8	yes
H_5^1	$S_3 \times S_3$	36	220	16	no
H_6^1	S_4	24	330	23	no

Table 1: Subgroups of the group M_{11}

Graph Γ	Parameters	$Aut(\Gamma)$
$\Gamma_1^1 = \Gamma(M_{11}, H_1^1)$	(55, 18, 9, 4)	S_{11}
$\Gamma_2^1 = \Gamma(M_{11}, H_2^1)$	(66, 20, 10, 4)	S_{12}
$\Gamma_3^1 = \Gamma(M_{11}, H_3^1)$	(144, 55, 22, 20)	M_{11}
$\Gamma_4^1 = \Gamma(M_{11}, H_4^1)$	(144, 66, 30, 30)	$M_{12} : Z_2$
$\Gamma_5^1 = \Gamma(M_{11}, H_5^1)$	(330, 63, 24, 9)	S_{11}

Table 2: SRGs constructed from the group M_{11}
Graph Γ

Number of vertices	Diameter	Intersection array	$Aut(\Gamma)$	
$\Gamma_6 = \Gamma(M_{11}, H_1^1)$	165	3	$\{24, 14, 6, 1, 4, 9\}$	$A_{11} : Z_2$
$\Gamma_7 = \Gamma(M_{11}, H_2^1)$	220	3	$\{27, 16, 7, 1, 4, 9\}$	S_{12}
$\Gamma_8 = \Gamma(M_{11}, H_3^1)$	330	4	$\{28, 18, 10, 4, 1, 4, 9, 16\}$	$A_{11} : Z_2$

Table 3: DRGs constructed from the group M_{11}, $d \geq 3$

Proof. There are 39 conjugacy classes of subgroups of M_{11}, but only 19 of them lead to a permutation representation of rank at most 25 and of index at most 2000. Applying the method described in Theorem 1 to the permutation representations on cosets of these 19 subgroups we obtain the results. □

Remark 2 All SRGs given in Table 2 are isomorphic to the ones constructed in [9].

Remark 3 The graphs Γ_6^1, Γ_7^1 and Γ_8^1 are unique graphs with the given intersection arrays, known as Johnson graphs, $J(11, 3)$, $J(12, 3)$ and $J(11, 4)$, respectively (see [6]).

3.2 DRGs from the group M_{12}

The Mathieu group M_{12} has the order 95040 and up to conjugation has 147 subgroups. In Table 4 we give the list of all the subgroups $H_i^2 \leq M_{12}$ which lead to the construction of SRGs or DRGs of diameter $d \geq 3$.

Subgroup	Structure	Order	Index	Rank	Primitive
H_1^2	$A_6 : Z_2$	1440	66	3	yes
H_2^2	$L(2, 11)$	660	144	5	no
H_3^2	$(E_9 : Q_8) : Z_2$	432	220	5	yes
H_4^2	$(E_8 : E_3) : Z_2$	192	495	11	yes
H_5^2	S_5	120	792	15	no

Table 4: Subgroups of the group M_{12}

Using the method described in Theorem 1 we obtained all DRGs with at most 2000 vertices and for which the rank of the permutation representation of the group is at most 20, i.e. we gave the classification of such DRGs.
Theorem 3 Up to isomorphism there are exactly seven strongly regular graphs and exactly three distance-regular graphs of diameter \(d \geq 3\) with at most 2000 vertices and for which the rank of the permutation representation of the group is at most 20, admitting a transitive action of the group \(M_{12}\). The SRGs have parameters \((66, 20, 10, 4)\), \((144, 66, 30, 30)\), \((144, 55, 22, 20)\), \((144, 22, 10, 2)\) and \((495, 238, 109, 119)\), and the DRGs have 220, 495 and 792 vertices, respectively. Details about the obtained strongly regular graphs are given in Table 5 and details about the obtained DRGs with \(d \geq 3\) are given in Table 6.

Graph \(\Gamma\)	Parameters	\(\text{Aut}(\Gamma)\)
\(\Gamma^2_1\)	\((66, 20, 10, 4)\)	\(S_{12}\)
\(\Gamma^2_2\)	\((144, 66, 30, 30)\)	\(M_{12} : Z_2\)
\(\Gamma^2_3\)	\((144, 66, 30, 30)\)	\(M_{12} : Z_2\)
\(\Gamma^2_4\)	\((144, 55, 22, 20)\)	\(M_{12}\)
\(\Gamma^2_5\)	\((144, 22, 10, 2)\)	\(S_{12} \wr S_2\)
\(\Gamma^2_6\)	\((495, 238, 109, 119)\)	\(O^-((10, 2) : Z_2)\)

Table 5: SRGs constructed from the group \(M_{12}\)

Graph \(\Gamma\)	Number of vertices	Diameter	Intersection array	\(\text{Aut}(\Gamma)\)
\(\Gamma^2_8\)	220	3	\{27, 16, 7; 1, 4, 9\}	\(S_{12}\)
\(\Gamma^2_9\)	495	4	\{32, 21, 12, 5; 1, 4, 9, 16\}	\(S_{12}\)
\(\Gamma^2_{10}\)	792	5	\{35, 24, 15, 8, 3; 1, 4, 9, 16, 25\}	\(S_{12}\)

Table 6: DRGs constructed from the group \(M_{12}\), \(d \geq 3\)

Proof. There are 147 conjugacy classes of subgroups of \(M_{12}\), but only 31 of them lead to a permutation representation of rank at most 20 and of index at most 2000. Applying the method described in Theorem 1 to the permutation representations on cosets of these 31 subgroups we obtain the results. \(\Box\)

Remark 4 The strongly regular graph \(\Gamma^2_1\) is isomorphic to the triangular graph \(T(12)\). The adjacency matrices of non-isomorphic SRGs \(\Gamma^2_2\), \(\Gamma^2_3\) and \(\Gamma^2_4\) are the incidence matrices of symmetric designs with parameters \((144, 66, 30)\), designs with Menon parameters (related to
a regular Hadamard matrix of order 144). These symmetric designs have been described in [18, 31]. According to Brouwer’s table (see [5]), known graphs with the parameters equal to the parameters of the graph Γ_9^2 (not isomorphic to Γ_3^1) are obtainable from orthogonal arrays $OA(12,5)$. Since our method does not use orthogonal arrays, it is likely that our graph is new. The graph Γ_6^3 is unique graph with the given parameters and the graph Γ_7^2 is isomorphic to the $O^-(10,2)$ polar graph. Strongly regular graphs with parameters $(144,66,30,30)$ have been known before (see [4, 5]).

Remark 5 The graphs Γ_8^2, Γ_9^2, and Γ_{10}^2 are unique graphs with the given intersection arrays, known as Johnson graphs, $J(12,3)$, $J(12,4)$ and $J(12,5)$, respectively (see [6]).

3.3 DRGs from the group M_{22}

The Mathieu group M_{22} has the order 443520 and up to conjugation 156 subgroups. In Table 7 we give the list of all the subgroups $H_i^3 \leq M_{22}$ which lead to the construction of SRGs or DRGs of diameter $d \geq 3$.

Subgroup	Structure	Order	Index	Rank	Primitive
H_1^3	$E_{16} : A_6$	5760	77	3	yes
H_2^3	A_7	2520	176	3	yes
H_3^3	$E_{16} : S_5$	1920	231	4	yes
H_4^3	$E_8 : L(3,2)$	1344	330	5	yes
H_5^3	$L(2,11)$	660	672	6	yes
H_6^3	$(A_4 \times A_4) : Z_2$	288	1540	22	no

Table 7: Subgroups of the group M_{22}

Using the method described in Theorem 1 we obtained all DRGs with at most 2000 vertices and for which the rank of the permutation representation of the group is at most 30, i.e. we gave the classification of such DRGs.

Theorem 4 Up to isomorphism there are exactly five strongly regular graphs and exactly three distance-regular graphs of diameter $d \geq 3$ with at most 2000 vertices and for which
the rank of the permutation representation of the group is at most 30, admitting a transitive action of the group M_{22}. The SRGs have parameters $(77,16,0,4)$, $(176,70,18,34)$, $(231,30,9,3)$, $(231,40,20,4)$ and $(672,176,40,48)$, and the DRGs have 330, 672 and 1540 vertices, respectively. Details about the obtained strongly regular graphs are given in Table 8 and details about the obtained DRGs with $d \geq 3$ are given in Table 9.

Table 8: SRGs constructed from the group M_{22}

Graph Γ	Parameters	Aut(Γ)
$\Gamma_1^3 = \Gamma(M_{22}, H_1^3)$	(77,16,0,4)	$M_{22} : Z_2$
$\Gamma_2^3 = \Gamma(M_{22}, H_2^3)$	(176,70,18,34)	M_{22}
$\Gamma_3^3 = \Gamma(M_{22}, H_3^3)$	(231,30,9,3)	$M_{22} : Z_2$
$\Gamma_4^3 = \Gamma(M_{22}, H_4^3)$	(231,40,20,4)	S_{22}
$\Gamma_5^3 = \Gamma(M_{22}, H_5^3)$	(672,176,40,48)	$(U(6,2) : Z_2) : Z_2$

Table 9: DRGs constructed from the group M_{22}, $d \geq 3$

Graph Γ	Number of vertices	Diameter	Intersection array	Aut(Γ)
$\Gamma_6^3 = \Gamma(M_{22}, H_6^3)$	330	4	$\{7,6,4,4;1,1,1,6\}$	$M_{22} : Z_2$
$\Gamma_7^3 = \Gamma(M_{22}, H_7^3)$	672	3	$\{110,81,12;1,18,90\}$	$M_{22} : Z_2$
$\Gamma_8^3 = \Gamma(M_{22}, H_8^3)$	1540	3	$\{57,36,17;1,4,9\}$	S_{22}

Proof. There are 156 conjugacy classes of subgroups of M_{22}, but only 21 of them lead to a permutation representation of rank at most 30 and of index at most 2000. Applying the method described in Theorem 1 to the permutation representations on cosets of these 21 subgroups we obtain the results. ☐

Remark 6 The strongly regular graphs Γ_1^3 and Γ_2^3 are unique graphs with these parameters. The graph Γ_3^3 is isomorphic to the SRG known as the Cameron graph. The SRG Γ_4^3 is isomorphic to the triangular graph $T(22)$ and Γ_5^3 is isomorphic to the graph known as $U(6,2)$-graph. For more information we refer the reader to [4, 5].

Remark 7 The graph Γ_6^3 is isomorphic to the graph known as M_{22}-graph or doubly truncated Witt graph. The graph Γ_7^3 is isomorphic to the one constructed by Soicher in [27]. So far, it
is the only known example of DRG with this intersection array. The graph Γ^3_8 is known as Johnson graph $J(22,3)$. (see \cite{9})

3.4 DRGs from the group M_{23}

The Mathieu group M_{23} has order 10200960 and up to conjugation 204 subgroups. In Table 10 we give the list of all the subgroups $H_i^4 \leq M_{23}$ which lead to the construction of SRGs or DRGs of diameter $d \geq 3$.

Subgroup	Structure	Order	Index	Rank	Primitive
H_1^4	$L(3,4):Z_2$	40320	253	3	yes
H_2^4	$E_{16}:A_7$	40320	253	3	yes
H_3^4	A_8	20160	506	4	yes
H_4^4	M_{11}	7920	1288	4	yes
H_5^4	$E_{16}:(A_5:S_3)$	5760	1771	8	yes

Table 10: Subgroups of the group M_{23}

Using the method described in Theorem 5 we obtained all DRGs with at most 10000 vertices and for which the rank of the permutation representation of the group is at most 20, i.e. we gave the classification of such DRGs.

Theorem 5 Up to isomorphism there are exactly three strongly regular graphs and exactly two distance-regular graphs of diameter $d \geq 3$ with at most 10000 vertices and for which the rank of the permutation representation of the group is at most 20, admitting a transitive action of the group M_{23}. The SRGs have parameters $(253, 42, 21, 4)$, $(253, 112, 36, 60)$ and $(1288, 495, 206, 180)$, and the DRGs have 506 and 1771 vertices, respectively. Details about the obtained strongly regular graphs are given in Table 11 and details about the obtained DRGs with $d \geq 3$ are given in Table 12.
Table 11: SRGs constructed from the group M_{23}

Graph Γ	Parameters	$\text{Aut}(\Gamma)$
$\Gamma_4^1 = \Gamma(M_{23}, H_{4}^1)$	$(253,42,21,4)$	S_{23}
$\Gamma_4^2 = \Gamma(M_{23}, H_{4}^2)$	$(253,112,36,60)$	M_{23}
$\Gamma_4^3 = \Gamma(M_{23}, H_{4}^3)$	$(1288,495,206,180)$	M_{24}

Table 12: DRG constructed from the group M_{23}, $d \geq 3$

Graph Γ	Number of vertices	Diameter	Intersection array	$\text{Aut}(\Gamma)$
$\Gamma_4^4 = \Gamma(M_{23}, H_{5}^4)$	506	3	$\{15, 14, 12; 1, 1, 9\}$	M_{23}
$\Gamma_4^5 = \Gamma(M_{23}, H_{4}^5)$	1771	3	$\{60, 38, 18; 1, 4, 9\}$	S_{23}

Proof. There are 204 conjugacy classes of subgroups of M_{23}, but only 14 of them lead to a permutation representation of rank at most 20 and of index at most 10000. Applying the method described in Theorem 1 to the permutation representations on cosets of these 14 subgroups we obtain the results. □

Remark 8 The graph Γ_4^1 is isomorphic to the triangular graph $T(23)$. The graph Γ_4^1 can be constructed from the group M_{23} as a rank 3 graph, and Γ_4^4 (isomorphic to the graph Γ_5^2) can be constructed from the group M_{24} as a rank 3 graph.

Remark 9 The graph Γ_4^4 is isomorphic to the distance-regular graph that can be obtained from residual design of Steiner system $S(5, 8, 24)$. The graph Γ_4^5 is known as Johnson graph $J(23, 3)$. For more information we refer the reader to [6].

3.5 DRGs from the Mathieu group M_{24}

The Mathieu group M_{24} has order 244823040 and up to conjugation 1529 subgroups. In Table 13 we give the list of all the subgroups $H_{5}^i \leq M_{24}$ which lead to the construction of SRGs or DRGs of diameter $d \geq 3$.

13
Using the method described in Theorem 1 we obtained all DRGs with at most 10000 vertices and for which the rank of the permutation representation of the group is at most 20, i.e. we gave the classification of such DRGs.

Theorem 6 Up to isomorphism there are exactly two strongly regular graphs and exactly two distance-regular graphs of diameter \(d \geq 3 \) with at most 10000 vertices and for which the rank of the permutation representation of the group is at most 20, admitting a transitive action of the group \(M_{24} \). The SRGs have parameters \((276, 44, 22, 4)\) and \((1288, 495, 206, 180)\), and the DRGs have 759 and 2024 vertices, respectively. Details about the obtained strongly regular graphs are given in Table 14 and details about the obtained DRGs with \(d \geq 3 \) are given in Table 15.

Table 13: Subgroups of the group \(M_{24} \)

Subgroup	Structure	Order	Index	Rank	Primitive
\(H_1^5 \)	\(M_22 : Z_2 \)	887040	276	3	yes
\(H_2^5 \)	\(E_{16} : A_8 \)	322560	759	4	yes
\(H_3^5 \)	\(M_{12} : Z_2 \)	190080	1288	3	yes
\(H_1^4 \)	\((L(3,4) : Z_3) : Z_2 \)	120960	2024	5	yes

Table 14: SRGs constructed from the group \(M_{24} \)

Graph \(\Gamma \)	Parameters	Aut(\(\Gamma \))
\(\Gamma_5^3 = \Gamma(M_{24}, H_1^5) \)	\((276, 44, 22, 4)\)	\(S_{24} \)
\(\Gamma_5^4 = \Gamma(M_{24}, H_2^5) \)	\((1288, 495, 206, 180)\)	\(M_{24} \)

Table 15: DRGs constructed from the group \(M_{24} \), \(d \geq 3 \)

Graph \(\Gamma \)	Number of vertices	Diameter	Intersection array	Aut(\(\Gamma \))
\(\Gamma_3^3 = \Gamma(M_{24}, H_2^5) \)	759	3	\(\{30, 28, 24; 1, 3, 15\} \)	\(M_{24} \)
\(\Gamma_4^4 = \Gamma(M_{24}, H_4^5) \)	2024	3	\(\{63, 40, 19; 1, 4, 9\} \)	\(S_{24} \)

Proof. There are 1529 conjugacy classes of subgroups of \(M_{24} \), but only 15 of them lead to a permutation representation of rank at most 20 and of index at most 10000. Applying
the method described in Theorem 1 to the permutation representations on cosets of these 15 subgroups we obtain the results. □

Remark 10 The graph Γ_1^2 is isomorphic to the triangular graph $T(24)$. The graph Γ_2^3 (isomorphic to the graph Γ_3^4) can be constructed from the group M_{24} as a rank 3 graph.

Remark 11 The graph Γ_3^5 is unique distance-regular graph known as near hexagon which can be obtained from Steiner system $S(5, 8, 24)$. The graph Γ_1^5 is known as Johnson graph $J(24, 3)$. For more information we refer the reader to [6].

4 Permutation decoding

Let $C \subseteq \mathbb{F}_p^n$ be a linear $[n, k, d]$ code. For $I \subseteq \{1, ..., n\}$, let $p_I : \mathbb{F}_p^n \to \mathbb{F}_p^{|I|}$, $x \mapsto x|_I$, be the I-projection of \mathbb{F}_p^n. Then I is called an information set for C if $|I| = k$ and $p_I(C) = \mathbb{F}_p^{|I|}$.

The set of the first k coordinates for a code with a generator matrix in the standard form is an information set. The first k coordinates are then called information symbols and the last $n-k$ coordinates are the check symbols and they form the corresponding check set.

Let $C \subseteq \mathbb{F}_p^n$ be a linear $[n, k, d]$ code that can correct at most t errors (i.e. t-error-correcting code) and let I be an information set for C. A subset $S \subseteq \text{Aut}C$ is a PD-set for C if every t-set of coordinate positions can be moved by at least one element of S out of the information set I. The property of having a PD-set for a code is not invariant under isomorphism of codes, it depends on the choice of the information set.

The algorithm of permutation decoding (see [20]) uses PD-sets and it is more efficient the smaller the size of a PD-set is. A lower bound on the size of a PD-set is given in the following theorem and it is due to Gordon [15].

Theorem 7 If S is a PD-set for an $[n, k, d]$ code C that can correct t errors, $r = n - k$, then

$$|S| \geq \left\lceil \frac{n}{r} \left\lceil \frac{n - 1}{r - 1} \left[\cdots \left\lceil \frac{n - t + 1}{r - t + 1} \right\rceil \cdots \right] \right\rceil \right\rceil.$$

PD-sets for codes do not always exist. Even if they exist, PD-sets are not easy to find, since they depend on the chosen information set of the code.
Let A be the adjacency matrix of a graph Γ. Then the full automorphism group of Γ is a subgroup of the full automorphism group of the linear code spanned by A over \mathbb{F}_p. Codes with large automorphism groups are likely to have PD-sets, therefore, we were looking for PD-sets for the codes spanned by adjacency matrices of the DRGs constructed in this paper.

For any of the constructed DRG Γ^i_j from the previous section, let C^i_j denote the linear code spanned by the adjacency matrix of the graph Γ^i_j. Sizes of the obtained PD-sets (for specific information sets) for some of these codes are given in Table 16. For the other codes computation of PD-sets was not feasible. We denote by t the error correcting capacity of the code, and by g the Gordon bound for the size of the PD-set of a code, from Theorem 7.

Code C	Parameters $[n, k, d]$	Aut(C)	t	g	Size of PD-set
C^1_1	[55,10,10]	S_{11}	4	5	5
C^1_2	[165,120,4]	S_{11}	1	4	5
C^1_3	[330,286,6]	S_{11}	2	60	420
C^1_4	[330,120,8]	S_{11}	3	7	22
C^2_1	[66,10,20]	S_{12}	9	15	660
C^2_2	[77,20,16]	$M_{22} : Z_2$	7	19	110
C^2_3	[1771,1540,4]	S_{23}	1	8	23

Table 16: PD-sets for codes from constructed DRGs from Mathieu groups

Acknowledgement
This work has been fully supported by Croatian Science Foundation under the project 6732.

References
[1] R. F. Bailey, J. N. Bray, Decoding the Mathieu group M_{12}, Adv. Math. Commun. 1 (2007), 1477–487.

[2] R. C. Bose, T. Shimamoto, Classification and analysis of partially balanced incomplete block designs with two associate classes, J. Amer. Statist. Assoc. 47 (1952), 151–184.
[3] W. Bosma, J. Cannon, Handbook of Magma Functions, Department of Mathematics, University of Sydney, 1994. [http://magma.maths.usyd.edu.au/magma]

[4] A. E. Brouwer, Strongly Regular Graphs, in: C. J. Colbourn, J. H. Dinitz (Eds.), Handbook of Combinatorial Designs, 2nd ed., Chapman & Hall/CRC, Boca Raton, 2007, pp. 852–868.

[5] A. E. Brouwer, Parameters of Strongly Regular Graphs, Available at [http://www.win.tue.nl/~aeb/graphs/srg/srgtab.html] Accessed on 6/01/2021.

[6] A. E. Brouwer, A. M. Cohen, A. Neumaier, Distance-regular Graphs, Springer-Verlag, Berlin, 1989.

[7] P. J. Cameron, Coherent configurations, association schemes and permutation groups, Groups, combinatorics & geometry (Durham, 2001), 55–71, World Sci. Publ., River Edge, NJ, 2003.

[8] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of Finite Groups, Oxford University Press, Eynsham, 1985.

[9] D. Crnković, V. Mikulić Crnković, A. Švob, Block designs and strongly regular graphs admitting a transitive action of the Mathieu group M_{11}, Australas. J. Combin. 73 (2019), 149–161.

[10] D. Crnković, V. Mikulić Crnković, A. Švob, On some transitive combinatorial structures constructed from the unitary group $U(3, 3)$, J. Statist. Plann. Inference 144 (2014), 19–40.

[11] D. Crnković, S. Rukavina, A. Švob, New strongly regular graphs from orthogonal groups $O^+(6, 2)$ and $O^-(6, 2)$, Discrete Math. 341 (2018), 2723–2728.

[12] D. Crnković, S. Rukavina, A. Švob, On some distance-regular graphs with many vertices, J. Algebraic Combin. 51 (2020), 641–652.
[13] E. R. van Dam, J. H. Koolen, H. Tanaka, Distance-Regular Graphs, Electron. J. Combin. (2016), DS22, Dynamic Survey, 156 pp.

[14] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.11.0; 2020. (http://www.gap-system.org)

[15] D. M. Gordon, Minimal permutation sets for decoding the binary Golay codes, IEEE Trans. Inform. Theory 28 (1982), 541–543.

[16] J. D. Key, T. P. McDonough, V. C. Mavron, Improved partial permutation decoding for Reed-Muller codes, Discrete Math. 340 (2017), 722–728.

[17] E. S. Kramer, S. S. Magliveras, D. M. Kramer, t-designs from large Mathieu groups, Discrete Math. 36 (1981), 171–189.

[18] W. Lempken, Two new symmetric 2-(144,66,30) designs, preprint, 1999.

[19] F. J. MacWilliams, Permutation decoding of systematic codes, Bell System Tech. J., 43 (1964), 485–505.

[20] F. J. MacWilliams, N. J. A. Sloane, The Theory of Error-Correcting Codes. II, North-Holland Mathematical Library, Vol. 16. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977.

[21] E. Mathieu, Memoire sur le nombre de valeurs que peut acquérir une function quand on y permut ses variables de toutes le maniere possibles, J. de Math. Pure et App. 5 (1860), 9–42.

[22] E. Mathieu, Memoire sur l’étude des functions de plusieurs quantites, sur la maniere des formes et sur les substitutions qui laissent invariables, J. de Math. Pure et App. 6 (1861), 241–323.

[23] E. Mathieu, Sur la function cinq fois transitive des 24 quantites, J. de Math. Pure et App. 18 (1873), 25–46.
[24] V. Mikulić Crnković, I. Traunkar, Self-orthogonal codes constructed from weakly self-orthogonal designs invariant under an action of M_{11}, Appl. Algebra Engrg. Comm. Comput., to appear.

[25] C. E. Praeger, L. H. Soicher, Low rank representations and graphs for sporadic groups, Australian Mathematical Society Lecture Series 8, Cambridge University Press, Cambridge, 1997.

[26] D. Robinson, A Course in the Theory of groups, Springer-Verlag, New York, Berlin, Heidelberg, 1996.

[27] L. H Soicher, Yet another distance-regular graph related to Golay code, Electronic J. Combin. 2 (1995), N1, 4pp.

[28] V. D. Tonchev, Combinatorial Configurations: Designs, Codes, Graphs, John Willey & Sons, New York, 1988.

[29] H. Wielandt, Finite permutation groups, Academic Press, New York, 1964.

[30] R. A. Wilson, The finite simple groups, Springer-Verlag, London, 2009.

[31] W. Wirth, Konstruktion symmetrischer Designs, PhD thesis, Johannes Gutenberg-Universität Mainz, 2000.