Highlight

Biodegradation of pollutants by exoelectrogenic bacteria is not always performed extracellularly

Lars J. C. Jeuken ©*
Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300RA, Leiden, the Netherlands.

Exoelectrogens like bacteria from the Geobacter and Shewanella species have the ability to transfer electrons extracellularly to minerals for redox balancing of fermentation or to respire on extracellular electron acceptors (Shi et al., 2016; Lovley and Holmes, 2022). Extracellular electron exchange is also used between microbes in multi-species biofilms in anaerobic digestion. Over the last two decades, this exquisite ability of nature to transfer electrons extracellularly has seen a spurge of research into potential new applications. Replacing extracellular electron acceptors with macroscopic electrodes creates microbial fuel cells to convert the oxidation of organics from, for instance, wastewater into electricity (Logan et al., 2019). In a reversed direction of electron transfer (i.e. ‘inwards’ rather than ‘outwards’), microbes gather energy from extracellular electron donors, such as Fe(II)-bearing minerals. This has important consequences to the economy as it enhances biocorrosion, but the same ability is currently being developed for applications in photobioelectrosynthesis. Biofilms on conductive materials can be ‘fed’ by applying electric potentials to drive synthesis. For some bacteria such as Shewanella oneidensis, it has been discovered that their natural ‘outward’ electron transfer direction can be reversed (Ross et al., 2011), significantly widening the number of microbes that can be engineered for electrobiosynthesis.

More recently, exoelectrogens, as well as non-exoelectrogens, have been coupled to light-harvesting nanomaterials, mainly CdS quantum dots, creating semi-artificial photosynthetic biohybrids (Sakimoto et al., 2016; Wang et al., 2019; Martins et al., 2021). Such biohybrids could in principle be engineered to use light energy to drive either outward and inward electron transfer (Piper et al., 2021). So far, the focus has mainly been on photobioelectrosynthesis, where light-driven electron transfer into microbes is utilized for the synthesis of organic materials, ammonia or hydrogen.

Early on in these studies, an important model exoelectrogen, Shewanella oneidensis MR-1, was developed for application in bioremediation (Marshall et al., 2006; Shi et al., 2016). S. oneidensis MR-1 is a dissimilatory metal ion-reducing bacterium with extreme diverse respiratory capabilities. Pollutants such chromium and radioactive uranium are reduced by S. oneidensis MR-1 from the soluble Cr(VI) and U(VI), to the insoluble Cr(IV) and U(IV), thereby preventing leaching from the polluted grounds. Key proteins from the metal-reducing (Mtr) pathway were subsequently found to also be responsible for exoelectrogenic capabilities of S. oneidensis MR-1 (Marshall et al., 2006). Especially the protein complex MtrCAB was found to transfer electrons across the outer membrane from the periplasm to the extracellular environment. Following on from this early work in metal reduction, it was shown that S. oneidensis MR-1 could reductively bleach a range of azo dye pollutants and the Mtr pathway was often identified to contribute to the rate of decolourisation (Watanabe et al., 2009; Liu et al., 2016).

In spite of the inspiring capability of S. oneidensis MR-1 for extracellular electron transfer, it should not be forgotten that many reduction processes take place in the periplasm of Gram-negative bacteria. Furthermore, the degradation of chemicals and pollutants in general is often due to chemical processes in the cytoplasm. In work by Zhu et al. (2022), reported in this issue of Environmental Microbiology, it is indeed observed that nitroaromatic compounds and other pollutants are not necessary reduced outside the bacteria. In particular, they show that the inner-membrane protein CymA reduces 2,4-dichloronitrobenzene (DNCB).

Zhu et al. took three different approaches to indicate the role of CymA. First, they show that the reduction of DNCB in S. oneidensis MR-1 is not perturbed in...
Delta mtrABCDEF DelomcA mutants, but it is moderated in Delta cymA mutants. Delta mtrABCDEF DelomcA mutants lack the most important outer membrane cytochromes required for extracellular electron transfer. The fact that this mutant shows the same rate of DNCB removal clearly indicates that extracellular electron transfer does not play an important role in this particular process. Then, they show that expression of a soluble form of CymA in Escherichia coli leads to an enhancement in reduction of DNCB in E. coli. To express the soluble form of CymA in the periplasm of E. coli, the authors make use of a previously constructed chimera of a periplasmic maltose-binding protein (MBP) and a CymA construct that misses the N-terminal transmembrane helix, creating a soluble, periplasmic MBP-CymA sol (Londer et al., 2008; Firer-Sherwood et al., 2011). In their third approach, the authors purified MBP-CymA sol and using protein-film electrochemistry on meso ITO electrodes, they show that CymA can directly reduce DNCB. Combined, these approaches indicate that CymA is capable of reducing DNCB and thus might contribute to the biodegradation of this nitroaromatic compound.

A role of CymA in the biodegradation of DNCB is interesting as CymA is a key electron transfer hub in S. oneidensis MR-1. Importantly, however, is that DNCB is still degraded in Delta cymA mutants of S. oneidensis MR-1, indicating that multiple mechanisms contribute to the biodegradation of this nitroaromatic compound.

The finding by Zhu et al. that CymA might now have a direct role in bioremediation of nitroaromatic compounds adds another function to this already fascinating electron hub.

The molecular structure of CymA has not yet been elucidated. However, the structure of a homologue, NrfH from Desulfovibrio vulgaris, is known. NrfH is part of a multiheme NrfH2A4 complex, which is a menaquinol: nitrite oxidoreductase. Identical to CymA, NrfH oxidizes menaquinol in the inner membrane (McMillan et al., 2012). Unlike CymA, however, NrfH transfers electrons only to its partner protein NrfA within a quaternary NrfH2A4 complex. Spectroscopic and voltametric analysis of CymA confirms that CymA, like NrfH, has four c-type hemes, one high-spin heme and three low spin hemes (Marritt et al., 2012b). Based on its homology with NrfH, it

Fig. 1. A schematic representation of the periplasm of S. oneidensis MR-1 with a number of reductases for which structures from Shewanella species are available (MtrCAB PDB:6r2q; OmcA PDB: 4lmh; NrfA: 6p73; STC PDB: 1m1p and FccA PDB: 1qjd). CymA is based on the NrfH structure from Desulfovibrio vulgaris (PDB:27lA).
is likely that CymA has at least three of the four hemes localized close or at its surface. If we assume that CymA does not have an evolution-based lock-and-key binding site for nitroaromatic substrates, there are still ample opportunities for CymA to reduce nitroaromatic compounds at its surface.

References

Alves, M.N., Neto, S.E., Alves, A.S., Fonseca, B.M., Carrêlo, A., Pacheco, I., et al. (2015) Characterization of the periplasmic reductase network that sustains the versatile anaerobic metabolism of Shewanella oneidensis MR-1. *Front Microbiol* 6: 665.

Firer-Sherwood, M.A., Bewley, K.D., Mock, J.Y., and Elliott, S.J. (2011) Tools for resolving complexity in the electron transfer networks of multiheme cytochromes c. *Metallomics* 3: 344–348.

Fonseca, B.M., Silva, L., Trindade, I.B., Moe, E., Matias, P. M., Louro, R.O., and Paquete, C.M. (2019) Optimizing electroactive organisms: the effect of orthologous proteins. *Front Energy Res* 7: 2.

Liu, W.J., Liu, L., Liu, C., Hao, Y., Yang, H., Yuan, B., and Jiang, J.H. (2016) Methylene blue enhances the anaerobic decolorization and detoxication of azo dye by Shewanella oneidensis MR-1. *Biochem Eng J* 110: 115–124.

Logan, B.E., Rossi, R., Ragab, A.A., and Saikaly, P.E. (2019) Electroactive microorganisms in bioelectrochemical systems. *Nat Rev Microbiol* 17: 307–319.

Londer, Y.Y., Giuliani, S.E., Peppler, T., and Collart, F.R. (2008) Addressing Shewanella oneidensis “cytochrome”: the first step towards high-throughput expression of cytochromes c. *Protein Expr Purif* 62: 128–137.

Lovley, D.R., and Holmes, D.E. (2022) Electromicrobiology: the ecophysiology of phylogenetically diverse electroactive microorganisms. *Nat Rev Microbiol* 20: 5–19.

Marritt, S.J., Lowe, T.G., Bye, J., McMillan, D.G.G., Shi, L., Fredrickson, J., et al. (2012b) A functional description of CymA, an electron-transfer hub supporting anaerobic respiratory flexibility in Shewanella. *Biochem J* 444: 465–474.

Marritt, S.J., McMillan, D.G.G., Shi, L., Fredrickson, J.K., Zachara, J.M., Richardson, D.J., et al. (2012a) The roles of CymA in support of the respiratory flexibility of Shewanella oneidensis MR-1. *Biochem Soc Trans* 40: 1217–1221.

Marshall, M.J., Beliaev, A.S., Dohnalkova, A.C., Kennedy, D. W., Shi, L., Wang, Z.M., et al. (2006) C-type cytochrome-dependent formation of U(IV) nanoparticles by Shewanella oneidensis. *PLoS Biol* 4: 1324–1333.

Martins, M., Toste, C., and Pereira, I.A.C. (2021) Enhanced light-driven hydrogen production by self-photosensitized biohybrid systems. *Angew Chem Int Ed* 60: 9055–9062.

McMillan, D.G.G., Marritt, S.J., Butt, J.N., and Jeuken, L.J.C. (2012) Menaquinone-7 is specific cofactor in Tetraheme Quinol dehydrogenase CymA. *J Biol Chem* 287: 14215–14225.

Myers, C.R., and Myers, J.M. (1997) Cloning and sequence of cymA, a gene encoding a tetraheme cytochrome c required for reduction of iron(III), fumarate, and nitrate by Shewanella putrefaciens MR-1. *J Bacteriol* 179: 1143–1152.

Piper, S.E.H., Edwards, M.J., van Wonderen, J.H., Casadevall, C., Martel, A., Jeuken, L.J.C., et al. (2021) Bespoke biomolecular wires for transmembrane electron transfer: spontaneous assembly of a functionalized Multitheme electron conduit. *Front Microbiol* 12: 714508.

Ross, D.E., Flynn, J.M., Baron, D.B., Gralnick, J.A., and Bond, D.R. (2011) Towards Electrosynthesis in Shewanella: energetics of reversing the Mtr pathway for reductive metabolism. *Plos One* 6: e16649.

Sakimoto, K.K., Wong, A.B., and Yang, P. (2016) Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. *Science* 351: 74–77.

Schwalb, C., Chapman, S.K., and Reid, G.A. (2003) The Tetraheme cytochrome CymA is required for anaerobic respiration with dimethyl sulfoxide and nitrite in Shewanella oneidensis. *Biochemistry* 42: 9491–9497.

Shi, L., Dong, H., Reguera, G., Beyenal, H., Lu, A., Liu, J., et al. (2016) Extracellular electron transfer mechanisms between microorganisms and minerals. *Nat Rev Micro* 14: 651–662.

Wang, B., Xiao, K., Jiang, Z., Wang, J., Yu, J.C., and Wong, P.K. (2019) Biohybrid photoheterotrophic metabolism for significant enhancement of biological nitrogen fixation in pure microbial cultures. *Energy Environ Sci* 12: 2185–2191.

Watanabe, K., Manefield, M., Lee, M., and Kouzuma, A. (2009) Electron shuttles in biotechnology. *Curr Opin Biotechnol* 20: 633–641.

Zhu, T., Cheng, Z., Yu, S., Li, W., Liu, D., and Yu, H. (2022) Unexpected role of electron-transfer hub in direct degradation of pollutants by exoelectrogenic bacteria. *Environ Microbiol* (in press).