A Large Automatically-Acquired All-Words List of Multiword Expressions
Scored for Compositionality

Will Roberts, Markus Egg
Humboldt-Universität zu Berlin
Unter den Linden 6, 10099 Berlin, Germany
{will.roberts, markus.egg}@anglistik.hu-berlin.de

Abstract

We present and make available a large automatically-acquired all-words list of English multiword expressions scored for compositionality. Intrinsic evaluation against manually-produced gold standards demonstrates that our compositionality estimates are sound, and extrinsic evaluation via incorporation of our list into a machine translation system to better handle idiomatic expressions results in a statistically significant improvement to the system’s BLEU scores. As the method used to produce the list is language-independent, we also make available lists in seven other European languages.

Keywords: multiword expressions, compositionality, machine translation

1. Introduction

Multiword expressions (MWEs) are phraseological units, which consist of more than one lexeme and exhibit some kind of idiosyncrasy (Sag et al., 2002); such idiosyncrasy may be lexical (ad hoc), syntactic (by and large), semantic (middle of the road), pragmatic (all aboard), or statistical (black and white but not white and black; these are commonly known as collocations) (Baldwin and Kim, 2010). In this paper, we present a new linguistic resource, in the form of a large automatically-acquired all-words list of MWEs, which aims to support future research into semantically idiosyncratic MWEs. Semantically idiosyncratic MWEs, or idiomatic expressions, are non-compositional in that their meanings cannot be predicted from their parts; these expressions are used frequently to make language more fluent (Jackendoff, 1997), and often contain word senses not found in other contexts. Thus, identifying non-compositional MWEs presents a clear challenge for fields such as automatic machine translation (MT), information retrieval, natural language understanding, natural language generation, question answering, text summarisation, and word sense disambiguation (McCarthy et al., 2007). In recent years, there has been considerable interest in the MWE community in automatically estimating compositionality (Biemann and Giesbrecht, 2011; Reddy et al., 2011; Schulte im Walde et al., 2013; Salehi et al., 2015); however, to the best of our knowledge, this work has hardly been applied to real-world NLP tasks. We set out to distribute a convenient resource representing some of the best practices gleaned from this work, by automatically scoring the expressions on our list for compositionality. This paper is structured in the following way: Section 2 lists previous work in this area, while section 3 details our acquisition method. Our resource is then evaluated intrinsically against manually-produced gold standards in section 4 and extrinsically, inside a MT system in section 5.

2. Related work

While the resource introduced in this paper is an all-words list acquired automatically, most existing MWE resources are produced manually and focus on a single part of speech (e.g., noun-noun compounds, verb-noun constructions, verb particle constructions, adjective-noun constructions) [1]; some examples of these are used in Section 4. Other more general resources include machine-readable dictionaries that happen to list MWEs; examples include the TED-MWE bilingual dictionary (Monti et al., 2015), with 2,484 automatically-extracted aligned EN-IT MWEs, and BabelNet (Navigli and Ponzetto, 2012), some of whose 8.5 M entries in 271 languages are MWEs. MWE research dealing with compositionality tends to focus on methodologies rather than producing resources. There are also MWE compositionality resources that are not targeted towards natural language processing, such as Martinez and Schmitt (2012), who produce a list of 505 non-compositional English phrases for teaching English as a second language. In contrast to the monolingual method we make use of here, some methods to estimate compositionality do so by measuring the relative difficulty of translating an expression into another language; an example is Villada Moirón and Tiedemann (2006), who leveraged parallel corpora to extract Dutch MWEs. However, for languages such as Basque this approach is not feasible, because parallel corpora are very limited in size and number and restricted to few languages (Leturia et al., 2009; Leturia, 2012).

3. Acquisition of non-compositional MWEs

We collect lexical co-occurrence statistics on all words in the English Wikipedia, using the WikiExtractor tool [2] to retrieve plain text from the April 2015 dump (ca. 2.8B words), and using simple regular expressions to segment sentences and words, and remove URLs and punctuation. We perform no POS tagging, lemmatisation, case normalisation, or removal of numbers or symbols; MWE acquisition using unlemmatised text in this way may be useful for capturing the morphological or syntactic fixedness of some idiom
MWEs (e.g., identifying *spill the beans* but not *spill the beans*). We collect word frequency information with the SRILM language modelling toolkit (Stolcke, 2002) counting n-grams (n ≤ 3), treating MWEs as contiguous bigrams and trigrams, and identify MWE candidates by computing the Poisson collocation measure (Quasthoff and Wolff, 2002) for all bigrams and trigrams (ca. 23M n-grams). This method should be readily extensible to include longer n-grams.

The Poisson measure we use is chosen after an empirical evaluation of several commonly used association measures. The Poisson balanced for trigrams:

\[
\text{poissonT} = \text{Poisson balanced for trigrams}
\]

\[
\text{ps} = \text{Piatetsky-Shapiro (Piatetsky-Shapiro, 1991)} \quad P(AB) - P(A)P(B)
\]

\[
\text{psT} = \text{Piatetsky-Shapiro balanced for trigrams} \quad P(ABC) - P(A)P(B)P(C)
\]

\[
\text{ttest} = \text{t-test} \quad \frac{f(AB) - f'(AB)}{\sqrt{f(AB)[1 - f(AB)/N]}}
\]

\[
\text{ttestT} = \text{t-test balanced for trigrams}
\]

We estimate the quality of these rankings by searching for known collocations and multiword expressions, and finding the ranks of these known expressions in the lists. We define a good association measure as one which tends to rank these known expressions highly (as operationalised by the Mean Reciprocal Rank). For this comparison, we use manually-constructed lists of multiwords intended as gold standards in MWE acquisition work:

English noun compound (NC) (Nakov, 2008)

English verb particle constructions (VPC) (Baldwin, 2005)

3 For example, Villada Moirón and Tiedemann (2006) found lemmatisation to be unhelpful for identifying non-compositional MWEs, because of the tendency of idiomatic MWEs to display more morphosyntactic fixedness than literal text.

4 srilm/https://code.google.com/p/word2vec/

5 Note that, while many MWEs are contiguous (e.g., *in a nutshell*), some may be non-contiguous (e.g., *take a (long) bath*).

6 This measure is almost identical to the log-likelihood ratio introduced by Dunning (1993).

7 For a more complete list of association measures commonly used in the MWE acquisition literature, the reader is referred to Pecina, 2008.

Table 1: Mean Reciprocal Rank (×10⁻⁷) by association measure for two test corpora. Higher values are better.

Score	MWE	Cosine similarities		
0.005	a front for	0.005	—	
0.012	red tape	−0.056	0.081	
0.191	stops short of	0.285	0.097	—

Table 2: Some compositionality-scored MWE candidates.

Candidate	Score	MWE	Cosine similarities	
a front for	0.005	—	0.005	
red tape	0.012	−0.056	0.081	
stops short of	0.191	0.285	0.097	—

Continuous bag of words model with 400-dimensional vectors, window size 3, subsampling with t = 10⁻⁵, negative sampling with 10 samples. We build vectors only for tokens observed 20 times or more in the corpus.

Stop words are taken here to be the 50 most frequent words in the vocabulary.

http://www.speech.sri.com/projects/srilm/
Table 3: Correlation of our compositionality-ranked list against manually-constructed gold standards.

	Found	Total	Spearman ρ	Pearson's r
F_ENC	631	1042	0.458	0.473
R_ENC	61	90	0.615	0.603
MC_VPC	48	117	0.432	0.379
D_ADJN	64	68	0.525	0.581
MC_VN	132	638	0.392	0.395

Table 3 shows the correlation of our compositionality scores against the five gold standards. The table lists the size of each gold standard dataset, and its overlap with our resource. The compositionality ranking accords well with human judgements, with correlation scores not far from the state of the art, and 10–30 percentage points below the human inter-annotator agreement. In the case of the largest resource, F_ENC, we are not aware of a better correlation than the one we report here. The list is positively correlated with all gold standard judgements, representing a variety of parts of speech, and all correlations are statistically significant. This demonstrates the validity of our compositionality scoring. For more information, see the original paper reports.

4. Intrinsic Evaluation

We conducted an in-vitro evaluation of the compositionality scores by measuring correlations against several gold standard datasets from the MWE compositionality literature, which contain human judgements of how predictable the meaning of a MWE is from its constituent words. The datasets are:

- **F_ENC** (Farahmand et al., 2015) 1,042 noun compounds (e.g., “cat fight”, “chicken breast”, “crash course”, etc.) annotated by five judges, with some filtering, resulting in a 5-point Likert scale. Inter-annotator agreement by Fleiss’ κ was 0.62. Yazdani et al. (2015) reported ρ = 0.410 on this dataset.

- **R_ENC** (Reddy et al., 2011) 90 noun compounds (e.g., “snail mail”, “guilt trip”, etc.) annotated over Amazon Mechanical Turk using a 6-point Likert scale. Inter-annotator agreement by averaged Spearman correlation between rankings was ρ = 0.686. Salehi et al. (2015) reported achieving τ = 0.796.

- **MC_VPC** (McCarthy et al., 2003) 117 verb–particle pairs (e.g., “rule out”, “clamp down”, etc.) annotated by 3 judges, with averaged scores on a 11-point Likert scale. Inter-annotator agreement with Kendall’s Coefficient of Concordance is reported to be W = 0.594. The original paper reports ρ = 0.49 using a method based on measuring the size of overlap in synonymy of the phrasal verb and in those of the bare (“simplex”) verb, using an automatically constructed thesaurus.

- **D_ADJN** (Biemann and Giesbrecht, 2011) 58 + 10 = 68 compounds (Adj-NN compounds only) from the training and validation sets of the Disco 2011 Shared Task (e.g., “mental health”, “soft drink”, “small group”, etc.). Annotating over Amazon Mechanical Turk using a 6-point Likert scale, with scores averaged over judges. No inter-annotator agreement figures are available. Krémér et al. (2013) achieved ρ = 0.54 using a LSA-based model.

MC_VN (McCarthy et al., 2007) This subset of the resource constructed by Venkatapathy and Joshi (2005) contains 638 verb-object pairs (e.g., “lend money”, “turn back”, “watch television”, etc.) annotated by two judges using a 6-point Likert scale. This list also contains some non-contiguous items (e.g., “lose temper”, “beg question”, etc.) not found in our list. Inter-annotator agreement by Kendall’s τ = 0.61; Spearman rank correlation between annotators: ρ = 0.71. Kiela and Clark (2013) reported ρ = 0.461.

Table 3 shows the correlation of our compositionality scores against these gold standards. The table lists the size of each gold standard dataset, and its overlap with our resource. The compositionality ranking accords well with human judgements, with correlation scores not far from the state of the art, and 10–30 percentage points below the human inter-annotator agreement. In the case of the largest resource, F_ENC, we are not aware of a better correlation than the one we report here. The list is positively correlated with all gold standard judgements, representing a variety of parts of speech, and all correlations are statistically significant. This demonstrates the validity of our compositionality scoring. For more information, see the original paper reports.

5. Extrinsic Evaluation: MT

To evaluate the utility of our resource for NLP applications, we conduct an extrinsic evaluation by incorporating MWE knowledge into an automatic English-Spanish translation system. TectoMT (Žabokrtský et al., 2008) is a linguistically sophisticated hybrid MT system which uses a combination of statistical and rule-based components in a modular pipeline model to analyse source language up to a highly abstract (tectogrammatical) level of representation; this so-called t-tree is a dependency tree structure containing only nodes for autosematic words. The morphosyntactic properties of the nodes (t-nodes) in this t-tree are represented by formemes, which encode grammatical roles and complements (e.g., n:subj for a noun in subject position, or n:for+X for a noun preceded by the preposition for).

In the transfer stage, translation is performed by first copying the source language t-tree structure into the target lan-
Figure 1: Tectogrammatical reduction of multiple t-nodes (representing the non-compositional MWE set foot in) into a single composite t-node.

have their lemma altered to a word-with-spaces representation, and are collapsed by deleting dependent MWE nodes and rearranging arguments so that these depend on the new composite node. Figure 11 shows the reduction performed in the analysis of a successfully matched MWE instance.

Performing this analysis during training of the TectoMT system allows the translation model to learn how to translate English MWEs observed in the training corpus into Spanish. We record all MWEs seen during training, and use only this list for analysis during testing, to ensure that no MWEs in the test corpus are reduced for which the trained translation model has not learnt any translations (which would create new out-of-vocabulary items). This has the effect of filtering our MWE candidate list, so that, at test time, only those expressions found in the translation training corpus are used to analyse the test data. We manipulate the compositionality value θ as an independent variable, using a threshold to control the number and compositionality of MWEs that are analysed in the source text. For example, with $\theta \leq 0.1$ we restrict the MWE candidate list to contain only those items whose compositionality score is less than or equal to 0.1.

Table 4 shows the counts of MWEs found in the English section of Europarl for different values of the threshold. We train four English-Spanish models on Europarl: a baseline model, which does not analyse MWEs, and three MWE-enabled models, using threshold values of $\theta = 0.1, \theta = 0.2$, and $\theta = 0.5$. We test these models on the ACL 2008 shared translation task (Callison-Burch et al., 2008), containing 2,000 sentences (ca. 55K words) from Europarl. We also build a MWE-rich test corpus by filtering the test split of Europarl (Oct.–Dec. 2000), retaining only sentences that contain one or more highly non-compositional ($\theta \leq 0.1$) MWEs from our list. This produces a small English-Spanish test corpus of 518 sentences (ca. 18K words).

Case-insensitive BLEU scores (Papineni et al., 2002) summarising our results are presented in Table 5 which also shows the counts of MWEs observed during testing. On both test sets, we observe a similar pattern: Analysing MWEs improves translation over the baseline model, but only when using low values of the compositionality threshold; performance falls below the baseline as this threshold is increased. This effect is expected, because it is likely that composite t-nodes representing compositional English MWEs cannot be adequately translated by single lexemes in Spanish.

On the ACL 2008 test set, we observe an absolute improvement over the baseline of +0.18 BLEU points (1% relative)

11In this example, the preposition in has been encoded in the formeme of the t-node under it (house) by the TectoMT system, but our analysis will still find this treelet because it can find set and foot.
On the one hand, whether or not we make sure that there is no spurious analysis of terms when using the lowest value of the compositionality threshold (e.g., 2% relative); due to the small test corpus size, this effect is not significant (p = 0.066). The model, by contrast, performs more poorly than the baseline. Error analysis does not conclusively explain this, but we have observed the model making mistakes due to instances of non-compositional MWEs, such as \textit{came into force}, which happen to have literal translations in Spanish (\textit{entró en vigor}). The 0.2 model appears to contain helpful MWEs, such as \textit{on the one hand}, which help to offset these errors.

It is interesting to note that the improvement to BLEU scores is out of proportion to the number of MWEs analysed at test time; for instance, the best improvement seen on the ACL 2008 test set occurs when TectoMT finds only 17 instances of MWEs in the test corpus. We have observed this phenomenon while training models on other parallel corpora, and while using other test sets—sometimes this results in better-than-baseline performance on test sets containing no MWEs at all. We surmise that treating non-compositional MWEs while training TectoMT allows the translation model to learn to ignore spurious translations of polysemous verbs (e.g., \textit{come}, \textit{enter}, \textit{set}) and nouns (e.g., \textit{point}, \textit{term}) which enter into idiomatic expressions; that is, when learning to translate a particular lexeme, the model is not distracted by the translations of MWEs which include that lexeme. E.g., suppose that the analysis of the parallel corpora couples \textit{come to terms} with its Spanish translation \textit{llegar a un acuerdo}. If we identify the English expression as a MWE, we make sure that there is no spurious analysis of terms as the English equivalent of \textit{acuerdo} ‘agreement’ regardless of whether or not \textit{come to terms} shows up in the material to be translated automatically.

ewcommand*\MWERoman{\textit{MWE}}

Table 5: TectoMT experimental results: BLEU scores of different MWE-enabled models on two test corpora.

Experiment	MWE Counts Types	MWE Counts Tokens	BLEU
ACL 2008 shared task			
Baseline			12.55
$\theta \leq 0.1$	7	17	\textbf{12.73} *
$\theta \leq 0.2$	39	74	12.66
$\theta \leq 0.5$	715	1,175	11.99
MWE-rich test set			
Baseline			11.59
$\theta \leq 0.1$	20	71	11.39
$\theta \leq 0.2$	37	99	\textbf{11.83}
$\theta \leq 0.5$	299	449	11.28

Significance relative to the baseline: *: $p < 0.01$

When using the lowest value of the compositionality threshold; this effect is statistically significant at the $p < 0.01$ level.

6. Conclusion

We have introduced a new automatically-acquired all-words list of MWEs, automatically ranked for compositionality. Evaluation against manually-created gold standards validates our compositionality scores, and incorporating our list into a MT system to detect idiomatic language gave a statistically significant improvement to the system’s BLEU scores.

We used the same language-independent method to build compositionality-ranked lists for other languages (Bulgarian, Czech, German, Spanish, Basque, Dutch, and Portuguese); we make these lists available here without evaluation.

7. Acknowledgements

This work was supported by the EC’s FP7 (FP7/2007-2013) under grant agreement number 610516: “QTLearn: Quality Translation by Deep Language Engineering Approaches”.

8. Bibliographical References

Aho, A. V. and Corasick, M. J. (1975). Efficient string matching: An aid to bibliographic search. \textit{Communications of the ACM}, 18(6):333–340.

Baldwin, T. and Kim, S. N. (2010). Multiword expressions. In Nitin Indurkhya et al., editors, \textit{Handbook of Natural Language Processing}, pages 267–292. CRC Press, Boca Raton, USA, second edition.

Baldwin, T. (2005). Deep lexical acquisition of verb–particle constructions. \textit{Computer Speech & Language}, 19(4):398–414.

Baroni, M., Dinu, G., and Kruszewski, G. (2014). Don’t count, predict! A systematic comparison of context-counting vs. context-predicting semantic vectors. In \textit{Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, pages 238–247, Baltimore. Association for Computational Linguistics.

Biemann, C. and Griesbrecht, E. (2011). Distributional semantics and compositionality 2011: Shared task description and results. In \textit{Proceedings of the Workshop on Distributional Semantics and Compositionality}, pages 21–28. Association for Computational Linguistics.

Callison-Burch, C., Fordyce, C., Koehn, P., Monz, C., and Schroeder, J. (2008). Further meta-evaluation of machine translation. In \textit{Proceedings of the Third Workshop on Statistical Machine Translation}, pages 70–106. Association for Computational Linguistics.

Dunning, T. (1993). Accurate methods for the statistics of surprise and coincidence. \textit{Computational Linguistics}, 19(1):61–74.

Farahmand, M., Smith, A., and Nivre, J. (2015). A multiword expression data set: Annotating non-compositionality and conventionalization for English noun compounds. In \textit{Proceedings of the 11th Workshop on Multiword Expressions}, pages 29–33, Denver, CO. Association for Computational Linguistics.

Jackendoff, R. (1997). \textit{The architecture of the language faculty}. MIT Press, Cambridge, MA.

Kiela, D. and Clark, S. (2013). Detecting compositionality of multi-word expressions using nearest neighbours.
in vector space models. In *Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP-13)*, pages 1427–1432.

Klejch, O., Avramidis, E., Burchardt, A., and Popel, M. (2015). MT-ComparEval: Graphical evaluation interface for machine translation development. *Prague Bulletin of Mathematical Linguistics*, 104(1):63–74.

Koehn, P. (2004). Statistical significance tests for machine translation evaluation. In Deking Lin et al., editors, *Proceedings of EMNLP 2004*, pages 388–395. Barcelona. Association for Computational Linguistics.

Koehn, P. (2005). Europarl: A parallel corpus for statistical machine translation. In *MT Summit 2005*, pages 79–86.

Křemáf, L., Ježek, K., and Pecina, P. (2013). Determining compositionality of word expressions using word space models. In *Proceedings of the 9th Workshop on Multiword Expressions*, pages 42–50, Atlanta, GA. Association for Computational Linguistics.

Leturia, I., San Vicente, I., and Saralegi, X. (2009). Search engine based approaches for collecting domain-specific Basque-English comparable corpora from the Internet. In *Proceedings of the 5th International Web as Corpus Workshop (WAC5)*, pages 53–61.

Leturia, I. (2012). Evaluating different methods for automatically collecting large general corpora for Basque from the web. In *COLING 2012*, pages 1553–1570.

Losnegaard, G. S. G., Sangati, F., Escartín, C. P., Savary, A., Bargmann, S., and Monti, J. (2016). PARSEME survey on MWE resources. In Nicoletta Calzolari (Conference Chair), et al., editors, *Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016)*, Paris, France. European Language Resources Association (ELRA).

Martinez, R. and Schmitt, N. (2012). A phrasal expressions list. *Applied Linguistics*, 33(3):299–320.

McCarthy, D., Keller, B., and Carroll, J. (2003). Detecting a continuum of compositionality in phrasal verbs. In *Proceedings of the ACL 2003 Workshop on Multiword Expressions: Analysis, Acquisition and Treatment*, pages 73–80. Association for Computational Linguistics.

McCarthy, D., Venkatapathy, S., and Joshi, A. K. (2007). Detecting compositionality of verb-object combinations using selectional preferences. In *Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL)*, pages 369–379. Association for Computational Linguistics.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient estimation of word representations in vector space. In *Proceedings of Workshop at ICLR*.

Monti, J., Sangati, F., and Arcan, M. (2015). TED-MWE: A bilingual parallel corpus with MWE annotation. In *Proceedings of the Second Italian Conference on Computational Linguistics (CLiC-it 2015)*, pages 193–197, Trento, Italy.

Nakov, P. (2008). Paraphrasing verbs for noun compound interpretation. In *Proceedings of the LREC Workshop: Towards a Shared Task for Multiword Expressions (MWE 2008)*, pages 46–49.

Navigli, R. and Ponzetto, S. P. (2012). BabelNet: The automatic construction, evaluation and application of a wide-coverage multilingual semantic network. *Artificial Intelligence*, 193:217–250.

Omiecinski, E. R. (2003). Alternative interest measures for mining associations in databases. *IEEE Transactions on Knowledge and Data Engineering*, 15(1):57–69.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002). BLEU: A method for automatic evaluation of machine translation. In *Proceedings of 40th Annual Meeting of the Association for Computational Linguistics*, pages 311–318, Morristown, NJ, USA. Association for Computational Linguistics.

Pecina, P. (2008). A machine learning approach to multiword expression extraction. In *Proceedings of the LREC Workshop: Towards a Shared Task for Multiword Expressions (MWE 2008)*, pages 54–57.

Piatetsky-Shapiro, G. (1991). Discovery, analysis, and presentation of strong rules. In Gregory Piatetsky-Shapiro et al., editors, *Knowledge Discovery in Databases*, chapter 13, pages 229–238. MIT Press, Cambridge, MA.

Quasthoff, U. and Wolff, C. (2002). The Poisson collocation measure and its applications. In *Proceedings of the 2nd International Workshop on Computational Approaches to Collocations*, Vienna, Austria.

Reddy, S., McCarthy, D., and Manandhar, S. (2011). An empirical study on compositionality in compound nouns. In *Proceedings of 5th International Joint Conference on Natural Language Processing*, pages 210–218, Chiang Mai. Asian Federation of Natural Language Processing.

Sag, I. A., Baldwin, T., Bond, F., Copestake, A., and Flickinger, D. (2002). Multiword expressions: A pain in the neck for NLP. In *Proceedings of the Third International Conference on Intelligent Text Processing and Computational Linguistics (CICLING 2002)*, pages 1–15, Mexico City, Mexico.

Salehi, B., Cook, P., and Baldwin, T. (2015). A word embedding approach to predicting the compositionality of multiword expressions. In *Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics*, pages 977–983. Association for Computational Linguistics.

Schulte im Walde, S., Müller, S., and Roller, S. (2013). Exploring vector space models to predict the compositionality of German noun-noun compounds. In *Proceedings of the 2nd Joint Conference on Lexical and Computational Semantics (*SEM)*, pages 255–265.

Stolcke, A. (2002). SRILM: An extensible language modeling toolkit. In John H. L. Hansen et al., editors, *Proceedings of the 7th International Conference on Spoken Language Processing*, ICSLP2002 - INTERSPEECH 2002, Denver, CO. ISCA.

Uresoza, V., Sindlerova, J., Fucikova, E., and Hajic, J. (2013). An analysis of annotation of verb-noun idiomatic combinations in a parallel dependency corpus. In *Proceedings of the 9th Workshop on Multword Expressions*, pages 58–63, Atlanta. Association for Computational Linguistics.

Venkatapathy, S. and Joshi, A. K. (2005). Relative compo-
sitionality of multi-word expressions: A study of verb-noun (VN) collocations. In *Natural Language Processing–IJCNLP 2005*, pages 553–564. Springer, Berlin, Heidelberg.

Villada Moirón, B. and Tiedemann, J. (2006). Identifying idiomatic expressions using automatic word alignment. In *Proceedings of the 13th Conference of the European Chapter of the Association for Computational Linguistics (EACL 2006): Workshop on multiword expressions in a multilingual context*, pages 33–40, Trento.

Yazdani, M., Farahmand, M., and Henderson, J. (2015). Learning semantic composition to detect non-compositionality of multiword expressions. In *Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing*, pages 1733–1742, Lisbon. Association for Computational Linguistics.

Žabokrtský, Z., Ptáček, J., and Pajas, P. (2008). TectoMT: Highly modular MT system with tectogrammatics used as transfer layer. In *Proceedings of the Third Workshop on Statistical Machine Translation*, pages 167–170. Association for Computational Linguistics.

Zhang, Y., Kordoni, V., Villavicencio, A., and Idiart, M. (2006). Automated multiword expression prediction for grammar engineering. In *Proceedings of the Workshop on Multiword Expressions: Identifying and Exploiting Underlying Properties (MWE 06)*, pages 36–44, Sydney. Association for Computational Linguistics.