SUPPLEMENTARY APPENDIX

Proportions and incidence of locally advanced cervical cancer: a global systematic literature review

Bradley J Monk,1 David S P Tan,2 José David Hernández Chagüi,3 Jitender Takyar,4 Michael J. Paskow,3 Ana Tablante Nunes,5 Eric Pujade-Lauraine6

Supplementary Methods

The search strategies shown below were created to support this locally advanced cervical cancer epidemiology systematic literature review as well as one focused on the natural history of locally advanced cervical cancer. Only the epidemiology publications are reported in this article. EMBASE, MEDLINE (PubMed), and Cochrane databases were searched using the search strategies below. Because some studies are not appropriately indexed in electronic databases, bibliographic searching and pearl growing techniques were used to identify any potentially relevant studies that were not captured by database searches.

Embase search strategy run on June 10, 2020

Search number	Query	Results
#1	'uterine cervix cancer'/syn	114 434
#2	'cervical tumor' OR 'cervical neoplasm' OR 'cervical tumour' OR 'cervical cancer'	67 038
#3	cervi* NEAR/5 (cancer* OR oncolog* OR neoplas* OR carcinom* OR malignan* OR tumor* OR tumour* OR mass* OR growth* OR cyst* OR adenocarcinom* OR squamous)	159 269
#4	#1 OR #2 OR #3	159 271
#5	'natural history'/exp OR 'natural history':ab,ti,kw OR 'natural course'	423 926
#6	'natural history study'	1649
#7	('observational' OR 'prospective' OR 'retrospective' OR 'cross-sectional' OR 'cross sectional' OR 'longitudinal') NEAR/3 ('study' OR 'studies' OR analy*)	2 513 311
#8	#5 AND #7	18 090
#9	'disease course':ab,ti,kw OR 'clinical course' OR ('natural history' NEAR/2 prognos*)	113 467
#10	'inception cohort' OR 'disease exacerbation'/syn OR 'disease progression' OR 'outcome assessment':ab,ti,kw	246 377
#11	#5 OR #6 OR #8 OR #9 OR #10	770 081
#12	#4 AND #11	3494
#13	'locally advanced' OR 'local advanced' OR (local* NEAR/2 'advanced') OR 'stage one' OR 'stage two' OR 'stage three' OR 'stage four' OR 'stage ib2' OR 'stage ib'	103 225
BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance placed on this supplemental material which has been supplied by the author(s)

PubMed search strategy run on June 10, 2020

Search number	Query	Results
#1	Search: ‘uterine cervix cancer’[MeSH Terms]	74 490
#2	Search: “cervical tumor” OR “cervical neoplasm” OR “cervical tumour” OR “cervical cancer”	47 147
#3	Search: cervi* AND (cancer* OR oncolog* OR neoplas* OR carcinom* OR malignan* OR tumor* OR tumour* OR mass* OR growth* OR cyst* OR adenocarcinom* OR squamous)	161 507
#4	Search: #1 OR #2 OR #3	161 507
#5	Search: (‘natural history’[MeSH Terms]) OR (‘natural history’[Title/Abstract]) OR ‘natural course’	84 236
#6	Search: “natural history study”	776
#7	Search: (‘observational’ OR “prospective” OR “retrospective” OR “cross-sectional” OR “cross sectional” OR “longitudinal”) AND (“study” OR “studies” OR analyses)	2 332 275
#8	Search: #5 AND #7	17 334
#9	Search: “disease course”:[Title/Abstract] OR “clinical course” OR (“natural history” AND prognos*)	81 583
#10	Search: (“inception cohort”) OR (“disease exacerbation”[MeSH Terms]) OR “disease progression” OR (“outcome assessment”[MeSH Terms])	218 726
#11	Search: #5 OR #6 OR #8 OR #9 OR #10	360 274
#12	Search: #4 AND #11	4419
#13	Search: “locally advanced” OR “local advanced” OR (local” AND “advanced”) OR “stage one” OR “stage two” OR “stage three” OR “stage four” OR “stage ib2” OR “stage ib” OR “stage iia” OR “stage iib” OR “stage iav” OR “stage 1b2” OR “stage 2b” OR “stage 3a” OR “stage 3b” OR “stage 4a” OR (“stage” AND (“ib2” OR “ib” OR “iia” OR “iib” OR “iva” OR “1b2” OR “2b” OR “3a” OR “3b” OR “4a”)) OR ‘non-metastatic’ OR ‘non metastatic’ OR ‘lacc’	100 166
The following conferences were also searched for relevant abstracts from meetings held between January 2017 and June 2020: American Society of Clinical Oncology, European Society for Medical Oncology, European Society of Gynaecological Oncology, Society of Gynecologic Oncology, American Association for Cancer Research, International Society for Pharmacoeconomics and Outcomes Research, International Gynecologic Cancer Society.

The publication timeframe for conference searching was limited to the previous 3 years.
based on the assumption that research presented at conferences is usually published within 3–4 years as a full-text article or indexed in different biomedical literature databases as a conference paper, conference review, etc.

Inclusion and exclusion criteria used to identify relevant studies are shown in the table below.

Parameter	Inclusion/exclusion criteria
Study design	• Retrospective observational study
	• Prospective observational study
	• Case-control studies
	• Surveys and cross-sectional studies
	• Registry/database studies
	• Excluded: controlled trials (randomized controlled trial, non-randomized controlled study, or single-arm study)
Population	• Adult population (aged ≥18 years)
	• Any race
	• Locally advanced cervical cancer: stages IB2-IVA per any version of the FIGO staging criteria
	• Excluded: studies that only include patients with early-stage or metastatic cervical cancer
Line of therapy	• Not restricted
	• Studies of patients with locally advanced cervical cancer (both untreated and treated)
Countries	• Not restricted
Language	• Englisha
Time-frame	• 2010–2020
Data reported	• Proportion of patients with cervical cancer by disease stage
Incidence of cervical cancer by disease stage

English language was a criterion from the beginning of the systematic literature review process and was used as an exclusion criterion in database search queries.

FIGO, International Federation of Gynecology and Obstetrics.

Data extraction

The following information was extracted from the final set of published reports, where available: study details (sample size, inclusion/exclusion criteria, disease stage, stage classification criteria, treatment details, study limitations, time-frame of data collection, data source, location), patient demographics (age, race/ethnicity), clinical characteristics (histology, prior therapy), the proportion of patients with locally advanced stages of cervical cancer, prevalence (rate, odds ratio, risk ratio), and incidence (rate, risk ratio).

Calculation of the Proportion of Locally Advanced Cervical Cancer

The Surveillance, Epidemiology, and End Results summary stage categorizes the extent of cancer spread in a basic set of criteria. In the past, this classification system has also been referred to as General Stage, California Stage, historic stage, and Surveillance, Epidemiology, and End Results Stage. Summary stage uses all information available via medical records (ie, both clinical and pathologic documentation). Below are the criteria as per the most recent version (v2.0) published in 2020; however, studies included in the systematic literature review may have used older versions of the criteria. A summary of changes between the last available version (v1.7) and version 2.0 is available at https://seer.cancer.gov/tools/ssm/change-log.pdf. The 2020 criteria were used to determine which SEER Summary stages were equivalent to FIGO stage IB2-IVA.

Code	Stage	Definition
0	In situ	Noninvasive, intraepithelial lesions. Includes cancer in situ with endocervical gland involvement, cervical intraepithelial neoplasia Grade III, preinvasive.
1	Localized	Clinically visible lesion (macroscopic), including superficial invasion.
Confined to cervix uteri or uterus NOS, except corpus uteri NOS, including if not clinically visible or unknown if clinically visible. Measured stromal invasion less than 5 mm from the base of the epithelium AND horizontal spread of 7.0 mm or less. Includes FIGO stage IA1, IA2, IA NOS, IB1, IB2, IB NOS, I NOS.

2 Regional (direct extension) Extension to the bladder wall; bladder NOS excluding mucosa; bullous edema of bladder mucosa; confined to corpus uteri, size, depth and horizontal spread unknown; corpus uteri NOS; Cil de sac (rectouterine pouch); fallopian tube(s); “frozen pelvis” (clinically described); hydrenephrosis or nonfunctioning kidney; invasion beyond uterus NOS; ligament(s) (broad, cardinal, uterosacral); ovary/ovaries; parametrial (paracervical soft tissue) invasion; pelvic wall(s); rectal wall; rectum NOS excluding mucosa; upper two-thirds of vagina including fornices; ureter (intra- and extramural); urethra; vagina (lower third [not extending into pelvic wall], NOS); vaginal wall NOS; vulva. Includes FIGO stage IIA, IIB, II NOS, IIIA, IIIB, III NOS.

3 Regional (lymph node involvement only) Localized tumor WITH regional lymph node involvement. Involvement of the following types of lymph nodes: para-aortic, iliac NOS, paracervical, parametrial, sacral NOS, regional NOS. Includes FIGO stages IIIC1, IIIC2, IIIC NOS.

4 Regional (both direct extension and regional lymph nodes involved) Any combination of codes 2 and 3 above.

7 Distant (sites or lymph nodes) Cervical cancer that has metastasized. Includes bladder mucosa, rectal mucosa, sigmoid colon, small intestine, inguinal (femoral) lymph node, mediastinal lymph node, scalene lymph node, supraclavicular lymph node; or cancers labeled as carcinomatosis or distant metastasis with or without distant lymph nodes. Includes FIGO stage IVA, IVB, IV NOS.

9 Unknown Unknown if extension or metastasis. FIGO, International Federation of Gynecology and Obstetrics; NOS, not otherwise specified.
Supplementary Fig 1. Countries represented by the studies included in the systematic literature review.

Included countries are the United States, Canada, China, India, Japan, Jordan, collective Gulf countries [Saudi Arabia, United Arab Emirates, Qatar, Oman, Kuwait, Bahrain], Kazakhstan, Korea, Taiwan, Belarus, Bulgaria, Estonia, France, Germany, Ireland, Lithuania, the United Kingdom, Morocco, Kenya, South Africa, Brazil, and Trinidad & Tobago.
Supplementary Fig 2. Estimated proportion of locally advanced cervical cancer by type of data source

Study	ES (95% CI)	Region	Time period	N
Registry				
Kosgei 2016	0.31 (0.25-0.37)	Africa	2010-2014	265
Bouchoik 2013	0.42 (0.39-0.46)	Africa	2005-2007	816
Somdyala 2020	0.29 (0.23-0.39)	Africa	2005-2012	1315
Wang 2015	0.51 (0.49-0.53)	Asia	1993-2008	3641
Cheung 2011	0.44 (0.43-0.46)	Asia	1997-2006	4407
Akhtarali 2019	0.59 (0.57-0.61)	Gulf countries	1996-2012	2332
Yagi 2019	0.39 (0.37-0.42)	Asia	1976-2012	25820
Sharkas 2017	0.10 (0.07-0.12)	Asia	2000-2013	591
Kaidarova 2018	0.69 (0.65-0.70)	Asia	2012	1641
Lee 2014	0.50 (0.46-0.55)	Asia	1999-2010	49203
Chiang 2016	0.31 (0.30-0.33)	Asia	2004-2008	8238
Warner 2016	0.29 (0.27-0.31)	Caribbean	1995-2009	1812
Samson 2016	0.54 (0.53-0.55)	Europe	1995-2013	21736
Djamaa 2016	0.38 (0.35-0.40)	Europe	2005-2014	1795
Lorin 2015	0.41 (0.35-0.47)	Europe	1998-2010	311
Rottmann 2020	0.26 (0.24-0.28)	Europe	2007-2016	2291
Ulinikes 2013	0.64 (0.63-0.65)	Europe	1990-2004	6680
Mshmud 2011	0.38 (0.34-0.41)	North America	1985-2001	714
Machida 2018	0.27 (0.27-0.27)	North America	1973-2013	87151
Skaznik-Wikle 2012	0.36 (0.36-0.37)	North America	2002-2006	19003
Ciha 2014	0.27 (0.26-0.27)	North America	1973-2010	27002
Herley 2010	0.36 (0.36-0.37)	North America	2004-2006	36076
Subtotal (I²=99.87, p=0.00)	0.38 (0.34-0.43)			

Multiple centers

- Elmaajouli 2016: 0.89 (0.85-0.90) Africa 2006 646
- Rodrigues 2018: 0.73 (0.69-0.76) South America 2016-2017 631
- Subtotal

Single center

- Agarwal 2012: 0.68 (0.65-0.71) Asia 2000-2009 927
- Srivastu 2014: 0.97 (0.94-0.99) Asia NR (1-year period) 189
- Subramaniem 2010: 0.14 (0.11-0.16) North America 2002-2007 430
- Carmo 2011: 0.69 (0.67-0.70) South America 2012-2015 3341
- Possati-Resende 2018: 0.06 (0.02-0.13) South America 2003-2015 NR
- Subtotal (I²=98.94%, p=0.00) 0.51 (0.22-0.79)

Heterogeneity between groups: p=0.000

Overall (I²=99.89%, p=0.00) 0.43 (0.38-0.49)

Proportion of cervical cancer patients with locally advanced disease

Estimated proportion for each study (ES) and the 95% confidence intervals are plotted according to data source (registry, multicenter institution, or single institution). Overlapping timeframes and duplicate data from the same study have been removed. Red triangles represent the range of the subtotal estimated proportion, and the red dashed line represented the overall estimated proportion of locally advanced cervical cancer from this dataset. Heterogeneity of studies is reflected in the I² value; a score of >60% = high heterogeneity. Single center studies provided the most unreliable data with the largest variance (estimated range, 6–97%). N indicates the total number of women with cervical cancer. NR, not reported.
Supplementary Table 1. Strengthening the Reporting of Observational studies in Epidemiology checklist items

Section	Item No	Recommendation
Title and abstract	1	(a) Indicate the study’s design with a commonly used term in the title or the abstract
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found
Introduction		
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported
Objectives	3	State specific objectives, including any prespecified hypotheses
Methods		
Study design	4	Present key elements of study design early in the paper
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up
		Case-control study—Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and controls
Section	Instruction	
--	---	
Cross-sectional study	Give the eligibility criteria, and the sources and methods of selection of participants	
(b) Cohort study	For matched studies, give matching criteria and number of exposed and unexposed	
Case-control study	For matched studies, give matching criteria and the number of controls per case	
Variables	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	
Data sources/ measurement	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	
Bias	Describe any efforts to address potential sources of bias	
Study size	Explain how the study size was arrived at	
Quantitative variables	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	
Statistical methods	(a) Describe all statistical methods, including those used to control for confounding	
	(b) Describe any methods used to examine subgroups and interactions	
	(c) Explain how missing data were addressed	
(d) **Cohort study**—If applicable, explain how loss to follow-up was addressed

Case-control study—If applicable, explain how matching of cases and controls was addressed

Cross-sectional study—If applicable, describe analytical methods taking account of sampling strategy

(e) Describe any sensitivity analyses

Results

Participants	13*
(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	
(b) Give reasons for non-participation at each stage	
(c) Consider use of a flow diagram	

Descriptive data	14*
(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	
(b) Indicate number of participants with missing data for each variable of interest	
(c) **Cohort study**—Summarise follow-up time (eg, average and total amount)	

Outcome data	15*
Cohort study—Report numbers of outcome events or summary measures over time	
Case-control study—Report numbers in each exposure category, or summary measures of	
Main results	16
Other analyses	17
(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period.	
Other analyses	17
Discussion	18
Limitations	19
Interpretation	20
Generalisability	21
Information should be given separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Items as reported on the Strengthening the Reporting of Observational studies in Epidemiology website (https://www.equator-network.org/reporting-guidelines/strobe/).

Other information
Funding

Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based.
Supplementary Table 2. Strengthening the Reporting of Observational studies in Epidemiology – Abstract version – checklist items

Item	Recommendation
Title	Indicate the study’s design with a commonly used term in the title (e.g cohort, case-control, cross sectional)
Authors	Contact details for the corresponding author
Study design	Description of the study design (e.g cohort, case-control, cross sectional)
Objective	Specific objectives or hypothesis
Methods	
Setting	Description of setting, follow-up dates or dates at which the outcome events occurred or at which the outcomes were present, as well as any points or ranges on other time scales for the outcomes (e.g., prevalence at age 18, 1998-2007).
Participants	
Cohort study	Give the most important eligibility criteria, and the most important sources and methods of selection of participants. Describe briefly the methods of follow-up
Case-control study	Give the major eligibility criteria, and the major sources and methods of case ascertainment and control selection
Cross-sectional study	Give the eligibility criteria, and the major sources and methods of selection of participants
Cohort study	For matched studies, give matching and number of exposed and
Variables	Clearly define primary outcome for this report.
---------------------------	---
Statistical methods	Describe statistical methods, including those used to control for confounding

Results

Participants	Report Number of participants at the beginning and end of the study
Main results	Report estimates of associations. If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period
	Report appropriate measures of variability and uncertainty (e.g., odds ratios with confidence intervals)

Conclusions

General interpretation of study results

Checklist items were obtained from the EQUATOR network website: https://www.equator-network.org/reporting-guidelines/strobe-abstracts/.
Supplementary Table 3. Strengthening the Reporting of Observational studies in Epidemiology checklist for included studies[2-30]

Study name	Title & abstract	Introduction	Methods	Results	Discussion	Other information
Henley 2010	Y Y Y Y	Y Y Y Y	Y Y Y N	Y Y Y N	Y Y Y N	Y Y Y N
Gorg 2011	Y Y Y Y	Y Y Y N	Y Y Y N	Y Y Y N	Y Y Y N	Y Y Y N
Skaznik-Wikel 2012	Y Y Y Y	Y Y Y N	Y Y Y N	Y Y Y N	Y Y Y N	Y Y Y N
Ojha 2014	Y Y Y Y	Y Y Y N	Y Y Y N	Y Y Y N	Y Y Y N	Y Y Y N
Machida 2018	Y Y Y Y	Y Y Y N	Y Y Y N	Y Y Y N	Y Y Y N	Y Y Y N
Zahnd 2018	Y Y Y Y	Y Y Y N	Y Y Y N	Y Y Y N	Y Y Y N	Y Y Y N
Hou 2019	Y Y Y Y	Y Y Y N	Y Y Y N	Y Y Y N	Y Y Y N	Y Y Y N
Bruegl 2020	Y Y Y Y	Y Y Y N	Y Y Y N	Y Y Y N	Y Y Y N	Y Y Y N
Tian 2020	Y Y Y Y	Y Y Y N	Y Y Y N	Y Y Y N	Y Y Y N	Y Y Y N
Mahmud 2011	Y Y Y Y	Y Y Y N	Y Y Y N	Y Y Y N	Y Y Y N	Y Y Y N
Jarmo 2011	Y Y Y Y	Y Y Y N	Y Y Y N	Y Y Y N	Y Y Y N	Y Y Y N
Possati-Risende 2018	Y Y Y Y	Y Y Y N	Y Y Y N	Y Y Y N	Y Y Y N	Y Y Y N
Warner 2018	Y Y Y Y	Y Y Y N	Y Y Y N	Y Y Y N	Y Y Y N	Y Y Y N
Lorin 2015	Y Y Y Y	Y Y Y N	Y Y Y N	Y Y Y N	Y Y Y N	Y Y Y N
Samson 2016	Y Y Y Y	Y Y Y N	Y Y Y N	Y Y Y N	Y Y Y N	Y Y Y N
Djamaa 2018	Y Y Y Y	Y Y Y N	Y Y Y N	Y Y Y N	Y Y Y N	Y Y Y N
Ullinskas 2013	Y Y Y Y	Y Y Y N	Y Y Y N	Y Y Y N	Y Y Y N	Y Y Y N
Bouchbika 2013	Y Y Y Y	Y Y Y N	Y Y Y N	Y Y Y N	Y Y Y N	Y Y Y N

Legend:
- **Y:** Yes
- **N:** No

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance placed on this supplemental material which has been supplied by the author(s).
Checklist items are explained in Online Supplementary Table 1.
Supplementary Table 4. Strengthening the Reporting of Observational studies in Epidemiology – Abstract version - checklist for included studies [31-41]

Study Name	Title	Authors	Study Design	Objective	Setting	Participants	Variables	Statistics	Results - Participants	Main results	Conclusions
Subramaniam 2010	N	Y	Y	Y	Y	Y	Y	Y	Y	N	Y
McLean 2012	N	Y	Y	Y	Y	Y	Y	Y	Y	N	Y
(Int J Gyn Can)											
McLean 2012	N	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
(Gyn Oncol)											
Popadiuk 2010	N	N	Y	Y	Y	Y	N	N	Y	N	Y
Rodrigues 2018	N	Y	Y	Y	Y	Y	N	Y	Y	Y	Y
Nathani 2012	N	Y	N	Y	Y	Y	Y	N	Y	N	Y
Garry 2018	N	Y	Y	Y	Y	Y	N	N	Y	N	Y
Rottmann 2020	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Litvinova 2017	M	Y	Y	Y	Y	Y	Y	N	Y	N	N
Kosgel 2018	N	Y	N	Y	Y	Y	Y	N	Y	N	Y
Kaidarova 2018	N	Y	N	Y	Y	Y	Y	N	Y	Y	Y

Checklist items are explained in Online Supplementary Table 2.
Supplementary Table 5. Study characteristics

Study / publication type	Location	Study design & data source type	Time-frame	Data source	Classification criteria*	Stages of cervical cancer included	Population	Total patients with cervical cancer
Henley 2010[11]	USA	Retrospective, National registry	2004–2006	National Program of Cancer Registries and SEER database	ICD-O-3: C53 Collaborative Stage classification	Localized, regional, distant • Invasive cervical, breast, or colon/rectum cancers • ≥20 years of age for cervical cancer	36,076	
Subramaniam 2010[41]	Birmingham, Alabama, USA	Retrospective cohort, Single center institution	2002–2007	University-based gynecologic oncology program	NR	I, II, III, IV • Invasive cervical cancer	430	
Garg 2011[10]	USA	Retrospective, National registry	1988–2005	SEER database 17 registries used	NR FIGO staging	IIA (IIA1, IIA2) • Stage IIA cervical cancer • Primary treatment with RH or RT	560	
McLean 2012[36]	USA	Retrospective, Healthcare database	1992–2007	SEER-Medicare database	NR	I, II, III, IV • Any stage cervical cancer • Aged 65–100 years	6718	
McLean 2012[35]	USA	Case-control, Healthcare database	1992–2007	SEER-Medicare database	NR	I, II, III, IV • Diagnosed with cervical cancer after age 70 (n=734) • Matched non-cancer controls (n=2936)	734	
Skaznik-Wikel 2012[22]	USA	Retrospective, National registry	2000–2006	SEER database 17 registries used	NR FIGO staging	I, II, III, IV • Cervical cancer diagnosis	18,003	
Study / publication type	Location	Study design & data source type	Time-frame	Data source	Classification criteria*	Stages of cervical cancer included	Population	Total patients with cervical cancer
--------------------------	----------	---------------------------------	------------	-------------	--------------------------	-----------------------------------	------------	------------------------------------
Ojha 2014[17] Manuscript	USA	Longitudinal/cohort, National registry	1973–2010	SEER database	NR	1 – localized 2/3 – locally advanced 4 – metastatic	NR	27 002
				Only 9 registries used: Atlanta, Connecticut, Detroit, Hawaii, Iowa, New Mexico, San Francisco-Oakland, Seattle-Puget Sound, Utah	SEER summary staging			
				SEER-PAYA cancer survivors’ cohort				
				SEER database	I, II, III, IV	**PAYA**: females diagnosed with any cancer before age 30 years, had survived ≥5 years post-diagnosis, and were later diagnosed with invasive cervical cancer (n=46) Females in the general population aged ≤56 years at primary cervical cancer diagnosis (n=26,956)		
Machida 2018[14] Manuscript	USA	Retrospective cohort, National registry	1973–2013	SEER database	ICD-O-3 and WHO classifications (histology) TNM: AJCC 7th ed. staging	I, II, III, IV		87 151
				SEER database				
Zahnd 2018[29] Manuscript	USA	Retrospective cohort, National registry	2009–2013	North American Association of Central Cancer Registries	NR	Localized and distant	All stageable cancer types combined HPV-associated cancers Tobacco-associated cancers	NR
Study / publication type	Location	Study design & data source type	Time-frame	Data source	Classification criteria*	Stages of cervical cancer included	Population	Total patients with cervical cancer
-------------------------	----------	--------------------------------	------------	-------------	--------------------------	-----------------------------------	------------	----------------------------------
Hou 2019[12] Manuscript	USA	Retrospective cohort, National registry	1988–2011	SEER database	ICD-O-3: C53.0-53.9 FIGO staging	I, II, III, IV	White and Asian-American patients with cervical cancer	58 780

- Individual cancers with screening recommendation from the United States Preventive Services Task Force and has current recommendations (colorectal, female breast, cervical, and lung)
- Cancers for which screening was recommended for most of the study period (prostate)
- Cancers with insufficient evidence for recommended screening but for which screening may be performed regularly in clinical practice (skin and oral)
| Study / publication type | Location | Study design & data source type | Time-frame | Data source | Classification criteria* | Stages of cervical cancer included | Population | Total patients with cervical cancer |
|--------------------------|----------|---------------------------------|------------|-------------|--------------------------|------------------------------------|------------|-----------------------------------|
| Bruegl 2020[5] Manuscript | Idaho, Oregon, Washington, USA | Retrospective cohort, Regional registry | 1996–2016 | Cancer Data Registry of Idaho, Oregon State Cancer Registry, Washington State Cancer Registry | ICD-O-3: C53.0-53.9 NR | Localized, regional, distant | • Non-Hispanic White and American Indian/Alaskan Native women diagnosed with a gynecological cancer | 7222 |
| Tian 2020[24] Manuscript | USA | Retrospective cohort, National registry | 2010–2015 | SEER database 18 registries used | NR FIGO staging | IB2–IVA | • Cervical cancer stages IB2 to IVA • Pathological biopsy confirmed SCC and AC • No distant metastases • Aged 20–69 years | 4131 |
| Mahmud 2011[15] Manuscript | Saskatchewan, Canada | Retrospective cohort, Regional registry | 1987–2001 | Provincial cancer registry-Saskatchewan | NR FIGO staging | I, II, III, IV | • Cervical cancer diagnosis | 714 |
| Popadiuk 2010[38] Congress abstract | Newfoundland, Canada | Retrospective cohort, Regional registry | 1992–2008 | Newfoundland Cancer Registry | NR | IA, IB, IIB, IVA | • Invasive cervical cancer • Aged 19–29 years | 37 |
| Carmo 2011[6] Manuscript | Rio de Janeiro, Brazil | Retrospective cohort, Single center institution | 1999–2004 | Brazilian National Cancer Institute | NR FIGO staging | I, II, III, IV | • Cervical cancer diagnosis | 3341 |
| Rodrigues 2018[39] Congress abstract | Brazil | Prospective, Multiple institutions | 2016–2017 | 16 sites, representing 5 Brazilian regions | NR | I, II, III, IV | • Invasive cervical cancer • Aged ≥18 years | 631 |
| Possati-Resende 2018[18] Manuscript | Barretos, Brazil | Retrospective cohort, Single center institution | 2003–2015 | Prevention Institute at Barretos Cancer Hospital | NR | I, II, III, IV | • Cervical cancer diagnosis | NR |
| Study / publication type | Location | Study design & data source type | Time-frame | Data source | Classification criteria* | Stages of cervical cancer included | Population | Total patients with cervical cancer |
|-------------------------|----------|---------------------------------|------------|-------------|--------------------------|-----------------------------------|------------|----------------------------------|
| Warner 2018[27] Manuscript | Trinidad and Tobago | Retrospective cohort, National registry | 1995–2009 | Dr. Elizabeth Quamina Cancer Registry (aka National Cancer Registry of Trinidad and Tobago) | ICD-10: C53 NR | Localized, regional, distant | • Any cancer diagnosis | 1812 |
| Nathani 2012[37] Congress abstract | Bradford, UK | Retrospective cohort, Single center institution | 2007–2011 | Bradford Royal Infirmary database | NR | IA1, IA2, IB1, III | • Cervical cancer diagnosis • Aged 19–30 years | 19 |
| Garry 2018[31] Congress abstract | Dublin, Ireland | Retrospective cohort, Single center institution | 2006–2015 | Electronic case report forms from a tertiary oncology center | NR FIGO staging | IA, IB, II, III, IV | • Cervical cancer diagnosis • Aged ≥60 years | 119 |
| Lorin 2015[13] Manuscript | Côte-d’Or, France | Retrospective cohort, Regional registry | 1998–2010 | Côte d’Or gynecological registry | NR FIGO staging | I, II, III, IV | • Invasive cervical cancer | 311 |
| Rottmann 2020[40] Congress abstract + poster | Upper Bavaria, Germany | Retrospective cohort, Regional registry | 2007–2016 | Munich Cancer Registry | NR | IA1–IV, M1 | • Cervical cancer diagnosis | 2291 |
| Litvinova 2017[34] Congress abstract | Minsk City, Belarus | Retrospective cohort, National registry | 2012–2016 | National Cancer Registry | NR | IIB, III, IVA | • Unresectable cervical cancer diagnosis • Only young women discussed for proportions of disease by stage | 324 |
| Samson 2016[19] Manuscript | Bulgaria | Retrospective cohort, National registry | 1993–2013 | Bulgarian National Cancer Registry | ICD-O: C53.0, C53.1, C53.8, and C53.9 | I, II, III, IV | • Cervical cancer diagnosis | 21 737 |
| Ojamaa 2018[16] Manuscript | Estonia | Retrospective cohort, National registry | 1968–2014 | Estonian Cancer Registry | ICD-O-3: C53.0; C53.1, C53.8, and C53.9 | I, II, III, IV | • Invasive cervical cancer | 3403 |
| Study / publication type | Location | Study design & data source type | Time-frame | Data source | Classification criteria* | Stages of cervical cancer included | Population | Total patients with cervical cancer |
|--------------------------|----------|---------------------------------|------------|-------------|--------------------------|-----------------------------------|------------|-----------------------------------|
| Ulinskas 2013[25] | Lithuania | Retrospective cohort, National registry | 1990–2004 | Lithuanian cancer registry | TNM (AJCC 7th ed) for staging | I, II, III, IV | Cervical cancer diagnosis | 6680 |
| Kosgei 2018[33] | Uasin Gishu, Kenya | Retrospective cohort, Regional registry | 2010–2014 | Eldoret Cancer Registry | NR | I, II, III, IV | Cervical cancer diagnosis | 265 |
| Bouchbika 2013[4] | Casablanca, Morocco | Retrospective cohort, Regional registry | 2005–2007 | Greater Casablanca Registry | ICD-O-3, converted to ICD-10: C53 | Localized, regional, distant | Any cancer diagnosis | 816 |
| Elmajjaoui 2016[9] | Morocco | Retrospective cohort, Multiple institutions | 2006 | National Institute of Oncology, Mohammed V Hospital, Rabat Cheikh Khalifa Ibn Zaid Hospital, Université Mohammed VI des Sciences de la Santé, Casablanca | NR | I, II, III, IV | Invasive cervical cancer | 646 |
| Somdyala 2020[23] | Eastern Cape Province, South Africa | Retrospective cohort, Regional registry | 1998–2012 | Eastern Cape Cancer Registry | ICD-O: C53.0–C53.9 | I, II, III, IV | Cervical cancer diagnosis | 1315 |
| Sharkas 2017[20] | Jordan | Retrospective cohort, National registry | 2000–2013 | Jordan Cancer Registry | ICD-10: C53 | Localized, regional, distant | Cervical cancer diagnosis | 591 |
| Kaidarova 2018[32] | Kazakhstan | Retrospective cohort, National registry | 2012 | Kazakhstan Cancer Registry | NR | IA, IB, IIA, IIB, III | Cervical cancer diagnosis | 1641 |
| Study / publication type | Location | Study design & data source type | Time-frame | Data source | Classification criteria* | Stages of cervical cancer included | Population | Total patients with cervical cancer |
|--------------------------|----------|---------------------------------|------------|-------------|-------------------------|------------------------------------|------------|------------------------------------|
| Alkhalawi 2019[3] | Gulf countries | Retrospective cohort, Multinational registry | 1998–2012 | Gulf Centre for Cancer Control and Prevention Database | ICD-O-3: C53.0, C53.2, C53.8, C53.9 SEER summary staging | Localized, regional, distant | • Invasive cervical cancer | 2332 |
| Agarwal 2012[2] | Delhi, India | Retrospective cohort, Single center institution | 2000–2009 | Guru Teg Bahadur Hospital | NR FIGO staging | I, II, III, IV | • Any primary gynecologic cancer diagnosis | 927 |
| Shruthi 2014[21] | Kolar, India | Retrospective cohort, Single center institution | NR 1-year period | Sri Devaraj Urs Medical College, Sri Devaraj Urs Academy of Higher Education and Research | NR TNM staging | I, II, III, IV | • Cervical cancer diagnosis | 199 |
| Wang 2015[26] | Beijing, China | Retrospective cohort, Regional registry | 1993–2008 | Statistics Database of Beijing Cancer Registry | ICD-O FIGO staging | I, II, III, IV | • Cervical cancer diagnosis | 3641 |
| Cheung 2011[7] | Hong Kong, China | Retrospective cohort, Regional registry | 1997–2006 | Hong Kong Cancer Registry | NR FIGO and TNM staging | I, II, III, IV | • Cervical cancer diagnosis | 4407 |
| Yagi 2019[28] | Osaka Prefecture, Japan | Retrospective cohort, Regional registry | 1976–2012 | Osaka Cancer Registry | C53, C54, C55 (C55 later sorted to C53 or C54 using a multiple imputation estimation) TNM staging | Localized (T1N0M0), regional lymph nodes (N1), adjacent organs (T2, 3, 4), distant (M1) | • Cervical cancer diagnosis | 25 826 |
| Seol 2014[30] | Korea | Retrospective cohort, National registry | 1999–2010 (total population) 1999-2004 (with stage information) | Korea Central Cancer Registry | NR FIGO staging | IA1-IvB | • Cervical cancer diagnosis | 49 503 (total population) 19 282 (with stage information) |
| Study / publication type | Location | Study design & data source type | Time-frame | Data source | Classification criteria* | Stages of cervical cancer included | Population | Total patients with cervical cancer |
|-------------------------|----------|---------------------------------|------------|-------------|-------------------------|-----------------------------------|------------|----------------------------------|
| Chiang 2016[8] Manuscript | Taiwan | Retrospective cohort, National registry | 2002–2012 | Taiwan Cancer Registry | ICD-O-3: C53 TNM staging | I, II, III, IV Any invasive cancer Age ≥15 years | 8238 | |

*Two types of classifications were found in the included studies. Disease coding classification criteria was used to identify patients with cervical cancer in large registries and databases and included different versions of the ICD or ICD-O criteria. The specific codes used to identify cervical cancer patients are also summarized where available. The second classification types found in the included studies were used to determine the stage of disease, and included FIGO, TNM, SEER summary, and Collaborative Stage criteria.

AC, adenocarcinoma; AJCC, American Joint Committee on Cancer; FIGO, International Federation of Gynecology and Obstetrics; HPV, human papillomavirus; ICD-10, International Classification of Diseases, 10th edition; ICD-O, International Classification of Diseases, Oncology; NR, not reported; PAYA, pediatric and young adult cancers; RH, radical hysterectomy; RT, radiotherapy; SCC, squamous cell carcinoma; SEER, Surveillance, Epidemiology, and End Results; TNM, tumor, node, metastasis; USA, United States of America; WHO, World Health Organization.
Supplementary Table 6. Studies reporting incidence by stage of cervical cancer.

Reference	Region	Location / data collection period	N	Incidence of cervical cancer by stage	Incidence of locally advanced cervical cancer
Bruegl 2020[5]a	North America	USA Idaho, Oregon, Washington 1996–2016	7222	Age-standardized rate per 100 000 population	Age-standardized rate per 100 000 population
				American Indian/Alaskan Natives	American Indian/Alaskan Natives
				Localized, 4.3	Regional, 3.6
				Regional, 3.6	
				Distant, 1.8	Regional, 3.6
				Unknown, 0.9	Regional, 3.6
Henley 2010[11]	North America	USA 2004–2006	36,076	Age-standardized rate per 100 000 population	Age-standardized rate per 100 000 population
				Localized, 5.3	Regional, 4.0
				Regional, 4.0	
				Distant, 1.2	
				Unknown, 0.9	
Zahnd 2018[29]b	North America	USA 2009–2013	Not reported	Age-standardized rate per 100 000 population	Not calculable
				Rural	
				Localized, 3.7	
				Distant, 1.1	
McClean 2012[36]	North America	USA 1992–2007	6718	Women aged 65–100 years, Age-adjusted incidence rate	Women aged 65–100 years, Age-adjusted incidence rate
				Stage I, decreased by 2.4% per year	Stage III, increased by 2.0% per year
Stage III, increased by 2.0% per year

Litvinova 2017[34]	Europe	Belarus	Incidence per 100 000 female population
		Minsk City 2012–2016	IIB, decreased from 3.8 to 1.9
			III, decreased from 3.2 to 2.3
			IVA, increased from 0.4 to 0.7

The Bruegl 2020 study only included patients who were American Indian/Alaskan Natives or non-Hispanic White.

In the Zahnd 2018 study, only the incidence of localized and distant cervical cancer was compared in urban and rural areas; neither of these stages was considered locally advanced disease according to our method of estimation (ie, only “regional” disease is considered).

USA, United States of America.
Section and Topic	Item #	PRISMA Checklist Item	Location where item is reported
TITLE			
Title	1	Identify the report as a systematic review.	Page 1
ABSTRACT			
Abstract	2	See the PRISMA 2020 for Abstracts checklist.	Page 3
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of existing knowledge.	Page 5
Objectives	4	Provide an explicit statement of the objective(s) or question(s) the review addresses.	Page 5
METHODS			
Eligibility criteria	5	Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses.	Pages 5-6, Supplementary Appendix pages 1-3
Information sources	6	Specify all databases, registers, websites, organisations, reference lists and other sources searched or consulted to identify studies. Specify the date when each source was last searched or consulted.	Page 5, Supplementary Appendix pages 1-3
Search strategy	7	Present the full search strategies for all databases, registers and websites, including any filters and limits used.	Supplementary Appendix pages 1-3
Selection process	8	Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many reviewers screened each record and each report retrieved, whether they worked independently, and if applicable, details of automation tools used in the process.	Page 6
Data collection process	9	Specify the methods used to collect data from reports, including how many reviewers collected data from each report, whether they worked independently, any processes for obtaining or confirming data from study investigators, and if applicable, details of automation tools used in the process.	Page 6
Data items	10a	List and define all outcomes for which data were sought. Specify whether all results that were compatible with each outcome domain in each study were sought (e.g. for all measures, time points, analyses), and if not, the methods used to decide which results to collect.	Supplementary Appendix page 5
	10b	List and define all other variables for which data were sought (e.g. participant and intervention characteristics, funding sources). Describe any assumptions made about any missing or unclear information.	Supplementary Appendix page 5
Study risk of bias assessment	11	Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how many reviewers assessed each study and whether they worked independently, and if applicable, details of automation tools used in the process.	N/A
Effect measures	12	Specify for each outcome the effect measure(s) (e.g. risk ratio, mean difference) used in the synthesis or presentation of results.	N/A
Synthesis methods	13a	Describe the processes used to decide which studies were eligible for each synthesis (e.g. tabulating the study intervention characteristics and comparing against the planned groups for each synthesis (item #5)).	Supplementary Appendix page 5
Section and Topic	Item #	PRISMA Checklist item	Location where item is reported
-------------------	--------	-----------------------	---------------------------------
13b	Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing summary statistics, or data conversions.	Page 6-7, Supplementary Appendix page 5-6	
13c	Describe any methods used to tabulate or visually display results of individual studies and syntheses.	Page 6-7, Supplementary Appendix page 5-6	
13d	Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-analysis was performed, describe the model(s), method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) used.	Page 6-7, Supplementary Appendix page 5-6	
13e	Describe any methods used to explore possible causes of heterogeneity among study results (e.g. subgroup analysis, meta-regression).	Supplementary Appendix page 8	
13f	Describe any sensitivity analyses conducted to assess robustness of the synthesized results.	N/A	
Reporting bias assessment	14	Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting biases).	N/A
Certainty assessment	15	Describe any methods used to assess certainty (or confidence) in the body of evidence for an outcome.	N/A
RESULTS	Study selection	16a Describe the results of the search and selection process, from the number of records identified in the search to the number of studies included in the review, ideally using a flow diagram.	Page 7 and Figure 1
		16b Cite studies that might appear to meet the inclusion criteria, but which were excluded, and explain why they were excluded.	N/A
Study characteristics	17	Cite each included study and present its characteristics.	Pages 7-8, Supplementary figure 1, Supplementary figures 3, 4, 5
Risk of bias in studies	18	Present assessments of risk of bias for each included study.	N/A
Results of individual studies	19	For all outcomes, present, for each study: (a) summary statistics for each group (where appropriate) and (b) an effect estimate and its precision (e.g. confidence/credible interval), ideally using structured tables or plots.	Pages 8-11, Figure 2, Tables 1-3, Supplementary Figure 2
Section and Topic	Item #	PRISMA Checklist item	Location where item is reported
------------------	--------	-----------------------	---------------------------------
Results of syntheses	20a	For each synthesis, briefly summarise the characteristics and risk of bias among contributing studies.	Pages 8-11, Figure 2, Tables 1-3
	20b	Present results of all statistical syntheses conducted. If meta-analysis was done, present for each the summary estimate and its precision (e.g. confidence/credible interval) and measures of statistical heterogeneity. If comparing groups, describe the direction of the effect.	Pages 8-11, Figure 2, Tables 1-3, Supplementary Figure 2
	20c	Present results of all investigations of possible causes of heterogeneity among study results.	Page 9, Supplementary Figure 2
	20d	Present results of all sensitivity analyses conducted to assess the robustness of the synthesized results.	N/A
Reporting biases	21	Present assessments of risk of bias due to missing results (arising from reporting biases) for each synthesis assessed.	N/A
Certainty of evidence	22	Present assessments of certainty (or confidence) in the body of evidence for each outcome assessed.	N/A
DISCUSSION	23a	Provide a general interpretation of the results in the context of other evidence.	Pages 11-12
	23b	Discuss any limitations of the evidence included in the review.	Page 12-13
	23c	Discuss any limitations of the review processes used.	Page 12-13
	23d	Discuss implications of the results for practice, policy, and future research.	Page 13
OTHER INFORMATION	24a	Provide registration information for the review, including register name and registration number, or state that the review was not registered.	Page 6
Registration and protocol	24b	Indicate where the review protocol can be accessed, or state that a protocol was not prepared.	Page 6, Supplementary Appendix page 1
	24c	Describe and explain any amendments to information provided at registration or in the protocol.	N/A
Support	25	Describe sources of financial or non-financial support for the review, and the role of the funders or sponsors in the review.	Page 15
Competing interests	26	Declare any competing interests of review authors.	Page 15
Availability of data, code and other materials	27	Report which of the following are publicly available and where they can be found: template data collection forms; data extracted from included studies; data used for all analyses; analytic code; any other materials used in the review.	N/A

From: Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71. doi: 10.1136/bmj.n71

For more information, visit: http://www.prisma-statement.org/

Monk BJ, et al. Int J Gynecol Cancer 2022; 32:1531–1539. doi: 10.1136/ijgc-2022-003801
REFERENCES

1. Ruhl JL, Callaghan C, Hurlbut A, et al., editors. Summary Stage 2018: Codes and Coding Instructions. Bethesda, MD: National Cancer Institute; 2020.

2. Agarwal S, Malhotra KP, Sinha S, et al. Profile of gynecologic malignancies reported at a tertiary care center in India over the past decade: comparative evaluation with international data. Indian J Cancer 2012;49:298-302. doi: 10.4103/0019-509X.104494

3. Alkhalawi E, Al-Madouj A, Al-Zahrani A. Cervical cancer incidence and trends among Nationals of the Gulf Cooperation Council States, 1998-2012. Gulf J Oncology 2019;1:7-13. doi:

4. Bouchbika Z, Haddad H, Benchakroun N, et al. Cancer incidence in Morocco: report from Casablanca registry 2005-2007. Pan Afr Med J 2013;16:31. doi: 10.11604/pamj.2013.16.31.2791

5. Bruegl AS, Joshi S, Batman S, et al. Gynecologic cancer incidence and mortality among American Indian/Alaska Native women in the Pacific Northwest, 1996-2016. Gynecol Oncol 2020;157:686-92. doi: 10.1016/j.ygyno.2020.03.033

6. Carmo CC, Luiz RR. Survival of a cohort of women with cervical cancer diagnosed in a Brazilian cancer center. Rev Saude Publica 2011;45:661-7. doi: 10.1590/s0034-89102011005000029

7. Cheung FY, Mang OW, Law SC. A population-based analysis of incidence, mortality, and stage-specific survival of cervical cancer patients in Hong Kong: 1997-2006. Hong Kong Med J 2011;17:89-95. doi:

8. Chiang CJ, Lo WC, Yang YW, et al. Incidence and survival of adult cancer patients in Taiwan, 2002-2012. J Formos Med Assoc 2016;115:1076-88. doi: 10.1016/j.jfma.2015.10.011

9. Elmajjaoui S, Ismaili N, El Kacemi H, et al. Epidemiology and outcome of cervical cancer in national institute of Morocco. BMC Womens Health 2016;16:62. doi: 10.1186/s12905-016-0342-2
Garg G, Shah JP, Toy EP, et al. Stage IIA1 versus stage IIA2 cervical cancer: does the new staging criteria predict survival? *Int J Gynecol Cancer* 2011;21:711-6. doi: 10.1097/IGC.0b013e3182138648

Henley SJ, King JB, German RR, et al. Surveillance of screening-detected cancers (colon and rectum, breast, and cervix) - United States, 2004-2006. *MMWR Surveill Summ* 2010;59:1-25. doi:

Hou Y, Guo S, Lyu J, et al. Prognostic factors in Asian and white American patients with cervical cancer, considering competing risks. *Curr Oncol* 2019;26:e277-e85. doi: 10.3747/co.26.4473

Lorin L, Bertaut A, Hudry D, et al. About invasive cervical cancer: a French population based study between 1998 and 2010. *Eur J Obstet Gynecol Reprod Biol* 2015;191:1-6. doi: 10.1016/j.ejogrb.2015.04.007

Machida H, Blake EA, Eckhardt SE, et al. Trends in single women with malignancy of the uterine cervix in United States. *J Gynecol Oncol* 2018;29:e24. doi: 10.3802/jgo.2018.29.e24

Mahmud A, Brydon B, Tonita J, et al. A population-based study of cervix cancer: incidence, management and outcome in the Canadian province of Saskatchewan. *Clin Oncol (R Coll Radiol)* 2011;23:691-5. doi: 10.1016/j.clon.2011.05.002

Ojamaa K, Innos K, Baburin A, et al. Trends in cervical cancer incidence and survival in Estonia from 1995 to 2014. *BMC Cancer* 2018;18:1075. doi: 10.1186/s12885-018-5006-1

Ojha RP, Jackson BE, Tota JE, et al. Younger age distribution of cervical cancer incidence among survivors of pediatric and young adult cancers. *Gynecol Oncol* 2014;134:309-13. doi: 10.1016/j.ygyno.2014.05.011

Possati-Resende JC, Vazquez FL, Biot ST, et al. Organized cervical cancer screening program in Barretos, Brazil: experience in 18 municipalities of Sao Paulo State. *Acta Cytol* 2018;62:19-27. doi: 10.1159/000480446
19. Samson KK, Haynatzki G, Soliman AS, et al. Temporal changes in the cervical cancer burden in Bulgaria: Implications for eastern European countries going through transition. *Cancer Epidemiol* 2016;44:154-60. doi: 10.1016/j.canep.2016.08.014

20. Sharkas G, Arqoub K, Khader Y, et al. Trends in the incidence of cervical cancer in Jordan, 2000-2013. *J Oncol* 2017;2017:6827384. doi: 10.1155/2017/6827384

21. Shruthi PS, Kalyani R, Kai LJ, et al. Clinicopathological correlation of cervical carcinoma: a tertiary hospital based study. *Asian Pac J Cancer Prev* 2014;15:1671-4. doi: 10.7314/apjcp.2014.15.4.1671

22. Skaznik-Wikiel ME, Sukumvanich P, Austin RM, et al. Heavy cervical cancer burden in elderly women: how can we improve the situation? *Acta Cytol* 2012;56:388-93. doi: 10.1159/000338555

23. Somdyala NIM, Bradshaw D, Dhansay MA, et al. Increasing cervical cancer incidence in rural Eastern Cape Province of South Africa from 1998 to 2012: a population-based cancer registry study. *JCO Glob Oncol* 2020;6:1-8. doi: 10.1200/JGO.19.00198

24. Tian T, Gong X, Gao X, et al. Comparison of survival outcomes of locally advanced cervical cancer by histopathological types in the surveillance, epidemiology, and end results (SEER) database: a propensity score matching study. *Infect Agent Cancer* 2020;15:33. doi: 10.1186/s13027-020-00299-3

25. Ulinskas K, Aleknaviciene B, Smailyte G. Demographic differences in cervical cancer survival in Lithuania. *Open Medicine* 2013;8:16-21. doi:10.2478/s11536-012-0051-7

26. Wang T, Wu MH, Wu YM, et al. A population-based study of invasive cervical cancer patients in Beijing: 1993-2008. *Chin Med J (Engl)* 2015;128:3298-304. doi: 10.4103/0366-6999.171420

27. Warner WA, Lee TY, Badal K, et al. Cancer incidence and mortality rates and trends in Trinidad and Tobago. *BMC Cancer* 2018;18:712. doi: 10.1186/s12885-018-4625-x
| Page | Reference |
|------|-----------|
| 28 | Yagi A, Ueda Y, Kakuda M, et al. Epidemiologic and clinical analysis of cervical cancer using data from the population-based Osaka Cancer Registry. *Cancer Res* 2019;79:1252-9. doi: 10.1158/0008-5472.CAN-18-3109 |
| 29 | Zahnd WE, Fogleman AJ, Jenkins WD. Rural-urban disparities in stage of diagnosis among cancers with preventive opportunities. *Am J Prev Med* 2018;54:688-98. doi: 10.1016/j.amepre.2018.01.021 |
| 30 | Seol H-J, Ki K-D, Lee J-M. Epidemiologic characteristics of cervical cancer in Korean women. *J Gynecol Oncol* 2014;25:70-4. doi: http://dx.doi.org/10.3802/jgo.2014.25.1.70 |
| 31 | Garry N, Corbett G, Thompson C, et al. Examining the effects that a woman's age, histological subtype and FIGO stage has on the treatment strategies and survival outcomes in cervical cancer. *Int J Gynecol Cancer* 2018;28:275. doi: 10.1136/00009577-201809002-00001 |
| 32 | Kaidarova D, Chingissova Z, Adilbay D, et al. Five-year overall survival in patients with cervical cancer in Kazakhstan. *Int J Gynecol Cancer* 2018;28:302. doi: 10.1136/00009577-201809002-00001 |
| 33 | Kosgei A, Chesumbai G, Buziba N, et al. Cervical cancer incidence and trends in Uasin Gishu County, Kenya (2010 to 2014). *JCO Glob Oncol* 2018;4:192s-s. doi: 10.1200/jgo.18.79501 |
| 34 | Litvinova T, Matylevich O, Kosenko I, et al. Distinctive features of unresectable uterine cervix cancer in Belarus. *Int J Gynecol Cancer* 2017;27:825. doi: 10.1097/01.IGC.0000527296.86225.87 |
| 35 | McLean K, Van Cleve W, Eckert L, et al. Associations between Papanicolaou testing and cervical cancer in elderly women. *Gynecologic Oncol* 2012;127:S11. doi: 10.1016/j.ygyno.2012.07.031 |
| 36 | McLean K, Van Cleve W, Eckert L, et al. Cervical cancer incidence and screening patterns in elderly women. *Int J Gynecol Cancer* 2012;22:E676. doi: |
37 Nathani F, Whelan C, Fayre A, et al. Cervical cancer in young women - Bradford Royal Infirmary. BJOG 2012;119:158-67. doi: https://doi.org/10.1111/j.1471-0528.2012.03379.x

38 Popadiuk C, Rose J. Does delaying the onset of pap smear screening in Newfoundland (NL) impact on cervical cancer rates? J Clin Oncol 2010;28:e12002-e. doi: 10.1200/jco.2010.28.15_suppl.e12002

39 Rodrigues MF, de Melo AC, Calabrich A, et al. Social disparities and patients’ attitudes are associated with lower rates of cervical cancer screening in Brazil: results of EVITA study (LACOG 0215). J Clin Oncol 2018;36:e17510. doi: 10.1200/JCO.2018.36.15_suppl.e17510

40 Rottmann M, Schubert-Fritschle G, Engel J. Prognostic factors and outcomes of cervical cancer patients (2007-2016): a population-based analysis. Oncol Res Treat 2020;43:90-1. doi: 10.1159/000506491

41 Subramaniam A, Fauci JM, Schneider KE, et al. Invasive cervical cancer and screening: what are the rates of unscreened and underscreened women in the modern era? J Low Genit Tract Dis 2010;14:250. doi: 10.1097/LGT.0b013e3181eb2087