Prevalence of Obesity in Inguinal Hernia Repair Patients in a Tertiary Care Center
Sundar Shrestha, Pramod Kumar Upadhyay
1Department of General Surgery, Bir hospital, NAMS, Kathmandu, Nepal.

ABSTRACT

Introduction: Inguinal hernia is a common surgical problem, with a lifetime risk of 27% in men and 3% in women. Its cumulative incidence is 17.2% and 12.3% in body mass index of <25 kg/m² and 25–30 kg/m² respectively. Obesity had been regarded as the risk factor for the development of an inguinal hernia. However, recent epidemiologic studies have suggested the decreased prevalence of inguinal hernia in increased weight and body mass index individuals. The aim of this study is to find out the prevalence of obesity in inguinal hernia repair patients in a tertiary care center.

Methods: A descriptive cross-sectional observational study was performed in Bir Hospital from May 2018 to December 2019 after taking ethical approval from the institutional review board of NAMS. Convenient sampling was done with a sample size of 219. Statistical analysis was done using SPSS ver. 23 and Microsoft Excel software by descriptive statistics.

Results: The mean body mass index was 22.10 ± 3.07 kg/m². Body mass index Category 18.5 – 22.9 kg/m² had 133 (61%) male and seven (3.2%) female patients, category ≥30 kg/m² had four (1.8%) male. Most of inguinal hernia repair patients were farmers 158 (72.5%). Common risk factors noted were smoking 142 (65.1%), heavy work 112 (51.4%), chronic cough 65 (29.8%). Most of the complications occurred in the normal body mass index category and the prevalence of complications decreased as the body mass index increased. The recurrence was found in three (1.4%) inguinal hernia repairs.

Conclusions: The majority of inguinal hernia repair patients were non-obese, and complications were less in obese patients.

Keywords: body mass index; inguinal hernia repair; obesity.

INTRODUCTION

Inguinal hernia (IH) is a common surgical problem. It represents 75% of abdominal wall hernias, with a lifetime risk of 27% in men and 3% in women.¹ The 20-year cumulative incidence was 17.2% in Body mass index (BMI) of <25 kg/m² and 12.3% in both BMI of 25–30 kg/m², and >30 kg/m².²

Increasing age, male gender, smoking, family history, connective tissue disorders, and increased intra-abdominal pressure (IAP) are predisposing factors to develop IH.³ Due to increased IAP associated with obesity, it is considered a risk factor for IH.⁴ However, recent epidemiologic studies have suggested the opposite.²⁴ Other factors contributing to the development of IH include obesity.⁵ Favoring the theory that obesity is a risk factor for IH is the fact that the prevalence of obesity is increasing worldwide.⁶

The aim of this study is to find out the prevalence of obesity in inguinal hernia repair patients in a tertiary care center.

METHODS

This is a descriptive cross-sectional observational study performed on 219 hospitalized inguinal hernia patients at the Department of general surgery, Bir hospital, Kathmandu, Nepal, from May 2018 to December 2019. Ethical approval was obtained from the Institutional Review Board (IRB) of NAMS.

Correspondence: Dr. Sundar Shrestha, Department of General Surgery, Bir hospital, NAMS, Kathmandu, Nepal. Email: sundarsth7@gmail.com, Phone: +977-9841887658.
All Patients ≥15 years, clinically diagnosed cases of inguinal hernia, undergoing either elective or emergency surgery irrespective of the mode of anesthesia were included in the study.

Patients with inguinoscrotal swellings other than an inguinal hernia, who did not give consent, and patients with familial collagen vascular diseases were excluded from the study.

Total sample size was calculated by using
\[n = \frac{z^2 \times p \times q}{e^2} \]

Where,
\[n = \text{sample size} \]
\[z = \text{confidence interval (1.96 for Confidence Interval of 95\%)} \]
\[p = \text{prevalence (17.2\% i.e. 0.172)} \]
\[q = 1-p \]
\[e = \text{margin of error (5\% i.e. 0.05)} \]

After calculation, \(n = 218.8 \approx 219 \) cases. Hence, taking the largest incidence, the required (largest) sample size for the study is 219 cases.

The patients were grouped into different BMI groups based on the WHO Asia-Pacific obesity classification as:

a) Underweight (body mass index, BMI: <18.5 kg/m\(^2\)),
b) Normal (BMI \(\geq 18.5 \) to \(<22.9 \) kg/m\(^2\)),
c) Overweight (BMI \(\geq 23 \) to \(<24.9 \) kg/m\(^2\)),
d) Obese (BMI \(\geq 25 \) to \(<29.9 \) kg/m\(^2\)), and
e) Severely obese (BMI \(\geq 30 \) kg/m\(^2\)) by BMI.\(^7,8\)

According to the BMI, patients higher than \(23 \) kg/m\(^2\) were defined as overweight and patients between 18.5 kg/m\(^2\) and 22.9 kg/m\(^2\) were defined as normal-weight patients.

Heavy work was defined as lifting more than 100 pounds (45.3 kg) at a time with frequent lifting or carrying of objects weighing up to 50 pounds (23 kg).\(^9\)

Chronic cough was defined as cough more than 3 months durations irrespective of phlegm.\(^10\)

All eligible candidates were subjected to IHR and per operative findings, difficulties, and complications were noted and correlated with the BMI. Participants were followed up for one year. Follow-up in 3 weeks and three months was done by patients visiting themselves in OPD and 12 months follow-up by either themselves visiting in OPD or via telephone inquiries regarding any complications.\(^11\)

Statistical analysis was done using SPSS version 23 and Microsoft Excel software by descriptive statistics.

RESULTS

Out of 350 patients, 219 were eligible for the study. Among them, 208 (95\%) were male and 11 (5\%) were female. The mean age was 51.69±8.52 years, weight 56.68±9.39 Kg, height 160.06±8.72 cm and BMI 22.10±3.07 kg/m\(^2\). BMI Category 18.5–22.9 kg/m\(^2\) has maximum number 141 (64.38\%). One hundred and thirty four (61\%) male and 7 (3.2\%) female patients, and BMI category ≥30 kg/m\(^2\) has minimum number 4 (1.8\%) male and none of the female.

Highest IHRs done in BMI group 18.5-22.9 kg/m\(^2\) 141 (64.2\%) and lowest in ≥30 kg/m\(^2\) 4 (1.8\%). The prevalence of IHR decreased as the BMI category increased and vice versa (Table 1).

Table 1. Distribution of BMI among IHR patients.
BMI Category (kg/m\(^2\))

18.5-22.9
23-24.9
25-29.9
≥30
Total

Most of IHR patients were farmers 159 (72.5\%) followed by laborers 27 (12.32\%) and businessman 14 (6.39\%) (Figure 1).

Common risk factors responsible for the IHs were: smoking 143 (65.29\%), chronic cough 65 (29.68\%), heavy work 112 (51.14\%), COPD 24 (10.95\%), BEP/BOO 25 (11.41\%) (Figure 2).
The distribution of primary and recurrent IHR in different BMI groups. Primary IH was more common in the low BMI category, while recurrent IHR increased as the BMI increased (Table 2).

Table 2. Distribution of BMI for Primary Vs. Recurrent Hernia Repairs.

BMI category (kg/m²)	Primary n (%)	Recurrent	Total
18.5-22.9	135 (95.7)	6 (4.25)	141
23-24.9	42 (95.5)	2 (4.5)	44
25-29.9	27 (90.0)	3 (10.0)	30
=>30	4 (100.0)	0 (0)	4
	208 (94.9)	11 (5.02)	219

Most of the complications occurred in the normal and overweight BMI category and the prevalence of complications decreased as the BMI category increased except the Surgical Site Infection (SSI) (Figure 3). Recurrence was seen in 3 (1.4%) cases (one in open mesh repair, one in darning repair, and one in TAPP repair).

Discussion

Most of the patients were farmers 159 (72.6%), showing the influence of the work. It increases the IAP and protrusion of the abdominal contents from the defects and the abdominal wall’s weakest points. Smoking, heavy work and chronic cough were other common causes of IHs. A similar study done by Balamaddiah G et al. and Carbonell et al. showed the most common cause for the presence of hernia was lifting heavy objects. 15,16

Most of IHRs 208 (94.9%) were primary and 11 (5.02%) were recurrent. The recurrence was found in three cases (1.4%), which is much lower as compared to the study done by Sorensen et al. and Cheong et al., the recurrence rate was 12.7% (10.0–15.8) and 3.8% patients, respectively. 17,18 Several factors that influence the recurrence were contaminated wounds, female gender and complexity of hernia. 19,20

Most of the complications occurred in the normal and overweight BMI category and the frequency of complications decreased as the BMI category increased. However, when compared within the groups with increasing BMI, SSI prevalence increased. It is similar to a study done by Cheong et al. 18

The major limitations of the study were short follow-
up periods, small sample size, heterogeneous group of patients, no randomizations in the sampling and need for population-based study.

CONCLUSIONS

The majority of IHR patients were non-obese (in other words, obesity is less prevalent in inguinal hernia patients). The increase in BMI leads to an increased intra-abdominal cause that may not cause the development of IH as we are thinking for years. Complications were common in non-obese IHRs patients except for the SSI. Nonetheless, further studies examining measures of obesity are required.

ACKNOWLEDGMENTS

I am thankful to the department of general surgery, Bir hospital, NAMS, for their support.

Conflict of Interest: None.

REFERENCES

1. Shrestha SK, Sharma VK. Outcome of Lichtenstein operation: a prospective study of sixty-four patients. Nepal Med Coll J. 2006;8(4):230-3. [PubMed]
2. Rosemar A, Angerà U, Rosengren A. Body mass index and groin hernia: a 34-year follow-up study in Swedish men. Ann Surg. 2008;247(6):1064-8. [PubMed] [Full Text] [DOI]
3. Ruhl CE, Everhart JE. Risk factors for inguinal hernia among adults in the US population. Am J Epidemiol. 2007;165(10):1154-61. [PubMed] [Full Text] [DOI]
4. Liem MS, van der Graaf Y, Zwart RC, Geurts I, van Vroonhoven TJ, Group botCT. Risk factors for inguinal hernia in women: a case-control study. Am J Epidemiol. 1997;146(9):721-6. [PubMed] [Full Text] [DOI]
5. Rosemar A, Angerà U, Rosengren A, Nordin P. Effect of body mass index on groin hernia surgery. Ann Surg. 2010;252(3):397-401. [PubMed] [Full Text] [DOI]
6. Vaidya A, Shaktiya S, Krettek A. Obesity prevalence in Nepal: public health challenges in a low-income nation during an alarming worldwide trend. Int J Environ Res Public Health. 2017;14(6):1062. [PubMed] [Full Text] [DOI]
7. Park CY, Kim JC, Kim DY, Kim SK. Inguinal hernia repair in overweight and obese patients. J Korean Surg Soc. 2011;81(3):205-10. [PubMed] [Full Text] [DOI]
8. Organization WH. The Asia-Pacific perspective: redefining obesity and its treatment. Sydney: Health Communications Australia; 2001. [Full Text]
9. Coco A, Jacklitsch B, Williams J, Kim J-H, Musolin K, Turner N. Criteria for a Recommended Standard: Occupational Exposure to Heat and Hot Environments. DHHS (NIOSH) Publication.; 2016. [Full Text]
10. Song W-J, Chang Y-S, Faruqi S, Kang M-K, Kim J-H, Musolin K, et al. Defining chronic cough: a systematic review of the epidemiological literature. Allergy Asthma Immunol Res. 2016;8(2):146-55. [PubMed] [Full Text] [DOI]
11. Muysoms FE, Vanlander A, Ceulemans R, Kyle-Leinhase L, Michiels M, Jacobs I, et al. A prospective, multicenter, observational study on quality of life after laparoscopic inguinal hernia repair with ProGrip laparoscopic, self-fixating mesh according to the European Registry for Abdominal Wall Hernias Quality of Life Instrument. Surgery. 2016;160(5):1344-57. [PubMed] [Full Text] [DOI]
12. Zendejas B, Hernandez-Itzarry R, Ramirez T, Lohse CM, Grossardt BR, Farley DR. Relationship between body mass index and the incidence of inguinal hernia repairs: a population-based study in Olmsted County, MN. Hernia. 2014;18(2):203-8. [PubMed] [Full Text] [DOI]
13. Ravanbakhsh S, Batech M, Tejriian T. Increasing Body Mass Index is inversely related to groin hernias. Am Surg. 2015;81(10):1043-6. [PubMed] [DOI]
14. Lambert DM, Marceau S, Forse RA. Intra-abdominal pressure in the morbidly obese. Obes Surg. 2005;15(9):1225-32. [PubMed] [Full Text] [DOI]
15. Balamadadiah G, Reddy SRMJISJ. Prevalence and risk factors of inguinal hernia: a study in a semi-urban area in Rayalaseema, Andhra Pradesh, India. Int Surg J. 2016;3(3):1310-3. [PubMed] [Full Text] [DOI]
16. Carbonell J, Sanchez J, Peris R, Ivorra J, Del MB, Sanchez C, et al. Risk factors associated with inguinal hernias: a case control study. Eur J Surg. 1993;159(9):481-6. [PubMed] [DOI]
17. Sorensen LT, Friis E, Jorgensen T, Vennits B, Andersen BR, Rasmussen GL, et al. Smoking is a risk factor for recurrence of groin hernia. World J Surg. 2002;26(4):397-400. [PubMed] [Full Text] [DOI]
18. Cheong KX, Lo HY, Neo JX, Appasamy V, Chiu MTJSmj. Inguinal hernia repair: are the results from a general hospital comparable to those from dedicated hernia centres? Singapore Med J. 2014;55(4):191. [PubMed] [Full Text] [DOI]
19. Eklund AS, Montgomery AK, Rasmussen IC, Sandbue RP, Bergkvist LÅ, Rudberg CR. Low recurrence rate after laparoscopic (TEP) and open (Lichtenstein) inguinal hernia repair: a randomized, multicenter trial with 5-year follow-up. Ann Surg. 2009;249(1):33-8. [PubMed] [Full Text] [DOI]
20. Neumayer L, Giobbie-Hurder A, Jonasson O, Fitzgibbons Jr R, Dunlop D, Gibbs J, et al. Open mesh versus laparoscopic mesh repair of inguinal hernia. N Engl J Med. 2004;350(18):1819-27. [PubMed] [Full Text] [DOI]