Pebble-driven planet formation around very low-mass stars and brown dwarfs

Beibei Liu, Michiel Lambrechts, Anders Johansen, Ilaria Pascucci, and Thomas Henning

1 Lund Observatory, Department of Astronomy and Theoretical Physics, Lund University, Box 43, 22100 Lund, Sweden
e-mail: bbliu@astro.lu.se
2 Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721, USA
3 Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany

Received 13 February 2020 / Accepted 14 April 2020

ABSTRACT

We conduct a pebble-driven planet population synthesis study to investigate the formation of planets around very low-mass stars and brown dwarfs in the (sub)stellar mass range between 0.1 \(M_\odot \) and 0.1 \(M_\odot \). Based on the extrapolation of numerical simulations of planetesimal formation by the streaming instability, we obtain the characteristic mass of the planetesimals and the initial mass of the protoplanet (largest body from the planetesimal populations), in either the early self-gravitating phase or the later non-self-gravitating phase of the protoplanetary disk evolution. We find that the initial protoplanets form with masses that increase with host mass and orbital distance, and decrease with age. Around late M-dwarfs of 0.1 \(M_\odot \), these protoplanets can grow up to Earth-mass planets by pebble accretion. However, around brown dwarfs of 0.01 \(M_\odot \), planets do not grow to the masses that are greater than Mars when the initial protoplanets are born early in self-gravitating disks, and their growth stalls at around 0.01 Earth-mass when they are born late in non-self-gravitating disks. Around these low-mass stars and brown dwarfs we find no channel for gas giant planet formation because the solid cores remain too small. When the initial protoplanets form only at the water-ice line, the final planets typically have \(\gtrsim 15\% \) water mass fraction. Alternatively, when the initial protoplanets form log-uniformly distributed over the entire protoplanetary disk, the final planets are either very water rich (water mass fraction \(\gtrsim 15\% \)) or entirely rocky (water mass fraction \(\lesssim 5\% \)).

Key words. methods: numerical – planets and satellites: formation

1. Introduction

Brown dwarfs are substellar objects in the mass range between 13 and 80 Jupiter masses (approximately 0.013 and 0.08 \(M_\odot \)). They fall below the stable hydrogen-burning mass limit but can sustain deuterium and lithium nuclear fusion. These brown dwarfs, together with very low mass hydrogen-burning M dwarf stars of masses \(\lesssim 0.1 \ M_\odot \) (effective temperature below 2700 K, stellar type later than M7) are referred to as ultra-cool dwarfs (UCDs). Noticeably, the UCDs represent a significant fraction (\(\sim 15\% – 30\% \)) of stars in the galaxy (Kroupa 2001; Chabrier 2003; Kirkpatrick et al. 2012; Muziç et al. 2017).

The evidence for dust disks around young brown dwarfs was first probed by the presence of an infrared excess in the spectral energy distribution (SED; Comerón et al. 2000; Natta & Testi 2001; Pascucci et al. 2003), and later by the detection of (sub)millimeter emission (Klein et al. 2003) from the cold dust. Both dust continuum emission and CO molecular line emission were later on observed for a large sample of brown dwarf disks through surveys with the Atacama Large Millimeter/submillimeter Array (ALMA; Ricci et al. 2012, 2014; Testi et al. 2016). Based on the infrared spectroscopic surveys by the Spitzer space telescope, Apai et al. (2005) found that grain growth, crystallization, and vertical settling all take place in such young brown dwarf disks. Furthermore, multi-wavelength observations resolve low spectral indices for these brown dwarf disks, implying dust grains already grow up to millimeter (mm) and centimeter (cm) sizes (Ricci et al. 2010, 2014, 2017). All these mentioned brown dwarf disk studies, combined with the vast literature on disks around more massive stars (Przygodda et al. 2003; Natta et al. 2004; Pérez et al. 2015; Tazzari et al. 2016), convincingly support that the robustness of the first step of planet formation, growth, is ubiquitous among different young (sub)stellar environments, extending down to the brown dwarf regime.

Spectroscopic measurements of mass accretion rates onto brown dwarfs have found \(M_g \) of the order of \(10^{-12} \ M_\odot \ yr^{-1} \) (Muzerolle et al. 2005; Mohanty et al. 2005; Herczeg et al. 2009), which is much lower than the nominal value for solar-mass stars of \(10^{-8} \ M_\odot \ yr^{-1} \) (Hartmann et al. 1998; Garcia Lopez et al. 2006; Manara et al. 2012), implying a decreasing trend of mass accretion rate with (sub)stellar mass down to the brown dwarf regime. Brown dwarfs also have protoplanetary disks of relatively low mass (Andrews et al. 2013; Mohanty et al. 2013). Recent studies plausibly suggest a lower disk-to-star mass ratio

\(^1\) The above spectral index interpretation relies on the assumptions that the dust emission is optically thin and the opacity is dominated by absorption rather than scattering at the observed wavelengths (D’Alessio et al. 2001; Draine 2006; Zhu et al. 2019; Liu 2019). Recently, Carrasco-González et al. (2019) fitted the SED of HL Tau disk from ALMA and Very Large Array (VLA) data, by accounting for both scattering and absorption in dust opacity and neglecting any underlying assumption on the optical depth. From this analysis, they found that the grains have indeed already grown to millimeter sizes.
disks with viscous accretion theory, the connection has not yet been established (e.g., Lodato et al. 2017; Mulders et al. 2017; Najita & Bergin 2018). Nonetheless, the disk evolution \(\dot{M}_d(M_*, t) \) from this work is purely based on observations.

Figure 1a shows the evolution of disk accretion rates for central hosts of 0.01 \(M_\odot \) \((=10 M_{\text{Jup}})\), 0.1 \(M_\odot \), and 1 \(M_\odot \), respectively. There are two distinctive features: First, disks around less massive stars have lower accretion rates. Second and more importantly, disk accretion rates around less massive stars also decrease more rapidly. We also note that, based on disk accretion rates measured from X-shooter spectrograph, more recent studies suggest a steeper \(\dot{M}_d=M_\ast \) for lower mass stars (Manara et al. 2017; Alcalá et al. 2017), which appears in agreement with faster disk evolution around these stars. We find in Fig. 1a that at the beginning, \(\dot{M}_d=10^{-9} M_\odot \text{yr}^{-1} \) in a brown dwarf disk, which is a migration of a large number of protoplanets due to the smaller gas and dust envelopes around brown dwarfs.
factor of 5 and 30 times lower than the accretion rates in $0.1 M_\odot$ and $1 M_\odot$ star disks. However, after 2 Myr, the disk accretion rate in the brown dwarf disk drops by more than two orders of magnitude, while $M_{\text{g}} \approx 10^{-8} M_\odot\,\text{yr}^{-1}$ for the solar-mass star, which is only reduced by a factor of three compared to its initial value.

We can calculate the gas disk mass (M_{g}) by integrating M_{g} over time (choose $t = 10$ Myr) for the host of specific M_* By doing so, we need to assume that the disk material is mainly accreted onto the central star, rather than carried away by a disk wind. It is true for viscous disks where most gas in the disk is accreted inward while a small amount of gas spreads far away to conserve the angular momentum (Lynden-Bell & Pringle 1974). Therefore, we can link the mass accretion rate for the inner disk region to the whole disk mass.

The results are illustrated in Fig. 1b. We find that an early stage of the disk mass tends to scale linearly with the mass of the central object. However, since the disk around low-mass stars/brown dwarfs evolves rapidly, at $t \sim 1\text{--}3$ Myr the disk mass is roughly proportional to the mass of the host squared ($M_d \propto M_*^2$). This inferred stellar mass square dependence also matches the measurements of accretion rates in the Chamaeleon I star forming region (Manara et al. 2016), which have similar ages of 1-3 Myr. The early linear M_d-M_* correlation ($t \leq 0.5$ Myr) could be partially due to the constant M_d assumption in the short embedded phase. Nevertheless, the fact that the M_d-M_* relation increases steeply with time always holds as long as the disk evolves more rapidly for very low-mass stars/brown dwarfs than for higher-mass stars. We also note that such time-dependence is not only observed for the gas component (inferred from M_d). There is clear evidence that the correlation between the dust mass and stellar mass becomes steeper with time as well (Pascucci et al. 2016; Ansdell et al. 2017).

2.2. Dust growth

Similar to Liu et al. (2019a), we also assume in this paper that dust grains can efficiently grow to mm sizes. This characteristic size is motivated from two aspects. Firstly, the mm spectral index measured for the disks around stars of various masses (including brown dwarfs) is much lower than the typical interstellar medium (ISM) value. This indicates that the grains already grow to such sizes in protoplanetary disks over a wide range of ages (Draine 2006; Ricci et al. 2014, 2017; Pérez et al. 2015; Tazzari et al. 2016; Pinilla et al. 2017). Secondly, Zsom et al. (2010) studied the coagulation of silicate dust aggregates in protoplanetary disks based on the collision outcomes from laboratory experiments (Güttler et al. 2010). They found that particles stall at roughly mm sizes due to the bouncing barrier. The sticking of particles is determined by the surface energy, which correlates with the material properties. Recently, Musilok & Wurm (2019) reported that the surface energy of ice aggregates is comparable to that of silicates when the disk temperature is lower than 180 K. If this is true, the growth pattern and the bouncing-limited size would be quite similar for these two types of dust grains.

Rather than build a sophisticated model for dust growth and radial drift (Birnstiel et al. 2012), here we assume that the pebble mass flux (\dot{M}_{peb}) generated from the dust reservoir in the outer disk regions is attached to the gas flow with a constant mass flux ratio, such that $\xi \equiv \dot{M}_{\text{peb}}/\dot{M}_g$ does not change with time (Johansen et al. 2019). Particles of very low Stokes numbers are well-coupled to the disk gas. The gas and dust particles drift inward together with the same velocities, and therefore ξ remains equal to the initial disk metallicity. When the Stokes number is high, pebbles radially drift faster than the disk gas. In this case, in order to maintain a constant flux ratio, $\dot{M}_{\text{peb}}/\dot{M}_g$ becomes lower than the nominal disk metallicity (the pebble surface density is reduced). The mm-sized pebbles in disks around GK and early M-dwarfs are typically in the Former circumstance, while such pebbles in disks around very low-mass stars and brown dwarfs could be in the latter circumstance, especially at the late evolutionary stage.

We would like to point out that the above constant mass flux ratio assumption is a global concept. Even though the global $\Sigma_{\text{peb}}/\Sigma_g$ is no higher than the disk metallicity under this assumption, the density of the solids can still be enriched at local disk locations due to a variety of mechanisms. For instance, several studies proposed that the solid-to-gas ratio can be enhanced at the water-ice line (Ros & Johansen 2013; Schoonenberg & Ormel 2017; Drążkowska & Alibert 2017). This is because the water vapor is released by the inward-drifting icy pebbles when these pebbles cross the ice line. The water vapor diffuses back to the low-density region exterior to the ice line and re-condenses onto the icy pebbles. This process increases $\Sigma_{\text{peb}}/\Sigma_g$ locally and triggers the streaming instability to form planetesimals at the water-ice line. Furthermore, Lenz et al. (2019) proposed that the dust particles can be trapped at pressure bumps, which may exist over a wide region of the disk due to hydrodynamical and/or
magnetic turbulence. Similarly, such places of sufficiently high \(\Sigma_{\text{p}}/\Sigma_g \) can also facilitate the planetesimal formation. These ideas also motivate our further hypothesis on the birth locations of the protoplanets in the population synthesis study in Sect. 4.

On the other hand, the constant flux ratio assumption also neglects the reduction of \(M_{\text{p}} \) due to planet pebble accretion. We give the reason for this simplification as follows. The typical gas disk mass is \(1-10 \% \) of the stellar mass (Fig. 1), resulting in a mass ratio between disk pebbles and the central host of \(\approx 10^{-3} - 10^{-5} \). For comparison, we found that the mass ratio between the pebbles accreted by the planet and the central host ranges from zero to a maximum of \(3 \times 10^{-5} \) (see Fig. 7). We find that even in cases where the planet reaches the pebble isolation mass of \(M_{\text{p}}/M_* \sim 3 \times 10^{-5} \), the fraction of pebble accreted by the planet is still \(< 10 \% \). Most pebbles in disks are actually accreted to the central hosts rather than accreted by planets. Our constant flux ratio assumption is therefore justified.

We present the results for \(1 \) mm size pebbles in the main paper. In addition, we also consider a case that includes the combined effects of bouncing, fragmentation, and radial drift. The corresponding results are summarized in Appendix C.2. These two particle size assumptions nevertheless result in very similar outcomes.

Based on Eqs. (A.1) and (A.4) we write the Stokes number of \(1 \) mm particles in the Epstein regime:

\[
\tau_s = \sqrt{\frac{2 \rho}{15}} \frac{R_{\text{p}}}{\rho_*} - \frac{g}{R_{\text{p}}}
\]

where \(R_{\text{p}} \) and \(\rho_* \) are the physical radius and internal density of the pebble. The first and second rows of the above equation compute the values evaluated at the water-ice line location in the inner viscously heated disk region and at \(10 \) AU in the stellar irradiation disk region, respectively.

For particles of fixed-size, the Stokes number is inversely proportional to the surface density of the disk gas. As the disk masses decrease with both the mass of the central host and time, the Stokes number therefore increases with these two quantities. This is clearly shown in Fig. 2, which illustrates the evolution of Stokes numbers for \(1 \) mm size pebbles at the water-ice line (orange) and at \(10 \) AU (blue) in disks around different mass hosts. For disks around solar-mass stars, no matter where pebbles are, \(\tau_s \) always remains lower than \(0.03 \). However, for disks around brown dwarfs of \(0.01 \) \(M_\odot \), \(\tau_s \) approaches unity for pebbles at the ice line when \(t \approx 7 \) \(\text{Myr} \), while for pebbles at \(10 \) AU, this occurs even at the very early stage when \(t \approx 0.5 \) \(\text{Myr} \).

The Stokes number determines the efficiency of pebble accretion. When the planet mass is low, the pebble accretion efficiency decreases with \(\tau_s \) in the 3D regime where the planet accretion radius is smaller than the vertical layer of the pebbles (Morbidelli et al. 2015; Ormel & Liu 2018). As the planet grows, it enters the 2D accretion regime. In this situation, the pebble accretion efficiency increases with \(\tau_s \) (Lambrechts & Johansen 2014; Liu & Ormel 2018). The above analysis holds as long as the pebbles are marginally coupled to the disk gas, and therefore gas drag is important during the pebble-planet interaction (\(10^{-3} \lesssim \tau_s \lesssim 1 \)). However, when \(\tau_s \) is much greater than unity, gas drag is negligible during pebble-planet encounters, and pebbles are more aerodynamically similar to planetesimals. In this case, the actual accretion rate drops substantially (Ormel & Klahr 2010). Therefore, the preferred Stokes number for pebble accretion ranges from \(10^{-3} \) to \(1 \).

Noticeably, as illustrated in Figs. 1 and 2, we find that the protoplanets formed at wide orbits around low-mass hosts, especially brown dwarfs, would have difficulty in growing significantly in mass by accreting pebbles. This is because disks around these low-mass objects deplete rapidly in both solids and gas. Furthermore, mm-sized pebbles in disks around such hosts have Stokes numbers larger than unity, and the corresponding pebble accretion turns out to be very inefficient.

2.3. Stellar properties

The second modification compared to our previous study is our adoption of the time luminosity of the central object. In Liu et al. (2019a) we assumed that the luminosity of a young star does not evolve during the short disk lifetime (\(\lesssim 10 \) \(\text{Myr} \)), and therefore, it only correlates with the stellar mass as \(L_\star \propto M_\star^3 \), where \(\beta \) is parameterized to be either 2 or 1 for the pre-main sequence stars. As an improvement, here we adopt a theoretical calculation of \(L_\star(M_\star, t) \) from Baraffe et al. (2003, 2015), who use state-of-the-art evolutionary models that compute \(L_\star(M_\star, t) \) for stars from solar-mass to brown dwarfs below the hydrogen-burning limit.

The time and (sub)stellar mass dependencies can be seen in Fig. 3. For hosts younger than \(10 \) \(\text{Myr} \), we verify that \(L_\star \propto M_\star^{3-2} \) is still a good approximation. After that, the luminosity tends to follow a cubic or fourth power correlation with the mass of the host. It is worth mentioning that this time-dependent variation is due to the much slower contraction for lower mass stars. For comparison, the contraction of solar-mass stars roughly takes a few tens of millions of years, while this can last for \(10^5-10^6 \) yr.
for UCDs. A complete contour map of $L_\star(M_\star, t)$ is provided in Fig. B.1.

Young UCDs are fast rotators (Herbst et al. 2007). We approximate the inner edge of the disk to the corotation radius of the central host with a typical spin period P_\star of one day, which can be expressed as

$$r_{in} = 0.01 \left(\frac{M_\star}{0.1 M_\odot} \right)^{1/3} \left(\frac{P_\star}{\text{1 day}} \right)^{2/3} \text{AU}. \quad (3)$$

2.4. Derivation of the characteristic planetesimal mass from streaming instability simulations

Streaming instability is a powerful mechanism that forms planetesimals by directly collapsing a swarm of mm-sized pebbles (Youdin & Goodman 2005). Numerous numerical simulations show the robustness of this mechanism for generating planetesimals (Johansen et al. 2007, 2012; Bai & Stone 2010; Simon et al. 2016; Schäfer et al. 2017; Abod et al. 2019; Li et al. 2019). These planetesimals have a top-heavy mass distribution. The characteristic planetesimal size is roughly 100 km in the asteroid belt region (2–3 AU) around a solar-mass star (Johansen et al. 2015; Simon et al. 2016; Schäfer et al. 2017).

Simulations of streaming instability are performed in a shearing box, where the code units are typically set as $\rho_g = H = \Omega_k^{-1} = 1$. The midplane gas density ρ_g, the gas disk scale height H, and the Keplerian angular frequency $\Omega_k = \sqrt{GM_\star/r^3}$ correspond to the units of density, length, and time, respectively, where G is the gravitational constant and all these quantities are measured at a radial distance r from the central star. The unit of mass is given by $M = \rho_g H^3$.

The gas density is set by the dimensionless gravity parameter

$$\gamma \equiv 4 \pi G \rho_g \Omega_k^2,$$ \quad (4)

where γ measures the relative strength between the self-gravity and tidal shear, which depends on the gas density ρ_g, the stellar mass M_\star, and the radial distance r. The mass unit can in turn be written as

$$\dot{M} = \rho_g H^3 = \frac{\gamma h^3}{4 \pi} M_\star, \quad (5)$$

where disk aspect ratio $h = H/r$. We note that the variation of γ is equivalent to the change of ρ_g for fixed r and M_\star.

In the streaming instability simulations, planetesimal masses are measured in the code unit (in terms of \dot{M}). These masses are expected to follow the same scaling laws when \dot{M} varies. This means we could extrapolate and obtain the physical mass of the planetesimal when realistic ρ_g, M_\star, and r are given.

We propose that the characteristic planetesimal mass can be written as

$$M_{pl} = f(\Pi, \tau_s, Z) \dot{M}. \quad (6)$$

There are four key physical quantities that regulate the gravitationally collapsing of planetesimals, and therefore set the control function f. We give these quantities in a dimensionless manner as follows. The radial pressure gradient parameter that measures the sub-Keplerian gas velocity is

$$\Pi \equiv \frac{\eta v}{c_s} = \frac{\eta}{h}, \quad (7)$$

where $\eta = -h^2 (\partial \ln P/\partial \ln r)/2(2 - s - q)h^2/2, P$ is the gas pressure, s, q are the power law indexes of the gas surface density and disk aspect ratio, respectively. The Stokes number that represents the aerodynamical size of the particles can be written as

$$\tau_s \equiv t_{stop} \Omega_k^{-1}, \quad (8)$$

where t_{stop} is the stopping time of the particle, The metallicity (the surface density ratio between particles and gas) is given by

$$Z \equiv \frac{\Sigma_d}{\Sigma_g}. \quad (9)$$

The last key physical quantity is γ, which describes the strength of the self-gravity.

We assume that $f(\Pi, \tau_s, Z)$ is composed of a series of power laws

$$f(\Pi, \gamma, \tau_s, Z) \propto (Z)^a \Pi^b \tau_s^c, \quad (10)$$

where a, b, c can be principally obtained from streaming instability simulations. Physically, Z and γ (corresponding to the gas density) together represent the disk solid density, a fundamental quantity that sets the collapse of the pebble clumps and formation of the planetesimals. We expect these two follow the same power-law dependence in f. Equation (6) can be rewritten as

$$M_{pl} = C(Z)^a \Pi^b \tau_s^c \dot{M}. \quad (11)$$

We would like to note that $M_{pl} \propto \gamma^{a+1}$ since \dot{M} also linearly scales with γ (Eq. (5)). Importantly, the preceding condition for the above formula is to trigger filament formation by the streaming instability in the first place. This requires a certain range of disk metallicities, the Stokes numbers and disk pressure gradients (Bai & Stone 2010; Carrera et al. 2015; Yang et al. 2017).

From Fig. 3 of Simon et al. (2017), we find that the planetesimal mass depends very little on the Stokes number of the pebbles. We therefore drop the τ_s dependence on M_{pl} hereafter.
The characteristic mass of the planetesimal can be expressed as

$$M_{\text{pl}} = C \left(\frac{Z}{0.02} \right)^{a} \left(\frac{\gamma}{\pi^{-1}} \right)^{a} \left(\frac{\Pi}{0.05} \right)^{b} \dot{M}. \quad (12)$$

Again, we note that Z represents the local metallicity in the above equation. As discussed in Sect. 2.2, this value can differ from the global disk metallicity due to different dust concentration mechanisms.

Converting the code unit into the physical unit based on Eqs. (5) and (12), we therefore obtain

$$\frac{M_{\text{pl}}}{M_\odot} = 5 \times 10^{-6} \left(\frac{C}{5 \times 10^{-5}} \right) \left(\frac{Z}{0.02} \right)^{a} \left(\frac{\gamma}{\pi^{-1}} \right)^{a+1} \left(\frac{\Pi}{0.05} \right)^{3b+1} \left(\frac{h}{0.05} \right)^{3+\beta} \left(\frac{M_*}{0.1 M_\odot} \right). \quad (13)$$

There are three unknown parameters a, b, and C in Eq. (12). We explain how we choose these values as follows. Both Johansen et al. (2012) and Simon et al. (2016) explore the role of the self-gravity parameter γ on the final planetesimal masses. The inferred power-law index a is between 0 and 1 (Fig. 13 of Johansen et al. 2012 and Fig. 9 of Simon et al. 2016). We find that a medium value of $a = 0.5$ is slightly preferred. This latter value causes M_{pl} to increase super-linearly with γ in Eq. (13). On the other hand, different disk pressure gradients Π are explored in Abod et al. (2019). The inferred b is no larger than 1 and can be close to 0 ($b \approx 0$–1, their Fig. 8). This Π dependence on M_{pl} also seems to be nonmonotonic. For a conservative choice, we adopt $b = 0$ here. This leads to $M_{\text{pl}} \propto h^3$. We choose $C = 5 \times 10^{-5}$ based on Table 2 of Schäfer et al. (2017). As will be demonstrated below, our proposed characteristic mass based on the above adopted values is in reasonably good agreement with other numerical studies.

The characteristic mass comparison between the literature studies and our Eq. (12) is illustrated in Fig. 4. In streaming instability simulations, the cumulative mass distribution of the forming planetesimals is most frequently fitted by a power law plus an exponential decay, $N_c(M) = k M^{-\alpha_1} \exp[-(M/M_{\text{exp}})^b]$. There are two different approaches for the above fitting. One is the simply tapered power law (STPL), where k and α_1 are two free parameters, and β_1 is fixed to be either 4/3 (Johansen et al. 2015) or 1 (Abod et al. 2019; Li et al. 2019). The other is the variably tapered power law (VTPW), where β_1 is an additional free parameter that needs to be fitted (Schäfer et al. 2017; Li et al. 2019). Apart from these exponentially tapered power laws, a single power law (SPL) is used in Simon et al. (2016), and a broken power law (BPL) is explored in Li et al. (2019; their Eq. (23)). The characteristic masses are adopted as M_{exp} in exponentially tapered power laws and M_{br} (turnover mass) in the broken power law. For the single power law fitting, we mark the highest planetesimal mass as an indicator of the upper limit of the characteristic mass. The data used for this comparison are listed in Table 1.

We find that our proposed characteristic mass in Eq. (12) is in good agreement with values in the literature. As can be seen in Fig. 4, our predicted value is lower than the characteristic mass in Johansen et al. (2015) by a factor of 2–3 (pink triangle) but is in relatively good agreement with other studies. The above degree of consistence is impressive, since Π, γ, τ, and Z are varied over orders of magnitude among these studies (see Table 1). Furthermore, different fitting formulas and therefore characteristic mass indicators (M_{exp} and M_{br}) are adopted in the literature. These indicators might differ by a factor of a few from each other even based on the same fitting data (see magenta symbols in Fig. 4). In addition, different planetesimal-finding algorithms among these studies could also induce additional uncertainties in the above fitting masses. Overall, we are confident about the values chosen here ($a = 0.5$, $b = 0$, $C = 5 \times 10^{-5}$). In future, when more numerical simulations are conducted with different disk and pebble parameters, we will be able to optimize all these parameters in Eq. (11) based on more advanced best-fit algorithms.

2.5. Initial mass of the protoplanets

Based on streaming instability simulations (e.g., Schäfer et al. 2017), the mass of the largest body M_0 is typically about two to three orders of magnitude higher than the characteristic mass (see Fig. 7 in Liu et al. 2019b). As demonstrated in Liu et al. (2019b), the most massive planetesimal would dominate the following mass growth and dynamical evolution of the whole population. In this population synthesis study, we adopt the largest planetesimal formed by streaming instability as our starting point, and we refer to it as the protoplanet hereafter. The subsequent growth and migration of one single protoplanet is investigated in this study.

Assuming that the disk solids are locally enriched in order to satisfy the Z criterion, we drop the Z dependence in Eq. (13)
hereafter. The mass of the initial protoplanet is given by

\[
\frac{M_0}{M_\oplus} = 2 \times 10^{-3} \left(\frac{f_{\text{pl}}}{400} \right) \left(\frac{C}{5 \times 10^{-5}} \right) \left(\frac{\gamma}{\pi} \right)^{a+1} \times \left(\frac{h}{0.05} \right)^{a+b} \left(\frac{M_*}{0.1 M_\odot} \right).
\]

(14)

where \(f_{\text{pl}}\) is the ratio between the maximum mass and the characteristic mass. In this study, we set \(f_{\text{pl}} = 400, a = 0.5, b = 0,\) and \(C = 5 \times 10^{-5}\) to be the fiducial values.

Since \(\gamma\) is a disk-related parameter, the key issue is to understand how \(\gamma\) scales with \(M_*\) and \(r\) under different disk conditions. Two types of disks (or two disk evolutionary phases) are explored, self-gravitating and non-self-gravitating, which result in \(\gamma\) being either equal to 1 or much less than 1, respectively.

First, we consider the case where the disk is everywhere gravitationally unstable (Toomre \(Q = 1\)). This requires a young and massive disk. In this situation, \(\gamma = 1\) and the mass of the forming protoplanet is independent of \(\gamma\). Therefore, we do not need to know the gas density \(\rho_g\) directly, since its value is encoded in \(\gamma\). As can be seen from Eq. (14), the protoplanet’s mass exhibits a similar scaling to that of the pebble isolation mass, also proportional to \(h^3 M_*\) (Lambrechts et al. 2014; Bitsch et al. 2018).

On the other hand, during a later phase when the disk is non-self-gravitating, \(\gamma \neq 1\) and the actual value depends on the gas surface density. We then calculate \(\gamma\) based on our two-component disk model with an inner viscously heated region and an outer stellar irradiated region (see Appendix A). In a steady state viscous accretion disk, the gas surface density is related to the mass accretion rate and viscosity such that \(M_* = 3 \pi \Sigma g \nu\), where \(\nu = \alpha_b c_s^2 / \Omega_K\), \(\alpha_b\) represents the angular momentum transfer coefficient and \(c_s\) is the gas sound speed. Based on the definition of \(\gamma\), we derive that \(\gamma = M_* \alpha_b c_s^2 / \Sigma g\) in this case. This means that with the given disk temperature and \(c_s\), \(\gamma\) is proportional to \(M_*\).

For the non-self-gravitating disk, after the protoplanets form, the disk evolution follows the nominal two-component model, where the disk surface density and aspect ratio are adopted from Eqs. (A.1) and (A.2) and the time evolution is based on Eq. (1). However, how \(\rho_g\) evolves in a self-gravitating disk is a more subtle issue, which relies on additional assumptions. In principle, \(\rho_g\) is higher in a self-gravitating disk. Even though a young disk is self-gravitating at early times, its density decreases and the disk finally evolves into the non-self-gravitating state. Here we assume that once protoplanets form in a self-gravitating disk, the density quickly adjusts to that of the non-self-gravitating disk. This means that \(\rho_g\) is the same for these two types of disks after the protoplanet formation. Therefore, the key difference is the birth masses of protoplanets. Such a treatment is conservative for the case of self-gravitating disks. However, the advantage is that the model is reasonably simplified and no additional parameters are needed.

Figure 5a shows the mass of the protoplanet \(M_0\) formed by streaming instability as a function of the disk location either in a self-gravitating disk (\(\gamma = 1\), cyan) or in a non-self-gravitating disk (\(\gamma \neq 1\), red) around a \(0.1 M_\odot\) star. The solid and dashed lines correspond to the formation time of the protoplanet at \(t = 0\) Myr and 3 Myr, respectively. The black line represents the pebble isolation mass for comparison. We can see clearly that the initial protoplanet has the same mass scaling as the pebble isolation mass in a self-gravitating disk. When the protoplanet forms early (solid cyan), at the inner regions inside 1 AU region, the disk is viscously heated and the aspect ratio is almost independent of the distance (flat disk, Eq. (A.2)), and therefore \(M_0\) and \(M_{\text{iso}}\) are insensitive to the radial distance. At the region further out where the disk is heated by stellar irradiation, the aspect ratio increases as \(r^{3/7}\) (flaring disk), and the mass of the protoplanet is nearly proportional to \(r\). In a non-self-gravitating disk (\(\gamma \neq 1\), \(M_0\) additionally depends on \(\gamma\), which also increases with \(r\). This simply reflects the fact that the disk self-gravity is likely to overwhelm the tidal shear as the radial distance increases. As a result, we find that the mass of the protoplanet increases super-linearly with distance.

We also clearly see how the mass of the protoplanet formed by streaming instability varies with time. When the protoplanet forms late at 3 Myr (dashed), the disk is entirely heated by stellar irradiation, and, as mentioned, the protoplanet’s mass is purely proportional to \(r\) in the self-gravitating disk (\(\gamma = 1\)). Since \(\gamma\) decreases with time in the non-self-gravitating disk, the late-forming protoplanet is less massive compared to the one that forms early.

We also plot the mass of the protoplanet as a function of the stellar mass for the above two disks at the water-ice line

Reference	Z	\(\gamma\)	\(\Pi\)	\(\tau_s\)	Fitting type	Characteristic mass [\(\dot{M}\)]
Johansen et al. (2015)	0.02	0.1	0.05	0.3	STPL	\(9.1 \times 10^{-5}\)
Simon et al. (2016)	0.02	0.1	0.05	0.3	SPL	\(4.5 \times 10^{-4}\)
Schäfer et al. (2017)	0.02	0.05	0.05	0.3	SPL	\(2.4 \times 10^{-4}\)
Abod et al. (2019)	0.1	0.02	0.01	0.05	STPL, VTPL, BPL	\(2.7 \times 10^{-5}, 6.3 \times 10^{-7}, 1.6 \times 10^{-6}\)
Li et al. (2019)	0.1	0.05	0.05	0.3	STPL	\(4.1 \times 10^{-5}\)

Notes. The characteristic mass \(M_0\) is adopted to be \(M_{\text{eq}}\) from the STPL and VTPL fittings, or to be \(M_0\) from the BPL fitting (see Eq. (23) of Li et al. 2019). For the STPL fitting, we adopt the largest planetesimal mass as an upper limit of \(M_0\). All these masses are provided in the code unit (\(\dot{M}\)). The data are adopted from Johansen et al. (2015), Simon et al. (2016), Schäfer et al. (2017), Abod et al. (2019), and Li et al. (2019).
in Fig. 5b. We find that the mass of the protoplanet increases slowly with stellar mass in the self-gravitating disk, whereas this stellar mass dependence is more pronounced in the non-self-gravitating disk. We explain the reasons for this as follows. First, based on Eqs. (14) and (A.5), \(M_0 (\gamma = 1) \) is proportional to \(M_\text{e}^{2/3} \) in the early phase when \(r_\text{ice} \) is inside the inner viscously heated region. Second, as shown in Fig. 1a, the difference in disk accretion rates among stars of different masses at the early phase is relatively small, implying a weak dependence of \(M_* \) on \(M_\text{e} \). Combined with the above two factors, at early times the mass of the protoplanet modestly increases with stellar mass in the self-gravitating disk (solid cyan). Nevertheless, in the non-self-gravitating disk, \(M_0 (\gamma \neq 1) \) additionally correlates with \(\gamma \). When taking that into account, we find that \(M_0 \) exhibits a stronger \(M_* \) dependence in a non-self-gravitating disk than in a self-gravitating disk.

As discussed in Sect. 2.1, \(M_\text{e} \) is roughly proportional to \(M_* \) at early times, and the \(M_\text{e} - M_* \) correlation becomes steeper as disks evolve. We therefore expect that the mass of the late-forming protoplanets has a steeper stellar mass dependence than those formed early. Figure 5b shows that the late-forming protoplanet is very small in a non-self-gravitating disk around a low-mass host. For instance, \(M_0 (\gamma \neq 1) = 10^{-4} M_\odot \) when it forms at \(t = 3 \) Myr around a 0.1 \(M_\odot \) star, corresponding to 10 km in size.

In summary, the mass of the protoplanet generated by streaming instability correlates with the mass of the central host and the disk location. For the same (sub)stellar host, low-mass protoplanets form at close-in orbits while massive ones form at further distances. For the same disk location, low-mass protoplanets form around less-massive brown dwarfs while high-mass protoplanets form around higher mass stars. The above dependences are more pronounced for the protoplanets that form in late non-self-gravitating disks than for those in early self-gravitating disks.

3. Growth track of a single protoplanet

The detailed treatment of planet growth and migration can be found in Sects. 2.2 and 2.3 of Liu et al. (2019a). Here we provide an analytical comparison between the migration and growth of a growing protoplanet around hosts of different masses.

Protoplanets and low-mass planets undergo type I migration (Kley & Nelson 2012), and the corresponding migration rate is

\[
\frac{dr}{dt} = -k_{\text{mig}} \left(\frac{M_p}{M_*} \right)^{\gamma} \left(\frac{\Sigma_r}{\Sigma_*} \right)^{1/2} r_K^2 \tag{15}
\]

where \(k_{\text{mig}} \) is the migration coefficient and the latter equation is derived from the steady-state disk assumption where \(\Sigma_\text{g} = 2 \pi G M_* \). It should be noted that we also use two different \(\alpha \) parameters in this work, where the global disk viscous angular momentum transfer coefficient \(\alpha_g = 10^{-3} \), and the level of the local disk turbulence \(\alpha_t = 10^{-4} \). For a given disk accretion rate, \(\alpha_g \) determines the gas disk surface density, and thus planet migration. On the other hand, planet growth is set by \(\alpha_t \), which corresponds to the pebble settling and pebble accretion efficiency (see Sect. 2 of Liu et al. 2019a).

The mass accretion rate of a planet in the 2D shear-dominated pebble accretion regime can be found in Liu & Ormel (2018) as

\[
\frac{dM_p}{dr} = \epsilon_{\text{PA}} M_{\text{peb}} = k_{\text{PA}} \left(\frac{M_p}{M_*} \right)^{2/3} \left(\frac{M_{\text{peb}}}{M_*} \right), \tag{16}
\]

where \(\epsilon_{\text{PA}} \) is the pebble accretion efficiency, and \(k_{\text{PA}} = 0.24 \) is the numerical prefactor in shear-dominated regime.

Based on Eqs. (15) and (16) we can obtain the differential equation for the growth track \(M_p(r) \) as (Lambrechts & Johansen 2014; Johansen et al. 2019)

\[
\frac{dM_p}{dr} = \frac{8 \pi \alpha_g h_\text{g}^2 \xi}{(2 - s - q) r_\text{g}^2 / \eta} \left(\frac{k_{\text{mig}}}{k_{\text{PA}}} \right) \left(\frac{M_p}{M_*} \right)^{-1/3} \left(\frac{M_*}{r} \right), \tag{17}
\]

where \(s \) and \(q \) are power-law indexes of disk surface density and aspect ratio. The solution of the above equation is expressed as

\[
M_p^{4/3} - M_{p0}^{4/3} = -K (r_q - r_0^q), \tag{18}
\]

where \(K = 8 \pi \alpha_g h_\text{g}^2 M_*^{2/3} r_\text{g}^{-1/3} k_{\text{mig}} / k_{\text{PA}} \), the subscript 0 means the initial value, and \(h_\text{g} \) refers to the disk aspect ratio at 1 AU.
A larger K indicates the growth is more pronounced than the migration, and the growth track starts to turn over at a higher planet mass (Fig. 6). Within the limit of $M_p \gg M_0$ and $r = 0$, $M_\ast = (K \tau_0)^{3/4}$. We can see that the final mass of the planet depends on both K (correlated with the disk metallicity ξ, the stellar mass M_\ast, and the particles’ Stokes number τ_0) and the initial position r_0.

Figure 6a shows the growth track for the protoplanets at different disk locations around a 0.01 M_\odot brown dwarf (thin line) and a 0.1 M_\odot star (thick line). We adopt the masses of protoplanets from Eq. (14) for the self-gravitating disk ($\gamma = 1$), and assume that in all cases the protoplanets form at $t = 0$ yr. Based on Eqs. (1) and (A.4), water-ice lines initially reside inside the viscously heated regions, that is, $r_{\text{ice}} = 0.12$ AU and 0.55 AU for disks around the corresponding brown dwarf and low-mass star, respectively. We find in Fig. 6a that the turn-over mass when the migration overwhelms the growth is higher for planets around more massive stars. For the case of $r_0 = r_{\text{ice}}$ (orange), the protoplanet around the brown dwarf undergoes substantial migration when $M_p \geq 0.1 M_\oplus$, whereas it starts to migrate at 0.5 M_\oplus around the 0.1 M_\odot star. The planet also reaches a higher mass when it orbits around the low-mass star than when it orbits the brown dwarf. As mentioned, both the maximum mass and turn-over point in the growth track are set by K (Eq. (18)), which increases with stellar mass. A similar stellar mass dependence can also be found in Fig. 6a for the cases of $r_0 < r_{\text{ice}}$ (red) and $r_0 > r_{\text{ice}}$ (blue).

Noticeably, the final planet mass strongly depends on its birth location. For systems around 0.1 M_\odot stars, the protoplanets can grow up to 2 M_\oplus and 0.5 M_\oplus when their birth locations are 1 AU and 0.06 AU. For systems around brown dwarfs, we can see that the growth is insignificant when the protoplanets form at 1 AU. This is because the disks around brown dwarfs deplete rapidly, and therefore the Stokes number of the mm-sized particles becomes very high, resulting in inefficient pebble accretion. Hence, for systems around brown dwarfs, larger planets can only form when their birth locations are close to water-ice lines ($r_0 \sim r_{\text{ice}}$).

Figure 6b shows the evolution of the ice line (black) and planet (orange) in the disks around a low-mass star and a brown dwarf, respectively. We find that the ice line moves inward much quicker around brown dwarfs because of a faster depletion of disk gas. On the other hand, the protoplanets formed at the ice line grow less around brown dwarfs, and therefore their migration is slower. We can clearly see this from an illustrated case in Fig. 6b. As a result, more protoplanets in brown dwarf disks are likely to stay outside of the ice line and contain higher water fractions compared to those around low-mass stars. This trend is also observed in planet population synthesis simulations (Fig. 7a), which are further discussed in Sect. 4.

4. Population synthesis study

In this section we perform Monte Carlo simulations to study the growth and migration of a large sample of protoplanets. The initial conditions for simulated protoplanets are described in Sect. 4.1, where the distributions of model parameters are given in Table 2. We show the properties (masses, semimajor axes and water fractions) of the forming planets in the Monte Carlo sampling plots in Sect. 4.2.

Our adopted disk accretion rate follows a lognormal distribution, with the mean value given by Eq. (1) and a standard deviation σ of 0.3. The dispersion among the measured disk

Table 2. Adopted parameter distributions for the population synthesis study in Sect. 4.

Parameter	Description	Value
M_{disk} [M_\odot yr$^{-1}$]	10$^{N(\mu,\sigma)}$, μ is from Eq. (1) and $\sigma = 0.3$	
M_{in} [M_\oplus]	Eq. (14), self-gravitating disk ($\gamma = 1$)	
r_0 [AU]	Scenarios: A: the ice line	
t_0 [Myr]	Scenarios: B: log U(0.01, 10)	
M_\ast [M_\odot]	log U(0.01, 1.0)	
Z_\ast	U(0, 1)	
ξ	0.5	
σ	0.5	

Fig. 6. (a) Growth tracks of protoplanets around a 0.01 M_\odot brown dwarf (thin) and a 0.1 M_\odot star (thick). The birth locations of protoplanets are at $r = 0.06$ AU (red), the water-ice line (orange), and $r = 1$ AU (blue). The protoplanets are all assumed to form at $t = 0$ Myr and their masses are adopted from Eq. (14) with $\gamma = 1$. In the beginning, disks are dominated by viscous heating, and $r_{\text{ice}} = 0.12$ AU and 0.55 AU for systems around the 0.01 M_\odot brown dwarf and 0.1 M_\odot star, respectively. (b) Time evolution of the water-ice line locations (black) and the semimajor axis of the planet (orange) for systems around stars of different masses. In these two panels the pebble-to-gas mass flux ratio is adopted to be correlated with the disk metallicity ξ, the stellar mass M_\ast, and the particles’ Stokes number τ_0. We adopt the masses of protoplanets from Eq. (14) for the self-gravitating disk ($\gamma = 1$), and assume that in all cases the protoplanets form at $t = 0$ yr. Based on Eqs. (1) and (A.4), water-ice lines initially reside inside the viscously heated regions, that is, $r_{\text{ice}} = 0.12$ AU and 0.55 AU for disks around the corresponding brown dwarf and low-mass star.
accretion rates onto stars of certain spectral types can be very large, ranging from 0.4 dex in Lupus (Alcalá et al. 2014) to 1 dex in Chamaeleon I star forming regions (Manara et al. 2016; Mulders et al. 2017). We note that for individual stars, the disk accretion rates also vary with time; they are high and low in early and late phases, respectively (Fig. 12 in Manara et al. 2012). The age difference among individual objects can be a few Myr even in the same star forming cluster. Therefore, the large dispersion in the accretion rate could be partially caused by this age difference. Since we already account for the time evolution of M_g, the standard deviation considered here should be smaller than the observed values. As in Liu et al. (2019a), we choose a standard deviation of 0.3 dex.

4.1. Initial condition setup

Based on the scaling analysis from the streaming instability simulations, the masses of the protoplanets are adopted from Eq. (14). The disks are assumed to be either self-gravitating ($\gamma = 1$) or non-self-gravitating ($\gamma \neq 1$). The starting positions of these bodies are either only at the water-ice lines (Scenario A), or log-uniformly distributed from 0.01 to 10 AU (Scenario B). The formation times of these protoplanets are uniformly distributed from $t = 0.1$ Myr to 0.5 Myr. The masses of the central hosts M_* are log-uniformly adopted from the brown dwarfs of 0.01 M_\odot to the low-mass stars of 0.1 M_\odot. The stellar metallicities Z_\odot, corresponding to the disk pebble-to-gas mass flux ratios, range uniformly from -0.5 to 0.5. As proposed in Sect. 2.1, the pebbles are all assumed to be 1 mm in size. Simulations are terminated at $t = 10$ Myr, which is the typical lifetime of gaseous disks around these ultra-cool dwarfs. We also perform simulations with $t = 20$ Myr and find that the final planet mass difference between two cases is less than a few percent.

4.2. Monto Carlo simulations

The resulting planet distribution obtained from our Monto Carlo simulation is illustrated in Fig. 7, which shows planet mass versus stellar mass. The masses of initial protoplanets are either obtained from the assumed self-gravitating disks ($\gamma = 1$, top),
or from the non-self-gravitating, nominal two-component disks ($\gamma \neq 1$, bottom), and their birth locations are either at the water-ice lines (left) or log-uniformly distributed over the entire disk regions (right). The black line refers to a constant planet-to-star mass ratio (M_p/M_\star) of 3×10^{-3}. Based on the Kepler data, Pascucci et al. (2018) find that the most dominated planet population around GK and early M stars has such a universal planet-to-star mass ratio. Extrapolating this characteristic planet mass to the stellar mass regime considered in this work, we obtain a Mars-mass planet around a $10 M_{\text{Jup}}$ brown dwarf and an Earth-mass planet around a $0.1 M_\odot$ star.

We note that the planet mass growth is limited by the black line shown in Fig. 7. Such a characteristic planet mass derived from Pascucci et al. (2018), approximately matches the pebble isolation mass, where the planet at this mass stops the inward drifting pebbles and quenches the core mass growth by pebble accretion (Lambrechts & Podolak 2014; Liu et al. 2019a). Therefore, irrespectively of the initial masses of the protoplanets, their final masses cannot grow beyond the pebble isolation mass. A similar conclusion has already been made in Liu et al. (2019a) where they focus on the planet formation around stars of a higher stellar mass range, from $0.1 M_\odot$ to $1 M_\odot$.

Figure 7 clearly shows that the masses of planets correlate with the masses of their (sub)stellar hosts. All planets forming around these UCDS are core-dominated with $M_p \lesssim 2 M_\oplus$. This is consistent with the finding of Liu et al. (2019a) and Morales et al. (2019), where gas-dominated planets can only form in systems around stars of $\gtrsim 0.2-0.3 M_\odot$. In the case of $\gamma = 1$ where protoplanets are born in self-gravitating disks, the planets around $10 M_{\text{Jup}}$ brown dwarfs can finally grow up to $0.1-0.2 M_\oplus$. Assuming that the disk mass is 10% of the central host, such a planet mass is equivalent to $\sim 10\%$ of total solids in disks around these brown objects. The protoplanets around $0.1 M_\odot$ stars reach a maximum of $\approx 2-3 M_\oplus$ (Figs. 7a and c).

In the case of $\gamma \neq 1$ where protoplanets are born in non-self-gravitating disks, we find in Figs. 7b and d that planets can ultimately reach $1 M_\oplus$ around $0.1 M_\odot$ stars. However, the protoplanets around $10 M_{\text{Jup}}$ brown dwarfs fail to grow to Mars-mass; they only turn into planets of $\sim 10^{-3} - 10^{-2} M_\oplus$. There are two reasons for forming such low-mass planets around brown dwarf disks. First, the initial protoplanet-to-host mass ratio ($q_0 = M_p/M_\star$) is lower in brown dwarf disks than in M dwarf disks; for example, in the ice-line scenario $M_\oplus \sim 5 \times 10^{-7} M_\oplus$ around $10 M_{\text{Jup}}$ brown dwarfs and $M_\oplus \approx 10^{-3} M_\oplus$ around $0.1 M_\odot$ stars (magenta solid line in Fig. 5b). Protoplanets accrete pebbles more slowly when q_0 is lower (Visser & Ormel 2016). Second, disks around less massive hosts also evolve faster (M_g drops more rapidly, Fig. 1). Thus, the solids available for pebble accretion around brown dwarfs also drain out more quickly than around M dwarfs. Altogether, these factors limit the growth of planets above $10^{-2} M_\oplus$ around $10 M_{\text{Jup}}$ brown dwarfs in non-self-gravitating disks.

It is worth noting that recently Miguel et al. (2020) considered planetesimal-driven planet formation model around slightly massive stars in the range of $0.05 M_\odot$ and $0.25 M_\odot$. They found that Mars-mass planets cannot form around stars of $M_\star \leq 0.07 M_\odot$. For a comparison, in our model Mars-mass planets can still form in early self-gravitating disks around such low-mass brown dwarfs.

For the water-ice line scenario of $r_0 = r_{\text{ic}}$, planets generally contain $\gtrsim 15\%$ water. We also find in Fig. 7a that planets around low-mass M dwarfs contain less water than those around brown dwarfs. This is because protoplanets around M dwarfs grow faster and are able to migrate inside of the ice line to accrete dry pebbles (Fig. 6b). Therefore, their final water contents become lower around such stars. As can be seen in Fig. 7b of Liu et al. (2019a), this trend also extends to the systems around solar-mass stars. However, in non-self-gravitating disks ($\gamma \neq 1$), the initial masses of protoplanets are at least two orders of magnitude lower than those in self-gravitating disks (Fig. 5b). In this situation protoplanets grow slowly, and the inward movement of the ice line is faster than their migration, both for systems around M-dwarfs and brown dwarfs. Eventually all these planets are substantially water-rich (Fig. 7b). For the log-uniformly distributed scenario, since the ice lines are further out around more massive M-dwarfs, a higher fraction of protoplanets around such stars are born inside of the water-ice lines and finally grow into water-deficient planets. This can also be seen in Figs. 7c and d.

Figure 8 illustrates the Monte Carlo plot of the planet mass and semi-major axis. The color represents the mass of the ultra-cool dwarf. We can see that short-period planets form in the ice-line scenario, whereas planets end up with a wide range of orbital distances in the log-uniformly distributed scenario. On the other hand, we find that protoplanets around brown dwarfs are likely to grow almost in-situ, whereas a higher fraction of protoplanets around low-mass M-dwarfs grow substantially and migrate to the inner disk regions. As mentioned above, this is because the disk mass drops rapidly around brown dwarfs, and therefore the growth is marginally limited in this circumstance.

5. Conclusion

Here we present a pebble-driven population synthesis model to study how planets form around very low-mass stars and brown dwarfs in the (sub)stellar mass range of $0.01 M_\odot$ and $0.1 M_\odot$. Here we improve our model with respect to that present in Liu et al. (2019a) by (1) adopting an observed fitting formula of $M_g(M_\star, t)$ from Manara et al. (2012); (2) using the stellar luminosity $L_*(M_\star, t)$ calculated from the advanced stellar evolution model of Baraffe et al. (2003, 2015); (3) and choosing realistic initial masses for the protoplanets based on the extrapolation of streaming instability simulations. The planet formation processes we incorporate are pebble accretion onto planetary cores, gas accretion onto their envelopes, and type I and type II planet migration (Sect. 2).

Two hypotheses on the disk conditions during planetesimal formation are explored, assuming that the disk is either self-gravitating ($\gamma = 1$) or non-self-gravitating ($\gamma \neq 1$). Also, two scenarios for the birth locations of the protoplanets are investigated: either protoplanets form only at the water-ice line or they are log-uniformly distributed over the entire disk. We performed Monte Carlo simulations and the resulting planet population with their final planet masses, water fractions, and semi-major axes are presented in Sect. 4.

The key conclusions of this paper are listed as follows:

1. Disks around low-mass stars and brown dwarfs evolve more rapidly than disks around high mass stars, as inferred from measured disk accretion rates of Manara et al. (2012). When disks are younger than 1 Myr, the disk accretion rate linearly scales with the mass of the host. However, as disks evolve over 1 Myr, M_g becomes gradually proportional to M_\star^2 (Fig. 1).

2. We derive the characteristic mass of the planetesimals in Eq. (13) based on the extrapolation of the literature streaming instability simulations. Assuming that the protoplanets form from the planetesimal populations by streaming
Fig. 8. Monte Carlo sampling plot of the final planet mass vs. the semi-major axis, with the ice line planet formation model (Scenario A) on the left, the log-uniform distributed planet formation model (Scenario B) on the right, the self-gravitating disks ($\gamma = 1$) at the top and the non-self-gravitating disks ($\gamma \neq 1$) at the bottom. The color corresponds to the (sub)stellar mass. Scenario A only produces close-in planets, while planets formed in Scenario B have a wide range of orbital distances. Growth and migration are more significant for the protoplanets around low-mass M-dwarfs than for those around brown dwarfs.

3. Planets formed at short orbital distances ($r \lesssim r_{\text{ice}}$) can grow their mass substantially. However, the growth of protoplanets is very limited when they form further out and/or around higher mass hosts (Fig. 5).

4. A linear mass correlation between planets and hosts holds when protoplanets form with relative high masses in self-gravitating disks. However, this correlation breaks down when protoplanets grow in initially non-self-gravitating disks. In the latter case these protoplanets cannot reach the pebble isolation mass. Mars-mass planets can form around 0.01 M_\odot ($\sim 10 M_{\text{Jup}}$) brown dwarfs when massive protoplanets form at the early self-gravitating phase, while protoplanets only grow up to $10^{-3} - 10^{-2} M_\oplus$ when they form later in the non-self-gravitating phase. For systems around late M-dwarfs of 0.1 M_\odot, the protoplanets can grow up to 2–3 M_\oplus. All forming planets around these ultra-cool stars are core-dominated with negligible hydrogen and helium gaseous envelopes (Fig. 7).

5. Protoplanets originating at the water-ice line finally grow into water-rich planets, with $\geq 15\%$ mass in water. Planets formed around higher-mass stars generally end up with lower water fractions. Water-deficient planets ($f_{H_2O} < 1\%$) can only form when protoplanets are born interior to r_{ice} (Fig. 7).

Thanks to the capabilities of current and near-future ground/space-based planet searching programs, we are also approaching the era of discovering exoplanets around brown dwarfs. As an increasing number of planets will be detected around these tiny central objects in the coming decade, we can have fruitful data that help us better test and distinguish different planet formation theories.

Acknowledgements. We thank Adam Burgasser, Thomas Ronnet, Urs Schäfer, Rixin Li and Jake Simon for useful discussions. We thank the anonymous referee for their insightful suggestions and comments. B.L. also thank TRAPPIST-1 conference held in Liège in 2019, when many ideas of this paper are originated. B.L. is supported by the European Research Council (ERC Consolidator Grant 724687-PLANETESYS) and the Swedish Walter Gyllenberg Foundation. M.L. is funded by the Knut and Alice Wallenberg Foundation (Wallenberg Academy Fellow Grant 2017.0287). A.J. thanks the European Research Council (ERC Consolidator Grant 724687-PLANETESYS), the Knut and Alice Wallenberg Foundation (Wallenberg Academy Fellow Grant 2012.0150) and the Swedish Research Council (Project Grant 2018-04867) for research support. I.P. acknowledges support from an NSF Astronomy & Astrophysics Research Grant...
Appendix A: Disk model equations

Here we provide the key equations for our adopted disk model, which includes an inner viscously heated region and an outer stellar irradiation region. The detailed descriptions and derivations are referred to as Liu et al. (2019a). The gas surface density and disk aspect ratio are given by

\[\frac{\Sigma_g}{\text{g cm}^{-2}} = \begin{cases} 75 \left(\frac{M_g}{10^{-9} M_\odot \text{yr}^{-1}} \right)^{1/2} \left(\frac{M_\star}{0.1 M_\odot} \right)^{1/8} & \text{[vis]}, \\ 250 \left(\frac{M_g}{10^{-9} M_\odot \text{yr}^{-1}} \right)^{9/14} \left(\frac{M_\star}{0.1 M_\odot} \right)^{-15/14} \left(\frac{L_\star}{0.01 L_\odot} \right)^{-2/7} \left(\frac{r}{0.1 \text{ AU}} \right)^{15/14} & \text{[irr]}, \end{cases} \]

(A.1)

where the top and bottom rows represent the quantities in the inner viscously heated region and outer stellar irradiation region, respectively, \(M_g \) is the disk accretion rate, \(M_\star \), \(L_\star \) are (sub)stellar mass and luminosity, and \(r \) is the radial distance to the central star.

The disk transition radius between these two regions is given by

\[r_{\text{tran}} = 0.56 \left(\frac{M_g}{10^{-9} M_\odot \text{yr}^{-1}} \right)^{28/39} \left(\frac{M_\star}{0.1 M_\odot} \right)^{29/39} \left(\frac{L_\star}{0.01 L_\odot} \right)^{-16/39} \text{ AU}. \]

(A.3)

The location of the water-ice line is calculated by equating the saturated pressure and H2O vapor pressure (Eq. (35) of Liu et al. 2019a). The water-ice line in different disk regions can be approximated given by

\[\frac{r_{\text{ice}}}{\text{AU}} = \begin{cases} 0.26 \left(\frac{M_g}{10^{-9} M_\odot \text{yr}^{-1}} \right)^{4/9} \left(\frac{M_\star}{0.1 M_\odot} \right)^{1/3} & \text{[vis]}, \\ 0.075 \left(\frac{M_\star}{0.1 M_\odot} \right)^{-1/3} \left(\frac{L_\star}{0.01 L_\odot} \right)^{1/3} & \text{[irr]}, \end{cases} \]

(A.4)

The gas surface density at the ice line and 10 AU are also derived,

\[\frac{\Sigma_g}{\text{g cm}^{-2}} = \begin{cases} 52 \left(\frac{M_g}{10^{-9} M_\odot \text{yr}^{-1}} \right)^{1/3} \left(\frac{r}{r_{\text{ice}}} \right) & \text{[vis]}, \\ 1.8 \left(\frac{M_g}{10^{-9} M_\odot \text{yr}^{-1}} \right)^{9/14} \left(\frac{M_\star}{0.1 M_\odot} \right)^{3/7} \left(\frac{L_\star}{0.01 L_\odot} \right)^{-2/7} \left(\frac{r}{10 \text{ AU}} \right)^{15/14} & \text{[irr]}, \end{cases} \]

(A.6)

Appendix B: Evolution of stellar luminosity

Stars/brown dwarfs of various masses evolve differently, and their luminosities vary with the stellar type and evolutionary stage. We present an interpolation calculation of \(L_\star (M_\star, r) \) based on the stellar evolutionary model of Baraffe et al. (2003, 2015). The dots are data from the stellar evolution model, and the dashed line corresponds to the same luminosity. The black and red represent the stars above or below the hydrogen-burning limit. When the star is younger than \(\sim 10 \text{ Myr} \), \(L_\star \propto M_\star^{-2} \), while \(L_\star \propto M_\star^{-4} \) when stars are older.

We compare the overlapping parameter space and find that the evolution models, where the black and red correspond to stars in the mass range above or below the hydrogen-burning limit. It is worth noting that Baraffe et al. (2015) also contains the evolutionary tracks of stars and brown dwarfs with the mass range of 0.01 \(M_\odot \) and 0.1 \(M_\odot \). However, in the table provided by these latter authors, the evolution of low-mass brown dwarfs stops early, for example giving rise to 0.01 \(M_\odot \) brown dwarfs at 10 Myr. Baraffe et al. (2003) contains a longer timescale evolution for such low-mass objects. We compare the overlapping parameter space and find that the deviation of \(L_\star \) at certain \(M_\star \) and \(t \) from the above two studies is within 35%, which is relatively small compared to the few orders of magnitude decrease of \(L_\star \) over time. In a future follow-up study, we plan to investigate the long-term evolution and atmosphere water-loss of these terrestrial planets. We therefore combine these two datasets together.

Figure B.1 shows a full map of stellar luminosity as a function of time and stellar mass based on the stellar evolutionary model of Baraffe et al. (2003, 2015). The dots are data from the stellar evolution model, and the dashed line corresponds to the same luminosity. The black and red represent the stars above or below the hydrogen-burning limit. When the star is younger than \(\sim 10 \text{ Myr} \), \(L_\star \propto M_\star^{-2} \), while \(L_\star \propto M_\star^{-4} \) when stars are older.

![Fig. B.1: Stellar luminosity as function of time and stellar mass based on the stellar evolutionary model of Baraffe et al. (2003, 2015). The dots are data from the stellar evolution model, and the dashed line corresponds to the same luminosity. The black and red represent the stars above or below the hydrogen-burning limit. When the star is younger than \(\sim 10 \text{ Myr} \), \(L_\star \propto M_\star^{-2} \), while \(L_\star \propto M_\star^{-4} \) when stars are older.](image-url)
Appendix C: Model assumption exploration

In order to test how the results in Sect. 4 vary with different model assumptions, we conduct two additional sets of simulations. Different treatments of the M_g-M_\star relation and the particle size are explored in Appendices C.1 and C.2, respectively.

C.1. Different disk accretion rate-host mass correlation

In the main paper we adopt $M_g(M_\star,t)$ from Manara et al. (2012). Here we choose a different M_g prescription from the literature. For instance, Manara et al. (2017) obtained a correlation of $M_g-M_\star^{2.3}$ (their Eq. (5)) for stars around Chamaeleon I star formation region. However, in their work there are no inferred ages of young (sub)stellar objects. Although the mean age of Chamaeleon I cluster is ~2 Myr, the age spreading can be as large as 2 Myr among individual objects. With no better information, we assume $M_g \propto \tau^{-3/2}$ from the self-similar solution of the viscous accretion disk. But again, according to this setup the evolution of disks around stars/brown dwarfs of various masses is the same, which is the key difference from Manara et al. (2012). Nevertheless, from this exploration, we can learn the impact of different disk accretion and evolution conditions on planet formation. We also assume a constant M_g in the early embedded phase of $t \lesssim 0.3$ Myr in order to avoid an unrealistically high accretion when t approaches 0 yr.

Compared to Fig. 1, time and host-mass dependencies on M_g and M_\star are exhibited in Fig. C.1 based on Eq. (5) of Manara et al. (2017). We find that in this case disk masses around low-mass stars and brown dwarfs are much lower than those in Fig. 1. In particular, disks around 0.01 M_\odot brown dwarfs are less than 0.1% of the masses of their central hosts.

Figure C.2 shows the resulting planets from such disk conditions. Comparing Figs. C.2 and 7, we find that the final planet populations differ significantly when the disk conditions vary. Only the protoplanets close to the ice line locations in disks around hosts of $\gtrsim 0.05$ M_\odot can grow in mass and migrate to the inner disk regions. However, protoplanets seldom grow in disks around hosts of $\lesssim 0.05$ M_\odot due to their low disk accretion rates. As expected, the building block materials provided for planet formation are much less abundant in such disks. The final planet masses and semi-major axes remain quite close to their initial values. For systems around 0.01 M_\odot, brown dwarfs, planets of Mars-mass can form only at disk locations further out in self-gravitating disks. In contrast to what is shown in Fig. 7, there is no clear linear correlation between M_g and M_\star in Fig. C.2.

Manara et al. (2017) also provided two different power-law fitting formulas for the disk accretion rate (their Eq. (4)). If this can indeed be extended to the brown dwarf mass regime, surprisingly, it indicates that very-low-mass brown dwarfs have no accretion disks (extremely low M_g). After forming protoplanets by streaming instability, the subsequent planet growth cannot proceed in those circumstances.

To summarize, the mechanisms by which protoplanetary disks accrete and evolve with time is a crucial condition to planet formation. Planet growth is inhibited in brown dwarf disks when accretion rates are lower than $<10^{-13} M_\odot$ yr$^{-1}$.

C.2. Particles limited by fragmentation, bouncing and radial drift

In the main paper, we set the particles to all be 1 mm in size, which is mainly motivated by disk observations. In this section, we consider the sizes of particles from a theoretical point of view. Apart from the aforementioned bouncing barrier, dust growth also faces the radial drift and fragmentation barriers. In the dust coagulation model of Birnstiel et al. (2012), grain growth is limited by radial drift in the outer disk regions, whereas in inner disk regions fragmentation dominates. These latter authors also analytically derived the maximum Stokes numbers in these two regimes.

The Stokes number of particles in the fragmentation limit is $\tau_{s,F} = v_g \tau_{frag}/\alpha_s c_s^2$, where τ_{frag} is the fragmentation threshold velocity, approximately 3 m/s for silicate aggregates (Blum & Münch 1993; Blum & Wurm 2008) and 10 m/s for ice aggregate (Gundlach & Blum 2015). The above equation assumes that the relative velocities of particles are lead by disk turbulence. The Stokes number in the drift regime is $\tau_{s,D} = \xi \Sigma_{peb}/\Sigma_g$, where ξ represents the order of unity coagulation coefficient. The surface density ratio between pebbles and gas can be calculated based on the constant flux ratio ξ assumption, which is given by

$$\frac{\Sigma_{peb}}{\Sigma_g} = \frac{M_{peb}}{M_g} \frac{u_g}{u_d} = \xi \left[1 + \frac{2\tau_{s,D} \eta}{3\alpha_s \left(1 + \frac{2\tau_{s,D} \eta}{3\alpha_s} \right) b_d^2} \right],$$

where u_g and v_d are the radial drift velocities for gas and dust, respectively. We assume in the bouncing limit that the particles’ size is 1 mm.
Fig. C.2. Monte Carlo sampling plot of the planet mass vs the stellar mass, with the ice line planet formation model (Scenario A) on the left, the log-uniform distributed planet formation model (Scenario B) on the right, the self-gravitating disks (γ = 1) at the top and the non-self-gravitating disks (γ ≠ 1) at the bottom. The initial disk conditions are followed by Eq. (5) of Manara et al. (2017). The color corresponds to the water mass fraction in the planetary core. The black line represents a constant planet-to-star mass ratio of 3 × 10⁻⁵ motivated by Pascucci et al. (2018). The planet growth is significantly suppressed compared to that shown in Fig. 7. Protoplanets cannot grow their masses in disks around brown dwarf disks of < 0.05 M⊙ due to very low disk masses.

Figure C.3 shows the stokes numbers of particles in the radial drift (red), bouncing (black) and fragmentation (blue) limits in disks around solar-mass stars (upper), 0.1 M⊙ stars (middle) and 0.01 M⊙ brown dwarfs (lower) at t = 1 Myr, respectively. We find that the Stokes number in the bouncing limit is always lower than that in the fragmentation limit in disks around the explored central hosts. For disks around solar-mass stars, τ_s,B is always lower than τ_s,D. However, τ_s,B > τ_s,D in UCD disks when the particles are beyond a few AU. This means that millimeter-sized particles drift too quickly in these disks. As pointed out by Pinilla et al. (2013), the retention of millimeter-sized particles at a few tens of AU in brown dwarf disks is problematic.

We calculate the Stokes number to be the minimum value of the above three limits. Figure C.4 exhibits the population synthesis simulations with the updated particle sizes. When comparing Fig. C.4 and Fig. 7, we find that the planet population resulting from this model (varied particle sizes) is very similar to the model (fixed particle sizes) presented in Sect. 4. This is because, firstly, in the inner disk region of r ≤ r_{ice}, the size of pebbles is set by the bouncing barrier, meaning that there is no difference between these two models. Secondly, in the outer disk region, pebbles are in the radial drift regime with a very low Stokes number. In this case, the pebble accretion is in the inefficient 3D regime, and therefore the protoplanets struggle to grow their masses above 10⁻² M⊕ (panel d in Fig. C.4). However, for the 1 mm-sized particle model, their Stokes number soon becomes much larger than unity (Fig. 2) and pebble accretion is quickly quenched. Therefore, in that case, protoplanets are also struggle to grow large.
Fig. C.3. Stokes number of particles in the fragmentation (blue), bouncing (black) and radial drift (red) limit in 1 Myr old disks around hosts of solar-mass (upper), 0.1 M_\odot (middle) and 0.01 M_\odot (lower). The size of the particles is limited by bouncing in disks around solar-mass stars. As masses of central hosts decrease, the radial drift becomes more significant in the outer disk regions.
Fig. C.4. Monte Carlo sampling plot of planet mass vs. stellar mass, with the ice line planet formation model (Scenario A) on the left, the log-uniform distributed planet formation model (Scenario B) on the right, the self-gravitating disks ($\gamma = 1$) at the top and the non-self-gravitating disks ($\gamma \neq 1$) at the bottom. The color corresponds to the water mass fraction in the planetary core. The black line represents a constant planet-to-star mass ratio of 3×10^{-5} motivated by Pascucci et al. (2018). Here we set the particle sizes by combined effects of radial drift, bouncing, and fragmentation. The resulting planet population is very similar to that of the fixed-sized particles model in Fig. 7.