Simultaneous Determination of 78 Compounds of *Rhodiola rosea* Extract by Supercritical CO\(_2\)-Extraction and HPLC-ESI-MS/MS Spectrometry

Alexander M. Zakharenko, Mayya P. Razgonova, Konstantin S. Pikula, and Kirill S. Golokhvast

1 N. I. Vavilov All-Russian Institute of Plant Genetic Resources, B. Morskaya 42-44, Saint-Petersburg 190000, Russia
2 Far Eastern Federal University, Sukhanova 8, Vladivostok 690950, Russia
3 Pacific Geographical Institute, Far Eastern Branch of the Russian Academy of Sciences, Radio 7, Vladivostok 690041, Russia
4 Siberian Federal Scientific Centre of Agrobiotechnology, Centralnaya, Presidium, Krasnoyarsk 663501, Russia

Correspondence should be addressed to Mayya P. Razgonova; m.razgonova@vir.nw.ru and Kirill S. Golokhvast; droopy@mail.ru

Received 31 March 2021; Revised 11 June 2021; Accepted 23 June 2021; Published 7 July 2021

The plant *Rhodiola rosea* L. of family Crassulaceae was extracted using the supercritical CO\(_2\)-extraction method. Several experimental conditions were investigated in the pressure range of 200–500 bar, with the used volume of cosolvent ethanol in the amount of 1% in the liquid phase at a temperature in the range of 31–70°C. The most effective extraction conditions are pressure 350 bar and temperature 60°C. The extracts were analyzed by HPLC with MS/MS identification. 78 target analytes were isolated from *Rh. rosea* (Russia) using a series of column chromatography and mass spectrometry experiments. The results of the analysis showed a spectrum of the main active ingredients: salidroside, rhodiolosides (B and C), rhodiosin, luteolin, catechin, quercetin, quercitrin, herbacetin, sacranoside A, vimalin, and others. In addition to the reported metabolites, 29 metabolites were newly annotated in *Rh. rosea*. There were flavonols: dihydromoracin, acacetin, mearnsetin, and taxifolin-O-pentoside; flavones: apigenin-O-hexoside derivative, tricetin trimethyl ether 7-O-hexosyl-hexoside, tricin 7-O-glucoronyl-O-hexoside, tricin O-pentoside, and tricin-O-dihexoside; flavanones: eriodictyol-7-O-glucoside; flavan-3-ols: gallicatechin, hydroxycinnamic acid caffeoylmalic acid, and di-O-caffeoylquinic acid; coumarins: esculetin; esculin; fraxin; and lignans: hinokinin, pinorein, L-ascorbic acid, glucaric acid, palmitic acid, and linolenic acid. The results of supercritical CO\(_2\)-extraction from roots and rhizomes of *Rh. rosea*, in particular, indicate that the extract contained all biologically active components of the plant, as well as inert mixtures of extracted compositions.

1. Introduction

The plant *Rhodiola rosea* L. of family Crassulaceae is widely used in traditional medicine and traditional medical systems (Tibetan, Chinese, and Korean). Rhizomes and plant roots are mainly used for the preparation of medicinal products [1, 2].

The plant has an established popular name “golden root.” The name is determined not only by the color of the rhizome but also by its high price. The main medicinal raw material of *Rh. rosea* is rhizomes with roots, which are harvested from the end of flowering until the completion of the plant’s vegetation. *Rh. rosea* grows in the mountains in the north of the European part of Russia, Siberia, the Urals, the mountains of Altai, the Tien Shan and the Far East, the mountains of Western Europe, Scandinavia, Mongolia, and on the spurs of the Himalayas. Brush wood of *Rh. rosea* is located at an altitude of 1700–2200 m above sea level. Since about the 80s, *Rh. rosea* has been one of the main adaptogenic plants and competes with such well-known...
adaptogens such as Panax ginseng and Eleutherococcus. Adaptogens are a pharmacological group of drugs of natural or synthetic origin, which can increase the body’s resistance to various adverse environmental conditions [3–5].

Rh. rosea roots and rhizomes contain organic acids (citric, malic, oxalic, and succinic acid) and sugars (fructose, sucrose, glucose, sedoheptulose, essential oil, phenolic compounds, monoterpenes, sterols, cinnamon alcohol, and manganese) [6–8].

The active biologically active substances of Rh. rosea are tyrosol, salidroside, caffeic acid, gallic acid, methyl gallate, flavonoids (astragalin, kaempferol, rhodionine, rhodiosin, rhodioloin, and rhodiolgin), and tannins of the pyrogallol group (Table 1). Monoterpenes are represented by rosiridol and its glycoside rosiridin, and sterols are represented by β-sitosterol and daucosterol. Cinnamon glycosides—rosin, rosarin, and rosavin—were isolated from the roots of Rh. rosea [9].

Information on the content of salidroside and rosavin in Rh. rosea is numerous and contradictory [10, 11; Zang et al., 2019]. Researchers still have not come to a consensus on the localization and activity of specialized biosyntheses, the nature of seasonal changes in glycoside content, and the variability in the accumulation of these substances in wild and cultivated plants [12–14].

Detailed comparative studies of the content of salidroside and rosavin in the organs of wild-growing and cultivated plants were carried out. Performed using a unified determination method showed the presence of glycosides only in the roots and caudex. The presence of rosavin and salidroside in the aerial organs (stems, leaves, inflorescences, and seeds) was not detected in any case [15].

Plants from different places of growth differed significantly in the accumulation of individual glycosides. The content of salidroside in the plant caudex varied from 9 to 20 mg/g dry weight. The largest accumulation of this glycoside was characterized by plants growing on rocks on the coast of the Barents Sea (Norway), as well as Ural plants growing on outcrops of bedrock with an insignificant soil layer. The minimum salidroside content was found in Altai plants. The highest content of rosavin (32 mg/g) was found in the caudex of plants of the subalpine ecotype in the Polar Urals, the lowest (10–12 mg/g) being in plants growing on the islands and the coast of the Barents Sea. Cultivated plants were not inferior for accumulation of rosavin to wild plants.

Differences in the accumulation of glycosides by plants of various ecotypes were revealed. So, in the Subpolar Urals, in the caudex of plants growing in faults and on ledges of rocks, more salidroside accumulates, but these plants were characterized by a low content of rosavin, 1.5–2 times less than in plants of the subalpine ecotype [15].

Cinnamic glycosides, and in particular rosavin, are believed to be the hallmark of the chemotaxonomic trait of Rh. rosea [16, 17]. Recently, however, literature has reported that this glycoside is present in other species of the genus Rhodiola L. The results confirmed the presence of rosavin in the caudex of Rh. tremelica Boriss. The concentration of salidroside and rosavin in the plant caudex was 7.1 ± 2.4 and 15.3 ± 2.9 mg/g, respectively. In the underground part of Rh. quadrifida (Pall.) Fisch. et Mey, rosavin was not detected, and the content of salidroside was about 10 mg/g dry weight [15].

In official medical practice, Rh. rosea root extract is intended for oral administration as a tonic and immunomodulating therapeutic agent. In the study of alcoholic extracts of Rh. rosea, their hepatoprotective, nootropic, cardioprotective, and antiarrhythmic properties were clearly demonstrated [18–20].

Cinnamic glycosides, also called cinnamyl glycosides and salidroside, are the main carriers of the biological activity of Rh. rosea, causing a positive pharmacological effect. With the presence of rosavin, rosin, and rosarin, many researchers attribute the increased biological activity of extracts of Rh. rosea, compared with drugs from other species of Rhodiola. Studies have shown the stimulating effect of drugs on the central nervous system. Of great interest is the ability of Rh. rosea to increase the body’s resistance to the effects of various stress factors [21, 22]. Rh. rosea extract has immune stimulating, hepatoprotective, and antimicrobial effects [23, 24]. Studies have also been conducted on the antitumor effect of Rh. rosea extract [25–27].

This study considers the effectiveness of supercritical CO2-extraction of biologically active substances from roots and rhizomes of Rh. rosea. Previously, the authors of this article successfully used supercritical CO2 extraction to obtain biologically active substances from plants of the Far Eastern taiga Panax ginseng, Rhododendron adamsii, Schisandra chinensis, and sea cucumber which are extremely popular in traditional medicine of Southeast Asia [28, 29].

Supercritical fluid extraction (SFE) has been used since 1960s to analyze food and pharmaceutical products, isolate biologically active substances, and determine lipid levels in food and levels of toxic substances. In addition, the products do not have residues of organic solvents, which occur with conventional extraction methods, and solvents can be toxic, for example, in the case of methanol and n-hexane. High selectivity, easy solvent removal from the final product, and the use of moderate temperatures in the extraction process are the main attractive factors of SFE, leading to a significant increase in research for use in the food and pharmaceutical sectors [30, 31].

In Sweden, an article was published in 2009 that examined the extraction of rosavin from the roots and rhizomes of Rh. rosea using supercritical CO2-extraction. In this case, water was selected as a modifier of supercritical extraction, which gave a synergistic effect on the extraction yield of rosavin [32]. In China, researchers used supercritical CO2-extraction with ethanol modifier [33]. The purpose of this study was to extract the maximum amount of salidroside from the roots of Rh. rosea. The extraction conditions were chosen so that the yield of salidroside during supercritical extraction was much higher than the yield of the product when using classical extraction using a Soxhlet apparatus.
The results of SC-CO$_2$-extraction of from roots and rhizomes of *Rh. rosea*, in particular, indicate that when using this technology, the extract contained all biologically active components of the plant, as well as inert mixtures of extracted compositions.

2. Experimental

2.1. Materials. Ground, dried root of *Rh. rosea* was obtained from the area near Lake Baikal, Russia. All samples were morphologically authenticated according to the current standard of Russian Pharmacopeia [34]. The volume weighted mean diameter of the powder was found as 550 μm, as determined by dynamic light scattering (Hydro 2000MU Malvern Instruments Ltd.).

2.2. Chemicals and Reagents. HPLC-grade acetonitrile was purchased from Fisher Scientific (Southborough, UK), and MS-grade formic acid was purchased from Sigma-Aldrich (Steinheim, Germany). Ultrapure water was prepared from Siemens Ultra-Clear water purification system (Siemens Water Technologies, Germany), and all other chemicals were analytical grade.

2.3. Supercritical Fluid Extraction. A supercritical fluid extraction system was Thar SFE-500F-2-FMC50 (Thar Technology Inc., Pittsburgh, PA, USA) which is used in supercritical extraction. CO$_2$ was compressed to the required pressure using a supercritical extraction compressor (Thar SFC, USA). A hot casing string heated the extraction vessel; the temperature was regulated by a thermostat (±1°C). A

Table 1: Some of the main active compounds of *Rh. rosea*.

S. no.	Compounds	Structure
1	Chlorogenic acid: C$_{16}$H$_{18}$O$_9$![Structure of Chlorogenic acid](image1)
2	Rosiridin: C$_{16}$H$_{28}$O$_7$![Structure of Rosiridin](image2)
3	Rosavin: C$_{20}$H$_{30}$O$_7$![Structure of Rosavin](image3)
4	Salidroside: C$_{14}$H$_{20}$O$_7$![Structure of Salidroside](image4)
5	Rhodiolin (rhodiolinin): C$_{23}$H$_{20}$O$_7$![Structure of Rhodiolin](image5)
metering valve controlled the pressure. Shredded *Rhodiola* roots (50 g) were wrapped in a filter paper, charged to a one-liter extractor, and extracted with supercritical CO₂ compressed to a supercritical state at a liquid flow rate of 250 g/min. Seven SFE extracts were obtained under different pressure conditions (100–400 bar) and temperatures (31–70°C). Ethanol served as the cosolvent in all cases. The extracts were collected in a separator. The pressure and temperature of the supercritical CO₂ were optimized experimentally to achieve the maximum yield of the product during extraction.

2.4. Liquid Chromatography. HPLC was performed using Shimadzu LC-20 Prominence HPLC (Shimadzu, Japan), equipped with an UV-sensor and a Shodex ODP-40 4E reverse phase column to perform the separation of multi-component mixtures. The gradient elution program was as follows: 0.01–4 min, 100% A; 4–60 min, 100–25% A; and 60–75 min, 25–0% A; control washing 75–120 min 0% A. The entire HPLC analysis was done with a DAD detector at wavelengths of 230 nm and 330 nm; the temperature corresponded to 17°C. The injection volume was 1 ml.

2.5. Mass Spectrometry. MS analysis was performed on an ion trap amaZon SL (Bruker Daltoniks, Germany) equipped with an ESI source in the negative ion mode. The optimized parameters were obtained as follows: ionization source temperature, 70°C; gas flow, 4 l/min; nebulizer gas (atomizer), 7.3 psi; capillary voltage, 4500 V; end plate bend voltage, 1500 V; fragmentary, 280 V; and collision energy, 60 eV. An ion trap was used in the scan range m/z 100–1700 for MS and MS/MS. The capture rate was one spectrum/s for MS and two spectra/s for MS/MS. Data collection was controlled by Windows software for Bruker Daltoniks. All experiments were repeated three times. A two-stage ion separation mode (MS/MS mode) was implemented.

3. Results and Discussion

Several experimental conditions were investigated in the pressure range 200–500 bar, with the used volume of cosolvent ethanol in the amount of 1% in the liquid phase at a temperature ranging 31–70°C. Ethanol was used as the modifier due to its high solubility in CO₂ and high polarity and ability to disturb solute-plant matrix bonding. As a result of using a wide range of pressures and temperatures empirically, the most efficient extraction conditions were found for extracting target analytes from the *Rh. rosea* roots. The most effective extraction conditions are pressure 350 bar and temperature 60°C (Figure 1).

Obtaining chemical profiles is an extremely important result in the biological analysis system. In this work, we used the HPLC-ESI-MS/MS method with additional ionization and analysis of fragmented ions. High accuracy mass spectrometric data were recorded on an ion trap amaZon SL (Bruker Daltoniks) equipped with an ESI source in the negative ion mode. The two-stage ion separation mode (MS/MS mode) was implemented.

Figure 2 shows the distribution density of the analyzed chemical profiles in the ion chromatogram of the *Rh. rosea* supercritical CO₂-extract, realized by mass spectrometry in the two-stage ion separation mode (MS/MS mode).

Visually, a rather high-density distribution of the target analytes in the analyzed extract was observed. All the chemical profiles of the samples were obtained by the HPLC-ESI-MS/MS method. A total of 300 peaks were detected in the chromatogram. By comparing the m/z values, the RT and the fragmentation patterns with the MS² spectral data taken from the literature [2, 17, 35–50] or to search the data bases (MS²T, MassBank, HMDB). 78 metabolites were putatively identified as phenols, aromatic compounds, phenyl alkanoids, flavonoids, monoterpenoids, acyclic alcohol glycosides, anthocyanins etc. In addition to the reported metabolites, a number of metabolites were newly annotated in *Rh. rosea*.

A unifying system table consists of the molecular masses of the target analytes isolated from the supercritical CO₂-extract of *Rh. rosea* for ease of identification (Table 2).

The CID spectrum (collision induced dissociation spectrum) in negative ion modes of Rhodioloside B from *Rh. rosea* is shown in Figure 3.

The [M–H]⁻ ion produced two fragments with m/z 447.00 and m/z 219.49 (Figure 3). The fragment ion with m/z 447.00 yields a daughter ion at m/z 314.98. The interpretation of the observed MS/MS spectra in comparison with those found in the literature was the main tool for putative identification of polyphenols. It was identified in the bibliography in extracts from *Rh. rosea* [50], from *Rhodiola crenulata* [35].

The CID spectrum in the negative ion mode of luteolin-7-O-α-L-rhamnoside from *Rh. rosea* is shown in Figure 4.

The [M–H]⁻ ion produced fragment with m/z 284.93 (Figure 5). The fragment ion with m/z 284.93 yields a daughter ion at m/z 283.93.

It was identified in the bibliography in extracts from *Rhodiola crenulata* [35]. The CID spectrum in the positive ion mode of catechin from *Rh. rosea* is shown in Figure 5. The [M+H]⁺ ion produced fragments with m/z 273.14 and m/z 217.09 (Figure 5). It was identified in the bibliography in extracts from *Rh. rosea* [50], from strawberry, cherimoya [36], and pear [45].

We isolated 78 target analytes from *Rhodiola rosea* L. (*Crassulaceae*) using a series of column chromatography and mass spectrometry experiments. The structures were elucidated using the data of stepwise fragmentation of ions during MS/MS spectrometry and compared with spectroscopic data in the literature. It is accepted that glycosides of cinnamon alcohol, and in particular Rosavin, are a distinctive chemotaxonomic sign of *Rh. rosea* [17]. However, lately, information has appeared in the literature on the presence of this glycoside in other species of the genus *Rhodiola* L. [15]. Thus, we can summarize the research that the supercritical extraction of the roots of *Rh.
Rosea gives an extract that is extremely effective in terms of the composition of biologically active substances, which should find further application in both pharmacological, medical, and perfumery developments. In this regard, research on the development of a technology for obtaining supercritical drugs from rhizomes and roots of *Rh. rosea*, containing a complex of biologically active substances of this plant, and the development of modern drugs on their basis, presented primarily in the form of solid dosage forms, are relevant.
Table 2: Polyphenols and other substances identified from the SC-CO₂ extracts of *Rh. rosea*.

No.	Compound group	Identification	Formula	Calculated mass	Observed mass	MS/MS stage 1 fragmentation	MS/MS stage 2 fragmentation	References			
					[M-H]⁻			Mentha [51]; Ocimum [41]			
1	Flavonol	Acacetin [linarigenin; buddleoflavonol]	C₁₆H₁₂O₅	284.2635	285			Rhodiola sachalinensis [52, 53]; Rhodiola crenulata [35, 54]; Rhodiola sacra [55]; Impatiens glandulifera Royle [56]			
2	Flavonol	Kaempferol	C₁₅H₁₀O₆	286.2363	287.11	269; 189; 133		Rhodiola rosea [57]; Rhodiola dumulosa [58]; Rhodiola crenulata [35, 59]; Impatiens glandulifera Royle [56]; Eucalyptus [42]; Triticum [43]			
3	Flavonol	Quercetin	C₁₅H₁₀O₇	302.2357	303.09	123; 147; 201; 233; 256	135; 175; 201	Lotus japonicus [65]; Rhodiola rosea [62]; Rhodiola crenulata [35, 59]			
4	Flavonol	Herbacetin (3, 5, 7, 8-tetrahydroxy-2-(4-hydroxyphenyl)-4H-chromen-4-one)	C₁₅H₁₀O₇	302.2357	303.08	285	212; 268	Rhodiola rosea [3, 60–62]; Rhodiola crenulata [35]; Ocimum [41]			
5	Flavonol	Dihydroquercetin (taxifolin; taxifoliol)	C₁₅H₁₀O₇	304.2516	305.1	287; 269; 249; 231; 217; 147	269; 227; 213; 173; 161	Larix dahurica [63]; Eucalyptus [42]; Vitis vinifera [37]			
6	Flavonol	Herbacetin 8-methyl ether	C₁₆H₁₂O₇	316.2623	317.06	298; 183; 112	279; 228; 129	Rhodiola crenulata [35]; Rhodiola dumulosa [64]			
7	Flavonol	Gossypetin (articalutidin; equisporol; 8-methoxyhydroxyquercetin)	C₁₅H₁₀O₈	318.2351	319.03	300.97	228; 166; 110	Rhodiola rosea [3, 62]			
8	Flavonol	Mearnsetin	C₁₆H₁₁O₆	332.2617	333.1	317; 292; 195	221; 183	Eucalyptus [42]			
9	Flavonol	Rhodalin (herbacetin-8-O-beta-D-xylopyranoside)	C₂₀H₁₈O₁₁	434.3503	434.96	389.90; 266.93	308; 345; 267; 167	Rhodiola rosea [17]			
10	Flavonol	Taxifolin-O-pentoside	C₂₀H₂₀O₁₁	436.371	436.99	391; 285; 177	352; 269; 173	Vitis vinifera [37]			
11	Flavonol	Quercitin (quercetin 3-L-rhamnoside; quercetin)	C₂₁H₂₀O₁₁	448.3769	448.90	302.95	169; 303	Lotus japonicus [65]; Rhodiola rosea [62]; Rhodiola crenulata [35, 59]			
No.	Compound group	Identification	Formula	Calculated mass	Observed mass [M-H]	Observed mass [M+H]	Observed mass [M+Na]	MS/MS stage 1 fragmentation	MS/MS stage 2 fragmentation	References	
-----	----------------	----------------	----------	-----------------	---------------------	---------------------	---------------------	-----------------------------	-----------------------------	------------	
12	Flavonol	Rhodiotatunside	C_{21}H_{20}O_{11}	448.3769	—	450.92	—	332.90	200.89; 154.87	Rhodiola sachalinensis [66]; Rhodiola crenulata [67]	
13	Flavonol	Rhodiolin (rhodolin)	C_{25}H_{30}O_{10}	480.4203	—	480.95	—	401; 313; 233; 173	357; 313; 269; 233; 145	Rhodiola rosea [2, 16]; Rhodiola sachalinensis [52, 68]; Rhodiola crenulata [69]	
14	Flavonole glycoside	Kaempferol-3-xilosyl-glycoside	C_{26}H_{28}O_{15}	580.4915	—	581.09	—	331; 509; 469; 375; 243	330.89; 287.99; 141.74	Rhodiola rosea [61]	
15	Flavonole glycoside	Rhodosin	C_{27}H_{30}O_{16}	610.5175	—	610.82	—	303; 449	169	Rhodiola rosea [2, 16, 70, 71]; Rhodiola sachalinensis [52, 68]; Rhodiola crenulata [69]	
16	Flavonole glycoside	Rhodiolgidin	C_{27}H_{30}O_{17}	626.5179	—	627.30	—	344.78	344.7	Rhodiola rosea [3, 17]; Rhodiola crenulata [35]	
17	Flavan-3-ol	Catechin	C_{15}H_{14}O_{6}	290.2681	—	291.97	—	250	227	Rhodiola rosea [50]; Rhodiola crenulata [35]; strawberry, cherimoya [36]; pear [45]	
18	Flavan-3-ol	Epicatechin ((2R,3R)-2-(3,4-dihydroxyphenyl)-3,5,7-chromanetriol)	C_{15}H_{14}O_{6}	290.2681	—	291.1	—	261; 273; 217; 173; 163	243; 191; 173; 143	Rhodiola rosea [50]; Rhodiola crenulata [35]; Rhodiola kirilowii [72]	
19	Flavan-3-ol	Gallicatechin ((+)-gallicatechin)	C_{15}H_{14}O_{7}	306.27	305.06	—	—	179; 168; 261	124	Red wine [73]; Licania ridigina [74]	
20	Flavan-3-ol	(-)-Epicatechin gallate	C_{22}H_{18}O_{10}	442.3723	—	443.01	—	363.12	319.16	Rhodiola rosea [39]; Rhodiola crenulata [35, 75]; Rhodiola kirilowii [50, 76]	
21	Flavanone	Eriodictyol-7-O-glucoside (pyracanthoside; miscanthoside)	C_{21}H_{22}O_{11}	450.3928	—	451.00	—	333; 433; 155	288; 201	Impatiens glandulifera Royle [56]	
22	Flavone	Luteolin	C_{15}H_{16}O_{6}	286.2363	285.02	—	—	241; 168; 124	124.02	Rhodiola crenulata [35, 54]; Rhodiola kirilowii [72]; Rhodiola sachalinensis [53, 77]	
No.	Compound group	Identification	Formula	Calculated mass	Observed mass [M-H]\(^-\)	Observed mass [M+H]\(^+\)	Observed mass [M+Na]\(^+\)	MS/MS stage 1 fragmentation	MS/MS stage 2 fragmentation	References	
-----	----------------	----------------	---------	----------------	----------------	----------------	----------------	----------------	----------------	----------------	
23	Flavone	Tricin	C\(_{17}\)H\(_{14}\)O\(_{7}\)	330.2889	329.18	—	—	299; 311; 229; 171	211.04; 125.14	Triticum aestivum L. [77, 78]; Rhodiola rosea [61, 79]; Rhodiola sacra [55]; Rhodiola sachalinensis [53]; Rhodiola crenulata [59]	
24	Flavone	Luteolin-7-O-\(\alpha\)-L-rhamnoside	C\(_{21}\)H\(_{20}\)O\(_{10}\)	432.3775	430.99	—	—	284.93	283.93	Rhodiola crenulata [35];	
25	Flavone	Tricin 7-O-glucoside	C\(_{23}\)H\(_{34}\)O\(_{12}\)	492.4295	—	493.11	—	401; 292; 201	383; 329; 280; 156	Rhodiola rosea [61, 79]; Rhodiola crenulata [59]	
26	Flavone	Apigenin-O-hexoside derivative	C\(_{26}\)H\(_{32}\)O\(_{12}\)	529.4695	—	531.08	—	433; 485; 243; 177	399; 310	Strawberry [36]	
27	Flavone	Tricetin trimethyl ether, 7-O-hexoside malonylated	C\(_{27}\)H\(_{28}\)O\(_{15}\)	592.5022	591.23	—	—	533; 437; 323	197.01	Triticum aestivum L. [77];	
28	Flavone	Tricin, 7-O-glucoronyl-O-hexoside	C\(_{29}\)H\(_{32}\)O\(_{18}\)	668.5536	—	669.13	—	419; 375; 271	375; 243; 171	Triticum aestivum L. [77];	
29	Flavone	Tricin trimethyl ether, 7-O-hexosyl-hexoside	C\(_{30}\)H\(_{36}\)O\(_{17}\)	668.5966	—	669.01	—	419; 557; 331; 287	375; 331; 215	Triticum aestivum L. [77];	
30	Flavone	Tricin, O-pentoside O-dihexoside	C\(_{35}\)H\(_{44}\)O\(_{21}\)	800.7113	—	801.24	—	409; 655; 509; 252	—	Triticum aestivum L. [77];	
31	Hydroxycinnamic acid	Ferulic acid	C\(_{10}\)H\(_{10}\)O\(_{4}\)	194.184	—	195.07	—	176.8	—	Rhodiola crenulata [35]; Triticum [43];	
32	Hydroxycinnamic acid	Caffeoylmalic acid	C\(_{13}\)H\(_{12}\)O\(_{6}\)	296.2296	—	297.09	—	279; 211; 163	265; 163; 135	Strawberry [36];	
33	Cinnamate ester	4-O-\(p\)-Coumaroylquinic acid	C\(_{16}\)H\(_{14}\)O\(_{6}\)	338.3098	—	338.94	—	189; 151	—	Pear [45];	
34	Cinnamic alcohol glycoside	Rosin (trans-cinnamyl O-beta-D-glycopyranoside)	C\(_{15}\)H\(_{20}\)O\(_{6}\)	296.3157	—	297.06	—	255; 179; 115	215; 110	Rhodiola rosea [16, 49, 80]; Rhodiola crenulata [35]; Rhodiola sachalinensis [53];	
35	Cinnamic alcohol glycoside	Triandrin	C\(_{15}\)H\(_{20}\)O\(_{7}\)	312.3151	—	313.21	—	268.14	240; 211; 193	Rhodiola crenulata [35, 54]; Rhodiola rosea [10, 81];	
36	Cinnamic alcohol glycoside	Sachaliside 1	C\(_{15}\)H\(_{20}\)O\(_{7}\)	312.3151	311.13	—	—	309.08; 182.96	247.08; 119.01	Rhodiola rosea [9];	
37	Cinnamic alcohol glycoside	\(p\)-Hydroxyphenacyl-\(\beta\)-D-glycopyranoside	C\(_{14}\)H\(_{14}\)O\(_{6}\)	314.2879	—	314.97	—	294; 163	—	Rhodiola crenulata [35, 82];	
No.	Compound group	Identification	Formula	Calculated mass	Observed mass [M-H]⁻	Observed mass [M+H]⁺	Observed mass [M+Na]⁺	MS/MS stage 1 fragmentation	MS/MS stage 2 fragmentation	References	
-----	----------------	----------------	---------	-----------------	-----------------------	----------------------	-----------------------	---------------------------	---------------------------	------------	
38	Cinnamic alcohol glycoside	(2E)-3-(4-methoxyphenyl)-2-propen-1-yl-beta-D-glycopyranoside	C₁₆H₂₂O₇	326.3417	325.09	—	—	182.99	119.09	Rhodiola rosea [9]	
39	Cinnamic alcohol glycoside	Coniferin	C₁₆H₂₂O₈	342.3411	—	343.01	—	240; 301; 129	240; 183	Rhodiola crenulata [35, 54]	
40	Phenylpropanoid (cinnamic acid derivative glycoside)	Chlorogenic acid (3-O-cafeoylquinic acid)	C₁₆H₁₈O₉	354.3087	—	355.04	—	335; 285; 203	200.0	Rhodiola rosea [2]; Eucalyptus [42]; Triticum [43];	
41	Cinnamic alcohol glycoside	Rosavin (trans-cinnamyl O-(6’-O-alpha-L-arabinopyranosyl-beta-D-glycopyranoside)	C₂₀H₂₈O₁₀	428.4303	—	—	451.00	333; 155; 201	200.94	Rhodiola rosea [16, 49, 83]; Rhodiola crenulata [84]; Rhodiola sachalinensis [53]; Rhodiola quadrifida [2, 85]	
42	Cinnamic alcohol glycoside	Rosarin (trans-cinnamyl O-(6’-O-alpha-L-arabinofuranosyl-beta-D-glycopyranoside)	C₂₀H₂₈O₁₀	428.4303	—	429.01	—	285; 199	384; 328; 230; 159	Rhodiola rosea [9, 16, 49, 83]; Rhodiola sachalinensis [53]	
43	Phenylpropanoid (cinnamic acid derivative)	Di-O-cafeoylquinic acid	C₂₅H₂₄O₁₂	516.4509	—	516.86	—	352; 431; 276	200; 135	Pear [45]	
44	Gallic acid derivative	6-O-galloyl-salidroside	C₂₁H₂₄O₁₁	452.4087	—	453.09	—	435; 209; 336	226; 336; 417	Rhodiola crenulata [35, 54]; Rhodiola rosea [39]	
45	Gallic acid derivative	1,2,6-Tri-O-galloyl-beta-D-glucose	C₂₇H₂₄O₁₈	636.4687	—	637.28	—	507; 566; 620; 488; 366; 189	—	Rhodiola rosea [39]	
46	Anthocyanidin	Pelargonidin-3-glucoside (callistephan)	C₂₁H₂₁ClO₁₀	468.8444	—	469.88	—	357.05	247.00	Triticum [43]	
47	Anthocyanidin	Pelargonidin (3-O-(6-O-malonyl-beta-D-glucose))	C₂₄H₂₃O₁₃	519.4388	—	520.10	—	433; 184	307; 163	Gentiana lutea [86]; wheat [87]	
48	Proanthocyanidin	Proanthocyanidin B1 (procyanidin B1; procyanidin dimer B1)	C₃₀H₂₆O₁₂	578.5202	577.21	579.07	—	197; 254; 351; 393; 407; 421	196.94; 133.04; 182.93	Pear [45]; Eucalyptus [42]	
49	Anthocyanidin	Cyanidin-3-(3‴″,6‴″-dimalonylglucose)	C₂₇H₂₄O₁₇	620.4773	—	621.17	—	619; 432; 264	601; 518; 419	Wheat [87]	
50	Anthocyanidin	Pelargonidin (3-O-(6-O-malonyl-beta-D-glucose))-5-beta-D-glucose	C₃₀H₃₃O₁₈	681.5812	—	682.10	—	515.58; 353.14	351; 295; 173	Gentiana lutea [86]	
No.	Compound group	Identification	Formula	Calculated mass	Observed mass [M-H]	Observed mass [M+H]+	Observed mass [M+Na]+	MS/MS stage 1 fragmentation	MS/MS stage 2 fragmentation	References	
-----	----------------	----------------	--------	----------------	---------------------	---------------------	---------------------	--------------------------	--------------------------	-----------	
51	Coumarin	Esculetin (cichorigenin; esculetin)	C_{9}H_{6}O_{4}	178.1415	—	179.02	—	147.01	119.03	Ledum palustre [38]; Vitis vinifera [37]	
52	Coumarin	Esculin (esculin; esculose; polichrome)	C_{15}H_{16}O_{6}	340.2821	—	340.91	—	133; 283; 322	175; 133	Dog plasma [38]; rat plasma [88]	
53	Coumarin glucoside	Fraxin (Fraxetin-8-O-glucoside)	C_{16}H_{18}O_{10}	370.3081	—	370.97	—	356; 193; 123	207.02		
54	Lignan	Hinokinin	C_{20}H_{16}O_{6}	354.3533	—	355.01	—	337; 283; 203	239; 133	Triticum aestivum L. [89]; Bursera simaruba [90]	
55	Lignan	Pinoresinol	C_{20}H_{22}O_{6}	358.3851	—	359.02	—	341; 187	323; 187	Triticum aestivum L. [78]; Eucommia cortex [47]	
56	Aryl-beta-glycoside	Arbutin	C_{12}H_{16}O_{7}	272.2512	—	273.17	—	217; 163	161.09	Strawberry, blueberry, pear [91]; pear [45]	
57	Natural water-soluble vitamin	L-ascorbic acid	C_{6}H_{8}O_{6}	176.1241	—	176.98	—	145.00	117.03	Strawberry, lemon, papaya [36]	
58	Aldaric acid	Glucaric acid (D-glucaric acid)	C_{6}H_{10}O_{8}	210.1388	—	211.01	—	192; 115	129.05	Chirimoya, papaya [36]	
59	Monobasic saturated carboxylic acid	Palmitic acid (hexadecanoic acid; palmitate)	C_{16}H_{32}O_{2}	256.4241	—	257.02	—	237; 137	221; 125	Salviae [44]	
60	Acyclic alcohol nitrile glycoside	Heterodendrin (2R)-2-(β-D-glucopyranosyl)-3-methylbutanenitrile	C_{11}H_{19}O_{6}N	261.2717	—	263.96	—	155; 228	—	Rhodiola crenulata [35]	
61	Monobasic saturated carboxylic acid	Linolenic acid (alpha-linolenic acid; linolenate)	C_{18}H_{30}O_{2}	278.4296	—	279.1	—	261; 243; 187; 123	173; 131	Salviae [44]; rice [48]	
62	Phenylethane glycoside	Picein (amelaroside; salicinerin; salinigrin; piceoside)	C_{14}H_{18}O_{7}	298.2901	—	299	—	271; 211; 179	254; 225; 197	Rhodiola rose [9]; Rhodiola crenulata [82]	
63	Phenylethane glycoside	Salidroside (2-(4-hydroxyphenyl) ethyl β-D-glucopyranoside)	C_{14}H_{26}O_{7}	300.3044	—	301.15	—	240; 201	183; 110	Rhodiola crenulata [35, 54]; Rhodiola rosea [1, 92, 93]; Rhodiola sachalinensis [53]; Rhodiola kirilowii [2]	
64	Phenylethane glycoside	Icariside D2	C_{14}H_{20}O_{7}	300.3044	—	301.06	—	240; 201; 135	183; 113	Rhodiola rosea [39]; Rhodiola crenulata [54, 82]; Rhodiola sacra [55];	
65	Acyclic alcohol glycoside	Creoside II	C_{14}H_{20}O_{7}	306.352	—	307.99	—	199; 255	—	Rhodiola crenulata [35, 54]	
No.	Compound group	Identification	Formula	Calculated mass	Observed mass [M-H]^−	Observed mass [M+H]^+	Observed mass [M+Na]^+	MS/MS stage 1 fragmentation	MS/MS stage 2 fragmentation	References	
-----	----------------	-------------------------	---------------	------------------	------------------------	------------------------	------------------------	-----------------------------	-----------------------------	-----------------------------------	
66	Phenylethane glycoside	Viridoside	C_{15}H_{22}O_{7}	314.331	—	315.04	337.11	319.13; 209.08	151; 207; 262; 301	*Rhodiola viridula* [94]; *Rhodiola rosea* [83]; *Rhodiola crenulata* [35]; *Rhodiola sachalinensis* [55]	
67	Acyclic alcohol glycoside	Rosiridine (3,7-dimethylocta-2,6-diene-1,4-diol; 1-O-beta-D-glucopyranoside)	C_{16}H_{26}O_{7}	332.3893	—	333.02	—	247; 175	181.93	*Rhodiola crenulata* [35]; *Rhodiola rosea* [2, 17, 49]; *Rhodiola sachalinensis* [95]	
68	Acyclic alcohol glycoside	Rhodioloside A	C_{16}H_{26}O_{8}	348.3887	—	349.02	371.03	271; 281; 305; 331; 257; 231; 219; 167; 141	268; 256; 243; 229; 215; 193; 143	*Rhodiola rosea* [1, 92]; *Rhodiola crenulata* [35]	
69	Acyclic alcohol glycoside	Rhodioloside D	C_{16}H_{30}O_{8}	350.4046	—	351.06	—	258; 220; 131	257; 141	*Rhodiola rosea* [1, 83, 92]; *Rhodiola crenulata* [35]	
70	Tetracyclic diterpenoid	Grayanotoxin II	C_{20}H_{22}O_{5}	352.4651	—	353.04	—	335; 282; 203	315; 245; 113	Grayanotoxins [96]	
71	Benzidine glycoside	Phenylmethyl (6-O-alpha-L-arabinopyranosyl-beta-D-glucopyranoside)	C_{18}H_{26}O_{10}	402.3930	—	402.86	—	343; 283; 175	283	*Rhodiola rosea* [83]; *Rhodiola sachalinensis* [53]	
72	Acyclic alcohol glycoside	Rhodioctanoside	C_{19}H_{30}O_{10}	424.4831	—	424.94	—	290.96	173; 261	*Rhodiola crenulata* [35, 54]; *Rhodiola kirilowii* [97]; *Rhodiola sacra* [98]	
73	Phenylethane glycoside	Mongrhoside	C_{20}H_{30}O_{11}	446.4456	—	446.65	—	243; 379; 311	174.84	*Rhodiola rosea* [83]	
74	Acyclic alcohol glycoside	Creoside V	C_{21}H_{30}O_{10}	450.5204	—	473.15	—	471; 254; 401	463.61	*Rhodiola crenulata* [35];	
75	Hydroxy acid	Ursolic acid	C_{20}H_{44}O_{5}	456.7003	—	457.17	—	412; 307	368; 269	*Ocimum* [41]; pear [45]	
76	Acyclic alcohol glycoside	Rhodioloside E	C_{21}H_{30}O_{11}	466.5198	—	467.95	—	399.94; 265; 332	331.88	*Rhodiola rosea* [1, 92]; *Rhodiola crenulata* [35, 54]; *Rhodiola sachalinensis* [13]; *Rhodiola sacra* [55]	
77	Acyclic alcohol glycoside	Rhodioloside B	C_{22}H_{36}O_{12}	494.5299	—	493.22	—	517.97	447; 220	314.98	*Rhodiola rosea* [1, 92]; *Rhodiola crenulata* [35]
Figure 3: CID spectrum of the rhodioloside B from *Rh. rosea*, m/z 493.05.

Figure 4: CID spectrum of luteolin-7-O-α-L-rhamnoside from *Rh. rosea*, m/z 430.99.

Figure 5: CID spectrum of catechin from *Rh. rosea*, m/z 291.13.
4. Conclusions

The *Rhodiola rosea* L. family *Crassulaceae* contains a large number of polyphenolic compounds and other biologically active substances. In this work, we tried to conduct a comparative metabolomic study of biologically active substances of *Rh. rosea* obtained from the area near Lake Baikal, Russia. HPLC in combination with a Bruker Daltonik mass spectrometry (tandem mass spectrometry) was used to identify target analytes in extracts.

The results showed the presence of 78 polyphenols and other compounds corresponding to the *Rhodiola rosea* family *Crassulaceae* L. species. In addition to the reported metabolites, 29 metabolites were newly annotated in *Rh. rosea*. There were flavonoids: dihydroquercetin, acacetin, mearnesetin, and taxifolin-O-pentoside; flavones: apigenin-O-hexoside derivative, tricetin trimethyl ether 7-O-hexosylhexoside, tricin 7-O-glucoronoyl-O-hexoside, and tricin O-pentoside and O-dihexoside; flavanones: eriodictyol-O-pentoside; flavan-3-ol gallocatechin; hydroxycinnamic acid; caffeoylmalic acid; di-O-caffeoylquinic acid; coumarins: mearnsetin, and taxifolin-O-pentoside; flavones: apigenin-7-O-hexoside, tricin 7-O-glucoronyl-O-hexoside, and tricin O-hexoside derivative, tricetin trimethyl ether 7-O-hexosylhexoside, and taxifolin-O-pentoside; flavones: apigenin-7-O-hexoside, and taxifolin-O-pentoside.

The findings may support future research into the production of various pharmaceutical and dietary supplements containing *Rh. rosea* extracts. A wide variety of biologically active compounds opens up rich opportunities for the creation of new drugs and biologically active additives based on extracts from family *Crassulaceae*.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] A. S. Saratikov, E. A. Krasnov, L. A. Chnikina et al., "Rhodiolosid, a new glycoside from *Rhodiola rosea* and its pharmacological properties," *Pharmazie*, vol. 23, no. 7, pp. 392–395, 1968.

[2] H. Wiedenfeld, M. Dumaa, M. Malinowski, M. Furmanowa, and S. Narantuya, "Phytochemical and analytical studies of extracts from *Rhodiola rosea* and *Rhodiola quadrifida*," *Die Pharmazie*, vol. 62, no. 4, pp. 308–311, 2007.

[3] G. G. Zapesochnaya, V. A. Kurkin, and A. N. Shchavlinskii, "Flavonoids of the above-ground part of *Rhodiola rosea*. II. Structure of novel glycosides of herbacetin and gossypetin," *Chemistry of Natural Compounds*, vol. 4, pp. 496–507, 1985.

[4] A. S. Saratikov and E. A. Krasnov, *Rhodiola Rosea (Golden Root)*, p. 292, 4th edition, Tomsk University, Tomsk, Russia, 2004.

[5] V. A. Kurkin, *Rhodiola Rosea (Golden Root)*: Drugs Production and Standardization, Monography, p. 240, Samara State Medical University of the Ministry of Health of Russia, Samara, Russia, 2015.

[6] A. G. Dubichev, V. A. Kurkin, G. G. Zapesochnaya, and E. D. Vorontsov, "Chemical composition of the rhizomes of the *Rhodiola rosea* by the HPLC method," *Chemistry of Natural Compounds*, vol. 27, no. 2, pp. 161–164, 1991.

[7] W. Buchwald, A. Msaida, A. Krajewska-Patan, M. Furmanova, S. Miekarczak, and P. M. Mozukiewicz, "Contents of biologically active compounds in *Rhodiola rosea* roots during the vegetation period," *Herba Polonica*, vol. 52, no. 4, pp. 39–43, 2006.

[8] G. Ma, W. Li, and D. Dou, "Rhodiolosides A-E, monoterpene glycosides from *Rhodiola rosea*," *Chemical and Pharmaceutical Bulletin*, vol. 54, no. 8, pp. 1229–1233, 2006.

[9] A. Tolonen, M. Pakonen, A. Hohotiila, and J. Jalonen, "Phenylpropanoid glycosides from *Rhodiola rosea*," *Chemical and Pharmaceutical Bulletin*, vol. 51, no. 4, pp. 467–470, 2003.

[10] G. G. Zapesochnaya, V. A. Kurkin, V. P. Boiko, and V. K. Kolkhir, "Phenylpropanoids as promising biologically active substances from medicinal plants," *Pharmaceutical Chemistry Journal*, vol. 29, no. 4, pp. 277–280, 1995.

[11] I. A. Rodin, A. N. Stavrianidi, A. V. Braun, O. A. Shpigin, and M. V. Popik, "Simultaneous determination of salidroside, rosavin, and rosarin in extracts from *Rhodiola rosea* by high performance liquid chromatography with tandem mass spectrometry detection," *Mass-Spektrometria*, vol. 9, no. 1, pp. 51–65, 2012.

[12] K. N. Isset, N. T. Nyberg, D. van Diermen et al., "Metabolic profiling of *Rhodiola rosea* rhizomes by 1H NMR spectroscopy," *Phytochemical Analysis*, vol. 22, no. 2, pp. 158–165, 2011.

[13] T. Li and H. Zhang, "Identification and comparative determination of rhodinin in traditional Tibetan medicinal plants of fourteen *Rhodiola* species by high-performance liquid chromatography–photodiode array detection and electrospray ionization–mass spectrometry," *Chemical and Pharmaceutical Bulletin*, vol. 56, no. 6, pp. 807–814, 2008.

[14] L. Evstatieva, M. Todorova, D. Antonova, and J. Staneva, "Chemical composition of the essential oils of *Rhodiola rosea* L. of three different origins," *Pharmacognosy Magazine*, vol. 6, no. 24, pp. 256–258, 2010.

[15] I. G. Zakhozhi, "Physiological–biochemical bases of accumulation secondary metabolism products–salidroside and rosavin in plants of *rhodiola rosea*," Ph. D Thesis, Institute of Biology, Komi Science Center, Ural Branch of the Russian Academy of Sciences, Moscow, Russia, 2006.

[16] G. G. Zapesochnaya and V. A. Kurkin, "Glycosides of cinnamyl alcohol from the rhizomes of *Rhodiola rosea*," *Chemistry of Natural Compounds*, vol. 18, no. 6, pp. 685–688, 1982.

[17] V. A. Kurkin and G. G. Zapesochnaya, *Chemical Composition and Pharmacological Characteristics of *Rhodiola Rosea*. J. Medicinal Plants*, pp. 1231–1445, Russian Academy of Science, Moscow, Russia, 1985.

[18] A. G. Arbusov, L. N. Maslov, V. N. Burkova, A. V. Krylatov, I. N. Konkovskaia, and S. M. Safronov, "Phytodaptogens-induced phenomenon similar to ischemic preconditioning," *Rossiiskii Fiziolohicheskii Zhurnal Imeni L.M. Sechenova*, vol. 95, no. 4, pp. 398–404, 2009.

[19] L. N. Maslov and I. B. Lismanov, "Cardioprotective and antiarrhythmic properties of *Rhodiola roseae* preparations," *Eksperimental’naia i Klinicheskaia Farmakologiya*, vol. 70, no. 5, pp. 59–67, 2007.

[20] T. Wu, H. Zhou, Z. Jin et al., "Cardioprotection of salidroside from ischemia/reperfusion injury by increasing..."
N-acetylglucosamine linkage to cellular proteins,” European Journal of Pharmacology, vol. 613, no. 1-3, pp. 93–99, 2009.

[21] A. A. Spasov, G. K. Wikman, V. B. Mandrikov, I. A. Mironova, and V. V. Neumoin, “A double-blind, placebo-controlled pilot study of the stimulating and adaptogenic effect of Rhodiola rosea SHR-5 extract on the fatigue of students caused by stress during an examination period with a repeated low-dose regimen,” Phytomedicine, vol. 7, no. 2, pp. 85–89, 2000.

[22] A. Bystritsky, L. Kerwin, and J. D. Feusner, “A pilot study of Rhodiola rosea (Rhodax) for generalized anxiety disorder (GAD),” The Journal of Alternative and Complementary Medicine, vol. 14, no. 2, pp. 175–180, 2008.

[23] S. N. Udintsev, S. G. Krylova, and T. I. Fomina, “The enhancement of the efficacy of adriamycin by using hepato-protectors of plant origin in metastases of Ehrlich’s adenocarcinoma to the liver in mice,” Voprosy Onkologii, vol. 38, no. 10, pp. 1217–1222, 1992.

[24] Y. Zhang and Y. Liu, “Study on effects of salidroside on lipid peroxidation on oxidative stress in rat hepatic stellate cells,” Zhong Yao Cai, vol. 28, no. 9, pp. 794–796, 2005.

[25] L. A. Dement’eva and K. V. Iaremenko, “Effect of a Rhodiola extract on the tumor process in an experiment,” Voprosy Onkologi, vol. 33, no. 7, pp. 57–60, 1987.

[26] S. N. Udintsev and V. P. Shakhov, “The role of humoral factors of regenerating liver in the development of experimental tumors and the effect of Rhodiola rosea extract on this process,” Neoplasma, vol. 38, no. 3, pp. 323–331, 1991.

[27] S. N. Udintsev and V. P. Shakhov, “Decrease of cyclophosphamide haematoxicity by Rhodiola rosea root extract in mice with Ehrlich and Lewis transplantable tumours,” European Journal of Cancer and Clinical Oncology, vol. 27, no. 9, p. 1182, 1991.

[28] A. Zakharenko, D. Romanchenko, P. D. Thinh et al., “Features and advantages of supercritical CO2 extraction of sea cucumber Cucumaria frondosa japonica semper, 1868,” Molecules, vol. 25, no. 10, p. 4088, 2020.

[29] M. P. Razgonova, A. M. Zakharenko, V. Grudev, S. Ercisli, and K. S. Golokhvast, “Comparative analysis of the multicomponent composition of far east Sikhtinsky Rhododendron (Rh. sichotense) and East Siberian Rhododendron (Rh. adamsii) using supercritical CO2-extraction and HPLC-MS/ MS spectrometry,” Molecules, vol. 25, p. 3774, 2020.

[30] L. Baldino, M. Scognamiglio, and E. Reverchon, “Supercritical fluid technologies applied to the extraction of compounds of industrial interest from Cannabis sativa L. and to their pharmaceutical formulations: a review,” Journal of Supercritical Fluids, vol. 165, Article ID 104960, 2020.

[31] Y. A. Morozov, K. A. Pupykina, N. V. Blagorazumnaya, A. M. Aliev, and E. V. Morozova, “Comparative analysis of carbon dioxide extracts from plant material of Schisandra chinensis: leaves, woody stems, rhizomes with roots,” Bashkortostan Medical Journal, vol. 13, no. 6, pp. 46–51, 2018.

[32] P. Iheozor-Ejiofor and E. Sjawerjer Dey, “Extraction of rosavin from Rhodiola rosea root using supercritical carbon dioxide with water,” Journal of Supercritical Fluids, vol. 50, pp. 29–32, 2009.

[33] Y.-X. Wu, Q. Wang, B. Liu, M.-Y. You, and T. Jin, “Supercritical carbon dioxide extraction of salidroside from Rhodiola rosea L var rosea root,” Journal of the Chinese Chemical Society, vol. 58, pp. 222–227, 2011.

[34] State Pharmacopeia XIV. 2018 [in Russ.].

[35] F. Han, Y. Li, L. Ma et al., “A rapid and sensitive UHPLC-FT-ICR MS/MS method for identification of chemical constituents in Rhodiola crenulata extract, rat plasma and rat brain after oral administration,” Talanta, vol. 160, pp. 183–193, 2016.

[36] V. Spinola, J. Pinto, and P. C. Castilho, “Identification and quantification of phenolic compounds of selected fruits from Madeira Island by HPLC-DAD-ESI-MSn and screening for their antioxidant activity,” Food Chemistry, vol. 173, pp. 14–30, 2015.

[37] P. Goufo, R. K. Singh, and I. Cortez, “Phytochemical a reference list of phenolic compounds (including stilbenes) in grapevine (Vitis vinifera L.) roots, woods, canes, stems, and leaves,” Antioxidants, vol. 9, p. 398, 2020.

[38] Z. Wang, W. Zhu, H. Liu et al., “Simultaneous determination of aesculin, aesculetin, fraxetin, fraxin and polydatin in beagle dog plasma by UPLC-ESI-MS/MS and its application in a pharmacokinetic study after oral administration extracts of Ledum palustre L.,” Molecules, vol. 23, p. 2285, 2018.

[39] T. H. Lee, C. C. Hsu, G. Hsiao, J. Y. Fang, W. M. Liu, and C. K. Lee, “Anti-MMP-2 activity and skin-penetrating capability of the chemical constituents from Rhodiola rosea,” Planta Medica, vol. 82, no. 8, pp. 698–704, 2016.

[40] W. Fan, Y. Tszuka, K. Komatsu, T. Namba, and S. Kadota, “Prolyl endopeptidase inhibitors from the underground part of Rhodiola sacra S. H. Fu,” Biological and Pharmaceutical Bulletin, vol. 22, no. 2, pp. 157–161, 1999.

[41] R. Pandey and B. Kumar, “HPLC-OTOF-MS/MS-based rapid screening of phenolics and triterpenic acids in leaf extracts of Ocimum species and heir interspecies variation,” Journal of Liquid Chromatography & Related Technologies, vol. 39, pp. 225–238, 2016.

[42] S. A. O. Santos, C. S. R. Freire, M. R. M. Domingues, A. J. D. Silvestre, and C. P. Neto, “Characterization of phe- nolic components in polar extracts of Eucalyptus globulus labill. Bark be high-performance liquid chromatography-mass spectrometry,” Journal of Agricultural and Food Chemistry, vol. 59, pp. 9386–9393, 2011.

[43] M. Sharma, R. Sandhir, A. Singh et al., “Comparison analysis of phenolic compound characterization and their biosynthesis genes between two diverse bread wheat (Triticum aestivum) varieties differing for chapatti (unleavened flat bread) quality,” Frontiers in Plant Science, vol. 7, p. 1870, 2016.

[44] S. T. Yang, X. Wu, W. Rui, J. Guo, and Y. E. Feng, “UPLC/Q-TOF-MS analysis for identification of hydrophilic phenolics and lipophilic diterpenoids from radix salviae miltiorrhizae,” Acta Chromatographica, vol. 27, no. 4, pp. 711–728, 2015.

[45] L. Sun, S. Tao, and Z. Zhang, “Characterization and quantiﬁcation of polyphenols and triterpenoids in thinned young fruits of ten pear varieties by UPLC-Q TRAP-MS/MS,” Molecules, vol. 24, p. 159, 2019.

[46] J. Kim, J. Kim, and C. W. Lee, “Development and validation of a modiﬁed QuEChERS method coupled with LC-MS/MS to determine arbutin in pear peels,” Food Science and Biotechnology, vol. 25, no. 4, pp. 987–992, 2016.

[47] F. Hu, J. An, W. Li et al., “UPLC-MS/MS determination and gender-related pharmacokinetic study of five active ingredients in rat plasma after oral administration of Eucommia cortex extract,” Journal of Ethnopharmacology, vol. 169, pp. 145–155, 2015.

[48] W. Chen, L. Gong, Z. Guo et al., “A novel integrated method for large-scale detection, identiﬁcation, and quantiﬁcation of widely targeted metabolites: application in the study of rice metabolomics,” Molecular Plant, vol. 6, no. 6, pp. 1769–1780, 2013.
Biochemistry Research International

[49] S. Y. Sokolov, V. M. Ivashin, G. G. Zapesochnaya, V. A. Kurkin, and A. N. Shchavlinskii, “Studies of neurotropic activity of new compounds isolated from *Rhodiola rosea*,” *Pharmaceutical Chemistry Journal*, vol. 19, no. 11, pp. 1367–1371, 1985.

[50] A. Gryszczyńska, A. Krajewska-Patan, W. Buchwald et al., “Comparison of proanthocyanidins content in *Rhodiola kirilowii* and *Rhodiola rosea* roots-application of UPLC-MS/MS method,” *Herba Polonica*, vol. 58, no. 3, pp. 5–15.

[51] M. Cirilini, P. Mena, M. Tassotti et al., “Phenolic and volatile composition of a dry spearmint (Mentha spicata L.),” *Molecules*, vol. 21, p. 1007, 2016.

[52] M. W. Lee, Y. A. Lee, H. M. Park et al., “Antioxidative phenolic compounds from the roots of *Rhodiola sachalinensis* A. Bor,” *Archives of Pharmacal Research*, vol. 23, no. 5, pp. 455–458, 2000.

[53] S. Nakamura, X. Li, H. Matsuda et al., “Bioactive constituents from Chinese natural medicines. XXVI. Chemical structures and hepatoprotective effects of constituents from roots of *Rhodiola sachalinensis*,” *Chemical and Pharmaceutical Bulletin*, vol. 55, no. 10, pp. 1505–1511, 2007.

[54] S. Nakamura, X. Li, H. Matsuda, and M. Yoshikawa, “Bioactive constituents from Chinese natural medicines. XXVIII. Chemical structures of acyclic alcohol glycosides from the roots of *Rhodiola crenulata*,” *Chemical and Pharmaceutical Bulletin*, vol. 56, no. 4, pp. 536–540, 2008.

[55] A. Daikonya and S. Kitanaka, “ Constituents isolated from the roots of *Rhodiola sacra* S. H. Fu, Japan,” *Journal of Food Chemistry Safety*, vol. 18, no. 3, pp. 183–190, 2011.

[56] M. N. Viera, P. Winterhalter, and G. Jerz, “Flavonoids from the flowers of *Impatiens glandulifera* Royle isolated by high performance countercurrent chromatography,” *Phytochemical Analysis*, vol. 27, pp. 116–125, 2016.

[57] F. Wang, D. Li, Z. Han, H. Gao, and L. Wu, “Chemical constituents of *Rhodiola rosea* and inhibitory effect on UV-induced A375-S2 cell death,” *Journal of Shenyang Pharmaceutical University*, vol. 24, no. 5, pp. 280–283, 2007.

[58] Q. Liu, Z. L. Liu, and X. Tian, “Phenolic compounds from *Rhodiola dumulosa*,” *China Journal of Chinese Materia Medica*, vol. 33, no. 4, pp. 411–413, 2008.

[59] F. Ni, X. Xie, L. Liu et al., “Flavonoids from roots and rhizomes of *Rhodiola crenulata*,” *Chinese Traditional and Herbal Drugs*, vol. 47, no. 2, pp. 214–218, 2016.

[60] H. J. Jeong, Y. B. Ryu, and S. J. Park, “Neuraminidase inhibitory activities of flavonols isolated from *Rhodiola rosea* roots and their in vitro anti-influenza viral activities,” *Bioorganic & Medicinal Chemistry*, vol. 17, no. 19, pp. 6816–6823, 2009.

[61] C. Ma, L. Hu, X. Kou, W. Lv, Z. Lou, and H. Wang, “Rapid screening of potential α-amylase inhibitors from *Rhodiola rosea* by UPLC-DAD-TOF-MS/MS-based metabolomic method,” *Journal of Functional Foods*, vol. 36, pp. 144–149, 2017.

[62] A. Petsalo, J. Jalonen, and A. Tolonen, “Identification of flavonoids of *Rhodiola rosea* by liquid chromatography-tandem mass spectrometry,” *Journal of Chromatography A*, vol. 1112, no. 1-2, pp. 224–231, 2006.

[63] I. V. Voskoboinikova, N. A. Tjukavkina, S. V. Geodakyan et al., “Experimental pharmacokinetics of biologically active plant phenolic compounds III. Pharmacokinetics of dihydroquercetin,” *Phytotherapy Research*, vol. 7, pp. 208–210, 1993.

[64] D. Luo, X. Zhao, and J. Wang, “Studies on the chemical constituents from *Rhodiola dumulosa* (I),” *China Journal of Chinese Materia Medica*, vol. 28, no. 2, pp. 98–99, 2005.

[65] H. Suzuki, R. Sasaki, Y. Ogata et al., “Metabolic profiling of flavonoids in *Lotus japonicus* using liquid chromatography Fourier transform ion cyclotron resonance mass spectrometry,” *Phytochemistry*, vol. 69, pp. 99–111, 2008.

[66] S. Zhang, C. Liu, H. Bi, and C. Wang, “Extraction of flavonoids from *Rhodiola sachalinsensis* A. Bor by UPE and the antioxidant activity of its extract,” *Natural Product Research*, vol. 22, no. 2, pp. 178–187, 2008.

[67] S. Wu, Y. Guo, S. Guo, L. Li, B. Wang, and T. Ma, “Study of the chemical constituents of ethanol extracts of *Rhodiola crenulata*,” *Modern Food Science and Technology*, vol. 24, no. 4, pp. 322–326, 2008.

[68] K. I. Choe, J. H. Kwon, K. H. Park et al., “The antioxidant and anti-inflammatory effects of phenolic compounds isolated from the root of *Rhodiola sachalinsensis* A. Bor,” *Molecules*, vol. 17, no. 10, pp. 11484–11494, 2012.

[69] H. Huang, M. Liang, P. Jiang, Y. Li, W. Zhang, and Q. Gong, “Quality evaluation of *Rhodiola crenulata*: quantitative and qualitative analysis of ten main components by HPLC,” *Journal of Liquid Chromatography & Related Technologies*, vol. 31, no. 9, pp. 1324–1336, 2008.

[70] V. A. Kurkin, G. G. Zapesochnaya, E. L. Nukhimovskii, and G. I. Klimakhin, “Chemical composition of rhizomes of a Mongolian *Rhodiola rosea* L. from districts near Moscow,” *Pharmaceutical Chemistry Journal*, vol. 22, no. 3, pp. 324–326, 1988.

[71] I. F. Satyaperova, I. A. Pautova, V. A. Kurkin, and G. G. Zapesochnaya, “Biologically active substances in rhizomes of *Rhodiola rosea* L. introduced in Petersburg,” *Vegetable Resources*, vol. 29, no. 2, pp. 26–31, 1993.

[72] G. Zuo, Z. Li, L. Chen, and X. Xu, “Activity of compounds from Chinese herbal medicine *Rhodiola kirilowii* (Regel) maxim against HCV NS3 serine protease,” *Antiviral Research*, vol. 76, no. 1, pp. 86–92, 2007.

[73] J. Sun, F. Liang, Y. Bin, P. Li, and C. Duan, “Screening non-colored phenolics in red wines using liquid chromatography/ultraviolet and mass spectrometry/mass spectrometry libraries,” *Molecules*, vol. 12, pp. 679–693, 2007.

[74] M. A. De Freitas, A. I. S. Alves, J. C. Andrade et al., “Evaluation of the antifungal activity of the *licania rigida* leaf ethanolic extract against biofilms formed by *Candida* sp. isolates in acrylic resin discs,” *Antibiotics*, vol. 8, p. 250, 2019.

[75] Y. H. Chu, S. H. Wu, and J. F. Hsieh, “Isolation and characterization of α-glucosidase inhibitory constituents from *Rhodiola crenulata*,” *Food Research International*, vol. 57, pp. 8–14, 2014.

[76] L. Chen, B. Yu, Y. Zhang et al., “Bioactivity-guided fractionation of an anti diarrheal Chinese herb *Rhodiola kirilowii* (Regel) maxim reveals (−)-epicatechin-3-gallate and (−)-epigallocatechin-3-gallate as inhibitors of cystic fibrosis transmembrane conductance regulator,” *PLoS One*, vol. 10, no. 3, Article ID e0119122, 2015.

[77] A. Wojakowska, J. Perkowski, T. Goral, and M. Stobiecki, “Structural characterization of flavonoid glycosides from leaves of wheat (*Triticum aestivum* L.) using LC/MS/MS profiling of the target compounds,” *Journal of Mass Spectrometry*, vol. 48, pp. 329–339, 2013.

[78] G. Dinelli, A. Seguera-Carretero, R. Di Silvestro et al., “Profiles of phenolic compounds in modern and old common wheat varieties determined by liquid chromatography coupled with
time-of-flight mass spectrometry,” *Journal of Chromatography A*, vol. 1218, pp. 7670–7681, 2011.

[79] V. A. Kurkin, G. G. Zapesochnaya, and V. G. Klyaznika, “Flavonoids of the rhizomes of *Rhodiola rosea*. I. Tricin glucosides,” *Chemistry of Natural Compounds*, vol. 18, pp. 550–552, 1982.

[80] E. Mudge, D. Lopes-Lutz, P. N. Brown, and A. Schieber, “Purification of phenylalkanoids and monoterpene glycosides from *Rhodiola rosea* L. roots by high-speed counter-current chromatography,” *Phytochemical Analysis*, vol. 24, no. 2, pp. 129–134, 2013.

[81] M. Furmanowa, E. Skopina-Rozewska, E. Rogala, and M. Hartwich, “Rhodiola rosea in vitro culture-phytochemical analysis and antioxidant action,” *Polish Botanical Journal*, vol. 67, no. 1, pp. 69–73, 1998.

[82] D. Chen, J. Fan, P. Wang et al., “Isolation, identification and antioxidative capacity of water-soluble phenylpropanoid compounds from *Rhodiola crenulata*,” *Food Chemistry*, vol. 134, no. 4, pp. 2126–2133, 2012.

[83] Z. Ali, F. R. Fronczek, and I. A. Khan, “Phenylalkanoids and monoterpene analogues from the roots of *Rhodiola rosea*,” *Planta Medica*, vol. 74, pp. 178–181, 2008.

[84] H. Wang, B. Xiao, Z. Hao, and Z. Sun, “Simultaneous determination of fraxin and its metabolite, fraxetin, in rat plasma by liquid chromatography-tandem mass spectrometry and its application in a pharmacokinetic study,” *Journal of Chromatography B*, vol. 1017, pp. 70–74, 2016.

[85] G. Dinelli, I. Marotti, S. Bosi et al., “Lignan profile in seeds of modern and old Italian soft wheat (*Triticum aestivum* L.) cultivars as revealed by CE-MS analyses,” *Electrophoresis*, vol. 28, pp. 4212–4219, 2007.

[86] M. Maldini, P. Montoro, S. Piacente, and C. Pizza, “Phenolic compounds from *Bursera simaruba* Sarg. bark: phytochemical investigation and quantitative analysis by tandem mass spectrometry,” *Phytochemistry*, vol. 70, pp. 641–649, 2009.

[87] J. Kim, Y. J. Park, S. U. Park, S.-H. Ha, and J. K. Kim, “Determination and quantification of arbutin in plants using stable isotope dilution liquid chromatography–mass spectrometry,” *Applied Biological Chemistry*, vol. 61, no. 5, pp. 523–530, 2018.

[88] A. T. Troshchenko and G. A. Kutikova, “Rhodioloside from *Rhodiola rosea* and *R. quadrifida* I,” *Chemistry of Natural Compounds*, vol. 3, no. 4, pp. 244–249, 1967.

[89] P. T. Lihn, Y. H. Kim, S. P. Hong, J. J. Jian, and S. Kang, “Quantitative determination of salidroside and tyrosol from the underground part of *Rhodiola rosea* by high performance liquid chromatography,” *Archives of Pharmacal Research*, vol. 23, no. 4, pp. 349–352, 2000.

[90] L. A. Golovina and G. K. Nikonov, “Chemical study of *Rhodiola viridula*,” *A Bor Isv Akad Nauk Kyzak SSR Ser Khim*, vol. 75–78, 1988.

[91] M. Yoshikawa, S. Nakamura, X. Li, and H. Matsuda, “Reinvestigation of absolute stereostructure of (−)-rosiridol: structures of monoterpene glycosides, rosiridin, rosiridosides A, B, and C, from *Rhodiola sachalinensis*,” *Chemical and Pharmaceutical Bulletin*, vol. 56, no. 5, pp. 695–700, 2008.

[92] S.-Y. Lee, Y.-J. Choi, K.-B. Lee et al., “Determination and monitoring of grayanotoxins in honey using LC-MS/MS,” *Korean Journal of Food Science and Technology*, vol. 40, no. 1, pp. 8–14, 2008.

[93] J. Peng, C. Ma, and Y. Ge, “Chemical constituents and anti-tuberculosis activity of root of *Rhodiola kirilowii*,” *China Journal of Chinese Materia Medica*, vol. 33, no. 13, pp. 1561–1565, 2008.

[94] M. Yoshikawa, H. Shimada, S. Horikawa et al., “Bioactive constituents of Chinese natural medicines. IV. Rhodiolae radix. (2): on the histamine release inhibitors from the underground part of *Rhodiola sacra* (PRAIN ex HAMET) S. H. Fu (Crassulaceae): chemical structures of rhodiocyanoside D and sacranosides A and B,” *Chemical and Pharmaceutical Bulletin*, vol. 45, no. 9, pp. 1498–1503, 1997.