Protein family review

The semaphorins
Umar Yazdani and Jonathan R Terman

Address: Center for Basic Neuroscience, Department of Pharmacology, NA4.301/5323 Harry Hines Blvd, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.

Correspondence: Jonathan R Terman. Email: jonathan.terman@utsouthwestern.edu

Published: 30 March 2006

Genome Biology 2006, 7:211 (doi:10.1186/gb-2006-7-3-211)

The electronic version of this article is the complete one and can be found online at http://genomebiology.com/2006/7/3/211

© 2006 BioMed Central Ltd

Summary

Semaphorins are secreted, transmembrane, and GPI-linked proteins, defined by cysteine-rich semaphorin protein domains, that have important roles in a variety of tissues. Humans have 20 semaphorins, Drosophila has five, and two are known from DNA viruses; semaphorins are also found in nematodes and crustaceans but not in non-animals. They are grouped into eight classes on the basis of phylogenetic tree analyses and the presence of additional protein motifs. The expression of semaphorins has been described most fully in the nervous system, but they are also present in most, or perhaps all, other tissues. Functionally, semaphorins were initially characterized for their importance in the development of the nervous system and in axonal guidance. More recently, they have been found to be important for the formation and functioning of the cardiovascular, endocrine, gastrointestinal, hepatic, immune, musculoskeletal, renal, reproductive, and respiratory systems. A common theme in the mechanisms of semaphorin function is that they alter the cytoskeleton and the organization of actin filaments and the microtubule network. These effects occur primarily through binding of semaphorins to their receptors, although transmembrane semaphorins also serve as receptors themselves. The best characterized receptors for mediating semaphorin signaling are members of the neuropilin and plexin families of transmembrane proteins. Plexins, in particular, are thought to control many of the functional effects of semaphorins; the molecular mechanisms of semaphorin signaling are still poorly understood, however. Given the importance of semaphorins in a wide range of functions, including neural connectivity, angiogenesis, immunoregulation, and cancer, much remains to be learned about these proteins and their roles in pathology and human disease.

Gene organization and evolutionary history

Semaphorins are a large and diverse family of widely expressed secreted and membrane-associated proteins, which are conserved both structurally and functionally across divergent animal phyla. This diversity in expression, structure, and function is highlighted in the manner in which a number of the semaphorins were originally characterized. The first semaphorin to be discovered, the grasshopper transmembrane protein semaphorin-1a (Sema-1a; originally named Fasciclin IV), was identified in a screen for molecules with distinctive temporal and spatial distributions in the developing grasshopper nervous system [1]. In parallel experiments, a neuronal growth cone collapsing factor associated with chicken brain membranes was biochemically purified and found to be a secreted semaphorin (Sema3A; originally named Collapsin) [2]. Separate experimentation and molecular characterization revealed that an antigen first observed in the 1970s as present in high frequency on human red blood cells, the John Milton Hagen (JMH) human blood group antigen, was a glycosylphosphatidylinositol (GPI)-linked semaphorin (Sema7A; also known as CDw108) [3,4]. And work in the human immune system...
showed that an antigen first characterized in 1992 for its presence on the surface of T lymphocytes was a transmembrane semaphorin (Sema4D; originally named CD100) [5].

Sequences encoding a number of different semaphorins have since been identified in nematode worms, insects, crustaceans, vertebrates, and viruses, but to date they have not been described in protozoans, plants, or the most primitive metazoans. Although initially given various and often conflicting names, these sequences have now been consolidated into one family called the semaphorins; the name is derived from the word ‘semaphore’, meaning to convey information by a signaling system [6,7]. The semaphorin gene family currently includes 20 members in mice and humans and five in Drosophila, and they can be divided into eight classes, 1-7 and V (Figures 1,2) [7]. Vertebrates have members in classes 3-7, whereas classes 1 and 2 are known only in invertebrates and class V only in viruses.

Semaphorin genes are dispersed throughout the genome, typically including several exons per gene, and are known to be alternatively spliced. There is considerable sequence diversity within the family: with a few exceptions, individual members are not more than about 50% identical to each other at the amino-acid level (see Additional data file 1).

Characteristic structural features

The eight main classes of semaphorins [7] differ in sequence and overall structural characteristics, but all members of the family contain a conserved extracellular domain of about 500 amino acids termed the semaphorin (sema) domain (Figure 2). This domain shows considerably higher conservation among the different semaphorins and across phyla than do the full-length proteins (see Additional data file 2). In addition to several blocks of conserved amino acids, the sema domain is characterized by highly conserved cysteine

Figure 1
A phylogenetic tree of semaphorin sequences, showing groupings of related semaphorin genes and their organization into different classes. D, Drosophila; M, mouse; V, viral; Z, sequence identified only in zebrafish and not in mammals. A Sema3D has also been described, but our analysis indicates that it is a splice variant of Sema3B. Protein sequences were aligned using ClustalW in Vector NTI software and the tree was generated using the neighbor-joining method, ignoring positions with gaps.
residues that have been found to form intrasubunit disulfide bonds [8]. Crystal structures have revealed that the sema domain of both the mouse secreted semaphorin Sema3A and the human transmembrane semaphorin Sema4D fold in a variation of the /H9252 propeller topology, a common topology that occurs in proteins with diverse functions (reviewed in [8]). Interestingly, these sema domains fold in a manner that is most similar to the /H9252 propeller topology of integrins and low-density lipoprotein (LDL) receptors.

The sema domain is also a critical component through which semaphorins mediate their effects [9-11]. In particular, an approximately 70-amino-acid region within the sema domain is important for the effects of Sema3A on repulsive axon guidance and the collapse of the growing tip or growth cones of axons, which stops their extension [9]. Structurally, this portion of the sema domain of Sema3A and Sema4D appears to correspond to blade three of the seven-bladed /H9252 propeller topology [8]. Interestingly, a small stretch of amino acids homologous to tarantula hanatoxin, a K+ and Ca2+ ion-channel blocker, is also important for the growth-cone-collapsing effects of Sema3A [12].

Immediately to the carboxy-terminal side of the sema domain, semaphorins contain a plexin-semaphorin-integrin (PSI) domain (Figure 2). This small stretch of cysteine-rich residues has also been referred to as a MET-related sequence (MRS) or a cysteine-rich domain (CRD). With the exception of some viral semaphorins, all examples of proteins containing a sema domain have a PSI domain [8]. Crystal-structure analysis indicates that this domain is highly conserved, but its three-dimensional position relative to the sema domain can vary among semaphorins [8]. Semaphorins also have consensus N-linked glycosylation sites and may be alternatively...
spliced (as in *Drosophila* Sema-1a [13], and mammalian Sema3F [14] and Sema6A [15]), although little is known about the significance of these modifications.

In contrast to these defining characteristics, individual semaphorins have a number of distinguishing features. Semaphorins vary in their membrane anchorage, and include secreted, transmembrane, and GPI-linked family members (Figure 2). They may also contain additional sequence motifs, including a single C2-class immunoglobulin-like (Ig) domain, a stretch of highly basic amino acids, and/or seven canonical type 1 thrombospondin repeats (TSRs; Figure 2). These additional domains are responsible for at least some of their functional effects; for example, the Ig domain and basic tail of chicken Sema3A potentiate the effect of its semi domain in growth-cone collapse [9], and the thrombospondin repeats of mammalian Sema5A are important in regulating the effect of Sema5A on axon guidance [11,16].

Localization and function

As a group, semaphorins are expressed in most tissues and this expression varies considerably with age. The expression patterns of the individual semaphorins are best characterized in the nervous system, particularly during development, where most, or perhaps all, semaphorins are widely expressed in the nervous system by neuronal and non-neuronal cells (reviewed in [17]; see Table 1 for details of the expression and functions of all members of the family and associated references). Semaphorins are also widely expressed in many organ systems and their derivatives, including the cardiovascular, endocrine, gastrointestinal, hepatic, immune, musculoskeletal, renal, reproductive, and respiratory systems.

No particular pattern of expression appears to define each of the different classes of semaphorins, but many are dynamically expressed in particular areas during development, and this expression often decreases with maturity. In the nervous system, for example, semaphorin expression is often associated with growing axons as they form axonal tracts, but this expression often decreases following the formation of the tracts. Interestingly, changes in the adult expression levels of semaphorins have been described following injury in neuronal and non-neuronal tissues, during tumorigenesis, and in association with other pathological conditions.

The diverse expression patterns of the different semaphorins suggest that they are important in a variety of functions during development and into adulthood. Indeed, genetic analyses in both invertebrates and vertebrates indicate that semaphorins are often required for viability and reveal, in combination with additional functional assays, distinct roles in various physiological and pathological processes in most or perhaps all tissues. These studies reveal that semaphorins function to direct tissue morphogenesis through their effects on cellular processes such as adhesion, aggregation, fusion, migration, patterning, process formation, proliferation, viability, and cytoskeletal organization.

Semaphorins are best known for their roles in nervous system development, and a number of approaches *in vivo* and *in vitro* indicate that semaphorins can enable axons to find and connect with one another and their other targets (reviewed in [18]). An important way in which semaphorins guide these growing axons is by repelling them or preventing them from entering certain regions. For example, characterization of their normal expression patterns, the defects observed in particular semaphorin mutants, and assays *in vivo* and *in vitro* have revealed that at least some semaphorins form molecular boundaries to prevent axons and cells from entering inappropriate areas. Semaphorins also have roles in physiological and pathological processes in the adult. In the nervous system, altered semaphorin function has been linked to epilepsy, retinal degeneration, Alzheimer’s disease, motor neuron degeneration, schizophrenia, and Parkinson’s disease [19-22].

Semaphorins may also limit the ability of axons to regrow after injury and prevent abnormal sprouting of axons involved in pain or autonomic function [23-26]. In the immune system, semaphorins are critical for various phases of the immune response (Table 2; reviewed in [27]). Semaphorins are also involved in cancer progression, by affecting chemotaxis, viability, tumorigenesis, metastasis, and angiogenesis (reviewed in [28]). More recently, semaphorins have also been implicated in vascular health and heart disease (reviewed in [29]).

Mechanism

The molecular mechanisms by which semaphorins mediate their functional effects are far from clear. Semaphorin-mediated axon repulsion is a result of the modification of the axonal cytoskeleton at the growing tips or growth cones of axons. The control of axon outgrowth or growth-cone motility depends critically upon the dynamics of F-actin polymerization and depolymerization, coupled with the regulation of F-actin translocation and microtubule dynamics. Following exposure to secreted Sema3A, growth cones undergo a rapid collapse that is accompanied by the depolymerization of F-actin, a decreased ability to polymerize new F-actin, attenuated microtubule dynamics, and collapsed microtubule arrays (reviewed in [30]). The molecular mechanisms underlying these phenomena are poorly understood but may also be responsible for many of the functional effects that semaphorins have in non-neuronal tissues. For example, the cytoskeleton is required for cells to move, polarize, change shape, engulf particles, and interact with other cells; even the most divergent family member, the viral semaphorin SemaVA, induces actin cytoskeletal rearrangement in dendritic cells of the immune system and alters the ability of these cells to adhere and migrate [31].
Semaphorin	Species	Expression (with representative references)	Functions (with representative references)
Sema-1a	Insects and worms	Epidermis [1], neurons [1,6,13,50]	Cell migration [110], digestion/defecation [110], fecundity [110], morphogenesis [110], neural connectivity [1-13]
Sema-1b	Insects and worms	Glia [55], oocytes [55]	Cell migration [110], morphogenesis [110], neural connectivity [110]
Sema-2a	Insects and worms	Epidermis [6], epithelium [6], gonads [6], muscles [6], neurons [6]	Cell migration [111], morphogenesis [111], neural connectivity [12]
Sema-2b	Insects	Unknown	Unknown
Sema3A	Vertebrates	Adipose tissue [56,57], bone [58], cartilage [58], cancer cells [59], connective tissue [60], endothelial cells [61], epithelium [62], glia [25], gut [62], heart [2,58], kidney [63], limb [58], lung [2], meningeal cells [64], muscle [2,57], neurons [2,58], pituitary [62], placenta [65], scar tissue [66], teeth [67], umbilical cord [65], uterus [65]	Bone formation [113], cancer-cell chemotaxis [114], cartilage formation [113], cell death [115], cell adhesion and aggregation [61,116], cell migration and patterning [117-119], cell proliferation [120], cytoskeletal organization [2], heart formation [113], lung formation [121], neural connectivity [2,113,122], vasculogenesis [61,123]
Sema3B	Vertebrates	Cancer cells [68], endothelial cells [61], glia [69], mammary gland [70], muscle [60], neurons [60], teeth [71]	Cell death [124], cytoskeletal organization [125], neural connectivity [126], tumor suppression [124]
Sema3C	Vertebrates	Cancer cells [59], connective tissue [60], endothelial cells [71], fibroblasts [53], glia [72], lung [60,73], macrophages [53], mammary gland [70], neurons [60], skeleton [60], teeth [71]	Cardiovascular development [127], cell survival [128], cytoskeletal organization [9], heart formation [127], lung formation [73], neural connectivity [9,128]
Sema3D	Vertebrates	Bone [74], cartilage [75], endothelial cells [61], epithelium [74], fibroblasts [76], glia [72], heart [77], meninges [74], muscle [74], neurons [74]	Neural connectivity [75]
Sema3E	Vertebrates	Cancer cells [78], ear [79], endothelial cells [61], lung [78], nervous tissue [25,74,80], skeleton [78], teeth [71]	Cell growth [33], cell migration [33], cytoskeletal organization [80], neural connectivity [80,129], tumor metastasis [33], vascular patterning [130]
Sema3F	Vertebrates	Cancer cells [81], dermis [82], ependyma [82], epithelium [82], eye [82], gonads [81], gut [81], heart [81], kidney [81], lung [81,82], muscle [81], neurons [82], pancreas [81], prostate [81], skin [82], spleen [81], submandibular gland [82], teeth [67], thymus [81], thyroid gland [82]	Angiogenesis [131], cell attachment [132], cell migration [133,134], cell proliferation [133], cytoskeletal organization [14,135], lung formation [73], neural connectivity [82,136], tumor metastasis [137], tumor suppression [138], synaptic transmission [20]
Sema3G	Vertebrates	Heart [83], kidney [83], lung [83], meninges [83], neurons [83], placenta [83]	Cell migration [134], neural connectivity [83]
Sema4A	Vertebrates	Epithelial cells [19], glia [25], immune cells [84,85], mammary gland [70], neurons [60], teeth [71]	Cell survival [19], cytoskeletal organization [139], lymphocyte activation and immune responses [84,85], neural connectivity [139], retina and visual system [19]
Sema4B	Vertebrates	Glia [25], immune cells [86], neurons [60,87], teeth [71]	Unknown
Sema4C	Vertebrates	Bone [76], ear [88], glia [25], immune cells [86], kidney [88], lung [88], muscle [89], neurons [88,90], regenerating muscle [89], teeth [88], pituitary [88]	Myogenesis [89]
Sema4D	Vertebrates	Glia [24], gonads [91], gut [91], immune cells [86,91], kidney [91], heart [91], lung [91], lymph node [91], mammary gland [70], muscle [91], neurons [92], placenta [91], prostate [91], spleen [91], teeth [71], thymus [91]	Angiogenesis [140,141], cell aggregation and adhesion [91,142], cell death [143], cell differentiation [91], cell migration [35,140,141], cell proliferation [144], cell survival [91,145], cytoskeletal organization [143,146], invasive/cancerous growth [147], immune responses [91,144], neural connectivity [24,145,146]
Sema4E	Zebrafish	Epithelium [93], nervous system [93]	Neural connectivity [148]
Sema4F	Vertebrates	Glia [72], immune cells [86], lung [94], mammary gland [70], neurons [94,95], teeth [71]	Cytoskeletal organization [94], neural connectivity [94]
Post-translational processing underlies at least some of the functional effects of semaphorins. Several secreted and transmembrane semaphorins undergo proteolytic processing, and this is important in semaphorin-mediated repulsive axon guidance, growth-cone collapse, cell migration, invasive growth, and metastasis (for example, see [32-35]). For example, mouse Sema3A, Sema3B, and Sema3C are synthesized as inactive precursors and become repulsive for axons upon proteolytic cleavage [32].

Oligomerization is another modification that is important for semaphorin function. The secreted vertebrate semaphorin Sema3A is a dimer [9,36,37], and dimerization is important for its activity in repulsive axon guidance and growth-cone collapse [36,37]. Cysteine residues in the carboxy terminus are important for this dimerization, although weak dimerization also occurs between sema domains [8]. Transmembrane semaphorins also form disulfide-linked dimers and depend on oligomerization for at least some of their functional effects [5,11,16,36,38-40].

Semaphorin receptors and signaling

Semaphorins exert the majority of their effects by serving as ligands and binding to other proteins through their extracellular domains. All classes of semaphorins except class 2 have been found to bind directly to members of the plexin (Plex) family of transmembrane receptors (reviewed in [41]; see Table 2 for a summary of the receptors and signaling proteins associated with semaphorins and Figure 3 for the primary structure of known semaphorin receptors). Interestingly, plexins also contain sema domains, albeit highly divergent, that are important for binding to semaphorins [8]. Several other proteins have also been identified that bind to the extracellular portions of semaphorins (Figure 3). In particular, members of the neuropilin (Npn) family of transmembrane proteins are receptors for class 3 semaphorins.
Table 2

Receptors and signaling proteins associated with semaphorins

Semaphorin	Binding receptors (with representative references)	Signaling proteins (with representative references)	‘Reverse’ signaling (with representative references)
Sema-1a	PlexA [158,159]	OTK [168], Gyc76c [169], MICAL [170], Nervy [171], PKA [171], Rac [172]	ena [50]
Sema-1b	PlexA [158]	-	-
Sema-2a	-	-	-
Sema-2b	-	-	-
Sema3A	Npn-1 [160,161], proteoglycans [162]	PlexA1, A2, A3, A4 [165,173,174], PlexD1 [175], VEGF receptor [176], L1CAM [177], integrins [61], α2-chimaerin [178], Cdc42 [179], Cdk5 [180], GSK/PKG [181,182], Calcium channels [12], coflin [183], CRAM [184], CRMP [185], FARP2 [45], Fyn [184], GoGi [185], guanylate cyclase [186], GSK-3 [187], LIM kinase [183], 12/15-lipoxygenase [188], MAP kinases [176], MLCK [189], nNOS [190], PI 3-kinase [181], PIPKιγδ61 [45], PKA [181], PTEN [191], Rac [192], Rap1 [193], Rho [194], Rnd [195], ROCK [181], R-Ras [45]	-
Sema3B	Npn-1 [125], Npn-2 [125]	NnCAM [126], FAK [126], MAP kinases [126], Src [126]	-
Sema3C	Npn-1 [163], Npn-2 [163]	PlexD1 [196], MLCK [189], ROCK [189]	-
Sema3D	Npn-1 [164]	-	-
Sema3E	Npn-1 [164], PlexD1 [130]	Ca2⁺ channels [129], MAP kinases [129], PKC [129], Ras [129]	-
Sema3F	Npn-2 [163], Npn-1 [163]	PlexA3, A4 [173,174], NnCAM [127], E-cadherin [197], Beta-catenin [197], PI 3-kinase [198], MAP kinases [198]	-
Sema3G	Npn-2 [83]	-	-
Sema4A	Tim-2 [84]	ROCK [139]	-
Sema4B	-	-	PSD-95 [87]
Sema4C	-	-	PSD-95 [90], GIPC [207], norbin [208]
Sema4D	PlexB1 [165], PlexB2 [166], CD72 [167]	Met [147], Ron [199], ErbB2 [200], PlexCl [34], integrin [201], AKT [141], Gab1 [147], LARG [146], 12/15-lipoxygenase [201], p190RhoGAP [202], PDZ-RhoGEF [146], PI 3-kinase [141], Pyk2 [141], Rac [46,203], Rho [204], Rnd [205], Src [141], MAP kinases [203], Raf [203]	CD45 [142], serine kinase [209]
Sema4E	-	-	-
Sema4F	-	-	PSD-95 [95]
Sema5A	PlexB3 [149], HSPG [16], CSPG [16], Syn-3 [16]	Met [149]	-
Sema5B	-	-	-
Sema5C	-	-	-
Sema6A	PlexA4 [151]	-	-
Sema6B	PlexA4 [151]	-	-
Sema6C	-	-	-
Sema6D	PlexA1 [152]	OTK [152], VEGF receptor 2 [152]	Abl [46]
Sema7A	PlexCl [165]	Integrins [154], Arg [206], FAK [154], MAP kinases [154]	Kinase activity [4]
Sema7B	-	-	-
Sema8B	-	-	-

A hyphen indicates not known. Abbreviations: Abl, Abelson tyrosine kinase; AKT, AKT serine/threonine kinase; Arg, Abl-related tyrosine kinase; CAM, cell adhesion molecule; CD45, CD45 phosphatase; Cdk5, cyclin-dependent kinase 5; CRAM, CRMP-associated molecule; CRMP, collapsing response mediator protein; CGKI, cGMP dependent protein kinase I; CSPG, chondroitin sulfate proteoglycan; ErbB2, receptor tyrosine kinase; ena, enabled; EVL, ena/VASP-like protein; FAK, focal adhesion tyrosine kinase; FARP2, FERM domain-containing GEF; Fes, feline sarcoma tyrosine kinase; Fyn, Fyn tyrosine kinase; Gab1, GRB2 associated binding protein 1; GIPC, GAIP interacting protein carboxy terminus; GSK-3, glycogen synthase kinase-3; Gyc76c, receptor guanylate cyclase 76c; HSPG, heparin sulfate proteoglycan; LARG, leukemia-associated RhoGEF; Met, receptor tyrosine kinase; MICAL, molecule interacting with CasL; MLCK, myosin light chain kinase; nNOS, neuronal nitric oxide synthase; Npn, neuropilin; OTK, off-track receptor tyrosine kinase; PI 3-kinase, phosphatidylinositol 3-kinase; PIPKιγδ61; PIP kinase type I; PKA, protein kinase A; PKC, protein kinase C; PKG, protein kinase G; Plex, Plexin; Pyk2, Pyk2 tyrosine kinase; Pseud-95, post-synaptic density protein; PTEN, PTEN phosphatase; ROCK, Rho-associated kinase; Ron, receptor tyrosine kinase; Src, Src tyrosine kinase; Syn-3, syndecan-3; Tim, T-cell immunoglobulin domain and mucin domain; VEGF, vascular endothelial growth factor.
Both the basic tail and the sema domain of Sema3A are important for binding to Npn-1, although binding to the sema domain is weaker. Neuropilins, however, only have short cytoplasmic tails that are not required for the effects of semaphorins on axon guidance [30]. Interestingly, neuropilins also bind plexins, such that class 3 semaphorins, which bind to neuropilins, signal their effects through the cytoplasmic domain of plexins.

The signal transduction cascades used by semaphorins are poorly understood. No canonical signal transduction pathways seem to mediate the effects of semaphorins, making the identification of semaphorin signaling intermediates difficult. Over the past few years, however, a number of proteins have been identified and linked with semaphorin signaling, including G proteins, kinases, regulators of cyclic nucleotide levels, oxidation-reduction enzymes, and regulators of the actin cytoskeleton (Table 2). These intermediates suggest that novel signaling cascades implement semaphorin function (reviewed in [21,41-44]), although a complete signaling pathway through which these proteins direct semaphorin function has not yet been characterized. Furthermore, semaphorin signaling intermediates have been identified using several different functional assays, complicating a precise determination of the roles of these proteins in the different semaphorin functions.

At the moment, the best characterized semaphorin signaling cascades are those used for axon guidance and cell migration.

Figure 3

Semaphorin receptors. Members of the plexin protein family are organized into four classes (A, B, C, and D); plexins are known to bind to semaphorins from all classes except class 2, whose receptors are unknown. Class 3 semaphorins bind both members of the neuropilin protein family. Sema4A binds Tim-2, a member of the T cell, immunoglobulin and mucin (Tim) domain protein family expressed on activated T cells [27]. Sema 4D binds CD72, a member of the C-type lectin family, and uses it for its effects in lymphoid tissues [27]. Sema, semaphorin; PSI, plexin-semaphorin-integrin; IPT, immunoglobulin-like fold shared by plexins and transcription factors; GAP, GTPase-activating protein; MAM, Meprin, A5, Mu; PMR, polymorphic region; ITIM, immunoreceptor tyrosine-based inhibitory motif; IgV, immunoglobulin variable region.

Semaphorin-mediated repulsive axon-guidance signaling depends on the large cytoplasmic domains of plexins, at least some of which have GAP-activating protein (GAP) activity: these domains show sequence similarity to a group of Ras-family-specific GAPs, and mammalian PlexA1 and PlexB1 have GAP activity towards R-Ras [45,46]. The cytoplasmic domains of plexins also bind other small GTPases as well as binding regulators of GTPase activity, including guanine-nucleotide exchange factors (GEFs) and GAPs [44]. The functional implications of these interactions are best understood for mammalian Sema4D and mammalian PlexB1: activation of PlexB1 by Sema4D enhances the activity of RhoGEFs, activating the small GTPase RhoA, and leads to cytoskeletal rearrangement and repulsive axon guidance. There may be variation, however, in the signaling cascades activated by the different semaphorins. Repulsive axon guidance signaling by invertebrate Sema-1a or vertebrate Sem3A through class A plexins, for example, uses many proteins not currently characterized as important for repulsive axon guidance by Sema4D and PlexB1 [18,21,41,42].

Specific signaling proteins may also be required for the distinct functions of semaphorins. For example, Sema4D, together with PlexB1, limits cell migration or axon outgrowth by signaling through signaling proteins including the epidermal growth factor receptor ErbB2, Rho kinase, 12-15 lipooxygenase, and PlexC1; whereas Sema4D signaling through PlexB2 and the hepatocyte growth factor receptor Met, the receptor tyrosine kinase Ron, p190RhoGap, the tyrosine kinases Pyk2, Src, and Akt, and phosphatidylinositol 3-kinase enables cell migration or axon outgrowth (reviewed in [41,47]).

Importantly, recent work has also begun to identify mechanisms by which semaphorin signaling and its functional effects can be modulated. Neurotrophins, growth factors, chemokines, cell adhesion molecules, and integrins have all been shown to modulate semaphorin signaling, and some of these effects seem to occur through cyclic nucleotides, nitric oxide, and semaphorin receptor endocytosis [21,41,42]. Interestingly, semaphorins can also serve as cell-surface receptors for plexins and perhaps other proteins, and mediate some of their functional effects through ‘reverse signaling’ [48] (Table 2). In particular, transmembrane semaphorins can function as receptors essential for generating proper neuronal connectivity [49,50] and cardiac development [48], and these effects have been linked to the association of their cytoplasmic portions with signaling and anchoring proteins (Table 2).

Frontiers
Despite considerable progress in our characterization of members of the semaphorin family, much remains to be learned about their functions and molecular mechanisms of action. Several semaphorins have yet to be functionally characterized, and many have undergone only a cursory examination. A number of questions remain, including the purpose of having so many related semaphorins and the underlying logic to their complex expression patterns and physiological roles. The degree of interaction among semaphorins is also poorly understood. Do they regulate each other’s signaling cascades? Do they physically associate? What special attributes and abilities do the secreted, transmembrane, and GPI-linked forms of semaphorins functionally provide?

Understanding the signaling cascades that underlie the different functional effects of semaphorins will provide insights into these important proteins. Are there differences in the signaling cascades activated by the different semaphorins? How much do their signaling cascades vary in order to mediate their different cellular effects? How do semaphorins exert their dramatic effects on the cytoskeleton?

A more detailed understanding of the role of semaphorins in the normal functioning adult is important. In the nervous system, the role of semaphorins in forming neural connections is well established, but the role of semaphorins in neural connectivity as it pertains to thought, emotion, memory, and behavior is unknown. The role of semaphorins in human disease and pathology is also poorly understood. Mutations in semaphorins are associated with patients with cancer [28], retinal degeneration [51], decreased bone mineral density [52], rheumatoid arthritis [53], and CHARGE syndrome (a disorder characterized by cranial nerve dysfunction, cardiac anomalies, and growth retardation) [54]. Further characterization of the semaphorins and a better understanding of their signaling mechanisms will undoubtedly uncover additional roles for semaphorins and semaphorin signaling in human disease.

Given the role of semaphorins in a wide range of tissues and functions including neurobiology, vasculobiology, cancer biology, and immunobiology, further characterizing the semaphorins and their signaling cascades will reveal fundamental mechanisms of how these systems work and strategies for preventing and treating pathologies associated with them.

Additional data files
The following additional data files are available: tables of the protein sequence identities between different semaphorins over the whole sequence (Additional data file 1) and the sema domain (Additional data file 2).

Acknowledgements
We thank R. Giger, M. Henkemeyer, and A. Kolodkin for helpful comments on the manuscript, and Zhiyu Huang for helpful discussions. This work was supported by grants from the NIH/NIMH (MH069787), The Whitehall Foundation, and The March of Dimes Basil O’Connor Starter Scholar Research Award to J.R.T. J.R.T. is the Rita C. and William P. Clements Jr. Scholar in Medical Research.
References
1. Kolodkin AL, Matche D, O'Connor T, Patel NH, Admon A, Bentley D, Goodman CS: Fasclin IV: sequence, expression, and function during growth cone guidance in the grasshopper embry~. Neuron 1992, 9:831-846.
2. Luo Y, Raible D, Raper JA: Collapsin: a protein in brain that induces the collapse and paralysis of neuronal growth cones. Cell 1993, 75:217-227.
3. Yamada A, Kubo K, Takeshita T, Harashima N, Kawano K, Mine T, Sagawa K, Sugamara K, Itoh K: Molecular cloning of a glyco-sphingophosphatidylinositol-anchored molecule CD108. J Immunol 1999, 162:4094-4100.
4. Angelisova P, Drbal K, Cerny J, Hilgert I, Horejsi V: Characterization of a novel leukocyte GPI-anchored glycoprotein CD108 and its relation to other similar molecules. Immuno-biology 2000, 203:234-245.
5. Bougeret C, Mansur IG, Dastor H, Schmid M, Mahouy G, Bensusan A, Boumsell L: Increased surface expression of a newly identified family of transmembrane and secreted growth factor-induced sprouting of nociceptive afferents in adult rat spinal cord. J Neurosci 2004, 24:819-827.
6. Takegahara N, Kumanogoh A, Kikutani H: Semaphorins: a new class of immunoregulatory molecules. Philos Trans R Soc Lond B Biol Sci 2005, 360:1673-1679.
7. Neufeld G, Shraga-Heled N, Lange T, Guttman-Raviv N, Herzog Y, Kessler O: Semaphorins in cancer. Front Biosci 2005, 10:751-760.
8. Autiero M, De Smet F, Claes F, Carmeliet P: Role of neural guidance signals in blood vessel navigation. Cardiovasc Res 2005, 65:629-638.
9. Huber AB, Kolodkin AL, Ginty DD, Cloutier JF: Signaling at the growth cone: ligand-receptor complexes and the control of axon growth and guidance. Annu Rev Neurosci 2003, 26:509-563.
10. Admon A, Boumsell L: Collapsin-like domain of the axon guidance molecule semaphorin 3A is increased in the cerebellum in schizophrenia and may contribute to its synaptic pathology. Mol Psychiatry 2003, 8:148-155.
11. Oster SF, Bodeker MO, He F, Sretavan DW: Semaphorin5A, inhibits axon growth by retinal ganglion cells. J Neurosci 2004, 24:4989-4999.
12. Moreau-Fauvarque C, Kumanogoh A, Camand E, Jaillard C, Barbier G, Boumsell L, Cazenove C, Jones EY, Thibodeau AN, Mandemakers W, et al: The transmembrane semaphorin SemA4D/CD100, an inhibitor of axonal growth, is expressed on oligodendrocytes and upregulated after CNS lesion. J Neurosci 2003, 23:9229-9239.
13. Tavassoli F, Golberg M, Vargas M, Yilmaz M, Yilmaz A, et al: A novel transmembrane ligand for the class III semaphorin SemA5A. J Biol Chem 2004, 279:35897-35903.
14. Koppel AM, Raper JA: A 70 amino acid segment within the semaphorin 6A domain activates specific cellular response of semaphorin family members. Nature 1999, 19:531-537.
15. Eicholtz BJ, Morrow R, Walsh FS, Doherty P: Structural features of collapsin required for biological activity and distribution of binding sites in the developing chick. Mol Cell Neurosci 1997, 9:358-371.
16. Oster SF, Bodeker MO, He F, Sretavan DW: Invariant Sema5A inhibition serves an ensheathing function during optic nerve development. Development 2003, 130:775-784.
17. Behar O, Mizuno K, Badminton M, Woolf CJ: Semaphorin 3A growth cone collapse requires a sequence homologous to tanatantina hantatino. Proc Natl Acad Sci USA 1999, 96:13501-13505.
18. Yu HH, Araj HH, Ralls SA, Kolodkin AL: The transmembrane semaphorin SemA1 is required in Drosophila for embryonic motor and CNS axon guidance. Neuron 1998, 20:207-220.
19. Kusy S, Funkelstein L, Bourdais D, Drabkin H, Rougon G, Roche J, Castellani V: Redundant functions but temporal and regional regulation of two alternatively spliced isoforms of semaphorin 3F in the nervous system. Mol Cell Neurosci 2003, 24:409-418.
20. Klostermann A, Lutz B, Gertler F, Behl C: The orthologous human and mouse semaphorin 6A-1 proteins (SEMA6A-A/-/SEMA6A-A/-) bind to the enabled/vasodilator-stimulated phosphoprotein-like protein (EVL) via a novel carboxyl-terminal zyxin-like domain. J Biol Chem 2000, 275:39647-39653.
21. Yilmaz M, Yilmaz A, et al: The orthologous human and mouse semaphorin 6A-1 proteins (SEMA6A-A/-/SEMA6A-A/-) bind to the enabled/vasodilator-stimulated phosphoprotein-like protein (EVL) via a novel carboxyl-terminal zyxin-like domain. J Biol Chem 2000, 275:39647-39653.
22. Kantor DB, Chivatakarn O, Peer KL, Oster SF, Iatani M, Hansen MJ, Flatten JG, Yamaguchi Y, Sretavan DW, Ginty DD, Kolodkin AL: Semaphorin 5A is a bifunctional axon guidance cue regulated by heparan and chondroitin sulfate proteoglycans. Neuron 2004, 44:961-975.
23. Fiore R, Puschel AW: The function of semaphorins during nervous system development. Front Biosci 2003, 8:s484-s499.
24. Kruger RP, Aurandt J, Guan KL, Semaphorins command cells to grow, move, Nat Rev Mol Cell Biol 2005, 6:789-800.
25. de Wit J, Verhaagen J: Role of semaphorins in the adult nervous system. Prog Neurobiol 2003, 71:249-264.
26. Neufeld G, Shraga-Heled N, Lange T, Guttman-Raviv N, Herzog Y, Kessler O: Semaphorins in cancer. Front Biosci 2005, 10:751-760.
27. Neufeld G, Shraga-Heled N, Lange T, Guttman-Raviv N, Herzog Y, Kessler O: Semaphorins in cancer. Front Biosci 2005, 10:751-760.
28. Neufeld G, Shraga-Heled N, Lange T, Guttman-Raviv N, Herzog Y, Kessler O: Semaphorins in cancer. Front Biosci 2005, 10:751-760.
29. Neufeld G, Shraga-Heled N, Lange T, Guttman-Raviv N, Herzog Y, Kessler O: Semaphorins in cancer. Front Biosci 2005, 10:751-760.
30. Neufeld G, Shraga-Heled N, Lange T, Guttman-Raviv N, Herzog Y, Kessler O: Semaphorins in cancer. Front Biosci 2005, 10:751-760.
31. Neufeld G, Shraga-Heled N, Lange T, Guttman-Raviv N, Herzog Y, Kessler O: Semaphorins in cancer. Front Biosci 2005, 10:751-760.
32. Neufeld G, Shraga-Heled N, Lange T, Guttman-Raviv N, Herzog Y, Kessler O: Semaphorins in cancer. Front Biosci 2005, 10:751-760.
33. Neufeld G, Shraga-Heled N, Lange T, Guttman-Raviv N, Herzog Y, Kessler O: Semaphorins in cancer. Front Biosci 2005, 10:751-760.
34. Neufeld G, Shraga-Heled N, Lange T, Guttman-Raviv N, Herzog Y, Kessler O: Semaphorins in cancer. Front Biosci 2005, 10:751-760.
35. Neufeld G, Shraga-Heled N, Lange T, Guttman-Raviv N, Herzog Y, Kessler O: Semaphorins in cancer. Front Biosci 2005, 10:751-760.
61. Serini G, Valdembri D, Zanivan S, Morterra G, Burkhardt C, Caccavari F, Zammataro L, Primo L, Tamagnone L, Logan M, Todros T, Bischof P, Neidhart S, Grenningloh G, Castellucci M: Semaphorin profiling of periodontal fibroblasts and osteoblasts. J Dent Res 2003, 82:941-948.
62. Giger RJ, Urquhart ER, Gillespie SKH, Levengood DV, Ginty DD, Abid A, Ismail M, Mehdi SQ, Khaliq S: Expression of class 3 semaphorins and neuropilins in oligodendrocyte lineages. J Comp Neurol 2002, 450:237-250.
63. Sekido Y, Latif F, Chen J-Y, Duh F-M, Wei M-H, Albanesi JP, Lillehaug JR, et al.: SEPAH, a novel gene from chromosome 1p36.3, is deleted in a subset of nasopharyngeal carcinomas. Cancer Res 1997, 57:2135-2139.
64. Jiang Z, Chau MD, Bao ZZ, Semah-F, Sema3D, and Sema5A are expressed in overlapping and distinct patterns in chick embryonic heart. Dev Dyn 2006, 235:163-169.
65. Marzioni D, Tamagnone L, Capparuccia L, Marchini C, Amici A, Skarnes WC, Tessier-Lavigne M: Semaphorin profiling of periodontal fibroblasts and osteoblasts. J Dent Res 2003, 82:941-948.
66. Sekido Y, Latif F, Chen J-Y, Duh F-M, Wei M-H, Albanesi JP, Lillehaug JR, et al.: SEPAH, a novel gene from chromosome 1p36.3, is deleted in a subset of nasopharyngeal carcinomas. Cancer Res 1997, 57:2135-2139.
67. Jackson SA, Cameron C: A neurotrophin specific receptor, p75NTR, is expressed at high levels in human neuroblastoma cell lines. J Neurosci Res 2000, 61:31-40.
68. Lopes S, Kettunen P, Kvinnland IH, Taniguchi M, Fujisawa H, Luukko K: Expression of class 3 semaphorins and neuropilins in the developing mouse tooth. Mech Dev 2001, 101:191-194.
69. de Lange R, Demoulin N, Wei X: Identification of genes associated with enhanced metastasis of a large cell lung carcinoma cell line. Anticancer Res 2003, 23:187-194.
70. Puschel AW, Adams RH, Betz H: The sensory innervation of the mouse spinal cord may be patterned by differential expression of and differential responsiveness to semaphorins. Mol Cell Neurosci 1997, 7:431-441.
71. Morris JS, Stein T, Pringle MA, Davies CR, Weber-Hall S, Ferrier RK, Bell AK, Heath VJ, Gusterson BA: Involvement of axonal guidance proteins and their signaling partners in the developing mouse mammary gland. J Cell Physiol 2006, 206:1-6.
72. Nagarajan R, Rotkamp DM, Maric D, Barker JL, Hudson LD: A role for semaphorins in tumor-stromal cell interactions. Cancer Res 2000, 60:6509-6511.
73. Kagoshima M, Ito T: Diverse gene expression and function of semaphorins in developing lung: positive and negative regulatory roles of semaphorins in lung branching morphogenesis. Genes Cells 2001, 6:559-571.
74. Luo Y, Shepherd I, Li J, Renzi MJ, Chang S, Raper J: A family of molecules related to collapsin in the embryonic chick nervous system. Neuroreport 1995, 6:131-134.
75. Halloran MC, Severn MA, Yee CS, Grenningloh G, Raper JA, Kutowy JY: Analysis of a zebrafish semaphorin reveals potential functions in vivo. Dev Dyn 1999, 214:13-25.
76. Lalier TE: Semaphorin profiling of periodontal fibroblasts and osteoblasts. J Dent Res 2004, 83:677-682.
77. Jin Z, Chau MD, Bao ZZ, Semah-F, Sema3D, and Sema5A are expressed in overlapping and distinct patterns in chick embryonic heart. Dev Dyn 2006, 235:163-169.
78. Christensen CR, Klingelhöfer J, Tarabykina S, Hulgaard EF, Kramerov D, Lukanidin E: Transcription of a novel mouse semaphorin gene, M-semah-F, in the kidney. Biochim Biophys Acta 2002, 1565:161-170.
79. Toyofuku T, Zhang H, Cheong HS, Ohn HD, Hong ML, Salazar M, Murphy RK: Bi-directional signaling by Semaphorin 1A during central synapse formation in Drosophila. Nat Neurosci 2002, 5:1294-1301.
80. Miyazaki N, Furuyama T, Sakai T, Fujioka S, Mori T, Ohoka Y, Takeda N, Kubo T, Inagaki S: Developmental localization of semaphorin H messenger RNA acting as a collapsing factor on sensory axons in the mouse brain. Neuroscience 1999, 95:1041-1048.
81. Sekido Y, Latif F, Chen J-Y, Duh F-M, Wei M-H, Albanesi JP, Lillehaug JR, et al.: SEPAH, a novel gene from chromosome 1p36.3, is deleted in a subset of nasopharyngeal carcinomas. Cancer Res 1997, 57:2135-2139.
82. Giger RJ, Urquhart ER, Gillespie SKH, Levengood DV, Ginty DD, Abid A, Ismail M, Mehdi SQ, Khaliq S: Expression of class 3 semaphorins and neuropilins in oligodendrocyte lineages. J Comp Neurol 2002, 450:237-250.
83. Sekido Y, Latif F, Chen J-Y, Duh F-M, Wei M-H, Albanesi JP, Lillehaug JR, et al.: SEPAH, a novel gene from chromosome 1p36.3, is deleted in a subset of nasopharyngeal carcinomas. Cancer Res 1997, 57:2135-2139.
through a C-terminal PDZ-binding motif. FEBS Lett 2005, 579:3821-3828.

88. Inagaki S, Furuyama T, Iwashita Y: Identification of a member of mouse semaphorin family. FEBS Letters 1995, 370:269-272.

89. Ko JA, Gondo T, Inagaki S, Inui M: Requirement of the transmembrane semaphorin Sema4C for myogenic differentiation. FEBS Lett 2005, 579:2236-2242.

90. Inagaki S, Ohoka Y, Sugimoto H, Fujisaka S, Amazaki M, Kurinami H, Miyazaki N, Tohyama M, Furuya T, Sema4C, a transmembrane semaphorin, interacts with a post-synaptic density protein, PSD-95. J Biol Chem 2001, 276:9174-9181.

91. Hall KT, Bounsell LJ, Schultz JL, Boutsios VA, Dorfman DM, Quinlan AA, Bensussen A, Nadler LM, Freeman GJ: Human CD101, a novel gene, may encode a semaphorin that promotes B-cell aggregation and differentiation. Proc Natl Acad Sci USA 1996, 93:11780-11785.

92. Furuyama T, Inagaki S, Kosugi A, Noda S, Sato I, Ogawa M, Inagaki S, Furuyama T, Miyazaki N, Hamaoka T, Tohyama M: Identification of a novel member of the mouse semaphorin family expressed on lymphocytes. J Biol Chem 1996, 271:33376-33381.

93. Halloran MC, Severance SM, Yee CS, Gemza DL, Wu KJ: Molecular cloning and expression of two novel zebrafish semaphorins. Mech Dev 2003, 120:375-385.

94. Encinas JA, Kikuchi K, Chedotal A, de Castro F, Goodman CS, Kimura T: Cloning, expression, and genetic mapping of Sema W, a member of the semaphorin family. Proc Natl Acad Sci USA 1999, 96:2491-2496.

95. Sato S, Alonso W, Eisenberg Y, Lesmann V, Herrmann L, Dittmar T, Gundersfeld ED, Heumann R, Erdmann KS: Semaphorin-4F interacts with the synapse-associated protein SAP90/PSD-95. J Neurochem 2001, 78:482-489.

96. Li H, Wu DK, Sullivan SL: Characterization and expression of a novel member of the semaphorin gene family. Mech Dev 1999, 87:169-173.

97. Woodhouse EC, Fisher A, Bande RW, Bryant-Greenwood B, Charboneau L, Petricoin EF, 3rd, Liotta LA: Semaphorin-5c gene. Dev Biol 2003, 257:239-249.

98. Marin O, Yaron A, Bagri A, Tessier-Lavigne M, Rubenstein JL: Identification, characterization, and functional analysis of a novel member of the Drosophila semaphorin family. J Biol Chem 1995, 270:3167-3175.

99. Bahri SM, Chia W, Yang X: Identification of a member of the mouse semaphorin family. Mol Cell Neurosci 2004, 23:65-75.

100. Dhanabal M, Wu F, Alvarez E, McQueeney KD, Jeffers M, Macdougall J, Boldog FL, Hackett C, Shenoy S, Khramtsov N, Almagro AA, Bensussan A, Nadler LM, Freeman GJ: Cloning and characterization of a novel member of the mouse semaphorin family. J Cell Biol 2002, 157:457-468.

101. Taniguchi M, Yuasa S, Fujisawa H, Naruse I, Saga S, Mishina M, Yagi T: Semaphorin II mediates collapsin-1/semaphorin III inhibition of endothelial cell motility: Functional competition of collapsin-1 and vascular endothelial growth factor-165. J Cell Biol 1999, 146:233-242.

102. Marin O, Yaron A, Bagri A, Tessier-Lavigne M, Rubenstein JL: Identification of a novel member of the mouse semaphorin family. Mol Cell Neurosci 2004, 23:65-75.

103. Bobolis KA, Moulds JJ, Telen MJ: Isolation of the JMH antigen on a novel phosphatidylinositol-linked human membrane protein. Blood 1992, 79:1574-1581.

104. Gruberg VE, Roy PJ, Ginzburg VE, Roy PJ: Semaphorin 1a and semaphorin 1b are required for correct epidermal cell positioning and adhesion during morphogenesis in C. elegans. Development 2002, 129:2065-2078.

105. Roy PJ, Zheng H, Warren CE, Culotti JG: mog-20 encodes Semaphorin-2a and is required to prevent ectopic cell contacts during epidermal morphogenesis in C. elegans. Development 2000, 127:755-767.

106. Matsui J, Sano K, Kokubun S, Nagata K, Hori T, Sato T, Inoue C, Yamauchi M, Setou M, Iwahashi Y, et al.: Requirement of the transmembrane semaphorin Sema4C for myogenic differentiation. J Biol Chem 2001, 276:24228-24234.

107. Delorme G, Saltel F, Bonnele Y, Jurdic P, Masuhta-Gayet I: Expression and function of semaphorin 7A in bone cells. Biol Cell 2005, 97:589-597.

108. Bobolus KA, Moulds JJ, Telen MJ: Identification of the JMH antigen on a novel phosphatidylinositol-linked human membrane protein. Blood 1992, 79:1574-1581.

109. Bozon M, Rougon G, Grumet M, Puschel AW: A novel member of the mouse semaphorin family. Mol Cell Neurosci 2000, 14:219-233.

110. Bozon M, Rougon G, Grumet M, Puschel AW: A novel member of the mouse semaphorin family. Mol Cell Neurosci 2000, 14:219-233.

111. Taniguchi M, Yuasa S, Fujisawa H, Naruse I, Saga S, Mishina M, Yagi T: Identification of a member of the mouse semaphorin family. Mol Cell Neurosci 2000, 14:219-233.

112. Bobolis KA, Moulds JJ, Telen MJ: Isolation of the JMH antigen on a novel phosphatidylinositol-linked human membrane protein. Blood 1992, 79:1574-1581.

113. Bozon M, Rougon G, Grumet M, Puschel AW: A novel member of the mouse semaphorin family. Mol Cell Neurosci 2000, 14:219-233.

114. Bobolis KA, Moulds JJ, Telen MJ: Identification of the JMH antigen on a novel phosphatidylinositol-linked human membrane protein. Blood 1992, 79:1574-1581.

115. Bozon M, Rougon G, Grumet M, Puschel AW: A novel member of the mouse semaphorin family. Mol Cell Neurosci 2000, 14:219-233.

116. Bobolis KA, Moulds JJ, Telen MJ: Identification of the JMH antigen on a novel phosphatidylinositol-linked human membrane protein. Blood 1992, 79:1574-1581.

117. Bozon M, Rougon G, Grumet M, Puschel AW: A novel member of the mouse semaphorin family. Mol Cell Neurosci 2000, 14:219-233.

118. Bobolis KA, Moulds JJ, Telen MJ: Identification of the JMH antigen on a novel phosphatidylinositol-linked human membrane protein. Blood 1992, 79:1574-1581.
129. Sakai T, Furuyama T, Ohoka Y, Miyazaki N, Fujioka S, Sugimoto H, Amasaki M, Hattori S, Matsuya T, Inagaki S. Mouse semaphorin H induces PC12 cell neurite outgrowth by stimulating Ras-mitogen-activated protein kinase signaling pathway via Ca(2+)-influx. J Biol Chem 1999, 274:29666-29671.

130. Gu C, Yoshida Y, Livet J, Reimert DV, Mann F, Merte J, Henderson CE, Jessell TM, Kolodkin AL, Ginty DD. Semaphorin 3E and plexin-D1 control vascular pattern independently of neuropilin. J Cell Biol 2003, 162:260-273.

131. Kessler O, Shraga-Heled N, Lange T, Gutmann-Raviv N, Sabo E, Baruch L, Machulf M, Neufeld G. Semaphorin-3F is an inhibitor of angiogenic growth factor. Cancer Res 2002, 62:1008-1015.

132. Nasarre P, Constantin B, Rouhaud L, Harnois T, Raymond G, Dablanc HA, Bourmeyster N, Roche J. Semaphorin SEMA3F and VEGF have opposing effects on cell attachment and spreading. Neoplasia 2003, 5:83-92.

133. Spassky N, de Castro F, Le Bras B, Heydon K, Queraud-LeFaux S, Bloch-Gallego E, Chedotal A, Zalc B, Thomas JL. Directional guidance of oligodendroglial migration by class 3 semaphorins and netrin-1. J Neurosci 2002, 22:6992-6004.

134. Yu HH, Moens CB. Semaphorin signaling guides cranial neural crest cell migration in zebrafish. Dev Biol 2005, 280:373-385.

135. Bielenberg DR, Hida Y, Shimizu A, Kaipainen A, Kreuter M, Kim CC, Klagsbrun M. Secreted Semaphorins 3A, 3F, and 3E on developing hippocampal axons: in vitro effects and phenotype of Semaphorin 3A (+/-) mice. Mol Cell Neurosci 2001, 18:26-43.

136. Holmes S, Downs AM, Fosberry A, Hayes PD, Michalovich D, Murdoch P, Moores K, Fox J, Deen K, Pettman G, et al. Semaphorin 3F is critical for development of limbic system circuitry and is required in neurons for selective CNS axon guidance events. J Neurosci 2003, 23:6671-6680.

137. Biebel DM, Shibo S, Akiyama K, Kawamura K, Kato S, et al. Lack of axon guidance activity by transmembrane semaphorins and plays roles in nerve fiber guidance. Cancer Res 2003, 63:4538-4551.

138. Coenen AS, Kummer W, De Winter F, Verhaagen J. Semaphorin 4A interacts with the panaxin receptor, VESPR. J Neurosci 2003, 23:8727-8735.

139. Xiong Q, Xie Y, Uchida J, Yasui T, Takahashi S, et al. Semaphorin H displays a punctate distribution on the surface of neuronal cells and interacts with proteoglycans in the extracellular matrix. J Neurosci 2003, 23:15416-15426.

140. Basile JR, Barac A, Zhu T, Guan KL, Gurtikin JS. Class IV semaphorins promote angiogenesis by stimulating Rho-initiated pathways through plexin-B. Cancer Res 2004, 64:5212-5224.

141. Basile R, Alfaham T, Gurtikin JS. Plexin-D1 links plexin-B1-mediated endothelial cell migration to the activation of PKY2, Src and the phosphatidylinositol 3-kinase-Akt pathway. J Cell Biol 2005, 169:5207-5216.

142. Xia X, Daves AR, Hensel CH, Zhou XJ, Tse C, Naylor SL. Semaphorin 3F gene from human 3p21.3 suppresses tumor formation in nude mice. Cancer Res 2003, 63:267-269.

143. Yuwaka K, Tanaka T, Bai T, Ueyama T, Owada-Makabe K, et al. A poxvirus-encoded semaphorin induces cytokine production from monocytes and binds to a novel cellular semaphorin receptor, plexin-A1. Immunity 1999, 10:347-358.

144. Comeau MR, Johnson R, DuBose RF, Peterson M, Gearing P, Van den Bos T, Park L, Furrer A, Cohen JL, et al. Semaphorin 4D/plexin-B1 is a functional receptor for the semaphorin 5A. J Cell Sci 2005, 118:585-595.

145. Fujii T, Nakao F, Shibuya H, Kodama E, Fujisawa H, Takagi S, et al. Identification of CD72 as a novel cellular semaphorin receptor that controls axon guidance. Cell 1998, 95:903-916.

146. Fujii T, Nakao F, Shibuya H, Kodama E, Fujisawa H, Takagi S. Caenorhabditis elegans Plexin A, PLX-1, interacts with transmembrane semaphorins and regulates epidermal morphogenesis. Development 2002, 129:2053-2063.

147. He Z, Tissier-Lavigne M. Neuregulin is a receptor for the axonal chemorepellent Semaphorin III. Cell 1997, 90:739-751.

148. Fujii T, Nakao F, Shibuya H, Kodama E, Fujisawa H, Takagi S. Neuregulin promotes axon outgrowth through integrins and MAPKs. Nature 2003, 424:398-405.

149. Kikutani H, et al. Dual roles of Plexin-A1 in axon guidance. Cell 1999, 98:473-482.

150. Feiner L, Kappel AM, Kobayashi H, Raper JA. Secreted chick semaphorins bind recombinant neuropilin with similar affinities but bind different subsets of neuropilins. J Neurosci 2001, 19:539-545.
Genome Biology 2006, Volume 7, Issue 3, Article 211
Yazdani and Terman

169. Ayoob JC, Yu HH, Terman JR, Kolodkin AL: The Drosophila receptor guanylyl cyclase Gyc76C is required for semaphorin-1a-plexin-A-mediated axonal repulsion. J Neurosci 2004, 24:6639-6649.

170. Terman JR, Mao T, Pasterkamp RJ, Yu HH, Kolodkin AL: MICALs, a family of conserved flavoprotein oxidoreductases, function in plexin-mediated axonal repulsion. Cell 2002, 109:887-900.

171. Terman JR, Kolodkin AL: Nervy links protein kinase A to plexin-mediated semaphorin repulsion. Science 2004, 303:1204-1207.

172. Dalpe G, Brown L, Culotti JG: Vulva morphogenesis involves attraction of plexin 1-expressing primordial vulva cells to semaphorin 1a sequentially expressed at the vulva midline. Development 2005, 132:1387-1400.

173. Cheng HJ, Bagri A, Yaron A, Stein E, Pleasure SJ, Tessier-Lavigne M: Plexin-A3 mediates semaphorin signaling and regulates the development of hippocampal axonal projections. Neuron 2001, 32:249-263.

174. Yaron A, Huang PH, Cheng HJ, Tessier-Lavigne M: Differential requirement for Plexin-A3 and -A4 in mediating responses of sensory and sympathetic neurons to distinct class 3 semaphorins. Neuron 2005, 45:513-523.

175. Citron T, Gitler AD, Fraser SD, Berk JD, Van NP, Fishman MC, Childs S, Epstein JA, Weinstein BM: Semaphorin-plexin signaling guides patterning of the developing vasculature. Dev Cell 2004, 7:1-17-123.

176. Bagnard D, Saintret N, Meyronet D, Perraut M, Miele M, Roussel G, AA1B, Delanaye MF, Thomasnet N: Differential MAP kinases activation during semaphorin3A-induced repulsion or apoptosis of neural progenitor cells. Mol Cell Neurosci 2004, 25:722-731.

177. Castellani V, Chedotal A, Schachner M, Faivre-Sarrailh C, Rougon G: Analysis of the L1-deficient mouse phenotype reveals cross-talk between Sema3A and L1 signaling pathways in axonal guidance. Neuron 2000, 27:237-249.

178. Brown M, Jacobs T, Eckholt B, Ferrari G, Teo M, Monfries C, Qi RZ, Leung T, Lim L, Hall C: Alpha2-chimaerin, cyclin-dependent kinase 5/p35, and its target collapsin response mediator protein-2 are essential components in semaphorin 3A-induced growth-cone collapse. J Neurosci 2004, 24:8994-9004.

179. Kuhn TB, Brown MD, Wilcox CL, Raper JA, Bamburg JR: Myelin and collapsin-1 induce motor neuron growth cone collapse through different pathways: inhibition of collapse by opposing mutants of R AC. J Neurosci 1999, 19:1965-1975.

180. Sasaki Y, Cheng C, Uchida Y, Nakajima O, Ohshima T, Yagi T, Taniguchi M, Nakayama T, Kishida R, Kudo Y, et al: Fyn and Cdc42 mediate semaphorin-3A signaling, which is involved in regulation of dendrite orientation in cerebral cortex. Neuron 2002, 35:907-920.

181. Dontchev VD, Letourneau PC: Nerve growth factor and semaphorin 3A signaling pathways interact in regulating sensory neuronal growth cone motility. J Neurosci 2002, 22:6659-6669.

182. Schmidt H, Werner M, Henppenstall H, Renning M, More ML, Kuhbinder S, Lewin GR, Hofmann F, Raper JA, Muller F: SH2 domain-mediated signaling via cGKIalpha is required for the guidance of neural progenitor cells. Mol Cell Neurosci 2005, 27:457-471.

183. Sekine-Aizawa Y, Sehara-Fujisawa A, Mizuno K, Goshima Y, et al: Semaphorin 3A-induced growth-cone collapse requires 12/15-LOX. FEBS Lett 2004, 573:4-10.

184. Taniguchi M, Nakayama T, Kishida R, Kudo Y, et al: RhoD mediates growth-cone collapse induced by semaphorin 3A requires 12/15-LOX. FEBS Lett 2004, 573:4-10.

185. Wu KY, Hengst U, Cox LJ, Macosko EZ, Jeromin A, Urquhart ER, Jaffe SR: Local translation of RhoA regulates growth cone collapse. Nature 2005, 436:1020-1024.

186. Castellani V, Caprani P, Moretti S, Faronato M, Tamagnone L, Procopio A: Semaphorin-3A-induced axonal repellents and is required for normal axon pathfinding. J Cell Biol 2003, 165:979-991.

187. Castellani V, De Angelis E, Kenwrick S, Rougon G: Semaphorin-3A is expressed by tumor cells and alters cell surface signaling and controls invasive growth. Oncogene 2004, 23:3399-3444.

188. Chen J, Liu Y, Wang L, Zhu Z, Guo L, Chen Y, Li B, Chen X, Wang G, et al: Overexpression of ERK2 induces invasive growth and controls invasive growth. J Cell Science 2004, 23:3399-3444.

189. Chalasani SH, Sabelko KA, Sunshine MJ, Litman DR, Raper JA: A chemokine, SDF-1, reduces the effectiveness of multiple axonal repellents and is required for normal axon pathfinding. J Neurosci 2003, 23:1360-1371.

190. Castellani V, De Angelis E, Kenwrick S, Rougon G: Semaphorin-3A signaling pathways interact in regulating sensory neuronal growth cone motility. J Neurosci 2002, 22:6659-6669.

191. Conrotto P, Corso S, Gamberini S, Comoglio PM, Giordano S: Semaphorin 3F antagonizes neurotrophin-induced phospholipidinositol 3-kinase and mitogen-activated protein kinase signaling: a mechanism for growth cone collapse. J Neurosci 2003, 23:7602-7609.

192. Conrotto P, Corso S, Gamberini S, Comoglio PM, Giordano S: Interplay between scatter factor receptors and B plexins controls invasive growth. J Cell Biol 2003, 161:689-700.

193. Driessens MH, Hu H, Nobes CD, Self A, Jordens I, Goodman CS, Driessens MH, Hu H, Nobes CD, Self A, Jordens I, Goodman CS: RhoD, Rac1, and their downstream regulators, p190 Rho-GTPase activating protein and the Rho-associated coiled-coil containing protein, act to mediate axon collapse. J Cell Biol 2002, 158:951-957.

194. Catalano A, Caprani P, Moretti S, Faronato M, Tamagnone L, Procopio A: Semaphorin-3A is expressed by tumor cells and alters cell surface signaling and regulates invasive growth. Oncogene 2004, 23:3399-3444.

195. Gitler AD, Lu MM, Epstein JA: PlexinD1 and semaphorin signaling are required in endothelial cells for cardiovascular development. Dev Cell 2004, 7:107-116.

196. Nasseur P, Kusy S, Constantin B, Castellani V, Drabkin HA, Bagnard D, Roche J: Semaphorin 3A signaling pathways interact in regulating sensory neuronal growth cone motility. J Neurosci 2002, 22:6659-6669.

197. Wu KY, Hengst U, Cox LJ, Macosko EZ, Jeromin A, Urquhart ER, Jaffe SR: Local translation of RhoA activates growth cone collapse. Nature 2005, 436:1020-1024.

198. Atwal JK, Singh KK, Tessier-Lavigne M, Miller FD, Kaplan DR: Semaphorin 3F antagonizes neurotrophin-induced phospholipidinositol 3-kinase and mitogen-activated protein kinase signaling: a mechanism for growth cone collapse. J Neurosci 2003, 23:7602-7609.

199. Chen J, Liu Y, Wang L, Zhu Z, Guo L, Chen Y, Li B, Chen X, Wang G, et al: Overexpression of ERK2 induces invasive growth and controls invasive growth. J Cell Science 2004, 23:3399-3444.

200. Chen J, Liu Y, Wang L, Zhu Z, Guo L, Chen Y, Li B, Chen X, Wang G, et al: Overexpression of ERK2 induces invasive growth and controls invasive growth. J Cell Science 2004, 23:3399-3444.

201. Castellani V, De Angelis E, Kenwrick S, Rougon G: Semaphorin-3A is expressed by tumor cells and alters cell surface signaling and controls invasive growth. Oncogene 2004, 23:3399-3444.