Phototactic behavior 9: phototactic behavioral response of *Tribolium castaneum* (Herbst) to light-emitting diodes of seven different wavelengths

Jaeun Song¹ · Eun-Young Jeong¹ · Hoi-Seon Lee¹

Received: 7 January 2016 / Accepted: 16 February 2016 / Published Online: 30 June 2016
© The Korean Society for Applied Biological Chemistry 2016

Abstract The phototactic behavioral responses of *Tribolium castaneum* adults to light-emitting diodes (LEDs) of seven different wavelengths were determined under various conditions (light exposure times, light sources, and luminance intensities) and compared with those of a black light bulb (BLB) under laboratory conditions. Based on the attractive rate (%) of *T. castaneum* adults under optimal conditions (50 lx and an 48 h exposure time) in the dark, red LED (625±10 nm) exhibited the highest potential attractive rate (97.8 %), followed by yellow (590±5 nm, 68.9 %), green (520±5 nm, 55.6 %), infrared (IR) (730 nm, 54.4 %), white (450–620 nm, 41.1 %), blue (470±10 nm, 34.4 %), and ultraviolet (UV) (365 nm, 0.06 %) LEDs. In comparison, red LED (97.8 %) was approximately 3.4 times more attractive to *T. castaneum* adults than the BLB (28.9 %). These results indicate that a red LED trap could be useful to control *T. castaneum* adults.

Keywords Attraction effects · Light-emitting diodes · Phototactic response · *Tribolium castaneum*

Stored foods/grains are damaged by various stored food/grain insects such as beetle pests, mites, and moths, resulting in qualitative and quantitative losses (Rajendran and Sriranjini 2008). Stored food/grain pests contribute to contamination of food/grain commodities through the presence of dead insects, chemical excretions, and insect body fragments. The major insect in stored foods/grains is the red flour beetle, *Tribolium castaneum* (Herbst) (Coleoptera: Tenebrionidae) (Golebiowska 1969). *T. castaneum* adults cause both qualitative and quantitative damages to flour by feeding, and they are a very common pest in flour mills, warehouses, and grocery stores (Garcia et al. 2005). It is the most economically important crop pest and has a worldwide distribution (Padin et al. 2002). Therefore, controlling the red flour beetles relies on the use of fumigants and conventional insecticides, such as chlorfluazuron and methyl bromide (Kim and Lee 2013). The use of conventional insecticides for the control of stored food/grain insects has been decreased because of problems with exposure to famers, ozone depletion, and stored food/grain pest resistance (Paul and Zlatko 2000). Thus, there is a growing need for alternative insect control methods for *T. castaneum*.

Non-chemical systems are attractive since they neither leave chemical residues in the food/grain and commodity nor do they cause resistance in insect pests (Padin et al. 2002). Among the non-chemical systems, light-emitting diode (LED) traps have been extensively used to control insect pests, including *Liriomyza trifolii* and *Trialeurodes vaporariorum* (Kim and Lee 2013). The specific merits of LEDs such as high mechanical stability, long operating life, low cost, low temperature, weight, and sensitivity have made LEDs an alternative to conventional insecticides for stored insect pests (Schubert 2003). Therefore, in the present study, the behavioral effects of LEDs on attracting *T. castaneum* adults under laboratory conditions were examined and compared with the commonly used black light bulb (BLB).

Stored insects

The cultures of *T. castaneum* were provided from the National Academy of Agricultural Science (Jeonju, Korea). These insects were reared in incubators on wheat flour + yeast (10:1), in rearing containers (30×30×25 cm) at 30±1 °C and 60±10 % RH. Only adult insects were used for the phototactic behavioral tests.
LED sources
LED sources were provided from Ciel Light Co. (Seoul, Korea) and Kodenshi Auk Co. Ltd (Jeonbuk, Korea). The LEDs chosen for testing were as follows: ultraviolet (UV) (360 nm), blue (470 nm, CL-1W-UBB, 15.0±3.1 lm), green (520 nm, CL-1W-UPGB, 45.0±3.5 lm), yellow (590 nm, PP592-8L61-AOBI, 40.0±10.0 lm), white (450–620 nm, CL-1W-URB, 60.0±4.6 lm), red (625 nm, CL-1W-URB, 35.0±1.2 lm), and infrared (IR) (730 nm). The behavioral effects of the LEDs to red flour beetles were compared with those of the BLB (F8T5 BLB: Sankyo-Denki Co. Ltd., Tokyo, Japan). The LED boards were attached to a control circuit board (30×14 cm) in a chamber. The intensity and wavelength of LEDs were controlled by control circuit board.

Chamber
The test chamber was constructed using a modified Y-maze made by Oh and Lee (2011). The Y-maze was made of an opaque acrylic body (W40×D40×L20 cm) and two acrylic walls that by Oh and Lee (2011). The Y-maze was made of an opaque acrylic body (W40×D40×L20 cm) and two acrylic walls that were situated at both ends of the interface on a light arm to allow the light passage. The outside of the light arm was set up the light sources at a distance of 25 cm. The entrance hole (10 cm) was situated between the dark arm and the light arm, and covered with nylon netting cloth. The Y-maze chamber was maintained at 60±5 % RH and 27±0.5 °C.

Bioassay
The phototactic responses of the T. castaneum adults to LEDs were examined in the chamber under different illuminance intensities, wavelengths, and light-exposure time. The illuminance intensity (lx) of the LEDs at the starting point (60 cm from the light source) was determined using an illuminometer (LM-332; AS ONE Co. Ltd., Tokyo, Japan). Thirty T. castaneum adults were collected, and released through the entrance hole. To examine the phototactic responses of the light, the numbers of beetles in the light arm and dark arm of the Y-maze chamber were recorded. First, the attractive effects of the T. castaneum adults to five different wavelengths were examined at four luminance intensities (25, 50, 75, and 100 lx) at a 48 h light-exposure time shown in Table 1. Among the LEDs of five different wavelengths at a 48 h light-exposure time, red (625±10 nm) was the most attractive (87.8 %, 97.8 %, 90.0 %, and 83.9 %) to the T. castaneum adults at each luminance intensity (25, 50, 75, or 100 lx, respectively). Furthermore, yellow (590±5 nm), green (520±5 nm), white (450–620 nm), and blue (470±10 nm) LEDs at a 48 h light-exposure time exhibited 68.9, 55.6, 41.1, and 34.4 % attractive rates at 50 lx, respectively. However, at 25, 75, or 100 lx luminance intensity, red, yellow, green, white, and blue LEDs showed low attractive responses.

The attractive rates of the T. castaneum adults to the LEDs of seven different wavelengths (UV, blue, green, yellow, red, and white) under four luminance intensities (25, 50, 75, and 100 lx) were examined at optimal luminous intensity (50 lx) (Table 2). At 50 lx luminance intensity, red (625±10 nm) LED was the most attractive (65.6, 83.9, 83.3, 97.8, and 89.1 %) to the T. castaneum adults at each 12, 24, 36, 48, or 60 h light-exposure time, respectively. Red LED exhibited the highest attractive effect (97.8 %), followed by yellow (68.9 %), green (55.6 %), IR (54.4 %), white (41.1 %), blue (34.4 %), and UV (5.6 %) LEDs at a 48 h light-exposure time. No significant differences were observed in the attraction rates (%) of the T. castaneum adults at 36, 48, or 60 h light

Table 1 Attractive rates of Tribolium castaneum adults to light emitting diodes (LEDs) under four luminance intensities (lx)\(^1\)

Wavelength (color)	Attractive rate (%)\(^2\)	Luminance intensity (lx)		
	25	50	75	100
470±10 nm (Blue)	27.7±1.87bc	34.4±2.08bc	20.0±1.45bc	8.0±0.99c
520±5 nm (Green)	15.6±1.13c	55.6±1.96c	44.4±2.82bc	43.3±2.89c
590±5 nm (Yellow)	31.7±2.10bc	68.9±2.43bc	63.3±2.97bc	12.2±1.61c
625±10 nm (Red)	87.8±2.84c	97.8±2.79c	90.0±2.83c	83.9±2.65bc
450-620 nm (white)	6.7±0.88c	41.1±2.35bc	13.3±1.59c	13.9±1.73c

\(^1\)Each value is the average of 6 determinations after a 48 h exposure, with 30 adult insects per replication

\(^2\)Attractive rate (%) is the average percentage of the 30 T. castaneum adults attracted to four light intensities

The attractive rates of T. castaneum adults to each LED were repeatedly measured under optimal conditions (exposure time and luminance intensity). These results were compared with those of the BLB. All experiments were repeated six times. One-way analyses of variance (ANOVA) using SPSS statistical software (version 18.0, SPSS Inc., Chicago, Illinois, USA) was used to compare the numbers of T. castaneum adults in the phototactic responses. Duncan’s multiple-range test was performed to compare differences among the mean values at p < 0.05. Data were expressed as means ± standard error of the mean (SEM).

To evaluate the phototactic behavioral patterns of the T. castaneum adults to the LEDs, the attractive effects (%) of five luminous intensities, seven wavelengths of monochromatic light, and five light-exposure times were compared to that of the BLB, which served as the positive control. The behavioral pattern of T. castaneum adults to the five LEDs (blue, green, yellow, red, and white) under four luminance intensities (25, 50, 75, and 100 lx) at a 48 h light-exposure time are shown in Table 2. Among the LEDs of five different wavelengths at a 48 h light-exposure time, red (625±10 nm) was the most attractive (87.8, 97.8, 90.0, and 83.9 %) to the T. castaneum adults at each luminance intensity (25, 50, 75, or 100 lx, respectively). Furthermore, yellow (590±5 nm), green (520±5 nm), white (450–620 nm), and blue (470±10 nm) LEDs at a 48 h light-exposure time exhibited 68.9, 55.6, 41.1, and 34.4 % attractive rates at 50 lx, respectively. However, at 25, 75, or 100 lx luminance intensity, red, yellow, green, white, and blue LEDs showed low attractive responses.

The attractive rates of the T. castaneum adults to the LEDs of seven different wavelengths (UV, blue, green, yellow, red, and white) and five light-exposure times (12, 24, 36, 48, and 60 h) were examined at optimal luminous intensity (50 lx) (Table 2). At 50 lx luminance intensity, red (625±10 nm) LED was the most attractive (65.6, 83.9, 83.3, 97.8, and 89.1 %) to the T. castaneum adults at each 12, 24, 36, 48, or 60 h light-exposure time, respectively. Red LED exhibited the highest attractive effect (97.8 %), followed by yellow (68.9 %), green (55.6 %), IR (54.4 %), white (41.1 %), blue (34.4 %), and UV (5.6 %) LEDs at a 48 h light-exposure time. No significant differences were observed in the attraction rates (%) of the T. castaneum adults at 36, 48, or 60 h light...
LEDs. Moreover, green and the blue LEDs were 1.3 and 1.2 to 3.4 times more attractive to the rice weevil, followed by green (74.3%), red (64.3%), and UV wavelengths (UV, blue, green, yellow, red, white, and IR) were evaluated at 50 lx luminous intensity and a 48 h light-exposure time and compared with those to the BLB (Table 3). Red LED was the most attractive to BLB. In previous studies, Jeon et al. (2012) suggest that blue LED showed lower phototactic behavioral response to the retina. Taken together, our study results suggest that red LED (625±10 nm) at 50 lx luminous intensity and a 48 h exposure time was the most suitable in attracting T. castaneum adults for protecting stored foods/grains. However, further experimental research is necessary to compare the efficiencies of the selected LEDs.

Table 2 Attractive rates of T. castaneum adults to LEDs under various light-exposure times (h)1)

Wavelength (color)	Luminance intensity (lx)	Attractive rate (%)2)	Light-exposure time (h)
365 nm (UV)	2)	2.8±0.49b	12 24 36 48 60
470±10 nm (Blue)	50	16.1±0.68b	12 24 36 48 60
520±5 nm (Green)	50	44.4±2.44b	12 24 36 48 60
590±5 nm (Yellow)	50	22.2±0.44c	12 24 36 48 60
625±10 nm (Red)	50	65.6±2.84ab	12 24 36 48 60
450-620 nm (white)	50	11.1±0.27c	12 24 36 48 60
730 nm (IR)	50	19.4±1.68bc	12 24 36 48 60

1) Each value is the average of 6 determinations, with 30 adult insects per replication.
2) Attractive rate (%) is the average percentage of the 30 T. castaneum adults attracted to five light-exposure times per each light-exposure time at 8 W

Table 3 Attractive rates of T. castaneum to the LEDs of seven different wavelengths and BLB under optimal lighting conditions1)

Wavelength (color)	Number of insects (Mean ± SEM)	Attractive rate (%)2)	Relative attraction3)
365 nm (UV)	1.67±0.69c	0.06c	0.2
470±10 nm (Blue)	10.33±1.42bc	34.4c	1.2
520±5 nm (Green)	16.67±3.25c	55.6d	1.9
590±5 nm (Yellow)	20.67±3.43c	68.9d	2.4
625±10 nm (Red)	29.33±1.64c	97.8e	3.4
450-620 nm (white)	12.30±2.06e	41.1e	1.4
730 nm (IR)	16.33±2.49b	54.4d	1.9
BLB	8.67±1.49c	28.9c	1.0

1) Each value is the average of 6 determinations at optimal conditions (50 lx and 48 h), with 30 adult insects per replication.
2) Each value is the average of 6 determinations per each light-exposure time at 8 W
3) Relative attraction = attractive rate of each wavelength/attractive rate of the BLB
Acknowledgments
This work was carried out with the support of “Cooperative Research Program for Agriculture Science & Technology Development (Project title: Development of integrated pest management techniques using natural products and LEDs in the grain storage, Project No. PJ01004501)” Rural Development Administration, Republic of Korea.

References

Antignus Y (2000) Manipulation of wavelength-dependent behaviour of insects: an IPM tool to impede insects and restrict epidemics of insect-borne viruses. Virus Res 71: 213–220

Briscoe AD, Chittka L (2001) The evolution of color vision in insects. Ann Rev Entomol 46: 471–510

Garcia M, Donadel OJ, Ardanaz CE, Tonn CE, Sosa ME (2005) Toxic and repellent effects of Baccharis salicifolia essential oil on Tribolium castaneum. Pest Manag Sci 61: 612–618

Golebiowska Z (1969) The feeding and fecundity of Sitophilus granarius (L.), Sitophilus oryzae (L.) and Rhyzopertha dominica (F.) in wheat grain. J Stored Prod Res 5: 143–155

Jackowska M, Bao R, Liu Z, McDonald EC, Cook TA, Friedrich M (2007) Genomic and gene regulatory signatures of cryptotoxic adaptation: Loss of blue sensitive photoreceptors through expansion of long wavelength-opsin expression in the red flour beetle Tribolium castaneum. Front Zool 4: 1–11

Jeon JH, Oh MS, Cho KS, Lee HS (2012) Phototactic response of the rice weevil, Sitophilus oryzae linnaeus (Coleoptera: Curculionidae), to light-emitting diodes. J Korean Soc Appl Biol Chem 55: 35–39

Kim MG, Lee HS (2013) Attractive effects of American serpentine leafminer, Liriomyza trifolii (Burgess), to light-emitting diodes. J Insect Behav 27: 127–132

Oh MS, Lee HS (2011) Development of phototactic test apparatus equipped with light source for monitoring pests. J Appl Biol Chem 53: 248–252

Padin S, Dal BG, Fabrizio M (2002) Grain loss caused by Tribolium castaneum, Sitophilus oryzae and Acanthoscelides obtectus in stored durum wheat and beans treated with Beauveria bassiana. J Stored Prod Res 38: 69–74

Paul F, Zlatko K (2000) The effect of grain moisture content and temperature on the efficacy of diatomaceous earths from different geographical locations against stored-product beetles. J Stored Prod Res 36: 1–13

Rajendran S, Sriranjini V (2008) Plant products as fumigants for stored-product insect control. J Stored Prod Res 44: 126–135

Schubert EF (2003) Light-emitting diodes, Cambridge University Press, 0-521-82330, UK

Vaishampayan SM, Kogan M, Waldbauer GP, Wooley JT (1975) Spectral specific responses in the visual behaviour of the greenhouse whitefly, Trialeurodes vaporariorum (Homoptera: Aleurodidae). Entomol Exp Appl 18: 344–356