A STUDY OF SYMPATHETIC FUNCTION TESTS DURING DIFFERENT PHASES OF MENSTRUAL CYCLE IN NORMAL HEALTHY FEMALES
Rinku Garg¹, Varun Malhotra², Usha Dhar³, Yogesh Tripathi⁴

HOW TO CITE THIS ARTICLE:
Rinku Garg, Varun Malhotra, Usha Dhar, Yogesh Tripathi. "A Study of Sympathetic Function Tests during different Phases of Menstrual Cycle in Normal Healthy Females". Journal of Evolution of Medical and Dental Sciences 2014; Vol. 3, Issue 24, June 16; Page: 6590-6600, DOI: 10.14260/jemds/2014/2786

ABSTRACT: AIMS AND OBJECTIVES: The present study was designed to study the sympathetic function tests during the follicular, luteal and menstrual phases of the menstrual cycle in normal healthy eumenorrheic females. MATERIALS AND METHODS: Thirty females in the age group of 18-25 years were recruited for the study. Sympathetic non-invasive autonomic function tests were performed that is Isometric handgrip exercise test, cold pressor test and postural challenge test. STATISTICAL ANALYSIS: Results were analyzed by ANOVA with SPSS version 17.0 using unpaired ‘t’ test.

RESULTS: showed that during the luteal phase, there is a significant increase in the resting systolic (119.1±4.41) and diastolic (74.43±4.26) blood pressure, as compared to menstrual(SBP 116.11± 4.23 & DBP 72.13±3.44) and follicular phase(SBP 110.23 ± 4.46 & DBP 69.13±3.13) showing the sympathetic dominance (p<0.05). The systolic and diastolic blood pressure also showed significant increase (p<0.05) with the application of the stimulus [viz. isometric handgrip exercise, cold pressor tests and postural challenge test] during the luteal phase as compared to both follicular and menstrual phase. However, In the follicular phase, both the systolic and diastolic blood pressure decreased with the application of the stimulus [viz. isometric handgrip exercise(Follicular phase SBP 112.16±3.12, DBP 70.16±1.18), cold pressor tests (SBP 121.41±3.27, DBP 80.43±4.12) and postural challenge test (SBP 100.23±4.41, DBP 60.14±3.32)] as compared to the menstrual (IHG SBP 120.15±3.11, DBP 74.24±2.14, CPT SBP 125.17±3.29 DBP 86.22±4.16, postural challenge SBP 105.17±4.17, DBP 62.41±3.11) and luteal phase (IHG SBP124.12±2.21, DBP 78.12±3.23, CPT SBP 129.21±3.12 DBP 90.23±4.46, postural challenge SBP 109.21±4.61, DBP 65.12±3.22) showing the parasympathetic predominance. The decrease is statistically significant (p<0.05). CONCLUSIONS: Our study shows that blood pressure in the resting state and during the stressful maneuvers like cold pressor test, isometric handgrip exercise and standing from lying posture was highest during luteal phase of the menstrual cycle and lowest in the follicular phase. This correlates to the symptoms of premenstrual syndrome which has hormonal and neural basis.

KEYWORDS: follicular phase, luteal phase, autonomic nervous system, menstrual cycle.

INTRODUCTION: The biological activity of the menstrual cycle is created by the coordination among hypothalamic, hypophyseal and ovarian hormones.¹

The established hypothalamic, hypophyseal and ovarian axis and its cyclical hormonal changes during the three phases of normal menstrual cycle are as follows.²

Follicular Phase: is mainly a phase of oestrogen, influenced by follicular stimulating hormone. Luteal phase: primarily a phase of progesterone influenced both by follicular stimulating hormone and lutetinizing hormone.
Menstrual Cycle: The cervical bleeding phase, due to the withdrawal of hormonal effect on endometrium. The fluctuations in hormonal levels affect not only the female reproductive tract but also many other tissues of the body.

Reproductive hormones primarily estrogen, may modulate cardiovascular function through a number of mechanisms, including stress induced activation of the hypothalamic pituitary adrenal and sympatho-adrenomedullary systems. Chapman et al reported that endogenous progesterone was known to have hypertensive effect, whereas administration of estrogen promoted vasodilator effect by increased prostacyclin and nitric oxide synthesis.

Variations in the autonomic nerve function may also be related to these fluctuations. Some women may experience some physical, psychological and behavioral symptoms which occur in late luteal phase of menstrual cycle as premenstrual syndrome. The physiological changes observed during the luteal phase of menstrual cycle are known to mimic early pregnancy.

Hassan et al reported that significant decrease in mean blood pressure during mid-luteal phase was due to decrease in total peripheral resistance. Dunne et al demonstrated a high blood pressure at the onset of menstrual cycle as compared to other phases.

Normally, blood pressure is under the control of autonomic nervous system. The sympathetic nerves discharge in a tonic fashion that constricts the arterioles and veins increasing the heart rate and stroke volume. Blood pressure is adjusted by variations in rate of this tonic discharge. The behavioral and psychological changes in response to hormonal imbalance during premenstrual phase, pregnancy and menopause involve limbic system and hypothalamus.

Most of the behavioral and emotional patterns are exhibited through autonomic nervous system. Therefore, it is worthwhile to assess autonomic functions during various phases of menstrual cycle. Moreover, there are few studies in the cardiorespiratory functions in different phases of the menstrual cycle among the healthy Indian women. Thus the objective of our study is to elucidate the autonomic functions during follicular, luteal and menstrual phases of the cycle in young healthy females.

MATERIALS & METHODS: The present study was a cross-sectional study, conducted in Santosh Medical College, Ghaziabad. Ethical approval was taken from the research committee of the institution before starting the study.

Thirty apparently healthy female volunteers in the age group of 18-25years with h/o regular menstrual cycle were studied in follicular, luteal and menstrual phases of menstrual cycle. Menstrual history including age of menarche, regularity of cycles, h/o dysmenorrhea, h/o premenstrual symptoms like irritability, headache were collected. Women subjects with age >above 25years, h/o irregular menstrual cycles, use of contraceptive pills, h/o diabetes or hypertension or any other chronic illness, on medication and smokers were excluded from the study. Informed consent was taken from all the subjects.

Height was measured using a standard stadiometer with the subject standing in erect posture. The readings were taken to the nearest 0.1cm. Weight was recorded in kilograms using a calibrated weighing machine (Avery) scale with a capacity of 120kgs and a sensitivity of 0.05kg. The BMI was calculated as the weight in kilograms divided by the square of the height in meters [weight (kg)/height (m²)].
The following tests were performed for assessment of sympathetic activity:

Resting blood pressure of all the subjects was measured by auscultatory method with the help of mercury sphygmomanometer (DIAMOND). Before recording the blood pressure, subjects were allowed to rest for 10 minutes in a quiet room to reduce the anxiety. First Kortkoff sound indicated systolic blood pressure (SBP) and fifth Kortkoff sound indicated diastolic blood pressure (DBP).

Cold pressor test: Procedure of the cold pressor test (CPT) was explained to all the students participating in the study. After recording resting blood pressure, subjects were asked to dip left arm in the cold water (temp at 2-4°C) for 2 minutes and blood pressure was recorded from the right arm. Blood pressure was once again recorded 5 minutes after hand was taken out from the cold water.

Isometric Handgrip Exercise Test: After recording basal blood pressure, subjects were asked to perform isometric handgrip exercise. Subjects were told to hold the handgrip spring dynamometer in the right (or dominant hand) to have a full grip of it. Handles of the dynamometer were compressed by the subject with maximum effort for few seconds. This whole procedure was repeated thrice with rest in between to prevent fatigue. Mean of the three readings was referred as maximal isometric tension (Tmax). Then, the subjects were asked to perform isometric handgrip exercise at 30% of Tmax for 2 minutes. During the test, blood pressure was recorded from the non-exercising arm. Blood pressure was again recorded 5 minutes after completion of the exercise.

Blood pressure from supine to standing position (postural challenge test): The subject was asked to lie down quietly for 10 minutes, then the subject is asked to stand quietly, unaided within 5 seconds and remain standing quietly for 1 minute, the systolic and diastolic blood pressure was measured at the end of 1 minute.

Statistical Analysis: Results were analyzed by ANOVA with SPSS version 17.0 using unpaired ‘t’ test.

RESULTS:

Variables	Mean±SD
Age(yrs)	20.72±1.20
BMI(kg/m²)	21.67± 0.97

Table 1: Mean ± SD of the anthropometric variables

Parameters	Menstrual phase	Follicular phase	Luteal phase
Resting SBP(mmHg)	116.11± 4.23	110.23 ± 4.46	119.1 ± 4.41
Resting DBP(mmHg)	72.13±3.44	69.13±3.13	74.43±4.26
IHG SBP(mmHg)	120.15±3.11	112.16±3.12	124.12±2.21
IHG DBP(mmHg)	74.24±2.14	70.16±1.18	78.12±3.23
CPT SBP(mmHg)	125.17±3.29	121.41±3.27	129.21±3.12
CPT DBP(mmHg)	86.22±4.16	80.43±4.12	90.23±4.46
Postural SBP(mmHg)	105.17±4.17	100.23±4.41	109.21±4.61
Postural DBP(mmHg)	62.41±3.11	60.14±3.32	65.12±3.22

Table 2: Statistical analysis of sympathetic function tests [Isometric Handgrip Exercise Test, Cold Pressor Test and Postural Challenge Test] during different phases of the menstrual cycle.
Data presented in Table 2 shows that during the luteal phase, there was significant increase in the resting systolic and diastolic blood pressure showing the sympathetic dominance. Both systolic and diastolic blood pressure also showed significant increase (p<0.05) with the application of the stimulus [isometric handgrip exercise, cold pressor tests and postural challenge test] during the luteal phase. In the follicular phase, both the systolic and diastolic blood pressure decreased with the application of the stimulus [isometric handgrip exercise, cold pressor tests and postural challenge test] and without the stimulus, the decrease is statistically significant (p<0.05).

Fig. 1: Bar diagram showing comparison of resting DBP in different phases of menstrual cycle.

![Figure 1]

Fig. 2: Bar diagram showing comparison of resting SBP in different phases of menstrual cycle.

![Figure 2]
Fig. 3: Comparison of DBP response to isometric handgrip exercise test in different phases of the menstrual cycle.

![Figure 3](image)

Fig 4: Comparison of SBP response to isometric handgrip exercise test in different phases of the menstrual cycle.

![Figure 4](image)
Fig. 5: Comparison of DBP response to cold pressor test in different phases of the menstrual cycle.

![Figure 5]

Fig. 6: Comparison of SBP response to cold pressor test in different phases of the menstrual cycle.

![Figure 6]
Fig. 7: Comparison of Postural DBP in different phases of the menstrual cycle.

Fig. 8: Comparison of Postural SBP in different phases of the menstrual cycle.
DISCUSSION: In the present study, significant increase in the resting systolic and diastolic blood pressure was observed in the luteal phase as compared to the menstrual phase in contrast to the significant decrease in the follicular phase. In the follicular phase, estrogen promote vasodilatation by stimulating the release of prostacyclin and nitric oxide and inhibit the production of vasoconstrictors like angiotensinogen II and endothelins.12,13

Estrogen increases density as well as the function of presynaptic α_2 adrenoreceptors in the follicular phase that causes a significant decrease in the secretion of noradrenaline14. Estrogen causes smooth muscle relaxation and thus vasodilatation by stimulating the opening of calcium activated potassium channels by nitric oxide15 and cyclic guanosine monophosphate pathway that causes vasodilatation.16 Estradiol might also be associated with increase in acetylcholine concentration.17

This may be the cause of decreased sympathetic activity during follicular phase as compared to luteal phase.18

During the luteal phase, progesterone may increase cardiac excitability by opposing effects of estrogen.19 Progesterone also exerts an inhibitory effect on the cardiovagal baroreflex responses.20

Estradiol peaks during luteal phase and this helps in increasing progesterone receptors. This increased action of progesterone hormone during the luteal phase may be responsible for increased sympathetic activity. It has been shown that ovarian steroids in the normal menstrual cycle may alter the autonomic nervous system activity with parasympathetic predominance in the follicular phase and sympathetic dominance in the luteal phase that raises the resting blood pressure.21

Our study showed a statistically significant difference in postural change of systolic and diastolic blood pressure in all the three phases of menstrual cycle. On sudden change of posture from supine to standing, there is peripheral pooling of blood in the dependent parts of the body; this decreases the venous return and cardiac output so the systolic blood pressure decreases. This via the sino-aortic reflex, which operates within seconds, stabilizes the blood pressure.3

The parasympathetic activity is predominant in the follicular phase, resulting in an impairment of baroreflex caused by posture changes. Moreover, baroreflex control of the sympathetic component increases in the premenstrual phase. Thus, it was concluded that baroreflex regulation of autonomic functions is modified by postural change during the menstrual cycle.22

Our study showed that the systolic and diastolic blood pressure response to cold pressor test was significantly higher in the luteal phase as compared to the menstrual and follicular phases and the difference was statistically significant(p<0.05). Increased sympathetic activity induced by cold water stress causes norepinephrine release and elevation of blood pressure. Increase in blood pressure might also be contributed by release of endothelins, prostaglandins and angiotensin II.23

Women’s pain threshold was significantly higher during the second phase of the menstrual cycle indicating increased levels of ovarian steroids and endorphins.24

Normally during isometric handgrip exercise, there is increase in the concentrations of metabolites like lactic acid and adenosine that are detected by metabolite-sensitive nerve endings within the skeletal muscle interstitium. These substances increase the discharge of group IV (metaboreceptor) afferent fibers, initiating a potent reflex that increases sympathetic nerve activity.

This leads to vasoconstriction, which contributes to the rise in BP,25 it is shown that there is a marked influence of estrogen on the blood flow through the hand and forearm; especially on the venous tone, yet the effects of progesterone on peripheral blood flow are questionable.26
It is possible that under the influence of estrogen, the normal blood flow response to known vasodilators may be reduced or reversed that will decrease the endurance for isometric exercise.\(^{27}\)

In the menstrual phase due to blood loss, blood pressure is lesser than during luteal phase without and with the application of the stimulus [viz. isometric handgrip exercise, cold pressor tests and postural challenge test]. However, blood pressure in this phase is more than the follicular phase, that may be due to fall in estrogen levels.\(^{6,13}\)

CONCLUSIONS: Our study shows that blood pressure in the resting state and during the stressful maneuvers like cold pressor test, isometric handgrip exercise and standing from lying posture was highest during luteal phase of the menstrual cycle and lowest in the follicular phase. This correlates to the symptoms of premenstrual syndrome which has hormonal and neural basis.

REFERENCES:

1. Cooke WH, Ludwig DA, Hogg PS, Eckburg DL, Convertino VA. Does the menstrual cycle influence the sensitivity of vagally mediated baroreflexes. Clin Sc 2002;102: 639-644
2. Williams. Pregnancy planning and antepartum management, Text Book of Obstetrics. 2006, 22\(^{nd}\) edition, 226.
3. Hassan AAK, Carter G, Tooker JE. Postural vasoconstriction in women during normal menstrual cycle. Clin Sci 1990; 78: 39-47.
4. Takano N. Changes of ventilation and ventilator response to hypoxia during the menstrual cycle. Pflungers Arch 402: 312-316, 1984.
5. Chapman AB, Zamudio S, Woodmansee W, et al. Systemic and renal haemodynamic changes in the luteal phase of the menstrual cycle mimic early pregnancy. Am J Physiol 1997; 273: 777-782.
6. Das TK. Effects of the menstrual cycle on timing and depth of breathing at rest. Indian J Physiol Pharmacol 42: 498-502, 1998.
7. Reid RL, yen SS. Premenstrual syndrome. Am I Obstet Gynecol 1981; 139: 85-104
8. Dunne FP, Barry DG, Ferriss JB, Grealy G, Murphy D. Changes in blood pressure during normal menstrual cycle. Clin Sci 1991; 81; 515-518.
9. William F Ganong. Dynamics of blood flow and lymph flow, Cardio vascular regulatory mechanisms, Review of medical physiology. 2005; 22\(^{nd}\) edition, 30:590.
10. Nilekar A.N, Patil V.V, Kulkarni S, Vatve M. Autonomic function tests during pre and post menstrual phases in young women. Pravara Med Rev 2011; 3 (2).
11. Greenberg G, Imeson JD, Thompson SG, Meade TE. Blood pressure and the menstrual cycle. Br J Obstet Gynecol 92:1010-1014, 1985.
12. Everett RB, Worley RJ, MacDonald PC and Gant NF. Modification of vascular responsiveness to Angiotensinogen II in pregnant women by intravenously infused 5 alpha dihydroprogestrone. Am J Obstet Gynaecol 1978; 131: 352-357.
13. Polderman KH, Stehouwer CD, Van Kamp GJ, Schalwikj CG and Gooren LJ. Modulation of plasma endothelin levels by the menstrual cycle 2000; 49: 648-650.
14. Salch TM, Connell BJ. Role of 17 beta-estradiol in the modulation of baroreflex sensitivity in male rats. Am J Physiol; 275: R770-R778.
15. Wellman GC, Boney AD, Nelson MT, Brayden JE. Gender differences in coronary artery diameter involve estrogen, nitric oxide, and Calcium dependent K+ channels. Circ Res 1996; 79: 1024-1030.
16. White RE, Carrier GO. Vascular contraction induced by activation of membrane calcium ion channels is enhanced in streptozotocin-diabetes. J Pharmacol Exp Ther 1990; 253: 1057-1062.
17. Constantin NI, Dubnov G, Lebrun CM. The menstrual cycle and sport performance. Clin Sports Med 2005; 24: 51-82.
18. Choudhury R, Jahan N, Sultana N, Akter R, Khanam AA. Parasympathetic nerve function status during different phases of menstrual cycle in healthy young women. J Bangadesh Soc Physiol. 2011; 6(2): 100-107.
19. Kondo M, Hirano T, Okamura Y. Changes in autonomic nerve function during the normal function measured by the coefficient of variation of R-R intervals. Nippon Sanka Fujinka Gakki Zasshi 1989; 41(5): 513-518.
20. Tanaka M, Sato M, Umehra S, Nishikawa T. Influence of menstrual cycle on baroreflex control of heart rate: comparison with male volunteers. Am J Physiol Regul Integr Comp Physiol 2003; 285: R 1091-R1097.
21. Kavitha C, Jamuna BL, Vijayakumar GS. Pressor response during normal menstrual cycle. Int J Biol Med Res 2012; 3 (3): 1975-1981.
22. Yuka Saekia, Fumia Atogamib, Kana Takahashib and Tokoyo Yoshizawab. Reflex control of autonomic function test induced by posture change during the menstrual cycle. Journal of the Autonomic Nervous System. 1997 Sep; 66: 69-74.
23. Velasco M, Gomez J, Blanco M, Rodriguez I. The cold pressor test: pharmacological and therapeutic aspects. American Journal of Threaputics 1997; 4 (1):34-38.
24. Birgitta Hellstrom, Ulf Lundberg, Department of psychology, Stockholm University, Sweden. Integrative Physiological and Behavioural Science. 2000 April; 35 (2): 132-141.
25. Mostoufi-Moab S, Widmaier EJ, Cornett JA, Gray K, Sinoway LI. Forearm training reduces the exercise pressor reflex during ischemic rhythmic handgrip. Journal of Applied Physiology 1998; 84: 1277-283.
26. Nuwayhid B, C Bunkman J, Woods H, Martinek, N Assali. Effects of estrogens on systemic and regional circulations in normal renal hyaertensive sheep. Amer J Obstet Gynecol. 1975; 123: 495-504.
27. Lloyd S, M Pickford. The effect of estrogens and sympathetic denervation on the response to oxytocin of the blood vessels in the hind limb of the dog. J Physiol. 1962; 163: 362-371.
AUTHORS:

1. Rinku Garg
2. Varun Malhotra
3. Usha Dhar
4. Yogesh Tripathi

PARTICULARS OF CONTRIBUTORS:

1. Assistant Professor, Department of Physiology, Santosh Medical College, Ghazibad.
2. Professor, Department of Physiology, Santosh Medical College, Ghazibad.
3. Professor, Department of Physiology, Santosh Medical College, Ghazibad.
4. Professor, Department of Physiology, Santosh Medical College, Ghazibad.

NAME ADDRESS EMAIL ID OF THE CORRESPONDING AUTHOR:

Dr. Rinku Garg,
#H-402, Indian Oil Apartments,
Sec-62, Noida.
E-mail: rgrinkigarg6@gmail.com

Date of Submission: 29/05/2014.
Date of Peer Review: 30/05/2014.
Date of Acceptance: 06/06/2014.
Date of Publishing: 10/06/2014.