Abstract. Background: Geranylgeraniol (GGOH) is a C20 isoprenoid found in fruits, vegetables, and grains, including rice. As a food substance, GGOH is categorized as ‘Generally Recognized as Safe’. GGOH is an intermediate product in the mevalonate pathway and acts as a precursor to geranylgeranylprophosphate. Materials and Methods: C2C12 mouse myoblasts derived from muscle satellite cells were used. Quantitative reverse-transcriptase polymerase chain reaction, western blotting analysis, and immunocytochemical analysis were performed to respectively assess mRNA expression, protein levels, and the number of myofibers. Results: GGOH reduced the expression levels of skeletal muscle atrophy-related ubiquitin ligases in myofibers derived from C2C12 cells. GGOH induced myogenic differentiation of C2C12 cells via geranylgeranylation. GGOH did not adversely affect the proliferation of C2C12 cells. Conclusion: GGOH induces myoblast differentiation in C2C12 cells.

Satellite cells are skeletal muscle stem cells residing beneath the basal lamina that provide myonuclei for postnatal muscle growth, repair, and regeneration in adults. Satellite cells are activated in response to muscle injury, proliferate extensively and then differentiate into myoblasts. This is accompanied by the transcriptional up-regulation of myogenic differentiation (MYOD) and other myogenic differentiation marker genes, such as myogenin (MYOG), creatine kinase M-type (CKM), and myosin heavy chain (MYHC) (1-3). Insulin-like growth factors (IGFs) are essential for skeletal muscle development, regeneration, and hypertrophy – processes which all require satellite cell activation and differentiation (4-6). The autocrine action of IGF2 is especially critical for the differentiation of satellite cells in vitro (7). C2C12 cells are a murine myoblast cell line derived from satellite cells (8). C2C12 cells are commonly used as an in vitro model of muscle regeneration due to their ability to transition from a proliferative phase into differentiated myofibers, similar to satellite cells, upon adequate stimulus (3).

Statins act by inhibiting 3-hydroxy-3-methylglutaryl-coenzyme A reductase, the first step of the isoprenoid biosynthetic pathway and the rate-limiting step of cholesterol biosynthesis (9). Statins are used as a frontline therapy for lowering plasma cholesterol and preventing cardiovascular disease (10-13). Statins are generally safe and effective. However, they may induce a variety of skeletal muscle-associated, dose-dependent adverse reactions that range from muscle pain to muscle cell damage and severe rhabdomyolysis (14-17). These statin-associated muscle disorders are likely due to inhibition of the synthesis of crucial intermediary molecules such as geranylprophosphate and geranylgeranylprophosphate (GGPP) (19-21). Treatment of C2C12 cells with GGPP was found to reverse the suppressive effect of statin on myotube formation (22). Geranylgeraniol (GGOH), a precursor to GGPP, reduced...
muscle damage induced by statin treatment in vitro (23). Thus, GGOH seems to have protective effects on skeletal muscle. However, the extent of this potentially beneficial effect remains unknown. In this study, the effect of GGOH on myogenesis in C2C12 cells was investigated.

Materials and Methods

Cell culture, transfection, and skeletal muscle differentiation. C2C12 murine myoblasts were purchased from American Type Culture Collection (Manassas, VA, USA). C2C12 cells were maintained as previously described (24) and cultured in the presence of 0, 5, 10, 50, or 100 μM GGOH (Sigma–Aldrich Chemicals, St. Louis, MO, USA) and 100 μM of the geranylgeranytransferase I inhibitor N-[4-[2(R)-amino-3-mercaptopropyl]amino-2-(1-naphtha-leny]benzoyl]-L-leucine methyl ester trifluoroacetate salt (GGTI-298) (Tocris Bioscience, Bristol, UK). Skeletal muscle differentiation in C2C12 cells was induced by culturing cells with Dulbecco’s modified Eagle’s medium supplemented with 2% horse serum (Biosera, Kansas City, MO, USA) for 5-8 days (3).

Reverse transcription and quantitative polymerase chain reaction (qPCR) analysis. Total RNA was isolated from C2C12 cells using FastGene RNA Basic Kit (Nippon Genetics, Tokyo, Japan) and then reverse-transcribed into cDNA using the ReverTra Ace qPCR RT Kit (Toyobo, Osaka, Japan). SYBR green-based qPCR was performed in 96-well plates using PowerUp SYBR Green Master Mix (ThermoFisher Scientific, Waltham, MA, USA) with QuantStudio 3 Real-Time PCR System (ThermoFisher Scientific). Values were normalized to β-actin (Actb) using the 2−ΔΔCt method (25). The following primers were used for qPCR analyses: qPCR for murine Fbxo32: forward: agggagccgctacgata, reverse: gatcaacagcgcgctcaat; tripartite motif containing 63 (Trim63): forward: gaccaactcaagcagacgatc, reverse: gcccggcttcacacacggta; murine Myog: forward: ccctcaagctcaacttcaggt, reverse: aagagatgagaagcacggccgctgtaatccatcat; murine Myod: forward: cctccttacccaacttcaggt, reverse: aagagatgagaagcacggccgctgtaatccatcat.

Proliferation assay. C2C12 cells were cultured in the presence of GGOH at concentrations of 0, 5, 10, 50, or 100 μM for 1, 2, or 3 days. Proliferation of C2C12 cells was assessed using Cell Counting Kit-8 (Dojindo, Kumamoto, Japan) and then treated with or without (Ctrl) 50 μM GGOH for another 3 days. Total RNA was isolated, then F-box protein 32 (Fbxo32) (A) and tripartite motif containing 63 (Trim63) (B) mRNA levels were analyzed using quantitative polymerase chain reaction. All data are expressed as the means±SD (n=3). *Significantly different at p<0.01 versus vehicle-treated cells. Similar results were obtained by three independent experiments.

Statistical analysis. Comparisons were made using an unpaired Student’s t-test; the results are shown as the means±S.D. Statistical significance was defined as p<0.05.

Results

Firstly, it was confirmed whether GGOH protects skeletal muscle fibers derived from C2C12 cells from atrophy. Treatment of cells with 50 μM GGOH for 3 days reduced the expression levels of muscle atrophy-related ubiquitin ligase Fbxo32 (Figure 1A) and Trim63 (Figure 1B).

Next, we examined the effect of GGOH on skeletal muscle differentiation in C2C12 cells. qPCR analysis revealed that although 50 μM GGOH treatment for 2 days did not change the expression level of Myod (Figure 2A), it did enhance the induction of early-stage myogenic marker genes such as Myog and Ckm (Figure 2B and C). GGOH treatment also led to a dose-dependent increase in the protein level of MYOG (Figure 2F) as well as of the late myoblast marker MYHC (Figure 2G and H). In addition, GGOH dramatically stimulated the expression level of Igf2 in C2C12 cells (Figure 2D).
positive effect of GGOH on the induction of Myog was blocked by the addition of the geranylgeranyl transferase inhibitor GGIT-298 (Figure 2I), suggesting that the augmentative effect of GGOH on myogenic differentiation is via geranylgeranylation. GGOH did not adversely affect the proliferation of C2C12 cells (Figure 3).

Discussion

In the present study, we examined the effect of GGOH on fiber degradation, differentiation, and proliferation in C2C12 cells.

GGOH is a C20 isoprenoid found in fruits, vegetables, and grains, including rice. As a food substance, GGOH is categorized as ‘Generally Recognized as Safe’ (26). GGOH is an intermediate product in the mevalonate pathway and acts as a precursor to GGPP. In the cell, GGOH is thought to be subsequently converted into the pyrophosphate moiety, GGPP, by two successive monophosphorylation events (27). GGPP induces geranylgeranylation, which is necessary for the membrane localization of intracellular proteins, particularly the small GTP-binding proteins rat sarcoma virus oncogene (RAS), ras homolog family member (RHO), Rac family small GTPase (RAC) and Rap GTPase (RAP) (28). In our study, GGIT-298, an inhibitor of geranylgeranylation, eliminated GOOH-induced myoblast differentiation of C2C12 cells (Figure 2I), suggesting that GGOH-induced myogenesis requires geranylgeranylation of certain protein(s). Further experiments are needed to elucidate the mechanism that underlies GGOH-induced myoblast differentiation.

Inhibition of the isoprenoid biosynthetic pathway by statins may be involved in the occurrence of statin-associated...
Generally Recognized as Safe’ and can be taken orally (32), treatment, our data will provide the basis for a new potential product for the treatment of muscle atrophy. Myogenic differentiation. Since GGOH is categorized as a myogenic differentiating agent, it is expected to be useful in the treatment of muscle atrophy-related diseases. Skeletal muscle atrophy is associated with age-related sarcopenia, which can be prevented by skeletal muscle atrophy-related factors. In conclusion, we demonstrated that in C2C12 murine skeletal muscle myoblasts, GGOH reduced the expression of muscle atrophy-related genes and enhanced skeletal muscle mass and function.

In conclusion, we demonstrated that in C2C12 murine skeletal muscle myoblasts, GGOH reduced the expression of muscle atrophy-related genes and enhanced myogenic differentiation. Since GGOH is categorized as ‘Generally Recognized as Safe’ and can be taken orally (32), upon the establishment of a suitable protocol for GGOH treatment, our data will provide the basis for a new potential product for the treatment of muscle atrophy.

Conflicts of Interest

The Authors declare that they have no conflict of interests in regard to this study.

Acknowledgements

This study was supported by The Japan Health Foundation (S. K.).

References

1. Montarras D, L’Honoré A, and Buckingham M: Lying low but ready for action: the quiescent muscle satellite cell. FEBS J 280: 4036-4050, 2013.
2. Zammit PS, Goldberg JP, Nagata Y, Hudon V, Partridge TA, and Beauchamp JR: Muscle satellite cells adopt divergent fates: A mechanism for self-renewal? J Cell Biol 166: 347-357, 2004.
3. Kokubu S, Nakatomi C, Matsubara T, Ono Y, Addison WN, Lowery JW, Urata M, Hudnam AM, Hitomi S, Nakatomi M, Sato T, Osawa K, Yoda T, Rosen V, and Jimi E: The transcriptional co-repressor TLE3 regulates myogenic differentiation by repressing the activity of the MyoD transcription factor. J Biol Chem 292: 12885-12894, 2017.
4. Florini JR, Ewton DZ, and Magri KA: Hormones, growth factors, and myogenic differentiation. Annu Rev Physiol 53: 201-216, 1991.
5. Rosenblatt JD, Yong D, and Parry DJ: Satellite cell activity is required for hypertrophy of overloaded adult rat muscle. Muscle Nerve 17: 608-613, 1994.
6. Barton-Davis ER, Shoturma DI, and Sweeney HL: Contribution of satellite cells to IGF-I induced hypertrophy of skeletal muscle. Acta Physiol Scand 167: 301-305, 1999.
7. Florini JR, Magri KA, Ewton DZ, James PL, Grindstaff K, and Rotwein PS: ‘Spontaneous’ differentiation of skeletal myoblasts is dependent upon autocrine secretion of insulin-like growth factor-II. J Biol Chem 266: 15917-15923, 1991.
8. Yaffe D and Saxel O: Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature 270: 725-727, 1977.
9. Endo A, Tsujita Y, Kuroda M, and Tanzawa K: Inhibition of cholesterol synthesis in vitro and in vivo by ML-236A and ML-236B, competitive inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A reductase. Eur J Biochem 201-216, 1991.
10. Illingworth DR and Sexton GJ: Hypocholesterolemic effects of mevinolin in patients with heterozygous familial hypercholesterolemia. J Clin Invest 74: 1972-1978, 1984.
11. Hoeg JM, Maher MB, Zech LA, Bailey KR, Gregg RE, Lackner KJ, Fojo SS, Anchors MA, Bojanovski M, Sprecher DL, and Brewer HB Jr.: Effectiveness of mevinolin on plasma lipoprotein concentrations in type II hyperlipoproteinaemia. Am J Cardiol 57: 933-939, 1986.
12. Grundy SM and Vega GL: Influence of mevinolin on metabolism of low density lipoproteins in primary moderate hypercholesterolemia. J Lipid Res 26: 1464-1475, 1985.
13. Thompson PD, Clarkson P, and Karas RH: Statin-associated myopathy. Jama 289: 1681-1690, 2003.
14. Pasternak RC, Smith SC Jr., Bairey-Merz CN, Grundy SM, Cleeman JI, Lenfant C, American College of C, American Heart A, National Heart L and Blood I: ACC/AHA/NHLBI Clinical Advisory on the Use and Safety of Statins. Circulation 106: 1024-1028, 2002.
15. McKenney JM, Davidson MH, Jacobson TA, Guyton JR, and National Lipid Association Statin Safety Assessment Task F: Final conclusions and recommendations of the National Lipid Association Statin Safety Assessment Task Force. Am J Cardiol 97: 89C-94C, 2006.
16. Sathasivam S: Statin induced myotoxicity. Eur J Intern Med 23: 317-324, 2012.
18 Venero CV and Thompson PD: Managing statin myopathy. Endocrinol Metab Clin North Am 38: 121-136, 2009.
19 Bhardwaj S, Selvarajah S, and Schneider EB: Muscular effects of statins in the elderly female: A review. Clin Interv Aging 8: 47-59, 2013.
20 Nishimoto T, Tozawa R, Amano Y, Wada T, Imura Y, and Sugiyama Y: Comparing myotoxic effects of squalene synthase inhibitor, T-91485, and 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors in human myocytes. Biochem Pharmacol 66: 2133-2139, 2003.
21 Matzno S, Yamauchi T, Gohda M, Ishida N, Katsuura K, Hanasaki Y, Tokunaga T, Itoh H, and Nakamura N: Inhibition of cholesterol biosynthesis by squalene epoxidase inhibitor avoids apoptotic cell death in L6 myoblasts. J Lipid Res 38: 1639-1648, 1997.
22 Baba TT, Nemoto TK, Miyazaki T, and Oida S: Simvastatin suppresses the differentiation of C2C12 myoblast cells via a RAC pathway. J Muscle Res Cell Motil 29: 127-134, 2008.
23 Cao P, Hanai J, Tanksale P, Imamura S, Sukhatme VP, and Lecker SH: Statin-induced muscle damage and atrogin-1 induction is the result of a geranylgeranylation defect. FASEB J 23: 2844-2854, 2009.
24 Kokabu S, Ohte S, Sasanuma H, Shin M, Yoneyama K, Murata E, Kanomata K, Nojima J, Ono Y, Yoda T, Fukuda T, and Katagiri T: Suppression of BMP-SMAD signaling axis-induced osteoblastic differentiation by small C-terminal domain phosphatase 1, a Smad phosphatase. Mol Endocrinol 25: 474-481, 2011.
25 Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(–Delta Delta C(T)) Method. Methods 25: 402-408, 2001.
26 Muraguchi T, Okamoto K, Mitake M, Ogawa H, and Shidoji Y: Polished rice as natural sources of cancer-preventing geranylgeranoic acid. J Clin Biochem Nutr 49: 8-15, 2011.
27 Frenkel J, Rijkers GT, Mandey SH, Buurman SW, Houten SM, Wanders RJ, Waterham HR, and Kuis W: Lack of isoprenoid products raises ex vivo interleukin-1beta secretion in hyperimmunoglobulinemia D and periodic fever syndrome. Arthritis Rheum 46: 2794-2803, 2002.
28 Walker K and Olson MF: Targeting Ras and Rho GTases as opportunities for cancer therapeutics. Curr Opin Genet Dev 15: 62-68, 2005.
29 Delmonico MJ, Harris TB, Lee JS, Visser M, Nevitt M, Kritchevsky SB, Tylavsky FA, Newman AB, Health A, and Body Composition S: Alternative definitions of sarcopenia, lower extremity performance, and functional impairment with aging in older men and women. J Am Geriatr Soc 55: 769-774, 2007.
30 Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, Martin FC, Michel JP, Rolland Y, Schneider SM, Topinkova E, Vandewoude M, Zamboni M, and European Working Group on Sarcopenia in Older P: Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 39: 412-423, 2010.
31 Janssen I, Shepard DS, Katzmarzyk PT, and Roubenoff R: The healthcare costs of sarcopenia in the United States. J Am Geriatr Soc 52: 80-85, 2004.
32 Giriwono PE, Shirakawa H, Ohsaki Y, Hata S, Kuriyama H, Sato S, Goto T, and Komai M: Dietary supplementation with geranylgeraniol suppresses lipopolysaccharide-induced inflammation via inhibition of nuclear factor-kappaB activation in rats. Eur J Nutr 52: 1191-1199, 2013.