Within host dynamics of SARS-CoV-2 in humans: Modeling immune responses and antiviral treatments

Indrajit Ghosh

Abstract
In December 2019, a newly discovered SARS-CoV-2 virus was emerged from China and propagated worldwide as a pandemic, resulting in about 35% mortality. In the absence of preventive medicine or a ready to use vaccine, mathematical models can provide useful scientific insights about transmission patterns and targets for drug development. In this study, we propose a within-host mathematical model of SARS-CoV-2 infection considering innate and adaptive immune responses. We analyze the equilibrium points of the proposed model and obtain an expression of the basic reproduction number. We then numerically show the existence of a transcritical bifurcation. The proposed model is calibrated to real viral load data of two COVID-19 patients. Using the estimated parameters, we perform global sensitivity analysis with respect to the peak of viral load. Finally, we study the efficacy of antiviral drugs and vaccination on the dynamics of SARS-CoV-2 infection. Our results suggest that blocking the production of the virus by infected cells decreases the viral load more than reducing the infection rate of healthy cells. Vaccination is also found useful but during the vaccine development phase, blocking virus production from infected cells can be targeted for antiviral drug development.

Keywords: SARS-CoV-2, Immune response, Model calibration, Numerical simulation, Treatments.

1. Introduction
Coronaviruses are a large group of viruses that have the potential to transmit between hosts. These are enveloped in positive-sense, non-segmented RNA viruses belonging to the Coronaviridae family (Nidovirales order) and widely distributed in humans and other mammals [1]. The virus is responsible for a range of symptoms including fever, cough, and shortness of breath [1]. Some patients have reported radiographic changes in their ground-glass lungs, healthy or lower than average white blood cell lymphocyte,

1Corresponding author. Email: indra7math@gmail.com, indrajitg_r@isical.ac.in

Preprint submitted to Elsevier June 30, 2020
and platelet counts; hypoxaemia; and deranged liver and renal function. Since first discovery and identification of coronavirus in 1965, three significant outbreaks occurred, caused by emerging, highly pathogenic coronaviruses, namely the 2003 outbreak of "Severe Acute Respiratory Syndrome" (SARS) in mainland China [2, 3], the 2012 outbreak of "Middle East Respiratory Syndrome" (MERS) in Saudi Arabia [4, 5], and the 2015 outbreak of MERS in South Korea [6, 7, 8]. These outbreaks resulted in SARS and MERS cases confirmed by more than 8000 and 2400, respectively [9]. A newer and genetically similar coronavirus is responsible for the coronavirus disease 2019 (COVID-19). The virus is named SARS-CoV-2. Despite a relatively lower case fatality rate compared to SARS and MERS, the COVID-19 spreads rapidly and infects more people than the SARS and MERS. Despite strict intervention measures implemented in the region where the COVID-19 was originated, the infection spread locally and elsewhere very rapidly. COVID-19 has been declared a pandemic by the World Health Organization in January 2020. Since its first isolation in Wuhan, China in December 2019, it has caused outbreak with more than 10 million confirmed infections and above 500 thousand reported deaths worldwide as of 28 June 2020. The affected countries around the globe are fighting the virus by implementing social distancing and isolation strategies. Unfortunately, the COVID-19 has neither a preventive medicine nor a ready to use vaccine. Multiple approaches are adopted in the development of Coronavirus vaccines; most of these targets the surface-exposed spike (S) glycoprotein or S protein as the primary inducer of neutralizing antibodies [10, 11]. In fact, either monoclonal antibody or vaccine approaches have failed to neutralize and protect from previous coronavirus infections [12]. Therefore, individual behaviour (e.g. early self-isolation and social distancing), as well as preventive measures such as hand washing, covering when coughing, are critical to control the spread of COVID-19 [13]. However, researchers have been putting more effort into finding a solution to this pandemic situation [14, 15, 16].

In addition to medical and biological research, theoretical studies based on mathematical models may also play an important role throughout this anti-epidemic fight in understanding the epidemic character traits of the outbreak, in having to decide on the measures to reduce the spread and in understanding within-host patterns of virus transmission. While there are many mathematical models developed at an epidemiological level for COVID-19 [17, 18, 19, 20], there are very few within-host level studies to understand SARS-CoV-2 replication cycle and its interactions with the innate and adaptive immune responses [21, 13]. In these few previous studies, authors studied target cell models and target cell models with eclipse phase. Therefore, detailed research with immune responses is necessary for the understanding of SARS-CoV-2 spread inside the human body. The human immune system is comprised of innate and adaptive immune responses. While the adaptive immune system is both fast and effective at targeting
invasions by previously encountered pathogens, its role in host defence in the first days of a new infection is secondary to that of the innate immune system.

Motivated by this discussion, we aim to develop a within-host mathematical model of SARS-CoV-2 infection considering human immune responses. This model can be used as a basis for understanding characterized patterns of disease severity in humans. Moreover, we intend to use real viral load data from COVID-19 positive patients to calibrate the proposed model so that the parameters are realistic for further inference. The main goal is to compare the efficacy of various antiviral drugs and identify the most beneficial target.

The rest of the paper is organized as follows: in Section 2, we formulate the compartmental model of within human SARS-CoV-2 transmission; the equilibrium points of the proposed model are analyzed and the basic reproduction number is obtained in Section 3; viral load time series, transcritical bifurcation, fitting model to real data and global sensitivity analysis are presented in Section 4; in Section 5, we study the efficacy of antiviral drugs and vaccination; finally, the obtained results are discussed in Section 6.

2. The mathematical model

A deterministic ordinary differential equation model describing cell–virus–immune response interaction dynamics of SARS-CoV-2 infection is being formulated. Time-dependent state variables are taken to represent the compartments. A general mathematical model for the underlying dynamics of virus-host cell interaction has been studied in this context [21, 13]. However, the basic principles that underlay models of virus dynamics are as follows: Healthy uninfected cells, \(H(t) \), are infected when they meet free viruses, \(V(t) \). Infected cells, \(I(t) \), produce new virus particles that leave the cell and find other susceptible target cells. Whenever a human is infected with SARS-CoV-2, his innate and adaptive immune responses work together to neutralize the threat of SARS-CoV-2 infection [22, 23, 16]. The innate immune response works non-specifically and immediately after the viral attack. Cells and proteins of the innate immune system are ever-present in a healthy host and can respond to invading pathogens within the first minutes and hours of infection [24]. This system is of great importance in the sense that it is preventing the establishment of new infections during the activation time of the adaptive immune system. It is believed that Cytokines are an essential component of the immune system [25]. They are a family of small soluble proteins secreted by different cells. They can be loosely classified into one of four families: the haematopoietins, the immunoglobulin superfamily, the tumour necrosis factor family and the interferons (IFN). Cytokines modulate the balance between innate and adaptive immune responses. The IFNs are perhaps the most critical cytokines in the initial innate response to viral in-
fection. They are classified into two types: IFN-α (a family of related proteins) and the single protein IFN-β together form type I; IFN-γ is the sole and unrelated type II IFN. IFN-α and IFN-β are secreted by cells in response to viral infection and promote an antiviral response in otherwise susceptible cells. Cytokines C(t) is vital in inhibiting viral replication and modulating downstream effects of the immune response. Specific cytokines activate natural killer (NK) cells N(t), which play an essential role in killing virus-infected cells. As in [26, 27], the rate of NK cells increment by cytokines is taken as r_C, whereas NK cells die at a rate μ_5. However, Against the inhibiting mechanism of cytokines, the viruses often target the JaK/STAT pathway to decrease the production of IFNs. This mechanism, known as immunosupression, is observed for SARS-CoV-2 [28]. The functional form of a decrease in the cytokine production rate is assumed to be $\frac{k_2 I}{1 + \gamma V}$.

Meanwhile, cytokines also activate the adaptive immune system, mainly the cytotoxic T-lymphocytes T(t) at a rate λ_1. Interleukin-2 (IL-2) is a type of cytokine signaling molecule in the immune system that is very important to activate T-cells. T-cells finds virus infected cells and kill them at a rate p_1. T-cells subsequently activate B-lymphocytes B(t) at a rate λ_2 to produce antibody against the virus. B-cells mainly secrete IgM and IgG antibodies that are released in the blood and lymph fluid, where they specifically recognize and neutralize the SARS-CoV-2 viral particles [25, 22]. Meanwhile, antibody levels A(t) are increasing with the aim of halting infection (and in future providing protection against a subsequent infection). A schematic flow diagram of the model is depicted in Fig. 1.

Finally, the cell–virus–immune response interaction dynamics of SARS-CoV-2 infection are governed by the following system of differential equations:

\[
\begin{align*}
\frac{dH}{dt} &= \Pi - \beta HV - \mu_1 H, \\
\frac{dI}{dt} &= \beta HV - p_1 TI - p_5 NI - \mu_2 I, \\
\frac{dV}{dt} &= k_1 I - p_2 CV - p_3 AV - \mu_3 V, \\
\frac{dC}{dt} &= \frac{k_2 I}{1 + \gamma V} - \mu_4 C, \\
\frac{dN}{dt} &= r_C - \mu_5 N, \\
\frac{dT}{dt} &= \lambda_1 CT - \mu_6 T, \\
\frac{dB}{dt} &= \lambda_2 TB - \mu_7 B, \\
\frac{dA}{dt} &= G(t - \tau) \eta B - p_4 AV - \mu_8 A.
\end{align*}
\]
The time delay τ introduced through the Heaviside step function [29], is the time period that is required for the first production of antibodies after the T-lymphocytes and B-lymphocytes interact. This delay is biologically significant since the production of antibodies after the virions have associated with the B-lymphocytes is a complex process involving multiple steps. The B-cells have to undergo differentiations before they can be transformed into the plasma cells capable of producing antibodies [30]. The Heaviside step function $G(t)$ is defined as follows,

$$G(t - \tau) = 1, \text{if } t > \tau$$

$$= 0, \text{if } t < \tau$$

The model 2.1 has initial conditions given by: $H(0) = H_0 \geq 0$, $I(0) = I_0 \geq 0$, $V(0) = V_0 \geq 0$, $C(0) = C_0 \geq 0$, $N(0) = N_0 \geq 0$, $T(0) = T_0 \geq 0$, $B(0) = B_0 \geq 0$, and $A(0) = A_0 \geq 0$.

3. Equilibria and Basic reproduction number

There are four type of equilibria of the system (2.1), namely,
Parameter	Symbol	value/Range	Reference
Production rate of healthy cells	\(\Pi \)	\(4 \times 10^3 \text{ cells ml}^{-1} \text{ day}^{-1} \)	[31]
Rate at which healthy cells are converted to infected cells	\(\beta \)	\((5 - 561) \times 10^{-9} \text{ ml (RNA copies)}^{-1} \text{ day}^{-1}\)	[13]
Strength of immunosupresion	\(\gamma \)	\(0.5 \text{ ml (RNA copies)}^{-1} \)	Assumed
Rate at which T-cells destroy infected cells	\(p_1 \)	\(0.001 \text{ ml cells}^{-1} \text{ day}^{-1} \)	[32]
Rate at which viral particles are neutralized by cytokines	\(p_2 \)	\((0 - 1) \text{ ml cells}^{-1} \text{ day}^{-1} \)	Estimated
Rate at which viral particles are neutralized by antibodies	\(p_3 \)	\((0 - 1) \text{ ml molecules}^{-1} \text{ day}^{-1} \)	Estimated
Rate at which virus neutralize antibodies	\(p_4 \)	\(3 \times 10^{-7} \text{ ml (RNA copies)}^{-1} \text{ day}^{-1}\)	[31]
Rate at which infected cells are diminished by NK cells	\(p_5 \)	\(5.74 \times 10^{-4} \text{ ml cells}^{-1} \text{ day}^{-1} \)	[27]
Production rate of virus from infected cells	\(k_1 \)	\((8.2 - 525) \text{ day}^{-1} \)	[13]
Production rate of cytokines	\(k_2 \)	\((0 - 10) \text{ day}^{-1} \)	Assumed
Activation rate of NK cells	\(r \)	\(0.52 \text{ day}^{-1} \)	[27]
Activation rate of T cells	\(\lambda_1 \)	\(0.1 \text{ ml cells}^{-1} \text{ day}^{-1} \)	[25]
Activation rate of B cells	\(\lambda_2 \)	\(0.01 \text{ ml cells}^{-1} \text{ day}^{-1} \)	[25]
Rate at which antibodies are produced	\(\eta \)	\((0 - 1) \text{ day}^{-1} \)	[30]
Natural death rate of Healthy cells and protected cells	\(\mu_1 \)	\(0.14 \text{ day}^{-1} \)	[25]
Natural death rate of infected cells	\(\mu_2 \)	\((0 - 1) \text{ day}^{-1} \)	Assumed
Clearance rate of virus	\(\mu_3 \)	\((0 - 1) \text{ day}^{-1} \)	Estimated
Natural death rate of cytokines	\(\mu_4 \)	\(0.7 \text{ day}^{-1} \)	Assumed
Natural death rate of NK cells	\(\mu_5 \)	\(0.07 \text{ day}^{-1} \)	[27]
Natural death rate of T cells	\(\mu_6 \)	\(1 \text{ day}^{-1} \)	[25]
Natural death rate of B cells	\(\mu_7 \)	\(0.2 \text{ day}^{-1} \)	[31]
Natural death rate of antibodies	\(\mu_8 \)	\(0.07 \text{ day}^{-1} \)	[25]
Time delay for antibody production	\(\tau \)	\(7 - 14 \text{ days} \)	[33]
(a) The disease free equilibrium (DFE) given by \(E_0 = \left(\frac{I}{\mu_1}, 0, 0, 0, 0, 0, 0 \right) \).

(b) The virus persistence equilibrium in the absence of immune responses, given by \(E_1 = (H_1, I_1, V_1, 0, 0, 0, 0, 0) \), where \(H_1 = \frac{I}{\mu_1}, I_1 = \frac{\mu_4 R_1}{\rho k_2} (R_0 - 1) \) and \(V_1 = \frac{\rho}{\beta} (R_0 - 1) \) with \(R_0 = \frac{\Pi \beta k_1}{\mu_1 \mu_2 \mu_3} \). Clearly, this equilibrium exists only when \(R_0 > 1 \).

(c) The virus persistence equilibrium in the absence of adaptive immune responses, given by \(E_2 = (H_2, I_2, V_2, C_2, N_2, 0, 0, 0, 0) \), where (assume, \(Q = \beta H_2 V_2 \) \(H_2 = \frac{I}{\mu_1}, N_2 = \frac{r C}{\mu_5} \), \(I_2 = \frac{Q}{\mu_2 + p_5 N_2} \), \(V_2 = \frac{1}{\gamma} \left[\frac{k_2}{\mu_4 C_2} - 1 \right] \) and \(C_2 \) is given by the roots of the following cubic equation

\[
\frac{p_2 p_5 \mu_4 r}{\mu_5} C_2^3 + \left(\frac{\mu_3}{\mu_5} - \frac{\mu_4 p_2}{\mu_5} \right) C_2^2 + \left(\frac{\mu_3}{\mu_5} + \mu_4 \gamma k_1 Q - k_2 p_2 Q \right) C_2 - \frac{k_2}{\mu_4 C_2} = 0
\]

Note that, irrespective of the sign of the coefficient of \(C_2 \), Descartes’ rule of sign ensure existence of exactly one positive root whenever \(\frac{k_2}{\mu_4 C_2} > 1 \).

(d) The all cells and virus co-existence equilibrium, given by \(E_3 = (H_3, I_3, V_3, c_3, N_3, T_3, B_3, A_3) \), where (assume, \(Q = \beta H_3 V_3 \)) \(H_3 = \frac{I}{\mu_1}, I_3 = \frac{\mu_4 R_1}{\lambda k_2}, V_3 = \frac{1}{\gamma} [R_1 - 1], C_3 = \frac{\mu_6}{\lambda}, N_3 = \frac{r C_3}{\mu_5}, T_3 = \frac{C}{N_2}, B_3 = \frac{A_3}{\eta} [p_4 V_3 + \mu_8] \) and \(A_3 = \frac{1}{p_3 V_3} [R_2 - 1] \), with

\[
R_1 = \frac{\lambda_1 k_2 Q}{\mu_4 \mu_6 (\frac{\mu_2}{\lambda_2} + \frac{\mu_3}{\lambda_3} + \mu_5)}
\]

and

\[
R_2 = \frac{\gamma \lambda_2^2 k_1 k_2 Q}{R_1 \mu_4 \mu_6 (\lambda_1 \mu_3 + p_2 \mu_6) (R_1 - 1)}
\]

It can be noted that this equilibrium exists only when \(R_1 > 1 \) and \(R_2 > 1 \).

Theorem 3.1. The DFE \(E_0 \) of the system (2.1) is locally asymptotically stable, if \(R_0 < 1 \), and unstable if \(R_0 > 1 \), where

\[
R_0 = \frac{\Pi \beta k_1}{\mu_1 \mu_2 \mu_3},
\]

Proof. The Jacobian of the system (2.1) at \(E_0 \) is given as

\[
J(E_0) = \begin{bmatrix}
-\mu_1 & -\frac{\mu}{\mu_1} & 0 & 0 & 0 & 0 & 0 \\
0 & -\mu_2 & -\frac{\mu}{\mu_2} & 0 & 0 & 0 & 0 \\
0 & -\mu_3 & -\frac{\mu}{\mu_3} & 0 & 0 & 0 & 0 \\
0 & k_1 & -\mu_4 & 0 & 0 & 0 & 0 \\
0 & k_2 & 0 & -\mu_5 & 0 & 0 & 0 \\
0 & 0 & 0 & r & -\mu_6 & 0 & 0 \\
0 & 0 & 0 & 0 & -\mu_7 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & G(t - \gamma) & -\mu_8
\end{bmatrix}
\]
Clearly, $-\mu_1, -\mu_4, -\mu_5, -\mu_6, -\mu_7$ and $-\mu_8$ are eigenvalues of this Jacobean matrix and other two eigenvalues are given by the roots of the following equation

$$C(\Lambda) := \Lambda^2 + a_1 \Lambda + a_2 = 0$$

(3.3)

where

$$a_1 = \mu_2 + \mu_3$$

$$a_2 = \mu_2 \mu_3 (1 - R_0)$$

(3.4)

Therefore, for $R_0 < 1$, the conditions for the Routh-Hurwitz criteria are satisfied and hence DFE is locally asymptotically stable. Now if $R_0 > 1$, then $a_2 < 0$ and $C(\Lambda) = 0$ will possess a positive real solution. Therefore the DFE will be unstable for $R_0 > 1$. Hence the proof follows.

The stability of the other three equilibrium points is complicated and does not lead to biologically relevant stability conditions. Therefore, we explore model solutions, relevant model dynamics, important parameters, agreement with real data through numerical simulations.

4. Numerical Simulation

In this section, important properties of the proposed model are investigated numerically. Using different parameter settings, time series and threshold analysis is performed. Moreover, the agreement of the model solution with real data is explored. Throughout this section the following set of initial conditions is used unless stated:

- $H(0) = 4 \times 10^5$ cells per ml,
- $I(0) = 3 \times 10^{-4}$ cells per ml,
- $V(0) = 357$ RNA copies per ml,
- $C = 0$ cells per ml,
- $N = 100$ cells per ml,
- $T = 500$ cells per ml,
- $B = 100$ cells per ml,
- $A = 0$ molecules per ml (most of the initial conditions are taken from [25, 31]).

4.1. Time series and threshold analysis

We first study the time series of the viral load and antibody count. In Fig. 2, the viral load and antibody are plotted. The viral load time series experiences a peak between sixth and seven days post infection. However, as soon as the adaptive immune response is activated (after $\tau = 7$ days), a sharp decrease is observed in the viral load. On the other hand, the antibody count starts to rise after 7 days post infection and shows saturated type behaviour.
Further, we study the threshold for R_0. It is observed that $R_0 = 1$ acts as a critical value for the persistence of virus particles. The virus particles converges to the DFE of the model 2.1 for $R_0 < 1$ and the viral load converges to a non-zero value as soon as R_0 crosses unity. This type of phenomenon is called forward bifurcation where the two equilibrium points switches their stability at a critical value. The diagram is depicted in Fig. 3. This also ensures that if we vary other parameters involved in the expression of R_0, the same type of phenomenon occurs. Thus, in turn parameters such as β and k_1 can be reduced so as to reduce R_0 below unity.

4.2. Model validation using real data

SARS-CoV-2 viral load data are obtained from Wolfel et al. [34]. They studied patients from a hospital in Munich, Germany. They reported daily measurements of viral load in sputum, pharyngeal swabs and stool for 9 patients. Among these patients, there were two patients (namely, patient A and patient B) for whom the growth phase of sputum data was captured. We therefore utilized these two datasets for our analysis. The data was collected from Wolfel et al. [34] using an online software [35].

The solution curve of viral load ($V(t)$) is fitted to data using the built-in (MATLAB, R2018a) simplex algorithm to minimize the sum of squares difference between simulated indicators and data. We used the MATLAB function ‘fminsearchbnd’ to perform the optimization. During the computation, 100 different starting points in parameter space were chosen using Latin Hypercube Sampling to ensure consistency and uniqueness of the parameter estimates. The fitting is displayed in Fig. 4(a) for patient A and in Fig. 4(b) for patient B. The fixed parameters are taken from Table 1 with $\mu_2 = 65$, $k_2 = 5$ and $\eta = 0.05$. The initial conditions are taken as mentioned in the beginning of Section 4. We estimated five parameters directly related to viral load of a patient viz., β, k_1, p_2, p_3 and μ_3. The estimated parameters for patient A are found to be $\beta = 1.7505 \times 10^{-6}$, $k_1 = 379$, $p_2 = 0.2805$, $p_3 = 0.0316$ and $\mu_3 = 0.8108$. Similarly, the estimates for patient
Figure 3: Forward bifurcation diagram with respect to basic reproduction number. All the fixed parameters are taken from Table 1 with $\mu_2 = 0.65, \mu_3 = 0.9, p_2 = 0.001, p_3 = 0.05, k_1 = 500, k_2 = 5, \eta = 0.05, \tau = 7$ and $10^{-5} < \beta < 10^{-7}$.

B are obtained as $\beta = 5.561 \times 10^{-7}, k_1 = 128, p_2 = 0.9403, p_3 = 0.0057$ and $\mu_3 = 0.99$.

4.3. Sensitivity analysis

We performed global sensitivity analysis to identify most influential parameters with respect to the maximum size (or alternatively, the peak of load) of virus particles (V_{max}) in 3 months time frame. Partial rank correlation coefficients (PRCCs) are calculated and plotted in Fig. 5. Nonlinear and monotone relationship were observed for the parameters with respect to V_{max}, which is a prerequisite for performing PRCC analysis. Following Marino et. al [36], we calculate PRCCs for the parameters $\beta, k_1, k_2, \mu_2, \mu_3, p_2, p_3, \gamma$ and η. The base values for the parameters β, k_1, p_2, p_3 and μ_3 are taken as the average of estimated parameters of patient A and patient B. The other base values are $\mu_2 = 0.65, k_2 = 5, \gamma = 0.5$ and $\eta = 0.05$. For each of the parameters, 500 Latin Hypercube Samples were generated from the interval $(0.5 \times \text{base value}, 1.5 \times \text{base value})$.

It is observed that the parameters β, k_1 and γ has significant positive correlations with V_{max}. This indicates that the production rate of virus particles from infected cells will increase the chance of larger infection propagation. Besides, the infection rate and the immunosuppress ion rate are positively correlated with the peak of viral load. On the other hand, the natural death rate of infected cells and death rate of virus particles will have significant negative correlation with V_{max}. The production rate of cytokines is also
negatively correlated with V_{max}. These results reinforces the fact that β and k_1 are very crucial for reduction of viral load.

5. Model with antiviral treatment

Antiviral drugs can be used to slow SARS-CoV-2 infection or block production of virus particles. These drugs will necessarily save the lives of many severely ill patients and will reduce the time spent in intensive care units for patients, vacating hospital beds. Antiviral medications will, in turn, inhibit subsequent transmission that could happen if the drugs were not given. However, to analyze the effect of antiviral treatment, we consider drugs can block infection and/or production of virus particles. Many studies have suggested various existing compounds for testing [16, 37, 38] as SARS-CoV-2 antiviral drug, but World Health Organization (WHO) is focusing on the following four therapies: an experimental antiviral compound called remdesivir; the malaria medications chloroquine and hydroxychloroquine; a combination of two HIV drugs, lopinavir and ritonavir; and that same combination plus interferon-beta, an immune system messenger that can help cripple viruses [39].

Following Zitzmann et al. [40], we incorporate antiviral drug treatment in the proposed model (2.1). The modified system with antiviral treatment is given by
From Fig. 6, it can be noted that increase in ϵ_1 reduces the peak of viral load but the duration of high viral load remains same. On the other hand, increase in ϵ_2 significantly
reduce both peak of viral load and duration of high viral load. Thus, we conclude that blocking the virus production from infected cells is a more suitable target for antiviral drug development.

Finally, we study the effect vaccination in the viral dynamics of SARS-CoV-2 in humans. A vaccine is a biological preparation that provides active acquired immunity to a particular infectious agent. Thus if an individual is vaccinated, there will be no delay in the development of antibody. Therefore, the delay term τ is taken to be zero for vaccinated individuals (see Fig. 7). It is observed that vaccination not only reduces the viral load in healthy patients but also reduces the duration of high viremia.

Overall, for antiviral drug target, blocking virus production is more fruitful in terms of viral load reduction and vaccination will also be effective.

6. Discussion and conclusion

In this study, we have proposed and analyzed a compartmental model of SARS-CoV-2 transmission within the human body. The much needed innate and adaptive immune responses are incorporated into the model. The eight-dimensional model has four types of equilibrium points. The existence criterion for each type of equilibria is presented. From the local stability of the DFE, the expression for basic reproduction number is obtained. This number is very crucial for the persistence of the virus in the long run. However, the short-term dynamics of the viral load is studied using various numerical techniques. During time series analysis, we observed that the viral load time series experiences a peak between sixth and seven days post-infection, followed by a sharp decrease due to activation of adaptive immune response (see Fig. 2). A forward bifurcation of equilibria with respect to the basic reproduction number is observed and depicted in Fig. 3. This also ensures that if we suitably vary parameters involved in the expression of R_0, the
same type of phenomenon occurs. Thus, in turn, parameters such as β and k_1 can be decreased to reduce R_0 below unity and ensure local asymptotic stability of DFE.

We used daily measurements of SARS-CoV-2 viral load in sputum for two patients [34] from a hospital in Munich, Germany. Using the estimated parameters, the global sensitivity analysis of several model parameters with respect to peak viral load is performed. The results indicate that the production rate of virus particles from infected cells will increase the chance of more significant infection propagation. Besides, the infection rate and the immunosuppression rate will increase the peak of viral load. Additionally, the natural death rates of infected cells and the death rate of virus particles will have a significant negative correlation with the peak of viral load. The production rate of cytokines is also negatively correlated with the peak of viral load. These results reinforce the fact that β and k_1 are very crucial for the reduction of viral load.

Antiviral drugs can be used to slow SARS-CoV-2 infection (or reduce β) or block the production of virus particles (or reduce k_1). Results suggest that a decrease in β reduces the peak of viral load but the duration of the high viral load remains the same. On the other hand, a decrease in k_1 significantly reduce both peak of viral load and period of high viral load. Thus, we conclude that blocking virus production from infected cells is a more suitable target for antiviral drug development. Moreover, vaccination can reduce
the viral load in healthy patients and also reduce the duration of high viremia in the body. But vaccine development is a complicated task; therefore, during the vaccine development phase, blocking virus production from infected cells can be targeted for antiviral drug development.

Researchers have been putting more effort to develop a vaccine to tackle COVID-19 [10, 11]. The journey has started with the first clinical trial just two months after the genetic sequence of the virus. The mathematical model developed in this paper can be improved by adding more detailed data to reveal prophylactic and therapeutic interventions. Our theoretical findings should be tested clinically for the implementation. Further insights into immunology and pathogenesis of SARS-CoV-2 will help to improve the outcome of this and future pandemics.

References

[1] Chaolin Huang, Yeming Wang, Xingwang Li, Lili Ren, Jianping Zhao, Yi Hu, Li Zhang, Guohui Fan, Jiuyang Xu, Xiaoying Gu, et al. Clinical features of patients infected with 2019 novel coronavirus in wuhan, china. The Lancet, 395(10223):497–506, 2020.

[2] Abba B Gumel, Shigui Ruan, Troy Day, James Watmough, Fred Brauer, P Van den Driessche, Dave Gabrielson, Chris Bowman, Murray E Alexander, Sten Ardal, et al. Modelling strategies for controlling sars outbreaks. Proceedings of the Royal Society of London. Series B: Biological Sciences, 271(1554):2223–2232, 2004.

[3] Wenhui Li, Michael J Moore, Natalya Vasilieva, Jianhua Sui, Swee Kee Wong, Michael A Berne, Mohan Somasundaran, John L Sullivan, Katherine Luzuriaga, Thomas C Greenough, et al. Angiotensin-converting enzyme 2 is a functional receptor for the sars coronavirus. Nature, 426(6965):450–454, 2003.

[4] Raoul J de Groot, Susan C Baker, Ralph S Baric, Caroline S Brown, Christian Drosten, Luis Enjuanes, Ron AM Fouchier, Monica Galiano, Alexander E Gorbalenya, Ziad A Memish, et al. Commentary: Middle east respiratory syndrome coronavirus (mers-cov): announcement of the coronavirus study group. Journal of virology, 87(14):7790–7792, 2013.

[5] Emmie de Wit, Neeltje van Doremalen, Darryl Falzarano, and Vincent J Munster. Sars and mers: recent insights into emerging coronaviruses. Nature Reviews Microbiology, 14(8):523, 2016.

[6] Benjamin J Cowling, Minah Park, Vicky J Fang, Peng Wu, Gabriel M Leung, and Joseph T Wu. Preliminary epidemiologic assessment of mers-cov outbreak in south
korea, may–june 2015. Euro surveillance: bulletin Europeen sur les maladies transmissibles= European communicable disease bulletin, 20(25), 2015.

[7] KH Kim, TE Tandi, Jae Wook Choi, JM Moon, and MS Kim. Middle east respiratory syndrome coronavirus (mers-cov) outbreak in south korea, 2015: epidemiology, characteristics and public health implications. Journal of Hospital Infection, 95(2):207–213, 2017.

[8] Tridip Sardar, Indrajit Ghosh, Xavier Rodó, and Joydev Chattopadhyay. A realistic two-strain model for mers-cov infection uncovers the high risk for epidemic propagation. PLoS neglected tropical diseases, 14(2):e0008065, 2020.

[9] Kin On Kwok, Arthur Tang, Vivian WI Wei, Woo Hyun Park, Eng Kiong Yeoh, and Steven Riley. Epidemic models of contact tracing: Systematic review of transmission studies of severe acute respiratory syndrome and middle east respiratory syndrome. Computational and structural biotechnology journal, 2019.

[10] Kuldeep Dhama, Khan Sharun, Ruchi Tiwari, Maryam Dadar, Yashpal Singh Malik, Karam Pal Singh, and Wanpen Chaicumpa. Covid-19, an emerging coronavirus infection: advances and prospects in designing and developing vaccines, immunotherapeutics, and therapeutics. Human Vaccines & Immunotherapeutics, pages 1–7, 2020.

[11] Nicole Lurie, Melanie Saville, Richard Hatchett, and Jane Halton. Developing covid-19 vaccines at pandemic speed. New England Journal of Medicine, 2020.

[12] Vineet D Menachery, Boyd L Yount Jr, Kari Debbink, Sudhakar Agnihothram, Lisa E Gralinski, Jessica A Plante, Rachel L Graham, Trevor Scobey, Xing-Yi Ge, Eric F Donaldson, et al. A sars-like cluster of circulating bat coronaviruses shows potential for human emergence. Nature medicine, 21(12):1508, 2015.

[13] Esteban Abelardo Hernandez Vargas and Jorge X Velasco-Hernandez. In-host modelling of covid-19 kinetics in humans. medRxiv, 2020.

[14] Tony Y Hu, Matthew Frieman, and Joy Wolfram. Insights from nanomedicine into chloroquine efficacy against covid-19. Nature Nanotechnology, 15(4):247–249, 2020.

[15] Ahmed Yaquimuddin and Junaid Kashir. Innate immunity in covid-19 patients mediated by nkg2a receptors, and potential treatment using monalizumab, chloroquine, and antiviral agents. Medical Hypotheses, page 109777, 2020.
[16] Matthew Zirui Tay, Chek Meng Poh, Laurent Rénia, Paul A MacAry, and Lisa FP Ng. The trinity of covid-19: immunity, inflammation and intervention. *Nature Reviews Immunology*, pages 1–12, 2020.

[17] Joseph T Wu, Kathy Leung, and Gabriel M Leung. Nowcasting and forecasting the potential domestic and international spread of the 2019-ncov outbreak originating in wuhan, china: a modelling study. *The Lancet*, 395(10225):689–697, 2020.

[18] Biao Tang, Nicola Luigi Bragazzi, Qian Li, Sanyi Tang, Yanni Xiao, and Jianhong Wu. An updated estimation of the risk of transmission of the novel coronavirus (2019-ncov). *Infectious Disease Modelling*, 2020.

[19] Adam J Kucharski, Timothy W Russell, Charlie Diamond, Yang Liu, John Edmunds, Sebastian Funk, Rosalind M Eggo, Fiona Sun, Mark Jit, James D Munday, et al. Early dynamics of transmission and control of covid-19: a mathematical modelling study. *The lancet infectious diseases*, 2020.

[20] Marek Kochańczyk, Frederic Grabowski, and Tomasz Lipniacki. Dynamics of covid-19 pandemic at constant and time-dependent contact rates. *Mathematical Modelling of Natural Phenomena*, 15:28, 2020.

[21] Sean Quan Du and Weiming Yuan. Mathematical modeling of interaction between innate and adaptive immune responses in covid-19 and implications for viral pathogenesis. *Journal of Medical Virology*, 2020.

[22] Abdurrahman Tufan, ASLIHAN AVANOĞLU GÜLER, and Marco Matucci-Cerinic. Covid-19, immune system response, hyperinflammation and repurposing antirheumatic drugs. *Turkish Journal of Medical Sciences*, 50(S1-1):620–632, 2020.

[23] Julia L McKechnie and Catherine A Blish. The innate immune system: fighting on the front lines or fanning the flames of covid-19? *Cell Host & Microbe*, 2020.

[24] Stanca M Ciupe and Jane M Heffernan. In-host modeling. *Infectious Disease Modelling*, 2(2):188–202, 2017.

[25] Sourav Kumar Sasmal, Yueping Dong, and Yasuhiro Takeuchi. Mathematical modeling on t-cell mediated adaptive immunity in primary dengue infections. *Journal of theoretical biology*, 429:229–240, 2017.

[26] Laetitia Canini and Fabrice Carrat. Population modeling of influenza a/h1n1 virus kinetics and symptom dynamics. *Journal of virology*, 85(6):2764–2770, 2011.
[27] Rotem Ben-Shachar and Katia Koelle. Minimal within-host dengue models highlight the specific roles of the immune response in primary and secondary dengue infections. *Journal of the Royal Society Interface*, 12(103):20140886, 2015.

[28] Didier Raoult, Alimuddin Zumla, Franco Locatelli, Giuseppe Ippolito, and Guido Kroemer. Coronavirus infections: Epidemiological, clinical and immunological features and hypotheses. *Cell Stress*, 4(4):66, 2020.

[29] AC Fowler. Approximate solution of a model of biological immune responses incorporating delay. *Journal of mathematical biology*, 13(1):23–45, 1981.

[30] Tanvi P Gujarati and G Ambika. Virus antibody dynamics in primary and secondary dengue infections. *Journal of mathematical biology*, 69(6-7):1773–1800, 2014.

[31] Ryan Nikin-Beers and Stanca M Ciupe. The role of antibody in enhancing dengue virus infection. *Mathematical biosciences*, 263:83–92, 2015.

[32] Hannah E Clapham, Vianney Tricou, Nguyen Van Vinh Chau, Cameron P Simmons, and Neil M Ferguson. Within-host viral dynamics of dengue serotype 1 infection. *Journal of the Royal Society Interface*, 11(96):20140094, 2014.

[33] WHO. “immunity passports” in the context of covid-19. https://www.who.int/news-room/commentaries/detail/immunity-passports-in-the-context-of-covid-19. Retrieved : 2020-05-26.

[34] Roman Wölfler, Victor M Corman, Wolfgang Guggemos, Michael Seilmaier, Sabine Zange, Marcel A Müller, Daniela Niemeyer, Terry C Jones, Patrick Vollmar, Camilla Rothe, et al. Virological assessment of hospitalized patients with covid-19. *Nature*, pages 1–5, 2020.

[35] WPD. Online software for data extraction. https://apps.automeris.io/wpd/. Retrieved : 2020-05-20.

[36] Simeone Marino, Ian B Hogue, Christian J Ray, and Denise E Kirschner. A methodology for performing global uncertainty and sensitivity analysis in systems biology. *Journal of theoretical biology*, 254(1):178–196, 2008.

[37] José Antonio Encinar and Javier A Menendez. Potential drugs targeting early innate immune evasion of sars-coronavirus 2 via 2-o-methylation of viral rna. *Viruses*, 12(5):525, 2020.
[38] Leon Caly, Julian D Druce, Mike G Catton, David A Jans, and Kylie M Wagstaff. The fda-approved drug ivermectin inhibits the replication of sars-cov-2 in vitro. Antiviral research, page 104787, 2020.

[39] Kai Kupferschmidt and Jon Cohen. Who launches global megatrial of the four most promising coronavirus treatments. Science, 22, 2020.

[40] Carolin Zitzmann and Lars Kaderali. Mathematical analysis of viral replication dynamics and antiviral treatment strategies: from basic models to age-based multiscale modeling. Frontiers in microbiology, 9:1546, 2018.