Search for new physics in dijet angular distributions using proton–proton collisions at $\sqrt{s} = 13$ TeV and constraints on dark matter and other models

CMS Collaboration*

CERN, 1211 Geneva 23, Switzerland

Received: 21 March 2018 / Accepted: 13 September 2018 / Published online: 28 September 2018
© CERN for the benefit of the CMS collaboration 2018, corrected publication 2022

Abstract A search is presented for physics beyond the standard model, based on measurements of dijet angular distributions in proton–proton collisions at $\sqrt{s} = 13$ TeV. The data collected with the CMS detector at the LHC correspond to an integrated luminosity of 35.9 fb$^{-1}$. The observed distributions, corrected to particle level, are found to be in agreement with predictions from perturbative quantum chromodynamics that include electroweak corrections. Constraints are placed on models containing quark contact interactions, extra spatial dimensions, quantum black holes, or dark matter, using the detector-level distributions. In a benchmark model where only left-handed quarks participate, contact interactions are excluded at the 95% confidence level up to a scale of 12.8 or 17.5 TeV, for destructive or constructive interference, respectively. The most stringent lower limits to date are set on the ultraviolet cutoff in the Arkani-Hamed–Dimopoulos–Dvali model of extra dimensions. In the Giudice–Rattazzi–Wells convention, the cutoff scale is typically expressed in terms of χ_{dijet}, where $\chi_{\text{dijet}} = \exp(1 - |y_1 - y_2|)$, χ_{dijet} takes the form $\chi_{\text{dijet}} = (1 + |\cos \theta^*|)/(1 - |\cos \theta^*|)$, where θ^* is the polar scattering angle in the parton-parton center-of-mass (CM) frame. The choice of χ_{dijet}, rather than θ^*, to measure the dijet angular distribution is motivated by the fact that in Rutherford scattering, where only t-channel scattering contributes to the partonic cross section, the χ_{dijet} distribution is independent of $|y_1 - y_2|$ [20]. In contrast, BSM processes may have scattering angle distributions that are closer to being isotropic than those given by QCD processes and can be identified by an excess of events at small values of χ_{dijet}. Previous measurements of dijet angular distributions at the LHC have been reported by the ATLAS [17,21–25] and CMS [26–29] Collaborations.

In a simplified model of interactions between DM particles and quarks [1–4,30,31], the spin-1 (vector or axial-vector) DM mediator particle with unknown mass M_{Med} is assumed to decay only to pairs of quarks or pairs of DM particles and other models

1 Introduction

Pairs of highly energetic jets (dijets) are produced at high rates in proton–proton collisions at the CERN LHC through pointlike scattering of quarks and gluons. Despite its enormous success, the shortcomings of the standard model (SM) are well known. Many theories of physics beyond the standard model (BSM) that alter the interaction of quarks and gluons from that predicted by perturbative quantum chromodynamics (QCD) give rise to narrow or wide resonances or even to nonresonant dijet signatures. Examples that have received widespread attention include models with dark matter (DM) [1–5], quark compositeness [6–8], extra spatial dimensions [9,10], and quantum black holes [11–15]. Resonances with an intrinsic width of the order of the experimental resolution can be constrained by searches in the dijet invariant mass spectrum [16–18]. These searches, however, are not very sensitive to wide resonances or nonresonant signatures; a more effective strategy to constrain such signatures is the study of dijet angular distributions [19].

The angular distribution of dijets relative to the beam direction is sensitive to the dynamics of the scattering process. Furthermore, since the angular distributions of the dominant underlying QCD processes of $qg \rightarrow qg$, $qq' \rightarrow qq'$, $qq \rightarrow qq$, $gg \rightarrow gg$, are all similar [20], the dijet angular distribution is insensitive to uncertainties in the parton distribution functions (PDFs). The dijet angular distribution is typically expressed in terms of $\chi_{\text{dijet}} = \exp(1 - |y_1 - y_2|)$, where y_1 and y_2 are the rapidities of the two jets with the highest transverse momentum p_T (the leading jets). For collinear massless parton scattering, χ_{dijet} takes the form $\chi_{\text{dijet}} = (1 + |\cos \theta^*|)/(1 - |\cos \theta^*|)$, where θ^* is the polar scattering angle in the parton-parton center-of-mass (CM) frame. The choice of χ_{dijet}, rather than θ^*, to measure the dijet angular distribution is motivated by the fact that in Rutherford scattering, where only t-channel scattering contributes to the partonic cross section, the χ_{dijet} distribution is independent of $|y_1 - y_2|$ [20]. In contrast, BSM processes may have scattering angle distributions that are closer to being isotropic than those given by QCD processes and can be identified by an excess of events at small values of χ_{dijet}. Previous measurements of dijet angular distributions at the LHC have been reported by the ATLAS [17,21–25] and CMS [26–29] Collaborations.

In a simplified model of interactions between DM particles and quarks [1–4,30,31], the spin-1 (vector or axial-vector) DM mediator particle with unknown mass M_{Med} is assumed to decay only to pairs of quarks or pairs of DM particles and other models.

* e-mail: cms-publication-committee-chair@cern.ch

or even to nonresonant dijet signatures. Examples that have received widespread attention include models with dark matter (DM) [1–5], quark compositeness [6–8], extra spatial dimensions [9,10], and quantum black holes [11–15]. Resonances with an intrinsic width of the order of the experimental resolution can be constrained by searches in the dijet invariant mass spectrum [16–18]. These searches, however, are not very sensitive to wide resonances or nonresonant signatures; a more effective strategy to constrain such signatures is the study of dijet angular distributions [19].
particles, with mass m_{DM}, and with a universal quark coupling g_q and a DM coupling g_{DM}. In this model, the relative width of the DM mediator increases monotonically with increasing g_q. In a scenario where $g_q = 0.25$ and in which the relative widths for vector and axial-vector mediators in the dark matter decay channels are negligible, values of M_{Med} below 3.0 TeV were excluded by narrow dijet resonance searches [17,18]. A search for narrow and broad dijet resonances set constraints on mediator widths up to 30% ($g_q < 0.75$) and masses up to 4 TeV [32]. Searches for invisible particles produced in association with quarks or bosons [33–35] have excluded vector and axial-vector mediators below 1.8 (2.1) TeV for $g_q = 0.25$ ($g_q = 1.0$) and $g_{DM} = 1.0$ [34].

A common signature of quark compositeness [6–8], at energies well below the characteristic mass scale Λ for new interactions between quark constituents, is the four-fermion contact interaction (CI). The most stringent limits on quark CIs come from searches in dijet angular distributions at large dijet invariant masses (M_{jj}) [17,29], and in inclusive jet p_T distributions [36]. The publication from the ATLAS Collaboration [17] provides lower limits on the quark CI scales from 13.1 to 29.5 TeV, depending on the details of the model.

The Arkani–Hamed–Dimopoulos–Dvali (ADD) model [9,10] of compactified large extra dimensions (EDs) provides a possible solution to the hierarchy problem of the standard model. It predicts signatures of virtual graviton exchange that result in a nonresonant enhancement of dijet production in proton–proton collisions, whose angular distribution differs from the predictions of QCD. Signatures from virtual graviton exchange have previously been sought at the LHC in various final states, where the most stringent limits arise from the CMS search with dijet angular distributions [29], which excludes the ultraviolet cutoff in the ADD framework up to 7.9–11.2 TeV, depending on the parameterization of the model.

In models with large EDs, the fundamental Planck scale (M_{Pl}) is assumed to be closer to the electromagnetic (EM) scale, thereby allowing black hole production at the LHC [11–15]. Semiclassical black holes, which have mass much larger than M_{Pl}, decay into multiple jets through Hawking radiation [37]. Quantum black holes (QBHs), which are produced with mass close to M_{Pl}, decay predominantly into dijets and can be studied using dijet angular distributions [38–40]. Recent searches for QBHs with dijet final states at the LHC reported in Refs. [17,29] exclude QBHs with masses below 8.9 TeV.

In this paper, we present a search for new physics, specifically DM mediators, CIs, EDs, and QBHs, using measurements of dijet angular distributions. The signature of the signals can be categorized into nonresonant excesses at high M_{jj} as predicted by the CI and ADD models and resonances from the decay of QBHs and DM mediators that could appear across the whole range of the M_{jj} spectrum. The searches are performed by comparing detector-level dijet angular distributions with BSM predictions that have been adjusted to include detector resolution effects. This eliminates some systematic uncertainties that are introduced when correcting the dijet angular distributions for detector effects and simplifies the statistical evaluation. The dijet angular distributions are also corrected to particle level to facilitate comparisons with other theoretical predictions and published in HEPData.

2 The CMS detector

The CMS apparatus is based on a superconducting solenoid of 6 m internal diameter, providing an axial field of 3.8 T. Within the solenoid and nearest to the interaction point are the silicon pixel and strip trackers. Surrounding the tracker volume are the lead tungstate crystal electromagnetic calorimeter and the brass and scintillator hadron calorimeter. The trackers cover a pseudorapidity region of $|\eta| < 2.4$ while the calorimeters cover $|\eta| < 3.0$. In addition, CMS has extensive forward calorimetry, which extends the coverage to $|\eta| < 5.0$. Finally, muons are measured in gas-ionization detectors embedded in the steel flux-return yoke of the solenoid, with a coverage of $|\eta| < 3.4$.

3 Event selection and data unfolding

Events are reconstructed using a particle-flow algorithm [43] to identify and reconstruct individual particles from each collision by combining information from all CMS subdetectors. Identified particles include charged and neutral hadrons, electrons, muons, and photons. The particles are clustered into jets using the anti-k_T algorithm [44,45] with a distance parameter of 0.4. In order to mitigate the effect of additional proton–proton interactions within the same or nearby bunch crossings (pileup) on the jet momentum measurement, the charged hadron subtraction technique [43] is used. Spurious jets from noise or non-collision backgrounds are rejected by applying jet identification criteria [46]. The jet energies are corrected for nonlinear and nonuniform response of the calorimeters through corrections obtained from data and Monte Carlo (MC) simulations [47]. To compare data with theoretical predictions, the same jet clustering algorithm is applied to the generated stable particles (lifetime $c\tau > 1$ cm) from MC simulations with leading order (LO)
PYTHIA 8.212 [48,49] predictions, and to the outgoing partons from next-to-leading (NLO) predictions.

The events used in this analysis are selected with triggers based upon either jet p_T or H_T, as measured by the HLT, where H_T is the scalar sum of the p_T values of all the jets with $|\eta| < 3.0$ and p_T greater than 30 GeV. The HLT selection requires having a jet with $p_T > 450$ GeV or an H_T value of at least 900 GeV. The data sample was collected with the CMS detector in 2016 and corresponds to an integrated luminosity of 35.9 fb$^{-1}$ [50].

In the subsequent offline analysis, events with a reconstructed primary vertex that lies within ± 24 cm of the detector center along the beam line, and within 2 cm of the detector center in the plane transverse to the beam, are selected. The primary vertex is defined as the reconstructed vertex with the highest sum of the squares of all associated physics objects p_T. The physics objects are the jets returned by the application of the anti-k_T algorithm to all tracks associated with the vertex, plus the corresponding associated missing transverse momentum, taken as the negative vector sum of the p_T of those jets.

The two leading jets are used to measure the dijet angular distributions in seven regions of the dijet invariant mass M_{jj}.

The M_{jj} regions, in units of TeV, are chosen to be $2.4-3.0, 3.0-3.6, 3.6-4.2, 4.2-4.8, 4.8-5.4, 5.4-6.0, \text{ and } > 6.0$. The highest M_{jj} range was chosen to maximize the expected sensitivity to the BSM signals considered. The phase space for this analysis is restricted by the requirements $\chi_{dijet} < 16$ and $|\gamma_{boost}| < 1.11$, where $\gamma_{boost} = (y_1 + y_2)/2$. This selection and the M_{jj} range definition restrict the absolute rapidities $|y_1|$ and $|y_2|$ of the two highest p_T jets to be less than 2.5 and their p_T to be larger than 200 GeV. The trigger efficiency for events that satisfy the subsequent selection criteria exceeds 99% in all the M_{jj} ranges for the analysis. The observed numbers of events in the analysis phase space for each of the mass ranges are 353025, 71832, 16712, 4287, 1153, 330, and 95. The highest value of M_{jj} observed among these events is 8.2 TeV.

In this paper, we present dijet angular distributions normalized to unity in each M_{jj} range, denoted $(1/\sigma_{dijet}) \langle d\sigma_{dijet}/d\chi_{dijet} \rangle$, where σ_{dijet} is the cross section in the analysis phase space.

Fluctuations in jet response from the resolution in jet p_T of the detector can cause lower energy jets to be misidentified as leading jets and also result in bin-to-bin event migrations in both χ_{dijet} and dijet mass. The corrections for these effects are obtained from a two-dimensional response matrix that maps the generator-level M_{jj} and χ_{dijet} distributions onto the measured values. This matrix is obtained using particle-level jets from the PYTHIA MC event generator that are smeared in p_T using a double-sided Crystal Ball parameterization [51] of the response. This parameterization takes into account the full jet energy resolution, including non-Gaussian tails, and is derived from the full detector simulation. The width of the Gaussian core in the parameterization is adjusted to account for the difference in resolution observed between data and simulation [47]. The reason for deriving the response matrix from smeared generator-level MC rather than from full detector simulation is that significantly smaller statistical uncertainties can be achieved using the faster code. The measured distributions are unfolded to particle level by inverting the response matrix without regularization, using the ROOUNFOLD package [52]. The unfolding changes the shape of the χ_{dijet} distributions by < 1% and < 8% across χ_{dijet} in the lowest and highest M_{jj} ranges, respectively. The fractions of event migrations between mass bins are 15–20% in the lowest M_{jj} range and 25–40% in the highest M_{jj} range, depending on χ_{dijet} values. The unfolding procedure was tested by splitting the simulation data into independent training and testing samples. The training sample was used to derive a response matrix and the smeared χ_{dijet} distributions from the test sample were unfolded using this response matrix. No significant difference was observed between the generated and unfolded χ_{dijet} distributions in the test sample. The effects of migrations between χ_{dijet} bins are negligible. The unfolding procedure is based on matrix inversion, while the procedure used in previous publications of dijet angular distributions [28,29] was based on the D’Agostini iterative method [53]. We have compared these two methods by deriving limits from unfolded data, and the limits vary by less than 5%.

4 Theoretical predictions

We compare the unfolded normalized dijet angular distributions with the predictions of perturbative QCD at NLO, available in NLOJET++ 4.1.3 [54] in the FASTNLO 2.1 framework [55]. EW corrections for dijet production [56] change the predicted normalized distributions by up to 1% (5%) for the lowest χ_{dijet} bins in small (large) values of M_{jj}. The factorization (μ_F) and renormalization (μ_R) scales are set to the average p_T of the two jets, $(p_T) = (p_{T1} + p_{T2})/2$, and the PDFs are taken from the CT14 set [57]. The use of a more flexible statistical combination of multiple PDF sets as in PDF4LHC15_100 [57–62] exhibited small differences as compared to the CT14 PDF set. We evaluated the impact of nonperturbative effects from hadronization and multiple parton interactions on the QCD predictions using PYTHIA with the CUETP8M1 tune [63] and HERWIG++ 2.7.1 [64] with tune EESC [65]. The effects are found to be less than 1% and negligible for both MC generators.

The production and decay of the DM mediators in the simplified DM model are generated at LO using MadDM version 2.0.6 [66,67] at fixed g_{DM} and m_{DM} values, where $g_{DM} = 1.0$ and $m_{DM} = 1$ GeV. For these values of g_{DM}
BSM physics signatures from CIs with flavor-diagonal color-singlet couplings among quarks are described by the effective Lagrangian [7,8]:

\[
\mathcal{L}_{q_iq_j} = \frac{2\pi}{A^2} \left[\eta_{LL} (\bar{q}_L \gamma^\mu q_L)(\bar{q}_L \gamma_\mu q_L) + \eta_{RR} (\bar{q}_R \gamma^\mu q_R)(\bar{q}_R \gamma_\mu q_R) + 2\eta_{RL} (\bar{q}_R \gamma^\mu q_R)(\bar{q}_L \gamma_\mu q_L) \right],
\]

where the subscripts L and R refer to the left and right chiral projections of the quark fields, respectively, and \(\eta_{LL}, \eta_{RR},\) and \(\eta_{RL}\) are taken to be 0, +1, or −1 for the different combinations that correspond to different CI models. The following CI possibilities with color-singlet couplings among quarks are investigated:

Model	\((\eta_{LL}, \eta_{RR}, \eta_{RL})\)
\(A^\pm_{LL}\)	(+1, 0, 0)
\(A^\pm_{RR}\)	(0, ±1, 0)
\(A^\pm_{VV}\)	(+1, ±1, ±1)
\(A^\pm_{AA}\)	(±1, ±1, ±1)
\(A^\pm_{V-A}\)	(0, 0, ±1)

The models with positive (negative) \(\eta_{LL}\) or \(\eta_{RR}\) lead to destructive (constructive) interference with the QCD terms, and consequently a lower (higher) cross section, respectively. In all CI models discussed in this paper, NLO QCD corrections are employed to calculate the cross sections. In proton–proton collisions, the \(A^\pm_{LL}\) and \(A^\pm_{RR}\) models result in identical lowest order cross sections and NLO corrections, and consequently lead to the same sensitivity. For \(A^\pm_{VV}\) and \(A^\pm_{AA}\), as well as for \(A^\pm_{V-A}\), the CI predictions are also identical at lowest order, but exhibit different NLO corrections and yield different sensitivities. The \(\text{CJET 1.0}\) program [68] is used to calculate the CI terms, as well as the interference between the CI and QCD terms at NLO in QCD.

For the ADD model, two parameterizations for virtual graviton exchange are considered: Giudice–Rattazzi–Wells (GRW) [69] and Han–Lykken–Zhang (HLZ) [70]. In the GRW convention, the sum over the Kaluza–Klein graviton excitations in the effective field theory is regulated by a single cutoff parameter \(A_T\). In the HLZ convention, the effective theory is described in terms of two parameters, the cutoff scale \(M_S\) and the number of extra spatial dimensions \(n_{ED}\). The parameters \(M_S\) and \(n_{ED}\) are directly related to \(A_T\) [71].

5 Systematic uncertainties

The normalized \(\chi_{dijet}\) distributions are relatively insensitive to many potential systematic effects. To present the uncertainties for the normalized shapes, the quoted values are reported for the lowest \(\chi_{dijet}\) bins, where the uncertainties
and potential contributions from BSM processes are typically the largest. The main experimental uncertainty is from the jet energy scale (JES) and the main theoretical uncertainty is from the choices of μ_F and μ_R scales.

5.1 Experimental uncertainties

The overall JES uncertainty is less than 1%, and the variation of the JES as a function of pseudorapidity is less than 1% per unit η [47,75] in the phase space of the analysis. The JES uncertainties related to each step in the derivation of the p_T and η dependent JES corrections are taken into account independently. In this way, the correlations of the JES uncertainty sources among the M_{jj} ranges and x_{dijet} bins are included. For the purpose of display in figures and tables, the total JES uncertainty is obtained from the quadratic sum of these uncertainty sources and is found to be 3.6% in the lowest M_{jj} range and 9.2% in the highest M_{jj} range.

The uncertainty from the jet p_T resolution is evaluated by changing the width of the Gaussian core of the Crystal Ball parameterization of the response by up to \pm 5% [47,75], depending upon the η, and comparing the resultant distributions before and after these changes. This uncertainty is found to be less than 1% for all M_{jj}. The uncertainty from the modeling of the tails of the jet p_T resolution [76] is evaluated using a Gaussian function to parameterize the response, and we assign an uncertainty equal to half of the difference between the distributions determined from this Gaussian ansatz and the nominal correction. The size of this uncertainty is less than 1.5% for all M_{jj}.

Another source of uncertainty arises from the use of a parametric model to simulate the jet p_T resolution of the detector. This uncertainty is estimated by comparing the smeared x_{dijet} distributions to the ones from a detailed simulation of the CMS detector using GEANT4 [77], and is found to be 0.5% and 1% in the lowest and highest M_{jj} ranges, respectively.

In the unfolding procedure, there is an additional systematic uncertainty introduced due to potential mismodeling of the dijet kinematic distributions in PYTHIA. This uncertainty is evaluated using MADGRAPH5_aMC@NLO 2.2.2 [78] predictions, as the kinematic distributions from MADGRAPH5_aMC@NLO and PYTHIA are found to bracket the data. The inverted response matrix from PYTHIA is applied to the smeared x_{dijet} distributions from MADGRAPH5_aMC@NLO and the results are compared to the corresponding generated x_{dijet} distributions. The differences are observed to be less than 1.5% for all M_{jj}.

The effect from pileup is studied by comparing the x_{dijet} distributions with various numbers of pileup interactions in simulated events. The numbers are varied according to the uncertainty of the total inelastic cross section of pp collisions [79]. The effect on the x_{dijet} distributions is observed to be negligible.

5.2 Theoretical uncertainties

The uncertainties due to the choices of μ_F and μ_R scales in the NLO QCD predictions are evaluated by following the proposal in Refs. [80,81] and changing the default choice of scales in the following 6 combinations: $(\mu_F/(p_T), \mu_R/(p_T)) = (1/2, 1/2), (1/2, 1), (1, 1/2), (2, 2), (2, 1), \text{and } (1, 2)$. These changes modify the predictions of the normalized x_{dijet} distributions by up to 8.5% and up to 19%, at small and large values of M_{jj}, respectively. The uncertainty in the NLO QCD predictions due to the choice of PDFs is determined from the 28 eigenvectors of CT14 using the procedure described in Ref. [82], and is found to be less than 0.2% at low M_{jj} and less than 0.6% at high M_{jj}. The uncertainty in the strong coupling constant has a negligible impact on the normalized x_{dijet} distribution.

Scale and PDF uncertainties in the CI predictions are obtained using the same procedure as in the QCD predictions. In the ADD and QBH models, the scale and PDF uncertainties have a negligible impact on the limits as the signals only appear in the highest mass bins, where the statistical uncertainties dominate. The effect on the acceptance for the DM models due to the PDF uncertainty is evaluated using the 100 replica NNPDF3.0 PDF set [60] and found to be non-negligible in the M_{jj} ranges with $M_{jj} > M_{Med}$ for DM mediators that have large mass and coupling. For example, for an axial-vector mediator with $M_{Med} = 6$ TeV and $g_q = 1.0$, which corresponds to a resonance with relative width of 50%, the uncertainty is 14% in the $M_{jj} > 6.0$ TeV bin.

Although the uncertainties are treated separately in the statistical analysis of the data, for display purposes in tables and figures we calculate the total experimental and theoretical uncertainty as the quadratic sum of the contributions due to the JES, the jet p_T resolution, the modeling of both the detector response and the dijet kinematics, and the contributions from μ_F, μ_R, and the PDFs. A summary of the leading experimental systematic uncertainties is provided in Table 1. The theoretical uncertainties quoted in the table apply to the QCD prediction. As shown in Table 1, systematic uncertainties dominate the total uncertainty in low M_{jj} regions, while the statistical uncertainty dominates in high M_{jj} regions.

6 Results

In Figs. 1 and 2 the measured normalized x_{dijet} distributions for all mass bins unfolded to particle level are compared to NLO predictions with EW corrections. No significant deviation from the SM prediction is observed. The distributions are also compared to predictions for QCD+CI with CI scales equal to 14 TeV, QCD+ADD with Λ_T (GRW) = 10 TeV, QCD+QBH with M_{QBH} (ADD6) = 8 TeV, and QCD+DM
Table 1 Summary of the leading experimental and theoretical uncertainties in the normalized χ^2_{dijet} distributions, in percent. While the statistical analysis represents each uncertainty through a change in the χ^2_{dijet} distribution correlated among all χ^2_{dijet} bins, this table summarizes each uncertainty by a representative value to show their relative contributions.

Source of uncertainty	$2.4 < M_{jj} < 3.0$ TeV	$M_{jj} > 6.0$ TeV
Statistical	0.7	27
JES	3.6	9.2
Jet p_T resolution (core)	1.0	1.0
Jet p_T resolution (tails)	1.0	1.5
Detector response model	0.5	1.0
Unfolding, model dependence	0.2	1.5
Total experimental	4.1	29
QCD NLO scale (6 changes in μ_t and μ_s)	+8.5	+19
	-3.0	-5.8
PDF (CT14 eigenvectors)	0.2	0.6
Total theoretical	8.5	19

with $M_{\text{Med}} = 2$, 3 and 5 TeV and $g_{q} = 1.0$. The signal distributions are only shown for the M_{jj} ranges that contribute to the sensitivity for the BSM searches.

The asymptotic approximation [83] of the CL$_s$ criterion [84,85] is used to set exclusion limits on the parameters for the BSM models [86]. The limits obtained using this approximation were tested against the CL$_s$ limits obtained using ensembles of pseudo experiments for several of the models examined, and the differences were found to be negligible. The likelihoods L_{QCD} and $L_{\text{QCD+BSM}}$ are defined for the respective QCD-only and QCD+BSM hypotheses as a product of Poisson likelihood functions for each bin in χ^2_{dijet}. The predictions for each M_{jj} range are normalized to the number of observed events in that range. Systematic uncertainties are treated as nuisance parameters in the likelihood model. Following Ref. [17], the nuisance parameters are profiled with respect to the QCD-only and QCD+BSM models by maximizing the corresponding likelihood functions. The p-values for the two hypotheses, $P_{\text{QCD+BSM}}(q \geq q_{\text{obs}})$ and $P_{\text{QCD}}(q \leq q_{\text{obs}})$, are evaluated for the profile log-likelihood ratio $q = -2 \ln(L_{\text{QCD+BSM}}/L_{\text{QCD}})$. Limits on the QCD+BSM models are set based on the quantity $\text{CL} = P_{\text{QCD+BSM}}(q \geq q_{\text{obs}})/(1 - P_{\text{QCD}}(q \leq q_{\text{obs}}))$, which is required to be less than 0.05 for a 95% confidence level (CL) of exclusion. Because of the large number of events in the low-M_{jj} range, which constrain the systematic uncertainties, we obtain 2–30% better observed limits on the BSM scales and masses compared to the limits obtained using the method in the predecessor of this search reported in Ref. [29], where the nuisance parameters were marginalized rather than profiled.

In the limit calculations, not all M_{jj} ranges are included in the likelihoods; only those that improve the expected limits by more than 1% are used. We use mass bins with $M_{jj} > 3.6$ TeV for the CI models, $M_{jj} > 4.2$ TeV for the ADD models, and $M_{jj} > 4.8$ TeV for the QBH models. For the DM mediators, we use mass bins that cover the M_{jj} range of 0.5M_{Med}–1.2M_{Med}. The exclusion limits on the BSM models are determined using detector-level χ^2_{dijet} distributions and theoretical predictions at detector level. By using the detector-level χ^2_{dijet} distributions, each bin of the χ^2_{dijet} distributions can be modeled by a Poisson likelihood function, while at particle level, the unfolded data distributions have correlations among the dijet mass bins. As a cross-check, the limits are also determined for the case where the unfolded χ^2_{dijet} distributions, approximated by Poisson likelihood functions, and particle-level theoretical predictions are used in the limit extraction procedure. The resulting observed limits on the BSM scales and masses are found to be more stringent than those determined at detector level by 1–10%, depending on the model. The agreement of the data with QCD predictions is quantified by calculating $P_{\text{QCD}}(q < q_{\text{obs}})$ for each mass bin separately. The largest excess is found in the first data point of the > 6.0 TeV mass bin, with a significance of 1.8 standard deviations. When combining mass bins in the various QCD+BSM models under study, the largest significances are found to be 2.7–2.8 standard deviations for the QCD+DM model with $M_{\text{Med}} = 4.5$–6 TeV and $g_{q} = 1.0$.

Figure 3 shows the 95% CL upper limits on g_{q} as a function of the mass of the vector or axial-vector DM mediator with $g_{\text{DM}} = 1.0$ and $m_{\text{DM}} = 1$ GeV. The corresponding limits on the width of the mediators are shown on the vertical axis on the right-hand side of Fig. 3. The degradation of the limits below $M_{\text{Med}} = 2.5$ TeV and above $M_{\text{Med}} = 4$ TeV can be explained as follows. For resonance masses below the lower M_{jj} boundary of the analysis at 2.4 TeV, the acceptance increases rapidly as a function of resonance mass (e.g., from 1.4% at $M_{\text{Med}} = 2$ TeV to 16% at $M_{\text{Med}} = 2.5$ TeV, for...
$g_q = 0.5$), resulting in the improvement of the limit on g_q as a function of resonance mass. For large values of resonance mass and width (e.g., for $M_{\text{Med}} > 4$ TeV and $g_q > 0.5$), the mediator is primarily produced off-shell with a mass less than the M_{jj} boundary of the analysis at 2.4 TeV. The acceptance for high resonance masses thus decreases as a function
Fig. 2 Normalized χ_{dijet} distributions in the four lower mass bins. Unfolded data are compared to NLO predictions (black dotted line). The error bars represent statistical and experimental systematic uncertainties combined in quadrature. The ticks on the error bars correspond to the experimental systematic uncertainties only. Theoretical uncertainties are indicated as a gray band. Also shown are the predictions for various CI, ADD, and DM scenarios. The lower panels show the ratio of the unfolded data distributions and NLO predictions of resonance width (e.g., for $M_{\text{Med}} = 5$ TeV, from 25% at $g_q = 0.5$ to 8% at $g_q = 1.5$), resulting in the fast deterioration of the limit on g_q at high resonance masses. The observed limit above 5 TeV is at $\Gamma/M_{\text{Med}} \geq 1$, thus in a region where the simplified model of a mediator particle is no longer valid. For M_{Med} between 2.0 and 4.6 TeV, this...
search excludes couplings $1.0 \leq g_q \leq 1.4$, which are not accessible via dijet resonance searches.

The limits for M_{Med} at arbitrary m_{DM} and g_{DM} can be calculated based on the fact that at fixed mediator production cross sections, changes in the width of the DM decay channel will lead to changes in the width of the quark decay channel. For the models with $g_q = 1.0$, $g_{\text{DM}} = 1.0$, and $2m_{\text{DM}} < M_{\text{Med}}$, in which the total width of the mediator is dominated by the width of the quark decay channel due to the large number of possible quark flavors and colors, the exclusion range for M_{Med} has little dependence on m_{DM}. For the models with $2m_{\text{DM}} \geq M_{\text{Med}}$, the width of the DM decay channel is assumed to be zero. The resulting exclusion regions for vector and axial-vector mediators with $g_q = 1.0$ and $g_{\text{DM}} = 1.0$ in the m_{DM} and M_{Med} plane are shown in Fig. 4.

The observed and expected exclusion limits at 95% CL on different CI, ED, QBH, and DM models obtained in this analysis are listed in Table 2. The observed limits are less stringent than the expected limits because of the upward fluctuation in the measured distributions compared to the theoretical predictions. The limits on all models are more stringent than those obtained from data collected by CMS in 2015 [29].

7 Summary

A search has been presented for physics beyond the standard model, based on normalized dijet angular distributions obtained in 2016 from proton–proton collisions at the LHC. The data sample corresponds to an integrated luminosity of 35.9 fb$^{-1}$. The angular distributions, measured over a wide range of dijet invariant masses, are found to be in agreement with the predictions of perturbative quantum chromodynamics. The results are used to set 95% confidence level lower limits on the contact interaction scale for a variety of quark compositeness models, the ultraviolet cutoff in models of extra spatial dimensions, the minimum mass of quark black holes, and the mass and couplings in dark matter models. For the first time, lower limits between 2.0 and 4.6 TeV are set on the mass of a dark matter mediator for quark compositeness models, the ultraviolet cutoff in models of extra spatial dimensions, the minimum mass of quark black holes, and the mass and couplings in dark matter models.
Table 2 Observed and expected exclusion limits at 95% CL for various CI, ADD, QBH, and DM models. The 68% ranges of expectation for the expected limit are given as well. For the DM vector mediator, couplings $g_{DM} = 1.0$, $g_q \geq 1$ and a DM mass of 1 GeV are assumed and a range of masses instead of a lower limit is quoted.

Model	Observed lower limit (TeV)	Expected lower limit (TeV)
CI	$\Lambda_{LL,RR}^+$	12.8
	$\Lambda_{LL,RR}^-$	17.5
	Λ_{VV}^+	14.6
	Λ_{VV}^-	22.4
	Λ_{AA}^+	14.7
	Λ_{AA}^-	22.3
	$\Lambda_{(V-A)}^+$	9.2
	$\Lambda_{(V-A)}^-$	9.3
ADD	Λ_T (GRW)	10.1
	M_S (HLZ) $n_{ED} = 2$	10.7
	M_S (HLZ) $n_{ED} = 3$	12.0
	M_S (HLZ) $n_{ED} = 4$	10.1
	M_S (HLZ) $n_{ED} = 5$	9.1
	M_S (HLZ) $n_{ED} = 6$	8.5
QBH	M_{QBH} (ADD $n_{ED} = 6$)	8.2
	M_{QBH} (RS $n_{ED} = 1$)	5.9
DM	Vector/axial-vector M_{Med}	2.0–4.6

stringent limits available. Quantum black hole masses below 8.2 TeV are excluded in the model with six large extra spatial dimensions, and below 5.9 TeV in the Randall–Sundrum model with a single, warped extra dimension. To facilitate comparisons with the predictions of other models, the angular distributions, corrected to particle level, are published in HEPData.

Acknowledgements We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so efficiently the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support of the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENCETCY (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); NKFIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI, and FEDER (Spain); MOSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie programme and the European Research Council and Horizon 2020 Grant, contract No. 675440 (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the F.R.S.-FNRS and FWO (Belgium) under the “Excellence Science – EOS” – be.h project n. 30820817; the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Lendület (“Momentum”) Programme and the János Bolyai Research Scholarship of the Hungarian Academy of Sciences, the National Priorities Research Program by the Qatar National Research Fund; the Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia María de Maeztu, and the Programa de Excelencia de la CSIC, project MDM-2015-0509; the Programa Severo Ochoa del Principado de Asturias; the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF; the Rachadapisek Sompot Fund for Post-doctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); the Marie Skłodowska-Curie Actions (H2020, grant agreement No. 675440); the International Research Training Grant 2012/07/E/ST2/01406; the National Priorities Research Program by the Qatar National Research Fund; the Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia María de Maeztu, grant MDM-2015-0509; and the Programa Severo Ochoa del Principado de Asturias; the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF; the Rachadapisek Sompot Fund for Post-doctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thai-
land); the Welch Foundation, contract C-1845; and the Weston Havens Foundation (USA).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Funded by SCOAP3.

References

1. H. Dreiner, D. Schmeier, J. Tattersall, Contact interactions probe effective dark matter models at the LHC. Europhys. Lett. 102, 51001 (2013). https://doi.org/10.1209/0295-5075/102/51001. arXiv:1303.3348

2. J. Abdallah et al., Simplified models for dark matter searches at the LHC. Phys. Dark Univ. 9–10, 8 (2015). https://doi.org/10.1016/j.dark.2015.08.001. arXiv:1506.03116

3. G. Busoni et al., Recommendations on presenting LHC searches for missing transverse energy signals using simplified s-channel models of dark matter (2016). arXiv:1603.04156

4. A. Albert et al., Recommendations of the LHC Dark Matter Working Group: Comparing LHC searches for heavy mediators of dark matter production in visible and invisible decay channels (2017). arXiv:1703.05703

5. D. Abercrombie et al., Dark matter benchmark models for early LHC Run-2 searches: report of the ATLAS/CMS Dark Matter Forum (2015). arXiv:1507.00966

6. H. Terazawa, Subquark model of leptons and quarks. Phys. Rev. D 22, 184 (1980). https://doi.org/10.1103/PhysRevD.22.184

7. E. Eichten, K. Lane, M. Peskin, New tests for quark and lepton substructure. Phys. Rev. Lett. 50, 811 (1983). https://doi.org/10.1103/PhysRevLett.50.811

8. E. Eichten, I. Hinchliffe, K. Lane, C. Quigg, Supercollider physics. Rev. Mod. Phys. 56, 579 (1984). https://doi.org/10.1103/RevModPhys.56.579

9. N. Arkani-Hamed, S. Dimopoulos, G. Dvali, The hierarchy problem and new dimensions at a millimeter. Phys. Lett. B 429, 263 (1998). https://doi.org/10.1016/S0370-2693(98)00466-3. arXiv:hep-ph/9803315

10. N. Arkani-Hamed, S. Dimopoulos, G. Dvali, Phenomenology, astrophysics and cosmology of theories with sub-millimeter dimensions and TeV scale quantum gravity. Phys. Rev. D 59, 086004 (1999). https://doi.org/10.1103/PhysRevD.59.086004. arXiv:hep-ph/9807344

11. P.C. Argyres, S. Dimopoulos, J. March-Russell, Black holes and sub-millimeter dimensions. Phys. Lett. B 441, 96 (1998). https://doi.org/10.1016/S0370-2693(98)01184-8. arXiv:hep-th/9808138

12. T. Banks, W. Fischler, A model for high-energy scattering in quantum gravity (1999). arXiv:hep-th/9906038

13. R. Emparan, G.T. Horowitz, R.C. Myers, Black holes radiate mainly on the brane. Phys. Rev. Lett. 85, 499 (2000). https://doi.org/10.1103/PhysRevLett.85.499. arXiv:hep-th/0003118

14. S. Dimopoulos, G. Landsberg, Black Holes at the Large Hadron Collider. Phys. Rev. Lett. 87, 161602 (2001). https://doi.org/10.1103/PhysRevLett.87.161602. arXiv:hep-ph/0106295

15. S.B. Giddings, S. Thomas, High energy colliders as black hole factories: the end of short distance physics. Phys. Rev. D 65, 056010 (2002). https://doi.org/10.1103/PhysRevD.65.056010. arXiv:hep-ph/0106219

16. M. Chala, Constraining dark sectors with moonojets and dijets. JHEP 07, 089 (2015). https://doi.org/10.1007/JHEP07(2015)089. arXiv:1503.05916

17. ATLAS Collaboration, Search for new phenomena in dijet events using 37 fb−1 of pp collision data collected at √s = 13 TeV with the ATLAS detector. Phys. Rev. D 96, 052004 (2017). https://doi.org/10.1103/PhysRevD.96.052004. arXiv:1703.09127

18. CMS Collaboration, Search for dijet resonances in proton-proton collisions at √s = 13 TeV and constraints on dark matter and other models. Phys. Lett. B 769, 520 (2016). https://doi.org/10.1016/j.physletb.2017.02.012. arXiv:1611.03568

19. UA1 Collaboration, Angular distributions for high mass jet pairs and a limit on the energy scale of compositeness for quarks from the CERN pp collider. Phys. Lett. B 177, 244 (1986). https://doi.org/10.1016/0370-2693(86)91065-8

20. B.L. Combridge, C.J. Maxwell, Untangling large pr dijet hadronic reactions. Nucl. Phys. B 239, 429 (1984). https://doi.org/10.1016/0550-3213(84)90257-8

21. ATLAS Collaboration, Search for quark contact interactions in dijet angular distributions in pp collisions at √s = 7 TeV measured with the ATLAS detector. Phys. Lett. B 694, 327 (2010). https://doi.org/10.1016/j.physletb.2010.10.021. arXiv:1009.5069

22. ATLAS Collaboration, Search for new physics in dijet mass and angular distributions in pp collisions at √s = 7 TeV measured with the ATLAS detector. New J. Phys. 13, 053044 (2011). https://doi.org/10.1088/1367-2630/13/5/053044. arXiv:1103.3864

23. ATLAS Collaboration, ATLAS search for new phenomena in dijet mass and angular distributions using pp collisions at √s = 7 TeV. JHEP 01, 029 (2013). https://doi.org/10.1007/JHEP01(2013)029. arXiv:1210.1718

24. ATLAS Collaboration, Search for new phenomena in the dijet mass distribution using pp collision data at √s = 8 TeV with the atlas detector. Phys. Rev. D 91, 052007 (2015). https://doi.org/10.1103/PhysRevD.91.052007. arXiv:1407.1376

25. ATLAS Collaboration, Search for new phenomena in dijet mass and angular distributions from pp collisions at √s = 13 TeV with the ATLAS detector. Phys. Lett. B 754, 302 (2016). https://doi.org/10.1016/j.physletb.2016.01.032. arXiv:1512.01530

26. CMS Collaboration, Measurement of dijet angular distributions and search for quark compositeness in pp collisions at √s = 7 TeV. Phys. Rev. Lett. 106, 201804 (2011). https://doi.org/10.1103/PhysRevLett.106.201804. arXiv:1102.2020

27. CMS Collaboration, Search for quark compositeness in dijet angular distributions from pp collisions at √s = 7 TeV. JHEP 05, 055 (2012). https://doi.org/10.1007/JHEP05(2012)055. arXiv:1202.5535

28. CMS Collaboration, Search for quark contact interactions and extra spatial dimensions using dijet angular distributions in proton–proton collisions at √s = 8 TeV. Phys. Lett. B 746, 79 (2015). https://doi.org/10.1016/j.physletb.2015.04.042. arXiv:1411.2464

29. CMS Collaboration, Search for new physics with dijet angular distributions in proton–proton collisions at √s = 13 TeV. JHEP 07, 013 (2017). https://doi.org/10.1007/JHEP07(2017)013. arXiv:1703.09986

30. Y. Bai, P.J. Fox, R. Harnik, The Tevatron at the frontier of dark matter direct detection. JHEP 12, 048 (2010). https://doi.org/10.1007/JHEP12(2010)048. arXiv:1005.3797

31. I.M. Shoemaker, L. Vecchi, Unitarity and monojet bounds on models for DAMA, CoGeNT, and CRESST-II. Phys. Rev. D 86, 015023 (2012). https://doi.org/10.1103/PhysRevD.86.015023. arXiv:1112.5457

32. CMS Collaboration, Search for narrow and broad dijet resonances in proton–proton collisions at √s = 13 TeV and constraints on dark matter mediators and other new particles. JHEP 08, 130 (2018). https://doi.org/10.1007/JHEP08(2018)130. arXiv:1806.00843
72. L. Randall, R. Sundrum, Large mass hierarchy from a small extra dimension. Phys. Rev. Lett. 83, 3370 (1999). https://doi.org/10.1103/PhysRevLett.83.3370. arXiv:hep-ph/9905221

73. L. Randall, R. Sundrum, An alternative to compactification. Phys. Rev. Lett. 83, 4690 (1999). https://doi.org/10.1103/PhysRevLett.83.4690. arXiv:hep-th/9906064

74. D.M. Gingrich, Monte Carlo event generator for black hole production and decay in proton-proton collisions. Comput. Phys. Commun. 181, 1917 (2010). https://doi.org/10.1016/j.cpc.2010.07.027. arXiv:0911.5370

75. CMS Collaboration, Jet energy scale and resolution performances with 13 TeV data. CMS Detector Performance Summary CERN-DP-2016-020 (2016)

76. CMS Collaboration, Determination of jet energy calibration and transverse momentum resolution in CMS. JINST 6, P11002 (2011). https://doi.org/10.1088/1748-0221/6/11/P11002. arXiv:1107.4277

77. Geant4 Collaboration, Geant4—a simulation toolkit. Nucl. Instrum. Methods A 506, 250 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8

78. J. Alwall, The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations. JHEP 07, 079 (2014). https://doi.org/10.1007/JHEP07(2014)079. arXiv:1405.0301

79. ATLAS Collaboration, Measurement of the inelastic proton-proton cross section at √s = 13 TeV with the ATLAS detector at the LHC. Phys. Rev. Lett. 117, 182002 (2016). https://doi.org/10.1103/PhysRevLett.117.182002. arXiv:1606.02625

80. M. Cacciari et al., The t¯t cross-section at 1.8 TeV and 1.96 TeV: a study of the systematics due to parton densities and scale dependence. JHEP 04, 068 (2004). https://doi.org/10.1088/1126-6708/2004/04/068. arXiv:hep-ph/0303085

81. A. Banfi, G.P. Salam, G. Zanderighi, Phenomenology of event shapes at hadron colliders. JHEP 06, 038 (2010). https://doi.org/10.1007/JHEP06(2010)038. arXiv:1001.4082

82. P. Nadolsky et al., Implications of CTEQ global analysis for collider observables. Phys. Rev. D 78, 013004 (2008). https://doi.org/10.1103/PhysRevD.78.013004. arXiv:0802.0007

83. G. Cowan, K. Cranmer, E. Gross, O. Vitells, Asymptotic formulae for likelihood-based tests of new physics. Eur. Phys. J. C 71, 1554 (2011). https://doi.org/10.1140/epjc/s10052-011-1554-0. arXiv:1007.1727 (Erratum: https://doi.org/10.1140/epjc/s10052-013-2501-z)

84. T. Junk, Confidence level computation for combining searches with small statistics. Nucl. Instrum. Methods A 434, 435 (1999). https://doi.org/10.1016/s0168-9002(99)00498-2. arXiv:hep-ex/9902006

85. A.L. Read, Presentation of search results: the CLs technique. J. Phys. G 28, 2693 (2002). https://doi.org/10.1088/0954-3899/28/10/313

86. ATLAS and CMS Collaborations, and the LHC Higgs Combination Group, Procedure for the LHC Higgs boson search combination in Summer 2011. Technical Report CMS-NOTE-2011-005, ATL-PHYS-PUB-2011-11 (2011)

87. Planck Collaboration, Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 594, A13 (2016). https://doi.org/10.1051/0004-6361/201525830. arXiv:1502.01589

CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
A. M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik, Vienna, Austria
W. Adam, F. Ambrogi, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Erö, A. Escalante Del Valle, M. Flechl, M. Friedl, R. Frühwirth 1, V. M. Gheite, J. Grossmann, J. Hrubec, M. Jeitler 1, A. König, N. Krammer, I. Krätschmer, D. Liko, T. Madlener, I. Mikulec, E. Pree, N. Rad, H. Rohringer, J. Schieck 1, R. Schönbeck, M. Spanring, D. Spitzbart, A. Taurok, W. Waltenberger, J. Wittmann, C.-E. Wulz 1, M. Zarucki

Institute for Nuclear Problems, Minsk, Belarus
V. Chekhovsky, V. Mossolov, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerp, Belgium
E. A. De Wolf, D. Di Croce, X. Janssen, J. Lauwers, M. Pieters, M. Van De Klundert, H. Van Havermaet, P. Van Mechelen, N. Van Remortel

Vrije Universiteit Brussel, Brussels, Belgium
S. Abu Zeid, F. Blekman, T. Bergauer, J. De Clercq, K. Deroover, G. Fliaux, V. M. Gheite, J. Grossmann, J. Hrubec, M. Jeitler 1, A. König, N. Krammer, I. Marchesini, S. Moortgat, L. Moreels, Q. Python, K. Skovpen, S. Tavernier, W. Van Doninck, P. Van Mulders, I. Van Parijs

Université Libre de Bruxelles, Brussels, Belgium
D. Beghin, B. Bilin, H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, B. Dorney, G. Fasanella, L. Favart, R. Goldouzian, A. Grebenyuk, A. K. Kalsi, T. Lenzi, J. Luetic, T. Seva, E. Starling, C. Vander Velde, P. Vanlaer, D. Vannerom, R. Yonamine

Ghent University, Ghent, Belgium
T. Cornelis, D. Dobur, A. Fogat, M. Gul, I. Khvastunov 2, D. Poyraz, C. Roskas, D. Trocino, M. Tytgat, W. Verbeke, B. Vermassen, M. Vit, N. Zaganidis

80. M. Cacciari et al., The t¯t cross-section at 1.8 TeV and 1.96 TeV: a study of the systematics due to parton densities and scale dependence. JHEP 04, 068 (2004). https://doi.org/10.1088/1126-6708/2004/04/068. arXiv:hep-ph/0303085

81. A. Banfi, G.P. Salam, G. Zanderighi, Phenomenology of event shapes at hadron colliders. JHEP 06, 038 (2010). https://doi.org/10.1007/JHEP06(2010)038. arXiv:1001.4082

82. P. Nadolsky et al., Implications of CTEQ global analysis for collider observables. Phys. Rev. D 78, 013004 (2008). https://doi.org/10.1103/PhysRevD.78.013004. arXiv:0802.0007

83. G. Cowan, K. Cranmer, E. Gross, O. Vitells, Asymptotic formulae for likelihood-based tests of new physics. Eur. Phys. J. C 71, 1554 (2011). https://doi.org/10.1140/epjc/s10052-011-1554-0. arXiv:1007.1727 (Erratum: https://doi.org/10.1140/epjc/s10052-013-2501-z)

84. T. Junk, Confidence level computation for combining searches with small statistics. Nucl. Instrum. Methods A 434, 435 (1999). https://doi.org/10.1016/s0168-9002(99)00498-2. arXiv:hep-ex/9902006

85. A.L. Read, Presentation of search results: the CLs technique. J. Phys. G 28, 2693 (2002). https://doi.org/10.1088/0954-3899/28/10/313

86. ATLAS and CMS Collaborations, and the LHC Higgs Combination Group, Procedure for the LHC Higgs boson search combination in Summer 2011. Technical Report CMS-NOTE-2011-005, ATL-PHYS-PUB-2011-11 (2011)

87. Planck Collaboration, Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 594, A13 (2016). https://doi.org/10.1051/0004-6361/201525830. arXiv:1502.01589
Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
Y. Assran, S. Elgammal, S. Khalil

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
S. Bhowmik, R. K. Dewanjee, M. Kadastik, L. Perrini, M. Raidal, C. Veelken

Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, H. Kirschenmann, J. Pekkanen, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland
J. Havukainen, J. K. Heikkilä, T. Järvinen, V. Karimäki, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Laurila, S. Lehti, T. Lindén, P. Luukka, T. Mäenpää, H. Siikonen, E. Tuominen, J. Tuominiemi

Lappeenranta University of Technology, Lappeenranta, Finland
T. Tuuva

IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
M. Besançon, F. Coudenc, M. Dejardin, D. Denegri, J. L. Faure, F. Ferri, S. Ganjour, S. Ghosh, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, C. Leloup, E. Locci, M. Machet, J. Malcles, G. Negro, J. Rander, A. Rosowsky, M. Ö. Sahin, M. Titov

Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Université Paris-Saclay, Palaiseau, France
A. Abdulsalam, C. Amendola, I. Antropov, S. Baffioni, F. Beaudette, P. Busson, L. Cadamuro, C. Charlot, R. Granier de Cassagnac, M. Jo, I. Kucher, S. Lisniak, A. Lobanov, J. Martin Blanco, M. Nguyen, C. Ochando, G. Ortona, P. Paganini, P. Pigard, R. Salerno, J. B. Sauvan, Y. Sirois, A. G. Stahl Leiton, Y. Yilmaz, A. Zabi, A. Zghiche

Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
J.-L. Agram, J. Andrea, D. Bloch, J.-M. Brom, E. C. Chabert, C. Collard, E. Conte, X. Coubez, F. Drouhin, J.-C. Fontaine, D. Gelé, U. Georlach, M. Jansová, P. Jary, A.-C. Le Bihan, N. Tonon, P. Van Hove

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France
S. Gadrat

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
S. Beauceron, C. Bernet, G. Boudoul, N. Chanon, R. Chierici, D. Contardo, P. Depasse, H. El Mamouni, J. Fay, L. Finco, S. Gascon, M. Gouzevitch, G. Grenier, B. Ille, F. Lagarde, I. B. Laktineh, H. Lattaud, M. Lethuillier, L. Mirabito, A. L. Pequegnot, S. Perries, A. Popov, V. Sordini, M. Vander Donckt, S. Viret, S. Zhang

Georgian Technical University, Tbilisi, Georgia
T. Toriashvili

Tbilisi State University, Tbilisi, Georgia
Z. Tsamalaidze

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
C. Autermann, L. Feld, M. K. Kiesel, K. Klein, M. Lipinski, M. Preuten, M. P. Rauch, C. Schomakers, J. Schulz, M. Teroerde, B. Wittmer, V. Zhukov

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
A. Albert, D. Duchardt, M. Endres, M. Erdmann, S. Erdweg, T. Esch, R. Fischer, A. Güth, T. Hebbeker, C. Heidemann, K. Hoepfner, S. Knutzen, M. Merschmeyer, A. Meyer, P. Millet, S. Mukherjee, T. Pook, M. Radziej, H. Reithler, M. Rieger, F. Scheuch, D. Teyssier, S. Thüer

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
G. Flügge, B. Kargoll, T. Kress, A. Künsken, T. Müller, A. Nehrkorn, A. Nowack, C. Pistone, O. Pooth, A. Stahl
Saha Institute of Nuclear Physics, HBNI, Kolkata, India
R. Bhardwaj25, R. Bhattacharya, S. Bhattacharya, U. Bhawandeep25, D. Bhowmik, S. Dey, S. Dutta, S. Ghosh, N. Majumdar, K. Mondal, S. Mukhopadhyay, S. Nandan, A. Purohit, P. K. Rout, A. Roy, S. Roy Chowdhury, S. Sarkar, M. Sharan, B. Singh, S. Thakur25

Indian Institute of Technology Madras, Madras, India
P. K. Behera

Bhabha Atomic Research Centre, Mumbai, India
R. Chudasama, D. Dutta, V. Jha, V. Kumar, A. K. Mohanty16, P. K. Nettrakanti, L. M. Pant, P. Shukla, A. Topkar

Tata Institute of Fundamental Research-A, Mumbai, India
T. Aziz, S. Dugad, B. Mahakud, S. Mitra, G. B. Mohanty, N. Sur, B. Sutar

Tata Institute of Fundamental Research-B, Mumbai, India
S. Banerjee, S. Bhattacharya, S. Chatterjee, P. Das, M. Guchait, S. Kothekar, S. Majumdar, B. Singh, S. Thakur25

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
S. Chenarani28, E. Eskandari Tadavani, S. M. Etessami28, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, S. Paktinat Mehdiabadi29, F. Rezaei Hosseinabadi, B. Safarzadeh30, M. Zeinali

Indian Institute of Science Education and Research (IISER), Pune, India
S. Chauhan, S. Dube, V. Hegde, A. Kapoor, K. Kothekar, S. Pandey, A. Rane, S. Sharma

University College Dublin, Dublin, Ireland
M. Felcini, M. Grunewald

INFN Sezione di Bari, Università di Bari, Politecnico di Bari, Bari, Italy
M. Abbresciaa, b, C. Alabardoa, b, A. Colaleoa, b, D. Creanzaa, c, L. Cristellaa, b, N. De Filippisa, c, M. De Palmaa, b, A. Di Florioa, b, F. Erricocab, L. Fioreoa, b, A. Gelmaia, c, G. Iasellia, c, S. Lezzia, b, G. Maggia, c, M. Maggia, b, B. Marangellia, b, G. Miniellia, b, S. Mya, b, S. Nuzzoa, b, A. Pompiliao, b, G. Pugliesea, c, R. Radognaa, A. Ranieria, G. Selvaggiia, b, A. Sharmaa, L. Silvestrisa, c, R. Vendittia, P. Verwilligena, G. Zioa

INFN Sezione di Bologna, Università di Bologna, Bologna, Italy
G. Abbiendi, C. Battilanaa, b, D. Bonacorsea, b, L. Borgonovia, b, S. Braibant-Giacomellia, b, L. Brigliadoria, b, R. Campaninia, b, P. Capiluppia, b, A. Castroa, b, F. R. Cavalloa, b, S. S. Chhibraa, b, G. Codispottia, b, M. Cuffiani, a, b, G. M. Dallavallea, F. Fabbria, A. Fanfani, a, b, D. Fasanellia, b, P. Giacomellia, C. Grandia, L. Guiduccia, b, S. Marcellinia, G. Masetti, A. Montanaria, F. L. Navarria, a, b, A. Perrottaa, A. M. Rossia, b, T. Rovellia, b, G. P. Sirollia, N. Tosia

INFN Sezione di Catania, Università di Catania, Catania, Italy
S. Albergoa, b, S. Costa, a, b, A. Di Mattiaa, F. Giordanoa, b, R. Potenzaa, b, A. Tricomi, a, b, C. Tuvea, b

INFN Sezione di Firenze, Università di Firenze, Firenze, Italy
G. Barbagnia, K. Chatterjee, a, b, V. Ciullia, b, C. Civiinia, R. D’Alessandroat, b, E. Focardi, a, b, G. Latino, P. Lenzia, b, M. Meschini, a, S. Paollettia, L. Russoa, S. Sguazzonia, D. Strom, L. Viliania

INFN Laboratori Nazionali di Frascati, Frascati, Italy
L. Benussi, S. Bianco, F. Fabbri, D. Piccolo, F. Primavera16

INFN Sezione di Genova, Università di Genova, Genoa, Italy
V. Calvellia, b, F. Ferroat, F. Ravera, a, b, E. Robutti, a, S. Tosia, b

INFN Sezione di Milano-Bicocca, Università di Milano-Bicocca, Milan, Italy
A. Benaglia, A. Beschi, L. Brianza, a, b, F. Brivioa, b, V. Ciriolo, a, b, M. E. Dinardoa, b, S. Fiorendia, b, S. Gennai, a, A. Ghezzi, a, b, P. Govoni, a, b, M. Malbertia, b, S. Malvezzi, R. A. Manzonia, b, D. Menasce, L. Moronia, M. Paganonia, b, K. Pauwels, a, b, D. Pedrinia, S. Pigazzinia, b, S. Ragazzia, b, T. Tabarelli de Fatisa, b
Vilnius University, Vilnius, Lithuania
V. Dudenias, A. Juodagalvis, J. Vaitkus

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia
I. Ahmed, Z. A. Ibrahim, M. A. B. Md Ali, F. Mohamad Idris, W. A. T. Wan Abdullah, M. N. Yusli, Z. Zolkapli

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
M. C. Duran-Osuna, H. Castilla-Valdez, E. De La Cruz-Burelo, G. Ramirez-Sanchez, I. Heredia-De La Cruz, R. I. Rabadan-Trejo, R. Lopez-Fernandez, J. Mejia Guisao, R Reyes-Almanza, A. Sanchez-Hernandez

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, C. Oropesa Barrera, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
J. Eysermans, I. Pedraza, H. A. Salazar Ibarguen, C. Uribe Estrada

Universidad Autónoma de San Luis Potosi, San Luis Potosí, Mexico
A. Morelos Pineda

University of Auckland, Auckland, New Zealand
D. Krofcheck

University of Canterbury, Christchurch, New Zealand
S. Bheesette, P. H. Butler

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
A. Ahmad, M. Ahmad, Q. Hassan, H. R. Hooran, A. Saddique, M. A. Shah, M. Shaib, M. Waqas

National Centre for Nuclear Research, Swierk, Poland
H. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Górski, M. Kazana, K. Nawrocki, M. Szleper, P. Traczyk, P. Zalewski

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
K. Bunkowski, A. Byszuk, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misjura, M. Olszewski, A. Pyskir, M. Walczak

Laboratório de Instrumentação e Física Experimental de Partículas, Lisbon, Portugal
P. Bargassa, C. Beirão Da Cruz E Silva, A. Di Francesco, P. Faccioli, B. Galinhas, M. Gallinaro, J. Hollar, N. Leonardo, L. Lloret Iglesias, M. V. Nemallapudi, J. Seixas, G. Strong, O. Toldaiev, D. Vadrutto, J. Varela

Joint Institute for Nuclear Research, Dubna, Russia
S. Afanasiev, P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavin, A. Lanev, A. Malakhov, V. Matveev, P. Moisenz, V. Palichik, V. Perelygin, S. Shmatov, S. Shulha, N. Skatchkov, V. Smirnov, N. Voityshin, A. Zarubin

Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg, Russia
Y. Ivanov, V. Kim, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, D. Sosnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev

Institute for Nuclear Research, Moscow, Russia
Yu. Andreev, A. Dermenev, S. Gnilenkov, N. Golubev, A. Karneyeu, M. Kirsanov, N. Krasnikov, A. Pashenkov, D. Tlisov, A. Toropin

Institute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, V. Gavrilo, N. Lyakhovskaya, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, A. Stepennov, V. Stolin, M. Toms, E. Vlasov, A. Zhokin

Moscow Institute of Physics and Technology, Moscow, Russia
T. Aushev, A. Bylinkin
Texas Tech University, Lubbock, USA
N. Akchurin, J. Damgov, F. De Guio, P. R. Dudero, J. Faulkner, E. Gurpinar, S. Kunori, K. Lamicchane, S. W. Lee, T. Mengke, S. Muthumuni, T. Peltola, S. Undleeb, I. Volobouev, Z. Wang

Vanderbilt University, Nashville, USA
S. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, A. Melo, H. Ni, K. Padeken, J. D. Ruiz Alvarez, P. Sheldon, S. Tuo, J. Velkovska, Q. Xu

University of Virginia, Charlottesville, USA
M. W. Arenton, P. Barria, B. Cox, R. Hirosky, M. Joyce, A. Ledovskoy, H. Li, C. Neu, T. Sinthuprasith, Y. Wang, E. Wolfe, F. Xia

Wayne State University, Detroit, USA
R. Harr, P. E. Karchin, N. Poudyal, J. Sturdy, P. Thapa, S. Zaleski

University of Wisconsin-Madison, Madison, WI, USA
M. Brodski, J. Buchanan, C. Caillol, D. Carlsmitth, S. Dasu, L. Dodd, S. Duric, B. Gomber, M. Grothe, M. Herndon, A. Hervé, U. Hussain, P. Klabbers, A. Lanaro, A. Levine, K. Long, R. Loveless, V. Rekovic, T. Ruggles, A. Savin, N. Smith, W. H. Smith, N. Woods

† Deceased

1: Also at Vienna University of Technology, Vienna, Austria
2: Also at IRFU; CEA; Université Paris-Saclay, Gif-sur-Yvette, France
3: Also at Universidade Estadual de Campinas, Campinas, Brazil
4: Also at Federal University of Rio Grande do Sul, Porto Alegre, Brazil
5: Also at Universidade Federal de Pelotas, Pelotas, Brazil
6: Also at Université Libre de Bruxelles, Brussels, Belgium
7: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
8: Also at Joint Institute for Nuclear Research, Dubna, Russia
9: Also at Suez University, Suez, Egypt
10: Now at British University in Egypt, Cairo, Egypt
11: Also at Zewail City of Science and Technology, Zewail, Egypt
12: Also at Department of Physics; King Abdulaziz University, Jeddah, Saudi Arabia
13: Also at Université de Haute Alsace, Mulhouse, France
14: Also at Skobeltsyn Institute of Nuclear Physics; Lomonosov Moscow State University, Moscow, Russia
15: Also at Tbilisi State University, Tbilisi, Georgia
16: Also at CERN; European Organization for Nuclear Research, Geneva, Switzerland
17: Also at RWTH Aachen University; III. Physikalisches Institut A, Aachen, Germany
18: Also at University of Hamburg, Hamburg, Germany
19: Also at Brandenburg University of Technology, Cottbus, Germany
20: Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group; Eötvös Loránd University, Budapest, Hungary
21: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
22: Also at Institute of Physics; University of Debrecen, Debrecen, Hungary
23: Also at Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
24: Also at Indian Institute of Technology, Bhubaneswar, India
25: Also at Shoolini University, Solan, India
26: Also at University of Visva-Bharati, Santiniketan, India
27: Also at University of Ruhuna, Matara, Sri Lanka
28: Also at Isfahan University of Technology, Isfahan, Iran
29: Also at Yazd University, Yazd, Iran
30: Also at Plasma Physics Research Center; Science and Research Branch; Islamic Azad University, Tehran, Iran
31: Also at Università degli Studi di Siena, Siena, Italy
32: Also at INFN Sezione di Milano-Bicocca; Università di Milano-Bicocca, Milan, Italy
33: Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia
34: Also at Malaysian Nuclear Agency; MOSTI, Kajang, Malaysia
35: Also at Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico
36: Also at Warsaw University of Technology; Institute of Electronic Systems, Warsaw, Poland
37: Also at Institute for Nuclear Research, Moscow, Russia
38: Now at National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
39: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
40: Also at University of Florida, Gainesville, USA
41: Also at P.N. Lebedev Physical Institute, Moscow, Russia
42: Also at California Institute of Technology, Pasadena, USA
43: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia
44: Also at Faculty of Physics; University of Belgrade, Belgrade, Serbia
45: Also at INFN Sezione di Pavia; Università di Pavia, Pavia, Italy
46: Also at University of Belgrade; Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
47: Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy
48: Also at National and Kapodistrian University of Athens, Athens, Greece
49: Also at Riga Technical University, Riga, Latvia
50: Also at Universität Zürich, Zurich, Switzerland
51: Also at Stefan Meyer Institute for Subatomic Physics (SMI), Vienna, Austria
52: Also at Adiyaman University, Adiyaman, Turkey
53: Also at Istanbul Aydin University, Istanbul, Turkey
54: Also at Mersin University, Mersin, Turkey
55: Also at Piri Reis University, Istanbul, Turkey
56: Also at Gaziosmanpasa University, Tokat, Turkey
57: Also at Izmir Institute of Technology, Izmir, Turkey
58: Also at Necmettin Erbakan University, Konya, Turkey
59: Also at Marmara University, Istanbul, Turkey
60: Also at Kafkas University, Kars, Turkey
61: Also at Istanbul Bilgi University, Istanbul, Turkey
62: Also at Rutherford Appleton Laboratory, Didcot, UK
63: Also at School of Physics and Astronomy; University of Southampton, Southampton, UK
64: Also at Monash University; Faculty of Science, Clayton, Australia
65: Also at Instituto de Astrofísica de Canarias, La Laguna, Spain
66: Also at Bethel University, St. Paul, USA
67: Also at Utah Valley University, Orem, USA
68: Also at Purdue University, West Lafayette, USA
69: Also at Beykent University, Istanbul, Turkey
70: Also at Bingol University, Bingol, Turkey
71: Also at Erzincan University, Erzincan, Turkey
72: Also at Sinop University, Sinop, Turkey
73: Also at Mimar Sinan University; Istanbul, Istanbul, Turkey
74: Also at Texas A&M University at Qatar, Doha, Qatar
75: Also at Kyungpook National University, Daegu, Korea

† Deceased