Symplectic potentials and resolved Ricci-flat ACG metrics

Aswin K Balasubramanian1,3, Suresh Govindarajan1 and Chethan N Gowdigere2

1 Department of Physics, Indian Institute of Technology Madras, Chennai-600036, India
2 Abdus Salam ICTP, Strada Costiera 11, 34014 Trieste, Italy

E-mail: aswin@mail.utexas.edu, suresh@physics.iitm.ac.in and cgowdige@ictp.it

Received 1 September 2007, in final form 31 October 2007
Published 29 November 2007
Online at stacks.iop.org/CQG/24/6393

Abstract

We pursue the symplectic description of toric Kähler manifolds. There exists a general local classification of metrics on toric Kähler manifolds equipped with Hamiltonian 2-forms due to Apostolov, Calderbank and Gauduchon (ACG). We derive the symplectic potential for these metrics. Using a method due to Abreu, we relate the symplectic potential to the canonical potential written by Guillemin. This enables us to recover the moment polytope associated with metrics and we thus obtain global information about the metric. We illustrate these general considerations by focusing on six-dimensional Ricci-flat metrics and obtain Ricci-flat metrics associated with real cones over L^{pq} and Y^{pq} manifolds. The metrics associated with cones over Y^{pq} manifolds turn out to be partially resolved with two blow-up parameters taking special (non-zero) values. For a fixed Y^{pq} manifold, we find explicit metrics for several inequivalent blow-ups parametrized by a natural number k in the range $0 < k < p$. We also show that all known examples of resolved metrics such as the resolved conifold and the resolution of $\mathbb{C}^3/\mathbb{Z}_3$ also fit the ACG classification.

PACS numbers: 04.20.$-q$, 04.20.Jb

1. Introduction

The natural target space for $(2, 2)$ supersymmetric nonlinear sigma models in two dimensions is a Kähler manifold, X [1]. For applications in string theory, one needs the nonlinear sigma model to be conformally invariant. To leading order, conformality of the nonlinear sigma model requires the Kähler manifold to be Ricci-flat [2]. In 1993, Witten provided a simpler
construction of such sigma models by introducing the gauged linear sigma model (GLSM) [3]. Among the many phases of the GLSM, he showed that there is a phase where one recovers the nonlinear sigma model. A notable feature of this construction was a simple description of a necessary condition (i.e., $c_1(X) = 0$) for the manifold to be Ricci-flat. Further, he showed that the GLSM naturally realizes a symplectic quotient and that the induced metric in the NLSM limit was a natural generalization of the Fubini–Study metric associated with complex projective spaces.

Around the same time, Guillemin carried out a systematic treatment of toric Kähler manifolds and wrote a simple formula that generalized the Fubini–Study metric for \mathbb{C}^n [4]. The only data that went into writing the metric were the moment polytope associated with a toric Kähler manifold. The moment polytope is a convex polytope defined by several inequalities of the form

$$\ell_a(P) > 0, \quad a = 1, 2, \ldots.$$ \hfill (1.1)

Guillemin wrote the metric in symplectic coordinates rather than (the more commonly used) complex coordinates. The metric in symplectic coordinates is determined by a single function called the symplectic potential [5]. The symplectic potential written by Guillemin is given by

$$G_{\text{can}}(P) = \frac{1}{2} \sum_a \ell_a(P) \log \ell_a(P).$$ \hfill (1.2)

We will refer to this as the canonical symplectic potential. For projective spaces, this metric reduces to the Fubini–Study metric. However, while the metric correctly captures the singularities in more general examples, it is not necessarily Einstein (or even extremal) as the Fubini–Study metric. It turns out that the metric given by the GLSM is identical to that written by Guillemin\(^4\).

Abreu had a simple suggestion to obtain Einstein/extremal metrics from the canonical one [6]. Adapting a method due to Calabi in the complex context [7], Abreu modified the canonical symplectic potential by adding a ‘function’ to it as follows:

$$G(P) = G_{\text{can}}(P) + h(P),$$ \hfill (1.3)

where $h(P)$ is non-singular in the interior as well as the boundary of the polytope. We will refer to $h(P)$ as the Abreu function in this paper. The Abreu function is determined by requiring that the new metric has the required property such as extremality. For instance, the differential equation for $h(P)$ is the analogue of the Monge–Ampère equation that appears when one imposes Ricci-flatness on the Kähler potential [8]. The function $h(P)$ has been determined in only a small number of examples [6, 9, 10]\(^5\). However, there has been a recent attempt to obtain the function numerically [11].

This paper focuses on a special sub-class of toric Kähler manifolds, those that admit a Hamiltonian 2-form. For Kähler manifolds that admit such a 2-form (and possibly non-toric), there exists a classification of these metrics due to Apostolov, Calderbank and Gauduchon (ACG) [12]. The main merit of such metrics is that it replaces a PDE in m variables that one needs to solve to obtain the symplectic potential by an ODEs in m functions of one variable in the best of situations. We obtain the symplectic potential for these metrics and find that it can be easily written in the form given in equation (1.3). Then the associated polytope is easily recovered. We find that all known examples of resolved metrics in six dimensions admit a

\(^4\) This result may be obvious to some and non-obvious to others. However, the GLSM has a wider range of validity than the Guillemin formula. For instance, it is valid even for non-toric examples.

\(^5\) The symplectic potentials for the resolution of $\mathbb{C}^3/\mathbb{Z}_3$, the conifold and its \mathbb{Z}_2 orbifold have been obtained using Abreu’s method in [10].
Hamiltonian 2-form and add a new infinite family of partially resolved spaces to the list of known examples.

Another application of these methods is in the context of the AdS–CFT correspondence which relates four-dimensional conformal field theories with type IIB string theory on $\text{AdS}_5 \times X^5$, where X^5 is a compact five-dimensional Sasaki–Einstein manifold [13]. Real cones over these spaces turn out to be non-compact Ricci-flat Kähler manifolds. Thus, our examples will focus on six-dimensional Ricci-flat toric Kähler manifolds which are allowed to have a conical singularity at the tip of the cone. Resolutions of these singularities correspond to non-conformal deformations of the conformal field theory and are also of independent interest [14].

The paper is organized as follows. Section 2 is a review of the symplectic quotient as obtained from the gauged linear sigma model. In section 3, we review the local classification of toric Kähler metrics admitting a Hamiltonian 2-form due to Apostolov, Calderbank and Gauduchon. We then discuss the conditions under which their metrics are Einstein and Ricci-flat. In section 4, we construct the symplectic potential for all their metrics. We then carry out a global analysis of the ACG metrics and discuss how one recovers the precise singularity structure by writing the symplectic potential as the sum of the canonical symplectic potential and the Abreu function. Sections 5 and 6 make use of the results of section 4 to generate examples of unresolved and resolved metrics, respectively. While the results in section 5 are not new, the methods used are new and have independent merit. In section 6, we obtain a new infinite family of metrics corresponding to partially resolved metrics on cones over Y^{pq}. We conclude in section 7 with a brief discussion on our results.

2. The symplectic quotient in the GLSM

A large family of Kähler manifolds is obtained by means of the Kähler quotient. The construction proceeds as follows [16]:

$$X^{(2m)} = \frac{\mathbb{C}^n - F_\Delta}{(\mathbb{C}^*)^d}, \quad m = n - d.$$ (2.1)

The various \mathbb{C}^* actions are specified by the charge vectors Q^a_α (which we sometimes write as an $n \times d$ matrix Q):

$$\phi_a \mapsto \lambda Q^a_\alpha \phi_a \quad a = 1, \ldots, n \quad \text{and} \quad \alpha = 1, \ldots, d.$$ (2.2)

F_Δ corresponds to the set of fixed points under the \mathbb{C}^* actions. For instance, \mathbb{C}^{n_d-1} is obtained by the Kähler quotient with one \mathbb{C}^* action with charge vector $Q = (1, 1, \ldots, 1)^T$ and $F_\Delta = \{0\}$.

Writing $\mathbb{C}^* = \mathbb{R}_e \times S^1$, the \mathbb{C}^* quotient can be carried out as a two-step process. First, carry out \mathbb{R}^+ quotient and then the S^1 action. This is called the symplectic quotient and this is the way the GLSM naturally realizes the quotient [3].

The symplectic quotient is implemented in the GLSM as follows. The GLSM has (2, 2) supersymmetry and the field content consists of n chiral superfields, $\Phi_\alpha (\alpha = 1, \ldots, n)$ and d Abelian vector multiplets $V_\alpha (\alpha = 1, \ldots, d)$. (See [3] for more details.) The charges of the chiral fields under the d gauge fields are given by d charge vectors, Q_α^a, $\alpha = 1, \ldots, d$. The parameters of the GLSM are the gauge coupling constant e^3 (we take all the d couplings to be identical for simplicity). Each Abelian multiplet admits a Fayet–Iliopoulos (FI) term which is represented by a complex coupling, $\tau_\alpha \equiv r_\alpha + i(\theta_\alpha/2\pi)$. We will refer to r_α as FI parameters or blow-up parameters.
In the GLSM, the \((\mathbb{R}_+)^d\) quotient is imposed by the D-term constraints:\(^6\)

\[
\sum_{a=1}^{n} Q^a_\alpha |\phi_a|^2 = r_\alpha, \tag{2.3}
\]

and the \((S^1)^d \sim U(1)^d\) action is taken care of by the gauging in the GLSM. Not all values of \(|\phi_i|^2\) can satisfy the D-term conditions. The set of allowed values of \(|\phi_i|^2\) are best represented by the interior points of a convex polytope, the moment polytope. Writing the complex field \(\phi_a = \sqrt{\ell_a} \exp i \varphi_a\) in polar coordinates, the D-term conditions can be written as

\[
\sum_{a=1}^{n} Q^a_\alpha \ell_a = r_\alpha. \tag{2.4}
\]

These linear conditions can be solved for in terms of \(m = n - d\) independent variables that we will call \(P_i\) (\(i = 1, \ldots, m\)). We can then rewrite \(\ell_a\) as implicit functions of \(P_i, \ell_a(P)\). The moment polytope is then given by the conditions

\[
\ell_a(P) > 0. \tag{2.5}
\]

The Kähler 2-form on the toric manifold \(X^{(2m)}\) is

\[
\omega = \sum_{i=1}^{m} dP_i \wedge dt_i,
\]

where \(t_i\) are the angles that remain after the \(U(1)^d\) gauge degrees are removed. The metric on \(X^{2m}\) is determined by a single function, \(G(P)\), called the symplectic potential\(^7\)

\[
ds^2 = G_{ij} \, dP_i \, dP_j + G^{ij} \, dt_i \, dt_j, \tag{2.6}
\]

where \(G_{ij} = \partial^2 G / \partial P_i \partial P_j\) and \(G^{ij}\) is the matrix inverse of \(G_{ij}\). The metric induced by the symplectic quotient is the canonical symplectic potential \(G_{\text{can}}\) given in equation (1.2).

There is a theorem due to Delzant that states that one can recover a compact toric symplectic Kähler manifold from its polytope provided it satisfies certain conditions such as convexity, simplicity, etc \([18]\). Such polytopes have been called Delzant polytopes. An extension of Delzant’s theorem to include toric symplectic orbifolds leads to polytopes with a positive integer attached to each facet \([19]\). Weighted projective spaces have polytopes of this kind. The formula of Guillemin, given in equation (1.2), though originally written only for Delzant polytopes is valid for toric symplectic orbifolds as well \([20]\). \(P_i\) are thus coordinates on the polytope and the toric manifold is a \(U(1)^m\) fibration with base, the polytope. The boundaries of the polytope correspond to points where the fibration degenerates \([21]\).

The usual toric data associated with toric manifold \(X^{2m}\) are specified by a set of \(n\) vectors in \(\mathbb{R}_m\), written as an \(m \times n\) matrix \(V\). These vectors are obtained from the charge vectors \(Q^a_\alpha\) by solving

\[
V \cdot Q = 0. \tag{2.7}
\]

Thus, while the charge vectors \(Q\) appear naturally in the GLSM, the toric description is given in terms of \(V\). In our examples, we will go back and forth between the two objects.

\(^6\) In the strong coupling limit(s), typically of the form \(e^2 r_\alpha \to \pm \infty\), the fields in the vector multiplets become Lagrange multipliers imposing various constraints (explicitly given, for instance, in \([17]\)).

\(^7\) The symplectic potential is the analogue of the Kähler potential appearing in complex coordinates. The two are related by a Legendre transformation \([5]\).
2.1. Six-dimensional Ricci-flat manifolds

A simple class of six-dimensional manifolds is obtained by considering the symplectic quotient involving the \(D \)-term given by the charge vector \(Q = (p_1, p_2, p_3, p_4)^T \):

\[
p_1 \ell_1 + p_2 \ell_2 + p_3 \ell_3 + p_4 \ell_4 = r,
\]

(2.8)

where \(p_a \) are taken to be integers. This corresponds to the symplectic quotient \(\mathbb{C}^4 / \mathbb{C}^* \).

A necessary condition for the manifold to admit a Ricci-flat metric is the condition \(p_1 + p_2 + p_3 + p_4 = 0 \). There are two inequivalent classes of these four integers:

(i) \(p_1, p_2 > 0 \) and \(p_3, p_4 < 0 \) and (ii) \(p_1, p_2, p_3 > 0 \) and \(p_4 < 0 \). All other possibilities can be obtained by suitably relabelling \(p_a \). The first choice leads to the conifold and its generalizations corresponding to real cones over \(L^{pqr} \) spaces \([22]\) and the second choice leads to orbifolds of the form \(\mathbb{C}^3 / \mathbb{Z}_N \) with \(N = p_4 \).

A blow-up is implemented in the GLSM by adding a new chiral superfield along with an additional Abelian vector superfield. This adds a new \(D \)-term and leads to the symplectic quotient \(\mathbb{C}^5 / (\mathbb{C}^* \times \mathbb{C}^*) \). The FI parameter of the new \(D \)-term determines the size of the blown-up manifolds. In this paper, we will consider this situation as well.

3. The ACG metrics

In this section, we will summarize the results from the paper \([12]\) that are relevant for our purposes. The paper \([12]\) concerns Hamiltonian 2-forms and a local classification of Kähler metrics that admit such 2-forms. On a Kähler manifold \(X \) of real dimension \(2m \) with metric \(g_{ij} \), complex structure \(J_i^j \) and Kähler 2-form \(\omega_{ij} = g_{jk} J^k_i \), a Hamiltonian 2-form, \(\phi_{ij} \), is a \((1, 1)\) form satisfying the equations

\[
\nabla_k \phi_{(ij)} + \frac{1}{2} \left[\partial_i \left(\partial_j \phi \omega_{kl} \right) + \partial_j \left(\partial_k \phi \right) g^l \omega_{jk} \right] = 0,
\]

(3.1)

where \(\text{Tr}(\phi) = \omega^{ij} \phi_{ij} \) and \(\nabla_k \) is the covariant derivative with respect to the Levi-Civita connection.

The notion of a Hamiltonian 2-form and the special properties of this object first appeared in \([23]\), where the authors were investigating a special class of four-dimensional Kähler metrics. It turned out that the Ricci form of this class of Kähler metrics was a Hamiltonian 2-form. The nomenclature ‘Hamiltonian’ alludes\(^8\) to the fact that two scalars constructed out of the 2-form: the trace, \(s \), and the Pfaffian, \(p \), in the four-dimensional context are Hamiltonian functions for (Hamiltonian) Killing vector fields of the Kähler metric. The scalar functions also arise as the coefficients of the characteristic polynomial of the \(2 \times 2 \) Hermitian matrix, \((\phi - t \omega) \), constructed out of the Hamiltonian 2-form and the Kähler form:

\[
p(t) := t^2 - p_1 t + p_2.
\]

(3.2)

More importantly, the roots of this polynomial, call them \(\xi \) and \(\eta \), so that

\[
P_1 = \xi + \eta, \quad P_2 = \xi \eta,
\]

(3.3)

provide coordinates in which it becomes possible to classify a sub-class of toric Kähler metrics known as orthotoric metrics in terms of two polynomials of one variable, one of \(\xi \) and the other of \(\eta \). An orthotoric metric is one with \(g^{\xi \eta} = 0 \) and the most general four-dimensional orthotoric metric is \([23]\)

\[
dx_{\Omega^2} = (\xi - \eta) \left(\frac{d \xi^2}{f(\xi)} - \frac{d \eta^2}{g(\eta)} \right) + \frac{1}{\xi - \eta} \left(f(\xi)(dr + \eta dz)^2 - g(\eta)(dr + \xi dz)^2 \right).
\]

(3.4)

\(^8\) For the various equivalent and more precise definitions, see \([12, 23]\).
In [12], ACG worked in arbitrary dimensions and classified all $2m$-dimensional Kähler metrics which admit Hamiltonian 2-forms. The existence of a Hamiltonian 2-form leads to the existence of m (Hamiltonian) Killing vector fields that commute. The coefficients of the ‘momentum polynomial’, $p(t) = \det(\phi - t\omega)$, are the Hamiltonian functions for the Killing vector fields. Further the roots of the momentum polynomial provide special coordinates which permit an explicit classification of the metric. In general situations, the m Killing vector fields may not all be linearly independent. A Hamiltonian 2-form of order $l \leq m$ leads to l linearly independent Killing vector fields. Thus some (i.e., $(m - l)$) of the roots of the momentum polynomial are constants and hence cannot provide for coordinates.

ACG have shown that the existence of a Hamiltonian 2-form of order l implies that

(i) the Kähler metric on X can locally be written as a fibration (using a construction due to Pedersen and Poon [24]), with a $2l$-dimensional toric fibre over a $(2m - 2l)$-dimensional base.

(ii) the Kähler structure of the manifold, i.e., (g, J, ω), is completely specified by l functions of one variable and the Kähler structure of the base.

When $l = m$, the manifold is necessarily toric though not all toric manifolds admit a Hamiltonian 2-form of order $l = m$. Thus such manifolds are called orthotoric reflecting the extra structure. The results of [23], (3.4) are the special case, $m = 2, l = 2$. The other extreme, $l = 0$, is the situation with no Killing vector fields. Thus, the results of ACG provide a nice classification of Kähler manifolds that take one from manifolds with no symmetries to orthotoric Kähler manifolds.

In this paper since we are interested mainly in metrics on six-dimensional manifolds, we will focus on the case $m = 3$, when the possible values for $l = 1, 2, 3$. In [12], the term orthotoric is used for the $l = m$ case and we shall do the same. We will add a subscript ‘OTm’ to indicate the $2m$-dimensional orthotoric metric. In all other situations, we will indicate the values of m and l in the subscript. The momentum polynomial has no constant roots

$$p(t) = (t - \xi)(t - \eta)(t - \chi)$$

and the Hamiltonian functions for the Killing vector fields $\frac{\partial}{\partial \xi}, \frac{\partial}{\partial \eta}, \frac{\partial}{\partial \chi}$ are

$$P_1 = \xi + \eta + \chi, \quad P_2 = \xi \eta + \chi \xi, \quad P_3 = \xi \eta \chi.$$

The most general orthotoric metric admitting a Hamiltonian 2-form is then given in terms of three polynomials of one variable:

$$dx_{\text{OT}3}^2 = -\Delta \left[\frac{d\xi^2}{(\eta - \chi)f(\xi)} + \frac{d\eta^2}{(\xi - \chi)g(\eta)} + \frac{d\chi^2}{(\xi - \eta)h(\chi)} \right]$$

$$= \frac{1}{\Delta} \left[(\eta - \chi)f(\xi)(d\xi + (\eta + \chi)d\eta + \eta \chi d\chi)^2
+ (\chi - \xi)g(\eta)(d\eta + (\eta + \xi)d\eta + \eta \xi d\eta)^2
+ (\xi - \eta)h(\chi)(d\xi + (\xi + \eta)d\xi + \xi \eta d\xi)^2 \right],$$

where $\Delta = (\xi - \eta)(\eta - \chi)(\chi - \xi)$. The Kähler form, the Hamiltonian 2-form and the scalar curvature (R) for the $m = 3, l = 3$ ACG metrics are given by

$$\omega_{\text{OT}3} = dP_1 \wedge d\xi + dP_2 \wedge d\eta + dP_3 \wedge d\chi,$$

$$\phi_{\text{OT}3} = [P_1 dP_1 - dP_2] \wedge d\xi + [P_2 dP_1 - dP_3] \wedge d\eta + [P_3 dP_1 - dP_3] \wedge d\chi,$$

$$R_{\text{OT}3} = -\frac{f''(\xi)}{(\xi - \eta)(\xi - \chi)} - \frac{g''(\eta)}{(\eta - \xi)(\eta - \chi)} - \frac{h''(\chi)}{(\chi - \eta)(\chi - \xi)}.$$

We will also need the $m = 3, l = 2$ case, when the momentum polynomial is

$$p(t) = (t - a)(t - \xi)(t - \eta), \quad a = \text{constant}.$$

$$\omega_{\text{OT}3} = dP_1 \wedge d\xi + dP_2 \wedge d\eta + dP_3 \wedge d\chi,$$
We then have only two Hamiltonian functions for the Killing vector fields $\frac{\partial}{\partial t_1}$, $\frac{\partial}{\partial t_2}$, namely, $P_1 = \xi + \eta$, $P_2 = \xi \eta$. Thus, the roots of the momentum polynomial will provide two of the coordinates for the local description. We will refer to these Kähler metrics admitting Hamiltonian 2-forms as the $m = 3, l = 2$ ACG metrics. The most general $m = 3, l = 2$ ACG metric is then given by [12]

$$\begin{align*}
ds^2_{m=3,l=2} = & \ (a - \xi)(a - \eta) \, ds^2 + (\xi - \eta) \left[\frac{\xi - a}{f(\xi)} \, ds^2 + \frac{\eta - a}{g(\eta)} \, d\eta^2 \right] \\
& + \frac{1}{\xi - \eta} \left[f(\xi) \, (\theta_1 + \eta \theta_2)^2 - \frac{g(\eta)}{\eta - a} \, (\theta_1 + \xi \theta_2)^2 \right],
\end{align*}$$

(3.12)

where ds^2 is a Kähler metric on a two-dimensional manifold with a Kähler form ω_a, θ_1 and θ_2 are 1-forms which satisfy the following conditions:

$$\begin{align*}
d\theta_1 &= -a \omega_a, \quad d\theta_2 = \omega_a. \tag{3.13}
\end{align*}$$

The Kähler form, Hamiltonian 2-form and the scalar curvature for the $m = 3, l = 2$ ACG metrics are given by

$$\begin{align*}
\omega_{m=3,l=2} &= (a - \xi)(a - \eta) \, \omega_a + d(\xi + \eta) \wedge \theta_1 + d(\xi \eta) \wedge \theta_2, \\
\phi_{m=3,l=2} &= a(a - \xi)(a - \eta) \, \omega_a + [P_1 \, dP_1 - dP_2] \wedge d\theta_1 + P_2 \, dP_1 \wedge d\theta_2, \tag{3.15}
\end{align*}$$

$$\begin{align*}
R_{m=3,l=2} &= \frac{R(ds^2_a)}{(a - \xi)(a - \eta)} - \frac{f''(\xi)}{(\xi - \eta)(\xi - a)} - \frac{g''(\eta)}{(\eta - \xi)(\eta - a)}, \tag{3.16}
\end{align*}$$

where $R(ds^2_a)$ is the scalar curvature of the metric ds^2_a. We will also need the $m = 3, l = 1$ case, when there are two possibilities for the momentum polynomial:

$$\begin{align*}
p_1(t) &= (t - a)^2(t - \xi), \quad a = \text{constant}, \tag{3.17} \\
p_2(t) &= (t - a)(t - b)(t - \xi), \quad a, b = \text{constants}, \tag{3.18}
\end{align*}$$

with $a < b$. We then have only one Hamiltonian function for the Killing vector field $\frac{\partial}{\partial t_1}$, namely $P_1 = \chi$. We will refer to these Kähler metrics admitting Hamiltonian 2-forms as the $m = 3, l = 1$ ACG metrics. The most general $m = 3, l = 1$ ACG metric is of either of two types depending on the momentum polynomial. For (3.17), the most general $m = 3, l = 1$ ACG metric is given by [12]

$$\begin{align*}
[ds^2_{m=3,l=1}]_{p_1(t)} &= (a - \chi) \, ds^2 + \frac{(\chi - a)^2}{b(\chi)} \, d\chi^2 + \frac{h(\chi)}{(\chi - a)^2} \, d\theta_1^2, \tag{3.19}
\end{align*}$$

where ds^2 is a Kähler metric for the four-dimensional base with Kähler form ω_a and θ_1 is a 1-form which satisfies

$$\begin{align*}
d\theta_1 &= -a \omega_a. \tag{3.20}
\end{align*}$$

The Kähler form, Hamiltonian 2-form and scalar curvature for the above $m = 3, l = 1$ ACG metrics are

$$\begin{align*}
[\omega_{m=3,l=1}]_{p_1(t)} &= (a - \chi) \, \omega_a + \chi \, d\chi \wedge \theta_1, \\
[\phi_{m=3,l=1}]_{p_1(t)} &= a(a - \chi) \, \omega_a + \chi \, d\chi \wedge \theta_1, \tag{3.21} \\
[R_{m=3,l=1}]_{p_1(t)} &= \frac{R(ds^2_a)}{(a - \chi)} - \frac{h''(\chi)}{(\chi - a)^2}, \tag{3.23}
\end{align*}$$

where $R(ds^2_a)$ is the scalar curvature of the metric ds^2_a.

Symplectic potentials and resolved Ricci-flat ACG metrics
For the momentum polynomial \((3.18) \), the most general \(m = 3, l = 1 \) ACG metric is given by [12]

\[
\left[ds^2_{m=3,l=1}\right]_{p_1(t)} = (a - \chi) \, ds_a^2 + (b - \chi) \, ds_b^2 + \frac{(\chi - a)(\chi - b)}{h(\chi)} \, d\chi^2 + \frac{h(\chi)}{(\chi - a)(\chi - b)} \theta_1^2,
\]

(3.24)

where \(ds_a^2 \) and \(ds_b^2 \) are two Kähler metrics with Kähler forms \(\omega_a \) and \(\omega_b \) with the 1-form \(\theta_1 \) satisfying

\[
d\theta_1 = -\omega_a - \omega_b.
\]

(3.25)

The Kähler form, Hamiltonian 2-form and the scalar curvature for the above \(m = 3, l = 1 \) ACG metrics are given by

\[
[\omega_{m=3,l=1}]_{p_2(t)} = (a - \chi)\omega_a + (b - \chi)\omega_b + d\chi \wedge \theta_1,
\]

(3.26)

\[
[\phi_{m=3,l=1}]_{p_2(t)} = a(a - \chi)\omega_a + b(b - \chi)\omega_b + \chi d\chi \wedge \theta_1,
\]

(3.27)

\[
[R_{m=3,l=1}]_{p_2(t)} = \frac{R(ds_a^2)}{(a - \chi)} + \frac{R(ds_b^2)}{(b - \chi)} - \frac{h''(\chi)}{(\chi - a)(\chi - b)}.
\]

(3.28)

3.1. Imposing extra conditions on the ACG metrics

In the following, we will find examples for resolutions of metric cones in the \(m = 3, l = 2 \) ACG case \((3.12) \) and the \(m = 3, l = 1 \) ACG cases \((3.19) \) and \((3.24) \). We will therefore gather some more facts about these cases, mainly restrictions imposed on the polynomials \(f(\xi), g(\eta) \) and \(h(\chi) \) by conditions such as Ricci-flatness, Einstein, etc.

Extremality. A Kähler metric is said to be extremal when the scalar curvature is the Hamiltonian function for a Killing vector field. In our examples, this implies that the scalar curvature is an affine function of the Hamiltonian function, \(P_1 \). For instance for the OT3 metric, this occurs when \(f''(x) = g''(x) = h''(x) \) and the functions \(f, g, h \) have degree 4. For all other metrics, additional conditions arise and are described below.

If further one requires a slightly stronger condition (as ACG do) than that required by extremality, i.e., \(f'(x) = g'(x) = h'(x) \), then the normalized Ricci form,

\[
\hat{\rho} = \rho - \frac{R_{oo}}{8},
\]

is a Hamiltonian 2-form and can be written as a linear combination of the Hamiltonian 2-form, \(\phi \) and the Kähler form.

The Einstein condition. The ACG metrics are Einstein metrics when the following three conditions are satisfied:

(i) \(f'(x) = g'(x) = h'(x) \) and furthermore they should factorize in the following way:

\[
\begin{align*}
 m = 3, l = 3, & \quad f'(x) = b_{-1}x^4 + b_0x^3 + b_1x^2 + b_2x + b_3 \\
 m = 3, l = 2, & \quad f'(x) = (x - a)(b_{-1}x^3 + b_0x^2 + b_1x + b_2) \\
 m = 3, l = 1 \text{ with } p_1(t), & \quad h'(x) = (x - a)^2(b_{-1}x^2 + b_0x + b_1) \\
 m = 3, l = 1 \text{ with } p_2(t), & \quad h'(x) = (x - a)(x - b)(b_{-1}x^2 + b_0x + b_1)
\end{align*}
\]

(3.29)

for some constants \(b_i \).
(ii) the smaller Kähler metrics, $d\bar{s}_a^2, d\bar{s}_b^2$, should be Kähler–Einstein with their scalar curvatures satisfying the following relations:

$m = 3, l = 2, \quad -R(d\bar{s}_a^2) = b_1a^3 + b_0a^2 + b_1a + b_2$

$m = 3, l = 1$ with $p_1(t), \quad -\frac{R(d\bar{s}_a^2)}{2} = b_1a^2 + b_0a + b_1$

$m = 3, l = 1$ with $p_2(t), \quad -R(d\bar{s}_a^2) = b_1a^2 + b_0a + b_1$ and

$-R(d\bar{s}_b^2) = b_1b^2 + b_0b + b_1$.

(3.30)

(iii) The Ricci form is then given by

$$\rho = -\frac{1}{2}[b_1(\phi + p_1\omega) + b_0\omega],$$

(3.31)

which clearly leads to an Einstein metric when

$b_{-1} = 0$.

(3.32)

The scalar curvature for these Einstein manifolds then is equal to $-3b_0$.

The Ricci-flatness condition. For the ACG metrics to be Ricci-flat as well, one needs

$b_0 = 0$.

(3.33)

As we will be interested in Ricci-flat metrics, we note that we will end up with the functions f, g, h being cubic polynomials. This is all we need for orthotoric metrics. For the ACG metrics with $l < m = 3$, it is useful to explicitly write the conditions that are imposed on the smaller Kähler metrics:

(i) When $m = 3, l = 2$, one needs $R(d\bar{s}_a^2) = -b_1a - b_2$.

(ii) When $m = 3, l = 1$ with polynomial $p_1(t)$, one needs $R(d\bar{s}_a^2) = -2b_1$.

(iii) When $m = 3, l = 1$ with polynomial $p_2(t)$, one needs $R(d\bar{s}_a^2) = R(d\bar{s}_b^2) = -b_1$.

4. Symplectic potentials for the ACG metrics

In this section, we compute the symplectic potentials for the ACG metrics. We first start with the orthotoric case with $l = m = 2$ since this is the first non-trivial orthotoric metric. The symplectic potential for higher-dimensional orthotoric metrics and other ACG metrics follows from this case.

4.1. The $m = 2$ orthotoric symplectic potential

The coordinate transformation that gives (ξ, η) as a function of (P_1, P_2) is obtained by identifying (ξ, η) with the roots of the quadratic equation

$$\lambda^2 - P_1\lambda + P_2 = 0.$$

(4.1)

The $m = 2$ orthotoric metric in the coordinates (P_1, P_2) is given by

$$d\bar{s}_{OT2}^2 = g_{ij} dP_i dP_j + g^{ij} dt_1 dt_j$$

(4.2)

where

$$g_{ij} = \frac{1}{\xi - \eta} \begin{pmatrix}
\left[\frac{\xi^2}{f(\xi)} - \frac{\eta^2}{g(\eta)} \right]
- \left[\frac{\xi}{f(\xi)} - \frac{\eta}{g(\eta)} \right]
& \left[\frac{\xi}{f(\xi)} - \frac{\eta}{g(\eta)} \right]
\end{pmatrix}.$$}

9 The symplectic potential for the Y^{pq} and L^{pq} metrics has been obtained in [25].
We can check that this metric can indeed be written as the Hessian of a symplectic potential. The integrability condition is given by
\[\partial_i(g_{jk}) = \partial_j(g_{ik}), \]
which holds in our case.

We will write the symplectic potential as an explicit function of \((\xi, \eta)\) and hence as an implicit function of \((P_1, P_2)\). Let \(G(\xi, \eta)\) be the symplectic potential for the above metric. Then, one has
\[
g_{ij} = \partial_i \partial_j G(\xi, \eta) = \Bigg[\frac{\partial^2 G}{\partial \xi^2} \partial_i \partial_j \xi + \frac{\partial^2 G}{\partial \xi \partial \eta} (\partial_i \xi \partial_j \eta + \partial_i \eta \partial_j \xi) + \frac{\partial^2 G}{\partial \eta^2} \partial_i \partial_j \eta \Bigg] + \Bigg[\frac{\partial G}{\partial \xi} \partial_i \partial_j \xi + \frac{\partial G}{\partial \eta} \partial_i \partial_j \eta \Bigg].
\]
(4.3)

The easiest of the three partial differential equations turns out to be the one for \(g_{22}\) which reads
\[
\left(\frac{\partial}{\partial \xi} - \frac{\partial}{\partial \eta} \right)^2 - 2 \frac{\xi}{\xi - \eta} \left(\frac{\partial}{\partial \xi} - \frac{\partial}{\partial \eta} \right) G = (\xi - \eta) \left(\frac{1}{f(\xi)} - \frac{1}{g(\eta)} \right).
\]
(4.4)

Let us assume that \(f\) and \(g\) are polynomial functions with distinct roots \((\xi_1, \ldots, \xi_N)\) and \((\eta_1, \ldots, \eta_N)\), respectively. We will need the inverses of \(f\) and \(g\), which we write as \((f_0, g_0)\) are constants that turn out to be proportional to the scalar curvature. We deliberately include a minus sign so that the constants are positive in our examples.)

\[
\frac{1}{f(\xi)} = -f_0 \prod_{a=1}^{N} (\xi - \xi_a) = \sum_{a=1}^{N} \frac{A_a}{(\xi - \xi_a)},
\]
(4.5)

\[
\frac{1}{g(\eta)} = -g_0 \prod_{a=1}^{N} (\eta - \eta_a) = \sum_{a=1}^{N} \frac{B_a}{(\eta - \eta_a)},
\]
(4.6)

where
\[
A_a \equiv -f_0^{-1} \prod_{b \neq a} (\xi_a - \xi_b)^{-1} \quad \text{and} \quad B_a \equiv -g_0^{-1} \prod_{b \neq a} (\eta_a - \eta_b)^{-1}. \quad (4.7)
\]

Since the partial differential equations are linear, we can use superposition. So, all we really need to do is to solve for the simple case when \(f = (\xi - \xi_1)\) and dropping the term involving \(g(\eta)\). It turns out that this is solved by the function \(S\) which we define as follows:
\[
S(\xi, \eta, a) = \frac{1}{2} (\xi - \eta)(\xi - a) - (\eta - a)(\xi - a) \log(\xi - a).
\]
(4.8)

This is the solution to the differential equation
\[
\left(\frac{\partial}{\partial \xi} - \frac{\partial}{\partial \eta} \right)^2 - 2 \frac{\xi}{\xi - \eta} \left(\frac{\partial}{\partial \xi} - \frac{\partial}{\partial \eta} \right) S(\xi, \eta, \xi_1) = \frac{\xi - \eta}{\xi - \xi_1}.
\]
(4.9)

One can verify that the other partial differential equations for \(g_{11}\) and \(g_{12}\) are also satisfied. Thus, we can now write the symplectic potential explicitly as follows:
\[
G(\xi, \eta) = \sum_{a=1}^{N} A_a S(\xi, \eta, \xi_a) + \sum_{a=1}^{N} B_a S(\eta, \xi, \eta_a).
\]
(4.10)
When N and \tilde{N} are both greater than 2, a slightly simpler form follows on using the identities
\[\sum A_a = \sum A_a \xi_a = 0 \text{ and a similar one for } B's. \]
In this case, we can write
\[
G_{OT^2}(\xi, \eta) = -N \sum_{a=1}^{\xi_a (\eta - \xi_a)} (\xi - \xi_a) \log(\xi - \xi_a) - \tilde{N} \sum_{a=1}^{\tilde{\xi}_a (\eta - \eta_a)} (\eta - \eta_a) \log(\eta - \eta_a)
\]
(4.11)
where ξ_a (resp. η_a) are the distinct roots of $f(\xi)$ (resp. $g(\eta)$). Note that the coefficient of each of the logarithms can be rewritten in terms of linear functions of (P_1, P_2). For instance,
\[
(\xi - \xi_1)(\eta - \xi_1) = P_2 - P_1 \xi_1 + \xi_1^2 = p(\xi_1),
\]
(4.12)
where the last term is the momentum polynomial for this case, i.e., $p(t) = (t - \xi)(t - \eta)$. This observation enables us to analyse global properties of the orthotoric as well as ACG metrics.

We conclude this discussion with a comment on the symplectic potential for the other cases such as the $m = 3$ orthotoric metric. This involves adding a piece corresponding to the roots of the third function, $h(\xi_1)$, and pre-multiplying the argument of all logarithms so that they can be written as the linear function of (P_1, P_2, P_3) given by the momentum polynomial, $p(t)$.

4.2. The $m = 3, l = 2$ symplectic potential

In order to be more concrete, we choose the two-dimensional metric ds^2 to be the Fubini–Study metric for a CP^1 with symplectic potential
\[
G_{FS}(x) = \frac{1}{2}(1 - x) \log(1 - x) + \frac{1}{2}(1 + x) \log(1 + x).
\]
(4.13)
The scalar curvature for the above metric is 2. The natural choice for the symplectic coordinates which follows from the Kähler form is
\[
P_1 = (\xi + \eta), \quad P_2 = \xi \eta \quad \text{and} \quad P_3 = (a - \xi)(a - \eta)x.
\]
(4.14)
A calculation similar to that used to derive the symplectic potential for the $m = 2$ orthotoric case leads to the following symplectic potential for the $m = 3, l = 2$ ACG metric. We obtain (assuming $N > 2$ and $\tilde{N} > 2$)
\[
G_{m=3,l=2}(\xi, \eta) = (a - \xi)(a - \eta)G_{FS}(x) - \sum_{a=1}^{N} A_a(a - \xi_a)(\eta - \xi_a)(\xi - \xi_a) \log(\xi - \xi_a)
\]
\[\quad - \sum_{a=1}^{\tilde{N}} B_a(a - \eta_a)(\xi - \eta_a)(\eta - \eta_a) \log(\eta - \eta_a),
\]
(4.15)
where A_a and B_a are as defined in (4.7). Again, note the appearance of $p(t)$ in the coefficient of the logarithms and the coefficient of the Fubini–Study metric is simply $p(t)$ without the constant root—this is called $p_{nc}(t)$ in [12].

4.3. The $m = 3, l = 1$ symplectic potentials

For momentum polynomial $p_1(t) = (t - a)^3(t - \chi)$. Let $p_{nc}(t) = (t - \chi)$ be the part of the momentum polynomial involving the non-constant root χ. Further, let us assume that h is a polynomial of degree N with distinct roots χ_1, \ldots, χ_N. Then we can write
\[
h(\chi) = -h_0 \prod_{r=1}^{N}(\chi - \chi_r). \]
Then, the symplectic potential takes the form
\[
[G_{m=3,l=1}]_{p_1(t)} = - \sum_{r=1}^{N} C_r p_1(\chi_r) \log(\chi - \chi_r) + p_{nc}(a)G_a,
\]
(4.16)
where $C_r \equiv -h_0^{-1} \prod_{r \neq r'} (\chi_r - \chi_s)^{-1}$ and G_a is the symplectic potential for the small metric ds_a^2.

For momentum polynomial $p_2(t) = (t - a)(t - b)(t - \chi)$. The symplectic potential takes the form $(p_{nc}(t) = (t - \chi))$

$$[G_{m=3,l=1}(t)] p_2(t) = \sum_{r=1}^N C_r p_2(\chi_r) \log(\chi - \chi_r) + p_{nc}(a)G_a + p_{nc}(b)G_b,$$

(4.17)

where we have again assumed that $h(\chi)$ is a polynomial of degree N. Further G_a (resp. G_b) is the symplectic potential for the small metric ds_a^2 (resp. ds_b^2).

4.4. Global analysis of the ACG metrics

While most of our analysis will hold in generality, we will restrict all our considerations to the situation when the functions f and g are cubic functions. Let

$$f(\xi) = -f_0(\xi - \xi_1)(\xi - \xi_2)(\xi - \xi_3), \quad g(\eta) = -g_0(\eta - \eta_1)(\eta - \eta_2)(\eta - \eta_3),$$

(4.18)

with the ordering $\xi_1 < \xi_2 < \xi_3$ and $\eta_1 < \eta_2 < \eta_3$ when the roots are all real. If f has complex roots, we choose them to be ξ_2 and ξ_3 and similarly for the function g. We also will assume f_0 and g_0 are real and positive. We will now consider the various ACG metrics and require that the metric be positive definite.

$m = 2$ orthotoric metrics. The following conditions are needed:

$$\xi > \eta, \quad \xi < \xi_1 \quad \text{or} \quad \xi_2 < \xi < \xi_3, \quad \eta_1 < \eta < \eta_2 \quad \text{or} \quad \eta > \eta_3,$$

and a similar set of conditions if we require $\xi < \eta$. If we require that the four-dimensional space be compact, clearly, we obtain the condition that $\xi_2 > \eta_2$ satisfying $\xi > \eta$ everywhere in the interior. The metric is singular on the boundary of a rectangle in the ξ–η plane. These metrics lead to $\mathbb{C}P^2$ when the functions f and g are identical [26].

$m = 3, l = 1$ ACG metrics. Let us assume that the non-compact coordinate is χ. Then, positivity of the metric is assured when $\chi < \chi_1 < a$, where χ_1 is the smallest root of $h(\chi)$. We choose the four-dimensional metric to be the one given by the $m = 2$ orthotoric metric. Again, the singularities are given by those of the $m = 2$ orthotoric metric that we just considered and at $\chi = \chi_1$. These metrics will be shown to lead to complex cones over L^{pq} spaces when $f \neq g$ for specific choices of the polynomials.

$m = 3, l = 2$ ACG metrics. The relevant conditions are

$$\xi < a, \quad \eta < a, \quad \xi > \eta,$$

$$\xi_1 < \xi < \xi_2 \quad \text{or} \quad \xi > \xi_3, \quad \eta < \eta_1 \quad \text{or} \quad \eta_2 < \eta < \eta_3,$$

and, of course, $-1 < x < 1$. In this example, we will be interested in the situation when we have a non-compact domain in the ξ–η plane given by $\eta < \eta_1 < \xi_1 < \xi < \xi_2 < a$. The singularities of the metric occur at $x = \pm 1$ (these are the singularities of the FS metric), $\eta = \eta_1, \xi = \xi_1, \xi_2$. This choice leads to partially resolved cones over Y^{pq} as we will show in section 6.

4.5. Recovering the canonical potential

Consider the simple situation of the $m = 2$ orthotoric symplectic potential corresponding to $f = A_1/(\xi - \xi_1)$. Ignoring the non-logarithmic pieces, the symplectic potential given in (4.8)
can be rewritten as
\[\frac{1}{2} \ell(P) \log \ell(P) + A_1(\xi - \xi_1)(\eta - \eta_1) \log(\eta - \xi_1) \]
where \(\ell(P) = -2A_1(\xi_1 P_1 - P_2 - \xi_1^2) \). The singularity associated with \(\ell(P) = 0 \) is split into two separate singularities in the \(\xi - \eta \) space, i.e., \(\xi = \xi_1 \) and \(\eta = \eta_1 \). The ACG metric subtracts one of the two singularities and hence has the form \(G_{\text{can}} + h(P) \). This simple example shows how one can rewrite all the symplectic potentials that we have obtained into the form
\[G_{\text{can}} + h(P), \]
where \(G_{\text{can}} \) contains only the \(\ell \log \ell \) pieces associated with the singularities that we obtained from our global analysis. All the remaining pieces are grouped together into the Abreu function \(h(P) \). We can then use the canonical potential to figure out the moment polytope.

5. Unresolved Ricci-flat metrics: examples

We consider the \(m = 3, l = 1 \) ACG metrics with momentum polynomial \(p_1(t) \). We define \(P = (a - \chi) \) and choose the cubic polynomial to be \(h(\chi) = 2(a - \chi)^3 \). Then the metric in equation (3.19) is the metric for the complex cone over a four-dimensional Kähler manifold. The symplectic potential then takes the form
\[G_{m=3,l=1} = \frac{1}{2} P \log P + PG_a(\tilde{P}_1, \tilde{P}_2), \]
where \(\tilde{P}_i \equiv P_i / P \) and \(G_a \) is the symplectic potential for a four-dimensional manifold which we take to be \(m = 2 \) orthotoric manifold. Thus, we have \(G_a = G_{OT2} \) as defined in equation (4.11). The Ricci-flatness of the above metric requires \(G_a(\tilde{P}_1, \tilde{P}_2) \) to be Kähler–Einstein with scalar curvature equal to 4 among other things. This is achieved if we choose \(f'(x) = g'(x) \) and \(f_0 = g_0 = \frac{1}{2} \).

Focusing on Einstein spaces amongst the ACG metrics in four dimensions, we thus need to consider cubic functions \(f \) and \(g \) such that
\[f(x) = -\frac{1}{2} x^3 + f_1 x^2 + f_2 x + f_3, \quad g(x) = f(x) + \mu, \]
with \(\mu \neq 0 \) and \((f_1, f_2, f_3) \) are constants. Let \(\xi_1 < \xi_2 < \xi_3 \) be the distinct real roots of \(f \) and \(\eta_1 < \eta_2 < \eta_3 \) be distinct real roots of \(g \). As discussed earlier, we choose the values of \(\xi \) and \(\eta \) such that \(\eta_1 < \eta < \eta_2 < \eta_3 < \xi_2 < \xi < \xi_3 \). This implies that the singularities occur on the boundary of a rectangle in the \(\xi - \eta \) plane. In the (\(\tilde{P}_1 = \xi + \eta, \tilde{P}_2 = \xi \eta \)) plane, the rectangle is given by the conditions \(\ell_a = 0 \) where
\[\ell_1(\tilde{P}_1, \tilde{P}_2) = \frac{-2}{f_0(\eta_1 - \eta_2)(\eta_1 - \eta_3)} (\eta_1 \tilde{P}_1 - \tilde{P}_2 - \eta_1^2), \]
\[\ell_2(\tilde{P}_1, \tilde{P}_2) = \frac{-2}{f_0(\eta_2 - \eta_1)(\eta_2 - \eta_3)} (\eta_2 \tilde{P}_1 - \tilde{P}_2 - \eta_2^2), \]
\[\ell_3(\tilde{P}_1, \tilde{P}_2) = \frac{-2}{f_0(\xi_2 - \xi_1)(\xi_2 - \xi_3)} (\xi_2 \tilde{P}_1 - \tilde{P}_2 - \xi_2^2), \]
\[\ell_4(\tilde{P}_1, \tilde{P}_2) = \frac{-2}{f_0(\xi_3 - \xi_1)(\xi_3 - \xi_2)} (\xi_3 \tilde{P}_1 - \tilde{P}_2 - \xi_3^2). \]

The four functions are linearly dependent. We assume that the dependence is given by four positive integers \((p, q, r, s) \) such that (assuming \(q > p \) and \(s > r \))
\[p\ell_1(\tilde{P}_1, \tilde{P}_2) + q\ell_2(\tilde{P}_1, \tilde{P}_2) - s\ell_3(\tilde{P}_1, \tilde{P}_2) - r\ell_4(\tilde{P}_1, \tilde{P}_2) = 0. \]

The condition \(p+q = r+s \) may be assumed at this point but it can be obtained as a consistency condition. For simplicity, we assume that this is true. These spaces turn out to be real cones.
over five-dimensional spaces called L^{pqrs} [22]. The explicit map relating this $m = 3, l = 1$ ACG metric to metrics given in [22] has been obtained by Martelli and Sparks (in [27]) and we shall not present them here. We instead pursue our analysis to completion. The four ACGR metric to metrics given in [22] has been obtained by Martelli and Sparks (in [27]) and

\[B_1 = 1/\eta_3, \quad B_2 = 1/(1 - \eta_3), \quad A_2 = 1/(\xi_2 - \xi_1)(\xi_2 - \xi_1) \quad \text{and} \quad A_3 = 1/(\xi_3 - \xi_1)(\xi_3 - \xi_1). \]

Note that it seems that we have four variables to determine, η_3 and the three roots of g. However, the two functions f and g are such that their roots satisfy

\[\xi_1 + \xi_2 + \xi_3 = \eta_1 + \eta_2 + \eta_3 \quad \text{and} \quad \xi_1 \xi_2 + \xi_3 \xi_1 + \xi_2 \xi_3 = \eta_1 \eta_2 + \eta_3 \eta_1 + \eta_2 \eta_3. \]

This enables us to solve for, say, η_3 and ξ_1 in terms of ξ_2 and ξ_3 to obtain

\[\eta_3 = 1 - \frac{\xi_2 \xi_3}{\xi_2 + \xi_3 - 1} \quad \text{and} \quad \xi_1 = (\xi_2 + \xi_3) - \frac{\xi_2 \xi_3}{\xi_2 + \xi_3 - 1}. \]

Thus, equation (5.4) now becomes three equations for two variables, ξ_2 and ξ_3, given four integers (p, q, r, s) such that $p + q - r - s = 0$.

One can also view equation (5.4) as an equation for three rational numbers $1/p (q, r, s)$ given ξ_2 and ξ_3. One can show that the solution is such that $p + q - r - s = 0$ and one has

\[\frac{q - p}{q + p} = \frac{uv(u^2 + uv + v^2 - 2) - 1}{uv(u^2 + uv + v^2 - 2) - 1} > 0, \]

\[\frac{s - r}{p + q} = \frac{(v - u)(u + v)(1 + uv)}{uv(u^2 + uv + v^2 - 2) - 1} > 0, \]

where we have defined

\[\xi_2 = \frac{1 + u}{2}, \quad \xi_3 = \frac{1 + v}{2} \quad \text{with} \quad v > u > 1. \]

The above range of (u, v) is consistent with the condition that $q > p$ and $s > r$ that we assumed at the beginning. It is easy to see that when u and v are rational, one is guaranteed to obtain integers for (p, q, r, s). This solution is similar to that considered in [28].

Consider the example when $(p, q, r, s) = (1, 4, 2, 3)$. We solve for (u, v) numerically as the explicit answers are unilluminating. We obtain that $(u, v) = (1.8933, 2.3258)$—this is the only solution that satisfies $v > u > 1$. This implies that $\eta_3 = 1.96867$ and $(\xi_1, \xi_2, \xi_3) = (0.14065, 1.44665, 1.66229)$. Again this is consistent with the ordering of the roots that we assumed.

It is of interest to ask what happens when $r = s$ in (5.6). It is not hard to see that this is achieved when $u = v$. In other words, one has $\xi_2 = \xi_3$ and one side of the rectangle shrinks to zero size. The root ξ now becomes a constant root. The singularity may be ‘resolved’ by associating a $\mathbb{C}P^1$ with the constant root. This provides an intuitive understanding of our next attempt to find metrics for Y^{pqrs} from the $(m = 3, l = 2)$ ACG metrics.
6. Partially resolved Ricci-flat metrics: examples

6.1. Cones over Y_{pq} spaces

The toric data for general $Y_{p,q}$ (with $p > q$ and $\gcd(p, q) = 1$) are given by the four vectors

$$V = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & p - q - 1 & p & 1 \\ 0 & p - q & p & 0 \end{pmatrix}.$$

One can verify that the most general internal point is of the form $(1, k, k)$ with $k \in \{1, \ldots, (p - 1)\}$. Internal points correspond to blowing up four cycles and we intend to add one internal point and obtain the Ricci-flat metric on the resulting space. Now, with one internal point added, the toric data are

$$V_{+1} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & p - q - 1 & p & 1 & k \\ 0 & p - q & p & 0 & k \end{pmatrix}.$$

The general D-terms for $Y_{p,q}$ spaces with one internal point added can be computed by considering the null space to V_{+1} and turns out to be

$$(p - q)\ell_1 + (p + q)\ell_3 - p(\ell_2 + \ell_4) = r_1,$$

$$(-k + p)\ell_1 + k\ell_3 - p\ell_5 = r_2,$$

where we have also turned on the blow-up (F–I) parameters which we call r_1 and r_2. We thus have the five ℓ_a being subject to these two conditions. This effectively leaves us with three independent fields. We choose these independent fields to be (P_1, P_2, P_3).

The metrics for Y_{pq} spaces were first obtained in [30, 31]. Real cones over these spaces have a conical singularity at the tip of the cone. Resolved metrics for these spaces have not been found except for the conifold (and its \mathbb{Z}_2 orbifold). The conifold is obtained as a real cone over $Y_{1,0} = T^{1,1}$. An intriguing result was obtained in [32] where they obtained a resolved metric for the cone over $Y_{2,1}$. What was different about this result was the fact that the blow-up parameters were set to fixed values. We realized that the metric looked like the $m = 3, l = 2$ ACG metric and verified that it was indeed true. This was our inspiration to look more closely at this class of ACG metrics and see if we could achieve similar results for general $Y_{p,q}$.

Further, the defining D-term for cones over $Y_{p,q}$ spaces clearly has a \mathbb{CP}^1 corresponding to $\ell_2 + \ell_4 = \text{constant}$ in equation (6.1). We now systematically fit the $m = 3, l = 2$ ACG metrics to the two D-terms that appear in equation (6.1). Higher-dimensional generalizations of the result of [32] have appeared in [33]. Our result provides examples in six dimensions that appear to be new.

6.2. Fitting to the $m = 3, l = 2$ ACG metrics

We now attempt to fit these metrics into the $m = 3, l = 2$ class of ACG metrics. We first set d_{α}^2 to the Fubini–Study metric normalized such that the scalar curvature equals 2. As discussed earlier, Ricci-flatness requires f and g to be cubic functions such that

$$f'(x) = g'(x) = (x - a)(b_1x + b_2),$$

with $b_1a + b_2 = -R(d_{\alpha}^2) = -2$. A simultaneous shift in ξ and η can be done to eliminate the term linear in x that appears in the functions f and g. This is achieved, for instance, by...
setting $b_2 = 0$. We also set $a = 1$ to match results in the literature. This fixes $b_1 = -2$. Thus we obtain

$$f'(x) = -2x(x - 1) \quad \Rightarrow \quad f(x) = -\frac{2}{3}x^3 + x^2 + \text{constant}, \quad (6.3)$$

and $g(x) - f(x)$ is a constant.

We identify (P_1, \tilde{P}_2, P_2) with an $SL(3, \mathbb{Z})$ transform of the coordinates given in (4.14). The $SL(3, \mathbb{Z})$ transform is such that $P_2 = (\tilde{P}_2 + P_1 - 1)$ leaving the other two coordinates unchanged. To carry out the fit to the $Y^{P_1}D$-terms, we identify the five singularities of the $m = 3, l = 2$ ACG metric with boundary of the Y^{P_1} polytope. The singularities of the \mathbb{CP}^3 are naturally identified with ℓ_1 and ℓ_4. We find that the $\xi = \xi_1$ and $\xi = \xi_2$ singularities get identified with the ℓ_1 and ℓ_3 singularities. If the fit has to work, the last singularity $\eta = \eta_1$ must be identified with $\ell_5 = 0$ singularity. With these inputs, we obtain

$$\ell_1 = -(1 - \xi_1)A_1\left[P_1(\xi_1 - 1) - \tilde{P}_2 + 1 - \xi_1^2 \right],$$

$$\ell_2 = (\tilde{P}_2 + P_3),$$

$$\ell_3 = -(1 - \xi_2)A_2\left[P_1(\xi_2 - 1) - \tilde{P}_2 + 1 - \xi_2^2 \right],$$

$$\ell_4 = (\tilde{P}_2 - P_3),$$

$$\ell_5 = -(1 - \eta_1)B_1\left[P_1(\eta_1 - 1) - \tilde{P}_2 + 1 - \eta_1^2 \right],$$

where ξ_i and η_i are respectively the roots of cubic equations $f(\xi) = 0$ and $g(\eta) = 0$. The roots are taken to have the following ordering: $\eta < \eta_1 < \xi_1 < \xi < \xi_2$. The constants A_1, A_2 and B_1 are given by

$$A_1 = \frac{-3}{(\xi_1 - \xi_2)(\xi_1 - \xi_3)}, \quad A_2 = \frac{-3}{(\xi_2 - \xi_1)(\xi_2 - \xi_3)}, \quad B_1 = \frac{-3}{(\eta_1 - \eta_2)(\eta_1 - \eta_3)}.$$

(6.5)

We now need to impose the conditions that ℓ_ν as given above from the $m = 3, l = 2$ ACG metric satisfies the D-term conditions given in equation (6.1). In the first D-term, one sees that P_3 drops out and thus leads to two equations corresponding to the vanishing of the coefficients of \tilde{P}_1 and \tilde{P}_2. Further, this does not involve the roots of g since they appear only in ℓ_5. Here f is such that its roots satisfy

$$\xi_1 + \xi_2 + \xi_3 = \frac{3}{2}, \quad \xi_1\xi_2\xi_3 + \xi_1\xi_2 = 0.$$

Thus, the first D-term is an overdetermined system—we have two equations and one unknown—the undetermined constant in f. It turns out that there is indeed a solution:

$$\xi_1 = \frac{2p - 3q - \sqrt{\Delta}}{4p}, \quad \xi_2 = \frac{2p + 3q - \sqrt{\Delta}}{4p}, \quad \xi_3 = \frac{p + \sqrt{\Delta}}{2p},$$

(6.6)

where $\Delta = (4p^2 - 3q^2)$. It is easy to verify that the inequality $\xi_1 < \xi_2 < 1$ is satisfied when $p > q$. Note that ξ_2 are independent of k, i.e., the interior point that is blown-up. This is obvious since the second D-term was not used in determining the roots of f. The FI parameter r_1 is non-vanishing and is given by

$$r_1 = -\frac{1}{2}\left(\frac{2p^2 - 3q^2}{p + \sqrt{\Delta}}\right).$$

(6.7)

It turns out that r_1 is always negative. This is consistent with our identification of the \mathbb{CP}^3 arising with from $\ell_2 + \ell_4$.

We now impose the second D-term equation involving ℓ_5 and use it to determine the roots of g. Again, we know that the three roots of g must satisfy

$$\eta_1 + \eta_2 + \eta_3 = \frac{3}{2}, \quad \eta_1\eta_2\eta_3 + \eta_1\eta_2 = 0.$$

(6.8)
We can use these two equations to solve for η_2 and η_3 in terms of η_1. Imposing the D-term leads to the solution

$$\eta_1 = \frac{p(2p - 3q)(p + q) - 2k(2p^2 - 3q^2) - \sqrt{\Delta}(-2kp + p(p + q))}{4(3k^2q + p^2(p + q) - kp(2p + 3q))}. \tag{6.9}$$

The second FI parameter is given by

$$r_2 = -(p - k)(1 - \xi_1)A_1\left(1 - \xi_1^2\right) - k(1 - \xi_2)A_2\left(1 - \xi_2^2\right) + p(1 - \eta_1)B_1\left(1 - \eta_1^2\right). \tag{6.10}$$

We do not list the explicit expressions for η_2, η_3 as we do not really need them. Instead, we just note the value of their sum and product since they appear directly in B_1 which appears in ℓ_5:

$$\eta_2 + \eta_3 = \frac{3}{2} - \eta_1, \quad \eta_2\eta_3 = -\eta_1\left(\frac{3}{2} - \eta_1\right). \tag{6.11}$$

The constants that appear in f and g can be obtained directly from the roots and we do not give expressions for them.

An important point to note here is that we have not verified that $\eta_1 < \xi_1$ as that is required by the positivity of the ACG metric. While our expressions seem to be valid for any $k \in (1, 2, \ldots, p - 1)$, it turns out that in all the examples that we have considered, the inequality is violated when $k = p - 1$ and $p > 2$. Experimentally, we find that for all values of k that are greater than $p/2$ and thereabouts, the inequality is violated and we do not obtain a resolved metric for those values of k. For instance, for $Y^{3,1}$, we obtain a resolved metric for $k = 1$ but that for $k = 2$ violates the inequality and we do not have a positive-definite metric.

The Abreu function may be extracted using the formula

$$G_{m=3,i=2} = \frac{1}{3} \sum_{a=1}^{5} \ell_a \log[\ell_a] + h(P_i). \tag{6.12}$$

We do not write an explicit formula for the Abreu function. We now work out details for some specific values of (p, q, k). The polynomials are taken to be

$$f(\xi) = -\frac{2}{3}\xi^3 + \xi^2 + a, \quad g(\eta) = -\frac{2}{3}\eta^3 + \eta^2 + b, \tag{6.13}$$

where we define the constants to be a and b (this is not to be confused with our earlier use of the same to indicate constant roots in the momentum polynomial).

$Y^{2,1}$. There is only one point in the interior of the polytope (see figure 1) corresponding to setting $k = 1$. The FI parameters are given by

$$r_1 = -\frac{1}{3}(5 + 2\sqrt{13}), \quad r_2 = \frac{1}{3}(4 + \sqrt{13}). \tag{6.14}$$

Our metrics differ from those usually written for Y^{pq} [30–32] by a factor of 3 due to our choice of normalization for the scalar curvature of $\mathbb{C}P^1$. Our f will have to be multiplied by -3 to match with the corresponding cubic function in those papers.
The form of the resolved $Y_{3,1}$ metric in [32] can be obtained by carrying out an $SL(3, \mathbb{Z})$ transformation such that the new P_i are given by

$$
P_1 = \xi + \eta, \quad P_2 = (1 - \xi)(1 - \eta), \quad P_3 = (1 - \xi)(1 - \eta)x,
$$

(6.15)

and setting $x = \cos \theta$. The roots of the polynomials turn out to be

$$
\xi_1 = \frac{1}{8}(1 - \sqrt{13}), \quad \xi_2 = \frac{1}{8}(7 - \sqrt{13}), \quad \xi_3 = \frac{1}{4}(2 + \sqrt{13}),
$$

$$
\eta_1 = -\frac{1}{2}(2 + \sqrt{13}), \quad \eta_2 = \eta_3 = \frac{5 + \sqrt{13} - 4i\sqrt{33} + 18\sqrt{13}}{4}.
$$

(6.16)

The constants a and b appearing in the functions f and g are

$$
a = -\frac{1}{96}(16 - \sqrt{13}), \quad b = -\frac{1}{12}(137 + 37\sqrt{13}).
$$

(6.17)

$Y_{3,1}$ with $k = 1$. For $Y_{3,1}$, we have two internal points, as seen in figure 2. We add the point corresponding to the vector $(1, 1, 1)$. The other point $(1, 2, 2)$ does not give a positive-definite metric and hence is not considered. The roots when $k = 1$ turn out to be

$$
\xi_1 = \frac{3 - \sqrt{33}}{12}, \quad \xi_2 = \frac{9 - \sqrt{33}}{12}, \quad \xi_3 = \frac{3 + \sqrt{33}}{6}, \quad \eta_1 = \frac{1 - \sqrt{33}}{8}.
$$

(6.18)

We note that the required ordering $\eta_1 < \xi_1 < \xi_2 < \xi_3$ is respected by our solution. The constants in the two polynomials are

$$
a = -\frac{9 - \sqrt{33}}{54}, \quad b = -\frac{77 + 3\sqrt{33}}{192}.
$$

(6.19)

The FI parameter $r_2 = \frac{1}{8}(7 + \sqrt{33})$.

$Y_{3,2}$ with $k = 1$. This example is similar to $Y_{3,1}$ as it has two internal points (see figure 3). The $k = 2$ solution is not valid but the $k = 1$ is and hence we present the results for that metric. The roots turn out to be

$$
\xi_1 = -\frac{1}{\sqrt{6}}, \quad \xi_2 = \frac{6 - \sqrt{6}}{6}, \quad \xi_3 = \frac{3 + 2\sqrt{6}}{6}, \quad \eta_1 = \frac{2 + 3\sqrt{6}}{10}.
$$

(6.20)

We note that the ordering of the roots is as expected. The constants that appear in the polynomials are

$$
a = -\frac{9 + \sqrt{6}}{54}, \quad b = -\frac{601 + 189\sqrt{6}}{750}.
$$

(6.21)

The FI parameter $r_2 = \frac{2}{3}(4 + \sqrt{6})$.
Y^{5,3}$ with $k = 1, 2$. This is the first example where we obtain inequivalent resolutions corresponding to adding internal points for $k = 1$ and $k = 2$ (see figure 4 for a toric diagram). Since the roots of f are independent of k, we will quote them once and write the root η_1 separately. We obtain

$$
\xi_1 = \frac{1 - \sqrt{73}}{20}, \quad \xi_2 = \frac{19 - \sqrt{73}}{20}, \quad \xi_3 = \frac{5 + \sqrt{73}}{10},
$$

$$
\eta_1(k = 1) = -\frac{1 + 5\sqrt{73}}{76}, \quad \eta_1(k = 2) = -\frac{13 + 5\sqrt{73}}{46}.
$$

We note that the ordering of the roots is as expected. The constants that appear in the polynomials are

$$
a = -\frac{125 + \sqrt{73}}{750}, \quad b(k = 1) = -\frac{26705 + 1285\sqrt{73}}{82308},
$$

$$
b(k = 2) = -\frac{105479 + 10315\sqrt{73}}{73002}.
$$

The FI parameter $r_2(k = 1) = \frac{3}{1080}(77 + 5\sqrt{73})$ and $r_2(k = 2) = \frac{27}{640} (59 + 5\sqrt{73})$.

One can ask what happens to our formulae when $q = 0$. The roots ξ_1 and ξ_2 coincide. This implies that the $m = 3, l = 2$ ACG metric is singular. ξ becomes a constant root. This is similar to what happened in the L^{pqr} metric earlier. Again, we need to add a $\mathbb{C}P^1$ to resolve
this singularity. So it naturally leads us to the conifold and its orbifolds. We thus move onto the \(m = 3, l = 1 \) ACG metrics with momentum polynomial \(p_2(t) \).

6.3. The \(m = 3, l = 1 \) ACG metric and the resolved conifold

The metric for the resolved conifold as well its \(\mathbb{Z}_2 \) orbifold has been obtained in [34] and [35]. Following these papers, both the metrics can be written as

\[
\begin{align*}
\text{d}s_6^2 &= \kappa^{-1}(\rho) \text{d}\rho^2 + \frac{\rho^2}{9} \kappa(\rho) (\text{d}\psi - A_a - A_b)^2 + \frac{\rho^2}{6} \text{d}s_{\mathbb{C}P^1}^2 + \left(\frac{\rho^2}{6} + \hat{a}^2 \right) \text{d}s_{\mathbb{C}P^1}^2, \\
\end{align*}
\]

where

\[
\kappa(\rho) = \left(1 + \frac{9\hat{a}^2}{\rho^2} - \frac{\hat{b}^6}{\rho^6} \right) / \left(1 + \frac{6\hat{a}^2}{\rho^2} \right), \quad \text{d}A_a = \omega_a \quad \text{and} \quad \text{d}A_b = \omega_b.
\]

The metric of the resolved conifold is obtained after setting \(\hat{b} = 0 \) and choosing the periodicity of the angle \(\psi \) to be \(4\pi \). The metric of the resolution of the \(\mathbb{Z}_2 \) orbifold of the conifold is obtained by simply choosing the periodicity of \(\psi \) to be \(2\pi \). The periodicity of the angles are determined by requiring the metrics to be non-singular at \(\rho = 0 \). The parameter \(\hat{a} \) is the size of the blown-up \(\mathbb{C}P^1 \). We will now show how these two metrics are indeed \(m = 3, l = 1 \) ACG metrics with momentum polynomial \(p_2(t) \).

Hence consider the \(m = 3, l = 1 \) ACG metrics and choose \(\text{d}s_a^2 \) and \(\text{d}s_b^2 \) to be the Fubini–Study metric on \(\mathbb{C}P^1 \). Both are taken to have scalar curvature equal to \(2 \). Ricci-flatness of the \(\text{ACG metric} \) and the resolved conifold \(\text{ACG metric} \) and the resolved conifold \(\text{and its orbifolds} \). We thus move onto

6.4. The resolution of \(\mathbb{C}P^1/\mathbb{Z}_3 \) as a \(l = 3, m = 1 \) ACG metric

The metric for the resolution of \(\mathbb{C}P^1/\mathbb{Z}_3 \) when written as the resolution of a cone is (after a rescaling) \([36]\]

\[
\text{d}s^2 = 3 \left[1 - \frac{b^6}{r^6} \right]^{-1} \text{d}r^2 + \frac{r^2}{3} \left[1 - \frac{b^6}{r^6} \right] (\text{d}\psi + A)^2 + \frac{r^2}{2} \text{d}s_{\mathbb{C}P^1}^2,
\]

where \(\text{d}s_{\mathbb{C}P^1}^2 \) is the Fubini–Study metric on \(\mathbb{C}P^2 \) with scalar curvature equal to \(8 \) and the Kähler form is \(\omega_{\mathbb{C}P^1} \equiv -\text{d}A \).

We wish to show that this is an example of the \(m = 3, l = 1 \) with momentum polynomial \(p_2(t) \). We take the small Kähler metric to be the Fubini–Study metric on \(\mathbb{C}P^2 \) with scalar curvature equal to \(8 \). The Ricci-flatness condition requires \(h(\chi) \) such that \(h'(\chi) = b_1(x - a)^2 \)

\[
11 \text{ Below } \text{d}s_{\mathbb{C}P^1}^2 \text{ is the metric } (\text{d}\theta^2 + \sin^2 \theta \text{ d}\phi^2) \text{ and } \omega = \cos \theta \text{ d}\theta \wedge \text{d}\phi \text{ is the Kähler form for } \mathbb{C}P^1. \text{ The indices } a \text{ and } b \text{ distinguish the two } \mathbb{C}P^1 \text{ s that appear.}
with \(b_1 = -4 \). Setting the constant \(a \) to zero with no loss of generality, we obtain
\[
h(\chi) = -\frac{4}{3} \chi^3 - \frac{b^6}{6},
\]
where we have chosen the constant suitably. One further has the condition that \(d\theta_1 = -\omega_{Ypq} \).

Identifying \(\chi = -r^2/2 \) and \(\theta_1 = dy + A \), we recover the resolved metric given above.

7. Conclusion and outlook

In this paper, we have constructed symplectic potentials for a large family of metrics due to Apostolov, Calderbank and Gauduchon. We carry out a global analysis of these metrics, largely focusing on non-compact six-dimensional examples, by relating the symplectic potential to the canonical one due to Guillemin. We then systematically worked out the situations where we recover \(D \)-terms associated with known manifolds such as cones over \(L^{pqr} \) and \(Y^{pq} \) manifolds. We find among these metrics an infinite family of partially resolved metrics for cones over \(Y^{pq} \) for non-zero blow-up parameters. Interestingly, we also recover the resolved conifold (and its orbifold) and the resolution of \(\mathbb{C}^3/\mathbb{Z}_3 \) among the ACG metrics. Thus, all known examples of resolved metrics appear in this classification.

The \(m = 3 \) orthotoric metrics seem the natural place to look for metrics corresponding to partial resolutions of \(L^{pqr} \). In specific examples, we have found that there are no such solutions even though the blown down metric is recovered in a limit. Nevertheless, we feel that our analysis in this particular situation is incomplete and we hope to report on this in the future.

The paper has largely dealt with symplectic coordinates. One may wish to know if this is always a good approach. As a test case, we have attempted to work out the symplectic potential for resolutions of \(\mathbb{C}^2/\mathbb{Z}_N \) using the symplectic quotient rather than the hyper-Kähler quotient that is natural in this setting. The symplectic method works only for \(N = 2 \) but does not work for \(N > 2 \) [36]. However, it is known that a partial Legendre transform of the symplectic potential can be exactly determined in these examples [37] and an explicit map to the Gibbons–Hawking metrics worked out. In carrying out the inverse Legendre transform to recover the symplectic potential, one needs to find the roots of polynomials of degree greater than 4 to come up with a closed-form expression for the symplectic potential. Since no formulae exist for roots of polynomials with degree > 4, one does not obtain an algebraic expression for the symplectic potential.

Our results clearly have implications in the context of the AdS–CFT correspondence. For instance, it is known that resolutions associated with two cycles and four cycles lead to different kinds of corrections to the radial part of the metric, i.e., \(g_{rr} \) [14]. These metrics provide an arena where this can be verified. The Abreu function that we have obtained in this paper may be used to verify the prediction of Martelli, Sparks and Yau on its behaviour [29]. Finally, the gravity dual of the (marginal) Leigh–Strassler deformations of \(N = 4 \) supersymmetric Yang–Mills theory is not yet known. The gravity dual is expected to have a \(U(1) \) isometry implying that it may arise from an \(m = 3, l = 1 \) ACG metric whose four-dimensional base is a non-toric Kähler–Einstein manifold. The CFT implies that the four-dimensional manifold must arise as a two-parameter deformation of \(\mathbb{C}P^3 \).

Acknowledgments

AKB thanks the Department of Aerospace Engineering, IIT Madras, and in particular Professor Job Kurian and Professor P Sriram for encouragement and support. CNG thanks the hospitality
of the theory group at IIT Madras, and in particular Prasanta K Tripathy for hosting a visit to IIT Madras during which the paper was completed.

Note Added. While this paper was being readied for publication, a paper by Martelli and Sparks appeared [15]. This paper also deals with ACG metrics and resolved metrics. There is some overlap with this work though the methods differ. The authors also mention a forthcoming paper which discusses the partial resolutions of cones over Y^{pq} spaces. This also may have some overlap with section 6 of this paper.

References

[1] Zumino B 1979 Supersymmetry and Kähler manifolds Phys. Lett. B 87 203
[2] Friedan D H 1985 Nonlinear models in $2+\epsilon$ dimensions Ann. Phys. 163 318
[3] Witten E 1993 Phases of $N=2$ theories in two dimensions Nucl. Phys. B 403 159 (Preprint hep-th/9301042)
[4] Guillemin V 1994 Kähler structures on toric varieties J. Diff. Geom. 40 285–309
[5] Abreu M 2001 Symplectic and contact topology: Interactions and Perspectives (Providence, RI: American Mathematical Society) pp 1–24 (Preprint math.DG/0004122)
[6] Abreu M 1998 Kähler geometry of toric varieties and extremal metrics Int. J. Math. 9 641–51 (Preprint dg-ga/9711014)
[7] Calabi E 1979 Métriques kähleriennes et fibrés holomorphes Annales scientifiques de l’École Normale Supérieure 4 269–94
[8] Donaldson S K 2005 Interior estimates for solutions of Abreu’s equation Collect. Math. 56 103–42 (Preprint math.DG/0407486)
[9] Ray K 1998 A Ricci-flat metric on D-brane orbifolds Phys. Lett. B 433 307 (Preprint hep-th/9803192)
[10] Doran C, Headrick M, Herzog C P, Kantor J and Wiseman T 2007 Numerical Kähler–Einstein metric on the third del Pezzo Preprint hep-th/0703057
[11] Apostolov V, Calderbank D M J and Gauduchon P 2003 The Guillemin formula and Kähler metrics on toric symplectic manifolds J. Symplectic Geom. 1 767–84 (Preprint math.DG/0310243)
[12] Leung N C and Vafa C 1998 Branes and toric geometry Adv. Theor. Math. Phys. 2 231 (1999 Int. J. Theor. Phys. 38 1113) (Preprint hep-th/9711200)
[13] Klemm I R and Witten E 1999 AdS/CFT correspondence and symmetry breaking Nucl. Phys. B 556 89 (Preprint hep-th/9905104)
[14] Martelli D and Sparks J 2007 Resolutions of non-regular Ricci-flat Kähler cones Preprint 0707.1674
[15] Apostolov V, Calderbank D M J and Gauduchon P 2006 Hamiltonian 2-forms in Kähler geometry: I. General theory J. Diff. Geom. 73 359–412 (Preprint math.DG/0202280)
[16] Maldacena J M 1998 The large N limit of superconformal field theories and supergravity Adv. Theor. Math. Phys. 2 231 (1999 Int. J. Theor. Phys. 38 1113) (Preprint hep-th/9711200)
[17] Lerman E and Tolman S 1997 Symplectic toric orbifolds Trans. Am. Math. Soc. 349 4201–30 (Preprint dg-ga/9412005)
[18] Leung N C and Vafa C 1998 Branes and toric geometry Adv. Theor. Math. Phys. 2 91 (Preprint hep-th/9711013)
[19] Calabi E, Headrick M, Herzog C P, Kantor J and Wiseman T 2007 Numerical Kähler–Einstein metric on the third del Pezzo Preprint hep-th/0703057
[20] Apostolov V, Calderbank D M J and Gauduchon P 2003 The geometry of weakly self-dual Kähler surfaces Compositio Math. 135 279–322 (Preprint math.DG/0104233)
[21] Pedersen H and Poon Y S 1991 Hamiltonian construction of Kähler–Einstein metrics and Kähler metrics of constant scalar curvature Commun. Math. Phys. 136 309–26
[22] Oota T and Yasui Y 2006 Toric Sasaki–Einstein manifolds and Heun equations Nucl. Phys. B 742 275 (Preprint hep-th/0512124)
[23] Acharya B S, Govindarajan S and Gowdigere C N 2006 Toric Kähler metrics and AdS$_3$ in ring-like coordinates Preprint hep-th/0612032
[24] Martelli D and Sparks J 2005 Toric Sasaki–Einstein metrics on $S^2 \times S^3$ Phys. Lett. B 621 208 (Preprint hep-th/0505027)
[25] Cveti M, Lu H, Page D N and Pope C N 2005 New Einstein–Sasaki and Einstein spaces from Kerr–de Sitter Preprint hep-th/0505223
Symplectic potentials and resolved Ricci-flat ACG metrics

[29] Martelli D, Sparks J and Yau S T 2006 Sasaki–Einstein manifolds and volume minimisation Preprint hep-th/0603021

[30] Gauntlett J P, Martelli D, Sparks J and Waldram D 2004 Sasaki–Einstein metrics on $S^2 \times S^3$ Adv. Theor. Math. Phys. 8 711 (Preprint hep-th/0403002)

[31] Gauntlett J P, Martelli D, Sparks J F and Waldram D 2006 A new infinite class of Sasaki–Einstein manifolds Adv. Theor. Math. Phys. 8 987 (Preprint hep-th/0403038)

[32] Oota T and Yasui Y 2006 Explicit toric metric on resolved Calabi–Yau cone Phys. Lett. B 639 54 (Preprint hep-th/0605129)

[33] Lu H and Pope C N 2007 Resolutions of cones over Einstein–Sasaki spaces Nucl. Phys. B 782 171–88 (Preprint hep-th/0605222)

[34] Pando Zayas L A and Tseytlin A A 2000 3-branes on resolved conifold J. High Energy Phys. JHEP11(2000)028 (Preprint hep-th/0010088)

[35] Pando Zayas L A and Tseytlin A A 2001 3-branes on spaces with $R \times S^2 \times S^3$ topology Phys. Rev. D 63 086006 (Preprint hep-th/0101043)

[36] Balasubramanian A K 2007 Resolutions of singular spaces Bachelor’s Thesis Indian Institute of Technology Madras (May) Available at the URL http://www.physics.iitm.ac.in/~suresh/theses/aswin.pdf

[37] Hitchin N J, Karlhede A, Lindstrom U and Rocek M 1987 Hyperkahler metrics and supersymmetry Commun. Math. Phys. 108 535