Understanding Variability of Haze in Eastern China

Xuexi Tie1-4* and Junji Cao1

1Key Laboratory of Aerosol Chemistry and Physics, SKLLOQ, Institute of Earth Environment, Chinese Academy of Sciences, China
2Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, China
3Shanghai Key Laboratory of Meteorology and Health, Shanghai, China
4National Center for Atmospheric Research, Boulder, CO, USA

Abstract

In recent years, there are heavy aerosol pollutions in eastern China. For example, in the Northern China Plain (NCP) and the capital city of Beijing, the concentrations of PM2.5 (particle matter <2.5 μm in diameter) often reached to the levels of more than 200-400 μg/m³. In contrast, the World Health Organization (WHO) identifies a safe level of air quality as containing 10-25 μg/m³. In addition to the high levels of aerosol pollutions, there is a largely temporal variability of the concentrations. This study discusses the major factors, which control the short-term variability (days to weeks) of the aerosol pollutions in eastern China. The results suggest that the meteorological parameters, including wind direction, wind speed, and vertical diffusion in the planetary boundary layer (PBL) have important effects on the short-term variability. The secondary formation of aerosols, especially during heavy haze periods, has also important contribution to the large variability. Because the secondary aerosols (SA) have a large portion in the composition of the total aerosols during the haze period, the formation of SA amplifies the magnitude of the variation, causing significant increase in the concentrations of PM2.5 during the heavy haze periods in eastern China.

Keywords: Air pollution; Variability; Meteorological factors; Planetary boundary layer

Introduction

China is one of the most rapidly developing countries in the world, but in the meantime it is suffering from severe air pollution due to heavy industrial/metropolitan emissions. This extremely high loading of aerosols has strong effects on climate and environment, e.g., the effects on solar radiation (cooling surface and slowing down the global warming), cloud formation, ozone photochemical activity, and visibility [1-5]. The heavy haze pollution also causes severe human’s health problems, such lung cancer, asthma and other respiratory illnesses [6,7].

Unlike other regions in industrial countries (such as Europe and the US), the haze pollution (aerosol pollution) in China widely displaced in a very large area. The haze pollution is not only covered over large cities, but also over farmland areas. As a result, the haze in China has not only important impact on human’s health, but also on the ecosystem in eastern China. The effect of regional haze pollution on the yields of rice and wheat in China. Their result shows that reduction of solar irradiance due to aerosol pollution can cause ~2% reduction in total rice production and ~6% reduction in total wheat production in eastern China [8].

In addition to the large spatial dispersion of aerosol pollution, there is also significant temporal variation of aerosol pollution during a short period (days to weeks) in eastern China [9-13]. The focus of this study is to better understand the causes of this short-term temporal variability of aerosol pollution, which has very important implication in haze pollution control in the region.

Materials and Methods

In this study, a long-term measurement of PM2.5 concentrations (from 2012 to 2016) is used to investigate the variability of aerosol pollution, and a regional chemical/transport WRF-Chem model (Weather Research and Forecasting Chemical model) is used to analyze the regional transport and the short-term variability.
coupled with the dynamical model (WRF-Chem). The version of the model used in the present study includes an online calculation of dynamical inputs (winds, temperature, boundary layer, clouds, etc.); transport (advection, convection, and diffusion); dry deposition; gas phase chemistry, radiation, and photolysis rates. The chemical mechanism includes 158 reactions among 36 species. The aerosol modules used in the study are described as the aerosol module developed by EPA CMAQ.

Results and Discussion

Measure aerosol variability

The measured daily mean surface concentrations of PM$_{2.5}$ in a large city in China (Xi’an, with a population of 8 millions) during a 4-year period (from 2013 to 2016) (Figure 1).

The measured result shows three important feathers. First, the concentrations of PM$_{2.5}$ were very high, with a mean concentration of ~170 μg/m³, indicating that heavy haze events often occurred in this region. Second, there was a strong long-term variability. The winter-peak values of the concentrations reduced from 600-800 μg/m³ in 2013 to ~400 μg/m³ in 2016. This long-term change was mainly associated with the emission control. Third, there were a strong mid-term variation and a short-term variability. For example, there was a strong seasonal variation (mid-term), with higher concentrations during winter than during summer. There was also a very strong daily variation (short-term). The short-term variability can lead to the change of PM$_{2.5}$ concentrations in a magnitude of 200-300 μg/m³ in days.

The major controlling factors for causing this short-term variability can be expressed by the aerosol mass conservation equation:

$$\frac{\partial [X]}{\partial t} = \frac{\partial [X]}{\partial t}_E + \frac{\partial [X]}{\partial t}_V + \frac{\partial [X]}{\partial t}_C + \frac{\partial [X]}{\partial t}_D$$

Where, $[X]$ represents the PM$_{2.5}$ mass concentration (μg/m³). $\frac{\partial [X]}{\partial t}_E$ represents the change of concentration due to surface emission; $\frac{\partial [X]}{\partial t}_V$ due to advection or horizontal transport; $\frac{\partial [X]}{\partial t}_C$ represents vertical diffusion in the PBL height; $\frac{\partial [X]}{\partial t}_D$ represents chemical reactions; and $\frac{\partial [X]}{\partial t}_D$ represents dry and wet deposition.

For short-term variability, the emission term can be ignored, if we don’t consider an aggressive activity for emission (e.g., for the large emission reduction during the Beijing Olympic game period). If we consider a dry weather, without precipitation, the deposition term can also be ignored. With the above considerations, the equation governed short-term variability can be simplified by the following equation:

$$\frac{\partial [X]}{\partial t} = \frac{\partial [X]}{\partial t}_V + \frac{\partial [X]}{\partial t}_C$$

This equation shows that major controlling factors for causing short-term of PM$_{2.5}$ variability are (1) advection (regional transport), (2) vertical diffusion, and (3) chemical reaction (secondary aerosol formation).

Effect of advection and weather condition

In some regions of eastern China, the short-term variability is strongly controlled by advection and weather condition. For example, in the NCP region and the city of Beijing, the weather condition and wind directions are important factors in controlling the short-term variability (Figure 2).

In the south of NCP and Beijing, there is a large polluted area, existing heavy emissions of air pollutants. In contrast, in the north of NCP and Beijing, there is a large remote area (mountains and grass lands), with small emissions of air pollutants. As a result, under the south wind condition, the aerosol concentrations are generally high (right panel of Figure 2). In contrast, under the north wind condition, the aerosol concentrations are generally low (middle panel of Figure 2). In addition to the effect of the spatial distribution of emissions, the mountains in this region also play important roles. The mountains in the north of NCP act as walls to block the horizontal transport. As a result, under south wind condition, the aerosol particles are accumulated at the foothill of the mountains (Figure 2) [14].

Effect of vertical diffusion in PBL

During the heavy haze period, the wind speed is small. The surface concentrations of PM$_{2.5}$ are highly correlated with vertical mixing and the PBL height. The in situ measurements show that during the haze days, the PBL heights and vertical diffusion are significantly reduced due to the decrease of solar radiation, which reduces the thermo turbulence [15].

During a short period (10 days), there is a strong short-term variability of PM$_{2.5}$ in Beijing. For example, on 24th, Oct. 2013, the concentration of PM$_{2.5}$ was less than 50 μg/m³. In contrast, on 27th, Oct. 2013, the concentration of PM$_{2.5}$ rapidly increased to 160 μg/m³. This short-term variability is anti-correlated with both wind speed and the PBL height (Figure 3).

On 27th of Oct. 2013, the wind speed was less than 1 m/s, and the vertical diffusion in the PBL played important roles. The shallow PBL height (~0.5 km) strongly depressed the vertical transport from the surface to the free troposphere. As a result, the surface concentration of PM$_{2.5}$ reached to a very high value. The surface concentration of PM$_{2.5}$ was strongly anti-correlated with the PBL height (right panel of Figure 3). Moreover, the anti-correlation was non-linearly correlated. For example, when the PBL was less than 1 km, the surface concentration of PM$_{2.5}$ was very sensitive with the PBL height. In this case, a small reduction of PBL height can cause a large increase in the surface
concentration of PM$_{2.5}$ (Figure 3).

Effect of chemical reactions

According to the measurements of chemical composition, there are high secondary aerosols in eastern China. The secondary aerosols (sulfate, nitrate, ammonium, secondary organic carbon) contribute to a large portion of total aerosols. Sulfate, nitrate, and ammonium aerosols contribute to about 40% and 33% in Beijing and in Shanghai, respectively (Figure 4) [14].

The formation of secondary aerosols involves complicated chemical processes, including gas-phase chemical reactions and multi-phase chemical reactions (heterogeneous chemical reactions). However, during the heavy haze periods, neither the gas photochemistry nor the aqueous chemistry can fully explain the formation of high secondary aerosols. For example, the estimated sulfate formation is less than measured values under the heavy haze condition in eastern China. There is a large missing source for the formation of sulfate particles during heavy haze periods in eastern China (right panel of Figure 4), and there is additional heterogeneous reaction occurred during the heavy haze conditions; i.e.,

$$\text{SO}_2(g) + 2\text{NO}_2(g) + 2\text{H}_2\text{O}(aq) \rightarrow 2\text{H}^+ (aq) + \text{SO}_4^{2-} (aq) + 2\text{HONO}(g)$$

By adding this reaction, the underestimation of the calculated sulfate concentrations is largely reduced. However, there is still a large uncertainty remained for the understimation of secondary aerosols during the heavy haze periods in eastern China. Because secondary aerosols have a large portion in the chemical composition of the total aerosols during haze periods, and the formation of SA amplifies the magnitude of the short-term variation of PM$_{2.5}$ concentrations, and future study is needed to better understand this problem [15,16].

Conclusion

China is one of the most rapidly developing countries in the world, but in the meantime it is suffering from severe air pollution due to heavy industrial/metropolitan emissions. Unlike other regions in industrial countries (such as Europe and the US), the haze pollution in China is widely displaced in a very large area, and has significant short-term variation in the concentration of aerosol particles in eastern China. This study discusses the major factors, which control the short-term variability (days to weeks) of the aerosol pollutions in eastern China. The results suggest that there are 3 major factors in controlling the short-term variability, including (1) horizontal transport (wind direction, wind speed, and weather system), (2) vertical diffusion in the planetary boundary layer, and (3) the secondary formation of aerosols, especially during the heavy haze period. The detailed effects of these 3 major factors on the short-term variability are discussed in this study. Because the secondary aerosols have a large portion in the chemical composition of the total aerosols during the haze period, the formation of secondary aerosols amplifies the magnitude of the variation, causing significant increase in the concentrations of PM$_{2.5}$. However, the current calculations often underestimate this effect, especially under heavy haze conditions in eastern China. Further study is needed for better understanding the formation of secondary aerosols.

Acknowledgment

This work was supported by the National Natural Science Foundation of China (NSFC) under Grant Nos. 41430424 and 41375136, and the Atmospheric Air Pollution Grant Funded by the Ministry of Science and Technology of China (2016YFC0203400, 2016YFC0201903). The National Center for Atmospheric Research is sponsored by the National Science Foundation.

References

1. Charlson RJ, Lovelock JE, Andreae MO, Warren SG (1987) Oceanic phytoplankton, atmospheric sulfur, cloud albedo and climate. Nature 326: 655-661.
2. Tegen I, Koch D, Lacis AA, Sato M (2000) Trends in tropospheric aerosol loads and corresponding impact on direct radiative forcing between 1950 and 1990: A model study. J Geophys Res 105: 26971-26990.
3. Deng X (2008) Long-term trend of visibility and its characterizations in the Pearl River Delta (PRD) region, China, Atmos Environ 42: 1424-1435.
4. Tie X, Brasseur G, Emmons L., Horowitz L., Kinnison D (2001) Effects of aerosols on tropospheric oxidants: A global model study. J Geophys Res 106: 22931-22964.
5. Cao JJ, Wang QY, Chow JC, Watson JG, Tie X, et al. (2012) Impacts of aerosol compositions on visibility impairment in Xi’an, China. Atmos Environ 59: 559-566.
6. Cao X, Wu D, Brasseur G (2009) Lung cancer mortality and exposure to atmospheric aerosol particles in Guangzhou, China. Atmos Environ 43: 2375-2377.
7. Cao J, Xu H, Xu Q, Chen B, Kan H (2012) Fine particulate matter constituents and cardiopulmonary mortality in a heavily polluted Chinese city. Environ Health Perspectives 120: 373-378.
8. Tie X, Huang RJ, Dai WT, Cao JJ, Long X, et al. (2016) Effect of heavy haze and aerosol pollution on rice and wheat productions in China. Sci Rep 6: 26912.
9. Quan JN, Gao Y, Zhang Q, Tie X, Cao JJ, et al. (2010) Evolution of planetary boundary layer under different weather conditions, and its impact on aerosol concentrations. Particology.
10. He H, Tie X, Zhang Q, Liu X, Gao Q, et al. (2015) Analysis of the causes of heavy aerosol pollution in Beijing, China: A case study with the WRF-Chem model. Particology 20: 32-40.
11. Tie X, Zhang Q, He H, Cao JJ, Han SQ, et al. (2015) A budget analysis on the formation of haze in Beijing. Atmos Environ 100: 25-36.

12. Zhang Q, Quang JN, Tie X, Li X, Liu Q, et al. (2015) Effects of meteorology and secondary particle formation on visibility during heavy haze events in Beijing, China. Sci Total Environ 502: 578-584.

13. Long X, Tie X, Cao JJ, Huang RJ, Feng T, et al. (2016) Impact of crop field burning and mountains on heavy haze in the North China Plain: A case study. Atmos Chem Phys 16: 9675-9691.

14. Huang RJ (2014) High secondary aerosol contribution to particulate pollution during haze events in China. Nature 514: 218-222.

15. Zhang Q, Tie X, Lin WL, Cao JJ, Quan JN, et al. (2013) Measured variability of SO₂ in an intensive fog event in the NCP region, China; Evidence of high solubility of SO₂. Particuology, pp: 41-47.

16. Cheng YF (2016) Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China. Sci Adv 2: e1601530.