Impact of Protein Domains on PE_PGRS30 Polar Localization in Mycobacteria

Flavio De Maio1*, Giuseppe Maulucci2*, Mariachiara Minerva1, Saber Anoosheh4, Ivana Palucci1, Raffaella Iantomasi1, Valentina Palmieri2, Serena Camassa1, Michela Sali1, Maurizio Sanguinetti1, Wilbert Bitter3, Riccardo Manganelli4, Marco De Spirito2, Giovanni Delogu1*

1 Institute of Microbiology, Universita’ Cattolica del Sacro Cuore, Rome, Italy, 2 Institute of Physics, Universita’ Cattolica del Sacro Cuore, Rome, Italy, 3 Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam, Netherlands, 4 Department of Molecular Medicine, University of Padua, Padua, Italy

Abstract

PE_PGRS30 proteins are unique to the Mycobacterium tuberculosis complex and a number of other pathogenic mycobacteria. PE_PGRS30, which is required for the full virulence of M. tuberculosis (Mt), has three main domains, i.e. an N-terminal PE domain, repetitive PGRS domain and the unique C-terminal domain. To investigate the role of these domains, we expressed a GFP-tagged PE_PGRS30 protein and a series of its functional deletion mutants in different mycobacterial species (Mt, Mycobacterium bovis BCG and Mycobacterium smegmatis) and analysed protein localization by confocal microscopy. We show that PE_PGRS30 localizes at the mycobacterial cell poles in Mt and M. bovis BCG but not in M. smegmatis and that the PGRS domain of the protein strongly contributes to protein cellular localization in Mt. Immunofluorescence studies further showed that the unique C-terminal domain of PE_PGRS30 is not available on the surface, except when the PGRS domain is missing. Immunoblot demonstrated that the PGRS domain is required to maintain the protein strongly associated with the non-soluble cellular fraction. These results suggest that the repetitive GGA-GGN repeats of the PGRS domain contain specific sequences that contribute to protein cellular localization and that polar localization might be a key step in the PE_PGRS30-dependent virulence mechanism.

Introduction

Despite many research and sanitary efforts, tuberculosis (TB) remains one of the deadliest human infectious diseases far from being defeated [1]. The poor knowledge of the biology of its causative agent, Mycobacterium tuberculosis (Mt), is a main obstacle toward the development of improved control strategies [2,3]. In this context, a better understanding of surface exposed, secreted and cell wall associated proteins is classically a key step to dissect the mechanisms of pathogenesis of bacteria and to identify antigens that may serve as candidate vaccines [4,5]. The complexity of the mycobacterial cell wall is such that only recently it has been possible to solve its structure [6,7], including a peculiar outer membrane referred to as mycomembrane. Consequently, we still have limited knowledge regarding the proteins and protein apparatuses localizing in the mycomembrane and the molecular determinants mediating host-pathogen interactions [8]. The recent discovery of the ESX secretion systems is shedding light on the mechanism whereby Mt translocate effector proteins that are secreted or exposed on its surface and that can interfere with host components [9–12]. The results of these studies are leading to the development of new vaccines and drug targets [13,14], emphasizing the impact that this line of research may have in the control of TB.

Among the cell wall associated proteins are the PE_PGRSs, a family of around 60 proteins found only in members of the Mt complex, in Mycobacterium ulcerans and Mycobacterium marinum [15–18]. PE_PGRSs are characterized by a highly conserved PE domain, a central polymorphic PGRS domain and a unique C-terminal domain that may vary in size from few to up to 300 amino acids [17]. Studies carried out with PE_PGRS33 showed that the PE domain is required for the correct protein localization in the mycobacterial cell wall [19–21], although only the PGRS domain appears to be properly exposed for interaction with host components [22]. Indeed, PE_PGRS33 shows immunomodulatory properties thanks to its ability to interact with TLR2, which may trigger macrophage cell death [16,23–26]. Among the few PE_PGRSs for which experimental evidences are available, PE_PGRS30 is required for the full virulence of Mt [27]. PE_PGRS30, encoded by the gene Rv1651c in Mt H37Rv, is a protein of 1011 amino acids composed by a PE domain (90 aa), followed by a domain of 39 amino acids containing the highly

Citation: De Maio F, Maulucci G, Minerva M, Anoosheh S, Palucci I, et al. (2014) Impact of Protein Domains on PE_PGRS30 Polar Localization in Mycobacteria. PLoS ONE 9(11): e112482. doi:10.1371/journal.pone.0112482

Editor: Ann Rawkins, Public Health England, United Kingdom

Received August 4, 2014; Accepted October 6, 2014; Published November 12, 2014

Copyright: © 2014 De Maio et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper and its Supporting Information files.

Funding: This work was funded by the EU (FP7/2007–2013) under grant agreement n’201762 awarded to GD and RM and by MIUR (Ministero dell’Istruzione, Universita e Ricerca of the Italian Governement) (project number PRIN 2008 Y8ZTF) awarded to GD and RM. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: gdelogu@rm.unicatt.it
* These authors contributed equally to this work.
conserved GRPLI motif (TM, trans-membrane domain) that is probably involved in the anchorage of the protein to the mycobacterial cell wall [17,27,28]. The central region of the protein is formed by the PGRS domain (566 aa), which is followed by a large unique C-terminal domain (316 aa). While we await a functional characterization of the different protein domains, it was with surprise that the large unique C-terminal domain was found dispensable for the PE_PGRS30-dependent virulence phenotype [27].

The role and precise localization of PE_PGRS proteins is still elusive as well as the role of their different domains in this process. Objective of this study is the characterization of the domains involved in the cellular localization of PE_PGRS30.

Materials and Methods

Construction of plasmids expressing PE_PGRS30 and its chimeras fused with green fluorescent protein (GFP)

The PE_PGRS30 full length gene and selected fragments of its open reading frame were amplified from the *Mtb* H37Rv genomic DNA [15] using primers indicated in table S1 and cloned using standard procedures. Briefly, the forward primer was designed to anneal to the upstream region of the Rx1651c to amplify its putative promoter sequence and contained the *Hind*III restriction site adaptor sequence. Reverse primers were designed to anneal to different positions of the Rx1651c coding sequence and contained the *Xba*I adaptor sequence. PCR products were amplified using Vent polymerase (New England Biolab, Beverly, MA) and cloned in pCR blunt vector (Life technologies). The GFP gene was amplified from the pJWpGFP vector [29] using primers containing the *Nhe*I and *Bam*HI restriction sites at 5′ and 3′, respectively. The PE_PGRS30-derived fragments were inserted in the pMV206 medium copy episomal plasmid [30] in frame upstream of the GFP coding sequence. The gene cassettes, containing the Rh660 promoter downstream of the pMV61 promoter sequence and upstream in frame with the sequence coding the haemagglutinin (HA) epitope.

Bacterial strains

The constructed recombinant plasmids were used to transform *Mtb* H37Rv, *Mycobacterium bovis* BCG Pasteur and *Mycobacterium smegmatis* mc²155 using standard procedures [19]. Transformants were selected on 7H11 agar media supplemented with 10% OADC (Microbiol, Cagliari, Italy) containing 50 μg/ml hygromycin B (Sigma–Aldrich, Saint Louis, MO). Single individual antibiotic-resistant colonies were isolated and subcultured in a 7H9 media supplemented with 10% ADC (Microbiol, Cagliari, Italy) and 0.05% Tween 80 containing hygromycin B (50 μg/ml) and incubated at 37°C. Mycobacteria cultures were stocked at −80°C in 20% glycerol.

Construction of the DNA plasmid vector encoding the PE_PGRS30 C-terminal unique domain (ptPA-30Cter)

A plasmid DNA coding the C-terminal domain of PE_PGRS30 was constructed following standard procedures. Briefly, a 918 bp fragment corresponding to the coding sequence of the C-terminus 306 amino acids domain of PE_PGRS30 was amplified using the primers indicated in table S1. The DNA fragment was amplified from the *Mtb* H37Rv genomic DNA using Vent polymerase and cloned in pCRblunt (Life Technologies). The DNA fragment was then cleaved with *Nhe*I and *Bam*HI and cloned in pW4303 to obtain ptPA30Cter [29]. Endotoxin-free plasmid DNA was prepared and purified with the Qiagen EndoFree Plasmid Maxi Kit (Qiagen, Chatsworth, US) for the ptPA30Cter and ptPA-GFP constructs [29].

Immunization of mice

Specified pathogen-free female BALB/c mice were obtained from Enclosure Labs of the Universita Cattolica del Sacro Cuore, Rome and immunized at the age of eight weeks. The animals were housed in a temperature-controlled environment with 12 h light/dark cycles, and received food and water ad libitum. All animal experiments were authorized by the Ethical Committee of the Universita Cattolica del Sacro Cuore and performed in compliance with the legislative decree of the Italian Government 27 January 1992, n. 116 and the Health Minister memorandum 14 May 2001, n. 6. All manipulations were performed under isoflurane anesthesia, and all efforts were made to minimize suffering. Three Balb/c mice per group (ptPA-GFP and ptPA30Cter, total six mice) were immunized by three intramuscular injection of 100 μg of plasmid DNA and bled 4–10 weeks following the third immunization by the tail vein to collect sera, as previously indicated [31].

Immunoblotting

The *Mtb* recombinant strains were cultured in 7H9 media containing Tween80 (without ADC) until mid-log phase and cells harvested by centrifugation [32]. To obtain whole cell lysates, cell pellets were washed with PBS and directly re-suspended in Laemmli buffer and boiled for 10 minutes. To obtain the cytosolic fraction, cell pellets were resuspended in lysis buffer (10 mM Tris-HCl, 5 mM EDTA, protease inhibitors cocktail, pH 9.5) containing 0.1 mM Silica/Zirconia beads (Biospec products) and subjected to three cycles of homogenization with the Mini-Beadbeater (Biospec products). After centrifugation to remove the insoluble fraction supernatants were filtered through 0.22 μm filters (Cellulose acetate membrane sterile syringe filter, VWR International). Proteins samples were separated by SDS-PAGE and transferred to nitrocellulose membranes by western blot. Membranes were probed with polyclonal sera (1:200) obtained from mice immunized with ptPA30Cter or ptPA-GFP and then antimouse IgG-Peroxidase (Sigma–Aldrich, Saint Louis, MO) was used as a secondary antibody. Immunoblot developed using Supersignal West Dura Extended Duration Substrate (Thermo scientific). Membranes were probed with polyclonal sera (1:200) obtained from mice immunized with ptPA30Cter or monoclonal anti-HA epitope antibody (Covance).

Immunofluorescence

Recombinant *Mtb* strains, expressing PE_PGRS30 and its chimera ptPE_Ct tagged with HA epitope, were plated in chamber slides as indicated above and then fixed with 4% paraformaldehyde and washed with PBS. After blocking with BSA 0.3%, plates were incubated with anti-HA epitope (1:200) (Covance). After washing with PBS, slides were probed with the secondary antibody Alexa Fluor 546 donkey anti-mouse (Life technologies) and then Prolong gold anti-fade reagent (Life technologies) was added before closing the slides. Chamber slides were observed with a confocal microscope.

Cells cultures and mycobacteria infection

J774 cells (ATCC) were grown in RPMI-1640 medium (Euroclone Milan, Italy) supplemented with 10% fetal calf serum (FGS), glutamine (2 mM), and sodium pyruvate (1 mM) (Euroclone Milan, Italy) and kept in a humidified atmosphere.
containing 5% CO2 at 37°C [27]. Cells were plated in chamber slides (1,2 \times 10^6 cell/ml) in media without antibiotics and then infected with the recombinant \textit{Mtb} strains expressing the GFP-tagged proteins at a multiplicity of infection (MOI) of 5:1. After 1 hour of incubation, cells were washed with warm PBS and after adding fresh media (RPMI 2% FCS without antibiotics) plates were incubated at 37°C (5% CO2). At different time points, cells were washed with PBS, fixed with 4% paraformaldehyde and chamber slides closed and observed at the confocal microscope as indicated above.

Confocal microscopy and image analysis

The recombinant mycobacterial strains (\textit{M. tuberculosis} H37Rv, \textit{M. bovis} BCG and \textit{M. smegmatis} mc²) expressing PE_PGRS30 and its chimeras fused with GFP, were grown in 7H9/ADC/Tween80 and at mid-log phase these strains were plated on chamber slides pre-treated with polylisine (Sigma–Aldrich, Saint Louis, MO). Subsequently chamber slides were incubated for 24 hours at 37°C, then fixed with 4% paraformaldehyde and chamber slides closed and observed at the confocal microscope.

Images were collected by using an inverted confocal microscope (DMIRE2, Leica Microsystems, Wetzlar, Germany) equipped with a 40 × oil immersion objective (NA 1.25). For GFP excitation a He/Ne laser at 476 nm was used. Internal photon multiplier tubes collected 8-bit unsigned images at 400 Hz scan speed in an emission range comprised between 500 nm and 550 nm. Imaging was performed at room temperature. Image processing was performed with ImageJ software; image background values (defined as intensities below 7% of the maximum intensity) were set to zero and colored in black [33]. Intensity profiles were measured on bacteria entire length with 'line profile' tool [34]. To obtain a representative index of protein polar localization, a ratio R was calculated as follows: R = L_{pole}/L_{cyto}, where L_{pole} is the GFP emission intensity at bacterium pole, considered as the value in correspondence of the border of the bacterium and L_{cyto} is the GFP emission intensity in the middle part of the bacterium (measured at the 50% of the bacterium length). At least 20 line profiles were analyzed for each construct. R values are reported for each line profile and their mean ± standard deviation (SD) were determined and utilized for two-tailed Student’s t-test analysis (GraphPad).

Localization of the anti-mouse AlexaFluor-546-tagged antibodies (Life technologies) outside the mycobacterial cell was assessed by acquiring images with a 63 × oil immersion objective (NA 1.4) using an excitation wavelength of 543 nm (Ar/ArKr laser) and with photomultiplier emission range comprised between 560 and 700 nm. Image background was corrected as defined above and fluorophore localization was evaluated with ImageJ software using overlap between red channel and transmission images.

Results

Expression of PE_PGRS30-derived GFP chimeras in mycobacterial strains

To determine PE_PGRS30 localization in the mycobacterial cell and the impact of the different protein domains on this process, the PE_PGRS30 native gene, and its functional deletion mutants [27], were fused to the GFP coding sequence in the medium copy number plasmid pMV206 (figure 1) [30]. These plasmids were electroporated in \textit{Mtb} H37Rv, \textit{M. bovis} BCG and

![Figure 1. Scheme showing the constructs expressing PE_PGRS30 used in this study. Schematic representation of native full length PE_PGRS30 gene with the indication of the different protein domains (A). List of constructs generated in pMV206 and expressing the PE_PGRS30 functional chimeras, tagged with green fluorescent protein (B). The constructs were transformed in \textit{Mtb} H37Rv, \textit{M. smegmatis} and \textit{M. bovis} BCG. doi:10.1371/journal.pone.0112482.g001](image-url)
M. smegmatis mc²155 to obtain strains expressing PE_PGRS30-derived GFP-tagged proteins. Expression of these chimeras was under the control of the PE_PGRS30 (Rv1651c) putative promoter [27]. Correct protein expression was demonstrated by immunoblot using an anti-GFP antibody on whole cell lysates of recombinant Mtb, M. smegmatis and BCG strains (Figure S1).

PE_PGRS30 localize at cellular poles in Mtb and in M. bovis BCG but not in M. smegmatis

The recombinant Mtb strains expressing PE_PGRS30 and its chimeras fused with GFP were grown until mid-log phase and plated in chamber slides and then observed at fluorescence confocal microscope. As shown in figure 2A, polarization of the GFP signal was observed for the strain expressing PE_PGRS30GFP and a similar pattern was observed for Mtb-30PE_PGRS3ACTGFP and, to a lesser extent, for Mtb-30PE_CTERGFP. Conversely, a fluorescence diffused throughout the mycobacterial cell was observed for the Mtb-30PE_CTGFP. Analysis of the fluorescence pattern was performed using line profile software (ImageJ software), in order to evaluate the polar localization of the protein spatial distribution. As shown in the line profile (figure 2B), comparison of the fluorescence pattern indicated a less pronounced polarization in the Mtb-30PE_GFP strain compared with the full length PE_PGRS30 chimera and the other two chimeras. R values (mean ± SD) are reported in figure 2C for each sample and in table S2, with higher R values indicating more pronounced polar localization of the GFP-tagged protein. A significant difference is observed only for Mtb-30PE_CTGFP and Mtb-30PE_CTERGFP.

As shown in figure S2, the BCG recombinant strains expressing PE_PGRS30 and its chimeras fused with GFP were analyzed as for Mtb and the results obtained indicate a similar pattern of protein localization to that observed in Mtb, though a less pronounced polar localization was observed for the 30PE_CTGFP chimera. Figure 3A shows the results obtained with the M. smegmatis recombinant strains expressing the chimeras under study. Interestingly, expression and localization profiles in this species were radically different; expression of the full length protein (PE_PGRS30GFP), of 30PE_CTGFP and 30PE_CTGFP resulted in a diffused fluorescence with little or no polarization (figure 3B).

Taken together these results indicate that expression of the PE_PGRS30 chimeras in Mtb and BCG follows a similar pattern, which is different to what observed in M. smegmatis, and that the PE domain does not contain the information sufficient to warrant polar localization of the full PE_PGRS30 protein.

The PGRS domain contributes to PE_PGRS30 cellular localization in Mtb

Compared with most PE_PGRS proteins, PE_PGRS30 contains, downstream of the PGRS domain, a large unique C-terminal domain (306 aa) of unknown function, and whose role in mediating protein localization has not been investigated. A plasmid DNA expressing only the PE_PGRS30 C-terminal domain (figure S3A) was used to immobilize mice following standard procedures [29] and the antisera raised was used to probe in immunoblots whole cell lysates of Mtb containing the different PE_PGRS30 constructs (figure 4A). A band of ~90 kDa was detected in the whole lysate of Mtb expressing PE_PGRS30, that was not detected in any other of the Mtb strains tested (figure 4A), indicating that PE_PGRS30 cannot be detected in immunoblots with this polyclonal sera unless the protein is overexpressed as in Mtb-PE_PGRS30, where overexpression is warranted by the presence, upstream of the gene cassette inserted in pMV361, of the hsp60 promoter. Interestingly, in all the Mtb strains a much stronger signal at 52 kDa was detected, probably corresponding to the gene product of Rv3812, which is a PE-unique protein containing a C-terminal domain highly homologous to that of PE_PGRS30 [35,36]. The whole cell lysate of Mtb-30PE_CT, expressing the functional deletion mutant under similar conditions as the full length protein (pMV361), showed a band of ~50 kDa, theoretically corresponding to the expected size of the 30PE_CT chimera, and with a signal intensity similar to that observed for the Rv3812 gene product (figure S3B). Immunoblot analysis carried out on the soluble fraction of the Mtb lysates (figure 4B), showed the presence of the PE_CT chimera with the anti-HA and anti-Ct sera, though the full length protein and the other chimeras could not be detected. Again, the anti-Ct sera identified a band at ~50 kDa as in figure 4A. These results suggest that the full length protein remains mostly associated with cellular debris compared with the 30PE_CT chimera.

The C-terminal domain of PE_PGRS30 is not exposed on the mycobacterial surface

To assess whether the unique C-terminal domain was available on the mycobacterial surface, the recombinant Mtb expressing PE_PGRS30 and Mtb expressing PE_CT fused with the HA epitope were assayed in immunofluorescence studies using the anti-HA antibody. As shown in figure 5A, analysis at the fluorescence confocal microscope indicated that no significant signal was detected on the surface of Mtb expressing full length PE_PGRS30 using an anti-HA primary antibody. Conversely, Mtb expressing 30PE_CTHA chimeras showed a fluorescence along the outside mycobacterial cell wall (figure 5B). These results suggest that the C-terminal domain of PE_PGRS30 is not available on the mycobacterial surface, unless the PGRS domain is lacking as in Mtb-30PE_CTHA, further establishing the key role of the PGRS domain for the correct localization of PE_PGRS30.

PE_PGRS30 and PE_PGRS33 have different localization in Mtb

Previous studies demonstrated that the PE domain of PE_PGRS33 contains the information sufficient to drive localization of the protein to the mycobacterial cell wall [19–21] and that it is possible to use this domain to deliver protein or protein domains to the mycobacterial surface [37]. To investigate whether the pattern of protein polarization observed for PE_PGRS30 was similar to that observed for another well studied PE_PGRS protein (PE_PGRS33), we generated a plasmid expressing the PE_PGRS33GFP chimera under the control of its physiological promoter [Rv1818c] (figure 6A, B). This construct is different from that used in previous studies where PE_PGRS33GFP was overexpressed under the control of the hsp60 promoter [19]. The Mtb strain transformed with this plasmid was analyzed by confocal microscopy and protein polarization measured with the line profile software (figure 6C). Surprisingly, differently from what observed with Mtb-PE_PGRS30GFP, no polarization was observed for the Mtb-PE_PGRS33GFP, where fluorescence was found diffused throughout the cell. To assess whether the differential polarization was due to the PE domain, an Mtb strain expressing the first 140 amino acids of PE_PGRS33 fused to GFP, under the control of the Rv1818c promoter, was generated and analyzed at confocal fluorescence microscopy (figure 6D). The 30PE_GFP showed a strong polarization (figure 6B), that was not observed for 30PE_GFP (figure 1A), clearly indicating that under physiological conditions the PGRS domain of PE_PGRS33 contributes to protein localization on the mycobacterial cell wall.

PLOS ONE | www.plosone.org 4 November 2014 | Volume 9 | Issue 11 | e112482
The different degree of polarization observed for \(30\text{PEGFP}\) and \(33\text{PEGFP}\) suggests that amino acids differences in the PE domain may also impact protein localization (figure S4).

PE_PGRS30 and **PE_PGRS33** have a different polar localization during infection

Protein localization in mycobacteria may be affected by expression level or by interaction with other protein partners or cellular components, which in turn depend on the environment [38]. To assess protein localization in conditions mimicking the intracellular environment typically encountered by bacteria, \(Mtb\) expressing **PE_PGRS30\text{GFP}** and **PE_PGRS33\text{GFP}** were used to infect the murine macrophages cell line J774. An \(Mtb\) strain expressing GFP only was used as a control. Infected cells were fixed at different time points (1 hour and 6 days post-infection, and day 1 post-reinfection) and then observed at the confocal microscope as previously described. The first two time points mimic the early (1 hour) and the late (6 days) phase of infection, respectively. As expected, infection with the \(Mtb\text{GFP}\) control strain resulted in bacteria showing diffused and homogeneous fluorescence throughout the bacilli, and no changes in fluorescence diffusion were observed between 1 hour and 6 days post-infection (figure 7). A clear polarization was observed in \(Mtb\)-**PE_PGRS30\text{GFP}** infecting macrophages at the early time point, and the polar localization was found more pronounced at 6 days post-infection. Conversely, diffused fluorescence was observed at 1 hour and 6 days post-infection for the \(Mtb\)-**PE_PGRS33\text{GFP}** strain (figure 7). Since bacteria used to infect cells were obtained from glycerol stocks prepared from cultures grown in axenic media, it cannot be excluded that protein localization observed at 1 hour post-infection may represent the \(Mtb\) status in axenic media rather than a physiological situations. Hence, we collected the supernatants of the macrophage-infected culture at 6 days post-infection, that contain many bacteria released by dying macrophages, and used it to infect fresh macrophages. One day after infection, macrophages were fixed and analyzed at the confocal microscope. Polarization of **PE_PGRS30\text{GFP}** was found even more pronounced under this condition, while **Mtb\-**PE_PGRS33\text{GFP}** showed a diffused and homogenous fluorescence throughout the cell.

Discussion

Since their identification in the \(Mtb\) genome, **PE_PGRS** proteins have been implicated in the mechanism of pathogenesis...

Figure 2. Polar localization of **PE_PGRS30\text{GFP} spatial distribution in **Mtb**.**

A) Confocal images of **Mtb** H37Rv expressing **PE_PGRS30\text{GFP}** and its functional GFP-tagged chimeras obtained with a 63x objective. In the inbox, a 100x image obtained overlapping green channel and transmission image is shown. B) Sample line profile obtained quantifying the fluorescence along mycobacterial cell. C) Ratio between the GFP emission intensity at bacterium pole (considered as the value 200 nm far from the bacterium border) and GFP emission intensity in the cytoplasm (measured at the 50% of the bacterium length). Twenty \(R\) values were analyzed for each **Mtb** strain under study. Two-tailed Student’s \(t\)-test was used to analyze \(R\) ratio (* \(p\) < 0.05, ** \(p\) < 0.01).

PLOS ONE | www.plosone.org 5 November 2014 | Volume 9 | Issue 11 | e112482
Figure 3. Polar localization of PE_PGRS30^{GFP} spatial distribution in *M. smegmatis*. A) Confocal images of *M. smegmatis* expressing PE_PGRS30^{GFP} and its functional GFP-tagged chimeras obtained with a 63× objective. In the inbox, a 100× image obtained overlapping green channel and transmission image is shown. B) Sample line profile obtained quantifying the fluorescence along mycobacterial cell. C) Ratio between the GFP emission intensity at bacterium pole (considered as the value 200 nm far from the bacterium border) and GFP emission intensity in the cytoplasm (measured at the 50% of the bacterium length). Twenty R values were analyzed for each *M. smegmatis* strain under study. Two-tailed Student's *t*-test was used to analyze R ratio (*p < 0.05, **p < 0.01).

doi:10.1371/journal.pone.0112482.g003

Figure 4. Immunoblot showing expression of PE_PGRS30 by *Mtb*. A) Immunoblot analysis on whole cell lysates of *Mtb* expressing PE_PGRS30 and its HA-tagged chimeras with anti-C-terminal domain primary antibody. B) Immunoblot analysis on cytoplasmatic fraction of *Mtb* expressing PE_PGRS30 and its HA-tagged chimeras probed with anti-HA antibody, anti-C-terminal domain and anti-MPT64 sera; 1: *Mtb*-PE_PGRS30^{HA}; 2: *Mtb*-30PE_CT^{HA}; Arrows indicate the band corresponding to PE_PGRS30^{HA} and PE_CT^{HA} and PE_PGRS62.

doi:10.1371/journal.pone.0112482.g004
of TB and included in an hypothetical panel of surface mycobacterial antigens involved in immune evasion strategies [15–17]. In this study, using a panel of GFP-tagged proteins, we investigate the localization of PE_PGRS30 in three mycobacterial species (Mt, M. bovis BCG and M. smegmatis) and analyzed the impact of the different protein domains on protein polarization on the bacterial cells. We show that both the PGRS and C-terminal unique domain of PE_PGRS30 contribute to protein localization and that the C-terminal domain is not available on the mycobacterial surface. Moreover, using GFP-protein chimeras we demonstrate that PE_PGRS30 localize at the bacterial poles during infection in macrophages, while PE_PGRS33 remains homogeneously distributed on the mycobacterial surface. These results provide further insights on PE_PGRS protein localization and suggest the functional diversity between PE_PGRS proteins.

Recent data obtained using an Mt mutant strain demonstrated that PE_PGRS30 is required for the full virulence of Mt and for intracellular survival of the bacilli in macrophages [27]. While the exact mechanism whereby PE_PGRS30 exerts its activity remains to be elucidated, some results obtained in M. marinum suggest that PE_PGRS proteins may be secreted as effector molecules through the ESX5 apparatus, a type seven secretion system (T7SS) [9,39]. These results are in line with the discovery that in MTB complex, M. marinum and M. ulcerans, PE_PGRS (and PPE_MPTR) proteins emerged and coevolved in parallel with the ESX5 secretion system [40,41], suggesting a functional link between the most recent T7SS (ESX5) and these two protein subfamilies [10]. Indeed, ESX-5 was elegantly shown to be required for the export of several immunogenic PE and PPE proteins and for the full virulence of Mt [42,43]. In this context, PE_PGRSs would be a substrate for ESX5 which mediates protein secretion or translocation to the surface, as it has been shown in M. marinum [9,44]. However, ESX5-dependent PE_PGRS secretion in Mt is still debated, with some experimental data supporting the ESX5-dependent secretion of PE_PGRSs [45] and other suggesting that inactivation of ESX5 in Mt has no obvious effect on exposure of PE_PGRSs in the mycobacterial surface [13]. The finding that surface localization of PE_PGRS proteins could be achieved in M. smegmatis which lacks ESX5 [20,46], further questions the need of ESX5 for proper PE_PGRS cellular localization.

In order to investigate PE_PGRS30 localization in different mycobacterial species, we expressed in M. smegmatis, M. bovis BCG and Mt the PE_PGRS30GFP protein under the control of its own putative promoter [27]. Surprisingly, PE_PGRS30GFP polarized at the bacterial poles when expressed in Mt and M. bovis BCG but not in M. smegmatis, contrary to what previously observed when PE_PGRS30 was overexpressed under the control of the hsp60 promoter in M. smegmatis [46,47]. These results highlight the impact that protein expression has on polarization and most importantly, that segregation of PE_PGRS30 at the

Figure 5. Immunofluorescence using anti-HA antibodies. Mt-PE_PGRS30HA (A) and Mt-30PE_CTHA (B) were subjected to immunofluorescence using anti-HA antibodies. Confocal images were acquired with a 63× oil immersion objective and localization was evaluated with ImageJ software using overlap between red channel (left panel) and transmission images. doi:10.1371/journal.pone.0112482.g005
bacterial poles occurs in members of MTB complex, which naturally express PE_PGRS, but not in M. smegmatis, which does not express any PE_PGRS, and as such may miss some of the protein partners [28,48] or cellular components involved in MTB complex in PE_PGRS cellular localization [9]. It remains to be seen whether polarization of PE_PGRS30 is dependent upon interaction with ESX-5 components and expression of the chimeras used in this study in Mtb ΔESX5 mutants [13,49] will shed light on the molecular mechanism of this process. The fact that a similar pattern of protein localization for PE_PGRS30 and its functional deletion chimeras was observed in Mtb and BCG [45,50] does not impact PE_PGRS30 localization. PE_PGRS30 polarization was observed also for the 30PE_PGRS30ACTGFP, indicating that the unique 306 amino acids C-terminal domain is not necessary for proper localization of the protein on the mycobacterial cell wall. These results are in line with our previous finding that the C-terminal unique domain is dispensable for the PE_PGRS30-dependent virulence [27] and imply that the PGRS domain is properly exposed or available to deploy its function in Mtb regardless of the C-terminal domain. Conversely, deletion of the PGRS central domain, as in the 30PE_CtGFP and 30PE_CtGFP chimeras, results in a partial loss of the polar phenotype, suggesting that both the PE and PGRS domains are important for proper PE_PGRS30 localization. Since the first 140 amino acids of the protein (PE domain) are likely responsible for protein translocation [19–21], but not sufficient to mediate polar localization, it implies that the PGRS region downstream of the GRPLI domain plays a key role in protein polarization.

The importance of the PGRS region and of the GRPLI domain is further highlighted by the analysis of the Mtb cell lysates expressing the PE_PGRS30HA and its functional HA-tagged chimeras in immunoblot using antiserum directed against the C-terminal domain. A clear band of 52 kDa was detected in all Mtb lysates, corresponding probably to the gene product of Rv3812, which was annotated as PE_PGRS62 [15] although it lacks both the typical PGRS domain and the GRPLI anchoring domain, highly conserved in all PE_PGRS proteins [18,35,51]. While the signal of the 52 kDa band was very similar in intensity to that corresponding to 30PE_CtHA, a much lower signal was detected at ≈88 kDa, which corresponds to the full length PE_PGRS30. Since the level of fluorescence in Mtb was found similar between PE_PGRS30GFP and 30PE_CtGFP (figure 2), indicating similar level of protein expression, it is possible that PE_PGRS30 remains associated with the non-soluble cellular debris, suggesting a tight anchoring to the mycobacterial cell wall. Conversely, the

Figure 6. Differential polar localization between PE_PGRS30 and PE_PGRS33 spatial distribution in Mtb. A) Schematic representation of the PE_PGRS33-derived chimeras expressed in Mtb H37Rv. B) Confocal images of Mtb H37Rv expressing PE_PGRS33GFP and 33PE_CtGFP using a 63× objective. In the inbox, a 100× image obtained overlapping green channel and transmission image is shown. Sample line profile and ratio between the GFP emission intensity at the bacterium pole and the GFP emission intensity in the cytoplasm between PE_PGRS30GFP and PE_PGRS33GFP (C) and between 30PE_CtGFP and 33PE_CtGFP (D). Twenty R values were analyzed for each Mtb strain under study. Two-tailed Student’s t-test was used to analyze R ratio (*, p<0.05, **, p<0.01).

doi:10.1371/journal.pone.0112482.g006

Figure 7. Polar localization of PE_PGRS30 during Mtb macrophage infection. Macrophages (J774) were infected with the MtbGFP, MtbPEGRS30GFP and Mtb-PE_PGRS33GFP and cells washed and fixed at 1 h and 6 days post-infection. Supernatants from infected macrophages at 6 days post-infection were harvested and used to infect fresh J774 macrophages, that 1 day later were washed and harvested. Slides containing infected macrophages harvested at the different time-points were analyzed at the confocal microscopy and images were obtained using a 63× objective.

doi:10.1371/journal.pone.0112482.g007
30PE_CT HA, similarly to the Rv3812 gene product, appears to be more soluble, further highlighting the importance of PGRS for proper cellular localization.

Indeed, immunofluorescence studies showed that in Mtb the 30PE_CT HA chimera is exposed on the mycobacterial surface while the full length protein PE_PGRS30 HA is not. Hence, while the results obtained with the 30PE_CT HA support previous findings showing that the PE domain of PE_PGRS33 contains the information sufficient to drive an heterologous antigen to the mycobacterial surface [20,37], the results obtained with the full length protein suggest that the unique C-terminal domain of PE_PGRS30 localizes in the periplasm or is tightly embedded in the mycomembrane. The lack of any information on the potential function of the 306 amino acids long C-terminal domain prevents further hypothesis and the 40% identity (ClustalW2 software) with the C-terminal domain of Rv3812 is not high enough to exclude a different function.

Under physiological conditions of expression, PE_PGRS30 GFP and PE_PGRS33 GFP showed a different localization pattern in Mtb, with the former strongly polarizing and the latter homogeneously dispersed throughout the bacterial cell. Surprisingly, 33PE GFP polarized at the cell poles but not 30PE GFP. These results indicate that concentration of PE_PGRS30 at the bacterial poles depends upon the PGRS domain and not on the PE domain. Differences in amino acids sequences (figure S4) between the 30PE and 33PE may help explain the different pattern of polarization observed between 30PE GFP and 33PE GFP, though we should remind that no such proteins, that is PE domain containing the GRPL1 motif but lacking the PGRS domain (corresponding to the first 140 amino acids of PE_PGRSs), are naturally expressed by Mtb and as such these functional deletion chimeras may be missing key protein domains required to reach the natural cellular localization. Genomic analysis of MTB complex and M. marinum indicate that PE_PGRS30 is much more conserved than PE_PGRS33, with orthologous proteins found in M. canetti and M. marinum. Conversely, the gene encoding PE_PGRS33 was found only in the MTB complex genome but not in the smooth tubercle bacilli genome [52] nor in M. marinum genome, despite the large number of PE_PGRS genes present in the latter [18]. This evolutionary context may help explain the different cellular localization observed in this study between the two PE_PGRS proteins.

Concentration at one bacterial pole of proteins and enzymes involved in peptidoglycan synthesis [53] and virulence, such as the ESX1 secretory apparatus [54,55] is known to be important in mycobacteria. Concentration at a pole of virulence associated proteins or protein scaffolds may be a key step to evade from phagosome or ejection from host cells [56]. Indeed, the ESX1 T7SS apparatus was shown to accumulate at the bacterial pole [54,55] and this process may be instrumental to produce holes in the phagosome that warrant cytoplasm access to mycobacteria. Concentration at a pole of virulence associated proteins or protein scaffolds may be a key step to evade from phagosome or ejection from host cells [56].

Supporting Information

Figure S1 Immunoblots showing expression of PE_PGRS30 chimeras tagged with green fluorescent protein (GFP) in Mycobacterium smegmatis (A) and in Mycobacterium tuberculosis (B). Immunoblot analysis of whole cell lysates were probed with anti-GFP primary antibody.

Figure S2 Polar localization of PE_PGRS30 spatial distribution in M. bovis BCG. A) Confocal images of M. bovis BCG expressing PE_PGRS30 GFP and its functional GFP-tagged chimeras obtained with a 63x objective. In the inbox, a 100x image obtained overlapping green channel and transmission image is shown. B) Sample line profile obtained quantifying the fluorescence along mycobacterial cell. C) Ratio between the GFP emission intensity at bacterium pole (considered as the value 200 nm far from the bacterium border) and GFP emission intensity in the cytoplasm (measured at the 50% of the bacterium length). Twenty R values were analyzed for each M. bovis strain under study. Two-tailed Student’s t-test was used to analyze R ratio (⁎ p<0.05, ** p<0.01).

Figure S3 A) Schematic representation showing the DNA construct pPA30Cter used to immunize mice and obtain specific polyclonal serum against the unique C-terminal domain of PE_PGRS30. B) Schematic showing the protein domains of PE_PGRS30 and PE_PGRS62.

Figure S4 Alignment of amino acid sequence of 30PE and 33PE using ClustalW2 software and ESPripte software.

Table S1 Primers used in this work.

Table S2 R indicates the index of the polarization of the protein distribution calculated with the ratio I_pole/I_cyto, where I_pole is the GFP emission intensity at bacterium pole, considered as the value in correspondence of the border of the bacterium, and I_cyto is the GFP emission intensity in the middle part of the bacterium (measured at the 50% of the bacterium length).

Author Contributions

Conceived and designed the experiments: FDM GM RM MDS GD. Performed the experiments: FDM GM MM SA IP RI VP SC M. Sal. Analyzed the data: FDM GM WB RM M. Sanguinetti MDS GD. Contributed reagents/materials/analysis tools: WB RM MDS GD. Wrote the paper: FDM GM WB RM MDS GD.
References

1. World Health Organization (2012) Global Tuberculosis report 2012.

2. Dorhos A, Reece ST, Kaufmann SH (2011) For better or for worse: the immune response against Mycobacterium tuberculosis balances pathology and protection. Immunology 133: 243–251.

3. Ottenhoff TH, Kaufmann SH (2012) Vaccines against tuberculosis: where are we and where do we need to go? PLoS Pathog 8: e1002607.

4. Delogu G, Manganelli R, Brennan MJ (2014) Critical research concepts in tuberculosis vaccine development. Clin Microbiol Infect 20 Suppl 5: 50–65.

5. Morandi M, Sali M, Manganelli R, Delogu G (2013) Exploiting the mycobacterial outer membrane: cryo-electron tomography and vitreous sections reveal the lipid bilayer structure. Proc Natl Acad Sci U S A 110: 3963–3967.

6. Moreno-Almairano MM, Parades-Gonzalez DS, Espitia C, Santiago-Maldonado M, Hernandez-Pando R, et al. (2012) Bioinformatic identification of Mycobacterium tuberculosis proteins likely to target host cell mitochondria: virulence factors? Microb Inform Exp 2: 9. 2012:573-2-9 [pii];

7. Abdallah AM, Verboom T, Weerdenburg EM, Gey van Pittius NC, Mahawa PH, et al. (2009) Identification of functional domain responsible for protein translocation and localization on the ESX-5 system of Mycobacterium tuberculosis. PLoS Pathog 5: e1000507.

8. Stoop EJ, Bitter W, van der Sar AM (2012) Tubercle bacilli rely on a type VII secretion pathway. Proc Natl Acad Sci U S A 109: 11342–11347. 1119453109

9. Bitter W, Houben EN, Bottai D, Brodin P, Brown EJ, et al. (2009) Systematic genetic dissection of mycobacterial type VII secretion. PLoS Pathog 5: e1000577.

10. Stoop EJ, Bitter W, van der Sar AM (2012) Tubercle bacilli rely on a type VII secretion pathway. Proc Natl Acad Sci U S A 109: 11342–11347. 1119453109

11. Delogu G, Sanguinetti M, Pusceddu C, Bua A, Brennan MJ, et al. (2006) PE_PGRS30 Localization in Mycobacteria PE_PGRS30 is required for the full virulence of Mycobacterium tuberculosis. PLoS ONE 6: e22711.

12. Delogu G, Sanguinetti M, Pusceddu C, Bua A, Brennan MJ, et al. (2006) PE_PGRS proteins are differentially expressed by Mycobacterium tuberculosis in host tissue. Microbes Infect 8: 2061–2067.

13. Abdallah AM, Gey van Pittius NC, Champion PA, Cox J, Lurinck J, et al. (2007) Type VII secretion–mycobacteria show the way. Nat Rev Microbiol 5: 795–808.

14. Gey van Pittius NC, Sampson SL, Lee H, Kuij L, van Helden PD, et al. (2006) Evolution and expansion of the Mycobacterium tuberculosis PE and PPE multigene families and their association with the duplication of the ESAT-6 (esx) gene clusters region. BMC Evol Biol 6: 95.

15. Abdulaziz AM, Bottai D, Majlessi L, Friqui W, Simonce R, et al. (2012) Disruption of the ESX-5 system of Mycobacterium tuberculosis causes loss of PE_PGRS30 protein, reduction of cell wall integrity and strong attenuation. Mol Microbiol 86: 472–484.

16. Delogu G, Sanguinetti M, Pusceddu C, Bua A, Brennan MJ, et al. (2006) PE_PGRS30 protein expressed in Mycobacterium smegmatis exhibits polar localization and modulates its growth profile. FEMS Microbiol Lett 322: 194–202.

17. Bottai D, Di L, Majlessi L, Friqui W, Simonce R, et al. (2012) PE_PGRS30 Localization in Mycobacteria PE_PGRS30 Localization in Mycobacteria. J Biol Chem.

18. Liu J, Duan H, Sun G, Wang Z, Wang F, et al. (2009) Examination of the anti-tuberculosis activity generated by different multigene DNA vaccine constructs. Microbes Infect 106: 690–693.

19. Stone E, De CG, V, Fuentes TR, Barlie A, Bensen LA, et al. (1993) New use of BCG for recombinate vaccines. Nature 351: 456–460.

20. Delogu G, Howard A, Collins FM, Morris SL (2000) DNA Vaccination against Tuberculosis: Evaluation of a Uniquinap-conjugated Tuberculosis Protein Enhancer Antimycobacterial Immune Response. Infect Immun 68: 6074–6081.

21. Delogu G, Manganelli R, Brennan MJ, et al. (2011) Conserved PE and PPE protein domains target lipid lysates of pathogenic mycobacteria to the cell surface via ESX-5. J Biol Chem.

22. Mahouci G, Pani G, Labatte V, Mele M, Panieri E, et al. (2009) Investigation of the spatial distribution of glutathione redox-balance in live cells by using Fluorescence Ratio Imaging Microscopy. Biosens Bioelectron 25: 682–687.

23. Malikic G, Mahouci G, Gomioso I, Hovath I, Torok, Z, et al. (2011) Heat stress causes spatially-distinct membrane re-modelling in K562 leukemia cells. PLoS ONE 6: e21162.

24. Hwang Y, Wang Y, Bai Y, Wang ZG, Yang L, et al. (2010) Expression of PE_PGRS62 protein in Mycobacterium smegmatis decrease mRNA expression of proinflammatory cytokines IL-1beta, IL-6 in macrophages. Mol Cell Biochem 340: 223–229.

25. Thi EP, Hong CJ, Sanghera G, Reiner NE (2013) Identification of the Mycobacterium tuberculosis PE_PGRS62 as a novel effector that functions to block phagosome maturation and inhibit INOS expression. Cell Microbiol 15: 795–808.

26. Sali M, Di SG, Casciaro A, Zumbo A, Nico D, et al. (2010) Surface expression of MIP1α as a fusion with the PE domain of PE_PGRS33 enhances Mycobacterium bovis BCG protective activity against Mycobacterium tuberculosis in mice. Infect Immun 78: 5202–5213.

27. Delogu G, Sanguinetti M, Pusceddu C, Bua A, Brennan MJ, et al. (2006) PE_PGRS proteins are differentially expressed by Mycobacterium tuberculosis in host tissue. Microbes Infect 8: 2061–2067.

28. Strong M, Sawaya MR, Wang S, Phillips M, Casadio D, et al. (2006) Toward the structural genomics of complexes: crystal structure of a PE-PPE protein complex from Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 103: 8060–8065.

29. Sali M, Clarizzi S, Pusceddu C, Zumbo A, Peccon G, et al. (2008) Evaluation of the anti-tuberculosis activity generated by different multigene DNA vaccine constructs. Microbes Infect 106: 690–693.

30. Coop CR, de CG, V, Fuentes TR, Barlie A, Bensen LA, et al. (1993) New use of BCG for recombinate vaccines. Nature 351: 456–460.

31. Strong M, Sawaya MR, Wang S, Phillips M, Casadio D, et al. (2006) Toward the structural genomics of complexes: crystal structure of a PE-PPE protein complex from Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 103: 8060–8065.

32. Sali M, Clarizzi S, Pusceddu C, Zumbo A, Peccon G, et al. (2008) Evaluation of the anti-tuberculosis activity generated by different multigene DNA vaccine constructs. Microbes Infect 106: 690–693.

33. Stover CK, de lC, V, Fuerst TR, Burlein JE, Benson LA, et al. (1991) New use of BCG for recombinate vaccines. Nature 351: 456–460.

34. Abdallah AM, Gey van Pittius NC, Champion PA, Cox J, Lurinck J, et al. (2007) Type VII secretion–mycobacteria show the way. Nat Rev Microbiol 5: 795–808.

35. Gey van Pittius NC, Sampson SL, Lee H, Kuij L, van Helden PD, et al. (2006) Evolution and expansion of the Mycobacterium tuberculosis PE and PPE multigene families and their association with the duplication of the ESAT-6 (esx) gene clusters region. BMC Evol Biol 6: 95.

36. Abdallah AM, Gey van Pittius NC, Champion PA, Cox J, Lurinck J, et al. (2007) Type VII secretion–mycobacteria show the way. Nat Rev Microbiol 5: 795–808.

37. Gey van Pittius NC, Sampson SL, Lee H, Kuij L, van Helden PD, et al. (2006) Evolution and expansion of the Mycobacterium tuberculosis PE and PPE multigene families and their association with the duplication of the ESAT-6 (esx) gene clusters region. BMC Evol Biol 6: 95.

38. Delogu G, Sanguinetti M, Pusceddu C, Bua A, Brennan MJ, et al. (2006) PE_PGRS30 protein expressed in Mycobacterium smegmatis exhibits polar localization and modulates its growth profile. FEMS Microbiol Lett 322: 194–199.

39. Delogu G, Sanguinetti M, Pusceddu C, Bua A, Brennan MJ, et al. (2006) PE_PGRS30 protein expressed in Mycobacterium smegmatis exhibits polar localization and modulates its growth profile. FEMS Microbiol Lett 322: 194–199.

40. Sup P, Marceau M, Mangenet S, Roche D, Rouanet C, et al. (2013) Genetic analysis of smooth tubercle bacilli provides insights into ancestry and pathoadaptation of Mycobacterium tuberculosis. Nat Genet 45: 172–179.
53. Hett EC, Chao MC, Rubin EJ (2010) Interaction and modulation of two antagonistic cell wall enzymes of mycobacteria. PLoS Pathog 6: e1001020.
54. Carlsson F, Joshi SA, Rangell L, Brown EJ (2009) Polar localization of virulence-related Esx-1 secretion in mycobacteria. PLoS Pathog 5: e1000285.
55. Wirth SE, Keyser JA, Aldridge BB, Fortune SM, Fernandez-Suarez M, et al. (2012) Polar assembly and scaffolding proteins of the virulence-associated ESX-1 secretory apparatus in mycobacteria. Mol Microbiol 83: 654–664.
56. Hagedorn M, Rohde KH, Russell DG, Soldati T (2009) Infection by tubercular mycobacteria is spread by nonlytic ejection from their amoeba hosts. Science 323: 1729–1733.
57. Simeone R, Bohard A, Lippmann J, Bitter W, Majlesi L, et al. (2012) Phagocytic rupture by Mycobacterium tuberculosis results in toxicity and host cell death. PLoS Pathog 8: e1002507.
58. Copin R, Coscolla M, Seiffert SN, Bothamley G, Sutherland J, et al. (2014) Sequence diversity in the pe_pgrs genes of Mycobacterium tuberculosis is independent of human T cell recognition. MBio 5: e00960–13.