Current status of $\varepsilon_K$ in lattice QCD

Weonjong Lee
Director, Lattice Gauge Theory Research Center, CTP, and FPRD,
Department of Physics and Astronomy,
Seoul National University, Seoul 08826, South Korea
E-mail: wlee@snu.ac.kr

Abstract. We present the current status of $\varepsilon_K$ evaluated directly from the standard model using lattice QCD inputs. The lattice QCD inputs include $\hat{B}_K$, $\xi_0$, $\xi_2$, $|V_{us}|$, $m_c(m_c)$, and $|V_{cb}|$. Recently, FLAG has updated $\hat{B}_K$, exclusive $|V_{cb}|$ has been updated with new lattice data in the $B \to D\ell\bar{\nu}$ decay mode, and RBC-UKQCD has updated $\xi_0$ and $\xi_2$. We find that the standard model evaluation of $\varepsilon_K$ with exclusive $|V_{cb}|$ (lattice QCD inputs) is $3.2\sigma$ lower than the experimental value, while that with inclusive $|V_{cb}|$ (heavy quark expansion) shows no tension.

1. Introduction
Since 2012, we have been monitoring $\varepsilon_K$, the indirect CP violation parameter in neutral kaons using lattice QCD inputs. The parameter $\varepsilon_K$ is, in particular, very attractive to the particle physics community, since it is very precisely measured in experiment, and it provides a direct probe of CP violation in the standard model and in physics models beyond the standard model (BSM). In this paper, we present results of $\varepsilon_K$ evaluated directly from the standard model with lattice QCD inputs and compare them with the experimental value. This paper is an update of our previous paper [1, 2].

2. Input parameters
In the standard model, the indirect CP violation parameter of the neutral kaon system $\varepsilon_K$ can be expressed as follows,

$$\varepsilon_K = \frac{\mathcal{A}(K_L \to \pi\pi(I = 0))}{\mathcal{A}(K_S \to \pi\pi(I = 0))} = e^{i\theta} \sqrt{2} \sin \theta \left( C_\varepsilon X_{SD} \hat{B}_K + \xi_0 \sqrt{2} + \xi_{LD} \right) + O(\omega \varepsilon') + O(\xi_0 \Gamma_2 / \Gamma_1). \tag{1}$$

Here, the short distance contribution proportional to $\hat{B}_K$ occupies about 105% of $\varepsilon_K$, the long distance effect from the absorptive part $\xi_0$ gives about $-5\%$ correction, and the long distance effect from the dispersive part $\xi_{LD}$ gives about $\pm1.6\%$ correction. The details on $C_\varepsilon$, $X_{SD}$, $\xi_0$, and $\xi_{LD}$ are described in Ref. [1]. In order to determine $\varepsilon_K$ directly from the standard model, we need 18 input parameters, and 6 of them can, in principle, be obtained from lattice QCD: $V_{us}$, $V_{cb}$, $\hat{B}_K$, $\xi_0$, $\xi_{LD}$, and $m_c(m_c)$. Here, we address recent progress on determining those input parameters.
2.1. \(|V_{cb}|\)
Recent results for \(|V_{cb}|\) and \(|V_{ub}|\) are presented in Tables 1 and 2. Recently, DeTar has collected the results of \(B \rightarrow D\ell\bar{\nu}\) decay at non-zero recoil from both lattice QCD \([9, 10]\) and experiments of Babar \([11]\) and Belle \([12]\), and has made a combined fit of all the data simultaneously to determine \(|V_{cb}|\) \([4]\). We have obtained the “ex-combined” result in Table 1 by taking a weighted average of the two \(V_{cb}\) results from the \(B \rightarrow D\ell\bar{\nu}\) and \(\bar{B} \rightarrow D\ell\bar{\nu}\) decay channels. Similarly, we have obtained the “ex-combined” result in Table 2 by taking a weighted average of the two \(V_{ub}\) results from \(B \rightarrow \pi\ell\bar{\nu}\) decay. In Fig. 1, we show all the results in various colors. The inclusive results are about 3\(\sigma\) away from those from exclusive \(B\) meson decays respectively as well as from the LHCb results for \(|V_{ub}/V_{cb}|\), which corresponds to the magenta band in Fig. 1.

| Decay mode | \(|V_{cb}|\) | Ref. |
|------------|-----------|------|
| \(B \rightarrow D^*\ell\bar{\nu}\) | 39.04(49)(53)(19) | [3] |
| \(\bar{B} \rightarrow D\ell\bar{\nu}\) | 40.7(10)(2) | [4] |
| ex-combined | 39.62(60) | this paper |
| \(B \rightarrow X_c\ell\bar{\nu}\) | 42.00(64) | [5] |

| Decay mode | \(|V_{ub}|\) | Ref. |
|------------|-----------|------|
| \(B \rightarrow \pi\ell\bar{\nu}\) | 3.72(16) | [6] |
| \(B \rightarrow \pi\ell\bar{\nu}\) | 3.61(32) | [7] |
| ex-combined | 3.70(14) | this paper |
| \(B \rightarrow X_u\ell\bar{\nu}\) | 4.45(16)(22) | [8] |

Figure 1: \(|V_{cb}|\) versus \(|V_{ub}|\). The sky-blue band represents \(|V_{cb}|\) determined from the \(B \rightarrow D^*\ell\bar{\nu}\) decay mode. The yellow-green band represents \(|V_{cb}|\) determined from the \(B \rightarrow D\ell\bar{\nu}\) decay mode. The yellow band represents \(|V_{ub}|\) determined from the \(B \rightarrow \pi\ell\bar{\nu}\) decay mode. The magenta band represents \(|V_{ub}/V_{cb}|\) determined from the LHCb data of the \(\Lambda_b \rightarrow \Lambda_c\ell\bar{\nu}\) and \(\Lambda_b \rightarrow p\ell\bar{\nu}\) decay modes. The orange circle represents the combined results for exclusive \(|V_{cb}|\) and \(|V_{ub}|\) from the \(B\) meson decays within 1.0\(\sigma\). The black cross (\(\times\)) represents the inclusive \(|V_{cb}|\) and \(|V_{ub}|\) from the heavy quark expansion. The details are given in Tables 1 and 2.

2.2. \(\xi_0\) and \(\xi_{LD}\)
There are two independent methods to determine \(\xi_0\) in lattice QCD: the indirect and direct methods. In the indirect method, we determine \(\xi_0\) from the experimental values of \(\text{Re}(\varepsilon'/\varepsilon)\), \(\varepsilon_K\), \(\omega\) and the lattice QCD input \(\xi_2\). They are related to one another as follows,

\[
\xi_0 = \frac{\text{Im} A_0}{\text{Re} A_0}, \quad \xi_2 = \frac{\text{Im} A_2}{\text{Re} A_2}, \quad \text{Re} \left( \frac{\varepsilon'}{\varepsilon} \right) = \frac{\omega}{\sqrt{2}|\varepsilon_K|}(\xi_2 - \xi_0). \tag{2}
\]

\(1\) The plot is based on that by Andreas Kronfeld in Ref. [4].
Recently, RBC-UKQCD reported updated results for $\xi_2$ [13]. The results for $\xi_0$ from the indirect method are given in Table 3. 

Recently, RBC-UKQCD has reported new lattice QCD results for $\text{Im} A_0$ [14]. Combining their results with the experimental value of $\text{Re} A_0$, we can determine $\xi_0$ directly from the lattice input $\text{Im} A_0$. This is the direct method. In Ref. [14], RBC-UKQCD has also reported the $S$-wave $\pi^-\pi^-$ scattering phase shift with isospin $I = 0$: $\delta_0 = 23.8(49)(12)$. This value has $3.0\sigma$ tension with the conventional determination of $\delta_0$ in Refs. [16] (KPY-2011) and [17, 18] (CGL-2001). They used a singly subtracted Roy-like equation (KPY-2011) or a doubly subtracted Roy equation (CGL-2001) to do the interpolation around $\sqrt{s} = m_K$ (kaon mass). The values for $\delta_0$ are summarized in Table 4. In Fig. 2, we show the fitting results of KPY-2011. Their fits to the experimental data work well from the $\pi^-\pi^-$ threshold to $\sqrt{s} = 800\text{ MeV}$, and are highly consistent with CGL-2001 in the interpolating region around $\sqrt{s} = m_K \approx 500\text{ MeV}$.

In Fig. 3, we present the results of RBC-UKQCD together with the fitting results of KPY-2011 and CGL-2001. There is essentially no difference between KPY-2011 and CGL-2001 in the
region near $\sqrt{s} = m_K \approx 500$ MeV. Here, we observe the 3.0$\sigma$ gap between RBC-UKQCD and KPY-2011. In contrast, for $\delta_2$ (S-wave, I=2), there is no difference between RBC-UKQCD and KPY-2011 within statistical uncertainty, as one can see in Fig. 4.

Therefore, we conclude that the results of the indirect method are more reliable than those of the direct method for $\xi_0$, since the direct calculation of Im$A_0$ by RBC-UKQCD might have unresolved issues. Hence, we use the indirect method to determine $\xi_0$ in this paper.

Regarding $\xi_{LD}$, the long distance effect in the dispersive part, the theoretical master formula in the continuum is given in Ref. [1]. A theoretical framework for calculating it on the lattice is well established in Ref. [15]. There has been an ongoing attempt to calculate it on the lattice [19]. However, this attempt [20], at present, is not mature and belongs to the category of exploratory study rather than to that of precision measurement. Hence, we use a rough estimate of $\xi_{LD}$ given in Ref. [19] in this paper. It is summarized in Table 3.

2.3. $\hat{B}_K$

In Table 5, we present results for $\hat{B}_K$ calculated using lattice QCD tools with $N_f = 2 + 1$ flavors. Here, FLAG-2016 represents the global average of the results of BMW-2011 [21], Laiho-2011 [22], RBC-UK-2016 [23], and SWME-2016 [24], which is summarized in Ref. [25]. SWME-2014 represents the $\hat{B}_K$ result reported in Ref. [26]. RBC-UK-2016 represents that reported in Ref. [23].

The results of SWME-2016 are obtained using fitting based on staggered chiral perturbation theory (SChPT) in the infinite volume limit, and those of SWME-2014 are obtained using fitting based on SChPT with finite volume corrections incorporated at the NLO level. Here we use the FLAG-2016 result for $\hat{B}_K$.

### Table 5: $\hat{B}_K$

| Collaboration | Value       | Ref. |
|---------------|-------------|------|
| FLAG-2016     | 0.7625(97)  | [25] |
| SWME-2014     | 0.7379(47)(365) | [26] |
| RBC-UK-2016   | 0.7499(24)(150) | [23] |

### Table 6: Wolfenstein parameters.

|                  | CKMfitter | UTfit  | AOF         |
|------------------|-----------|--------|-------------|
| $\lambda$        | 0.22548(68)/[27] | 0.22497(69)/[28] | 0.2253(8)/[29] |
| $\bar{\rho}$     | 0.145(13)/[27]  | 0.153(13)/[28]  | 0.139(29)/[30] |
| $\bar{\eta}$     | 0.343(12)/[27]  | 0.343(11)/[28]  | 0.337(16)/[30] |

2.4. Other input parameters

For the Wolfenstein parameters $\lambda$, $\bar{\rho}$, and $\bar{\eta}$, both CKMfitter and UTfit updated their results in Refs. [27, 28], but the angle-only-fit has not been updated since 2015. The global unitarity triangle (UT) fits of both CKMfitter and UTfit use $\varepsilon_K$ and $|V_{cb}|$ as input parameters to determine the apex $\bar{\rho}$ and $\bar{\eta}$. Hence, using them to evaluate $\varepsilon_K$ introduces unwanted correlations through $\varepsilon_K$ and $|V_{cb}|$. In contrast, the angle-only-fit (AOF) results are independent of $\varepsilon_K$ and $|V_{cb}|$. Hence, we use the AOF results in this paper.

For the QCD corrections $\eta_{cc}$, $\eta_{ct}$, and $\eta_{tt}$, we use the same values as in Ref. [1], which are given in Table 7. In particular, we use the SWME value of $\eta_{cc}$ reported in Ref. [1] instead of that in Ref. [31]. This issue is well explained in Ref. [1]. One of the reasons is that the size of the NNLO correction is already a conservative estimate for the truncation error of the NNNLO level in perturbation theory. Another reason is that the SWME result is highly consistent with that of Ref. [32].

In Table 8, we summarize other input parameters. They are the same as those in Ref. [1] except for the charm quark mass $m_c(m_c)$. For the charm quark mass, we use the HPQCD result reported in Ref. [35].
3. Current status of $\varepsilon_K$

In Fig. 5, we show the results for $\varepsilon_K$ evaluated directly from the standard model with the lattice QCD inputs described in the previous section. Here, the blue curve represents the theoretical evaluation of $\varepsilon_K$ with the FLAG-2016 $\hat{B}_K$, AOF for the Wolfenstein parameters, and exclusive $|V_{cb}|$ that corresponds to ex-combined in Table 1. The red curve represents the experimental value of $\varepsilon_K$. In Fig. 6, the blue curve represents the same as that in Fig. 5 except for using the inclusive $|V_{cb}|$ in Table 1. Our preliminary results are, in units of $1.0 \times 10^{-3}$,

$$|\varepsilon_K| = 1.69 \pm 0.17$$

for exclusive $V_{cb}$ (lattice QCD) \hfill (3)

$$|\varepsilon_K| = 2.10 \pm 0.21$$

for inclusive $V_{cb}$ (QCD sum rules) \hfill (4)

$$|\varepsilon_K| = 2.228 \pm 0.011$$

(experimental value) \hfill (5)

We find that there is 3.2$\sigma$ tension in the exclusive $V_{cb}$ channel (lattice QCD), and no tension in the inclusive $V_{cb}$ channel (heavy quark expansion; QCD sum rules).

Figure 5: $\varepsilon_K$ with exclusive $V_{cb}$.  

Figure 6: $\varepsilon_K$ with inclusive $V_{cb}$.

Acknowledgments

We thank R. Van de Water for helpful discussion on $V_{cb}$. The research of W. Lee is supported by the Creative Research Initiatives Program (No. 20160004939) of the NRF grant funded...
by the Korean government (MEST). W. Lee would like to acknowledge the support from the KISTI supercomputing center through the strategic support program for the supercomputing application research (No. KSC-2014-G3-003). Part of computations were carried out on the DAVID GPU clusters at Seoul National University.

References

[1] Bailey J A, Jang Y C, Lee W and Park S (SWME) 2015 Phys. Rev. D92 034510 (Preprint 1503.05388)
[2] Bailey J A, Jang Y C, Lee W and Park S 2015 PoS LATTICE2015 348 (Preprint 1511.00969)
[3] Bailey J A, Bazavov A, Bernard C et al. 2014 Phys.Rev. D89 114504 (Preprint 1403.0635)
[4] DeTar C 2015 Proceedings of the 27th International Symposium on Lepton Photon Interactions at High Energies (Preprint 1511.06884)
[5] Gambino P, Healey K J and Turczyk S 2016 (Preprint 1606.06174)
[6] Bailey J A et al. (Fermilab Lattice, MILC) 2015 Phys. Rev. D92 014024 (Preprint 1503.07839)
[7] Flynn J M, Izbuchi T, Kawanai T, Lehner C, Soni A, Van de Water R S and Witzel O 2015 Phys. Rev. D91 074510 (Preprint 1501.05373)
[8] Amhis Y et al. (Heavy Flavor Averaging Group (HFAG)) 2014 (Preprint 1412.7515)
[9] Bailey J A et al. (MILC) 2015 Phys. Rev. D92 034506 (Preprint 1503.07237)
[10] Na H, Bouchard C M, Lepage G P, Monahan C and Shigemitsu J (HPQCD) 2015 Phys. Rev. D92 054510 [Erratum: Phys.Rev.D93,no.11,119906(2016)] (Preprint 1505.03925)
[11] Aubert B et al. (BaBar) 2009 Phys. Rev. D79 012002 (Preprint 0809.0828)
[12] Glattauer R 2015 PoS EPS-HEP2015 554
[13] Blum T et al. 2015 Phys. Rev. D91 074502 (Preprint 1502.00263)
[14] Bai Z et al. (RBC, UKQCD) 2015 Phys. Rev. Lett. 115 212001 (Preprint 1505.07863)
[15] Christ N, Izbuchi T, Sachrajda C, Soni A and Yu J 2013 Phys.Rev. D88 014508 (Preprint 1212.5931)
[16] Garcia-Martín R, Kamiński R, Palaez J R, Ruiz de Elvira J and Yndurain F J 2011 Phys. Rev. D83 074004 (Preprint 1102.2183)
[17] Colangelo G, Gasser J and Leutwyler H 2001 Nucl. Phys. B603 125–179 (Preprint hep-ph/0103088)
[18] https://indico.itp.tum.de/event/48/contribution/5/material/slides/0.pdf
[19] Christ N, Izbuchi T, Sachrajda C T, Soni A and Yu J 2014 PoS LATTICE2013 397 (Preprint 1402.2577)
[20] https://conference.ippp.dur.ac.uk/event/170/session/15/contribution/407/material/slides/0.pdf
[21] Durr S, Fodor Z, Hoelbling C et al. 2011 Phys.Lett. B705 477–481 (Preprint 1106.3230)
[22] Laiho J and Van de Water R S 2011 PoS LATTICE2011 293 (Preprint 1112.4861)
[23] Blum T et al. (RBC, UKQCD) 2016 Phys. Rev. D93 074505 (Preprint 1411.7017)
[24] Choi B J et al. (SWME) 2016 Phys. Rev. D93 014511 (Preprint 1509.00592)
[25] Aoki S et al. 2016 Phys. Rev. D91 054004 (Preprint 1607.00299)
[26] Bae T et al. 2014 Phys.Rev. D89 074504 (Preprint 1402.0048)
[27] Charles J et al. 2015 Phys. Rev. D91 073007 (Preprint 1501.05013)
[28] http://www.utfit.org/UTFit/ResultsSummer2016SM
[29] Olive K et al. 2014 Chin.Phys. C38 090001
[30] http://www.utfit.org/UTFit/ResultsSummer2014PostMoriondSM
[31] Brod J and Gorbahn M 2012 Phys.Rev.Lett. 108 121801 (Preprint 1108.2036)
[32] Buras A J and Girrbach J 2013 Eur.Phys.J. C73 2560 (Preprint 1304.6835)
[33] Buras A J and Guadagnoli D 2008 Phys.Rev. D78 033005 (Preprint 0805.3887)
[34] Brod J and Gorbahn M 2010 Phys.Rev. D82 094026 (Preprint 1007.0684)
[35] Chakraborty B, Davies C T H, Galloway B, Knecht P, Koponen J, Donald G C, Dowdall R J, Lepage G P and McNeile C 2015 Phys. Rev. D91 054508 (Preprint 1408.4169)
[36] Alekhin S, Djouadi A and Moch S 2012 Phys.Lett. B716 214–219 (Preprint 1207.0980)