Supplementary Information for

The emergence and development of behavioral individuality in clonal fish

Authors: Kate L. Laskowski1,2,†,*, David Bierbach2,3,4,†, Jolle W. Jolles5, Carolina Doran2, Max Wolf2,4
Supplementary Figure 1. Overview of the automated recording system, using a local network of Raspberry Pi computers and pirecorder recording software to store timestamped images on an external server.
Supplementary Fig. 2. We found strongly significant among-individual correlations between most of our computed behavioral variables both on the first day of life (A) and over the entire observation period (B).
Supplementary Fig. 3. Plot of individual body sizes over the course of the experiment.

Individuals consistently differed in their absolute body size over time, though these differences did not relate to differences in behavior.
Supplementary Table 1. Number of offspring for which we had complete data through observation 70 that were included in the study from each mother. Brood size refers to the number of offspring born in each brood (not all offspring from a brood were used in the study).

Mother	Experimental offspring	Birth date	Brood size
70.2 (c)	4	Feb 15, 2018	11
80.1 (f)	3	Feb 28, 2018	15
90.2 (a)	1	March 19 2018	12
75.2 (e)	4	March 19 2018	15
69.3 (b)	4	March 20 2018	30
70.3 (d)	4	March 26 2018	15
77.2 (g)	3	March 29 2018	11
80.2 (h)	3	April 4 2018	8
Supplementary Table 2. There was evidence for significant repeatability in the hourly measurements of all computed behavioral variables in our experimental animals in the very first day post birth. Shown are the results for the 26 individuals for which we have complete data until observation 70 (week 10) and all 40 individuals that were initially placed in the tracking tanks. Models were run including the fixed effects of ‘hour’ (1st hour set to zero) and ‘body size’ (mean-centered) and random intercepts and slopes for each individual. Var\text{IND} and Var\text{RES} report the posterior mode estimates for the among- and within-individual variation, respectively; among-individual variation in slopes was small and accounted for less than 0.1% of the variation in all behaviors and so is not reported here. Repeatability is estimated as the proportion of total variation (among-individual variation in intercepts, slopes and residual) that is not explained by the fixed effects (adjusted repeatability) that is due to among-individual variation in intercepts.

Behavioral variable	Var\text{IND} [95% CI]	Var\text{RES} [95% CI]	Repeatability [95% CI]
26 individuals with complete data to observation 70			
Median speed	0.18 [0.10, 0.42]	0.11 [0.10, 0.14]	0.65 [0.48, 0.80]
Speed IQR	85.00 [53.39, 210.61]	49.68 [41.87, 59.68]	0.68 [0.52, 0.81]
Proportion time spent moving	0.03 [0.01, 0.05]	0.01 [0.01, 0.02]	0.71 [0.56, 0.84]
Distance from tank border	7.52 [4.32, 45.48]	2.46 [2.14, 3.07]	0.80 [0.64, 0.87]
All 40 individuals initially placed in tracking tanks			
Median speed	0.24 [0.16, 0.45]	0.11 [0.09, 0.13]	0.71 [0.59, 0.81]
Speed IQR	136.73 [72.09, 205.02]	49.13 [43.03, 57.56]	0.70 [0.60, 0.81]
Proportion time spent moving	0.03 [0.01, 0.04]	0.01 [0.01, 0.01]	0.69 [0.59, 0.81]
Distance from tank border	7.33 [4.51, 12.66]	3.02 [2.57, 3.44]	0.71 [0.61, 0.82]
Supplementary Table 3. In addition to the results for the first day post birth shown above, there was evidence for significant repeatability of hourly median swimming speed on each day in the first week of life. Models were run including the fixed effects of ‘hour’ (1st hour set to zero) and ‘body size’ (mean-centered) and random intercepts and slopes for individual; day 6 also included random intercepts and slopes for mother. Reported are the posterior mode estimates for all effects; among-mother variation in intercepts and slopes was only estimated for day 6 (see Extended Data Table 4).

Effect	estimate (day 1)	estimate (day 2)	estimate (day 3)	estimate (day 4)	estimate (day 5)	estimate (day 6)	estimate (day 7)
Intercept	0.87	0.60	0.88	0.84	0.58	0.42	0.73
Hour	0.06	0.03	-0.007	0.03	0.007	0.06	-0.01
Body size	[0.03, 0.09]	[0.009, 0.07]	[0.03, 0.04]	[0.001, 0.06]	[0.02, 0.04]	[0.04, 0.14]	[0.05, 0.03]
R²_marg¹	0.13	0.04	0.001	0.02	0.002	0.02	0.003
ID intercepts	[0.02, 0.30]	[0.002, 0.25]	[0.001, 0.12]	[0.001, 0.12]	[0.001, 0.13]	[0.001, 0.29]	[0.001, 0.09]
ID slopes	[0.10, 0.42]	[0.18, 0.76]	[0.23, 0.98]	[0.12, 0.67]	[0.13, 0.72]	[0.01, 0.18]	[0.30, 1.17]
Mother intercepts	--	--	--	--	--	--	0.28
Mother slopes	--	--	--	--	--	[0.004, 1.45]	0.008
Residual	[0.10, 0.14]	[0.14, 0.20]	[0.18, 0.26]	[0.25, 0.36]	[0.21, 0.31]	[0.21, 0.31]	[0.16, 0.24]
Rpt (ID)²	0.65	0.69	0.70	0.57	0.57	0.03	0.77
R²_cond³	[0.48, 0.80]	[0.56, 0.84]	[0.56, 0.84]	[0.33, 0.72]	[0.38, 0.75]	[0.001, 0.24]	[0.63, 0.87]
	[0.57, 0.83]	[0.60, 0.86]	[0.58, 0.84]	[0.35, 0.74]	[0.42, 0.78]	[0.009, 0.52]	[0.65, 0.88]

¹R²_marg is the marginal R² and is the proportion of total behavioral variation that can be explained by the fixed effects in the model (hour and body size).

²Rpt (ID) is the repeatability of individual identity and is estimated as the proportion of total behavioral variation (that is not explained by the fixed effects) that can be explained by among individual variation in intercepts.

³R²_cond is the conditional R² and is the proportion of total behavioral variation that can be explained by the fixed and random effects combined.
Supplementary Table 4. When considering behavior across the entire first week of life (7 days), there was also evidence that individuals consistently differed in their behavior though this variation was not explained by variation in body size or growth rate in the first week of life. Model includes the fixed effects of ‘observation’ (centered on first day post birth), body size (mean-centered), growth rate in the first week of life, and the interaction between observation and growth rate and the random effects of individual intercepts and slopes.

Effect	Estimate
Intercept	1.26
Observation	-0.03 [-0.17, 0.07]
Body size	-1.36 [-4.33, 2.41]
Growth rate	0.68 [-1.52, 2.63]
Obs x growth rate	-0.31 [-1.01, 0.34]
\(R^2_{\text{marg}} \)	0.07 [0.03, 0.19]
Intercepts ID	0.39 [0.22, 0.78]
Slopes ID	0.01 [0.009, 0.03]
Residual	0.34 [0.32, 0.36]
Rpt (ID)\(^2\)	0.57 [0.41, 0.70]
\(R^2_{\text{cond}} \)	0.60 [0.47, 0.72]

\(^1\) \(R^2_{\text{marg}} \) is the marginal \(R^2 \) and is the proportion of total behavioral variation that can be explained by the fixed effects in the model (hour and body size).

\(^2\) Rpt (ID) is the repeatability of individual identity and is estimated as the proportion of total behavioral variation (that is not explained by the fixed effects) that can be explained by among individual variation in intercepts.

\(^3\) \(R^2_{\text{cond}} \) is the conditional \(R^2 \) and is the proportion of total behavioral variation that can be explained by the fixed and random effects combined.
Supplementary Table 5. We tested whether the finding that individuals show significant repeatable variation on the first day post birth was robust. To do this, we explored the random effects structure on each day of the first week of life for hourly median swimming speed. All models were run on the 26 individuals for which we have complete data until observation 70. Each model included the fixed effects of ‘hour’ (1st hour set to zero) and ‘body size’ (mean-centered). For all days, except day 6, the most supported model included random intercepts and slopes for individual ID showing that the finding of repeatable individual behavioral variation so early in life is robust. With the exception of day 6 for which behavioral variation can be best explained by a model including both individual and mother identity – the best statistical model explaining the observed behavioral variation includes individual identity but not mother identity. Reductions in DIC of at least 5 are considered support for inclusion of the effect in the model.

Model	Random effects	df	DIC (day 2)	DIC (day 3)	DIC (day 4)	DIC (day 5)	DIC (day 6)	DIC (day 7)
0	Null	4	671.37	678.26	678.08	646.02	650.82	658.50
1	Intercepts ID	5	363.26	468.19	492.84	463.41	503.01	445.77
2	Intercepts mother	5	549.03	559.20	599.89	502.52	510.88	541.47
3	Intercepts ID	6	363.21	467.79	492.80	461.97	499.61	445.34
	Intercepts mother	6	327.83	420.07	483.31	443.98	448.99	388.71
4	Intercepts ID	6	551.02	557.04	600.52	492.35	458.40	521.68
	Slopes mother	6	328.21	419.89	482.09	443.52	448.26	389.35
5	Intercepts mother	7	329.88	421.24	483.21	443.34	439.00	390.85
6	Intercepts ID	8	551.02	557.04	600.52	492.35	458.40	521.68
	Intercepts mother	8	329.88	421.24	483.21	443.34	439.00	390.85
Supplemental Note I Error checking of automated tracking of molly behavioral development

K Laskowski

Sept 29, 2022

INTRO

We used Biotracker (https://www.igb-berlin.de/en/biotracker) to identify the location of each fish in each frame (1 frame every 3 seconds) from our tracking videos. As with any automated tracking software, errors can be introduced where the tracking software mis-identifies the location of the fish. These errors have the potential affect our estimates of our behavioral variables (which are estimated from the changes in x-y coordinate location of the fish in the frames).

We performed error checking in two ways:

1 - Overall error rates

For each pi (compartment), we selected every fourth video (starting with the first =day 1 video), then within each video (day), we chose a random start frame (“Start Frame”) and then checked for roughly 200 frames per hand the number of tracking errors (num_errors) i.e. each frame was either an error or not. We then calculated the error rate from this “error_rate”, i.e.: number of errors /number of checked frames.

- What is the overall error rate across all compartments?
- Does this error rate change over time (as the animals grow)?

2 - Manual correction of Day 1 tracks

we then manually corrected the full first day of tracking for each pi (fish). Now we have the behavioral variables for the automatically tracked (uncorrected) and manually corrected data allowing us to see how closely the automatic tracking software is able to capture the true behavioral measures. We chose to look at Day 1 because 1) this is a critical time frame for our major research question of when individual differences in behavior appear and 2) this is when fish are the smallest and so errors are likely to be highest and so this is the hardest tracking that the software has to perform.

- What is the correlation between automatically tracked and manually corrected data?

DATA PREP

```r
knitr::opts_chunk$set(tidy.opts = list(width.cutoff = 60), tidy = TRUE)
library(dplyr)
```
library(tidyr)
library(ggplot2)
library(MCMCglmm)
library(formatR)

Loading required package: Matrix

Attaching package: 'Matrix'

Attaching package: 'dplyr'

The following objects are masked from 'package:stats':
filter, lag

The following objects are masked from 'package:base':
intersect, setdiff, setequal, union

setwd("C:/Users/katel/Dropbox/7_Molly_Power/FINAL/analysis/Individual analysis/individual_molly_development/error checking")
rates <- read.csv("error rates_overall errors_for analysis 210816.csv")

Now I need to wrangle the day 1 manually corrected data - the ‘sumdat’ data file has both the corrected and uncorrected data, split into 15 minute bins and a ‘full’ bin that includes the entire day. The dataWide file only contains the 15 min intervals, whereas the dataDay only includes the full day measurements.

manually corrected data
sumdat <- read.csv("sumdat_entire first day 210816.csv")
sumdat$compnr <- recode(sumdat$comp, leftup = 1, rightup = 2, leftdown = 3, rightdown = 4)
sumdat$picomp <- factor(paste(sumdat$rpi, sumdat$compnr, sep = "."))
dataWide <- sumdat %>%
 filter(timesection != "full") %>%
 mutate(obs = as.numeric(timesection)) %>%
 select(rpi, picomp, type, obs, distmoved.iqr, speed.iqr, speed.med, propmoving, borderdist.med, se.pos) %>%
 pivot_wider(id_cols = c(rpi, picomp, obs), names_from = type, values_from = c(distmoved.iqr, speed.iqr, speed.med, propmoving, borderdist.med, se.pos))
dataWide <- as.data.frame(dataWide)

dataDay <- sumdat %>%
 filter(timesection == "full") %>%
 select(rpi, picomp, type, distmoved.iqr, speed.iqr, speed.med, propmoving, borderdist.med, se.pos) %>%
 pivot_wider(id_cols = c(rpi, picomp), names_from = type, values_from = c(distmoved.iqr, speed.iqr, speed.med, propmoving, borderdist.med, se.pos))
dataDay <- as.data.frame(dataDay)

1 - What is the overall error rate?

First let’s just look at the overall mean, median, mode error rate. The most common (mode) error_rate is 0, which is good. Median error rate is only 0.07, which means that on average the location of the fish was misidentified in just 7% (14) of the frames in each sampling bout (~200 frames). Mean error rate is 0.14, but clear to see that this value is not a good descriptor of the data given that it is not normally distributed.

```r
mean(rates$error_rate, na.rm = T)  # 0.14

## [1] 0.1428249

median(rates$error_rate, na.rm = T) #0.07

## [1] 0.07

# no built in function to estimate mode (most common number)
getmode <- function(v) {
  uniqv <- unique(v)
  uniqv[which.max(tabulate(match(v, uniqv)))]
}
getmode(rates$error_rate)

## [1] 0

ggplot(rates) + geom_histogram(aes(x = error_rate), color = "black", fill = "white", binwidth = 0.03) + xlab("Error rate") + annotate("text", x = 0.75, y = 150, label = "mean = 0.14", color = "red") + annotate("text", x = 0.75, y = 130, label = "median = 0.07", color = "red") + annotate("text", x = 0.75, y = 110, label = "mode = 0", color = "red") + theme_classic()

## Warning: Removed 4 rows containing non-finite values (stat_bin).
Might also be useful to look at the overall error rates by compartment. Here we can see that the overall median error rate of each pi is around 0.13, so about 13% of the selected frames were misidentified for each pi. However, 13% error rate seems quite good given the amount of data we are working with.

```r
error.avg <- rates %>%
 group_by(picomp) %>%
 summarise(tot.errors = sum(num_errors, na.rm = T),
 tot.frames = sum(tracked_frames, na.rm = T),
 overall.error = tot.errors/tot.frames)

ggplot(error.avg) + geom_histogram(aes(x = overall.error), color = "black",
 fill = "white", binwidth = 0.03) +
 xlab("Overall error rate per compartment") +
 theme_classic()
```
2 - Does the error rate change over time?

Yes, the error rate is higher at the earlier sampling dates which makes sense given that fish are smaller when younger and so it’s likely harder for the software to find them.

```r
median(error.aver$overall.error, na.rm = T)
[1] 0.1319394
```

```r
ggplot(rates) + geom_boxplot(aes(x = factor(sample), y = error_rate)) +
 xlab("Sampling date") + ylab("Error rate") + theme_classic()
```

## Warning: Removed 4 rows containing non-finite values (stat_boxplot).
> Bottom line:

Overall median error rates are about 7% over the entire experiment, though these rates are higher earlier in life when the animals are smaller. This is why we manually corrected the tracking data for the first day of life (as this is a critical time period for our research questions).

3 - Correlation between corrected & uncorrected data?

Given that error rates are highest early in life when fish are smallest, and that one of our key questions is when individual differences in behavior first appear, we manually corrected the entire first day of tracking for all fish. In addition to ensuring that our data for this day are accurate, this gives us the opportunity to compare the relationship between corrected and uncorrected data. That is, if the uncorrected data closely correlates with the corrected data than we can feel confident that the errors are truly just introducing noise into our data and shouldn’t systematically bias our data in any particular way.

**First, let’s look at the full day measurements (dataDay file)** - we can see that really for all the behavioral variables we have pretty tight relationships between the manually corrected and automatically tracked (uncorrected) daily behavioral value.

If anything, for our main behavioral variable of interest, median speed, the uncorrected values are somewhat underestimating the true behavior. This means that our automatically tracked (uncorrected) data has less variation in it to partition among the random effects which should make our estimates of among-individual variation more conservative (than if the uncorrected data was instead OVER estimating the true behavioral value).
ggplot(dataDay) + geom_point(aes(x = speed.med_cor, y = speed.med_unc)) + geom_abline(intercept = 0, slope = 1) + theme_classic()

ggplot(dataDay) + geom_point(aes(x = distmoved.iqr_cor, y = distmoved.iqr_unc)) + geom_abline(intercept = 0, slope = 1) + theme_classic()
ggplot(dataDay) + geom_point(aes(x = speed.iqr_cor, y = speed.iqr_unc)) + geom_abline(intercept = 0, slope = 1) + theme_classic()
ggplot(dataDay) + geom_point(aes(x = propmoving_cor, y = propmoving_unc)) + geom_abline(intercept = 0, slope = 1) + theme_classic()
```r
ggplot(dataDay) + geom_point(aes(x = borderdist.med_cor, y = borderdist.med_unc)) + geom_abline(intercept = 0, slope = 1) + theme_classic()
```
ggplot(dataDay) + geom_point(aes(x = se.pos_cor, y = se.pos_unc)) +
    geom_abline(intercept = 0, slope = 1) + theme_classic()
Now, the most important questions we want to answer are:

1 - how tight is the relationship between corrected and uncorrected values across individuals?
2 - do both types of data recreate similar results in terms of variance decomposition?

If the relationship between corrected and uncorrected data is very high and the resulting variance component estimates from both types of data very similar, then we can feel confident that any tracking errors are introducing true ‘noise’ into the system and are not systematically influencing our results or their interpretation.

Here we will use the day 1 data that has been binned into 15 minute increments so we can see how tight the relationships are throughout the first day.

Bottom line:

```r
rpt.mcmc <- function(x) {
 var.e <- x$VCV[, "units"]
 var.a <- x$VCV[, "picomp"]
 postR <- var.a/(var.a + var.e)
 return(c(posterior.mode(postR), posterior.mode(var.a), posterior.mode(var.e)))
}

bivar.cor <- function(x) {
 var.x <- x$VCV[, 1]
 var.y <- x$VCV[, 4]
 cov.xy <- x$VCV[, 2]
 post.cor <- cov.xy/(sqrt(var.x * var.y))
 return(posterior.mode(post.cor))
}
```
prior.ex <- list(R = list(V = 1, nu = 0.002), G = list(G1 = list(V = 1, nu = 0.002, alpha.mu = 0, alpha.V = 25^2)))

prior.bi <- list(R = list(V = diag(2), nu = 0.002), G = list(G1 = list(V = diag(2), nu = 0.002, alpha.mu = c(0, 0), alpha.V = diag(2) * 1000)))

# repeatability of uncorrected data
spd.unc <- MCMCglmm(speed.med_unc ~ obs, random = ~picomp, family = "gaussian", prior = prior.ex, data = dataWide, nitt = 201000, burnin = 1000, thin = 100, verbose = FALSE)

# repeatability of corrected data
spd.cor <- MCMCglmm(speed.med_cor ~ obs, random = ~picomp, family = "gaussian", prior = prior.ex, data = dataWide, nitt = 201000, burnin = 1000, thin = 100, verbose = FALSE)

# what is the covariance between the two?
spd.bi <- MCMCglmm(cbind(speed.med_unc, speed.med_cor) ~ obs, random = -us(trait):picomp, rcov = -us(trait):units, prior = prior.bi, data = dataWide, family = c("gaussian", "gaussian"), nitt = 201000, burnin = 1000, thin = 100, verbose = FALSE)

We can see that variance component estimates (repeatability, among-individual and within-individual variation) are very similar for both the manually corrected and automatically tracked (uncorrected) data, and that the among-individual correlation is nearly perfect! This is the case for median speed which is our main behavioral variable of interest, and also the other behavioral measures (e.g. distmoved.iqr, propmoving)

rpt.mcmc(spd.unc)

## var1 var1 var1
## 0.6989191 0.4310367 0.1934130

rpt.mcmc(spd.cor)

## var1 var1 var1
## 0.6907005 0.4074563 0.1931337

bivar.cor(spd.bi)

## var1
## 0.9898591

# repeatability of uncorrected data
dist.unc <- MCMCglmm(distmoved.iqr_unc ~ obs, random = -picomp, family = "gaussian", prior = prior.ex, data = dataWide, nitt = 201000, burnin = 1000, thin = 100, verbose = FALSE)

# repeatability of corrected data
dist.cor <- MCMCglmm(distmoved.iqr_cor ~ obs, random = -picomp, family = "gaussian", prior = prior.ex, data = dataWide, nitt = 201000, burnin = 1000, thin = 100, verbose = FALSE)
# what is the covariance between the two?
```
dist.bi <- MCMCglmm(cbind(distmoved.iqr_unc, distmoved.iqr_cor) ~ obs, random = ~us(trait):picomp, rcov = ~us(trait):units, prior = prior.bi, data = dataWide, family = c("gaussian", "gaussian"), nitt = 201000, burnin = 1000, thin = 100, verbose = FALSE)
rpt.mcmc(dist.unc)
```
```
var1 var1 var1
0.614115 379.793966 257.187858
```
```
rpt.mcmc(dist.cor)
```
```
var1 var1 var1
0.6295948 353.5827462 229.4252594
```
```
bivar.cor(dist.bi)
```
```
var1
0.9930411
```

# repeatability of uncorrected data
```
prop.unc <- MCMCglmm(propmoving_unc ~ obs, random = ~picomp, family = "gaussian", prior = prior.ex, data = dataWide, nitt = 201000, burnin = 1000, thin = 100, verbose = FALSE)
```
```
repeatability of corrected data
prop.cor <- MCMCglmm(propmoving_cor ~ obs, random = ~picomp, family = "gaussian", prior = prior.ex, data = dataWide, nitt = 201000, burnin = 1000, thin = 100, verbose = FALSE)
```

# what is the covariance between the two?
```
prop.bi <- MCMCglmm(cbind(propmoving_unc, propmoving_cor) ~ obs, random = ~us(trait):picomp, rcov = ~us(trait):units, prior = prior.bi, data = dataWide, family = c("gaussian", "gaussian"), nitt = 201000, burnin = 1000, thin = 100, verbose = FALSE)
rpt.mcmc(prop.unc)
```
```
var1 var1 var1
0.69749477 0.03596995 0.01504533
```
```
rpt.mcmc(prop.cor)
```
```
var1 var1 var1
0.68119157 0.03445545 0.01872111
```
There is a near-perfect among-individual correlation between manually corrected and automatically tracked (uncorrected data) and patterns of individual variation (among/within-individual variation) are extremely similar giving us confidence that our automatically tracked data accurately captures the true behavioral variation in the fish. Despite this, we still retain the manually corrected data for Day 1 as this is a critical time point for our research questions.
Supplemental Note II - Code to reproduce results

K Laskowski

Sept 29, 2022

DATA COLLECTION

Newborn mollies were placed into individual identical tanks and observed using overhead Raspberry Pi computer & cameras that took a photo every 3 seconds during daylight hours. From these photos, we used Biotracker to identify the fish and record its x-y coordinates. Then from these coordinates we estimated a number of behavioral variables.

Importantly, because one of our main research questions focused on behavior during the first day of life, we manually checked/corrected Day 1 tracks for all fish. This had the added bonus of letting us compare how well Biotracker performs (in terms of accurately measuring behavior) in comparison to manually tracking (which we know is “perfect”)

- speed.med: median of distance moved (mm) /number of tracking frames (corrects for missing data)
- speed.iqr: inter-quartile range of distance moved/number of tracking frames (corrects for missing data)
- propmoving: proportion of the day that fish were moving at more than 0.5cm/s
- borderdist.med: median border distance from the tank edge across the day

We then summarized these behavioral variables either hourly or daily and used these data to investigate patterns of individual behavioral variation. Specifically we asked 3 key research questions (below)

RESEARCH QUESTIONS

1. When do individual differences in behavior emerge?
   - test for significant rpt on Day 1
   - if not apparent then, will look later in time

2. How does individual variation change over development?
   - does among-individual variation increase over time - behavioral divergence?
   - does within-individual variation decrease over time - behavioral consistency?

3. Does individual behavior early in life predict behavior later in life?
   - test for significant among-individual correlations between week 1 and week n

DATA INPUT ——
knitr::opts_chunk$set(tidy.opts = list(width.cutoff = 75), tidy = TRUE)

library(nlme)
library(ggplot2)
library(dplyr)

##
## Attaching package: 'dplyr'

## The following object is masked from 'package:nlme':
##   collapse

## The following objects are masked from 'package:stats':
##   filter, lag

## The following objects are masked from 'package:base':
##   intersect, setdiff, setequal, union

library(tidyr)
library(MCMCglmm)

## Loading required package: Matrix

##
## Attaching package: 'Matrix'

## The following objects are masked from 'package:tidyr':
##   expand, pack, unpack

## Loading required package: coda

## Loading required package: ape

library(parallel)
library(reshape2)

##
## Attaching package: 'reshape2'

## The following object is masked from 'package:tidyr':
##   smiths
library(corrplot)

## corrplot 0.92 loaded
library(MuMIn)
library(gridExtra)

## Attaching package: 'gridExtra'

## The following object is masked from 'package:dplyr':
##  combine

library(ggcorrplot)
library(zoo)

## Attaching package: 'zoo'

## The following objects are masked from 'package:base':
##  as.Date, as.Date.numeric

library(egg)
library(patchwork)
library(viridis)

## Loading required package: viridisLite

library(formatR)

setwd("C:/Users/katel/Dropbox/7_Molly_Power/FINAL/analysis/Individual analysis/individual_molly_development")

# daily summary data
indv <- read.csv("IDsumdat_daily only_for deposit.csv")
indv$date <- as.Date(indv$date, format = "%m/%d/%Y")
indv$birth.date <- as.Date(indv$birth.date, format = "%m/%d/%Y")
indv$mother <- as.factor(indv$mother)
indv$picomp <- as.factor(indv$picomp)

# hourly summary data
hourly <- read.csv("IDsumdat_hourly only_for deposit.csv")
hourly$date <- as.Date(hourly$date, format = "%m/%d/%Y")
hourly$birth.date <- as.Date(hourly$birth.date, format = "%m/%d/%Y")
hourly$mother <- as.factor(hourly$mother)
hourly$picomp <- as.factor(hourly$picomp)

#create datafiles that only include the 26 indv with complete data through 70
complete <- as.vector(indv$picomp[indv$obs == 70])
indv.com <- indv %>%
  mutate(obs.cen = obs-1) %>%
  filter(picomp %in% complete)

# generating weekly growth rates:
growth <- indv.com %>%
  group_by(picomp, week) %>%
  arrange(picomp, week) %>%
  slice(1) %>%
  ungroup() %>%
  mutate(growth.rate = (TL - lag(TL))/lag(TL)) %>%
  mutate(growth.rate = round(growth.rate, 3)) %>%
  naniar::replace_with_na_at(.vars = "growth.rate",
                            condition = ~.x < 0) %>%
  mutate_at(c("growth.rate"), funs(lead), n = 1) %>%
  select(picomp, week, growth.rate)

## Warning: ‘funs()’ was deprecated in dplyr 0.8.0.
## Please use a list of either functions or lambdas:
##
## # Simple named list:
## list(mean = mean, median = median)
##
## # Auto named with ‘tibble::lst()’:
## tibble::lst(mean, median)
##
## # Using lambdas
## list(~ mean(., trim = .2), ~ median(., na.rm = TRUE))
## This warning is displayed once every 8 hours.
## Call ‘lifecycle::last_lifecycle_warnings()’ to see where this warning was generated.

## generate Day1 only data
## re-center hour (so 1st hour = 0)

day1 <- hourly %>%
  filter(obs == 1) %>%
  mutate(hour.cen = hour-1)

day1 <- left_join(day1, growth)

indv.com <- left_join(indv.com, growth)

hourly.com <- hourly %>%
  mutate(obs.cen = obs-1) %>%
  filter(picomp %in% complete)

hourly.com <- left_join(hourly.com, growth)

## Joining, by = c("picomp", "week")
Prior specifications

prior.null <- list(R = list(V = 1, nu = 0.002))

prior.id <- list(R = list(V = 1, nu = 0.002), G = list(G1 = list(V = 1, nu = 0.002, alpha.mu = 0, alpha.V = 25^-2)))

prior.id.mom <- list(R = list(V = 1, nu = 0.002), G = list(G1 = list(V = 1, nu = 0.002, alpha.mu = 0, alpha.V = 25^-2), G2 = list(V = 1, nu = 0.002, alpha.mu = 0, alpha.V = 25^-2)))

prior.id.slope <- list(R = list(V = 1, nu = 0.002), G = list(G1 = list(V = diag(2), nu = 0.002, alpha.mu = c(0, 0), alpha.V = diag(2) * 25^-2)))

prior.id.slope.mom <- list(R = list(V = 1, nu = 0.002), G = list(G1 = list(V = diag(2), nu = 0.002, alpha.mu = c(0, 0), alpha.V = diag(2) * 25^-2), G2 = list(V = 1, nu = 0.002, alpha.mu = 0, alpha.V = 25^-2)))

prior.id.slope.mom.slope <- list(R = list(V = 1, nu = 1), G = list(G1 = list(V = diag(2) * 0.1, nu = 0.002, alpha.mu = c(0, 0), alpha.V = diag(2) * 25^-2), G2 = list(V = diag(2) * 0.1, nu = 0.002, alpha.mu = c(0, 0), alpha.V = diag(2) * 25^-2)))

prior.cov4 <- list(R = list(V = diag(4), nu = 4.002), G = list(G1 = list(V = diag(4), nu = 4.002, alpha.mu = rep(0, 4), alpha.V = 1000 * diag(4))))

prior.cov10 <- list(R = list(V = diag(10), nu = 10.002), G = list(G1 = list(V = diag(10), nu = 10.002, alpha.mu = rep(0, 10), alpha.V = 1000 * diag(10))))

DATA EXPLORATION

Daily behavior

Can see pretty tight correlations between speed.med, propmoving and distmoved.iqr. Looks like borderdist.med more independent of these other measures.
pairs(indv[, c("speed.med", "propmoving", "borderdist.med", "distmoved.iqr")])

pairs(indv.com[, c("speed.med", "propmoving", "borderdist.med", "distmoved.iqr")])
Hourly behavior

Also looks like good variation here, similar correlations among traits as with the daily measures.

```r
pairs(day1[, c("speed.med", "propmoving", "borderdist.med", "distmoved.iqr")])
```
pairs(day1[, c("speed.med", "propmoving", "borderdist.med", "distmoved.iqr"))

hist(day1.com$speed.med)
Histogram of `day1.com$speed.med`

```
range(day1.com$speed.med)
[1] 0.04 2.88

indv.com %>%
group_by(mother) %>%
summarise_each(funs(n_distinct(picomp)))
```

## Warning: ‘summarise_each_()’ was deprecated in dplyr 0.7.0.
## Please use ‘across()’ instead.
## This warning is displayed once every 8 hours.
## Call ‘lifecycle::last_lifecycle_warnings()’ to see where this warning was generated.

```
A tibble: 8 x 21
mother rpi comp picomp date hour distmo-1 speed-2 speed-3 propm-4 borde-5
<fct> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int>
1 69.3 4 4 1 1 1 1 1 1 1 1
2 70.2 4 4 1 1 1 1 1 1 1 1
3 70.3 4 4 1 1 1 1 1 1 1 1
4 75.2 4 4 1 1 1 1 1 1 1 1
5 77.2 3 3 1 1 1 1 1 1 1 1
6 80.1 3 3 1 1 1 1 1 1 1 1
7 80.2 3 3 1 1 1 1 1 1 1 1
8 90.2 1 1 1 1 1 1 1 1 1 1
```
1 - WHEN DO INDIVIDUAL DIFFERENCES APPEAR?

Our goal here is, starting with Day 1, determine if/when significant individual differences in behavior appear. But first, we explored which variance structures are the best fit for our data. In total we ran 5 models with differing variance structures model 0: null model (no random effects) model 1: individual intercepts model 2: individual & mother intercepts model 3: individual intercepts & slopes model 4: individual intercepts & slopes and mother intercepts model 5: individual intercepts & slopes and mother intercepts & slopes

We included hour (first hour of the day set to 0) and SL (mean-centered) as fixed effects in all models.

RESULTS: Strong support for inclusion of individual intercepts and slopes. Since hour is centered (with first hour as 0) then the estimate of among-individual variation is in fact for the first hour of tracking. Which means that as early as we can measure behavior individual differences are present on (the first hour of) day 1! There are very small effects of hour and none of body size (NB: can only use absolute TL in these models as the animals do not yet have a growth rate).

**Day 1- swim speed:**  First, want to check residuals of model to determine if assumptions of gaussian error distribution are appropriate - Yes, the residuals look great!

```r
lm.test <- lme(speed.med ~ hour.cen + TL.cen, random = ~1 | picomp, data = day1.com)
par(mfrow = c(2, 2))
plot(lm.test)
```
hist(resid(lm.test))
qqnorm(resid(lm.test))
qqline(resid(lm.test))
boxplot(resid(lm.test) ~ day1.com$hour.cen)
plot(resid(lm.test) ~ day1.com$TL.cen)
> model comparison  Now we want to investigate the appropriate random structure for the data including intercepts and/or slopes for individuals and mothers

# Null model  
set.seed(58)
speed.day1.0 <- MCMCglmm(speed.med ~ hour.cen + TL.cen, data = day1.com, family = "gaussian", 
    prior = prior.null, nitt = 510000, burnin = 10000, thin = 200, verbose = F)

# Intercepts ID  
set.seed(3432)
speed.day1.1 <- MCMCglmm(speed.med ~ hour.cen + TL.cen, random = ~picomp, data = day1.com, 
    family = "gaussian", prior = prior.id, nitt = 510000, burnin = 10000, thin = 200, 
    verbose = F)

# only including intercepts for mother  
set.seed(42021)
speed.day1.2 <- MCMCglmm(speed.med ~ hour.cen + TL.cen, random = ~mother, data = day1.com, 
    family = "gaussian", prior = prior.id, nitt = 510000, burnin = 10000, thin = 200, 
    verbose = F)

# Intercepts ID and Mom  
set.seed(258)
speed.day1.3 <- MCMCglmm(speed.med ~ hour.cen + TL.cen, random = ~picomp + mother,
data = day1.com, family = "gaussian", prior = prior.id.mom, nitt = 510000,
burnin = 10000, thin = 200, verbose = F)

# Intercepts and Slopes ID -----------------------
set.seed(472)
speed.day1.4 <- MCMCglmm(speed.med ~ hour.cen + TL.cen, random = ~us(1 + hour.cen):picomp,
data = day1.com, family = "gaussian", prior = prior.id.slope, nitt = 510000,
burnin = 10000, thin = 200, verbose = F)

# Intercepts Mom, Slopes Mom ----------------
set.seed(318)
speed.day1.5 <- MCMCglmm(speed.med ~ hour.cen + TL.cen, random = ~us(1 + hour.cen):mother,
data = day1.com, family = "gaussian", prior = prior.id.slope, nitt = 510000,
burnin = 10000, thin = 200, verbose = F)

# Intercepts ID and Mom, Slopes ID ----------------
set.seed(918)
speed.day1.6 <- MCMCglmm(speed.med ~ hour.cen + TL.cen, random = ~us(1 + hour.cen):picomp +
mother, data = day1.com, family = "gaussian", prior = prior.id.slope.mom,
nitt = 510000, burnin = 10000, thin = 200, verbose = F)

# Intercepts ID & Mom, Slopes ID & Mom -----------------
set.seed(78)
speed.day1.7 <- MCMCglmm(speed.med ~ hour.cen + TL.cen, random = ~us(1 + hour.cen):picomp +
us(1 + hour.cen):mother, data = day1.com, family = "gaussian", prior = prior.id.slope.mom.slope,
nitt = 510000, burnin = 10000, thin = 200, verbose = F)

Including individual intercepts and slopes dramatically improves the DIC of the models. Including mother
intercepts or slopes really has no effect so those should be dropped. Since individual slopes seem to be
important, then it is important that we appropriately center our covariates (hour 1 = 0 and average body
size = 0) so that the variance (among/within individual) components are being estimated here as this makes
the most biological sense.

DIC(speed.day1.0, speed.day1.1, speed.day1.2, speed.day1.3, speed.day1.4, speed.day1.5,
speed.day1.6, speed.day1.7)

## df  DIC
## speed.day1.0 4  611.9636
## speed.day1.1 5  335.0621
## speed.day1.2 5  548.3438
## speed.day1.3 6  335.0658
## speed.day1.4 6  234.6791
## speed.day1.5 6  543.7717
## speed.day1.6 7  234.5784
## speed.day1.7 8  236.7037

> model to report  These are the estimates for the most well supported model (including individual
intercepts and slopes, model 3). These are the values reported in the main manuscript
```r
set.seed(472)
speed.day1.4 <- MCMCglmm(speed.med ~ hour.cen + TL.cen, random = ~us(1 + hour.cen):picomp,
 prior = prior.id.slope, data = day1.com, family = "gaussian", nitt = 510000,
burnin = 10000, thin = 200, verbose = F)

summary(speed.day1.4)

Iterations = 10001:509801
Thinning interval = 200
Sample size = 2500
DIC: 234.6791
G-structure: ~us(1 + hour.cen):picomp
##
post.mean l-95% CI u-95% CI eff.samp
(Intercept):(Intercept).picomp 2.401e-01 0.096683 0.41582 2500
hour.cen:(Intercept).picomp 4.972e-05 -0.023651 0.01831 2500
(Intercept):hour.cen.picomp 4.972e-05 -0.023651 0.01831 2500
hour.cen:hour.cen.picomp 6.677e-03 0.002659 0.01151 2500
R-structure: ~units
##
post.mean l-95% CI u-95% CI eff.samp
units 0.1135 0.09501 0.136 2325
##
Location effects: speed.med ~ hour.cen + TL.cen
##
post.mean l-95% CI u-95% CI eff.samp pMCMC
(Intercept) 0.89681 0.66903 1.12809 2175 <4e-04 ***
hour.cen 0.05747 0.02528 0.09378 2500 0.0008 ***
TL.cen 1.48869 -0.52690 3.39880 2725 0.1384

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

posterior.mode(speed.day1.4$Sol)

(Intercept) hour.cen TL.cen
0.86823920 0.05755465 1.49292296

HPDinterval(speed.day1.4$Sol)

lower upper
(Intercept) 0.66903167 1.12808944
hour.cen 0.02528032 0.09377976
TL.cen -0.52690036 3.39879682
attr("Probability")
[1] 0.95
posterior.mode(speed.day1.4$VCV)

(Intercept):(Intercept).picomp hour.cen:(Intercept).picomp
0.1750928818 0.0007295398
(Intercept):hour.cen.picomp hour.cen:hour.cen.picomp
0.0007295398 0.0060554490
units
0.1073052468

HPDinterval(speed.day1.4$VCV)

lower upper
(Intercept):(Intercept).picomp 0.096683120 0.41582272
hour.cen:(Intercept).picomp -0.023651140 0.01831348
(Intercept):hour.cen.picomp -0.023651140 0.01831348
hour.cen:hour.cen.picomp 0.002658925 0.01151310
units 0.095014047 0.13599975
attr(,"Probability")
[1] 0.95

only ID repeatability
rpt.spd1 <- speed.day1.4$VCV[, "(Intercept):(Intercept).picomp"]/(speed.day1.4$VCV[, "(Intercept):(Intercept).picomp"] + speed.day1.4$VCV[, "hour.cen:hour.cen.picomp"] + speed.day1.4$VCV[, "units"])

posterior.mode(rpt.spd1)

var1
0.6505839

HPDinterval(rpt.spd1)

lower upper
var1 0.4841208 0.8007834
attr(,"Probability")
[1] 0.95

to get marginal R2 to explain fixed effects variance
vmVarF <- numeric(2500)

for (i in 1:2500) {
 Var <- var(as.vector(speed.day1.4$Sol[i,] %*% t(speed.day1.4$X)))
 vmVarF[i] <- Var
}

R2m <- vmVarF/(vmVarF + speed.day1.4$VCV[, 1] + speed.day1.4$VCV[, 4] + speed.day1.4$VCV[, 5])

posterior.mode(R2m)
```r
## var1
## 0.1334692

HPDinterval(R2m)
```

```
##     lower  upper
## var1 0.02089727 0.3040472
## attr(,"Probability")
## [1] 0.95
```

```
R2c <- (vmVarF + speed.day1.4$VCV[, 1])/(vmVarF + speed.day1.4$VCV[, 1] + speed.day1.4$VCV[, 4] + speed.day1.4$VCV[, 5])

posterior.mode(R2c)
```

```
##     var1
## 0.7441373
```

```
HPDinterval(R2c)
```

```
##     lower  upper
## var1 0.5690082 0.8255776
## attr(,"Probability")
## [1] 0.95
```

```
# extract estimates for later graphing

tl.slope <- as.vector(speed.day1.4$Sol[, "TL.cen"])
tl.inter <- as.vector(speed.day1.4$Sol[, "(Intercept)"])
body.effects <- data.frame(tl.slope, tl.inter)

> model validation  Just want to double check that the results we’re seeing here aren’t a result of prior specification. The results above are all with parameter expanded priors, so I will also check weak priors and then two different stronger priors where I partition the variance to the different random effects.

You can see that even putting the majority of the behavioral variance in the residual does not really alter the variance component estimates. Therefore we feel confident using the parameter expanded priors throughout.

```
parameter expanded
prior.id.slope <- list(R = list(V = 1, nu = 0.002), G = list(G1 = list(V = diag(2), nu = 0.002, alpha.mu = c(0, 0), alpha.V = diag(2) * 25^2)))

weak priors (inverse gamma)
prior.weak <- list(R = list(V = 1, nu = 0.002), G = list(G1 = list(V = diag(2), nu = 0.002)))

strong priors
p.var <- var(day1.com$speed.med, na.rm = TRUE)

setting most variance in among-indv intercepts (and a bit in slopes)
```
prior.strong.id <- list(R = list(V = matrix(p.var * 0.05), nu = 1), G = list(G1 = list(V = diag(c(0.8 * p.var, 0.15 * p.var)), nu = 1)))

# setting most variance in the within-indv residual and very little to # among individual intercepts & slopes
prior.strong.res <- list(R = list(V = matrix(p.var * 0.95), nu = 1), G = list(G1 = list(V = diag(c(0.025 * p.var, 0.025 * p.var)), nu = 1)))

set.seed(472)
speed.day1.param <- MCMCglmm(speed.med ~ hour.cen + TL.cen, random = ~us(1 + hour.cen):picomp, prior = prior.id.slope, data = day1.com, family = "gaussian", nitt = 510000, burnin = 10000, thin = 200, verbose = F)

set.seed(472)
speed.day1.weak <- MCMCglmm(speed.med ~ hour.cen + TL.cen, random = ~us(1 + hour.cen):picomp, prior = prior.weak, data = day1.com, family = "gaussian", nitt = 510000, burnin = 10000, thin = 200, verbose = F)

set.seed(472)
speed.day1.strong1 <- MCMCglmm(speed.med ~ hour.cen + TL.cen, random = ~us(1 + hour.cen):picomp, prior = prior.strong.id, data = day1.com, family = "gaussian", nitt = 510000, burnin = 10000, thin = 200, verbose = F)

set.seed(472)
speed.day1.strong2 <- MCMCglmm(speed.med ~ hour.cen + TL.cen, random = ~us(1 + hour.cen):picomp, prior = prior.strong.res, data = day1.com, family = "gaussian", nitt = 510000, burnin = 10000, thin = 200, verbose = F)

posterior.mode(speed.day1.param$VCV)

## (Intercept):(Intercept).picomp hour.cen:(Intercept).picomp
## 0.1750928818 0.0007295398
## (Intercept):hour.cen.picomp hour.cen:hour.cen.picomp
## 0.0007295398 0.0060554490
## units
## 0.1073052468

posterior.mode(speed.day1.weak$VCV)

## (Intercept):(Intercept).picomp hour.cen:(Intercept).picomp
## 0.191066281 0.001804820
## (Intercept):hour.cen.picomp hour.cen:hour.cen.picomp
## 0.001804820 0.005250233
## units
## 0.11321479

posterior.mode(speed.day1.strong1$VCV)

## (Intercept):(Intercept).picomp hour.cen:(Intercept).picomp
## 0.214483238 0.001288724
Then I’ll also run five different chains of the model, setting different seeds to make sure that independent chains are coming up with the same answer!

And yes, we see that the variance components estimates (which are our main parameters of interest) are converged on very similar values.

```
set.seed(472)
speed.day1a <- MCMCglmm(speed.med ~ hour.cen + TL.cen, random = ~us(1 + hour.cen):picomp,
 prior = prior.id.slope, data = day1.com, family = "gaussian", nitt = 510000,
 burnin = 10000, thin = 200, verbose = F)

set.seed(9702)
speed.day1b <- MCMCglmm(speed.med ~ hour.cen + TL.cen, random = ~us(1 + hour.cen):picomp,
 prior = prior.id.slope, data = day1.com, family = "gaussian", nitt = 510000,
 burnin = 10000, thin = 200, verbose = F)

set.seed(130)
speed.day1c <- MCMCglmm(speed.med ~ hour.cen + TL.cen, random = ~us(1 + hour.cen):picomp,
 prior = prior.id.slope, data = day1.com, family = "gaussian", nitt = 510000,
 burnin = 10000, thin = 200, verbose = F)

set.seed(4)
speed.day1d <- MCMCglmm(speed.med ~ hour.cen + TL.cen, random = ~us(1 + hour.cen):picomp,
 prior = prior.id.slope, data = day1.com, family = "gaussian", nitt = 510000,
 burnin = 10000, thin = 200, verbose = F)

set.seed(30681)
speed.day1e <- MCMCglmm(speed.med ~ hour.cen + TL.cen, random = ~us(1 + hour.cen):picomp,
 prior = prior.id.slope, data = day1.com, family = "gaussian", nitt = 510000,
 burnin = 10000, thin = 200, verbose = F)
```

```
posterior.mode(speed.day1a$VCV)
```

```
plot(speed.day1.param$VCV) plot(speed.day1.weak$VCV)
plot(speed.day1.strong1$VCV) plot(speed.day1.strong2$VCV)
```
> all 40 individuals  Our analyses are generally restricted to those animals for which we have complete data on through week 10, but here we’ll check and make sure that we find similar patterns of behavioral variation on Day 1 using all individuals that were initially placed in the tracking tanks

ANSWER - yes, results are robust regardless of which subset of individuals we use
day1 <- day1 %>%
  mutate(TL.cen = TL - (sum(unique(TL))/40))

set.seed(6987)
speed.day1.idA <- MCMCglmm(speed.med ~ hour.cen + TL.cen, random = ~us(1 + hour.cen):picomp,
  prior = prior.id.slope, data = day1, family = "gaussian", nitt = 510000,
  burnin = 10000, thin = 200, verbose = F)

summary(speed.day1.idA)

##
## Iterations = 10001:509801
## Thinning interval = 200
## Sample size = 2500
##
## DIC: 340.2339
##
## G-structure: ~us(1 + hour.cen):picomp
##
## post.mean l-95% CI u-95% CI eff.samp
## (Intercept):(Intercept).picomp 0.291537 0.156436 0.454494 2129
## hour.cen:(Intercept).picomp 0.005365 -0.009233 0.020706 2874
## (Intercept):hour.cen.picomp 0.005365 -0.009233 0.020706 2874
## hour.cen:hour.cen.picomp 0.005048 0.002324 0.007951 2270
##
## R-structure: ~units
##
## post.mean l-95% CI u-95% CI eff.samp
## units 0.1084 0.09299 0.125 2500
##
## Location effects: speed.med ~ hour.cen + TL.cen
##
## post.mean l-95% CI u-95% CI eff.samp pMCMC
## (Intercept) 0.90375 0.70706 1.10261 2500 <4e-04 ***
## hour.cen 0.05740 0.03360 0.08057 2500 <4e-04 ***
## TL.cen 1.73415 0.16072 3.43036 2500 0.048 *
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

posterior.mode(speed.day1.idA$VCV)

## (Intercept):(Intercept).picomp hour.cen:(Intercept).picomp
## 0.261787098 0.006201699
## (Intercept):hour.cen.picomp hour.cen:hour.cen.picomp
## 0.006201699 0.004629381
## units
## 0.104161933

HPDinterval(speed.day1.idA$VCV)

## lower upper
only ID repeatability

\[ \text{rpt.spd1.40} \leftarrow \frac{\text{speed.day1.idA$VCV[, "(Intercept):(Intercept).picomp"]}}{\text{speed.day1.idA$VCV[, "(Intercept):(Intercept).picomp"]} + \text{speed.day1.idA$VCV[, "hour.cen:hour.cen.picomp"]} + \text{speed.day1.idA$VCV[, "units"]}} \]

# to get marginal R2 to explain fixed effects variance

vmVarF \leftarrow \text{numeric}(2500)

for (i in 1:2500) {
    \text{Var} \leftarrow \text{var(as.vector(speed.day1.idA$Sol[i, ] \times t(speed.day1.idA$X)))}
    \text{vmVarF}[i] \leftarrow \text{Var}
}

\text{R2m} \leftarrow \frac{\text{vmVarF}}{\text{vmVarF} + \text{speed.day1.idA$VCV[, 1]} + \text{speed.day1.idA$VCV[, 4]} + \text{speed.day1.idA$VCV[, 5]}}

\text{posterior.mode(R2m)}

\[ \begin{align*}
\text{var1} & = 0.1050187 \\
\text{HPDinterval(R2m)} & = \begin{bmatrix} 0.04170539 & 0.281275 \end{bmatrix} \\
\text{attr(,"Probability")} & = 0.95
\end{align*} \]

\[ \begin{align*}
\text{R2c} & \leftarrow \frac{\text{vmVarF} + \text{speed.day1.idA$VCV[, 1]}}{\text{vmVarF} + \text{speed.day1.idA$VCV[, 1]} + \text{speed.day1.idA$VCV[, 4]} + \text{speed.day1.idA$VCV[, 5]}}
\text{posterior.mode(R2c)} & = \begin{bmatrix} 0.7513314 \end{bmatrix} \\
\text{attr(,"Probability")} & = 0.95
\end{align*} \]
> other behaviors  We also used the x, y coordinates from our tracking software to estimate a number of other behavioral variables. First, let’s check our model assumptions quickly

```r
Distmoved.iqr - some skews from normality on the tails, but homogeneity
of variance looks really good
lm.test <- lme(distmoved.iqr ~ hour.cen + TL.cen, random = ~1 | picomp, data = day1.com)
par(mfrow = c(2, 2))
plot(lm.test)

hist(resid(lm.test))
qqnorm(resid(lm.test))
qqline(resid(lm.test))

Prop moving - decreasing variance, but no standard transformation seems helpful
lm.test <- lme(propmoving ~ hour.cen + TL.cen, random = ~1 | picomp, data = day1.com)
par(mfrow = c(2, 2))
```

![Plot showing model assumptions](image_url)
hist(resid(lm.test))
qqnorm(resid(lm.test))
qqline(resid(lm.test))

# Median distance from tank border - looks good!
lm.test <- lme(borderdist.med ~ hour.cen + TL.cen, random = ~1 | picomp, data = day1.com)
par(mfrow = c(2, 2))
Histogram of resid(lm.test)

Normal Q–Q Plot

plot(lm.test)
hist(resid(lm.test))
qqnorm(resid(lm.test))
qqline(resid(lm.test))
.. 26 individuals  Here we test for repeatability on day 1 of life in those behaviors - all are repeatable!

```r
Variation in activity - speed IQR
set.seed(591)
iqr.day1.id <- MCMCglmm(distmoved.iqr ~ hour.cen + TL.cen, random = ~us(1 +
 hour.cen):picomp, prior = prior.id.slope, data = day1.com, family = "gaussian",
 nitt = 510000, burnin = 10000, thin = 200, verbose = F)
summary(iqr.day1.id)
```

```
Iterations = 10001:509801
Thinning interval = 200
Sample size = 2500
##
DIC: 1981.587
##
G-structure: ~us(1 + hour.cen):picomp
##
post.mean l-95% CI u-95% CI eff.samp
(Intercept):(Intercept).picomp 119.287 53.3913 210.611 2710
hour.cen:(Intercept).picomp -2.576 -11.0206 4.859 2500
(Intercept):hour.cen.picompe -2.576 -11.0206 4.859 2500
hour.cen:hour.cen.picompe 1.849 0.6232 3.303 2500
```
## R-structure: ~units

## post.mean l-95% CI u-95% CI eff.samp  
## units 51.06 41.87 59.68 2500

## Location effects: distmoved.iqr ~ hour.cen + TL.cen

## post.mean l-95% CI u-95% CI eff.samp pMCMC  
## (Intercept) 35.6589 30.8526 40.6405 2500 <4e-04 ***  
## hour.cen 1.0263 0.4355 1.6143 2744 0.0016 **  
## TL.cen 27.2160 -18.4053 67.6026 2500 0.2032

---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

posterior.mode(iqr.day1.id$VCV)

```
(Intercept):(Intercept).picomp hour.cen:(Intercept).picomp
85.000199 -2.654759
(Intercept):hour.cen.picomp hour.cen:hour.cen.picomp
-2.654759 1.430073
units
49.684393
```

HPDinterval(iqr.day1.id$VCV)

```
lower upper
(Intercept):(Intercept).picomp 53.3912553 210.611328
hour.cen:(Intercept).picomp -11.0205736 4.858572
(Intercept):hour.cen.picomp -11.0205736 4.858572
hour.cen:hour.cen.picomp 0.6231612 3.303360
units 41.8665917 59.676047
attr("Probability")
[1] 0.95
```

rpt.iqr1 <- iqr.day1.id$VCV[, "(Intercept):(Intercept).picomp"]/iqr.day1.id$VCV[, "(Intercept):(Intercept).picomp"] + iqr.day1.id$VCV[, "hour.cen:hour.cen.picomp"] + iqr.day1.id$VCV[, "units"]

posterior.mode(rpt.iqr1)

```
var1
0.6766486
```

HPDinterval(rpt.iqr1)

```
lower upper
var1 0.520051 0.8119163
attr("Probability")
[1] 0.95
```
# Activity - Proportion of time spent moving

```r
set.seed(8547)
prop.day1.id <- MCMCglmm(propmoving ~ hour.cen + TL.cen, random = ~us(1 + hour.cen):picomp,
prior = prior.id.slope, data = day1.com, family = "gaussian", nitt = 510000,
burnin = 10000, thin = 200, verbose = F)

summary(prop.day1.id)
```

```
##
Iterations = 10001:509801
Thinning interval = 200
Sample size = 2500
##
DIC: -423.5535
##
G-structure: ~us(1 + hour.cen):picomp
##
post.mean l-95% CI u-95% CI eff.samp
(Intercept):(Intercept).picomp 0.0307809 0.0127094 0.0537298 2500
hour.cen:(Intercept).picomp -0.0015771 -0.0041944 0.0003421 2500
(Intercept):hour.cen.picomp -0.0015771 -0.0041944 0.0003421 2500
hour.cen:hour.cen.picomp 0.0006085 0.0002524 0.0010643 1930
##
R-structure: ~units
##
post.mean l-95% CI u-95% CI eff.samp
units 0.01133 0.009351 0.01343 2500
##
Location effects: propmoving ~ hour.cen + TL.cen
##
post.mean l-95% CI u-95% CI eff.samp pMCMC
(Intercept) 0.638673 0.560370 0.714963 2500 <4e-04 ***
hour.cen 0.008659 -0.001941 0.018248 2654 0.092 .
TL.cen 0.348924 -0.343156 1.007917 2500 0.271

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

posterior.mode(prop.day1.id$VCV)

(Intercept):(Intercept).picomp hour.cen:(Intercept).picomp
0.0253877145 -0.0012824261
(Intercept):hour.cen.picomp hour.cen:hour.cen.picomp
-0.0012824261 0.0004792935
units
0.0108856321

HPDinterval(prop.day1.id$VCV)

lower upper
(Intercept):(Intercept).picomp 0.0127094390 0.0537298151
hour.cen:(Intercept).picomp -0.0041944205 0.0003421329
(Intercept):hour.cen.picomp -0.0041944205 0.0003421329
```
rpt.prop1 <- prop.day1.id$VCV[, "(Intercept):(Intercept).picomp"]/(prop.day1.id$VCV[, "(Intercept):(Intercept).picomp"] + prop.day1.id$VCV[, "hour.cen:hour.cen.picomp"] + prop.day1.id$VCV[, "units"])

posterior.mode(rpt.prop1)

## var1
## 0.7064532

HPDinterval(rpt.prop1)

## lower   upper
## var1 0.5566278 0.8361055

# median distance to tank border
set.seed(693)
border.day1.id <- MCMCglmm(borderdist.med ~ hour.cen + TL.cen, random = ~us(1 + hour.cen):picomp, prior = prior.id.slope, data = day1.com, family = "gaussian", nitt = 510000, burnin = 10000, thin = 200, verbose = F)

summary(border.day1.id)

##Iterations = 10001:509801
## Thinning interval = 200
## Sample size = 2500
##DIC: 1128.802
##G-structure: ~us(1 + hour.cen):picomp
##         post.mean  l-95% CI u-95% CI eff.samp
## (Intercept):(Intercept).picomp  9.30895  4.32976 15.4862 2500
## hour.cen:(Intercept).picomp    -0.68755 -1.29761 -0.1958 2500
## (Intercept):hour.cen.picomp    -0.68755 -1.29761 -0.1958 2500
## hour.cen:hour.cen.picomp       0.08998  0.03332 0.1648 2500
##R-structure: ~units
##         post.mean  l-95% CI u-95% CI eff.samp
## units    2.59     2.146   3.075 2500
##Location effects: borderdist.med ~ hour.cen + TL.cen
##         post.mean  l-95% CI u-95% CI eff.samp pMCMC
Our analyses are generally restricted to those animals for which we have complete data on through week 10, but here we'll check and make sure that we find similar patterns of behavioral variation on Day 1 using all individuals that were initially placed in the tracking tanks.

ANSWER - yes, all results hold regardless of which set of individuals we look at.
# median speed

speed.day1.40 <- MCMCglmm(speed.med ~ hour.cen + TL.cen, random = ~us(1 + hour.cen):picomp,
  prior = prior.id.slope, data = day1, family = "gaussian", nitt = 510000,
  burnin = 10000, thin = 200, verbose = F)

summary(speed.day1.40)

##
## Iterations = 10001:509801
## Thinning interval = 200
## Sample size = 2500
##
## DIC: 340.2276
##
## G-structure: ~us(1 + hour.cen):picomp
##
## post.mean  l-95% CI  u-95% CI  eff.samp
## (Intercept):(Intercept).picomp   0.289186  0.155941  0.452136   2326
## hour.cen:(Intercept).picomp     0.005350 -0.009024  0.020935   2500
## (Intercept):hour.cen.picomp     0.005350 -0.009024  0.020935   2500
## hour.cen:hour.cen.picomp        0.004995  0.002376  0.008047   1934
##
## R-structure: ~units
##
## post.mean  l-95% CI  u-95% CI  eff.samp
## units     0.1087   0.09268  0.125    2500
##
## Location effects: speed.med ~ hour.cen + TL.cen
##
## post.mean  l-95% CI  u-95% CI  eff.samp  pMCMC
## (Intercept)  0.90159  0.70804  1.09894   2797 <4e-04 ***
## hour.cen     0.05799  0.03367  0.08216   2500 <4e-04 ***
## TL.cen      1.77364  0.02572  3.42089   2500  0.0432 *
##
## Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

plot(speed.day1.40$VCV)
posterior.mode(speed.day1.40$VCV)

## (Intercept):(Intercept).picomp  hour.cen:(Intercept).picomp
## 0.241138406  0.003239799
## (Intercept):hour.cen.picomp  hour.cen:hour.cen.picomp
## 0.003239799  0.004022300
## units
## 0.107981939

HPDinterval(speed.day1.40$VCV)

##        lower     upper
## (Intercept):(Intercept).picomp  0.155940540  0.45213613
## hour.cen:(Intercept).picomp -0.009024380  0.02093502
## (Intercept):hour.cen.picomp -0.009024380  0.02093502
## hour.cen:hour.cen.picomp  0.002376438  0.00804711
## units  0.092676608  0.12503040
## attr(,"Probability")
## [1] 0.95

# only ID repeatability
rpt.spd40 <- speed.day1.40$VCV[, "(Intercept):(Intercept).picomp"]/(speed.day1.40$VCV[, "(Intercept):(Intercept).picomp"] + speed.day1.40$VCV[, "hour.cen:hour.cen.picomp"] + speed.day1.40$VCV[, "units"])

posterior.mode(rpt.spd40)
## var1
## 0.7054354

HPDinterval(rpt.spd40)

## lower upper
## var1 0.5948525 0.8142106
## attr(,"Probability")
## [1] 0.95

# speed IQR
set.seed(900)
iqr.day1.id <- MCMCglmm(distmoved.iqr ~ hour.cen + TL.cen, random = ~us(1 + hour.cen):picomp, prior = prior.id.slope, data = day1, family = "gaussian", nitt = 510000, burnin = 10000, thin = 200, verbose = F)

summary(iqr.day1.id)

## Iterations = 10001:509801
## Thinning interval = 200
## Sample size = 2500
##
## DIC: 3038.199
##
## G-structure: ~us(1 + hour.cen):picomp
##
## post.mean l-95% CI u-95% CI eff.samp
## (Intercept):(Intercept).picomp 135.203 72.090 205.018 2500
## hour.cen:(Intercept).picomp -4.831 -12.006 1.481 2500
## (Intercept):hour.cen.picomp -4.831 -12.006 1.481 2500
## hour.cen:hour.cen.picomp 2.087 1.018 3.408 2500
##
## R-structure: ~units
##
## post.mean l-95% CI u-95% CI eff.samp
## units 49.68 43.03 57.56 2500
##
## Location effects: distmoved.iqr ~ hour.cen + TL.cen
##
## post.mean l-95% CI u-95% CI eff.samp pMCMC
## (Intercept) 36.2492 32.1419 40.4002 2500 <4e-04 ***
## hour.cen 0.8479 0.3342 1.3125 2500 0.0008 ***
## TL.cen 27.8660 -6.3393 61.4391 2500 0.0984 .
##
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

posterior.mode(iqr.day1.id$VCV)
## -3.843599 1.597489
## units 49.132089

HPDinterval(iqr.day1.id$VCV)

	lower	upper
(Intercept):(Intercept).picomp	72.089987	205.017990
hour.cen:(Intercept).picomp	-12.006274	1.480872
(Intercept):hour.cen.picomp	-12.006274	1.480872
hour.cen:hour.cen.picomp	1.017605	3.408304
units	43.026451	57.561900

attr(,"Probability")

[1] 0.95

rpt.iqr1 <- iqr.day1.id$VCV[, "(Intercept):(Intercept).picomp"]/(iqr.day1.id$VCV[, "(Intercept):(Intercept).picomp"] + iqr.day1.id$VCV[, "hour.cen:hour.cen.picomp"] + iqr.day1.id$VCV[, "units"])
posterior.mode(rpt.iqr1)

var1	0.6950842

HPDinterval(rpt.iqr1)

	lower	upper
var1	0.603514	0.8102665

attr(,"Probability")

[1] 0.95

# Proportion of time spent moving
set.seed(810)
prop.day1.id <- MCMCglmm(propmoving ~ hour.cen + TL.cen, random = ~us(1 + hour.cen):picomp, prior = prior.id.slope, data = day1, family = "gaussian", nitt = 510000, burnin = 10000, thin = 200, verbose = F)
summary(prop.day1.id)

	post.mean	1-95% CI	u-95% CI	eff.samp
(Intercept):(Intercept).picomp	0.0277472	0.0144136	0.0434898	2339
hour.cen:(Intercept).picomp	-0.0007160	-0.0022626	0.0006277	2500
(Intercept):hour.cen.picomp	-0.0007160	-0.0022626	0.0006277	2500
## hour.cen:hour.cen.picomp

0.0004378 0.0002266 0.0007406 2500

## R-structure: ~units

## post.mean l-95% CI u-95% CI eff.samp

| units  | 0.01082 | 0.009218 | 0.01255 | 2500 |

## Location effects: propmoving ~ hour.cen + TL.cen

## post.mean l-95% CI u-95% CI eff.samp pMCMC

(Intercept)	0.630142	0.566389	0.684575	2500	<4e-04 ***
hour.cen	0.008625	0.002133	0.016439	2835	0.0184 *
TL.cen	0.459872	-0.048249	0.965476	2593	0.0784 .

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

posterior.mode(prop.day1.id$VCV)

(Intercept):(Intercept).picomp	hour.cen:(Intercept).picomp
0.026981070	-0.000866961

(Intercept):hour.cen.picomp	hour.cen:hour.cen.picomp
-0.000866961	0.000406013

units
0.010847988

HPDinterval(prop.day1.id$VCV)

lower	upper
0.0144135606	0.0434897911
-0.0022625975	0.0006276740
-0.0022625975	0.0006276740
0.0002265631	0.0007406139
0.0092175140	0.0125470664

attr("Probability")
[1] 0.95

rpt.prop1 <- prop.day1.id$VCV[, 
"(Intercept):(Intercept).picomp"]/(prop.day1.id$VCV[, 
"(Intercept):(Intercept).picomp"] + prop.day1.id$VCV[, 
"hour.cen:hour.cen.picomp"] + 
prop.day1.id$VCV[, "units"])

posterior.mode(rpt.prop1)

var1
0.6934451

HPDinterval(rpt.prop1)

lower	upper
0.5860356	0.8115755

attr("Probability")
[1] 0.95
# median distance to tank border

set.seed(320)

border.day1.id <- MCMCglmm(borderdist.med ~ hour.cen + TL.cen, random = ~us(1 + hour.cen):picomp, prior = prior.id.slope, data = day1, family = "gaussian", nitt = 510000, burnin = 10000, thin = 200, verbose = F)

summary(border.day1.id)

##
## Iterations = 10001:509801
## Thinning interval = 200
## Sample size = 2500
##
## DIC: 1798.642
##
## G-structure: ~us(1 + hour.cen):picomp
##
## post.mean l-95% CI u-95% CI eff.samp
## (Intercept):(Intercept).picomp 8.13336 4.50890 12.66174 2500
## hour.cen:(Intercept).picomp -0.40597 -0.76921 -0.07922 2500
## (Intercept):hour.cen.picomp -0.40597 -0.76921 -0.07922 2500
## hour.cen:hour.cen.picomp 0.06322 0.02409 0.10654 2500
##
## R-structure: ~units
##
## post.mean l-95% CI u-95% CI eff.samp
## units 3.008 2.576 3.446 2500
##
## Location effects: borderdist.med ~ hour.cen + TL.cen
##
## post.mean l-95% CI u-95% CI eff.samp pMCMC
## (Intercept) 12.3287 11.2842 13.3001 2500 <4e-04 ***
## hour.cen 0.0202 -0.0712 0.1171 2500 0.656
## TL.cen 3.1624 -4.1112 9.7378 3083 0.359
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

posterior.mode(border.day1.id$VCV)

## (Intercept):(Intercept).picomp hour.cen:(Intercept).picomp
## 7.33520497 -0.36949267
## (Intercept):hour.cen.picomp hour.cen:hour.cen.picomp
## -0.36949267 0.05596061
## units
## 3.01922216

HPDinterval(border.day1.id$VCV)

## lower upper
## (Intercept):(Intercept).picomp 4.50890391 12.66173697
## hour.cen:(Intercept).picomp -0.76920512 -0.07921901
## (Intercept):hour.cen.picomp -0.76920512 -0.07921901
Days 2 - 7: We found evidence that individuals significantly differed in their behavior on Day 1 of their lives. Here we then test for repeatability of behavior on each subsequent day of life (days 2-7) to see how robust this finding is.

**Bottom line:** Individuals show significant repeatability in behavior in each day in the first week of their lives. This is a robust result!
# Intercepts ID and Mom---------
set.seed(258)
speed.day2.3 <- MCMCglmm(speed.med ~ hour.cen + TL.cen, random = ~picomp + mother,
  data = day2, family = "gaussian", prior = prior.id.mom, nitt = 510000, burnin = 10000,
  thin = 200, verbose = F)

# Intercepts and Slopes ID -----------------------
set.seed(472)
speed.day2.4 <- MCMCglmm(speed.med ~ hour.cen + TL.cen, random = ~us(1 + hour.cen):picomp,
  data = day2, family = "gaussian", prior = prior.id.slope, nitt = 510000,
  burnin = 10000, thin = 200, verbose = F)

# Intercepts Mom, Slopes Mom ----------------
set.seed(318)
speed.day2.5 <- MCMCglmm(speed.med ~ hour.cen + TL.cen, random = ~us(1 + hour.cen):mother,
  data = day2, family = "gaussian", prior = prior.id.slope, nitt = 510000,
  burnin = 10000, thin = 200, verbose = F)

# Intercepts ID and Mom, Slopes ID ----------------
set.seed(918)
speed.day2.6 <- MCMCglmm(speed.med ~ hour.cen + TL.cen, random = ~us(1 + hour.cen):picomp +
  mother, data = day2, family = "gaussian", prior = prior.id.slope.mom, nitt = 510000,
  burnin = 10000, thin = 200, verbose = F)

# Intercepts ID & Mom, Slopes ID & Mom -----------------
set.seed(78)
speed.day2.7 <- MCMCglmm(speed.med ~ hour.cen + TL.cen, random = ~us(1 + hour.cen):picomp +
  us(1 + hour.cen):mother, data = day2, family = "gaussian", prior = prior.id.slope.mom.slope,
  nitt = 510000, burnin = 10000, thin = 200, verbose = F)

DIC(speed.day2.0, speed.day2.1, speed.day2.2, speed.day2.3, speed.day2.4, speed.day2.5,
  speed.day2.6, speed.day2.7)

> Day 2:

## df     DIC
## speed.day2.0 4 671.3710
## speed.day2.1 5 363.2638
## speed.day2.2 5 549.0355
## speed.day2.3 6 363.2159
## speed.day2.4 6 327.8335
## speed.day2.5 6 551.0234
## speed.day2.6 7 328.2104
## speed.day2.7 8 329.8870

.. report:
```R
set.seed(472)
speed.day2.4 <- MCMCglmm(speed.med ~ hour.cen + TL.cen, random = ~us(1 + hour.cen):picomp,
 data = day2, family = "gaussian", prior = prior.id.slope, nitt = 510000,
 burnin = 10000, thin = 200, verbose = F)
summary(speed.day2.4)

##
Iterations = 10001:509801
Thinning interval = 200
Sample size = 2500
##
DIC: 327.8335
##
G-structure: ~us(1 + hour.cen):picomp
##
(Intercept):(Intercept).picomp 0.434936 0.1772630 0.760316 2500
hour.cen:(Intercept).picomp 0.005394 -0.0185006 0.028133 2664
(Intercept):hour.cen.picomp 0.005394 -0.0185006 0.028133 2664
hour.cen:hour.cen.picomp 0.004007 0.0007252 0.007627 2469
##
R-structure: ~units
##
units 0.1664 0.1378 0.1993 2500
##
Location effects: speed.med ~ hour.cen + TL.cen
##
(Intercept) 0.593302 0.212778 0.939647 2500
hour.cen 0.037098 0.009584 0.068748 2212
TL.cen 1.920180 -0.890916 4.562977 2136

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

posterior.mode(speed.day2.4$Sol)

(Intercept) hour.cen TL.cen
0.60283681 0.03217546 2.06579140

HPDinterval(speed.day2.4$Sol)

lower upper
(Intercept) 0.212778228 0.33964658
hour.cen 0.009583837 0.06874807
TL.cen -0.890915792 4.56297651
attr(,"Probability")
[1] 0.95
```
posterior.mode(speed.day2.4$VCV)

```
(Intercept):(Intercept).picomp hour.cen:(Intercept).picomp
0.342849443 0.002494569
(Intercept):hour.cen.picomp hour.cen:hour.cen.picomp
0.002494569 0.002883872
units
0.161991600
```

HPDinterval(speed.day2.4$VCV)

```
lower upper
(Intercept):(Intercept).picomp 0.1772629775 0.760316250
hour.cen:(Intercept).picomp -0.0185005606 0.028133453
(Intercept):hour.cen.picomp -0.0185005606 0.028133453
hour.cen:hour.cen.picomp 0.0007251829 0.007626783
units 0.1378065063 0.199268355
attr(,"Probability")
[1] 0.95
```

# only ID repeatability
rpt.spd1 <- speed.day2.4$VCV[, "(Intercept):(Intercept).picomp"]/(speed.day2.4$VCV[, "(Intercept):(Intercept).picomp"] + speed.day2.4$VCV[, "hour.cen:hour.cen.picomp"] + speed.day2.4$VCV[, "units"])

posterior.mode(rpt.spd1)

```
var1
0.6903639
```

HPDinterval(rpt.spd1)

```
lower upper
var1 0.5595239 0.8486966
attr(,"Probability")
[1] 0.95
```

# to get marginal R2 to explain fixed effects variance
vmVarF <- numeric(2500)
for (i in 1:2500) {
  Var <- var(as.vector(speed.day2.4$Sol[i, ] %*% t(speed.day2.4$X)))
  vmVarF[i] <- Var
}
R2m <- vmVarF/(vmVarF + speed.day2.4$VCV[, 1] + speed.day2.4$VCV[, 4] + speed.day2.4$VCV[, 5])
posterior.mode(R2m)
## var1
## 0.0420491

HPDinterval(R2m)

##          lower       upper
## var1 0.001642288 0.2518172
## attr(,"Probability")
## [1] 0.95

R2c <- (vmVarF + speed.day2.4$VCV[, 1])/(vmVarF + speed.day2.4$VCV[, 1] + speed.day2.4$VCV[, 4] + speed.day2.4$VCV[, 5])

posterior.mode(R2c)

##          var1
## 0.7643663

HPDinterval(R2c)

##          lower       upper
## var1 0.6017514 0.862172
## attr(,"Probability")
## [1] 0.95

day3 <- hourly.com %>%
  filter(obs == 3) %>%
  mutate(hour.cen = hour - 1, TL.cen = TL - (sum(unique(TL))/26))

# Null model -----------
set.seed(58)
speed.day3.0 <- MCMCglmm(speed.med ~ hour.cen + TL.cen, data = day3, family = "gaussian",
  prior = prior.null, nitt = 510000, burnin = 10000, thin = 200, verbose = F)

# Intercepts ID ----------------------
set.seed(3432)
speed.day3.1 <- MCMCglmm(speed.med ~ hour.cen + TL.cen, random = ~picomp, data = day3,
  family = "gaussian", prior = prior.id, nitt = 510000, burnin = 10000, thin = 200,
  verbose = F)

# only including intercepts for mother -------
set.seed(42021)
speed.day3.2 <- MCMCglmm(speed.med ~ hour.cen + TL.cen, random = ~mother, data = day3,
  family = "gaussian", prior = prior.id, nitt = 510000, burnin = 10000, thin = 200,
  verbose = F)

# Intercepts ID and Mom-------------
set.seed(258)
speed.day3.3 <- MCMCglmm(speed.med ~ hour.cen + TL.cen, random = ~picomp + mother,
    data = day3, family = "gaussian", prior = prior.id.mom, nitt = 510000, burnin = 10000,
    thin = 200, verbose = F)

# Intercepts and Slopes ID -----------------------
set.seed(472)
speed.day3.4 <- MCMCglmm(speed.med ~ hour.cen + TL.cen, random = ~us(1 + hour.cen):picomp,
    data = day3, family = "gaussian", prior = prior.id.slope, nitt = 510000,
    burnin = 10000, thin = 200, verbose = F)

# Intercepts Mom, Slopes Mom ----------------
set.seed(318)
speed.day3.5 <- MCMCglmm(speed.med ~ hour.cen + TL.cen, random = ~us(1 + hour.cen):mother,
    data = day3, family = "gaussian", prior = prior.id.slope, nitt = 510000,
    burnin = 10000, thin = 200, verbose = F)

# Intercepts ID and Mom, Slopes ID ----------------
set.seed(318)
speed.day3.6 <- MCMCglmm(speed.med ~ hour.cen + TL.cen, random = ~us(1 + hour.cen):picomp +
    mother, data = day3, family = "gaussian", prior = prior.id.slope.mom, nitt = 510000,
    burnin = 10000, thin = 200, verbose = F)

# Intercepts ID & Mom, Slopes ID & Mom -----------------
set.seed(78)
speed.day3.7 <- MCMCglmm(speed.med ~ hour.cen + TL.cen, random = ~us(1 + hour.cen):picomp +
    us(1 + hour.cen):mother, data = day3, family = "gaussian", prior = prior.id.slope.mom.slope,
    nitt = 510000, burnin = 10000, thin = 200, verbose = F)

DIC(speed.day3.0, speed.day3.1, speed.day3.2, speed.day3.3, speed.day3.4, speed.day3.5,
    speed.day3.6, speed.day3.7)

> Day 3:

## df   DIC
## speed.day3.0 4  678.2679
## speed.day3.1 5  468.1906
## speed.day3.2 5  559.2013
## speed.day3.3 6  467.7955
## speed.day3.4 6  420.0719
## speed.day3.5 6  557.0478
## speed.day3.6 7  419.8940
## speed.day3.7 8  421.2377

.. report
## Iterations = 10001:509801
## Thinning interval = 200
## Sample size = 2500
##
## DIC: 420.0719
##
## G-structure: ~us(1 + hour.cen):picomp
##
## | post.mean | l-95% CI  | u-95% CI  | eff.samp |
## |-----------|----------|----------|----------|
## | (Intercept):(Intercept).picomp | 0.567597 | 0.22651  | 0.9788347 | 2500 |
## | hour.cen:(Intercept).picomp    | -0.028513| -0.06598 | 0.0008464 | 2500 |
## | (Intercept):hour.cen.picomp    | -0.028513| -0.06598 | 0.0008464 | 2500 |
## | hour.cen:hour.cen.picomp       | 0.006489 | 0.00206  | 0.0117151 | 2500 |
##
## R-structure: ~units
##
## | post.mean | l-95% CI  | u-95% CI  | eff.samp |
## |-----------|----------|----------|----------|
## | units     | 0.2178   | 0.1819   | 0.2591   | 2461 |
##
## Location effects: speed.med ~ hour.cen + TL.cen
##
## | post.mean | l-95% CI  | u-95% CI  | eff.samp | pMCMC |
## |-----------|----------|----------|----------|-------|
## | (Intercept) | 0.8438560 | 0.5193010 | 1.1731976 | 2691  | <4e-04 *** |
## | hour.cen   | -0.0009096 | -0.0329975 | 0.0388752 | 2500  | 0.934 |
## | TL.cen     | 0.9509422  | -1.6111635 | 3.4573687 | 2715  | 0.485 |
##
## Signif. codes:  * 0.05  ** 0.01  *** 0.001  **** 0.0001  

posterior.mode(speed.day3.4$Sol)

## (Intercept)   hour.cen     TL.cen
## 0.886172952 -0.007891026  0.843824272

HPDinterval(speed.day3.4$Sol)

## lower   upper
## (Intercept) 0.51930101 1.17319757
## hour.cen -0.03299751 0.03887522
## TL.cen -1.61116350 3.45736869
## attr("Probability")
## [1] 0.95
posterior.mode(speed.day3.4$VCV)

# (Intercept):(Intercept).picomp  hour.cen:(Intercept).picomp
# 0.437635740 -0.027299389
# (Intercept):hour.cen.picomp  hour.cen:hour.cen.picomp
# -0.027299389 0.005429921
# units
# 0.210484485

HPDinterval(speed.day3.4$VCV)

# (Intercept):(Intercept).picomp 0.226510122 0.9788346948
# hour.cen:(Intercept).picomp -0.065982474 0.0008464298
# (Intercept):hour.cen.picomp -0.065982474 0.0008464298
# hour.cen:hour.cen.picomp 0.002059507 0.0117150982
# units 0.181866617 0.2590720373
# attr("Probability")
# [1] 0.95

# only ID repeatability
rpt.spd1 <- speed.day3.4$VCV[, "(Intercept):(Intercept).picomp"]/(speed.day3.4$VCV[, "(Intercept):(Intercept).picomp"] + speed.day3.4$VCV[, "hour.cen:hour.cen.picomp"] + speed.day3.4$VCV[, "units"])
posterior.mode(rpt.spd1)

# var1
# 0.7046443

HPDinterval(rpt.spd1)

# lower  upper
# var1 0.556949 0.8354121
# attr("Probability")
# [1] 0.95

# to get marginal R2 to explain fixed effects variance
vmVarF <- numeric(2500)
for (i in 1:2500) {
  Var <- var(as.vector(speed.day3.4$Sol[i, ] %*% t(speed.day3.4$X)))
  vmVarF[i] <- Var
}

R2m <- vmVarF/(vmVarF + speed.day3.4$VCV[, 1] + speed.day3.4$VCV[, 4] + speed.day3.4$VCV[, 5])
posterior.mode(R2m)
HPDinterval(R2m)

R2c <- (vmVarF + speed.day3.4$VCV[, 1])/(vmVarF + speed.day3.4$VCV[, 1] + speed.day3.4$VCV[, 4] + speed.day3.4$VCV[, 5])

posterior.mode(R2c)

day4 <- hourly.com %>%
  filter(obs == 4) %>%
  mutate(hour.cen = hour - 1, TL.cen = TL - (sum(unique(TL))/26))

# Null model  -----------
set.seed(58)
speed.day4.0 <- MCMCglmm(speed.med ~ hour.cen + TL.cen, data = day4, family = "gaussian",
                         prior = prior.null, nitt = 510000, burnin = 10000, thin = 200, verbose = F)

# Intercepts ID  -----------
set.seed(3432)
speed.day4.1 <- MCMCglmm(speed.med ~ hour.cen + TL.cen, random = ~picomp, data = day4,
                         family = "gaussian", prior = prior.id, nitt = 510000, burnin = 10000, thin = 200,
                         verbose = F)

# only including intercepts for mother ------
set.seed(42021)
speed.day4.2 <- MCMCglmm(speed.med ~ hour.cen + TL.cen, random = ~mother, data = day4,
                         family = "gaussian", prior = prior.id, nitt = 510000, burnin = 10000, thin = 200,
                         verbose = F)

# Intercepts ID and Mom--------
set.seed(258)
speed.day4.3 <- MCMCglmm(speed.med ~ hour.cen + TL.cen, random = ~picomp + mother, 
  data = day4, family = "gaussian", prior = prior.id.mom, nitt = 510000, burnin = 10000, 
  thin = 200, verbose = F)

# Intercepts and Slopes ID -----------------------
set.seed(472)
speed.day4.4 <- MCMCglmm(speed.med ~ hour.cen + TL.cen, random = ~us(1 + hour.cen):picomp, 
  data = day4, family = "gaussian", prior = prior.id.slope, nitt = 510000, 
  burnin = 10000, thin = 200, verbose = F)

# Intercepts Mom, Slopes Mom ----------------
set.seed(318)
speed.day4.5 <- MCMCglmm(speed.med ~ hour.cen + TL.cen, random = ~us(1 + hour.cen):mother, 
  data = day4, family = "gaussian", prior = prior.id.slope, nitt = 510000, 
  burnin = 10000, thin = 200, verbose = F)

# Intercepts ID and Mom, Slopes ID ----------------
set.seed(918)
speed.day4.6 <- MCMCglmm(speed.med ~ hour.cen + TL.cen, random = ~us(1 + hour.cen):picomp + 
  mother, data = day4, family = "gaussian", prior = prior.id.slope.mom, nitt = 510000, 
  burnin = 10000, thin = 200, verbose = F)

# Intercepts ID & Mom, Slopes ID & Mom -----------------
set.seed(78)
speed.day4.7 <- MCMCglmm(speed.med ~ hour.cen + TL.cen, random = ~us(1 + hour.cen):picomp + 
  us(1 + hour.cen):mother, data = day4, family = "gaussian", prior = prior.id.slope.mom.slope, 
  nitt = 510000, burnin = 10000, thin = 200, verbose = F)

DIC(speed.day4.0, speed.day4.1, speed.day4.2, speed.day4.3, speed.day4.4, speed.day4.5, 
  speed.day4.6, speed.day4.7)

> Day 4:

##       df      DIC
## speed.day4.0  4 678.0763
## speed.day4.1  5 492.8375
## speed.day4.2  5 599.8889
## speed.day4.3  6 492.8026
## speed.day4.4  6 483.3065
## speed.day4.5  6 600.5203
## speed.day4.6  7 482.0919
## speed.day4.7  8 483.2055

.. report
set.seed(472)
speed.day4.4 <- MCMCglmm(speed.med ~ hour.cen + TL.cen, random = ~us(1 + hour.cen):picomp, 
                       data = day4, family = "gaussian", prior = prior.id.slope, nitt = 510000, 
                       burnin = 10000, thin = 200, verbose = F)

summary(speed.day4.4)

##
## Iterations = 10001:509801
## Thinning interval = 200
## Sample size = 2500
##
## DIC: 483.3065
##
## G-structure: ~us(1 + hour.cen):picomp
##
##             post.mean  l-95% CI u-95% CI eff.samp
## (Intercept):(Intercept).picomp   0.364036   1.169e-01  0.666641  2355
## hour.cen:(Intercept).picomp      0.002349  -2.086e-02  0.024215  2223
## (Intercept):hour.cen.picomp      0.002349  -2.086e-02  0.024215  2223
## hour.cen:hour.cen.picomp         0.002907   2.402e-08  0.006599  1895
##
## R-structure: ~units
##
##             post.mean  l-95% CI u-95% CI eff.samp
## units       0.29890  0.24660  0.35710  2500
##
## Location effects: speed.med ~ hour.cen + TL.cen
##
##             post.mean  l-95% CI u-95% CI eff.samp   pMCMC
## (Intercept)  0.76499  0.41868  1.12342          2500 <4e-04 ***
## hour.cen     0.03074  0.00089  0.06062          2500  0.0464 *
## TL.cen       0.47575 -2.17931  2.93117          2326  0.6984
##
## ---
## Signif. codes:  0 '***'  0.001 '**'  0.01 '*'  0.05 '.'  0.1 ' ' 1

posterior.mode(speed.day4.4$Sol)

## (Intercept)  hour.cen  TL.cen
##  0.83858349  0.03056214  0.56645443

HPDinterval(speed.day4.4$Sol)

## lower       upper
## (Intercept)  0.4186849027  1.12342030
## hour.cen     0.0008878536  0.06062279
## TL.cen      -2.1793123708  2.93117444
## attr("Probability")
## [1] 0.95
posterior.mode(speed.day4.4$VCV)

## (Intercept):(Intercept).picomp  hour.cen:(Intercept).picomp
## 0.284698740 0.006921316
## (Intercept):hour.cen.picomp  hour.cen:hour.cen.picomp
## 0.006921316 0.001712658
## units
## 0.301888590

HPDinterval(speed.day4.4$VCV)

## lower upper
## (Intercept):(Intercept).picomp 1.169135e-01 0.666640687
## hour.cen:(Intercept).picomp -2.085552e-02 0.024214679
## (Intercept):hour.cen.picomp -2.085552e-02 0.024214679
## hour.cen:hour.cen.picomp 2.402187e-08 0.006598563
## units 2.466394e-01 0.357115867
## attr(,"Probability")
## [1] 0.95

# only ID repeatability
rpt.spd1 <- speed.day4.4$VCV[,"(Intercept):(Intercept).picomp"]/(speed.day4.4$VCV[,"(Intercept):(Intercept).picomp"] + speed.day4.4$VCV[,"hour.cen:hour.cen.picomp"] + speed.day4.4$VCV[,"units"])
posterior.mode(rpt.spd1)

## var1
## 0.5735896

HPDinterval(rpt.spd1)

## lower upper
## var1 0.3309984 0.7238141
## attr(,"Probability")
## [1] 0.95

# to get marginal R2 to explain fixed effects variance
vmVarF <- numeric(2500)
for (i in 1:2500) {
  Var <- var(as.vector(speed.day4.4$Sol[i,] %*% t(speed.day4.4$X)))
  vmVarF[i] <- Var
}
R2m <- vmVarF/(vmVarF + speed.day4.4$VCV[,1] + speed.day4.4$VCV[,4] + speed.day4.4$VCV[,5])
posterior.mode(R2m)
## var1
## 0.01609207

HPDinterval(R2m)

## lower upper
## var1 0.0001082935 0.1168187
## attr("Probability")
## [1] 0.95

R2c <- (vmVarF + speed.day4.4$VCV[, 1])/(vmVarF + speed.day4.4$VCV[, 1] + speed.day4.4$VCV[, 4] + speed.day4.4$VCV[, 5])

posterior.mode(R2c)

## var1
## 0.5181292

HPDinterval(R2c)

## lower upper
## var1 0.353436 0.7350063
## attr("Probability")
## [1] 0.95

day5 <- hourly.com %>%
  filter(obs == 5) %>%
  mutate(hour.cen = hour - 1, TL.cen = TL - (sum(unique(TL))/26))

# Null model  -----------
set.seed(98)
speed.day5.0 <- MCMCglmm(speed.med ~ hour.cen + TL.cen, data = day5, family = "gaussian",
                          prior = prior.null, nitt = 510000, burnin = 10000, thin = 200, verbose = F)

# Intercepts ID ----------------------
set.seed(432)
speed.day5.1 <- MCMCglmm(speed.med ~ hour.cen + TL.cen, random = ~picomp, data = day5,
                          family = "gaussian", prior = prior.id, nitt = 510000, burnin = 10000, thin = 200,
                          verbose = F)

# only including intercepts for mother ----
set.seed(4221)
speed.day5.2 <- MCMCglmm(speed.med ~ hour.cen + TL.cen, random = ~mother, data = day5,
                         family = "gaussian", prior = prior.id, nitt = 510000, burnin = 10000, thin = 200,
                         verbose = F)

# Intercepts ID and Mom-------------
```r
set.seed(58)
speed.day5.3 <- MCMCglmm(speed.med ~ hour.cen + TL.cen, random = ~picomp + mother,
 data = day5, family = "gaussian", prior = prior.id.mom, nitt = 510000, burnin = 10000,
 thin = 200, verbose = F)

Intercepts and Slopes ID -----------------------
set.seed(472)
speed.day5.4 <- MCMCglmm(speed.med ~ hour.cen + TL.cen, random = ~us(1 + hour.cen):picomp,
 data = day5, family = "gaussian", prior = prior.id.slope, nitt = 510000,
 burnin = 10000, thin = 200, verbose = F)

Intercepts Mom, Slopes Mom ----------------
set.seed(318)
speed.day5.5 <- MCMCglmm(speed.med ~ hour.cen + TL.cen, random = ~us(1 + hour.cen):mother,
 data = day5, family = "gaussian", prior = prior.id.slope, nitt = 510000,
 burnin = 10000, thin = 200, verbose = F)

Intercepts ID and Mom, Slopes ID ---------------
set.seed(918)
speed.day5.6 <- MCMCglmm(speed.med ~ hour.cen + TL.cen, random = ~us(1 + hour.cen):picomp +
 mother, data = day5, family = "gaussian", prior = prior.id.slope.mom, nitt = 510000,
 burnin = 10000, thin = 200, verbose = F)

Intercepts ID & Mom, Slopes ID & Mom ------------
set.seed(78)
speed.day5.7 <- MCMCglmm(speed.med ~ hour.cen + TL.cen, random = ~us(1 + hour.cen):picomp +
 us(1 + hour.cen):mother, data = day5, family = "gaussian", prior = prior.id.slope.mom.slope,
 nitt = 510000, burnin = 10000, thin = 200, verbose = F)

DIC(speed.day5.0, speed.day5.1, speed.day5.2, speed.day5.3, speed.day5.4, speed.day5.5,
 speed.day5.6, speed.day5.7)

> Day 5:

df DIC
speed.day5.0 4 646.0225
speed.day5.1 5 463.4091
speed.day5.2 5 502.5157
speed.day5.3 6 461.9713
speed.day5.4 6 443.9833
speed.day5.5 6 492.3501
speed.day5.6 7 443.5182
speed.day5.7 8 443.3452

.. report
```
```r
set.seed(472)
speed.day5.4 <- MCMCglmm(speed.med ~ hour.cen + TL.cen, random = ~us(1 + hour.cen):picomp,
 data = day5, family = "gaussian", prior = prior.id.slope, nitt = 510000,
 burnin = 10000, thin = 200, verbose = F)

summary(speed.day5.4)

##
Iterations = 10001:509801
Thinning interval = 200
Sample size = 2500
##
DIC: 443.9833
##
G-structure: ~us(1 + hour.cen):picomp
##
post.mean l-95% CI u-95% CI eff.samp
(Intercept):(Intercept).picomp 0.399373 0.1347813 0.71771 2500
hour.cen:(Intercept).picomp -0.007640 -0.0357521 0.01562 2500
(Intercept):hour.cen.picomp -0.007640 -0.0357521 0.01562 2500
hour.cen:hour.cen.picomp 0.004122 0.0003598 0.00851 2500
##
R-structure: ~units
##
post.mean l-95% CI u-95% CI eff.samp
units 0.2615 0.2141 0.313 2500
##
Location effects: speed.med ~ hour.cen + TL.cen
##
post.mean l-95% CI u-95% CI eff.samp pMCMC
(Intercept) 0.542758 0.190271 0.864697 2500 0.0024 **
hour.cen 0.009573 -0.024076 0.042209 2500 0.5288
TL.cen 0.925000 -1.566604 3.618391 2500 0.4848

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

posterior.mode(speed.day5.4$Sol)

(Intercept) hour.cen TL.cen
0.58357119 0.00677083 1.00824251

HPDinterval(speed.day5.4$Sol)

lower upper
(Intercept) 0.19027117 0.8646972
hour.cen -0.02407554 0.0422091
TL.cen -1.56660385 3.6183910
attr("Probability")
[1] 0.95

54
posterior.mode(speed.day5.4$VCV)

(Intercept):(Intercept).picomp hour.cen:(Intercept).picomp
0.337489557 -0.003416255
(Intercept):hour.cen.picomp hour.cen:hour.cen.picomp
-0.003416255 0.002585669
units
0.249961502

HPDinterval(speed.day5.4$VCV)

lower upper
(Intercept):(Intercept).picomp 0.1347813018 0.717714554
hour.cen:(Intercept).picomp -0.0357520685 0.015624729
(Intercept):hour.cen.picomp -0.0357520685 0.015624729
hour.cen:hour.cen.picomp 0.0003598117 0.008509955
units 0.2141137225 0.313004669
attr(,"Probability")
[1] 0.95

only ID repeatability
rpt.spd1 <- speed.day5.4$VCV[, "(Intercept):(Intercept).picomp"]/(speed.day5.4$VCV[, "(Intercept):(Intercept).picomp"] + speed.day5.4$VCV[, "hour.cen:hour.cen.picomp"] + speed.day5.4$VCV[, "units"])
posterior.mode(rpt.spd1)

var1
0.5682457

HPDinterval(rpt.spd1)

lower upper
var1 0.3768156 0.7541062
attr(,"Probability")
[1] 0.95

to get marginal R2 to explain fixed effects variance
vmVarF <- numeric(2500)

for (i in 1:2500) {
 Var <- var(as.vector(speed.day5.4$Sol[i,] %*% t(speed.day5.4$X)))
 vmVarF[i] <- Var
}

R2m <- vmVarF/(vmVarF + speed.day5.4$VCV[, 1] + speed.day5.4$VCV[, 4] + speed.day5.4$VCV[, 5])
posterior.mode(R2m)
```r
# var1
# 0.002495821

HPDinterval(R2m)

# lower   upper
# var1 3.000935e-06 0.131921
# attr("Probability")
# [1] 0.95

R2c <- (vmVarF + speed.day5.4$VCV[, 1])/(vmVarF + speed.day5.4$VCV[, 1] + speed.day5.4$VCV[, 4] + speed.day5.4$VCV[, 5])

posterior.mode(R2c)

# var1
# 0.6113138

HPDinterval(R2c)

# lower   upper
# var1 0.4187854 0.7807376
# attr("Probability")
# [1] 0.95

day6 <- hourly.com %>%
filter(obs == 6) %>%
mutate(hour.cen = hour - 1, TL.cen = TL - (sum(unique(TL))/26))

# Null model  -----------
set.seed(58)
speed.day6.0 <- MCMCglmm(speed.med ~ hour.cen + TL.cen, data = day6, family = "gaussian",
prior = prior.null, nitt = 510000, burnin = 10000, thin = 200, verbose = F)

# Intercepts ID -----------
set.seed(3432)
speed.day6.1 <- MCMCglmm(speed.med ~ hour.cen + TL.cen, random = ~picomp, data = day6,
family = "gaussian", prior = prior.id, nitt = 510000, burnin = 10000, thin = 200, verbose = F)

# only including intercepts for mother ------
set.seed(42021)
speed.day6.2 <- MCMCglmm(speed.med ~ hour.cen + TL.cen, random = ~mother, data = day6,
family = "gaussian", prior = prior.id, nitt = 510000, burnin = 10000, thin = 200, verbose = F)

# Intercepts ID and Mom---------
```
set.seed(258)
speed.day6.3 <- MCMCglmm(speed.med ~ hour.cen + TL.cen, random = ~picomp + mother,
 data = day6, family = "gaussian", prior = prior.id.mom, nitt = 510000, burnin = 10000,
 thin = 200, verbose = F)

Intercepts and Slopes ID --------------------------
set.seed(472)
speed.day6.4 <- MCMCglmm(speed.med ~ hour.cen + TL.cen, random = ~us(1 + hour.cen):picomp,
 data = day6, family = "gaussian", prior = prior.id.slope, nitt = 510000,
 burnin = 10000, thin = 200, verbose = F)

Intercepts Mom, Slopes Mom ----------------------
set.seed(318)
speed.day6.5 <- MCMCglmm(speed.med ~ hour.cen + TL.cen, random = ~us(1 + hour.cen):mother,
 data = day6, family = "gaussian", prior = prior.id.slope, nitt = 510000,
 burnin = 10000, thin = 200, verbose = F)

Intercepts ID and Mom, Slopes ID -----------------
set.seed(918)
speed.day6.6 <- MCMCglmm(speed.med ~ hour.cen + TL.cen, random = ~us(1 + hour.cen):picomp +
 mother, data = day6, family = "gaussian", prior = prior.id.slope.mom, nitt = 510000,
 burnin = 10000, thin = 200, verbose = F)

Intercepts ID & Mom, Slopes ID & Mom --------------
set.seed(78)
speed.day6.7 <- MCMCglmm(speed.med ~ hour.cen + TL.cen, random = ~us(1 + hour.cen):picomp +
 us(1 + hour.cen):mother, data = day6, family = "gaussian", prior = prior.id.slope.mom.slope,
 nitt = 510000, burnin = 10000, thin = 200, verbose = F)

DIC(speed.day6.0, speed.day6.1, speed.day6.2, speed.day6.3, speed.day6.4, speed.day6.5,
 speed.day6.6, speed.day6.7)

> Day 6:

```
  df     DIC
 speed.day6.0  4 650.8213
 speed.day6.1  5 503.0155
 speed.day6.2  5 510.8793
 speed.day6.3  6 499.6059
 speed.day6.4  6 448.9886
 speed.day6.5  6 458.4026
 speed.day6.6  7 448.2602
 speed.day6.7  8 438.9988
```

Interestingly, on Day 6, the most well supported model includes random intercepts and slopes for mother as well at individual (model 7). let’s see how much variation is explained by mother compared to individual .. report
```r
set.seed(78)
speed.day6.7 <- MCMCglmm(speed.med ~ hour.cen + TL.cen, random = ~us(1 + hour.cen):picomp + us(1 + hour.cen):mother, data = day6, family = "gaussian", prior = prior.id.slope.mom.slope, nitt = 510000, burnin = 10000, thin = 200, verbose = F)
summary(speed.day6.7)
```

```r
##
## Iterations = 10001:509801
## Thinning interval = 200
## Sample size = 2500
##
## DIC: 438.9988
##
## G-structure: ~us(1 + hour.cen):picomp
##
## post.mean l-95% CI u-95% CI eff.samp
## (Intercept):(Intercept).picomp 0.0676712 4.533e-09 0.182465 2315
## hour.cen:(Intercept).picomp -0.0020200 -1.382e-02 0.004965 2210
## (Intercept):hour.cen.picomp -0.0020200 -1.382e-02 0.004965 2210
## hour.cen:hour.cen.picomp 0.0006506 6.228e-11 0.002393 2119
##
## ~us(1 + hour.cen):mother
##
## post.mean l-95% CI u-95% CI eff.samp
## (Intercept):(Intercept).mother 0.57962 0.043676 1.45485 2500
## hour.cen:(Intercept).mother -0.03896 -0.156343 0.05418 2500
## (Intercept):hour.cen.mother -0.03896 -0.156343 0.05418 2500
## hour.cen:hour.cen.mother 0.01604 0.001352 0.04194 2500
##
## R-structure: ~units
##
## post.mean l-95% CI u-95% CI eff.samp
## units 0.2576 0.2137 0.3054 2427
##
## Location effects: speed.med ~ hour.cen + TL.cen
##
## post.mean l-95% CI u-95% CI eff.samp pMCMC
## (Intercept) 0.47111 -0.12257 0.98021 2500 0.0968 .
## hour.cen 0.04927 -0.03934 0.14052 2500 0.2440
## TL.cen -0.86540 -2.77445 1.03228 2240 0.3496
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

posterior.mode(speed.day6.7$Sol)
```

```r
## (Intercept) hour.cen TL.cen
## 0.41659254 0.06462006 -0.54099237
```

```r
HPDinterval(speed.day6.7$Sol)
```

```r
## lower upper
```

58
(Intercept) -0.12256943 0.9802118
hour.cen -0.03933574 0.1405249
TL.cen -2.77444565 1.0322796
attr("Probability")
[1] 0.95

posterior.mode(speed.day6.7$VCV)

(Intercept):(Intercept).picomp hour.cen:(Intercept).picomp
4.284007e-02 3.078618e-05
(Intercept):hour.cen.picomp hour.cen:hour.cen.picomp
3.078618e-05 2.375753e-05
(Intercept):(Intercept).mother hour.cen:(Intercept).mother
2.776558e-01 -1.414078e-02
(Intercept):hour.cen.mother hour.cen:hour.cen.mother
-1.414078e-02 8.066965e-03
units
2.471178e-01

HPDinterval(speed.day6.7$VCV)

lower upper
(Intercept):(Intercept).picomp 4.532742e-09 0.182465267
hour.cen:(Intercept).picomp -1.381577e-02 0.004965170
(Intercept):hour.cen.picomp -1.381577e-02 0.004965170
hour.cen:hour.cen.picomp 6.227928e-11 0.002392794
(Intercept):(Intercept).mother 4.367649e-02 1.454847050
hour.cen:(Intercept).mother -1.563430e-01 0.054180772
(Intercept):hour.cen.mother -1.563430e-01 0.054180772
hour.cen:hour.cen.mother 1.351595e-03 0.041943481
units 2.137061e-01 0.305375147
attr("Probability")
[1] 0.95

proportion of variation due to individual intercepts
day6.id <- speed.day6.7$VCV[, "(Intercept):(Intercept).picomp"]/(speed.day6.7$VCV[, "(Intercept):(Intercept).picomp"] + speed.day6.7$VCV[, "hour.cen:hour.cen.picomp"] + speed.day6.7$VCV[, "hour.cen:hour.cen.mother"] + speed.day6.7$VCV[, "units"])

posterior.mode(day6.id)

var1
0.02934972

HPDinterval(day6.id)

lower upper
var1 6.242116e-09 0.2390201
attr("Probability")
[1] 0.95
proportion of variation due mother intercepts
day6.mom <- speed.day6.7$VCV[, "(Intercept):(Intercept).mother"]/ (speed.day6.7$VCV[, "(Intercept):(Intercept).picomp"] + speed.day6.7$VCV[, "hour.cen:hour.cen.picomp"] + speed.day6.7$VCV[, "(Intercept):(Intercept).mother"] + speed.day6.7$VCV[, "hour.cen:hour.cen.mother"] + speed.day6.7$VCV[, "units"])
posterior.mode(day6.mom)

var1
0.5665137

HPDinterval(day6.mom)

lower upper
var1 0.2633498 0.862011
attr(,"Probability")
[1] 0.95

proportion of variation due mother intercepts
day6.units <- speed.day6.7$VCV[, "units"]/ (speed.day6.7$VCV[, "(Intercept):(Intercept).picomp"] + speed.day6.7$VCV[, "hour.cen:hour.cen.picomp"] + speed.day6.7$VCV[, "(Intercept):(Intercept).mother"] + speed.day6.7$VCV[, "hour.cen:hour.cen.mother"] + speed.day6.7$VCV[, "units"])
posterior.mode(day6.units)

var1
0.3731586

HPDinterval(day6.units)

lower upper
var1 0.09599891 0.5509751
attr(,"Probability")
[1] 0.95

to get marginal R2 to explain fixed effects variance
vmVarF <- numeric(2500)
for (i in 1:2500) {
 Var <- var(as.vector(speed.day6.7$Sol[i,] %*% t(speed.day6.7$X)))
 vmVarF[i] <- Var
}

R2m <- vmVarF/(vmVarF + speed.day6.7$VCV[, 1] + speed.day6.7$VCV[, 4] + speed.day6.7$VCV[, 5])

posterior.mode(R2m)

var1
0.02048799
HPDinterval(R2m)

lower upper
var1 1.908369e-06 0.2878823
attr("Probability")
[1] 0.95

R2c <- (vmVarF + speed.day6.7$VCV[, 1])/(vmVarF + speed.day6.7$VCV[, 1] + speed.day6.7$VCV[, 4] + speed.day6.7$VCV[, 5])

posterior.mode(R2c)

var1
0.1211246

HPDinterval(R2c)

lower upper
var1 0.009055556 0.524962
attr("Probability")
[1] 0.95

day7 <- hourly.com %>%
 filter(obs == 7) %>%
 mutate(hour.cen = hour - 1, TL.cen = TL - (sum(unique(TL))/26))

Null model -----------
set.seed(58)
speed.day7.0 <- MCMCglmm(speed.med ~ hour.cen + TL.cen, data = day7, family = "gaussian",
 prior = prior.null, nitt = 510000, burnin = 10000, thin = 200, verbose = F)

Intercepts ID ----------------------
set.seed(3432)
speed.day7.1 <- MCMCglmm(speed.med ~ hour.cen + TL.cen, random = ~picomp, data = day7,
 family = "gaussian", prior = prior.id, nitt = 510000, burnin = 10000, thin = 200, verbose = F)

only including intercepts for mother ------
set.seed(42021)
speed.day7.2 <- MCMCglmm(speed.med ~ hour.cen + TL.cen, random = ~mother, data = day7,
 family = "gaussian", prior = prior.id, nitt = 510000, burnin = 10000, thin = 200, verbose = F)

Intercepts ID and Mom-----------
set.seed(258)
speed.day7.3 <- MCMCglmm(speed.med ~ hour.cen + TL.cen, random = ~picomp + mother,
 data = day7, family = "gaussian", prior = prior.id.mom, nitt = 510000, burnin = 10000,
thin = 200, verbose = F)

Intercepts and Slopes ID -----------------------
set.seed(472)
speed.day7.4 <- MCMCglmm(speed.med ~ hour.cen + TL.cen, random = ~us(1 + hour.cen):picomp,
 data = day7, family = "gaussian", prior = prior.id.slope, nitt = 510000,
 burnin = 10000, thin = 200, verbose = F)

Intercepts Mom, Slopes Mom ----------------
set.seed(318)
speed.day7.5 <- MCMCglmm(speed.med ~ hour.cen + TL.cen, random = ~us(1 + hour.cen):mother,
 data = day7, family = "gaussian", prior = prior.id.slope, nitt = 510000,
 burnin = 10000, thin = 200, verbose = F)

Intercepts ID and Mom, Slopes ID ----------------
set.seed(968)
speed.day7.6 <- MCMCglmm(speed.med ~ hour.cen + TL.cen, random = ~us(1 + hour.cen):picomp +
 mother, data = day7, family = "gaussian", prior = prior.id.slope.mom, nitt = 510000,
 burnin = 10000, thin = 200, verbose = F)

Intercepts ID & Mom, Slopes ID & Mom ----------------
set.seed(178)
speed.day7.7 <- MCMCglmm(speed.med ~ hour.cen + TL.cen, random = ~us(1 + hour.cen):picomp +
 us(1 + hour.cen):mother, data = day7, family = "gaussian", prior = prior.id.slope.mom.slope,
 nitt = 510000, burnin = 10000, thin = 200, verbose = F)

DIC(speed.day7.0, speed.day7.1, speed.day7.2, speed.day7.3, speed.day7.4, speed.day7.5,
 speed.day7.6, speed.day7.7)

> Day 7:

df DIC
speed.day7.0 4 658.5002
speed.day7.1 5 445.7669
speed.day7.2 5 541.4688
speed.day7.3 6 445.3436
speed.day7.4 6 514.4688
speed.day7.5 6 521.6844
speed.day7.6 7 389.3534
speed.day7.7 8 390.8515

.. report

set.seed(472)
speed.day7.4 <- MCMCglmm(speed.med ~ hour.cen + TL.cen, random = ~us(1 + hour.cen):picomp,
 data = day7, family = "gaussian", prior = prior.id.slope, nitt = 510000,
 burnin = 10000, thin = 200, verbose = F)
summary(speed.day7.4)

##
Iterations = 10001:509801
Thinning interval = 200
Sample size = 2500
##
DIC: 388.7121
##
G-structure: ~us(1 + hour.cen):picomp
##
post.mean l-95% CI u-95% CI eff.samp
(Intercept):(Intercept).picomp 0.699977 0.296218 1.174234 2467
hour.cen:(Intercept).picomp -0.044601 -0.092315 -0.007016 2287
(Intercept):hour.cen.picomp -0.044601 -0.092315 -0.007016 2287
hour.cen:hour.cen.cen.picomp 0.007548 0.002721 0.013964 2293
##
R-structure: ~units
##
post.mean l-95% CI u-95% CI eff.samp
units 0.1993 0.1638 0.2376 2500
##
Location effects: speed.med ~ hour.cen + TL.cen
##
post.mean l-95% CI u-95% CI eff.samp pMCMC
(Intercept) 0.68566 0.33489 1.05783 2500 0.0008 ***
hour.cen -0.01223 -0.04893 0.02554 1948 0.5096
TL.cen 0.73476 -1.87203 3.39216 2500 0.5720

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

posterior.mode(speed.day7.4$Sol)

(Intercept) hour.cen TL.cen
0.73428552 -0.01023717 0.66886278

HPDinterval(speed.day7.4$Sol)

lower upper
(Intercept) 0.33488596 1.05783060
hour.cen -0.04893163 0.02553764
TL.cen -1.87203097 3.39215605
attr("Probability")
[1] 0.95

posterior.mode(speed.day7.4$VCV)

(Intercept):(Intercept).picomp hour.cen:(Intercept).picomp
0.572253878 -0.032205275
(Intercept):hour.cen.cen.picomp hour.cen:hour.cen.cen.picomp
```r
# HPD interval
HPDinterval(speed.day7.4$VCV)

# only ID repeatability
rpt.spd1 <- speed.day7.4$VCV[, "(Intercept):(Intercept).picomp"]/(speed.day7.4$VCV[, "(Intercept):(Intercept).picomp"] + speed.day7.4$VCV[, "hour.cen:hour.cen.picomp"] + speed.day7.4$VCV[, "units"])
posterior.mode(rpt.spd1)

# to get marginal R2 to explain fixed effects variance
vmVarF <- numeric(2500)
for (i in 1:2500) {
  Var <- var(as.vector(speed.day7.4$Sol[, ] %*% t(speed.day7.4$X)))
  vmVarF[i] <- Var
}
R2m <- vmVarF/(vmVarF + speed.day7.4$VCV[, 1] + speed.day7.4$VCV[, 4] + speed.day7.4$VCV[, 5])
posterior.mode(R2m)
```
lower upper
var1 1.431154e-06 0.0905166
attr("Probability")
[1] 0.95

R2c <- (vmVarF + speed.day7.4$VCV[, 1])/(vmVarF + speed.day7.4$VCV[, 1] + speed.day7.4$VCV[, 4] + speed.day7.4$VCV[, 5])

posterior.mode(R2c)

var1
0.7804428

HPDinterval(R2c)

lower upper
var1 0.6514933 0.8777478
attr("Probability")
[1] 0.95

Week 1: Now let's just look across the entire first week of life to make sure that individuals are consistent ACROSS days as well

Bottom line: Yes, they are!

Null model -----------
set.seed(58)
speed.week1.0 <- MCMCglmm(speed.med ~ obs.cen + TL, data = hourly.com[which(hourly.com$week == 1),], family = "gaussian", prior = prior.null, nitt = 510000, burnin = 10000, thin = 200, verbose = F)

Intercepts ID ----------------------
set.seed(3432)
speed.week1.1 <- MCMCglmm(speed.med ~ obs.cen + TL, random = ~picomp, data = hourly.com[which(hourly.com$week == 1),], family = "gaussian", prior = prior.id, nitt = 510000, burnin = 10000, thin = 200, verbose = F)

only including intercepts for mother ------
set.seed(42021)
speed.week1.2 <- MCMCglmm(speed.med ~ obs.cen + TL, random = ~mother, data = hourly.com[which(hourly.com$week == 1),], family = "gaussian", prior = prior.id, nitt = 510000, burnin = 10000, thin = 200, verbose = F)

Intercepts ID and Mom-----------
set.seed(258)
speed.week1.3 <- MCMCglmm(speed.med ~ obs.cen + TL, random = ~picomp + mother, data = hourly.com[which(hourly.com$week == 1),], family = "gaussian", prior = prior.id.mom,
nitt = 510000, burnin = 10000, thin = 200, verbose = F)

Intercepts and Slopes ID -----------------------
set.seed(472)
speed.week1.4 <- MCMCglmm(speed.med ~ obs.cen + TL, random = ~us(1 + obs.cen):picomp,
data = hourly.com[which(hourly.com$week == 1),], family = "gaussian", prior = prior.id.slope,
nitt = 510000, burnin = 10000, thin = 200, verbose = F)

Intercepts Mom, Slopes Mom ----------------
set.seed(318)
speed.week1.5 <- MCMCglmm(speed.med ~ obs.cen + TL, random = ~us(1 + obs.cen):mother,
data = hourly.com[which(hourly.com$week == 1),], family = "gaussian", prior = prior.id.slope,
nitt = 510000, burnin = 10000, thin = 200, verbose = F)

Intercepts ID and Mom, Slopes ID ---------------
set.seed(918)
speed.week1.6 <- MCMCglmm(speed.med ~ obs.cen + TL, random = ~us(1 + obs.cen):picomp +
mother, data = hourly.com[which(hourly.com$week == 1),], family = "gaussian",
prior = prior.id.slope.mom, nitt = 510000, burnin = 10000, thin = 200, verbose = F)

Intercepts ID & Mom, Slopes ID & Mom -----------
set.seed(78)
speed.week1.7 <- MCMCglmm(speed.med ~ obs.cen + TL, random = ~us(1 + obs.cen):picomp +
us(1 + obs.cen):mother, data = hourly.com[which(hourly.com$week == 1),], family = "gaussian",
prior = prior.id.slope.mom.slope, nitt = 510000, burnin = 10000, thin = 200, verbose = F)

DIC(speed.week1.0, speed.week1.1, speed.week1.2, speed.week1.3, speed.week1.4,
speed.week1.5, speed.week1.6, speed.week1.7)

> model comparison

df DIC
speed.week1.0 4 4617.310
speed.week1.1 5 3772.220
speed.week1.2 5 3999.101
speed.week1.3 6 3771.720
speed.week1.4 6 3488.369
speed.week1.5 6 3900.975
speed.week1.6 7 3487.796
speed.week1.7 8 3487.927

set.seed(472)
speed.week1.4 <- MCMCglmm(speed.med - obs.cen * growth.rate + TL, random = ~us(1 +

66
obs.cen):picomp, data = hourly.com[which(hourly.com$week == 1),], family = "gaussian",
 prior = prior.id.slope, nitt = 510000, burnin = 10000, thin = 200, verbose = F)

posterior.mode(speed.week1.4$Sol)

(Intercept) obs.cen growth.rate TL
1.26213832 -0.02789741 -1.36396027 0.67572988

obs.cen:growth.rate
-0.30901087

HPDinterval(speed.week1.4$Sol)

(Intercept) obs.cen growth.rate TL
-1.4274044 3.32154528
-0.1664903 0.06792222
-4.3257810 2.40909607
-1.5222118 2.63208391
-0.1022724 0.34493051

attr(,"Probability")
[1] 0.95

posterior.mode(speed.week1.4$VCV)

(Intercept):(Intercept).picomp obs.cen:(Intercept).picomp
0.38697595 -0.03979564

(Intercept):obs.cen.picomp obs.cen:obs.cen.picomp
-0.03979564 0.01338808

units
0.33988932

HPDinterval(speed.week1.4$VCV)

(Intercept):(Intercept).picomp obs.cen:(Intercept).picomp
0.222792432 0.78379154
-0.110576855 -0.01674356

(Intercept):obs.cen.picomp obs.cen:obs.cen.picomp
-0.110576855 -0.01674356
0.008630652 0.02985858

units
0.320063845 0.36347974

attr(,"Probability")
[1] 0.95

only ID repeatability
rpt.spd.wk1 <- speed.week1.4$VCV[, "(Intercept):(Intercept).picomp"]/(speed.week1.4$VCV[, "(Intercept):(Intercept).picomp"] + speed.week1.4$VCV[, "obs.cen:obs.cen.picomp"] + speed.week1.4$VCV[, "units"])

posterior.mode(rpt.spd.wk1)

var1
0.5670351
other behaviors We also used the x,y coordinates returned by our tracking software to estimate a number of other behavioral variables. Here we test for repeatability in these behaviors in the first week of life.
```r
data = hourly.com[which(hourly.com$week == 1),], family = "gaussian", prior = prior.id.slope,
nitt = 510000, burnin = 10000, thin = 200, verbose = F)

set.seed(504)
prop.week1.id <- MCMCglmm(propmoving ~ obs.cen + TL, random = ~us(1 + obs.cen):picomp,
data = hourly.com[which(hourly.com$week == 1),], family = "gaussian", prior = prior.id.slope,
nitt = 510000, burnin = 10000, thin = 200, verbose = F)

set.seed(987)
border.week1.id <- MCMCglmm(borderdist.med ~ obs.cen + TL, random = ~us(1 +
obscen):picomp, data = hourly.com[which(hourly.com$week == 1),], family = "gaussian",
prior = prior.id.slope, nitt = 510000, burnin = 10000, thin = 200, verbose = F)

posterior.mode(iqr.week1.id$VCV)

## (Intercept):(Intercept).picomp    obs.cen:(Intercept).picomp
## 220.47605                       -29.27691
## (Intercept):obs.cen.picomp      obs.cen:obs.cen.picomp
## -29.27691                       11.40182
## units
## 293.47398

HPDinterval(iqr.week1.id$VCV)

##     lower      upper
## (Intercept):(Intercept).picomp  127.236477 485.568785
## obs.cen:(Intercept).picomp      -65.813763  -3.113078
## (Intercept):obs.cen.picomp      -65.813763  -3.113078
## obs.cen:obs.cen.picomp           5.678902  20.607076
## units                          275.912058 312.029774
## attr(,"Probability")
## [1] 0.95

iqr.rpt.wk1 <- iqr.week1.id$VCV[, "(Intercept):(Intercept).picomp"]/(iqr.week1.id$VCV[, "(Intercept):(Intercept).picomp"] + iqr.week1.id$VCV[, "obs.cen:obs.cen.picomp"] + iqr.week1.id$VCV[, "units"])

posterior.mode(iqr.rpt.wk1)

## var1
## 0.4572179

HPDinterval(iqr.rpt.wk1)

##     lower      upper
## var1 0.3389236 0.6365694
## attr(,"Probability")
## [1] 0.95
```
posterior.mode(prop.week1.id$VCV)

(Intercept):(Intercept).picomp obs.cen:(Intercept).picomp
0.030203876 -0.002733661
(Intercept):obs.cen.picomp obs.cen:obs.cen.picomp
-0.002733661 0.001427673
units
0.029817194

HPDinterval(prop.week1.id$VCV)

lower upper
(Intercept):(Intercept).picomp 0.017108482 0.0606583440
obs.cen:(Intercept).picomp -0.007187632 0.0004364022
(Intercept):obs.cen.picomp -0.007187632 0.0004364022
obs.cen:obs.cen.picomp 0.000735252 0.0027138604
units 0.028155557 0.0319569507
attr(,"Probability")
[1] 0.95

prop.rpt.wk1 <- prop.week1.id$VCV[, "(Intercept):(Intercept).picomp"]/(prop.week1.id$VCV[, "(Intercept):(Intercept).picomp"] + prop.week1.id$VCV[, "obs.cen:obs.cen.picomp"] + prop.week1.id$VCV[, "units"])

posterior.mode(prop.rpt.wk1)

var1
0.5162739

HPDinterval(prop.rpt.wk1)

lower upper
var1 0.3693184 0.65981
attr(,"Probability")
[1] 0.95

posterior.mode(border.week1.id$VCV)

(Intercept):(Intercept).picomp obs.cen:(Intercept).picomp
0.05435530 -0.01104941
(Intercept):obs.cen.picomp obs.cen:obs.cen.picomp
-0.01104941 0.73041207
units
306.37989111

HPDinterval(border.week1.id$VCV)

lower upper
(Intercept):(Intercept).picomp 2.551274e-09 6.025875
obs.cen:(Intercept).picomp -6.818446e-01 1.863805
Behavioral correlations

Let's test how correlated these different behaviors are on Day 1 and the entire observation period. Generally, the behaviors are well correlated, especially the ones directly relating to movement.

```r
set.seed(410)
behav.day1.cor <- MCMCglmm(cbind(speed.med, propmoving, distmoved.iqr, borderdist.med) ~ trait - 1, random = ~us(trait):picomp, rcov = ~us(trait):units, family = c(rep("gaussian", 4)), prior = prior.cov4, nitt = 510000, thin = 200, burnin = 10000, verbose = F, data = day1.com)

# Among indv corr on Day 1 ----
behav.day1.among <- matrix(posterior.mode(posterior.cor(behav.day1.cor$VCV[, 1:16])), 4, 4, dimnames = list(c("Med.speed", "Prop.moving", "IQR.speed", "Med.border"), c("Med.speed", "Prop.moving", "IQR.speed", "Med.border")))

# now to extract the CI estimates
ci.day1.among <- data.frame(HPDinterval(posterior.cor(behav.day1.cor$VCV[, 1:16])))

# for corrplot need 3 matrices - estimates, lower CI, upper CI
lower.day1 <- matrix(ci.day1.among[, 1], 4, 4)
upper.day1 <- matrix(ci.day1.among[, 2], 4, 4)

test <- melt(lower.day1) %>%
  mutate(p.value = ifelse(value < 0, 0.99, 0.01)) %>%
  select(Var1, Var2, p.value)
p.mat <- diag(4)
```
p.mat[cbind(test$Var1, test$Var2)] <- p.mat[cbind(test$Var2, test$Var1)] <- test$p.value

colnames(p.mat) <- c("Med.speed", "Prop.moving", "IQR.speed", "Med.border")
row.names(p.mat) <- c("Med.speed", "Prop.moving", "IQR.speed", "Med.border")

corrplot(behav.day1.among, type = "upper", method = "ellipse", p.mat = p.mat, insig = "blank")

> Day 1

set.seed(100)
behav.all.cor <- MCMCglmm(cbind(speed.med, propmoving, distmoved.iqr, borderdist.med) ~
 trait - 1, random = -us(trait):picomp, rcov = ~us(trait):units, family = c(rep("gaussian", 4)),
 prior = prior.cov4, nitt = 510000, thin = 200, burnin = 10000, verbose = F,
 data = indv.com)

Model for entire observation period ----
behav.matrix.all <- matrix(posterior.mode(posterior.cor(behav.all.cor$VCV[, 1:16])), 4, 4, dimnames = list(c("Med.speed", "Prop.moving", "IQR.speed", "Med.border"), c("Med.speed", "Prop.moving", "IQR.speed", "Med.border")))

now to extract the CI estimates
.ci.all <- data.frame(HPDinterval(posterior.cor(behav.all.cor$VCV[, 1:16])))
for corrplot need 3 matrices - estimates, lower CI, upper CI
lower.all <- matrix(ci.all[, 1], 4, 4)
upper.all <- matrix(ci.all[, 2], 4, 4)

test <- melt(lower.all) %>%
 mutate(p.value = ifelse(value < 0, 1, 0)) %>%
 select(Var1, Var2, p.value)

p.mat <- diag(4)
p.mat[cbind(test$Var1, test$Var2)] <- p.mat[cbind(test$Var2, test$Var1)] <- test$p.value

colnames(p.mat) <- c("Med.speed", "Prop.moving", "IQR.speed", "Med.border")
row.names(p.mat) <- c("Med.speed", "Prop.moving", "IQR.speed", "Med.border")

corrplot(behav.matrix.all, type = "upper", method = "ellipse", p.mat = p.mat, insig = "blank")

> Entire observation period

1a - GROWTH & BODY SIZE

Variation in individual behavior might be related to differences in individual morphology or physiology. We have measurements of key morphological (body size) and physiological (growth rates) traits in these fish so we want to test whether/how much behavioral variation is explained by these other traits.

The key questions we want to ask about body size/growth rate:
1 - does brood size predict body size?
2 - Do individuals consistently differ in their absolute body sizes?
3 - Do individuals consistently differ in their growth rates?
4 - Does variation in body size and/or growth rate explain variation in behavior?
5 - Do the effects of body size and/or growth rate differ AMONG versus WITHIN individuals? This is because some individuals are larger than others (among-individual effects) and then all individuals grow over time (within-individual effects)

The most important thing in running all these models is to look at the marginal/conditional R-squared values. If body size/growth rates do explain variation in behavior, then including these as fixed effects in our models should increase the marginal R-squared value considerably (and reduce the relative size of the variance explained by the random effects)

Brood size

No, it does not appear that brood size relates to individual body size at all (which is maybe a bit interesting in itself!)

```r
set.seed(290)
size.mcmc <- MCMCglmm(TL ~ brood.size, random = ~mother, data = day1.com, family = "gaussian",
                      prior = prior.id, nitt = 510000, burnin = 10000, thin = 200, verbose = F)
summary(size.mcmc)
```

```r
##
## Iterations = 10001:509801
## Thinning interval = 200
## Sample size = 2500
##
## DIC: -833.6721
##
## G-structure: ~mother
##
## post.mean l-95% CI u-95% CI eff.samp
## mother 0.0206 0.003241 0.053 2090
##
## R-structure: ~units
##
## post.mean l-95% CI u-95% CI eff.samp
## units 0.003087 0.002578 0.003624 2648
##
## Location effects: TL ~ brood.size
##
## post.mean l-95% CI u-95% CI eff.samp pMCMC
## (Intercept) 1.135950 0.905934 1.397128 2500 <4e-04 ***
## brood.size -0.003524 -0.018051 0.013152 1912 0.612
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

posterior.mode(size.mcmc$Sol)
```
(Intercept) brood.size
1.146587480 -0.004380853

HPDinterval(size.mcmc$Sol)

lower upper
(Intercept) 0.90593401 1.39712829
brood.size -0.01805059 0.01315194
attr(,"Probability")
[1] 0.95

SL repeatability

We want to see whether individual's consistently differ in their body size. But we only measured body size once per week, so want to only select one observation per individual each week so that we're not artificially inflating our sample size

ANSWER: Yes, individuals do consistently differ in body size which is not surprising and also evidence that individuals differ in slopes of body size, which we'll investigate further below (by extracting overall growth rates and using that as a predictor)

```r
# want to remove multiple observations per week (we only measured TL once
# per week)

indv.week <- indv.com %>%
group_by(picomp, week) %>%
arrange(picomp, week) %>%
slice(1) %>%
ungroup()

set.seed(156)

tl.mcmc1 <- MCMCglmm(TL ~ obs, random = ~picomp, data = indv.week, family = "gaussian",
prior = prior.id, nitt = 510000, burnin = 10000, thin = 200, verbose = F)

## Warning: Unknown or uninitialised column: 'family'.

set.seed(81)

tl.mcmc2 <- MCMCglmm(TL ~ obs, random = ~picomp + mother, data = indv.week,
  family = "gaussian", prior = prior.id.mom, nitt = 510000, burnin = 10000,
  thin = 200, verbose = F)

## Warning: Unknown or uninitialised column: 'family'.

set.seed(167)

tl.mcmc3 <- MCMCglmm(TL ~ obs, random = ~us(1 + obs):picomp, data = indv.week,
  family = "gaussian", prior = prior.id.slope, nitt = 510000, burnin = 10000,
  thin = 200, verbose = F)

## Warning: Unknown or uninitialised column: 'family'.
```
DIC(tl.mcmc1, tl.mcmc2, tl.mcmc3)

df DIC
tl.mcmc1 4 -434.2211
tl.mcmc2 5 -435.2924
tl.mcmc3 5 -504.5193

individual intercepts and slopes best supported

plot(tl.mcmc3$VCV)
summary(tl.mcmc3)

##
Iterations = 10001:509801
Thinning interval = 200
Sample size = 2500
##
DIC: -504.5193
##
G-structure: ~us(1 + obs):picomp
##
post.mean l-95% CI u-95% CI eff.samp
(Intercept):(Intercept).picomp 9.928e-03 3.535e-03 1.775e-02 2361
obs:(Intercept).picomp 2.614e-05 -1.258e-04 1.677e-04 1825
(Intercept):obs.picomp 2.614e-05 -1.258e-04 1.677e-04 1825
obs:obs.picomp 7.895e-06 3.306e-06 1.471e-05 2500
##
R-structure: ~units
##
post.mean l-95% CI u-95% CI eff.samp
units 0.007109 0.005767 0.008531 2500
##
Location effects: TL ~ obs
##
post.mean l-95% CI u-95% CI eff.samp pMCMC
Here using weekly growth rate (Week2 - Week1/Week1) as the response variable. our goal now is test whether there is evidence for individual differences in growth rate (i.e. some individuals are consistently growing faster/slower each week compared to others)

ANSWER: No evidence of significant among-individual variation in weekly growth rates. So the above models suggest that some individuals are consistently bigger/smaller than others in absolute terms, but that individuals are not consistently GROWING faster/slower across the weeks.
all individuals have NA growth rate for first week, so need to remove
set.seed(421)
growth.mcmc1 <- MCMCglmm(growth.rate ~ obs, random = -picomp, data = indv.week[which(!is.na(indv.week[, "growth.rate"])),], family = "gaussian", prior = prior.id, nitt = 510000,
burnin = 10000, thin = 200, verbose = F)

Warning: Unknown or uninitialised column: 'family'.

set.seed(606)
growth.mcmc2 <- MCMCglmm(growth.rate ~ obs, random = -picomp + mother, data = indv.week[which(!is.na(indv.week[, "growth.rate"])),], family = "gaussian", prior = prior.id.mom, nitt = 510000,
burnin = 10000, thin = 200, verbose = F)

Warning: Unknown or uninitialised column: 'family'.

set.seed(810)
growth.mcmc3 <- MCMCglmm(growth.rate ~ obs, random = -us(1 + obs):picomp, data = indv.week[which(!is.na(indv.week[, "growth.rate"])),], family = "gaussian", prior = prior.id.slope, nitt = 510000,
burnin = 10000, thin = 200, verbose = F)

Warning: Unknown or uninitialised column: 'family'.

DIC(growth.mcmc1, growth.mcmc2, growth.mcmc3)

df DIC
growth.mcmc1 4 -590.8475
growth.mcmc2 5 -589.0667
growth.mcmc3 5 -588.9064

individual intercepts best supported
plot(growth.mcmc1$VCV)
summary(growth.mcmc1)

##
Iterations = 10001:509801
Thinning interval = 200
Sample size = 2500
##
DIC: -590.8475
##
G-structure: ~picomp
##
post.mean l-95% CI u-95% CI eff.samp
picomp 3.566e-05 3.867e-11 0.0001308 2500
##
R-structure: ~units
##
post.mean l-95% CI u-95% CI eff.samp
units 0.004371 0.003628 0.005205 2500
##
Location effects: growth.rate ~ obs
##
post.mean l-95% CI u-95% CI eff.samp pMCMC
(Intercept) 0.174759 0.158794 0.190499 2594 <4e-04 ***
obs -0.001882 -0.002331 -0.001428 2353 <4e-04 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
rpt.gr <- growth.mcmc1$VCV[, "picomp"]/(growth.mcmc1$VCV[, "picomp"] + growth.mcmc1$VCV[, "units"])
posterior.mode(rpt.gr)

var1
0.0001601799

HPDinterval(rpt.gr) # no evidence of repeatability in weekly growth

var1 lower upper
8.681155e-09 0.02877301
attr(,"Probability")
[1] 0.95

However, overall growth rate (over the entire 10 week observation period) may still be informative for behavior so now I want to include the overall slope of an individual’s absolute TL over time (from a model that includes random slopes) as this likely our best estimate of an individual’s overall (as opposed to weekly) growth rate

So need to re-run random slopes model and extract slopes then use those as predictors of behavior

set.seed(167)
tl.mcmc3 <- MCMCglmm(TL ~ obs, random = ~us(1 + obs):picomp, family = "gaussian",
 data = indv.week, prior = prior.id.slope, pr = T, nitt = 510000, burnin = 10000,
 thin = 200, verbose = F)

Warning: Unknown or uninitialised column: 'family'.

plot(tl.mcmc3$VCV)
summary(tl.mcmc3)

##
Iterations = 10001:509801
Thinning interval = 200
Sample size = 2500
##
DIC: -504.5193
##
G-structure: ~us(1 + obs):picomp
##
(Intercept):(Intercept).picomp 9.928e-03 3.535e-03 1.775e-02 2361
obs:(Intercept).picomp 2.614e-05 -1.258e-04 1.677e-04 1825
(Intercept):obs.picomp 2.614e-05 -1.258e-04 1.677e-04 1825
obs:obs.picomp 7.895e-06 3.306e-06 1.471e-05 2500
##
R-structure: ~units
##
units 0.007109 0.005767 0.008531 2500
##
Location effects: TL ~ obs
##
post.mean l-95% CI u-95% CI eff.samp pMCMC

83
extract the estimates for each individual's growth rate
colnames(tl.mcmc3$Sol)

(Intercept) 1.02924 0.98643 1.07281 2500 <4e-04 ***
obs 0.02847 0.02733 0.02962 2705 <4e-04 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

colnames(tl.mcmc3$Sol[, 29:54])

slopes <- posterior.mode(tl.mcmc3$Sol[, 29:54])

slopes is named vector so unname the numbers
gs.slope <- unname(posterior.mode(tl.mcmc3$Sol[, 29:54]))
slopes is a named vector, so just extract the relevant picomp info
picomp <- as.vector(substr(names(slopes), nchar(names(slopes)) - 5, nchar(names(slopes))))
growth.slopes <- data.frame(picomp, gr.slope)

but also these measures of slopes are DIFFERENCES from the overall
effect of obs on SL so should include the overall growth slope estimate
growth.slopes <- growth.slopes %>%
 mutate(gr.slope = gr.slope + posterior.mode(tl.mcmc3$Sol[, "obs"]))

best predictors?

So now the question is, are weekly body size, weekly growth rate, or overall growth rate (slope) better predictors of behavior? Do they significantly predict (average) behavior? And/or do they account for any of the among-individual variation in behavior?

Here because body size and growth rate could only be measured on a weekly basis, I will summarise the behavioral data on a weekly basis too. I will run some models investigating weekly (absolute) body size and growth rates, but because body size differ both between individuals (some individuals are on average bigger than others) and within individuals (as they grow), I will also compute average TLs and weekly deviation TL (i.e. within-subject centering).

summarising data for weekly median swimming speed
indv.week <- hourly.com %>%
 group_by(picomp, week) %>%
 mutate(med.speed.wk = median(speed.med, na.rm = T)) %>%
 arrange(picomp, week) %>%
 slice(1)

add in overall growth slopes from above
indv.week <- left_join(indv.week, growth.slopes)

Joining, by = "picomp"

get overall average TL and weekly deviation TL for each individual
indv.week <- indv.week %>%
 group_by(picomp) %>%
 mutate(ave.TL = mean(TL, na.rm = T), dev.TL = TL - ave.TL)

now because I want to be able to compare all models, I need to use the
same dataset for each model but because individuals don't have a growth
rate for week 10, need to remove this from all models
indv.week <- indv.week %>%
 filter(!is.na(growth.rate))

set.seed(472)
speed.growth1 <- MCMCglmm(med.speed.wk ~ week + TL, random = ~us(1 + week):picomp,
 data = indv.week, family = "gaussian", prior = prior.id.slope, nitt = 510000,
 burnin = 10000, thin = 200, verbose = F)
Warning: Unknown or uninitialised column: ‘family’.

```r
set.seed(6012)
speed.growth2 <- MCMCglmm(med.speed.wk ~ week + growth.rate, random = ~us(1 + week):picomp, data = indv.week, family = "gaussian", prior = prior.id.slope, nitt = 510000, burnin = 10000, thin = 200, verbose = F)
```

Warning: Unknown or uninitialised column: ‘family’.

```r
set.seed(841)
speed.growth3 <- MCMCglmm(med.speed.wk ~ week + gr.slope, random = ~us(1 + week):picomp, data = indv.week, family = "gaussian", prior = prior.id.slope, nitt = 510000, burnin = 10000, thin = 200, verbose = F)
```

Warning: Unknown or uninitialised column: ‘family’.

```r
set.seed(581)
speed.growth4 <- MCMCglmm(med.speed.wk ~ week + TL + growth.rate + gr.slope, random = ~us(1 + week):picomp, data = indv.week, family = "gaussian", prior = prior.id.slope, nitt = 510000, burnin = 10000, thin = 200, verbose = F)
```

Warning: Unknown or uninitialised column: ‘family’.

```r
set.seed(431)
speed.growth5 <- MCMCglmm(med.speed.wk ~ week + ave.TL + dev.TL, random = ~us(1 + week):picomp, data = indv.week, family = "gaussian", prior = prior.id.slope, nitt = 510000, burnin = 10000, thin = 200, verbose = F)
```

Warning: Unknown or uninitialised column: ‘family’.

```
# model comparison
dIC(speed.growth1, speed.growth2, speed.growth3, speed.growth4, speed.growth5)
```

```
## df DIC
## speed.growth1 6 288.1301
## speed.growth2 6 288.3878
## speed.growth3 6 286.6803
## speed.growth4 8 290.4587
## speed.growth5 7 288.7900
```

.. report weekly tl

```r
posterior.mode(speed.growth1$Sol)
```

```
# (Intercept) week TL
## 0.42159822 0.01906751 -0.01640736
```
HPDinterval(speed.growth1$Sol)

lower upper
(Intercept) -0.005178792 1.1485874
week -0.111526665 0.1634813
TL -0.750363462 0.5586073
attr("Probability")
[1] 0.95

posterior.mode(speed.growth1$VCV)

(Intercept):(Intercept).picomp week:(Intercept).picomp
0.087360380 0.011525709
(Intercept):week.picomp week:week.picomp
0.011525709 0.004011765
units
0.175607278

HPDinterval(speed.growth1$VCV)

lower upper
(Intercept):(Intercept).picomp 0.020500743 0.259243873
week:(Intercept).picomp -0.011167323 0.023112739
(Intercept):week.picomp -0.011167323 0.023112739
week:week.picomp 0.001066587 0.009219378
units 0.139523507 0.214179715
attr("Probability")
[1] 0.95

vmVarF <- numeric(2500)
for (i in 1:2500) {
 Var <- var(as.vector(speed.growth1$Sol[i,] %*% t(speed.growth1$X)))
 vmVarF[i] <- Var
}

R2m <- vmVarF/(vmVarF + speed.growth1$VCV[, 1] + speed.growth1$VCV[, 2] + speed.growth1$VCV[, 4] + speed.growth1$VCV[, 5])

posterior.mode(R2m)

var1
0.0008897738

HPDinterval(R2m)

lower upper
var1 7.703189e-06 0.05729064
attr("Probability")
[1] 0.95
R2c <- (vmVarF + speed.growth1$VCV[, 1])/(vmVarF + speed.growth1$VCV[, 1] + speed.growth1$VCV[, 2] + speed.growth1$VCV[, 4] + speed.growth1$VCV[, 5])

posterior.mode(R2c)

var1
0.356489

HPDinterval(R2c)

lower upper
var1 0.1385735 0.6172215
attr("Probability")
[1] 0.95

posterior.mode(speed.growth2$Sol)

.. report weekly growth

(Intercept) week growth.rate
0.46303227 0.01186355 0.09277727

HPDinterval(speed.growth2$Sol)

lower upper
(Intercept) 0.23336987 0.69475192
week -0.02229652 0.05008673
growth.rate -0.66365475 0.98781449
attr("Probability")
[1] 0.95

posterior.mode(speed.growth2$VCV)

(Intercept):(Intercept).picomp week:(Intercept).picomp
0.105409581 0.009929603
(Intercept):week.picomp week:week.picomp
0.009929603 0.003550077
units
0.179588089

HPDinterval(speed.growth2$VCV)

lower upper
(Intercept):(Intercept).picomp 0.0160408061 0.249519969
week:(Intercept).picomp -0.0110691713 0.022985571
(Intercept):week.picomp -0.0110691713 0.022985571
week:week.picomp 0.0006867782 0.009490958
units 0.1416065910 0.213973098
attr("Probability")
[1] 0.95
vmVarF <- numeric(2500)
for (i in 1:2500) {
 Var <- var(as.vector(speed.growth2$Sol[i,] %*% t(speed.growth2$X)))
 vmVarF[i] <- Var
}

R2m <- vmVarF/(vmVarF + speed.growth2$VCV[, 1] + speed.growth2$VCV[, 2] + speed.growth2$VCV[, 4] + speed.growth2$VCV[, 5])
posterior.mode(R2m)

var1
0.000373817

HPDinterval(R2m)

lower upper
var1 6.210501e-06 0.04124463
attr("Probability")
[1] 0.95

R2c <- (vmVarF + speed.growth2$VCV[, 1])/(vmVarF + speed.growth2$VCV[, 1] + speed.growth2$VCV[, 2] + speed.growth2$VCV[, 4] + speed.growth2$VCV[, 5])
posterior.mode(R2c)

var1
0.3873041

HPDinterval(R2c)

lower upper
var1 0.1410628 0.6251173
attr("Probability")
[1] 0.95

.. report overall growth

posterior.mode(speed.growth3$Sol)

(Intercept) week gr.slope
-0.518024504 0.008728433 38.362861806

HPDinterval(speed.growth3$Sol)

lower upper
(Intercept) -2.78824833 1.49980243
week -0.02322836 0.04661203
gr.slope -36.59771515 112.13192753
attr("Probability")
[1] 0.95
posterior.mode(speed.growth3$VCV)

(Intercept):(Intercept).picomp week:(Intercept).picomp
0.085222737 0.008790850
(Intercept):week.picomp week:week.picomp
0.008790850 0.002733505
units
0.169891819

HPDinterval(speed.growth3$VCV)

upper
(Intercept):(Intercept).picomp 0.267647426
week:(Intercept).picomp 0.023553264
(Intercept):week.picomp 0.023553264
week:week.picomp 0.009416842
units 0.214683533
attr(,"Probability")
[1] 0.95

vmVarF <- numeric(2500)
for (i in 1:2500) {
 Var <- var(as.vector(speed.growth3$Sol[i,] %*% t(speed.growth3$X)))
 vmVarF[i] <- Var
}

R2m <- vmVarF/(vmVarF + speed.growth3$VCV[, 1] + speed.growth3$VCV[, 2] + speed.growth3$VCV[, 4] + speed.growth3$VCV[, 5])

posterior.mode(R2m)

var1
0.002153866

HPDinterval(R2m)

upper
var1 0.1482263
attr(,"Probability")
[1] 0.95

R2c <- (vmVarF + speed.growth3$VCV[, 1])/(vmVarF + speed.growth3$VCV[, 1] + speed.growth3$VCV[, 2] + speed.growth3$VCV[, 4] + speed.growth3$VCV[, 5])

posterior.mode(R2c)

var1
0.3958761

HPDinterval(R2c)
```r
## lower    upper
## var1 0.149129 0.6454733
## attr("Probability")
## [1] 0.95

.. report combo

posterior.mode(speed.growth4$Sol)

## (Intercept)    week    TL  growth.rate  gr.slope
## -0.596517459  0.001473012  0.028424486  0.078852658  29.479127788

HPDinterval(speed.growth4$Sol)

## (Intercept)    week    TL  growth.rate  gr.slope
## lower   upper  lower   upper  lower   upper  lower   upper  lower   upper
## -2.8554275 1.8656286 -0.1273565 0.1857909 -0.8716539 0.7362440
## -0.9804849 1.1215557 -39.1806938 116.9639961
## attr("Probability")
## [1] 0.95

posterior.mode(speed.growth4$VCV)

## (Intercept):(Intercept).picomp  week:(Intercept).picomp
## lower   upper  lower   upper
## 0.103474074 0.008284844

HPDinterval(speed.growth4$VCV)

## (Intercept):(Intercept).picomp  week:(Intercept).picomp
## lower   upper  lower   upper  lower   upper
## 0.0138885962 0.269587702 -0.0100153390 0.023091893
## 0.0009120905 0.009470098

vmVarF <- numeric(2500)
for (i in 1:2500) {
    Var <- var(as.vector(speed.growth4$Sol[i, ] %*% t(speed.growth4$X)))
    vmVarF[i] <- Var
}

R2m <- vmVarF/(vmVarF + speed.growth4$VCV[, 1] + speed.growth4$VCV[, 2] + speed.growth4$VCV[, 4] + speed.growth4$VCV[, 5])
posterior.mode(R2m)
```

 Altogether this seems pretty convincing that differences in body size and/or growth rates do not explain much (any?) of the variation in behavior among individuals

.. report within-subj centering

posterior.mode(speed.growth5$Sol)

```
## (Intercept)  week  ave.TL  dev.TL
## 0.03653551  0.02690495  0.38180968 -0.04634654
```

posterior.mode(speed.growth5$VCV)

```
## (Intercept):(Intercept).picomp  week:(Intercept).picomp
## 0.09198658  0.01113281
## (Intercept):week.picomp  week:week.picomp
## 0.01113281  0.00398096
## units
## 0.17541371
```
HPDinterval(speed.growth5$VCV)

lower upper
(Intercept):(Intercept).picomp 0.023413309 0.273775620
week:(Intercept).picomp -0.008815277 0.026233521
(Intercept):week.picomp -0.008815277 0.026233521
week:week.picomp 0.000900482 0.009493835
units 0.139717634 0.213382287
attr(,"Probability")
[1] 0.95

vmVarF <- numeric(2500)
for (i in 1:2500) {
 Var <- var(as.vector(speed.growth5$Sol[,] %*% t(speed.growth5$X)))
 vmVarF[i] <- Var
}

R2m <- vmVarF/(vmVarF + speed.growth5$VCV[, 1] + speed.growth5$VCV[, 2] + speed.growth5$VCV[, 4] + speed.growth5$VCV[, 5])
posterior.mode(R2m)

var1
0.006709825

HPDinterval(R2m)

lower upper
var1 0.0002367933 0.1156769
attr(,"Probability")
[1] 0.95

R2c <- (vmVarF + speed.growth5$VCV[, 1])/(vmVarF + speed.growth5$VCV[, 1] + speed.growth5$VCV[, 2] + speed.growth5$VCV[, 4] + speed.growth5$VCV[, 5])
posterior.mode(R2c)

var1
0.3836049

HPDinterval(R2c)

lower upper
var1 0.1562043 0.6369589
attr(,"Probability")
[1] 0.95

So both estimates are negative (as we expect), but neither is significant nor is the marginal R2 very high.

Bottom line: No matter which way we analyze it, variation in morphology (as measured by body size) or physiology (as measured by growth rate) does not seem to explain really any significant variation in behavior among individuals.
2 - CHANGE OVER TIME?

A next major question is whether/how does individual variation change over time? The first thing we will do is to explore which random structure best fits our data as this will then determine how we proceed with the analysis (same process as we did for Day 1 data).

Going to run series of models with different random structures to best characterize the individual variation:
1 - null model, no random effects 2 - ID intercept only 3 - ID + mom intercept only 4 - ID slopes + mom slopes 5 - ID intercepts + slopes only

A. Entire observation period

Now we'll explore the random structure for the behavioral variation taken over the entire 70 day observation period

```r
# m0 - null model
set.seed(17)
speed.0 <- MCMCglmm(speed.med ~ obs + TL, data = indv.com, family = "gaussian",
        prior = prior.null, nitt = 510000, burnin = 10000, thin = 200, verbose = F)

# Intercepts ID ----------------------
set.seed(343)
speed.1 <- MCMCglmm(speed.med ~ obs + TL, random = ~picomp, data = indv.com,
        family = "gaussian", prior = prior.id, nitt = 510000, burnin = 10000, thin = 200,
        verbose = F)

# only including intercepts for mother ------
set.seed(1021)
speed.2 <- MCMCglmm(speed.med ~ obs + TL, random = ~mother, data = indv.com,
        family = "gaussian", prior = prior.id, nitt = 510000, burnin = 10000, thin = 200,
        verbose = F)

# Intercepts ID and Mom-----------------
set.seed(842)
speed.3 <- MCMCglmm(speed.med ~ obs + TL, random = ~picomp + mother, data = indv.com,
        family = "gaussian", prior = prior.id.mom, nitt = 510000, burnin = 10000,
        thin = 200, verbose = F)

# Intercepts and Slopes ID -----------------------
set.seed(372)
speed.4 <- MCMCglmm(speed.med ~ obs + TL, random = ~us(1 + obs):picomp, data = indv.com,
        family = "gaussian", prior = prior.id.slope, nitt = 510000, burnin = 10000,
        thin = 200, verbose = F)

# Intercepts Mom, Slopes Mom ----------------
set.seed(918)
speed.5 <- MCMCglmm(speed.med ~ obs + TL, random = ~us(1 + obs):mother, data = indv.com,
```

94
family = "gaussian", prior = prior.id.slope, nitt = 510000, burnin = 10000,
thin = 200, verbose = F)

Intercepts ID and Mom, Slopes ID ---------------
set.seed(327)
speed.6 <- MCMCglmm(speed.med ~ obs + TL, random = -us(1 + obs):picomp + mother,
 data = indv.com, family = "gaussian", prior = prior.id.slope.mom,
 nitt = 510000, burnin = 10000, thin = 200, verbose = F)

Intercepts ID & Mom, Slopes ID & Mom ---------------
set.seed(178)
speed.7 <- MCMCglmm(speed.med ~ obs + TL, random = -us(1 + obs):picomp + us(1 +
 obs):mother, data = indv.com, family = "gaussian", prior = prior.id.slope.mom.slope,
 nitt = 510000, burnin = 10000, thin = 200, verbose = F)

DIC(speed.0, speed.1, speed.2, speed.3, speed.4, speed.5, speed.6, speed.7)

> model comparison

df DIC
speed.0 4 3666.757
speed.1 5 2473.937
speed.2 5 2823.293
speed.3 6 2473.567
speed.4 6 2313.158
speed.5 6 2777.040
speed.6 7 2312.492
speed.7 8 2312.836

> model to report Model 4: ID intercepts & slopes by far the most supported model. The fact that there
is support for random slopes for individuals indicates that patterns of among/within-individual behavioral
variation may be changing over the observation period. We’ll explore this in more detail below.

summary(speed.4)

Iterations = 10001:509801
Thinning interval = 200
Sample size = 2500
##
DIC: 2313.158
##
G-structure: -us(1 + obs):picomp
##
post.mean l-95% CI u-95% CI eff.samp
(Intercept):(Intercept).picomp 1.909e-01 9.176e-02 0.3146493 2342
Location effects: speed.med ~ obs + TL

post.mean l-95% CI u-95% CI eff.samp pMCMC

(Intercept) 0.402121 0.118973 0.648928 2717 0.004 **
obs -0.001849 -0.008221 0.005437 2500 0.599
TL 0.105937 -0.102487 0.326826 2500 0.327

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

model validation Again, want to validate that this model is not unduly influenced by prior specification and is converging nicely.

Yep, variance component estimates look similar/stable

prior.id.slope <- list(R = list(V = 1, nu = 0.002), G = list(G1 = list(V = diag(2), nu = 0.002, alpha.mu = c(0, 0), alpha.V = diag(2) * 25^2)))

prior.weak <- list(R = list(V = 1, nu = 0.002), G = list(G1 = list(V = diag(2), nu = 0.002)))

prior.strong.id <- list(R = list(V = matrix(p.var * 0.05), nu = 1), G = list(G1 = list(V = diag(c(0.8 * p.var, 0.15 * p.var)), nu = 1)))

prior.strong.res <- list(R = list(V = matrix(p.var * 0.95), nu = 1), G = list(G1 = list(V = diag(c(0.025 * p.var, 0.025 * p.var)), nu = 1)))

set.seed(372)
speed.4.param <- MCMCglmm(speed.med ~ obs + TL, random = ~us(1 + obs):picomp, data = indv.com, family = "gaussian", prior = prior.id.slope, nitt = 510000, burnin = 10000, thin = 200, verbose = F)

set.seed(372)
speed.4.weak <- MCMCglmm(speed.med ~ obs + TL, random = ~us(1 + obs):picomp, data = indv.com, family = "gaussian", prior = prior.weak, nitt = 510000,
```r
burnin = 10000, thin = 200, verbose = F)

set.seed(372)
speed.4.strong1 <- MCMCglmm(speed.med ~ obs + TL, random = ~us(1 + obs):picomp,
data = indv.com, family = "gaussian", prior = prior.strong.id, nitt = 510000,
burnin = 10000, thin = 200, verbose = F)

set.seed(372)
speed.4.strong2 <- MCMCglmm(speed.med ~ obs + TL, random = ~us(1 + obs):picomp,
data = indv.com, family = "gaussian", prior = prior.strong.res, nitt = 510000,
burnin = 10000, thin = 200, verbose = F)

posterior.mode(speed.4.param$VCV)

## (Intercept):(Intercept).picomp        obs:(Intercept).picomp
##        1.794592e-01                    7.503409e-05
## (Intercept):obs.picomp                obs:obs.picomp
##        7.503409e-05                    5.498072e-05
## units
##           2.097083e-01

posterior.mode(speed.4.weak$VCV)

## (Intercept):(Intercept).picomp        obs:(Intercept).picomp
##          0.1542737275                  -0.0003530469
## (Intercept):obs.picomp                obs:obs.picomp
##          -0.0003530469                  0.0001393238
## units
##            0.2044680559

posterior.mode(speed.4.strong1$VCV)

## (Intercept):(Intercept).picomp        obs:(Intercept).picomp
##          0.1552503999                  -0.001171597
## (Intercept):obs.picomp                obs:obs.picomp
##          -0.001171597                  0.002719649
## units
##            0.204527685

posterior.mode(speed.4.strong2$VCV)

## (Intercept):(Intercept).picomp        obs:(Intercept).picomp
##          0.1379049425                  -0.0005975391
## (Intercept):obs.picomp                obs:obs.picomp
##          -0.0005975391                  0.0005127281
## units
##            0.2046051121
```
plot(speed.4.param$VCV) plot(speed.4.weak$VCV) plot(speed.4.strong1$VCV)
plot(speed.4.strong2$VCV)

Now let’s run 5 independent chains with different seeds to make sure convergence is good.
Yep, all the estimates look very similar, think we’re good.

```r
set.seed(372)
speed.4a <- MCMCglmm(speed.med ~ obs + TL, random = ~us(1 + obs):picomp, data = indv.com,
family = "gaussian", prior = prior.id.slope, nitt = 510000, burnin = 10000,
thin = 200, verbose = F)
set.seed(39)
speed.4b <- MCMCglmm(speed.med ~ obs + TL, random = ~us(1 + obs):picomp, data = indv.com,
family = "gaussian", prior = prior.id.slope, nitt = 510000, burnin = 10000,
thin = 200, verbose = F)
set.seed(6471)
speed.4c <- MCMCglmm(speed.med ~ obs + TL, random = ~us(1 + obs):picomp, data = indv.com,
family = "gaussian", prior = prior.id.slope, nitt = 510000, burnin = 10000,
thin = 200, verbose = F)
set.seed(880)
speed.4d <- MCMCglmm(speed.med ~ obs + TL, random = ~us(1 + obs):picomp, data = indv.com,
family = "gaussian", prior = prior.id.slope, nitt = 510000, burnin = 10000,
thin = 200, verbose = F)
set.seed(10365)
speed.4e <- MCMCglmm(speed.med ~ obs + TL, random = ~us(1 + obs):picomp, data = indv.com,
family = "gaussian", prior = prior.id.slope, nitt = 510000, burnin = 10000,
thin = 200, verbose = F)

posterior.mode(speed.4a$VCV)
```

```r
## (Intercept):(Intercept).picomp obs:(Intercept).picomp
## 1.794592e-01 7.503409e-05
## (Intercept):obs.picomp obs:obs.picomp
## 7.503409e-05 5.498072e-05
## units
## 2.097083e-01
```

```r
posterior.mode(speed.4b$VCV)
```

```r
## (Intercept):(Intercept).picomp obs:(Intercept).picomp
## 1.628358e-01 6.807560e-05
## (Intercept):obs.picomp obs:obs.picomp
## 6.807560e-05 6.070238e-05
## units
## 2.048489e-01
```
Given that the above model showed that individuals have different slopes in how their behavior changes over time, this means that the amount of among/within-individual variation is likely changing over time.

For Day 1 data (above) we were interested in when individual differences were first apparent and so it made sense to estimate the among-individual variance components on Hour 1 (the first possible time point). Here, we are more interested in how these patterns of individual variation change over time, so we cannot just estimate the among-individual variance once, but rather want to estimate it at multiple time points across the 10-week experiment.

So, now the goal is to estimate the among- and within-individual variance at different points in the experiment - this can be done by centering the observation covariate at different days as the model will estimate the variance in the intercepts (when all covariates are set to zero). So we will “slice” the dataset every week and estimate run a total of 11 models that estimate the variance at day 1, day 7, day 14 and so on until day 70.

select only those IDs in that vector & only keep up to obs 70 & make obs # 1 = 0

(Intercept):(Intercept).picomp
1.507097e-01
(Intercept):obs.picomp
2.422019e-04
units
2.045459e-01

(Intercept):(Intercept).picomp
0.1514509453
(Intercept):obs.picomp
0.0001065784
units
0.2095057122

(Intercept):(Intercept).picomp
1.686418e-01
(Intercept):obs.picomp
-3.198890e-05
units
2.067191e-01

plot(speed.4a$VCV) plot(speed.4b$VCV) plot(speed.4c$VCV)
plot(speed.4d$VCV) plot(speed.4e$VCV)

B. Slice - change in variance over time

Given that the above model showed that individuals have different slopes in how their behavior changes over time, this means that the amount of among/within-individual variation is likely changing over time.
indv.70obs.cen <- indv.com %>%
 mutate(obs0 = obs - 1, obs7 = obs - 7, obs14 = obs - 14, obs21 = obs - 21,
 obs28 = obs - 28, obs35 = obs - 35, obs42 = obs - 42, obs49 = obs -
 49, obs56 = obs - 56, obs63 = obs - 63, obs70 = obs - 70)

set.seed(403)
speed.obs0 <- MCMCglmm(speed.med ~ obs0 + TL, random = -us(1 + obs0):picomp,
 data = indv.70obs.cen, family = "gaussian", pr = T, prior = prior.id.slope,
 nitt = 310000, burnin = 10000, thin = 200, verbose = F)

set.seed(765)
speed.obs7 <- MCMCglmm(speed.med ~ obs7 + TL, random = -us(1 + obs7):picomp,
 data = indv.70obs.cen, family = "gaussian", pr = T, prior = prior.id.slope,
 nitt = 310000, burnin = 10000, thin = 200, verbose = F)

set.seed(9)
speed.obs14 <- MCMCglmm(speed.med ~ obs14 + TL, random = -us(1 + obs14):picomp,
 data = indv.70obs.cen, family = "gaussian", pr = T, prior = prior.id.slope,
 nitt = 310000, burnin = 10000, thin = 200, verbose = F)

set.seed(471)
speed.obs21 <- MCMCglmm(speed.med ~ obs21 + TL, random = -us(1 + obs21):picomp,
 data = indv.70obs.cen, family = "gaussian", pr = T, prior = prior.id.slope,
 nitt = 310000, burnin = 10000, thin = 200, verbose = F)

set.seed(530)
speed.obs28 <- MCMCglmm(speed.med ~ obs28 + TL, random = -us(1 + obs28):picomp,
 data = indv.70obs.cen, family = "gaussian", pr = T, prior = prior.id.slope,
 nitt = 310000, burnin = 10000, thin = 200, verbose = F)

set.seed(341)
speed.obs35 <- MCMCglmm(speed.med ~ obs35 + TL, random = -us(1 + obs35):picomp,
 data = indv.70obs.cen, family = "gaussian", pr = T, prior = prior.id.slope,
 nitt = 310000, burnin = 10000, thin = 200, verbose = F)

set.seed(876)
speed.obs42 <- MCMCglmm(speed.med ~ obs42 + TL, random = -us(1 + obs42):picomp,
 data = indv.70obs.cen, family = "gaussian", pr = T, prior = prior.id.slope,
 nitt = 310000, burnin = 10000, thin = 200, verbose = F)

set.seed(525)
speed.obs49 <- MCMCglmm(speed.med ~ obs49 + TL, random = -us(1 + obs49):picomp,
 data = indv.70obs.cen, family = "gaussian", pr = T, prior = prior.id.slope,
 nitt = 310000, burnin = 10000, thin = 200, verbose = F)

set.seed(612)
speed.obs56 <- MCMCglmm(speed.med ~ obs56 + TL, random = -us(1 + obs56):picomp,
 data = indv.70obs.cen, family = "gaussian", pr = T, prior = prior.id.slope,
 nitt = 310000, burnin = 10000, thin = 200, verbose = F)

set.seed(947)
speed.obs63 <- MCMCglmm(speed.med ~ obs63 + TL, random = -us(1 + obs63):picomp,
 data = indv.70obs.cen, family = "gaussian", pr = T, prior = prior.id.slope,
nitt = 310000, burnin = 10000, thin = 200, verbose = F)

set.seed(301)
speed.obs70 <- MCMCglmm(speed.med ~ obs70 + TL, random = ~us(1 + obs70):picomp,
data = indv.70obs.cen, family = "gaussian", pr = T, prior = prior.id.slope,
nitt = 310000, burnin = 10000, thin = 200, verbose = F)

plot(speed.obs0$VCV)
> run models
> **repeatability estimates** Here I will extract the variance and repeatability estimates from the models above.

```r
# now I need to put all these estimates into a vector so I can more easily # graph them

date <- c(0, 7, 14, 21, 28, 35, 42, 49, 56, 63, 70)

rpt0 <- speed.obs0$VCV[, "(Intercept):(Intercept).picomp"]/(speed.obs0$VCV[, "(Intercept):(Intercept).picomp"] + posterior.mode(speed.obs0$VCV[, "units"]))
rpt7 <- speed.obs7$VCV[, "(Intercept):(Intercept).picomp"]/(speed.obs7$VCV[, "(Intercept):(Intercept).picomp"] + posterior.mode(speed.obs7$VCV[, "units"]))
rpt14 <- speed.obs14$VCV[, "(Intercept):(Intercept).picomp"]/(speed.obs14$VCV[, "(Intercept):(Intercept).picomp"] + posterior.mode(speed.obs14$VCV[, "units"]))
rpt21 <- speed.obs21$VCV[, "(Intercept):(Intercept).picomp"]/(speed.obs21$VCV[, "(Intercept):(Intercept).picomp"] + posterior.mode(speed.obs21$VCV[, "units"]))
rpt28 <- speed.obs28$VCV[, "(Intercept):(Intercept).picomp"]/(speed.obs28$VCV[, "(Intercept):(Intercept).picomp"] + posterior.mode(speed.obs28$VCV[, "units"]))
rpt35 <- speed.obs35$VCV[, "(Intercept):(Intercept).picomp"]/(speed.obs35$VCV[, "(Intercept):(Intercept).picomp"] + posterior.mode(speed.obs35$VCV[, "units"]))
rpt42 <- speed.obs42$VCV[, "(Intercept):(Intercept).picomp"]/(speed.obs42$VCV[, "(Intercept):(Intercept).picomp"] + posterior.mode(speed.obs42$VCV[, "units"]))
rpt49 <- speed.obs49$VCV[, "(Intercept):(Intercept).picomp"]/(speed.obs49$VCV[, "(Intercept):(Intercept).picomp"] + posterior.mode(speed.obs49$VCV[, "units"]))
rpt56 <- speed.obs56$VCV[, "(Intercept):(Intercept).picomp"]/(speed.obs56$VCV[, "(Intercept):(Intercept).picomp"] + posterior.mode(speed.obs56$VCV[, "units"]))
rpt63 <- speed.obs63$VCV[, "(Intercept):(Intercept).picomp"]/(speed.obs63$VCV[, "(Intercept):(Intercept).picomp"] + posterior.mode(speed.obs63$VCV[, "units"]))
rpt70 <- speed.obs70$VCV[, "(Intercept):(Intercept).picomp"]/(speed.obs70$VCV[, "(Intercept):(Intercept).picomp"] + posterior.mode(speed.obs70$VCV[, "units"]))

rpt <- c(posterior.mode(rpt0), posterior.mode(rpt7), posterior.mode(rpt14), posterior.mode(rpt21), posterior.mode(rpt28), posterior.mode(rpt35), posterior.mode(rpt42), posterior.mode(rpt49), posterior.mode(rpt56), posterior.mode(rpt63), posterior.mode(rpt70))

ci.rpt <- c(HPDinterval(rpt0)[1:2], HPDinterval(rpt7)[1:2], HPDinterval(rpt14)[1:2], HPDinterval(rpt21)[1:2], HPDinterval(rpt28)[1:2], HPDinterval(rpt35)[1:2], HPDinterval(rpt42)[1:2], HPDinterval(rpt49)[1:2], HPDinterval(rpt56)[1:2], HPDinterval(rpt63)[1:2], HPDinterval(rpt70)[1:2])

post.id <- c(posterior.mode(speed.obs0$VCV[, "(Intercept):(Intercept).picomp"]), posterior.mode(speed.obs7$VCV[, "(Intercept):(Intercept).picomp"]), posterior.mode(speed.obs14$VCV[, "(Intercept):(Intercept).picomp"]), posterior.mode(speed.obs21$VCV[, "(Intercept):(Intercept).picomp"]), posterior.mode(speed.obs28$VCV[, "(Intercept):(Intercept).picomp"]), posterior.mode(speed.obs35$VCV[, "(Intercept):(Intercept).picomp"]), posterior.mode(speed.obs42$VCV[, "(Intercept):(Intercept).picomp"]), posterior.mode(speed.obs49$VCV[, "(Intercept):(Intercept).picomp"]), posterior.mode(speed.obs56$VCV[, "(Intercept):(Intercept).picomp"]), posterior.mode(speed.obs63$VCV[, "(Intercept):(Intercept).picomp"]), posterior.mode(speed.obs70$VCV[, "(Intercept):(Intercept).picomp"]))

```

ci.id <- c(HPDinterval(speed.obs0$VCV[, "(Intercept):(Intercept).picomp"])[1:2],
 HPDinterval(speed.obs7$VCV[, "(Intercept):(Intercept).picomp"])[1:2], HPDinterval(speed.obs14$VCV[,
 "(Intercept):(Intercept).picomp"])[1:2], HPDinterval(speed.obs21$VCV[,
 "(Intercept):(Intercept).picomp"])[1:2], HPDinterval(speed.obs28$VCV[,
 "(Intercept):(Intercept).picomp"])[1:2], HPDinterval(speed.obs35$VCV[,
 "(Intercept):(Intercept).picomp"])[1:2], HPDinterval(speed.obs42$VCV[,
 "(Intercept):(Intercept).picomp"])[1:2], HPDinterval(speed.obs49$VCV[,
 "(Intercept):(Intercept).picomp"])[1:2], HPDinterval(speed.obs56$VCV[,
 "(Intercept):(Intercept).picomp"])[1:2], HPDinterval(speed.obs63$VCV[,
 "(Intercept):(Intercept).picomp"])[1:2], HPDinterval(speed.obs70$VCV[,
 "(Intercept):(Intercept).picomp"])[1:2])

ci.id <- matrix(ci.id, nrow = 11, byrow = T)

post.w <- c(posterior.mode(speed.obs0$VCV[, "units"]), posterior.mode(speed.obs7$VCV[,
 "units"]), posterior.mode(speed.obs14$VCV[, "units"]), posterior.mode(speed.obs21$VCV[,
 "units"]), posterior.mode(speed.obs28$VCV[, "units"]), posterior.mode(speed.obs35$VCV[,
 "units"]), posterior.mode(speed.obs42$VCV[, "units"]), posterior.mode(speed.obs49$VCV[,
 "units"]), posterior.mode(speed.obs56$VCV[, "units"]), posterior.mode(speed.obs63$VCV[,
 "units"]), posterior.mode(speed.obs70$VCV[, "units"]))

post.w <- c(posterior.mode(speed.obs0$VCV[, "units"])[1:2], posterior.mode(speed.obs7$VCV[,
 "units"])[1:2], posterior.mode(speed.obs14$VCV[, "units"])[1:2], posterior.mode(speed.obs21$VCV[,
 "units"])[1:2], posterior.mode(speed.obs28$VCV[, "units"])[1:2], posterior.mode(speed.obs35$VCV[,
 "units"])[1:2], posterior.mode(speed.obs42$VCV[, "units"])[1:2], posterior.mode(speed.obs49$VCV[,
 "units"])[1:2], posterior.mode(speed.obs56$VCV[, "units"])[1:2], posterior.mode(speed.obs63$VCV[,
 "units"])[1:2], posterior.mode(speed.obs70$VCV[, "units"])[1:2])

post.w <- matrix(post.w, nrow = 11, byrow = T)

plot(post.id ~ date)
plot(post.w ~ date)
plot(rpt ~ date)
rpt.slice.wide <- data.frame(date, rpt, lower.rpt = ci.rpt[, 1], upper.rpt = ci.rpt[, 2], post.id, lower.id = ci.id[, 1], upper.id = ci.id[, 2], post.w, lower.w = ci.w[, 1], upper.w = ci.w[, 2])

rpt.slice.long <- data.frame(date = rep(date, 3), type = rep(c("rpt", "id", "within"), each = 11), variance = unname(c(rpt, post.id, post.w)), lower = unname(c(ci.rpt[, 1], ci.id[, 1], ci.w[, 1])), upper = unname(c(ci.rpt[, 2], ci.id[, 2], ci.w[, 2])))

write.csv(rpt.slice.long, file = 'repeatability estimates sliced across # weeks_long_220202.csv')
write.csv(rpt.slice.wide, file = 'repeatability estimates sliced across # weeks_wide_220202.csv')

> indv intercepts Now to visualize these results and see how the patterns of behavioral variation may change over time, I’m going to extract the estimates for the predicted individual intercepts for each time point, which I’ll use to graph below in Fig 3.

Will need to pull out estimated overall intercept from each model to add to the ID intercepts though (or else they are all difference measures, as opposed to absolute measures). really need to figure out how to work with named numbers better...

g <- colnames(speed.obs0$Sol)[4:29]
ids <- substr(g, 20, 26)
"this pulls out the individual intercepts and adds in the overall intercepts so that way these numbers are absolute values, as opposed to differences from overall"

[1] "this pulls out the individual intercepts and adds in the overall intercepts\n\nso that way these numbers are absolute values, as opposed to differences from overall"

```
intercepts0 <- unname(posterior.mode(speed.obs0$Sol)[4:29] + posterior.mode(speed.obs0$Sol)["(Intercept)"]
intercepts7 <- unname(posterior.mode(speed.obs7$Sol)[4:29] + posterior.mode(speed.obs7$Sol)["(Intercept)"]
intercepts14 <- unname(posterior.mode(speed.obs14$Sol)[4:29] + posterior.mode(speed.obs14$Sol)["(Intercept)"]
intercepts21 <- unname(posterior.mode(speed.obs21$Sol)[4:29] + posterior.mode(speed.obs21$Sol)["(Intercept)"]
intercepts28 <- unname(posterior.mode(speed.obs28$Sol)[4:29] + posterior.mode(speed.obs28$Sol)["(Intercept)"]
intercepts35 <- unname(posterior.mode(speed.obs35$Sol)[4:29] + posterior.mode(speed.obs35$Sol)["(Intercept)"]
intercepts42 <- unname(posterior.mode(speed.obs42$Sol)[4:29] + posterior.mode(speed.obs42$Sol)["(Intercept)"]
intercepts49 <- unname(posterior.mode(speed.obs49$Sol)[4:29] + posterior.mode(speed.obs49$Sol)["(Intercept)"]
intercepts56 <- unname(posterior.mode(speed.obs56$Sol)[4:29] + posterior.mode(speed.obs56$Sol)["(Intercept)"]
intercepts63 <- unname(posterior.mode(speed.obs63$Sol)[4:29] + posterior.mode(speed.obs63$Sol)["(Intercept)"]
intercepts70 <- unname(posterior.mode(speed.obs70$Sol)[4:29] + posterior.mode(speed.obs70$Sol)["(Intercept)"]
```

date <- rep(c(0, 7, 14, 21, 28, 35, 42, 49, 56, 63, 70), each = 26)
picomp <- rep(ids, 11)
blup <- c(intercepts0, intercepts7, intercepts14, intercepts21, intercepts28,
 intercepts35, intercepts42, intercepts49, intercepts56, intercepts63, intercepts70)
pred.intercepts <- data.frame(date, picomp, blup)

```
# write.csv(pred.intercepts, file = 'Predicted individual BLUPS_slice
# model_220202.csv')
```

3 - CORRELATIONS BETWEEN EARLY AND LATER BEHAVIOR?

Given that we know now that individuals are different on Day 1/week 1 of their lives, does this behavior then predict their behavior later in their life?

Here I will run multivariate models that estimate the among-individual correlation in behavior across the 10 weeks of the observation (cannot estimate within-individual correlation as behaviors in week 1 and week x were obviously not expressed at the same time)

"this will spread the data by day, so looking at correlation among 7 days per week"

[1] "this will spread the data by day, so looking at correlation among 7 days per week"

```
indv.wide <- indv.com %>%
    mutate(obs.day = case_when(obs %in% seq(1, 70, 7) ~ 1, obs %in% seq(2, 70, 7) ~ 2, obs %in% seq(3, 70, 7) ~ 3, obs %in% seq(4, 70, 7) ~ 4, obs %in% seq(5, 70, 7) ~ 5, obs %in% seq(6, 70, 7) ~ 6, obs %in% seq(7, 70, 7) ~ 7)) %>%
    select(rpi, picomp, week, speed.med, mother, brood.size, birth.date, obs.day) %>%
    spread(week, speed.med, sep = "")

set.seed(2187)
```
behav.week.id <- MCMCglmm(cbind(week1, week2, week3, week4, week5, week6, week7, week8, week9, week10) ~ trait - 1, random = ~us(trait):picomp, rcov = ~idh(trait):units, family = c(rep("gaussian", 10)), prior = prior.cov10, pr = T, nitt = 510000, thin = 200, burnin = 10000, verbose = F, data = indv.wide)

Model with only ID ----
id.matrix.week <- matrix(posterior.mode(posterior.cor(behav.week.id$VCV[, 1:100])), 10, 10, dimnames = list(c("Week 1", "Week 2", "Week 3", "Week 4", "Week 5", "Week 6", "Week 7", "Week 8", "Week 9", "Week 10"), c("Week 1", "Week 2", "Week 3", "Week 4", "Week 5", "Week 6", "Week 7", "Week 8", "Week 9", "Week 10")))

now to extract the CI estimates
ci.week <- data.frame(HPDinterval(posterior.cor(behav.week.id$VCV[, 1:100])))

for corrplot need 3 matrices - estimates, lower CI, upper CI
lower.week <- matrix(ci.week[, 1], 10, 10)
upper.week <- matrix(ci.week[, 2], 10, 10)

test <- melt(lower.week) %>%
 mutate(p.value = ifelse(value < 0, 1, 0)) %>%
 select(Var1, Var2, p.value)

p.mat <- diag(10)
p.mat[cbind(test$Var1, test$Var2)] <- p.mat[cbind(test$Var2, test$Var1)] <- test$p.value

weeks.corr <- ggcorrplot(id.matrix.week, type = "lower", p.mat = p.mat, insig = "blank", colors = c("slateblue4", "gray", "mediumorchid1"))

> more predictive over time? Something we noticed in the correlation plots is that it looked like the correlation was getting stronger over time, so let’s wrangle this data into a dataframe that we can use to test that

id.matrix.week

first pull out among-indv corr
df <- melt(replace(id.matrix.week, lower.tri(id.matrix.week, T), NA), na.rm = T)
str(df)

df$start.week <- as.numeric(substr(df$Var1, 6, 8))
df$end.week <- as.numeric(substr(df$Var2, 6, 8))
df$diff <- df$end.week - df$start.week

now pull out ci for each corr
lower.week <- matrix(ci.week[, 1], 10, 10)
upper.week <- matrix(ci.week[, 2], 10, 10)

test.lower <- melt(replace(lower.week, lower.tri(lower.week, T), NA), na.rm = T)
test.upper <- melt(replace(upper.week, lower.tri(upper.week, T), NA), na.rm = T)

ci.long <- left_join(test.lower, test.upper, by = c("Var1", "Var2")) %>%

109
rename(start.week = Var1, end.week = Var2, lower = value.x, upper = value.y) %>%
arrange(start.week, end.week)

among.corr <- left_join(df, ci.long, by = c("start.week", "end.week"))
write.csv(among.corr, file = 'among individual correlations across weeks
220202.csv')

among.corr <- read.csv("among individual correlations across weeks 220202.csv")

df2 <- among.corr %>%
 filter(diff < 6)

set.seed(421)
corr.mcmc <- MCMCglmm(value ~ start.week * diff, data = df2, family = "gaussian",
nitt = 510000, burnin = 10000, thin = 200, verbose = F)

summary(corr.mcmc)

##
Iterations = 10001:509801
Thinning interval = 200
Sample size = 2500
##
DIC: -64.63589
##
R-structure: ~units
##
post.mean l-95% CI u-95% CI eff.samp
units 0.008345 0.004444 0.01291 2500
##
Location effects: value ~ start.week * diff
##
(Intercept) 0.76256 0.60655 0.90570 2500 <4e-04 ***
start.week 0.00252 -0.02565 0.03218 2500 0.8816
diff -0.05550 -0.10522 -0.01018 1901 0.0296 *
start.week:diff 0.01185 0.00014 0.02249 2054 0.0440 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

plot(corr.mcmc$Sol)

> extract weekly blups Now let’s extract each individual’s predicted behavior for each week - we’ll use
this to generate the correlation figure (4) below

extract individual BLUPs for each week ----

colnames(behav.week.id$Sol)

[1] "traitweek1" "traitweek2"
[3] "traitweek3" "traitweek4"
[5] "traitweek5" "traitweek6"
[7] "traitweek7" "traitweek8"
[9] "traitweek9" "traitweek10"
[11] "traitweek1.picomp.pi21_2" "traitweek1.picomp.pi21_3"
[13] "traitweek1.picomp.pi21_4" "traitweek1.picomp.pi22_1"
[15] "traitweek1.picomp.pi22_2" "traitweek1.picomp.pi22_3"
[17] "traitweek1.picomp.pi22_4" "traitweek1.picomp.pi23_2"
[19] "traitweek1.picomp.pi23_3" "traitweek1.picomp.pi23_4"
[21] "traitweek1.picomp.pi24_1" "traitweek1.picomp.pi24_2"
[23] "traitweek1.picomp.pi24_3" "traitweek1.picomp.pi24_4"
[25] "traitweek1.picomp.pi43_3" "traitweek1.picomp.pi44_2"
[27] "traitweek1.picomp.pi44_3" "traitweek1.picomp.pi44_4"
[29] "traitweek1.picomp.pi61_1" "traitweek1.picomp.pi63_1"
[31] "traitweek1.picomp.pi63_2" "traitweek1.picomp.pi63_3"
[33] "traitweek1.picomp.pi63_4" "traitweek1.picomp.pi64_1"
[35] "traitweek1.picomp.pi64_2" "traitweek1.picomp.pi64_3"
[37] "traitweek2.picomp.pi21_2" "traitweek2.picomp.pi21_3"
[39] "traitweek2.picomp.pi21_4" "traitweek2.picomp.pi22_1"
[41] "traitweek2.picomp.pi22_2" "traitweek2.picomp.pi22_3"
[43] "traitweek2.picomp.pi22_4" "traitweek2.picomp.pi23_2"
[45] "traitweek2.picomp.pi23_3" "traitweek2.picomp.pi23_4"
[47] "traitweek2.picomp.pi24_1" "traitweek2.picomp.pi24_2"
[49] "traitweek2.picomp.pi24_3" "traitweek2.picomp.pi24_4"
[51] "traitweek2.picomp.pi43_3" "traitweek2.picomp.pi44_2"
[53] "traitweek2.picomp.pi44_3" "traitweek2.picomp.pi44_4"
[55] "traitweek2.picomp.pi61_1" "traitweek2.picomp.pi63_1"
[57] "traitweek2.picomp.pi63_2" "traitweek2.picomp.pi63_3"
[59] "traitweek2.picomp.pi63_4" "traitweek2.picomp.pi64_1"
[61] "traitweek2.picomp.pi64_2" "traitweek2.picomp.pi64_3"
[63] "traitweek3.picomp.pi21_2" "traitweek3.picomp.pi21_3"
[65] "traitweek3.picomp.pi21_4" "traitweek3.picomp.pi22_1"
[67] "traitweek3.picomp.pi22_2" "traitweek3.picomp.pi22_3"
[69] "traitweek3.picomp.pi22_4" "traitweek3.picomp.pi23_2"
[71] "traitweek3.picomp.pi23_3" "traitweek3.picomp.pi23_4"
[73] "traitweek3.picomp.pi24_1" "traitweek3.picomp.pi24_2"
[75] "traitweek3.picomp.pi24_3" "traitweek3.picomp.pi24_4"
[77] "traitweek3.picomp.pi43_3" "traitweek3.picomp.pi44_2"
[79] "traitweek3.picomp.pi44_3" "traitweek3.picomp.pi44_4"
[81] "traitweek3.picomp.pi61_1" "traitweek3.picomp.pi63_1"
[83] "traitweek3.picomp.pi63_2" "traitweek3.picomp.pi63_3"
[85] "traitweek3.picomp.pi63_4" "traitweek3.picomp.pi64_1"
[87] "traitweek3.picomp.pi64_2" "traitweek3.picomp.pi64_3"
[89] "traitweek4.picomp.pi21_2" "traitweek4.picomp.pi21_3"
[91] "traitweek4.picomp.pi21_4" "traitweek4.picomp.pi22_1"
[93] "traitweek4.picomp.pi22_2" "traitweek4.picomp.pi22_3"
[95] "traitweek4.picomp.pi22_4" "traitweek4.picomp.pi23_2"
[97] "traitweek4.picomp.pi23_3" "traitweek4.picomp.pi23_4"
[99] "traitweek4.picomp.pi24_1" "traitweek4.picomp.pi24_2"
[101] "traitweek4.picomp.pi24_3" "traitweek4.picomp.pi24_4"
[103] "traitweek4.picomp.pi43_3" "traitweek4.picomp.pi44_2"
[105] "traitweek4.picomp.pi44_3" "traitweek4.picomp.pi44_4"
[107] "traitweek4.picomp.pi61_1" "traitweek4.picomp.pi63_1"
[109] "traitweek4.picomp.pi63_2" "traitweek4.picomp.pi63_3"
[111] "traitweek4.picomp.pi63_4" "traitweek4.picomp.pi64_1"
[113] "traitweek4.picomp.pi64_2" "traitweek4.picomp.pi64_3"
[115] "traitweek5.picomp.pi21_2" "traitweek5.picomp.pi21_3"
[117] "traitweek5.picomp.pi21_4" "traitweek5.picomp.pi22_1"
[119] "traitweek5.picomp.pi22_2" "traitweek5.picomp.pi22_3"
[121] "traitweek5.picomp.pi22_4" "traitweek5.picomp.pi23_2"
[123] "traitweek5.picomp.pi23_3" "traitweek5.picomp.pi23_4"
[125] "traitweek5.picomp.pi24_1" "traitweek5.picomp.pi24_2"
[127] "traitweek5.picomp.pi24_3" "traitweek5.picomp.pi24_4"
[129] "traitweek5.picomp.pi43_3" "traitweek5.picomp.pi44_2"
[131] "traitweek5.picomp.pi44_3" "traitweek5.picomp.pi44_4"
[133] "traitweek5.picomp.pi61_1" "traitweek5.picomp.pi63_1"
[135] "traitweek5.picomp.pi63_2" "traitweek5.picomp.pi63_3"
[137] "traitweek5.picomp.pi63_4" "traitweek5.picomp.pi64_1"
[139] "traitweek5.picomp.pi64_2" "traitweek5.picomp.pi64_3"
[141] "traitweek6.picomp.pi21_2" "traitweek6.picomp.pi21_3"
[143] "traitweek6.picomp.pi21_4" "traitweek6.picomp.pi22_1"
[145] "traitweek6.picomp.pi22_2" "traitweek6.picomp.pi22_3"
[147] "traitweek6.picomp.pi22_4" "traitweek6.picomp.pi23_2"
[149] "traitweek6.picomp.pi23_3" "traitweek6.picomp.pi23_4"
[151] "traitweek6.picomp.pi24_1" "traitweek6.picomp.pi24_2"
[153] "traitweek6.picomp.pi24_3" "traitweek6.picomp.pi24_4"
[155] "traitweek6.picomp.pi43_3" "traitweek6.picomp.pi44_2"
[157] "traitweek6.picomp.pi44_3" "traitweek6.picomp.pi44_4"
[159] "traitweek6.picomp.pi61_1" "traitweek6.picomp.pi63_1"
[161] "traitweek6.picomp.pi63_2" "traitweek6.picomp.pi63_3"
[163] "traitweek6.picomp.pi63_4" "traitweek6.picomp.pi64_1"
[165] "traitweek6.picomp.pi64_2" "traitweek6.picomp.pi64_3"
[167] "traitweek7.picomp.pi21_2" "traitweek7.picomp.pi21_3"
[169] "traitweek7.picomp.pi21_4" "traitweek7.picomp.pi22_1"
[171] "traitweek7.picomp.pi22_2" "traitweek7.picomp.pi22_3"
[173] "traitweek7.picomp.pi22_4" "traitweek7.picomp.pi23_2"
[175] "traitweek7.picomp.pi23_3" "traitweek7.picomp.pi23_4"
[177] "traitweek7.picomp.pi24_1" "traitweek7.picomp.pi24_2"
[179] "traitweek7.picomp.pi24_3" "traitweek7.picomp.pi24_4"
[181] "traitweek7.picomp.pi43_3" "traitweek7.picomp.pi44_2"
[183] "traitweek7.picomp.pi44_3" "traitweek7.picomp.pi44_4"
[185] "traitweek7.picomp.pi61_1" "traitweek7.picomp.pi63_1"
[187] "traitweek7.picomp.pi63_2" "traitweek7.picomp.pi63_3"
[189] "traitweek7.picomp.pi63_4" "traitweek7.picomp.pi64_1"
[191] "traitweek7.picomp.pi64_2" "traitweek7.picomp.pi64_3"
[193] "traitweek8.picomp.pi21_2" "traitweek8.picomp.pi21_3"
[195] "traitweek8.picomp.pi21_4" "traitweek8.picomp.pi22_1"
[197] "traitweek8.picomp.pi22_2" "traitweek8.picomp.pi22_3"
[199] "traitweek8.picomp.pi22_4" "traitweek8.picomp.pi23_2"
[201] "traitweek8.picomp.pi23_3" "traitweek8.picomp.pi23_4"
[203] "traitweek8.picomp.pi24_1" "traitweek8.picomp.pi24_2"
[205] "traitweek8.picomp.pi24_3" "traitweek8.picomp.pi24_4"
[207] "traitweek8.picomp.pi43_3" "traitweek8.picomp.pi44_2"
[209] "traitweek8.picomp.pi44_3" "traitweek8.picomp.pi44_4"
[211] "traitweek8.picomp.pi61_1" "traitweek8.picomp.pi63_1"
[213] "traitweek8.picomp.pi63_2" "traitweek8.picomp.pi63_3"
[215] "traitweek8.picomp.pi63_4" "traitweek8.picomp.pi64_1"
[217] "traitweek8.picomp.pi64_2" "traitweek8.picomp.pi64_3"
there must be a more elegant way to separate out the columns but
whatever, it works

weekly.blups <- data_frame(Trait = colnames(behav.week.id$Sol)[11:270], Value = unname(posterior.mode(behav.week.id$Sol)[11:270])) %>%
 separate(Trait, into = c("week", "holder", "pi", "comp")) %>%
 mutate(picomp = paste(pi, comp, sep = "_"), week = substr(week, nchar(week) -
 4, nchar(week))) %>%
 select(-holder, -pi, -comp) %>%
 spread(week, Value) %>%
 rename(week10 = eek10)

Warning: 'data_frame()' was deprecated in tibble 1.1.0.
Please use 'tibble()' instead.
This warning is displayed once every 8 hours.
Call 'lifecycle::last_lifecycle_warnings()' to see where this warning was generated.

plot(week5 ~ week4, data = weekly.blups)
plot(week5 ~ week2, data = weekly.blups)
write.csv(weekly.blups, file = 'weekly activity blups across weeks
220202.csv')

4 - FIGURES

Fig 1 - predictions

This is meant to show 3 potential predictions for how behavioral individuality should develop a - present at birth b - slowly emerge over time c - punctuated emergence at key time points

```r
id <- rep(1:6, each = 2)
obs <- rep(c(1, 10), times = 6)
behav <- rep(c(0.5, 1.5, 2.5, 3.5, 4.5, 5.5), each = 2)
flat <- data.frame(factor(id), obs, behav)

behav2 <- c(3, 0.5, 3, 1.5, 3, 2.5, 3, 3.5, 3, 4.5, 3, 5.5)
slow <- data.frame(factor(id), obs, behav2)

id3 <- rep(1:6, each = 4)
obs3 <- rep(c(1, 5, 5.2, 10), times = 6)
behav3 <- c(2.7, 2.7, 0.5, 0.5, 2.8, 2.8, 1.5, 1.5, 2.9, 2.9, 2.5, 2.5, 3, 3,
           3.5, 3.5, 3.1, 3.1, 4.5, 4.5, 4.5, 4.5, 3.2, 3.2, 5.5, 5.5)
punct <- data.frame(factor(id3), obs3, behav3)

colors <- c("#0D0887FF", "#6001A6FF", "#A01A9CFF", "#CF4C74FF", "#EB7556FF",
           "#8001A6FF", "#1A9CFF", "#313131", "#4C74FF", "#6001A6FF", "#9C6001FF")
```

115
Fig 2 - Day 1 results

Figure 2 shows the behavioral reaction norms on the very first day of life along with how this behavior is related to maternal identity and body size.

```r
# want to use viridis color palette but don't like the really bright
# yellow so will cut that out
plasma_pal <- viridis::plasma(n = 30)
plasma_pal <- plasma_pal[1:26]

# scales::show_col(plasma_pal)

# want to color the lines according to their behavior in hour 1
day1.rank <- day1.com %>%
  filter(hour == 1) %>%
  mutate(ranking = rank(speed.med, ties.method = "first")) %>%
  select(picomp, ranking)

day1.test <- left_join(day1.com, day1.rank, by = "picomp") %>%
  arrange(ranking) %>%
  group_by(picomp) %>%
  mutate(day1.speed = median(speed.med))
```
day 1 behavior only ----

day1.plot <- ggplot(day1.test, aes(x = hour, y = speed.med, group = picomp)) +
 geom_line(size = 1, aes(color = factor(ranking))) + xlab("Hour since lights on") +
 ylab("Median swimming speed (cm/s)") + scale_color_manual(values = plasma_pal) +
 theme_classic() + theme(axis.text.x = element_text(size = 12), axis.title.x = element_text(size = 16),
 axis.text.y = element_text(size = 12), axis.title.y = element_text(size = 16),
 legend.position = "none") + annotate("text", x = 1.1, y = 3, label = "A",
 size = 6) + annotate("text", x = 4, y = 2.8, label = "R = 0.65", size = 5,
 fontface = "italic")

is behavior related to mother identity? one point for every hour in day
1
mom.plot <- ggplot(day1.test, aes(x = mother, y = speed.med)) + geom_violin(trim = F,
 fill = "lightgray") + geom_jitter(width = 0.2, size = 2, alpha = 0.6, aes(color = factor(ranking)))
 + geom_point(day1.test, mapping = aes(x = mother, y = day1.speed, fill = factor(ranking)),
 shape = 21, size = 5) + scale_color_manual(values = plasma_pal) + scale_fill_manual(values = plasma_pal) +
 xlab("Mother identity") + ylab("Median swimming speed (cm/s)") + ylim(c(0, 3)) + scale_x_discrete(limits = c("90.2", "69.3", "70.2", "70.3", "75.2", "80.1", "77.2", "80.2"), labels = c("90.2" = "a", "69.3" = "b", "70.2" = "c", "70.3" = "d", "75.2" = "e", "80.1" = "f", "77.2" = "g", "80.2" = "h")) +
 theme_classic() + theme(axis.text.x = element_text(size = 12), axis.title.x = element_text(size = 16),
 axis.text.y = element_text(size = 12), axis.title.y = element_text(size = 16),
 legend.position = "none") + annotate("text", x = 0.9, y = 3, label = "B", size = 6)

While the models were all run on mean-centered TL, would be nice to
graph absolute TL as that is a bit more meaningful so will re-run the
model with the absolute TL, as opposed to centered TL
set.seed(472)
speed.day1.4.plot <- MCMCglmm(speed.med ~ hour.cen + TL, random = ~us(1 + hour.cen):picomp,
 prior = prior.id.slope, data = day1.com, family = "gaussian", nitt = 510000,
 burnin = 10000, thin = 200, verbose = F)
tl.slope <- as.vector(speed.day1.4.plot$Sol[, "TL"])
tl.inter <- as.vector(speed.day1.4.plot$Sol[, "(Intercept)"])
body.effects <- data.frame(tl.slope, tl.inter)

is behavior related to body size? estimates from day 1 model to report
- only select 1000 of them for graphing
body.effects2 <- body.effects[1:1001,]

body.plot <- ggplot() + geom_abline(body.effects2, mapping = aes(intercept = tl.inter,
 slope = tl.slope), color = "gray", alpha = 0.5) + geom_point(day1.test,
 mapping = aes(x = TL, y = speed.med, color = factor(ranking)), size = 2,
 alpha = 0.6) + geom_point(day1.test, mapping = aes(x = TL, y = day1.speed,
 fill = factor(ranking)), shape = 21, size = 5) + scale_color_manual(values = plasma_pal) +
 scale_fill_manual(values = plasma_pal) + xlab("Total length (cm)") + ylab("Median swimming speed (cm/s)")
Fig 3 - rpt slice

This figure is for our second research question (how does behavioral variation change over time?)

```r
plasma_pal <- viridis::plasma(n = 30)
plasma_pal <- plasma_pal[1:26]

# Repeatability estimates sliced across weeks wide
rpt.slice.wide <- read.csv("repeatability estimates sliced across weeks wide_220202.csv")
head(rpt.slice.wide)
```
Fig 3 - variance over time slide models

```
rpt.plot <- ggplot(rpt.slice.wide, aes(x = date)) + geom_point(aes(y = rpt, color = "#000000"), size = 4) + geom_line(aes(x = date, y = rpt, color = "#000000")) + geom_errorbar(aes(ymin = lower.rpt, ymax = upper.rpt, width = 0.75, color = "#000000")) + geom_errorbar(aes(x = date - 0.5, ymin = lower.id, ymax = upper.id, width = 0.75, color = "#000000")) + geom_point(aes(x = date - 0.5, y = post.id), shape = 21, color = "#000000", fill = "#959595", size = 4) + geom_point(aes(x = date + 0.5, y = post.w), shape = 21, color = "#CCCCCC", fill = "#CCCCCC", size = 4) + geom_errorbar(aes(x = date + 0.5, ymin = lower.w, ymax = upper.w, width = 0.75, color = "#000000")) + geom_line(aes(x = date + 0.5, y = post.w, color = "#CCCCCC")) + geom_point(aes(x = date + 0.5, y = post.w), shape = 21, color = "#000000", fill = "#CCCCCC", size = 4)
scale_x_continuous(breaks = c(0, 7, 14, 21, 28, 35, 42, 49, 56, 63, 70), labels = c(1, 7, 14, 21, 28, 35, 42, 49, 56, 63, 70)) + scale_y_continuous(name = "Variance estimate") + labs(x = "Day", color = "Legend") + scale_color_manual(name = "", values = c("#000000", "#959595", "#CCCCCC"), labels = c("Repeatability", "Among-individual", "Within-individual")) + theme_classic() + theme(legend.position = c(0.3, 0.9), legend.text = element_text(size = 14), axis.text.x = element_text(size = 12), axis.title.x = element_text(size = 16), axis.text.y = element_text(size = 12), axis.title.y = element_text(size = 16)) + annotate("text", label = "B", size = 6, x = -1, y = 0.8)
```

```
layout <- "
A
B
"
```

```
fig3 <- blup.plot + rpt.plot + plot_layout(design = layout)
ggsave(file = "Fig 3_variance over time slide models_220610.tiff", plot = fig3, height = 10, width = 7, dpi = 300)
ggsave(file = "Fig 3_variance over time slide models_220610.png", plot = fig3, height = 10, width = 7, dpi = 300)
```

Fig 4 - weeks corr over time

This figure is for our third research question (how predictive is early life behavior of later life behavior?)

```
among.corr <- read.csv("among individual correlations across weeks 220202.csv")

test <- gray.colors(5, start = 0, end = 0.9, gamma = 0.8)
scales::show_col(test)

# only select out correlations among 6 weeks diff
among.corr2 <- among.corr %>%
  filter(diff < 6)

colors <- c("#E6E6E6", "#A0A0A0", "#606060", "#292929", "#000000")
corr.over.time <- ggplot(among.corr2, aes(x = start.week, y = value)) + geom_point(aes(shape = factor(diff), fill = factor(diff)), color = "black", size = 4) + stat_smooth(method = "lm",
```

```
> scatterplots by week  So I extracted the BLUPs for each individual in each week in the weekly.blups file above, now the goal is to create a scatterplot for each which would be 45 individual graphs, wonder if there is some way I can facet this....

```r
need to get individual behavior BLUPs from here
weekly.blups <- read.csv("weekly activity blups across weeks 220202.csv")

want to create ranking based on week1 scores to better visualize who's who across weeks
weekly.blups <- weekly.blups %>%
 mutate(ranking = rank(week1)) %>%
 arrange(ranking)

need to get weekly correlation coefficients from here
among.corr <- read.csv("among individual correlations across weeks 220202.csv")

plasma_pal <- viridis::plasma(n = 30)
plasma_pal <- plasma_pal[1:26]

scales::show_col(plasma_pal)

week 1 correlations
week12 <- ggplot(weekly.blups, aes(x = week2, y = week1)) + geom_abline(intercept = 0, slope = among.corr$value[1]) + xlab("Week 2") + ylab("Week 1") + annotate("text", label = "A", size = 10, x = -0.25, y = 2) + geom_point(aes(color = ranking), size = 3.5) + scale_color_viridis_c(option = "plasma") + scale_x_continuous(limits = c(-0.75, 2.31), breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + scale_y_continuous(limits = c(-0.75, 2.31), breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + theme_classic() + theme(legend.position = "none", plot.margin = margin(0, 0, 0, 0), axis.text = element_blank(), axis.title = element_text(size = 16))

week13 <- ggplot(weekly.blups, aes(x = week3, y = week1)) + geom_abline(intercept = 0, slope = among.corr$value[2]) + geom_point(aes(color = ranking), size = 3.5) + scale_color_viridis_c(option = "plasma") + scale_x_continuous(limits = c(-0.75, 2.31), breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + scale_y_continuous(limits = c(-0.75, 2.31), breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + theme_classic() + theme(legend.position = "none", axis.title = element_blank(), axis.text = element_blank(), plot.margin = margin(0, 0, 0, 0))
```
week14 <- ggplot(weekly.blups, aes(x = week4, y = week1)) + geom_abline(intercept = 0, slope = among.corr$value[3]) + geom_point(aes(color = ranking), size = 3.5) + scale_color_viridis_c(option = "plasma") + scale_x_continuous(limits = c(-0.75, 2.31), breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + scale_y_continuous(limits = c(-0.75, 2.31), breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + theme_classic() + theme(legend.position = "none", axis.title = element_blank(), axis.text = element_blank(), plot.margin = margin(0, 0, 0, 0))

week15 <- ggplot(weekly.blups, aes(x = week5, y = week1)) + geom_abline(intercept = 0, slope = among.corr$value[4]) + geom_point(aes(color = ranking), size = 3.5) + scale_color_viridis_c(option = "plasma") + scale_x_continuous(limits = c(-0.75, 2.31), breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + scale_y_continuous(limits = c(-0.75, 2.31), breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + theme_classic() + theme(legend.position = "none", axis.title = element_blank(), axis.text = element_blank(), plot.margin = margin(0, 0, 0, 0))

week16 <- ggplot(weekly.blups, aes(x = week6, y = week1)) + geom_abline(intercept = 0, slope = among.corr$value[5]) + geom_point(aes(color = ranking), size = 3.5) + scale_color_viridis_c(option = "plasma") + scale_x_continuous(limits = c(-0.75, 2.31), breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + scale_y_continuous(limits = c(-0.75, 2.31), breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + theme_classic() + theme(legend.position = "none", axis.title = element_blank(), axis.text = element_blank(), plot.margin = margin(0, 0, 0, 0))

week17 <- ggplot(weekly.blups, aes(x = week7, y = week1)) + geom_abline(intercept = 0, slope = among.corr$value[6]) + geom_point(aes(color = ranking), size = 3.5) + scale_color_viridis_c(option = "plasma") + scale_x_continuous(limits = c(-0.75, 2.31), breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + scale_y_continuous(limits = c(-0.75, 2.31), breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + theme_classic() + theme(legend.position = "none", axis.title = element_blank(), axis.text = element_blank(), plot.margin = margin(0, 0, 0, 0))

week18 <- ggplot(weekly.blups, aes(x = week8, y = week1)) + geom_abline(intercept = 0, slope = among.corr$value[7]) + geom_point(aes(color = ranking), size = 3.5) + scale_color_viridis_c(option = "plasma") + scale_x_continuous(limits = c(-0.75, 2.31), breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + scale_y_continuous(limits = c(-0.75, 2.31), breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + theme_classic() + theme(legend.position = "none", axis.title = element_blank(), axis.text = element_blank(), plot.margin = margin(0, 0, 0, 0))

week19 <- ggplot(weekly.blups, aes(x = week9, y = week1)) + geom_abline(intercept = 0, slope = among.corr$value[8]) + geom_point(aes(color = ranking), size = 3.5) + scale_color_viridis_c(option = "plasma") + scale_x_continuous(limits = c(-0.75, 2.31), breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + scale_y_continuous(limits = c(-0.75, 2.31), breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + theme_classic() + theme(legend.position = "none", axis.title = element_blank(), axis.text = element_blank(), plot.margin = margin(0, 0, 0, 0))

week10 <- ggplot(weekly.blups, aes(x = week10, y = week1)) + geom_abline(intercept = 0, slope = among.corr$value[9]) + geom_point(aes(color = ranking), size = 3.5) + scale_color_viridis_c(option = "plasma") + scale_x_continuous(limits = c(-0.75, 2.31), breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + scale_y_continuous(limits = c(-0.75, 2.31), breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + theme_classic() + theme(legend.position = "none", axis.title = element_blank(), axis.text = element_blank(), plot.margin = margin(0, 0, 0, 0))
# Week 2 Correlations

```r
week23 <- ggplot(weekly.blups, aes(x = week3, y = week2)) + geom_abline(intercept = 0,
 slope = among.corr$value[10]) + geom_point(aes(color = ranking), size = 3.5) +
 scale_color_viridis_c(option = "plasma") + scale_x_continuous(limits = c(-0.75,
 2.31), breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + scale_y_continuous(limits = c(-0.75,
 2.31), breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + theme_classic() + theme(legend.position = "none",
 plot.margin = margin(0, 0, 0, 0), axis.text = element_blank(), axis.title = element_blank(),
 plot.margin = margin(0, 0, 0, 0))
```

```r
week24 <- ggplot(weekly.blups, aes(x = week4, y = week2)) + geom_abline(intercept = 0,
 slope = among.corr$value[11]) + geom_point(aes(color = ranking), size = 3.5) +
 scale_color_viridis_c(option = "plasma") + scale_x_continuous(limits = c(-0.75,
 2.31), breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + scale_y_continuous(limits = c(-0.75,
 2.31), breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + theme_classic() + theme(legend.position = "none",
 axis.title = element_blank(), axis.text = element_blank(), plot.margin = margin(0,
 0, 0, 0))
```

```r
week25 <- ggplot(weekly.blups, aes(x = week5, y = week2)) + geom_abline(intercept = 0,
 slope = among.corr$value[12]) + geom_point(aes(color = ranking), size = 3.5) +
 scale_color_viridis_c(option = "plasma") + scale_x_continuous(limits = c(-0.75,
 2.31), breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + scale_y_continuous(limits = c(-0.75,
 2.31), breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + theme_classic() + theme(legend.position = "none",
 axis.title = element_blank(), axis.text = element_blank(), plot.margin = margin(0,
 0, 0, 0))
```

```r
week26 <- ggplot(weekly.blups, aes(x = week6, y = week2)) + geom_abline(intercept = 0,
 slope = among.corr$value[13]) + geom_point(aes(color = ranking), size = 3.5) +
 scale_color_viridis_c(option = "plasma") + scale_x_continuous(limits = c(-0.75,
 2.31), breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + scale_y_continuous(limits = c(-0.75,
 2.31), breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + theme_classic() + theme(legend.position = "none",
 axis.title = element_blank(), axis.text = element_blank(), plot.margin = margin(0,
 0, 0, 0))
```

```r
week27 <- ggplot(weekly.blups, aes(x = week7, y = week2)) + geom_abline(intercept = 0,
 slope = among.corr$value[14]) + geom_point(aes(color = ranking), size = 3.5) +
 scale_color_viridis_c(option = "plasma") + scale_x_continuous(limits = c(-0.75,
 2.31), breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + scale_y_continuous(limits = c(-0.75,
 2.31), breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + theme_classic() + theme(legend.position = "none",
 axis.title = element_blank(), axis.text = element_blank(), plot.margin = margin(0,
 0, 0, 0))
```

```r
week28 <- ggplot(weekly.blups, aes(x = week8, y = week2)) + geom_abline(intercept = 0,
 slope = among.corr$value[15]) + geom_point(aes(color = ranking), size = 3.5) +
 scale_color_viridis_c(option = "plasma") + scale_x_continuous(limits = c(-0.75,
 2.31), breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + scale_y_continuous(limits = c(-0.75,
 2.31), breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + theme_classic() + theme(legend.position = "none",
 axis.title = element_blank(), axis.text = element_blank(), plot.margin = margin(0,
 0, 0, 0))
```

```r
week29 <- ggplot(weekly.blups, aes(x = week9, y = week2)) + geom_abline(intercept = 0,
 slope = among.corr$value[16]) + geom_point(aes(color = ranking), size = 3.5) +
 scale_color_viridis_c(option = "plasma") + scale_x_continuous(limits = c(-0.75,
 2.31), breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + scale_y_continuous(limits = c(-0.75,
 2.31), breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + theme_classic() + theme(legend.position = "none",
 axis.title = element_blank(), axis.text = element_blank(), plot.margin = margin(0,
 0, 0, 0))
```
week210 <- ggplot(weekly.blups, aes(x = week10, y = week2)) + geom_abline(intercept = 0, slope = among.corr$value[17]) + geom_point(aes(color = ranking), size = 3.5) + scale_color_viridis_c(option = "plasma") + scale_x_continuous(limits = c(-0.75, 2.31), breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + scale_y_continuous(limits = c(-0.75, 2.31), breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + theme_classic() + theme(legend.position = "none", axis.title = element_blank(), axis.text = element_blank(), plot.margin = margin(0, 0, 0))

# Week 3 plots

week34 <- ggplot(weekly.blups, aes(x = week4, y = week3)) + geom_abline(intercept = 0, slope = among.corr$value[18]) + ylab("Week 3") + xlab("Week 4") + geom_point(aes(color = ranking), size = 3.5) + scale_color_viridis_c(option = "plasma") + scale_x_continuous(limits = c(-0.75, 2.31), breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + scale_y_continuous(limits = c(-0.75, 2.31), breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + theme_classic() + theme(legend.position = "none", plot.margin = margin(0, 0, 0, 0), axis.text = element_blank(), axis.title = element_text(size = 16))

week35 <- ggplot(weekly.blups, aes(x = week5, y = week3)) + geom_abline(intercept = 0, slope = among.corr$value[19]) + geom_point(aes(color = ranking), size = 3.5) + scale_color_viridis_c(option = "plasma") + scale_x_continuous(limits = c(-0.75, 2.31), breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + scale_y_continuous(limits = c(-0.75, 2.31), breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + theme_classic() + theme(legend.position = "none", axis.title = element_blank(), axis.text = element_blank(), plot.margin = margin(0, 0, 0))

week36 <- ggplot(weekly.blups, aes(x = week6, y = week3)) + geom_abline(intercept = 0, slope = among.corr$value[20]) + geom_point(aes(color = ranking), size = 3.5) + scale_color_viridis_c(option = "plasma") + scale_x_continuous(limits = c(-0.75, 2.31), breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + scale_y_continuous(limits = c(-0.75, 2.31), breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + theme_classic() + theme(legend.position = "none", axis.title = element_blank(), axis.text = element_blank(), plot.margin = margin(0, 0, 0))

week37 <- ggplot(weekly.blups, aes(x = week7, y = week3)) + geom_abline(intercept = 0, slope = among.corr$value[21]) + geom_point(aes(color = ranking), size = 3.5) + scale_color_viridis_c(option = "plasma") + scale_x_continuous(limits = c(-0.75, 2.31), breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + scale_y_continuous(limits = c(-0.75, 2.31), breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + theme_classic() + theme(legend.position = "none", axis.title = element_blank(), axis.text = element_blank(), plot.margin = margin(0, 0, 0))

week38 <- ggplot(weekly.blups, aes(x = week8, y = week3)) + geom_abline(intercept = 0, slope = among.corr$value[22]) + geom_point(aes(color = ranking), size = 3.5) + scale_color_viridis_c(option = "plasma") + scale_x_continuous(limits = c(-0.75, 2.31), breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + scale_y_continuous(limits = c(-0.75, 2.31), breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + theme_classic() + theme(legend.position = "none", axis.title = element_blank(), axis.text = element_blank(), plot.margin = margin(0, 0, 0), axis.text = element_blank())
week39 <- ggplot(weekly.blups, aes(x = week9, y = week3)) + geom_abline(intercept = 0,
slope = among.corr$value[23]) + geom_point(aes(color = ranking), size = 3.5) +
scale_color_viridis_c(option = "plasma") + scale_x_continuous(limits = c(-0.75, 2.31),
breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + scale_y_continuous(limits = c(-0.75, 2.31),
breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + theme_classic() + theme(legend.position = "none",
axis.title = element_blank(), axis.text = element_blank(), plot.margin = margin(0, 0, 0, 0))

week310 <- ggplot(weekly.blups, aes(x = week10, y = week3)) + geom_abline(intercept = 0,
slope = among.corr$value[24]) + geom_point(aes(color = ranking), size = 3.5) +
scale_color_viridis_c(option = "plasma") + scale_x_continuous(limits = c(-0.75, 2.31),
breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + scale_y_continuous(limits = c(-0.75, 2.31),
breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + theme_classic() + theme(legend.position = "none",
axis.title = element_blank(), axis.text = element_blank(), plot.margin = margin(0, 0, 0, 0))

# week 4 plots

week45 <- ggplot(weekly.blups, aes(x = week5, y = week4)) + geom_abline(intercept = 0,
slope = among.corr$value[25]) + ylab("Week 4") + xlab("Week 5") + geom_point(aes(color = ranking),
size = 3.5) + scale_color_viridis_c(option = "plasma") + scale_x_continuous(limits = c(-0.75, 2.31),
breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + scale_y_continuous(limits = c(-0.75, 2.31),
breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + theme_classic() + theme(legend.position = "none",
plot.margin = margin(0, 0, 0, 0), axis.text = element_blank(), axis.title = element_text(size = 16))

week46 <- ggplot(weekly.blups, aes(x = week6, y = week4)) + geom_abline(intercept = 0,
slope = among.corr$value[26]) + geom_point(aes(color = ranking), size = 3.5) +
scale_color_viridis_c(option = "plasma") + scale_x_continuous(limits = c(-0.75, 2.31),
breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + scale_y_continuous(limits = c(-0.75, 2.31),
breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + theme_classic() + theme(legend.position = "none",
axis.title = element_blank(), axis.text = element_blank(), plot.margin = margin(0, 0, 0, 0))

week47 <- ggplot(weekly.blups, aes(x = week7, y = week4)) + geom_abline(intercept = 0,
slope = among.corr$value[27]) + geom_point(aes(color = ranking), size = 3.5) +
scale_color_viridis_c(option = "plasma") + scale_x_continuous(limits = c(-0.75, 2.31),
breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + scale_y_continuous(limits = c(-0.75, 2.31),
breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + theme_classic() + theme(legend.position = "none",
axis.title = element_blank(), axis.text = element_blank(), plot.margin = margin(0, 0, 0, 0))

week48 <- ggplot(weekly.blups, aes(x = week8, y = week4)) + geom_abline(intercept = 0,
slope = among.corr$value[28]) + geom_point(aes(color = ranking), size = 3.5) +
scale_color_viridis_c(option = "plasma") + scale_x_continuous(limits = c(-0.75, 2.31),
breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + scale_y_continuous(limits = c(-0.75, 2.31),
breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + theme_classic() + theme(legend.position = "none",
axis.title = element_blank(), axis.text = element_blank(), plot.margin = margin(0, 0, 0, 0))

week49 <- ggplot(weekly.blups, aes(x = week9, y = week4)) + geom_abline(intercept = 0,
slope = among.corr$value[29]) + geom_point(aes(color = ranking), size = 3.5) +
week410 <- ggplot(weekly.blups, aes(x = week10, y = week4)) + geom_abline(intercept = 0, slope = among.corr$value[30]) + geom_point(aes(color = ranking), size = 3.5) + scale_color_viridis_c(option = "plasma") + scale_x_continuous(limits = c(-0.75, 2.31), breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + scale_y_continuous(limits = c(-0.75, 2.31), breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + theme_classic() + theme(legend.position = "none", axis.title = element_blank(), axis.text = element_blank(), plot.margin = margin(0, 0, 0, 0))

# week 5 plots

week56 <- ggplot(weekly.blups, aes(x = week6, y = week5)) + geom_abline(intercept = 0, slope = among.corr$value[31]) + ylab("Week 5") + xlab("Week 6") + geom_point(aes(color = ranking), size = 3.5) + scale_color_viridis_c(option = "plasma") + scale_x_continuous(limits = c(-0.75, 2.31), breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + scale_y_continuous(limits = c(-0.75, 2.31), breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + theme_classic() + theme(legend.position = "none", plot.margin = margin(0, 0, 0, 0), axis.text = element_blank(), axis.title = element_text(size = 16))

week57 <- ggplot(weekly.blups, aes(x = week7, y = week5)) + geom_abline(intercept = 0, slope = among.corr$value[32]) + geom_point(aes(color = ranking), size = 3.5) + scale_color_viridis_c(option = "plasma") + scale_x_continuous(limits = c(-0.75, 2.31), breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + scale_y_continuous(limits = c(-0.75, 2.31), breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + theme_classic() + theme(legend.position = "none", axis.title = element_blank(), axis.text = element_blank(), plot.margin = margin(0, 0, 0, 0))

week58 <- ggplot(weekly.blups, aes(x = week8, y = week5)) + geom_abline(intercept = 0, slope = among.corr$value[33]) + geom_point(aes(color = ranking), size = 3.5) + scale_color_viridis_c(option = "plasma") + scale_x_continuous(limits = c(-0.75, 2.31), breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + scale_y_continuous(limits = c(-0.75, 2.31), breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + theme_classic() + theme(legend.position = "none", axis.title = element_blank(), axis.text = element_blank(), plot.margin = margin(0, 0, 0, 0))

week59 <- ggplot(weekly.blups, aes(x = week9, y = week5)) + geom_abline(intercept = 0, slope = among.corr$value[34]) + geom_point(aes(color = ranking), size = 3) + scale_color_viridis_c(option = "plasma") + scale_x_continuous(limits = c(-0.75, 2.31), breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + scale_y_continuous(limits = c(-0.75, 2.31), breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + theme_classic() + theme(legend.position = "none", axis.title = element_blank(), axis.text = element_blank(), plot.margin = margin(0, 0, 0, 0))

week510 <- ggplot(weekly.blups, aes(x = week10, y = week5)) + geom_abline(intercept = 0, slope = among.corr$value[35]) + geom_point(aes(color = ranking), size = 3.5) + scale_color_viridis_c(option = "plasma") + scale_x_continuous(limits = c(-0.75, 2.31), breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + scale_y_continuous(limits = c(-0.75, 2.31), breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + theme_classic() + theme(legend.position = "none", axis.title = element_blank(), axis.text = element_blank(), plot.margin = margin(0, 0, 0, 0))
# week 6 plots

week67 <- ggplot(weekly.blups, aes(x = week7, y = week6)) + geom_abline(intercept = 0, slope = among.cor$y[36]) + ylab("Week 6") + xlab("Week 7") + geom_point(aes(color = ranking), size = 3.5) + scale_color_viridis_c(option = "plasma") + scale_x_continuous(limits = c(-0.75, 2.31), breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + scale_y_continuous(limits = c(-0.75, 2.31), breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + theme_classic() + theme(legend.position = "none", plot.margin = margin(0, 0, 0, 0), axis.text = element_blank(), axis.title = element_text(size = 16))

week68 <- ggplot(weekly.blups, aes(x = week8, y = week6)) + geom_abline(intercept = 0, slope = among.cor$y[37]) + geom_point(aes(color = ranking), size = 3.5) + scale_color_viridis_c(option = "plasma") + scale_x_continuous(limits = c(-0.75, 2.31), breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + scale_y_continuous(limits = c(-0.75, 2.31), breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + theme_classic() + theme(legend.position = "none", axis.title = element_blank(), axis.text = element_blank(), plot.margin = margin(0, 0, 0, 0))

week69 <- ggplot(weekly.blups, aes(x = week9, y = week6)) + geom_abline(intercept = 0, slope = among.cor$y[38]) + geom_point(aes(color = ranking), size = 3.5) + scale_color_viridis_c(option = "plasma") + scale_x_continuous(limits = c(-0.75, 2.31), breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + scale_y_continuous(limits = c(-0.75, 2.31), breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + theme_classic() + theme(legend.position = "none", axis.title = element_blank(), axis.text = element_blank(), plot.margin = margin(0, 0, 0, 0))

week70 <- ggplot(weekly.blups, aes(x = week10, y = week6)) + geom_abline(intercept = 0, slope = among.cor$y[39]) + geom_point(aes(color = ranking), size = 3.5) + scale_color_viridis_c(option = "plasma") + scale_x_continuous(limits = c(-0.75, 2.31), breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + scale_y_continuous(limits = c(-0.75, 2.31), breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + theme_classic() + theme(legend.position = "none", axis.title = element_blank(), axis.text = element_blank(), plot.margin = margin(0, 0, 0, 0))

# week 7 plots

week78 <- ggplot(weekly.blups, aes(x = week8, y = week7)) + geom_abline(intercept = 0, slope = among.cor$y[40]) + ylab("Week 7") + xlab("Week 8") + geom_point(aes(color = ranking), size = 3.5) + scale_color_viridis_c(option = "plasma") + scale_x_continuous(limits = c(-0.75, 2.31), breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + scale_y_continuous(limits = c(-0.75, 2.31), breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + theme_classic() + theme(legend.position = "none", plot.margin = margin(0, 0, 0, 0), axis.text = element_blank(), axis.title = element_text(size = 16))

week79 <- ggplot(weekly.blups, aes(x = week9, y = week7)) + geom_abline(intercept = 0, slope = among.cor$y[41]) + geom_point(aes(color = ranking), size = 3.5) + scale_color_viridis_c(option = "plasma") + scale_x_continuous(limits = c(-0.75, 2.31), breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + scale_y_continuous(limits = c(-0.75, 2.31), breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + theme_classic() + theme(legend.position = "none", axis.title = element_blank(), axis.text = element_blank(), plot.margin = margin(0, 0, 0, 0))
week710 <- ggplot(weekly.blups, aes(x = week10, y = week7)) + geom_abline(intercept = 0, slope = among.corr$value[42]) + geom_point(aes(color = ranking), size = 3.5) + scale_color_viridis_c(option = "plasma") + scale_x_continuous(limits = c(-0.75, 2.31), breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + scale_y_continuous(limits = c(-0.75, 2.31), breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + theme_classic() + theme(legend.position = "none", axis.title = element_blank(), axis.text = element_blank(), plot.margin = margin(0, 0, 0, 0))

# Week 8 plots

week89 <- ggplot(weekly.blups, aes(x = week9, y = week8)) + geom_abline(intercept = 0, slope = among.corr$value[43]) + ylab("Week 8") + xlab("Week 9") + geom_point(aes(color = ranking), size = 3.5) + scale_color_viridis_c(option = "plasma") + scale_x_continuous(limits = c(-0.75, 2.31), breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + scale_y_continuous(limits = c(-0.75, 2.31), breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + theme_classic() + theme(legend.position = "none", plot.margin = margin(0, 0, 0, 0), axis.text = element_blank(), axis.title = element_text(size = 16))

week810 <- ggplot(weekly.blups, aes(x = week10, y = week8)) + geom_abline(intercept = 0, slope = among.corr$value[44]) + geom_point(aes(color = ranking), size = 3.5) + scale_color_viridis_c(option = "plasma") + scale_x_continuous(limits = c(-0.75, 2.31), breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + scale_y_continuous(limits = c(-0.75, 2.31), breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + theme_classic() + theme(legend.position = "none", axis.title = element_blank(), axis.text = element_blank(), plot.margin = margin(0, 0, 0, 0))

# Week 9 plots

week910 <- ggplot(weekly.blups, aes(x = week10, y = week9)) + geom_abline(intercept = 0, slope = among.corr$value[45]) + ylab("Week 9") + xlab("Week 10") + geom_point(aes(color = ranking), size = 3.5) + scale_color_viridis_c(option = "plasma") + scale_x_continuous(limits = c(-0.75, 2.31), breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + scale_y_continuous(limits = c(-0.75, 2.31), breaks = c(-0.75, 0, 0.75, 1.5, 2.25)) + theme_classic() + theme(legend.position = "none", plot.margin = margin(0, 0, 0, 0), axis.text = element_blank(), axis.title = element_text(size = 16))

# with patchwork instead

layout <- "
AAbBcCdDe
#EffGhHHi
#IjJkKlL
###mMnNoO
####pPqQr
WWW#RsSt
WWW#TuU
WWW###vV
WWW####w
"

matrix.fig2 <- week12 + week13 + week14 + week15 + week16 + week17 + week18 + week19 + week110 + week23 + week24 + week25 + week26 + week27 + week28 + week29 + week210 + week34 + week35 + week36 + week37 + week38 + week39 + week310 + week45 + week46 + week47 + week48 + week49 + week410 + week56 + 
5 - SUPPLEMENTAL FIGURES

Fig - behavioral correlations

# DAY 1 ONLY

set.seed(410)
behav.day1.cor <- MCMCglmm(cbind(speed.med, propmoving, distmoved.iqr, borderdist.med) ~
  trait - 1, random = ~us(trait):picomp, rcov = ~us(trait):units, family = c(rep("gaussian",
4)), prior = prior.cov4, nitt = 5000 * 100, thin = 100, burnin = 1000, verbose = F,
data = day1.com)

# Among indv corr on Day 1 ----
behav.day1.among <- matrix(posterior.mode(posterior.cor(behav.day1.cor$VCV[, 1:16])), 4, 4, dimnames = list(c("Med.speed", "Prop.moving", "IQR.speed",
"Med.border"), c("Med.speed", "Prop.moving", "IQR.speed", "Med.border")))
day1.corr <- ggcorrplot(behav.day1.among, type = "lower", lab = T) + theme(legend.position = "none") +
  annotate("text", label = "A", x = 0.6, y = 3.4, size = 5)

# ENTIRE OBSERVATION PERIOD

set.seed(100)
behav.all.cor <- MCMCglmm(cbind(speed.med, propmoving, distmoved.iqr, borderdist.med) ~
  trait - 1, random = ~us(trait):picomp, rcov = ~us(trait):units, family = c(rep("gaussian",
4)), prior = prior.cov4, nitt = 5000 * 100, thin = 100, burnin = 1000, verbose = F,
data = indv.com)

# Model for entire observation period ----
behav.matrix.all <- matrix(posterior.mode(posterior.cor(behav.all.cor$VCV[, 1:16])), 4, 4, dimnames = list(c("Med.speed", "Prop.moving", "IQR.speed",
"Med.border"), c("Med.speed", "Prop.moving", "IQR.speed", "Med.border")))
entire.corr <- ggcorrplot(behav.matrix.all, type = "lower", lab = T) + theme(axis.text.y = element_blank()) +
  annotate("text", label = "B", x = 0.6, y = 3.4, size = 5)

layout <- "
AB
"
corrplots <- day1.corr + entire.corr + plot_layout(design = layout)
Fig - growth rates

```
indv.tl <- indv.com %>%
group_by(picomp, week) %>%
summarise(TL = unique(TL))

colors.id <- c("#abcd53", "#9b51ea", "#73e24b", "#d24cd8", "#bdd830", "#506af2",
"#e4c82d", "#7a69db", "#4ba338", "#dd47b2", "#5ae08c", "#e34086", "#6cddba",
"#e43649", "#b4d0d7", "#e64a22", "#5283e2", "#e6a63e", "#b16dd7", "#d0bc51",
"#9180d5", "#e7e2e6", "#6fbae6", "#b6c621", "#5c81bc", "#a47e27", "#b0497b",
"#9b688b", "#48567b", "#449769", "#684c3c", "#e986e9", "#98c833",
"#9b76b4", "#c9ca83", "#c86992", "#e5a775", "#d07878", "#b47046")

growth.plot <- ggplot(indv.tl, aes(x = week, y = TL, group = picomp, color = picomp)) +
 geom_line(size = 1) + xlab("Week") + ylab("Total length (cm)") + scale_x_continuous(limits = c(1, 10),
 breaks = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)) + ylim(c(0.75, 3)) + scale_color_viridis_d(option = "plasma") +
 theme_classic() + theme(axis.text.x = element_text(size = 12), axis.title.x = element_text(size = 16),
 axis.text.y = element_text(size = 12), axis.title.y = element_text(size = 16),
 legend.position = "none")
```

Fig - effects of body size on behavior

We have really strong statistical support to show that aspects of body size and growth rate don’t seem to
really explain variation in behavior, but would be good to have some nice graphs to back this up too.

```
weekly body size by weekly behavior

body.behav <- indv.com %>%
group_by(week, picomp) %>%
summarise(speed = median(speed.med), body = first(TL))

plasma_pal <- viridis::plasma(n = 26)
plasma_rand <- sample(plasma_pal)

body.plot <- ggplot(body.behav, aes(x = body, y = speed, group = picomp, color = picomp)) +
geom_point() + stat_smooth(method = "lm", se = F) + xlab("Weekly body size (cm)") +
ylab("Weekly median swimming speed") + scale_color_manual(values = plasma_rand) +
theme_classic() + theme(legend.position = "none")
```

# overall body size versus overall behavior

```
body.behav2 <- indv.com %>%
group_by(picomp) %>%
summarise(speed = median(speed.med), body = mean(TL))
```
body.plot2 <- ggplot(body.behav2, aes(x = body, y = speed)) + geom_point(size = 3) +
  xlab("Average body size") + ylab("Overall median swimming speed") + theme_classic()

# day 1 behavior
day1.body <- day1 %>%
  group_by(picomp) %>%
  summarise(body = first(TL), speed = median(speed.med), mother = first(mother))

plasma_pal <- viridis::plasma(n = 9)
plasma_rand <- sample(plasma_pal)

body.plot3 <- ggplot(day1.body, aes(x = body, y = speed, color = mother)) +
  geom_point(size = 3) + xlab("Body size on day one") + ylab("Median swimming speed on day one") +
  scale_color_manual(values = plasma_rand) + theme_classic()

Fig - growth rate

growth.behav <- size.data %>%
  group_by(week, picomp) %>%
  summarise(speed = median(speed.med), growth = first(growth.rate))

plot <- ggplot(growth.behav, aes(x = growth, y = speed, color = picomp, group = picomp)) +
  stat_smooth(method = "lm", se = F)

plot <- ggplot(growth.behav, aes(x = growth, y = speed, color = picomp, group = picomp)) +
  xlim(0, 0.5) + geom_point()

Fig - maternal effects

Is there any evidence that babies from the same mother are more similar in their behavior? Based on the
models there is no support for this statistically, but a graphical representation will be nice

plasma_pal <- viridis::plasma(n = 40)
plasma_rand <- sample(plasma_pal)

# one point for every hour in day 1
mom.plot <- ggplot(day1.com, aes(x = mother, y = speed.med)) + geom_boxplot() +
  geom_jitter(width = 0.2, size = 2, aes(color = picomp)) + scale_color_manual(values = plasma_rand) +
  xlab("Mother identity") + ylab("Median speed on day one") + theme_classic() +
  theme(legend.position = "none")

# now we just have one data point per indv for the first day
indv.ave.day1 <- day1 %>%
  group_by(picomp) %>%
  summarise(mother = first(mother), speed = median(speed.med))

mom.plot <- ggplot(indv.ave.day1, aes(x = mother, y = speed)) + geom_boxplot() +
  geom_jitter(width = 0.2) + xlab("Mother identity") + ylab("Median speed on day one") +
  theme_classic()
indv.ave.week1 <- indv %>%
  filter(obs < 8)

mom.plot <- ggplot(indv.ave.week1, aes(x = mother, y = speed.med)) + geom_boxplot() +
  geom_jitter(width = 0.2) + xlab("Mother identity") + ylab("Median speed on day one") +
  theme_classic()

# now let's look across the whole observation period

plasma_pal9 <- viridis::plasma(n = 9)
plasma_rand <- sample(plasma_pal9)

indv2.ave <- indv %>%
  group_by(picomp) %>%
  arrange(obs) %>%
  mutate(speed.7day = rollmean(speed.med, k = 7, fill = NA))

obs.plot <- ggplot(indv2.ave, aes(x = obs, y = sqrt(speed.7day), group = picomp,
  color = mother)) + geom_line(size = 1) + xlab("Entire observation period") +
  ylab("Median swimming speed") + scale_color_manual(values = plasma_rand) +
  theme_classic() + theme(axis.text.x = element_text(size = 10), axis.title.x = element_text(size = 14),
  axis.text.y = element_text(size = 10), axis.title.y = element_text(size = 14),
  legend.position = "none")