VIBRATION-BASED DAMAGE DETECTION IN A BEAM STRUCTURE WITH MULTIPLE DAMAGE LOCATIONS

Sandris Ručevskis 1, Miroslaw Wesolowski 2, Andris Chate 3

Institute of Materials and Structures of Riga Technical University
Azenes St. 16-323, LV-1048, Riga, Latvia
E-mails: 1 sandris_r@bf.rtu.lv; 2 mwesolowski@c4.bf.rtu.lv; 3 and_cate@latnet.lv

Received 24 April 2009; accepted 10 August 2009

Abstract. During the last two decades structural damage identification using dynamic parameters of the structure has become an important research area for civil, mechanical, and aerospace engineering communities. The basic idea of the vibration-based damage detection methods is that a damage as a combination of different failure modes in the form of loss of local stiffness in the structure alters its dynamic characteristics, i.e., the modal frequencies, mode shapes, and modal damping values. A great variety of methods have been proposed for damage detection by using dynamic structure parameters; however, most of them require modal data of the healthy state of structure as a reference. In this paper a vibration-based damage detection method, which uses the mode shape information determined from only the damaged state of the structure is proposed. To establish the method, two aluminium beams containing different sizes of mill-cut damage at a single location as well as two aluminium beams containing different sizes of mill-cut damage at multiple locations are examined. The experimental modal frequencies and the corresponding mode shapes for the first 15 flexural modes are obtained by using a scanning laser vibrometer with a PZT actuator. From the mode shapes, mode shape curvatures are obtained by using a central difference...
1. Introduction

Many structural applications worldwide have been in use for tens or even hundreds of years. Their failure could lead to tragic consequences and therefore structures have regular costly inspections. The standard procedure of performing routine maintenance and replacing parts before they have actually used up their life is inefficient and increases the cost of the structure. For example, currently 27% of an average aircraft’s life cycle cost is spent on inspection and repair (Hall et al. 1999). The strong need to develop effective damage identification techniques for structural health monitoring and damage detection at the earliest possible stage is pervasive throughout the civil, mechanical, and aerospace engineering industries. Damage identification can increase safety, extend serviceability, reduce maintenance costs and define reducing operating limits for structures.

During the last decades vibration-based damage detection methods have attracted the most attention due to their simplicity for implementation. These methods are based on the fact that the dynamic characteristics, i.e., the natural frequencies, mode shapes, and modal damping are directly related to the stiffness of the structure. Therefore, a change in natural frequencies or a change in mode shapes will indicate a loss of the stiffness. Valuable reviews of the state of art in the methods for detecting, localizing, and characterizing damage by examining the changes in the measured vibration parameters can be found in (Doebbling et al. 1996, Xia 2002). Many studies have investigated the effects of damage on mode shapes and corresponding mode shape curvatures (Ho et al. 2000; Stubbs et al. 1996; Yuen 1985; Pandey et al. 1991; Wahab et al. 1999; Maia et al. 2003). These papers show that mode shape curvatures are highly sensitive to damage and can be used to localize it. However, the major drawback of those methods is a need for the data of the healthy structure which sometimes could be difficult to obtain or even impossible. To overcome this issue Gapped Smoothing Techniques were introduced which allow the damage detection in a structure without prior knowledge on the healthy state (Wu et al. 2004; Ratcliffe et al. 1998; Gherlone et al. 2005). The basic idea of the methods is that the mode shape curvature of the healthy structure has a smooth surface, and it can be approximated by a polynomial. The square of the difference between the measured curvature and the smoothed polynomial is defined as damage index and maximum value indicates the location and size of the damage.

In the present paper the method which uses the mode shape curvature squares determined from only the damaged state of the structure for the damage detection in a beam is described and compared with other relevant damage detection methods referenced in literature. The experimental modal frequencies and the corresponding mode shapes obtained by using a scanning laser vibrometer with a PZT actuator are used for illustration of the proposed method. In addition damage extent is identified via the modal frequencies by using a mixed numerical-experimental technique.

2. Damage detection algorithms

Since the mode shape curvature squares are derived from mode shapes and also for a better illustration of the proposed method, it was decided to compare the present method with other relevant damage detection methods, which employ mode shape information.

2.1. Mode shape (MS) damage index

The simplest one is the mode shape damage index. It represents the difference between the mode shapes of the healthy and the damaged structures (Ho et al. 2000)

\[\Delta v_i = |v_i^d - v_i| \]

(1)

where \(v_i^d \) and \(v_i \) are mode shapes of the damaged and the healthy state of a structure, respectively, and \(i \) denotes the node number or measured point.

The experimentally measured mode shapes are inevitably corrupted by measurement noise. This noise introduces local perturbations to the mode shape, which can lead to peaks in the mode shape slope, curvature and curvature square profiles. These peaks could be mistakenly interpreted as damage or they could mask the peaks induced by real damage in a beam and lead to false or missed detection of damage. To overcome this problem, it is proposed to average the sum of damage indices from each mode. To summarize the results for all modes, the index is proposed as

\[MS = \frac{1}{N} \sum_{i=1}^{N} (\Delta v_i)^2 \]

(2)

where \(N \) is the total number of modes to be considered.
2.2. Mode shape slope (MSS) damage index

This algorithm uses the change in the mode shape slope

\[\Delta v_i = \left| v_i^{df} - v_i \right| \]

(3)

The central difference approximation is used to derive the mode shape slope from the mode shape

\[v_i = \frac{(v_{i+1} - v_{i-1})}{2h} \]

(4)

where \(h \) is the distance between two successive nodes or measured points. If more than one mode is used, the index is given by

\[\text{MSS} = \frac{1}{N} \sum_{n=0}^{N} (\Delta v_i)_n \]

(5)

2.3. Mode shape curvature (MSC) damage index

In this algorithm the location of damage is assessed by the difference in the mode shape curvature between the healthy and the damaged case (Pandey et al. 1991)

\[\Delta v_i = \left| v_i^{df} - v_i \right| \]

(6)

The mode shape curvatures is computed from experimentally measured or numerically calculated mode shapes using the central difference approximation

\[v_i = \frac{(v_{i+1} - 2v_i + v_{i-1})}{h^2} \]

(7)

The sum of the damage indices from each mode is defined by

\[\text{MSC} = \frac{1}{N} \sum_{n=0}^{N} (\Delta v_i)_n \]

(8)

2.4. Mode shape curvature square (MSCS) damage index

This damage index is defined by (Ho et al. 2000)

\[\Delta v_i^{2} = \left| v_i^{4} - v_i^{2} \right| \]

(9)

For more than one mode used, the index is

\[\text{MSCS} = \frac{1}{N} \sum_{n=0}^{N} (\Delta v_i^{2})_n \]

(10)

All the aforementioned methods assess the location of the damage by the largest computed absolute difference between the mode shape function of the damaged and the healthy state of a structure. However, the major drawback of those methods is a need for the data of the healthy structure which sometimes could be difficult to obtain or even impossible. To overcome this issue it was proposed to use the mode shape curvature squares from only the damaged state of the beam as a damage index.

2.5. Mode shape curvature square magnitude (MSCSM) damage index

The vibration strain energy (\(U_i \)) associated with the particular mode shape at a point is given by

\[U_i = \frac{1}{2} \int EI \left(\frac{\partial v_i}{\partial x} \right)^2 dx \]

(11)

where \(v_i \) is the mode shape curvature and \(EI \) is the flexural stiffness of the structure. The idea of the proposed method is based on the relationship between the mode shape curvature square and the flexural stiffness of a structure. Damage induced reduction of the flexural stiffness of the structure subsequently causes an increase in the magnitude of the mode shape curvature square. The increase of the magnitude of the curvature square is local in nature, thus the mode shape curvature square may be considered as an indicator for the damage location. The location of the damage is assessed by the largest magnitude of the mode shape curvature square. The summarized damage index for all modes is proposed as

\[\text{MSCSM} = \frac{1}{N} \sum_{n=0}^{N} (v_i^{2})_n \]

(12)

3. Case study 1 – aluminium beams with a single damage location

In order to establish the proposed damage detection method two aluminium beams containing single mill-cut damage at different locations have been examined.

3.1. Geometry of the beams and numerical analysis

To verify the validity and effectiveness of the damage algorithms introduced above, the numerical modal analysis based on the finite element (FE) method was performed. The numerical analysis was carried out by using the commercial FE software ANSYS. Geometrical configuration of the beams is shown in figure 1. Dimensions of the Beam 1 are as follows: length \(L = 1250 \) mm, width \(B = 50 \) mm and thickness \(H = 5 \) mm. Mill-cut damage with depth of 2 mm and size of 50 mm is introduced at a distance of 750 mm from one edge of the beam. The Beam 2 dimensions are 1500 x 50 x 5 mm. Damage with depth of 2 mm and size of 100 mm is introduced at a distance of 950 mm.
locations

locations
3.4. Identification of damage extent

Employing the proposed damage detection method the location and size of the damage was correctly found. Once the location and size of the damage was detected, the following interest was to identify damage extent or in this case the depth of damage. The extent of the damage was identified via modal frequencies by using a mixed numerical-experimental technique. The method is based on the minimization of the discrepancy between the numerically calculated and experimentally measured frequencies. For this the first 10 flexural frequencies of the beams with the free-free boundary conditions have been used. The free-free boundary conditions were selected because of the best correlation between the numerically calculated and experimentally measured modal frequencies. In table 1 modal frequencies for the first 10 flexural modes for both, the healthy and damaged state of the beams with the free-free boundary conditions, have been listed. Residuals characterizing differences between experimental and numerical frequencies were calculated by the following expression

\[\Delta_i = \left| \frac{\omega_i^{\text{FEM}} - \omega_i^{\text{EXP}}}{\omega_i^{\text{EXP}}} \right| \times 100 \]

(13)

where \(\omega_i^{\text{FEM}} \) and \(\omega_i^{\text{EXP}} \) are numerically calculated and experimentally measured modal frequencies, respectively and \(i \) denotes mode number. One can see that residuals between the numerical and experimental frequencies for the healthy beams are very small, which indicate that the finite element model has been constructed correctly. On the other hand, frequency residuals for the damaged beams are significantly larger, which indicates that the finite element model has some imperfections, for example, damage representation may not be correct. The damage depth in the beams has been modelled by reducing thickness \((h_1 = 3\text{mm}) \) of the selected elements. Since the damage in the beams was introduced manually by means of a mill, the accuracy of the damage depth could be guaranteed only to the certain limit.
Fig 3. Damage detection methods for beams with FF boundary conditions; Beam 1 – left; Beam 2 – right

Fig 4. Damage detection methods for beams with CL boundary conditions; Beam 1 – left; Beam 2 – right
subjected to the lower and upper bounds of the identification domain of interest for thickness elements is selected as the parameter to be identified. The been set correctly and thus thickness two identification functionals were proposed. The first one uses modal frequencies from beams and calculated modal frequencies of the healthy state of the modal frequencies of the healthy and the damaged states flexural frequencies. These approximating functions (second order polynomial functions) for all 10 obtained data were used to build the approximating element calculations in this domain were performed. Then employing the response surface approach the accuracy step of 0.1mm was selected and the finite accuracy of the identification. Verification of the obtained results was performed by numerically calculating modal frequencies in the point of optimum (using the identified thickness of the damage elements).

According to the results given in tables 2 and 3, the average frequency residuals for the damaged beams are considerably smaller compared to the average residuals when nominal thickness of the damage elements is employed. The residuals for the damaged beams do not exceed 1 % and a good agreement between the average frequency residuals of the healthy and the damaged beams is observed. From this it can be concluded that both identification functionals were capable to identify the damage extent. Second one showing slightly better results (the average residuals for the damaged beams are smaller). It suggests that the damage location, size and knowledge of the healthy state of structure.

Table 1. Flexural frequencies and residuals for the Beam 1 and the Beam 2 with FF boundary conditions

Mode	Beam 1	Beam 2										
	healthy	damaged	healthy	damaged								
	ω_i^h	$\omega_i^{h,\text{FEM}}$	Δ_i (%)	ω_i^d	$\omega_i^{d,\text{FEM}}$	Δ_i (%)	ω_i^d	$\omega_i^{d,\text{FEM}}$	Δ_i (%)			
1	16.50	16.60	0.61	14.25	14.76	3.45	11.50	11.53	0.25	9.75	9.91	1.61
2	45.50	45.76	0.56	42.25	43.03	1.82	31.75	31.78	0.09	28.00	28.12	0.42
3	89.25	89.70	0.50	88.50	89.15	0.73	62.00	62.29	0.47	61.00	61.30	0.49
4	147.50	148.27	0.52	136.75	138.78	1.46	102.50	102.97	0.46	97.75	98.15	0.41
5	220.50	221.47	0.44	216.25	217.82	0.72	153.25	153.81	0.37	144.50	145.01	0.35
6	308.00	309.30	0.42	299.00	301.15	0.71	214.00	214.82	0.38	206.25	208.77	1.21
7	409.50	411.75	0.55	391.00	394.98	1.01	284.75	285.98	0.43	272.25	274.53	0.83
8	526.50	528.80	0.44	519.25	523.01	0.72	366.00	367.29	0.35	351.75	353.14	0.39
9	659.00	660.46	0.22	635.00	638.42	0.54	457.75	458.75	0.22	433.00	438.24	1.20
10	806.25	806.71	0.06	784.25	787.38	0.40	559.50	560.36	0.15	537.50	539.47	0.36
Aver.	0.43	1.16	0.32	0.73								

It is assumed that the damage size and location have been set correctly and thus thickness h_i of the damage elements is selected as the parameter to be identified. The domain of interest for thickness h_i was selected as follows

$$2.7 \leq h_i \leq 3.3 \text{ mm}$$

(14)

Accuracy step of 0.1mm was selected and the finite element calculations in this domain were performed. Then employing the response surface approach the obtained data were used to build the approximating functions (second order polynomial functions) for all 10 flexural frequencies. These approximating functions represent the relationship between the modal frequencies ω_i and thickness h_i of the damage elements. For the identification of thickness two identification functionals were proposed. The first one uses modal frequencies from both, the healthy and the damaged states of the beam and is defined by

$$\Phi_1(h_i) = \sum_{i=1}^{I} \left(\frac{\omega_i^{h,\text{FEM}}}{\omega_i^{h,\text{EXP}}} - \frac{\omega_i^{d,\text{FEM}}(h_i)}{\omega_i^{d,\text{EXP}}} \right)^2 ; \quad (15)$$

where $\omega_i^{h,\text{EXP}}$ and $\omega_i^{d,\text{EXP}}$ are the experimentally measured modal frequencies of the healthy and the damaged states of the beams, respectively, $\omega_i^{h,\text{FEM}}$ are numerically calculated modal frequencies of the healthy state of the beams and $\omega_i^{d,\text{FEM}}(h_i)$ are approximating functions representing the relationship between the modal frequencies and thickness of the damage elements. I is the number of frequencies used in the functional. The idea of this functional is based on the assumption that the numerical frequency ratio $\omega_i^{h,\text{FEM}} / \omega_i^{d,\text{FEM}}$ should be close to the experimental one $\omega_i^{h,\text{EXP}} / \omega_i^{d,\text{EXP}}$.

The second proposed identification functional uses modal frequencies only from the damaged state of the beam and is given as

$$\Phi_2(h_i) = \sum_{i=1}^{I} \left(\frac{\omega_i^{d,\text{EXP}}}{\omega_i^{d,\text{FEM}}} - \frac{\omega_i^{d,\text{FEM}}(h_i)}{\omega_i^{d,\text{EXP}}} \right)^2 ; \quad (16)$$

$i = 1,2,...,I$

The damage extent is obtained by minimizing the identification functional $\Phi_i(h_i)$ subjected to the lower h_i^{min} and upper h_i^{max} bounds of the identification parameter. Minimizing the first identification functional (15), the following thickness of the damage elements were obtained: for the Beam 1 - $h_1 = 2.81 \text{ mm}$, for the Beam 2 - $h_1 = 2.93 \text{ mm}$. Employing the second functional (16): for the Beam 1 - $h_1 = 2.76 \text{ mm}$, for the Beam 2 - $h_1 = 2.89 \text{ mm}$. Now, when the thickness of the damage elements was obtained, it was of interest to evaluate the accuracy of the identification. Verification of the obtained results was performed by numerically calculating modal frequencies in the point of optimum (using the identified thickness of the damage elements).

According to the results given in tables 2 and 3, the average frequency residuals for the damaged beams are considerably smaller compared to the average residuals when nominal thickness of the damage elements is employed. The residuals for the damaged beams do not exceed 1 % and a good agreement between the average frequency residuals of the healthy and the damaged beams is observed. From this it can be concluded that both identification functionals were capable to identify the damage extent. Second one showing slightly better results (the average residuals for the damaged beams are smaller). It suggests that the damage location, size and extent in the beam structure can be obtained without prior knowledge of the healthy state of structure.
Table 2. Flexural frequencies and residuals for the Beam 1 calculated using identified damage extent

Mode (i)	ω_{EXP} (Hz)	$\omega_{\text{FEM}} (h_i)$ (Hz)	Δ_i (%)	$\omega_{\text{FEM}} (h_i)$ (Hz)	Δ_i (%)	$\omega_{\text{FEM}} (h_i)$ (Hz)	Δ_i (%)
1	14.25	14.76	3.45	14.33	0.58	14.21	0.30
2	42.25	43.03	1.82	42.52	0.64	42.38	0.31
3	88.50	89.15	0.73	89.02	0.59	88.99	0.55
4	136.75	138.78	1.46	137.29	0.39	136.88	0.10
5	216.25	217.82	0.72	217.21	0.44	217.04	0.36
6	299.00	301.15	0.71	299.87	0.29	299.52	0.17
7	391.00	394.98	1.01	393.11	0.54	392.63	0.42
8	519.25	523.01	0.72	521.32	0.40	520.79	0.30
9	635.00	638.42	0.54	636.16	0.18	635.58	0.09
10	784.25	787.38	0.40	784.57	0.04	783.76	0.06
Aver.	1.16			0.41		0.27	

Table 3. Flexural frequencies and residuals for the Beam 2 calculated using identified damage extent

Mode (i)	ω_{EXP} (Hz)	$\omega_{\text{FEM}} (h_i)$ (Hz)	Δ_i (%)	$\omega_{\text{FEM}} (h_i)$ (Hz)	Δ_i (%)	$\omega_{\text{FEM}} (h_i)$ (Hz)	Δ_i (%)
1	9.75	9.91	1.61	9.79	0.36	9.71	0.40
2	28.00	28.12	0.42	27.92	0.29	27.81	0.70
3	61.00	61.30	0.49	61.23	0.37	61.18	0.30
4	97.75	98.15	0.41	97.90	0.16	97.76	0.01
5	144.50	145.01	0.35	144.69	0.13	144.52	0.01
6	206.25	208.77	1.21	208.24	0.96	207.91	0.80
7	272.25	274.53	0.83	273.95	0.62	273.62	0.50
8	351.75	353.14	0.39	352.72	0.27	352.48	0.21
9	433.00	438.24	1.20	436.54	0.81	435.52	0.58
10	537.50	539.47	0.36	538.48	0.18	537.92	0.08
Aver.	0.73			0.42		0.36	

4. Case study 2 – aluminium beams with multiple damage locations

To elaborate the proposed damage detection method two aluminium beams containing multiple mill-cut damage locations are examined.

4.1. Geometry of the beams and numerical analysis

Geometrical configuration of the beams is shown in figure 5. Dimensions of the Beam 3 are as follows: length $L = 1250$ mm, width $B = 50$ mm and thickness $H = 5$ mm. Mill-cut damage with depth of 2 mm and size of 50 mm is introduced at two locations of the beam with a distance of 450 mm from both edges of the beam. The Beam 2 dimensions are $1500 \times 50 \times 5$ mm. Damage with depth of 2 mm and size of 100 mm is also introduced at two locations of the beam with a distance of 450 mm from both edges of the beam.

Fig 5. Geometry and dimensions of the test beams containing mill-cut damage at multiple locations

Material properties are selected the same as for the beams with a single damage location. Finite element length of 10 mm is considered, thus the Beam 3 is constructed by means of 125 equal length elements ($i = 126$ nodes) and the Beam 4 -150 elements ($i = 151$ nodes). The damage in beams is modelled in the same...
way as for the beams with a single damage location. Again, the modal frequencies and corresponding mode shapes for the first 15 flexural modes of both the healthy and the damaged beams were numerically calculated and experimentally measured.

4.2. Results of damage detection

For the beams with multiple damage locations only the clamped-clamped (CL) boundary conditions were considered. Results for MSCS and MSCSM damage index are given in figure 6. For comparison purposes the damage indexes were also calculated employing the mode shape information obtained via the finite element simulations. One can see that both damage index methods were capable of pointing out the damage size and location.

4.3. Identification of damage extent

Employing the proposed damage detection method both damage locations was successfully pointed out. Again, the following interest was to identify damage extent. Using the same procedure described in section 3.4 identified the extent of the damage. In table 4 modal frequencies for the first 10 flexural modes of the beams with the free-free boundary conditions, have been presented. As it can be seen frequency residuals for the damaged beams again are significantly larger than for the healthy beams, which suggest that damage representation in the finite element simulations has to be improved. Since it is assumed that the damage size and location have been set correctly then the damage depth is selected as the parameter to be identified. Initially the damage depth in the beams has been modelled by reducing thickness \(h_1 = 3 \text{mm} \) of the selected elements equally at both damage locations. In the process of identification reduced thickness of the damaged elements at both damage locations was assumed to be equal and thus the domain of interest for thickness was selected as follows

\[
2.7 \leq h_1 \leq 3.3 \text{ mm} \quad (14)
\]

Minimizing the first identification functional (15), the following results were obtained: for the Beam 3 - \(h_1 = 2.94 \text{ mm} \), for the Beam 4 - \(h_1 = 2.95 \text{ mm} \). Employing the second functional (16): for the Beam 3 - \(h_1 = 2.90 \text{ mm} \), for the Beam 4 - \(h_1 = 2.93 \text{ mm} \). Verification of the obtained results is presented in tables 5 and 6.

One can see from the presented results that now the average frequency residuals for the damaged beams are considerably smaller compared to the average residuals when nominal thickness of the damage elements is employed.

Fig 6. Damage detection methods for beams with multiple damage locations; Beam 3 – left; Beam 4 – right
Table 4. Flexural frequencies and residuals for the Beam 3 and the Beam 4 with FF boundary conditions

Mode (i)	healthy ω_i^{EXP} (Hz)	Δ_i (%)	damaged ω_i^{EXP} (Hz)	Δ_i (%)	healthy ω_i^{FEM} (Hz)	damaged ω_i^{FEM} (Hz)	Δ_i (%)
1	16.50	0.61	13.49	1.75	11.50	11.53	0.25
2	45.50	0.56	39.42	1.71	31.75	31.78	0.09
3	89.25	0.50	88.70	0.51	62.00	62.29	0.47
4	147.50	0.52	130.36	1.24	102.50	102.97	0.46
5	220.50	0.44	213.14	1.12	153.25	153.81	0.37
6	308.00	0.42	295.56	0.53	214.00	214.82	0.38
7	409.50	0.55	375.80	1.08	284.75	285.98	0.43
8	526.50	0.44	517.16	0.80	366.00	367.29	0.35
9	659.00	0.22	621.34	0.54	457.75	458.75	0.22
10	806.25	0.06	764.13	0.64	559.50	560.36	0.15

Aver. 0.43 0.99 0.32 0.85

Table 5. Flexural frequencies and residuals for the Beam 3 calculated using identified damage extent

Mode (i)	h_i = 3 mm ω_i^{EXP} (Hz)	Δ_i (%)	h_i = 2.94 mm ω_i^{EXP} (Hz)	Δ_i (%)	h_i = 2.90 mm ω_i^{EXP} (Hz)	Δ_i (%)
1	13.49	1.75	13.30	0.40	11.50	0.55
2	39.42	1.71	39.00	0.65	31.75	0.10
3	88.70	0.51	88.64	0.44	88.60	0.39
4	129.54	0.61	129.99	0.18		
5	212.67	0.90	212.35	0.75		
6	294.97	0.33	294.57	0.19		
7	374.46	0.72	373.57	0.49		
8	516.19	0.62	515.50	0.49		
9	620.07	0.33	619.22	0.20		
10	762.41	0.41	761.25	0.26		

Aver. 0.99 0.54 0.36

Table 6. Flexural frequencies and residuals for the Beam 4 calculated using identified damage extent

Mode (i)	h_i = 3 mm ω_i^{EXP} (Hz)	Δ_i (%)	h_i = 2.95 mm ω_i^{EXP} (Hz)	Δ_i (%)	h_i = 2.93 mm ω_i^{EXP} (Hz)	Δ_i (%)
1	8.90	1.74	8.79	0.43	8.74	0.11
2	23.86	1.52	23.52	0.10	23.39	0.49
3	60.17	0.69	60.05	0.51	60.01	0.43
4	94.43	0.46	94.32	0.34		
5	135.06	0.41	134.87	0.27		
6	201.98	0.36	201.69	0.22		
7	263.91	0.44	263.57	0.31		
8	338.76	0.22	338.57	0.17		
9	417.96	0.12	417.62	0.07		
10	512.62	0.18	512.02	0.02		

Aver. 0.85 0.32 0.24
5. Conclusions

The present study focuses on the identification of a mill-cut damage location, size and extent in a beam structure by extracting dynamic characteristics obtained from vibration experiments. It was proposed to use the magnitude of the mode shape curvature square for the detection of the damage location and size. Compared to the existing damage detection methods such as MSC and MSCS damage index methods, the advantage of the proposed method is that it requires mode shape information only from the damaged state of the structure and can give reliable results in more simple way. In order to reduce the influence of measurement noise on the damage detection from the experimentally measured mode shape information it was proposed to use the average sum of the mode shape curvature squares for all modes. Two aluminium beams containing mill-cut damage at single location as well as for two aluminium beams with damage at multiple locations demonstrate effectiveness and robustness of the present method. It can be concluded that the clamped-clamped instead of the free-free boundary conditions for the beam structure is recommended for the detection of the damage location and size. The extent of mill-cut damage has been identified via modal frequencies by using a mixed numerical-experimental technique. The proposed method is based on the minimization of the discrepancy between the numerically calculated and experimentally measured frequencies. Obtained results showed that thickness of the beam in damage region differs from the originally set nominal value, which is explained by the fact that the mill cut damage in the beams was introduced manually by means of a mill.

Acknowledgements

This work was partially supported by the European Commission under Framework Program 6, project MOMENTUM, Contract No. MRTN-CT-2005-019198.

References

Gherlone, M.; Mattone, M.; Surace, C. et al. 2005. Novel vibration-based methods for detecting delamination damage in composite plate and shell laminates. Key Engineering Materials, 293-294: 289–296.

Doebling, S. W.; Farrar, C. R.; Prime, M. B. et al. 1996. Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: literature review. In Los Alamos National Laboratory Report LA-13070-MS.

Hall, S. R; Conquest, T. J. 1999. The total data integrity initiative - structural health monitoring, the next generation. In Proceedings of the USAF ASIP conference. 2nd ed.

Ho, Y. K.; Ewins, D. J. 2000. On structural damage identification with mode shapes. In Proceedings of COST F3 Conference on System Identification and Structural Health Monitoring, Madrid, Spain, 677–686.

Yuen, M. M. F. 1985. A numerical study of the eigen parameters of a damaged cantilever, Journal of Sound and Vibration, 103: 301–310.

Maia, N. M. M.; Silva, J. M. M.; Almas, E. A. M. et al. 2003. Damage detection in structures: from mode shape to frequency response function methods. Mechanical Systems and Signal Processing, 17(3): 489–498.

Pandey, A. K.; Biswas, M.; Samman, M. M. 1991. Damage detection from changes in curvature mode shapes. Journal of Sound and Vibration, 145(2): 321–332.

Ratcliffe, C. P.; Bagaria, W. J. 1998. A vibration technique for locating delamination in a composite beam. American Institute of Aeronautics and Astronautics Journal, 36(6): 1074–1077.

Stubbs, N.; Kim, J. T. 1996. Damage localization in structures without baseline modal parameters. American Institute of Aeronautics and Astronautics Journal, 34(8): 1649–1654.

Wahab, A.; Roeck, G. 1999. Damage detection in bridges using modal curvatures: application to a real damage scenario. Journal of Sound and Vibration, 226: 217–235.

Wu, D.; Law S. S. 2004. Damage localization in plate structures from uniform load surface curvature. Journal of Sound and Vibration, 276: 227–244.

Xia, Y. 2002. Condition assessment of structures using dynamic data: PhD thesis. Singapore: Nanyang Technology University.