The Error Term of the Summatory Euler Phi Function

N. A. Carella

Contents

1 Introduction 1

2 Results For The Mobius Function 2

3 Finite Fractional Sums 3

3.1 Twisted Finite Fractional Sums 3

3.2 Quasibalanced And Balanced Average Orders 6

3.3 Variance 7

3.4 Comparison Of Dirichlet And Walfisz Results 7

4 Inversion Identities 8

5 Results For The Ratio \(\varphi(n)/n \) 8

6 Results For The Ratio \(n/\varphi(n) \) 10

7 Abridged History Of The Error Term 11

8 Problems 13

1 Introduction

The error term is defined by \(E(x) = \sum_{n \leq x} \varphi(n) - 3\pi^{-2}x \). The earliest estimate for the error term \(E(x) = O(x^{1+\epsilon}) \), with \(\epsilon > 0 \), was computed by Mertens, followed by \(E(x) = O(x \log x) \) computed by Dirichlet. The current error term \(E(x) = O \left(x(\log x)^{2/3}(\log \log x)^{4/3} \right) \) in the mathematical literature is attributed to Walfisz, confer \cite[p. 68]{22}, \cite[p. 102]{29}, \cite[p. 47]{33}, et alii. For a large real number \(x \in \mathbb{R} \), the explicit formula

\[
\sum_{n \leq x} \varphi(n) = \frac{1}{6} + \frac{\delta(x)}{2} \varphi(x) + \frac{3}{\pi^2} x^2 + \sum_{\rho} \frac{\zeta(\rho-1)}{\rho \zeta'(\rho)} x^\rho + \sum_{n \geq 1} \frac{\zeta(-2n-1)}{-2n \zeta'(-2n)} x^{-2n}, \quad (1)
\]

where

\[
\delta(n) = \begin{cases}
1 & x \in \mathbb{N}, \\
0 & x \notin \mathbb{N},
\end{cases} \quad (2)
\]
shows that there is a sharper unconditional error term

\[E(x) = \delta(x)\varphi(x)/2 + O\left(xe^{-c\sqrt{\log x}}\right). \]

(3)

The proof of (1) is based on standard analytical techniques and the Perron summation formula, see [22, p. 138], [33, p. 217], and similar references. The result in Theorem 1.1 provides a different and independent proof of this sharper unconditional error term.

Theorem 1.1. For a large number \(x \geq 1 \), the average order for the Euler totient function \(\varphi(n) \) has the asymptotic formula

\[\sum_{n \leq x} \varphi(n) = \frac{3}{\pi^2}x^2 + O(x), \]

unconditionally.

Theorem 1.2. Assume the RH. For a large number \(x \geq 1 \), the average order for the Euler totient function \(\varphi(n) \) has the asymptotic formula

\[\sum_{n \leq x} \varphi(n) = \frac{3}{\pi^2}x^2 + \frac{\delta(x)}{2}\varphi(x) + O(x^{1/2}\log^2 x). \]

(5)

The next few sections provide the elementary background materials, and the last section has the proof of Theorem 1.1. The proof of Theorem 1.2 follows from the explicit formula (1).

Theorem 1.3. Let \(x \geq 1 \) be a large number. Then, the average order of the ratio \(1/\varphi(n) \) is as follows.

\[\sum_{n \leq x} \frac{1}{\varphi(n)} = c_0 + c_1 \log x + O\left(\frac{\log x}{x}\right), \]

where \(c_0 \) and \(c_1 \) are constants.

It is shown that this is the best possible, as was determined by Landau over a century ago, in [19, p. 184]. Several different and independent proofs of Theorem 1.3 are possible. A proof based on the convolution method is provided in Sections 6.

2 Results For The Mobius Function

The zeta function \(\zeta(s) = \sum_{n \geq 1} n^{-s} \) has a pole at \(s = 1 \), so the inverse series \(1/\zeta(s) = \sum_{n \geq 1} \mu(n)n^{-s} \) vanishes at \(s = 1 \). For large \(x \geq 1 \), the associated summatory functions are \(\sum_{n \leq x} \mu(n) = o(x) \), and \(\sum_{n \leq x} \mu(n)n^{-1} < 1 \). The true rates of growth and decay respectively of these summatory functions are of considerable interest in number theory.
Lemma 2.1. Let $x \geq 1$ be a large number, and let $\mu(n)$ be the Mobius function. Then

$$\sum_{n \leq x} \mu(n) = O \left(\frac{x}{\log^2 x} \right). \tag{7}$$

Proof. Refer to [22, p. 182], [11] and the literature. \hfill ■

A better unconditional result $\sum_{n \leq x} \mu(n) = O \left(x e^{-c(\log x)^{3/5}(\log \log x)^{1/5}} \right)$, with $c > 0$ an absolute constant, is available in the literature, see [5]. However, the weaker but sufficient result in Lemma 2.1, which has simpler notation, will be used here.

Lemma 2.2. Let $x \geq 1$ be a large number, let $\mu(n)$ be the Mobius function, and let $s \in \mathbb{C}$, with $\text{Re}(s) \geq 1$. Then

$$\sum_{n \leq x} \frac{\mu(n)}{n^s} = \frac{1}{\zeta(s)} + O \left(\frac{1}{x^{s-1} \log^2 x} \right). \tag{8}$$

Proof. Use Lemma 2.1 to evaluate the Stieltjes integral

$$\sum_{n \leq x} \frac{\mu(n)}{n^s} = \sum_{n \geq 1} \frac{\mu(n)}{n^s} - \sum_{n \geq x} \frac{\mu(n)}{n^s} = \frac{1}{\zeta(s)} - \int_x^\infty \frac{1}{t^s} dM(t), \tag{9}$$

where $M(x) = \sum_{n \leq x} \mu(n)$. \hfill ■

3 Finite Fractional Sums

Let the symbol $\{z\} = z - \lfloor z \rfloor$ denotes the fractional part function. The earliest results for the summatory fractional function are due to Dirichlet and del Valle Poussin, see [25] and [23, p. 259] for different proofs.

Theorem 3.1. (Dirichlet) Let $x \geq 1$ be a number, and let $\{x\} = x - \lfloor x \rfloor$ be the fractional part function. Then

$$\sum_{n \leq x} \left\{ \frac{x}{n} \right\} = (1 - \gamma)x + O(x^{1/2}), \tag{10}$$

where $\gamma = 0.5772156649 \ldots$ is Euler constant.

A sharper error term $O \left(x^{1/3} \right)$ can be deduced from the Voronoi estimate for the divisor problem, the proofs appear in [14], [10], [13, Section 13.8], [2, p. 201], [3], and other references.
Lemma 3.1. Let \(x \geq 1 \) be a large number. Then
\[
\sum_{n \leq x} \left\{ \frac{x}{n} \right\} = (1 - \gamma) x + O \left(x^{1/3} \right),
\]
where \(\gamma = 0.5772156649 \ldots \) is Euler constant.

Proof. Express the sum of fractional parts as difference of the harmonic finite sum, and the average number of divisors:
\[
\sum_{n \leq x} \left\{ \frac{x}{n} \right\} = \sum_{n \leq x} \left(\frac{x}{n} - \left\lfloor \frac{x}{n} \right\rfloor \right)
= x \sum_{n \leq x} \frac{1}{n} - \sum_{n \leq x} d(n). \tag{12}
\]
Using the standard asymptotics for these finite sums, it yields
\[
\sum_{n \leq x} \left\{ \frac{x}{n} \right\} = x \left(\log x + \gamma + O \left(\frac{1}{x} \right) \right) - (x \log x + (2\gamma - 1)x + O(x^{1/3}))
= (1 - \gamma) x + O \left(x^{1/3} \right) \tag{13}
\]
as claimed. \blacksquare

The conjectured optimum error term is \(O \left(x^{1/4+\epsilon} \right) \), with \(\epsilon > 0 \) any arbitrary small number. This coincides with the best possible error term required in the divisor problem and the circle problem, see \cite{3}.

Lemma 3.2. Let \(x \geq 1 \) be a large number. Then
\[
\sum_{n \leq x} \left\{ \frac{x}{n} \right\} = (1 - \gamma) x + \Omega \pm \left(x^{1/4} \left. \right) \right. \tag{14}
\]

Theorem 3.2. Let \(x \geq 1 \) be a number, and let \(\{x\} = x - \lfloor x \rfloor \) be the fractional part function. Then
\[
\sum_{n \leq x} \frac{1}{n} \{ \frac{x}{n} \} = a_0 \log x + a_1 + O(x^{-1/2}),
\]
where \(a_0 = 1 - \gamma \) and \(a_1 \) are constants.

Proof. Let \(F(t) = \sum_{n \leq t} \{t/n\} \). Using Theorem 3.1 and partial summation yield
\[
\sum_{n \leq x} \frac{1}{n} \left\{ \frac{x}{n} \right\} = \int_1^x \frac{1}{t} dF(t)
= \frac{F(x)}{x} - F(1) + \int_1^x \frac{F(t)}{t^2} dt
= \frac{(1 - \gamma)x + O(x^{1/2})}{x} - F(1) \tag{15}
+ \int_1^x \left(\frac{(1 - \gamma)t + O(t^{1/2})}{t^2} \right) dt
= a_0 \log x + a_1 + O(x^{-1/2}),
\]
where \(a_0 = 1 - \gamma \) and \(a_1 \) are constants. \blacksquare
3.1 Twisted Finite Fractional Sums

The next Lemmas give estimates for the twisted summatory fractional Mobius function.

Lemma 3.3. Let \(x \geq 1 \) be a large number, let \(\mu(n) \) be the Mobius function, and let \(\{x\} = x - \lfloor x \rfloor \) be the fractional part function. Then,

\[
\sum_{n \leq x} \mu(n) \left\{ \frac{x}{n} \right\} = -1 + O \left(\frac{x}{\log^2 x} \right). \tag{16}
\]

Proof. Let \(F(x) = [x] \) be the largest integer function, and let \(G(x) = 1 \) in Lemma 2.2. Next, replace the integer part-fractional part identity:

\[
1 = \sum_{n \leq x} \mu(n) \left\{ \frac{x}{n} \right\} = \sum_{n \leq x} \mu(n) \left(\frac{x}{n} - \left\{ \frac{x}{n} \right\} \right) = x \sum_{n \leq x} \frac{\mu(n)}{n} - \sum_{n \leq x} \mu(n) \left\{ \frac{x}{n} \right\}
\]

\[
= O \left(\frac{x}{\log^2 x} \right) - \sum_{n \leq x} \mu(n) \left\{ \frac{x}{n} \right\},
\]

where the last line follows from Lemma 2.2. Now, solve for the fractional Mobius sum. \[\blacksquare\]

Almost the same calculation appears in [18, p. 590].

Lemma 3.4. Let \(x \geq 1 \) be a large number, let \(\mu(n) \) be the Mobius function, and let \(\{z\} \) be the fractional part function. Then,

\[
\sum_{n \leq x} \frac{\mu(n)}{n} \left\{ \frac{x}{n} \right\} = O(1). \tag{18}
\]

Proof. Let \(V(x) = \sum_{n \leq x} \mu(n) \{x/n\} = -1 + O \left(x \log^{-2} x \right) \), see Lemma 3.3. The integral representation yields

\[
\sum_{n \leq x} \frac{\mu(n)}{n} \left\{ \frac{x}{n} \right\} = \int_1^x \frac{1}{t} dV(t)
\]

\[
= \frac{V(x)}{x} - V(1) + \int_1^x \frac{V(t)}{t^2} dt
\]

\[
= O(1).
\]

Note that the integral

\[
\int_1^x \frac{V(t)}{t^2} dt = \int_1^x \frac{1}{t^2} dt + O \left(\frac{t \log^{-2} t}{t^2} \right) dt = O \left(\frac{1}{\log x} \right).
\]

This verifies the claim. \[\blacksquare\]
Similar calculations as in Lemmas 3.3 and 3.4 are given in [22, p. 248].

3.2 Quasibalanced And Balanced Average Orders

The average order of the *quasibalanced* fractional part function \(\psi(x) = \{x\} - 1/2 \) appears in several problems, see [35, 31, 7], et alii. But the applications for *balanced* fractional part function \(\psi_0(x) = \{x\} - (1 - \gamma) \) are very rare.

Lemma 3.5. (Quasibalanced Average) Let \(x \geq 1 \) be a number, and let \(\{x\} = x - \lfloor x \rfloor \) be the fractional part function. Then

\[
\sum_{n \leq x} \frac{\{x/n\} - 1/2}{n} = \frac{1}{2} - \gamma \log x + c_0 + O \left(\frac{1}{x^{1/2}} \right),
\]

where \(c_0 \) is a constant.

Proof. Applications of Theorem 3.2 and the asymptotic formula for the harmonic finite sum yield

\[
\sum_{n \leq x} \frac{\{x/n\} - 1/2}{n} = \sum_{n \leq x} \frac{1}{n} \{x/n\} - \frac{1}{2} \sum_{n \leq x} \frac{1}{n} \tag{22}
\]

\[
= \left((1 - \gamma) \log x + c_1 + O \left(\frac{1}{x^{1/2}} \right) \right) - \frac{1}{2} \left(\log x + \gamma + O \left(\frac{1}{x} \right) \right) \n\]

\[
= \left(\frac{1}{2} - \gamma \right) \log x + c_2 + O \left(\frac{1}{x^{1/2}} \right),
\]

where \(c_1 \) and \(c_2 \) are constants.

Lemma 3.6. (Balanced Average) Let \(x \geq 1 \) be a number, and let \(\{x\} = x - \lfloor x \rfloor \) be the fractional part function. Then

\[
\sum_{n \leq x} \frac{\{x/n\} - (1 - \gamma)}{n} = c + O \left(\frac{1}{x^{1/2}} \right),
\]

where \(c \) is a constant.

Proof. Applications of Theorem 3.2 and the asymptotic formula for the harmonic finite sum yield

\[
\sum_{n \leq x} \frac{\{x/n\} - (1 - \gamma)}{n} = \sum_{n \leq x} \frac{1}{n} \{x/n\} - (1 - \gamma) \sum_{n \leq x} \frac{1}{n} \tag{24}
\]

\[
= \left((1 - \gamma) \log x + c_1 + O \left(\frac{1}{x^{1/2}} \right) \right) - \left((1 - \gamma) \log x + \gamma + O \left(\frac{1}{x} \right) \right) \n\]

\[
= c_0 + O \left(\frac{1}{x^{1/2}} \right),
\]

where \(c_0 \) is a constant.
3.3 Variance

The average and the quasibalanced fractional function $\psi(x) = \{x/n\} - 1/2$ is slightly different from the uniform random variable on the interval $[-1/2, 1/2]$. However, the variance almost the same as a uniform random variable on the interval $[-1/2, 1/2]$.

Lemma 3.7. (QuasiBalanced Variance) Let $x \geq 1$ be a number, and let $\{x\} = x - [x]$ be the fractional part function. Then

$$\sum_{n \leq x} (\{\alpha n\} - 1/2)^2 = \frac{1}{12} x + O(x^\varepsilon),$$

(25)

where $\varepsilon > 0$ is arbitrarily small constant depending on the irrational $\alpha > 0$.

Proof. This requires the Fourier series of the Bernoulli polynomial $\psi(x)^2 = (\{x\} - 1/2)^2 - 1/12$. Summing the Fourier series over the range of integers yields

$$\sum_{n \leq x} (\{\alpha n\} - 1/2)^2 = \sum_{n \leq x} \left(\frac{1}{12} + \frac{1}{2\pi^2} \sum_{m \geq 1} \frac{e^{i2\pi\alpha mn}}{m^2} \right)$$

$$= \frac{1}{12} x + \frac{1}{2\pi^2} \sum_{m \geq 1} \frac{1}{m^2} \sum_{n \leq x} e^{i2\pi\alpha mn}$$

$$= \frac{1}{12} x + O(x^\varepsilon).$$

(26)

(27)

The error term $O(x^\varepsilon)$ depends on the irrational $\alpha \in \mathbb{R}$; numbers with unbounded partial quotients have the largest error term.

This proof was known quite sometimes ago, see [9].

3.4 Comparison Of Dirichlet And Walfisz Results

The estimate of the quasibalanced fractional sum

$$\sum_{n \leq x} \frac{x/n - 1/2}{n} = (1/2 - \gamma) \log x + c + O\left(\frac{1}{x^{1/2}} \right),$$

(28)

see Lemma 3.5 for a proof, is based on Dirichlet or delaValle Poussin result in Theorem 3.1. This result seems to contradict a well known result described below.

Theorem 3.3. (Walfisz) Let $x \geq 1$ be a number, and let $\{x\} = x - [x]$ be the fractional part function. Then

$$\sum_{n \leq x} \frac{x/n - 1/2}{n} = O\left(\frac{\log x}{\log \log x} \right).$$

(29)
The detailed and lengthy proof is provided in [35, pp. 72–78]. It is based on the Fourier series
\[\psi(x) = -\frac{1}{\pi} \sum_{m \geq 1} \frac{\sin(2\pi mx)}{m} = \begin{cases} \{x\} - 1/2 & x \notin \mathbb{Z}, \\ 0 & x \in \mathbb{Z}, \end{cases} \quad (30) \]
of the function \(\psi(x) = \{x\} - 1/2 \), and an exponential sum estimate similar to
\[\sum_{n \leq x} e^{i\pi mx/n} = o(x). \quad (31) \]

About forty years later, the estimate in (29) was improved to
\[\sum_{n \leq x} \frac{\{x/n\} - 1/2}{n} = -\frac{1}{\pi} \sum_{n \leq x} \frac{1}{n} \sum_{m \geq 1} \frac{\sin(2\pi mx/n)}{m} = O\left(\log^{2/3} x\right). \quad (32) \]

This version and the associated results are often quoted in the literature, see [30], [32], [33, p. 46], [7, Section 2], et alii.

4 Inversion Identities

Lemma 4.1. (Mobius summatory inversion) Let \(F, G : \mathbb{N} \rightarrow \mathbb{C} \) be complex-valued arithmetic functions. Then
\[F(x) = \sum_{n \leq x} G(x/n) \quad \text{and} \quad G(x) = \sum_{n \leq x} \mu(n)F(x/n) \quad (33) \]
are a Mobius inversion pair.

Proof. Refer to [8, p. 237], [22, p. 36], [27, p. 25], [29, p. 62], [33, p. 35], et alii. ■

5 Results For The Ratio \(\varphi(n)/n \)

The corresponding normalized summatory totient function \(\varphi(n)/n \) has the well known asymptotic formula \(\sum_{n \leq x} \varphi(n)/n = 6\pi^{-2}x + O(\log x) \), confer [22, p. 36], and [23, p. 229]. Some earlier works on this problem appear in [21], [24], [6], [15], and similar references. An improved error term for the normalized summatory totient function is considered first.

Theorem 5.1. For large number \(x \geq 1 \), the average order for the normalized Euler totient function \(\varphi(n)/n \) has the asymptotic formula
\[\sum_{n \leq x} \frac{\varphi(n)}{n} = \frac{6}{\pi^2}x + O(1). \quad (34) \]
Proof. The analysis proceeds as usual, but improves on the last steps:

\[
\sum_{n \leq x} \frac{\varphi(n)}{n} = \sum_{n \leq x} \sum_{d|n} \frac{\mu(n)}{d} \tag{35}
\]

\[
= \sum_{d \leq x} \frac{\mu(n)}{d} \sum_{n \leq x, d|n} 1
\]

\[
= \sum_{d \leq x} \frac{\mu(n)}{d} \left\lfloor \frac{x}{d} \right\rfloor ,
\]

where \(\mu(n) \in \{-1, 0, 1\}\) is the Mobius function. Substituting the integer part/fractional part functions identity leads to

\[
\sum_{n \leq x} \frac{\varphi(n)}{n} = \sum_{d \leq x} \frac{\mu(d)}{d} \left(\frac{x}{d} - \left\{ \frac{x}{d} \right\} \right) \tag{36}
\]

\[
= x \sum_{d \leq x} \frac{\mu(d)}{d^2} - \sum_{d \leq x} \frac{\mu(d)}{d} \left\{ \frac{x}{d} \right\}.
\]

Now, using Lemmas [2.2 and 3.4] yields

\[
\sum_{n \leq x} \frac{\varphi(n)}{n} = x \left(\frac{6}{\pi^2} + O \left(\frac{1}{x \log^2 x} \right) \right) + O(1)
\]

\[
= \frac{6}{\pi^2} x + O(1). \tag{37}
\]

This proves the claim. \qed

The standard proof for the average order \(\sum_{n \leq x} \varphi(n) = 3\pi^{-2}x^2 + O(x \log x)\) of \(\varphi(n)\) are due to Mertens, [20], [18, p. 591]. Currently, it is claimed that \(\sum_{n \leq x} = 3\pi^{-2}x^2 + O(x (\log x)^{2/3} (\log \log x)^{4/3})\), see [34, p. 99?], [22, p. 36], [33, p. 46], and other authors.

Proof. (Theorem 1.1) By Theorem 5.1, \(W(x) = \sum_{n \leq x} \varphi(n)/n = 6\pi^{-2}x + O(1)\), and summation by part yields

\[
\sum_{n \leq x} \varphi(n) = \sum_{n \leq x} n \cdot \frac{\varphi(n)}{n}
\]

\[
= \int_1^x t \, dW(t)
\]

\[
= xW(x) + O(1) - \int_1^x W(t) \, dt \tag{38}
\]

\[
= x \left(\frac{6}{\pi^2} x + O(1) \right) - \int_1^x \left(\frac{6}{\pi^2} t + O(1) \right) \, dt
\]

\[
= \frac{3}{\pi^2} x^2 + O(x).
\]

Quod erat demonstrandum. \qed

9
6 Results For The Ratio $n/\varphi(n)$

This section continues with the analysis of the error term of the average order for the reciprocal $1/\varphi(n)$ of the Euler totient function $\varphi(n)$. It proves that the best error term is the same as that determined by Landau over a century ago, in [19, p. 184]. The simpler analysis for the ratio $n/\varphi(n)$ is considered first.

Theorem 6.1. Let $x \geq 1$ be a large number. Then, the average order of the ratio $n/\varphi(n)$ has the asymptotic formula

$$\sum_{n \leq x} \frac{n}{\varphi(n)} = a_0 x + O(\log x),$$ \hfill (39)

where $a_0 = \frac{\zeta(2)\zeta(3)}{\zeta(6)}$ is a constant.

Proof. The result is derived using the identity $\sum_{d|n} \mu^2(d)/\varphi(d)$. Substituting this formula, and reversing the order of summation yield

$$\sum_{n \leq x} \frac{n}{\varphi(n)} = \sum_{n \leq x} \sum_{d|n} \frac{\mu^2(d)}{\varphi(d)}$$

$$= \sum_{d \leq x} \frac{\mu^2(d)}{\varphi(d)} \sum_{n \leq x, \ d|n} 1$$

$$= \sum_{d \leq x} \frac{\mu^2(d)}{\varphi(d)} \left(\frac{x}{d} - \left\{ \frac{x}{d} \right\} \right)$$

$$= x \sum_{d \leq x} \frac{\mu^2(d)}{d\varphi(d)} - \sum_{d \leq x} \frac{\mu^2(d)}{\varphi(d)} \left\{ \frac{x}{d} \right\}.$$ \hfill (40)

The first finite sum

$$x \sum_{n \leq x} \frac{\mu^2(n)}{n\varphi(n)} = x \left(\sum_{n \geq 1} \frac{\mu^2(n)}{n\varphi(n)} - \sum_{n > x} \frac{\mu^2(n)}{n\varphi(n)} \right)$$

$$= c_0 x + O \left(\frac{1}{x} \right).$$ \hfill (41)

The constant $a_0 > 0$ is expressable in terms of zeta functions as

$$\sum_{n \geq 1} \frac{\mu^2(n)}{n\varphi(n)} = \prod_{p \geq 2} \left(1 + \frac{1}{p(p-1)} \right) = \frac{\zeta(2)\zeta(3)}{\zeta(6)}. $$ \hfill (42)

The second finite sum

$$\sum_{n \leq x} \frac{\mu^2(n)}{\varphi(n)} \left\{ \frac{x}{n} \right\} \gg \log x$$ \hfill (43)

is always positive and exhibits no cancellations. \hfill ■
The form of the error term in (43) concretely proves that it cannot be improved, see also Subsection 3.4 for a related discussion.

Theorem 6.2. (Same as Theorem 1.3) Let $x \geq 1$ be a large number. Then, the average order of the ratio $1/\varphi(n)$ is as follows.

\[
\sum_{n \leq x} \frac{1}{\varphi(n)} = c_0 + c_1 \log x + O\left(\frac{\log x}{x}\right), \quad (44)
\]

where c_0 and c_1 are constants.

Proof. The result is derived Theorem 6.1 by partial summation. More precisely, let $R(t) = \sum_{n \leq t} n/\varphi(n) = a_0x + O(\log x)$. Then

\[
\sum_{n \leq x} \frac{1}{\varphi(n)} = \sum_{n \leq x} \frac{1}{n/\varphi(n)} = \int_1^x \frac{1}{t} dR(t) = \frac{R(t)}{t} \bigg|_1^x + \int_1^x \frac{R(t)}{t^2} dt, \quad (45)
\]

\[
= \frac{a_0 x + O(\log x)}{x} + a_1 + \int_1^x \frac{a_0 t + O(\log t)}{t^2} dt,
\]

\[
= c_0 + c_1 \log x + O\left(\frac{\log x}{x}\right),
\]

where $a_0 = \zeta(2)\zeta(3)/\zeta(6)$, $a_1 = -R(1)$, c_0, and c_1 are constants. \[\square\]

The work in \[30\] is devoted to improving the error term from $O((\log x)/x)$ to $O((\log x)^{2/3}/x)$. This analysis was based on the estimate

\[
\sum_{n \leq x} \frac{\{x/n\} - 1/2}{n} = O\left(\left(\log x\right)^{2/3}\right), \quad (46)
\]

Refer to subsection 3.4 for a discussion on this estimate. However, by Theorem 6.2, this seems to be impossible since the error term in (44) satisfies $\gg (\log x)/x$, confer (43).

7 Abridged History Of The Error Term

Recall that by definition, the error term is given by

\[
E(x) = \sum_{n \leq x} \varphi(n) - \frac{3}{\pi^2}x^2, \quad (47)
\]
The earliest estimate of the error term $E(x) = O(x^{1+\epsilon})$ was computed by Dirichlet, followed by Mertens as $E(x) = O(x \log x)$, see [20], and later $E(x) = O(x(\log x)^{2/3}(\log \log x)^{1/3})$ was computed by Walfisz, see [34, p. 99]. The assertions that $E(x) \neq o(x \log \log \log x)$, and $E(x) = \Omega(x \log \log \log \log x)$, appear in [24], and [6] respectively. Moreover, there is a conjecture that $R(x) = O(x \log \log x)$, and the omega estimate

$$\sum_{n \leq x} \varphi(n) - \frac{3}{\pi^2} x^2 = \Omega_{\pm} (x \sqrt{\log \log x})$$

(48)

coner [21]. The analysis given in those papers are for the error terms over a short interval, namely, $R(x) = \sum_{x \leq n \leq x+y} \varphi(n)$, where $y = O(\log \log x)$, not for $E(x) = \sum_{n \leq x} \varphi(n) - 3\pi^{-1} x^2$.

Furthermore, are a few other recent result such as the smoothed omega estimate

$$\sum_{n \leq x} \varphi(n) \log \left(\frac{x}{n} \right) - \frac{3}{\pi^2} x^2 = \Omega_{\pm} (x^{1/2} \log \log \log x)$$

(49)

was proved in [15].
8 Problems

1. Find the exact value of the main term of the finite sum

\[
\sum_{n \leq x} \frac{\mu^2(n)}{\varphi(n)} \left\{ \frac{x}{n} \right\}
\]

(50)

2. Let \(\psi(x) = \{x\} - 1/2 \). Compute the Fourier series

\[
\psi(x) = -\frac{1}{\pi} \sum_{n \geq 1} \frac{\sin(2\pi xn)}{n}.
\]

(51)

3. Let \(\psi(x) = \{x\} - 1/2 \). Compute the Fourier series

\[
\psi(x)^2 = \frac{1}{12} + \frac{1}{2\pi^2} \sum_{n \geq 1} \frac{e^{i2\pi xn}}{n^2}.
\]

(52)

4. Let \(\alpha \in \mathbb{R} - \mathbb{Z} \) be irrational, with unbounded partial quotients, estimate the error term \(\sum_{n \leq x} (\{\alpha n\} - 1/2)^2 - x/12 = O(x^\epsilon) \) in Lemma 3.7.
References

[1] Paulo J. Almeida, Sign changes of error terms related to certain arithmetic functions, Thesis, University of Georgia, 2004.

[2] Cohen, Henri. Number theory. Vol. II. Analytic and modern tools. Graduate Texts in Mathematics, 240. Springer, New York, 2007.

[3] Cappell and J. Shaneson, Some Problems in Number Theory I: The Circle Problem, arXiv:math/0702613 (2007).

[4] N. A. Carella, A Totient Function Inequality, arXiv:1002.1998.

[5] Ford, Kevin, Vinogradov’s integral and bounds for the Riemann zeta function. Proc. London Math. Soc. (3) 85 (2002), no. 3, 565-633.

[6] P. Erdos and H. N. Shapiro, Canad. J. Math. 3 (1951), 375-385.

[7] Florian Luca, Igor E. Shparlinski, On the error term of a lattice counting problem, arXiv:1705.08714.

[8] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford University Press, Oxford, 2008.

[9] Hardy, G. H.; Littlewood, J. E. Some problems of diophantine approximation. Acta Math. 37 (1914), no. 1, 193-239.

[10] Huxley, M. N. Exponential sums and lattice points. II. Proc. London Math. Soc. (3) 66 (1993), no. 2, 279-301.

[11] Iwaniec, Henryk; Kowalski, Emmanuel. Analytic number theory. AMS Colloquium Publications, 53. American Mathematical Society, Providence, RI, 2004.

[12] A. Ivic, E. Kratzel, M. Kuhleitner, W.G. Nowak, Lattice points in large regions and related arithmetic functions: Recent developments in a very classic topic, arXiv:math0410522.

[13] Ivic, Aleksandar, The Riemann zeta-function. Theory and applications. Wiley, New York; Dover Publications, Inc., Mineola, NY, 2003.

[14] Iwaniec, H.; Mozzochi, C. J. On the divisor and circle problems. J. Number Theory 29 (1988), no. 1, 60-93.

[15] Kaczorowski, Jerzy; Wiertelak, Kazimierz. Oscillations of the remainder term related to the Euler totient function. J. Number Theory 130 (2010), no. 12, 2683-2700.

[16] Kaczorowski, Jerzy; Wiertelak, Kazimierz Smoothing arithmetic error terms: the case of the Euler \(\varphi \) function. Math. Nachr. 283 (2010), no. 11, 1637-1645.

[17] Kaczorowski, Jerzy; Wiertelak, Kazimierz Oscillations of a given size of some arithmetic error terms. Trans. Amer. Math. Soc. 361 (2009), no. 9, 5023-5039.
[18] Landau, Edmund Ueber die asymptotischen Werthe einiger zahlentheoretischer Functionen. (German) Math. Ann. 54 (1901), no. 4, 570-591.

[19] Landau, E. Uber die zahlentheoretische Funktion $\phi(n)$ und ihre beziehung zum Goldbachschen Satz, Nachr. koninglichen Gesellschaft wiss, Göttingen Math.Phys. klasse., 1900,177-186. Collected works, Vol 1, Ed.by L. Mirsky et all, Thales Verlag, 106-115.

[20] F. Mertens, Uber einige asymptotische Gesetze der Zahlentheorie, Crelle’s Journal, 77 (1874), 289-338.

[21] Montgomery, Hugh L. Fluctuations in the mean of Euler’s phi function. Proc. Indian Acad. Sci. Math. Sci. 97 (1987), no. 1-3, 239-245 (1988).

[22] Montgomery, Hugh L.; Vaughan, Robert C. Multiplicative number theory. I. Classical theory. Cambridge University Press, Cambridge, 2007.

[23] Murty, M. Ram. Problems in analytic number theory. Second edition. Graduate Texts in Mathematics, 206. Readings in Mathematics. Springer, New York, 2008.

[24] S. S. Pillai and S. Chowla, J. London Math. Soc. 5 (1930), 95-101.

[25] Pillichshammer, Friedrich. Euler’s constant and averages of fractional parts. Amer. Math. Monthly 117 (2010), no. 1, 78-83.

[26] Rekos, Margorzata, On some complex explicit formulae connected with the Euler’s phi function. I. Funct. Approx. Comment. Math. 29 (2001), 113-124.

[27] Rose, H. E. A course in number theory. Second edition. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1994.

[28] Ribenboim, Paulo, The new book of prime number records, Berlin, New York: Springer-Verlag, 1996.

[29] Shapiro, Harold N. Introduction to the theory of numbers. Pure and Applied Mathematics. A Wiley-Interscience Publication. New York, 1983.

[30] Sitaramachandra Rao, R. On an error term of Landau. Indian J. Pure Appl. Math. 13 (1982), no. 8, 882-885.

[31] Sitaramachandra Rao, R. On an error term of Landau. II. Number theory (Winnipeg, Man., 1983). Rocky Mountain J. Math. 15 (1985), no. 2, 579-588.

[32] Sankaranarayanan, Ayyadurai; Singh, Saurabh Kumar On the Riesz means of $n/\varphi(n)$ -III. Acta Arith. 170 (2015), no. 3, 275-286.

[33] G. Tenenbaum. Introduction to analytic and probabilistic number theory. Cambridge Studies in Advanced Mathematics 46, (Cambridge University Press, Cambridge, 2015.)
[34] A. Walisz, Weylsche Exponentialsummen in der neueren Zahlentheorie, Leipzig: B.G. Teubner, 1963.

[35] Walfisz, A. Treiler problem, Math. Z., 26, 66-88, 1927.