Estimating the sensitivity of pulsar timing arrays

C J Moore¹, S R Taylor¹,² and J R Gair¹

¹ Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA, UK
² Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA

E-mail: cjm96@ast.cam.ac.uk, stephen.r.taylor@jpl.nasa.gov and jrg23@cam.ac.uk

Received 9 July 2014, revised 17 October 2014
Accepted for publication 17 December 2014
Published 30 January 2015

Abstract
The sensitivity curve of a canonical pulsar timing array is calculated for two types of source: a monochromatic wave and a stochastic background. These calculations are performed in both a Bayesian and frequentist framework, using both analytical and numerical methods. These calculations are used to clarify the interpretation of the sensitivity curves and to illustrate the sometimes overlooked fact that the sensitivity curve depends not only on the properties of the pulse time-of-arrival data set but also on the properties of the source being observed. The Bayesian and frequentist frameworks were found to give consistent results and the analytic and numerical calculations were also found to be in good agreement.

Keywords: pulsar timing, gravitational waves, black holes

(Some figures may appear in colour only in the online journal)

1. Introduction

There is a current global effort under way to detect very low frequency (in the range \(10^{-9} \text{–} 10^{-6}\) Hz) gravitational waves (GWs) via the precision timing of a network of galactic millisecond pulsars. These detection efforts exploit the exquisite rotational stability of millisecond pulsars to track any deviations of the pulse time-of-arrivals (TOAs) from deterministic timing-models. A GW propagating between the Earth and a pulsar will induce a perturbation to the space–time metric along the Earth-pulsar line-of-sight, leading to a change in the proper separation, and consequently a shift in the perceived pulsar rotational frequency (Burke 1975, Estabrook and Wahlquist 1975, Sazhin 1978, Detweiler 1979). Subtracting a deterministic timing-model (which describes the pulsar’s spin, spin-down rate, etc) from the
TOAs gives a set of *timing-residuals*, which encode all unmodeled phenomena, whether they are noise processes or GWs. Utilizing a network (or ‘array’) of these pulsars allows us to cross-correlate the data-streams and leverage the fact that GWs will be influencing all pulsars (Hellings and Downs 1983, Foster and Backer 1990), whilst intrinsic pulsar noise processes will not. There are three separate pulsar timing array (PTA) efforts underway: the European Pulsar Timing Array (EPTA)\(^3\) (Kramer and Champion 2013), the Parkes Pulsar Timing Array (PPTA)\(^4\) (Hobbs 2013) and the North American Nanohertz Observatory for Gravitational waves (NANOGrav)\(^5\) (McLaughlin 2013). There are also ongoing efforts to combine the techniques and data from all three PTAs within the umbrella consortium of the International Pulsar Timing Array (IPTA)\(^6\) (Manchester and IPTA 2013).

The main source of GWs in this frequency band is thought to be a population of supermassive black hole (SMBH) binary systems merging together, with typical masses \(\sim 10^8-10^{10} M_\odot\) and redshifts \(z \lesssim 2\), and in the early, adiabatic inspiral regime of their coalescence (Rajagopal and Romani 1995, Jaffe and Backer 2003, Wyithe and Loeb 2003). It is now well-established that SMBHs are widespread in the nuclei of nearby galaxies (e.g., Ferrarese and Ford 2005), with observational relationships such as the famous \(M-\sigma\) relation indicating symbiotic evolution of the black hole and galactic host (e.g., Magorrian et al 1998, Ferrarese and Merritt 2000, Marconi and Hunt 2003). SMBH mergers are expected to be ubiquitous within the currently accepted picture of hierarchical structure formation (White and Rees 1978, Kauffmann and Haehnelt 2000), where massive galaxies form via continued accretion from cosmic web filaments, or from galactic mergers. Depending on the distribution of sources in frequency and amplitude these binaries could either be individually resolvable in GWs or overlap to form an unresolved stochastic GW background (e.g., Sesana et al 2008, 2009, Sesana and Vecchio 2010). Other PTA band sources may include a background from the decay of cosmic-string networks (Vilenkin 1981a, 1981b, Damour and Vilenkin 2005, Ölmez et al 2010), or a primordial GW background (Grishchuk 1976, 2005), however these are likely to be at a lower amplitude than near-future PTAs will be able to detect.

It is common practice to show the sensitivity of a GW detector by plotting the minimum detectable characteristic-strain as a function of frequency for a particular source; such plots are known as sensitivity curves (see figures 1 and 3). In the context of ground and space-based detectors an alternative convention is to plot the square root of the detector’s noise power spectral density; this is sometimes called the noise curve. The noise curve depends only on the detector which can give the mistaken impression that the sensitivity of the detector is independent of the source. In fact when calculating the minimum detectable amplitude of a source (or indeed when placing upper limits) using a particular detector both the properties of the detector and the properties of the source need to be included. For example, in the context of ground-based detectors limits may be placed on continuous wave sources using either a frequentist or a Bayesian approach (Abbott et al 2004, Dupuis and Woan 2005). For an example in the context of PTAs, it is known that the scaling laws for the observed signal-to-noise ratio (SNR) of the optimal detection statistic for the stochastic background do not apply to the SNR of the matched filter statistic used when observing single sources, Siemens et al (2013). In this paper we apply both Bayesian and frequentist methods to two very different sources of GWs in the PTA frequency band: a monochromatic wave and

\(^3\) http://epta.eu.org/
\(^4\) http://atnf.csiro.au/research/pulsar/ppta/
\(^5\) http://nanograv.org/
\(^6\) http://ipta4gw.org/
a power-law stochastic background. As anticipated the sensitivity curves are different for the two sources.

For both of these sources the sensitivity curve was calculated in three ways: (1) using a simple analytic treatment based on a frequentist definition of detection; (2) using a simple analytic treatment based on a Bayesian definition of detection; (3) employing a full numerical analysis on mock datasets using a Bayesian data-analysis pipeline. The two main aims of this paper are to illustrate the differences between the sensitivity curves for different sources and to demonstrate the consistency of the Bayesian and frequentist approaches. However as a by-product we derive simple analytic formulae for the sensitivity curves, and the scaling of the SNR and Bayesian-evidence with the characteristics of the PTA. It is hoped that these simple analytic sensitivity curves, when combined with predicted source distributions from different scenarios, will be useful for evaluating prospects for detection.

In section 2 the response of a PTA to incident GWs is briefly reviewed, followed by calculations in sections 3 and 4 of the sensitivity of a PTA to a monochromatic source and a stochastic background.

2. The response of a PTA

The Earth and all pulsars reside in the metric perturbation field

\[h_{ab}(t, \vec{x}) = \sum_{A=t,\infty} \int df \int d\Omega \tilde{h}_A(f, \hat{\Omega}) \epsilon_{ab}(\hat{\Omega}) \exp \left(2\pi if \left(t - \hat{\Omega} \cdot \vec{x} \right) \right), \tag{1} \]

where \(\vec{x} \) is the spatial position and \(\tilde{h}_A(f, \hat{\Omega}) \) is the Fourier amplitude of the GW of frequency \(f \) propagating in direction \(\hat{\Omega} \). Taking the Earth to be at the origin of the coordinate system, and for a pulsar \(x \) at position \(\vec{p}_x \), the measured quantity is the timing-residual, corresponding to GW-induced deviations of the TOAs from those computed by a deterministic timing-model, and given by

\[R_x(t, \hat{\Omega}) = \int_0^t dt' \ z_x(t', \hat{\Omega}) , \quad \text{where} \quad x \in \{1, \ldots, N_p\}, \tag{2} \]

where \(z_x(t) \) is the redshift of the rate of arrival of signals from pulsar \(x \) induced by the GWs and \(N_p \) is the number of pulsars in the PTA. This depends on the metric perturbation at the Earth and at the pulsar (Anholm et al 2009, Book and Flanagan 2011)

\[z_x(t, \hat{\Omega}) = \frac{1}{2} \frac{1}{1 + \hat{\Omega} \cdot \vec{p}_x} \left(h_{ij}(t_{p,x}, \hat{\Omega}) - h_{ij}(t_x, \hat{\Omega}) \right), \tag{3} \]

where \(t_x = t, t_{p,x} = t - L_x (1 + \hat{\Omega} \cdot \vec{p}_x) \), and \(L_x \) is the distance to the pulsar. In the following the pulsar-term (the first term in equation (3)) is ignored as self-noise which averages to zero when calculating correlations between pulsar residuals. Within this approximation the residual depends solely on the local metric perturbation at the Earth. Throughout this paper the timing residuals will be treated as the measured signal, it is also possible to work with the redshifts related to the timing residuals by equation (2).

When producing a particular sensitivity curve it is necessary to assume particular values for various PTA quantities. For the analytic calculations in this paper a canonical PTA consisting of 36 pulsars distributed randomly on the sky, timed fortnightly to a precision of 100 ns over a total baseline of 5 years was assumed. This is roughly equivalent to mock
dataset Open1 in the recent IPTA data challenge\(^7\), the characteristics of which were used to produce the numerical sensitivity curves. It should be noted that this mock dataset is much more sensitive than that of any current PTA. It is straightforward to generalize the analysis to more complicated situations where each pulsar has a different cadence, timing precision, length of observation, etcetera.

3. The monochromatic source: e.g. a non-evolving binary

3.1. Frequentist detection

The frequentist method involves defining a detection statistic \(S \). The SNR of this statistic is defined as the expectation in the presence of a signal divided by the root mean square (rms) value in the absence of a signal. A detection is claimed if the SNR in a particular realization of the experiment exceeds a predetermined threshold value \(\varrho_{\text{th}} \). Here a threshold of \(\varrho_{\text{th}} = 3 \) was used.

The noise in the timing-residuals is assumed to be white, Gaussian, and uncorrelated between each pulsar. Let \(s_x(t) \) be the smooth function from which the discretely sampled timing residuals in pulsar \(x \) are drawn. The real data from a PTA contain noise and a signal

\[
s(t) = n(t) + h(t) , \quad \text{where} \quad s(t)^T = \left(s_1(t), s_2(t), \ldots, s_{N_p}(t) \right). \tag{4}
\]

The noise satisfies \(\langle \bar{n}(f) \bar{n}^*_x(f') \rangle = (1/2) \delta(f - f') \delta_{xx} S_{n,x} \), where \(S_{n,x} = 2 \sigma_x^2 \delta t_x, 1/\delta t_x \) and \(\sigma_x \) are the cadence and the rms error in the timing-residuals in pulsar \(x \). Cross correlating the residuals with a symmetric filter matrix \(K(t) \) defines a statistic and associated SNR

\[\text{(4)}\]

\(7\) http://ipta4gw.org/?page_id=89
Using the identical Gaussian properties of the noise in each pulsar it is straightforward to show that the expectation value of \mathbf{s} in the presence of a signal and the variance of \mathbf{s} in the absence of a signal are given respectively by

$$\mu = \int \mathcal{D}\mathbf{f} \left[\mathbf{h}(f)^T \mathbf{K}(f) \mathbf{h}(f) + \frac{T}{2} S_n \text{Tr}(\mathbf{K}) \right],$$

$$\sigma^2 = \int \mathcal{D}\mathbf{f} \left[\frac{T}{4} S_n^2 \text{Tr}(\mathbf{K}(f)^4) \right] - \left(\int \mathcal{D}\mathbf{f} \frac{T}{2} S_n \text{Tr}(\mathbf{K}) \right)^2.$$

The contributions to S from pulsar auto-correlations are neglected, this is achieved by setting the diagonal elements of \mathbf{K} to zero, so that the Tr(\mathbf{K}) in equations (7) and (8) vanish. The SNR, equation (6), is then given by the following inner product

$$q^2 = \frac{4}{T} \left(\frac{\mathbf{h}(f)^T \mathbf{K}(f) \mathbf{h}(f)}{S_n^2} \right)^2,$$

where $\langle \mathbf{A} | \mathbf{B} \rangle = \int \mathcal{D}\mathbf{f} \text{Tr}(\mathbf{A}^T \mathbf{B}) S_n^2.$

The optimal filter is the matrix $\mathbf{K}(f)$ which maximizes the SNR in equation (9). It follows from the Cauchy–Schwarz inequality that the optimal filter (up to an arbitrary factor) and its corresponding SNR are given by

$$\mathbf{K}(f) = \left. \frac{\mathbf{h}(f)^T \mathbf{h}(f)}{S_n^2} \right|_{\text{diag}=0},$$

where $q^2 = \sum_y \sum_{x>y} \frac{1}{8} \int \mathcal{D}\mathbf{f} \left| \frac{\mathbf{h}_x(f)^T \mathbf{h}_y(f)}{S_n^2} \right|^2.$

In order to evaluate the optimal, or ‘matched’, filter $\mathbf{K}(f)$, the waveform $\mathbf{h}(f)$ must be known to sufficient accuracy. A monochromatic source is a simple example of a waveform which can be extracted using matched filtering. The expression for q^2 in equation (10) is different from the usual expression for the SNR of a matched filter search, in particular it scales as $\sim h^4$ instead of $\sim h^2$. This is because our detection statistic in equation (6) cross-correlates the signals from different pulsars. It would be possible to use the standard matched filter statistic, however the cross-correlation statistic has the advantage that it makes the single source search directly comparable to the stochastic background search (see section 4), where one is forced to use a cross-correlation statistic because the stochastic signal in each pulsar is buried in the intrinsic pulsar red-noise.

From equation (3) it may be seen that the measured signal is proportional to the GW amplitude and a geometric factor depending on the sky positions of the pulsars, the sky position of the source and the source orientation. Since there are many pulsars in our PTA they effectively average this distribution over the sky position angles. For simplicity we set the source inclination and polarization angles to zero, so we are calculating the sky-averaged sensitivity of the PTA to optimally orientated sources. It is straightforward to generalize this treatment to arbitrary source orientations. The sky-averaged value of the geometric factor in equation (3) is
\[
\chi = \int_{\theta=0}^{2\pi} \int_{\phi=0}^{\pi} \frac{\sin \theta \, d\theta \, d\phi}{4\pi} \left(\frac{1}{2} \hat{p}_i \hat{p}_j \left(A^i H^*_0 + A^i H^*_0 \right) \right)^2 = \frac{1}{\sqrt{3}},
\]

where \(\hat{p} = (\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \phi) \), \(e^i = (1, 0, 0) \), \(e^i = (0, 1, 0) \), \(\hat{\Omega} = (0, 0, 1) \), \(H^*_0 = e^0 \cos 2\psi + e^1 \sin 2\psi \), \(H^*_0 = -e^0 \sin 2\psi + e^1 \cos 2\psi \), \(e^0 = e^1 e^1 - e^1 e^1 \), \(e^0 = e^1 e^1 + e^1 e^1 \), \(A^i = (1 + \cos^2 \theta)/2 \), \(A^i = \cos \theta \) and \(i = \psi = 0 \). Therefore for a monochromatic source of GWs with frequency \(f_0 \) the signal is given approximately by

\[
\chi \delta \approx \frac{h f f f}{\sin (2\pi f T)} \left(\frac{f f f f}{\sin (2\pi f T)} \right)^2.
\]

The PTA is sensitive to frequencies in the range \(\sim 1/T \) up to the Nyquist frequency. Imposing a threshold for detection, \(\varrho = \varrho_0 \) and rearranging gives \(h_0 \) as a function of \(f_0 \). This is the desired sensitivity curve, and is shown as the red curve in the left panel of figure 1. The fact that the sensitivity curve tends to a constant value at low frequencies is obviously incorrect. The reason for this is that the loss of sensitivity which arises from fitting a deterministic timing-model to the raw TOAs has not been accounted for. Or, in Bayesian language, equation (12) assumes delta function priors on all of the pulsar timing model parameters.

3.1.1. Time domain

Some insight into the shape of the sensitivity curve and the loss of sensitivity due to fitting for the pulsar timing-model may be gained by considering the inner product in the time domain. In equation (12), if the power of 4 were replaced by a power of 2 the fact that the noise is white would allow us to use Parseval’s theorem to change from a frequency integral to a time integral. By analogy, from equation (12) the SNR may be written approximately as

\[
\varrho^2 \approx \frac{1}{2} N_p (N_p - 1) T \int_0^T dt \frac{h^2}{T} \frac{\sin(2\pi f t + \phi)}{\sigma f^2 \delta^2}.
\]

For our PTA, at frequencies of \(\approx 1 \) yr\(^{-1}\), this approximation holds to better than 10%. In the high frequency limit \((ft \gg 1) \) the integral \(\int \sin^2(2\pi f t + \phi) dt \approx 3 \) 1/8 and the sensitivity tends to

\[
h_0^{\text{HIGH}}(f) \approx \left(\frac{16 \varrho_0^2}{3 \chi^2 N_p (N_p - 1)} \right)^{1/4} \sigma f \sqrt{\delta t}.
\]

In the low frequency limit \((ft \ll 1) \) the sine may be expanded as a power series

\[
\sin(2\pi f t + \phi) \approx \sin(\phi) + 2\pi f \cos(\phi) - 2\pi f^2 t^2 \sin(\phi)
\]

\[
- \frac{4}{3} \pi f^3 t^3 \cos(\phi) + \mathcal{O}(f^4 t^4).
\]

The first term in this expansion is a constant initial phase, as such it contains no information about the GW signal and is ‘fit-out’ of the data. Similarly the second term is a linear drift in the residuals and is degenerate with the pulsar spin (and also the line of sight component of the peculiar velocity). Finally the third term is degenerate with the pulsar spin-down rate. Higher order derivatives of the spin period do not need to be fit for independently as they are determined uniquely by the period and its first time derivative. Therefore at low frequencies
the leading contribution, at \(O \left(f^4 \right) \), gives
\[
h_c^{\text{LOW}}(f) \approx \frac{3 \sqrt{\Delta n}}{2 \pi^3} \frac{13}{N_p \left(N_p - 1 \right)} \sigma f^{-2} \sqrt{\frac{\Delta f}{T}} T^{-3} \sec \phi. \tag{16}
\]

The total sensitivity may be approximated by \(h_c^{\text{LOW}} + h_c^{\text{HIGH}} \), i.e. as a two part power-law in \(f \). Equation (16) contains the unknown constant \(\phi \). The natural way to determine \(\phi \) is to require the low and high frequency curves to match at a particular frequency, \(f_{\text{match}} \), i.e., we set \(h_c^{\text{LOW}}(f_{\text{match}}) = h_c^{\text{HIGH}}(f_{\text{match}}) \). As these expressions are valid for \(f_1 \ll 1 \) and \(f_1 \gg 1 \), we choose \(f_{\text{match}} = k/T \), where \(k \) is a number of order unity. This number should be determined by numerical simulations of the frequentist statistic. However, the purpose of this approximate time domain calculation is to motivate the scaling of the sensitivity at high and low frequencies and so we have not undertaken such simulations here. Instead, we take \(k = 2 \), as this is the integer choice that gives the best qualitative agreement with the Bayesian treatment in section 3.2. Despite the apparent simplicity of this two part power law model it shows excellent agreement with the following Bayesian treatment.

3.2. Bayesian detection

One advantage of the Bayesian approach is that it provides a well motivated method for accounting for the loss of sensitivity due to fitting for the pulsar timing-model, as opposed to the rather ad hoc subtraction of a few terms from a Taylor series performed above.

In the Bayesian approach two competing hypotheses are considered: the noise and signal hypotheses. The noise hypothesis, \(H_n \), is that the data contain only contributions from noise and the timing-model while the signal hypothesis, \(H_s \), is that the data contain noise, timing-model and a signal. For each hypothesis, \(i \in \{ h, n \} \), the evidence may be calculated as
\[
\mathcal{O}_i(s) = \int d\lambda \mathcal{L}_i(s, \lambda_i) P_i(\lambda_i), \tag{17}
\]
where \(\lambda_i \) is the vector of free parameters, \(\mathcal{L}_i \) is the likelihood function, \(s \) is the measured data and \(P_i \) is the prior function, for hypothesis \(H_i \). From here on the dependence on the data is suppressed in our notation for compactness. The Bayes factor is then defined as the ratio of these evidences, and a detection is claimed if this exceeds some pre-determined threshold, \(B \equiv \mathcal{O}_h/\mathcal{O}_n > B_n \). A value of \(B_n = 1000 \) was used, this was chosen to give roughly the same false alarm rate at the value of \(\varrho_n = 3 \) used in section 3.1.

In this section we assume the physical signal in each pulsar, \(h_c(t) \), is that of a monochromatic source with unknown amplitude, frequency and initial phase
\[
h_c(t) = \frac{\mathcal{W}}{f} \sin(2\pi ft + \phi), \quad \text{with source parameters } \mathcal{W} = \{ h_c, f, \phi \}. \tag{18}
\]

We further assume the timing model in each pulsar, \(m_c(\hat{\Theta}_c, t) \), is a quadratic
\[
m_c(\hat{\Theta}_c, t) = \hat{\Theta}_c^T \hat{N}, \quad \text{with } \hat{N}^T = \{ 1, t, t^2 \} \text{ and } \hat{\Theta}_c^T = \{ \alpha_c, \beta_c, \gamma_c \}, \tag{19}
\]
where \(\alpha_c \) is a constant phase offset, \(\beta_c \) is proportional to the pulsar’s rotational frequency or peculiar velocity, and \(\gamma_c \) is proportional to its spindown rate or acceleration. In reality the timing model is more complex than a simple quadratic as it has to account for several effects, such as the pulsar’s position, dispersion in the interstellar medium, peculiar motion, and orbital motion if the pulsar happens to be in a binary system (see Edwards et al 2006, Hobbs et al 2006, and references therein). However, a simple quadratic model serves here to
illustrate the loss of sensitivity due to fitting for the pulsar spin and the pulsar spindown. The quadratic model also has the nice property that the pulsar timing-model parameters can be marginalized over analytically. The total data vector of measured timing residuals (including the noise) is the concatenation of the timing residuals from all the individual pulsars in the PTA

$$s = \left(s_1(\delta t), s_1(2\delta t), \ldots, s_1(T), \ldots, s_{N_p}(\delta t), s_{N_p}(2\delta t), \ldots, s_{N_p}(T) \right).$$

Since the noise is Gaussian the log-likelihood for the noise hypothesis is given by

$$\log L_n(\vec{\theta}) = \log A - \frac{1}{2} (s - m(\vec{\theta}))^T \Sigma^{-1}_n (s - m(\vec{\theta})), \quad (21)$$

where the covariance matrix is simply the scaled identity, \(\Sigma_n = \sigma^2 I_{N_p T / \delta t}\), and \(A\) is a constant, absorbing determinant factors. Similarly the log-likelihood for the signal hypothesis is given by

$$\log L_s(\vec{\theta}, \vec{\psi}) = \log A - \frac{1}{2} (s - m(\vec{\theta}) - h(\vec{\psi}))^T \Sigma^{-1}_s (s - m(\vec{\theta}) - h(\vec{\psi})), \quad (22)$$

In both the noise and signal hypotheses uniform priors on the timing-model parameters were assumed. In the signal hypothesis case there are also the priors on the source parameters to consider. Since we have adopted a very stringent detection threshold (Bayes factor of 1000) it is reasonable to expect the posterior to be strongly peaked at the true values independent of any (reasonable) prior used. Of course the data must be used to find the position of this peak and the process will exhaust a certain amount of information in the data reducing the final evidence value. However, this reduction may be neglected in the limit of large final evidence. Numerically this approximation is equivalent to taking a delta-function prior on the source parameters positioned at the correct values, \(P(\vec{\psi}, \vec{\theta}) \propto \delta^{3n}(\vec{\psi} - \vec{\psi}^0)\), however it should be stressed that this is an analytic trick used to implement the approximation described and in practice the data will still be used to find the maximum in the posterior. (It may be the case that a very localized prior is used on the source parameters if a clear electromagnetic counterpart has been identified.) The use of delta-function priors on the source parameters make the Bayes factor equal to the ratio of the likelihood values of the two hypotheses. This likelihood ratio is reminiscent of a frequentist-like detection statistic; however, the result here does not reduce to the frequentist case described above due to the different way the effect of the timing model has been included.

From equation (19) it can be seen that the timing model is linear in the pulsar parameters, so the timing model may be expressed by a \((N_p T / \delta t) \times (3N_p)\) matrix, \(M\), known as the design matrix. This non-square matrix admits the usual unique singular value decomposition into the \((N_p T / \delta t) \times (N_p T / \delta t)\) matrix \(U\), the \((N_p T / \delta t) \times (3N_p)\) matrix \(S\) and the \((3N_p) \times (3N_p)\) matrix \(V\). The matrix \(U\) may be further uniquely decomposed into \(F\) and \(G\) where \(G\) is an \((N_p T / \delta t) \times (N_p T / \delta t - 3N_p)\) matrix.

$$m = M \vec{\theta}, \quad M = USV^+, \quad U = (F, G).$$

The evidence integral for the noise hypothesis is a multivariate Gaussian in the pulsar timing-model parameters, \(\vec{\theta}\). This may be evaluated analytically (van Haasteren and Levin 2013), and can be viewed as a projection of the data into the left null space of the design matrix.
\[
\mathcal{O}_n = \int d\tilde{\theta} \mathcal{L}_n(\tilde{\theta}) = \frac{\exp\left(-\frac{1}{2} s^T G \left(G^T \Sigma_n G\right)^{-1} G^T s\right)}{\sqrt{(2\pi)^n \det(\Sigma_n G)}}.
\]

(24)

The evidence for the signal hypothesis may be similarly calculated by evaluating the following integral

\[
\mathcal{O}_h = \int d\tilde{\psi} \delta\left(\tilde{\psi} - \tilde{\psi}'\right) \int d\tilde{\theta} \mathcal{L}_h(\tilde{\theta}, \tilde{\psi}).
\]

(25)

However, as can be seen by comparing equations (21) and (22), this is identical to the result in equation (24) with the transformation \(s \to s - h(\tilde{\psi}') \equiv s - \mathbf{h}' \). The Bayes factor, defined as the ratio of the two evidences times the prior odds ratio, is then given by the following (where the prior odds have been set to unity)

\[
B \equiv \frac{\mathcal{O}_h}{\mathcal{O}_n} = \exp\left(-\frac{1}{2} \mathbf{h}'^T G \left(G^T \Sigma_n G\right)^{-1} G^T \mathbf{h}' + \mathbf{h}^T G \left(G^T \Sigma_n G\right)^{-1} G^T s\right).
\]

(26)

As mentioned above, the use of a delta-function prior makes this odds ratio a ratio of likelihoods. However, it is the ratio of the likelihood marginalized over the timing model parameters and so does not reduce to the frequentist statistic, which instead subtracts out a fixed timing model. The measured data is given by \(s = \mathbf{h}' + \mathbf{m} + \mathbf{n} \). We also have by definition of the projection matrix \(G^T \mathbf{m} = 0\). Averaging the Bayes factor over many realizations of Gaussian noise gives the expectation value of the Bayes factor as \(\mathcal{B}\)

\[
\mathcal{B} = \int d\mathbf{n} P(\mathbf{n}) B = \exp\left(\left(G^T \mathbf{h}'\right)^T \left(G^T \Sigma_n G\right)^{-1} G^T \mathbf{h}'\right),
\]

(27)

where \(P(\mathbf{n}) \) is given by

\[
P(\mathbf{n}) d\mathbf{n} = \frac{\exp\left(-\frac{1}{2} \mathbf{n}^T \Sigma_n^{-1} \mathbf{n}\right)}{\sqrt{(2\pi)^n \det(\Sigma_n)}} d\mathbf{n}.
\]

(28)

Hence the expected value of the Bayes factor is given by inner product of the signal, projected orthogonal to the quadratic timing model, with itself. This inner product may be written as integral in the time domain where the physical signal, \(h(t) \), is replaced with the projected signal, \((Gh)(t) \). The projection is accomplished by explicitly choosing a basis of three orthogonal functions which span the space of the quadratic timing model

\[
\mathcal{B} = \exp\left(N_p \int_0^T dt \frac{(Gh)(t)^2}{2 \sigma^2 \delta t}\right)
\]

where

\[
(Gh)(t) = h(t) - f_1(t) \int_0^T d\tau f_1(\tau) h(\tau) - f_2(t) \int_0^T d\tau f_2(\tau) h(\tau)
\]

\[
- f_3(t) \int_0^T d\tau f_3(\tau) h(\tau)
\]

\[
f_1(\tau) = \frac{\tau^2}{T} - \frac{\tau}{T} + \frac{T}{6}, \quad f_2(\tau) = \tau - \frac{T}{2} \quad \text{and} \quad f_3(\tau) = T.
\]

(29)
Setting $\mathcal{B} = B_{\text{th}}$ in equation (29) and rearranging gives an expression for $h_c(f, \phi)$, which defines the sensitivity curve (this expression is somewhat lengthy, see the appendix). The final three terms in the expression for $(Gh)(t)$ arose from marginalizing over the timing-model, neglecting these terms gives another expression, $H_c(f, \phi)$, which corresponds to the sensitivity without the loss due to a timing-model fit. Both of these are plotted in the right panel of figure 1 for different values of ϕ. This again illustrates the loss in sensitivity due to the requirement that we fit for free parameters in the timing-model. The black curves in figure 1 are the phase averaged sensitivities.

3.3. Numerical calculations

The shape of the strain sensitivity curve is now reconstructed with numerical simulations of Earth-term only monochromatic signal injections. For our canonical PTA, we adopt the 36 pulsar network of the first IPTA data challenge, where pulsars are timed fortnightly to 100 ns precision over a total baseline of 5 years. Injections are performed using the PALSIMULATION code, which is part of the PAL package being developed as a unifying suite of tools for pulsar timing analysis. These injections provide a set of simulated timing files, which along with associated pulsar parameter files, can be processed with the TEMPO2 pulsar-timing package (Edwards et al 2006, Hobbs et al 2006, 2009). The output from the TEMPO2 timing-model fit is a set of timing-residuals, and the design-matrix which describes the contribution of the deterministic timing-model parameters to each TOA observation. The likelihood model was analytically marginalized over uniform-prior timing-model parameters by projecting all quantities into the left null-space of the design matrix, equivalent to a linear operation on the timing-residuals and noise matrices (van Haasteren and Levin 2013).

For a grid of PTA-band frequencies and GW-source distances, a systematic injection and recovery of varying SNR Earth-term only signals was performed. Searches were over the seven-dimensional parameter space of $\{\zeta, f, \theta, \phi, \iota, \psi, \phi_0\}$, where $\zeta = M^{5/3}D_L$ is a dimensionless strain-amplitude defined in terms of the binary chirp mass, M, and luminosity distance, D_L; f is the GW frequency; θ and ϕ denote the sky-location of the source in spherical-polar coordinates; ι is the orbital inclination angle; ψ is the GW polarization angle; and ϕ_0 is an initial orbital phase parameter. The angles ϕ_0, ψ and ι for the source were set to be zero; the sky position angles were set as $\phi = 1$ and $\theta = \pi/2 - 0.5$. For the sky positions of the 36 pulsars in the PTA the rms value of the geometric factor in the integrand of equation (3) is $\chi = 0.51$. This is in reasonable agreement with the expected value calculated in equation (11) of $1/\sqrt{3} \approx 0.58$. The chirp mass was set as $M = 10^7 M_\odot$; and the luminosity distance was varied between 10^{-5} Mpc and 10 Mpc. This choice of source parameters, in particular the relatively low chirp mass, ensures that, for sources at all GW frequencies to which the PTA is sensitive, the ‘chirping’ timescale of the binary due to orbital shrinkage by GW-emission is much longer than the baseline of 5 years and so the signal is nearly monochromatic. The choice of the range of distances scales the SNR of the injection from the regime of being completely undetectable to easily detectable; these distances are relatively small due to the small chirp mass.

Parameter estimation and evidence recovery are performed using the Bayesian inference package MULTINEST (Feroz and Hobson 2008, Feroz et al 2009, 2013). The collection of recovered Bayesian evidence values were interpolated at each injected frequency to determine the characteristic strain-amplitude at which we exceed the pre-determined detection threshold. The Bayes factor surface is shown in the left panel of figure 2, along with our numerically
Figure 2. The left panel shows a plot of $\log (B)$ against amplitude and frequency. The black line is the contour $B = B_0$. The black curve is identical to that plotted in the right panel which shows the numerically calculated sensitivity curve in section 3.3. The vertical black line in the right-hand panel indicates the frequency $1/T$.

The deduced Bayesian sensitivity curve in the right panel of figure 2. Comfortable qualitative agreement can be seen with the results of the simple frequentist/Bayesian analytic techniques shown in figure 1.

Figure 1 shows the monochromatic sensitivity curves for both the analytic calculations in sections 3.1 and 3.2 and numerical calculations in section 3.3. In the left-hand panel of figure 1 it can be seen that the sensitivity curves rise sharply above a frequency of $1/\delta t$, which for this example is $\sim 10^{-6}$ Hz. This frequency is the Nyquist frequency for observations with an average frequency of once every δt. Higher frequencies suffer from aliasing into the detection band, which inhibits inference. The exact behaviour of the sensitivity close to the Nyquist frequency will depend on the details of sampling spacing and filtering strategies, but here we approximate the loss of sensitivity as a sharp cut off at that point. This happens naturally in the frequentist case as the finite time delta-function in equation (12) moves outside of the frequency domain of integration. For the Bayesian sensitivity curves in the right-hand panel of figure 1, this effect has been put in by hand.

4. The stochastic background: e.g. a superposition of binaries

4.1. Frequentist detection

When searching for a stochastic background it is not possible to use the above statistic as it requires the matched signal templates. The best that can be done is to predict the statistical properties of the signal. A power-law Gaussian stochastic background is characterized by an amplitude and a slope, $\Psi = \{A, \alpha\}$, where the second moment of the Fourier amplitudes completely defines the statistical properties of the timing residuals

$$\left\langle \hat{\delta}_x(f)\hat{\delta}_x^*(f') \right\rangle = \frac{1}{2}\delta(f - f')T_{xy}S_b(f), \quad \text{where} \quad S_b(f) = \frac{A^2}{12\pi^2 f_0^3} \left(\frac{f}{f_0} \right)^\alpha. \quad (30)$$

Note that $\hat{\delta}_x(f)$ here refers to the Fourier transform of the timing residuals in pulsar x, not the Fourier transform of the underlying tensor field. A similar calculation to equation (9) shows that the optimal filter function is now given by
\[\dot{Q}(f) = \frac{TS_h(f)}{S_h^2} \Gamma , \quad \text{where } (\Gamma)_{xy} = \Gamma_{xy} . \]

(31)

As in section 3.1, the SNR of the statistic is given by the ratio of the expectation value in the presence of a signal to the rms value in the absence of a signal

\[\rho^2 = \sum_{x>y} \sum \int df \frac{\Gamma_{xx}^2 S_h^2(f)}{S_h^2(f)} . \]

(32)

Note that the continuous-wave SNR is different from the stochastic GW background SNR, i.e. \(\rho \neq \rho^2 \). For realistic values of \(fL \) (where \(f \) is the GW frequency and \(L \) is the distance to the pulsar), the overlap reduction function, \(\Gamma_{xy} \), is independent of frequency, and for an isotropic background depends only on the angle between the pulsars, \(\cos(\theta_{xy}) = \hat{\bmath{r}}_x \cdot \hat{\bmath{r}}_y \); this is the famous ‘Hellings and Downs curve’ (Hellings and Downs 1983). As the pulsars in our PTA are randomly placed on the sky the overlap can be approximated as a constant, \(\chi' \), equal to the rms value over the sky, \(\Gamma_{xy}(\theta_{xy}) = \chi' = 1/(4\sqrt{3}) \).

We note that we do not include uncorrelated red-noise contributions from the pulsar-term in the noise budget of the SNR denominator. Siemens et al (2013) showed that this can negatively impact the time to detection, since as the correlated signal grows so does the uncorrelated pulsar-term noise component. In that definition of SNR, the mean in the presence of a signal is compared to the standard deviation in the presence of a signal and so the SNR is a measure of the detection probability at a false alarm rate of \(\sim 50\% \), i.e., the fraction of the probability distribution in the presence of a signal that lies above zero, which is the expected value of the statistic in the absence of a signal. The definition of SNR that we use is the ratio of the mean in the presence of a signal to the standard deviation in the absence of a signal. In the absence of a signal there will be no pulsar-term noise, so we do not include this in the SNR denominator. This definition can be interpreted as the false alarm probability of a signal with a detection probability of \(\sim 50\% \), i.e., the fraction of the probability distribution in the absence of a signal that lies above the mean of the distribution in the presence of a signal. This quantifies our surprise at finding a cross-correlated signal in the data. When using Wiener filtering, these two definitions are equivalent, but they differ if the filter is sub-optimal, which might be the case if the pulsar distances are not known. It is not completely obvious which is the better choice. However, this does not matter since the purpose of this calculation is to obtain an analytic expression that can approximate the numerical sensitivity curve, and the latter was computed from simulations of all relevant physical effects, including the pulsar term contribution.

When searching for stochastic GW backgrounds of the form in equation (30) all frequencies contribute to the signal. It no longer makes sense to ask what the sensitivity is as a function of frequency directly. Rather, as an intermediate step the sensitivity in terms of the spectral slope \(\gamma \) (or \(\alpha = \delta - \gamma / 2 \)) should be determined first. Knowing the sensitivity as a function of slope then allows the amplitude as a function a frequency to be plotted using the power law in equation (34). This power law may be plotted for many different values of the power law index and the envelope of the set of these curves forms the power-law integrated sensitivity curve (see Thrane and Romano 2013 for a more detailed discussion). Substituting equations (30) and (31) into equation (32) gives

\[\rho^2 = \frac{1}{2} N_p (N_p - 1) T \int df \frac{\dot{Q}^2 f^{4\alpha-6}}{4\sigma^2 f^{4\alpha} / j_0^{4\alpha_0}} . \]

(33)
Setting $\rho = \rho_b$ gives an expression for A in terms of α, then for many values of α the curve $h_c(f)$ may be drawn using

$$h_c(f) = A \left(\frac{f}{f_0} \right)^\gamma, \quad \text{where } \gamma = 3 - 2\alpha. \quad (34)$$

This is plotted in the left panel of figure 3 using the same values for the PTA parameters as used in figure 1. These are the power-law integrated sensitivity curves of Thrane and Romano (2013).

4.2. Bayesian detection

As in section 3.2 the evidence for two competing hypotheses may be calculated; the signal hypothesis (H_s: the measured signal consists of a GW component, noise and the timing model) and the noise hypothesis (H_n: the measured signal consists of just noise and the timing model).

As in section 3.2, the noise is Gaussian, white and uncorrelated between pulsar, so has the same diagonal covariance matrix, Σ_n, as before. From equation (30) the signal has covariance matrix

$$\Sigma_b = \begin{pmatrix}
C & \Gamma_{12} C & \ldots & \Gamma_{1N_s} C \\
\Gamma_{21} C & C & \ldots & \Gamma_{2N_s} C \\
\vdots & \vdots & \ddots & \vdots \\
\Gamma_{N_s 1} C & \Gamma_{N_s 2} C & \ldots & C
\end{pmatrix}.
\quad (35)$$

![Figure 3. Power-law integrated sensitivity curves for a PTA’s response to a stochastic GW background. The left panel shows the prediction of the frequentist formula in section 4.1, and the right panel shows the prediction of the Bayesian formula in section 4.2. In the left panel the black dotted line indicates a power-law slope of $\alpha = -2/3$, the slope of a stochastic background of binaries. Also in the left panel the curves highlighted in red correspond to the values of the slope used for the numerical injections (see section 4.3 and the right-hand panel of figure 4). In both panels the thick black curve indicates the envelope of the individual power laws; this is the power-law integrated sensitivity curve.](image)
where \[C = \begin{pmatrix} c(0) & c(2\pi \delta t) & \ldots & c(2\pi (T - \delta t)) \\ c(2\pi \delta t) & c(0) & \ldots & c(2\pi (T - 2\delta t)) \\ \vdots & \vdots & \ddots & \vdots \\ c(2\pi (T - \delta t)) & c(2\pi (T - 2\delta t)) & \ldots & c(0) \end{pmatrix}, \] (36)

which depends on the auto-correlation function of the timing residuals, given by

\[c(\tau) = \int_{\gamma_{\text{low}}}^{\gamma_{\text{high}}} df \cos(\tau f) S(f)^{-1}. \] (37)

In the signal hypothesis, the measured data is the sum of the noise and the signal. Since these are both drawn from a zero-mean Gaussian distributions the resulting distribution is also a zero mean and Gaussian with a covariance matrix given by \(\Sigma_n + \Sigma_h \). Using the result in equation (24) the likelihood for the noise and signal hypotheses are given respectively by

\[\mathcal{L}_n = \frac{\exp \left(-\frac{1}{2} s^T G (G^T \Sigma_n G)^{-1} G^T s \right)}{\sqrt{(2\pi)^d \det(G^T \Sigma_n G)}}, \]

\[\mathcal{L}_h(\bar{\Psi}) = \frac{\exp \left(-\frac{1}{2} s^T G (G^T (\Sigma_n + \Sigma_h) G)^{-1} G^T s \right)}{\sqrt{(2\pi)^d \det(G^T (\Sigma_n + \Sigma_h) G)}}, \] (38)

where \(\xi = N_0(T/\delta t - 3) \). As in section 3.2 the evidence for each hypothesis is calculated by integrating the prior-weighted likelihood over all the free parameters in the hypothesis. For \(H_n \) there are no free parameters and we simply have \(O_n = L_n \). For \(H_h \) we have the free parameters \(\bar{\Psi} = (\boldsymbol{A}, \alpha) \), adopting a delta function prior on both of these parameters gives \(O_h = L_h \). The Bayes factor is given by

\[B = \frac{\det(G^T \Sigma_n G)}{\sqrt{\det(G^T (\Sigma_n + \Sigma_h) G)}} \times \exp \left(-\frac{1}{2} s^T \left[G (G^T (\Sigma_n + \Sigma_h) G)^{-1} G^T - G (G^T \Sigma_n G)^{-1} G^T \right] s \right). \] (39)

Averaging the Bayes factor over many signal and noise realizations gives the expectation value of the Bayes factor as \(\bar{B} \)

\[P(s) ds = \frac{\exp \left(-\frac{1}{2} s^T (\Sigma_n + \Sigma_h)^{-1} s \right)}{\sqrt{(2\pi)^d \gamma_{\text{low}}^{\gamma_{\text{high}}}}} ds, \]

\[\bar{B} = \frac{\det(G^T \Sigma_n G) \det \left(\left(2 \left(G^T (\Sigma_n + \Sigma_h) G \right)^{-1} - (G \Sigma_h G)^{-1} \right) \right)}{\det(G^T (\Sigma_n + \Sigma_h) G)}. \] (41)

The matrix \(\Sigma_h \) depends on \(\Lambda \) and \(\gamma \), so by setting \(\bar{B} = B_h \) this expression may be solved to find \(\Lambda \) in terms of \(\gamma \). In the general case this is a function of large, dense, matrices and must be evaluated numerically.
In the case of our very simple PTA where all of the pulsar are timed identically we can proceed a little further analytically. The matrix Σ_h is symmetric and the matrix Σ_n is isotropic, therefore we choose to evaluate equation (41) in the frame where both matrices are diagonal. As in section 4.1 we approximate Γ_{χ} for all $x \neq y$, so Σ_h may be written in block diagonal form

$$\Sigma_h^{\text{diag}} = \begin{pmatrix} A \mathbf{C} & 0 & \cdots & 0 \\ 0 & A \mathbf{C} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & A \mathbf{C} \end{pmatrix},$$

where $A = 1 + (N_p - 1)\chi'$, and $\lambda = 1 - \chi'$. (42)

For the case of a white timing residual spectrum, $\gamma = 0$, the matrix \mathbf{C} is diagonal with identical entries A^2a, where $a = 1/24\pi f_0^2 \delta t$. In this case equation (41) simplifies to

$$\mathcal{B}_h = \frac{\sigma^2 \left(\frac{2\sigma^2 (\sigma^2 + A^2 a)}{2\sigma^2 - (\sigma^2 + \lambda A^2 a)} \right)^{\frac{3}{2}} \left(\frac{\sigma^2 (\sigma^2 + \lambda A^2 a)}{2\sigma^2 - (\sigma^2 + \lambda A^2 a)} \right)^{\frac{1}{2}}}{\left(\sigma^2 + \lambda A^2 a \right)^{\frac{3}{2}} \left(\sigma^2 + \lambda A^2 a \right)^{\frac{1}{2}}}.$$ (43)

Equation (43) may be solved for A using a simple root finding algorithm. From the frequentist analysis in section 4.1 and the left panel of figure 3 it is expected that the power law integrated sensitivity curve will be vertical at frequencies of $1/T$ and $1/\delta t$ (due to a complete loss of sensitivity outside this range of frequencies), and joined by a curve $h_c \propto f$ (i.e. $\gamma = 1$). Therefore, in order to uniquely determine the sensitivity curve all that must be determined is the amplitude $A(\gamma = 1)$. The numerically found root of equation (43) gives us $A(\gamma = 0)$.

In the case of our very simple PTA where all of the pulsar are timed identically we can proceed a little further analytically. The matrix Σ_h is symmetric and the matrix Σ_n is isotropic, therefore we choose to evaluate equation (41) in the frame where both matrices are diagonal. As in section 4.1 we approximate Γ_{χ} for all $x \neq y$, so Σ_h may be written in block diagonal form

$$\Sigma_h^{\text{diag}} = \begin{pmatrix} A \mathbf{C} & 0 & \cdots & 0 \\ 0 & A \mathbf{C} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & A \mathbf{C} \end{pmatrix},$$

where $A = 1 + (N_p - 1)\chi'$, and $\lambda = 1 - \chi'$. (42)

For the case of a white timing residual spectrum, $\gamma = 0$, the matrix \mathbf{C} is diagonal with identical entries A^2a, where $a = 1/24\pi f_0^2 \delta t$. In this case equation (41) simplifies to

$$\mathcal{B}_h = \frac{\sigma^2 \left(\frac{2\sigma^2 (\sigma^2 + A^2 a)}{2\sigma^2 - (\sigma^2 + \lambda A^2 a)} \right)^{\frac{3}{2}} \left(\frac{\sigma^2 (\sigma^2 + \lambda A^2 a)}{2\sigma^2 - (\sigma^2 + \lambda A^2 a)} \right)^{\frac{1}{2}}}{\left(\sigma^2 + \lambda A^2 a \right)^{\frac{3}{2}} \left(\sigma^2 + \lambda A^2 a \right)^{\frac{1}{2}}}.$$ (43)

Equation (43) may be solved for A using a simple root finding algorithm. From the frequentist analysis in section 4.1 and the left panel of figure 3 it is expected that the power law integrated sensitivity curve will be vertical at frequencies of $1/T$ and $1/\delta t$ (due to a complete loss of sensitivity outside this range of frequencies), and joined by a curve $h_c \propto f$ (i.e. $\gamma = 1$). Therefore, in order to uniquely determine the sensitivity curve all that must be determined is the amplitude $A(\gamma = 1)$. The numerically found root of equation (43) gives us $A(\gamma = 0)$.

Approximating $A(\gamma = 1) \approx A(\gamma = 0)$ gives the curve shown in the right panel of figure 3. The justification for this crude approximation comes a posteriori from the good agreement which can be seen in figures 3 and 4 and the relatively weak dependence of A on γ for small values of the slope which can be seen in the left panel of figure 3. In figure 3 the left-hand (frequentist) panel shows many different power laws along with the envelope of these curves; however, the right-hand (Bayesian) panel shows just three curves because the analytic treatment of the Bayesian detection only yields a simple analytic solution in the special case
of a white GW background spectrum, where the matrix in equation (42) simplifies, and which (as previously discussed) is used to approximate the curve of a slightly blue-spectrum. The other curves are vertical lines demonstrating a complete loss of sensitivity below \(f \sim 1/T \) and above \(f \sim 1/\delta t \). However, even with just the three curves a good approximation to the power-law-integrated sensitivity curve can be seen.

4.3. Numerical calculations

The shape of the strain sensitivity curve describing the PTA response to an isotropic, stationary, Gaussian stochastic GW background is now reconstructed with numerical simulations. Our canonical PTA is as in section 3.3. We inject isotropic GW background signals using the GWbkgrd plugin (Hobbs et al 2009) for TEMPO2, which simulates a large number (\(\sim O(10^4) \)) of GW sources between frequencies much less than \(\sim 1/T \) and much greater than Nyquist. Plus and cross GW polarization amplitudes are drawn according to the user-specified spectral shape, corresponding to a choice of \(A \) and \(\alpha \), and the resulting TOA deviations induced by each oscillator are summed to produce a residual time-series. The timing-files are processed with TEMPO2 as in the single-source simulations, and the likelihood is again marginalized over uniform-prior timing-model parameters.

For \(\alpha \in \{-1.5, -1.0, -0.5, 0, 0.5, 1.0\} \) stochastic background signals of varying SNR were injected by scaling \(A \). We note that the expected spectral-slope for a background composed of purely GW-driven inspiraling SMBH binaries is \(\alpha \sim -2/3 \) (e.g., Begelman et al 1980). Our likelihood model is the composite time-frequency approach of Lentati et al (2013) which accelerates the computationally expensive linear algebra operations necessary within the usual time-domain stochastic background search. Parameter estimation and evidence recovery with MULTINEST gives us a collection of signal/noise evidences for each combination of injected \((A, \alpha)\). As before, at each \(\alpha \) the recovered Bayes factors were interpolated to give the corresponding value of \(A \) required to exceed our pre-determined detection threshold. The results are shown in figure 4. The results show comfortable qualitative agreement with a simple frequentist/Bayesian analytic techniques, although reconstruction is limited by the range of injected values of \(\alpha \) which was necessary for numerical stability.

The rms value of the overlap between pulsars in the mock dataset used is 0.25. This disagrees with the expected value \(\chi' = 1/(4\sqrt{3}) \approx 0.144 \) calculated in section 4.1 by a factor of \(\approx 2 \); this simply represents the failure of a particular realization of 36 pulsars on the sky to give the mean of a distribution of a large number of point drawn randomly on a sphere.

5. Discussion

Here the sensitivity curve of a canonical PTA roughly equivalent to mock dataset OPEN1 in the recent IPTA data challenge has been calculated for both a monochromatic wave and a power-law stochastic background. These calculations have been performed in both Bayesian and frequentist frameworks and using both analytic and numerical techniques. The results show excellent qualitative agreement and good quantitative agreement up to a factor of a few, which is as much as could be expected considering the differing assumptions necessary in each calculation. There are several factors which influence the differences between the analytic and numerical sensitivity curves: in particular the analytic curves assume a randomly drawn pulsar array while the numerical curves were generated with real pulsar positions. Also, the treatment of the timing-model is simplified in the frequentist and Bayesian-analytic cases, using only the dominant quadratic spindown terms, whilst a full timing-model
(including interstellar dispersion, pulsar position and peculiar motion) is used in the numerical case. The simplified signal and timing-models in the frequentist and Bayesian-analytic techniques were used to obtain tractable analytic solutions, and the comparison with the Bayesian numerical curves illustrates that we correctly comprehend the qualitative features of the sensitivity curves.

Additionally we have presented several simple analytic formulae for both monochromatic and stochastic background sensitivity curves in both the Bayesian and frequentist pictures. Along the way to deriving these sensitivity curves, simple analytic formulae for the frequentist SNR and the Bayesian evidence have also been derived.

The different sensitivity curves for the monochromatic wave and stochastic background illustrate the fact that sensitivity curve of a PTA depends both on the properties of the source and the properties of the measured pulse TOA dataset. This difference is not specific to PTAs, it is also present in ground and space-based GW detectors. However, the differences are particularly pronounced in the case of PTAs because they are most sensitive to frequencies $\sim 1/T$, where T is the total baseline observation time, and hence there are only a few complete wave cycles in the data. This is in contrast to, say, LIGO, which has a peak sensitivity of ~ 100 Hz, so a year’s data contains $\sim 10^9$ cycles.

Acknowledgments

This work was performed using the Darwin Supercomputer of the University of Cambridge High Performance Computing Service (http://hpc.cam.ac.uk/), provided by Dell Inc using Strategic Research Infrastructure Funding from the Higher Education Funding Council for England and funding from the Science and Technology Facilities Council. Both CM and ST are supported by the STFC. JG’s work is supported by the Royal Society. This research was in part supported by ST’s appointment to the NASA Postdoctoral Program at the Jet Propulsion Laboratory, administered by Oak Ridge Associated Universities through a contract with NASA.

Appendix. Bayesian monochromatic sensitivity

Rearranging equation (27) gives the Bayesian expression for the sensitivity of a PTA to a monochromatic source

$$h_c = 4\pi \sqrt{\log(B)} \left(-\frac{90N_p \cos^2(\phi)}{\pi^6 \delta f T^5 \sigma^2} - \frac{90N_p \cos^2(2\pi f + \phi)}{\pi^6 \delta f T^5 \sigma^2} + \frac{180N_p \cos(\phi) \cos(2\pi f + \phi)}{\pi^5 \delta f \sigma^2 T^5} + \frac{180N_p \sin(\phi) \cos(\phi)}{\pi^5 \delta f \sigma^2 T^4} + \frac{180N_p \cos(\phi) \sin(2\pi f + \phi)}{\pi^5 \delta f \sigma^2 T^4} - \frac{180N_p \sin(\phi) \cos(2\pi f + \phi)}{\pi^5 \delta f \sigma^2 T^4} \right)$$
\[
- \frac{180 N_p \sin(2\pi T + \phi) \cos(2\pi T + \phi)}{\pi^5 \delta f \gamma^2 \sigma^2 T^4} = \frac{96 N_p \sin^2(\phi)}{\pi^4 \delta f \gamma^2 \sigma^2 T^3} = \frac{96 N_p \sin^2(2\pi T + \phi)}{\pi^4 \delta f \gamma^2 \sigma^2 T^3} \\
- \frac{168 N_p \sin(\phi) \sin(2\pi T + \phi)}{\pi^4 \delta f \gamma^2 \sigma^2 T^3} + \frac{120 N_p \cos(\phi) \sin(\pi T) \sin(\pi T + \phi)}{\pi^4 \delta f \gamma^2 \sigma^2 T^3} \\
- \frac{120 N_p \sin(\pi T) \sin(\pi T + \phi) \cos(2\pi T + \phi)}{\pi^4 \delta f \gamma^2 \sigma^2 T^3} - \frac{144 N_p \sin(\phi) \sin(\pi T) \sin(\pi T + \phi)}{\pi^3 \delta f \gamma^2 \sigma^2 T^2} \\
- \frac{96 N_p \sin(\pi T) \sin(\pi T + \phi) \sin(2\pi T + \phi)}{\pi^3 \delta f \gamma^2 \sigma^2 T^2} - \frac{24 N_p \sin(\phi) \cos(2\pi T + \phi)}{\pi^2 \delta f \gamma^2 \sigma^2 T} + \frac{72 N_p \sin^2(\pi T) \sin(\pi T + \phi)}{\pi^2 \delta f \gamma^2 \sigma^2 T} \\
- \frac{24 N_p \cos^2(2\pi T + \phi)}{\pi^2 \delta f \gamma^2 \sigma^2 T} = \frac{48 N_p \sin(\pi T) \sin(\pi T + \phi) \cos(2\pi T + \phi)}{\pi^2 \delta f \gamma^2 \sigma^2 T} \\
+ \frac{N_p \sin(2\phi)}{\pi \delta f \gamma^2 \sigma^2} - \frac{N_p \sin(2(2\pi T + \phi))}{\pi \delta f \gamma^2 \sigma^2} + \frac{4 N_p T}{\delta f \gamma^2 \sigma^2} \right)^{-1/2}. \tag{A.1}
\]

References

Abbott B et al 2004 Phys. Rev. D 69 082004
Anholm M, Ballmer S, Creighton J D E, Price L R and Siemens X 2009 Phys. Rev. D 79 084030
Begelman M C, Blandford R D and Rees M J 1980 Nature 287 307
Book L G and Flanagan É É 2011 Phys. Rev. D 83 024024
Burke W L 1975 Astrophys. J. 196 329
Damour T and Vilenkin A 2005 Phys. Rev. D 71 063510
Detweiler S 1979 Astrophys. J. 234 1100
Dupuis R J and Woan G 2005 Phys. Rev. D 72 102002
Edwards R T, Hobbs G B and Manchester R N 2006 Mon. Not. R. Astron. Soc. 372 1549
Estabrook F B and Wahlquist H D 1975 Gen. Relativ. Gravit. 6 439
Ferz F and Hobson M P 2008 Mon. Not. R. Astron. Soc. 384 449
Ferz F, Hobson M P and Bridges M 2009 Mon. Not. R. Astron. Soc. 398 1601
Ferz F, Hobson M P, Cameron E and Pettitt A N 2013 arXiv:1306.2144
Ferrarese L and Ford H 2005 Space Sci. Rev. 116 523
Ferrarese L and Merritt D 2000 Astrophys. J. Lett. 539 L9
Foster R S and Backer D C 1990 Astrophys. J. 361 300
Grishchuk L P 1976 Pis’ma Zh. Eksp. Teor. Fiz. 23 326
Grishchuk L P 2005 Phys. Usp. 48 1235
Hellings R W and Downs G S 1983 Astrophys. J. Lett. 265 L39
Hobbs G 2013 Class. Quantum Grav. 30 224007
Hobbs G et al 2009 Mon. Not. R. Astron. Soc. 394 1945
Hobbs G, Edwards R T and Manchester R N 2006 Mon. Not. R. Astron. Soc. 369 655
Jaffe A H and Backer D C 2003 Astrophys. J. 583 616
Kauffmann G and Haehnelt M 2000 Mon. Not. R. Astron. Soc. 311 576
Kramer M and Champion D J 2013 Class. Quantum Grav. 30 224009
Lentati L et al 2013 Phys. Rev. D 87 104021
Magorrian J et al 1998 Astron. J. 115 2285
Manchester R N (IPTA) 2013 Class. Quantum Grav. 30 224010
Marconi A and Hunt L K 2003 Astrophys. J. Lett. 589 L21
McLaughlin M A 2013 Class. Quantum Grav. 30 224008
Ölmez S, Mandic V and Siemens X 2010 Phys. Rev. D 81 104028
Rajagopal M and Romani R W 1995 Astrophys. J. 446 543
Sazhin M V 1978 Sov. Astron. 22 36
Sesana A and Vecchio A 2010 Class. Quantum Grav. 27 084016
Sesana A, Vecchio A and Colacino C N 2008 Mon. Not. R. Astron. Soc. 390 192
Sesana A, Vecchio A and Volonteri M 2009 Mon. Not. R. Astron. Soc. 394 2255
Siemens X, Ellis J, Jenet F and Romano J D 2013 Class. Quantum Grav. 30 224015
Thrane E and Romano J D 2013 Phys. Rev. D 88 124032
van Haasteren R and Levin Y 2013 Mon. Not. R. Astron. Soc. 428 1147
Vilenkin A 1981 Phys. Rev. D 24 2082
Vilenkin A 1981 Phys. Lett. B 107 47
White S D M and Rees M J 1978 Mon. Not. R. Astron. Soc. 183 341
Wyithe J S B and Loeb A 2003 Astrophys. J. 590 691