Abstract

We consider complementary dynamical systems related to stationary Korteweg-de Vries hierarchy of equations. A general approach for finding elliptic solutions is given. The solutions are expressed in terms of Novikov polynomials in general quasi-periodic case. For periodic case these polynomials coincide with Hermite and Lamé polynomials. As a byproduct we derive 2×2 matrix Lax representation for Rosochatius-Wojciechowski, Rosochatius system, second flow of stationary nonlinear vector Schrödinger equations and complex Neumann systems.

1 Introduction

The problem of integrability and nonintegrability of Hamiltonian system with g degrees of freedom has been a subject of considerable interest for many years. Recently remarkable progress has been achieved in connection of study of stationary soliton type equations. The method of restricted flows was introduced in [1, 2, 3] as a non-linearization of the Korteweg-de Vries (KdV) spectral problem and was generalized in [4, 5]. The coupled Neumann system, the Neumann system, the Garnier type systems, the Rosochatius-Wojciechowski, Rosochatius and the Hénon-Heiles type systems are examples of this type. In this relation important results about the algebro-geometrical interpretation of these systems are obtained in [6]. General approach to completely integrable dynamical systems of Neumann type is discussed in [7, 8, 9]. Quasi-periodic solutions and spectral interpretation using both algebro-geometrical and spectral methods are
given in \[11\]. Quasi-periodic solutions \((g = 2)\) and periodic solutions associated to Lamé and Treibich-Verdier potentials are obtained in \[16, 17\]. New method of constructing elliptic finite-gap solutions of the stationary KdV hierarchy, based on a theorem due to Picard, is proposed in \[19, 20, 21, 22, 23, 24\].

In this paper we are concerned with the following different approaches

- integrable dynamical systems related to Hill’s equation in the case of finite-gap potential \[2, 31, 8, 10, 12, 9, 11, 47\]
- method of stationary flows and restricted flows \[37, 7\]
- method of non-linearization of the KdV spectral problem \[5\]
- method of separation of variables \[57, 59, 60\]
- algebro-geometrical construction \[8, 9, 11\].

We give unified construction based on algebro-geometrical approach. New solutions in terms of Novikov and Gelfand-Dickey (GD) polynomials are given in explicit form.

The paper is organized as follows. In section 2 we construct the stationary flows associated to the KdV hierarchy strictly following \[37, 41, 42, 43\]. Some maps between completely integrable dynamical systems are presented. In section 3 we analyse the relation between restricted KdV flows and Garnier type systems following \[42\]. The map between stationary and restricted KdV flows are given in section 4 \[42\]. The list of known dynamical systems related to stationary KdV equations are presented in section 3.

In section 4 we formulate Baker-Akhiezer function approach from algebro-geometrical and spectral point of view respectively. New solutions of integrable dynamical system associated to stationary KdV equations in terms of Novikov polynomials are presented. In particular these polynomials associated to Lamé potentials coincide with Hermite polynomials and Lamé polynomials. In section 5 \((2 \times 2)\) Lax representations of Garnier, Rosochtius I and stationary second flow of vector nonlinear Schrödinger equation are given. Following \[60, 59, 61\] \(r\)-matrix approach of these systems is discussed.

2 KdV hierarchy and Gelfand-Dickey polynomials

In this section we follow the geometrical construction of \[37, 11, 12, 13\] with only little changes of signs and different spectral parameter. Let \(M\) be a bi-Hamiltonian manifold: if the associated Poisson operator \(P^\lambda := P_1 + 4\lambda P_0\) admits as a Casimir a formal Laurent series \(h(\lambda)\)

\[
h(\lambda) := \sum_{j \geq 0} h_j \lambda^{-j}
\]
then h_0 is a Casimir of P_0 and the coefficients h_j ($j \geq 0$) are the Hamiltonian functions of a hierarchy of bi-Hamiltonian vector fields X_j:

$$X_j = P_j dh_j = P_0 dh_{j+1}, \quad (j \geq 0) \tag{2.2}$$

At any point $u \in M$, the bi-Hamiltonian flows are given by $\frac{du}{dt}_j = X_j(u)$, t_j being the evolution parameter of the jth flow. The vector field (2.2) are Hamiltonian also with respect to the Poisson operator P_0. In fact the recursion relation (2.2) can be written as

$$X_j = P_0^{\lambda} dh^{(j)}(\lambda), \quad h^{(j)}(\lambda) := (\lambda^j h(\lambda))_+ \tag{2.3}$$

where the index $+$ means the projection of a Laurent series onto the purely polynomial part.

Let M be the algebra of polynomials in u, u_x, u_{xx}, \ldots ($u = u(x)$ is a C^∞ function of x and the subscript x means the derivative with respect to x), and let P_0 and P_1 be the two Poisson operators of the KdV hierarchy (2.4):

$$P_0 := \frac{d}{dx}, \quad P_1 := \frac{d^3}{dx^3} - 4u \frac{d}{dx} - 2u_x. \tag{2.4}$$

The gradients of the Casimirs of the associated Poisson operator P_0^{λ} can be obtained searching the functions $v(\lambda) := \sum_{j \geq 0} v_j \lambda^{-j}$ which are solutions of the following equation:

$$B^{\lambda}(v(\lambda), v(\lambda)) = a(\lambda) \tag{2.5}$$

where $a(\lambda) = \sum_{j \geq 0} a_j \lambda^{-j}$, a_j are constant parameters and B^{λ} is the bilinear function

$$B^{\lambda}(w_1, w_2) := w_1 w_2 + 4u w_1 w_2x - w_1x w_2x - 4(u - \lambda)w_1 w_2. \tag{2.6}$$

In fact B^{λ} is related to the Poisson operator through the relation

$$\frac{d}{dx} B^{\lambda}(w_1, w_2) = w_1 P^{\lambda} w_2 + w_2 P^{\lambda} w_1. \tag{2.7}$$

Equation (2.5) can be solved developing the left-hand side as a Laurent series

$$B^{\lambda}(v(\lambda), v(\lambda)) = \sum_{k \geq -1} B_k \lambda^{-k} \tag{2.8}$$

so that, for each $a(\lambda)$, it furnishes the coefficient of the solution $v(\lambda)$ (unique up to a sign). The solution corresponding to $a(\lambda) = -\lambda$ is the so-called basis solution $\bar{v}(\lambda)$; its first coefficients are

$$v_0 = 1, \quad v_1 = 1, \quad v = 2(u_{xx} + 3u^2), \tag{2.9}$$
$$v_3 = 2(u_{xxxx} + 5u_x^2 + 10u_{xx}u + 10u^3), \tag{2.10}$$
and so on, namely the gradients of the first KdV Hamiltonians. In what follows we shall consider also the function $v(\lambda) = c(\lambda)\bar{v}(\lambda)$, which is a solution of (2.3) for
\begin{equation}
\begin{aligned}
a(\lambda) = -\lambda c^2(\lambda), \quad c(\lambda) = 1 + \sum_{j\geq 1} c_j \lambda^{-j},
\end{aligned}
\end{equation}
where the coefficients c_j are free parameters. In this case the first 1-forms of the hierarchy are $v_0 = 1$, $v_1 = \bar{v}_1 + c_1$, $v_2 = \bar{v}_2 + c_1 \bar{v}_1 + c_2$, and so on.

The coefficient B_k can be expressed through the GD polynomials. For each Laurent series $v(\lambda)$ let us consider the functions $B_k(\lambda) := B_{\lambda}(v(\lambda), v^{(k)}(\lambda))$, where these functions have the form
\begin{equation}
\begin{aligned}
B_k(\lambda) = \lambda^{k+1} v_0^2 + \sum_{j=1}^{k-1} \lambda^{k-j} (p_{0j} + v_0 v_{j+1}) + \sum_{j=0}^{\infty} \lambda^{-j} p_{jk}.
\end{aligned}
\end{equation}
It can be shown that
\begin{equation}
\begin{aligned}
B_{-1} = -v_0^2, \quad B_k = p_{0k} - v_0 v_{k+1}.
\end{aligned}
\end{equation}
Furthermore, if $v(\lambda)$ is a solution of (2.3), the coefficients p_{jk} in (2.12) are polynomials in u and its x-derivatives. They will be referred to as Gelfand-Dickey (GD) polynomials and the function B_{λ} as their generating function.

The fundamental property of the GD polynomials, stemming from (2.3), (2.12) is the following relation with the gradients $v_j = d\bar{h}_j$ and the bi-Hamiltonian vector field X_k:
\begin{equation}
\begin{aligned}
d \frac{d}{dx} p_{jk} = v_j X_k.
\end{aligned}
\end{equation}
We report some GD polynomials to be used in what follows ($v_0 = 1$):
\begin{equation}
\begin{aligned}
p_{00} &= 4u - v_1, \\
p_{01} &= 8uv_1 - v_1^2 - v_2 + 2v_{1xx}, \\
p_{02} &= 4uv_1^2 + 8uv_2 - 2v_1v_2 - v_3 - v_1^2 + 2v_1v_{1xx} + 2v_{2xx}, \\
p_{12} &= 8uv_1v_2 - v_2^2 + 4uv_3 - v_1v_3 - v_4 + 2v_1v_2v_2 + 2v_2v_{1xx} + 2v_1v_{2xx} + v_{3xx}, \\
p_{kk} &= 2v_{kxx}v_k - v_k^2 + 4uv_k^2.
\end{aligned}
\end{equation}
The GD polynomials corresponding to the basis solution $\bar{v}(\lambda)$ are the polynomials defined in [37], proposition 12.1.12.

\section*{2.1 The method of stationary flows}

The method of stationary flows was developed in order to reduce the flows of the KdV hierarchy onto the set M_g of fixed points of the gth flow X_g of the hierarchy
\begin{equation}
\begin{aligned}
M_g := \{ u|X_g(u, u_x, \ldots, u^{(2g+1)}) = 0 \}.
\end{aligned}
\end{equation}
As M_g is odd-dimensional it can not be a symplectic manifold; nevertheless we will show that it is a bi-Hamiltonian manifold; it will be referred to as extended phase space. Moreover, M_g is naturally foliated, on account of (2.2) and (2.4), by a one-parameter family of $2g$-dimensional submanifolds S_g given by

$$S_g := \{ u|v_{g+1}(u, u_x, \ldots, u^{(2g)} = c \} \tag{2.17}$$

(c being a constant parameter), which are invariant manifolds with respect to each vector field of the KdV hierarchy, due to the invariance of the functions v_k. So M_g can be parametrized naturally by v_1, \ldots, v_{g+1} and by their x-derivatives $v_1 x, \ldots, v_{2g} x$. We shall use these coordinates in what follows.

From the computational point of view, one proceeds as follows.

(i) Due to (2.3) and (2.5), the manifold M_g is defined by the solutions u of the equation

$$B^\lambda(v(\lambda), v^{(g)}(\lambda)) = \lambda^g a(\lambda) \tag{2.18}$$

where $v(\lambda) = \sum_{j=0}^{g} v_j \lambda^{-j}$, $a(\lambda) = \sum_{j=-1}^{2g} a_j \lambda^{-j}$. In particular, if $a(\lambda) = -\lambda c^2(\lambda)$, M_g is given by

$$M_n = \left\{ u|\bar{X}_n + \sum_{j=1}^{n} c_j \bar{X}_{n-j} = 0 \right\} \tag{2.19}$$

i.e. by the solutions of the Lax-Novikov equations. Taking into account (2.12) and choosing $a_{-1} = -1$, by equation (2.18) the coefficients of λ^{g+1} we get $v_0^2 = 1$; from now on we put $v_0 = 1$. Moreover, equating the coefficients of the other powers of λ we get the following system:

$$p_{0k} - v_{k+1} = a_k, \quad (k = 0, \ldots, n - 1) \quad p_{jn} = a_{n+j}, \quad (j = 0, \ldots, n). \tag{2.20}$$

(ii) In order to obtain the first Poisson tensor P_0, we eliminate $u = v_1/2 + a_0/4$ from (2.20) using the first equation ($k = 0$) and we extract the system of n second-order ODEs in the v_j ($j = 1, \ldots, n$):

$$p_{0k} - v_{k+1} = a_k, \quad (k = 1, \ldots, g - 1) \quad p_{0g} = a_g \tag{2.21}$$

which will be referred as P_0-system. The remaining equations (2.20) will furnish a set of g independent integrals of motion. In order to obtain a second Poisson structure, we consider the following system: (P_1-system)

$$p_{0k} - v_{k+1} = a_k, \quad (k = 1, \ldots, g - 1) \quad p_{g0} = a_g \tag{2.22}$$

with u as above.

(iii) The P_0-system (2.21) and the P_1-system (2.22) can be written as canonical Hamiltonian systems

$$r_{kk} = \frac{\partial H_{(0)}^{(0)}}{\partial s_k}, \quad s_{kx} = -\frac{\partial H_{(0)}^{(0)}}{\partial r_k}. \tag{2.23}$$
have n integrals of motion given by

$$K_j = -\frac{1}{8} p_{jg}, (j = 1, \ldots, g),$$

$$H_j = -\frac{1}{8} p_{jg} x = a_{g+j}, (j = 0, \ldots, g - 1).$$

Moreover, the map $\Phi : M_g \to M_g$ in the extended phase space generates a second Poisson structure.

3 Integrable dynamical systems related to hierarchy of stationary KdV equations

In the recent years, remarkable progress has been achieved in the description of those quasi(periodic) potentials which belong to a given spectrum. Many integrable systems of differential equations are shown to be closely connected with Hill’s equation in the case of a finite gap potential. The coupled Neumann system, The Neumann system, and the Rosochatius systems are examples of this type.

In this paragraph we are concerned with the following completely integrable systems.

The Garnier system

$$\xi_{ixx} = \left(2 \sum_{j=1}^{g} \xi_j \eta_j + \tilde{a}_i\right) \xi_i, \quad \eta_{ixx} = \left(2 \sum_{j=1}^{g} \xi_j \eta_j + \tilde{a}_i\right) \eta_i.$$ \hspace{1cm} (3.1)

The g-dimensional anisotropic harmonic oscillator in radial quartic potential, is obtained when $\xi_i = \eta_i, i = 1, \ldots, g$

$$\xi_{ixx} = \left(2 \sum_{j=1}^{g} \xi_j^2 + \tilde{a}_i\right) \xi_i.$$ \hspace{1cm} (3.2)

Another interesting integrable system was proposed recently \[48\], we call it the Rosochatius-Wojciechowski system. In our context, this system is obtained by the Deift elimination procedure. Let

$$\xi_i = \psi_i \exp(\theta_i), \eta_i = \psi_i \exp(-\theta_i), \sqrt{f_i} = \psi_i^2 \theta_i,$$

then equations (3.1) transform to the Rosochatius-Wojciechowski system

$$\psi_{ixx} = \left(2 \sum_{j=1}^{g} \psi_j^2\right) \psi_i + \tilde{a}_i \psi_i - f_i / \psi_i^3, i = 1, \ldots, g.$$ \hspace{1cm} (3.4)
and the Hamiltonian is given by

\[
H = \sum_{j=1}^{g} \chi_j^2 - \left(\sum_{k=1}^{g} \psi_k^2 \right)^2 - \sum_{j=1}^{n} \hat{a}_j \psi_j^2 - \sum_{j=1}^{g} \hat{f}_j \psi_j^2,
\]

(3.5)

where \(\chi_j = \psi_{jx} \) are canonical momenta.

(ii) The coupled Neumann system

\[
\tilde{\xi}_{ixx} + 2 \sum_{j=0}^{g} b_j \tilde{\xi}_j \tilde{\eta}_j + \tilde{\xi}_{jx} \tilde{\eta}_{jx} = b_i \tilde{\xi}_i, \]

(3.6)

\[
\tilde{\eta}_{ixx} + 2 \sum_{j=0}^{g} b_j \tilde{\xi}_j \tilde{\eta}_j + \tilde{\xi}_{jx} \tilde{\eta}_{jx} = b_i \tilde{\eta}_i.
\]

(3.7)

with constraint \(\sum_{i=0}^{g} \tilde{\xi}_i \tilde{\eta}_i = 1 \), where \(b_0 < b_1 < \ldots < b_g \) are fixed real numbers. The Neumann system is obtained when \(\xi_i = \eta_i \)

\[
\tilde{\xi}_{ixx} + 2 \sum_{j=0}^{g} b_j \tilde{\xi}_j \tilde{\xi}_j^2 + \tilde{\xi}_{jx} \tilde{\xi}_{jx} = b_i \tilde{\xi}_i.
\]

(3.8)

This system describes the motion of uncoupled harmonic oscillators \(\tilde{\xi}_{ixx} = b_i \tilde{\xi}_i \), constrained by the force \(\sum_{i=0}^{g} (b_i \tilde{\xi}_i^2 + \tilde{\xi}_{ix}^2) \) to move on the unit sphere \(\sum_{i=0}^{g} \tilde{\xi}_i^2 = 1 \).

Let

\[
\tilde{\xi}_i = \tilde{\psi}_i \exp(\tilde{\theta}_i), \quad \tilde{\eta}_i = \tilde{\psi}_i \exp(-\tilde{\theta}_i), \quad \sqrt{\tilde{f}_i} = \tilde{\psi}_i^2 \tilde{\theta}_{ix},
\]

(3.9)

then by Deift procedure (3.9), equations (3.7) transform to Rosochatius system

\[
\tilde{r}_{ixx} = - \left(\sum_{j=0}^{g} b_j \tilde{r}_j^2 + \tilde{r}_{jx}^2 - \frac{\tilde{f}_j}{\tilde{r}_j} \right) \tilde{r}_i - \frac{\tilde{f}_j}{\tilde{r}_j} + b_i \tilde{r}_i.
\]

(3.10)

where \(\sum_{i=0}^{g} \tilde{r}_i^2 = 1 \).

4 Baker-Akhiezer function

We review in this section some basic facts about Baker–Akhiezer function which will be used in the sequel.

Let \(K \) be the hyperelliptic Riemann surface \(\mu^2 = \prod_{i=0}^{2g} (\lambda - \lambda_i) = R(\lambda) \). The points of \(K \) are pairs \(P = (\lambda, R) \) and \(\lambda(P) \) is the value of the natural projection \(P \to \lambda(P) \) of \(K \) to the complex projective line \(\mathbb{C}P^1 \).

For given nonspecial divisor \(D \), there is an unique Baker-Akhiezer (BA) function \(\Psi(t, \lambda) \), such that

(i) the divisor of the poles of \(\Psi \) is \(D \),
(ii) Ψ is meromorphic on $K \backslash \infty$

(iii) when $P \to \infty$

\[
\Psi(x, P) \exp(-kx) = 1 + \sum_{s=1}^{\infty} m_s(x) k^{-s}, \quad (4.1)
\]

is holomorphic and $k = \sqrt{\lambda(P)}$ is a local parameter near $P = \infty$.

There is a unique function $u(x)$ such that

\[
\Psi_{xx} - u(x) \Psi = \lambda(P) \Psi, \quad (4.2)
\]

where Ψ is a BA function. Inserting expansion (4.1) into (4.2), we obtain

\[
\Psi_{xx} - 2m_{1x}(x) \Psi - \lambda(P) \Psi = \exp(kx) O(k^{-1}), \quad (4.3)
\]

and due to the uniqueness of Ψ, we prove (4.2), with $u(x) = 2m_{1x}(x)$.

By the Riemann-Roch theorem, there exists a unique differential $\tilde{\Omega}$ and a nonspecial divisor D^r of degree g such that the zeros of $\tilde{\Omega}$ are $D + D^r$ and the expansion at $P = \infty$, $\tilde{\Omega}(P) = (1 + O(k^{-2})) dk$.

For given nonspecial divisor D^r, there exists a unique dual Baker-Akhiezer (BA) function such that

(i) the divisor of the poles of Ψ is D^r,

(ii) Ψ is meromorphic on $K \backslash \infty$

(iii) when $P \to \infty$

\[
\Psi^\tau(x, P) \exp(-kx) = 1 + \sum_{s=1}^{\infty} \tilde{m}_s(x) k^{-s}, \quad (4.4)
\]

Fix τ to be the hyperelliptic involution $P = (\lambda, R) \to (\lambda, -R)$, then we have $D^r = \tau D$, $\Psi^\tau(x, P) = \Psi(x, \tau P)$. Let $\sum_{i=1}^{g} \mu_i(0)$ be the λ-projection of D, and $\sum_{i=1}^{g} \mu_i(x)$ be the λ-projection of the zero divisor of $\Psi(x, P)$. The function $\Psi(t, P)\Psi^\tau(t, P)$ is meromorphic on \mathbb{CP}^1 and the following identity takes place

\[
\Psi(x, P)\Psi^\tau(x, P) = \frac{F(x, \lambda)}{F(0, \lambda)}, \quad (4.5)
\]

where $F(x, \lambda) = \prod_{i=1}^{g} (\lambda - \mu_i(x))$. Introduce the Wronskian

\[
\{\Psi(x, P), \Psi^\tau(x, P)\} = \frac{\Psi_x(x, P)\Psi^\tau(x, P) - \Psi(x, P)\Psi^\tau_x(x, P)}{2\sqrt{R(\lambda)}} = (4.6)
\]

\[
\prod_{i=1}^{g} (\lambda - \mu_i(0))^{-1},
\]

and the differential $\tilde{\Omega}$ is given explicitly by

\[
\tilde{\Omega}(P) = \frac{1}{2} \prod_{i=1}^{g} (\lambda - \mu_i(0))/ \sqrt{R(\lambda)} d\lambda. \quad (4.7)
\]
We assume that $E(P)$ is a meromorphic function on K with $g + 1$ simple poles ∞, p_1, \ldots, p_g and at $P \to \infty$, $E(P) = k + \ldots$, and $\tilde{E}(P)$ is meromorphic function with $g + 1$ simple poles q_0, q_1, \ldots, q_g and at $P \to \infty$, $\tilde{E}(P) = k^{-1} + \ldots$. We also suppose that the divisors of poles of $E(P)$ and $\tilde{E}(P)$ are different from D, D^τ.

Let

$$\tilde{\xi}_i = \tilde{\xi}_i^0 \Psi(x, q_i), \quad \tilde{\eta}_i = \tilde{\eta}_i^0 \Psi^\tau(x, q_i),$$

$$\tilde{\xi}_i^0 \eta_i^0 = \text{Res}_{p=q_i} \tilde{\Omega}, \quad b_i = \lambda(q_i), \quad i = 0, \ldots, g \quad (4.8)$$

$$\tilde{\xi}_i^0 \eta_i^0 = \text{Res}_{p=q_i} \tilde{\Omega}, \quad a_i = \lambda(p_i), \quad i = 1, \ldots, g \quad (4.9)$$

then

$$u(x) = -\left(\sum_{i=0}^g b_i \tilde{\xi}_i \tilde{\eta}_i + \tilde{\xi}_{ix} \tilde{\eta}_{ix} \right), \quad \sum_{i=0}^g \tilde{\xi}_i \tilde{\eta}_i = 1$$

$$u(x) = 2 \sum_{i=1}^g \xi_i \eta_i + \text{const.} \quad (4.10)$$

Let us construct the meromorphic differential $\tilde{E} \Psi \Psi^\tau \tilde{\Omega}$. By direct computations we have

$$\sum_{i=0}^g \text{Res}_{p=q_i} \tilde{E} \Psi \Psi^\tau \tilde{\Omega} + \text{Res}_{p=\infty} \tilde{E} \Psi \Psi^\tau \tilde{\Omega} = \sum_{i=0}^g \tilde{\xi}_i \tilde{\eta}_i - 1 = 0, \quad (4.11)$$

where $\tilde{\xi}_i^0 \eta_i^0 = \text{Res}_{p=q_i} \tilde{\Omega}$. Differentiating $\sum_{i=0}^g \tilde{\xi}_i \tilde{\eta}_i = 1$ twice and using Eq. (4.10), we obtain first expression in (4.11). The eigenvalue equations

$$\tilde{\xi}_{i xx} = (\lambda(q_i) + u(x)) \tilde{\xi}_i, \quad (4.12)$$

$$\tilde{\eta}_{i xx} = (\lambda(q_i) + u(x)) \tilde{\eta}_i, \quad (4.13)$$

by replacing $u(x)$ from (4.10) are the coupled Neumann system (3.7). By computations of the same kind, we have

$$\sum_{i=1}^g \text{Res}_{p=p_i} \tilde{E} \Psi \Psi^\tau \tilde{\Omega} + \text{Res}_{p=\infty} \tilde{E} \Psi \Psi^\tau \tilde{\Omega} = \sum_{i=1}^g \xi_i \eta_i - u(x) + \frac{1}{2} \text{const.} = 0,$$

where $\xi_i^0 \eta_i^0 = \text{Res}_{p=p_i} \tilde{\Omega}$. The corresponding eigenvalue equations are the Garnier system (3.1).

4.1 Spectral interpretation

Let p be a positive real divisor of degree g on a real hyperelliptic curve

$$\mu^2 = R(\lambda) = \prod_{i=0}^{2g}(\lambda - \lambda_i), \quad \lambda_0 < \lambda_1 < \ldots, < \lambda_{2g}. \quad (4.15)$$
The projection $\lambda(p_i)$ lie in the closed lacunae $[\lambda_{2i-1}, \lambda_{2i}]$. The following considerations, due to Jacobi, can be used to construct such a divisor.

Each divisor p determines and is determined by a system of polynomials

$$\tilde{A}(\lambda) = \prod_{i=1}^{g}(\lambda - \lambda(p_i)), \quad \tilde{C}(\lambda) = \tilde{A}(\lambda) \sum_{i=1}^{g} \frac{\sqrt{R(p_i)}}{A'(p_i)(\lambda - \lambda(p_i))},$$

$$\tilde{B}(\lambda) = \lambda^{g+1} + \ldots,$$

of degrees g, $g - 1$, $g + 1$, respectively, with $R = \tilde{C}^2 - \tilde{A}\tilde{B}$. The complementary divisor q is also determined by this construction. This is the content of the following step.

For a given spectral data

$$\lambda_0 = 0 < \lambda_1 < \ldots < \lambda_{2g}, \quad \lambda(p_i) \in [\lambda_{2i-1}, \lambda_{2i}], \quad i = 1, \ldots, g$$

there exists

$$\lambda(q_i), \quad i = 0, \ldots, g \quad \lambda(q_0) \in (-\infty, \lambda_0], \quad \lambda(q_i) \in [\lambda_{2i-1}, \lambda_{2i}],$$

such that $R = \tilde{C}^2 - \tilde{A}\tilde{B}$, and the projections $\lambda(q_i)$ are the roots of \tilde{B}.

Note that the functions $E(P)$, $\tilde{E}(P)$ are meromorphic on K and the following formulas are immediate

$$E(P) = \left(\sqrt{R(\lambda)} + \tilde{C}(\lambda)/\tilde{A}(\lambda), \quad \tilde{C}(p_i) = \sqrt{R(p_i)}$$

$$\tilde{E}(P) = \left(\sqrt{R(\lambda)} + \tilde{C}(\lambda)/\tilde{B}(\lambda), \quad \tilde{C}(q_i) = -\sqrt{R(q_i)}$$

Now we recall some facts from the periodic theory of Hill’s equation. We suppose that $u(x)$ is a real finite-gap potential, i.e. the operator L has only $2g + 1$ simple eigenvalues $\lambda_0 < \lambda_1 < \ldots < \lambda_{2g}$ and the rest of the spectrum consists of double eigenvalues. The periodic spectra of L is determined by the combined eigenvalues of the periodic

$$L f_{2i} = \lambda_{2i} f_{2i}, \quad f(x + 1) = f(x), \quad i = 0, \ldots, g$$

and the antiperiodic

$$L f_{2i-1} = \lambda_{2i-1} f_{2i-1}, \quad f(x + 1) = -f(x), \quad i = 1, \ldots, g$$

eigenvalue equations. The intervals $(-\infty, \lambda_0], [\lambda_{2i-1}, \lambda_{2i}]$ are termed lacunae. The Floquet solutions(periodic BA function) and the corresponding Floquet multipliers, are given by

$$\Psi(x, \lambda) = \left[F(x, \lambda)/F(0, \lambda)\right]^{1/2} \exp\left(\int_0^x \sqrt{R(\lambda)}/F(x', \lambda)dx'\right)$$

$$\Psi(x + 1, \lambda) = \rho_+(\lambda)\Psi(x, \lambda)$$

$$\Psi^\tau(x, \lambda) = \left[F(x, \lambda)/F(0, \lambda)\right]^{1/2} \exp\left(-\int_0^x \sqrt{R(\lambda)}/F(x', \lambda)dx'\right)$$

$$\Psi^\tau(x + 1, \lambda) = \rho_-(\lambda)\Psi^\tau(x, \lambda), \quad \rho_\pm = \exp(\pm\tilde{p}(\lambda))$$
where
\[
\tilde{p}(\lambda) = \int_0^1 \sqrt{R(\lambda)/F(x, \lambda)} \, dx \tag{4.27}
\]

Note that if \(\lambda \) is in the periodic spectrum, \(\Psi(x, \lambda_{2i}) = f_{2i}, i = 0, \ldots, g \) is a periodic eigenfunction, and \(\Psi(x, \lambda_{2i-1}) = f_{2i-1}, i = 1, \ldots, g \) is an antiperiodic eigenfunction. It is well known that the projections of the zeros of the Floquet solution define the auxiliary spectrum of \(L \).

The following expressions hold
\[
\xi_i \eta_i = \prod_{j=1}^{g} (\lambda(p_i) - \mu_j(x))/\tilde{A}'(p_i), \tag{4.28}
\]
\[
\xi_i^0 \eta_i^0 = \prod_{j=1}^{g} (\lambda(p_i) - \mu_j(0))/\tilde{A}'(p_i),
\]
\[
\tilde{\xi}_i \tilde{\eta}_i = \prod_{j=1}^{g} (\lambda(q_i) - \mu_j(x))/\tilde{B}'(q_i), \tag{4.29}
\]
\[
\tilde{\xi}_i^0 \tilde{\eta}_i^0 = \prod_{j=1}^{g} (\lambda(q_i) - \mu_j(0))/\tilde{B}'(q_i).
\]

Using (4.19), (4.20) we obtain
\[
\text{Res}_{P=p_i} E(P)\Psi \Psi^* \tilde{\Omega} = x_i^0 y_i^0 \Psi(x, p_i) \Psi^*(x, p_i)
\]
\[
= \prod_{j=1}^{g} (\lambda(p_i) - \mu_j(x))/\tilde{A}'(p_i),
\]
where \(\xi_i^0 \eta_i^0 \) is given by (4.28).

Let
\[
e_{2i}^2 = \frac{\prod_{j \neq i}^{g} (\lambda_{2i} - \lambda_2)}{\prod_{j \neq 0}^{g} (\lambda_{2i} - \mu_j(0))}, \quad f_{2i}^2 = \frac{\prod_{j \neq i}^{g} (\lambda_{2i} - \mu_j(t))}{\prod_{j \neq 0}^{g} (\lambda_{2i} - \mu_j(0))} = \Psi^2(\lambda_{2i}), \tag{4.30}
\]
i = 0, \ldots, g, then the expressions (4.10), (4.29) are the famous McKean-Moerbeke expansion of the potential \(u(x) \) in terms of squares of the eigenfunctions
\[
u(x) = - \left(2 \sum_{i=0}^{g} \lambda_{2i} f_{2i}^2/e_{2i} + \sum_{i=1}^{g} \lambda_{2i-1} - \sum_{i=1}^{g} \lambda_{2i} + \lambda_0 \right), \tag{4.31}
\]
where the following identity among the squares of eigenfunctions hold on
\[
\sum_{i=0}^{g} e_{2i}^{-2} f_{2i}^2 = 1. \tag{4.32}
\]

The results of this section, may be summarized by following:
Let $u(x)$ be a real nonsingular finite-gap potential. There exists g eigenfunctions $\Psi(p_1), \ldots, \Psi(p_g)$ and $g + 1$ eigenfunctions $\Psi(q_0), \ldots, \Psi(q_g)$ of Hill's equation, corresponding to the eigenvalues $\lambda(p_1), \ldots, \lambda(p_g)$ and $\lambda(q_0), \ldots, \lambda(q_g)$, respectively, such that

(i)

$$u(x) = 2 \sum_{i=1}^{g} \Psi(p_i) \Psi^\tau(p_i) e_i^{-2} + 2 \sum_{i=1}^{g} \lambda(p_i) - 2 \sum_{i=0}^{2g} \lambda_i,$$

$$e_i^{-2} = \prod_{j=1}^{g} (\lambda(p_i) - \mu_j(0))/\tilde{A}' \quad \Psi(p_i) \equiv \Psi(x, \lambda)|_{\lambda=p_i}, \ i = 1, \ldots, g.$$

(ii)

$$u(x) = 2 \sum_{i=0}^{g} \lambda(q_i) \Psi(q_i) \Psi^\tau(q_i) e_i^{-2} - 2 \sum_{i=0}^{g} \lambda(q_i) + \sum_{i=0}^{2g} \lambda_i,$$

$$e_i^{-2} = \prod_{j=1}^{g} (\lambda(q_i) - \mu_j(0))/\tilde{B}' \quad \Psi(q_i) \equiv \Psi(x, \lambda)|_{\lambda=q_i}, \ i = 0, \ldots, g,$$

$$\sum_{i=0}^{g} e_i^{-2} \Psi(q_i) \Psi^\tau(q_i) = 1.$$

The corresponding eigenvalue equations are the Garnier and coupled Neumann system.

Let

$$e_{2i-1}^{2} = \prod_{i \neq j}^{g} (\lambda_{2i-1} - \lambda_{2j-1})/ \prod_{j=1}^{g} (\lambda_{2i-1} - \mu_j(0)),$$

$$f_{2i-1}^{2} = \prod_{j=1}^{g} (\lambda_{2i-1} - \mu_j(x))/ \prod_{j=1}^{g} (\lambda_{2i-1} - \mu_j(0)), \ i = 1, \ldots, g$$

then we have the following expansion of the potential $u(x)$ in terms of squares of antiperiodic eigenfunctions

$$u(x) = 2 \sum_{i=1}^{g} f_{2i-1}^{2} e_{2i-1}^{2} + 2 \sum_{i=1}^{g} \lambda_{2i-1} - \sum_{i=0}^{2g} \lambda_i.$$

We call the dynamical systems such in (i), (ii), complementary dynamical systems.
4.2 Solutions in terms of auxiliary spectrum of Hill’s equation

The solutions of the Garnier system in terms of auxiliary spectrum $\mu_j(x)$, $j = 1, \ldots, g$ are

$$\xi_i = \xi_i^0[F(x, a_i)/F(0, a_i)]^{1/2} \exp \left(\int_0^x \sqrt{R(a_i)/F(x', a_i)}dx' \right), \quad (4.37)$$

$$\eta_i = \eta_i^0[F(x, a_i)/F(0, a_i)]^{1/2} \exp \left(-\int_0^x \sqrt{R(a_i)/F(x', a_i)}dx' \right), \quad (4.38)$$

where $\mu_j(x)$ satisfies the following system of differential equations

$$\frac{d}{dx} \mu_j(x) = 2 \sqrt{R(\mu_j)/g \prod_{j \neq k} (\mu_j(x) - \mu_k(x))}, \quad (4.39)$$

with initial conditions

$$\mu_j(0) \in [\lambda_{2i-1}, \lambda_{2i}], \quad \xi_i^0 \eta_i^0 = F(0, a_i)/\prod_{i \neq j} (a_i - a_j). \quad (4.40)$$

Differentiating expressions

$$\xi_i \eta_i = \xi_i^0 \eta_i^0 \Psi(x, p_i) \Psi^\tau(x, p_i) = \prod_{j=1}^g (\lambda(p_i) - \mu_j(x)) / \tilde{A}'(p_i), \quad (4.41)$$

and

$$\xi_i x \eta_i - \xi_i \eta_i x = \{ \Psi(x, p_i), \Psi^\tau(x, p_i) \} \xi_i^0 \eta_i^0 , \quad (4.42)$$

we have

$$\Upsilon(x, P)|_{\lambda=\lambda(p_i)} = \frac{d}{dx} \log \xi_i(t)$$

$$= \left[\frac{1}{2} \frac{d}{dx} \prod_{j=1}^g (\lambda - \mu_j(x)) + \sqrt{R(\lambda)} / \prod_{j=1}^g (\lambda - \mu_j(x)) \right] |_{\lambda=\lambda(p_i)} \quad (4.43)$$

$$\Upsilon^\tau(x, P)|_{\lambda=\lambda(p_i)} = \frac{d}{dx} \log \eta_i(t)$$

$$= \left[\frac{1}{2} \frac{d}{dx} \prod_{j=1}^g (\lambda - \mu_j(x)) - \sqrt{R(\lambda)} / \prod_{j=1}^g (\lambda - \mu_j(x)) \right] |_{\lambda=\lambda(p_i)} \quad (4.44)$$

direct integration of (4.43), (4.44) gives the solutions (4.37), (4.38). The function $\Upsilon(x, P)$ has g poles at $\mu_j(x)$, then the numerator of (4.43) is zero when $\lambda = \mu_j(x)$ and the following system takes place

$$\frac{d}{dx} \left(\prod_{j=1}^g (\lambda - \mu_j(x)) \right) |_{\lambda=\mu_j(x)} = 2 \sqrt{R(\mu_j(x))}. \quad (4.45)$$
This is another form of the system (4.39). In the same way, we can obtain the solutions of the coupled Neumann system by replacing \(\lambda(p_i), \ i = 1, \ldots, g \) with \(\lambda(q_i), \ i = 0, \ldots, g \) in (4.37), (4.38).

Let \(\lambda(p_i) \) be the antiperiodic eigenvalues \(\lambda_{2i-1}, \ i = 1, \ldots, g \). Then the exponential function in (4.37), (4.38) cancel, \(\xi^0_i = \eta^0_i \) and the solutions of the \(g \)-dimensional oscillator are

\[
\xi^2_i = \prod_{j=1}^g (\lambda_{2i-1} - \mu_j(x))/\prod_{i \neq j} (\lambda_{2i-1} - \lambda_{2j-1}). \tag{4.46}
\]

Let \(\lambda(p_i) = a_i \) be in a general position, i.e. \(\lambda(p_i) \in [\lambda_{2i-1}, \lambda_{2i}] \) and by Deift elimination procedure we may identify \(\xi_i \) with \(\xi^0_i[F(x, a_i)/F(0, a_i)]^{1/2} \) and

\[
\theta_i = \int_0^x \sqrt{R(a_i)/\prod_{i=1}^g (a_i - \mu_j(x'))} dx', \quad \xi^0_i = \eta^0_i, \tag{4.47}
\]

and, hence, the solutions of the Rosochatius-Wojciechowski system are

\[
\xi^2_i = \prod_{j=1}^g (a_i - \mu_j(x))/\prod_{i \neq j} (a_i - a_j). \tag{4.48}
\]

Inserting explicit expression of BA-function given by (4.23) in Hill’s equation we have

\[
\frac{1}{2} F_{xx}(x, \lambda)F(x, \lambda) - \frac{1}{4} F^2_x(x, \lambda) - (u(x) + \lambda)F^2(x, \lambda) = -R(\lambda). \tag{4.49}
\]

The polynomial solution of (4.49) below we will call Novikov polynomial \([25]\). Assuming that Novikov polynomial dependts on time \(t \), the zero curvature representation for KdV hierarchy of equations have the following form

\[
M_t(\lambda') - L_x(\lambda') + [M(\lambda'), L(\lambda')], \tag{4.50}
\]

where matrices \(L \) and \(M \) are given by

\[
L(\lambda') = \begin{pmatrix}
-F_x(x, t, \lambda')/2 & F(x, t, \lambda') \\
-F_{xx}(x, t, \lambda')/2 + Q(x, t, \lambda')F(x, t, \lambda') & F_x(x, t, \lambda')/2
\end{pmatrix},
\]

\[
M'(\lambda') = \begin{pmatrix}
0 & 1 \\
Q(x, t, \lambda') & 0
\end{pmatrix}.
\]

The equation (4.50) is equivalent to

\[
\frac{\partial Q}{\partial t} = -2 \left[\frac{1}{4} \partial_x^3 - Q(x, t, \lambda') \partial_x - \frac{1}{2} Q_x(x, t, \lambda') \right] \cdot F(x, \lambda'). \tag{4.51}
\]

where \(Q(x, t, \lambda') = u(x) + \lambda' \) in the case of KdV hierarchy. Equation (4.51) is called the generating equation. For a different choices of the form of \(F(x, t, \lambda') \)
and \(Q(x, t, \lambda') \), this procedure leads to different hierarchies of integrable equations, as an example to the KdV, nonlinear Schrödinger and sine-Gordon hierarchies or to the Dym hierarchy. The Lax representation \(L_x = [M, L] \) yields the hyperelliptic curve \(K = (\mu', \lambda') \)

\[
\text{Det}(L(\lambda') - \mu'I) = 0,
\]

\[
\mu^2 = -\frac{1}{2} F F_{xx} + \frac{1}{4} F_t^2 + (\lambda' + u) F = R(\lambda'),
\]

generating the integrals of motion for stationary KdV hierarchy.

Using the equation (4.49) and the following expansion of potential \(u(x) \) in terms of squares of eigenvalue functions

\[
\xi_k^2(x) = \beta_k(x)
\]

have the form

\[
\frac{1}{2} \beta_{kxx} \beta_k - \frac{1}{4} \beta_k^2 - (u(x) + a_k) \beta_k = \frac{R(a_k)}{a_{kj}} = -f_k
\]

where we use the solutions \(F(x, a_k)/a_{kj} \) of Rosochatius-Wojciechowski system and \(a_{kj} \equiv \prod_{k \neq j} (a_k - a_j) \). Denoting \(f_k = R(a_k)/a_{kj} \) and \(d = \sum_{i=1}^g a_i - \frac{1}{2} \sum_{k=0}^{2g} \lambda_k \) for the original variable \(\beta_k = \xi_k^2 \) we have the following equation

\[
\xi_{kxx} = 2 \left(\sum_{i=1}^{g} \xi_i^2 + d \right) \xi_k - \frac{f_k}{\xi_k^3}.
\]

To understand the role of GD polynomials and of their generating function in the construction of a map between stationary and restricted flows of KdV equation and exact solution of completely integrable systems related to Hill’s equation let us consider the following system:

\[
p_{00} - v_1 = a_0, \quad P_0 \left(v_1 - \sum_{j=1}^{n} \beta_j \right),
\]

\[
P^{\lambda_k} \beta_k = 0, \quad (k = 1, \ldots, n)
\]

where \(\lambda_1, \ldots, \lambda_n \) are fixed parameters, \(P^{\lambda_k} := P_1 + 4 \lambda_k P_0 \) (\(P_0 \) and \(P_1 \) being the two KdV Poisson operators). This is a system of \((g + 2) \) equations in \(u, v_1, \beta_1, \ldots, \beta_g \). The second equation will be referred to as the \(P_0 \)-restriction of the first KdV flow \(X_0 = P_0 v_1 = v_1x \), and the last \(n \) equations define the kernel of \(g \) Poisson operators extracted from the Poisson operator. On account of (2.16), (2.4) and (2.6) this system is equivalent to the following one:

\[
u = \frac{v_1 + a_0}{4}, \quad v_1 = \sum_{j=1}^{n} \beta_j + c, \quad B^{\lambda_k}(\beta_k, \beta_k) = f_k,
\]
where c and f_k are free parameters and B^λ is just the generating function of the GD polynomials.

Using the first two equations to eliminate u and v_1 from the last g equations, one gets a system of n second-order ODEs for β_1, \ldots, β_g:

$$2\beta_{kxx}\beta_k - \beta_{kxx}^2 + 2\beta_k^2 \left(\sum_{j=1}^{n} \beta_j + d \right) - \lambda_k \beta_k^2 = f_k, \quad k = 1, \ldots, g \quad (4.59)$$

where $d := c + a_0/2$. Introducing the so-called eigenfunction variables $\psi_j^2 = \beta_j$ and the momenta $\chi_j = \psi_{jx}$, equations (4.59) can be written in canonical Hamiltonian form

$$\psi_{jx} = \frac{\partial K_G}{\partial \chi_j}, \quad \chi_{jx} = -\frac{\partial K_G}{\partial \psi_j}, \quad j = 1, \ldots, n \quad (4.60)$$

with Hamiltonian

$$K_G = \sum_{j=1}^{n} \chi_j^2 - \left(\sum_{k=1}^{n} \psi_j^2 \right)^2 - \sum_{j=1}^{n} a_j \psi_j^2 - \sum_{j=1}^{n} \frac{f_j}{\psi_j^2}. \quad (4.61)$$

A set of integrals of motion is

$$I_j = \chi_j^2 - \psi_j^2 \left(a_j + \sum_{k=1}^{g} \psi_k^2 \right) - \frac{f_j}{\psi_j^2} + \sum_{k \neq j}^{n} \frac{1}{a_{jk}} \left(- \frac{f_j \psi_k^2}{\psi_j^2} - \frac{f_k \psi_j^2}{\psi_k^2} + (\psi_j \chi_k - \psi_k \chi_j)^2 \right). \quad (4.62)$$

where we denote $a_{jk} = a_j - a_k$.

Now we shall construct a map between the g-th stationary flow and the previous restricted flow of the KdV hierarchy. To this end we extend the corresponding phase spaces, regarding some free parameters in the Hamiltonian functions as additional dynamical variables. As for the P_1-formulation of the stationary flow we extend its phase space to a $(3g+1)$-dimensional space, \tilde{M}_n, with coordinates $(q_k, p_k; a_0, \ldots, a_{g-1}, a_{2g})$; analogously we consider the P_0-formulation of the first restricted flow in the extended space \tilde{M}_g with coordinates $(\psi_k, \chi_k; f_1, \ldots, f_k, d)$.

Let us consider the solutions q_k of the dynamical equations (2.24); then $v^{(g)}(\lambda)$ given by

$$v^{(g)}(\lambda) = \lambda (q^2(\lambda))^{(g-1)} - q^g, \quad (4.63)$$

with $q(\lambda) = 1 + \sum_{j=1}^{g} q_j \lambda^{-j}$, satisfies (2.17), and consequently satisfies the following equation:

$$B^\lambda(v^{(g)}, v^{(n)}) = \lambda^{2g} d(\lambda), \quad (4.64)$$

where, as above, we put $u = v_1/2 + a_0/4$. So, for each g-tuple of distinct complex parameters a_j, any solution $v^{(g)}(\lambda)$ fulfills the system

$$B^{a_k}(v^{(g)}(a_k), v^{(g)}(a_k)) = a_k^{2g} d(a_k), \quad (k = 1, \ldots, g) \quad (4.65)$$
where \(v^{(g)}(a_k) := v^{(λ)}|_{λ=a_k} \). In order to have a solution also satisfying the second equation \(v_1 = \sum_{j=1}^{g} β_j + c \), the Lagrange interpolation formula can be used. It allows us to represent the polynomial \(v^n(λ) \) by

\[
v(n)(λ) = a(λ) \left(1 + \sum_{j=1}^{g} \frac{β_j}{λ - a_j} \right), \tag{4.66}
\]

where \(a(λ) = \prod_{j=1}^{g} (λ - a_j) \), and

\[
β_j = \frac{v^{(g)}(a_k)}{a'(a_k)}(k = 1, \ldots, g). \tag{4.67}
\]

\((a'(λ)) means the derivative of \(a(λ) \) with respect to \(λ \).

Obviously the \(g \) functions \(β_k \) are solutions of the following system

\[
2β_{kxx}β_k - β_{kx}^2 + 2β_k^2 \left(\sum_{j=1}^{g} β_j - λ \right) - λ_k β_k^2 = \frac{λ_k^2 \hat{d}(a_k)}{(a'(a_k))^2}, \quad k = 1, \ldots, g \tag{4.68}
\]

Furthermore, \(β_k \) satisfy the so-called Bargmann constraint

\[
\sum_{j=1}^{g} (β_j - a_j) = v_1, \tag{4.69}
\]

as one can verify by means of (4.66).

The function \(B^λ \) is also a generating function of integrals of motion for Garnier system. Indeed evaluating the function \(B^λ \) by means of (4.66) and eliminating the first \(x \)-derivatives of \(χ_k \) by means of Hamilton equations \((2.24)\), one gets

\[
4 \sum_{j=1}^{g} \frac{I_j}{λ - λ_j} + \sum_{j=1}^{g} \frac{f_j}{(λ - λ_j)^2} + 2d - λ = \frac{λ^2 \hat{d}(λ)}{(a(λ))^2}, \tag{4.70}
\]

where \(I_j \) are the functions. Taking in this equation the residues at \(λ = a_j \) it follows that the functions \(I_j \) are integrals of motion along the flow \((2.24)\).

Let \(λ(q_i) = b_i \) be in a general position, i.e. \(λ(q_i) = b_i \in (-∞, λ_0], [λ_{2i-1}, λ_{2i}] \) and by Deift elimination procedure we may identify \(ψ_i \) with \(\xi^0[F(t, b_i)/F(0, b_i)]^{1/2} \) and

\[
\hat{θ}_i = \int_{0}^{x} \sqrt{R(b_i)} \prod_{i=1}^{g} (b_i - μ_j(x')) dx', \tag{4.71}
\]

and, hence, the solutions of the Rosochatius system are

\[
\hat{ψ}_i^2 = \prod_{j=0}^{g} (b_i - μ_j(x))/ \prod_{i ≠ j}^g (b_i - b_j). \tag{4.72}
\]
where $i, j = 0, \ldots, g$. Now we illustrate the general approach with some simple examples.

Example 1 Let $u(x) = 6\wp(x + \omega')$ be the two-gap Lamé potential with simple periodic spectrum (see for example [16])

$$
\lambda_0 = -\sqrt{3g_2}, \quad \lambda_1 = -3e_0, \quad \lambda_2 = -3e_1, \quad \lambda_3 = -3e_2, \quad \lambda_4 = \sqrt{3g_2},
$$

and the corresponding Hermite polynomial have the form

$$
F(\wp(x + \omega'), \lambda) = \lambda^2 - 3\wp(x + \omega')\lambda + 9\wp^2(x + \omega') - \frac{9}{4}g_2.
$$

Consider the following genus 2 nonlinear anisotropic oscillator with Hamiltonian

$$
H = \frac{1}{2}(p_1^2 + p_2^2) + \frac{1}{4}(q_1^2 + q_2^2)^2 - \frac{1}{2}(a_1q_1^2 + a_2q_2^2),
$$

where $(q_i, p_i), i = 1, 2$ are canonical variables with $p_i = q_{ix}$ and a_1, a_2 are arbitrary constants. The simple solutions of this system are given in terms of Hermite polynomial

$$
q_1^2 = 2F(x, \lambda_1), \quad q_2^2 = 2F(x, \lambda_2),
$$

Let us list the corresponding solutions

- Periodic solutions expressed in terms of single Jacobian elliptic functions

The nonlinear anisotropic oscillator admit the following solutions:

$$
q_1 = C_1 \text{sn}(\alpha x, k), \quad q_2 = C_2 \text{cn}(\alpha x, k),
$$

where amplitudes C_1, C_2 and temporal pulsewidth $1/\alpha$ of are defined by parameters a_1 and a_2 as

$$
\alpha^2 k^2 = a_2 - a_1, \quad C_1^2 = a_2 + \alpha^2 - \alpha^2 k^2, \quad C_2^2 = a_1 + \alpha^2,
$$

where $0 < k < 1$.

Following our spectral method it is clear, that the solutions [4.78] are associated with eigenvalues $\lambda_2 = -e_2$ and $\lambda_3 = -e_3$ of one-gap Lamé potential.

- Periodic solutions expressed in terms of products of Jacobian elliptic functions
\[q_1 = C \text{dn}(\alpha x, k) \text{sn}(\alpha x, k), \quad (4.79) \]
\[q_2 = C \text{dn}(\alpha x, k) \text{cn}(\alpha x, k), \quad (4.80) \]

where \(\text{sn}, \text{cn}, \text{dn} \) are the standard Jacobian elliptic functions \([54] \), \(k \) is the modulus of the elliptic functions \(0 < k < 1 \), \(a \) the wave characteristic parameters: amplitude \(C \), temporal pulsewidth \(1/\alpha \) and \(k \) are related to the physical parameters and, \(k \) through the following dispersion relations

\[
C^2 = \frac{2(4a_2 - a_1)}{5},
\]
\[
k^2 = \frac{(4a_2 - a_1)}{15},
\]
\[
\alpha^2 = \frac{5(a_2 - a_1)}{4a_2 - a_1}.
\]

We have found the following solutions of the nonlinear oscillator

\[
q_1 = C \alpha^2 k^2 \text{cn}(\alpha x, k) \text{sn}(\alpha x, k) \quad (4.81)
\]
\[
q_2 = C \alpha^2 \text{dn}^2(\alpha x, k) + C_1 \quad (4.82)
\]

where \(C, C_1, \alpha \) and \(k \) are expressed through parameters \(a_1 \) and \(a_2 \) by the following relations

\[
C^2 = \frac{18}{a_2 - a_1},
\]
\[
C_1 = \frac{C(4a_1 - a_2)}{5},
\]
\[
k^2 = \frac{2\sqrt{\frac{2}{3}(a_2^2 - a_1^2)}}{2\sqrt{\frac{2}{3}(a_2^2 - a_1^2) + aa_2 - 3a_1}},
\]
\[
\alpha^2 = \frac{1}{10}(2a_2 - 3a_1 + \sqrt{\frac{5}{3}(a_2^2 - a_1^2)}). \quad (4.83)
\]

- Periodic solutions associated with the two-gap Treibich-Verdier potentials

Below we construct the two periodic solutions associated with the Treibich-Verdier potential. Let us consider the potential

\[
u(x) = 6\psi(x + \omega') + 2\frac{(e_1 - e_2)(e_1 - e_3)}{\psi(x + \omega') - e_1} \quad (4.84)\]

and construct the solution in terms of Lamé polynomials associated with the eigenvalues \(\lambda_1, \lambda_2, \lambda_1 > \lambda_2 \)

\[
\lambda_1 = e_2 + 2e_1 + 2\sqrt{(e_1 - e_2)(7e_1 + 2e_2)},
\]
\[
\lambda_2 = e_3 + 2e_1 + 2\sqrt{(e_1 - e_3)(7e_1 + 2e_3)}. \quad (4.85)\]
The finite and real solutions \(q_1, q_2 \) have the form
\[
q_1 = C_1 \text{sn}(z, k) \text{dn}(z, k) + C_2 \text{sd}(z, k),
\]
\[
q_2 = C_3 \text{cn}(z, k) \text{dn}(z, k) + C_4 \text{cd}(z, k),
\]
(4.86)
where \(C_i, i = 1, \ldots, 4 \) are constants and have important geometrical interpretation \([16] \). The concrete expressions in terms of \(k, \tilde{\lambda}_1, \tilde{\lambda}_2 \) are given in \([17]\).

Analogously we can find the elliptic solution associated with the eigenvalues
\[
\tilde{\lambda}_1 = e_2 + 2e_1 + 2\sqrt{(e_1 - e_2)(7e_1 + 2e_2)}, \quad \tilde{\lambda}_2 = -6e_1,
\]
(4.87)

We have
\[
q_1 = \tilde{C}_1 \text{dn}^2(z, k)
\]
(4.88)
\[
q_2 = C_1 \text{sn}(z, k) \text{dn}(z, k) + C_2 \text{sd}(z, k),
\]
(4.89)
where \(C \) is given in \([17]\).

The general formula for elliptic solutions of genus 2 nonlinear anisotropic oscillator is given in \([17]\)
\[
q_1 = 1 \tilde{\lambda}_2 - \tilde{\lambda}_1 \sum_{i=1}^{N} \phi(x - x_i)
\]
\[
+ 6 \sum_{1 \leq i < j \leq N} \phi(x - x_i)\phi(x - x_j) - \frac{Ng_2}{4} + \sum_{1 \leq i < j \leq 5} \lambda_i \lambda_j
\]
(4.90)
\[
q_2 = \frac{1}{\tilde{\lambda}_1 - \lambda_2} \left(2\tilde{\lambda}_2^2 + 2\tilde{\lambda}_1 \sum_{i=1}^{N} \phi(x - x_i)
\right.
\]
\[
+ 6 \sum_{1 \leq i < j \leq N} \phi(x - x_i)\phi(x - x_j) - \frac{Ng_2}{4} + \sum_{1 \leq i < j \leq 5} \lambda_i \lambda_j
\]
(4.91)
where \(x_i \) are solutions of equations \(\sum_{i \neq j} \phi'(x_i - x_j) = 0, j = 1, \ldots, N \) and \(N \) is positive integer.

Example 2 Garnier type system. Consider the following genus 2 Garnier type system with Hamiltonian
\[
H = \frac{1}{2}(p_1^2 + p_2^2) + \frac{1}{4}(q_1^2 + q_2^2)^2 - 2\gamma_1 q_1^2 - 2\gamma_2 q_2^2 + \frac{f_1}{q_1} + \frac{f_2}{q_2},
\]
(4.92)
where \((q_i, p_i), i = 1, 2 \) are canonical variables with \(p_i = q_{ix} \) and \(a_1, a_2 \) are arbitrary constants. The simple solutions of these system are given in terms of Hermite polynomial in the following form \([1.48]\)
\[
q_1^2 = 2F(x, a_1), \quad q_2^2 = 2F(x, a_2),
\]
(4.93)
the same settings of periodic spectra, Lamé potential and Hermite polynomi-
als (4.74) as in example 2. The main results from the general theory are the
following:

i) the parameters f_1 and f_2 are expressed in terms of algebraic curve by

\[f_1 = \frac{R(a_1)}{a_1 - a_2}, \quad f_2 = \frac{R(a_2)}{a_2 - a_1}, \]

\[R(\lambda) = (\lambda^2 - 3g_2)(\lambda + 3e_1)(\lambda + 3e_2)(\lambda + 3e_3). \]

ii) the parameters a_1 and a_2 must lie in one or other of the intervals

\[[-\sqrt{3g_2}, 3e_1], [3e_2, 3e_3], [\sqrt{3g_2}, \infty) \]

(4.94)

and $\gamma_1 = 3a_1 + 2a_2$, $\gamma_2 = 2a_1 + 3a_2$.

These results are in complete agreement with solutions obtained by differ-
ent method in recent paper [58].

Example 3 Simple solutions of the Hénon-Heiles type system.

We consider a generalized Hénon-Heiles type system with two-degres-
of freedom.

Its Hamiltonian is

\[H_0 = \frac{1}{2}(p_1^2 + p_2^2) + q_1^3 + \frac{1}{2}q_1q_2^2 + \frac{a_0}{2q_2} + \frac{a_1}{4} \left(q_1^2 + \frac{1}{4}q_2^2 \right) - \frac{a_1}{4} q_1, \]

(4.95)

where q_1, q_2, p_1, p_2 are the canonical coordinates and momenta and a_0, a_1, a_4
are free constant parameters. This Hamiltonian encompasses the two cases
$a_0 = a_4 = 0$ and $a_0 = a_1 = 0$ introduced in [50]. Moreover H_0 is related with
the Hamiltonian

\[H_H = \frac{1}{2}(\bar{p}_1^2 + \bar{p}_2^2) + \bar{q}_1^3 + \frac{1}{2}\bar{q}_1\bar{q}_2^2 + \frac{a_4}{8\bar{q}_2} + \frac{1}{2} \left(A\bar{q}_1^2 + B\bar{q}_2^2 \right), \]

(4.96)

through the map

\[q_1 = \bar{q}_1 + \frac{A}{2} - 2B, \quad q_2 = \bar{q}_2, \quad a_0 = -2A + 12B, \quad a_1 = -A^2 + 16AB - 48B^2. \]

(4.97)

The function H_H is the Hamiltonian of a classical integrable Hénon-Heiles sys-
tem with the additional term $a_4/8\bar{q}_2^2$.

The function (4.95) is the Hamiltonian of the vector field obtained reduc-
ing $X_0(u) = u_x$ to the stationary manifold M_2 given by the fixed points of the flow

\[X_2 + c_1X_1 + c_2X_0 \]

\[M_2 = u|u|^{(5)} + 10u_{xxx}u + 20u_{xx}u_x + 30u_xu^2 + c_1(u_{xxx} + 6u_xu) + c_2u_x = 0 \]

where $c_1 = -a_0/2$, $c_2 = -a_1/2 + a_0^2/4$.

It can be obtained specializing to the case $g = 2$ the Hamiltonian of the
P_1-system. In this case $H_2^{(1)} = H_0$ and the canonical coordinates and momenta
are, respectively, \(q_1 = v_1/2, q_2^2 = -v_2, p_1 = q_{1x}, p_2 = q_{2x} \). The integrals of motion obtained by the reduction of the GD polynomials are

\[
H_0 \equiv -\frac{1}{8}p_{01}|_x \\
H_2 \equiv -\frac{1}{8}p_{22}|_x = -\frac{a_4}{8} \\
H_1 \equiv -\frac{1}{8}p_{12}|_x =
\]

where \(-\frac{1}{8}p_{12}|_x\) is given by

\[
p_2q_1 - p_1p_2q_2 - \frac{1}{2}q_2^2q_1 - \frac{1}{8}q_4^2 + \frac{a_4q_1}{4q_2^2} - \frac{a_0}{4}q_1q_2^2 + \frac{a_1}{8}q_2^2.
\]

Next we will derive \((2 \times 2)\) matrix Lax representation for generalized Hénon-Heiles system (4.95). Using Lax representation \(L_x = [M, L]\), particular case of eq. (4.50) i.e. when there is no time dependence, we have

\[
F(x, \lambda) = \lambda^2 + \frac{1}{2}q_1\lambda - \frac{1}{16}q_2^2, \quad V = -F_x/2 = -\frac{1}{4}p_1\lambda + \frac{1}{16}q_2p_2, \\
W = -F_{xx}/2 + QF = \lambda^3 - \frac{1}{2}q_1 + \frac{1}{4}a_0)\lambda^2 + \\
\left(\frac{1}{4}q_1^2 + \frac{1}{16}q_2^2 - \frac{1}{16}a_1 + \frac{1}{8}a_0q_1\lambda + \frac{1}{16}p_2^2 + \frac{1}{64}a_4\right), \\
Q(x, \lambda) = \lambda - q_1 - \frac{1}{4}a_0.
\]

The corresponding algebraic curve have the form

\[
\mu^2 = \lambda^5 - \frac{1}{4}a_0\lambda^4 - \frac{1}{16}a_1\lambda^3 + \frac{8}{16}H_0\lambda^2 + 32H_1\lambda - \frac{1}{1024}a_4.
\]

Using explicit expression for Hermite polinomial (4.74) we obtain the following simple solutions for the system (4.95): \(q_1 = -6\psi(x + \omega'), \quad q_2^2 = -16(9\psi(x + \omega')^2 - \frac{9}{4}g_2). \)

where \(a_0 = 0, a_1 = 3.4.7g_2, A_4 = -3^4.4^4g_2g_3\).

5 2×2 Lax representation and \(r\)-matrix approach

The Lax equation for completely integrable systems discussed in the previous section

\[
L_x(\lambda) = [M(\lambda'), L(\lambda')],
\]

with matrices \(L\) and \(M\) given by

\[
L(\lambda') = \begin{pmatrix} V(x, \lambda') & U(x, \lambda') \\ W(x, \lambda') & -V(x, \lambda') \end{pmatrix} \\
M(\lambda') = \begin{pmatrix} 0 & 1 \\ Q(x, \lambda') & 0 \end{pmatrix}.
\]
is equivalent to the Garnier system, where \(U(x, \lambda'), V(x, \lambda'), W(x, \lambda'), Q(x, \lambda') \) have the form

\[
U(x, \lambda') = a(\lambda') \left(1 - \sum_{i=1}^{g} \frac{\xi_i \eta_i}{\lambda' - a_i} \right), \quad V(x, \lambda') = -\frac{1}{2} U_x(x, \lambda') \tag{5.4}
\]

\[
W(x, \lambda') = a(\lambda') \left(\lambda' + \sum_{i=1}^{g} \xi_i \eta_i + \sum_{i=1}^{g} \frac{\xi_i \eta_i x}{\lambda' - a_i} \right), \quad Q(x, \lambda') = \lambda' + 2 \sum_{i=1}^{g} \xi_i \eta_i. \tag{5.5}
\]

Finally we point out one useful expression, which is easy to derive from Lax representation (5.1)

\[
W(x, \lambda') = U(x, \lambda') Q(x, \lambda') - \frac{1}{2} U(x, \lambda')_{xx}. \tag{5.6}
\]

The Lax representation yields the hyperelliptic curve \(K = (\mu', \lambda') \)

\[
\text{Det}(L(\lambda') - \mu'I) = 0, \tag{5.7}
\]

generating the integrals of motion \(H, F^{(i)}, i = 1, \ldots, g \). We have

\[
\mu^2 = V^2(x, \lambda') + U(x, \lambda') W(x, \lambda'), \tag{5.8}
\]

From (5.8) and explicit expressions of \(U(x, \lambda'), V(x, \lambda'), W(x, \lambda') \) we obtain

\[
\mu^2 = a(\lambda')^2 \left(\lambda' + \sum_{i=1}^{g} \frac{H_i}{\lambda' - a_i} + \frac{1}{4} \sum_{i=1}^{g} \frac{J_i^2}{(\lambda' - a_i)^2} + \frac{1}{2} \sum_{i=1}^{g} \frac{I_i}{\lambda' - a_i} \right), \tag{5.9}
\]

where

\[
I_i = \sum_{k \neq i} \frac{(\xi_k \eta_{ix} - \eta_{kix})(\eta_k \xi_{ix} - \xi_k \eta_{ix})}{a_k - a_i},
\]

\[
+ \sum_{k \neq i} \frac{(\xi_i \xi_{kx} - \xi_{kix})(\eta_k \eta_{ix} - \eta_k \eta_{ix})}{a_k - a_i},
\]

\[
H_i = \xi_{ix} \eta_i - \eta_{ix} \xi_i \left(\sum_{k=1}^{g} \xi_{k} \eta_{k} \right), \quad J_i = \xi_{ix} \eta_i - \xi_i \eta_{ix}, \tag{5.10}
\]

and \(\sum_{i=1}^{g} H_i \) is the Hamiltonian for Garnier system. Simple reduction \(\eta_i = \xi_i^* \) gives us the second flow of stationary vector nonlinear Schrödinger equation, where by * we denote complex conjugation. The complementary to the last system is complex Neumann system (see for example [63])

\[
\tilde{\xi}_{ixx} + 2 \left(\sum_{j=0}^{g} b_j |\tilde{\xi}_j|^2 + |\tilde{\xi}_{jx}|^2 \right) \tilde{\xi}_i = b_i \tilde{\xi}_i. \tag{5.11}
\]

with \(\sum_{i=1}^{g} |\xi_i|^2 = 1 \). Using the Deift elimination procedure we obtain new \(2 \times 2 \) Lax pair for Rosochatius-Wojciechowski system. Below we list only the final results for Lax pair elements of considered in this paper dynamical systems:
• Rosochatius-Wojciechowski system

\[U(x, \lambda') = a(\lambda') \left(1 - \sum_{i=1}^{g} \frac{\psi_i^2}{\lambda' - a_i} \right), \quad V(x, \lambda') = -\frac{1}{2} U_x(x, \lambda') \]

\[W(x, \lambda') = a(\lambda') \left(\lambda' + \sum_{i=1}^{g} \psi_i^2 + \sum_{i=1}^{g} \frac{1}{\lambda' - a_i} (\psi_{ix}^2 - f_i \psi_i^2) \right), \quad (5.12) \]

\[Q(x, \lambda') = \lambda' + 2 \sum_{i=1}^{g} \psi_i^2. \]

• Rosochatius system

\[U(x, \lambda') = b(\lambda') \left(\sum_{i=1}^{g} \frac{\psi_i^2}{\lambda' - b_i} \right), \quad V(x, \lambda') = -\frac{1}{2} U_x(x, \lambda') \]

\[W(x, \lambda') = b(\lambda') \left(1 + \sum_{i=1}^{g} \frac{1}{\lambda' - b_i} (\psi_{ix}^2 - f_i \psi_i^2) \right), \quad (5.13) \]

\[Q(x, \lambda') = \lambda' + 2 \sum_{i=1}^{g} \psi_i^2, \]

where \(b(\lambda') = \prod_{i=0}^{g} (\lambda' - b_i) \).

• second stationary flow of vector NLSE

\[U(x, \lambda') = a(\lambda') \left(1 - \sum_{i=1}^{g} \frac{\lvert \xi_i \rvert^2}{\lambda' - a_i} \right), \quad V(x, \lambda') = -\frac{1}{2} U_x(x, \lambda') \]

\[W(x, \lambda') = a(\lambda') \left(\lambda' + \sum_{i=1}^{g} \lvert \xi_i \rvert^2 + \sum_{i=1}^{g} \frac{\lvert \xi_{ix} \rvert^2}{\lambda' - a_i} \right), \quad (5.14) \]

\[Q(x, \lambda') = \lambda' + 2 \sum_{i=1}^{g} \lvert \xi_i \rvert^2. \]

• complex Neumann system

\[U(x, \lambda') = b(\lambda') \left(\sum_{i=1}^{g} \frac{\lvert \xi_i \rvert^2}{\lambda' - b_i} \right), \quad V(x, \lambda') = -\frac{1}{2} U_x(x, \lambda') \]

\[W(x, \lambda') = a(\lambda') \left(1 - \sum_{i=1}^{g} \frac{\lvert \xi_{ix} \rvert^2}{\lambda' - b_i} \right), \quad (5.15) \]

\[Q(x, \lambda') = \lambda' + 2 \sum_{i=1}^{g} \lvert \xi_i \rvert^2. \]
Finally we want to point out that \(I \) for Rosochatius-Wojciechowski system coincide with expression given in (4.62). Another Lax equation have the following form

\[
L_x(\lambda') = [M(\lambda'), L(\lambda')] ,
\]

where matrices \(L \) and \(M \) are given by

\[
\begin{align*}
L(\lambda') &= \begin{pmatrix}
-F_x(x, \lambda')/2 & F(x, \lambda') \\
-F_{xx}(x, \lambda')/2 & F_x(x, \lambda')/2
\end{pmatrix} \\
M'(\lambda') &= \begin{pmatrix}
V(x, \lambda') & U(x, \lambda') \\
W'(x, \lambda') & -V(x, \lambda')
\end{pmatrix} \equiv \begin{pmatrix}
0 & 1 \\
0 & 0
\end{pmatrix} ,
\end{align*}
\]

where we made the following identification \(U(x, \lambda') = F(x, \lambda') \). The Poisson bracket relations for the matrix \(L(\lambda') \) \([59, 61]\) are closed into the following \(r \)-matrix algebra

\[
\{ L_1(\lambda'), L_2(\mu') \} = [r_{12}(\lambda', \mu'), L_1(\lambda')] - [r_{21}(\lambda', \mu'), L_2(\mu')] .
\]

Here the standard notations are introduced:

\[
\begin{align*}
L_1(\lambda') &= L(\lambda') \otimes I , \\
L_2(\mu') &= I \otimes L(\mu') ,
\end{align*}
\]

\[
\begin{align*}
r_{12}(\lambda, \mu) &= \frac{\Pi}{\lambda - \mu} \quad r_{21}(\lambda, \mu) = \Pi r_{12}(\mu, \lambda) \Pi ,
\end{align*}
\]

and \(\Pi \) is the permutation operator of auxiliary spaces.

The Poisson bracket relations for the Lax matrix \(L(\lambda') \) are preassigned by the initial symplectic structure. It is necessary to calculate only two brackets

\[
\{ F(x, \lambda'), F(x, \mu') \} = 0 ,
\]

and

\[
\begin{align*}
\{ V(x, \lambda'), F(x, \mu') \} &= \left\{ F(x, \lambda') \sum_{j=1}^g \frac{g_{jj} p_j(x)}{\lambda' - \mu_j(x)} \prod_{j=1}^g (\mu' - \mu_j(x)) \right\} \\
&= -F(x, \lambda') F(x, \mu') \sum_{j=1}^n \frac{g_{jj}}{(\lambda' - \mu_j(x))(\mu' - \mu_j(x))} \\
&= \frac{F(x, \lambda') F(x, \mu')}{\lambda' - \mu'} \sum_{j=1}^g \left(\frac{g_{jj}}{\lambda' - \mu_j(x)} - \frac{g_{jj}}{\mu' - \mu_j'(x)} \right) \\
&= \frac{1}{\lambda' - \mu'} [F(x, \mu') - F(x, \lambda')] ,
\end{align*}
\]
where we used a standard decomposition of rational function
\[F(x, \lambda')^{-1} = \sum_{j=1}^{n} \frac{g_{jj}}{\lambda - \mu_j(x)}, \quad g_{jj} = \text{Res}_{\lambda = \mu_j(x)} F(x, \lambda')^{-1}(\lambda). \]
and the following definitions
\[g_{jj} = \text{Res}_{\lambda = \mu_j(x)} F^{-1}(x, \lambda) = \frac{1}{\prod_{k \neq j} (\mu_j(x) - \mu_k(x))}, \quad (5.23) \]
\[p_j(x) = V(x, \lambda)_{\lambda = \mu_j(x)} = \sqrt{R(\mu_j(x))}. \quad (5.24) \]

Another Poisson brackets may be directly derived from these brackets and by definition of the entries of the Lax matrix \(L(\lambda) \) via derivative of the single function \(F(x, \lambda') \)
\[\{V(x, \lambda'), V(x, \mu')\} = 0 \]
\[\{W(x, \lambda'), F(x, \mu')\} = \frac{d}{dx} \{V(x, \lambda'), F(x, \mu')\} = \frac{2}{\lambda' - \mu'} [V(x, \lambda') - V(x, \mu')] , \quad (5.25) \]
\[\{W(x, \lambda'), F(x, \mu')\} = \frac{-1}{2} \frac{d^2}{dx^2} \{V(x, \lambda'), F(x, \mu')\} = \frac{1}{\lambda' - \mu'} [W(x, \lambda') - W(x, \mu')] , \]
\[\{W(x, \lambda'), W(x, \mu')\} = \frac{-1}{2} \frac{d^3}{dx^3} \{V(x, \lambda'), F(x, \mu')\} = 0. \]

Applying the following transformation directly to the Lax representation \(L(\lambda') \) we obtain a family of the new Lax pairs \([59, 61]\)
\[L'(\lambda') = L(\lambda') - \sigma_- \cdot [\phi(x, \lambda') F(x, \lambda')^{-1}]_N , \quad \sigma_- = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} , \quad (5.26) \]
\[M'(\lambda') = M - \sigma_- \cdot [\phi(x, \lambda') F(x, \lambda')^{-2}]_N = \begin{pmatrix} 0 & 1 \\ Q(x, \lambda') & 1 \end{pmatrix} . \]

Here \(\phi(x, \lambda') \) is a function on spectral parameter and \([z]_N \) means restriction of \(z \) onto the \(\text{ad}_{\lambda'} \)-invariant Poisson subspace of the initial \(r \)-bracket. For the rational \(r \)-matrix we can use the linear combinations of the following Taylor projections
\[[z]_N = \left[\sum_{k=-\infty}^{\infty} z_k \lambda^k \right]_N = \sum_{k=0}^{N} z_k \lambda^k, \quad (5.27) \]
or the Laurent projections.
New Lax matrix $L'({\lambda'})$ [58, 61] obeys the linear r-bracket, where constant r_{ij}-matrices substituted by r'_{ij}-matrices depending on dynamical variables.

$$r_{12}({\lambda'}, {\mu'}) \rightarrow r'_{12} = r_{12} - \left(\frac{[\phi({\lambda})F(x, {\lambda'})^{-2}, N] - [\phi({\mu})F(x, {\mu'})^{-2}, N]}{({\lambda'} - {\mu'})} \right) \cdot \sigma_{-} \otimes \sigma_{-}. \quad (5.28)$$

6 Conclusions

In this paper we have given new exact solutions of the physically significant completely integrable dynamical systems. These solutions can be interpreted as eigenfunctions of suitable differential operator. New example of complementary dynamical systems (stationary second flow of the vector nonlinear Schrödinger equation and complex Neumann system) is presented.

Acknowledgements

I wish to thank to Prof. V. Gerdjikov, who pointed out me the papers [41, 42, 43], book [46] and for valuable discussions.

References

[1] Moser J 1980 Geometry of quadrics and spectral theory, Chern Symposium 1979 Berkeley (Berlin: Springer)

[2] Moser J 1980 Various aspects of integrable Hamiltonian systems Dynamical Systems, CIME 1978 (Progress in Mathematics 8) (Basel:Birkhäuser) 233-89

[3] Moser J 1981 Integrable hamiltonian systems and spectral theory, Pisa: Lezioni Fermiane

[4] Knörer H 1982 Geodesic on quadrics and a mechanical problem of Neumann, J. Reine Angew. Math. 334 67-78

[5] Veselov A P 1980 Finite-band potentials and an integrable system on the sphere with quadratic potential, Funct. Anal. Appl. 14 48-50

[6] Cao C W 1990 Non linearization of eigenvalue problem Non Linear Physics ed. C Gu et al (Berlin: Springer)

[7] Antonowicz M and Rauch-Wojciechowski S 1992 How to construct finite dimensional bi-Hamiltonian systems from soliton equations: Jacobi integrable potentials J. Math. Phys. 33 2115-25
[8] Flaschka H 1983 Relations between infinite - dimensional and finite - dimensional isospectral equations Non-linear Integrable Systems-Classical and Quantum Theory (Singapore: World Scientific)

[9] Schilling R J 1987 Generalizations of the Neumann system-A curve theoretical approach, Comm. Pure Appl. Math. 40, 455

[10] Adams M R, Harnad J, and Previato E 1988 Isospectral Hamiltonian flows in finite and infinite dimensions I. Generalized Moser systems and Moment maps into loop algebras, Commun. Math. Phys. 117 451-500

[11] Kostov N A 1989 Quasi-periodic solutions of the integrable dynamical systems related to Hill’s equation, Lett. Math. Phys. 17 95-108

[12] Adams M R, Harnad J, and Hurtubise J 1990 Isospectral Hamiltonian flows in finite and infinite dimensions II. Integration of flows, Commun. Math. Phys. 134 555-585

[13] Adams M R, Harnad J, and Hurtubise J 1993 Darboux coordinates and Liouville-Arnold integration in loop algebras, Commun. Math. Phys. 155 385-413

[14] Florjanzyk M and Tremblay R Periodic and solitary waves in bimodal optical fibers, Phys. Lett. A 25 34-36

[15] Kostov N A and Uzunov M 1992 New kinds of periodical waves in birefringent optical fibers, Opt. Commun. 89 389-92

[16] Enol’skii V Z and Kostov N A 1994 On the geometry of elliptic solitons, Acta Applicandae Mathematicae 36 57-86

[17] Christiansen P L, Eilbeck J C, Enolskii V Z and Kostov N A 1995 Quasi-periodic solutions of the coupled nonlinear Schrödinger equations Proc. R. Soc. Lond. A 451, 685-700

[18] Belokolos E D, Bobenko A I, Enol’skii V Z, Its A R and Matveev V B 1994, Algebraical-geometrical methods in the theory of integrable equations (Berlin: Springer)

[19] Gesztesy F, Weikard R, 1995 Lamé potentials and the stationary (m)KdV hierarchy, Math. Nachr. 176 , 73–91.

[20] Gesztesy F, Weikard R, 1995 Treibich-Verdier potentials and the stationary (m)KdV hierarchy, Math. Z. 219 , 451–476.

[21] Gesztesy F, Weikard R, 1995 On Picard potentials, Diff. Int. Eqs. 8 , 1453–1476.

[22] Gesztesy F, Weikard R, 1995 A characterization of elliptic finite-gap potentials, C. R. Acad. Sci. Paris 321 , 837–841.
[23] Gesztesy F, Weikard R, 1996 *Picard potentials and Hill’s equation on a torus*, Acta Math. 176, 73–107.

[24] Gesztesy F, Weikard R, 1998 *A characterization of all elliptic algebro-geometric solutions of the AKNS hierarchy*, Acta Math. 181, to appear.

[25] Novikov S P 1974 Periodic problem for KdV equation I. Funct. Anal. Appl. 8 54-66

[26] McKea n H P and van Moerbeke, 1975 The spectrum of Hill’s equation, Invent. Math. 30, 217-74

[27] Dubrovin B A, Matveev V B and Novikov S P Nonlinear equations of KdV type, finite-zone operators and abelian varieties, Russ. Math. Surv. 31, 59-146

[28] McKea n H P and Trubowitz, 1976 Hill’s operator and hyperelliptic function theory in the presence of infinitely many branch points, Commun. Pure Appl. Math 29, 143-26

[29] Krichever I 1977 The method of algebraic geometry in the theory of nonlinear equations, Uspekhi. Mat. Nauk. 32 183-208

[30] Cherednik I M 1978 Differential equations for the Baker-Akhiezer functions of algebraic curves Funct. Anal. Prilozh. 12 45-54

[31] Adler M, van Moerbecke P, 1980 *Completely integrable systems, euclidean Lie algebras, and curves*, Adv. in Math. 38 267-317

[32] McKea n H P 1985 Variations on a theme of Jacobi, Commun. Pure and Appl. Math. XXXVIII 669-78

[33] Flaschka H 1984 Towards an algebro-geometric interpretation of the Neumann system, Tohoku Math. Journ. 36 407-26

[34] Horozov E I 1984 On exact solutions of Neumann’s problem of moving point on the sphere with quadratic potential, Compt. Rend. Acad. Bulg. Sci. 37 145-148 (in russian)

[35] Mumford D 1984 Tata Lectures on Theta, vol. 2 (Basel,Boston,Stuttgart: Birkhauser Verlag)

[36] Sklyanin E K 1985 Separation of variables: New trends, Progr. Theor. Phys. Suppl. 118 35-60

[37] Dickey L A 1991 Soliton Equations and Hamiltonian Systems (Singapore: World Scientific)

[38] Fordy A P 1991 The Hénon-Heiles system revisited Physica 52D 204-10
[39] Antonowicz M and Rauch-Wojciechowski S 1992 Bi-Hamiltonian Formulation of the Hénon-Heiles System and its Multidimensional Extensions Phys. Lett. 163A 167-72

[40] Antonowicz M and Rauch-Wojciechowski S 1990 Constrained flows and integrable PDEs and bi-Hamiltonian structure of the Garnier system Phys. Lett. 147A 455-62

[41] Tondo G 1994 A connection between the Hénon-Heiles system and the Garnier system Theor. Math. Phys. 33 796-802 (1994 Teor. Mat. Fiz 99 552-9)

[42] Tondo G 1995 On the integrability of stationary and restricted flows of the KdV hierarchy J. Phys. A: Math. Gen. 28 5097-5115

[43] Morosi C and Tondo G 1997 Quasi-bi-Hamiltonian systems and separability J. Phys A: Math. Gen. 30 2799-2806

[44] Caboz R, Ravoson V and Gavrilov L 1991 Bi-Hamiltonian structure of an integrable Hénon-Heiles system J. Phys. A: Math. Gen. 24 L523-5

[45] Magri F 1978 A simple model of the integrable Hamiltonian equation J. Math. Phys. 19 1156-62

[46] Vilasi G 1998 Hamiltonian dynamics (World Scientific, Singapore)

[47] Choodnovsky D V and Choodnovsky G V 1978 Lett. Nuovo Cimento 22, 47

[48] Wojciechowski S 1985 Integrability of one particle in a perturbed central quartic potential Phys. Scr. 31 433-8

[49] Marsden J E and Ratiu T 1986 Reduction of Poisson manifolds Lett. Math. Phys. 11 161-9

[50] Blaszak M and Rauch-Wojciechowski S 1994 A Hénon-Heiles system and related integrable Newton equations, J. Math. Phys. 35 1693-709

[51] Alber S I 1981 On Stationary Problems for Equations of Korteweg-de Vries Type Commun. Pure Appl. Math. 34 259-72

[52] Alber M S and Marsden J E 1992 On geometric phases for soliton equations Commun. Math. Phys. 149, 217-40

[53] Alber M S, Camassa R, Holm D D, and Marsden J E 1995 The geometry of peaked solitons and billiard solutions of class of integrable PDE's Lett. Math. Phys. 32, 137-51

[54] Bateman H and Erdelyi A 1955 Higher transcendental functions vol. 2 (New York:McGraw-Hill)
[55] Zakharov V E 1998 Description of the n-orthogonal curvilinear coordinate systems and hamiltonian integrable systems of the hydrodynamic type. Part I. Integration of the Lamé equations, Duke Math. Journ. 94, 103-139

[56] Krichever I M 1996 Algebraic-geometrical n-orthogonal curvilinear coordinate systems and solutions to associativity equations [hep-th/9611158]

[57] Kalnins E G, Kuznetsov V B, and Miller Jr. 1994 Quadrics on complex Riemannian spaces of constant curvature, separation of variables and Gaudin magnet J. Math. Phys. 35 1710-31

[58] Porubov A V, Parker D F 1998 Some general solutions to coupled nonlinear Schrödinger equations, Wave motion 900 1-13

[59] Kulish P.P, Rauch-Wojciechowski, and Tsiganov A V 1996 Stationary problems for equations of the KdV type and dynamical r-matrices J. Math. Phys. 37 3365

[60] Eilbeck J C, Enolskii V Z, Kuznetsov V B, and Tsiganov A V 1994 Linear r-matrix algebra for classical separable systems J. Phys. A 27 567-78

[61] Tsiganov A V 1998 The Stäckel systems and algebraic curves Teor. Math. Phys. 115, 3-28 (in russian) [solv-int/9712005]

[62] Tsiganov A V 1996 Authomorphisms of $sl(2)$ and dynamical r-matrices [solv-int/9610003] 1998 J. Math. Phys. 39 650-664

[63] Ii K and Arira Y, 1987 A completely integrable Hamiltonian system of C. Neumann-type on the complex space, Tokyo J. Math. 10 77-86