Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
In silico study of medicinal plants with cyclodextrin inclusion complex as the potential inhibitors against SARS-CoV-2 main protease (M_{pro}) and spike (S) receptor

Doni Dermawan^{a,b,∗}, Bagas Adji Prabowo^c, Casilda Aulia Rakhmadina^d

^a Applied Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
^b Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Indonesia
^c Environmental Protection and Management, Jagiellonian University, Krakow, Poland
^d Food Technology and Human Nutrition, University of Agriculture in Krakow, Krakow, Poland

Abstract

The current outbreak of novel coronavirus disease (COVID-19) causes an alarming number of deaths in 221 countries around the world. Nowadays, there is no specific and effective drug regimen for curing COVID-19. Since the COVID-19 pandemic, several medicinal plants with promising results in the previous SARS-CoV could be used to treat SARS-CoV-2 infected patients. This work assesses proven medicinal plants as potential inhibitors against SARS-CoV-2 main protease (M_{pro}) and spike (S) receptors by employing in silico methods. Molecular docking studies and 3D structure-based pharmacophore modeling were performed to identify the molecular interactions of potential active molecules with the M_{pro} and (S) receptor of SARS-CoV-2. The drug-likeness and ADME properties were also predicted to support the drug-like nature of the selected active molecules. The results indicated that the most favorable ligand was Terrestriamide with (;G: −8.70 kcal/mol; Ki: 7.21 μM) and (;G: −7.02 kcal/mol; Ki: 7.21 μM) for M_{pro} and (S) receptor, respectively. Terrestriamide is also supported with a high drug-likeness value and appropriate ADME profile. Furthermore, to improve drug delivery, the cyclodextrin inclusion complex was calculated based on semi-empirical quantum mechanical methods. Terrestriamide/γ-cyclodextrin is the most favorable pathway of inclusion complex formation and could be used to treat COVID-19.

Keywords: Cyclodextrin, In silico, Main protease, Medicinal plants, SARS-CoV-2, Spike receptor

1. Introduction

An outbreak of novel coronavirus disease (COVID-19) has been started since December 2019 in Wuhan, China. It has been declared as a global pandemic causing the death of 2,460,792 in 221 countries by February 22, 2021 [1–3]. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is positive-sense, enveloped, and single-stranded RNA with a clinical manifestation closely resembling viral pneumonia [4]. SARS-CoV-2 is belonging to the family and similar to SARS-CoV and MERS-CoV [5,6]. Coronaviruses represent the largest known genome of RNA viruses with more than six open reading frames (ORFs) [7]. Most recent studies have confirmed that the SARS-CoV-2 main protease (M_{pro}) and spike (S) receptors are promising drug targets [8,9]. The major ORF 1 ab is responsible to encode pp1a and pp1ab overlapping proteins. These proteins were then cleaved into 16 nonstructural proteins by the main protease (M_{pro}) [10,11]. This condition indicates that M_{pro} has an essential role in viral replication and transcription. The other genome encodes structural proteins including envelope protein (E), nucleocapsid phosphoprotein (N), and spike glycoprotein (S) [12]. Recently, SARS-CoV-2 has been confirmed utilizing the SARS-CoV receptor spike (S) protein that compose a subunit containing a receptor-binding domain (RBD) [13]. This RBD engages with the host cell receptor angiotensin-converting enzyme (ACE2) [14]. Thus, inhibiting the function of M_{pro} and (S) protein would be useful to treat COVID-19.

Several vaccines and drugs are being developed to prevent and cure the disease caused by SARS-CoV-2. However, there is no effective treatment that has yet been generated [15]. Most of the initial efforts to combat COVID-19 are drug repurposing. Numerous FDA-approved drugs like chloroquine phosphate, hydroxychloroquine, umifenovir,
remdesivir, ribavirin, and lopinavir have been used to treat infected patients [16–19]. However, the clinical manifestation of these drugs against COVID-19 is still not fully understood [20]. Recently, secondary metabolites from medicinal plants have been used to combat COVID-19 with promising inhibitory effects against those of previous types of coronaviruses [21]. Several of them pose promising SARS-CoV protease inhibitors, and (S) receptors as the drug target. To identify the potential inhibitors, literature searches were performed in various journals that focused on proven medicinal plants for treating coronaviruses [22–24]. The potential inhibitory effect of active compounds derived from these medicinal plants could be predicted by employing in silico approach prior to an experimental effort.

In this work, we study computationally the molecular binding affinity and interactions between the chosen active molecules from medicinal plants with M^{PRO} and (S) receptors as the drug target. To identify the potential inhibitors, literature searches were performed in various journals that focused on proven medicinal plants for treating coronaviruses. We employed the molecular docking simulation 3D structure-based pharmacophore to assess the molecular interaction between the ligand and the target receptor. The drug-likeness and ADME properties are predicted as further analysis to generate the best possible ligand. The best ligand was then further analyzed for protein structure flexibility compared to standard ligand-receptor complexes. Furthermore, the inclusion complex calculation based on semiempirical quantum mechanical methods is also performed to enhance drug delivery properties using a widely used drug carrier system, namely, cyclodextrins (CYD).

2. Computational methods

2.1. Data collection and construction of ligand structures

The X-ray crystal structures of two employed SARS-CoV-2 proteins, namely, COVID-19 main protease in complex with an inhibitor N3 (PDB ID: 7BQY with a 1.70 Å of resolution) [25] and SARS-CoV-2 spike receptor-binding domain bound with ACE2 (PDB ID: 6MUJ with the resolution of 2.45 Å) [26] were retrieved from RCSB protein data bank (PDB). The medicinal plant’s data was generated using a literature search focusing on proven inhibitory properties of secondary metabolites for combating coronaviruses. The literature search was conducted using PubMed, Scopus, WHO website, and Google Scholar. Scientific journals and case reports edited by WHO were included, while theses and dissertations were not considered. The medicinal plant data were compiled in Table 1. The molecular structures of the ligands were obtained from PubChem National Library of Medicine, National Center of Biotechnology Information (https://pubchem.ncbi.nlm.nih.gov/). The three-dimensional (3D) structures of ligands were optimized using Chem3D (PerkinElmer Inc.). The energy of ligands was also minimized using MM2 energy minimization in ChemDraw Professional 20.0 (PerkinElmer Inc.). The best ligand and cyclodextrins (CYDs) were then fully optimized by the semiempirical quantum mechanical PM6 and PM7 methods using Molecular Orbital Package (MOPAC) 2016 and Avogadro 1.2 software. The SARS-CoV-2 known spike receptor inhibitor (Arbidol) was retrieved from the literature [18].

2.2. Molecular docking simulation and validation

The receptors and ligands were prepared for molecular docking simulation using AutoDockTools 1.5.6 [27]. The active site of the M^{PRO} receptor was defined by the redocking procedure of inhibitor N3 and yielded a Root Mean Square Deviation (RMSD) of 1.842, which is in the acceptable range. The active site of the (S) receptor was determined by utilizing CASTp 3.0 [28]. The receptor grid was determined by choosing the amino acid residues of the active sites (residue number 338, 339, 342, 343, 367, 368, 371, 373, 374) based on the CASTp 3.0 results. Both receptors and ligands were protonated. The Kollman charges were yielded a Root Mean Square Deviation (RMSD) of 1.842, which is in the acceptable range. The active site of the (S) receptor was determined by utilizing CASTp 3.0 [28]. The receptor grid was defined by the redocking procedure of inhibitor N3 and yielded a Root Mean Square Deviation (RMSD) of 1.842, which is in the acceptable range. The active site of the (S) receptor was determined by utilizing CASTp 3.0 [28]. The receptor grid was defined by choosing the amino acid residues of the active sites (residue number 338, 339, 342, 343, 367, 368, 371, 373, 374) based on the CASTp 3.0 results. Both receptors and ligands were protonated. The Kollman charges were added to the receptor and the Gasteiger charges were added to the ligands [29]. The grid parameter file was based on the active site amino acid residue information from CASTp 3.0 that composed of 52 × 52 × 54 points with a space of 0.375 Å, then centered to the active site of the receptor (x = −32.00; y = 11.00; z = 28.00). This grid parameter of the active site of spike proteins has been validated by a previous study [30]. Molecular docking simulation was performed by using AutoDock 4.2 (The Scripps Research Institute). The docking parameter file was based on the Lamarckian Genetic Algorithm (LGA) with 150 population sizes, 100 runs, 5,000,000 energy of evaluation, 0.8 rates of crossover, and 0.02 rate of gene mutation. The RMSD tolerance of 1.0 Å was employed to cluster the conformation results of the docking simulation [31]. The generated complexes of receptor and ligand were visualized using BIOVIA Discovery Studio Visualizer 2020 [32] and PyMOL 2.4 [33]. LigandScout Advanced 4.4 (Inte: Ligand GmbH, Vienna, Austria) was employed to define the features of ligand interaction for each pose within the active site of the receptor [34]. The docking simulation for the inclusion complex procedure between ligand and CYDs was also carried out by using AutoDock Tools 1.5.6. The guest and host structures were protonated. The grid boxes comprise 40 × 40 × 40 points with 0.375 Å space and were centered on the center site of host molecules. The box dimensions were (10.674 Å × 4.481 Å × 3.231 Å); (15.282 Å × 1.22 Å × 1.105 Å) and (−1.577 Å × 2.765 Å × 5.737 Å) for α-CYD, β-CYD and γ-CYD, respectively [35].

2.3. 3D structure-based pharmacophore modeling

Pharmacophore is defined as an ensemble of steric that is important to ensure the optimal molecular interactions with a specific target and to trigger or inhibit its biological responses [36]. The 3D structure-based pharmacophore modeling was performed to assess the pharmacophore profile of ligands in the active pocket of the receptor. The validation of the interaction feature model was obtained based on a previous study [31]. The ligands were screened by the validated 3D structure-based pharmacophore modeling.
Table 2
The docking simulation results of active molecules in the ligand-binding domain (LBD) of the target proteins.

Molecule name	Chemical structure	ΔG Ki Hydrogen bonds	
		(kcal/mol) (μM)	
		6M0J 7BQY 6M0J 7BQY	
Arbidol	![Arbidol](image)	-6.16 N/A 30.74 N/A	Ser373 N/A
Inhibitor N3	N/A	-6.00 N/A 40.26 N/A	Phe 140, Gly143, Cys145, His164, Glu166, Gln189, Thr190
N-trans-Feruloyloctopamine	![N-trans-Feruloyloctopamine](image)	-6.03 -7.60 38.00 2.70	Cys336, Gly339, Asn343 Ser144, Glu166, Gln192
p-Coumaroyltiramine	![p-Coumaroyltiramine](image)	-6.50 -8.06 17.17 1.23	Ser371, Ser373 Tyr54, Gln192
n-Caffeoyltiramine	![n-Caffeoyltiramine](image)	-6.28 -7.51 25.04 1.13	Ala344, Ser373, Arg509 Ser144, His163, Gln192
Terrestrimine	![Terrestrimine](image)	-5.95 -8.12 43.38 1.11	Asn343 Glu166, Gln189, Gln192
Terrestriamide	![Terrestriamide](image)	-7.02 -8.70 7.21 0.417	Phe342, Asn343, Trp436 Tyr54, Glu166, Asp187, Gln189, Thr190
Bavachinin	![Bavachinin](image)	-7.14 -9.68 5.85 0.083	Cys336, Asn343 Gly143, Glu166, Asp187

(continued on next page)
Molecule name	Chemical structure	ΔG (kcal/mol)	K_i (μM)	Hydrogen bonds
Neobavaisoflavone	![Chemical structure](image)	-7.27	4.67	Ser373, Thr190, Gln192
Isobavachalcone	![Chemical structure](image)	-6.69	12.50	Cys336, Asn343, Gln192
4′-O-Methylbavachalcone	![Chemical structure](image)	-7.00	7.44	Val367, Tyr54, Glu166, Gln192
Psoralidin	![Chemical structure](image)	-7.84	1.79	Ser371, Ser373, His164, Thr190
Corylifol A	![Chemical structure](image)	-7.79	1.96	—
4′-hydroxyderricin	![Chemical structure](image)	-6.31	23.60	Asn343, Ser371, Gln166, Gln192
Xanthoangelol	![Chemical structure](image)	-6.77	10.86	Trp436, Gln189, Thr190, Gln192
Xanthoangelol B	![Chemical structure](image)	-6.31	23.54	Arp364, Ser371, Gln192

(continued on next page)
Molecule name	Chemical structure	ΔG (kcal/mol)	K_i (μM)	Hydrogen bonds
Xanthoangelol C	![Chemical structure](image)	-6.45	-8.46	18.86, 0.626 Cys336, Ser371, Gln189, Gln192
Xanthoangelol D	![Chemical structure](image)	-5.85	-7.66	51.92, 2.41 Phe342, Val367, Asn440, Glu166, Gln192
Xanthoangelol E	![Chemical structure](image)	-6.12	-7.75	32.39, 2.08 Cys336, Gly339, Asn142, Glu166, Gln192
Xanthoangelol F	![Chemical structure](image)	-7.12	-8.01	6.08, 1.35 Asn440, Glu166, Gln192
Xanthoangelol G	![Chemical structure](image)	-6.20	-8.14	28.67, 1.09 Asn440, His41, Glu166, Gln192
Tanshinone IIA	![Chemical structure](image)	-7.33	-8.73	4.22, 0.397 Ser371, Cys145, Glu166
Tanshinone IIB	![Chemical structure](image)	-6.72	-8.49	11.87, 0.60 Cys336, Gly339, Glu166
Methyl Tanshinonate	![Chemical structure](image)	-6.95	-8.89	8.04, 0.303 Ser373, His163
Molecule name	Chemical structure	ΔG (kcal/mol)	K_i (μM)	Hydrogen bonds
-----------------	--------------------	-----------------------	------------	---
Cryptotanshinone	![Chemical structure](image1)	-7.47	3.33	Ser343, Ser371, Glu166
Tanshinone I	![Chemical structure](image2)	-6.95	0.291	Ser373, Glu166
Dihydrotanshinone I	![Chemical structure](image3)	-7.02	0.815	Ser343, Ser371, Glu166
Rosmariquinone	![Chemical structure](image4)	-7.38	0.289	Ser343, Glu166
Platyphyllenone	![Chemical structure](image5)	-6.84	0.906	Asp364, Tyr54, Glu166, Gln192
Hirsutenone	![Chemical structure](image6)	-6.54	2.23	Phe342, Asp364, Ser144, Gln192
Hirsutanonol	![Chemical structure](image7)	-5.86	51.07	Cys336, Phe338, Gly339, Phe342, Asn343
Oregonin	![Chemical structure](image8)	-4.72	347.88	Asn343, Ala344, Arg509
Rubranol	![Chemical structure](image9)	-5.56	84.27	Cys336, Gly339, Asn343

(continued on next page)
Table 2 (continued)

Molecule name	Chemical structure	ΔG (kcal/mol)	K_i (μM)	Hydrogen bonds
		6MUJ 7RQY	6MUJ 7RQY	
Rubranoside A	![Chemical structure](image1)	-4.72 -7.26	348.39 4.79	Asp364, Ser371, Ser373, Ser144, His163, Gln192
Rubranoside B	![Chemical structure](image2)	-4.98 -6.54	223.74 16.06	Asn343, His163, Gln192
Amentoflavone	![Chemical structure](image3)	-7.56 -10.54	2.85 0.019	Asp364, Val367, Gly143, Ser144, Thr190
Herbacetin	![Chemical structure](image4)	-5.98 -8.23	41.41 0.925	Asp364, Tyr54, Arg188, Gln189, Gln192
Gallocatechin gallate	![Chemical structure](image5)	-5.80 -8.67	55.60 0.44	Cys336, Phe338, Asn343, Ser371, Tyr54, His163
Pectolinarin	![Chemical structure](image6)	-4.86 -7.72	274.19 2.19	Asn343, Val367, Glu166, Thr190, Gln192
Rhoifolin	![Chemical structure](image7)	-5.95 -7.39	43.37 3.83	Asn343, Ser373, His41, Gly143, Gln189, Gln192

(continued on next page)
Molecule name	Chemical structure	ΔG (6MUJ)	K_i (μM)	Hydrogen bonds
Emodin	![Emodin](https://example.com/chemical-structure)	-6.26	25.61	Ser371, Ser373, Gln189, Gln192
Eckol	![Eckol](https://example.com/chemical-structure)	-5.78	57.92	Phe342, Asn343, Arg509, Ser144, His163, Arg188
Dioxinodehydroeckol	![Dioxinodehydroeckol](https://example.com/chemical-structure)	-6.14	31.79	Asp364, Am142, His163, His164, Asp187
2′-phloroeckol	![2′-phloroeckol](https://example.com/chemical-structure)	-6.38	20.96	Cys336, Ser371, Leu141, Ser144, His163, Glu166
7′-phloroeckol	![7′-phloroeckol](https://example.com/chemical-structure)	-5.94	44.51	Asn343, Ser373, Arg509, Glu166, Gln192
Fucodiphloroethol G	![Fucodiphloroethol G](https://example.com/chemical-structure)	-4.48	516.29	Cys336, Gly339, Glu340, Asp364, Val367, His163, His164, Glu166
Dieckol	![Dieckol](https://example.com/chemical-structure)	-6.30	23.98	Asn343, Ser373, Arg509, Gln189, Gly143, Glu166, Gln192

(continued on next page)
Molecule name	Chemical structure	ΔG (kcal/mol)	Ki (μM)	Hydrogen bonds
Phlorofucofuroeckol A	![Phlorofucofuroeckol A](image)	-7.06	6.33	Asn343, Asp364, His41, Thr190
Bilobetin	![Bilobetin](image)	-6.74	11.49	Ser373, Arg509, Gly143, His163, Thr190
Ginkgetin	![Ginkgetin](image)	-6.73	11.63	Asn343, Ser371, Gly143, His163, His164, Thr190
Sciadopitysin	![Sciadopitysin](image)	-6.71	12.12	Asn343, Arg509, Gly143, His163, Thr190
Apigenin	![Apigenin](image)	-6.30	23.96	Phe342, Ser371, Ser373, His164, Gln192
Luteolin	![Luteolin](image)	-6.40	20.24	Asp364, Val367, His164, Glu166, Gln192
Quercetin	![Quercetin](image)	-6.28	25.09	Cys336, Val367, His164, Glu166, Asp187, Thr190

(continued on next page)
pharmacophore modeling method that was performed using LigandScout 4.4 Advanced algorithms [34].

2.4. ADME parameter prediction

The ligands with potency for inhibiting the receptors involved in viral replication were investigated for their bioavailability potency for oral administration and toxicity properties using a free web tool to identify pharmacokinetics, namely SwissADME (http://www.swissadme.ch/) [37].

2.5. Toxicity and drug-likeness analysis

The ligands were further evaluated for various types of toxicity properties such as tumorigenic, mutagenic, irritant, reproductive effectiveness, and drug similarity utilizing OSIRIS DataWarrior V5.2.1 [38].

2.6. Protein structure flexibility

To evaluate the effect of ligand interactions to the individual amino acid residues of SARS-CoV-2, MPro, and (S) receptor, RMSF was calculated using CABS-flex 2.0 with 100 cycles [39]. The RMSF profile of the best ligand-receptor was also compared to the apo-protein (ligand-free protein), and standard ligand-receptor complexes.

2.7. Complexion energy calculation

The selected docked conformations of the best ligand/α, β, and

![Fig. 1. Ligand interaction diagram of (a) inhibitor N3 and (b) terrestriamide in Ligand Binding Pocket (LBD) of SARS-CoV-2 MPro (PDB ID: 7BQY).](image-url)
γ–CYD inclusion complexes were then optimized geometrically by using the semi-empirical quantum mechanical PM6 and PM7 methods. The most stable conformation of the ligand-CYD inclusion complex was chosen based on the energy of complexation (\(\Delta E\)) which is defined as the difference between the heat of the complex formation and the heat of formation of the free molecules involved which is represented by the formula \[\Delta E = E_{\text{LIG/CYD}} - (E_{\text{LIG}} + E_{\text{CYD}})\]

where \(E_{\text{LIG/CYD}}, E_{\text{LIG}},\) and \(E_{\text{CYD}}\) represent the heat of formation of the inclusion complex, the isolated ligand molecule, and isolated cyclo-dextrin molecule, respectively.

3. Results

The entire ligands were docked into the most likely binding site of the receptor based on the defined coordinates. It is an important parameter to devote each ligand to having a binding site of greater affinity. Molecular docking simulation assessed the ligands until the convergence to the minimum energy was reached. The molecular docking studies on receptor-ligand interactions were focused on the amino acid residues of the active site. The most favorable conformation of each ligand was evaluated by calculating the affinity scoring function (free binding energy) (\(\Delta G\)), inhibition constant (Ki), and hydrogen bonds as presented in Table 2. The value of \(\Delta G\) of ligand was ranged from −11.50 to −4.17 kcal/mol and −7.84 to −3.37 kcal/mol for ligand-Mpro and ligand-(S) receptor complexes, respectively. The value of Ki was ranged from 0.004 to 877.78 \(\mu\)M and 1.79 to 3400 \(\mu\)M for ligand-Mpro and ligand-(S) protein complexes, respectively. The most favorable ligand was terrestriamide with \(\Delta G:\) −7.02 kcal/mol; Ki: 7.21 \(\mu\)M and \(\Delta G:\) −8.70 kcal/mol; Ki: 0.417 \(\mu\)M for Mpro and (S) receptor. This result was obtained not only based on the lowest \(\Delta G\) but also based on the ADME parameters, toxicity, and drug-likeness analysis. Furthermore, terrestriamide interacted with the key residues at the active site of the Mpro receptor, namely, Glu166, Gln189, and Thr190 that similar to inhibitor N3 as a standard inhibitor as can be seen in Fig. 1. Terrestriamide also had hydrogen interactions with active residues of (S) receptors such as Phe342 and Asn343. The interactions of terrestriamide and arbidol (standard inhibitor) are depicted in Fig. 2. These results indicated that these drugs could be the most favorable ligands in the
The ligand-binding domain (LBD) of the receptors.

The structure-based best-docked ligand conformation of terrestriamide was evaluated to investigate the specific molecular interaction in the active pocket of the receptors. The molecular properties including hydrophobic, hydrogen bond donor, and hydrogen acceptor are presented as yellow spheres, green, and red arrows (spheres), respectively, as shown in Fig. 3 and Fig. 4 for Mpro and (S) receptor, respectively. Pharmacophore modeling was used to investigate the crucial parts of each ligand that affect the molecular behavior of the receptors. This modeling was according to the best-docked ligand conformations. Terrestriamide has shown hydrophobic interactions with the active site of the receptor. This phenomenon happened due to the LBD of the receptor is predominantly formed as the hydrophobic cavity composed of amino acid residues. Terrestriamide as the most promising ligand has shown the hydrophobic interaction between the benzene ring with residues of Met 165 and Leu 167 in the Mpro complex. The hydrogen bond acceptor (HBA) occurred between the carboxyl group of residues Glu166 and Gln192. On other hand, hydrogen bond donor (HBD) happened between the hydroxyl group of Tyr54, Asp187, and Thr190 (Fig. 3). Furthermore, terrestriamide has shown hydrophobic interactions with the active site of the SARS-CoV-2 (S) receptor (PDB ID: 6M0J). Hydrophobic, hydrogen bond donor, and hydrogen bond acceptor interactions are represented as yellow spheres, green, and red arrows (spheres), respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 3
ADME parameters prediction results of selected active molecules. (MM: molecular weight; HBD: hydrogen bond donor; HBA: hydrogen bond acceptor, TPSA: topological polar surface area).

Molecule name	MM (g/mol)	x logP 3	HBD	HBA	TPSA (Å²)	CYP inhibitor
p-Coumaroyltyramine	283.32	2.72	3	3	69.56	CYP2D6, CYP3A4
n-Caffeoyltyramine	299.32	2.36	4	4	89.79	CYP2C9, CYP2D6, CYP3A4
Terrestriamide	327.33	2.32	3	5	95.86	CYP2C9, CYP3A4
Bavachinin	338.40	4.45	1	4	55.76	CYP2C19, CYP2C9, CYP2D6, CYP3A4
Nelorvosainflavone	322.35	4.40	2	4	70.67	CYP1A2, CYP2C9, CYP3A4
Isobavachalcone	324.37	5.10	3	4	77.76	CYP1A2, CYP2C9, CYP3A4
4’-O-Methylbavachalcone	352.42	5.76	1	4	55.76	CYP1A2, CYP2C19, CYP2C9, CYP3A4
Psoralidin	336.34	4.69	2	5	83.81	CYP1A2, CYP2C19, CYP2C9
Corylifol A	390.47	6.25	2	4	70.67	CYP2C19, CYP3A4
4’-hydroxyderricin	338.40	5.43	2	4	66.76	CYP1A2, CYP2C19, CYP2C9, CYP3A4
Xanthoangelol A	392.49	6.96	3	4	77.76	CYP1A2, CYP2C9, CYP3A4
Xanthoangelol B	408.49	5.97	4	5	97.99	CYP1A2, CYP2C9, CYP3A4
Xanthoangelol C	366.41	4.43	3	5	94.83	CYP1A2, CYP2C9, CYP3A4
Xanthoangelol F	406.51	7.29	2	4	66.76	CYP1A2, CYP2C9, CYP3A4
Xanthoangelol G	422.51	6.30	3	5	89.99	CYP1A2, CYP2C9, CYP3A4
Tanshinone IIA	294.34	4.33	0	3	47.28	CYP1A2, CYP2C19, CYP2C9, CYP2D6, CYP3A4
Tanshinone IIB	310.34	2.93	1	4	67.51	CYP1A2, CYP2C19, CYP2C9, CYP2D6, CYP3A4
Methyl Tanshinonate	338.35	3.20	0	5	73.58	CYP1A2, CYP2C19, CYP2C9, CYP3A4
Cryptotanshinone	296.36	3.80	0	3	43.37	CYP1A2, CYP2C19, CYP2C9, CYP3A4
Tanshinone I	276.39	3.69	0	3	47.28	CYP1A2, CYP2C19, CYP2C9, CYP3A4
Dihydrotanshinone I	278.30	3.16	0	3	43.37	CYP1A2, CYP2C19, CYP2C9, CYP2D6, CYP3A4
Romarquinione	282.38	4.88	0	2	34.14	CYP2C9
Platiphyllone	296.36	3.80	2	3	57.53	CYP1A2, CYP2C19, CYP2D6, CYP3A4
Hirsutetone	328.36	3.09	4	5	97.99	CYP1A2, CYP2C9, CYP2D6, CYP3A4
Amentoflavone	538.46	5.04	6	10	181.80	–
2’-phloroeckol	496.38	3.27	8	12	198.76	CYP2C9
Dieckol	742.55	4.87	11	18	287.14	CYP2C9
Phlorofucofuroeckol A	602.46	4.66	9	14	232.13	CYP2C9
Bilobetin	552.48	5.36	5	10	170.80	CYP2C9
Ginkgetin	566.51	5.69	4	10	159.80	CYP2C9
Sciodipitysin	580.54	6.02	3	10	148.80	–
Apigenin	270.24	3.02	3	5	90.90	CYP1A2, CYP2D6, CYP3A4
Luteolin	286.24	2.53	4	6	111.13	CYP1A2, CYP2D6, CYP3A4
Quercetin	302.24	1.54	5	7	151.36	CYP1A2, CYP2D6, CYP3A4

Fig. 4. 3D and (b) 2D structure-based pharmacophore modeling of the best-docked pose of terrestriamide in SARS-CoV-2 (S) receptor (PDB ID: 6M0J). Hydrophobic, hydrogen bond donor, and hydrogen bond acceptor interactions are represented as yellow spheres, green, and red arrows (spheres), respectively.
interactions between benzene rings of Leu 441, Phe342, Leu 368, and Phe 374. The prop-2-enamide group indicated HBA with Trp436 and HBD with Asn343 (Fig. 4). This result denoted that the pharmacophore of this ligand was predominantly derived from the hydrophobic and hydrogen interactions in the cavity of the receptor and showed a very high agreement with the docking simulation result, especially for the key residue interaction.

The prediction of ADME parameters of ligands was performed for ligands that have lower values of ΔG than inhibitor and/or arbidol as standard inhibitors as can be seen in Table 3. This prediction is based on Lipinski’s rule of Five regarding the active entity administered orally with four physicochemical parameters (molar mass ≤ 500, logP ≤ 5, hydrogen bond donor ≤ 5, and hydrogen bond acceptors ≤ 10) correlated with 90% of the drug administered orally that has reached phase II of a clinical trial [41]. The Topological Polar Surface Area (TPSA), Csp 3 fraction, and cytochrome (CYP) inhibitor were also evaluated. ADME

Table 4
Toxicity and drug-likeness analysis of selected active molecules.

Molecule Name	Drug likeness	Mutagenic	Tumorigenic	Reproductive Effective	Irritant
p-Coumaroyltyramine	0.26453	None	None	None	None
n-Caffeoyltyramine	0.26453	None	None	None	None
Terrestriamide	1.05980	None	None	None	None
Bavachinin	–0.16737	None	None	None	None
Neobavaisoflavone	–0.41739	None	None	None	None
Isobavachalcone	–0.47336	None	None	None	None
4′-O-Methylbavachalcone	–0.26787	None	None	Low	High
Psoralidin	–0.53359	None	None	High	None
Corylifol A	–1.91870	None	None	None	None
4′-hydroxysyringic acid	–0.26787	None	None	None	None
Xanthoangelol	–1.86470	None	None	None	None
Xanthoangelol B	–13.10500	None	None	None	None
Xanthoangelol C	–2.77470	None	None	None	None
Xanthoangelol F	–1.65310	None	None	None	None
Xanthoangelol G	–12.94700	None	None	None	None
Tanshinone IIA	–7.78620	None	None	High	None
Tanshinone IIIB	–12.76000	None	None	High	None
Methyl Tanshinonate	–9.93700	None	None	High	None
Cryptotanshinone	–7.22240	None	None	High	None
Tanshinone I	–3.70550	None	None	High	None
Dihydrotanshinone I	–3.11350	None	None	High	None
Rosmarinquinone	–7.77380	None	None	High	None
Platyplyphenone	–4.92300	None	None	None	None
Hirutensone	–4.92300	None	None	None	None
Amentoflavone	0.28194	None	None	None	None
2′-phloroeckol	–2.20540	Low	None	None	None
Dieckol	–2.20540	Low	None	None	None
Chlorofuroeckol A	–2.06380	Low	None	None	None
Bilobetin	0.40331	None	None	None	None
Ginkgetin	0.40331	None	None	None	None
Sciadopitysin	0.40331	None	None	None	None
Apigenin	0.28194	High	None	None	None
Luteolin	0.28194	None	None	None	None
Quercetin	–0.08283	High	High	None	None

Fig. 5. RMSF profile of apo-protein and Mpro-ligand (inhibitor N3 and terrestriamide) complexes.
from 34.14 to 287.14 Å. The other ligands have appropriate properties for oral administration based on Lipinski’s rule. For TPSA, the degree of polarity was also predicted. The value of TPSA was ranged from 34.14 to 140 Å². Thus, this ligand has good biotransformation during oral absorption due to the ADME guideline requirement (TPSA < 410 Å², good intestinal absorption) [42]. Most of the ligands interact with CYPA2 and CYP3A4, presenting a high gastrointestinal absorption [43].

The results of the toxicity and drug-likeness property analysis are shown in Table 4 for selected ligands. Among all screened ligands, terrestriamide possessed the highest drug likeness property, followed by bilobetin, ginkgetin, sciadopitysin, apigenin, and luteolin. Based on the training dataset employed by OSIRIS DataWarrior V5.2.1, the ligands with a higher or positive value of drug-likeness are considered as good drug candidates. Terrestriamide as the best docking conformation, non-mutagenic, and non-tumorigenic ligand was further subjected to protein flexibility and inclusion complex studies.

To assess the flexibility profile of individual amino acid residues of SARS-CoV-2 M-pro and (S) receptor, root means square fluctuation (RMSF) was determined using CABS-flex 2.0 based on the protein dynamics. The dynamics structures of a protein represent its biological functions. The CABS models utilize the asymmetric Metropolis and Monte Carlo dynamics scheme, which meets the requirements of microscopic reversibility [39]. The M-pro (7BQY)-inhibitor and M-pro (7BQY)-terrestriamide complexes formed the disruption of hydrogen bonds with Glu166, Gln189, and Thr190 residues thus showed a higher fluctuation compared to apo-protein of M-pro (7BQY) as can be seen in Fig. 5. The increase of fluctuation is also shown at key residues of (S) receptor (6M0J) caused by arbidol and terrestriamide as the inhibitors. Residue numbers 368–373 have a fluctuation movement while the apo-protein structure was more stable as depicted in Fig. 6. Thus, terrestriamide has the potential to be an inhibitor due to the similarity with the standard inhibitors (inhibitor N3 and arbidol) with a higher value of flexibility.

To optimize the drug delivery system of terrestriamide, we employed the inclusion complex with cyclodextrins (CDs). Cyclodextrins (CDs) are cyclic oligosaccharides containing a hydrophilic shell and a hydrophobic core with a hydroxyl group coated to the outside and a glucose residue connected to the inside structure (Fig. 7). CYD improves stability, solubility, and bioavailability according to low immunogenicity and nontoxic properties [44,45]. The inclusion complexes between terrestriamide with α-CYD, β-CYD, and γ-CYD obtained from PM6 and PM7 calculations were stabilized in a water environment. The free energy values of terrestriamide/CYDs from the PM6 and PM7 methods were slightly similar that ranged from −5.35 to −4.33 kcal/mol and −5.32 to −4.30 kcal/mol for PM6 and PM7, respectively (Table 5 and Table 6). The inclusion complex calculation yielded terrestriamide/γ-CYD as the most favorable inclusion complex due to the lowest value of complexation energy (ΔE) with −197.68 and −269.37 kcal/mol for PM6 and PM7 calculation methods, respectively (see Table 7).

The guest molecule (terrestriamide) was located slightly centered to the γ-CYD as the host molecule in all complex conformations, as shown in Fig. 8a and Fig. 8b based on the existence of methyl groups at the primary hydroxyl group of all glucose units (C2 and C3 positions) of CYD. After the insertion process of terrestriamide into the cavity of CYD, the methoxyl groups at the C2 and C3 position of γ-CYD move deeper to the cavity according to the existence of methyl groups at the primary hydroxyl group of all glucose units (C2 and C3 positions) of CYD. The generated terrestriamide/γ-CYD obtained from PM7 calculation is a preferable complex with a lower ΔE compared to the inclusion complex generated from the PM6 calculation. The carboxyl and hydroxyl groups fall into the cavity from PM7 calculation methods, respectively (see Table 7).

The increase of fluctuation is also shown at key residues of (S) receptor (6M0J) caused by arbidol and terrestriamide as the inhibitors. Residue numbers 368–373 have a fluctuation movement while the apo-protein structure was more stable as depicted in Fig. 6. Thus, terrestriamide has the potential to be an inhibitor due to the similarity with the standard inhibitors (inhibitor N3 and arbidol) with a higher value of flexibility.

To optimize the drug delivery system of terrestriamide, we employed the inclusion complex with cyclodextrins (CDs). Cyclodextrins (CDs) are cyclic oligosaccharides containing a hydrophilic shell and a hydrophobic core with a hydroxyl group coated to the outside and a glucose residue connected to the inside structure (Fig. 7). CYD improves stability, solubility, and bioavailability according to low immunogenicity and nontoxic properties [44,45]. The inclusion complexes between terrestriamide with α-CYD, β-CYD, and γ-CYD obtained from PM6 and PM7 calculations were stabilized in a water environment. The free energy values of terrestriamide/CYDs from the PM6 and PM7 methods were slightly similar that ranged from −5.35 to −4.33 kcal/mol and −5.32 to −4.30 kcal/mol for PM6 and PM7, respectively (Table 5 and Table 6). The inclusion complex calculation yielded terrestriamide/γ-CYD as the most favorable inclusion complex due to the lowest value of complexation energy (ΔE) with −197.68 and −269.37 kcal/mol for PM6 and PM7 calculation methods, respectively (see Table 7).

The guest molecule (terrestriamide) was located slightly centered to the γ-CYD as the host molecule in all complex conformations, as shown in Fig. 8a and Fig. 8b based on the existence of methyl groups at the primary hydroxyl group of all glucose units (C2 and C3 positions) of CYD. After the insertion process of terrestriamide into the cavity of γ-CYD, the methoxyl groups at the C2 and C3 position of γ-CYD move deeper to the cavity according to the existence of carboxyl groups of terrestriamide. Thus, the terrestriamide moved deeper inside the cavity. The generated terrestriamide/γ-CYD obtained from PM7 calculation is a preferable complex with a lower ΔE compared to the inclusion complex generated from the PM6 calculation. The carboxyl and hydroxyl groups fall into the cavity from PM7 calculation methods, respectively (see Table 7).

The guest molecule (terrestriamide) was located slightly centered to the γ-CYD as the host molecule in all complex conformations, as shown in Fig. 8a and Fig. 8b based on the existence of methyl groups at the primary hydroxyl group of all glucose units (C2 and C3 positions) of CYD. After the insertion process of terrestriamide into the cavity of γ-CYD, the methoxyl groups at the C2 and C3 position of γ-CYD move deeper to the cavity according to the existence of carboxyl groups of terrestriamide. Thus, the terrestriamide moved deeper inside the cavity. The generated terrestriamide/γ-CYD obtained from PM7 calculation is a preferable complex with a lower ΔE compared to the inclusion complex generated from the PM6 calculation. The carboxyl and hydroxyl groups fall into the cavity from PM7 calculation methods, respectively (see Table 7).
4. Discussion

This study aimed to assess the medicinal plants in combating SARS-CoV main protease (M\text{pro}) and spike (S) receptors. The medicinal plants were chosen based on their proven inhibitory activity against previous SARS-CoV due to the whole genome of SARS-CoV-2 shares about 80% identity with SARS-CoV [46].

Tribulus terrestris L. as the best selected medicinal plant showed promising inhibitory effects for SARS-CoV M\text{pro} with IC\text{50} value ranged from 15.8 to 70.1 μM. The inhibitory activity was associated with the presence of polar substituent including alcohol and ketone on the methylene groups (C7' and C8') [22]. Based on these findings, we assessed the inhibitory activity of main bioactive molecules in *Tribulus terrestris* L. in the SARS-CoV-2 M\text{pro} and (S) protein using *in silico* methods. The molecular docking simulation yielded terrestriamide ((E)-3-(4-hydroxy-3-methoxyphenyl)-N-[2-(4-hydroxyphenyl)-2-oxoethyl]prop-2-enamide) as the best bioactive constituent due to the lowest value of free binding energy and inhibitory constant. Figs. 1 and 2 showed that terrestriamide generated five and three hydrogen bonds with M\text{pro} and (S) protein, respectively. The hydrogen bonds were occurred predominantly within hydroxyl and ketone groups.

Table 5
The molecular docking results at 298.15 K. The geometrical structures of terrestriamide and CYDs were performed by the semiempirical quantum mechanical method of PM6.

No	Guest/Host	RMSD	Cluster	ΔG (kcal/mol)	Lowest	Average
1	Terrestriamide/α-CYD	1.33	9	−4.94	−4.33	
2	Terrestriamide/β-CYD	1.74	11	−4.86	−4.48	
3	Terrestriamide/γ-CYD	1.33	26	−5.68	−5.35	

Table 6
The molecular docking results at 298.15 K. The geometrical structures of terrestriamide and CYDs were performed by the semiempirical quantum mechanical method of PM7.

No	Guest/Host	RMSD	Cluster	ΔG (kcal/mol)	Lowest	Average
1	Terrestriamide/α-CYD	1.57	17	−5.10	−4.47	
2	Terrestriamide/β-CYD	1.15	16	−5.02	−4.30	
3	Terrestriamide/γ-CYD	0.36	24	−5.79	−5.32	
hydrogen bonds stabilize the ligand-protein interactions. The pharmacophore modeling also supports the results by presenting the HBD and HBA within the hydroxyl and ketone groups in terrestriamide, while the benzene groups pose the hydrophobic interactions. These results indicate that the hydroxyl and ketone groups act as the essential parts and could generate the biological activity in the target receptors and meet agreement with previous studies in SARS-CoV. To identify the antagonist effect of terrestriamide in the receptors, flexibility profile of individual amino acid residues of SARS-CoV-2 Mpro and (S) receptor was determined. Terrestriamide poses a higher value of flexibility compared to the standard inhibitors. The drug delivery properties, the best bioactive molecule was complexed into the cyclodextrin (CYD) as the carrier. The inclusion complex was favorable for terrestriamide with γ–CYD based on the highest negative value of free binding energy (ΔE) and complexation energy (ΔE).

Similar to the docking simulation and pharmacophore modeling, hydroxyl groups were also plays crucial role in binding with the CYD and keep the terrestriamide within the cavity of CYD. Thus, this bioactive molecule could be used for further analysis such as in vitro and in vivo tests.

5. Conclusions

In this study, secondary metabolites from medicinal plants that have been reported to inhibit other coronaviruses could act as a potential inhibitor to SARS-CoV-2 main protease (Mpro) and spike (S) receptors. From the screening, terrestriamide appears to be the best ligand having high potency against the target receptors via the lowest free binding energy and meets the ADME and drug-likeness requirements. The inhibitory properties of terrestriamide are also supported by the protein flexibility profile compared to the standard inhibitors. The drug delivery system of terrestriamide could be facilitated by the inclusion complex of γ–cyclodextrin (γ–CYD) due to the lowest value of complexation energy (ΔE). Based on this finding, we can conclude that terrestriamide has the potential to inhibit SARS-CoV-2 Mpro and S receptors. Hence, this molecule is worth being proposed for further in vitro and in vivo studies against Mpro and S receptors of SARS-CoV-2 to validate the results.

No	Molecule	Isolated molecule	PM6	PM7	
		E (kcal/mol)	ΔE (kcal/mol)	E (kcal/mol)	ΔE (kcal/mol)
1	Terrestriamide	–138.67	–141.33	–134.00	–136.77
2	α–CYD	–1550.12	–1555.74	–1529.00	–1533.48
3	β–CYD	–1555.74	–1556.67	–1529.00	–1533.48
4	γ–CYD	–1624.38	–1628.26	–1626.52	–1630.40
5	Terrestriamide/γ–CYD	–1674.52	–197.08	–1674.88	–196.11
6	α–CYD	–1786.14	–97.35	–1792.35	–95.28
7	Terrestriamide/γ–CYD	–1960.73	–197.68	–2038.96	–269.37

Table 8

The distance of hydrogen bonds between terrestriamide as guest and γ–CYD as the host obtained from PM6 and PM7 inclusion complexes.

No	Method	Hydrogen Bond	Distance (Å)
1	PM6	Oγ(CYD)…H(γ(CD))	2.07
		Oα(CYD)…H(α(CD))	2.15
		Oβ(CYD)…H(β(CD))	2.92
		Oγ(CD)…H(γ(CD))	3.01
2	PM7	Oγ(CYD)…H(γ(CD))	1.93
		Oα(CYD)…H(α(CD))	2.98
		Oβ(CYD)…H(β(CD))	3.28

Fig. 8. Hydrogen bond distance in 1:1 terrestriamide/γ–CD inclusion complex. (a) terrestriamide/γ–CD generated from semi-empirical quantum mechanical PM6 method, (b) terrestriamide/γ–CD generated from semi-empirical quantum mechanical PM7 method.
Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

1. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xie J, Wei Y, Wu W, Xie X, Yin W, Li H, Lin M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Q, Jin Q, Wang J, Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395:497–504.

2. Adil MT, Rahman B, Whitehead D, Jain Y, AL-Tian O, Rashid F, Munasinghe A, Jambulingam P. SARS-CoV-2 and the pandemic of COVID-19. Postgrad Med J 2021;97:110–6. https://doi.org/10.1136/postgradmedj-2020-138386.

3. WHO. Weekly operational update on COVID-19, world heal. Organ. 2020. p. 1–10. https://www.who.int/publications/m/item/weekly-operational-update-on-covid-19--2022--february-19.

4. Machhi J, Herskovitz J, Senan AM, Dutta D, Nath B, Olenyuk MD, Blomberg WR, Meigs DD, Hasan M, Patel M, Kline P, Chang RCC, Chang L, Gendelman HE, Kevadia BD. The natural history, pathology, and clinical manifestations of SARS-CoV-2 infections. J Neuroimmune Pharmacol 2020;15:359–86. https://doi.org/10.1007/s11481-020-09944-5.

5. Wu PCT, Huang Y, Lau SKF, Yuen KY. Coronavirus genomics and bioinformatics analysis. Virus 2010;2:1805. https://doi.org/10.1186/1749-7563-2-1805.

6. Gorbalenya AE, Baker SC, Baric RS, de Groot RJ, Drosten C, Gulyaeva AA, Nippon Y, Lau SKP, Yuen KY. Coronavirus genomics and bioinformatics analysis. Virus 2010;2:1805. https://doi.org/10.1186/1749-7563-2-1805.

7. Chen Y, Liu Q, Guo D. Emerging coronaviruses: genome structure, replication, and pathogenesis. J Med Virol 2020;92:418–28. https://doi.org/10.1002/jmv.25288.

8. Ullrich S, Nitsche C. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus SARS-CoV-2. J Neuroimmune Pharmacol 2020;15:824. https://doi.org/10.1007/s11481-020-09944-5.

9. Poon LLM, Samborskiy DV, Sidorov IA, Sola I, Ziebuhr J. The species Severe acute respiratory syndrome coronavirus: classifying 2019-nCoV and naming SARS-CoV-2. Nat. Microbiol. 2020;5:536–44. https://doi.org/10.1038/s41564-020-0695-z.

10. Chen Y, Liu Q, Guo D. Emerging coronaviruses: genome structure, replication, and pathogenesis. J Med Virol 2020;92:418–28. https://doi.org/10.1002/jmv.25288.

11. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, Müller MA, Drosten C, Pöhlmann S, Poon LLM, Samborskiy DV, Sidorov IA, Sola I, Ziebuhr J. The species Severe acute respiratory syndrome coronavirus: classifying 2019-nCoV and naming SARS-CoV-2. Nat. Microbiol. 2020;5:536–44. https://doi.org/10.1038/s41564-020-0695-z.

12. Khailany RA, Safdar M, Ozaslan M. Genomic characterization of a novel SARS-CoV-2 strain from a single patient with COVID-19. Theor Biol Med Model 2020;17:8. https://doi.org/10.1186/s12976-020-00326-1.

13. Wells MJ, Ogborn C, Lynne R, Buczkowski C, Cotter KD. A new tool for predicting drug transporters. J Int Antimicrob Agents 2020;55:105972. https://doi.org/10.1016/j.iana.2020.105992.

14. Sanders JM, Monogue ML, Jodlowski TZ, Cutrell JB. Phenolic phytochemical displaying SARS-CoV papain-like protease inhibition from Tribulus terrestris fruits. Biol Pharm Bull 2014;37:1021–4. https://doi.org/10.1248/bpb.b14-00321.
[47] Park Ji Young, et al. Tanshinones as selective and slow-binding inhibitors for SARS-CoV cysteine proteases. Bioorg Med Chem 2012;20(19). https://doi.org/10.1016/j.bmc.2012.07.038.

[48] Park Ji Young, et al. Diarylheptanoids from Alnus japonica inhibit papain-like protease of severe acute respiratory syndrome coronavirus. Biol Pharm Bull 2012; 35(11). https://doi.org/10.1248/bpb.b12-00623.

[49] Park Ji Young, et al. Dieckol, a SARS-CoV 3CLpro inhibitor, isolated from the edible brown algae Ecklonia cava. Bioorg Med Chem 2013;21(13). https://doi.org/10.1016/j.bmc.2013.04.026.

[50] Ryu Young Bae, et al. Biflavonoids from Torreya nucifera displaying SARS-CoV 3CLpro inhibition. Bioorg Med Chem 2010;18(22). https://doi.org/10.1016/j.bmc.2010.09.035.

[51] Weng Jing Ru. Antiviral activity of Sambucus FormosanaNakai ethanol extract and related phenolic acid constituents against human coronavirus NL63. Virus Res 2019;273. https://doi.org/10.1016/j.virusres.2019.197767.