DNA methylation is not involved in dietary restriction induced lifespan extension in adult Drosophila

TING LIAN†, UMA GAUR†, QI WU†, JIANBO TU†, BOYUAN SUN†, DEYING YANG†, XIAOLAN FAN†, XUEPING MAO† AND MINGYAO YANG†*

1 Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
(Received 30 June 2017; revised 7 November 2017; accepted 27 November 2017)

Summary
Dietary restriction (DR) is widely regarded as a viable intervention to extend lifespan and healthspan in diverse organisms. The precise molecular regulatory mechanisms are largely unknown. Epigenetic modifications are not stable upon DR and also keep changing with age. Here, we employed whole genome bisulfite sequencing to determine the DNA methylation changes upon DR in adult Drosophila. Our results indicate that although a low level of DNA methylation exists in the adult Drosophila genome, there is no significant difference in DNA methylation levels upon DR compared to unrestricted flies. This suggests that other epigenetic components such as histone modifications might be altered by DR.

1. Introduction
Dietary restriction (DR), which is the reduction of calorie intake without malnutrition, has been reported to extend lifespan from yeast to primates (Fontana & Partridge, 2015). It is also involved in protecting against age-related diseases in mice (Fontana et al., 2010), reducing the mortality rate in primates (Colman et al., 2014) and even in delaying the physiological changes that come with aging in humans (Cava & Fontana, 2013). While the molecular mechanisms have been investigated for decades, the precise architecture remains elusive.

Epigenetic modifications are important regulators of transcription networks. DNA methylation is influenced by the environment including dietary intervention. Dietary interventions, including starvation and protein deprivation, can alter DNA methylation patterns with aging (Zampieri et al., 2015; Kim et al., 2016), and DR has been reported to protect global hypomethylation during aging, thereby delaying age-related changes (Hahn et al., 2017; Mattocks et al., 2017).

In this study, we asked two questions: first, whether DNA methylation exists in adult Drosophila; and, second, is DNA methylation affected by DR (Urieli-Shoval et al., 1982; Lyko et al., 2000; Bird, 2002; Dunwell et al., 2013; Panikar et al., 2017). We used whole genome bisulfite sequencing (BS-seq) to characterize DNA methylomes in adult Drosophila upon DR and control (unrestricted food) conditions. Our results revealed that a low level of DNA methylation exists in the adult Drosophila genome, but there is no significant difference in DNA methylation level upon DR compared to an unrestricted diet. This suggests that the other epigenetic modifications might underpin DR effects in Drosophila.

2. Materials and methods
(i) Fly food and husbandry
DR and fully fed control medium were prepared in accordance with a previous report (Bass et al., 2007). The wild-type Dahomey strain was reared under standard laboratory husbandry conditions. Adult female flies were divided into two groups, which were fed with DR medium and fully fed medium. Flies were reared at 25 °C on a 12 h light:12 h dark cycle, at a constant humidity of 65%.

(ii) Sample collection
A total of 80 flies were collected from the DR and fully fed groups at the age of 7 days, 20 flies per condition, respectively (two replicates). In order to...

* Corresponding author: Mingyao Yang. E-mail: yangmingyao@sicau.edu.cn
† These authors contributed equally to this work.
maintain the biological variability in the samples, 20 female flies in each condition were mixed and used to extract genomic DNA by DNAeasy Blood and Tissue Kit (Qiagen). The quality of the gDNA was monitored on agarose gels, and DNA purity was checked using the NanoPhotometer® spectrophotometer (IMPLEN). DNA concentration was measured using Qubit® DNA Assay Kit in Qubit 2.0 Fluorimeter (Life Technologies). To assess the efficiency of bisulfite conversion, lambda phage sequence was added to the sample. Ten flies from both DR and fully fed groups were collected at the age of 7 days and flash-frozen for RNA isolation.

(iii) Sequencing of bisulfite-converted DNA libraries

Library construction, bisulfite conversion and sequencing were performed at Beijing Novogene, China, using Illumina Hiseq 2500 platform, following standard protocols. Clean reads were processed and filtered to remove adaptor sequences, sequences with larger than 10% of Ns, duplicate sequences, contamination and low-quality reads using BGI in-house pipeline. For methylation analysis, we performed alignments of bisulfite-treated reads to the reference genome (Drosophila melanogaster, version BDGP5.23, downloaded from ftp://ftp.ensemblgenomes.org/pub/release-23/metazoa/fasta/drosophila_melanogaster/dna/) using the Bismark package (version 0.12.5) with default parameters (Krueger & Andrews, 2011). The reference genome was first transformed into a bisulfite-converted version (C-to-T and G-to-A converted) and then indexed using bowtie2 (Langmead & Salzberg, 2012). Sequence reads were also transformed into fully bisulfite-converted versions (C-to-T and G-to-A converted) before they were aligned to similarly converted versions of the genome in a directional manner. Only uniquely mapped reads were considered for analysis.

From these data, we determined the converted and unconverted cytosines at each position in the D. melanogaster genome assembly, accounting for the fact that each read comes from a bisulfite reaction on one or the other strand. To estimate the overall rate of bisulfite conversion in unmethylated bases in our experiments, we used the C-to-T conversion rate in the lambda phage DNA, in which all cytosines should have been converted. We found that 99.72% (DR) and 99.70% (fully fed) of cytosines were converted in the lambda DNA. At the same time, Q20 and Q30 values were also calculated: Q20 and Q30 are phred scores representing the correct recognition rate of bases to be over 99% and 99.9%, respectively.

To identify the individual cytosines that were methylated, we compared the number of converted and unconverted bases at each cytosine site. To identify the methylation site, we modelled the sum of methylated counts as a binomial (Bin) random variable with the methylation rate, $r_{ij} = s_{ij}^{readm}+s_{ij}^{readc}(1-r_{ij})$, and employed a sliding-window approach, which is conceptually similar to approaches that have been used for bulk whole genome bisulfite sequencing (http://www.bioconductor.org/packages/2.13/bioc/html/bsseq.html). With window size $w = 3000$ bp and step size 600 bp (Smallwood et al., 2014), the sum of methylated and unmethylated read counts in each window were calculated. Methylation level (ML) for each cytosine (C) site shows the fraction of methylated Cs, and is defined as: $ML(C) = \frac{readm(C)}{readm(C) + readc(C)}$. calculated ML was further corrected with the bisulfite non-conversion rate according to a previous study (Lister et al., 2013). Given the bisulfite non-conversion rate r, the corrected ML was estimated as: $ML_{corrected} = \frac{ML}{1-r}$.

To identify genes with different methylation levels between the two conditions, we first identified differentially methylated regions (DMRs) using the swDMR software package (Wang et al., 2015). To identify candidate genes and pathways related to these DMRs, GO (Young et al., 2010) and KEGG (Kanehisa et al., 2007) enrichment analyses were conducted.

(iv) cDNA synthesis and q-PCR

Total RNA was extracted using an RNasy Mini Kit (Qiagen) from the mixed population of flies under DR and fully fed conditions. RNase-free DNase I (TaKaRa) was used to remove genomic DNA from the RNA samples. The quality and integrity of RNA was assessed using NanoDrop™ 2000 Spectrophotometers (Thermo). cDNA was synthesized using PrimeScript RT Master Mix (TaKaRa). Quantitative real-time PCR (q-PCR) was performed using SYBR Premix Ex Taq (TaKaRa) using a CFX96 Real-Time PCR Detection System (Bio-Rad). The primers used for q-PCR are listed in Table S1. All measurements were performed in parallel with a negative control (no cDNA template), and each RNA sample was analyzed in triplicate. Drosophila Act5C was used as an endogenous control gene. Relative expression level was calculated with $2^{-\Delta\Delta Ct}$ method (Livak & Schmittgen, 2001).

(v) Statistical analysis

For DMR identification we used Fisher’s test with a significance threshold level for false discovery rate (FDR) of 5%. For all the q-PCR results, student’s t test was used for calculating the significance level. The p-value significance thresholds were as follows: $*p < 0.05$, $**p < 0.01$, $***p < 0.001$.

(vi) Data availability

Sequencing data generated for this study have been deposited in the NCBI Sequence Read Archive (SRA) as PRJNA318935 (SRP073522).
3. Results

(i) Low level cytosine methylation exists in the adult *Drosophila* genome

DR can extend *Drosophila* lifespan (11.9% in median lifespan) compared to fully fed control flies (Fig S1).

To test if DNA methylation is associated with this difference in lifespan, we used whole genome bisulfite sequencing to measure it. A total of 7.98 and 8.46 million clean reads (after appropriate quality checks) were obtained from DR and fully fed flies, respectively, yielding a total sequence output of 22.81 Giga bases (11.12 Gb for DR flies, 11.69 Gb for fully fed flies) and accounting for a combined 34.69× (DR flies) and 36.79× (fully fed flies) coverage of the 143.73 Mb fly genome. To estimate the overall rate of bisulfite conversion of unmethylated bases, C-to-T conversion rate of lambda phage DNA was used. It was identified that 99.72 (DR flies) and 99.70% (fully fed flies) of cytosines were converted in the lambda DNA, indicating a very low false negative rate. A total of 63.74 and 65.09% clean reads were mapped to unique *D. melanogaster* genome regions in DR and fully fed flies, respectively (Table S2), where more than 80% of methylated sites were covered by five or more reads (Fig S2).

The percentage of methylation in each condition was almost identical, which is mCGs 0.27 and 0.28, mCHGs 0.26 and 0.28, and mCHHs 0.28 and 0.29 in DR and fully fed flies, respectively (Table S2). This indicates that only a small proportion of the cytosines were methylated, with a higher proportion of methylated cytosines occurring at CHH sites (Fig 1a). In addition, the CpT dinucleotide site was most often methylated near mCHH sites in both groups (Fig 1b).

(ii) No significant difference in cytosine methylation level between DR and fully fed flies genome

To quantify the extent of methylation of genomic features, we calculated the cytosine methylation density across the entire genome and in different genomic elements. Results showed that cytosine methylation exhibited a mosaic distribution; the methylation extent was highest in gene promoters (Fig 2a); and there was no significant difference between methylation levels in DR and fully fed conditions (Fig 2b). Cytosine methylation fluctuated dramatically across the genome and the cytosine methylation density on the two DNA strands was roughly symmetrical (Fig 2c). Furthermore, a 54 bp length DMR was identified (with a Benjamin–Hochberg corrected p-value < 0.01, FDR < 0.05) by swDMR. Although we could not find any genes located in this DMR, it was noticed that within the DMR, the DR group showed a significantly lower cytosine methylation than the fully fed control group (Table S3).

(iii) Other epigenetic modifications are involved in the DR benefits

In order to identify possible factors mediating DR benefits apart from DNA methylation, we analysed two genes which are involved in the histone modifications, *dSir2* and *Grappa* (Rogina & Helfand, 2004; Shanower et al., 2005). Both these genes were known to be involved in lifespan regulation (List

![Fig. 1. DNA methylation pattern between DR and fully fed flies. (a) Fraction of mCs identified in each methylation context. (b) Sequence characteristics of 9 bp near mCHH sites, the first and second base after methylated cytosines are indicated by numbers.](https://doi.org/10.1017/S0016672317000064)
Based on q-PCR results, we observed a significant increase of mRNA expression in both genes upon DR (Fig 3). As reported in a previous study, the increased level of of dSir2 mRNA is concomitant with histone levels upon DR (Feser et al., 2010). Also, a positive correlation is reported between methylation of the lysine 79 residue of H3 and mRNA level of Grappa (Shanower et al., 2005). Taken together, these data suggest that histone modifications might be involved in mediating the adult fly’s longevity in response to DR.

4. Discussion

DR extends lifespan in diverse organisms, and a handful of molecular mechanisms have been implicated. However, the involvement of epigenetic mechanisms has just begun to be explored. Here, we first characterized the methylome of adult Drosophila upon DR compared with a fully fed control diet. We found very low cytosine methylation levels and a mosaic distribution pattern in the genome. CG, CHG and CHH co-exist in the genome, which is consistent with other invertebrates (Bonasio et al., 2012; Beeler et al., 2014; Drewell et al., 2014). Furthermore, we also found rare cytosine methylations in UTR regions and in snRNA, miRNA, ncRNA, snoRNA, rRNA and pseudogene loci as observed in ants (Bonasio et al., 2012). We did not detect evidence of significant methylation in annotated transposable elements or in other repeat sequences in D. melanogaster (as with Nasonia vitripennis; Beeler et al., 2014).

The contribution of epigenetic mechanisms, especially cytosine methylation to complex phenotypes is not direct, and has only just begun to be studied. Based on our data, no significant epigenetic differences are observed during DR and fully fed conditions despite the comparably higher sequencing coverage and mapping rate used in our study (Table S4). However, we note that the high similarities of cytosine methylation patterns between DR and fully fed
conditions may be due to the retention of some cytosine methylation marks under the diet effect (Beeler et al., 2014). We should not exclude the possible involvement of epigenetic mechanisms in diet-induced lifespan extension. For example, in the social insect honeybee, female larval development into the queen with longer lifespan or worker bee with its shorter lifespan is determined by diet and has associated DNA methylation changes (Ford, 2013). Histone modification is also likely to be involved in DR-induced longevity. Both grappa and disir2 have been considered to be histone modifiers required for lifespan extension (List et al., 2009; Slade & Staveley, 2016), but the exact effects of cytosine methylation, gene regulation and diet-induced longevity need further exploration.

The authors thank Professor Douglas Armstrong for his comments on and corrections to the manuscript. The authors also thank the technical support from Novogene-Beijing in China. This work was supported by the National Natural Science Foundation of China (31771338) and the ‘Thousand Talents Program’ in Sichuan (000433).

Declarations of interest

None.

Supplementary material

The online supplementary material can be found available at https://doi.org/10.1017/S0016672317000064.

References

Bass, T. M., Grandison, R. C., Wong, R., Martinez, P., Partridge, L. & Piper, M. D. (2007). Optimization of dietary restriction protocols in Drosophila. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences 62,1071–1081.

Beeler, S. M., Wong, G. T., Zheng, J. M., Bush, E. C., Remnant, E. J., Oldroyd, B. P. & Drewell, R. A. (2014). Whole-genome DNA methylation profile of the jewel wasp (Nasonia vitripennis). G3: Genes Genomes Genetics 4,383–388.

Bird, A. (2002). DNA methylation patterns and epigenetic memory. Genes & Development 16,6–21.

Bonasio, R., Li, Q., Lian, J., Mutti, N. S., Jin, L., Zhao, H., Zhang, P., Wen, P., Xiang, H. & Ding, Y. (2012). Genome-wide and caste-specific DNA methylomes of the ants Camponotus floridanus and Harpegnathos saltator. Current Biology 22,1755–1764.

Cava, E. & Fontana, L. (2013). Will calorie restriction work in humans? Aging (Albany NY) 5,507–514.

Colman, R. J., Beasley, T. M., Kemnitz, J. W., Johnson, S. C., Weindruch, R. & Anderson, R. M. (2014). Caloric restriction reduces age-related and all-cause mortality in rhesus monkeys. Nature Communications 5,3557.

Drewell, R. A., Bush, E. C., Remnant, E. J., Wong, G. T., Beeler, S. M., Stringham, J. L., Lim, J. & Oldroyd, B. (2014). The dynamic DNA methylation cycle from egg to sperm in the honey bee Apis mellifera. Development 141,2702–2711.

Dunwell, T. L., McGuffin, L. J., Dunwell, J. M. & Pfeifer, G. P. (2013). The mysterious presence of a 5-methylcytosine oxidase in the Drosophila genome: possible explanations. Cell Cycle 12,3357–3365.

Fester, J., Truong, D., Das, C., Carson, J. J., Kieft, J., Harkness, T. & Tyler, J. (2010). Elevated histone expression promotes life span extension. Molecular Cell 39,724–735.

Fontana, L. & Partridge, L. (2015). Promoting health and longevity through diet: from model organisms to humans. Cell 161,106–118.

Fontana, L., Partridge, L. & Longo, V. D. (2010). Extending healthy life span – from yeast to humans. Science 328,321–326.

Ford, D. (2013). Honeybees and cell lines as models of DNA methylation and aging in response to diet. Experimental Gerontology 48,614–619.

Hahn, O., Grönke, S., Stubbs, T. M., Ficz, G., Hendrich, O., Krueger, F., Andrews, S., Zhang, Q. F., Wakelam, M. & Beyer, A. (2017). Dietary restriction protects from age-associated DNA methylation and induces epigenetic reprogramming of lipid metabolism. Genome Biology 18,56.

Kancheisa, M., Araki, M., Goto, S., Hattori, M., Hirakawa, M., Itoh, M., Katayama, T., Kawashima, S., Okuda, S. & Tokimatsu, T. (2007). KEGG for linking genomes to life and the environment. Nucleic Acids Research 36, D480–D484.

Kim, C. H., Lee, E. K., Choi, Y. J., An, H. J., Jeong, H. O., Park, D., Kim, B. C., Yu, B. P., Bhak, J. & Chung, H. Y. (2016). Short-term calorie restriction ameliorates genomewide, age-related alterations in DNA methylation. Aging Cell 15,1074–1081.

Krueger, F. & Andrews, S. R. (2011). Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics 27,1571–1572.

Langmead, B. & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature Methods 9,357–359.

List, O., Togawa, T., Tsuda, M., Elard, T., Aigaki, T. (2009). Overexpression of grappa encoding a histone methytransferase enhances stress resistance in Drosophila. Heredits 146,19–28.

Lister, R., Mukamel, E. A., Nery, J. R., Urich, M., Puddifoot, C. A., Johnson, N. D., Lucero, J., Huang, Y., Dworck, A. J. & Schultz, M. D. (2013). Global epigenomic reconfiguration during mammalian brain development. Science 341,1237905.

Livak, K. J. & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25,402–408.

Lyko, F., Ramsahoye, B. H. & Jaenisch, R. (2000). Development: DNA methylation in Drosophila melanogaster. Nature 408,538–540.

Mattocks, D. A., Menth, S. J., Shneyder, J., Ables, G. P., Sun, D., Richie, J. P., Locasale, J. W. & Nichenametla, S. N. (2017). Short term methionine restriction increases hepatic global DNA methylation in adult but not young male C57BL/6J mice. Experimental Gerontology 88,1–8.

Panikar, C. S., Paimangkar, M. S., Deshmukh, S., Abhyankar, V. & Deobagkar, D. D. (2017). DNA methylation changes in a gene-specific manner in different developmental stages of Drosophila melanogaster. Current Science 112,1165–1175.

Rogina, B. & Helfand, S. L. (2004). Sir2 mediates longevity in the fly through a pathway related to calorie restriction.
Urieli-Shoval, S., Gruenbaum, Y., Sedat, J. & Razin, A. (1982). The absence of detectable methylated bases in Drosophila melanogaster DNA. *FEBS Letters* **146**, 148–152.

Wang, Z., Li, X., Jiang, Y., Shao, Q., Liu, Q., Chen, B. & Huang, D. S. (2015). swDMR: a sliding window approach to identify differentially methylated regions based on whole genome bisulfite sequencing. *PLoS One* **10**, e0132866.

Young, M. D., Wakefield, M. J., Smyth, G. K. & Oshlack, A. (2010). Gene ontology analysis for RNA-seq: accounting for selection bias. *Genome Biology* **11**, 1–12.

Zampieri, M., Ciccarone, F., Calabrese, R., Franceschi, C., Burlke, A. & Caiafa, P. (2015). Reconfiguration of DNA methylation in aging. *Mechanisms of Ageing and Development* **151**, 60–70.