Genome sequence of the moderately halophilic bacterium *Salinicoccus carnicancri* type strain Crm^T (= DSM 23852^T)

Dong-Wook Hyun¹, Tae Woong Whon¹, Yong-Joon Cho¹, Jongskik Chun², Min-Soo Kim¹, Mi-Ja Jung¹, Na-Ri Shin¹, Joong-Yong Kim¹, Pil Soo Kim¹, Ji-Hyun Yun¹, Jina Lee¹, Sei Joon Oh¹, and Jin-Woo Bae¹*

¹Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Republic of Korea
²ChunLab, Inc., Seoul National University, Seoul, Republic of Korea

*Corresponding author: Jin-Woo Bae (baejw@khu.ac.kr)

Keywords: moderately halophilic, *Salinicoccus carnicancri*, *Staphylococcaceae*

Salinicoccus carnicancri Jung et al. 2010 belongs to the genus *Salinicoccus* in the family *Staphylococcaceae*. Members of the *Salinicoccus* are moderately halophilic and originate from various salty environments. The halophilic features of the *Salinicoccus* suggest their possible uses in biotechnological applications, such as biodegradation and fermented food production. However, the genus *Salinicoccus* is poorly characterized at the genome level, despite its potential importance. This study presents the draft genome sequence of *S. carnicancri* strain Crm^T and its annotation. The 2,673,309 base pair genome contained 2,700 protein-coding genes and 78 RNA genes with an average G+C content of 47.93 mol%. It was notable that the strain carried 72 predicted genes associated with osmoregulation, which suggests the presence of beneficial functions that facilitate growth in high-salt environments.

Introduction

The genus *Salinicoccus* in the family *Staphylococcaceae* was first proposed by Ventosa et al. (1990) and is defined as moderately halophilic, aerobic, Gram-positive, non-motile, non-sporulating, and heterotrophic cocci [1]. The genus name is derived from the Latin adjective *salinus*, saline, and the Greek masculine noun *kokkos*, meaning a grain or berry, i.e., saline coccus [2]. Most species in the genus *Salinicoccus* have been found in salty environments, such as fermented foods [3-5], solar salterns [1,6], salt mines [7,8], a salt lake [9], and saline soils [10,11]. All type strains of *Salinicoccus* species were characterized as halotolerant organisms, where NaCl concentrations of 2–20% (wt/vol) were suitable for growth [12-14].

These moderately halophilic bacteria can survive in salt-rich environments and grow optimally at 5–20% (wt/vol) NaCl [15]. These bacteria can utilize compatible solutes or osmolytes, such as carbohydrates, amino acid, polyols, betaines, and ectoines, by regulating their osmotic concentrations in high-salt content environmental conditions [16,17]. Therefore, these organisms may have biotechnological importance with possible applications in food biotechnology for the production of fermented food [18], in environmental biotechnology for the biodegradation of organic pollutants and the production of alternative energy [19].

Strain Crm^T (= DSM 23852 = JCM 15796 = KCTC 13301) is the type strain of the species *Salinicoccus carnicancri*. This strain was isolated from a traditional Korean fermented seafood, known as ‘ganjang-gejang,’ which is made from raw crabs preserved in soy sauce [20]. The species name was derived from the Latin nouns *caro carnis*, flesh, and *cancer -cri*, a crab, i.e., the flesh of a crab [2]. The strain can grow in 0–20% (wt/vol) NaCl with optimal growth at 12% (wt/vol) NaCl [20]. The present study summarizes the features of *S. carnicancri* strain Crm^T and provides an analysis of its draft genome sequence, which is the first reported genome sequence of a species in the genus *Salinicoccus*.

The Genomic Standards Consortium
Classification and features

A taxonomic analysis was conducted based on the 16S rRNA gene sequence. The representative 16S rRNA gene sequence of strain *S. carnicancri* CrmT was compared with the most recent release of the EzTaxon-e database [21]. The multiple sequence alignment program CLUSTAL W [22] was used to generate alignments with other gene sequences collected from databases. The alignments were trimmed and converted to the MEGA format before phylogenetic analysis. Phylogenetic consensus trees were constructed based on the aligned gene sequences using the neighbor-joining [23], maximum-parsimony [24], and maximum-likelihood [25] methods with 1,000 randomly selected bootstrap replicates using MEGA version 5 [26]. The phylogenetic analysis based on the 16S rRNA gene sequence showed that strain CrmT was most closely related to *Salinicoccus halodurans* W24T with 96.99% similarity. The phylogenetic consensus tree based on the 16S rRNA gene sequences indicated that strain CrmT was clustered within a branch containing other species in the genus *Salinicoccus* (Figure 1).

Strain CrmT (Table 1) was isolated from the fermented seafood ganjang-gejang during a project that investigated microbial communities in fermented foods, i.e., the Next-Generation BioGreen 21 Program (No. PJ008208) in Korea. Ganjang-gejang, with a NaCl (w/v) concentration of 24.5%, was produced by preserving scabbard crabs in soy sauce, garlic, and onions at –5°C for 4–5 days.

Figure 1. Phylogenetic consensus tree based on 16S rRNA gene sequences showing the relationship between *Salinicoccus carnicancri* strain CrmT and the type strains of other species in the genus *Salinicoccus*. The type strain of *Staphylococcus aureus* was used as an outgroup. The GenBank accession numbers for the 16S rRNA genes of each strain are shown in parentheses. Filled diamonds indicate identical branches present in the phylogenetic consensus trees constructed using the neighbor-joining (NJ), maximum-parsimony (MP), and maximum-likelihood (ML) algorithms. The numbers at the nodes represent the bootstrap values as percentages of 1,000 replicates and values <70% are not shown at the branch points. The scale bar represents 0.01 nucleotide change per nucleotide position.
S. carnicancri strain CrmT is a Gram-positive, moderately halophilic, non-motile, non-sporulating, and aerobic heterotrophic coccus with a diameter of 1.0–2.5 μm [20]. Figure 2 shows the morphological features of strain CrmT, which were obtained by scanning electron microscopy (SEM). Colonies were ivory-colored [20]. Growth occurred at 4–45°C, with an optimum of 30–37°C, and at pH values of 6.0–11.0, with an optimum of 7.0–8.0. The salinity range suitable for growth was 0–20% (w/v) NaCl, with an optimum of 12% (w/v) NaCl [20]. Strain CrmT contains menaquinone MK-6 as the predominant respiratory quinone [20]. The major fatty acids (>10% of total fatty acid) are anteiso-C₁₅:₀ (40.61%), iso-C₁₅:₀ (22.0%), and anteiso-C₁₇:₀ (12.12%) [20]. The major cellular polar lipids are phosphatidylglycerol and diphosphatidylglycerol [20]. Glycine and lysine are the major amino acid constituents of the cell-wall hydrolysate [20].

Genome sequencing and annotation

Genome project history

S. carnicancri strain CrmT was selected for sequencing because of its environmental potential as part of the Next-Generation BioGreen 21 Program (No.PJ008208). The genome project is deposited in the Genomes OnLine Database [40] and the genome sequence is deposited in GenBank. Sequencing and annotation were performed by ChunLab Inc., South Korea. A summary of the project information is shown in Table 2.

Growth conditions and DNA isolation

S. carnicancri strain CrmT was grown aerobically in marine 2216 (Marine medium, BBL), supplemented with 10% (w/v) NaCl at 30°C. Genomic DNA was extracted using a Wizard Genomic DNA Purification Kit (Promega A1120), according to the manufacturer’s instructions.

Genome sequencing and assembly

The genome of S. carnicancri CrmT was sequenced using a combination of a 454 Genome Sequencer FLX Titanium system (Roche Diagnostics) with an 8 kb paired end library, an Illumina Hiseq system with a 150 base pair (bp) paired end library, and a PacBio RS system (Pacific Biosciences). A total of 7,434,400 sequencing reads (443.6-fold genome coverage) were obtained using the Roche 454 system (187,030 reads; 12.1-fold coverage), Illumina Hiseq system (7,219,019 reads; 408.4-fold coverage), and PacBio RS system (28,351 reads; 23.1-fold coverage) combined. The Roche 454 pyrosequencing and Illumina sequencing reads were assembled using Roche gsAssembler 2.6 (Roche Diagnostics) and CLCbio CLC Genomics Workbench 5.0 (CLCbio), respectively. Table 2 shows the project information and its associated MIGS version 2.0 compliance levels [27].

Genome annotation

The open reading frames (ORFs) of the assembled genome were predicted using a combination of the Rapid Annotation using Subsystem Technology (RAST) pipeline [41] and the GLIMMER 3.02 modeling software package [42]. Comparisons of the predicted ORFs using the SEED [43], NCBI COG [44], NCBI Refseq [45], CatFam [46], Ez-Taxon-e [21], and Pfam [47] databases were conducted during gene annotation. RNAmmer 1.2 [48] and tRNAscan-SE 1.23 [49] were used to find rRNA genes and tRNA genes, respectively. Additional gene prediction analyses and functional annotation were performed using the Integrated Microbial Genomes - Expert Review (IMG-ER) platform [50].

Figure 2. Scanning electron microscopy images of S. carnicancri CrmT obtained using a SUPRA VP55 (Carl Zeiss) at an operating voltage of 15kV. The scale bars represents 200 nm (left) and 1 μm (right), respectively.
Table 1. Classification and general features of *Salinicoccus carnicancri* strain Crm\(^\text{T}\) according to the MIGS recommendations [27].

MIGS ID	Property	Term	Evidence code
	Domain	Bacteria	TAS [28]
	Phylum	Firmicutes	TAS [29-31]
	Class	Bacilli	TAS [32,33]
Current classification	Order	Bacillales	TAS [34,35]
	Family	Staphylococcaceae	TAS [36,37]
	Genus	*Salinicoccus*	TAS [1,38]
	Species	*Salinicoccus carnicancri*	TAS [20]
	Type strain	Crm\(^\text{T}\)	TAS [20]
Gram stain	Positive		TAS [20]
Cell shape	Cocci		TAS [20]
Motility	Non-motile		TAS [20]
Sporulation	Non-sporulating		TAS [20]
Temperature range	4–45°C		TAS [20]
Optimum temperature	30–37°C		TAS [20]
Salinity range	0–20% (w/v)		TAS [20]
Optimum salinity	12% (w/v)		TAS [20]
pH range	6–11		TAS [20]
Optimum pH	7–8		TAS [20]
Carbon source	Heterotroph		TAS [20]
Energy source	Not reported		TAS [20]
MIGS-6	Habitat	Fermented seafood (marinated crab)	TAS [20]
MIGS-6.1	Temperature	−5 to 5°C	IDA
MIGS-6.3	Salinity	20%	IDA
MIGS-22	Oxygen	Aerobic	TAS [20]
MIGS-15	Biotic relationship	Free-living	TAS [20]
MIGS-14	Pathogenicity	Unknown	
Biosafety level	1		
MIGS-23.1	Isolation	The traditional Korean fermented seafood ‘ganjang-gejang’ (Crabs preserved in soy sauce)	TAS [20]
MIGS-4	Geographic location	Republic of Korea	TAS [20]
MIGS-5	Sample collection time	August, 2010	NAS
MIGS-4.1	Latitude	Not reported	
MIGS-4.2	Longitude	Not reported	
MIGS-4.3	Depth	Not reported	
MIGS-4.4	Altitude	Not reported	

Evidence codes, as follows: IDA: inferred from direct assay; TAS: traceable author statement (i.e., a direct report exists in the literature); NAS: non-traceable author statement (i.e., not observed directly in a living, isolated sample, but based on a generally accepted property of the species, or anecdotal evidence). These evidence codes are from the Gene Ontology project [39].
Table 2. Genome sequencing project information.

MIGS ID	Property	Term
MIGS-31	Finishing quality	Improved high-quality draft
MIGS-28	Libraries used	454 PE library (8 kb insert size) and Illumina library
MIGS-28.2	Number of reads	7,434,400 sequencing reads
MIGS-29	Sequencing platforms	454 GS FLX Titanium, Illumina Hiseq, and PacBio RS system
MIGS-31.2	Sequencing coverage	443.60-fold coverage (12.1 × 454 pyrosequencing, 408.4 × Illumina, and 23.1 × PacBio)
MIGS-30	Assemblers	gsAssembler 2.6, CLC Genomics Workbench 5.0
MIGS-32	Gene calling method	GLIMMER 3.02
Genbank ID		ANAM010000000
Genbank Date of Release		January 2, 2013
GOLD ID		Gi21266
NCBI project ID		175941
Database: IMG-ER		2521172676
Source material identifier		DSM 23852, JCM 15796, KCTC 13301
Project relevance		Environmental and biotechnological

Genome properties

The draft genome sequence of *S. carinicancri* CrmT was 2,673,309 bp, which comprised three scaffolds that included 12 contigs. The G+C content was 47.93 mol% (Figure 3 and Table 3). RAST and GLIMMER predicted 2,778 coding sequences (CDSs) in the genome. Of the predicted ORFs, 2,700 ORFs were assigned to protein-coding genes. A total of 2,298 genes (82.72%) were assigned putative functions, whereas the remaining genes were annotated as hypothetical proteins. The genome contained 78 ORFs assigned to RNA genes, including 61 predicted tRNA genes, nine rRNA genes (three 5S rRNA, three 16S rRNA, and three 23S rRNA genes), and eight other RNA genes. The distributions of genes in the COG functional categories are presented in Table 4.

![Graphical map of the largest scaffold](image)

Figure 3. Graphical map of the largest scaffold, C792_Scaffold00001.1, which represented >99.6% of the chromosome. The smaller scaffolds of the chromosome are not shown. From bottom to top: genes on the forward strand (colored according to COG categories), genes on the reverse strand (colored according to COG categories), RNA genes (tRNAs = green, rRNAs = red, and other RNAs = black), GC content, and GC skew.

http://standardsingenomics.org
Table 3. Genome statistics.

Attribute	Value	% of total
Genome size (bp)	2,673,309	100.00%
DNA coding region (bp)	2,420,461	90.54%
DNA G+C content (bp)	1,279,282	47.93%
Total genes	2,778	100%
RNA genes	78	2.81%
rRNA operons	9	0.32%
Protein-coding genes	2,700	97.19%
Genes with predicted functions	2,298	82.72%
Genes in paralog clusters	1,850	66.59%
Genes assigned to COGs	2,255	81.17%
Genes assigned Pfam domains	2,333	83.98%
Genes with signal peptides	437	15.73%
Genes with transmembrane helices	679	24.44%
CRISPR repeats	1	

The total is based on either the size of the genome (bp) or the total number of protein-coding genes in the annotated genome.

Table 4. Numbers of genes associated with the 25 general COG functional categories.

Code	Value	%age	Description
J	152	5.6	Translation
A	0	0.0	RNA processing and modification
K	194	7.2	Transcription
L	120	4.4	Replication, recombination, and repair
B	1	0.0	Chromatin structure and dynamics
D	27	1.0	Cell cycle control, mitosis, and meiosis
Y	0	0.0	Nuclear structure
V	38	1.4	Defense mechanisms
T	75	2.8	Signal transduction mechanisms
M	126	4.7	Cell-wall/membrane biogenesis
N	6	0.2	Cell motility
Z	0	0.0	Cytoskeleton
W	0	0.0	Extracellular structures
U	35	1.3	Intracellular trafficking and secretion
O	71	2.6	Posttranslational modification, protein turnover, and chaperones
C	148	5.5	Energy production and conversion
G	189	7.0	Carbohydrate transport and metabolism
E	241	8.9	Amino acid transport and metabolism
F	77	2.9	Nucleotide transport and metabolism
H	120	4.4	Coenzyme transport and metabolism
I	83	3.1	Lipid transport and metabolism
P	152	5.6	Inorganic ion transport and metabolism
Q	53	2.0	Secondary metabolites biosynthesis, transport, and catabolism
R	346	12.8	General function prediction only
S	215	8.0	Function unknown

The total is based on the total number of protein-coding genes in the annotated genome.
Insights from the genome sequence

S. carnicancri Crm^T encoded 72 predicted genes associated with the biosynthesis of compatible solutes and the transport of osmolytes, such as choline-glycine betaine transporter (BetT) and periplasmic glycine betaine/choline-binding lipoprotein of an ABC-type transport system (OpuBC). Potentially, these genes are key factors that allow *S. carnicancri* to adapt to high-salt environments (e.g., salt-fermented food) by regulating the osmotic concentration. Further studies are required to elucidate the osmoregulation mechanism, which could facilitate biotechnological applications of this halophilic bacterium.

Acknowledgements

We gratefully acknowledge the help of Dr. Seong Woon Roh and Mr. Hae-Won Lee during SEM analysis (Jeju Center, Korea Basic Science Institute, Korea). This work was supported by a grant from the Next-Generation BioGreen 21 Program (No.PJ008208), Rural Development Administration, Republic of Korea.

References

1. Ventosa AM, Ruizberreraquero MC, Kocur F. M. *Salinicoccus roseus* gen. nov, sp. nov, a new moderately halophilic gram-positive coccus. *Syst Appl Microbiol* 1990; 13:29-33. http://dx.doi.org/10.1016/S0723-2020(11)80177-3

2. Euzeby JP. List of Bacterial Names with Standing in Nomenclature: a folder available on the Internet. *Int J Syst Bacteriol* 1997; 47:590-592. [PubMed](http://dx.doi.org/10.1099/00207713-47-2-590)

3. França L, Rainey FA, Nobre MF, da Costa MS. *Salinicoccus salsiraiae* sp. nov.: a new moderately halophilic gram-positive bacterium isolated from salted skate. *Extremophiles* 2006; 10:531-536. [PubMed](http://dx.doi.org/10.1007/s00792-006-0532-1)

4. Aslam Z, Lim JH, Im WT, Yasir M, Chung YR, Lee ST. *Salinicoccus jeotgali* sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. *Int J Syst Evol Microbiol* 2007; 57:633-638. [PubMed](http://dx.doi.org/10.1099/ijs.0.64586-0)

5. Pakdeeto A, Tanasupawat S, Thawai C, Moonmongmee S, Kudo T, Itoh T. *Salinicoccus siamensis* sp. nov., isolated from fermented shrimp paste in Thailand. *Int J Syst Evol Microbiol* 2007; 57:2004-2008. [PubMed](http://dx.doi.org/10.1099/ijs.0.64876-0)

6. Ventosa A, Marquez MC, Weiss N, Tindall BJ. Transfer of *Marinococcus hispanicus* to the genus *Salinicoccus as Salinicoccus hispanicus* comb. Nov. *Syst Appl Microbiol* 1992; 15:530-534. http://dx.doi.org/10.1016/S0723-2020(11)80112-8

7. Chen YG, Cui XL, Pukall R, Li HM, Yang YL, Xu LH, Wen ML, Peng Q, Jiang CL. *Salinicoccus kunmingensis* sp. nov., a moderately halophilic bacterium isolated from a salt mine in Yunnan, south-west China. *Int J Syst Evol Microbiol* 2007; 57:2327-2332. [PubMed](http://dx.doi.org/10.1099/ijs.0.64783-0)

8. Chen YG, Cui XL, Wang YX, Zhang YQ, Li QY, Liu ZX, Wen ML, Peng Q, Li WJ. *Salinicoccus albus* sp. nov., a halophilic bacterium from a salt mine. *Int J Syst Evol Microbiol* 2009; 59:874-879. [PubMed](http://dx.doi.org/10.1099/ijs.0.003251-0)

9. Gao M, Wang L, Chen SF, Zhou YG, Liu HC. *Salinicoccus kekensis* sp. nov., a novel alkaliphile and moderate halophile isolated from Keke Salt Lake in Qinghai, China. *Anton Leeuw Int J G* 2010; 98:351-357. [PubMed](http://dx.doi.org/10.1007/s10482-010-9449-x)

10. Wang X, Xue Y, Yuan S, Zhou C, Ma Y. *Salinicoccus halodurans* sp. nov., a moderate halophile from saline soil in China. *Int J Syst Evol Microbiol* 2008; 58:1537-1541. [PubMed](http://dx.doi.org/10.1099/ijs.0.65467-0)

11. Chen YG, Cui XL, Li WJ, Xu LH, Wen ML, Peng Q, Jiang CL. *Salinicoccus salitudinis* sp. nov., a new moderately halophilic bacterium isolated from a saline soil sample. *Extremophiles* 2008; 12:197-203. [PubMed](http://dx.doi.org/10.1007/s00792-007-0116-8)

12. Kampfer P, Arun AB, Busse HJ, Young CC, Lai WA, Rekha PD, Chen WM. *Salinicoccus sesuvii* sp. nov., isolated from the rhizosphere of Sesuvium portulacastrum. *Int J Syst Evol Microbiol* 2011; 61:2348-2352. [PubMed](http://dx.doi.org/10.1099/ijs.0.027524-0)

13. Qu Z, Li Z, Zhang X, Zhang XH. *Salinicoccus qingdaoensis* sp. nov., isolated from coastal seawater during a bloom of green algae. *Int J Syst

http://standardsingenomics.org

261
Salinicoccus carnicancrī type strain CrmT

Evol Microbiol 2012; 62:545-549. PubMed http://dx.doi.org/10.1099/ijis.0.030551-0

14. Ramana CV, Srinivas A, Subhash Y, Tushar L, Mukherjee T, Kiran PU, Sasikala C. Salinicoccus halitifaciens sp. nov., a novel bacterium participating in halite formation. Anton Leeuw Int J G 2013.

15. DasSarma SAP. Halophiles. In Encyclopedia of Life Sciences, Nature Publishing Group 2002; Volume 8:458-466.

16. Galinski EA. Compatible Solutes of Halophilic Eubacteria - Molecular Principles, Water-Solute Interaction, Stress Protection. Experientia 1993; 49:487-496. http://dx.doi.org/10.1007/BF01955150

17. Roberts MF. Organic compatible solutes of halotolerant and halophilic microorganisms. Saline Syst 2005; 1:5. PubMed http://dx.doi.org/10.1186/1746-1448-1-5

18. Margesin R, Schinner F. Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 2001; 5:73-83. PubMed http://dx.doi.org/10.1007/s0079200100184

19. Le Borgne S, Paniagua D, Vazquez-Duhalt R. Biodegradation of organic pollutants by halophilic bacteria and archaea. J Mol Microbiol Biotechnol 2008; 15:74-92. PubMed http://dx.doi.org/10.1159/000121323

20. Jung MJ, Kim MS, Roh SW, Shin KS, Bae JW. Salinicoccus carnicancrī sp. nov., a halophilic bacterium isolated from a Korean fermented seafood. Int J Syst Evol Microbiol 2010; 60:653-658. PubMed http://dx.doi.org/10.1099/ijis.0.012047-0

21. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716-721. PubMed http://dx.doi.org/10.1099/ijis.0.012047-0

22. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673-4680. PubMed http://dx.doi.org/10.1093/nar/22.22.4673

23. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406-425. PubMed

24. Kluge AGFF. Quantitative phyletics and the evolution of anurans. Syst Zool 1969; 18:1-32. http://dx.doi.org/10.2307/2412407

25. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368-376. PubMed http://dx.doi.org/10.1007/BF01734359

26. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28:2731-2739. PubMed http://dx.doi.org/10.1093/molbev/msr121

27. Field D, Garrity G, Gray T, Morrison N, Selengut J, Sterk P, Tatusova T, Thomson N, Allen MJ, Angiuoli SV, et al. The minimum information about a genome sequence (MIGS) specification. Nat Biotechnol 2008; 26:541-547. PubMed http://dx.doi.org/10.1038/nbt1360

28. Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 1990; 87:4576-4579. PubMed http://dx.doi.org/10.1073/pnas.87.12.4576

29. Gibbons NEMR. Proposals concerning the higher taxa of bacteria. Int J Syst Bacteriol 1978; 28:1-6. http://dx.doi.org/10.1099/00207713-28-1-1

30. Garrity GM, Holt JG. The Road Map to the Manual. In: Garrity GM, Boone DR, Castenholz RW (eds), Bergey's Manual of Systematic Bacteriology, Second Edition, Volume 1, Springer, New York, 2001, p. 119-169.

31. Murray RGE. The Higher Taxa, or, a Place for Everything...? In: Holt JG (ed), Bergey's Manual of Systematic Bacteriology, First Edition, Volume 1, Springer, New York, 2001, p. 119-169.

32. Ludwig WSK, Whitman WB. Class I. Bacilli class nov. In: De Vos P, Garrity G, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH, Whitman WB (eds). Bergey's Manual of Systematic Bacteriology, Second Edition, Volume 3, Springer-Verlag, New York 2009:p. 19-20.

33. List of new names and new combinations previously effectively, but not validly, published. List no. 132. Int J Syst Evol Microbiol 2010; 60:469. http://dx.doi.org/10.1099/ijis.0.022855-0

34. Prévot AR. Dictionnaire des Bactéries Pathogènes. In Hauduroy, Ehringer, Guillerot, Magrou, Prévot,
35. Skerman VBDMV. Sneath PHA Approved Lists of Bacterial Names. *Int J Syst Bacteriol* 1980; **30**:225-420. [Link](http://dx.doi.org/10.1099/00207713-30-1-225)

36. List of new names and new combinations previously effectively, but not validly, published. List no. 132. *Int J Syst Evol Microbiol* 2010; **60**:469-472. [Link](http://dx.doi.org/10.1099/ijs.0.022855-0)

37. Schleifer KH, Bell JA. Family VIII. *Staphylococcaceae* fam. nov. In: De Vos P, Garrity G, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH, Whitman WB (eds), Bergey's Manual of Systematic Bacteriology, Second Edition, Volume 3, Springer-Verlag, New York, 2009, p. 392.

38. Validation List no. 34. Validation of the publication of new names and new combinations previously effectively published outside the IJSB. *Int J Syst Bacteriol* 1990; **40**:320-321. [Link](http://dx.doi.org/10.1099/00207713-40-3-320)

39. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene Ontology: tool for the unification of biology. *Nat Genet* 2000; **25**:25. [PubMed](http://dx.doi.org/10.1038/75556)

40. Liolios K, Chen IM, Mavromatis K, Tavernarakis N, Hugenholtz P, Markowitz VM, Kyrpides NC. The Genomes On Line Database (GOLD) in 2009: status of genomic and metagenomic projects and their associated metadata. *Nucleic Acids Res* 2010; **38**:D346-D354. [PubMed](http://dx.doi.org/10.1093/nar/gkq985)

41. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formosa K, Gerdes S, Glass EM, Kubal M, et al. The RAST Server: rapid annotations using subspecies technologies. *BMC Genomics* 2008; **9**:75. [PubMed](http://dx.doi.org/10.1186/1471-2164-9-75)

42. Delcher AL, Bratke KA, Powers EC, Salzberg SL. Identifying bacterial genes and endosymbiont DNA with Glimmer. *Bioinformatics* 2007; **23**:673-679. [PubMed](http://dx.doi.org/10.1093/bioinformatics/btm009)

43. Overbeek R, Begley T, Butler RM, Choudhuri JV, Chuang HY, Cohoon M, de Crecy-Lagard V, Diaz N, Disz T, Edwards R, et al. The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. *Nucleic Acids Res* 2005; **33**:5691-5702. [PubMed](http://dx.doi.org/10.1093/nar/gki866)

44. Tatusov RL, Galperin MY, Natale DA, Koonin EV. The COG database: a tool for genome-scale analysis of protein functions and evolution. *Nucleic Acids Res* 2000; **28**:33-36. [PubMed](http://dx.doi.org/10.1093/nar/28.1.33)

45. Pruitt KD, Tatusova T, Brown GR, Maglott DR. NCBI Reference Sequences (RefSeq): current status, new features and genome annotation policy. *Nucleic Acids Res* 2012; **40**:D130-D135. [PubMed](http://dx.doi.org/10.1093/nar/gkr1079)

46. Yu C, Zavaljevski N, Desai V, Reifman J. Genome-wide enzyme annotation with precision control: catalytic families (CatFam) databases. *Proteins* 2009; **74**:449-460. [PubMed](http://dx.doi.org/10.1002/prot.22167)

47. Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL, Gunasekaran P, Ceric G, Forslund K, et al. The Pfam protein families database. *Nucleic Acids Res* 2010; **38**:D211-D222. [PubMed](http://dx.doi.org/10.1093/nar/gkq1079)

48. Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. *Nucleic Acids Res* 2007; **35**:3100-3108. [PubMed](http://dx.doi.org/10.1093/nar/gkm160)

49. Lowe TM, Eddy SR. tRNA: a program for improved detection of transfer RNA genes in genomic sequence. *Nucleic Acids Res* 1997; **25**:955-964. [PubMed](http://dx.doi.org/10.1093/nar/25.3.955)

50. Markowitz VM, Mavromatis K, Ivanova NN, Chen IM, Chu K, Kyrpides NC. IMG ER: a system for microbial genome annotation expert review and curation. *Bioinformatics* 2009; **25**:2271-2278. [PubMed](http://dx.doi.org/10.1093/bioinformatics/btp393)