Operational calculus for holonomic distributions in the framework of D-module theory

Toshinori Oaku

Abstract

Let f be a real polynomial of $x = (x_1, \ldots, x_n)$ and φ be a locally integrable function of x which satisfies a holonomic system of linear differential equations. We study the distribution $f^\lambda \varphi$ with a meromorphic parameter λ, especially its Laurent expansion and integration, from an algorithmic viewpoint in the framework of D-module theory.

1 Introduction

Let f be a non-constant real polynomial in $x = (x_1, \ldots, x_n)$ and φ be a locally integrable function on an open subset U of \mathbb{R}^n. Then φ can be regarded as a distribution (generalized function in the sense of L. Schwartz) on U. We assume that there exists a left ideal I of the ring D_n of differential operators with polynomial coefficients in x which annihilates φ on $U_f := \{ x \in U \mid f(x) \neq 0 \}$, i.e., $P\varphi$ vanishes on U_f for any $P \in I$. Moreover, we assume that $M := D_n/I$ is a holonomic D_n-module. In this situation, φ is called a (locally integrable) holonomic function or a holonomic distribution.

Let us consider the distribution $f^\lambda \varphi$ on U with a holomorphic parameter λ. This distribution can be analytically extended to a distribution-valued meromorphic function of λ on the complex plane \mathbb{C}. Such a distribution was systematically studied by Kashiwara and Kawai in [2] with f being, more generally, a real-valued real analytic function. Their investigation was focused on a special case where M has regular singularities but most of the arguments work without this assumption.

The main purpose of this article is to give algorithms to compute

1. A holonomic system for the distribution $f^{\lambda_0} \varphi$ with λ_0 not being a pole of $f^\lambda \varphi$.

2. A holonomic system for each coefficient of the Laurent series of $f^λ + \varphi$ about an arbitrary point.

3. Difference equations for the local zeta function $Z(\lambda) = \int_{\mathbb{R}^n} f^λ \varphi \, dx$.

As was pointed out in [2], an answer to the first problem provides us with an algorithm to compute a holonomic system for the product of two locally L^2 holonomic functions. Note that the product does not necessarily satisfies the tensor product of the two holonomic systems for both functions.

In Section 2, we review the theoretical properties of $f^λ \varphi$ mostly following Kashiwara [1] and Kashiwara and Kawai [2] in the analytic category; i.e., under a weaker assumption that f is a real-valued real analytic function and that φ satisfies a holonomic system of linear differential equations with analytic coefficients.

In Section 3, we give algorithms to compute holonomic systems considered in Section 2. As a byproduct, we obtain an algorithm to compute difference equations for the local zeta function, which was outlined in [4].

2 Theoretical background

Let $\mathcal{D}_{\mathbb{C}^n}$ be the sheaf on \mathbb{C}^n of linear partial differential operators with holomorphic coefficients, which is generated by the derivations $\partial_j = \partial x_j = \partial / \partial x_j$ $(j = 1, \ldots, n)$ over the sheaf $\mathcal{O}_{\mathbb{C}^n}$ of rings of holomorphic functions on \mathbb{C}^n, with the coordinate system $x = (x_1, \ldots, x_n)$ of \mathbb{C}^n.

We denote by $\mathcal{D} b$ the sheaf on \mathbb{R}^n of the Schwartz distributions. Assume that $f = f(x)$ is a nonzero real-valued real analytic function defined on an open connected set U of \mathbb{R}^n. Let φ be a locally integrable function on U. Then $f^λ \varphi$ is also locally integrable on U for any $\lambda \in \mathbb{C}$ with $\text{Re} \, \lambda \geq 0$, where $f^λ(x) = \max\{f(x), 0\}$.

Let \mathcal{M} be a holonomic $\mathcal{D}_{\mathbb{C}^n}$-module defined on an open set Ω of \mathbb{C}^n such that $U \subset \Omega \cap \mathbb{R}^n$. We say that a distribution φ is a solution of \mathcal{M} on U if there exist a section u of \mathcal{M} on U and a $\mathcal{D}_{\mathbb{C}^n}$-linear homomorphism $\Phi : \mathcal{D}_{\mathbb{C}^n} u \to \mathcal{D} b$ defined on U such that $\Phi(u) = \varphi$. As a matter of fact, we have only to assume that φ is a solution of \mathcal{M} on $U_f := \{x \in U \mid f(x) \neq 0\}$ and that \mathcal{M} is holonomic on $\Omega_f := \{x \in \Omega \mid f(x) \neq 0\}$.

2.1 Fundamental lemmas

Under the assumptions above, $f^λ \varphi$ is a $\mathcal{D}b(U)$-valued holomorphic function of λ on the right half-plane

$$\mathbb{C}_+ := \{\lambda \in \mathbb{C} \mid \text{Re} \, \lambda > 0\}.$$
In other words, let $\mathcal{OD}b$ be the sheaf on $\mathbb{C} \times \mathbb{R}^n \ni (\lambda, x)$ of distributions with a holomorphic parameter λ. Then $f_+^A \varphi$ belongs to

$$\mathcal{OD}b(\mathbb{C}_+ \times U) = \left\{ v(\lambda, x) \in \mathcal{D}b(\mathbb{C}_+ \times U) \mid \frac{\partial v}{\partial \lambda} = 0 \right\}.$$

Let s be an indeterminate corresponding to λ. The following lemma (Lemma 2.9 of [2]) plays an essential role in the following arguments.

Lemma 2.1 (Kashiwara-Kawai [2]) Let Ω be an open set of \mathbb{C}^n such that $V := \mathbb{R}^n \cap \Omega$ is non-empty. Assume $P(s) \in \mathcal{D}[\mathbb{C}^n(\Omega)[s]$ and $P(\lambda)(f_+^A \varphi) = 0$ holds in $\mathcal{OD}b(\mathbb{C}_+ \times V_f)$ with $V_f := \{ x \in V \mid f(x) \neq 0 \}$. Then $P(\lambda)(f_+^A \varphi) = 0$ holds in $\mathcal{OD}b(\mathbb{C}_+ \times V)$.

Let us generalize this lemma slightly. For a positive integer m, let us define a section $f_+^A \varphi$ of the sheaf $\mathcal{OD}b$ on $\mathbb{C}_+ \times U$ by

$$\langle f_+^A (\log f_+)^m \varphi, \psi \rangle = \int_{\{ x \in U \mid f(x) > 0 \}} \varphi(x) f(x)^A (\log f(x))^m \varphi(x) \psi(x) \, dx \quad (\forall \psi \in \mathcal{C}_0^\infty(U)),$$

where $\mathcal{C}_0^\infty(U)$ denotes the space of C^∞ functions on U with compact supports.

In fact, $f_+^A (\log f_+)^m \varphi$ is the m-th derivative of the distribution $f_+^A \varphi$ with respect to λ.

Lemma 2.2 Let Ω be an open set of \mathbb{C}^n such that $V := \mathbb{R}^n \cap \Omega$ is non-empty. Let $\varphi_0, \ldots, \varphi_m$ be locally integrable functions on V. Assume $P_k(s) \in \mathcal{D}[\mathbb{C}^n(\Omega)[s]$ $(k = 0, 1, \ldots, m)$ and

$$\sum_{k=0}^m P_k(\lambda)(f_+^A (\log f_+)^k \varphi_k) = 0 \quad (1)$$

holds in $\mathcal{OD}b(\mathbb{C}_+ \times V_f)$. Then (1) holds in $\mathcal{OD}b(\mathbb{C}_+ \times V)$.

Proof: We follow the argument of the proof of Lemma 2.9 in [2]. Let ϕ belong to $\mathcal{C}_0^\infty(V)$ with $K := \text{supp} \, \phi$. Let $\chi(t)$ be a C^∞ function of a variable t such that $\chi(t) = 1$ for $|t| \leq 1/2$ and $\chi(t) = 0$ for $|t| \geq 1$. Then we have

$$\left\langle \sum_{k=0}^m P_k(\lambda)(f_+^A (\log f_+)^k \varphi_k), \phi \right\rangle = \left\langle \sum_{k=0}^m P_k(\lambda)(f_+^A (\log f_+)^k \varphi_k), \chi(\frac{t}{\tau}) \phi \right\rangle$$

$$= \sum_{k=0}^m \int_V f_+^A (\log f_+)^k \varphi_k P_k(\lambda) \left(\chi(\frac{t}{\tau}) \phi \right) \, dx$$

3
Lemma 2.3 Let \(P_k(\lambda) \) denote the adjoint operator of \(P_k(\lambda) \). Let \(m_k \) be the order of \(P_k(s) \) and \(d_k \) be the degree of \(P_k(s) \) in \(s \). Then there exist constants \(C_k \) such that

\[
\sup_{x \in K} |tP_k(\lambda)(\chi(\frac{f(x)}{\tau})\phi(x))| \leq C_k(1 + |\lambda|)^{d_k \tau^{-m_k}} \quad (0 < \forall \tau < 1).
\]

Assume \(\text{Re} \lambda > \max\{m_k + 1 \mid 0 \leq k \leq m\} \) and \(0 < \tau < 1 \). Then we have

\[
\begin{align*}
\left| \int_{V} f^k_+ (\log f_+)^k \varphi_k^t P_k(\lambda)(\chi(\frac{f}{\tau})\phi) \, dx \right| & \leq C_k(1 + |\lambda|)^{d_k \tau^{-m_k}} \int_{\{x \in V \mid \log f_+ \leq \tau\}} |f^k_+ (\log f_+)^k \varphi_k(x)| \, dx \\
& \leq k!C_k(1 + |\lambda|)^{d_k \tau^{-m_k-1}} \int_{\{x \in V \mid \log f_+ \leq \tau\}} |\varphi_k(x)| \, dx
\end{align*}
\]

since \(|\log t|^k \leq k!t^{-1} \) holds for \(0 < t < 1 \). This implies

\[
\left\langle \sum_{k=0}^{m} P_k(\lambda)(f^k_+ (\log f_+)^k \varphi_k), \phi \right\rangle = \lim_{\tau \to +0} \sum_{k=0}^{m} \int_{V} f^k_+ (\log f_+)^k \varphi_k^t P_k(\lambda)(\chi(\frac{f}{\tau})\phi) \, dx = 0.
\]

The assertion of the lemma follows from the uniqueness of analytic continuation. \(\square \)

2.2 Generalized \(b \)-function and analytic continuation

We assume that there exists on \(\Omega \) a sheaf \(\mathcal{I} \) of coherent left ideals of \(\mathcal{D}_{\mathbb{C}^n} \) which annihilates \(\varphi \) on \(U_f = \{ x \in U \mid f(x) \neq 0 \} \), namely, \(P\varphi = 0 \) holds on \(W \cap U_f \) for any section \(P \) of \(\mathcal{I} \) on an open set \(W \) of \(\mathbb{C}^n \). We set \(\mathcal{M} = \mathcal{D}_{\mathbb{C}^n}/\mathcal{I} \) and denote by \(u \) the residue class of \(1 \in \mathcal{D}_X \) modulo \(\mathcal{I} \). In the sequel, we assume that \(\mathcal{M} \) is holonomic on \(\Omega_f = \{ z \in \Omega \mid f(z) \neq 0 \} \), i.e., that \(\text{Char}(\mathcal{M}) \cap \pi^{-1}(\Omega_f) \) is of dimension \(n \), where \(\text{Char}(\mathcal{M}) \) denotes the characteristic variety of \(\mathcal{M} \) and \(\pi : T^*\mathbb{C}^n \to \mathbb{C}^n \) is the canonical projection.

Let \(\mathcal{L} = \mathcal{O}_{\mathbb{C}^n}[f^{-1}, s]f^s \) be the free \(\mathcal{O}_{\mathbb{C}^n}[f^{-1}, s] \)-module generated by the symbol \(f^s \). Then \(\mathcal{L} \) has a natural structure of left \(\mathcal{D}_{\mathbb{C}^n}[s] \)-module induced by the derivation \(\partial_s f^s = s(\partial f/\partial x_i)f^{-1}f^s \). Let us consider the tensor product \(\mathcal{L} \otimes_{\mathcal{O}_{\mathbb{C}^n}} \mathcal{M} \) of \(\mathcal{O}_{\mathbb{C}^n} \)-modules, which has a natural structure of left \(\mathcal{D}_{\mathbb{C}^n}[s] \)-module.

Lemma 2.3 Let \(v \) and \(P(s) \) be sections of \(\mathcal{M} \) and \(\mathcal{D}_{\mathbb{C}^n}[s] \) respectively on an open subset of \(\Omega \). Then \(P(s)(f^s \otimes v) = 0 \) holds in \(\mathcal{L} \otimes_{\mathcal{O}_{\mathbb{C}^n}} \mathcal{M} \) if and only if \((f^{m-s} P(s)f^s)(1 \otimes v) = 0 \) holds in \(\mathbb{C}[s] \otimes_{\mathbb{C}} \mathcal{M} \) for a sufficiently large \(m \in \mathbb{N} \).
Proof: Set \(\mathcal{M}[s] = \mathbb{C}[s] \otimes_{\mathcal{O}} \mathcal{M} \), which has a natural structure of left module over \(\mathbb{C}[s] \otimes_{\mathcal{O}} \mathcal{D}_{\mathbb{C}} = \mathcal{D}_{\mathbb{C}}[s] \). Then we have \(\mathcal{L} \otimes_{\mathcal{O}[s]} \mathcal{M} = \mathcal{L} \otimes_{\mathcal{O}[s]} \mathcal{M}[s] \) as left \(\mathcal{D}_{\mathbb{C}}[s] \)-module. Let \(v \) be a section of \(\mathcal{M}[s] \). Since \(\mathcal{L} \) is isomorphic to \(\mathcal{O}[f^{-1}, s] \) as \(\mathcal{O}[s] \)-module, \(f^s \otimes v \) vanishes in \(\mathcal{L} \otimes_{\mathcal{O}[s]} \mathcal{M}[s] \) if and only if \(1 \otimes v \) vanishes in \(\mathcal{O}[f^{-1}, s] \otimes_{\mathcal{O}[s]} \mathcal{M}[s] \). First, let us show that this happens if and only if \(f^m v = 0 \) in \(\mathcal{M}[s] \) with some \(m \in \mathbb{N} \).

Let \(\rho : \mathcal{O}[s, t] \to \mathcal{O}[s, f^{-1}] \) be the homomorphism defined by \(\rho(h(s, t)) = h(s, f^{-1}) \) for \(h(s, t) \in \mathcal{O}[s, t] \). Let \(\mathcal{K} \) be the kernel of \(\rho \). Then we have an exact sequence

\[
\mathcal{K} \otimes_{\mathcal{O}[s]} \mathcal{M}[s] \to \mathcal{O}[s, t] \otimes_{\mathcal{O}[s]} \mathcal{M}[s] \xrightarrow{\rho \otimes \text{id}} \mathcal{O}[s, f^{-1}] \otimes_{\mathcal{O}[s]} \mathcal{M}[s] \to 0.
\]

Hence \(1 \otimes v \) vanishes in \(\mathcal{O}[s, f^{-1}] \otimes_{\mathcal{O}[s]} \mathcal{M}[s] \) if and only if there exists \(h(s, t) = \sum_{k=0}^{m} h_k(s) t^k \in \mathcal{K} \) such that \(1 \otimes v = h(s, t) \otimes v \) holds in \(\mathcal{O}[s, t] \otimes_{\mathcal{O}[s]} \mathcal{M}[s] \), which is equivalent to \(h_k(s)v = \delta_{0k}v \) \((k = 0, 1, \ldots, m) \) since \(\mathcal{O}[s, t] \) is free over \(\mathcal{O}[s] \). On the other hand, \(\sum_{k=0}^{m} h_k(s)f^{-k} = \rho(h(s, t)) = 0 \) implies

\[
0 = f^mh_0(s)v + f^{m-1}h_1(s)v + \cdots + fh_{m-1}(s)v + h_m(s)v = f^mv.
\]

Conversely, if \(f^m v = 0 \) for some \(m \in \mathbb{N} \), then we have \(1 \otimes v = f^{-m} \otimes f^m v = 0 \) in \(\mathcal{O}[s, f^{-1}] \otimes_{\mathcal{O}[s]} \mathcal{M} \).

Let \(P(s) \) be a section of \(\mathcal{D}_{\mathbb{C}}[s] \) of order \(m \). For \(i = 1, \ldots, n \),

\[
\partial_i(f^s \otimes v) = f^{s-1} \otimes (sf_i + f\partial_i)v = f^{s-1} \otimes (f^{1-s}\partial_i f^s)v
\]

holds in \(\mathcal{L} \otimes_{\mathcal{O}[s]} \mathcal{M}[s] \) with \(f_i = \partial f/\partial x_i \). This allows us to show that

\[
P(s)(f^s \otimes v) = f^{s-m} \otimes (f^{m-s}P(s)f^s)v
\]

holds in \(\mathcal{L} \otimes_{\mathcal{O}[s]} \mathcal{M}[s] \). (Note that \(f^{m-s}P(s)f^s \) belongs to \(\mathcal{D}_{\mathbb{C}}[s] \).) Summing up, we have shown that \(P(s)(f^s \otimes v) \) vanishes in \(\mathcal{L} \otimes_{\mathcal{O}[s]} \mathcal{M}[s] \) if and only if \((f^{l-s}P(s)f^s)v \) vanishes in \(\mathcal{M}[s] \) for some \(l \geq m \). \(\square \)

Lemma 2.3 with \(P(s) = 1 \) immediately implies

Proposition 2.4 Let \(\mathcal{M}[f^{-1}] := \mathcal{O}[f^{-1}] \otimes_{\mathcal{O}[s]} \mathcal{M} \) be the localization of \(\mathcal{M} \) with respect to \(f \), which has a natural structure of left \(\mathcal{D}_{\mathbb{C}} \)-module. Then the natural homomorphism \(\mathcal{L} \otimes_{\mathcal{O}[s]} \mathcal{M} \to \mathcal{L} \otimes_{\mathcal{O}[s]} \mathcal{M}[f^{-1}] \) is injective.

Proposition 2.5 Let \(P(s) \) be a section of \(\mathcal{D}_{\mathbb{C}}[s] \) on an open set \(\Omega \) of \(\mathbb{C}^n \) and suppose \(P(s)(f^s \otimes u) = 0 \) in \(\mathcal{L} \otimes_{\mathcal{O}[s]} \mathcal{M} \). Set \(V = U \cap \Omega \). Then \(P(\lambda)(f^s \varphi) = 0 \) holds in \(\mathcal{ODb}(\mathbb{C}^+ \times V) \).
Proof: Let $\mathcal{O}_{+\infty}Db$ be the sheaf on \mathbb{R}^n associated with the presheaf

$$\mathcal{O}_D b\{\{\lambda \in \mathbb{C} \mid \text{Re } \lambda > a\} \times W\}$$

for every open set W of \mathbb{R}^n, where the inductive limit is taken as $a \to \infty$. The \mathbb{C}-bilinear sheaf homomorphism

$$\mathcal{L} \times \mathcal{M} \ni (a(s)f^{s-m}, Pu) \mapsto (a(\lambda)f_{++}^{\lambda-m})P\varphi \in \mathcal{O}_{+\infty}Db$$

with $a(s) \in \mathcal{O}_X[s]$, $m \in \mathbb{N}$, $P \in \mathcal{D}_X$, which is well-defined and $\mathcal{O}_{\mathbb{C}^n}$-balanced on V_f such that $f_{++}^{\lambda-m}$ is real analytic there, induces a $\mathcal{D}_{\mathbb{C}^n}$-linear homomorphism

$$\Psi : \mathcal{L} \otimes_{\mathcal{O}_{\mathbb{C}^n}} \mathcal{M} \to \mathcal{O}_{+\infty}Db$$
on V_f such that $\Psi(a(s)f^{s-m} \otimes Pu) = a(\lambda)f_{++}^{\lambda-m}P\varphi$. In particular, if $P(s) \in \mathcal{D}_{\mathbb{C}^n}[s]$ satisfies $P(s)(f^s \otimes u) = 0$ in $\mathcal{L} \otimes_{\mathcal{O}_{\mathbb{C}^n}} \mathcal{M}$, then $P(\lambda)(f_{++}^{\lambda}\varphi) = 0$ holds in $\mathcal{O}_{+\infty}Db(V_f)$, hence also in $\mathcal{O}_{+\infty}Db(V)$ by Lemma 2.1. Since $f_{++}^{\lambda}\varphi$ belongs to $\mathcal{O}Db(\mathbb{C}_+ \times V)$, it follows that $P(f_{++}^{\lambda}\varphi) = 0$ holds in $\mathcal{O}Db(\mathbb{C}_+ \times V)$. This completes the proof. □

Kashiwara proved in [1] (Theorem 2.7) that on a neighborhood of each point p of Ω, there exist nonzero $b(s) \in \mathbb{C}[s]$ and $P(s) \in \mathcal{D}_{\mathbb{C}^n}[s]$ such that

$$P(s)(f^{s+1} \otimes u) = b(s)f^s \otimes u \quad \text{in } \mathcal{L} \otimes_{\mathcal{O}_{\mathbb{C}^n}} \mathcal{M}.$$

Such $b(s)$ of the smallest degree $b(s) = b_p(s)$ is called the (generalized) b-function for f and u at p.

Assume $p \in U$. Then by the proposition above,

$$P(\lambda)(f_{++}^{\lambda+1}\varphi) = b(\lambda)f_{++}^{\lambda}\varphi$$

holds in $\mathcal{O}Db(\mathbb{C}_+ \times V)$ with an open neighborhood V of p. It follows that $f_{++}^{\lambda}\varphi$ is a $\mathcal{D}b(V)$-valued meromorphic function of λ on \mathbb{C}. It is easy to see that we can replace V by an arbitrary relatively compact subset of U. The poles of $f_{++}^{\lambda}\varphi$ are contained in

$$\{\lambda - k \mid b_p(\lambda) = 0 \ (\exists p \in V), \ k \in \mathbb{N}\}.$$

Proposition 2.6 (Lemma 2.10 of [2]) There exists a positive real number ε such that $f_{++}^{\lambda}\varphi$ belongs to $\mathcal{O}Db\{\{\lambda \in \mathbb{C} \mid \text{Re } \lambda > -\varepsilon\} \times U\}$.

Proof: Let λ_0 be an arbitrary pole of $f_{++}^{\lambda}\varphi$. There exists $\psi \in C_0^\infty(U)$ such that λ_0 is a pole of $Z(\lambda) := \langle f_{++}^{\lambda}\varphi, \psi \rangle$. In particular, $|Z(\lambda_0 + t)|$ tends to infinity as $t \to +0$. On the other hand, $Z(\lambda)$ is continuous on $\{\lambda \in \mathbb{C} \mid \text{Re } \lambda \geq 0\}$. This implies $\text{Re } \lambda_0 < 0$. The conclusion follows since there are at most a finite number of poles of $f_{++}^{\lambda}\varphi$ in the set $\{\lambda \in \mathbb{C} | \text{Re } \lambda > -1\}$. □

In conclusion, $f_{++}^{\lambda}\varphi$ is a $\mathcal{D}b(U)$-valued meromorphic function on \mathbb{C} whose poles are contained in $\{\lambda \in \mathbb{C} \mid \text{Re } \lambda < 0\}$. 6
2.3 Holonomicity of \(f_+^\lambda \varphi \) and its applications

Let \(f, \varphi, \mathcal{M} = \mathcal{D}_{\mathbb{C}^n}/\mathcal{I} \) be as in the preceding subsection. Let \(\mathcal{N} = \mathcal{D}_{\mathbb{C}^n}[s](f^s \otimes u) \) be the left \(\mathcal{D}_{\mathbb{C}^n}[s] \)-submodule of \(\mathcal{L} \otimes_{\mathcal{O}_{\mathbb{C}^n}} \mathcal{M} \) generated by \(f^s \otimes u \). Theorem 2.5 of Kashiwara [1] guarantees that \(\mathcal{N}_{\lambda_0} := \mathcal{N}/(s - \lambda_0)\mathcal{N} \) is a holonomic \(\mathcal{D}_{\mathbb{C}^n} \)-module on \(\Omega \) for any \(\lambda_0 \in \mathbb{C} \).

Proposition 2.7 Let \(\lambda_0 \) be an arbitrary complex number and \(f^{\lambda_0} \otimes \varphi \) the residue class of \(f^s \otimes u \in \mathcal{N} \) modulo \((s - \lambda_0)\mathcal{N} \).

1. \(\mathcal{N}_0 \) is isomorphic to \(\mathcal{M} \) as \(\mathcal{D}_{\mathbb{C}^n} \)-module on \(\Omega_f \).

2. If \(\mathcal{M} \) is \(f \)-saturated, i.e., if \(f v = 0 \) with \(v \in \mathcal{M} \) implies \(v = 0 \), then there is a surjective \(\mathcal{D}_{\mathbb{C}^n} \)-homomorphism \(\Phi : \mathcal{N}_0 \to \mathcal{M} \) on \(\Omega \) such that \(\Phi(f^0 \otimes u) = u \). Moreover, \(\Phi \) is an isomorphism on \(\Omega_f \).

Proof: Since \(\mathcal{M}[f^{-1}] = \mathcal{M} \) on \(\Omega_f \), we may assume that \(\mathcal{M} \) is \(f \)-saturated. In view of Lemma 2.3 and the definition of \(\mathcal{N}_0 \), \(P \in \mathcal{D}_{\mathbb{C}^n} \) annihilates \(f^0 \otimes u \) if and only if there exist \(Q(s) \in \mathcal{D}_{\mathbb{C}^n}[s] \) and an integer \(m \geq \operatorname{ord} Q(s) \) such that \((f^{m-s}Q(s)f^s)(1 \otimes u) = 0 \) in \(\mathcal{M}[s] \) and \(P = Q(0) \). If there exist such \(Q(s) \) and \(m \), set

\[
(f^{m-s}Q(s)f^s) = Q_0 + Q_1 s + \cdots + Q_m s^m \quad (Q_i \in \mathcal{D}_{\mathbb{C}^n}).
\]

Then \(Q_i u = 0 \) holds for any \(i \). In particular, \(Q_0 = f^m P \) annihilates \(u \). This implies \(Pu = 0 \) since \(\mathcal{M} \) is \(f \)-saturated. Hence the homomorphism \(\Phi \) is well-defined.

Now assume \(f \neq 0 \) and \(Pu = 0 \). Then \(Q(s) := f^s P f^{-s} \) belongs to \(\mathcal{D}_{\mathbb{C}^n}[s] \) and annihilates \(f^s \otimes u \) by Lemma 2.3. Hence \(P = Q(0) \) annihilates \(f^0 \otimes u \). This implies that \(\Phi \) is an isomorphism on \(\Omega_f \). \(\square \)

Theorem 2.8 If \(\lambda_0 \) is not a pole of \(f_+^\lambda \varphi \), then \(f_+^{\lambda_0} \varphi \) is a solution of \(\mathcal{N}_{\lambda_0} \).

Proof: Assume that \(\lambda_0 \in \mathbb{C} \) is not a pole of \(f_+^\lambda \varphi \). Let \(P \) be a section of \(\mathcal{D}_{\mathbb{C}^n} \) which annihilates \(f_+^{\lambda_0} \otimes u \). Then there exist \(Q(s), R(s) \in \mathcal{D}_{\mathbb{C}^n}[s] \) such that

\[
P = Q(s) + (s - \lambda_0)R(s), \quad Q(s)(f^s \otimes u) = 0 \quad \text{in} \ \mathcal{N}.
\]

Proposition 2.5 implies that \(Q(\lambda)(f_+^\lambda \varphi) \) vanishes as section of the sheaf \(\mathcal{O} Db \). In particular, \(P(f_+^{\lambda_0} \varphi) = Q(\lambda_0)(f_+^{\lambda_0} \varphi) = 0 \) holds as distribution. Thus the homomorphism

\[
\mathcal{D}_{\mathbb{C}^n}(f_+^{\lambda_0} \otimes u) \ni P(f_+^{\lambda_0} \otimes u) \mapsto P(f_+^{\lambda_0} \varphi) \in \mathcal{D}b
\]

is well-defined and \(\mathcal{D}_{\mathbb{C}^n} \)-linear. Hence \(f_+^{\lambda_0} \varphi \) is a solution of \(\mathcal{N}_{\lambda_0} \). \(\square \)

The following two theorems are essentially due to Kashiwara and Kawai [2] although they are stated with additional assumptions and stronger results.
Theorem 2.9 \(\varphi \) is a solution of the holonomic \(\mathcal{D}_\mathbb{C}^n \)-module \(N_0 \).

Proof: First note that \(\mathcal{O}_{\mathbb{C}^n}[f^{-1},s](-f)^* \) is isomorphic to \(\mathcal{O}_{\mathbb{C}^n}[f^{-1},s]f^* \) as left \(\mathcal{D}_{\mathbb{C}^n}[s] \)-module since \(\partial_i(-f)^* = sf_i f^{-1}(-f)^* \) holds in \(\mathcal{O}_{\mathbb{C}^n}[f^{-1},s](-f)^* \) with \(f_i = \partial f / \partial x_i \). Assume that \(P(f^0 \otimes u) = 0 \) holds in \(N_0 = \mathcal{N} / s\mathcal{N} \). Then there exist \(Q(s), R(s) \in \mathcal{D}_{\mathbb{C}^n}[s] \) such that

\[
P = Q(s) + sR(s), \quad Q(s)(f^* \otimes u) = 0 \text{ in } \mathcal{N}.
\]

Let \(\theta(t) \) be the Heaviside function; i.e., \(\theta(t) = 1 \) for \(t > 0 \) and \(\theta(t) = 0 \) for \(t \leq 0 \). Then we have \(\theta(f) = f^*_+ \) and \(\theta(-f) = (-f)^*_+ \). Theorem 2.8 implies that \(P = Q(0) \) annihilates both \(\theta(f)\varphi \) and \(\theta(-f)\varphi \), and hence also \(\varphi = \theta(f)\varphi + \theta(-f)\varphi \). Thus \(\varphi \) is a solution of \(N_0 \). \(\square \)

Theorem 2.10 Let \(\varphi_1 \) and \(\varphi_2 \) be locally \(L^p \) and \(L^q \) functions respectively on an open set \(U \subset \mathbb{R}^n \) with \(1 \leq p, q \leq \infty \) and \(1/p + 1/q = 1 \). Assume that \(\varphi_1 \) and \(\varphi_2 \) are solutions of holonomic \(\mathcal{D}_{\mathbb{C}^n} \)-modules \(\mathcal{M}_1 \) and \(\mathcal{M}_2 \) respectively on \(U \). Then for any point \(x_0 \) of \(U \), there exists a holonomic \(\mathcal{D}_{\mathbb{C}^n} \)-module \(\mathcal{M} \) on a neighborhood of \(x_0 \) of which the product \(\varphi_1 \varphi_2 \) is a solution.

Proof: There exist analytic functions \(f_1 \) and \(f_2 \) on a neighborhood \(V \) of \(x_0 \) such that the singular support (the projection of the characteristic variety minus the zero section) of \(\mathcal{M}_k \) is contained in \(f_k = 0 \) for \(k = 1, 2 \). Set \(f(z) = f_1(z)f_1(\overline{z})f_2(z)f_2(\overline{z}) \). Then \(f(x) \) is a real-valued real analytic function and \(\varphi_1 \) and \(\varphi_2 \) are real analytic on \(V_f \). Then it is easy to see, in the same way as in the proof of Theorem 2.8, that \(\varphi_1 \varphi_2 \) is a solution of \(\mathcal{M}_1 \otimes_{\mathcal{O}_{\mathbb{C}^n}} \mathcal{M}_2 \) on \(V_f \). To complete the proof, we have only to apply Theorem 2.9 to \(\mathcal{M}_1 \otimes_{\mathcal{O}_{\mathbb{C}^n}} \mathcal{M}_2 \) and \(f \). \(\square \)

2.4 Laurent coefficients of \(f^*_+ \varphi \)

Let \(f, \varphi, \mathcal{M} \) be as in preceding subsections.

Theorem 2.11 Let \(p \) be a point of \(U \). Then each coefficient of the Laurent expansion of \(f^*_+ \varphi \) about an arbitrary \(\lambda_0 \in \mathbb{C} \) is a solution of a holonomic \(\mathcal{D}_{\mathbb{C}^n} \)-module on a common neighborhood of \(p \).

Proof: Fix \(m \in \mathbb{N} \) such that \(\Re \lambda_0 + m > 0 \). By using the functional equation involving the generalized \(b \)-function, we can find a nonzero \(b(s) \in \mathbb{C}[s] \) and a germ \(P(s) \) of \(\mathcal{D}_{\mathbb{C}^n}[s] \) at \(p \) such that

\[
b(\lambda)f^*_+ \varphi = P(\lambda)(f^*_+ + m \varphi).
\]

8
Factor $b(s)$ as $b(s) = (s - \lambda_0)^l c(s)$ with $c(s) \in \mathbb{C}[s]$ such that $c(\lambda_0) \neq 0$ and an integer $l \geq 0$. Then we have

$$(\lambda - \lambda_0)^l f^\lambda_+ \varphi = \frac{1}{c(\lambda)} P(\lambda)(f^\lambda_+ m \varphi).$$

The right-hand side is holomorphic in λ on an neighborhood of $\lambda = \lambda_0$. Let

$$f^\lambda_+ \varphi = \sum_{k=-l}^\infty (\lambda - \lambda_0)^k \varphi_k$$

be the Laurent expansion with $\varphi_k \in \mathcal{D}(U)$, which is given by

$$\varphi_k = \frac{1}{(l+k)!} \lim_{\lambda \to \lambda_0} \frac{\partial^{l+k}}{\partial \lambda^{l+k}} ((\lambda - \lambda_0)^l f^\lambda_+ \varphi) = \frac{1}{(l+k)!} \lim_{\lambda \to \lambda_0} \frac{\partial^{l+k}}{\partial \lambda^{l+k}} \left(\frac{1}{c(\lambda)} P(\lambda)(f^\lambda_+ m \varphi) \right).$$

Hence there exist $Q_{kj} \in \mathcal{D}_{\mathbb{C}^n}$ such that

$$\varphi_k = \sum_{j=0}^{l+k} Q_{kj} (f^\lambda_+ m (\log f_+)^j \varphi). \quad (2)$$

First let us show that $f^\lambda_+ m (\log f_+)^j \varphi$ with $0 \leq j \leq k$ satisfy a holonomic system. Consider the free $\mathcal{O}_{\mathbb{C}^n}[s, f^{-1}]$-module

$$\mathcal{L} := \mathcal{O}_{\mathbb{C}^n}[s, f^{-1}] f^s \otimes \mathcal{O}_{\mathbb{C}^n}[s, f^{-1}] f^s \log f \otimes \mathcal{O}_{\mathbb{C}^n}[s, f^{-1}] f^s (\log f)^2 \oplus \cdots,$$

which has a natural structure of left $\mathcal{D}_{\mathbb{C}^n}[s]$-module. Let

$$\mathcal{N}[k] := \mathcal{D}_{\mathbb{C}^n}[s](f^s \otimes u) + \mathcal{D}_{\mathbb{C}^n}[s](f^{s \log f} \otimes u) + \cdots + \mathcal{D}_{\mathbb{C}^n}[s](f^s (\log f)^k \otimes u)$$

be the left $\mathcal{D}_{\mathbb{C}^n}[s]$-submodule of $\mathcal{L} \otimes_{\mathcal{O}_{\mathbb{C}^n}} \mathcal{M}$ generated by $(f^s (\log f)^j) \otimes u$ with $j = 0, 1, \ldots, k$. It is easy to see that $\mathcal{N}[k]/\mathcal{N}[k-1]$ is isomorphic to $\mathcal{N} = \mathcal{N}[0]$ as left $\mathcal{D}_{\mathbb{C}^n}[s]$-module since

$$P(s)(f^s (\log f)^k \otimes u) \equiv (f^{s-m}(\log f)^k) \otimes (f^{m-s} P(s)f^s) u \mod \mathcal{N}[k-1]$$

holds for any $P(s) \in \mathcal{D}_{\mathbb{C}^n}[s]$ with $m = \text{ord } P(s)$. Moreover, $\mathcal{N}_{\lambda_0}[k] := \mathcal{N}[k]/(s - \lambda_0)\mathcal{N}[k]$ is a holonomic $\mathcal{D}_{\mathbb{C}^n}$-module since $\mathcal{N}_{\lambda_0}[k]/\mathcal{N}_{\lambda_0}[k-1]$ is isomorphic to $\mathcal{N}_{\lambda_0} = \mathcal{N}_{\lambda_0}[0]$, and hence is holonomic as left $\mathcal{D}_{\mathbb{C}^n}$-module.

Let $(f^{\lambda_0 + m}(\log f)^j) \otimes u \in \mathcal{N}_{\lambda_0 + m}[k]$ be the residue class of $(f^{s}(\log f)^j) \otimes u$ modulo $(s - \lambda_0 - m)\mathcal{N}[k]$. Suppose $\sum_{j=0}^k P_j((f^{\lambda_0 + m}(\log f)^j) \otimes u)$ vanishes in $\mathcal{N}_{\lambda_0 + m}[k]$ with P_j being a section of $\mathcal{D}_{\mathbb{C}^n}$ on an open neighborhood of a point p of U. Then there exist $Q_j(s) \in \mathcal{D}_{\mathbb{C}^n}[s]$ such that

$$\sum_{j=0}^k P_j((f^{s}(\log f)^j) \otimes u) = (s - \lambda_0 - m) \sum_{j=0}^k Q_j(s)((f^{s}(\log f)^j) \otimes u)$$
holds in $N[k]$. Then it is easy to see that
\[
\sum_{j=0}^{k} P_j(\lambda)(f^+_\lambda (\log f_+)^j \varphi) = (\lambda - \lambda_0 - m) \sum_{j=0}^{k} Q_j(\lambda)(f^+_\lambda (\log f_+)^j \varphi)
\] (3)
holds in $\mathcal{OD}b(\mathbb{C}_+ \times W)$ with an open neighborhood W of p. Lemma 2.2 and analytic continuation imply that (3) holds in $\mathcal{OD}b(\mathbb{C}_+ \times W)$. Hence we have
\[
\sum_{j=0}^{k} P_j((f^+_{\lambda_0+m}(\log f_+)^j) \varphi) = 0.
\]
In conclusion, with k replaced by $l+k$, there exists a $\mathcal{D}_{\mathbb{C}^n}$-homomorphism $\Phi : N_{\lambda_0+m}[l+k] \rightarrow \mathcal{D}b$ such that
\[
\Phi((f^+_{\lambda_0+m}(\log f_+)^j) \otimes u) = f^+_{\lambda_0+m}(\log f_+)^j \quad (0 \leq j \leq l+k).
\]
Set
\[
w := \sum_{j=0}^{l+k} Q_{kj}((f^+_{\lambda_0+m}(\log f_+)^j) \otimes u), \quad M_k := \mathcal{D}_{\mathbb{C}^n}w.
\]
Then M_k is a $\mathcal{D}_{\mathbb{C}^n}$-submodule of $N_{\lambda_0+m}[l+k]$ and hence holonomic. Since $\Phi(w) = \varphi_k$ in view of (2), φ_k is a solution of M_k. This completes the proof. □

3 Algorithms

We give algorithms for computing holonomic systems introduced in the previous section assuming that f is a real polynomial and that \mathcal{M} is algebraic, i.e., defined by differential operators with polynomial coefficients. Let $D_n := \mathbb{C}(x, \partial) = \mathbb{C}(x_1, \ldots, x_n, \partial_1, \ldots, \partial_n)$ be the ring of differential operators with polynomial coefficients with $\partial_j = \partial/\partial x_j$. The ring D_n is also called the n-th Weyl algebra over \mathbb{C}.

In the sequel, let f be a non-constant real polynomial of $x = (x_1, \ldots, x_n)$ and φ be a locally integrable function on an open connected set U of \mathbb{R}^n. We assume that there exists a left ideal I of D_n which annihilates φ on U_f, i.e., $P \varphi = 0$ holds on U_f for any $P \in I$, such that $M := D_n/I$ is a holonomic D_n-module. We denote by u the residue class of $1 \in D_n$ modulo I. Let $L = \mathbb{C}[x, f^{-1}, s]f^s$ be the free $\mathbb{C}[x, f^{-1}, s]$-module generated by f^s, which has a natural structure of left $D_n[s]$-module. Let $N := D_n[s](f^s \otimes u)$ be the left D_n-submodule of $L \otimes_{\mathbb{C}[x]} M$ generated by $f^s \otimes u$.

As was established in the previous section, $f^\lambda \varphi$ is a $\mathcal{D}b(U)$-valued meromorphic function on \mathbb{C} and is a solution of N.

10
3.1 Mellin transform

Let us assume that φ is real analytic on U_f and set

$$\tilde{\varphi}(x, \lambda) := \int_{-\infty}^{\infty} t^\lambda \delta(t - f(x)) \varphi(x) \, dt.$$

This is well-defined and coincides with $f_+^\lambda \varphi$ as a distribution on $U_f \times \mathbb{C}_+$. Then we have

$$\int_{-\infty}^{\infty} t^\lambda \delta(t - f(x)) \varphi(x) \, dt = \tilde{\varphi}(x, \lambda + 1),$$

$$\int_{-\infty}^{\infty} t^\lambda \partial_t(\delta(t - f(x)) \varphi(x)) \, dt = -\int_{-\infty}^{\infty} \partial_t(t^\lambda) \delta(t - f(x)) \varphi(x) \, dt = -\lambda \tilde{\varphi}(x, \lambda - 1).$$

Let $D_{n+1} = D_n[t, \partial_t]$ be the $(n + 1)$-th Weyl algebra with $\partial_t = \partial/\partial t$. Let us consider the ring $D_n[s, E_s, E_s^{-1}]$ of difference-differential operators with the shift operator $E_s : s \mapsto s + 1$, where s is an indeterminate corresponding to λ. In view of the identities above, let us define the ring homomorphism (Mellin transform of operators)

$$\mu : D_{n+1} \to D_n[s, E_s, E_s^{-1}]$$

by

$$\mu(t) = E_s, \quad \mu(\partial_t) = -sE_s^{-1}, \quad \mu(x_j) = x_j, \quad \mu(\partial x_j) = \partial x_j.$$

It is easy to see that μ is well-defined and injective since $[\partial_t, t] = [\mu(\partial_t), \mu(t)] = 1$. Hence we may regard D_{n+1} as a subring of $D_n[s, E_s, E_s^{-1}]$. Since $\mu(\partial_t t) = -s$, we can also regard $D_n[s]$ as a subring of D_{n+1}. Thus we have inclusions

$$D_n[s] \subset D_{n+1} \subset D_n[s, E_s, E_s^{-1}]$$

of rings and $L \otimes_{\mathbb{C}[x]} M$ has a structure of left $D_n[s, E_s, E_s^{-1}]$-module compatible with that of left $D_n[s]$-module. Let $\mathcal{F}(U)$ be the \mathbb{C}-vector space of the $D_b(U)$-valued meromorphic functions on \mathbb{C}. Then $\mathcal{F}(U)$ has a natural structure of left $D_n[s, E_s, E_s^{-1}]$-module, which is compatible with that of $D_n[s]$-module. In particular, we can regard $\mathcal{F}(U)$ as a left D_{n+1}-module.

3.2 Computation of $N = D_n[s](f^s \otimes u)$

The inclusion $D_{n+1}f^s \subset L = \mathbb{C}[x, f^{-1}, s]f^s$ induces a natural D_{n+1}-homomorphism

$$D_{n+1}f^s \otimes_{\mathbb{C}[x]} M \xrightarrow{\iota'} L \otimes_{\mathbb{C}[x]} M$$

$$\cup$$

$$N' \xrightarrow{\iota'} N$$
where N' is the left $D_n[s]$-submodule of $D_{n+1}f^s \otimes_{C[x]} M$ generated by $f^s \otimes u$ and N is the left $D_n[s]$-submodule of $L \otimes_{C[x]} M$ generated by $f^s \otimes u$. The homomorphism ι induces a surjective $D_n[s]$-homomorphism $\iota' : N' \rightarrow N$.

Proposition 3.1 The homomorphism ι is injective if and only if M is f-saturated; i.e., the homomorphism $f : M \rightarrow M$ is injective.

Proof: First note that $D_{n+1}f^s$ is isomorphic to the first local cohomology group $C[x,t,(t - f)^{-1}] / C[x,t]$ of $C[x,t]$ supported in the non-singular hypersurface $t - f(x) = 0$ since

$$(t - f)^i f^s = 0, \quad (\partial_{x_i} + f_i \partial_t) f^s = 0 \quad (i = 1, \ldots, n).$$

In particular, $D_{n+1}f^s$ is a free $C[x]$-module generated by $\partial^j f^s$ with $j \geq 0$. Hence an arbitrary element w of $D_{n+1}f^s \otimes_{C[x]} M$ is uniquely written in the form

$$w = \sum_{j=0}^{k} (\partial^j f^s) \otimes u_j$$

with $u_j \in M$ and $k \in N$. Then

$$\iota(w) = \sum_{j=0}^{k} (-1)^j s(s - 1) \cdots (s - j + 1) f^{s-j} \otimes u_j$$

vanishes if and only if $f^{s-j} \otimes u_j = 0$, which is equivalent to $f^{m_j} u_j = 0$ with some $m_j \in N$ by Lemma 2.3 for all $j = 0, 1, \ldots, k$. This completes the proof. \hfill \Box

Let \tilde{M} be the left D_n-submodule of the localization $M[f^{-1}] := C[x,f^{-1}] \otimes_{C[x]} M$ which is generated by $1 \otimes u$. Then \tilde{M} is f-saturated and the natural homomorphism

$$L \otimes_{C[x]} M \rightarrow L \otimes_{C[x]} \tilde{M}$$

is an isomorphism by Lemma 2.3.

An algorithm to compute $M[f^{-1}]$ was presented in [7] under the assumption that M is holonomic on $\mathbb{C}^n \setminus \{ f = 0 \}$. It provides us with an algorithm to compute \tilde{M}, i.e., the annihilator of $1 \otimes u \in M[f^{-1}]$. Hence we may assume, from the beginning, that M is holonomic and f-saturated. Then $\iota' : N' \rightarrow N$ is an isomorphism by Proposition 3.1. The f-saturatedness is equivalent to the vanishing of the zeroth local cohomology group of M with support in $f = 0$, which can be computed by algorithms presented in [3], [8], [6].

Thus we have only to give an algorithm to compute the structure of N' assuming M to be f-saturated. We follow an argument introduced by Walther [8]. Note that we gave in [3] an algorithm based on tensor product computation which is less efficient.
Definition 3.2 For a differential operator \(P = P(x, \partial) \in D_n \), set
\[
\tau(P) := P(x, \partial_{x_1} + f_1 \partial_t, \ldots, \partial_{x_n} + f_n \partial_t) \in D_{n+1}
\]
with \(f_j = \partial f / \partial x_j \). This substitution is well-defined since the operators \(\partial_{x_j} + f_j \partial_t \) commute with one another and \([\partial_{x_j} + f_j \partial_t, x_i] = \delta_{ij}\) holds.

Moreover, for a left ideal \(I \) of \(D_{n+1} \), let \(\tau(I) \) be the left ideal of \(D_{n+1} \) which is generated by the set \(\{\tau(P) \mid P \in I\} \).

Lemma 3.3 \(\tau(P)(f^* \otimes v) = f^* \otimes (Pv) \) holds in \(L \otimes_{\mathbb{C}[x]} M \) for any \(P \in D_n \) and \(v \in M \).

Proof: By the definition of the action of \(D_{n+1} \) on \(L \otimes_{\mathbb{C}[x]} M \) via the Mellin transform, we have
\[
(\partial_{x_j} + f_j \partial_t)(f^* \otimes v) = sf^{-1}f_j f^* \otimes v + f^* \otimes (\partial_{x_j} v) - sf_j f^{-1} f^* \otimes v = f^* \otimes (\partial_{x_j} v).
\]
This implies the conclusion of the lemma. \(\square \)

Proposition 3.4 Let \(I \) be a left ideal of \(D_n \) and set \(M = D_n/I \) with \(u \in M \) being the residue class of 1 modulo \(I \). Let \(J \) be the left ideal of \(D_{n+1} \) which is generated by \(\tau(I) \cup \{t - f(x)\} \). Then \(J \) coincides with the annihilator \(\text{Ann}_{D_{n+1}}(f^* \otimes u) \) of \(f^* \otimes u \in D_{n+1}f^* \otimes_{\mathbb{C}[x]} M \).

Proof: We have only to show that for \(P \in D_{n+1} \) the equivalence
\[
P \in J \iff P(f^* \otimes u) = 0 \text{ in } D_{n+1}f^* \otimes_{\mathbb{C}[x]} M.
\]
Suppose \(Q \) belongs to \(J \). Then \(P \) annihilates \(f^* \otimes u \) by Lemma 3.3.

Conversely, suppose \(P(f^* \otimes u) = 0 \) in \(D_{n+1}f^* \otimes_{\mathbb{C}[x]} M \). We can rewrite \(P \) in the form
\[
P = \sum_{\alpha \in \mathbb{N}^n, \nu \in \mathbb{N}} p_{\alpha, \nu}(x) \left(\partial_{x_1} + \frac{\partial f}{\partial x_1} \partial_t \right)^{\alpha_1} \cdots \left(\partial_{x_n} + \frac{\partial f}{\partial x_n} \partial_t \right)^{\alpha_n} \partial_t^\nu + Q \cdot (t - f(x))
\]
with \(p_{\alpha, \nu}(x) \in \mathbb{C}[x] \) and \(Q \in D_{n+1} \). Setting \(P_{\nu} := \sum_{\alpha \in \mathbb{N}^n} p_{\alpha, \nu}(x) \partial_x^\alpha \), we get
\[
0 = P(f^* \otimes u) = \sum_{\nu = 0}^{\infty} (\partial_t^\nu f^*) \otimes P_{\nu} u \in D_{n+1}f^* \otimes_{\mathbb{C}[x]} M.
\]
It follows that each \(P_{\nu} \) belongs to \(I \) since \(\{\partial_t^\nu f^*\} \) constitutes a free basis of \(D_{n+1}f^* \) over \(\mathbb{C}[x] \). Hence we have
\[
P = \sum_{\nu = 1}^{\infty} \partial_t^\nu \tau(P_{\nu}) + Q \cdot (t - f(x)) \in J.
\]
This completes the proof. □

In order to compute the structure of the $D_n[s]$-submodule $N' = D_n[s](f^s \otimes u)$ of $D_{n+1}f^s \otimes \mathbb{C}[s]M$, we have only to compute the annihilator

$$\text{Ann}_{D_n[s]}(f^s \otimes u) = D_n[s] \cap J,$$

where we regard $D_n[s]$ as a subring of D_{n+1}. This can be done as follows:

Introducing new variables σ and τ, for $P \in D_{n+1}$, let $h(P) \in D_{n+1}[\sigma, \tau]$ be the homogenization of P with respect to the weights

$$x_j \quad \partial_{x_j} \quad t \quad \partial_t \quad \tau$$

$$0 \quad 0 \quad -1 \quad 1 \quad -1$$

Let J' be the left ideal of $D_{n+1}[\sigma, \tau]$ generated by

$$\{h(P) \mid P \in \tilde{G}\} \cup \{1 - \sigma \tau\},$$

where \tilde{G} is a set of generators of J.

Set $J'' = J' \cap D_{n+1}$. Since each element P of J'' is homogeneous with respect to the above weights, there exists $P'(s) \in D_n[s]$ such that $P = SP'(-\partial_t)$ with $S = t^\nu$ or $S = \partial_t^\nu$ with some integer $\nu \geq 0$. We set $P'(s) = \psi(P)(s)$. Then $\{\psi(P) \mid P \in J''\}$ generates the left ideal $J \cap D_n[s]$ of $D_n[s]$. This procedure can be done by using a Gröbner basis in $D_{n+1}[\sigma, \tau]$. In conclusion, we have a set of generators of $J \cap D_n[s]$. Then N', and hence N also if M is f-saturated, is isomorphic to $D_n[s]/(J \cap D_n[s])$ as left $D_n[s]$-module.

The generalized b-function for f and u can be computed as the generator of the ideal

$$\mathbb{C}[s] \cap (\text{Ann}_{D_n[s]}f^s \otimes u + D_n[s]f)$$

of $\mathbb{C}[s]$ by elimination via Gröbner basis computation in $D_n[s]$.

3.3 Holonomic systems for the Laurent coefficients of $f^\lambda \varphi$

Let λ_0 be an arbitrary complex number. Our purpose is to compute a holonomic system of which each coefficient of the Laurent expansion of $f^\lambda \varphi$ is a solution.

Take $m \in \mathbb{N}$ such that $\text{Re} \lambda_0 + m > 0$. Let $b_0(s)$ be the b-function of f and u. We can find a $P_0(s) \in D_n[s]$ such that

$$P_0(s)(f^{s+1} \otimes u) = b_0(s)f^s \otimes u$$
holds in \(N \) by, e.g., syzygy computation. By using this functional equation, we can find a nonzero polynomial \(b(s) \) and \(P(s) \in D_n[s] \) such that

\[
b(\lambda)f^+_\lambda = P(\lambda)f^+_{\lambda+m}.
\]

In fact, we have only to set

\[
P(s) := P_0(s)P_0(s+1)\cdots P_0(s+m-1), \quad b(s) := b_0(s)b_0(s+1)\cdots b_0(s+m-1).
\]

Factorize \(b(s) \) as \(b(s) = c(s)(s-\lambda_0)^l \) with \(c(\lambda_0) \neq 0 \). Then \(f^+_\lambda \varphi \) has a Laurent expansion of the form

\[
f^+_\lambda \varphi = \sum_{k=-l}^\infty (\lambda - \lambda_0)^k \varphi_k
\]

around \(\lambda_0 \), where \(\varphi_k \in Db(U) \) is given by

\[
\varphi_k = \frac{1}{(l+k)!} \lim_{\lambda \to \lambda_0} \left(\frac{\partial}{\partial \lambda} \right)^{l+k} (c(\lambda)^{-1} P(\lambda)f^+_{\lambda+m}) = \sum_{j=0}^{l+k} Q_{kj}(f^+_{\lambda_0+m}(\log f)^j)
\]

with

\[
Q_{kj} := \frac{1}{j!(l+k-j)!} \left[\left(\frac{\partial}{\partial \lambda} \right)^{l+k-j} (c(\lambda)^{-1} P(\lambda)) \right]_{\lambda=\lambda_0}.
\]

Let

\[
\tilde{L} = \mathbb{C}[x, f^{-1}, s]f^s \oplus \mathbb{C}[x, f^{-1}, s]f^s \log f \oplus \mathbb{C}[x, f^{-1}, s]f^s(\log f)^2 \oplus \cdots
\]

be the free \(\mathbb{C}[x, f^{-1}, s] \)-module with a natural structure of left \(D_n(s, \partial_s) \)-module. Consider the left \(D_n[s] \)-submodule

\[
N[k] = D_n[s](f^s \otimes u) + D_n[s]((f^s \log f) \otimes u) + \cdots + D_n[s]((f^s(\log f)^k) \otimes u)
\]

of \(\tilde{L} \otimes_{\mathbb{C}[x]} M \). For a complex number \(\lambda_0 \), set

\[
N_{\lambda_0}[k] = N[k]/(s - \lambda_0)N[k].
\]

Let us first give an algorithm to compute the structure of \(N[k] \).

Proposition 3.5 Let \(G_0 \) be a set of generators of the annihilator \(\text{Ann}_{D_n[s]}(f^s \otimes u) = J \cap D_n[s] \). Let \(e_1 = (1, 0, \ldots, 0) \), \(\ldots \), \(e_{k+1} = (0, \ldots, 0, 1) \) be the canonical basis of \(\mathbb{Z}^{k+1} \). For each \(Q(s) \in G_0 \) and an integer \(j \) with 0 \(\leq j \leq k \), set

\[
Q^{(j)}(s) := \sum_{i=0}^j \binom{j}{i} \frac{\partial^{j-i} Q(s)}{\partial s^{j-i}} e_{i+1} \in (D_n[s])^{k+1}.
\]

Let \(J_k \) be the left \(D_n[s] \)-submodule of \((D_n[s])^{k+1}\) generated by \(G_1 := \{ Q^{(j)}(s)(\lambda_0) \mid Q(s) \in G_0, 0 \leq j \leq k \} \). Then \((D_n[s])^{k+1}/J_k\) is isomorphic to \(N[k] \).
Proof: Let $\varpi : (D_n[s])^{k+1} \to N[k]$ be the canonical surjection. Let $Q(s)$ belong to G_0. Differentiating the equation $Q(s)(f^s \otimes u) = 0$ in $N[k]$ with respect to s, one gets

$$
\sum_{i=0}^{j} \binom{j}{i} \frac{\partial^{j-i} Q(s)}{\partial s^{j-i}} ((f^s (\log f)^i) \otimes u) = 0.
$$

Hence J_k is contained in the kernel of ϖ. Conversely, assume that $\vec{Q}(s) = (Q_0(s), Q_1(s), \ldots, Q_k(s))$ belongs to the kernel of ϖ. This implies $Q_k(s)(f^s \otimes u) = 0$ since $N[k]/N[k-1]$ is isomorphic to $N = D_n[s](f^s \otimes u)$. Hence $\vec{Q}(s) - Q_k(s)$ belongs to the kernel of ϖ, the last component of which is zero. We conclude that $\vec{Q}(s)$ belongs to J_k by induction. \square

Thus we have

$$
N_{\lambda_0}[k] = (D_n)^{k+1}/J_k|_{s=\lambda_0}, \quad J_k|_{s=\lambda_0} := \{ Q(\lambda_0) \mid Q(s) \in J_k \}.
$$

Set

$$
w := \sum_{j=0}^{l+k} Q_{kj}((f^{\lambda_0+m}(\log f)^j) \otimes u), \quad M_k := D_n w.
$$

Then we have

$$
P w = 0 \iff P(Q_0, Q_1, \ldots, Q_{l+k}) \in J_{l+k}|_{s=\lambda_0+m}.
$$

Thus we can find a set of generators of $\text{Ann}_{D_n} w$ by computation of syzygy or intersection. As was shown in §2.4, φ_k is a solution of the holonomic system M_k.

3.4 Difference equations for the local zeta function

In the sequel, we assume that φ is a locally integrable function on \mathbb{R}^n. As we have seen so far, $f_+^n \varphi \in \mathcal{F}(\mathbb{R}^n)$ is a solution of the holonomic D_{n+1}-module D_{n+1}/J. Hence if the local zeta function $Z(\lambda) := \int_{\mathbb{R}^n} f_+^n \varphi dx$ is well-defined, e.g., if φ has compact support, or else is smooth on \mathbb{R}^n with all its derivatives rapidly decreasing on the set $\{ x \in \mathbb{R}^n \mid f(x) \geq 0 \}$, then $Z(\lambda)$ is a solution of the integral module

$$
D_{n+1}/(J + \partial_{x_1} D_{n+1} + \cdots + \partial_{x_n} D_{n+1})
$$

of D_{n+1}/J, which is a holonomic module over $D_1 = \mathbb{C}(t, \partial_t)$. This D_1-module can be computed by the integration algorithm which is the 'Fourier
transform’ of the restriction algorithm given in [6] (see [5] for the integration algorithm). Then by Mellin transform we obtain linear difference equations for \(Z(\lambda) \). Thus we get

Theorem 3.6 Under the above assumptions, \(Z(\lambda) \) satisfies a non-trivial linear difference equation with polynomial coefficients in \(\lambda \).

Example 3.7 \(\Gamma(\lambda+1) = \int_0^\infty x^\lambda e^{-x} \, dx = \int_{-\infty}^\infty x^\lambda e^{-x} \, dx \) satisfies the difference equation

\[
(E_\lambda - (\lambda + 1))\Gamma(\lambda + 1) = 0,
\]

where \(E_\lambda : \lambda \mapsto \lambda + 1 \) is the shift operator.

3.5 Examples

Let us present some examples computed by using algorithms introduced so far and their implementation in the computer algebra system Risa/Asir.

Example 3.8 Set \(f = x^3 - y^2 \in \mathbb{R}[x,y] \) and \(\varphi = 1 \). Since the \(b \)-function of \(f \) is \(b_f(s) = (s + 1)(6s + 5)(6s + 7) \), possible poles of \(f_+^\lambda \) are \(-1 - \nu, -5/6 - \nu, -6/7 - \nu \) with \(\nu \in \mathbb{N} \) and they are at most simple poles. The residue \(\text{Res}_{\lambda = -1} f_+^\lambda \) is a solution of

\[
D_2/(D_2(2x \partial_x + 3y \partial_y + 6) + D_2(2y \partial_x + 3x^2 \partial_y) + D_2(x^3 - y^2)).
\]

\(\text{Res}_{\lambda = -5/6} f_+^\lambda \) is a solution of \(D_2/(D_2x + D_2y) \). Hence it is a constant multiple of the delta function \(\delta(x,y) = \delta(x)\delta(y) \). \(\text{Res}_{\lambda = -7/6} f_+^\lambda \) is a solution of \(D_2/(D_2x^2 + D_2(x \partial_x + 2) + D_2y) \). Hence it is a constant multiple of \(\delta'(x)\delta(y) \).

Example 3.9 Set \(f = x^3 - y^2 \) and \(\varphi(x,y) = \exp(-x^2 - y^2) \). Then \(\varphi \) is a solution of a holonomic system \(M := D_2/(D_2(\partial_x + 2x) + D_2(\partial_y + 2y)) \) on \(\mathbb{R}^2 \), which is \(f \)-saturated since it is a simple \(D_2 \)-module. The generalized \(b \)-function for \(f \) and \(u := [1] \in M \) is \(b_f(s) = (s + 1)(6s + 5)(6s + 7) \). The local zeta function \(Z(\lambda) := \int_{\mathbb{R}^2} f_+^\lambda \varphi \, dx dy \) is annihilated by the difference operator

\[
32E_s^4 + 16(4s + 13)E_s^3 - 4(s + 3)(27s^2 + 154s + 211)E_s^2 - 6(s + 2)(s + 3)(36s^2 + 162s + 173)E_s - 3(s + 1)(s + 2)(s + 3)(6s + 5)(6s + 13),
\]

where \(s \) is an indeterminate corresponding to \(\lambda \). From this we see that \(-7/6\) is not a pole of \(Z(\lambda) \).
Example 3.10 Set $\varphi(x) = \exp(-x - 1/x)$ for $x > 0$ and $\varphi(x) = 0$ for $x \leq 0$. Then $\varphi(x)$ belongs to the space $S(\mathbb{R})$ of rapidly decreasing functions on \mathbb{R} and satisfies a holonomic system

$$M := D_1/D_1(x^2\partial_x + x^2 - 1),$$

which is x-saturated. The generalized b-function for $f = x$ and $u = [1] \in M$ is $s + 1$. The local zeta function $Z(\lambda) := \int_\mathbb{R} x^\lambda \varphi(x) \, dx$ is entire (i.e., without poles) and satisfies a difference equation

$$(E_\lambda^2 - (\lambda + 2)E_\lambda - 1)Z(\lambda) = 0.$$

This can also be deduced by integration by parts.

Example 3.11 Set $\varphi_1(x) = \exp(-x - 1/x)$ for $x > 0$ and $\varphi_1(x) = 0$ for $x \leq 0$. Set $\varphi(x, y) = \varphi_1(x)e^{-y}$. Then φ satisfies a holonomic system

$$M := D_2/(D_2(x^2\partial_x + x^2 - 1) + D_2(\partial_y + 1)).$$

The generalized b-function for $f := y^2 - x^2$ and $u = [1] \in M$ is $s + 1$. Moreover, we can confirm that M is f-saturated by using the localization algorithm in [7]. The local zeta function $Z(\lambda) := \int_{\mathbb{R}^2} f^\lambda \varphi \, dx \, dy$ is well-defined since $f(x, y) < 0$ if $y < 0$. It is annihilated by a difference operator of the form

$$E_s^{11} + a_{10}(s)E_s^{10} + \cdots + a_1(s)E_s + a_0(s),$$

$$a_0(s) = c(s + 1)(s + 2)(s + 3)(s + 4)(s + 5)(s + 6)(s + 7)(s + 8)(s + 9),$$

where c is a positive rational number and $a_1(s), \ldots, a_{10}(s)$ are polynomials of s with rational coefficients. Possible poles of $f_+^\lambda \varphi$ are the negative integers. For example, -1 is at most a simple pole of $f_+^\lambda \varphi$ and $\text{Res}_{\lambda = -1} f_+^\lambda \varphi$ is a solution of a holonomic system

$$D_2/(D_2(3x^2\partial_x + 2xy\partial_y + 3x^2 + (2y + 6)x - 3) + D_2(y^2 - x^2)).$$

Example 3.12 Set $f = x^3 - y^2z^2$. The b-function of f is $(s + 1)(3s + 4)(3s + 5)(6s + 5)^2(6s + 7)^2$. For example, its maximum root $-5/6$ is at most a pole of order 2 of f_+^λ. Let

$$f_+^\lambda = \left(\lambda + \frac{5}{6}\right)^{-2} \varphi_2 + \left(\lambda + \frac{5}{6}\right)^{-1} \varphi_1 + \varphi_0 + \cdots$$

be the Laurent expansion. Then φ_2 satisfies

$$x\varphi_2 = y\varphi_2 = z\varphi_2 = 0.$$

Hence φ_2 is a constant multiple of $\delta(x, y)$. On the other hand, φ_1 satisfies a holonomic system

$$x\varphi_1 = (y\partial_y - z\partial_z)\varphi_1 = yz\varphi_1 = (z^2\partial_z - z)\varphi_1 = 0.$$
References

[1] Kashiwara, M, On the holonomic systems of linear differential equations, II, Invent. Math. 49 (1978), 121–135.

[2] Kashiwara, M., Kawai, T., On the characteristic variety of a holonomic system with regular singularities, Advances in Math. 34 (1979), 163–184.

[3] Oaku, T., Algorithms for b-functions, restrictions, and algebraic local cohomology of D-modules, Advances in Appl. Math. 19 (1997), 61–105.

[4] Oaku, T., Algorithms for integrals of holonomic functions over domains defined by polynomial inequalities, J. Symbolic Computation 50 (2013), 1–27.

[5] Oaku, T., Takayama, N., An algorithm for de Rham cohomology groups of the complement of an affine variety. J. Pure Appl. Algebra 139 (1999), 201–233.

[6] Oaku, T., Takayama, N., Algorithms for D-modules — restriction, tensor product, localization, and local cohomology groups. J. Pure Appl. Algebra 156 (2001), 267–308.

[7] Oaku, T., Takayama, N., Walther, U., A localization algorithm for D-modules, J. Symbolic Computation 29 (2000), 721–728.

[8] Walther, U., Algorithmic computation of local cohomology modules and the local cohomological dimension of algebraic varieties, J. Pure Appl. Algebra 139 (1998), 303–321.