Transcriptional and functional characterizations of multiple flagelin genes in spirochetes

Kurni Kurniyati¹, Yunjie Chang³,⁴, Jun Liu³,⁴*, and Chunhao Li¹,²*

¹Philips Institute for Oral Health Research, School of Dentistry; ²Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
³Microbial Sciences Institute, Yale University, West Haven, CT, USA
⁴Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, USA

Running title: the role of multiple flagellins in spirochetes

Keywords (Spirochetes, Treponema, Flagellin, Motility, and Sigma factors)

*Corresponding author. Mailing address: Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298, USA
Electronic mail address: cli5@vcu.edu; phone: (804) 628-4401
Table S1. Proteins identified in the purified PFs of *T. denticola* by using LC-MS/MS analysis.

Accession	Description	Coverage (%)	Peptide(s)	Prec. (ppm)	Score (ppm)	Mascot score	Peptide ID	Entrez Gene	Gene Symbol	Gene Abundance	Abundance Fold	Spec Abundance			
T026686905.1	flagellin (Propionibacterium denticola)	82	16	1730	4	285	30.9	5.49	6822.74	16	P06460.1	2481590	ADA02071	10	1.01±1.2
T026686843.1	MSP (Propionibacterium denticola)	78	27	887	27	549	58.2	6.83	3733.16	27	P02070.1	2520351	P159427	10	4.47±1.0
T026686797.1	flagellar filament outer layer protein FliA (Propionibacterium denticola)	73	30	1359	12	349	39.3	5.33	4734.28	28	P02060.2	2481594	ADA02071	10	3.01±1.0
T026686902.1	flagellin (Propionibacterium denticola)	67	28	975	4	280	31.3	6.13	3095.83	13	P02060.1	2520352	P159427	10	2.50±1.0
T026686903.1	flagellar hook protein Fig (Propionibacterium denticola)	69	21	214	21	463	45.5	4.98	9213.55	21	P02040.1	2481590	P159427	10	6.79±1.0
T026686642.1	flagellin (Propionibacterium denticola)	64	18	862	11	286	31.5	7.06	7966.83	15	P06460.1	2481594	ADA02071	10	6.13±1.0
T026686461.1	flagellar hook domain helix protein FliA (Propionibacterium denticola)	55	12	459	12	234	26.2	5.54	2068.91	12	P02040.1	2481595	ADA02071	10	3.06±1.0
T026686209.1	flagellar hook-associated protein Fig (Propionibacterium denticola)	48	19	67	19	623	69.5	4.94	245.73	19	P06460.1	2481592	ADA02071	10	0.48±1.0
T026686646.1	flagellar hook protein Fig (Propionibacterium denticola)	48	12	43	12	567	64.8	5.89	115.44	12	P02040.1	2481594	ADA02071	10	2.44±1.0
T026686466.1	flagellar hook domain helix protein FliA (Propionibacterium denticola)	44	9	23	9	264	28.8	5.73	86.94	9	P02040.1	2481597	ADA02071	10	3.06±1.0
T026686608.1	flagellar basal body-associated FliA family protein (Propionibacterium denticola)	36	8	28	8	264	28.8	5.73	86.94	9	P02040.1	2481597	ADA02071	10	3.06±1.0
T026686781.1	flagellar flagella basal body-associated Fig (Propionibacterium denticola)	34	8	16	6	270	30.2	4.94	41.94	6	P02040.1	2481598	ADA02071	10	0.99±1.0
T026686781.2	flagellar flagella basal body-associated Fig (Propionibacterium denticola)	34	8	16	6	270	30.2	4.94	41.94	6	P02040.1	2481598	ADA02071	10	0.99±1.0
T026686640.1	flagellar flagella basal body-associated Fig (Propionibacterium denticola)	33	3	3	3	159	15.8	7.5	11.35	3	P02040.1	2481596	ADA02071	10	0.15±1.0

Table S2. Characterization of *T. denticola* wild type and four flagellar filament gene deletion mutants by using cryo-electron tomography.

	Cell length (μm)	PFs length (μm)	PFs length (old pole, μm)	PFs diameter (nm)
WT				
Cell 1	4.4	6.5	19.5 ± 1.7	14.2 ± 1.4
Cell 2	3.0	5.1	13.9 ± 1.5	
ΔflaA				
Cell 1	3.0	8.0	19.9 ± 2.0	13.0 ± 1.1
Cell 2	3.6	12.0	21.1 ± 1.4	13.6 ± 1.6
ΔflaB1				
Cell 1	1.2	1.5		
Cell 2	3.0	4.3		
ΔflaB2				
Cell 1	2.4	4.4	20.6 ± 2.0	13.4 ± 1.6
Cell 2	3.0	5.0		
ΔflaB3				
Cell 1	2.0	3.0		

Diagram: Depiction of the amplification primers (P11, P12, P13, P14) associated with the TDE002, TDE004 (ΔflaB2), and TDE006 regions. Genes of interest are indicated with their respective sizes (500 bp, 200 bp).
Figure S1. Co-RT-PCR analysis of TDE1002-TDE1006 genes. This experiment was performed as previously documented (Kurniyati et al., 2019). Two pairs of primers that bridge flaB2 and its flanking genes were designed and used for co-RT-PCR. For each co-RT-PCR reaction, a parallel PCR reaction was performed and used as a positive control. The resultant co-RT-PCR and PCR products were detected in 2% agarose gel electrophoresis.

Figure S2. Representative cryo-electron microscopic images of PFs isolated from ΔflaB1, ΔflaB2, and ΔflaB3 mutants.

Figure S3. Representative TEM images of PFs isolated from T. denticola wild type (WT) and four flagellar filament gene deletion mutants.

Figure S4. Characterizations of two flaB2 gene replaced mutants: ΔflaB2/B1 and ΔflaB2/B3. (A) SDS-PAGE analysis of PFs isolated from WT, ΔflaB2, ΔflaB2/B1, and ΔflaB2/B3 mutants. (B) Western-blot analysis of isolated PFs. For the immunoblotting, antibodies against T. denticola DnaK (αDnaK), FlaA (αFlaA), and T. pallidum FlaB (αFlaB) were used.
Figure S5. Characterizations of six double deletion mutants of *T. denticola*. (A) Whole cell lysate immunoblotting analysis of WT and six flagellar filament gene double deletion mutants. The blots were probed with antibodies against *T. denticola* DnaK (αDnaK), FlaA (αFlaA), and *T. pallidum* FlaB (αFlaB), respectively. DnaK was used as a loading control. (B) 2D gel electrophoresis of six double mutants, followed by immunoblotting with antibodies against *T. denticola* FlaA (αFlaA) and *T. pallidum* FlaB (αFlaB). (C) Swimming plate assay. This assay was carried out on 0.35% agarose plates containing the TYGVS medium diluted 1:1 with PBS. The plates were incubated anaerobically at 37°C for 3 days to allow the cells to swim out. Δtap1, a previously constructed non-motile mutant (Limberger et al., 1999), was used as a control to determine the initial inoculum sizes. The sizes of swimming rings from five different plates were measured and averaged. (D) Cell tracking analysis. *T. denticola* cells were tracked in the presence of 1% methylcellulose, as previously described. The results are expressed as the mean of μm/s ± standard errors of mean (SEM). WT: wild type; ΔAB1: ΔflaAflaB1; ΔAB2: ΔflaAflaB2; ΔAB3: ΔflaAflaB3; ΔB1B2: ΔflaB1flaB2; ΔB1B3: ΔflaB1flaB3; and ΔB2B3: ΔflaB2flaB3.