Assessment of concrete strength development in winter

G A Pikus¹, R T Brzhanov²

¹Department of Building Construction and Structural Theory, South Ural State University, 76, Lenin Ave., Chelyabinsk 454080, Russia
²Department of Building, Caspian State University of Technology and Engineering named after Sh. Esenov, 32 Microdistrict, Aktau 130003, Republic of Kazakhstan

E-mail: pikusga@susu.ru

Abstract. The study attempts to demonstrate that it is possible to apply classical equations of chemical reactions for assessing the strength of concrete, cured in winter. This assumption differs from the existing classical theories of strength development in concrete, based on physical approaches. The graphs of the known normal temperature dependences of the chemical reaction rate and the increase in substance concentration in time allowed us to confirm the possibility for further research of strength development in concrete from the standpoint of chemical theories. For these purposes, the Van’t Hoff and Arrhenius equations were considered. To compare the results of theoretical studies with real constructions, we conducted an extensive experiment that involved a testing machine and a temperature chamber to assess the actual development of concrete strength in time at different temperatures (5, 20, 40, and 60°C). The temperature graphs of hardening of B40 concrete were plotted. Both equations showed identical results in calculating the increase in the reaction rate with the increase in concrete temperature. The research results allowed us to conclude that classical chemical theories used to assess the dependence of the reaction rate on temperature can be applied for calculating the concrete strength in winter.

1. Introduction
The correct determination of concrete strength is fundamental for ensuring the quality of cast-in-place structures. This is particularly relevant for winter cast-in-place construction, when incorrect assessment of concrete strength may lead to its early freezing and, thus, to its incomplete design strength [1-6]. There is a set of empirical dependences obtained from the studies of concrete and based on the approximation of exponential graphs of concrete strength development in time at a given temperature [7-13].

Most of these dependences are accurate enough for practical purposes. At the same time, it is noteworthy that the authors have followed almost the same course of scientific research, due to their identical views on hardening of concrete, which has been considered as a physical phenomenon.

2. Experimental data
Let us consider the issue from the other side. The hardening of concrete is caused by the hydration of cement (with the formation of crystalline hydrates), which is a classical chemical reaction. For most chemical reactions it is true that when the temperature rises, the reaction rate increases [14-16]. This type of temperature dependence of chemical reaction rate is normal (Figure 1).
Figure 1. Normal temperature dependence of chemical reaction rate and increase in substance concentration.

To plot the temperature dependences of concrete strength, we conducted an experiment on standard sample cubes with an edge of 100 mm. Six samples were prepared in each set. Sets of concrete samples were stored at 5, 20, 40, and 60 °C before the test. The first 24 hours, the samples were stored in forms until the time of formwork removal. The samples stored at 40 and 60 °C were covered with polyfilm to prevent excessive evaporation of moisture.

The samples cured at 20 °C were stored in a curing tank type KPU-1M at relative humidity of 95%. The other samples were stored in an environmental test chamber Nyte 0800 (produced in China). The distance between individual samples was at least 5 mm.

The concrete samples were tested on the Matest Cyber-Tronic press (produced in Italy). The limiting compression force of the press is 1500 kN.

The test results were processed according to [17]; the strength of concrete in a set of 6 samples was determined as the arithmetical mean value of the strength of 4 samples with the greatest strength. The scale factor was taken as 0.95. The obtained results are shown in a graph (Figure 2).

The experiment results showed that the coefficient of variation in strength of each set did not exceed 15%, while the actual class of concrete was B40.

When compared, the curve outlines in Figure 1 and Figure 2 indicate the possibility of applying classical theories of chemical reactions to concrete.

3. Analytical solution of the problem
The dependence of the reaction rate on temperature can be expressed by the empirical rule of Van’t Hoff (1884). According to this rule, the rate of most reactions increases 2...4-fold with every 10° C rise in temperature, and is determined by the temperature coefficient of reaction rate γ. This coefficient is determined empirically and shows how many times the chemical reaction rate has increased with a change in temperature. In general, the Van’t Hoff rule can be written as follows:

$$k_t = k_i \cdot \gamma^{\frac{t_i-t}{10}}$$ \hspace{1cm} (1)

here k_t is the reaction rate at the temperature t.
Let us consider a graph of strength development in concrete (class B40) at different curing temperatures (Figure 2) obtained during the experiment. Let us choose three isotherms at 20, 40, and 60 °C. It is evident that in order to achieve the same strength (70%), different curing time is necessary (84 hours for 60 °C ($k_{60} = 20 \% / 24$ h), 110.4 hours for 40 °C ($k_{40} = 15.2 \% / 24$ h) and 146.4 for 20 °C ($k_{20} = 11.5 \% / 24$ h)). Then the temperature coefficient of the reaction rate from (1) is:

$$\gamma = \frac{k_{60}}{k_{40}} = \frac{24}{11.5} = 2.09 \approx 1.15$$

Figure 2. Graph of concrete strength development.

Now, knowing the temperature coefficient of the reaction rate, it can be calculated how many times the reaction rate will increase if the temperature rises from 20 to 50 °C:

$$\frac{k_{50}}{k_{20}} = \gamma^{50-20} = 1.15^3 = 1.52 \text{ times}$$

The Swedish scientist Svante-August Arrhenius obtained in 1889 a more precise equation that defines the dependence of the reaction rate on temperature:

$$k = Ae^{\frac{-E_a}{RT}}$$

where k is the reaction rate constant; A is the pre-exponential factor that is temperature-independent (its dimension coincides with that of the rate constant); R is the universal gas constant (8.3143 J/Mole.K); t is the absolute temperature; E_a is the activation energy of the reaction, i.e. the minimum energy that is required for the reaction and that is temperature-independent (J/Mole).

It follows from the Arrhenius equation that, since t forms part of the exponent, the chemical reaction rate is very sensitive to temperature change (Figure 1). At low temperatures, there are
practically no chemical reactions \((k \to 0)\), and at very high temperatures, the rate constant tends to the limiting value \((k \to A)\).

Solving equation (2) for two temperatures, we obtain:

\[
E_a = \frac{R \cdot \ln \left(\frac{t_2}{t_1} \cdot \frac{k_2}{k_1} \right)}{t_2 - t_1} \tag{3}
\]

Let us consider two isotherms 20 and 40 °C from the previous example. Then, according to (3), the activation energy of the chemical reaction is:

\[
E_a = \frac{8.3143 \cdot 293.15 \cdot 313.15}{313.15 - 293.15} \ln \left(\frac{15.2}{11.5} \right) = 10645 \text{ J/Mole}
\]

Let us determine how many times the reaction rate will increase if the temperature rises from 20 to 50 °C:

\[
\frac{k_{50}}{k_{20}} = A \cdot e^{-\frac{E_a}{R_50}} = e^{\frac{E_a}{R_20} \left(\frac{1}{t_2} - \frac{1}{t_50} \right)} = e^{\frac{10645}{8.3143} \left(\frac{1}{293.15} - \frac{1}{323.15} \right)} = 1.5 \text{ times}
\]

Evidently, the results of calculations according to the Van’t Hoff and Arrhenius equations were almost identical. These results allow us to consider the possible application of classical chemical theories of assessing the dependence of reaction rate on temperature to calculating the strength of concrete in winter.

References
[1] Pikus G A, Mozgalev K M 2015 Monitoring the parameters of concrete cured in winter conditions Bulletin of South Ural State University. Series Building and architecture 15(1) pp 6–9
[2] Molodtsov M V, Pikus G A, Rusanov A E 2015 Experimental modeling of electric heating of concrete in a cast-in-place foundation plate in winter using the ELCUT software Science SUSU: proceedings of the 67th scientific conference. Section of Technical Sciences pp 229–234
[3] Kuchin V N 2017 Peculiarities of Thermal Treatment of Monolithic Reinforced Concrete Structures IOP Conference Series: Materials Science and Engineering International Conference on Construction, Architecture and Technosphere Safety 2017, ICCATS 2017 (Chelyabinsk: Russian Federation) 262 012071
[4] Pikus G A and Lebed A R 2017 Warming of Monolithic Structures in Winter IOP Conference Series: Materials Science and Engineering International Conference on Construction, Architecture and Technosphere Safety 2017, ICCATS 2017 (Chelyabinsk: Russian Federation) 262 012064
[5] Brzhanov R T 2018 Peculiarities of winter concreting International scientific and practical conference Peculiarities of the current stage in the development of natural and technical sciences 2017 part 2 (Belgorod: Agency for Advanced Scientific Research) pp 39–42
[6] Brzhanov R T 2018 Stress state of concrete under negative temperature effects VIII International Scientific and Practical Conference Modern Innovations: Theoretical and Practical View (Moscow: Problems of Science) pp 7–10
[7] Valt A B 1978 A study of technological parameters for curing structures concreted in winter with electric heating of mixture (on the example of columnar foundations) Thesis for obtaining the scientific degree of Candidate of Technical Sciences (Chelyabinsk: Chelyabinsk Polytechnic Institute) p 189
[8] Feskova N P 1979 Specifying the parameters of the formula for calculating the strength of concrete made from a heated mixture Recommendations for concreting in winter (Novosibirsk: West Siberian Books Publishers) pp 59–63

[9] Golovnev S G 1999 Winter concreting technology: optimization of parameters and choice of methods (Chelyabinsk: South Ural State University) p 148

[10] R – NP SRO SSK – 02 – 2015 Recommendations for concreting in winter (Chelyabinsk: Union of Construction Companies of the Urals and Siberia) p 85

[11] Koval S B and Molodtsov M V 2011 Methods for calculating and predicting the strength of concrete Bulletin of South Ural State University Series Construction and architecture 16 (12) pp 25–29

[12] Gnyrya A I, Abzayev Yu A, Korobkov S V, Boyarintsev A P, Mokshin D I and Gauss K S 2017 The influence of heating temperature on mechanical properties of cement brick The Bulletin of Tomsk State University of Architecture and Civil Engineering 5 (64) pp 176–182

[13] Goldenberg M M 1986 Calculation of the strength of slag-alkali concrete Effective technology of concreting under environmental conditions (Chelyabinsk: ChPI) pp 26–29

[14] Belousova N V and Belousov O V 2009 Chemical kinetics Electronic source (Krasnoyarsk: IPK SFU) p 87

[15] Bespalova Zh I, Smirnova N V, Pyaterko I A and Kudryavtsev Yu D 2014 Chemical kinetics and catalysis Manual for the course "Physical Chemistry" (Novocherkassk: South-Russian State Polytechnic University) p 98

[16] Kholokhonova L I and Korotkaya E V 2004 Kinetics of chemical reactions Textbook (Kemerovo: Kemerovo Technological Institute of Food Industry) p 80

[17] GOST 10180-2012 Concrete. Methods for determining the strength of control samples (Moscow: Standardinform) p 31