کارگاه‌های آموزشی مرکز اطلاعات علمی جهاد دانشگاهی

- کارگاه آنلاین اصول تنظیم قراردادها
- کارگاه آنلاین اصول تنظیم قراردادها
- کارگاه آنلاین اصول تنظیم قراردادها

کاربرد نرم افزار SPSS در پژوهش
INTRODUCTION: Complete knowledge of root canal curvature is a critical factor in successful endodontic treatment. The aim of this study was to investigate the direction, radius and degree of curvature of maxillary anterior teeth and the relati onship between the radi us and degree of curvature in Babol, a northern city of Iran.

MATERIALS & METHODS: A total of 242 radiographs of maxillary anterior teeth (central, lateral and canine) were taken by periapical parallel technique and processed by automatic processing. The degree of canal curvature was measured only at mesiodistal direction with Schneider method and classified according to Seidberg method. Statistical analysis was performed with Kruskal Wallis and Mann-Whitney U tests.

RESULTS: Overall, 153 (62%) teeth had curvatures; 35.3% were mesially inclined and 64.7% were distally inclined. The degree of canal curvature was categorized into small, intermediate, and severe, that is 39.3%, 44.6% and 16.1%, respectively. The mean value of root curvature angle was 7.24°±9.03° in central incisors, 12.08°±11.02° in lateral incisors, and 15.08°±12.02° in canines respectively. There was significant correlation between type of tooth and degree of curvature (P=0.000). Significant correlation was not found between the type of tooth and radius of curvature (P=0.365).

CONCLUSION: In the present study, 62% of maxillary anterior teeth had some form of curvatures; highest degrees of curvature were attributed to the canine teeth.

KEYWORDS: Maxillary anterior teeth, Radius of curvature, Root curvature.

INTRODUCTION: The main object of root canal therapy is the elimination of microorganisms and infected tissue from the tooth root canal system. This is performed by enlarging and shaping the canals to allow for adequate chemical debridement, while at the same time preserving the original shape and structure of the tooth (1). Thorough knowledge of the anatomical configurations of the dental pulp, and the possible variations is critical for successful endodontics (2). Conducting root canal therapy (RCT) when uncertain of the canal morphology increases the risk of transportation, ledge formation and even perforation, and often results in failure of the root canal procedure (3-5). Several techniques are used to determine root canal configuration such as specimen transparent technique, conventional radiographs, radiopaque contrast media, cross-sectional cutting scanning electron microscopy (SEM) and cone beam computed tomography (CBCT) (6-11).

Schneider divided the root canal curvature into different root angles (12). However, evaluating the curvature by the angle of the canal is now thought to be insufficient. For instance, two canals with the same angle obtained by the Schneider method could have very different radii of curvature or abruptness of curvatures (13). Pruett et al. proposed that the assessment of canal curvature should be dictated by two measurements: a) the angle of curvature and b) the radius of curvature determined mathematically.
from radiographs (14). There is a general shortage of clinical studies on canal curvature of maxillary anteriors as most investigations have concentrated on the type and variation of the root canal system (8,15). Few investigations have been conducted on the specific degree of canals curvature of the maxillary anterior teeth (16). The purpose of this study was to determine the degree, direction and radius of canal curvature in maxillary anterior teeth in Babol, a northern city of Iran.

MATERIALS & METHODS

This study was performed on 242 radiographs of anterior teeth (central, lateral, and canine) taken from patients referred to a maxillofacial radiology clinic in Babol, Iran. The patients were initially informed about the study and on agreement they filled the informed consent form. Teeth that had not received endodontic therapy and had complete apical foramen and contour were selected. All radiographs were taken by periapical parallel technique with film holder XCP (Dentsply, United Kingdom) and processed by automatic processor (Velopex, United Kingdom).

The angle of curvature was determined by the Schneider technique which measures curvature as well as the acute angle between the long axis of the canal and a line joining the apical foramen to the point of initial curvature shown on the radiograph (Figure 1) (12). Teeth were classified according to Seidberg classification; the degree of curvatures was categorized as small (<5°), moderate (5-25°) and severe (25-70°). The radius of curvature was measured by the Estrella method; that is, two 6-mm semi straight lines superimposed to root canal (Figure 1) (11). According to this method, the first line (line b) represents longer continuity of the apical region and the second line (line a) represents the middle and cervical thirds. Of the second line, the nearest 6mm to the first line was considered; the lines perpendiculars to the midpoints of two 6-mm semi straight lines convene each other at a point that is Circum Center. This point is the center of the circle which determines the magnitude of the root curve (11). The curvature measurement is performed by two observers with accuracy of one degree. According to the Estrela, the root curvature radius was classified as following:

- Small radius (<4mm) i.e. severe curvature
- Intermediate radius (4 < r ≤ 8) i.e. moderate curvature
- Large radius (r > 8mm) i.e. mild curvature

The data were analyzed with Kruskal Wallis and Mann-Whitney U tests. For multiple comparisons Bonferroni adjustment of α was carried out.

RESULTS

Out of 242 examined teeth, 153 (62%) had curvatures; 35.3% were mesially and 64.7% were distally inclined (Table 1).

The degree of canal curvature was as follows: 39.3% with small curvature, 44.6% with intermediate and 16.1% with severe curvature (Table 2).

Distribution of different curvature radius (according to Estrela) in studied teeth is presented in Table 3.

The tooth type showed no significant correlation with radius of curvature (P=0.365) (Table 4), and significant correlation with curvature angle (P=0.000) (Table 5). Mann-Whitney U test shown significant difference between central and lateral (P=0.003), central and canine (P=0.000) but the difference between lateral and canine was not significant (P=0.128).

DISCUSSION

Radiographs are commonly utilized in endodontics to determine canal morphology;
Table 1. Frequency of mesial+distal curvatures among the teeth

Direction	Mesial	Distal	Total
Frequency (%)	54 (35.3)	99 (64.7)	153 (100.0)

Table 2. Frequency and percentage of angles of curvatures among the teeth

Angle	Frequency (%)
≤4	95 (39.3)
5-24	108 (44.6)
≥25	39 (16.1)
Total	242 (100.0)

Table 3. Frequency and percentage of radius in teeth with angles over 20

Radius	Frequency (%)
≤4	2 (2.5)
5-8	15 (19.0)
≥9	62 (78.5)
Total	79 (100.0)

Table 4. Mean and standard deviation of radius according to tooth type

Tooth	Number	Mean±SD	P value
Central	18	12.44±3.36	0.365
Lateral	35	12.00±5.00	
Canine	26	10.84±3.22	

Table 5. Mean and standard deviation of degree of curvature according to tooth type

Tooth	Number	Mean±SD	P value
Central	86	7.24±9.03	
Lateral	100	12.08±11.02	0.000
Canine	56	15.08±12.02	

Estrella et al. described a new method to determine root curvature radius in CBCT images (12). According to this method we measured the radius of root curvature and found that there was an inverse relation between radius and degree of root curvature; however this was not significant (r=0.155, P>0.05).

Our results agree with two previous studies that found no significant difference between the degree and the radius of curvature of root canals; also no relationship existed between the original radius of curvature and apical transport (14,20). However, determination of root canal curvature by use of its radius has proven to be an effective method.

Further studies should concentrate on CBCT images of teeth in buccolingual and mesiodistal directions, keeping dose limitation in mind.

CONCLUSION

In the present study, 62% of maxillary anterior teeth had root curvatures and the lowest degree of curvature was related to the centrals. The results of this study can enhance endodontic therapy predictability and minimize errors during post insertion.

Conflict of Interest: ‘none declared’.

REFERENCES

1. Schilder H. Cleaning and shaping the root canal. Dent Clin North Am 1974;18:269-96.
2. Rahimi S, Shahi S, Lotfi M, Zand V, Abdolrahimi...
M, Es’haghi R. Root canal configuration and the prevalence of C-shaped canals in mandibular second molars in an Iranian population. J Oral Sci 2008;50:9-13.
3. Mullaney TP. Instrumentation of finely curved canals. Dent Clin North Am 1979;23:575-92.
4. Weine FS, Kelly RF, Bray KE. Effect of preparation with endodontic hand pieces on original canal shape. J Endod 1985;11:203-11.
5. Miyashita M, Kasahara E, Yasuda E, Yamamoto A, Sekizawa T. Root canal system of the mandibular incisor. J Endod 1997;23:479-84.
7. Kartal N, Cimilli HK. The degrees and configurations of molar canals at curvatures of mandibular first molars. J Endod 1997;23:358-62.
8. Naoun HJ, Chandler NP, Love RM. Conventional versus storage phosphor-plate digital images to visualize the root canal system contrasted with a radiopaque medium. J Endod 2003;29:349-52.
9. Lee MM, Asmick B J, Turner AM, Shah R P, Musikant BL, Deutsch AS. Morphological measurements of anatomical landmarks in pulp chambers of human anterior teeth. J Endod 2007;33:129-31.
10. Gilles J, Reader A. An SEM investigation of the mesiolingual canals in human maxillary first and second molars. Oral Surg Oral Med Oral Pathol 1990;70:638-43.
11. Estrela C, Bueno MR, Sousa-Neto MD, Pecora JD. Method for determination of root curvature radius using cone-beam computed tomography images. Braz Dent J 2008;19:114-8.
12. Schneider SW. A comparison of canal preparations in straight and curved root canals. Oral Surg Oral Med Oral Pathol 1971;32:271-5.
13. Zheng QH, Zhou XD, Jiang Y, Sun TQ, Liu CX, Xue H, Huang DM. Radiographic investigation of frequency and degree of canal curvatures in Chinese mandibular permanent incisors. J Endod 2009;35:175-8.
14. Pruett JP, Clement DJ, Carnes DL Jr. Cyclic fatigue testing of nickel-titanium endodontic instruments. J Endod 1997;23:77-85.
15. Sert S, Aslanalp V, Tanalp J. Investigation of the root canal configurations of mandibular permanent teeth in the Turkish population. Int Endod J 2004;37:494-9.
16. Tao XL, Peng B, Bian Z, Fan MW. Survey of root canal curvature in maxillary anterior teeth. Hua Xi Kou Qiang Yi Xue Za Zhi 2007;25:135-8.
17. Intraoral radiographic examination. In: Michael Pharaoh: Oral Radiology, 6th Edition. St. Louis: CV Mosby, 2009: pp.150.
18. Jerome CE, Hanlon RJ Jr. Identifying multiplanar root canal curvatures using stainless-steel instruments. J Endod 2003;29:356-8.
19. Cunningham CJ, Senia ES. A three-dimensional study of canals curvatures in the mesial roots of mandibular molars. J Endod 1992;18:294-300.
20. Lopes HP, Elias CN, Estrela C, Siqueira JF Jr. Assessment of the apical transportation of root canals using the method of the curvature radius. Braz Dent J 1998;9:39-45.
21. Lopes HP, Moreira EJ, Elias CN, de Almeida RA, Neves MS. Cyclic fatigue of ProTaper instruments. J Endod 2007;33:55-7.
22. Moreira EJL, Lopes HP, Elias CN, Fidel RAS. Flexion rotation fracture of NiTi endodontic instruments. RBO 2002;59:412-4.
23. Pecora JD, Capelli A, Guerisoli DM, Spanò JC, Estrela C. Influence of cervical preflaring on apical file size determination. Int Endod J 2005;38:430-5.
24. Schäfer E, Florek H. Efficiency of rotary nickel-titanium K3 instruments compared with stainless steel hand K-Files. Part 1. Shaping ability in simulated curved canals. Int Endod J 2003;36:199-207.
25. Nagy CD, Szabó J, Szabó J. A mathematically based classification of root canal curvatures on natural human teeth. J Endod 1995;21:557-60.
26. Willershausen B, Kasaj A, Tekyatan H, Roehrig B, Briseno B. Radiographic investigation of location and angulation of curvatures in human maxillary incisors. J Endod 2008;34:1052-6.
کارگاه های آموزشی مرکز اطلاعات علمی جهاد دانشگاهی

کارگاه آنلاین
کاربرد نرم افزار SPSS در پژوهش

کارگاه آنلاین
اصول تدوین قراردادها

کارگاه آنلاین
بروپوزال نویسی