Abstract

Leaf area index (LAI) is a biophysical variable that is related to atmosphere-biosphere exchange of CO₂. One way to obtain LAI value is by the Moderate Resolution Imaging Spectroradiometer (MODIS) biophysical products (LAI MODIS). The LAI MODIS has been used to improve the physiological principles predicting growth (3-PG) model within a Bayesian Network (BN) set-up. The MODIS time series, however, contains gaps caused by persistent clouds, cloud contamination, and other retrieval problems. We therefore formulated the EM-algorithm to estimate the missing MODIS LAI values. The EM-algorithm is applied to three different cases: successive and not successive two winter seasons, and not successive missing MODIS LAI during the time study of 26 successive months at which the performance of the BN is assessed. Results show that the MODIS LAI is estimated such that the maximum value of the mean absolute error between the original MODIS LAI and the estimated MODIS LAI by EM-algorithm is 0.16. This is a low value, and shows the success of our approach. Moreover, the BN output improves when the EM-algorithm is carried out to estimate the inconsecutive missing MODIS LAI such that the root mean square error reduces from 1.57 to 1.49. We conclude that the EM-algorithm within a BN can handle the missing MODIS LAI values and that it improves estimation of the LAI.

Keywords: EM-algorithm; Gaussian Bayesian networks (GBNs); leaf area index (LAI); Moderate Resolution Imaging Spectroradiometer (MODIS).

1. Introduction

Forests play a critical role in carbon sequestration [1], thus affecting the speed of climate change. Therefore, monitoring forest growth has received increasing attention [2]. An interesting parameter in observing forest growth is the leaf area index (LAI), defined as the total one-sided area of leaf tissue per unit ground surface area (m²m⁻²) [2]. The LAI is estimated using process-based models, such as the Physiological Principles in Predicting Growth (3-PG) model, being a stand-level model of forest growth [3]. Similarly, remote sensing (RS) also provides the LAI estimates. For instance, the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor provides 8-day global data sets of the LAI [4].

Bayesian networks (BNs) have been used to estimate forest growth parameters [5, 6]. A BN is a directed acyclic graph consisting of nodes and arcs, to represent variables and the dependencies between variables, respectively [7]. Gaussian Bayesian network (GBN) has been used to improve LAI estimates by combining the 3-PG model output with MODIS images [6]. This approach relays on availability of satellite images. RS data, however, often contain gaps (missing values) due to atmospheric characteristics. A major development in statistical methods came in the 1970s with the maximum likelihood (ML) estimation [8, 9], and the expectation maximization (EM)-algorithm have been used to find ML [9].

* Corresponding author Y.T. Mustafa, Tel.: +31 68 416 4774; fax: +31 53 487 4335. E-mail address: Mustafa@itc.nl.

© 2011 Published by Elsevier Ltd. Open access under CC BY-NC-ND license. Selection and peer-review under responsibility of Spatial Statistics 2011

© 2011 Published by Elsevier Ltd. Open access under CC BY-NC-ND license. Selection and peer-review under responsibility of Spatial Statistics 2011
doi:10.1016/j.proenv.2011.07.014
represents an observed data set consisting of three nodes reformulated as:

\[\text{(complete) data} \]

\[\text{derived from MODIS images and estimated by the 3-PG model.} \]

Fig. 1(a) shows the graphical part of BN. The inter-related variables. Mustafa et al. [6] designed a network to improve LAI estimation by combining LAI values needed to execute GBN approach in Mustafa et al. [6].

2. Bayesian network

A BN is a probabilistic graphical model that provides a graphical framework of complex domains with lots of inter-related variables. Mustafa et al. [6] designed a network to improve LAI estimation by combining LAI values derived from MODIS images and estimated by the 3-PG model. Fig. 1(a) shows the graphical part of BN. The joint probability distribution associated with its variables \(\text{LAI} = \{ \text{LAI}_1, \ldots, \text{LAI}_n \} \) is the multivariate normal distribution \(N(\mu, \Sigma) \), given by \(f(\text{LAI}) = (2\pi)^{-n/2}|\Sigma|^{-1/2}\exp\left\{ -\frac{1}{2} (\text{LAI} - \mu)^T \Sigma^{-1} (\text{LAI} - \mu) \right\} \). Here \(\mu \) is the \(n \)-dimensional mean vector, and \(\Sigma \) is the \(n \times n \) positive definite covariance matrix with determinant \(|\Sigma| \). The conditional probability distribution of the \(\text{LAI}_i \) represented by the \(\text{LAI}_{BN_i} \) as the variable of interest given its parentage, is the univariate normal distribution with density

\[
f(\text{LAI}_{BN_i}|\text{pa}_i) \sim \mathcal{N} \left(\mu_i + \sum_{j=1}^{#\text{pa}_i} \beta_{ij} (\text{pa}_{ij} - \mu_{\text{pa}_{ij}}), \nu_i \right),
\]

where \(\mu_i \) is the expectation of \(\text{LAI}_{BN_i} \) at time \(i \), the \(\beta_{ij} \) are a regression coefficients of \(\text{LAI}_{BN_i} \) on its parents, \(#\text{pa}_i \) is the number of parents of \(\text{LAI}_{BN_i} \), and \(\nu_i = \Sigma_i - \sum_{j=1}^{#\text{pa}_i} \beta_{ij} \Sigma_{\text{pa}_{ij}} \) is the conditional variance of \(\text{LAI}_{BN_i} \) given its parents. Further, \(\Sigma_i \) is the unconditional variance of the \(\text{LAI}_{BN_i} \), \(\Sigma_{\text{pa}_i} \) are the covariances between \(\text{LAI}_{BN_i} \) and the variables \(\text{pa}_i \), and \(\Sigma_{\text{pa}_i} \) is the covariance matrix of \(\text{pa}_i \). For more details about a GBN of improving forest growth estimates and its mathematical formulation we refer to [6].

3. EM-algorithm for estimating missing values in a GBN

The Expectation Maximization (EM)-algorithm is a technique for estimating parameters of statistical models from incomplete data. The EM-algorithm is applicable for maximizing likelihoods. The EM-algorithm is formulated and applied in this study to handle the problem of missing satellite data by estimating the missing parameters that are needed to implement a GBN approach in Mustafa et al. [6].

Consider missing data of satellite images at the \(i^{th} \) moment \((i > 1) \) of the GBN as shown in Fig.1(b). The GBN output, \(\text{LAI}_{BN_i} \), conditionally depends on three nodes (variables), i.e., \(\text{LAI}_{M_i}, \text{LAI}_{BN_{i-1}}, \) and \(\text{LAI}_{3PG_i} \), where \(\text{LAI}_{M_i} \) is considered as a missing value. Let \((X, Y)\) be the complete data set at the \(i^{th} \) moment of GBN, with observed (complete) data \(Y = \{ \text{LAI}_{BN_{i-1}}, \text{LAI}_{3PG_i}, \text{LAI}_{BN_i} \} \) and missing data \(X = \text{LAI}_{M_i} \) (Fig. 1(b)). For clarity, we re-name the variables in the GBN model as \(y = \text{LAI}_{BN_i}, x = \text{LAI}_{M_i}, z = \text{LAI}_{BN_{i-1}}, w = \text{LAI}_{3PG_i} \). Hence expression (1) can be reformulated as:

\[
f(y|x, z, w) \sim \mathcal{N} \left(\mu_y + \beta_{yx} (x - \mu_x) + \beta_{yz} (z - \mu_z) + \beta_{yw} (w - \mu_w), \sigma_y^2 \right).
\]

Fig. 1. (a) The BN for \(i^{th} \) iterations. Each iteration consists of three nodes \(\text{LAI}_{3PG_i}, \text{LAI}_{BN_i}, \text{LAI}_{M_i} \); (b) BN with missing satellite observations. \(Y \) represents an observed data set consisting of three nodes \(\text{LAI}_{BN_i}, \text{LAI}_{BN_{i-1}} \) and \(\text{LAI}_{3PG_i} \), while \(X \) represents the variable \(\text{LAI}_{M_i} \) for which an observation is missing.
The EM-steps to find new ML estimates for the parameters $\theta = (\mu_x, \Sigma_x)$ are as follows:

- **Choose an initial setting for the parameters θ and name it as θ^{old}.** These are guessed based on seasonal changes of LAI values that are obtained from MODIS observations as:

$$
\theta^{old} = (\mu^{old}, \sigma^{old}) = \begin{cases}
\left(\mu_x - \frac{\mu_x - \mu_{x_{i-1}}}{\mu_{x_{i-1}}}, \sigma_x - \frac{\sigma_x - \sigma_{x_{i-1}}}{\sigma_{x_{i-1}}} \right) & \text{if } \mu_{x_{i-2}} \leq \mu_{x_{i-1}} \\
\left(\mu_x + \frac{\mu_x - \mu_{x_{i-1}}}{\mu_{x_{i-1}}}, \sigma_x + \frac{\sigma_x - \sigma_{x_{i-1}}}{\sigma_{x_{i-1}}} \right) & \text{otherwise}
\end{cases}
$$

where μ_x, σ_x are the mean and the standard deviation values of the MODIS LAI, and obtained either for the period from September to February (nongrowing season), or for the period from March to August (growing season). The determination of which period needs to obtain the μ_x, σ_x, is based on the occurrence of missing observation in that period. The $\frac{\mu_x - \mu_{x_{i-1}}}{\mu_{x_{i-1}}}$ and $\frac{\sigma_x - \sigma_{x_{i-1}}}{\sigma_{x_{i-1}}}$ are the relative changes of the mean and the standard deviation of the previous two MODIS LAI observations. Adding or subtracting these relative changes are based on the condition of an increase or decrease the MODIS LAI during the period of non-growing or growing season.

- **E-step:** compute the expectation (with respect to the X data) of the likelihood function of the model parameters by including the missing variables as they were observed,

$$
Q(\theta, \theta^{old}) = \mathbb{E}_X[\log f(Y|X|\theta)|Y, \theta^{old}] = \int \log f(Y|X|\theta)f(x|Y, \theta^{old})dx = \int \log f(x, y, z, w|\theta)f(x|y, z, w, \theta^{old}) dx,
$$

where $\log f(x, y, z, w|\theta) = \log f(y|x, z, w, \theta)f(x|\theta)f(z|\theta)f(w|\theta)$, and $f(y|x, z, w, \theta)$ is the conditional distribution of y given its parents x, z, w. Therefore, $\log f(x, y, z, w|\theta)$ can be expressed as:

$$
\log f(x, y, z, w|\theta) = -\frac{1}{2} \left(\frac{1}{\sigma^2_y} + \frac{\beta_{yx}}{\sigma_y^2} \right) x^2 + \left(\frac{y - \mu_y + \beta_{yx} \mu_x - \beta_{yz} (z - \mu_z) - \beta_{yw} (w - \mu_w)}{\sigma_y^2} \right) x
$$

- **M-step:** by maximizing the expected likelihood found during the E-step i.e.,

$$
\theta^{new} = \arg \max_\theta Q(\theta, \theta^{old})
$$

Hence, by differentiation $Q(\theta, \theta^{old})$ with respect to θ, and solve the differentiation equations for $\theta = (\mu_x, \sigma_x)$, the maximum values are found:

$$
\begin{align*}
\mu_x^{new} &= \frac{1}{\sigma^2 + \frac{b^2}{2a}} + \frac{2(-\Delta + \alpha \sigma^2 + \sigma^2)}{3a \sigma^2 + \frac{b^2}{2a}} + \frac{\alpha}{3a} \quad \text{and} \quad \\
\sigma_x^{new} &= \sqrt{\left(\mu_x^{new}\right)^2 - \frac{2c}{B} \mu_x^{new} + \frac{E}{B}}
\end{align*}
$$

Here μ^{old} and σ^{old} refer the guessed mean and standard deviation of x obtained using (3). The $Q(\theta, \theta^{old})$ after calculate the integral is: $Q(\theta, \theta^{old}) = \Omega \left(-\frac{f}{2a} + \frac{bg}{2a} - \frac{fb^2}{(2a)^2} - h\right)$, where $\Omega = \frac{\phi(-c + b^2)}{a \sqrt{2\pi}}$.
where $\phi = -36 \delta \alpha \lambda + 108 \eta \lambda^2 + 8 \alpha^3$, $\Psi = 12\sqrt{3}\sqrt{4 \delta^3 \lambda - \delta^2 \alpha^2 - 18 \delta \alpha \lambda \eta + 27 \eta^2 \lambda^2 + 4 \eta \alpha^2 \lambda}$, $\lambda = AB$, $\alpha = 2 AC + DB$, $\delta = AE + B^2 + 2 DC$, $\eta = CB + dE$. Here, $A = 4 \frac{4 \alpha \delta x}{\sigma^2}$, $B = 4 \alpha^2$, $C = 2 \alpha b \Omega$, $D = 2 \frac{4 \alpha \beta y z}{\sigma^2}$, $E = 2 \alpha \Omega + b^2 \Omega$.

- Check for convergence of θ^{new}. If $|\theta^{\text{new}} - \theta^{\text{old}}| \leq \varepsilon$ is not satisfied, then let $\theta^{\text{old}} \leftarrow \theta^{\text{new}}$, and the algorithm returns to E-step, where ε is the stop criterion which has been selected to be 10^{-5}.

4. Implementation

The GBN is applied to the Speulderbos forest in The Netherlands where the LAI is available as a time series from July 2007 until September 2009. The site is well described elsewhere [6]. The time study contains two winter seasons (October-March) and two summer seasons (May-August). To implement the approach of this work, we consider missing values, by removing some of MODIS LAI observations successively and not successively, as the satellite missing cases is expected. The missing values are estimated using EM-algorithm, and they compared with the original LAI values after performing EM-algorithm of estimating five successive missing cases as well as included only the values of interest, i.e., LAI$_{FD}$, LAI$_M$ and LAI$_{BN}$.

5. Results of applying EM-algorithm to estimate LAI$_M$ missing within a GBN

5.1. GBN performance with LAI$_M$ estimates during the first winter season

The accuracy of LAI$_M$ and LAI$_{BN}$ is tested using the root mean square error (RMSE) and the relative error (RE) with respect to the LAI field observation (LAI$_{FD}$) before and after performing EM-algorithm (Table 1). The averaged absolute error (AAE) of the estimating LAI$_M$ with respect to the original LAI$_M$ is calculated as well. Fig. 2(a) shows LAI values after performing EM-algorithm of estimating five successive missing LAI$_M$. The RMSE and the RE of LAI$_{BN}$ are 1.53 and 13.2%, respectively. Whereas, in Fig. 2(c) five not successive missing LAI$_M$ are estimated, where the RMSE and the RE of LAI$_{BN}$ are 1.51 and 13.3%, respectively. Nevertheless, the deviation between LAI$_{BN}$ and the LAI$_{FD}$ becomes larger after performing the EM-algorithm to estimate eight successive missing LAI$_M$ (Fig. 2(b)). The RMSE and the RE of LAI$_{BN}$ after and before performing the EM-algorithm equals 1.68 against 1.57 and 17.6% against 14.7%, respectively. The estimated missing LAI$_M$ represents the original LAI$_M$. This is observed especially with the case of not successive missing, with an AAE of 0.02.

Cases	RMSE	RE%	AAE								
	without missing	5 SME	8 SME	5 not SME	without missing	5 SME	8 SME	5 not SME	5 SME	8 SME	5 not SME
LAI$_M$	3.26	3.26	3.23	3.26	44.1%	44.0%	43.6%	44.1%	0.05	0.1	0.02
LAI$_{BN}$	1.57	1.53	1.68	1.51	14.7%	13.2%	17.6%	13.3%			

5.2. GBN performance with LAI$_M$ estimates during the second winter season

Here, we found that the LAI$_{BN}$ with performing EM-algorithm is still close to the LAI$_{FD}$ (Table 2). Fig. 3(a) shows LAI$_{BN}$ and LAI$_M$ after estimating five successive missing LAI$_M$, where the RMSE and the RE of LAI$_{BN}$ are 1.59 and 14.7%, respectively. While the RMSE and the RE of the LAI$_{BN}$ after five not successive missing LAI$_M$ estimated are 1.51 and 14.4%, respectively (Fig. 3(c)). Moreover, the estimated missing LAI$_M$ is close to the original LAI$_M$ with AAE values less than 0.08. The differences between LAI$_{BN}$ and LAI$_{FD}$ has occurred after applying the EM-algorithm to estimate eight successive missing LAI$_M$ (Fig. 3(b)). The RMSE and the RE of LAI$_{BN}$ after and before performing the EM-algorithm equals 1.69 against 1.57 and 17.0% against 14.4%, respectively.
Table 2. The RMSE and the RE of LAI_M and LAI_{BN}, and the AAE of LAI_M. They are obtained before and after applying the EM-algorithm of Successive and not Successive Missing LAI_M Estimated (SME) during the second winter season.

Cases	RMSE	RE%	AAE								
	without missing	5 SME	8 SME	5 not SME	without missing	5 SME	8 SME	5 not SME	5 SME	8 SME	5 not SME
LAI_M	3.26	3.25	3.24	3.22	44.1%	44.0%	43.8%	43.6%	0.04	0.08	0.04
LAI_{BN}	1.57	1.59	1.69	1.51	14.7%	14.7%	17.0%	14.4%			

Fig. 2. LAI_{BN} and LAI_M values of the Speulderbos forest obtained before and after performing the EM-algorithm during the first winter season; (a) 5 successive missing LAI_M estimated, (b) 8 successive missing LAI_M estimated, and (c) 5 not successive missing LAI_M estimated.

Fig. 3. LAI_{BN} and LAI_M values of the Speulderbos forest obtained before and after performing the EM-algorithm during the second winter season; (a) 5 successive missing LAI_M estimated, (b) 8 successive missing LAI_M estimated, and (c) 5 not successive missing LAI_M estimated.
5.3. GBN performance with LAI\textsubscript{M} estimates of not successive missing during the whole time period

Finally, the EM-algorithm is carried out to estimate the 16 LAI\textsubscript{M} of not successive missing. The differences between LAI\textsubscript{BN} and LAI\textsubscript{FD} reduces after applying the EM-algorithm (Fig.4). The RMSE and the RE of LAI\textsubscript{BN} is 1.49 against 1.57 and 14.0% against 14.7%, respectively. Moreover, the RMSE and the RE of the LAI\textsubscript{M} equal 3.27 against 3.26 and 44.4% against 44.1%, respectively, with an AAE of 0.16.

![Fig. 4. LAI\textsubscript{BN} and LAI\textsubscript{FD} values of the Speulderbos forest obtained before and after performing the EM-algorithm for not successive missing LAI\textsubscript{M} estimated during the period from July 2007 until September 2009.](image)

6. Discussion and conclusion

In this study the EM-algorithm is formulated within GBN and the missing LAI\textsubscript{M} is estimated. Our results show that the missing LAI\textsubscript{M} is estimated successfully such that it represents the origin LAI\textsubscript{M} trend. The strength of the represented work lies in applying the EM-algorithm in a GBN to estimate the missing input source, LAI\textsubscript{M}, of the GBN. A common criticism of the EM-algorithm is that the convergence can be quite slow [9]. In order to save computing time, it is essential to start with good initial parameters. For this reason we resorted expression (3) such that we can identify the initial values as a closest value to the estimate LAI\textsubscript{M} values, however, in some cases it required 804 iterations. From the results of performing EM-algorithm to estimate the missing LAI\textsubscript{M}, we observed that the small difference between the LAI\textsubscript{M} estimates and the original LAI\textsubscript{M} has an impact on the resulting output of the GBN. This is due to the fact that a GBN is sensitive to LAI\textsubscript{M} variation [6]. We conclude that the missing LAI\textsubscript{M} values are estimated successfully using the EM-algorithm. The more than five successive missing LAI\textsubscript{M} has an influence on GBN output such that LAI\textsubscript{BN} does not match the LAI\textsubscript{FD}. Further, we conclude that LAI\textsubscript{BN} is improved after performing the EM-algorithm with not successive missing LAI\textsubscript{M} during the whole time period study.

References

[1] Wamelink GWW, Wieggers HJJ, Reinds GJ, Kros J, Mol-Dijkstra JP, van Oijen M, et al. Modelling impacts of changes in carbon dioxide concentration, climate and nitrogen deposition on carbon sequestration by European forests and forest soils. *For Ecol Manag*. 2009;258:1794-805.

[2] Bonan GB. Importance of leaf area index and forest type when estimating photosynthesis in boreal forests. *Remote Sens Environ*. 1993;37:303-14.

[3] Landsberg JJ, Waring RH. A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning. *For Ecol Manag*. 1997;95:209-28.

[4] Myneni RB, Hoffman S, Knyazikhin Y, Privette JL, Glassy J, Tian Y, et al. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. *Remote Sens Environ*. 2002;83:214-31.

[5] Kalacska M, Sanchez-Azofeifa A, Caelli T, Rivard B, Boerlage B. Estimating leaf area index from satellite imagery using Bayesian networks. *IEEE T Geosci Remote*. 2005;43:1866-73.

[6] Mustafa YT, Van Laake PE, Stein A. Bayesian Network Modeling for Improving Forest Growth Estimates. *IEEE T Geosci Remote*. 2011;49:639-49.

[7] Jensen FV, Nielsen TD. *Bayesian networks and decision graphs*. 2nd ed. New York: Springer; 2007.

[8] Beales EML, Little RJA. Missing Values in Multivariate Analysis. *J R Stat Soc B Met*. 1975;37:129-45.

[9] Dempster AP, Laird NM, Rubin DB. Maximum Likelihood from Incomplete Data via the EM Algorithm. *J R Stat Soc B Met*. 1977;39:1-38.