Morphological and molecular characterisation of *Hoplolaimus smokyensis* n. sp. (Nematoda: Hoplolaimidae), a lance nematode from Great Smoky Mountains National Park, USA

Xinyuan MA 1,*, Robert T. ROBBINS 2, Ernest C. BERNARD 3, Claudia M. HOLGUIN 4 and Paula AGUDELO 1

1 Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA
2 Department of Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
3 Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA
4 Corpoica es ahora Agrosavia, Rionegro, 054040, Colombia

Received: 25 November 2018; revised: 11 April 2019; accepted for publication: 11 April 2019; available online: 20 May 2019

Summary – *Hoplolaimus smokyensis* n. sp. is a new species of lance nematode collected in Great Smoky Mountains National Park, USA. Females of *H. smokyensis* n. sp. have a labial region characterised by six, occasionally five, annules. The basal lip annule is subdivided by about 24 longitudinal striae. The stylet averages 47 μm long with robust, tulip-shaped stylet knobs bearing anterior projections. The hemizonid is ca 4 μm anterior to the excretory pore. The lateral field is incompletely areolated and has four continuous incisures from the metacorpus region to the tail region. There are three pharyngeal gland nuclei. Vulval epiptygma are absent. The scutellate phasmids are located one anterior and one posterior to the vulva. The male is shorter than the female and the head region is higher and more rounded than that of the female. The bursa extends to the tail tip and the gubernaculum is large and protrusible and has titillae and a capitulum. Morphologically, *H. smokyensis* n. sp. is most similar to *H. galeatus* and *H. stephanus*, but can be distinguished by differences such as the number of annules and longitudinal striae on the lip region and morphometric values. *Hoplolaimus smokyensis* n. sp. is also genetically distinct from other species according to comparisons of ribosomal and mitochondrial DNA sequences. Phylogenetic analyses based on ribosomal and mitochondrial gene sequences suggest that *H. smokyensis* n. sp. is a lineage distinct from related *Hoplolaimus* species.

Keywords – Acer sp., Eastern hemlock, *Halesia carolina*, lance nematode, maple, morphology, morphometrics, new species, phylogeny, plant-parasitic nematode, silverbell, taxonomy, *Tsuga canadensis*.

During a survey of fauna of Great Smoky Mountains National Park, along the Tennessee-North Carolina border in the south-eastern USA, a *Hoplolaimus* von Daday, 1905 species was isolated from a mixed forest sample of maple (*Acer* sp.), Eastern hemlock (*Tsuga canadensis* (L.) Carrière) and silverbell (*Halesia carolina* L., 1759). This species was initially distinguished from other reported lance nematodes based on a BLAST (Basic Local Alignment Search Tool) search result of internal transcribed spacer 1 (ITS1) sequences at the NCBI (National Center for Biotechnology Information). Its position was isolated on a phylogenetic tree composed of all available unique ITS1 sequences of *Hoplolaimus* species from GenBank. A phylogenetic analysis of mitochondrial cytochrome oxidase subunit I (*COI*) sequences supported this result, ensuring that molecular information of this undescribed lance nematode had not yet been reported. Females, males and juveniles were examined for morphological characteristics, morphometrics and phylogenetic relationships. We name the species *Hoplolaimus smokyensis* n. sp. in reference to the locality where it was first found.

Hoplolaimus smokyensis n. sp. is closest to *H. galeatus* (Cobb, 1913) Thorne, 1935 and *H. stephanus* Sher, 1963, but can be distinguished by minor morphological differences, such as the numbers of annules and longitudinal striae in the lip region, morphometric values, and absence of epiptygma. In this study, we applied two genetic markers, mitochondrial (*COI*) and ribosomal DNA

* Corresponding author, e-mail: xm@g.clemson.edu

© The authors, 2019
This is an open access article distributed under the terms of the CC-BY-NC 4.0 License.
(ITS1), to obtain an analysis of higher resolution on taxonomic relationships, which support the delimitation of *H. smokyensis* n. sp. DNA sequences were aligned with BLAST in GenBank. The highest similarity (89% on both COI and Internal Transcribed Spacer (ITS1) markers) was with *H. magnistylus* Robbins, 1982 sequences. Alignment analyses using MUSCLE (Edgar, 2004) showed unique molecular characteristics possessed by *H. smokyensis* n. sp. Phylogenetic trees generated with MrBayes (Huelsenbeck & Ronquist, 2001) indicated *H. smokyensis* n. sp. as a distinct clade.

Materials and methods

Nematode isolation

Female, male and juvenile specimens were sampled from Great Smoky Mountains National Park in July 2006. Nematodes were extracted from soil with a combination of sieving-decanting and sucrose centrifugal-flotation (Jenkins, 1964). Specimens were killed and fixed, processed to glycerin and permanently mounted on slides as described by Ye & Robbins (2003).

Morphological observation and micrography

Permanently mounted specimens were examined and imaged. Some live specimens were imaged as well. Most images were produced with a 14-megapixel Q-camera on an Olympus BX-63 differential interference-contrast microscope system. Measurements were made on a Nikon Optiphot II compound microscope with the aid of a drawing tube or ocular micrometer. Mean annule width was calculated by measuring a series of ten annules at mid-body.

Molecular profiles and phylogeny

DNA was extracted from individual nematodes using Sigma Extract-N-Amp kit (XNAT2) (Sigma). The manufacturer’s protocol was modified by reducing volumes to one eighth of the recommended amount (Ma *et al*., 2011). The ITS1 was amplified with primers Hoc-1f (5′-AACCTGCTGCTGGATCATTA-3′) and LSUD3r (5′-TATGCTTAAGTTCAGGGT-3′) following Bae *et al.* (2008, 2009); and a portion of cytochrome c oxidase subunit I (COI) sequence was amplified with primers JB3 (5′-TTTTTTTGGTCATCCTGAGGTTAT-3′) and JB5 (5′-AGACCTAAACTTAAACATAATGAAA-3′) (Derycke *et al*., 2005). For COI, the initial denaturation was set at 95°C for 3 min, followed by 33 cycles of 95°C for 45 s, 50°C for 1 min 15 s, 72°C for 2 min and final extension at 72°C for 10 min (Holguin *et al*., 2015a). The amplified products were loaded onto a 1.5% agarose gel and visualised with GelRed™ (Biotium). PCR products for both regions were purified using magnetic beads and sequenced in both directions with the ABI 3730 capillary sequencer (Applied Biosystems) in the DNA Laboratory (School of Life Sciences) at Arizona State University. Sequencing results were edited and assembled in Sequencher 5.1 (Genes Code). Consensus DNA sequences were searched in GenBank using BLAST, then aligned with MUSCLE (Edgar, 2004).

A best-fit model of nucleotide substitution was selected using the GTR + I + G model with the Akaike Information Criterion (AIC) among 56 different models using ModelTest v 3.7 (Posada & Crandall, 1998). Bayesian inference was implemented for each gene separately using the MrBayes 3.1.2 program (Huelsenbeck & Ronquist, 2001) running the chain for 1×10^7 generations with the Markov chain Monte Carlo (MCMC) method, a sample frequency of 100 and burn-in value of 2500. We estimated the posterior probabilities of the phylogenetic trees (Larget & Simon, 1999) using the 50% majority rule. The phylogenetic trees were viewed on phylo.io (Robinson *et al*., 2016) and iTOL (Interactive tree of life v3) (Letunic & Bork, 2016).

Results

Hoplolaimus smokyensis *n.* sp. (Figs 1-4)

Measurements

See Table 1.

Description

Female

Female body generally cylindrical, vermiform, tapering slightly at each end. Head set off, with massive cephalic framework, usually bearing six lip annules and the oral disc, but sometimes with five annules (six individuals out of 30 specimens), basal annule tessellated, divided into ca 20 equal blocks (Fig. 1A, B). Oral disc surrounded by a lip annule separated into six sections: two subdorsal, two

The specific epithet refers to the locality where the species was first found.
Table 1. Morphometrics of *Hoplolaimus smokyensis* n. sp. All measurements are in μm and in the form: mean ± s.d. (range).

Character	Holotype	Female	Male
n		30	17
L	1409	1335 ± 174 (997-1870)	1096 ± 87 (972-1261)
a	34.7	30.1 ± 3.3 (23.5-36.9)	30.5 ± 2.3 (26.1-34.5)
b	9.9	9.8 ± 1.6 (7.1-14.9)	8.1 ± 0.7 (7.1-9.3)
b'	7.3	6.8 ± 0.9 (4.9-8.9)	5.8 ± 0.5 (5.2-6.7)
c	115.7	114 ± 15.8 (91.3-154)	36.8 ± 3.7 (28.9-42.3)
c'	0.7	0.7 ± 0.1 (0.5-1.0)	1.5 ± 0.2 (1.3-1.9)
V	54.4	56.5 ± 2.6 (49.7-62.1)	–
Max. body diam.		41	36.1 ± 3.4 (30.5-42.6)
Lip annulus	6	5.8 ± 0.4 (5.6)	5.8 ± 0.4 (5.6)
Lip height	8	8.1 ± 0.3 (7.1-9.1)	8.1 ± 0.2 (7.1-8.7)
Lip diam.	16	15.8 ± 1.0 (14.2-18.3)	13.9 ± 0.6 (12.2-14.2)
Conus	24	25.8 ± 1.6 (22.3-28.4)	23.8 ± 1.5 (22.3-26.4)
Stylet length	47	47.9 ± 1.9 (44.7-50.8)	43.4 ± 2.1 (40.6-48.7)
Pharynx	142	138 ± 16.7 (79-183)	136 ± 6.4 (126-152)
Anterior end to pharyngeal gland tip	193	199 ± 11.2 (168-223)	189 ± 10.7 (173-207)
Tail length	26	24.9 ± 4.0 (20.3-34.5)	30.0 ± 3.4 (24.4-36.5)
Anal body diam.	37	35.5 ± 3.1 (28.4-40.6)	20.2 ± 1.3 (18.3-22.3)
Hemizonid from anterior end	162	157 ± 14.2 (140-207)	150 ± 8.8 (132-166)
Excretory pore from anterior end	166	164 ± 14.7 (144-217)	156 ± 8.6 (136-173)
Dorsal pharyngeal gland orifice	12	11.7 ± 0.9 (10.2-12.2)	7.0 ± 1.0 (6.1-8.1)
Vulva from anterior end	766	753 ± 100 (602-1112)	–
Spicule length	–	–	41.1 ± 2.5 (36.5-46.7)
Gubernaculum	–	–	10.5 ± 0.6 (10-12)

Subventral, and two reduced lateral sectors. Stylet long and robust, basal knobs tulip-shaped (Fig. 1C-E). Dorsal pharyngeal gland orifice ca 12 μm from base of stylet knobs. Pharyngeal glands with three nuclei, one nucleus in the dorsal gland. Pharyngo-intestinal junction at 6-12% of body length from anterior end. Pharyngeal lobe terminus at 12-16% of body length from anterior end. Excretory pore prominent (Fig. 1F), at 10-15.5% of body length from anterior end. Hemizonid large, spanning about two annules, just anterior to excretory pore (Fig. 1G). Lateral field with four incisures, incompletely areolated (Fig. 2A), narrowing to two incisures at level of metacorpus, ending near level of stylet base; posteriorly, lateral field abruptly ending by joining of the outer incisures at level of anus (Fig. 2E, F). Phasmids large, scutelliform, conspicuous, variable in position, right phasmid located anterior to vulva, left one located posterior, anterior one at 20-40% and posterior one at 60-90% of body length from anterior end. Vulva prominent, located near mid-body, with deep transverse slit, epitygma absent (Fig. 2B). Ovaries two, outstretched. Sperrmatheca round to oval, usually with many sperm (Fig. 2C). Cuticular annulation at mid-body distinct, annule width 2 μm, subcuticular annulation distinct, about half as wide as outer cuticular annules. Tail hemispherical to conoid-hemispherical (Fig. 2E, F).

Male

Body shape similar to female, cylindroid, vermiciform. Body length generally shorter than female. Head set off, labial region exhibiting sexual dimorphism, higher and rounder than females when viewed laterally (Fig. 4A, B). Head region usually bearing six lip annules and the oral disc, occasionally five annules (four individuals out of 17 specimens). Stylet knobs tulip-shaped. Excretory pore at 12-14% of body length from anterior end, 2-3 annules posterior to hemizonid. Cuticular annules at mid-body ca 2 μm wide. Lateral field areolated, with four incisures. Testis one, outstretched anteriorly. Spicules and gubernaculum long and prominent, bursa large and conspicuous, extending to tail tip. Gubernaculum large, protrusible, with prominent capitulum and titillae (Figs 3B; 4D).
Fig. 1. Micrographs of *Hoplolaimus smokyensis* n. sp. females from Great Smoky Mountains National Park. A, B: Head of the same female specimen showing lip annules and longitudinal striae; C-E: Stylet view with different focusing; F, G: Pharyngeal region of the same female specimen showing excretory pore (F) and hemizonid (G) indicated by arrows.
Fig. 2. Micrographs of *Hoplolaimus smokyensis* n. sp. females from Great Smoky Mountains National Park. A: Vulval region with no epitygma; B: Incomplete areolation in lateral field; C: Ovary with sperm; D: Oocytes; E, F: Tail of same female specimen showing lateral field incisures, areolation and anus (arrow).
Fig. 3. Micrographs of *Hoplolaimus smokyensis* n. sp. from Great Smoky Mountains National Park. A: Female head with stylet, dorsal pharyngeal gland orifice and median bulb; B: Male tail; C: Habitus of male and female.
Hoplolaimus smokyensis n. sp. from the USA

Fig. 4. Micrographs of *Hoplolaimus smokyensis* n. sp. males from Great Smoky Mountains National Park. A, B: Head of same male specimen showing head lip region (A) and stylet (B); C: Ventral view of an anterior phasmid; D: Ventral view of male tail.

TYPE LOCALITY

All specimens were obtained from Great Smoky Mountains National Park, Sevier County, TN, USA, Laurel Falls Trail, 35°40.874′N, 83°36.149′W, elevation 1008 m a.s.l., in a mixed maple (*Acer* sp.), Eastern hemlock (*Tsuga canadensis*) and silverbell (*Halesia carolina*) forest.
TYPE MATERIAL

Holotype female (T-702t) and five paratype slides (T-6864p to T-6868p containing seven females and seven males) deposited in the Nematology Laboratory Collection, USDA, ARS, Beltsville, MD, USA. Five other paratype slides (28506-28510), including ten females, seven males and five juveniles, deposited in the Department of Nematology, University of California, Riverside, CA, USA.

DIAGNOSIS AND RELATIONSHIPS

Females of *H. smokyensis* n. sp. have a labial region characterised by six, occasionally five, annules. The basal lip annule is subdivided with about 24 longitudinal striae. The stylet averages 47 μm long with robust, tulip-shaped stylet knobs bearing anterior projections. The hemizonid is ca 4 μm anterior to the excretory pore. The lateral field is incompletely areolated and has four continuous incisures from the metacorpus region to the tail region. There are three pharyngeal gland nuclei. Vulval epiptygma are absent. The scutellate phasmids are located one anterior and one posterior to the vulva. The male is shorter than the female. In lateral view the male head region is higher and more rounded than that of the female. The bursa extends to the tail tip and the gubernaculum is large and protrusible and has titillae and a capitulum.

Hoplolaimus smokyensis n. sp. keys to couplet 8 in Handoo & Golden (1992) but does not fit either species. It resembles *H. galeatus* in sometimes having five labial annules but has 20-24 longitudinal incisures on the basal lip annule vs 32-36 in *H. galeatus*. The number of longitudinal incisures is similar to that of *H. stephanus* but the latter has only four labial annules rather than five or six. *Hoplolaimus smokyensis* n. sp. differs from other species with four lateral incisures as follows: body length longer than that of *H. aorolaimoides* Siddiqi, 1972 (L = 1.25 (1.1-1.4) vs 0.85 (0.8-0.92) mm); phasmids located as one anterior and one posterior to the vulva, differing from those in *H. californicus* Sher, 1963 or *H. igualaensis* Cid Del Prado Vera, 1994, (both posterior to vulva); 5-6 labial annules vs 4 in *H. clarissimus* Fortuner, 1974, 3 or 4 in *H. tylenchiformis* von Daday, 1905 or 3 in *H. sacchari* (Shamsi, 1979) Luc, 1981; juvenile tail not pointed as in *H. concaudajuvencus* Golden & Minton, 1970; and stylet shorter than in *H. magnistylus* (47 (41-51) vs 55.7 (52-61) μm).

MOLECULAR PROFILES AND PHYLOGENY

Molecular sequences obtained in this study are deposited in the GenBank database with accession num-

Table 2. Origin and GenBank accession numbers of *Hoplolaimus* species ITS1 gene sequences used in this study.

Species	Origin	Host	Accession number
H. columbus	Pierce County, GA	Soybean, Glycine max	KP835333
H. columbus	Barnwell County, SC	Sorghum, Sorghum bicolor	KP835315
H. concaudajuvencus	Dallas County, TX	Bentgrass, Agrostis sp.	KP303685
H. concaudajuvencus	Dallas County, TX	Bentgrass, Agrostis sp.	KP303686
H. galeatus	Baldwin County, AL	Bermuda, Cynodon dactylon	KP303596
H. galeatus	St Johns, FL	St Augustine, Stenotaphrum secundatum	KP303607
H. magnistylus	Weakley County, TN	Corn, Zea mays	KP303681
H. magnistylus	Massac County, IL	Soybean, G. max	KP303634
H. seinhorsti	Alachua County, FL	Peanut, Arachis hypogaea	EU515327
H. seinhorsti	Fujian, China	Turfgrass	KF486504
Hoplolaimus sp. 1	Smoky Mountains, TN	–	EU515329
Hoplolaimus sp. 2	University of Illinois, IL	–	EU515330
Hoplolaimus sp. 2	Manhattan, KS	Corn, Zea mays	EU515331
Hoplolaimus sp. 3	Clemson, SC	Birch tree, Betula sp.	EU515332
Hoplolaimus sp. 3	Limestone County, IA	Cotton, Gossypium sp.	EU515333
H. stephanus	Sargent County, ND	Soybean, G. max	KX478888
H. stephanus	Riley County, KS	Bentgrass, Agrostis sp.	KP303646
H. stephanus	Warren County, OH	Bentgrass, Agrostis sp.	KP303664
H. smokyensis n. sp.	Sevier County, TN	Maple, Acer sp.	KP303683
H. smokyensis n. sp.	Sevier County, TN	Maple, Acer sp.	KP303684
Table 3. Origin and GenBank accession numbers of *Hoplolaimus* species COI gene sequences used in this study.

Species	Origin	Host	Accession number
H. columbus	Barnwell County, SC	Sorghum, *Sorghum bicolor*	KP864583
H. columbus	Pierce County, GA	Soybean, *Glycine max*	KP864611
H. concaudajuvenicus	Dallas County, TX	Bentgrass, *Agrostis* sp.	KP230667
H. concaudajuvenicus	Dallas County, TX	Bentgrass, *Agrostis* sp.	KP230668
H. galeatus	St Johns, FL	St Augustine, *Stenotaphrum secundatum*	KP230564
H. galeatus	Baldwin County, SC	Bermuda, *Cynodon dactylon*	KP230554
H. magnistylus	Massac County, IL	Soybean, *G max*	KP230588
H. magnistylus	Weakley County, TN	Corn, *Zea mays*	KP230657
H. stephanus	Riley County, KS	Bentgrass, *Agrostis* sp.	KP230593
H. stephanus	Warren County, OH	Bentgrass, *Agrostis* sp.	KP230626
H. smokyensis n. sp.	Sevier County, TN	Maple, *Acer* sp.	KP230658
H. smokyensis n. sp.	Sevier County, TN	Maple, *Acer* sp.	KP230659

Fig. 5. Alignment of ITS1 sequences for *Hoplolaimus smokyensis* n. sp. and the four closest *Hoplolaimus* species. Positions without an asterisk indicate polymorphisms, or differences between *H. smokyensis* n. sp. and at least one of the other four species.
Fig. 6. Alignment of COI gene sequences for Hoplolaimus smokyensis n. sp. and the four closest Hoplolaimus species. Positions without an asterisk indicate polymorphisms, or differences between H. smokyensis n. sp. and at least one of the other four species.
Hoplolaimus smokyensis n. sp. from the USA

Fig. 7. Molecular phylogeny of *Hoplolaimus* species based on unique ITS1 DNA sequences. *Heterodera glycines* ITS1 sequence was included as an outgroup. Bayesian Inference tree obtained with MrBayes. Model: GTR + I + G. MCMC = 1 × 10^7 generations.

Discussion

Hoplolaimus species are found feeding on the roots of a diversity of monocotyledonous and dicotyledonous plants. The genus is widely distributed in the USA (Wrather *et al*., 1992; Martin *et al*., 1994; Gazaway & McLean, 2003), and there are records from Canada, South America, Central America, and India on a variety of hosts (Fortuner, 1991). Based on differences in morphological characters, Siddiqi (2000) suggested dividing *Hoplolaimus* spp. into three subgenera according to lateral field incisures and the number of pharyngeal gland cell nuclei. With four incisures and three nuclei in the pharyngeal gland lobe, *H. smokyensis* n. sp. belongs to the subgenus *Hoplolaimus*.

To date, seven *Hoplolaimus* spp. have been reported from the south-eastern USA, including *H. columbus* Sher, 1963, *H. concaudajuvenicus*, *H. galeatus*, *H. magnistylus*, *H. stephanus*, *H. seinhorsti* Luc, 1958, and *H. tylenchiformis*. Of these, *H. columbus*, *H. galeatus*, and *H. magnistylus* have been shown to be economically important and can cause serious damage to agronomic crops including cotton (*Gossypium hirsutum*), corn (*Zea mays*) and soybean (*Glycine max*) (Fassuliotis, 1974; Nyczepir & Lewis, 1979; Robbins *et al*., 1987, 1989; Henn & Dunn, 1989; Noe, 1993).

In this study we have described *H. smokyensis* n. sp. from a mixed forest sample of maple, hemlock, and silverbell tree in Great Smoky Mountains National Park. Pathogenicity of *H. smokyensis* n. sp. has not been reported from any agricultural field yet, although its similarity to *H. galeatus* may have caused it to be overlooked in agricultural nematode surveys. Several lance nematode species, *H. stephanus*, *H. magnistylus* and *H. concaudajuvenicus*, which have been reported to infect trees, are known to also feed on crops such as corn, cotton, soybean,
Fig. 8. Molecular phylogeny of *Hoplolaimus* species based on unique sequences of COI gene DNA. *Heterodera glycines* COI sequence was included as an outgroup. Bayesian Inference tree obtained with MrBayes. Model: GTR + I + G. MCMC = 1 × 10⁷ generations.

and turfgrass (Ma et al., 2011, Holguin et al., 2015b). *Hoplolaimus galeatus* is also a prevalent pathogen of turf grasses such as St Augustinegrass (*Stenotaphrum secundatum*) and bermudagrass (*Cynodon dactylon*) in Florida (Henn & Dunn, 1989). These species are in subgenus *Hoplolaimus* with similar morphological characteristics to *H. smokyensis* n. sp. Identification and description of this new species will contribute to studies of comparative biology and evolutionary biology of lance nematodes.

Acknowledgement

This research was supported by the South Carolina Soybean Board and the South Carolina Cotton Board.

References

Bae, C.H., Szalanski, A.L. & Robbins, R.T. (2008). Molecular analysis of the lance nematode, *Hoplolaimus* spp., using the first internal transcribed spacer and the D1-D3 expansion segments of 28S ribosomal DNA. *Journal of Nematology* 40, 201-209.

Bae, C.H., Robbins, R.T. & Szalanski, A.L. (2009). Molecular identification of some *Hoplolaimus* species from the USA based on duplex PCR, multiplex PCR and PCR-RFLP analysis. *Nematology* 11, 471-480. DOI: 10.1163/156854109X447042

Cid Del Prado Vera, I. (1994). Tres nuevos miembros de *Hoplolaiminae* (Nematoda: *Hoplolaimidae*) de Mexico. *Nematropica* 24, 123-131.

Cobb, N.A. (1913). New nematode genera found inhabiting fresh water and non-brackish soils. *Journal of the Washington Academy of Sciences* 3, 432-444. DOI: 10.5962/bhl.part.20323

Derycke, S., Remerie, T., Vierstraete, A., Backeljau, T., Vanfleteren, J., Vincx, M. & Moens, T. (2005). Mitochondrial DNA variation and cryptic speciation within the free-living marine nematode *Pellioditis marina*. *Marine Ecology Progress Series* 300, 91-103. DOI: 10.3354/meps30091

Edgar, R.C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. *Nucleic Acids Research* 32, 1792-1797. DOI: 10.1093/nar/gkh340

Fassuliotis, G. (1974). Host range of the Columbia lance nematode *Hoplolaimus columbus*. *Plant Disease Reporter* 58, 1000-1002.

Fortuner, R. (1974). Description de *Pratylenchus sefaensis* n. sp. et de *Hoplolaimus clarissimus* n. sp. (Nematoda: Telenchida). *Cahiers ORSTOM, Série Biologie* 21(1973), 25-34.

Fortuner, R. (1991). The Hoplolaiminae. In: Nickle, W.R. (Ed.). *Manual of agricultural nematology*. New York, NY, USA, Marcel Dekker, Inc., pp. 669-719.

Gazaway, W.S. & McLean, K.S. (2003). A survey of plant parasitic nematodes associated with cotton in Alabama. *The Journal of Cotton Science* 7, 1-7.

Golden, A.M. & Minton, N.A. (1970). Description and larval heteromorphism of *Hoplolaimus concaudajuvencus*, n. sp.
(Nematoda: Hoplolaimidae). *Journal of Nematology* 2, 161-166.

Handoo, Z. & Golden, A.M. (1992). A key and diagnostic compendium to the species of the genus *Hoplolaimus* von Daday, 1905 (Nematoda: Hoplolaimidae). *Journal of Nematology* 24, 45-53.

Henn, R.A. & Dunn, R.A. (1989). Reproduction of *Hoplolaimus galeatus* and growth of seven *St. Augustiniegrass (Stenotaphrum secundatum)* cultivars. *Nematropica* 19, 81-87.

Holguin, C.M., Baeza, J.A., Mueller, J.D. & Agudelo, P. (2015a). High genetic diversity and geographic subdivision of three lance nematode species (*Hoplolaimus spp.*) in the United States. *Ecology and Evolution* 5, 2929-2944. DOI: 10.1002/ece3.1568

Holguin, C.M., Ma, X., Mueller, J.D. & Agudelo, P. (2015b). Distribution of *Hoplolaimus* species in soybean fields in South Carolina and North Carolina. *Plant Disease* 99, 1-5. DOI: 10.1094/PDIS-12-14-1332-RE

Huelsenbeck, J.P. & Ronquist, F. (2001). MrBayes: Bayesian inference of phylogenetic trees. *Bioinformatics* 17, 754-1755. DOI: 10.1093/bioinformatics/17.8.754

Jenkins, W.R. (1964). A rapid centrifugal-flotation technique for separating nematodes from soil. *Plant Disease Reporter* 48, 692.

Larget, B. & Simon, D.L. (1999). Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. *Molecular Biology and Evolution* 16, 750-759. DOI: 10.1093/oxfordjournals.molevol.a026160

Letunic, I. & Bork, P. (2016). Interactive tree of life (iTOl) v3: an online tool for the display and annotation of phylogenetic and other trees. *Nucleic Acids Research* 44, 242-245. DOI: 10.1093/nar/gkw290

Luc, M. (1981). *Basirolaimus* Shamsi, 1979, a junior synonym of *Hoplolaimus* von Daday, 1905 (Nematoda: Tylenchida). *Nematologia Mediterranea* II, 97-199.

Ma, X., Agudelo, P., Mueller, J.D. & Knap, H.T. (2011). Molecular characterization and phylogenetic analysis of *Hoplolaimus stephenus*. *Journal of Nematology* 43, 25-34.

Martin, S.B., Mueller, J.D., Saunders, J.A. & Jones, W.I. (1994). A survey of South Carolina cotton fields for plant-parasitic nematodes. *Plant Disease* 78, 717-719. DOI: 10.1094/PD-78-0717

Noe, J.P. (1993). Damage functions and population changes of *Hoplolaimus columbus* on cotton and soybean. *Journal of Nematology* 25, 440-445.

Nyczepir, A.P. & Lewis, S.A. (1979). Relative tolerance of selected soybean cultivars to *Hoplolaimus columbus* and possible effects of soil temperature. *Journal of Nematology* 11, 27-31.

Posada, D. & Crandall, K. (1998). MODELTEST: testing the model of DNA substitution. *Bioinformatics* 14, 817-818. DOI: 10.1093/bioinformatics/14.9.817

Robbins, R.T. (1982). Description of *Hoplolaimus magnistylus* n. sp. (Nematoda: Hoplolaimidae). *Journal of Nematology* 14, 500-506.

Robbins, R.T., Riggs, R.D. & Von Steen, D. (1987). Results of annual phytotaxonomic nematode surveys of Arkansas soybean fields, 1978-1986. *Annals of Applied Nematology* 1, 50-55.

Robbins, R.T., Riggs, R.D. & Von Steen, D. (1989). Phytoparasitic nematode survey of Arkansas cotton fields, 1986-1988. Supplement to the *Journal of Nematology* 21, 619-623.

Robinson, O., Dylus, D. & Deesimoz, C. (2016). Phyloto.io: interactive viewing and comparison of large phylogenetic trees on the web. *Molecular Biology and Evolution* 33, 2163-2166. DOI: 10.1093/molbev/msw080

Shamsi, M.A. (1979). *Basirolaimus* gen. n. (Nematoda: Hoplolaimidae) with the description of *Basirolaimus sacchari* n. sp. from India. *Nematologia Mediterranea* 7, 15-19.

Sher, S.A. (1963). Revision of the Hoplolaiminae (Nematoda) II. *Hoplolaimus* Daday, 1905 and *Aorolaimus* n. gen. *Nematologica* 9, 267-296. DOI: 10.1163/187529263X00476

Siddiqi, M.R. (1972). Two new species of *Scutellonema* from cultivated soils in Africa with a description of *Hoplolaimus aorolaimoides* sp. n. from Portugal (Nematoda: Hoplolaiminae). *Proceedings of the Helminthological Society of Washington* 39, 7-13.

Siddiqi, M.R. (2000). *Tylenchina* parasites of plants and insects, 2nd edition. Wallingford, UK, CABI Publishing. DOI: 10.1079/9780851992020.0000

Thorne, G. (1935). Notes on free-living and plant-parasitic nematodes, 2. *Proceedings of the Helminthological Society of Washington* 2, 96-98.

von Daday, E. (1905). Untersuchungen über die Süßwässerwasser-Mikrofauna Paraguays. *Zoologica, Stuttgart* 18, 1-349.

Wrather, J.A., Niblack, T.L. & Milam, M.R. (1992). Suvey of parthenogenetic species from Arkansas. *Journal of Nematology* 24, 779-782.

Ye, W. & Robbins, R.T. (2003). *Longidorus grandis* n. sp. and *L. paralongicaudatus* n. sp. (Nematoda: Longidoridae), two parthenogenetic species from Arkansas. *Journal of Nematology* 35, 375-387.