Woody Species Composition and Diversity of Wawa-Zange Forest, Gombe State, Nigeria

Abba, H.M.1, Yuguda, U.A1*, Yila, C.N.2 and Zhigila, A.D.1

1Department of Botany, Faculty of Science, Gombe State University, PMB 127, Gombe, Nigeria.
2Department of Geography, Faculty of Science, Gombe State University, PMB 127, Gombe, Nigeria.

*Corresponding author:
Yuguda, U. A.
Department of Botany,
Faculty of Science,
Gombe State University,
PMB 127, Gombe,
Nigeria
Email: uayuguda@gsu.edu.ng

INTRODUCTION

One of the most urgent global issues currently facing human survival, welfare, and development is deforestation [1]. It is one of Africa's two biggest annual losses of natural forests [2]. Primary forests are being destroyed at the greatest rate in the world in Nigeria. At 55 percent, it will soon lose almost all of its primary forests [3]. Natural forests covered 10.9Mha of Nigeria's land in 2010, accounting for almost 12% of the country's total area. It lost 97.8Kha of natural forests in 2020, which is equal to 59.5 Mt of CO2 emissions [4]. There are numerous factors, including biotic, climatic, and human activity, that contribute to deforestation in Nigeria. The main contributors to deforestation in Nigeria include human activities like logging, farming, oil exploration, urban migration, wood burning, grazing, etc. The problem is worse in Nigeria's dryland regions, which are more susceptible to desertification. According to estimates, between 50 and 75 percent of the states of Adamawa, Borno, Gombe, Jigawa, Kano, Katsina, Kebbi, Sokoto, Yobe, and Zamfara are at risk of wind erosion. In Gombe State, the Wawa-Zange Forest reserve is equally seriously affected by deforestation. The demand for fuelwood outstrips supply and new trees are not replanted. Even the existing ones are not allowed to regenerate. Consequently, the rate of deforestation increases by 1 kilometre each year. [1]. As reported [1] hundreds of tree species are cut from nearby forests and the Wawa-Zange reserve. The amount of fuel wood transported to the local market in Gombe each day is reportedly around one kilotonne. This is true since the 1996 founding of Gombe State and the ongoing security issues posed by the Boko Haram insurgency in the country's northeast put extra strain on the state's resources, even though Gombe is a more tranquil state than the other states nearby.

The Forests of Wawa-Zange are deteriorating. What was once an area of thick forests is turning into open woodland. Due to the aforementioned issues, this study was done to determine the woody species composition of the Wawa-Zange Forest Reserve. The data collected would be used as a baseline to disclose the vegetation's state in the study region, which will aid in the development of the forest's regeneration process.

ABSTRACT

According to recent research, severe human-induced deforestation is causing 65 percent of the thirty Forest Reserves spread over Gombe State to progressively transform into the desert. The research was done in the Wawa-Zange Forest Reserve in Gombe State, Nigeria, to assess the richness of woody species and biodiversity preservation. The vegetation was sampled with the Point Centered Quarter technique. A complete enumeration of Woody (Trees and Shrubs) with (Diameter at Breast Height or DBH) ≥10 and ≥5cm was carried out. Using Simpson's Diversity and the Shannon-Wiener index, alpha diversity was evaluated. A total of 51 woody species from 16 families and 41 genera were discovered. 34 were trees while 17 were shrubs. Most species were found in the Fabaceae family. Ceasalpinoidae (10), Mimosoideae (4), Papilionoideae (3), Combretaceae (7), Rubiaceae (5), Anacardiaceae, Burseraceae, Capparaceae, Moraceae, Tiliaceae had two species each. The other families are namely Apocynaceae, Ebanaceae, Loganiaceae, Meliaceae, Rhamnaceae, Sapotaceae, Zygophyllaceae with one species each. Simpson index of Diversity was (0.55) and the Shannon-Wiener index was (2.07). This study concluded that plants with low Importance Value Index or IVI such as Pterocarpus erinaceous, Capparis mitchelli, and Pericopsis laxiflora need urgent conservation measures. Therefore, it is important to properly adopt conservation and sustainable management measures.

KEYWORDS
Woody Species
Biodiversity
Conservation
Wawa-Zange
Forest-Reserve

HISTORY
Received: 15th June 2022
Received in revised form: 10th July 2022
Accepted: 25th July 2022

3D model of OsTHIC
METHODOLOGY

The study Area
In Gombe State's Wawa-Zange Forest Reserve, this research was conducted (Fig. 1). The Forest Reserve, which was gazetted in 1962, is located between latitudes 10° 49' 22"N and 10° 46' 23"E, at an altitude of 411 m above sea level, and it takes up a total of 1536.57 km², or 153,657 hectares, between the Dukku and Funakaye Local Government Areas. The two main communities in the forest, Wawa (now in Funakaye LGA) in the north and Zange (currently in Dukku LGA) in the south inspired the name Wawa-Zange. The forest reserve has seven major settlements: Zange, Bozonshulwa, Nappe, Shuwe, Dile, Peshere, and Wawa. This settlement was selected as the study site. The Climate is generally warm, exceeding 40°C during the hottest months (March-May). It has two main seasons dry and wet with an average annual rainfall of 850mm. The landscape is primarily mountainous, undulating, and hilly to the southeast and flat open plains to the north, north-east, west, and north-west. The Sudan Savannah ecological zone's woodland dominates the reserve, with a concentration of woodlands in the south-east and south-western regions. These woodlands have a light-closed canopy made up of stunted shrubs and trees that are 4.87 m to 6.09 m high, along with sparse growth of grasses. In the reserve, the native flora, fauna, notable birds, and wildlife have deteriorated and are in danger of going extinct entirely.

Data Collection
Data were collected across the whole Forest reserve, which was sampled using Point Centered Quarter (PCQ) Sampling method according to [7]. Using the PCQ method, a steel pin was inserted into the ground to serve as a marker after a starting location was randomly chosen [7, 8]. This sampling point had a tape affixed to it, and four quadrants were marked off, with the nearest plant (trees and bushes) measured in meters (m) in each quadrant. Each transect's sampling points were treated in this manner. Each of the four transects per hectare has 10 sampling locations. Additionally, 40 sampling points with 160 species per hectare were taken, resulting in 4 species at each sample point. Furthermore, the separation between the sampling site and the trunk's or base's center was measured. In each quadrant, the distances between the sampling location and the adjacent tree's midpoint were measured and noted. Within the quadrats, single-stem woody perennials up to 5m tall and 10cm in diameter at breast height (DBH) were counted and classified to the species level. However, with a measuring tape, the diameter at breast height of trees and shrubs (DBH ≤ 10 cm, ≥ 4.5 cm) was measured in each quarter and recorded. For trees with flutes or buttresses, the diameter was measured 30 cm above the spot where the flute or buttress vanished into the stem.

Identification of species
All species encountered were recorded at each sampling point. Field guides and Floras, as well as literature featuring coloured images, were used to identify species on-site [9, 10, 11] and as done by (Abba HM, 2014, unpublished data). Those individuals that could not be identified were brought to the Department of Botany at Gombe State University in Gombe, where they were identified by an expert, and also compared with herbarium specimens. Hutchinson and Dalziel's [12] nomenclature was used.

Data analyses
The distance from the quadrant's centre to each of the four plants per station was added up to get the Plant Species Point to Point distance (m), D1, D2, D3 and D4 are summed. This gives the species Point Point Distance.

Mathematically,

\[D = \text{Distance (m)} \]

\[\text{Spd} = \text{Species distance} \]

\[\text{Spd}_{20} = \text{The Species Point to Point Distance in the 20th station.} \]

Species Plant Mean Point to Point Distance was calculated by averaging Mean Point to Point Distance (m).

\[\text{Mean area per plant (ma)} = (\text{Mean Point to-Plant Distance}) \times 10000 \]

\[\text{Total density for all species} = \text{Total area} \times \text{Mean area per plant} \]

\[\text{Relative density of a species} = \frac{\text{Number of Individuals of a species}}{\text{Total number of Individuals of all species}} \times 100 \]

\[\text{Frequency and Relative Frequency of a species.} \]

\[\text{Frequency} = \frac{\text{No of point at which a species occurs}}{\text{Total number of point's sampled}} \]

\[\text{Relative frequency} = \frac{\text{Frequency of a species} \times 100}{\text{Total frequencies of all species}} \]
Basal area, Absolute and Relative dominance by species. The Diameter at Breast Height (DBH) measurements were converted into basal area by the formula

\[b = (d/2)^2 \times \pi, \]

where \(b = \text{basal area}, \pi = 3.1416, \) and \(d = \text{diameter}. \)

Absolute dominance (per unit area) of a species = Absolute density of a species \(\times \) mean basal area of a species.

Relative Dominance of a species = Absolute Dominance of a species \(\times 100 \)

Total number of Absolute Dominance of all species

Importance Value Index (IVI) and relative importance value (RIV) for each species.

Importance values calculated is of significance in Savanna vegetation [8]. The IVI from the woodland data was calculated by summing relative frequency, density and dominance values for each species.

\[\text{IVI} = \text{Relative Density} + \text{Relative Dominance} + \text{Relative Frequency} \]

Relative importance value = \(\frac{\text{Relative Frequency}}{\text{Relative Frequency} + \text{Relative Dominance} + \text{Relative Density}} \)

Species diversity index
Measurement of alpha diversity. Two common approaches for measuring alpha diversity are species richness and evenness/heterogeneity [13].

Simpson’s diversity index
The formula used for calculating D is:

\[D = \frac{\sum n(n-1)}{N(N-1)} \]

Where:
- \(D = \text{diversity index} \)
- \(N = \text{Total number of organisms of all species found} \)
- \(n = \text{number of individuals of a particular species} \)

The value of D ranges between 0 and 1 [14].

Shannon-Wiener index
The Shannon index was used to calculate the community diversity using the formula:

\[H^+ = \sum n \times \pi(i)(\pi(i)) \]

Where \(H^+ = \text{the Shannon–Weiner index and } \pi(i) = \text{the proportion of individuals of the total sample belonging to the } i^{th} \text{ species. } \sum = \text{Sum.} \)

[15].

RESULTS AND DISCUSSION

In Wawa-Zange Forest Reserve, fifty-one species from 16 families and 41 genera were discovered. Out of this number 34 were trees and 17 were shrub species. The species obtained showed characteristics of Sudan Savanna plants (Table 1). The fact that the study area is designated as Sudan Savanna and the area’s species diversity suggest that this is a significant conservation site. The amount of woody (tree and shrub) plants discovered is comparable to that found in the Kanawa Forest Reserve, which has 25 tree species and 35 shrub species, as reported by [16]; (Abdullah MB, 2010, unpublished data) in Yankari Game Reserve in 2003 with 38 tree species, in 2004 with 42 tree species, and 2005 with 43 tree species; [17] reported 37 tree and shrub species belonging to 17 families in the Falgore wildlife reserve in Kano state, and also [18] collected 16 woody species in Girei forest reserve in Adamawa State. Direct comparisons with other studies of a comparable nature are challenging such as [19], which collected 50 woody species in the Ipini-Igede sacred forest in Benue State, North-Central Nigeria and [20] obtained 14 species in North-Eastern Nigeria. Due to the fact that the floristic data that are now accessible are either site-specific or span a wide range of vegetation zones. While biological factors and the presence of adequate environmental gradients seem to have a greater influence on diversity at the site level, climate and topography appear to have broad effects on diversity across the landscape.

The study found 10 different species in the Fabaceae (Caesalpinoideae) family, which has the most species overall. This is due to the fact that these families are well-known as native species in the majority of Savanna-Woodland Mosaics in Africa, and they are more characteristic of Sudan Sahelian zones [21, 22]. Also, Fabaceae's ecology and reproductive biology may also play a role because of its effective and successful dispersal capacities and better adaption to a variety of ecological settings. In Nigeria apart from Poaceae, Fabaceae is known to dominate the angiosperm biodiversity of both the Southern and Northern Savanna of Nigeria [21]. According to Harris [23], no family has a wider worldwide spread in a wider variety of ecosystems than the Fabaceae, with the possible exception of the Poaceae. Also [24, 19] identified Fabaceae as the dominant family in Benue State, Nigeria.

Family	Species Composition of Woody Species In Wawa-Zange Forest Reserve, Gombe State, Nigeria.
Family	**Species**
Anacardiaceae	Sclerocarya hirta (Rich)
	Haematostephis barteri (Hook.-F)
	Lannea microcarpus (ENGL.S.K.Krause)
	Apocynaceae
	Hollarhena floribunda (G.Don) Durand & Schinz
	Combophora africana (A.Rich.) Engl.
	Maerua angolensis (DC)
	Capparis michelle Lindl
	Combretum glutinosum (Per & de)
	Combretum molle R.Br. Ex Cx.Don
	Combretum nigricans (R.P.ex. Guilt & Perrot)
	Combretum collinum Frensen
	Combretum hypopillumin (Dicta)
	French khat
	Velvet Bush
	Bushwillow
	Weeping Bushwillow
	White taramniya
	Maralan (Jelly plum)
	Blood plum
	African grapes
	Bakiy mayu, San dan mayu
	Elephant tree
	Bead-bean tree
	Caper bush/Bush tucker
	Lemon Daji
	Ciriri, Tara unyia, Dao Dagara, Wuyan damo
	Ciriri, Dag ara, Dagera
	Tarauniya, Kantakara
	Marulon (Jelly plum)
	Danya
	Faru
	Chichia, gazare
	Danya
	Caper bush/Bush tucker
	Lemon Daji
	Ciriri, Tara unyia, Dao Dagara, Wuyan damo
	Ciriri, Dag ara, Dagera
	Tarauniya, Kantakara
	Marulon (Jelly plum)
	Danya
	Caper bush/Bush tucker
	Lemon Daji
	Ciriri, Tara unyia, Dao Dagara, Wuyan damo
	Ciriri, Dag ara, Dagera
	Tarauniya, Kantakara
	Marulon (Jelly plum)
	Danya
	Caper bush/Bush tucker
	Lemon Daji
	Ciriri, Tara unyia, Dao Dagara, Wuyan damo
	Ciriri, Dag ara, Dagera
	Tarauniya, Kantakara
	Marulon (Jelly plum)
	Danya
	Caper bush/Bush tucker
	Lemon Daji
	Ciriri, Tara unyia, Dao Dagara, Wuyan damo
	Ciriri, Dag ara, Dagera
	Tarauniya, Kantakara
	Marulon (Jelly plum)
	Danya
	Caper bush/Bush tucker
	Lemon Daji
	Ciriri, Tara unyia, Dao Dagara, Wuyan damo
	Ciriri, Dag ara, Dagera
	Tarauniya, Kantakara
	Marulon (Jelly plum)
	Danya
	Caper bush/Bush tucker
	Lemon Daji
	Ciriri, Tara unyia, Dao Dagara, Wuyan damo
	Ciriri, Dag ara, Dagera
	Tarauniya, Kantakara
	Marulon (Jelly plum)
	Danya
	Caper bush/Bush tucker
	Lemon Daji

This work is licensed under the terms of the Creative Commons Attribution (CC BY) (http://creativecommons.org/licenses/by/4.0/).
Table 1. Continue

Rubiaceae	Shrub	Guiera senegalensis	African	Fisetin	Bark
Rhamnaceae	Tree	Diospyros mespiliformis (Hochst.ex.A.D.C).			
Malvaceae	Tree	Ficus microcarpum			
	Shrub	Malvaceae:			
Fabaceae: Papilionoidae		Diospyros			
		Fabaceae:			
		Isobelia			
		Fabaceae: Caealpinoidae			
		Parkia biglobosa (Jase. & R.B. Exce. Don)			
		Tamarindus indica L.			
		Senne sinuosa			
		Senne tora (L.) Shrub			
		Senne setheriana D.C.			
		Senne occidentalis L.			
		Burkea africana Tree			
		Parkia			
		Delapodanthera			
		Randia nilotica (L.) Wight et Arn.			
		Guiera			
		Ficus			
		Senna			
		Combretum			
		Grewia			
		Senna			
		Senna			
		Senna			
		Senne			
values discovered in this study are within the anticipated range. The reserve's cultivated areas. The Shannon-Wiener index typically ranges between 1.5 and 3.5 and is rarely above 5.0 [27]. The richness, variety, and evenness of the species were all measured in the research area at 2.5, 0.55, and 2.07, respectively. A higher level of anthropogenic disturbance in the studied area could explain the difference in diversity indicators. Based = 2.6). A higher level of anthropogenic disturbance in the studied area was reported [19]; (H'= 3.21) as found by [17], and [18] reported (H' = 3.40).

Variables	Indices
Number of tree species	51
Shannon Index (H')	2.07
Simpson Index of Diversity (1-D)	0.55
Species richness	2.5

The distribution of trees in circumference classes formed a "J" shape, in accordance with the species composition of the Forest Reserve (Table 4). These results were similar to that of [17], who obtained the J-shape diameter distribution Tree stands in the lower DBH class of 6-10cm had higher values (1,300 individuals), followed by shrub stands in the lower DBH class of 1-5cm with (700 individuals) and the higher DBH class of 21.0cm—above with 100 individuals. (Table 4). This indicates that the lower class diameter could develop into mature trees if conservation measures are implemented. The diameter class findings in this study back up the claim that Girth –Class frequencies decreased monotonically as girth classes increased.

Diameter Class Interval (cm)	Individuals
A 1.0-5.0	700
B 6.0-10.0	1,300
C 11.0-15.0	200
D 16.0-20.0	129
E 21.0-Above	100

CONCLUSION

This study concluded that the family Fabaceae: The most prevalent family in the research area is Caesalpinioideae. The densely populated species for trees were (Acacia ataxacantha (12.46), while for shrubs was Senna occidentalis), while the frequently populated species for trees were (Combretum hypophyllum) while for shrubs was (Guiera senegalensis). The dominant trees were Anogeissus leiocarpus and Diospyros mespiliformis while the dominant shrubs were Senna singuena. The tree with the highest importance value index was (Combretum hypophyllum) while the tree with the lowest Importance value index was Plercarpus erinaceus, Pericopsis laxiflora, and Capparis mitchelle. High IVI value species require low priority conservation efforts, and low IVI value species require high conservation efforts.

ACKNOWLEDGEMENT

The authors are grateful to the Tertiary Education Trust Fund (TETFund) for funding this study through Gombe State University in Gombe, Nigeria. We would also want to thank the Ministry of Environment, Gombe State, for enabling us to conduct our research in the Forest Reserve.

REFERENCES

1. Ahmad YU, Yahaya I, Ahmed BY. Human Actions and Environmental Reactions: Deforestation in Gombe and Environ. International J Res Geography. 2018;4(1):37-44.
2. Azare IM, Abdullahi MS, Adebayo AA, Dantata II, Dualla T. Deforestation, desert encroachment, climate change and agricultural production in the Sudano-Sahelian Region of Nigeria. J Appl Sci Environ Manage. 202014;24(1):127-32.
3. FAO. Global Forest Resource Assessment Main Report 2010. Forestry paper, 163.http://foris.fao.org/static/data/fra2010/FRA2010_Report_en_WEB.pdf
4. Global Forest Watch. 2014. World Resources Institute. Accessed on,(24/02/2022). <ahref='http://www.globalforestwatch.org'>www.globalforestwatch.org.
5. Hayatu A and Abba HM. Study of Tree Species Composition and Diversity in Relation to Soils at Lede and Galunjji in Wawa-Zange Forest Reserve, Gombe State, Nigeria. Dutse J Pure Appl Sci. 2021;7(1).
6. Mbaya LA, Hashidu MS. Status of forest reserves (savannah woodland) biodiversity and rural livelihoods in Gombe state. Int J Dev Sustain. 2017;6:2173-92.
7. Cottam G, Curtis JT. The use of distance measures in phytosociological sampling. Ecology. 1956 Jul 1;37(3):451-60.
8. Dix RL. An application of the point-centered quarter method to the sampling of grassland vegetation. Range Ecol Manag J Range Manage Arch. 1961;14(2):63-9.
9. Stanfield DP. The Flora of Nigeria. List of illustrations. Supplement to Grasses. The Flora of Nigeria. List of illustrations. Supplement to Grasses.. 1970.
10. Keay RW. Trees of Nigeria. Clarendon Press; 1989.
11. von Maydell HJ. Trees and shrubs of the Sahel, their characteristics and uses. TZ Verlagsgesellschaft. 1986.
12. Hutchinson J, Dalziel JM. Flora of west tropical Africa. Flora of West Tropical Africa. The British West African Colonies, British Cameroons, the French and Portuguese Colonies south of the Tropic of Cancer to Lake Chad, and Fernando Po.. 1958;1(Part II).
13. Ojo LO. Data collection and analysis for biodiversity conservation. In Proceedings of the Inception of a Training Workshop on Biosphere Reserves for Biodiversity Conservation and Sustainable Development in Anglophone Africa (BRAAF): Assessment and Monitoring Techniques in Nigeria 1996 Jan (pp. 9-11).
14. Simpson EH. Measurement of diversity. Nature. 1949;163(4148):688-.
15. Shannon CE. A mathematical theory of communication. Bell Sys Tech J. 1948;27(3):379-423.
16. Mohammed AH, Jahun SF, Mohammed GA, Dangana AS. Herbaceous species diversity in Kanawa forest reserve (KFR) in Gombe state, Nigeria. Am J Agric For. 2015;3(4):140-50.
17. Amnonum JL, Ikyagba ET, Dawaki SA. Flora Diversity and Distribution in Falgore Game Reserve, Kano State, Nigeria. J Appl Life Sci Int. 2019;PP 1-13. Doi: 10.9734/JAISI/2019/V201330085.
18. Saka MG, Jatau DF, Olaniji WA. Status of indigenous tree species in Girei forest reserve of Adamawa state. J Res Forest Wild Environ. 2013;5(1):28-40.
19. Ikyagba ET, Amnonum JL, Okwoche S. Tree Species Composition and Diversity of Ipinu-Igede Sacred Forest in Oju Local Government Area of Benue State, Nigeria. JAERI [Internet]. 11May2022 [cited 1Jul.2022];18(3):1-0. Available from: https://journaljaeri.com/index.php/JAERI/article/view/30059
20. Wakawa L, Suleiman A, Ibrahim Y, Lawan AD. Tree species biodiversity of a sahelien ecosystem in North-East Nigeria. Barttn Orman Fakültesi Dergisi. 2017;19(2):166-73.
21. Richards PW. The Tropical Rain Forest: An Ecological Study. 2nd ed. Cambridge: Cambridge University Press. 1996
22. Schmidt K. Botanical Survey in the Oban Division of CRNP. Technical Report on Oban Hill program, Calabar; 1996.
23. Jimoh SO, Debisi L, Ikyagba ET. Biodiversity and Ethnobotanical potentials of plant species of university of agriculture Makurdi Wildlife Park and Bowe games reserve, Benue State, Nigeria. Int J Biol Chem Sci. 2009;3(6).
24. Amnonum JL, Jonathan BA, Japheth HD. Structure and diversity of tree species at the college of forestry and fisheries, university of agriculture makurdi, benue State, Nigeria. Int J Forest Hort. 2019;1:26-7. ISSN 2454-9487. Doi http://dx.doi.org/10.20431/2454-9487.0501004
25. Mao R, Zeng DH, Hu YL. Soil organic carbon and nitrogen stocks in an age-sequence of poplar stand planted on marginal agricultural land in Northeast China. Plant Soil. 2010;332:277–87. https://doi.org/10.1007/s11104-010-0292-7
26. Edwards S, Tadesse M, Demissew S. Flora of Ethiopia and Eritrea. Uppsala, Sweden: Uppsala University; 2000.
27. Magurran AE. Measuring biological diversity. Curr Biol. 2021;31(19):R1174-7.