Geochemical study of Cenozoic mafic volcanism in the west-central Great Basin, western Nevada, and the Ancestral Cascades Arc, California

Ann C. Timmermans1, Brian L. Cousens1, and Christopher D. Henry2
1Ottawa-Carleton Geoscience Centre and Isotope Geology and Geochronology Research Facility, Department of Earth Sciences, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada, K1S 5B6
2Nevada Bureau of Mines and Geology, University of Nevada Reno, Reno, Nevada 89557, USA

ABSTRACT
Processes linked to shallow subduction, slab rollback, and extension are recorded in the whole-rock major-, trace-element, and Sr, Nd, and Pb isotopic compositions of mafic magmatic rocks in both time and space over southwestern United States. Eocene to Mio-Pliocene volcanic rocks were sampled along a transect across the west-central Great Basin (GB) in Nevada to the Ancestral Cascade Arc (ACA) in the northern Sierra Nevada, California (~39°–40° latitude), which are interpreted to represent a critical segment of a magmatic sweep that occurred as a result of subduction from east-northeast convergence between the Farallon and North American plates and extension related to the change from a convergent to a transform margin along the western edge of North America. Mafic volcanic rocks from the study area can be spatially divided into three broad regions: GB (5–35 Ma), eastern ACA, and western ACA (2.5–16 Ma). The volcanic products are dominantly calc-alkalic but transition to alkalic toward the east. Great Basin lavas erupted far inland from the continental margin and have higher K, P, Ti, and La/Sm as well as lower (Sr/Pb)mean, Th/Nb, and Ba/Nb compared to ACA lavas. Higher Pb isotopic values, combined with lower Ce/Ce* and high Th/Nb ratios in some ACA lavas, are interpreted to come from slab sediment. Mafic lavas from the GB and ACA have overlapping 87Sr/86Sr and 143Nd/144Nd values that are consistent with mantle wedge melts mixing with a subduction-modified lithospheric mantle source. Eastern and western ACA lavas largely overlap in age and elemental and isotopic composition, with the exception of a small subset of lavas from the westernmost ACA region; these lavas show lower 87Sr/86Sr at a given 143Nd/144Nd. Results show that although extension contributes to melting in some regions (e.g., selected lavas in the GB and Pyramid Lake), chemical signatures for most mafic melts are dominated by subduction-related mantle wedge and a lithospheric mantle component.

INTRODUCTION
The contrast between magmas derived at destructive plate margins and those at within-plate settings has long been explored (e.g., Hofmann et al., 1984; Ellam and Hawkesworth, 1988; Ormerod et al., 1991; Pearce and Peate, 1995; Pearce and Stern, 2006). The extensive tectonomagmatic geologic record of the North American Pacific margin includes orogenic events, passive and Andean-style convergent margins, hotspot magmatism, and extension (Dickinson, 2006, and references therein). Between ca. 45 Ma and ca. 3 Ma, a complex tectonic transition from subduction- to extension-related magmatism occurred in southwestern United States (e.g., Dickinson, 2006). Regionally, igneous activity in both the Great Basin (GB) and Ancestral Cascades Arc (ACA) consists of extensive magmatic events that migrated southwestward from western Utah to eastern California, commonly referred to as a “magmatic sweep” (Coney, 1978; Christiansen et al., 1992; Humphreys, 1995; Dickinson, 2006). The sweep of Cenozoic magmatism across the southwestern United States is thought to be due to the “rollback” of the shallow-dipping Farallon slab (i.e., sinking of the negatively buoyant slab into the asthenosphere and migration of the hinge line). Slab rollback caused the continental arc to retreat oceanward, inducing the southwestward magmatic sweep as the slab angle continued to steepen and volcanism migrated across the GB and transitioned into the ACA (Cousens et al., 2008; John et al., 2012). Volcanic eruptions began far from the continental margin (as far east as the San Juan volcanic field in Colorado, USA), include both mafic to intermediate lava flow complexes and rhyolitic caldera centers, and to date the mafic-intermediate lava complexes have received little attention in studies relevant to the origin and evolution of this migrating sweep of volcanism compared to caldera studies (e.g., Best et al., 2013; Henry and John, 2013). A segment spanning central western Nevada and eastern California was selected as the study area in order to examine the geochemical nature of mafic lavas extruded along the path of this magmatic sweep to address three issues: (1) origin of magmatism in the GB compared to the ACA, (2) changes in geochemistry over space and time, and (3) subduction- versus extension-related magmatism.
Harry, 1999; Harry and Green, 1999; Borg et al., 2002; Strong and Wolff, 2003; Leeman et al., 2004; Green and Sinha, 2005), Yellowstone and the Snake River Plain (e.g., Camp, 1995; Christiansen et al., 2002; Jordan et al., 2004), the western Great Basin (WGB; Ormerod, 1988), the Mojave Desert and Basin and Range (e.g., Glazner et al., 1991; Perry et al., 1993; Farmer et al., 1995; yogodzinski et al., 1996), and the San Andreas fault and offshore California (e.g., Cole and Basu, 1995; Davis et al., 1995; Dickinson, 1997). The ACA, located to the south of the modern Cascades, is also known as the Miocene–Pliocene Cascade Arc (Priest, 1990; Christiansen et al., 1992; Lipman, 1992; Dickinson, 1997, 2002, 2004; John 2001; Cousens et al., 2008; du Bray et al., 2009), with particular emphasis on the ACA within the Sierra Nevada (e.g., Putirka et al., 2012, and references therein). Late Cenozoic uplift of the southern Sierra Nevada is linked to ongoing delamination of the underlying lithospheric mantle based on geophysical (Wernicke et al., 1996; Wernicke and Snow, 1998; Boyd et al., 2004; Zandt et al., 2004), geological, and petrological work (Duca and Saleebey, 1996, 1998; Manley et al., 2000; Duca, 2001; Lee et al., 2001; Farmer et al., 2002; Lee, 2005; Putirka and Busby, 2007, 2011; Putirka et al., 2012). It should be noted that “lithosphere” is defined by McKenzie (1989) as “the mechanical boundary layer beneath the continental crust which remains physically isolated for geologically long periods from the convecting mantle beneath it because it is relatively cold (so that heat passes through it entirely by conduction) and buoyant (due to chemical differentiation by melt extraction).” Thus the “asthenosphere” is the hot convecting upper mantle and is for the most part chemically separate from the lithosphere.

A lingering issue that plagues this region is whether or not the Eocene to late Pliocene “sweep” of magmatism across the GB was solely the result of subduction and rollback of the Farallon plate underneath the North American plate, or does extensional tectonism within the Basin and Range province after ca. 17 Ma also contribute to melt generation (e.g., Fitton et al., 1988; Ormerod et al., 1991; Asmerom et al., 1994; yogodzinski et al., 1996)? Previous research from tectonomagmatic provinces within southwestern United States has determined specific geochemical signatures that represent subduction- versus extension-related processes. For example, lavas from the modern southern Cascades arc are calc-alkaline, dominantly intermediate in composition with enrichment in large-ion lithophile elements (LILEs) and light rare-earth elements (LREEs) and depletion in high field strength elements (HFSEs) (e.g., Borg et al., 1997).

In contrast, eruptions due to extension in eastern California are commonly bimodal (basalt and rhyolite), high-K (typically) alkaline lavas, with higher 20Sr/87Sr and lower 143Nd/144Nd due to melting of the modified lithospheric mantle (e.g., Big Pine volcanic field, Ormerod et al., 1991), though proposed extension-related intermediate, trachyandesitic eruptions from volcanic centers such as the ca. 6 Ma Ebbetts Pass region (e.g., Hagan et al., 2009; Busby and Putirka, 2009) and Lake Mead (e.g., Weber and Smith, 1987) have been reported. In some cases, extension has thinned the lithosphere sufficiently that asthenosphere-derived magmatism allows alkali basalts with within-plate trace-element signatures to be emplaced (Reno-Fallon region, Buffalo Valley volcanic field, Lunar Craters volcanic field, and the Mojave Desert; Farmer et al., 1995; Cousens et al., 2012; Cousens et al., 2013; RasoOzanam-parany et al., 2015).

Since primitive lavas (Mg# > 0.7, where Mg# = Mg/(Mg + Fe2+)) are rare in the GB-ACA region, the data have been filtered to include lavas with SiO2 < 57 wt% and Mg# > 0.55, which limits the eastern reach of the east-west transect to the Stillwater Mountain Range within the central GB. This study offers a comprehensive geochemical investigation of the most “primitive” lavas erupted in an east-west transect across the GB to help understand the forces behind magma generation and tectonic evolution during 35 Ma to 3 Ma magmatic sweep (Fig. 1). A total of 98 basalts, basaltic andesites, and basaltic trachyandesites from the GB and the ACA were analyzed for petrography, detailed major- and trace-element contents as well as Sr, Nd, and Pb isotopic ratios to evaluate (1) mantle sources, (2) potential lithospheric and/or continental crustal contamination, and (3) variation in magmatic processes during the transition between subduction-and extension-related tectonic settings.

GEOLOGICAL SETTING

Regional Geological Setting

The tectonic history of southwestern North America has been described by several authors, including Lipman (1992), Atwater and Stock (1998), Sonder and Jones (1999), Henry and Resell (2000), Dickinson (2002, 2006), and DeCelles (2004). Pre-Cenozoic rocks range in age from Precambrian to Mesozoic and almost all are meta-magmatic and meta-sedimentary (Bonham and Papke, 1969); all were subjected to the Antler (Late Devonian into the Mississippian), Sonoma (during the Permian/Triassic transition), Sevier (Jurassic to Eocene), and Laramide (Late Cretaceous to Eocene) orogenies (Dickinson, 2005; Mann, 2007). Subduction of the Farallon plate under the North American plate began during the Jurassic (Dickinson, 2006; Mann, 2007), and the North American coast underwent Andean-style arc volcanism centered in the Sierra Nevada arc until ca. 74 Ma. Subsequently, the arc front migrated several hundred kilometers inboard of the trench (Lipman, 1992), which is commonly referred to as the Laramide migration (ca. 70 to ca. 40 Ma) (e.g., Dickinson, 2006) because it accompanied the Laramide orogeny. The Laramide orogeny (ca. 80–35 Ma) is characterized by uplift of Precambrian crystalline basement due to the rapid, northeast-directed convergence between the Farallon and North American plates, whereas the Late Cretaceous Sevier orogeny is primarily characterized by thrusting and folding. During Laramide time, the relatively high convergence rate meant that the North American plate overrode the buoyant Farallon plate faster than the Farallon plate was able to sink. As a result, the Farallon plate was subducted beneath the North American plate at a very shallow angle, increasing the distance between the trench and the volcanic front (Lipman, 1992). In the literature, it is also proposed that uplift during the Laramide orogeny is the result of the shallow slab segment carrying a fragment of an aseismic ridge that was the counterpart of a large igneous province of the northwest Pacific basin named the Hess-Shatsky conjugate (Saleeby, 2003; Liu et al., 2010). Its thickened mafic crustal section relative to
abyssal lithosphere is presumed to have rendered a greater buoyancy leading to slab segmentation into the respective shallow domain (Saleeby, 2003).

By the late Cretaceous, the thickened and uplifted interior of western North America was tilted toward what is now referred to as the Sierra Nevada (Mitrovica et al., 1988; Humphreys et al., 2003), while the slab of younger and more buoyant lithosphere of the Farallon plate continued to subduct (Humphreys et al., 2003). This descending “flat slab” would have had a subduction angle of ~5° (Dumitru, 1991), creating traction on the base of the lithosphere, pulling it down, which caused the opening of the Cretaceous Seaway (Mitrovica et al., 1989), also called the Western Interior Seaway or North American Inland Sea. By mid-Eocene, the Farallon slab detached (Schellart et al., 2010) from the overriding lithosphere and “rolled back” (Best and Christiansen, 1991; Henry and Ressel, 2000; Dickinson, 2004, 2006; Best et al., 2016) along an east-northeast-trending axis, resulting in a south-westward magmatic “sweep” through Nevada before finally steepening to a “normal” (~30°) subduction angle (Coney and Reynolds, 1977; Dickinson and Snyder, 1978; Best and Christiansen, 1991; Dumitru, 1991; Seedorff, 1991; Hofstra et al., 1999; Henry and Ressel, 2000; Cline et al., 2005; Ressel and Henry, 2006). The magmatic sweep involved the emplacement of andesitic and dacite to rhyolitic ash flows and dome complexes (John, 2001), as well as small volumes of basaltic, andesitic, and dacitic lava as far east as the San Juan volcanic field in southwestern Colorado (Lipman et al., 1978). A northwest-trending belt of ash-flow calderas that developed through central Nevada is referred to as the “ignimbrite flare-up” (Best and Christiansen, 1991; John et al., 2008; Best et al., 2009; Best et al., 2016). Magmatic activity reached westernmost Nevada and eastern California between 20 and 17 Ma, forming major volcanic centers (e.g., Busby et al., 2008; Cousens et al., 2008; John et al., 2012). Between 17 and 14 Ma, subduction-related igneous activity in the Sierra Nevada and western Nevada was overlapped by rift or hotspot volcanism of the Northern Nevada Rift, Oregon High Plains, and Columbia River Flood Basalt provinces (Dickinson, 2006).

The latest geological chapter of the GB and ACA is occasionally referred to as an extensional orogeny (e.g., Elston, 1984). At ca. 28 Ma, the East Pacific Rise impacted the North American plate, bringing the Pacific plate into contact with the North American plate. A plate margin triple junction marked the initial point of contact of the Pacific, North American, and Farallon plates. The Farallon plate later split into smaller plates, which include the Juan de Fuca to the north (Mendocino Triple Junction [MTJ]) and Cocos plate to the south (Rivera Triple Junction [RTJ]). The MTJ has migrated northward such that the southern end of the volcanic (Cascade) arc associated with Cenozoic subduction beneath the North American plate has migrated northward since the Miocene (Atwater and Stock, 1998). Behind the arc, lithospheric extension began at ca. 17 Ma (Colgan et al., 2006a, 2006b) to form the GB, and migration of the GB into the Sierra Nevada mountains is an ongoing process (e.g., Manley et al., 2000; Kent et al., 2005).

Figure 1. Simple digital elevation map of the study area and sample locations. The western edge of the Precambrian continental basement lies just outside of the study area, as is indicated by the 0.706 isopleth (modified from Kistler and Peterman, 1978). South edge of Juan de Fuca plate is also presented. The overlapping age from 4 Ma to present at latitude ~39.5° is because the slab edge is stationary beneath the Sierran-Great Valley block (see figure 11 from Atwater and Stock, 1998).

Local Geological Setting

Samples of mafic rocks were collected over several field excursions from 1997 to 2011 between latitudes 39° and 40°. The area can be divided
longitudinally into three broad regions (Fig. 1): (1) the GB at approximate longitudes 117.00° to 119.52° (includes Stillwater Mountain Range, Truckee Range, Hot Springs Mountain, and Churchill Group), (2) the eastern ACA at approximate longitudes 119.52° to 120.00° (includes Sparks, Silver City, Pyramid, I-80 Suite, and Lousetown), and (3) the western ACA at approximate longitudes 120.00° to 121.00° (includes Stampede Reservoir, Ladybug, Portola, Mount Lincoln, Dog Valley, Stanford/Twin Peaks, Pond Terrace, Andesite Ridge, Devil's Peak, Boreal Ridge, Needle Peak, Squaw, Lowell Ridge, Sawtooth, Henness Pass, and Susanville) (Timmermans, 2015). Also included are geochemical and isotopic data for all three regions from Henry and Sloan (2003), Sloan et al. (2003), and du Bray et al. (2009). Petrographic descriptions for samples with the identifiers 04-LT and 11-CN are summarized in Table 1.

The Great Basin (GB)

The **Stillwater Range** is a ridge ~110 km long that trends north-northeast along the east side of Carson Sink, northeast of Fallon, Nevada. The southern Stillwater Range is composed of Tertiary igneous and non-marine sedimentary rocks (Fig. 2), that unconformably overlie, are faulted against, or intrude into faulted pre-Tertiary metasedimentary rocks. Geochemical and isotopic data for all three regions from Henry and Sloan (2003), Sloan et al. (2003), and du Bray et al. (2009).

Table 1. Petrography of Mafic Lavas from the Study Area with Identifiers 04-LT and 11-LT

Sample	Rock type	% Phenocrysts	Fe-oxide	Matrix	Texture	Alteration	
		ol	px	pl			
Great Basin		mpg			Trachytic, vesicular, skeletal pl, vesicular, skeletal ol	c.i. of ol	
GB-04-LT-51	Basalt	<5	<5		pl, px, ol, gl		
GB-04-LT-48	Basaltic trachyandesite	5	10–15	<5	holohyaline	Sieved pl	
GB-11-CN-26b	Basaltic trachyandesite	10	<5		pl, ol, gl	Textures and zonation inhibited by the extreme seritization	
GB-11-CN-09	Basalt	5	5–10 20–25	<5	pl, ol, px, gl	Subophitic, minor (<5%) zoned pl, minor (<5%) sieved pl	
GB-04-LT-41	Basaltic andesite	<5	5	10–15	<5	pl, px, ol, gl	Serpentine or three stages of pl growth, largest pl sieved and zoned
GB-04-LT-42	Basalt	<5	10	Trace	pl, px, ol, gl	Zoned pl, sieved pl, groundmass is trachytic, subophitic	
GB-04-LT-06	Basaltic trachyandesite	<5	<5	<5	pl, ol, px, mt, gl	Phlogopitic very small (microcrysts), vesicular, trachytic	
GB-04-LT-02	Basaltic trachyandesite	<5	<5		pl, px, mt, gl	Trachytic	
GB-04-LT-05	Basaltic trachyandesite	<5	5–10	5	pl, px, mt, gl	Glomerophlogropic	
GB-04-LT-08	Basaltic trachyandesite	<5	5		pl, px, mt, gl	Vesicular	
GB-04-LT-09	Basaltic trachyandesite	5–10	10–15	Trace	gl, ol, px	Trachytic	
GB-04-LT-10	Basaltic trachyandesite	<5	<5		pl, ol, px, gl	Trachytic	
GB-04-LT-32	Basaltic andesite	5–10	5		pl, ol, mt, gl	Embayed ol, trachytic	
GB-04-LT-31	Basaltic andesite	<5	5		pl, px, ol, mt	Embayed ol, trachytic	
GB-04-LT-25	Basaltic andesite	5	5		pl, px, ol, mt	Serpentine	
GB-04-LT-24	Basaltic andesite	5–10	5	15–20	5	pl, ol, px, mt	Zoned pl, sieved pl
GB-04-LT-01	Basaltic trachyandesite	15	10	<5	pl, px, mt, gl	Embayed ol	
GB-04-LT-07	Basaltic trachyandesite	10	10	<5	pl, ol, mt, gl	Embayed ol	
GB-04-LT-08	Basaltic trachyandesite	<5	10–15	Trace	pl, px, mt, gl	Zoned pl, sieved pl, embayed	
GB-04-LT-21	Basaltic trachyandesite	<5	5–10	<5	pl, px, gl	Zoned pl, sieved pl, embayed	
GB-04-LT-17	Basaltic trachyandesite	5			pl, mt, ol, gl	Aphyric	
GB-04-LT-68a	Basaltic andesite	<5	<5		pl, px, ol, gl	Trachytic	
GB-04-LT-98	Basaltic andesite	<5	<5		pl, px, ol, gl	Trachytic	

Minerals: ol—olivine; px—pyroxene; pl—plagioclase; mt—magnetite; gl—glass. Alteration: p.i.—partial iddingsitization; c.i.—complete iddingsitization; s.—saussuritization.
Bell Canyon is situated southeast of the Stillwater Range and encompasses most of a range that includes Fairview Peak and the northern part of Slate Mountain (Henry, 1996). Rock units include Jurassic to Triassic metamorphic rocks intruded by Cretaceous granodiorite, a wide range of Oligocene to Miocene volcanic and volcaniclastic rocks (most of which are related to a ca. 19 Ma caldera), and upper Neogene to Quaternary sedimentary deposits. Vitrophyric basaltic andesitic lava flows and dikes have 25% phenocrysts of plagioclase, olivine, and augite phenocrysts (Fig. 3A). Olivine is generally euhedral and mildly to completely altered to iddingsite. Subhedral augite commonly shows subophitic texture with plagioclase, and most include plagioclase phenocrysts with sieve texture and oscillatory or normal zonation (Fig. 3B).

![Figure 2. Photos from the field area: (A) basaltic boulders encapsulated in tufa from the southwest side of the Stillwater Mountain Range (Great Basin [GB]); (B) basalt from same location as (A) at higher elevation (free of tufa); (C) basaltic trachyandesite from the Truckee Range (GB); and (D) basaltic andesite from Andesite Ridge (western Ancestral Cascade Arc [ACA]). Rock hammer is ~35 cm in length, and the GPS is ~15 cm in length.](image)

Eastern and Western Ancestral Cascades Arc (Eastern and Western ACA)

The pre-Cenozoic rocks are mainly Mesozoic granitoids with minor Paleozoic metasedimentary and metavolcanic rocks (Ashley et al., 1979). A series of intermediate magmatic events that occurred between 17 and 12 Ma resulted in several formations including Kate Peak, Alta, and Truckee formations (Ashley et al., 1979). Magma-tism that began again at ca. 10 Ma (Cousens et al., 2008) consisted of more mafic compositions ranging from pyroxene andesite to olivine-pyroxene basalt. Basalts from the eastern and western ACA are primarily porphyritic with olivine and/or augite phenocrysts. Basaltic andesites are mineralogically similar to the basalts, although plagioclase dominates over olivine and sparse microphenocrysts of orthopyroxene and/or clinopyroxene (Cousens et al., 2008). Plagioclase phenocrysts (as much as 15% by volume) typically occur as glomerocrysts that are either zoned with resorbed interiors or, more commonly, are zoned and subhedral. Smaller feldspar grains are skeletal to euhedral and generally lack zoning.
Sparks is located to the north of the town of Sparks, just east of Reno. Mafic lavas from Sparks are basaltic andesites that contain phenocrysts of clinopyroxene, plagioclase, and iddingsitized olivine. The extensive Lousetown Formation, southwest of Reno, covers ~40 km² in the Virginia City quadrangle, and extends into the Mount Rose, Wadsworth, and Churchill Butte quadrangles (Ashley et al., 1979). The I-80 Suite refers to lavas with similar ages (<10 Ma) and chemical and physical characteristics that are located along the Interstate-80 corridor between north Lake Tahoe and Reno (Henry and Perkins, 2001; Cousins et al., 2008). Ladybug Peak, at the north end of Verdi Range, represents an explosive and effusive episode of mafic volcanism (Cousens et al., 2008) that may be related to the region’s 12–10 Ma extensional event (Henry and Perkins, 2001; Henry et al., 2011). These basalts and basaltic andesites contain as much as 15% olivine grains up to 4 mm in size, 10% augite up to 2 mm in size, and minor plagioclase set in a fine-grained matrix of feldspar and pyroxene (Cousens et al., 2008).

The Pyramid Sequence (ca. 13 Ma), located to the southeast of Pyramid Lake, consists primarily of interbedded basalt to basaltic andesite, sparse andesitic lavas and rare rhyolitic lava, coarse- to fine-grained clastic rocks, and a dacitic ash-flow tuff (Henry et al., 2004a). The mafic lavas considered range from aphyric to coarsely porphyritic. The coarsely porphyritic rocks are characterized by prominent, tabular plagioclase phenocrysts up to 20 mm long and 2–4 mm wide (Henry et al., 2004a).

Younger (ca. 3 Ma) and mildly phryic, olivine-clinopyroxene basaltic andesites, and basaltic trachyandesites were extruded atop the northern Carson Range, just south of Reno. The northern end of the Carson Range is composed primarily of tilted, porphyritic lavas capped by gently dipping to flat-lying, poorly phryic lava flows (Thompson and White, 1964; Latham, 1985). Samples 01-LT-10, -11 (basaltic andesites), and -12 (basaltic trachyandesite) are from a set of flows near Fuller Lake. Samples 01-LT-10 and -11 contain altered olivine and rare plagioclase phenocrysts, whereas sample 12 is much fresher with minor olivine and pyroxene phenocrysts. Locations for samples 01-LT-46–53 are included in Cousins et al. (2011). These samples commonly include minor olivine phenocrysts, with or without minor plagioclase and pyroxene phenocrysts, in a trachytic matrix. The basaltic and basaltic andesite lava flows of Dog Valley (4–3 Ma) are located just west of the Carson Range.

Samples from Pond Terrace, Andesite Peak, Devil’s Peak, Mount Lincoln, Twin Peaks, Stanford Peak, Squaw Peak, Sawtooth, and Henness Pass are from highly eroded volcanic complexes emplaced 8–6 Ma and 5–3 Ma that cap high Sierra Nevada granitoid intrusions from the west side of Lake Tahoe north to Donner Pass (Harwood, 1981; Saucedo and Wagner, 1992; Henry et al., 2004b; Cousins et al., 2008). The volcanic rocks of this area include lava flows, agglomerates, tuffs, and plug intrusions of lava and breccia (Hudson, 1951), as well as volumetrically minor amounts of olivine-clinopyroxene basalt and basaltic andesite lava flows (Henry et al., 2004b; Cousins et al., 2008). At Squaw Peak and Mount Lincoln, debris lava flows and dome-collapse deposits are composed of fragments of plagioclase-phric volcanic rock set in a mineralogically similar volcanic matrix. Subordinate lava flows are commonly >10 m thick, massive, and highly plagioclase porphyritic. Some basaltic andesites, particularly those in the Squaw–Twin Peaks area, include abundant fine-grained clastic rocks, and a dacitic ash-flow tuff (Henry et al., 2004a).
anhedral sieve-textured plagioclase grains that may be xenocrystic. Trachytic texture in the groundmass is less common in the basaltic andesites compared to the basalts. Farther north into the Sierra Nevada along Highway 70, basalts and basaltic andesites from Portola contain phenocrysts of embedded olivine and rare augite in a hypocrystalline matrix of plagioclase and olivine.

In general, the mafic lavas with Mg# > 0.55 closely follow the idealized olivine-clinopyroxene fractionation trend (Harker, 1909). Many of the lavas contain phenocrystic olivine and clinopyroxene along with plagioclase, implying that the initial magma evolution was at relatively high pressure under hydrous and/or non-hydrous conditions (>8 kbar, Green and Hibberson, 1970; Green et al., 2010).

The western ACA is located almost entirely in the unextended Sierra Nevada, whereas the eastern ACA includes volcanic rocks that were emplaced in terranes adjacent to the Sierra Nevada that either were subsequently faulted and rotated or were emplaced into terrane that was undergoing extensional faulting and deformation. Did extension in the eastern ACA allow for different mantle sources to be tapped than did the unextended Sierra Nevada? Or do the similar basement rocks in both western and eastern ACA control mantle sources and petrogenetic evolution in lavas emplaced in either part of the arc?

METHODOLOGY

Field Work and Data Sources

Locations of mafic volcanic rocks between 40 and 3 Ma in age were determined using existing geologic maps: Page (1965), Stewart and Carlson (1976), Bell and Bonham (1987), Henry (1996), Jones (1997), Stewart (1999), Henry et al. (2004c), Saucedo (1976), Bell and Bonham (1987), Henry (1996), Jones (1997), Stewart (1999), Henry et al. (2004c), Saucedo et al. (2005), Castor et al. (2006), Hudson et al. (2009), and Bell et al. (2010). Ice sheets from Pleistocene glacial events reached well into the southwestern United States, leaving only remnants of lava flows, debris flows, and volcanic necks. Bedrock is the most part well exposed, though outcrops within the GB suffer from higher degrees of weathering compared to the ACA (Fig. 2). Figure 1 shows the sample locations; a complete list of sample names and locations (note: samples were located using a handheld global positioning system [GPS] and GPS coordinates) is presented in Timmermans (2015) and Supplemental Table S1.

Samples with identifiers 04-LT and 11-CN were collected by the authors during two field seasons in 2004 and 2011, respectively, for the purpose of filling data gaps along the east-west transect. Sampling was occasionally obstructed by middle to late Pleistocene lacustrine and interlacustrine deposits—the result of several glacial episodes that also eroded the Sierra Nevada Mountain landscape (Morrison, 1964). Outcrops surrounding the Carson Sink (e.g., Lahontan Mountains, Stillwater Mountain Range) are commonly shoreline deposits encrusted by tufa (carbonate deposits formed by precipitation from saline lake water due to significant departure from ambient temperature), deposited along the margin of a large endorheic lake named Lake Lahontan (Morrison, 1964). Samples from these regions were collected from outcrops above the ancient shorelines.

Existing published data from the region were included in the database for this study. Samples with identifiers LT and Towle were collected between 1997 and 2008 by Brian Cousens, Julie Prytulak, and Russell Towle. Hand samples, thin sections, and geochemistry data from these specimens were all processed and analyzed at Carleton University, Ottawa, Ontario. Sample data with all other identifiers were obtained from Henry and Sloan (2003), Sloan et al. (2003), du Bray et al. (2009), and geochemical databases, for which only the geochemical data were adopted.

Geochemistry

Ages for the mafic samples used are based on radiometric ages determined for samples or sample localities. Radiometric ages were primarily derived from \(^{40}\text{Ar}/^{39}\text{Ar}\) geochronology from the Nevada Bureau of Mines and Geology (NBMG) using methodology as described in detail by Henry et al. (1996) and Henry et al. (1997). Ages are rounded to the nearest million years (du Bray et al., 2009).

Geochemical data are listed in Supplemental Table S1 (footnote 1). Collected samples from the GB and ACA were prepared at Carleton University, Ottawa. Rock samples were slabbed, crushed in a Bico chipmunk jaw crusher, and ground to a fine powder in either an agate or a chromium-steel ring mill. Between samples, the jaw crusher and the ring mill were cleaned thoroughly with water, compressed air, and ethyl alcohol. Replicate analyses for 11-CN-1 and 11-CN-11 through a chrome-steel and an agate ring mill have been compared, indicating only minor Cr contamination for splits processed through the chrome-steel head. Whole-rock major- and trace-element contents were determined by fused-disc X-ray fluorescence spectrometry (XRF; University of Ottawa) and solution mode inductively coupled plasma mass spectrometry (ICP-MS; Ontario Geological Survey, Sudbury). The precisions of the data, based on replicate analyses of samples and blind standards, are listed with the data presented in Supplemental Table S1 (footnote 1). Detection limits indicate the minimum concentration that can be distinguished from a blank specimen; values were calculated by personnel at the Ontario Geological Survey Geo-science Laboratories.

All Pb, Sr, and Nd isotopic ratio analyses and sample preparations, including weighing, acid washing, dissolution, column chromatography, filament loading, and mass spectrometry, were performed at the Isotope Geochemistry and Geo-chronology Research Centre (IGGRC) at Carleton University, Ottawa, Canada, using techniques presented in Cousens (1996). For samples processed before 2002, samples were run on a Finnigan-MAT 261 thermal ionization mass spectrometer run in static mode. Strontium was loaded onto a single Ta filament with \(^{35}\text{Cl}^{37}\text{Cl}\) as SrO, isotope ratios were normalized to \(^{87}\text{Sr}/^{86}\text{Sr} = 0.11940\). Two standards were run: National Institute of Standards and Technology (NIST) standard reference material (SRM) 987 \((^{87}\text{Sr}/^{86}\text{Sr} = 0.710257 \pm 0.000022)\) and the Eimer and Amend (EandA) SrCO\(_3\), \((^{87}\text{Sr}/^{86}\text{Sr} = 0.708035 \pm 0.000010)\).

Neodymium was loaded with H\(_2\)PO\(_4\) as Nd\(_4\)PO\(_4\). Isotope ratios were normalized to \(^{143}\text{Nd}/^{144}\text{Nd} = 0.7219\). All \(^{143}\text{Nd}/^{144}\text{Nd}\) and \(^{146}\text{Nd}/^{144}\text{Nd}\) analyses were performed at the Isotope Geochemistry and Geochronology Research Centre (IGGRC) at Carleton University, Ottawa, Canada. Data were normalized to the CAMBRIDGE standard for \(^{143}\text{Nd}/^{144}\text{Nd} = 0.511946\) and \(^{146}\text{Nd}/^{144}\text{Nd} = 0.721901\) for NIST SRM 987.

Strontium was loaded on a single Ta filament with \(^{35}\text{Cl}^{37}\text{Cl}\) as SrO, isotope ratios were normalized to \(^{87}\text{Sr}/^{86}\text{Sr} = 0.11940\). Two standards were run: National Institute of Standards and Technology (NIST) standard reference material (SRM) 987 \((^{87}\text{Sr}/^{86}\text{Sr} = 0.710257 \pm 0.000022)\) and the Eimer and Amend (EandA) SrCO\(_3\), \((^{87}\text{Sr}/^{86}\text{Sr} = 0.708035 \pm 0.000010)\). Neodymium was loaded with H\(_2\)PO\(_4\) as Nd\(_4\)PO\(_4\). Isotope ratios were normalized to \(^{143}\text{Nd}/^{144}\text{Nd} = 0.511946\) and \(^{146}\text{Nd}/^{144}\text{Nd} = 0.721901\) for NIST SRM 987.

Neodymium was loaded with H\(_2\)PO\(_4\) as Nd\(_4\)PO\(_4\). Isotope ratios were normalized to \(^{143}\text{Nd}/^{144}\text{Nd} = 0.511946\) and \(^{146}\text{Nd}/^{144}\text{Nd} = 0.721901\) for NIST SRM 987.
Research Paper

Results

Low-loss-on-ignition (LOI) values (<3 wt%) and petrological observations indicate that secondary processes have not significantly affected the collected samples. Secondary minerals such as sericite and chlorite are rarely seen during petrological examination. LOI data are also good proxies to discriminate between fresh and weathered samples when compared to La/Sm values, for which correlation was observed for the ACA and the GB lavas (not shown) (Labanieh et al., 2012). This lack of correlation implies that weathering did not have a significant effect on the REEs in the studied samples (Yusoff et al., 2013).

Mafic lavas that erupted within the east-west transect exhibit a wide range of compositions and significant variations among and within the eruptive centers. Subalkaline lavas are found throughout the study area (Fig. 4; Le Bas et al., 1986). The Mg/(Mg + Fe++) ratios (where Fe²⁺/Fe tot = 0.9), represented as the Mg#, range from 0.75 to 0.55, indicating that although some of the mostly subalkaline mafic lavas are near-primary melts (that is, if mantle olivine is Fo₉₀-₉₅, primary magmas must be Mg# = 0.68–0.75) (e.g., mafic samples from the western ACA, Mg# > 0.65; Le Bas et al., 1986), most lavas have undergone some postgeneration modification. Figures 5A–5F and 6 show variation diagrams, where major and trace elements are plotted against Mg#. In general, basalts, basaltic andesites, and basaltic trachyandesites from the GB have an overall lower Mg# (0.55–0.65) than those from the eastern and western ACA (up to 0.75 in the case of the western ACA). Basalts with Mg# > 0.7 also have Cr > 600 ppm, Ni > 180 ppm, and Sc > 32 ppm. The AFM (alkalis-Fo-MgO) diagram (not shown, Irvine and Baragar, 1971) shows that most mafic lavas plot primarily in the mafic field along a calc-alkaline trend. The GB lavas have higher Fe₂O₃/MgO values compared to the ACA lavas. The concentrations of Ni, Cr, and Sc all decrease with decreasing Mg#, along with CaO/Al₂O₃, indicating that olivine, Cr-spinel, and clinopyroxene in the ACA lavas were dominant crystallizing mineral phases. Al₂O₃ contents range from 13 wt% to as high as 20 wt%, with the eastern ACA containing the highest Al₂O₃ and the least scatter. K₂O values range from 0.5 wt% to as high as 2.5 wt% (sample 01-LT-12 from the Carson Range trends to shoshonitic affinities). The TiO₂, P₂O₅, K₂O, REEs, Zr, and Y contents all increase with decreasing Mg# and are notably higher in lavas from the GB. The decrease in transition metal (V, Ni, Co, and Cu) abundances during fractional crystallization is principally a function of the precipitation of olivine, Fe-Ti oxides (crystallization of Fe-Ti oxides is largely governed by the melt redox state), and immiscible sulfides. Vanadium generally decreases only slightly with decreasing Mg#, confirming together with increasing TiO₂ that for mafic melts, Fe-Ti oxides are not a dominant fractionating phase, which agrees with experimental studies for primitive lavas at oxygen fugacities typical for arcs (e.g., Lee, 2005). Large-ion lithophile element abundances for different localities generally do not co-vary with Mg#. Isolated flows of basalt and basaltic trachyandesite from the GB (in the Bell Mountains and the Stilwater Range) are characterized by similar SiO₂ and K₂O but lower Mg#, higher P₂O₅, TiO₂, and Zr relative to the more abundant subalkaline basalts. These slightly alkaline lavas generally have higher REE abundances compared to the subalkaline basalts. The basaltic trachyandesites are very uniform in composition and are generally enriched in TiO₂, K₂O, P₂O₅, Rb, Ni, Zr, Nb, Pb, Zr/Y, and the REEs compared to the subalkaline basalt and basaltic andesite groups.

Figure 7 compares (A) Zr/Yb and (B) Th/Yb with Nb/Yb. Mafic melts generally possess only a small range of Yb contents, whereas the Nb contents can reflect variations from the source (Pearce, 2008). All samples plot above the mid-ocean ridge basalt–ocean island basalt (MORB–OIB) array, indicating that they derived from mantle contaminated by either a slab fluid or continental crust (higher Th/Yb) or a continental lithospheric mantle (CLM) component (higher Zr/Yb). The ACA lavas trend parallel to the MORB-OIB array in Figure 7B, indicating the importance of melt extraction during subduction in an arc system (Pearce and Peate, 1995). The GB lavas, however, do not parallel the array, which may indicate that the higher Th/Yb values (Fig. 7B) are derived from another source. Comparing Zr/Yb...
Figure 5. Plots A to F show major element versus Mg# for the Great Basin (GB), eastern Ancestral Cascade Arc (ACA), and western ACA regions from the study area (see legend). See text for discussion.

Figure 6. Trace-element Harker plots for the Great Basin (GB) [open cross], eastern Ancestral Cascade Arc (ACA) [open square], and western ACA (filled square) regions from the study area [see legend] (Harker, 1909). See text for discussion.
with Nb/Yb (Fig. 7A), most lavas from the eastern ACA and the western ACA have Zr/Yb values that also lie within and slightly above the MORB array, whereas the GB lavas trend toward the E-MORB or OIB mantle array (Pearce and Peate, 1995; Pearce, 2008). Younger (ca. 3 Ma) basaltic trachyandesites from the Carson Range lie outside the eastern ACA and the western ACA fields (basalts and basaltic andesites) with comparatively higher La/Yb, Th/Yb, Zr/Yb, and Nb/Yb values than other lavas.

Rare-earth and trace-element concentrations (Figs. 8 and 9) have been normalized to chondritic and primitive mantle abundances of Sun and McDonough (1989), respectively. The three regions are represented separately by symbols representing composition. All lavas have primitive mantle normalized La/Sm between 2 and 3.7; however, the GB lavas have a more restricted range (2.4–3.6) than the ACA lavas. All GB lavas show higher abundance in all REEs with no fractionation of the light rare earth elements (LREE) and/or heavy rare earth elements (HREE). The GB lavas also have negative Eu-anomalies that increase with increasing REE abundance to a maximum of Eu/Eu* = 0.77. Eu anomalies are denoted by Eu/Eu* and calculated as (Eu/Eu*)pmn = Eu_pmn/((Sm_pmn + Gd_pmn)/2).

The REE patterns in Figure 8A show that all GB lavas share parallel REE patterns but vary in overall abundance. For the eastern ACA lavas (Fig. 8B), normalized values are variable from La to Sm, but then the REE patterns converge toward the HREEs, forming a fanning set of patterns. The western ACA lavas (Fig. 8C) show a lower range of La to Sm ratios compared to the eastern ACA lavas; however, both groups of ACA lavas show variations in light REE abundance but have relatively flat middle to heavy REE patterns (mean values for GB, eastern ACA, and western ACA shown in Fig. 8D). Lavas with higher silica and alkali contents generally have higher REE abundances and higher La/Sm ratios compared to lavas with lower silica and alkali contents. All samples show a slight negative anomaly (Eu/Eu* = 0.997–0.768, average 0.911) with lavas from the GB containing the largest Eu anomalies (averaging 0.834). Basaltic trachyandesites from hot Springs Mountain (GB) have the overall largest Eu anomaly of 0.768. A basalt from Portola and a basaltic andesite from Stanford/Twin Peaks, both from the western ACA, have an atypical negative Ce-anomaly (Ce/Ce* = 0.849 and 0.713, respectively), where Ce/Ce* anomalies are calculated Ce/Ce* = Ce_pmn/((La_pmn + Pr_pmn)/2).

Most trace-element patterns show large enrichments in LILEs (e.g., Ba, Rb, K, and Pb) and lesser enrichments in LREEs (e.g., La, Ce, Nd, and Sm) relative to HFSEs (e.g., Nb, Ti, and Ta) and heavy rare-earth (HRE, e.g., Tb, Yb, and Y) elements, characteristic of arc magmas (Figs. 9A–9C) (Gill, 1981; Pearce, 1983; Rollinson, 2014; Briqueu et al., 1994; Weaver et al., 1987). The subduction signature seen in Figure 9 (i.e., depletion in Nb and Ta and enrichment in LILEs when compared to the primitive mantle) is strongest in the western and selected eastern ACA and weakest in the GB (Fig. 9D). The eastern and western ACA mafic rocks show a larger Sr enrichment relative to Nd compared to the GB.

Isotopic compositions of Sr, Nd, and Pb have been measured for select samples from the GB and the eastern and western ACA, the results of which are shown in Figure 10 and listed in Supplemental Table S1 (footnote 1). Isotopically, the groups are highly heterogeneous with the western ACA containing the widest range: 87Sr/86Sr = 0.70381–0.70612 and 143Nd/144Nd = 0.51242–0.51283. The eastern ACA and the GB have more restricted ranges: 87Sr/86Sr = 0.70411–0.70552 and 143Nd/144Nd = 0.51261–0.51272, 87Sr/86Sr = 0.70453–0.70531 and 143Nd/144Nd = 0.51262–0.51283, respectively (Fig. 10A). The isotopic ratios overlap for the GB, part of I-80 Suite, Sparks, Carson Range, Lousetown, Henness Pass, and Susanville (eastern and western ACA). Note that six samples from the westernmost part of the ACA, along the crest of the Sierra Nevada, plot to the left of the main array of mafic lavas: i.e., at low 87Sr/86Sr given their 143Nd/144Nd. These lavas include Mount Lincoln basalt, Squaw Peak, Pond Terrace, Devil’s Peak, and Lowell Ridge; subsequently, these flows will be referred to as the westernmost part of the ACA (circled in Fig. 10A). However, other lavas from the Sierra Nevada crest plot within the main data array.

Lead-isotope compositions for mafic lavas are also heterogeneous, shown in Figures 10B and 10C relative to the Northern Hemisphere Reference Line (NHRL) for oceanic basalts from the Northern Hemisphere (Hart, 1984). The GB and the ACA lavas range in 206Pb/204Pb between 18.85 and 19.15, 206Pb/204Pb between 15.52 and 15.69, and 206Pb/204Pb between 38.33 and 38.97. For 207Pb/206Pb versus 206Pb/204Pb (Fig. 10B), all lavas plot above the NHRL toward an enriched end member, whereas for 205Pb/204Pb versus 206Pb/204Pb, the values parallel the
NHRL trending toward a mantle component with high μ ($^{238}\text{U}/^{204}\text{Pb}$) and high Th/Pb (Fig. 10C). The GB mafic lavas commonly have lower $^{207}\text{Pb}/^{204}\text{Pb}$ and $^{208}\text{Pb}/^{204}\text{Pb}$ values than the ACA mafic lavas. Figures 10D and 10E show that $^{206}\text{Pb}/^{204}\text{Pb}$ correlates with Sr and Nd isotope ratios. Comparing $^{208}\text{Pb}/^{204}\text{Pb}$ versus $^{143}\text{Nd}/^{144}\text{Nd}$ (Fig. 10D), the westernmost part of the ACA and GB lavas plot in separate clusters, and all lavas trend toward an enriched component in terms of higher Rb/Sr and μ ($^{238}\text{U}/^{204}\text{Pb}$) compared to undifferentiated material. Lavas in the westernmost part of the ACA have lower $^{87}\text{Sr}/^{86}\text{Sr}$ given their $^{143}\text{Nd}/^{144}\text{Nd}$ and $^{206}\text{Pb}/^{204}\text{Pb}$ values, as well as lower $^{208}\text{Pb}/^{204}\text{Pb}$ values for their given $^{207}\text{Pb}/^{204}\text{Pb}$ (not shown) values compared to the rest of the ACA lavas. Sample Towle #1 (Sawtooth) has the highest $^{208}\text{Pb}/^{204}\text{Pb}$ and $^{206}\text{Pb}/^{204}\text{Pb}$ values of 19.12 and 15.69, respectively. Looking to Figure 10E, GB lavas plot in a distinct cluster of $^{208}\text{Pb}/^{204}\text{Pb}$ versus $^{143}\text{Nd}/^{144}\text{Nd}$ values compared to ACA lavas.

■ DISCUSSION

The purpose of this study is to address three issues: (1) origin of magmatism in the GB compared to the ACA, (2) changes in geochemistry over space and time, and (3) subduction- versus extension-related magmatism. A geochemical model for Cenozoic mafic magmatism in southwestern North America should also explain: (1) the chemical variation as lavas decrease in age from east to west, (2) the sparse mafic magmatism within the GB and comparatively higher volumes of mafic magmatism within the western ACA, and (3) the broad variation in trace elements and isotopic ratios over space and time.

The trace-element and isotopic magmatic signatures within mafic lavas indicate variation of
source and/or influences on the source melts. The source components in primary continental arc lavas may include: (1) depleted upper-mantle peridotite, (2) enriched mantle similar to the source of ocean-island basalt, (3) the sub-continental lithospheric mantle, (4) melt from the continental crust, (5) hydrous fluids derived from the subducting plate, (6) fluids derived from the subducting sediment, (7) partial melts of the subducting plate, and (8) partial melts of subducting sediment. Before examining source components, possible crustal contamination of the lavas after they left the source region must be addressed.

Evidence for Post-Magma Generation Crustal Contamination

Within the confines of the study area, various authors (e.g., Farmer and DePaolo, 1983, 1984) have recognized a range of different Mesozoic and Cenozoic granitoids and eugeoclinal sedimentary rocks, many of which are the direct or indirect product of subduction processes. Addition of these Mesozoic crustal components to mantle-derived magmas would increase the SiO$_2$ content and 87Sr/86Sr while lowering the Mg#, Nb/La, and 143Nd/144Nd ratios of those magmas (Brown et al., 2014). Most Sierra Nevada granitoids have high 87Sr/86Sr, low 143Nd/144Nd, and high 207Pb/206Pb (e.g., Barbarin et al., 1989; Cousens et al., 2008, 2009). The Sierran granitoids also have lower Ba/La and (Sr/P)$_{pmn}$ values compared to the mafic lavas. The volcanic rocks from the GB have a lower range in Mg# and higher range in SiO$_2$ values compared to the ACA lavas, possibly due to thicker crust during the Oligocene, when what is now the Great Basin was a high plateau resulting from Mesozoic compressive forces and crustal thickening (Henry, 2009). At the time of their eruptions, GB mafic lavas may have traveled through as much as 100 km of compositionally
Figure 10. Plots comparing Sr, Nd, and Pb radiogenic isotopic ratios for mafic lavas (modified from Cousens et al., 2008). (A) $^{143}\text{Nd}/^{144}\text{Nd}$ versus $^{87}\text{Sr}/^{86}\text{Sr}$ graph shows a mixing line between mid-ocean ridge basalt and lithosphere end members in which CHUR is chondritic uniform reservoir (see Cousens et al., 2008, and references therein) for Great Basin (GB) and most Ancestral Cascade Arc (ACA) lavas. Lavas with lower $^{87}\text{Sr}/^{86}\text{Sr}$ values for their given $^{143}\text{Nd}/^{144}\text{Nd}$ value are referred to as westernmost ACA lavas (circled). (B) $^{207}\text{Pb}/^{204}\text{Pb}$ versus $^{206}\text{Pb}/^{204}\text{Pb}$ plot shows a trend away from the Northern Hemisphere Reference Line (NHRL) (Hart, 1984) toward the average continental crust. (C) $^{208}\text{Pb}/^{204}\text{Pb}$ versus $^{206}\text{Pb}/^{204}\text{Pb}$ plot shows lavas hovering along the NHRL toward high-μ (HIMU). (D) $^{206}\text{Pb}/^{204}\text{Pb}$ versus $^{87}\text{Sr}/^{86}\text{Sr}$ plot includes the symbols closed star as the westernmost ACA lavas (also in gray) and the open star as Sawtooth (Towle #1). GB lavas are also shown in shaded gray. (E) $^{143}\text{Nd}/^{144}\text{Nd}$ versus $^{208}\text{Pb}/^{204}\text{Pb}$ plot showing the various end members. GB lavas show lower $^{206}\text{Pb}/^{204}\text{Pb}$ values for their given $^{143}\text{Nd}/^{144}\text{Nd}$ values, perhaps due to less influence from slab-derived components.
heterogeneous continental crust compared to lesser thickened crust within the younger, western ACA lavas (Henry, 2009).

Figure 11 tests the possibility that crustal contamination of the mafic melts is a major petrological process by investigating correlations of Nb/La (Fig. 11A) and \(^{143}\text{Nd}/^{144}\text{Nd}\) (Fig. 11B) with SiO\(_2\) values. Nb/La values are low (<1) for all three regions, and both Figures 11A and 11B demonstrate no covariation with increasing SiO\(_2\) values. The lack of correlation of Sr (Fig. 11 insert) and Nd isotopic composition with SiO\(_2\), combined with the absence of inherited crustal quartz or zircons into the melts (determined petrographically) suggests that the isotopic and trace-element compositions of the ACA and GB mafic volcanic rocks are not strongly affected by upper-crustal contamination.

High-K Magmatism and Degree of Partial Melting

Moving from east to west across the study area, mafic melts generally decrease in their K\(_2\)O, P\(_2\)O\(_5\), TiO\(_2\) contents and Nb/Yb (examples shown in Figs. 5A, 5D, and 12A). Mafic magmas with K\(_2\)O contents between 1%–3% are most common in the central GB. Mafic lavas from Pyramid Lake and basaltic trachyandesites from the Carson Range (eastern ACA) also show higher ranges in K\(_2\)O, P\(_2\)O\(_5\), and TiO\(_2\), similar to the GB mafic lavas. Ranges in Na\(_2\)O contents do not change much for GB and eastern ACA mafic lavas (2.6–4.5 wt%), slightly lower in western ACA mafic lavas (2.5–3.8 wt%), and lowest for the westernmost ACA lavas (2.1–2.6 wt%).

Major- and trace-element chemistry shown in Figures 5 (K\(_2\)O, TiO\(_2\), P\(_2\)O\(_5\), versus Mg\#; K\(_2\)O versus SiO\(_2\)) and 12 (TiO\(_2\), versus SiO\(_2\), La/Sm versus La) confirms that the proportion of high-K (and shoshonitic) rocks decreases from east to west. Low degrees of partial melting of the mantle can produce melts with enriched K, Ti, and P, as well as LREE and/or HREEs. Plots involving ratios of highly incompatible elements (e.g., La and Ce) to a less incompatible element (e.g., Sm and Yb) versus the concentration of the highly incompatible element can reveal degrees of partial melting in comparison to fractional crystallization. In Figure 12B, crystal fractionation will not have a great effect on the La/Sm ratio; however, low partial melting would result in greater fractionation of La from Sm with greater La abundance, thereby providing a method for distinguishing between partial melting and crystal fractionation.

Fractional crystallization can be partially responsible for the slightly higher range in SiO\(_2\) and lower range in Mg\# for the GB mafic lavas compared to the ACA lavas; however, it cannot be the only mechanism responsible for the results seen in Figure 12. Another component is required to explain these geochemical variances for mafic lavas (i.e., with minimal range in Mg#). The chondrite-normalized REE patterns for the GB mafic lavas (Fig. 8) exhibit parallel patterns of increasing abundance with slight enrichment in LREEs relative to HREEs. The parallel REE patterns of the GB rocks imply that the mafic melts were derived from a similar mantle source region and underwent similar degrees of partial melting. The parallel REE patterns and lower Mg# values also confirm that the GB mafic melts underwent some degree of fractional crystallization before erupting at the surface. Additionally, the high LREE and incompatible trace-element contents (Fig. 9) suggest that the mantle source must have been previously metasomatically enriched.
(Cousens et al., 2008). Figure 10E shows that GB lavas plot in a distinct cluster of 206Pb/204Pb versus 143Nd/144Nd values compared to ACA lavas, which also may indicate a basement (lithospheric) signature. Trace-element data indicate that melting occurred at a depth within the spinel peridotite field ([Dy/Yb]$_{nor}$ <1.6), between 70 and 35 km (Rollinson, 2014), which dismisses the possibility of partial melts generated from garnet peridotites and/or garnet-bearing (eclogitic) subducted slab or garnet-bearing lower crust.

We can consider low degrees of partial melting (low F, where F is melt fraction) due to (1) low non-synchronous tensile stresses or faulting (Putirka and Busby, 2007; Busby and Putirka, 2009; Busby, 2013) and (2) a function of temperature and water (volatile) content released into the mantle source by the subducted slab. High K$_2$O volcanism is represented within the older lavas from the GB (age >14 Ma) and lavas from some regions within the eastern ACA (age <14 Ma) (Pyramid Lake and Carson Range). These high-K$_2$O lavas are also enriched in TiO$_2$, Na$_2$O, and P$_2$O$_5$ at Mg# between 0.45 and 0.65 for GB mafic lavas and 0.58–0.72 for Pyramid mafic lavas (Figs. 5 and 12). This observation may signify differences in the petrogenesis of lavas from these two regions. The high-K mafic lavas from the GB erupted during the initial stages of slab rollback after >30 m.y. of flat-slab subduction. The low angle between the slab and overlying CLM would result in low temperatures and therefore lower volatile release from the slab compared to the “normal” arc system (e.g., Pearce and Parkinson, 1993). In summary, the high-K$_2$O, TiO$_2$, Na$_2$O, and P$_2$O$_5$ lavas are due to either source-region enrichments or to low degrees of partial melting.

The <14 Ma mafic lavas from Pyramid Lake erupted near the north-south–trending Pyramid Lake fault (PLF), which formed during development of the Walker Lane (see figure 3B from Faulds et al., 2005). Although the exact age of the PLF is debated, it has been determined that the PLF has accommodated ~10 km of dextral offset during the past 9 m.y. (Faulds et al., 2005) indicating a region under considerable tensile stress since before 9 Ma. The generation and composition of the Pyramid mafic lavas are consistent with the idea that tensile stresses in the Walker Lane favored eruption of low melt fraction magmas (Takada, 1994; Putirka and Busby, 2007). The 25–15 Ma GB lavas, however, were erupted in regions that were not heavily faulted at the time of emplacement. Great Basin mafic lavas have lower Ba/Nb and Pb isotopic ratios compared to Pyramid Lake mafic lavas, and so it is suggested that the GB mafic lavas were generated under less hydrous, lower P-T conditions during the early phases of the slab rollback.

Basaltic trachyandesites from the Stillwater Mountains do not show the same partial melting trend as the other central GB mafic lavas. These GB basaltic trachyandesites show a lower-F melting percentage (Fig. 12B), as well as similar chemical behaviors as post-ACA lavas (Ormerod, 1988; Cousens et al., 2011) that are proposed to be generated from the lithospheric mantle: higher 87Sr/86Sr (>0.708) and K$_2$O + Na$_2$O (>5 wt.%). Ormerod (1988) and Cousens et al. (2011) suggested that basalts with these chemical signatures imply melting (possibly exclusively) within the CLM. It is therefore suggested that basaltic trachyandesites from the central GB formed with a major melt component from the CLM.

Chemical Contributions from Source Components

Variations over Space and Time

It is proposed that flat-slab subduction of the Farallon plate hydrated the North American CLM, perhaps as far east as the Rocky Mountains (Smith et al., 1999; Humphreys et al., 2003; Smith et al., 2004; Lee, 2005). Unlike chemical contributions from a dehydrating slab (primarily LILEs such as Rb, Ba, and Sr), the CLM adds a wider range of its trace-element content to the melt (Ce, Sm, P, Ts, Nb, Zr, Hf, Ti, Y, and Yb). Lee et al. (2001) and Kempston et al. (1991) suggested that the CLM is enriched in Mg and Ni compared to the continental crust and is also enriched in LREEs compared to the primitive mantle. Also, melts from the CLM have low 143Nd/144Nd and variable 87Sr/86Sr compositions compared to the asthenosphere due to metasomatism.
Figure 13. Diagrams evaluating major, trace and isotopic data trends over distance (longitude) and time (age). Note that the data symbols presented in the left column represent composition, whereas the symbols presented in the right column represent the three major locations (see legend). See text for discussion.
and the age of the lithospheric mantle (e.g., Omerod, 1988; Omerod et al., 1988; Cousens et al., 2008). Figure 13 presents major, trace, and isotopic data trends along the east-west transect (left column) and as a function of age (right column). Note that the data symbols in the left column represent composition, whereas symbols in the right column represent location. Figure 13 explores assimilation within the deeper crust (Fig. 13A, K,O) and fractional crystallization (Fig. 13B, CaO/Al,O,), both of which have higher values in the basaltic trachyandesites of the GB and some eastern ACA lavas (Carson Range) compared to other lavas from the area. Mafic lavas show a slight increase in Mg# (Fig. 13C) from east to west, and all three rock types overlap. (La/S)mum values vary between 2.0 and 3.5 with distance and time, showing abrupt peaks at longitude 120° and at ages 12 Ma and 3 Ma (Carson Range) (Fig. 13D). This pattern is mirrored by La/Yb and Ce/Sm (not shown), with the highest values in scoria for Ladybug Peak and Carson Range basaltic trachyandesites (La/S)mum > 4 for samples 01-LT-46–48). The sum of REEs (not shown) and the depth of negative Eu/Eu* anomalies steadily decrease from east to west, whereas (Sr/Nd) and (Sr/P) values increase from east to west as well as from oldest to youngest (Figs. 13E–13G). LILE and/or HFSE values also increase to the west and with younger age. Figures 13H–13J show proxies for sediment melts, represented by Th/Nb, Pb/Ce, and Ce/Ce* ratios. The presence of sediments can affect these ratios; for example, Th/Nb and Pb/Ce are considerably higher in sediments (e.g., Pb/Ce > 0.3) compared to more uniform values for a MORB-like mantle (e.g., Pb/Ce < 0.04, White, 2013). In a similar manner, sediments may inherit seawater’s negative Ce/Ce* anomaly (Glass and Ie Roex, 2008). Under low P-T conditions, neither Th nor Nb are particularly soluble in slab aqueous fluids; however, under higher P-T conditions, subducted sediment will melt, releasing Th into the mantle wedge, while Nb remains within the sediment residue (Pearce and Peate, 1995). Therefore, fractionation between Th and Nb results from the assimilation of sediment melts in an arc system (Johnson and Plank, 1999; White, 2013). The Th/Nb and Ce/Ce* data show that the sediment signature in the mafic lavas increases from east to west. An example of radiogenic isotopic variation is shown in Figures 13K and 13L: initial Sr and Nd (not shown) isotopic ratios have a more restricted range in values toward the east end of the study area compared to the larger variation in values to the west. Lead isotopic ratios show the highest variation in central GB mafic lavas as well as toward the western ACA lavas, compared to very little variation in westernmost GB lavas.

Depth of Melting

Since heavy REEs and Y are compatible in garnet, partial melts of a garnet-bearing source (i.e., garnet peridotite or eclogite) should have high middle and/or heavy REE ratios relative to melts of spinel peridotite. With the exception of one sample from Carson Range ([(Dy/Yb)mum = 1.6], the (Dy/Yb)mum ratios for the mafic lavas from all regions are <1.5, supporting a garnet-free source (George et al., 2003). Also considering geochemical evidence of a plagioclase-free source (absence of strong Eu anomaly and high Al,O, and Sr values), it can be concluded that the mafic magmas originated at a depth within the P-T conditions for spinel-peridotite (35 and 70 km, Kinzler, 1997).

Contributions from the Slab

Aqueous fluid-mobile elements, such as Ca, Sr, Nb, Ba, Pb, and U, would be released from the dehydrating slab (basalt and sediments) into the overlying mantle, increasing their abundance in the mantle compared to the HFSE and the REE. Therefore, aqueous fluid transport should result in higher ratios of Ba to Pb, Pb to Ce, and Sr to Nd.

In contrast, enrichments in “fluid-immobile” Th relative to a less mobile element (HFSEs, e.g., Th/Nb) can be attributed to a partial melt of subducted sediment (e.g., Plank and Langmuir, 1988, 1993, 1998; Elliott et al., 1997; Hawkesworth et al., 1997; Johnson and Plank, 1999; Elliott, 2003) along with negative Ce/Ce* anomalies and isotopic characteristics of 87Sr/86Sr (up to 0.7060) and 143Nd/144Nd (as low as 0.51270). Figures 14A and 14B (as well as Figs. 13H and 13J) show less influence from slab fluids and the sediment component to be absent in the east and in older rocks (GB mafic lavas),

![Image](https://example.com/image.png)

Figure 14. Isotope and trace-element ratio plots that can show influence from the source melts; specifically, fluid mobile elements from slab-derived aqueous fluids (Ba, Sr), fluid “immobile” elements from slab-derived sediment (Th) and/or in the continental lithospheric mantle (CLM) ([87Sr/86Sr]). A) *Sr/Sr versus Ba/La, B) Ba/La versus Th/Nb. Arrow indicates values for Ladybug scoria trend to Th/Nb = 4.7. Please refer to the text for further discussion.
whereas higher influence from slab fluid and a minor sediment signature is present for the ACA lavas. The sediment signature occurs at 120° longitude at ca. 10–12 Ma, which may indicate either P-T conditions were more favorable for sediment melting (>800 °C at 3 GPa; Nichols et al., 1994; Johnson and Plank, 1999) or that more sediment was present on the slab surface.

Involvement of sediment in subduction-related melts may also have had an influence on the 207Pb/204Pb and 208Pb/204Pb ratios. Components from subducted oceanic sediments can emerge in arc volcanic rocks in the form of chemical tracers (e.g., Johnson and Plank, 1999; Kessel et al., 2005). Ocean sediment is chemically variable from a composition that includes volcaniclastic deposits, chert, silt, biogenic deposits, clay, continental discharge, and interstitial seawater (Church, 1976; Lackschewitz et al., 2000; Kessel et al., 2005; Prytulak et al., 2006). In continental subduction zones, seafloor sediments are either scraped off the subducting plate at the ocean trench and accreted along the continental plate margin or subducted along with the oceanic plate; as a result, they contribute to arc magmatism and/or are recycled in the convecting mantle (Plank and Langmuir, 1993). Melts from subducted sediments should leave a chemical signature in the erupted arc lavas; however, the bulk chemical composition of the original sediments needs to be determined. The terrigenous sediments that have been scraped off along the Coast Range in California and accreted as metasediments are >100 m.y. old (Wakabayashi, 1992) and therefore are too old to be associated with the Cenozoic magmatism. We therefore compare our geochemical data to the bulk compositions of sediments from modern subduction environments, namely drill core acquired from the Gorda plate, which is located off the coast of northern California. Sediments recovered from the Escanaba Trough, the southernmost point of the Gorda plate, are olive-green to gray hemipelagic silty clay. Bulk chemical analyses, including trace elements (Th, Ce, and Nb, Lackschewitz et al., 2000) as well as radiogenic isotopic compositions (Prytulak et al., 2006) are plotted in the graphs presented in Figure 15.

Figure 15. (A) and (B) Sr-Nd and Pb isotopic plot, and (C) 87Sr/86Sr versus (Sr/P)pmn (primitive mantle normalized), comparing mafic lavas from the study area to fields for the Gorda Ridge mid-ocean ridge basalts (MORBs, Davis and Clague 1987), Mojave Desert and the western Great Basin (GEOROC, 2007), and the Sierran granitic rocks. The data on Gorda basin sediments are taken from Church et al. (1976) and Church and Tilton (1973). The Sr-Nd isotopic values for Pacific sediments are outside the graph with whole-rock values averaging 87Sr/86Sr = 0.7091 and 143Nd/144Nd = 0.5124 (Goldstein and O’Nions, 1981). Mixing curve is for melts of lithosphere (Sr = 1200 ppm, Nd = 38 ppm, 87Sr/86Sr = 0.7070, 143Nd/144Nd = 0.5123) and melts of mantle wedge (Sr = 550 ppm, Nd = 15 ppm, 87Sr/86Sr = 0.7038, 143Nd/144Nd = 0.5128) with tick marks showing percentage of lithospheric melt in the mix (modified from Cousens et al., 2008, and Yogiadzinski et al., 1996). The Northern Hemisphere Reference Line (NHRL) is from Hart (1984) and based on Pb isotopic values from MORB and ocean-island basalt (OIB). The data on Gorda basin sediments are taken from Church (1976) and Church and Tilton (1973). Cascadia sediments are from Davis et al. (1998) and Prytulak et al. (2006). Great Basin lavas represented by open crosses; eastern Ancestral Cascade Arc (ACA) lavas represented by open squares; western ACA lavas represented by filled squares. Trace-element and isotopic tracers for sediment melts in arc volcanic rocks include Th and Pb (Plank and Langmuir, 1992, 1993; Hawkesworth et al., 1997), which can be presented as high Th/Nb, 207Pb/204Pb, and 208Pb/204Pb ratios. Lead and Th can once again become mobilized within sediment melts (Plank and Langmuir, 1992; Hawkesworth et al., 1997).

Figures 10B and 10C show that all samples have elevated Pb isotopic ratios compared to MORB and plot above (Fig. 10B) or along (Fig. 10C) the NHRL (Hart, 1984). The GB mafic lavas have slightly lower 207Pb/204Pb and 208Pb/204Pb and plot closer to the NHRL than the western ACA lavas, perhaps due to lower Pb input from the slab and less recycled crustal Pb in the mantle farther away from the plate margin. Figures 10D and 10E compare 206Pb/204Pb to 87Sr/86Sr and 143Nd/144Nd, respectively. Combined with the Ce/Ce* data, the ACA mafic lavas that trend to higher 206Pb/204Pb at equal 143Nd/144Nd values are consistent with more sediment in the ACA mantle source. All mafic lavas have variable Sr and Nd isotope compositions (Fig. 10). The degree of variation...
increases from east to west, with the greatest variation occurring in mafic lavas from the eastern and western ACA. Figure 15 compares the Sr, Nd, and Pb isotopic data from this study with data from several neighboring physiographic regions summarized in Cousins et al. (2008). All lavas shift away from the MORB field and trend toward an isotopically enriched source. In Figure 15A, most mafic lavas from all locations plot along a mixing line between the modern south Cascade arc mantle wedge and the enriched CLM that is a typical source for alkali basalts in the western Great Basin (Menzies et al., 1983; Ormerod et al., 1991). Mafic lavas from the westernmost part of the ACA, however, plot to the left of the array, with lower Sr isotopic ratios compared to other lavas with a given 143Nd/144Nd. Sources of higher 87Sr/86Sr include seawater, subducted sediments, upper continental crust, and metasomatized CLM. If higher 87Sr/86Sr within the other ACA and GB lavas is derived from mixing with the metasomatized CLM (Fig. 15A), the lower 87Sr/86Sr values in westernmost ACA lavas could be attributed to (1) the absence of or presence of a chemically different metasomatized CLM, (2) melt generation deeper in the mantle wedge, or (3) mixing with crustal terrane distinct from the CLM. The westernmost ACA mafic lavas also show lower La/Sm and Pb/Ce values. The north-south-trending CLM under the westernmost ACA is possibly older and less enriched in LILE and LREE elements, including Sr.

Earlier, it was noted that high abundances of LILE and LREE and low abundances of HFSE in lavas erupted in an arc system can be attributed to involvement of fluids transported into the mantle wedge from the subducted slab (Hughes, 1990; Leeman et al., 1990; Baker et al., 1994; Borg et al., 1997). Similarly, by confirming correlation between (Sr/P)pmn and (Sr/LREE)pmn, previous workers have used higher (Sr/P)pmn values as a proxy for slab-derived components in the mantle wedge (Borg et al., 1997). We can compare the results from the GB and ACA lavas to neighboring provinces presented in Borg et al. (1997) and Cousins et al. (2008). Figure 15C shows the variation in Sr relative to P (used to reflect variation in Sr-rich slab-derived fluids added to the mantle wedge) at a given 87Sr/86Sr for mafic rocks compared to other regions in the western United States. Increases in (Sr/P)pmn for mafic lavas from the western ACA, from Lousetown and sample 01-LT53 from the Carson Range, are consistent with higher slab fluid content of mantle sources overlying the subducted slab. The (Sr/P)pmn values from the eastern ACA samples show a negative correlation with 87Sr/86Sr. Mafic lavas from the GB have very low (Sr/P)pmn values compared to other regions but have 87Sr/86Sr that are elevated compared to all other nearby magmatic suites with the exception of the western Great Basin. To the west, (Sr/P)pmn values increase indicating an increasing contribution from slab fluids to the mantle source, which is consistent with trace-element patterns shown in Figures 9 and 13. For example, the trend in Ba/Nb (not shown) suggests that, although all lavas show influence from the subducted Farallon slab, the subduction signature increases from east (older) to west (younger). The similarities in phenocryst compositions, REE, and isotopic signatures amongst the GB mafic compositions further support the derivation of their primary magmas from similar source regions, with variations in chemistry due to a range of contributions from the CLM and variable degrees of partial melting (F). We can conclude that the mafic lavas that erupted within the GB were generated within drier, low P-T conditions compared to the mafic ACA lavas. The western ACA mafic lavas were generated within highest P-T conditions with the highest slab fluid content compared to eastern ACA and GB lavas. The P-T conditions and volatile content relate to the degree of slab dip; that is, shallow dip would result in lower P-T conditions and less dehydration of the slab. A larger subduction angle would result in higher P-T conditions and greater dehydration, releasing more fluids (Ba, Rb, Sr, and La). Then, as the slab continues to descend, sediment melts and contributes a component to the mantle wedge. Pressure-temperatures conditions were not high enough to melt the basaltic slab itself, therefore retaining the HSFE (Nb and Ta).

The 0.706 Line

The 87Sr/86Sr = 0.706 isopleth (where 87Sr/86Sr is the initial Sr-isotope ratio of plutonic rocks) defined by Kistler and Peterman (1973, 1978), commonly known as the 0.706 line, has been interpreted to mark the transition from Precambrian continentally derived rocks on the east to Phanerozoic volcanic arc–derived rocks on the west (Kistler and Peterman, 1973, 1978; Farmer and DePaolo, 1983; Elison et al., 1990). Kistler and Peterman (1973) interpreted the 0.706 line as the western edge of the Precambrian crystalline basement (Fig. 1). The 0.706 line is recognized in Mesozoic and younger igneous granitoid rocks from western North America (Kistler, 1990) and Cenozoic volcanic rocks, as noted by Kistler and Peterman (1973).

The correlation of chemical characteristics in Cenozoic basalts from this study with their proximity to the 0.706 line (Reid and Ramos, 1996) implies that they are at least partially derived from the CLM (Kempton et al., 1991; Reid and Ramos, 1996). Figure 1 includes the 0.706 line (heavy dashed line) taken from Kistler (1990) and confirms that the sampled mafic lavas mostly lie to the west of the 0.706 line with one exception of a 3.82 Ma basalt from Sawtooth Ridge (sample Towlie #1, SiO2 = 48.93 wt%, Mg# = 0.74), which has an 87Sr/86Sr value >0.706, and 143Nd/144Nd value <0.5125.

Subduction-versus Extension-Related Magmatism

Between 35 and 3 Ma, arc volcanism migrated southwestward across what is now the Great Basin. At ca. 17 Ma, Great Basin extension began (Colgan et al., 2006a, 2006b); thus, any volcanic rock in the region younger than 17 Ma in age may have been produced by arc processes, extension-related partial melting of the mantle, or a combination of both (Dickinson, 2006; Cousins et al., 2008; Busby and Putirka, 2009; Busby, 2013). Since the timing of both arc and extensional processes overlap, it is therefore difficult to establish by age alone which process generated ACA lavas. We have established that all mafic lavas have strong trace-element
subduction signatures, which suggest a role for a subduction-modified mantle source.

Caldera-forming magmatism, known as the “ignimbrite flare-up,” dominated the GB during the magmatic sweep east of the Stillwater Range (Dickinson, 2002, 2006, 2013; Henry, 2008; Best et al., 2009), which was emplaced through >100 km thickened crust referred to as the “Nevadaplano” (DeCelles, 2004). It is possible that east of the Stillwater Range, mafic magmas would pond at depth, partially melt and assimilate lower and upper crust, and thus form a caldera field. To the west of the Stillwater Range, no calderas are present, suggesting that the lithosphere was thin enough that mafic magmas could reach the surface. Assuming that the calderas of the ignimbrite flare-up indicate the position of the continental arc over time, then the only clear expressions of younger magmatism (postarc) are the basalt, basaltic andesite to basaltic trachyandesites of the Stillwater Range (La Plata Canyon, southwestern range margin). Calderas of the southern Stillwater Range are ca. 29–25 Ma in age (Hudson et al., 2000; Henry and John, 2013), but the Stillwater basaltic rocks are 15–14 Ma in age, ~10 m.y. younger than the caldera events. We infer that extension reached the Stillwater Range at ca. 15 Ma, when normal faulting may have allowed mafic magmas to reach the surface. A backarc origin, however, cannot be discounted. We can compare the ca. 15 Ma mafic rocks from Stillwater Range to other known postarc extension-related mafic lavas from small volcanic fields in the Reno-Fallon area (Cousens et al., 2012) and from the Owens Valley (e.g., Big Pine volcanic field, Fig. 16). Stillwater mafic rocks have primitive mantle-normalized incompatible element patterns very similar to the average for other GB mafic lavas, all having a subduction signature. The Stillwater lavas are also similar to extension-related subalkaline basaltic rocks from the Big Pine volcanic field in the Owens Valley, where Great Basin extension is proposed to melt metasomatized lithospheric mantle (Ormerod et al., 1991). The average pattern for lava blocks from Upsal Hogback volcano near Fallon, an example of postarc volcanic rocks in western Nevada, has lower Ba/La, La/Nb, and a more within-plate trace-element composition compared to GB volcanic rocks. We conclude that if the Stillwater mafic lavas are extension related, then they are partial melts of the same mantle source that produced the arc-related GB mafic lavas.

Model for GB-ACA Mafic Magmatism

At 40 Ma, a high rate of convergence of the Farallon plate (10–15 cm/yr, English and Johnston, 2004) resulted in flat-slab subduction (English et al., 2003; DeCelles, 2004; Liu et al., 2008) underneath the North American plate; this subduction thickened the lithosphere and amplified the relief in the Sierra Nevada and in what is now the Great Basin (Fig. 17A) (DeCelles, 2004; Henry, 2009). The East Pacific Rise was ~200 km from the edge of the North American plate, and the thermal structure of the Farallon plate was influenced by its young age, shear heating from the flat-slab subduction (Peacock et al., 1994; Peacock, 1996), and fast subduction rate, allowing incompatible elements to be released from the slab (i.e., dehydration) and chemically enrich the overlying CLM.

Flat-slab subduction, which currently occurs in 10% of modern convergent margins (Gutscher et al., 2000b), can be caused by (1) a high rate of convergence of the overlying plate and/or (2) the buoyancy of thickened oceanic crust of moderate to young age (Gutscher et al., 2000b). In the flat-slab scenario for the Farallon plate, it has been argued that there is no asthenospheric mantle wedge between the North American lithospheric mantle and the Farallon plate (DeCelles, 2004; Liu et al., 2008). This can cause a delay in the basalt to eclogite transition by up to 8 to 10 m.y. (Gutscher et al., 2000b) due to the cool thermal structure of two overlapping plates (Gutscher et al., 2000a; Arcay et al., 2007). Dehydration of metabasaltic oceanic crust directly enriches the CLM; however, no melting took place because of lack of heat. High intraplate coupling may have scraped off much of the sediments at the wedge, possibly explaining the absence of a sediment-sourced chemical signature in the GB lavas. As subduction progressed, the oceanic crust and lithospheric mantle underwent metamorphic
A. Farallon Plate begins to roll back ca. 45 Ma

35 - 25 Ma

1. Meta-basaltic subducting oceanic plate
2. Slab sediment
3. Upper and lower continental crust
4. Continental lithospheric mantle (CLM)
5. Convecting mantle (asthenosphere)

40 Ma: thickened crust at the western North American margin resulting from flat-slab subduction toward the end of the La- amide orogeny. The CLM is enriched in components derived from the slab (e.g., rare-earth elements [REEs], Sr, and Pb), represented by the crosses located along the lower boundary of the lithospheric mantle. (A) From 35 to 25 Ma, the Farallon slab begins to roll back increasing heat into the system from the asthenosphere. Possible basaltic underplating and assimilation fractional crystallization processes resulted in violent volcanic eruptions, signifying the “ignimbrite flare-up” as presented in Henry and John 2013 (and references therein).

(B) By 20–15 Ma, high-K intermediate and mafic magmatism in central Great Basin (GB) migrated southwestward as the Farallon plate continued to roll back, and extension reached the Stillwater Range at ca. 15 Ma, when normal faulting may have allowed mafic magmas to reach the surface. (Continued on following page.)
C. The angle of subduction increases as the rate decreases

12-10 Ma

39° Latitude West

Trench

Great Valley

wACA

eACA

GB

East

0 km

Extension continues to widen the GB

Tensile stress on CLM and crust in western GB and eastern ACA affects regional magmatism.

Increased dip angle increases PT and slab dehydration resulting in higher-F melting

Continental Crust

Lithospheric Mantle

Farallon Plate

Asthenosphere

0 km

On-going extension creates Basin and Range Province

5 Ma

D. Subduction equilibrates and arc magmatism continues in the western ACA

5 Ma

39° Latitude West

Trench

Great Valley

wACA

eACA

GB

East

0 km

On-going extension creates Basin and Range Province

75 km

Increased melting of the metasomatised mantle

Continental Crust

Lithospheric Mantle

Farallon Plate

Asthenosphere

Figure 17 (continued). (C) Circa 12–10 Ma extension related faulting in the western GB and selected eastern Ancestral Cascade Arc (ACA) regions (e.g., Pyramid Lake) altered the chemistry of the resultant melts. Intermediate to mafic magmatism continued in the eastern and western ACA. PT—Pressure and Temperature. (D) By 5 Ma, Farallon slab has equilibrated in the western ACA, and arc magmatism is established in the Sierra Nevada (western ACA). Please refer to the text for a more detailed discussion.
The density of the slab probably increased by up to 10% once the basalt was transformed to eclogite, causing the lithospheric plate to sink at a steeper angle, at which point slab detachment from the base of the North American plate was possible (Spencer et al., 1995).

As the convergence rate between the Farallon and North American plates decreased, the density of the metamorphosed (eclogitic) slab increased, and the slab hinge point started to roll back (Fig. 17B). As the slab hinge point rolled back, hot asthenosphere likely moved in between the North American and subducted Farallon plates, initiating dehydration of the slab and triggering partial melting (F) of the hydrated CLM and the mantle wedge at the CLM boundary. Low-F mafic melts of the GB were generated within the spinel field of the mantle, enriched in incompatible elements including the REEs, K, P, Ti, and HFSEs. Magmatism migrated southward as the Farallon slab hinge point continued to roll back (Fig. 17C), and high-K lavas of Bell Canyon, Stillwater, Truckee Range, and Hot Springs Mountain erupted in the GB at ca. 25–15 Ma. The similarities in phenocryst compositions, REE, and isotopic signatures amongst GB mafic compositions further support the derivation of their primary magmas from similar source regions, with variations in chemistry due to a wide range of contributions from the CLM and mantle wedge and variable degrees of partial melting (F). Alkaline melts (basaltic trachyandesites) within the GB represent melting primarily in the CLM.

To the southwest, the Pacific plate margin collided with the North American plate at ~34° latitude at ca. 25 Ma, initiating a right-lateral strike-slip fault near the present site of Los Angeles (Schellart et al., 2010), creating the MTJ that began migrating northward relative to stable North America at ~33 mm/yr (Atwater and Stock, 1998). Intermediate volcanism migrated southwestward across Nevada as the Farallon plate hinge point rolled back and dipped more steeply into the mantle, increasing P, T, and resultant dehydration (aqueous fluid) from the slab. Extensional and transtensional stresses likely aided the upward movement of mafic magmas starting at ca. 15 Ma within what is now identified as the Walker Lane. By 12–10 Ma, the rate of subduction slowed as well as the rate of east-west migration, and higher volumes of mafic magmatism erupted in the eastern ACA (Fig. 17D). As the angle of subduction increased, heating of the slab resulted in larger contributions from the slab-derived fluids into the widening mantle wedge. Concurrently, the slab window was expanding to the south of the study area (latitude ~31°) as the MTJ continued to migrate northward (Atwater and Stock, 1998; Schellart et al., 2010) at a rate of ~52 mm/yr (Atwater and Stock, 1998). Extension continued to fracture and thin the lithosphere in the northern and southern Basin and Range (Dickinson, 2002; Henry, 2009; Schellart et al., 2010) as well as to increase the lithospheric transtensional stress between eastern ACA and western GB (from Sparks, around Pyramid Lake, Lousetown, Coal Valley, and Carson Range). The angle of subduction increased west of longitude 120°, and P-T conditions at the slab-mantle wedge interface were high enough to allow sediment melt components from the Farallon slab to infiltrate the mantle wedge. By 5 Ma, the rate of subduction slowed to 8 cm/yr (English and Johnstone, 2004), and the slab dip angle equilibrated in the mantle wedge (Fig. 17E). Slab components continued to infiltrate the mantle wedge (ΔSr/P_{old} = 2–5), and melting resulted in mafic extrusives in the western ACA (Stampede Reservoir, Ladybug region, Portola, and Mount Lincoln). Up to this point, arc magmatism in the entire ACA shared the same two mantle sources (lithospheric mantle and mantle wedge), thus emplacement in extended versus unextended terrane had no influence on geochemistry. Farther to the west, however, a distinct, less enriched lithospheric mantle component may have contributed to magmas in the westernmost part of the ACA (Sierra Nevada, including lavas of Squaw Peak, Pond Terrace, Devil’s Peak, and Lowell Ridge), resulting in overall lower 87Sr/86Sr isotopic ratios. The mafic melt generated at Sawtooth (3.82 Ma) may have been derived from or mixed with an older, more enriched mantle source mixed with a component possessing an exceptionally high 87Sr/86Sr ratio (0.7061), which suggests that the vent may be over the Precambrian CLM, represented by the 0.706 line (Kistler, 1990; Beard and Glazner, 1995). Between 17 and 2 Ma, the combination of arc and extensional processes resulted in magma production from similar sources, all with a subduction trace-element signature. Only extension-related lavas younger than 2 Ma in age from western Nevada include a component of magma derived from non-subduction modified asthenosphere (Cousens et al., 2012).

SUMMARY

The mafic volcanic rocks from this study were geographically divided into three broad regions: central GB (age range 35–5 Ma) and eastern and western ACA (age range 16–2.5 Ma). Aside from a small subset of western ACA lavas, the eastern and western ACA lavas largely overlap in age and elemental and isotopic composition. Basalt and basaltic andesite lavas follow olivine-clinoxyroxene + plagioclase fractionating phases, with clinopyroxene noted as the dominant phase. The effects of plagioclase fractionation are minimal for all mafic lavas, though greater in the GB mafic lavas compared to ACA lavas.

Most mafic melts are dominated by a lithospheric mantle component that is revealed in normalized incompatible element patterns and in Sr and Nd isotopic compositions. Lavas from a subsection of western ACA lavas, referred to as the westernmost ACA, are recognized by their lower 143Nd/144Nd values, possibly because the lavas are partial melts of less enriched lithospheric mantle compared to the CLM to the east. Trace-element data show that compositions of all mafic melts possess a subduction zone signature. This subduction signature, which includes negative Ta, Nb, and Ti anomalies and LREE + HREE enrichment, is weakest in the GB (older) mafic lavas where the dip angle...
ACKNOWLEDGMENTS

This project was financially supported by Natural Sciences and Engineering Research Council (NSERC) grants to Dr. Brian Cou- tens with additional funding from the Mineralogical Association of Canada. Thank you especially to Dr. Christopher Henry and colleagues from the Nevada Bureau of Mines and Geology. Dr. Henry’s expertise in the region and enthusiasm in the field have been extremely valuable and vital to the success of this project. I have benefited from the discussions and encouragement from the Coeus Community, including Dr. Richard Ernst, Christopher Rogers, Susan Kingdon, Alana MacKinder, Cole Kingsbury, and Seamus Magnus as a wonderfully encouraging group for scientific discussion and learning. Thanks also to Keith Bell, Lizzy Ann Spencer, Mike Jackson, Beth Halfkenny, Alan Donaldson, Ron Pickerill, Cliff Shaw, and David Lentz provided valuable reviews, support, and counsel. Finally, I am immensely honored and grateful for the time and valuable counsel from Geosphere editors, associate editors, and reviewers: Dr. Shanaka de Silva, Dr. Eric Christian- sen, Dr. Keith Putirka, and Dr. Richard Bradshaw.

REFERENCES CITED

Arcay, D., Tric, E., and Doin, M.P., 2007, Slab surface temperature in subduction zones: Influence of the interplate decoupling depth and upper plate thinning processes: Earth and Planetary Science Letters, v. 255, no. 3, p. 324–338, https://doi.org/10.1016/j.epsl.2006.12.027.

Ashley, R.P., Goet, A.F.H., Rowan, L.C., and Abrams, M.J., 1979, Detection and mapping of hydrothermally altered rocks in the vicinity of the Comstock Lode, Virginia Range, Nevada, using enhanced Landsat images: U.S. Geological Survey Open-File Report, 79-960, 41 p., https://doi.org/10.3133/ofr9860.

Aumeron, Y., Jacobsen, S.B., and Wernicke, B.P., 1994, Variations in magmatic source regions during large-scale continental extension, Death Valley region, western United States: Earth and Planetary Science Letters, v. 125, no. 1, p. 235–254, https://doi.org/10.1016/0012-821X(94)00218-6.

Atwater, T., and Stock, J., 1998, Pacific-North America plate tectonics of the Neogene southwestern United States: An update: International Geology Review, v. 40, no. 5, p. 375–402, https://doi.org/10.1130/0020-6814(1998)40<375:PNAPPT>2.3.CO;2.

Baker, M.B., Grove, T.L., and Price, R., 1994, Primitive basalts and andesites from the Mt. Shasta region, N. California: Products of varying melt fraction and water content: Contributions to Mineralogy and Petrology, v. 118, no. 2, p. 111–129, https://doi.org/10.1007/BF01052863.

Bargar, B., Dodge, F.C.W., Kistler, R.W., and Bateman, P.C., 1989, Mafic inclusions, aggregates, and dikes in granite rocks, central Sierra Nevada batholith, California: U.S Geological Survey Bulletin 1899, 27 p., https://doi.org/10.3133/b1899.

Beard, B.L., and Glaizer, A.F., 1995, Trace element and Sr and Nd isotopic composition of mantle xenoliths from the Big Pine volcanic field, California: Journal of Geophysical Research. Solid Earth, v. 100, p. 4169-4179, https://doi.org/10.1029/94JB02983.

Bell, J.W., and Bonham, Jr., H.F., 1987, Geologic map of the Vista Quadrangle, Nevada: Nevada Bureau of Mines and Geology Map, 1:24,000 scale.

Bell, J.W., and House, P.K., 2010, Geologic Map of the Grimes Point Quadrangle, Churchill County, Nevada: Nevada Bureau of Mines and Geology, 1 plate, 24 p., 1:24,000 scale.

Best, M.G., and Christiansen, E.H., 1991, Limited extension during peak Tertiary volcanism, Great Basin of Nevada and Utah: Journal of Geophysical Research. Solid Earth, v. 96, p. 13,509–13,528, https://doi.org/10.1029/91JB02444.

Best, M.G., Barr, D.L., Christiansen, E.H., Gromme, S., Deino, A.L., and Tingey, D.G., 2009, The Great Basin Altiplano during the middle Cenozoic ignimbrite flareup: Insights from volcanic rocks: International Geology Review, v. 51, no. 7–8, p. 589–633, https://doi.org/10.1080/00206810902867860.

Best, M.G., Christiansen, E.H., and Gromme, S., 2013, Introduction: The 36–18 Ma southern Great Basin, USA, ignimbrite province and flareups: Swarms of subduction-related super-volcanoes: Geosphere, v. 9, p. 260–274, https://doi.org/10.1130/GES00870.1.

Bonham, H.F., and Papke, K.G., 1969, Geology and mineral deposits of Washoe and Storey Counties, Nevada, Mackay School of Mines, University of Nevada, v. 70.

Borg, L.E., 1989, Petrogenesis of Magee composite volcano, northern California [M.S. thesis]: University of Texas at Austin, 128 p.

Borg, L.E., Clyne, M.A., and Bullen, T.D., 1997, The variable role of slab-derived fluids in the generation of a suite of primitive calc-alkaline lavas from the southernmost Cascades, California: Canadian Mineralogist, v. 35, p. 425–452.

Borg, L.E., Blichert-Toft, J., and Clyne, M.A., 2002, Ancient and modern subduction zone contributions to the mantle sources of lavas from the Lassen region of California inferred from Lu-Hf isotopic systematics: Journal of Petrology, v. 43, no. 4, p. 705–723, https://doi.org/10.1039/b307466d.

Buell, J.W., Borg, L.E., and Sheehan, A.F., 2004, Foundering lithosphere imaged beneath the southern Sierra Nevada, California, USA: Science, v. 305, no. 5684, p. 660–682, https://doi.org/10.1126/science.1099181.

Briqueu, L., Bougault, H., and Joron, J.L., 1984, Quantification of Nb, Ta, Ti and V anomalies in magmas associated with subduction zones: Petrogenetic implications: Earth and Planetary Science Letters, v. 68, p. 297–308, https://doi.org/10.1016/0012-821X(84)90161-4.

Brown, R.J., Rivetta, L., Arienzo, I., D’Antonio, M., Moretti, R., Orsi, G., Tomlinson, E.L., Albert, P.G., and Menzies, M.A., 2014, Geochemical and isotopic insights into the assembly, evolution and disruption of a magmatic plumbing system before and after a cataclysmic caldera-collapse eruption at Ischia volcano (Italy): Contributions to Mineralogy and Petrology, v. 168, p. 1035, https://doi.org/10.1007/s00410-014-1035-1.
Busby, C.J., 2012, Extensional and transtensional continental arc basins: Case studies from the southwestern United States, in Busby, C., and Azor, A., eds., Tectonic and Sedimentary Basins: Recent Advances: Wiley-Blackwell, p. 382–404, https://doi.org/10.1002/9781444347166.ch19.

Busby, C.J., 2013, Birth of a plate boundary at ca. 12 Ma in the Ancestral Cascades arc, Walker Lane belt of California and Nevada: Geosphere, v. 9, no. 5, p. 1147–1160, https://doi.org/10.1130/GES00928.1.

Busby, C.J., and Putirka, K., 2009, Miocene evolution of the western edge of the Nevadanplains: Sierra Nevada: Paleaeoeconyms, magmatism, and structure: International Geology Review, v. 51, no. 7–8, p. 670–711, https://doi.org/10.1177/002068140934278265.

Busby, C.J., and Land, J., 2011, Growth of the Cascades (Southeastern Arizona); New Mexico Geological Society, 29th Annual Field Conference Guidebook, p. 285–290.

Coney, P.J., and Reynolds, S.J., 1973, Cordilleran Benioff zones: Nature, v. 270, p. 403–406, https://doi.org/10.1038/270403a0.

Cousens, B., Prsutikul, J., Henry, C., Alcazar, A., and Brownrigg, T., 2008, Geochemistry, geochronology, and geochemistry of the Miocene–Pliocene Ancestral Cascades arc, northern Sierra Nevada, California and Nevada: The roles of the upper mantle, subducting slab, and the Sierra Nevada lithosphere: Geosphere, v. 4, no. 5, p. 829–853, https://doi.org/10.1130/GES00166.1.

Cousens, B., Henry, C.D., Timmermans, A., Sylvester, A., Wise, C., Black, D., van de Krol, R., Gunn, I., Komar, D., and Taylor, P., 2011, Secular variations in magmatism and tectonics of ridge subduction and middle Cenozoic volcanism in coastal California: Geological Society of America Bulletin, v. 103, no. 10, p. 1286–1305, https://doi.org/10.1130/0091-7603(2011)103<1286:SVIMTS>2.0.CO;2.

Davis, A.S., Clague, D.A., and White, W.M., 1998, Geochemistry of basalt from Escanaba Trough: Evidence for sediment contamination?: Journal of Petrology, v. 39, p. 841–898, https://doi.org/10.1093/petrology/39.5.841.

DeCelles, P.G., 2004, Late Jurassic to Eocene evolution of the Cordilleran thrust belt and foreland basin system, western USA: American Journal of Science, v. 304, no. 2, p. 105–168, https://doi.org/10.2478/v14517-004-0105-0.

Dickinson, W.R., 1997, Overview: Tectonic implications of Cenozoic volcanism in coastal California: Geological Society of America Bulletin, v. 109, no. 1, p. 936–954, https://doi.org/10.1130/0091-7603(1997)109<0936:TOITOCC>2.0.CO;2.

Dickinson, W.R., 2002, The Basin and Range Province as a composite extensional domain: International Geology Review, v. 44, no. 1, p. 1–38, https://doi.org/10.2747/0020-6814.44.1.1.

Dickinson, W.R., 2004, Evolution of the North American cordillera: Annual Review of Earth and Planetary Sciences, v. 32, p. 13–45, https://doi.org/10.1146/annurev.earth.32.021802.192057.

Dickinson, W.R., 2008, Geotectonic evolution of the Great Basin: Geosphere, v. 2, no. 7, p. 353–368, https://doi.org/10.1130/GES00541.1.

Dickinson, W.R., 2013, Phanerozoic palinspastic reconstructions of Great Basin geotectonics (Nevada–Utah, USA): Geosphere, v. 9, p. 1384–1396, https://doi.org/10.1130/GE00888.1.

Dickinson, W.R., and Snyder, W.S., 1978, Plate tectonics of the Laramide orogeny: Geological Society of America, v. 151, p. 395–366, https://doi.org/10.1130/MEM151-p355.

du Bray, E.A., John, D.A., Putirka, K., and Cousins, B.L., 2009, Geochemical database for igneous rocks of the ancestral Cascades arc—Southern segment. California and Nevada: U.S. Geological Survey Digital Data Series, v. 439, no. 1.

Ducea, M., 2001, The California arc: Thick granitic batholiths, eclogitic residues, lithospheric-scale thrusting, and magmatic flare-ups: GSA Today, v. 11, no. 11, p. 4–10, https://doi.org/10.1130/1052-5173(2001)011<0004:TCATGB>2.0.CO;2.

Ducea, M., and Saleeby, J., 1998, A case for delamination of the deep batholithic crust beneath the Sierra Nevada, California: International Geology Review, v. 40, no. 1, p. 78–93, https://doi.org/10.1080/0020681980945119.

Ducea, M.N., and Saleeby, J.B., 1996, Bucanery sources for a large, unrooted mountain range, the Sierra Nevada, California: Evidence from xenolith thermonbarometry: Journal of Geophysical Research. Solid Earth, v. 101, no. B4, p. 8229–8244, https://doi.org/10.1029/95JB03452.

Dumitrul, T.A., 1991, Effects of subduction parameters on geother- mal gradients in forearc, with an application to Franciscan Subduction in California: Journal of Geophysical Research, v. 96, no. B1, p. 621–641, https://doi.org/10.1029/90JB01913.

Elderfield, H., and Greaves, M., 1993, Geochemical and isotopic constraints on the crustal structure of the northern Great Basin: Geological Society of America Bulletin, v. 102, no. 8, p. 1077–1092, https://doi.org/10.1130/0016-7606(1990)102<1077:GSOAB>2.0.CO;2.

Ellam, R.M., and Hawkesworth, C.J., 1988, Elemental and iso- topic variations in subduction related basaltic: Evidence for a three component model: Contributions to Mineralogy and Petrology, v. 96, no. 1, p. 72–80, https://doi.org/10.1007/BF02037191.

Elliott, T., 2003, Tracers of the slab, in Elieer, J., ed., Inside the Subduction Factory: American Geophysical Union Geophysical Monograph 138, p. 23–46, https://doi.org/10.1029/138GM03.
John, D.A., du Bray, E.A., Blakely, R.J., Fleck, R.J., Vikre, P.G., John, D.A., Henry, C.D., and Colgan, J.P., 2008, Magmatic and tectonic evolution of the Caetano Tuff: Geosphere, v. 4, no. 1, p. 75–106, https://doi.org/10.3351/GES00116.1.

John, D.A., du Bray, E.A., Blakely, R.J., Fleck, R.J., Vikre, P.G., Box, S.E., and Moring, B.C., 2012, Miocene magmatism on Gorda Ridge, northeast Pacific Ocean, in Timmermans et al. | Geochemical study of Cenozoic mafic volcanism (2012), doi.org/10.1038/nature03971.

Kinzich, S., Schaefer, C., Nabelek, P., Basu, B., and Karlin, R., 2005, Trace element saturation of subduction-zone melts and supercritical liquids at 120–180 km depth: Nature, v. 437, p. 724, https://doi.org/10.1038/nature04037.

Kistler, R.W., 1992, Magmatism in the Cordilleran United States: Progress and problems: The Geology of North America, v. 3, p. 481–514.

Kistler, R.W., Doe, B.R., Hedge, C.E., and Steven, T.A., 1978, Petrologic evolution of the San Juan volcanic field, southwestern Colorado: Pb and Sr isotope evidence: Geological Society of America Bulletin, v. 89, p. 59–82, https://doi.org/10.1130/0016-7606(1978)89<0059:PEOTSJ>2.0.CO;2.

Liu, L., Spasojevic, S., and Gurnis, M., 2008, Reconstruction of Farallon plate subduction beneath North America back to the Late Cretaceous: Science, v. 322, p. 934–938, https://doi.org/10.1126/science.1162921.

Liu, L., Gurnis, M., Seton, M., Saleeby, J., Muller, R.D., and Jackson, J.M., 2010, The role of oceanic plateau subduction in the Laramide orogeny: Nature Geoscience, v. 3, no. 5, p. 353, https://doi.org/10.1038/ngeo829.

Manley, C.R., Glaizer, A.F., and Farmer, G.L., 2000, Timing of volcanism in the Sierra Nevada of California: Evidence for Pliocene delamination of the batholithic root?: Geology, v. 28, no. 9, p. 811–814, https://doi.org/10.1130/0091-7613(2000)028<0811:TOWTIB>2.0.CO;2.

Mann, P., 2007, Overview of the tectonic history of northern Central America: Geological Society of America Special Papers, v. 428, p. 1–19, https://doi.org/10.2307/2482801.

McKenzie, D., 1989, Some remarks on the movement of small melt fractions in the mantle: Earth and Planetary Science Letters, v. 95, p. 53–72, https://doi.org/10.1016/0012-821X(89)90167-2.

Menzies, M.A., Leeman, W.P., and Hawkesworth, C.J., 1983, Isotope geochemistry of Cenozoic volcanic rocks reveals
volcanism: Journal of Geophysical Research. Solid Earth, v. 99, p. 13,563–13,573, https://doi.org/10.1029/94JB00484.
Thompson, G.A., and White, D.E., 1964, Regional geology of the Steamboat Springs area, Washoe County, Nevada: volcanic geology, structure, and mineral deposits of the Mount Rose quadrangle and additional data from the Virginia City and nearby quadrangles: U.S. Geological Survey Professional Paper 458-A, 52 p., https://doi.org/10.3133/pp458A.
Timmermans, A.C., 2015, A Geochemical Study of Cenozoic Magmatism along an East-West Transect from Central Great Basin, Nevada to the Ancestral Cascade Arc, California: A Compositional Journey over Space and Time [Doctoral dissertation]: Carleton University.
Todt, W., Cliff, R.A., Hansen, A., and Hofmann, A.W., 1996, Evaluation of a 202Pb–205Pb Double Spike for High-Precision Lead Isotope Analysis. Earth processes: Reading the isotopic code, p. 429–437.
Wakabayashi, J., 1992, Nappes, tectonics of oblique plate convergence, and metamorphic evolution related to 140 million years of continuous subduction, Franciscan Complex, California: The Journal of Geology, v. 100, p. 19–40, https://doi.org/10.1086/295669.
Weaver, C.S., Grant, W.C., and Shemeta, J.E., 1987, Local crustal extension at Mount St. Helens, Washington: Journal of Geophysical Research: Solid Earth, v. 92, p. 10,170–10,178, https://doi.org/10.1029/96JB001070.
Weber, M.E., and Smith, E.I., 1987, Structural and geochemical constraints on the reassembly of disrupted mid-Miocene volcanoes in the Lake Mead–Eldorado Valley area of southern Nevada: Geology, v. 15, no. 6, p. 553–556, https://doi.org/10.1130/0091-7613(1987)15<553:SAADOM>2.0.CO;2.
Wernicke, B., and Snow, J.K., 1998, Cenozoic tectonism in the central Basin and Range: Motion of the Sierran-Great Valley block: International Geology Review, v. 40, no. 5, p. 403–410, https://doi.org/10.1080/00206819809465217.
Wernicke, B., Clayton, R., Ducea, M., Jones, C.H., Park, S., Ruppert, S., Saleeby, J., Snow, J.K., Squires, L., Fliedner, M., and Jiracek, G., 1996, Origin of high mountains in the continents: Science, v. 271, p. 190–193, https://doi.org/10.1126/science.271.5246.190.
White, W.M., 2013, Geochemistry: Chichester, UK, Wiley-Blackwell, 672 p.
Willden, R., and Speed, R.C., 1974, Geology and mineral deposits of Churchill County, Nevada, no. 83–85, Mackay School of Mines, University of Nevada, Reno.
Yogodzinski, G.M., Naumann, T.R., Smith, E.I., Bradshaw, T.K., and Walker, J.D., 1996, Evolution of a mafic volcanic field in the central Great Basin, south central Nevada: Journal of Geophysical Research. Solid Earth, v. 101, no. B8, p. 17,425–17,445, https://doi.org/10.1029/96JB00816.
Yusoff, Z.M., Ngwenya, B.T., and Parsons, I., 2013, Mobility and fractionation of REEs during deep weathering of geochemically contrasting granites in a tropical setting, Malaysia: Chemical Geology, v. 349, p. 71–86, https://doi.org/10.1016/j.chemgeo.2013.04.016.
Zandt, G., Gilbert, H., Owens, T.J., Ducea, M., Saleeby, J., and Jones, C.H., 2004, Active foundering of a continental arc root beneath the southern Sierra Nevada in California: Nature, v. 431, p. 41–46, https://doi.org/10.1038/nature02847.