A SINGULAR PERTURBATION LIMIT OF DIFFUSED INTERFACE ENERGY WITH A FIXED CONTACT ANGLE CONDITION

TAKASHI KAGAYA AND YOSHIHIRO TONEGAWA

Abstract. We study a general asymptotic behavior of critical points of a diffused interface energy with a fixed contact angle condition defined on a domain $\Omega \subset \mathbb{R}^n$. We show that the limit varifold derived from the diffused energy satisfies a generalized contact angle condition on the boundary under a set of assumptions.

1. Introduction

In this paper, we consider a general asymptotic behavior of critical points of the energy functional

$$E_\varepsilon(u) = \int_{\Omega} \frac{\varepsilon |\nabla u|^2}{2} + \frac{W(u)}{\varepsilon} \, dx + \int_{\partial\Omega} \sigma(u) \, d\mathcal{H}^{n-1}$$

under the restriction

$$\int_{\Omega} u \, dx = m,$$

where $\varepsilon \in (0, 1)$ is a small parameter, $\Omega \subset \mathbb{R}^n$ is a bounded domain, u is a function defined on $\bar{\Omega}$, W is a double well potential with strict minima at ± 1, σ is a function on \mathbb{R} and $m \in (-|\Omega|, |\Omega|)$ is a fixed constant. \mathcal{H}^{n-1} is the $n-1$-dimensional Hausdorff measure. According to the van der Waals-Cahn-Hilliard theory [3] and Cahn’s approach [2], the energy (1.1) is a typical energy modeling separation phenomena for capillary surfaces (see [12]). The function u, the strict minima of W and the function σ correspond to the normalized density of a multi-phase fluid, stable fluid phases and a contact energy density between the fluid and the container wall $\partial\Omega$, respectively. The condition (1.2) corresponds to fixing the total mass of the fluid in Ω. If $E_\varepsilon(u_\varepsilon)$ is uniformly bounded with respect to $\varepsilon \in (0, 1)$ for critical points u_ε of E_ε, we may expect that the domain Ω is mostly divided into two regions $\{u_\varepsilon \approx 1\}$ and $\{u_\varepsilon \approx -1\}$ for sufficiently small ε.

For energy minimizer of (1.1), Modica studied the contact angle condition in [12] within the framework of Γ-convergence. He showed the existence of energy minimizers $\{u_\varepsilon\}_{\varepsilon \in (0, 1)}$ and the subsequential limit u in L^1 as $\varepsilon \to 0$, and proved that $u = \pm 1$ a.e. on Ω. Furthermore, in a weak sense, he showed under a suitable assumption on σ that the contact angle θ formed

T. Kagaya is partially supported by JSPS Research Fellow Grant number 16J00547 and Y. Tonegawa is partially supported by JSPS KAKENHI Grant Numbers (A) 25247008 and (S) 26220702.
by the boundary $\partial \Omega$ and the reduced boundary of $\{u = 1\}$ in Ω is equal to
\begin{equation}
\theta = \arccos \left(\frac{\sigma(1) - \sigma(-1)}{c_0} \right),
\end{equation}
where
\begin{equation}
c_0 = \int_{-1}^{1} \sqrt{2W(s)} \, ds.
\end{equation}

The characterization of the contact angle condition is through the energy minimality of the Γ-limit functional and it is essential that u_ε's are global energy minimizers for the Γ-convergence argument. In view of the corresponding dynamical problem, however, it is interesting to analyze the problem under a weaker assumption of being critical points. Our aim is to study the rigorous characterization of the contact angle condition due to the presence of the second term of (1.1) as $\varepsilon \to 0$.

This line of research has been carried out by introducing a natural varifold associated with u_ε (cf. [5, 6, 13, 14]). Heuristically, the weight measure of the varifold behaves more or less like a surface measure of phase interface. One of the key tools to analyze a behavior of the varifold is the first variation. In this paper, we focus on a behavior of the first variation of the associated varifolds up to the boundary and characterize the contact angle condition for the limit varifold along the line studied in [7], as described in Theorem 3.2. Roughly speaking, we give a characterization of the tangential component of the first variation on $\partial \Omega$ which reduces to an appropriate contact angle condition if all relevant quantities are smooth.

Very closely related is the case of Neumann boundary condition, namely, the case of $\sigma \equiv 0$. Mizuno and the second author [10] studied the gradient flow of (1.1) in the case of $\sigma \equiv 0$ and analyzed a behavior of the first variation of the moving varifolds up to the boundary to derive a suitable Neumann boundary condition for the limit Brakke flow.

This paper is organized as follows. In Section 2 we state known characterizations of limit varifold in the interior of the domain due to [5, 14] along with setting our notation. Section 3 describes main results of the present paper, which are the characterization of boundary behavior of the limit varifold. In Section 4 we prove the main results and we give final remarks in Section 5.

2. Preliminaries and interior behavior

Let $\Omega \subset \mathbb{R}^n$ be a bounded domain with smooth boundary $\partial \Omega$. We first describe the interior behavior of general critical points of E_ε under the following assumptions. Here we ignore the boundary conditions until the next section.

(A1) $W \in C^\infty(\mathbb{R})$ satisfies $W \geq 0$; $W(\pm 1) = 0$; for some $\gamma \in (0, 1)$, $W''(s) > 0$ for all $|s| \geq \gamma$; W has a unique local maximum in $(-1, 1)$.

\[\theta = \arccos \left(\frac{\sigma(1) - \sigma(-1)}{c_0} \right), \]

where

\[c_0 = \int_{-1}^{1} \sqrt{2W(s)} \, ds. \]
(A2) For a sequence \(\{\varepsilon_i\}_{i=1}^{\infty} \subset (0, 1) \) with \(\lim_{i \to \infty} \varepsilon_i = 0 \), \(\{u_{\varepsilon_i}\}_{i=1}^{\infty} \subset C^\infty(\Omega) \) satisfy
\[
-\varepsilon_i \Delta u_{\varepsilon_i} + \frac{W'(u_{\varepsilon_i})}{\varepsilon_i} = \lambda_{\varepsilon_i} \quad \text{on } \Omega
\]
for some \(\lambda_{\varepsilon_i} \in \mathbb{R} \).

(A3) There exist constants \(C > 0 \) and \(E_0 > 0 \) such that
\[
\sup_i \|u_{\varepsilon_i}\|_{L^\infty(\Omega)} \leq C, \quad \sup_i |\lambda_{\varepsilon_i}| \leq C
\]
and
\[
\sup_i E_{\varepsilon_i}(u_{\varepsilon_i}) \leq E_0.
\]

Remark 2.1. Assumption (A1) says that \(W \) is a W-shaped function with two non-degenerate minima \(\pm 1 \). The equation \((2.1)\) means that \(u_{\varepsilon_i} \) is a critical point of \(E_{\varepsilon_i} \) with the volume constraint \((1.2)\). Since we are primarily interested in \(u_{\varepsilon} \) whose values are not far from \([-1, 1]\) and whose energy remains \(O(1) \), \((2.2)\) and \((2.3)\) are reasonable assumptions. They are the same set of assumptions in [5, 14].

We next summarize the direct consequences of (A1)-(A3) due to [5, 14] which give a fairly complete characterization of the limiting behavior in the interior of \(\Omega \). We introduce notation and definitions related to varifolds to describe the results. We refer to [1, 15] for more information on varifold.

Let \(G(n, n-1) \) denote the space of \((n-1)\)-dimensional subspaces of \(\mathbb{R}^n \). We also regard \(S \in G(n, n-1) \) as the orthogonal projection of \(\mathbb{R}^n \) onto \(S \), and write \(S_1 \cdot S_2 = \text{trace}(S_1 \circ S_2) \). For open \(U \subset \mathbb{R}^n \), we say \(V \) is an \((n-1)\)-dimensional varifold in \(U \) if \(V \) is a Radon measure on \(G_{n-1}(U) = U \times G(n, n-1) \). Let \(V_{n-1}(U) \) denote the set of all \((n-1)\)-dimensional varifolds. Convergence in the varifold sense means convergence in the usual sense of measures. For \(V \in V_{n-1}(U) \), we let \(\|V\| \) be the weight measure of \(V \). Let \(\text{spt}\|V\| \) be the support of \(\|V\| \). For \(V \in V_{n-1}(U) \), we define the first variation of \(V \) by
\[
\delta V(g) := \int_{G_{n-1}(U)} \nabla g(x) \cdot S \, dV(x, S)
\]
for any vector field \(g \in C_c^1(U; \mathbb{R}^n) \). We also write the total variation of \(\delta V \) by \(\|\delta V\| \). If \(\|\delta V\| \) is a Radon measure, we may apply the Radon-Nikodym theorem to \(\delta V \) with respect to \(\|V\| \). Writing the singular part of \(\|\delta V\| \) with respect to \(\|V\| \) as \(\|\delta V\|_{\text{sing}} \), we have \(\|V\| \) measurable vector field \(h \), \(\|\delta V\| \) measurable \(\nu_{\text{sing}} \) with \(|\nu_{\text{sing}}| = 1 \|\delta V\| \)-a.e., and a Borel set \(Z \subset U \) such that \(\|V\|(Z) = 0 \) with
\[
\delta V(g) = -\int_U \langle g, h \rangle \, d\|V\| + \int_Z \langle \nu_{\text{sing}}, g \rangle \, d\|\delta V\|_{\text{sing}}
\]
for all $g \in C_c^1(U; \mathbb{R}^n)$. We recall that h is the generalized mean curvature vector of V, ν_{sing} is the (outer-pointing) generalized co-normal of V and Z is the generalized boundary of V.

If $V \in \mathbf{V}_{n-1}(U)$ satisfies

$$(2.5) \quad V(\phi) = \int_M \phi(x, \Tan_x M) \Theta(x) \, d\mathcal{H}^{n-1}(x)$$

for all $\phi \in C_c(G_{n-1}(U))$, where M is an \mathcal{H}^{n-1} measurable, countably $n-1$ rectifiable set, $\Tan_x M$ is the approximate tangent space which exists for \mathcal{H}^{n-1} a.e. on M, $\Theta : M \to \mathbb{N}$ is an integer-valued \mathcal{H}^{n-1} measurable function, V is said to be integral. $\mathbf{IV}_{n-1}(U)$ denotes the set of all integral varifolds. Note that the $n-1$ dimensional density of $\|V\|$ (denoted by $\Theta(\|V\|, x)$) exists $\|V\|$ a.e. and is equal to $\Theta(x)$ in (2.5).

Let u_{ε_i} be the functions defined on $\overline{\Omega}$ satisfying (A1)-(A3). For each u_{ε_i}, we define a varifold $V_{\varepsilon_i} \in \mathbf{V}_{n-1}(\mathbb{R}^n)$ as follows. Define a Radon measure μ_{ε_i} on \mathbb{R}^n by

$$d\mu_{\varepsilon_i} := \frac{1}{c_0} \left(\frac{\varepsilon_i |\nabla u_{\varepsilon_i}|^2}{2} + \frac{W(u_{\varepsilon_i})}{\varepsilon_i} \right) dL^n|_\Omega,$$

where L^n is the Lebesgue measure on \mathbb{R}^n and c_0 is as in (1.4). Define $V_{\varepsilon_i} \in \mathbf{V}_{n-1}(\mathbb{R}^n)$ by

$$V_{\varepsilon_i}(\phi) := \int_{\{ \nabla u_{\varepsilon_i} \neq 0 \}} \phi \left(x, I - \frac{\nabla u_{\varepsilon_i}}{|\nabla u_{\varepsilon_i}|} \otimes \frac{\nabla u_{\varepsilon_i}}{|\nabla u_{\varepsilon_i}|} \right) d\mu_{\varepsilon_i},$$

for $\phi \in C_c(G_{n-1}(\mathbb{R}^n))$, where I is the $n \times n$ identity matrix. Then by the definition, we have

$$(2.6) \quad \delta V_{\varepsilon_i}(g) = \int_{\{ \nabla u_{\varepsilon_i} \neq 0 \}} \nabla g \cdot \left(I - \frac{\nabla u_{\varepsilon_i}}{|\nabla u_{\varepsilon_i}|} \otimes \frac{\nabla u_{\varepsilon_i}}{|\nabla u_{\varepsilon_i}|} \right) d\mu_{\varepsilon_i},$$

for each $g \in C_c^1(\mathbb{R}^n; \mathbb{R}^n)$. In addition, we define a function

$$\xi_{\varepsilon_i} := \frac{1}{c_0} \left(\frac{\varepsilon_i |\nabla u_{\varepsilon_i}|^2}{2} - \frac{W(u_{\varepsilon_i})}{\varepsilon_i} \right)$$

on $\overline{\Omega}$ and $\xi_{\varepsilon_i} := 0$ on $\mathbb{R}^n \setminus \overline{\Omega}$. This is called a discrepancy in the literature. The following two theorems are direct consequences of [5, 14].

Theorem 2.2. ([5 Theorem 1]) Under the assumptions (A1)-(A3), there exists a subsequence (denoted by the same index) such that

$$\lambda_{\varepsilon_i} \to \lambda, \quad u_{\varepsilon_i} \to u \text{ in } L^1(\Omega), \quad u \in BV(\Omega), \quad V_{\varepsilon_i} \to V \text{ in the varifold sense of } \mathbf{V}_{n-1}(\mathbb{R}^n),$$

$$|\xi_{\varepsilon_i}| dL^n \to d\xi \text{ in the sense of Radon measures on } \mathbb{R}^n.$$

Moreover,

1. $u(x) = \pm 1$ for L^n a.e. on Ω,
2. $V|_{G_{n-1}(\Omega)} \in \mathbf{IV}_{n-1}(\Omega),$
3. $\text{spt } \xi \subset \partial \Omega$ and $\xi \leq \|V\| |_{\partial \Omega},$
4. $\Omega \cap \text{spt } \partial^* \{ u = 1 \} \subset \text{spt } \|V\|$ and $u_{\varepsilon_i} \to \pm 1$ locally uniformly on $\Omega \setminus \text{spt } \|V\|$.
By the well-known property of BV functions (see for example [4]), away from the reduced boundary

$$M := \Omega \cap \partial^* \{ u = 1 \}$$

of $\{ u = 1 \}$ in Ω, we may define $u(x) \in \{ \pm 1 \}$ for \mathcal{H}^{n-1} a.e. $x \in \Omega \setminus M$. We also write $\nabla u / |\nabla u|$ which exists for \mathcal{H}^{n-1} a.e. on M as the inward-pointing unit normal to $\partial^* \{ u = 1 \}$.

Theorem 2.3. ([14, Theorem 3.2]) Let λ, u, V, M be as above. Then we have the following.

(a) $V|_{G_{n-1}(\Omega)}$ (as an element of $V_{n-1}(\Omega)$) has a generalized mean curvature h with $\| \delta V \|_{\text{sing}} = 0$ in Ω. We have $\mathcal{H}^{n-1}(M \setminus \text{spt} \| V \|) = 0$.

(b) V has a locally constant mean curvature in Ω, namely,

$$h = \begin{cases} \frac{2\lambda}{c_0} \frac{\nabla u}{|\nabla u|} \mathcal{H}^{n-1} \text{a.e. on } M, \\ 0 \mathcal{H}^{n-1} \text{a.e. on spt } \| V \| \cap \Omega \setminus M \end{cases}$$

and

$$\Theta(\| V \|, x) = \begin{cases} \text{odd } \mathcal{H}^{n-1} \text{a.e. on } M, \\ \text{even } \mathcal{H}^{n-1} \text{a.e. on spt } \| V \| \cap \Omega \setminus M. \end{cases}$$

(c) If $\lambda \neq 0$, then “odd” in (b) is replaced by “1”.

(d) If $\lambda > 0$, then $\mathcal{H}^{n-1}(\{ u = 1 \} \cap \text{spt } \| V \| \cap \Omega \setminus M) = 0$. If $\lambda < 0$, then $\mathcal{H}^{n-1}(\{ u = -1 \} \cap \text{spt } \| V \| \cap \Omega \setminus M) = 0$.

The portion of “even multiplicity part” $\text{spt } \| V \| \cap \Omega \setminus M$ may be regarded as a hidden boundary, in the sense that it does not appear as a boundary of $\{ u = 1 \}$. Just to clarify the point of above claim, consider the case when $\lambda = 0$. Then (b) says that V is stationary in Ω with the density parity as described. If $\lambda > 0$, then the even multiplicity part which has 0 mean curvature only appears (if it does exist non-trivially) in the region of $\{ u = -1 \}$ due to (d). In the following, Theorem 2.3 is not used and it is presented for the convenience of the reader.

Remark 2.4. It is important to note for the following section that [5, Theorem 1] proves $|\xi_{\varepsilon_i}| \to 0$ on Ω. This leaves the possibility of having non-trivial measure ξ living only on $\partial \Omega$. When Ω is strictly convex and $\sigma = 0$, it is proved that $\xi = 0$ in [10]. We conjecture that $\xi = 0$ also for non-trivial σ and under some geometric condition (such as convexity) on Ω. Due to the trivial inequality $\xi \leq \| V \|$, if $\| V \|_{|\partial \Omega|} = 0$, then we have $\xi = 0$. Thus, if the measures μ_{ε_i} do not concentrate on $\partial \Omega$, we have $\xi = 0$ in particular.

3. Boundary Behavior

In addition to (A1)-(A3) in the previous section, we now consider the following three assumptions.
(A4) A given function $\sigma \in C^\infty(\mathbb{R})$ satisfies

\[
|\sigma'(s)| \leq C_1 \sqrt{2W(s)}
\]
for some $C_1 \in [0, 1)$ and for all $s \in \mathbb{R}$.

(A5) The functions $\{u_{\varepsilon_i}\}$ as in (A2) satisfy

\[
\varepsilon_i \langle \nabla u_{\varepsilon_i}, \nu \rangle = -\sigma'(u_{\varepsilon_i}) \text{ on } \partial \Omega,
\]
where ν is the outer unit normal vector field on $\partial \Omega$.

(A6) $\xi = 0$, where ξ is as in Theorem 2.2 (3).

From a heuristic argument as well as the Γ-convergence result of [12], note that we expect the energy E_{ε} should behave like

\[
E_{\varepsilon}(u_{\varepsilon}) \approx c_0 \mathcal{H}^{n-1}(\Omega \cap \partial \{u = 1\}) + (\sigma(1) - \sigma(-1)) \mathcal{H}^{n-1}(\partial \Omega \cap \{u = 1\}) + \text{Constant}.
\]

Imposing (A4) ensures that $|\sigma(1) - \sigma(-1)| \leq \int_{-1}^{1} |\sigma'(s)| \, ds \leq C_1 \int_{-1}^{1} \sqrt{2W(s)} \, ds < c_0$. Physically, this ensures that the contact energy density $|\sigma(1) - \sigma(-1)|$ of the interface $\{u_{\varepsilon} \approx 1\}$ with $\partial \Omega$ is strictly smaller than the surface tension density c_0 of the interface inside of Ω. As $|\sigma(1) - \sigma(-1)| \nearrow c_0$, we expect to have a “perfect wetting” (see [21]) of the interface. The equality (3.2) is satisfied for critical points of (1.1) with the volume constraint (1.2), as one can check easily by taking the first variation of E_{ε}.

For (A6), as mentioned in Remark 2.4, we do not know in general that this is satisfied under the assumptions (A1)-(A5). However, it is a reasonable assumption since we expect $\|V\|_{\partial \Omega} = 0$ (and thus $\xi \leq \|V\|_{\partial \Omega} = 0$) unless the situation is somewhat pathological. We also note that adding the stability assumption (that is, the second variation of E_{ε} is non-negative) does not appear helpful to show $\xi = 0$ on $\partial \Omega$, despite the result of Γ-convergence of [12].

In the following, we first describe the behavior of $u_{\varepsilon_i}|_{\partial \Omega}$.

Theorem 3.1. Under the assumptions (A1)-(A5) (thus leaving out (A6)), there exist a subsequence (denoted by the same index) and a function $\tilde{u} \in BV(\partial \Omega)$ such that

\[
u_{\varepsilon_i}|_{\partial \Omega} \to \tilde{u} \quad \mathcal{H}^{n-1} \text{ a.e. on } \partial \Omega,
\]

\[\tilde{u} = \pm 1 \quad \mathcal{H}^{n-1} \text{ a.e. on } \partial \Omega,
\]

where $u_{\varepsilon_i}|_{\partial \Omega}$ is the restriction of u_{ε_i} to $\partial \Omega$.

In general, the trace of u (obtained in Theorem 2.2) on $\partial \Omega$ may not coincide with \tilde{u}, as one can construct a sequence of critical points of E_{ε} with $\sigma = 0$ which converge to $u = 1$ on Ω while $u_{\varepsilon}|_{\partial \Omega} \approx -1$ (see [10, Section 8]). The next result is the main theorem of the paper.

Theorem 3.2. Under the assumptions (A1)-(A6), let V be as in Theorem 2.2 and let \tilde{u} be as in Theorem 3.1. Then we have the following. Let θ be defined as in (1.3).
1. The total variation \(\| \delta V \| (\mathbb{R}^n) = \| \delta V \| (\Omega) \) (as an element of \(V_{n-1}(\mathbb{R}^n) \)) is finite.

2. For any vector field \(g \in C(\partial \Omega; \mathbb{R}^n) \) such that \((g, \nu) = 0 \) on \(\partial \Omega \), we have

\[
(3.3) \quad \delta V_{|\partial \Omega}(g) = \cos \theta \int_{\partial^* \{x \in \partial \Omega : \tilde{u}(x) = 1\}} \langle g, \tau \rangle \, d\mathcal{H}^{n-2},
\]

where \(\tau(x) \in \text{Tan}_x(\partial \Omega) \) is the \(\mathcal{H}^{n-2} \) measurable unit inward-pointing normal to \(\partial^* \{x \in \partial \Omega : \tilde{u}(x) = 1\} \) which exists \(\mathcal{H}^{n-2} \) a.e. on \(\partial^* \{x \in \partial \Omega : \tilde{u}(x) = 1\} \).

The equality (3.3) gives a complete description of the tangential component of the first variation on the boundary. Also, (3.3) may be considered as a generalized contact angle condition satisfied for a pair of varifold \(V \) and \(\tilde{u} \). To see this, consider a case that \(\| V \| = \mathcal{H}^{n-1}|_M \) and \(M \) is a smooth hypersurface having a smooth boundary \(\partial M \subset \partial \Omega \). Then the first variation \(\delta V_{|\partial \Omega}(g) \) is represented as

\[
\int_{\partial M} \langle g, \tilde{\nu} \rangle \, d\mathcal{H}^{n-2},
\]

where \(\tilde{\nu} \) is the unit outward-pointing co-normal to \(\partial M \). Then (3.3) shows that \(\partial M \cap \{ \tilde{\nu} \neq \nu \} = \partial^* \{ \tilde{u} = 1 \} \) and the angle formed by \(\tilde{\nu} \) and \(\tau \) is \(\theta \). Away from \(\partial^* \{ \tilde{u} = 1 \}, \partial M \) (if such set is non-empty) intersects with \(\partial \Omega \) orthogonally. Hence, more precisely, we should say that the contact angle condition with angle \(\theta \) is satisfied on \(\partial^* \{ \tilde{u} = 1 \} \). For further remark on the implication of (3.3), see Section 5.

4. Proof of Theorem 3.1 and 3.2

Throughout this section, we will replace the notation \(\varepsilon_i \) by \(\varepsilon \). First, we derive a formula for the first variation \(\delta V_{\varepsilon} \).

Lemma 4.1. For \(u_\varepsilon \) satisfying (2.4) and (3.2) and for \(g \in C^1_c(\mathbb{R}^n; \mathbb{R}^n) \), we have

\[
(4.1) \quad c_0 \delta V_{\varepsilon}(g) = \int_{\Omega \cap \{ \nabla u_\varepsilon \neq 0 \}} \nabla g \cdot \nabla u_\varepsilon \otimes \nabla u_\varepsilon \left(\frac{\varepsilon |\nabla u_\varepsilon|^2}{2} - \frac{W(u_\varepsilon)}{\varepsilon} \right) \, dx \quad - \int_{\Omega \cap \{ \nabla u_\varepsilon = 0 \}} \nabla g \cdot \frac{W(u_\varepsilon)}{\varepsilon} \, dx + \int_{\Omega} \lambda_\varepsilon u_\varepsilon \, \text{div} \, g \, dx \quad + \int_{\partial \Omega} \left(\frac{\varepsilon |\nabla u_\varepsilon|^2}{2} + \frac{W(u_\varepsilon)}{\varepsilon} - \lambda_\varepsilon \right) \langle g, \nu \rangle \, d\mathcal{H}^{n-1} + \int_{\partial \Omega} \sigma'(u_\varepsilon) \langle \nabla u_\varepsilon, g \rangle \, d\mathcal{H}^{n-1} =: I_1^{\varepsilon}(g) + I_2^{\varepsilon}(g) + I_3^{\varepsilon}(g) + I_4^{\varepsilon}(g) + I_5^{\varepsilon}(g).
\]
Proof. We fix a vector field $g \in C^1_c(\mathbb{R}^n; \mathbb{R}^n)$ and calculate the right-hand side of (2.6). Using the boundary condition \((3.2)\) and by integration by parts, we have

\[
\int_{\partial \Omega \setminus \{\nabla u_\varepsilon \neq 0\}} \nabla g \cdot I \varepsilon \frac{\nabla |u_\varepsilon|^2}{2} \, dx = \int_{\Omega} \nabla g \cdot I \varepsilon \frac{\nabla |u_\varepsilon|^2}{2} \, dx
\]

Equal to

\[
\int_{\partial \Omega} \varepsilon \frac{\nabla |u_\varepsilon|^2}{2} \langle g, \nu \rangle \, d\mathcal{H}^{n-1} - \varepsilon \int_{\Omega} \nabla^2 u_\varepsilon \cdot \nabla u_\varepsilon \otimes g \, dx
\]

Again

\[
\int_{\partial \Omega} \varepsilon \frac{\nabla |u_\varepsilon|^2}{2} \langle g, \nu \rangle \, d\mathcal{H}^{n-1} + \varepsilon \int_{\Omega} \nabla g \cdot \nabla u_\varepsilon \otimes \nabla u_\varepsilon - \langle \nabla u_\varepsilon, \nabla (\nabla u_\varepsilon, g) \rangle \, dx
\]

Further

\[
\int_{\partial \Omega} \varepsilon \frac{\nabla |u_\varepsilon|^2}{2} \langle g, \nu \rangle + \sigma'(u_\varepsilon) \langle \nabla u_\varepsilon, g \rangle \, d\mathcal{H}^{n-1} + \varepsilon \int_{\Omega} \Delta u_\varepsilon \langle \nabla u_\varepsilon, g \rangle + \nabla g \cdot \nabla u_\varepsilon \otimes \nabla u_\varepsilon \, dx.
\]

Also by integration by parts, we obtain

\[
\int_{\Omega \cap \{\nabla u_\varepsilon \neq 0\}} \frac{W(u_\varepsilon)}{\varepsilon} \nabla g \cdot I \, dx = \int_{\Omega} \frac{W(u_\varepsilon)}{\varepsilon} \nabla g \cdot I \, dx - \int_{\Omega \cap \{\nabla u_\varepsilon = 0\}} \frac{W(u_\varepsilon)}{\varepsilon} \nabla g \cdot I \, dx
\]

Substituting \((4.2)\) and \((4.3)\) into (2.6), we have by the interior equation (2.1)

\[
c_0 \delta V_\varepsilon \langle g \rangle = \int_{\Omega \cap \{\nabla u_\varepsilon \neq 0\}} \nabla g \cdot \frac{\nabla u_\varepsilon}{|\nabla u_\varepsilon|} \otimes \frac{\nabla u_\varepsilon}{|\nabla u_\varepsilon|} \left(\frac{\varepsilon |\nabla u_\varepsilon|^2}{2} - \frac{W(u_\varepsilon)}{\varepsilon} \right) \, dx
\]

\[
- \int_{\Omega \cap \{\nabla u_\varepsilon = 0\}} \nabla g \cdot I \frac{W(u_\varepsilon)}{\varepsilon} \, dx - \int_{\Omega} \lambda \langle \nabla u_\varepsilon, g \rangle \, dx
\]

\[
+ \int_{\partial \Omega} \left(\frac{\varepsilon |\nabla u_\varepsilon|^2}{2} + \frac{W(u_\varepsilon)}{\varepsilon} \right) \langle g, \nu \rangle \, d\mathcal{H}^{n-1} + \int_{\partial \Omega} \sigma'(u_\varepsilon) \langle \nabla u_\varepsilon, g \rangle \, d\mathcal{H}^{n-1}.
\]

By integration by parts for the third term of right-hand side, we obtain \((4.1)\).

\[
\int_{\partial \Omega} \frac{\varepsilon |\nabla u_\varepsilon|^2}{2} + \frac{W(u_\varepsilon)}{\varepsilon} \, d\mathcal{H}^{n-1} \leq C_2.
\]

Lemma 4.2. Under the assumption of (A1)-(A5), there exists a constant $C_2 > 0$ depending only on Ω, C, E_0, C_1 such that

\[
\int_{\partial \Omega} \frac{\varepsilon |\nabla u_\varepsilon|^2}{2} + \frac{W(u_\varepsilon)}{\varepsilon} \, d\mathcal{H}^{n-1} \leq C_2.
\]

Proof. We choose a smooth function $f : \overline{\Omega} \to \mathbb{R}$ which satisfies $\nabla f = \nu$ on $\partial \Omega$. For example, $f(x) = -\operatorname{dist}(x, \partial \Omega)$ near $\partial \Omega$ with a suitable truncation away from $\partial \Omega$ suffices. We then use $g = \nabla f$ in (4.1). By the definition (2.6) and (2.3), we have $c_0 \delta V_\varepsilon(\nabla f) \leq E_0 \sup \|f\|_{C^2}$ so the left-hand side of (4.1) is bounded depending only on E_0 and Ω. The terms $I^1_f(\nabla f), I^2_f(\nabla f)$ and $I^3_f(\nabla f)$ are also bounded by a constant depending only on C, E_0, Ω. Thus we have

\[
\int_{\partial \Omega} \left(\frac{\varepsilon |\nabla u_\varepsilon|^2}{2} + \frac{W(u_\varepsilon)}{\varepsilon} \right) \, d\mathcal{H}^{n-1} \leq - \int_{\partial \Omega} \sigma'(u_\varepsilon) \langle \nabla u_\varepsilon, \nu \rangle \, d\mathcal{H}^{n-1} + c(C, E_0, \Omega)
\]
where $\nabla f|_{\partial \Omega} = \nu$ is used. By Young’s inequality and the assumption (3.1),

$$
\left| \int_{\partial \Omega} \sigma'(u_\varepsilon) \langle \nabla u_\varepsilon, \nu \rangle \, d\mathcal{H}^{n-1} \right| \leq \int_{\partial \Omega} \varepsilon C_1 |\nabla u_\varepsilon|^2 + \frac{(\sigma'(u_\varepsilon))^2}{2C_1\varepsilon} \, d\mathcal{H}^{n-1} \leq C_1 \int_{\partial \Omega} \varepsilon |\nabla u_\varepsilon|^2 + \frac{W(u_\varepsilon)}{\varepsilon} \, d\mathcal{H}^{n-1},
$$

(4.5)

Since $C_1 \in [0, 1)$, we have the conclusion by setting $C_2 = c(C, E_0, \Omega)/(1 - C_1)$. \hfill \Box

Proof of Theorem 3.2 (1). Fixing $g \in C^1_c(\mathbb{R}^n; \mathbb{R}^n)$, we have $\lim_{i \to \infty} \delta V_{\varepsilon_i}(g) = \delta V(g)$ due to the varifold convergence. In (4.1), due to (A6), we have $\lim_{i \to \infty} |I_{\varepsilon_i}^3(g)| + |I_{\varepsilon_i}^4(g)| = 0$. By Theorem 2.2, we have

$$
\lim_{i \to \infty} I_{\varepsilon_i}^3(g) = \lambda \int_{\Omega} u \, \text{div} \, g \, dx = -2\lambda \int_{M} \langle g, \frac{\nabla u}{|\nabla u|} \rangle \, d\mathcal{H}^{n-1} + \lambda \int_{\partial \Omega} u \langle g, \nu \rangle \, d\mathcal{H}^{n-1},
$$

(4.6)

where $M = \Omega \cap \partial^* \{ u = 1 \}$. Using (4.4) and a similar argument as in (4.5), we can show $|I_{\varepsilon_i}^3(g)| + |I_{\varepsilon_i}^4(g)| \leq c \sup |g|$, where c is independent of g or i. Combined all these estimates, we show that $|\delta V(g)| \leq c \sup |g|$ and $\|\delta V\|(\bar{\Omega})$ is finite. \hfill \Box

Proof of Theorem 3.2 (2). It suffices to prove the claim for $g \in C^1_c(\mathbb{R}^n; \mathbb{R}^n)$ with $\langle g, \nu \rangle = 0$ on $\partial \Omega$, since the general $C_c(\mathbb{R}^n; \mathbb{R}^n)$ case can be proved by approximation. For such g, in (4.6), the last term vanishes and also $I_3^i(g) = 0$ in (4.1). For $I_4^i(g)$, we have $\langle \nabla u_\varepsilon, g \rangle = \langle \nabla_{\partial \Omega} u_\varepsilon, g \rangle$ due to $\langle g, \nu \rangle = 0$. Thus, by the divergence theorem on $\partial \Omega$, we have

$$
I_{\varepsilon_i}^5(g) = \int_{\partial \Omega} \sigma'(u_\varepsilon) \langle \nabla_{\partial \Omega} u_\varepsilon, g \rangle \, d\mathcal{H}^{n-1} = -\int_{\partial \Omega} \sigma(u_\varepsilon) \text{div}_{\partial \Omega} g \, d\mathcal{H}^{n-1}.
$$

These lead to the conclusion that

$$
c_0 \delta V(g) = -2\lambda \int_{M} \langle g, \frac{\nabla u}{|\nabla u|} \rangle \, d\mathcal{H}^{n-1} - \int_{\partial \Omega} \sigma(\tilde{u}) \text{div}_{\partial \Omega} g \, d\mathcal{H}^{n-1}.
$$

(4.7)
Since $\tilde{u} \in BV(\partial \Omega)$ with values in $\{\pm 1\}$, $\partial^*\{\tilde{u} = 1\}$ and the inward-pointing unit normal τ are well-defined, and

$$-\int_{\partial \Omega} \sigma(\tilde{u}) \text{div}_{\partial \Omega} g \, d\mathcal{H}^{n-1} = (\sigma(1) - \sigma(-1)) \int_{\partial^*\{\tilde{u} = 1\}} \langle \tau, g \rangle \, d\mathcal{H}^{n-2}. \quad (4.8)$$

Since we are interested in obtaining $\delta V|_{\partial \Omega}$, and since $M \subset \Omega$, we obtain (3.3) from (4.7) and (4.8).

□

5. Additional remarks

5.1. The case $\|V\|(\partial \Omega) = 0$. If we further assume that $\|V\|(\partial \Omega) = 0$, then, non-trivial $\delta V|_{\partial \Omega}$ is necessarily singular with respect to $\|V\|_{\partial \Omega}$. Thus using the notation of (2.4), we conclude from (3.3) that

$$\int_Z \langle \nu_{\text{sing}}, g \rangle \, d\|\delta V\|_{\text{sing}} = \cos \theta \int_{\partial^*\{\tilde{u} = 1\}} \langle g, \tau \rangle \, d\mathcal{H}^{n-2}$$

for $g \in C(\partial \Omega, \mathbb{R}^n)$ with $\langle g, \nu \rangle = 0$ on $\partial \Omega$. If $Z = \partial^*\{\tilde{u} = 1\}$ and $\|\delta V\|_{\text{sing}}|_Z = \mathcal{H}^{n-2}|_Z$, then we have a clear-cut statement that $\nu_{\text{sing}} - \langle \nu_{\text{sing}}, \nu \rangle \nu = (\cos \theta) \tau$ on Z, which says that the generalized co-normal of V satisfies the contact angle condition with angle θ. Unfortunately, even in this case, we can only conclude that $\partial^*\{\tilde{u} = 1\} \subset Z$. Also we do not know in general if $\|\delta V\|_{\text{sing}}|_{\partial^*\{\tilde{u} = 1\}} = \mathcal{H}^{n-2}|_{\partial^*\{\tilde{u} = 1\}}$. On the other hand, on $Z \setminus \partial^*\{\tilde{u} = 1\}$, even though we equally do not know what $\|\delta V\|_{\text{sing}}$ is in general, we may conclude $\nu_{\text{sing}} = \nu$, $\|\delta V\|_{\text{sing}}$ a.e. since the right-hand side is 0 away from $\partial^*\{\tilde{u} = 1\}$. Thus the right-angle condition is simpler to describe than other non-right-angle conditions.

5.2. The case $\|V\|(\partial \Omega) > 0$. It may be somewhat counter-intuitive to imagine that the measures μ_ε may “pile-up” on the boundary as $\varepsilon \to 0$, resulting in $\|V\|(\partial \Omega) > 0$. For $\sigma = 0$ and $\Omega = B_1(0)$, it is not difficult to construct such example, however, as described in [10] (see also [8, 9] for examples for more general domains and of higher-multiplicity concentration). Interestingly, even if $\|V\|(\partial \Omega) > 0$, as long as $\xi = 0$, results in the paper still hold true. We expect that the presence of non-trivial $\|V\|$ in $\partial \Omega$ affects the normal component of the first variation, but not the tangential one. In all known examples where boundary concentration of $\|V\|$ occurs, ξ is zero.

5.3. Monotonicity formula. In [7], motivated by the present paper, we introduce a notion of generalized contact angle condition for varifold and derive a monotonicity formula valid up to the boundary. The condition in [7] is even weaker than the one obtained in Theorem 3.2 in that we do not need to have a bounded first variation up to the boundary. Thus the result of [7] applies to V in this paper and up to the boundary monotonicity formula can be obtained. For $\sigma = 0$ and convex Ω, in [17], the similar up to the boundary monotonicity
formula was obtained even for the diffused energy (i.e. before letting $\varepsilon \to 0$). To gain a better understanding on V obtained in this paper, it is desirable to establish such monotonicity formula for diffused energy since one can conclude a better convergence of interface to $\text{spt} \|V\|$. This is ultimately connected to getting a good estimate on the discrepancy up to the boundary and showing $\xi = 0$, along the line of logics in [3, 6, 10].

References

[1] W. Allard, *On the first variation of a varifold*, Ann. of Math. 95 (1975), pp 417–491.
[2] J. W. Cahn, *Critical point wetting*, J. Chem. Phys. 66 (1977), pp 3667–3672.
[3] J. W. Cahn and J. E. Hilliard, *Free energy of a nonuniform system I. Interfacial free energy*, J. Chem. Phys. 28 (1958), pp 258–267.
[4] L. C. Evans and R. F. Gariepy, *Measure theory and fine properties of functions*, Studies in Advanced Math., CRC Press (1992).
[5] J. Hutchinson and Y. Tonegawa, *Convergence of phase interfaces in the van der Waals-Cahn-Hilliard theory*, Calc. Var. Partial Differential Equations 10 (2000), no. 1, pp 49–84.
[6] T. Ilmanen, *Convergence of the Allen-Cahn equation to Brakke’s motion by mean curvature*, J. Diff. Geom. 38 (1993), no. 2, pp 417–461.
[7] T. Kagaya and Y. Tonegawa, *A fixed contact angle for varifolds*, to appear in Hiroshima Math. J., arXiv:1606.00164.
[8] A. Malchiodi and J. Wei, *Boundary interface for the Allen-Cahn equation*, J. Fixed Point Theory Appl. 1 (2007), pp 305–336.
[9] A. Malchiodi, W.-M. Ni and J. Wei, *Boundary-clustered interface for the Allen-Cahn equation*, Pacific J. Math. 229 (2007), pp 447–468.
[10] M. Mizuno and Y. Tonegawa, *Convergence of the Allen-Chan equation with Neumann boundary conditions*, SIAM Journal on Mathematical Analysis 47 (2015), no. 3, pp 1906–1932.
[11] L. Modica, *The gradient theory of phase transitions and the minimal interface criterion*, Arch. Rational Mech. Anal. 98 (1987), pp 123–142.
[12] L. Modica, *Gradient theory of phase transitions with boundary contact energy*, Ann. Inst. H. Poincaré Anal. Non Linéaire 4 (1987), no. 5, pp 487–512.
[13] P. Padilla and Y. Tonegawa, *On the convergence of stable phase transitions*, Comm. Pure Appl. Math. 51 (1998), no. 6, pp 551–579.
[14] M. Röger and Y. Tonegawa, *Convergence of phase-field approximations to the Gibbs-Thomson law*, Calc. Var. Partial Differential Equations 32 (2008), no. 1, pp 111–136.
[15] L. Simon, *Lectures on geometric measure theory*, Proc. Centre Math. Anal. Austral. Nat. Univ. 3 (1983).
[16] P. Sternberg, *The effect of a singular perturbation on nonconvex variational problems*, Arch. Rational Mech. Anal. 101 (1988), no. 3, pp 209–260.
[17] Y. Tonegawa, *Domain dependent monotonicity formula for a singular perturbation problem*, Indiana Univ. Math. J. 52 (2003), pp 69–84.

Department of Mathematics, Tokyo Institute of Technology, 152-8551, Tokyo, Japan
E-mail address: kagaya.t.aa@m.titech.ac.jp

Department of Mathematics, Tokyo Institute of Technology, 152-8551, Tokyo, Japan
E-mail address: tonegawa@math.titech.ac.jp