CASE REPORT

Pilomyxoid astrocytoma of the corpus callosum presenting with primary haemorrhage in an adolescent

1,2MARIA LONGO, MD, 1,2JULIANO ADAMS PEREZ, MR, MD, 3FRANCINE OLIVEIRA, MS, PhD, 4APIO ANTUNES, Ph D, 5LEONARDO VEDOLIN, Ph D and 5JULIANA AVILA DUARTE, MD

1Radiology, HMV, POA, Brazil
2Radiology, HCPA, POA, Brazil
3Pathology, HCPA, POA, Brazil
4Neurosurgery, HCPA, POA, Brazil
5Magnetic Resonance Unit, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil

Address correspondence to: Dr Juliana Avila Duarte
E-mail: juavila2003@yahoo.com.br

ABSTRACT

A 17-year-old male patient with history of intraventricular haemorrhage in 2007 underwent a brain MRI scan in 2013 owing to headache. Brain MRI scan showed an expansive lesion adjacent to the left lateral ventricle infiltrating the anterior portion of the corpus callosum. After surgery, pathology confirmed a pilomyxoid astrocytoma (PMA), an aggressive subtype of astrocytoma that occurs predominantly in the hypothalamic-chiasmatic region. On imaging, PMA presents as a tumour isointense on T_1, hyperintense on T_2 that enhanced heterogeneously with contrast. The T_2 signal is higher than pilocytic astrocytoma, which indicates the presence of myxoid matrix. These findings on MRI scan have a direct correlation with a specific pathological finding—monomorphic proliferation of piloid cells in a mucopolysaccharide-rich matrix. These characteristics associated with the absence of Rosenthal fibres or eosinophilic granules indicated the diagnosis of PMA. To our knowledge, this is the first case report of PMA affecting the corpus callosum in an adolescent.

INTRODUCTION

In November 2006, an international Working Group of 25 pathologists and geneticists met to suggest a new resolution for the brain tumours classification—the 2007 World Health Organization Classification of Tumours of the Central Nervous System. The goal of this new classification was the same of the older ones—grading the brain neoplasms. Based on six pathological criteria, these experts had the difficult task of classifying the tumours predicting theirs biological behaviour. The pathological criteria defined were the number of mitosis, presence of necrosis, vascular endothelial proliferation, nuclear polymorphism, cellular density and presence of genetic markers.\(^1\)

The largest category between the primary neoplasms is the neuroepithelial tissue tumours, which encompass the astrocytomas. Anaplastic astrocytoma and glioblastoma are the most aggressive ones, classified as grades III and IV, respectively. The diffusely infiltrating astrocytomas are designated as grade II. One of the most benign-behaviours astrocytomas are the pilocytic one (grade I). However, there is a more aggressive subtype of pilocytic astrocytoma (PA), named pilomyxoid, classified as grade II.\(^1,2\)

The pilomyxoid astrocytoma (PMA) occurs predominantly in the hypothalamic-chiasmatic region. To our knowledge, there is no previous case report that described a PMA affecting the corpus callosum (CC). Here, we describe the clinicopathological and radiological features of this patient with new observations.

CLINICAL SUMMARY

An 11-year-old male, previously healthy, was brought to the emergency room with occipital headache and vomiting in 2007. He performed a brain CT scan, which showed a hyperdense area into the lateral left ventricle. A brain MRI scan performed in the same period confirmed a haemorrhagic lesion without abnormal enhancement adjacent to the CC. No vascular malformation was revealed by the conventional angiography. As the cause of the haemorrhage was not diagnosed, follow-up studies revealed that haematoma reduced in size and the clinical status of the patient improved, conservative management was chosen.

The neurosurgery team followed the patient until 2013, when owing to new intense headaches episodes, a new MRI scan was requested. The exam showed an expansive lesion in the left lateral ventricle infiltrating the anterior...
portion of the corpus callosum. The patient was submitted to a craniotomy followed by resection of the lesion. The details of the brain MRI scan and the histopathological findings are described in the following section.

PATHOLOGICAL AND RADIOLOGICAL FINDINGS

Brain MRI scan
The brain MRI scan showed a solid lesion with cystic compound intraventricular expansive lesion affecting the anterior portion of the CC body that was hypointense on T_1 and hyperintense on T_2/fluid-attenuated inversion-recovery. It enhanced heterogeneously after gadolinium injection, presented a haemorrhagic component with blooming artefact that was hypointense on T_2 gradient echo sequence and infiltrated the anterior portion of the corpus callosum—sagittal T_1 (f). FLAIR, fluid-attenuated inversion-recovery.

Figure 1. Axial brain MRI scan shows an intraventricular expansive lesion with hypointense signal on T_1 (a) and hyperintense signal on FLAIR (b). Axial gradient echo shows the haemorrhagic component (c). Sagittal contrast-enhanced T_1 weighted shows the lesion enhanced heterogeneously by the gadolinium (d). It occupies predominantly the anterior horn of the left lateral ventricle—coronal contrast-enhanced T_1 (e) and infiltrates the anterior portion of the corpus callosum—sagittal T_1 (f). FLAIR, fluid-attenuated inversion-recovery.

PATHOLOGICAL FINDINGS
The pathological study was performed on paraffin-embedded sections of the tumour. An immunohistochemical study was already performed for glial fibrillary acidic protein and Ki-67.

The haematoxylin & eosin stain showed a moderately cellularity neoplasm in a rich myxoid background. The cells were rounded and oval without significant atypia, and there was a discrete predominance around the vascular structures (Figure 2a). The glial component with blooming artefact that was hypointense on T_2 gradient echo sequence and infiltrated the anterior horn of the left lateral ventricle predominantly (Figure 1).

The hematoxylin & eosin stain showed a moderately cellularity neoplasm in a rich myxoid background. The cells were rounded and oval without significant atypia, and there was a discrete predominance around the vascular structures (Figure 2a). The glial component with blooming artefact that was hypointense on T_2 gradient echo sequence and infiltrated the anterior horn of the left lateral ventricle predominantly (Figure 1).

Figure 2. H&E (200×): the image shows a moderate cellularity neoplasm, consisting of rounded and oval cells without significant atypia, embedded in a myxoid stroma (a). GFAP (200×): strong positivity to GFAP, confirming the glial phenotype and showing cells with elongated processes (b). Ki-67: several cells stained with ki-67, demonstrating moderate proliferative index, beyond that expected for pilocytic astrocytoma and compatible with the diagnosis of pilomyxoid astrocytoma (c). GFAP, glial fibrillary acidic protein; H&E, haematoxylin & eosin.
fibrillary acidic protein study was strongly positive and showed elongated processes, which confirmed the glial origin of the tumour (Figure 2b). Moreover, in the ki-67 analysis, some cells were stained, showing a moderate proliferative index (Figure 2c). No Rosenthal fibers or eosinophilic granular bodies were found.

DISCUSSION
The PMA is a more aggressive subtype of PA, classified as World Health Organization grade II tumour. Both PMA and PA occur during the childhood although the PMA affects younger children and has a second peak of incidence in young adults. The neurological symptoms are unspecific, including headache and intracranial pressure increased. The pathological characteristic of PMA is the monomorphic proliferation of piloid cells in a mucopolysaccharide-rich matrix, without Rosenthal fibers or eosinophilic granules, commonly seen in PA.

Traditionally, the PMA is found as a large mass in the hypothalamus/optic chiasm, with an H format. Most of the cases (60%) are suprasellar, with the geometric center in hypothalamus. The others 40% are located outside of the diencephalon, usually in the temporal lobe. Less commonly, it may occur in the midbrain, cerebellum, fourth ventricle and spinal cord. We are unaware of other cases originating in the corpus callosum. Typically, the presentation on the MRI scan is a hypointense imaging on T1-weighted image; T2-weighted image; and visual loss (pathway lesions). In about half of the cases, the gadolinium enhancement is strong and heterogeneous. In our case, the PMA diagnosis was established in a 17-year-old patient, with a history of previous haemorrhagic vascular event.
The diagnosis was initially obscured by the extent of intraventricular haemorrhage. It was initially considered a vascular lesion or arteriovenous malformation as the most likely cause of the haemorrhage. However, a heterogeneous enhancement usually suggests a glial tumour of a higher grade than lower grade gliomas. The tumour had a heterogeneous gadolinium enhancement, a pattern that is usually not found in PA as most of these tumours present a solid-cystic lesion, with a large cystic component. However, a heterogeneous enhancement usually suggests a glial tumour of a higher grade than lower grade gliomas.

The final diagnostic was based on pathological findings. The main characteristics were the matrix predominantly myxoid and the proliferative index beyond that expected for PA. The absence of Rosenthal fibers and eosinophilic granular bodies, common in PA, ratified our hypothesis. The differential diagnosis between PA and PMA is not simple, but owing to prognostic issues it should be done.

The diagnosis was initially obscured by the extent of intraventricular haemorrhage and leptomeningeal dissemination and a higher T2 signal intensity inside the lesion suggest PMA (Table 1). These findings should alert the paediatric neuroradiologist to this specific diagnosis. Moreover, the neuropathologist should be alert to this hypothesis, to make the differential diagnosis actively, once the differences could be subtle.

The differential diagnosis between PA and PMA is not simple but owing to prognostic issues it should be done. Some imaging features such as haemorrhagic component, mainly solid mass, leptomeningeal dissemination and a higher T2 signal intensity inside the lesion suggest PMA (Table 1). These findings should alert the paediatric neuroradiologist to this specific diagnosis. Moreover, the neuropathologist should be alert to this hypothesis, to make the differential diagnosis actively, once the differences could be subtle.

LEARNING POINTS

1. Despite PMA affecting the corpus callosum is a rare entity, it should be remembered in the differential diagnosis of lesions in this location;
2. Haemorrhagic component, mainly solid mass, leptomeningeal dissemination and a higher T2 signal intensity inside the lesion suggest PMA;
3. The differential diagnosis is with vascular lesion or arteriovenous malformation.

CONSENT

Written informed consent for the case to be published (incl. images, case history and data) was obtained from the patient(s) for publication of this case report, including accompanying images.

REFERENCES

1. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 2007; 97–109.
2. Fuller GN, Scheithauer BW, The SBW. The 2007 Revised World Health Organization (WHO) Classification of Tumours of the Central Nervous System: newly codified entities. Brain Pathol 2007; 17: 304–7. doi: https://doi.org/10.1111/j.1750-3639.2007.00084.x
3. Komotar RJ, Mocco J, Carson BS, Sughrue ME, Zacharia BE, Sisti AC, et al. Pilomyxoid astrocytoma: a review. MedGenMed 2004; 6: 4.
4. Tihan T, Fisher FG, Kepner JL, Godfraind C, McComb RD, Goldthaite PT, et al. Pediatric astrocytomas with monomorphous pilomyxoid features and a less favorable outcome. J Neuropath Exp Neurol 1999; 58: 1061–8. doi: https://doi.org/10.1097/00005225-199910000-00004
5. Linscott LL, Osborn AG, Blaser S, Castello M, Hewlett RH, Wiestlalter N, et al. Pilomyxoid astrocytoma: expanding the imaging spectrum. AJNR Am J Neuroradiol 2008; 29: 1861–6. doi: https://doi.org/10.3174/ajnr.A1233
6. Skovrlj B, Pain M, Bederson JB, Fowkes M. Pilomyxoid astrocytoma of the cerebellar vermis in an elderly patient. Surg Neurol Int 2014; 5: 29. doi: https://doi.org/10.4103/2152-7806.127968
7. Hayashi T, Haba R, Kushida Y, Katsuki N, Shibuya S, Kadota K, et al. Pilomyxoid astrocytoma of the pineal region: cytopathological features and differential diagnostic considerations by intraoperative smear preparation. Diagn Cytopathol 2015; 43. doi: https://doi.org/10.1002/dc.23133
8. Wu L, Yang T, Yang C, Xu Y. Primary pilomyxoid astrocytoma of the thoracolumbar spinal cord in an adult. Neurou India 2013; 61: 677–9. doi: https://doi.org/10.4103/0028-3886.125376
9. Pereira FO, Lombardi IA, Mello AY, Romero FR, Ducati LG, Gabarra RC, et al. Pilomyxoid astrocytoma of the brainstem. Rare Tumors 2013; 5: 65–7. doi: https://doi.org/10.4081/et.2013.e17
10. Chonan M, Kanamori M, Kumiabe T, Saito R, Watanabe M, Tominaga T. Pilomyxoid astrocytoma of the cerebellum with Williams syndrome: a case report. Childs Nerv Syst 2013; 29. doi: https://doi.org/10.1007/s00381-013-2107-7
11. Edwards JR, Kulwin CG, Martin SE, Wilson S, Ho CY, Fulkerson DH. Temporal and optic pathway pilomyxoid astrocytoma mimicking dural-based lesion: case report and review of the literature. Pediatr Neurosurg 2012; 48: 253–7. doi: https://doi.org/10.1159/000345634
12. Komotar RJ, Mocco J, Zacharia BE, Wilson DA, Kim PY, Canoll PD, et al. Astrocytoma with pilomyxoid features presenting in an adult. Neuropathology 2006; 26: 89–93. doi: https://doi.org/10.1111/j.1440-1789.2006.00641.x
13. Lee YY, Van Tassel P, Bruner JM, Moser RP, Share JC. Juvenile pilocytic astrocytomas: CT and MR characteristics. AJR Am J Roentgenol 1989; 152: 1263–70. doi: https://doi.org/10.2214/ajr.152.6.1263
14. de Fatima Vasco Aragao M, Law M, Batista de Almeida D, Fatterpekar G, Delman B, Bader AS, et al. Comparison of perfusion, diffusion, and MR spectroscopy between low-grade enhancing pilocytic astrocytomas and high-grade astrocytomas. AJNR Am J Neuroradiol 2014; 35: 1495–502. doi: https://doi.org/10.3174/ajnr.A3905
15. Koeller KK, Rushing EJ. From the archives of the AFIP: pilocytic astrocytoma: radiologic-pathologic correlation. Radiographics 2004; 24: 1693–708. doi: https://doi.org/10.1148/rg.246045146
16. Nagashi M, Yokoe H, Hiroto J, Yoshimoto Y, Nakazato Y. Clinico-pathological feature of pilomyxoid astrocytomas: three case reports. Neuropathology 2011; 31: 152–7. doi: https://doi.org/10.1111/j.1440-1789.2010.01143.x
17. Al-Hussaini M, Swaidan M, Al-Jumaily U, Musharbash A. Central nervous system tumors in the first year of life: a clinical and pathologic experience from a single cancer center. Childs Nerv Syst 2013; 29: 1883–91. doi: https://doi.org/10.1007/s00381-013-2081-0