A PERCOLATION FORMULA

ODED SCHRAMM
Microsoft Research, One Microsoft Way, Redmond, WA 98074, USA
email: schramm@microsoft.com

submitted July 30, 2001 Final version accepted October 24, 2001

AMS 2000 Subject classification: 60K35, 30C35
SLE, Cardy, conformal invariance

Abstract
Let A be an arc on the boundary of the unit disk U. We prove an asymptotic formula for the
probability that there is a percolation cluster K for critical site percolation on the triangular
grid in U which intersects A and such that 0 is surrounded by $K \cup A$.

Motivated by questions of Langlands et al [LPSA94] and M. Aizenman, J. Cardy [Car92, Car]
derived a formula for the asymptotic probability for the existence of a crossing of a rectangle
by a critical percolation cluster. Recently, S. Smirnov [Sm1] proved Cardy’s formula and
established the conformal invariance of critical site percolation on the triangular grid. The
paper [LSW] has a generalization of Cardy’s formula. Another percolation formula, which is
still unproven, was derived by G. M. T. Watts [Wat96]. The current paper will state and
prove yet another such formula. A short discussion elaborating on the general context of these
results appears at the end of the paper.

Consider site percolation on the triangular lattice in \mathbb{C} with small mesh $\delta > 0$, where each
site is declared open with probability $1/2$, independently. (See [Gri89, Kes82] for background
on percolation.) It is convenient to represent a percolation configuration by coloring the
corresponding hexagonal faces of the dual grid; black for an open site, white for a closed site.
(The faces are taken to be topologically closed. Some edges are colored by both colors, but
that has no significance.) Let \mathcal{B} denote the union of the black hexagons, intersected with the
closed unit disk \overline{U}, and for $\theta \in (0, 2\pi)$ let $\mathcal{A} = \mathcal{A}(\theta)$ be the event that there is a connected
component K of \mathcal{B} which intersects the arc

$$A_\theta := \{ e^{i s} : s \in [0, \theta] \} \subset \partial U$$

and such that 0 is surrounded by $K \cup A_\theta$. The latter means that 0 is in a bounded component
of $\mathbb{C} \setminus (A_\theta \cup K)$ or $0 \in K$. Figure 1 shows the two distinct topological ways in which this could
happen.

Theorem 1.

$$\lim_{\delta \downarrow 0} \frac{1}{2} - \frac{\Gamma(2/3)}{\sqrt{\pi} \Gamma(1/6)} F_{2,1} \left(\frac{1}{2}, \frac{2}{3}, \frac{3}{2}; -\cot^2 \frac{\theta}{2}, \cot \frac{\theta}{2} \right) \cot \frac{\theta}{2}.$$
Here, $F_{2,1}$ is the hypergeometric function. See [EMOT53, Chap. 2] for background on hypergeometric functions.

There is a second interpretation of the Theorem. Let C_1 be the cluster of either black or white hexagons which contains 0. (If 0 is on the boundary of two clusters of different colors, let C_1 be the black cluster containing 0, say.) Let C_2 be the (unique) cluster which surrounds C_1 and is adjacent to it. Inductively, let C_{n+1} be the cluster surrounding and adjacent to C_n, and of the opposite color. Let m be the least integer such that C_m is not contained in U, and let C_0 be the component of $U \setminus C_m$ which surrounds 0. Let $X := 1$ if $C_0 \notin \partial U$, let $X := 0$ if $C_m \cap A_0 = \emptyset$, and otherwise set $X := 1/2$. Then \(\lim_{\delta \downarrow 0} E[X] = \lim_{\delta \downarrow 0} P[A] \). This is so because

\[A = \{ X = 1 \} \cup \{ X = 1/2 \text{ and } C_m \text{ is black} \} \cup \{ m = 1, X > 0 \text{ and } 0 \in \partial C_m \} , \]

and the probability that $m = 1$ goes to zero as $\delta \downarrow 0$ (since a.s. there is no infinite cluster).

Theorem 1 will be proved by utilizing the relation between the scaling limit of percolation and Stochastic Loewner evolution with parameter $\kappa = 6$ (a.k.a. SLE$_6$), which was conjectured in [Sch00] and proven by S. Smirnov [Smii].

We now very briefly review the definition and the relevant properties of chordal SLE. For a thorough treatment, see [RS]. Let $\kappa \geq 0$, let $B(t)$ be Brownian motion on \mathbb{R} starting from $B(0) = 0$, and set $W(t) = \sqrt{\kappa} B(t)$. For z in the upper half plane \mathbb{H} consider the time flow $g_t(z)$ given by

\[\partial_t g_t(z) = \frac{2}{g_t(z) - W(t)}, \quad g_0(z) = z. \quad (1) \]

Then $g_t(z)$ is well defined up to the first time $\tau = \tau(z)$ such that $\lim_{t \uparrow \tau} g_t(z) - W(t) = 0$. For all $t > 0$, the map g_t is a conformal map from the domain $H_t := \{ z \in \mathbb{H} : \tau(z) > t \}$ onto \mathbb{H}. The process $t \mapsto g_t$ is called Stochastic Loewner evolution with parameter κ, or SLE$_\kappa$.

In [RS] it was proven that at least for $\kappa \neq 8$ a.s. there is a uniquely defined continuous path $\gamma : [0, \infty) \to \mathbb{H}$ with $\gamma(0) = 0$, called the trace of the SLE, such that for every $t \geq 0$ the set H_t is equal to the unbounded component of $\mathbb{H} \setminus \gamma[0,t]$. In fact, a.s.

\[\forall t \geq 0, \quad \gamma(t) = \lim_{z \to W(t)} g_t^{-1}(z), \]
where \(z \) tends to \(W(t) \) from within \(\mathbb{H} \). Additionally, it was shown that \(\gamma \) is a.s. transient, namely \(\lim_{t \to \infty} |\gamma(t)| = \infty \), and that when \(\kappa \in (0, 8) \) we have for every \(z_0 \in \mathbb{H} \) that \(P[z_0 \in \gamma[0, \infty)] = 0 \).

It was also shown [RS] that \(\gamma \) is a simple path a.s. iff \(\kappa \leq 4 \). When \(\kappa > 4, \kappa \neq 8 \), although not a simple path, \(\gamma \) does not cross itself; that is, a.s. for every \(t_0 > 0 \) there is a continuous homotopy \(H : [0, 1] \times (t_0, \infty) \to \mathbb{H} \) such that \(H(0, t) = \gamma(t) \) and \(H((0, 1] \times (t_0, \infty)) \cap \gamma[0, t_0] = \emptyset \).

This property easily follows from the fact that \(\gamma(t_0, \infty) \) is the image of a continuous path in \(\mathbb{H} \) (which, by the way, has essentially the same law as \(\gamma \)) under the continuous extension of \(g_{t_0}^{-1} : \mathbb{H} \to \mathbb{H} \setminus [0, t_0] \), to \(\mathbb{H} \). (See, for example, [RS, Proposition 2.1(ii), Theorem 5.2].)

Fix some \(z_0 = x_0 + i y_0 \in \mathbb{H} \). Then we may ask if \(\gamma \) passes to the right or to the left of \(z_0 \), topologically. (Formally, this should be defined in terms of winding numbers, as follows. Let \(\beta_t \) be the path from \(\gamma(t) \) to 0 which follows the arc \(|\gamma(t)| \partial \mathbb{U} \) clockwise from \(\gamma(t) \) to \(|\gamma(t)| \) and then takes the straight line segment in \(\mathbb{R} \) to 0. Then \(\gamma \) passes to the left of \(z_0 \) if the winding number of \(\gamma[0, t] \cup \beta_t \) around \(z_0 \) is 1 for all large \(t \). As noted above, \(\gamma \) is a.s. transient, and therefore there is some random time \(t_0 \) such that the winding number is constant for \(t \in (t_0, \infty) \). This constant is either 0 or 1, since \(\gamma \) does not cross itself, as discussed above.) Theorem 1 will be established by applying the following with \(\kappa = 6 \):

Theorem 2. Let \(\kappa \in [0, 8) \), and let \(z_0 = x_0 + i y_0 \in \mathbb{H} \). Then the trace \(\gamma \) of chordal SLE\(\kappa \) satisfies

\[
P[\gamma \text{ passes to the left of } z_0] = \frac{1}{2} + \frac{\Gamma(4/\kappa)}{\sqrt{\pi} \Gamma(2 \kappa/\kappa)} \frac{x_0}{y_0} F_{x_0 y_0} \left(\frac{1}{2}, \frac{3}{2}, \frac{1}{2} - \frac{x_0^2}{y_0^2} \right).
\]

When \(\kappa = 2, 8/3, 4 \) and 8 the right hand side simplifies to \(1 + \frac{x_0 y_0}{\pi |z_0|^2} - \frac{\arg z_0}{\pi} \), \(1 + \frac{x_0}{2 |z_0|^2}, 1 - \frac{2 \arg z_0}{\pi} \), and \(1/2 \), respectively.

Let \(x_t := \text{Re} g_t(z_0) - W(t), y_t := \text{Im} g_t(z_0), \) and \(w_t := x_t/y_t \).

Lemma 3. Almost surely, \(\gamma \) is to the left of \(z_0 \) iff \(\lim_{t \uparrow \tau(z_0)} w_t = \infty \) and a.s. \(\gamma \) is to the right of \(z_0 \) iff \(\lim_{t \downarrow \tau(z_0)} w_t = -\infty \).

Proof. Suppose first that \(\kappa \in [0, 4] \). In that case, a.s. \(\gamma \) is a simple path and \(\tau(z_0) = \infty \), by [RS]. Given \(\gamma \), we start a planar Brownian motion \(B \) from \(z_0 \). Suppose that \(\gamma \) is to the left of \(z_0 \). This implies that \(B \) will first hit \(\mathbb{R} \cup \gamma[0, \infty) \) in \([0, \infty) \) or from the right hand side of \(\gamma \).

Since \(\gamma \) is transient, as \(t \uparrow \infty \) the probability that \(B \) first hits \(\gamma[0, t] \cup \mathbb{R} \) from the right hand side of \(\gamma \) or in \([0, \infty) \) tends to 1. By conformal invariance of harmonic measure, this means that the harmonic measure in \(\mathbb{H} \) of \(W(t, \infty) \) from \(g_t(z_0) \) tends to 1. Therefore, \(\lim_{t \uparrow \tau} w_t = \infty \).

The argument in the case where \(\gamma \) is to the right of \(z_0 \) is entirely similar. Since \(\gamma \) must be either to the left or to the right of \(z_0 \), this proves the lemma in the case \(\kappa \in [0, 4] \).

For \(\kappa \in (4, 8) \), the analysis is similar. The difference is that a.s. \(\gamma \) is not a simple path, \(\tau(z_0) < \infty \), and \(z_0 \) is in a bounded component of \(\mathbb{H} \setminus \gamma[0, \tau(z_0)] \) (see [RS]). Clearly, \(z_0 \) is not in a bounded component of \(\mathbb{H} \setminus \gamma[0, t] \) when \(t < \tau(z_0) \). Hence, at time \(\tau(z_0) \) the path \(\gamma \) closes a loop around \(z_0 \). Since \(\gamma \) does not cross itself, the issue then is whether this is a clockwise or counter-clockwise loop. As above, if the loop is clockwise, then as \(t \uparrow \tau(z_0) \) the harmonic measure from \(z_0 \) in \(\mathbb{R} \cup \gamma[0, t] \) is predominantly on \([0, \infty) \) and the right side of \(\gamma[0, t] \). This implies that \(w_t \uparrow \infty \). If the loop is counter-clockwise, we get \(w_t \downarrow -\infty \), by the same reasoning. This completes the proof.

\[\Box\]
Proof of Theorem 2. Writing (1) in terms of the real and imaginary parts gives,

\[dx_t = \frac{2}{x_t^2 + y_t^2} \, dx(t), \quad dy_t = -\frac{2}{x_t^2 + y_t^2} \, dy(t). \]

Itō’s formula then gives,

\[dw_t = -\frac{dW(t)}{y_t} + 4 \frac{w_t \, dt}{x_t^2 + y_t^2}. \] (2)

Make the time change

\[u(t) = \int_0^t \frac{dt}{y_t}, \]

and set

\[\tilde{W}(t) = \int_0^t \frac{dW(t)}{y_t}. \]

Note that \(\tilde{W}/\sqrt{\kappa} \) is Brownian motion as a function of \(u \). From (2), we now get

\[dw = -d\tilde{W} + \frac{4 \, w \, du}{w^2 + 1}. \] (3)

We got rid of \(x_t \) and \(y_t \), and are left with a single variable diffusion process \(w(u) \). (This is no mystery, but a simple consequence of scale invariance.) An immediate consequence of this and the lemma is that a.s. \(\lim_{t \to \tau(z_0)} u = \infty \), because the diffusion (3) a.s. does not hit \(\pm \infty \) in finite time. It is clear that \(u(t) < \infty \) when \(t < \tau(z_0) \), because \(y_t \) is monotone decreasing and positive for \(t \in [0, \tau(z_0)] \).

Given a starting point \(\dot{w} \in \mathbb{R} \) for the diffusion (3), and given \(a, b \in \mathbb{R} \) with \(a < \dot{w} < b \), we are interested in the probability \(h(\dot{w}) = h_{a,b}(\dot{w}) \) that \(w \) will hit \(b \) before hitting \(a \). Note that \(h(w(u)) \) is a local martingale. Therefore, assuming for the moment that \(h \) is smooth, by Itō’s formula, \(h \) satisfies

\[\frac{\kappa}{2} h''(w) + \frac{4 \, w}{w^2 + 1} h'(w) = 0, \quad h(a) = 0, \quad h(b) = 1. \]

By the maximum principle, these equations have a unique solution, and therefore we find that

\[h(w) = \frac{f(w) - f(a)}{f(b) - f(a)}, \] (4)

where

\[f(w) := F_{2,1}(1/2, 4/\kappa, 3/2, -w^2) \, w. \]

We may now dispose of the assumption that \(h \) is smooth, because Itō’s formula implies that the right hand side in (4) is a martingale, and it easily follows that it must equal \(h \). By [EMOT53, 2.10.(3)] and our assumption \(\kappa < 8 \) it follows that

\[\lim_{w \to -\infty} f(w) = \pm \frac{\sqrt{\pi} \Gamma((8 - \kappa)/(2\kappa))}{2 \Gamma(4/\kappa)}. \] (5)

In particular, the limit is finite, which shows that \(\lim_{w \to -\infty} h_{a,b}(w) > 0 \) for all \(w > a \). Hence, the diffusion process (3) is transient. Moreover,

\[P \left[\lim_{u \to -\infty} w(u) = +\infty \right] = \frac{f(\dot{w}) - f(-\infty)}{f(\infty) - f(-\infty)}. \]

An appeal to the lemma now completes the proof. \(\square \)
Proof of Theorem 1. As above, let \mathcal{B} be the intersection of the union of the black hexagons with \overline{U}, and let \mathfrak{B} be the union of \mathcal{B} and the set $S := \{ re^{is} : r \geq 1, s \in [0, \theta] \}$. Let β be the intersection of \overline{U} with the outer boundary of the connected component of \mathfrak{B} containing S. Then β is a path in \overline{U} from 1 to $e^{i\theta}$. It is immediate that the event \mathcal{A} is equivalent to the event that 0 appears to the right of the path β; that is, that the winding number of the concatenation of β with the arc A_θ with the clockwise orientation around 0 is 1.

S. Smirnov [Smi1] has shown that as $\delta \downarrow 0$ the law of β tends weakly to the law of the image of the chordal SLE$_6$ trace γ under any fixed conformal map $\phi : \mathbb{H} \to \overline{U}$ satisfying $\phi(0) = 1$ and $\phi(\infty) = e^{i\theta}$. (See also [Smi2].) We may take

$$\phi(z) = e^{i\theta} \frac{z + \cot \frac{\theta}{2} - i}{z + \cot \frac{\theta}{2} + i}.$$

The theorem now follows by setting $\kappa = 6$ in Theorem 2.

Discussion. According to J. Cardy (private communication, 2001), presently, the conformal field theory methods used by him to derive his formula do not seem to supply even a heuristic derivation of Theorem 1. On the other hand, it seems that, in principle, probabilities for “reasonable” events involving critical percolation can be expressed as solutions of boundary-value PDE problems, via SLE$_6$. But this is not always easy. In particular, it would be nice to obtain a proof of Watts’ formula [Wat96]. The event \mathcal{A} studied here was chosen because the corresponding proof is particularly simple, and because the PDE can be solved explicitly.

Acknowledgements. I am grateful to Itai Benjamini and to Wendelin Werner for useful comments on an earlier version of this manuscript.

References

[Car92] John L. Cardy. Critical percolation in finite geometries. J. Phys. A, 25(4):L201–L206, 1992.

[Car] John L. Cardy. Conformal Invariance and Percolation, arXiv:math-ph/0103018.

[EMOT53] Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger, and Francesco G. Tricomi. Higher transcendental functions. Vol. I. McGraw-Hill Book Company, Inc., New York-Toronto-London, 1953. Based, in part, on notes left by Harry Bateman.

[Gri89] Geoffrey Grimmett. Percolation. Springer-Verlag, New York, 1989.

[Kes82] Harry Kesten. Percolation theory for mathematicians. Birkhäuser Boston, Mass., 1982.

[LPSA94] Robert Langlands, Philippe Pouliot, and Yvan Saint-Aubin. Conformal invariance in two-dimensional percolation. Bull. Amer. Math. Soc. (N.S.), 30(1):1–61, 1994.

[LSW] Gregory F. Lawler, Oded Schramm, and Wendelin Werner. Values of Brownian intersection exponents I: Half-plane exponents. Acta Math., to appear. arXiv:math.PR/9911084.
[RS] Steffen Rohde and Oded Schramm. Basic properties of SLE, arXiv:math.PR/0106036.

[Sch00] Oded Schramm. Scaling limits of loop-erased random walks and uniform spanning trees. *Israel J. Math.*, 118:221–288, 2000.

[Smi1] Stanislav Smirnov. Critical percolation in the plane. I. Conformal invariance and Cardy’s formula. II. Continuum scaling limit. Preprint.

[Smi2] Stanislav Smirnov. In preparation.

[Wat96] G. M. T. Watts. A crossing probability for critical percolation in two dimensions. *J. Phys. A*, 29(14):L363–L368, 1996.