Conceptual Design of Tactical Solar Power UAV

W Jiajan, J Kampoon*, J Klongtrujrok, and I Yuthayanon

Department of Aeronautical Engineering Navaminda Kasatriyadhiraj Royal Air Force Academy, 171/1 Phaholyothin Rd, Saimai District, 10220, Bangkok, Thailand

*Corresponding author: janewit_kamp@rtaf.mi.th, +66-2-534-8057, +66-2-534-8057

Abstract. The purpose of this research is to study and design a concept of the tactical solar power UAV. The mission requirements derived from military applications: Intelligence, Surveillance, and Reconnaissance (ISR) which including a longer operation time (8 hours), 350-1000 meters service ceiling, and less than 5 kg for take-off weight. This paper, a conceptual design of solar power UAV mainly based on Notth’s methodology. A simple program coding created for sizing solar power UAV by using Scilab. In addition, the vortex lattice method (XFLR5 program) also employed to evaluate the basic aerodynamic characteristics for three different low-Reynolds number airfoils. The wing incident angle was then designed. From the conceptual design results, the coding indicated that the solar power UAV is the conventional type of aircraft, which is provided 4 meters in wing span (Aspect ratio 13), 3.88 kg for take-off weight, and 69.13% for solar area to wing area ratio.

1. Introduction
The Royal Thai Air Force (RTAF) is responsible for the preparation of its capabilities to defend the kingdom using the air operations and the operations related to those capabilities. RTAF aims at being one of the best air forces in ASEAN by 2020. In addition, the policy of RTAF commander-in-chief year 2016-2018, particularly in the intelligence aspect focused on the enhancements of intelligence, surveillance and reconnaissance (ISR) mission. It is obvious that UAV is the useful platform for the ISR military operations. Currently, there are some problems about RTAF’s UAV. Firstly, most RTAF’s tactical UAV have limited endurance because of using power solely from battery. Secondly, the high frequency of take-off and landing affect the life cycle period of the avionics and payload that result in high risk to damage of those payload. Lastly, to participate in the global warming concern, which help reducing the amount of CO₂ emission to the atmosphere.

To date there are several approaches to have UAV stay flying theirs mission in the sky as long as possible like aerial refueling [1-3], energy gaining from environment by using efficient maneuvering [4-5], air launch [6] and alternative energy such as solar cell [7-11], fuel cell [12] etc.. Each approach has their own strength and weakness depend on mission requirements and figure of merit. However, for tactical UAV the exploitation of solar power is the most efficient approach.

Therefore, this paper proposes the conceptual design of the solar power UAV for tactical mission in order to enhance the endurance. The mission requirements derived from military applications specific to ISR mission which including a longer operation time, i.e. greater than 8 hours, 350-1000 meters service ceiling, and less than 5 kg for take-off weight.
The rest of this paper organized as follow, the first section explains the mission requirement and conceptual design methodology. The next section deals with airfoil selection. After that, initial sizing of wing and tail is described. Finally, conclusions are drawn for further studies.

2. Solar Power UAV

The configuration of the solar power UAV is indifference to battery powered UAV in terms of aerodynamics efficiency, which is dependent on the mission requirements and the design criterion. The only different is the propulsion system, i.e. the photovoltaic cell or solar cell are placed on the upper surface of wing, fuselage or empennage to harvest the energy from sun ray and convert to electrical energy during the day. The obtained electrical energy supply to the motor-propeller, the onboard electronic and the excess energy charge to battery. The first solar power UAV, Sunrise I with 3.2 m wingspan, soared in the sky on 1974 [13]. Since then, there are several successes in design and development of the solar power UAV [14-18].

2.1. Mission Requirements

The mission requirement is the important input that drives the conceptual design phase in order to come up with the fundamental 3-D drawing of the UAV. This paper focuses on ISR, which generally refers to continuous monitoring target by using imagery obtained from camera payload [18]. The mission profile of the tactical solar power UAV illustrated in figure 1. This UAV is hand launched to take-off, then climb to cruise altitude, then loitering over target area performing ISR, then cruising back to base, after that descending and net landing, respectively. It is obvious that the tactical solar power UAV spent most of the time in cruising and loitering flight phase, which is steady and level flight.

The list of performance requirements are as the followings,

1. Take-off weight less than or equal to 5 kg
2. Camera payload weight 0.17 kg
3. Wingspan greater than or equal to 4 m
4. Operating altitude 300 – 1,000 m
5. Endurance greater than or equal to 8 hours
6. Cruise speed range between 8-9 m/s
7. Stall speed 6 m/s

![Figure 1 The Mission Profile of the tactical Solar Power UAV](image)

2.2. Conceptual Design of Tactical Solar Power UAV

The principles of the UAV design are similar to the principles developed for the design of manned aircraft. The design process is divided into three phases, i.e. the conceptual design, the preliminary design and the detail design. Each phase has different inputs, calculations and outputs in systematic method [19]. The size of UAV varies according to the required mission and theirs performance as well. However, the conceptual design of the solar power UAV has many aspects different from traditional conceptual design methods [20-21]. There are two approaches in the conceptual design.
method [17], which are the iterative approach and the analytical approach. This paper used
the analytical approach because of the ease of implementation and the proof of successful flight of Sky-
Sailor. This method relies on the analytical equations describing the characteristics of each component
on board UAV, i.e. Maximum Power Point Tracker (MPPT), motor-propeller, solar cell etc. and 2
balance equations that is to say, mass balance and energy balance as shown in figure 2. The total take-
off weight of the UAV is the sum of the mass of each component on board, e.g. payload, structure,
propulsive unit, solar cell, MPPT, battery. Once the total take-off weight is obtained, the aerodynamic
lift and drag can be estimated. These aerodynamic forces then converted to power required for steady
and level flight. This amount of mechanical energy is then balance by the electrical energy required
for daily operation time, which come from solar panel.

Figure 2 The Mass balance and Energy balance [17]

As mention in section 2.1, the tactical solar power UAV mostly fly in steady and level flight, such
that lift force need to balance the total weight of the UAV in order to fly at constant altitude and drag
force need to balance the thrust from electric motor and propeller in order to fly at constant airspeed.
In addition, the electrical energy consumption needs to balance by the solar energy obtained from the
solar panel. Therefore, the amount of solar energy must be greater than the electrical energy required
to fly steady and level flight, moreover safely complete the mission. Figure 3 show the schematic
diagram of the analytical conceptual design methodology in details. This diagram illustrated the
mathematical calculation as a loop to solve for realistic solar power UAV’s configuration in terms of
wing aspect ratio (AR), wingspan (b) , and mass (m), given a complete list of all the parameters shown
in the table A1 - A2 in the appendix.

Figure 3 The analytical conceptual design methodology of the solar power UAV [17]
The conceptual design methodology explained in section 2.1 originally coded in MATLAB. This paper, the design algorithm is converted and written in Scilab, which is comparable to MATLAB and freeware under GNU license.

2.3. AERO Sun Surfer Design

The AERO Sun Surfer, tactical solar power UAV, was designed based on the mission and performance requirements in section 2.1 and the methodology in section 2.2. This prototype aircraft is required to fly at least 8 hours in scattered cloud sky condition. The payload for ISR mission is EO/IR camera, which weighs 170 g and consumes power 1.5 W.

The possible configurations of the UAV represent by, i.e. wingspan, aspect ratio, speed, power and the percentage of wing area required to install the solar cell. The results show in figure 4-5. Figure 4 (a) shows the possible wingspan versus total mass of the solar power UAV. Figure 4 (b) shows the magnifying version of figure 4 (a) for more details, notice that this graph focuses on the 4 m wingspan because UAV of this size is suitable for hand launch take-off. The corresponding total mass of 4 m wingspan is 3.88 kg for aspect ratio 13. Notice also that, the increasing aspect ratio results in the higher total mass of the UAV.

![Figure 4](image)

Figure 4 The possible solar power UAV’s wingspan versus total mass with variation of aspect ratio

The results in figure 5 show various important design variables versus wingspan and corresponding to aspect ratio. Figure 5 (a) shows UAV’s speeds vary with wingspan for a given aspect ratio and the ‘x’ mark denotes the minimum UAV’s speed. Figure 5 (b) shows wing areas vary with wingspan for a given aspect ratio. Figure 5 (c) shows the mechanical power generated by propeller, varying with wingspan for a given aspect ratio and figure 5 (d) shows the percentage of wing area need to install solar cell, varying with wingspan for a given aspect ratio.

From the various candidates, the considerations and figure of merits were trade-off, i.e. mobility, manufacturing cost. Finally, the AERO Sun Surfer conceptual prototype has the total mass 3.88 kg. The wingspan equal to 4 m with aspect ratio equal to 13 with cruise speed equal to 8.144 m/s, wing area equal to 1.231 m², required 69.13% of wing area to install solar cells in order to fly steady and level flight, and the corresponding power from propeller is 14.14 W.
Figure 5 The possible solar power UAV’s speed, wing area, propeller power, and area required for solar cell versus wingspan for a given aspect ratio

3. Airfoil Selection
Recall that the mission requirement for the tactical solar power UAV is to fly ISR mission for at least 8 hours. The conceptual design configuration obtained from section 2.3 is then passing to the preliminary design phase. To make this UAV soar to the sky, the wing is the main contributor component, therefore this section explains some detail of airfoil selection for the tactical solar power UAV. Recall also that this UAV spend time mostly in cruising and loitering, this conceptual configuration design to cruise at slow speed. This is the main reason of selecting 3 low Reynolds number airfoil, i.e. S1223, SG6043, and SD7032 to perform aerodynamic characteristics analysis with XFLR5 program. The basic aerodynamic required compose of i) lift coefficient, ii) drag coefficient, and iii) pitching moment coefficient versus angle of attack. The airfoil sections show in figure 6, where figure 6 (a) - (c) are the cross section contour of S1223, SG6043, and SD7032 respectively. The analyses consider the low speed flow where the Reynolds number equal to 250,000.

Figure 6 The low Reynolds number airfoil section contour of S1223, SG6043, and SD7032
The basic aerodynamic characteristics of S1223, SG6043, and SD7032 airfoil

The results show in figure 7 (a) - (d). Figure 7 (a) shows the comparison of lift coefficient vary with respect to the angle of attack from -5 degree to 18 degree among these three. It is obvious that S1223 airfoil gives the maximum lift coefficient at angle of attack 14 degree, which is equal to 2.25. SG6043 airfoil is the runner up and gives the maximum lift coefficient at angle of attack 16 degree, which is equal to 1.6. SD7032 airfoil is the third, which gives the maximum lift coefficient equal to 1.4 at the angle of attack 14 degree. Figure 7 (b) shows the comparison of drag polar or the plot showing between lift and drag coefficient of these airfoils. Notice the fact that, despite the highest lift coefficient of S1223 airfoil nonetheless drag coefficient is also the highest, which is the lowest aerodynamic efficiency among the threes. SD7032 and SG6043 have lift coefficient range from 0.6 – 1.0 and 0.7 – 1.3 in cruising condition, however SD7032 has lower drag coefficient range from 0.01 – 0.13 compare to 0.013 – 0.014 of SG6043 corresponding to the cruising condition. Figure 7 (c) shows the lift-to-drag ratio or aerodynamic efficiency of airfoil shape. It reveals that at the design point, where lift coefficient equal to 0.8, SD7032 airfoil gives the highest lift-to-drag ratio, 82 for this case and 78 for SG6043 airfoil. Figure 7 (d) shows the comparison of pitching moment coefficient vary with respect to the angle of attack of three airfoils. It can be noticed that SD7032 has the lowest negative pitching moment during linear operating spectrum among the threes, which means this airfoil has the least nose down moments. The results show that SG6043 airfoil is the suitable airfoil to be selected for utilizing as wing section of the tactical solar power UAV because of having wider range of lift coefficient, while drag coefficient is almost constant corresponding to this range of lift.
4. Initial Wing and Tail Sizing

In order to design the wing for solar power UAV, the important consideration is the shape and area for installing solar cell on the upper surface of the wing. There are many possible wing planform configurations, however the straight wing planform seem to be the simplest configuration for calculation and installing solar cell. Therefore, the straight wing with aspect ratio equal to 13 and wingspan of 4 m is considered as starting candidate for initial wing sizing. This section explains the initial wing and tail sizing by using XFLR5.

Given wingspan, aspect ratio, and wing area therefore the chord can be calculated. All these design parameters need to be input in the XFLR5 to estimate the basic aerodynamic characteristics and wing incidence angle at design point. Recalls that the initial lift coefficient in conceptual design phase is assume to be 0.8. Having define the vortex lattice method for Reynolds number 250,000 and varying angle of attack from -5 to 15 degree, the results showed that at angle of attack equal to 2 degree gives lift coefficient equal to 0.808 and drag coefficient equal to 0.017. Therefore, the wing incidence angle is set to 2 degree. Figure 8 shows the physical of the wing and the results from XFLR5.

![Figure 8](image.png)

Figure 8 The basic aerodynamic characteristics of the straight wing with SG6043 airfoil

Generally, the conventional aircraft configuration is unstable without having empennage or tail. The tail is the most important component to make the whole aircraft stable or flyable. However, there are several tail configurations, i.e. T-tail, Y-tail, V-tail, H-tail etc., to be selected for the UAV. The consideration is based on the mission and performance requirements. This paper chose T-tail configuration because of two reasons, the one is this type of empennage avoiding the effect of downwash of airflow downstream from the wing. The other is the horizontal stabilizer, which is placed on top of the vertical stabilizer, expose the whole area to the sun, and hence give some extra area for solar cell installation. However, the higher weight is the penalty of this type of empennage. This point should be taken into consideration in the design review phase. As mention above, the empennage is the most important component to yield the stability of UAV. However, it will be given more details analysis in the preliminary design phase paper, particularly, in stability and control analysis of this UAV. Therefore, the first layout of the conceptual design phase of the tactical solar power UAV is shown in Figure 9. This prototype named AERO Sun Surfer. It was designed to have the conventional configuration, where the wing is the straight wing and is the top wing with 4 m span and 0.3 m chord length. The whole wing area is 1.231 m², which 69.13% of this area is occupied by solar cell. The solar cell efficiency is 22%, which is a flexible mono crystalline type. This type of solar cell is not expensive; therefore, it is suitable for academic research project. It has T-tail shape empennage. Table 1 shows basic data of the AERO Sun Surfer UAV.
Figure 9 The conceptual layout of the AERO Sun Surfer UAV 3-D drawings

Table 1 The Basic data of AERO Sun Surfer UAV.

Main Geometric Data	AERO Sun Surfer
Wingspan	4.00 (m)
Wing Chord	0.30 (m)
Wing Area	1.23 (m²)
Solar Area	0.85 (m²)

Conclusions
This work presented the conceptual design of AERO Sun Surfer, the tactical solar power UAV, which has longer endurance to complete ISR mission and to enhance the performance of RTAF’s existing tactical UAV. The conceptual design utilized Noth’s methodology. This methodology has been proven for several successful flight of solar power UAV range from small to large scale UAV. However, the further step is to move all efforts to preliminary design phase where each part of UAV will be closely look into more details.

Acknowledges
This work was supported by the Aeronautical Engineering Department, Navaminda Kasatriyadhiraj Royal Air Force Academy.
Appendix

Table A1 The Variable of AERO Sun Surfer UAV.

Variable	Value	Description
AR	13	Aspect ratio
b	4	[m] Wing span
m	3.88	[kg] Total mass

Table A2 The Parameter of AERO Sun Surfer UAV (constant)

Parameter	Value	Description
C_L	0.8	Airfoil lift coefficient
C_Dafl	0.0013	Airfoil drag coefficient
C_Dpar	0.006	Parasitic drag coefficient
e	0.9	Oswald’s efficiency factor
I_max	650	Maximum irradiance
k_sat	190.3600 [J/kg]	Energy density of lithium-ion
k_sc	0.32	[kg/m^3] Mass density of solar cells
k_enc	0.26	[kg/m^3] Mass density of encapsulation
k_mppt	0.00042	[kg/W] Mass to power ratio of MPPT
k_prop	0.008	[kg/W] Mass to power ratio of propeller group
k_raf	0.44/9.81	[kg/m^3] Structural mass constant
m_av	0.85	[kg] Mass of autopilot system
η_bec	0.65	Efficiency of step-down converter
η_sc	0.222	Efficiency of solar cells
η_cbr	0.90	Efficiency of the curved solar panels
η_chrg	0.95	Efficiency of battery charge
η_crl	0.95	Efficiency of motor controller
η_dchrg	0.95	Efficiency of battery discharge
η_grb	0.97	Efficiency of gearbox
η_mot	0.85	Efficiency of motor
η_mppt	0.97	Efficiency of MPPT
η_prop	0.85	Efficiency of propeller
P_av	1.5 [W]	Power of autopilot system
x1	3.1	Airframe mass wingspan exponent
x2	- 0.25	Airframe mass aspect ratio exponent
m_pld	0.17	[kg] Payload mass
η_wthr	0.7	Irradiance margin factor
P_pld	9 [W]	Payload power consumption
T_reserve	2*3600 [s]	Reserve time
T_day	8*3600 [s]	Day duration (Operation time)
Rho	1.1655 [kg/m^3]	Air density (500 m)
References

[1] Katz J 2017 J. Aircraft 54 2311-2316.
[2] Kamponn J and Dogan A 2010 Guidance of Receiver Aircraft to Rendezvous with Tanker in The presence of Wind, AIAA Guidance, Navigation, and Control Conference, August, Toronto, Ontario, Canada.
[3] Blake W, Dickes E and Ginras D 2004 UAV Aerial Refueling – Wind Tunnel Results and Comparison with Analytical Predictions, AIAA Atmospheric Flight Mechanics Conference and Exhibit, August, Providence, Rhode Island.
[4] Bonnin V and Toomer C 2013 Energy-Harvesting Mechanisms for UAV Flight by Dynamic Soaring, AIAA Atmospheric Flight Mechanics Conference, August, Boston, Massachusetts.
[5] Makovkin D and Langelaan J 2014 Optimal Persistent Surveillance using Coordinated Soaring, AIAA Guidance, Navigation, and Control Conference, January, National Harbor, Maryland.
[6] Berend N, Bourgaie M, Defoort S, Hermetz J and Tallec C 2006 Innovative Air-Launch System using a Multirole UAV, 57th International Astronautical Congress, October, Valencia, Spain.
[7] Hosseini S and Mesbahi M 2016 J. Guidance Control and Dynamics 39 1980 – 1993.
[8] Guo Z, Chen X, Hou Z and Guo J 2011 Development of a Solar Electric Powered UAV for Long Endurance Flight, 11th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference, September, Virginia Beach, Virginia.
[9] Maleki M 2011 Conceptual Design Method for Solar Powered Aircrafts, 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, January, Orlando, Florida.
[10] Stern T, Steele K, Yang L and Kruse M 2018 High Efficiency Wing Integrated Solar Arrays for UAV Applications, AIAA Propulsion and Energy Forum, Joint Propulsion Conference, Cincinnati, Ohio.
[11] Hartney JC 2012 Conceptual Design of a Model Solar-Power Unmanned Aerial Vehicle, 50th AIAA Aerospace Science Meeting including the New Horizons Forum and Aerospace Exposition, January, Nashville, Tennessee.
[12] Ofoma U and Wu C 2004 Design of a Fuel Cell Powered UAV for Environmental Research, AIAA 3rd Unmanned Unlimited Technical Conference, Workshop and Exhibit, September, Chicago, Illinois.
[13] Rosales J, Derra M, Guierrez L, Kreutz K, Rodriquez A, Sagarnaga L and Gross A 2017 Low-Cost High-Endurance Solar-Powered Unmanned Aerial Vehicle, 35th AIAA Applied Aerodynamics Conference, June, Denver, Colorado.
[14] Malaver AJR., Gonzalez LF, Motta N and Villa TF 2015 Design and Flight Testing of an Integrated Solar Powered UAV and WSN for Remote Gas Sensing. In IEEE Aerospace Conference.
[15] Morton S, D'Sa R, and Papanikolopoulos N 2015 Solar Powered UAV: Design and Experiments. In IEEE International Conference on Intelligent Robots and Systems (IROS).
[16] Oettershagen P 2017 High-Fidelity Solar Power Income Modeling for Solar-Electric UAVs: Development and Flight Test Based Verification. ETH Zurich.
[17] Noth A 2008 Design of Solar Powered Airplanes for Continuous Flight (Doctoral dissertation, ETH Zurich).
[18] Jay Gundlach. Designing Unmanned Aircraft Systems A Comprehensive Approach. American Institute of Aeronautics and Astronautics, Inc., Virginia, VA, 2014.
[19] Sadraey, M., A systems Engineering Approach to Unmanned Aerial Vehicle Design, 10th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference., September (2010), Fort Worth, Texas.
[20] Daniel P. Raymer. Aircraft Design: A Conceptual Approach. American Institute of Aeronautics and Astronautics, Inc., Virginia, VA, 2006.
[21] Jan Roskam. Aircraft Design DAR Corporation, Lawrence, Kansas, 2000.