LINEARITY DEFECTS OF FACE RINGS

RYOTA OKAZAKI AND KOHJI YANAGAWA

Dedicated to Professor Jürgen Herzog on his 65th birthday

Abstract. Let \(S = K[x_1, \ldots, x_n] \) be a polynomial ring over a field \(K \), and \(E = \wedge \langle y_1, \ldots, y_n \rangle \) an exterior algebra. The linearity defect \(\text{ld}_E(N) \) of a finitely generated graded \(E \)-module \(N \) measures how far \(N \) departs from “componentwise linear”. It is known that \(\text{ld}_E(N) < \infty \) for all \(N \). But the value can be arbitrary large, while the similar invariant \(\text{ld}_S(M) \) for an \(S \)-module \(M \) is always at most \(n \). We will show that if \(I \) \(\Delta \) (resp. \(J \) \(\Delta \)) is the squarefree monomial ideal of \(S \) (resp. \(E \)) corresponding to a simplicial complex \(\Delta \subset \{1, \ldots, n\} \), then \(\text{ld}_E(E/J_\Delta) = \text{ld}_S(S/I_\Delta) \). Moreover, except some extremal cases, \(\text{ld}_E(E/J_\Delta) \) is a topological invariant of the geometric realization \(|\Delta^\vee| \) of the Alexander dual \(\Delta^\vee \) of \(\Delta \). We also show that, when \(n \geq 4 \), \(\text{ld}_E(E/J_\Delta) = n - 2 \) (this is the largest possible value) if and only if \(\Delta \) is an \(n \)-gon.

1. Introduction

Let \(A = \bigoplus_{i \in \mathbb{N}} A_i \) be a graded (not necessarily commutative) noetherian algebra over a field \(K \). Let \(M \) be a finitely generated graded left \(A \)-module, and \(P_* \) its minimal free resolution. Eisenbud et al. [4] defined the linear part \(\text{lin}(P_*) \) of \(P_* \), which is the complex obtained by erasing all terms of degree \(\geq 2 \) from the matrices representing the differential maps of \(P_* \) (hence \(\text{lin}(P_*)_i = P_i \) for all \(i \)). Following Herzog and Iyengar [7], we call \(\text{ld}_A(M) = \sup \{ i \mid H_i(\text{lin}(P_*)) \neq 0 \} \) the linearity defect of \(M \). This invariant and related concepts have been studied by several authors (e.g., [4, 7, 10, 13, 20]). We say a finitely generated graded \(A \)-module \(M \) is componentwise linear (or, (weakly) Koszul in some literature) if \(M_{(i)} \) has a linear free resolution for all \(i \). Here \(M_{(i)} \) is the submodule of \(M \) generated by its degree \(i \) part \(M_i \). Then we have

\[
\text{ld}_A(M) = \min \{ i \mid \text{the } i^{th} \text{ syzygy of } M \text{ is componentwise linear} \}.
\]

For this invariant, a remarkable result holds over an exterior algebra \(E = \wedge \langle y_1, \ldots, y_n \rangle \). In [4 Theorem 3.1], Eisenbud et al. showed that any finitely generated graded \(E \)-module \(N \) satisfies \(\text{ld}_E(N) < \infty \) while \(\text{proj. dim}_E(N) = \infty \) in most cases. (We also remark that Martinez-Villa and Zacharia [10] proved the same result for many selfinjective Koszul algebras). If \(n \geq 2 \), then we have \(\sup \{ \text{ld}_E(N) \mid N \text{ a finitely generated graded } E \text{-module} \} = \infty \). But Herzog and Römer proved that if \(J \subset E \) is a monomial ideal then \(\text{ld}_E(E/J) \leq n - 1 \) (c.f. [13]).

Key words and phrases. Stanley-Reisner ring, exterior face ring, linearity defect, weakly Koszul module, componentwise linear, sequentially Cohen-Macaulay, squarefree module.
A monomial ideal of $E = \bigwedge \langle y_1, \ldots, y_n \rangle$ is always of the form $J_\Delta := (\prod_{i \in F} y_i \mid F \not\in \Delta)$ for a simplicial complex $\Delta \subset 2^{\{1, \ldots, n\}}$. Similarly, we have the Stanley-Reisner ideal $I_\Delta := (\prod_{i \in F} x_i \mid F \not\in \Delta)$ of a polynomial ring $S = K[x_1, \ldots, x_n]$. In this paper, we will show the following.

Theorem 1.1. With the above notation, we have $\text{ld}_E(E/J_\Delta) = \text{ld}_S(S/I_\Delta)$. Moreover, if $\text{ld}_E(E/J_\Delta) > 0$ (equivalently, $\Delta \neq 2^T$ for any $T \subset [n]$), then $\text{ld}_E(E/J_\Delta)$ is a topological invariant of the geometric realization $|\Delta^\vee|$ of the Alexander dual Δ^\vee.

(But $\text{ld}(E/J_\Delta)$ may depend on char(K).)

By virtue of the above theorem, we can put $\text{ld}(\Delta) := \text{ld}_E(E/J_\Delta) = \text{ld}_S(S/I_\Delta)$. If we set $d := \min\{ i \mid [J_i] \neq 0 \} = \min\{ i \mid [J_i] \neq 0 \}$, then $\text{ld}(\Delta) \leq \max\{1, n - d\}$. But, if $d = 1$ (i.e., $\{i\} \not\in \Delta$ for some $1 \leq i \leq n$), then $\text{ld}(\Delta) \leq \max\{1, n - 3\}$. Hence, if $n \geq 3$, we have $\text{ld}(\Delta) \leq n - 2$ for all Δ.

Theorem 1.2. Assume that $n \geq 4$. Then $\text{ld}(\Delta) = n - 2$ if and only if Δ is an n-gon.

While we treat S and E in most part of the paper, some results on S can be generalized to a normal semigroup ring, and this generalization makes the topological meaning of $\text{ld}(\Delta)$ clear. So §2 concerns a normal semigroup ring. But, in this case, we use an irreducible resolution (something analogous to an injective resolution), not a projective resolution.

2. **LINEARITY DEFECTS FOR IRREDUCIBLE RESOLUTIONS**

Let $C \subset \mathbb{Z}^n \subset \mathbb{R}^n$ be an affine semigroup (i.e., C is a finitely generated additive submonoid of \mathbb{Z}^n), and $R := K[\mathbf{x}^c \mid c \in C] \subset K[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]$ the semigroup ring of C over the field K. Here \mathbf{x}^c for $c = (c_1, \ldots, c_n) \in C$ denotes the monomial $\prod_{i=1}^n x_i^{c_i}$. Let $P := \mathbb{R}_{\geq 0}C \subset \mathbb{R}^n$ be the polyhedral cone spanned by C. We always assume that $ZC = \mathbb{Z}^n$, $\mathbb{Z}^n \cap P = C$ and $C \cap (-C) = \{0\}$. Thus R is a normal Cohen-Macaulay integral domain of dimension n with a maximal ideal $m := (\mathbf{x}^c \mid 0 \neq c \in C)$.

Clearly, $R = \bigoplus_{c \in C} K\mathbf{x}^c$ is a \mathbb{Z}^n-graded ring. We say a \mathbb{Z}^n-graded ideal of R is a monomial ideal. Let $\text{mod}^* R$ be the category of finitely generated \mathbb{Z}^n-graded R-modules and degree preserving R-homomorphisms. As usual, for $M \in \text{mod}^* R$ and $a \in \mathbb{Z}^n$, M_a denotes the degree a component of M, and $M(a)$ denotes the shifted module of M with $M(a)_b = M_{a+b}$.

Let \textbf{L} be the set of non-empty faces of the polyhedral cone P. Note that $\{0\}$ and P itself belong to \textbf{L}. For $F \in \textbf{L}$, $P_F := (\mathbf{x}^c \mid c \in C \setminus F)$ is a prime ideal of R. Conversely, any monomial prime ideal is of the form P_F for some $F \in \textbf{L}$. Note that $P_{\{0\}} = m$ and $P_{\emptyset} = (0)$. Set $K[F] := R/P_F \cong K[\mathbf{x}^c \mid c \in C \cap F]$ for $F \in \textbf{L}$. The Krull dimension of $K[F]$ equals the dimension $\dim F$ of the polyhedral cone F.

For a point $u \in P$, we always have a unique face $F \in \textbf{L}$ whose relative interior contains u. Here we denote $s(u) = F$.

Definition 2.1 ([17]). We say a module $M \in \text{mod}^* R$ is squarefree, if it is C-graded (i.e., $M_a = 0$ for all $a \not\in C$), and the multiplication map $M_a \ni y \mapsto \mathbf{x}^b y \in M_{a+b}$ is bijective for all $a, b \in C$ with $s(a + b) = s(a)$.

For a monomial ideal \(I \), \(R/I \) is a squarefree \(R \)-module if and only if \(I \) is a radical ideal (i.e., \(\sqrt{I} = I \)). Regarding \(L \) as a partially ordered set by inclusion, we say \(\Delta \subset L \) is an order ideal, if \(\Delta \supseteq F \supseteq F' \in L \) implies \(F' \in \Delta \). If \(\Delta \) is an order ideal, then \(I_\Delta := (x^c | c \in C, s(c) \notin \Delta) \subset R \) is a radical ideal. Conversely, any radical monomial ideal is of the form \(I_\Delta \) for some \(\Delta \). Set \(K[\Delta] := R/I_\Delta \). Clearly,

\[
K[\Delta]_a \cong \begin{cases}
K & \text{if } a \in C \text{ and } s(a) \in \Delta, \\
0 & \text{otherwise}.
\end{cases}
\]

In particular, if \(\Delta = L \) (resp. \(\Delta = \{ \{0\} \} \)), then \(I_\Delta = 0 \) (resp. \(I_\Delta = m \)) and \(K[\Delta] = R \) (resp. \(K[\Delta] = K \)). When \(R \) is a polynomial ring, \(K[\Delta] \) is nothing else than the Stanley-Reisner ring of a simplicial complex \(\Delta \). (If \(R \) is a polynomial ring, then the partially ordered set \(L \) is isomorphic to the power set \(2^{\{1,...,n\}} \), and \(\Delta \) can be seen as a simplicial complex.)

For each \(F \in L \), take some \(c(F) \in C \cap \text{rel-int}(F) \) (i.e., \(s(c(F)) = F \)). For a squarefree \(R \)-module \(M \) and \(F,G \in L \) with \(G \supseteq F \), [17] Theorem 3.3 gives a \(K \)-linear map \(\varphi^M_{G,F} : M_{c(F)} \to M_{c(G)} \). They satisfy \(\varphi^M_{F,F} = \text{Id} \) and \(\varphi^M_{H,G} \circ \varphi^M_{G,F} = \varphi^M_{H,F} \) for all \(H \supseteq G \supseteq F \). We have \(M_c \cong M_{c'} \) for \(c,c' \in C \) with \(s(c) = s(c') \). Under these isomorphisms, the maps \(\varphi^M_{G,F} \) do not depend on the particular choice of \(c(F) \)'s.

Let \(\text{Sq}(R) \) be the full subcategory of \(\text{^mod} R \) consisting of squarefree modules. As shown in [17], \(\text{Sq}(R) \) is an abelian category with enough injectives. For an indecomposable squarefree module \(M \), it is injective in \(\text{Sq}(R) \) if and only if \(M \cong K[F] \) for some \(F \in L \). Each \(M \in \text{Sq}(R) \) has a minimal injective resolution in \(\text{Sq}(R) \), and we call it a minimal irreducible resolution (see [21] for further information). A minimal irreducible resolution is unique up to isomorphism, and its length is at most \(n \).

Let \(\omega_R \) be the \(\mathbb{Z}^n \)-graded canonical module of \(R \). It is well-known that \(\omega_R \) is isomorphic to the radical monomial ideal (\(x^c | c \in C, s(c) = \mathbb{P} \)). Since we have \(\text{Ext}_R^i(M^\bullet, \omega_R) \in \text{Sq}(R) \) for all \(M^\bullet \in \text{Sq}(R) \), \(D(-) := \text{RHom}_R(-, \omega_R) \) gives a duality functor from the derived category \(D^b(\text{Sq}(R)) \) \(\cong D^b_{\text{sq}(R)}(\text{^mod} R) \) to itself.

In the sequel, for a \(K \)-vector space \(V \), \(V^* \) denotes its dual space. But, even if \(V = M_a \) for some \(M \in \text{^mod} R \) and \(a \in \mathbb{Z}^n \), we set the degree of \(V^* \) to be 0.

Lemma 2.2 ([21] Lemma 3.8). If \(M \in \text{Sq}(R) \), then \(D(M) \) is quasi-isomorphic to the complex \(D^\bullet : 0 \to D^0 \to D^1 \to \cdots \to D^n \to 0 \) with

\[
D^i = \bigoplus_{F \in L, \dim F = n-i} (M_{c(F)})^* \otimes_K K[F].
\]

Here the differential is the sum of the maps

\[
(\pm \varphi^M_{F,F'})^* \otimes \text{nat} : (M_{c(F)})^* \otimes_K K[F] \to (M_{c(F')})^* \otimes_K K[F']
\]

for \(F,F' \in L \) with \(F \supseteq F' \) and \(\dim F = \dim F' + 1 \), and \(\text{nat} \) denotes the natural surjection \(K[F] \to K[F'] \). We can also describe \(D(M^\bullet) \) for a complex \(M^\bullet \in D^b(\text{Sq}(R)) \) in a similar way.

Convention. In the sequel, as an explicit complex, \(D(M^\bullet) \) for \(M^\bullet \in D^b(\text{Sq}(R)) \) means the complex described in Lemma 2.2.
Since $D \circ D \cong \text{Id}_{D^n(Sq(R))}$, $D \circ D(M)$ is an irreducible resolution of M, but it is far from being minimal. Let $(I^\bullet, \partial^\bullet)$ be a minimal irreducible resolution of M. For each $i \in \mathbb{N}$ and $F \in L$, we have a natural number $\nu_i(F, M)$ such that

$$I^i \cong \bigoplus_{F \in L} K[F]^{
u_i(F, M)}.$$

Since I^\bullet is minimal, $z \in K[F] \subset I^i$ with $\dim F = d$ is sent to

$$\partial^i(z) \in \bigoplus_{\dim G < d} K[G]^{
u_{i+1}(G, M)} \subset I^{i+1}.$$

The above observation on $D \circ D(M)$ gives the formula ([17, Theorem 4.15])

$$\nu_i(F, M) = \dim_{\mathbb{R}}[-n-i-\dim F](M, \omega_R)_{c(F)}.$$

For each $l \in \mathbb{N}$ with $0 \leq l \leq n$, we define the l-linear strand $\text{lin}_l(I^\bullet)$ of I^\bullet as follows: The term $\text{lin}_l(I^\bullet)^i$ of cohomological degree i is

$$\bigoplus_{\dim F = i-l} K[F]^{
u_i(F, M)},$$

which is a direct summand of I^i, and the differential $\text{lin}_l(I^\bullet)^i \to \text{lin}_l(I^\bullet)^{i+1}$ is the corresponding component of the differential $\partial^i : I^i \to I^{i+1}$ of I^\bullet. By the minimality of I^\bullet, we can see that $\text{lin}_l(I^\bullet)$ are cochain complexes. Set $\text{lin}(I^\bullet) := \bigoplus_{0 \leq i \leq n} \text{lin}_l(I^\bullet)$. Then we have the following. For a complex M^\bullet and an integer p, let $M^\bullet[p]$ be the p^{th} translation of M^\bullet. That is, $M^\bullet[p]$ is a complex with $M^i[p] = M^{i+p}$.

Theorem 2.3 ([21, Theorem 3.9]). With the above notation, we have

$$\text{lin}_l(I^\bullet) \cong D(\text{Ext}_{\mathbb{R}}^{n-l}(M, \omega_R))[n-l].$$

Hence

$$\text{lin}(I^\bullet) \cong \bigoplus_{i \in \mathbb{Z}} D(\text{Ext}_{\mathbb{R}}^i(M, \omega_R))[i].$$

Definition 2.4. Let I^\bullet be a minimal irreducible resolution of $M \in \text{Sq}(R)$. We call $\max\{i \mid H^i(\text{lin}(I^\bullet)) \neq 0\}$ the linearity defect of the minimal irreducible resolution of M, and denote it by $\text{ld. irr}_R(M)$.

Corollary 2.5. With the above notation, we have

$$\max\{i \mid H^i(\text{lin}(I^\bullet)) \neq 0\} = l - \text{depth}_{\mathbb{R}}(\text{Ext}_{\mathbb{R}}^{n-l}(M, \omega_R)),$$

and hence

$$\text{ld. irr}_R(M) = \max\{i - \text{depth}_{\mathbb{R}}(\text{Ext}_{\mathbb{R}}^{n-i}(M, \omega_R)) \mid 0 \leq i \leq n\}.$$

Here we set the depth of the 0 module to be $+\infty$.

Proof. By Theorem 2.3, we have $H^i(\text{lin}(I^\bullet)) = \text{Ext}_{\mathbb{R}}^{i+l}(\text{Ext}_{\mathbb{R}}^l(M, \omega_R), \omega_R)$. Since $\text{depth}_{\mathbb{R}} N = \min\{i \mid \text{Ext}_{\mathbb{R}}^{n-i}(N, \omega_R) \neq 0\}$ for a finitely generated graded R-module N, the assertion follows. \qed
Definition 2.6 (Stanley [15]). Let $M \in \text{mod} \ R$. We say M is \textit{sequentially Cohen-Macaulay} if there is a finite filtration

$$0 = M_0 \subset M_1 \subset \cdots \subset M_r = M$$

of M by graded submodules M_i satisfying the following conditions.

(a) Each quotient M_i/M_{i-1} is Cohen-Macaulay.

(b) dim$(M_i/M_{i-1}) < \text{dim}(M_{i+1}/M_i)$ for all i.

Remark that the notion of sequentially Cohen-Macaulay module is also studied under the name of a “Cohen-Macaulay filtered module” ([14]).

Sequentially Cohen-Macaulay property is getting important in the theory of Stanley-Reisner rings. It is known that $M \in \text{mod} \ R$ is sequentially Cohen-Macaulay if and only if $\text{Ext}^n_R(M, \omega_R)$ is a zero module or a Cohen-Macaulay module of dimension i for all i (c.f. [15, III. Theorem 2.11]). Let us go back to Corollary 2.5. If $N := \text{Ext}^{n-i}_R(M, \omega_R) \neq 0$, then $\text{depth}_R N \leq \text{dim}_R N \leq i$. Hence $\text{depth}_R N = i$ if and only if N is a Cohen-Macaulay module of dimension i. Thus, as stated in [21, Corollary 3.11], $\text{ld} \ irr_R(M) = 0$ if and only if M is sequentially Cohen-Macaulay.

Let $I^* : 0 \rightarrow I^0 \xrightarrow{\partial^0} I^1 \xrightarrow{\partial^1} I^2 \rightarrow \cdots$ be an irreducible resolution of $M \in \text{Sq}(R)$. Then it is easy to see that $\ker(\partial^i)$ is sequentially Cohen-Macaulay if and only if $i \geq \text{ld} \ irr_R(M)$. In particular,

$$\text{ld} \ irr_R(M) = \min \{ i \mid \ker(\partial^i) \text{ is sequentially Cohen-Macaulay}\}.$$

We have a hyperplane $H \subset \mathbb{R}^n$ such that $B := H \cap L$ is an $(n-1)$-dimensional polytope. Clearly, B is homeomorphic to a closed ball of dimension $n-1$. For a face $F \in L$, set $|F|$ to be the relative interior of $F \cap H$. If $\Delta \subset L$ is an order ideal, then $|\Delta| := \bigcup_{F \in \Delta} |F|$ is a closed subset of B, and $\bigcup_{F \in \Delta} |F|$ is a \textit{regular cell decomposition} (c.f. [2, §6.2]) of $|\Delta|$. Up to homeomorphism, (the regular cell decomposition of) $|\Delta|$ does not depend on the particular choice of the hyperplane H. The dimension $\text{dim} |\Delta|$ of $|\Delta|$ is given by $\max \{ \text{dim} |F| \mid F \in \Delta \}$. Here $\text{dim} |F|$ denotes the dimension of $|F|$ as a cell (we set $\text{dim} \emptyset = -1$), that is, $\text{dim} |F| = \text{dim} F - 1 = \text{dim} K[F] - 1$. Hence we have $\text{dim} K[\Delta] = \text{dim} |\Delta| + 1$.

If $F \in \Delta$, then $U_F := \bigcup_{F' \supset F} |F'|$ is an open set of B. Note that $\{ U_F \mid \{0\} \neq F \in L \}$ is an open covering of B. In [18], from $M \in \text{Sq}(R)$, we constructed a sheaf M^+ on B. More precisely, the assignment

$$\Gamma(U_F, M^+) = M_{c(F)}$$

for each $F \neq \{0\}$ and the map

$$\varphi^M_{F,F'} : \Gamma(U_{F'}, M^+) = M_{c(F')} \rightarrow M_{c(F)} = \Gamma(U_F, M^+)$$

for $F, F' \neq \{0\}$ with $F \supset F'$ (equivalently, $U_{F'} \supset U_F$) defines a sheaf. Note that M^+ is a \textit{constructible sheaf} with respect to the cell decomposition $B = \bigcup_{F \in L} |F|$. In fact, for all $\{0\} \neq F \in L$, the restriction $M^+|_{|F|}$ of M^+ to $|F| \subset B$ is a constant sheaf with coefficients in $M_{c(F)}$. Note that M_0 is “irrelevant” to M^+, where 0 denotes $(0,0,\ldots,0) \in \mathbb{Z}^n$.
It is easy to see that $K[\Delta]^+ \cong j_*K_{|\Delta|}$, where $K_{|\Delta|}$ is the constant sheaf on $|\Delta|$ with coefficients in K, and j denotes the embedding map $|\Delta| \hookrightarrow B$. Similarly, we have that $(\omega_R)^+ \cong h_*K_{B^0}$, where K_{B^0} is the constant sheaf on the relative interior B^0 of B, and h denotes the embedding map $B^0 \hookrightarrow B$. Note that $(\omega_R)^+$ is the orientation sheaf of B over K.

Theorem 2.7 ([18, Theorem 3.3]). For $M \in \text{Sq}(R)$, we have an isomorphism

$$H^i(B; M^+) \cong [H_{m}^{i+1}(M)]_0 \quad \text{for all } i \geq 1,$$

and an exact sequence

$$0 \to [H_{m}^{0}(M)]_0 \to M_0 \to H^0(B; M^+) \to [H_{m}^{1}(M)]_0 \to 0.$$

In particular, we have $[H_{m}^{i+1}(K[\Delta])]_0 \cong \tilde{H}^i(|\Delta|; K)$ for all $i \geq 0$, where $\tilde{H}^i(|\Delta|; K)$ denotes the i^{th} reduced cohomology of $|\Delta|$ with coefficients in K.

Let $\Delta \subset L$ be an order ideal and $X := |\Delta|$. Then X admits Verdier’s dualizing complex D_X^*, which is a complex of sheaves of K-vector spaces. For example, D_B^* is quasi-isomorphic to $(\omega_R)^+[n-1]$.

Theorem 2.8 ([18, Theorem 4.2]). With the above notation, if $\text{ann}(M) \supset I_\Delta$ (equivalently, $\text{supp}(M^+) := \{ x \in B \mid (M^*)_x \neq 0 \} \subset X$), then we have

$$\text{supp}(\text{Ext}^i_R(M, \omega_R)^+) \subset X \quad \text{and} \quad \text{Ext}^i_R(M, \omega_R)^+|_X \cong \text{Ext}^{i-n+1}(M^+)|_X; D_X^*).$$

Theorem 2.9. Let M be a squarefree R-module with $M \neq 0$ and $[H_{m}^{0}(M)]_0 = 0$, and X the closure of $\text{supp}(M^+)$. Then $\text{ld. irr}_R(M)$ only depends on the sheaf $M^+|_X$ (also independent from R).

Proof. We use Corollary [2.5] In the notation there, the case when $i = 0$ is always unnecessary to check. Moreover, by the present assumption, we have $\text{depth}_R(\text{Ext}^{n-1}_R(M, \omega_R)) \geq 1$ (in fact, $\text{Ext}^{n-1}_R(M, \omega_R)$ is either the 0 module, or a 1-dimensional Cohen-Macaulay module). So we may assume that $i > 1$.

Recall that

$$\text{depth}_R(\text{Ext}^{n-i}_R(M, \omega_R)) = \min\{ j \mid \text{Ext}^{n-j}_R(\text{Ext}^{n-i}_R(M, \omega_R), \omega_R) \neq 0 \}.$$

By Theorem [2.8] $[\text{Ext}^{n-j}_R(\text{Ext}^{n-i}_R(M, \omega_R), \omega_R)]_a$ can be determined by $M^+|_X$ for all i, j and all $a \neq 0$. If $j > 1$, then $[\text{Ext}^{n-j}_R(\text{Ext}^{n-i}_R(M, \omega_R), \omega_R)]_0$ is isomorphic to

$$[H^i_{m}(\text{Ext}^{n-i}_R(M, \omega_R))]_0^* \cong H^{j-1}(B; \text{Ext}^{n-i}_R(M, \omega_R)^*) \cong H^{j-1}(X; \text{Ext}^{i-n+1}(M^+|_X; D_X^*))^*$$

(the first and the second isomorphisms follow from Theorem [2.7] and Theorem [2.8] respectively), and determined by $M^+|_X$. So only $[\text{Ext}^{n-j}_R(\text{Ext}^{n-i}_R(M, \omega_R), \omega_R)]_0$ for $j = 0, 1$ remain. As above, they are isomorphic to $[H^j_{m}(\text{Ext}^{n-j}_R(M, \omega_R))]_0$. But, by [21, Lemma 5.11], we can compute $[H^j_{m}(\text{Ext}^{n-j}_R(M, \omega_R))]_0$ for $i > 1$ and $j = 0, 1$ from the sheaf $M^+|_X$. So we are done.

Theorem 2.10. For an order ideal $\Delta \subset L$ with $\Delta \neq \emptyset$, $\text{ld. irr}_R(K[\Delta])$ depends only on the topological space $|\Delta|$.
Note that \(\text{ld. irr}_R(K[\Delta]) \) may depend on \(\text{char}(K) \). For example, if \(|\Delta| \) is homeomorphic to a real projective plane, then \(\text{ld. irr}_R(K[\Delta]) = 0 \) if \(\text{char}(K) \neq 2 \), but \(\text{ld. irr}_R(K[\Delta]) = 2 \) if \(\text{char}(K) = 2 \).

Similarly, some other invariants and conditions (e.g., the Cohen-Macaulay property of \(K[\Delta] \)) studied in this paper depend on \(\text{char}(K) \). But, since we fix the base field \(K \), we always omit the phrase “over \(K \).

Proof. If \(|\Delta| \) is not connected, then \([H^1_m(K[\Delta])]_0 \neq 0 \) by Theorem 2.7 and we cannot use Theorem 2.9 directly. But even in this case, \(\text{depth}_R(\text{Ext}^{n-1}_R(K[\Delta], \omega_R)) \) can be computed for all \(i \neq 1 \) by the same way as in Theorem 2.9. In particular, they only depend on \(|\Delta| \). So the assertion follows from the next lemma. □

Lemma 2.11. We have \(\text{depth}_R(\text{Ext}^{n-1}_R(K[\Delta], \omega_R)) \in \{0, 1, +\infty\} \), and

\[
\text{depth}_R(\text{Ext}^{n-1}_R(K[\Delta], \omega_R)) = 0 \quad \text{if and only if} \quad |\Delta'| \text{ is not connected.}
\]

Here \(\Delta' := \Delta \setminus \{ F \mid F \text{ is a maximal element of } \Delta \text{ and } |F| = 0 \} \).

Proof. Since \(\dim \text{dim} R \text{Ext}^{n-1}_R(K[\Delta], \omega_R) \leq 1 \), the first statement is clear. If \(\dim |\Delta| \leq 0 \), then \(|\Delta'| = \emptyset \) and \(\text{depth}_R(\text{Ext}^{n-1}_R(K[\Delta], \omega_R)) \geq 1 \). So, to see the second statement, we may assume that \(\dim |\Delta| > 1 \). Set \(J := I_{\Delta'}/I_{\Delta} \) to be an ideal of \(K[\Delta] \).

Note that either \(J \) is a 1-dimensional Cohen-Macaulay module or \(J = 0 \). From the short exact sequence \(0 \to J \to K[\Delta] \to K[\Delta'] \to 0 \), we have an exact sequence

\[
0 \to \text{Ext}^{n-1}_R(K[\Delta], \omega_R) \to \text{Ext}^{n-1}_R(K[\Delta], \omega_R) \to \text{Ext}^{n-1}_R(J, \omega_R) \to 0.
\]

Since \(\text{Ext}^{n-1}_R(J, \omega_R) \) has positive depth, \(\text{depth}_R(\text{Ext}^{n-1}_R(K[\Delta]', \omega_R)) = 0 \) if and only if \(\text{depth}_R(\text{Ext}^{n-1}_R(K[\Delta], \omega_R)) = 0 \). But, since \(K[\Delta'] \) does not have 1-dimensional associated primes, \(\text{Ext}^{n-1}_R(K[\Delta], \omega_R) \) is an artinian module. Hence we have the following.

\[
\text{depth}_R(\text{Ext}^{n-1}_R(K[\Delta], \omega_R)) = 0 \iff [\text{Ext}^{n-1}_R(K[\Delta], \omega_R)]_0 \neq 0 \\
\iff [H^1_m(K[\Delta])]_0 \neq 0 \\
\iff |\Delta'| \text{ is not connected.}
\]

□

3. Linearity Defects of Symmetric and Exterior Face Rings

Let \(S := K[x_1, \ldots, x_n] \) be a polynomial ring, and consider its natural \(\mathbb{Z}^n \)-grading. Since \(S = K[\mathbb{N}^n] \) is a normal semigroup ring, we can use the notation and the results in the previous section.

Now we introduce some conventions which are compatible with the previous notation. Let \(e_i := (0, \ldots, 0, 1, 0, \ldots, 0) \in \mathbb{R}^n \) be the \(i \)-th unit vector, and \(\mathbf{P} \) the cone spanned by \(e_1, \ldots, e_n \). We identify a face \(F \) of \(\mathbf{P} \) with the subset \(\{ i \mid e_i \in F \} \) of \([n] := \{1, 2, \ldots, n\} \). Hence the set \(\mathbf{L} \) of nonempty faces of \(\mathbf{P} \) can be identified with the power set \(2^{[n]} \) of \([n] \). We say \(\mathbf{a} = (a_1, \ldots, a_n) \in \mathbb{N}^n \) is squarefree, if \(a_i = 0, 1 \) for all \(i \). A squarefree vector \(\mathbf{a} \in \mathbb{N}^n \) will be identified with the subset \(\{ i \mid a_i = 1 \} \) of \([n] \). Recall that we took a vector \(\mathbf{c}(F) \in C \) for each \(F \in \mathbf{L} \) in the previous section. Here we assume that \(\mathbf{c}(F) \) is the squarefree vector corresponding
to \(F \in L \cong 2^n \). So, for a \(\mathbb{Z}^n \)-graded \(S \)-module \(M \), we simply denote \(M_{c(F)} \) by \(M_F \). In the first principle, we regard \(F \) as a subset of \([n]\), or a squarefree vector in \(\mathbb{N}^n \), rather than the corresponding face of \(P \). For example, we write \(P_F = (x_i \mid i \notin F) \), \(K[F] \cong K[x_i \mid i \in F] \). And \(S(-F) \) denotes the rank 1 free \(S \)-module \(S(-a) \), where \(a \in \mathbb{N}^n \) is the squarefree vector corresponding to \(F \).

Squarefree \(S \)-modules are defined by the same way as Definition 2.1. Note that the free module \(S(-a) \), \(a \in \mathbb{Z}^n \), is squarefree if and only if \(a \) is squarefree. Let \(*\text{mod} S \) (resp. \(\text{Sq}(S) \)) be the category of finitely generated \(\mathbb{Z}^n \)-graded \(S \)-modules (resp. squarefree \(S \)-modules). Let \(P_* \) be a \(\mathbb{Z}^n \)-graded minimal free resolution of \(M \in *\text{mod} S \). Then \(M \) is squarefree if and only if each \(P_i \) is a direct sum of copies of \(S(-F) \) for various \(F \subseteq [n] \). In the present case, an order ideal \(\Delta \) of \(L \) (\(\cong 2^n \)) is essentially a simplicial complex, and the ring \(K[\Delta] \) defined in the previous section is nothing other than the Stanley-Reisner ring (c.f. [2, 13]) of \(\Delta \).

Let \(E = \bigwedge \langle y_1, \ldots, y_n \rangle \) be the exterior algebra over \(K \). Under the Bernstein-Gel’fand-Gel’fand correspondence (c.f. [3]), \(E \) is the counter part of \(S \). We regard \(E \) as a \(\mathbb{Z}^n \)-graded ring by \(\deg y_i = e_i = \deg x_i \) for each \(i \). Clearly, any monomial ideal of \(E \) is “squarefree”, and of the form \(J_{\Delta} := (\prod_{i \in F} y_i \mid F \subseteq [n], F \notin \Delta) \) for a simplicial complex \(\Delta \subseteq 2^n \). We say \(K(\Delta) := E/J_{\Delta} \) is the exterior face ring of \(\Delta \).

Let \(*\text{mod} E \) be the category of finitely generated \(\mathbb{Z}^n \)-graded \(E \)-modules and degree preserving \(E \)-homomorphisms. Note that, for graded \(E \)-modules, we do not have to distinguish left modules from right ones. Hence

\[
\mathbf{D}_E(-) := \bigoplus_{a \in \mathbb{Z}^n} \text{Hom}_{*\text{mod} E}(-, E(a))
\]
gives an exact contravariant functor from \(*\text{mod} E \) to itself satisfying \(\mathbf{D}_E \circ \mathbf{D}_E = \text{Id} \).

Definition 3.1 (Römer [12]). We say \(N \in *\text{mod} E \) is squarefree, if \(N = \bigoplus_{F \subseteq [n]} N_F \) (i.e., if \(a \in \mathbb{Z}^n \) is not squarefree, then \(N_a = 0 \)).

An exterior face ring \(K(\Delta) \) is a squarefree \(E \)-module. But, since a free module \(E(a) \) is not squarefree for \(a \neq 0 \), the syzygies of a squarefree \(E \)-module are not squarefree. Let \(\text{Sq}(E) \) be the full subcategory of \(*\text{mod} E \) consisting of squarefree modules. If \(N \) is a squarefree \(E \)-module, then so is \(\mathbf{D}_E(N) \). That is, \(\mathbf{D}_E \) gives a contravariant functor from \(\text{Sq}(E) \) to itself.

We have functors \(\mathcal{S} : \text{Sq}(E) \to \text{Sq}(S) \) and \(\mathcal{E} : \text{Sq}(S) \to \text{Sq}(E) \) giving an equivalence \(\text{Sq}(S) \cong \text{Sq}(E) \). Here \(\mathcal{S}(N)_F = N_F \) for \(N \in \text{Sq}(E) \) and \(F \subseteq [n] \), and the multiplication map \(\mathcal{S}(N)_F \ni z \mapsto x_i z \in \mathcal{S}(N)_{F \cup \{i\}} \) for \(i \notin F \) is given by \(\mathcal{S}(N)_F = N_F \ni z \mapsto (-1)^{\alpha(i,F)} y_i z \in N_{F \cup \{i\}} = \mathcal{S}(N)_{F \cup \{i\}} \), where \(\alpha(i,F) = \# \{ j \in F \mid j < i \} \). For example. \(\mathcal{S}(K(\Delta)) \cong K[\Delta] \). See [12] for detail.

Note that \(\mathbf{A} := \mathcal{S} \circ \mathbf{D}_E \circ \mathcal{E} \) is an exact contravariant functor from \(\text{Sq}(S) \) to itself satisfying \(\mathbf{A} \circ \mathbf{A} = \text{Id} \). It is easy to see that \(\mathbf{A}(K[F]) \cong S(-F^c) \), where \(F^c := [n] \setminus F \). We also have \(\mathbf{A}(K[\Delta]) \cong I_{\Delta^\vee} \), where

\[
\Delta^\vee := \{ F \subseteq [n] \mid F^c \notin \Delta \}
\]
is the Alexander dual complex of \(\Delta \). Since \(\mathbf{A} \) is exact, it exchanges a (minimal) free resolution with a (minimal) irreducible resolution.
Eisenbud et al. ([3, 11]) introduced the notion of the linear strands and the linear part of a minimal free resolution of a graded \(S \)-module. Let \(P_\bullet : \cdots \to P_1 \to P_0 \to 0 \) be a \(\mathbb{Z}^n \)-graded minimal \(S \)-free resolution of \(M \in \ast \text{mod} \ S \). We have natural numbers \(\beta_{i,a}(M) \) for \(i \in \mathbb{N} \) and \(a \in \mathbb{Z}^n \) such that \(P_i = \bigoplus_{a \in \mathbb{Z}^n} S(-a)_{\beta_i,a}(M) \). We call \(\beta_{i,a}(M) \) the graded Betti numbers of \(M \). Set \(|a| = \sum_{i=1}^{n} a_i \) for \(a = (a_1, \ldots, a_n) \in \mathbb{N}^n \). For each \(l \in \mathbb{Z} \), we define the \(l \)-linear strand \(\text{lin}_l(P_\bullet) \) of \(P_\bullet \) as follows: The term \(\text{lin}_l(P_\bullet)_i \) of homological degree \(i \) is
\[
\bigoplus_{|a| = l+i} S(-a)_{\beta_i,a}(M),
\]
which is a direct summand of \(P_i \), and the differential \(\text{lin}_l(P_\bullet)_i \to \text{lin}_l(P_\bullet)_{i-1} \) is the corresponding component of the differential \(P_i \to P_{i-1} \) of \(P_\bullet \). By the minimality of \(P_\bullet \), we can easily verify that \(\text{lin}_l(P_\bullet) \) are chain complexes (see also [3, §7A]). We call \(\text{lin}_l(P_\bullet) := \bigoplus_{l \in \mathbb{Z}} \text{lin}_l(P_\bullet) \) the linear part of \(P_\bullet \). Note that the differential maps of \(\text{lin}(P_\bullet) \) are represented by matrices of linear forms. We call
\[
\text{ld}_S(M) := \max \{ i \mid H_i(\text{lin}_l(P_\bullet)) \neq 0 \}
\]
the linearity defect of \(M \).

Sometimes, we regard \(M \in \ast \text{mod} \ S \) as a \(\mathbb{Z} \)-graded module by \(M_j = \bigoplus_{|a| = j} M_a \). In this case, we set \(\beta_{i,j}(M) := \bigoplus_{|a| = j} \beta_{i,a}(M). \) Then \(\text{lin}_l(P_\bullet)_i = S(-l-i)_{\beta_{i,l+i}(M)}. \)

Remark 3.2. For \(M \in \ast \text{mod} \ S \), it is clear that \(\text{ld}_S(M) \leq \text{proj. dim}_S(M) \leq n \), and there are many examples attaining the equalities. In fact, \(\text{ld}_S(S/(x_1^2, \ldots, x_n^2)) = n \). But if \(M \in \text{Sq}(S) \), then we always have \(\text{ld}_S(M) \leq n - 1 \). In fact, for a squarefree module \(M \), \(\text{proj. dim}_S(M) = n \), if and only if \(\text{depth}_S M = 0 \), if and only if \(M \cong K \oplus M' \) for some \(M' \in \text{Sq}(S) \). But \(\text{ld}_S(K) = 0 \) and \(\text{ld}_S(M' \oplus K) = \text{ld}_S(M') \). So we may assume that \(\text{proj. dim}_S M' \leq n - 1 \).

Proposition 3.3. Let \(M \in \text{Sq}(S) \), and \(P_\bullet \) its minimal graded free resolution. We have
\[
\max \{ i \mid H_i(\text{lin}_l(P_\bullet)) \neq 0 \} = n - l - \text{depth}_S(\text{Ext}^*_S(A(M),S)),
\]
and hence
\[
\text{ld}_S(M) = \max \{ i - \text{depth}_S(\text{Ext}^{n-i}_S(A(M),S)) \mid 0 \leq i \leq n \}.\]

Proof. Note that \(I^\bullet := A(P_\bullet) \) is a minimal irreducible resolution of \(A(M) \). Moreover, we have \(A(\text{lin}_l(P_\bullet)) \cong \text{lin}_{n-l}(I^\bullet) \). Since \(A \) is exact,
\[
\max \{ i \mid H_i(\text{lin}_l(P_\bullet)) \neq 0 \} = \max \{ i \mid H_i(\text{lin}_{n-l}(I^\bullet)) \neq 0 \},
\]
and hence
\[
(3.1) \quad \text{ld}_S(M) = \text{ld. irr}_S(A(M)).
\]
Hence the assertions follow from Corollary 2.3 (note that \(S \cong \omega_S \) as underlying modules).

For \(N \in \ast \text{mod} \ E \), we have a \(\mathbb{Z}^n \)-graded minimal \(E \)-free resolution \(P_\bullet \) of \(N \). By the similar way to the \(S \)-module case, we can define the linear part \(\text{lin}_l(P_\bullet) \) of \(P_\bullet \), and set \(\text{ld}_E(N) := \max \{ i \mid H_i(\text{lin}_l(P_\bullet)) \neq 0 \}. \) (In [13, 20], \(\text{ld}_E(N) \) is
denoted by \(\text{lpd}(N) \). “\(\text{lpd} \)” is an abbreviation for “linear part dominate”.) In [4, Theorem 3.1], Eisenbud et al. showed that \(\text{ld}_E(N) < \infty \) for all \(N \in \text{mod} \ E \). Since \(\text{proj} \dim_E(N) = \infty \) in most cases, this is a strong result. If \(n \geq 2 \), then we have \(\sup \{ \text{ld}_E(N) \mid N \in \text{mod} \ E \} = \infty \). In fact, since \(E \) is selfinjective, we can take “cosyzygies”. But, if \(N \in \text{Sq}(E) \), then \(\text{ld}_E(N) \) behaves quite nicely.

Theorem 3.4. For \(N \in \text{Sq}(E) \), we have \(\text{ld}_E(N) = \text{ld}_S(S(N)) \leq n - 1 \). In particular, for a simplicial complex \(\Delta \subset 2^{[n]} \), we have \(\text{ld}_E(K(\Delta)) = \text{ld}_S(K[\Delta]) \).

Proof. Using the Bernstein-Gel’fand-Gel’fand correspondence, the second author described \(\text{ld}_E(N) \) in [20, Lemma 4.12]. This description is the first equality of the following computation, which proves the assertion.

\[
\text{ld}_E(N) = \max \{ i - \text{depth}_S(\text{Ext}^{n-i}_S(\mathcal{D}_E(N), S)) \mid 0 \leq i \leq n \} \quad \text{(by [20])}
= \max \{ i - \text{depth}_S(\text{Ext}^{n-i}_S(A \circ \mathcal{S}(N), S)) \mid 0 \leq i \leq n \} \quad \text{(see below)}
= \text{ld}_S(S(N)) \quad \text{(by Proposition 3.3)}.
\]

Here the second equality follows from the isomorphisms \(A \circ \mathcal{S}(N) \cong \mathcal{S} \circ \mathcal{D}_E(N) \cong \mathcal{S} \circ \mathcal{D}_E \circ \mathcal{E} \circ S(N) \cong A \circ S(N) \).

Remark 3.5. Herzog and Römer showed that \(\text{ld}_E(N) \leq \text{proj} \dim_S(S(N)) \) for \(N \in \text{Sq}(E) \) ([13, Corollary 3.3.5]). Since \(\text{ld}_S(S(N)) \leq \text{proj} \dim_S(S(N)) \) (the inequality is strict quite often), Theorem 3.4 refines their result. Our equality might follow from the argument in [13], which constructs a minimal \(E \)-free resolution of \(N \) from a minimal \(S \)-free resolution of \(S(N) \). But it seems that certain amount of computation will be required.

Theorem 3.4 suggests that we may set

\[
\text{ld}(\Delta) := \text{ld}_S(K[\Delta]) = \text{ld}_E(K(\Delta)).
\]

Theorem 3.6. If \(I_\Delta \neq (0) \) (equivalently, \(\Delta \neq 2^{[n]} \)), then \(\text{ld}_S(I_\Delta) \) is a topological invariant of the geometric realization \(|\Delta^\vee| \) of the Alexander dual \(\Delta^\vee \) of \(\Delta \). If \(\Delta \neq 2^T \) for any \(T \subset [n] \), then \(\text{ld}(\Delta) \) is also a topological invariant of \(|\Delta^\vee| \) (also independent from the number \(n = \text{dim} S \)).

Proof. Since \(A(I_\Delta) = K[\Delta^\vee] \) and \(\Delta^\vee \neq \emptyset \), the first assertion follows from Theorem 2.10 and the equality (3.1) in the proof of Proposition 3.3.

It is easy to see that \(\Delta \neq 2^T \) for any \(T \) if and only if \(\text{ld}(\Delta) \geq 1 \). If this is the case, \(\text{ld}(\Delta) = \text{ld}_S(I_\Delta) + 1 \), and the second assertion follows from the first. \(\square \)

Remark 3.7. (1) For the first statement of Theorem 3.6, the assumption that \(I_\Delta \neq (0) \) is necessary. In fact, if \(I_\Delta = (0) \), then \(\Delta = 2^{[n]} \) and \(\Delta^\vee = \emptyset \). On the other hand, if we set \(\Gamma := 2^{[n]} \setminus [n] \), then \(\Gamma^\vee = \{\emptyset\} \) and \(\text{dim} \Gamma^\vee = \emptyset = |\Delta^\vee| \). In view of Proposition 3.3, it might be natural to set \(\text{ld}_S(I_\Delta) = \text{ld}_S(\emptyset) = -\infty \). But, \(I_\Gamma = \omega_S \) and hence \(\text{ld}_S(I_\Gamma) = 0 \). One might think it is better to set \(\text{ld}_S(\emptyset) = 0 \) to avoid the problem. But this convention does not help so much, if we consider \(K[\Delta] \) and \(K[\Gamma] \). In fact, \(\text{ld}_S(K[\Delta]) = \text{ld}_S(S) = 0 \) and \(\text{ld}_S(K[\Gamma]) = \text{ld}_S(S/\omega_S) = 1 \).

(2) Let us think about the second statement of the theorem. Even if we forget the assumption that \(\Delta \neq 2^T \), \(\text{ld}(\Delta) \) is almost a topological invariant. Under the assumption that \(I_\Delta \neq 0 \), we have the following.
• \(\text{ld}(\Delta) \leq 1 \) if and only if \(K[\Delta^\vee] \) is sequentially Cohen-Macaulay. Hence we can determine whether \(\text{ld}(\Delta) \leq 1 \) from the topological space \(|\Delta^\vee| \).
• \(\text{ld}(\Delta) = 0 \), if and only if all facets of \(\Delta^\vee \) have dimension \(n - 2 \), if and only if \(|\Delta^\vee| \) is Cohen-Macaulay and has dimension \(n - 2 \).

Hence, if we forget the number “\(n \)”, we can not determine whether \(\text{ld}(\Delta) = 0 \) from \(|\Delta^\vee| \).

4. AN UPPER BOUND OF LINEARITY DEFECTS.

In the previous section, we have seen that \(\text{ld}_E(N) = \text{ld}_S(S(N)) \) for \(N \in \text{Sq}(E) \), in particular \(\text{ld}_E(K(\Delta)) = \text{ld}_S(K[\Delta]) \) for a simplicial complex \(\Delta \). In this section, we will give an upper bound of them, and see that the bound is sharp.

For \(0 \neq N \in \text{mod } E \), regarding \(N \) as a \(\mathbb{Z} \)-graded module, we set \(\text{indeg}_E(N) := \min\{ i \mid N_i \neq 0 \} \), which is called the initial degree of \(N \), and \(\text{indeg}_S(M) \) is similarly defined as \(\text{indeg}_S(M) := \min\{ i \mid M_i \neq 0 \} \) for \(0 \neq M \in \text{mod } S \). If \(\Delta \neq 2^{[n]} \) (equivalently \(I_\Delta \neq 0 \) or \(J_\Delta \neq 0 \)), then we have \(\text{indeg}_S(I_\Delta) = \text{indeg}_E(J_\Delta) = \min\{ \sharp F \mid F \subset [n], F \not\subset \Delta \} \), where \(\sharp F \) denotes the cardinal number of \(F \). So we set

\[
\text{indeg}(\Delta) := \text{indeg}_S(I_\Delta) = \text{indeg}_E(J_\Delta).
\]

Since \(\text{ld}(2^{[n]}) = \text{ld}_S(S) = \text{ld}_E(E) = 0 \) holds, we henceforth exclude this trivial case; we assume that \(\Delta \neq 2^{[n]} \).

We often make use of the following facts:

Lemma 4.1. Let \(0 \neq M \in \text{mod } S \) and let \(P_* \) be a minimal graded free resolution of \(M \). Then

1. \(\text{lin}_i(P_*) = 0 \) for all \(i < \text{indeg}_S(M) \), i.e., there are only \(l \)-linear strands with \(l \geq \text{indeg}_S(M) \) in \(P_* \);
2. \(\text{lin}_{\text{indeg}_S(M)}(P_*) \) is a subcomplex of \(P_* \);
3. if \(M \in \text{Sq}(S) \), then \(\text{lin}(P_*) = \bigoplus_{0 \leq l \leq n} \text{lin}_l(P_*) \), and \(\text{lin}(P_*)_i = 0 \) for all \(i > n - l \) and all \(0 \leq l \leq n \), where the subscript \(i \) is a homological degree.

Proof. (1) and (2) are clear. (3) holds from the fact that \(P_i \cong \bigoplus_{F \subset [n]} S(-F)^{\beta_i,F} \).

Theorem 4.2. For \(0 \neq N \in \text{Sq}(E) \), it follows that

\[
\text{ld}_E(N) \leq \max\{0, n - \text{indeg}_E(N) - 1\}.
\]

By Theorem 3.4, this is equivalent to say that for \(M \in \text{Sq}(S) \),

\[
\text{ld}_S(M) \leq \max\{0, n - \text{indeg}_S(M) - 1\}.
\]

Proof. It suffices to show the assertion for \(M \in \text{Sq}(S) \). Set \(\text{indeg}_S(M) = d \) and let \(P_* \) be a minimal graded free resolution of \(M \). The case \(d = n \) is trivial by Lemma 4.1 (1), (3). Assume that \(d \leq n - 1 \). Observing that \(\text{lin}(P_*)_i = S(-l - i)^{\beta_{i+l},l} \)

where \(\beta_{i+l} \) are \(\mathbb{Z} \)-graded Betti numbers of \(M \), Lemma 4.1 (1), (3) implies that the last few steps of \(P_* \) are of the form

\[
0 \longrightarrow S(-n)^{\beta_{n-d,n}} \longrightarrow S(-n)^{\beta_{n-d-1,n}} \oplus S(-n+1)^{\beta_{n-d-1,n-1}} \longrightarrow \ldots
\]
Hence \(\operatorname{lin}_d(P_\bullet)_{n-d} = S(-n)^{\beta_{n-d,n}} = P_{n-d} \). Since \(\operatorname{lin}_d(P_\bullet) \) is a subcomplex of the acyclic complex \(P_\bullet \) by Lemma 4.1 (2), we have \(H_{n-d}(\operatorname{lin}_d(P_\bullet)) = 0 \), so that \(\operatorname{ld}_S(M) \leq n - d - 1 \). \(\square \)

Note that \(J_\Delta \in \text{Sq}(E) \) (resp. \(I_\Delta \in \text{Sq}(S) \)). Since \(\operatorname{ld}(\Delta) \leq \operatorname{ld}_E(J_\Delta) + 1 \) (resp. \(\operatorname{ld}(\Delta) \leq \operatorname{ld}_S(I_\Delta) + 1 \)) holds, we have a bound for \(\operatorname{ld}(\Delta) \), applying Theorem 4.2 to \(J_\Delta \) (resp. \(I_\Delta \)).

Corollary 4.3. For a simplicial complex \(\Delta \) on \([n]\), we have

\[
\operatorname{ld}(\Delta) \leq \max\{1, n - \operatorname{indeg}(\Delta)\}.
\]

Let \(\Delta, \Gamma \) be simplicial complexes on \([n]\). We denote \(\Delta * \Gamma \) for the join

\[
\{ F \cup G \mid F \in \Delta, G \in \Gamma \}
\]

of \(\Delta \) and \(\Gamma \), and for our convenience, set

\[
\operatorname{ver}(\Delta) := \{ v \in [n] \mid \{v\} \in \Delta \}.
\]

Lemma 4.4. Let \(\Delta \) be a simplicial complex on \([n]\). Assume that \(\operatorname{indeg}(\Delta) = 1 \), or equivalently \(\operatorname{ver}(\Delta) \neq [n] \). Then we have

\[
\operatorname{ld}(\Delta) = \operatorname{ld}(\Delta * \{v\})
\]

for \(v \in [n] \setminus \operatorname{ver}(\Delta) \).

Proof. We may assume that \(v = 1 \). Let \(P_\bullet \) be a minimal graded free resolution of \(K[\Delta * \{1\}] \) and \(\mathcal{K}(x_1) \) the Koszul complex

\[
0 \longrightarrow S(-1) \xrightarrow{x_1} S \longrightarrow 0
\]

with respect to \(x_1 \). Consider the mapping cone \(P_\bullet \otimes_S \mathcal{K}(x_1) \) of the map \(P_\bullet(-1) \xrightarrow{x_1} P_\bullet \). There is the short exact sequence

\[
0 \longrightarrow P_\bullet \longrightarrow P_\bullet \otimes_S \mathcal{K}(x_1) \longrightarrow P_\bullet(-1)[-1] \longrightarrow 0,
\]

whence we have \(H_i(P_\bullet \otimes_S \mathcal{K}(x_1)) = 0 \) for all \(i \geq 2 \) and the exact sequence

\[
0 \longrightarrow H_1(P_\bullet \otimes_S \mathcal{K}(x_1)) \longrightarrow H_0(P_\bullet(-1)) \xrightarrow{x_1} H_0(P_\bullet).
\]

But since \(H_0(P_\bullet) = K[\Delta * \{1\}] \) and \(x_1 \) is regular on it, we have \(H_1(P_\bullet \otimes_S \mathcal{K}(x_1)) = 0 \). Thus \(P_\bullet \otimes_S \mathcal{K}(x_1) \) is acyclic and hence a minimal graded free resolution of \(K[\Delta] \).

Note that \(\operatorname{lin}(P_\bullet \otimes_S \mathcal{K}(x_1)) = \operatorname{lin}(P_\bullet) \otimes_S \mathcal{K}(x_1) \): in fact, we have

\[
\operatorname{lin}(P_\bullet \otimes_S \mathcal{K}(x_1))_i = \operatorname{lin}(P_\bullet \otimes_S S)_i \oplus \operatorname{lin}(P_\bullet[-1] \otimes_S S(-1))_i
\]

\[
= (\operatorname{lin}(P_\bullet)_i \otimes_S S) \oplus (\operatorname{lin}(P_\bullet)_{i-1} \otimes_S S(-1))
\]

\[
= (\operatorname{lin}(P_\bullet) \otimes_S \mathcal{K}(x_1))_i,
\]

where the subscripts \(i \) denote homological degrees, and the differential map

\[
\operatorname{lin}(P_\bullet \otimes_S \mathcal{K}(x_1))_i \longrightarrow \operatorname{lin}(P_\bullet \otimes_S \mathcal{K}(x_1))_{i-1}
\]

is composed by \(\partial_i^{(l)} \), \(-\partial_i^{(l)}_{i-1} \), and the multiplication map by \(x_1 \), where \(\partial_i^{(l)} \) (resp. \(\partial_i^{(l)}_{i-1} \)) is the \(i \)th (resp. \((i-1) \)th) differential map of the \(l \)-linear strand of \(P_\bullet \). Hence there is the short exact sequence
0 \longrightarrow \text{lin}(P_\bullet) \longrightarrow \text{lin}(P_\bullet \otimes_S K(x_1)) \longrightarrow \text{lin}(P_\bullet)(-1)[-1] \longrightarrow 0,

which yields that \(H_i(\text{lin}(P_\bullet \otimes_S K(x_1))) = 0 \) for all \(i \geq \text{ld}(\Delta_* \{1\}) + 2 \), and the exact sequence

\[
0 \longrightarrow H_{\text{ld}(\Delta_* \{1\}) + 1}(\text{lin}(P_\bullet \otimes_S K(x_1))) \longrightarrow H_{\text{ld}(\Delta_* \{1\})}(\text{lin}(P_\bullet(-1)))
\]

\[
\xrightarrow{x_1} H_{\text{ld}(\Delta_* \{1\})}(\text{lin}(P_\bullet)) \longrightarrow H_{\text{ld}(\Delta_* \{1\})}(\text{lin}(P_\bullet \otimes_S K(x_1)))).
\]

Since \(x_1 \) does not appear in any entry of the matrices representing the differentials of \(\text{lin}(P_\bullet) \), it is regular on \(H_*(\text{lin}(P_\bullet)) \), and hence we have

\[
H_{\text{ld}(\Delta_* \{1\}) + 1}(\text{lin}(P_\bullet \otimes_S K(x_1))) = 0
\]

and

\[
H_{\text{ld}(\Delta_* \{1\})}(\text{lin}(P_\bullet \otimes_S K(x_1)))) \neq 0,
\]

since \(H_{\text{ld}(\Delta_* \{1\})}(\text{lin}(P_\bullet)) \neq 0 \). Therefore \(\text{ld}(\Delta) = \text{ld}(\Delta_* \{1\}) \). \(\Box \)

Let \(\Delta \) be a simplicial complex on \([n]\). For \(F \subset [n] \), we set

\[
\Delta_F := \{ G \in \Delta \mid G \subset F \}.
\]

The following fact, due to Hochster, is well known, but because of our frequent use, we mention it.

Proposition 4.5 (c.f. [2, 15]). For a simplicial complex \(\Delta \) on \([n]\), we have

\[
\beta_{i,j}(K[\Delta]) = \sum_{F \subset [n], \sharp F = j} \dim K \tilde{H}_{j-i-1}(\Delta_F; K),
\]

where \(\beta_{i,j}(K[\Delta]) \) are the \(\mathbb{Z} \)-graded Betti numbers of \(K[\Delta] \).

Now we can give a new proof of [20, Proposition 4.15], which is the latter part of the next result.

Proposition 4.6 (cf. [20, Proposition 4.15]). Let \(\Delta \) be a simplicial complex on \([n]\). If \(\text{ind deg} \Delta = 1 \), then we have

\[
\text{ld}(\Delta) \leq \max\{1, n - 3\}.
\]

Hence, for any \(\Delta \), we have

\[
\text{ld}(\Delta) \leq \max\{1, n - 2\}.
\]

Proof. The second inequality follows from the first one and Corollary 4.3. So it suffices to show the first. We set \(V := [n] \setminus \text{ver}(\Delta) \). Our hypothesis \(\text{ind deg} \Delta = 1 \) implies that \(V \neq \emptyset \). By Lemma 4.4, the proof can be reduced to the case \(\# V = 1 \).

We may then assume that \(V = \{1\} \). Thus we have only to show that \(\text{ld}(\Delta_* \{1\}) \leq \max\{1, n - 3\} \). Since we have \(\text{ind deg}(\Delta_* \{1\}) \geq 2 \), we may assume \(n \geq 4 \) by Corollary 4.3. The length of the 0-linear strand of \(K[\Delta_* \{1\}] \) is 0, and hence we concentrate on the \(l \)-linear strands with \(l \geq 1 \). Let \(P_\bullet \) be a minimal graded free resolution of \(K[\Delta_* \{1\}] \). Since, as is well known, the cone of a simplicial complex, i.e., the join with a point, is acyclic, we have

\[
\beta_{i,n}(K[\Delta_* \{1\}]) = \dim_K \tilde{H}_{n-i-1}(\Delta_* \{1\}; K) = 0
\]
by Proposition 4.5. Thus \(\dim(P_\bullet)_{n-l} = 0 \) for all \(l \geq 1 \). Now applying the same argument as the last part of the proof of Theorem 4.2 (but we need to replace \(n \) by \(n - 1 \)), we have

\[
H_{n-2}(\lin(P_\bullet)) = 0,
\]
and so \(\ld(\Delta \ast \{1\}) \leq n - 3 \).

According to [20 Proposition 4.14], we can construct a squarefree module \(N \in \Sq(E) \) with \(\ld_E(N) = \proj \dim_S(S(N)) = n - 1 \). By Theorems 3.4 and 4.2, \(M := S(N) \) satisfies that \(\indeg_S(M) = 0 \) and \(\ld_S(M) = n - 1 \). For \(0 \leq i \leq n - 1 \), let \(\Omega_i(M) \) be the \(i \)th syzygy of \(M \). Then \(\Omega_i(M) \) is squarefree, and we have that \(\ld_S(\Omega_i(M)) = \ld_S(M) - i = n - i - 1 \) and \(\indeg_S(\Omega_i(M)) \geq \indeg_S(M) + i = i \). Thus by Theorem 4.2, we know that \(\indeg_S(\Omega_i(M)) = i \) and \(\ld_S(\Omega_i(M)) = n - \indeg_S(\Omega_i(M)) - 1 \). So the bound in Theorem 4.2 is optimal.

In the following, we will give an example of a simplicial complex \(\Delta \) with \(\ld(\Delta) = n - \indeg(\Delta) \) for \(2 \leq \indeg(\Delta) \leq n - 2 \), and so we know the bound in Proposition 4.3 is optimal if \(\indeg(\Delta) \geq 2 \), that is, \(\text{ver}(\Delta) = [n] \).

Given a simplicial complex \(\Delta \) on \([n]\), we denote \(\Delta^{(i)} \) for the \(i \)th skeleton of \(\Delta \), which is defined as

\[
\Delta^{(i)} := \{ F \in \Delta \mid \#F \leq i + 1 \}.
\]

Example 4.7. Set \(\Sigma := 2^{[n]} \), and let \(\Gamma \) be a simplicial complex on \([n]\) whose geometric realization \(|\Gamma| \) is homeomorphic to the \((d-1)\)dimensional sphere with \(2 \leq d < n - 1 \), which we denote by \(S^{d-1} \). (For \(m > d \) there exists a triangulation of \(S^{d-1} \) with \(m \) vertices. See, for example, [2 Proposition 5.2.10]). Consider the simplicial complex \(\Delta := \Gamma \cup \Sigma^{(d-2)} \). We will verify that \(\Delta \) is a desired complex, that is, \(\ld(\Delta) = n - \indeg(\Delta) \). For brief notation, we put \(t := \indeg \Delta \) and \(l := \ld(\Delta) \). First, from our definition, it is clear that \(t \geq d \). Thus it is enough to show that \(n - d \leq l \): in fact we have that \(l \leq n - t \leq n - d \leq l \) by Corollary 4.3 and hence that \(t = d \) and \(l = n - d \). Our aim is to prove that

\[
\beta_{n-d,n}(K[\Delta]) \neq 0 \quad \text{and} \quad \beta_{n-d-1,n-1}(K[\Delta]) = 0,
\]

since, in this case, we have \(H_{n-d}(\lin_d(P_\bullet)) \neq 0 \), and hence \(n - d \leq l \).

Now, let \(F \subset [n] \), and \(\tilde{C}_\bullet(\Delta_F; K) \), \(\tilde{C}_\bullet(\Gamma_F; K) \) be the augmented chain complexes of \(\Delta_F \) and \(\Gamma_F \), respectively. Since \(\Sigma^{(d-2)} \) have no faces of dimension \(\geq d - 1 \), we have \(\tilde{C}_{d-1}(\Delta_F; K) = \tilde{C}_{d-1}(\Gamma_F; K) \) and hence \(\tilde{H}_{d-1}(\Delta_F; K) = \tilde{H}_{d-1}(\Gamma_F; K) \). On the other hand, our assumption that \(|\Gamma| \approx S^{d-1} \) implies that \(\Gamma \) is Gorenstein, and hence that

\[
\tilde{H}_{d-1}(\Gamma_F; K) = \begin{cases} K & \text{if } F = [n]; \\ 0 & \text{otherwise.} \end{cases}
\]

Therefore, by Proposition 4.5, we have that

\[
\beta_{n-d,n}(K[\Delta]) = \dim_K \tilde{H}_{d-1}(\Gamma; K) = 1 \neq 0;
\]

\[
\beta_{n-d-1,n-1}(K[\Delta]) = \sum_{F \subset [n], |F| = n-1} \dim_K \tilde{H}_{d-1}(\Gamma_F; K) = 0.
\]
5. A simplicial complex Δ with $\text{ld}(\Delta) = n-2$ is an n-gon

Following the previous section, we assume that $\Delta \neq [n]$, throughout this section. We say a simplicial complex on $[n]$ is an n-gon if its facets are $\{1, 2\}, \{2, 3\}, \cdots, \{n-1, n\}$, and $\{n, 1\}$ after a suitable permutation of vertices. Consider the simplicial complex Δ on $[n]$ given in Example 4.7. If we set $d = 2$, then Δ is an n-gon. Thus if a simplicial complex Δ on $[n]$ is an n-gon, we have $\text{ld}(\Delta) = n-2$. Actually, the inverse holds, that is, if $\text{ld}(\Delta) = n-2$ with $n \geq 4$, Δ is nothing but an n-gon.

Theorem 5.1. Let Δ be a simplicial complex on $[n]$ with $n \geq 4$. Then $\text{ld}(\Delta) = n-2$ if and only if Δ is an n-gon.

In the previous section, we introduced Hochster’s formula (Proposition 4.5), but in this section, we need explicit correspondence between $\text{Tor}^S(K[\Delta], K)_F$ and reduced cohomologies of Δ.

Lemma 5.2. Let Δ be a simplicial complex on $[n]$ with $\text{indeg}(\Delta) \geq 2$, and P_\bullet a minimal graded free resolution of $K[\Delta]$. We denote Q_\bullet for the subcomplex of P_\bullet such that $Q_i := \bigoplus_{j \leq i+1} S(-j)^{\delta_{i,j}} \subset \bigoplus_{j \in \mathbb{Z}} S(-j)^{\delta_{i,j}} = P_i$. Assume $n \geq 4$. Then the following are equivalent.

1. $\text{ld}(\Delta) = n-2$;
2. $H_{n-2} (\text{lin}_2(P_\bullet)) \neq 0$;
3. $H_{n-3}(Q_\bullet) \neq 0$.

In the case $n \geq 5$, the condition (3) is equivalent to $H_{n-3}(\text{lin}_1(P_\bullet)) \neq 0$.

Proof. Since $\text{indeg}(\Delta) \geq 2$, $\text{lin}_0(P_\bullet)_i = 0$ holds for $i \geq 1$. Clearly, $H_i(Q_\bullet) = H_i(\text{lin}_1(P_\bullet))$ for $i \geq 2$. Since $\text{lin}_1(P_\bullet)_i = 0$ for $i \geq n-2$ and $l \geq 3$ by Lemma 4.1 and that $\text{ld}(\Delta) \leq n-2$ by Proposition 4.6, it suffices to show the following.

(5.2) $H_{n-2} (\text{lin}_2(P_\bullet)) \cong H_{n-3}(Q_\bullet)$ and $H_i(Q_\bullet) = 0$ for $i \geq n-2$.
Since Q_\bullet is a subcomplex of P_\bullet, there exists the following short exact sequence of complexes.

$$0 \to Q_\bullet \to P_\bullet \to \tilde{P}_\bullet := P_\bullet / Q_\bullet \to 0,$$

which induces the exact sequence of homology groups

$$H_i(P_\bullet) \to H_i(\tilde{P}_\bullet) \to H_{i-1}(Q_\bullet) \to H_{i-1}(P_\bullet).$$

Hence the acyclicity of P_\bullet implies that $H_i(\tilde{P}_\bullet) \cong H_{i-1}(Q_\bullet)$ for all $i \geq 2$. Now $H_i(\tilde{P}_\bullet) = 0$ for $i \geq n - 1$ by Lemma 4.1 and the fact that $\tilde{P}_i = \oplus_{l \geq 2} \text{lin}_l(P_\bullet)$. So the latter assertion of (5.2) holds, since $n - 2 \geq 2$. The former follows from the equality $H_{n-2}(\tilde{P}_\bullet) = H_{n-2}(\text{lin}_2(P_\bullet))$, which is a direct consequence of the fact that $\text{lin}_2(P_\bullet)$ is a subcomplex of \tilde{P}_\bullet, that $\tilde{P}_{n-2} = \text{lin}_2(P_{n-2})$, and that $\tilde{P}_{n-1} = 0$.

Let Δ be a 1-dimensional simplicial complex on $[n]$ (i.e., Δ is essentially a simple graph). A cycle C in Δ of length $t \geq 3$ is a sequence of edges of Δ of the form $(v_1, v_2), (v_2, v_3), \ldots, (v_t, v_1)$ joining distinct vertices v_1, \ldots, v_t.

Now we are ready for the proof of Theorem 5.1.

Proof of Theorem 5.1. The implication “\Leftarrow” has been already done in the beginning of this section. So we shall show the inverse. By Proposition 4.6 we may assume that $\text{indeg}(\Delta) \geq 2$. Let P_Δ be a minimal graded free resolution of $K[\Delta]$ and Q_\bullet as in Lemma 5.2. Note that Q_\bullet is determined only by $[I_\Delta]_2$ and that it follows $[I_\Delta]_2 = [I_{\Delta(2)}]_2$. If the 1-skeleton $\Delta^{(1)}$ of Δ is an n-gon, then so is Δ itself. Thus by Lemma 5.2 we may assume that $\dim \Delta = 1$. Since $\text{ld}(\Delta) = n - 2$, by Lemma 5.2 we have

$$\tilde{H}_1(\Delta; K) \cong \tilde{H}^1(\Delta; K) \cong [\text{Tor}_{n-2}^S(K[\Delta], K)][n] \neq 0,$$

and hence Δ contains at least one cycle as a subcomplex. So it suffices to show that Δ has no cycles of length $\leq n - 1$. Suppose not, i.e., Δ has some cycles of length $\leq n - 1$. To give a contradiction, we shall show

$$0 \to \text{lin}_2(P_\bullet)_{n-2} \to \text{lin}_2(P_\bullet)_{n-3}$$

is exact; in fact it follows $H_{n-2}(\text{lin}_2(P_\bullet)) = 0$, which contradicts to Lemma 5.2. For that, we need some observations (this is a similar argument to that done in Theorem 4.1 of [16]). Consider the chain complex $K[\Delta] \otimes_K \bigwedge V \otimes_K S$ where V is the K-vector space with the basis x_1, \ldots, x_n. We can define two differential map ϑ, ∂ on it as follows:

$$\vartheta(f \otimes \bigwedge^G x \otimes g) = \sum_{i \in G} (-1)^{\alpha(i,G)} (x_i f \otimes \bigwedge^{G\setminus\{i\}} x \otimes g);$$

$$\partial(f \otimes \bigwedge^G x \otimes g) = \sum_{i \in G} (-1)^{\alpha(i,G)} (f \otimes \bigwedge^{G\setminus\{i\}} x \otimes x_i g).$$

By a routine, we have that $\partial \vartheta + \vartheta \partial = 0$, and easily we can check that the ith homology group of the chain complex $(K[\Delta] \otimes_K \bigwedge V \otimes_K S, \vartheta)$ is isomorphic to the ith graded free module of a minimal free resolution P_\bullet of $K[\Delta]$. Since, moreover, the
differential maps of \(\text{lin}(P_*) \) is induced by \(\partial \) due to Eisenbud-Goto \([5]\) and Herzog-Simis-Vasconcelos \([9]\), \(\text{lin}_i(P_*) \to \text{lin}_i(P_*)_{-1} \) can be identified with

\[
\bigoplus_{F \subset [n], 1 \leq F = i + l} \left[\text{Tor}^S_i(K[\Delta], K) \right]_F \otimes_K S \xrightarrow{\delta} \bigoplus_{F \subset [n], 1 \leq F = i - 1 - l} \left[\text{Tor}^S_{i-1}(K[\Delta], K) \right]_F \otimes_K S,
\]

where \(\delta \) is induced by \(\partial \). In the sequel, \(-\{i\}\) denotes the subset \([n] \setminus \{i\}\) of \([n]\). Then we may identify the sequence (5.3) with

\[
0 \to [\text{Tor}^S_{n-2}(K[\Delta], K)]_{\{i\}} \otimes_K S \xrightarrow{\tilde{\eta}} \bigoplus_{i \in [n]} [\text{Tor}^S_{n-3}(K[\Delta], K)]_{-\{i\}} \otimes_K S
\]

and hence, by the isomorphism (5.1), with

\[
(5.4) \quad 0 \to \tilde{H}^1(\Delta; K) \otimes_K S \xrightarrow{\tilde{\varepsilon}} \bigoplus_{i \in [n]} \tilde{H}^1(\Delta_{-\{i\}}; K) \otimes_K S.
\]

Here \(\tilde{\varepsilon} \) is composed by \(\tilde{\varepsilon}_i : \tilde{H}^1(\Delta; K) \otimes_K S \to \tilde{H}^1(\Delta_{-\{i\}}; K) \otimes_K S \) which is induced by the chain map

\[
\varepsilon_i : \tilde{C}^*(\Delta; K) \otimes_K S \to \tilde{C}^*(\Delta_{-\{i\}}; K) \otimes_K S,
\]

\[
\varepsilon_i(e_G^* \otimes 1) = \begin{cases} (-1)^{\alpha(i,G)} e_G^* \otimes x_i & \text{if } i \notin G; \\ 0 & \text{otherwise}. \end{cases}
\]

Well, let \(C \) be a cycle in \(\Delta \) of the form \((v_1, v_2), (v_2, v_3), \ldots, (v_i, v_1)\) with distinct vertices \(v_1, \ldots, v_i \). We say \(C \) has a chord if there exists an edge \((v_i, v_j)\) of \(G \) such that \(j \neq i + 1 \) (mod \(t \)), and \(C \) is said to be minimal if it has no chord. It is easy to see that the 1st homology of \(\Delta \) is generated by those of minimal cycles contained in \(\Delta \), that is, we have the surjective map:

\[
\bigoplus_{C \subset \Delta, \text{minimal cycle}} \tilde{H}_1(C; K) \to \tilde{H}_1(\Delta; K).
\]

Now by our assumption that \(\Delta \) contains a cycle of length \(\leq n - 1 \) (that is, \(\Delta \) itself is not a minimal cycle), we have the surjective map

\[
(5.5) \quad \bigoplus_{i \in [n]} \tilde{H}_1(\Delta_{-\{i\}}; K) \xrightarrow{\tilde{\eta}} \tilde{H}_1(\Delta; K)
\]

where \(\tilde{\eta} \) is induced by the chain map \(\eta : \bigoplus \tilde{C}_*(\Delta_{-\{i\}}; K) \to \tilde{C}_*(\Delta; K) \), and \(\eta \) is the sum of

\[
\eta_h : \tilde{C}_*(\Delta_{-\{i\}}; K) \ni e_G \mapsto (-1)^{\alpha(i,G)} e_G \in \tilde{C}_*(\Delta; K).
\]

Taking the \(K \)-dual of (5.5), we have the injective map

\[
\tilde{H}_1(\Delta; K) \xrightarrow{\eta^*} \bigoplus_{i \in [n]} \tilde{H}_1(\Delta_{-\{i\}}; K),
\]

where \(\eta^* \) is the \(K \)-dual map of \(\tilde{\eta} \), and composed by the \(K \)-dual

\[
\tilde{\eta}_i^* : \tilde{H}_1(\Delta; K) \to \tilde{H}_1(\Delta_{-\{i\}}; K)
\]
of \(\bar{\eta}_i \). Then for all \(0 \neq z \in \tilde{H}^1(\Delta; K) \), we have \(\bar{\eta}_i^*(z) \neq 0 \) for some \(i \). Recalling the map \(\bar{\varepsilon} : \tilde{H}^1(\Delta; K) \otimes_K S \to \bigoplus \tilde{H}^1(\Delta_{-\{i\}}; K) \otimes_K S \) in (5.4) and its construction, we know for \(z \in \tilde{H}^1(\Delta; K) \),

\[
\bar{\varepsilon}(z \otimes y) = \sum_{i=1}^{n} \bar{\eta}_i^*(z) \otimes x_i y,
\]

and hence \(\bar{\varepsilon} \) is injective. \(\square \)

Remark 5.3. (1) If \(\Delta \) is an \(n \)-gon, then \(\Delta^\vee \) is an \((n-3)\)-dimensional Buchsbaum complex with \(\tilde{H}_{n-4}(\Delta^\vee; K) = K \). If \(n = 5 \), then \(\Delta^\vee \) is a triangulation of the Möbius band. But, for \(n \geq 6 \), \(\Delta^\vee \) is not a homology manifold. In fact, let \(\{1,2\}, \{2,3\}, \ldots, \{n-1,n\}, \{n,1\} \) be the facets of \(\Delta \), then if \(F = [n] \setminus \{1,3,5\} \), easy computation shows that \(\text{lk}_{\Delta^\vee} F \) is a 0-dimensional complex with 3 vertices, and hence \(\tilde{H}_0(\text{lk}_{\Delta^\vee} F; K) = K^2 \).

(2) If \(\text{indeg} \Delta \geq 3 \), then the simplicial complexes given in Example 4.7 are not the only examples which attain the equality \(\text{ld}(\Delta) = n - \text{indeg}(\Delta) \). We shall give two examples of such complexes.

Let \(\Delta \) be the triangulation of the real projective plane \(\mathbb{P}^2 \mathbb{R} \) with 6 vertices which is given in [2] figure 5.8, p.236. Since \(\mathbb{P}^2 \mathbb{R} \) is a manifold, \(K[\Delta] \) is Buchsbaum. Hence we have \(H^2_m(K[\Delta]) = [H^2_m(K[\Delta])]_0 \cong H_1(\Delta; K) \). So, if \(\text{char}(K) = 2 \), then we have \(\text{depth}_S(\text{Ext}^4_S(K[\Delta], \omega_S)) = 0 \). Note that we have \(\Delta = \Delta^\vee \) in this case. Therefore, easy computation shows that

\[
\text{ld}(\Delta^\vee) = \text{ld}(\Delta) = 3 = 6 - 3 = 6 - \text{indeg}(\Delta).
\]

Next, as is well known, there is a triangulation of the torus with 7 vertices. Let \(\Delta \) be the triangulation. Since \(\dim \Delta = 2 \), we have \(\text{indeg}(\Delta^\vee) = 7 - \dim \Delta - 1 = 4 \). Observing that \(K[\Delta] \) is Buchsbaum, we have, by easy computation, that

\[
\text{ld}(\Delta^\vee) = 3 = 7 - 4 = 7 - \text{indeg}(\Delta^\vee).
\]

Thus \(\Delta^\vee \) attains the equality, but is not a simplicial complex given in Example 4.7 since it follows, from Alexander’s duality, that

\[
\dim_K \tilde{H}_i(\Delta^\vee; K) = \dim_K \tilde{H}_{4-i}(\Delta; K) = \begin{cases} 2 \neq 1 & \text{for } i = 3; \\ 0 & \text{for } i \geq 4. \end{cases}
\]

More generally, the dual complexes of \(d \)-dimensional Buchsbaum complexes \(\Delta \) with \(\tilde{H}_{d-1}(\Delta; K) \neq 0 \) satisfy the equality

\[
\text{ld}(\Delta^\vee) = n - \text{indeg}(\Delta^\vee),
\]

but many of them differ from the examples in Example 4.7 and we can construct such complexes more easily as \(\text{indeg}(\Delta^\vee) \) is larger.

References

[1] A. Aramova, L. Avramov and J. Herzog, Resolutions of monomial ideals and cohomology over exterior algebras. Trans. Amer. Math. Soc. 352 (2000), 579-594.

[2] W. Bruns and J. Herzog, Cohen-Macaulay rings, revised edition, Cambridge University Press, 1998.
LINEARITY DEFECTS OF FACE RINGS

[3] D. Eisenbud, The geometry of syzygies: A second course in commutative algebra and algebraic geometry, Grad. Texts in Math., vol.229, Springer, 2005.
[4] D. Eisenbud, G. Fløystad and F.-O. Schreyer, Sheaf cohomology and free resolutions over exterior algebra, Trans. Amer. Math. Soc. 355 (2003), 4397-4426.
[5] D. Eisenbud and S. Goto, Linear free resolutions and minimal multiplicity, J. Algebra 88 (1984), 89–133.
[6] J. Herzog and T. Hibi, Componentwise linear ideals, Nagoya Math. J. 153 (1999), 141–153.
[7] J. Herzog and S. Iyengar, Koszul modules, J. Pure Appl. Algebra 201(2005), 154–188.
[8] B. Iversen, Cohomology of sheaves. Springer-Verlag, 1986.
[9] J. Herzog, A. Simis, and W. Vasconcelos, Approximation complexes of blowing-up rings, II, J. Algebra 82 (1983), 53–83.
[10] R. Martinez-Villa and D. Zacharia, Approximations with modules having linear resolutions, J. Algebra 266 (2003), 671–697.
[11] E. Miller, Cohen-Macaulay quotients of normal affine semigroup rings via irreducible resolutions, Math. Res. Lett. 9 (2002), 117-128.
[12] T. Römer, Generalized Alexander duality and applications, Osaka J. Math. 38 (2001), 469–485.
[13] T. Römer, On minimal graded free resolutions, Thesis, University of Essen, 2001.
[14] P. Schenzel, On the dimension filtration and Cohen-Macaulay filtered modules, in: Commutative algebra and algebraic geometry, ed. F. Van Oystaeyen, Lecture Notes in Pure and Appl. Math., vol. 206, Dekker, 1999, pp. 245–264.
[15] R. Stanley, Combinatorics and commutative algebra, 2nd ed. Birkhäuser 1996.
[16] K. Yanagawa, Alexander duality for Stanley-Reisner rings and squarefree \(N^n \)-graded modules, J. Algebra 225 (2000), 630–645.
[17] K. Yanagawa, Sheaves on finite posets and modules over normal semigroup rings, J. Pure and Appl. Algebra 161 (2001), 341–366.
[18] K. Yanagawa, Stanley-Reisner rings, sheaves, and Poincaré-Verdier duality, Math. Res. Lett. 10 (2003) 635–650.
[19] K. Yanagawa, Derived category of squarefree modules and local cohomology with monomial ideal support, J. Math. Soc. Japan 56 (2004) 289–308.
[20] K. Yanagawa, Castelnuovo-Mumford regularity for complexes and weakly Koszul modules, J. Pure and Appl. Algebra 207 (2006), 77–97.
[21] K. Yanagawa, Notes on \(C \)-graded modules over an affine semigroup ring \(K[C] \), Comm. Algebra, to appear.

DEPARTMENT OF MATHEMATICS, GRADUATE SCHOOL OF SCIENCE, OSAKA UNIVERSITY, TOYONAKA, OSAKA 560-0043, JAPAN
E-mail address: smv679or@ecs.cmc.osaka-u.ac.jp

DEPARTMENT OF MATHEMATICS, GRADUATE SCHOOL OF SCIENCE, OSAKA UNIVERSITY, TOYONAKA, OSAKA 560-0043, JAPAN
E-mail address: yanagawa@math.sci.osaka-u.ac.jp