Canted Ferromagnetism in Double Exchange Model with on-site Coulomb Repulsion

Naoum Karchev and Vasil Michev

Department of Physics, University of Sofia, 1164 Sofia, Bulgaria

The double exchange model with on-site Coulomb repulsion is considered. Schwinger-bosons representation of the localized spins is used and two spin-singlet Fermion operators are introduced. In terms of the new Fermi fields the on-site Hund’s interaction is in a diagonal form and the true magnons of the system are identified. The singlet fermions can be understood as electrons dressed by a cloud of repeatedly emitted and reabsorbed magnons. Rewritten in terms of Schwinger-bosons and spin-singlet Fermions the theory is $U(1)$ gauge invariant. We show that spontaneous breakdown of the gauge symmetry leads to canted ferromagnetism with on-site spins of localized and delocalized electrons misaligned. On-site canted phase emerges in double exchange model when Coulomb repulsion is large enough. The quantum phase transition between ferromagnetism and canted phase is studied varying the Coulomb repulsion for different values of parameters in the theory such as Hund’s coupling and chemical potential.

PACS numbers: 75.30.Et, 75.47.Lx, 75.50.Pp, 75.30.Ds

I. INTRODUCTION

Spin-fermion model describes materials which get their magnetic properties from a system of localized magnetic moments being coupled to conducting electrons. The model is known as s – d (or s – f) model in which the electrons are separated into delocalized s electrons and localized $d(f)$ electrons. The names of the s and $d(f)$ electrons do not necessarily mean that the orbital electron states are of corresponding type. They are introduced to distinguish the localized from delocalized electrons. The model appears in the literature also as the Ferromagnetic Kondo Lattice model (FKLM) or the Double Exchange model (DEM)\cite{1, 2, 3, 4, 5, 6}.\footnote{Another materials for which the DEM is relevant are the dilute magnetic semiconductors, such as $Ga_{1-x}Mn_xAs$, where fraction of non-magnetic elements Ga is replaced with magnetic ones Mn. The atoms of manganese supply of both carriers (holes) and magnetic moment. These materials have attracted great attention after the experimental observation of ferromagnetic transition temperature T_c as high as 110K\cite{11}. One-band and two-band double exchange models have been solved, by means of dynamical mean-field approximation or Monte Carlo simulations, to find the magnetic transition temperature as a function of coupling constants, hopping parameters, and carrier densities\cite{12, 13}.}

The double exchange model, as we shall call the model from now on, has great variety of applications to different topics in the magnetism. On the basis of the double exchange model a microscopic theory for ferromagnetic hexaborides, such as EuB_6, is proposed\cite{7}. The magnetism of ferromagnetic metal is found to arise from the half-filled $4f$ shell of Eu, whose localized electrons account for the measured moment\cite{8, 9, 10}. The transport properties such as the Hall effect, magnetoresistance, and dc resistivity are quantitatively described within DEM\cite{6}.

The double exchange model is a widely used model for manganites\cite{1, 4}. In isolation, the ions of Mn have an active $3d$-shell with five degenerate levels. The degeneracy is presented due to rotational invariance within angular momentum $l = 2$ subspace. The crystal environment results in a particular splitting of the five d-orbitals ($crystall field splitting$) into two groups: the e_g and t_{2g} states. The electrons from the e_g sector, which form a doublet, are removed upon hole doping. The t_{2g} electrons, which form a triplet, are not affected by doping, and their population remains constant. The Hund rule enforces alignment of the three t_{2g} spins into a $s = 3/2$ state. Then, the t_{2g} sector can be replaced by a localized spin at each manganese ion, reducing the complexity of the original five orbital model. The next drastic simplification is that only one e_g orbital is available at each site. To justify this one can assume\cite{14} that a static Jahn-Teller distortion leads to a splitting of the degenerate e_g levels, allowing to keep only one active orbital. The only important interaction between the two sectors is the Hund coupling between localized t_{2g} spins and mobile e_g electrons.

The double exchange model has a rich phase diagram, exhibiting a variety of phases, with unusual ordering in the ground states. The procedures followed to obtain the phase diagram are different: numerical studies\cite{15}, dynamical mean field theory\cite{16}, and analytical calculations\cite{17, 18}, but four phases have been systematically observed: (i) antiferromagnetism (AF) at a density of mobile electrons $n = 1$, (ii) ferromagnetism (FM) at intermediate electronic densities, (iii) phase separation (PS) between FM and AF phases, and (iv) spin incommensurable (IC) phase at large enough Hund coupling. The competition between spin spiral incommensurate order or phase separation and canted ferromagnetism is also a topic of intensive study\cite{17, 18, 19}.

The simplest but realistic Hamiltonian for the double
exchange model has the form
\[
H = -t \sum_{<ij>} (c^+_i \sigma c_{j\sigma} + h.c.) - J_H \sum_i S_i \cdot s_i \quad (1)
\]
where \(c^+_i\) and \(c_{i\sigma}\) are creation and destruction operators for mobile electrons, \(s_i^\sigma = \frac{1}{2} \sum_{\sigma'\sigma''} c^\dagger_{i\sigma'} \tau_{\sigma'\sigma''} c_{i\sigma''}\), with the Pauli matrices \((\tau^x, \tau^y, \tau^z)\), is the spin of the conduction electrons, and \(S_i\) is the spin of the localized electrons. The sums are over all sites of a three-dimensional cubic lattice, and \((i, j)\) denotes the sum over the nearest neighbors. In equation (1) the hopping amplitude and the Hund coupling between localized and mobile electrons are positive.

The Hamiltonian (1) of the DEM is quadratic with respect to the fermions \((c^+_i, c_{i\sigma})\). Averaging in the subspace of the itinerant electrons one obtains an effective Heisenberg like model in terms of core spins \(S_i\) [20, 21]. In the small \(J_H\) limit Ruderman-Kittel-Kasuya-Yosida (RKKY) theory is recovered. The subtle point is that if we use a Holstein-Primakoff representation for the localized spins \(S_i\), the creation and annihilation boson operators do not describe the true magnon of the system [22]. The true magnons are transversal fluctuations corresponding to the total magnetization which includes both the spins of localized and delocalized electrons. Therefore the RKKY validity condition requires not only small Hund’s coupling, but it also insists the charge carrier density to be small, which in turn means that the magnetization of the mobile electrons is inessential.

Since the only interaction between localized and delocalized electrons is the Hund coupling, it is desirable to treat the on-site term in the Hamiltonian (1) exactly. To this end, the Holstein-Primakoff transformation was generalized to the case when the length of the spin is operator by itself [23]. The procedure removes all spin variables from the Hund coupling term. The bosonic and fermionic sectors are constructed in \(\frac{1}{2}\) expansion up to the fourth order. Alternatively, two spin-singlet fermi fields are introduced in Ref. [24]. In terms of the singlet Fermi fields the on-site term is in a diagonal form, the spin variables are removed, and one can treat it exactly. An analogous technique is used in Ref. [25].

More realistic DEM would account for the on-site Coulomb repulsion. The Coulomb (Hubbard) interaction has a profound effect on the band structure, magnetic ground state (magnetic configurations), and transport properties of the spin-fermion systems. The results of the electron-electron repulsion depend on parameters in the theory such as doping, band width, and temperature. While some effects of the Hubbard term have been addressed in the past by means of mean-field theory [26, 27, 28], local spin-density approximation (LSDA) and LSDA+U calculations [29], and dynamical mean-field theory [30], its impact is not fully appreciated so far.

In the present paper we study canted ferromagnetism in double exchange model with on-site Coulomb repulsion. Usually the canted magnetism is considered as a two-sublattice spin configuration with neighboring lattice spins misaligned by an angle \(\theta\). First de Gennes observed that in double exchange model spin-canted state (Fig. 1a) interpolates between ferromagnetic and antiferromagnetic order [31]. The canted phase (Fig. 1b) is a part of the phase diagram of mixed-spin \((S_1)S_2\) Heisenberg model on square lattice [32]. Finally, canted phase appears in the lattice models of quantum rotors [33].

![FIG. 1: Sketch of two sublattice spin-canted states:](image)

FIG. 1: Sketch of two sublattice spin-canted states:

a) canted antiferromagnetism,

b) canted ferromagnetism

In the present paper we show that **canted ferromagnetism with on-site spins of localized and delocalized electrons misaligned** (Fig. 2) emerges in double exchange model when Coulomb repulsion is large enough. We study quantum phase transition between ferromagnetic and on-site canted orders when Coulomb repulsion is varied for different values of parameters in the theory such as Hund’s coupling and chemical potential.

The paper is organized as follows. In Sec.II we study double exchange model (1) supplemented with an antiferromagnetic Heisenberg interaction between nearest-neighbors core spins. Schwinger-bosons representation of the localized spins is used and two spin-singlet Fermion
operators are introduced. In terms of the new Fermi fields the on-site Hund’s interaction is in a diagonal form and the true magnons of the system are identified. The singlet fermions can be understood as electrons dressed by a cloud of repeatedly emitted and reabsorbed magnons. Integrated over the singlet fermions we obtain an effective Heisenberg-like theory. Positivity of the spin-stiffness, as a function of Hund’s coupling J_H and charge carrier density, is the condition for the stable ferromagnetism. The phase boundary is described both in the case of zero and non-zero antiferromagnetic exchange. Sec. III is devoted to the on-site canted ferromagnetism in DEM with on-site Coulomb repulsion. The theory rewritten in terms of Schwinger-bosons and spin-singlet Fermions is an $U(1)$ gauge invariant theory. We show that on-site canted state is a state with spontaneously broken gauge symmetry. The quantum phase transition between ferromagnetism and canted phase is studied varying the parameters in theory. A summary in Sec. IV concludes the paper.

II. MAGNONS IN DOUBLE EXCHANGE MODEL

We consider a theory with Hamiltonian

$$H = H - \mu N = -t \sum_{\langle ij \rangle} (c^+_i c^\sigma_j + h.c.) - \mu \sum_i n_i + J_{AF} \sum_{\langle ij \rangle} S_i \cdot S_j - J_H \sum_i S_i \cdot s_i \tag{2}$$

where μ is the chemical potential, and $n_i = c^+_i c^\sigma_i$. The antiferromagnetic Heisenberg term (J_{AF}) is very important for the manganites. In the limit when all e_g electrons are removed, and the system is without mobile electrons, the t_{2g} electrons induce an antiferromagnetic Heisenberg exchange between nearest-neighbors leading to the standard antiferromagnetism. The most prominent example is $CaMnO_3$.\[14\]

In terms of Schwinger-bosons ($\varphi_i, \varphi_i^\dagger$) the spin operators have the following representation:

$$S_i = \frac{1}{2} \varphi^+_i \tau^\sigma \varphi^\dagger_i, \quad \varphi^+_i \varphi^\dagger_i = 2s. \tag{3}$$

The partition function can be written as a path integral over the complex functions of the Matsubara time $\varphi_i(\tau)$ ($\varphi^\dagger_i(\tau)$) and Grassmann functions $c_i(\tau)$ ($c^+_i(\tau)$).

$$Z(\beta) = \int d\mu (\varphi^+, \varphi, c^+, c) e^{-S}. \tag{4}$$

with an action given by the expression

$$S = \int_0^\beta d\tau \left[\sum_i (\varphi^+_i(\tau) \varphi_i(\tau) + c^+_i(\tau) c_i(\tau)) + h(\varphi^+, \varphi, c^+, c) \right], \tag{5}$$

where β is the inverse temperature and the Hamiltonian is obtained from Eqs. (2) and (3) replacing the operators with the functions. In terms of Schwinger-bosons the theory is invariant under $U(1)$ gauge transformations

$$\varphi^\dagger_{i\sigma}(\tau) = e^{i\alpha_{i\sigma}}(\tau) \varphi^\dagger_{i\sigma}(\tau), \quad \varphi_{i\sigma}(\tau) = e^{-i\alpha_{i\sigma}}(\tau) \varphi_{i\sigma}(\tau) \tag{6}$$

with parameters which are period functions of Matsubara time $\alpha_i(0) = \alpha_i(\beta)$. The measure for the Schwinger bosons includes Dirac-\delta functions that enforce the constraint (3) and the gauge-fixing condition

$$D\mu (\varphi^+, \varphi) = \prod_{i, \tau, \sigma} \frac{D\varphi^+_{i\sigma}(\tau) D\varphi_{i\sigma}(\tau)}{2\pi i} \prod_{i\tau} \delta \left(\varphi^+_{i\sigma}(\tau) \varphi_{i\sigma}(\tau) - 2s \right) \prod_{i\tau} \delta (g, f). \tag{7}$$

We introduce two spin-singlet Fermi fields

$$\Psi_i^A(\tau) = \frac{1}{\sqrt{2s}} \varphi^+_{i\sigma}(\tau) c_{i\sigma}(\tau), \tag{8}$$

$$\Psi_i^B(\tau) = \frac{1}{\sqrt{2s}} \left[\varphi_{i\sigma}(\tau) c_{i\sigma}(\tau)-\varphi_{i\sigma}(\tau) c_{i\sigma}(\tau) \right], \tag{9}$$

which are gauge variant with charge -1 and 1 respectively

$$\Psi_i^A(\tau) = e^{-i\alpha_{i\sigma}(\tau)} \Psi_i^A(\tau), \quad \Psi_i^B(\tau) = e^{i\alpha_{i\sigma}(\tau)} \Psi_i^B(\tau). \tag{10}$$

The equations (8) and (9) can be regarded as a SU(2) transformation

$$\Psi_{i\sigma} = g^\dagger_{i\sigma\sigma'} c_{i\sigma'} \Rightarrow g_{i\sigma}^+ = \frac{1}{\sqrt{2s}} \left(\varphi^+_{i\sigma} \varphi^+_{i\sigma'} \right) \tag{11}$$

with $\Psi_i^A = \Psi_{1i}$ and $\Psi_i^B = \Psi_{2i}$. For that reason the Fermi measure is invariant under the change of variables. In terms of the spin-singlet Fermi fields the spin of the conduction electrons s_i has the form

$$s_i^\mu = \frac{1}{2} \varphi^+_{i\sigma} \tau^\mu_{\sigma\sigma'} c_{i\sigma'} = \frac{1}{2} O_{\mu\nu} \Psi_{i\sigma}^A \tau^\nu_{\sigma\sigma'} \Psi_{i\sigma}', \tag{12}$$

where

$$O_{\mu\nu} = \frac{1}{2} Tr g_{i\sigma}^+ \tau^\mu g_{i\sigma}^\nu. \tag{13}$$

It is convenient to introduce three basic vectors which depend on the Schwinger-bosons

$$T^1_{i\mu} = O_{\mu1}, \quad T^2_{i\mu} = O_{\mu2}, \quad T^3_{i\mu} = O_{\mu3}, \tag{14}$$

where $T^3_i = \frac{1}{2} S_i$. Then, the spin of the electrons can be represented as a linear combination of three vectors S_j, $P_j = T^j_1 + i T^j_2$ and $P_j^+ = T^j_1 - i T^j_2$

$$s_i = \frac{1}{2s} S_i (\Psi_i^A + \Psi_i^A - \Psi_i^B + \Psi_i^B), \tag{15}$$

$$+ \frac{1}{2} P_i (\Psi_i^B + \Psi_i^A + \frac{1}{2} \Psi_i^B - \Psi_i^A).$$
The basic vectors satisfy the relations $S_i^2 = s^2$, $P_i^2 = P_i^z = S_i \cdot P_i = S_i \cdot P_i^z = 0$, and $P_i^+ \cdot P_i = 2$. Using the expression (14) for the spin of itinerant electrons the total spin of the system $S_{i}^{\text{tot}} = S_i + s_i$ can be written in the form

$$S_{i}^{\text{tot}} = \frac{1}{s} \left[s + \frac{1}{2} \left(\Psi_i^A + \Psi_i^B \right) \right] S_i + \frac{1}{2} P_i^+ \Psi_i^A + \frac{1}{2} P_i^+ \Psi_i^A$$

The gauge invariance imposes the conditions $\langle \Psi_i^A + \Psi_i^B \rangle = \langle \Psi_i^B + \Psi_i^A \rangle = 0$. As a result, the dimensionless magnetization per lattice site $M = \langle (S_i^{\text{tot}})^2 \rangle$ reads

$$M = \frac{1}{s} \left[s + \frac{1}{2} \left(\Psi_i^A + \Psi_i^B - \Psi_i^B + \Psi_i^A \right) \right] \langle S_i^2 \rangle \quad \text{(17)}$$

At zero temperature $\langle S_i^2 \rangle = s$ and $M = s + m$, where $m = \frac{1}{2} \left(\langle \Psi_i^A + \Psi_i^B - \Psi_i^B + \Psi_i^A \rangle \right)$

is the contribution of the itinerant electrons.

Let us average the total spin of the system (Eq. 16) in the subspace of the itinerant electrons $\langle S_{i}^{\text{tot}} \rangle_f = M_f$. The vector M_f ($M_f^2 = M^2$) identifies the local orientation of the total magnetization. Accounting for the gauge invariance, one obtains an expression for M_f in terms of core spins S_i

$$\langle S_{i}^{\text{tot}} \rangle_f = M_f = \frac{M}{s} S_i \quad \text{(19)}$$

Now, if we use Holstein-Primakov representation for the vectors M_j

$$M_j^+ = M_{j1} + i M_{j2} = \sqrt{2M - a_j^+ a_j} \quad \text{a}_j$$

$$M_j^- = M_{j1} - i M_{j2} = a_j^+ \sqrt{2M - a_j^+ a_j} \quad \text{a}_j$$

$$M_j^3 = 2M - a_j^+ a_j$$

the boson fields a_j and a_j^+ are the true magnons in the system. In terms of the true magnons the Schwinger-bosons (3) have the following representation

$$\varphi_{i1} = \sqrt{2s - \frac{s}{M}} a_j^+ a_j, \quad \varphi_{i2} = \sqrt{\frac{s}{M}} a_j \quad \text{(21)}$$

Replacing in Eqs. (8) and (9) for the spin-singlet fermions and keeping only the first two terms in $1/M$ expansion $\sqrt{1 - \frac{1}{2M} a_j^+ a_j} \simeq 1 - \frac{1}{4M} a_j^+ a_j + ...$ we obtain

$$\Psi_i^A = c_{i1} + \frac{1}{\sqrt{2M}} a_j^+ a_j c_{i1} - \frac{1}{4M} a_j^+ a_j c_{i1} + ... \quad \text{(22)}$$

$$\Psi_i^B = c_{i2} - \frac{1}{\sqrt{2M}} a_j c_{i1} - \frac{1}{4M} a_j^+ a_j c_{i1} + ... \quad \text{(23)}$$

The equations (22) and (23) show that the singlet fermions are electrons dressed by a virtual cloud of repeatedly emitted and reabsorbed magnons.

An important advantage of working with A and B fermions is the fact that in terms of these spin-singlet fields the spin-fermion interaction is in a diagonal form, the spin variables (magnons) are removed, and one accounts for it exactly

$$\sum_i S_i \cdot s_i = \frac{s}{2} \sum_i [\Psi_i^A + \Psi_i^B - \Psi_i^B + \Psi_i^A]. \quad \text{(24)}$$

To proceed we rewrite the action (6) as a function of Schwinger-bosons and spin-singlet fermions

$$S = \int_0^\beta d\tau \left[\varphi_{i\sigma}^+ \varphi_{i\sigma} + \Psi_i^A \left(\frac{\partial}{\partial \tau} + \frac{1}{2s} \varphi_{i\sigma}^+ \varphi_{i\sigma} \right) \right] \Psi_i^A + \Psi_i^B \left(\frac{\partial}{\partial \tau} - \frac{1}{2s} \varphi_{i\sigma}^+ \varphi_{i\sigma} \right) \Psi_i^B$$

$$+ \frac{1}{2s} \left(\varphi_{i1}^+ \varphi_{i2}^+ + \varphi_{i2}^+ \varphi_{i1}^+ \right) \Psi_i^A \Psi_i^B + \frac{1}{2s} \left(\varphi_{i1} \varphi_{i2} + \varphi_{i2} \varphi_{i1} \right) \Psi_i^A + h \left(\varphi^+, \varphi, \Psi^+, \Psi \right). \quad \text{(25)}$$

It is convenient to write the Hamiltonian $h (\varphi^+, \varphi, \Psi^+, \Psi)$ as a sum of three terms

$$h = h_f + h_H + h_{\text{int}}, \quad \text{(26)}$$

where h_f is the free A and B fermions’ Hamiltonian

$$h_f = -t \sum_{(ij)} \left(\Psi_{i\sigma}^+ \Psi_{j\sigma} + h.c. \right) - \mu \sum_i \Psi_{i\sigma}^+ \Psi_{i\sigma}$$

$$- \frac{J_H s}{2} \sum_i \left(\Psi_i^A + \Psi_i^B - \Psi_i^A \Psi_i^B \right), \quad \text{(27)}$$

h_H is the Hamiltonian of Heisenberg theory of antiferromagnetism (3), and h_{int} is the Hamiltonian of magnon-fermion interaction

$$h_{\text{int}} = -t \sum_{(ij)} \left[\frac{1}{2s} \left(\varphi_{i\sigma}^+ \varphi_{j\sigma} + 2s \right) \Psi_{i\sigma}^+ \Psi_{j\sigma} + h.c. \right]$$

$$+ \left[\frac{1}{2s} \left(\varphi_{i1}^+ \varphi_{i2}^+ - \varphi_{i1}^+ \varphi_{i2}^+ \right) \left(\Psi_i^A + \Psi_i^B - \Psi_i^A \Psi_i^B \right) + h.c. \right]. \quad \text{(28)}$$

The action (25) is quadratic with respect to the spin-singlet fermions and one can integrate them out. We can accomplish this by first using the representation (21) of the Schwinger-bosons, then keeping only the quadratic terms with respect to the magnons, and finally calculating the diagrams in the leading order of gradient expansion. The action of the effective theory, in Gaussian
approximation is

\[S_{\text{eff}} = \int_0^\beta dt \left[a_i^+ \hat{a}_i + M J \sum_{(ij)} (a_i^+ a_j + a_j^+ a_i - a_i^+ a_i - a_j^+ a_j) \right], \]

where \(M \) is the dimensionless magnetization per lattice site Eq. (17) at zero temperature, and \(J \) is the effective exchange coupling

\[J = -\frac{s^2}{M^2} J_{AF} \]

\[+ \frac{t}{6M^2} \int \int \int \frac{d^3 k}{(2\pi)^3} \left(\sum_{\mu=1}^3 \cos k_\mu \right) (n_k^A + n_k^B) \]

\[- \frac{2t^2}{3M^2 J_{HS}} \int \int \int \frac{d^3 k}{(2\pi)^3} \left(\sum_{\mu=1}^3 \sin^2 k_\mu \right) (n_k^A - n_k^B) \]

In equation (30) \(n_k^R = \theta (-\varepsilon_k^R) \) (R=A, B) are the occupation numbers for the A and B fermions with dispersions

\[\varepsilon_k^A = -2t (\cos k_x + \cos k_y + \cos k_z) - \mu - \frac{J_{HS}}{2} \]

\[\varepsilon_k^B = -2t (\cos k_x + \cos k_y + \cos k_z) - \mu + \frac{J_{HS}}{2} \]

The first term in equation (30) comes from "tadpole" diagrams with one A or B-fermion line with vertices which relate to the first term in the Hamiltonian of interaction (28). The second term is obtained calculating the one-loop diagrams with A and B-fermion lines, and with vertices which relate to the second term in \(h_{\text{int}} \). The term with time derivative in the effective action (29) is obtained summing two terms. The first one is the term with time derivative in the action (28), which in terms of magnons has the form \(\int_0^\beta dt \sum_{\mathbf{M}_i} a_i^+ \hat{a}_i \), while the second results from "tadpole" diagrams with vertices related to the second and third terms of the action (28).

Based on the rotational symmetry, one can supplement the action (28) up to an effective Heisenberg like action, written in terms of the vectors \(\mathbf{M}_i \)

\[H_{\text{eff}} = -J \sum_{(ij)} \mathbf{M}_i \cdot \mathbf{M}_j. \]

The ferromagnetic phase is stable if the effective exchange coupling constant is positive \(J > 0 \). The dimensionless constant \(J/W \), where \(W = 12t \) is the band-width, depends on \(J_{AF}/W, J_{HS}/W \) and \(\mu/2t \). The \((J/W, n) \) phase diagram, where \(n \) is carrier density, is depicted in Fig.3 for \(J_{AF} = 0 \) and \(\frac{J_{HS}}{W} = 0.1 \).

The phase diagram Fig.3a (\(J_{AF} = 0 \)) is in a good agreement with phase diagrams obtained numerically [15] and by means of alternative analytical calculations [18].

Phach diagram Fig.3b shows that direct antiferromagnetic exchange suppresses the ferromagnetism at small values of carrier concentrations, which is well known experimental fact for manganites [14].

III. CANTED FERROMAGNETISM

After considering pure double exchange model, let us address the double exchange model supplemented with on-site Coulomb repulsion (Hubbard term).

\[h = H - \mu N = -t \sum_{\langle ij \rangle} (c_i^\dagger c_j + h.c.) \]

\[- J_H \sum_i \mathbf{S}_i \cdot \mathbf{s}_i + U \sum_i n_{i\uparrow} n_{i\downarrow} - \mu \sum_i n_i \]

where \(n_{i\sigma} = c_i^\dagger c_i \). Our purpose is to show that canted ferromagnetism, with on-site spins of localized and delocalized electrons misaligned, emerges in double exchange model when Coulomb repulsion is large enough.

Let us average the spin of the electrons (Eq. (15)) in the subspace of the itinerant electrons. We obtain, as a consequence of gauge invariance, that spin of electrons are parallel to the localized spins \(\langle \mathbf{s}_i \rangle_f = \frac{\mathbf{n}_i}{n} \mathbf{S}_i \). Equation (15) shows that the on-site spins are misaligned if \(\langle \Psi_i^A \Psi_i^B \rangle \) and \(\langle \Psi_i^B \Psi_i^A \rangle \) are not equal to zero, which in turn means that gauge symmetry is spontaneously broken. To probe dynamical breakdown of the gauge symmetry, or which is the same, the on-site canted ferromagnetism we rewrite the Hamiltonian (33) in terms of Schwinger-bosons and spin-singlet Fermions. In particular, one obtains for the Hubbard term

\[\sum_i n_{i\uparrow} n_{i\downarrow} = -\sum_i \Psi_i^A \Psi_i^B \Psi_i^{B*} \Psi_i^A. \]

We decouple this term by means of the Hubbard-Stratonovich transformation, introducing complex field...
\[\Delta_i \left(\Delta_i^+ \right), \text{ the order parameter of the gauge symmetry breaking.} \]

\[U \int_0^\beta d\tau \sum_{i} \Psi_i^{A+}(\tau) \Psi_i^B(\tau) \Psi_i^{B+}(\tau) \Psi_i^A(\tau) \]

\[= \int d\mu(\Delta^+ \Delta) \exp \left[- \int d\tau \sum_i \left(\frac{\Delta_i^+ (\tau) \Delta_i (\tau)}{U} + \Psi_i^{A+}(\tau) \Psi_i^B(\tau) \Delta_i (\tau) + \Delta_i^+ (\tau) \Psi_i^{B+}(\tau) \Psi_i^A(\tau) \right) \right] \]

Now, the partition function \[4 \] can be represented as a path integral over the spin-singlet fermions, Schwinger-bosons, and complex order parameter. The integral over the fermions is Gaussian, and one can integrate them out. The resulting expression for the partition function is an integral over the Schwinger-bosons, and complex order parameter.

\[Z(\beta) = \int d\mu(\varphi^+, \varphi, \Delta^+, \Delta) e^{-W(\varphi^+, \varphi, \Delta^+, \Delta)} . \]

We perform the integral over the collective variables \[\Delta_i^+ \] and \[\Delta_i \] using the steepest descend method. To this end, we set the spin fluctuation \[a_i^+ \] and \[a_i \] (see equations \[20 \] 21) equal to zero and assume that mean-field value of the order parameter \[\Delta_i (\tau) \] is an independent of \[\tau \] and lattice sites \[i \] real constant \[\Delta \]. Then, the free energy of the system, in mean-field approximation, is

\[\mathcal{F} = \frac{\Delta^2}{U} - \mathcal{F}_f \]

where \[\mathcal{F}_f \] is the free energy of a Fermi system with Hamiltonian

\[h_f = \sum_k \left[\varepsilon^A_k \Psi^A_k \Psi^A_k + \varepsilon^B_k \Psi^B_k \Psi^B_k + \Delta \left(\Psi^A_k \Psi^B_k + \Psi^B_k \Psi^A_k \right) \right] \]

To write the Hamiltonian in diagonal form one introduces new Fermi fields \(\psi^a_k \) and \(\psi^b_k \)

\[\Psi^A_k = u \psi^a_k + v \psi^b_k, \quad \Psi^B_k = -v \psi^a_k + u \psi^b_k, \]

where the coefficients are

\[u = \sqrt{\frac{1}{2} \left(1 + \frac{J_H s}{\sqrt{(J_H s)^2 + 4\Delta^2}} \right)}, \]

\[v = (\text{sign}\Delta) \sqrt{1 - u^2} \]

Then,

\[h_f = \sum_k \left[\varepsilon^a_k \psi^a_k \psi^a_k + \varepsilon^b_k \psi^b_k \psi^b_k \right], \]

Here \[\varepsilon^a_k = \varepsilon^b_k = \varepsilon^+_k \], where

\[\varepsilon^+_k = \varepsilon_k + \frac{1}{2} \sqrt{(J_H s)^2 + 4\Delta^2}. \]

and \[\varepsilon_k = -2t \left[\cos(k_x) + \cos(k_y) + \cos(k_z) \right] - \mu \]. Now, we can obtain the mean-field expression for the free energy. At zero temperature it is

\[\mathcal{F} = \frac{\Delta^2}{U} - \int \int \int d^3k \left[\varepsilon^+_k \theta \left(-\varepsilon^+_k \right) + \varepsilon^-_k \theta \left(-\varepsilon^-_k \right) \right] \]

It is convenient to introduce the angle between the on-site spin of carrier and localized spin

\[\cos \Theta = \frac{S_i \cdot s_i}{|S_i||s_i|}. \]

Using the equation \[13 \], for the spin of itinerant electrons, and the properties of the basic vectors one obtains

\[\cos \Theta = \left[1 + \frac{4(\Psi^A_i \Psi^B_i - \Psi^B_i \Psi^A_i)}{(\Psi^A_i \Psi^A_i + \Psi^B_i \Psi^B_i)} \right]^{-\frac{1}{2}} \]

We calculate the matrix elements in the formula \[14 \] in mean-field approximation applying the transformation \[39 \] \[10 \]. The result is

\[\langle \Psi^A_i \Psi^A_i - \Psi^B_i \Psi^B_i \rangle = \frac{J_H s \left(n^a_i - n^b_i \right)}{\sqrt{(J_H s)^2 + 4\Delta^2}} \]

\[\langle \Psi^A_i \Psi^A_i + \Psi^B_i \Psi^A_i \rangle = \frac{\Delta \left(n^a_i - n^b_i \right)}{\sqrt{(J_H s)^2 + 4\Delta^2}} \]

where \(n^a_i \) and \(n^b_i \) are occupation numbers for "a" and "b" fermions introduced by the transformation \[39 \]. After some algebra we arrive at the mean-field expression for the angle

\[\cos \Theta = \frac{J_H s}{\sqrt{(J_H s)^2 + 4\Delta^2}}. \]

Next, we replace \[\Delta \] in equations \[12 \] and \[13 \] by \(\cos \Theta \) from Eq \[17 \] and rewrite the mean-field free energy as a function of \(\cos \Theta \). The dimensionless energy \(F = 6F/W \) is depicted in (Figs. 4, 5, 6) for different values of \(W/U \) and fixed \(J_H s/W \) and \(\mu/W \). As graphs show, increasing the Coulomb repulsion constant the system passes through a first order quantum phase transition. Red lines correspond to the critical values \(U_c \) of the Coulomb repulsion. The values \(U_c \) and \(\Theta_c \) depend on the parameters of the theory such as Hund’s coupling constant, chemical potential and band width. The character of the transition also depends on the parameters in the theory. We see (Fig. 6) that when \(J_H s/W = 0.50 \) and \(\mu/W = -0.33 \) for small values of Coulomb repulsion, \(W/U = 1.50, 1.10 \), the minimum of the free energy is at \(\cos \Theta = 1 \). Near the
quantum phase transition $W/U = 0.77$ the ground state is highly degenerated, while below this critical value, for large enough U, the on-site canted ferromagnetic state, with $\cos \Theta < 1$, is the ground state of the system. To figure that quantum phase transition out one has to go beyond the mean-field theory or to use alternative methods of calculations to complement the above one.

![Figure 4](image1.png)

FIG. 4: Dimensionless mean-field free energy $F = 6F/W$ as a function of $\cos \theta$ for $J_H s/W = 2.32$, $\mu/W = -1.22$, and $W/U=0.23; 0.25; 0.28; 0.30; 0.32; 0.35; 0.40$

![Figure 5](image2.png)

FIG. 5: Dimensionless mean-field free energy $F = 6F/W$ as a function of $\cos \theta$ for $J_H s/W = 0.95$, $\mu/W = -5$, and $W/U=0.30; 0.33; 0.36; 0.39; 0.42; 0.45; 0.48$

![Figure 6](image3.png)

FIG. 6: Dimensionless mean-field free energy $F = 6F/W$ as a function of $\cos \theta$ for $J_H s/W = 0.50$, $\mu/W = -0.33$, and $W/U=0.32; 0.39; 0.48; 0.60; 0.77; 1.10; 1.50$

IV. CONCLUSIONS

We have argued that the on-site Coulomb repulsion strongly affected the magnetic properties of spin-fermion systems. In particular, when Coulomb repulsion is strong enough, the on-site localized and carriers’ spins become misaligned (on-site canted ferromagnetic state). As follows from (Eq. 47), $\cos \Theta > 0$ when $J_N > 0$ (see Fig. 2a), and $\cos \Theta < 0$ when $J_N < 0$ (Fig. 2b). To obtain this result a double exchange model with Hubbard term was considered. We represented the localized spins by means of Schwinger-bosons and introduced two spin-singlet Fermion operators. In terms of the new Fermi fields the on-site Hund’s interaction is in a diagonal form and the true magnons of the system can be recognized. Written in terms of Schwinger-bosons and spin-singlet fermions the theory is $U(1)$ gauge invariant. We have shown that on-site canted ferromagnetic state is a state with spontaneously broken gauge symmetry. This is because the order parameter is gauge varying collective field with charge -2 (see equations (10) and (35))

$$\Delta_j(\tau) = e^{-i2\alpha_j(\tau)} \Delta_j(\tau)$$

and non-zero expectation value $\langle \Delta_j(\tau) \rangle \neq 0$ means spontaneous breakdown of the gauge symmetry.

To study the Goldstone modes in the on-site canted ferromagnetic phase it is convenient to represent the Schwinger-bosons and the order parameter in the form

$$\varphi_{j1} = e^{i\phi_j} \sqrt{2s - \frac{s}{M} a_j^+ a_j}, \quad \varphi_{j2} = e^{i\chi_j} \sqrt{\frac{s}{M} a_j},$$

$$\Delta_j = |\Delta_j| e^{i\chi_j}.$$
Then the new fields, a^\dagger_j, a_j, ϕ_j and χ_j transform under the gauge transformation in the following way

$$a'_j = e^{i\alpha_j} a_j, \quad \phi'_j = \phi_j + \alpha_j, \quad \chi'_j = \chi_j - 2\alpha_j.$$ \hfill (50)

The theory is an $U(1)$ gauge theory and we have to impose one gauge fixing condition. Hence, there are two Goldstone modes in the theory. For example one can use $\phi_i = 0$ as a gauge fixing condition (see equation (21)), then the Goldstone modes are the magnons $a_i (a^\dagger_i)$ and χ_i phase. The physical origin of the extra mode is the totally broken rotation symmetry, while mathematical reason is the spontaneous breakdown of the gauge symmetry. Alternatively, one can choose $\chi_i = 0$ for the gauge fixing. Both these conditions are not convenient. In the quadratic parts of the corresponding effective theories there are terms which mix magnons and phases. These terms are obstacle to recognize the spectrum in the theory. One hopes that there is a gauge fixing condition which involves all gauge varying fields and the quadratic terms of the effective theory takes diagonal form. This issue will be addressed elsewhere.

[*] Electronic address: naoum@phys.uni-sofia.bg
[1] C. Zener, Phys. Rev. 81, 440 (1951).
[2] T. Kasuya, Prog. Theor. Phys. 16, 45 (1956).
[3] K. Yosida, Phys. Rev., 106, 893 (1955).
[4] J. Kondo, Prog. Theor. Phys. 32, 37 (1964).
[5] P. Prelovšek, Phys.Lett. A126, 287 (1988).
[6] E. L. Nagaev, Phys.Status.solidi (b), 65, 11 (1974).
[7] Vitor M. Pereira, J. M. B. Lopes dos Santos, Eduardo V. Castro, and A. H. Castro Neto, Phys. Rev. Lett. 93, 147202 (2004).
[8] S. Süllov et al., Phys.Rev B57, 5860 (1998).
[9] S. Paschen et al, Phys. Rev. B 61, 4174 (2000).
[10] W. Henggeler et al, Solid State Commun. 108, 929 (1998).
[11] H. Ohno, et al, Appl.Phys.Lett. 69, 363 (1996).
[12] A. Chattopadhyay, S. Das Sarma, and A. J. Millis, Phys.Rev. Lett., 87, 227202 (2001).
[13] F. Popescu, Y. Yildirim, G. Alvarez, A. Moreo, and E. Dagotto, Phys. Rev. B73, 075206 (2006).
[14] E. Dagotto, Nanoscale Phase Separation and Colossal Magnetoresistance (Springer-Verlag, Berlin, 2003) and references therein.
[15] S. Yunoki, J. Hu, A. L. Malvezzi, A. Moreo, N. Furukawa, and E. Dagotto, Phys. Rev. Lett. 80, 845 (1998).
[16] A. Chattopadhyay, A. J. Millis, and S. Das Sarma, Phys.Rev. B64, 012416 (2001).
[17] Daniel P. Arovas, and Francisco Guinea, Phys.Rev B58, 9150 (1998).
[18] D. Pekker, S. Mukhopadhyay, N. Trivedi and P. Goldbart, Phys.Rev B72, 075118 (2005).
[19] M. Kagan, D. Khomskii, and M. Mostovoy, Eur. Phys. J. B12, 217 (1999).
[20] J. R. Schrieffer, and P.A. Wolf, Phys.Rev. 194, 491 (1966).
[21] D. Meyer and W. Nolting, J. Phys.: Condens. Matter 11, 581 (1999).
[22] E. L. Nagaev, Phys. Rev. B58, 827 (1998).
[23] Nic Shannon and Andrey Chubukov, Phys. Rev. B65, 104418 (2002).
[24] N. Karchev, arXiv: cond-mat/0308134 (2003).
[25] D. Pekker, S. Mukhopadhyay, N. Trivedi, and P. M. Goldbart, Phys. Rev. B72, 075118 (2005).
[26] J. Inoue, and S. Maekawa, Phys. Rev. Lett. 74, 3407 (1995).
[27] S. K. Mishra, R. Pandit, and S. Sathpathy, J. Phys.: Condens. Matter 11, 8561 (1999).
[28] D. I. Golosov, Phys. Rev. B71, 014428 (2005).
[29] J. Medvedeva, V. Anisimov, O. Myrasov, and A. Freeman, J. Phys.: Condens. Matter 14, 4533 (2000).
[30] K. Held, and D. Vollhardt, Phys. Rev. Lett. 84, 5168 (2000).
[31] P.-G. de Gennes, Phys.Rev., 118, 141 (1960).
[32] N. B. Ivanov, J. Richter, and D. J. J. Farnell, Phys. Rev. B66, 014421 (2002).
[33] S. Sachdev, and T. Senthila, Ann.Phys.(NY) 251, 76 (1996).
[34] Naoum Karchev, Phys. Rev. B57, 10913 (1998).