Search for η_b in two-photon collisions at LEP II with the DELPHI detector

DELPHI Collaboration

Abstract

The pseudoscalar meson η_b has been searched for in two-photon interactions at LEP II. The data sample corresponds to a total integrated luminosity of 617 pb$^{-1}$ at centre-of-mass energies ranging from 161 to 209 GeV. Upper limits at a confidence level of 95% on the product $\Gamma_{\gamma\gamma}(\eta_b) \times \text{BR}(\eta_b)$ are 190, 470 and 660 eV/c2 for the η_b decaying into 4, 6 and 8 charged particles, respectively.

(Accepted by Phys. Lett. B)
G. Wilkinson, M. Winter, O. Yushchenko, A. Zalewska, P. Zalewski, D. Zavrtanik, V. Zhuravlov, N. I. Zimin, A. Zintchenko, M. Zupan

1. Department of Physics and Astronomy, Iowa State University, Ames IA 50011-3160, USA
2. Department of Physics, Université Antwerpen, Universiteitsplein 1, B-2610 Antwerpen, Belgium and IHU, ULB-VUB, Pleinlaan 2, B-1050 Brussels, Belgium
3. Physics Laboratory, University of Athens, Solonos Str. 104, GR-10680 Athens, Greece
4. Department of Physics, University of Bergen, Allégaten 55, NO-5007 Bergen, Norway
5. Dipartimento di Fisica, Università di Bologna and INFN, Via Irnerio 46, IT-40126 Bologna, Italy
6. Centro Brasileiro de Pesquisas Físicas, rua Xavier Sigaud 150, BR-22290 Rio de Janeiro, Brazil and Depto. de Fisica, Pont. Univ. Católica, C.P. 38071 BR-22453 Rio de Janeiro, Brazil
7. Collège de France, Lab. de Physique Corpusculaire, IN2P3-CNRS, FR-75231 Paris Cedex 05, France
8. CERN, CH-1211 Geneva 23, Switzerland
9. Institut de Recherches Subatomiques, IN2P3 - CNRS/ULP - BP 20, FR-67037 Strasbourg Cedex, France
10. Now at DESY-Zeuthen, Platanenallee 6, D-15735 Zeuthen, Germany
11. Institute of Nuclear Physics, N.C.S.R. Demokritos, P.O. Box 60228, GR-15310 Athens, Greece
12. FZU, Inst. of Phys. of the C.A.S. High Energy Physics Division, Na Slovance 2, CZ-180 40, Praha 8, Czech Republic
13. Dipartimento di Fisica, Università di Genova and INFN, Via Dodecaneso 33, IT-16146 Genova, Italy
14. Institut des Sciences Nucléaires, IN2P3-CNRS, Université de Grenoble 1, FR-38026 Grenoble Cedex, France
15. Helsinki Institute of Physics and Department of Physical Sciences, P.O. Box 64, FIIN-00014 University of Helsinki, Finland
16. Joint Institute for Nuclear Research, Dubna, Head Post Office, P.O. Box 79, RU-101 000 Moscow, Russian Federation
17. Institut für Experimentelle Kernphysik, Universität Karlsruhe, Postfach 6980, DE-76128 Karlsruhe, Germany
18. Institute of Nuclear Physics PAN, Ul. Radzikowskiego 152, PL-31142 Krakow, Poland
19. Faculty of Physics and Nuclear Techniques, University of Mining and Metallurgy, PL-30055 Krakow, Poland
20. Université de Paris-Sud, Lab. de l’Accélérateur Linéaire, IN2P3-CNRS, Bât. 200, FR-91405 Orsay Cedex, France
21. School of Physics and Chemistry, University of Lancaster, Lancaster LA1 4YB, UK
22. LIP, IST, FCUL - Av. Elias Garcia, 14-1º, PT-1000 Lisboa Cedex, Portugal
23. Department of Physics, University of Liverpool, P.O. Box 147, Liverpool L69 3BX, UK
24. Dept. of Physics and Astronomy, Kelvin Building, University of Glasgow, Glasgow G12 8QQ
25. LPNHE, IN2P3-CNRS, Univ. Paris VI et VII, Tour 33 (RdC), 4 place Jussieu, FR-75252 Paris Cedex 05, France
26. Department of Physics, University of Lund, Sölvegatan 14, SE-223 63 Lund, Sweden
27. Université Claude Bernard de Lyon, IPNL, IN2P3-CNRS, FR-69622 Villeurbanne Cedex, France
28. Dipartimento di Fisica, Università di Milano and INFN-MILANO, Via Celoria 16, IT-20133 Milan, Italy
29. Dipartimento di Fisica, Univ. di Milano-Bicocca and INFN-MILANO, Piazza della Scienza 2, IT-20126 Milan, Italy
30. IPNP of MFF, Charles Univ., Areal MFF, V Holeovickech 2, CZ-180 00, Praha 8, Czech Republic
31. NIKHEF, Postbus 4188, NL-1009 DB Amsterdam, The Netherlands
32. National Technical University, Physics Department, Zografou Campus, GR-15773 Athens, Greece
33. Physics Department, University of Oslo, Blindern, NO-0316 Oslo, Norway
34. Dpto. Fisica, Univ. Oviedo, Avda. Calvo Sotelo s/n, ES-33007 Oviedo, Spain
35. Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH, UK
36. Dipartimento di Fisica, Università di Padova and INFN, Via Marzolo 8, IT-35131 Padua, Italy
37. Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX, UK
38. Dipartimento di Fisica, Università di Roma II and INFN, Tor Vergata, IT-00173 Rome, Italy
39. Dipartimento di Fisica, Università di Roma III and INFN, Via della Vasca Navale 84, IT-00146 Rome, Italy
40. DAPNIA/Service de Physique des Particules, CEA-Saclay, FR-91191 Gif-sur-Yvette Cedex, France
41. Instituto de Fisica de Cantabria (CSIC-UC), Avda. los Castros s/n, ES-39006 Santander, Spain
42. Dipartimento di Fisica, Università di Torino and INFN-Pavia, P.O. Box 35, Pavia, (Pavia Region), Russian Federation
43. J. Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
44. Joint Institute for Nuclear Research, Dubna, Head Post Office, P.O. Box 79, RU-101 000 Moscow, Russian Federation
45. INFN, Sezione di Torino and Dipartimento di Fisica Teorica, Università di Torino, Via Giuria 1, IT-10125 Turin, Italy
46. Dipartimento di Fisica, Università di Trieste and INFN, Via A. Valerio 2, IT-34127 Trieste, Italy
47. Institute of Physics, University of Udine, I-33100 Udine, Italy
48. University Federal do Rio de Janeiro, C.P. 68528 Cidade Univ., Ilha do Fundão BR-21945-970 Rio de Janeiro, Brazil
49. Department of Radiation Sciences, University of Uppsala, P.O. Box 535, SE-751 21 Uppsala, Sweden
50. IFIC, Valencia-CSIC, and D.F.A.M.N., U. de Valencia, Avda. Dr. Moliner s/n, ES-46006 Burjassot (Valencia), Spain
51. Institut für Hochenergiephysik, Österr. Akad. d. Wissenschaft., Nikolosdorfergasse 18, AT-1050 Vienna, Austria
52. Inst. Nuclear Studies and University of Warsaw, Ul. Hoza 69, PL-00681 Warsaw, Poland
53. Fachbereich Physik, University of Wuppertal, Postfach 100 127, DE-42097 Wuppertal, Germany

† deceased

1 Introduction

Two-photon collisions are very useful in searching for the formation of pseudoscalar mesons with $J^{PC} = 0^{-+}$. The high energy and high luminosity of LEP II are additional motivations to look for the $b\bar{b}$ pseudoscalar quarkonium state η_b which has not yet been discovered [1,2].

Its mass, m_{η_b}, is estimated by several theoretical models [3]. It should lie below that of the Υ vector meson ($m_{\Upsilon} = 9.46$ GeV/c2) and the mass shift, $\Delta m = m_{\Upsilon} - m_{\eta_b}$, is estimated to be in the range 10 to 130 MeV/c2.

The cross-section for two-photon resonance R formation with $C=+1$

$$e^+e^- \rightarrow e^+e^-\gamma^*\gamma^* \rightarrow e^+e^-R$$

is given by [4]

$$\sigma(e^+e^- \rightarrow e^+e^-R) = \int \sigma_{\gamma\gamma \rightarrow \eta_b} dL_{\gamma\gamma}(W^2),$$

with the cross-section

$$\sigma_{\gamma\gamma \rightarrow \eta_b}(W^2, q_1^2, q_2^2) = 8\pi (2J_R + 1) \cdot \Gamma_{\gamma\gamma}(R) \cdot F^2(q_1^2, q_2^2) \cdot \frac{\Gamma_R}{(W^2 - m_R^2)^2 + m_R^2\Gamma_R^2}. $$

Here $L_{\gamma\gamma}(W^2)$ is the two-photon luminosity function, W is the two-photon centre-of-mass energy, q_1^2 and q_2^2 are the squares of the virtual-photon four-momenta. The resonance R is characterised by its spin J_R, mass m_R, total width Γ_R and its two-photon partial width $\Gamma_{\gamma\gamma}(R)$. In “quasi-real” ($q^2 \sim 0$) photon interactions, the form factor $F^2(q_1^2, q_2^2)$ is constant and can be taken to be unity.

To compute the η_b production cross-section, the partial width $\Gamma_{\gamma\gamma}(\eta_b)$ must be known. Theoretical estimates [5] predict it to be in the range 260 to 580 eV. Setting m_{η_b} to 9.4 GeV/c2 leads to an expected production cross-section $\sigma(e^+e^- \rightarrow e^+e^-\eta_b)$ of 0.14 to 0.32 pb at $\sqrt{s} = 200$ GeV.

Most of the observations of η_c decays have been to four charged particles, both pions and kaons [6]. Hence the η_b has been similarly searched for in 4, 6 and 8 charged particle final states. The expected backgrounds come from the $\gamma\gamma \rightarrow q\bar{q}$ processes and the $\gamma\gamma \rightarrow \tau^+\tau^-$ channel.

From the ALEPH experiment, upper limits on $\Gamma_{\gamma\gamma}(\eta_b) \times BR(\eta_b)$ [1] are:

$$\Gamma_{\gamma\gamma}(\eta_b) \times BR(\eta_b \rightarrow 4 \text{ charged particles}) < 48 \text{ eV}/c^2,$$

$$\Gamma_{\gamma\gamma}(\eta_b) \times BR(\eta_b \rightarrow 6 \text{ charged particles}) < 132 \text{ eV}/c^2.$$

The L3 experiment, looking for η_b in the decay modes $\eta_b \rightarrow K^+K^-\pi^0$, $\pi^+\pi^-\eta$, 2, 4 and 6 charged particles (only or associated with one π^0), observes 6 candidate events with 2.5 background events expected. This corresponds to a combined upper limit on $\Gamma_{\gamma\gamma}(\eta_b) \times BR(\eta_b)$ [2]:

$$\Gamma_{\gamma\gamma}(\eta_b) \times BR(\eta_b \rightarrow \text{analysed channels}) < 200 \text{ eV}/c^2.$$

In this paper we report on the search for η_b in the reaction

$$e^+e^- \rightarrow e^+e^-\gamma^*\gamma^* \rightarrow e^+e^-\eta_b$$

with η_b decaying into the following final states:
\[\eta_b \rightarrow 4\pi^\pm(K^\pm), \]
\[\eta_b \rightarrow 6\pi^\pm(K^\pm), \]
\[\eta_b \rightarrow 8\pi^\pm(K^\pm). \]

Here the charged K's in parentheses indicate that a pair of pions may be replaced by a pair of kaons with net zero strangeness.

2 Experimental procedure

The analysis presented here is based on the data taken with the DELPHI detector [7,8] in 1996-2000, covering a range of centre-of-mass energies from 161 to 209 GeV (average centre-of-mass energy: 195.7 GeV). The selected data set corresponds to the period when the Time Projection Chamber (TPC) was fully operational thus ensuring good particle reconstruction. This requirement reduces the integral luminosity for the analysis to 617 pb\(^{-1}\).

For quasi-real photon interactions, the scattered e\(^\pm\) are emitted at very small polar angles. Hence there is no requirement on detecting them.

The e\(^+\)e\(^-\) \(\rightarrow\) e\(^+\)e\(^-\)\(\eta_b\) candidate events are selected by requiring final states with 4, 6 or 8 tracks with zero net charge. Charged-particle tracks in the detector are accepted if the following criteria are met:

- Particle transverse momentum \(p_T > 150\) MeV/c;
- Impact parameter of a track transverse to the beam axis \(\Delta_{xy} < 0.5\) cm;
- Impact parameter of a track along the beam axis \(\Delta_z < 2\) cm;
- Polar angle of a track \(10^\circ < \theta < 170^\circ\);
- Track length \(l > 30\) cm;
- Relative error of the track momentum \(\Delta p/p < 30\%\).

No K\(_0^S\) reconstruction is attempted on each track pair. The identification of other neutral particles is made using calorimeter information. The calorimeter clusters which are not associated to charged-particle tracks are combined to form the signals from the neutral particles (\(\gamma, \pi^0, K^0_L, n\)). A minimum measured energy of 1 GeV for showers in the electromagnetic calorimeters and 2 GeV in the hadron calorimeters is required.

The selection of candidate events is achieved by applying the following criteria:

- No particle is identified as an electron or a muon by the standard lepton-identification algorithms [9];
- No particle is identified as a proton by the standard identification algorithm [9];
- There are no electromagnetic showers with energy \(E_{\text{shower}} > 1\) GeV or converted \(\gamma\)'s with energy \(E_\gamma > 0.2\) GeV in the event.

To ensure that no particle from the \(\eta_b\) decay has escaped detection, the square of the total transverse momentum of charged particles, \((\sum p_T)^2\), is required to be small. The actual cut value is estimated from a Monte Carlo sample of \(\eta_b\) events produced in \(\gamma\gamma\) interactions. In this simulation the kinematical variables are generated using the algorithms developed by Krasemann et al. [10]. It is also assumed that the production amplitude factorizes into the quasi-real transverse photon flux and a covariant amplitude describing both the \(\eta_b\) production and decay [11]. The \(\eta_b \rightarrow (4, 6, 8)\) charged-particle decay processes are assumed to be described by the phase-space momenta distribution. The generated events are passed through the standard DELPHI detector simulation and reconstruction programs [8]. The same selection criteria are applied on the simulated events as on the
data. Finally, an event is accepted on the basis of the trigger efficiency. Parametrized for a single track, as a function of its transverse momentum p_T, it ranges from 20% for $p_T < 0.5$ GeV/c to about 95% at $p_T > 2$ GeV/c [12]. Due to the high mass of the η_b resonant state and relatively large number of tracks in the final state, the overall trigger efficiency per event is about 93.6%, 94.5% and 94.6% for events with 4, 6 and 8 charged particles, respectively.

Fig.1 shows, in the visible invariant-mass interval $8 \text{ GeV}/c^2 < W_{\text{vis}} < 10 \text{ GeV}/c^2$, the fraction of remaining events as a function of a cut, P_T^2, on $(\sum p_T^2)^2$, for the 4 charged-particle channel. It decreases rapidly for $P_T^2 < 0.1 \text{ GeV}^2/c^2$. Hence to preserve the statistics, 4, 6 charged-particle events with $(\sum p_T^2)^2$ up to 0.08 GeV$^2/c^2$ and 8 charged-particle events with $(\sum p_T^2)^2$ up to 0.06 GeV$^2/c^2$ were kept.

The π/K identification is based on the TPC dE/dx and RICH [13] measurements which are used both separately and combined, in order to check the consistency, in a neural network-based algorithm [14]. In the η_b search region defined as $8 \text{ GeV}/c^2 < W_{\text{vis}} < 10 \text{ GeV}/c^2$, the average K^\pm identification efficiency is about 54% and the purity is 82%. The misidentification of charged pions as kaons is about 1.5%. After application of the selection criteria and requiring $W_{\text{vis}} > 5 \text{ GeV}/c^2$, the 4, 6 and 8 charged-particle data samples contain 173, 328 and 113 events respectively.
The main background comes from inclusive $\gamma\gamma \rightarrow q\bar{q}$ channels. This background is estimated using a Monte Carlo sample generated with the PYTHIA 6.143 program [15].

The possible contamination of the $e^+e^- \rightarrow e^+e^-\tau^+\tau^-$ process is given special attention. To reduce it in the $\gamma\gamma \rightarrow 4\pi$ channel where it is most important, events of topology 1-3 with respect to the hemispheres defined by the thrust axis computed in the 4π centre-of-mass system and with an invariant mass, in each hemisphere, smaller than 1.8 GeV/c^2, are discarded. Only $(1.0\pm0.3)\%$ of η_b events are eliminated by this cut.

The mass resolution in the search region has been estimated from the Monte Carlo sample of $\gamma\gamma \rightarrow q\bar{q}$ interactions. It is about 200 MeV/c^2 FWHM for all topologies, as shown on Fig.2 for the 4 charged-particle events. We have chosen to search for a possible signal in \pm one mass resolution interval around the predicted mass of 9.4 GeV/c^2.

![Figure 2: Difference between reconstructed and generated W_{vis} values for the selected 4 charged-particle events from the Monte Carlo $\gamma\gamma \rightarrow q\bar{q}$ sample, in the η_b search region.](image)

3 Results

The visible invariant-mass spectra of the selected events are presented in Fig. 3. When an event has an odd number of K^\pm, the kaon mass is assigned sequentially to the other particles of opposite charge and the W_{vis} mass is simply taken as the average of the various mass combinations. The resulting mass shift, averaged over the 4, 6 and 8 particle samples, is about 120 MeV/c^2 in the η_b search region.
The distributions are well reproduced by the $\gamma \gamma \rightarrow q\bar{q}$ Monte Carlo simulation. The η_b candidates are expected to show up in the 9.2 to 9.6 GeV/c^2 mass region.

![Figure 3: Invariant-mass distributions of selected events for 4, 6 and 8 charged-particle final states. Points with error bars are from the data; histograms present the expected number of background events from the $\gamma \gamma \rightarrow q\bar{q}$ simulation; shaded histograms correspond to the expected $e^+e^- \rightarrow e^+e^-\tau^+\tau^-$ background.](image)

Table 1 gives the number of 4, 6 and 8 charged-particle events in the 9.2 to 9.6 GeV/c^2 mass region, together with the number of expected background events computed taking into account the overall reconstruction and selection efficiency. Among the 3 observed η_b candidates only the event with 8 charged particles contains one identified kaon.

In the search for rare processes with a few observed events that may be compatible with background, an upper limit for the signal S can be derived considering a Poisson process with a background b and taking into account uncertainties in the background and efficiencies [16]

$$CL = 1 - \frac{\int g(b) f(\varepsilon) \sum_{k=0}^{n} P[k|(S+\varepsilon+b)] dz/db}{\int g(b) \sum_{k=0}^{n} P(k|b) db}.$$

Here $P(k|x)$ is the Poisson probability of k events being observed, when x are expected; CL is a confidence level, n is the number of observed events. The probability-density
functions for the background \(g(b) \) and the efficiency \(f(\varepsilon) \) are assumed to be Gaussian and restricted to the range where \(b \) and \(\varepsilon \) are positive.

Upper limits at the 95% confidence level were calculated for each channel and a limit on \(\Gamma_{\gamma\gamma}(\eta_b) \times \text{BR}(\eta_b) \) could then be derived. The values are quoted in Table 1.

We considered as main sources of systematic uncertainties: the statistical error of the background, the generator used for the \(\eta_b \) signal and the theoretical uncertainties of the \(\eta_b \) parameters. The limited statistics of our Monte Carlo event sample introduces relative uncertainties of 3%, 5%, 4% for the channels with 4, 6 and 8 charged particles respectively. To appreciate the influence of the generators, we have used PHOT02 [1,17] which generates \(\eta_b \) events decaying into two gluon-jets. The relative differences in efficiency are of 24%, 11.4% and 6.1% for the 4, 6 and 8 charged particles channels. Varying the \(\eta_b \) mass within the range of 9.33 – 9.45 GeV/c\(^2\) generates a relative uncertainty of 2.5% on \(N_{\text{ev}} \), for each considered \(\eta_b \) decay channel. The three kinds of uncertainties were added quadratically to obtain the upper limits quoted in Table 1.

4 Conclusions

The pseudoscalar meson \(\eta_b \) has been searched for through its decays to 4, 6 and 8 charged-particles in two-photon interactions at LEP II. The data sample corresponds to a total integrated luminosity of 617 pb\(^{-1}\) collected at centre-of-mass energies ranging from 161 to 209 GeV.

Upper limits at a confidence level of 95% on the product \(\Gamma_{\gamma\gamma}(\eta_b) \times \text{BR}(\eta_b) \) are 190, 470 and 660 eV/c\(^2\) for the \(\eta_b \rightarrow (4, 6, 8) \) charged particle decays, respectively.

Acknowledgements

We are greatly indebted to our technical collaborators, to the members of the CERN-SL Division for the excellent performance of the LEP collider, and to the funding agencies for their support in building and operating the DELPHI detector.

We acknowledge in particular the support of Austrian Federal Ministry of Education, Science and Culture, GZ 616.364/2-II/2a/98, FNRS–FWO, Flanders Institute to encourage scientific and technological research in the
industry (IWT), Belgium,
FINEP, CNPq, CAPES, FUJB and FAPERJ, Brazil,
Czech Ministry of Industry and Trade, GA CR 202/99/1362,
Commission of the European Communities (DG XII),
Direction des Sciences de la Matière, CEA, France,
Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie, Germany,
General Secretariat for Research and Technology, Greece,
National Science Foundation (NWO) and Foundation for Research on Matter (FOM),
The Netherlands,
Norwegian Research Council,
State Committee for Scientific Research, Poland, SPUB-M/CERN/PO3/DZ296/2000,
SPUB-M/CERN/PO3/DZ297/2000, 2P03B 104 19 and 2P03B 69 23(2002-2004)
JNICT–Junta Nacional de Investigação Científica e Tecnológica, Portugal,
Vedecka grantova agentura MS SR, Slovakia, Nr. 95/5195/134,
Ministry of Science and Technology of the Republic of Slovenia,
CICYT, Spain, AEN99-0950 and AEN99-0761,
The Swedish Natural Science Research Council,
Particle Physics and Astronomy Research Council, UK,
Department of Energy, USA, DE-FG02-01ER41155.
EEC RTN contract HPRN-CT-00292-2002.
References

[1] A. Heister et al., ALEPH Collab., Phys. Lett. B530 (2002) 56.
[2] M. Levchenko et al., L3 Collab., Nucl.Phys.B, Proc.Suppl. 126 (2004) 260.
[3] G.S. Bali, Phys. Rep. 343 (2001) 1.
[4] V.M. Budnev et al., Phys. Rep. 15 (1975) 181.
[5] N. Fabiano, Nucl.Phys.B, Proc.Suppl. 126 (2004) 255.
[6] S. Eidelman et al., Particle Data Group, Phys. Lett. B592 (2004) 1 (see p. 810).
[7] P. Aarnio et al., DELPHI Collab., Nucl. Instr. and Meth. A303 (1991) 233.
[8] P. Abreu et al., DELPHI Collab., Nucl. Instr. and Meth. A378 (1996) 57.
[9] P. Abreu et al., DELPHI Collab., Eur. Phys. J. C5 (1998) 585.
[10] H. Krasemann and J.A.M. Vermaseren, Nucl. Phys. B184 (1981) 269.
[11] M. Poppe, Int. J. Mod. Phys. A1 (1986) 545.
[12] A. Augustinus et al., Nucl. Instr. and Meth. A515 (2003) 782.
[13] M. Battaglia, P.M. Kluit, Nucl. Instr. and Meth. A433 (1999) 252;
 W. Adam et al., Nucl. Instr. and Meth. A371 (1996) 240.
[14] Z. Albrecht, M. Feindt and M. Moch, “MACRIB. High efficiency - high purity hadron
 identification for DELPHI”, DELPHI/99-150 (October 1999), hep-ex/0111081.
[15] T. Sjöstrand, Comput. Phys. Comm. 82 (1994) 74.
[16] G. Zech, Nucl. Instr. and Meth. A277 (1989) 608.
[17] D. Buskulic et al., ALEPH Collab., Phys. Lett. B313 (1993) 509.