Prevalence of targeted therapy-related genetic variations in NSCLC and their relationship with clinicopathological characteristics

Fanghua Li¹,²*, Peng Ye³, Peiling Cai², Dandan Dong², Yihao Zhang³, Yue Yang², Xingwang Sun¹ID

¹ Department of Pathology, Affiliated Hospital of Southwest Medical University, Luzhou, China, ² Department of Pathology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, China, ³ Department of Anatomy and Histology, College of Medicine, Chengdu University, Chengdu, China

* These authors contributed equally to this work.

Abstract

Background
Non-small cell lung cancer (NSCLC) is the most common cancer type in China. Targeted therapies have been used to treat NSCLC for two decades, which is only suitable for a subgroup of patients with specific genetic variations. The aim of this study was to investigate the prevalence of genetic variations leading to sensitivity or resistance to targeted therapies in NSCLC, and their relationship with clinicopathological characteristics of the patients.

Methods
Tumor samples were collected from 404 patients who were diagnosed to have NSCLC and underwent surgery, transthoracic biopsy, bronchoscopy biopsy, or pleural aspiration in Sichuan Provincial People’s Hospital from January 2019 to March 2020. Commercial amplification-refractory mutation system kits were used to detect targeted therapy-related genetic variations in those tumor samples. The prevalence of genetic variations and their relationship with patient clinicopathological characteristics were analyzed using statistical software, followed by subgroup analysis.

Results
In all, 50.7% of the NSCLC patients had sensitive genetic variations to anti-EGFR therapies, and 4.9% of those patients had co-existing resistant genetic variations. Fusions in ALK, ROS1, or RET were found in 7.7% of the patients, including 2 patients with co-existing EGFR exon 19 deletion or L858R. EGFR exon 19 deletion and L858R were more common in female patients and adenocarcinoma. Further subgroup analysis confirmed the observation in female patients in adenocarcinoma subgroup, and in adenocarcinoma in male patients. In addition, smokers were more likely to have squamous cell carcinoma and KRAS...
mutation and less likely to have \textit{EGFR} L858R, which were also confirmed after standardization of gender except \textit{KRAS} mutations.

Conclusion

Nearly half of the NSCLC patients were eligible for anti-EGFR treatments. In NSCLC, female gender and adenocarcinoma may indicate higher chance of \textit{EGFR} exon 19 deletion or L858R, and smoking history may indicate squamous cell carcinoma and \textit{EGFR} L858R.

Introduction

Lung cancer is a leading cause of cancer-related death worldwide \cite{1}. There were more than 2 million new lung cancer cases and 1.76 million lung cancer-related deaths globally in 2018 \cite{2}. As reported by National Cancer Center of China, lung cancer is also the most common cancer type and cause of cancer-related death in China, with crude incidence of 572.6 and mortality of 458.7 in 1 million population \cite{3}. The high mortality of lung cancer is partially related to the large proportion (more than 60\%) of late-stage patients when they were firstly diagnosed \cite{4}. Since surgery is no longer applicable for those late-stage lung cancer patients, non-surgical therapies are the mainstay of treatments, including chemotherapy, radiotherapy, targeted therapy, and immunotherapy \cite{4}.

Targeted therapeutics has emerged during the past two decades. Different from traditional chemotherapy and radiotherapy, targeted therapy is only suitable for a subgroup of patients with specific genetic variations in tumor. For example, gefitinib was approved to treat metastatic non-small cell lung cancer (NSCLC) carrying exon 19 deletion or L858R mutation in \textit{epidermal growth factor receptor (EGFR)} \cite{5, 6}. Crizotinib was approved to treat advanced NSCLC with rearranged \textit{anaplastic lymphoma kinase (ALK)} or \textit{ROS1} gene \cite{7, 8}, and dabrafenib which targets a rare mutation in lung cancer (\textit{BRAF V600E}) was approved for the treatment of \textit{BRAF}-positive advanced NSCLC \cite{9}. Recently, the first \textit{KRAS}-targeted therapy (Sotorasib) has been approved to treat locally advanced or metastatic NSCLC carrying \textit{KRAS} G12C mutations \cite{10}. At the same time, companion diagnostic tests for genetic variations in \textit{EGFR}, \textit{ALK}, \textit{ROS1}, \textit{BRAF}, or \textit{KRAS} were also approved by the administrations, and are required before those targeted therapies are given. In addition, targeted treatments for other genetic variations in NSCLC are currently under development, including \textit{RET} fusion \cite{11}, \textit{human epidermal growth factor receptor 2 (HER2)} insertion (NCT04382300), or \textit{MET} exon 14 skipping mutations (NCT02897479). Besides the drug targets mentioned above, some genetic variations in NSCLC indicate resistance to targeted therapies. For example, NSCLC patients carrying mutations in \textit{KRAS} are less responsive to gefitinib \cite{12}. Similar genetic variations which indicate resistance to anti-EGFR therapies include \textit{EGFR} exon 20 insertion, \textit{NRAS} exon 12 or 13 mutations, and \textit{PIK3CA} mutations \cite{13–16}.

Considering the associations between the status of those genetic variations and sensitivity/resistance of targeted therapies, it would be important to understand their prevalence in diseases. Previous studies have investigated the prevalence of individual genetic variation in NSCLC \cite{17–20}. However, not many studies investigated the prevalence and concurrence of those genetic variations in the same patient cohort. In addition, although previous studies showed linkage between smoking and tumor mutation profile in NSCLC \cite{21}, few studies investigated their association with other clinicopathological characteristics, e.g. gender, alcohol consumption. We hypothesized that there could be significant association between patient
clinicopathological characteristics and genetic variations of tumor in NSCLC, which could help further optimize the usage of targeted therapies in patients with different clinicopathological background.

The aim of this study was to investigate the prevalence of genetic variations which indicate sensitivity or resistance to targeted therapies in NSCLC, as well as the relationships between those genetic variations and clinicopathological characteristics of patients. Our study results showed significant associations between genetic variations and age (EGFR L858R), gender (EGFR exon 19 deletion, L858R), smoking history (EGFR L858R, exon 20 insertion, and KRAS mutation), histological type (EGFR exon 19 deletion, L858R), and tumor grade (ALK fusion). In addition, further analysis also revealed significant associations between gender and EGFR L858R, KRAS mutation, histological type in non-smokers, and associations between smoking history and histological type in both male and female patients, or EGFR L858R in male patients.

Material and methods

Patients

Tumor samples were retrospectively collected from patients diagnosed with NSCLC who underwent surgery, transthoracic biopsy, bronchoscopy biopsy, or pleural aspiration in Sichuan Provincial People’s Hospital from January 2019 to March 2020. The inclusion criteria included: 1) pathologically-proven NSCLC, e.g. lung adenocarcinoma, lung squamous cell carcinoma, or large cell carcinoma; 2) age ≥ 18 years; 3) with sufficient clinicopathological information. The exclusion criteria included: 1) samples with pathologically-proven small cell lung cancer; 2) sample collected in lung not being the primary lesion; 3) samples from NSCLC patients who received chemotherapy, radiotherapy, or targeted therapies; 4) samples from patients with unclear smoking history or clinical staging information. All those tumor samples were formalin-fixed and paraffin-embedded. After sectioning and H&E staining, pathological diagnosis for each sample was confirmed by two independent pathologists, and slides with tumor content < 30% were excluded from further analysis. This study complied with the Declaration of Helsinki and was approved by Institutional Review Board of Sichuan Provincial People’s Hospital. Since this was a retrospective non-interventional study, informed consent was waived by the Institutional Review Board, and all the data were collected and analyzed anonymously.

Amplification-refractory mutation system (ARMS)

Three to eight sections from each tumor sample were firstly de-paraffinized in xylene in a 1.5-ml Eppendorf tube. DNA and RNA were extracted using a commercial DNA/RNA co-extraction kit (FFPE DNA/RNA Extraction Kit, AmoyDx, China) following the manufacturer’s instruction. After measurement of A260/A280, specific gene variations in tumor samples were determined using cFDA-approved commercial kit (Human Ten-Genetic-Variation Co-Detection Kit, AmoyDx, China) which target genetic variations in EGFR, ALK, ROS1, RET, KRAS, NRAS, BRAF, HER2, or PIK3CA on ABI7500 Real Time PCR system (ThermoFisher, USA) following the manufacturer’s instructions.

Statistical analysis

Statistical analysis was performed using IBM SPSS 24.0 software (IBM, USA). The genetic variation results and clinicopathological characteristics from each patient were summarized and the prevalence of positivity, negativity, or a specific subgroup was calculated by dividing the
number of positive/negative/subgroup cases by the total number of patients. Relationship
between different genetic variations and patient clinicopathological characteristics (age, gen-
der, smoking history, alcohol consumption, histological type, and tumor grade) were then ana-
lyzed using χ^2 test and Fisher’s exact test. Difference was considered statistically significant if
$P < 0.05$. When statistical difference was observed among three or more subgroups (e.g. stage
I, II, III, and IV), post hoc analysis was performed between each of the subgroups using χ^2
test and Fisher’s exact test. When significant association was observed between different clinic-
opathological characteristics, relationship between genetic variations and clinicopathological
characteristics were further analyzed in subgroups.

Results

Patient characteristics

In all, there were 405 patients enrolled in this study, in which 1 patient was excluded due to
treatment history of targeted therapies. Samples from the rest 404 treatment-naïve patients
were finally included in our analysis. As shown in Table 1, the patients were almost evenly dis-
tributed in males and females in this cohort. Majority of the patients were non-smokers
(68.6%), and did not consume alcohol regularly (87.4%). Adenocarcinoma is the dominant
subtype of NSCLC (94.3%) in this cohort. The percentage of tumor grades were Grade 1,
30.7%; Grade 2, 13.9%; Grade 3, 17.1%; Grade 4, 38.4%. Pathological diagnosis of NSCLC was
confirmed in all samples.

Table 1. Demographics of patients and tumor characteristics.

Factors	Number	% (out of 404 patients)
Age		
≤ median (63)	214	53.0
> median (63)	190	47.0
Gender		
Male	209	51.7
Female	195	48.3
Smoking		
Smoker	125	30.9
Non-smoker	277	68.6
Unknown	2	0.5
Alcohol consumption		
Yes	51	12.6
No	353	87.4
Histological type		
Adenocarcinoma	381	94.3
Squamous cell carcinoma	23	5.7
Tumor grade		
1	124	30.7
2	56	13.9
3	69	17.1
4	155	38.4
Primary (grade 1 or 2)	180	44.6
Advanced (grade 3 or 4)	224	55.4

https://doi.org/10.1371/journal.pone.0262822.t001
Biomarker evaluation

As shown in Table 2, EGFR exon 19 deletion (21%) and L858R mutation (26.2%) were the most common genetic variations found in this patient cohort. The overall positive rate for those two genetic variations was 47.0% (190/404), with 1 patient carrying both EGFR exon 19 deletion and L858R mutation. Similarly, with 4 patients carrying dual mutations (G719X/S768I, G719X/S768I, L858R/L768I, and L858R/L861Q), the overall positive rate for those rare EGFR mutations were 3.7% (15/404). Two patients carrying T790M also had L858R mutation. In the 9 patients carrying EGFR exon 20 insertion, 1 patient also had exon 19 deletion.

In other gene variations tested, the overall positive rate for ALK, ROS1, or RET fusion were 7.7% (31/404), with two samples holding both RET fusion and sensitive mutations in EGFR (exon 19 deletion, or L858R). Three patients carried both KRAS mutations and EGFR exon 19 deletion, and one patient had both BRAF mutation and EGFR exon 19 deletion. In addition, three patients carried both PIK3CA mutation and EGFR mutations (2 patients with exon 19 deletions, and 1 patient with both L858R and T790M).

Table 2. Prevalence of genetic variations.

Biomarkers	Number	% (out of 404 patients)
EGFR		
exon 19 deletion	85	21.0
L858R	106	26.2
L861Q	5	1.2
G719X	8	2.0
S768I	4	1.0
exon 20 insertion	9	2.2
T790M	2	0.5
Fusion	1	0.2
dual mutations	8	2.0
ALK		
fusion	18	4.5
ROS1		
fusion	8	2.0
RET		
fusion	5	1.2
KRAS		
G12X, G13X	36	8.9
NRAS		
Q61H	1	0.2
BRAF		
V600X	5	1.2
HER2		
exon 20 insertion	14	3.5
PIK3CA		
H1047R/E545K	4	1.0
MET		
exon 14 skipping	6	1.5

EGFR, epidermal growth factor receptor; ALK, anaplastic lymphoma kinase; HER2, human epidermal growth factor receptor 2.

https://doi.org/10.1371/journal.pone.0262822.t002
Relationship between genetic variations in tumor and patient clinicopathological characteristics

As shown in Tables 3 and 4, older patients (age > median) were associated with significantly less prevalence of *EGFR* L858R mutation, compared to younger patients (age ≤ median). In addition, male patients showed significantly lower prevalence of *EGFR* exon 19 deletion and L858R mutation but significantly higher prevalence of *KRAS* mutations, compared to female patients. Smoking was associated with significantly lower prevalence of *EGFR* L858R mutation and *KRAS* mutation. In the two subtypes of NSCLC, adenocarcinoma was significantly associated with higher prevalence of *EGFR* exon 19 deletion and L858R mutation, compared to squamous cell carcinoma. Significant association was also observed between tumor grade and *ALK* fusion, and *post hoc* analysis showed that *ALK* fusion was significantly more prevalent in grade II tumors compared to grade IV tumors (S1 Table). No significant difference was found between alcohol consumption and histological type of NSCLC, or gene variations in tumor.

Relationship between histological type, tumor grade, and demographics of patients

As shown in Table 5, male patients were significantly more likely to be smokers and alcohol consumers. Adenocarcinoma was significantly more prevalent in female patient and non-smokers, compared to male patients and smokers, respectively. Significant association was observed between tumor grade and age, gender, smoking. Furthermore, advanced tumor was significantly more prevalent in older patients, male patients, smokers, and alcohol consumers. *Post hoc* analysis showed that stage III and stage IV tumors were significantly more prevalent in older patients. Compared to stage I tumors, male patients and smoking patients were significantly more likely to have stage III and stage IV tumors (S1 Table).

Association between genetic variations, histological type, tumor grade, and gender or smoking history of patients

Since the percentage of smokers was much higher in male patients than in females, we further studied the relationship among histological subtype, tumor grade, genetic variations, and gender and smoking history of patients. As shown in Table 6, in both male and female patients, smokers are significantly more likely to have squamous cell carcinoma than adenocarcinoma. In male patients, tumors from smokers were significantly less likely to carry *EGFR* L858R mutation. Interestingly, in non-smokers, male patients were more likely to have squamous cell carcinoma than females. In addition, in non-smokers, more male patients were positive in *KRAS* mutations than female patients. However, in non-smokers, more female patients were positive in *EGFR* L858R mutation than male patients.

Similarly, since histological type was significantly associated with gender of patients, we further investigated the relationship among histological type, gender, and genetic variations. As shown in Table 7, in adenocarcinoma, female patients had significantly higher prevalence of *EGFR* exon 19 deletion and L858R mutation. On the other hand, in male patients, adenocarcinoma was associated with higher prevalence of *EGFR* exon 19 deletion and L858R, compared to squamous cell carcinoma.

Discussion

Several targeted therapies have been approved for the treatment of NSCLC harboring certain genetic variations in *EGFR*, *ALK*, *ROS1*, or *BRAF* [5–9] and it is required to determine the existence of those genetic variations in tumor before targeted therapies are given to patients. Better
Table 3. Association between genetic variations and demographics of patient.

Genetic variations	Age ≤ 63	Age > 63	Gender Male	Gender Female	Smoking Smoker	Non-smoker	Alcohol consumption Yes	Alcohol consumption No	P					
EGFR														
exon 19 deletion	Positive	41	44	0.325	34	51	0.015	21	63	0.175	11	74	0.921	
	Negative	173	146	0.015	175	144	0.175	104	214	0.921	40	279		
L858R	Positive	65	41	0.045	35	71	< 0.001	17	89	< 0.001	9	97	0.136	
	Negative	149	149	0.045	174	124	0.045	108	188	0.921	42	256		
L861Q	Positive	2	3	0.669	3	2	1.000	2	3	0.648	1	4	0.493	
	Negative	212	187	0.669	206	193	1.000	123	274	0.921	50	349		
exon 20 insertion	Positive	7	2	0.182	3	6	0.324	3	6	1.000	2	7	0.317	
	Negative	207	188	0.182	206	189	1.000	122	271	0.921	49	346		
G719X	Positive	6	2	0.291	5	3	0.725	2	6	1.000	0	8	0.603	
	Negative	208	188	0.291	204	192	1.000	123	271	0.921	51	345		
S768I	Positive	1	3	0.346	2	2	1.000	1	3	1.000	1	3	0.418	
	Negative	213	187	0.346	207	193	1.000	124	274	0.921	50	350		
T790M	Positive	1	1	1.000	0	2	0.232	0	2	1.000	1	2	1.000	
	Negative	213	189	1.000	209	193	1.000	125	275	0.921	51	351		
fusion	Positive	0	1	0.470	0	1	0.483	0	1	1.000	0	1	1.000	
	Negative	214	189	0.470	209	194	1.000	125	276	0.921	51	352		
ALK	fusion	Positive	9	9	0.796	8	10	0.527	4	14	0.405	0	8	0.146
	Negative	205	181	0.796	201	185	1.000	121	263	0.921	51	335		
ROS1	fusion	Positive	4	4	1.000	3	5	0.490	2	6	1.000	1	7	1.000
	Negative	210	186	1.000	206	190	1.000	123	271	0.921	50	346		
RET	fusion	Positive	4	1	0.376	3	2	1.000	2	3	0.648	0	5	1.000
	Negative	210	189	0.376	206	193	1.000	123	274	0.921	51	348		
KRAS	mutation	Positive	21	15	0.499	28	8	0.001	17	19	0.028	7	29	0.193
	Negative	193	175	0.499	181	187	1.000	108	258	0.921	44	324		
NRAS	Q61H	Positive	0	1	0.470	1	0	1.000	1	0	0.311	1	0	0.126
	Negative	214	189	0.470	208	195	1.000	124	277	0.921	50	353		
BRAF	V600X	Positive	3	2	1.000	2	3	0.676	1	4	1.000	0	5	1.000
	Negative	211	188	1.000	207	192	1.000	124	273	0.921	51	348		
HER2	exon 20 insertion	Positive	7	7	0.821	8	6	0.680	3	11	0.563	2	12	0.693
	Negative	207	183	0.821	201	189	1.000	122	266	0.921	49	341		
PIK3CA	H1047R/E545K	Positive	1	3	0.346	2	2	1.000	2	2	0.591	2	2	0.079
	Negative	213	187	0.346	207	193	1.000	123	275	0.921	49	351		
MET	exon 14 skipping	Positive	3	3	1.000	5	1	0.217	4	2	0.079	1	5	0.558
	Negative	210	187	1.000	203	194	1.000	121	274	0.921	50	347		

EGFR, epidermal growth factor receptor; ALK, anaplastic lymphoma kinase; HER2, human epidermal growth factor receptor 2.

https://doi.org/10.1371/journal.pone.0262822.t003
Genetic variations and clinicopathological characteristics in NSCLC

Table 4. Association between genetic variations and tumor characteristics.
EGFR
exon 19 deletion
L858R
L861Q
exon 20 insertion
G719X
S768I
T790M
fusion
ALK
fusion
ROS1
fusion
RET
fusion
KRAS
mutation
NRAS
Q61H
BRAF
V600X
HER2
exon 20 insertion
PIK3CA
H1047R/E545K
MET
exon 14 skipping

EGFR, epidermal growth factor receptor; ALK, anaplastic lymphoma kinase; HER2, human epidermal growth factor receptor 2.

https://doi.org/10.1371/journal.pone.0262822.t004
understanding of the prevalence of those drug targets in NSCLC and their relationships may provide more guidance to clinical practices.

Our study investigated common genetic variations in **EGFR**, fusions in **ALK** or **ROS1**, and **BRAF** V600X mutations in a cohort of NSCLC patients. For **EGFR**, there are overall 50.7% of NSCLC patients harboring sensitive genetic variations to anti-EGFR therapies (including exon 19 deletion, L858R, L861Q, G719X, and S768I). This is higher than the percentage (32.3%) reported by a previous systemic review by Zhang et al. [19], which could be due to the different ethnicity of the patient cohorts in the two studies (Chinese patients versus mixed ethnicity of patients), or different sensitivity of measurement methods used in the two studies (ARMS

| Table 5. Association between demographics of patients and tumor characteristics. |
|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
| | Age | Gender | Smoking | Alcohol consumption |
| | < 63 | > 63 | P | Male | Female | P | Smoker | Non-smoker | P | Yes | No | P |
| Gender | | | | | | | | | | | | |
| Male | 101 | 108 | 0.053 | - | - | - | 117 | 90 | <0.001 | 48 | 161| <0.001 |
| Female | 113 | 82 | | - | - | - | 8 | 187 | | 3 | 192| |
| Histological type | | | | | | | | | | | | |
| Adenocarcinoma | 205 | 176 | 0.171 | 189 | 192 | <0.001 | 107 | 272 | <0.001 | 47 | 334| 0.513 |
| Squamous cell carcinoma | 9 | 14 | | 20 | 3 | | 18 | 5 | | 4 | 19 | |
| Tumor grade | | | | | | | | | | | | |
| I | 82 | 42 | <0.001 | 51 | 73 | 0.019 | 24 | 100 | 0.007 | 9 | 115| 0.159 |
| II | 34 | 22 | | 28 | 28 | | 18 | 37 | | 7 | 49 | |
| III | 27 | 42 | | 37 | 32 | | 24 | 44 | | 10 | 59 | |
| IV | 71 | 84 | | 93 | 62 | | 59 | 96 | | 25 | 130| |
| Primary (grade 1 or 2) | 116 | 64 | <0.001 | 79 | 101 | 0.005 | 42 | 137 | 0.003 | 16 | 164| 0.043 |
| Advanced (grade 3 or 4) | 98 | 126 | | 130 | 94 | | 83 | 140 | | 35 | 189| |

https://doi.org/10.1371/journal.pone.0262822.t005

Table 6. Comparison of **EGFR** L858R, **EGFR** exon 20 insertion, **KRAS** mutation, histological type, and tumor grade between smoker and non-smoker in different gender, and between male and female patients in smokers or non-smokers.

Male	Female											
Smoker	Non-smoker	P	Smoker	Non-smoker	P	Male	Female	P	Male	Female	P	
EGFR L858R												
Positive	14	21	0.031	3	68	1.000	14	3	0.076	21	68	0.039
Negative	103	69		5	119		103	5	0.003	69	119	
EGFR 20ins												
Positive	2	1	1.000	1	5		2	1	0.181	1	5	0.667
Negative	115	89		7	182		115	7	0.118	89	182	
KRAS mutation												
Positive	16	12	0.943	1	7	0.289	16	1	0.003	12	7	
Negative	101	78		7	180		101	7		78	180	
Histological type												
Adenocarcinoma												
Positive	101	86	0.026	6	186	0.004	101	6	0.324	86	186	0.040
Squamous cell carcinoma												
Positive	16	4		2	1		16	2		4	1	
Tumor stage												
Primary	38	40	0.078	4	97	1.000	38	4	0.440	40	97	0.247
Advanced	79	50		4	90		79	4		50	90	

https://doi.org/10.1371/journal.pone.0262822.t006

EGFR, epidermal growth factor receptor; EGFR 20ins, EGFR exon 20 insertion.

https://doi.org/10.1371/journal.pone.0262822.t006
versus a mixture of measurement methods). In all, there were 4.9% (10/205) of those patients holding genetic variations resistant to anti-EGFR therapy, including 2 patients with *EGFR* T790M mutation, 1 patient with *EGFR* exon 20 insertion, 3 patients with *KRAS* mutations, 1 patient with *BRAF* V600E mutation (*BRAF* V600E was also indicated as resistant mechanism for Osimertinib in a previous study [22]), and 3 patients with *PIK3CA* mutations.

Prevalence of *ALK*, *ROS1*, or *RET* fusions was relatively lower (7.7%), and only 1.2% of the patients had *BRAF* mutations. *HER2* exon 20 insertion was found in 3.5% of the patients, which is higher than the prevalence (2.2%) as reported in previous study by Arcila et al. [17], possibly due to different screening strategy. Similar to the previous study, *HER2* exon 20 insertion did not co-exist with other genetic variations in *EGFR*, *ALK*, *ROS1*, *RET*, or *BRAF*, indicating a need for targeted treatments for this specific subgroup of patients. Different from the previous study by Arcila et al. [17] which find two cases with concurrent *PIK3CA* mutations and *HER2* exon 20 insertion, we did not find any co-existing *PIK3CA* mutations in our patient cohort. *MET* exon 14 skipping mutation was found in 1.5% (6/404) of the patients in our cohort, which is similar to previous reports (1.6 ~ 2.6% of NSCLC) [18]. In our cohort, *MET* exon 14 skipping mutation did not co-exist with other genetic variations. Similarly, previous studies also showed no co-existing *MET* exon 14 skipping mutation with other driver gene variations, except amplifications of *EGFR* in 4 cases [18].

In our results, *EGFR* L858R mutation was more commonly seen in younger patients, which is conflicting with previous reports by Zhang et al. [20], possibly due to different cut-off value for younger and older patients (age of 50 in Zhang et al. *versus* median age used for cut-off value in our study). *EGFR* exon 19 deletion and L858R mutation were more commonly observed in female patients and adenocarcinoma. Similar observation has been reported between L858R mutation and gender, smoking, and histological type in a Japanese cohort [23] and a Polish cohort [24]. Further subgroup analysis confirmed the increased prevalence of those genetic variations in female patients in adenocarcinoma subgroup, and also in adenocarcinoma in male patients, which was not performed in previous studies. Similar to previous findings [23, 25, 26], smokers were more commonly found to have squamous cell carcinoma.

EGFR exon 19 deletion	EGFR L858R					
	Positive	Negative		Positive	Negative	
Male						
Adenocarcinoma	34	155	0.050	35	154	0.029
Squamous cell carcinoma	0	20		0	20	
Female						
Adenocarcinoma	51	141	0.568	71	121	0.555
Squamous cell carcinoma	0	3		0	3	
Squamous cell carcinoma						
Male	0	20		0	20	
Female	0	3		0	3	

EGFR, epidermal growth factor receptor.

*Chi-square test was not applicable due to lack of positive cases of *EGFR* exon 19 deletion or *EGFR* L858R.

https://doi.org/10.1371/journal.pone.0262822.t007

Table 7. Comparison of *EGFR* exon 19 deletion and L858R between adenocarcinoma and squamous cell carcinoma in different gender, and between male and female patients in adenocarcinoma or squamous cell carcinoma.
and KRAS mutation, and less likely to have EGFR L858R mutation in our cohort, and those associations between smoking and histological type, EGFR L858R mutation (but not KRAS mutation) were also observed after standardization of gender. Similarly, squamous cell carcinoma, KRAS mutations, and EGFR L858R mutation were more commonly found in males than females. Interestingly, after further standardization of smoking status, we found that in non-smokers, male patients were more likely to have squamous cell carcinoma and KRAS mutations and less likely to have EGFR L858R mutation than female patients. Previous study by Xue et al. [26] and Ramlau et al. [24] found that KRAS mutation was more common in male patients in a Chinese cohort, and EGFR L858R mutation was more common in female patients in the Polish cohort, but further standardization of smoking status was not performed in the study. Study by Stapelfeld et al. [27] reported conflicting results that KRAS mutations were more frequently found in women than in men, possibly due to the different race of patients (Caucasian) investigated in that study.

In summary, our study investigated the prevalence of targeted therapy-related genetic variations in NSCLC, as well as the relationship between those genetic variations and clinicopathological characteristics of patients. Compared to previous studies, our results showed overall similar prevalence of the investigated genetic variations in NSCLC. In addition, we also observed higher prevalence of EGFR exon 19 deletion and L858R both in female patients and in adenocarcinoma. Different from previous studies, we further looked into subgroups and confirmed those observations in female patients in adenocarcinoma subgroup and in adenocarcinoma in male patients, which indicate that the observations above were not due to the cross-linkage between gender and histological type but independent association between gender/histological type and the genetic variations. Furthermore, we also observed that smokers were more frequently to have squamous cell carcinoma and KRAS mutations, and less frequently to have EGFR L858R. Similarly, different from previous studies, we also performed subgroup analysis and confirmed those observations (except KRAS mutations) after standardization of gender, further confirming the association between histological type, EGFR L858R mutation and smoking. Our findings further confirmed the association between gender, histological type, smoking, and sensitive genetic variations of anti-EGFR therapies, which may help clinicians and clinical investigator in the patient selection of currently-available or potential targeted therapies. Limitations of this study could be the small patient cohort which may lead to potential statistical bias. Investigations using large patient cohort are required to further confirm the findings.

Supporting information

S1 Table. Post hoc analysis results of the association between ALK fusion, age, gender, and smoking history of patients and tumor stage.

(DOCX)

S1 File. List of genetic variations and clinicopathological characteristics of patients.

(XLSX)

Author Contributions

Conceptualization: Fanghua Li.

Data curation: Xingwang Sun.

Formal analysis: Xingwang Sun.

Funding acquisition: Xingwang Sun.
Investigation: Fanghua Li.
Methodology: Peng Ye, Peiling Cai, Dandan Dong, Yihao Zhang, Yue Yang.
Project administration: Fanghua Li, Xingwang Sun.
Validation: Peiling Cai, Yihao Zhang, Yue Yang.
Writing – original draft: Fanghua Li, Peng Ye.
Writing – review & editing: Xingwang Sun.

References
1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA: a cancer journal for clinicians. 2016; 66(1):7–30.
2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLO-BOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians. 2018; 68(6):394–424.
3. Zheng RS, Sun KX, Zhang SW, Zeng HM, Zou XN, Chen R, et al. [Report of cancer epidemiology in China, 2015]. Zhonghua zhong liu za zhi [Chinese journal of oncology]. 2019; 41(1):19–28. https://doi.org/10.7360/cma.j.isn.0253-3766.2019.01.005 PMID: 30678413
4. Herbst RS, Morgensztern D, Boshoff C. The biology and management of non-small cell lung cancer. Nature. 2018; 553(7689):446–54. https://doi.org/10.1038/nature25183 PMID: 29364287
5. Sharma SV, Bell DW, Settleman J, Haber DA. Epidermal growth factor receptor mutations in lung cancer. Nature reviews Cancer. 2007; 7(3):169–81. https://doi.org/10.1038/nrc2088 PMID: 17318210
6. Mok TS, Wu YL, Thongprasert S, Yang CH, Chu DT, Saijo N, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. The New England journal of medicine. 2009; 361(10):947–57. https://doi.org/10.1056/NEJMoa0810699 PMID: 19692680
7. Shaw AT, Kim DW, Nakagawa K, Seto T, Crino L, Ahn MJ, et al. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. The New England journal of medicine. 2013; 368(25):2385–94. https://doi.org/10.1056/NEJMoa1214886 PMID: 23724913
8. Shaw AT, Ou SH, Bang YJ, Camidge DR, Solomon BJ, Salgia R, et al. Crizotinib in ROS1-rearranged non-small-cell lung cancer. The New England journal of medicine. 2014; 371(21):1963–71. https://doi.org/10.1056/NEJMoa1406766 PMID: 25264305
9. Planchard D, Kim TM, Mazieres J, Quoix E, Riely G, Barlesi F, et al. Dabrafenib in patients with BRAF (V600E)-positive advanced non-small-cell lung cancer: a single-arm, multicentre, open-label, phase 2 trial. The Lancet Oncology. 2016; 17(5):642–50. https://doi.org/10.1016/S1470-2045(16)00077-2 PMID: 27080216
10. Skoulidis F, Li BT, Dy GK, Price TJ, Falchook GS, Wolf J, et al. Sotorasib for Lung Cancers with KRAS p.G12C Mutation. The New England journal of medicine. 2021; 384(25):2371–81. https://doi.org/10.1056/NEJMoa2103695 PMID: 34096690
11. Gautsch O, Milia J, Filleron T, Wolf J, Carbone DP, Owen D, et al. Targeting RET in Patients With RET-Rearranged Lung Cancers: Results From the Global, Multicenter RET Registry. Journal of clinical oncology: official journal of the American Society of Clinical Oncology. 2017; 35(13):1403–10. https://doi.org/10.1200/JCO.2016.70.9352 PMID: 28447912
12. Ferrer I, Zugazagoitia J, Herberts S, John W, Paz-Ares L, Schmid-Bindert G. KRAS-Mutant non-small cell lung cancer: From biology to therapy. Lung Cancer. 2018; 124:53–64. https://doi.org/10.1016/j.lungcan.2018.07.013 PMID: 30268480
13. Vyse S, Huang PH. Targeting EGFR exon 20 insertion mutations in non-small cell lung cancer. Signal transduction and targeted therapy. 2019; 4:5. https://doi.org/10.1038/s41392-019-0038-9 PMID: 30854234
14. Deng Q, Xie B, Wu L, Ji X, Li C, Feng L, et al. Competitive evolution of NSCLC tumor clones and the drug resistance mechanism of first-generation EGFR-TKIs in Chinese NSCLC patients. Heliyon. 2018; 4(12):e01031. https://doi.org/10.1016/j.heliyon.2018.e01031 PMID: 30603682
15. Sequist LV, Waltman BA, Dias-Santagata D, Digumarthy S, Turke AB, Fidias P, et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Science translational medicine. 2011; 3(75):75ra26. https://doi.org/10.1126/scitranslmed.3002003 PMID: 21430269
16. Blakely CM, Bivona TG. Resiliency of lung cancers to EGFR inhibitor treatment unveiled, offering opportunities to divide and conquer EGFR inhibitor resistance. Cancer discovery. 2012; 2(10):872–5. https://doi.org/10.1158/2159-8290.CD-12-0367 PMID: 23071030
17. Arcila ME, Nafa K, ChafTE. Rekhtman N, Lau C, Reva B, et al. EGFR exon 20 insertion mutations in lung adenocarcinomas: prevalence, molecular heterogeneity, and clinicopathologic characteristics. Molecular cancer therapeutics. 2013; 12(2):220–9. https://doi.org/10.1158/1535-7163.MCT-12-0620 PMID: 23371856

18. Pilotto S, Gkountakos A, Carbognin L, Scarpa A, Tortora G, Bria E. MET exon 14 juxtamembrane splicing mutations: clinical and therapeutical perspectives for cancer therapy. Annals of translational medicine. 2017; 5(1):2. https://doi.org/10.21037/atm.2016.12.33 PMID: 28164087

19. Zhang YL, Yuan JQ, Wang KF, Fu XH, Han XR, Threapleton D, et al. The prevalence of EGFR mutation in patients with non-small cell lung cancer: a systematic review and meta-analysis. Oncotarget. 2016; 7 (48):78985–93. https://doi.org/10.18632/oncotarget.12587 PMID: 27738317

20. Zhang Y, He D, Fang W, Kang S, Chen G, Hong S, et al. The Difference of Clinical Characteristics Between Patients With Exon 19 Deletion and Those With L858R Mutation in Nonsmall Cell Lung Cancer. Medicine. 2015; 94(44):e1949. https://doi.org/10.1097/MD.0000000000001949 PMID: 26554801

21. Chapman AM, Sun KY, Ruestow P, Cowan DM, Madl AK. Lung cancer mutation profile of EGFR, ALK, and KRAS: Meta-analysis and comparison of never and ever smokers. Lung Cancer. 2016; 102:122–34. https://doi.org/10.1016/j.lungcan.2016.10.010 PMID: 27987580

22. Ho CC, Liao WY, Lin CA, Shih JY, Yu CJ, Yang JC. Acquired BRAF V600E Mutation as Resistant Mechanism after Treatment with Osimertinib. Journal of thoracic oncology: official publication of the International Association for the Study of Lung Cancer. 2017; 12(3):567–72. https://doi.org/10.1016/j.jtho.2016.11.2231 PMID: 27923714

23. Sasaki H, Endo K, Takada M, Kawahara M, Kitahara N, Tanaka H, et al. L858R EGFR mutation status correlated with clinico-pathological features of Japanese lung cancer. Lung Cancer. 2006; 54(1):103–8. https://doi.org/10.1016/j.lungcan.2006.06.003 PMID: 16890322

24. Ramlau R, Krawczyk P, Dziadziozska R, Chmielewska I, Milawski J, Olszewski W, et al. Predictors of EGFR mutation and factors associated with clinical tumor stage at diagnosis: Experience of the INSIGHT study in Poland. Oncology letters. 2017; 14(5):5611–8. https://doi.org/10.3892/ol.2017.6907 PMID: 29113190

25. Pesch B, Kendzia B, Gustavsson P, Jockey KH, Johnen G, Pohlabeln H, et al. Cigarette smoking and lung cancer—relative risk estimates for the major histological types from a pooled analysis of case-control studies. International journal of cancer. 2012; 131(5):1210–8. https://doi.org/10.1002/ijc.27339 PMID: 22052329

26. Xue X, Asuquo I, Hong L, Gao J, Dong Z, Pang L, et al. Catalog of Lung Cancer Gene Mutations Among Chinese Patients. Frontiers in oncology. 2020; 10:1251. https://doi.org/10.3389/fonc.2020.01251 PMID: 32850378

27. Stapelfeld C, Damman C, Maser E. Sex-specificity in lung cancer risk. International journal of cancer. 2020; 146(9):2376–82. https://doi.org/10.1002/ijc.32716 PMID: 31583690