ON \mathcal{H}-COMPLETE TOPOLOGICAL SEMILATTICES

S. BARDYLA AND O. GUTIK

Abstract. In the paper we describe the structure of $\mathcal{A}\mathcal{H}$-completions and \mathcal{H}-completions of the discrete semilattices (\mathbb{N}, \min) and (\mathbb{N}, \max). We give an example of an \mathcal{H}-complete topological semilattice which is not $\mathcal{A}\mathcal{H}$-complete. Also we construct an \mathcal{H}-complete topological semilattice of cardinality λ which has 2^λ many open-and-closed continuous homomorphic images which are not \mathcal{H}-complete topological semilattices. The constructed examples give a negative answer to Question 17 from [12].

In this paper all topological spaces will be assumed to be Hausdorff. We shall follow the terminology of [1, 3], and [4]. For a subset A of a topological space X by $\text{cl}_X(A)$ we denote the closure of A in X. A filter \mathcal{F} on a set S is called free if $\bigcap \mathcal{F} = \emptyset$.

A semilattice is a set endowed with a commutative idempotent associative operation. If E is a semilattice, then the semilattice operation on E determines the partial order \leq on E: $e \leq f \quad \text{if and only if} \quad ef = fe = e.$

This order is called natural. An element e of a semilattice E is called minimal (maximal) if $f \leq e$ ($e \geq f$) implies $f = e$ for $f \in E$. A semilattice E is said to be linearly ordered or a chain if the natural order on E is linear.

If S is a topological space equipped with a commutative idempotent associative operation then S is called a topological semigroup. A topological semilattice is a topological semigroup which is algebraically a semilattice.

Let $\mathcal{T}\mathcal{S}$ be a category whose objects are topological semigroups and morphisms are homomorphisms between topological semigroups. A topological semigroup $X \in \text{Ob} \mathcal{T}\mathcal{S}$ is called $\mathcal{T}\mathcal{S}$-complete if for each object $Y \in \text{Ob} \mathcal{T}\mathcal{S}$ and a morphism $f: X \to Y$ of the category $\mathcal{T}\mathcal{S}$ the image $f(X)$ is closed in Y.

By a $\mathcal{T}\mathcal{S}$-completion of a topological semigroup X we understand any $\mathcal{T}\mathcal{S}$-complete topological semigroup $\tilde{X} \in \text{Ob} \mathcal{T}\mathcal{S}$ containing X as a dense subsemigroup. A $\mathcal{T}\mathcal{S}$-completion \tilde{X} of X is called universal if each continuous homomorphism $h: X \to Y$ to a $\mathcal{T}\mathcal{S}$-complete topological semigroup $Y \in \text{Ob} \mathcal{T}\mathcal{S}$ extends to a continuous homomorphism $\tilde{h}: \tilde{X} \to Y$.

It is well-known that for the category $\mathcal{T}\mathcal{G}$ of topological groups and their continuous homomorphisms, each object $G \in \text{Ob} \mathcal{T}\mathcal{G}$ has a $\mathcal{T}\mathcal{G}$-completion and each $\mathcal{T}\mathcal{G}$-completion of G is universal [10].

In the category of topological semigroups the situation is totally different. We show this on the example of the discrete topological semigroups (\mathbb{N}, \min) and (\mathbb{N}, \max). We shall study \mathcal{H}-completions and $\mathcal{A}\mathcal{H}$-completions of discrete topological semigroup (\mathbb{N}, \min) and (\mathbb{N}, \max) in the category $\mathcal{A}\mathcal{H}$ (resp. \mathcal{H}) whose objects are Hausdorff topological semigroups and morphisms are continuous homomorphisms (resp. isomorphic topological embeddings) between topological semigroups.

The notion of \mathcal{H}-completion was introduced by Stepp in [11], where he showed that for each locally compact topological semigroup S there exists an \mathcal{H}-complete topological semigroup T which contains S as a dense subsemigroup.

Date: December 11, 2013.
2010 Mathematics Subject Classification. 22A26, 06B30, 06F30, 54H12, 54C10.
Key words and phrases. Topological semilattice, free filter, complete semigroup, chain.
Stepp [12] proved that a discrete semilattice E is \mathcal{H}-complete if and only if any maximal chain in E is finite. In [7] Gutik and Pavlyk remarked that a topological semilattice is \mathcal{H}-complete ($\mathcal{A}\mathcal{H}$-complete) if and only if it is ($\mathcal{A}\mathcal{H}$-complete) as a topological semigroup. In [3] Gutik and Repovš studied properties of linearly ordered \mathcal{H}-complete topological semilattices and proved the following characterization theorem:

Theorem 1 ([9, Theorem 2]). A linearly ordered topological semilattice E is \mathcal{H}-complete if and only if the following conditions hold:

(i) E is complete;
(ii) $x = \sup A$ for $A = \downarrow A$ implies $x \in \text{cl}_E A$; and
(iii) $x = \inf B$ for $B = \uparrow B$ implies $x \in \text{cl}_E B$.

Also, in [2] Gutik and Repovš proved that each linearly ordered \mathcal{H}-complete topological semilattice is $\mathcal{A}\mathcal{H}$-complete and showed that every linearly ordered semilattice is a dense subsemilattice of an \mathcal{H}-complete topological semilattice. In [2] Chuchman and Gutik proved that any \mathcal{H}-complete topologically weakly U-semilattice contain minimal idempotents.

In [12, Question 17] Stepp asked the following question: Is each \mathcal{H}-complete topological semilattice $\mathcal{A}\mathcal{H}$-complete? In the present paper we answer this Stepp’s question in the negative by constructing an example of an \mathcal{H}-complete topological semilattice which is not $\mathcal{A}\mathcal{H}$-complete. Also we construct an \mathcal{H}-complete topological semilattice of arbitrary infinite cardinality λ which has 2^λ many open-and-closed continuous homomorphic images which are not \mathcal{H}-complete topological semilattices.

Let \mathbb{N} denote the set of positive integers. For each free filter \mathcal{F} on \mathbb{N} consider the topological space $\mathbb{N}_\mathcal{F} = \mathbb{N} \cup \{\mathcal{F}\}$ in which all points $x \in \mathbb{N}$ are isolated while the sets $F \cup \{\mathcal{F}\}$, $F \in \mathcal{F}$, form a neighbourhood base at the unique non-isolated point \mathcal{F}.

The semilattice operation \min (resp., \max) of \mathbb{N} extends to a continuous semilattice operation \max (resp., \min) on $\mathbb{N}_\mathcal{F}$ such that $\min\{n, \mathcal{F}\} = \min\{\mathcal{F}, n\} = n$ and $\min\{\mathcal{F}, \mathcal{F}\} = \mathcal{F}$ (resp., $\max\{n, \mathcal{F}\} = \max\{\mathcal{F}, n\} = \mathcal{F} = \max\{\mathcal{F}, \mathcal{F}\}$) for all $n \in \mathbb{N}$. By $\mathbb{N}_{\mathcal{F}, \min}$ (resp., $\mathbb{N}_{\mathcal{F}, \max}$) we shall denote the topological space $\mathbb{N}_\mathcal{F}$ with the semilattice operation \min (resp., \max). Simple verifications show that $\mathbb{N}_{\mathcal{F}, \min}$ and $\mathbb{N}_{\mathcal{F}, \max}$ are topological semilattices.

Theorem 2. (i) For each free filter \mathcal{F} on \mathbb{N} the topological semilattices $\mathbb{N}_{\mathcal{F}, \min}$ and $\mathbb{N}_{\mathcal{F}, \max}$ are $\mathcal{A}\mathcal{H}$-complete.

(ii) Each \mathcal{H}-completion of the discrete semilattice (\mathbb{N}, \min) (resp., (\mathbb{N}, \max)) is topologically isomorphic to the topological semilattice $\mathbb{N}_{\mathcal{F}, \min}$ (resp., $\mathbb{N}_{\mathcal{F}, \max}$) for some free filter \mathcal{F} on \mathbb{N}.

(iii) The topological semilattice (\mathbb{N}, \min) (resp., (\mathbb{N}, \max)) has no universal $\mathcal{A}\mathcal{H}$-completion.

Proof. (i) By Theorem 1 we have that the topological semilattices $\mathbb{N}_{\mathcal{F}, \min}$ and $\mathbb{N}_{\mathcal{F}, \max}$ are \mathcal{H}-complete. Since $\mathbb{N}_{\mathcal{F}, \min}$ and $\mathbb{N}_{\mathcal{F}, \max}$ are linearly ordered semilattices, Theorem 3 of [9] implies that the topological semilattices $\mathbb{N}_{\mathcal{F}, \min}$ and $\mathbb{N}_{\mathcal{F}, \max}$ are $\mathcal{A}\mathcal{H}$-complete.

(ii) We shall prove the statement for the semilattice (\mathbb{N}, \min). In the case of (\mathbb{N}, \max) the proof is similar.

Let S be an \mathcal{H}-complete topological semilattice containing (\mathbb{N}, \min) as a dense subsemilattice. Since the closure of a linearly ordered subsemilattice in a Hausdorff topological semigroup is a linearly ordered topological semilattice (see [7, Corollary 19] and [9, Lemma 1]), we conclude that S is linearly ordered and $S \setminus \mathbb{N}$ is a singleton $\{a\}$. Then since (\mathbb{N}, \min) is a dense subsemilattice of S, the continuity of the semilattice operation in S implies that $a \cdot a = a$ and $a \cdot n = n \cdot a = n$ for any $n \in \mathbb{N}$. Let $\mathcal{B}(a)$ be the filter of neighborhoods of the point a in S. This filter induces the free filter $\mathcal{F} = \{F \subseteq \mathbb{N} : F \cup \{a\} \in \mathcal{B}(a)\}$. Then we can identify the topological semilattice S with $\mathbb{N}_{\mathcal{F}, \min}$ by the topological isomorphism $f : S \to \mathbb{N}_{\mathcal{F}, \min}$ such that $f(a) = \mathcal{F}$ and $f(n) = n$ for every $n \in \mathbb{N}$.
Theorem 3. Let F be a free filter on \mathbb{N} and $F \in \mathcal{F}$ be a set with infinite complement $\mathbb{N} \setminus F$. Then the following statements hold:

(i) the closed subsemilattice $E = (\mathbb{N}_{\mathcal{F},\min} \times \{0\}) \cup ((\mathbb{N} \setminus F) \times \{1\})$ of the direct product $\mathbb{N}_{\mathcal{F},\min} \times E_2$ is \mathcal{H}-complete;

(ii) the subset $I = \mathbb{N}_{\mathcal{F},\min} \times \{0\}$ is an open-and-closed ideal in E, and the quotient semilattice E/I with the quotient topology is discrete and not \mathcal{H}-complete;

(iii) the semilattice E is not $\mathcal{A}\mathcal{H}$-complete.

Proof. (i) The definition of the topological semilattice $\mathbb{N}_{\mathcal{F},\min} \times E_2$ implies that E is a closed subsemilattice of $\mathbb{N}_{\mathcal{F},\min} \times E_2$.

Suppose the contrary: the topological semilattice E is not \mathcal{H}-complete. Since the closure of a subsemilattice in a topological semigroup is a semilattice (see Corollary 19 of [7]), we conclude that there exists a topological semilattice S which contains E as a dense subsemilattice and $S \setminus E \neq \emptyset$. We fix an arbitrary $a \in S \setminus E$. Then for every open neighbourhood $U(a)$ of the point a in S we have that the set $U(a) \cap E$ is infinite. By Theorem 2, the subspace $\mathbb{N}_{\mathcal{F},\min} \times \{0\}$ of E with the induced semilattice operation from E is an \mathcal{H}-complete topological semilattice. Therefore, there exists an open neighbourhood $U(a)$ of the point a in S such that $U(a) \cap E \subseteq (\mathbb{N} \setminus F) \times \{1\}$ and hence the set $U(a) \cap ((\mathbb{N} \setminus F) \times \{1\})$ is infinite.

Next we shall show that $a \cdot x = x$ for any $x \in E \setminus \{ (\mathcal{F},0) \}$. Since the set $U(x) \cap ((\mathbb{N} \setminus F) \times \{1\})$ is infinite, the continuity of the semilattice operation in E implies that $a \cdot x = x$ for any $x \in (\mathbb{N} \setminus F) \times \{1\}$. Now fix any point $y \in \mathbb{N} \times \{0\} \subset E$. By the definition of the semilattice operation on E, we can find a point $x_y \in (\mathbb{N} \setminus F) \times \{1\}$ with $x_y \cdot y = y$ and conclude that

$$a \cdot y = a \cdot (x_y \cdot y) = (a \cdot x_y) \cdot y = x_y \cdot y = y.$$

Since $(\mathcal{F},0)$ is a cluster point of the set $\mathbb{N} \times \{0\}$, the continuity of the semilattice operation implies that $a \cdot (\mathcal{F},0) = (\mathcal{F},0)$.

Since $W(\mathcal{F},0) = (F \cup \{\mathcal{F}\}) \times \{0\}$ is a neighborhood of the point $(\mathcal{F},0) = a \cdot (\mathcal{F},0)$, the continuity of the semilattice operation yields the existence of neighborhoods $U(a)$ and $V(\mathcal{F},0)$ of the points a and $(\mathcal{F},0)$ in S such that $U(a) \cdot V(\mathcal{F},0) \subset W(\mathcal{F},0)$. Now choose any point $(n,1) \in U(a) \cap ((\mathbb{N} \setminus F) \times \{1\})$ and find a point $(m,0) \in V(\mathcal{F},0)$ such that $m \geq n$. Then

$$(n,0) = (n,1) \cdot (m,1) \in U(a) \cdot U(\mathcal{F},0) \subset W(\mathcal{F},0) = (F \cup \{\mathcal{F}\}) \times \{0\},$$

which contradicts the choice of $n \in \mathbb{N} \setminus F$.

(ii) The definition of the semilattice E implies that $I = \mathbb{N}_{\mathcal{F},\min} \times \{0\}$ is an open-and-closed ideal in E. Then the quotient semilattice E/I (endowed with the quotient topology) is a discrete topological semilattice, topologically isomorphic to the discrete semilattice (\mathbb{N}, \min). By Theorem 11, the semilattice E/I is not \mathcal{H}-complete.

Statement (iii) follows from statement (ii). □

Corollary 4. For a free filter \mathcal{F} on \mathbb{N}, each closed subsemilattice of the semilattice $\mathbb{N}_{\mathcal{F},\min} \times E_2$ is $\mathcal{A}\mathcal{H}$-complete if and only if \mathcal{F} is the filter of cofinite sets on \mathbb{N}.
Proof. (⇒) If \mathcal{F} is the filter of cofinite sets on \mathbb{N}, then the space $\mathbb{N}_{\mathcal{F}_{\min}} \times E_2$ is compact. Then each closed subset of $\mathbb{N}_{\mathcal{F}_{\min}} \times E_2$ is compact and hence each closed subsemilattice of the semilattice $\mathbb{N}_{\mathcal{F}_{\min}} \times E_2$ is \mathcal{H}-complete.

(⇒) If \mathcal{F} is a free filter on \mathbb{N} containing a set $F \subseteq \mathbb{N}$ with the infinite complement $\mathbb{N} \setminus F$, then $E = (\mathbb{N}_{\mathcal{F}_{\min}} \times \{0\}) \cup ((\mathbb{N} \setminus F) \times \{1\})$ is a closed subsemilattice of the topological semilattice $\mathbb{N}_{\mathcal{F}_{\min}} \times E_2$ and Theorem 3 implies that E is not \mathcal{H}-complete. \hfill \square

The proof of the following theorem is similar to the proof of Theorem 3 with some simple modifications.

Theorem 5. Let \mathcal{F} be a free filter on \mathbb{N} and $F \in \mathcal{F}$ be a set with infinite complement $\mathbb{N} \setminus F$. Then the following assertions hold:

(i) the closed subsemilattice $E = (\mathbb{N}_{\mathcal{F}_{\max}} \times \{0\}) \cup ((\mathbb{N} \setminus F) \times \{1\})$ of the direct product $\mathbb{N}_{\mathcal{F}_{\max}} \times E_2$ is \mathcal{H}-complete;

(ii) the subset $I = \mathbb{N}_{\mathcal{F}_{\max}} \times \{0\}$ is an open-and-closed ideal in E, and the quotient semilattice E/I with the quotient topology is discrete and not \mathcal{H}-complete;

(iii) the semilattice E is not \mathcal{AH}-complete.

The proof of the following corollary is similar to the proof of Corollary 4 and follows from Theorem 3.

Corollary 6. For a free filter \mathcal{F} on \mathbb{N}, each closed subsemilattice of the semilattice $\mathbb{N}_{\mathcal{F}_{\max}} \times E_2$ is \mathcal{AH}-complete if and only if \mathcal{F} is the filter of cofinite sets on \mathbb{N}.

We remark that Theorems 3 and 4 give negative answers on Question 17 from [12].

Also, Theorems 3 and 5 imply the following corollary:

Corollary 7. There exists a countable locally compact \mathcal{H}-complete topological semilattice E with an open-and-closed ideal I such that I is a \mathcal{AH}-complete semilattice and the Rees quotient semigroup E/I with the quotient topology is not \mathcal{H}-complete.

Remark 8. A Hausdorff partially ordered space X is called \mathcal{H}-complete if X is a closed subspace of every Hausdorff partially ordered space in which it is contained [5]. A linearly ordered topological semilattice E is \mathcal{H}-complete if and only if E is an \mathcal{H}-complete partially ordered space [9]. In [13] Yokoyama showed that a partially ordered space X without an infinite antichain is an \mathcal{H}-complete partially ordered space if and only if X is a directed complete and down-complete poset such that sup L and inf L are contained in the closure of L for any nonempty chain L in X. Theorems 3 and 5 imply that there exists an \mathcal{H}-complete topological semilattice without an infinite antichain which is not an \mathcal{H}-complete partially ordered space. Also Theorems 3 implies that there exists a countable \mathcal{H}-complete locally compact topological semilattice E without an infinite antichain which contains a maximal chain L which is not directed complete, and L does not have a maximal element.

Let λ be any infinite cardinal and let $0 \notin \lambda$. On the set $E_\lambda = \{0\} \cup \lambda$ endowed with the discrete topology we define the semilattice operation by the formula:

$$x \cdot y = \begin{cases} x, & \text{if } x = y; \\ 0, & \text{if } x \neq y. \end{cases}$$

Theorem 9. Let \mathcal{F} be a free filter on \mathbb{N} and $F \in \mathcal{F}$ be a set with infinite complement $\mathbb{N} \setminus F$. Then for each infinite cardinal λ the following statements hold:

(i) the closed subsemilattice $E = (\mathbb{N}_{\mathcal{F}_{\max}} \times \{0\}) \cup ((\mathbb{N} \setminus F) \times \lambda)$ of the direct product $\mathbb{N}_{\mathcal{F}_{\max}} \times E_\lambda$ is \mathcal{H}-complete;

(ii) for each subset $\kappa \subset \lambda$ the subset $I_\kappa = (\mathbb{N}_{\mathcal{F}_{\max}} \times \{0\}) \cup ((\mathbb{N} \setminus F) \times \kappa)$ is an open-and-closed ideal in E, and the quotient semilattice E/I_κ with the quotient topology is discrete and not \mathcal{H}-complete.
(iii) the semilattice E is not \mathcal{H}-complete.

Proof. (i) Assuming that the topological semilattice E is not \mathcal{H}-complete, find a topological semilattice T containing E as a dense subsemilattice with non-empty complement $T \setminus E$. Fix any element $e \in T \setminus E$. By Theorem 9, the topological semilattice $E^0 = \mathbb{N}_{\mathcal{F}_{\max}} \times \{0\}$ is \mathcal{H}-complete and hence is closed in T. Then there exists an open neighbourhood $U(e)$ of the point e in T such that $U(e) \cap E^0 = \emptyset$. By the continuity of the semilattice operation in T, there exists an open neighbourhood $V(e) \subseteq U(e)$ of the point e in T such that $V(e) \cdot V(e) \subseteq U(e)$. By Theorem 5, for each $a \in \lambda$, the subsemilattice $E_a = (\mathbb{N}_{\mathcal{F}_{\max}} \times \{0\}) \cup ((\mathbb{N} \setminus F) \times \{a\})$ of the direct product $\mathbb{N}_{\mathcal{F}_{\max}} \times E_\lambda$ is \mathcal{H}-complete and hence is closed in T. This implies that $V(e) \cap E_a \neq \emptyset$ for infinitely many points $a \in \lambda$, and hence $(V(e) \cdot V(e)) \cap E^0 \neq \emptyset$. This contradicts the choice of the neighbourhood $U(e)$. The obtained contradiction implies that the topological semilattice E is \mathcal{H}-complete.

(ii) The definition of the semilattice E implies that $I_\kappa = (\mathbb{N}_{\mathcal{F}_{\max}} \times \{0\}) \cup ((\mathbb{N} \setminus F) \times \kappa)$ is an open-and-closed ideal in E. Then we have that the quotient semilattice E/I_κ with the quotient topology is a discrete topological semilattice. Also, E/I_κ is topologically isomorphic to the orthogonal sum of λ infinitely many of (\mathbb{N}, \max) with isolated zero. This implies that the semilattice E/I_κ is not \mathcal{H}-complete.

Statement (iii) follows from statement (ii).

Remark 10. The topological semilattices E and I_κ from Theorem 9 are metrizable locally compact spaces for each free countably generated filter \mathcal{F} on \mathbb{N} and any $\kappa \subseteq \lambda$.

Remark 11. It can be shown that continuous homomorphisms into the discrete semilattice $\{0, 1\}$ separate points of the topological semilattices E considered in Theorems 5 and 9.

Since for each subset $\kappa \subseteq \lambda$ the natural homomorphism $\pi: E \to E/I_\kappa$ is an open-and-closed map, Theorem 9 implies the following corollary:

Corollary 12. Let \mathcal{F} be a free filter on \mathbb{N} containing a set $F \in \mathcal{F}$ with infinite complement $\mathbb{N} \setminus F$. Then for each infinite cardinal λ there exist 2^λ many continuous open-and-closed surjective homomorphic images of the topological semilattice $E = (\mathbb{N}_{\mathcal{F}_{\max}} \times \{0\}) \cup ((\mathbb{N} \setminus F) \times \lambda) \subset \mathbb{N}_{\mathcal{F}_{\max}} \times E_\lambda$, which are not \mathcal{H}-complete.

Acknowledgements

We acknowledge Taras Banakh for his comments and suggestions. The authors are also grateful to the referee for several useful comments and suggestions.

References

[1] J. H. Carruth, J. A. Hildebrant and R. J. Koch, The Theory of Topological Semigroups, Vol. I, Marcel Dekker, Inc., New York and Basel, 1983; Vol. II, Marcel Dekker, Inc., New York and Basel, 1986.
[2] I. Chuchman and O. Gutik, On H-closed topological semigroups and semilattices, Algebra Discrete Math. no. 1 (2007), 13—23.
[3] R. Engelking, General Topology, 2nd ed., Heldermann, Berlin, 1989.
[4] G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. W. Mislove, and D. S. Scott, Continuous Lattices and Domains. Cambridge Univ. Press, Cambridge (2003).
[5] O. Gutik, D. Pagon and D. Repovš, On chains in H-closed topological pospaces, Order 27:1 (2010), 69—81.
[6] O. V. Gutik and K. P. Pavlyk, H-closed topological semigroups and Brandt λ-extensions, Math. Methods and Phys.-Mech. Fields 44:3 (2001), 20—28, (in Ukrainian).
[7] O. Gutik and K. Pavlyk, Topological Brandt λ-extensions of absolutely H-closed topological inverse semigroups, Visnyk Lviv. Univ. Ser. Mekh.-Mat. 61 (2003), 98—105.
[8] O. V. Gutik and K. P. Pavlyk, On topological semigroups of matrix units, Semigroup Forum, 71:3 (2005), 389—400.
[9] O. Gutik and D. Repovš, *On linearly ordered H-closed topological semilattices*, Semigroup Forum **77**:3 (2008), 474—481.

[10] D. A. Raikov, *On a completion of topological groups*, Izv. Akad. Nauk SSSR **10**:6 (1946), 513—528 (in Russian).

[11] J. W. Stepp, *A note on maximal locally compact semigroups*, Proc. Amer. Math. Soc. **20** (1969), 251—253.

[12] J. W. Stepp, *Algebraic maximal semilattices*, Pacific J. Math. **58**:1 (1975), 243—248.

[13] T. Yokoyama, *On completeness of H-closed pospaces*, [arXiv:1004.3038v1](http://arxiv.org/abs/1004.3038v1).

Department of Mathematics, Ivan Franko Lviv National University, Universytetska 1, Lviv, 79000, Ukraine

E-mail address: sbardyla@yahoo.com, o_gutik@franko.lviv.ua, ovgutik@yahoo.com