THE 6-TH NORM OF A STEINHAUS CHAOS

KAMALAKSHYA MAHATAB

abstract. We prove that for the Steinhaus Random Variable $z(n)$

$$
E \left(\left| \sum_{n \in E_{N,m}} z(n) \right|^{6} \right) \asymp |E_{N,m}|^{3} \text{ for } m \leq \left(\log \log N \right)^{\frac{1}{3}},
$$

where

$$
E_{N,m} := \{1 \leq n : \Omega(n) = m\}
$$

and $\Omega(n)$ denotes the number of prime factors of N.

1. Introduction

Let $z(p_{\text{prime}})$ be the Steinhaus random variable, equidistributed on the unit circle $\mathbb{T} := \{s \in \mathbb{C} : |s| = 1\}$. This function can be extended to all natural numbers by defining it completely multiplicatively. We define

$$
S_{N}(z) := \sum_{1 \leq n \leq N} z(n) \text{ and } S_{N,m}(z) := \sum_{n \in E_{N,m}} z(n), \text{ where } E_{N,m} := \{1 \leq n : \Omega(n) = m\}.
$$

Expectations of such Steinhaus chaoses, S_{N} and $S_{N,m}$, received attention from several mathematicians in recent years due to its connections to number theory and harmonic analysis [6]. In [4], Helson observed that if

$$
E(|S_{N}|) = o(\sqrt{N})
$$

then Nehari’s theorem on boundedness of Hankel forms does not extend to \mathbb{T}^{∞} (the infinite dimensional torus). While Nehari’s theorem has shown to fail on \mathbb{T}^{∞} by means of another Dirichlet polynomial [6], the question of whether (1) holds remained open and was proved only recently by Harper [3]. In an interesting approach to obtain a lower bound for $E(|S_{N}|)$, Bondarenko and Seip [2] showed that

$$
||S_{N,m}\|_{2} \asymp ||S_{N,m}\|_{4} \text{ for } m < \frac{1}{2} \log \log N,
$$

where $||S_{N,m}\|_{q} := E(|S_{N}|^{q})^{1/q}$. This implies

$$
E(|S_{N}|) \gg \frac{\sqrt{N}}{(\log \log N)^{0.05616}} \text{ and } |S_{N,m}|_{q} \gg q \left(\frac{\sqrt{N}}{(\log \log N)^{0.07672}} \right) \text{ for } q > 0.
$$

In this article, we will investigate the following question:

This work was carried out during the tenure of an ERCIM “Alain Bensoussan” Fellowship of the author. The author is also supported by Grant 227768 of the Research Council of Norway.
Is there a constant $c(k)$, for each k, such that $\|S_{N,m}\|_{2k} \asymp \|S_{N,m}\|_2$ when $m < c(k) \log \log N$?

We conjecture that such a constant exists for each k, but proving this statement seems difficult. Instead we will show the following:

Theorem 1. For $m \leq (\log \log N)^{\frac{1}{2}}$,

$$\|S_{N,m}\|_6 \asymp \|S_{N,m}\|_4$$

as $N \to \infty$.

Certain computations in the proof of the above theorem indicate us to conjecture that $c(3) = \frac{1}{6}$.

We may compare the above result to a result of Hough [5] on Rademacher random variable. Let f denotes the Rademacher random variable defined on primes, and takes the values ± 1 with probability $\frac{1}{2}$ each. Further, extend f to all natural numbers by defining it as a completely multiplicative function. Let

$$S_{N,m,f} := \sum_{n \in E_{N,m}} f(n).$$

Then (see Proposition 10 [5])

$$E(|S_{N,m,f}|^{2k}) \asymp |E_{N,m}|^k$$

for $m = o(\log \log \log N)$.

Our theorem gives a better range for m when $k = 3$ in case of the Steinhaus random variable.

We will simplify $E(|S_{N,m}|^6)$ in Section 2 and prove some preparatory lemmas in Section 3 and 4. In Section 5 we will give a proof of Theorem 1.

Acknowledgement. The author would like to thank Andriy Bondarenko and Kristian Seip for several insightful discussions.

2. An Identity For 6th Norm

To integrate $|S_{N,m}|^6$, we will obtain workable expressions for $|S_{N,m}|^4$ and $|S_{N,m}|^2$.

$$|S_{N,m}|^4 = \sum_{a_i, b_i \in E_{N,m}} z(a_1)z(a_2)z(b_1)z(b_2)$$

$$= \|S_{N,m}\|^4 + \sum_{a_i, a_i \neq b_i, b_i \in E_{N,m}} z(a_1)z(a_2)z(b_1)z(b_2)$$

(2) $$= \|S_{N,m}\|^4 + \sum_{k=1}^{2m} \sum_{(a,b) \in E_{N,2k}} \sum_{a_i, a_i', a_i'' \leq N} \sum_{b_i, b_i' \leq N} \sum_{\substack{\Omega(a_i') \leq m \quad \Omega(b_i') \leq m \quad \Omega(a_i'') = m - \Omega(a_i') \quad \Omega(b_i'') = m - \Omega(b_i') \quad a_i' \leq \frac{a_i}{2} \quad b_i'' \leq \frac{b_i}{2}}} z(a)z(b).$$

In the above sum, we factored a_i, b_i as $a_i = a_i'a_i''$ and $b_i = b_i'b_i''$ such that $(a_1a_2, b_1b_2) = a_1'a_1''b_1'b_2''$; and denoted $a = a_1'a_2', b = b_1'b_2'$. Later, we will use the notation $\Omega(a_i) = k_i$ and $\Omega(b_i) = k_i'$ for $i = 1, 2$.
Also (see [2])

\[|S_{N,m}|^2 = |E_{N,m}| + \sum_{k=1}^{m} \sum_{a,b \in E_{N,k}} |E_{\max(a,b),m-k}| z(a) \overline{z(b)}. \]

From (2) and (3), we write the 6\(^{th}\) norm of \(S_{N,m}\) as follows:

\[\|S_{N,m}\|^6 = \|S_{N,m}\|^4 |E_{N,m}| + \sum_{k=1}^{m} \sum_{a,b \in E_{N,k}} |E_{\max(a,b),m-k}| \sum_{a=a'_1 a'_2, b=b'_1 b'_2} S \left(\frac{N}{a_i'}, \frac{N}{b_i'}, m - \Omega(a'_i), m - \Omega(b'_i) : i = 1, 2 \right), \]

where

\[S(N_i, N'_i, m_i, m'_i : i = 1, 2) = \sum_{a_1 a_2 = b_1 b_2} 1, \quad \Omega(a_i) = m_i, \Omega(b_i) = m'_i, \quad a_i \leq N_i, \ b_i \leq N'_i. \]

3. Some Useful Estimates

Now we will give upper bounds for some expression involving \(|E_{N,m}|\), which will be used later in the proof of our theorem.

The function \(|E_{N,m}|\) is of interest in number theory, and studied extensively in the literature starting from the prime number theorem. Following estimate for \(|E_{N,m}|\) is due to Sathe[7].

Lemma 1. For \(N \to \infty\) and \(1 \leq m \leq (2 - \epsilon) \log \log N\) for \(0 < \epsilon < 1\), we have

\[|E_{N,m}| \asymp \frac{N (\log \log N)^{m-1}}{(m-1)! \log N}. \]

Later Balazard, Delange and Nicolas[1] generalized this result to an uniform range of \(m\):

Lemma 2. For \(m \geq 1\) and \(\frac{m}{2m} \to \infty\), we have

\[|E_{N,m}| \asymp \frac{N}{2^m (\log \frac{N}{2m})} \sum_{j=0}^{m-1} \frac{(2 \log \log \frac{N}{2m})^j}{j!}. \]

We will use Lemma 1 and Lemma 2 to prove the following results. Lemma 3 and Lemma 4 below have also appeared in [2].

Lemma 3. For \(k \leq \log \log N\) and \(N, k \to \infty\), we have

\[\sum_{b \in E_{N,k}} \frac{|E_{b,k}|}{b^2} \ll 2^{2k}. \]
Proof.

\[
\sum_{b \in E_{N,k}} \frac{|E_{b,k}|}{b^2} \ll \int_{2k}^{N} \frac{1}{2^k x \log \frac{x}{2^k}} \sum_{0 \leq j_1 < k} \frac{(2 \log \log \frac{x}{2^k})^{j_1}}{j_1!} dE_{x,k}
\]

\[
\ll \int_{2k}^{N} \frac{1}{2^k x (\log \frac{x}{2^k})^2} \sum_{0 \leq j_1, j_2 < k} \frac{(2 \log \log \frac{x}{2^k})^{j_1+j_2}}{j_1! j_2!} dx
\]

\[
\ll \frac{1}{2^{2k}} \sum_{0 \leq j_1, j_2 < k} \frac{2^{j_1+j_2}}{j_1! j_2!} \int_{2k}^{N} \frac{(\log \log \frac{x}{2^k})^{j_1+j_2}}{x (\log \frac{x}{2^k})^2} dx
\]

\[
\ll \frac{1}{2^{2k}} \sum_{0 \leq l < 2k-1} 2^l \ll 2^{2k}.
\]

\[\square\]

Lemma 4. Let \(k, k' \leq \log \log N\) and \(N, k, k' \to \infty\). Then

\[
\sum_{b \in E_{N,k}} \frac{|E_{b,k}|}{b^{N/k'}} \ll 2^{2k'} |E_{N,k}|^2.
\]

Proof.

\[
\sum_{b \in E_{N,k}} \frac{|E_{b,k}|}{b^{N/k'}} \ll |E_{N,k}| \int_{\sqrt{N}}^{N/2^k} \frac{x}{\sqrt{N}} \left| E_{x,k} \right|^2 dE_{x,k}
\]

\[
\ll \frac{|E_{N,k}|^2}{2^{2k'}} \sum_{0 \leq l < 2k-1, j_1 + j_2 = l} \frac{2^{j_1+j_2}}{j_1! j_2!} \int_{\sqrt{N}}^{N/2^k} \frac{(\log \log \frac{x}{2^k})^{j_1+j_2}}{x (\log \frac{x}{2^k})^2} dx
\]

\[
\ll \frac{|E_{N,k}|^2}{2^{2k'}} \sum_{0 \leq l < 2k-1} 2^l \ll 2^{2k'} |E_{N,k}|^2.
\]

\[\square\]

Lemma 5. Let \(k, k' \leq \log \log N\) and \(N \to \infty\). Then

\[
\sum_{b \in E_{N,k}} \frac{|E_{b,k'}|}{b^{N/k'}} \ll |E_{N,k}| \left(\log \log N \right)^{k'}/k'.
\]
Proof. Using Lemma 2, we simplify the above sum as follows:

\[
\sum_{b \in E_{N,k}, b > \sqrt{N}} \left| E_{N,k}^b \right| \ll \int_{\sqrt{N}}^{N/2} \frac{N}{x^{2k'}} \sum_{j=0}^{k'-1} \left(\frac{2 \log \log N}{x^{2k'}} \right)^j \frac{1}{j!} d|E_{x,k}|
\]

\[
\ll \left| E_{N,k} \right| \sum_{j=0}^{k'-1} \frac{1}{j^{2k'-j}} \int_{\sqrt{N}}^{N/2} \frac{1}{x^{2k'}} \left(\frac{\log \log N}{x^{2k'}} \right)^j dx
\]

\[
\ll \left| E_{N,k} \right| \sum_{j=0}^{k'-1} \frac{1}{j^{2k'-j}} \int_{\log(\frac{k'}{k-k'}) \log 2}^{\log N+(k-k') \log 2} y^j dy
\]

\[
\ll \left| E_{N,k} \right| \sum_{j=0}^{k'-1} \left(\log \log N \right)^{j+1} \frac{1}{(j+1)!^{2k'-j}} \ll \left| E_{N,k} \right| \frac{\left(\log \log N \right)^{k'}}{k!}.
\]

\[\square\]

Lemma 6. Let \(m \leq \frac{1}{4} \log \log N, k \leq m \) and \(N \to \infty \). Then

\[
\sum_{b \in E_{N,k}, b > \sqrt{N}} \frac{|E_{b,k}|}{b} \left| E_{N,k}^b \right| \ll |E_{N,k}| (\log N)^{-1/5}.
\]

Proof. From the proof of Lemma 5, we observe that

\[
\frac{1}{N} \sum_{b \in E_{N,k}, b > \sqrt{N}} \left| E_{N,k}^b \right| \ll \frac{(\log \log N)^{m-1}}{(m-k)(k-1)! \log N} \ll (\log N)^{-1} \left(\frac{2 \log \log N}{m} \right)^m.
\]

We may also verify that \(\left(\frac{2 \log \log N}{m} \right)^m \) is an increasing function of \(m \) for \(1 \leq m \leq \frac{1}{4} \log \log N \). So

\[
\sum_{b \in E_{N,k}, b > \sqrt{N}} \frac{|E_{b,k}|}{b} \left| E_{N,k}^b \right| \ll \left(\frac{2 \log \log N}{m} \right)^m \ll \frac{|E_{N,k}|}{\log N} \left(8e \right)^{\frac{1}{4} \log \log N} \ll \frac{|E_{N,k}|}{(\log N)^{0.2}}.
\]

\[\square\]

4. Upper Bound For \(S \)

In this section we will obtain some estimates for upper bound of \(S \).

Lemma 7. Let

\[
N = N_1'N_2' = \min(N_1N_2, N_1'N_2'),
\]

\[
m_1 + m_2 = m_1' + m_2'.
\]

Then

\[
S(N_i, N_i', m_i, m_i' : i = 1, 2) \ll \left\{ \left| E_{N_i,m_i} \right| \left| E_{N_i',m_i'} \right| \left(\left| E_{N_1,m_1} \right| \left| E_{N_2,m_2} \right| + \left| E_{N_1',m_1'} \right| \left| E_{N_2,m_2'} \right| \right) \right\}^{\frac{1}{2}}.
\]
Proof. Note that by Cauchy-Schwarz inequality

\[S(N_i, N_i', m_i, m_i' : i = 1, 2) = \int_{\mathbb{T}^2(N)} \left(\sum_{n \leq N_{i,n}} z(n) \right) \left(\sum_{n' \leq N_{i',n'}} z(n') \right) d\tilde{z} \]

\[\leq \left(\int_{\mathbb{T}^2(N)} \left| \sum_{n \leq N_{i,n}} z(n) \right|^2 d\tilde{z} \right)^{\frac{1}{2}} \left(\int_{\mathbb{T}^2(N)} \left| \sum_{n' \leq N_{i',n'}} z(n') \right|^2 d\tilde{z} \right)^{\frac{1}{2}} \]

\[\leq \left\{ E_{N_i',m_i'} \mid E_{N_2,m_2} \right\} \left(\left| E_{N_1,m_1} \right| E_{N_2,m_2} + \left| E_{N_1,m_1} \right| E_{N_2,m_2} \right) \frac{1}{2} . \]

\[\square \]

Lemma 8. Let \(N_i, N_i', m_i, m_i' \) for \(i = 1, 2 \) and \(N, m \) be as in the previous theorem. Then we have the following trivial bound for \(S \):

\[S(N_i, N_i', m_i, m_i' : i = 1, 2) \leq \left(\frac{m}{m_1} \right) |E_{N_i',m_i'}||E_{N_2,m_2}|. \]

5. Proof of Theorem

To prove Theorem\(\Box \) we will divide the sum in (4) in the following 3-parts and estimate each of them separately:

\[\sum_{k=1}^{m} \sum_{a \in E_{N_k}} \sum_{b \in E_{N_k}} \left| E_{\frac{N_{a,b},m_k}} \right| \sum_{a=a'_1a'_2} S(\ldots) \]

\[= \sum_{k=1}^{m} \sum_{b \in E_{N_k}} \left| E_{\frac{N_{a,b},m_k}} \right| \sum_{a=a'_1a'_2} \sum_{b=b'_1b'_2} S(\ldots) \]

\[= \sum_{k=1}^{m} \left(A_1(k) + A_2(k) + A_3(k) + A_4(k) \right) , \]
where

\[A_1(k) = \sum_{\substack{b \in E_{N,k} \atop b \leq \sqrt{N}}} \cdots, \]

\[A_2(k) = \sum_{\substack{b \in E_{N,k} \atop b > \sqrt{N}}} \cdots \sum_{a \in E_{b,k}} \cdots \sum_{a = a_1', a_2', b = b_1', b_2'} \sum_{b > b_2'} \sum_{b < b_2'} \cdots, \]

\[A_3(k) = \sum_{\substack{b \in E_{N,k} \atop b > \sqrt{N}}} \cdots \sum_{a \in E_{b,k}} \cdots \sum_{a = a_1', a_2', b = b_1', b_2'} \sum_{b > b_2'} \sum_{b < b_2'} \cdots, \]

Recall that we have already assumed \(a < b, a_1' \leq a_2', b_1' \leq b_2' \).

5.1. \(A_1 \). Note that

\[
\sum_{k=1}^{m} A_1(k) \left| E_{N,m} \right|^3 \ll \sum_{k=1}^{2^{2k}} \left| E_{N,m-k} \right| \sum_{k=k_1+k_2 \atop k_1, k_2 = 1} \frac{\left| E_{N,m-k_1} \right| \left| E_{N,m-k_2} \right| \left| |E_{N,m-k_1}| \right| \left| |E_{N,m-k_2}| \right|}{|E_{N,m}|^3} \sum_{b \in E_{N,k}} \left| E_{b,k} \right| \left| E_{N,m-k} \right| \max_{k_1, k_2 = k} \left| E_{N,m-k_1} \right| \left| E_{N,m-k_2} \right|
\]

\[
\ll \sum_{k=1}^{m} \left(\frac{4m}{\log \log N} \right)^{2k}.
\]

The above sum is convergent when \(m < c \log \log N \) for any \(c < 1/4 \). This is also the reason for our conjecture that the critical homogeneity is \(\frac{1}{4} \log \log N \).

5.2. \(A_2 \).

\[
\sum_{k=1}^{m} A_2(k) \left| E_{N,m} \right|^3 \ll \frac{2^{2m}}{|E_{N,m}|^3} \sum_{k=1}^{2^{2k}} \sum_{b \in E_{N,k} \atop b > \sqrt{N}} \left| E_{b,k} \right| \left| E_{N,m-k} \right| \max_{k_1, k_2 = k} \left| E_{N,m-k_1} \right| \left| E_{N,m-k_2} \right|
\]

\[
\ll \sum_{k=1}^{m} \frac{2^{2m+k} \left| E_{N,k} \right|}{(\log N)^{1/5}} \frac{\left| E_{N,m} \right|}{|E_{N,m}|} \max_{k_1, k_2 = k} \left(\frac{m}{\log \log N} \right)^{k_1+k_2}
\]

\[
\ll \sum_{k=1}^{m} (\log N)^{-1/5} \left(\frac{4m}{\log \log N} \right)^{m-k} \left(\frac{8m}{\log \log N} \right)^{k}.
\]

The above sum is bounded for \(m \leq \frac{1}{8} \log \log N \).
5.3. A_3

$A_3(k)$

$$A_3(k) = \sum_{b \in E_{N,k}} \left| E_{\frac{N}{a_1},m-k} \right| \sum_{a \in E_{b,k}} \sum_{a=a', a_2, b=b', b_2} S \left(\frac{N}{a_1}, \frac{N}{b_1}, m - \Omega(a_1'), m - \Omega(b_1') : i = 1, 2 \right)$$

$$= \sum_{b \in E_{N,k}} \left| E_{\frac{N}{a_1},m-k} \right| \sum_{a \in E_{b,k}} \sum_{a=a', a_2, b=b', b_2} \max \left(\left| E_{\frac{N}{a_1},m-k_1} \right|, \left| E_{\frac{N}{a_1},m-k_2} \right|, \left| E_{\frac{N}{a_1},m-k_1}' \right|, \left| E_{\frac{N}{a_1},m-k_2}' \right| \right)^{\frac{1}{2}}$$

It is sufficient to consider only the summand involving a_1:

$$\leq \sum_{b \in E_{N,k}} \left| E_{\frac{N}{a_1},m-k} \right| \sum_{a \in E_{b,k}} \sum_{a=a', a_2, b=b', b_2} \max \left(\left| E_{\frac{N}{a_1},m-k_1} \right|, \left| E_{\frac{N}{a_1},m-k_2} \right|, \left| E_{\frac{N}{a_1},m-k_1}' \right|, \left| E_{\frac{N}{a_1},m-k_2}' \right| \right)^{\frac{1}{2}}$$

$$\leq \left(\sum_{k'=0}^{k} \sum_{k=0}^{k} \left(\frac{k}{k_1} \right) \left(\frac{k}{k_2} \right) \left| E_{N,m-k_1} \right| \left| E_{N,m-k_2} \right| \right)^{\frac{1}{2}}$$

$$= \left(\sum_{b \in E_{N,k}} \left| E_{\frac{N}{a_1},m-k} \right| \sum_{a \in E_{b,k}} \max \left(\left| E_{\frac{N}{a_1},m-k_1} \right|, \left| E_{\frac{N}{a_1},m-k_2} \right|, \left| E_{\frac{N}{a_1},m-k_1}' \right|, \left| E_{\frac{N}{a_1},m-k_2}' \right| \right)^{\frac{1}{2}} \right)$$

$$\leq \left(\sum_{b \in E_{N,k}} \left| E_{\frac{N}{a_1},m-k} \right| \sum_{a \in E_{b,k}} \max \left(\left| E_{\frac{N}{a_1},m-k_1} \right|, \left| E_{\frac{N}{a_1},m-k_2} \right|, \left| E_{\frac{N}{a_1},m-k_1}' \right|, \left| E_{\frac{N}{a_1},m-k_2}' \right| \right)^{\frac{1}{2}} \right)$$

By Lemma 5.

So

$$\sum_{k=1}^{m} A_3(k) \lesssim \sum_{k=1}^{m} \sum_{k'=0}^{k} \sum_{k=0}^{k} \frac{1}{k! k_1!} \left(\frac{k^2 m}{\log \log N} \right)^{k_1/k_1} \left(\frac{m^2}{\log \log N} \right)^{m-k}. $$

The above sum is bounded when $m \leq (\log \log N)^{\frac{1}{2}}$.

References

[1] M. Balazard, H. Delange, and J.-L. Nicolas. Sur le nombre de facteurs premiers des entiers. C. R. Acad. Sci. Paris Sér. I Math., 306(13):511–514, 1988.

[2] A. Bondarenko and K. Seip. Helson’s problem for sums of a random multiplicative function. Mathematika, 62(1):101–110, 2016.
[3] A. Harper. Moments of random multiplicative functions, i: Low moments, better than square-root cancellation, and critical multiplicative chaos. arXiv 1703.06654, 2017.

[4] H. Helson. Hankel forms. Studia Math., 198(1):79–84, 2010.

[5] B. Hough. Summation of a random multiplicative function on numbers having few prime factors. Math. Proc. Cambridge Philos. Soc., 150(2):193–214, 2011.

[6] E. Saksman and K. Seip. Some open questions in analysis for Dirichlet series. In Recent progress on operator theory and approximation in spaces of analytic functions, volume 679 of Contemp. Math., pages 179–191. Amer. Math. Soc., Providence, RI, 2016.

[7] L. G. Sathe. On a problem of Hardy on the distribution of integers having a given number of prime factors. I.II. J. Indian Math. Soc. (N.S.), 17:63–141, 1953.

Kamalakshya Mahatab, Department of Mathematical Sciences, NTNU Trondheim, Norway

E-mail address: accessing.infinity@gmail.com, kamalakshya.mahatab@ntnu.no