INTRODUCTION

The photoperiod-sensitivity of bread wheat plants (*Triticum aestivum* L.) is mainly controlled by genes of the orthologue series *Ppd-1: Ppd-D1, Ppd-B1*, and *Ppd-A1* (McIntosh RA et al, 2003), localized in short arms of chromosomes II of the homologous group 2A, 2B, and 2D, respectively (Scarth R, Law CN, 1984) and encoding proteins, which induce the manifestation of the blossoming locus *TaFT* (*VRN3*) (Yan L et al, 2006; Chen F et al, 2013). At present, each photoperiod gene is viewed as a series of alleles, occurring due to various mutations of their older predecessor forms (Shaw LM et al, 2012; Bentley AR et al, 2013). Wild alleles *Ppd-1* contain a site in their promoter, which is involved in suppressing the expression at nighttime. Therefore, “sensitive” or recessive alleles of photoperiod genes are expressed after dawn and prior to the darkness phase. Poor photoperiod-sensitivity is caused...
by the influence of one or more mutant “insensitive” or dominant alleles. The occurrence of the latter is a result of the impaired structure of the promoter due to extensive deletions (genes \textit{Ppd-A1a} and \textit{Ppd-D1a}), or insertion (gene \textit{Ppd-B1a.1}). The presence of these mutations leads to 24-hour-long gene expression under higher activity at nighttime and at dawn. Therefore, the availability of a dominant allele ensures faster accumulation of the inductor protein, which is reflected in the acceleration of the rate for the period from seedlings to heading/blossoming.

The differences in the rate of development for bread wheat are mainly related to the impact of dominant gene \textit{Ppd-D1a}, which spread widely among the varieties in temperate zones (Langer SM et al, 2014), predominantly affecting winter type of development. Allelic differences for gene \textit{Ppd-D1} are among the most relevant factors, defining the variability of winter wheat varieties in terms of adaptivity and performance in specific cultivation regions (Worland AJ et al, 1998; Sip V et al, 2010; Grogan SM et al, 2016), including Ukraine (Bakuma AO et al, 2018). On the contrary, allele \textit{Ppd-A1a.1} and \textit{Ppd-B1a.1} (Nishida H et al, 2013; Seki M et al, 2011) are rare. Allele \textit{Ppd-B1a.1} with MITE type insertion in the promoter was detected only in a dozen of related Japanese varieties and not found in the varieties from other regions. However, in \textit{Ppd-B1}, contrary to two other genes \textit{Ppd-1}, the dominant form is also presented by multi-copy alleles, which occurred due to CNV-mutations. It is known that there are two, three, and four-copy alleles, indicated as \textit{Ppd-B1d}, \textit{Ppd-B1a}, \textit{Ppd-B1c}, respectively (Cane K et al, 2013). The multi-copy nature is a common phenomenon, including several known copies of the recessive \textit{Vrn-A1} (Diaz A et al, 2012; Würschum T et al, 2015) in the genes of CBF family (Würschum T et al, 2017), etc. CNV-mutants of \textit{Ppd-B1} do not have any impairments in the promoter structure. At the same time, the increase in transcription activity at nighttime was determined in multi-copy alleles, contrary to the recessive one without any copies (Diaz A et al, 2012; Shaw LM et al, 2012). In addition, it has been recently shown that a difference in the methylation levels for the promoter zone of \textit{Ppd-B1a} reflects on its transcription activity and the carriers of the same allele differ in their heading rate (Sun H et al, 2014). Contrary to \textit{Ppd-D1a}, the frequencies and distribution of dominant \textit{Ppd-B1} are practically not studied. The analysis of intramolecular structure of \textit{Ppd-1} genes ensured the elaboration of PCR-tests, the application of which allows for the identification of varieties by allelic status of photoperiod genes. The first test of this kind was multiplex PCR, suggested by Bealis (Bealis J et al, 2007) for the detection of dominant and recessive alleles of \textit{Ppd-D1} gene by the presence or absence of deletion in the promoter, respectively. The authors also demonstrated that in addition to the functional gene, Chinese Spring variety, a carrier of dominant \textit{Ppd-B1}, has a pseudogene with partially deleted exon 8, to detect which a respective PCR-test was developed. It was later found that in the Chinese variety \textit{Ppd-B1} has four copies, including the shortened one – allele \textit{Ppd-B1c} (Cane K et al, 2013). The complexity of labelling CNV-mutants is conditioned by the fact that copies are practically identical, just like inter-copy zones, including the insertions of transposons. However, a three-copy gene of varieties Sonora 64 and Timstein was found to have a polymorphous area, which served as a foundation for the elaboration of a PCR-test, identifying allele \textit{Ppd-B1a}. The varieties of hexaploid wheat \textit{T. aestivum} were found to have allele \textit{Ppd-A1a.1}, containing a deletion in the promoter region (Nishida H et al, 2013). However, this allele is rarely detected, and a recessive allele of the gene prevails in bread wheat varieties. Several PCR-tests were developed to detect allelic status of \textit{Ppd-A1} and to identify the absence/presence of deletions in the promoter (Wilhelm EP et al, 2009).

The aim of this study was to identify and assess the incidence frequencies for alleles \textit{Ppd-D1a}, \textit{Ppd-B1a}, \textit{Ppd-B1c}, and \textit{Ppd-1} of genotypes of bread wheat varieties from different climatic zones. The identification of carriers of genes \textit{Ppd-D1a}, and especially multi-copy genes \textit{Ppd-B1} is actual, as the information about \textit{Ppd-1} genotypes, including Ukrainian spring varieties, is rather scarce. Such information about \textit{Ppd-1} genotypes of the varieties is relevant when the latter are used as donors in breeding programs, aimed at the develop of early-maturing varieties, and as the initial material to determine the effects of the alleles of each gene in terms of development rate and related agronomic traits of bread wheat.

MATERIALS AND METHODS

137 varieties of spring bread wheat \textit{Triticum aestivum} L. of various origin were used as the initial material; the complete list is presented in Table 1. Among the investigated varieties, 32 varieties were from European countries (Germany – 14, Sweden – 4, France, Switzerland – 3, Great Britain, the Netherlands, Finland – 2, Austria, Czech Republic – 1), 23 – from Ukraine, 26 – Russia, 4 – Kazakhstan. The sampling also contained 12 varieties from the USA and Canada, 20 vari-
alleles from Mexico, 9 varieties from Asia (Japan, India), 6 – from Africa, 3 – South America and 2 – Australia.

To detect the alleles of *Ppd-1* family, we used PCR-tests, the primers for which are specified in Table 1. The marking of gene *Ppd-D1* was done according to the recommendations of Beales (Beales J et al, 2007). This test envisages the identification of recessive alleles of the gene by the absence of deletions in the promoter – fragment 414 bp and dominant allele *Ppd-D1a* – marking product of 288 bp. The detection of allele *Ppd-B1c* (four copies of the gene) was also performed by the test, developed by Beales (Beales J et al, 2007), where the marker was a fragment of 425 bp. A variant of allele-specific PCR, suggested by Chen (Chen F et al, 2013), was used to detect a three-copy gene *Ppd-B1a*. A marker of this gene was an amplification fragment of 223 bp. As a reference control, Chinese Spring variety was used in the former case and Timstein – in the latter. To detect the intact status of the promoter of gene *Ppd-A1*, a PCR-test was used where a fragment of 452 bp indicated recessive status of this gene (Williams EP et al, 2009). The absence of the product allows for an alleged presence of a deletion in the promoter and a presence of a dominant allele.

DNA extraction was conducted using CTAB-buffer from dry grain or five-day-old seedlings. The reaction buffer for PCR contained: 50 mM KCl; 20 mM tris-HCl, pH 8.4; 2.0 mM MgCl₂; 0.01 % Tween-20; 0.15 mM of each dNTP; 5 pM of each primer; 20 ng of DNA and 1 unit of Taq-polymerase. The volume of the reaction mixture was 20 μl. Amplification: denaturation – 94 °C – 2 min (initial), then 30 s; 60 °C – 30 s annealing; elongation – 72 °C – 50 s; 35 cycles, final elongation – 72 °C – 3 min.

| Table 1. The sequences of primers and expected sizes of a PCR product for the labelling of genes *Ppd-D1a, Ppd-D1b, Ppd-B1a, Ppd-B1c, Ppd-A1b* |
|-----------------|-----------------|-----------------|-----------------|
| **Gene** | **Primer** | **Primer sequence** | **Fragment size, bp** |
| *Ppd-D1a/Ppd-D1b* | **Ppd-D1_F** | agcgcctcccactacactg | 288 bp/414 bp [Beales J et al 2007] |
| | **Ppd-D1_R1** | cactggttggtagctgaatt | |
| | **Ppd-D1_R2** | tgggtcacaacagagacg | |
| *Ppd-B1c* | **PpdB1_2copyL** | taactgctctgcaagtcgc | 425 bp [Beales J et al 2007] |
| | **PpdB1_2copyR** | cgggaacctgagcatgctc | |
| *Ppd-B1a* | **PpdB1son_L** | cgggaggtttgattacaaca | 223 bp [Chen F et al 2013] |
| | **PpdB1son_R** | ggccagtttaacaccctt | |
| *Ppd-A1b* | **durum_Ag5del_F2** | tgtcaccctatgacactgtt | 452 bp [Wilhelm EP et al 2009] |
| | **durum_Ag5del_R2** | ctggtcacaagaggaac | |

Terzik amplifier (DNA-technology, Russia) was used for the amplification. The amplification products were fractioned in 10 % polyacrylamide gel and their visualization in PAAG was done by staining with 0.012 M AgNO₃. The molecular mass of amplification products was determined regarding markers pUC19/MspI and Ledder 1000.

The statistical processing of the obtained results was done by common methods (Rokitskiy PF, 1973).

RESULTS

We identified the genotypes of 137 varieties of spring bread wheat of various geographical origin for genes *Ppd-A1, Ppd-B1, Ppd-D1* (Table 2). The locus *Ppd-A1* polymorphism was not found in the sampling of varieties under investigation. A marker fragment of 452 bp was found in all the investigated varieties during DNA amplification, which indicated the absence of deletions in the promoter and the presence of a recessive allele *Ppd-A1b* in the genotypes.

At the same time, the carriers of dominant and recessive alleles of genes *Ppd-D1* and *Ppd-B1* were detected in the varieties of the investigated sampling (Fig. 1, 2). As a result, six different *Ppd-1* genotypes were identified in the varieties: recessive in three genes of *Ppd-1*, monogenically dominant in *Ppd-D1a, Ppd-D1b, Ppd-D1c* (Table 2). The locus *Ppd-1* polymorphism was not found in the sampling of varieties from most regions demonstrated from two (Mexico) to three (Russia), or four (Europe, the USA, Canada, Ukraine) *Ppd-1* genotypes. And only the sampling of Asian varieties had 6 genotypes (Table 3).

Among 137 spring wheat varieties, 28 samples or 20.5 ± 3.45 % have only a dominant allele *Ppd-D1a* in
their genotype. The frequencies of genotypes, monogenically dominant in Ppd-B1a (10 varieties or 7.3 ± 2.09 %) or Ppd-B1c (7 varieties or 5.1 ± 1.88 %) were considerably lower by 13.2 ± 4.03 % (t = 3.27 at t_{0.05} = 1.96) and 15.4 ± 3.93 % (t = 3.91 at t_{0.05} = 1.96), respectively. The frequency of digenically dominant genotype Ppd-D1a Ppd-B1a equals that of the genotype, monogenically dominant in Ppd-B1a. The frequency of digenically dominant genotype Ppd-D1a Ppd-B1c is practically close to zero (1 grade or 0.7 ± 0.71 %).

The varieties from different countries or regions did not differ (d < Sd_t_{0.05}) among themselves in frequencies of genotypes, monogenically dominant in Ppd-B1a or Ppd-B1c and digenically dominant in Ppd-D1a Ppd-B1a or Ppd-D1a Ppd-B1c. In general, the frequencies of the four mentioned genotypes were rather low, varying in different samplings from 0 to 33.4 %.

At the same time, the frequency of monogenically dominant Ppd-D1a genotypes in Mexican varieties is 85.0 ± 7.98, which is reliably higher by 62.8 ± 15.98 % than that for the sampling of Asian varieties (t = 3.93 at t_{0.05} = 2.05) and four other regions, which, in their turn, did not differ much from the Asian varieties.

In general, the share of monogenically or digenically dominant varieties, the carriers of alleles Ppd-D1a, Ppd-B1a or Ppd-B1c in spring varieties from Europe and Russia, is rather low, amounting to 15.5 ± 6.40 and 15.4 % ± 7.07, respectively. This value is insignificantly (d < Sd_t_{0.05}) increasing up to 30.4 ± 9.59 % for Ukrainian varieties and up to 48.4 ± 14.23 % for the varieties from the USA and Canada. But for the Indian variety Kalyansona, all the investigated varieties of Asia and Mexico carry dominant alleles of genes Ppd-D1 and/or Ppd-B1. The presence of dominant alleles of one or two genes of orthologue series Ppd-1 in the genotype of the variety may demonstrate low photoperiodic sensitivity.

The remaining varieties (81 samples or 59.1 ± 4.20 %) within this investigation are characterized as carriers of recessive alleles Ppd-1.

Higher frequency in the total sampling of the varieties was noted for allele Ppd-D1a – 28.5±3.86 % or 39 varieties (Table 4). The share of the carriers of allele

Table 2. Ppd-1 genotypes of various origin
Genotype

Ppd-D1a
Ppd-B1a
Ppd-B1c
Ppd-D1a Ppd-B1a
Ppd-D1a Ppd-B1c
Recessive in alleles of genes Ppd-1
Allele frequencies of PPD-D1a, PPD-B1a, and PPD-B1c of photoperiodic sensitivity genes

PPD-B1a was almost twice smaller (t = 2.84 at t0.05 = 1.96), and allele PPD-B1c—almost five times smaller (t = 5.22 at t0.05 = 1.96). The frequencies of alleles PPD-B1a and PPD-B1c did not demonstrate considerable differences in the samplings of varieties from different regions. For instance, allele PPD-B1a was detected in the varieties from all regions, but its incidence in most regions did not exceed 15%. The exception was found only for the varieties from the USA, Canada and Asia, where a tendency towards an increase in the frequency of this allele was noted up to 25.0 ± 12.50% and 44.4 ± 16.56%, respectively. The frequencies of allele PPD-B1c did not demonstrate significant differences in the samplings of varieties from different regions, which may be explained by their low number. This allele was found in some varieties from Russia, Ukraine, USA, Japan and Brazil with the frequency of 4.3 ± 4.23 – 22.2 ± 13.85%. Among the varieties from Europe and Mexico, the carriers of allele PPD-B1c were not detected.

At the same time, significant differences in the frequencies of gene PPD-D1a were noted between some regions. No variety, carrier of this dominant allele, was found in the sampling of Russian varieties. On the contrary, among the specified Mexican spring varieties, 100 % of them had allele Ppd-D1a in their genotype, which was reliably 73.9–100 % higher as compared with the value for other regions (t = 8.06–29.94 at t0.05 = 1.96), except for the sampling of Asian varieties, the differences with which were found to be insignificant (d = 33.3 ± 15.71%). In its turn, the frequency of this allele in Asian varieties was considerably exceeding the similar index (t = 2.62–4.15 at t0.05 = 1.96–2.09) in the samplings of the varieties from the USA, Canada, Europe and Russia. The latter three regions did not differ in this index. Significant differences in the frequencies of gene Ppd-D1a were also noted during the comparison of varieties from Ukraine and Russia (t = 2.69 at t0.05 = 1.96).

DISCUSSION

Many genetic studies found that winter and spring wheat varieties, grown in countries of higher latitude, usually have a higher incidence of photoperiod-sensitive alleles. On the contrary, the genotypes, grown in lower latitudes, usually carry photoperiod-insensitive alleles.

The results, presented in this article, demonstrate not a high incidence of dominant alleles of genes Ppd-D1a, Ppd-B1a, and Ppd-B1c of photoperiodic sensitivity genes.
Table 3. The frequencies of Ppd-1 genotypes in the samplings of spring bread wheat of various origin

Region, country	n	Ppd-D1a	Ppd-B1a	Ppd-B1c	Ppd-D1a Ppd-B1a	Ppd-D1a Ppd-B1c	Recessive						
Europe	32	2	6.2 ± 4.26	2	6.2 ± 4.26	0	0.0 ± 2.86	1	3.1 ± 3.06	0	0.0 ± 2.86	27	84.5 ± 6.40
Russia	26	0	0.0 ± 3.44	2	7.7 ± 5.2	2	7.7 ± 5.2	0	0.0 ± 3.44	0	0.0 ± 3.44	22	84.6 ± 7.07
Ukraine	23	3	13.1 ± 7.03	0	0.0 ± 3.84	1	4.2 ± 4.18	3	13.1 ± 7.03	0	0.0 ± 3.84	16	69.6 ± 9.59
Mexico	20	17	85.0 ± 7.98	0	0.0 ± 4.34	0	0.0 ± 4.34	3	15.0 ± 7.98	0	0.0 ± 4.34	0	0.0 ± 4.34
USA and Canada	12	2	16.7 ± 10.77	3	25.0 ± 12.50	2	16.7 ± 10.77	0	0.0 ± 7.43	0	0.0 ± 7.43	5	41.6 ± 14.23
Asia (Japan, India)	9	2	22.2 ± 13.85	1	11.1 ± 10.47	1	11.1 ± 10.47	3	33.4 ± 15.72	1	11.1 ± 10.47	1	11.1 ± 10.47
Other	15	2	13.3 ± 8.77	2	13.3 ± 8.77	1	6.7 ± 6.46	0	0.0 ± 5.54	0	0.0 ± 5.54	10	66.7 ± 12.17
Total	137	28	20.5 ± 3.45	10	7.3 ± 2.09	7	5.1 ± 1.88	10	7.3 ± 2.09	1	0.7 ± 0.71	81	59.1 ± 4.20

Note. n – number of varieties in the sampling, p – genotype frequency, S_p – standard error

Table 4. The frequencies of alleles Ppd-D1a, Ppd-B1a and Ppd-B1c in the samplings of spring bread wheat of various origin

Region, country	n	Ppd-D1a	Ppd-B1a	Ppd-B1c	Recessive								
Europe	32	3	9.4 ± 5.16	3	9.4 ± 5.16	0	0.0 ± 2.86	27	84.5 ± 6.40				
Russia	26	0	0.0 ± 3.44	2	7.7 ± 5.2	2	7.7 ± 5.2	2	7.7 ± 5.2	22	84.6 ± 7.07		
Ukraine	23	6	26.1 ± 9.16	3	13.0 ± 7.01	3	15.0 ± 7.98	0	0.0 ± 4.34	3	0.0 ± 4.34	5	41.6 ± 14.23
Mexico	20	20	100.0 ± 0.00	3	15.0 ± 7.98	0	0.0 ± 4.34	0	0.0 ± 4.34	0	0.0 ± 4.34		
USA and Canada	12	2	16.7 ± 10.77	3	25.0 ± 12.50	2	16.7 ± 10.77	5	41.6 ± 14.23				
Asia (Japan, India)	9	6	66.7 ± 15.71	4	44.4 ± 16.56	2	22.2 ± 13.85	1	11.1 ± 10.47				
Other	15	2	13.3 ± 8.77	2	13.3 ± 8.77	1	6.7 ± 6.46	10	66.7 ± 12.17				
Total	137	39	28.5 ± 3.86	20	14.6 ± 3.02	8	5.8 ± 2.00	81	59.1 ± 4.20				

Note. n – number of varieties in the sampling, p – gene frequency, S_p – standard error
B1 and Ppd-D1 in the sampling of European varieties (northern and central Europe mainly). A total of 5 varieties (or 15.6 %) carry these dominant alleles. In particular, monogenically dominant Ppd-D1a – the control of the trait was noted in the varieties Capta (France) and Orello (Switzerland), and Ppd-B1a – in varieties Albis (Switzerland) and Aranka (Czech Republic). The variety Atys (France) was found to have a digenically dominant genotype Ppd-D1a Ppd-B1a.

The remaining 27 varieties (or 84.4 %) from Europe have only recessive alleles of all three genes Ppd-1 in their genotype. A low frequency of allele Ppd-D1a in the sampling of spring varieties from Europe was noted previously (Shcherban A et al, 2015). Among 245 varieties, the authors found allele Ppd-D1b in 91.5 % of them. Allele Ppd-D1a, controlling insensitivity to the shorter day, was mainly found in wheat varieties from South Europe, while in other regions of Europe it is rare (only 3 varieties). At the same time, as noted in scientific literature (Síp V et al, 2010), 36.8 % varieties from Czech Republic and 90 % varieties from Slovakia have allele Ppd-D1a. Unfortunately, we have not managed to find any data about the frequency of dominant alleles of gene Ppd-B1 in spring varieties from European countries.

The marking of varieties from the USA and Canada demonstrated that dominant genes Ppd-1 are present in the genotype of seven out of 12 investigated samples, and allele Ppd-D1a was detected only in varieties Barton and Red River 68. The donor of gene Ppd-D1a for the variety Barton was a Brazilian spring variety, Frontana (Ppd-D1a), created using an Italian winter variety, Mentana, whose parents, in its turn, are a Japanese variety, Akakomugi, and a Dutch variety, Wilhelmina. The variety Red River 68, in whose development a spring variety, Sonora 64, had been used (Ppd-D1a Ppd-B1a), was often used in breeding as a donor of Ppd-D1a, but it did not inherit the second dominant allele Ppd-B1a from the Mexican parent. Allele Ppd-B1a was marked in varieties Big club, Losros (USA), Losprout (Canada). For instance, a Canadian variety, Lorsprout, also has a Mexican variety, Sonore 64, listed among its parental varieties. Varieties Chul and Transec were detected to have allele Ppd-B1c, inherited by the former of these from the ancient Uzbek variety (1913), and by the latter – from the Chinese variety, Chinese Spring. It is evident that the presence of dominant genes Ppd-1 in the varieties from North America is not a rare event, which is noted in scientific literature (Whittal A. et al, 2018), but it concerns only allele Ppd-D1a. It should also be noted that no varieties with digenically dominant control of the trait were found among the investigated spring samples from the USA and Canada.

In the sampling of Mexican varieties, allele Ppd-D1a was detected in all the varieties under investigation. It is clear that the distribution of Ppd-D1a among Mexican spring varieties results from the selection under naturally shorter light day, aimed at development a genotype with a poor response to photoperiod. In the pedigree data of varieties Seri-82, Sitta, Sitella, Bobwhite, the donors of gene Ppd-D1a are winter varieties Bezostaya 1, Kavkaz, Avrora. However, most varieties of the sampling inherited allele Ppd-D1a from Mexican or Brazilian spring varieties, whose pedigree data also contain the varieties, created using a Japanese variety Akakomugi. Three Mexican varieties (Alondra, Mexique-45, Turaco) were also found to have allele Ppd-B1a in addition to gene Ppd-D1a in the genotype which is probably caused by the involvement of variety Timstein, a carrier of a three-copy gene Ppd-B1a, in the breeding. It should be noted that no carriers of allele Ppd-B1c were found among the investigated Mexican varieties.

Out of the occasional identified spring samples from South America (a total of three varieties), the most widespread use in the breeding was noted for the variety Frontana, which inherited allele Ppd-D1a from an Italian winter variety, Mentana. A Brazilian variety, Bage, was detected to have allele Ppd-B1c, probably transferred from an Argentinian variety, Chino, created using the variety Chinese Spring. An ancient Argentinian variety, Lincalel (1927), carries only recessive alleles of Ppd-1. Even though the sampling of South American spring varieties is limited, it is possible to assume that ancient varieties had strong response, the decrease in which was achieved during the breeding. Over 70 % of the investigated Argentinian varieties carry dominant alleles of Ppd-1 (Vanzetti LS et al, 2013).

The sampling under investigation has only two Australian varieties, which carry recessive alleles of genes Ppd-1. Cane et al (Cane K et al, 2013) noted a wide variability of Ppd-genotypes in Australian wheat varieties. For instance, the authors demonstrated the presence of monogenically dominant Ppd-D1a, or Ppd-B1a, or Ppd-B1c and digenically dominant varieties, carriers of multi-copy genes Ppd-B1 in the combination with gene Ppd-D1a, and the varieties with strong photoperiod-sensitivity, where only recessive alleles are present.
High variability of Ppd-genotypes was demonstrated for Asian varieties, the sampling of which was small. Three Indian varieties were identified, out of which the ones, widely used in the breeding, were Kalyansona – recessive Ppd-1 genotype, Sonalika – digenically dominant in genes Ppd-D1a Ppd-B1a. Line C591 has allele Ppd-B1a. Among Japanese varieties, Norin 29 was detected to have gene Ppd-B1c, varieties Norin 61 and Norin 17 – Ppd-D1a; Shiroganekomugi, Zenkojkomugi were shown to have a combination of alleles Ppd-D1a and Ppd-B1a, Konosu-25 – Ppd-D1a and Ppd-B1c. The sampling of Japanese spring varieties was not found to have samples with the presence of only recessive allele Ppd-1 and the varieties with monogenically dominant Ppd-B1a-control, which is likely to result from a limited sampling. At the same time, (Seki M et al, 2013) demonstrated that most (90 %) Japanese spring wheat varieties did not carry photoperiod-sensitive alleles of genes Ppd-1. In Korea, the varieties-carriers of genes Ppd-B1b and Ppd-D1a (Eun et al 2015) are mostly widespread. All 59 Pakistani spring varieties, investigated by M. Iqbal (Iqbal M et al, 2011), with a single exception, carry gene Ppd-D1a.

African varieties are presented in a limited number, including three varieties from Kenya. The variety Beacon was identified to have allele Ppd-D1a, inherited from the variety Frintana, and the variety Salmoyo – allele Ppd-B1a, most probably inherited from its Mexican parent. A recessive status of photoperiod genes was demonstrated for the variety Kenia farmer, widely used in the breeding of Australian and American varieties.

The results of marking spring varieties from the CIS countries and Ukraine are of most interest. The sampling of Russian spring varieties mainly included ancient local varieties and those, developed in the late previous century in the Volga region, Western Siberia, and the Urals. No variety from this sampling had allele Ppd-D1a. Likhenko et al. (Likhenko IE et al, 2014) analyzed 48 modern early-maturity and mid-early spring bread wheat varieties from Siberia and found only one variety Tulun 15, which carried allele Ppd-D1a. All the remaining ones had allele Ppd-D1b in the genotype. At the same time, the marker analysis demonstrated that Russian varieties Udarintsa and Kometa had allele Ppd-B1a in their genotype, and varieties Zhnitsa and Strela – allele Ppd-B1c. Four varieties from northern Kazakhstan, investigated by us, carry recessive alleles of genes Ppd-D1 and Ppd-B1, and by the phenotype, they are characterized as strongly photoperiod-sensitive genotypes (Fayt VI, Fedorova VR, 2014).

Contrary to the varieties from Russia and Kazakhstan, Ukrainian spring varieties have both ancient and modern varieties, created in this century. In the investigated sampling of Ukrainian varieties, allele Ppd-D1a was detected in 6 varieties, three of which – Azhurna, Elehia myronivska, Etiud – were found to have allele Ppd-B1a in addition to allele Ppd-D1a in the genotype. The variety Struna myronivska carries only allele Ppd-B1c, and this allele was inherited by the latter from one of parental varieties – a winter variety, Ekspromt. The variety Etiud was developed by crossing the variety TAM-200 (USA) and a Mexican spring variety, Tura-co (Ppd-D1a Ppd-B1a-genotype). Parental genotypes of the variety Elehia myronivska are a spring variety, Maris Dove (Great Britain), and a winter variety, Myronivska 40. As British varieties are traditionally the ones with the highest photoperiod-sensitivity, the donor of two dominant genes may be a winter variety, Myronivska 40, created using a Mexican spring variety, Siete-Cerros. In general, spring varieties of different climatic zones of Ukraine were shown to have a wide distribution of allele Ppd-D1b. According to actual data, almost all modern winter wheat varieties of Ukrainian breeding, including the ones, created in the south of Ukraine, carry allele Ppd-D1a (Fayt VI et al, 2014). The results of the marker analysis and the pedigree data demonstrate that until the last decade of the previous century the varieties with high photoperiod-sensitivity prevailed among spring varieties both in Ukraine in most European countries. The decrease in the response from some modern spring varieties may be a targeted process, but there might be a possibility of a chance in these events, which is conditioned by the application of parental genotypes of the carriers of dominant genes Ppd-1. The urgency of creating genotypes with poor photoperiod-sensitivity requires the study of the impact on development rate of both specific alleles and Ppd-genotype in general, which may be facilitated by the information, obtained while marking the varieties of Ukrainian and foreign breeding.

In this study, Ppd-1 genotypes were characterized only from the standpoint of the presence of dominant Ppd-D1a, Ppd-B1a and Ppd-B1c, which have a more considerable influence on the increase in the photoperiod-sensitivity. Allele Ppd-B1a.1 is absent from the investigated spring varieties, and its distribution in the global assortment is limited. The donor of this allele is considered to be an ancient variety, Purplestraw (1822), and Purcam, used in the breeding in the USA, and later in the breeding of Japanese varieties (Seki M. et al 2013). In addition to alleles Ppd-B1a (three cop-
ies) and Ppd-B1c (four copies), gene Ppd-B1 is known to have one more dominant allele – Ppd-B1d (two copies), which was not marked in this study. The scientific data demonstrate that a two-copy gene is sometimes present in bread wheat varieties but is more likely to be in combination with Ppd-D1a. For instance, in spring Australian varieties Ppd-B1d is present only in combination with another dominant gene (Chen F et al, 2013). Due to the low level of polymorphism, reliable PCR-tests for detection of a two-copy allele have not been developed. In some studies, it was suggested that it is relevant to mark dominant Ppd-B1 using microsatellite analysis for loci Xgwm257 and Xgwm148, the difference in allelic status between which are associated with recessive and dominant status of the gene (Chen F et al, 2013; Mohler V et al, 2004). The application of associative markers is possible, but the effectiveness of the analysis is not absolute, especially considering the data of scientific literature and the results of marking, obtained in this study. Presuming that Ppd-B1d is present in the combination with Ppd-D1a, the possibility of the presence of carriers of a two-copy cnv-mutant, for instance, in the investigated Ukrainian spring varieties, is incredibly low. There could be single cases of the presence of Ppd-B1d in European varieties under investigation.

Certainly, the variability of Ppd-1 genotypes is not limited by the presence of marked dominant alleles. The varieties of the specified sampling may have allelic differences in terms of genes Ppd-A1 and Ppd-D1 with known mutant recessive alleles. The differentiation between genotypes, carriers of different recessive alleles of Ppd-1 will ensure obtaining more detailed information about Ppd-genotypes of the varieties, presented in this study.

CONCLUSIONS

The carriers of alleles Ppd-D1a, Ppd-B1a, and Ppd-B1c were identified in 137 spring bread wheat varieties of various origin using molecular markers. The highest variability of Ppd-1 genotypes was observed in Asian varieties. The varieties from other regions had from two (Mexico) to four (Europe, the USA, Canada, Ukraine) Ppd-1 genotypes. Most varieties of the investigated sampling are carriers of only recessive Ppd-1 (81 variety). A different ratio of genotypes, carriers of dominant Ppd-D1 and Ppd-B1 (39 and 28 varieties, respectively) is mostly conditioned by the priority use of Ppd-D1a carriers in the breeding. According to the pedigree data, the donor of Ppd-D1a for most varieties was a winter Japanese variety, Akakomugi. Most frequently, the predecessor varieties-donors for alleles Ppd-B1a and Ppd-B1c were varieties Sonora 64, Timstein, and Chinese Spring. The incidence of carriers of the alleles of a three-copy Ppd-B1a is higher than for four-copy Ppd-B1c (20 and 8 varieties, respectively). Modern Ukrainian spring monogenically dominant Ppd-D1a or Ppd-B1c varieties and the varieties with digenically dominant Ppd-D1a Ppd-B1a control were identified. The digenically dominant genotype Ppd-D1a Ppd-B1c was found only in a Japanese variety, Konsou-25. The varieties, identified by Ppd-1 genes, may be used to study the influence of specific alleles and their combinations on the development tempo and other economic traits, and the application of marker analysis ensures the selection of breeding material with optimal combination of alleles of photoperiod genes.

Adherence to ethical principles. All experiments described in this paper were non animal based.

Conflict of interest. Authors declare no conflict of interest.

Financing. This study was not financed by any specific grant from financing institutions in the state, commercial or non-commercial sectors.

Poширення алелів Ppd-D1a, Ppd-B1a і Ppd-B1c генів фотоперіодичної чутливості у ярих сортів м’якої пшениці (Triticum aestivum L.) різного походження

I. A. Балашова, В. І. Файт

Національний центр насінництва та сортовивчення «Селекційно-генетичний інститут» НААН,
Овідіопольська дорога 3, Одеса, Україна, 65036

E-mail: ibalashova@ukr.net, faygen@ukr.net

Meta. Метою цієї роботи є ідентифікація і оцінка частот зустрічаності алелів Ppd-D1a, Ppd-B1a, Ppd-B1c та Ppd-1 генотипів ярих сортів м’якої пшениці різного походження. Методи. Виділення ДНК, алей-специфічна ПЛР, електрофоро́з в агарозному та поліакриламідному гелях, статистичний аналіз. Результати. Проведено маркування 137 сортів м’якої пшениці яриго типу розвитку різного походження для ідентифікації Ppd-1 генотипів носіїв алелів Ppd-D1a, Ppd-B1a, Ppd-B1c. У загальній вибірці вивчених сортів і вибірці сортів із Азії виявлено по шість різних Ppd-1 генотипів. У вибірках інших регіонів – від двох (Мексика) до чотирьох (країни Європи, США і Канада, Україна) Ppd-1 генотипів. У загальному наборі сортів з більшою частотою (20,5%) виявлені домінантні тільки за алелем Ppd-D1a генотипи, з варіюванням від 0 (Росія) до 85,0% (Мексика). Частоти моногенно домінантних за алелев Ppd-B1a (7,3%) або Ppd-B1c (5,1%) у загальному наборі були істотно нижче. Ці генотипи набули найбільшого поширення в вибірці.
References

Bakuma AO, Popovych YuA, Motsyi M, Chebotar GO, Chebotar SV. (2018) Effects of the Ppd-D1a allele on growth rates and agronomical traits in wheat detected by the application of analytical lines. Cytol Genet. 52(5):343–352. doi: 10.3103/S009545271805002X.

Beales J, Turner A, Griffiths S, Snape JW, Laurie DA. (2007) A pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theor Appl Genet. 115:721–733. doi: 10.1007/s00122-007-0603-4.

Bentley AR, Horsnell R, Werner CP, Turner AS, Rose GA, Bean A, Grif

Agricultural Science and Practice Vol. 8 No. 1 2021

Diaz A, Zikhali M, Turner A, Isaac P, Laurie D. (2012) Copy number variation affecting the Photoperiod-B1 and Vernalization-A1 genes is associated with altered flowering time in wheat (Triticum aestivum). PLoS One 7(3):33–34. doi:10.1371/journal.pone.0033234.

Eun Jin Cho, Chon-Sik Kang, Ji-Ung Jung, Young Mi Yoon, Chul Soon Park. (2015) Allelic variation of Rht-I, Vrn-1 and Ppd-I in Korean wheats and its effect on agronomic traits. Plant Breed Biotech. 3(2):129–138. doi:10.9787/PBB.2015.3.2.129.

Fayt VI, Fedorova VR. (2014) Photoperiod sensitivity and vernalization response of spring bread wheat varieties of Ukraine, Russia and Kazakhstan. The Bulletin of Kharkiv National Agrarian University. Series Biology. 1(31):91–96 [In Ukrainian].

Fayt VI, Balashova IA, Fedorova VR, Balvinska MS. (2014) Identification of bread wheat Ppd-genotypes by hybridological and STS-PCR analysis. Fiziologija rastenii i genetika. 46(4):325–336 [In Russian].

Grogan SM, Brown-Guedira G, Haley SD, McMaster GS, Reid SD, Smith J, Byrne PF. (2016) Allelic variation in developmental genes and effects on winter wheat heading date in the US Great Plains. PLoS one. 11(4): e0152852.

Iqbal M, Shahzad A, Ahmed J. (2011) Allelic variation at the Vrn-A1, Vrn-B1, Vrn-D1, Vrn-B3 and Ppd-D1a loci of Pakistani spring wheat cultivars. Electron J Biotechnol. 14(1):1–8. doi:10.2225/vol14-issue1-fulltext-6.

Langer SM, Longin CFH, Würschum T. (2014) Flowering time control in European winter wheat. Plant Sci. 5:537–562. doi: 10.3389/fpls.2014.00537.

Likhenko IE, Stasyuk AI, Shcherban AB, Zyryanova AF, Likhenko NI, Salina EA. (2014) Analysis of the allelic variation of the vrn-1 and ppd-1 genes in Siberian early and medium early varieties of spring wheat. Vavilov Journal of Genetics and Breeding. 18(4/1):691–703 [In Russian].

McIntosh RA, Yamazaki Y, Devos KM, Dubcovsky J, Rogers WJ, Appels R. (2003) Catalogue of gene symbols for wheat. In: McIntosh RA, Pogna NE. eds. Tenth International Wheat Genetics Symposium: Proceedings. Rome: Istituto Sperimentale per la Cerealcoltura, 1–47.

Mohler V, Lukan R, Ortiz-Islas S, William M, Worland A J, Van Beem J, Wenzel G. (2004) Genetical and physical mapping of photoperiod insensitive gene Ppd-B1 in common wheat Euphytica. 138(1):33–40. doi:10.1023/B:EUPH.0000047056.58938.76.

Nishida H, Yoshida T, Kawakami K, Fujita M, Long B, Akashi Y, Laurie DA, Kato K. (2013) Structural variation in the S′ upstream region of photoperiod-insensitive alleles Ppd-A1a and Ppd-B1a identified in hexaploid wheat (Triticum aestivum L.) and their effect on heading time. Mol Breed. 31(1):27–37. doi: 10.1007/s11032-012-9765-0.

Rokitskiy PF. (1973). Biologicheskaya statistika [Biological statistics]. Moscow: Kolos. [In Russian].

Scharc R, Law CN. (1984) The control of the day – length response in wheat by the genes 2 chromosomes. Z. Pflanzenzucht. 92(2):140–150.

Seki M, Chono M, Matsunaka H, Fujita M, Oda S, Kubo K,
Kiribuchi-Otobe C, Kojima H, Nishida H, Kato K. (2011) Distribution of photoperiod-insensitive alleles Ppd-B1a and Ppd-D1a and their effect on heading time in Japanese wheat cultivars. Breed Sci. 61(4):405–412. doi: 10.1270/jsbbs.61.405.

Seki M, Chono M, Nishimura T, Sato M, Yoshimura Y, Matsunaka H, Fujita M, Oda S, Kubo K, Kiribuchi-Otobe C, Kojuma H, Nishida Y, Kato K. (2013) Distribution of photoperiod-insensitivity and its effect on heading time in Japanese wheat cultivar. Breed Sci. 63(3):309–316. doi: 10.1270/jsbbs.63.309.

Shaw LM, Turner AS, Laurie DA. (2012) The impact of photoperiod insensitive Ppd-1a mutations on the photoperiod pathway across the three genomes of hexaploid wheat (Triticum aestivum). The Plant Journal. 71:71–84. doi: 10.1111/j.1365-313X.2012.04971.x.

Shcherban AB, Borner A, Salina EA. (2015) Effect of VRN-1 and PPD-D1 genes on heading time in European bread wheat cultivars. Plant Breeding. 134:49–55 doi: 10.1111/pbr.12223

Síp V, Chrpová J, Žofajová A, Pánková K, Užík M, Snape JW. (2010) Effects of specific Rht and Ppd alleles on agronomic traits in winter wheat cultivars grown in middle Europe. Euphytica. 172(2):221–233. doi: 10.1007/s10681-009-0049-7.

Sun H, Guo Z, Gao L, Zhao G, Zhang W, Zhou R, Wu Y, Wang H, An Y. (2014) DNA-methylation pattern of Photoperiod-B1 is associated with photoperiod insensitivity in wheat (Triticum aestivum). New Phytologist. 204:682–692. doi: 10.1111/nph.12948.

Vanzetti LS, Yerkovich N, Chialvo E, Lombardo L, Vaschetto L, Helguera M. (2013) Genetic structure of Argentinean hexaploid wheat germplasm. Genet Mol Biol. 36(3):391–399. doi: 10.1590/S1415-47572013000300014.

Whittal A, Kaviani M, Graf R, Humphreys G, Navabi A. (2018) Allelic variation of vernalization and photoperiod response genes in a diverse set of North American high latitude winter wheat genotype. PLoS One. 13(8): e0203068. doi: 10.1371/journal.pone.0203068.

Wilhelm EP, Turner AS, Laurie DA. (2009) Photoperiod insensitive Ppd-A1a mutations in tetraploid wheat (Triticum durum Desf.). Theor Appl Genet. 118(2):285–294. doi: 10.1007/s00122-008-0898-9.

Worland AJ, Börner A, Korzun V, Li WM, Petrovic S, Sayers EJ. (1998) The influence of photoperiod genes on the adaptability of European winter wheats. Euphytica 100(1):385–394. doi: 10.1023/A:1018327700985.

Würschum T, Boeven PH, Langer SM, Longin CF, Leiser WL. (2015) Multiply to conquer: Copy number variations at Ppd-B1 and Vrn-A1 facilitate global adaptation in wheat. BMC Genet. 29:16–96. doi: 10.1186/s12863-015-0258-0.

Würschum T, Longin CFH, Hahn V, Tucker MR, Leiser WL. (2017) Copy number variations of CBF genes at the Fr-A2 locus are essential components of winter hardiness in wheat. Plant J. 89:764–773. doi: 10.1111/tpj.13424.

Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M. (2006) The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc Natl Acad Sci USA. 103(5):19581–19586. doi: 10.1073/pnas.0607142103.