Elegant procedure to estimate series capacitance of a uniform transformer winding from its measured FRA: implementable on existing FRA instruments

Ashiq Muhammed¹, Lakshminarayana Satish¹, Udaya Kumar¹

¹HV Laboratory, Department of Electrical Engineering, Indian Institute of Science, Bangalore 560012, India
E-mail: satish@iisc.ac.in

Abstract: A simple procedure to estimate series capacitance of a uniform transformer winding from its measured frequency response analysis (FRA) and shunt capacitance is presented. Unlike previously published approaches, this method does not involve any cumbersome and time-consuming curve-fitting nor running optimisation/search algorithms, and neither does it require data of winding geometry. The procedure relies on a property that is observable in the impedance function of a lossless winding, viz., the ratio of the product of squares of open circuit natural frequencies to the product of squares of short circuit natural frequencies bears a special relation to impedance function coefficients. Its feasibility was initially verified by simulation, and then by experiments on small-sized continuous-disk and interleaved-disc windings, followed by a large-sized 33 kV, 3.5 MVA continuous-disk winding, and finally on a 315 kVA 11/13.8 kV transformer. After measuring FRA, the process involves just finding roots of a polynomial, from which the initial impulse voltage distribution constant and series capacitance can directly be determined. Given these attractive features, authors believe that this method is implementable on existing FRA instruments, so that, along with routinely measured FRA, these two important constants of a winding can be displayed.

1 Introduction

Series capacitance (C_s) of transformer winding is a vital design parameter which along with the shunt capacitance governs the initial impulse voltage distribution when a surge impinges on it. Its value essentially conveys the net capacitive coupling offered by different disks/double-disks of the winding. Designers employ the well-established method of interleaving of individual turns to increase series capacitance and consequently achieve a more uniform initial impulse voltage distribution. Hence, knowledge of series capacitance is paramount for ascertaining or predetermining the winding’s transient behaviour [1–4]. Although shunt capacitance is readily measurable, the same is not the case for series capacitance. Also, there exists no simple method to cross-check how closely was the intended design value of C_s realised after manufacture of the winding. Ideally speaking, it would be desirable to perform this cross-check on every manufactured winding, and preferably this check is based on measurements.

The other additional benefits that arise from C_s estimation are:

(a) Foremost, it acts as a cross-verification of the design data and proves how closely was the design value of C_s reproduced by the manufacturing process. Unfortunately, this cannot be determined by any other measurement-based method, other than by doing an initial impulse voltage distribution measurement which would require a sacrificial winding.

(b) Permits construction of a lumped-parameter ladder network equivalent circuit.

(c) Estimating C_s of existing windings can be now rendered possible by the proposed method when geometry and other winding data are unavailable, which is often the scenario.

(d) And more importantly, based on the recent work from the authors’ research group [5], it is expected that C_s would also possess diagnostic capabilities similar to the quantity called equivalent air-core inductance of a winding.

These are the important reasons for estimating C_s, and in that context, the objective of this contribution is to devise a simple method to indirectly measure the series capacitance of a winding via the frequency response analysis (FRA) measurement.

2 Literature review

A brief summary of previous efforts directed towards estimation of series capacitance is given as follows:

1. Predetermination of the series capacitance of winding during its design stages was a much-discussed topic in the early 1950s–1960s, and all these efforts essentially pursued an analytical or semi-analytical approach, and required complete data on winding geometry, insulation data, clearances etc. [6–9]; a requirement not easily available to end-users. Many formulae were developed during that time period, but interestingly each one yielded a different result even for a given winding, and so it was arguable which one of them was more appropriate to use. In other words, there was no consensus amongst the developed methods. Moreover, each of these formulae was specific for a given type or structure of winding, and so needed to be entirely reworked when the design changed; which is not a trivial task.

2. In later years (1990s) researchers in [10–12] reported the use of finite element method (FEM) and charge simulation method (CSM) based approaches to predetermine C_s but, as in early efforts, these also required data about winding geometry. Usually, this information is hard to get, and only available with manufacturers/designers. Even though in both these approaches series capacitance can be estimated, but there was no simple way to cross-verify them.

3. In the past decade or so, FRA has become a de facto monitoring tool of the power utilities to assess the mechanical integrity of the winding [13–16]. Keeping this in mind, the authors’ research group successfully demonstrated the possibility of indirectly estimating C_s from measured FRA data, for both single and three-phase transformers [17, 18]. This was a major step forward. However, fitting an accurate
Consequently, developing a method that possesses a uniform self inductance (L) and capacitance (C) is imperative to explore alternative methods. Specifically, it was a time-domain approach that required exciting the winding by a nearly step-like waveform using a recurrent surge generator.

So, analysis of the published literature on the estimation of C_i leads to the following observation:

1. A direct measurement to estimate C_i is ruled out.
2. Also, there exists no simple approach for determining C_i from measured FRA that can be used by unskilled operators.
3. Consequently, it is imperative to explore alternative methods that would possess the following features:
 - be simple and easily implementable in software;
 - be implementable on existing FRA instruments as an add-on;
 - be based on FRA and any other terminal measurement;
 - avoid complexities like optimisation, curve-fitting etc.;
 - involve minimum post-processing after acquiring FRA data;
 - be applicable to all types of uniform windings.

Consequently, developing a method that possesses ALL the aforementioned features is the main objective of this paper.

3 Methodology

The underlying principle is initially presented for a lossless case. The losses in the winding are neglected while formulating the method and later a method is suggested to overcome its effect. It was possible to put together a simple procedure by a deft manipulation and combination of a few well-known properties that correlate the roots of a polynomial to its coefficients. One special case of the Vieta's theorem [21] is exploited in its formulation. Details are discussed under the following subheadings.

3.1 Background

Consider an N-section, lossless, lumped-parameter, mutually coupled ladder-network model (as shown in Fig. 1) of a uniform transformer winding [3]. The model consists of per section series capacitance (C_i), per section shunt capacitance (C_g), per section self inductance (L_i) and mutual inductance (L_{ij}) between any two sections. For representing frequency response, the driving point impedance (DPI) function is considered, since it possesses some unique properties like physical realisability, the alternating arrangement of poles and zeros etc. which are very useful in this work. In general, the DPI function for a lossless N-section ladder network (with its neutral open) can be written as [22]

$$\text{DPI}(s) = \frac{a_0s^N + a_1s^{N-1} + \cdots + a_N}{b_0s^N + b_1s^{N-1} + \cdots + b_N} \quad (1)$$

Let the numerator and denominator of DPI(s) be defined as follows:

$$P(s) = a_0s^N + a_1s^{N-1} + \cdots + a_N \quad (2)$$

$$Q(s) = b_0s^N + b_1s^{N-1} + \cdots + b_N \quad (3)$$

$Q(s)$ can be further rewritten as

$$\frac{Q(s)}{s} = b_0s^{N-1} + b_1s^{N-2} + \cdots + b_N \quad (4)$$

Polynomials on the RHS of (2) and (4) are similar in structure but differ only in their coefficients. The following properties can be easily observed from these two polynomials:

1. The powers of ‘s’ are always an even number, hence, they are both even polynomials. The number of sign changes for $P(s)$ and $P(−s)$ is zero. The same is true for $Q(s)/s$ as well. Hence, from Descartes’ rule-of-signs [21] there exist no positive or negative real roots for these two expressions.

2. Since losses are neglected, all the roots of $P(s)$ and $Q(s)/s$ will be purely imaginary and shall exist as complex conjugate pairs. Let the roots of $P(s)$ be $±jω_0$ and all the non-zero roots of $Q(s)$ be $±jω_1$. Obviously from the definition, since αs are the roots of the numerator polynomial they correspond to the short circuit natural frequencies (scnf), and likewise, αs being roots of denominator polynomial correspond to the non-zero open circuit natural frequencies (ocnf) of the circuit under consideration. Furthermore, these scnf and scnf correspond to the peaks and troughs in the DPI magnitude plot, respectively.

3.2 Linking roots of a polynomial to its coefficients

Next, some unique properties of such polynomials are invoked and then used subsequently to formulate the proposed method.

Property 1: If a new polynomial is constructed from a given polynomial by reversing the order of all the coefficients, then the roots of the new polynomial will be the multiplicative inverse of the roots of the original polynomial [21].

Property 2: Starting from an even polynomial, if a new polynomial is constructed by halving the powers of its variable without altering the coefficients, then the roots of the new polynomial will be square of the roots of an original polynomial [21].

Using these two properties, from $P(s)$ construct a new polynomial $P_i(s)$ such that the coefficients of $P_i(s)$ are reversed and the powers of ‘s’ are halved, and that leads to

$$P_i(s) = a_0s^N + a_1s^{N-1} + \cdots + a_N \quad (5)$$

Due to Properties 1 and 2, the roots of the new polynomial $P_i(s)$ will be $1/\left(jω_0\right)^2$. Likewise, from (4), a new polynomial $Q_i(s)/s$ can be constructed as

$$\frac{Q_i(s)}{s} = b_0s^{N-1} + b_1s^{N-2} + \cdots + b_N \quad (6)$$

which would have its roots as $1/\left(jω_1\right)^2$.

Property 3: (Vieta’s Theorem): The symmetric sum of the roots of a polynomial is defined as those sums of roots which are unchanged by any permutation of these roots. There will be N symmetric sums for an Nth order polynomial and the pth elementary symmetric sum of a set of N roots is the sum of all products of ρ of those roots ($1 \leq \rho \leq N$). The symmetric sum of roots of polynomial is related to polynomial coefficients, by the well-known Vieta’s theorem [21], which states that, if we
Table 1 Expressions \((a_i/b_o) \cdot (b_o/a_i)\) in terms of \(\gamma = C_d/C_s\), for different \(N\)

\(N\)	\(\frac{a_i}{b_o} \cdot \frac{b_o}{a_i}\)
3	\(2N(y^3 + 6y^2 + 9y + 2)\)
4	\(2N(y^4 + 8y^3 + 20y^2 + 16y + 2)\)
5	\(2N(y^5 + 10y^4 + 35y^3 + 50y^2 + 25y + 2)\)
6	\(2N(y^6 + 12y^5 + 54y^4 + 112y^3 + 105y^2 + 36y + 2)\)
7	\(2N(y^7 + 14y^6 + 77y^5 + 210y^4 + 294y^3 + 196y^2 + 49y + 2)\)

| denote \(S_p\) as the \(p\)th elementary symmetric sum for polynomial \(P_s\), then we can write

\[
S_p = (-1)^p a_0^N / a_N \quad p \in \{1, 2, \ldots N\}
\]

(7)

Here, the value of \(p\) ranges from 1 to \(N\). Hence, \(N\) such equations can be derived which relates the roots and coefficients of a DPI function. However, here we are considering a special case, wherein \(p = N\). For the polynomial \(P_s\), if we consider \(p = N\), then the \(Nth\) symmetric sum gives the product of all the roots of a polynomial \(P_s\). As \(P_s\) is the numerator of DPI (whose roots are the scnsfs by definition), let this term be called \(\Pi_{ocnf}\), and can be written as:

\[
\Pi_{ocnf} = \frac{1}{(a_0)(a_0)\cdots (a_0)} = (-1)^N a_0 / a_N
\]

(8)

It is easy to observe that for both odd and even values of \(N\), the negative sign gets cancelled on both the sides of (8) and hence can be simplified as

\[
\Pi_{ocnf} = \frac{1}{(a_0)(a_0)\cdots (a_0)} = \frac{a_0}{a_N}
\]

(9)

And, similarly, for (6), we can write

\[
\Pi_{scnf} = \frac{1}{(a_0)(a_0)\cdots (a_0)} = (-1)^N b_0 / b_N
\]

(10)

Employing the same logic as above, it can be simplified as

\[
\Pi_{scnf} = \frac{1}{(a_0)(a_0)\cdots (a_0)} = \frac{b_0}{b_N}
\]

(11)

Next, dividing (9) by (11), we get

\[
\frac{\Pi_{ocnf}}{\Pi_{scnf}} = \frac{a_0 a_0 \cdots a_0}{a_0 a_0 \cdots a_0} = \frac{b_0}{b_N}
\]

(12)

Taking this ratio is a crucial step in the formulation of the method that will become evident next. The LHS of (12) is a term that consists of entirely measurable quantities extractable from DPI magnitude plot. In other words, this quantity is nothing but a ratio of the product of the squares of peak frequencies to the product of the squares of the trough frequencies. On the other hand, the terms \(a_0, b_0, a_N, b_N\) on the RHS of (12) (being functions of the circuit elements) were computed for the network shown in Fig. 1, for different values of \(N\), say, \(N = 3, 4, 5, \ldots, 20\) using symbolic computation facility in MAPLE. It emerges that all these four terms are functions of \(C_d\) and/or \(C_s\) alone, for any \(N\). The expressions corresponding to RHS of (12) can be nicely combined into a compact single expression in \(\gamma\) alone (viz., by substituting \(\gamma = C_d/C_s\)). For brevity, these are shown in Table 1, only for \(N = 3\)–7, as an example. From a study of these individual coefficients and its ratios (for different values of \(N\)), the following salient features can be observed:

1. For any value of \(N\), the numerator and denominator of the ratio \(a_0/b_0\) can be individually represented as a product of two terms; the first term is purely capacitive and the second term is purely inductive. Most importantly, the inductive term is common to both the numerator and denominator, and hence cancels out.

2. Writing DPI in normalised form \(b_0\) is a function of \(C_s\) alone and can be generalised as \(4N\delta\) or \(a_0 = 4\), always. Hence, \(b_0/a_0 = NC_s\). Since a ratio of the coefficients are taken, normalisation does not alter the final results.

3. Hence, the ratio \((a_0/b_0) \cdot (b_0/a_0)\) is always a function of \(C_d\) and \(C_s\) alone.

4. In the neutral open condition, there will be an equal number of non-zero peaks and troughs. So, LHS of (12) is a dimensionless quantity.

5. Thus, in compact form, we can write:

\[
f(\gamma) = \frac{\Pi_{ocnf}}{\Pi_{scnf}}
\]

(13)

Which in turn can, in general, be written as

\[
2N \left(\sum_{i=0}^{N} \beta_i \right) \left(\sum_{i=0}^{N} \beta_i \right) \]

(14)

where \(\delta_i\) and \(\beta_i\) are the corresponding coefficients of numerator and denominator polynomials of \(f(\gamma)\), respectively. For brevity, both these coefficients are shown in Tables 2 and 3 up to \(N = 17\). However, these can be computed and stored for any desirable higher value of \(N\) if required. Once the numerical value of \(\Pi_{ocnf}/\Pi_{scnf}\) is computed from measured DPI, solving (14) directly leads to the value of \(\gamma\). Since the value of \(C_d\) and \(C_s\) cannot be negative, so the value of \(\gamma\) should always be positive. So, before solving (14), the existence of a positive real root can be ascertained using Descartes’ rule-of-signs. The total shunt capacitance of a transformer winding can be measured by an LCR meter. So, using this measured value and computed \(\gamma\), the value of \(C_s\) can be estimated.

3.3 Existence of ONLY one positive real root of \(f(\gamma)\)

At this juncture, it might be worth mentioning that a proof to show the existence of only one positive real root of the equation \(f(\gamma)\) was undertaken (see Appendix 1). For brevity, only the important point is mentioned here:

Substituting \(\Pi_{ocnf}/\Pi_{scnf} = k\), rearranging and simplifying (14) yields

\[
(2N - k)\gamma^N + (2N\delta_{N-1} - k\delta_N)\gamma^{N-1} + \cdots + (2N\delta_0 - \beta_kk) = 0
\]

(15)

Plugging values of \(\beta_i\) and \(\delta_i\) from Tables 2 and 3 results in

\[
(2N - k)\gamma^N + \beta_{N-1}(2N\delta_{N-1} - k\delta_N)\gamma^{N-1} + \cdots + \beta_0(1 - k) = 0
\]

(16)

In DPI magnitude plot when neutral is open, for any pair of \(a_0 - a_s\), it is obvious that always \(a_0 > a_s\). This arises from the basic fact that an scnf always precedes an ocnf, as can be verified in the DPI plot. This condition translates to the fact that \(k’\) will always be greater than 1. So, the last term \(\beta(1 - k)\) in (16) is always negative. The sign of the first term in (16) depends on the value of \(k\). If the value of \(k\) lies between 1 and 2, then first term will be always positive. If \(k > 2\), the sign of first term will be
always negative. The existence of a single positive root for both these conditions of k is discussed in Appendix I. From the proof, it emerges that ‘if the value of k is less than $2N$, then there will always exist a single positive root for (16)’. For each case, before finding the roots, this check is made.

3.4 Salient features

This procedure for estimation of C_s has the following advantages compared to all other previously published methods in the literature:

1. The entire DPI data need not be processed, but, only data points pertinent to the peaks and troughs are required. In addition, the measured value of total shunt capacitance is the only other data required.

2. No curve-fitting or optimisation exercise is required. In practical DPI measurements, it is often observed that a dominant pole tends to mask nearby non-dominant poles and these have to be carefully considered during curve-fitting. Hence, fitting DPI magnitude is invariably a task that calls for mathematical skills and experience. This is completely avoided in the proposed method.

3. From the point of implementation on an FRA instrument, the proposed method is very simple and elegant. It only requires a lookup table for storing the δ_i and β_i coefficients (a one-time exercise) and a simple algorithm for finding roots. Hence, the proposed method is ideally suited for use in factories, as well as in laboratories.

4. The initial impulse voltage distribution constant, popularly termed as α of the winding, is the ratio of the square root of the total shunt to the total series capacitance, and can readily be computed from γ using

$$\alpha = N\sqrt{\gamma}. \quad (17)$$

Finally, it is important to highlight here that α can be calculated without measuring either C_s or C_i explicitly. To the best of authors’ knowledge, this is the first time an indirect measurement-based method is proposed for determining α without the explicit knowledge of either C_s or C_i.

3.5 Limitation of method and means to overcome it

The analytical formulation of the proposed method was built around the assumption that losses in a transformer winding are small enough to be ignored. This is far from true, especially at the higher frequencies, which makes its implementation questionable. This issue arises from the fact that this method presumes peak-trough pair values as extracted from the DPI magnitude are the true peak-trough pairs as observed from the magnitude plot. Thus, the method will begin to yield erroneous results. To overcome this limitation, authors propose to extract and use all peak-trough pairs that lie below a frequency.

Table 2 Values of δ_i for different values of N, Note: $\delta_i = 2$, and $\delta_N = 1$ for all N

N	γ^2	γ^3	γ^4	γ^5	γ^6	γ^7	γ^8	γ^9	γ^{10}	γ^{11}	γ^{12}	γ^{13}	γ^{14}
3	1	1	1	1	1	1	1	1	1	1	1	1	1
4	1	1	1	1	1	1	1	1	1	1	1	1	1
5	1	1	1	1	1	1	1	1	1	1	1	1	1
6	1	1	1	1	1	1	1	1	1	1	1	1	1
7	1	1	1	1	1	1	1	1	1	1	1	1	1
8	1	1	1	1	1	1	1	1	1	1	1	1	1
9	1	1	1	1	1	1	1	1	1	1	1	1	1
10	1	1	1	1	1	1	1	1	1	1	1	1	1
11	1	1	1	1	1	1	1	1	1	1	1	1	1
12	1	1	1	1	1	1	1	1	1	1	1	1	1
13	1	1	1	1	1	1	1	1	1	1	1	1	1
14	1	1	1	1	1	1	1	1	1	1	1	1	1
15	1	1	1	1	1	1	1	1	1	1	1	1	1
16	1	1	1	1	1	1	1	1	1	1	1	1	1

Table 3 Values of β_i for different values of N, Note: $\beta_i = 4N$, and $\beta_N = 1$ for all N

N	γ^2	γ^3	γ^4	γ^5	γ^6	γ^7	γ^8	γ^9	γ^{10}	γ^{11}	γ^{12}	γ^{13}	γ^{14}
3	1	1	1	1	1	1	1	1	1	1	1	1	1
4	1	1	1	1	1	1	1	1	1	1	1	1	1
5	1	1	1	1	1	1	1	1	1	1	1	1	1
6	1	1	1	1	1	1	1	1	1	1	1	1	1
7	1	1	1	1	1	1	1	1	1	1	1	1	1
8	1	1	1	1	1	1	1	1	1	1	1	1	1
9	1	1	1	1	1	1	1	1	1	1	1	1	1
10	1	1	1	1	1	1	1	1	1	1	1	1	1
11	1	1	1	1	1	1	1	1	1	1	1	1	1
12	1	1	1	1	1	1	1	1	1	1	1	1	1
13	1	1	1	1	1	1	1	1	1	1	1	1	1
14	1	1	1	1	1	1	1	1	1	1	1	1	1
15	1	1	1	1	1	1	1	1	1	1	1	1	1
16	1	1	1	1	1	1	1	1	1	1	1	1	1
The capability of the proposed steps can be judged. The network used was $C_i = 0.444 \, \text{nF}$ and $C_o = 0.25 \, \text{nF}$, which corresponds to $a = 6$. The self-inductance of the first section and mutual inductances between 1st and ith section are given in Table 4. Symmetry considerations are invoked for determining the rest of them. Initially, a lossless case is considered, followed by a lossy case modeled by a series resistance of 10 Ω/section.

4.1 Without loss

After plugging in all these values into a circuit simulation software (PSpice), the DPI magnitude was determined by performing AC-analysis, and is shown in Fig. 2. The peak-trough pairs outputted by Matlab program 'findpeaks' are marked on Fig. 2 and the same is also tabulated in Table 5. Steps for computing C_i are as follows:

1. Number of peak-trough pairs were found to be eight, so $N = 8$.
2. Picking up all peak-trough pairs (shown in Table 5), yields $\Omega_{\text{calc}}/\Omega_{\text{calc}} = 5.6175$.
3. The pertinent $f(\gamma)$ is

$$10.4\gamma^2 + 154.9\gamma^2 + 911.3\gamma^2 + 2643.5\gamma^2 + 3762.8\gamma^2 + 1921.3\gamma^2 - 758.3\gamma^2 - 908.4\gamma - 147.8 = 0$$

where $f(\gamma)$ is (see (19)).

4.2 With loss

Loss was considered by inserting a resistance of 10 Ω/section in series with the inductor. The above computations are repeated. The DPI magnitude plot is shown in Fig. 3, along with the peak-trough pairs in Table 6. Steps to compute C_i are as follows:

1. Number of peak-trough pairs were found to be eight, so $N = 8$.
2. Picking up all peak-trough pairs (shown in Table 6), yields $\Omega_{\text{calc}}/\Omega_{\text{calc}} = 5.6920$.
3. The pertinent $f(\gamma)$ is

$$10.308\gamma^2 + 153.5440\gamma^2 + 901.2717\gamma^2 + 2603.9\gamma^2 + 3672.7\gamma^2 + 1804.2\gamma^2 - 839.6668\gamma^2 - 934.0489\gamma - 150.1441 = 0$$

where $f(\gamma)$ is (see (19)).

Tables

Table 4: Self and mutual inductance between first and ith section

mH	L_{11}	L_{12}	L_{13}	L_{14}	L_{15}	L_{16}
L	1.00	0.7408	0.5488	0.4066	0.3012	0.2231

Table 5: Peak-trough pairs corresponding to Fig. 2

Mrad/s	1	2	3	4	5	6
a_{ν}	0.1936	0.6995	1.3194	1.9453	2.5169	2.9923
a_{ω}	0.3450	0.8426	1.4052	1.9911	2.5380	3.0018

Table 6: Peak-trough pairs corresponding to Fig. 3

Mrad/s	1	2	3	4	5	6
a_{ν}	0.1936	0.6995	1.3194	1.9426	2.5072	2.9743
a_{ω}	0.3450	0.8426	1.4057	1.9937	2.5476	3.0199

Figures

- **Fig. 2** Computed DPI magnitude response of a mutually coupled ladder network without losses
- **Fig. 3** Computed DPI magnitude response of a mutually coupled ladder network with losses
4. Solving (19) yields \(\alpha = 0.5796 \), which corresponds to
\(\alpha = 6.0905 \).

5. This implies \(C_i = 0.4313 \) which closely matches its true value.

6. Thus, even when losses are present, the procedure can be used.

5 Implementation on uniform transformer windings

Triggered by the success of the proposed method in simulation studies, the next step was to examine its applicability on uniform transformer windings. In all these experiments, DPI was measured by manually sweeping the frequency and measuring the response (viz., input current) at each discrete frequency step. The instruments used for this were as follows:

- A 0–20 V \(f \)–\(f \)- 0–60 MHz, function generator.
- A 2 mV/\(mA \) current probe with bandwidth 450 Hz–60 MHz.
- An 8-bit, 200 M samples/s digital oscilloscope.

During DPI measurement, as sine waves are being measured, elimination of noise was achieved by using ‘averaging option’ available on the digital oscilloscope. Furthermore, at each measurement the vertical amplitude of the channel measuring current was dynamically adjusted so that the measured waveform always occupies >90% of the full-scale amplitude of the channel; this guarantees a high signal-to-noise ratio. (Note: The achievable accuracy of the proposed method significantly depends on our ability to accurately identify and extract the DPI magnitude peaks and troughs. So, all the above-mentioned efforts were exercised to attain the maximum possible signal-to-noise ratio and hence achieve the highest possible accuracy.) Initially, experiments were performed on single isolated continuous-disc and interleaved-disc windings. Then, the method is examined on an actual two-winding single-phase testing transformer. Details of each case is presented below.

![Fig. 4 Measured DPI magnitude response of a single isolated fully interleaved-disc winding](image)

Table 7 Peak-trough pairs corresponding to Fig. 4

Mrad/s	\(\omega \)	\(\omega' \)	
0.8225	2.5256	3.0159	3.2927
0.9896	2.3952	3.0788	4.0338

Table 8 Peak-trough pairs corresponding to Fig. 5

Mrad/s	\(\omega \)	\(\omega' \)		
0.4511	1.1592	1.8341	2.5258	3.1994
0.8394	1.3628	2.0395	2.7219	3.3879

5.1 Case A: single, isolated, fully interleaved-disc winding

A uniform fully interleaved-disc winding was chosen which had 16 discs with 10 turns per disc. The paper insulated copper turn has a cross-section area of 30 mm². The winding had a height of 215 mm, and inner and outer diameters of 260 and 350 mm respectively. The insulation thickness, duct spacing etc. corresponded to an 11 kV rating. An aluminium sheet was concentrically placed to simulate the ground plane. (Note: The DPI of ONLY a linear system can be defined. In the frequency interval of 10 kHz–1 MHz, the winding behaves as a linear element, since the iron core repels almost all the flux due to eddy currents and in turn, the winding offers a constant inductance value (equivalent to an air-core inductance). Keeping this scenario in mind, the iron core which acts as a magnetic shield in this frequency interval was emulated by a grounded aluminium cylinder.) The measured DPI plot is shown in Fig. 4. The peak-trough pairs were found by ‘findpeaks’ and they are marked on it for clarity. These frequencies are also tabulated in Table 7. The steps for estimating \(C_i \) are as follows:

1. Peak-trough pairs in DPI magnitude were four, hence \(N = 4 \).
2. Picking up the first two peak-trough pairs (which are below 2.5 Mrads/s) in Table 7, compute \(\Pi_{\text{scn}}/\Pi_{\text{ocn}} = 1.6313 \).
3. Using coefficients in Tables 2 and 3 for \(N = 4 \), \(f(y) \) is constructed and equated to \(\Pi_{\text{scn}}/\Pi_{\text{ocn}} \). The simplified expression is

\[
6.3686\gamma^3 + 47.6861\gamma^2 + 104.5329\gamma^2 + 56.2190\gamma^2 - 10.1022 = 0
\]

4. Since \(\Pi_{\text{scn}}/\Pi_{\text{ocn}} < 2N \), there will exist ONLY one positive real root for (20).
5. Using the positive root of \(\gamma = 1.4046 \), the value of \(a \) was computed as 1.4996. This low value of \(a \) is a characteristic feature of a fully interleaved-disc winding.
6. The measured value of total shunt capacitance was 0.410 nF at 1 kHz, so shunt capacitance per section is \(C_s = 0.1025 \) nF. Estimated series capacitance per section was \(C_s = 0.7290 \) nF.

5.2 Case B: 2.2 kV continuous-disc winding in presence of a shorted LV winding

One healthy phase of an HV winding (along with an inner LV winding) was scavenged from an older discarded transformer. It was one of the phases of a \(\Delta - Y \) transformer of rating 70 kVA, 2200/220 V, 25 Hz. (Note: It is well-known that the measured DPI would be modified due to the presence of a shorted secondary winding, in addition to other surrounding conditions, other neighbouring windings, terminal condition of all non-tested windings etc. However, the value of \(C_i \) of the excited winding, which would be extracted from the measured DPI, will remain unchanged. This fact has been previously examined in [18] and proved.) An aluminium sheet was concentrically placed inside the LV winding which emulates the presence of core. The non-tested LV winding was shorted and connected to the aluminium sheet. The DPI magnitude was measured and the peak-trough pairs are extracted and tabulated in Table 8. The DPI magnitude plot is shown in Fig. 5, and also contains markings of each peak-trough pair.

1. DPI magnitude plot has eight peak-trough pairs, so \(N = 8 \).
2. From the first three peak-trough pairs which are below 2.5 Mrads/s, \(\Pi_{\text{scn}}/\Pi_{\text{ocn}} = 5.9172 \).
3. Using coefficients in Tables 2 and 3 corresponding to \(N = 8 \), the polynomial \(f(y) \) was constructed and equated to \(\Pi_{\text{scn}}/\Pi_{\text{ocn}} \). The simplified expression is

\[
10.1y^9 + 149.5y^8 + 871.1y7 + 2484y^7 + 3400.1y^6 + 1450.1y^5 - 1085.6y^4 - 1011.5y - 157.4 = 0
\]
4. Since \(\Pi_{\text{cal}}/\Pi_{\text{cal}} < 2 \) hence there exists ONLY one positive real root for (21).
5. After solving (21), the only positive root of \(r = 0.6338 \).
6. The corresponding value of \(\alpha = 6.3687 \).
7. The measured total shunt capacitance was 0.6904 nF at 1 kHz, so shunt capacitance per section is \(C_s = 0.0821 \) nF. Hence, the estimated series of capacitance per section is \(C_s = 0.1169 \) nF.

5.3 Case C: 33 kV, 3.5 MVA, continuous-disc winding

Next, experiments were done on another uniform single isolated continuous-disc winding manufactured specifically for this purpose. This was one of the HV windings of a new 3-\(\Phi \), 33 kV, 3.5 MVA transformer. The winding had 24 number of double-discs with 22 turns per disc. Its total height was 570 mm. Spacing between each disc is 3 mm, and the inner and outer diameters of each disc is 395 and 486 mm, respectively. An aluminium sheet was concentrically placed to simulate the ground plane. Measured DPI magnitude is shown in Fig. 6. The peak-trough pairs outputted by ‘findpeaks’ are tabulated in Table 9.

1. From DPI magnitude plot, the number of peak-trough pairs are 14. Hence \(N = 14 \).
2. From the first four peak-trough pairs that are below 2.0 Mrad/s, \(\Pi_{\text{cal}}/\Pi_{\text{cal}} = 10.8246 \).
3. Using the coefficients in Tables 2 and 3 corresponding to \(\Pi \), the polynomial \(f(\gamma) \) was constructed and equated to \(\Pi_{\text{cal}}/\Pi_{\text{cal}} \). The simplified expression is:

\[
17.175y^{14} + 459.261y^{13} + 5426.9y^{12} + 3.7229 \times 10^5y^1 + 1.6363 \times 10^6y^4 + 4.7853 \times 10^7y^7 + 9.3133 \times 10^9y^{10} + 1.524 \times 10^{10}y^{13} + 7.6338 \times 10^{12}y^{16} + 1.2928 \times 10^{15}y^{19}\]

\[-4.0979 \times 10^4y^4 - 3.1860 \times 10^7y^7 - 1.0487 \times 10^{10}y^{10} - 1.4364 \times 10^{13}y^{13} - 5.501790 = 0\]

4. Since \(\Pi_{\text{cal}}/\Pi_{\text{cal}} < 2N \), there exist ONLY one positive real root for (22).
5. The only positive root of \(r = 0.7029 \).
6. This corresponds to an estimated value of \(\alpha = 11.7375 \). This is a typical value of \(\alpha \) that corresponds to continuous disc winding.
7. The measured total shunt capacitance is 1.15 nF at 1 kHz, hence shunt capacitance per section is \(C_s = 0.0821 \) nF. The estimated series capacitance per section is \(C_s = 0.1169 \) nF. So, the total series capacitance is 0.0083 nF.

5.3.1 Verification by initial impulse voltage distribution: As it is well-known that there is no direct method to verify the correctness of the estimated \(C_s \), the authors measured the initial impulse voltage distribution and compare it with the one computed using the above-estimated value of \(C_s \). This measurement was carried out by exciting the winding by a near-step-like (70 V, 0.27/36 µs) impulse voltage waveform produced using Haefely's repetitive surge generator (RS482). The voltage magnitude at each double-disc junction was measured corresponding to the time instant at which the input excitation is maximum. Plotting these voltages leads to the initial impulse voltage distribution, which is shown in Fig. 7, along with that computed using estimated \(C_s = 0.1169 \) nF. The close match of estimated and measured distributions goes to show that the proposed method has satisfactorily estimated the value of \(C_s \).

5.3.2 Verification by CSM: One more way of verifying the estimated \(C_s \) was explored. Since, in this particular case, the authors had access to design data (physical dimensions of the winding are given in Fig. 8) this gave an opportunity to compute \(C_s \) using CSM, and it in-turn can be used to cross-verify the results gotten from the proposed method. The computation procedure and algorithm described in [12] was followed. As per this procedure, initially, the turn-to-turn capacitance matrix of the winding is computed. Then, capacitance between neighbouring discs (inter-disc capacitances) is obtained by adding the capacitances existing between all the turns in neighbouring discs. Finally, the series combination of all the disc capacitances provides the net series capacitance.
The results obtained from CSM are enumerated as follows:

1. The net series capacitance is $C_s = 0.0099 \text{nF}$.
2. The net shunt capacitance is $C_g = 1.4478 \text{nF}$.
3. Thus, α is 12.0841, and is reasonably close to 11.7375 which was estimated by the proposed method.

Hence, the accuracy of the proposed method was cross-verified by two independent indirect methods and found to be satisfactory.

5.4 Case D: experiment on $1 - \Phi$, two-winding transformer

Owing to the encouraging performance of the proposed method on single isolated windings, the next objective was to validate the proposed method on an actual two-winding transformer. For this purpose, a $1 - \Phi$, two-winding transformer of rating $11/13.8 \text{kV}$, 315kV A, used for testing surge-arrester blocks, was selected. When measuring DPI of one winding, the untested winding is kept open-circuited and floating. A photo of the experimental setup is shown in Fig. 9. (Note: In this particular case, the DPI was measured using a commercial impedance analyser (model PSM3750). The excitation signal was connected to line-terminal of the 13.8 kV winding and the neutral end was kept floating. Likewise, the secondary was kept open and floating. The input was fed with respect to the tank. The input voltage and source current are automatically measured at each frequency point and outputted.)

The measured DPI is shown Fig. 10. The peak-trough pairs are extracted and the same are also tabulated in Table 10. The steps for estimating C_s are as follows:

1. After zooming DPI magnitude plot, a number of peak-trough pairs were counted to be 17. Hence, $N = 17$.
2. From first 9 peak-trough pairs (which are below 2.0 Mrads/s), $\Pi_{scnf}/\Pi_{ocnf} = 4.6991$.
3. Using the coefficients in Tables 2 and 3 corresponding to $N = 17$, the polynomial $f(\gamma)$ was constructed and equated to Π_{scnf}/Π_{ocnf}. The simplified expression is (see (23)).
4. Since $\Pi_{scnf}/\Pi_{ocnf} < 2N$, hence there exists ONLY one positive real root for (23).
5. After solving (23), the only positive root of $\gamma = 0.0779$.
6. The corresponding value of $\alpha = 4.7439$.
7. The measured shunt capacitance is 1.3 nF at 1 kHz, shunt capacitance per section $C_g = 0.0765 \text{nF}$. The estimated series capacitance per section is $C_s = 0.9820 \text{nF}$.

6 Implementability on existing FRA instruments

Given the simplicity of the proposed method, the authors foresee its portability on commercial FRA instrument to be straightforward. The expected major steps/aspects in that regard are listed as follows:

- The DPI magnitude data is acquired in a normal fashion.
- The peak-trough detection algorithm used in this work can be converted and ported into the instrument software. This algorithm always detected the peak-trough pairs accurately, except in one case, wherein peak-trough 7–7’ in Fig. 10 was not detected. Thus, this algorithm is robust and can be used.
29.3009γ^{17} + 986.8319γ^{16} + 1.5131 \times 10^5γ^{15} \\
+ 1.3980 \times 10^3γ^{14} + 8.6808 \times 10^2γ^{13} + 3.8256 \times 10^2γ^{12} \\
+ 1.2316 \times 10^3γ^{11} + 2.9366 \times 10^2γ^{10} + 5.2014 \times 10^3γ^9 \\
+ 6.7993 \times 10^3γ^8 + 6.4515 \times 10^2γ^7 + 4.3137 \times 10^3γ^6 \\
+ 1.9337 \times 10^2γ^5 + 5.3125 \times 10^4γ^4 + 7.2859 \times 10^5γ^3 \\
+ 1.3424 \times 10^2γ^2 - 5.5918 × 10^5γ - 25.1397 = 0

7 Conclusions

A simple and elegant procedure for estimating series capacitance of a uniform transformer winding from measured frequency response data was presented. The theoretical aspects of the proposed method were derived by exploiting properties that correlate the roots of a polynomial to its coefficients. Invoking these properties on driving-point-impedance function of a winding (modelled as a N-section mutually coupled ladder network) led to the establishment of the proposed procedure. The method was implemented on a variety of uniform transformer windings to check its feasibility. Finally, it was also successfully implemented on an actual single-phase, two-winding transformer. All these experimental results prove its feasibility. The proposed method is free from mathematical complexities, is straightforward to implement, is time-efficient and therefore ideally suited to be deployed on existing commercial FRA instruments, as a software add-on option. This feature is expected to add a new dimension to the FRA instruments.

8 References

[1] Blume, L.F., Boyajian, A.: ‘Abnormal voltages within transformers’, Transactions of the American Institute of Electrical Engineers, 1919, XXXVIII, pp. 577–620
[2] Teramishi, T., Ikeda, M., Honda, M., et al.: ‘Local voltage oscillation in interleaved transformer windings’, IEEE Trans. Power Appar. Syst., 1981, 100 (2), pp. 873–881
[3] Heller, B., Veverka, A.: ‘Surge phenomena in electrical machines’ (Iliffe Books, London, 1968, Revised English edn.)
[4] De, S., De, A., Bandyopadhyay, G.: ‘Self-capacitance grading approach to suppress winding resonance in EHV transformers under oscillatory terminal disturbances’, IET High Voltage, 2018, 3 (4), pp. 310–315
[5] Mukherjee, P., Satish, L.: ‘Estimating the equivalent air-cored inductance of transformer winding from measured FRA’, IEEE Trans. Power Deliv., 2018, 33 (4), pp. 1620–1627
[6] Jaryam, B.N.: ‘Bestimmung der stossspannungsverteilung in transformatoren mit digitalrechner’, ETZ-A, 1961, 82, pp. 1–9
[7] Waidvogel, P., Rouxel, M.: ‘Predetermination by calculating of the electrical stresses in a winding subjected to a surge voltage’. CIGRE-Rep., 1956, 125
[8] Chowdhuri, P.: ‘Calculation of series capacitance for transient analysis of winding’, IEEE Trans. Power Deliv., 1987, 2 (1), pp. 133–139
[9] Popović, L.M.: ‘New method for calculation of series capacitance for transient analysis of windings’, Proc. 9th Mediterranean Electrotechnical Conf., Tel-Aviv, Israel, 1998, vol. 2, pp. 1042–1046

9 Appendix 1

To verify the existence of a single positive root for (16), two conditions for k are examined:

9.1 Case A: 1 < k < 2N

In case k < 2N, the coefficient of γ^N is always positive. Since k is always greater than 1, the constant term β_k (1 − k) in (16) is always negative. Since the first term is positive and the last term is negative, following are the conditions for the existence of a single positive root by Descartes’ rule-of-signs.

1. There should not be any sign change observable in any of the powers of γ^(N–1) to γ. This is a trivial condition.
2. If there is sign change (from positive to negative) in the coefficients of any power of γ, all the coefficients succeeding it should also be negative. This is examined next.

Theorem 1: If any of the coefficients of (16) become negative, then all the other coefficients succeeding it will also be negative.

Proof: Let c_j be each coefficient of (16). Assume that one of the coefficients of f(γ) is negative. Let that coefficient be c_j. We have to prove that c_j < 0, ∀ j < i. The jth coefficient can be represented as

\[c_j = \beta_j × 2N \frac{\delta_j}{\beta_j} - k \]

Since c_j < 0
\(\Rightarrow \frac{\delta_i}{\beta_i} < \frac{k}{2N} \) \hspace{1cm} \text{(25)}

However, from Tables 2 and 3 it can be observed that for any value of \(N \)

\[\frac{\delta_N}{\beta_N} > \frac{\delta_{N-1}}{\beta_{N-1}} > \ldots > \frac{\delta_0}{\beta_0} \] \hspace{1cm} \text{(26)}

From (25) and (26)

\[\frac{\delta_{i-1}}{\beta_{i-1}} < \frac{k}{2N} \]
\[\frac{\delta_{i-2}}{\beta_{i-2}} < \frac{k}{2N} \]
\[\vdots \]
\[\frac{\delta_i}{\beta_i} < \frac{k}{2N} \] \hspace{1cm} \text{(27)}

From (24) and (27), all the coefficients \(c_j \) are negative \(\forall j < i \). Hence, the theorem is proved.

Therefore, if the value of \(\Pi_{\text{out}}/\Pi_{\text{cut}} \) lies between 1 and \(2N \), there will always be only one positive real root for (16).

\textbf{9.2 Case B:} \(k > 2N \)

In case \(k > 2N \), the first term in (16) becomes negative. The last term is also negative. Hence, there will be NO single positive real root for (16), irrespective of the sign of other coefficients. However, such a situation has not been encountered, neither during simulation nor in any of the practical measurements. Thus, this option can safely be ruled out. \(\square \)