Optical properties of sea buckthorn drinks as the main physical characteristic of their quality

E D Rozhnov¹, M N Shkolnikova², N N Maksimiuk³, V I Voitsekhivskyi⁴, E A Tikhomirov⁵ and E Yu Bobkova⁶

¹Biysk Technological Institute (branch) of the Altay State Technical University, 27 Hero of the Soviet Union Trofimov ave., Biysk, Russian Federation
²Ural State University of Economics, 62 March 8 ave., Yekaterinburg, Russian Federation
³Yaroslav-the-Wise Novgorod State University, 41, ul. B. St.-Petersburgskaya, Veliky Novgorod, Russian Federation
⁴National University of Life and Environmental Sciences of Ukraine, 15 Geroiv Oboroni str., Kyiv, Ukraine
⁵Bauman Moscow State Technical University, 1-st Institutskaya str., Moscow region, Mytischi, Russian Federation
⁶K G Razumovsky Moscow State University of Technologies and Management (the First Cossack University), 73 Zemlyanoy Val, Moscow, Russian Federation

E-mail: red@bti.secna.ru

Abstract. The hue and color intensity are referred to optical properties of soft drinks made from fruit and berry raw materials that are crucial for control of their quality and identification. In addition, a natural color of raw materials is attractive for consumers since it provides a more appealing natural appearance to the drink. Sea buckthorn drinks are prone to browning during storage due to the specific chemical composition of berries, which necessitates the control of their optical properties. The study aimed to investigate optical properties of different groups of sea buckthorn drinks during storage, namely clarified juice and dry wine material made from sea buckthorn of the Chuiskaya variety, and to establish the possibility of using some calculated parameters that characterize the drink color in techno-chemical control practices. Optical properties of drink samples were determined with a UV-1800 spectrophotometer, and the values obtained were used to calculate the parameters of intensity, hue, and yellowness. It is shown that physical methods can be used to control optical properties of sea buckthorn drinks in order to objectively assess the color as one of the basic organoleptic parameters of drink quality. It is established that the results of optical analysis are consistent with visual assessment of the sea buckthorn drink samples during storage, which opens up prospects for implementation of this research method in the laboratories of enterprises involved in processing of sea buckthorn to produce various groups of drinks.

1. Introduction

Optical properties of drinks, namely the intensity, hue, and yellowness, are the main objective physical characteristics of drinks, and should be basic to control their quality and identification. For the consumer, these parameters contribute to formation of consumer preferences due to ‘recognition’ of the drink. In addition to a psycho-emotional and physiological effect of color properties of drinks on the consumer
[1], there is some evidence that the drink color significantly affects the consumer’s ability to correctly identify taste and form clear taste profiles and preferences, and also dominates over other sources of information on taste, including product description [2, 3]. The main trend in the Russian beverage industry, including non-alcoholic drinks, is the use of fruit and berry raw materials and semi-finished products, which impart additional functional properties to drinks that, according to market experts, should be in harmony with color and taste sensations excited by the drink. A natural color of raw materials additionally attracts consumer’s attention due to natural appearance formed.

An objective way to assess the appearance of drinks is to study optical, or so-called, chromatic parameters, such as color intensity and hue, as well as color coordinates in the CIELAB system [4–9]. The data of measurement of the chromatic parameters of drinks can be used to calculate such parameter as yellowness of color, which has recently been widely introduced into the practice of quality control of numerous food products and characterizes the degree of color change of white (transparent) sample to yellow one [10–12].

The need to control optical properties of sea buckthorn drinks is largely due to chemical composition of berries. First, sea buckthorn berries are rich in phenolic compounds of various classes, many of which are quite reactive to participate in polymerization and condensation reactions with subsequent formation of dark-colored products; second, sea buckthorn berries are rich in ascorbic acid, which binds oxygen and prevents a deep course of oxidative processes associated with the change in the drink color. However, the presence of a large number of metal ions, acids and other compounds in the products, and the impact of thermal energy, significantly increases the rate of ascorbic acid degradation. Spontaneous dehydration and decarboxylation may form furfural, a compound that is an intermediate of melanoidinogenesis reaction that causes food darkening.

The technology developed should meet expectations of consumers of food products and provide rational use of agricultural raw materials [13, 14].

The aim of the study was to investigate optical properties of different groups of sea buckthorn drinks during storage to establish the possibility of using some calculated drink color parameters in technological control practices.

2. Materials and methods

The objects of the study were clarified sea buckthorn juice (titratable acidity 4.5±0.1 g/dm3, sugar content 90.0±2.5 g/dm3), dry sea buckthorn wine material (strength 11.7±0.5 % vol., sugar content 1.5±0.3 g/dm3), and liquor wine (strength 21% vol., sugar content 210 g/dm3) produced from sea buckthorn of the Chuiskaya variety (harvest of 2018, place of raw material harvesting – the city of Barnaul, M.A. Lisavenko Scientific-Research Institute of Horticulture of Siberia). Juice was clarified with bentonite at a dosage of 3.5 g/dm3 followed by filtration through a filter paper retaining particles of 1 μm. The wine material was prepared by fermentation with Oenoferm yeast (LW 317-28 race by Erbslöh Geisenheim AG, Germany) followed by clarification with bentonite at a dosage of 2.5 g/dm3 and filtration. Liqueur wine was made by blending wine material with sugar syrup (67.5% solids) and rectified ethyl alcohol.

The optical properties of the studied samples of sea buckthorn drinks were determined in accordance with the current OIV recommendations [15, 16] using a UV-1800 spectrophotometer (Japan, Shimadzu). The optical properties obtained for the drinks were used to calculate the following values:

- the value of the parameter of color intensity defined as the sum of values of the drink absorption at wavelengths of 420, 520 and 620 nm (I):

$$I = A_{420} + A_{520} + A_{620},$$

(1)

- the value of the hue parameter of the drink color determined as the ratio of the drink absorption measured at wavelengths of 420 and 520 nm (N):

$$N = A_{420} / A_{520},$$

(2)
the value of the parameter of yellowness of color (G, %) determined by equation [49]:

$$G = \frac{1.28X - 1.06Z}{Y} \times 100$$ \hspace{1cm} (3)

where X, Y and Z are the color coordinates in the CIELAB coordinate system:

$$X = 0.42 \cdot T_{625} + 0.35 \cdot T_{550} + 0.21 \cdot T_{445}$$ \hspace{1cm} (4)

$$Y = 0.20 \cdot T_{625} + 0.63 \cdot T_{550} + 0.17 \cdot T_{495}$$ \hspace{1cm} (5)

$$Z = 0.24 \cdot T_{495} + 0.94 \cdot T_{445}$$ \hspace{1cm} (6)

where T_{625}, T_{550}, T_{445}, T_{495} are transmittance determined relative to distilled water at appropriate wavelengths, %.

3. Results and discussion

Figure 1 shows the dynamics of color intensity during storage of test samples in the dark for 52 weeks at a temperature of 22±2 °C and relative humidity of 60±5%.

![Figure 1. Dynamics of color intensity of sea buckthorn drink samples during storage.](image)

During storage, the color intensity increases, but the drink color visually changes compared to the color observed at the initial period of storage, which becomes apparent only after 20–30 weeks of storage (1.12–1.18-fold increase in the color intensity). It can be noted that color intensity in sea buckthorn drinks containing sugar increases slower, which is probably due to the preservative activity of sugars reported in [17].

The changed color hue of drinks during storage is primarily associated with a decrease in its absolute value (figure 2).

Similar to the color intensity, a sharper change in the color hue was found for dry wine material made from sea buckthorn when determining this parameter for the drink samples. In the absence of high concentration of sugars in the drinks, which is sufficient to affect oxidative processes, the degradation of ascorbic acid and condensation of polyphenolic substances are likely to dominate.

Another optical parameter that shows the drink color is yellowness; however, generally accepted norms for this parameter are set for grape wines only, and the yellowness parameter therefore cannot be
used to assess the condition of drinks made from fruit and berry raw materials, including sea buckthorn. However, the yellowness parameter was calculated for the drink samples (figure 3).

Figure 2. Dynamics of color hue of drink samples during storage.

Figure 3. Dynamics of yellowness of color of sea buckthorn drinks during storage.

The obtained results of visual assessment of the drink samples during storage showed a higher intensity of brown hue in the sample of dry sea buckthorn wine material, which is completely consistent with the data on the increase in yellowness presented in figure 3.

Calculation of the trichromatic parameters of wine (XYZ color coordinates) and the X and Y coordinates (the CIELAB coordinate system) showed a more intense shift of the X coordinate (chromatic green-red axis), while the Y coordinate (chromatic yellow-blue axis) practically does not shift (figure 4, a, b).
4. Conclusion

Thus, the results of our studies showed that physical methods can be used to evaluate the optical properties of sea buckthorn drinks for an objective assessment of color, one of the basic organoleptic parameters of the drink quality. The results of optical analysis are consistent with the visual assessment of the sea buckthorn drink samples during storage, which opens up potential for implementation of this method in the laboratories of enterprises involved in processing of sea buckthorn to produce various groups of beverages.

References

[1] Elliot A J and Maier M A 2014 Color psychology: effects of perceiving color on psychological functioning in humans Annual Review of Psychology 65 95–120
[2] Garber L L, Hyatt E M and Starr R G 2000 The effects of food color on perceived flavor Journal of Marketing Theory and Practice 8 (4) 59–72 DOI: 10.1080/10696679.2000.11501880
[3] Koch C and Koch E C 2003 Preconceptions of taste based on color The Journal of Psychology: Interdisciplinary and Applied 137 (3) 233–42 DOI: 10.1080/00223980309600611.
[4] Englezos V, Rantsiou K, Cravero F, Torchio F, Giacosa S, Ortiz-Julien A, Gerbi V, Rolle L and Cocolin L 2018 Volatile profiles and chromatic characteristics of red wines produced with Starmerella bacillaris and Saccharomyces cerevisiae Food Research International 109 298–309 DOI: 10.1016/j.foodres.2018.04.027
[5] Liu Y, He F, Shi Y, Zhang B and Duan C Q 2018 Effect of the high pressure treatments on the physicochemical properties of the young red wines supplemented with pyruvic acid Innovative Food Science & Emerging Technologies 48 56–65 DOI: 10.1016/j.ifset.2018.05.010
[6] Benucci I, Cerreti M, Liburdi K, Nardi T, Vagnoli P, Ortiz-Julien A and Esi M 2018 Pre-fermentative cold maceration in presence of non-Saccharomyces strains: evolution of chromatic characteristics of Sangiovese red wine elaborated by sequential inoculation Food Research International 107 257–66 DOI: 10.1016/j.foodres.2018.02.029
[7] Gambuti A, Picariello L, Rinaldi A and Moio L 2018 Evolution of Sangiovese wines with varied tannin and anthocyanin ratios during oxidative aging Frontiers in Chemistry 6 (63) DOI: 10.3389/fchem.2018.00663
[8] Tchabo W, Ma Y, Kwaw E, Zhang H, Xiao L and Apaliya M T 2018 Statistical interpretation
of chromatic indicators in correlation to phytochemical profile of a sulfur dioxide-free mulberry (Morus nigra) wine submitted to non-thermal maturation processes Food Chemistry 239 470–77 DOI: 10.1016/j.foodchem.2017.06.140

[9] Garcia-Estevez I, Alcalde-Eon C, Puente V and Escribano-Bailon M T 2017 Enological tannin effect on red wine color and pigment composition and relevance of the yeast fermentation products Molecules 22 (12:2046) DOI: 10.3390/molecules22122046

[10] Seong H, Heo J, Lee K H, Lee Y B, Kim Y B and Han N S 2017 Enhancing the antioxidant activities of wines by addition of white rose extract Journal of Microbiology and Biotechnology 27 (9) 1602–08 DOI: 10.4014/jmb.1704.04034

[11] Liu Y, Zhang B, He F, Duan CQ and Shi Y 2016 The influence of prefermentative addition of gallic acid on the phenolic composition and chromatic characteristics of Cabernet Sauvignon wines Journal of Food Science 81 (7) 1669–78 DOI: 10.1111/1750-3841.13340

[12] Jung H, Lee S J, Lim J H, Kim B K and Park K J 2014 Chemical and sensory profiles of makgeolli, Korean commercial rice wine, from descriptive, chemical, and volatile compound analyses Food Chemistry 152 624–32 DOI: 10.1016/j.foodchem.2013.11.127

[13] Rozhnov E, Kazarskikh A, Shkolnikova M, Tretyak L, Voytsekhovskiy V, Maksimiuk N, Khayrullin M, Rebezov M and Yessimbekov Zh 2019 Investigation of the conditions for the formation of 5-Hydroxymethylfurfurol in the production of honey wines and sea-buckthorn wine drinks Research Journal of Pharmacy and Technology 12 (7) 3501–06 DOI: 10.5958/0974-360X.2019.00595.X

[14] Rebezov M, Naumova N, Lukin A, Alkhamova G and Khayrullin M 2011 Food behavior of consumers (for example, Chelyabinsk) Voprosy Pitaniia 80 (6) 23–26

[15] Compendium of international analysis of methods – OIV Chromatic Characteristics. Method OIV-MA-AS2-11. Determination of chromatic characteristics according to CIELab. Available at: http://www.oiv.int/public/medias/2478/oiv-ma-as2-11.pdf

[16] Compendium of international analysis of methods – OIV Chromatic Characteristics. Method OIV-MA-AS2-07B. Chromatic Characteristics. Available at: http://www.oiv.int/public/medias/2475/oiv-ma-as2-07b.pdf

[17] Sevodina K V, Rozhnov E D and Sevodin V P 2013 The role of the sugar-amino acid reaction in the process of browning of sea buckthorn wine Winemaking and Viticulture 2 17–19