Genomic classifications of renal cell carcinoma: a critical step towards the future application of personalized kidney cancer care with pan-omics precision

James J Hsieh1*, Valerie Le1, Dengfeng Cao2, Emily H Cheng3 and Chad J Creighton4

1 Molecular Oncology, Department of Medicine, Siteman Cancer Center, Washington University, St Louis, MO, USA
2 Department of Pathology, Washington University, St Louis, MO, USA
3 Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
4 Human Genome Sequencing Center, Department of Medicine, Baylor College of Medicine, Houston, TX, USA

*Correspondence to: JJ Hsieh, Washington University, 660 S. Euclid Avenue, St Louis, MO 63110, USA. E-mail: jhsieh@wustl.edu

Abstract

Over the past 20 years, classifications of kidney cancer have undergone major revisions based on morphological refinements and molecular characterizations. The 2016 WHO classification of renal tumors recognizes more than ten different renal cell carcinoma (RCC) subtypes. Furthermore, the marked inter- and intra-tumor heterogeneity of RCC is now well appreciated. Nevertheless, contemporary multi-omics studies of RCC, encompassing genomics, transcriptomics, proteomics, and metabolomics, not only highlight apparent diversity but also showcase and underline commonality. Here, we wish to provide an integrated perspective concerning the future ‘functional’ classification of renal cancer by bridging gaps among morphology, biology, multi-omics, and therapeutics. This review focuses on recent progress and elaborates the potential value of contemporary pan-omics approaches with a special emphasis on cancer genomics unveiled through next-generation sequencing technology, and how an integrated multi-omics approach might impact precision-based personalized kidney cancer care in the near future.

Keywords: renal cell carcinoma; genomics; transcriptomics; proteomics; metabolomics; biomarkers; targeted therapy; precision therapeutics; personalized medicine

Introduction

Renal cell carcinoma (RCC) encompasses a large heterogeneous group of cancers derived from renal tubular epithelial cells and accounts for more than 90% of cancers detected in the kidney [1]. Among the ten most common cancers worldwide [1], RCC represents more than ten molecular and histopathological subtypes [2,3], the classification of which has undergone major revisions, due to recent advances in morphological and molecular characterizations of renal tumors [2–7]. RCC major subtypes (≥5%) include clear cell RCC (ccRCC) at ~75% [8], papillary RCC (pRCC) at ~15% [9], and chromophobe RCC (chRCC) at ~5% [1,3,10]. Clear cell papillary RCC (cpcRCC) is a newly defined entity that accounts for ~4% of RCCs and is a clinically more indolent disease [2]. The remaining subtypes are very rare at less than 1%, such as medullary RCC (mdRCC), collecting duct RCC (cdRCC), TFE-translocation RCC (tfeRCC) [11], FH-loss HLRCC [12], TSC-loss RCC angiomyolipoma (AML) [13,14], and SDH-loss RCC (sdRCC) [1,3,15]. RCCs that fail to be categorized based on updated histopathological/molecular criteria are grouped and denoted as unclassified RCC (uRCC) at ~4% and encompass heterogeneous RCC entities [1,3,16].

Treatment of localized RCC includes nephrectomy (partial or radical), ablation (radiofrequency or cryo), or active radiographic surveillance [1]. About 30% of patients present with metastatic disease at the time of diagnosis, and an additional 30% of patients with localized RCC, despite surgery with curative intent, eventually develop recurrence or metastasis [1]. Currently approved drugs for metastatic ccRCC include targeted therapies, i.e. bevacizumab, sorafenib, sunitinib, pazopanib, axitinib, tivozanib, cabozantinib, lenvatinib, temsirolimus, and everolimus, and immunotherapies, i.e. interferon-α, IL-2, and nivolumab [1]. With 13 approved agents rounding up six different mechanisms, i.e. inhibitors of VEGFR, mTORC1, c-MET and FGFR; cytokines; and anti-PD1/PDL1 immune checkpoint inhibitors, we have made marked strides against metastatic ccRCC over the past 10 years, doubling patient median survival from 15 months to 30 months [1]. However, treatment responses are highly variable among patients and agents, reflecting...
underlying heterogeneities stemming from drug action mechanisms, cancer biology, and host tumor–immune interactions [17]. Unfortunately, most metastatic ccRCC patients eventually succumb to their diseases and there have been no major therapeutic advances made against the other RCC subtypes (so-called non-clear cell RCC, nccRCC) [18,19].

Over the past 5 years, seminal omic studies performed on RCC by individual laboratories and consortiums including the Cancer Genome Atlas (TCGA) have presented an unprecedented, comprehensive molecular understanding of individual RCC pathobiology [8–10,20–26]. As molecular pathology supplants histopathology, invaluable insights can be drawn from integrated classifications, which could refine and impact the future application of precision-focused, personalized clinical management of RCC [6,27–30]. As a prelude to the pan-omics precision therapeutics era, this review concentrates on genomics/transcriptomics-based RCC stratifications and attempts to present a categorical view of RCC subtypes with most molecular advances.

Category one classification: histopathology

Major RCC morphological subtypes (≥5%) include ccRCC, pRCC, and chRCC, which are primarily distinguished by histologic characteristics [3,31].

Clear cell RCC

Clear cell RCC (ccRCC) is characterized by lipid-and glycogen-rich cytoplasm, which is lost in histologic processing, giving the distinguishing appearance of clear cytoplasm (Figure 1). Its architecture can vary with solid, alveolar, and/or acinar patterns, and frequently contains a network of thin-walled vasculature. High-grade tumors may contain cells with eosi

Papillary cell RCC

Papillary RCC (pRCC) typically contains malignant epithelial cells forming papillae and tubules and is further divided morphologically into type 1 and type 2 tumors (Figure 2). Type 1 pRCC (p1RCC) tends to present as multifocal tumors and the papillae are covered by small cells arranged in a single layer on the papillary basement membrane, often with scant cytoplasm; type 2 pRCC (p2RCC) often has pseudostratified nuclei of higher nuclear grade and abundant eosinophilic cytoplasm. Of note, RCC subtypes including clear cell papillary (ccp) RCC, tfeRCC, cdRCC, and uRCC can display various papillary histologies [32].

Chromophobe RCC

Chromophobe RCC (chRCC) generally consists of large polygonal cells with atypical nuclei, mixed with smaller, granular cells in a solid growth pattern (Figure 3). Thick-walled blood vessels, focal calcifications, and broad fibrotic septa are often present as well [33].

Rare RCC

The remaining rare RCC subtypes (Figure 4) are also categorized by histologic appearance but with emphasis on unique clinical features such as patient demographics, e.g. TFE-3 translocation RCC in young adults [11] and medullary RCC in sickle cell hemoglobinopathy patients [34].

Sarcomatoid RCC

Sarcomatoid dedifferentiation occurs in ~5% of RCCs [35] and can be observed in any RCC histological subtypes [7,36] but at higher incidences in ccRCC (~8%), chRCC (~9%), cdRCC (~29%), and uRCC (11%) [37]. Hence, sarcomatoid RCC (srRCC) does not represent a distinct subtype of RCC, and is classified according to underlying histology. When no epithelia component can be identified in srRCC, it is classified as unclassified RCC (uRCC). In general, srRCC foretells aggressive cancer behavior and poor clinical outcome [35,38,39].

Category two classification: molecular pathology

In fact, morphological characteristics of RCC likely denote the underlying molecular pathophysiology. For example, ccRCC cells are full of lipid and glycogen, which is likely due to the near universal inactivation of the tumor suppressor gene VHL that results in uncontrolled HIF activity, the ensuing inhibition of mitochondrial function, and the subsequent redirection of glucose and glutamine for glycogen and lipid synthesis [26]. Early investigations into the molecular pathology of RCC began with familial RCC syndromes, which revealed mutations in several genes such as VHL, MET, and FH [40,41]. Importantly, these mutations can also be detected in distinct subtypes of sporadic RCC but at varied incidences [1,40]. Over the past decade, the original concept of single-gene pathology underlying sporadic RCC has undergone rapid evolution, due to the adaptation of next-generation sequencing technologies for cancer classification [1].

Clear cell RCC

Large-scale genomic studies of ccRCC tumors have consistently demonstrated that the loss of heterozygosity of chromosome 3p occurs in more than 90% of ccRCC cases and the complete loss of the VHL tumor suppressor gene, located at 3p25, via genetic (point mutations, insertions, and deletions) and/or epigenetic (promoter methylation) mechanisms occurs in more than 80% of cases [42]. Thus, VHL loss constitutes the earliest and fundamental driving event in the development of ccRCC [43]. VHL, the mutated gene underlying von Hippel–Lindau disease, encodes pVHL, which
is a component of the E3 ligase complex responsible for the ubiquitination of hypoxia-inducible factors 1α and 2α (HIF1α and HIF2α) for proteasome-mediated degradation [44–46]. Of note, among VHL wild-type, chromosome 3 intact ccRCC tumors, recurrent hotspot mutations of TCEB1, a component of the VHL E3 ligase complex, have been identified [23,47]. Unregulated accumulation of HIF proteins, which are normally activated in response to low oxygen stress, promotes activation of HIF-target genes that regulate angiogenesis, metabolism, and cell death [45,48]. Thereby, the pathological loss of VHL underlies the highly vascular
Figure 2. Integrated analyses of papillary RCC (pRCC). The left side panels show the typical histology (top) and the indicated omic features (middle to bottom panels) associated with type 1 papillary RCC (adapted from refs 9 and 68). The right side panels show the typical histology (top) and the indicated omic features (middle to bottom panels) associated with type 2 papillary RCC (adapted from [9] and [68]).

and lipid- and glycogen-laden nature of human ccRCC [49]. However, given the latency of ccRCC development in human VHL syndrome and the inability to induce ccRCC in Vhl-deficient mice [50], VHL loss alone is inadequate for ccRCC formation and additional genetic or epigenetic events are required [51]. Indeed, large-scale cancer genomics sequencing efforts have discovered several novel prevalent gene mutations in ccRCC, including the tumor suppressor genes PBRM1 (40%), SETD2 (15%), BAP1 (15%), KDM5C (7%), and TP53 (5%) [6], and the oncogene MTOR (5–6%) [52]. Furthermore, SQSTM1 was demonstrated as the key oncogene aberration resulting from a common (~70%) chromosome 5q gain event [53]. The importance of such mutations in pathogenesis, clinical outcome, and targeted therapy response of ccRCC will be discussed in the ‘Category three classification’ section below.

Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. www.pathsoc.org
Figure 3. Integrated analyses of chromophobe RCC (chRCC). The left side panels show the typical histology (top) and the indicated omic features (middle to bottom panels) associated with non-metastatic chRCC (adapted from [63]). The right side panels show the more aggressive histology (top) and the indicated omic features (middle to bottom panels) associated with metastatic chRCC (adapted from [63] and [64]).
Figure 4. Histologic and genomic analyses of the indicated rare RCC subtypes.

Papillary cell RCC

Papillary cell RCC (pRCC) accounts for ~15% of RCCs [1], is subdivided into type 1 (p1RCC) and type 2 (p2RCC) based on histologic characteristics [3], and commonly exhibits multifocal tumors (8–41%) [33,54]. p1RCC is typically smaller, lower grade, more indolent, and less metastatic than p2RCC [55]. Sporadic p1RCC is associated with MET gene alteration, whereas sporadic p2RCC is characterized by CDKN2A silencing, SETD2 mutations, NF2 mutations, CUL3 mutations, TERT promoter mutations, increased expression of the NRF2-antioxidant pathway, and gains of chromosomes 7, 12, 16, and 17 [9,56–60]. Hereditary p1RCC is characterized by bilateral, multifocal tumors and germline MET activation mutations [61,62]. The MET gene encodes the receptor tyrosine kinase c-MET for hepatocyte growth factor (HGF), the alterations of which either through activating mutation or through gene amplification in renal epithelial cells promote oncogenic pathways that confer cancer cell growth, survival, and invasion advantages [62]. p2RCC can occur in the hereditary leiomyomatous and RCC syndrome (HLRCC) patients, which is linked to a germline mutation in the fumarate hydratase (FH) gene [12], a key enzyme of the tricarboxylic acid (TCA) cycle [62].

Chromophobe RCC

Chromophobe RCC (chRCC) originates from distal convoluted tubule cells of the nephron [63] and comprises ~5% of RCC tumors [1]. chRCC grows slowly, seldom metastasizes (5–10%) [64], and portends a relatively better survival except for those with sarcomatoid changes [18,65,66]. Most chRCCs display a nonrandom pathognomonic loss of approximately seven chromosomes, i.e. chromosomes 1, 2, 6, 10, 13, 17, and 21 [63,67]. Whole-genome sequencing of 66 chRCCs by KICH TCGA reported the low (~31) exonic somatic mutations, and TP53 and PTEN were the only two genes mutated at more than 10% incidence [63]. Combined mitochondrion DNA and RNA analysis indicated oxidative phosphorylation defects, explaining the commonly observed overabundance of mitochondria in chRCC cells [63,68]. Of note, chRCC can also be detected in patients with Birt–Hogg–Dubé (BHD) syndrome, characterized by mutations in the folliculin (FLCN) gene, residing on chromosome 17. Additional clinical manifestations of BHD include cutaneous fibrofolliculomas, renal oncocytoma, and renal hybrid oncocytic tumors [69].

Rare RCC

Collecting duct RCC (cdRCC) originates from the renal collecting system, exhibits a prominent stromal reaction, and is associated with a very poor clinical outcome. Genomics of 17 cdRCC patients identified recurrent mutations in NF2 (5/17), SETD2 (4/17), SMARCB1 (3/17), FH (2/17), and CDKN2A (2/17) [70]. Medullary RCC (mdRCC) occurs in patients with sickle cell hemoglobinopathy [34]. mdRCC is diagnosed with the loss of nuclear staining for the SMARCB1/INI1 tumor suppressor protein [71], resulting from either loss of heterozygosity (LOH) and balanced translocations [72] or biallelic loss [73]. TFE-3 or TEF-B translocation-associated RCCs (tfeRCCs) exhibit varied histology from clear cell morphology to papillary architecture [74]. Various TFE-3 RCC translocation partners have been identified including SFPQ, ASPSCR1, PRCC, NONO, CLTC, KSHRP, and LUC7L3 [11,75].

Collecting Duct	Medullary	SDHB-Deficient	TFE Translocation			
Morphology						
Genotypic Alterations	Losses of 1p, 8p, 9p, 16p	Poorly described, likely have normal karyotype	Loss of 1p	Recurrent translocations involving TFE3 (Xp11.2) or TFEB (6p21)		
Significantly Mutated Genes	NF2, SETD2, SMARCB1, FH	Sickle cell trait	SMARCB1/INI1	SDHB	TFE3	TFEB

Figure 4. Histologic and genomic analyses of the indicated rare RCC subtypes.
Molecular classification of unclassified RCC
RCCs that cannot be categorized as any specific subtype based on contemporary morphological and molecular definitions are aggregated as unclassified RCC (uRCC) [1,3,16]. Hence, uRCC encompasses a ‘lost-and-found’ bag of low-frequency, mixed-characteristics, heterogeneous clinical outcome, yet-to-be-determined/recognized renal cancers [76,77]. To address this knowledge gap and fill the unmet need in the diagnosis of uRCC, Chen et al performed comprehensive molecular characterizations of 62 aggressive uRCCs (Figure 5). They demonstrated recurrent mutations in NF2 (18%), SETD2 (18%), BAP1 (13%), KMT2C (10%), and MTOR (8%), and pathway alterations in NF2/Hippo (26%), MOTRC1 (21%), and chromatin/DNA damage (21%). Furthermore, within this 62-patient aggressive uRCC series, three FH-loss and one ALK-translocation RCCs were identified and thereby reclassified [16].

Sarcomatoid RCC
Sarcomatoid transformation of RCC displays spindle cell morphology through an epithelial–mesenchymal transition (EMT) process that arises from the adjacent epithelial carcinoma [37,78], and this carries significant prognostic values in all subtypes of RCC [35,79–81]. Early studies comparing sarcomatoid RCC (sRCC) with the adjacent epithelial RCC demonstrated TP53 inactivation as the only recurrent genetic event [39,82]. Two recent elegant genomic studies shone more light on the genetic aberrations underlying sarcomatoid transformation in RCC [83,84]. Combined recurrent somatic events found in their reports include mutations in TP53, BAP1, ARID1A, PTEN, CDKN2a, and NF2 [39,83,84]. Of note, Casuscelli et al reported a high incidence of whole-genome duplication events in sarcomatoid chRCC [64], which could also represent a common driver event underlying sarcomatoid dedifferentiation in other RCC subtypes.

Category three classification: genomic correlates with clinical outcome
The term ‘translation oncology’ emphasizes ‘the application of learned research knowledge for the improvement of human cancer care’. Facing the ever-increasing complexity of treatment modalities [1] and the demonstrated marked tumor heterogeneity [60,85–87] in RCC, the notion of applying molecular pathology to future patient management is exciting yet challenging [6]. Here, we illustrate some recent human RCC cancer genomic advances that might have translational values through which they could complement current histological subtypes [65,88] and refine prevalent risk-stratification schemes [89–91].

Clear cell RCC
One of the striking discoveries in ccRCC genomics was the close genomic localization of four prevalent tumor suppressor genes, VHL, PBRM1, SETD2, and BAP1, spanning chromosome 3p21–3p25 that is lost in more than 90% of ccRCCs [8]. Hence, the near universal singular chromosome 3 short arm loss in ccRCC results in a simultaneous one-copy loss of four tumor suppressors, which is unprecedented [42,60]. Furthermore, the fact that PBRM1, SETD2, and BAP1 encode chromatin- and histone-regulating tumor suppressor proteins suggests epigenetic dysregulation as a convergent pathogenic theme in ccRCC [17]. As VHL loss is the truncal event during ccRCC development, its mutation status has no impact on clinical outcome [1], whereas PBRM1 [24], SETD2 [92], BAP1 [22,92–94], KDM5C [95], TP53 [96], and TERT promoter [97] mutations are associated with more aggressive clinical features when all stages of ccRCC are considered, which is consistent with a notion that their loss occurs as a second, third or further downstream driver event [98]. Of note, mouse modeling demonstrated that PBRM1, a key component of the PBAF SWI/SNF chromatin remodeling complex, functions as a tumor suppressor by preventing self-perpetuating, feed-forward amplification of HIF oncogenic signals [51,99,100], and this may explain why its mutation in small renal masses is associated with tumor invasiveness [24]. Taken together, these pieces of information are likely of value in prognosticating ccRCC patients who present with non-metastatic clinical stage I–III diseases [1,6,96].

When evaluating the impact of these prevalent mutations on the clinical outcome of metastatic ccRCC patients in the targeted therapy era, distinct clinical outcomes have been observed, which is likely of value for precision therapeutics that emphasizes mechanism-based selection of treatment remedies [1]. Of note, in the primary tumors of both localized and metastatic ccRCC patients, PBRM1 and BAP1 mutations occur in a statistically significant mutually exclusive manner [22,30]. In a large randomized phase II clinical trial (RECORD-3) in which RCC patients received a first-line treatment of either sunitinib (anti-VEGFR) or everolimus (mTORC1 inhibitor) [101], a genomic biomarker study demonstrated, with first-line sunitinib, that KDM5C, PBRM1, and BAP1 mutations were associated with a PFS of 20.6, 11.0, and 8.1 months, respectively; and that mutations in VHL, SETD2, and PTEN had no statistically significant impact on outcome [30]. Although mTORC1 inhibition is inferior to anti-VEGFR inhibition for the majority of ccRCC patients, a small percentage of patients carrying mutations in the mTORC1 signaling pathway (including PIK3CA, TSC1, TSC2, and MTOR) derived prolonged disease control [27,28,52,102,103]. All these findings
Figure 5. Integrated analyses of uRCC. The top panel shows the histology of an unclassified RCC case. The middle panel shows the genomic classification of aggressive uRCC (adapted from ref 16). The bottom graphs show (* $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$) the distinct clinical outcomes associated with the indicated genomic subtypes of uRCC (adapted from [16]).

were further evaluated using independent cohorts [29,104] and warrant prospective validations.

Non-clear cell RCC: papillary cell RCC and unclassified RCC with papillary features
Despite major therapeutic and survival progresses made in metastatic ccRCC, patients with non-clear cell histology (nccRCC) continued to fare poorly despite administering targeted therapeutic agents [18,19,66,105], e.g. sunitinib (6.1–8.3 months) and everolimus (4.1–5.6 months) [106,107]. Nevertheless, studies on papillary RCC (pRCC) and uRCC with papillary features showed promising clinical benefits with the dual MET/VEGFR2 inhibitor foretinib (PFS of 9.3 months) [108] or the combination of everolimus and bevacizumab (anti-VEGF-A antibody) (PFS of 12.9 months) [109]. The molecular basis underlying such varied treatment responses warrants urgent investigation through cooperative group or consortium efforts [19].

Metastatic chromophobe RCC
Among RCC subtypes, chromophobe RCC (chRCC) is relatively indolent and occasionally (5–10%) metastasizes [19,64]. However, due to its rarity, all chRCC patients after nephrectomy were monitored based on guidelines established for ccRCC patients [110–112].
To investigate how chromophobe RCC cells typified by a classical approximately seven chromosome loss (1, 2, 6, 10, 13, 17, and 21) and low somatic exonic mutations could develop lethal metastasis [113], Casuicelli et al performed integrated analyses consisting of whole-genome sequencing, targeted exome sequencing, OncoScan, FACETS, and FISH on a cohort of 79 chRCC patients among whom 38 had metastatic disease [64]. Remarkably, this study recognized high-risk genomic features associated with chRCC metastasis besides the known high-risk sarcomatoid morphological feature. They showed that chRCC patients whose primary tumors carried any of the three high-risk genomic features, i.e. TP53 (chromosome 17) mutation, PTEN (chromosome 10) mutation, and imbalanced chromosome duplication (ICD; a chromosome duplication feature reminiscent of whole-genome duplication demonstrated in other cancer types), are more prone to develop metastasis than those with none; this was also validated using an independent KICH TCGA cohort [64]. Importantly, among metastatic chRCC patients, these high-risk features further foretell worse clinical outcome [64]. Accordingly, a personalized post-nephrectomy follow-up scheme based on genomics might be feasible in the future for chRCC patients, once these high-risk features are validated in prospective studies.

SDH-loss RCC

SDH-loss RCC (sdlRCC) is the newest recognized RCC subtype that is defined by the loss of the enzyme succinate dehydrogenase (SDH) and is extremely rare [114]. The SDH enzyme consists of A, B, C, and D subunits [115]; germline mutations of SDH genes are common in patients with hereditary paraganglioma and phaeochromocytoma [116]; only ~50 patients of sdlRCC cases have been reported thus far; most (83%) carry SDHB mutations and they account for 0.05–0.2% of RCCs [15,117]. Due to its rarity and pleomorphic clinical and pathological features, sdlRCC is likely underdiagnosed [15]. Molecular characterizations of three young, lethal SDHB-loss RCC patients demonstrated that germline SDHB mutations followed by the LOH of the remaining wild-type allele through deletion of chromosome 1p where the SDHB gene resides are truncal driver events, and the extreme Warburg effect manifesting with persistent hyperlactatemia despite normal tissue oxygenation and very high FDG-PET avidity are associated late-stage clinical features [15].

Cancer of unknown primary RCC

Cancer of unknown primary origin (CUP) comprises 3–5% of new cancer diagnoses in the United States [118], and presents extreme therapeutic challenges. Genomics profiling of two CUP patients whose metastatic tumors showed clear cell histology favoring renal origin by Wei et al showed 3p loss, PBRM1 mutation, and SETD2 mutation in one patient, and NF2 mutation, SETD2 mutation, and TSC1 mutation in the other patient [119]. As the genomic and histologic features of these two CUP patients were consistent with cancer of unknown primary RCC (cupRCC) and because RCC is known to be refractory to conventional chemotherapy, both patients received front-line treatment with standard-of-care targeted therapies for RCC instead of chemotherapy for CUP, and derived clinical benefits [119].

Category four classification: integrated multi-omics across RCC subtypes

Multi-omics performed on cancers of various tissue origins has enabled pan-cancer analyses, such as cluster of clusters analysis (COCA), and has revealed shared oncogenic pathways or mutations beyond histologic boundaries [120]. To understand whether there is any common pathogenetic thread behind different RCC subtypes, multi-platform analyses of a larger TCGA cohort of 894 RCC cases beyond the initially reported KIRC (446), KIRP (161), and KICH (66) have been reported [68]. By consolidating five genomic data platforms (DNA methylation, DNA copy alteration, mRNA expression, microRNA expression, and protein expression), Chen et al demonstrated that differences in patient survival and in alteration of specific pathways including hypoxia, metabolism, NRF2-ARE, Hippo, immune checkpoint, and PI3K/AKT/mTOR could further distinguish subtypes [68]. These findings inspired the subsequent discovery of pan-urologic cancer genomic subtypes that transcend the tissue of origin [121].

Conclusion remarks and future perspectives

Over the past 10 years, the treatment of metastatic ccRCC came out of ‘the Dark age’ in 2005, when only two ineffective drugs were available; passed through ‘the Modern age’, with nine drugs, and marched into ‘the Golden age’ in 2015, with 12 drugs approved and counting (Figure 1) [1]. Sadly, this marked improvement in clinical outcome is limited to ccRCC [19]. Therefore, more preclinical and clinical research is urgently needed for the other RCC subtypes. In addition to modern therapeutics, the employment of contemporary molecular technologies to study human kidney cancer has blossomed in recent years, and includes transcriptomics [122–125], metabolomics [26,49,126–128], multi-omics [68], radiogenomics [129], and immunogenomics [130–132]. All these advancements herald the promise of an upcoming pan-omics era for RCC when a confident assessment of clinically applicable predictive biomarkers becomes routine clinical practice in guiding choices of mechanism-based combination therapies to avoid treatment resistance and overcome tumor heterogeneity [1,17,133].
Acknowledgements

We thank RCC patients for participating in clinical trials and providing tumor samples for biomarker studies. All of the data presented were derived from our prior published work, and permission was granted by respective publishers to reuse these materials. CJC is funded by NIH CA125123.

Author contributions statement

JHH conceived the project, wrote the manuscript, and finalized the figures. VL prepared the manuscript and figures. DC provided pathological pictures and reviewed the manuscript. EHC discussed and reviewed the manuscript. CJC provided high resolution figures and reviewed the manuscript.

References

1. Hsieh JJ, Purdie MP, Signoretti S, et al. Renal cell carcinoma. Nat Rev Dis Primers 2017; 3: 17009.
2. Moch H, Humphrey PA, Ulbright TM (eds). WHO Classification of Tumours of the Urinary System and Male Genital Organs. IARC: Lyon, 2016.
3. Moch H, Cubilla AL, Humphrey PA, et al. The 2016 WHO classification of tumours of the urinary system and male genital organs – part A: renal, penile, and testicular tumours. Eur Urol 2016; 70: 93–105.
4. Lopez-Beltran A, Scarpelli M, Montironi R, et al. 2004 WHO classification of the renal tumours of the adults. Eur Urol 2006; 49: 798–805.
5. Stigley JR, Delahant B, Eble JN, et al. The International Society of Urological Pathology (ISUP) Vancouver classification of renal neoplasia. Am J Surg Pathol 2013; 37: 1469–1489.
6. Casuscelli J, Vano Y-A, Fridman WH, et al. Molecular classification of renal cell carcinoma and its implication in future clinical practice. Kidney Cancer 2017; 1: 3–13.
7. Kovacs G, Akhtar M, Beckwith BJ, et al. The Heidelberg classification of renal cell tumours. J Pathol 1997; 183: 131–133.
8. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 2013; 499: 43–49.
9. Cancer Genome Atlas Research Network, Linehan WM, Spellman PT, et al. Comprehensive molecular characterization of papillary renal-cell carcinoma. N Engl J Med 2016; 374: 135–145.
10. Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature 2014; 511: 543–550.
11. Kauffmnan EC, Ricketts CJ, Rais-Bahrami S, et al. Molecular genetics and cellular features of TFE3 and TFEB fusion kidney cancers. Nat Rev Urol 2014; 11: 465–475.
12. Menko FH, Maher ER, Schmidt LS, et al. Hereditary leiomyomatosis and renal cell cancer (HLRCC): renal cancer risk, surveillance and treatment. Fam Cancer 2014; 13: 637–644.
13. Crino PB, Nathanson KL, Henske EP. The tuberous sclerosis complex. N Engl J Med 2006; 355: 1345–1356.
14. Bhatt JR, Richard PO, Kim NS, et al. Natural history of renal angiomyolipoma (AML): most patients with large AMLs > 4 cm can be offered active surveillance as an initial management strategy. Eur Urol 2016; 70: 85–90.
15. Lee CH, Gundem G, Lee W, et al. Persistent severe hyperlactatemia and metabolic derangement in lethal SDHBR-mutated metastatic kidney cancer: clinical challenges and examples of extreme Warburg effect. Precision Oncol 2017; 1: 1–14.
16. Chen YB, Xu J, Skanderup AJ, et al. Molecular analysis of aggressive renal cell carcinoma with unclassified histology reveals distinct subsets. Nat Commun 2016; 7: 13131.
17. Hsieh JJ, Manley BJ, Khan N, et al. Overcome tumor heterogeneity-imposed therapeutic barriers through convergent genomic biomarker discovery: a braided cancer river model of kidney cancer. Semin Cell Dev Biol 2017; 64: 98–106.
18. Sankin A, Hakimi AA, Hsieh JJ, et al. Metastatic non-clear cell renal cell carcinoma: an evidence based review of current treatment strategies. Front Oncol 2015; 5: 67.
19. Giles RH, Choueiri TK, Heng DY, et al. Recommendations for the management of rare kidney cancers. Eur Urol 2017; 72: 974–983.
20. Varela I, Tarpey P, Raine K, et al. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature 2011; 469: 539–542.
21. Guo G, Gui Y, Gao S, et al. Frequent mutations of genes encoding ubiquitin-mediated proteolysis pathway components in clear cell renal cell carcinoma. Nat Genet 2011; 44: 19–17.
22. Pena-Llopis S, Vega-Rubin-de-Celis S, Liao A, et al. BAP1 loss defines a new class of renal cell carcinoma. Nat Genet 2012; 44: 751–759.
23. Sato Y, Yoshizato T, Shiraiishi Y, et al. Integrated molecular analysis of clear-cell renal cell carcinoma. Nat Genet 2013; 45: 860–867.
24. Hakimi AA, Chen YB, Wren J, et al. Clinical and pathologic impact of select chromatin-modulating tumor suppressors in clear cell renal cell carcinoma. Eur Urol 2013; 63: 848–854.
25. Joshi S, Tolkonov D, Aviv H, et al. The genomic landscape of renal oncocytoma identifies a metabolic barrier to tumorigenesis. Cell Rep 2015; 13: 1995–1998.
26. Hakimi AA, Reznik E, Lee CH, et al. An integrated metabolic atlas of clear cell renal cell carcinoma. Cancer Cell 2016; 29: 104–116.
27. Voss MH, Hakimi AA, Pham CG, et al. Tumor genetic analyses of patients with metastatic renal cell carcinoma and extended benefit from mTOR inhibitor therapy. Clin Cancer Res 2014; 20: 1955–1964.
28. Voss MH, Hsieh JJ. Therapeutic guide for mTORiRing through the braided kidney cancer genomic river. Clin Cancer Res 2016; 22: 2320–2322.
29. Carlo M, Manley B, Patil S, et al. Genomic alterations and outcomes with VEGF-targeted therapy in patients with clear cell renal cell carcinoma. Kidney Cancer 2017; 1: 49–56.
30. Hsieh JJ, Chen D, Wang PI, et al. Genomic biomarkers of a randomized trial comparing first-line everolimus and sunitinib in patients with metastatic renal cell carcinoma. Eur Urol 2017; 71: 405–414.
31. Algaba F, Akaza H, Lopez-Beltran A, et al. Current pathology keys of renal cell carcinoma. Eur Urol 2011; 60: 634–643.
32. Tickoo SK, Reuter VE. Differential diagnosis of renal tumors with papillary architecture. Adv Anat Pathol 2011; 18: 120–132.
33. Moch H. An overview of renal cell cancer: pathology and genetics. Semin Cancer Biol 2013; 23: 3–9.
34. Amin MB, Smith SC, Agaimy A, et al. Collecting duct carcinoma versus renal medullary carcinoma: an appeal for nosologic and biological clarity. Am J Surg Pathol 2014; 38: 871–874.
35. Shuch B, Bratslavsky G, Linehan WM, et al. Sarcomatoid renal cell carcinoma: a comprehensive review of the biology and current treatment strategies. Oncologist 2012; 17: 46–54.
36. Storkel S, Eble JN, Adlakha K, et al. Classification of renal cell carcinoma: Workgroup No. 1. Union Internationale Contre le Cancer (UICC) and the American Joint Committee on Cancer (AJCC). Cancer 1997; 80: 987–989.
37. de Peralta-Venturina M, Moch H, Amin M, et al. Sarcomatoid differentiation in renal cell carcinoma: a study of 101 cases. Am J Surg Pathol 2001; 25: 275–284.
Categorical classification of renal cell carcinoma by integrated-omics

38. Cheville JC, Loehse CM, Zincke H, et al. Sarcomatoid renal cell carcinoma: an examination of underlying histologic subtype and an analysis of associations with patient outcome. *Am J Surg Pathol* 2004; 28: 435–441.

39. Manley BI, Hsieh JJ. Sarcomatoid renal cell carcinoma: genomic insights from sequencing of matched sarcomatous and carcinoma-tous components. *Transl Cancer Res* 2016; 5: S160–S165.

40. Linehan WM. The genetic basis of kidney cancer: implications for management and use of targeted therapeutic approaches. *Eur Urol* 2012; 61: 896–898.

41. Haas NB, Nathanson KL. Hereditary kidney cancer syndromes. *Adv Chronic Kidney Dis* 2014; 21: 81–90.

42. Hakimi AA, Pham CG, Hsieh JJ. A clear picture of renal cell carcinoma. *Nat Genet* 2013; 45: 849–850.

43. Fisher R, Horswell S, Rowan A, et al. Development of synchronous VHL syndrome tumors reveals contingencies and constraints to tumor evolution. *Genome Biol* 2014; 15: 433.

44. Kaelin WG Jr. The von Hippel–Lindau tumour suppressor protein: O2 sensing and cancer. *Nat Rev Cancer* 2008; 8: 865–873.

45. Semenza GL. HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. *J Clin Invest* 2013; 123: 3664–3671.

46. Masson N, Ratcliffe PJ. Hypoxia signaling pathways in cancer metabolism: the importance of co-selecting interconnected physiologi-cal pathways. *Cancer Metab* 2014; 2: 3.

47. Hakimi AA, Tickoo SK, Jacobsen A, et al. TCEBI-mutated renal cell carcinoma: a distinct genomic and morphological subtype. *Mod Pathol* 2015; 28: 845–853.

48. Nakazawa MS, Keith B, Simon MC. Oxygen availability and metabolic adaptations. *Nat Rev Cancer* 2016; 16: 663–673.

49. Hsieh JJ, Cheng EH. The panoramic view of clear cell renal cell carcinoma metabolism: values of integrated global cancer metabolomics. *Transl Androl Urol* 2016; 5: 984–986.

50. Kapitinosou PP, Haase VH. The VHL tumor suppressor and HIF: insights from genetic studies in mice. *Cell Death Differ* 2008; 15: 650–659.

51. Nargund AM, Osmanbeyoglu HU, Cheng EH, et al. SWI/SNF tumor suppressor gene PBRM1/BAFI180 in human clear cell kidney cancer. *Mod Cell Oncol* 2017; 4: e1342747.

52. Xu J, Pham CG, Albanese SK, et al. Mechanistically distinct cancer-associated mTOR activation clusters predict sensitivity to rapamycin. *J Clin Invest* 2016; 126: 3526–3540.

53. Li L, Chen C, Nakamura E, et al. SQSTM1 is a pathogenic target of 5q copy number gains in kidney cancer. *Cancer Cell* 2013; 24: 738–750.

54. Pignot G, Elie C, Conquy S, et al. Survival analysis of 130 patients with papillary renal cell carcinoma: prognostic utility of type 1 and type 2 subclassification. *Urology* 2007; 69: 230–235.

55. Delahunt B, Eble JN. Papillary renal cell carcinoma: a clinicopathologic and immunohistochemical study of 105 tumors. *Mod Pathol* 1997; 10: 537–544.

56. Ooi A, Wong IC, Petillo D, et al. An antioxidant response phenotype shared between hereditary and sporadic type 2 papillary renal cell carcinoma. *Cancer Cell* 2011; 20: 511–523.

57. Ooi A, Dykema K, Ansari A, et al. *CUL3* and *NRF2* mutations confer an NRF2 activation phenotype in a sporadic form of papillary renal cell carcinoma. *Cancer Res* 2013; 73: 2044–2051.

58. Kovacs M, Navas C, Horswell S, et al. Recurrent chromosomal gains and heterogeneous driver mutations characterise papillary renal cell cancer evolution. *Nat Commun* 2015; 6: 6336.

59. Pal SK, Ali SM, Yakirevich E, et al. Characterization of clinical cases of advanced papillary renal cell carcinoma via comprehensive genomic profiling. *Eur Urol* 2018; 73: 71–78.

60. Sanfrancisco IM, Eble JN, Grignon DJ, et al. Preservation of truncaal genomic alterations in clear cell and papillary renal cell carcinomas with sarcomatoid features: an intra- and intertumoral, multifocal fluorescence in situ hybridization analysis reveals limited genetic heterogeneity. *Mol Cancer* 2017; 16: 2527–2537.

61. Schmidt L, Duh FM, Chen F, et al. Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. *Nat Genet* 1997; 16: 68–73.

62. Linehan WM, Srinivasan R, Schmidt LS. The genetic basis of kidney cancer: a metabolic disease. *Nat Rev Urol* 2010; 7: 277–285.

63. Davis CF, Ricketts CJ, Wang M, et al. The somatic genomic landscape of chrophemebore renal cell carcinoma. *Cancer Cell* 2014; 26: 319–330.

64. Casuasselli J, Weinhold N, Gundem G, et al. Genomic landscape and evolution of metastatic chrophemobore renal cell carcinoma. *JCI Insight* 2017; 2: e92688.

65. Cheville JC, Loehse CM, Zincke H, et al. Comparisons of outcome and prognostic features among histologic subtypes of renal cell carcinoma. *Am J Surg Pathol* 2003; 27: 612–624.

66. Kroege N, Xie W, Lee JL, et al. Metastatic non-clear cell renal cell carcinoma treated with targeted therapy agents: characterization of survival outcome and application of the International mRCC Database Consortium criteria. *Cancer* 2013; 119: 2999–3006.

67. Speicher MR, Schoell B, du Manoir S, et al. Specific loss of chromosomes 1, 2, 6, 10, 13, 17, and 21 in chrophemobore renal cell carcinomas revealed by comparative genomic hybridization. *Am J Pathol* 1994; 145: 356–364.

68. Chen FJ, Zhang YQ, Senbabaoglu Y, et al. Multilevel genomics-based taxonomy of renal cell carcinoma. *Cell Rep* 2016; 14: 2476–2489.

69. Schmidt LS, Linehan WM. Molecular genetics and clinical features of Birt–Hogg–Dubé syndrome. *Nat Rev Urol* 2015; 12: 558–569.

70. Pal SK, Choueiri TK, Wang K, et al. Characterization of clinical cases of collecting duct carcinoma of the kidney assessed by comprehensive genomic profiling. *Eur Urol* 2016; 70: 516–521.

71. Lopez-Beltran A, Cheng L, Raspollini MR, et al. SMARCB1/INI1 genetic alterations in renal medullary carcinomas. *Eur Urol* 2016; 69: 1062–1064.

72. Calderaro J, Maslah-Plancho J, Richer W, et al. Balanced translocations disrupting SMARCB1 are hallmark recurrent genetic alterations in renal medullary carcinomas. *Eur Urol* 2016; 69: 1055–1061.

73. Carlo MI, Chaim J, Patil S, et al. Genomic characterization of renal medullary carcinoma and treatment outcomes. *Clin Genitourin Cancer* 2017; 15: e987–e994.

74. Argani P, MiT family translocation renal cell carcinoma. *Semin Diagn Pathol* 2015; 32: 103–113.

75. Malouf GG, Xu Y, Yao H, et al. Next-generation sequencing of translocation renal cell carcinoma reveals novel RNA splicing partners and frequent mutations of chromatin-remodeling genes. *Clin Cancer Res* 2014; 20: 4129–4140.

76. Zisman A, Chao DH, Pantuck AJ, et al. Unclassified renal cell carcinoma: clinical features and prognostic impact of a new histological subtype. *J Urol* 2002; 168: 950–955.

77. Crispens PL, Tabidian MR, Allmer C, et al. Unclassified renal cell carcinoma: impact on survival following nephrectomy. *Urology* 2010; 76: 580–586.

78. Delahunt B. Sarcomatoid renal carcinoma: the final common dedifferentiation pathway of renal epithelial malignancies. *Pathology* 1999; 31: 185–190.

79. Molina AM, Tickoo SK, Ishill N, et al. Sarcomatoid-variant renal cell carcinoma: treatment outcome and survival in advanced disease. *Am J Clin Oncol* 2011; 34: 454–459.

80. Zhang BY, Thompson RH, Loehse CM, et al. A novel prognostic model for patients with sarcomatoid renal cell carcinoma. *BJU Int* 2015; 115: 405–411.
81. Adibi M, Thomas AZ, Borregales LD, et al. Percentage of sarcomatoid component as a prognostic indicator for survival in renal cell carcinoma with sarcomatoid differentiation. Urol Oncol 2015; 33: 427.e17–e23.
82. Jones TD, Eble JN, Wang M, et al. Clonal divergence and genetic heterogeneity in clear cell renal cell carcinomas with sarcomatoid transformation. Cancer 2005; 104: 1195–1203.
83. Bi M, Zhao S, Said JW, et al. Genomic characterization of sarcomatoid transformation in clear cell renal cell carcinoma. Proc Natl Acad Sci U S A 2016; 113: 2170–2175.
84. Malouf GG, Ali SM, Wang K, et al. Genomic characterization of renal cell carcinoma with sarcomatoid differentiation pinpoint recurrent genomic alterations. Eur Urol 2016; 70: 348–357.
85. Gerlinger M, Rowan AJ, Horswell S, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 2012; 366: 883–892.
86. Sankin A, Hakimi AA, Mikkilineni N, et al. The impact of genetic heterogeneity on biomarker development in kidney cancer assessed by multiregional sampling. Cancer Med 2014; 3: 1485–1492.
87. Sanfrancisco JM, Cheng L. Complexity of the genomic landscape of renal cell carcinoma: implications for targeted therapy and precision immuno-oncology. Crit Rev Oncol Hematol 2017; 119: 23–28.
88. Patard JJ, Leray E, Rioux-Leclercq N, et al. Prognostic value of histologic subtypes in renal cell carcinoma: a multicenter experience. J Clin Oncol 2005; 23: 2763–2771.
89. Frank I, Blute ML, Cheville JC, et al. An outcome prediction model for patients with clear cell renal cell carcinoma treated with radical nephrectomy based on tumor stage, size, grade and necrosis: the SSIGN score. J Urol 2002; 168: 2395–2400.
90. Motzer RJ, Bacik J, Murphy BA, et al. Interferon-alfa as a comparative treatment for clinical trials of new therapies against advanced renal cell carcinoma. J Clin Oncol 2002; 20: 289–296.
91. Heng DY, Xie W, Regan MM, et al. External validation and comparison with other models of the International Metastatic Renal-Cell Carcinoma Database Consortium prognostic model: a population-based study. Lancet Oncol 2013; 14: 141–148.
92. Hakimi AA, Ostrovnya I, Reva B, et al. Adverse outcomes in clear cell renal cell carcinoma with mutations of 3p21 epigenetic regulators BAP1 and SETD2: a report by MSKCC and the KIRC TCGA research network. Clin Cancer Res 2013; 19: 3259–3267.
93. Kapur P, Pena-Llopis S, Christie A, et al. Effects on survival of BAP1 and PBRM1 mutations in sporadic clear-cell renal-cell carcinoma: a retrospective analysis with independent validation. Lancet Oncol 2013; 14: 159–167.
94. Tennenbaum DM, Manley BJ, Caussecli J, et al. Genetic concordance rates of matched-pair renal cell carcinoma samples provide evidence of clonal evolution. J Urol 2016; 195: E917–E918.
95. Manley BJ, Reznik E, Ghanat M, et al. Characterizing recurrent and lethal small renal masses in clear cell renal cell carcinoma using recurrent somatic mutations. Urol Oncol 2017; https://doi.org/10.1016/j.uroon.2017.10.012 [Epub ahead of print].
96. Manley BJ, Zabor EC, Caussecli J, et al. Integration of recurrent somatic mutations with clinical outcomes: a pooled analysis of 1049 patients with clear cell renal cell carcinoma. Eur Urol Focus 2015; 3: 427–427.
97. Caussecli J, Manley BJ, Redzematovic A, et al. The impact of Tert promoter region mutations in renal cell carcinoma. J Urol 2016; 195: E917–E917.
98. Wei EY, Hsieh JJ, A river model to map convergent cancer evolution and guide therapy in RCC. Nat Rev Urol 2015; 12: 706–712.
99. Gao W, Li W, Xiao T, et al. Inactivation of the PBRM1 tumor suppressor gene amplifies the HIF-α response in VHL-/- clear cell renal carcinoma. Proc Natl Acad Sci U S A 2017; 114: 1027–1032.
100. Nargund AM, Pham CG, Dong Y, et al. The SWI/SNF protein PBRM1 restrains VHL-loss-driven clear cell renal cell carcinoma. Cell Rep 2017; 18: 2893–2906.
101. Motzer RJ, Barritto CH, Kim TM, et al. Phase II randomized trial comparing sequential first-line everolimus and second-line sunitinib versus first-line sunitinib and second-line everolimus in patients with metastatic renal cell carcinoma. J Clin Oncol 2014; 32: 2765–2772.
102. Kwiatkowski DJ, Cheoueri TK, Fay AP, et al. Mutations in TSC1, TSC2, and MTOR are associated with response to rapalogs in patients with metastatic renal cell carcinoma. Clin Cancer Res 2016; 22: 2445–2452.
103. Rodriguez-Moreno JF, Apellaniz-Ruiz M, Roldan-Romero JM, et al. Exceptional response to temsirolimus in a metastatic clear cell renal cell carcinoma with an early novel MTOR-activating mutation. J Natl Comp Canc Netw 2017; 15: 1310–1315.
104. Ho TH, Cheoueri TK, Wang K, et al. Correlation between molecular subclassifications of clear cell renal cell carcinoma and targeted therapy response. Eur Urol Focus 2016; 2: 204–209.
105. Voss MH, Basta DA, Karlo CA, et al. Treatment outcome with mTOR inhibitors for metastatic renal cell carcinoma with nonclear and sarcomatoid histologies. Ann Oncol 2014; 25: 663–668.
106. Tannir NM, Jonasch E, Albigeis L, et al. Everolimus versus sunitinib prospective evaluation in metastatic non-clear cell renal cell carcinoma (ESPN): a randomized multicenter phase 2 trial. Eur Urol 2016; 69: 866–874.
107. Armstrong AJ, Halabi S, Eisen T, et al. Everolimus versus sunitinib for patients with metastatic non-clear cell renal cell carcinoma (ASPEN): a multicentre, open-label, randomised phase 2 trial. Lancet Oncol 2016; 17: 378–388.
108. Cheoueri TK, Vaishampayan U, Rosenberg JE, et al. Phase II and biomarker study of the dual MET/VEGFR2 inhibitor foretinib in patients with papillary renal cell carcinoma. J Clin Oncol 2013; 31: 181–186.
109. Voss MH, Molina AM, Chen YB, et al. Phase II trial and correlative genomic analysis of everolimus plus bevacizumab in advanced non-clear cell renal cell carcinoma. J Clin Oncol 2016; 34: 3846–3853.
110. Stewart SB, Thompson RH, Pstuka SP, et al. Evaluation of the National Comprehensive Cancer Network and American Urological Association renal cell carcinoma surveillance guidelines. J Clin Oncol 2014; 32: 4059–4065.
111. Stewart-Merrill SB, Thompson RH, Boorjian SA, et al. Oncologic surveillance after surgical resection for renal cell carcinoma: a novel risk-based approach. J Clin Oncol 2015; 33: 4151–4157.
112. Motzer RJ, Jonasch E, Agarwal N, et al. Kidney Cancer, Version 2.2017, NCCN Clinical Practice Guidelines in Oncology. J Natl Comp Canc Netw 2017; 15: 804–834.
113. Yip SM, Ruiz Morales JM, Donskov F, et al. Outcomes of metastatic chromophobe renal cell carcinoma (chRCC) in the targeted therapy era: results from the International Metastatic Renal Cell Cancer Database Consortium (IMDC). Kidney Cancer 2017; 1: 41–47.
114. Ricketts CJ, Chubb B, Vocke CD, et al. Succinate dehydrogenase kidney cancer: an aggressive example of the Warburg effect in cancer. J Urol 2012; 188: 2063–2071.
115. Pollard P, Wortham N, Tomlinson I. The TCA cycle and tumorigenesis: the examples of fumarate hydratase and succinate dehydrogenase. Ann Med 2003; 35: 631–635.
116. Gill AJ. Succinate dehydrogenase (SDH) and mitochondrial driven neoplasia. Pathology 2012; 44: 285–292.
117. Ricketts C, Woodward ER, Kilkic P, et al. Germline SDHB mutations and familial renal cell carcinoma. J Natl Cancer Inst 2008; 100: 1260–1262.
Categorical classification of renal cell carcinoma by integrated-omics

118. Varadhachary GR, Raher MN. Cancer of unknown primary site. N Engl J Med 2014; 371: 757–765.
119. Wei EY, Chen YB, Hsieh JJ. Genomic characterisation of two cancers of unknown primary causes supports a kidney cancer origin. BMJ Case Rep 2015.
120. Hoadley KA, Yau C, Wolf DM, et al. Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin. Cell 2014; 158: 929–944.
121. Chen F, Zhang Y, Bosse D, et al. Pan-urologic cancer genomic subtypes that transcend tissue of origin. Nat Commun 2017; 8: 199.
122. Brooks SA, Brannon AR, Parker JS, et al. ClearCode34: a prognostic risk predictor for localized clear cell renal cell carcinoma. Eur Urol 2014; 66: 77–84.
123. Beuselinck B, Job S, Becht E, et al. Molecular subtypes of clear cell renal cell carcinoma are associated with sunitinib response in the metastatic setting. Clin Cancer Res 2015; 21: 1329–1339.
124. Rini B, Goddard A, Knezevic D, et al. A 16-gene assay to predict recurrence after surgery in localized renal cell carcinoma: development and validation studies. Lancet Oncol 2015; 16: 676–685.
125. de Velasco G, Culhane AC, Fay AP, et al. Molecular subtypes improve prognostic value of International Metastatic Renal Cell Carcinoma Database Consortium prognostic model. Oncologist 2017; 22: 286–292.
126. Wettersten HI, Hakimi AA, Morin D, et al. Grade-dependent metabolic reprogramming in kidney cancer revealed by combined proteomics and metabolomics analysis. Cancer Res 2015; 75: 2541–2552.
127. Rodrigues D, Monteiro M, Jeronimo C, et al. Renal cell carcinoma: a critical analysis of metabolic biomarkers emerging from current model systems. Transl Res 2017; 180: 1–11.
128. Okegawa T, Morimoto M, Nishizawa S, et al. Intratumor heterogeneity in primary kidney cancer revealed by metabolic profiling of multiple spatially separated samples within tumors. EBioMedicine 2017; 19: 31–38.
129. Karlo CA, Di Paolo PL, Chaim J, et al. Radiogenomics of clear cell renal cell carcinoma: associations between CT imaging features and mutations. Radiology 2014; 270: 464–471.
130. Senbabaoglu Y, Gejman RS, Winer AG, et al. Tumor immune microenvironment characterization in clear cell renal cell carcinoma identifies prognostic and immunotherapeutically relevant messenger RNA signatures. Genome Biol 2016; 17: 231.
131. de Velasco G, Miao D, Voss MH, et al. Tumor mutational load and immune parameters across metastatic renal cell carcinoma risk groups. Cancer Immunol Res 2016; 4: 820–822.
132. Chevrier S, Levine JH, Zanotelli VRT, et al. An immune atlas of clear cell renal cell carcinoma. Cell 2017; 169: 736–749.e18.
133. Hsieh JJ, Cheng EH. A braided cancer river connects tumor heterogeneity and precision medicine. Clin Transl Med 2016; 5: 42.