ON A CRITICAL TIME-HARMONIC MAXWELL EQUATION IN NONLOCAL MEDIA

MINBO YANG, WEIWEI YE, AND SHUIJIN ZHANG

ABSTRACT. In this paper, we study the existence of solutions for a critical time-harmonic Maxwell equation in nonlocal media
\[
\begin{cases}
\nabla \times (\nabla \times u) + \lambda u = \left(I_\alpha * |u|^{2^*_\alpha} \right) |u|^{2^*_\alpha - 2} u & \text{in } \Omega, \\
\nu \times u = 0 & \text{on } \partial \Omega,
\end{cases}
\]
where \(\Omega \subset \mathbb{R}^3 \) is a bounded domain, either convex or with \(C^{1,1} \) boundary, \(\nu \) is the exterior normal, \(\lambda < 0 \) is a real parameter, \(2^*_\alpha = 3 + \alpha \) with \(0 < \alpha < 3 \) is the upper critical exponent due to the Hardy-Littlewood-Sobolev inequality. By introducing some suitable Coulomb spaces involving curl operator \(W^{0,2^*_\alpha}_\alpha (\text{curl}; \Omega) \), we are able to obtain the ground state solutions of the curl-curl equation via the method of constraining Nehari-Pankov manifold. Correspondingly, some sharp constants of the Sobolev-like inequalities with curl operator are obtained by a nonlocal version of the concentration-compactness principle.

1. Introduction and Main Results

1.1. Introduction. Let \(\Omega \subset \mathbb{R}^3 \) be a bounded domain, we are concerned with the curl-curl equation
\[
\begin{cases}
\nabla \times (\nabla \times u) + \lambda u = f(x,u) & \text{in } \Omega, \\
\nu \times u = 0 & \text{on } \partial \Omega,
\end{cases}
\]
where \(\lambda < 0 \) is a real parameter, \(\nu : \partial \Omega \rightarrow \mathbb{R}^3 \) is the exterior normal. Equation (1.1) can be derived from the first order Maxwell equation [35]
\[
\begin{cases}
\nabla \times \mathcal{H} = \mathcal{J} + \partial_t \mathcal{D}, & \text{(Ampere’s circuital law)} \\
\text{div}(\mathcal{D}) = \varrho, & \text{(Gauss’s law)} \\
\partial_t \mathcal{B} + \nabla \times \mathcal{E} = 0, & \text{(Faraday’s law of induction)} \\
\text{div}(\mathcal{B}) = 0, & \text{(Gauss’ law for magnetism)}
\end{cases}
\]
where \(\mathcal{E}, \mathcal{H}, \mathcal{D}, \mathcal{B} \) are corresponded to the electric field, magnetic induction, electric displacement and magnetic filed, respectively. \(\mathcal{J} \) is the electric current intensity, and \(\varrho \) is the electric charge density. Generally, these physical quantities satisfy the following constitutive equations (see [15, Section 1.1.3]):
\[
\mathcal{J} = \sigma \mathcal{E}, \quad \mathcal{D} = \varepsilon \mathcal{E} + \mathcal{P}_{NL}, \quad \mathcal{H} = \frac{1}{\mu} \mathcal{B} - \mathcal{M},
\]
where \(\mathcal{P}_{NL}, \mathcal{M} \) denote the polarization field and magnetization filed respectively, \(\varepsilon, \mu, \sigma \) are the electric permittivity, magnetic permeability and the electric conductivity. Taking the special case with the absence of charges, currents and magnetization, namely, \(\mathcal{J} = \mathcal{M} = 0, \rho = 0 \), equation (1.2) becomes the second curl-curl equation
\[
\nabla \times (\frac{1}{\mu} \nabla \times \mathcal{E}) + \varepsilon \partial_t^2 \mathcal{E} = -\partial_t^2 \mathcal{P}_{NL}.\]

2010 Mathematics Subject Classification. 35J15, 45E10, 45G05.

Key words and phrases. Time-harmonic Maxwell equation, Brezis-Nirenberg problem, Nonlocal nonlinearity, Coulomb space, Sharp constant.
As the electric field and polarization field are time harmonic with the ansatz $E(x, t) = E(x)e^{i\omega t}$, $P_{NL}(x, t) = P(x)e^{i\omega t}$, equation (1.4) turns into the time-harmonic Maxwell equation
\[
\nabla \times (\frac{1}{\mu} \nabla \times E) + \varepsilon \omega^2 E = \omega^2 P.
\]

In some Kerr-like medias, the polarization field function P_{NL} is usually chosen to be $P_{NL} = \alpha(x)|E|^{p-2}E$ with $2 \leq p \leq 6$ for the purpose of simplifying the model. Then by setting
\[
f(x, E) = \partial_E F(x, E) = \mu \omega^2 \alpha(x)|E|^{p-2}E,
\]
one can deduce the main equation (1.1)
\[
\nabla \times (\nabla \times E) + \lambda E = f(x, E),
\]
where $\lambda = -\mu \omega^2 \varepsilon$. The boundary condition holds when Ω is surrounded by a perfect conductor, see [15].

Apparently, equation (1.1) has a variational structure and the solutions are the critical points of the functional
\[
J_\lambda(u) = \int_\Omega |\nabla \times u|^2 dx + \frac{\lambda}{2} \int_\Omega |u|^2 dx - \int_\Omega F(x, u) dx, \tag{1.5}
\]
which is well defined on the natural space
\[
X = W^p_0(\text{curl}; \Omega) = \overline{C^\infty_0(\Omega, \mathbb{R}^3)}^{||W^p(\text{curl}; \Omega)||},
\]
where
\[
W^p(\text{curl}; \Omega) = \{u \in L^p(\Omega, \mathbb{R}^3) : \nabla \times u \in L^2(\Omega, \mathbb{R}^3)\}
\]
is a Banach space, see [3]. By introducing the Helmholtz decomposition
\[
W^p_0(\text{curl}; \Omega) = X_\Omega \oplus X_\Omega^c,
\]
where
\[
X_\Omega : = \{v \in W^p_0(\text{curl}; \Omega) : \int_\Omega \langle v, \varphi \rangle dx = 0 \text{ for every } \varphi \in C^\infty_0(\Omega, \mathbb{R}^3) \text{ with } \nabla \times \varphi = 0\}
\]
\[
= \{v \in W^p_0(\text{curl}; \Omega) : \text{div } v = 0 \text{ in the sense of distributions}\},
\]
and
\[
X_\Omega^c : = \{w \in W^p_0(\text{curl}; \Omega) : \int_\Omega \langle w, \nabla \times \varphi \rangle dx = 0 \text{ for all } \varphi \in C^\infty_0(\Omega, \mathbb{R}^3)\},
\]
functional (1.5) can be rewritten as
\[
J_\lambda(u) = J_\lambda(v + w) = \frac{1}{2} \int_\Omega |\nabla \times v|^2 dx + \frac{\lambda}{2} \int_\Omega |v + w|^2 dx - \int_\Omega F(x, v + w) dx
\]
\[
= \frac{1}{2} \int_\Omega |\nabla v|^2 dx + \frac{\lambda}{2} \int_\Omega |v|^2 dx - \int_\Omega F(x, v) dx + \frac{1}{2} \int_\Omega |w|^2 dx - \int_\Omega F(x, w) dx,
\]
where $\nabla \times (\nabla \times v) = \nabla(\nabla \cdot v) - \nabla \cdot (\nabla v) = -\Delta v$ for $\text{div } v = 0$. Since the operator $\nabla \times (\nabla \times \cdot)$ has an infinite dimension kernel, i.e. $\nabla \times (\nabla \varphi) = 0$ for $\varphi \in C^\infty_0(\Omega)$, one can easily check that J_λ has the strongly indefinite nature. Particularly, J_λ has a linking geometry as $\lambda \leq 0$, see [3, pp.3].

To overcome the difficulty of the strong indefiniteness, by assuming that the additional condition $\nabla \cdot u = 0$, then the curl-curl equation can be reduced to the classical elliptic equation
\[
\begin{cases}
-\Delta u + \lambda u = f(x, u) & \text{in } \Omega, \\
\quad u = 0 & \text{on } \partial \Omega.
\end{cases} \tag{1.6}
\]
This elliptic equation has been widely studied in different dimensional spaces and topology regions, see the pioneering work of Brezis and Nirenberg [8] and the more references [11, 12, 19]. Essentially, the non-divergence condition is a Coulomb gauge condition, which holds in the gauge invariant field. This requires that the polarization field P_{NL} does not happen or linearly depends on \mathcal{E}, otherwise,
it destroys the gauge invariance of the curl-curl equation. If the polarization field $\mathcal{P}_{NL} = 0$, then the curl-curl equation becomes a linear time harmonic Maxwell equation, which has been extensively considered in $[15, 35, 38]$. Physically there indeed exist some special cylindrically symmetric transverse electric and transverse magnetic which satisfy the non-divergence condition, and they have been studied by Stuart and Zhou in $[42, 43]$.

For the general case with $\nabla \cdot u \neq 0$, the study of the curl-curl equation becomes much more challenge. The first attempt goes back to the pioneering work of Benci $[7]$. Under some nonlinear assumptions on $W(t)$, the authors investigated the Born-Infeld static magnetic model

$$\nabla \times (\nabla \times A) = W'(|A|^2) A, \text{ in } \mathbb{R}^3,$$

where $A = \nabla \times B$ is a magnetic potential. In a suitable subspace, Azzollini et al. $[2]$ obtained the cylindrically symmetric solutions of (1.7) by the Palais principle of symmetric criticality. By using the Hodge decomposition, the cylindrically symmetric solutions with a second form have also been constructed by D’Aprile and Siciliano in $[14]$. In fact, in some bounded domains with cylindrically symmetric, the similar solutions were obtained in $[3, 5, 31]$. Barstch et al. $[4]$ also analysed the spectrum of the curl-curl operator with cylindrically symmetric period potential $V(x) = V(r, x_3)$, and considered the following time-harmonic Maxwell equation

$$\nabla \times (\nabla \times E) + V(x)E = \Gamma(x)|E|^{p-2}E, \text{ in } \mathbb{R}^3,$$

where $\Gamma(x)$ is a period function with respect x_3. By the method of constraining symmetric submanifold, the cylindrically symmetric ground state solutions of (1.8) were obtained, one may see $[45]$ for other extended results.

If the problem was set in some non-symmetric bounded domains or some cases with non-symmetric potential, the methods mentioned above do not work well. Moreover, due to the lack of weak-weak* continuity of $J_N^*(u)$, the abstract linking theorems established in $[6, 20, 30]$ do not work any longer, and so we fail to look for the suitable (PS) sequences. Even if we can obtain the bounded (PS) sequence, we still do not know whether the weak limit is a critical point of the functional. Inspired by the work of Szulkin and Weth in $[44]$, Barstch and Mederski $[3]$ constructed a Nehari-Pankov manifold, which is homeomorphism with the upper unit ball of the subspace X_Ω, and in where, the (PS) sequence is obtained by the Ekeland variational principle. On the other hand, by the compact embedding

$$X_\Omega \hookrightarrow L^p(\Omega, \mathbb{R}^3), \quad 2 \leq p < 6,$$

they succeeded in verifying the $(PS)^*_c$ condition, see Definition 2.20, which implies the weak-weak* continuity of $J_N^*(u)$. We would also like to mention that the convexity assumption of the nonlinearity $f(x, u)$ plays a key role in finding the bounded (PS) sequence, see also $[5]$ for the weakened version. For other related results, we may turn to $[39]$ for the asymptotically linear case and $[32]$ for the case with supercritical growth at 0 and subcritical growth at infinity.

For the critical case $p = 6$, the embedding (1.9) above is not compact any more, then it is rather difficult to verify the $(PS)^*_c$ condition. Mederski $[31]$ proposed a compactly perturbed method and proved that the (PS) sequence contains a weakly convergence subsequence with a nontrivial limit point. Later, Mederski and Szulkin $[33]$ established a general concentration-compactness lemma in \mathbb{R}^N and obtained the sharp constant in the curl inequality. As an application, the authors dealt with the Brezis-Nirenberg type problem by an extend skill. In the entire space \mathbb{R}^3, the embedding above is also not compact, then a new critical point theory related to a new topological manifold has been established by Mederski et al. in $[32]$, there the compactness was recovered and the existence of multiply solutions was obtained. In a direct way, Mederski $[30]$ established a global compactness lemma that accounts for the lack of weak-weak* continuity. Moreover, a Pohozaev identity has been established, which gives a criterion for the nonexistence of classical solution. In an earlier work, Bartsch $[4]$ showed that no interesting solution can be leaded under the fully radial symmetry assumption on the potential $V(x)$.

MAXWELL EQUATION
However, for some Kerr-type nonlinear mediums, the material law (1.3) between the electric field \mathcal{E} and the displacement field \mathcal{D} becomes more delicate, see \cite[(1.8)]{4},

\[\mathcal{D} = e_0 (n(x)^2 \mathcal{E} + \mathcal{P}_{NL}(x, \mathcal{E})) \quad \text{with} \quad \mathcal{P}_{NL}(x, \mathcal{E}) = \chi^{(3)}(\mathcal{E} : \mathcal{E}) \mathcal{E}, \]

where $n^2(x) = 1 + \chi^{(1)}(x)$ is the square of the refractive index and $\chi^{(1)}$, $\chi^{(3)}$ denote the linear and cubic susceptibilities of the medium respectively. Particularly, in some nonlocal optic materials, the refractive index $n(x)$ is quite dependent on the electric field \mathcal{E} in a small neighbourhood, and the refractive index change Δn can be represented in general form as

\[\Delta n(E) = s \int_{-\infty}^{+\infty} K(x - y)E(x)dx, \]

see \cite[(1)]{22}. This phenomenological model is of great significance in the research of laser beams and solitary waves in nonlocal nematic liquid crystals, see \cite{22, 40} and the reference therein. However, these articles are based on the nonlinear Schrödinger equation, which is an asymptotic approximation of Maxwell’s equations. To investigate more information about the electromagnetic waves in the nonlocal optic mediums, one need to deal with the full three-dimensional Maxwell problem. Recently, Mandel \cite{27} investigated the curl-curl equation with nonlocal nonlinearity

\[\nabla \times (\nabla \times E) + E = (K(x) * |E|^p)|E|^{p-2} E \quad \text{in} \quad \mathbb{R}^3, \]

and the author proved that nonlocal media may admit ground states even though the corresponding local models do not admit. In there, the parameter $\lambda = -\mu \omega^2 \varepsilon = 1$ with $\varepsilon < 0$ is corresponded to the new artificially produced metamaterials with negative reflexive, see \cite{37}, and the kernel $K(x) = e^{-f(x)}$ is an exponent type responding function which expresses the nonlocal polarization of the nonlocal optical media, see \cite{22} and \cite{36} for more cases with oscillatory kernel functions. What’s more, nonlocality appears naturally in optical systems with a thermal \cite{24} and it is known to influence the propagation of electromagnetic waves in plasmas \cite{9}. Nonlocality also has attracted considerable interest as a means of eliminating collapse and stabilizing multidimensional solitary waves \cite{10} and it plays an important role in the theory of Bose-Einstein condensation \cite{13} where it accounts for the finite-range many-body interactions.

1.2. Main Results. In the present paper, we are interested in the curl-curl equation with critical convolution part, namely, we consider the curl-curl equation with Riesz potential interaction part

\[\nabla \times (\nabla \times E) + \lambda E = (I_\alpha(x) * |E|^p)|E|^{p-2} E \quad \text{in} \quad \mathbb{R}^3, \]

where $I_\alpha : \mathbb{R}^3 \rightarrow R$ is the Riesz potential of order $\alpha \in (0, 3)$ defined for $x \in \mathbb{R}^3 \setminus \{0\}$ as

\[I_\alpha(x) = \frac{A_\alpha}{|x|^{3-\alpha}}, \quad A^\alpha = \frac{\Gamma(\frac{3-\alpha}{2})}{\Gamma(\frac{\alpha}{2})\pi}\frac{\mathbb{R}^3}{2^\alpha}. \]

The choice of normalisation constant A^α ensures that the kernel I_α enjoys the semigroup property

\[I_{\alpha+\beta} = I_\alpha * I_\beta \quad \text{for each} \quad \alpha, \beta \in (0, 3) \quad \text{such that} \quad \alpha + \beta < 3, \]

see for example \cite[pp. 73-74]{16}. Indeed, the classical elliptic equation with Riesz potential has been widely studied, and it also has a rich physical background and mathematical research value, see \cite{17-19, 28, 34} and the reference therein.

We are going to consider the following Brezis-Nirenberg type problem for the curl-curl equation

\[
\begin{aligned}
\left\{
\begin{array}{ll}
\nabla \times (\nabla \times u) + \lambda u = \left(I_\alpha * |u|^{2^*_\alpha} \right) |u|^{2^*_\alpha-2} u & \text{in} \quad \Omega, \\
\nu \times u = 0 & \text{on} \quad \partial \Omega,
\end{array}
\right.
\end{aligned}
\]

(1.10)

where $\Omega \subset \mathbb{R}^3$ is a bounded domain, either convex or with $C^{1,1}$ boundary, ν is the exterior normal, $\lambda < 0$ is a real parameter, $2^*_\alpha = 3 + \alpha$ with $0 < \alpha < 3$ is the upper critical exponent in the sense of the following Hardy-Littlewood-Sobolev (HLS for short) inequality, see \cite{25}.

Proposition 1.1. Let $t, r \in (1, \infty)$, $\alpha \in (0, N)$ with $\frac{1}{t} + \frac{N-\alpha}{N} + \frac{1}{r} = 2$. For $h \in L^r(\mathbb{R}^N, \mathbb{R}^N)$, $g \in L^t(\mathbb{R}^N, \mathbb{R}^N)$, there exists a sharp constant $C(r, t, N, \alpha)$ independent of g and h such that

$$
\int_{\mathbb{R}^N} (I_\alpha |h|) |g| \, dx \leq C(r, t, N, \alpha) |h|_{L^r(\mathbb{R}^N, \mathbb{R}^N)} |g|_{L^t(\mathbb{R}^N, \mathbb{R}^N)}. \tag{1.11}
$$

If $t = r = \frac{2N}{N+\alpha}$, then there is an equality in (1.11) if and only if $h(x) = Cg(x)$ and

$$
h(x) = A(\gamma^2 + |x - a|^2)^{-\frac{N+\alpha}{2}} \tag{1.12}
$$

for some $A \in \mathbb{C}$, $0 \neq \gamma \in \mathbb{R}$ and $a \in \mathbb{R}^N$.

In view of the HLS inequality, the functional corresponds to the nonlocal curl-curl equation

$$
J_\lambda(u) = \frac{1}{2} \int_\Omega |\nabla \times u|^2 \, dx + \frac{\lambda}{2} \int_\Omega |u|^2 \, dx - \frac{1}{2} \cdot 2^*_\alpha \int_\Omega |I_{\alpha/2} * |u|^{2^*_\alpha}|^2 \, dx \tag{1.13}
$$

is well defined on the natural space $W^\alpha_{2^*_\alpha}(\mathbb{R}^3)$. However, due to the appearance of the convolution part, this space is not good enough for us to prove the coercivity property of the functional. Therefore, it is necessary to introduce the Coulomb space

$$
Q_{\alpha, 2^*_\alpha}(\Omega, \mathbb{R}^3) = \{u : \int_\Omega |I_{\alpha/2} * |u|^{2^*_\alpha}|^2 \, dx < \infty\},
$$

see Definition 2.1 below. Then, we may define the Coulomb space involve curl operator as

$$
W_{\alpha, 2^*_\alpha}(\mathbb{curl}; \Omega) = \{u \in Q_{\alpha, 2^*_\alpha}(\Omega, \mathbb{R}^3) : \nabla \times u \in L^2(\Omega, \mathbb{R}^3)\}
$$

is a Banach space (see Lemma 2.5) if provided with the norm

$$
||u||_{W_{\alpha, 2^*_\alpha}(\mathbb{curl}; \Omega)} := (||u||^2_{Q_{\alpha, 2^*_\alpha}} + ||\nabla \times u||^2_{L^2})^{1/2}. \tag{1.14}
$$

We also need the following space

$$
W_{0}^{\alpha, 2^*_\alpha}(\mathbb{curl}; \Omega) = \overline{C^\infty_0(\Omega, \mathbb{R}^3)}^{||.||_{W_{\alpha, 2^*_\alpha}(\mathbb{curl}; \Omega)}}.
$$

In this way, we can easily check that the functional (1.13) is well defined on $W_{0}^{\alpha, 2^*_\alpha}(\mathbb{curl}; \Omega)$, see Lemma 2.7. In order to obtain the Brezis-Lieb lemma in the dual space, we extend the linear functionals of the Coulomb space to a mix-norm space, see Proposition 2.2. Correspondingly, to establish the Helmholtz decomposition on the work space $W_{0}^{\alpha, 2^*_\alpha}(\mathbb{curl}; \Omega)$ and $W_{\alpha, 2^*_\alpha}(\mathbb{curl}; \mathbb{R}^3)$, see (2.34) and Lemma 2.15, we introduce the following subspace

$$
\mathcal{V}_\Omega := \{v \in W_{0}^{\alpha, 2^*_\alpha}(\mathbb{curl}; \Omega) : \int_\Omega (v, \varphi) \, dx = 0 \text{ for every } \varphi \in C^\infty_0(\Omega, \mathbb{R}^3) \text{ with } \nabla \times \varphi = 0\},
$$

$$
\mathcal{W}_\Omega := \{w \in W_{0}^{\alpha, 2^*_\alpha}(\mathbb{curl}; \Omega) : \int_\Omega (w, \nabla \times \varphi) \, dx = 0 \text{ for all } \varphi \in C^\infty_0(\Omega, \mathbb{R}^3)\} \tag{1.14}
$$

$$
= \{w \in W_{0}^{\alpha, 2^*_\alpha}(\mathbb{curl}; \Omega) : \nabla \times w = 0 \text{ in the sense of distributions} \}.
$$

Here and below $\langle \cdot, \cdot \rangle$ denote the inner product. Without misunderstanding, we shall write $\mathcal{V}_{\mathbb{R}^3}, \mathcal{W}_{\mathbb{R}^3}$ if $\Omega = \mathbb{R}^3$. Basing on this new decomposition, we can adapt the classical concentration-compactness lemma to suit the new situation. Owing to the concentration-compactness lemma, we obtain the weak-weak* continuity of $J_\lambda'(u)$ on the Nehari-Pankov manifold (see (4.3))

$$
\mathcal{N}_\lambda := \{u \in W_{0}^{\alpha, 2^*_\alpha}(\mathbb{curl}; \Omega) \setminus (\mathcal{V}_\Omega \oplus \mathcal{W}_\Omega) : J_\lambda'(u)|_{\mathcal{R}_w \oplus \mathcal{V}_\Omega \oplus \mathcal{W}_\Omega} = 0\},
$$

where \mathcal{V}_Ω is a subspace of \mathcal{V}_Ω on which the quadratic part of J_λ (see 4.1) is negative semi-definite. Meanwhile, the concentrated compactness lemma implies the $L^2(\Omega, \mathbb{R}^3)$ convergence for the bounded
sequence. This allows us to choose the compactly perturbed functional \(J_{cp} = J_0 = J_{\lambda=0} \) that satisfies the condition (C1) in Lemma 2.21. By setting another Nehari-Pankov manifold (see (4.4))

\[
\mathcal{N}_{cp} = \{ E \in (\mathcal{W}_\Omega \oplus \mathcal{W}_\Omega) \setminus \mathcal{W}_\Omega : J'_{cp}(u)\|_{\mathbb{R}^n+\mathcal{W}_\Omega} = 0 \},
\]

and controlling the ground state energy of \(J_\lambda \) lower than the ground state energy of the perturbed functional \(J_{cp} \), i.e.

\[
c_\lambda = \inf_{\mathcal{N}_{cp}} J_\lambda \leq \inf \mathcal{N}_{cp} = c_0,
\]

we can obtain the ground state solutions of the curl-curl equation (1.10).

It remains to prove the achievement of \(c_0 \). However, as we all know, for the classical elliptic equation (1.6), the sharp constants corresponded to the infimums of the energy level are only attained provided \(\Omega = \mathbb{R}^3 \), even though they are not dependent on the shape of domain. Based on this fact, one can compare the energy levels by the extremal functions. Inspired by the local case in [33], we are motivated to investigate the sharp constant of the Sobolev type inequality involving the curl operator on the entire space \(\mathbb{R}^3 \). Let \(S_{\text{curl,HL}} = S_{\text{curl,HL}}(\mathbb{R}^3) \) be the largest constant such that the inequality

\[
\int_{\mathbb{R}^3} |\nabla \times u|^2 dx \geq S_{\text{curl,HL}} \inf_{w \in \mathcal{W}_{\mathbb{R}^3}} \left(\int_{\mathbb{R}^3} |I_{\alpha/2} * |u|^2|^2 dx \right)^{\frac{1}{2\alpha}}.
\]

holds for any \(u \in W^{\alpha,2\alpha}_{0,\mathbb{R}^3} \setminus \mathcal{W}_{\mathbb{R}^3} \). Then the achievement of the sharp constant \(S_{\text{curl,HL}} \) is related to a certain least energy solution of the limiting problem

\[
\nabla \times (\nabla \times u) = \left(I_\alpha * |u|^{2\alpha} \right) |u|^{2\alpha - 2} u, \quad \text{in} \ \mathbb{R}^3,
\]

where \(u \in W^{\alpha,2\alpha}_{0,\mathbb{R}^3} \). By setting the functional

\[
J(u) = \frac{1}{2} \int_{\mathbb{R}^3} |\nabla \times u|^2 dx - \frac{1}{2} \cdot 2\alpha \int_{\mathbb{R}^3} |I_{\alpha/2} * |u|^{2\alpha}|^2 dx,
\]

and introducing the following Nehari-Pankov manifold (see (3.1))

\[
\mathcal{N} := \left\{ u \in W^{\alpha,2\alpha}_{0,\mathbb{R}^3} \setminus \mathcal{W}_{\mathbb{R}^3} : J'(u)u = 0 \right\},
\]

then we have

Theorem 1.2. We have the following two conclusions:

(a). \(\inf_{\mathcal{N}} J = \frac{2\alpha - 1}{2\alpha} S^{\frac{\alpha}{\alpha-1}}_{\text{curl,HL}} \) and is attained. Moreover, if \(u \in \mathcal{N} \) and \(J(u) = \inf_{\mathcal{N}} J \), then \(u \) is a ground state solution to equation (1.16) and equality holds in (1.15) for this \(u \). If \(u \) satisfies equality (1.15), then there are unique \(t > 0 \) and \(w \in \mathcal{W}_{\mathbb{R}^3} \) such that \(t(u + w) \in \mathcal{N} \) and \(J(t(u + w)) = \inf_{\mathcal{N}} J \).

(b). \(S_{\text{curl,HL}} > S_{\text{HL}} \), where

\[
S_{\text{HL}} := \inf_{u \in D^{1,2}(\mathbb{R}^3,\mathbb{R}^3) \setminus \{0\}} \frac{\int_{\mathbb{R}^3} |\nabla u|^2 dx}{\left(\int_{\mathbb{R}^3} |I_{\alpha/2} * |u|^{2\alpha}|^2 dx \right)^{\frac{1}{2\alpha}}}.
\]

Note that \(S_{\text{HL}} \) is the best constant of the combination of the HLS inequality and the Sobolev inequality, see [17, Lemma 1.2] for example. It is not clear that whether the sharp constant \(S_{\text{curl,HL}} \) is independent on shape of the domain \(\Omega \) or not. Therefore, we may define another two constants \(S_{\text{curl,HL}}(\Omega) \) and \(\mathcal{S}_{\text{curl,HL}}(\Omega) \). \(S_{\text{curl,HL}}(\Omega) \) is the largest possible constant such that the inequality

\[
\int_{\mathbb{R}^3} |\nabla \times u|^2 dx \geq S_{\text{curl,HL}}(\Omega) \inf_{w \in \mathcal{W}_{\mathbb{R}^3}} \left(\int_{\mathbb{R}^3} |I_{\alpha/2} * |u + w|^{2\alpha}|^2 dx \right)^{\frac{1}{2\alpha}}
\]

(1.19)
holds for any \(u \in W_0^{\alpha,2\alpha}(\text{curl}; \Omega) \setminus \mathcal{W}_{2\alpha} \) with a zero extending; \(S_{\text{curl},HL}(\Omega) \) is another constant such that the inequality
\[
\int_{\Omega} |\nabla \times u|^2 \, dx \geq S_{\text{curl},HL}(\Omega) \inf_{w \in \mathcal{W}_{2\alpha}} \left(\int_{\Omega} |I_{\alpha/2} * |u + w|^2 \, dx \right)^{\frac{1}{2}}.
\]
holds for any \(u \in W_0^{\alpha,2\alpha}(\text{curl}; \Omega) \setminus \mathcal{W}_{\Omega} \), and \(S_{\text{curl},HL}(\Omega) \) is largest with this property. We compare the four constants as follow.

Theorem 1.3. Let \(\Omega \) be a bounded domain, either convex or with \(C^{1,1} \) boundary. Then
\[
S_{\text{curl},HL} = S_{\text{curl},HL}(\Omega) \geq S_{\text{curl},HL}(\Omega) \geq S_{HL}.
\]

Unfortunately, we don’t have any information about the shape of the solutions of (1.16). Hence, the method of taking cut-off functions and comparing the energy levels does not work well any longer. Inspired by the idea in [31], we are going to investigate the energy levels of the ground states. From [3] we know that the spectrum of the curl-curl operator in \(W_0^2(\text{curl}; \Omega) \) consists of the eigenvalue \(\lambda_0 = 0 \) with infinite multiplicity and of a sequence of eigenvalues
\[
0 < \lambda_1 \leq \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_k \rightarrow \infty
\]
with finite multiplicity \(m(\lambda_k) \in \mathbb{N} \).

The main results for the existence are as follow:

Theorem 1.4. Suppose \(\Omega \) is a bounded domain, either convex or with \(C^{1,1} \) boundary. Let \(\lambda \in (-\lambda_\nu, -\lambda_{\nu-1}] \) for some \(\nu \geq 1 \). Then \(c_\lambda > 0 \) and the following statements hold:

(a) If \(c_\lambda < c_\nu \), then there is ground state solution to (1.10), i.e. \(c_\lambda \) is attained by a critical point of \(J_\lambda \).

A sufficient condition for this inequality to hold is
\[
\lambda \in \left(-\lambda_{\nu}, -\lambda_{\nu} + \tilde{S}_{\text{curl},HL}(\Omega) |\text{diam}\Omega| \frac{3 \gamma^n - \alpha - 3}{2\alpha} \right),
\]
where \(|\text{diam}\Omega| = \max_{x,y \in \Omega} |x - y| \).

(b) There exists \(\varepsilon_{\nu} \geq \tilde{S}_{\text{curl},HL}(\Omega)|\text{diam}\Omega| \frac{3 \gamma^n - \alpha - 3}{2\alpha} \) such that \(c_\lambda \) is not attained for \(\lambda \in (-\lambda_{\nu} + \varepsilon_{\nu}, -\lambda_{\nu-1}] \), and \(c_\lambda = c_\nu \) for \(\lambda \in (-\lambda_{\nu} + \varepsilon_{\nu}, -\lambda_{\nu-1}] \). We do not exclude that \(\varepsilon > \lambda_{\nu} - \lambda_{\nu-1} \), so these intervals may be empty.

(c) \(c_\lambda \rightarrow 0 \) as \(\lambda \rightarrow -\lambda_{\nu} \), and the function
\[
(-\lambda_{\nu}, -\lambda_{\nu} + \varepsilon_{\nu}] \cap (-\lambda_{\nu}, -\lambda_{\nu-1}] \ni \lambda \mapsto c_\lambda \in (0, \infty)
\]
is continuous and strictly increasing.

(d) There exist at least \(\sharp \{k : -\lambda_k \leq \lambda \leq -\lambda_{\nu} + \tilde{S}_{\text{curl},HL}(\Omega)|\text{diam}\Omega| \frac{3 \gamma^n - \alpha - 3}{2\alpha} \} \) pairs of solutions \(\pm u \) to (1.10).

The paper is organized as follow. In Section 2 we introduce some work spaces on bounded domains and entire space \(\mathbb{R}^3 \), and we adapt the concentration compactness lemma for the curl-curl problem with nonlocal nonlinearities. And an abstract critical point theorem is also recalled in this part for the readers’ convenience. In Section 3, we show that the sharp constant \(S_{\text{curl},HL} \) is attained provided \(\Omega = \mathbb{R}^3 \), and we compare the four constants as we introduced. In the last Section, we are devoted to the proof of Theorem 1.4.

2. Preliminaries and Variational Setting

2.1. Preliminaries

Throughout this paper we assume that \(\Omega \subset \mathbb{R}^3 \) is a bounded domain, either convex or with \(C^{1,1} \) boundary. In some cases \(\Omega \) is only required to be a Lipschitz domain, see [33] for more details. We shall look for solutions to problem (1.10) and (1.16) in \(W_0^{\alpha,2\alpha}(\text{curl}; \Omega) \) and \(W_0^{\alpha,2\alpha}(\text{curl}; \mathbb{R}^3) \) respectively. Now we are ready to introduce the definitions of the working spaces.
2.1.1. Coulomb Space Involving Curl Operator.

Definition 2.1. [28, Definition 1] Let $N \in \mathbb{N}$, $\alpha \in (0, N)$ and $p \geq 1$. We define the Coulomb space $Q^{\alpha,p}(\mathbb{R}^N, \mathbb{R}^N)$ as the vector space of measurable functions $u : \mathbb{R}^N \rightarrow \mathbb{R}^N$ such that

$$||u||_{Q^{\alpha,p}(\mathbb{R}^N, \mathbb{R}^N)} = \left(\int_{\mathbb{R}^N} |I_{\alpha/2} * |u|^p|^2 dx \right)^{\frac{1}{p}} < +\infty.$$

It is not difficult to see that $|| \cdot ||_{Q^{\alpha,p}(\mathbb{R}^N, \mathbb{R}^N)}$ defines a norm, see Proposition 2.1 in [28], and the Coulomb space is complete with respect to this norm. By the same way, we also define $Q^{\alpha,p}(\Omega, \mathbb{R}^N)$ as the Coulomb space on the bounded domain. For the dual space of $Q^{\alpha,p}(\mathbb{R}^N, \mathbb{R}^N)$, it can be characterized by the following proposition, and it is also adopted in $Q^{\alpha,p}(\Omega, \mathbb{R}^N)$.

Proposition 2.2. [28, Proposition 2.11] Let T be a distribution, then $T \in (Q^{\alpha,p}(\mathbb{R}^N, \mathbb{R}^N))^\prime$ if and only if there exists $G(x, y) \in L^{\frac{2p}{2p-1}}(\mathbb{R}^N, L^{\frac{p}{p-1}}(\mathbb{R}^N))$ such that for every $\varphi \in C^\infty_0(\mathbb{R}^N, \mathbb{R}^N)$,

$$\langle T, \varphi \rangle = \int_{\mathbb{R}^N} \left(\int_{\mathbb{R}^N} G(x, y) I_{\alpha/2} (x - y) |\frac{1}{p} y | \varphi(x) dx \right).$$

Proof. By the definition of the Coulomb space $Q^{\alpha,p}(\mathbb{R}^N, \mathbb{R}^N)$, one can observe that the map

$$\mathcal{L} : Q^{\alpha,p}(\mathbb{R}^N, \mathbb{R}^N) \rightarrow L^{2p}(\mathbb{R}^N, L^p(\mathbb{R}^N))$$

defined by

$$\mathcal{L} u(x, y) = (I_{\alpha/2} (x - y))^{\frac{1}{p}} u(y)$$

is a linear isometry from $Q^{\alpha,p}(\mathbb{R}^N, \mathbb{R}^N)$ into $L^{2p}(\mathbb{R}^N, L^p(\mathbb{R}^N))$. Then any linear functional on $Q^{\alpha,p}(\mathbb{R}^N)$ can be extended to a linear functional on $L^{2p}(\mathbb{R}^N, L^p(\mathbb{R}^N))$. Namely, there exists $G(x, y) \in L^{\frac{2p}{2p-1}}(\mathbb{R}^N, L^{\frac{p}{p-1}}(\mathbb{R}^N))$ such that

$$\langle T, \varphi \rangle = \langle G(x, y), \mathcal{L} \varphi \rangle.$$

For the Coulomb space involving curl operator, we have the following definition.

Definition 2.3. Let $N = 3$, $\alpha \in (0, 3)$ and $p \geq 1$. We define the Coulomb space involving curl operator $W^{\alpha,p}(\text{curl}; \mathbb{R}^3)$ as the vector space of functions $u \in Q^{\alpha,p}(\mathbb{R}^3, \mathbb{R}^3)$ such that u is weakly differentiable in \mathbb{R}^3, $\nabla \times u \in L^2(\mathbb{R}^3, \mathbb{R}^3)$ and

$$||u||_{W^{\alpha,p}(\text{curl}; \mathbb{R}^3)} = \left(\int_{\mathbb{R}^3} |\nabla \times u|^2 dx + \left(\int_{\mathbb{R}^3} |I_{\alpha/2} * |u|^p|^2 dx \right)^{\frac{1}{2}} \right)^{\frac{1}{2}} < +\infty.$$

The function $|| \cdot ||_{W^{\alpha,p}(\text{curl}; \mathbb{R}^3)}$ defines a norm in view of the Proposition 2.1 in [28]. By the same way, we also define $W^{\alpha,p}(\text{curl}; \Omega)$ as the Coulomb space involve curl operator on the bounded spaces, namely,

$$W^{\alpha,p}(\text{curl}; \Omega) := \{ u \in Q^{\alpha,p}(\Omega, \mathbb{R}^3) : \nabla \times u \in L^2(\Omega, \mathbb{R}^3) \}.$$

We are going to prove that $W^{\alpha,p}(\text{curl}; \mathbb{R}^3)$ and $W^{\alpha,p}(\text{curl}; \Omega)$ are Banach spaces. The proof of completeness follows by the same arguments as in the proof of Theorem 4.3 in [21] and Proposition 2.2 in [28]. The first ingredient is the following Fatou property for locally converging sequences.

Lemma 2.4. Let $N = 3$, $\alpha \in (0, 3)$ and $p \geq 1$. If $(u_n)_{n \in \mathbb{N}}$ is a bounded sequence in $W^{\alpha,p}(\text{curl}; \mathbb{R}^3)$ that converges to a function $u : \mathbb{R}^3 \rightarrow \mathbb{R}^3$ in $L^1_{\text{loc}}(\mathbb{R}^3, \mathbb{R}^3)$, then $u \in W^{\alpha,p}(\text{curl}; \mathbb{R}^3)$,

$$\int_{\mathbb{R}^3} |I_{\alpha/2} * |u|^p|^2 dx \leq \liminf_{n \to \infty} \int_{\mathbb{R}^3} |I_{\alpha/2} * |u_n|^p|^2 dx,$$

(2.2)
and
\[\int_{\mathbb{R}^3} |\nabla \times u|^2 dx \leq \liminf_{n \to \infty} \int_{\mathbb{R}^3} |\nabla \times u_n|^2 dx. \] (2.3)

Proof. Since \((u_n)_{n \in \mathbb{N}} \to u\) is bounded in \(W^{\alpha,p}(\text{curl}; \mathbb{R}^3)\), we have
\[\int_{\mathbb{R}^3} |I_{\alpha/2} * |u_n|^p|^2 dx \leq \infty, \] (2.4)
then by the Fatou lemma, we have
\[\int_{\mathbb{R}^3} \liminf_{n \to \infty} |I_{\alpha/2} * |u_n|^p|^2 dx \leq \liminf_{n \to \infty} \int_{\mathbb{R}^3} |I_{\alpha/2} * |u_n|^p|^2 dx. \] (2.5)
By the Fatou lemma again, we have
\[I_{\alpha} * (\liminf_{n \to \infty} |u_n|^p) \leq \liminf_{n \to \infty} I_{\alpha} * (|u_n|^p). \] (2.6)
Since \((u_n)_{n \in \mathbb{N}} \to u\) in \(L^1_{\text{loc}}(\mathbb{R}^3, \mathbb{R}^3)\), for almost every \(x \in \mathbb{R}^3\), we have
\[I_{\alpha} * (\liminf_{n \to \infty} |u_n|^p)(x) \to I_{\alpha} * (|u|^p)(x). \] (2.7)
Then (2.2) follows (2.5), (2.6) and (2.7).

We are going to prove (2.3). Define \(f\) on \(D(\mathbb{R}^3, \mathbb{R}^3)\) by
\[\langle f, v \rangle = \int_{\mathbb{R}^3} u \cdot (\nabla \times v) \ dx, \] (2.8)
since \(u_n \to u\) in \(L^1_{\text{loc}}(\mathbb{R}^3, \mathbb{R}^3)\), we have
\[|\langle f, v \rangle| = |\int_{\mathbb{R}^3} u \cdot (\nabla \times v)| = \lim_{n \to \infty} |\int_{\mathbb{R}^3} u_n \cdot (\nabla \times v) \ dx| \]
\[= \lim_{n \to \infty} |\int_{\mathbb{R}^3} (\nabla \times u_n) \cdot v \ dx| \leq \liminf_{n \to \infty} ||\nabla \times u_n||_2 \left(\int_{\mathbb{R}^3} |v|^2 dx \right)^{1/2}, \] (2.9)
where we use the Cauchy-Schwarz inequality. Since \(D(\mathbb{R}^3, \mathbb{R}^3)\) is dense in \(L^2(\mathbb{R}^3, \mathbb{R}^3)\), by the the Hahn-Banach theorem, the distribution \(f\) can be continuously extend to a linear functional on \(L^2(\mathbb{R}^3, \mathbb{R}^3)\). Therefore, by the Riesz representation theorem, there exists \(F \in L^2(\mathbb{R}^3, \mathbb{R}^3)\) such that for every \(v \in D(\mathbb{R}^3, \mathbb{R}^3)\)
\[\int_{\mathbb{R}^3} F \cdot v \ dx = \langle f, v \rangle = \int_{\mathbb{R}^3} u \cdot (\nabla \times v) \ dx. \] (2.10)
Setting \(\nabla \times u\) as the curl of \(u\) in the following distribute sense
\[\int_{\mathbb{R}^3} u \cdot (\nabla \times v) \ dx = \int_{\mathbb{R}^3} (\nabla \times u) \cdot v \ dx, \] (2.11)
we can see \(F = \nabla \times u \in L^2(\mathbb{R}^3, \mathbb{R}^3)\) in the weak sense. Choosing \(v = \nabla \times u\) we find that
\[\int_{\mathbb{R}^3} |\nabla \times u|^2 dx \leq \liminf_{n \to \infty} ||\nabla \times u_n||_2 \left(\int_{\mathbb{R}^3} |v|^2 \ dx \right)^{1/2} \]
\[\leq \liminf_{n \to \infty} ||\nabla \times u_n||_2 \left(\int_{\mathbb{R}^3} |\nabla \times u|^2 \ dx \right)^{1/2}. \] (2.12)
Therefore we have
\[\int_{\mathbb{R}^3} |\nabla \times u|^2 dx \leq \liminf_{n \to \infty} \int_{\mathbb{R}^3} |\nabla \times u_n|^2 dx. \] (2.13)

Lemma 2.5. Let \(N=3\), \(\alpha \in (0, 3)\) and \(p \geq 1\). The normed spaces \(W^{\alpha,p}(\text{curl}; \mathbb{R}^3)\) and \(W^{\alpha,p}(\text{curl}; \Omega)\) are complete.
Proof. Let \((u_n)_{n \in \mathbb{N}}\) be a Cauchy sequence in \(W^{\alpha,p}(\text{curl}; \mathbb{R}^3)\). By the local estimate of the Coulomb energy, \((u_n)_{n \in \mathbb{N}}\) is also a Cauchy sequence in \(L^p_{\text{loc}}(\mathbb{R}^3, \mathbb{R}^3)\). Hence there exists \(u \in L^p_{\text{loc}}(\mathbb{R}^3, \mathbb{R}^3)\) such that \((u_n)_{n \in \mathbb{N}} \rightarrow u\) in \(L^p_{\text{loc}}(\mathbb{R}^3, \mathbb{R}^3)\). In light of Lemma 2.4, we conclude that \(u \in W^{\alpha,p}(\text{curl}; \mathbb{R}^3)\). Moreover, for every \(n \in \mathbb{N}\) the sequence \((u_n - u_m)_{m \in \mathbb{N}}\) converges to \((u_n - u)\) in \(L^p_{\text{loc}}(\mathbb{R}^3, \mathbb{R}^3)\). Hence, by Lemma 2.4 again, we have

\[
\lim_{n \to \infty} \left(\int_{\mathbb{R}^3} |\nabla \times u_n - \nabla \times u|^2 \, dx + \int_{\mathbb{R}^3} |I_{\alpha/2} \ast |u_n - u|^p|^2 \, dx \right)
\leq \lim_{n \to \infty} \lim_{m \to \infty} \left(\int_{\mathbb{R}^3} |\nabla \times u_n - \nabla \times u_m|^2 \, dx + \int_{\mathbb{R}^3} |I_{\alpha/2} \ast |u_n - u_m|^p|^2 \, dx \right)
\leq \lim_{m,n \to \infty} \left(\int_{\mathbb{R}^3} |\nabla \times u_n - \nabla \times u_m|^2 \, dx + \int_{\mathbb{R}^3} |I_{\alpha/2} \ast |u_n - u_m|^p|^2 \, dx \right)
\leq 0.
\]

This implies \(W^{\alpha,p}(\text{curl}; \mathbb{R}^3)\) is complete. The completeness of \(W^{\alpha,p}(\text{curl}; \Omega)\) can be proved in the same way. \(\square\)

We also define

\[W^{\alpha,p}_0(\text{curl}; \Omega) = \text{closure of } C_0^\infty(\Omega; \mathbb{R}^3) \text{ in } W^{\alpha,p}(\text{curl}; \Omega).\]

If \(p\) lies in some suitable range, then the two Coulomb spaces are the same for the case \(\Omega = \mathbb{R}^3\).

Lemma 2.6. Let \(\alpha \in (0, 3)\), then \(W^{\alpha,p}(\text{curl}; \mathbb{R}^3) = W^{\alpha,p}_0(\text{curl}; \mathbb{R}^3)\) as \(3 + \alpha \leq p \leq 3 + \alpha\).

Proof. Let \(\eta_R \in C_0^\infty(\mathbb{R}^3)\) be such that \(|\nabla \eta_R| \leq \frac{2}{R}\) for \(R \leq |x| \leq 2R\), \(\eta_R = 1\) for \(|x| \leq R\) and \(\eta_R = 0\) for \(|x| \geq 2R\). Then for \(u = (u_1, u_2, u_3) \in W^{\alpha,p}(\text{curl}; \mathbb{R}^3)\), we have \(\eta_R u \longrightarrow u\) in \(Q^{\alpha,p}(\mathbb{R}^3, \mathbb{R}^3)\) as \(R \rightarrow \infty\). Note that

\[
\nabla \times (\eta_R u_i) = \left(\partial \eta \nabla\right) u_j - (\partial \eta \nabla) u_i + \eta_R \left(\partial_i u_j - \partial_j u_i\right), \quad i \neq j.
\]

(2.14)

If \(p = 2\), we have \((\partial_i \eta_R) u_j \longrightarrow 0\) in \(L^2(\mathbb{R}^3, \mathbb{R}^3)\) as \(\alpha \in (0, 3)\). Indeed, we have

\[
\int_{\mathbb{R}^3} (\partial \eta_R)^2 u_j^2 \, dx = \int_{R \leq |x| \leq 2R} (\partial \eta_R)^2 u_j^2 \, dx \leq \left(\frac{2}{R}\right)^2 \int_{R \leq |x| \leq 2R} u_j^2 \, dx \leq \left(\frac{2}{R}\right)^2 \int_{|x| \leq 2R} u_j^2 \, dx.
\]

If \(p \neq 2\), let \(q\) be such that \(\frac{1}{p} + \frac{1}{q} = \frac{1}{2}\), then applying the H"older inequality we have

\[
\int_{\mathbb{R}^3} (\partial \eta_R)^2 u_j^2 \, dx \leq \left(\int_{R \leq |x| \leq 2R} |\partial_i \eta_R| \, dx \right)^{\frac{2}{p}} \left(\int_{R \leq |x| \leq 2R} |u_j|^p \, dx \right)^{\frac{2}{q}} \leq C_1 (R^{3-q}) \left(2R^{3+\alpha} \right)^{\frac{2}{q}} \left(\int_{|x| \leq 2R} |\partial_i u_j - \partial_j u_i|^p \, dx \right)^{\frac{1}{p}}
\]

Then, for \(p \leq 3 + \alpha\), we have \((\partial_i \eta_R) u_j \longrightarrow 0\) in \(L^2(\mathbb{R}^3, \mathbb{R}^3)\) as \(R \longrightarrow \infty\). As \(\partial_i u_j - \partial_j u_i \in L^2(\mathbb{R}^3)\), it follows that the left-hand side in (2.14) tends to \(\partial_i u_j - \partial_j u_i\) in \(L^2(\mathbb{R}^3)\) as \(R \longrightarrow \infty\). Hence \(\eta_R u \longrightarrow u\) in \(W^{\alpha,p}(\text{curl}; \mathbb{R}^3)\) and functions of compact support are dense in \(W^{\alpha,p}(\text{curl}; \mathbb{R}^3)\). The rest of the proof is similar to the [33, Lemma 2.1]. \(\square\)
Lemma 2.7. (i) $J_{\lambda}(u)$ and $J(u)$ are well defined on $W^{\alpha,2\alpha}_0(curl; \Omega)$ and $W^{\alpha,2\alpha}_0(curl; \mathbb{R}^3)$ respectively. (ii) Let

$$G(u)(x,y) = \frac{1}{|x-y|^\frac{2\alpha-1}{2\alpha}} |u(y)|^{2\alpha} |u(x)|^{2\alpha - 1}.$$

Then, $G(u)(x,y) \in L^{\frac{2\alpha}{2\alpha-1}}(\mathbb{R}^3; L^{\frac{2\alpha}{2\alpha-1}}(\mathbb{R}^3))$.

(iii) $J_{\lambda}(u)$ and $J(u)$ are of class C^1.

Proof. (i) From the definition of $W^{\alpha,2\alpha}_0(curl; \Omega)$ and $W^{\alpha,2\alpha}_0(curl; \mathbb{R}^3)$, we know that the functionals $J_{\lambda}(u)$ and $J(u)$ are well defined.

(ii) Set

$$I(u) = \frac{1}{2 \cdot 2\alpha} \int_{\mathbb{R}^3} |I_{\alpha/2} * |u|^{2\alpha}|^2 \, dx.$$

We claim that $I'(u) \in (Q^{\alpha,2\alpha}(\mathbb{R}^3, \mathbb{R}^3))^\prime$. Indeed, for any $\varphi \in Q^{\alpha,2\alpha}(\mathbb{R}^3, \mathbb{R}^3)$, we have

$$\langle I'(u), \varphi \rangle = \int_{\mathbb{R}^3} (I_{\alpha} * |u|^{2\alpha}) |u|^{2\alpha - 2} u \cdot \varphi \, dx \leq \left(\int_{\mathbb{R}^3} (I_{\alpha} * |u|^{2\alpha}) |u|^{2\alpha} \right)^{\frac{2\alpha - 1}{2\alpha}} \cdot \left(\int_{\mathbb{R}^3} (I_{\alpha} * |u|^{2\alpha}) |\varphi|^{2\alpha} \right)^{\frac{1}{2\alpha}}$$

$$= ||u||^{\frac{2\alpha - 1}{Q^{\alpha,2\alpha}(\mathbb{R}^3, \mathbb{R}^3)}} \cdot \left(\int_{\mathbb{R}^3} (I_{\alpha/2} * |u|^{2\alpha}) (I_{\alpha/2} * |\varphi|^{2\alpha}) \right)^{\frac{1}{2\alpha}}$$

$$\leq ||u||^{\frac{2\alpha - 1}{Q^{\alpha,2\alpha}(\mathbb{R}^3, \mathbb{R}^3)}} \cdot \left(\int_{\mathbb{R}^3} |I_{\alpha/2} * |u|^{2\alpha}|^2 \, dx \right)^{\frac{1}{2\alpha}} \cdot \left(\int_{\mathbb{R}^3} |I_{\alpha/2} * |\varphi|^{2\alpha}|^2 \, dx \right)^{\frac{1}{2\alpha}}$$

$$= ||u||^{\frac{2\alpha - 1}{Q^{\alpha,2\alpha}(\mathbb{R}^3, \mathbb{R}^3)}} \cdot ||\varphi||_{Q^{\alpha,2\alpha}(\mathbb{R}^3, \mathbb{R}^3)}.$$

Then, by the definition of the functional space on Coulomb space, we have $I'(u) \in (Q^{\alpha,2\alpha}(\mathbb{R}^3, \mathbb{R}^3))^\prime$.

On the other hand, $G(u)(x,y)$ obviously satisfies that

$$\langle I'(u), \varphi \rangle = \int_{\mathbb{R}^3} \left(\int_{\mathbb{R}^3} G(u)(x,y)(I_{\alpha/2}(x - y)) \frac{\partial}{\partial y} \, dx \right) \varphi(x) \, dx,$$

(2.16)

Therefore, by Proposition 2.2, we have $G(u)(x,y) \in L^{\frac{2\alpha}{2\alpha-1}}(\mathbb{R}^3; L^{\frac{2\alpha}{2\alpha-1}}(\mathbb{R}^3))$.

(iii) We are going to show that $I'(u)$ is continuous. For any sequences $u_n, u \in Q^{\alpha,2\alpha}(\mathbb{R}^3, \mathbb{R}^3)$, we have

$$\langle (I'(u_n) - I'(u)), \varphi \rangle$$

$$= \int_{\mathbb{R}^3} (I_{\alpha} * |u_n|^{2\alpha}) |u_n|^{2\alpha - 2} u_n \cdot \varphi \, dx - \int_{\mathbb{R}^3} (I_{\alpha} * |u|^{2\alpha}) |u|^{2\alpha - 2} u \cdot \varphi \, dx$$

$$= \int_{\mathbb{R}^3} (I_{\alpha} * (|u_n|^{2\alpha} - |u|^{2\alpha})) \frac{1}{2\alpha} \cdot \left(I_{\alpha} * |u|^{2\alpha} \right)^{\frac{2\alpha - 1}{2\alpha}} \cdot \left(|u_n|^{2\alpha} - |u_n|^{2\alpha} \right)^{\frac{2\alpha - 1}{2\alpha}} u \cdot \varphi \, dx$$

$$\leq \left(\int_{\mathbb{R}^3} (I_{\alpha} * (|u_n|^{2\alpha} - |u|^{2\alpha})) |\varphi|^{2\alpha} \, dx \right)^{\frac{1}{2\alpha}} \cdot \left(\int_{\mathbb{R}^3} (I_{\alpha} * (|u_n|^{2\alpha} - |u|^{2\alpha})) |u_n|^{2\alpha} \, dx \right)^{\frac{2\alpha - 1}{2\alpha}}$$

$$+ \left(\int_{\mathbb{R}^3} (I_{\alpha} * |u|^{2\alpha}) |\varphi|^{2\alpha} \, dx \right)^{\frac{1}{2\alpha}} \cdot \left(\int_{\mathbb{R}^3} (I_{\alpha} * |u|^{2\alpha}) (|u_n|^{2\alpha - 1} - |u|^{2\alpha - 1}) \frac{2\alpha - 1}{2\alpha} \, dx \right)^{\frac{2\alpha - 1}{2\alpha}}$$

$$= A_1 \cdot A_2 + A_3 \cdot A_4.$$

(2.17)
Thus, this implies that $S_{\text{ Sobolev space.}}$

By the semi-group property and Hölder inequality, we have

$$
A_1 = \left(\int_{\mathbb{R}^3} \left(I_{\alpha/2} * (|u_n|^{2\alpha} - |u|^{2\alpha}) \right) \left(I_{\alpha/2} * |\varphi|^{2\alpha} \right) dx \right)^{\frac{1}{2\alpha}}
$$

$$
\leq \left(\int_{\mathbb{R}^3} \left(I_{\alpha/2} * (|u_n|^{2\alpha} - |u|^{2\alpha}) \right)^2 dx \right)^{\frac{1}{2\alpha}} \cdot \left(\int_{\mathbb{R}^3} \left(I_{\alpha/2} * |\varphi|^{2\alpha} \right)^2 dx \right)^{\frac{1}{2\alpha}} = B_1^{\frac{1}{2\alpha}} \cdot ||\varphi||_{Q^{\alpha,2\alpha}(\mathbb{R}^3,\mathbb{R}^3)},
$$

where $B_1 = \int_{\mathbb{R}^3} \left(I_{\alpha/2} * (|u_n|^{2\alpha} - |u|^{2\alpha}) \right)^2 dx$. Recalling the mean value theorem, we have

$$
||u_n|^{2\alpha} - |u|^{2\alpha}| = C(2\alpha)(|u| + \theta |u_n - u|)^{2\alpha - 1} |u_n - u| = |\xi|^{2\alpha - 1} |u_n - u| \quad \text{for } 0 \leq \theta \leq 1.
$$

Therefore, by linearity of the convolution and by positivity of the Riesz-kernel, we deduce that

$$
B_1 = \int_{\mathbb{R}^3} \left(I_{\alpha/2} * (|\xi|^{2\alpha - 1} |u_n - u|) \right)^2 dx = \int_{\mathbb{R}^3} I_\alpha * (|\xi|^{2\alpha - 1} |u_n - u|) \cdot (|\xi|^{2\alpha - 1} |u_n - u|) dx
$$

$$
\leq \left(\int_{\mathbb{R}^3} \left(I_\alpha * (|\xi|^{2\alpha - 1} |u_n - u|) \right)^{\frac{2\alpha - 1}{2\alpha}} \cdot \left(\int_{\mathbb{R}^3} \left(I_\alpha * (|\xi|^{2\alpha - 1} |u_n - u|) \right) |u_n - u|^{2\alpha} dx \right)^{\frac{1}{2\alpha}} \right)^{\frac{2\alpha - 1}{2\alpha}}
$$

$$
\leq \left(\int_{\mathbb{R}^3} \left(I_{\alpha/2} * (|\xi|^{2\alpha - 1} |u_n - u|) \right)^{\frac{2\alpha - 1}{2\alpha}} \cdot \left(\int_{\mathbb{R}^3} |I_{\alpha/2} * |\xi|^{2\alpha} |u_n - u|^{2\alpha} dx \right)^{\frac{1}{2\alpha}} \right)^{\frac{2\alpha - 1}{2\alpha}}
$$

$$
\leq B_1^{\frac{1}{2\alpha}} \left(||u_n||_{Q^{\alpha,2\alpha}(\mathbb{R}^3,\mathbb{R}^3)} + ||u||_{Q^{\alpha,2\alpha}(\mathbb{R}^3,\mathbb{R}^3)} \right) \cdot ||u_n - u||_{Q^{\alpha,2\alpha}(\mathbb{R}^3,\mathbb{R}^3)}.
$$

This implies

$$
B_1 \leq \left(||u_n||_{Q^{2\alpha,2\alpha}(\mathbb{R}^3,\mathbb{R}^3)} + ||u||_{Q^{2\alpha,2\alpha}(\mathbb{R}^3,\mathbb{R}^3)} \right) \cdot ||u_n - u||_{Q^{\alpha,2\alpha}(\mathbb{R}^3,\mathbb{R}^3)}.
$$

Thus,

$$
A_1 \leq \left(||u_n||_{Q^{\alpha,2\alpha}(\mathbb{R}^3,\mathbb{R}^3)} + ||u||_{Q^{\alpha,2\alpha}(\mathbb{R}^3,\mathbb{R}^3)} \right) \cdot ||u_n - u||_{Q^{\alpha,2\alpha}(\mathbb{R}^3,\mathbb{R}^3)} \cdot ||\varphi||_{Q^{\alpha,2\alpha}(\mathbb{R}^3,\mathbb{R}^3)}.
$$

Similarly, we have

$$
A_2 \leq \left(||u_n||_{Q^{\alpha,2\alpha}(\mathbb{R}^3,\mathbb{R}^3)} + ||u||_{Q^{\alpha,2\alpha}(\mathbb{R}^3,\mathbb{R}^3)} \right) \cdot ||u_n - u||_{Q^{\alpha,2\alpha}(\mathbb{R}^3,\mathbb{R}^3)} \cdot ||\varphi||_{Q^{\alpha,2\alpha}(\mathbb{R}^3,\mathbb{R}^3)}
$$

$$
A_3 \leq ||u||_{Q^{\alpha,2\alpha}(\mathbb{R}^3,\mathbb{R}^3)} \cdot ||\varphi||_{Q^{\alpha,2\alpha}(\mathbb{R}^3,\mathbb{R}^3)}
$$

$$
A_4 \leq \left(||u_n||_{Q^{\alpha,2\alpha}(\mathbb{R}^3,\mathbb{R}^3)} + ||u||_{Q^{\alpha,2\alpha}(\mathbb{R}^3,\mathbb{R}^3)} \right) \cdot ||u_n - u||_{Q^{\alpha,2\alpha}(\mathbb{R}^3,\mathbb{R}^3)} \cdot ||u||_{Q^{\alpha,2\alpha}(\mathbb{R}^3,\mathbb{R}^3)}
$$

Therefore, for any $u_n \to u$ in $Q^{\alpha,2\alpha}(\mathbb{R}^3, \mathbb{R}^3)$, we have $\langle I'(u_n) - I'(u), \varphi \rangle \to 0$. This implies that $I(u)$ is C^1. Therefore, $J_\lambda(u)$ and $J(u)$ are of class C^1. □

To apply the concentration compactness arguments, we need to introduce the following Coulomb-Sobolev space.
Definition 2.8. Let $\Omega \subset \mathbb{R}^N$, $\alpha \in (0, N)$ and $p \geq 1$. We define $W^{1,\alpha,p}(\Omega)$ as the scalar space of measurable functions $u : \Omega \rightarrow \mathbb{R}$ such that $u \in \mathcal{C}^{0,\alpha,p}(\Omega)$ and u is weakly differentiable in Ω, $Du \in \mathcal{C}^{0,\alpha,p}(\Omega, \mathbb{R}^N)$ and

$$||u||_{W^{1,\alpha,p}(\Omega)} = \left(\left(\int_{\Omega} |I_{\alpha/2} \ast |u|^p|^2 dx \right)^{\frac{1}{2}} + \left(\int_{\Omega} |I_{\alpha/2} \ast |Du|^p|^2 dx \right)^{\frac{1}{2}} \right)^{\frac{1}{p}} < +\infty.$$

We are going to prove that the Coulomb-Sobolev space $W^{1,\alpha,p}(\Omega)$ is a Banach space. Firstly, we have the following Fatou property for locally converging sequence.

Lemma 2.9. Let $N \in \mathbb{N}$, $\alpha \in (0, N)$ and $p \geq 1$. If $(u_n)_{n \in \mathbb{N}}$ is a bounded sequence in $W^{1,\alpha,p}(\Omega)$ such that $u_n \rightarrow u$ in $L^1_{loc}(\Omega)$ and $Du_n \rightarrow g$ in $L^1_{loc}(\Omega, \mathbb{R}^N)$, then $g = Du$ and $u \in W^{1,\alpha,p}(\Omega)$,

$$\int_{\Omega} |I_{\alpha/2} \ast |u|^p|^2 dx \leq \liminf_{n \rightarrow \infty} \int_{\Omega} |I_{\alpha/2} \ast |u_n|^p|^2 dx,$$

and

$$\int_{\Omega} |I_{\alpha/2} \ast |Du|^p|^2 dx \leq \liminf_{n \rightarrow \infty} \int_{\Omega} |I_{\alpha/2} \ast |Du_n|^p|^2 dx.$$

Proof. The proof of (2.24) follows the same argument in the proof of (2.2). We are going to prove (2.25). For $v \in \mathcal{C}_0^\infty(\Omega)$ we conclude that

$$\int_{\Omega} u_n \cdot \nabla v dx = - \int_{\Omega} \nabla u_n \cdot v dx.$$

Since $u_n \rightarrow u$ in $L^1_{loc}(\Omega)$, we have

$$\int_{\Omega} u_n \nabla v dx \rightarrow \int_{\Omega} u \nabla v dx.$$

Since $Du_n \rightarrow g$ in $L^1_{loc}(\Omega, \mathbb{R}^N)$, we have

$$- \int_{\Omega} \nabla u_n \cdot v dx \rightarrow - \int_{\Omega} g \cdot v dx.$$

Setting Du as the weak derivative of u in the following distribute sense

$$\int_{\Omega} u \nabla v dx = - \int_{\Omega} Du \cdot v dx,$$

we can see $g = Du \in L^p(\Omega, \mathbb{R}^N)$ in the weak sense, and $Du_n \rightarrow Du$ in $L^1_{loc}(\Omega, \mathbb{R}^N)$. Based on this fact, we can obtain (2.25) by the same analysis in the proof of (2.2).

Lemma 2.10. Let $N \in \mathbb{N}$, $\alpha \in (0, N)$ and $p \geq 1$. The normed space $W^{1,\alpha,p}(\Omega)$ is complete.

Proof. Let $(u_n)_{n \in \mathbb{N}}$ be a Cauchy sequence in $W^{1,\alpha,p}(\Omega)$. By the local estimate of the Coulomb energy, $(u_n)_{n \in \mathbb{N}}$ and $(Du_n)_{n \in \mathbb{N}}$ are also the Cauchy sequences in $L^p_{loc}(\Omega)$. Hence there exists $u \in L^p_{loc}(\Omega)$ such that $(u_n)_{n \in \mathbb{N}} \rightarrow u$ in $L^p_{loc}(\Omega)$ and $g \in L^p_{loc}(\Omega, \mathbb{R}^N)$ such that $(Du_n)_{n \in \mathbb{N}} \rightarrow g$ in $L^p_{loc}(\Omega, \mathbb{R}^N)$. In light of Lemma 2.9, we conclude that $u \in W^{1,\alpha,p}(\Omega)$. Moreover, for every $n \in \mathbb{N}$ the sequence $(u_n - u_m)_{m \in \mathbb{N}}$ converges to $(u_n - u)$ in $L^p_{loc}(\Omega)$. Hence, by Lemma 2.9 again, we have

$$\limsup_{n \rightarrow \infty} \left(\int_{\Omega} |I_{\alpha/2} \ast |Du_n - Du|^p|^2 dx + \int_{\Omega} |I_{\alpha/2} \ast |u_n - u|^p|^2 dx \right) \leq \limsup_{n \rightarrow \infty} \limsup_{m \rightarrow \infty} \left(\int_{\Omega} |I_{\alpha/2} \ast |Du_n - Du_m|^p|^2 dx + \int_{\Omega} |I_{\alpha/2} \ast |u_n - u_m|^p|^2 dx \right) \leq \lim_{m,n \rightarrow \infty} \left(\int_{\Omega} |I_{\alpha/2} \ast |Du_n - Du_m|^p|^2 dx + \int_{\Omega} |I_{\alpha/2} \ast |u_n - u_m|^p|^2 dx \right) \leq 0.$$
This implies $W^{1,\alpha,p}(\Omega)$ is complete. \hfill \Box

We show that the Coulomb-Sobolev space $W^{1,\alpha,p}(\Omega)$ can be naturally identified with the completion of the set of the test functions $C_0^\infty(\Omega)$ under the norm $|| \cdot ||_{W^{1,\alpha,p}}$.

Lemma 2.11. Let $N \in \mathbb{N}$, $\alpha \in (0,N)$ and $p \geq 1$. The space of test function $C_0^\infty(\Omega)$ is dense in $W^{1,\alpha,p}(\Omega)$.

Proof. Since the test function $C_0^\infty(\Omega)$ is dense in $Q^{\alpha,p}(\Omega)$, see Proposition 2.6 in [28], then, by Lemma 2.9 the conclusion also holds in $W^{1,\alpha,p}(\Omega)$. \hfill \Box

Similar to the Poincaré inequality for the local case, we have the following Poincaré inequality for the nonlocal case.

Lemma 2.12. For all $N \in \mathbb{N}$ and $\alpha \in (0,N)$, there exist $p \in \left(\frac{N-\alpha}{2}, \infty\right)$ if $\alpha \in (0,N-2)$, while $p \in [N,\infty)$ if $\alpha \in [N-2,N)$, such that for every $a \in \Omega$ and $\rho > 0$

$$
\int_{B_{\rho}(a)} |I_{\alpha/2} * |u|^p|^2 \leq C\rho^{-\frac{N-\alpha}{2}} \left(\int_{B_{\rho}(a)} |I_{\alpha/2} * |Du|^p|^2 dx \right)^{\frac{1}{2}}.
$$

Proof. By the HLS inequality (1.11), we have

$$
\int_{B_{\rho}(a)} |I_{\alpha/2} * |u|^p|^2 dx \leq C\int_{B_{\rho}(a)} |u|^{2Np} dx \leq C_1(\alpha, \rho, p, N) \left(\int_{B_{\rho}(a)} |u|^{\frac{2Np}{N-\alpha+2p}} dx \right)^{\frac{N-\alpha}{N}}.
$$

On the other hand, if $\alpha \in (0,N-2)$ and $p \in \left(\frac{N-\alpha}{2}, N\right) \subset (1, N)$, then we have

$$
\left(\int_{B_{\rho}(a)} |u(x)|^{\frac{2Np}{N-\alpha+2p}} dx \right)^{\frac{N-\alpha}{N}} \leq C_2(\alpha, \rho, p, N) \left(\int_{B_{\rho}(a)} |u(x)|^{\frac{Np}{N-2}} dx \right)^{\frac{N-\alpha}{N}} \leq C_3(\alpha, \rho, p, N) \left(\int_{B_{\rho}(a)} |Du|^p dx \right)^{\frac{2}{p}}.
$$

On the other hand, if $\alpha \in [N-2,N)$, we know there exists $h \in \left[\frac{2Np}{N-\alpha+2p}, N\right)$ such that

$$
\left(\int_{B_{\rho}(a)} |u(x)|^{\frac{2Np}{N-\alpha+2p}} dx \right)^{\frac{N-\alpha}{N}} \leq C_4(\alpha, \rho, p, N) \left(\int_{B_{\rho}(a)} |Du|^p dx \right)^{\frac{2}{p}} \leq C_5(\alpha, \rho, p, N) \left(\int_{B_{\rho}(a)} |Du|^p dx \right)^{\frac{2}{p}},
$$

where the Hölder inequality was applied. Consequently, for $\alpha \in [N-2,N)$, there also exist $p \in [N,\infty)$ and $h \in \left[\frac{2Np}{N-\alpha+2p}, N\right)$ such that (2.32) holds.

Then the conclusion follows from (2.30), (2.31), (2.32) and the local estimate of Coulomb energy [28, Proposition 2.3], which says that

$$
\left(\int_{B_{\rho}(a)} |Du|^p dx \right)^{\frac{2}{p}} \leq C\rho^{-\frac{2Np}{N-\alpha+2p}} \left(\int_{B_{\rho}(a)} |I_{\alpha/2} * |Du|^p|^2 dx \right)^{\frac{1}{2}}.
$$

\hfill \Box

To establish the Helmholtz decomposition, we also define the following Coulomb-Sobolev space.

Definition 2.13. Let $\Omega \subset \mathbb{R}^3$, $\alpha \in (0,3)$ and $p \in (1,\infty)$. We define $W^{1,\alpha,p}_0(\mathbb{R}^3)$ and $W^{1,\alpha,p}_0(\Omega)$ as the completion of $C_0^\infty(\mathbb{R}^3)$ and $C_0^\infty(\Omega)$ with respect to the norm

$$
||w||_{W^{1,\alpha,p}_0(\mathbb{R}^3)} = ||\nabla w||_{Q^{\alpha,p}(\mathbb{R}^3)}, \quad ||w||_{W^{1,\alpha,p}_0(\Omega)} = ||\nabla w||_{Q^{\alpha,p}(\Omega)}.
$$
Proposition 2.14. \(W_{0}^{1,\alpha,p}(\mathbb{R}^3) \) is linearly isometric to
\[
\nabla W_{0}^{1,\alpha,p}(\mathbb{R}^3) := \{ \nabla w \in Q^{\alpha,p}(\mathbb{R}^3, \mathbb{R}^3) : w \in W_{0}^{1,\alpha,p}(\mathbb{R}^3) \},
\]
and \(W_{0}^{1,\alpha,p}(\Omega) \) is linearly isometric to
\[
\nabla W_{0}^{1,\alpha,p}(\Omega) := \{ \nabla w \in Q^{\alpha,p}(\Omega, \mathbb{R}^3) : w \in W_{0}^{1,\alpha,p}(\Omega) \}.
\]

Proof. Set the map \(\nabla : W_{0}^{1,\alpha,p}(\mathbb{R}^3) \rightarrow \nabla W_{0}^{1,\alpha,p}(\mathbb{R}^3) \). Since the Coulomb space is complete, the map is obviously injective and surjective. We also easily check that the map is isometric by the definition of \(W_{0}^{1,\alpha,p}(\mathbb{R}^3) \), this implies our conclusion. \(\square \)

2.1.2. Helmholtz decomposition.

Let \(\mathcal{D}^{1,2}(\mathbb{R}^3, \mathbb{R}^3) \) denote the completion of \(C_{0}^{\infty}(\mathbb{R}^3, \mathbb{R}^3) \) with respect to the norm \(|\nabla \cdot |_{2} \). Recall the subspace \(\mathcal{V}_{\mathbb{R}^3} \) and \(\mathcal{W}_{\mathbb{R}^3} \) of \(W_{0}^{\alpha,2\alpha}(\text{curl}; \mathbb{R}^3) \) in the introduction, we have the following Helmholtz decomposition on \(W_{0}^{\alpha,2\alpha}(\text{curl}; \mathbb{R}^3) \).

Lemma 2.15. \(\mathcal{V}_{\mathbb{R}^3} \) and \(\mathcal{W}_{\mathbb{R}^3} \) are closed subspaces of \(W_{0}^{\alpha,2\alpha}(\text{curl}; \mathbb{R}^3) \) and
\[
W_{0}^{\alpha,2\alpha}(\text{curl}; \mathbb{R}^3) = \mathcal{V}_{\mathbb{R}^3} \oplus \nabla W_{0}^{1,\alpha,2\alpha}(\mathbb{R}^3) = \mathcal{V}_{\mathbb{R}^3} \oplus \mathcal{W}_{\mathbb{R}^3}. \quad (\text{direct sum}) \quad (2.33)
\]
Moreover, \(\mathcal{V}_{\mathbb{R}^3} \subset \mathcal{D}^{1,2}(\mathbb{R}^3, \mathbb{R}^3) \) and the norms \(|\nabla \cdot |_{2} \) and \(\| \cdot \|_{W_{0}^{\alpha,2\alpha}(\text{curl}; \mathbb{R}^3)} \) are equivalent in \(\mathcal{V}_{\mathbb{R}^3} \).

Proof. By the HLS inequality in Proposition 1.1, there is a continuous embedding
\[
L^{2}(\mathbb{R}^3, \mathbb{R}^3) \hookrightarrow Q^{\alpha,2\alpha}(\mathbb{R}^3, \mathbb{R}^3).
\]
Then the conclusion follows from the argument in \cite[Lemma 3.2]{29}. Indeed, Since \(W_{0}^{1,\alpha,2\alpha}(\mathbb{R}^3) \) is a complete space, then \(W_{0}^{1,\alpha,2\alpha}(\mathbb{R}^3) \) is a closed subspace of \(Q^{\alpha,2\alpha}(\mathbb{R}^3, \mathbb{R}^3) \). Moreover \(\text{cl} \mathcal{V}_{\mathbb{R}^3} \cap \nabla W_{0}^{1,\alpha,2\alpha}(\mathbb{R}^3) = \{ 0 \} \) in \(Q^{\alpha,2\alpha}(\mathbb{R}^3, \mathbb{R}^3) \), hence \(\mathcal{V}_{\mathbb{R}^3} \cap \nabla W_{0}^{1,\alpha,2\alpha}(\mathbb{R}^3) = \{ 0 \} \) in \(W_{0}^{\alpha,2\alpha}(\text{curl}; \mathbb{R}^3) \).

In view of the Helmholtz decomposition, and smooth function \(\varphi \in C_{0}^{\infty}(\mathbb{R}^3, \mathbb{R}^3) \) can be written as
\[
\varphi = \varphi_{1} + \nabla \varphi_{2}
\]
such that \(\varphi_{1} \in \mathcal{D}^{1,2}(\mathbb{R}^3, \mathbb{R}^3) \cap C^{\infty}(\mathbb{R}^3, \mathbb{R}^3), \text{div}(\varphi_{1}) = 0 \) and \(\varphi_{2} \in C^{\infty}(\mathbb{R}^3) \) is the Newton potential of \(\text{div}(\varphi) \). Since \(\varphi \) has compact support, then \(\nabla \varphi_{2} \in L^{6}(\mathbb{R}^3, \mathbb{R}^3) \subseteq Q^{\alpha,2\alpha}(\mathbb{R}^3, \mathbb{R}^3) \) and \(\varphi_{1} = \varphi - \nabla \varphi_{2} \in \mathcal{V}_{\mathbb{R}^3} \). Observe that \(\nabla \times \nabla \varphi_{1} = -\Delta \varphi_{1} \), hence
\[
|\nabla \times u|_{2} = |\nabla u|_{2} = \| u \|_{\mathcal{D}^{1,2}(\mathbb{R}^3, \mathbb{R}^3)}
\]
for any \(u \in \mathcal{V}_{\mathbb{R}^3} \). By the Sobolev embedding we have \(\mathcal{V}_{\mathbb{R}^3} \) is continuously embedded in \(L^{6}(\mathbb{R}^3, \mathbb{R}^3) \) and by the HLS inequality also in \(Q^{\alpha,2\alpha}(\mathbb{R}^3, \mathbb{R}^3) \). Therefore the norms \(\| \cdot \|_{\mathcal{D}^{1,2}(\mathbb{R}^3, \mathbb{R}^3)} \) and \(\| \cdot \|_{W_{0}^{\alpha,2\alpha}(\text{curl}; \mathbb{R}^3)} \) are equivalent on \(\mathcal{V}_{\mathbb{R}^3} \) and by the density argument we get the decomposition (2.33). \(\square \)

For the bounded domains case, we recall the definition of \(\mathcal{V}_{\Omega}' \) in \cite{3}, that is
\[
\mathcal{V}_{\Omega}' = \{ v \in W_{0}^{2}(\text{curl}; \Omega) : \int_{\Omega} \langle v, \varphi \rangle dx = 0 \text{ for every } \varphi \in C_{0}^{\infty}(\Omega, \mathbb{R}^3) \text{ with } \nabla \times \varphi = 0 \}.
\]
Indeed, if \(\varphi \) is supported in a ball, we have \(\varphi = \nabla \psi \) for some \(\psi \in C_{0}^{\infty}(\Omega) \), hence we have \(\text{div}(v) = 0 \) for \(v \in \mathcal{V}_{\Omega}' \). This implies that
\[
\mathcal{V}_{\Omega}' = \{ v \in W_{0}^{2}(\text{curl}; \Omega) : \text{div } v = 0 \text{ in the sense of distributions} \}
\subset \{ v \in W_{0}^{2}(\text{curl}; \Omega) : \text{div } v \in L^{2}(\Omega, \mathbb{R}^3) \} =: X_{N}(\Omega).
\]
Furthermore, since \(\Omega \) is a bounded domain, either convex or with \(C^{1,1} \) boundary, \(X_{N}(\Omega) \) is continuously embedded in \(H^{1}(\Omega, \mathbb{R}^3) \), see \cite{1}. Therefore in view of the Rellich’s theorem \(\mathcal{V}_{\Omega}' \) is compactly embedded in \(L^{2}(\Omega, \mathbb{R}^3) \) and continuously in \(L^{6}(\Omega, \mathbb{R}^3) \), so is \(Q^{\alpha,2\alpha}(\Omega, \mathbb{R}^3) \). This implies in particular
that $\mathcal{V}'_\Omega \subset \mathcal{V}_\Omega$. On the other hand, since $W^{\alpha,2\alpha}_0(\text{curl}; \Omega) \subset W^2_0(\text{curl}; \Omega)$, we have $\mathcal{V}_\Omega \subset \mathcal{V}'_\Omega$. Therefore, we can see that $\mathcal{V}_\Omega = \mathcal{V}'_\Omega$ is a Hilbert space with inner product

$$(v, z) = \int_\Omega (\nabla \times v, \nabla \times z) dx = \int_\Omega (\nabla v, \nabla z) dx.$$

Also, one can easily observe that \mathcal{V}_Ω is a closed linear subspace of $W^{\alpha,2\alpha}_0(\text{curl}; \Omega)$. Therefore, by Theorem 4.21 (c) in [21], we have the following Helmholtz decomposition

$$W^{\alpha,2\alpha}_0(\text{curl}; \Omega) = \mathcal{V}_\Omega \oplus \mathcal{W}_\Omega.$$

and that

$$\int_\Omega (v, w) dx = 0 \quad \text{if} \quad v \in \mathcal{V}_\Omega, \ w \in \mathcal{W}_\Omega,$$

which means that \mathcal{V}_Ω and \mathcal{W}_Ω are orthogonal in $L^2(\Omega, \mathbb{R}^3)$. Then the norm

$$||v + w|| := ((v, v) + |w|^{1\over 2})^{1/2}, \ v \in \mathcal{V}_\Omega, \ w \in \mathcal{W}_\Omega$$

is equivalent to $||v||_{W^{\alpha,2\alpha}_0(\text{curl}; \Omega)}$.

For the setting of boundary condition, according to [35, Theorem 3.33], there is a continuous tangential trace operator $\gamma_t : W^2(\text{curl}; \Omega) \rightarrow H^{-1/2}(\partial \Omega)$ such that

$$\gamma_t(u) = \nu \times u|_{\partial \Omega} \quad \text{for any} \ u \in C^\infty(\Omega, \mathbb{R}^3)$$

and

$$W^2_0(\text{curl}; \Omega) = \{u \in W^2(\text{curl}; \Omega) : \gamma_t(u) = 0\}.$$

Hence the vector field $u \in W^{\alpha,2\alpha}_0(\text{curl}; \Omega) = \mathcal{V}_\Omega \oplus \mathcal{W}_\Omega \subset W^2_0(\text{curl}; \Omega)$ satisfies the boundary condition in (1.10).

On the other hand, \mathcal{W}_Ω contains all gradient vectors fields, i.e. $\nabla W^{1,\alpha,2\alpha}_0(\Omega) \subset \mathcal{W}_\Omega$. However, for some general domains, $\{w \in \mathcal{W}_\Omega : \text{div}(w) = 0\}$ may be nontrivial (harmonic field) and hence $\nabla W^{1,\alpha,2\alpha}_0(\Omega) \subset \mathcal{W}_\Omega$, see [5, pp.4314-4315]. While in the topology domains as we supposed, we have the following conclusion, which is a trivial extended from Lemma 2.3 in [33].

Lemma 2.16. There holds $\mathcal{W}_\Omega = W^{\alpha,2\alpha}_0(\text{curl}; \Omega) \cap W^3 = W^{\alpha,2\alpha}_0(\text{curl}; \Omega) \cap W^{1,\alpha,2\alpha}_0(\Omega)$. If $\partial \Omega$ is connected, then $\mathcal{W}_\Omega = \nabla W^{1,\alpha,2\alpha}_0(\Omega)$. If Ω is unbounded, $\mathcal{W}_\Omega = W^{\alpha,2\alpha}_0(\text{curl}; \Omega) \cap W^3$ still holds.

2.2. Concentration Compactness Lemma

In view of the Helmholtz decomposition, the work space is decomposed into a Hilbert space \mathcal{V}_Ω and a Banach space \mathcal{W}_Ω. For a bounded sequence in the work space, one can obtain the a.e. convergence in \mathcal{V}_Ω by the Rellich compactness theorem, which is important to the weak-weak* continuity of $J'(u)$. While in the subspace \mathcal{W}_Ω, $w_n = \nabla p_n \rightharpoonup \nabla p = w$ can not deduce the a.e. convergence. By setting the convex nonlinearity satisfied the coercive condition, Meredski [33] connected the subspaces \mathcal{V}_Ω and \mathcal{W}_Ω by the global minimum argument, then the a.e. convergence on \mathcal{W}_Ω can be recovered by the second concentration compactness lemma, see Lions [26]. Since the nonlinearity becomes a nonlocal term, we make some minor modifications to the concentration compactness lemma.

In this subsection, We work in some subspaces of $Q^{\alpha,2\alpha}(\Omega, \mathbb{R}^3)$ and $Q^{\alpha,2\alpha}(\mathbb{R}^3, \mathbb{R}^3)$. Let $Z \subset \mathcal{V}_\Omega$ be a finite-dimension subspace of $Q^{\alpha,2\alpha}(\Omega, \mathbb{R}^N)$ such that $Z \cap \mathcal{W}_\Omega = \{0\}$ and put

$$\widetilde{\mathcal{W}} := \mathcal{V}_\Omega \oplus Z.$$

Correspondingly, in \mathbb{R}^3, we put $Z = \{0\}$ and $\widetilde{\mathcal{W}} = \mathcal{W}_{\mathbb{R}^3}$. For simplicity, we only show the discussion on bounded domains Ω, and the case in the entire space \mathbb{R}^3 is similar. Note that we always assume that $v \in \mathcal{V}_{\mathbb{R}^3} \subset D^{1,2}(\mathbb{R}^3, \mathbb{R}^3)$ but not \mathcal{V}_Ω, we then have
Lemma 2.17. Assume $F(u) = (I_{\alpha} * |u|^{2\alpha}) |u|^{2\alpha}$ and $f(u) = \partial_u F(u)$, then $F(u)$ is uniformly strictly convex with respect to $u \in \mathbb{R}^N$, i.e. for any compact $A \subset (\mathbb{R}^3 \times \mathbb{R}^3) \setminus \{(u, u) : u \in \mathbb{R}^3\}$

$$\inf_{x \in \Omega, (u_1, u_2) \in A} \left(\frac{1}{2} \left(F(u_1) + F(u_2) \right) - F\left(\frac{u_1 + u_2}{2} \right) \right) > 0; \quad (2.36)$$

Moreover, for any $v \in \mathcal{V}_{\mathbb{R}^3}$ we find a unique $\tilde{w}_\Omega(v) \in \tilde{\mathcal{W}}$ such that

$$\int_{\Omega} F(v + \tilde{w}_\Omega(v)) dx \leq \int_{\Omega} F(v + \tilde{w}) dx \quad \text{for all } \tilde{w} \in \tilde{\mathcal{W}}. \quad (2.37)$$

In other words,

$$\int_{\Omega} \langle f(v + \tilde{w}), \zeta \rangle dx = 0 \quad \text{for all } \zeta \in \tilde{\mathcal{W}} \text{ if and only if } \tilde{w} = \tilde{w}_\Omega(v). \quad (2.38)$$

Proof. The uniformly convexity of $F(u)$ follows from the Proposition 2.8 in [28]. Now, we prove that $F(u)$ is strictly convex. Set $I(u) = \int_{\mathbb{R}^3} F(u) dx$ and $u(x) = (u_1, u_2, u_3)$, then for any $(s_1, s_2, s_3) \in \mathbb{R}^3$ we have

$$I(u) = \int_{\Omega} |I_{\alpha/2} * |u|^{2\alpha}|^2 dx = \int_{\Omega} \left[\sum_{i=1}^{3} s_i |u_i|^{2\alpha} \right]^2 dx = \int_{\Omega} \left[\sum_{i=1}^{3} s_j \left(I_{\alpha/2} * |u_i|^{2\alpha} \right)^2 \right] dx$$

Set

$$g(s_1, s_2, s_3) = \left[\sum_{i=1}^{3} s_j \left(I_{\alpha/2} * |u_i|^{2\alpha} \right) \right]^2 = h(L(s_1, s_2, s_3)),$$

where $h(t) = t^2$ ia a strict convex function and

$$L(s_1, s_2, s_3) = \sum_{i=1}^{3} s_j \left(I_{\alpha/2} * |u_i|^{2\alpha} \right).$$

is a linear functional. Then, for each $x \in \mathbb{R}^3$, $g(s_1, s_2, s_3)$ is convex.

Indeed, fix $\lambda \in (0, 1)$ and $(s_1, s_2, s_3), (r_1, r_2, r_3) \in \mathbb{R}^3$, we have

$$g((1-\lambda)(s_1, s_2, s_3) + \lambda(r_1, r_2, r_3)) = h(L((1-\lambda)(s_1, s_2, s_3) + \lambda(r_1, r_2, r_3)))$$

$$= h((1-\lambda)\lambda L(s_1, s_2, s_3) + \lambda L(r_1, r_2, r_3)) \leq (1-\lambda)h(L(s_1, s_2, s_3)) + \lambda h(L(r_1, r_2, r_3))$$

$$= (1-\lambda)g(s_1, s_2, s_3) + \lambda g(r_1, r_2, r_3).$$

Moreover, since L is an injective function, we deduce that g is strictly convex. Hence, $I(u)$ is strictly convex, so is $F(u)$. On the other hand, $I(u)$ is coercive in $Q^{\alpha, 2\alpha} (\Omega, \mathbb{R}^3)$. Then, by the global minimum theorem, we have (2.37) and (2.38).

\[\square \]

Denote the space of finite measures in \mathbb{R}^3 by $\mathcal{M}(\mathbb{R}^3)$. Then we have the following concentration-compactness lemma, see [33, Lemma 3.1] for the local case.

Lemma 2.18. Assume $F(u) = (I_{\alpha} * |u|^{2\alpha}) |u|^{2\alpha}$. Suppose $(v_n) \in \mathcal{V}_{\mathbb{R}^3}$, $v_n \rightharpoonup v_0$ in $\mathcal{V}_{\mathbb{R}^3}$, $v_n \rightarrow v_0$ a.e. in \mathbb{R}^3, $|\nabla v_n|^2 \rightarrow \mu$ and $(I_{\alpha} * |v_n|^{2\alpha}) |v_n|^{2\alpha} \rightarrow \rho$ in $\mathcal{M}(\mathbb{R}^3)$. Then there exists an at most countable set $I \subset \mathbb{R}^3$ and nonnegative weights $\{\mu_x\}_{x \in I}$, $\{\rho_x\}_{x \in I}$ such that

$$\mu \geq |\nabla v_0|^2 + \sum_{x \in I} \mu_x \delta_x, \quad \rho = (I_{\alpha} * |v_0|^{2\alpha}) |v_0|^{2\alpha} + \sum_{x \in I} \rho_x \delta_x,$$

and passing to a subsequence, $\tilde{w}_\Omega(v_n) \rightharpoonup \tilde{w}_\Omega(v_0)$ in $\tilde{\mathcal{W}}$, $\tilde{w}_\Omega(v_n) \rightarrow \tilde{w}_\Omega(v_0)$ a.e. in Ω and in $L^p_{\text{loc}}(\Omega)$ for any $1 \leq p \leq 2\alpha$.

Remark 2.19. If $\Omega = \mathbb{R}^3$, $\tilde{\mathcal{W}} = \mathcal{W}_{\mathbb{R}^3}$, we have the same conclusion, that is $\tilde{w}_{\mathbb{R}^3}(v_n) \rightharpoonup \tilde{w}_{\mathbb{R}^3}(v_0)$ in $\tilde{\mathcal{W}}$, $\tilde{w}_{\mathbb{R}^3}(v_n) \rightarrow \tilde{w}_{\mathbb{R}^3}(v_0)$ a.e. in \mathbb{R}^3.

The convexity of \tilde{F} implies that
\[
\left(\int_{\mathbb{R}^3} |F'(\varphi(v_n - v_0))|^{2*_{\alpha}} dx \right)^{\frac{1}{2*_{\alpha}}} \leq \int_{\mathbb{R}^3} |\nabla(\varphi(v_n - v_0))|^{2} dx.
\]

This means that
\[
\left(\int_{\mathbb{R}^3} |\varphi|^{2*_{\alpha}} \left(I_\alpha \ast |v_n - v_0|^{2*_{\alpha}} \right) |(v_n - v_0)|^{2*_{\alpha}} dx \right)^{\frac{1}{2*_{\alpha}}} \leq \int_{\mathbb{R}^3} |\varphi|^{2} |\nabla(v_n - v_0)|^{2} dx + o(1).
\]

Using the Brezis-Lieb lemma for the nonlocal case on the left-hand side, see [19, pp.1226], we then obtain
\[
\left(\int_{\mathbb{R}^3} |\varphi|^{2*_{\alpha}} d\rho \right)^{\frac{1}{2*_{\alpha}}} \leq \left(\int_{\mathbb{R}^3} |\varphi|^{2} d\rho \right)^{1/2},
\]

where $\rho := \mu - |\nabla v_0|^2$ and $\rho = \mu - (I_\alpha \ast |v_0|^{2*_{\alpha}}) |v_0|^{2*_{\alpha}}$. Set $I = \{x \in \mathbb{R}^3 : \mu(\{x\}) > 0\}$. Since μ is finite and μ, ρ have the same singular set, I is at most countable and $\mu \geq |\nabla v_0|^2 + \Sigma x \in I \mu_x \delta_x$. As in the proof of Lemma 2.5 in [18], it follows from (2.39) that $\rho = \Sigma x \in I \rho_x \delta_x$. So μ and ρ are as claimed.

Step 2. To recover the a.e. convergency of the sequence on W_Ω, we consider the global minimum argument which connects $V_{3\Omega}$ and W_Ω. Using (2.37) we infer that
\[
|v_n + \tilde{w}_\Omega(v_n)|^{2*_{\alpha}} \leq \int_{\Omega} F(v_n + \tilde{w}_\Omega(v_n)) \leq \int_{\Omega} F(v_n) dx \leq |v_n|^{2*_{\alpha}}.
\]

Since the right-hand side above is bounded, so is $|\tilde{w}_\Omega(v_n)|^{Q^*_{\alpha}}$. Hence, by the uniform convexity and reflexivity of Coulomb space, see [28, Section 2.4.1], up to a subsequence, $\tilde{w}_\Omega(v_n) \rightharpoonup \tilde{w}_0$ for some \tilde{w}_0.

In the following we are going to prove that $\tilde{w}_\Omega(v_n) \rightharpoonup \tilde{w}_0$ a.e. in Ω after taking subsequence. The convexity of F in u implies that
\[
F \left(\frac{u_1 + u_2}{2} \right) \geq F(u_1) + \left\langle f(u_1) + f(u_2), \frac{u_2 - u_1}{2} \right\rangle,
\]

applying (2.36), we obtain for any $k \geq 1$ and $|u_1 - u_2| \geq \frac{1}{k}, |u_1|, |u_2| \leq k$ that
\[
m_k \leq \frac{1}{2} \left(F(u_1) + F(u_2) \right) - F \left(\frac{u_1 + u_2}{2} \right) \leq \frac{1}{4} \left(f(u_1) - f(u_2), u_1 - u_2 \right),
\]

where
\[
m_k := \inf_{x \in \Omega, u_1, u_2 \in \mathbb{R}^3} \frac{1}{2} \left(F(u_1) + F(u_2) \right) - F \left(\frac{u_1 + u_2}{2} \right) > 0 \text{ for } \frac{1}{k} \leq |u_1 - u_2|, |u_1|, |u_2| \leq k.
\]

Now we decompose by $\tilde{w}_\Omega(v_n) = w_n + z_n$, $\tilde{w}_0 = w_0 + z_0$ where $w_n, w_0 \in W_\Omega$ and $z_n, z_0 \in Z$. Obviously, since Z is a finite dimension space, we may assume $z_n \rightharpoonup z_0$ in Z and a.e. in Ω. Notice that $v_n + \tilde{w}_\Omega(v_n)$ is bounded in $Q^*_{\alpha}(\Omega, \mathbb{R}^3)$, we may introduce
\[
\Omega_{n,k} := \{ x \in \Omega : |v_n + \tilde{w}_\Omega(v_n) - v_0 - w_0 - z_0| \geq \frac{1}{k} \text{ and } |v_n + \tilde{w}_\Omega(v_n)|, |v_0 + w_0 + z_0| \leq k \}.
\]
Then, by (2.42) and (2.41), we have
\[
4m_k \int_{\Omega_{n,k}} |\varphi|^{2\alpha} dx
\leq \int_{\Omega} |\varphi|^{2\alpha} (f(v_n + \tilde{w}_\Omega(v_n)) - f(v_0 + w_0 + z_0), v_n + \tilde{w}_\Omega(v_n) - v_0 - w_0 - z_0) dx
\]
(2.43)
\[
= \int_{\Omega} |\varphi|^{2\alpha} (f(v_n + \tilde{w}_\Omega(v_n)) - f(v_0 + w_0 + z_0), v_n - v_0) dx
+ \int_{\Omega} |\varphi|^{2\alpha} (f(v_n + \tilde{w}_\Omega(v_n)) - f(v_0 + w_0 + z_0), \tilde{w}_\Omega(v_n) - w_0 - z_0) dx = I_1 + I_2.
\]
Since \(|v_n + \tilde{w}_\Omega(v_n)| \leq k\) and \(|v_0 + w_0 + z_0| \leq k\) on \(\Omega_{n,k}\), we have \(|v_n + \tilde{w}_\Omega(v_n)| \leq C_1|v_n|\) and \(|v_0 + w_0 + z_0| \leq C_2|v_0|\). Then, by the similar estimation in (iii) of Lemma 2.7 we have
\[
I_1 = \int_{\Omega} |\varphi|^{2\alpha} \langle (I_\alpha * |v_n + \tilde{w}_\Omega(v_n)|)^{2\alpha} |v_n + \tilde{w}_\Omega(v_n)|^{2\alpha-2} (v_n + \tilde{w}_\Omega(v_n))
- (I_\alpha * |v_0 + w_0 + z_0|^{2\alpha}) |v_0 + w_0 + z_0|^{2\alpha-2} (v_0 + w_0 + z_0), v_n - v_0 \rangle dx
\]
(2.44)
\[
\leq C \int_{\Omega} |\varphi|^{2\alpha} \langle (I_\alpha * |v_n|^{2\alpha}) |v_n|^{2\alpha-2} v_n - (I_\alpha * |v_0|^{2\alpha}) |v_0|^{2\alpha-2} v_0, v_n - v_0 \rangle dx
\leq C \left(\int_{\Omega} |\varphi|^{2\alpha} (I_\alpha * |v_n - v_0|^{2\alpha}) |v_n - v_0|^{2\alpha} dx \right)^{\frac{1}{2\alpha}} = C \left(\int_{\Omega} |\varphi|^{2\alpha} d\rho \right)^{\frac{1}{2\alpha}}.
\]
where we use the fact that \(Z\) is a finite dimension space and \(\int_{\Omega} \langle v, w \rangle dx = 0\) see (4.2).

Next, we are going to show that \(I_2 = o(1)\). Fix \(l \geq 1\). In view of Lemma 2.11, Lemma 2.12 and Lemma 1.1 in [23], there exists \(\xi_n \in W^{1,\alpha,2\alpha}(B_l)\) such that \(w_n = \nabla \xi_n\) and we may assume without loss of generality that \(\int_{B_l} \xi_n dx = 0\). Then by the Poincaré inequality in Lemma 2.12
\[
||\xi_n||_{W^{1,\alpha,2\alpha}(B_l)} \leq C|w_n|_{Q^{\alpha,2\alpha}(B_l; \mathbb{R}^3)} \leq C|w_n|_{Q^{\alpha,2\alpha}(\mathbb{R}^3; \mathbb{R}^3)},
\]
and passing to a subsequence, \(\xi_n \rightharpoonup \xi\) for some \(\xi \in W^{1,\alpha,2\alpha}(B_l)\). So by the natural compactly embedding, \(\xi_n \rightarrow \xi\) in \(Q^{\alpha,2\alpha}(B_l)\). Now take any \(\varphi \in C_0^\infty(B_l)\). Since \(\nabla(|\varphi|^{2\alpha} (\xi_n - \xi)) \in \tilde{W}\), in view of (2.38) we get
\[
\int_{\Omega} \langle f(v_n + \tilde{w}_\Omega(v_n)), \nabla(|\varphi|^{2\alpha} (\xi_n - \xi)) \rangle dx = 0.
\]
That is
\[
\int_{\Omega} |\varphi|^{2\alpha} (f(v_n + \tilde{w}_\Omega(v_n)), w_n - \nabla \xi) dx = \int_{\Omega} \langle f(v_n + \tilde{w}_\Omega(v_n)), \nabla(|\varphi|^{2\alpha}) (\xi - \xi) \rangle dx
\]
where the right-hand side tends to 0 as \(n \rightarrow \infty\). Since \(w_n \rightharpoonup \nabla \xi\) in \(Q^{\alpha,2\alpha}(B_l)\),
\[
\int_{\Omega} |\varphi|^{2\alpha} (f(v_0 + \nabla \xi + z_0), w_n - \nabla \xi) dx = o(1).
\]
Hence, recalling that \(\tilde{w}_\Omega(v_n) = w_n + z_n\) and \(z_n \rightharpoonup z_0\), we obtain
\[
I_2 = \int_{\Omega} |\varphi|^{2\alpha} (f(v_n + \tilde{w}_\Omega(v_n)) - f(v_0 + \nabla \xi + z_0), \tilde{w}_\Omega(v_n) - \nabla \xi - z_0) dx = o(1).
\]
Since \(\varphi \in C_0^{\infty}(B_1) \) is arbitrary, it follows from (2.43) and (2.45) that
\[
4m_k|\Omega_{n,k} \cap E| \leq (|E(p)|)^{1/2n} + o(1)
\]
for any Borel set \(E \subset B_1 \). On the other hand, we can find an open set \(E_k \supset I \) such that \(|E_k| < \frac{1}{2^j+1} \).
Then, taking \(E = B_1 \setminus E_k \) in (2.46), we have \(4m_k|\Omega_{n,k} \cap (B_1 \setminus E_k)| = o(1) \) as \(n \to \infty \) because \(\text{supp}(\rho) \subset I \); hence we can find a sufficiently large \(n_k \) such that \(|\Omega_{n_k,k} \cap B_1| < \frac{1}{2^j} \) and we obtain
\[
|\bigcup_{j=1}^{\infty} \bigcap_{k=j}^{\infty} \Omega_{n_k,k} \cap B_1| \leq \lim_{j \to \infty} \sum_{k=j}^{\infty} |\Omega_{n_k,k} \cap B_1| \leq \lim_{j \to \infty} \frac{1}{2^{j+1}} = 0.
\]
According to the fact that \(\bar{w}_\Omega(v_n) \rightharpoonup \bar{w}_0 \), one can employ the diagonal procedure and hence find a subsequence of \(\bar{w}_\Omega(v_n) \) which converges to \(\bar{w}_0 \) a.e. in \(\Omega = \bigcup_{l=1}^{\infty} B_1 \).

Let \(p \in [1, 2^*_\alpha) \). For \(\Omega' \subset \Omega \) such that \(|\Omega'| < +\infty \) we have
\[
\int_{\Omega'} |v_n - v_0 + \bar{w}_\Omega(v_n) - \bar{w}_0|^{p} dx \leq |\Omega'|^{1-\frac{p}{2n}} \left(\int_{\Omega} |v_n - v_0 + \bar{w}_\Omega(v_n) - \bar{w}_0|^{2^*_\alpha} dx \right)^{\frac{p}{2^*_\alpha}}
\]
\[
\leq |\Omega'|^{1-\frac{p}{2n}} \text{diam}\Omega \left(\int_{\Omega} |\alpha/2 * (v_n - v_0 + \bar{w}_\Omega(v_n) - \bar{w}_0)|^{2^*_\alpha} dx \right)^{\frac{p}{2^*_\alpha}},
\]
where \(\text{diam}\Omega = \max_{x,y \in \Omega} |x - y| \). Hence by the Vitali convergence theorem, \(v_n - v_0 + \bar{w}_\Omega(v_n) - \bar{w}_0 \rightharpoonup 0 \) in \(L^p(\Omega) \) after passing to a subsequence.

Step 3. We show that \(\bar{w}_\Omega(v_0) = \bar{w}_0 \). Take any \(\bar{w} \in \tilde{W} \) and observe that by the Vitali convergence theorem,
\[
0 = \int_{\Omega} \langle f(v_n + \bar{w}_\Omega(v_n)), \bar{w} \rangle dx \to \int_{\Omega} \langle f(v_0 + \bar{w}_0), \bar{w} \rangle dx,
\]
up to a subsequence. Now (2.38) implies that \(\bar{w}_0 = \bar{w}_\Omega(v_0) \) which completes the proof. \(\square \)

2.3. Abstract Critical Point Theory

For readers convenience, we end this section with recalling the abstract critical point lemma, see [3, Section 4] and [31, Section 3] for more details. Let \(X \) be a reflexive Banach space with norm \(|\cdot|\) and with a topological direct sum decomposition \(X = X^+ \oplus \tilde{X} \), where \(X^+ \) is a Hilbert space with a scalar product. For \(u \in X \) we denote by \(u^+ \in X^+ \) and \(\tilde{u} \in \tilde{X} \) the corresponding summands so that \(u = u^+ + \tilde{u} \). We may assume that \((u, v) = |u|^2 \) for any \(u \in X^+ \) and that \(|u|^2 = |u^+|^2 + |\tilde{u}|^2 \). The topology \(\mathcal{T} \) on \(X \) is defined as the product of the norm topology in \(X^+ \) and the weak topology in \(\tilde{X} \). Thus \(u_n \rightharpoonup u \) is equivalent to \(u_n^+ \to u^+ \) and \(\tilde{u}_n \to \tilde{u} \).

Let \(J \in C^1(X, \mathbb{R}) \) be a functional on \(X \) of the form
\[
J(u) = \frac{1}{2} |u^+|^2 - I(u) \quad \text{for} \quad u = u^+ + \tilde{u} \in X^+ \oplus \tilde{X}
\]
such that the following assumptions hold
(A1) \(I \in C^1(X, \mathbb{R}) \) and \(I(u) \geq I(0) = 0 \) for any \(u \in X \).
(A2) \(I \) is \(\mathcal{T} \)-sequentially lower semi-continuous: \(u_n \rightharpoonup u \implies \lim \inf I(u_n) \geq I(u) \).
(A3) If \(u_n \rightharpoonup u \) and \(I(u_n) \to I(u) \) then \(u_n \to u \).
(A4) There exists \(r > 0 \) such that \(a := \inf_{u \in X^+ : |u| = r} J(u) > 0 \).
(B1) \(|u^+|^2 + I(u) \to \infty \) as \(|u| \to \infty \).
(B2) \(I(t_n u_n)/t_n^2 \to \infty \) if \(t_n \to \infty \) and \(u_n^+ \to u^+ \) for some \(u^+ \neq 0 \) as \(n \to \infty \).
(B3) \(\frac{1}{2} t I'(u)(u) + t I'(u)(v) + I(u) - I(tu + v) < 0 \) for every \(u \in \mathcal{N}, t > 0, v \in X \) such that \(u \neq tu + v \).

We defined the following Nehari-Pankov
\[
\mathcal{N} := \{ u \in X \setminus \tilde{X} : J'(u)|_{\mathbb{R}u \oplus \tilde{X}} = 0 \}.
\]
Correspondingly, we defined the \((PS)^T_\gamma\) condition for \(J\).

Definition 2.20. We say that \(J\) satisfies the \((PS)^T_\gamma\) condition in \(\mathcal{N}\) if every \((PS)_c\) sequence \((u_n) \in \mathcal{N}\) has a subsequence which convergence in the \(\mathcal{T}\) topology:

\[
u_n \in \mathcal{N}, \quad J(u_n) \rightarrow 0, \quad J'(u_n) \rightarrow c \quad \implies \quad u_n \xrightarrow{\mathcal{T}} u \in X \text{ along a subsequence.}
\]

We also recall the compactly perturbed problem with respect to another decomposition of \(X\). Namely, suppose that

\[
\widetilde{X} = X^0 \oplus X^1,
\]

where \(X^0, X^1\) are closed in \(\widetilde{X}\), and \(X^0\) is a Hilbert space. For \(u \in \widetilde{X}\) we denote \(u^0 \in X^0\) and \(u^1 \in X^1\) the corresponding summands so that \(u = u^0 + u^1\). We use the same notation for the scalar product in \(X^+ \oplus X^0\) and \(\langle u, u \rangle = ||u||^2 = ||u^+||^2 + ||u^0||^2\) for any \(u = u^+ + u^0 \in X^+ \oplus X^0\), hence \(X^+\) and \(X^0\) are orthogonal. We consider another functional \(J_{cp} \in C^1(X, \mathbb{R})\) of the form

\[
J_{cp} = \frac{1}{2}||u^+ + u^0||^2 - I_{cp}(u) \quad \text{for} \quad u = u^+ + u^0 + u^1 \in X^+ \oplus X^0 \oplus X^1.
\]

We define the corresponding Nehari-Pankov manifold for \(J_{cp}\)

\[
\mathcal{N}_{cp} := \{u \in X \setminus X^1 : J_{cp}'(u)|_{R(u) \oplus X^1} = 0\},
\]

and assume that \(J_{cp}\) satisfies all corresponding assumption (A1)-(A4), (B1)-(B3), where we replace \(X^+ \oplus X^0, X^1\) and \(I_{cp}\) instead of \(X^+, X\) and \(I\) respectively. Moreover, we enlist new additional conditions:

\(\text{(C1)} \quad J_{cp}(u_n) - J_{cp}(u) \rightarrow 0 \quad \text{if} \quad (u_n) \subset \mathcal{N}_{cp}\) is bounded and \((u_{n}^+ + u_{n}^0) \rightarrow 0\). Moreover there is \(M > 0\) such that \(J_{cp}(u) - J(u) \leq M||u^+ + u^0||^2\) for \(u \in \mathcal{N}_{cp}\).

\(\text{(C2)} \quad I(t_n u_n) \setminus t_n^2 \rightarrow \infty \quad \text{and} \quad t_n \rightarrow \infty \quad \text{and} \quad (I(t_n u_n))_{t_n} \text{is bounded away from} \ 0 \quad \text{for any} \ t > 1.\)

\(\text{(C3)} \quad J'\) is weak-to-weak* continuous on \(\mathcal{N}\), i.e. if \((u_n) \subset \mathcal{N}\), \(u_n \rightharpoonup u\), then \(J'(u_n) \rightharpoonup^* J'(u)\) in \(X^*\). Moreover \(J\) is weakly sequentially lower semi-continuous on \(\mathcal{N}\), i.e. if \((u_n) \subset \mathcal{N}\), \(u_n \rightharpoonup u\) and \(u \in \mathcal{N}\), then \(\lim_{n \to \infty} J(u_n) \geq J(u)\).

Here we present the abstract critical point theorem:

Lemma 2.21. \([\text{??}, \text{Theorem 3.2}]:\) Let \(J \in C^1(X, \mathbb{R})\) be coercive on \(\mathcal{N}\) and let \(J_{cp} \in C^1(X, \mathbb{R})\) be coercive on \(\mathcal{N}_{cp}\). Suppose that \(J\) and \(J_{cp}\) satisfy (A1)-(A4), (B1)-(B3) and set \(c = \inf\mathcal{N}\) and \(d = \inf\mathcal{N}_{cp}\). Then the following statements hold:

\(\text{(a)} \quad \text{If \ (C1)-(C2) hold and} \ \beta < d, \ \text{then any} \ (PS)_\beta\text{-sequence in} \ \mathcal{N} \ \text{contains a weakly convergent subsequence with a nontrivial limit point.}\)

\(\text{(b)} \quad \text{If \ (C1)-(C3) hold and} \ c < d, \ \text{then} \ c \ \text{is achieved by a critical point (ground state) of} \ J.\)

\(\text{(c)} \quad \text{Suppose that} \ J\ \text{is even and satisfies the} \ (PS)^{T}_\gamma \text{-condition in} \ \mathcal{N} \ \text{for any} \ \beta < \beta_0 \ \text{for some fixed} \ \beta_0 \in (c, \infty].\) \ Let

\[
m(\mathcal{N}, \beta_0) = \sup\{\gamma(J^{-1}((0, \beta) \cap \mathcal{N}) : \beta < \beta_0\} \in \mathbb{N}_0,
\]

where \(\gamma\) stands for the Kransnosel'skii genus for closed and symmetric subsets of \(X\). Then \(J\) has at least \(m(\mathcal{N}, \beta_0)\) pairs of critical points \(u\) and \(-u\) such that \(u \neq 0\) and \(c \leq J(u) < \beta_0\).

3. **Sharp constant** \(S_{\text{curl}, HL}(\mathbb{R}^3)\)

3.1. **Proof of Theorem 1.2.** In this subsection, we consider functional \((1.17)\), which is associated to equation \((1.16)\), and we work on the following Nehari-Pankov manifold

\[
\mathcal{N} := \left\{u \in W^{0,2}_0(\text{curl}; \mathbb{R}^3) \setminus W^{0,2}_{\mathbb{R}^3} : J'(u)u = 0 \text{ and } J'(u)|_{W^{0,2}_{\mathbb{R}^3}} = 0\right\}.
\]

Lemma 3.1. There exists a continuous mapping \(m : V_{\mathbb{R}^3} \setminus \{0\} \rightarrow \mathcal{N}\).
Proof. By Lemma 2.15, $W_0^{α,2α}(\text{curl}; \mathbb{R}^3) = V_{\mathbb{R}^3} \oplus W_{\mathbb{R}^3}$, it follows from (2.37) and (2.38) that if $v \in V_{\mathbb{R}^3}$ and $\tilde{w}_{\mathbb{R}^3}(v) \in \tilde{W} = W_{\mathbb{R}^3}$, then we have $J'(v + \tilde{w}_{\mathbb{R}^3}(v))|_{W_{\mathbb{R}^3}} = 0$. And as
\[
J(t(v + \tilde{w}(v))) = \frac{t^2}{2} \int_{\mathbb{R}^3} |\nabla v|^2 dx - \frac{t^2-2α}{2 \cdot 2α} \int_{\mathbb{R}^3} |I_{α/2} * |v + \tilde{w}_{\mathbb{R}^3}(v)|^{2α}|^2 dx,
\]
there is a unique $t(v) > 0$ such that
\[
t(v)(v + \tilde{w}_{\mathbb{R}^3}(v)) \in \mathcal{N} \text{ for } v \in V_{\mathbb{R}^3} \setminus \{0\}.
\]
Setting $m(v) := t(v)(v + \tilde{w}_{\mathbb{R}^3}(v))$, we then note that
\[
J(m(v)) \geq J(t(v + \tilde{w}_{\mathbb{R}^3})) \text{ for all } t > 0 \text{ and } \tilde{w}_{\mathbb{R}^3} \in W_{\mathbb{R}^3}.
\]
Since $J(m(v)) \geq J(v)$ and there exist $a, r > 0$ such that $J(v) \geq a$ if $||v|| = r$, this implies that \mathcal{N} is bounded away from $W_{\mathbb{R}^3}$ and hence closed. Therefore, by the similar analysis in [33, Lemma 4.4], the mapping m is continuous.

Lemma 3.2. Set $S := \{v \in V_{\mathbb{R}^3} : ||v|| = 1\}$, there exist a $(PS)_c$ sequence (v_n) for $J \circ m$, and a $(PS)_c$ sequence $(m(v_n))$ for J on \mathcal{N}.

Proof. By the continuity of mapping m, we easily observe that $m|_S : S \to \mathcal{N}$ is a homeomorphism with the inverse $u = v + m(v) \mapsto \frac{v}{m(v)}$. Recall the argument in [29, Proposition 4.4(b)], we know that $J \circ m|_S : S \to \mathcal{R}$ is of class C^1 and is bounded from below by the constant $a > 0$. By the Ekeland variational principle, there is a $(PS)_c$ sequence $(v_n) \subset S$ such that
\[
(J \circ m)(v_n) \to \inf_{S} J \circ m = \inf_{\mathcal{N}} J \geq a > 0.
\]
Again, by the argument in [29, Proposition 4.4(b)], we have $(m(v_n))$ is a $(PS)_c$ sequence for J on \mathcal{N}.

Complete of the Proof of Theorem 1.2. Firstly, we prove part (a). Taking a minimizing sequence $(u_n) = (m(v_n)) \subset \mathcal{N}$ and set $u_n = t(v_n)(v_n + \tilde{w}_{\mathbb{R}^3}(v_n)) = v'_n + \tilde{w}_{\mathbb{R}^3}(v_n) \in V_{\mathbb{R}^3} \oplus W_{\mathbb{R}^3}$, then we have
\[
J(u_n) = J(u_n) - \frac{1}{2} J'(u_n) u_n = \frac{2α - 1}{2 \cdot 2α} |\nabla \cdot u_n|^2.
\]
Since the norm $|\nabla \cdot|_2$ is an equivalent norm in $V_{\mathbb{R}^3}$, it follows that $J(u_n)$ is coercive on \mathcal{N}, hence (u'_n) is bounded. On the other hand, we also have
\[
J(u_n) = J(u_n) - \frac{1}{2} J'(u_n) u_n = \frac{2α - 1}{2 \cdot 2α} \int_{\mathbb{R}^3} |I_{α/2} * |u_n|^{2α}|^2 dx.
\]
By (3.4), $J(u_n)$ is bounded away from 0, so is $|u_n| Q_{α,2α} \to 0$, and hence by (2.40), we also have $|u'_n| Q_{α,2α} \to 0$.

Denote $T_{s,y}(v') := s^{1/2} v'(s \cdot + y)$, where $s > 0$, $y \in \mathbb{R}^3$. Then, passing to a subsequence and using the argument in [41, Theorem 1], we have $\nabla T_{s,y}(v'_n) \to v_0$ for some $v_0 \neq 0$, where $(s_n) \subset \mathbb{R}^+$ and $(y_n) \subset \mathbb{R}^3$. Taking subsequence again, we also have $\nabla \tilde{w}_{\mathbb{R}^3} \to v_0$ a.e. in \mathbb{R}^3 and in view of the concentration-compactness Lemma 2.18, we deduce $\tilde{w}_{\mathbb{R}^3}(\nabla v'_n) \to \tilde{w}_{\mathbb{R}^3}(v_0)$ and $\tilde{w}_{\mathbb{R}^3}(\nabla v'_n) \to \tilde{w}_{\mathbb{R}^3}(v_0)$ a.e. in \mathbb{R}^3. Setting $u := v_0 + \tilde{w}_{\mathbb{R}^3}(v_0)$ and assume without loss of generality that $s_n = 1$ and $y_n = 0$, then by Lemma 4.6 in [33], we have $u_n \to u$ and $u_n \to u$ a.e. in \mathbb{R}^3. Moreover, by Lemma 2.7 we have
\[
(Jt^* u_n |^{2α}) |u_n|^{2α-2} u_n \to (Jt^* |u_n|^{2α}) |u_n|^{2α-2} u \text{ in } (Q_{α,2α}(\mathbb{R}^3 \times \mathbb{R}^3))',
\]
Therefore, for any $z \in W_0^{α,2α}(\text{curl}; \mathbb{R}^3)$, using weak and a.e. convergence, we have
\[
\langle J'(u_n), z \rangle = \int_{\mathbb{R}^3} (\nabla \cdot u_n, z) dx - \int_{\mathbb{R}^3} \left((Jt^* |u_n|^{2α}) |u_n(x)|^{2α-2} u_n(x), z \right) dx \to \langle J'(u), z \rangle.
\]
This implies that u is a solution to (1.16). Using Fatou’s lemma, we deduce that
\[
\inf_{\mathcal{N}} J = J(u_n) + o(1) = J(u_n) - \frac{1}{2} J'(u_n) u_n + o(1)
\]
\[
= \frac{2s_0}{2 \cdot 2s_0} \int_{\mathbb{R}^3} |\alpha/2 |u_n|^{2s_0}|^2 dx + o(1) \geq \frac{2s_0}{2 \cdot 2s_0} \int_{\mathbb{R}^3} |\alpha/2 |u|^2 dx + o(1)
\]
\[
= J(u) - \frac{1}{2} J'(u) u + o(1) = J(u) + o(1).
\]
Hence $J(u) \leq \inf_{\mathcal{N}} J \leq J(u)$ and as a solution, $u \in \mathcal{N}$.

Next, we show $\inf_{S} J = \frac{2s_0}{2 \cdot 2s_0} S_{c,HL}^{2s_0}$, where $S_{c,HL}$ is the sharp constant in (1.15), which can be rewritten as follow
\[
S_{c,HL} = \inf_{u \in W_0^{a,2s_0}(\text{curl}; \mathbb{R}^3)} \left(\frac{\int_{\mathbb{R}^3} |\nabla \times u|^2 dx}{\int_{\mathbb{R}^3} |\alpha/2 u + \tilde{w}_\mathbb{R}_3 (u)|^{2s_0}|^2 dx} \right)^{\frac{1}{2s_0}}.
\]
In fact, by (2.37), it is clear that a minimize $\tilde{w}_\mathbb{R}_3(u)$ exists uniquely for any $u \in W_0^{a,2s_0}(\text{curl}; \Omega)$, not only $u \in V_\mathbb{R}_3$. So by Lemma 2.15, $u + \tilde{w}_\mathbb{R}_3(u) = v + \tilde{w}_\mathbb{R}_3(v) \in V_\mathbb{R}_3 \oplus W_\mathbb{R}_3$ for some $v \in V_\mathbb{R}_3$ and therefore
\[
\inf_{w \in W_3} \int_{\mathbb{R}^3} |\alpha/2 |u + w|^{2s_0}|^2 dx = \int_{\mathbb{R}^3} |\alpha/2 |u + \tilde{w}_\mathbb{R}_3(u)|^{2s_0}|^2 dx = \int_{\mathbb{R}^3} |\alpha/2 |v + \tilde{w}_\mathbb{R}_3(v)|^{2s_0}|^2 dx.
\]
On the other hand, since $u + \tilde{w}_\mathbb{R}_3(u) \in \mathcal{N}$, $J'(u) u = 0$, i.e.
\[
\int_{\mathbb{R}^3} |\nabla \times u|^2 dx = \int_{\mathbb{R}^3} |\alpha/2 |u + \tilde{w}_\mathbb{R}_3(u)|^{2s_0}|^2 dx.
\]
Then we can easily calculate that
\[
\inf_{\mathcal{N}} J = \frac{2s_0}{2 \cdot 2s_0} \int_{\mathbb{R}^3} |\nabla \times u|^2 dx = \frac{2s_0}{2 \cdot 2s_0} S_{c,HL}^{2s_0}.
\]
As we can see, if u satisfies equality (1.15), then $t(u)(u + \tilde{w}_\mathbb{R}_3(u)) \in \mathcal{N}$ and is a minimizer for $J|_\mathcal{N}$ and the corresponding point v in S is a minimizer for $J \circ m|_S$, see (3.4). Hence v is a critical point of $J \circ m|_S$ and $m(v) = u$ is a critical point of J. This completes the proof of (a).

(b) To compare the constants $S_{c,HL}$ and S_{HL}, see (3.5) and (1.18), we firstly claim that $S_{c,HL} \geq S_{HL}$. In fact, by (3.6) and $\text{div} v = 0$, we have
\[
S_{c,HL} = \inf_{v \in V_\mathbb{R}_3 \setminus \{0\}} \left(\frac{\int_{\mathbb{R}^3} |\nabla v|^2 dx}{\int_{\mathbb{R}^3} |\alpha/2 |v + \tilde{w}_\mathbb{R}_3(v)|^{2s_0}|^2 dx} \right)^{\frac{1}{2s_0}}.
\]
Then given $\varepsilon > 0$, we can find $v \neq 0$ such that
\[
\int_{\mathbb{R}^3} |\nabla v|^2 dx \leq (S_{c,HL} + \varepsilon) \left(\int_{\mathbb{R}^3} |\alpha/2 |v + \tilde{w}_\mathbb{R}_3(v)|^{2s_0}|^2 dx \right)^{\frac{1}{2s_0}}.
\]
Since $\tilde{w}_\mathbb{R}_3(v)$ is a minimizer, we deduce that
\[
\int_{\mathbb{R}^3} |\nabla v|^2 dx \leq (S_{c,HL} + \varepsilon) \left(\int_{\mathbb{R}^3} |\alpha/2 |v|^{2s_0}|^2 dx \right)^{\frac{1}{2s_0}}.
\]
Then by the definition of S_{HL}, see (1.18), we have
\[
\int_{\mathbb{R}^3} |\nabla v|^2 dx \leq \frac{(S_{c,HL} + \varepsilon)}{S_{HL}} \int_{\mathbb{R}^3} |\nabla v|^2 dx.
\]
Hence we get our claim by $S_{\text{curl},HL} + \varepsilon \geq S_{HL}$.

Secondly, we exclude the case $S_{\text{curl},HL} = S_{HL}$. Otherwise, all inequalities above become equalities with $\varepsilon = 0$. Then by the form of the optimal function to S_{HL}, see (1.12), up to multiplicative constants, we get the contradiction with $\text{div} v = 0$. These show that $S_{\text{curl},HL} > S_{HL}$.

\section{3.2. Proof of Theorem 1.3.} To compare the sharp constants $S_{\text{curl},HL}(\mathbb{R}^3)$ and $\tilde{S}_{\text{curl},HL}(\Omega)$, we have introduced another constant $S_{\text{curl},HL}(\Omega)$. Recall from Section 2.1 that we have the following Helmholtz decomposition in entire space \mathbb{R}^3 and in the bounded domain Ω:

$$W_0^{\alpha,2\gamma}(\text{curl}; \mathbb{R}^3) = V_{\mathbb{R}^3} \oplus W_{\mathbb{R}^3}$$

and $W_0^{\alpha,2\gamma}(\text{curl}; \Omega) = V_{\Omega} \oplus W_{\Omega}$.

Then, as (3.5), we note that $S_{\text{curl},HL}(\Omega)$ (see (1.19)) can be characterized as

$$S_{\text{curl},HL}(\Omega) = \inf_{u \in W_0^{\alpha,2\gamma}(\text{curl};\Omega) \setminus \{0\}} \sup_{w \in W_{\mathbb{R}^3} \setminus \{0\}} \frac{\int_{\mathbb{R}^3} |\nabla \times u|^2 \, dx}{\left(\int_{\mathbb{R}^3} |I_{\alpha/2} * (u + w)|^{2\gamma} \, dx \right)^{\frac{1}{2\gamma}}} \quad (3.8)$$

Then easily calculate that

$$\tilde{S}_{\text{curl},HL}(\Omega) = \inf_{u \in W_0^{\alpha,2\gamma}(\text{curl};\Omega) \setminus \{0\}} \sup_{w \in W_{\mathbb{R}^3} \setminus \{0\}} \frac{\int_{\Omega} |\nabla \times u|^2 \, dx}{\left(\int_{\Omega} |I_{\alpha/2} * (u + w)|^{2\gamma} \, dx \right)^{\frac{1}{2\gamma}}} \quad (3.9)$$

where $u \in W_0^{\alpha,2\gamma}(\text{curl}; \Omega)$ is extended by 0 outside Ω. For constant $\tilde{S}_{\text{curl},HL}(\Omega)$ in domains $\Omega \neq \mathbb{R}^3$, it also can be characterized as

To compare these sharp constants, we introduce the following set

$$N_{\Omega} := \{ u \in W_0^{\alpha,2\gamma}(\text{curl}; \Omega) \setminus \{0\}, J'(u) = 0 \text{ and } J'(u)|_{W_\Omega} = 0 \} \quad (3.10)$$

According to the argument in [33, Lemma 4.2], we have $tu + \tilde{w}_{\mathbb{R}^3}(tu) = t(u + \tilde{w}_{\mathbb{R}^3}(u))$, then we may assume without loss of generality that $u + \tilde{w}_{\mathbb{R}^3}(u) \in N$ in (3.8). By the maximality and uniqueness of $\tilde{w}_{\Omega}(u)$, we easily deduce that the mapping $u \mapsto \tilde{w}_{\Omega}(u)$ is also continuous. Therefore, we may assume that $u + \tilde{w}_{\Omega}(u) \in N_{\Omega}$ in (3.9). Then easily calculate that

$$\inf_{N_{\Omega}} J = \frac{2\gamma - 1}{2 \cdot 2^\gamma} S_{\text{curl},HL}, \quad \inf_{N_{\Omega}} J|_{W_0^{\alpha,2\gamma}(\text{curl};\Omega)} = \frac{2\gamma - 1}{2 \cdot 2^\gamma} S_{\text{curl},HL}(\Omega), \quad \inf_{N_{\Omega}} J = \frac{2\gamma - 1}{2 \cdot 2^\gamma} \tilde{S}_{\text{curl},HL}(\Omega). \quad (3.11)$$

\textbf{Lemma 3.3.} $S_{\text{curl},HL}(\Omega) \geq S_{\text{curl},HL}, \ S_{\text{curl},HL}(\Omega) \geq \tilde{S}_{\text{curl},HL}(\Omega)$.

\textbf{Proof.} In view of Lemma 2.16, $W_0^{\alpha,2\gamma}(\text{curl}; \Omega) \subset W_0^{\alpha,2\gamma}(\text{curl}; \mathbb{R}^3)$, we can easily observe from (3.8) and (3.5) that $S_{\text{curl},HL}(\Omega) \geq S_{\text{curl},HL}$. Similarly, since $W_\Omega \subset W_{\mathbb{R}^3}$, we can deduce that $S_{\text{curl},HL}(\Omega) \geq \tilde{S}_{\text{curl},HL}(\Omega)$ from (3.8) and (3.9).

To complete Theorem 1.3, we shall need the following inequality, which corresponds to the condition (B3), and the proof follows a similar argument in [31, Lemma 4.1].

\textbf{Lemma 3.4.} If $u \in W_0^{\alpha,2\gamma}(\text{curl}; \Omega) \setminus \{0\}, u \in W_\Omega$ and $t \geq 0$, then

$$J(u) \geq J(tu + w) - J'(u) \left[\frac{t^2 - 1}{2} u + tw \right].$$

Moreover, strict inequality holds provided $t = 1$ and $w = 0$. ($\Omega = \mathbb{R}^3$ admitted.)
Proof. By an explicit computation and using $\nabla \times w = 0$, we show that
\[
J(u) - J(tu + w) + J'(u) \left[\frac{t^2 - 1}{2} u + tw \right] = \int_\Omega \varphi(t, x) dx,
\]
where
\[
\varphi(t, x) = -\left\langle \left(I_\alpha * |u|^{2\alpha} \right) |u(x)|^{2\alpha - 2} u(x), \frac{t^2 - 1}{2} u(x) + tw(x) \right\rangle - \frac{1}{2 \cdot 2\alpha} \int_\Omega |I_{\alpha/2} * |u|^{2\alpha}|^2 dx
+ \frac{1}{2 \cdot 2\alpha} \int_\Omega |I_{\alpha/2} * tu + w|^{2\alpha}|^2 dx.
\]
It is easy to check that $\varphi(0, x) > 0$ as $t = 0$ and $\varphi(t, x) \to \infty$ as $t \to \infty$. Therefore, if there exist t such that $\varphi(t, x) \leq 0$, then there exists $t_0 > 0$ such that $\partial_t \varphi(t_0, x) = 0$, namely
\[
\partial_t \varphi(t_0, x) = -\left\langle \left(I_\alpha * |u|^{2\alpha} \right) |u(x)|^{2\alpha - 2} u(x), t_0 u(x) + w(x) \right\rangle
+ \left\langle \left(I_\alpha * |t_0 u + w|^{2\alpha} \right) |t_0 u(x) + w(x)|^{2\alpha - 2} (t_0 u(x) + w(x)), u(x) \right\rangle = 0,
\]
then either $\langle u, t_0 u + w \rangle = 0$, i.e. $-\langle u, w \rangle = t_0 |u|^2$, or $|u| = |t_0 + w|$, i.e., $-t_0 \langle u, w \rangle = \frac{t_0^2 - 1}{2} |u|^2 + \frac{1}{2} |w|^2$. In the first case, we obtain that
\[
\varphi(t_0, x) = \left(\frac{t_0^2 + 1}{2} - \frac{1}{2 \cdot 2\alpha} \right) \int_\Omega |I_{\alpha/2} * |u|^{2\alpha}|^2 dx + \frac{1}{2 \cdot 2\alpha} \int_\Omega |I_{\alpha/2} * |t_0 u + w|^{2\alpha}|^2 dx > 0.
\]
And in the second case, we deduce that
\[
\varphi(t_0, x) = \frac{1}{2} \int_\Omega \left(I_\alpha * |u|^{2\alpha} \right) |u(x)|^{2\alpha - 2} |w(x)|^2 dx \geq 0.
\]
Hence $\varphi(t, x) \geq 0$ for all $t \geq 0$ and the inequality is strict if $w \neq 0$. If $w = 0$, we can see
\[
\varphi(t, x) = \left(\frac{t^2 2\alpha}{2 \cdot 2\alpha} - \frac{t^2}{2} + \frac{1}{2} - \frac{1}{2 \cdot 2\alpha} \right) \int_\Omega \left(I_\alpha * |u|^{2\alpha} \right) |u(x)|^{2\alpha - 2} |w(x)|^2 dx > 0
\]
provided $t \neq 1$.

Lemma 3.5. $S_{\text{curl,HL}}(\Omega) \leq S_{\text{curl,HL}}$.

Proof. By Theorem 1.2(a), u is a minimizer for J on \mathcal{N}, then we can find a sequence $(u_n) \subset C_0^\infty(\mathbb{R}^3, \mathbb{R}^3)$ such that $u_n \to u$. By the Helmholtz decomposition, we have $u_n = v_n + w_n, v_n \in \mathcal{V}_{\mathbb{R}^3}, w_n \in W_{\mathbb{R}^3}$. Since $u_n = v_n + w_n \to u = v_0 + \tilde{w}_{\mathbb{R}^3}(v_0)$ and therefore $v_n \to v_0, w_n \to \tilde{w}_{\mathbb{R}^3}(v_0)$. So $v_0 \neq 0$ and v_n are bounded away from 0 in $Q^{\alpha, 2\alpha}_0(\mathbb{R}^3, \mathbb{R}^3)$ due to $u \in \mathcal{N}$.

Assume without loss of generality that 0 $\in \Omega$. There exist λ_n such that μ_n given by $\mu_n(x) := \lambda_n^{1/2} u_n(\lambda_n x)$ are supported in Ω, that is $\mu_n(x) \in W_0^{\alpha, 2\alpha}(\text{curl}; \Omega)$. Set $\tilde{w}_{\mathbb{R}^3}(\mu_n) \in W_{\mathbb{R}^3}$ and choose t_n so that $t_n(\mu_n + \tilde{w}_{\mathbb{R}^3}(\mu_n)) \in \mathcal{N}$, then
\begin{equation}
t_n^2 = \frac{\left(\int_{\mathbb{R}^3} |\nabla \times \mu_n|^2 dx \right)^{\frac{1}{2\alpha - 1}}}{\left(\int_{\mathbb{R}^3} |I_{\alpha/2} * \mu_n + \tilde{w}_{\mathbb{R}^3}(\mu_n)|^{2\alpha} dx \right)^{\frac{1}{2\alpha - 1}}}. \tag{3.12}
\end{equation}
Since the Riesz potential is invariant with respect to translation, we have $||\mu_n|| = ||u_n||$ and
\[
\int_{\mathbb{R}^3} |I_{\alpha/2} * (\mu_n + \tilde{w}_{\mathbb{R}^3}(\mu_n))|^{2\alpha} dx = \int_{\mathbb{R}^3} |I_{\alpha/2} * u_n + \tilde{w}_{\mathbb{R}^3}(u_n)|^{2\alpha} dx
= \int_{\mathbb{R}^3} |I_{\alpha/2} * v_n + \tilde{w}_{\mathbb{R}^3}(v_n)|^{2\alpha} dx.
\]
Therefore, as \((u_n)\) is bounded, we have \((\pi_n)\) and \((\tilde{w}_\mathbb{R}^3(\pi_n))\) are bounded away from 0, so is \(|\pi_n(x) + \tilde{w}_\mathbb{R}^3(\pi_n)||_{Q^\alpha, z^\alpha}\). Then we deduce that \((t_n)\) is bounded, hence so is \((t_n^2)\). Moreover, since \(J(\pi_n) = J(u_n) \rightarrow \frac{2^* - 1}{2 \cdot 2^*} \frac{S_{\text{curl,HL}}^*}{2^*} \) and \(||J'(\pi_n)|| = ||J'(u_n)|| \rightarrow 0\), it follows from Lemma 3.4 that

\[
\frac{2^* - 1}{2 \cdot 2^*} S_{\text{curl,HL}}^* = \lim_{n \rightarrow \infty} J(\pi_n) \geq \lim_{n \rightarrow \infty} \left(J(t_n(\pi_n + \tilde{w}_\mathbb{R}^3(\pi_n))) - J'(\pi_n) \left[\frac{t_n^2 - 1}{2} \pi_n + t_n^2 \tilde{w}_\mathbb{R}^3(\pi_n) \right] \right) \\
= \lim_{n \rightarrow \infty} J(t_n(\pi_n + \tilde{w}_\mathbb{R}^3(\pi_n))) \geq \frac{2^* - 1}{2 \cdot 2^*} S_{\text{curl,HL}}^*(\Omega).
\]

The last inequality follows from the fact that \(\pi_n \in W_\Omega^{\alpha, z^\alpha}(\text{curl}; \Omega)\). □

Complete of the Proof of Theorem 1.3. Repeating the proof of Theorem 1.2 (b) with obvious changes, namely, change the domain \(\mathbb{R}^3\) into \(\Omega\), change \(S_{\text{curl,HL}}\) into \(S_{\text{curl,HL}}(\Omega)\), we have \(S_{\text{curl,HL}}(\Omega) \geq S_{\text{HL}}\). Since the optimal function for \(S_{\text{curl,HL}}(\Omega)\) is not found in our process, we can not exclude the case \(\bar{S}_{\text{curl,HL}}(\Omega) = S_{\text{HL}}\). As a consequently, we complete the proof of Theorem 1.3 by Lemma 3.3 and Lemma 3.5. □

4. **Proof of Theorem 1.4**

According to the spectrum analysis of the curl-curl operator in the introduction, for \(\lambda \leq 0\), we find two closed and orthogonal subspaces \(V_+^{\lambda} \) and \(\tilde{V}_\Omega \) of \(V_\Omega\) such that the quadratic form \(Q : V_\Omega \rightarrow \mathbb{R}\) given by

\[
Q(v) := \int_{\Omega} (|\nabla \times v|^2 + \lambda |v|^2)dx = \int_{\Omega}(|\nabla v|^2 + \lambda |v|^2)dx
\]

is positive defined on \(V_+^{\lambda}\) and negative semi-definite on \(\tilde{V}_\Omega\) where \(\text{dim} \tilde{V}_\Omega < \infty\). Writing \(u = v + w = v^+ + \tilde{v} + w \in V_+^{\lambda} \oplus \tilde{V}_\Omega \oplus W_\Omega\), the functional \(J_\lambda\) (see (1.13)) can be expressed as

\[
J_\lambda(u) = \frac{1}{2} ||v^+||^2 + \frac{1}{2} ||\tilde{v}||^2 + \frac{\lambda}{2} \int_{\Omega} (|v|^2 + |w|^2)dx - \frac{1}{2 \cdot 2^*} 2^* \int_{\Omega} |I_{\alpha/2} |u|^{2^*}|^2dx \\
= \frac{1}{2} ||v^+||^2 - I_\lambda(v + w),
\]

where

\[
I_\lambda(v + w) = - \frac{1}{2} ||\tilde{v}||^2 - \frac{\lambda}{2} \int_{\Omega} (|v|^2 + |w|^2)dx + \frac{1}{2 \cdot 2^*} 2^* \int_{\Omega} |I_{\alpha/2} |u|^{2^*}|^2dx.
\]

Similarly as in [3], we shall show that \(J_\lambda\) satisfies the assumptions (A1)-(A4), (B1)-(B3) and (C1)-(C3) from Section 2.2.

Lemma 4.1. Conditions (A1)-(A4), (B1)-(B3) and (C2) in Lemma 2.21 hold for \(J_\lambda\).

Proof. i) By Lemma 2.7, we have \(I_\lambda\) is of class \(C^1\). Since \(Q(v)\) is negative on \(\tilde{V}_\Omega\), \(2^*_\alpha\) is an upper critical index, we have \(I_\lambda(u) \geq I_\lambda(0) = 0\) for any \(u \in W_0^{\alpha, z^\alpha}(\text{curl}; \Omega)\).

ii) Since \(I_\lambda\) is convex, \(I_\lambda\) is \(\mathcal{T}\)–sequentially lower semicontinuous. Hence, (A2) holds.

iii) We easily check (A3), since \(u_n \rightharpoonup u_0\) in \(Q^{\alpha, z^\alpha}(\Omega, \mathbb{R}^3)\), and \(I_\lambda(u_n) \rightarrow I_\lambda(u_0)\) imply \(|u_n|_{Q^{\alpha, z^\alpha}} \rightarrow |u_0|_{Q^{\alpha, z^\alpha}}\), thus \(u_n \rightarrow u_0\) in \(Q^{\alpha, z^\alpha}(\Omega, \mathbb{R}^3)\).
iv) Since V_Ω is a Hilbert space, the HLS inequality is still valid on there, then for any $u \in V_\Omega^+$, we have
\[
J(u) = J(v, 0) = \frac{1}{2} ||v||^2_{V_\Omega} + \frac{\lambda}{2} ||v||^2 + \frac{1}{2 \cdot 2^\alpha} \int _\Omega |I_{\alpha/2} * |v|^2_{\alpha} |^2 dx
\]
\[
\geq \frac{1}{2} ||v||^2_{V_\Omega} + \frac{\lambda}{2} ||v||^2 + \frac{1}{2 \cdot 2^\alpha} \left(\int _\Omega |v|^6 dx \right)^{\frac{1}{5}}
\]
\[
\geq \frac{\delta}{2} ||v||^2_{V_\Omega} - \varepsilon ||v||^2 - c\varepsilon ||v||^3_{\alpha} \geq \frac{\delta}{4 ||v||^2_{V_\Omega}} - C_1 ||v||^3_{V_\Omega}
\]
for some $\delta, C_1 > 0$.

v) Condition (B1) follows from Lemma 5.1 (c) in [3]. Suppose that $(||v_n^+||_{V_\Omega})_n$ is bounded and $(||v_n, w_n||) \to \infty$ as $n \to \infty$. Since dim$(V_\Omega) < \infty$ there holds $|v_n + w_n|_{Q^\alpha, z^*_n} \to \infty$. Moreover by the orthogonality $V_\Omega^+ \perp V_\Omega$ in $L^2(\Omega, \mathbb{R}^3)$ and $V_\Omega \perp V_\Omega$ in $Q^\alpha, z^*_n(\Omega, \mathbb{R}^3)$, we have
\[
||v_n||^2_{V_\Omega} \leq C_1 |v_n|^2 \leq C_1 |v_n + w_n|^2 \leq C_2 |v_n + w_n|_{Q^\alpha, z^*_n}^2
\]
for some $0 < C_1 < C_2$. This implies
\[
I(v_n, w_n) = \frac{1}{2} ||v_n||^2 - \frac{\lambda}{2} |v_n + w_n|^2 + \frac{1}{2 \cdot 2^\alpha} |v_n + w_n|_{Q^\alpha, z_n}^2
\]
\[
\geq - \frac{C_2}{2} |v_n + w_n|_{Q^\alpha, z_n}^2 + \frac{1}{2 \cdot 2^\alpha} |v_n + w_n|_{Q^\alpha, z_n}^2 \to \infty,
\]
because $|v_n + \nabla w_n|_{Q^\alpha, z_n} \to \infty$.

vi) This part we check condition (B2) and (C2). By (4.2), we have
\[
I(t_n(v_n + w_n))
\]
\[
= \frac{1}{2} ||t_n v_n||^2_{V_\Omega} - \frac{\lambda}{2} t_n |v_n + w_n|^2 + \frac{1}{2 \cdot 2^\alpha} \int _\Omega |I_{\alpha/2} * |t_n(v_n + w_n)|_{2^\alpha} |^2 dx
\]
\[
\geq \frac{1}{2} ||t_n v_n||^2_{V_\Omega} - \frac{\lambda}{2} t_n |v_n + w_n|^2 + t_n 2^\alpha \frac{1}{2 \cdot 2^\alpha} \int _\Omega |I_{\alpha/2} * |t_n + w_n|_{2^\alpha} |^2 dx
\]
\[
\geq \frac{C_2}{2} t_n |v_n + w_n|_{Q^\alpha, z_n}^2 + t_n 2^\alpha \frac{1}{2 \cdot 2^\alpha} ||v_n + w_n||_{Q^\alpha, z_n}^2.
\]

Then
\[
I(t_n(v_n + w_n))/t_n^2 \geq \frac{C_2}{2} ||v_n||_{Q^\alpha, z_n}^2 + t_n 2^\alpha \frac{1}{2 \cdot 2^\alpha} ||v_n||_{Q^\alpha, z_n}^2.
\]
If $(||v_n, w_n||) \to \infty$ then $I(t_n(v_n + w_n))/t_n^2 \to \infty$. If $(||v_n, w_n||)\to \infty$ is bounded. Then $(u_n + w_n)_{Q^\alpha, z_n}$ is bounded. If $|v_n + w_n|_{Q^\alpha, z_n} \to 0$, then $|v_n + w_n| \to 0$ and by the orthogonality in $L^2(\Omega, \mathbb{R}^3)$ which contradicts $u_0 \neq 0$. Therefore $\frac{t_n 2^\alpha - 1}{2 \cdot 2^\alpha} ||v_n||_{Q^\alpha, z_n}^2 \to \infty$ as $n \to \infty$ and again $I(t_n(v_n + w_n))/t_n^2 \to \infty$.

vii) Condition (B3) follows from Lemma 3.4 by changing $J(u)$ into $J_0(u)$. \[\square\]

To apply the Concentration compactness lemma, we set $\tilde{V} := \tilde{V}_\Omega \oplus \hat{V}_\Omega$ with $\tilde{v}_\Omega = \tilde{v} + w$, where $\tilde{V}_\Omega = Z$, see Section 2.2. On the other hand, we shall extend V_Ω^+ into V_Ω^+, which is a closed subspace of $D^{1,2}(\mathbb{R}^3, \mathbb{R}^3)$. Indeed, let U be a bounded domain in \mathbb{R}^3, $\Omega \subset U$. Since $V_\Omega \subset H^1(\Omega, \mathbb{R}^3)$, then each $v \in V_\Omega$ may be extended to $v' \in H^1_0(U, \mathbb{R}^3)$ such that $v'|_\Omega = v$. This extension is bounded as a mapping from V_Ω to $H^1_0(U, \mathbb{R}^3)$. Since
\[
\forall' = \{v' \in H^1_0(U, \mathbb{R}^3) : v'|_\Omega \in V_\Omega\}
is a closed subspace of $H^1_0(U, \mathbb{R}^3)$, and hence of $D^{1,2}(\mathbb{R}^3, \mathbb{R}^3)$, we then can apply Lemma 2.18 with V^+_Ω replacing V_Ω. Set the generalized Nehari-Pankov manifold as follow

$$N_\lambda := \{ u \in W^{\alpha,2}_0(\text{curl}; \Omega) \setminus (\overline{V}_\Omega \oplus W_\Omega) : J'(u)_{|_{R_u \oplus \overline{V}_\Omega \oplus \tilde{W}_\Omega}} = 0 \}. \quad (4.3)$$

Lemma 4.2. J' is weak-to-weak* continuous on N_λ and condition (C3) in Lemma 2.21 holds.

Proof. Suppose that $u_n \rightharpoonup u_0$ in $W^{\alpha,2}_0(\text{curl}; \Omega)$. Set $u_n = m_\lambda(v^+_n) = v^* + \tilde{w}_\Omega(v^+_n)$. Since V^+_Ω and \tilde{W}_Ω are complementary subspaces, v^+_n is bounded in V^+_Ω. Then passing to a subsequence, we have $v^+_n \rightarrow v^*_n$ in V^+_Ω, $v^*_n \rightarrow v^*_0$ in $L^2(\Omega, \mathbb{R}^3)$ and a.e. in Ω. Therefore, by the Concentration Compactness Lemma 2.18, we have $\tilde{w}_\Omega(v^*_n) \rightarrow \tilde{w}_\Omega(v^*_0)$ in $L^2(\Omega, \mathbb{R}^3)$ and also a.e. in Ω. Hence, we also have $u_n \rightarrow u_0$ a.e. in Ω. Then by the Vitali convergence principle, J'_λ is weak-to-weak* continuous. Moreover, by the lower semi-continuity of I_λ, (C3) holds. \hfill \Box

Now, we set a compactly perturbed problem. Take $X^0 := \tilde{V}_\Omega$, $X^1 := W_\Omega$ and let us consider the functional $J_{cp} : X = V_\Omega \oplus W_\Omega \rightarrow \mathbb{R}$ given by

$$J_{cp}(u) = J_0(u) = \frac{1}{2} \int_{\Omega} |\nabla \times u|^2 dx + \frac{1}{2} \cdot \frac{2}{2^*} \int_{\Omega} |I_{\alpha/2} * |u|^{2^*_\alpha}|^2 dx.$$

Moreover we define the corresponding Nehari-Pankov manifold

$$N_{cp} = \{ E \in (V_\Omega \oplus W_\Omega) \setminus W_\Omega : J'_{cp}(u)_{|_{R_u \oplus W_\Omega}} = 0 \}. \quad (4.4)$$

Observe that as in Lemma 4.1 we show that J_{cp} satisfies the corresponding condition (A1)-(A4) and (B1)-(B3).

Lemma 4.3. Condition (C1) in Lemma 2.21 holds.

Proof. For any bounded sequence $u_n \subset N_{cp}$, we have $u_n \rightharpoonup u$ in N_{cp}. By the concentrated compactness Lemma 2.18, we have $u_n \rightarrow u$ in $L^2(\Omega, \mathbb{R}^3)$. Since $J_\lambda(u) - J_{cp}(u) = \frac{1}{2} \int_{\Omega} |u|^2 dx$, we have condition (C1) holds. \hfill \Box

Lemma 4.4. J_λ is coercive on N_λ and J_{cp} is coercive on N_{cp}.

Proof. The proof is similar to Lemma 4.6 in [31]. Let $u_n = v_n + w_n \in N_\lambda$ and suppose that $||u_n|| \rightarrow \infty$. Observe that

$$J_\lambda(u_n) = J_\lambda(u_n) - \frac{1}{2} J'_\lambda(u_n)(u_n) = \left(\frac{1}{2} - \frac{1}{2} \cdot \frac{2}{2^*_\alpha} \right) |u_n|^{2^*_\alpha}_{Q^{\alpha,2^*_\alpha} \cap \overline{\tilde{W}_\Omega}} \geq C_1 |w_n|^{2^*_\alpha}_{Q^{\alpha,2^*_\alpha} \cap \overline{\tilde{W}_\Omega}}$$

for some constant $C_1 > 0$, since W_Ω is closed, $\partial V_\Omega \cap W_\Omega = \{0\}$ in $Q^{\alpha,2^*_\alpha}(\Omega, \mathbb{R}^3)$ and the projection $\text{cl}V_\Omega \oplus W_\Omega = \{0\}$ onto W_Ω is continuous. Hence, if $|w_n|_{Q^{\alpha,2^*_\alpha} \cap \overline{\tilde{W}_\Omega}} \rightarrow \infty$, then $J_\lambda(u_n) \rightarrow \infty$ as $n \rightarrow \infty$. Suppose that $|u_n|_{Q^{\alpha,2^*_\alpha} \cap \overline{\tilde{W}_\Omega}}$ is bounded, then $||u_n|| \rightarrow \infty$ and

$$J_\lambda(u_n) = J_\lambda(u_n) - \frac{1}{2} \cdot \frac{2}{2^*_\alpha} J'_\lambda(u_n)(u_n) = \left(\frac{1}{2} - \frac{1}{2} \cdot \frac{2}{2^*_\alpha} \right) \left(\int_{\Omega} |\nabla \times v_n|^2 dx + \lambda \int_{\Omega} |v_n + w_n|^2 dx \right)$$

$$\geq \left(\frac{1}{2} - \frac{1}{2} \cdot \frac{2}{2^*_\alpha} \right) \left(\int_{\Omega} |\nabla \times v_n|^2 dx + \lambda |w_n|_{Q^{\alpha,2^*_\alpha} \cap \overline{\tilde{W}_\Omega}}^2 \right),$$

for some constant $C_2 > 0$. Thus $J_\lambda(u_n) \rightarrow \infty$. Similarly, we show that J_{cp} is coercive on N_{cp}. \hfill \Box

Lemma 4.5. Let $c_2 < c_0$ and $(u_n)_{n \in \mathbb{N}} \subset N_\lambda$ be a Palais-Smale sequence at c_λ, i.e. $J_\lambda(u_n) \rightarrow c_\lambda$ and $J'_\lambda(u_n) \rightarrow 0$ as $n \rightarrow \infty$. Then $u_n \rightarrow u_0 \neq 0$ for some $u_0 \in W^{\alpha,2}_0(\text{curl}; \Omega)$. Moreover, c_λ is achieved by a critical point of J_λ.

Proof. The conclusion follows from Lemma 4.1, Lemma 4.3, Lemma 4.2, Lemma 4.4 and Lemma 2.21(a)(b). \hfill \Box
As we introduced before, we shall verify the \((PS)_c\) condition. Similar to [33, Lemma 6.4] we need the following version of the Brezis-Lieb lemma. Setting

\[N(u) = \left(I_\alpha + |u|^{2_\alpha} \right) |u(x)|^{2_\alpha-2} u(x), \]

then we have the following lemma.

Lemma 4.6. Suppose \((u_n)\) is bounded in \(Q^{\alpha,2_\alpha}(\Omega, \mathbb{R}^3)\) and \(u_n \to u \text{ a.e. in } \Omega\). Then

\[N(u_n) - N(u_n - u) \to N(u) \text{ in } (Q^{\alpha,2_\alpha}(\Omega, \mathbb{R}^3))' \text{ as } n \to \infty. \]

Proof. By the proof of Lemma 2.7, we have \(N(u) : Q^{\alpha,2_\alpha}(\Omega, \mathbb{R}^3) \to (Q^{\alpha,2_\alpha}(\Omega, \mathbb{R}^3))'\). Therefore, it turns to prove that \(G(u_n) - G(u_n - u) \to G(u)\) in \(L^{2_\alpha/(2_\alpha-1)}(\Omega, L^{2_\alpha/(2_\alpha-1)}(\Omega))\). Since \(u_n \to u \text{ a.e. in } \Omega\), we have \(G(u_n) - G(u_n - u) \to G(u) \text{ a.e. in } \Omega\). Since \(u_n\) is bounded in \(Q^{\alpha,2_\alpha}(\Omega, \mathbb{R}^3)\), we have \(G(u_n)\) is bounded in \(L^{2_\alpha/(2_\alpha-1)}(\Omega, L^{2_\alpha/(2_\alpha-1)}(\Omega))\), so is \(G(u_n) - G(u_n - u)\). Then we have \(G(u_n) - G(u_n - u) \to G(u)\). Therefore, we only need to prove that

\[|G(u_n) - G(u_n - u)|_{L^{2_\alpha/(2_\alpha-1)}(\Omega, L^{2_\alpha/(2_\alpha-1)}(\Omega))} \to |G(u)|_{L^{2_\alpha/(2_\alpha-1)}(\Omega, L^{2_\alpha/(2_\alpha-1)}(\Omega))}. \]

Indeed, let \(A = \left(\frac{1}{|x-y|^{2_\alpha/(2_\alpha-1)}} \right)^{2_\alpha/(2_\alpha-1)}\). Then by using Vitali’s convergence theorem we obtain

\[
\int_\Omega \left(\int_\Omega |G(u_n) - G(u_n - u)|^{2_\alpha/(2_\alpha-1)} dy \right)^{2_\alpha/(2_\alpha-1)} dx
\]

\[
= \int_\Omega \left(\int_\Omega \left(\int_0^1 \frac{d}{dt} \left| u_n(y) + (t-1)u(y) \right|^{2_\alpha/(2_\alpha-1)} |u_n(x) - (t-1)u(x)|^{2_\alpha/(2_\alpha-1)} dy \right) dt \right)^{2_\alpha/(2_\alpha-1)} dx
\]

\[
= \int_0^1 \left[\int_\Omega \left(\int_\Omega \frac{(2_\alpha)^2}{2_\alpha-1} \left| u_n(y) + (t-1)u(y) \right|^{2_\alpha/(2_\alpha-1)-2} |u_n(x) + (t-1)u(x)|^{2_\alpha/(2_\alpha-1)-2} \right) dy \right]^{2_\alpha/(2_\alpha-1)} dx \]

\[
\to \int_0^1 \left[\int_\Omega \left(\int_\Omega \left(\frac{(2_\alpha)^2}{2_\alpha-1} \left| tu(y) \right|^{2_\alpha/(2_\alpha-1)-2} |tu(x)|^{2_\alpha/(2_\alpha-1)} dy \right) \right]^{2_\alpha/(2_\alpha-1)} dx \]

\[
= \int_\Omega \left(\int_\Omega \left| u(y) \right|^{2_\alpha/(2_\alpha-1)} \frac{2_\alpha}{2_\alpha-1} dy \right)^{2_\alpha/(2_\alpha-1)} dx = \int_\Omega \left(\int_\Omega |G(u)|^{2_\alpha/(2_\alpha-1)} dy \right)^{2_\alpha/(2_\alpha-1)} dx.
\]

\[
\square
\]

Lemma 4.7. Let \(c_\lambda < c_0 \) and \((u_n)_{n \in \mathbb{N}} \subset N_\lambda\) be the Palais-Smale sequence at \(c_\lambda\). Then \(u_n \to u_0 \neq 0\) in \(W^{\alpha,2_\alpha}\) \((\text{curl;} \Omega)\) along a subsequence, where \(u_0\) is the nontrivial weak limit in Lemma 4.5.
Proof. Let \((u_n)\) be a \((PS)_{c_\lambda}\)-sequence such that \((u_n) \subset N_\lambda\). By Lemma 4.4, \((u_n)\) is bounded and we can assume that \(u_n \rightharpoonup u_0\) in \(W^{\alpha,2_\alpha}_0(\text{curl}; \Omega)\). Then as in the proof of Lemma 4.2, we have \(J'_\lambda(u_0) = 0\), this implies that \(u_0\) is a solution for (1.10). Moreover, by the concentration-compactness lemma, we have \(u_n \rightharpoonup u_0\) in \(L^{2_\alpha}(\Omega)\), see the same analysis in Lemma 4.2. On the other hand, By the compactly perturbed analysis in Lemma 4.5, the weak limits \(u_0 \neq 0\). Then by the general principle for the refined nonlocal Brezis-Lieb identity in [28, Proposition 4.3 (ii) (iii)], we have

\[
\lim_{n \to \infty} \left(\int_\Omega (I_\alpha * |u_n|^{2_\alpha})|u_n|^{2_\alpha} dx - \int_\Omega (I_\alpha * |u_n - u_0|^{2_\alpha})|u_n - u_0|^{2_\alpha} dx \right) \to \int_\Omega (I_\alpha * |u_0|^{2_\alpha})|u_0|^{2_\alpha} dx,
\]

we hence have

\[
\lim_{n \to \infty} (J'_\lambda(u_n) - J'_\lambda(u_0 - u_0)) = J'_\lambda(u_0) \geq 0,
\]

and by Lemma 4.6

\[
\lim_{n \to \infty} (J'_\lambda(u_n) - J'_\lambda(u_0 - u_0)) = J'_\lambda(u_0) = 0.
\]

Since \(J'(u_n) \to 0\) and \(u_n \to u_0\) in \(L^2(\Omega, \mathbb{R}^3)\), we have

\[
\lim_{n \to \infty} J'_0(u_n - u_0) = 0.
\]

Suppose \(\lim \inf \|u_n - u_0\| > 0\). Since \(\lim_{n \to \infty} J'_0(u_n - u_0)(u_n - u_0) = 0\), we infer that

\[
\lim_{n \to \infty} \|\nabla \times (u_n - u_0)\|_2 > 0.
\]

Let \(u_n - u_0 = v_n + \tilde{w}_\Omega(v_n) \in V_\Omega \oplus W_\Omega\) according to the Helmholtz decomposition in \(W^{\alpha,2_\alpha}_0(\text{curl}; \Omega)\). If \(v_n \to 0\) in \(Q^{\alpha,2_\alpha}(\Omega, \mathbb{R}^3)\), then by (4.5) we have \(J'_0(u_n - u_0)v_n \to 0\), thus

\[
\|\nabla \times (u_n - u_0)\|^2 = \|\nabla v_n\|^2 = J'_0(u_n - u_0)v_n + \int_\Omega \left((I_\alpha * |u_n - u_0|^{2_\alpha}) |u_n - u_0|^{2_\alpha} - |v_n|^{2_\alpha} \right) dx \to 0
\]

as \(n \to \infty\), which is a contradiction. Therefore \(|v_n|_{Q^{\alpha,2_\alpha}}\) is bounded away from 0. If \(w_n := \tilde{w}_\Omega(u_n - u_0) \in W_\Omega\), then \((w_n)\) is bounded and since \(u_n - u_0 + w_n = v_n + \tilde{w}_\Omega(v_n) \in V_\Omega \oplus W_\Omega\), \(|u_n - u_0 + w_n|_{Q^{\alpha,2_\alpha}}\) is bounded away from 0. Choose \(t_n\) so that \(t_n(u_n - u_0 + w_n) \in N_\Omega\), see (3.10). As in (3.12) we have

\[
 t_n^2 = \frac{\left(\int_\Omega \|\nabla \times (u_n - u_0)\|^2 dx \right)^{\frac{1}{2}}}{\left(\int_\Omega |I_{\alpha/2} * |u_n - u_0 + w_n|^{2_\alpha} dx \right)^{\frac{1}{2}}},
\]

and so \((t_n)\) is bounded. Then using Lemma 3.4, we have

\[
 J_0(u_n - u_0) \geq J_0(t_n(u_n - u_0 + w_n)) - J'_0(u_n - u_0) \left[\frac{t_n^2 - 1}{2}(u_n - u_0 + t_n^2 w_n) \right],
\]

so by (4.5) and since \(u_n \to u_0\) in \(L^2(\Omega, \mathbb{R}^3)\),

\[
c_\lambda = \lim_{n \to \infty} J_\lambda(u_n - u_0) = \lim_{n \to \infty} J_0(u_n - u_0) \geq \lim_{n \to \infty} J_0(t_n(u_n - u_0 + w_n)) \geq c_0,
\]

which is a contradiction. Therefore, passing to a subsequence, \(u_n \to u_0\), hence also in the \(\mathcal{T}\)-topology.

Finally, we shall compare \(c_\lambda\) and \(c_0\) in some ranges of \(\lambda\). Recall from the third identity in (3.11), we note that \(c_0 = \frac{2_\alpha - 1}{2_\alpha - 1}\frac{\sqrt{2_\alpha - 1}}{S_{\text{curl}, \text{HL}}} \geq \frac{2_\alpha - 1}{2_\alpha - 1}\frac{\sqrt{2_\alpha - 1}}{S_{\text{HL}}}\).
Lemma 4.8. Let $\lambda \in (-\lambda_\nu, -\lambda_{\nu-1})$ for some $\nu \geq 1$. There holds

$$c_\lambda = \inf_{N_\lambda} J_\lambda \leq \frac{2^*-1}{2 \cdot 2^*_\alpha} (\lambda + \lambda_\nu)^{\frac{2^*_\alpha}{2^*_\alpha-1}} \frac{2^*_\alpha}{2^*_\alpha-1} |\text{diam}\Omega|^{\frac{3 \cdot 2^*_\alpha - \alpha - 3}{2^*_\alpha - 1}},$$

$$c_\lambda < c_0 \text{ if } \lambda < -\lambda_\nu + \tilde{S}_{\text{curl},HL}(\Omega)|\text{diam}\Omega|^{\frac{3 \cdot 2^*_\alpha - \alpha - 3}{2^*_\alpha - 1}}.$$

Proof. Let e_ν be an eigenvector corresponding to λ_ν. Then $e_\nu \in \mathcal{V}_\Omega^+$, where the last inequality follows from the inequality (No. 11971436, No. 12011530199) and Natural Science Foundation of Zhejiang Province (No. 9671436, No. 12011530199). Choose $t > 0$, $\bar{v} \in \mathcal{V}_\Omega$ and $w \in \mathcal{W}_\Omega$ so that $u = v + w = te_\nu + \bar{v} + w \in N_\lambda$. Since $\lambda_k \leq \lambda_\nu$ for $k < \nu$,

$$c_\lambda \leq J_\lambda(te_\nu + \bar{v} + w)$$

$$\leq \frac{\lambda_\nu}{2} \int_{\Omega} |te_\nu|^2 dx + \frac{1}{2} \int_{\Omega} \nabla \times \bar{v}^2 dx + \frac{\lambda}{2} \int_{\Omega} |u|^2 dx - \frac{1}{2 \cdot 2^*_\alpha} \int_{\Omega} |I_{\alpha/2} * |u|^{2^*_\alpha}|^2 dx$$

$$\leq \frac{\lambda_\nu}{2} \int_{\Omega} |u|^2 dx + \frac{\lambda}{2} \int_{\Omega} |u|^2 dx - \frac{1}{2 \cdot 2^*_\alpha} \int_{\Omega} |I_{\alpha/2} * |u|^{2^*_\alpha}|^2 dx$$

$$\leq \frac{\lambda + \lambda_\nu}{2} \int_{\Omega} |u|^2 dx - \frac{1}{2 \cdot 2^*_\alpha} \int_{\Omega} |I_{\alpha/2} * |u|^{2^*_\alpha}|^2 dx,$$

$$\leq \frac{\lambda + \lambda_\nu}{2} \int_{\Omega} |u|^2 dx - \frac{1}{2 \cdot 2^*_\alpha} |\text{diam}\Omega|^{\frac{3 \cdot 2^*_\alpha - \alpha - 3}{2^*_\alpha - 1}} \left(\int_{\Omega} |u|^{2^*_\alpha} dx \right)^{2},$$

where $|\text{diam}\Omega| = \max_{x, y \in \Omega} |x - y|$. Then using the Hölder inequality, we get

$$c_\lambda \leq \frac{\lambda + \lambda_\nu}{2} \left[\left(\int_{\Omega} |u|^{2^*_\alpha} dx \right)^{\frac{2^*_\alpha}{2^*_\alpha-1}} |\text{diam}\Omega|^{\frac{2^*_\alpha - 2}{2^*_\alpha - 1}} - \frac{1}{2 \cdot 2^*_\alpha} |\text{diam}\Omega|^{\frac{3 \cdot 2^*_\alpha - \alpha - 3}{2^*_\alpha - 1}} \left(\int_{\Omega} |u|^{2^*_\alpha} dx \right)^{2} \right].$$

$$\leq \frac{2^*-1}{2 \cdot 2^*_\alpha} (\lambda + \lambda_\nu) \frac{2^*_\alpha}{2^*_\alpha-1} |\text{diam}\Omega|^{\frac{3 \cdot 2^*_\alpha - \alpha - 3}{2^*_\alpha - 1}},$$

where the last inequality follows from the inequality $\frac{A}{2} t^2 - \frac{1}{p} \mu p \leq (\frac{1}{2} - \frac{1}{p}) A^{\frac{2^*_\alpha}{2^*_\alpha-1}} (A > 0)$.

Since $c_0 = \frac{2^*-1}{2 \cdot 2^*_\alpha} \tilde{S}_{\text{curl},HL}(\Omega)$, the second inequality follows immediately. \hfill \Box

Complete of the Proof of Theorem 1.4. Note that if $\lambda < -\lambda_\nu + \tilde{S}_{\text{curl},HL}(\Omega)|\text{diam}\Omega|^{-\frac{3 \cdot 2^*_\alpha - \alpha - 3}{2^*_\alpha - 1}}$, then $c_\lambda < c_0$, and by Lemma 4.7, J_λ satisfies the $(PS)_{c_\lambda}$ condition, hence satisfies the $(PS)_{c_0}$ condition. Then statement (a) follows from Lemma 4.5, and the remaining statements (b)-(d) are similar to [33, Theorem 1.4] and can be proved by the same strategy. \hfill \Box

Acknowledgements. Minbo Yang was supported by National Natural Science Foundation of China (No. 11971436, No. 12011530199) and Natural Science Foundation of Zhejiang Province (No. LZ22A010001).

References
[1] C. Amrouche, C. Bernardi, M. Dauge, V. Girault, Vector potentials in three-dimensional non-smooth domains, Math. Methods Appl. Sci. 21 (9) (1998) 823-864. 15
[2] A. Azzollini, V. Benci, T. D’Aprile and D. Fortunato, Existence of static solutions of the semilinear Maxwell equations, Ricerche di Matematica. 55 (2006) 123-137. 3
[3] T. Bartsch, J. Mederski, Ground and bound state solutions of semilinear time-harmonic Maxwell equations in a bounded domain, Arch. Rational Mech. Anal. 215 (1) (2015) 283-306. 2, 3, 7, 15, 20, 26, 27
[4] T. Bartsch, T. Dohnal, M. Plum, W. Reichel, Ground states of a nonlinear curl-curl problem in cylindrically symmetric media, Nonlin. Diff. Equ. Appl. 34 (2016) 23-52.

[5] T. Bartsch, J. Mederski, Nonlinear time-harmonic Maxwell equations in an anisotropic bounded medium, J. Funct. Anal. 272 (2017) 4304-4333.

[6] V. Benci, P. H. Rabinowitz, Critical point theorems for indefinite functionals, Invent. Math. 52 (3) (1979) 241-273.

[7] V. Benci, D. Fortunato, Towards a unified field theory for classical electrodynamics, Arch. Rational. Mech. Anal. 173 (2004) 379-414.

[8] H. Brezis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl Math. 36 (1983) 437-477.

[9] L. Bergé and A. Couairon, Nonlinear propagation of self-guided ultra-short pulses in ionized gases, Phys. Plasmas, 7 (2000), 210-230.

[10] O. Bang, W. Krolikowski, J. Wyller, J. Rasmussen, Collapse arrest and soliton stabilization in nonlocal nonlinear media, Phys. Rev. E, 66 (2002), 046619.

[11] A. Capozzi, D. Fortunato, G. Palmieri, An existence result for nonlinear elliptic problems involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire. 2 (1985) 463-470.

[12] G. Cerami, S. Solimini, M. Struwe, Some existence results for superlinear elliptic boundary value problems involving critical exponents, J. Funct. Anal. 69 (1986) 289-306.

[13] F. Dalfovo et al., Theory of Bose-Einstein condensation in trapped gases, Rev. Mod. Phys., 71 (1999), 463-512.

[14] T. D’Aprile, G. Siciliano, Magnetostatic solutions for a semilinear perturbation of the Maxwell equations, Adv. Differential Equations. 16 (2011) 435-466.

[15] W. Dörfler, A. Lechleiter, M. Plum, G. Schneider, C. Wiemers, Photonic crystals: mathematical analysis and numerical approximation, Springer Basel. 2012.

[16] N. du Plessis, An introduction to potential theory. University Mathematical Monographs, vol. 7. Oliver and Boyd, Edinburgh (1970).

[17] Le. Du, M. B. Yang, Uniqueness and nondegeneracy of solutions for a critical nonlocal equation, Discrete Contin. Dyn. Syst. 39 (10) (2019) 5847-5866.

[18] F. S. Gao, E. Silva, M. B. Yang, J. Z. Zhou, Existence of solutions for critical Choquard equations via the concentration compactness method, Proceedings of the Royal Society of Edinburgh. 2017.

[19] F. S. Gao, M. B. Yang, The Brezis-Nirenberg type critical problem for the nonlinear Choquard equation, Sci. China Math. 61 (2018) 1219-1242.

[20] Q. Q. Guo, J. Mederski, Ground states of nonlinear Schrödinger equations with sum of periodic and inverse-square potentials, Journal of Differential Equations. 260 (5) (2016) 4180-4202.

[21] A. Kirsch, F. Hettlich, The mathematical theory of time-harmonic Maxwell’s equations: expansion, integral, and variational methods, Springer. 2015.

[22] W. Krolikowski, O. Bang, J. J. Rasmussen, J. Wyller, Modulational instability in nonlocal nonlinear Kerr media, Phys. Rev. E, 66, 016612, Jun 2001.

[23] H. Leinfelder, Gauge invariance of Schrödinger operators and related spectral properties, J. Operator Theory. 9 (1983) 163-179.

[24] A.G. Litvak, Self-focusing of Powerful Light Beams by Thermal Effects, JETP Lett., 4 (1966), 230-232.

[25] E. Lieb, M. Loss, Analysis, graduate studies in mathematics, Providence, Amer Math Soc. 2001.

[26] P.L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. Part I and II, Rev. Mat. Iberoamer. 1 (1985) 45–201. (2) (1985) 45–121.

[27] R. Mandel, Ground states for Maxwell’s equation in nonlocal nonlinear media, Partial Differ. Equ. Appl. 3 (2022).

[28] C. Mercuri, V. Moroz, J. Van Schaftingen, Groundstates and radial solutions to nonlinear Schrödinger-Poisson-Slater equations at the critical frequency, Calc. Var. 55 (146) (2016). 4, 8, 14, 17, 18, 30

[29] J. Mederski, Ground states of time-harmonic semilinear Maxwell equations in \mathbb{R}^3 with vanishing permittivity, Arch. Rational Mech. Anal. 218 (2015) 825-861.

[30] J. Mederski, Ground states of a system of nonlinear Schrodinger equations with periodic potentials, Comm. Partial Differential Equations. 41 (9) (2016) 1426-1440.

[31] J. Mederski, The Brezis-Nirenberg problem for the curl-curl operator, J. Funct. Anal. 274 (2018) 1345-1380.

[32] J. Mederski, J. Schino, A. Szulkin, Multiple solutions to a nonlinear curl-curl problem in \mathbb{R}^3, Arch. Rational Mech. Anal. 236 (2) (2019) 253-288.

[33] J. Mederski, A. Szulkin, A Sobolev-type inequality for the curl operator and ground states for the curl-curl equation with critical Sobolev exponent. Arch. Rational Mech. Anal. 241 (2021) 1815-1842.
[34] V. Moroz, J. V. Schaftingen, *A guide to the Choquard equation*, Journal of Fixed Point Theory and Applications. (2017).
[35] P. Monk, *Finite element methods for Maxwell’s equations*, Oxford University Press. 2003. 1, 3, 16
[36] N. I. Nikolov, D. Neshev, O. Bang, W. Z. Królikowski. *Quadratic solitons as nonlocal solitons*, Phys. Rev. E, 68:036614, Sep 2003. 4
[37] W. J. Padilla, D. N. Basov, D. R. Smith, *Negative refractive index metamaterials*, Materials Today, 9 (7) (2006) 28-35. 4
[38] R. Picard, N. Weck, K. J. Witsch, *Time-harmonic Maxwell equations in the exterior of perfectly conducting, irregular obstacles*, Analysis (Munich). 21 (3) (2001) 231-263. 3
[39] D. D. Qin, X. H. Tang, *Time-harmonic Maxwell equations with asymptotically linear polarization*, Z. Angew Math Phys. 67 (2016) 39-67. 3
[40] C. Reimbert, A. Minzoni, N. Smyth, *Spatial soliton evolution in nematic liquid crystals in the nonlinear local regime*, J. Opt. Soc. Amer. B Opt. Phys. 23 (2006) 294-301. 4
[41] S. Solimini, *A note on compactness-type properties with respect to Lorentz norms of bounded subsets of a Sobolev space*, Ann. Inst. H. Poincaré Anal. Non Linéaire. 12 (3) (1995) 319-337. 22
[42] C. A. Stuart, H. S. Zhou, *Existence of guided cylindrical TM-models in a homogeneous self-trapping dielectric*, Ann. Inst. H. Poincaré Anal. Non Linéaire. 18 (2001) 69-96. 3
[43] C. A. Stuart, H. S. Zhou, *Axisymmetric TE-modes in a self-focusing dielectric*, SIAM J. Math. Anal. 37 (1) (2005) 218-237. 3
[44] A. Szulkin, T. Weth, *Ground state solutions for some indefinite variational problems*, J. Funct. Anal. 257 (12) (2009) 3802-3822. 3
[45] X. Y. Zeng, *Cylindrically symmetric ground state solutions for curl-curl equations with critical exponent*, Z. Angew Math Phys. 68 (135) (2017). 3

MINBO YANG, SHUJIN ZHANG
DEPARTMENT OF MATHEMATICS, ZHEJIANG NORMAL UNIVERSITY,
JINHUA, ZHEJIANG, 321004, PEOPLE’S REPUBLIC OF CHINA
Email address: M. Yang: mbyang@zjnu.edu.cn; S. Zhang: shuijinzhang@zjnu.edu.cn

WEIWEI YE
DEPARTMENT OF MATHEMATICS, ZHEJIANG NORMAL UNIVERSITY,
JINHUA, ZHEJIANG, 321004, PEOPLE’S REPUBLIC OF CHINA,
DEPARTMENT OF MATHEMATICS, FUYANG NORMAL UNIVERSITY,
FUYANG, ANHUI, 236037, PEOPLE’S REPUBLIC OF CHINA
Email address: W. Ye: yeweiweime@163.com