Prompt-based Generative Approach towards Multi-Hierarchical Medical Dialogue State Tracking

Jun Liu 1, Tong Ruan 1, Haofen Wang 2 and Huanhuan Zhang 1

1 East China University of Science and Technology
2 Tongji University

Y30201043@mail.ecust.edu.cn, ruantong@ecust.edu.cn, carter.whfcarter@gmail.com, hzhang@ecust.edu.cn

Abstract

The medical dialogue system is a promising application that can provide great convenience for patients. The dialogue state tracking (DST) module in the medical dialogue system which interprets utterances into the machine-readable structure for downstream tasks is particularly challenging. Firstly, the states need to be able to represent compound entities such as symptoms with their body part or diseases with degrees of severity to provide enough information for decision support. Secondly, these named entities in the utterance might be discontinuous and scattered across sentences and speakers. These also make it difficult to annotate a large corpus which is essential for most methods. Therefore, we first define a multi-hierarchical state structure. We annotate and publish a medical dialogue dataset in Chinese. To the best of our knowledge, there are no publicly available ones before. Then we propose a Prompt-based Generative Approach which can generate slot values with multi-hierarchies incrementally using a top-down approach. A dialogue style prompt is also supplemented to utilize the large unlabeled dialogue corpus to alleviate the data scarcity problem. The experiments show that our approach outperforms other DST methods and is rather effective in the scenario with little data.

1 Introduction

The medical dialogue system that can simulate the actions of clinicians is a promising application. The systems acquire the patient’s information interactively through natural language and give diagnoses and suggestions of treatments. One of the major challenges in implementing such a system is how to understand the patient’s utterances and convert the utterances into a machine-friendly structure. In particular, the structure mainly consists of two parts, patient’s major intention and the detailed values of the intention, called intent and slot respectively. The task of defining, extracting, and maintaining such a structure is called Dialogue State Tracking (DST) in task-oriented dialogue systems.

Current task-oriented dialogue systems ([Lei et al., 2018], [Acharya et al., 2021]) mainly focus on simple personal assistant tasks such as buying movie tickets, booking restaurants. Though logically the research on medical dialogue systems ([Kao et al., 2018], [Wei et al., 2018], [Xu et al., 2019]) exist, the tasks are processed in the same way as simpler systems. However, after we began with a project on a dialogue-based medical decision support system one year before, we found the differences and challenges obvious.

Firstly, it requires more complex and accurate state information to make the correct diagnosis possible. Typical state structure of task-oriented systems is in the form of \{intent,(slot, value)+\}. A case in point in the restaurant reservation system may be \{book, (time, 5 pm), (day, Jan.13)\}. However, simple slot and slot-values pairs are not enough for medical systems. For example, the patient says “I do not have a headache”, it’s wrong to convert the utterance to (“symptom”, “headache”) and it is a disaster to neglect the negation in the medical domain. Furthermore, if another patient says “I have a severe headache after drinking”, both the severity and condition of the symptom should be extracted and represented. Besides, the number of the intention types of the patients and clinicians are much bigger. In real clinical practice, the patients are not only in need of diagnosis or treatment, but also acquire medical knowledge or look for the console. Typical samples for comparison can be found in Table 1.

Secondly, there are many discontinuous, overlapping, and nested entities in the utterances. These entities may even across sentences and speakers. For example, the patient says “我的头感到有点疼(My head feels painful)”. Most named entity recognition (NER) model will extract “疼(painful)”, however, the right answer should be "头疼(headache)", and “头疼” “疼” are separated in original sentences. Another example is “伤口又疼又痒(wound hurts and itches)”. Usually NER model will treat this as a whole entity, but to be accurate, we want “伤口疼(wound hurts)” and “伤口痒(wound itches)” so that it will be possible to be normalized into two symptoms.

Traditionally most existing DST methods are based on deep learning and require a large annotated dataset. For the medical dialogue application, both the complexity of state structure and diverse forms of named entities imply the requirement of a larger corpus. However, it is almost unrealistic due to the annotation cost.
2 Related Work

The two subtasks of dialogue state tracking, namely intent detection and slot filling, used to be handled separately. Typically, intent detection is treated as a classification problem and slot filling as a sequence labeling problem (Xu and Hu, 2020) so that the relationship between the two tasks can be fully exploited. While the two tasks take different forms traditionally, generation-based methods (Wu et al., 2019, Kim et al., 2021) take the advantage of unifying various types of NLP tasks. Feng et al., 2021 proposed the Seq2seq-DU method formalizing DST as a sequence to sequence problem using BERT (Devlin et al., 2019) and point generation, but its performance may be affected when facing utterances with multiple values. Another reason for the generation-based methods being popular is the publishing of large annotated DST datasets, such as MultiWOZ (Budzianowski et al., 2018), Ramadan et al., 2018, Eric et al., 2019, Zang et al., 2020), Schema-Guided Dialogue Dataset (Rastogi et al., 2019), etc. A large training dataset is necessary for the generation-based method due to its larger searching spaces.

But annotating a DST dataset is rather expensive, some studies try to avoid this problem. Lin et al., 2021 uses multiple machine reading comprehension datasets to train a generative model and achieves zero-shot cross-task transferring to the DST field. Du et al., 2021 uses a weakly supervised method to pretrain a span-based QA model for zero-shot slot filling. But these methods still need large annotated datasets of other tasks which are not always available.

As for the medical field, several dialogue systems (Kao et al., 2019, Wei et al., 2018, Xu et al., 2019) have been proposed to provide automatic diagnosis. The setup is similar to the general one except that its contents relate to the medical domain. Liu et al., 2020b published a medical consultation dataset on the dialogue system without annotation. Shi et
al., 2020] created a dataset for the medical slot filling task but only consider one symptom slot type with definite slot values.

However, making a diagnosis is more complex than making a decision in the general field like booking a restaurant. In this paper, we fully exploit the difficulties for the DST tasks in the medical dialogue system, providing solutions as well as publishing annotated datasets.

3 Task Definition

A dialogue D consists of a list of utterances $U_1, R_1, ..., U_T, R_T$, where U is the user’s input and R is the response of the system. T is the total turns of the dialogue. The input of the t_{th} turn is denoted as $D_t = \{U_1, R_1, ..., R_{t-1}, U_t\}$. Notice that R_t is not in D_t because it will be the output of this turn for the system.

A schema must be predefined to represent the structure of the state. The schema involves a set I indicating the intents of the user, and a hierarchical structure S. An example can be found in Table 1. I contains all possible intents, like \{describe, ask, ...\} for patient’s intents and \{diagnose, recommend, ...\} for doctor’s intents. There are multiple hierarchies in S. The first hierarchy of S contains all the fields f needed for the system, like symptom. The second hierarchy of S is a set of the slot types required by the corresponding field, like the name of the symptom. The value of each field V_f is a compound structure including all the slots in $S[f]$.

Given a dialogue history (D_t) and a schema (I, S), the task is to first identify the intent I_t of the input utterance U_t and then identify all values V_f for each field f in S. The structure of V_f is same with $S[f]$.

4 Approach

In this work, we treat the DST task as a Seq2seq task using a generative model. As shown in Figure 1, we use prompt token P to transform the target (intent or slot type) and their value into a series of dialogue-style question-answer pair (Q,A). By using Q to generate A, we convert the DST task into a response generation task. This makes it possible to pretrain the model with unlabeled dialogue datasets. The result of the DST task is acquired by parsing the generated output utterance. An extra decoding algorithm is used to guarantee the utterance is well-formed.

4.1 Dialogue-style Prompt

There have been two common ways to construct the QA pair. As shown in Table 2, the easiest way is to simply use the slot type name with its description (Lee et al., 2021). Another way is to construct a question (Lin et al., 2021, Du et al., 2021, Liu et al., 2020a). However, it is easy to find that the dialogue itself is in the form of question and answer. If we construct the QA pair in the medical dialogue form, namely the question looks like an inquiry from a physician, and the answer is an ordinary utterance from a patient, we may fully utilize the large unlabeled medical dialogue corpus. Based on the above intuition, we propose a dialogue-style Prompt, as shown in the last row of Table 2.

For example, if the target is symptom “headache” with extent “bad”, we can construct a series of question and answers. For the first turn, the question is “Doctor: what symptoms do you have”, and let the model generate “Patient: I have a headache”. The prefix indicates the role of the speaker, “headache” is the value of the target slot, and “I have” is also a prompt indicating the model to output the expected result. For the next turn, we want to further get the extent of the headache symptom. We put the former output value of the last turn namely “headache” into the question, “Doctor: How is your headache”. The answer is “Patient: I feel bad”. We choose to use multi-turn QA instead of one like Seq2seq-DU [Feng et al., 2021], because we think that it would be difficult for the model to generate long sequences with a specified format accurately.

There also have been many ways to output the answer, like indicating the start and end position (Du et al., 2021), tagging the input sequence (Du et al., 2021), or generating the answer. We choose the generative model because it is better in tackling different kinds of output, no matter extractive or categorical. It would be hard for other models to be able to deal with both two tasks. Besides, the generated output must follow a predefined pattern to be easily parsed to a structure. For example, “I have a, b, c”. The comma can only appear in
Two-stage training process. The first stage is pretraining. The data for pretraining is filtered by the classifier. The training target is to generate the response according to the dialogue history. The second stage is fine-tuning which follows the same idea. We convert the slot and value into a pair of dialogue-style question and answer. The training target is still to generate the answer using the dialogue history including the constructed question.

Input Dialogue	Query Type	Constructed Query Sample	Output result
Patient: I have a bad headache.	Type name	symptom	headache
Question	What symptoms does the patient have?	Doctor: What symptoms do you have?	Patient: I have headache.

We mix the descriptive utterance and random one in a ratio of 4:1.

Fine-Tune During the fine-tuning process, we transform the labeled data into the dialogue style and let the model generate the constructed answer.

4.3 Decoding Strategy

The major problem of the generative model is that the output is unpredictable and may be invalid. Furthermore, putting the history of dialogue into the input can help the model better understand the conversation but may introduce more noises [Yang et al., 2021] as well. Most generative-based DST methods simply discard invalid values. [Lin et al., 2021] uses canonicalization technique [Gao et al.,] to replace the predicted value with the closest value in the ontology. However, ontology is not always available.

To prevent the situation from happening, we use a constrained decoding algorithm during inference. Since the model generates the result in an autoregressive way, it is easy to control the decoding progress. In each step of decoding, we only focus on a limited range of tokens instead of the whole vocabulary. In this way, we can ensure the output is in the expected pattern.

For the extractive result, the output range will be limited to the tokens in the latest utterance, since the state change can only come from the newest input. For the categorical target, a trie-tree is constructed according to the candidates and we use it to guide the output range.
5 Experiments

5.1 Dataset

MDST is the dataset annotated in this paper. The original corpus comes from one of the biggest online medical consultation service providers in China, who hired clinicians to give suggestions to patients on the Internet. We collect 183,386 dialogues and annotate 89 of them. Detailed statistics are shown in Table 3. Compared to the two commonly used DST datasets, the dataset is much smaller. However, it costs a lot of effort to define the annotation specification with the help of clinicians. It also takes about six persons more than 2 months of effort to define the annotation specification with the help of clinicians. The dataset is divided into training, test, and validation sets in a ratio of 8:1:1.

MSL is proposed by [Shi et al., 2020] which is a dataset for medical slot filling task. It only focuses on symptom slot with finite values. It contains 1152 labeled utterances for training, 500 for validation, and 1000 for the test. We keep the same setup in our experiments.

5.2 Baseline

We set baselines of the intent detection and the slot filling tasks separately since few researchers process the two tasks in one unified model as we are.

BERT [Devlin et al., 2019] is easy to fine-tune on the intent detection task if we treat the task as a multi-label classification task. The input is one utterance instead of the whole dialogue history and the output is the intent of that utterance.

QA We follow the method proposed by [Lin et al., 2021] as the baseline. It treats the slot filling task as a Seq2Seq task in the form of question answering. We use the two methods in Table 2. One is to simply use the target slot type name, and the other is to convert the type name into a question with a template.

5.3 Metrics

Intent Detection could be defined as a multi-label classification task, so we use precision, recall, and F1 as the metrics.

Slot Filling is a bit complicated. We first transform the hierarchical state into a flat structure like ("symptom", "headache") and ("symptom", "headache", "extent", "serious"). In this way, it would be convenient to calculate the precision, recall, and F1 between the predicted tuple list and answer tuple list. With the approach, only when the slot value is completely the same as the answer is regarded as correct.

5.4 Setup

To ensure the comparison is fair, our approach and all baseline models use BERT-base and chinese_roberta_www_ext from [Cui et al., 2019] as the pre-trained weights. We use cross-entropy as the loss function and Adam as the optimizer with the learning rate of 1e-5. The batch size is 16 and each epoch has 1000 steps, 30 epochs in total. All the experiments are done on one NVIDIA GeForce RTX 3090 with 24GB VRAM.

5.5 Experiment Results

According to the first two rows of Table 4, we can see the generation-based methods outperform the simple classification model. This shows that generation-based methods are suitable for the intent detection task. However, the performance of our approach is 2.54% worse than QA, only 0.18% on precision but 4.73% on recall. But from the first two rows in one unified model as we are.

BERT [Devlin et al., 2019] is easy to fine-tune on the intent detection task if we treat the task as a multi-label classification task. The input is one utterance instead of the whole dialogue history and the output is the intent of that utterance.

QA We follow the method proposed by [Lin et al., 2021] as the baseline. It treats the slot filling task as a Seq2Seq task in the form of question answering. We use the two methods in Table 2. One is to simply use the target slot type name, and the other is to convert the type name into a question with a template.

5.3 Metrics

Intent Detection could be defined as a multi-label classification task, so we use precision, recall, and F1 as the metrics.

Slot Filling is a bit complicated. We first transform the hierarchical state into a flat structure like ("symptom", "headache") and ("symptom", "headache", "extent", "serious"). In this way, it would be convenient to calculate the precision, recall, and F1 between the predicted tuple list and answer tuple list. With the approach, only when the slot value is completely the same as the answer is regarded as correct.

5.4 Setup

To ensure the comparison is fair, our approach and all baseline models use BERT-base and chinese_roberta_www_ext from [Cui et al., 2019] as the pre-trained weights. We use cross-entropy as the loss function and Adam as the optimizer with the learning rate of 1e-5. The batch size is 16 and each epoch has 1000 steps, 30 epochs in total. All the experiments are done on one NVIDIA GeForce RTX 3090 with 24GB VRAM.

5.5 Experiment Results

According to the first two rows of Table 4, we can see the generation-based methods outperform the simple classification model. This shows that generation-based methods are suitable for the intent detection task. However, the performance of our approach is 2.54% worse than QA, only 0.18% on precision but 4.73% on recall. But from the first two rows...
part of Table 5, our approach is 6.51% superior to the baseline on slot filling task. This result proves that our approach is more suitable for the more complicated task with larger state spaces.

From Table 6 we can see that our method is much better than the result reported by [Shi et al., 2020] in the MSL dataset. Although it’s possible to treat this slot filling dataset as a multi-label classification problem like [Shi et al., 2020], our approach is still suitable for this task, and pretraining can almost always improve the performance.

5.6 Ablation Study

Dialogue-style Prompt QA method uses pairs of questions and answers without the dialogue-style prompt. From Table 4 we can find that the performance of our approach is 2.54% worse than QA on intent detection task. But in the slot filling task, our approach outperforms 6.51% to the QA method. This may suggest that the dialogue-style prompt could make the model focus on the semantic information so that it can help improve the performance on complex slot filling tasks. For the simple task like intent detection, the help is minimal. Another possible reason is that the definition of intent does not completely conform to the normal speech habits which makes the prompt confuse the model.

Pretraining To find out whether the pretraining can help the model understand the dialogue, we trained the model with the same setup but loaded the parameters of BERT instead of the pre-trained weights. From Table 4 and 5, we can see that pretraining has slight help in intent detection but large help in slot filling. The result is consistent with the expectation that pretraining is able to make the model find out the relationship between the utterances. This is more helpful for the difficult task. The result on the MSL dataset in Table 6 also supports our conclusion.

We find that loss decreases faster during the fine-tuning process with pretraining. One of the main reasons is that the pretraining has made the model learn to generate utterances while the original BERT cannot. This implies pretraining might be helpful in low-resource scenarios which are common in the medical field.

To prove the conjecture above, we reduce the training dataset to 20%, 50%, and 80% and repeat the training process. From Table 4 and 5, we can see that the size of training data has a great impact on the performance, and the model with pretraining performs better than the one without pretraining in most scenarios. This proves that our pretraining approach is helpful in low-resource scenarios. For the simple task like intent detection, when the data is sufficient, the impact of pretraining becomes smaller like the result between 80% and 100% data in Table 4.

5.7 Error Analysis

We further look into the error produced by the model and compare the result with the BERT+CRF which is a common but effective NER model. Notice that since NER cannot handle discontinuous and multi-hierarchies structures, we only compare the performance on the first-level slots. According to Table 7, we notice that the performance of our approach is a bit lower than BERT+CRF and the main gap is the recall rate.

We find two typical scenarios to explain the reason. For example, the output of the utterance 我肚子感觉难受(My stomach feels uncomfortable) is (symptom, 肚子感觉难受("stomach feels uncomfortable")) which is correct for the NER model. But our approach outputs (symptom, 肚子难受("stomach uncomfortable")) which extracts a discontinuous entity. The answer is also correct. However, it is hard for us to find all possible correct answers and put them in the annotated corpus. This example may partly explain why the recall performance is not that ideal. Another example is the symptom 皮肤过敏(skin allergy) whose body_part is 皮肤(skin). Our approach extracts 过敏(allergy) as a symptom whose body_part is 皮肤(skin). It is also hard to decide whether the two should be split.

6 Conclusion

In this work, we first redefine the state with multiple hierarchies and annotate a dataset called MDST extending existing DST tasks. We propose a dialogue-style prompt with UniLM to solve the new problem. The proposed prompt also makes it possible to pretrain the model with the unlabeled medical dialogue corpus. The experiments show that our method outperforms baseline up to 6.51%, and in low-resource scenarios, the pretraining can improve the performance up to 4.29%.

References

[Acharya et al., 2021] Anish Acharya, Suranjit Adhikari, and Sanchit Agarwal. Alexa conversations: An extensible data-driven approach for building task-oriented dialogue systems. In Proceedings of the 2021 Conference of the NAACL, pages 125–132, Online, June 2021. ACL.
[Budzianowski et al., 2018] Paweł Budzianowski, Tsung-Hsien Wen, and Bo-Hsiang Tseng. Multitwoz - a large-scale multi-domain wizard-of-oz dataset for task-oriented dialogue modelling. In EMNLP, 2018.

[Chen et al., 2020] Lu Chen, Boer Lv, Chi Wang, Su Zhu, Bowen Tan, and Kai Yu. Schema-guided multi-domain dialogue state tracking with graph attention neural networks. Proceedings of the AAAI Conference on Artificial Intelligence, 34(05):7521–7528, Apr. 2020.

[Cui et al., 2019] Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Ziqing Yang, Shijin Wang, and Guoping Hu. Pre-training with whole word masking for chinese BERT. CoRR, abs/1906.08101, 2019.

[Devlin et al., 2019] Jacob Devlin, Ming-Wei Chang, and Kenton Lee. BERT: Pre-training of deep bidirectional transformers for language understanding. In NAACL 2019, pages 4171–4186. ACL.

[Dong et al., 2019] Li Dong, Nan Yang, Wenhui Wang, and Furu Wei. Unified language model pre-training for natural language understanding and generation. In Proceedings of the 33rd International Conference on Neural Information Processing Systems, pages 13063–13075, 2019.

[Du et al., 2021] Xinya Du, Luheng He, and Qi Li. QA-driven zero-shot slot filling with weak supervision pre-training. In Proceedings of the 59th Annual Meeting of the ACL, pages 654–664, Online, August 2021. ACL.

[Eric et al., 2019] Mihail Eric, Rahul Goel, and Shachi Paul. Multitwoz 2.1: Multi-domain dialogue state corrections and state tracking baselines. arXiv preprint arXiv:1907.01669, 2019.

[Feng et al., 2021] Yue Feng, Yang Wang, and Hang Li. A sequence-to-sequence approach to dialogue state tracking. In Proceedings of the 59th Annual Meeting of the ACL, pages 1714–1725, Online, August 2021. ACL.

[Gao et al., 2020] Shuyang Gao, Sanchit Agarwal, and Di Jin. From machine reading comprehension to dialogue state tracking: Bridging the gap. In ACL 2020, pages 79–89.

[Kao et al., 2020] Hao-Cheng Kao, Kai-Fu Tang, and Edward Chang. Context-aware symptom checking for disease diagnosis using hierarchical reinforcement learning. AAAI 2018, 32(1).

[Kim et al., 2020] Sungdong Kim, Sohee Yang, Gyuwan Kim, and Sang-Woo Lee. Efficient dialogue state tracking by selectively overwriting memory. In ACL 2020, pages 567–582, Online. ACL.

[Lee et al., 2021] Chia-Hsuan Lee, Hao Cheng, and Mari Ostendorf. Dialogue state tracking with a language model using schema-driven prompting, 2021.

[Lei et al., 2018] Wenqiang Lei, Xisen Jin, and Min-Yen Kan. Sequicity: Simplifying task-oriented dialogue systems with single sequence-to-sequence architectures. In Proceedings of the 56th Annual Meeting of the ACL, pages 1437–1447. ACL, July 2018.

[Lin et al., 2021] Zhaojiang Lin, Bing Liu, and Andrea Madotto. Zero-shot dialogue state tracking via cross-task transfer. In Proceedings of the 2021 Conference on EMNLP, pages 7890–7900. Association for Computational Linguistics, November 2021.

[Liu et al., 2020a] Jian Liu, Yubo Chen, Kang Liu, Wei Bi, and Xiaojian Liu. Event extraction as machine reading comprehension. In EMNLP 2020, pages 1641–1651, Online, 2020. ACL.

[Liu et al., 2020b] Wenge Liu, Jianheng Tang, Jinghui Qin, Lin Xu, Zhen Li, and Xiaodan Liang. Meddg: A large-scale medical consultation dataset for building medical dialogue system. CoRR, abs/2010.07497, 2020.

[Ramadan et al., 2018] Osman Ramadan, Paweł Budzianowski, and Milica Gasic. Large-scale multi-domain belief tracking with knowledge sharing. In ACL 2018, pages 432–437, 2018.

[Rastogi et al., 2019] Abhinav Rastogi, Xiaoxue Zang, and Srinvivas Sunkara. Towards scalable multi-domain conversational agents: The schema-guided dialogue dataset. arXiv preprint arXiv:1909.05859, 2019.

[Shi et al., 2020] Xiaoming Shi, Hai Feng Hu, and Wanxiang Che. Understanding medical conversations with scattered keyword attention and weak supervision from responses. AAAI 2020, 34(05):8838–8845, 2020.

[Wei et al., 2018] Zhongyu Wei, Qianlong Liu, and Baolin Peng. Task-oriented dialogue system for automatic diagnosis. In Proceedings of the 56th Annual Meeting of the ACL, pages 201–207. ACL, July 2018.

[Wu et al., 2019] Chien-Sheng Wu, Andrea Madotto, and Ehsan Hosseini-Asl. Transferable multi-domain state generator for task-oriented dialogue systems. In Proceedings of the 57th Annual Meeting of the ACL, 2019.

[Xu and Hu, 2020] Puyang Xu and Qi Hu. An end-to-end approach for handling unknown slot values in dialogue state tracking. In ACL 2018, pages 1448–1457. ACL.

[Xu et al., 2019] Lin Xu, Qixian Zhou, Ke Gong, Xiaodan Liang, Jianheng Tang, and Liang Lin. End-to-end knowledge-routed relational dialogue system for automatic diagnosis. Proceedings of the AAAI Conference on Artificial Intelligence, 33(01):7346–7353, Jul. 2019.

[Yang et al., 2021] Puah Yang, Heyan Huang, and Xian-Ling Mao. Comprehensive study: How the context information of different granularity affects dialogue state tracking? In ACL 2021, pages 2481–2491, Online, 2021. ACL.

[Zang et al., 2020] Xiaoxue Zang, Abhinav Rastogi, and Srinvivas Sunkara. Multitwoz 2.2: A dialogue dataset with additional annotation corrections and state tracking baselines. In ACL 2020, pages 109–117, 2020.