PRACTICUM GUIDE: BASIC PHYSICS BASED OF SCIENCE PROCESS SKILL

Darmaji
Physics Education, Faculty of Teaching and Education, Universitas Jambi, Indonesia

Astralini
Physics Education, Faculty of Teaching and Education, Universitas Jambi, Indonesia

Dwi Agus Kurniawan
Physics Education, Faculty of Teaching and Education, Universitas Jambi, Indonesia

Hanaiyah Parasdila
Physics Education, Faculty of Teaching and Education, Universitas Jambi, Indonesia

Irdianti
Physics Education, Faculty of Teaching and Education, Universitas Jambi, Indonesia

Siti Hadijah
Physics Education, Faculty of Teaching and Education, Universitas Jambi, Indonesia

Rahmat Perdana
Physics Education, Faculty of Teaching and Education, Universitas Jambi, Indonesia

Purpose: This research aims to develop basic physics practicum guidebooks based on science process skills that can assist students in training and developing students' science process skills through practicum.

Design/methodology/approach: This research is development research that uses the analysis, design, development, implementation, and evaluation that adopted from Branch

Findings: Based on the validation results indicate that the reconstruction of basic physics practicum guidebooks based on science process skills that got good category result so that it can be used.

Research limitations/implications: The results of student responses when using the reconstruction of basic physics practicum guidebooks based on science process skills are well categorized so as to improve students' science process skills.

Social implications: By using the reconstruction of basic physics practicum guidebooks based on science process skills of this student can have good skills so as to have experience as a prospective teacher so that later can teach it to students in science class.

References

1. Aka, Elvan Ġnce, Ezgi Güven, Mustafa Aydoğdu. (2010). Effect of Problem Solving Method on Science Process Skills and Academic Achievement. Turkish Science Education. 7(4). 13-25
2. Argyrous, G. (2011). Statistics for Research: With a Guide to SPSS. Australia: Sage Publication. 1-397
3. Arriestina, N. A., & Nor, M. N. (2015). Attitudes toward Student Science in the Application of Guided Inquiry Learning. Student Online Journal (JOM) Field of Teaching and Education, 2(1). 1-11.
4. BSNP. (2014). Instrument Rating Textbook Lesson 2014. BSNP-indonesia.org //p=1340 (accessed on 09 March 2018, at 15:30)
5. Cansiz, Mustafa, Semra Siregar dan Ceren Oztekin. (2016). Exploring The Development Of
Science Process Skills Through History Of Science Instruction. Strand 16, Science in the primary school, 735-736.

6. Cohen, L., Manion, L., & Morrison, K. (2007). Research methods in education. Routledge. https://doi.org/10.4324/9780203029053

7. Cronbach, L. J., & Meehl, P. E. (1955). Construct validity in psychological tests. Psychological Bulletin, 52(4), 281. Doi: http://dx.doi.org/10.1037/h0040957

8. Effiong, O. E., & Igiri, C. E. (2015). Impact of Instructional Materials in Teaching and Learning of Biology in Senior Secondary Schools in Yakurr LG A. International Letters of Social and Humanistic Sciences, 62, 27-33. Retrieved April 21, 2019, from https://www.learntechlib.org/p/176668/.

9. Etiubon, R. U., & Udoh, N. M. (2017). Effects of Practical Activities and Manual on Science Students’ Academic Performance on Solubility in Uruan Local Education Authority of Akwa Ibom State. Journal of Education and Practice, 8(3), 202-209. Retrieved http://iste.org/journals/index.php/JEP.

10. Etkina, E., Van Heuvelen, A., White-Brahmia, S., Brookes, D. T., Gentile, M., Murthy, S., ... & Warren, A. (2006). Scientific abilities and their assessment. Physical Review special topics-physical education research, 2(2), 1-15. https://doi.org/10.1103/PhysRevSTPER.2.020103

11. Fajrjani. (2017). Development of Chemical Basic Practicum Module Integrated Physics Sciences Department of Physics Education. Thesis UIN Alauddin Makassar

12. Faradila, R. S. N., & Soesanto, H. (2016). Analysis of Effect of Perception of Ease of Use and Perception of Benefits to Buy Interest with Confidence as Intervening Variable (Study on Visitors Online Shop berrybenka.com in Students of Diponegoro University). Diponegoro Journal of Management, 5(3), 239-250.

13. Farsakoğlu, Ö. F., Şahin, Ç., & Karsli, F. (2012, June). Comparing science process skills of prospective science teachers: A cross-sectional study. In Asia-Pacific Forum on Science Learning and Teaching (Vol. 13, No. 1, pp. 1-21). The Education University of Hong Kong, Department of Science and Environmental Studies.

14. Feynman, R. P., Leighton, R. B., & Sands, M. (1965). The Feynman lectures on physics; vol. i. American Journal of Physics, 33(9), 750-752. https://doi.org/10.1119/1.1972241

15. Feyzýoglu, B. (2009). An investigation of the relationship between science process skills with efficient laboratory use and science achievement in chemistry education. Journal of Turkish Science Education, 6(3), 114-132.

16. GBG 005. (2005). SCIENCE GRADE 5 From Integrated Resource Package 2005. British Columbia: Ministry of Education. 10.

17. Gobaw, G. F., & Atagana, H. I. (2016). Assessing Laboratory Skills Performance in Undergraduate Biology Students. Academic Journal of Interdisciplinary Studies, 5(3), 113. https://doi.org/10.5901/ajis.2016.v5n3p113

18. Karamustafaoglu, Sevilay. (2011). Improving the Science Process Skills Ability of Science Student Teachers Using I Diagrams. Eurasian J. Phys. Chem. Educ, 3(1), 26-38

19. Karsli, F., & Sahin, Ç. (2009). Developing worksheet based on science process skills: Factors affecting solubility. In Asia-Pacific Forum on Science Learning & Teaching 10 (1), 1-12. https://doi.org/10.1016/j.jsbspro.2009.01.158

20. Kruea-In, N., & Thongperm, O. (2014). The teaching of science process skills in the contexts: Status, supports, and obstacles. Procedia-Social and Behavioral Sciences, 141, 1324-1329. https://doi.org/10.1016/j.sbspro.2014.05.228

21. Kustijono, R., Jatmiko, B., & Ibrahim, M. (2018). The Effect Of Scientific Attitudes Toward Science Process Skills In Basic Physics Practicum By Using Peer Model. International Journal Of Geomate, 15(50), 82-87. https://doi.org/10.21660/2018.50.IJ CST50

22. Kuswanto, 2017. Profile Capability Early New Student Science Process Skills Physical Education Academic Year 2016/2017 In Doing Practical Physics I at Jambi University: Thesis, Department of Mathematics and Natural Sciences, FKIP University of Jambi. 1-85.

23. Lestari, U. (2017). Description Science Process Skills of Physics Education Students of Jambi University at Basic Physics Practicum Activity I (Science Process Skills: Observation, Prediction, Classification and Conclusion). Thesis, Department of Mathematics and Natural Sciences, Jambi University. 1-85.
24. Newman, I., Lim, J., & Pineda, F. (2013). Content validity using a mixed methods approach: Its application and development through the use of a table of specifications methodology. Journal of Mixed Methods Research, 7(3), 243-260. https://doi.org/10.1177/1558689813476922

25. Nindy Apsari, A., & Kustijono, R (2017). Development Of E-Book Using Kvisoft Flipbook Maker To Train Science Process Skill For Senior High School Students In Curriculum 2013. Inovasi Pendidikan Fisika, 6(3), 285-291

26. Normayanti. (2017). Description Science Process Skills of Physics Education Students of Jambi University on Basic Physics Practicum Activities I (SPS: Defining Variables Operationally, Measuring, Obtaining and Processing Data, and Creating Data Tables), Department of Physics Education, FKIP Jambi University. 1-101.

27. Octaviandari, Arniza Resti. (2016). Module Development Physics Science Process Skills Based On Optical Materials Tools For Junior Class Students VIII. Thesis. State Islamic University Sunan Kalijaga. Yogyakarta. 1-245.

28. Özgelen, S. (2012). Students’ science process skills within a cognitive domain framework. Eurasia Journal of Mathematics, Science & Technology Education, 8(4), 283-292

29. Rahman, M. H. (2014). Professional Competence, Pedagogical Competence and the Performance of Junior High School of Science Teachers. Journal of Education and Practice, 5(9), 75-80.

30. Rauf, R. A. A., Rasul, M. S., Mansor, A. N., Othman, Z., & Lyndon, N. (2013). Inculcation of science process skills in a science classroom. Asian Social Science, 9(8), 47-57. https://doi.org/10.5539/ass.v9n8p47

31. Rezba, R J, Constance. SS, Ronald. F, James. F, James. O, Harold. H J,. (1995). Learning and Assessing science process skills. Kn dall: Hunt publishing company, 1-269.

32. Riyani, R., Maizora, S., & Hanifah, H. (2017). Validity Test Development Test For Measuring Relational Understanding Ability To Square Quality Learning Students Class VIII Smp. Jp2ms, 1(1). 2017. https://doi.org/10.33369/jp2ms.1.1.60-65

33. Sheeba, M. N. (2013). An Anatomy of Science Process Skills in The Light of the Challenges to Realize Science Instruction Leading to Global Excellent in Education. Education Confab, 2(14), 108-123.

34. Simbarashe, M., Emmanuel, C., & Masimba, M. (2016). A Study for Teaching Advanced Level Physics Practical and Solution approach to Practical Questions. Journal of Innovative Research in Education, 1(1), 36-48.

35. Siskawati, M., Pargito, P., & Pujjati, P. (2016). Development of Monopolistic Learning Media to Improve Student Geography Learning Interest. Journal of Social Studies, 4(1): 72-80.

36. Subamia, I. D. P., Wahyuni, I. G. A. N. S., & Widiasih, N. N. 2014. Development of IPA Practicum Supporting Tool in Environmental Based SMP. Journal of Education and Teaching, 47(1): 29-39.

37. Suciu, A. I., & Mătă, L. (2011). Pedagogical Competences – The Key To Efficient Education. International Online Journal of Educational Sciences, 3(2), 411-423.

38. Tavakol, Mohsen dan Reg Dennick. 2011. Making sense of Cronbach’s alpha. International Journal of Medical Education. 2, 53-55. https://doi.org/10.5116/ijme.4db.8dfd

39. Widoyo, Eko Putro. (2014). Technique of Preparation of Research Instrument. Yogyakarta: Pustaka Pelajar, 1-251

40. Yaghmale, F. (2003). Content validity and its estimation. Journal of Medical Education, 3(1), 25-27

41. Zeidan, A. H., & Jayosi, M. R. (2014). Science process skills and attitudes toward science among palestinian secondary school students. World Journal of Education, 5(1), 13. https://doi.org/10.5430/wje.v5n1p13