Supporting Information

A Striking Mode of Activation of Carbon Disulfide with a Cooperative Bis(silylene)

Marcel-Philip Luecke, Luisa Giarrana, Arseni Kostenko, Tobias Gensch, Shenglai Yao, and Matthias Driess*

anie_202110398_sm_miscellaneous_information.pdf
Table of Contents

1. General Considerations ... 3

2. Syntheses and Characterization ... 5
 2.1 Compound S1 ... 5
 2.2 Synthesis of compound S2 ... 5
 2.3 Compound 3 .. 6
 2.4 Compound ^{1}Mes ... 7
 2.5 Compound $^{2}\text{Ph}(\text{PhTpSi}_2\text{CS}_2)$... 7
 2.6 Compound $^{2}\text{Mes}(\text{MesTpSi}_2\text{CS}_2)$... 8
 2.7 Compound 4 .. 10
 2.8 Compound 6 (dithiasilolane) ... 11
 2.9 Compound 8 (thiadisiletane-3-thione) .. 11
 2.10 Compound 9 (trithia-silabicyclo[3.2.0]-dithione) ... 12
 2.11 Compound 10 ... 13

3. NMR Spectra .. 14
 3.1 Compound S1 .. 14
 3.2 Compound S2 .. 16
 3.3 Compound ^{2}Ph ... 17
 3.4 Compound ^{2}Mes ... 20
 3.5 Compound 3 .. 24
 3.6 Compound 4 .. 26
 3.7 Compound 6 .. 27
 3.8 Compound 8 .. 28
 3.9 Compound 10 ... 30

4. FT-IR Spectra ... 32
 4.1 Compound ^{1}Mes ... 32
 4.2 Compound ^{2}Ph ... 33
 4.3 Compound ^{2}Mes ... 33
 4.4 Compound 3 .. 34
 4.5 Compound 4 .. 34
 4.6 Compound 6 .. 35
 4.7 Compound 7 .. 35
 4.8 Compound 8 .. 36
5. Calculations ... 36
 5.1 Compound 2 – DFT .. 36
 5.2 Compound 6 – NBO .. 71
6. Crystallographic Data .. 79
 6.1 Compound S2 ... 79
 6.2 Compound 2Mes .. 80
 6.3 Compound 3 .. 81
 6.4 Compound 4 .. 82
 6.5 Compound 6 .. 83
 6.6 Compound 8 .. 84
 6.7 Compound 9 .. 85
 6.8 Compound 10 .. 86
7. References ... 87
1. **General Considerations**

All experiments and manipulations were carried out under dry oxygen-free nitrogen using standard Schlenk techniques or inside a MBraun glovebox. Solvents were dried by standard methods and freshly distilled prior to use. The NMR spectra were recorded on Bruker spectrometers Avance II 500 (\(^1\)H, 500.1 MHz; \(^{13}\)C\{\(^1\)H\}, 125.8 MHz; \(^{29}\)Si\{\(^1\)H\}, 99.0 MHz), 400 (\(^1\)H, 400.1 MHz; \(^{13}\)C\{\(^1\)H\}, 99.4 MHz; \(^{29}\)Si\{\(^1\)H\}, 79.5 MHz) and 200 (\(^1\)H, 200.1 MHz; \(^{13}\)C\{\(^1\)H\}, 50.3 MHz) with residual solvent signals as internal reference (\(^1\)H NMR: benzene-\(d_6\), 7.16 ppm, THF-\(d_8\), 1.73 ppm, 3.58 ppm; \(^{13}\)C\{\(^1\)H\} NMR: benzene-\(d_6\) 128.1 ppm, THF-\(d_8\), 25.3 ppm, 67.2 ppm). High-resolution ESI (electrospray ionization) or APCI (atmospheric-pressure chemical ionization) mass spectra were measured on an Orbitrap LTQ XL by Thermo Scientific. Elemental analyses were recorded in a Thermo Flash EA 1112 Organic elemental analyzed and HEKAtech EuroEA 3000. The ATR/IR spectroscopic measurements were recorded on a Thermo Fisher Scientific Spectrometer inside a glovebox. Vibration modes are given in wavenumbers (cm\(^{-1}\)). Abbreviations: (vs) very strong, (s) strong, (m) middle, (w) weak and (br) broad. Commercially available reagents were purchased from Sigma-Aldrich, Acros, Alfa-Assar or abcr and used as received. The starting materials 1,4-bis(2-bromophenyl) benzene,\(^1\) \(N,N'\)-di-tert-butyl(phenylimidinato)-chlorosilylene,\(^2\) phenyl-substituted NHSi,\(^3\) 2-(methylamino)pyridine-substituted silylene 5,\(^4\) 2-bromobiphenyl and 1,4-terphenyl bridged bis(silylene)\(^5\) 1 were prepared according to reported literature procedures.
Molecule Index of new Compounds:

Single crystal X-ray structure analyses: Crystals were mounted on a glas capillary in perfluorinated oil and measured in a cold N$_2$ flow. The data for all compounds were collected on an Agilent Technologies SuperNova device (single source) at 150 K (Cu-K$_\alpha$ radiation, $\lambda = 1.54184$ Å). All structures were solved by direct methods and refined on F2 with the SHELX-97 software. All atoms except for hydrogen atoms were calculated and considered isotopically according to a riding model. Compound 6 crystallized with free yet severely disordered diethylether molecules in the asymmetric unit which were treated using the SQUEEZE routine in PLATON. The CCDC numbers CCDC 2116268 (S2), 2099865 (2Mes), 2116269 (3), 2099867 (4), 2099866 (6), 2099868 (8), 2099864 (9) and 2116270 (10) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge by contacting The Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
2. Syntheses and Characterization

2.1 Compound S1

To a suspension of mesityl lithium (8.00 g, 63.5 mmol, 1.0 equiv.) in Et₂O (200 ml) \(N,N'-\text{Di-}t\text{-butylcarbodiimid}\) (12.5 ml, 10.0 g, 64.8 mmol, 1.0 equiv.) was added at \(-78 \degree C\). After warming up to room temperature, the reaction was stirred for 3 h. The suspension was added to a solution of trichlorosilane (9.80 ml, 13.2 g, 97.1 mmol, 1.5 equiv) in Et₂O (50 ml) at \(-78 \degree C\). The mixture was warmed up to room temperature and stirred overnight. The solution was filtered and concentrated and then kept at at \(-30 \degree C\) overnight affording S1 as colorless crystals suitable for X-ray diffraction analysis. After removal of Et₂O by filtration, compound S1 was obtained in 51% (12.0 g, 32.1 mmol) isolated yields. Compound S1 is not air stable and generally good soluble in organic solvents except for \(\alpha\)hexane.

\(^1H\) NMR (500.1 MHz, \(C_6D_6\), 298 K): \(\delta/\text{ppm} = 6.80\) (s, 1H, SiH), 6.46 (d, \(^4J_{HH} = 0.5\) Hz, 2H, \(H_A\)), 2.07 (s, 6H, o-MesCH₃), 1.96 (s, 3H, p-MesCH₃), 1.16 (s, 18H, 2x NC(CH₃)₃).

\(^{13}C\{^1H\}\) NMR (50.3 MHz, \(C_6D_6\), 298 K): \(\delta/\text{ppm} = 171.2\) (s, \(C_{\text{quart}},\) NCN), 140.3 (s, p-MesCCH₃, \(C_{\text{quart}}\)), 135.8 (s, 2x o-MesCCH₃, \(C_{\text{quart}}\)), 130.0 (s, \(C_{\text{quart}},\) \(C_{Ar}\), 128.7 (s, \(C_{Ar}\)), 128.6 (s, \(C_{Ar}\)), 55.8 (s, \(C_{\text{quart}},\) 2x NC(CH₃)₃), 30.7 (s, 9x NC(CH₃)₃), 21.3 (s, p-MesCCH₃), 20.7 (s, 2x o-MesCCH₃).

\(^{1}H,^{29}Si\{^1H\}\) NMR (99.0 MHz, \(C_6D_6\), 298 K, optimized for \(J = 200\) Hz): \(\delta/\text{ppm} = 6.79/–96.7\) (SiH).

2.2 Synthesis of compound S2

A mixture of S1 (12 g, 32.1 mmol, 1.0 equiv.) and LiHMDS-Et₂O (7.80 g, 32.1 mmol, 1.0 equiv.) was dissolved in cold Et₂O (200 ml) and cooled to \(-78 \degree C\). After warming up to room temperature, the mixture was stirred for 1 h turning from yellow to orange. After the solution was filtered and concentrated under reduced pressure, the solution was kept at \(-30 \degree C\) overnight affording S2 as colorless crystals. Et₂O was removed by filtration and the title compound S2 was obtained in 75% (8.5 g, 32.4 mmol) isolated yields. Single crystals suitable for X-ray diffraction analysis of S2 were obtained from a concentrated solution in Et₂O at \(-30 \degree C\). Compound S2 is not air stable and generally good soluble in organic solvents except for \(\alpha\)hexane.

\(^1H\) NMR (500.1 MHz, \(C_6D_6\), 298 K): \(\delta/\text{ppm} = 6.52\) (s, 1H, \(H_A\)), 6.49 (s, 1H, \(H_A\)), 2.26 (s, 3H, MesCH₃), 2.02 (s, 3H, MesCH₃), 1.97 (s, 3H, MesCH₃), 1.12 (s, 18H, NC(CH₃)).

\(^{13}C\{^1H\}\) NMR (125.8 MHz, \(C_6D_6\), 298 K): \(\delta/\text{ppm} = 166.9\) (s, \(C_{\text{quart}},\) NCN), 139.8
(s, C\textsubscript{qurt}, p-MesCCH\textsubscript{3}), 136.8 (s, C\textsubscript{qurt}, o-MesCCH\textsubscript{3}), 135.0 (s, C\textsubscript{qurt}, o-MesCCH\textsubscript{3}), 129.8 (s, C\textsubscript{qurt}, C\textsubscript{Ar}), 128.6 (s, C\textsubscript{Ar}), 128.5 (s, C\textsubscript{Ar}), 54.1 (s, C\textsubscript{qurt}, 2x NC(CH\textsubscript{3})\textsubscript{3}), 30.7 (s, 9x NC(CH\textsubscript{3})\textsubscript{3}), 21.1 (s, MesCH\textsubscript{3}), 21.0 (s, m-MesCH\textsubscript{3}), 20.6 (s, MesCH\textsubscript{3}).

\(^{29}\text{Si}\{^{1}\text{H}\}\text{NMR}\ (99.0\ MHz, \text{C}_6\text{D}_6, 298\ K): \delta/\text{ppm} = 18.3\ (s).

2.3 Compound 3

To a suspension of 2-bromobiphenyl (212 \mu l, 1.23 mmol, 1.0 equiv.) and Et\textsubscript{2}O (5 ml) at \(-78\ ^\circ\text{C}\) \(\text{^n} \text{BuLi}\ (615 \mu l, 2.0\ M\ solution\ in\ THF,\ 1.23\ mmol,\ 1.0\ equiv.)\) was added via syringe. After stirring for 30 min at room temperature, all volatiles were removed under reduced pressure. The residue was redissolved in Et\textsubscript{2}O (5 ml) and added to a solution of \(N,N\)-di-tert-butyl(mesitylamidinato) chlorosilylene S2 in Et\textsubscript{2}O (10 ml) at \(-78\ ^\circ\text{C}\). After stirring for 1 hour at room temperature, the solution was filtered and Et\textsubscript{2}O was slowly removed under reduced pressure without heating. The title compound 3 was obtained quantitatively (598 mg, 1.23 mmol) and was isolated as a crystalline orange solid. Single crystals suitable for X-ray diffraction analysis of 3 were obtained from a concentrated solution of 3 in Et\textsubscript{2}O at \(-30\ ^\circ\text{C}\). Compound 3 is not stable in solution and slowly reacts to a silane via an intramolecular C-H activation reaction. Do not heat during work-up. 3 is stable in the solid state under an inert atmosphere for months.

\(^{1}\text{H}\text{NMR}\ (500.1\ MHz, \text{C}_6\text{D}_6, 298\ K): \delta/\text{ppm} = 7.98\ (\text{dd}, \ J_{HH} = 7.3\ Hz, \ J_{IH} = 1.3\ Hz, 1\ H, H\textsubscript{Ar}), 7.82\ (\text{dd}, \ J_{HH} = 8.2\ Hz, \ J_{IH} = 1.3\ Hz, 2\ H, H\textsubscript{Ar}), 7.46\ (\text{dd}, \ J_{HH} = 7.6\ Hz, \ J_{IH} = 1.5\ Hz, 1\ H, H\textsubscript{Ar}), 7.40 - 7.37\ (m, 3\ H, H\textsubscript{Ar}), 7.31\ (\text{tt}, \ J_{HH} = 7.3\ Hz, \ J_{IH} = 1.5\ Hz, 1\ H, H\textsubscript{Ar}), 7.25 - 7.21\ (m, 3\ H, H\textsubscript{Ar}, 1\ H), 6.63\ (s, 1\ H, m-MesH), 6.53\ (s, 1\ H, m-MesH), 2.56\ (s, 3\ H, p-MesCH\textsubscript{3}), 2.06\ (s, 3\ H, p-MesCH\textsubscript{3}), 2.02\ (s, 3\ H, p-MesCH\textsubscript{3}), 1.04\ (s, 18\ H, NC(CH\textsubscript{3})\textsubscript{3}). \(^{13}\text{C}\{^{1}\text{H}\}\text{NMR}\ (125.8\ MHz, \text{C}_6\text{D}_6, 298\ K): \delta/\text{ppm} = 157.3\ (s, \text{C}_{\text{qurt}}, \text{NCN}), 152.1\ (s, \text{C}_{\text{qurt}}, \text{C}_{\text{Ar}}), 146.1\ (s, \text{C}_{\text{qurt}}, \text{C}_{\text{Ar}}), 144.7\ (s, \text{C}_{\text{qurt}}, \text{C}_{\text{Ar}}), 139.1\ (s, \text{C}_{\text{qurt}}, \text{C}_{\text{Ar}}), 137.6\ (s, \text{C}_{\text{qurt}}, \text{C}_{\text{Ar}})136.7\ (s, \text{C}_{\text{qurt}}, \text{C}_{\text{Ar}}), 132.8\ (s, \text{C}_{\text{Ar}}), 131.4\ (s, \text{C}_{\text{Ar}}), 130.2\ (s, \text{C}_{\text{Ar}}), 128.8\ (s, \text{C}_{\text{Ar}}), 128.7\ (s, \text{C}_{\text{Ar}}), 128.6\ (s, \text{C}_{\text{Ar}}), 126.7\ (s, \text{C}_{\text{Ar}}), 125.8\ (s, \text{C}_{\text{Ar}}), 53.4\ (s, \text{C}_{\text{qurt}}, \text{NC}(\text{CH}\textsubscript{3})\textsubscript{3}), 30.9\ (s, \text{NC}(\text{CH}\textsubscript{3})\textsubscript{3}), 21.9\ (s, \text{MesCH}_3), 21.0\ (s, \text{MesCH}_3), 20.7\ (s, \text{MesCH}_3).

\(^{29}\text{Si}\{^{1}\text{H}\}\text{NMR}\ (79.5\ MHz, \text{C}_6\text{D}_6, 298\ K,\ \text{optimized\ for\ J} = 7\ Hz): \delta/\text{ppm} = 7.98/17.1\ (\text{SiH}_{\text{Ar}}), 7.46/17.1\ (\text{SiH}_{\text{Ar}}), 7.37/17.1\ (\text{SiH}_{\text{Ar}}), 1.04/17.1\ (\text{SiNC}(\text{CH}\textsubscript{3})\textsubscript{3}).

\textbf{S2}
2.4 Compound 1Mes

A diethlyether suspension (10 ml) of 1,4-bis(2-bromophenyl) benzene[1] (400 mg, 1.03 mmol, 1.0 equiv.) was cooled –78 °C and sBuLi (1.53 ml, 1.3 M in cyclohexane, 2.00 mmol, 2.0 equiv.) was added via syringe. After warming up to room temperature, the solution turned from slight yellow to a suspension containing a white precipitate. After stirring for 4 h at room temperature, the suspension was cooled to –78 °C and a solution of N,N′-di-tert-butyl(mesitylamidinato)-chlorosilylene S\textsubscript{2} (674 mg, 2.00 mmol, 2.0 equiv.) in Et\textsubscript{2}O (10 ml) was added via syringe. The cooling bath was removed and the suspension was stirred overnight to give a yellow suspension. All volatiles were removed under reduced pressure and the residue was washed with Et\textsubscript{2}O (3x 2 ml). After removal of the solvent under reduced pressure, the residue was washed with THF (2x 3 ml) under removal of the residual metathesis salt (LiCl). The product was dried under reduced pressure and 1Mes was obtained as a yellow solid in 56 % (480 mg, 0.577 mmol) isolated yields. Single crystals suitable for X-ray diffraction analysis of 1Mes could not be obtained after several attempts. 1Mes is not air stable and not soluble in C\textsubscript{6}D\textsubscript{6} and THF-d\textsubscript{8}. NMR date was recorded in the solid state.

13C\{1H\} CP/MAS-NMR (10 kHz, 298 K): δ/ppm = 159.3 (s, C\textsubscript{quart}, NCN), 150.5 (s, C\textsubscript{Ar}), 146.2 (s, C\textsubscript{Ar}), 141.6 (s, C\textsubscript{Ar}), 139.2 (s, C\textsubscript{Ar}), 137.6 (s, C\textsubscript{Ar}), 136.3 (s, C\textsubscript{Ar}), 133.5 (s, C\textsubscript{Ar}), 131.5 (s, C\textsubscript{Ar}), 129.9 (s, C\textsubscript{Ar}), 127.9 (s, C\textsubscript{Ar}), 125.4 (s, C\textsubscript{Ar}), 53.7 (s, C\textsubscript{quart}, 4x NC(CH\textsubscript{3})\textsubscript{3}), 31.7 (s, 4x NC(CH\textsubscript{3})\textsubscript{3}), 22.4 .3 (s, 2x o-MesCH\textsubscript{3}), 20.1 (s, p-MesCH\textsubscript{3}). 29Si\{1H\} CP/MAS NMR (10 kHz, 298 K): δ/ppm = 16.5 (s, 2x Si).FT-IR (ATR): ṽ (cm-1) = 3043 (w), 2296 (w), 2921 (w), 2868 (w), 1609 (w), 1581 (w), 1453 (w), 1430 (w), 1395 (vs), 1389 (vs), 1359 (s), 1296 (w), 1267 (w), 1224 (w), 1206 (s); APCI-MS m/z (%): Calcd. for [C\textsubscript{54}H\textsubscript{70}N\textsubscript{4}Si\textsubscript{2}+H+]: 831.5212, found: 831.5208. Melting Point: T = 297°C.

2.5 Compound 2Ph (PhTpSi\textsubscript{2}CS\textsubscript{2})

To a solution of 1,4-terphenyl bis(silylene) 1Ph (50 mg, 0.0669 mmol, 1.0 equiv.) in toluene (5 ml) at room temperature an excess of CS\textsubscript{2} was added via syringe. The pale yellow solution was stirred for 30 min at room temperature. After filtration the solution was concentrated under reduced pressure and kept at room temperature overnight to give compound 2Ph as yellow crystalline material in 63 % (35 mg, 0.0425 mmol) isolated yields after filtration. Single crystals suitable for X-ray diffraction analysis could not be obtained after several attempts. Compound 2Ph is not air stable and generally not good soluble in common organic solvents.
1H NMR (500.1 MHz, THF-δ6, 298 K): δ/ppm = 7.98 (d, 3JHH = 7.3 Hz, 1H, HAr), 7.82 (d, 3JHH = 7.2 Hz, 1H, HAr), 7.79 – 7.76 (m, 1H, HAr), 7.69 (t, 3JHH = 8.7 Hz, 2H, HAr), 7.57 – 7.48 (m, 4H, HAr), 7.47 – 7.36 (m, 4H, HAr), 7.35 – 7.28 (m, 3H, HAr), 7.23 (td, 3JHH = 7.2 Hz, 4JHH = 1.5 Hz, 1H, HAr), 7.19 (t, 3JHH = 7.2 Hz, 1H, HAr), 6.60 (dd, 3JHH = 5.8 Hz, 4JHH = 3.3 Hz, 1H, C(sp3)H), 6.35 (d, 3JHH = 5.8 Hz, 1H, C(sp3)H), 3.11 (d, 3JHH = 11.0 Hz, 1H, SiCH3), 2.23 (dd, 4JHH = 3.3 Hz, 3JHH = 11.0 Hz, 1H, (Si)(S)2 CCH3), 1.28 (d, 3JHH = 11.0 Hz, 18H, 2x NC(CH3)3, 1.00 (s, 9H, NC(CH3)3), 0.92 (s, 9H, NC(CH3)3). 13C{1H} NMR (125.8 MHz, THF-δ6, 298 K): δ/ppm = 176.8 (s, Cquart, NCN), 171.0 (s, Cquart, NCN), 152.3 (s, Cquart), 150.9 (s, Cquart), 145.1 (s, Cquart), 143.5 (s, Cquart), 140.4 (s, Cquart), 136.5 (s, Cquart, CAr), 135.3 (s, CAr), 135.1 (s, CAr), 134.6 (s, CAr), 134.1 (s, Cquart), 131.0 (s, CAr), 130.9 (s, CAr), 130.6 (s, CAr), 130.4 (s, CAr), 130.3 (s, CAr), 129.9 (s, CAr), 129.6 (s, CAr), 129.3 (s, CAr), 129.1 (s, CAr), 128.6 (s, CAr), 128.5 (s, CAr), 128.4 (s, CAr), 128.8 (s, CAr), 126.2 (s, CAr), 126.1 (s, CAr), 124.4 (s, CAr), 122.4 (s, C(sp3)H), 115.7 (s, C(sp3)H), 55.1 (s, Cquart, NC(CH3)3), 55.1 (s, Cquart, NC(CH3)3), 55.0 (s, Cquart, NC(CH3)3), 54.6 (s, Cquart, NC(CH3)3), 50.6 (s, SiC(sp3)), 43.9 (s, CquartSi2), 35.8 (s, CC(sp3)H), 33.3 (s, NC(CH3)3), 32.2 (s, NC(CH3)3), 31.8 (s, NC(CH3)3), 31.6 (s, NC(CH3)3). 29Si{1H} NMR (99.0 MHz, THF-δ6, 298 K): δ/ppm = –35.7 (s), –114.4 (s). 1H, 29Si HMQC (500.1/79.5 MHz, THF-δ6, 298 K, optimized for J = 7 Hz): δ/ppm = 3.15/–114.4 (SiCCH3), 7.38/–114.3 (SiCCHAr) 2.28/–35.7 (SiCCHAr). FT-IR (ATR): ʋ (cm⁻¹) = 3046 (w), 2969 (w), 2927 (w), 1582 (w), 1536 (w), 1494 (w), 1481 (w), 1441 (w), 1379 (vs), 1362 (vs), 1254 (w), 1199 (s), 1155 (w), 1124 (w), 1081 (w), 1047 (w), 10020 (w). ESI-MS: m/z (%): Calcd. for [C49H38N4S2Si2+H]⁺: 823.3714, found: 823.3715. Melting Point: T > 370°C (Decomposition).

2.6 Compound 2Mes (MesTpSi2CS2)

To a solution of bis(silylene) 1Mes (50 mg, 0.0601 mmol, 1.0 equiv.) in toluene (5 ml) at room temperature an excess of CS2 was added via syringe. The pale yellow solution was stirred for 30 min. The solution was filtered and concentrated under reduced pressure. The title compound crystallized overnight at room temperature. After removal of the solvent by filtration, 2Mes was obtained as yellow plates in 73 % (40 mg, 0.0441 mmol) isolated yields. Single crystals suitable for X-ray diffraction analysis of 2Mes were obtained from a concentrated solution of 2Mes in toluene at room
temperature. Compound 2Mes is not air stable and generally not good soluble in common organic solvents.

\textbf{1H NMR} (500.1 MHz, C\textsubscript{6}D\textsubscript{6}, 298 K): \(\delta/\text{ppm} = 8.29 - 8.27\) (m, 1H, \(H_{Ar}\)), 8.23 - 8.21 (m, 1H, \(H_{Ar}\)), 7.81 - 7.80 (m, 1H, \(H_{Ar}\)), 7.73 - 7.72 (m, 1H, \(H_{Ar}\)), 7.45 - 7.38 (m, 2H, \(H_{Ar}\)), 7.35 - 7.29 (m, 2H, \(H_{Ar}\)), 6.97 (dd, \(^3J_{HH} = 5.8\) Hz, \(^4J_{HH} = 3.3\) Hz, 1H, C(sp2)H), 6.87 (d, \(^3J_{HH} = 5.8\) Hz, 1H, C(sp2)H), 6.61 (d, \(^3J_{HH} = 7.7\) Hz, 2H, \(H_{Ar}\)), 6.57 (s, 1H, \(H_{Ar}\)), 6.52 (s, 1H, \(H_{Ar}\)), 3.69 (d, \(^3J_{HH} = 10.9\) Hz, 1H, SiCH\textsubscript{3}), 2.71 (dd, \(^3J_{HH} = 11.2\) Hz, \(^4J_{HH} = 3.2\) Hz, 1H, SiCCH\textsubscript{2}), 2.52 (s, 3H, o-MesCH\textsubscript{3}), 2.42 (s, 3H, o-MesCH\textsubscript{3}), 2.37 (s, 3H, o-MesCH\textsubscript{3}), 2.31 (s, 3H, o-MesCH\textsubscript{3}), 2.01 (d, \(^4J_{HH} = 7.0\) Hz, 6H, p-MesCH\textsubscript{3}), 1.44 (s, 9H, NC(CH\textsubscript{3})\textsubscript{3}), 1.38 (s, 9H, NC(CH\textsubscript{3})\textsubscript{3}), 1.11 (s, 9H, NC(CH\textsubscript{3})\textsubscript{3}), 0.88 (s, 9H, NC(CH\textsubscript{3})\textsubscript{3}). \textbf{13C\textsuperscript{1H} NMR} (125.8 MHz, C\textsubscript{6}D\textsubscript{6}, 298 K): \(\delta/\text{ppm} = 177.1\) (s, C\textsubscript{quart}, NCN), 169.7 (s, C\textsubscript{quart}, NCN), 151.9 (s, C\textsubscript{quart}), 150.7 (s, C\textsubscript{quart}), 144.6 (s, C\textsubscript{quart}), 143.0 (s, C\textsubscript{quart}), 140.5 (s, C\textsubscript{quart}), 139.6 (s, C\textsubscript{quart}), 139.2 (s, C\textsubscript{quart}), 136.5 (s, C\textsubscript{quart}), 136.4 (s, C\textsubscript{quart}), 136.3 (s, C\textsubscript{quart}), 134.9 (s, C\textsubscript{quart}, C\textsubscript{Ar}), 134.8 (s, C\textsubscript{Ar}), 134.7 (s, C\textsubscript{quart}, C\textsubscript{Ar}), 134.2 (s, C\textsubscript{Ar}), 132.6 (s, C\textsubscript{quart}, C\textsubscript{Ar}), 130.6 (s, C\textsubscript{quart}, C\textsubscript{Ar}), 130.4 (s, C\textsubscript{Ar}), 129.4 (s, C\textsubscript{Ar}), 129.2 (s, C\textsubscript{Ar}), 128.5 (s, C\textsubscript{Ar}), 128.3 (s, C\textsubscript{Ar}), 126.8 (s, C\textsubscript{Ar}), 126.6 (s, C\textsubscript{Ar}), 125.9 (s, C\textsubscript{Ar}), 125.2 (C(sp2)H), 122.7 (s, C\textsubscript{Ar}), 115.9 (C(sp2)H), 55.0 (s, C\textsubscript{quart}, NC(CH\textsubscript{3})\textsubscript{3}), 54.7 (s, C\textsubscript{quart}, NC(CH\textsubscript{3})\textsubscript{3}), 54.6 (s, C\textsubscript{quart}, NC(CH\textsubscript{3})\textsubscript{3}), 54.0 (s, C\textsubscript{quart}, NC(CH\textsubscript{3})\textsubscript{3}), 49.6 (s, SiC(sp3)), 42.1 (s, C\textsubscript{quart}Si\textsubscript{2}), 34.9 (s, SiC(sp3)H), 31.9 (s, NC(CH\textsubscript{3})\textsubscript{3}), 30.7 (s, NC(CH\textsubscript{3})\textsubscript{3}), 30.6 (s, NC(CH\textsubscript{3})\textsubscript{3}), 30.02 (s, NC(CH\textsubscript{3})\textsubscript{3}), 23.3 (s, MesCH\textsubscript{3}), 21.9 (s, MesCH\textsubscript{3}), 21.3 (s, MesCH\textsubscript{3}), 21.1 (s, MesCH\textsubscript{3}), 20.8 (s, MesCH\textsubscript{3}). \textbf{29Si\textsuperscript{1H} NMR} (99.0 MHz, C\textsubscript{6}D\textsubscript{6}, 298 K): \(\delta/\text{ppm} = -36.9\) (s), -112.2. (s). \textbf{1H,29Si HMQC} (500.1/79.5 MHz, C\textsubscript{6}D\textsubscript{6}, 298 K, optimized for \(J = 7\) Hz) \(\delta/\text{ppm} = 2.70/-36.9\) (SiCCH\textsubscript{3}), 8.28/-36.9 (SiCCH\textsubscript{3}), 3.68/-112.2 (SiCCH\textsubscript{3}), 8.23/-112.2 (SiCCH\textsubscript{3}). \textbf{FT-IR (ATR)}: \(\tilde{\nu} \) (cm-1) = 3048 (w), 2995 (w), 2975 (w), 2870 (w), 1611 (w), 1583 (w), 1523 (w), 1441 (w), 1431 (w), 1389 (vs), 1360 (s), 1307 (w), 1254 (s), 1228 (s), 1217 (w), 1198 (vs), 1155 (w), 1126 (w), 1068 (s), 1047 (w), 1028 (w), 1021 (w). \textbf{Elemental Analysis} (%): Calcd. for C\textsubscript{55}H\textsubscript{70}N\textsubscript{4}S\textsubscript{2}Si\textsubscript{2}: 6.17 (N), 72.80 (C), 7.78 (H), 7.07 (S) found: 6.24 (N), 71.91 (C), 7.67 (H), 7.12 (S). The reduced C content stems from SiC formation. \textbf{ESI-MS}: m/z (%): Calcd. for [C\textsubscript{55}H\textsubscript{70}N\textsubscript{4}S\textsubscript{2}Si\textsubscript{2}+H+]: 907.4653, found: 907.4637. \textbf{Melting Point}: T > 270 °C (Decomposition).
Table S1. Comparison of the chemical shifts of 2Ph and 2Mes.

Atom	\(\delta(2Ph)\)	\(J\) [Hz]	\(\delta(2Mes)\)	\(J\) [Hz]
Si1	-114.3	-	-112.2	-
Si2	-35.7	-	-36.9	-
C1	43.9	-	42.1	-
H\(^a\)	3.11 (d)	\(3^2J_{HH} = 11.0\)	3.69 (d)	\(3^2J_{HH} = 10.9\)
H\(^b\)	2.23 (dd)	\(3^2J_{HH} = 11.0\)	2.71 (dd)	\(3^2J_{HH} = 11.2\), \(4^2J_{HH} = 3.3\)
H\(^c\)	6.60 (dd)	\(3^2J_{HH} = 5.8\), \(4^2J_{HH} = 3.3\)	6.97 (dd)	\(3^2J_{HH} = 5.8\), \(4^2J_{HH} = 3.3\)
H\(^d\)	6.35 (d)	\(3^2J_{HH} = 5.8\)	6.87 (d)	\(3^2J_{HH} = 5.8\)

2.7 Compound 4

A suspension of biphenyl-substituted silylene 3 (260 mg, 0.53 mmol, 1.0 equiv.) in Et\(_2\)O (4 ml) was cooled to -78 °C and an excess of CS\(_2\) was added dropwise via syringe. The supernatant violet solution was filtered after 30 min at -78 °C. The residual pink solid 4 was dried under reduced pressure and isolated in yields of 77% (230 mg, 0.41 mmol). Single crystals suitable for X-ray diffraction analysis of 4 were obtained from a concentrated solution of 4 in toluene at -30 °C overnight. Compound 4 is not air stable and generally good soluble in organic solvents except for \(^7\)hexane.

\(^1\)H NMR (500.1 MHz, C\(_6\)D\(_6\), 298 K): \(\delta/\text{ppm} = 8.26\) (d, \(3^2J_{HH} = 7.3\) Hz, 1H, \(H_{Ar}\)), 7.52 (d, \(3^2J_{HH} = 7.3\) Hz, 2H, \(H_{Ar}\)), 7.33 – 7.22 (m, 5H, \(H_{Ar}\)), 7.18 – 7.16 (m, 5H, \(H_{Ar}\)), 6.50 (s, 1H, \(m\)-Mes\(H\)), 6.46 (s, 1H, \(m\)-Mes\(H\)), 2.22 (s, 3H, \(p\)-Mes\(CH_3\)), 2.14 (s, 3H, \(o\)-Mes\(CH_3\)), 1.95 (s, 3H, \(o\)-Mes\(CH_3\)), 1.15 (s, 18H, 2x NC(CH\(_3\))\(_3\)). \(^{13}\)C\(^{1}\)H NMR (125.8 MHz, C\(_6\)D\(_6\), 298 K): \(\delta/\text{ppm} = 274.8\) (s, \(C_{quart}, SiCS_2\)), 182.1 (s, \(C_{quart}, NCN\)), 150.9 (s, \(C_{quart}, C_{Ar}\)), 143.0 (s, \(C_{quart}, C_{Ar}\)), 140.8 (s, \(C_{quart}, C_{Ar}\)), 136.3 (s, \(C_{quart}, C_{Ar}\)), 135.5 (s, \(C_{Ar}\)), 134.4 (s, \(C_{quart}, C_{Ar}\)), 132.4 (s, \(C_{quart}, C_{Ar}\)), 131.1 (s, \(C_{Ar}\)), 130.1 (s, \(C_{Ar}\)), 129.5 (s, \(C_{Ar}\)), 128.3 (s, \(C_{Ar}\)), 126.3 (s, \(C_{Ar}\)), 125.6 (s, \(C_{Ar}\)), 124.6 (s, \(p\)-Mes\(CH_3\)), 121.8 (s, 2x NC(CH\(_3\))\(_3\)), 30.3 (s, 2x NC(CH\(_3\))\(_3\)), 22.2 (s, \(p\)-Mes\(CH_3\)), 21.8 (s, \(o\)-Mes\(CH_3\)), 20.9 (s, \(o\)-Mes\(CH_3\)). \(^1\)H,\(^{29}\)Si HMQC NMR (400.1/79.5 MHz, C\(_6\)D\(_6\), 298 K, optimized for \(J = 5\) Hz): \(\delta/\text{ppm} = 7.25/ 90.9\) (\(SiH_{Ar}\)). FT-IR (ATR): \(\tilde{\nu}\) (cm\(^{-1}\)): 3051 – 2870 (w), 1611 (w), 1538 (vw), 1555 (vw), 1505 (w), 1464 – 1444 (w), 1424 (w), 1380 -1362 (s), 1301 (vw), 1275 (w), 1234 (w), 1193 (s), 1156 (w), 1122 (w), 1076 (s), 1032 (w), 1007 (vw), 909 (w).
997 (w), 948 (vw), 904 – 884 (w), 853 (s), 814 (vw), 789 (w), 776 (vs), 748 (s).

Elemental Analysis (%): Calcd. for C$_{31}$H$_{58}$N$_2$S$_2$Si + C$_{3.5}$H$_4$: 4.98 (N), 70.41 (C), 8.24 (H), 11.39 (S), found: 5.18 (N), 69.70 (C), 8.61 (H), 10.92 (S). The reduced C content stems from Si-C formation. ESI- and APCI-HR MS analyses show merely molecular fragments. **Melting Point**: T = 119°C.

2.8 Compound 6 (dithiasilolane)

To a suspension of thiasilirane 4 (50.0 mg, 0.089 mmol, 1.0 equiv.) in Et$_2$O (5 ml) 2-(methylamino)pyridine-substituted silylene$^{[4]}$ 5 (32.6 mg, 0.089 mmol, 1.0 equiv.) was added at room temperature and stirred for 30 min. The orange solution was filtered and afterwards concentrated under reduced pressure. Compound 6 was obtained as orange crystal rods from the concentrated solution in Et$_2$O overnight at −30 °C in 41 % (32.4 mg, 0.036 mmol, 1.0 equiv.) isolated yields. Single crystals suitable for X-ray diffraction analysis of 6 were obtained from a concentrated solution of 6 in Et$_2$O at −30 °C. Compound 6 is not stable in solution and shows poor solubility in polar solvents such as Et$_2$O and THF. Due to the observation of additional resonance signals in the 1H and 13C NMR spectra a full assignment was not possible.

29Si(1H) NMR (79.5 MHz, Tol-d_8, 223 K) δ/ppm = −71.3 (s, Si1), −73.5 (s, Si1).

1H,29Si HMQC NMR (500.1/79.5 MHz, Tol-d_8, 223 K, optimized for J = 7 Hz): δ/ppm = 7.43/−71.3 (SiCC$_3$H$_4$), 3.15/−73.5 (SINCH$_3$). **FT-IR (ATR)**: $\tilde{\nu}$ (cm$^{-1}$): 3079 – 2864 (w), 1605 – 591 (w), 1520 (w), 1509 (w), 1489 – 1478 (w), 1458 (w), 1442 (w), 1392-1380 (s), 1361 (s), 1317 (vw), 1288 (s), 1247 (s), 1220 (vw), 1196 (s), 1178 (w), 1150 – 1116 (vw), 1085 (w), 1057 – 1050 (w), 1032 (vw), 2021 (w), 1007 (w), 925 (vw), 909 – 904 (vw), 881 (vw), 867-848 (w), 828 (w), 791- 783 (w), 775 – 738 (s), 703 (vs).

Elemental Analysis (%): Calcd. for C$_{52}$H$_{68}$N$_6$S$_2$Si$_2$ + C$_{4}$H$_{10}$O: 8.65 (N), 69.23 (C), 8.09 (H), 6.60 (S), found: 8.88 (N), 69.32 (C), 8.18 (H), 6.44 (S). **ESI-MS**: (m/z): Calcd. for [C$_{52}$H$_{68}$N$_6$S$_2$Si$_2$] = 897.4558, found: 897.4552. **Melting Point**: T = 109°C.

2.9 Compound 8 (thiadisiletane-3-thione)

A suspension of thiasilirane 4 (30.0 mg, 0.053 mmol, 1.0 equiv.) in Et$_2$O (4 ml) was cooled to −78°C and a solution of phenyl-substituted silylene 7 (21.4 mg, 0.057 mmol, 1.0 equiv.) in Et$_2$O (1 ml) was added dropwise. The dark green mixture was warmed up to room temperature and stirred for 15 min. The resulting light green solution was filtered and concentrated under reduced pressure. Single crystals suitable for X-ray
diffraction analysis of 8 were obtained from a concentrated solution of 8 in C₆D₆ at room temperature. The obtained light green crystal rods were washed with cold Et₂O (2x 1 ml) and dried under reduced pressure to obtain compound 8 in 26% (12.8 mg, 0.0136 mmol) isolated yields. Compound 8 is air stable for 1 h and shows good solubility in common organic solvents.

¹H NMR (500.1 MHz, C₆D₆, 298 K): δ/ppm = 8.76 (d, 3J_HH = 6.5 Hz, 2H, HAr), 8.03 (d, 3J_HH = 7.2 Hz, 2H, HAr), 7.95 (d, 3J_HH = 7.5 Hz, 1H, HAr), 7.31 (t, 3J_HH = 7.7 Hz, 3H, HAr), 7.23 – 7.17 (m, 4H, HAr), 7.12 (d, 3J_HH = 7.5 Hz, 1H, HAr), 6.96 (t, 3J_HH = 7.5 Hz, 1H, HAr), 6.59 (s, 1H, HAr), 6.54 – 6.49 (m, 4H, HAr), 2.90 (s, 3H, o-MesCH₃), 2.83 (s, 3H, o-MesCH₃), 2.23 (s, 3H, o-MesCH₃), 2.14 (s, 3H, o-MesCH₃), 2.01 (s, 3H, p-MesCH₃), 1.99 (s, 3H, p-MesCH₃), 1.59 (s, NC(CH₃)₃), 1.32 (s, 9H, NC(CH₃)₃), 1.23 (s, 9H, NC(CH₃)₃), 0.92 (s, 9H, NC(CH₃)₃). **¹³C{¹H} NMR** (125.8 MHz, C₆D₆, 298 K): δ/ppm = 267.3 (s, C_quart, SiC(Si)Si), 172.4 (s, C_quart, NCN), 170.9 (s, C_quart, NCN), 149.5 (s, C_quart, CAr), 146.3 (s, C_quart, CAr), 145.3 (s, C_quart, CAr), 142.1 (s, C_quart, CAr), 139.9 (s, C_quart, CAr), 139.2 (s, C_quart, CAr), 138.9 (s, C_quart, CAr), 138.7 (s, 2x CAr), 137.6 (s, C_quart, CAr), 137.3 (s, CAr), 136.6 (s, C_quart, CAr), 135.8 (s, CAr), 133.5 (s, C_quart, CAr), 132.2 (s, C_quart, CAr), 131.7 (s, CAr), 131.4 (s, CAr), 129.3 (s, CAr), 128.9 (s, CAr), 128.7 (s, CAr), 128.4 (s, C_quart, CAr), 128.2 (s, CAr), 128.1 (s, CAr), 128.0 (s, CAr), 127.7 (s, CAr), 127.1 (s, CAr), 127.0 (s, CAr), 126.7 (s, CAr), 124.7 (s, CAr), 57.0 (s, C_quart, NC(CH₃)₃), 56.1 (s, C_quart, NC(CH₃)₃), 55.7 (s, C_quart, NC(CH₃)₃), 55.1 (s, C_quart, NC(CH₃)₃), 32.2 (s, NC(CH₃)₃), 31.3 (s, NC(CH₃)₃), 29.6 (s, NC(CH₃)₃), 29.2 (s, NC(CH₃)₃), 22.4 (s, 2x o-MesCH₃), 21.5 (s, 2x o-MesCH₃), 20.0 (s, 2x p-MesCH₃). **²⁹Si{¹H} NMR** (79.5 MHz, C₆D₆, 298 K): δ/ppm = −59.7 (s, Si₂), −67.4 (s, Si₃).

¹H,²⁹Si HMQC NMR (400.1/79.5 MHz, C₆D₆, 298 K, optimized for J = 7 Hz): δ/ppm = 8.76/−59.7 (SiCCH₃), 7.95/−67.4 (SiCCH₃), 7.12/−67.4(SiCCH₃). **FT-IR (ATR):** ν (cm⁻¹) : 3038 – 2867 (w), 1658 (vw), 1612 (vw), 1550 – 1524 (w), 1476-1425 (w) 1391 (w), 1362 (w), 1306 (w), 1230 – 1082 (vs), 1060 (w), 983 (s), 949 (vw), 918 (vw). **ESI-MS:** (m/z): Calcd. for [C₈S₅H₇2N₄S₂Si₂] = 909.4810, found: 909.4810. **Melting Point:** T = 135°C.

2.10 Compound 9 (trithia-silabicyclo[3.2.0]-dithione)

To a solution of dithiasilolane 6 (40.0 mg, 0.045 mmol, 1.0 equiv.) in toluene (2 ml) an excess of CS₂ was added dropwise at room temperature. After stirring for 30 min at room temperature the pink solution was filtered and concentrated under reduced
pressure. Single crystals suitable for X-ray diffraction analysis of 9 were obtained from a concentrated solution of 9 in toluene at –30 °C after one week. The isolated crystals of compound 9 were found to be completely insoluble in common organic solvents (benzene, toluene). Compound 9 could only be isolated in very small quantities.

1H,29Si HMQC-NMR (500.1/79.5 MHz, Tol-d8, 298 K, optimized for J = 7 Hz): δ/ppm = 2.91/−143.4 (SNCH3). **Elemental Analysis:** Calcd. for C24H30N4S5Si + C7H8: 9.36 (N), 56.84 (C), 5.85 (H), 24.47 (S), found: 9.80 (N), 56.78 (C), 5.64 (H), 24.23 (S).

In situ NMR spectroscopic analysis of the reaction mixture indicates the stoichiometric formation of the corresponding silathione 10.

1H NMR (500.1 MHz, C6D6, 298 K): δ/ppm = 8.37 (d, 3JHH = 6.9 Hz, 1H, HA), 7.67 – 7.60 (m, 2H, HA), 7.31 (t, 3JHH = 7.6 Hz, 2H, HA), 7.24 (d, 4JHH = 1.3 Hz, 4H, HA), 6.53 (d, 3JHH = 12.6 Hz, 2H, HA), 2.32 (s, 3H, o-MesCH3), 2.18 (d, 4JHH = 4.5 Hz 3H, o-MesCH3), 1.99 (s, 3H, sp-MesCH3), 1.10 (s, 18H, 2x NC(CH3)3). 1H,29Si HMQC NMR (500.1/79.5 MHz, Tol-d8, 298 K, optimized for J = 7 Hz): δ/ppm = 8.37/4.4 (SiCCH3).

29Si[1H] NMR (79.5 MHz, Tol-d8, 298 K) δ/ppm = 4.9.

2.11 Compound 10

In a Y. Young NMR tube 4 (10.0 mg, 0.019 mmol, 1.0 equiv.) was dissolved in C6D6 (0.5 ml) and heated to 50 °C for 4 h. The color of the solution changed with increasing conversion from red to dark brown. After removal of the solvent under reduced pressure, the residue was re-dissolved in Et2O (1.0 ml). The solution was filtered and transferred to a 5 ml Schlenk tube. The solvent was reduced to a volume of 0.2 ml upon which a dark red solution was obtained. Single crystals suitable for X-ray diffraction analysis of 10 were obtained after one week at –30 °C as colorless blocks. The conversion of thiasilirane 4 to silathione 10 is quantitative as observed by 1H NMR spectroscopy showing the formation of 10 as sole product.

1H NMR (500.1 MHz, C6D6, 298 K): δ/ppm = 8.39 (dd, 3JHH = 7.3 Hz, 4JHH = 2.5 Hz, 1H, HA), 7.73 (dt, 3JHH = 8.0 Hz, 4JHH = 1.6 Hz, 2H, HA), 7.36 (t, 3JHH = 7.6 Hz, 2H, HA), 7.30 – 7.20 (m, 4H, HA), 6.52 (s, 1H, m-MesH), 6.48 (s, 1H, m-MesH), 2.33(s, 3H, p-MesCH3), 2.17 (s, 3H, p-MesCH3), 1.97 (s, 3H, p-MesCH3), 1.11 (s, 18H, NC(CH3)3). 13C[1H] NMR (125.6 MHz, C6D6, 298 K): δ/ppm = 176.0 (s, Cquart, NCN),
152.0 (s, C\textsubscript{quart}, C\textsubscript{Ar}), 143.4 (s, C\textsubscript{quart}, C\textsubscript{Ar}), 140.3 (s, C\textsubscript{quart}, C\textsubscript{Ar}), 137.0 (s, C\textsubscript{quart}, C\textsubscript{Ar}), 135.3 (s, C\textsubscript{Ar}), 135.0 (s, C\textsubscript{quart}, C\textsubscript{Ar}), 133.8 (s, C\textsubscript{quart}, C\textsubscript{Ar}), 132.6 (s, C\textsubscript{Ar}), 131.1 (s, C\textsubscript{Ar}), 130.4 (s, C\textsubscript{Ar}), 129.4 (s, C\textsubscript{Ar}), 128.5 (s, C\textsubscript{Ar}), 127.6 (s, C\textsubscript{Ar}), 127.5 (s, C\textsubscript{Ar}), 126.2 (s, C\textsubscript{Ar}), 55.5 (s, C\textsubscript{quart}, NC(CH\textsubscript{3})\textsubscript{3}), 30.5 (s, NC(CH\textsubscript{3})\textsubscript{3}), 21.6 (s, MesCH\textsubscript{3}), 21.5 (s, MesCH\textsubscript{3}), 21.1 (s, MesCH\textsubscript{3}). ¹\textsubscript{H},²\textsubscript{9}Si HMQC NMR (400.1/79.4 MHz, C\textsubscript{6}D\textsubscript{6}, 298 K, optimized for J = 4 Hz): δ/ppm = 7.29/ 5.9(SiH\textsubscript{Ar}). ²\textsubscript{9}Si{¹\textsubscript{H}} NMR (79.5 MHz, C\textsubscript{6}D\textsubscript{6}, 298 K): δ/ppm = 5.1 (s).

3. NMR Spectra

3.1 Compound S1

![NMR Spectra of Compound S1](image)

Figure S1. ¹\textsubscript{H} NMR spectrum of compound S1 in C\textsubscript{6}D\textsubscript{6} under 1 bar N\textsubscript{2} at 298 K.
Figure S2. 13C(1H) NMR spectrum of compound S1 in C$_6$D$_6$ under 1 bar N$_2$ at 298 K.

Figure S3. 1H,29Si HMQC NMR spectrum (optimized for $J_{SH} = 200$ Hz) of compound S1 in C$_6$D$_6$ under 1 bar N$_2$ at 298 K.
3.2 Compound S2

Figure S4. 1H NMR spectrum of compound S2 in C$_6$D$_6$ under 1 bar N$_2$ at 298 K.

Figure S5. 13C(1H) NMR spectrum of compound S2 in C$_6$D$_6$ under 1 bar N$_2$ at 298 K.
Figure S6. 29Si(1H) NMR spectrum of compound S2 in C$_6$D$_6$ under 1 bar N$_2$ at 298 K.

3.3 Compound 2Ph

Figure S7. 1H NMR spectrum of compound 2Ph in THF-d_8 under 1 bar N$_2$ at 298 K.
Figure 8. 13C(1H) NMR spectrum of compound 2Ph in THF-$_d_8$ under 1 bar N$_2$ at 298 K.

Figure S9. 29Si(1H) NMR spectrum of compound 2Ph in THF-$_d_8$ under 1 bar N$_2$ at 298 K.
Figure S10. 1H, 29Si HMQC NMR spectrum (optimized for $J_{\text{Si,H}} = 7$ Hz) of compound 2Ph in THF-d_8 under 1 bar N_2 at 298 K.

Figure S11. 1H, 13C HSQC NMR spectrum of compound 2Ph in THF-d_8 under 1 bar N_2 at 298 K.
Figure S12. Section of 13C(1H) NMR spectrum (bottom) and 13C 135 DEPT spectrum (top) of compound 2^{Ph}.

3.4 Compound 2^{Mes}

Figure S13. 1H NMR spectrum of compound 2^{Mes} in C$_6$D$_6$ under 1 bar N$_2$ at 298 K.
Figure S14. 13C{1H} NMR spectrum of compound 2^{Mes} in C$_6$D$_6$ under 1 bar N$_2$ at 298 K.

Figure S15. 29Si{1H} NMR spectrum of compound 2^{Mes} in C$_6$D$_6$ under 1 bar N$_2$ at 298 K.
Figure S16. 13C(1H) NMR spectrum of compound 2Mes in C$_6$D$_6$ under 1 bar N$_2$ at 298 K.

Figure S17. 1H,29Si HMQC NMR spectrum (optimized for $J_{\text{Si,H}} = 7$ Hz) of compound 2Mes in C$_6$D$_6$ under 1 bar N$_2$ at 298 K.
Figure S18. 1H, 13C HSQC NMR spectrum of compound 2$^{\text{Mes}}$ in C$_6$D$_6$ under 1 bar N$_2$ at 298 K.

Figure S19. Section of 13C{'H}) NMR spectrum (bottom) and 13C 135 DEPT spectrum (top) of compound 2$^{\text{Mes}}$.
3.5 Compound 3

Figure S20. 1H NMR spectrum of compound 3 in C$_6$D$_6$ under 1 bar N$_2$ at 298 K.

Figure S21. 13C(1H) NMR spectrum of compound 3 in C$_6$D$_6$ under 1 bar N$_2$ at 298 K.
Figure S22. $^{29}\text{Si}(^1\text{H})$ NMR spectrum of compound 3 in C$_6$D$_6$ under 1 bar N$_2$ at 298 K.

Figure S23. $^1\text{H},^{29}\text{Si}$ NMR spectrum (optimized for $J_{\text{Si,H}} = 7$ Hz) of compound 3 in C$_6$D$_6$ under 1 bar N$_2$ at 298 K.
3.6 Compound 4

Figure S24. 1H NMR spectrum of compound 4 in C$_6$D$_6$ under 1 bar N$_2$ at 298 K.

Figure S25. 13C NMR spectrum of compound 4 in C$_6$D$_6$ under 1 bar N$_2$ at 298 K.
3.7 Compound 6

Figure S27. 29Si(1H) NMR spectrum of compound 6 in Tol-d_8 under 1 bar N$_2$ at 223 K.
Figure S28. 1H,29Si HMOC NMR spectrum (optimized for $J_{Si,H} = 7$ Hz) of compound 6 in Tol-d_8 under 1 bar N_2 at 223 K.

3.8 Compound 8

Figure S29. 1H NMR spectrum of compound 8 in CsD$_8$ under 1 bar N_2 at 298 K.
Figure S30. 13C NMR spectrum of compound 8 in C$_6$D$_6$ under 1 bar N$_2$ at 298 K.

Figure S31. 29Si(1H) NMR spectrum of compound 8 in C$_6$D$_6$ under 1 bar N$_2$ at 298 K.
3.9 Compound 10

Figure S33. 1H NMR spectrum of compound 10 in C₆D₆ under 1 bar N₂ at 298 K.
Figure S34. 13C(1H) NMR spectrum of compound 10 in C$_6$D$_6$ under 1 bar N$_2$ at 298 K.

Figure S35. 29Si(1H) NMR spectrum of compound 10 in C$_6$D$_6$ under 1 bar N$_2$ at 298 K.
Figure S36. $^1H,^{29}Si$ NMR spectrum (optimized for $J_{Si,H} = 4$ Hz) of compound 10 in C$_6$D$_6$ under 1 bar N$_2$ at 298 K.

4. FT-IR Spectra

4.1 Compound 1Mes

Figure S37. Solid state FT-IR spectrum of compound 1Mes.

$\star = C_6D_6$
4.2 Compound 2^{Ph}

Figure S38. Solid state FT-IR spectrum of compound 2^{Ph}.

4.3 Compound 2^{Mes}

Figure S39. Solid state FT-IR spectrum of compound 2^{Mes}.
4.4 Compound 3

Figure S40. Solid state FT-IR spectrum of compound XX.

4.5 Compound 4

Figure S41. Solid state FT-IR spectrum of compound 4.
4.6 Compound 6

Figure S42. Solid state FT-IR spectrum of compound 6.

4.7 Compound 7

Figure S43. Solid state FT-IR spectrum of compound 7.
4.8 Compound 8

Figure S44. Solid state FT-IR spectrum of compound 8.

5. Calculations

5.1 Compound 2 – DFT

Figure S45. Calculated potential energy surface of the metal free intramolecular de-aromatization.

All quantum chemical calculations were carried out using Gaussian 09.[7] The geometries of all compounds were optimized at B3LYP[8] -D3[9]/def2-SVP[10] basis set for all other atoms. Analytical frequencies were computed to verify the stationary points. Thermochemistry at 298.15 K.
Calculated cartesian coordinates and energies of A

E(B3LYP) \(-2660.579296\) \(\text{E}_\text{h}\)
Sum of electronic and zero-point Energies \(-2659.629404\) \(\text{E}_\text{h}\)
Sum of electronic and thermal Energies \(-2659.575030\) \(\text{E}_\text{h}\)
Sum of electronic and thermal Enthalpies \(-2659.574086\) \(\text{E}_\text{h}\)
Sum of electronic and thermal Free Energies \(-2659.719427\) \(\text{E}_\text{h}\)

Number of imaginary frequencies: 0.

Si \(\begin{array}{ccc}
-2.91897 \\ 1.62058 \\ -2.74520 \\ -3.99651 \\ 3.17950 \\ 1.94554 \\ 3.94713 \\ -0.78695 \\ -2.12107 \\ -3.43543 \\ 2.42613 \\ 2.90640 \\ -3.89115 \\ 1.63451 \\ -2.53269 \\ -4.22773 \\ -4.64130 \\ -2.02570 \\ -0.25135 \\ -1.58965 \\ -5.49925
\end{array}\) \begin{array}{ccc}
0.87777 \\ 1.75632 \\ -0.40434 \\ -0.68089 \\ 0.72627 \\ 0.36744 \\ 0.59831 \\ 4.25755 \\ 4.01404 \\ -1.32093 \\ 3.27393 \\ -0.16937 \\ 3.44533 \\ 4.40684 \\ 3.94642 \\ 2.08460 \\ -1.19735 \\ 0.46589 \\ 4.46603 \\ 4.24309 \\ 1.64593
\end{array}\) \begin{array}{ccc}
0.54007 \\ -0.34069 \\ -0.87795 \\ 0.84650 \\ -0.77730 \\ 0.94429 \\ -2.02739 \\ 1.55799 \\ 1.23019 \\ -0.19486 \\ 0.57732 \\ 0.18799 \\ -0.48360 \\ 0.90435 \\ -0.11115 \\ -0.25273 \\ 2.06585 \\ -2.16159 \\ -0.78130 \\ -1.10810 \\ -0.66865
\end{array}\)
C	0.18083	4.42017	
C	1.30629	-0.07882	
C	3.77508	3.28004	
C	-6.06018	3.83772	
C	-4.80328	4.30021	
C	-6.41152	2.50406	
C	2.19464	5.47830	
C	4.33379	4.35518	
C	3.53857	5.45956	
H	-5.77438	0.59850	
H	-7.39306	2.13286	
H	-6.76419	4.51750	
H	-4.51992	5.34094	
H	4.39877	2.41095	
H	5.38628	4.33065	
H	3.96414	6.30553	
H	1.56508	6.33606	
H	-0.47318	4.24484	
H	-2.84752	3.81845	
H	0.48258	4.62223	
H	-1.89646	4.22046	
C	-2.89384	-1.13967	
H	-3.87723	-0.64781	
H	-2.40265	-1.05159	
H	-3.04806	-2.20839	
C	-0.68296	-1.20900	
H	-0.06247	-0.71622	
H	-0.83691	-2.26091	
H	-0.12829	-1.18868	
C	-1.75288	0.99026	
H	-1.20171	1.01796	
H	-2.69665	1.54224	
H	-1.13392	1.50104	
C	-5.81616	-2.13363	
---	---	---	---
H	-5.47519	-3.08011	1.29050
H	-6.37595	-2.37310	2.64757
H	-6.50671	-1.64892	1.02221
C	-3.62073	-1.92439	2.96369
H	-4.08902	-2.23222	3.91255
H	-3.23041	-2.82632	2.47038
H	-2.77416	-1.25834	3.19022
C	-5.18769	0.03452	2.81000
H	-4.37212	0.73062	3.06469
H	-5.91612	0.57588	2.18783
H	-5.67958	-0.26835	3.74686
C	0.56160	1.14355	2.75679
H	-0.20049	1.49897	2.04639
H	0.04264	0.87550	3.68996
H	1.26469	1.96342	2.96648
C	0.29242	-1.20857	1.92305
H	-0.23089	-1.48182	2.85304
H	-0.46212	-0.87173	1.19705
H	0.79175	-2.10945	1.53787
C	2.36149	-0.53924	3.21540
H	1.87888	-0.73133	4.18652
H	2.86342	-1.46486	2.90245
H	3.12358	0.24285	3.35770
C	3.26715	-0.39024	-2.99492
H	3.79757	-0.41489	-3.96054
H	3.26569	-1.41002	-2.58377
H	2.22435	-0.08719	-3.17556
C	3.96345	2.00179	-2.65939
H	2.93813	2.34839	-2.86697
H	4.43902	2.72825	-1.98344
H	4.51727	1.98948	-3.61050
C	5.39862	0.16315	-1.75407
H	5.86511	0.82331	-1.00627
H	5.45621	-0.87109	-1.39036
Calculated cartesian coordinates and energies of TS(A-B)

E(B3LYP) \(-3494.831523\text{ E}_h\)
Sum of electronic and zero-point Energies \(-3493.872902\text{ E}_h\)
Sum of electronic and thermal Energies \(-3493.815017\text{ E}_h\)
Sum of electronic and thermal Enthalpies \(-3493.814072\text{ E}_h\)
Sum of electronic and thermal Free Energies \(-3493.966023\text{ E}_h\)

Number of imaginary frequencies: 1, \(\nu = -164.9\text{ cm}^{-1}\).

S	-0.22176	-1.69461	0.93309
S	-0.10426	0.47401	3.16218
Element	X	Y	Z
---------	------	------	------
Si	2.56126	0.88035	-0.23202
Si	-2.37824	1.00573	0.40417
N	3.73953	-0.02652	0.97447
N	3.57367	-0.49646	-1.11545
N	-3.76074	-0.25865	0.70284
N	-2.68531	-0.02489	-1.14383
C	-0.37484	-0.42374	1.88049
C	-4.46403	-0.75331	1.90149
C	-0.61680	4.44892	-1.43757
C	0.77181	4.42400	-1.57776
C	4.04115	-0.95308	0.05837
C	-3.37894	2.62710	0.04065
C	-3.54697	-0.81895	-0.49847
C	3.05288	3.72911	-0.77631
C	-2.72604	3.86349	-0.21340
C	1.58993	3.91467	-0.55649
C	3.64969	2.44910	-0.63081
C	3.36370	-1.18401	-2.40067
C	4.16633	0.12772	2.37516
C	-0.41475	3.53697	0.78333
C	0.97242	3.51583	0.64232
C	5.03251	2.33928	-0.87311
C	-1.23832	3.96439	-0.27266
C	-2.14094	-0.05521	-2.51153
C	-4.78754	2.60876	0.00277
C	5.20473	4.69052	-1.40080
C	3.83654	4.83102	-1.16953
C	5.80913	3.43693	-1.24870
C	-3.49065	5.01055	-0.49681
C	-5.53849	3.75558	-0.26659
C	-4.88499	4.96514	-0.51632
H	5.51024	1.35911	-0.77372
H	6.88198	3.31891	-1.42714
H	5.80119	5.55864	-1.69476
	x	y	z
--	--------	--------	--------
H	-0.22638	0.77171	-1.83278
H	-0.58436	1.04883	-3.56049
H	-1.41978	2.00117	-2.31515
C	-1.54234	-1.42730	-2.87134
H	-0.98924	-1.35267	-3.82056
H	-0.84211	-1.75186	-2.08873
H	-2.31465	-2.19830	-2.99223
C	-3.25438	0.32525	-3.50508
H	-2.85130	0.38906	-4.52835
H	-4.05744	-0.42689	-3.50268
H	-3.68800	1.30086	-3.23670
C	-3.84054	-2.05841	2.43235
H	-4.31202	-2.33856	3.38762
H	-3.98838	-2.88947	1.72928
H	-2.76155	-1.93274	2.59941
C	-4.31198	0.34437	2.96999
H	-3.25021	0.50371	3.21718
H	-4.73499	1.29819	2.62037
H	-4.83468	0.05141	3.89294
C	-5.95885	-0.96963	1.60157
H	-6.42093	-0.04723	1.21747
H	-6.11082	-1.76816	0.86240
H	-6.48858	-1.25859	2.52283
C	4.59774	-2.31063	0.33259
C	3.74311	-3.31042	0.82474
C	5.95025	-2.60648	0.11320
C	4.23747	-4.58994	1.08732
H	2.69063	-3.07452	1.00142
C	6.44437	-3.88593	0.38269
H	6.61398	-1.82850	-0.27045
C	5.58868	-4.87974	0.86809
H	3.56548	-5.36313	1.46813
H	7.50089	-4.10710	0.21209
H	5.97513	-5.88047	1.07714
	X	Y	Z
---	-----	-----	-----
C	-4.11272	-2.10379	-1.00182
C	-5.33094	-2.10379	-1.69663
C	-3.43107	-3.31349	-0.80029
C	-5.86242	-3.30077	-2.18497
H	-5.86259	-1.16198	-1.85020
C	-3.96568	-4.50814	-1.28702
H	-2.47926	-3.30697	-0.26643
C	-5.18113	-4.50440	-1.98026
H	-6.81168	-3.29211	-2.72615
H	-3.42894	-5.44640	-1.12659
H	-5.59676	-5.44036	-2.36180
Calculated cartesian coordinates and energies of B

Atom	X	Y	Z
S	0.27046	-1.28136	0.17882
S	0.33866	1.02847	-1.83232
Si	-2.66637	0.61960	0.19204
Si	2.56338	0.77715	-0.08890
N	-3.64389	-0.47467	-1.01275
N	-3.63411	-0.74399	1.11506
N	3.76466	-0.29144	-1.01100
N	3.45568	-0.30588	1.12421
C	0.89317	0.11429	-0.52288
C	4.04272	-0.58073	-2.43930
C	0.34055	3.05443	1.26061
C	-1.04923	3.01688	1.36276
C	-3.92340	-1.35679	-0.04448
C	3.20299	2.53458	0.00511
C	4.02979	-0.97073	0.11466
C	-3.34173	3.45153	0.41044
C	2.44181	3.73022	0.06126
C	-1.86381	3.64990	0.40623
C	-3.87489	2.13727	0.37819
C	-3.62609	-1.23240	2.50008
C	-3.70565	-0.56451	-2.48027

E(B3LYP) = -3494.866599 E_h
Sum of electronic and zero-point Energies = -3493.906109 E_h
Sum of electronic and thermal Energies = -3493.848358 E_h
Sum of electronic and thermal Enthalpies = -3493.847414 E_h
Sum of electronic and thermal Free Energies = -3493.999178 E_h
Number of imaginary frequencies: 0.
C	0.15640	4.42851	-0.71194
C	-1.23515	4.38292	-0.61226
C	-5.27393	1.99402	0.35731
C	0.96361	3.73438	0.20249
C	3.39658	-0.57544	2.57804
C	4.61020	2.63079	-0.05766
C	-5.58790	4.39072	0.37834
C	-4.20347	4.56391	0.39648
C	-6.12833	3.09885	0.36378
C	3.11436	4.96523	-0.00226
C	5.26215	3.86266	-0.09438
C	4.50463	5.03757	-0.08116
H	-5.69996	0.98542	0.32263
H	-7.21335	2.95872	0.35060
H	-6.24720	5.26329	0.37959
H	-3.77744	5.57120	0.41557
H	5.21051	1.71822	-0.10225
H	6.35307	3.90575	-0.14428
H	4.99815	6.01226	-0.11919
H	2.52291	5.88301	0.03772
H	0.94807	2.55920	2.01830
H	-1.51447	2.49926	2.20318
H	0.62420	4.95851	-1.54509
H	-1.84927	4.87269	-1.37214
C	-5.08671	-1.07125	-2.93207
H	-5.88618	-0.44774	-2.50138
H	-5.16197	-1.02066	-4.02985
H	-5.25769	-2.11433	-2.63218
C	-2.58677	-1.46850	-3.03284
H	-1.61086	-1.13688	-2.64823
H	-2.74445	-2.51771	-2.74525
H	-2.56899	-1.41919	-4.13393
C	-3.50070	0.86992	-3.00154
H	-3.54962	0.88585	-4.10136
	1st Column	2nd Column	3rd Column
---	------------	------------	------------
H	-4.27474	1.54373	-2.60365
H	-2.51282	1.25155	-2.70000
C	-5.03671	-1.69434	2.91007
H	-5.34815	-2.58271	2.34332
H	-5.05744	-1.95386	3.98069
H	-5.76865	-0.89117	2.73172
C	-2.60474	-2.36839	2.70888
H	-2.53334	-2.62375	3.77883
H	-2.89595	-3.27756	2.16502
H	-1.61164	-2.05479	2.35308
C	-3.21954	-0.03018	3.37188
H	-2.20268	0.30475	3.11126
H	-3.91138	0.81260	3.22179
H	-3.22600	-0.30676	4.43728
C	2.34662	0.39513	3.14142
H	1.36502	0.20432	2.67948
H	2.25112	0.25974	4.22879
H	2.64146	1.44040	2.95754
C	2.95860	-2.01801	2.88477
H	2.76279	-2.11675	3.96381
H	2.03666	-2.25126	2.33221
H	3.73376	-2.74908	2.61966
C	4.77132	-0.27468	3.20032
H	4.72415	-0.38274	4.29525
H	5.53593	-0.97153	2.82646
H	5.08725	0.75368	2.96470
C	2.99714	-1.56778	-2.99056
H	3.17095	-1.73248	-4.06565
H	3.06933	-2.53986	-2.48190
H	1.97996	-1.17332	-2.85676
C	3.93589	0.76424	-3.17991
H	2.93392	1.20291	-3.05941
H	4.67955	1.48197	-2.80123
H	4.11455	0.61176	-4.25492
---	---	---	---
C	5.46210	-1.14173	-2.62792
H	6.20849	-0.49991	-2.13363
H	5.56600	-2.16243	-2.23809
H	5.69503	-1.17070	-3.70309
C	-4.24717	-2.80154	-0.22987
C	-3.19470	-3.70892	-0.43530
C	-5.56807	-3.26955	-0.20576
C	-3.46675	-5.06735	-0.61366
H	-2.16743	-3.33537	-0.44871
C	-5.83717	-4.62949	-0.38611
H	-6.38566	-2.56195	-0.05061
C	-4.78719	-5.53011	-0.59038
H	-2.64320	-5.76830	-0.77227
H	-6.87019	-4.98592	-0.36848
H	-4.99785	-6.59330	-0.73187
C	4.72999	-2.27672	0.20799
C	6.09427	-2.35815	0.51215
C	3.98312	-3.44319	-0.01605
C	6.71484	-3.60801	0.58465
H	6.67124	-1.44560	0.67593
C	4.60941	-4.68858	0.05963
H	2.91339	-3.36103	-0.22401
C	5.97430	-4.77255	0.35724
H	7.78040	-3.67198	0.81739
H	4.02781	-5.59760	-0.11073
H	6.46184	-5.74885	0.41437

Calculated cartesian coordinates and energies of TS(B-C)

E(B3LYP) \hspace{1cm} -3494.863172 \text{E}_h

Sum of electronic and zero-point Energies \hspace{1cm} -3493.902655 \text{E}_h

Sum of electronic and thermal Energies \hspace{1cm} -3493.846028 \text{E}_h

Sum of electronic and thermal Enthalpies \hspace{1cm} -3493.845084 \text{E}_h

Sum of electronic and thermal Free Energies \hspace{1cm} -3493.992411 \text{E}_h

Number of imaginary frequencies: 1, \(\nu = -84.9 \text{ cm}^{-1} \).
Element	x	y	z
S	-0.0975	-0.93804	0.38027
S	-0.09718	1.23520	-1.63633
Si	-2.38105	0.67833	0.01390
Si	2.40449	0.80287	-0.04645
N	-3.27791	-0.56738	-1.07586
N	-3.32567	-0.62019	1.07534
N	3.53765	-0.31679	-1.03325
N	3.21887	-0.41004	1.09732
C	0.70303	0.33199	-0.43470
C	3.67751	-0.60526	-2.47884
C	0.41262	3.05784	1.31023
C	-0.98217	3.01655	1.33112
C	-3.59002	-1.33599	-0.01929
C	3.23068	2.48653	0.03652
C	3.77565	-1.04909	0.05857
C	-3.19774	3.47899	0.24322
C	2.56456	3.72855	0.19758
C	-1.73946	3.73052	0.38002
C	-3.65529	2.14464	0.10552
C	-3.42716	-0.95165	2.50355
C	-3.36124	-0.82267	-2.52614
C	0.33447	4.58314	-0.55902
C	-1.06298	4.55374	-0.52749
C	-5.03743	1.93279	-0.05048
C	1.08790	3.80376	0.32920
C	3.23871	-0.68773	2.54963
C	4.63814	2.48540	-0.06896
C	-5.47749	4.30856	0.03854
C	-4.11222	4.54728	0.19417
C	-5.94531	2.99367	-0.07893
C	3.32099	4.91444	0.20610
C	5.37754	3.66783	-0.03337
C	4.71142	4.89045	0.09465
H	-5.40944	0.90932	-0.16202
H -7.0156 2.80030 -0.19653			
H -6.17946 5.14671 0.01444			
H -3.74155 5.57117 0.29632			
H 5.16606 1.53811 -0.20700			
H 6.46697 3.63694 -0.11728			
H 5.27630 5.82622 0.11546			
H 2.79815 5.86687 0.32273			
H 0.97846 2.51932 2.06908			
H -1.49257 2.45716 2.11418			
H 0.84743 5.16319 -1.33005			
H -1.63403 5.10288 -1.28019			
C -4.64588 -1.59007 -2.89040			
H -5.53108 -1.10215 -2.45234			
H -4.76538 -1.59799 -3.98494			
H -4.62105 -2.63401 -2.55260			
C -2.12324 -1.60004 -3.01239			
H -1.20718 -1.06679 -2.72138			
H -2.09895 -2.60842 -2.57462			
H -2.14601 -1.70362 -4.10962			
C -3.41326 0.55674 -3.20994			
H -3.48031 0.43393 -4.30213			
H -4.28763 1.12880 -2.86441			
H -2.50776 1.13827 -2.98957			
C -4.91166 -1.07090 2.90002			
H -5.38371 -1.93601 2.41356			
H -5.01022 -1.20261 3.98962			
H -5.45782 -0.16136 2.60571			
C -2.66789 -2.24152 2.87150			
H -2.67306 -2.37780 3.96500			
H -3.12851 -3.13099 2.42167			
H -1.62286 -2.17900 2.53288			
C -2.79868 0.22474 3.27107			
H -1.73240 0.32012 3.01662			
H -3.30936 1.16797 3.02292			
Atom	X	Y	Z
------	-------	-------	-------
H	-2.88456	0.06099	4.35595
C	2.31880	0.36075	3.19396
H	1.29941	0.26760	2.78782
H	2.27732	0.20820	4.28256
H	2.69516	1.37948	3.01026
C	2.69200	-2.09092	2.86654
H	2.57369	-2.20145	3.95580
H	1.71101	-2.22188	2.38631
H	3.37119	-2.88280	2.52376
C	4.67196	-0.52182	3.08473
H	4.68383	-0.63565	4.18005
H	5.34511	-1.28132	2.66116
H	5.06493	0.47604	2.83417
C	2.56271	-1.56614	-2.93497
H	2.63075	-1.72951	-4.02221
H	2.65762	-2.54287	-2.43872
H	1.57316	-1.14687	-2.70298
C	3.51906	0.74572	-3.19871
H	2.53205	1.18948	-2.99314
H	4.29501	1.45683	-2.87695
H	3.60568	0.60166	-4.28613
C	5.06213	-1.19124	-2.80025
H	5.86229	-0.55315	-2.39283
H	5.18874	-2.20627	-2.40135
H	5.18904	-1.24328	-3.89243
C	-3.98138	-2.77343	-0.06417
C	-2.97378	-3.73750	-0.23067
C	-5.31681	-3.17983	0.05735
C	-3.30473	-5.09367	-0.27242
H	-1.93593	-3.40501	-0.30789
C	-5.64436	-4.53779	0.01258
H	-6.10131	-2.42841	0.16859
C	-4.63951	-5.49635	-0.15172
H	-2.51649	-5.84038	-0.39767
Calculated cartesian coordinates and energies of C

\[
\begin{align*}
\text{H} & : (-6.6844, -4.84775, 0.10304) \\
\text{H} & : (-4.89681, -6.55809, -0.18592) \\
\text{C} & : (4.44291, -2.37609, 0.10073) \\
\text{C} & : (5.82772, -2.49070, 0.27765) \\
\text{C} & : (3.65479, -3.52640, -0.0546) \\
\text{C} & : (6.42384, -3.75415, 0.29625) \\
\text{H} & : (6.43719, -1.59139, 0.38885) \\
\text{C} & : (4.25694, -4.78618, -0.03889) \\
\text{H} & : (2.57342, -3.42332, -0.17120) \\
\text{C} & : (5.64042, -4.90179, 0.13569) \\
\text{H} & : (7.50425, -3.84216, 0.43300) \\
\text{H} & : (3.64227, -5.68131, -0.15966) \\
\text{H} & : (6.10910, -5.88884, 0.14803)
\end{align*}
\]

E(B3LYP) \quad -3494.878431 \text{ E}_h

Sum of electronic and zero-point Energies \quad -3493.916430 \text{ E}_h

Sum of electronic and thermal Energies \quad -3493.859813 \text{ E}_h

Sum of electronic and thermal Enthalpies \quad -3493.858869 \text{ E}_h

Sum of electronic and thermal Free Energies \quad -3494.005707 \text{ E}_h

Number of imaginary frequencies: 0.

\[
\begin{align*}
\text{S} & : (-0.52084, -0.32524, 0.79504) \\
\text{S} & : (-0.52465, 1.56521, -1.35669) \\
\text{Si} & : (-2.23807, 0.74791, -0.10430) \\
\text{Si} & : (2.24946, 0.91995, 0.00413) \\
\text{N} & : (-3.13040, -0.47512, -1.20445) \\
\text{N} & : (-3.39631, -0.54519, 0.94029) \\
\text{N} & : (3.38781, -0.27974, -0.96939)
\end{align*}
\]
N	2.97755	-0.35870	1.14972
C	0.54549	0.67039	-0.24142
C	3.40849	-0.65339	-2.39968
C	0.54194	3.24674	1.49826
C	-0.84656	3.19446	1.56653
C	-3.64451	-1.18986	-0.17948
C	3.20812	2.55327	-0.03379
C	3.58564	-0.99953	0.12990
C	-3.06318	3.57030	0.45639
C	2.63940	3.83114	0.23916
C	-1.62922	3.90503	0.64112
C	-3.44882	2.23698	0.15635
C	-3.74064	-0.84159	2.34094
C	-3.12322	-0.72487	-2.66609
C	0.39783	4.82941	-0.31491
C	-0.99687	4.80649	-0.22581
C	-4.82039	1.99705	-0.06981
C	1.18117	3.99443	0.49442
C	3.06299	-0.58758	2.60943
C	4.59698	2.48650	-0.27435
C	-5.37999	4.31950	0.28874
C	-4.03153	4.58993	0.51296
C	-5.77675	3.01185	-0.00777
C	3.46476	4.96879	0.22709
C	5.40974	3.62231	-0.25565
C	4.83719	4.87259	-0.01236
H	-5.15465	0.98852	-0.32016
H	-6.82971	2.78274	-0.19427
H	-6.11861	5.12367	0.34536
H	-3.70663	5.60697	0.74828
H	5.04993	1.51903	-0.50399
H	6.48323	3.53193	-0.44275
H	5.45758	5.77287	-0.00314
H	3.01344	5.94354	0.42916
H 1.13577 2.68348 2.21243			
H -1.33003 2.55888 2.30955			
H 0.88135 5.43680 -1.08466			
H -1.59687 5.37869 -0.93752			
C -4.31470 -1.58225 -3.13185			
H -5.26790 -1.17938 -2.75678			
H -4.34866 -1.56347 -4.23182			
H -4.23551 -2.63170 -2.82379			
C -1.80248 -1.41221 -3.06172			
H -0.95000 -0.78719 -2.76200			
H -1.71598 -2.39202 -2.56680			
H -1.76324 -1.57118 -4.15175			
C -3.24389 0.64577 -3.36286			
H -3.27144 0.50887 -4.45510			
H -4.16677 1.15725 -3.04932			
H -2.38749 1.29086 -3.13025			
C -5.27026 -0.85452 2.53051			
H -5.73481 -1.70087 2.00714			
H -5.51849 -0.94651 3.59982			
H -5.71009 0.08144 2.15284			
C -3.12991 -2.17847 2.80322			
H -3.29489 -2.31421 3.88406			
H -3.58319 -3.03361 2.28320			
H -2.04617 -2.18777 2.61150			
C -3.15254 0.29997 3.19172			
H -2.05765 0.33016 3.09758			
H -3.55519 1.27215 2.87100			
H -3.40945 0.15001 4.25151			
C 2.29037 0.55482 3.28473			
H 1.24288 0.56487 2.94781			
H 2.30302 0.41905 4.37669			
H 2.75358 1.52772 3.05994			
C 2.39993 -1.92400 2.99291			
H 2.34757 -2.01366 4.08940			
---	---	---	---
H	1.37682	-1.96500	2.58974
H	2.96815	-2.78450	2.61540
C	4.52935	-0.54933	3.07674
H	4.57727	-0.61307	4.17517
H	5.10845	-1.38902	2.66824
H	5.00709	0.39236	2.76362
C	2.32884	-1.71855	-2.67402
H	2.24065	-1.90450	-3.75627
H	2.58170	-2.67228	-2.18810
H	1.35791	-1.37142	-2.28947
C	3.06392	0.62880	-3.17904
H	2.05505	0.98754	-2.92093
H	3.78587	1.42931	-2.95826
H	3.08422	0.42767	-4.26080
C	4.79558	-1.15496	-2.83348
H	5.57365	-0.41862	-2.57729
H	5.05384	-2.11305	-2.36314
H	4.80964	-1.30273	-3.92468
C	-4.24418	-2.54973	-0.29609
C	-3.36386	-3.64043	-0.36201
C	-5.62627	-2.76696	-0.34557
C	-3.86600	-4.93800	-0.47985
H	-2.28801	-3.45609	-0.31196
C	-6.12568	-4.06630	-0.46609
H	-6.31034	-1.91677	-0.30838
C	-5.24767	-5.15294	-0.53458
H	-3.17695	-5.78477	-0.52987
H	-7.20512	-4.23035	-0.51072
H	-5.64051	-6.16826	-0.63021
C	4.28949	-2.30810	0.20654
C	5.69047	-2.35882	0.25277
C	3.55090	-3.50098	0.20061
C	6.34580	-3.59119	0.29912
H	6.26311	-1.42888	0.24977
Calculated cartesian coordinates and energies of TS(C-D)

	Calculated cartesian coordinates	Energies	
	C	-4.73195	0.23671
	H	-3.45656	0.17004
	C	-4.77936	0.28823
	H	-3.62397	0.33881
	H	-5.65773	0.22799
	H	-5.74318	0.31967
	S	-0.37054	0.68920
	S	-0.44616	0.68920
	Si	1.32490	-1.59964
	Si	-2.21649	1.00780
	N	0.87199	-0.16098
	N	0.95582	0.15199
	N	0.56642	-0.16291
	C	-1.36728	0.95462
	C	2.61169	0.95462
	C	2.61911	1.18582
	C	-3.54626	-0.00510
	C	-1.12806	-0.00510
	C	2.56959	0.60195
	C	-3.31986	0.07185
	C	3.47347	-0.31443
	C	3.72699	0.85488
	C	3.69657	0.14812
	C	2.12112	-0.56819

E(B3LYP) \(-3494.853950 \text{E}_h\)

- Sum of electronic and zero-point Energies \(-3493.892996 \text{E}_h\)
- Sum of electronic and thermal Energies \(-3493.837189 \text{E}_h\)
- Sum of electronic and thermal Enthalpies \(-3493.836245 \text{E}_h\)
- Sum of electronic and thermal Free Energies \(-3493.981237 \text{E}_h\)

Number of imaginary frequencies: 1, \(\nu = -279.0 \text{ cm}^{-1}\).
	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	H	H	H	H	H	H	H	H	H																																																																																																													
	-3.77250	-0.41343	2.41567		-2.88690	-1.17598	-2.47869		0.26082	4.69824	-0.08811		-1.14036	4.69892	-0.34629		-4.91977	1.82753	-1.05187		0.85938	3.70682	0.66729		3.04553	-0.81915	2.58344		4.51025	2.63102	0.72508		-5.51623	4.17761	-1.03623		-4.24611	4.49603	-0.55927		-5.85697	2.83848	-1.28061		2.99388	4.91138	1.23055		5.15134	3.81143	1.10227		4.38283	4.95423	1.35475		-5.19383	0.78955	-1.26069		-6.85508	2.58839	-1.65207		-6.24933	4.96996	-1.21175		-3.97734	5.53504	-0.34917		5.10982	1.74137	0.50843		6.23963	3.84375	1.19809		4.87091	5.88501	1.65653		2.39808	5.80271	1.44013		0.43481	2.11587	2.08268		-1.97611	2.36388	1.82530		0.88322	5.47497	-0.54062		-1.55930	5.44432	-1.02675		-4.08948	-2.05863	-2.87169		-5.04286	-1.54843	-2.66624		-4.03848	-2.25580	-3.95359		-4.09858	-3.02920	-2.36253		-1.58571	-1.99111	-2.61180		-0.72878	-1.37919	-2.30239		-1.62403	-2.88350	-1.96821		-1.44088	-2.32163	-3.65354
	X	Y	Z																																																																																																																																				
-----	---------	---------	---------																																																																																																																																				
C	-2.8714	0.01460	-3.4595																																																																																																																																				
H	-2.8064	-0.3591	-4.4932																																																																																																																																				
H	-3.7896	0.6120	-3.3611																																																																																																																																				
H	-2.0107	0.6687	-3.2850																																																																																																																																				
C	-5.3063	-0.3569	2.5248																																																																																																																																				
H	-5.7785	-1.2548	2.1028																																																																																																																																				
H	-5.6156	-0.2881	3.5812																																																																																																																																				
H	-5.6938	0.5259	1.9908																																																																																																																																				
C	-3.2283	-1.7017	3.0679																																																																																																																																				
H	-3.4342	-1.6899	4.1503																																																																																																																																				
H	-3.6919	-2.6053	2.6527																																																																																																																																				
H	-2.1388	-1.7654	2.9212																																																																																																																																				
C	-3.1969	0.7814	3.1909																																																																																																																																				
H	-2.0988	0.7866	3.1356																																																																																																																																				
H	-3.5845	1.7307	2.7937																																																																																																																																				
H	-3.4891	0.7142	4.2497																																																																																																																																				
C	2.2177	0.2259	3.3476																																																																																																																																				
H	1.1727	0.2059	3.0033																																																																																																																																				
H	2.2345	0.0007	4.4242																																																																																																																																				
H	2.6273	1.2380	3.2054																																																																																																																																				
C	2.4241	-2.2097	2.7994																																																																																																																																				
H	2.3561	-2.4192	3.8783																																																																																																																																				
H	1.4113	-2.2357	2.3712																																																																																																																																				
H	3.0296	-3.0040	2.3419																																																																																																																																				
C	4.5029	-0.7832	3.0764																																																																																																																																				
H	4.5404	-0.9906	4.1570																																																																																																																																				
H	5.1183	-1.5398	2.5685																																																																																																																																				
H	4.9449	0.2099	2.8996																																																																																																																																				
C	2.4839	-1.0792	-2.9621																																																																																																																																				
H	2.5563	-1.1176	-4.0604																																																																																																																																				
H	2.5820	-2.1062	-2.5803																																																																																																																																				
H	1.4904	-0.6909	-2.6930																																																																																																																																				
C	3.4198	1.2585	-2.9376																																																																																																																																				
H	2.4243	1.6631	-2.6919																																																																																																																																				
H 4.18557 1.93020 -2.51968
H 3.51546 1.25757 -4.03361
C 4.98092 -0.69969 -2.77481
H 5.77229 -0.10511 -2.29177
H 5.11525 -1.75330 -2.49679
H 5.11164 -0.62250 -3.86501
C -4.20425 -2.46619 0.08319
C -3.39250 -3.59923 0.24269
C -5.59228 -2.61918 -0.02095
C -3.96581 -4.87138 0.29841
H -2.31130 -3.46876 0.32718
C -6.16422 -3.89287 0.03141
H -6.22242 -1.73908 -0.16371
C -5.35296 -5.02093 0.19120
H -3.32804 -5.74989 0.42489
H -7.24766 -4.00510 -0.05714
H -5.80156 -6.01675 0.23120
C 4.23233 -2.28239 -0.03349
C 5.61956 -2.44968 0.06839
C 3.40465 -3.39228 -0.26084
C 6.17752 -3.72446 -0.05470
H 6.25956 -1.58112 0.23693
C 3.96883 -4.66314 -0.39173
H 2.32350 -3.25093 -0.32832
C 5.35385 -4.83081 -0.28758
H 7.25932 -3.85323 0.02726
H 3.32336 -5.52583 -0.57267
H 5.79253 -5.82658 -0.38775
Calculated cartesian coordinates and energies of D

\[E(\text{B3LYP}) = -3494.882471 \text{ E}_h \]

Sum of electronic and zero-point Energies
\[-3493.918920 \text{ E}_h \]

Sum of electronic and thermal Energies
\[-3493.863538 \text{ E}_h \]

Sum of electronic and thermal Enthalpies
\[-3493.862593 \text{ E}_h \]

Sum of electronic and thermal Free Energies
\[-3494.005775 \text{ E}_h \]

Number of imaginary frequencies: 0.

atom	x	y	z
S	-0.30419	-0.24790	1.03354
S	-0.00869	1.22372	-1.49879
Si	-2.05274	0.98707	-0.20496
Si	2.45879	0.90202	0.36394
N	-2.70975	-0.67634	-1.00266
N	-3.35369	0.04518	0.94120
N	3.22196	-0.19336	-0.88420
N	3.04151	-0.60974	1.22565
C	0.62967	1.12866	0.23668
C	3.52080	-0.16156	-2.33864
C	0.21050	2.46942	0.95086
C	-1.29877	2.63441	0.67966
C	-3.45659	-0.95201	0.06317
C	3.29518	2.46337	0.85461
C	3.34503	-1.15963	0.04140
C	-2.98827	3.50978	-0.91329
C	2.51652	3.65823	0.89661
C	-1.68451	3.72783	-0.26742
C	-3.33546	2.14632	-1.06099
C	-3.97403	0.16447	2.27716
C	-2.43381	-1.45660	-2.22765
C	0.53796	4.70903	-0.13298
-----	---------	---------	----------
C	-0.82481	4.72501	-0.60410
C	-4.54149	1.83358	-1.70269
C	1.07718	3.66456	0.55610
C	3.04479	-1.15065	2.60692
C	4.67066	2.49779	1.15472
C	-5.02767	4.18732	-2.03391
C	-3.82951	4.52450	-1.40417
C	-5.38655	2.83950	-2.18338
C	3.18297	4.85133	1.26191
C	5.30417	3.68934	1.49821
C	4.54507	4.86789	1.54951
H	-4.82802	0.78500	-1.82917
H	-6.32812	2.57825	-2.67550
H	-5.69140	4.97428	-2.40299
H	-3.55458	5.57422	-1.26832
H	5.25385	1.57188	1.11269
H	6.37123	3.70560	1.73259
H	5.02227	5.80969	1.83444
H	2.60590	5.77450	1.34501
H	0.36481	2.30093	2.03144
H	-1.84865	2.79844	1.61290
H	1.18616	5.53682	-0.43660
H	-1.11364	5.48408	-1.33556
C	-3.56935	-2.42152	-2.62917
H	-4.53844	-1.90198	-2.67138
H	-3.35265	-2.81237	-3.63549
H	-3.66724	-3.28279	-1.95805
C	-1.13153	-2.25813	-2.02348
H	-0.32913	-1.58209	-1.70178
H	-1.27233	-3.02352	-1.24363
H	-0.83630	-2.76365	-2.95798
C	-2.27046	-0.46495	-3.39876
H	-2.04814	-1.01881	-4.32438
	x	y	z
---	-----	-----	------
H	-3.1943	0.1114	-3.5504
H	-1.4510	0.2402	-3.2242
C	-5.5096	0.2499	2.1645
H	-5.9483	-0.7010	1.8362
H	-5.9504	0.4959	3.1443
H	-5.7933	1.0355	1.4471
C	-3.5596	-1.0021	3.1988
H	-3.9014	-0.8077	4.2282
H	-3.9960	-1.9574	2.8808
H	-2.4628	-1.0986	3.2063
C	-3.4735	1.4645	2.9228
H	-2.3817	1.4387	3.0433
H	-3.7489	2.3389	2.3158
H	-3.9296	1.5825	3.9177
C	2.4198	0.0638	3.4976
H	1.3699	0.1078	3.2127
H	2.4476	-0.3851	4.5494
H	2.9769	0.8829	3.4168
C	2.2216	-2.4444	2.7221
H	2.1257	-2.7188	3.7839
H	1.2168	-2.2868	2.3050
H	2.7008	-3.2845	2.2013
C	4.5041	-1.3920	3.0332
H	4.5399	-1.7279	4.0810
H	4.9768	-2.1691	2.4149
H	5.0923	0.4649	2.9472
C	2.5015	-0.9955	-3.1310
H	2.6846	-0.8745	-4.2101
H	2.5867	-2.0650	-2.8917
H	1.4818	-0.6552	-2.9036
C	3.4334	1.3160	-2.7569
H	2.4191	1.7139	-2.5975
H	4.1513	1.9282	-2.1884
H	3.6705	1.4126	-3.8268
---	---	---	---
C	4.95195	-0.67161	-2.58232
H	5.67663	-0.11065	-1.97068
H	5.05044	-1.74173	-2.35442
H	5.21594	-0.53101	-3.64156
C	-4.20708	-2.22698	0.26878
C	-3.51087	-3.34912	0.74196
C	-5.56752	-2.33968	-0.04326
C	-4.17030	-4.56964	0.90209
H	-2.45027	-3.25293	0.98462
C	-6.22581	-3.56189	0.11448
H	-6.10440	-1.47029	-0.42805
C	-5.52923	-4.67887	0.58671
H	-3.62208	-5.43931	1.27323
H	-7.28618	-3.64353	-0.13703
H	-6.04511	-5.63467	0.70857
C	3.57993	-2.60137	-0.22199
C	4.84103	-3.20090	-0.12612
C	2.45116	-3.36683	-0.55768
C	4.97478	-4.57102	-0.36940
H	5.71536	-2.59789	0.12698
C	2.59398	-4.73391	-0.79808
H	1.47157	-2.88498	-0.60996
C	3.85367	-5.33671	-0.70449
H	5.95877	-5.04030	-0.29830
H	1.71608	-5.32997	-1.05784
H	3.96208	-6.40746	-0.89374

Calculated cartesian coordinates and energies of TS(D-E)

E(B3LYP) \(-3494.877599 \text{E}_h\)

Sum of electronic and zero-point Energies \(-3493.914041 \text{E}_h\)

Sum of electronic and thermal Energies \(-3493.859314 \text{E}_h\)

Sum of electronic and thermal Enthalpies \(-3493.858370 \text{E}_h\)

Sum of electronic and thermal Free Energies \(-3494.000593 \text{E}_h\)

Number of imaginary frequencies: 1, \(\nu = -90.8 \text{ cm}^{-1}\).
Element	X	Y	Z
S	-0.38517	-0.29437	0.68962
S	0.29848	1.50207	-1.66072
Si	-2.25829	0.93988	-0.04677
Si	2.40115	0.94881	0.20301
N	-2.88328	-0.62253	-1.04649
N	-3.41410	-0.13524	1.00144
N	3.26055	-0.22566	-0.90292
N	3.01381	-0.48076	1.22696
C	0.58474	1.15514	0.12537
C	3.63724	-0.30566	-2.34060
C	0.12411	2.40288	0.95904
C	-1.39325	2.55352	0.73908
C	-3.55105	-1.04234	0.01473
C	3.21744	2.52956	0.68156
C	3.42141	-1.09370	0.11423
C	-3.15996	3.48637	-0.73039
C	2.39779	3.67163	0.91629
C	-1.83556	3.69231	-0.12964
C	-3.54616	2.13183	-0.84675
C	-3.83914	-0.21794	2.41488
C	-2.66586	-1.20922	-2.38572
C	0.35276	4.73890	0.06848
C	-1.01745	4.74295	-0.38652
C	-4.79011	1.83859	-1.42573
C	0.94089	3.65855	0.64968
C	2.93662	-0.92232	2.63772
C	4.60674	2.59973	0.89107
C	-5.23838	4.19750	-1.75745
C	-4.00599	4.51408	-1.18990
C	-5.63579	2.85621	-1.87434
C	3.03474	4.84401	1.38199
C	5.21347	3.77423	1.33257
C	4.41279	4.89741	1.58049
H	-5.10487	0.79641	-1.53472
	x	y	z
------	------	------	------
H	-6.60594	2.61135	-2.31638
H	-5.90048	4.99566	-2.10466
H	-3.70514	5.55928	-1.07976
H	5.22374	1.71503	0.70190
H	6.29379	3.81652	1.49164
H	4.86861	5.82207	1.94526
H	2.42468	5.72065	1.60976
H	0.29768	2.15851	2.02215
H	-1.90116	2.68426	1.70653
H	0.96771	5.60855	-0.18037
H	-1.34147	5.55355	-1.04412
C	-3.82519	-2.10652	-2.85843
H	-4.79055	-1.58375	-2.77702
H	-3.66436	-2.35430	-3.91896
H	-3.89412	-3.05055	-2.30421
C	-1.35172	-2.01477	-2.35976
H	-0.52477	-1.37201	-2.02808
H	-1.43445	-2.86448	-1.66341
H	-1.12842	-2.40915	-3.36452
C	-2.53607	-0.04408	-3.38498
H	-2.28386	-0.43944	-4.38135
H	-3.47810	0.51733	-3.46055
H	-1.74179	0.64709	-3.07619
C	-5.37324	-0.31146	2.52749
H	-5.75443	-1.27028	2.15427
H	-5.67956	-0.22111	3.58182
H	-5.84661	0.50205	1.95606
C	-3.16547	-1.40968	3.12496
H	-3.38464	-1.38098	4.20444
H	-3.52676	-2.37150	2.73730
H	-2.07476	-1.35842	2.98405
C	-3.38498	1.07351	3.11118
H	-2.28898	1.15557	3.10039
H	-3.81633	1.95848	2.61981
	X	Y	Z
---	------	------	------
H	-3.71730	1.06713	4.16017
C	2.15211	0.16574	3.39023
H	1.11956	0.22090	3.01481
H	2.12013	-0.07424	4.46343
H	2.63069	1.15083	3.27547
C	2.19808	-2.26482	2.77529
H	2.03755	-2.48496	3.84213
H	1.21872	-2.20772	2.27770
H	2.77170	-3.09677	2.34452
C	4.36103	-1.01667	3.21399
H	4.31873	-1.24600	4.29010
H	4.93894	-1.81352	2.72476
H	4.89387	-0.06167	3.08405
C	2.53915	-1.03456	-3.13196
H	2.78629	-1.03019	-4.20541
H	2.45210	-2.08232	-2.80762
H	1.57492	-0.52845	-2.97993
C	3.77722	1.14560	-2.83311
H	2.83079	1.69309	-2.71164
H	4.56796	1.67282	-2.27590
H	4.04525	1.14863	-3.90052
C	4.99025	-1.01770	-2.51530
H	5.75757	-0.58043	-1.85630
H	4.92921	-2.09532	-2.31664
H	5.32454	-0.89198	-3.55607
C	-4.27804	-2.34181	0.11520
C	-3.55098	-3.51191	0.37736
C	-5.65981	-2.41822	-0.10220
C	-4.20278	-4.74644	0.42589
H	-2.47311	-3.44560	0.54043
C	-6.30889	-3.65421	-0.05967
H	-6.22094	-1.50643	-0.31696
C	-5.58215	-4.81987	0.20491
H	-3.63149	-5.65484	0.63270
Calculated cartesian coordinates and energies of E

![Diagram of molecule]

H	-7.38586	-3.70815	-0.23669
H	-6.09128	-5.78637	0.23755
C	3.83706	-2.51357	-0.00974
C	5.13659	-2.94194	0.28773
C	2.86692	-3.43622	-0.43082
C	5.46757	-4.29299	0.15922
H	5.89150	-2.21721	0.59837
C	3.20352	-4.78584	-0.55184
H	1.85211	-3.09002	-0.64081
C	4.50266	-5.21517	-0.25924
H	6.48354	-4.62589	0.38412
H	2.44721	-5.50475	-0.87550
H	4.76415	-6.27157	-0.35766

E(B3LYP): -3494.907661 Eₚₜₜ

- Sum of electronic and zero-point Energies: -3493.944193 Eₚₜₜ
- Sum of electronic and thermal Energies: -3493.888609 Eₚₜₜ
- Sum of electronic and thermal Enthalpies: -3493.887665 Eₚₜₜ
- Sum of electronic and thermal Free Energies: -3494.032396 Eₚₜₜ

Number of imaginary frequencies: 0.

S	0.59546	0.21227	-0.79352
S	-1.42487	-2.00399	-1.62096
Si	2.50206	-0.76330	-0.26746
Si	-2.39706	-0.85393	-0.04962
N	3.39194	0.95134	-1.07323
N	3.41428	0.26564	0.99279
N	-4.02457	-0.20573	-0.83424
---	---	---	---
N	-2.75702	0.96324	0.46163
C	-0.54377	-1.06636	-0.20566
C	-4.75577	2.17332	-0.48572
C	-4.43637	3.09578	-1.49156
C	-4.92213	-0.69015	-1.90527
C	0.10578	-1.92754	0.90666
C	1.58480	-2.21312	0.65518
C	3.72364	1.28667	0.15182
C	-2.90835	-1.96999	1.38054
C	4.16695	2.63854	0.60394
C	-3.86878	0.99550	-0.27728
C	-5.27353	4.18993	-1.72883
C	-5.91376	2.35572	0.28322
C	-6.42794	4.36941	-0.96110
C	3.01922	-3.34790	-1.03732
C	-2.03789	-3.01605	1.80195
C	1.82574	-3.44273	-0.18456
C	3.53544	-2.03572	-1.21437
C	3.19212	3.48217	1.16009
C	3.81168	-0.00551	2.39806
C	-6.74462	3.45155	0.04704
C	3.37236	1.75137	-2.31972
C	-0.25203	-4.37407	0.70727
C	0.95446	-4.48073	-0.09475
C	2.46221	2.99042	-2.19714
C	4.70091	-1.85706	-1.97219
C	-0.70617	-3.18068	1.17468
C	2.82266	0.84091	-3.43540
C	5.48795	3.08689	0.49111
C	4.79824	2.18943	-2.71055
C	2.54293	0.04935	3.27154
C	-2.22196	1.93680	1.43905
C	-4.16377	-1.84728	1.99669
C	4.81501	-4.23688	-2.40843
C	4.55804	-1.35769	2.42563
C	3.66399	-4.44003	-1.64974
C	3.53850	4.76302	1.59392
C	-4.32189	-0.30808	-3.27247
C	5.34415	-2.94655	-2.56502
C	-3.31479	2.42157	2.41133
C	-2.46873	-3.89701	2.81156
C	4.86108	5.20697	1.48359
C	4.76843	1.03963	2.99950
C	-1.13732	1.21793	2.26152
C	-1.58584	3.12767	0.69809
C	-5.00472	-2.22182	-1.75991
C	5.83400	4.36667	0.93346
C	-6.35062	-0.12745	-1.78765
C	-4.57505	-2.72164	3.00684
C	-3.72264	-3.75508	3.40859
H	5.11193	-0.85248	-2.09490
H	6.25564	-2.79685	-3.15013
H	5.31551	-5.09051	-2.87403
H	3.27477	-5.45175	-1.51130
H	6.86874	4.70781	0.84953
H	2.77412	5.41685	2.02117
H	-4.84594	-1.05804	1.66542
H	-5.55647	-2.60245	3.47390
H	-4.03164	-4.44805	4.19600
H	-1.79320	-4.69068	3.14100
H	-7.64551	3.58860	0.64993
H	-5.02154	4.90363	-2.51687
H	0.04922	-1.29586	1.81029
H	2.07118	-2.40456	1.62690
H	-0.87607	-5.26493	0.82328
H	1.11020	-5.39332	-0.67906
H	1.45206	2.69683	-1.87671
H	2.85960	3.72166	-1.48035
Symbol	X-coordinate	Y-coordinate	Z-coordinate
--------	--------------	--------------	--------------
H	2.38158	3.48967	-3.17580
H	3.44566	-0.05531	-3.55847
H	1.79832	0.51317	-3.21307
H	2.81413	1.38965	-4.38982
H	5.20287	2.93448	-2.01376
H	5.48022	1.32536	-2.73728
H	4.78746	2.64334	-3.71395
H	2.02483	0.92119	3.23375
H	1.83828	-0.81826	2.93254
H	2.80274	-0.26576	4.31974
H	3.95390	-2.17932	2.02287
H	5.47536	-1.29445	1.82034
H	4.83889	-1.61903	3.45802
H	-4.29645	0.78753	-3.38677
H	-3.29499	-0.69010	-3.36270
H	-4.93201	-0.72178	-4.09141
H	-4.05572	3.06503	1.92065
H	-3.83497	1.56184	2.86276
H	-2.85527	3.00740	3.22260
H	5.68614	1.14474	2.40472
H	4.30919	2.02959	3.10659
H	5.05901	0.69610	4.00390
H	-1.54600	0.32535	2.75909
H	-0.29399	0.91803	1.62693
H	-0.75474	1.89806	3.03812
H	-0.81728	2.76701	-0.00216
H	-2.34056	3.69727	0.13637
H	-1.11042	3.81418	1.41750
H	-4.01830	-2.69514	-1.84712
H	-5.42421	-2.49283	-0.77891
H	-5.65593	-2.63526	-2.54502
H	-6.75421	-0.28123	-0.77516
H	-6.40781	0.94186	-2.02665
H	-7.00111	-0.66064	-2.49788
5.2 Compound 6 – NBO

Natural population analysis on heterocycle 6 at the B3LYP-D3(BJ) / def2-TZVP // B3LYP-D3(BJ) / def2-SVP level using NBO 6\(^{[11]}\) in Gaussian 16 A.03.\(^{[12]}\) Natural populations in the mesoionic heterocycles Münchnones and Montrealones are given for reference, as well as the pyrido-annealed aza-analogues for as close a comparison as possible.

![Münchnone and Montrealone](image)

\[\text{Figure S46. NBO Analysis of compound 6 and five membered heteroatom containing compounds.}\]
Figure S47. NB-Orbital 212: π(C–N) of compound 6.
Figure 48. NB-HOMO (237): component of pyridine π-system, anion, of compound 6.
Figure S49. NB-LUMO (238): π*(C–N) of compound 6.

Electronic energy of 6 at B3LYP-D3(BJ) / def2-SVP: 3724.8544727 Hartree

Electronic energy of 6 at B3LYP-D3(BJ) / def2-TZVP: -3727.8609604 Hartree

Number of imaginary frequencies: 0

xyz coordinates for 6

	x	y	z	
S	0.781494	-0.32375	-1.29905	
S	-0.75493	-1.02141	1.59521	
Si	-1.24583	-0.78997	-0.53680	
Si	2.13828	-0.24927	0.43905	
N	3.47549	0.63026	-0.81724	
N	-3.19469	-0.82596	0.22981	
N	1.61643	-1.90938	2.49379	
---	---	---	---	---
N	2.41357700	1.56924900	0.82917600	
N	-2.19098900	0.81132700	-0.77259900	
N	3.44472100	-1.22698800	1.26591500	
C	-3.31490700	0.43590100	-0.10124200	
C	3.84849900	3.09391700	-0.56036900	
C	-1.67566700	-2.07407200	-1.87897200	
C	3.27928100	1.77068500	-0.18600000	
C	-1.84191300	2.09569000	-1.43722400	
C	-4.43980500	1.33477200	0.30236700	
C	-5.60709600	1.45656800	-0.47470300	
C	3.07074400	3.99443100	-1.30068100	
C	0.31658900	-3.63322800	-1.43722400	
C	0.99344500	-1.04473900	1.63866800	
C	5.13986400	3.45870800	-0.15984300	
C	-4.30717300	2.04950000	1.51316200	
C	2.26348000	2.36026900	2.07461100	
C	1.02313900	-2.65744500	3.48871100	
C	4.07629800	0.38647000	-2.15033400	
C	2.99895300	-2.03204700	2.28173200	
C	-0.89928800	-3.20853900	-2.22054100	
C	-6.64068900	2.28102300	-0.01516300	
C	0.28418900	-3.90494000	-0.09908800	
C	3.58192400	5.24851700	-1.63552800	
C	-2.79236000	-1.77853700	-2.68212800	
C	-3.04671400	1.99802800	2.34124600	
C	5.64571100	4.71852400	-0.48764900	
C	-5.36630400	2.86142200	1.93165800	
C	-4.10645100	-1.72879900	0.95691100	
C	-6.54502600	2.98826600	1.18711700	
C	1.52471800	-3.82757100	-2.16579000	
C	5.56013300	0.79818000	-2.18345400	
C	-3.00453000	3.09641300	-1.52448100	
C	3.97407100	-1.12400700	-2.40831800	
C	4.86802500	5.61492500	-1.22615100	
	X	Y	Z	
---	------------	------------	------------	
C	3.31508300	1.13570400	-3.25927000	
C	3.73956500	-2.91631700	3.05838900	
C	-0.69875300	2.77197600	-0.66179000	
C	-5.76186300	0.77441500	-1.81087100	
C	1.75538700	-3.54245000	4.26191800	
C	2.67346500	-4.24852600	-1.49674300	
C	2.13440700	3.87152400	1.81271100	
C	-3.46047700	-3.12444300	0.93456700	
C	3.12974100	-3.68800200	4.05959500	
C	4.87331900	-1.24307300	1.03082700	
C	2.63024900	-4.50490200	-0.12322300	
C	-1.27510300	-3.99182100	-3.32890800	
C	1.42833400	-4.34589600	0.56832700	
C	0.98273200	1.90329800	2.78719600	
C	3.47836900	2.08145000	2.97830900	
C	-3.15287800	-2.55543500	-3.78215300	
C	-2.38835800	-3.67786100	-4.10584000	
C	-5.47610200	-1.83086000	0.26395500	
C	-1.41353000	1.77691900	-2.88210300	
C	-4.29187500	-1.28217100	2.41780900	
C	-7.68510800	3.83977500	1.68393300	
H	-0.04703100	-2.50397100	3.60381500	
H	1.23114700	-4.11015400	5.03277800	
H	3.72249100	-4.37426300	4.66546900	
H	4.80654300	-3.01247900	2.86640600	
H	5.22438800	-2.23591000	0.69514000	
H	5.12332700	-0.50862800	0.26427400	
H	5.42955800	-0.98268700	1.94901800	
H	4.40891500	2.42654500	2.50165900	
H	3.37691300	2.60356600	3.94287200	
H	3.56911400	1.00257900	3.17429600	
H	0.81011600	2.53633700	3.67040500	
H	0.11382600	1.98159100	2.12084200	
H	1.05255000	0.85816700	3.10918800	
H	3.06569300	4.32959800	1.46129400	
H	1.34570500	4.07419000	1.07436100	
H	1.85622000	4.36849800	2.75445300	
H	5.74600300	2.75408000	0.41266700	
H	6.65125700	4.99946000	-0.16685200	
H	5.26468600	6.59965200	-1.48380400	
H	2.97177300	5.94591100	-2.21402500	
H	2.06214700	3.70685300	-1.60081000	
H	3.70845400	0.83913800	-4.24414700	
H	2.24542000	0.89052500	-3.21956500	
H	3.43598600	2.22328200	-3.16566100	
H	4.51920300	-1.69890300	-1.64772600	
H	2.92773500	-1.45121200	-2.39226000	
H	4.40324100	-1.36490200	-3.39255700	
H	6.12713000	0.32463000	-1.36764300	
H	6.00680800	0.47078000	-3.13482000	
H	5.68888400	1.88534300	-2.11152700	
H	0.17189600	2.11235300	-0.58232100	
H	-0.39656600	3.70255800	-1.16870300	
H	-1.03196800	3.03240000	0.35301700	
H	-2.64569300	3.97014500	-2.08882100	
H	-2.40577300	1.13878100	2.10790000	
H	-2.44503300	2.90803400	2.17807400	
H	-3.28704700	1.96059100	3.41440400	
H	-2.49511700	-3.11319200	1.45660900	
H	-4.12025800	-3.84856400	1.43550000	
H	-3.29301800	-3.46009200	-0.09839700	
H	-4.99519700	0.01134400	-1.98046600	
H	-6.74417000	0.28560600	-1.89449900	
H	-5.69273600	1.50731000	-2.63212600	
H	-7.54704100	2.37420400	-0.62067100	
H	-5.26498700	3.41211700	2.87156700	
H	-6.07474300	-2.61677200	0.74978200	
H	-6.04087700	-0.89318900	0.33294000	
	Column 1	Column 2	Column 3	Column 4
---	----------	----------	----------	----------
H	-5.353999700	-2.10225300	-0.79481600	
H	-3.385336000	-0.894061000	-2.453704000	
H	-4.023966000	-2.282994000	-4.383695000	
H	-2.657064000	-4.307383000	-4.957833000	
H	-0.679052000	-4.875577000	-3.568040000	
H	1.564040000	-3.609380000	-3.235184000	
H	-0.647149000	-3.779527000	0.450826000	
H	1.382893000	-4.560202000	1.636625000	
H	3.608955000	-4.367646000	-2.049005000	
H	3.526368000	-4.829278000	0.410491000	
H	-3.864504000	2.685495000	-2.066507000	
H	-3.343326000	3.449959000	-0.543985000	
H	-2.248539000	1.318842000	-3.433736000	
H	-1.122721000	2.703516000	-3.401530000	
H	-0.561117000	1.088081000	-2.906282000	
H	-4.826565000	-0.324810000	2.480912000	
H	-4.880264000	-2.034610000	2.966030000	
H	-3.316983000	-1.176122000	2.914146000	
H	-7.319844000	4.739354000	2.202661000	
H	-8.340538000	4.159178000	0.860120000	
H	-8.308531000	3.280746000	2.403225000	
6. Crystallographic Data

6.1 Compound S2

Property	Value
Empirical formula	C_{18}H_{29}ClN_{2}Si
Formula weight	336.97
Temperature	150(2) K
Wavelength	1.54184 Å
Crystal system	Triclinic
Space group	P-1
Unit cell dimensions	a = 8.8957(6) Å, α = 101.429(5)°.
	b = 9.1640(6) Å, β = 102.349(5)°.
	c = 12.6005(7) Å, γ = 95.939(6)°.
Volume	972.05(11) Å³
Z	2
Density (calculated)	1.151 Mg/m³
Absorption coefficient	2.303 mm⁻¹
F(000)	364
Crystal size	0.350 x 0.190 x 0.130 mm³
Theta range for data collection	3.687 to 67.494°.
Index ranges	-10<=h<=10, -10<=k<=10, -12<=l<=15
Reflections collected	6294
Independent reflections	3424 [R(int) = 0.0353]
Completeness to theta = 67.494°	98.0 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.00000 and 0.65607
Refinement method	Full-matrix least-squares on F²
Data / restraints / parameters	3424 / 0 / 227
Goodness-of-fit on F²	1.101
Final R indices [I>2sigma(I)]	R1 = 0.0647, wR2 = 0.1760
	R1 = 0.0753, wR2 = 0.1828
Largest diff. peak and hole	0.555 and -0.271 e.Å³
6.2 Compound 2^{Mes}

Property	Value
Empirical formula	C$_{69}$H$_{86}$N$_4$S$_2$Si$_2$ (including 2 toluene molecules)
Formula weight	1091.71
Temperature	150(2) K
Wavelength	1.54184 Å
Crystal system	Triclinic
Space group	$P-1$
Unit cell dimensions	$\begin{align*}
a &= 14.7039(9) \text{ Å} \\	
b &= 14.9136(8) \text{ Å} \\	
c &= 16.8768(11) \text{ Å}	
\end{align*}$	
	$\begin{align*}
\alpha &= 104.274(5)^\circ \\	
\beta &= 95.168(5)^\circ \\	
\gamma &= 115.468(5)^\circ	
\end{align*}$	
Volume	3155.7(4) Å
Z	2
Density (calculated)	1.149 mg/m3
Absorption coefficient	1.447 mm$^{-1}$
F(000)	1176
Crystal size	0.120 x 0.100 x 0.040 mm3
Theta range for data collection	2.772 to 61.498°
Index range	$-17 \leq h \leq 16, -17 \leq k \leq 17, -20 \leq l \leq 19$
Reflections collected	21271
Independent reflections, R_{int}	11330 [R(int) = 0.0395]
Completeness to theta = 61.498°	99.6 %
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	11330 / 0 / 714
Goodness-of-fit on F^2, S	1.017
Final R indices [$I>2\sigma(I)$]	$R_1 = 0.0649, wR_2 = 0.1721$
R Indices (all data)	$R_1 = 0.0897, wR_2 = 0.1958$
Largest diff. peak and hole	0.866 and -0.405 e.Å3
6.3 Compound 3

Property	Value
Empirical formula	C₅₄H₄₈N₂Si
Formula weight	454.71
Temperature	150(2) K
Wavelength	1.54184 Å
Crystal system	Orthorhombic
Space group	P₂₁₂₁₂₁
Unit cell dimensions	a = 9.07710(10) Å, α = 90°
	b = 14.34970(10) Å, β = 90°
	c = 20.6941(2) Å, γ = 90°
Volume	2695.48(4) Å³
Z	4
Density (calculated)	1.120 Mg/m³
Absorption coefficient	0.896 mm⁻¹
F(000)	984
Crystal size	0.320 x 0.250 x 0.050 mm³
Theta range for data collection	3.748 bis 67.464°
Index range	-10→h→10, -17→k→12, -24→l→24
Reflections collected	18272
Independent reflections, Rᵢₙ	4829 [Rᵢₙ = 0.0189]
Completeness	99.8 %
Absorption correction	semi empirical (multi scan)
Max. and min. transmission	1.00000 und 0.76492
Refinement method	Full-matrix least-squares on F²
Data / restraints / parameters	4829 / 0 / 307
Goodness-of-fit on F², S	1.050
Final R indices [I>2σ(I)]	R₁ = 0.0289, wR₂ = 0.0784
R Indices (all data)	R₁ = 0.0295, wR₂ = 0.0812
Largest diff. peak and hole	0.292 und -0.162 e.Å³
6.4 Compound 4

- Empirical formula: C_{34.50}H_{42}N_{2}S_{2}Si (including 0.5 toluene molecules)
- Formula weight: 576.91
- Temperature: 150(2) K
- Wavelength: 1.54184 Å
- Crystal system: Monoclinic
- Space group: Pc
- Unit cell dimensions:
 - a = 10.97620(10) Å, α = 90 °
 - b = 16.7272(2) Å, β = 102.2820(10)°
 - c = 17.8380(2) Å, γ = 90 °
- Volume: 3200.12(6) Å³
- Z: 4
- Density (calculated): 1.197 Mg/m³
- Absorption coefficient: 2.048 mm⁻¹
- F(000): 1236
- Crystal size: 0.100 x 0.050 x 0.030 mm³
- Theta range for data collection: 2.642 to 67.497°
- Index range: -13≤h≤13, -20≤k≤19, -21≤l≤21
- Reflections collected: 21463
- Independent reflections, R_{int}: 9179 [R_{int} = 0.0243]
- Completeness: 99.5 %
- Absorption correction: semi empirical (multi scan)
- Max. und Min. Transmission: 1.00000 and 0.62662
- Refinement method: Full-matrix least-squares on F²
- Data / restraints / parameters: 9179/ 101 / 731
- Goodness-of-fit on F², S: 1.028
- Final R indices [I>2σ(I)]: R₁ = 0.0322, wR₂ = 0.0825
- R Indices (all data): R₁ = 0.0380, wR₂ = 0.0886
- Largest diff. peak and hole: 0.254 and -0.296 e.Å⁻³
6.5 Compound 6

Empirical formula \(C_{52}H_{68}N_6S_2Si_2 \)
Formula weight 897.42
Temperature 150(2) K
Wavelength 1.54184 Å
Crystal system Monoclinic
Space group \(P2_1/n \)
Unit cell dimensions
\[a = 16.8842(5) \text{ Å}, \quad \alpha = 90°. \]
\[b = 17.6363(4) \text{ Å}, \quad \beta = 100.291(3)°. \]
\[c = 17.9120(6) \text{ Å}, \quad \gamma = 90°. \]
Volume 5247.9(3) Å³
Z 4
Density (calculated) 1.136 Mg/m³
Absorption coefficient 1.649 mm⁻¹
F(000) 1928
Crystal size 0.210 x 0.120 x 0.050 mm³
Theta range for data collection 3.314 to 67.497°.
Index ranges \(-20 \leq h \leq 17, \quad -20 \leq k \leq 21, \quad -21 \leq l \leq 21 \)
Reflections collected 36328
Independent reflections, \(R_{int} \) 9441 \([R_{int} = 0.0819] \)
Completeness to theta = 67.497° 99.9 %
Refinement method Full-matrix least-squares on \(F^2 \)
Data / restraints / parameters 9441 / 0 / 575
Goodness-of-fit on \(F^2, S \) 0.994
Final R indices \([I>2\sigma(I)] \) \(R_1 = 0.0538, \quad wR_2 = 0.1238 \)
R indices (all data) \(R_1 = 0.0827, \quad wR_2 = 0.1387 \)
Largest diff. peak and hole 0.399 and -0.266 e.Å⁻³
6.6 Compound 8

Empirical formula

\[\text{C}_{73}\text{H}_{90}\text{N}_4\text{S}_2\text{Si}_2 \] (including 3 benzene molecules)

Formula weight

1143.78

Temperature

150(2) K

Wavelength

1.54184 Å

Crystal system

Triclinic

Space group

\text{P}-1

Unit cell dimensions

\[\begin{align*}
\text{a} &= 13.8712(5) \text{ Å} \quad \alpha = 82.195(4)^\circ. \\
\text{b} &= 15.6328(7) \text{ Å} \quad \beta = 87.552(3)^\circ. \\
\text{c} &= 15.7624(7) \text{ Å} \quad \gamma = 75.047(4)^\circ. \\
\end{align*} \]

Volume

3271.6(2) Å³

Z

2

Density (calculated)

1.161 Mg/m³

Absorption coefficient

1.418 mm⁻¹

F(000)

1232

Crystal size

0.050 x 0.040 x 0.030 mm³

Theta range for data collection

2.830 to 67.499°.

Index ranges

-14<=h<=16, -18<=k<=18, -18<=l<=18

Reflections collected

22803

Independent reflections, \(R_{\text{int}} \)

11766 [\(R_{\text{int}} = 0.0402 \)]

Completeness to theta = 67.499°

99.6 %

Refinement method

Full-matrix least-squares on \(F^2 \)

Data / restraints / parameters

11766 / 0 / 748

Goodness-of-fit on \(F^2, S \)

1.025

Final R indices [I>2\(\sigma(I) \)]

\(R_1 = 0.0442, \) w\(R_2 = 0.1086 \)

R indices (all data)

\(R_1 = 0.0608, \) w\(R_2 = 0.1219 \)

Largest diff. peak and hole

0.330 and -0.400 e.Å⁻³
6.7 Compound 9

Empirical formula: \(\text{C}_{31}\text{H}_{38}\text{N}_4\text{S}_5\text{Si} \) (including 1 toluene molecule)

Formula weight: 655.04

Temperature: 150(2) K

Wavelength: 1.54184 Å

Crystal system: Triclinic

Space group: \(P-1 \)

Unit cell dimensions:
- \(a = 10.4013(4) \text{ Å} \)
- \(b = 11.3810(4) \text{ Å} \)
- \(c = 14.4360(5) \text{ Å} \)
- \(\alpha = 97.345(3)^\circ \)
- \(\beta = 103.185(3)^\circ \)
- \(\gamma = 96.635(3)^\circ \)

Volume: 1631.56(10) Å\(^3\)

Z: 2

Density (calculated): 1.333 Mg/m\(^2\)

Absorption coefficient: 3.840 mm\(^-1\)

\(F(000) \): 692

Crystal size: 0.020 x 0.020 x 0.010 mm\(^3\)

Theta range for data collection: 3.185 to 67.496°

Index ranges:
- \(-12 \leq h \leq 12 \)
- \(-13 \leq k \leq 13 \)
- \(-17 \leq l \leq 10 \)

Reflections collected: 11109

Independent reflections, \(R_{int} \): 5884 \([R_{int} = 0.0253]\)

Completeness to theta = 67.496°: 99.8 %

Refinement method: Full-matrix least-squares on \(F \)

Data / restraints / parameters: 5884 / 0 / 378

Goodness-of-fit on \(F^2 \), S: 1.038

Final \(R \) indices \([I>2\sigma(I)]\): \(R_1 = 0.0339 \), \(wR_2 = 0.0902 \)

\(R \) indices (all data): \(R_1 = 0.0394 \), \(wR_2 = 0.0958 \)

Largest diff. peak and hole: 0.432 and -0.309 e.Å\(^{-3}\)
6.8 Compound 10

![Compound 10](image)

Property	Value
Empirical formula	C\textsubscript{30}H\textsubscript{38}N\textsubscript{2}SSi
Formula weight	486.77
Temperature	150(2) K
Wavelength	1.54184 Å
Crystal system	Triclinic
Space group	P-1
Unit cell dimensions	a = 9.0115(3) Å
	b = 18.9015(7) Å
	c = 19.3421(8) Å
Volume	3167.4(2) Å
Z	4
Density (calculated)	1.021 Mg/m3
Absorption coefficient	1.390 mm-1
F(000)	1048
Crystal size	0.080 x 0.040 x 0.020 mm3
Theta range for data collection	2.975 to 67.499°
Index ranges	-10\leq h \leq 10, -21\leq k \leq 22, -23\leq l \leq 23
Reflections collected	22180
Independent reflections	11426 [R(int) = 0.0417]
Completeness to theta = 67.499°	99.9 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.00000 and 0.40424
Refinement method	Full-matrix least-squares on F2
Data / restraints / parameters	11426 / 0 / 631
Goodness-of-fit on F2	0.976
Final R indices [I>2sigma(I)]	R1 = 0.0450, wR2 = 0.1119
R indices (all data)	R1 = 0.0621, wR2 = 0.1216
Extinction coefficient	n/a
Largest diff. peak and hole	0.202 and -0.310 e.A-3
7. References

[1] A. Velian, S. Lin, A. J. M. Miller, M. W. Day, T. Agapie, J. Am. Chem. Soc. 2010, 132, 6296.

[2] C.-W. So, H. W. Roesky, J. Magull, R. B. Oswald, Angew. Chem. 2006, 118, 4052; Angew. Chem. Int. Ed. 2006, 45, 3948.

[3] Z. Mo, T. Szilvási, Y.-P. Zhou, S. Yao, M. Driess, Angew. Chem. 2017, 129, 3753; Angew. Chem. Int. Ed. 2017, 56, 3699.

[4] X. Qi, T. Zheng, J. Zhou, Y. Dong, X. Zuo, X. Li, H. Sun, O. Fuhr, D. Fenske, Organometallics 2019, 38, 268.

[5] M.-P. Lücke, S. Yao, M. Driess, Chem. Sci. 2021, 12, 2909.

[6] G. M. Sheldrick, SHELX-97 Program for Crystal Structure Determination, Universität Göttingen (Germany 1997).

[7] Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT 2013.

[8] a) P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem. 1994, 98, 11623; b) S. H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 1980, 58, 1200; c) Lee, Yang, Parr, Phys. Rev. B 1988, 37, 785; d) A. D. Becke, J. Chem. Phys. 1993, 5648.

[9] a) S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456; b) S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.

[10] F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297.

[11] E. D. Glendenning, C. R. Landis, F. Weinhold, J. Comput. Chem. 2013, 34, 1429.
[12] Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, . A. Robb, J. R. Cheeseman, G. Scalemani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian, Inc., Wallingford CT 2016.