Experience of Application of Natural Treatment Systems for Wastewater (NTSW) in Livestock Farms in Canary Islands

Carlos A. Mendieta-Pino†, Tania Garcia-Ramirez†, Alejandro Ramos-Martin*† and Sebastian O. Perez-Baez†

Department of Process Engineering, University of Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain; carlos.mendieta@ulpgc.es (C.A.M.-P.); tania.garcia106@alu.ulpgc.es (T.G.-R.); sebastianovidio.perez@ulpgc.es (S.O.P.-B.)

* Correspondence: alejandro.ramos@ulpgc.es; Tel.: +34-928-451933
† These authors contributed equally to this work.

Abstract: A real-scale application experience Natural Treatment Systems for Wastewater (NTSW) operating in continuous with livestock farms for one year. These systems are based on digesters, subsurface vertical flow constructed wetlands (SVFCW) and facultative ponds. Chemical Oxygen Demand removal efficiency (CODRE) has obtained between 70 and 90%. Likewise, it has been possible to compare the operation of cascade flow digesters (CFD) (<76% CODRE) versus complete mixing digesters (CMD) (<50% CODRE). Facultative ponds (FP) when combined with (SSFCW), removed a higher percentage of CODRE compared with ponds (92%). Correlations of interest have been found between the variables evaluated in each plant. Finally, different elements are alternated in the same system, this system is capable of supporting variations in changes in flow rate and organic load coming from the farm, maintaining an adequate elimination of COD and other parameters of interest.

Keywords: natural systems; anaerobic digester; wastewater treatment; constructed wetlands; ponds; COD removal

1. Introduction

Natural treatment systems for Wastewater (NTSW) or low-cost wastewater treatment systems have proven to be applicable in small communities (with a population equivalent of <2000 inhabitants) with low energy and operating costs in isolated territories [1–9]. These systems stand out, compared to conventional treatment systems, with several features such as long residence times, low or null energy cost, reduced maintenance costs and good applicability of effluents in their reuse [10–12]. The key is to know if these systems are equally valid for existing livestock farms in isolated island environments, as they have similar sizes in terms of equivalent population. These systems must have a mechanical separation pre-treatment to remove coarse solids and prevent obstructions in the rest of the equipment [13].

The target of this paper is to show the study, at steady state operation, of three types of experimental pilot NTSW plants to manage pig livestock waste, in Gran Canaria Island, which is localized in the Atlantic Ocean Figure 1.

Gran Canaria Island (Spain), with an area of 1560 km², and large areas of environmental protection (Figure 2), has become a territory with problems of elimination and waste management general and particularly from farms, which generate undesirable infiltrations in underground aquifers [14].
Canary Islands

Figure 1. Location of Gran Canaria island in the Atlantic ocean.

Country park
Natural park
Natural monument
Protected landscape
Special nature reserve
Comprehensive nature reserve
Site of scientific interest

Figure 2. Areas of environmental protection.
In Spain, the legislation on protection against agricultural nitrate and phosphate pollution is Royal Decree 47/18 January 2022 on the protection of water against diffuse pollution caused by nitrates from agricultural sources. This regulation is based on Regulation (EC) 2003/2003 of 13 October 2003 of the European Parliament and of the Council on fertilizers and other implementing legislation. Specifically, the protection of water against pollution by nitrates and phosphates has its main legal instrument in Directive 91/676/EEC, known as the Nitrates Directive, and incorporated into national legislation through Royal Decree 261/16 February 1996, on the protection of water against pollution caused by nitrates and phosphates from agricultural sources, and replaced by RD 47/2022. It considers the following to be waters affected by nitrates: Inland surface waters with a nitrate concentration of more than 25 mg/L, Groundwaters with a nitrate concentration of more than 37.5 mg/L.

This regulation establishes Nitrate Vulnerable Zones (NVZ), which are areas of land whose runoff flows into waters affected by nitrates and which contribute to such pollution. Decree 54/4 June 2020, of the Government of the Canary Islands determines the zones of water affected by nitrate pollution of agricultural origin and designates the zones vulnerable to such pollution at altitudes of less than 300 meters on the island of Gran Canaria. In addition, a limit of 170 kg of N/ha per year is established in vulnerable zones and a limit for wastewater discharges of 5 mg/L for total phosphorus, 20 mg/L for total nitrogen and 2500 μS/cm for conductivity.

At the moment, In Gran Canaria there are 136 livestock farms of pigs, Figure 3, 90%, is little family farms. The rest are industrial-sized farms that make up the majority of the island’s census. These farms are around 1400 animals in size and represent a strong impact. This fact is equivalent to an organic load to a population of about 2000 equivalent inhabitants, a considerable amount and comparable to the total population of a town or small city on the island of Gran Canaria. Figure 4 displays, on the left, all the livestock farms (red dots) of Gran Canaria Island, and on the right the detail of the three livestock farms for which proposed the plants established in the objective of this paper.

This work presents the novelty of applying these NTSW in similar pig farms (in terms of equivalent inhabitants) with real scale and under normal production conditions. It presents an approximation of the treatment of the waste on the farm itself, favoring integrated production. This management improves the integration of the livestock farm into its environment and promotes the circular economy by converting the waste-resource.

![Figure 3. Location of the livestock farms of pigs of Tenerife and Gran Canaria Islands.](image-url)
2. Materials and Methods

2.1. Pilot Plants Features

Pilot plants are in the midland of Gran Canaria Island, Figure 4, their photographs are showed in Figures 5–8, and their characteristics in Table 1 and in Figure 9 is shown the schematics of the plants and sampling points. Rotary screens are different in each of the plants and work in batches. It has carried out specific analyzes of the solid whose results and the treatment alternatives that have been studied will be published in another article. Figure 9 are schematic, each of the screens has an input tank that feeds the farm effluent by batch, once screened, the liquid fraction is discharged directly into the lagoon (plant 1), in the second chamber (digester with 6 chambers—plant 2) and in the second camber (digester with 4—plant 3).

- **Plant 1.** Farm located at 450 m of altitude (UTM coordinates x: 450,052.41 m, y: 3,105,359.68 m), with 1600 animals. The effluent from the farm ($13.60 \text{ m}^3/\text{day}$) is discharged to a holding tank, which has been fitted with a 10 micron rotary screen and it is deposited in a pond of length/width, 2/1 and 1100 m3 of effective capacity. The depth is 1.5 m. Figure 5 displays a photograph of Plant 1, with a detail of the pond. The total hydraulic retention time (HRT) is 80 days.

- **Plant 2.** Farm located at 540 m above sea level (UTM coordinates x: 443,504.65 m, y: 3,105,955 m), with 1100 animals. The effluent ($6.40 \text{ m}^3/\text{day}$) is conveyed in the retention tank. In the holding tank (capacity 40 m^3), and retention time 4–6 days), it will be stored the manure until it is sieved. At the top of the half-closed closed digester is a 100-micron mesh rotary screen. The dimensions of the rectangular half-buried digester are $17.50 \text{ m} \times 6.50 \text{ m} \times 3.50 \text{ m}$ and an effective height of 1.70 m. It is constituted by six rectangular chambers of dimensions $3.00 \text{ m} \times 3.00 \text{ m}$, being of all them equal and intercommunicated by siphon, with an effective capacity unit of 22.90 m^3 each, and 132.60 m^3 of total volume. By the type of flow, it is possible to assimilate it to the operation of a cascade digester. Figure 6 displays a photograph of Plant 2, with a detail of the rotary screen, and the anaerobic digesters. The HRT is 25 days.

- **Plant 3.** Farm located at 700 m of altitude (UTM coordinates x: 446,164 m, y: 3,102,557.64 m $28^\circ2.83'\text{ N, 15^\circ32.87'}\text{ W}$), with 1400 animals. Effluent ($8.70 \text{ m}^3/\text{day}$) is collected in a reception tank with a capacity of 10 m^3, then it is taken to the chamber 1 of an anaerobic digester. In the chamber 1, the slurry is stored until it is pumped to the 100 micron rotary screen on top of the anaerobic digester. The rectangular anaerobic digester consists of four equal and interconnected rectangular chambers with an effective capacity of 103.00 m^3 in total and HRT of 10 days. At the exit of the digester, the waste past to the first of the constructed wetlands with subsurface vertical flow ($SVSFCW$).
constituted by a cubicle with rectangular form, this volume is filled by stones of varied granulometry, being the free volume 22.95 m3 and a HRT about of 4 days. In the subsurface constructed wetland SSFCW several types of plants are developed that degrade the organic matter. It has two vertical ventilation tubes. The passage of the water to be treated is performed below the surface throughout the lateral contact area with the pond. Slurry from SSFCW 1 flows into a pond of length/width ratio, 2/1 and 90 m3 of effective capacity. The depth will be 1.5 m. The residence time is 10 days. The pond is surrounded by constructed wetlands, this has allowed us to experiment with a pond of inferior capacity and on the plant 1. The SVFCW 2, at the outlet of the effluent, has an identical design to the previous one. The installation has a recirculation circuit that allows recirculating of all or part of the liquid that exists in the lagoon to a control pool that is connected to the homogenization tank. At the end of SVFCW 2, it is the final tank of dimensions of 10.50 m3 of capacity. The stabilized effluent percolates from the wetland to the final tank. Figure 6 displays a photograph of Plant 3, with a detail of the pond, and the constructed wetlands. The HRT is 28 days.

For the loading of digesters and ponds, it has been followed the following steps:

1. Each chamber of the digesters and ponds were initially filled with clean water.
2. No external resources have been added, such as bacteria cultures, sewage sludge, etc., leaving only the slurry to rest so that the native bacterial flora develops its performance.

Figure 5. Photograph of Plant 1, with a detail of the pond.

Figure 6. Photograph of Plant 2, with a detail of the rotary screen, and the anaerobic digesters.
Figure 7. Photograph of Plant 3, with a detail of the rotary screen, and the anaerobic digesters.

Figure 8. Photograph of Plant 3, with a detail of the pond, and the constructed wetlands.

Figure 9. Schematics of the plants and Sampling Points.
Table 1. Data pilot Plants.

Plant	COD$_{\text{EF}}$/mg/L	Q$_{\text{eff}}$ (m3/day)	N$_{\text{Br}}$ − N$_{\text{T}}$	V$_{\text{RT}}$ − HRT (m3) − (day)	V$_{\text{AD}}$ − HRT (m3) − (day)	V$_{\text{SSFVCW}}$ − HRT (m3) − (day)	V$_{\text{P}}$ − HRT (m3) − (day)
1	45,600	13.60	(180) − (1890)	(10) − (1)	−	−	(1100) − (80)
2	29,000	6.40	(115) − (1068)	(40) − (4)	(132) − (21)	−	−
3	50,000	8.70	(160) − (1432)	(10) − (1)	(104) − (11)	(46) − (5)	(90) − (10)

The SSFVCW-type wetlands are considered a submerged biofilm biological reactor. The effluent meets macrophytes, which are plants capable of attaching themselves to such soils (waterlogged or waterlogged), with one part submerged and one part emergent [15,16]. Authors such as [17–19] have indicated that a large part of the depuration process was due to the presence of plants. However, other studies [20,21] have indicated that the oxygen supply and the depuration capacity is provided by the biofilm that forms in the rhizome areas, with aerobic processes complementing the anaerobic processes in remote areas and therefore a depuration mechanism that is more independent of the type of vegetation selected.

The plants most used and evaluated by other authors are Aneas (Typha), reeds (Phragmites), rushes (Juncus), Scirpus, Carex, etc. [17,20]. Macrophytes can transport oxygen to their roots and rhizomes, but in SSFVCW, the amount of oxygen is small compared to the demand and anaerobic processes predominate. However, in our first study, nature was left free to colonize the wetlands of plant 3, focusing on the overall management of the treatment systems and their integration into the management of the livestock farm.

2.2. Parameters and Samples

From plants 1 and 3, 46 samples have been taken; meanwhile, in Plant 2, 39 samples have been taken, totaling 545 days, as an initial follow-up of the implementation of an anaerobic biological treatment facility. The parameters measured were: pH, T, EC, and COD, and the periodicity of the samples was delivered in the following way:

1. During the first half of the year, the samples were taken four times a month, equally spaced in time.
2. In the second half of the year, the samples were taken twice a month, equally spaced in time.
3. After the first year, samples were taken on a monthly basis.

For measuring the parameters were used the Standard and Methods (APHA 2005). Each plant has a meteorological station with measurement of; ambient temperature T_A, humidity ϕ, and rainfall R_{acc}. For the statistical analysis of the data, the COD has been set as the central variable so that this variable can be compared with the rest to be able to observe possible correlations. On the data set, under the approach of finding relationships between the parameters of the waste in the sampling point in each one of the digesters chamber and ponds, it was attempted to demonstrate that the variations of COD during the weeks, it was related to the variation of pH or EC at that same sampling point. When the homoscedasticity tests were carried out, which are a fundamental requirement for good factor analysis, it was not found any relationships between parameters at the point of sampling in each of the chambers and lagoons, and in consequence no significant correlation was going to be obtained from this hypothesis. Therefore, another approach to the data was sought, and it was decided to analyze the behavior of the installation during
the complete cycle, in which the slurry passes through the plant, defined by the Global Hydraulic Retention Time for the plant (HRT_G) of 82, 27 and 27 days (plant 1, 2 and 3, respectively). The initial hypothesis is established, that it is possible to relate punctual data of parameters with their respective evolution at the outlet, after the days of the treatment cycle. From the 131 samples available, for the three plants, we selected 30, 21 and 21 sampling data from the 131 available samples, making the grouping of the corresponding values of the study parameters possible.

3. Results and Discussions

3.1. Atmospheric Conditions

There was no temperature control in the digesters and ponds and wetlands, which were subject to rainfall. It is possible to observe, in Figure 10, for all the plants, throughout the time period, during the months of July and August (Table A1), that the highest ambient temperatures are reached (28 to 32 °C), with minimums of 10–14 °C in January and February. In addition, the values of the dew point and sky temperatures, estimated according to [22,23], can be observed in the same Figures, which affect the thermal conditions of the systems.

Figure 10. Cont.
Regarding rainfall, from May to August they are negligible while the months of November to February are the wettest. Figure A1. Because the systems are open, and subject to environmental conditions, rainfall contributions and evaporation losses (associated, among other causes, with the variability of relative humidity, Figure A2), the plants processes were influenced by modification of the liquid fraction, it has been quantified that the difference, in evaporation losses, was between 5 and 20%, depending on the time of year.

3.2. Temporal Evolution of the Analyzed Variables

The temporal evolution of the variables, can be analyzed in the graphs represented in the following Figures: the behavior of the temperatures in Figure 10, the values of COD in Figure 11, the values of EC in Figure 12, and the response of pH in Figure A3. The cyclical behavior shown in the graphs and samples indicates that the three plants operate at a steady state, damping and adapting according to the type of natural purification system the transient variability of the effluent input to the installation resulting from the operation of the operation Livestock. If, it is considered the operating charts of the three plants,

- The curves of variables, which are labeled EF, for plants 1 and 2, and subindex Ch1, for plant 3, represent the discharge in the pilot plants of the pools and intermediate tanks that each of the livestock farms have in their pens.
- The curves of variables, which its label has the subindex EP, for plant 1, and subindex Ch1, for plant 2, and subindex Ch2, for plant 3, represent the initial point of the system.
- An finally, the curves of variables, which its label has the subindex TE, for plants 1 and 3, and subindex Ch6, for plant 2, represent the effluent treated of the plants.

Although the pond of plant 1 multiplies by 10 the capacity of the pond in plant 3, its performance is similar, but when comparing the performance per cubic meter, the pond on plant 3 shows a better performance. In the digester of the plant 2, only the variability dampens from the sixth chamber. In plant 3, the most complete one, we could observe how the system is able to better cushion the variations due to alterations from external factors (climatology and plant growth) than those motivated by the operating regime itself.
Figure 11. COD results for plants 1, 2, and 3.
3.3. Correlations

For the three plants, it has been possible to propose significant correlations for the studied variables, among them. In Table 2, it is showed several relationships, established in form of correlation, between several variables of the plants. For example, for plants 2 and 3, it is possible to relate the removal of COD through the entire cycle and the removal in EC in the same period. It was demonstrated that there is a direct relationship between these two variables, which is reasonable because of the direct relationship between the amount of salts in a slurry (represented by EC) versus methanogenic activity in a biological reactor, if the quantity of salts is low, more methane will be produced and therefore more organic matter (COD) will be removed. In this way, it is possible to confirm that periodicity sampling, based on global HRT, allows to evaluate the best installation and to
obtain meaningful relationships between different parameters of study in the complete treatment cycle.

Table 2. Relations between variables of Plants.

Plant 1	R^2	Correlation
	0.866	$\text{COD}_{\text{REG}} = 43.2947 + 70.5771 \cdot \text{COD}^2_{\text{REP}} - 8.781 \cdot \text{COD}^3_{\text{REP}}$
	0.500	$\text{EC}_{\text{REG}} = 19.202 - 0.097 \cdot R_{\text{acc}} + 0.002 \cdot R_{\text{acc}}^2 - 1.488 \times 10^{-5} \cdot R_{\text{acc}}^3$
	0.798	$\text{EC}_{\text{REG}} = 18.250 - 0.60 \cdot \text{EC}_{\text{REP}} + 0.020 \cdot \text{EC}_{\text{REP}}^2 + 38.87 \times 10^{-5} \cdot \text{COD}_{\text{REP}}$

Plant 2	R^2	Correlation
	0.942	$\text{COD}_{\text{REG}} = 5.923 + 0.437 \cdot \text{EC}_{\text{RED}} + 0.0161 \cdot \text{EC}_{\text{RED}}^2 - 0.001 \cdot \text{EC}_{\text{RED}}^3$
	0.602	$\text{EC}_{\text{REG}} = 7.213 + 1.023 \cdot \text{EC}_{\text{RES}} + 0.135 \cdot \text{EC}_{\text{RES}}^2 - 0.006 \cdot \text{EC}_{\text{RES}}^3$
	0.847	$\text{EC}_{\text{REG}} = 5.923 + 0.437 \cdot \text{EC}_{\text{RED}} + 0.061 \cdot \text{EC}_{\text{RED}}^2 - 0.001 \cdot \text{COD}_{\text{RED}}^3$

Plant 3	R^2	Correlation
	0.748	$\text{COD}_{\text{REG}} = 92.559 - 1.087 \cdot \text{EC}_{\text{REP}} + 0.0501 \cdot \text{EC}_{\text{REP}}^2 - 0.001 \cdot \text{EC}_{\text{REP}}^3$
	0.769	$\text{EC}_{\text{REG}} = 19.854 - 0.759 \cdot \text{EC}_{\text{REP}} + 0.063 \cdot \text{EC}_{\text{REP}}^2 - 0.001 \cdot \text{EC}_{\text{REP}}^3$
	0.426	$\text{EC}_{\text{REG}} = 18.824 - 20.123 \cdot R_{\text{acc}} - 6.424 \cdot R_{\text{acc}}^2 - 0.824 \cdot R_{\text{acc}}^3$

Studies have been published with relationships between the variables studied COD and Conductivity (EC) [24,25]. As reported by [26], as indicated, Refs. [26–29] chemical analyses with standard laboratory methods are accurate, but involve a certain cost for the farmer and it is interesting to have COD values related to conductivity that can be taken on the farm. In this study, significant correlations with conductivity (EC), better than the $r = 0.511$ and $r = 0.571$ [24,25], were found.

3.4. Performance

Overall, the best COD and conductivity removal efficiency is found in plant 3 (90.42% and 36.26%, respectively, Table 3). With respect to the equipment, the sieves have a similar average COD performance, the digester of plant 2 (with 6 chambers) has a better performance both at a global and specific level with respect to the digester of plant 3 (with 4 chambers), while it is observed that the performance per day of residence is higher in plant 3. However, in conductivity removal, plant 2 is superior both globally and specifically. The ponds show differences in volume in the order of 10:1, with a higher volume in plant 1. However, although globally the two ponds (plant 1 and 3) have similar COD removal rates (66.67% and 66.27%, Table 3). The pond of plant 1, despite having a 10:1 volume ratio with respect to plant 3, has a lower specific performance both per volume and per day of residence. This advantage is confirmed by the ability of the plant 3 (which has two associated subsurface vertical flow wetlands) to reduce the overall and specific conductivity. These results can be explained, mainly, because the constructed wetlands are self-sustaining in relation to the removal of contaminants, since different mechanisms are produced in them, which can be classified as: biological (bioremediation and phytoremediation), chemical and physical [30,31]. Constructed wetlands are, as far as possible, controlled environments in which they can act on macrophytes, some plants, fill or gravel, and microbial populations, which act anaerobically to a considerable extent. Macrophytes and microbes take contaminants that reach wetlands as a source of energy, with which a removal of contaminants is achieved [30,32].
Although precipitation has an influence, for an open system it can be found in all three plants, and (to a greater extent in plants 1 and 3, with ponds), it can be affirmed that, although plant 1 has the highest level of average accumulated precipitation, the conductivity reduction capacity of plant 3 is clearly better than that of plant 1, although its capacity and surface area are notably lower. In this case it is clear the contribution of salt elimination caused by the presence of SFS artificial wetlands in plant 3. The role of salts in anaerobic digestion plays an important role in the methanogenic stage, since it has a condition in the form of possible inhibitions [33–35], which can reduce methanogenic activity. This could be observed, directly, in the measurement of the pH of the system, since it would cause changes in suitable ranges for the pH in anaerobic digestion, Table 4, to favor the production of biogas, and therefore for the degradation of contaminants.

Plant 2 has a 6 chamber cascade digester in which the layout resembles a channel (or piston flow) digester with better performance than plant 2 (or complete mix) and with a good load buffering capacity. Plant 3 has neither the best digester nor the best pond, but has the best performance, because the integration of different systems results in better treatment and observed performance in terms of COD and conductivity removal. Regarding the HRT, total capacity, and occupied surface, it can be observed that the COD removal capacity and conductivity are clearly better in plants 2 and 3, being smaller than plant 1 (in capacity and occupied surface), with specific removals 0.464 and 0.377 %/m3, respectively, and 3.190 and 3.229 %/day. It is further influenced by the fact that the system is composed of complementary elements that allow the microbial fauna to better adapt to these changes.

Table 3. Removal rate values (COD, EC...).

Plant	COD$_{RES}$ (%)	COD$_{RED}$ (%)	COD$_{REP}$ (%)	COD$_{REG}$ (%)	EC$_{RES}$ (%)	EC$_{REP}$ (%)	EC$_{RED}$ (%)	EC$_{REG}$ (%)
1	18.08	−	66.67	72.64	9.56	19.37	−	27.63
2	14.63	75.92	−	79.75	7.78	−	12.94	19.41
3	15.41	46.86	66.27	90.42	8.31	30.79	5.41	36.26

Table 4. Average values ($p\text{H}, R_{acc}, \varphi, T$).

Plant	$p\text{H}_{EP}$	$p\text{H}_{SP}$	$p\text{H}_{D}$	$p\text{H}_{C}$	R_{acc} (L/m2)	T_A (°C)	φ (%)	T_{SP} (°C)	T_D (°C)
1	7.58	7.55	−	7.55	68.11	20.79	77.56	25.44	−
2	6.07	−	8.48	7.44	52.95	19.80	67.30	−	26.86
3	9.40	7.95	5.80	7.95	41.46	22.60	63.50	21.74	22.38

NTSWs evaluated are compared in Table 5 with other similar ones both on farms and domestic waters (with equal number of equivalent inhabitants) [5–7,36], it can be observed that similar COD removal values both in % and %/HWR are obtained with livestock
effluent treatment plants [37] and the more complete the installation (NTSW Plant 3). Likewise, if the results given are compared against conventional systems, it is observed that they have comparable overall COD removal rates, and again the best installation is Plant 3 [38–41]. However, as the conventional systems are intensive in energy consumption and with shorter retention times (HRT), in all cases except for those found by [39–41] it can be observed that by %/HRT the conventional systems are superior to the natural systems studied, this being the weak point of these systems in terms of retention times [42–46].

Table 5. Comparison between natural treatment systems.

Treatment	HRT (days)	Total Removed (%COD)	Total Removed (%COD/HRT (day))	References
Anoxic-aerobic	54	95.90	1.78	[39]
Aerobic-anoxic-aerobic	48	95.00	1.98	[39]
Anaerobic	14	94.00	6.71	[40]
Codigestion anaerobic	15.5	69.20	4.46	[41]
Anoxic-aerobic	13	86.90	6.68	[38]
Anoxic-aerobic	13	93.60	7.20	[38]
Activated Slugge	10	95.00	9.50	[38]
NTSW Domestic	20	96.00	4.80	[6]
NTSW Domestic	28	90.00	3.21	[4]
NTSW Domestic	30	90.00	3.00	[7]
NTSW Livestock	25	65.00	2.60	[37]
SBR and MBR technology	6.5	96.00	14.77	[47]
Anaerobic-Biofilters	6	98.00	16.33	[45]
Aerobic termophilic	3	62.00	20.67	[46]
Anaerobic-SBR	4.5	96.70	21.49	[42]
MBR technology	1	51.20	51.20	[43]
Aerobic termophilic	3	60.00	20.00	[44]
NTSW Plant 1	81	72.64	0.90	This work
NTSW Plant 2	25	79.75	3.19	This work
NTSW Plant 3	28	97.10	3.28	This work
SBR	6	70.40	11.73	[39]
SBR and MBR technology	8	98.00	12.25	[47]

4. Conclusions

The NT SW has the capacity to cushion the fluctuations of the organic load due to livestock exploitation, having stable effluents. Systems that combine different alternatives are superior in performance and load capacity. These systems can be an alternative to conventional systems in farms of a similar size in insular and/or isolated territories and provide a low management cost alternative by offering a stabilized effluent. This effluent can be reused and promote the principle of integrated production.

Author Contributions: Conceptualization, C.A.M.-P., A.R.-M. and S.O.P.-B.; Data curation, C.A.M.-P., T.G.-R. and A.R.-M.; Formal analysis, C.A.M.-P. and A.R.-M.; Funding acquisition, A.R.-M. and S.O.P.-B.; Investigation, C.A.M.-P., T.G.-R., A.R.-M. and S.O.P.-B.; Methodology, C.A.M.-P. and A.R.-M.; Project administration, S.O.P.-B.; Resources, C.A.M.-P., T.G.-R. and S.O.P.-B.; Software, C.A.M.-P., T.G.-R. and A.R.-M.; Supervision, S.O.P.-B.; Validation, C.A.M.-P. and A.R.-M.; Visualization, C.A.M.-P. and A.R.-M.; Writing—original draft, C.A.M.-P. and A.R.-M.; Writing—review & editing, C.A.M.-P. and A.R.-M. All authors have read and agreed to the published version of the manuscript.
Funding: This research has been co-funded by the INTERREG V-A Cooperation Spain–Portugal MAC (Madeira-Azores-Canarias) programme MITIMAC project MAC2/1.1a/263.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This research work has been carried out within the Livestock Industry Modernization Program of the Cabildo de Gran Canaria (Government of the island), and with the inestimable help of the farmers and the technical staff of the Agrarian Extension and Agricultural Development Service, Agrofood and Phytopathological Laboratory of the Cabildo de Gran Canaria and Analytical Control of Environmental Sources (CAFMA), Institute for Environmental Studies and Natural Resources (i-UNAT) of the University of Las Palmas de Gran Canaria.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

- COD: Chemical oxygen demand
- COD$_{EF}$: Effluent farm COD
- COD$_{EP}$: COD of Effluent pond
- COD$_{TE}$: COD of Treated Effluent
- COD$_{Ch_i}$: COD of chamber number i
- COD$_{BP}$: COD at bottom of pond
- COD$_{RE}$: Percentage ratio of the removal efficiency of Chemical oxygen demand
- COD$_{REG}$: COD$_{RE}$ of the global plant
- COD$_{RES}$: COD$_{RE}$ at the screen
- COD$_{RED}$: COD$_{RE}$ at the digester
- COD$_{REEP}$: COD$_{RE}$ at the effluent pond
- EC: Electrical conductivity
- EC$_{EF}$: Effluent farm EC
- EC$_{EP}$: EC at Effluent pond
- EC$_{EF}$: EC of the treated effluent
- EC$_{Ch_i}$: EC at chamber number i
- EC$_{BP}$: EC at bottom of pond
- EC$_{RE}$: Percentage ratio of the removal efficiency of electrical conductivity
- EC$_{REG}$: EC$_{RE}$ of the global plant
- EC$_{REP}$: EC$_{RE}$ of the pond
- EC$_{RES}$: EC$_{RE}$ of the screen
- EC$_{RED}$: EC$_{RE}$ of the digesters
- HRT: Hydraulic retention time
- HRT$_{G}$: Global Hydraulic retention time for the plant
- NTSW: Natural treatment system for wastewater
- N_{Br}: Number of bristles
- N_T: Total number of animals
- pH: Measure of the concentration of protons $[H^+]$ in a solution
- pH_{EF}: pH at effluent farm
- pH_{SP}: pH at the surface pond
- pH_{D}: pH at the digester
- pH_{Ch_i}: pH at chamber number i
- pH_{G}: pH of the global plant
- pH_{G}: Average pH of the global plant
- pH_{D}: Average pH of the digester
- pH_{EP}: Average pH at the surface pond
- pH_{EF}: Average pH at effluent farm
- Q_{eff}: Effluent flow rate
- R_{acc}: Accumulated rainfall
Appendix A. Samples for the Plants

Table A1. Samples for the plants.

Monthly day	Plant 1	Plant 2	Plant 3					
	Time (day)	Sample	Time (day)	Sample	Time (day)	Sample		
June 27	0	1	June 4	0	1	July 4	0	1
July 13	16	2	July 4	30	2	August 3	30	2
July 30	43	3	August 6	62	3	August 14	41	3
August 18	61	4	August 14	70	4	October 2	89	4
September 18	92	5	September 12	98	5	October 30	117	5
October 4	108	6	October 6	122	6	November 29	146	6
October 10	124	7	October 11	127	7	January 14	192	7
November 16	150	8	January 31	237	8	February 2	210	8
December 7	170	9	February 7	244	9	February 8	216	9
December 18	181	10	February 14	251	10	February 13	222	10
January 2	195	11	February 22	259	11	February 20	229	11
January 10	203	12	March 6	273	12	March 19	258	12
January 17	210	13	March 17	284	13	April 3	272	13
February 3	225	14	March 31	298	14	April 16	285	14
February 20	242	15	April 17	315	15	April 30	299	15
March 3	255	16	April 30	328	16	May 15	314	16
March 12	264	17	May 14	342	17	June 15	344	17
March 19	271	18	June 3	361	18	July 15	374	18
March 25	277	19	June 25	383	19	September 17	436	19
April 5	287	20	September 17	465	20	October 3	452	20
April 12	294	21	November 4	512	21	November 4	483	21
April 23	305	22	November 4	512	21	November 4	483	21
May 17	329	23	November 4	512	21	November 4	483	21
May 25	337	24	November 4	512	21	November 4	483	21
June 23	365	25	November 4	512	21	November 4	483	21
July 7	379	26	November 4	512	21	November 4	483	21
August 03	405	27	November 4	512	21	November 4	483	21
August 24	426	28	November 4	512	21	November 4	483	21
September 17	449	29	November 4	512	21	November 4	483	21
October 18	479	30	November 4	512	21	November 4	483	21
Appendix B. Rainfall, Relative Humidity and pH Results

In this appendix is displayed the results above rainfall, relative humidity and pH.

Figure A1. Rainfall results for plants 1, 2, and 3.
Figure A2. Relative humidity results for plants 1, 2, and 3.
Figure A3. pH results for plant 1, 2, and 3.

References and Note
1. Gearheart, R.A. Use of Constructed Wetlands to Treat Domestic Wastewater, City of Arcata, California. Water Sci. Technol. 1992, 26, 1625–1637. [CrossRef]
2. Yoon, C.G.; Kim, S.B.; Kwun, T.Y.; Jung, K.W. Development of natural and ecological wastewater treatment system for decentralized community in Korea. Paddy Water Environ. 2008, 6, 221–227. [CrossRef]
3. Vera-Pena, L.; Martel-Rodriguez, G.; Armas-Estevez, A.; Toscon, A. DEPURANAT Gestion sostenible del agua residual en los entornos rurales. Rincones Del Atl. 2005, 3, 1–4.
4. Ayaz, S.C.; Akca, L. Treatment of wastewater by natural systems. *Environ. Int.* **2001**, *26*, 189–195. [CrossRef]
5. Ayaz, S.; Akca, I. Treatment of wastewater by constructed wetland in small settlements. *Water Sci. Technol.* **2000**, *41*, 69–72. [CrossRef]

6. Belmont, M.A.; Cantellano, E.; Thompson, S.; Williamson, M.; Sánchez, A.; Metcalfe, C.D. Treatment of domestic wastewater in a pilot-scale natural treatment system in central Mexico. *Ecol. Eng.* **2004**, *23*, 299–311. [CrossRef]

7. Vera, L.; Martel, G.; Marquez, M. Two years monitoring of the natural system for wastewater reclamation in Santa Lucia, Gran Canaria Island. *Ecol. Eng.* **2013**, *50*, 21–30. [CrossRef]

8. Mendieta, C.; Lopez, C.; Perez, S. Evaluación de sistemas de tratamiento no-convencional para efluentes procedentes de explotaciones ganaderas. In *Proceedings of the I Simposio Iberoamericano de Ingeniería de Residuos—REDISA*, Castellón, Spain, 23–24 July 2008; Volume 1, p. 7.

9. Caballero-Lajarin, A.; Faz, A.; Lobera, J. Constructed wetland application to remove the pollution of waste water from pig farms. In *Proceedings of the 5th International Conference on Land Degradation, Valenzano, Italy, 18–22 September 2008*; Volume 1, p. 9.

10. Crites, R.; Middlebrooks, E.J.; Bastian, R. *Natural Wastewater Treatment Systems*, 2nd ed.; CRC Press Taylor and Francis Group: Boca Raton, FL, USA, 2014; Volume 1.

11. Mannino, I.; Franco, D.; Piccioni, E.; Favero, L.; Mattiuzzo, E.; Zanetto, G. A Cost-Effectiveness Analysis of Seminatural Wetlands and Activated Sludge Wastewater-Treatment Systems. *Environ. Manag.* **2008**, *41*, 118–129. [CrossRef]

12. Hjorth, M.; Christensen, K.V.; Christensen, M.L.; Sommer, S.G. Solid—Liquid separation of animal slurry in theory and practice. A review. *Agron. Sustain. Dev.* **2010**, *30*, 153–180. [CrossRef]

13. Government, C.I. Plan Integral de Residuos de Canarias. Decreto 161/2001, 2001. An optional note.

14. Gachango, F.G.; Pedersen, S.M.; Kjaergaard, C. Cost-Effectiveness Analysis of Surface Flow Constructed Wetlands (SFCW) for Nutrient Reduction in Drainage Discharge from Agricultural Fields in Denmark. *Environ. Manag.* **2015**, *56*, 1478–1486. [CrossRef]

15. Qadiri, R.Z.Z.; Gani, K.M.; Zaid, A.; Aalam, T.; Kazmi, A.A.; Khalil, N. Comparative evaluation of the macrophytes in the constructed wetlands for the treatment of combined wastewater (greywater and septic tank effluent) in a sub-tropical region. *Environ. Challenges* **2021**, *5*, 100265. [CrossRef]

16. Yu, Q.; Duan, X.; Gu, Y.; Li, J.; Zhang, X.; Chen, C.; Zhao, D. Increasing chemical oxygen demand and nitrogen removal efficiencies of surface-flow constructed wetlands in macrophyte-dominant seasons by adding artificial macrophytes. *Bioresour. Technol.* **2022**, *348*, 126755. [CrossRef]

17. Ji, B.; Zhao, Y.; Li, Q.; Yang, Y.; Wei, T.; Tang, C.; Zhang, J.; Ruan, W.; Tai, Y. Interrelation between macrophytes roots and cathode in constructed wetland-microbial fuel cells: Further evidence. *Sci. Total Environ.* **2022**, *156071*. [CrossRef]

18. Kataki, S.; Chatterjee, S.; Vairele, M.G.; Dwivedi, S.K.; Gupta, D.K. Constructed wetland, an eco-technology for wastewater treatment: A review on types of wastewater treated and components of the technology (macrophyte, biofilm and substrate). *J. Environ. Manag.* **2021**, *283*, 111986. [CrossRef]

19. Goferment, C.I. Plan Integral de Residuos de Canarias. Decreto 161/2001, 2001. An optional note.

20. U.S. Environmental Protection Agency. *Manual: Constructed Wetlands Treatment of Municipal Wastewaters*; U.S. Environmental Protection Agency: Cincinnati, OH, USA, 2000.

21. Walton, G.N. Do macrophytes play a role in constructed treatment wetlands? *Water Sci. Technol.* **1996**, *2*, 49–55.

22. Vera, L.; Martel, G.; Marquez, M. Two years monitoring of the natural system for wastewater reclamation in Santa Lucia, Gran Canaria Island. *Ecol. Eng.* **2013**, *50*, 21–30. [CrossRef]

23. Castillo, P.; Collado, R. Eliminacion de nitogeno en sistemas naturales de depuracion de aguas residuales: Analisis comparativo. *Retema Rev. Tec. Medio Ambiente* **1996**, *2*, 49–55.

24. Antezana, W.; de Blas Beorlegui, J.C.; Rebollar, P.G.; Rodriguez, C.; Beccaccia, A.; Ferrer, P.; Cerisuelo, A.; Moset, V.; Estelles, F.; Lopez, M.C.; et al. Composition, potential emissions and agricultural value of pig slurry from Spanish commercial farms. *Nutr. Cycl. Agroecosyst.* **2016**, *104*, 159–173. [CrossRef]

25. Walton, G.N. *Thermal Analysis Research Program Reference Manual*; National Bureau of Standards: Gaithersburg, MD, USA, 1983.

26. Suresh, A.; Choi, H.; Oh, D.; Moon, O. Prediction of the nutrients value and biochemical characteristics of swine slurry by measurement of EC – Electrical conductivity. *Bioresour. Technol.* **2009**, *100*, 4683–4689. [CrossRef]

27. Crites, R.; Middlebrooks, E.J.; Bastian, R. *Natural Wastewater Treatment Systems*, 2nd ed.; CRC Press Taylor and Francis Group: Boca Raton, FL, USA, 2014; Volume 1.

28. Moral, R.; Perez-Murcia, M.D.; Perez-Espinosa, A.; Moreno-Caselles, J.; Paredes, C. Estimation of nutrient values of pig slurries in Southeast Spain using easily determined properties. *Waste Manag.* **2005**, *25*, 719–725. [CrossRef]

29. Antezana, W.; de Blas Beorlegui, J.C.; Rebollar, P.G.; Rodriguez, C.; Beccaccia, A.; Ferrer, P.; Cerisuelo, A.; Moset, V.; Estelles, F.; Lopez, M.C.; et al. Composition, potential emissions and agricultural value of pig slurry from Spanish commercial farms. *Nutr. Cycl. Agroecosyst.* **2016**, *104*, 159–173. [CrossRef]

30. Ngwabie, N.M.; Chungong, B.N.; Yengong, F.L. Characterisation of pig manure for methane emission modelling in Sub-Saharan Africa. *Biosyst. Eng.* **2018**, *170*, 31–38. [CrossRef]

31. Sharma, R.; Malaviya, P. Constructed wetlands for textile wastewater remediation: A review on concept, pollutant removal mechanisms, and integrated technologies for efficiency enhancement. *Chemosphere* **2022**, *290*, 133358. [CrossRef]

32. Wdowczyk, A.; Szymańska-Pulikowska, A.; Galka, B. Removal of selected pollutants from landfill leachate in constructed wetlands with different filling. *Bioresour. Technol.* **2022**, *353*, 127136. [CrossRef]
32. Wang, Y.; Li, Q.; Zhang, W.; Wang, S.; Peng, H. Pollutants removal efficiency assessment of constructed subsurface flow wetlands in lakes with numerical models. *J. Hydrol.* 2021, 598, 126289. [CrossRef]

33. Yellezuome, D.; Zhu, X.; Wang, Z.; Liu, R. Mitigation of ammonia inhibition in anaerobic digestion of nitrogen-rich substrates for biogas production by ammonia stripping: A review. *Renew. Sustain. Energy Rev.* 2022, 157, 112043. [CrossRef]

34. Tsapekos, P.; Kovalovszki, A.; Alvarado-Morales, M.; Rudatis, A.; Kougiou, P.G.; Angelidaki, I. Anaerobic co-digestion of macroalgal biomass with cattle manure under high salinity conditions. *J. Environ. Chem. Eng.* 2021, 9, 105406. [CrossRef]

35. Xie, Z.; Zou, H.; Zheng, Y.; Fu, S.F. Improving anaerobic digestion of corn straw by using solid-state urea pretreatment. *Chemosphere* 2022, 293, 133559. [CrossRef]

36. Vera, L.; Martel, G.; Marquez, M. First year performance of a new constructed wetland on the island of Gran Canaria: A case study. In Proceedings of the 12th International Conference on Wetland Systems for Water Pollution Control, Venice, Italy, 4–8 October 2010; Volume 1, p. 7.

37. Knight, R.L.; Payne, V.W.; Borer, R.E.; Clarke, R.A.; Pries, J.H. Constructed wetlands for livestock wastewater management. *Ecol. Eng.* 2000, 15, 41–55. [CrossRef]

38. Becares, E.; Alvarez, J.; Garcia-Gonzalez, M. Caracterizacion de purines de cerdo y eficacias de tratamiento en Espana Central. *Innovacion y Tecnologia Agroalimentaria* 2008, 4, 65–75.

39. Choi, E.; Kim, D.; Eum, Y.; Yun, Z.; Min, K.S. Full-Scale Experience for Nitrogen Removal from Piggery Waste. *Water Environ. Res.* 2005, 77, 381–389. [CrossRef]

40. Dias, T.; Fragoso, R.; Duarte, E. Anaerobic co-digestion of dairy cattle manure and pear waste. *Bioresour. Technol.* 2014, 164, 420–423. [CrossRef]

41. Ferreira, L. Anaerobic co-digestion of pig manure with frutis wastes. Process development for the recycling in decentralised farm scale plants. In Proceedings of the 12th Ramiran International Conference, Aarhus, Denmark, 11–13 September 2006; Volume 1, p. 7.

42. Deng, L.; Cai, C.; Chen, Z. The treatment of pig slurry by a full-scale Anaerobic-Adding Raw Wastewater-Intermittent Aeration Process. *Biosyst. Eng.* 2007, 98, 327–334. [CrossRef]

43. Fugère, R.; Mameri, N.; Gallot, J.E.; Comeau, Y. Treatment of pig farm effluents by ultrafiltration. *J. Membr. Sci.* 2005, 255, 225–231. [CrossRef]

44. Juteau, P.; Tremblay, D.; Ould-Moulaye, C.B.; Bisaillon, J.G.; Beaudet, R. Swine waste treatment by self-heating aerobic thermophilic bioreactors. *Water Res.* 2004, 38, 539–546. [CrossRef]

45. Kalyuzhnnyi, S.; Sklyar, V.; Epov, A.; Arkhipchenko, I.; Barbouлина, I.; Orlova, O.; Kovalev, A.; Nozhevnikova, A.; Klapwijk, A. Sustainable treatment and reuse of diluted pig manure streams in Russia. *Appl. Biochem. Biotechnol.* 2003, 109, 77–94. [CrossRef]

46. Yi, Y.S.; Kim, S.; An, S.; Choi, S.; Choi, E.; Yun, Z. Gas analysis reveals novel aerobic deammonification in thermophilic aerobic digestion. *Water Sci. Technol.* 2003, 47, 131–138. [CrossRef]

47. Gonzalez-Fernandez, C.; Nieto-Diez, P.P.; Leon-Cofreces, C.; Garcia-Encina, P.A. Solids and nutrients removals from the liquid fraction of swine slurry through screening and flocculation treatment and influence of these processes on anaerobic biodegradability. *Bioresour. Technol.* 2008, 99, 6233–6239. [CrossRef]