Synthesis of axially chiral oxazoline–carbene ligands with an N-naphthyl framework and a study of their coordination with AuCl·SMe₂

Feijun Wang*¹, Shengke Li¹, Mingliang Qu¹, Mei-Xin Zhao¹, Lian-Jun Liu¹ and Min Shi*¹,²

Abstract
Axially chiral oxazoline–carbene ligands with an N-naphthyl framework were successfully prepared, and their coordination behavior with AuCl·SMe₂ was also investigated, affording the corresponding Au(I) complexes in moderate to high yields.

Introduction
During the past decade, with an explosive growth of asymmetric homogeneous gold catalysis in C–C, C–O, or C–N bond formations, the design and synthesis of chiral gold complexes has received wide attention. Compared with the more commonly used air-sensitive phosphine ligand, N-heterocyclic carbene (NHC)s, with intrinsic characteristics such as strong δ-donor but poor π-acceptor abilities, ease of preparation, air and thermal stability of their metal complexes, and the convenient introduction of chiral elements, have also emerged as effective ligands for a number of homogeneous gold catalyzes [1-8]. However, during our ongoing survey of chiral NHC–Au(I) complexes in the literature, we only found a few unique papers of relevance. Tomioka and co-workers disclosed the first chiral NHC–Au(I) complex 1 (Figure 1), which was applied to catalyze the asymmetric cyclization of 1,6-enynes giving the corresponding cyclopentane derivatives with moderate enantioselectivity up to 59% [9,10]. Iglesias and co-workers reported a type of NHC–Au(I) complexes 2...
containing C_2-symmetric bis(NHC)-ligands with two imidazolin-2-ylidene moieties on a chiral dioxolane backbone, produced in up to 95% ee by hydrogenation of a prochiral alkene [11]. Recently, Toste and co-workers reported a novel family of axially chiral (acyclic diaminocarbene) gold(I) complexes 3 derived from 3,3′-substituted 1,1′-binaphthalenyl-2,2′-diamine, and their application in the dynamic kinetic asymmetric transformation of propargyl esters, giving the corresponding substituted chromenes in up to 99% ee [12]. Our group also developed a new family of axially chiral NHC–Au(I) complexes (4–6) with a binaphthyl or biphenyl framework [13,14]. These Au(I) complexes were applied to catalyze the asymmetric cyclization of 1,6-enynes or allene in up to 70% ee, and the asymmetric intramolecular hydroamination of allene in up to 44% ee.

We previously reported a novel type of axially chiral ligand 7 with an N-naphthyl framework (Figure 2) instead of traditional binaphthyl framework [15]. Their palladium complexes 8 showed high stereoselectivities in asymmetric allylic arylation to achieve the kinetic resolution of Morita–Baylis–Hillman adducts, affording up to 99% ee of the (E)-allylation products and 92% ee of the recovered Morita–Baylis–Hillman adducts. These intriguing results stimulated us to further develop the axially chiral oxazoline–carbene ligands 7 with an N-naphthyl framework and to evaluate their coordination with AuCl·SMe$_2$.

Results and Discussion

Synthesis of axially chiral ligands

Initially, we attempted to synthesize the desired axially chiral ligands 7, and the synthetic route is shown in Scheme 1. Using methyl 1-hydroxy-2-naphthoate (9) as the starting material, trifluoromethylation with Tf$_2$O in the presence of pyridine afforded its trifluoromethanesulfonate 10 in 95% yield, which was made to react with 2-nitroaniline in the presence of Pd(OAc)$_2$/DPE-phos catalytic system to give the corresponding coupling compound 11 in 98% yield (Scheme 1). Subsequent reduction of compound 11 with Pd/C under a hydrogen atmosphere produced the desired compound 12 in 99% yield. Cyclization of 12 in the presence of triethyl orthoformate and a catalytic amount of TsOH at 80 °C gave the corresponding benzimidazole derivative 13 in 76% yield, which was further treated with (S)-2-amino-2-phenylethanol in the presence of Pd(OAc)$_2$/DPE-phos catalytic system to give the corresponding coupling compound 14 in 98% yield (Scheme 1). Subsequent reduction of compound 15 with Pd/C under a hydrogen atmosphere produced the desired compound 16 in 99% yield. Cyclization of 16 in the presence of triethyl orthoformate and a catalytic amount of TsOH at 80 °C gave the corresponding benzimidazole derivative 17 in 76% yield, which was further treated with (S)-2-amino-2-phenylethanol in the presence of Cs$_2$CO$_3$ in toluene to afford the corresponding amide 18 as a mixture of diastereomeric isomers successfully in 91% yield. To our delight, the two diastereomeric isomers with a chiral N-naphthyl axis, (S_a,S)$-15a$ and (R_a,S)$-15a$, were synthesized from amide 14 according to the classical synthetic method for the preparation of an oxazoline ring, and were easily isolated by silica gel column chromatography in 37% yield and 44% yield, respectively. Similarly, using L-valinol, (S_a,S)$-15b$ and (R_a,S)-
Scheme 1: Synthesis of axially chiral benzimidazole derivatives.

15b could also be synthesized. Quaternization of the benzimidazole ring of \((S_a,S)-15\) and \((R_a,S)-15\) with \(R^2\) (\(R^2 = \text{Me, Et}\)) gave the corresponding benzimidazolium salts 7, respectively.

Coordination study with AuCl·SMe\(_2\)

The coordination behavior of ligand 7 with Pd(OAc)\(_2\) has been disclosed in previous work. However, only \((S_a,S)-7\) could give the corresponding Pd-complex \((S_a,S)-8\), while the Pd(II)-complex with \(R\)-geometry of the chiral \(N\)-naphthyl axis could not be obtained from \((R_a,S)-7\). With the NHC precursors 7 in hand, their coordination with AuCl·SMe\(_2\) in the presence of NaOAc in acetonitrile was further examined. Au(I)-complexes were isolated by flash column chromatography. Comparing the chemical shifts of protons on the oxazoline ring of the Au(I)-complex \((S_a,S)-16aa\) (\(R^1 = \text{Ph}, R^2 = \text{Me}\)) in the \(^1\)H NMR spectrum (Figure 3B) with those of the NHC precursor \((S_a,S)-7aa\) (Figure 3A), we found that the chemical shifts of these protons did not change much, suggesting that the chiral oxazoline group may not coordinate with the Au atom. However, according to the analysis of the \(^1\)H NMR spectrum of the Pd(II)-complex \((S_a,S)-8\) (\(R^2 = \text{Me}\)) (Figure 3C), the chemical shifts of the protons of the coordinated oxazoline group changed significantly. In order to confirm this hypothesis, complex \((S_a,S)-16aa\) was recrystallized from CH\(_2\)Cl\(_2\)/petroleum ether (1/3, v/v), and its structure was established by single-crystal X-ray diffraction studies (Figure 4; Supporting Information File 2). The crystal data of Au(I)–C(7) (1.991(5) Å) is a typical Au–C\(_{\text{NHC}}\) bond length, in-line with those of other reported examples [16-21]. Furthermore, the angle of I(1)–Au(1)–C(7) = 173.12(16)° suggests a nearly linear coordination geometry around the gold(I) center, which is also a typical feature for known gold(I) complexes. Moreover, no coordinated oxazoline group in the complexes \((S_a,S)-16\) and \((R_a,S)-16\) could be further coordinated with other metal atoms such as Pd and Cu to furnish dual-metal catalysts, which is a hot research field in asymmetric catalysis [22-24].

Au(I)-complexes \((S_a,S)-16\) with different \(N\)-substituents or groups on the oxazoline ring were synthesized from the corresponding NHC precursors 7. The yields are summarized in...
Table 1. The coordination study with AuCl·SMe₂.

entry	compound 15	R²I	salt 7	Au(I)-complex	yield (%)	
1	(Sₘ, S)-15a (R¹ = Ph)	Mel	(Sₘ, S)-7aa	(Sₘ, S)-16aa	95	
2	(Rₚ, S)-15a (R¹ = Ph)	Mel	(Rₚ, S)-7aa	(Rₚ, S)-16aa	50	
3	(Sₘ, S)-15a (R¹ = Ph)	Efl	(Sₘ, S)-7ab	(Sₘ, S)-16ab	89	
4	(Rₚ, S)-15a (R¹ = Ph)	Efl	(Rₚ, S)-7ab	(Rₚ, S)-16ab	48	
5	(Sₘ, S)-15b (R¹ = iPr)	Mel	(Sₘ, S)-7ba	(Sₘ, S)-16ba	90	
6	(Rₚ, S)-15b (R¹ = iPr)	Mel	(Rₚ, S)-7ba	(Rₚ, S)-16ba	56	

aisolated yield.
References
1. Bonati, F.; Burini, A.; Pietroni, B. R.; Bovio, B. J. J. Organomet. Chem. 1989, 375, 147–160. doi:10.1016/0022-328X(89)80994-6
2. Nieto-Oberhuber, C.; López, S.; Echavarren, A. M. J. Am. Chem. Soc. 2005, 127, 6178–6179. doi:10.1021/ja042257t
3. Gourlaouen, C.; Marion, N.; Nolan, S. P.; Maseras, F. Org. Lett. 2009, 11, 81–84. doi:10.1021/ol802430m
4. Marion, N.; Gealageas, R.; Nolan, S. P. Org. Lett. 2007, 9, 2653–2656. doi:10.1021/ol070843w
5. Frutos, M. R.; Belderrain, T. R.; de Frémont, P.; Scott, N. M.; Nolan, S. P.; Díaz-Requejo, M. M.; Pérez, P. J. Angew. Chem., Int. Ed. 2005, 44, 5284–5288. doi:10.1002/anie.200501056
6. Marion, N.; Carliqvist, P.; Gealageas, R.; de Frémont, P.; Maseras, F.; Nolan, S. P. Chem.–Eur. J. 2007, 13, 6437–6451. doi:10.1002/chem.200700134
7. Gorske, B. C.; Mbofana, C. T.; Miller, S. J. Org. Lett. 2009, 11, 4318–4321. doi:10.1021/ol9016782
8. Wang, F.; Liu, L.; Wang, W.; Li, S.; Shi, M. Coord. Chem. Rev. 2011, 256, 804–853. doi:10.1016/j.ccr.2011.10.013
9. Matsumoto, Y.; Selim, K. B.; Nakanishi, H.; Yamada, K.; Yamamoto, Y.; Tomioka, K. Tetrahedron Lett. 2010, 51, 404–406. doi:10.1016/j.tetlet.2009.11.039
10. Matsumoto, Y.; Yamada, K.; Tomioka, K. J. Org. Chem. 2008, 73, 4578–4581. doi:10.1021/jo800613h
11. Arnanz, A.; González-Arellano, C.; Juan, A.; Villaverde, G.; Corriu, A.; Iglesias, M.; Sánchez, F. Chem. Commun. 2010, 46, 3001–3003. doi:10.1039/b922534j
12. Wang, Y.-M.; Kuzniowski, C. N.; Rauniyar, V.; Hoong, C.; Toste, F. D. J. Am. Chem. Soc. 2011, 133, 12972–12975. doi:10.1021/ja205068j
13. Wang, W.; Yang, J.; Wang, F.; Shi, M. Organometallics 2011, 30, 3859–3869. doi:10.1021/om1004404
14. Liu, L.; Wang, F.; Wang, W.; Zhao, M.; Shi, M. Beilstein J. Org. Chem. 2011, 7, 555–564. doi:10.3762/bjoc.7.64
15. Wang, F.; Li, S.; Qu, M.; Zhao, M. X.; Liu, L.; Shi, M. Chem. Commun. 2011, 47, 12813–12815. doi:10.1039/c1cc15543a
16. Marion, N.; Nolan, S. P. Chem. Soc. Rev. 2008, 37, 1776–1782. doi:10.1039/b711132k
17. Rauberheimer, H. G.; Cronje, S. Chem. Soc. Rev. 2008, 37, 1998–2011. doi:10.1039/b708636a
18. Lin, J. C. Y.; Huang, R. T. W.; Lee, C. S.; Bhattacharyya, A.; Hwang, W. S.; Lin, I. J. Chem. Rev. 2009, 109, 3561–3598. doi:10.1021/cr9005153
19. Khan, M.; Oldham, C.; Tuck, D. G. Car. J. Chem. 1981, 59, 2714–2718. doi:10.1139/v81-391
20. Bowmaker, G. A.; Brown, C. L.; Hart, R. D.; Healy, P. C.; Rickard, C. E. F.; White, A. H. J. Chem. Soc., Dalton Trans. 1999, 881–889. doi:10.1039/A908928K
21. Böhler, C.; Stein, D.; Donati, N.; Grützmacher, H. New J. Chem. 2002, 26, 1291–1295. doi:10.1039/b203670c
22. van den Beuken, E. K.; Feringa, B. L. Tetrahedron 1998, 54, 12985–13011. doi:10.1016/S0040-4020(98)00319-6
23. Jacobsen, E. N. Acc. Chem. Res. 2000, 33, 421–431. doi:10.1021/ar980615v
24. Himer, J. J.; Shi, Y.; Blum, S. A. Acc. Chem. Res. 2011, 44, 603–613. doi:10.1021/ar100055y
25. Imay, Y.; Zhang, W.; Kida, T.; Nakatsuji, Y.; Ikeda, I. Tetrahedron Lett. 1997, 38, 2681–2684. doi:10.1016/S0040-4020(97)00428-0
26. Imay, Y.; Zhang, W.; Kida, T.; Nakatsuji, Y.; Ikeda, I. J. Org. Chem. 2000, 65, 3326–3333. doi:10.1021/jo9915978
27. Wang, F.; Zhang, Y. J.; Wei, H.; Zhang, J.; Zhang, W. Tetrahedron Lett. 2007, 48, 4083–4086. doi:10.1016/j.tetlet.2007.04.007
28. Wang, F.; Zhang, Y. J.; Yang, G.; Zhang, W. Tetrahedron Lett. 2007, 48, 4179–4182. doi:10.1016/j.tetlet.2007.04.064
29. Zhang, Y. J.; Wang, F.; Zhang, W. J. Org. Chem. 2007, 72, 9208–9213. doi:10.1021/jo701469y

License and Terms

This is an Open Access article under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The license is subject to the Beilstein Journal of Organic Chemistry terms and conditions: (http://www.beilstein-journals.org/bjoc)

The definitive version of this article is the electronic one which can be found at: doi:10.3762/bjoc.8.81