Scattering properties of the dinoflagellates

Prorocentrum micans and P. minimum

SHOZO MOTOKAWA & SATORU TAGUCHI*

Department of Environmental Engineering for Symbiosis, Faculty of Engineering, Soka University, 1–236 Tangi-cho, Hachioji, Tokyo 192–8577, Japan

Received 8 February 2015; Accepted 11 June 2015

Abstract: The scattering properties of phytoplankton is one of the main factors needed to model light propagation in the water column. Light scattering by phytoplankton depends on cell size and intracellular materials. In order to characterize the effects, we examined the scattering efficiency of dinoflagellates with large cell sizes and high intracellular carbon contents. Scattering properties of the dinoflagellates Prorocentrum micans and P. minimum were examined in semi-continuous cultures under two light-saturated conditions. Scattering coefficients of the cells at 676 nm \(b_{ph}(676)\) were calculated as the difference between attenuation and absorption coefficients measured using a nine-wavelength absorption-attenuation meter. The \(b_{ph}(676)\) was normalized to the chlorophyll \(a\) (Chl \(a\); \(b_{ph}(676)\)) and cell concentrations \(b_{cell}(676)\). Lower \(b_{ph}(676)\) and higher \(b_{cell}(676)\) were observed for the larger \(P.\) micans compared with the smaller \(P.\) minimum. The \(b_{ph}(676)\) increased with the ratio of cellular carbon to Chl \(a\) \(\beta\) \(C : Chl a\). Both species indicated relatively high \(C : Chl a\) compared to other phytoplankton species. A reverse trend of \(b_{ph}(676)\) and \(b_{cell}(676)\) between the species could reflect a negative relationship between the equivalent spherical diameter \(d\) and intracellular Chl \(a\) content \(\beta\) \(Chl a\). A dimensionless efficiency factor for scattering at 676 nm \(Q_{ph}(676)\) was calculated experimentally from \(d\), Chl \(a\), and \(b_{ph}(676)\). The \(Q_{ph}(676)\) of both species was two-fold higher than theoretical values based on the anomalous diffraction approximation. The experimentally high \(Q_{ph}(676)\) might reflect the high \(b_{ph}(676)\). The significant relationship between \(b_{ph}(676)\) and \(C : Chl a\) suggests that \(C : Chl a\) could be a proxy for scattering efficiency in relation to intracellular materials.

Key words: absorption, ac-9, equivalent spherical diameter, ratio of cellular carbon to chlorophyll \(a\), scattering efficiency

Introduction

Light availability in natural assemblages of phytoplankton in the water column is fundamental to determining primary production. Light availability depends on the propagation of light in the water column and the propagation of light involves the absorption and scattering properties of biogeochemical constituents, including particulate matter. The relationships between particles and absorption or scattering properties are modeled as the “bio-optical state” (Smith & Baker 1978). The bio-optical model was developed based on the empirical relationships between chlorophyll \(a\) (Chl \(a\)) and the absorption coefficient of phytoplankton \(a_{ph}(\lambda)\) (Bricaud et al. 1995) and/or the scattering coefficient of phytoplankton \(b_{ph}(\lambda)\) (Morel & Ahn 1991). The relationships between Chl \(a\) concentration \(a_{ph}(\lambda)\) and \(b_{ph}(\lambda)\) are non-linear due to the geometric characteristics of phytoplankton, such as the cell size (Gordon & Morel 1983, Morel & Bricaud 1986). The relationship between cell size and \(a_{ph}(\lambda)\) and/or \(b_{ph}(\lambda)\) could be interpreted by changes in Chl \(a\)-specific \(a_{ph}(\lambda)\) \(a_{ph}(\lambda)\) and \(b_{ph}(\lambda)\) \(b_{ph}(\lambda)\) (Morel 1987, Ferreira et al. 2013). The \(a_{ph}(\lambda)\) decreases with increasing cell size as a result of the packaging effect of intracellular phytoplankton pigment (e.g., Morel & Bricaud 1981, Berner et al. 1989, Sathyendranath et al. 1989, Finkel 2001, Ciotti et al. 2002, Fujiki & Taguchi 2002). The significant characteristics of \(a_{ph}(\lambda)\) as a function of cell size are applied to distinguish cell class in natural phytoplankton assemblages (Ciotti & Bricaud 2006, Devred et al. 2006, Hirata et al. 2008, Brewin et al. 2011). However, to date, there have been only a few similar applications of the \(b_{ph}(\lambda)\) as a function of cell size (Morel 1987).

Light scattering by large absorptive particles in water...
involves three processes: some of the light is reflected at the external surface, some passes through the particle and undergoes refraction, and some undergoes internal reflection and refraction (Kirk 2011). The scattering process for phytoplankton in water is not only influenced by cell size and refractive or reflective contents, such as intracellular carbon (Cᵢ), but also by absorptive contents, such as intracellular Chl a (Chl a₁) (Stramski 1999). The product of βₑᵃ(aₘ(λ)×Chl a₁) is mainly dependent on the geometric characteristics of the cell, such as cell size, and refractive index (Morel & Bricaud 1986). According to theoretical analysis based on the anomalous diffraction approximation (van de Hulst 1957), the association between the geometric characteristics of the cell, such as cell size, refractive index and absorbance (Morel & Bricaud 1986). Ahn et al. 1992). However, the βₑᵃ(aₘ(590) of the large-celled diatom Chaetoceros lauderi, with a cell diameter of 25.5 μm, was about 3-fold higher than that of the small naked flagellate Isochrysis galbana, with a cell diameter of 4.2 μm, perhaps due to its mineralized cell wall (Morel & Bricaud 1986, Kirk 2011). Dinoflagellates have a large C_i compared with other taxa of a similar cell size, and generally exhibit a high ratio of cellular C to Chl a (C : Chl a) (Chan 1980, Tang 1996). The high C : Chl a is expected to lead to a high βₑᵃ(λ); however their βₑᵃ(λ) as a function of C : Chl a has not yet been evaluated.

In addition to the βₑᵃ(λ) as an index of scattering efficiency, we experimentally calculated the dimensionless efficiency factor for scattering (Qₑ(λ)). The Qₑ(λ) relates scattering efficiency to cell size, and is the ratio of the scattering cross section to the geometrical cross section of the cell (Morel & Bricaud 1986). The Qₑ(λ) as a function of cell size can be theoretically estimated based on the Mie theory when the cell is assumed to be a homogeneous spherical cell (van de Hulst 1957). The Qₑ(λ) could differ large cells have a considerable capacity to modify the propagation of light because of the large scattering cross section per cell (Stramski & Mobley 1997). Most of the large cell species of phytoplankton are diatoms or dinoflagellates (Lalli & Parsons 1997). Diatoms with large cell sizes exhibit experimentally high βₑᵃ(λ). For example, the βₑᵃ(590) of the large-celled diatom Chaetoceros lauderi, with a cell diameter of 25.5 μm, was about 3-fold higher than that of the small naked flagellate Isochrysis galbana, with a cell diameter of 4.2 μm, perhaps due to its mineralized cell wall (Morel & Bricaud 1986, Kirk 2011). Dinoflagellates have a large C_i compared with other taxa of a similar cell size, and generally exhibit a high ratio of cellular C to Chl a (C : Chl a) (Chan 1980, Tang 1996). The high C : Chl a is expected to lead to a high βₑᵃ(λ); however their βₑᵃ(λ) as a function of C : Chl a has not yet been evaluated.

In addition to the βₑᵃ(λ) as an index of scattering efficiency, we experimentally calculated the dimensionless efficiency factor for scattering (Qₑ(λ)). The Qₑ(λ) relates scattering efficiency to cell size, and is the ratio of the scattering cross section to the geometrical cross section of the cell (Morel & Bricaud 1986). The Qₑ(λ) as a function of cell size can be theoretically estimated based on the Mie theory when the cell is assumed to be a homogeneous spherical cell (van de Hulst 1957). The Qₑ(λ) could differ large cells have a considerable capacity to modify the propagation of light because of the large scattering cross section per cell (Stramski & Mobley 1997). Most of the large cell species of phytoplankton are diatoms or dinoflagellates (Lalli & Parsons 1997). Diatoms with large cell sizes exhibit experimentally high βₑᵃ(λ). For example, the βₑᵃ(590) of the large-celled diatom Chaetoceros lauderi, with a cell diameter of 25.5 μm, was about 3-fold higher than that of the small naked flagellate Isochrysis galbana, with a cell diameter of 4.2 μm, perhaps due to its mineralized cell wall (Morel & Bricaud 1986, Kirk 2011). Dinoflagellates have a large C_i compared with other taxa of a similar cell size, and generally exhibit a high ratio of cellular C to Chl a (C : Chl a) (Chan 1980, Tang 1996). The high C : Chl a is expected to lead to a high βₑᵃ(λ); however their βₑᵃ(λ) as a function of C : Chl a has not yet been evaluated.

In addition to the βₑᵃ(λ) as an index of scattering efficiency, we experimentally calculated the dimensionless efficiency factor for scattering (Qₑ(λ)). The Qₑ(λ) relates scattering efficiency to cell size, and is the ratio of the scattering cross section to the geometrical cross section of the cell (Morel & Bricaud 1986). The Qₑ(λ) as a function of cell size can be theoretically estimated based on the Mie theory when the cell is assumed to be a homogeneous spherical cell (van de Hulst 1957). The Qₑ(λ) could differ

Symbol	Definition	Units
aₑₘ(λ)	Absorption coefficient in suspension measured by ac-9	m⁻¹
aₑₛ(λ)	Temperature and salinity-corrected absorption coefficient in suspension measured by ac-9	m⁻¹
aₑₑ(λ)	Absorption coefficient of phytoplankton	m⁻¹
aₑₛ(λ)	Absorption coefficient of reference seawater	m⁻¹
aₑₑ(λ)	Chlorophyll a-specific absorption coefficient of phytoplankton	m² mg Chl a⁻¹
bₑₑ(λ)	Cell specific scattering coefficient of phytoplankton	m² cell⁻¹
bₑₑ(λ)	Scattering coefficient of phytoplankton	m⁻¹
bₑₑ(λ)	Chlorophyll a-specific scattering coefficient of phytoplankton	m² mg Chl a⁻¹
Chl a	Chlorophyll a	-
Chl a₁	Intracellular chlorophyll a content	kg Chl a m⁻³
[Chl a]	Chlorophyll a concentration in medium	mg Chl a m⁻³
C : Chl a	Ratio of cellular carbon to cellular Chl a on a weight basis	g⁻¹
Cᵢ	Intracellular carbon content	kg Carbon m⁻³
cₑₘ(λ)	Attenuation coefficient in suspension measured by ac-9	m⁻¹
cₑₛ(λ)	Temperature and salinity-corrected attenuation coefficient in suspension measured by ac-9	m⁻¹
cₑₑ(λ)	Attenuation coefficient of phytoplankton	m⁻¹
cₑₛ(λ)	Attenuation coefficient of reference seawater	m⁻¹
d	Equivalent spherical diameter	μm
h	Height of cell	μm
l	Length of cell	μm
m	Refractive index (relative refraction to water)	-
[N]	Cell concentration	cell m⁻³
Qₑ(λ)	Dimensionless efficiency factor for scattering	-
t	Width of cell	μm
V	Average cell volume in phytoplankton suspension	μm³ cell⁻¹
depending on the composition of the intracellular materials
(Aas 1996), and therefore the \(Q_\lambda (\lambda) \) of the
dinoflagellates could be high due to their high C : Chl \(a \).

The aim of this study was to investigate the scattering
properties and C : Chl \(a \) of the different sized
dinoflagellates \(Prorocentrum micans \) and \(P. minimum \). The
scattering properties were investigated under two lighting
conditions, saturated and supra-saturated light. The two
light intensities could induce differences in C : Chl \(a \) (Ma-
clinty et al. 2002). To evaluate the scattering properties of
\(P. micans \) and \(P. minimum \), we enumerated the scattering
coefficients of various phytoplankton species from previous
sto studies. Scattering properties as a function of C : Chl
\(a \) could provide a more accurate estimation of the scatter-
ing efficiency of phytoplankton. Scattering properties were
assessed at 676 nm, where Chl \(a \) was a major cause
of absorption and Chl \(a \) fluorescence was excited. Error
due to Chl \(a \) fluorescence emission for the measurement of
\(b_{\text{ph}} (676) \) should be negligible because emission is mainly
at 681 nm. The light scattering properties of dinoflagellates
with different cell sizes and C : Chl \(a \) could provide an
understanding of the effect of intracellular materials on
the light scattering efficiency of phytoplankton. Furthermore,
data on the light scattering properties of phytoplankton as
a function of cell size or C : Chl \(a \) could assist in the evalua-
tion of light propagation in the water column. A list of
definitions used in this paper is provided in Table 1.

Materials and Methods

Culture and growth conditions

The dinoflagellates \(Prorocentrum micans \) Ehren-
berg (NIES-218) and \(P. minimum \) Pavillard (NIES-237)
were obtained from the microbial culture collection at
the National Institute for Environmental Study (NIES),
Japan. All cultures were grown in 4L sterilized screw-
top polycarbonate bottles in f/2 medium (Guillard & Ry-
ther 1962), without silicate, using aged filtered seawater
(temperature \(20 \degree C \), salinity \(35 \) \)) collected from Manazu-
rui Bay, Japan. Irradiance of 600 \(\mu \text{mol} \text{ photons m}^{-2} \text{ sec}^{-1} \) (HL) and 300 \(\mu \text{mol} \text{ photons m}^{-2} \text{ sec}^{-1} \) (LL) was provided
by cool fluorescent lamps (FL40SW; Panasonic Corpora-
tion, Osaka, Japan) on a 12 : 12 h light-dark cycle. To ac-
climate phytoplankton to the growth conditions prior to
the experiment, the cells were preconditioned in semi-contin-
uous culture by transferring half of the volume every 2
days. In the middle of the exponential growth phase (usu-
ally day 2), subsamples were taken from each experimental
bottle at the mid-point of the light phase.

Equivalent spherical diameter

The shapes of \(P. micans \) and \(P. minimum \) were assumed
to be ellipsoid. The average cell volume \((V; \mu \text{m}^3)\) of 50
cells was determined by measuring cells under a micro-
scope (LH50A; Olympus, Tokyo, Japan) with an ocular
ruler, calibrated with a micrometer, and calculated us-
ing the following formula described by Hillebrand et al.
(1999):

\[
V = (\pi/6)lth
\]

(1)

where \(l \) is the apical axis (length), \(t \) is the trans-apical axis
(width), \(h \) is height, and \(\pi \) refers to the circular constant.
The average \(d (\mu \text{m}) \) was calculated from \(V \), assuming that
the cells were spherical.

Intracellular Chl \(a \) and C

Subsamples for cellular pigment analysis were filtered
onto 25 mm Whatman GF/F glass fiber filters and stored
at \(-80\degree C\) until analysis. The cells collected on the
filters were homogenized in 2 ml of 90% acetone in a 15 ml cen-
trifuge tube on ice using an ultrasonic homogenizer (UH-
50; SMT Co., Ltd., Tokyo, Japan) and allowed to extract
in the dark at \(-20\degree C\) for 24 h, as described by Wright et al.
(1997). The extract was then centrifuged at 1000 rpm for
5 min and the supernatant was filtered through a 0.20 \(\mu \text{m} \)
filter unit (Millex-LG; Merck Millipore, Billerica, MA,
USA). Finally, the extracts were run on a high performance
liquid chromatography system (168 Diode Array Detecto-
c, C18 reversed-phase Ultrasphere 3 mm column; Beck-
man Coulter Instruments, Inc., Fullerton, CA, USA) using
a solvent gradient with solvent A (80% methanol and 20%
0.5M [v/v] ammonium acetate) and solvent B (70% metha-
nol and 30% ethyl acetate), as described by Wright et al.
(1997). The peaks were quantified using pure Chl \(a \) stan-
dard from the Danish Hydraulic Institute. The Chl \(a \) (kg
Chl \(a \) \(m^{-3} \)) was estimated by dividing Chl \(a \) concentra-
tion (kg \(m^{-3} \)) by cell volume concentration in phytoplankton
suspension (m\(^3 \) m\(^{-3} \)).

Subsamples for cellular C analysis were filtered onto
25 mm Whatman GF/F filters, pre-combusted at 500\degree C
for 2 h. Cells on the filters were oven-dried at 60\degree C for 24 h
and stored in a desiccator until analysis. Cellular particu-
late organic C was measured using an elemental analyzer
(Thermo Fisher Scientific, MA, USA) with reference to ac-
etanilide as the standard (Nagao et al. 2001). The Ci (kg
C \(m^{-3} \)) was estimated by dividing C concentration (kg \(m^{-3} \))
by cell volume concentration in phytoplankton suspension
(m\(^3 \) m\(^{-3} \)). The C : Chl \(a \) was calculated on a weight basis.

Scattering properties

The absorption and attenuation coefficients of phyto-
plankton at nine wavelengths (412, 440, 488, 510, 532, 555,
650, 676, and 715 nm) were measured using an absorp-
tion-attenuation meter with a 25 cm path length (ac-9; WET
Labs, Philomath, OR, USA). The absorption and attenua-
tion coefficient of the phytoplankton suspension was mea-
sured using reflective and non-reflective flow tubes, re-
spectively. The ac-9 was set up as a bench-top instrument
in a fixed tilt position at 45\degree to avoid trapping air bubbles
in the flow tubes (WET Labs, Inc. 2013). Two reservoirs
were attached with tubing to the inlet and outlet of the flow
Scattering properties of the dinoflagellates *Prorocentrum micans* and *P. minimum*

The mean \(d\) indicated an approximately 2-fold difference between the large celled *Prorocentrum micans* and the small celled *P. minimum*, but did not differ between HL and LL within the same species (Table 2). The \(d\) of *P. micans* and *P. minimum* under both light conditions was 25.0 ± 0.22 \(\mu\)m and 12.6 ± 0.24 \(\mu\)m, respectively. The Chl \(a_i\) and \(C_i\) of both species was higher compared with diatoms because the dinoflagellates are significantly more carbon-dense than diatoms (Strathmann 1967, Menden-Deuer & Lessard 2000). Thus the scattering properties of the species are confirmed to be a function of both cell size and intracellular Chl \(a\) and \(C\).

Results and Discussion

Cell size and intracellular Chl \(a\) and \(C\)

The mean \(d\) indicated an approximately 2-fold difference between the large celled *Prorocentrum micans* and the small celled *P. minimum*, but did not differ between HL and LL within the same species (Table 2). The \(d\) of *P. micans* and *P. minimum* under both light conditions was 25.0 ± 0.22 \(\mu\)m and 12.6 ± 0.24 \(\mu\)m, respectively. The Chl \(a_i\) and \(C_i\) of both species was higher compared with diatoms because the dinoflagellates are significantly more carbon-dense than diatoms (Strathmann 1967, Menden-Deuer & Lessard 2000). Thus the scattering properties of the species are confirmed to be a function of both cell size and intracellular materials.

The Chl \(a_i\) of both *P. micans* and *P. minimum* exhibited a 1.5-fold difference between the two light conditions \((p<0.05)\), but the \(C_i\) did not differ between the light conditions (Table 2). The Chl \(a\) \((g\ g^{-1})\) of the small celled *P. minimum* was more strongly influenced by irradiance in terms of the reduction in cellular Chl \(a\) and consequently the 1.7-fold higher C : Chl \(a\) under HL compared with LL \((p<0.001)\). The large celled *P. micans* exhibited a 1.5-fold higher C : Chl \(a\) under HL compared with LL \((p<0.01)\). The dependence of Chl \(a\) on irradiance has been suggested to reflect photoacclimation due to the change in cellular Chl \(a\) content (Geider 1987, MacIntyre et al. 2002). The Chl \(a\) of dinoflagellates is considerably higher compared with other species of a similar cell size (Tang...
Scattering properties

The trend in the $b_{\text{cell}}^{*}(676)$ of the large celled P. micans and the small celled P. minimum (Table 3) confirms dependence of the $b_{\text{cell}}^{*}(676)$ on cell size, as suggested by Stramski et al. (2001). However, means of the $b_{\text{cell}}^{*}(676)$ for P. minimum were 1.4-fold higher than those for P. micans under both light conditions ($p < 0.001$, Table 3). The reverse trend of $b_{\text{cell}}^{*}(676)$ and $b_{\text{cell}}^{*}(676)$ with cell volume could reflect the reverse relationship between cell size and Chl a (Augusti 1991). In previous studies, the $b_{\text{cell}}^{*}(676)$ of phytoplankton with $d < 10 \mu m$ has ranged from 0.042 m2 mg Chl a^{-1} for chlorophytes to 0.51 m2 mg Chl a^{-1} for haptophytes, while the $b_{\text{cell}}^{*}(676)$ of phytoplankton with $d > 10 \mu m$ ranged from 0.032 m2 mg Chl a^{-1} for chlorophytes to 0.17 m2 mg Chl a^{-1} for diatoms (Table 4, Fig. 1). The high $b_{\text{cell}}^{*}(676)$ of haptophytes and diatoms could be due to the mineralized cell wall of haptophytes such as coccoliths indicated a higher carbon-specific scattering coefficient than that of the cells themselves (Balch et al. 1996). Although there is no effect due to a mineralized cell wall on the $b_{\text{cell}}^{*}(676)$ of both species under LL was significantly different between those of diatoms and haptophytes of similar or smaller size (Table 4). For the dinoflagellates, the high $b_{\text{cell}}^{*}(676)$ as a function of cell size is presumably due to the high C content.

Table 2. Average ± one standard deviation of d, Chl a, C, and $C: Chl a$ of Prorocentrum micans and P. minimum under HL (irradiance of 600 µmol photons m$^{-2}$ sec$^{-1}$) and LL (irradiance of 300 µmol photons m$^{-2}$ sec$^{-1}$). n indicates the number of samples.

Table 3. Average ± one standard deviation of $b_{\text{ph}}^{*}(676)$, $b_{\text{cell}}^{*}(676)$ and $Q_{s}(676)$ of Prorocentrum micans and P. minimum under HL (irradiance of 600 µmol photons m$^{-2}$ sec$^{-1}$) and LL (irradiance of 300 µmol photons m$^{-2}$ sec$^{-1}$). n indicates the number of samples.
Table 4. Literature values of optical, biological, and chemical properties of phytoplankton species used to evaluate the dinoflagellates in this study. The d, Chl a, and $b^a_{ps}(676)$ of phytoplankton species during the exponential growth phase were obtained from Bricaud et al. (1983), Morel & Bricaud (1986), Bricaud et al. (1988), and Ahn et al. (1992). The d, Chl a, and $b^a_{ps}(676)$ of the chlorophyte Dunaliella tertiolecta under fluctuating high light and constant high light conditions were obtained from Stramski et al. (1993). The d, Chl a, $b^a_{ps}(676)$, and C_i of the prasinophyte Micromonas pusilla were obtained at two time points, dawn and dusk, from DuRand et al. (2002). The C_i of the other species, except those studied by DuRand et al. (2002), were calculated from the d following Strathmann (1967). The $Q_{st}(676)$ was calculated using the d, Chl a, and $b^a_{ps}(676)$ using equation (7).

Class	Species	Irradiance (μmol photons m$^{-2}$ s$^{-1}$)	d (µm)	Chl a (kg Chl a m$^{-3}$)	C_i : Chl a (g Chl a^{-1})	$b^a_{ps}(676)$ (m2 mg Chl a^{-1})	$Q_{st}(676)$	References
Haptophyte	Hymenomonas elongata	400	13.6	2.9	132	0.073	1.94	Bricaud et al. (1983)
Prasinophyte	Platymonas sp.	400	6.8	1.9	175	0.180	1.53	Bricaud et al. (1983)
Prasinophyte	Tetraxelminis maculata	400	8.5	1.6	160	0.169	1.55	Bricaud et al. (1983)
Haptophyte	Coccolithus huxleyi	400	3.4	1.1	231	0.510	1.32	Bricaud et al. (1983)
Diatom	Skeletonema costatum	300–400	5.5	0.9	128	0.443	1.48	Morel and Bricaud (1986)
Prasinophyte	Platymonas suecica	300–400	3.4	6.4	232	0.159	2.27	Morel and Bricaud (1986)
Diatom	Chaetoceros curvisetum	400	7.5	1.4	102	0.216	1.46	Bricaud et al. (1988)
Diatom	Chaetoceros lauderi	400	25.5	0.3	42	0.168	0.91	Bricaud et al. (1988)
Haptophyte	Pavlova pinguis	400	3.6	4.3	226	0.136	1.42	Bricaud et al. (1988)
Haptophyte	Pavlova luheri	400	4.5	2.6	207	0.314	2.47	Bricaud et al. (1988)
Haptophyte	Pyrnesium parvum	400	5.7	2.6	188	0.202	1.97	Bricaud et al. (1988)
Chlorophyte	Dunaliella salina	400	10.2	6.2	149	0.032	1.33	Bricaud et al. (1988)
Red algae	Porphyridium cruentum	400	4.9	4.3	200	0.159	2.21	Bricaud et al. (1988)
Cyanophyte	Synechococcus sp.	20	1.6	2.2	313	0.095	0.22	Bricaud et al. (1988)
Cyanophyte	Synechocystis sp.	200	1.5	1.4	321	0.136	0.20	Bricaud et al. (1988)
Cyanophyte	Synechocystis sp.	16	1.5	2.2	321	0.091	0.20	Bricaud et al. (1988)
Chlorophyte	Dunaliella bioculata	100	6.7	14.1	176	0.042	2.64	Ahn et al. (1992)
Haptophyte	Emiliania huxleyi	100	4.9	3.7	199	0.260	3.19	Ahn et al. (1992)
Haptophyte	Isochrysis galbana	100	4.5	6.9	207	0.113	2.30	Ahn et al. (1992)
Dinoflagellate	Prorocentrum micans	100	27.6	2.3	100	0.036	1.49	Ahn et al. (1992)
Cryptomonad	Chroococcus fragaroides	100	5.6	3.6	190	0.169	2.24	Ahn et al. (1992)
Cyanophyte	Synechococcus sp.	100	1.1	2.0	371	0.140	0.19	Ahn et al. (1992)
Cyanophyte	Synechocystis sp.	100	1.4	2.5	331	0.203	0.47	Ahn et al. (1992)
Cyanophyte	Anacystimorina	100	1.4	3.4	327	0.160	0.52	Ahn et al. (1992)
Chlorophyte	Dunaliella tertiolecta	830	8.3	3.2	162	0.075	1.33	Stramski et al. (1993)
Chlorophyte	Dunaliella tertiolecta	790	7.9	3.9	165	0.086	1.75	Stramski et al. (1993)
Prasinophyte	Micromonas pusilla	120	1.4	8.6	262	0.063	0.52	DuRand et al. (2002)
Prasinophyte	Micromonas pusilla	120	1.8	7.7	253	0.088	0.81	DuRand et al. (2002)
Dinoflagellate	Prorocentrum micans	600	25.1	1.2	183	0.142	2.95	Present study
Dinoflagellate	Prorocentrum micans	300	24.8	1.8	178	0.140	4.16	Present study
Dinoflagellate	Prorocentrum minimum	600	12.4	1.8	323	0.250	3.61	Present study
Dinoflagellate	Prorocentrum minimum	300	12.8	2.8	307	0.192	4.65	Present study

The theoretical $Q_{st}(676)$, based on the anomalous diffraction approximation, indicates oscillations with cell size and convergence to 1 when the dimensionless efficiency factor for absorption at 676 nm converges to 1 (Morel & Bricaud 1986). The experimental $Q_{st}(676)$ in previous studies (Bricaud et al. 1983, Bricaud et al. 1988, Ahn et al. 1992, Stramski et al. 1993, DuRand et al. 2002) was similar to or lower than the theoretical values of the real part of $m=1.06$, which was the average index of pure phytoplankton cultures (Aas 1996). However, the $Q_{st}(676)$ of P. micans and P. minimum was 2-fold higher than the theoretical values.
for similar cell sizes. When similar cell sizes are compared, the \(Q_b(676) \) could be similar. The high experimental \(Q_b(676) \) suggests that the scattering efficiency in dinoflagellates is not simply the result of cell size or geometrical area and refractive index, but may be the result of complex interactions with cell size, shape and refractive index. Furthermore, the higher experimental \(Q_b(676) \) compared to \(Q_h(676) \) as a function of \(\rho \) suggests that the C : Chl \(a \) implies the potential contribution of natural assemblages of phytoplankton. Furthermore, the relationship between C : Chl \(a \) and the \(Q_h(676) \) can be directly estimated from the scattering properties of phytoplankton, the estimates can provide a more accurate estimation of the physiological properties of natural assemblages of phytoplankton. Furthermore, the relationship between C : Chl \(a \) and the \(Q_h(676) \) may lead to a better understanding of light propagation in phytoplankton assemblages.

Acknowledgements

Both dinoflagellate strains were provided by NIES. We thank Dr. S. C. Y. Leong (National University of Singapore), A. Leong, and C. Dairiki for technical support. We also thank the anonymous reviewers for their constructive suggestions and comments.

References

Aas E (1996) Refractive index of phytoplankton derived from its metabolic composition. J Plankton Res 18: 2223–2249.

Agusti S (1991) Allometric scaling of light absorption and scattering by phytoplankton cells. Can J Fish Aquat Sci 48: 763–767.

Ahn Y-H, Bricaud A, Morel A (1992) Light backscattering efficiency and related properties of some phytoplankters. Deep-Sea Res 39: 1835–1855.

Balch WM, Kilpatrick KA, Holligan P, Harbour D, Fernandez E (1996) The 1991 coccolithophore bloom in the central North Atlantic. 2. Relating optics to coccolith concentration. Limnol Oceanogr 41: 1684–1696.

Behrenfeld MJ, Boss E (2003) The beam attenuation to chlorophyll ratio: an optical index of phytoplankton physiology in the surface ocean? Deep-Sea Res I 50: 1537–1549.

Berner T, Dubinsky Z, Wyman K, Falkowski PG (1989) Photoadaptation and the "package" effect in *Dunaliella tertiolecta* (Chlorophyceae). J Phycol 25: 70–78.

Brewin RJW, Hardman-Mountford NJ, Lavender SJ, Raittson DE, Hirata T, Uitz J, Devred E, Bricaud A, Ciotti A, Gentili B (2011) An intercomparison of bio-optical techniques for de-
tecting dominant phytoplankton size class from satellite remote sensing. Rem Sens Environ 115: 325–339.

Briceaud A, Babin M, Morel A, Claustre H (1995) Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization. J Geophys Res 100: 13321–13332.

Briceaud A, Bédhomme AL, Morel A (1988) Optical properties of diverse phytoplanktonic species: Experimental results and theoretical interpretation. J Plankton Res 10: 851–873.

Briceaud A, Morel A, Prieur L (1983) Optical efficiency factors of some phytoplankters. Limnol Oceanogr 28: 816–832.

Chan A (1980) Comparative physiological study of marine diatoms and dinoflagellates in relation to irradiance and cell size. II. Relationship between photosynthesis, growth, and carbon/chlorophyll a ratio. J Phycol 16: 428–432.

Ciotti AM, Briceaud A (2006) Retrievals of a size parameter for phytoplankton and spectral light absorption by colored detrital matter from water-leaving radiances at SeaWiFS channels in a continental shelf region off Brazil. Limnol Oceanogr Methods 4: 237–253.

Ciotti AM, Lewis MR, Cullen JJ (2002) Assessment of the relationships between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient. Limnol Oceanogr 47: 404–417.

Clavano WR, Boss E, Karp-Boss L (2007) Inherent optical properties of non-spherical marine-like particles – from theory to observation. Oceanogr Mar Biol 45: 1–38.

Deved E, Sathyendranath S, Stuart V, Maass H, Ulloa O, Platt T (2006) A two-component model of phytoplankton absorption in the open ocean: theory and applications. J Geophys Res 111: C03011, doi:10.1029/2005JC002880.

DuRand MD, Green RE, Sosik HM, Olson RJ, Manton B (2002) Diel variations in optical properties of Micromonas pusilla (Prasinophyceae). J Phycol 38: 1132–1142.

Ferreira A, Stramski D, Garcia CAE, Garcia VMT, Ciotti AM, Mendes CRB (2013) Variability in light absorption and scattering of phytoplankton in Patagonian waters: Role of community size structure and pigment composition. J Geophys Res-Oceans 118: 698–714.

Finkel Z (2001) Light absorption and size scaling of light-limited metabolism in marine diatoms. Limnol Oceanogr 46: 86–94.

Finkel Z, Irwin AJ, Schofield O (2004) Resource limitation alters the 3/4 size scaling of metabolic rates in phytoplankton. Mar Ecol Prog Ser 273: 269–279.

Fujiki T, Taguchi S (2002) Variability in chlorophyll a specific absorption coefficient in marine phytoplankton as a function of cell size and irradiance. J Plankton Res 24: 859–874.

Geider RJ (1987) Light and temperature dependence of the carbon to chlorophyll a ratio in microalgae and cyanobacteria: implications for physiology and growth of phytoplankton. New Phytol 106: 1–34.

Geider RJ, Platt T, Raven JA (1986) Size dependence of growth and photosynthesis in diatoms: a synthesis. Mar Ecol Prog Ser 30: 93–104.

Gordon HR, Morel A (1983) Remote assessment of ocean color for interpretation of satellite visible imagery, A review. In: Lecture Notes on Coastal and Estuarine Studies. (eds Barber RT, Mooers CNK, Bowman MJ, Zeitlschel B). Springer-Verlag, New York. 114 pp.

Guillard RRL, Ryther JH (1962) Studies of marine plankton diatoms: 1. Cyclotella nana Hustedt and Detonula confervacea (Clev) Gran. Can J Microbiol 8: 229–239.

Hillenbrand H, Dürselen C, Kirschtel D, Pollingher U, Zohary T (1999) Biovolume calculation for pelagic and benthic microalgae. J Phycol 35: 403–424.

Hirata T, Aiken J, Hardman-Mountford N, Smyth TJ, Barlow RG (2008) An absorption model to determine phytoplankton size classes from satellite ocean colour. Rem Sens Environ 112: 3153–3159.

Hitchcock GL (1982) A comparative study of the size-dependent organic composition of marine diatoms and dinoflagellates. J Plankton Res 4: 363–377.

Johnsen G, Nelson NB, Jovine RVM, Prézelin BB (1994) Chloroprotein- and pigment-dependent modeling of spectral light absorption in two dinoflagellates, Prorocentrum minimum and Heterocapsa pygmaea. Mar Ecol Prog Ser 114: 245–248.

Kirk JTO (2011) Scattering of light within the aquatic medium. In: Light and Photosynthesis in Aquatic Ecosystems 3rd Edition (ed Kirk JTO). Cambridge University Press, Cambridge, pp. 85–111.

Lalli CM, Parsons TR (1997) Biological Oceanography: An Introduction 2nd Edition. Butterworth-Heinemann, Oxford, 314 pp.

MacIntyre HL, Kana TM, Anning T, Geider RJ (2002) Photo-acclimation of photosynthesis irradiance response curves and photosynthetic pigment in microalgae and cyanobacteria. J Phycol 38: 17–38.

Malone TC (1980) Algal size. In: The Physiological Ecology of Phytoplankton (ed Morris I). Blackwell Scientific Publications, London, pp. 433–463.

Menden-Deuer S, Lessard EJ (2000) Carbon to volume relationship for dinoflagellates, diatoms, and other protist plankton. Limnol Oceanogr 45: 569–579.

Morel A (1987) Chlorophyll-specific scattering coefficient of phytoplankton. A simplified theoretical approach. Deep-Sea Res 34: 1093–1105.

Morel A, Ahn YH (1991) Optics of heterotrophic nanoflagellates and ciliates: A tentative assessment of their scattering role in oceanic waters compared with those of bacterial and algal cells. J Mar Res 49: 177–202.

Morel A, Briceaud A (1981) Theoretical results concerning light-absorption in a discrete medium, and application to specific absorption of phytoplankton. Deep-Sea Res 28: 1375–1393.

Morel A, Briceaud A (1986) Inherent optical properties of algal cells including picoplankton: theoretical and experimental results. Can Bull Fish Aquat Sci 214: 521–559.

Nagao N, Toda T, Hamasaki K, Kikuchi T, Taguchi S (2001) High ash content in net-plankton samples from shallow coastal water: possible source of error in dry weight measurement of zooplankton biomass. J Oceanogr 57: 105–107.

Pegau W, Gray D, Zaneveld J (1997) Absorption and attenuation of visible and near-infrared light in water: dependence on temperature and salinity. Appl Optics 36: 6035–6046.

Reynolds AR, Stramski D, Kiefer DA (1997) The effect on nitrogen limitation on the absorption and scattering properties of the marine diatom Thalassiosira pseudonana. Limnol Ocean-
Sathyendranath S, Prieur L, Morel A (1989) A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters. Int J Remote Sens 10: 1373–1394.

Smith RC, Baker KS (1978) The bio-optical state of ocean waters and remote sensing. Limnol Oceanogr 23: 247–259.

Stramski D (1999) Refractive index of planktonic cells as a measure of cellular carbon and chlorophyll a content. Deep-Sea Res I 46: 335–351.

Stramski D, Bricaud A, Morel A (2001) Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community. Appl Optics 40: 2929–2945.

Stramski D, Mobley CD (1997) Effects of microbial particles on oceanic optics: A database of single-particle optical properties. Limnol Oceanogr 42: 538–549.

Stramski D, Rosenberg G, Legendre L (1993) Photosynthetic and optical properties of the marine chlorophyte Dunaliella tertiolecta grown under fluctuating light caused by surface-wave focusing. Mar Biol 115: 363–372.

Strathmann R (1967) Estimating the organic carbon content of phytoplankton from cell volume or plasma volume. Limnol Oceanogr 12: 411–418.

Tang EPY (1996) Why do dinoflagellates have lower growth rates?. J Phycol 32: 80–84.

Vaillancourt RD, Brown CW, Guillard RRL, Balch WM (2004) Light backscattering properties of marine phytoplankton: relationships to cell size, chemical composition and taxonomy. J Plankton Res 26: 191–212.

van de Hulst HC (1957) Light Scattering by Small Particles. John Wiley & Sons, New York, 470 pp.

WET Labs, Inc. (2013) Spectral Absorption and Attenuation Sensor ac-s: User’s Guide. Available at http://wetlabs.com/sites/default/files/documents/acsl.pdf (accessed on 10 June 2015)

Wright SW, Jeffrey SW, Mantoura RFC (1997) Evaluation of methods and solvents for pigment extraction. In: Phytoplankton Pigments in Oceanography: Guidelines to Modern Methods (eds Jeffrey SW, Mantoura RFC, Wright SW). UNESCO, Paris, pp. 261–282.

Zaneveld JRV, Kitchen JC, Moore CC (1994) Scattering error correction of reflecting tube absorption meters. Proc SPIE Int Soc Opt Eng 12: 44–55.