One New Royleanumoate from *Teucrium royleanum* Wall. ex Benth

Shabir Ahmad,¹ Riaz Ullah,² Naser M. Abdelsalam,³ Hassan Fouad,³ Ahtaram Bibi,⁴ Muhammad Tariq Jan,¹ Anwar Ali Shad,⁵ and Muhammad Arfan⁶

¹ Department of Chemistry, Islamia College, University Peshawar, Khyber Pakhtunkhwa 25000, Pakistan
² Department of Chemistry, Government College Ara Khel, FR Kohat, Khyber Pakhtunkhwa 26000, Pakistan
³ Riyadh Community College, King Saud University, Riyadh 11437, Saudi Arabia
⁴ Department of Chemistry, Kohat University of Science and Technology, Kohat 26000, Pakistan
⁵ Agricultural Chemistry Department, University of Agriculture Peshawar, Khyber Pakhtunkhwa 25000, Pakistan
⁶ Institute of Chemical Sciences, University of Peshawar, Peshawar, Khyber Pakhtunkhwa 25120, Pakistan

Correspondence should be addressed to Riaz Ullah; afridiriaz@yahoo.com

Received 22 March 2014; Accepted 26 May 2014; Published 12 June 2014

Academic Editor: Valdir Cechinel Filho

Copyright © 2014 Shabir Ahmad et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

One new royleanumoate, a benzene ester (1), has been isolated from *T. royleanum* Wall. ex Benth along with two known compounds, namely, 3,4-dihydroxymethyl benzoate (2) and oleanolic acid (3). The structure elucidation of the isolated compounds was established on two-dimensional (2D) NMR techniques including heteronuclear multiple bond correlation (HMBC), heteronuclear multiple quantum Coherence (HMQC), and correlation spectroscopy (COSY) experiment.

1. Introduction

The family Lamiaceae is a large family of order Lamiales [1]. It contains about 170 genera and 300 species of worldwide distribution, growing under great variety of soils and climates but more abundant in Mediterranean and mountainous region [2]. Several genera of the family Lamiaceae contain biologically active compounds [3]. *Teucrium* is one of the important genera of this family [4]. The genus *Teucrium* comprises mainly herbaceous plants. It contains about 7,000 species in temperate regions, only four species of which are reported in Pakistan, namely, *Teucrium stocksianum*, *Teucrium scordium*, *Teucrium royleanum*, and *Teucrium quadrijariatum* [5]. Many biological activities have been attributed to the genus *Teucrium*. Some of the species have been used as medicinal plants since time immemorial and are still being used in folk medicine as antispasmodics, tonics, antipyretics, and antiseptics [6]. The literature survey reveals that the terpenoids in these plants have also shown insect antifeedant activity [6–8]. These medicinal properties prompted us to carry out phytochemical investigation on *T. royleanum* in continuation to our ongoing research on this species [9–11]. Our current study has led to the isolation of one new royleanumoate, a benzene ester 1. In addition to the new compound 1, some known compounds 3,4-dihydroxymethyl benzoate 2 and oleanolic acid 3 have been isolated for the first time from this species (see Figures 2, 3, and 4).

2. Material and Methods

2.1. Plant Materials. The aerial parts of *T. royleanum* were collected from Swat (Pakistan) in June 2003 and identified by Professor Dr. Abdul Rashid, Plant Taxonomist, Department of Botany, University of Peshawar, Peshawar, Pakistan, where a voucher specimen (number Shabir 2651979 (PUP)) is deposited.

2.2. Methods for Purification. The powdered air-dried aerial parts of *T. royleanum* (10 kg) were soaked in MeOH (3 × 45 L) at room temperature for about 24 hours. The combined methanolic extract was then concentrated via rotavapour to
Table 1: 1H-NMR and 13C-NMR (C$_5$D$_5$N, 400 MHz, C$_5$D$_5$N, 100 MHz), chemical shifts, and multiplicities of (I).

C. number	Multiplicity (DEPT)	13C-NMR (δ)	1H-NMR (δ)	1J$_{HH}$ (Hz)
C-1	C	173.80	—	—
C-2-C-11	CH$_3$	29.25	1.23	brs
C-12	CH$_3$	14.11	0.88	t, $J = 6.4$
C-1'	C	130.15	—	—
C-3'-5'	CH	115.38	6.75	d, $J = 10.0$
C-2'-6'	CH	130.04	7.05	d, $J = 10.0$
C-4'	C	153.84	—	—
C-1''	CH$_2$	34.38	2.81	t, $J = 2.8$
C-2''	CH$_2$	64.87	2.24	t, $J = 2.3$

get a thick gummy extract (850 g). The resultant concentrated extract was then dissolved in water and was subjected to solvent-solvent extraction process using n-hexane, chloroform, and n-butanol.

The fraction Tb-SA1 was eluted on a silica gel column loaded with initial chloroform-hexane (1:1) which on further column chromatography in chloroform-hexane (6.5 : 3.5) provided compound 1 as amorphous solid (7 mg).

2.3. Physical and Spectral Data of Royleanumoate (I)

- **IR**$_{\text{max}}$ (KBr) cm$^{-1}$ 3440, 1735, 1617
- **EIMS** m/z: 121 (100), 107 (6), 71 (11), and 57 (40)
- **FAB+MS m/z: 333.3713 (caled. for C$_{21}$H$_{34}$O$_3$)
- **1H-NMR** 13C-NMR (C$_5$D$_5$N, 400 MHz and 100 MHz): Table 1.

3. Results and Discussion

Compound 1 was isolated from the VLC fraction of the chloroform soluble part obtained from the methanol extract of *T. royleanum* Wall. ex Benth as amorphous solid. The Fab ^{+}ve of 1 showed the [M + 1]$^+$ at m/z 333.3713 in agreement with the molecular formula C$_{21}$H$_{34}$O$_3$ indicating five degrees of unsaturation. Other prominent mass fragments at m/z 121 (100), 107 (6), 71 (11), and 57 (40) were also observed in the mass spectrum as shown in Scheme 1. The IR spectrum of compound 1 exhibited absorption bands at 1735 (ester C=O), 3430 for (OH), and 1617 for (aryl).

The 1H-NMR spectrum corroborated the presence of one methyl, thirteen methylene, and aromatic groups in the high-field region. In the downfield region of the spectrum two doublets at δ 6.75 and 7.05 each of two protons integration were assigned to C-2', C-6' and C-3', C-5' aromatic protons. The methyl group attached at the terminal position of the aliphatic chain appeared as a triplet at δ 0.88 with a $J = 6.36$. Similarly, methylene protons at C-1'' and C-2'' at δ 2.81 and 2.24 show two triplets each of 2 H integration with a J value of 2.81 Hz and 2.25 Hz.

The 13C-NMR spectrum (BB, DEPT) (Table 1) showed twenty-one signals, including one methyl, thirteen methylene, four methine, and three quaternary carbons. In the downfield region signals appeared at δ 130.2, 115.4, 130.04, and 153.8 which were assigned to the C-1', C-2', C-6', C-3', C-5', and C-4' of aromatic carbons, while a signal at δ 173.7 indicated the presence of a carbonyl carbon in the form of ester in the molecule.

Similarly, two signals at δ 34.4 and 64.9 were assigned to the methylene carbons present in between ether oxygen and aromatic ring, while in the upfield region a signal at δ 14.1 was assigned to the methyl carbon attached at terminal position of the aliphatic chain. The long-range 1H-13C connectivities were established through HMBC technique.

In the HMBC spectrum (Figure 1), the C-1'' methylene protons (δ 2.81, t) showed correlations with C-2'' (δ 34.4) and another correlations of C-2'' (δ 130.04) and C-1' (δ 153.8), thus supporting the attachment of –CH$_2$–CH$_2$– to the phenol ring at para position. Similarly the two orthoprotons (C-2', C-6') also showed correlations with C-3' and C-5', respectively.

On the basis of all the above spectral data and comparison with the analogous structures in the literature [12] the compound 1 was named as royleanumoate. 3,4-Dihydroxymethyl benzoate 2 and oleanolic acid 3 were also isolated for the

![Scheme 1: The mass spectral fragmentation pattern for royleanumoate (I).](image)
first time from the chloroform soluble fraction of the crude extract of *T. royleanum* and identified by comparison with the literature data [13].

4. Conclusion

One new compound (benzene ester 1) and two known compounds (3,4-dihydroxymethyl benzoate 2 and oleanolic acid 3) have been isolated from *T. royleanum* Wall. ex Benth. The isolated compounds were confirmed by two-dimensional NMR technique, IR, and mass spectra.

Conflict of Interests

Authors have declared that there is no conflict of interests.

Acknowledgment

The authors are thankful to the Deanship of Scientific Research, King Saud University, Riyadh, Saudi Arabia, for funding the work through the research Group project no. RGP-210.

References

[1] J. Leila, H. B. Ghassem, and S. Hamide, “Exploration of medicinal species of *Lamiaceae* family in Ilkhji and Sharafaldin Regions of East Azerbaijan in Iran,” *Current Research Journal of Biological Sciences*, vol. 3, pp. 385–387, 2011.

[2] S. Dadjeil, K. Laamara, M. R. Y. Al-Hillo, and M. Pais, “Neo-clerodane diterpenoids from Teucrum polium ssp. aurasianum,” *Phytochemistry*, vol. 37, no. 6, pp. 1663–1666, 1994.

[3] N. Mihaela, S. Marina, D. S. Carmen et al., “Antimicrobial potential of some *Lamiaceae* essential oils against animal multiresistant bacteria,” *Lucrări Stiințifice Medicina Veterinară*, vol. 1, pp. 170–175, 2009.

[4] N. Ali and S. W. Ali Shah, “Antispasmodic activity of teucrium stockianum boiss,” *Pakistan Journal of Pharmaceutical Sciences*, vol. 24, no. 2, pp. 171–174, 2011.

[5] G. N. K. Kumari, S. Aravinda, J. Balachandran et al., “Antifeedant neo-clerodanes from Teucrum tomentosum Heyne. (Labiatae),” *Phytochemistry*, vol. 64, no. 6, pp. 1119–1123, 2003.

[6] J. Coll and Y. Tandron, “Neo-clerodane diterpenes from Teucrium fruticans,” *Phytochemistry*, vol. 65, no. 4, pp. 387–392, 2004.

[7] S. Omara, M. Marcottea, P. Fieldsb et al., “Antifeedant activities of terpenoids isolated from tropical Rutales,” *Journal of Stored Products Research*, vol. 43, pp. 92–96, 2007.

[8] L. M. Leandro, F. De Sousa Vargas, P. C. S. Barbosa, J. K. O. Neves, J. A. Da Silva, and V. P. Da Veiga-Junior, “Chemistry and biological activities of terpenoids from copaiba (*Copaifera spp.*) oleoresins,” *Molecules*, vol. 17, no. 4, pp. 3866–3889, 2012.

[9] V. Saroglou, M. Arfan, A. Shabir, D. Hadjipavlou-Litina, and H. Skaltsa, “Composition and antioxidant activity of the essential oil of *Teucrium royleanum* Wall. ex Benth growing in Pakistan,” *Flavour and Fragrance Journal*, vol. 22, no. 2, pp. 154–157, 2007.

[10] S. Ahmad, M. Arfan, A. L. Khan et al., “Allelopathy of *Teucrium royleanum* wall. Ex Benth from Pakistan,” *Journal of Medicinal Plants Research*, vol. 5, no. 5, pp. 765–772, 2011.

[11] S. Ahmad, M. Arfan, N. Riaz, R. Ullah, Z. Shah, and A. U.-H. A. Shah, “Royleanumin, a new phytotoxic neo-clerodane diterpenoid from *Teucrium royleanum*,” *Natural Product Communications*, vol. 7, no. 9, pp. 1137–1138, 2012.

[12] T. Dursta, J. Zhangh, S. MacKinnona, D. Leaman, J. T. Arasona, and B. J. R. Philogene, *Dictionary of Natural Products*, CAS Register no. 2150-43-8, Chapman and Hall, 2006.

[13] W.-H. Hui and M.-M. Li, “Acidic triterpenoids from *Lithocarpus attenuata*,” *Phytochemistry*, vol. 14, no. 3, pp. 785–787, 1975.