Therapeutic effect of urine-derived stem cells for protamine/lipopolysaccharide-induced interstitial cystitis in a rat model

Jia Li¹, Hui Luo², Xingyou Dong¹, Qian Liu¹, Chao Wu¹, Teng Zhang¹, Xiaoyan Hu¹, Yuanyuan Zhang³, Bo Song⁴* and Longkun Li¹*

Abstract

Background: Interstitial cystitis (IC) is a chronic inflammation disorder mainly within the submucosal and muscular layers of the bladder. As the cause of IC remains unknown, no effective treatments are currently available. Administration of stem cell provides a potential for treatment of IC.

Methods: This study was conducted using urine-derived stem cells (USCs) for protamine/lipopolysaccharide (PS/LPS)-induced interstitial cystitis in a rodent model. In total, 60 female Sprague–Dawley rats were randomized into three experimental groups (n = 5/group): sham controls; IC model alone; and IC animals intravenously treated with USCs (1.2 × 10⁶ suspended in 0.2 ml phosphate-buffered saline (PBS).

Results: Our data showed that the bladder micturition function was significantly improved in IC animals intravenously treated with USCs compared to those in the IC model alone group. The amount of antioxidants and antiapoptotic protein biomarkers heme oxygenase (HO)-1, NAD(P)H quinine oxidoreductase (NQO)-1, and Bcl-2 within the bladder tissues were significantly higher in IC animals intravenously treated with USCs and lower in the sham controls group as assessed by Western blot and immunofluorescent staining. In addition, the expression of autophagy-related protein LC3A was significantly higher in the IC model alone group than that in IC animals intravenously treated with USCs. Inflammatory biomarkers and apoptotic biomarkers (interleukin (IL)-6, tumor necrosis factor (TNF)α, nuclear factor (NF)-κB, caspase 3, and Bax) and the downstream inflammatory and oxidative stress biomarkers (endoplasmic reticulum stress and autophagy-related protein (GRP78, LC3, Beclin1)) in the bladder tissue revealed statistically different results between groups.

Conclusions: USCs restored the bladder function and histological construction via suppressing oxidative stress, inflammatory reaction, and apoptotic processes in a PS/LPS-induced IC rodent model, which provides potential for treatment of patients with IC.

Keywords: Urine, Bladder, Stem cells, Inflammation

Background

Bladder pain syndrome/interstitial cystitis (BPS/IC) has the characteristics of bladder pain plus the urinary symptoms of urgency, frequency, and nocturia [1]. In the nineteenth century, it was first described by the presence of red, bleeding areas on the bladder wall, known as Hunner’s lesions [2]. It is a chronic, noninfectious, probably inflammatory disorder of the urinary bladder [3]. The morbidity of BPS/IC ranges from 1 in 100,000 to 5.1 in 1000 in the worldwide population [3–5], and approximately 90% of patients are women [6]. BPS/IC reduces the quality of life for 3.3–7.9 million people in the US alone [2]. Despite the prevalence and highly investigated etiology and mechanisms of the obstinate disease, there have been only a few effective treatments reported so far. The key event for IC will be to find a safe and efficacious treatment.
Stem cell therapies have become the latest strategy aimed at treating IC. Human mesenchymal stem cells (MSCs) successfully alleviated IC in a rat model in which the Wnt pathways stimulated the regeneration of the damaged bladder epithelium [7]. Combined melatonin and adipose-derived MSC (ADMSC) treatment offered an additional benefit compared with monotherapy in protecting the urinary bladder against cyclophosphamide-induced acute IC in rats through suppression of oxidative stress and the inflammatory reaction [8]. However, the process to obtain these stem cells is very complicated. Therefore, a more concise and efficient strategy in stem cell therapy for IC is necessary.

Tissue-specific stem cells, such as ADMSCs [9], embryonic stem cells [10], and muscle-derived stem cells [11], are a very small subpopulation of cells, and isolating them from differentiated somatic cells present in the tissues and organs is very difficult. However, urine-derived stem cells (USCs), a subpopulation of stem cells that display many characteristics of MSCs, can be easily isolated from human voided urine [12–15]. USCs have the capacity for multipotent differentiation including endothelial and smooth muscle cells [16]. Therefore, USCs may represent a more promising cell therapy for the treatment of urinary dysfunction. One study clarified that human USCs or USCs genetically modified with fibroblast growth factor (FGF)2 revealed a more efficient therapeutic effect in erectile dysfunction (ED) in rats than MSCs [17]. Based on previous findings, we sought to test the hypothesis that USCs could protect against protamine/lipopolysaccharide (PS/LPS)-induced IC in a rat model through suppression of oxidative stress, the inflammatory reaction, and apoptosis.

Methods

Study design

Sixty female Sprague–Dawley (SD) rats were used in our study, which was approved by the Research Council and Animal Care and Use Committee of the Third Military Medical University, China. A total of 60 female SD rats weighing 200–230 g were housed at 20–25 °C under a standard 12 h/12 h light–dark cycle, and all rats received a standard diet. They were randomized into three experimental groups (20 rats each): sham controls, IC alone, and IC + USCs. Five female SD rats from each group was tested for 24-h urine volume level and Western blot detection of inflammatory biomarkers (interleukin (IL)-6, tumor necrosis factor (TNF)α, and nuclear factor (NF)-κB), apoptotic biomarkers (caspase 3 and Bax), endoplasmic reticulum stress (ERS) and autophagy-related proteins (GRP78, LC3A/B, and Beclin1), antioxidant biomarkers (heme oxygenase (HO)-1 and NAD(P)H quinone oxidoreductase (NQO)-1), and an antiapoptotic biomarker (Bcl-2). A group of five female SD rats was sacrificed for immunofluorescence (IF) testing for antioxidant biomarkers (HO-1 and NQO-1), immunohistochemical (IHC) testing for an autophagy biomarker (LC3), and the other 5 rats for histological testing. The remaining five female SD rats from each group were prepared for cystometry assessments.

USC culture in vitro and the experimental model of IC

We collected mid- and last-stream urine samples (average approximately 200 mL/sample) from five healthy male individuals who were 25 to 29 years old. We centrifuged each urine sample at 500 × g for 5 min to collect cells. The supernatant was carefully aspirated, and the cell pellet was gently resuspended in the initiation medium, which was a 1:1 mixture of KSFM and embryonic fibroblast medium (EFM) [15, 18]. The medium was changed every other day, and cells were split at 70–80% confluence as we previously reported [12].

The IC animal model received 10 mg/mL PS in the urinary bladder, 2 mg/mL LPS 30 min later, and the experimental conditions 45 min later as previously described [19]. The sham control group received a saline instillation only. The IC + USC group was given USCs (1.2 × 10⁶ cells suspended in 0.2 ml phosphate-buffered saline (PBS)) intravenously after the IC model was generated. The animals were sacrificed with high-dose anesthesia 5 days after treatment, and their bladders were removed (Fig. 1).

Collecting 24-h urine for quantification of urine volume and hematuria assessment at 4 days after IC induction

Twenty-four-hour urine samples were collected using metabolic cages from five female SD rats from each group at 4 days after IC induction prior to sacrificing the animals to test the color and volume of the urine and for hematuria in a clinical laboratory in Xinqiao Hospital.

Quantitative analysis of inflammatory, antiinflammatory, oxidative stress, antioxidative stress, apoptotic, antiapoptotic, ERS, and autophagy biomarkers in the bladder using Western blot

The bladder wall (n = 5) in each group was used for Western blotting. The bladder tissue was cut into small pieces, homogenized, and dissociated in radioimmunoprecipitation assay lysis buffer at 4 °C for 30 min. The homogenate was centrifuged at 15,000 × g for 10 min at 4 °C, and the supernatant was collected and used as the total protein. The protein concentration was measured. Following electrophoresis, we used a polyvinylidene difluoride (PVDF) membrane to transfer the proteins. Nonspecific proteins were blocked by incubating the membrane in 5% nonfat dry milk in T-TBS containing 0.05% Tween for 2 h. The membranes
were incubated overnight with primary antibodies, including the rabbit monoclonal antibodies anti-NQO1 (1:1000; Abcam, ab80588), anti-HO1 (1:1000; Abcam, ab68477), anti-LC3A/B (1:1000; Cell Signaling Technology, #12741), anti-Beclin-1 (1:1000; Cell Signaling Technology, #3495), and anti-NF-κB (1:1000; Cell Signaling Technology, #8242). The rabbit polyclonal antibodies included anti-GRP78 (1:1000; Abcam, ab21685), anti-Bax (1:1000; GeneTex, GTX109683), anti-Caspase3 (1:1000; GeneTex, GTX110543), anti-IL-6 (1:1000; GeneTex, GTX100064), anti-TNFα (1:1000; GeneTex, GTX110527), anti-TNFα (1:1000; GeneTex, GTX110527), and mouse polyclonal anti-GAPDH (1:1000; Beyotime, AG019-1). The secondary antibodies were horseradish peroxidase-conjugated goat anti-mouse IgG (1:5000; Zhongshan Inc., ZB2305) and goat anti-rabbit IgG (1:5000; Zhongshan Inc., ZB-2301). The samples were incubated in 5% nonfat dry milk in T-TBS containing 0.05% Tween. We collected the protein band images and analyzed the relative optical density (ROD) with molecular imaging using a ChemiDoc XRS + Image System (Bio-Rad Laboratories, Hercules, CA, USA).

Histological evaluation

The bladders of five SD rats from each group were transected and divided longitudinally into two sections for fixation in 4% paraformaldehyde. Five-micrometer sections were stained with hematoxylin and eosin and toluidine blue (Shengong Biotech, TE847). Subsequently, the histological score and mast cell counts were determined by an investigator in a blinded fashion. Bladder inflammation was assessed using a six-point scoring system as previously reported [21]. The quantification of mastocytes in the lamina propria and muscle layer was estimated at 200× magnification in five random sections from each group.

TUNEL staining

A TUNEL staining assay kit purchased from Roche Applied Science for the detection of apoptosis was used on paraffin sections of the bladder of each group according to the manufacturer's instructions. Quantitation of the number of positive cells was carried out at a magnification of 200× in five randomly chosen fields of view on each slide. The apoptosis index was calculated using the ratio of the apoptotic cells to total cells.

Bladder cystometry

Under urethane anesthesia, five SD rats from each group had body temperature (37–38 °C) saline infused at a rate...
of 0.1 mL/min using a syringe pump followed by the placement of a PE-50 catheter into the bladder. After a stabilizing time of approximately 30 min, urodynamic parameters including basal pressure (BP), maximum pressure (MP), and micturition frequency (MF) were evaluated.

Statistical analysis
SPSS v13.0 (SPSS) was used for all analyses by an investigator blinded to the treatment groups. A one-way analysis of variance (ANOVA) was used to analyze all outcomes, followed by Fisher’s test to assess differences among treatment groups. A probability value of <0.05 was considered significant.

Results

Changes in urine appearance, hematuria, and urine volume
In the IC group, the urine appearance was most turbid. The urine of the IC + USC group was less turbid than the urine of the IC group yet more turbid than the control at 4 days after IC induction (Fig. 2a). Additionally, the indicator of hematuria (the number of red blood cells/μL) revealed that the highest number was in the IC group, with more than 20 cells/μL (P < 0.01). In the IC + USC group, the red blood cell number (10–20 cells/μL) was higher than the control group (less than 10 cells/μL) and lower than the IC group (Fig. 2b) (P < 0.05). The 24-h urine volume showed the same pattern as the number of red blood cells (Fig. 2c).

Evaluation of inflammation-related factors
The expression of the inflammatory biomarkers IL-6, TNF-α, and NF-κB by Western blot in the bladder tissue was highest in the IC group compared to the IC + USC group and the control group. The biomarker expression in the IC + USC group was lower than in the IC group (Fig. 3a–d). The bladder tissue from the IC group indicated massive ulcers, obvious edema and hemorrhage, and increased inflammatory cell infiltration (particularly mast cells) in the submucosal and muscular layer compared with the control group. This situation was significantly improved in the IC + USC group (Fig. 3e–j). The quantitative assessment of the histological score was highest in the IC group, while the score of the IC + USC group was higher than control group (P < 0.05) and lower than the IC group (P < 0.05). Mast cell count in the IC + USC group was lower than in the IC group (P < 0.05) and higher than in the control group (P < 0.05) (Fig. 3k and l). These results demonstrated that the inflammatory response was the most severe in the IC group. The assessment of the IC + USC group was more severe than the control group and alleviated compared with the IC group.

Assessment of oxidative stress-related factors
The protein expression of two antioxidative indicators, HO-1 and NQO-1, by Western blot was remarkably lower in the control group than in the IC group and the IC + USC group, and notably lower in the IC group than in the IC + USC group (Fig. 4a–d). Moreover, the assessment of HO-1 and NQO-1 expression by IF showed a similar pattern compared to that of the protein expression among the three groups (Fig. 4e–l). These findings suggest an antioxidative response after the induction of IC injury and an enhancement of the antioxidant effect following USC administration.

Protein expression of apoptotic mediators
The protein expression of caspase 3 and Bax, two indexes of apoptosis, were significantly higher in the IC
group than in the control group and the IC + USC group, and were markedly higher in the IC + USC group than in the control group by Western blot. However, the index of antiapoptosis (Bcl-2 protein expression) was remarkably lower in the IC + USC group compared to the control group ($P < 0.05$) and higher than in the IC group ($P < 0.05$) (Fig. 5a–d). Furthermore, a TUNEL assay was performed to examine the levels of apoptosis in each group. In sections from the IC group rats, the most apoptotic nuclei were observed, whereas fewer were present in the IC + USC group and more were present in the control group (Fig. 5e–h). These results reveal that USC treatment exerted antiapoptotic effects.

Confirmation of the differences in ERS and autophagy-related factors
Currently, using Western blotting with GRP78, LC-3A/B, and Beclin1 detects the change in ERS and autophagy. The protein expression of GRP78, LC-3A/B, and Beclin1, which are one indicator of ERS and two indicators of autophagy, were highest in the IC group and
Changes in urodynamic parameters
The mean bladder contractions per hour in the IC + USC group were more frequent than in the control group and slower than in the IC group. The basal pressure of the IC group was higher than in the control group, and it was reduced in the IC + USC group. No statistical significance was found in the maximum pressure compared to the control group, indicating a recovered micturition function (Table 1 and Fig. 7).

Discussion
Urinary tissue-specific stem cells (USCs) revealed a more efficient therapeutic effect in stem cell therapy for ED in rats than mesenchymal stem cells (MSCs) [17]. Therefore, USCs may represent a more promising cell therapy for the treatment of urinary dysfunction. Hence, we conducted the current study to investigate the therapeutic impact of USCs on PS/LPS-induced interstitial cystitis in a rat model, which revealed several striking
implications. First, the architectural integrity of the bladder was preserved and the deterioration of bladder function was attenuated after USC therapy according to the urine appearance and urodynamic parameters. Second, USC treatment was associated with antiinflammatory, antioxidative, and proapoptosis effects in bladder tissue after IC was induced. Third, the internal environment of the bladder tissue after IC was induced was ameliorated by USC treatment, which was indicated by reduced ERS and autophagy.

IC has the characteristics of bladder pain plus the urinary symptoms of urgency, frequency, and nocturia [24]. The 24-h urine volume and hematuria are the two typical signs of IC. Clinically, an increased urine amount might result in urinary urgency and frequency as well as nocturia. One important finding in the present study is that the 24-h urine volume, hematuria, and urination frequency were markedly aggravated in IC animals without treatment, as in previous studies [7, 8]. USC treatment offered a
significant therapeutic effect in reducing urination frequency, 24-h urine volume, and the severity of hematuria in an IC rat model. Our results showed the benefit of USCs against urinary bladder injury in rodent IC and are consistent with a recent study that demonstrated significant protection offered by USCs against diabetic erectile dysfunction [17].

The inflammatory process is an important etiology of IC [22]. In patients with IC/BPS, the most common findings include bladder and pelvic pain, glomerulation under

Table 1 Urodynamic parameters changes

Urodynamic parameters	Control group	Interstitial cystitis group	Interstitial cystitis + urine-derived stem cell group
Basal pressure (cmH$_2$O)	2.10 ± 0.33	11.06 ± 5.66*	3.98 ± 2.14*
Maximum pressure (cmH$_2$O)	54.91 ± 4.28	34.32 ± 6.51*	43.77 ± 12.59
Micturition frequency (no./h)	9.87 ± 1.00	24.20 ± 2.88*	16.63 ± 2.44**

Data presented as means ± SD ($n = 5$)

*P < 0.05, versus the control group; **P < 0.05, versus the interstitial cystitis group
cystoscopic hydrodistention, and denudation or thinning of the bladder epithelium, suggesting that bladder inflammation and urothelial dysfunction occur in patients with IC/BPS [23, 24]. In our study, an essential finding was that the expression of the inflammatory biomarkers TNFα, NF-κB, and IL-6 was substantially augmented in IC animals without treatment compared with the control animals. We also found that the obvious edema and hemorrhage and the increased inflammatory cell infiltration (particularly mast cells) in the submucosal and muscular layer of the urinary bladder were comparable to those of previous studies [8, 19, 25]. With USC treatment, the inflammation was reduced and the architectural integrity of the bladder was preserved. These results suggested that USC treatment suppressed the inflammatory reaction in the IC rat model.

The pathogenesis of IC includes the overproduction of reactive oxygen and cytokines, which leads to extensive oxidative stress. In IC, the mechanism of oxidative damage comes into prominence [26]. In addition, in our study, we found that the antioxidant biomarkers HO-1 and NQO-1 by Western blot and IF were notably increased in the tissue of the urinary bladder in IC animals compared to those in the control group. Many stress responses such as ischemia–reperfusion injury could markedly increase these antioxidant mediators [20]. These indicators, acting as the scavengers for free radicals in the urinary bladder, were enhanced after USC treatment. These findings suggested that USC treatment suppressed oxidative stress in this experimental setting of IC injury.

Apoptosis is a stepwise process characterized by a series of stereotypical morphological changes that eventually lead to cell death [27]. The apoptotic process was highly activated in the urothelial cells of the IC/BPS specimens, which may have resulted from the upregulation of inflammatory signals [28]. In our study, when compared with the control group, the apoptotic biomarkers caspase 3 and Bax were significantly enhanced and the antiapoptotic indicator Bcl-2 was reduced in the IC group. In addition, significantly reduced expression of Bax and caspase 3 and a notably enhanced expression of Bcl-2 were demonstrated in the IC animals that received the USC treatment. Furthermore, the TUNEL assay results of the IC group rats indicated that the most apoptotic nuclei were observed, whereas fewer were present in the group that received USC treatment and more were present than in the control group. Our results showed that USC treatment protects the urinary bladder from apoptotic injury in IC rats.

In eukaryotic cells, the endoplasmic reticulum (ER) is the major site where secreted and transmembrane proteins are synthesized and folded. Depending on the physiological state and environmental conditions, the protein flux into the ER may vary substantially [29]. In IC, the physiological state and environmental conditions were changed and induced misfolded protein accumulation in the ER, which induced the unfolded protein response (UPR). The autophagy pathway and autophagy proteins may function as a central fulcrum that balance the beneficial and harmful effects of the host response to infection and other immunological stimuli [30]. IC is a type of inflammatory disease in which there is a low expression of autophagy [25]. In our study, we found that the ERS and autophagy biomarkers GRP78, LC3A/B, and Beclin1 were significantly enhanced in the IC group compared with the control group, and all of them were reduced after USC treatment. These results revealed that the physiological state, environmental conditions, and inflammation were ameliorated with USC treatment. Our study has two limitations. First, PS/LPS-induced interstitial cystitis in rats cannot fully replicate the pathophysiological changes in humans. Second, although we found that USCs could protect the urinary bladder from IC injury in rats, the specific mechanisms of the protective effect have not been identified in the present study, and thus further studies are needed to elucidate the details of the protective mechanism.

Conclusions
The results of this study revealed that USCs protected against PS/LPS-induced IC by suppressing oxidative stress, the inflammatory reaction, and apoptosis, and ameliorating urinary bladder environmental conditions. USCs can be accessed via a simple, noninvasive, and low-cost approach without surgical procedures. Our result may provide the basis for consideration of a prospective clinical trial to evaluate the USC clinical treatment effect of interstitial cystitis.
Abbreviations
ADMSC: Adipose-derived mesenchymal stem cell; BPS: Bladder pain syndrome; ED: Erectile dysfunction; ER: Endoplasmic reticulum; ERS: Endoplasmic reticulum stress; HO: Heme oxygenase; IC: Interstitial cystitis; IF: Immunofluorescence; IHC: Immunohistochemical; IL: Interleukin; MSC: Mesenchymal stem cell; NF: Nuclear factor; NQO: NADPH quinine oxidoreductase; PBS: Phosphate-buffered saline; PSAP: Prostate/ lipopolysaccharide; SD: Sprague–Dawley; TNP: Tumor necrosis factor; UPR: Unfolded protein response; USC: Urine-derived stem cell

Acknowledgements
The authors thank Yuanyuan Zhang from Wake Forest University for carrying out the USC culture.

Funding
This work was supported by grants from China’s NSFC grants program (81570886, 81230017, and 81600588)

Availability of supporting data
Data sharing is not applicable to this article because no datasets were generated or analyzed during the current study.

Authors’ contributions
YZ and BS carried out the cell cultures; HL, XD, and QL developed the interstitial cystitis rat model, and participated in the molecular studies. JI, CW, and TZ carried out the Western blotting, hematoxylin and eosin staining, immunofluorescent staining, immunohistochemical staining, and TUNEL staining experiments. JL and XH carried out urodynamic parameter experiments. BS participated in the manuscript writing. YZ and BS carried out the cell cultures; HL, XD, and QL developed the protocols and institutional affiliations. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Informed consent was obtained from all patients.

Ethical Approval and Consent to participate
The human urine collection from five healthy adult volunteers and the informed consent details were approved by the Third Military Medical University Health Sciences Institutional Review Board. Urine donors provided informed consent.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1 Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, China. 2 Department of Physical examination, Second Affiliated Hospital, Third Military University, Chongqing 40037, China. 3 Wake Forest Institute of Regenerative Medicine, Wake Forest University, Winston Salem, North Carolina, USA.

References
1. Hanno PM, Burks DA, Clemons JQ, Dmochowski RR, Erickson D, Fitzgerald MP, et al. Interstitial Cystitis Guidelines Panel of the American Urological Association Education and Research, Inc. AUA guideline for the diagnosis and treatment of interstitial cystitis/bladder pain syndrome. J Urol. 2011;185(6):2162–70.
2. Berry SH, Elliott MN, Suttrop M, Bogart LW, Stoto MA, Eggers P, et al. Prevalence of symptoms of bladder pain syndrome/interstitial cystitis among adult females in the United States. J Urol. 2011;186(2):540–4.
3. Phatak S, Foster Jr HE. The management of interstitial cystitis: an update. Nat Clin Pract Urol. 2006;3(1):45–53.
4. Jones CA, Nyberg L. Epidemiology of interstitial cystitis. Urology. 1997;49(5A Suppl):2–9.
5. Hanno P, Reay S, Moldwin R, Van Ophoven A. International Consultation on IC—Rome, September 2004. Forging an International consensus: progress in painful bladder syndrome/interstitial cystitis. J Urol. 2005;172:2476.
6. Nordling J. Interstitial cystitis: how should we diagnose it and treat it in 2004? Curr Opin Urol. 2004;14(6):323–7.
7. Song M, Lim J, Yu HY, Park J, Chun JY, Jeong J. Mesenchymal stem cell therapy alleviates interstitial cystitis by activating Wnt signaling pathway. Stem Cells Dev. 2015;24(14):1458–57.
8. Chen YT, Chiang HI, Chen CH, Sung PH, Lee FY, Tsai TH. Melatonin treatment further improves adipose-derived mesenchymal stem cell therapy for acute interstitial cystitis in rat. J Pain Res. 2015;7(3):248–61.
9. Baer PC. Adipose-derived mesenchymal stromal/stem cells: an update on their phenotype in vivo and in vitro. World J Stem Cells. 2014;6(3):256–65.
10. Kätikreddy KR, Jurkunas UV. Limbal stromal tissue specific stem cells and their differentiation potential to corneal epithelial cells. Methods Mol Biol. 2013;134(88):89–101.
11. Brack AS, Rando TA. Tissue-specific stem cells: lessons from the skeletal muscle satellite cell. Cell Stem Cell. 2012;10(5):504–14.
12. Zhang Y, McNeill E, Tian H, Soker S, Andersson KE, Yao JJ. Urine derived cells are a potential source for urological tissue reconstruction. J Urol. 2008;180(5):2226–33.
13. Bharadwaj S, Liu G, Shi Y, Markert C, Andersson KE, Zhang Y. Characterization of urine-derived stem cells obtained from upper urinary tract for use in cellular based urological tissue engineering. Tissue Eng Part A. 2011;17(15–16):2123–32.
14. Bodin A, Bharadwaj S, Wu S, Gatenholm P, Atala A, Zhang Y. Tissue-engineered conduit using urine-derived stem cells seeded bacterial cellulose polymer in urinary reconstruction and diversion. Biomaterials. 2010;31(34):8889–901.
15. Wu S, Wang Z, Bharadwaj S, Hodges SJ, Atala A, Zhang Y. Implantation of autologous urine derived stem cells expressing vascular endothelial growth factor for potential use in genitourinary reconstruction. J Urol. 2011;186(2):640–7.
16. Bharadwaj S, Liu G, Shi Y, Wu R, Yang B, He T. Multipotent differentiation of human urine-derived stem cells: potential for therapeutic applications in urology. Stem Cells. 2013;31(9):1840–56.
17. Ouyang B, Sun X, Han D, Chen S, Yao B, Gao Y. Human urine-derived stem cells alone or genetically-modified with FGF2 improve type 2 diabetic erectile dysfunction in a rat model. PLoS One. 2014;9(3):e92825.
18. Wu S, Liu Y, Bharadwaj S, Atala A, Zhang Y. Human urine-derived stem cells seeded in a modified 3D porous small intestinal submucosa scaffold for urethral tissue engineering. Biomaterials. 2011;32(5):1317–26.
19. Sinanoglu O, Dogan Elici L, Elici S. Comparison of intravesical application of chondroitin sulphate and colchicine in rat prostate/lipopolysaccharide induced cystitis model. J Urol. 2014;191(1):1296–300.
20. Chen YT, Sun CK, Lin YC, Chang LT, Chen YL, Tsai TH. Adipose-derived mesenchymal stem cell protects kidneys against ischemia-reperfusion injury through suppressing oxidative stress and inflammatory reaction. Transl Med. 2011;9:51.
21. Starkman JS, Martinez-Ferrero M, Iturregui JM, Uwamariya C, Dmochowski RR, Bhowmick NA. Nicotinic signaling ameliorates acute bladder inflammation induced by prostatic sulfatide or cyclophosphamide. J Urol. 2008;179(6):2440–6.
22. Warren JW. Bladder pain syndrome/interstitial cystitis as a functional somatic syndrome. J Psychosom Res. 2004;57(1):5–9.
23. Keay S. Cell signaling in interstitial cystitis/painful bladder syndrome. Cell Signal. 2008;20(12):2174–9.
24. Homma Y, Ueda T, Tomoe H, Lin AT, Kuo HC, Lee MH. Clinical guidelines for interstitial cystitis and hypersensitive bladder syndrome. Int J Urol. 2009;16(7):597–615.
25. Zhao J, Song Q, Wang L, Dong X, Yang X, Bai X. Detrusor myocyte autophagy protects the bladder function via inhibiting the inflammation in cyclophosphamide-induced cystitis in rats. PLoS One. 2015;10(4):e0122597.
26. Ener K, Keskü M, Aldemir M, Özcan MF, Okulu E, Özayar A. Evaluation of oxidative stress status and antioxidant capacity in patients with painful bladder syndrome/interstitial cystitis: preliminary results of a randomised study. Int Urol Nephrol. 2015;47(8):1297–302.
27. Meier P, Finch A, Evan G. Apoptosis in development. Nature. 2000;407(6805):796–801.
28. Lee CL, Jiang YH, Kuo HC. Increased apoptosis and suburothelial inflammation in patients with ketamine-related cystitis: a comparison with non-ulcerative interstitial cystitis and controls. BJU Int. 2013;112(8):1156–62.
29. Fung TS, Torres J, Liu DX. The emerging roles of viroporins in ER stress response and autophagy induction during virus infection. Viruses. 2015;7(6):2834–57.
30. Levine B, Mizushima N, Virgin HW. Autophagy in immunity and inflammation. Nature. 2011;469(7330):323–35.