Band Offset Measurements in Atomic-Layer-Deposited $\text{Al}_2\text{O}_3/\text{Zn}_{0.8}\text{Al}_{0.2}\text{O}$ Heterojunction Studied by X-ray Photoelectron Spectroscopy

Baojun Yan1*, Shulin Liu1, Yuekun Heng1, Yuzhen Yang1,2, Yang Yu1,3 and Kaile Wen1,4

Abstract

Pure aluminum oxide (Al_2O_3) and zinc aluminum oxide ($\text{Zn}_x\text{Al}_{1-x}\text{O}$) thin films were deposited by atomic layer deposition (ALD). The microstructure and optical band gaps (E_g) of the $\text{Zn}_x\text{Al}_{1-x}\text{O}$ ($0.2 \leq x \leq 1$) films were studied by X-ray diffractometer and Tauc method. The band offsets and alignment of atomic-layer-deposited $\text{Al}_2\text{O}_3/\text{Zn}_{0.8}\text{Al}_{0.2}\text{O}$ heterojunction were investigated in detail using charge-corrected X-ray photoelectron spectroscopy. In this work, different methodologies were adopted to recover the actual position of the core levels in insulator materials which were easily affected by differential charging phenomena. Valence band offset (ΔE_V) and conduction band offset (ΔE_C) for the interface of the $\text{Al}_2\text{O}_3/\text{Zn}_{0.8}\text{Al}_{0.2}\text{O}$ heterojunction have been constructed. An accurate value of $\Delta E_V = 0.82 \pm 0.12$ eV was obtained from various combinations of core levels of heterojunction with varied Al_2O_3 thickness. Given the experimental E_g of 6.8 eV for Al_2O_3 and 5.29 eV for $\text{Zn}_{0.8}\text{Al}_{0.2}\text{O}$, a type-I heterojunction with a ΔE_C of 0.69 ± 0.12 eV was found. The precise determination of the band alignment of $\text{Al}_2\text{O}_3/\text{Zn}_{0.8}\text{Al}_{0.2}\text{O}$ heterojunction is of particular importance for gaining insight to the design of various electronic devices based on such heterointerface.

Keywords: Atomic layer deposition, X-ray photoelectron spectroscopy, Heterojunction, Microchannel plate

Background

Nano-thick oxide films with high resistance have attracted much attention as the most promising conductive layer for the applications of microchannel plate (MCP) as electron multiplier [1, 2], resistive memories [3], and electro-optical micro-electro mechanical systems (MEMS) [4]. A large research effort has been devoted to the novel idea of adjusting resistivity of such thin films due to the aforementioned large potential applications in a special environment. MCP is a thin glass plate with thickness of about 500 μm consisting of several millions pores of a cylinder geometry with a 4–25-μm diameter and with a bias angle usually 5°–13° to the normal of the plate surface, and the high aspect ratio in each pore is about 20:1–100:1 [5, 6]. For recent MCP fabrication, two kinds of nano-thick layers are deposited on the MCP pore surfaces to conduct an electron multiplication function [1, 2]. The first layer is a conductive layer for supplying electrons, and the second layer is a secondary electron emission (SEE) layer for generating electrons. The three-dimensional surfaces and high aspect ratio of MCP should be firstly taken into consideration for depositing uniform thickness and composition of thin films. So far, the only effective approach growing high-quality thin films is the atomic layer deposition (ALD) technique based on sequential self-terminating gas-solid reactions [7].

ZnO is an n-type semiconductor with a direct bandgap of around 3.37 eV and a large exciton binding energy of 60 meV at room temperature [8, 9]. A lot of elements such as Mg [10, 11], Cd [12], Ga [13], W [14], and Mo [15] were used to doping in ZnO in order to tune its optical and electrical properties for special applications. In electron multiplier application, such as MCP, zinc aluminum oxide ($\text{Zn}_x\text{Al}_{1-x}\text{O}$) films have been investigated because of their thermal stability in a special...
application environment and low cost of industrialization. The properties of Zn$_x$Al$_{1-x}$O films can be controlled by changing the Al content, paving a way to design optoelectronic and photonic devices based on this material. Usually, high-resistivity Zn$_x$Al$_{1-x}$O thin films as a conductive layer with x at the range of 0.7–0.85 have been applied in the field of electron multiplier [16]. For SEE layers, boron-doped diamond with hydrogen-terminated material has higher SEE coefficient than that of other traditional insulators. This provides a strong impetus for the development of electron multipliers. However, in the presence of degradation due to electron beam-induced contamination, these must be seriously regarded as preliminary [17]. From a practical point of view, two kinds of traditional insulators used as SEE layers in MCP are magnesium oxide (MgO) and Al$_2$O$_3$ thin films [18]. Although pure MgO has higher SEE coefficient than that of Al$_2$O$_3$, it is limited in the application on MCP.

Several samples were used in this study: nine 80-nm-thick Zn$_x$Al$_{1-x}$O samples $(0.2 \leq x \leq 1)$ individually grown on n-Si (1 1 1) and quartz substrates, a 30-nm-thick Al$_2$O$_3$ grown on n-Si (1 1 1) substrate, and 3, 4, 5, 8 nm of Al$_2$O$_3$ on 80 nm of Zn$_{0.85}$Al$_{0.2}$O grown on n-Si (1 1 1). The quartz substrates were ultrasonically cleaned in an ethanol/acetone solution and then rinsed in deionized water. The polished Si substrates were dipped in hydrofluoric acid for 30 s and then placed in an ALD chamber waiting for deposition. For Zn$_x$Al$_{1-x}$O layer deposition, ZnO:Al$_2$O$_3$ ALD was carried out using diethylzinc (DEZ), trimethylaluminum (TMA), and deionized water as Zn, Al, and oxidant precursor, respectively. The Al$_2$O$_3$ ALD was performed using separate TMA and H$_2$O exposures following the sequence DEZ/N$_2$/H$_2$O/N$_2$ (150 ms/4 s/150 ms/4 s). The ZnO ALD was performed using separate DEZ and H$_2$O exposures following the sequence DEZ/N$_2$/H$_2$O/N$_2$ (150 ms/4 s/150 ms/4 s). The doping was carried out by substituting TMA exposure for DEZ. The Zn contents in the Zn$_x$Al$_{1-x}$O layers were controlled by adjusting the ratio of the pulse cycles of DEZ and TMA, where the Zn content x was varied from 0.2 to 1 (pure ZnO) atom %. For Zn$_{0.8}$Al$_{0.2}$O layer, the DEZ and H$_2$O pulses were alternated, and every fifth DEZ pulse was substituted with a TMA pulse. Ultrahigh purity nitrogen was used as a carrier and purge gas. The reaction temperatures were 200 °C. The detailed parameters are listed in Table 1.

Characterization

Optical transmittance spectra in a wavelength range from 185 to 700 nm were carried out by using a double-beam UV-Vis-IR spectrophotometer (Agilent Cary 5000) at room temperature in air. The crystal structure of the films were characterized by X-ray diffraction (XRD, Bruker D8) using Cu K$_\alpha$ radiation (40 kV, 40 mA, λ = 1.54056 Å). The film thickness was measured by Spectroscopic Ellipsometry (Sopra GESSE) where the incident angle was fixed at 75°, and the wavelength region from 230 to 900 nm was scanned with 5-nm steps. And the ellipsometric thicknesses of samples ALD03, ALD04, ALD05, and ALD06 were 3.01, 4.02, 5.01, and 8.01 nm, respectively. The XPS (PHI Quantera SXM) is used to analyze both the core levels (CLs) and valence band spectra of the samples. Charge neutralization was performed with an electron flood gun, and all XPS spectra were calibrated by the C 1s peak at 284.6 eV. In order to avoid differential charging effect, during the measurement, the spectra were taken after a few minutes of X-ray irradiation. All the samples are measured under the same conditions in order to acquire reliable data.

Methods

Sample Preparation

Several samples were used in this study: nine 80-nm-thick Zn$_x$Al$_{1-x}$O samples $(0.2 \leq x \leq 1)$ individually grown on n-Si (1 1 1) and quartz substrates, a 30-nm-thick Al$_2$O$_3$ grown on n-Si (1 1 1) substrate, and 3, 4, 5, 8 nm of Al$_2$O$_3$ on 80 nm of Zn$_{0.85}$Al$_{0.2}$O grown on n-Si (1 1 1).

In this work, we will study the structure and optical E_g of Zn$_x$Al$_{1-x}$O $(0.2 \leq x \leq 1)$ thin films firstly, and then, we especially determine the ΔE_V and ΔE_C of the Al$_2$O$_3$/Zn$_{0.8}$Al$_{0.2}$O heterojunction by using high-resolution X-ray photoelectron spectroscopy (XPS).
Calculations

The ΔE_V of the $\text{Al}_2\text{O}_3/\text{Zn}_{0.8}\text{Al}_{0.2}\text{O}$ heterojunction can be calculated from Kraut’s formula

$$\Delta E_V = \left(E_{\text{Zn}_{0.8}\text{Al}_{0.2}\text{O}}^{\text{CL}}(y) - E_{\text{Zn}_{0.8}\text{Al}_{0.2}\text{O}}^{\text{VBM}}(y) \right) - \left(E_{\text{Al}_2\text{O}_3}^{\text{CL}}(x) - E_{\text{Al}_2\text{O}_3}^{\text{VBM}}(x) \right) - \Delta E_{\text{CL}} \tag{1}$$

where $\Delta E_{\text{CL}} = \left(E_{\text{Zn}_{0.8}\text{Al}_{0.2}\text{O}}^{\text{CL}}(y) - E_{\text{Zn}_{0.8}\text{Al}_{0.2}\text{O}}^{\text{VBM}}(y) \right)$ was the energy difference between feature y and feature x CLs, which were measured by XPS measurement in the heterojunction sample, and $\left(E_{\text{Al}_2\text{O}_3}^{\text{CL}}(x) - E_{\text{Al}_2\text{O}_3}^{\text{VBM}}(x) \right)$ and $\left(E_{\text{Zn}_{0.8}\text{Al}_{0.2}\text{O}}^{\text{CL}}(y) - E_{\text{Zn}_{0.8}\text{Al}_{0.2}\text{O}}^{\text{VBM}}(y) \right)$ were the Al_2O_3 and $\text{Zn}_{0.8}\text{Al}_{0.2}\text{O}$ bulk constants, which were obtained on the respective thick films. The VBM values were determined by linear extrapolation of the leading edge to the baseline of the valence band spectra. A root sum square relationship is used to combine the uncertainties in the different binding energies to determine the uncertainty of calculated results [26].

Results and Discussion

Structure and Band Gaps of Zn$_x$Al$_{1-x}$O Samples

The XRD patterns of the as-deposited 80-nm-thick Zn$_x$Al$_{1-x}$O ($x = 0.2, 0.6, 0.8, 0.9, 1$) thin films grown on quartz and Si substrates are shown in Fig. 1a, b, respectively. For the pure ZnO grown on quartz substrates in Fig. 1a, the strong peaks at 32.4° and 34.8° and the relatively weak peaks at 36.5° and 57.2° come from hexagonal ZnO phase, indicating the polycrystalline nature of the ZnO layer. And strong (0 0 2) peak shows the preferential orientation growth of ALD ZnO. However, the above characteristic peaks become weak for Zn$_{0.9}$Al$_{0.1}$O sample and disappear for Zn$_{x}$Al$_{1-x}$O ($x \leq 0.8$) samples, which suggests that ZnO crystallization is suppressed with Al concentration increase. Besides, the broad peak ranging from 20° to 30° is the typical pattern of the quartz substrate. For Si substrate, the strong peaks around 28.4° and 58.9° are easily detected (data not shown). These peaks are corresponding to the diffractions originated from Si (1 1 1) and Si (2 2 2) crystal planes. In addition, the relatively weak peaks in Fig. 1b at $2\theta = 32.6^\circ$, 33.2°, 35.4°, 35.9°, 38.8°, 39.2°, and 42.8° in the diffractograms that arise from the Si substrate itself are also observed. These unknown peaks may be related to the process conditions for producing crystalline silicon and are observed in previous work [27, 28]. Except for diffraction peaks from the Si substrate, no other diffraction peaks from the Zn$_x$Al$_{1-x}$O ($x \leq 0.9$) samples are detected. Only (0 0 2) and weak (1 1 0) peaks appear in the pure ZnO sample. From the above results, the crystal quality of the Zn$_x$Al$_{1-x}$O film is a serious decline with the increasing concentration of Al content. It is well known that the particle size of Al ions is less than that of Zn ions. Zn is easily substituted by Al when doping concentration of Al increases. This results in weakened ZnO crystallinity, so the structure of Zn$_x$Al$_{1-x}$O

Sample no.	Substrate	Material	Thickness (nm)	Composition	Characterization
ALD01	n-Si (111), quartz	Zn$_{0.8}$Al$_{0.2}$O	80	Zn:Al = 4:1 (atomic ratio)	XPS, XRD and UV-Vis
ALD02	n-Si (111)	Al$_2$O$_3$	30	Pure	XPS
ALD03	n-Si/ALD01	Al$_2$O$_3$	3	Pure	XPS, SE
ALD04	n-Si/ALD01	Al$_2$O$_3$	4	Pure	XPS, SE
ALD05	n-Si/ALD01	Al$_2$O$_3$	5	Pure	XPS, SE
ALD06	n-Si/ALD01	Al$_2$O$_3$	8	Pure	XPS, SE

Fig. 1 XRD patterns of Zn$_x$Al$_{1-x}$O samples deposited on a quartz substrate and b Si substrate
(x ≤ 0.8) samples is amorphous, in good agreement with previous results [29]. Taken into consideration, Zn$_x$Al$_{1-x}$O layer growth appears to be substrate sensitive and Al doping concentration has an influence on the crystallization of the films.

Figure 2a shows transmission spectra of the Zn$_x$Al$_{1-x}$O samples deposited on quartz substrate. The average transmittance is above 80% in the visible wavelength for all samples. It is found that ZnO film exhibits abrupt absorption edge which appears at ~390 nm corresponding to the fundamental E_g of ZnO. A blue shift of the absorption edge is apparently observed when Al concentration increases. The E_g of Zn$_{0.8}$Al$_{0.2}$O thin films can be obtained by fitting the sharp absorption edges. The relationship between absorption coefficient (α) and E_g of direct band gap semiconductor is given by Tauc equation [30], $(\alpha h\nu)^{2} = B(\nu - E_g)$, where $h\nu$ is the photon energy and B is a constant. The dependence of $(\alpha h\nu)^{2}$ on photon energy is shown in Fig. 2b. The E_g is obtained by the extrapolations of the liner regions of the optical absorption edges. The E_g of pure ZnO thin film deposited by ALD is 3.26 eV, which is consistent with the previous reports [31, 32]. With the Zn concentration x decreases from 0.9 to 0.2, the E_g of Zn$_{0.8}$Al$_{0.2}$O thin films increases from 4.11 to 6.51 eV. It is directly demonstrated that the E_g of Zn$_{0.8}$Al$_{0.2}$O thin films can be adjusted in a large range by controlling the Al doping concentration, which makes it a suitable candidate for application in many scientific research fields [33, 34]. For the new type of MCP, the properties of Zn$_{0.8}$Al$_{0.2}$O thin film are suitable for conductive layer proved by previous study [2]. Therefore, the E_g of atomic-layer-deposited Zn$_{0.8}$Al$_{0.2}$O thin film is 5.29 eV, which is sufficient to make a band gap discontinuity in Al$_2$O$_3$/Zn$_{0.8}$Al$_{0.2}$O heterojunction and is used for calculating the ΔE_C value later.

Valence and Conduction Band Offset Measurements of Al$_2$O$_3$/Zn$_{0.8}$Al$_{0.2}$O Heterojunction

The XPS spectra of survey scan, CLs, and VBM region for Zn$_{0.8}$Al$_{0.2}$O and Al$_2$O$_3$ samples are shown in Fig. 3. In this study, we find that the CLs positions of the Zn$_{0.8}$Al$_{0.2}$O and Al$_2$O$_3$ thin films do not change as a function of X-ray irradiation time for 15 min (data not shown), because of operating a low energy electron flood gun. Figure 3a, e shows the whole scanning spectrum of the thick Zn$_{0.8}$Al$_{0.2}$O and Al$_2$O$_3$ thin films, respectively. The C 1s peak at 284.6 eV appeared due to some surface contamination, and the Ar 2p peak at 242.1 eV appeared because of residual inert gas composition in the ultrahigh vacuum chamber. The peaks in Fig. 3a located 660, 652, 582, 573, 559, 495, and 472 eV are Auger lines of Zn element. The stoichiometry of the thick films are checked by the ratio of the integrated area of Zn 2p peak to Al 2p peak for the Zn$_{0.8}$Al$_{0.2}$O sample and Al 2p peak to O 1s peak for the Al$_2$O$_3$ sample. Both are corrected by corresponding atomic sensitivity factors S [35], taking into account their corresponding photoionization cross-sections of CLs calculated by Scofield [36], and the mean free path of the photoelectrons calculated by Tanuma et al [37]. Here, the S values are calculated to be 0.256, 2.768, and 0.733 for Al 2p, Zn 2p$_{3/2}$, and O 1s. The atomic ratios Zn:Al = 3.97:1.01 for Zn$_{0.8}$Al$_{0.2}$O and Al:O = 1.99:3.01 for Al$_2$O$_3$ compare well with that of designed ratio of atomic layer deposition, which indicate good stoichiometry of the Zn$_{0.8}$Al$_{0.2}$O and Al$_2$O$_3$ layers. The high-resolution scans of Zn 2p$_{3/2}$ and Zn 2p$_{1/2}$ CLs of Zn$_{0.8}$Al$_{0.2}$O are shown in Fig. 3b, c. The peaks fitted using Shirley backgrounds and Voigt (mixed Lorentzian-Gaussian) functions located 1021.41 and 1044.51 eV in Fig. 3b, c correspond to the electronic states of Zn 2p$_{3/2}$ and Zn 2p$_{1/2}$, respectively, and both are fitted by a single contribution, attributed to the bonding configuration Zn-O. The Al 2p peak of Al$_2$O$_3$ located 74.35 eV and O 1s peak located 531.1 eV are shown in Fig. 3f, g. The Al 2p spectrum as fitted by a single contribution, attributed to the bonding configuration Al-O. However, for the O 1s spectrum, an additional peak low-intensity higher binding energy component is also observed. This extra component is attributed to both O-Al and O-H bonds [38]. The VBM positions are determined by a linear extrapolation of the
leading edge of the valence band spectrum and the background [39], as shown in Fig. 3d,h. This linear method has already been widely used to determine the VBM of semiconductors with high accuracy. The VBM values of atomic-layer-deposited thick Zn$_{0.8}$Al$_{0.2}$O and Al$_2$O$_3$ samples are 2.26 and 3.19 eV, respectively. The scatter of the data relative to the fit are estimated as an uncertainty in VBM positions of less than 0.03 eV. The parameters deduced from Fig. 3 are summarized in Table 2 for clarity.

Four CLs of Al$_2$O$_3$/Zn$_{0.8}$Al$_{0.2}$O heterojunction with different Al$_2$O$_3$ thickness are shown in Fig. 4. The Al 2p, Zn 2$p_{1/2}$, and Zn 2$p_{3/2}$ XPS spectra in Fig. 4(a, e, i), (b, f, j), and (c, g, k), respectively, are fitted by a single contribution, attributed to the bonding configurations Al-O and Zn-O. For the O 1s XPS spectrum in Fig. 4d, h, l, an additional low-intensity higher binding energy component is observed. The extra component is attributed to metal (Al, Zn)-O bonding at the interface and/or inelastic losses to free carries in the Al$_2$O$_3$ layer, similar results obtained by previous study [19]. With the increase of the Al$_2$O$_3$ thickness, the intensity of Zn 2$p_{1/2}$ peak is weakened while the energy resolution is deteriorated shown in Fig. 4f. It is difficult to observe and fit for Al$_2$O$_3$ thickness of 5 nm as shown in Fig. 4j. So, the peak position of Zn 2$p_{1/2}$ in 5-nm Al$_2$O$_3$ sample listed by a bold number in Table 2 is a large deviation as a result of the big error of fitting. The CLs of Al$_2$O$_3$/Zn$_{0.8}$Al$_{0.2}$O samples are summarized in Table 2.

The ΔE_V of the Al$_2$O$_3$/Zn$_{0.8}$Al$_{0.2}$O heterojunction is determined from the energy separation between the CLs in the Al$_2$O$_3$/Zn$_{0.8}$Al$_{0.2}$O sample and the VBM to CLs separations in the thick Al$_2$O$_3$ and Zn$_{0.8}$Al$_{0.2}$O samples, respectively. Table 3 lists the ΔE_V values for all Al$_2$O$_3$ samples with thickness of 3–5 nm, and the error in each value is ± 0.07 eV. Therefore, the averaged ΔE_V value is 0.87 ± 0.22 eV. It is important to note that the calculation does not include the italic numbers in Table 3 because of the big error fitting of CLs of Zn 2$p_{1/2}$ in the 5-nm Al$_2$O$_3$/Zn$_{0.8}$Al$_{0.2}$O sample.

However, there are obvious considerable CL shifts up to 0.6 eV sensitive to the thicknesses of the Al$_2$O$_3$ and Zn$_{0.8}$Al$_{0.2}$O layers from the given experimental data in Table 2, and different ΔE_V values are obtained in the

![Fig. 3 XPS spectra for (a) survey scan, (b) Zn 2$p_{3/2}$, (c) Zn 2$p_{1/2}$, and (d) VBM of Zn$_{0.8}$Al$_{0.2}$O and (e) survey scan, (f) Al 2p, (g) O 1s, and (h) VBM of Al$_2$O$_3$ with application of a low-energy electron flood gun](image)

| Table 2 Peak positions of CLs and VBM positions used to calculate the ΔE_V of the Al$_2$O$_3$/Zn$_{0.8}$Al$_{0.2}$O heterojunction |
|-----------------|-----------------|-----------------|-----------------|-----------------|
| | Zn$_{0.8}$Al$_{0.2}$O | Al$_2$O$_3$ | 3 nm Al$_2$O$_3$/Zn$_{0.8}$Al$_{0.2}$O | 4 nm Al$_2$O$_3$/Zn$_{0.8}$Al$_{0.2}$O | 5 nm Al$_2$O$_3$/Zn$_{0.8}$Al$_{0.2}$O |
| Al 2p | 74.35 | 74.6 | 74.93 | 74.87 |
| O 1s | 531.1 | 531.32 | 531.66 | 531.63 |
| Zn 2$p_{3/2}$ | 1021.41 | 1021.69 | 1022.05 | 1021.97 |
| Zn 2$p_{1/2}$ | 1044.51 | 1044.85 | 1045.11 | 1045.64 |
| VBM | 2.26 | 3.19 | | |

The peak position of Zn 2$p_{1/2}$ in 5-nm Al$_2$O$_3$ sample listed by a bold number.
various combinations of XPS CLs in Table 3. It is directly proved that the charging phenomenon generated by the X-ray irradiation results in adverse effects on the ΔE_V determination when taking XPS measurement on insulator/semiconductor heterojunction in spite of operating neutralizing electron gun. As has been widely reported, the influences of differential charging on the band offsets determination cannot be neglected even in very thin oxides. Therefore, zero charging method is adopted in this study in order to eliminate charging-induced errors and recover the accurate ΔE_V value.

The error in the ΔE_V measurement is resulting from the differential charging effect that prevents the correct determination of the energy differences, such as between

Table 3 The ΔE_V values of the Al_2O_3/Zn_{0.8}Al_{0.2}O heterojunction with Al_2O_3 thickness of 3–5 nm

ΔE_V	3 nm Al_2O_3/Zn_{0.8}Al_{0.2}O	4 nm Al_2O_3/Zn_{0.8}Al_{0.2}O	5 nm Al_2O_3/Zn_{0.8}Al_{0.2}O	
	Zn 2p_{3/2}	Zn 2p_{1/2}	Zn 2p_{3/2}	Zn 2p_{1/2}
Al 2p	0.9	0.84	0.87	0.89
O 1s	0.87	0.81	0.85	0.89

The calculation does not include the italic numbers

Fig. 4 CLs of Al_2O_3/Zn_{0.8}Al_{0.2}O samples with varied Al_2O_3 thickness a-d 3 nm, e-h 4 nm, and i-l 5 nm, with application of a low-energy electron flood gun.
the Al 2p and Zn 2p\(3/2\) signals even in very thin Al\(_2\)O\(_3\) films in heterojunction. In Fig. 5, the binding energies of the Al 2p, Zn 2p\(3/2\), and Zn 2p\(1/2\) CLs for the 3, 4, 5, and 8 nm Al\(_2\)O\(_3\) films are plotted as a function of X-ray irradiation time. The binding energies of Al 2p, Zn 2p\(3/2\), and Zn 2p\(1/2\) CLs of the 3-nm Al\(_2\)O\(_3\) sample in Fig. 5a increase slowly until they stabilize on a steady state value of 74.63 ± 0.01, 1021.77 ± 0.01, and 1044.83 ± 0.02 eV, respectively. Similar time dependencies are observed in the 4-, 5-, and 8-nm Al\(_2\)O\(_3\) films, as shown in Fig. 5b–d. The results show that CL steady state spectra are obtained after stabilization of the signals in the heterojunction-considered charge saturated when X-ray irradiation time is more than 25 min. Therefore, X-ray irradiation time is one of the most important parameters to determine the insulator/semiconductor band offsets. Layer thickness dependence in peak positions is mainly resulting from the differential charging effects. True peak positions can be acquired by extrapolating the measured binding energies to zero oxide thickness and ideally to zero charge, similar results are reported for SiO\(_2\)/Si [25], HfO\(_2\)/Si [26], and MgO/Zn\(_{0.8}\)Al\(_{0.2}\)O [19] systems.

The CLs positions of the Al 2p, Zn 2p\(1/2\), and Zn 2p\(3/2\) are plotted as a function of the Al\(_2\)O\(_3\) film thickness, as shown in Fig. 6. By linear fitting of the experimental data, the CLs positions of the Al 2p, Zn 2p\(1/2\), and Zn 2p\(3/2\) peaks are determined to be 74.51 ± 0.03, 1044.77 ± 0.06, and 1021.7 ± 0.04 eV, respectively. In order to correct the \(\Delta E_V\) of the Al\(_2\)O\(_3\)/Zn\(_{0.8}\)Al\(_{0.2}\)O heterojunction, we calculate the energy differences between the extrapolated (Al 2p, Zn 2p\(1/2\)) and (Al 2p, Zn 2p\(3/2\)) at zero thickness. The values are 970.26 ± 0.07 and 947.19 ± 0.05 eV, respectively. Inserting these values in Eq. (1), the \(\Delta E_V\) are calculated to be 0.83 ± 0.09 and 0.8 ± 0.08 eV, which is in good agreement using the two combinations of CLs of the Al\(_2\)O\(_3\)/Zn\(_{0.8}\)Al\(_{0.2}\)O heterojunction. Therefore, the averaged \(\Delta E_V\) value is 0.82 ± 0.12 eV.

There are three possible reasons that affect the \(\Delta E_V\) values in addition to the XPS method itself. Firstly, the oxide stoichiometry of the Al\(_2\)O\(_3\) thin films measured by XPS is almost the same in the different Al\(_2\)O\(_3\) samples with thickness of 3–8 nm. Therefore, the composition of the Al\(_2\)O\(_3\) film is independent of thickness and the binding energy shifts in Fig. 5 is related to the differential charging effect occurring in the Al\(_2\)O\(_3\)/Zn\(_{0.8}\)Al\(_{0.2}\)O heterojunction during X-ray irradiation. Secondly, band bending at the heterointerface could induce a systematic error in determination of \(\Delta E_V\), and we check that this error is much smaller than the average standard deviation of ± 0.03 eV given above. Finally, the strain existing in the Al\(_2\)O\(_3\) overlayer of the heterojunction will induce

Fig. 5 Time-resolved plots showing the respective binding energies vs. X-ray irradiation time for **a** 3 nm, **b** 4 nm, **c** 5 nm, and **d** 8 nm Al\(_2\)O\(_3\) films on Zn\(_{0.8}\)Al\(_{0.2}\)O on Si substrates, with application of a low-energy electron flood gun.
a piezoelectric field that probably affects the measured ΔE_V value, a similar phenomenon explained by Martin et al [40]. The heterojunction underlayer Zn$_{0.8}$Al$_{0.2}$O is thick enough, and the structure of both materials is amorphous. Therefore, the strain-induced piezoelectric field is not taken into consideration in this study.

To infer the ΔE_C based on the value of ΔE_V, we need to know the E_g of the ultrathin Al$_2$O$_3$ layer, which can be estimated from O 1s core-level binding energy spectrum of atomic-layer-deposited Al$_2$O$_3$ thin films with energy loss structure. The binding energy is calculated from the difference in the total photoelectron energy minus the kinetic energy due to the loss in photoelectron energy by inelastic collision processes within the sample. The minimum inelastic loss is equal to the band gap energy, and the most cited value of E_g is 6.8 eV [41–43]. Together with the Zn$_{0.8}$Al$_{0.2}$O E_g of 5.29 eV at room temperature, the ΔE_C can be simply derived by the equation, $\Delta E_C = E_g(\text{Al}_2\text{O}_3) - \Delta E_V - E_g(\text{Zn}_{0.8}\text{Al}_{0.2}\text{O})$, where $E_g(\text{Al}_2\text{O}_3)$ and $E_g(\text{Zn}_{0.8}\text{Al}_{0.2}\text{O})$ are the band gaps of the Al$_2$O$_3$ and Zn$_{0.8}$Al$_{0.2}$O thin films, respectively. The ΔE_C is calculated to be 0.69 ± 0.12 eV, which means that the barrier height for transport of electrons is smaller than that of holes. The band alignment of the Al$_2$O$_3$/Zn$_{0.8}$Al$_{0.2}$O heterojunction obtained from XPS measurements is shown in Fig. 7. The CBM of Al$_2$O$_3$ is higher than that of Zn$_{0.8}$Al$_{0.2}$O; however, the VBM of Al$_2$O$_3$ is lower than that of Zn$_{0.8}$Al$_{0.2}$O. Therefore, a nested type-I band alignment with a ratio $\Delta E_C/\Delta E_V$ of about 1:1.2 is obtained.

Usually, the MCP gain under direct current (DC) mode is limited by the space charge density without consideration of ion feedback, and the recharge time constant or dead time (τ) is several milliseconds [44]. When operating a MCP as a DC current amplifier, the gain is constant until the output current (I_{oc}) exceeds about 10% of the strip current through the plate. However, the MCP works in a highly saturated state under a photon-counting mode, and the electron avalanche multiplication is done within several nanoseconds that is a million times faster than τ [44–46]. The peak output current in pulsed operation exceeding the I_{oc} by several orders of magnitude is observed. Therefore, anode signal charges probably come from the tunneling electrons in the Al$_2$O$_3$/Zn$_{0.8}$Al$_{1-x}$O heterojunction of the inner wall of the MCP. For photon-counting mode, both ΔE_V and ΔE_C should be sufficiently large, which can prevent the thermal excitation of electrons generated from the SEE layer into the electron multiplier system that probably produces high electronics dark noise and result in a reduced signal to noise ratio. The present result has no effects on the MCP operating under DC mode which is determined by space charge saturation, but has negative effects on the photon-counting mode which needs a type-II heterojunction to improve tunneling probability for excellent performance. The relationship between the Al$_2$O$_3$/Zn$_{0.8}$Al$_{1-x}$O heterojunction and charge replenishment...
mechanism under photon-counting mode needs further study. Therefore, the band alignment of the $\text{Al}_2\text{O}_3/\text{Zn}_x\text{Al}_{1-x}\text{O}$ heterojunction should be constructed and adjusted by appropriately changing the ratio of Al and Zn elements under the premise of meeting the requirements of the electron multiplier.

Conclusions

The structure and optical band gaps of $\text{Zn}_x\text{Al}_{1-x}\text{O}$ ($0.2 \leq x \leq 1$) films deposited by atomic layer deposition are investigated. And the band offset measurements of the $\text{Al}_2\text{O}_3/\text{Zn}_0.8\text{Al}_{0.2}\text{O}$ heterojunction have been determined by XPS with zero charging method. The results show that X-ray irradiation time is one of the most important parameters to determine the band offsets. The layer thickness dependence in peak positions is mainly derived from the differential charging effects, and true peak positions are obtained by extrapolating the measured binding energies to zero oxide thickness and ideally to zero charge. The ΔE_V value is obtained to be 0.82 ± 0.12 eV, and the corresponding ΔE_C is calculated to be 0.69 ± 0.12 eV. Therefore, a nested type-I band alignment is obtained. Understanding of the band alignment parameters of the $\text{Al}_2\text{O}_3/\text{Zn}_0.8\text{Al}_{0.2}\text{O}$ interface will facilitate the knowledge of their carrier transport mechanism and design of corresponding hybrid devices, especially in the research process of electron multipliers.

Abbreviations

Al_2O_3: Aluminum oxide; ALD: Atomic layer deposition; CBM: Conduction band minimum; CLs: Core levels; DC: Direct current; DEZ: Diethylzinc; E_F: Band gap; I_{cp}: Output current; MCP: Microchannel plate; MgO: Magnesium oxide; SEE: Secondary electron emission; TMA: Trimethylaluminum; VBM: Valence band maximum; XPS: X-ray photoelectron spectroscopy; XRD: X-ray diffractometer; $\text{Zn}_x\text{Al}_{1-x}\text{O}$: Zinc aluminum oxide; ΔE_C: Conduction band offset; ΔE_V: Valence band offset

Acknowledgements

We express our sincere gratitude to the reviewer, who has given us the most valuable advice. We thank Dr. Lin Wang and Dr. Hailiang Nie for the meaningful discussions on XRD measurement and chemical formula of $\text{Zn}_0.8\text{Al}_{0.2}\text{O}$, respectively. We are especially grateful to Danjiao Wang for her careful reading and polishing the manuscript.

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 11675278 and 11535014), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA10010400), and the Beijing Municipal Science and Technology Project (No. Z171100002817004).

Availability of Data and Materials

The raw data used in this study is not available for the time being, because the data has not been fully analyzed, and the results of the analysis will be gradually introduced in the recent published articles.

Authors’ Contributions

BY designed and conducted the experiments and drafted the manuscript. YY, YY and KW prepared the thin films and performed the XRD, UV-Vis-IR and XPS measurements. SL and YH provided the technical support and advices on the work. All authors read and approved the final manuscript.

Competing Interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details

1. State Key Laboratory of Particle Detection and Electronics, Institute of High Energy Physics of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China. 2. Department of Physics, Nanjing University, Nanjing 210093, People’s Republic of China. 3. School of Science, Xi’an University of Technology, Xi’an 710048, People’s Republic of China. 4. University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China.

Received: 24 December 2016 **Accepted:** 8 May 2017

Published online: 19 May 2017

References

1. Mane AU, Peng Q, Elam JW et al (2012) An atomic layer deposition method to fabricate economical and robust large area microchannel plates for photodetectors. Physics Procedia 37:722–732
2. Yan BJ, Liu SL, Heng YK (2015) Nano-oxide thin films deposited via atomic layer deposition on microchannel plates. Nanoscale Res Lett 10:11
3. Jana D, Maikap S, Tien TC et al (2012) Formation-polarity-dependent improved resistive switching memory performance using $\text{IrO}_x/\text{GdO}_x/\text{WO}_3/\text{W}$ structure. Jpn J Appl Phys 51:6
4. Petric P, Bevis C et al (2010) Reflective electron beam lithography: a maskless ebeam direct write lithography approach using the reflective electron beam lithography concept. J Vac Sci Technol B 28:C66C
5. Siegmund OHW, McPhate JB, Terriss AS et al (2012) Atomic layer deposited borocarbide glass microchannel plates for large area event counting detectors. Nucl Instrum Methods Phys Res Sect A 695:168–171
6. Yang YZ, Liu SL, Zhao TC, Yan BJ et al (2016) Single electron counting using a dual MCP assembly. Nucl Instrum Methods Phys Res Sect A 830:438–443
7. George SM (2010) Atomic layer deposition: an overview. Chem Rev 110:111–131
8. Nakino T, Segawa Y, Kawasaki M (2001) Band gap engineering based on $\text{Mg}_x\text{Zn}_{1-x}\text{O}$ and Cd$_x$Zn$_{1-x}$O ternary alloy films. Appl Phys Lett 78:1237–1239
9. Hummer K (1973) Interband magnetoreflection of ZnO. Phys Status Solidi B 56:249–260
10. Ke Y, Lany S, Berry JJ et al (2014) Enhanced electron mobility due to dopant-defect pairing in conductive Zn$_x$Mg$_{1-x}$O. Adv Funct Mater 24:2875–2882
11. Kumar P, Malik HK, Ghosh A et al (2013) Bandgap tuning in highly c-axis oriented Zn$_x$Mg$_{1-x}$O thin films. Appl Phys Lett 102:25
12. Yao G, Tang YQ, Fu YJ et al (2015) Fabrication of high-quality ZnCdO epilayers and ZnO/ZnCdO heterojunction on sapphire substrates by pulsed laser depoosition. Appl Surf Sci 326:271–275
13. Lee CS, Cuoing HB et al (2015) Comparative study of group-II alloying effects on physical property of ZnGa2O4 transparent conductive films prepared by RF magnetron sputtering. J Alloy Compd 645:322–327
14. Mane AU, Elam JW (2013) Atomic layer deposition of WAl$_x$O$_{2-x}$ nanocomposite films with tunable resistivity. Chem Vapor Depos 19:186–193
15. Tong WM, Brodie AD, Mane AU et al (2013) Nanoclusters of MoO$_3$ embedded in an Al$_2$O$_3$ matrix engineered for customizable mesoscale resistivity and high dielectric strength. Appl Phys Lett 1025
16. Elam JW, Routeivich D, George SM (2003) Properties of ZnO/Al$_2$O$_3$ alloy films grown using atomic layer deposition techniques. J Electrochem Soc 150:G349–G354
17. Lapington JS, Thompson DP, May PW et al (2009) Investigation of the secondary emission characteristics of CVD diamond films for electron amplification. Nucl Instrum Methods Phys Res Sect A 610:257–257
18. Jokela SJ, Veryokin IV, Zinovev AV et al (2012) Secondary electron yield of emissive materials for large-area micro-channel plate detectors: surface composition and film thickness dependencies. In: Liu T (ed) Proceedings of the 2nd International Conference on Technology and Instrumentation in Particle Physics. Elsevier Science Bv, Amsterdam, pp 740–747
19. Yan BJ, Liu SL, Yang YZ, Heng YK (2016) Band alignment of atomic layer deposited MgO/Zn$_{0.8}$Al$_{0.2}$O heterointerface determined by charge corrected X-ray photoelectron spectroscopy. Appl Surf Sci 371:118–128
20. Kraut EA, Grant RW et al (1983) Semiconductor core-level to valence-band maximum binding-energy differences: precise determination by X-ray photoelectron-spectroscopy. Phys Rev B 28:1965–1977
21. Alay JL, Hirose M (1997) The valence band alignment at ultrathin SiO$_2$/Si interfaces. J Appl Phys 81:1606
22. Grunthaner FJ, Grunthaner PJ (1986) Chemical and electronic structure of the SiO$_2$/Si interface. Materials Science Reports 1:65–160
23. Seguini G, Perego M, Spiga S et al (2007) Conduction band offset of HfO$_2$ on GaAs. Appl Phys Lett 91:3
24. Tanimura T, Toyoda S, Kamada H et al (2010) Photoinduced charge-trapping phenomena in metal/high-k gate stack structures studied by synchrotron radiation photoemission spectroscopy. Appl Phys Lett 96:3
25. Iwata S, Ishizaka A (1996) Electron spectroscopic analysis of the SiO$_2$/Si system and correlation with metal-oxide-semiconductor device characteristics. J Appl Phys 79:6653–6713
26. Perego M, Seguini S (2011) Charging phenomena in dielectric/semiconductor heterostructures during X-ray photoelectron spectroscopy measurements. J Appl Phys 110:11
27. Hilmi I, Thelander E, Schumacher P et al (2016) Epitaxial Ge$_x$Sb$_2$Te$_5$ films on Si(111) prepared by pulsed laser deposition. Thin Solid Films 619:81–85
28. Pandikunta M, Ledyaev O, Kuryatkov V et al (2014) Structural analysis of N-polar AlN layers grown on Si (111) substrates by high resolution X-ray diffraction. Phys Status Solidi C 11:487–490
29. Tynell T, Yamauchi H, Karpinnen M et al (2013) Atomic layer deposition of Al-doped ZnO thin films. J Vac Sci Technol A 31:4
30. Tauc J (1966) The Optical Properties of Solids. Academic, Waltham
31. Dar TA, Agrawal A, Misra P et al (2014) Valence and conduction band offset measurements in NiO$_x$/ZrO$_2$/ZnO heterostructure. Curr Appl Phys 14:171–175
32. Dhakal TP, Peng CY, Tobias RR et al (2014) Characterization of a CZTS thin film solar cell grown by sputtering method. Sol Energy 100:23–30
33. Zhu BL, Lu K, Wang J et al (2013) Characteristics of Al-doped ZnO thin films prepared in Ar + H$_2$ atmosphere and their vacuum annealing behavior. J Vac Sci Technol A 31:9
34. Moulder JF, Stickle WF (1992) Handbook of X-ray photoelectron spectroscopy. PerkinElmer Corp, Eden Priarie
35. Scofield JH (1976) Hartree-slater subshell photoionization cross-sections at 1254 and 1487 eV. J Electron Spectrosc Relat Phenom 8:129–137
36. Tanuma S, Powell CJ, Penn DR (1994) Calculations of electron inelastic mean free paths. S. Data for 14 organic compounds over the 50–2000 eV range. Surf Interface Anal 21:165–176
37. Wu Y, Hermkens PM, van de Loo BWH et al (2013) Electrical transport and Al doping efficiency in nanoscale ZnO films prepared by atomic layer deposition. J Vac Sci Technol A 30:10
38. Wiza JL (1979) Microchannel plate detectors. Nuclear Instruments and Methods 162:587–601
39. Adams B, Chollet M, Elagin A et al (2013) A test-facility for large-area microchannel plate detector assemblies using a pulsed sub-picosecond laser. Rev Sci Instrum 84:061301
40. Siegmund OHW, McPhate JB, Jelinsky SR et al (2013) Large area microchannel plate imaging event counting detectors with sub-nanosecond timing. IEEE Trans Nucl Sci 60:923–931