Interface engineering of the photoelectrochemical performance of Ni-oxide-coated n-Si photoanodes by atomic-layer deposition of ultrathin films of cobalt oxide†

Xinghao Zhou,‡a Rui Liu,‡a Ke Sun,‡ac Dennis Friedrich,‡d Matthew T. McDowell,‡ac Fan Yang,‡ac Stefan T. Omelchenko,‡a,b Fadl H. Saadi,‡a,b Adam C. Nielander,‡c Sisir Yalamanchili,‡ab Kimberly M. Papadantonakis,‡a,c Bruce S. Brunswig‡e and Nathan S. Lewis‡ac,‡f

Introduction of an ultrathin (2 nm) film of cobalt oxide (CoOx) onto n-Si photoanodes prior to sputter-deposition of a thick multifunctional NiOx coating yields stable photoelectrodes with photocurrent-onset potentials of ~240 mV relative to the equilibrium potential for O2(g) evolution and current densities of ~28 mA cm⁻² at the equilibrium potential for water oxidation when in contact with 1.0 M KOH(aq) under 1 sun of simulated solar illumination. The photoelectrochemical performance of these electrodes was very close to the Shockley diode limit for moderately doped n-Si(100) photoelectrodes, and was comparable to that of typical protected Si photoanodes that contained np⁺ buried homojunctions.

Although SrTiO₃, KTaO₃, and TaON have been used in stable wired or “wireless” configurations to effect direct solar-driven water splitting,¹ all known smaller-band-gap, non-oxide semiconductors require protection from corrosion for use in stable, intrinsically safe, efficient photoelectrosynthetic or photovoltaic (PV)-biased electrosynthetic systems. The equivalent open-circuit voltage generated by such protected n-type semiconductor heterojunction structures is however significantly lower than that obtained from np⁺ buried homojunctions. We demonstrate herein that deposition of a thin cobalt oxide film onto n-Si substrates prior to deposition of a thick multifunctional NiOx coating significantly improves the performance of such protected n-type Si photoanodes. The approach provides a route to formation of stabilized, high-performance Si photoanodes without requiring the formation of buried np⁺ homojunctions, potentially simplifying the photoelectrode processing and thus reducing the cost of monolithically integrated solar-driven water-splitting devices.

Thick (~50 nm) multifunctional NiOx coatings enable the use of small-band-gap non-oxide semiconductors as photoanodes in fully integrated, intrinsically safe, and efficient photoelectrosynthetic water-splitting systems. The NiOx coating yields stable photoelectrodes with photocurrent-onset potentials of ~240 mV relative to the equilibrium potential for O2(g) evolution and current densities of ~28 mA cm⁻² at the equilibrium potential for water oxidation when in contact with 1.0 M KOH(aq) under 1 sun of simulated solar illumination. The photoelectrochemical performance of these electrodes was very close to the Shockley diode limit for moderately doped n-Si(100) photoelectrodes, and was comparable to that of typical protected Si photoanodes that contained np⁺ buried homojunctions.

Although SrTiO₃, KTaO₃, and TaON have been used in stable wired or “wireless” configurations to effect direct solar-driven water splitting,¹ all known smaller-band-gap, non-oxide semiconductors require protection from corrosion for use in stable, intrinsically safe, efficient photoelectrosynthetic or photovoltaic (PV)-biased electrosynthetic water-splitting cells.²,³ When the protective layer fully prevents contact between the electrolyte and the semiconductor, effective charge separation in the light absorber requires a mechanism for establishing a significant electric field at the semiconductor surface. Semiconductor/metal Schottky barriers,¹,⁵ p–n homojunctions on planar electrodes,⁶–¹⁰ spherical electrodes,¹¹ and radial emitters on microwires,¹² metal–insulator–semiconductor contacts,¹³,¹⁴ in situ formation of emitter layers by carrier inversion;¹⁵–²⁰ heterojunctions;²¹–²³ and mixed barrier-height semiconductor/metal/oxide/liquid systems²² have all been investigated in either wired or “wireless” photoelectrosynthetic or PV-biased electrosynthetic systems. Generally tandem structures or triple junctions are required to provide the open-circuit voltage (Voc) necessary to effect unassisted water splitting in either a wired or monolithically integrated (“wireless”) configuration,²³–²⁸ with noble metals or earth-abundant electrocatalysts²⁹ used in the full water-splitting system. The electrode surfaces require both protection or stabilization against corrosion and the deposition of an effective catalyst for use in either the photoelectrochemical anodic (water oxidation) or cathodic (fuel formation) half reactions.

Ni-oxide films formed by reactive sputtering have recently been shown to form protecting layers on a variety of semiconductor surfaces, including Si, InP, amorphous hydrogenated Si (a-Si:H), and CdTe.²⁹–³¹ The NiOx is optically transparent in the visible region and has an index of refraction that makes the...
NiO$_x$ a near-optimal anti-reflective coating on a variety of semiconductor surfaces. Furthermore, NiO$_x$ is chemically stable at high pH, and upon activation forms a surface layer that is catalytic for the oxygen-evolution reaction (OER), with overpotentials of ~330 mV at 10 mA cm$^{-2}$ in 1.0 M KOH[aq].29 NiO$_x$ coatings on semiconductors that form passive films under photoanodic conditions have produced high photocurrent densities for the solar-driven OER from water for months of continuous operation under simulated 1 Sun conditions.$^{29-31}$

However, due to nonoptimal energetics at the interface between the NiO$_x$ and the semiconductor, formation of a direct heterojunction contact between the n-type absorber and the p-type NiO$_x$ layer yields relatively low V_{oc} values.$^{29-31}$ Significantly higher V_{oc} values for such stabilized systems have been obtained from electrodes formed by deposition of a NiO$_x$ coating onto a buried n$^+$ homojunction.29,30 For example, freshly etched n-Si and n$^+$-Si photoanodes protected by a multifunctional layer of NiO$_x$ yielded equivalent open-circuit voltages (see ESIF) of 180 mV and 510 mV, respectively.29 The formation of heterojunctions between n-Si coated with a layer of SiO$_x$ (either native or introduced by processing steps) and thin (<20 nm) films of Ni,32 MnO$_x$, 33 and TiO$_2$ offers some protection against corrosion to n-Si photoanodes, and in some cases yields photoanodes exhibiting V_{oc} ≥ 500 mV. The ideal regenerative solar-to-O$_2$ conversion efficiency29 of these heterojunction systems is relatively low compared to values exhibited by NiO$_x$ protected n$^+$-Si photoanodes.29,35 The solar-to-fuel conversion efficiency is thus limited when such protected photoanodes are used in a tandem photochemical diode design.5,36

For technologically well-developed semiconductors such as Si and the III–V materials, p–n homojunctions can be formed to provide V_{oc} values that can approach the Shockley diode bulk recombination/diffusion limit.2,3 Many semiconductors of interest for use in photoelectrochemical cells, however, cannot be doped to form high-quality homojunctions. Moreover, the doping/diffusion process generally requires high temperatures, and adds complexity to the formation of a functional photoelectrode, relative to electrodeposition or spray pyrolysis of the active semiconductor layer onto a suitable substrate. For small grain-size polycrystalline films, dopants often migrate preferentially along grain boundaries, especially during the drive-in step, producing majority-carrier shunts that degrade the performance of the resulting photoelectrode.37 Hence methods which allow large V_{oc} values and high efficiencies to be obtained from protected semiconductor photoelectrodes in contact with aqueous electrolytes, but which do not require the formation of diffused homojunctions, are desirable.

We demonstrate herein that introduction of a thin, compositionally controlled, interfacial cobalt oxide layer between the n-Si absorber and the protective, multifunctional NiO$_x$ film can yield V_{oc} values close to the Shockley diode limit for moderately doped n-Si(100) photoelectrodes. The performance and stability of such materials used as PV-biased electrodes demonstrates that protection schemes can be implemented to yield high-performance photoelectrodes without the complexity of the requirement to form a diffused homojunction, while concurrently obtaining efficient separation of photogenerated charges in the semiconducting photoelectrode.

To form the desired interfacial layers, n-Si(100) (0.1–1 ohm cm resistivity, 525 µm thick) was first etched in a Radio Corporation of America Standard Clean-2 (RCA SC-2) etchant solution for 10 min at 75 °C to produce a thin SiO$_x$ layer on the Si surface (n-Si/SiO$_x$/RCA). Thin films of CoO$_x$ were then deposited by atomic layer deposition (ALD) onto the Si/SiO$_x$/RCA. After ALD growth of the CoO$_x$ layer, NiO$_x$ was deposited by reactive radio-frequency sputtering onto the CoO$_x$, with the Si substrates maintained at 300 °C (n-Si/SiO$_x$/RCA/CoO$_x$/NiO$_x$). Sixty ALD cycles of CoO$_x$ deposition were found to optimize the photocurrent-onset potentials relative to the solution potential $E(Fe(CN)_{6}^{3-/4-})$ for the n-Si/SiO$_x$/RCA/CoO$_x$/NiO$_x$ devices (Fig. S1, ESIF) and were thus used in the fabrication of all of the devices described herein.

Fig. 1A shows a high-resolution transmission-electron microscopy (TEM) image of the n-Si/SiO$_x$/RCA/CoO$_x$/NiO$_x$ interface. An amorphous ~2 nm thick layer of SiO$_x$ was observed on the surface of the crystalline Si, with a 2–3 nm thick layer of CoO$_x$ between the SiO$_x$ and NiO$_x$ layers. The low difference in contrast between the CoO$_x$ and NiO$_x$ layers is due to the similar densities of the metal oxide films. Fig. 1B shows the results of a scanning transmission-electron microscopy (STEM) energy-dispersive X-ray analysis (EDX) for the n-Si/SiO$_x$/RCA/CoO$_x$/NiO$_x$ device, with the K$_x$ X-rays from Si, Co, and Ni displayed as a function of distance. (C) Low-magnification HAADF-STEM cross-sectional image of an n-Si/SiO$_x$/RCA/CoO$_x$/NiO$_x$ electrode. The bright film is the polycrystalline NiO$_x$ layer, which grew in a columnar fashion with vertical grain boundaries. The Si wafer is the dark layer at the bottom of the image.
spectroscopy (EDS) line scan across the n-Si/SiO$_x$/RCA/CoO$_x$/NiO$_x$ interface. A Co X-ray signal was evident at the interface between the Si and Ni signals, and confirmed the presence of the thin CoO$_x$ layer, which was also detected using X-ray photoelectron spectroscopy (XPS) (Fig. S2A and B, ESIF). Peak-fitting of the XP spectra in the Co 2p$_{3/2}$ region showed the co-presence of Co(0) and Co(III), possibly in the forms of CoO, Co$_2$O$_3$, CoO$_4$ and Co(OH)$_2$/CoOOH. Grazing incidence X-ray diffractometry (GIXRD) showed that the film was polycrystalline with peak positions consistent with CoO$_x$ and indicated that annealing the film under the sputtering conditions used for deposition of the NiO$_x$ did not result in any significant changes to the structure, crystallinity, or preferred orientation of the film (Fig. S2C, ESIF). The root-mean-squared (rms) surface roughness of the n-Si/SiO$_x$/RCA and n-Si/SiO$_x$/RCA/CoO$_x$ surfaces was 0.403 nm and 0.453 nm, respectively (Fig. S3, ESIF). A low-magnification high-angle annular dark-field (HAADF) STEM image of a cross-section of the n-Si/SiO$_x$/RCA/CoO$_x$/NiO$_x$ film (Fig. 1C) showed that the NiO$_x$ film consisted of short columns with an average diameter of ~20 nm and an average height of ~102 nm, with a mean density of ~2500 columns μm$^{-2}$.

Fig. 2A shows the current–density versus potential (J–E) behavior of n-Si/SiO$_x$/RCA and n-Si/SiO$_x$/RCA/CoO$_x$/NiO$_x$ photoanodes with and without an interfacial layer of CoO$_x$ in contact with 1.0 M KOH(aq), illuminated by 1 sun of simulated solar illumination, and without correction for resistance losses in the system. The photocurrent-onset potentials were -239 ± 3 mV and 74 ± 12 mV relative to the formal potential for water oxidation (E^0 (O$_2$/H$_2$O) = 1.23 V versus a reversible hydrogen electrode, RHE, at pH = 14) for the n-Si/SiO$_x$/RCA/CoO$_x$/NiO$_x$ and n-Si/SiO$_x$/RCA/NiO$_x$ photoanodes, respectively, with three electrodes of each type measured. Thus, the presence of the interfacial CoO$_x$ layer between the n-Si/SiO$_x$/RCA and the NiO$_x$ resulted in a ~165 mV shift in the photocurrent-onset potential of the n-Si/SiO$_x$/RCA/CoO$_x$/NiO$_x$ photoanode relative to the n-Si/SiO$_x$/RCA/NiO$_x$ electrode that did not contain the CoO$_x$ layer. The J–E behavior for the n-Si/SiO$_x$/RCA/CoO$_x$/NiO$_x$ electrode exhibited a larger slope (~140.0 mA cm$^{-2}$ V$^{-1}$ measured between 1.00 V and 1.15 V versus RHE) than the J–E behavior of the n-Si/SiO$_x$/RCA/NiO$_x$ electrode (slope ~100 mA cm$^{-2}$ V$^{-1}$ measured between 1.25 V and 1.45 V versus RHE). The increased slope is attributable to a reduced series resistance and/or reduced surface recombination velocity, which could indicate that the CoO$_x$ layer prevents further oxidation of the Si and/or damage to the existing SiO$_x$/RCA junction during sputter-deposition of the NiO$_x$ film. The photocurrent density for the n-Si/SiO$_x$/RCA/CoO$_x$/NiO$_x$ photoanode structure was 27.7 ± 0.4 mA cm$^{-2}$ at E^0 (O$_2$/H$_2$O), and the solar-to-O$_2$(g) ideal regenerative-cell conversion efficiency (η) was $2.1 \pm 0.2\%$, while the n-Si/SiO$_x$/RCA/NiO$_x$ photoanode structure had a photocurrent density of 6.3 ± 1.5 mA cm$^{-2}$ at E^o (O$_2$/H$_2$O), and the η for solar-to-O$_2$(g) was $0.11 \pm 0.04\%$, each with three electrodes of each type tested. A load-line analysis based on an equivalent-circuit model consisting of a photodiode connected in series with a dark electrolysis cell, indicated that obtaining a shift in the J–E behavior equivalent to that observed for the n-Si/SiO$_x$/RCA/CoO$_x$/NiO$_x$ photoanode relative to the p$^+$/Si/NiO$_x$ anode would require a 12.3 ± 0.3% efficient photodiode with an V_{oc} of 565 ± 3 mV and a short-circuit photocurrent density (J_{sc}) of 32.5 ± 0.3 mA cm$^{-2}$. The performance of the n-Si/SiO$_x$/RCA/CoO$_x$/NiO$_x$ photoanode was modestly better than that reported for a buried homojunction p$^+$/Si electrode that had been freshly etched and directly sputtered with NiO$_x$ (photocurrent-onset potential of ~180 ± 20 mV relative to E^0 (O$_2$/H$_2$O) and a photocurrent density of 29 ± 1.8 mA cm$^{-2}$ at E^0 (O$_2$/H$_2$O)), and was significantly improved relative to the performance of an HF-etched n-Si electrode that had been directly sputtered with NiO$_x$ (photocurrent-onset potential of ~150 ± 20 mV relative to E^0 (O$_2$/H$_2$O) and negligible photocurrent density at E^0 (O$_2$/H$_2$O)).
carrier inversion yielded a photocurrent-onset potential of
−640 mV relative to the solution potential E(Me₂Fe^3+/2) (Fig. S4, ESI†). We therefore expect that improvements upon the 0.56 V Ec yielded by the n-Si/SiO₂,CoO,NiO structure could be obtained through decreasing the defect densities at the Si surface and by yet further increases in the band bending in the Si.

Fig. 2B shows the wavelength-dependent external quantum yield (Pext) for electrons collected from n-Si/SiO₂,CoO,NiO and np⁺-Si,NiO, photoanodes, respectively, in contact with 1.0 M KOH(aq) while under potentiostatic control at 1.93 V versus RHE. Fig. 2B also displays the observed absorbance spectrum of an n-Si/SiO₂,CoO,NiO photoanode in air for light at normal incidence. The shape of the Pext versus wavelength behavior for the n-Si/SiO₂,CoO,NiO electrode was consistent with the absorbance spectrum of the NiO₂-coated Si substrate measured in air.¹⁹ The n-Si/SiO₂,CoO,NiO photoanodes exhibited higher Pext values at wavelengths <500 nm relative to those of np⁺-Si,NiO photoanodes, indicating that the n-Si/SiO₂,CoO,NiO heterojunction had lower parasitic absorption losses in the near-surface layer. In the homojunction device, short-wavelength light is significantly absorbed by the thin, non-photoactive, highly doped emitter layer,¹⁹ while in commercial high-efficiency Si photovoltaic devices, short-wavelength light is absorbed primarily by the heterogeneous passivation layers.³¹ For the n-Si/SiO₂,CoO,NiO photoanodes, Pext was >0.9 in the wavelength range of 550–780 nm, which compared favorably to Pext values of ≤0.75 across the wavelength range of 400–1100 nm reported for n-Si/SiO₂,CoO,NiO photoanodes measured under similar conditions.⁴² The increased Pext for the NiO₂-coated photoanodes at wavelengths >550 nm was due to the anti-reflective behavior of the NiO₂ coating. Consistently, NiO₂-coated n-Si photoanodes produced light-limited current densities under 1 Sun simulated AM1.5 illumination that were ~4.5 mA cm⁻² greater than the light-limited current densities observed under such conditions from n-Si/SiO₂,CoO,NiO photoanodes.

Electrochemical impedance spectroscopy was used to determine the differential capacitance (C) of the n-Si/SiO₂,CoO,NiO, n-Si-E/CoO,NiO electrodes (where n-Si-E indicates n-Si which was freshly etched in a buffered HF solution before the next processing step), and n-Si/SiO₂,CoO,NiO electrodes, with Mott–Schottky plots (C⁻² vs. E) indicating flat-band potentials (Vfb) of −0.67 ± 0.02 V, −0.69 ± 0.03 V, and −0.83 ± 0.02 V versus E(Fe(CN)₆³⁻/⁴⁻), respectively (Fig. 2C). The slopes in the linear regions of the C⁻² vs. E plots yield a doping density of ~10⁻¹⁷ cm⁻³ for all electrodes, which implies a corresponding resistivity of ~0.09 ohm cm, close to the range of 0.1–1 ohm cm specified by the manufacturer of the Si wafer. Kelvin-probe force microscopy (KPFM, Fig. 2D) showed that the work function of the CoO layer was 120 mV greater than that for n-Si/SiO₂,CoO surfaces, indicating that the energy-band structure at the n-Si/SiO₂,CoO interface was significantly different than that at the n-Si/SiO₂,CoO interface. The negative shift in Vfb for the n-Si/SiO₂,CoO,NiO electrode relative to the n-Si/SiO₂,CoO electrode is in accord with the KPFM data, as well as with the J-E behavior observed in 1.0 M KOH(aq) (Fig. 2A). The barrier height within the Si of n-Si/SiO₂,CoO,NiO electrodes as calculated from the 0.83 ± 0.02 V flat-band potential, was 0.98 ± 0.02 V (see ESI†), close to the band gap of Si.

The reverse-saturation current density and the diode quality factor for the n-Si/SiO₂,CoO,NiO photoanode, extracted by a linear fit of the dependence of the photocurrent-onset potentials relative to E(Fe(CN)₆³⁻/⁴⁻) on the logarithm of the photocurrent density (jph) (Fig. S5, ESI†), were 1.50 × 10⁻⁷ mA cm⁻² and 1.09, respectively. The diffusion current was ~10⁻¹⁰ mA cm⁻², thus the thermionic emission current was the dominant contributor to the reverse-saturation current. Given a Richardson constant of 120 A cm⁻² K⁻² and a barrier height of 0.98 ± 0.02 V (see ESI†), the transmission coefficient, x, was estimated to be on the order of unity.

Fig. 3A shows the chronopotentiometric data for an n-Si/SiO₂,CoO,NiO photoanode in contact with 1.0 M KOH(aq) and held at 1.63 V versus RHE while under simulated 1 Sun illumination of 100 mW cm⁻². The current density was 30 ± 2 mA cm⁻² for 1700 h of continuous operation, at which point the experiment was stopped. Cyclic voltammograms were collected every 10 h during the stability test (Fig. 3B), and
showed that the J-E behavior for the photoanode gradually shifted positively throughout the experiment. The photocurrent-onset potential relative to $E^0_{\text{O}_2/H_2\text{O}}$ shifted from -239 mV to -214 mV, -198 mV, and -185 mV while the photocurrent density at $E^0_{\text{O}_2/H_2\text{O}}$ decreased from 27.9 mA cm$^{-2}$ to 24.6 mA cm$^{-2}$, 21.4 mA cm$^{-2}$ and 16.2 mA cm$^{-2}$ after 500 h, 1000 h and 1500 h respectively. Hence the solar-to-$O_2(g)$ value for η_{IRC} decreased from 2.2% to 1.5%, 1.1%, and 0.74% after 500 h, 1000 h and 1500 h of operation, respectively. The gradual decrease in performance may result from the generation of SiO$_x$ islands at pinholes in the sputtered NiO film and/or from an increase in resistivity arising from thickening of the SiO$_x$ layer in the interface, as well as from the slow electrochemical conversion of CoO$_x$ to Co(OH)$_2$ and then to ion-permeable CoOOH (Fig. S6, ESI†) and the loss of catalytic activity. The stability of n-Si/SiO$_x$/CoO$_x$/NiO$_x$ photoanodes was comparable to the reported stability of np$^+$Si/NiO$_x$ photoanodes, demonstrating that the interfacial CoO$_x$ layer did not adversely affect the stability of the NiO$_x$ coating.

Fig. 3C shows the mass of O$_2(g)$ generated, as determined using a calibrated oxygen probe, by an n-Si/SiO$_x$/CoO$_x$/NiO$_x$ photoanode in contact with 1.0 M KOH(aq) under galvanostatic control for 30 min at a current density of 0.5 mA cm$^{-2}$. The measured mass of O$_2(g)$ was in agreement with that calculated based on the charge passed, assuming 100% Faradaic efficiency for the generation of O$_2(g)$. The total charge passed during the stability test was 1×10^7 greater than the total charge required to dissolve the CoO$_x$ layer, and was 1×10^2 greater than the charge required to dissolve the entire Si substrate (see ESI†). Assuming a 20% solar capacity factor, the 1700 h of stable water oxidation measured for the n-Si/SiO$_x$/NiO$_x$ photoanode contributed to the improvement in performance observed when comparing n-Si/SiO$_x$/CoO$_x$/NiO$_x$ photoanodes to n-Si/CoO$_x$/NiO$_x$ photoanodes (Fig. 2C and Fig. S7, ESI†). Both ALD and sputtering contribute to the improvement in performance observed when comparing n-Si/SiO$_x$/CoO$_x$/NiO$_x$ photoanodes to n-Si/CoO$_x$/NiO$_x$ photoanodes (Fig. 2C and Fig. S7, ESI†). Both ALD and sputtering contribute to the improvement in performance observed when comparing n-Si/SiO$_x$/CoO$_x$/NiO$_x$ photoanodes to n-Si/CoO$_x$/NiO$_x$ photoanodes (Fig. 2C and Fig. S7, ESI†). Both ALD and sputtering contribute to the improvement in performance observed when comparing n-Si/SiO$_x$/CoO$_x$/NiO$_x$ photoanodes to n-Si/CoO$_x$/NiO$_x$ photoanodes (Fig. 2C and Fig. S7, ESI†). Both ALD and sputtering contribute to the improvement in performance observed when comparing n-Si/SiO$_x$/CoO$_x$/NiO$_x$ photoanodes to n-Si/CoO$_x$/NiO$_x$ photoanodes (Fig. 2C and Fig. S7, ESI†). Both ALD and sputtering contribute to the improvement in performance observed when comparing n-Si/SiO$_x$/CoO$_x$/NiO$_x$ photoanodes to n-Si/CoO$_x$/NiO$_x$ photoanodes (Fig. 2C and Fig. S7, ESI†).

This work clearly demonstrates that the introduction of ALD layers of cobalt oxide improves the equivalent open-circuit voltage of protected n-Si photoanodes to values comparable to that obtainable from photoanodes fabricated using np$^+$ buried Si homojunctions. Interfacial cobalt oxide layers increase the band bending at the interface and thereby offer a route to high-performance photoanodes, potentially simplifying the photo-electrode processing and allowing for the use of inexpensive polycrystalline absorbers while maintaining high photoelectrode performance.

Author contribution

X.Z., R.L., K.S., K.M.P, B.S.B and N.S.L designed the experiments and wrote the manuscript. X.Z., R.L., K.S., D.F., M.T.M, F.Y., S.T.O., F.H.S., A.C.N., S.Y. performed the experiments.

Acknowledgements

This work was supported by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy under Award Number DE-SC0004993. UV-VIS spectroscopy, atomic-force microscopy, and Kelvin probe force microscopy were performed at the Molecular Materials Resource Center (MMRC) of the Beckman Institute at the California Institute of Technology. ACN was supported by a Graduate Research Fellowship from the National Science Foundation. This work was additionally supported by the Gordon and Betty Moore Foundation under Award No. GBMF1225.

References

1. M. S. Wrighton, P. T. Wolezanski and A. B. Ellis, *J. Solid State Chem.*, 1977, **22**, 17–29.
2. M. X. Tan, P. E. Laibinis, S. T. Nguyen, J. M. Kesselman, C. E. Stanton and N. S. Lewis, *Prog. Inorg. Chem.*, 1994, **41**, 21–144.
3. M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori and N. S. Lewis, *Chem. Rev.*, 2010, **110**, 6446–6473.
4. K. Rajeshwar, N. R. de Tacon and C. R. Chenthamarakshan, *Chem. Mater.*, 2001, **13**, 2765–2782.
5. F. R. F. Fan, G. A. Hope and A. J. Bard, *J. Electrochem. Soc.*, 1982, **129**, 1647–1649.
6. Y. Nakato, Y. Egli, M. Hiramoto and H. Tsubomura, *J. Phys. Chem.*, 1984, **88**, 4218–4222.
7. Y. Nakato, M. Yoshimura, M. Hiramoto, A. Tsumura, T. Murahashi and H. Tsubomura, *Bull. Chem. Soc. Jpn.*, 1984, **57**, 355–360.
8. S. W. Boettcher, E. L. Warren, M. C. Putnam, E. A. Santori, D. Turner-Evans, M. D. Kelzenberg, M. G. Walter, J. R. McKone, B. S. Brunschwig, H. A. Atwater and N. S. Lewis, *J. Am. Chem. Soc.*, 2011, **133**, 1216–1219.
9. H. Morisaki, T. Watanabe, M. Iwase and K. Yazawa, *Appl. Phys. Lett.*, 1976, **29**, 338–340.
