Weak and Strong Type Weighted Estimates for Multilinear Calderón-Zygmund Operators*

Kangwei Li and Wenchang Sun†
School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China
Email: likangwei9@mail.nankai.edu.cn, sunwch@nankai.edu.cn

Abstract

In this paper, we study the weighted estimates for multilinear Calderón-Zygmund operators from $L^{p_1}(w_1) \times \cdots \times L^{p_m}(w_m)$ to $L^p(v \vec{w})$, where $1 < p, p_1, \ldots, p_m < \infty$ with $1/p_1 + \cdots + 1/p_m = 1/p$ and $\vec{w} = (w_1, \ldots, w_m)$ is a multiple $A_\vec{P}$ weight. We give weak and strong type weighted estimates of mixed A_p-A_∞ type. Moreover, the strong type weighted estimate is sharp whenever $\max_i p_i \leq p'/((mp - 1)$.

Keywords. multilinear Calderón-Zygmund operators; multiple $A_\vec{P}$ weights; weighted inequalities.

1 Introduction and Main Results

The weighted estimate for operators is an interesting topic in harmonic analysis. And it has attracted many authors in this area [4, 9, 18, 20, 24, 25]. In this paper, we study the weighted estimates for multilinear Calderón-Zygmund operators with multiple $A_\vec{P}$ weights.

Recall that T is called a multilinear Calderón-Zygmund operator if T is initially defined on the m-fold product of Schwartz spaces and taking values into the space of tempered distributions,

$$T : \mathcal{S}(\mathbb{R}^n) \times \cdots \times \mathcal{S}(\mathbb{R}^n) \to \mathcal{S}'(\mathbb{R}^n),$$

and for some $1 \leq q_i < \infty$, it extends to a bounded multilinear operator from $L^{q_1} \times \cdots \times L^{q_m}$ to L^q, where $1/q_1 + \cdots + 1/q_m = 1/q$, and if there exists a function K, defined off the diagonal $x = y_1 = \cdots = y_m$ in $(\mathbb{R}^n)^{m+1}$, satisfying

$$T(f_1, \ldots, f_m)(x) = \int_{(\mathbb{R}^n)^m} K(x, y_1, \ldots, y_m) f_1(y_1) \cdots f_m(y_m) dy_1 \cdots dy_m$$

for all $x \notin \bigcap_{j=1}^m \text{supp } f_i$;

$$|K(y_0, y_1, \ldots, y_m)| \leq \frac{A}{\left(\sum_{k,l=0}^m |y_k - y_l|\right)^m}$$

∗This work was supported partially by the National Natural Science Foundation of China(10990012) and the Research Fund for the Doctoral Program of Higher Education.

†Corresponding author.
and
\[|K(y_0, \cdots, y_i, \cdots, y_m) - K(y_0, \cdots, y_i', \cdots, y_m)| \leq \frac{A|y_i - y_i'|^\epsilon}{(\sum_{k,l=0}^m |y_k - y_l|)^{m+\epsilon}} \]
for some $A, \epsilon > 0$ and all $0 \leq i \leq m$, whenever $|y_i - y_i'| \leq \frac{1}{2} \max_{0 \leq k \leq m} |y_i - y_k|$.

For the theory of multilinear Calderón-Zygmund operators, we refer the readers to [4 5 6 7 8] for an overview.

The multiple A_p weights introduced by Lerner, Ombrosi, Pérez, Torres and Trujillo-González [15] are defined as follows. Let $\vec{P} = (p_1, \cdots, p_m)$ with $1 \leq p_1, \cdots, p_m < \infty$ and $1/p_1 + \cdots + 1/p_m = 1/p$. Given $\vec{w} = (w_1, \cdots, w_m)$, set
\[v_{\vec{w}} = \prod_{i=1}^m w_i^{p_i/p_i}. \]

We say that \vec{w} satisfies the multilinear $A_{\vec{P}}$ condition if
\[[\vec{w}]_{A_{\vec{P}}} := \sup_Q \left(\frac{1}{|Q|} \int_Q v_{\vec{w}} \right) \prod_{i=1}^m \left(\frac{1}{|Q|} \int_Q w_i^{1-p_i'} \right)^{p_i/p_i'} < \infty, \]
where $[\vec{w}]_{A_{\vec{P}}}$ is called the $A_{\vec{P}}$ constant of \vec{w}. When $p_i = 1$, $\left(\frac{1}{|Q|} \int_Q w_i^{1-p_i'} \right)^{1/p_i'}$ is understood as $(\inf_Q w_i)^{-1}$. It is easy to see that in the linear case (that is, $m = 1$) $[\vec{w}]_{A_{\vec{P}}} = [w]_{A_p}$ is the usual A_p constant. Recall that $A_\infty = \bigcup_{1 \leq p < \infty} A_p$ and the A_∞ constant $[w]_{A_\infty}$ is defined by
\[[w]_{A_\infty} := \sup_Q \frac{1}{w(Q)} \int_Q M(w\chi_Q). \]

In [18], it was shown that for $1 < p_1, \cdots, p_m < \infty$, $\vec{w} \in A_{\vec{P}}$ if and only if $w_i^{1-p_i'} \in A_{mp_i'}$ and $v_{\vec{w}} \in A_{mp_p}$.

For the linear case, i.e. $m = 1$, the A_p-A_∞ type estimates for Calderón-Zygmund operators were investigated in [11]. Notice that the main technique in [11] is an appropriate characterization which simplifies the estimate of the weighted bounds to calculate a test condition [12, 15]. The advantage of their technique is that it does not rely upon the extrapolation. In this paper, roughly speaking, we follow the idea used in [12]. But we do not use the method such as the linearization used in that paper. Instead, we use the idea of Damián, Lerner and Pérez [3] and reduce the problem to consider the following type of operators,
\[A_{\vec{P}, S}(\vec{f}) = \sum_{j,k} \left(\prod_{i=1}^m \frac{1}{|Q_{j,k}|} \int_{Q_{j,k}} f_i(y_i) dy_i \right) \chi_{Q_{j,k}}, \]
where $\vec{f} := (f_1, \cdots, f_m)$, \mathcal{D} is a dyadic grid and $S := \{Q_{j,k}\}$ is a sparse family in \mathcal{D} (see Section 2 for definitions of these notations).

In the linear case, Lerner [16, 17] investigated this type of operators and gave a simple proof for the A_2 conjecture. For the fundamental theory of A_p weights and the history of the A_2 conjecture, we refer the readers to [1 2 10 13 14 22 23] for an overview.

In [3], Damián, Lerner and Pérez studied the sharp weighted bound of multilinear maximal function of mixed A_p-A_∞ type and gave a multilinear version of the A_2 conjecture.
In [19], the authors estimated the weighted bound of the multilinear maximal function and Calderón-Zygmund operators in terms of $\|w\|_{A_\vec{p}}$.

In this paper, we estimate the weighted bound of multilinear Calderón-Zygmund operators of mixed A_p-A_∞ type. We give the sharp estimate for some cases. To be precise, the main result of this paper is the following.

Theorem 1.1 Let T be a multilinear Calderón-Zygmund operator, $\vec{P} = (p_1, \ldots, p_m)$ with $1/p = 1/p_1 + \cdots + 1/p_m$ and $1 < p, p_1, \ldots, p_m < \infty$. Suppose that $\vec{w} = (w_1, \ldots, w_m)$ with $\vec{w} \in A_{\vec{P}}$. Then

$$
\|T(\vec{f})\|_{L^p(v_{\vec{w}})} \leq C_{m,n,\vec{P},T}[\vec{w}]^{1/p}_{A_{\vec{P}}} \left(\prod_{i=1}^m [\sigma_i]^{1/p_i}_{A_\infty} \right) \prod_{i=1}^m \|f_i\|_{L^{p_i}(w_i)},
$$

(1.1)

where $\sigma_i = w_i^{1-p'_i}$, $i = 1, \ldots, m$. The result is sharp in the sense that the exponents cannot be improved whenever $\max_i p_i \leq p'/((mp - 1)$.

For the weak type estimates, we get a similar result.

Theorem 1.2 Let T be a multilinear Calderón-Zygmund operator, $\vec{P} = (p_1, \ldots, p_m)$ with $1/p = 1/p_1 + \cdots + 1/p_m$ and $1 < p, p_1, \ldots, p_m < \infty$. Suppose that $\vec{w} := (w_1, \ldots, w_m) \in A_{\vec{P}}$. Then we have

$$
\|T(\vec{f})\|_{L^{p,\infty}(v_{\vec{w}})} \leq C_{m,n,\vec{P},T}[\vec{w}]^{1/p}_{A_{\vec{P}}} [v_{\vec{w}}]^{1/p'}_{A_{\vec{P}}} \left(\sum_{i'=1}^m \prod_{i \neq i'} [\sigma_i]^{1/p_i}_{A_\infty} \right) \prod_{i=1}^m \|f_i\|_{L^{p_i}(w_i)}.
$$

In the rest of this paper, we give proofs for the main results. To avoid cumbersome notations, we only prove Theorems 1.1 and 1.2 for the case $m = 2$. And the general case can be proved similarly but with more complicated symbols.

2 Preliminaries

In this section, we collect some notations and preliminary results. Recall that the standard dyadic grid in \mathbb{R}^n consists of the cubes

$$
[0, 2^{-k})^n + 2^{-k} j, \quad k \in \mathbb{Z}, j \in \mathbb{Z}^n.
$$

Denote the standard dyadic grid by \mathcal{D}.

By a general dyadic grid \mathcal{G} we mean a collection of cubes with the following properties:

(i) for any $Q \in \mathcal{G}$ its sidelength l_Q is of the form 2^k, $k \in \mathbb{Z}$; (ii) $Q \cap R \in \{Q, R, \emptyset\}$ for any $Q, R \in \mathcal{G}$; (iii) the cubes of a fixed sidelength 2^k form a partition of \mathbb{R}^n.

We say that $S := \{Q_{j,k}\}$ is a sparse family of cubes if:

(i) for each fixed k the cubes $Q_{j,k}$ are pairwise disjoint;

(ii) if $\Gamma_k = \bigcup_j Q_{j,k}$, then $\Gamma_{k+1} \subset \Gamma_k$;
(iii). \(|\Gamma_{k+1} \cap Q_{j,k}| \leq \frac{1}{2}|Q_{j,k}| \).

For any \(Q_{j,k} \in \mathcal{S} \), we define \(E(Q_{j,k}) = Q_{j,k} \setminus \Gamma_{k+1} \). Then the sets \(E(Q_{j,k}) \) are pairwise disjoint and \(|E(Q_{j,k})| \geq \frac{1}{2}|Q_{j,k}| \).

In \cite{3}, Damián, Lerner and Pèrez proved that for any Banach function space \(X \) over \(\mathbb{R}^n \) equipped with Lebesgue measure,

\[
\|T(\tilde{f})\|_X \leq C \sup_{\mathcal{D}, \mathcal{S}} \| A_{\mathcal{D}, \mathcal{S}} (|\tilde{f}|) \|_X, \tag{2.1}
\]

where \(|\tilde{f}| = (|f_1|, \ldots, |f_m|) \) and the supremum is taken over arbitrary dyadic grids \(\mathcal{D} \) and sparse families \(\mathcal{S} \subset \mathcal{D} \). Specially, for \(X = L^p(v_{\vec{w}}) \), \(1 \leq p < \infty \),

\[
\|T(\tilde{f})\|_{L^p(v_{\vec{w}})} \leq C \sup_{\mathcal{D}, \mathcal{S}} \| A_{\mathcal{D}, \mathcal{S}} (|\tilde{f}|) \|_{L^p(v_{\vec{w}})}. \tag{2.2}
\]

Let \(E^\sigma_{\mathcal{Q}} f := \sigma(\mathcal{Q})^{-1} \int_{\mathcal{Q}} f \sigma \). We introduce the principal cubes \cite{12}.

Definition 2.1 (Principal cubes) We form the collection \(\mathcal{G} \) of principal cubes as follows. Let \(\mathcal{G}_0 := \{ \mathcal{Q} \} \) (the maximal dyadic cube that we consider). And inductively,

\[
\mathcal{G}_k := \bigcup_{G \in \mathcal{G}_{k-1}} \{ G' \subset G : E^\sigma_{G'} |f| > 4E^\sigma_G |f|, G' is a maximal such dyadic cube \}.
\]

Let \(\mathcal{G} := \bigcup_{k=0}^\infty \mathcal{G}_k \). For any dyadic \(Q(\subset \overline{Q}) \), we let

\[
\Gamma(Q) := the\ minimal\ principal\ cube\ containing\ Q.
\]

It follows from the definition that

\[
E^\sigma_{\mathcal{Q}} |f| \leq 4E^\sigma_{\Gamma(Q)} |f|.
\]

From the idea of principal cubes, we have the following decomposition, which is similar to the ordinary corona decomposition (See \cite{14} [21]).

Let \(\mathcal{Q} \subset \mathcal{D} \) be any collection of dyadic cubes such that for any \(Q \in \mathcal{Q} \), there exists a maximal cube \(Q_{\max} \in \mathcal{Q} \) which contains \(Q \). Let \(\sigma_1 dx \) and \(\sigma_2 dx \) be two positive measures. We call \((\mathcal{L} : \mathcal{Q}(\mathcal{L})) : \mathcal{L} \subset \mathcal{Q} \) a \((\sigma_1, \sigma_2) \)-corona decomposition of \(\mathcal{Q} \) if these conditions hold.

(i). For each \(Q \in \mathcal{Q} \) there is a member of \(\mathcal{L} \) that contains \(Q \). Let \(\lambda(Q) \in \mathcal{L} \) denote the minimal cube which contains \(Q \). Then we have

\[
4 \frac{\sigma_1(\lambda(Q))\sigma_2(\lambda(Q))}{|\lambda(Q)|^2} \geq \frac{\sigma_1(Q)\sigma_2(Q)}{|Q|^2}.
\]

(ii). For all \(L', L \in \mathcal{L} \) with \(L' \subset L \),

\[
\frac{\sigma_1(L')\sigma_2(L')}{|L'|^2} > 4 \frac{\sigma_1(L)\sigma_2(L)}{|L|^2}.
\]
We set \(Q(L) := \{ Q \in \mathcal{Q} : \lambda(Q) = L \} \). The collection \(Q(L) \) forms a partition of \(\mathcal{Q} \).

Note that \(\{ Q \times Q : Q \in \mathcal{Q} \} \) is a collection of dyadic cubes in \(\mathbb{R}^{2n} \). Therefore, the \((\sigma_1, \sigma_2)\)-corona decomposition of \(\mathcal{Q} \) is in fact the ordinary corona decomposition of \(\{ Q \times Q : Q \in \mathcal{Q} \} \) with respect to the measure \(\sigma_1 \times \sigma_2 \).

Now we introduce some preliminary results. The following result is obvious and we omit the proof.

Lemma 2.2 Any sub-family of a sparse family is also sparse.

Next we give a property of \(A_\infty \) weights on sparse family.

Lemma 2.3 Let \(w \in A_\infty \) and \(\mathcal{Q} \subset \mathcal{D} \) be a sparse family. Suppose that there is some \(S \in \mathcal{D} \) such that any cube in \(\mathcal{Q} \) is contained in \(S \). Then

\[
\sum_{Q \in \mathcal{Q}} w(Q) \leq 2 \int_S M(w1_S)(x)dx \leq 2[w]_{A_\infty} w(S).
\]

Proof. Set

\[E(Q) = Q \setminus \bigcup_{Q' \in \mathcal{Q}, Q' \subset Q} Q'. \]

By the sparse property, \(E(Q) \) are disjoint and \(|E(Q)| \geq \frac{1}{2}|Q| \). Then we have

\[
\sum_{Q \in \mathcal{Q}} w(Q) \leq 2 \sum_{Q \in \mathcal{Q}} \frac{w(Q)}{|Q|} |E(Q)| \leq 2 \int_S M(w1_S)(x)dx \leq 2[w]_{A_\infty} w(S).
\]

By (2.2), we have to estimate \(\|A_{\varphi, S}(|\vec{f}|)\|_{L^p(v, \vec{w})} \). First, we consider a special case.

Lemma 2.4 Suppose that \((w_1, w_2) \in A_{\vec{P}}\), where \(\vec{P} = (p_1, p_2) \) and \(1/p = 1/p_1 + 1/p_2 \). Let \(\mathcal{Q} \subset \mathcal{D} \) be a sparse family. Suppose that there is some \(S \in \mathcal{D} \) such that any cube in \(\mathcal{Q} \) is contained in \(S \). Set

\[
A_{\varphi, \mathcal{Q}}(\vec{f}) = \sum_{Q \in \mathcal{Q}} \left(\prod_{i=1}^2 \frac{1}{|Q|} \int_Q f_i(y_i)dy_i \right) \chi_Q.
\]

Then we have

\[
\|A_{\varphi, \mathcal{Q}}(\sigma_11_S, \sigma_21_S)\|_{L^p(v, \vec{w})}\]

\[
\lesssim [w]_{A_{\vec{P}}}^{1/p} \left(\sum_{Q \in \mathcal{Q}} \sigma_1(Q) \right)^{1/p_1} \cdot \left(\sum_{Q \in \mathcal{Q}} \sigma_2(Q) \right)^{1/p_2}.
\]

Proof. Without loss of generality, assume that \(p_1 \leq p_2 \). Set

\[
\mathcal{Q}_a := \left\{ Q \in \mathcal{Q} : 2^a < \left(\frac{v_{\vec{w}}(Q)}{|Q|} \right)^{1/p} \prod_{i=1}^2 \left(\frac{\sigma_i(Q)}{|Q|} \right)^{1/p'_i} \leq 2^{a+1} \right\},
\]

\[
\{ Q \in \mathcal{Q} : 2^a \leq \left(\frac{v_{\vec{w}}(Q)}{|Q|} \right)^{1/p} \prod_{i=1}^2 \left(\frac{\sigma_i(Q)}{|Q|} \right)^{1/p'_i} \}
\]

\[
= \sum_{a=0}^{\infty} \mathcal{Q}_a.
\]

By the sparse property, \(\mathcal{Q}_a \) are disjoint and

\[
|\mathcal{Q}_a| \leq 2^{a+1} \left(\frac{v_{\vec{w}}(Q)}{|Q|} \right)^{1/p} \prod_{i=1}^2 \left(\frac{\sigma_i(Q)}{|Q|} \right)^{1/p'_i}.
\]

By the definition of \(A_{\varphi, \mathcal{Q}}(\vec{f}) \), we have

\[
\|A_{\varphi, \mathcal{Q}}(\sigma_11_S, \sigma_21_S)\|_{L^p(v, \vec{w})}\]

\[
\lesssim \sum_{a=0}^{\infty} \left(\frac{v_{\vec{w}}(Q)}{|Q|} \right)^{1/p} \prod_{i=1}^2 \left(\frac{\sigma_i(Q)}{|Q|} \right)^{1/p'_i} |\mathcal{Q}_a|.
\]

By the definition of \(A_{\varphi, \mathcal{Q}}(\vec{f}) \), we have

\[
\|A_{\varphi, \mathcal{Q}}(\sigma_11_S, \sigma_21_S)\|_{L^p(v, \vec{w})}\]

\[
\lesssim \sum_{a=0}^{\infty} \left(\frac{v_{\vec{w}}(Q)}{|Q|} \right)^{1/p} \prod_{i=1}^2 \left(\frac{\sigma_i(Q)}{|Q|} \right)^{1/p'_i} |\mathcal{Q}_a|.
\]

By the sparse property, \(\mathcal{Q}_a \) are disjoint and

\[
|\mathcal{Q}_a| \leq 2^{a+1} \left(\frac{v_{\vec{w}}(Q)}{|Q|} \right)^{1/p} \prod_{i=1}^2 \left(\frac{\sigma_i(Q)}{|Q|} \right)^{1/p'_i}.
\]

By the definition of \(A_{\varphi, \mathcal{Q}}(\vec{f}) \), we have

\[
\|A_{\varphi, \mathcal{Q}}(\sigma_11_S, \sigma_21_S)\|_{L^p(v, \vec{w})}\]

\[
\lesssim \sum_{a=0}^{\infty} \left(\frac{v_{\vec{w}}(Q)}{|Q|} \right)^{1/p} \prod_{i=1}^2 \left(\frac{\sigma_i(Q)}{|Q|} \right)^{1/p'_i} |\mathcal{Q}_a|.
\]

By the sparse property, \(\mathcal{Q}_a \) are disjoint and

\[
|\mathcal{Q}_a| \leq 2^{a+1} \left(\frac{v_{\vec{w}}(Q)}{|Q|} \right)^{1/p} \prod_{i=1}^2 \left(\frac{\sigma_i(Q)}{|Q|} \right)^{1/p'_i}.
\]

By the definition of \(A_{\varphi, \mathcal{Q}}(\vec{f}) \), we have

\[
\|A_{\varphi, \mathcal{Q}}(\sigma_11_S, \sigma_21_S)\|_{L^p(v, \vec{w})}\]

\[
\lesssim \sum_{a=0}^{\infty} \left(\frac{v_{\vec{w}}(Q)}{|Q|} \right)^{1/p} \prod_{i=1}^2 \left(\frac{\sigma_i(Q)}{|Q|} \right)^{1/p'_i} |\mathcal{Q}_a|.
\]

By the sparse property, \(\mathcal{Q}_a \) are disjoint and

\[
|\mathcal{Q}_a| \leq 2^{a+1} \left(\frac{v_{\vec{w}}(Q)}{|Q|} \right)^{1/p} \prod_{i=1}^2 \left(\frac{\sigma_i(Q)}{|Q|} \right)^{1/p'_i}.
\]

By the definition of \(A_{\varphi, \mathcal{Q}}(\vec{f}) \), we have

\[
\|A_{\varphi, \mathcal{Q}}(\sigma_11_S, \sigma_21_S)\|_{L^p(v, \vec{w})}\]

\[
\lesssim \sum_{a=0}^{\infty} \left(\frac{v_{\vec{w}}(Q)}{|Q|} \right)^{1/p} \prod_{i=1}^2 \left(\frac{\sigma_i(Q)}{|Q|} \right)^{1/p'_i} |\mathcal{Q}_a|.
\]
where $-1 \leq a \leq |\log_2[\bar{w}]|^{1/p}$. Form the (σ_1, σ_2)-corona decomposition of Q_a. We get L_a.

Define

$$A_{\varphi, Q_a(L)}(x) = \sum_{Q \in Q_a(L)} \frac{\sigma_1(Q)\sigma_2(Q)}{|Q|^2} \chi_Q(x).$$

We conclude that there exists some $c > 0$ such that for $L \in L_a$ and $t \geq 0$, we have

$$\left| \left\{ x \in \mathbb{R}^n : A_{\varphi, Q_a(L)}(x) > 4t \frac{\sigma_1(L)\sigma_2(L)}{|L|^2} \right\} \right| \leq 2^{-t+2}|L|, \quad (2.3)$$

$$v_\varphi \left(\left\{ x \in \mathbb{R}^n : A_{\varphi, Q_a(L)}(x) > t \frac{\sigma_1(L)\sigma_2(L)}{|L|^2} \right\} \right) \leq 2^{-c} v_\varphi(L). \quad (2.4)$$

First, we prove (2.3). It is obvious that

$$\left| \left\{ x \in \mathbb{R}^n : A_{\varphi, Q_a(L)}(x) > 4 \frac{\sigma_1(L)\sigma_2(L)}{|L|^2} \right\} \right| \leq |L|.$$

Since for $Q \in Q_a(L)$,

$$\frac{\sigma_1(Q)\sigma_2(Q)}{|Q|^2} \leq 4 \frac{\sigma_1(L)\sigma_2(L)}{|L|^2},$$

by the sparse property of Q, we have for any integer τ,

$$\left| \left\{ x \in \mathbb{R}^n : A_{\varphi, Q_a(L)}(x) > 4\tau \frac{\sigma_1(L)\sigma_2(L)}{|L|^2} \right\} \right| \leq 2^{-\tau+1}|L|.$$

This proves (2.3).

Next we prove (2.4). For integers $b \geq 0$, we define $Q_{a,b}(L)$ to be the set consisting of $Q \in Q_a(L)$ such that

$$2^{-b+1} \frac{\sigma_1(L)\sigma_2(L)}{|L|^2} < \frac{\sigma_1(Q)\sigma_2(Q)}{|Q|^2} \leq 2^{-b+2} \frac{\sigma_1(L)\sigma_2(L)}{|L|^2}.$$

Define

$$E_b(t) := \left\{ x \in \mathbb{R}^n : A_{\varphi, Q_{a,b}(L)}(x) > 4t 2^{-b} \frac{\sigma_1(L)\sigma_2(L)}{|L|^2} \right\},$$

where

$$A_{\varphi, Q_{a,b}(L)}(x) = \sum_{Q \in Q_{a,b}(L)} \frac{\sigma_1(Q)\sigma_2(Q)}{|Q|^2} \chi_Q(x).$$

Similar arguments as the above show that $|E_b(t)| \leq 2^{-t+2}|L|$. Let $K = 4 \sum_{b \geq 0} 2^{-b/2}$. We have

$$v_\varphi \left(\left\{ x \in \mathbb{R}^n : A_{\varphi, Q_a(L)}(x) > t \frac{\sigma_1(L)\sigma_2(L)}{|L|^2} \right\} \right) \leq \sum_{b \geq 0} v_\varphi \left(\left\{ x \in \mathbb{R}^n : A_{\varphi, Q_{a,b}(L)}(x) > 4t 2^{-b/2}K^{-1} \frac{\sigma_1(L)\sigma_2(L)}{|L|^2} \right\} \right)$$

$$= \sum_{b \geq 0} v_\varphi(E_b(2^{b/2}K^{-1}t)).$$
Suppose that $E_b(2^{b/2}K^{-1}t) = \bigcup_j R_j^b$, where R_j^b are pairwise disjoint maximal dyadic cubes in $E_b(2^{b/2}K^{-1}t)$. Notice that $R_j^b \in \mathcal{Q}_{a,b}(L)$. We have

$$v_{\bar{w}}(E_b(2^{b/2}K^{-1}t)) = \sum_j v_{\bar{w}}(R_j^b) \leq \sum_j \left(2^a \frac{|R_j^b|^2}{\sigma_1(R_j^b)^{1/p'} \sigma_2(R_j^b)^{1/p}} \right)^p \leq \sum_j \frac{2^a |R_j^b|^{2p/p_2}}{\sigma_1(R_j^b)^{p/p_2} \sigma_2(R_j^b)^{p/p_2}} \frac{|R_j^b|^{p/p_2}}{|R_j^b|^{1/p_2}} \leq \frac{2^{bp/p_2}}{\sigma_1(L)^{p/p_2}} \left(\sum_j \frac{|R_j^b|^{p/p_2}}{|R_j^b|} \right)^{2p/p_2} v_{\bar{w}}(L) \leq 2^{bp/p_2} (K^{-1}2^{b/2_2+2}) \frac{2^{bp/p_2}}{\sigma_1(L)^{p/p_2}} v_{\bar{w}}(L) \leq 2^{bp/p_2} (K^{-1}2^{b/2_2+2}) \frac{2^{bp/p_2}}{\sigma_1(L)^{p/p_2}} v_{\bar{w}}(L).$$

It follows that for $t \geq 1$,

$$v_{\bar{w}} \left(\left\{ x \in \mathbb{R}^n : A_{\mathcal{Q}_a}(L)(x) > t \frac{\sigma_1(L)\sigma_2(L)}{|L|^2} \right\} \right) \leq \sum_{b \geq 0} v_{\bar{w}}(E_b(2^{b/2}K^{-1}t)) \lesssim \sum_{b \geq 0} 2^{bp/p_2} (K^{-1}2^{b/2_2+2}) \frac{2^{bp/p_2}}{\sigma_1(L)^{p/p_2}} v_{\bar{w}}(L) \lesssim \sum_{b \geq 0} 2^{bp/p_2} (K^{-1}2^{b/2_2+2}) \frac{2^{bp/p_2}}{\sigma_1(L)^{p/p_2}} v_{\bar{w}}(L) \lesssim 2^{-ct} v_{\bar{w}}(L),$$

where $c = K^{-1}p/p_2$. For $0 \leq t < 1$, it is obvious that (2.4) is correct.

For $L \in \mathcal{L}_a$ and $d \in \mathbb{Z}_+$, let

$$L_{a,d} = \left\{ x \in \mathbb{R}^n : A_{\mathcal{Q}_a}(L)(x) \in (d, d+1] \frac{\sigma_1(L)\sigma_2(L)}{|L|^2} \right\}.$$

It is obvious that $L_{a,d} \subset L$ and by (2.4),

$$v_{\bar{w}}(L_{a,d}) \lesssim 2^{-cd} v_{\bar{w}}(L).$$

By the definition of (σ_1, σ_2)-corona decomposition, we have

$$\sum_{L \in \mathcal{L}_a} \frac{\sigma_1(L)\sigma_2(L)}{|L|^2} \chi_{L_{a,d}}(x) \propto \left(\sum_{L \in \mathcal{L}_a} \left(\frac{\sigma_1(L)\sigma_2(L)}{|L|^2} \right)^p \right)^{1/p} \chi_{L_{a,d}}(x).$$
It follows that

\[
\|A_{\varphi, Q}(\sigma_11_S, \sigma_21_S)\|_{L^p(v_\varphi)} \\
\leq \sum_{a=-1}^{[\log_2|\vec{w}|^{1/p}_{A_{\vec{P}}}] - 1} \|A_{\varphi, Q_a}(x)\|_{L^p(v_\varphi)} \\
\leq \sum_{a=-1}^{[\log_2|\vec{w}|^{1/p}_{A_{\vec{P}}}] - 1} (d + 1) \left(\sum_{L \in \mathcal{L}_a} \frac{\sigma_1(L)\sigma_2(L)}{|L|^2} \chi_{L_{a,d}}(x) \right)_{L^p(v_\varphi)} \\
\leq \sum_{a=-1}^{[\log_2|\vec{w}|^{1/p}_{A_{\vec{P}}}] - 1} \frac{d + 1}{2^a} \left(\sum_{L \in \mathcal{L}_a} \frac{\sigma_1(L)\sigma_2(L)}{|L|^2} \right)^{1/p} (\sum_{L \in \mathcal{L}_a} \sigma_2(L)^{p/p_1})^{1/p_2} \\
\leq [\vec{w}]_{A_{\vec{P}}}^{1/p} \left(\sum_{Q \in \mathcal{Q}} \sigma_1(Q) \right)^{1/p_1} \cdot \left(\sum_{Q \in \mathcal{Q}} \sigma_2(Q) \right)^{1/p_2}.
\]

This completes the proof. \(\square\)

The following result gives another special case of \(\|A_{\varphi, S}(f(x))\|_{L^p(v_\varphi)}\). Since its proof shares some common steps with the one for Theorem 1.1, we postpone the proof to Section 3.

Lemma 2.5 Suppose that \((w_1, w_2) \in A_{\vec{P}}\) with \(\vec{P} = (p_1, p_2)\) satisfies that \(1/p = 1/p_1 + 1/p_2\) and that \(1 < p, p_1, p_2 < \infty\). Let \(S\) be a dyadic cube and supp \(f_1 \subset S\). Then

\[
\|1_S A_{\varphi, S}(f_1|\sigma_1, \sigma_21_S)\|_{L^p(v_\varphi)} \lesssim [\vec{w}]^{1/p}_{A_{\vec{P}}} [\sigma_2]^{1/p_2}_{A_{\vec{P}}} [\vec{w}]^{1/p'}_{A_{\vec{P}}} + [\sigma_1]^{1/p_1}_{A_{\vec{P}}} \|f_1\|_{L^{p_1}(\sigma_1)\sigma_2(S)}^{1/p_2}.
\]

To prove the main result, we also need the following result on multiple weights.

Lemma 2.6 [79] **Lemma 2.2** Suppose that \(\vec{w} = (w_1, \cdots, w_m) \in A_{\vec{P}}\) and that \(1 < p, p_1, \cdots, p_m < \infty\) with \(1/p_1 + \cdots + 1/p_m = 1/p\). Then \(\vec{v} := (w_1, \cdots, v_{i-1}, v_{i-1'}^{-p'}, w_{i+1}, \cdots, w_m) \in A_{\vec{P}_{i}}\) with \(\vec{P}_{i} = (p_1, \cdots, p_{i-1}, p', p_{i+1}, \cdots, p_m)\) and

\[
[\vec{w}]_{A_{\vec{P}_{i}}} \equiv [\vec{v}]_{A_{\vec{P}}}.\]

3 Proof of Theorem 1.1

In this section, we prove Theorem 1.1. Without loss of generality, we assume that \(f_1, f_2 \geq 0\). Denote \(\Omega_i := \{x \in \mathbb{R}^n : A_{\varphi, S}(f_1\sigma_1, f_2\sigma_2)(x) > 2^i\}\) and let \(\mathcal{Q}_i\) denote the set of maximal dyadic cubes in \(\Omega_i\). By the structure of \(A_{\varphi, S}\), any cube in \(\mathcal{Q}_i\) must be some cube \(Q_{j,k} \subset S\).
We have
\[
\left\| A_{\mathcal{H}S}(f_1\sigma_1, f_2\sigma_2) \right\|_{L^p(v_\omega)}^p \leq 4^p \sum_{l \in \mathbb{Z}} 2^p v_\omega(\Omega_{l+1} \setminus \Omega_{l+2})
\]
\[
= 4^p \sum_{l \in \mathbb{Z}} \sum_{Q \in Q_l} 2^p v_\omega(Q \cap \Omega_{l+1} \setminus \Omega_{l+2})
\]
\[
= 4^p \sum_{l \in \mathbb{Z}} \sum_{Q \in Q_l} 2^p v_\omega(E_l(Q)),
\]
where \(E_l(Q) = Q \cap \Omega_{l+1} \setminus \Omega_{l+2} \). By the maximal property of \(Q \in Q_l \), we have
\[
\sum_{Q_{j,k} \supset Q} \prod_{i=1}^2 \frac{1}{|Q_{j,k}|} \int_{Q_{j,k}} f_i(y_i) \sigma_1 dy_i > 2^l
\]
and
\[
\sum_{Q_{j,k} \supset Q} \prod_{i=1}^2 \frac{1}{|Q_{j,k}|} \int_{Q_{j,k}} f_i(y_i) \sigma_1 dy_i \leq 2^l.
\]
Therefore, for \(x \in E_l(Q) \), we have
\[
2^{l+1} < A_{\mathcal{H}S}(f_1\sigma_1, f_2\sigma_2)(x) \leq A_{\mathcal{H}S}(f_1\sigma_1 1_Q, f_2\sigma_2 1_Q)(x) + 2^l.
\]
That is,
\[
A_{\mathcal{H}S}(f_1\sigma_1 1_Q, f_2\sigma_2 1_Q)(x) > 2^l, \quad x \in E_l(Q).
\]
Thus, for sufficiently small \(\beta > 0 \) to be determined later, we have
\[
\left\| A_{\mathcal{H}S}(f_1\sigma_1, f_2\sigma_2) \right\|_{L^p(v_\omega)}^p \leq 4^p \sum_{l \in \mathbb{Z}, Q \in Q_l} 2^p \beta v_\omega(Q) + 4^p \sum_{l \in \mathbb{Z}, Q \in Q_l} 2^p v_\omega(E_l(Q))
\]
\[
\leq \frac{4^p \beta}{1 - 2^{-p}} \left\| A_{\mathcal{H}S}(f_1\sigma_1, f_2\sigma_2) \right\|_{L^p(v_\omega)}^p + 4^p \sum_{l \in \mathbb{Z}, Q \in Q_l} v_\omega(E_l(Q))^{1-p}
\]
\[
\cdot \left(\int_{E_l(Q)} A_{\mathcal{H}S}(f_1\sigma_1 1_Q, f_2\sigma_2 1_Q)(x) v_\omega dx \right)^p.
\]
Consequently, by setting \(\beta = 4^{-p}(1 - 2^{-p})/2 \), we get
\[
\left\| A_{\mathcal{H}S}(f_1\sigma_1, f_2\sigma_2) \right\|_{L^p(v_\omega)}^p \leq \sum_{l \in \mathbb{Z}, Q \in Q_l} v_\omega(E_l(Q))^{1-p} \left(\int_{E_l(Q)} A_{\mathcal{H}S}(f_1\sigma_1 1_Q, f_2\sigma_2 1_Q)(x) v_\omega dx \right)^p
\]
\[
\leq \sum_{l \in \mathbb{Z}, Q \in Q_l} v_\omega(E_l(Q))^{1-p} \tag{3.1}
\]
\(\sum_{l \in \mathbb{Z}, Q \in Q_l} v_{\bar{w}}(E_l(Q)) > \beta v_{\bar{w}}(Q) \)

appearing in all these sums and we omit it in the rest of this section;

(iii). by the monotone convergence theorem, we may also assume that all appearing cubes are contained in some maximal dyadic cube \(\bar{Q} \). Then we can use the technique of principal cubes.

Before further estimates, we give two lemmas. The first can be proved with similar arguments as that in [12, pp. 20-21] and we omit the details.

Lemma 3.1 Let \(\mathcal{G} \) be the principal cubes with respect to \(f_1 \) and \(\sigma_1 \), and \(\tilde{\mathcal{G}} \) be the principal cubes with respect to \(f_2 \) and \(\sigma_2 \). Suppose that \(\Gamma(Q) \) and \(\tilde{\Gamma}(Q) \) are defined as that in Definition 2.1. Then

\[
\sum_{l \in \mathbb{Z}} \sum_{Q \in Q_l} \sum_{R \in Q_{l+2}, \tilde{R} \subset Q_{l+2}, R \cap \tilde{R} \cap Q_{l+2} \neq \emptyset} \sigma_1(R)(E^\sigma_1 f_1)^{p_1} \lesssim \|f_1\|_{L^{p_1}(\sigma_1)}^{p_1}. \tag{3.3}
\]

\[
\sum_{l \in \mathbb{Z}} \sum_{Q \in Q_l} \sum_{R \in Q_{l+2}, \tilde{R} \subset Q_{l+2}, R \cap \tilde{R} \cap Q_{l+2} \neq \emptyset} \sigma_2(\tilde{R})(E^\sigma_2 f_2)^{p_2} \lesssim \|f_2\|_{L^{p_2}(\sigma_2)}^{p_2}. \tag{3.4}
\]

And the second one can be seen from the definition of principal cubes.

10
Lemma 3.2 Let \mathcal{G} be the principal cubes with respect to f_1 and σ_1 and $\bar{\mathcal{G}}$ be the principal cubes with respect to f_2 and σ_2. Then

$$\sum_{G \in \mathcal{G}} (\mathbb{W}^p_G f_1)^p_1 \sigma_1(G) \lesssim \|f_1\|_{L^p_{\sigma_1}(\sigma_1)}^p. \quad (3.5)$$

$$\sum_{G \in \bar{\mathcal{G}}} (\mathbb{W}^p_G f_2)^p_2 \sigma_2(\bar{G}) \lesssim \|f_2\|_{L^p_{\sigma_2}(\sigma_2)}^p. \quad (3.6)$$

Next we give a proof for Lemma 2.5.

Proof of Lemma 2.5. Without loss of generality, assume that $f_1 \geq 0$. Set

$$A^1_{\mathcal{G},S}(f_1\sigma_1,1,S\sigma_2) = \sum_{Q_{j,k} \ni S} \frac{\int_{Q_{j,k}} f_1(y_1)\sigma_1 dy_1\sigma_2(Q_{j,k} \cap S)}{|Q_{j,k}|^2} \chi_{Q_{j,k}}$$

and

$$A^2_{\mathcal{G},S}(f_1\sigma_1,1,S\sigma_2) = \sum_{Q_{j,k} \subset S} \frac{\int_{Q_{j,k}} f_1(y_1)\sigma_1 dy_1\sigma_2(Q_{j,k} \cap S)}{|Q_{j,k}|^2} \chi_{Q_{j,k}}.$$

It is easy to see that

$$1_S A^1_{\mathcal{G},S}(f_1\sigma_1,1,S\sigma_2) = \sum_{Q_{j,k} \ni S} \frac{\int_{Q_{j,k}} f_1(y_1)\sigma_1 dy_1\sigma_2(Q_{j,k} \cap S)}{|Q_{j,k}|^2} \chi_S$$

$$\lesssim \int_S f_1(y_1)\sigma_1 dy_1\sigma_2(S) |S|^2 \chi_S$$

$$\lesssim \|f_1\|_{L^p_{\sigma_1}(\sigma_1)} \sigma_1(S)^{1/\mu_1} \sigma_2(S) |S|^2 \chi_S.$$

Hence

$$\|1_S A^1_{\mathcal{G},S}(f_1\sigma_1,1,S\sigma_2)\|_{L^p(v_\bar{w})} \lesssim \frac{\|f_1\|_{L^p_{\sigma_1}(\sigma_1)} \sigma_1(S)^{1/\mu_1} \sigma_2(S)}{|S|^2} v_{\bar{w}}(S)^{1/p}$$

$$\leq \|\bar{w}\|_{A_p}^{1/p} \|f_1\|_{L^p_{\sigma_1}(\sigma_1)} \sigma_2(S)^{1/p^2}.$$

It remains to estimate $A^2_{\mathcal{G},S}(f_1\sigma_1,1,S\sigma_2)$. Without loss of generality, assume that all cubes in S are contained in S. By the previous arguments, we only need to estimate (3.1) in the special case $f_2 = 1_S$. We have

$$\|A_{\mathcal{G},S}(f_1\sigma_1,1,S\sigma_2)\|_{L^p(v_\bar{w})}^p$$

$$\lesssim \sum_{\{Q \subset Q_{\mathcal{G}} \cap \mathbb{R}\}} v_\bar{w}(E_1(Q))^{1-p} \left(\int_{E_1(Q)} A_{\mathcal{G},S}(f_1\sigma_11_Q,1,S\sigma_21_Q)(x)v_\bar{w}dx \right)^p$$

$$\lesssim \sum_{\{Q \subset Q_{\mathcal{G}} \cap \mathbb{R}\}} v_\bar{w}(E_1(Q))^{1-p}$$

$$\times \left(\int_{E_1(Q)} A_{\mathcal{G},S}(f_1\sigma_11_Q,1,S\sigma_21_Q)(x)v_\bar{w}dx \right)^p.$$
\[+ \sum_{i \in \mathbb{Z}, Q \in \mathcal{Q}_i, v_{\omega}(E_i(Q)) > \beta v_{\omega}(Q)} v_{\omega}(E_i(Q))^{1-p} \times \left(\int_{E_i(Q)} A_{\varphi, S}(f_1 \sigma_{1,1} Q \cap \Omega_{i+2}, 1 S \sigma_{2,1} Q)(x) v_{\omega} dx \right)^p \]

\[:= J_1 + J_2. \]

In the following, we also use the convention (ii) to omit \(v_{\omega}(E_i(Q)) > \beta v_{\omega}(Q) \).

First, we estimate \(J_1 \). Let \(S_l(Q) := \bigcup_{R \in \mathcal{Q}_{l+2}} \{ Q_{j,k} \in \mathcal{S} : R \subsetneq Q_{j,k} \subset Q \} \), if \(\mathcal{Q}_{l+2} \neq \emptyset \)

and \(S_l(Q) := \{ Q_{j,k} \in \mathcal{S} : Q_{j,k} \subset Q \} \), if \(\mathcal{Q}_{l+2} = \emptyset \).

By Lemma 2.4 \(S_l(Q) \) is sparse. For big cubes \(Q_{j,k} \supseteq Q \) and \(x \in E_i(Q) \),

\[\sum_{Q_{j,k} \supseteq Q} \frac{\int_{Q \cap \Omega_{i+2}} f_1 \sigma_{1} dx \cdot \sigma_{2}(Q)}{|Q_{j,k}|^2} \leq \frac{\int_{Q \cap \Omega_{i+2}} f_1 \sigma_{1} dx \cdot \sigma_{2}(Q)}{|Q|^2}. \]

Hence for \(x \in E_i(Q) \), we have

\[A_{\varphi, S}(f_1 \sigma_{1,1} Q \cap \Omega_{i+2}, \sigma_{2,1} Q)(x) \leq 2 A_{\varphi, S_l(Q)}(f_1 \sigma_{1,1} Q \cap \Omega_{i+2}, \sigma_{2,1} Q)(x), \quad (3.7) \]

where

\[A_{\varphi, S_l(Q)}(f_1, f_2)(x) = \sum_{Q_{j,k} \in S_l(Q)} \left(\prod_{i=1}^2 \frac{1}{|Q_{j,k}|} \int_{Q_{j,k}} f_i(y_i) dy_i \right) \chi_{Q_{j,k}}(x). \]

Observe that \(S_l(Q) \) is an empty set if and only if \(Q \in \mathcal{Q}_l \cap \mathcal{Q}_{l+2} \). When the condition is satisfied, we have

\[A_{\varphi, S}(f_1 \sigma_{1,1} Q \cap \Omega_{i+2}, \sigma_{2,1} Q)(x) = A_{\varphi, S_l(Q)}(f_1 \sigma_{1,1} Q \cap \Omega_{i+2}, \sigma_{2,1} Q)(x) = 0, \]

which means that \((3.7) \) is correct even if \(S_l(Q) \) is empty. So \(\{ S_l(Q) : l \in 2\mathbb{Z}, Q \in \mathcal{Q}_l \} \) and \(\{ S_l(Q) : l \in 2\mathbb{Z} + 1, Q \in \mathcal{Q}_l \} \) are pairwise disjoint, respectively. Denote \(S_l(Q) = \{ Q_{l,\eta} \}_{\eta} \).

We have

\[\int_{E_i(Q)} A_{\varphi, S}(f_1 \sigma_{1,1} Q \cap \Omega_{i+2}, 1 S \sigma_{2,1} Q)(x) v_{\omega} dx \]

\[\lesssim \int_{E_i(Q)} A_{\varphi, S_l(Q)}(f_1 \sigma_{1,1} Q \cap \Omega_{i+2}, 1 S \sigma_{2,1} Q)(x) v_{\omega} dx \]

\[\leq \left(\int_Q (A_{\varphi, S_l(Q)}(v_{\omega} Q, 1 S \sigma_{2,1} Q))^\frac{p_1}{p_1} \sigma_{1} dx \right)^{1/p_1} \cdot \left(\int_{Q \cap \Omega_{i+2}} f_1^{1/p_1} \sigma_1 \right)^{1/p_1} \]

\[\lesssim [u]_{A_p}^{1/p} \left(\sum_{Q_{l,\eta} \in S_l(Q)} v_{\omega}(Q_{l,\eta}) \right)^{1/p_1} \sigma_{1} \quad \left(\sum_{Q_{l,\eta} \in S_l(Q)} \sigma_{2}(Q_{l,\eta}) \right)^{1/p_1} \]

\[\times \left(\int_{Q \cap \Omega_{i+2}} f_1^{p_1} \sigma_1 \right)^{1/p_1} \quad \text{(by Lemma 2.4 and Lemma 2.6)} \]

\[\leq [u]_{A_p}^{1/p} [v_{\omega}]_{A_\infty}^{1/p'} v_{\omega}(Q)^{1/p'} \left(\sum_{Q_{l,\eta} \in S_l(Q)} \sigma_{2}(Q_{l,\eta}) \right)^{1/p_1} \left(\int_{Q \cap \Omega_{i+2}} f_1^{p_1} \sigma_1 \right)^{1/p_1}. \]
where Lemma 2.3 is used in the last step. Recall that we have the convention (5.2). By Hölder’s inequality, we get

\[
J_1 = \sum_{l \in \mathbb{Z}, Q \in Q_l} \left(\int_{E_l(Q)} A_{\mathcal{G}, \mathcal{S}}(f_1 \sigma_1 1_{Q \cap \Omega_{l+2}, 1} \sigma_2 1_Q)(x) v_\bar{w}(E_l(Q)) \right)^{1-p} v_\bar{w}(E_l(Q))^{1-p}
\]

\[
\lesssim \bar{w} \left[A_{\mathcal{G}, \mathcal{S}}(v_\bar{w}) \right]_{A_\infty}^{p/p'} \left(\sum_{l \in \mathbb{Z}, Q \in Q_l} \sum_{Q_{l, \eta} \in \mathcal{S}_l(Q)} \sigma_2(Q_{l, \eta}) \right)^{p/p_2} \left(\sum_{l \in \mathbb{Z}, Q \in Q_l} \int_{Q \cap \Omega_{l+2}} f_1^{p_1} \sigma_1 \right)^{p/p_1}
\]

\[
\lesssim \bar{w} A_{\mathcal{F}}[v_\bar{w}]_{A_\infty}^{p/p'} \sigma_2_{A_\infty}^{p/p_2} \| f_1 \|_{L^{p_1}(\sigma_1)}^{p/p_1}.
\]

Next we estimate \(J_2\). Since \(E_l(Q) \subset \Omega_{l+2}\) for \(R \in Q_{l+2}\) with \(R \subset Q\), \(A_{\mathcal{G}, \mathcal{S}}(v_\bar{w} 1_{E_l(Q)}, \sigma_2 1_Q)(x)\) is a constant for \(x \in R\). We have

\[
\int_{E_l(Q)} A_{\mathcal{G}, \mathcal{S}}(f_1 \sigma_1 1_{Q \cap \Omega_{l+2}, 1} \sigma_2 1_Q)(x) v_\bar{w} dx = \sum_{R \in Q_{l+2}, R \subset Q} \int_{E_l(Q)} A_{\mathcal{G}, \mathcal{S}}(v_\bar{w} 1_{E_l(Q)}, \sigma_2 1_Q)(x) \sigma_1 dx \cdot E_R^{\sigma_1} f_1
\]

\[
\leq 16 \sum_{R \in Q_{l+2}, R \subset Q} \int_{E_l(Q)} A_{\mathcal{G}, \mathcal{S}}(v_\bar{w} 1_{E_l(Q)}, \sigma_2 1_Q)(x) \sigma_1 dx \cdot E_R^{\sigma_1} f_1
\]

\[
+ \sum_{R \in Q_{l+2}, R \subset Q} \int_{E_l(Q)} A_{\mathcal{G}, \mathcal{S}}(v_\bar{w} 1_{E_l(Q)}, \sigma_2 1_Q)(x) \sigma_1 dx \cdot E_R^{\sigma_1} f_1.
\]

Similarly to (3.7), for \(x \in E_l(Q)\), we have

\[
A_{\mathcal{G}, \mathcal{S}}(f_1 \sigma_1 1_{Q \cap \Omega_{l+2}, \sigma_2 1_Q})(x) \leq 2A_{\mathcal{G}, \mathcal{S}_l(Q)}(f_1 \sigma_1 1_{Q \cap \Omega_{l+2}, \sigma_2 1_Q})(x).
\]

Consequently, by setting \(S(G) = \bigcup_{l \in \mathbb{Z}, Q \in Q_l} S_l(Q)\), we have

\[
\sum_{l \in \mathbb{Z}, Q \in Q_l} \left(\int_{E_l(Q)} A_{\mathcal{G}, \mathcal{S}}(\sigma_1 1_{Q \cap \Omega_{l+2}, \sigma_2 1_Q})(x) v_\bar{w} dx \right)^p \cdot (E_R^{\sigma_1} f_1)^p \cdot v_\bar{w}(E_l(Q))^{1-p}
\]

\[
\lesssim \sum_{l \in \mathbb{Z}, Q \in Q_l} \int_{E_l(Q)} A_{\mathcal{G}, \mathcal{S}_l(Q)}(\sigma_1 1_{Q \cap \Omega_{l+2}, \sigma_2 1_Q})^p v_\bar{w} dx \cdot (E_R^{\sigma_1} f_1)^p
\]

\[
= \sum_{G \in G} \sum_{l \in \mathbb{Z}, Q \in Q_l} \int_{E_l(Q)} A_{\mathcal{G}, \mathcal{S}_l(Q)}(\sigma_1 1_{Q \cap \Omega_{l+2}, \sigma_2 1_Q})^p v_\bar{w} dx \cdot (E_R^{\sigma_1} f_1)^p.
\]
\[
\leq \sum_{G \in \mathcal{G}} \int_G (A_{\mathcal{G}, \mathcal{S}(G)}(\sigma_1 1_G, \sigma_2 1_G))^p v_{\omega G} dx \cdot (E_G^{\sigma_1} f_1)^p
\]

(by the disjointness of \(E_l(Q)\))
\[
\lesssim \sum_{G \in \mathcal{G}} [\tilde{w}]_{A_p} \left(\sum_{\Gamma(Q) = G} \sum_{Q_i, \eta \in \mathcal{S}(Q)} \sigma_1(Q_i, \eta) \right)^{p/p_1}
\times \left(\sum_{\Gamma(Q) = G} \sum_{Q_i, \eta \in \mathcal{S}(Q)} \sigma_2(Q_i, \eta) \right)^{p/p_2}
\cdot (E_G^{\sigma_1} f_1)^p
\quad \text{(by Lemma 2.4)}
\]
\[
\leq [\tilde{w}]_{A_p} \left(\sum_{Q \in \mathcal{G}} \int_G M(\sigma_1 1_G) \cdot (E_G^{\sigma_1} f_1)^{p_1} \right)^{p/p_1}
\times \left(\int_S M(\sigma_2 1_S) \right)^{p/p_2}
\quad \text{(by Lemma 2.3)}
\]
\[
\lesssim [\tilde{w}]_{A_p} \left[\sigma_1 \right]_{A_{\infty}}^{p_1/p_1} \left[\sigma_2 \right]_{A_{\infty}}^{p_2/p_2} \sigma_2(S)^{p_2/p_2} \cdot \left(\sum_{G \in \mathcal{G}} \sigma_1(G) \cdot (E_G^{\sigma_1} f_1)^{p_1} \right)^{p/p_1}
\]
\[
\lesssim [\tilde{w}]_{A_p} \left[\sigma_1 \right]_{A_{\infty}}^{p_1/p_1} \left[\sigma_2 \right]_{A_{\infty}}^{p_2/p_2} \sigma_2(S)^{p_2/p_2} \cdot \|f_1\|_{L^{p_1}(\sigma_1)}^{p/p_1}
\quad \text{(3.9)}
\]

where (3.5) is used in the last step.

For the \(E_R^{\sigma_1} f_1 > 16E_{1(Q)}\) part, by Hölder’s inequality, we have
\[
\sum_{R \in Q_{l+2}, R \subset Q} \int_R A_{\mathcal{G}, \mathcal{S}}(v_{\omega R} 1_{E_l(Q)}, \sigma_2 1_Q)(x) \sigma_1 dx \cdot E_R^{\sigma_1} f_1
\]
\[
\leq \left(\sum_{R \in Q_{l+2}, R \subset Q} \sigma_1(R)^{-p_1'/p_1} \left(\int_R A_{\mathcal{G}, \mathcal{S}}(v_{\omega R} 1_{E_l(Q)}, \sigma_2 1_Q)(x) \sigma_1 dx \right)^{p_1'/p_1} \right)^{1/p_1'}
\]
\[
\times \left(\sum_{R \in Q_{l+2}, R \subset Q} \sigma_1(R)(E_R^{\sigma_1} f_1)^{p_1} \right)^{1/p_1}
\]
\[
\leq \left(\int_{Q \cap Q_{l+2}} A_{\mathcal{G}, \mathcal{S}}(v_{\omega R} 1_{E_l(Q)}, \sigma_2 1_Q)(x) \sigma_1 dx \right)^{1/p_1'}
\]
\[
\times \left(\sum_{R \in Q_{l+2}, R \subset Q} \sigma_1(R)(E_R^{\sigma_1} f_1)^{p_1} \right)^{1/p_1}
\]
\[\lesssim \left(\int_{Q \cap \{l \in \mathbb{Z} \}} (A_{\mathcal{G}, S}(Q)(v \bar{w} 1_{E_l(Q)}, \sigma_2 1_Q))^{p_1} \sigma_1 dx \right)^{1/p_1} \]
\[\times \left(\sum_{R \in Q_{l+2}, R \subset Q \atop \varepsilon_R^1 f_1 > 16 \varepsilon_{R_1}^1 l(Q) / l(Q)} \sigma_1(R) (\mathbb{E}_R^\sigma f_1)^{p_1} \right)^{1/p_1} \]
\[\lesssim [\bar{w}]_{A_p}^{1/p} [v \bar{w}]_{A_\infty}^{1/p} \left(\sum_{Q \subset Q_{l+2}, R \subset Q} v \bar{w}(Q) \right)^{1/p'} \left(\sum_{Q \subset Q_{l+2}, R \subset Q} \sigma_2(Q, \eta) \right)^{1/p_2} \]
\[\times \left(\sum_{R \in Q_{l+2}, R \subset Q \atop \varepsilon_R^1 f_1 > 16 \varepsilon_{R_1}^1 l(Q) / l(Q)} \sigma_1(R) (\mathbb{E}_R^\sigma f_1)^{p_1} \right)^{1/p_1}, \]

(by Lemma 2.3 and Lemma 2.6)

\[\lesssim [\bar{w}]_{A_p}^{1/p} [v \bar{w}]_{A_\infty}^{1/p} \left(\sum_{l \in \mathbb{Z}, Q \subset Q_{l+2}} \left(\sum_{R \in Q_{l+2}, R \subset Q} v \bar{w}(E_l(Q)) \int_R A_{\mathcal{G}, S}(v \bar{w} 1_{E_l(Q)}, \sigma_2 1_Q)(x) \sigma_1 dx \cdot \mathbb{E}_R^\sigma f_1 \right) \right)^{p} \]
\[\lesssim [\bar{w}]_{A_p}^{1/p} [v \bar{w}]_{A_\infty}^{1/p} \left(\sum_{l \in \mathbb{Z}, Q \subset Q_{l+2}} \left(\sum_{R \in Q_{l+2}, R \subset Q} \sigma_2(Q, \eta) \right) \right)^{p/p_2} \]
\[\times \left(\sum_{l \in \mathbb{Z}, Q \subset Q_{l+2}} \left(\sum_{R \in Q_{l+2}, R \subset Q} \sigma_1(R) (\mathbb{E}_R^\sigma f_1)^{p_1} \right) \right)^{p/p_1} \]
\[\lesssim [\bar{w}]_{A_p}^{1/p} [v \bar{w}]_{A_\infty}^{1/p} \left[\sigma_2^{p/p_2} \|S\|_{L^p(\sigma_1)} \right]^{p} \]

where Lemma 2.3 is used in the last step. It follows from (3.2) and Hölder’s inequality that

\[\sum_{l \in \mathbb{Z}, Q \subset Q_{l+2}} \left(\sum_{R \in Q_{l+2}, R \subset Q} \int_R A_{\mathcal{G}, S}(v \bar{w} 1_{E_l(Q)}, \sigma_2 1_Q)(x) \sigma_1 dx \cdot \mathbb{E}_R^\sigma f_1 \right) \]
\[\lesssim [\bar{w}]_{A_p}^{1/p} [v \bar{w}]_{A_\infty}^{1/p} \left[\sum_{l \in \mathbb{Z}, Q \subset Q_{l+2}} \left(\sum_{R \in Q_{l+2}, R \subset Q} \sigma_2(Q, \eta) \right) \sigma_1(R) (\mathbb{E}_R^\sigma f_1)^{p_1} \right]^{p/p_1} \]

where Lemma 2.3 and (3.3) are used in the last step.

Putting (3.8), (3.9) and (3.10) together, we get

\[J_2 \lesssim [\bar{w}]_{A_p}^{1/p} [v \bar{w}]_{A_\infty}^{1/p} \left[\sigma_2^{p/p_2} \|S\|_{L^p(\sigma_1)} \right]^{p} \]

This completes the proof. \(\square\)

Now we continue to prove Theorem 1.1.
3.1 Estimate of I_1

In this subsection, we consider I_1. We have

$$
\int_{E(Q)} A_{g,S}(f_1\sigma_11_{Q\setminus\Omega_{i+2}}, f_2\sigma_21_{Q\setminus\Omega_{i+2}})(x)v_{\tilde{w}}dx
= \int_{Q\setminus\Omega_{i+2}} A_{g,S}(f_1\sigma_11_{Q\setminus\Omega_{i+2}}, v_{\tilde{w}}1_{E_i(Q)})(x)f_2\sigma_2dx
\leq \left(\int_{Q\setminus\Omega_{i+2}} (A_{g,S}(f_1\sigma_11_{Q\setminus\Omega_{i+2}}, v_{\tilde{w}}1_{Q}))^{p/2}\sigma_2dx \right)^{1/p_2} \cdot \left(\int_{Q\setminus\Omega_{i+2}} f_2^{p_2}\sigma_2 \right)^{1/p_2}
\lesssim [\tilde{w}]_{A_p}[v_{\tilde{w}}]_{A_\infty}^{|p/p'|}([\sigma_1]_{A_\infty})^{1/|p_1|} + [\sigma_2]_{A_\infty} \cdot v_{\tilde{w}}(Q)^{1/p'}
\times \left(\int_{Q\setminus\Omega_{i+2}} f_1^{p_1}\sigma_1 \right)^{1/p_1} \cdot \left(\int_{Q\setminus\Omega_{i+2}} f_2^{p_2}\sigma_2 \right)^{1/p_2},
$$

where Lemma 2.5 and Lemma 2.6 are used. By Hölder’s inequality, we have

$$
I_1 \lesssim [\tilde{w}]_{A_p}[v_{\tilde{w}}]_{A_\infty}^{|p/p'|}([\sigma_1]_{A_\infty})^{1/|p_1|} + [\sigma_2]_{A_\infty} \cdot v_{\tilde{w}}(Q)^{1/p'}
\times \left(\sum_{l \in \mathbb{Z}, Q \in Q_i} \int_{Q\setminus\Omega_{i+2}} f_1^{p_1}\sigma_1 \right)^{p/p_1} \cdot \left(\sum_{l \in \mathbb{Z}, Q \in Q_i} \int_{Q\setminus\Omega_{i+2}} f_2^{p_2}\sigma_2 \right)^{p/p_2}
\leq [\tilde{w}]_{A_p}[v_{\tilde{w}}]_{A_\infty}^{|p/p'|}([\sigma_1]_{A_\infty})^{1/|p_1|} + [\sigma_2]_{A_\infty} \cdot \|f_1\|_{L^{p_1}([\sigma_1])} \cdot \|f_2\|_{L^{p_2}([\sigma_2])}.
$$

3.2 Estimates of I_2 and I_3

In this subsection, we estimate I_2 and I_3. Since they are similar, we only estimate I_2 and the other one can be estimated similarly by the symmetry. We have

$$
\int_{E_i(Q)} A_{g,S}(f_1\sigma_11_{Q\setminus\Omega_{i+2}}, f_2\sigma_21_{Q\cap\Omega_{i+2}})(x)v_{\tilde{w}}dx
= \int_{Q\cap\Omega_{i+2}} A_{g,S}(f_1\sigma_11_{Q\setminus\Omega_{i+2}}, v_{\tilde{w}}1_{E_i(Q)})(x)f_2\sigma_2dx
= \sum_{R \in \mathbb{Q}_{i+2}} \int_{\hat{R}} A_{g,S}(f_1\sigma_11_{Q\setminus\Omega_{i+2}}, v_{\tilde{w}}1_{E_i(Q)})(x)f_2\sigma_2dx.
$$

Since $E_i(Q) \subset \Omega_{i+2}$ and $\hat{R} \subset Q_{i+2}$, $A_{g,S}(f_1\sigma_11_{Q\setminus\Omega_{i+2}}, v_{\tilde{w}}1_{E_i(Q)})(x)$ is a constant for $x \in \hat{R}$. Therefore,

$$
\int_{E_i(Q)} A_{g,S}(f_1\sigma_11_{Q\setminus\Omega_{i+2}}, f_2\sigma_21_{Q\cap\Omega_{i+2}})(x)v_{\tilde{w}}dx
= \sum_{R \in \mathbb{Q}_{i+2}} \int_{\hat{R}} A_{g,S}(f_1\sigma_11_{Q\setminus\Omega_{i+2}}, v_{\tilde{w}}1_{E_i(Q)})(x)\sigma_2dx \cdot \mathbb{E}_R^{p_2} f_2
$$
\[\leq 16 \sum_{R \in Q_{t+2}, R \subseteq Q} \int_{R} A_{\sigma, S}(f \sigma_11_{Q \setminus \Omega_{t+2}}, v \bar{w})_1E_1(Q)E_2(x) \sigma_2 dx - E_{\bar{\Gamma}(Q)}^2 f_2 \\
+ \sum_{R \in Q_{t+2}, R \subseteq Q} \int_{R} A_{\sigma, S}(f \sigma_11_{Q \setminus \Omega_{t+2}}, v \bar{w})_1E_1(Q)E_2(x) \sigma_2 dx - E_{\bar{\Gamma}(Q)}^2 f_2, \]

(3.11)

where \(\bar{\Gamma}(Q) \) are the principal cubes with respect to \(f_2 \) and \(\sigma_2 \).

3.2.1 The part with \(E^2_R f_2 \leq 16E^2_{\bar{\Gamma}(Q)} f_2 \)

For this part, we have

\[\sum_{R \in Q_{t+2}, R \subseteq Q} \int_{R} A_{\sigma, S}(f \sigma_11_{Q \setminus \Omega_{t+2}}, v \bar{w})_1E_1(Q)E_2(x) \sigma_2 dx - E_{\bar{\Gamma}(Q)}^2 f_2 \]

\[\leq \int_{Q} A_{\sigma, S}(f \sigma_11_{Q \setminus \Omega_{t+2}}, v \bar{w})_1E_1(Q)E_2(x) \sigma_2 dx - E_{\bar{\Gamma}(Q)}^2 f_2. \]

For \(\tilde{G} \in \tilde{G} \), where \(\tilde{G} \) is the set consisting of principal cubes with respect to \(f_2 \) and \(\sigma_2 \), set

\[g_1(x) = \sum_{l \in Z \cap Q_{l}, \bar{\Gamma}(Q) = \tilde{G}} f_1(x)1_{Q \setminus \Omega_{t+2}}(x). \]

Then by the disjointness of \(E_l(Q) \) in \(l \in Z \) and \(Q \in Q_l \),

\[\sum_{l \in Z \cap Q_{l}} \left(\sum_{R \in Q_{t+2}, R \subseteq Q} \int_{R} A_{\sigma, S}(f \sigma_11_{Q \setminus \Omega_{t+2}}, v \bar{w})_1E_1(Q)E_2(x) \sigma_2 dx - E_{\bar{\Gamma}(Q)}^2 f_2 \right)^p \cdot v \bar{w}(E_l(Q))^{1-p} \]

\[\leq \sum_{l \in Z \cap Q_{l}} v \bar{w}(E_l(Q))^{1-p} \left(\int_{Q} A_{\sigma, S}(f \sigma_11_{Q \setminus \Omega_{t+2}}, v \bar{w})_1E_1(Q)E_2(x) \sigma_2 dx \right)^p \]

\[\times \left(E_{\bar{\Gamma}(Q)}^2 f_2 \right)^p \]

\[\leq \sum_{G \in \tilde{G}} \sum_{l \in Z \cap Q_{l}, \bar{\Gamma}(Q) = \tilde{G}} \int_{E_l(Q)} (A_{\sigma, S}(f \sigma_11_{Q \setminus \Omega_{t+2}}, \sigma_2 l_{\tilde{G}}))^{p} v \bar{w} dx \cdot (E_{\bar{\Gamma}(Q)}^2 f_2)^p \]

\[\leq \sum_{G \in \tilde{G}} \int_{E_l(Q)} (A_{\sigma, S}(g_1 \sigma_1, \sigma_2 l_{\tilde{G}}))^{p} v \bar{w} dx \cdot (E_{\bar{\Gamma}(Q)}^2 f_2)^p \]

\[\leq [\bar{w}]_{A, p}^{p/p_1}, [\sigma_2]_{A, p_1}^{p/p_1} + [v \bar{w}]_{A, \infty}^{1/p} \sum_{G \in \tilde{G}} \left(\int_{G} \sigma_2^{p/p_1} \right)^{p/p_1} (E_{\bar{\Gamma}(Q)}^2 f_2)^p \]

\[\leq [\bar{w}]_{A, p}^{p/p_1}, [\sigma_2]_{A, p_1}^{p/p_1} + [v \bar{w}]_{A, \infty}^{1/p} \sum_{G \in \tilde{G}} \left(\int_{G} \sigma_2^{p/p_1} \right)^{p/p_1} (E_{\bar{\Gamma}(Q)}^2 f_2)^p \]

17
where, again, Lemma 2.5 and Lemma 2.6 are used in the last step. Therefore, by Hölder's inequality, we get

\[
\lesssim [\bar{\omega}]_{\mathcal{A}_{p}} [\sigma_{2}]^{p/p_{2}} [\sigma_{1}]^{1/p_{1}} + [v_{\bar{\omega}}]_{\mathcal{A}_{p}} \left(\sum_{G \in \mathcal{G}} \| f_{1} G \|^2_{\mathcal{A}_{1}} \right)^{p/p_{1}} \times \left(\sum_{G \in \mathcal{G}} \sigma_{2}(G) \| \mathbb{E}_{G}^{\sigma_{2}} f_{2} \|^{p}_{p_{2}} \right)^{p/p_{2}}
\]

\[
\lesssim [\bar{\omega}]_{\mathcal{A}_{p}} [\sigma_{2}]^{p/p_{2}} [\sigma_{1}]^{1/p_{1}} + [v_{\bar{\omega}}]_{\mathcal{A}_{p}} \left(\sum_{G \in \mathcal{G}} \| f_{1} G \|^2_{\mathcal{A}_{1}} \right)^{p/p_{1}} \cdot \| f_{2} \|^{p}_{L^{p_{2}}(\sigma_{2})}, \quad (3.12)
\]

where (3.6) is used in the last step.

3.2.2 The part with \(\mathbb{E}_{R}^{\sigma_{2}} f_{2} > 16 \mathbb{E}_{\Gamma(Q)}^{\sigma_{2}} f_{2} \)

By Hölder's inequality, we have

\[
\sum_{R \in Q_{l_{2}} \cap \Omega_{l_{2}}} \left(\int_{R} A_{\mathcal{G},\mathcal{S}} (f_{1} \sigma_{1} 1_{Q_{l_{2}}} \cap \Omega_{l_{2}}, v_{\bar{\omega}} 1_{E_{1}(Q_{l_{2}}} (x) \sigma_{2} dA_{R} \mathbb{E}_{R}^{\sigma_{2}} f_{2} \right)
\]

\[
\leq \left(\sum_{R \in Q_{l_{2}} \cap \Omega_{l_{2}}} \sigma_{2}(R) \| \mathbb{E}_{R}^{\sigma_{2}} f_{2} \|^{p}_{p_{2}} \right)^{1/p_{2}} \left(\int_{R} A_{\mathcal{G},\mathcal{S}} (f_{1} \sigma_{1} 1_{Q_{l_{2}}} \cap \Omega_{l_{2}}, v_{\bar{\omega}} 1_{E_{1}(Q_{l_{2}}} (x) \sigma_{2} dA_{R} \mathbb{E}_{R}^{\sigma_{2}} f_{2} \right)^{p/p_{2}}
\]

where, again, Lemma 2.5 and Lemma 2.6 are used in the last step. Therefore, by Hölder’s inequality, we get

\[
\sum_{l \in \mathbb{Z}, Q \in Q_{l}} \left(\sum_{R \in Q_{l_{2}} \cap \Omega_{l_{2}}} \left(\int_{R} A_{\mathcal{G},\mathcal{S}} (f_{1} \sigma_{1} 1_{Q_{l_{2}}} \cap \Omega_{l_{2}}, v_{\bar{\omega}} 1_{E_{1}(Q_{l_{2}}} (x) \sigma_{2} dA_{R} \mathbb{E}_{R}^{\sigma_{2}} f_{2} \right) \right).
\]
\[
\frac{1}{L^2} \left(\int_{E_l(Q)} A_{g_1} \left(f_1 \sigma_1 1_{Q \setminus \Omega_{i+2}}, f_2 2_{Q \setminus \Omega_{i+2}} \right)(x) \, v_\Omega \, dx \right)^p v_\Omega(E_l(Q))^{1-p}
\]

\[
\lesssim \| \tilde{A}_R \|_{p/p'} \left(\| \sigma_1 \|_{A_\infty}^{1/p_1} + \| \sigma_2 \|_{A_\infty}^{1/p_2} \right) \left(\sum_{l \in \mathbb{Z} \cap Q} \int_{Q \setminus \Omega_{i+2}} f_1^{p} \sigma_1 \right)^{p/p_1}
\]

\[
\cdot \left(\sum_{l \in \mathbb{Z} \cap Q} \sum_{R \in Q_{i+2}} \sigma_2(\hat{R}) \left(\frac{E^R}{R} f_2 \right)^{p_2} \right)^{p/p_2}
\]

\[
\lesssim \| \tilde{A}_R \|_{p/p'} \left(\| \sigma_1 \|_{A_\infty}^{1/p_1} + \| \sigma_2 \|_{A_\infty}^{1/p_2} \right) \| f_1 \|_{L^{p_1}(\sigma_1)} \cdot \| f_2 \|_{L^{p_2}(\sigma_2)}.
\]

where (3.4) is used in the last step.

Combining (3.11), (3.12) and (3.13), we get

\[
I_2 \lesssim \| \tilde{A}_R \|_{p/p'} \left(\| \sigma_1 \|_{A_\infty}^{1/p_1} + \| \sigma_2 \|_{A_\infty}^{1/p_2} \right) \| f_1 \|_{L^{p_1}(\sigma_1)} \cdot \| f_2 \|_{L^{p_2}(\sigma_2)}.
\]

By symmetry, we also have

\[
I_3 \lesssim \| \tilde{A}_R \|_{p/p'} \left(\| \sigma_1 \|_{A_\infty}^{1/p_1} + \| \sigma_2 \|_{A_\infty}^{1/p_2} \right) \| f_1 \|_{L^{p_1}(\sigma_1)} \cdot \| f_2 \|_{L^{p_2}(\sigma_2)}.
\]

3.3 Estimate of \(I_4 \)

Similarly to the previous arguments, we have

\[
\int_{E_l(Q)} A_{g_1, S}(f_1 \sigma_1 1_{Q \setminus \Omega_{i+2}}, f_2 2_{Q \setminus \Omega_{i+2}})(x) v_\Omega \, dx
\]

\[
= \sum_{R \in Q_{i+2}} \sum_{R \in Q_2} \int_{\hat{R}} A_{g_1, S}(v_\Omega 1_{E_l(Q)}, \sigma_1 1_R)(x) \sigma_2 \, dx \cdot \frac{E^R}{R} f_1 \cdot \frac{E^R}{R} f_2
\]

\[
\leq \sum_{R \in Q_{i+2}, R \subseteq Q_2} \sum_{R \in Q_2} \int_{\hat{R}} A_{g_1, S}(v_\Omega 1_{E_l(Q)}, \sigma_1 1_R)(x) \sigma_2 \, dx
\]

\[
\times \frac{E^R}{R} f_1 \cdot \frac{E^R}{R} f_2
\]

\[
+ \sum_{R \in Q_{i+2}, R \subseteq Q_2} \sum_{R \in Q_2} \int_{\hat{R}} A_{g_1, S}(v_\Omega 1_{E_l(Q)}, \sigma_1 1_R)(x) \sigma_2 \, dx
\]

\[
\times \frac{E^R}{R} f_1 \cdot \frac{E^R}{R} f_2
\]

\[
+ \sum_{R \in Q_{i+2}, R \subseteq Q_2} \sum_{R \in Q_2} \int_{\hat{R}} A_{g_1, S}(v_\Omega 1_{E_l(Q)}, \sigma_1 1_R)(x) \sigma_2 \, dx
\]

\[
\times \frac{E^R}{R} f_1 \cdot \frac{E^R}{R} f_2.
\]
3.3.1 Estimate of \tilde{w}

$$\times \mathbb{E}_R^{\sigma_1} f_1 \cdot \mathbb{E}_R^{\sigma_2} f_2$$

$$+ \sum_{E_R^{\sigma_1} \subset \mathbb{R}^n} \sum_{E_R^{\sigma_2} \subset \mathbb{R}^n} \int_R A_{\varphi, S}(v_{\tilde{w}}1_{E_1(Q)}, \sigma_11_R)(x)\sigma_2dx$$

$$\times \mathbb{E}_R^{\sigma_1} f_1 \cdot \mathbb{E}_R^{\sigma_2} f_2$$

$$:= I_{41}(l, Q) + I_{42}(l, Q) + I_{43}(l, Q) + I_{44}(l, Q).$$

3.3.1 Estimate of I_{41}

We have

$$\sum_{E_R^{\sigma_1} \subset \mathbb{R}^n} \sum_{E_R^{\sigma_2} \subset \mathbb{R}^n} \int_R A_{\varphi, S}(v_{\tilde{w}}1_{E_1(Q)}, \sigma_11_R)(x)\sigma_2dx$$

$$\times \mathbb{E}_R^{\sigma_1} f_1 \cdot \mathbb{E}_R^{\sigma_2} f_2$$

$$\leq 16^2 \int_{E_1(Q)} A_{\varphi, S}(\sigma_11_Q, \sigma_21_Q)(x)\sigma_2dx \cdot \mathbb{E}_F^\sigma f_1 \cdot \mathbb{E}_G^\sigma f_2.$$

Similarly to (3.7), for $x \in E_1(Q)$, we have

$$A_{\varphi, S}(\sigma_11_Q, \sigma_21_Q)(x) \leq 2A_{\varphi, S_i}(\sigma_11_Q, \sigma_21_Q)(x).$$

By Lemma 2.21, we have

$$\sum_{l \in \mathbb{Z}} \sum_{Q \in \mathcal{Q}_l} v_{\tilde{w}}(E_1(Q))^{1-p}I_{41}(l, Q)^p$$

$$\leq \sum_{l \in \mathbb{Z}} \sum_{Q \in \mathcal{Q}_l} v_{\tilde{w}}(E_1(Q))^{1-p} \left(\int_{E_1(Q)} A_{\varphi, S}(\sigma_11_Q, \sigma_21_Q)(x)v_{\tilde{w}}dx \right)^p$$

$$\leq \sum_{l \in \mathbb{Z}} \sum_{Q \in \mathcal{Q}_l} \left(\int_{E_1(Q)} A_{\varphi, S_i}(\sigma_11_Q, \sigma_21_Q)(x)v_{\tilde{w}}dx \right)^p$$

$$\leq \sum_{l \in \mathbb{Z}} \sum_{Q \in \mathcal{Q}_l} \int_{E_1(Q)} (A_{\varphi, S_i}(\sigma_11_Q, \sigma_21_Q))^p v_{\tilde{w}}dx \cdot (\mathbb{E}_F^\sigma f_1 \cdot \mathbb{E}_G^\sigma f_2)^p$$

$$\leq \sum_{l \in \mathbb{Z}} \sum_{Q \in \mathcal{Q}_l} \left[\bar{w} \right]_{A_F} \left(\sum_{G \in \mathcal{G}} \sum_{l \in \mathbb{Z}} \sum_{Q \in \mathcal{Q}_l} \sigma_1(Q_{l, Q}, \eta) (\mathbb{E}_G^{\sigma_1} f_1)^{p_1} \right)^{p/p_1}$$

$$\times \left(\sum_{G \in \mathcal{G}} \sum_{l \in \mathbb{Z}} \sum_{Q \in \mathcal{Q}_l} \sigma_2(Q_{l, Q}, \eta) (\mathbb{E}_G^{\sigma_2} f_2)^{p_2} \right)^{p/p_2}.$$
(by Lemma 2.4 and Hölder’s inequality)
\[
\leq [\tilde{w}]_{A_F} (\sigma_1)_{A_\infty} (\sigma_2)_{A_\infty} \left(\sum_{G \in \mathcal{G}} \sigma_1(G) \left(\mathbb{E}_G^\sigma f_1 \right)^{p_1} \right)^{p/p_1} \\
\times \left(\sum_{G \in \mathcal{G}} \sigma_2(G) \left(\mathbb{E}_G^\sigma f_2 \right)^{p_2} \right)^{p/p_2} \\
\lesssim [\tilde{w}]_{A_F} (\sigma_1)_{A_\infty} (\sigma_2)_{A_\infty} \| f_1 \|_{L^p(\sigma)} \| f_2 \|_{L^p(\sigma_2)},
\]
where (3.5) and (3.6) are used in the last step.

3.3.2 Estimates of I_{42} and I_{43}

We have
\[
\sum_{R \in \mathcal{Q}_{1+2}, \bar{R} \in \mathcal{Q} \atop R \leq 16 \mathbb{E}_R^{\sigma_1} f_1} \sum_{R \in \mathcal{Q}_{1+2}, \bar{R} \in \mathcal{Q} \atop \bar{R} > 16 \mathbb{E}_R^{\sigma_2} f_2} \int_R A_{\varphi, S}(v_{\tilde{\varphi}} 1_{E_i(Q)}, \sigma_1, \sigma_2)(x) dx \cdot \mathbb{E}_R^\sigma f_1 \cdot \mathbb{E}_R^{\sigma_2} f_2 \\
\leq \sum_{R \in \mathcal{Q}_{1+2}, \bar{R} \in \mathcal{Q} \atop \bar{R} > 16 \mathbb{E}_R^{\sigma_2} f_2} \int_R A_{\varphi, S}(v_{\tilde{\varphi}} 1_{E_i(Q)}, \sigma_1, \sigma_2)(x) dx \cdot \mathbb{E}_R^\sigma f_1 \cdot \mathbb{E}_R^{\sigma_2} f_2.
\]

For simplicity, set
\[
g_Q := \sum_{R \in \mathcal{Q}_{1+2}, \bar{R} \in \mathcal{Q} \atop \bar{R} > 16 \mathbb{E}_R^{\sigma_2} f_2} \mathbb{E}_R^{\sigma_2} f_2.
\]

We have
\[
\sum_{i \in \mathbb{Z}, Q \in \mathcal{Q}_i} v_{\tilde{\varphi}}(E_i(Q))^{1-p} \left(\int_{E_i(Q)} A_{\varphi, S}(1_{Q}, g_Q, \sigma_2)(x) v_{\tilde{\varphi}} dx \cdot \mathbb{E}_G^\sigma f_1 \right)^p \\
= \sum_{G \in \mathcal{G}} \sum_{i \in \mathbb{Z}, Q \in \mathcal{Q}_i \atop \Gamma(Q) = G} v_{\tilde{\varphi}}(E_i(Q))^{1-p} \left(\int_{E_i(Q)} A_{\varphi, S}(1_{Q}, g_Q, \sigma_2)(x) v_{\tilde{\varphi}} dx \cdot \mathbb{E}_G^\sigma f_1 \right)^p.
\]

Set
\[
h_G := \sup_{Q \in \mathcal{Q}_i \atop \Gamma(Q) = G} g_Q.
\]

We have
\[
\sum_{G \in \mathcal{G}} \| h_G \|_{L^p(\sigma_2)}^{p_2} = \sum_{G \in \mathcal{G}} \int h_G^{p_2} \sigma_2 \\
\leq \sum_{G \in \mathcal{G}} \sum_{Q \in \mathcal{Q}_{1+2}, \bar{R} \in \mathcal{Q} \atop \Gamma(Q) = G} \int g_Q^{p_2} \sigma_2 \\
= \sum_{G \in \mathcal{G}} \sum_{Q \in \mathcal{Q}_{1+2}, \bar{R} \in \mathcal{Q} \atop \Gamma(Q) = G} \sum_{R \in \mathcal{Q}_{1+2}, \bar{R} \in \mathcal{Q} \atop \bar{R} > 16 \mathbb{E}_R^{\sigma_2} f_2} \left(\mathbb{E}_{\bar{R}}^{\sigma_2} f_2 \right)^{p_2} \sigma_2(\bar{R}).
\]
Since \(E_l(Q) \) are disjoint, we have

\[
\sum_{l \in \mathbb{Z}} \sum_{Q \in \mathcal{Q}_l} v_w(E_l(Q))^{1-p} I_{42}(l, Q)^p
\leq \sum_{G \in \mathcal{G}} \sum_{l \in \mathbb{Z}} \sum_{Q \in \mathcal{Q}_l} v_w(E_l(Q))^{1-p} \left(\int_{E_l(Q)} A_{\gamma, S}(\sigma_1 1_Q, g_Q 1_Q)(x) v_w dx \cdot \mathbb{E}_G f_1 \right)^p
\leq \sum_{G \in \mathcal{G}} \sum_{l \in \mathbb{Z}} \sum_{Q \in \mathcal{Q}_l} \int_{E_l(Q)} (A_{\gamma, S}(\sigma_1 1_{G}, h_Q 1_Q))^p v_w dx \cdot (\mathbb{E}_G f_1)^p
\leq \sum_{G \in \mathcal{G}} \int_G (A_{\gamma, S}(\sigma_1 1_{G}, h_Q 1_Q))^p v_w dx \cdot (\mathbb{E}_G f_1)^p
\leq [\tilde{w}] A_{p, \mathcal{P}}^{p/p_1} ([v_w]_{A_\infty}^{1/p'} + [\sigma_2]_{A_\infty}^{1/p_2}) \sum_{G \in \mathcal{G}} \sigma_1(G)^{p/p_1} (\mathbb{E}_G f_1)^p \| h_G \|_{L^p_{Q_2}(\sigma_2)}^{p/p_2}
\quad \text{(by Lemma 2.5)}
\leq [\tilde{w}] A_{p, \mathcal{P}}^{p/p_1} ([v_w]_{A_\infty}^{1/p'} + [\sigma_2]_{A_\infty}^{1/p_2}) \| f_1 \|_{L^p_{Q_1}(\sigma_1)}^{p/p_1} (\sum_{G \in \mathcal{G}} \| h_G \|_{L^p_{Q_2}(\sigma_2)}^{p/p_2})^{p/p_2}
\quad \text{(by Hölder’s inequality and 3.5)}
\leq [\tilde{w}] A_{p, \mathcal{P}}^{p/p_1} ([v_w]_{A_\infty}^{1/p'} + [\sigma_2]_{A_\infty}^{1/p_2}) \| f_1 \|_{L^p_{Q_1}(\sigma_1)}^{p/p_1} \| f_2 \|_{L^p_{Q_2}(\sigma_2)}^{p/p_2}.
\]

By symmetry, we get

\[
\sum_{l \in \mathbb{Z}} \sum_{Q \in \mathcal{Q}_l} v_w(E_l(Q))^{1-p} I_{43}(l, Q)^p \leq [\tilde{w}] A_{p, \mathcal{P}}^{p/p_1} ([v_w]_{A_\infty}^{1/p'} + [\sigma_1]_{A_\infty}^{1/p_2})^p
\times \| f_1 \|_{L^p_{Q_1}(\sigma_1)}^{p/p_1} \| f_2 \|_{L^p_{Q_2}(\sigma_2)}^{p/p_2}.
\]

3.3.3 Estimate of \(I_{44} \)

We have

\[
\sum_{R \in \mathcal{Q}_{l+2, R \subset Q}^{\mathcal{G}}} \sum_{E_{E_l(Q)}^{16\mathcal{P}_{\mathcal{G}}}} \int_R A_{\gamma, S}(v_w 1_{E_l(Q)}, \sigma_1 1_{R})(x) \sigma_2 dx \cdot \mathbb{E}_R f_1 \cdot \mathbb{E}_R f_2
\leq \left(\sum_{R \in \mathcal{Q}_{l+2, R \subset Q}^{\mathcal{G}}} \sigma_1(R)^{-p_1/p_2} \left(\int_R A_{\gamma, S}(v_w 1_{E_l(Q)}, g_Q \sigma_2)(x) \sigma_1 dx \right)^{p_1} \right)^{1/p'_1}
\quad \cdot \left(\sum_{R \in \mathcal{Q}_{l+2, R \subset Q}^{\mathcal{G}}} \sigma_1(R)(\mathbb{E}_R f_1), \mathcal{P}_{\mathcal{G}} \right)^{1/p_1}.
\]

22
where Lemma 2.5 and Lemma 2.6 are used in the last step. It follows that

\[
\begin{align*}
&\lesssim [\tilde{w}]_{A_p} [v\tilde{w}]_{A_\infty}^p ([\sigma_1]_{A_\infty}^1 + [\sigma_2]_{A_\infty}^2)^p \left(\sum\sum_{l \in \mathcal{Z}, Q \in \mathcal{Q}_l} \| g\tilde{w} \|_{L^2_p(\sigma_2)}^{p_2} \right)^{p/p_2} \\
&\quad \cdot \left(\sum\sum_{l \in \mathcal{Z}, Q \in \mathcal{Q}_l} \sum_{R \in \mathcal{Q}_{l+2, \mathcal{R}_C}} E_R^{s_1} \| f_1 \|_{E_R^{s_1}}^{p_1} \right)^{p/p_1},
\end{align*}
\]

where Lemma 2.5 and Lemma 2.6 are used in the last step. It follows that

\[
\begin{align*}
&\sum_{l \in \mathcal{Z}} \sum_{Q \in \mathcal{Q}_l} v\tilde{w}(E_l(Q))^{1-p} I_{44}(l, Q)^p \\
&= \sum_{l \in \mathcal{Z}} \sum_{Q \in \mathcal{Q}_l} v\tilde{w}(E_l(Q))^{1-p} \left(\sum\sum_{R \in \mathcal{Q}_{l+2, \mathcal{R}_C}} E_R^{s_1} \| f_1 \|_{E_R^{s_1}} \right)^{p/p_1} \left(\sum\sum_{l \in \mathcal{Z}, Q \in \mathcal{Q}_l} \sum_{R \in \mathcal{Q}_{l+2, \mathcal{R}_C}} E_R^{s_2} \| f_2 \|_{E_R^{s_2}} \right)^{p/p_2} \\
&\quad \cdot \left(\sum\sum_{l \in \mathcal{Z}, Q \in \mathcal{Q}_l} \sum_{R \in \mathcal{Q}_{l+2, \mathcal{R}_C}} E_R^{s_1} \| f_1 \|_{E_R^{s_1}} \right)^{p/p_1} \left(\sum\sum_{l \in \mathcal{Z}, Q \in \mathcal{Q}_l} \sum_{R \in \mathcal{Q}_{l+2, \mathcal{R}_C}} E_R^{s_2} \| f_2 \|_{E_R^{s_2}} \right)^{p/p_2} \\
&= [\tilde{w}]_{A_p} [v\tilde{w}]_{A_\infty}^p ([\sigma_1]_{A_\infty}^1 + [\sigma_2]_{A_\infty}^2)^p \times \left(\sum\sum_{l \in \mathcal{Z}, Q \in \mathcal{Q}_l} \sum_{R \in \mathcal{Q}_{l+2, \mathcal{R}_C}} E_R^{s_1} \| f_1 \|_{E_R^{s_1}}^{p_1} \right)^{p/p_1} \\
&\quad \times \left(\sum\sum_{l \in \mathcal{Z}, Q \in \mathcal{Q}_l} \sum_{R \in \mathcal{Q}_{l+2, \mathcal{R}_C}} E_R^{s_2} \| f_2 \|_{E_R^{s_2}}^{p_2} \right)^{p/p_2} \\
&\lesssim [\tilde{w}]_{A_p} [v\tilde{w}]_{A_\infty}^p ([\sigma_1]_{A_\infty}^1 + [\sigma_2]_{A_\infty}^2)^p \| f_1 \|_{L^{p_1}(\sigma_1)} \cdot \| f_2 \|_{L^{p_2}(\sigma_2)},
\end{align*}
\]

where (3.3) and (3.4) are used in the last step.

Summing up the above arguments, we get

\[
I_4 \lesssim [\tilde{w}]_{A_p} \left([\sigma_1]_{A_\infty}^1 [\sigma_2]_{A_\infty}^2 + [v\tilde{w}]_{A_\infty}^p ([\sigma_1]_{A_\infty}^1 + [\sigma_2]_{A_\infty}^2)^p \right) \times \| f_1 \|_{L^{p_1}(\sigma_1)}^{p_1} \cdot \| f_2 \|_{L^{p_2}(\sigma_2)}^{p_2}.
\]

This completes the proof of (1.1).
3.4 Sharpness of the strong type estimates

Finally, we prove the sharpness. We use the example in [19]. That is,

\[R_1(\vec{f})(x) = p.v. \int_{(\mathbb{R}^n)^m} \frac{\sum_{j=1}^{m}(x_1 - (y_j)_1)}{(\sum_{j=1}^{m} |x - y_j|^2)^{(nm+1)/2}} f_1(y_1) \cdots f_m(y_m) dy_1 \cdots dy_m. \]

Assume that 0 < \varepsilon < 1. Let

\[f_i(x) = |x|^{(n-\varepsilon)} \chi_{(0,1]^n}(x) \quad \text{and} \quad w_i(x) = |x|^{(n-\varepsilon)(p_i-1)}, \quad i = 1, \ldots, m. \]

Then we have \(v_{\vec{w}} = |x|^{(n-\varepsilon)(mp-1)} \), \([\vec{w}]_{A_{mp}} = [v_{\vec{w}}]_{A_{mp}} \approx (1/\varepsilon)^{mp-1} \) and \([\sigma_i]_{A_{\infty}} \lesssim 1/\varepsilon \quad i = 1, \ldots, m. \)

Moreover,

\[\|R_1(\vec{f})\|_{L^p(v_{\vec{w}})} \geq (1/\varepsilon)^{m+1/p} \quad \text{and} \quad \prod_{i=1}^{m} \|f_i\|_{L^{p_i}(w_i)} \approx (1/\varepsilon)^{1/p}. \]

It follows that our result is sharp whenever \(\max_i \{p_i\} \leq p'/ (mp - 1) \).

This completes the proof of Theorem 1.1.

4 Proof of Theorem 1.2

In this section, we give the proof of Theorem 1.2. We begin with the Whitney decomposition.

Proposition 4.1 [6, Proposition 7.3.4] Let \(\Omega \) be an open nonempty proper subset of \(\mathbb{R}^n \). Then there exists a family of closed cubes \{Q_j\}_j such that

(i) \(\bigcup_j Q_j = \Omega \) and the \(Q_j \)'s have disjoint interiors;

(ii) \(\sqrt{n}l(Q_j) \leq \text{dist} (Q_j, \Omega^c) \leq 4\sqrt{n}l(Q_j) \);

(iii) if the boundaries of two cubes \(Q_j \) and \(Q_k \) touch, then

\[\frac{1}{4} \leq \frac{l(Q_j)}{l(Q_k)} \leq 4; \]

(iv) there exists some constant \(1 < \gamma < 5/4 \) such that \(\sum_j \chi_{\gamma Q_j}(x) \leq C_n. \)

Next we give a weak type estimate for the multilinear maximal function. Recall that the multilinear maximal function is defined by

\[M(\vec{f}) = \sup_{Q \ni \vec{x}} \prod_{i=1}^{m} \frac{1}{|Q|} \int_Q |f_i(y_i)| dy_i \]

and the dyadic maximal function is defined by

\[M^\delta(\vec{f})(x) = \sup_{Q \ni \vec{x}, Q \in \mathcal{D}} \prod_{i=1}^{m} \frac{1}{|Q|} \int_Q |f_i(y_i)| dy_i. \]
Lemma 4.2 Let \(\tilde{P} = (p_1, \ldots, p_m) \) with \(1/p = 1/p_1 + \cdots + 1/p_m \) and \(1 < p_1, \ldots, p_m < \infty \). Suppose that \(\tilde{w} = (w_1, \ldots, w_m) \) with \(\tilde{w} \in A_{\tilde{P}} \). Then

\[
\| M(\tilde{f}) \|_{L^{p,\infty}(\tilde{w})} \leq C_{m, \tilde{P}} [\tilde{w}]^{1/p} \prod_{i=1}^{m} \| f_i \|_{L^{p_i}(w_i)}.
\]

Proof. In [3], the authors proved that there exists \(2^n \) family of dyadic grids \(\mathcal{D}_\beta \) such that

\[
M(\tilde{f})(x) \leq 6^m \sum_{\beta=1}^{2^n} M_{\mathcal{D}_\beta}(\tilde{f})(x),
\]

where

\[
M_{\mathcal{D}_\beta}(\tilde{f})(x) = \sup_{Q \ni x, Q \in \mathcal{D}_\beta} \prod_{i=1}^{m} \frac{1}{|Q|} \int_Q |f_i(y_i)|dy_i.
\]

For some fixed dyadic grid \(\mathcal{D} \),

\[
\{ x \in \mathbb{R}^n : M_{\mathcal{D}}(\tilde{f}) > \alpha \} = \bigcup_k Q_k,
\]

where \(\{Q_k\}_k \) are disjoint dyadic cubes in \(\mathcal{D} \) and

\[
\prod_{i=1}^{m} \frac{1}{|Q_k|} \int_{Q_k} |f_i(y_i)|dy_i > \alpha.
\]

It follows that

\[
\alpha^p \left(\sum_k v_{\tilde{w}}(Q_k) \right) \leq \sum_k \left(\prod_{i=1}^{m} \frac{1}{|Q_k|} \int_{Q_k} |f_i|dy_i \right)^p v_{\tilde{w}}(Q_k)
\]

\[
\leq \sum_k \left(\prod_{i=1}^{m} \int_{Q_k} |f_i|^{p_i}w_i dy_i \right)^{p/p_i} v_{\tilde{w}}(Q_k) \prod_{i=1}^{m} \sigma_i(Q_k)^{p/p_i} |Q_k|^{-mp/p_i}
\]

\[
\leq [\tilde{w}]_{A_{\tilde{P}}} \sum_k \left(\prod_{i=1}^{m} \int_{Q_k} |f_i|^{p_i}w_i dy_i \right)^{p/p_i}
\]

\[
\leq [\tilde{w}]_{A_{\tilde{P}}} \prod_{i=1}^{m} \| f_i \|_{L^{p_i}(w_i)}^{p/p_i}
\]

Hence

\[
\| M_{\mathcal{D}}(\tilde{f}) \|_{L^{p,\infty}(\tilde{w})} = \sup_{\alpha > 0} \alpha v_{\tilde{w}}(\{ x \in \mathbb{R}^n : M_{\mathcal{D}}(\tilde{f}) > \alpha \})^{1/p}
\]

\[
= \sup_{\alpha > 0} \alpha \left(\sum_k v_{\tilde{w}}(Q_k) \right)^{1/p}
\]

\[
\leq [\tilde{w}]_{A_{\tilde{P}}}^{1/p} \prod_{i=1}^{m} \| f_i \|_{L^{p_i}(w_i)}.\]
This completes the proof. □

The following result can be proved similarly to [IS p. 1240] and we omit the details.

Lemma 4.3 Let T be an m-linear Calderón-Zygmund operator and Q be a cube. Set $Q^* = 10\sqrt{n}Q$ and $Q^{**} = 10\sqrt{n}Q^*$. Suppose that $x, z \in Q$ and $y \in Q^*$. Then

$$|T(f_1, \cdots, f_{i-1}, f_i\chi_{Q'}, f_{i+1}, \cdots, f_m)(x) - T(f_1, \cdots, f_{i-1}, f_i\chi_{Q''}, f_{i+1}, \cdots, f_m)(y)| \leq CM(f_1, \cdots, f_m).$$

Next we give a characterization of the weak boundedness of multilinear Calderón-Zygmund operators.

Lemma 4.4 Let $1 < p, p_1, p_2 < \infty$ and $\vec{w} \in A_p$, where $\vec{w} := (w_1, w_2)$ and $\vec{p} := (p_1, p_2)$ with $1/p = 1/p_1 + 1/p_2$. Suppose that T is a multilinear Calderón-Zygmund operator. Then the following assertions are equivalent.

(i) $\|T(f_1\sigma_1, f_2\sigma_2)\|_{L^{p, \infty}(v_{\vec{w}})} \leq C \prod_{i=1}^2 \|f_i\|_{L^{p_i}(\sigma_i)}$;

(ii) $\int_Q |T(f_1\sigma_1\chi_Q, f_2\sigma_2\chi_Q)(x)|v_{\vec{w}}(x)dx \leq C' \prod_{i=1}^2 \|f_i\|_{L^{p_i}(\sigma_i)}v_{\vec{w}}(Q)^{1/p'}$ for all cubes $Q \subset \mathbb{R}^n$ and all functions $f_i \in L^{p_i}(\sigma_i), i = 1, 2$.

Proof. (i) \Rightarrow (ii): By the weak type boundness of T, we have

$$\int_Q |T(f_1\sigma_1\chi_Q, f_2\sigma_2\chi_Q)(x)|v_{\vec{w}}(x)dx$$

$$= \int_0^\infty v_{\vec{w}}\{x \in Q : |T(f_1\sigma_1\chi_Q, f_2\sigma_2\chi_Q)(x)| > \lambda\}d\lambda$$

$$\leq \int_0^\infty \min\{v_{\vec{w}}(Q), \lambda^{-p}\|T(f_1\sigma_1\chi_Q, f_2\sigma_2\chi_Q)\|_{L^{p, \infty}(v_{\vec{w}})}\}d\lambda$$

$$= p'\|T(f_1\sigma_1\chi_Q, f_2\sigma_2\chi_Q)\|_{L^{p, \infty}(v_{\vec{w}})}v_{\vec{w}}(Q)^{1/p'}$$

$$\leq p'C \prod_{i=1}^2 \|f_i\|_{L^{p_i}(\sigma_i)}v_{\vec{w}}(Q)^{1/p'}.$$

(ii) \Rightarrow (i): Let Ω be an open set containing $\{x : |T(f_1\sigma_1, f_2\sigma_2)(x)| > \lambda\}$. Form the Whitney decomposition to Ω, we get Whitney cubes Q_j. Set $Q_j^* = 10\sqrt{n}Q_j$ and $Q_{j}^{**} = 10\sqrt{n}Q_{j}^*$. Let γ be defined as that in Proposition 4.1 In the following, we prove that

$$v_{\vec{w}}\{x \in \mathbb{R}^n : |T(f_1\sigma_1, f_2\sigma_2)(x)| > 2\lambda, M(f_1\sigma_1, f_2\sigma_2)(x) \leq \beta\lambda\}$$

$$\lesssim \beta v_{\vec{w}}(\Omega) + \mathcal{T}_s \beta^{-p} \lambda^{-p} \prod_{i=1}^m \|f_i\|_{L^{p_i}(\sigma_i)}^p, \quad (4.1)$$

where

$$\mathcal{T}_s = \sup_{\|f_i\|_{L^{p_i}(\sigma_i)} \leq 1} \sup_{i=1, 2} v_{\vec{w}}(Q)^{-1/p'} \int_Q |T(f_1\sigma_1\chi_Q, f_2\sigma_2\chi_Q)(x)|v_{\vec{w}}(x)dx.$$

By Whitney’s decomposition, we only need to estimate

$$v_{\vec{w}}\{x \in Q_j : |T(f_1\sigma_1, f_2\sigma_2)(x)| > 2\lambda, M(f_1\sigma_1, f_2\sigma_2)(x) \leq \beta\lambda\}.$$
Assume that there exists some $z_j \in Q_j$ such that $M(f_1 \sigma_1, f_2 \sigma_2)(z_j) \leq \beta \lambda$. Otherwise, is zero. By the property of Whitney decomposition, we can also choose some $y_j \in Q_j$ such that $y_j \in \Omega$. Since $\{x : T(f_1 \sigma_1, f_2 \sigma_2)(x) > \lambda\} \subset \Omega$, we have $|T(f_1 \sigma_1, f_2 \sigma_2)(y_j)| \leq \lambda$.

For any f_i, $i = 1, 2$, denote $f^0_i = f_i \chi_{\gamma Q_j}$ and $f^\infty_i = f_i \chi_{(\gamma Q_j)^c}$. We consider every f^α_i separately, where $\alpha_i = 0$ or ∞.

Similarly as that in [18], we consider first the case $\alpha_1 = \alpha_2 = \infty$. For $x \in Q_j$, we have
\[
\begin{align*}
&T(f_1^\infty \sigma_1, f_2^\infty \sigma_2)(x) - T(f_1^\infty \sigma_1, f_2^\infty \sigma_2)(y_j) \\
\leq & T(f_1^\infty \sigma_1 \chi_{(Q_j)^c}, f_2^\infty \sigma_2)(x) - T(f_1^\infty \sigma_1 \chi_{(Q_j)^c}, f_2^\infty \sigma_2)(y_j) \\
+ & |T(f_1 \sigma_1 \chi_{Q_j^\ast \gamma Q_j}, f_2^\infty \sigma_2)(x) - T(f_1 \sigma_1 \chi_{Q_j^\ast \gamma Q_j}, f_2^\infty \sigma_2)(y_j)| \\
+ & |T(f_1 \sigma_1 \chi_{Q_j^\ast \gamma Q_j}, f_2 \sigma_2 \chi_{(Q_j)^c})(x) - T(f_1 \sigma_1 \chi_{Q_j^\ast \gamma Q_j}, f_2 \sigma_2 \chi_{(Q_j)^c})(y_j)| \\
+ & |T(f_1 \sigma_1 \chi_{Q_j^\ast \gamma Q_j}, f_2 \sigma_2 \chi_{(Q_j)^c})(y_j)| \\
\leq & C_1 M(f_1 \sigma_1, f_2 \sigma_2)(z_j) + |T(f_1 \sigma_1 \chi_{Q_j^\ast \gamma Q_j}, f_2 \sigma_2 \chi_{(Q_j)^c})(y_j)|.
\end{align*}
\]

Next, suppose that $\alpha_i = \infty$ for $i = 1$ or 2. Without loss of generality, assume that $i = 1$. We have
\[
\begin{align*}
&T(f_1^\infty \sigma_1, f_2^0 \sigma_2)(x) - T(f_1^\infty \sigma_1, f_2^0 \sigma_2)(y_j) \\
\leq & T(f_1^\infty \sigma_1 \chi_{Q_j^c}, f_2^0 \sigma_2)(x) - T(f_1^\infty \sigma_1 \chi_{Q_j^c}, f_2^0 \sigma_2)(y_j) \\
+ & |T(f_1 \sigma_1 \chi_{Q_j^\ast \gamma Q_j}, f_2^0 \sigma_2)(x) - T(f_1 \sigma_1 \chi_{Q_j^\ast \gamma Q_j}, f_2^0 \sigma_2)(y_j)| \\
\leq & C_2 M(f_1 \sigma_1, f_2 \sigma_2)(z_j) + |T(f_1 \sigma_1 \chi_{Q_j^\ast \gamma Q_j}, f_2^0 \sigma_2)(y_j)|.
\end{align*}
\]

Hence
\[
\begin{align*}
&T(f_1 \sigma_1, f_2 \sigma_2)(x) - T(f_1^0 \sigma_1, f_2^0 \sigma_2)(x) - T(f_1 \sigma_1, f_2 \sigma_2)(y_j) \\
\leq & C_3 M(f_1 \sigma_1, f_2 \sigma_2)(z_j) + |T(f_1^0 \sigma_1, f_2^0 \sigma_2)(y_j)| \\
+ & |T(f_1 \sigma_1 \chi_{Q_j^\ast \gamma Q_j}, f_2 \sigma_2 \chi_{(Q_j)^c})(y_j)| \\
+ & |T(f_1 \sigma_1 \chi_{Q_j^\ast \gamma Q_j}, f_2 \sigma_2 \chi_{(Q_j)^c})(y_j)|.
\end{align*}
\]

Consequently, for any $0 < \delta < 1/2$,
\[
\begin{align*}
&T(f_1 \sigma_1, f_2 \sigma_2)(x) - T(f_1^0 \sigma_1, f_2^0 \sigma_2)(x) - T(f_1 \sigma_1, f_2 \sigma_2)(y_j) \delta \\
\leq (C_3 \beta)^\delta \lambda^\delta + \Sigma^\delta,
\end{align*}
\]

where
\[
\begin{align*}
\Sigma' &= |T(f_1^0 \sigma_1, f_2^0 \sigma_2)(y_j)| + |T(f_1 \sigma_1 \chi_{Q_j^\ast \gamma Q_j}, f_2 \sigma_2 \chi_{(Q_j)^c})(y_j)| \\
&+ |T(f_1 \sigma_1 \chi_{Q_j^\ast \gamma Q_j}, f_2^0 \sigma_2)(y_j)| + |T(f_1^0 \sigma_1, f_2 \sigma_2 \chi_{(Q_j)^c})(y_j)|.
\end{align*}
\]

27
Note that \(|Q^*_j \cap \Omega^c|\) is comparable with \(|Q^*|\) due to the property of the Whitney decomposition. Integrating over \(y_j \in Q^*_j \cap \Omega^c\), we have

\[
\frac{1}{|Q^*_j\cap \Omega^c|} \int_{Q^*_j\cap \Omega^c} \left| T(f_1\sigma_1, f_2\sigma_2)(x) - T(f^0_1\sigma_1, f^0_2\sigma_2)(x) \right| dy_j \\
- T(f_1\sigma_1, f_2\sigma_2)(y_j) \right|^\delta dy_j
\leq \frac{1}{|Q^*_j\cap \Omega^c|} \int_{Q^*_j\cap \Omega^c} \Sigma^\delta dy_j
\leq \frac{1}{|Q^*_j\cap \Omega^c|} \int_{Q^*_j\cap \Omega^c} \ively dy_j
\leq (C_3\beta\lambda)\delta + C_4\mathcal{M}(f_1\sigma_1, f_2\sigma_2)(z_j)^\delta,
\]

where Kolmogorov’s inequality and the \(L^1 \times L^1 \to L^{1/2,\infty}\) boundedness of \(T\) are used, see [38 p. 1239]. Since

\[
|T(f_1\sigma_1, f_2\sigma_2)(x) - T(f^0_1\sigma_1, f^0_2\sigma_2)(x) - T(f_1\sigma_1, f_2\sigma_2)(y_j)|^\delta
\geq |T(f_1\sigma_1, f_2\sigma_2)(x) - T(f^0_1\sigma_1, f^0_2\sigma_2)(x)|^\delta - |T(f_1\sigma_1, f_2\sigma_2)(y_j)|^\delta
\geq |T(f_1\sigma_1, f_2\sigma_2)(x) - T(f^0_1\sigma_1, f^0_2\sigma_2)(x)|^\delta - \lambda^\delta,
\]

we have

\[
|T(f_1\sigma_1, f_2\sigma_2)(x) - T(f^0_1\sigma_1, f^0_2\sigma_2)(x)| \leq (1 + C_5\beta)\lambda.
\]

It follows that for \(\beta \leq (2C_5)^{-1}\),

\[
|T(f_1\sigma_1, f_2\sigma_2)(x) - T(f^0_1\sigma_1, f^0_2\sigma_2)(x)| \leq (1 + C_5\beta)\lambda \leq 3\lambda/2.
\]

Denote

\[
E_j = \{x \in Q_j : |T(f_1\sigma_1, f_2\sigma_2)(x)| > 2\lambda; \mathcal{M}(f_1\sigma_1, f_2\sigma_2)(x) \leq \beta\lambda\}.
\]

Then we have

\[
E_j \subset \{x \in Q_j : |T(f^0_1\sigma_1, f^0_2\sigma_2)(x)| > \lambda/2\}.
\]

Therefore,

\[
\sum_j v_{\sigma}(E_j) \leq \beta^{-p} \sum_{j:v_{\sigma}(E_j) > \beta v_{\sigma}(\gamma Q_j)} v_{\sigma}(E_j) \left(\frac{2}{\lambda v_{\sigma}(\gamma Q_j)} \int_{E_j} |T(f^0_1\sigma_1, f^0_2\sigma_2)| v_{\sigma} \right)^p
+ \beta \sum_{j:v_{\sigma}(E_j) \leq \beta v_{\sigma}(\gamma Q_j)} v_{\sigma}(\gamma Q_j)
\]

\[
:= I + II.
\]

By Hölder’s inequality, we have

\[
I \leq \left(\frac{2}{\beta\lambda} \right)^p T^p \sum_j \prod_{i=1}^2 \left(\int_{\gamma Q_j} |f_i(y_i)|^{p_i}\sigma_i dy_i \right)^{p/p_i}
\leq \left(\frac{2}{\beta\lambda} \right)^p T^p \prod_{i=1}^2 \left(\int_{\mathbb{R}^n} \left(\sum_j \chi_{\gamma Q_j} |f_i(y_i)|^{p_i}\sigma_i dy_i \right) \right)^{p/p_i}
\leq \beta^{-p} \lambda^{-p} T^p \prod_{i=1}^2 \|f_i\|_{L^{p_i}(\sigma_i)}^p.
\]

28
On the other hand, by the property of Whitney’s decomposition,
\[H \leq \beta \sum_j v_{\bar{w}}(\gamma Q_j) \leq C_n \beta v_{\bar{w}}(\Omega). \]

This proves (11). Taking the infimum over \(\Omega \), we have
\[v_{\bar{w}}\{x \in \mathbb{R}^n : |T(f_1 \sigma_1, f_2 \sigma_2)(x)| > 2\lambda; \mathcal{M}(f_1 \sigma_1, f_2 \sigma_2)(x) \leq \beta \lambda \} \]
\[\leq \beta v_{\bar{w}}\{x \in \mathbb{R}^n : |T(f_1 \sigma_1, f_2 \sigma_2)(x)| > \lambda \} + T^p_* \beta^{-p} \lambda^{-p} \prod_{i=1}^2 \|f_i\|_{L^p(\sigma_i)}^p. \]

It follows that
\[\|T(f_1 \sigma_1, f_2 \sigma_2)\|_{L^p,\infty(v_{\bar{w}})}^p = \sup_{\lambda > 0} (2\lambda)^p v_{\bar{w}}\{|T(f_1 \sigma_1, f_2 \sigma_2)\| > 2\lambda \} \]
\[\leq \sup_{\lambda > 0} (2\lambda)^p v_{\bar{w}}\{|T(f_1 \sigma_1, f_2 \sigma_2)\| > 2\lambda; \mathcal{M}(f_1 \sigma_1, f_2 \sigma_2)(x) \leq \beta \lambda \} \]
\[+ \sup_{\lambda > 0} (2\lambda)^p v_{\bar{w}}\{\mathcal{M}(f_1 \sigma_1, f_2 \sigma_2)(x) > \beta \lambda \} \]
\[\leq \sup_{\lambda > 0} 2^p \beta C_6 \lambda^p v_{\bar{w}}\{x \in \mathbb{R}^n : |T(f_1 \sigma_1, f_2 \sigma_2)(x)| > \lambda \} \]
\[+ (2^p \|\mathcal{M}\|_{L^p(w_1) \times L^p(w_2) \rightarrow L^{p,\infty}(v_{\bar{w}})} + C_6 T^p_*) \beta^{-p} \prod_{i=1}^2 \|f_i\|_{L^p(\sigma_i)}^p. \]
\[= 2^p \beta C_6 \|T(f_1 \sigma_1, f_2 \sigma_2)\|_{L^p,\infty(v_{\bar{w}})}^p + (2^p \|\mathcal{M}\|_{L^p(w_1) \times L^p(w_2) \rightarrow L^{p,\infty}(v_{\bar{w}})} + C_6 T^p_*) \beta^{-p} \prod_{i=1}^2 \|f_i\|_{L^p(\sigma_i)}^p. \]

Let \(\beta = \min\{2C_5^{-1}, (2^{p+1}C_6)^{-1}\} \). By Lemma 4.2, we get
\[\|T(f_1 \sigma_1, f_2 \sigma_2)\|_{L^p,\infty(v_{\bar{w}})} \leq (T_* + [\bar{w}]_{A_{\bar{P}}}) \prod_{i=1}^2 \|f_i\|_{L^p(\sigma_i)}^p. \tag{4.3} \]

The following is a characterization of the weak boundedness of \(A_{\mathcal{R},\mathcal{S}} \).

Lemma 4.5 Let \(1 < p, p_1, p_2 < \infty \) and \(\bar{w} \in A_{\bar{P}}, \) where \(\bar{w} := (w_1, w_2) \) and \(\bar{P} := (p_1, p_2) \) with \(1/p = 1/p_1 + 1/p_2 \). Suppose that \(\mathcal{R} \) is a dyadic grid and \(\mathcal{S} \) is a sparse family in \(\mathcal{R} \). Then the following assertions are equivalent.

(i). \(\|A_{\mathcal{R},\mathcal{S}}(f \sigma_1, f \sigma_2)\|_{L^p(\bar{w})} \leq C \prod_{i=1}^2 \|f_i\|_{L^p(\sigma_i)} \);

(ii). \(\int_Q A_{\mathcal{R},\mathcal{S}}(f \sigma_1 \chi_Q, f \sigma_2 \chi_Q)(x) v_{\bar{w}}(x) \, dx \leq C \prod_{i=1}^2 \|f_i\|_{L^p(\sigma_i)} v_{\bar{w}}(Q)^{1/p'} \) for all cubes \(Q \subset \mathbb{R}^n \) and all functions \(f_i \in L^p(\sigma_i), \) \(i = 1, 2; \)

(iii). \(\int_Q A_{\mathcal{R},\mathcal{S}}(f \sigma_1 \chi_Q, f \sigma_2 \chi_Q)(x) v_{\bar{w}}(x) \, dx \leq C \prod_{i=1}^2 \|f_i\|_{L^p(\sigma_i)} v_{\bar{w}}(Q)^{1/p'} \) for all dyadic cubes \(Q \in \mathcal{S} \) and all functions \(f_i \in L^p(\sigma_i), \) \(i = 1, 2. \)
Proof. (i)⇒(ii) is similar to the proof of Lemma 4.4. (ii)⇒(iii) is obvious. We only need to prove (iii)⇒(i).
For any \(t > 0 \), denote \(\Omega_t := \{ x \in \mathbb{R}^n : A_{\varphi, \mathcal{S}}(|f_1| \sigma_1, |f_2| \sigma_2)(x) > t \} := \bigcup_\zeta P_\zeta \), where \(P_\zeta \) are pairwise disjoint maximal cubes in \(\Omega_t \). We have
\[
\sum_{Q_{j,k} \ni P_\zeta} \prod_{i=1}^2 \frac{1}{|Q_{j,k}|} \int_{Q_{j,k}} |f_i(y_i)| \sigma_i dy_i > t,
\]
and
\[
\sum_{Q_{j,k} \not\ni P_\zeta} \prod_{i=1}^2 \frac{1}{|Q_{j,k}|} \int_{Q_{j,k}} |f_i(y_i)| \sigma_i dy_i \leq t.
\]
Therefore, for \(x \in E_\zeta = P_\zeta \cap \Omega_{2t} \), we have
\[
2t < A_{\varphi, \mathcal{S}}(|f_1| \sigma_1, |f_2| \sigma_2)(x) \leq A_{\varphi, \mathcal{S}}(|f_1| \sigma_1 P_\zeta, |f_2| \sigma_2 P_\zeta)(x) + t.
\]
That is,
\[
A_{\varphi, \mathcal{S}}(|f_1| \sigma_1 P_\zeta, |f_2| \sigma_2 P_\zeta)(x) > t, \quad x \in E_\zeta.
\]
It follows that
\[
(2t)^p v_\varpi(\Omega_{2t}) = (2t)^p \sum_\zeta v_\varpi(E_\zeta)
\]
\[
\leq 2^p \sum_{v_\varpi(E_\zeta) > \beta v_\varpi(P_\zeta)} v_\varpi(E_\zeta) \left(\frac{1}{v_\varpi(E_\zeta)} \int_{E_\zeta} A_{\varphi, \mathcal{S}}(|f_1| \sigma_1 P_\zeta, |f_2| \sigma_2 P_\zeta)(x) dx \right)^p
\]
\[
+ (2t)^p \sum_{v_\varpi(E_\zeta) \leq \beta v_\varpi(P_\zeta)} \beta v_\varpi(P_\zeta)
\]
\[
\leq 2^p \beta^{1-p} \sum_\zeta v_\varpi(P_\zeta)^{1-p} \left(\int_{P_\zeta} A_{\varphi, \mathcal{S}}(|f_1| \sigma_1 P_\zeta, |f_2| \sigma_2 P_\zeta)(x) dx \right)^p
\]
\[
+ 2^p \beta \| A_{\varphi, \mathcal{S}}(|f_1| \sigma_1, |f_2| \sigma_2) \|^p_{L^{p,\infty}(v_\varpi)}
\]
\[
\leq C^p 2^p \beta^{1-p} \sum_\zeta \left(\int_{P_\zeta} |f_1|^{p_1} \sigma_1 \right)^{p/p_1} \cdot \left(\int_{P_\zeta} |f_2|^{p_2} \sigma_2 \right)^{p/p_2}
\]
\[
+ 2^p \beta \| A_{\varphi, \mathcal{S}}(|f_1| \sigma_1, |f_2| \sigma_2) \|^p_{L^{p,\infty}(v_\varpi)}
\]
\[
\leq C^p 2^p \beta^{1-p} \| f_1 \|^p_{L^{p_1}(\sigma_1)} \| f_2 \|^p_{L^{p_2}(\sigma_2)} + 2^p \beta \| A_{\varphi, \mathcal{S}}(|f_1| \sigma_1, |f_2| \sigma_2) \|^p_{L^{p,\infty}(v_\varpi)}.
\]
By setting \(\beta = 2^{-p-1} \) and taking the supremum of \(t \), we get the conclusion desired. \(\square \)

Now we are ready to prove Theorem 1.2

Proof of Theorem 1.2. By setting the Banach space \(\mathcal{X} \) to be \(L^1_{v_\varpi}(Q) \), we see from (2.1) that
\[
\int_Q |T(f_1 \sigma_1 \chi_Q, f_2 \sigma_2 \chi_Q)(x)| v_\varpi(x) dx \leq \sup_{\varphi, \mathcal{S}} \int_Q A_{\varphi, \mathcal{S}}(|f_1| \sigma_1 \chi_Q, |f_2| \sigma_2 \chi_Q)(x) v_\varpi(x) dx.
\]
Hence
\[
v_{\vec{w}}(Q)^{-1/p'} \int_Q |T(f_1 \sigma_1 \chi_\mathcal{Q}, f_2 \sigma_2 \chi_\mathcal{Q})(x)|v_{\vec{w}}(x)dx
\]
\[
\lesssim \sup_{\mathcal{D}, \mathcal{S}} v_{\vec{w}}(Q)^{-1/p'} \int_Q A_{\mathcal{D}, \mathcal{S}}(|f_1| \sigma_1 \chi_\mathcal{Q}, |f_2| \sigma_2 \chi_\mathcal{Q})(x)v_{\vec{w}}(x)dx.
\]

For fixed \mathcal{D}, \mathcal{S}, by Lemma 4.5 it suffices to estimate
\[
v_{\vec{w}}(Q)^{-1/p'} \int_Q A_{\mathcal{D}, \mathcal{S}}(|f_1| \sigma_1 \chi_\mathcal{Q}, |f_2| \sigma_2 \chi_\mathcal{Q})(x)v_{\vec{w}}(x)dx
\]
for dyadic cube $Q \in \mathcal{S}$. By Lemma 2.5, we have
\[
v_{\vec{w}}(Q)^{-1/p'} \int_Q A_{\mathcal{D}, \mathcal{S}}(|f_1| \sigma_1 \chi_\mathcal{Q}, |f_2| \sigma_2 \chi_\mathcal{Q})(x)v_{\vec{w}}(x)dx
\]
\[
\leq v_{\vec{w}}(Q)^{-1/p'} \int_Q A_{\mathcal{D}, \mathcal{S}}(v_{\vec{w}} \chi_\mathcal{Q}, |f_2| \sigma_2 \chi_\mathcal{Q})|f_1| \sigma_1(x)dx
\]
\[
\leq v_{\vec{w}}(Q)^{-1/p'} \left(\int_Q (A_{\mathcal{D}, \mathcal{S}}(v_{\vec{w}} \chi_\mathcal{Q}, |f_2| \sigma_2 \chi_\mathcal{Q}))^{p'_1} \sigma_1 dx \right)^{1/p_1}
\]
\[
\cdot \left(\int_Q |f_1|^{p_1} \sigma_1(x)dx \right)^{1/p_1}
\]
\[
\lesssim [\vec{w}]_{A_{p}}^{1/p} [v_{\vec{w}}]_{A_{\infty}}^{1/p'} \left([\sigma_1]_{A_{\infty}}^{1/p_1} + [\sigma_2]_{A_{\infty}}^{1/p_2} \right) \|f_1\|_{L^{p_1}(\sigma_1)} \|f_2\|_{L^{p_2}(\sigma_2)}.
\]

By (4.3), we get the conclusion desired. \qed

References

[1] S. Buckley, Estimates for operator norms on weighted spaces and reverse Jensen inequalities, Trans. Amer. Math. Soc., 340 (1993), 253–272.

[2] D. Cruz-Uribe, J.M. Martell, C. Pérez, Sharp weighted estimates for classical operators, Adv. Math., 229 (2012), 408–441.

[3] W. Damián, A.K. Lerner and C. Pérez, Sharp weighted bounds for multilinear maximal functions and Calderón-Zygmund operators, http://arxiv.org/abs/1211.5115

[4] X.T. Duong, R. Gong, L. Grafakos, J. Li, L. Yan, Maximal operator for multilinear singular integrals with non-smooth kernels, Indiana Univ. Math. J., 58 (2009), 2517–2541.

[5] X.T. Duong, L. Grafakos, and L. Yan, Multilinear operators with non-smooth kernels and commutators of singular integrals, Trans. Amer. Math. Soc. 362 (2010) 2089–2113.

[6] L. Grafakos, Modern Fourier Analysis, Second Edition, Springer-Verlag, 2008.
[7] L. Grafakos, R.H. Torres, Multilinear Calderón-Zygmund theory, Adv. Math. 165 (2002) 124–164.

[8] L. Grafakos, R.H. Torres, Maximal operator and weighted norm inequalities for multilinear singular integrals, Indiana Univ. Math. J. 51 (2002) 1261–1276.

[9] G. Hu and D. Yang. Maximal commutators of BMO functions and singular integral operators with non-smooth kernels on spaces of homogeneous type, J. Math. Anal. Appl., 354 (2009), 249–262.

[10] T.P. Hytönen, The sharp weighted bound for general Calderón-Zygmund operators, Ann. of Math., 175 (2012), 1473–1506.

[11] T. Hytönen and M. Lacey, The A_p-A_∞ inequality for general Calderón-Zygmund operators, Indiana Univ. Journal of Math. (to appear).

[12] T. Hytönen, M. Lacey, H. Martikainen, T. Orponen, M. Reguera, E. Sawyer, I. Uriarte-Tuero, Weak and strong type estimates for maximal truncations of Calderón-Zygmund operators on A_p weighted spaces (2011), available at http://arxiv.org/abs/1103.5229

[13] T. Hytönen and C. Pérez, Sharp weighted bounds involving A_∞, J. Anal. & P.D.E. In Press.

[14] M. Lacey, S. Petermichl, M. Reguera, Sharp A_2 inequality for Haar shift operators, Math. Ann., 348 (2010), 127–141.

[15] M. Lacey, E. Sawyer and I. Uriarte-Tuero, A characterization of two weight norm inequalities for maximal singular integrals with one doubling measure, J. Anal. & P.D.E. 5(2012), 1–60.

[16] A.K. Lerner, On an estimate of Calderón-Zygmund operators by dyadic positive operators, J. Anal. Math., (to appear).

[17] A.K. Lerner, A simple proof of the A_2 conjecture, Int. Math. Res. Not. 2012; doi: 10.1093/imrn/rns145.

[18] A.K. Lerner, S. Ombrosi, C. Pérez, R.H. Torres, R. Trujillo-González, New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory, Adv. Math., 220 (2009), 1222–1264.

[19] K. Li, K. Moen and W. Sun, Weighted estimates for multilinear maximal functions and Calderón-Zygmund operators, preprint.

[20] H. Lin, Y. Meng, and D. Yang. Weighted estimates for commutators of multilinear Calderón-Zygmund operators with non-doubling measures, Acta Math. Sci. Ser. B, 30 (2010), 1–18.

[21] C. Pérez, S. Treil and A. Volberg, On A_2 conjecture and corona decomposition of weights, Available at http://arxiv.org/abs/1006.2630
[22] S. Petermichl, The sharp bound for the Hilbert transform on weighted Lebesgue spaces in terms of the classical A_p characteristic, Amer. J. Math., 129 (2007), 1355–1375.

[23] S. Petermichl, The sharp weighted bound for the Riesz transforms, Proc. Amer. Math. Soc., 136 (2008), 1237–1249.

[24] S. Shi, Z. Fu, and S. Lu. Weighted estimates for commutators of one-sided oscillatory integral operators, Front. Math. China, 6 (2011), 507–516.

[25] Q. Xue and Y. Ding. Weighted estimates for the multilinear commutators of the Littlewood-Paley operators, Sci. China Ser. A, 52 (2009), 1849–1868.