Magnetic trapping of metastable 3P_2 atomic strontium

S. B. Nagel, C. E. Simien, S. Laha, P. Gupta, V. S. Ashoka, and T. C. Killian
Rice University, Department of Physics and Astronomy and Rice Quantum Institute, Houston, Texas, 77251
(Dated: February 7, 2022)

We report the magnetic trapping of metastable 3P_2 atomic strontium. Atoms are cooled in a magneto-optical trap (MOT) operating on the dipole allowed $^1S_0 - ^1P_1$ transition at 461 nm. Decay via $^1P_1 \rightarrow ^1D_2 \rightarrow ^3P_2$ continuously loads a magnetic trap formed by the quadrupole magnetic field of the MOT. Over 10^6 atoms at a density of $8 \times 10^2 \text{ cm}^{-3}$ and temperature of 1 mK are trapped. The atom temperature is significantly lower than what would be expected from the kinetic and potential energy of atoms as they are transferred from the MOT. This suggests that thermalization and evaporative cooling are occurring in the magnetic trap.

Laser-cooled alkaline-earth atoms offer many possibilities for practical applications and fundamental studies. The two valence electrons in these systems give rise to triplet and singlet levels connected by narrow intercombination lines that are utilized for optical frequency standards \[? \]. Laser cooling on such a transition in strontium may lead to a fast and efficient route to all-optical quantum degeneracy \[? ? ? \], and there are abundant bosonic and fermionic isotopes to use in this pursuit. The lack of hyperfine structure in the bosonic isotopes and the closed electronic shell in the ground states make alkaline-earth atoms appealing testing grounds for cold-collision theories \[? ? ? \], and collisions between metastable alkaline-earth atoms is a relatively new and unexplored area for research \[? \].

In this paper we characterize a technique that should benefit all these experiments - the continuous loading of metastable 3P_2 atomic strontium (^{88}Sr) from a magneto-optical trap (MOT) into a purely magnetic trap. This idea was discussed in a recent theoretical study of alkaline-earth atoms and ytterbium \[? ? \]. Katori et al. \[? ? \] and Loftus et al. \[? ? \] have also reported observing this phenomenon in their strontium laser-cooling experiments. Continuous loading of a magnetic trap from a MOT was recently described for chromium atoms \[? ? \]. This scheme should allow for collection of large numbers of atoms at high density since atoms are shelved in a closed electronic shell in the ground states make alkaline-earth atoms is a relatively new and unexplored area for research \[? \].

This scheme should allow for collection of large numbers of atoms at high density since atoms are shelved in a dark state and less susceptible to light-assisted collisional loss mechanisms \[? ? ? \]. It is an ideal starting place for many experiments such as sub-Doppler laser-cooling on a transition from the metastable state, as has been done with calcium \[? \], production of ultracold Rydberg gases \[? \] or plasmas \[? \], and evaporative cooling to quantum degeneracy. Optical frequency standards based on laser-cooled alkaline-earth atoms, which are currently limited by high sample temperatures \[? ? \], may benefit from the ability to trap larger numbers of atoms and evaporatively cool them in a magnetic trap.

We will first describe the operation of the Sr MOT and how this loads the magnetic trap with 3P_2 atoms. Then we will characterize the loading and decay rates of atoms in the magnetic trap. Finally, we will present measurements of the 1P_1 sample temperature.

Sr atoms are loaded from a Zeeman-slowed atomic beam \[? ? \] and cooled and trapped in a standard MOT \[? ? \]. Both operate on the 461 nm $^1S_0 - ^1P_1$ transition (Fig. 1). Blue light is generated by frequency doubling the output of a Ti:sapphire laser using K\text{NBO}_3 in two external buildup cavities \[? ? \]. 150 mW of power, red-detuned from resonance by 585 MHz, is available for the Zeeman slower. Three beams of about 1 cm diameter, each with intensity $I \leq I_{\text{sat}} = 45 \text{ mW/cm}^2$, and 57 MHz red-detuned, are sent to the apparatus and retroreflected to produce the 6-beam MOT.

The 30 cm long Zeeman slower connects a vacuum chamber for the Sr oven and nozzle to the MOT chamber. Each chamber is evacuated by a 75 l/s ion pump. When the Sr oven is operated at its normal temperature of about 550°C, the pressure in the MOT chamber is about 5×10^{-9} torr, and the oven chamber is at 4×10^{-8} torr.

Extended cavity diode lasers at 679 and 707 nm remove population from the 3P_0 and 3P_2 levels. Each laser provides several hundred μW of power and is locked to an absorption feature in a discharge cell. These are not used for operation of the MOT during experiments with 3P_2 atoms. They serve to repump atoms from the 3P_2 level to the ground state via the 3S_1 and 3P_1 levels for imaging diagnostics.

The quadrupole magnetic field for the MOT is produced by flowing up to 80 A of current in opposite directions through two coils of 36 turns each, with coil di-
mometer of 4.3 cm and separation of 7.7 cm. The maximum current produces a field gradient along the symmetry axis of the coils of 115 G/cm. Such a large field gradient, about $10 \times$ the norm for an alkali atom MOT, is required because of the large decay rate of the excited state ($T_{1/2} = 2\pi \times 32 \text{ MHz}$) and the comparatively large recoil momentum of 461 nm photons.

Typically $10^7 - 10^8$ atoms are held in the MOT, at a peak density of $n \approx 1 \times 10^{10} \text{ cm}^{-3}$, with an rms radius of 1.2 mm and temperatures from 2 – 10 mK. The cooling limit for the MOT is the Doppler limit ($T_{\text{Doppler}} = 0.77 \text{ mK}$) because the ground state lacks degeneracy and thus cannot support sub-Doppler cooling. Higher MOT laser power produces higher MOT temperature, but also a larger number of trapped atoms. These sample parameters are measured with absorption imaging of a near resonant probe beam. The temperature is determined by monitoring the velocity of ballistic expansion of the atom cloud [?] after the trap is extinguished.

Atoms escape from the MOT due to $1P_1 - 1D_2$ decay as discussed in [?]. From the $1D_2$ state atoms either decay to the $3P_2$ state and then to the ground state and are recaptured in the MOT, or they decay to the $3P_0$ state, which has a lifetime of 17 min [?]. The decay rates are given in Fig. 3. The resulting MOT lifetime of 11 – 55 ms was measured by turning off the Zeeman slowing laser beam and monitoring the decay of the MOT fluorescence. The lifetime is inversely proportional to the fraction of time atoms spend in the $1P_1$ level, which varies with MOT laser power. Light-assisted collisional losses from the MOT [?] are negligible compared to the rapid $1P_1 - 1D_2$ decay.

The $m_j = 2$ and $m_j = 1$ $3P_2$ states can be trapped in the MOT quadrupole magnetic field. Such a quadrupole magnetic trap was used for the first demonstration of magnetic trapping of neutral atoms [?], but in that case atoms were loaded directly from a Zeeman-slowed atomic beam.

Near the center of the trap, the magnetic interaction energy for $3P_2$ atoms takes the form

$$U_{mj} = -\mu_{mj} \cdot B = g \mu_B m_j b \sqrt{x^2/4 + y^2 + z^2/4},$$

where m_j is the angular momentum projection along the local field, $g = 3/2$ is the g-factor for the $3P_2$ state, μ_B is the Bohr magneton, and $b \leq 115 \text{ G/cm}$ is the gradient of the magnetic field along the symmetry (y) axis of the quadrupole coil. For the $m_j = 2$ state and the maximum b, $g \mu_B m_j/k_B = 200 \text{ mK/G}$ and the barrier height for escape from the center of the magnetic trap is 15 mK. Gravity, which is oriented along z, corresponds to an effective field gradient of only 5 G/cm for Sr and is neglected in our analysis.

Typical data showing the magnetic trapping is shown in Fig. 3. We are unable to directly image atoms in the $3P_2$ state, so we use the 679 and 707 nm lasers to repump them to the ground state for fluorescence detection on the $1S_0 - 1P_1$ transition. The details are as follows. The MOT is operated for $t_{\text{load}} \leq 1300 \text{ ms}$ during which time atoms continuously load the magnetic trap. The MOT and Zeeman slower light is then extinguished, and after a time t_{hold}, the MOT lasers and repump laser at 707 nm are turned on. The 679 nm laser is left on the entire time. Any atoms in the $3P_2$ state are cycled through the $3P_1$ level to the ground state within 500 μs of repumping, and they fluoresce in the field of the MOT lasers. If the magnetic field is not left on during t_{hold}, Fig. 2 shows that a negligible number of ground state atoms are present in the MOT when the lasers are turned on. If the magnets are left on, however, the MOT fluorescence shows that $3P_2$ atoms were held in the magnetic trap.

The maximum number of $3P_2$ atoms trapped is about 1×10^6, and the peak density is about $8 \times 10^{10} \text{ cm}^{-3}$. To determine what limits this number, we varied t_{hold} and saw that the number of $3P_2$ atoms varied as $N_0 e^{-\gamma t_{\text{hold}}}$. The fits were excellent and the decay rate was proportional to background pressure as shown in Fig. 3b. This implies that for our conditions, the trap lifetime is limited by collisions with residual background gas molecules, and strontium-strontium collisional losses are not a dominant effect.

The magnetic trap loading rate was determined by holding t_{hold} constant and varying t_{load}. The loading rate correlates with the atom loss rate from the MOT (Fig. 3a). At low MOT loss rates about 10% of the atoms lost from the MOT are captured in the magnetic trap. From the Clebsch-Gordon coefficients involved in atom decay from the $1P_1$ state, and the magnetic sublevel distribution for atoms in the MOT, one expects that about 25% of the atoms decaying to $3P_2$ enter the $m_j = 1$ or $m_j = 2$ states. This is significantly higher than the largest observed efficiencies, and we may be seeing signs of other processes, such as losses due to collisions with MOT atoms. This phenomenon dominated dynamics during loading of a magnetic trap from a chromium MOT [?].
FIG. 3: (a) The lifetime of atoms in the magnetic trap is limited by collisions with background gas molecules. The linear fit extrapolates to zero at zero pressure within statistical uncertainties. Inset: A typical fit of the decay of the number of trapped atoms to a single exponential. (b) The magnetic trap loading rate is plotted against the MOT loss rate. Data correspond to various MOT laser powers and slow-atom fluxes from the atomic beam.

At larger MOT loss rates (corresponding to higher MOT laser intensities, MOT temperatures, and trapped \(^3P_2 \) atom densities), the efficiency of loading the magnetic trap decreases by about a factor of two. MOT temperatures approach the trap depth for the largest loading rates and we attribute the decreasing efficiency to escape of atoms over the magnetic barrier.

The 500 \(\mu s \) required for repumping is fast compared to the timescale for motion of the atoms, so absorption images of ground state atoms immediately after repumping provides a measure of the density distribution of the magnetically trapped sample. For these measurements, the magnetic trap is loaded for 1.3 s. Then the magnetic field is turned off and the repump lasers are turned on. After 500 \(\mu s \), an 80 \(\mu s \) pulse of a weak 461 nm probe beam (\(I \ll I_{sat} \)), 12.5 MHz detuned below resonance, illuminates the atom cloud and falls on a CCD camera. We record an intensity pattern with atoms present, \(I(x,y)_{\text{atoms}} \), and a background pattern with no atoms present, \(I(x,y)_{\text{back}} \). To analyze the data, we plot

\[
S(x) = \int_{\text{image}} dy \ln[I(x,y)_{\text{back}}/I(x,y)_{\text{atoms}}]
\]

FIG. 4: Distributions of \(^3P_2 \) atoms extracted from absorption images of ground state atoms shortly after repumping. The fits, which assume thermal equilibrium and a pure sample of \(m_j = 2 \) atoms, yield number \((1.2 \times 10^8) \), peak density \((8 \times 10^9 \text{ cm}^{-3}) \), and temperature \((1.3 \text{ mK}) \) of the atoms.

\[
\sigma_{abs} \int_{\text{image}} dy \int_{-\infty}^{\infty} dz n(x,y,z),
\]

and the analogously defined \(S(y) \), where \(\sigma_{abs} \) is the absorption cross section and \(n(x,y,z) \) is the atom density (Fig. 4). Because we do not know the distribution of magnetic sublevels, we make the simplifying assumption that all atoms are in the \(m_j = 2 \) state, and the density is given by

\[
n(x,y,z) = n_0 \exp\left[-U_2(x,y,z)/k_BT\right],
\]

A numerical approximation to Eq. 2 fits the data very well.

Our assumption for magnetic sublevel distribution means that the extracted temperatures are upper bounds, but one would expect the \(m_j = 1 \) level to be less populated. Due to the smaller magnetic moment, the trapping efficiency for \(m_j = 1 \) atoms decreases substantially as the MOT temperature increases, dropping by about a factor of 5 for a MOT temperature of 12 mK compared to only a factor of two for \(m_j = 2 \) atoms. Atoms with \(m_j = 1 \) can also be lost from the trap through spin-exchange collisions, which are typically rapid in ultracold gases. Calculated rates for spin exchange collisions for alkali atoms in magnetic traps are typically \(10^{-11} \text{ cm}^3/\text{s} \), although they can approach \(10^{-10} \text{ cm}^3/\text{s} \) [?].

We have assumed thermal equilibrium in our analysis, but this is reasonable. Thermal equilibration would need to occur on less than a few hundred ms timescale. Using a recently calculated s-wave elastic scattering length for \(^3P_2 \) atoms of \(a = 6 \text{ nm} \) [?], the collision rate for identical atoms is \(n\omega\pi a^2 \approx 9 \text{ s}^{-1} \) for \(n = 10^{10} \text{ cm}^{-3} \) and \(v = \sqrt{2k_BT/M} = 1 \text{ m/s} \) (\(T = 3 \text{ mK} \)).

The most interesting parameter obtained from the fits is the temperature, which is plotted in Fig. 5 as a function of MOT atom temperature. The values are significantly colder than what one would expect from a simple theory developed in [?] and plotted in the figure. The expected temperature is determined by assuming the kinetic energy and density distribution in the MOT are preserved as atoms decay to the metastable state. The \(^3P_2 \) potential energy distribution is then given by the magnetic...
MOT conditions. We confirmed these measurements by determining the 3P_2 atom temperature from ballistic expansion velocities, as is done to measure the MOT temperature.

As shown in the inset of Fig. 5, the temperature decreases with decreasing trap depth as would be expected for evaporative cooling of the sample [?]. For this data, the magnetic trap depth is held constant during the entire load and hold time. Confirmation of this explanation could be achieved with measurement of the collision cross section and thermalization rate in the trap. We plan on pursuing these experiments.

If evaporative cooling is working efficiently, it should be possible to use radio-frequency-induced forced evaporative cooling to further cool the sample and increase the density. Majorana spin-flips [?] from trapped to untrapped magnetic sublevels at the zero of the quadrupole magnetic field will eventually limit the sample lifetime, but it will still be 10 s at 100 uK. For studies of quantum degeneracy, the sample would have to be transferred to a magnetic trap without a field zero or to an optical dipole trap. Straightforward improvement of our vacuum should yield atom numbers and densities an order of magnitude higher than currently attained, and allow us to fully explore potential gains through evaporative cooling.

This research was supported by the Office for Naval Research, Research Corporation, Sloan Foundation, and Department of Energy Office of Fusion Energy Sciences.