Using Boundary Objects to Stimulate Transformational Thinking: Storm Resilience for the Port of Providence, Rhode Island (USA)

Austin Becker
University of Rhode Island, abecker@uri.edu

Follow this and additional works at: https://digitalcommons.uri.edu/maf_facpubs

Citation/Publisher Attribution
Becker, A., (2017), "Using Boundary Objects to Stimulate Transformational Thinking: Hazard Resilience for the Port of Providence." Sustainability Science. Vol. 12, No. 3, pp. 477-501. Available at: https://doi.org/10.1007/s11625-016-0416-y

This Article is brought to you by the University of Rhode Island. It has been accepted for inclusion in Marine Affairs Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly.
Using Boundary Objects to Stimulate Transformational Thinking: Storm Resilience for the Port of Providence, Rhode Island (USA)

Austin Becker

Corresponding author: Austin Becker, PhD
Department of Marine Affairs
University of Rhode Island, Coastal Institute Room 213, 1 Greenhouse Road, Suite 205, Kingston, RI 02881
e: abecker@uri.edu | p: 401-874-4192 | f: 401-874-2156

Please cite as: Becker, A., (2017), “Using Boundary Objects to Stimulate Transformational Thinking: Hazard Resilience for the Port of Providence.” Sustainability Science. Vol. 12, No. 3, pp. 477-501.

Abstract
Like many coastal ports around the world, Rhode Island’s Port of Providence in the USA is at risk for climate-related natural hazards, such as catastrophic storm surges and significant sea level rise (0.5 – 2.0 meters) over the next century. To combat such events, communities may eventually adopt so-called “transformational adaptation” strategies such as the construction of major new infrastructure, the reorganization of vulnerable systems, or changes in their locations. Such strategies can take decades or more to plan, design, find consensus around, fund, and ultimately implement. Before any meaningful decisions can be made, however, a shared understanding of risks, consequences, and options must be generated and allowed to percolate through the decision-making systems. This paper presents results from a pre-planning exercise that utilized “boundary objects” to engage the port’s stakeholders in early dialogue about the transformational approaches to hazard risk mitigation. The research team piloted the following three boundary objects as a means to initiate meaningful dialogue about long-term storm resilience challenges amongst key stakeholders of an exposed seaport system in Providence, Rhode Island (USA): 1) a storm scenario with local-scale visualizations, 2) three long-term resilience concepts, and 3) a decision support tool called Wecision. The team tested these tools in a workshop setting with 30 port business owners and policy makers and found them to be an effective method to generate a robust dialogue around a very challenging topic.

Keywords
Boundary objects, transformational adaptation, stakeholder engagement, seaport adaptation

Acknowledgements
Many thanks to Prof. Richard Burroughs and graduate research assistants Eric Kretsch and Duncan Mcintosh, seniors in Landscape Architecture Brian Leverriere and Emily Humphrey, and student volunteers at the workshop Julia Miller (Coastal Fellow), Nicole Andrescavage, Zaire Garrett, Peter Stempel, and Emily Tradd. John Haymaker developed the Wecision tool utilized in this project. Funding support from the Rhode Island Department of Transportation Grant Number 04081.
Using Boundary Objects to Stimulate Transformational Thinking: Storm Resilience for the Port of Providence

INTRODUCTION

Climate change has long been acknowledged as a “wicked problem” for planners and policy makers (Lazarus 2008) and for seaports decision makers, in particular (Gharehgozli, Mileski et al. 2016). The uncertainties in rates of change, the feedback loops, and the misalignment of incentives all conspire to leave decision makers befuddled as to which adaptation option(s) to pursue, on what timescale, and on whose dime. To make matters worse, many coastal communities will be forced to adopt so-called “transformational adaptation” strategies such as the construction of major new infrastructure, the reorganization of vulnerable systems, or changes in their locations (Kates, Travis et al. 2012). Such strategies can take decades or more to plan, design, find consensus around, fund, and ultimately implement (Savonis, Potter et al. 2014). Before any meaningful decisions can be made, however, a shared understanding of risks, consequences, and options must be generated and allowed to percolate through the system to those who deal with such issues (Weiss 1982). Rhode Island’s port of Providence on the Northeast Coast of the United States is at risk for climate-related challenges, such as catastrophic storm surges and significant sea level rise (0.5 – 2.0 meters) over the next century (Sallenger Jr, Doran et al. 2012, Tebaldi, Strauss et al. 2012, Miller, Kopp et al. 2013, DeConto and Pollard 2016). This paper presents results from a pre-planning exercise that utilized “boundary objects” to engage the port’s stakeholders in early dialogue about transformational approaches to hazard risk mitigation. Researchers piloted the following three boundary objects as a means to initiate meaningful dialogue about long-term hazard resilience challenges amongst key stakeholders of the port of Providence, RI: 1) a storm scenario with local-scale visualizations, 2) three long-term resilience concepts, and 3) a decision support tool called Wecision. This paper begins with discussion of boundary work and boundary objects in engaging decision makers in meaningful dialogue. It then describes the case study site and workshop methodology in Providence, as well as the development and implementation of these three boundary objects. It then assesses their usefulness and shortcomings in helping participants find common ground and collective knowledge. It next situates these boundary objects within the context and theory of such tools in decision-making processes. Finally, it suggests how and why such tools can be utilized and improved upon in future processes.

BACKGROUND

Wicked problems in Port Planning

Although progress has been made particularly with respect to changes in residential land use and building codes in the USA and elsewhere (Melillo 2014, WRSE 2014, USACE 2015), few
actions have yet been taken to protect the complex system of ports and shipping that facilitate the a maritime-based freight economy (Becker, Inoue et al. 2012, Ng, Becker et al. 2016). Indeed, while global port operators themselves acknowledge the important role that climate change will play in future operations (Becker, Inoue et al. 2012, Becker, Matson et al. 2014), there are still few examples of plans, let alone implementation of plans, to address adaptation. Seaport systems face a unique combination of natural hazard risks within the environmental, social, economic, and political landscape. They consist of complex and interdependent public/private decision-making governance structures (Notteboom and Winkelmans 2002, Notteboom and Winkelmans 2003), and their geographical and intermodal requirements constrain them to environmentally sensitive and exposed locations (Becker, Acciaro et al. 2013, Becker, Chase et al. 2016). In many areas, natural hazards associated with climate change, such as sea level rise (Parris and Knuuti 2012, Strauss 2013) and more intense hurricanes (Bender, Knutson et al. 2010), threaten these systems as a whole, as well as the individual organizations that depend upon the functioning of the system. Individual organizations and agencies often do not have the proper incentives or understanding of the system’s interconnectedness to justify investment in long-term resilience (Becker and Caldwell 2015). Despite the availability of impacts assessment tools and established methods for stakeholder engagement in vulnerability assessment processes (McEvoy, Mullett et al. 2013, Zhang and Ng 2016), overcoming barriers to resilience investments for complex systems such as ports remains a significant challenge due to conflicting timescales, institutional uncertainties about which organizations should lead or invest, and lack of resources, among others (Tompkins and Eakin 2012, Eisenack, Moser et al. 2014, Ekstrom and Moser 2014).

Boundary objects to engage stakeholders in wicked problems

Decision makers often find it difficult to engage in a dialogue about high-risk, low-probability, events. Complex, wicked, challenges require new ways of knowledge production and decision making that involve new collaborations between scientists from many disciplines and actors from the private and public sectors (Kates, Clark et al. 2001, Lynch, Tryhorn et al. 2008). Such collaborations, including government interventions and actions by private firms and non-governmental organizations, enhance coping capacity and reduce vulnerability (Adger, Hughes et al. 2005). Preston et al. suggest that individuals and organizations can serve boundary-spanning functions, “dedicated to translating between social worlds, building trust and mutual accountability, and acting as experts in the process of making science useful” (Preston, Rickards et al. 2013). “Boundary work” addresses complex problems (Batie 2008) through a “negotiation support process engaged in creating usable knowledge and the social order that creates and uses that knowledge.” (Clark, Tomich et al. 2002). In the field of sustainability science, boundary work consists of products and processes (i.e., boundary objects) that bridge communities, stakeholders, and disciplines and, most importantly, lead to links from knowledge to action. Boundary objects allow groups with different perspectives, backgrounds, or motivations to work together without prior consensus (Star 2010). In the concept developed by Star and Griesemer (1989), boundary objects may be material objects (e.g., maps), repositories (e.g., a collection of books), performances, computer operating systems, or take many other forms (for a fuller discussion, see (Star 2010)). Such “boundary objects” have been shown to provide an effective way to jumpstart challenging dialogue and ultimately lead to co-production of
resilience strategies and more successful policy and implementation of coastal management decision-making (Ward 2001, Bryson 2004, Few, Brown et al. 2007, Tompkins, Few et al. 2008, Chapin, Carpenter et al. 2010).

This research created a boundary-spanning process and three such boundary objects and piloted them as a means of spurring knowledge exchange around storm resilience strategies from a variety of port stakeholders (Liverman and Raven 2010). It created a forum for engagement and participation, an essential component of adaptation to climate change (Wilbanks and Kates 1999, Eakin and Luers 2006) at the local scale that is aligned to management decisions (Cash and Moser 2000). In this case, there was no clear “management decision” to be made, thus researchers considered this a “pre-planning” exercise that lays the groundwork for future decision-making.

METHODOLOGY

PILOT STUDY APPROACH – The Port of Providence (RI)

This pilot project focused on the Port of Providence (Figure 1), a small North Atlantic port in the State of Rhode Island (USA) with high exposure to hurricanes, where stakeholders were likely to be familiar with storms, and where the research could prove relevant for their future planning efforts. Though the State of Rhode Island has embraced climate adaptation planning in some of its policy and planning efforts (CRMC 2015, RISG 2015, CRMC 2009), little work had focused on the resilience issues facing the Port of Providence. Funded by the United States Federal Highway Administration (FHWA) and the Rhode Island Dept. of Transportation (RIDOT), this study brought 30 participants together to develop methods that would engage the public and private sectors in a challenging, and potentially uncomfortable, dialogue around the risks from a major hurricane at the port. Though it is motivated by climate change impacts, it was not designed to explicitly deal with climate change, as previous research suggested that participants would be more likely to be willing to engage in dialogue around near-term storm impacts, as opposed to long-term climate change (Becker and Caldwell 2015). Focusing on storms helped with recruitment to the study, which proved to be a challenge due to the busy schedules held by the target audience. In a half-day workshop, the project introduced transformational strategies that could reduce the vulnerability of the port systems as a whole. The process was not designed to make any particular decision or pick any particular path, rather it was meant as a pre-planning exercise to spark meaningful dialogue and raise awareness around the threats posed by major storms and ultimately the eventual necessity for large-scale resilience improvements, which will likely be required as impacts of climate change increase over the course of the next several decades.

There is no official port authority in Rhode Island and the State plays no direct role in managing port operations or centralized planning, though the state’s coastal agency (the Coastal Resources Management Council or CRMC) does regulate land use in the coastal area that the port occupies. Together the business that make up the port of Providence most closely resemble a private

1 More details on the study location and project methodology can be found at www.portofprovidenceresilience.org. The case location is also discussed in Becker et al 2015.
service port (for a discussion of types of ports, see (PPIAF 2013) that supplies Connecticut, Massachusetts, and Rhode Island with petroleum products and handles bulk and break-bulk imports and exports. Many businesses depend on the port’s functionality, including: trucking companies, a rail line, dredging operations, hospitals and institutions that use petroleum products for their power plants, manufacturing companies, marine pilots, and even the state airport, which depends on the port for jet fuel. In 2010, the Port of Providence handled approximately 3.1 million tons of cargo, making it the 46th largest port in the USA.

The study area for this project includes ProvPort, the main port terminal, and number of other waterfront businesses and industries, which together, take up nearly 93 hectares of waterfront in Providence and East Providence (Becker, Wilson et al. 2010). ProvPort itself is about 42 hectares of land that are owned by the City of Providence and operated by a five board member nonprofit organization, ProvPort, which contracts the services of Waterson Terminals LLC to operate and maintain the port. ProvPort alone generated more than $200 million (US) in economic benefits for the region and over 2,400 jobs were attributed to port activities (PWWA 2010).

The port is located at the northern end of Narragansett Bay, an ecologically sensitive estuary that provides breeding grounds for marine life in the region. The length and orientation of Rhode Island’s Narragansett Bay, and its proximity to the Atlantic hurricane zone, make it susceptible to extreme storm surges from the southerly winds that are generated when a hurricane passes to the west of the Bay. As such, the United States Federal Emergency Management Agency (FEMA) considers Providence to be the “Achilles heel of the Northeast” (Rubinoff 2007). A recent study estimates the hurricane return period for Rhode Island to be 24 years, with the “major” hurricane return period of 94 years based on historical data (USGS 2010). The most recent major storm, Hurricane Carol in 1954, produced 5 meters of storm surge in Providence. Most of the port lands in the study area are 1 – 3 meters above mean high water. A 9 meter hurricane barrier north of the port protects the downtown City area, but could result in higher storm-surge levels at the port, as surge waters would accumulate in Providence Harbor instead of spreading throughout the low-lying region now protected inland of the barrier.

DEVELOPMENT AND IMPLEMENTATION OF THREE BOUNDARY OBJECTS TO STIMULATE DISCUSSION

This study partnered researchers from the University of Rhode Island with representatives of local, state, and federal government and the private sector to develop a boundary-spanning process and test three boundary objects. An expert steering committee made up of 12 state and federal agency representatives helped guide the research process. It culminated in a workshop with thirty participants who represented 15 local maritime port-related businesses, three local planning departments, five state government agencies, four federal government agencies, and two academic or environmental groups. The project “integrated best available knowledge, reconciled values and preferences, and created ownership for problems and solution options,” core concepts and design principles for trans-disciplinary sustainability research outlined by Lang et al (2012). Workshop objectives included:
1. Understand and comment on a possible storm scenarios and consequences for the port area.
2. Review long-range resilience goals for the port.
3. Review transformational resilience concept alternatives for protecting port community against storm damage.
4. Weigh importance of resilience goals and assess potential of resilience concepts to meet these goals.
5. Assess this workshop methodology as a way to measure port vulnerability and initiate discussion on long-range resilience concept alternatives.
6. Identify collective action that needs to be discussed now and recommendations for next steps.

The half-day workshop allowed participants to interact with, react to, and contribute to three boundary objects developed for the project through several activities. First, they learned from a representative from the Port of New York and New Jersey about the impacts that the 2012 Hurricane Sandy had on that port. Next, they discussed consequences to port interests from a hypothetical Category 3 hurricane landing near the Port of Providence (Boundary Object 1). Participants then evaluated and prioritized resilience goals for port businesses and explored four long-term resilience concepts (Boundary Object 2). Using the Wecision decision support tool developed by one of the members of the research team (Boundary Object 3), they then assessed these concepts with respect to goals and identified which alternative concepts provided the most value to different participants. These boundary objects were chosen and developed in consultation with the steering committee as a means to best engage participants and make abstract concepts more tangible. The researchers considered a number of other tools (3D animations of storm surge, the creation of a “generic port” as a discussion starter, instead of the Port of Providence, and a number of other multi-criteria decision support tools). Ultimately these were rejected due to their complexity, expense, or, in the case of the multi-criteria decision support tools, the time required to master and adapt a new software product. The next sections discuss the boundary objects and their use in the workshop process.

Boundary Object 1 - Storm scenario and consequences for the port area.
Visualizations of storm surge and sea level rise play an increasingly important role in decision-making processes (Yates and Stone 1992, Sheppard, Shaw et al. 2011, Lindeman, Dame et al. 2015). Realistic portrayals of future conditions, such as inundation zones, help people localize and personalize what are otherwise very abstract concepts (Lowe, Brown et al. 2006, Sheppard, Shaw et al. 2013). When compared to traditional abstract maps, realistic visualizations can better communicate complex and nuanced information in a mode which humans have evolved to understand: imagery of the landscape. Since realistic visualizations create affective (emotional) responses on the part of the viewer, they may be more effective tools for communicating risk (Sheppard 2015). Research has shown that cognitive understanding of risk alone may create

2 Workshop materials, including graphics and more information can be found at the project website: www.portofprovidenceresilience.org.
misperceptions of risk when not aligned with an emotional response, thus this project utilized realistic visualizations as a tool for risk communication (Slovic, Peters et al. 2005).

To stimulate thinking about long-term risk, researchers created a scientifically-credible Category Three hurricane scenario based on historical data and a Sea, Lake and Overland Surges from Hurricanes (SLOSH) (NHC 2015) model analysis (Figure 1). For the Northeast USA, a Category 3 Hurricane has a return period of approximately 60 years (Ginis 2006), or a 1.7% chance of impacting the region in a given year. Using GIS and Google Earth, researchers produced 3D visualizations of a 6.4 meter storm surge showing inundation levels along the Providence waterfront from the Fox Point Hurricane Barrier, south to Fields Point, and including the East Providence waterfront (Figure 1). 3D images of specific properties along the waterfront from a number of perspectives and a flyover video allowed participants to see details of properties of concern to them (Figure 2). In small groups, participants reported out on the potential cascading consequences of this event in the weeks, months, and years after the event, as well as their top concerns. Participants were instructed to focus on long-term consequences, as opposed to what might happen on the day of the event.

Figure 1 - Providence Harbor study area with results of SLOSH generated storm surge overlay, Providence, Rhode Island, USA

Figure 2 -- Example of 3D visualization of storm scenario. Left image looks north and shows petroleum terminals and the existing Fox Point Hurricane Barrier at the northern end of the study area. The right image looks west and shows petroleum terminal on the west side of Providence Harbor (Image R. McIntosh)

Boundary Object 2 - Three long-range resilience concept scenarios for protecting port community against storm damage.

Scenarios have long been used to help people think about the future (Pulver and VanDeveer 2009). Emissions scenarios, for example, drive climate models that produce a variety of environmental conditions that may unfold over the next century and beyond (Melillo 2014). Scenarios have also been used in visioning the future for business (Bradfield, Wright et al. 2005) and public processes around land use and comprehensive planning (Xiang and Clarke 2003) to stretch people’s thinking about a range of plausible futures. The project employed a form of scenarios to sketch out three long-range resilience alternatives and help workshops participants deeply consider the implications of each.

In a semester-long studio class with students from the Landscape Architecture Department at the University of Rhode Island in Fall 2014, students helped develop the three broad, long-term, archetypal concept scenarios for building resilience of the port: Protect, Relocate, and Accommodate (Dronkers, Gilbert et al. 1990, Tol, Klein et al. 2008, Cheong 2011, IPCC 2012). Each concept featured a different approach to resilience, defined in this study as “the ability to bounce back to normal operations after an extreme event,” from a long-term planning perspective. This research used 2050 as the planning horizon, thus emergency response options (e.g., improvements to evacuation routes) were not included in the concepts. Naturally, any actual strategy approach would likely combine aspects of all three design concepts, but these were meant to stimulate discussion and were, by necessity, simplified versions of what would
inevitably be very complex projects. All three were expected to be cost intensive (on the order of $1 Billion (US)) and funding mechanisms were not discussed explicitly, as the purpose of the workshop was not to make a particular decision, but rather to begin the challenging dialogue about long-term resilience. Each concept included graphic representations and conceptual examples, as well as an overview of pros and cons developed together with the project steering committee (See Appendix 1), which offered suggestions about how to shape the concepts, as well as the overall advantages and disadvantages of each. All of this information was presented to workshop participants and included in handouts, followed by discussion. Climate change was not explicitly taken into account in the development of the scenario concepts, thus sea level rise and any changes in storm intensity or probability in 2050 were not included. Though the project itself is clearly motivated by climate change, the content of the workshop exercises focused more specifically on storm impacts that could result from a storm in the present or in the future. The following sections describe each concept in more detail.

The protect concept
The “Protect” concept reduces storm risk by decreasing the probability of occurrence of impacts (Tol, Klein et al. 2008). To do so, it proposes relocating an existing hurricane barrier to a new location that would protect infrastructure in the study area (Figure 3). The United States Army Corps of Engineers constructed the existing barrier, north of the study area, in the 1960’s to protect downtown Providence (USACE 2007). The “Protect” concept envisions the construction of a new barrier and berm system, with similar design to the Maeslatkering Barrier in the Port of Rotterdam (Netherlands), along the southern edge of the study area (for discussion of barrier design options, see (Dircke, Jongeling et al. 2012, USACE 2013). This design concept would span the mouth of Providence Harbor, tying into the existing elevation in Providence and East Providence. The floodgate could be closed in the event of a storm, effectively protecting Providence Harbor from forcing associated with hurricane level storm surge and wave action. When open, the gates would rest on dry docks on the east and west sides of the harbor entrance. To close, the gates would be flooded and each side floated and swings closed to meet in the center of the channel. A multipurpose levee located along the shoreline incorporates an earth berm and green wall along the landside, and a living shoreline along the waterside. A pedestrian/bike path might run along the top of the levee, and bleachers could be located on a portion of the landward side for viewing the adjacent sports fields.

Figure 3 -- The “protect” concept shows a new barrier located south of the study area at Fields Point. The design is based on the Maeslatkering Barrier in the Port of Rotterdam.

The relocate concept
Relocate, also called “retreat” in the literature, reduces the risk of an event by limiting the potential negative effects through moving structures away from the flood plain (Tol, Klein et al. 2008). Historically, relocation has occurred after an event, when structures are damaged, abandoned, and rebuilt in an area further from shore or more protected (Frankhauser 1995). This strategy may be more appropriate for non-water dependent uses (e.g., residential housing), as opposed to coastal infrastructure. However, in some cases infrastructure such as lighthouses (e.g., Cape Hatteras Light in North Carolina) have been moved back away from an eroding bluff. The “Relocate” concept proposed moving some or all of the current industrial
uses in Providence Harbor out of harm’s way. It suggested that other locations around Narragansett Bay could provide a less exposed area from which to do business, while still providing the infrastructure requirements (e.g., access to highway, rail, navigation channels, pipelines) to operate. The current Exxon Mobil petroleum facility in East Providence provided an example of such a location, where the berthing facility is located along the water’s edge but the petroleum product is piped upland and stored in a tank farm located well away from the floodplain at an elevation of 15 meters (Figure 4).

Figure 4 - The “relocate” concept would move some or all existing uses out of the flood plain. In this example, a petroleum terminal’s tanks are located upland at elevation 50’, while the berth remains at sea level. The product is piped from the berth to the tanks.

The accommodate concept

The “Accommodate” concept proposed a suite of strategies that allow businesses to remain in place, but enhance resilience through significant investments in upgrading, hardening, elevating and flood-proofing infrastructure and buildings (see e.g., MassPort 2014, Massport 2015). Properties would be retrofitted to withstand flooding, while retaining existing uses that could be operational upon receding of the floodwaters. Through smart planning and improved practices debris impacts could also be limited, decreasing physical and environmental damage. The “Accommodate” concept proposed a major investment on a property-by-property basis (Figure 5). Options that were discussed included

• Elevating buildings
• Constructing breakaway walls
• Flood-proofing utilities
• Creating floodable first floors
• Elevate land under structures
• Elevating critical utilities (e.g., power, water, sewer)
• Raising backup generators, air conditioning units and oil or gas tanks above the base flood elevation or onto roof of building
• Wet flood-proofing foundations
• Using flood/salt tolerant construction materials
• Sealing around utility entry points
• Installing waterproof bulkheads
• Installing pumps with backup generators to pump out access water
• Reinforcing windows and doors
• Covering piles of material with debris tarps and strapping
• Constructing storm water detention ponds

Figure 5 -- The “accommodate” concept proposes major investment to armor individual structures and properties in place throughout the study area. Examples shown here include elevating utilities, elevating the land itself, and construction of new flood berms.
Do Nothing
In addition to the three resilience concepts, the research team included a “do nothing” concept that would leave resilience levels as-is. The storm scenario (Boundary Object 1) exercise enabled participants to discuss details of “do nothing” (Appendix 2) as did the examples of Hurricane Sandy damages provided by the Port of NY/NJ. “Do Nothing” is, of course, a default alternative that would result in significant expense in the event of a storm, but no additional expense until that time. The research team discussed the pros and cons of “do nothing”, along with the pros and cons of each of the other alternatives. Like the other concepts, “do nothing” does not reflect sea level rise or any other changes resulting from climate change. Rather, the concept presented to participants simply posited that, were no additional investments made in resilience, the result of a storm event could be something along the lines of what they discussed in the earlier exercise.

Boundary Object 3 – Decision Support Tool (Wecision)
For the third boundary object, the research team utilized a collaborative decision process tool called Wecision (see www.wecision.com) to facilitate a deeper dive into the relative advantages and disadvantages of the resilience concepts (Figure 6). Decision support tools such as these have been used to help people understand complex problems with multiple (and conflicting) objectives (Keeney and Raiffa 1993). Though there are many such tools available, the research team chose Wecision, as the authors of the tool had previously expressed interest in expanding the use of it to accommodate new approaches to planning and decision-making. Thus, the tool authors were willing to join the research team and make necessary alterations to the tool so that it might be applied to this exercise. Originally created as a tool for choosing optimal designs for large-scale infrastructure projects (e.g., train stations) based on stakeholder preferences (Haymaker and Chachere 2006), the tool was adapted to generate exploration and deep-thinking. Wecision uses a cloud-based platform that helps facilitators gather stakeholders and experts into a social-network community around an issue, guides stakeholders through the definition and prioritization of goals, helps to define alternatives and assess the impacts of each alternative on each goal. Resulting graphs communicate participant preferences and assist in a collaborative consensus building and decision making process. While Wecision can often be used more fully to allow groups of people to collaborate in real-time to formulate all aspects of a decision, for this workshop, the organizers conducted much of the work of preparing the Wecision model in collaboration with the steering committee ahead of time.

Figure 6 -- This figure shows an example of the Wecision interface as experienced by participants during the workshop.

Resilience goals
To generation discussion, the research team proposed seven “long-term resilience goals” for the port stakeholders to assess against the various resilience concept alternatives (see Appendix 2 for definitions and metrics for each goal). Due to time constraints in the workshop, the goals were created ahead of time by the project steering committee to captured important themes and concerns for port businesses. If more time were available in the workshop, the participants would have been asked to work together to identify their own resilience goals. Due
to limited time, participants briefly discussed and agreed with the steering committee recommendations for the following seven goals:

1. Ensure post-hurricane business continuity for waterfront business.
2. Minimize hurricane damages to infrastructure and waterfront business
3. Minimize hurricane-related environmental damage from port uses
4. Build public support for hurricane resilience measures & port operations.
5. Minimize hazard insurance rates.
6. Foster port growth.
7. Protect human safety and critical lifelines

Participants used personal computers to log onto Wecision to rank the importance of each of the seven resilience goals. Participants then discussed each of the four alternatives (i.e., protect, relocate, accommodate, do nothing) and individually evaluated each against the seven resilience goals using a 1-5 metric defined for each goal (as outlined in Appendix 2). Participants input their preferences “on the fly” using personal computers, while a facilitator led them through the exercise. As such, individual responses remained anonymous, but results could easily be reported in aggregate almost immediately.

Results of the workshop exercises

The boundary objects utilized in the workshop stimulated discussion and deep thinking about a very challenging topic. Through four hours of dialogue, the participants discovered a wide range of potential storm impacts that they felt should be considered in future resilience planning. For example, they discovered that energy supply for the local hospital, stored within the flooded area, could become inaccessible. They explained how an inundated sewage treatment plant could result in raw wastewater discharge and how possible spills from oil and chemical storage facilities might contaminate the Bay. Debris also proved to be a top concern, both in terms of clean up costs and the damage that debris could cause to port infrastructure, including: trees and branches, construction materials from destroyed structures, ships and boats, docks, tanks, and many other objects could damage extant structures in and around the port area.

Participants hypothesized that storm damage to road and navigation infrastructure could take months to remove and/or repair, leading to ongoing disruptions in commerce. Debris in the channel, as well as displacement of navigational aids and sedimentation, might require extensive surveying and clearing before the port could be reopened for normal commerce. They noted that a bulkhead failure could result in erosion due to a release of shored-up material and lost business. Furthermore, as much of the land in the study area consists of brownfields, a bulkhead failure or other erosion event could lead to release of hazardous materials currently held in situ in the soil. As they got deeper into discussions, they identified how erosion along the riverbanks could also contribute significant sediment loading, requiring additional maintenance dredging of the 18 meters navigation channel. Environmental and economic impacts would likely be felt for years after the storm scenario. However, participants felt unsure of the magnitude of these. As one participant stated, “Would our businesses be as attractive as they were before the storm?”
As participants moved from considering the impacts of the storm to considering the potential strategies, they quickly grasped the complexities inherent in pro-active planning. At the end of the exercise, Wecision aggregates participants’ opinions of how well each resilience concept alternative met each of the seven goals, as well as weighting those goals based on participants assessment of goal importance (Figure 7). Results of the exercise showed in real time that participants felt that the “protect” strategy best met their goals, followed by the “relocate”, then “accommodate” and finally “do nothing.”

Figure 7 -- The output results of the Wecision exercise. The thickness of each color bar represents how well the alternative would meet the resilience goal. Here, “Protect” was shown as the best way to meet resilience goals, based on workshop participant preferences and assessments.

The discussion that followed focused on the efficacy and cost of the resilience strategies, as well as a general distaste for the “relocate” option, despite the results of the Wecision exercise, which showed it as the second most preferred option. It is important to note that participants may have been pre-disposed to reject the relocate option, due to a long history of conflict between the maritime industries and the City of Providence’s attempts to rezone parts of the waterfront for non-industrial uses, such as hotels and condominiums. Participants expressed that they did not want to open the door for relocation discussions, as they felt that there would be no viable alternatives to being in the Providence Harbor. This was part of a robust conversation following the exercise raised a number of important questions, such as:
- How much would these strategies cost to implement?
- Who pays? And, in what proportions?
- How would the costs of a major storm hitting the port actually be?
- Who (or what organization) is best positioned to take the lead?

These questions have no easy answers. However, like many coastal communities, the Port of Providence stakeholders will need to start thinking deeply about them in the coming decades as sea levels rise and the threat of tropical storms intensify. This workshop exercise began a dialogue and lays the groundwork for future planning efforts.

Why are boundary objects necessary?
Boundary objects can engage participants in a challenging conversation about long-term (pre)planning for low-probability, high consequence events such as a major hurricane. In Rhode Island, this conversation was unprecedented. Although State decision makers and planners engage in regular dialogue around emergency response planning (e.g., as spearheaded by the United States Coast Guard) and land use (e.g., LandUse 2025 Rhode Island Statewide Planning’s Land Use Plan), the likely consequences of a major hurricane have not been planned for, despite concern expressed by stakeholders in previous research (Becker, Matson et al. 2014). Since much infrastructure and land use planning were carried out over the 20th century using historical storm surge data (CRMC 2009 In review), such a conversation in the past may not have been warranted – that is to say that, pre-climate change, future conditions could be expected to follow the same probability curves as past conditions (Milly, Betancourt et al. 2009). Since past flood-level probabilities were presumably taken into account in the design and planning, there would have been no need to consider making dramatic changes to the built
environment to accommodate unprecedented events. However, with climate change, such discussions suddenly become imperative, especially given the long timelines necessary for infrastructure development and the immense expense (Savonis, Potter et al. 2014).

Previous research (Becker, Matson et al. 2014, Becker and Caldwell 2015) and these workshop results suggest a number of reasons that stakeholders find such dialogue so challenging and further reinforce the “wicked” nature of the adaptation challenge for this coastal community. Many of the general principles outlined by Rittel and Webster (1973) in their seminal paper aptly describe the challenge faced by decision makers in Providence and help explain why this dialogue is so difficult for stakeholders to enter into in a meaningful way (Table 1). Many participants had different perspectives on the actual problem of storm resilience. Though all expressed familiarity with hurricane preparations, few had experienced a major hurricane and none had a frame of reference for how wind, surge, and wave would affect the harbor during a major event such as the scenario presented. Many were unclear of their roles in building resilience and some even expressed concern that they would assume liability simply by acknowledging the risks. Even with the resilience concepts presented in the workshop, participants found it difficult to agree on the “goal” or “end objective” for a resilient port. Though discussion focused on one potential storm scenario, it was not lost on participants that other stronger or weaker storms could present a whole different set of outcomes. The implications of significant sea level rise, for example, would not be addressed through the “protect” scenario, which provided a storm surge barrier, but not a means to protect infrastructure from periodic inundation under new high tide levels. Other characteristics of “wicked problems” and how they apply to the Port of Providence situation are further outlined in Table 1.

Table 1 - Port resilience as a “wicked problem” (based on Rittel and Webster 1973)

The resolution of these wicked problems, the move toward transformational adaptation, and the development of a resilient port system is confounded by yet another problem: there is, as yet, no clear decision to be made. Funding for resilience investments has not been secured, consensus around which types of resilience strategies to pursue had not been found, and the problems and solutions have not yet been clearly identified. However, long-term pre-planning can (and must) begin by planting seeds, sparking debate, and stimulating thinking about transformational concepts that ultimately would take decades to implement.

Boundary objects as a bridge – what was effective and what needs improvement?
The three boundary objects created for this project worked well to bridge these challenges by providing participants with a common focus that emphasized the regional and cascading implications of storms and storm resilience. As suggested by (McGreavy, Hutchins et al. 2013) and others, the objects created for this workshop represent flexible products and processes that are adaptable, but maintain coherence across the worlds of private business, public policy, and science. As a communication device, they allowed for both the invention of knowledge and a semblance of social order within a collaborative setting (Jasanoff 2004). However, there were
limitations in each of them that are worth discussion (Table 2 - Pros and cons of three boundary objects used in workshop).

Perhaps the largest challenge in use of these tools lay in the time allotted to carry out the workshop. At the start of the project, the research team planned to spend a full day with workshop participants. This would have allowed each tool to be fully developed and explored. As the workshop date approached, participants made it clear that they could spend a half-day, but not a full day. This presented a number of challenges and forced the team to make compromises around each of the three tools. For example, the team would have liked to have spent 30-45 minutes on an exercise in which participants would develop and find consensus around their own set of resilience goals. The team also would have preferred to spend additional time in small group discussions around the pros and cons of the long-term resilience concepts. Finally, the team had to greatly reduce the amount of time spent on orienting the participants to using the Wecision tool, resulting in some confusion around using the tool and a lack of time for discussing the results.

Table 2 - Pros and cons of three boundary objects used in workshop

Individually, the tools worked well, but nevertheless could be improved. The dialogue around the storm scenario, for example, raised a number of concerns that participants had not previously discussed as a group, but without laying blame or directly assigning responsibility for assuming the risk. The storm scenario visualizations brought these issues to light, without boxing any particular agency or business into the corner of having immediate responsibility to reduce that risk, thus allowing for a freer flow of ideas. Though ultimately “someone” will need to address the issues raised, the boundary object allowed for discussion in a non-threatening and collaborative environment, laying a foundation for future decision-making exercises.

Although many participants found the visualizations engaging and plausible, some felt that the scenario was either too extreme to be realistic, while others would have preferred a probabilistic scenario. The steering committee supported the creation of a deterministic scenario that would result in a surge that comes up to but does not overtop Providence’s Hurricane Barrier. Anything worse would result in a game-changing event that would flood out the entire downtown area. Some participants indicated that they would have preferred a scenario that utilized a probabilistic model (e.g., a 1-in-500 year event), as they felt more familiar with probabilistic models. In addition, the visualizations did not adequately represent many of the real damages that would likely occur. Debris, destroyed buildings, boats torn from moorings, and other likely impacts could not be represented with a degree of accuracy that would make them credible. As advancements in visualization technology make it possible to use increasingly realistic visualizations it is important to further understand the implications and effectiveness of these types of tools.

The discussions around the long-term resilience concepts exposed participants to the very-real possibility that the landscape around the port might need to change dramatically over the next
several decades. Rather than simply posing the problem, these concepts opened the door to discussion about transformational ideas such as the construction of new barriers, the relocation of some businesses. Participants discussed how most incremental strategies (e.g., elevating utilities, building with floodable first floors) would be effective up to a point, but still fall far short in the event of the storm scenario presented, with its 6.4 meters of surge. On the other hand, participants still found it difficult to consider the strategies without some context for cost and who would pay. In designing the concepts, researchers deliberately avoided estimating costs due to the high number of variables involved, including time horizons, scale, and system complexity. Future work should find a way to integrate some approximation of cost, as well as options for how costs might be distributed. For example, the idea of a split between public, private, and public/private investment could be introduced in order to better understand stakeholder preferences under a variety of cost-split scenarios.

Finally, the Wecision tool served as an entry point to a nuanced discussion around costs and benefits of the resilience concepts. The value lay in providing an objective reflection of the participants’ own evaluation of the effectiveness and benefits of the resilience concepts that could be reflected back in real time. However, determining a quantifiable metric for the effectiveness of the various concepts, the lack of integration of costs, and the difficulty in assigning “who pays” left some participants feeling that the tool did not go far enough.

CONCLUSION
The research project utilized three boundary objects to help facilitate stakeholder dialogue around the wicked challenge of developing a more resilient Port of Providence, Rhode Island, USA: a storm scenario with 3D visualizations, three long term resilience concepts, and an online decision support tool. In this case, the three objects bridged discussion between business, environmental, and policy decision makers, to help understand the physical impacts from a major storm event, and the social/environmental/cultural constraints of resilience strategies for the Port of Providence. The workshop results suggest that participants found the boundary objects to be a useful planning tool that engaged them in critical thinking to better understand shared risk and complexity inherent in implementing meaningful resilience strategies. Though it did not, by design, result in a concrete decision for action or specific plan, it represents an example of a pre-planning exercise necessary to lay the groundwork for future decision making in the face of climate change related hazard events. Without such boundary objects, stakeholders and decision makers could not effectively engage in dialogue around the challenge of long-term planning for natural hazard adaptation.
REFERENCES

Adger, W. N., T. P. Hughes, C. Folke, S. R. Carpenter and J. Rockstrom (2005). "Social-ecological resilience to coastal disasters." Science 309(5737): 1036-1039.

Batie, S. (2008). "Wicked Problems and Applied Economics." American Journal of Agricultural Economics 90(5): 1176-1191.

Becker, A., M. Acciaro, R. Asariotis, E. Carera, L. Cretegny, P. Crist, M. Esteban, A. Mather, S. Messner, S. Naruse, A. K. Y. Ng, S. Rahmstorf, M. Savonis, D. Song, V. Stenek and A. F. Velegrakis (2013). "A Note on Climate change adaptation for seaports: A challenge for global ports, a challenge for global society." Climatic Change 120(4): 683-695.

Becker, A. and M. Caldwell (2015). "Stakeholder Perceptions of Seaport Resilience Strategies: A Case Study of Gulfport (Mississippi) and Providence (Rhode Island)." Coastal Management 43(1): 1-34.

Becker, A., N. T. L. Chase, M. Fischer, B. Schwegler and K. Mosher (2016). "A method to estimate climate-critical construction materials applied to seaport protection." Global Environmental Change 40: 125-136.

Becker, A., S. Inoue, M. Fischer and B. Schwegler (2012). "Climate change impacts on international seaports: knowledge, perceptions, and planning efforts among port administrators." Climatic Change 110(1-2): 5-29.

Becker, A., P. Matson, M. Fischer and M. Mastrandrea (2014). "Towards seaport resilience for climate change adaptation: Stakeholder perceptions of hurricane impacts in Gulfport (MS) and Providence (RI)." Progress in Planning.

Becker, A., A. Wilson, R. Bannon, J. McCann, D. Robadue and S. Kennedy (2010). Rhode Island’s Ports and Commercial Harbors: A GIS Inventory of Current Uses and Infrastructure. Providence, RI., Rhode Island Statewide Planning Program.,

Bender, M. A., T. R. Knutson, R. E. Tuleya, J. J. Sirutis, G. A. Vecchi, S. T. Garner and I. M. Held (2010). "Modeled impact of anthropogenic warming on the frequency of intense Atlantic hurricanes." Science 327(5964): 454-458.

Bradfield, R., G. Wright, G. Burt, G. Cairns and K. Van Der Heijden (2005). "The origins and evolution of scenario techniques in long range business planning." Futures 37(8): 795-812.

Bryson, J. M. (2004). "What to do when stakeholders matter: stakeholder identification and analysis techniques." Public management review 6(1): 21-53.

Cash, D. W. and S. C. Moser (2000). "Linking global and local scales: designing dynamic assessment and management processes." Global environmental change 10(2): 109-120.
Chapin, F. S., 3rd, S. R. Carpenter, G. P. Kofinas, C. Folke, N. Abel, W. C. Clark, P. Olsson, D. M. Smith, B. Walker, O. R. Young, F. Berkes, R. Biggs, J. M. Grove, R. L. Naylor, E. Pinkerton, W. Steffen and F. J. Swanson (2010). "Ecosystem stewardship: sustainability strategies for a rapidly changing planet." Trends Ecol Evol 25(4): 241-249.

Cheong, S. M. (2011). "Policy solutions in the US." Climatic Change 106(1): 57-70.

Clark, W. C., T. Tomich, M. van Noordwijk, D. Guston, D. Catacutan, N. Dickson and E. Mcnie (2002). "Boundary work for sustainable development- Natural resource management at the Consultative Group on International Agricultural Research (CGIAR)." Proc Natl Acad Sci USA.

CRMC (Rhode Island Coastal Resources Management Council). (2009 In review). "Ports and Harbors Chapter of the Metro Bay SAMP." from http://www.crmc.ri.gov/.

CRMC (Rhode Island Coastal Resources Management Council). (2015). "Storm Tools." Retrieved February 15, 2015, from http://www.beachsamp.org/resources/stormtools/.

CRMC (Rhode Island Coastal Resources Management Council). (2009). "Climate Change Policy, Working Draft." Retrieved June 1 2015, from http://www.crmc.ri.gov/climatechange.html.

DeConto, R. M. and D. Pollard (2016). "Contribution of Antarctica to past and future sea-level rise." Nature 531(7596): 591-597.

Dircke, P. T. M., T. H. G. Jongeling and P. L. M. Jansen (2012). An Overview and comparison of navigable storm surge barriers. Innovative Dam and Levee Design and Construction for Sustainable Water Management, New Orleans, LA.

Dronkers, J., T. Gilbert, L. Butler, J. Carey, J. Campbell, E. James, C. McKenzie, R. Misdorp, N. Quin, K. Ries, P. Schroder, J. Spradley, J. Titus, V. L and J. von Dadelszen (1990). STRATEGIES FOR ADAPTATION TO SEA LEVEL RISE. Report of the IPCC Coastal Zone Management Subgroup: Intergovernmental Panel on Climate Change. Geneva, Intergovernmental Panel on Climate Change.

Eakin, H. and A. L. Luers (2006). "Assessing the Vulnerability of Social-Environmental Systems." Annual Review of Environment and Resources 31(1): 365-394.

Eisenack, K., S. C. Moser, E. Hoffmann, R. J. T. Klein, C. Oberlack, A. Pechan, M. Rotter and C. J. A. M. Termeer (2014). "Explaining and overcoming barriers to climate change adaptation." Nature Climate Change 4(10): 867-872.

Ekstrom, J. A. and S. C. Moser (2014). "Identifying and overcoming barriers in urban climate adaptation: Case study findings from the San Francisco Bay Area, California, USA." Urban Climate 9: 54-74.
Few, R., K. Brown and E. L. Tompkins (2007). "Public participation and climate change adaptation: Avoiding the illusion of inclusion." *Climate Policy* 7(1): 46-59.

Frankhauser, S. (1995). "Protection vs. Retreat: Estimating the costs of sea level rise" Centre for Social and Economic Research on the Global Environment University College London and University of East Anglia.

Gharehgozli, A. H., J. Mileski, A. Adams and W. von Zharen (2016). "Evaluating a “wicked problem”: A conceptual framework on seaport resiliency in the event of weather disruptions." *Technological Forecasting and Social Change.*

Ginis, I. (2006). "Predicting a hurricane's path of destruction in Rhode Island." *Rhode Island Emergency Management Agency.*

Haymaker, J. and J. Chachere (2006). "Coordinating goals, preferences, options, and analyses for the Stanford Living Laboratory feasibility study." *Intelligent Computing in Engineering and Architecture:* 320-327.

IPCC (Intergovernmental Panel on Climate Change) (2012). Managing the risks of extreme events and disasters to advance climate change adaptation. Special report of the Intergovernmental Panel on Climate Change. *SREX.* C. B. Field, V. Barros, T. F. Stocker et al. Cambridge, UK, and New York, NY, USA.

Jasanoff, S. (2004). "Ordering knowledge, ordering society." *States of Knowledge: The Co-Production of Science and the Social Order:* 13.

Kates, R., W. Clark, R. Corell, J. Hall, C. Jaeger, I. Lowe, J. McCarthy, H. Schellnhuber, B. Bolin and N. Dickson (2001). "Sustainable Science." *Science* 292(642): 292.

Kates, R. W., W. R. Travis and T. J. Wilbanks (2012). "Transformational adaptation when incremental adaptations to climate change are insufficient." *Proceedings of the National Academy of Sciences* 109(19): 7156-7161.

Keeney, R. L. and H. Raiffa (1993). *Decisions with multiple objectives: preferences and value trade-offs,* Cambridge university press.

Lang, D. J., A. Wie, M. Bergmann, M. Stauffacher, P. Martens, P. Moll, M. Swilling and C. J. Thomas (2012). "Transdisciplinary research in sustainability science: practice, principles, and challenges." *Sustainability Science* 7(S1): 25-43.

Lazarus, R. J. (2008). "Super wicked problems and climate change: Restraining the present to liberate the future." *Cornell L. Rev.* 94: 1153.

Lindeman, K. C., L. E. Dame, C. B. Avenarius, B. P. Horton, J. P. Donnelly, D. R. Corbett, A. C. Kemp, P. Lane, M. E. Mann and W. R. Peltier (2015). "Science Needs for Sea-Level Adaptation Planning: Comparisons among Three U.S. Atlantic Coastal Regions." *Coastal Management* 43(5): 555-574.
Liverman, D. and P. Raven (2010). Informing an effective response to climate change. Washington, DC., National Academy Press.

Lowe, T., K. Brown, S. Dessai, M. de FranÁa Doria, K. Haynes and K. Vincent (2006). "Does tomorrow ever come? Disaster narrative and public perceptions of climate change." Public Understanding of Science 15(4): 435-457.

Lynch, A. H., L. Tryhorn and R. Abramson (2008). "Working at the boundary: facilitating interdisciplinarity in climate change adaptation research." Bulletin of the American Meteorological Society 89(2): 169-179.

MassPort (2014). MassPort Disaster Infrastructure Resiliency. MassPort Disaster Infrastructure Resiliency Planning Study, Kleinfelder.

Massport (2015). "Massport Floodproofing Design Guide."

McEvoy, D., J. Mullett, S. Millin, H. Scott and A. Trundle (2013). Understanding future risks to ports in Australia. Gold Coast, Australia National Climate Adaptation Research Facility, Gold Coast, Australia.

McGreavy, B., K. Hutchins, H. Smith, L. Lindenfeld and L. Silka (2013). "Addressing the Complexities of Boundary Work in Sustainability Science through Communication." Sustainability 5(10): 4195-4221.

Melillo, J. M., Terese (T.C.) Richmond, and Gary W. Yohe, Ed. (2014). Climate Change Impacts in the United States: The Third National Climate Assessment. Washington, DC, USA, U.S. Government Printing Office.

Miller, K. G., R. E. Kopp, B. P. Horton, J. V. Browning and A. C. Kemp (2013). "A geological perspective on sea level rise and its impacts along the US mid-Atlantic coast." Earth's Future 1(1): 3-18.

Milly, P., J. Betancourt, M. Falkenmark, R. Hirsch, Z. Kundzewicz, D. Lettenmaier and R. Stouffer (2009). "Stationarity is dead: whither water management?" Earth 4: 20.

Ng, A., A. Becker, S. Cahoon, S.-L. Chen, P. Earl and Z. Yang (2016). Climate Change and Adaptation Planning for Ports. NY, NY, Routledge.

NHC (National Hurricane Center). (2015). "Sea, Lake, and Overland Surges from Hurricanes (SLOSH)." from http://www.nhc.noaa.gov/surge/slosh.php.

Notteboom, T. and W. Winkelmans (2002). Stakeholders relations management in ports: dealing with the interplay of forces among stakeholders in a changing competitive environment. IAME 2002, International Association of Maritime Economists Annual Conference, Panama City, Panama.
Notteboom, T. and W. Winkelmans (2003). "Dealing with stakeholders in the port planning process." Across the Border: Building Upon a Quarter of Century of Transport Research in the Benelux. De Boeck: Antwerp: 249-265.

Parris, A., Bromirski, P., Burkett, V., Cayan, D., Culver, M., Hall, J., Horton, R., and K. Knuutti, Moss, R., Obeysekera, J., Sallenger, A.H., Weiss, J. (2012). "Global Sealevel Rise Scenarios for the US National Climate Assessment." NOAA Technical Report, National Oceanic and Atmospheric Administration: 37.

PPIAF (Public-Private Infrastructure Advisory Facility). (2013). "Alternative Port Management Structures and Ownership Models." Retrieved July 1, 2013, from http://www.ppiaf.org/sites/ppiaf.org/files/documents/toolkits/Portoolkit/Toolkit/module3/port_functions.html.

Preston, B., L. Rickards, S. Dessai and R. Meyer (2013). "Water, seas, and wine: science for successful adaptation." Successful adaptation to climate change. Routledge, New York.

Pulver, S. and S. D. VanDeveer (2009). ""Thinking About Tomorrows": Scenarios, Global Environmental Politics, and Social Science Scholarship." Global Environmental Politics 9(2).

PWWA (Providence Working Waterfront Alliance. (2010). "Economic Impact - Providence Working Waterfront Alliance." Retrieved October 25, 2010, from http://providenceworkingwaterfront.org/index.php/providences-working-waterfront/economic-impact/.

RIDP (State of Rhode Island: Division of Planning). (2016). "Land Use 2025." Retrieved 7/24/2016, from http://www.planning.ri.gov/statewideplanning/land/landuse.php.

RISG (Rhode Island Sea Grant & University of Rhode Island Coastal Resources Center). (2015). "Adaptation to Natural Hazards & Climate Change in North Kingstown, RI." Retrieved Oct. 1, 2015, 2015, from http://rhody.crc.uri.edu/accnk/wp-content/uploads/sites/2/2014/03/NK_Adaptation_REPORT_August2015.pdf.

Rittel, H. and M. Weber (1973). "Dilemmas in a general theory of planning." Policy sciences 4: 155-169.

Rubinoff, P. (2007). Increasing Resilience along Rhode Island’s Coast. Rhode Island, USA, URI Coastal Resources Center.

Sallenger Jr, A. H., K. S. Doran and P. A. Howd (2012). "Hotspot of accelerated sea-level rise on the Atlantic coast of North America." Nature Climate Change.

Savonis, M. J., J. R. Potter and C. B. Snow (2014). "Continuing Challenges in Transportation Adaptation." Current Sustainable/Renewable Energy Reports: 1-8.

Sheppard, S. R. (2015). "Making climate change visible: A critical role for landscape professionals." Landscape and Urban Planning 142: 95-105.
Sheppard, S. R., A. Shaw, D. Flanders, S. Burch and O. Schroth (2013). Bringing Climate Change Science to the Landscape Level: Canadian Experience in Using Landscape Visualisation Within Participatory Processes for Community Planning. *Landscape Ecology for Sustainable Environment and Culture*, Springer: 121-143.

Sheppard, S. R., A. Shaw, D. Flanders, S. Burch, A. Wiek, J. Carmichael, J. Robinson and S. Cohen (2011). "Future visioning of local climate change: a framework for community engagement and planning with scenarios and visualisation." *Futures* **43**(4): 400-412.

Slovic, P., E. Peters, M. L. Finucane and D. G. MacGregor (2005). "Affect, risk, and decision making." *Health psychology* **24**(4S): S35.

Star, S. L. (2010). "This is not a boundary object- Reflections on the origin of a concept." *Science, Technology & Human Values* **35**(5): 601-617.

Star, S. L. and J. R. Griesemer (1989). "Institutional ecology, "translations" and boundary objects." *Social Studies of Science* **19**(3): 387-420.

Strauss, B. H. (2013). "Rapid accumulation of committed sea-level rise from global warming." *Proc Natl Acad Sci U S A* **110**(34): 13699-13700.

Tebaldi, C., B. H. Strauss and C. E. Zervas (2012). "Modelling sea level rise impacts on storm surges along US coasts." *Environmental Research Letters* **7**(1): 014032.

Tol, R. S. J., R. J. T. Klein and R. J. Nicholls (2008). "Towards Successful Adaptation to Sea-Level Rise along Europe's Coasts." *Journal of Coastal Research* **24**(2): 432-442.

Tompkins, E. and H. Eakin (2012). "Managing private and public adaptation to climate change." *Global Environmental Change* **22**(1): 3-11.

Tompkins, E., R. Few and K. Brown (2008). "Scenario-based stakeholder engagement: Incorporating stakeholders preferences into coastal planning for climate change." *Journal of environmental management* **88**(4): 1580-1592.

USACE (United States Army Corps of Engineering) (2013). IHNC-Lake Borgne Surge Barrier.

USACE (United States Army Corps of Engineering). (2015). "North Atlantic coast comprehensive study: Resilient adaptation to increasing risk." Retrieved Aug. 1, 2015, 2015, from http://www.nad.usace.army.mil/Portals/40/docs/NACCS/NACCS_main_report.pdf.

USACE (United States Army Corps of Engineers) (2007). Hurricane Barriers in New England and New Jersey - History and Status after four decades.

USGS (United States Geological Survey). (2010). "Natural Hazards - Hurricanes." Retrieved September 15, 2012, from http://www.usgs.gov/hazards/hurricanes/.
Ward, D. (2001). "Stakeholder involvement in transport planning: participation and power." *Impact Assessment and Project Appraisal* **19**(2): 119-130.

Weiss, C. H. (1982). "Policy research in the context of diffuse decision making." *The Journal of Higher Education* **53**(6): 619-639.

Wilbanks, T. J. and R. W. Kates (1999). "Global change in local places: how scale matters." *Climatic Change* **43**(3): 601-628.

WRSE (Committee on U.S. Army Corps of Engineers Water Resources Science, a. P. C. R. R. W. S. a. Engineering, T. B. O. S. B. D. o. E. a. Life and Studies; National Research Council) (2014). "Reducing Coastal Risk on the East and Gulf Coasts."

Xiang, W.-N. and K. C. Clarke (2003). "The use of scenarios in land-use planning." *Environment and planning B: planning and design* **30**(6): 885-909.

Yates, J. F. and E. R. Stone (1992). "The risk construct."

Zhang, H. and A. Ng (2016). "Climate change and adaptation planning for ports: a global study." *Proceedings of the World Conference on Transport Research Conference (WCTR).*
Elevate Utilities and Generator

Elevate Land

Flood berms

Flood proof utilities
Goals

Ensure post-hurricane business continuity for waterfront businesses

- **Protect**: 4
- **Relocate**: 4
- **Accommodate**: 3
- **Do Nothing**: 2

Minimize hurricane damages to infrastructure and waterfront properties

- **Protect**: 4
- **Relocate**: 3
- **Accommodate**: 2
- **Do Nothing**: 1

Minimize hurricane-related environmental damage from ports and marinas

- **Protect**: 4
- **Relocate**: 4
- **Accommodate**: 2
- **Do Nothing**: 1

Build public support for hurricane resilience measures & policies

- **Protect**: 4
- **Relocate**: 3
- **Accommodate**: 3
- **Do Nothing**: 1

Minimize hazard insurance rates

- **Protect**: 5
- **Relocate**: 4
- **Accommodate**: 4
- **Do Nothing**: 2

Foster port growth

- **Protect**: 4
- **Relocate**: 3
- **Accommodate**: 3
- **Do Nothing**: 2

Protect human safety & critical lifelines

- **Protect**: 5
- **Relocate**: 4
- **Accommodate**: 3
- **Do Nothing**: 1

Constraints

- Retain existing businesses in state

Alternatives:

- **Protect**
- **Relocate**
- **Accommodate**
- **Do Nothing**
Table 1 - Port resilience as a "wicked problem" (based on Rittel and Webster 1973)

Characteristic	Wicked Problems	Port of Providence Challenge	Contribution of this project
The Problem	No agreement exists about what the problem is / Each attempt to create a solution changes the problem / the end solutions are not true or false, but rather better or worse with winners and losers	The problem of hurricane and sea level rise risk for the port of Providence, in itself, is very difficult to define and bound. Providence has experience numerous major hurricanes (e.g., 1817, 1885, 1938, 1954), there has not been such an event in recent memory. None of the participants witnessed such a major storm hit the area, though many could recall hurricanes with far less power (e.g., Hurricanes Sandy, Irene, Bob, Floyd). In addition, the port area has seen significant development since the last big hurricane in 1954.	Coming together around one storm scenario, with visualizations and input from experts, allowed participants to better understand the complex nature of the problem and the interconnectedness of the long-term consequences of a major hurricane on an unprepared port system.
Stakeholder roles	Many stakeholders are likely to have differing ideas about what the "real" problem is and what its causes are		The workshop and survey activities helped participants see the range of resilience strategies that could be implemented by private business (e.g., raising utilities) and the public sector (e.g., building a storm barrier). This broke down the "silied" nature of the system and underscored the co-benefits of resilience investments.
The "stopping rule"	The end is accompanied by stakeholders, political forces, and resource availability. There is no definitive solution	Bounding the problem to a particular storm surge or level of sea rise can, in and of itself, be a major barrier to engaging in dialogue about solutions. How much protection is enough? Is a Category 3 hurricane the proper scenario to plan for? Why not a Cat 1 or Cat 4? Even if investments are made to protect the port against that Category 3, sea level rise and climate change will most likely only increase risk levels over the next several centuries.	The exercise helped stakeholders think about the long-term implications of resilience strategies and to recognize that almost all solutions are temporary. This, though, helped them to see that investments must be considered in the context of the working life of the resilience measure implemented and that there is likely no "permanent" solution.
Nature of the problem	Solution(s) to problem is (are) based on "judgments" of multiple stakeholders, thus there is no one "best solution" that can be quantifiably assessed. The problem is associated with high Uncertainty as to system components and outcomes	In Providence, the issue of storm resilience is hard to pin down as "one problem" that can be resolved. Hurricanes result in a range of consequences, depending on wind speeds, storm surge, wave action, and precipitation. Different parameters will impact different stakeholders. Thus, differentiating the "wind problem" from the "surge	
Nature of the problem	Solution(s) to problem is (are) based on "judgments" of multiple stakeholders, thus there is no one "best solution" that can be quantifiably assessed. The problem is associated with high Uncertainty as to system components and outcomes	In Providence, the issue of storm resilience is hard to pin down as "one problem" that can be resolved. Hurricanes result in a range of consequences, depending on wind speeds, storm surge, wave action, and precipitation. Different parameters will impact different stakeholders. Thus, differentiating the "wind problem" from the "surge	Through the use of the storm scenario, participants in the workshop were able to share their perceptions and concerns and find common ground around understanding the nature of the problem.
problem" can be difficult for a group to undertake. The long-term nature of the scenarios presented in the workshop also did not align well with the normal planning and investment cycles for business and even government.

Fuzzy mandates

- **Symptom of another problem**: Resolving the wicked problem begins with a search for causal explanations of another problem. Though hurricanes have occurred in the past, the projected intensification and rising sea levels is a symptom of the larger climate change problem which is well outside the scope of Port of Providence stakeholders.

- **Wicked problems do not have clear actors with responsibility to resolve the problem**: Despite assembling an expert steering committee and including all waterfront business interests in the study area, no clear leader for long-term resilience planning emerged before, during, or after the workshop. Though not explicitly addressed in this project, exercises such as this (focused on resilience or adaptation) can lead to deeper levels of concern for the causes of the problem, which are exacerbated by CO2 emissions and links to global warming.

- **Often require a "champion"**: The project clearly identified a leadership vacuum for resilience initiatives around the Port of Providence. A first step toward solutions is identifying that the problem exists and beginning a dialogue around which agencies or businesses are best poised to address it.

Table 2 - Pros and cons of three boundary objects used in workshop

Boundary Object	Short description	Pros	Cons	
Storm Scenario	Plausible, but extreme, storm event with 3D visualizations of local context	Participants considered their own property in the context of the storm. Successful prompt for dialogue on wide range of direct impacts and cascading consequences. Elicited robust exchange between participants around interconnectedness of infrastructure and services. Helped participants to think "long term" about impacts in weeks, months, and years.	Participants requested a "probabilistic" scenario, as opposed to a deterministic 3D visualizations could not effectively show wave, wind, and related impacts (e.g., debris fields). Some participants did not believe that such an event could occur. Some participants “shut down” because the event was so extreme that they felt nothing could be done to reduce impacts. Research team could not incorporate "costs" in anything but the vaguest of terms. Participants found it difficult to consider efficacy of	
Long-range resilience concepts	Three transformational concepts (relocate, protect, accommodate) presented in detail with pros and cons in order to generate discussion about potential for large-scale investment in resilience	Participants considered game changing strategies outside the normal scope of public/private planning.		
Concepts without considering the expense and who would pay for them	Tool was difficult to train people to use in the limited available time			
---	---			
Transformational concepts are very difficult to simplify and incorporate into a 4-hour workshop. Many nuances, many questions were raised.	Did not allow for costs to be incorporated			
Allowed participants to provide real-time feedback, anonymously, during the workshop. Promoted deeper thinking about the resilience and "do nothing" concepts. Participants				