Combinatorial Congruences and ψ-Operators

Daqing Wan*
dwan@math.uci.edu
Department of Mathematics
University of California, Irvine
CA 92697-3875

March 29, 2022

Abstract

The ψ-operator for (ϕ, Γ)-modules plays an important role in the study of Iwasawa theory via Fontaine’s big rings. In this note, we prove several sharp estimates for the ψ-operator in the cyclotomic case. These estimates immediately imply a number of sharp p-adic combinatorial congruences, one of which extends the classical congruences of Fleck (1913) and Weisman (1977).

1 Combinatorial Congruences

Let p be a prime, $n \in \mathbb{Z}_{>0}$. Throughout this paper, let $[x]$ denote the integer part of x if $x \geq 0$ and $[x] = 0$ if $x < 0$. In the author’s course lectures [4] on Fontaine’s theory and p-adic L-functions given at UC Irvine (spring 2005) and at the Morningside Center of Mathematics (summer 2005), the following two congruences were discovered.

Theorem 1.1. For integers $r \in \mathbb{Z}$, $j \geq 0$, we have

$$
\sum_{k \equiv r (\text{mod} \ p)} (-1)^{n-k} \binom{n}{k} \binom{k-r}{p-j} \equiv 0 \pmod{p^{\left\lfloor \frac{p-1}{p^2} \right\rfloor}}.
$$

We shall see that the theorem comes from a simple estimate of $\psi(\pi^n)$ for the cyclotomic φ-module.

Partially supported by NSF. The author thanks Z.W. Sun for helpful discussions on combinatorial congruences.
Theorem 1.2. For integer $j \geq 0$, we have

$$\sum_{i_0 + \cdots + i_{p-1} = n \atop i_1 + 2i_2 + \cdots \equiv r \pmod{p}} \left(\begin{array}{c} n \\ i_0i_1 \cdots i_{p-1} \end{array} \right) \left(\frac{i_1 + 2i_2 + \cdots - r}{p} \right) \equiv 0 \pmod{\left\lfloor \frac{2(p-1)-1}{p-1} \right\rfloor}.$$

As we shall see, this theorem comes from a simple estimate of $\psi(\pi^{-n})$ for the cyclotomic φ-module. Note that when $p = 2$, Theorem 1.2 is equivalent to Theorem 1.1.

The above two congruences can be extended from p to $q = p^a$, where a is a positive integer. To do so, it suffices to estimate the a-th iterate $\psi^a(\pi^n)$. This can be done by induction. The estimate of $\psi^a(\pi^n)$ for $n > 0$ leads to

Theorem 1.3. For integers $r \in \mathbb{Z}$, $j \geq 0$ and $a > 0$, we have

$$\sum_{k \equiv r \pmod{p^a}} (-1)^{n-k} \binom{n}{k} \left(\frac{k-r}{p^a} \right) \equiv 0 \pmod{\left\lfloor \frac{a(p-1)-1}{p-1} \right\rfloor}.$$

The estimate of $\psi^a(\pi^n)$ for $n < 0$ leads to

Theorem 1.4. Let

$$S_j(n, r, p^a) = \sum_{i_0 + \cdots + i_{p^a-1} = n \atop i_1 + 2i_2 + \cdots \equiv r \pmod{p^a}} \left(\begin{array}{c} n \\ i_0 \cdots i_{p^a-1} \end{array} \right) \left(\frac{i_1 + 2i_2 + \cdots - r}{p^a} \right) \left(\frac{(i_1 + 2i_2 + \cdots - r)/p^a}{j} \right).$$

Then for integer $j \geq 0$, we have

$$S_j(n, r, p^a) \equiv 0 \pmod{\left\lfloor \frac{(an-a+1)(p-1)-j(ap-a+1)-1}{p-1} \right\rfloor}.$$

As Z.W. Sun informed me, the special case $j = 0$ of Theorem 1.1.1 was first proved by Fleck [1] in 1913, and the special case of Theorem 1.1.3 for $j = 0$ was first proved by Weisman [5] in 1977. A different extension of Theorem 1.1.1 and Weisman’s congruence has been obtained by Z.W. Sun [2] using different combinatorial arguments. Motivated by applications in algebraic topology, Sun-Davis [3] proved yet another extension:

$$\sum_{k \equiv r \pmod{p^a}} (-1)^{n-k} \binom{n}{k} \left(\frac{k-r}{p^a} \right) \equiv 0 \pmod{\operatorname{ord}_p((n/p^a-1)!)-j-\operatorname{ord}_p(j!)}. $$
2 The operator \(\psi \)

Let \(p \) be a fixed prime. Let \(\pi \) be a formal variable. Let
\[
A^+ = \mathbb{Z}_p[[\pi]]
\]
be the formal power series ring over the ring of \(p \)-adic integers. Let \(A \) be the \(p \)-adic completion of \(A^+[\frac{1}{\pi}] \), and let \(B = A[\frac{1}{p}] \) be the fraction field of \(A \). The rings \(A^+ \), \(A \) and \(B \) correspond to \(A^+_Q_p \), \(A_Q_p \) and \(B_Q_p \) in Fontaine's theory.

We shall not discuss the Galois action on \(A \), which is not needed for our present purpose. The Frobenius map \(\varphi \) acts on the above rings by
\[
\varphi(\pi) = (1 + \pi)^p - 1.
\]

If we let \([\varepsilon] = 1 + \pi\), then \(\varphi([\varepsilon]) = [\varepsilon]^p \). The map \(\varphi \) is injective of degree \(p \).

Proposition 2.1. \(\{1, \pi, \cdots, \pi^{p-1}\} \) (and \(\{1, [\varepsilon], \cdots, [\varepsilon]^{p-1}\} \)) is a basis of \(A \) over the subring \(\varphi(A) \).

Definition 2.2. The operator \(\psi : A \to A \) is defined by
\[
\psi(x) = \psi\left(\sum_{i=0}^{p-1} [\varepsilon]^i \varphi(x_i) \right) = x_0 = \frac{1}{p} \varphi^{-1}(\text{Tr}_{A/\varphi(A)}(x)),
\]
where \(x : A \to A \) denotes the multiplication by \(x \) as \(\varphi(A) \)-linear map.

Example 2.3.
\[
\psi([\varepsilon]^n) = \begin{cases} [\varepsilon]^{n/p}, & \text{if } p \mid n; \\ 0, & \text{if } p \nmid n. \end{cases}
\]

It is clear that \(\psi \) is \(\varphi^{-1} \)-linear:
\[
\psi(\varphi(a)x) = a\psi(x) \quad \forall \ a, x \in A.
\]

Example 2.4. Let \(a \) be a positive integer relatively prime to \(p \). Then
\[
\psi\left(\frac{1}{(1 + \pi)^a - 1}\right) = \frac{1}{(1 + \pi)^a - 1}.
\]

In fact,
\[
\psi\left(\frac{1}{[\varepsilon]^a - 1}\right) = \psi\left(\frac{1}{[\varepsilon]^{ap} - 1} \cdot \frac{[\varepsilon]^{ap} - 1}{[\varepsilon] - 1}\right)
\]
\[
= \frac{1}{[\varepsilon]^{a-1}} \psi\left(1 + [\varepsilon]^a + \cdots + [\varepsilon]^{(p-1)a}\right)
\]
\[
= \frac{1}{[\varepsilon]^{a-1}} = \frac{1}{(1 + \pi)^{a-1}}.
\]
By p-adic continuity, the above example holds for any p-adic unit $a \in \mathbb{Z}_p^*$. In the general theory of (φ, Γ)-modules, it is important to find the fix points of ψ for applications to p-adic L-functions and Iwasawa theory. In the simplest cyclotomic case, we have the following description for the fixed points (see [4]).

Proposition 2.5.

$$A^{\psi=1} = \frac{1}{\pi} \mathbb{Z}_p \oplus \mathbb{Z}_p \oplus \left\{ \sum_{k=0}^{\infty} \varphi^k(x) \left| x \in \bigoplus_{i=1}^{p-1} [\varepsilon]^i \varphi(\pi^i + \pi^n \mathbb{Z}_p[[\pi]]), \sum_{i=1}^{p-1} a_i = 0 \right\},$$

where $a_i \in \mathbb{Z}_p$.

For example, if a is a positive integer relatively prime to p, then the element

$$\frac{a}{(1 + \pi)^a - 1} - \frac{1}{\pi} \in (A^+)^{\psi=1}$$

gives the cyclotomic units and the Euler system. This element is the Amice transform of a p-adic measure which produces the p-adic zeta function of \mathbb{Q}. This type of connections is conjectured to be a general phenomenon for (φ, Γ)-modules coming from global p-adic Galois representations.

3 Sharp estimates for ψ

The ring A is a topological ring with respect to the (p, π)-topology. A basis of neighborhoods of 0 is the sets $p^k A + \pi^n A^+$, where $k \in \mathbb{Z}$ and $n \in \mathbb{N}$. The operator ψ is uniformly continuous. This continuity will give rise to combinatorial congruences.

For $s \in A^+$, one checks that

$$\psi((\pi^p)^s) = \psi(([\varepsilon] - 1)^p s)$$
$$= \psi(([\varepsilon]^p - 1)s + pss_1)$$
$$= \pi \psi(s) + p \psi(s_1) \in (p, \pi) \psi(sA^+).$$

In particular,

$$\psi(\pi^p A^+) \subset (p, \pi) A^+. $$

Thus, by iteration, we get
Proposition 3.1 (Weak Estimate). Let $n \geq 0$. Then

$$
\psi(\pi^n A^+) \subset (p, \pi)^{[n/p]} A^+ = \sum_{j=0}^{[n/p]} \pi^j p^{[n/p] - j} A^+.
$$

Since the exponent $[(n - jp)/p]$ is decreasing in j, this proposition implies that for $x \in \pi^n A^+$, we have

$$
\psi(x) = \sum_{j=0}^{\infty} a_j \pi^j, \quad a_j \in \mathbb{Z}_p, \quad \text{ord}_p(a_j) \geq [(n - jp)/p].
$$

This already gives a non-trivial combinatorial congruence. Let r be an integer. Let us calculate $\psi(\pi^n [\varepsilon]^{-r})$ in a different way.

Lemma 3.2.

$$
\psi(\pi^n [\varepsilon]^{-r}) = \sum_{j \geq 0} \pi^j \sum_{k \equiv r \pmod{p}} (-1)^{n-k} \binom{n}{k} \left(\frac{(k-r)/p}{j}\right).
$$

Proof. Since $\pi = [\varepsilon] - 1$ and $[\varepsilon] = 1 + \pi$, we have

$$
\psi(\pi^n [\varepsilon]^{-r}) = \psi((\varepsilon - 1)\pi^n [\varepsilon]^{-r})
$$

$$
= \psi \left(\sum_{k=0}^{n} (-1)^{n-k} \binom{n}{k} \varepsilon^{k-r} \right)
$$

$$
= \sum_{k \equiv r \pmod{p}} (-1)^{n-k} \binom{n}{k} \varepsilon^{(k-r)/p} \pi^j
$$

$$
= \sum_{k \equiv r \pmod{p}} (-1)^{n-k} \binom{n}{k} \sum_{j \geq 0} \left(\frac{(k-r)/p}{j}\right) \pi^j
$$

$$
= \sum_{j \geq 0} \pi^j \sum_{k \equiv r \pmod{p}} (-1)^{n-k} \binom{n}{k} \left(\frac{(k-r)/p}{j}\right).
$$

Comparing the coefficients of π^j in this equation and the weak estimate, we get

Corollary 3.3 (Weak Congruence). Let $n \geq 0$. We have

$$
\sum_{k \equiv r \pmod{p}} (-1)^{n-k} \binom{n}{k} \left(\frac{(k-r)/p}{j}\right) \equiv 0 \pmod{\lfloor (n-jp)/p \rfloor}.
$$
The above simple estimate is crude and certainly not optimal since we ignored a factor of π. We now improve on it.

Theorem 3.4 (Sharp Estimate I). For $n \geq 0$, we have

$$\psi(\pi^n A^+) \subseteq \sum_{j=0}^{[n/p]} \pi^j p^\left[\frac{n-1-jp}{p-1}\right] A^+.$$

Proof. We prove the theorem by induction. The theorem is trivial if $n \leq p - 1$. Write

$$\varphi(\pi) = (1 + \pi)^p - 1 = \pi^p - p\pi s_1, \ s_1 \in A^+.$$

Then,

$$\psi(\pi^p s) = \psi((\varphi(\pi) + p\pi s_1) s) = \pi\psi(s) + p\psi(\pi s_1 s).$$

This proves that the theorem is true for $n = p$. Let $n > p$. Assume the theorem holds for $\leq n - 1$. It follows that

$$\psi(\pi^n A^+) = \psi(\pi^p \pi^{n-p} A^+) \subseteq \pi\psi(\pi^{n-p} A^+) + p\psi(\pi^{n+1-p} A^+).$$

By the induction hypothesis, the right side is contained in

$$\pi \sum_{j=0}^{[(n-p)/p]} \pi^j p^\left[\frac{n-p-1-jp}{p-1}\right] A^+ + p \sum_{j=0}^{[(n+1-p)/p]} \pi^j p^\left[\frac{2-n-1-jp}{p-1}\right] A^+$$

$$= \sum_{j=1}^{[n/p]} \pi^j p^\left[\frac{n-1-jp}{p-1}\right] A^+ + \sum_{j=0}^{[(n+1-p)/p]} \pi^j p^\left[\frac{2-n-1-jp}{p-1}\right] A^+. $$

The function $\left[(n - 1 - jp)/(p - 1)\right]$ is decreasing in j and vanishes for $j \geq [n/p]$. Comparing the coefficients of π^j in the lemma and the above sharp estimate, we deduce

Corollary 3.5 (Sharp Congruence I). Let $r \in \mathbb{Z}$.

$$\sum_{k \equiv r \pmod{p}} (-1)^{n-k}\binom{n}{k}\binom{(k-r)/p}{j} \equiv 0 \pmod{p^\left[\frac{n-1-jp}{p-1}\right]},$$

where $j \geq 0$ is a non-negative integer.
Theorem 3.6 (Sharp Estimate II). For $n > 0$, we have

$$\psi \left(\frac{1}{\pi^n} A^+ \right) \subseteq \sum_{j=0}^\left\lfloor n(p-1)/p \right\rfloor \frac{1}{\pi^{n-j} p^\left\lfloor n(p-1) \cdot (p-1) \right\rfloor} A^+. $$

Proof. Note that

$$\varphi(\pi)/\pi = \pi^{p-1} + \left(\frac{p}{1} \right) \pi^{p-2} + \cdots + \left(\frac{p}{p-1} \right) \in (\pi^{p-1}, p),$$

so $\left(\frac{\varphi(\pi)}{\pi} \right)^n \in (\pi^{p-1}, p^n)$. Then

$$\psi \left(\frac{1}{\pi^n} A^+ \right) = \psi \left(\frac{1}{\varphi(\pi)} \left(\frac{\varphi(\pi)}{\pi} \right)^n A^+ \right) = \frac{1}{\pi^n} \psi \left(\left(\frac{\varphi(\pi)}{\pi} \right)^n A^+ \right) \subseteq \frac{1}{\pi^n} \sum_{i=0}^n p^{n-i} \psi (\pi^i A^+).$$

By Sharp Estimate I, we have

$$\psi (\pi^i A^+) \subseteq \sum_{j=0}^\left\lfloor i(p-1)/p \right\rfloor \frac{1}{\pi^j p^\left\lfloor (p-1) \cdot (p-1) \right\rfloor} A^+. $$

Then,

$$\psi \left(\frac{1}{\pi^n} A^+ \right) \subseteq \sum_{j=0}^\left\lfloor n(p-1)/p \right\rfloor \frac{1}{\pi^{n-j}} \sum_{\left\lfloor j(p-1) \right\rfloor \leq i \leq n} p^{n-i+\left\lfloor (p-1) \cdot (p-1) \right\rfloor} A^+ \subseteq \sum_{j=0}^\left\lfloor n(p-1)/p \right\rfloor \frac{1}{\pi^{n-j} p^\left\lfloor n(p-1) \cdot (p-1) \right\rfloor} A^+. $$

\[\square\]

Corollary 3.7 (Sharp Congruence II). Let

$$S_j(n, r, p) = \sum_{i_0 + \cdots + i_{p-1} = n \atop i_1 + 2i_2 + \cdots \equiv r \pmod{p}} \binom{n}{i_0 \cdots i_{p-1}} \binom{n}{i_1 + 2i_2 + \cdots - r}/j.$$

Then integer $j \geq 0$, we have

$$S_j(n, r, p) \equiv 0 \pmod{\left\lfloor n(p-1) \cdot (p-1) \right\rfloor}.$$
Proof.

\[
\psi \left(\frac{1}{\pi^n} \varepsilon^{-r} \right) = \frac{1}{\pi^n} \psi \left(\left(\frac{[\varepsilon]^p - 1}{[\varepsilon] - 1} \right)^n \varepsilon^{-r} \right) = \frac{1}{\pi^n} \psi((1 + \varepsilon + \cdots + [\varepsilon]^{p-1})^n \cdot [\varepsilon]^{-r}) = \frac{1}{\pi^n} \sum_{i_0 + \cdots + i_{p-1} = n} \frac{[\varepsilon]^{(i_1 + 2i_2 + \cdots - r)/p}}{i_0 \cdots i_{p-1}} \left(\begin{array}{c} n \\ i_0 \cdots i_{p-1} \end{array} \right)
\]

The function \([(n(p - 1) - jp - 1)/(p - 1)]\) is decreasing in \(j\) and vanishes for \(j \geq [n(p - 1)/p]\). Comparing the coefficients of \(\frac{1}{\pi^n}\), the congruence follows.

\[\square\]

4 Sharp estimates for \(\psi^a\)

Let \(a\) be a positive integer. In this section, we extend the sharp estimates for \(\psi\) to \(\psi^a\).

Theorem 4.1 (Sharp Estimate I). For \(n \geq 0\), we have

\[
\psi^a(\pi^n A^+) \subseteq \sum_{j=0}^{[n/p^a]} \pi^{j/p^a} \left(\frac{n-p^{a-1}-p^a}{p^{a-1}(p-1)} \right) A^+.
\]

Proof. We prove the theorem by induction on \(a\). The theorem is true if \(a = 1\). Assume now \(a \geq 2\) and assume that the theorem holds for \(a - 1\).
Then,

\[
\psi^a(n^A) = \psi(\psi^{a-1}n^A) \\
\subseteq \psi(\sum_{i=0}^{[n/p^{a-1}]} \pi^i p^{[n^{a-2} - (i+1)p^{a-1}]} A^+) \\
\subseteq \sum_{i=0}^{[n/p^{a-1}]} \sum_{j=0}^{[n/p^{a-2}]} \pi^j A^{[n/p^{a-1}]} + [i-1-p] A^+ \\
\subseteq \sum_{j=0}^{[n/p^{a}]} \pi^j \sum_{pj \leq i \leq [n/p^{a-1}]} p^{[n^{a-3} - (i-1)p^{a-1}]} + [i-1-p] A^+.
\]

The exponent of \(p \) for a fixed \(j \) is decreasing in \(i \) and hence the minimum exponent of \(p \) is attained when \(i = [n/p^{a-1}] \). The minimum exponent is computed to be

\[
\frac{n - p^{a-2} - [n/p^{a-1}]p^{a-1}}{p^{a-1} - p^{a-2}} + \frac{[n/p^{a-1}] - 1 - j p^a}{p - 1} = \frac{n - p^{a-1} - j p^a}{p^{a-1}(p - 1)}.
\]

The proof of the lemma gives more general

Lemma 4.2.

\[
\psi^a(n^n [\varepsilon]^{-r}) = \sum_{j \geq 0} \pi^j \sum_{k \equiv r \mod p^a} (-1)^{n-k} \binom{n}{k} \left((k - r)/p^a \right).
\]

Comparing the coefficients of \(\pi^j \) in the lemma and the sharp estimate for \(\psi^a \), we get

Corollary 4.3 (Sharp Congruence I). Let \(r \in \mathbb{Z} \). Then

\[
\sum_{k \equiv r \mod p^a} (-1)^{n-k} \binom{n}{k} \left((k - r)/p^a \right) \equiv 0 \mod \left(\frac{n - p^{a-1} - j p^a}{p^{a-1}(p - 1)} \right),
\]

where \(j \geq 0 \) is a non-negative integer.

Theorem 4.4 (Sharp Estimate II). For \(n > 0 \) and \(a > 0 \), we have

\[
\psi^a \left(\frac{1}{\pi^n A^+} \right) \subseteq \sum_{j=0}^{[\binom{an-a+1}{ap-a+1}]_p} \frac{1}{\pi^{n-j} p^{[\binom{an-a+1}{ap-a+1}]_p} A^+}.
\]
Proof. The theorem is true for \(a = 1 \). Assume now that \(a > 1 \) and assume that the theorem is true for \(a - 1 \). Then

\[
\psi^a \left(\frac{1}{\pi^n} A^+ \right) = \psi \left(\psi^{a-1} \left(\frac{1}{\pi^n} A^+ \right) \right)
\]

\[
\subseteq \psi \left(\sum_{j=0}^{\frac{(a-1)n-a+2}{(a-1)p-a+2}} \frac{1}{\pi^{n-j}} \left[\frac{(a-1)n-a+2}{(a-1)p-a+2} \right]^{(p-1)\left(\frac{1}{p-1}\right)-j((a-1)p-a+2)-1} A^+ \right)
\]

\[
\subseteq \sum_{j} \sum_{i} \frac{1}{\pi^{n-j-1}} \left[\frac{(a-1)n-a+2}{(a-1)p-a+2} \right]^{(p-1)\left(\frac{1}{p-1}\right)-j((a-1)p-a+2)-1} A^+,
\]

where the indices \(i \) and \(j \) satisfy

\[
0 \leq j \leq \left\lfloor \frac{(a-1)n-a+2}{(a-1)p-a+2} \right\rfloor, \quad 0 \leq i \leq [(n-j)(p-1)/p].
\]

For fixed \(i + j = k \), the exponent of \(p \) is decreasing in \(j \) and the minimum value is attained when \(j = k \) and \(i = 0 \). It follows that

\[
\psi^a \left(\frac{1}{\pi^n} A^+ \right) \subseteq \sum_{k \geq 0} \frac{1}{\pi^{n-k}} \left[\frac{(a-1)n-a+2}{(a-1)p-a+2} \right]^{(p-1)\left(\frac{1}{p-1}\right)-k((a-1)p-a+2)-1+(n-k-1)A^+}
\]

\[
\subseteq \sum_{k=0}^{\left\lfloor \frac{(an-a+1)(p-1)}{ap-a+1} \right\rfloor} \frac{1}{\pi^{n-k}} \left[\frac{(an-a+1)(p-1)}{ap-a+1} \right]^{-k((ap-a+1)-1)} A^+,
\]

where we stop at \(k = \left\lfloor \frac{(an-a+1)(p-1)}{ap-a+1} \right\rfloor \) in the summation as the exponent of \(p \) is zero if \(k \geq \left\lfloor \frac{(an-a+1)(p-1)}{ap-a+1} \right\rfloor \).

Corollary 4.5 (Sharp Congruence II). Let

\[
S_j(n, r, p^a) = \sum_{i_0 + \cdots + i_j p^a - 1 = n \atop i_1 + 2i_2 + \cdots \equiv r (\text{mod} p^a)} \binom{n}{i_0 \cdots i_j} \left(\frac{i_0 + 2i_2 + \cdots - r}{p^a} \right)_{\frac{n}{j}}.
\]

Then for integer \(j \geq 0 \), we have

\[
S_j(n, r, p^a) \equiv 0(\text{mod} p^{\left\lfloor \frac{(an-a+1)(p-1)-j((ap-a+1)-1)}{p-1} \right\rfloor}).
\]
References

[1] L.E. Dickson, History of the Theory of Numbers, Vol. I, AMS Chelsea Publ., 1999, Chapter XI, pp. 270-275.

[2] Z.W. Sun, Polynomial extension of Fleck’s congruence, preprint, 2005, arXiv:math.NT/0507008.

[3] Z.W. Sun and D.M. Davis, A combinatorial congruence for polynomials, arXiv:math.NT/0508087.

[4] D. Wan, Fontaine’s Rings and p-Adic L-Functions, Lecture Notes at the Morningside Center of Mathematics, 2005.

[5] C.S. Weisman, Some congruences for binomial coefficients, Michigan Math. J., 24(1977), 141-151.