Approximating Text-to-Pattern Distance via Dimensionality Reduction

Przemysław Uznański
Institute of Computer Science, University of Wrocław, Poland
puznanski@cs.uni.wroc.pl

Abstract
Text-to-pattern distance is a fundamental problem in string matching, where given a pattern of length m and a text of length n, over integer alphabet, we are asked to compute the distance between pattern and text at every location. The distance function can be e.g. Hamming distance or ℓ_p distance for some parameter $p > 0$. Almost all state-of-the-art exact and approximate algorithms developed in the past ~ 40 years were using FFT as a black-box. In this work we present $\tilde{O}(n/\epsilon^2)$ time algorithms for $(1 \pm \epsilon)$-approximation of ℓ_2 distances, and $\tilde{O}(n/\epsilon^3)$ algorithm for approximation of Hamming and ℓ_1 distances, all without use of FFT. This is independent to the very recent development by Chan et al. [STOC 2020], where $O(n/\epsilon^2)$ algorithm for Hamming distances not using FFT was presented – although their algorithm is much more "combinatorial", our techniques apply to other norms than Hamming.

2012 ACM Subject Classification Theory of computation → Sketching and sampling; Theory of computation → Approximation algorithms analysis

Keywords and phrases Approximate Pattern Matching, ℓ_2 Distance, ℓ_1 Distance, Hamming Distance, Approximation Algorithms, Combinatorial Algorithms
1 Introduction

Text-to-pattern distance is a generalization of a classical pattern matching by incorporating the notion of similarity (or dissimilarity) between pattern and locations of text. The problem is defined in a following way: for a particular distance function between words (interpreted as vectors), given a pattern of length \(m \) and a text of length \(n \), we are asked to output distance between the pattern and every \(m \)-substring of the text. Taking e.g. distance to be Hamming distance, we are essentially outputting number of mismatches in a classical pattern matching question (that is, not only detecting exact matches, but also counting how far pattern is to be from being located in a text, at every position). Such a formulation, for a constant-size alphabet, was first considered in [12]. The algorithm uses \(O(n \log n) \) time and in substance computes the Boolean convolution of two vectors a constant number of times. This was later extended to \(\text{poly}(n) \) size alphabets [11, 21] with run-time \(O(n \sqrt{n \log n}) \).

The lack of progress in Hamming text-to-pattern distance complexity sparked interest in searching for relaxations of the problem, with a hope for reaching linear (or almost linear) run-time. There are essentially two takes on this. First consists of approximation algorithms. Until very recently, the fastest \((1 \pm \varepsilon)\)-approximation algorithm for computing the Hamming distances was in [18]. The algorithm uses random projections from an arbitrary alphabet to the binary one and Boolean convolution to solve the problem in \(O(\varepsilon^{-2} n \log^3 n) \) time. Later [19] gave a new approximation algorithm improving the time complexity to \(O(\varepsilon^{-1} n \log^3 n \log \varepsilon^{-1}) \), which was later significantly simplified [20], with alternative formulation in [28].

Second widely considered way of relaxing exact text-to-pattern distance is to report exactly only the values not exceeding certain threshold value \(k \), the so-called \(k \)-approximated distance. The motivation for this comes from interpretation of exact text-to-pattern Hamming distance as simply counting mismatches in exact pattern matching, and then \(k \)-approximated Hamming distance becomes reporting only alignments where there are at most \(k \) mismatches. The very first solution to the Hamming distances version of this problem was shown in [23] working in time \(O(nk) \), using essentially a very combinatorial approach of taking \(O(1) \) time per mismatch per alignment using LCP queries. This initiated a series of improvements to the complexity, with algorithms of complexity \(O(n \sqrt{k} \log \xi) \) and \(O((k^3 \log k + m) \cdot n/m) \) in [3], later improved to \(O((k^2 \log k + m \text{ poly log } m) \cdot n/m) \) by [8] and finally \(O((m \log^2 m \log |\Sigma| + k \sqrt{m \log m}) \cdot n/m) \) by [13] (and following poly-log improvements in [5]).

Moving beyond counting mismatches, we consider \(\ell_1 \) distances, where we consider text and pattern over integer alphabet, and distance is sum of position-wise absolute differences. Using techniques similar to Hamming distances, the \(O(n \sqrt{n \log n}) \) complexity algorithms were developed in [14, 15] for reporting all \(\ell_1 \) distances. It is a major open problem whether near-linear time algorithm, or even \(O(n^{3/2 - \varepsilon}) \) time algorithms, are possible for such problems. A conditional lower bound [7] was shown, via a reduction from matrix multiplication. This means that existence of combinatorial algorithm with run-time \(O(n^{3/2 - \varepsilon}) \) solving the problem for Hamming distances implies combinatorial algorithms for Boolean matrix multiplication with \(O(n^{3-\delta}) \) run-time, which existence is unlikely. Looking for unconditional bounds, we can state this as a lower-bound of \(\Omega(n^{3/2}) \) for Hamming distances pattern matching, where \(2 \leq \omega < 2.373 \) is a matrix multiplication exponent. Later, complexity of pattern matching under Hamming distance and under \(\ell_1 \) distance was proven to be identical (up to poly-logarithmic terms) [22, 23].

Once again, existence of such lower-bound spurs interest in approximation algorithm for \(\ell_1 \) distances. Lipsky and Porat [24] gave a deterministic algorithm with a run time of \(O\left(\frac{n}{k} \log m \log U\right) \), while later Gawrychowski and Uznański [13] have improved the complexity.
to a (randomized) $O(\frac{n}{\epsilon^2} \log^2 n \log m \log U)$, where U is the maximal integer value on the input. Later [28] has shown that such complexity is in fact achievable (up to poly-log factors) with a deterministic solution.

Considering other norms, we mention following results. First, that for any $p > 0$ there is ℓ_p distance $(1 \pm \epsilon)$-approximate algorithm running in time $\tilde{O}(n/\epsilon)$ by [28]. More importantly, for specific case of $p = 2$ (or more generally, constant, positive even integer values of p) the exact problem reduces to computation of convolution, as observed by [25].

Text-to-pattern distance via convolution

Consider the case of computing ℓ_2 distances. We are computing output array $O[]$ such that $O[i] = \sum_j (T[i+j] - P[j])^2$. However, this is equivalent to computing, for every i simultaneously, the value of $\sum_j T[i+j]^2 + \sum_j P[j]^2 - 2 \sum_j T[i+j]P[j]$. While the terms $\sum_j T[i+j]^2$ and $\sum_j P[j]^2$ can be easily precomputed in $O(n)$ time, we observe (following [25]) that $\sum_j T[i+j]P[j]$ is essentially a convolution. Indeed, consider P' such that $P'[j] = P[m + 1 - j]$, and then what follows

$$\sum_j T[i+j]P'[j] = \sum_j T[i+j]P'[m+1-j] = \sum_{j+k=m+1+i} T[j]P'[k] = (T \circ P')[m+1+i]$$

Since $T \circ P'$ can be computed efficiently this provides a very strong tool in constructing text-to-pattern distance algorithms. Almost all of the discussed results use convolution as a black-box. For example, by appropriate binary encoding we can compute convolution the number of Hamming mismatches generated by a single letter $c \in \Sigma$, which is a crucial observation leading to computation of exact Hamming distances in time $O(n\sqrt{n \log n})$. Other results rely on projecting large alphabets into smaller ones, e.g. [18, 28].

Convolution over integers is computed by FFT in time $O(n \log n)$. This requires actual embedding of integers into field, e.g. \mathbb{F}_p or \mathbb{C}. This comes at a cost, if e.g. we were to consider text-to-pattern distance over (non-integer) alphabets that admit only field operations, e.g. matrices or geometric points. Convolution can be computed using "simpler" set of operations, that is just with ring operations in e.g. \mathbb{Z}_p using Toom-Cook multiplication [29], which is a generalization of famous divide-and-conquer Karatsuba’s algorithm [17]. This however comes at a cost, with Toom-Cook algorithm taking time $O(n2^{\sqrt{2\log n}} \log n)$, and increased complexity of the algorithm.

Computing convolution comes with another string attached – it is inefficient to compute/sketch in the streaming setting. All of the efficient streaming streaming text-to-pattern distance algorithms [26, 8, 14, 9, 10, 27, 5] use some form of sketching and are actually avoiding convolution computation. The reason for this is that convolution does not admit efficient sketching schemes other than with additive error, that is any algorithm based on convolution is supposed to make the same error of estimation in small and large distance regime.

Our results

We present approximation algorithm for computation of ℓ_2 text-to-pattern distance in time $\tilde{O}(n/\epsilon^2)$, where \tilde{O} hides poly-log n terms. Our algorithm is convolution-avoiding, and in fact it uses mostly additions and subtractions in its core part (some non-ring operations are necessary for output-scaling and hashing). We thus claim our algorithm to be more “combinatorial”, in the sense that it does not rely on field embedding and FFT computation,
and our algorithm to be first such with complexity $\tilde{O}(n)$ dependency on n for non-Hamming norm text-to-pattern distance computation.

Theorem 1. Text-to-pattern ℓ_2 distances can be approximated by an algorithm using only basic arithmetic operations and not using convolution. The approximation is $1 \pm \varepsilon$ multiplicative with high probability, computed in time $O\left(\frac{n \log^3 n}{\varepsilon^2}\right)$.

This mirrors the recent development of [5] where a combinatorial algorithm for Hamming distances was presented with run-time $O(n/\varepsilon^2)$. However, our techniques are general enough so that we can construct algorithm for ℓ_1 norm (and Hamming), however with run-time $\tilde{O}(n/\varepsilon^3)$.

Theorem 2. Text-to-pattern Hamming distances can be approximated by an algorithm using only basic arithmetic operations and not using convolution. The approximation is $1 \pm \varepsilon$ multiplicative with high probability, computed in time $O\left(\frac{n \log^4 n}{\varepsilon^3}\right)$.

Theorem 3. Text-to-pattern ℓ_1 distances over alphabet $[u]$ for some constant $u = poly(n)$ can be approximated by an algorithm using only basic arithmetic operations and not using convolution. The approximation is $1 \pm \varepsilon$ multiplicative with high probability, computed in time $O\left(\frac{n \log^4 n (\log^2 n + \log u)}{\varepsilon^3}\right)$.

We present two novel techniques, to our knowledge never used previously in this setting. First, we show that a "mild" dimensionality reduction (linear map reducing from dimension $2d$ to d, while preserving ℓ_2 norm) can be used to repeatedly compress word, and produce sketches for its every m-subword. Second, we show an approximate embedding of ℓ_1 space into ℓ_2^n, that can be efficiently computed. We believe our techniques are of independent interest, both to stringology and general algorithmic communities.

2 Definitions and preliminaries.

Distance between strings.

Let $X = x_1 x_2 \ldots x_n$ and $Y = y_1 y_2 \ldots y_n$ be two strings. We define their ℓ_2 distance as

$$
\|X - Y\| = \left(\sum_i |x_i - y_i|^2\right)^{1/2}.
$$

More generally, for any $p > 0$, we define their ℓ_p distance as

$$
\|X - Y\|_p = \left(\sum_i |x_i - y_i|^p\right)^{1/p}.
$$

Particularly, the ℓ_1 distance is known as the *Manhattan distance*. By a slight abuse of notation, we define the ℓ_0 (Hamming distance) to be

$$
\|X - Y\|_0 = \sum_i |x_i - y_i|^p = |\{i : x_i \neq y_i\}|,
$$

where $x^0 = 1$ when $x \neq 0$ and $0^0 = 0$.

Text-to-pattern distance.

For text \(T = t_1 t_2 \ldots t_n \) and pattern \(P = p_1 p_2 \ldots p_m \), the text-to-pattern \(d \)-distance is defined as an array \(S \) such that, for every \(i \), \(S[i] = d(T[i + 1 \ldots i + m], P) \). Thus, for \(\ell_2 \) distance \(S[i] = (\sum_{j=1}^{m} |t_{i+j} - p_j|^2)^{1/2} \), while for Hamming distance \(S[i] = |\{j : t_{i+j} \neq p_j\}| \). Then

\[
(1 \pm \varepsilon)\text{-approximate distance is defined as an array } S \text{ such that, for every } i, (1 - \varepsilon) \cdot S[i] \leq S_\varepsilon[i] \leq (1 + \varepsilon) \cdot S[i].
\]

3 Sketching via dimensionality reduction

Sketching is a tool in algorithm design, where a large object is summarized succinctly, so that some particular property is approximately preserved and some predefined operations/queries are still supported. Our interest lies on sketches that preserve \(\ell_2 \) distances, for which we use the standard tools from dimensionality reduction.

- **Theorem 4** (Johnson-Lindenstrauss [15]). Let \(P \subseteq \mathbb{R}^m \) be of size \(m \). Then for some \(d = \Omega(\frac{\log m}{\varepsilon^2}) \) there is linear map \(A \in \mathbb{R}^{m \times d} \) such that

\[
\forall x, y \in P \|Ax - Ay\| = (1 \pm \varepsilon)\|x - y\|.
\]

A map that preserves \(\ell_2 \) distances is useful. Our goal is to construct a linear map such that we can apply to \(P \) and to every \(m \)-substring of \(T \) simultaneously and computationally efficiently. For this, we need to actually use constructive version of Johnson-Lindenstrauss lemma.

- **Theorem 5** (Achlioptas [2]). Consider a probability distribution over matrices \(A \) of dimension \(m \times d \) defined as follow so that each matrix has \(A_{ij} \in \{-1,1\} \) independently and uniformly at random. Then for any \(x \in \mathbb{R}^m \) there is \(\frac{1}{\sqrt{d}}\|Ax\| = (1 \pm \varepsilon)\|x\| \) with probability \(1 - \delta \), if only \(d = \Omega(\frac{\log \varepsilon^{-1}}{\delta}) \) is big enough.

Computing such dimension-reduction naively takes time \(\mathcal{O}(md) \). However better constructions are possible.

- **Theorem 6** (Sparse JL, [16, 11]). There is probability distribution over matrices \(A \) of dimension \(m \times d \) with elements from \(\{-1,0,1\} \), for \(d = \Omega(\frac{\log s^{-1}}{\varepsilon^2}) \), such that each column has only \(s = \mathcal{O}(dc) \) non-zero elements and for any vector \(x \in \mathbb{R}^m \) there is \(\frac{1}{\sqrt{d}}\|Ax\| = (1 \pm \varepsilon)\|x\| \) with probability \(1 - \delta \).

Such matrices can be easily drawn from the distribution by selecting the \(s \) positions in each column independently at random and then filling them uniformly at random with \(\{-1,1\} \). The advantage of this is that single dimensionality reduction operation is computed in time \(\mathcal{O}(sm) \) which is \(\varepsilon^{-1} \) factor faster than for dense matrices.

We now state the take-away from this section, which is our main technical tool to be used in the following.

- **Corollary 7**. For \(d = \Omega(\frac{\log n}{s^2}) \) large enough there is map \(\varphi : \mathbb{R}^d \times \mathbb{R}^d \rightarrow \mathbb{R}^d \) that is linear, namely it is of form \(\varphi(x, y) = A_0 x + A_1 y \) that can be evaluated in time \(\mathcal{O}(d^2 \varepsilon) = \mathcal{O}(\frac{\log n}{s^2}) \) and such that

\[
\|\varphi(x, y)\|^2 = (1 \pm \varepsilon)(\|x\|^2 + \|y\|^2).
\]

This property follows with high probability \(1 - n^{-\Omega(1)} \). Additionally, both \(A_0 \) and \(A_1 \) are are \(\{-1,0,1\} \)-matrices scaled by factor \(\frac{1}{\sqrt{s}} \) where \(s = \mathcal{O}(dc) \) is the sparsity of each column of \(A_0 \) and \(A_1 \).
4 Algorithm for ℓ_2 distances.

We first use Corollary 7 to construct dimensionality reduction with guarantees similar to Johnson-Lindenstrauss (reducing dimension n to dimension $\tilde{O}(\varepsilon^{-2})$). In the following we assume that $d = O(\log n)$ is big enough. We show a procedure which assumes that m is divisible by d, and denote $s = \frac{m}{d}$. We assume s is a power of two, and if the case is otherwise, we can always pad input with enough zeroes at the end. We also denote $k = \log_2 s$.

1: Input: $x \in \mathbb{R}^m$.
2: Output: $v \in \mathbb{R}^d$.
3: procedure SingleSketch(x)
4: Pick k fully independent maps $\varphi_1, \ldots, \varphi_k$ that satisfy Corollary 7.
5: Partition input $x = (x_1, \ldots, x_m)$ into s vectors $v^{(0)}_1, \ldots, v^{(0)}_s$ where $v^{(0)}_i \leftarrow (x_{d(i-1)+1}, \ldots, x_{di})$.
6: for $i \leftarrow 1 \ldots k$ do
7: for $j \leftarrow 1 \ldots 2^{k-i}$ do
8: $v^{(i)}_j \leftarrow \varphi_i(v^{(i-1)}_{2j-1}, v^{(i-1)}_{2j})$
9: return $v = v^{(k)}_1$.

We then have the following

> Theorem 8. Given input $x \in \mathbb{R}^m$, and $\varepsilon \leq \frac{1}{k}$, procedure SingleSketch outputs $v \in \mathbb{R}^d$ such that

$$\|v\| = (1 \pm O(k\varepsilon))\|x\|$$

with high probability, in time $O\left(\frac{m\log n}{\varepsilon}\right)$. The map $x \rightarrow v$ is linear.

Proof. We first bound the stretch. Denote by

$$\alpha_i = \sum \|v^{(i)}_j\|^2.$$

Naturally,

$$\alpha_0 = \sum_j \|v^{(0)}_j\|^2 = \sum_j (x_{d(j-1)+1}^2 + \ldots + x_{dj}^2) = \sum_j x_j^2 = \|x\|^2.$$

Moreover, there is by Corollary 7

$$\alpha_i = \sum_j \|v^{(i)}_j\|^2 = \sum_j (1 \pm \varepsilon)(\|v^{(i-1)}_{2j-1}\|^2 + \|v^{(i-1)}_{2j}\|^2)$$

$$= (1 \pm \varepsilon)\sum_j \|v^{(i-1)}_j\|^2 = (1 \pm \varepsilon)\alpha_{i-1}.$$

We could apply Corollary 7 at this step since for any usage of map φ_i, its inputs are independent from actual choice of φ_i (e.g. are result of processing x and $\varphi_1, \ldots, \varphi_{i-1}$). Then we have $\|v\|^2 = \alpha_k = (1 \pm \varepsilon)^k\alpha_0 = (1 \pm \varepsilon)^k\|x\|^2$. Since $\varepsilon \leq \frac{1}{k}$, the claimed bound follows.

We then observe that the map is linear, since every building step of the map is linear. The total number of times we apply one of $\varphi_1, \ldots, \varphi_k$ is $O(m/d)$, so the total run-time is $O\left(\frac{m}{d}d^2\varepsilon\right)$. ▶
We then extend the algorithm to a scenario where for an input word (vector) \(x \in \mathbb{R}^n \) we compute the same dimensionality reduction to all \(m \)-subwords of \(x \) that start at all the positions divisible by \(d \). In the following we assume that \(d \) divides \(n \), and denote \(t = \frac{n-m}{d} + 1 \) to be the number of such \(m \)-subwords. If its not the case, input can be padded with enough zeroes at the end.

1: Input: \(x \in \mathbb{R}^n \).
2: Output: \(v_1, \ldots, v_t \in \mathbb{R}^d \) for \(t = \frac{n-m}{d} + 1 \).
3: procedure ALLSketch \((x)\)
4: Pick \(k \) fully independent maps \(\varphi_1, \ldots, \varphi_k \) that satisfy Corollary 7 (as in procedure SingleSketch).
5: Partition input \(x = (x_1, \ldots, x_n) \) into \(n/d \) vectors \(v_1^{(0)}, \ldots, v_t^{(0)} \) where \(v_i^{(0)} \leftarrow (x_{d(i-1)+1}, \ldots, x_{d(i)}). \)
6: for \(i \leftarrow 1 \) .. \(k \) do
7: \hspace{1em} for \(j \leftarrow 1 \) .. \((\frac{n}{d} - 2^i + 1) \) do
8: \hspace{2em} \(y_j^{(i)} \leftarrow \varphi_i(v_j^{(i-1)}, v_{j+2^i-1}^{(i-1)}) \)
9: return \(v_1^{(k)}, \ldots, v_t^{(k)} \).

Theorem 9. Given input \(x \in \mathbb{R}^n \), denote by \(y_1, \ldots, y_t \in \mathbb{R}^m \) vectors such that \(y_i = (x_{1+(i-1)d}, \ldots, x_{m+(i-1)d}) \). For \(\varepsilon \leq \frac{1}{k} \) procedure AllSketch outputs \(v_1, \ldots, v_t \in \mathbb{R}^d \) such that

\[
\|y_j\| = (1 \pm \mathcal{O}(k\varepsilon))\|y_j\|
\]

with high probability, in time \(\mathcal{O}(\frac{n \log^2 n}{\varepsilon}) \). Moreover, the map \(y_i \to v_i \) is linear and identical to map from Theorem 3.

Proof. The proof follows from inductive observation that \(\|y_j^{(i)}\|^2 = (1 \pm \varepsilon)^i(\|y_j^{(0)}\|^2 + \ldots \|y_j^{(2^i-1)}\|^2) \), which results in

\[
\|v_j\|^2 = (1 \pm \varepsilon)^k \sum_{i=1}^{k} \|y_j^{(i)}\|^2
\]

\[
= (1 \pm \varepsilon)^k \sum_{i=1}^{n} \|y_{1+(j-1)d}\|^2
\]

\[
= (1 \pm \varepsilon)^k \|y_j\|^2.
\]

The rest of the proof follows reasoning from Theorem 8. **Proof of Theorem 11** First, we note that for simplicity we compute \(\ell_2 \) distances since they are additive when taken under concatenation of inputs (unlike \(\ell_1 \)), that is \(\|x \circ y - u \circ v\|^2 = \|x - u\|^2 + \|y - v\|^2 \) for equal length \(x, u \) and equal length \(y, v \).

We then assume w.l.o.g. that \(n \) is divisible by \(d \). We then observe that contribution of any fragment of pattern to distance at every text location can be computed naively in time \(\mathcal{O}(c \cdot n) \) where \(c \) is fragment length. We are thus safe to discard any suffix of pattern of length \(d \) as this time is absorbed in total computation time. So we fix \(h = \mathcal{O}(\log n/\varepsilon) \) and assume w.l.o.g. that \(m' = m - h \) is divisible by \(d \).

We denote by \(\varepsilon' = \Omega(\varepsilon/\log n) \) such value that guarantees \((1 \pm \varepsilon)\)-approximation in Theorem 8 and Theorem 9. First, assume for simplicity that \(\frac{n}{d} \) is a power of two. We then consider \(P_0, \ldots, P_h \), the \((h+1)\) distinct \(m' \)-substrings of \(P \), and for each we run procedure
Approximating Text-to-Pattern Distance via Dimensionality Reduction

SingleSketch on each of them, so by Theorem 8 we compute their sketches in total time \(O(\frac{n \log n}{\varepsilon^2}) \). Similarly, for text \(T \) we run AllSketch \(\frac{d}{n} \) times to compute sketches of all \(m' \)-substrings of \(T \) starting at positions \(1, h, 2h + 1, \ldots \). By Theorem 9 this takes time \(O(\frac{n \log n}{\varepsilon^2}) \). Both steps take thus time \(O(\frac{n \log n}{\varepsilon^2}) \).

We now observe that for any starting position \(t \), the substring \(T[t..(t+m'-1)] \) can be partitioned into \(T_1 = T[t..t_1], T_2 = T[t_1+1..t_2] \) and \(T_3 = T[t_2+1..(t+m'-1)] \), where length of \(T_1 \) and \(T_3 \) is at most \(h \), and \(t_1 \) and \(t_2 \) are multiplicities of \(h \) (and so \(T_2 \) length is \(m' \)). We then compute the distances between corresponding fragments of \(T \) and \(P \) as follow (where we consider corresponding partitioning of \(P \) into \(P_1, P_2 \) and \(P_3 \)): computing \(||T_1 - P_1||^2 \) and \(||T_3 - P_3||^2 \) takes \(O(h) \) each, while \((1 \pm \varepsilon) \) approximating \(||T_2 - P_2||^2 \) follows from pre-computed sketches.

We now discuss the general case when \(\frac{m'}{d} \) is not a power of two. However we then observe that \(m' \) can be represented as \(m' = d(2^i_1 + \ldots + 2^i_s) \) where \(s \leq \log n \). And so the necessary computation require actually querying \(s \) different sketches for fragments of length \(d \cdot 2^i \). To avoid unnecessary \(O(\log n) \) overhead in time (and repeating running the preprocessing steps \(\log n \) times for many various lengths of fragments) we observe that all the necessary sketches are already computed as temporary values in procedures SingleSketch and AllSketch.

5 Hamming and \(\ell_1 \) distances.

We now briefly discuss how to use our framework for approximating other norms. We first recall the classical result by [13].

Lemma 10 ([13]). Let \(t = O(\log n/\varepsilon^2) \) be big enough. Consider \(\varphi : \Sigma \rightarrow \{0, 1\}^d \) where each \(\varphi(c) \) is chosen uniformly and independently at random. Then

\[
\forall c_1 \neq c_2 ||\mu(c_1) - \mu(c_2)||^2 = (1 \pm \varepsilon) \cdot \frac{d}{2}
\]

with high probability.

We note that we assumed that the dimension of map \(O(\log n/\varepsilon^2) \) is the same as \(d = O(\log n/\varepsilon^2) \) from dimensionality-reductions in previous section. This can be easily ensured w.l.o.g. as we can always either pad with extra zeroes each image of \(\mu \) mapping, or add extra null coordinates to dimensionality reduction. Extending the mapping from letters to words, that is denoting for \(w = c_1 \ldots c_k \in \Sigma^* \mu(w) = \mu(c_1) \ldots \mu(c_k) \), we have a corollary:

Corollary 11. For \(\varphi \) as in Lemma 10, and any two words \(u, v \in \Sigma^n \), there is

\[
||\mu(u) - \mu(v)||^2 = (1 \pm \varepsilon) \cdot \frac{d}{2} ||u - v||_0
\]

with high probability.

This allows us to estimate Hamming distance between words from from \(\ell_2^2 \) distance between the respective embeddings, which are of length \(O(\frac{n \log n}{\varepsilon^2}) \).

Proof of Theorem 2. By Corollary 11 it is enough to estimate the \(\ell_2^2 \) text-to-pattern distance between embedded words \(\mu(P) \) and \(\mu(T) \) at starting positions \(1, d + 1, 2d + 1, \ldots \). We use procedure SingleSketch to compute sketch of \(\mu(P) \), and procedure AllSketch to compute sketch of every \((dn)\)-substring of \(\varphi(T) \) starting at positions \(1, d + 1, 2d + 1, \ldots \). Former takes \(O(\frac{n \log^2 n}{\varepsilon^2}) \) time, and latter takes \(O(\frac{n \log^2 n}{\varepsilon^2}) \) time, where we set \(\varepsilon' = \Omega(\varepsilon/k) \) so that error from sketching accumulates to \(1 \pm O(\varepsilon) \) in total. All in all this gives \(O(\frac{n \log n}{\varepsilon^2}) \) time algorithm.
We now proceed to \(\ell_1 \) distances. Our goal is to construct a mapping \(f : \{u\} \to \{0,1\}^d \) that embeds \(\ell_1 \) into \(\ell_2^2 \) approximately. That is, we require \(\forall u, v \in \{u\} |u - v| \sim (1 \pm \varepsilon) \|f(u) - f(v)\|_2^2 \) where \(\sim \) hides constant factors. The existence of such map can be easily shown: (i) Take exact map \(f_1 : \{u\} \to \{0,1\}^d \) defined as \(f_1(u) = 1_u0^{u-a} \), (ii) Take any \(\ell_2 \) dimensionality-reduction map \(f_2 : \{0,1\}^u \to \{0,1\}^d \), (iii) set \(f = f_1 \circ f_2 \). However, our goal is to compute such \(f \) faster than in time proportional to universe size \(u \). We do it by running first a preprocessing phase, and then a fast computation procedure.

1: procedure Preprocess\((u)\)
2: Pick \(\log(u/d) \) fully independent maps \(\varphi'_1, \ldots, \varphi'_{\log(u/d)} \) that satisfy Corollary 7 (as in procedure SingleSketch).
3: \(s_0 \leftarrow (1,1,\ldots,1) \in \mathbb{R}^d \).
4: for \(i \leftarrow 1 \ldots \log(u/d) \) do
5: \(s_i \leftarrow \varphi'_i(s_{i-1}, s_{i-1}) \)
6: procedure Project\((x \in \{u\}, c)\)
7: if \(c = 0 \) then
8: \(\text{return } (1,1,\ldots,1,0,\ldots,0)^{2d-x} \)
9: else if \(x < \frac{1}{2}d \cdot 2^c \) then
10: \(\text{return } \psi_c(\text{Project}(x, c-1), (0,\ldots,0)) \)
11: else
12: \(\text{return } \psi_c(s_{c-1}, \text{Project}(x - \frac{1}{2}d \cdot 2^c, c-1)) \)

\[|x - y| = (1 \pm \mathcal{O}(\varepsilon \log u)) \|\psi(x) - \psi(y)\|_2^2 \]

with high probability. Moreover, \(\psi \) takes \(\mathcal{O}(\log^2 n \log u) \) time to evaluate.

\textbf{Proof.} Let us define informally \(\pi_i = \varphi'_i(\varphi'_{i-1}(\ldots,\ldots), \varphi'_{i-1}(\ldots,\ldots)) \) to be unfolded version of \(\varphi'_i \), that is a linear map \(\mathbb{R}^{d \cdot 2^i} \to \mathbb{R}^d \). Formally \(\pi_0 = \text{id} \), and for \(x = (x_1, \ldots, x_{d \cdot 2^i}) \), defining

\[\pi_i((x_1, \ldots, x_{d \cdot 2^i})) = \varphi'_i((x_{\text{left}}, \pi_{i-1}(x_{\text{left}}), \pi_{i-1}(x_{\text{right}})), \pi_{i-1}(x_{\text{right}})) \]

where \(x_{\text{left}} = (x_1, \ldots, x_{d \cdot 2^{i-1}}) \), \(x_{\text{right}} = (x_{d \cdot 2^{i-1}+1}, \ldots, x_{d \cdot 2^i}) \).

We now observe that \(s_0 = \pi_i((1,\ldots,1,\ldots,1)) \) and then (by induction)

\[\text{Project}(x, i) = \pi_i((1,1,\ldots,1,0,\ldots,0)) \]

Inductively, each iteration \(1, \ldots, \log(u/d) \) results in extra multiplicative \((1 \pm \varepsilon)\) distortion. Computation time is dominated by applications of \(\varphi'_1, \ldots, \varphi'_{\log(u/d)} \), both in the preprocessing time and evaluation time.

\textbf{Proof of Theorem 3.} We use Lemma 12 to reduce the problem to estimating \(\ell_2^2 \) text-to-pattern distance between \(\psi(P) \) and \(\psi(T) \) at starting positions \(1, d + 1, 2d + 1, \ldots \). We use procedure SingleSketch to compute sketch of \(\mu(P) \), and procedure AllSketch to compute
Approximating Text-to-Pattern Distance via Dimensionality Reduction

sketch of every \((dm)\)-substring of \(\varphi(T)\) starting at selected positions. Denote by \(\varepsilon' = \Omega(\varepsilon/k)\) the stretch constant in procedures SingleSketch and AllSketch, and by \(\varepsilon'' = \Omega(\varepsilon/\log n)\) the stretch constant in procedures Project and Preprocess. The total run-time of AllSketch is then \(O(n \log^2 n \varepsilon^{-1} \varepsilon') = O(n \log^4 n \varepsilon^{-3})\)

\(\epsilon'\) \(\Omega(\varepsilon/k)\)

\(\epsilon''\) \(\Omega(\varepsilon/\log n)\)

\(\epsilon\)

\(\epsilon'\)

\(\epsilon''\)

References

1. Abrahamson, K.R.: Generalized string matching. SIAM J. Comput. 16(6), 1039–1051 (1987)
2. Achlioptas, D.: Database-friendly random projections: Johnson–Lindenstrauss with binary coins. J. Comput. Syst. Sci. 66(4), 671–687 (2003). https://doi.org/10.1016/S0022-0000(03)00025-4
3. Amir, A., Lewenstein, M., Porat, E.: Faster algorithms for string matching with \(k\) mismatches. J. Algorithms 50(2), 257–275 (2004). https://doi.org/10.1016/S0196-6774(03)00097-X
4. Amir, A., Lipsky, O., Porat, E., Umanoki, J.: Approximate matching in the \(L_1\) metric. In: Combinatorial Pattern Matching, 16th Annual Symposium, CPM 2005, Jeju Island, Korea, June 19-22, 2005, Proceedings. pp. 91–103 (2005). https://doi.org/10.1007/11496656_9
5. Chan, T.M., Golan, S., Kociumaka, T., Kopelowitz, T., Porat, E.: Approximating text-to-pattern hamming distances. In: accepted to STOC (2020)
6. Clifford, P., Clifford, R., Biopoulos, C.S.: Faster algorithms for \(\delta, \gamma\)-matching and related problems. In: CPM. pp. 68–78 (2005). https://doi.org/10.1007/11496656_7
7. Clifford, R.: Matrix multiplication and pattern matching under Hamming norm. http://www.cs.bris.ac.uk/Research/Algorithms/events/BAD09/BAD09/Talks/BAD09-Hammingnotes.pdf, retrieved March 2017
8. Clifford, R., Fontaine, A., Porat, E., Sach, B., Starikovskaya, T.: The \(k\)-mismatch problem revisited. In: SODA. pp. 2039–2052 (2016). https://doi.org/10.1137/1.9781611974331.ch142
9. Clifford, R., Kociumaka, T., Porat, E.: The streaming \(k\)-mismatch problem. In: SODA. pp. 1106–1125 (2019). https://doi.org/10.1137/1.9781611975482.68
10. Clifford, R., Starikovskaya, T.: Approximate Hamming distance in a stream. In: ICALP. pp. 20:1–20:14 (2016). https://doi.org/10.4230/LIPIcs.ICALP.2016.20
11. Cohen, M.B., Jayram, T.S., Nelson, J.: Simple analyses of the sparse johnson-lindenstrauss transform. In: 1st Symposium on Simplicity in Algorithms, SOSA 2018, January 7-10, 2018, New Orleans, LA, USA. pp. 15:1–15:9 (2018). https://doi.org/10.4230/OASIcs.SOSA.2018.15
12. Fischer, M.J., Paterson, M.S.: String-matching and other products. Tech. rep. (1974)
13. Gawrychowski, P., Uznanski, P.: Towards unified approximate pattern matching for Hamming and \(L_1\) distance. In: ICALP. pp. 62:1–62:13 (2018). https://doi.org/10.4230/LIPIcs.ICALP.2018.62
14. Golan, S., Kopelowitz, T., Porat, E.: Towards optimal approximate streaming pattern matching by matching multiple patterns in multiple streams. In: ICALP. pp. 65:1–65:16 (2018). https://doi.org/10.4230/LIPIcs.ICALP.2018.65
15. Johnson, W.B., Lindenstrauss, J.: Extensions of Lipschitz mappings into a Hilbert space 26, 189–206 (1984)
16. Kane, D.M., Nelson, J.: Sparse johnson-lindenstrauss transforms. J. ACM 61(1), 4:1–4:23 (2014). https://doi.org/10.1145/2559902
17. Karatsuba, A.: Multiplication of multidigit numbers on automata. In: Soviet physics doklady. vol. 7, pp. 595–596 (1963)
18. Karloff, H.J.: Fast algorithms for approximately counting mismatches. Inf. Process. Lett. 48(2), 53–60 (1993). https://doi.org/10.1016/0020-0190(93)90177-B
19. Kopelowitz, T., Porat, E.: Breaking the variance: Approximating the hamming distance in \(1/\epsilon\) time per alignment. In: FOCS. pp. 601–613 (2015). https://doi.org/10.1109/FOCS.2015.43
Kopelowitz, T., Porat, E.: A simple algorithm for approximating the text-to-pattern hamming distance. In: SOSA@SODA. pp. 10:1–10:5 (2018). https://doi.org/10.4230/OASIcs.SOSA.2018.10

Kosaraju, S.R.: Efficient string matching (1987), manuscript

Labib, K., Uznański, P., Wolleb-Graf, D.: Hamming distance completeness. In: CPM. pp. 14:1–14:17 (2019). https://doi.org/10.4230/LIPIcs.CPM.2019.14

Landau, G.M., Vishkin, U.: Efficient string matching with \(k \) mismatches. Theor. Comput. Sci. 43, 239–249 (1986). https://doi.org/10.1016/0304-3975(86)90178-7

Lipsky, O., Porat, E.: \(L_1 \) pattern matching lower bound. Inf. Process. Lett. 105(4), 141–143 (2008). https://doi.org/10.1016/j.ipl.2007.08.011

Lipsky, O., Porat, E.: Approximate pattern matching with the \(L_1 \), \(L_2 \) and \(L_\infty \) metrics. Algorithmica 60(2), 335–348 (2011). https://doi.org/10.1007/s00453-009-9345-9

Porat, B., Porat, E.: Exact and approximate pattern matching in the streaming model. In: FOCS. pp. 315–323 (2009). https://doi.org/10.1109/FOCS.2009.11

Starikovskaya, T., Svagerka, M., Uznański, P.: \(L_p \) pattern matching in a stream. CoRR abs/1907.04405 (2019)

Studený, J., Uznański, P.: Approximating approximate pattern matching. In: CPM. vol. 128, pp. 15:1–15:13 (2019). https://doi.org/10.4230/LIPIcs.CPM.2019.15

Toom, A.: The complexity of a scheme of functional elements simulating the multiplication of integers. In: Doklady Akademii Nauk. vol. 150, pp. 496–498. Russian Academy of Sciences (1963)