Genericity under parahoric restriction

Manish Mishra∗ Mirko Rösner†

Abstract

We study the preservation of genericity under parahoric restriction of depth zero representations.

1 Introduction

Let G be a connected reductive group defined over a non-archimedean local field k. Let B be a k-Borel subgroup of G with unipotent radical U and let T be a maximal k-torus in B. The corresponding groups of k-rational points are G, B, U, T. A character $\psi : U \to \mathbb{C}^\times$ is called generic if the stabilizer of ψ in T is exactly the center Z of G. An admissible representation π of G is called generic (more specifically ψ-generic) if there exists a generic character ψ of U such that $\text{Hom}_G(\pi, \text{Ind}_G^B \psi) \neq 0$.

A basic result due to Rodier [4, Thm. 2] states that genericity is preserved under the Jacquet functor. On the category of depth zero representations of G (see [2] for the notion of depth), there is a functor analogous to the Jacquet functor called the parahoric restriction functor [7]. It is defined as follows. Let G_x be a parahoric subgroup of G with pro-unipotent radical G_x^+. The quotient G_x/G_x^+ is the \mathbb{F}_q-points of a connected reductive group M defined over \mathbb{F}_q, where \mathbb{F}_q is the residue field of k. The parahoric restriction functor sends a representation (π, V) of G to the representation of $M(\mathbb{F}_q)$ obtained by restricting π to G_x and then taking the G_x^+-invariants of it.

We say G is unramified, if it is quasisplit and splits over an unramified extension. Suppose that G is unramified, that G_x is contained in a hyperspecial parahoric subgroup of G and that π is parabolically induced from a supercuspidal representation of a Levi subgroup of

∗University of Heidelberg, Germany, electronic address: manish.mishra@gmail.com
†University of Heidelberg, Germany, electronic address: mirko_rosner@hotmail.com
G. Then we show in Theorem 2 that the parahoric restriction functor preserves genericity of \(\pi \). This does not generalize to arbitrary parahorics and admissible representations, see Section 5.

2 Notations

Fix a non-archimedean local field \(k \) and an unramified connected reductive group \(G \) over \(k \). Let \(\mathbf{B} = \mathbf{T} \ltimes \mathbf{U} \) be a \(k \)-Borel subgroup of \(G \) with a maximal \(k \)-torus \(\mathbf{T} \) and a unipotent radical \(\mathbf{U} \). Let \(\mathbf{Z} \) be the center of \(G \) and let \(\mathbf{T}_{\text{ad}} := \mathbf{T}/\mathbf{Z} \). Their groups of \(k \)-rational points are \(G, B, T, U, Z \) and \(T_{\text{ad}} \), respectively. We will follow the standard abuse of notation to write “parabolic subgroups of \(G \)” instead of “\(k \)-points of \(k \)-parabolic subgroups of \(G \)”.

For a point \(x \) in the Bruhat-Tits building of \(G \), the associated parahoric subgroup will be denoted by \(G_x \). Its Levi quotient is \(G_x^+ = G_x/G_x^+ \) with the pro-unipotent radical \(G_x^+ \). We will denote by \(\text{Rep}(G) \) the category of admissible complex representations of \(G \) and likewise for the other groups.

3 Parahoric restriction functor

Fix a point \(x \) in the apartment attached to \(T \). Restricting an admissible representation \((\pi, V) \) of \(G \) to the parahoric \(G_x \) and taking invariants with respect to the pro-unipotent radical \(G_x^+ \) gives rise to a representation of \(G_x = G_x/G_x^+ \). This defines the parahoric restriction functor

\[
\mathbf{r}_{G_x} : \text{Rep}(G) \to \text{Rep}(G_x), \quad \begin{cases} (\pi, V) \mapsto \left(G_x \to \text{Aut}(V^{G_x^+}) \right), \\ (V_1 \to V_2) \mapsto \left(V_1^{G_x^+} \to V_2^{G_x^+} \right) \end{cases},
\]

where \(V_1 \to V_2 \) is a morphism between admissible representations \((\pi_1, V_1) \) and \((\pi_2, V_2) \). This functor is exact and defines a homomorphism between the corresponding Grothendieck groups, analogous to Jacquet’s functor of parabolic restriction.

For hyperspecial parahorics, parahoric restriction commutes with parabolic induction in the following sense:

Theorem 1. Let \(x \) be a hyperspecial point in the apartment attached to \(T \) with corresponding hyperspecial parahoric subgroup \(G_x \subseteq G \). Fix a standard parabolic subgroup \(P \supseteq B \) with Levi decomposition \(P = M \ltimes N \) such that \(T \subseteq M \). Then the following diagram is commutative
The parabolic subgroup $P = (G_x \cap P)/(G_x^+ \cap P)$ of G_x is generated by the same roots as P and has Levi subgroup M_x.

Proof. The parahoric subgroup of M attached to x is $M_x \cong G_x \cap M$, cp. [2].

Fix an admissible representation (σ, V) of M and denote its inflation to P by the same symbol. We construct a natural equivalence $(\text{Ind}^G_P(\sigma))_{G_x} \rightarrow \text{Ind}^{G_x}_{G} \{r_{M_x}(\sigma)\}$. Then $\text{Ind}^G_P(\sigma)$ has a canonical model by right multiplication on the space of functions $f : G \rightarrow V$ with

$$f(pg) = \delta_P^{1/2}(p)\sigma(p)f(g) \quad \forall p \in P, \; g \in G,$$

where δ_P is the modulus character. By the Iwasawa decomposition $G = PG_x$, every such f is uniquely defined by its restriction $\tilde{f} = f|_{G_x}$ to G_x. The linear map $f \mapsto \tilde{f}$ is thus a G_x-equivariant isomorphism from $\text{Ind}^G_P(\sigma)$ to the space of $\tilde{f} : G_x \rightarrow V$ with

$$\tilde{f}(pg) = \sigma(p)\tilde{f}(g) \quad \forall p \in G_x \cap P, \; g \in G_x.$$

Such an $\tilde{f} : G_x \rightarrow V$ is invariant under the right action of G_x^+ if and only if $\tilde{f}(xu) = \tilde{f}(x)$ for every $u \in G_x^+$ and $x \in G_x$. In that case we have

$$\sigma(p)\tilde{f}(g) = \tilde{f}(pg) = \tilde{f}(gg^{-1}pg) = \tilde{f}(g) \quad \forall p \in P \cap G_x^+, \; g \in G_x,$$

since $g^{-1}pg \in G_x^+$. Hence \tilde{f} actually maps into the invariant space $V^{P \cap G_x^+}$.

Now \tilde{f} factors over a unique function $h_f : G_x \rightarrow V^{P \cap G_x^+}$ with the property

$$h_f(pg) = r_{M_x}(\sigma)(p)h_f(g) \quad \forall p \in P, \; g \in G.$$

The action of G_x by right-multiplication on the space of these h_f is a model of the induced representation $\text{Ind}^{G_x}_{P \cap G_x}(\sigma)$ of G_x. The family of isomorphisms $\{f \mapsto h_f\}_\sigma$ provides the natural equivalence.

\square
4 Generic depth zero

A character $\psi: U \to \mathbb{C}^\times$ is called *generic* if its stabilizer in T_{ad} is trivial. Let z be a hyperspecial vertex of G in the apartment attached to T. A generic character ψ of U is called *depth-zero* at z if its restriction to $U \cap G_z$ factors through a generic character ψ_z of $\overline{U} := (U \cap G_z)/(U \cap G_z^+)$.

Theorem 2. Let $\pi = \text{Ind}^G_{P,M}(\sigma)$ be an irreducible admissible representation of G that is parabolically induced from a supercuspidal irreducible representation σ of a Levi subgroup M of a parabolic $P \subseteq G$. Let G_x be a parahoric subgroup of G, contained in a hyperspecial parahoric subgroup, such that $\overline{\pi} := r_{G_x}(\pi) \neq 0$. Then π being generic implies that $\overline{\pi}$ is generic.

Proof. By conjugating x and P if necessary, we can assume without loss of generality that $P \supseteq B$, that $M \supseteq T$, that x is a point in the apartment associated to T and that π is generic with respect to a generic character ψ of U. We can assume without loss that G_x is a hyperspecial maximal parahoric subgroup of G because of transitivity of parahoric restriction [7, 4.1.3] and Rodier’s result [4, Thm. 2].

If w_o is an element in the normalizer of T such that $B \cap w_o B w_o^{-1} = T$, then $Q := M \cap w_o U w_o^{-1}$ is a maximal unipotent subgroup of M [4, Thm. 2]. Define a generic character of Q by $\psi_M(q) = \psi(w_o^{-1} q w_o)$ for $q \in Q$. Then by [4, Thm. 2],

\[\text{Hom}_U(\pi, \psi) \cong \text{Hom}_Q(\sigma, \psi_M). \] (4.1)

Since $\overline{\pi} \neq 0$, Theorem 1 implies that σ is a depth zero supercuspidal representation of M. By [1, Lemma 6.1.2], there is a hyperspecial point y of M and a cuspidal representation τ^o of M_y such that

a) ψ_M is depth zero at y and τ^o is $(\psi_M)_y$-generic.

b) There is an extension of τ^o to a representation τ of the normalizer $[M_y]$ of M_y in M such that $\sigma = \text{c-Ind}^{M_y}_{[M_y]} \tau$. Note that since y is a hyperspecial point of M, $[M_y] = Z_M M_y$, where Z_M denotes the center of M.

Since σ has depth zero at x by Thm. 1, we can assume without loss of generality that $x = y$ (see proof of [8, Lemma 3.3(ii)]). We have therefore

\[\text{Hom}_Q(\tau^o, (\psi_M)_x) \neq 0, \] (4.2)

4
where \(Q \) denotes a maximal unipotent subgroup of \(M_x \) defined in the same way as \(Q \). Theorem 1 and a result of Vignéras [6, §7] imply that \(\pi \) is isomorphic to \(\text{Ind}_{G}^{G_x} \tau^o \). Then again by [4, Thm. 2],

\[
\text{Hom}_{U}(\pi, \psi_x) \cong \text{Hom}_{Q}(\tau^o, (\psi_M)_x) \neq 0. \tag{4.3}
\]

This completes the proof.

\[\square\]

5 Non-special parahoric restriction

In Theorem 2 we make two technical assumptions: we assume that \(\pi \) is parabolically induced and that \(G_x \) is contained in a hyperspecial maximal parahoric subgroup. However, if we drop these assumptions, there is a counterexample.

Counterexample: There is a generic irreducible admissible representation \(\pi \) of \(G = \text{GSp}(4, k) \) and a parahoric subgroup \(G_x \subseteq G \) such that the parahoric restriction \(r_{G_x}(\pi) \) is non-zero, but not generic.

Proof. Let \(\xi \) be the non-trivial unramified quadratic character of \(k^\times \). Let \(G = \text{GSp}(4, k) \) be the group of symplectic similitudes with respect to the symplectic form \((-w^w)\) for \(w = (1^1) \). Fix the Borel pair \((B, T)\) where \(B = T \lt U \subseteq G \) is the subgroup of upper triangular matrices and \(T \subseteq B \) is the maximal torus of diagonal matrices. Fix a character

\[
\alpha : T \to \mathbb{C}^\times, \quad \text{diag}(a, b, c/a, c/b) \mapsto \xi(ab) |a| |c|^{-1/2}.
\]

Inflating \(\alpha \) to \(B \) gives rise to the induced representation \(\text{Ind}_B^G \alpha \), which admits a unique irreducible subrepresentation\(^1\) \(\pi \). The representation \(\pi \) is generic for arbitrary with respect to every generic character \(\psi \) of \(G \).

The standard paramodular subgroup \(G_x \subseteq G \) is a non-special maximal parahoric subgroup. The second author has shown [5, Thm. 3.7] that the parahoric restriction \(r_{G_x}(\pi) \) is isomorphic to the restriction of \(1 \otimes \text{St} \oplus \text{St} \otimes 1 \) to

\[
\{(\xi_1,\xi_2) \in (\text{GL}(2, \mathbb{F}_q))^2 \mid \det \xi_1 = \det \xi_2 \} \cong G_x.
\]

where \(1 \) is the trivial and \(\text{St} \) is the Steinberg representation of \(\text{GL}(2, \mathbb{F}_q) \). Thus \(r_{G_x}(\pi) \) is not generic.

\[\square\]

\(^1\)This is type Va in the notation of Roberts and Schmidt [3].
Acknowledgment

The authors are thankful to Sandeep Varma for pointing out a mistake in the earlier draft of this article.

References

[1] S. DeBacker and M. Reeder. Depth-zero supercuspidal L-packets and their stability. *Ann. of Math. (2)*, 169(3):795–901, 2009.

[2] A. Moy and G. Prasad. Jacquet functors and unrefined minimal K-types. *Commentarii Mathematici Helvetici*, 71(1):98–121, 1996.

[3] B. Roberts and R. Schmidt. *Local Newforms for GSp(4)*, volume 1918 of *Lecture Notes in Mathematics*. Springer, 1 edition, October 2007.

[4] F. Rodier. Whittaker models for admissible representations of reductive p-adic split groups. In *Harmonic analysis on homogeneous spaces (Proc. Sympos. Pure Math., Vol. XXVI, Williams Coll., Williamstown, Mass., 1972)*, pages 425–430. Amer. Math. Soc., Providence, R.I., 1973.

[5] M. Rösner. Parahoric restriction for GSp(4) and the inner cohomology of Siegel modular threefolds. PhD thesis, Ruprecht-Karls-Universität Heidelberg, 2016.

[6] M.-F. Vignéras. Irreducible Modular Representations of a reductive p-adic group and simple Modules for Hecke Algebras. In C. Casacuberta et al., editors, *European Congress of Mathematics, Barcelona*, volume 201 of *Progress in Mathematics*, pages 117–133. Birkhäuser, 2001.

[7] M.-F. Vignéras. Schur algebras of reductive p-adic groups, I. *Duke Mathematical Journal*, 116(1):35–75, 2003.

[8] J.-K. Yu. Construction of tame supercuspidal representations. *J. Amer. Math. Soc.*, 14(3):579–622 (electronic), 2001.