The Antiviral Potential of Iranian Herbal Pharmacopoeia (IHP) on Herpes Simplex Viruses (HSV): A Review Article

Shahin Gavanji
Young Researchers and Elite Club, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
University Blvd, Arqavanieh, Jey Street, P.O. Box:81595-158, Isfahan, Iran.

Corresponding author
gavanji.shahin2@gmail.com

Abstract

Herpes Simplex Viruses (HSV) viruses are highly contagious that commonly cause dermatitis, encephalitis, meningitis and genitourinary infections and also can lead to cervical cancer. For treatment of HSV infections, several physical methods and antiviral drugs are introduced, antiviral medications can also prevent or reduce outbreaks. The use of herbal medicine with antiviral effects attracted worldwide attentions. The aim of this review article is to introduce the Iranian Herbal Pharmacopoeia (IHP) with antiviral potential against two HSV serotypes and help to evaluate and develop the new drugs from natural sources. To provide this review, relevant articles in some authentic databases including PubMed, Web of Science, Science Direct, Scopus, Google Scholar and SID (scientific information database), from 1967 to April 2022 were collected, and selected botanicals from (IHP) with their scientific names and classifications and their outcome (CC50 and IC50) were introduced. In this review, scientific data regarding anti-herpetic activities of Iranian Herbal Pharmacopoeia (IHP) showed that 34 herbs from 17 families have antiviral potential to inhibit two HSV serotypes. According to families, Lamiaceae family has the highest percentage (29.41 %) of plants with antiviral activity against two HSV serotypes, also review of recent data showed that Salvia officinalis, Melissa officinalis, Securigera Securidaca, Hyssopus officinalis, Quercus brantii, Artemisia aucheri and Curcuma longa have remarkable antiviral activity against two HSV serotypes. Results of this review suggest that further research to identify and purify the bioactive compounds to determine the molecular mechanisms of action is needed.

Keywords: herpes simplex; herbal medicine; pharmacopoeia; antiviral; drugs.

INTRODUCTION

Herpes simplex virus (HSV) belongs to the Herpesviridae family and Alphaherpesvirinae subfamily (Álvez et al. 2020), is a global public health issue that can cause serious infection and classified into 2 serotypes: HSV-1 and HSV-2 (Gavanji et al. 2015; Pebody et al. 2004). The HSV genome consists of linear double-strand DNA, that causes primary and recurrent lesions (Reuven et al. 2003) HSV viruses are highly contagious that commonly cause dermatitis, encephalitis, meningitis and genitourinary infections and also can lead to cervical cancer (Klysk et al. 2020; Elad et al. 2010). HSV-1 or oral herpes mainly occurs on the face, chin, lips and mouth area which infection with this serotype causes small blisters or cold sores and inflammation of oral and eye cells (Asai and Nakashima 2018; Vaghela et al. 2021), ranging from mild to severe, that may develop and increase the risk of serious illness (Farooq and Shukla 2012; Anderson et al. 2014). This type of virus usually transmitted via oral secretions or direct contact with cold sores and it can cause more severe complications such as conjunctivitis (Koujah et al.2019), herpetic stromal keratitis (HSK) (Stuart and Keadle 2012), gingivostomatitis (George and Anil 2014) and HSV-1 encephalitis (HSE) (Feola et al. 2018). HSV-2, infection is usually transmitted through sexual contacts (Zhang et al. 2022) and affects the genital area and increased risk of human immunodeficiency virus (HIV) transmission (Crisci et al. 2019). For treatment of HSV infections, several physical methods and antiviral drugs such as valacyclovir, acyclovir, penciclovir, cidofovirare, and famiclovir are introduced (Sadowski et al. 2021). The antiherpetic agents target and inactive viral DNA polymerase enzyme and inhibit the proliferation and viral replication (Li et al 2019). Acyclovir (ACV) is an antiviral agent which widely used to control and treatment of HSV infections (Wei et al. 2021). In the process of drug action, the ACV converts to acyclovir triphosphate (acyclo-GTP) and inhibits viral DNA polymerase (Fyfe et al. 1978). Nowadays, due to the resistance mutations and tolerant enzyme production, especially in people with immunodeficiency disorders, urgent need to investigate the new antiviral drugs has been highlighted (Roy et al. 2022; Majewska and Mlynarczyk-Bonikowska 2022; Chuerduangphui et al. 2022). Numerous research studies have been done to investigate the novel antiviral agents
(Jassim and Naji 2003), and many anti-herpetic drugs have been approved (Sadowski et al. 2021), also researchers have been contributing to develop and produce a new vaccine against herpes infection but, no preventive HSV vaccines have been approved (Krishnan and Stuart 2021). The use of herbal medicine with antiviral effects attracted worldwide attentions (Gavanji et al. 2014). Scientific research has shown that natural bioactive compounds like flavonoids, terpenes, phenols and alkaloids have anti-HSV properties (Pesola and Coen 2008; Tolo 2006). Among the compounds mentioned, phenolic classes are the most commonly used for their anti-HSV properties (Treml et al. 2020) (Table1). This article is a review which provide various information about the potential antiviral activity of Iranian Herbal Pharmacopoeia (IHP) on Herpes Simplex Viruses (HSV), and help to evaluate and develop the new drugs from natural sources.

METHODS

To provide this review, all reported herbal medicine with antiviral effects against Herpes Simplex Viruses (HSV) were collected through Iranian Herbal Pharmacopoeia (IHP) (Ghasemi Dehkordi et al. 2003) and the most relevant articles in some authentic databases including PubMed, Web of Science, Science Direct, Scopus, Google Scholar and SID (scientific information database), from 1967 to April 2022 were searched. The search with different combinations of keywords were herbal medicine, herpes simplex viruses, antiviral agents, simplex virus, plants, Iran, herb. In this review, the selected articles and books were used to sets of the general and specific criteria to examine and present the medicinal plants with antiviral activities. Selected botanicals with their scientific names and classifications and their outcome (CC\textsubscript{50} and IC\textsubscript{50}) are presented in the article.

Antiviral activity of phytochemicals Against HSVs

Today's, various compounds with antiviral activity are contributing in the most of the medicinal process for the cure of human viral infections (Singh et al. 2021; Mukhtar et al. 2008). Many studies have shown that naturally produced compounds with antiviral activity against two serotypes of HSV are polysaccharides (Jin et al. 2015), flavonoids (Flores et al. 2016), terpenes (Soares et al. 2007), Steroids (da Rosa Guimarães et al. 2013), saponins (Ogawa et al. 2021), tannins (Lin et al. 2011), Phenolic (Hassan et al. 2011), alkaloids (Chen et al 2015), lignans (Chen et al 2015), Miscellaneous (Treml et al. 2020), proanthocyanidin (Terlizzi et al. 2016), quinones (Caruso et al. 2020) and thiosulfinates (Rouf et al. 2020). Several antiviral mechanisms of these phytochemicals have been identified, which most of them were verified against RNA and DNA viruses (Jang et al. 2021; Zrig 2022), such as herpes simplex virus type 1 and type 2 (DNA viruses) (Liu et al. 2019). These compounds inhibit the specific processes in the viral replication cycle (Hassan et al. 2018), and viral entry to the target cells (Rouf et al 2020), also they inhibit the viral gene and protein expression and suppress the NF-kB Activity (Hutterer et al. 2017) that can help to prevent the spread of viruses. Several studies have shown the antiviral mechanisms of these natural compounds against two HSV serotypes which are summarized in Table 1.

Antiviral potential of Iranian Herbal Pharmacopoeia (IHP)

The present review focuses on selected Iranian Herbal Pharmacopoeia (IHP) with antiviral potential against two HSV serotypes. In this review, the articles were read and 34 herbs from 17 families were selected based on anti-herpetic activity and percentages of each families were calculated. According to families in IHP, Lamiaceae has the highest percentage (29.41 %) of plants with antiviral activity against two serotypes of HSV (Figure 1).

![Figure 1. The percentages of plant families against two serotypes of HSV.](image-url)
Table 1. Anti-herpetic activity of natural compounds.

No	Chemical groups	Compositions	Mechanisms	Serotype	References
1	Flavonoid	Curcumin	Affecting the viral transactivator protein VP16 -mediated recruitment of RNA polymerase II (Pol II) to immediate early (IE) gene promoters and Inhibits the HSV-1 replication, Inhibition of HSV-1 and HSV-2 replication and adsorption	HSV-1/HSV-2	(Kutluay et al. 2008; Zalilawati et al. 2015; Zandi et al. 2010; Flores et al. 2016)
2	Flavonoid	Galangin	Inhibition of viral adsorption	HSV-1/HSV-2	(Lyu et al. 2005)
3	Flavonoid	Quercetin	Inhibiting expression of Glycoprotein D (gD) and infected cell protein 0 (ICP0), and suppresses the TLR-3	HSV-1	(Lee et al. 2017)
4	Flavonoid	Houttuynioid	Blocking membrane fusion	HSV-1	(Li et al. 2017)
5	Flavonoid	Epicatechin gallate	Inhibition of viral adsorption, binding to HSV glycoproteins	HSV-1	(de Oliveira et al. 2013; Isaacs et al. 2008; Subramanian and Geraghty 2007)
6	Flavonoid	Isoquercitrin	Inhibition of NF-kB activation	HSV-1/HSV-2	(Hung et al. 2015)
7	Alkaloid	Harmine	Inhibition of viral replication and gene expression, reduction the NF-kB activation, and IkB-α degradation	HSV-1/HSV-2	(Hutterer et al. 2017; Chen et al. 2015)
8	Phenolic	Psoromic acid	Inhibition of HSV-1 DNA polymerase	HSV-1	(Hassan et al. 2011)
9	Phenolic	Protocatechuyl aldehyde	Inhibition of viral replication	HSV-1	(Li et al. 2005; Hao 2019)
10	Phenolic	Kuwanon X	Inhibition of HSV-1 adsorption and reduction of (IE) gene expression and viral DNA synthesis	HSV-1	(Ma et al. 2016)
11	Tannins	Chebulagic acid (CHLA)	Blocking the interactions of virus and target cells	HSV-1	(Lin et al. 2011)
12	Tannins	Punicalagin (PUG)	Blocking the interactions of virus and target cells	HSV-1	(Lin et al. 2011)
13	Tannins	Chebulinic acid	Inhibition of viral attachment to the target cells	HSV-2	(Keshvarwani et al. 2017)
14	Tannins	Samaranginen	Inhibition of viral replication	HSV-1	(Kuo et al. 2002)
15	Diterpenes	Epitaondiol	Maybe target the HSV-1 replication	HSV-1	(Soares et al. 2007)
16	Miscellaneous	(E)-2-(2,4-hexadiynyliden) -1,6-dioxaspiro[4,5]dec-3-ene	Inhibition of viral gene expression	HSV-1	(Álvarez et al. 2015)
17	Polysaccharide	Eucheuma gelatinae polysaccharide (EGP)	Blocking the viral entry to the target cells by inactivating the viral particles, Inhibition of viral intracellular biosynthesis	HSV-1	(Jin et al. 2015)
18	Polysaccharide	Sulfated polysaccharide	Inhibition of HSV-1 replication and viral entry to the target cells	HSV-1	(Zhu et al. 2006)
19	Polysaccharide	Polysaccharide Boergeseniella thuyoides	Inhibition of virus adsorption	HSV-1	(Bouhlal et al. 2011)
20	Polysaccharide	Alginic acids and Sulfated	Inhibition of viral attachment to the target cells by interaction with virus particles	HSV-1	(Saha et al. 2012)
21	Polyphenol	Mangiferin	Inhibition of viral replication	HSV-1	(Zheng and Lu 1990)
22	Polyphenol	Rosmarinic acid	Inhibition of viral replication and viral attachment to the target cells	HSV-1/HSV-2	(Astani et al 2014; Chen et al 2017)
23	Polyphenol	Yatein	Inhibiting expression of Infected-cell polypeptide 4 (ICP4) and Infected cell protein 0 (ICP0), and viral DNA synthesis	HSV-1	(Koo et al 2006)
24	Monoterpenoid	Geraniol	Inhibition of viral replication	HSV-2	(Hassan et al. 2018)
25	Diterpenoid	Andrographolide	Inhibiting expression of Glycoprotein D	HSV-1	(Wiart et al. 2005)
26	Steroids	Halistanol sulfate	Inhibition of viral attachment to the target cells	HSV-1	(da Rosa Guimarães et al. 2013)
27	Organosulfur	Allicin	Inhibition of viral entry to the target cells	HSV-1	(Rouf et al 2020)
28	Triterpenoid	Glycyrrhizic acid methyl ester	Inhibition of viral replication	HSV-1	(Ikeda et al. 2005)
29	Triterpenoid	Ursolic acid	Inhibition of viral replication [78,79]	HSV-1/HSV-2	(Tshilanda et al. 2020; Bag et al. 2012)
Apiaceae

Apiaceae family is called Umbelliferae, includes a large number of medicinal plants with various therapeutic properties and has a significant role in pharmaceutical development (Amiri and Joharchi 2016; Ekiert 2000). *Cuminum cyminum* belonging to family Apiaceae is an aromatic plant that can be used as medicinal herbs to treat various diseases (Sowbhagya 2013; Mnif and Aifa 2015; Gavanji et al. 2015) and flavoring agents to improve the flavor of foods (Johri 2011). Researchers have reported that methanol extract of *C. cyminum* showed the antiviral effects against HSV-1 (Table 2). Based on this study, the CC$_{50}$, IC$_{50}$ values were 0.45 and 0.18 mg/mL, respectively (Motamedifar et al. 2010). The molecular mechanism of *C. cyminum* against Herpes Simplex Virus has not yet been characterized, but the polyphenolic compounds in the extract may inhibit the HSV virus (Ani et al. 2006).

Asteraceae

The Asteraceae family, or sunflower family, including several thousand plants, has a long history of use in traditional herbal medicine (THM), for the treatment of diseases (Amiri and Joharchi 2016; Ekiert 2000). *Artemisia aucheri* belonging to family Asteraceae is an aromatic and endemic plant in Iran, which is widely used for treatment of various diseases (Gavanji et al. 2014). This plant has been reported for its antiviral activities (Kshirsagar and Rao 2021), and Karamoddini et al assessed the antiviral properties of Artemisia species against HSV-1 which *Artemisia annua* inhibited this serotype at different concentrations (Karamoddini et al. 2011). Another study indicated that Aqueous extract of *A. aucheri* had Anti-herpetic property on HSV-1 and reduced the expression of UL46 and US6 genes, and the IC$_{50}$ of this extract, 24.7 μg/ml was determined (Zamanian et al. 2021). In the other study the anti-herpetic activity of aqueous extract of *A. aucheri* against HSV-1 was evaluated that viral infection significantly reduced at 50 and 75 μg/ml (Zamanian et al. 2021). Research in 2015 showed that phenolic compounds in *Artemisia* has antitherpetic activity which can cause some abnormalities in the function and structure of herpes simplex virus (Gavanji et al. 2015). *Arctium lappa* is another member of Asteraceae family which possesses various therapeutic potential to treat infectious diseases (Bai et al. 2016), In addition *A. lappa* exhibited, anti-inflammatory (Pirvu et al. 2017), anticancer (Leonard et al. 2006) and antiviral effects against two serotypes of HSV (Chan et al. 2001; Dias et al. 2017). A study has been reported, that 400 mg/ml of hydroalcoholic extract of *A. lappa* inhibited the HSV-1 in in vitro condition (Dias et al. 2017) (Table 2).

Echinacea purpurea

A species of Asteraceae family is widely used for the treatment of diseases (Shemluck 1982), such as chest & lung conditions, colds, coughs, candidiasis and influenza (Hudson et al. 2005). Furthermore, *E. purpurea* exhibited significant antiviral activity against HSV-1 (Thompson 1998). Also, Garcia et al assessed the antiberpetic activity of *E. purpurea* against HSV-1 which the IC$_{50}$ and CC$_{50}$ values, were determined to be 500 and 900 μg/ml, respectively (Farahani 2013). According to a study, choric acid exhibited antiviral properties against HSV-1 (Binns et al. 2002). Another in vivo study showed that *E. purpurea* polysaccharide (EP), antiviral effects on the development of HSV by promoting the immune response (Ghaemi et al. 2009). Another important species of Asteraceae family is *Tanacetum parthenium* which has been traditionally used to treat various diseases (Ghaemi et al. 2009). Benassi-Zanqueta et al. assessed the antiviral efficacy of chlorogenic acids and parthenolide which derived from *T. parthenium* against HSV-1 that results showed that chlorogenic acids was effective against HSV-1 (Benassi-Zanqueta et al. 2019). Base on this research, the hydroethanolic extract inhibited viral replication and the EC$_{50}$ value was18.1 mg/ml.

Avicenniaceae

Avicennia marina is a member of Avicenniaceae family, which traditionally used for treatment of small pox, rheumatism and respiratory problems (Afzal et al. 2011; Namazi et al 2013). And has strong antiviral activity against HSV-1 (Chiang et al. 2003; Namazi et al. 2013; Bebbahani et al. 2013). A study showed that glycerin extract of *A. marina*, inhibited the HSV-1 and the IC$_{50}$ values before and after virus attachment and CC$_{50}$ were determined to be 87.1, 41.9 and 5750.96 μg/ml, respectively (Zandi et al. 2009). Based on the previous studies, *A. marina*, contains many phyto compounds with antiviral potentials to inhibit herpes simplex viruses (HSV). Several studies have shown that flavonoids in the *A. marina* extract plays a crucial role in antiviral activities against HSV-1 (Chiang et al. 2003; Namazi et al. 2013; Bebbahani et al. 2013). (Table 2).
Table 2. Antiviral mechanism of Iranian Herbal Pharmacopoeia (IHP) against herpes simplex viruses (HSV-1 and -2)

No	Plant name	Family	Type of study (in vitro or in vivo)	Type of virus	Compounds and Mechanisms	References
1	Aloe vera	Xanthorrhoeacea	In vitro	HSV-1/HSV-2	Aloe-emodin inhibits the replication of viral enveloped	(Lin et al. 2008; Zandi et al. 2007; Reza zadeh et al. 2016)
2	Artemisia aucheri	Asteraceae	In vitro	HSV-1	Artemisin inhibits the central regulatory processes and blocks the metabolic requirements of replication, reduces the UL46 and US6 genes	(Kshirsagar and Rao 2021; Karamoddini et al. 2011; Zamanian et al. 2021a; Zamanian et al. 2021b)
3	Arctium lappa	Asteraceae	In vitro	HSV-1	Arctigenin inhibits the viral replication, Phenolic constituents such as caffeic acid and chlorogenic acid inhibit the viral multiplication	(Dias et al. 2017; Wang et al. 2019; Yang et al. 2005; Lal et al. 2020; Chiang et al. 2002; Chan et al. 2011)
4	Avicenna marina	Avicenniaceae	In vitro	HSV-1	Luteolin inhibits the viral replication	(Chiang et al. 2003; Namazi et al. 2013)
5	Camellia sinensis	Theaceae	In vitro	HSV-1	Epicatechin gallate Inhibits the viral adsorption, binding to HSV glycoproteins	(de Oliveira et al. 2013; Issacs et al. 2008; Subramani and Geraghty 2007)
6	Cuminum cyminum	Apiaceae	In vitro	HSV-1	EHP [1-(2-Ethyl, 6-Heptyl) Phenol] effects on the percentage of plaque	(Mohamadein et al. 2015; Motamedifar et al. 2010)
7	Curcuma longa	Zingiberaceae	In vitro	HSV-1/HSV-2	Affecting the viral transactivator protein VP16 -mediated recruitment of RNA polymerase II (Pol II) to Immediate early (IE) gene promoters and Inhibits the HSV-1 replication, Inhibition of HSV-1 and HSV-2 replication and adsorption	(Hutterer et al. 2017; Kutluay et al. 2008; Zalilawati et al. 2015; Flores et al. 2016)
8	Echinacea purpurea	Asteraceae	In vitro/In vivo	HSV-1	Cichoric acid interact and inhibit the virus activities	(Boints et al. 2002; Playmears et al. 2000; Burlou-Nagy et al. 2022; Zhang et al. 2014)
10	Euphoria spinidens	Euphorbiaceae	In vitro	HSV-1	Betulin and (3β,23E)-cycloura-23-ene-3,25-diol, the extract Inhibits the viral replication and adsorption	(Shamsabapipour et al. 2013; Karimi et al. 2016)
11	Eucalyptus caesia	Myrtaceae	In vitro	HSV-1	Unknown	(Schnitzler et al. 2001; Brezáni et al. 2018; Mierres-Castro et al. 2021)
12	Eucalyptus globulus	Myrtaceae	In vitro	HSV-1	Grandinol, sideroxylin, and tereticornate inhibit the viral replication	(Schnitzler et al. 2001; Brezáni et al. 2018; Mierres-Castro et al. 2021; Ma and Yao 2020; Mohan et al. 2020)
13	Glycyrrhiza glabra	Leguminosae	In vitro	HSV-1	glycyrrhizic acid (glycyrrhizin) inhibits the viral replication, suppress the growth	(Ghannad et al. 2014; Fukuchi et al. 2016; van Rossum et al. 1998; Cohen 2005; Huan et al. 2021)
14	Hypericum perforatum	Hypericaceae	In vitro/In vivo	HSV-1/HSV-2	Hypercin Inhibits the viral adsorption	(Huan et al. 2021; Weber et al. 1994; Mohamed et al. 2022; Fritz et al. 2007; Westh et al. 2004; Béjaoui et al. 2017)
15	Hyssopus officinalis	Lamiaceae	In vitro	HSV-1/HSV-2	Unknown	(Akram et al. 2018; Behbahani 2009; Schnitzler et al. 2019)
16	Melissa officinalis	Lamiaceae	In vitro	HSV-1/HSV-2	Rosmarinic acid inhibits the viral attachment to host cells	(Astani et al. 2014a; Astani et al. 2012b; Mazzanti et al. 2008)
17	Mentha piperita	Lamiaceae	In vitro	HSV-1/HSV-2	Piperitenone oxide (PEO) and Menthol Inhibit the viral replication and adsorption	(Wolbling et al. 1994; Koychev et al. 1999; Civitelli et al. 2014; Herrmann et al. 1967)
18	Myrtus communis	Myrtaceae	In vitro	HSV-1	Unknown	(Moradi et al. 2011; Alipour et al. 2014; Issacs et al. 2008)
No	Plant name	Family	Type of study (in vitro or in vivo)	Type of virus	Compounds and Mechanisms	References
----	--------------------------	--------------	-------------------------------------	---------------------	--	---
19	Olea europaea	Oleaceae	In vitro	HSV-1	Phenolic compounds such as caffeic acid inhibits the viral multiplication	(Motamedifar et al. 2015; Ben-Amor et al. 2021; Ikeda et al. 2011)
20	Ocimum basilicum	Lamiaceae	In vitro	HSV-1/HSV-2	Ursolic acid and Apigenin Inhibit the viral replication	(Chiang et al. 2005; Bag et al. 2012; Lin et al. 2008)
21	Plantago major	Plantaginaceae	In vitro	HSV-1/HSV-2	Caffeic acid inhibits the viral multiplication	(Chiang et al. 2002; Ben-Amor et al. 2021; Ikeda et al. 2011)
22	Quercus Persica	Fagaceae	In vitro	HSV-1	Tannic acid inhibits viral replication	(Chiang et al. 2005; Wu et al. 2022; Karimi et al. 2013; Kaczmarek 2020; Nance and Shearer 2013)
23	Ricinus communis	Euphorbiaceae	In vitro	HSV-1	The alkaloid and phenolic compound have antiherpetic activity	(Elkousy et al. 2021; Abdul et al. 1996)
24	Rheum palmatum	Polygonaceae	In vitro/In vivo	HSV-1	Unknown	(Abdul et al. 1996; Kurokawa et al. 1993; Chang et al. 2014; Shen et al. 2019)
25	Rosmarinus officinalis	Lamiaceae	In vitro	HSV-1/HSV-2	Rosmarinic acid Inhibit of viral replication and viral attachment to the target cells	(Al-Megrin et al. 2020; Mancini et al. 2009; Hitl et al. 2021; Chen et al. 2017; Astani et al. 2014)
26	Salvia officinalis	Lamiaceae	In vitro/In vivo	HSV-1/HSV-2	Thujone, β-caryophyllene linalyl acetate, alpha terpinyl acetate, and germacrene D have anti-herpetic activity	(Shen et al. 2019; Al-Megrin et al. 2020; Mancini et al. 2009; Hitl et al. 2009; Schnitzler et al. 2008; Rajbhandari et al. 2001; Santoyo et al. 2014; Ezema et al. 2022)
27	Satureja hotensis	Lamiaceae	In vitro	HSV-1	Unknown	(Hamidpour et al. 2014; Khalil et al. 2020)
28	Securigera Securidaca	Leguminosae	In vitro	HSV-1	Kaempferol and kaempferol-7-O-glucoside inhibit the HSV infection but the mechanism is unknown	(Behbahani et al. 2014; Behbahani et al. 2013)
29	Solanum paniculatum	Solanaceae	In vitro	HSV-1	Unknown	(Valadares et al. 2009; Kaunda and Zhang 2019)
30	Tanacetum parthenium	Asteraceae	In vitro/In vivo	HSV-1	Parthenolide did not directly act against HSV, and it can handle the defense mechanisms in host cells against viral particles	(Benassi-Zanqueta et al. 2019; Benassi-Zanqueta et al. 2018)
31	Thymus vulgaris	Lamiaceae	In vitro	HSV-1/HSV-2	Thymol reduces the viral transmission	(Gavanji et al. 2015; Catella et al. 2021; Nolkemper et al. 2006; Shareif-Rad et al. 2017; Lai et al. 2012)
32	Thymus kotschyanus	Lamiaceae	In vitro	HSV-1/HSV-2	Borneol, and isoborneol that inhibits the viral replication	(Farahani 2017; Yang et al. 2020)
33	Zataria multiflora	Lamiaceae	In vitro	HSV-1	Rosmarinic acid inhibits the viral attachment to host cells	(Arabzadeh et al. 2020; Ben-Shabat et al. 2020; Mardani et al. 2012; Astani et al. 2014; Chen et al. 2017)
34	Zingiber officinale	Zingiberaceae	In vitro/In vivo	HSV-1	Unknown	(Schnitzler et al. 2012; Camero et al. 2019; Koch et al. 2008; Hayati et al. 2021)
Boraginaceae

Echium amoenum, commonly known as borage, belongs to the family Boraginaceae (Zannou et al. 2021), which has a long history in Iranian traditional medicine (ITM) for the treatment of influenza and infectious diseases (Ranjbar et al. 2006). This plant has antiviral properties against HSV-1, and the IC₅₀ and CC₅₀ values were determined to be 500 and 1000 μg/ml, respectively, also the results of this research showed that virus replication was inhibited at the lower concentration than 400 μg/ml (Abolhassani 2010; Farahani 2013).

Euphorbiaceae

Euphorbia spinidens, a member of Euphorbiaceae family, is a medicinal plant which has been widely used in different conditions, coughs, colds and Infectious diseases (Vlake et al. 2014), also several studies demonstrated that H. officinalis extract has antifungal and antiviral activity (Fathiazad et al. 2011). A study by Behbahani, showed that methanolic extract of H. officinalis significantly inhibited two HSV serotypes, which the EC₅₀ and CC₅₀ values, against HSV-1, were determined to be 4.1±0.40 and 960 μg/ml, respectively, and for HSV-2, the EC₅₀ and CC₅₀ values were > 5.0 and 100 μg/ml, respectively (Behbahani 2009). Another study stated that essential oil of H. officinalis was active against HSV-1, and EC₅₀ and CC₅₀ values, were determined to be 0.0001±0.00001 and 0.0075±0.0002 % respectively (Schnitzler et al. 2007). Another important species of Lamiaceae family is Melissa officinalis, which is a well-known and it has been used in traditional medicine for treatment of various diseases (Miraj et al. 2017). Furthermore, a research showed that M. officinalis has inhibitory activity against HSV-1 and inhibited the viral attachment to the host cells, and the IC₅₀ and SI values of 0.4 μg/ml and 350 were determined, respectively (Astani et al 2014). Mentha piperita is another important species of Lamiaceae family which has therapeutic potential to treat different diseases (Zaker et al. 2014; Alves et al. 2012). Schuhmacher et al., demonstrated that the essential oil of M. piperita, can able to inhibit the herpes simplex virus type 1, and reduce the plaque formation by up to 82% for HSV-1 (Schuhmacher et al. 2003). Another research stated that the M. piperita extract was effective against HSV-1 and inhibited the viral replication cycle, which ED₅₀ and TI values were determined to be 62.70 mg/ml and 1.79, respectively (Omidian et al. 2014). Several studies exhibited that many species of Lamiaceae family has potential to inhibit the two HSV serotypes. Ocimum basilicum or great basil, a traditional medicinal plant, belongs to the family Lamiaceae which is widely used for treatment of different diseases including, headaches, diabetes, nerve pain and anxiety (Bora et al. 2011). A study revealed that water and ethnologic extracts of O. basilicum have inhibited two HSV serotypes, the result of this research showed that the EC₅₀ and SI values of water extracts against HSV-1, were determined to be 90.9 mg/ml and 16.2, also for HSV-2 were 51.4 mg/ml and 28.6 respectively. Ethnologic extract showed inhibitory activity against HSV-1, and EC₅₀ and SI values of 108.3μg/ml and 6.3 were determined, respectively (Chiang et al. 2005).

Fagaceae

Quercus Persica, commonly known as oak, belonging to the family Fagaceae, has been used in Iranian traditional medicine(ITM) for the treatment of various disease (Karimian et al. 2020). A study demonstrated that hydroalcoholic extract of Q. Persica has anti-HSV activity. In this research the authors conclude that Q. Persica extract has inhibited the HSV-1, and the IC₅₀ values, before and after attachment to BHK, were determined to be 1.02 and 0.257 μg/ml, respectively (Karimi et al. 2013). Another study by Karimi et al. stated that Quercus brantii extract showed the inhibitory activity against HSV-1, and the IC₅₀ and SI values of 4.3 μg/ml and 48.4 were determined, respectively (Karimi et al. 2017).

Hypericaceae

Hypericum perforatum, a member of Hypericaceae family, is a medicinal plant which has been widely used as antidepressants, anti-cancer and psychotic disorders (Klemow et al. 2011). A number of studies demonstrated that H. perforatum, has strong antiviral activity against numerous viruses, including radiation-leukaemia virus (RadLV), friend virus (FV), human immunodeficiency virus type 1 (HIV-1) and HSV-1 (Weber et al.1994). Also a scientific research showed that the complex of H. perforatum and lysine hydrochloride, remarkably inhibited the HSV-1 and the IC₅₀ value was from 6.8 to 9.7 mg/ml (HU et al. 2004).
species of Lamiaceae family is *Rosmarinus officinalis*, which is widely used in treatment of rheumatic pain, headache, hysteria, stomachache, depression and infectious diseases (Ghasemzadeh Rahbardar et al. 2020). A study reported that extract of *R. officinalis*, exhibited potential antiviral activity against HSV-1 and HSV-2, which this extract at the concentration of 30 μg/ml inhibited the 55% of HSV-1 and at 40μg/ml inhibited the 65% of HSV-2 plaques and extract of *R. officinalis* showed the significant inhibitory effect at the 50 μg/ml concentration two HSV serotypes (Al-Megrin et al. 2020).

Another important species of Lamiaceae family is *Salvia officinalis*, that is used in traditional medicine to treat different kinds of diseases, such as rheumatism, diarrhea, ulcers, inflammation and paralysis. This plant contains several types of phytochemicals which exhibited significant antibacterial, antifungal and antiviral activities (Ghorbani and Esmaeilizadeh 2017). A study demonstrated that two diterpenoids compounds (safficinolide and sage one) which is isolated od aerial parts, have antiviral activity (Smidling et al. 2008). A number of research studies demonstrated that *S. officinalis* has antiviral activity against two serotypes of HSV. The extract of *S. officinalis* was used in the study, against HSV-1, which the IC50 value of this extract, 199.0 μg/ml was determined (Smidling et al. 2008), and in another studies IC50 value was 1.41–1.88 μg/ml and Inhibited the plaque formation (Santoyo et al. 2014). Schnitzler et al. studied the antiviral activity of *S. officinalis* extract against two serotypes of HSV which IC50 values for HSV-1 and 2 were 0.18 and 0.04 μg/ml respectively (Schnitzler et al. 2008).

Satureja hortensis is another important species of Lamiaceae family which can use in treatment of many ailments and diseases. In this plant, various types of phytochemicals such as flavonoids steroids, triterpenoids, and and sesquiterpenoids, have been identified (Gursoy et al. 2009; Golestannejad et al. 2015), which are used in pharmaceutical industries (Tepe and Cilkiz 2016). A study showed that this plant has potential antiviral activity against HSV-1, which IC50 and CC50 values were determined to be 0.008% and 0.245%, respectively (Gavanji et al. 2015).

One of the important species of Lamiaceae family is *Thymus vulgaris* commonly known as thyme and is the rich sources of phytochemicals which are widely used for the treatment of inflammation, cancers, and infectious diseases (Gavanji and Larki 2017). A study demonstrated that the essential oil of *T. vulgaris* was effective against two serotypes of HSV and reduce the viral infectivity, which IC50 for 1,8-cineole, 1200 μg/ml was determined (Gavanji and Larki 2017). Furthermore, a study revealed that aqueous extract of *T. vulgaris* has inhibitory effects against two serotypes of HSV, which IC50 and SI values for HSV-1, were 0.065 mg/ml and 954, also for HSV-2, 0.077 mg/ml and 805 were determined, respectively (Nolkemper et al. 2006). Another member of Lamiaceae family is *Thymus kotschyanus* which has anti-viral activity and inhibited HSV-1 at the higher concentration of 400 μg/ml (Farahani 2017). Based on a study, *T. kotschyanus* contains many bioactive compounds such as Borneol, has impressive antiviral potentials to inhibit herpes simplex viruses (Armak et al. 1999) (Table 2). *Zataria multiflora* is one of the most important species of Lamiaceae family which is used to relieve some of illnesses such as fever, bone pain, flatulence, cough, cold and infectious diseases (Ghorani et al. 2022; Dadashi et al. 2016). A research study has been documented, reporting that methanolic extract of *Z. multiflora* at the 1000 mg/ml concentration, remarkably reduce the plaque formation of HSV-1 (Arabzadeh et al. 2013). Moreover, essential oil of *Z. multiflora* exhibited antiviral potential against HSV-1, in which IC50 and SI values were determined to be 0.0059% and 11.7, respectively (Mardani et al. 2012). Another study revealed that essential oil of *Z. multiflora* contains Rosmarinic acid which is an antiviral compound and inhibited the viral attachment to host cells. this study demonstrated that *Z. multiflora* oil, has strong antiviral activity which IC50 and CC50 values were determined to be 0.003% and 0.166%, respectively (Gavanji et al. 2015). *Zingiber officinale* or Ginger is another important species of Lamiaceae family which is widely used for treatment different diseases in traditional medicine (Grzanna et al. 2005). *Z. officinale* has broad-spectrum antiviral potential on Human Respiratory Syncytial Virus (HRSV) (Chang et al. 2013), hepatitis C virus (HCV), influenza A (H1N1) (Sahoo et al. 2016), and two serotypes of HSV [123,180]. The study has demonstrated that *Z. officinale* inhibited the HSV-2 with IC50 and SI values of 0.0001% and 40 respectively (Alahverdiyev et al. 2013). Another study by Koch et al. stated that *Z. officinale* possess antiviral activity, and the IC50 value of 0.001% was determined (Koch et al. 2008) (Table 2).

Leguminosae

Securigera Securidaca, a species of Leguminosae family, is widely used as herbal for the treatment of several diseases in Iranian traditional medicine (ITM). *S. Securidaca* is a rich source of flavonoids having significant antibacterial, antifungal and antiviral activities (Raesi Vanani et al. 2019). Also the result of a research study showed that, two major compounds, including Kaempferol and kaempferol-7-O-glucoside which is isolated from *S. Securidaca*, can inhibit the HSV infection (Behbahanli et al. 2013). Another study showed that methanolic extract of *S. Securidaca* has inhibited the HSV-2 with IC50 and CC50 values of 1.6 and 130 μg/ml, respectively (Sayedipour et al. 2012). Furthermore, *S. Securidaca* exhibited significant antiviral activity against HSV-1 which IC50 and CC50 values were determined, respectively (Nolkemper et al. 2006). Another member of Lamiaceae family is *Thymus kotschyanus* which has anti-viral activity and inhibited HSV-1 at the higher concentration of 400 μg/ml (Farahani 2017). Based on a study, *T. kotschyanus* contains many bioactive compounds such as Borneol, has impressive antiviral potentials to inhibit herpes simplex viruses (Armak et al. 1999) (Table 2). *Zataria multiflora* is one of the most important species of Lamiaceae family which is used to relieve some of illnesses such as fever, bone pain, flatulence, cough, cold and infectious diseases (Ghorani et al. 2022; Dadashi et al. 2016). A research study has been documented, reporting that methanolic extract of *Z. multiflora* at the 1000 mg/ml concentration, remarkably reduce the plaque formation of HSV-1 (Arabzadeh et al. 2013). Moreover, essential oil of *Z. multiflora* exhibited antiviral potential against HSV-1, in which IC50 and SI values were determined to be 0.0059% and 11.7, respectively (Mardani et al. 2012). Another study revealed that essential oil of *Z. multiflora* contains Rosmarinic acid which is an antiviral compound and inhibited the viral attachment to host cells. this study demonstrated that *Z. multiflora* oil, has strong antiviral activity which IC50 and CC50 values were determined to be 0.003% and 0.166%, respectively (Gavanji et al. 2015). *Zingiber officinale* or Ginger is another important species of Lamiaceae family which is widely used for treatment different diseases in traditional medicine (Grzanna et al. 2005). *Z. officinale* has broad-spectrum antiviral potential on Human Respiratory Syncytial Virus (HRSV) (Chang et al. 2013), hepatitis C virus (HCV), influenza A (H1N1) (Sahoo et al. 2016), and two serotypes of HSV [123,180]. The study has demonstrated that *Z. officinale* inhibited the HSV-2 with IC50 and SI values of 0.0001% and 40 respectively (Alahverdiyev et al. 2013). Another study by Koch et al. stated that *Z. officinale* possess antiviral activity, and the IC50 value of 0.001% was determined (Koch et al. 2008) (Table 2).
values of 2 and 500 μg/ml, were determined, respectively (Behbahani et al. 2013).

Glycyrrhiza glabra is another medicinal plant from Leguminosae family which has been reported for healing gastroesophageal reflux disease, liver diseases, tuberculosis and infectious diseases (Wahab et al. 2021). Numerous antiviral phytochemicals, such as glycyrrhetinic acid, and glycyrrhizin were isolated from _G. glabra_ which have antiviral activity against HSV-1 (Ming and Yin 2013; Huan et al. 2021). Based on the results of a research, _G. glabra_ extract has inhibited the HSV-1 with IC_{50} and CC_{50} values of 500 and 800 μg/ml, respectively (Monavari et al. 2008). Another study by Fukuchi et al. stated that water extract of _G. glabra_ with EC_{50} and SI values of 650 to 740 mg/ml, and 2.0 to >4.6, respectively, showed a strong inhibitory activity against HSV-1, compared to alkaline extracts of _G. glabra_ with EC_{50} and SI values of 600 to >3000 mg/ml, and to 3.2, respectively (Fukuchi et al. 2016).

Myrtaceae

Eucalyptus caesia and _Eucalyptus globulus_ are the two most common species of Myrtaceae family which have Numerous phytopharmacological potential to treat different kinds of diseases, such as asthma, pulmonary, cold, bronchitis, and infectious diseases (Mieres-Castroet al. 2021). Both of these species exhibited antiviral properties against HSV-1 and HSV-2 (Mieres-Castro et al. 2021). A study demonstrated that essential oil of _E. globulus_ inhibited two HSV serotypes which IC_{50} and SI values for HSV-1, were determined to be 0.009% 3.3, respectively and for HSV-2, were 0.008% and 3.75, respectively (Schnitzler et al. 2001). Furthermore, a research demonstrated that 1,8-cineole reduced the HSV infection under vivo condition (Behbahani et al. 2013). Another study Researchers compared the Effect of _E. globulus_ oil and individual monoterpenes against HSV-1, which result of this study showed that _E. globulus_ 1,8-cineole, α-pinene, γ-Terpinene, p-cymene, α-Terpineol and terpinen-4-ol, have antiviral activity against HSV-1 with IC_{50} of 55, 1.20, 4.5, 7.0, 16.0, 22.0, and 60.0 μg/ml, respectively (Astani et al. 2010). Another study revealed that essential oil of _E. caesia_ inhibited two HSV-1 which IC_{50} and CC_{50} values, were determined to be 0.004% and 0.287%, respectively (Gavanji et al. 2015).

Myrtus communis is another important member of Myrtaceae family, which has been used in traditional medicine to treat many diseases such as hemorrhoid, recurrent aphthous stomatitis, diarrhea, and infectious diseases (Mahboubi 2016; Alipour et al. 2016). Based on a study, the hydroalcoholic extract of _M. communis_, has impressive antiviral potentials to inhibit HSV-1, which IC_{50} and CC_{50} values, were determined to be 3100 and 4960 μg/ml, respectively (Moradi et al. 2011). This herb showed anti-herpetic activity, under clinical trial condition, which the result of this study demonstrated that myrtle oil, reduced the signs and symptoms of disease in the treated group, in comparison to other control groups (Zolfaghari et al. 1997).

Oleaceae

Olea europaea, a member of Oleaceae family, can be used to treat a wide range of diseases in traditional medicine, such as diarrhea, hemorrhoids, infectious diseases, inflammation and rheumatism (Alipour et al. 2016). _O. europaea_ has antiviral activities against many types of viruses, including Canine parvovirus (CPV), hepatitis virus, bovine rhinovirus (BRAV), herpes virus (HSV) and Feline leukemia virus (FeLV) (Ben-Amor et al. 2021). A study demonstrated that hydroalcoholic extract of _O. europaea_ var. sylvestris exhibited anti-HSV-1 activity that EC_{50} and CC_{50} values, for pre-infection assay, were determined to be 0.12 and 0.2 mg/ml, respectively and for post-infection assay were 0.15 and 0.2 mg/ml, respectively (Ben-Amor et al. 2021). Another study by Motamedifar et al. stated that hydroalcoholic extract of _O. europaea_ with IC_{50} and CC_{50} values of 660 and 1750 μg/ml, respectively, showed a strong inhibitory activity against HSV-1 (Motamedifar et al. 2015).

Plantaginaceae

Plantago major belongs to the family Plantaginaceae, which is commonly known as greater plantain, and it has been traditionally used to treat many diseases such as fever, constipation and wounds and bleeding. Furthermore, _P. major_ has been reported to contain caffeic acid, that demonstrated the strongest antiviral activity against two serotypes of HSV (Najafian et al. 2018). A study showed that aqueous extract of _P. major_ has weak antiviral activity against HSV-1 and HSV-2, in extracts, pure compounds such has Caffeic acid demonstrated the strongest antiviral activity against HSV-1. Moreover, this study stated that aqueous extract of _P. major_ inhibited HSV-2 with EC_{50} and SI values, of 843 mg/ml and 2.2, respectively and Caffeic acid isolated from _P. major_ exhibited the antiviral activity against HSV-1 with EC_{50} and SI values, of 15.3 μg/ml and 671, and HSV-2 EC_{50} and SI values, were determined to be 87.3 μg/ml and 118, respectively (Chiang et al. 2002; Chiang 2003).

Polygonaceae

Rheum palmatum a flowering plant of Polygonaceae family, which can be used to treat a wide range of diseases such as gastroenteritic, herpes and kidney disease (Chang et al. 2014). _R. palmatum_ contains several types of natural compounds such as emodin, chrysophanol and aloes-eminon which exhibited significant anti-viral activities (Li et al. 2007). A study has been documented that Aloe-eminon isolated from _R. palmatum_ has antiviral activity against HSV (Types 1 and 2), influenza virus (Sydiskis et al. 1991), human cytomegalovirus (HCMV) (Barnard et al. 1992), and polio viruses (Semple et al. 2001), also emodin and
chrysophanol have antiviral property against hepatitis B virus (HBV) (Shuangsuo et al. 2006), hepatitis C virus (HCV) and human immunodeficiency viruses (HIV) (Kubin et al. 2005). A study demonstrated that R. tanguicium nanoparticles suppressed the HSV-1, which EC$_{50}$ and CC$_{50}$ values, were determined to be 194.1 and 415.3 μg/ml, respectively (Shen et al. 2019).

Solaneaceae

Solanium paniculatum or jurubeba, a member of Solanaceae family, which is widely used to treat several diseases including hypertension, anemia, inflammation and tuberculosis (Tenório et al. 2016). A research study by Valadares et al., showed that ethanolic extract of *S. paniculatum* exhibited antiviral property against HSV-1, which EC$_{50}$ and SI values, were determined to be 298 mg/ml and 1.4, respectively (Valadares et al. 2009).

Theaceae

C. sinensis or green tea, is a medicinal plant of Theaceae family which is used as the most consumed and favorable drink in the world. *C. sinensis* has many medicinal properties (Singhal et al. 2017). Based on a study, *C. sinensis* contains many bioactive compounds that has impressive antiviral potentials to inhibit herpes simplex viruses tape 1, with IC$_{50}$ and SI values, of 20 mg/ml and 50, respectively (Farahani et al. 2014). Another study, stated that aqueous extract of *C. sinensis* exhibited the antiviral activity against HSV-1, which IC$_{50}$, CC$_{50}$ and SI values, were determined to be 50, 1000 μg/ml and 20, respectively (Farahani et al. 2013). Another scientific research reported that methanolic extracts of *C. sinensis* completely inhibited two HSV serotypes at 12 μg/mL concentration (Deepika et al. 2014).

Xanthorrhoeaceae

Aloe vera, commonly known as Aloe barbadensis, is a member of Xanthorrhoeaceae family which has been traditionally used to treat various diseases such as abdominal pains, malaria, arthritis, fever, and skin diseases (Adams et al. 2014). *A. vera* produces a wide range of phytochemicals, such as emodin and Aloe-emodin which exhibit potential strong antiviral activity against two serotypes of HSV, immunodeficiency virus (HIV), and influenza virus (brahimi et al. 2021). Another an anthraquinone compound isolated from *A. vera*, is Aloe-emodin which inhibits the viral replication of HSV serotypes and the IC$_{50}$ value, of 1.5–6.0 μg/mL was determined (Sydiskis et al. 1991). A study demonstrated that topical *A. vera* gel at 0.2 to 5% concentrations can inhibit HSV-1 growth (Rezazadeh et al. 2016). Another study by Ebrahimi et al. revealed that *A. vera* extract inhibited the HSV-1 with IC$_{50}$, CC$_{50}$ and SI values, were determined to be 10000 ± 55, 20000 ± 94 μg/ml, and 2.0 respectively (brahimi et al. 2021). Also the result of a study showed that hot glycerine extract of *Aloe vera* can able to inhibit the HSV-2, which the IC$_{50}$, CC$_{50}$ and SI values, were determined to be 428, 3238 μg/ml and 7.56, respectively (Zandi et al. 2007).

Zingiberaceae

Curcuma longa belongs to the family Zingiberaceae, which is used in Iranian traditional medicine (ITM) for healing rheumatism, anorexia, wounds, cough and respiratory diseases (Trujillo et al. 2013). A research study showed that, 2 mg/mL of *C. longa* extract reduced the plaque formation of HSV-1 (Fani et al. 2015). Furthermore, a research demonstrated that *C. longa* has inhibitory effect against HSV-1, and the IC$_{50}$, CC$_{50}$ and SI values were 33.0, 484.2 μg/ml and 14.6, respectively (Lyu et al. 2005). Another study revealed that *C. longa* extract contains polyphenolic compounds such as Curcumin which affects the viral transactivator protein VP16 -mediated recruitment of RNA polymerase II (Pol II) to Immediate early (IE) gene promoters and Inhibits the HSV-1 replication. This study stated that curcumin has significant has antiherpetic activity and inhibited HSV-2 with ED$_{50}$ value, of 0.32 mg/ml (Kutluay et al. 2008). *Zingiber officinale* or ginger is another antiviral species of Zingiberaceae family which exhibited antiviral activity against numerous viruses (Wang et al. 2020). Based on a study, the essential oil of *Z. officinale*, has impressive antiviral potentials to inhibit HSV-1, whit IC$_{50}$ value, of 0.001% (Koch et al. 2008).

CONCLUSIONS

Since time immemorial, a human being has sought medications to relieve pain and remedy for various diseases. Weighty evidence demonstrates the use of medicinal plants for therapeutic purposes and numerous research studies have been done to investigate the novel antiviral agents. In this review, all reported data of herbal medicines (34 herbs from 17 families) with antiviral activity against HSV through Iranian Herbal Pharmacopoeia (IHP) were collected. In some cases, screening test of medicinal plants for anti-herpetic activity was done under in vitro condition and only a few of them were done under clinical trial condition. Additionally, in many research studies, bioactive phytochemicals and mechanisms of actions, were not identified. Results of this review suggest that further research to identify and purify the bioactive compounds to determine the molecular mechanisms of action are needed.

Acknowledgements: I would like to thank Dr. Forough Mortezaienejad for guidance on this project.

Competing Interests: The authors declare that there are no competing interests.
REFERENCES

Abdul, A. M., Mackeen, M. M., El-Sharkawy, S. H., Abdul, H., Junainah, N. H., Ismail, N. H., Ahmad, F., & Lajis, M. (1996). Antiviral and cytotoxic activities of some plants used in Malaysian indigenous medicine. *Pertanika Journal of Tropical Agricultural Science*, 19(2), 129-136. http://psasir.upm.edu.my/id/eprint/3541/

Abdul, W. M., Hajrah, N. H., Sabir, J. S., Al-Garni, S. M., Sabir, M. J., Kabli, S.A.I., Saini, K. S., & Bora, R. S. (2018). Therapeutic role of Ricinus communis L. and its bioactive compounds in disease prevention and treatment. *Asian Pacific Journal of Tropical Medicine*, 11, 177-85. https://doi.org/10.4103/1995-7645.228431

Abolhassani, M. (2010). Antiviral activity of borage (Echium amoenum). *Archives of medical science : AMS*, 6(3), 366–369. https://doi.org/10.5114%2Fams.2010.14256

Adams, K., Eliot, T., & Gerald, A. (2014). Extent of Use of Aloe vera Locally Extracted Products for Management of Ailments in Communities of Kitagata Sub-county in Sheema District, Western Uganda. *International journal of sciences, basic and applied research*, 15(1), 1-15. https://pubmed.ncbi.nlm.nih.gov/26855960

Afzal, M., Masood, R., Jan, G., Majid, A., Fiaz, M., Shah, A. H., Alam, J., Mehdi, F. S., Abbasi, F. M., Ahmad, H., Islam, M., & Inamullah, N. U. (2011). Efficacy of Avicennia marina (Forsk.) vierh. leaves extracts against some atmospheric fungi. *African Journal of Biotechnology*, 10(52), 10790-9. https://doi.org/10.5897/AJB10.2214

Akrum, M., Tahir, I. M., Shah, S., Mahmood, Z., Altaf, A., Ahmad, K., Munir, N., Daniyal, M., Nasir, S., & Mehboob, H. (2018). Antiviral potential of medicinal plants against HIV, HSV, influenza, hepatitis, and coxsackievirus: A systematic review. *Phytotherapy research: PTR*, 32(5), 811–822. https://doi.org/10.1002/ptr.6024

Al-Megrin, W. A., AlSadhan, N. A., Metwally, D. M., Al-Talhi, R. A., El-Khadragy, M. F., & Abdel-Hafez, L. (2020). Potential antiviral agents of Rosmarinus officinalis officialis extract against herpes viruses 1 and 2. *Bioscience reports*, 40(6), BSR20200992. https://doi.org/10.1042%2FBSR20200992

Alipour, G., Dashi, S., & Hosseinizadeh, H. (2014). Review of pharmacological effects of Myrtus communis L. and its active constituents. *Phytotherapy research: PTR*, 28(8), 1125–1136. https://doi.org/10.1002/ptr.5122

Allahverdiyev, A. M., Bagirova, M., Yaman, S., Koc, R. C., Abamor, E. S., Ates, S.C., Baydar, S. Y., Elcicek, S., Ozcel, O. N. (2017). Fighting Multidrug Resistance with Herbal Extracts, Essential Oils and Their Components. Elsevier: Amsterdam, The Netherlands, Development of new antitherpectic drugs based on plant compounds, pp. 245–259. https://doi.org/10.1016/B978-0-12-398539-2.00017-3

Álvarez, Á. L., Habtemariam, S., Abdel Moneim, A. E., Melón, S., Dalton, K. P., & Parra, F. (2015). A spiroketal-enol ether derivative from Tanacetum vulgare selectively inhibits HSV-1 and HSV-2 glycoprotein accumulation in Vero cells. *Antiviral research*, 119, 8–18. https://doi.org/10.1016/j.antiviral.2015.04.004

Alves, J. G., de Brito, R., & Cavalcanti, T. S. (2012). Effectiveness of Mentha piperita in the Treatment of Infantile Colic: A Crossover Study. *Evidence-based complementary and alternative medicine : eCAM*, 2012, 981352. https://doi.org/10.1155%2F2012%2F981352

Álvarez, D. M., Castillo, E., Duarte, L. F., Arriagada, J., Corrales, N., Farías, M. A., Henriquez, A., Agurto-Muñoz, C., & González, P. A. (2020). Current Antivirals and Novel Botanical Molecules Interfering With Herpes Simplex Virus Infection. *Frontiers in microbiology*, 11, 139. https://doi.org/10.3389%2Ffmicb.2020.00139

Amiri, M. S., & Joharchi, M. R. (2016). Ethnobotanical knowledge of Apiaceae family in Iran: A review. *Avicenna journal of phytomedicine*, 6(6), 621–635. https://doi.org/10.1007%2Fs00217-006-0295-z

Ani, V., Varadaraj, M. C., Akhilendran & Naidu, K. (2006). Antioxidant and antibacterial activities of polyphenolic compounds from bitter cumin (Cuminum nigrum L.). The *journal European Food Research and Technology*, 224, 109–15. https://doi.org/10.1007/s00217-006-0295-z

Anderson, N. W., Buchan, B. W., & Ledebroer, N. A. (2014). Light microscopy, culture, molecular, and serological methods for detection of herpes simplex virus. *Journal of clinical microbiology*, 52(1), 2–8. https://doi.org/10.1128%2FJCM.01966-13

Armanca, M., Papanikolau, E., Sivropoulou, A., & Arsenakis, M. (1999). Antiviral properties of isoborneol, a potent inhibitor of herpes simplex virus type 1. *Antiviral research*, 43(2), 79–92. https://doi.org/10.1016/s0166-3542(99)00036-4

Astani, A., Navid, M. H., & Schnitzler, P. (2014). Attachment and penetration of acyclovir-resistant herpes simplex virus are inhibited by Melissa officinalis extract. *Phytotherapy research: PTR*, 28(10), 1547–1552. https://doi.org/10.1002%2Fptr.5166

Asadi, D., & Nakashima, H. (2018). Pathogenic Viruses Commonly Present in the Oral Cavity and Relevant Antiviral Compounds Derived from Natural Products. *Medicines (Basel, Switzerland)*, 5(4), 120. https://doi.org/10.3390%2Fmedicines5040120

Arabzadeh, A. M., Ansari-Dogheh, M., Sharififar, F., Shakhibaie, M., & Heidarbeigi, M. (2013). Anti herpes simplex-1 activity of a standard extract of Zataria multiflora Boiss. *Pakistan journal of biological sciences : PJBS*, 16(4), 180–184. https://doi.org/10.3923/pjbs.2013.180.184

Astani, A., Reichling, J., & Schnitzler, P. (2010). Comparative study on the antiviral activity of selected monoterpene derivatives from essential oils. *Phytotherapy research: PTR*, 24(5), 673–679. https://doi.org/10.1002%2Fptr.2955

Astani, A., Reichling, J., & Schnitzler, P. (2012). Melissa officinalis extract inhibits attachment of herpes simplex virus in vitro. *Chemotherapy*, 58(1), 70–77. https://doi.org/10.1159%2F000335590

Bag, P., Chattopadhyay, D., Mukherjee, H., Ojha, D., Mandal, N., Sarkar, M. C., Chatterjee, T., Das, G., & Chakraborti, S. (2012). Anti-herpes virus activities of bioactive fraction and isolated pure constituent of Mallotus peltatus: an ethnomedicine from Andaman Islands. *Virology journal*, 9, 98. https://doi.org/10.1186/1743-422X-9-98

Bai, L., Zhang, H., Liu, Q., Zhao, Y., Cui, X., Guo, S., Zhang, L., Ho, C. T., & Bai, N. (2016). Chemical characterization of the main bioactive constituents from fruits of Ziziphus jujuba. *Food & function*, 7(6), 2870–2877. https://doi.org/10.1039%2Fcf600613b

Baharfar, R., Azimi, R., & Mohseni, M. (2015). Antioxidant and antibacterial activity of flavonoid- polyphenol- and anthocyanin-rich extracts from Thymus kotschyanus boiss & bohem aerial parts. *Journal of food science and technology*, 52(10), 6777–6783. https://doi.org/10.1007%2Fs13197-015-1752-0
Chang, S. J., Huang, S. H., Lin, Y. J., Tsou, Y. Y., & Lin, C. W. (2014). Antiviral activity of Rheum palmatum methanol extract and chrysophanol against Japanese encephalitis virus. Archives of pharmacal research, 37(9), 1117–1123. https://doi.org/10.1007%2Fs12272-013-0325-x

Chiang, L. C., Ng, L. T., Chiang, W., Chang, M. Y., & Lin, C. C. (2003). Immunomodulatory activities of flavonoids, monoterpenoids, triterpenoids, iodide glycosides and phenolic compounds of Plantago species. Planta medica, 69(7), 600–604. https://doi.org/10.1055/s-2003-41113

Chiang, L. C., Chiang, W., Chang, M. Y., & Lin, C. C. (2003). In vitro cytotoxic, antiviral and immunomodulatory effects of Plantago major and Plantago asiatica. The American journal of Chinese medicine, 31(2), 225–234. https://doi.org/10.1142%e2%80%93a0192415x03000874

Chang, J. S., Wang, K. C., Yeh, C. F., Sheih, D. E., & Chiang, L. C. (2013). Fresh ginger (Zingiber officinale) has anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines. Journal of ethno pharmacology, 145(1), 146–151. https://doi.org/10.1016/j.jep.2012.10.043

Chiang, L. C., Chiang, W., Chang, M. Y., Ng, L. T., & Lin, C. C. (2002). Antiviral activity of Plantago major extracts and related compounds in vitro. Antiviral research, 55(1), 53–62. https://doi.org/10.1016%e2%80%93s0166-3542%e2%80%93020007-4

Camero, M., Lanave, G., Catella, C., Capozza, P., Gentile, A., Fracchiolla, G., Britti, D., Martella, V., Buonavoglia, C., & Tempesta, M. (2019). Virucidal activity of ginger essential oil against caprine alphaherpesvirus-1. Veterinary microbiology, 230, 150–155. https://doi.org/10.1016/j.vetmic.2019.02.001

Chen, S. G., Leu, Y. L., Cheng, M. L., Ting, S. C., Liu, C. C., Wang, S. D., Yang, C. H., Hung, C. Y., Sakurai, H., Chen, K. H., & Ho, H. Y. (2017). Antiv-entorivirus 71 activities of Melissa officinalis extract and its biologically active constituent rosmarinic acid. Scientific reports, 7(1), 12264. https://doi.org/10.1038/s41598-017-12388-2

Chen, D., Su, A., Fu, Y., Wang, X., Lv, X., Xu, W., Xu, S., Wang, H., & Wu, Z. (2015). Harmine blocks herpes simplex virus infection through downregulating cellular NF-κB and MAPK pathways induced by oxidative stress. Antiviral research, 123, 27–38. https://doi.org/10.1016/j.antiviral.2015.09.003

Chuerduangphui, J., Nukpook, T., Pientong, C., Aromdee, C., Suebsasana, S., Khunkitti, W., So, In-C, Proyrungroj, K., & Ekalaksananan, T. (2022). Activity of 3,19-dimethyl-6,8-dihydroxy-1,2,3,4-tetrahydroisoquinoline derivatives from Plants as Antiviral, Antimicrobial and Anti-inflammatory Agents. Planta medica, 85(20), 2150–2151. https://doi.org/10.1055/s-0043-10389

Citelli, L., Panella, S., Marcocci, M. E., De Petris, A., Garzoli, S., Pepi, F., Vavala, E., Rago, R., Nencioni, L., Palamara, A. T., & Angelillo, L. (2014). In vitro inhibition of herpes simplex virus type 1 replication by Mentha suaveolens essential oil and its main component piperitone oxide. Phytotherapy : international journal of phytotherapy and phytomedicine, 21(6), 857–865. https://doi.org/10.1016/j.phymed.2014.01.013

Cohen, J. I. (2005). Licking latency with licorice. The Journal of clinical investigation, 115(3), 591–593. https://doi.org/10.1172%e2%80%93JCI24507

Crisci, E., Svanberg, C., Ellegård, R., Khalid, M., Hellblom, J., Okuyama, K., Bhattacharya, P., Nystrom, S., Shankar, E. M., Eriksson, K., & Larsson, M. (2019). HSV-2 Cellular Programming Enables Productive HIV Infection in Dendritic Cells. Frontiers in immunology, 10, 2889. https://doi.org/10.3389/fimmu.2019.02889

Cui, Q., Du, R., Liu, M., & Rong, L. (2020). Lignans and Their Derivatives from Plants as Antivirals. Molecules (Basel, Switzerland), 25(1), 183. https://doi.org/10.3390%e2%80%93molecules25010183

Da Rosa Guimarães, T., Quiroz, C. G., Borges, C. R., de Oliveira, S. Q., de Almeida, M. T., Bianco, É. M., Moritz, M. I., Carraro, J. L., Palermo, J. A., Cabrera, G., Schenkel, E. P., Reginatto, F. H., & Simões, C. M. (2013). Anti HSV-1 activity of halistanol sulfate and halistanol sulfate C isolated from Brazilian marine sponge Petromica critina (Demospongiae). Marine drugs, 11(11), 4176–4192. https://doi.org/10.3390/md11114176

De Oliveira, A., Adams, S. D., Lee, L. H., Murray, S. R., Hsu, S. D., Hammond, J. R., Dickinson, D., Chen, P., & Chu, T. C. (2013). Inhibition of herpes simplex virus type 1 with the modified green tea polyphenol patrymolip-igpaligallotine gallate. Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association, 52, 207–215. https://doi.org/10.1016/j.fct.2012.11.006

Deepika, G., Durgadevi, H., Narayan, R., Sudantha, M., & Manickan, E. (2014). Anti-Herpes Simplex Viruses activity of Camellia sinensis, member of the family Theaceae (green tea). BMC Infectious Diseases, 14(Suppl 3), P47. https://doi.org/10.1186%2F2047-2334-14-S3-P47

Dia, M. S., Zaza, O., Riani, L. R., de Faria Pinto, P., Pinto, P., Silva, M. P., de Moraes, J., Ataide, A., de Oliveira Silva, F., Cecilino, A. B., & Da Silva Filho, A. A. (2017). In vitro schistosomicidal and antiviral activities of Arctium lappa L. (Asteraceae) against Schistosoma mansoni and Herpes simplex virus-1. Biomedicine & pharmacotherapy = Biomedicine & pharmacotherapie, 94, 489–498. https://doi.org/10.1016%e2%80%93bipa.2017.07.116

Ebrahim, E., Mousavi-Jazayeri, S., Rezaee, M., & Parsania, M. (2021). Antiviral Effects of Aloe vera (L.) Burm.f. and Ruta Graveolens L. Extract on Acyclovir-Resistant Herpes Simplex Virus Type 1. Journal of Medicinal plants and By-product, 10(1), 103–108. https://dx.doi.org/10.22092/jmpb.2021.352463.1286

Ekiert H. (2000). Medicinal plant biotechnology: the Apiaceae family as the example of rapid development. Die Pharmazie, 55(8), 561–567. https://pubmed.ncbi.nlm.nih.gov/10989831/

Elkousy, R. H., Said, Z., Abd El-Baseer, M. A., & Abu El Wafa, S. A. (2021). Antiviral activity of castor oil plant (Ricinus communis) leaf extracts. Journal of ethno pharmacology, 271, 113878. https://doi.org/10.1016/j.jep.2021.113878

Elad, S., Zadik, Y., Hewson, I., Hovan, A., Correa, M. E., Logan, R., Elting, L. S., Spijkervet, F. K., & Brennan, M. T. (2010). Viral Infections Section, Oral Care Study Group, Multinational Association of Supportive Care in Cancer (MASCC)/International Society of Oral Oncology (ISOO). A systematic review of viral infections associated with oral involvement in cancer patients: a spotlight on Herpesviridae. Supportive care in cancer : official journal of the Supportive care in cancer : official journal of the American journal of support care in cancer, 18(1), 1–27. https://doi.org/10.1007%2Fs10787-009-9339-8

Gavanji – Anti-herpetic activity of Herbal Pharmacopoeia (IHP) 101

https://doi.org/10.1111%e2%80%931440-1681.2005.004270.x
Multinational Association of Supportive Care in Cancer, 18(8), 993–1006. https://doi.org/10.1007/s10052-010-0900-3
Ezema, C. A., Ezeorba, T., Aguchem, R. N., & Okaghu, I. U. (2022). Therapeutic benefits of Salvia species: A focus on cancer and viral infection. HelioCyton, 8(1), e00763. https://doi.org/10.1016/j.heliocyton.2022.e00763
Farahani, M. (2013). Antiviral effect assay of aqueous extract of Eichum amoenum-L against HSV-1. Zahedan Journal of Research in Medical Sciences, 15(8), 46-48.
Fathiha-zad, F., & Hamedeyazdian, S. (2011) A review on Hyssopus officinalis L. Composition and biological activities. African Journal of Pharmacy and Pharmacology. 2011;5:1959–1966.
Fani, M.M., Motamedifar, M., & Kordshouli, M.Z. (2015). In vitro assessment of the anti-viral effect of Curcumin longa on Herpes simplex virus type 1. Journal of Biology and Today's World. 4(5),115–119. https://doi.org/10.15412/J.BTW.01030701
Farahani, M. (2013). Inhibition of HSV-1 multiplication by five species of medicinal plants. The Journal of Microbiology, Biotechnology and Food Sciences, 3-69. https://oficce2.jmbfs.org/index.php/JMBFS/article/view/7079
Farahani, M. (2014). Anti-Herpes simplex virus effect of Camellia Sinesis, Echium amoenum and Nerium oleandar. Applied and Environmental Microbiology, 2(4),102-105. http://pubs.sciepub.com/jacm/2/4/3/index.html#
Faroq, A. V., & Shukla, D. (2012). Herpes simplex epithelial and stromal keratitis: an epidemiologic update. Survey of ophthalmology, 57(5). 448–462. https://doi.org/10.1016/j.survophthal.2012.01.005
Farahani M. (2017). Antiviral Effect Assay of Thymus Kotschyanus on HSV-1 Multiplication. Alborz University Medical Journal, 6 (4), 269-275. http://dx.doi.org/10.29252/auim.6.4.269
Feola, A. Mancuso, A., & Arcangeli, M. (2018). A Case of Herpes Simplex Virus-1 Encephalitis from a Medicolegal Point of View. Case reports in medicine, 2018, 3764930. https://doi.org/10.1155/2018/3764930
Flores, D., Lee, L., & Adams, S. (2016). Inhibition of Currucimin-Treated Herpes Simplex Virus 1 and 2 in Vero Cells. Advances in Microbiology, 6, 276-287. http://dx.doi.org/10.4236/aim.2016.640247
Fritz, D., Venturi, C. R., Cargnin, S., Schripsema, J., Roehe, P. M., Montanha, J. A., & von Poser, G. L. (2007). Herpes virus inhibitory substances from Hypericum comnatum Lam., a plant used in southern Brazil to treat oral lesions. Jundishapur Journal of Microbiology, 7(7), e11616. https://doi.org/10.5812%2Fjjm.11616
Ghanadan, M., Sadraei, H., & Cheraghizadeh, F. (2016). Spasmodyc versus spasmolytic activities of Euphorbia spinidens extract on rat isolated uterus. Research in pharmaceutical sciences, 11(6), 491–496. http://dx.doi.org/10.4103/1735-5362.194893
Ghasem Dehkordi, N., Sajadi, S., Ghanadi, A., Amanzadeh, Y., Azadbakht, M., and Ashghari, G.(2003). Iranian herbal pharmacopoeia (IHP). Hakim Research Journal, 6(3), 63–69.
Ghasemzadeh Rahbarad, M., & Hosseinzadeh, H. (2020). Therapeutic effects of rosemary (Rosmarinus officinalis L) and its active constituents on nervous system disorders. Iranian journal of basic medical sciences, 23(9), 1100–1112. https://doi.org/10.22038%2Fijbms.2020.45269.10541
Ghannad, M. S., Mohammadi, A., Safiai, S., Faradmal, J., Azizi, M., & Ahmadvand, Z. (2014). The effect of aqueous extract of Glycyrrhiza glabra on herpes simplex virus 1. Jundishapur Journal of Microbiology, 7(7), e11616. https://doi.org/10.5812%2Fjjm.11616
Ghorbani, A., & Esmaeilizadeh, M. (2017). Pharmacological properties of Salvia officinalis and its components. Journal of traditional and complementary medicine, 7(4), 433–440. https://doi.org/10.1016/j.jtcm.2016.12.014
Ghori, V., Khazdair, M. R., Mirsadraee, M., Rajabi, O., & Boskabady, M. H. (2022). The effect of two-month treatment with Zataria multiflora on inflammatory cytokines, pulmonary function tests and respiratory symptoms in patients with chronic obstructive pulmonary disease (COPD). Journal of ethnopharmacology, 293, 115265. https://doi.org/10.1016/j.jep.2022.115265
Golestannejad, Z., Mohammadi, E., Motamedifar, A., Gavanji, S., Fallah, N., Bagherie, S., Farzane, G., Safarpour, M., Vally, A., Mohammadi, M., Larika, B., & Bahkhtari, A. (2016). Chemical composition and antibacterial activity of some herbal essential oils against Streptococcus mutants. Future Natural Products, 2(1), 1-8. http://herbmed.skums.ac.ir/article_14287.htm
Grzanna R, Lindmark L, Frondoza C, Ginger - A herbal medicinal product with broad anti-inflammatory actions, J Med Food, 2005, 8(2), 125-132. https://doi.org/10.1089/jmf.2005.8.125
Gursoy, U. K., Gursoy, M., Gursoy, O. V., Cakmakci, L., Körnönen, E., & Uttjo, V. J. (2009). Anti-biofilm properties of Satureja hortens L. essential oil against periodontal pathogens. Anaerobe, 15(4), 164–167. https://doi.org/10.1016/j.anae.2009.02.004

Hassan, S., Sudomova, M., Berchova-Bimová, K., Šmejkal, K., & Echeverría, J. (2019). Psoronic Acid, a Lichen-Derived Molecule, Inhibits the Replication of HSV-1 and HSV-2, and Inactivates HSV-1 DNA Polymerase: Shedding Light on Antitherpetic Properties. Molecules (Basel, Switzerland), 24(16), 2912. https://doi.org/10.3390/molecules24162912

Hassan, S., Berchová-Bimová, K., Sudomová, M., Malanik, M., Šmejkal, K., & Rengasamy, K. (2018). In Vitro Study of Multi-Therapeutic Properties of Thymus bovei Benth. Essential Oil and Its Main Component for Promoting Their Use in Clinical Practice. Journal of clinical medicine, 7(9), 283. https://doi.org/10.3390/jcm7090283

Hashmi, M. A., Khan, A., Hanif, M., Farooq, U., & Perveen, S. (2015). Traditional Uses, Phytochemistry, and Pharmacology of Olea europaea (Olive). Evidence-based complementary and alternative medicine: eCAM, 2015, 541591. https://doi.org/10.1155/2015/541591

Hamidpour, R., Hamidpour, S., Hamidpour, M., Shahlari, M., & Sohraby, M. (2014). Summer Savory: From the Selection of Traditional Applications to the Novel Effect in Relief, Prevention, and Treatment of a Number of Serious Illnesses such as Diabetes, Cardiovascular Disease, Alzheimer’s Disease, and Cancer. Journal of traditional and complementary medicine, 4(3), 140–144. https://doi.org/10.4103/2225-4110.136540

Hao, D. C. (2019). Chapter 9. Biodiversity, Chemodiversity, and Pharmacotherapy of Thalictrum Medicinal Plants, Da-Cheng Hao (ed.). pp. 261–296. https://doi.org/10.1006/C2017-010-01185-0

Hayati, R. F., Better, C. D., Denis, D., Komarudin, A. G., Bowolaksono, A., Yohan, B., & Sasmono, R. T. (2021). 6-Gingerol Inhibits Chikungunya Virus Infection by Suppressing Viral Replication. BioMed research international, 2021, 6623400. https://doi.org/10.1155/2021/6623400

Herrmann, E. C., Jr, & Kucera, L. S. (1967). Antiviral substances in plants of the mint family (labiatae). 3. Peppermint (Mentha piperita) and other mint plants. Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.), 124(3), 874–878. https://doi.org/10.3181/2PO0379727124-31874

Hung, P. Y., Ho, B. C., Lee, S. Y., Chang, S. Y., Kao, C. L., Lee, S. S., & Lee, C. N. (2015). Houttuynia cordata targets the beginning stage of herpes simplex virus infection. PloS one, 10(2). e0115475. https://doi.org/10.1371%2Fjournal.pone.0115475

Huan, C., Xu, Y., Zhang, W., Guo, T., Pan, H., & Gao, S. (2021). Research Progress on the Antiviral Activity of Glycyrrhizin and its Derivatives in Lipopolice. Frontiers in pharmacology, 12, 680674. https://doi.org/10.3389/fphar.2021.680674

Hu, R., Ku, B., Zhang, Y., Jia, Y., Yao, H., Duan, S. (2004). Antiviral activity of complex of Hypericum perforatum L extract and lysine hydrochloride on herpes virus. Chinese Journal of Clinical Pharmacology and Therapeutics, 9(2), 136-139.

Hudson, J., Vimalanathan, S., Kang, L., Amiguet, V. T., Livesey J., & Arnason, J. T. (2005) Characterization of antiviral activities in echinacea root preparations. Pharmaceutical Biology, 43(9), 790-796. https://doi.org/10.1080/13880200500408491

Hitl, M., Kladar, N., Gavarié, N., & Božin, B. (2021). Rosmarinic Acid–Human Pharmacokinetics and Health Benefits. Planta medica, 87(4), 273–282. https://doi.org/10.1055/a-1301-8648

Hutterer, C., Milbradt, J., Hamilton, S., Zaja, M., Leban, J., Henry, C., Vitt, D., Steinrueber, M., Sonntag, E., Zeiträger, L., Bahsi, H., Stammlnger, T., Rawlinson, W., Strob, S., & Marschall, M. (2017). Inhibitors of dual-specificity tyrosine phosphorylation-regulated kinases (DYRK) exert a strong anti-herpesviral activity. Antiviral research, 143, 113–121. https://doi.org/10.1016/j.antiviral.2017.04.003

Karimi, A., Moradi, M. T., Saoedi, M., Asgari, S., & Rafieian-Kopaei, M. (2013). Antiviral activity of Quercus persica L.: High efficacy and low toxicity. Advanced biomedical research, 2, 36. https://doi.org/10.4103/2277-9175.109722

Ikeda, T., Yokomizo, K., Okawa, M., Tsuchihashi, R., Kinjo, J., Nohara, T., & Uyeda, M. (2005). Anti-herpes virus type 1 activity of oleanane-type triterpenoids. Biological & pharmaceutical bulletin, 28(9), 1779–1781. https://doi.org/10.1248/bpb.28.1779

Ikeda, K., Tsujimoto, K., Uozaki, M., Nishide, M., Suzuki, Y., Koyama, A. H., & Yamasaki, H. (2011). Inhibition of multiplication of herpes simplex virus by caffeic acid. International journal of molecular medicine, 28(4), 595–598. https://doi.org/10.3892/ijmm.2011.739

Isaacs, C. E., Won, G. Y., Xu, W., Jia, J. H., Rohan, L., Corbo, C., Di Maggio, V., Jenkins, E. C., Jr, & Hillier, S. (2008). Epigallocatechin gallate inactivates clinical isolates of herpes simplex virus. Antimicrobial agents and chemotherapy, 52(3), 962–970. https://doi.org/10.1128/aac.00825-07

Jang, Y., Shin, J. S., Lee, M. K., Jung, E., An, T., Kim, U. I., Kim, K., & Kim, M. (2021). Comparison of Antiviral Activity of Gencitabine with 2’-Flouro-4-Deoxyctydine and Combination Therapy with Remdesivir against SARS-CoV-2. International journal of molecular sciences, 22(4), 1581. https://doi.org/10.3390/ijms22041581

Jassim, S. A., & Naji, M. A. (2003). Novel antiviral agents: a medicinal plant perspective. Journal of applied microbiology, 95(3), 412–427. https://doi.org/10.1046/j.1365-2672.2003.02026.x

Jin, F., Zhuo, C., He, Z., Wang, H., Liu, W., Zhang, R., & Wang, Y. (2015). Anti-herpes simplex virus activity of polysaccharides from Eucheuma gelatinae. World journal of microbiology & biotechnology, 31(3), 453–460. https://doi.org/10.1007/s11274-015-1798-1

Johri R. K. (2011). Cuminum cyminum and Carum carvi: An update. Pharmacognosy reviews, 5(9), 63–72. https://doi.org/10.4103/2277-7847.749101

Karimian, M., Najafi, R., Jainmad, K., Hatami, F., Abbasi, N., & Jalali Ghalousangh, A. (2020). Extraction and Identification of phytochemicals in Iranian oak (Quercus brantii var. Persica) Collected in Arghavan Valley, Ilam County by HS-SPME and GC-MS. Journal of Medicinal plants and By-product, 9(Special), 81–86. https://dx.doi.org/10.22092/jmpb.2020.121754

Karimi, A., Moradi, M. T., Saeedi, M., Asgari, S., & Rafieian-Kopaei, M. (2013). Antiviral activity of Quercus persica L.: High efficacy and low toxicity. Advanced biomedical research, 2, 36. https://doi.org/10.4103/2277-9175.109722

Karimi, A., Mohammadi-Kamalabadi, M., Rafieian-Kopaei, M., Amjad, L., & Salimzadeh, I. (2016). Determination of antioxidant activity, phenolic contents and antiviral potential
of methanol extract of Euphorbia spinifera L. Bull. (Euphorbiaceae). The Tropical Journal of Pharmaceutical Research, 15(4); 759-764. https://doi.org/10.4314/tjpr.v15i4.13

Khalil, N., El-Jalil, L., Yousif, M., & Gonaied, M. (2020). Altitude impact on the chemical profile and biological activities of Satureja thymbra L. essential oil. BMC complementary medicine and therapies, 20(1); 186. https://doi.org/10.1186/s12906-020-02982-9

Karimi, A., Rafieian-Kopaei, M., Moradi, M. T., & Alidadi, S. (2017). Anti-Herpes Simplex Virus Type-1 Activity and Phenolic Content of Crude Ethanolic Extract and Four Corresponding Fractions of Quercus brantii L. Acorn. Journal of evidence-based complementary & alternative medicine, 22(3); 455–461. https://doi.org/10.1177/2F2165687216676421

Kaunda, J. S., & Zhang, Y. J. (2019). The Genus Solanum: An Ethnopharmacological, Phytochemical and Biological Properties Review. Natural products and bioprospecting, 9(2); 77–137. https://doi.org/10.1007/s13659-019-00201-6

Kaczmarek B. (2020). Tannic Acid with Antiviral and Antibacterial Activity as A Promising Component of Biomaterials-A Minireview. Materials (Basel, Switzerland), 13(14); 3224. https://doi.org/10.3390%2Fma3143224

Karamoddini, M. K, Emami, S. A, Ghannad, M. S., Sani, E. A, & Sahebkar, A. (2011). Antiviral activities of aerial parts of Artemisia species against Herpes Simplex Virus type 1 (HSV1) in vitro. Asian Biomedicine, 5 (1); 63-8. https://doi.org/10.5372/1905-7415.0501.007

Kesharwani, A., Polachia, S.K., Nair, R.T., Agrawal, A., Mishra, N.N., & Gupta, S.K. (2017). Anti-HSV-2 activity of Terminalia chebula Retz extract and its constituents, chebulagic and chebulic acids. BMC Complementary and Alternative Medicine, 14; 17(1):110. https://doi.org/10.1186/s12906-017-1620-8

Klemow, K. M., Bartlow, A., Crawford, J., Kocher, N., Shah, J., & Risick, M. (2011). Medical Attributes of St. John’s Wort (Hypericum perforatum). In I. Benzie (Eds.) et. al., Herbal Medicine: Biomolecular and Clinical Aspects. (2nd ed.). CRC Press/Taylor & Francis. http://www.ncbi.nlm.nih.gov/books/nbkb92750/

Koitychev, R., Alken, R. G., & Dundarov, S. (1999). Balm mint (Hypericum perforatum). In I. Benzie (Eds.) et. al., Herbal medicine: Biomolecular and Clinical Aspects. (2nd ed.). CRC Press/Taylor & Francis. http://www.ncbi.nlm.nih.gov/books/nbkb92750/

Kuo, Y. C., Kuo, Y. H., Lin, Y. L., & Tsai, W. J. (2006). Yatein from Chamaeacyparis obtusa suppresses herpes simplex virus type 1 replication in HeLa cells by interruption the immediate-early gene expression. Antiviral research, 70(3); 112–120. https://doi.org/10.1016/j.antiviral.2006.01.011

Lal M., Chandraker S.K., Shukla R. Functional and Preservative Properties of Phytochemicals. Elsevier; Amsterdam. The Netherlands: 2020. Antimicrobial properties of selected plants used in traditional Chinese medicine; pp. 119–134. https://doi.org/10.1016/C2018-0-03991-2

Lai, W. L., Chuang, H. S., Lee, M. H., Wei, C. L., Lin, C. F., & Tsai, Y. C. (2012). Inhibition of herpes simplex virus type 1 by thymol-related monoterpenoids. Planta medica, 78(15); 1636–1638. https://doi.org/10.1055/s-0032-1315208

Leonard, S. S., Keil, D., Mehlin, T., Proper, S., Shi, X., & Harris, G. K. (2006). Essiac tea: scavenging of reactive oxygen species and effects on DNA damage. Journal of ethnomedicine, 10(2); 288–296. https://doi.org/10.1016/j.jep.2005.09.013

Lee, S., Lee, H. H., Shin, Y. S., Kang, H., & Cho, H. (2017). The anti-HSV-1 effect of quercetin is dependent on the suppression of TLR-3 in Raw 264.7 cells. Archives of pharmacal research, 40(5); 623–630. https://doi.org/10.1007/s12272-017-0898-x

Li, A., Xie, Y., Qi, F., Li, J., Wang, P., Xu, S., & Zhao, L. (2009). Anti-virus effect of traditional Chinese medicine Yi-Fu-Qing granule on acute respiratory tract infections. Bioscience trends, 3(4); 119–123. https://pubmed.ncbi.nlm.nih.gov/20103834/

Li, Z., Li, L. J., Sun, Y., & Li, J. (2007). Identification of natural compounds with anti-hepatitis B virus activity from Rheum palmatum L. ethanol extract. Chemotherapy, 53(5); 320–326. https://doi.org/10.1159/000107690

Li, T., Liu, L., Wu, H., Chen, S., Zhu, Q., Gao, H., Yu, X., Wang, Y., Su, W., Yao, X., & Peng, T. (2017). Anti-herpes simplex virus type 1 activity of Houttuynia cordata Al., a flavonoid from Houttuynia cordata Al., a flavonoid from
Houttuynia cordata Thunb. Antiviral research, 144, 273–280. https://doi.org/10.1016/j.antiviral.2017.06.010

Li, H., Zhou, C., Pan, Y., Gao, X., Wu, X., Bai, H., Zhou, L., Chen, Z., Zhang, S., Shi, S., Luo, J., Xu, J., Chen, L., Zheng, X., & Zhao, Y. (2005). Evaluation of antiviral activity of compounds isolated from Rannunculus sieboldii and Rannunculus sceleratus. Planta Medica 71, 1128–1133. https://doi.org/10.1055/s-2005-873169

Liu, S., Li, L., Tan, L., & Liang, X. (2019). Inhibition of Herpes Simplex Virus-1 Replication by Natural Compound Honokiol. Virologica Sinica, 34(3), 315–323. https://doi.org/10.1007/s11250-019-00104-5

Lin, C. W., Wu, C. F., Hsiao, N. W., Chang, C. Y., Li, S. W., Wan, L., Lin, Y. J., & Lin, W. Y. (2008). Aloe-emodin is an interferon-inducing agent with antiviral activity against Japanese encephalitis virus and enterovirus 71. International journal of antimicrobial agents, 32(4), 355–359. https://doi.org/10.1016/j.ijantimicag.2008.04.018

Lin, L. T., Chen, T. Y., Chung, C. Y., Noyce, R. S., Grindley, T. J., Lin, L., Tan, L., & Liang, X. (2019). Inhibition of Herpes simplex virus 1 entry and cell-to-cell spread. Journal of virology, 85(9), 4386–4398. https://doi.org/10.1128/jvi.01492-10

Li, F., Song, X., Su, G., Wang, Y., Wang, Z., Jia, J., Qing, S., Huang, L., Wang, Y., Zheng, K., & Wang, Y. (2019). Amentoflavone Inhibits HSV-1 and ACV-Resistant Strain Infection by Suppressing Viral Early Infection. Viruses, 11(5), 466. https://doi.org/10.3390/v11050466

Lyu, S. Y., Rhim, J. Y., & Park, W. B. (2005). Antitherpetic activities of flavonoids against herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) in vitro. Archives of pharmacal research, 28(11), 1293–1301. https://doi.org/10.1007/bf02978215

Mardani, M., Motamedifar, M., & Hoseinipour, R. (2012). A Study of the Antiviral Effect of the Essential oil of Zataria Multiflora Boiss on Herpes Simplex Type 1 in Vero Cell Culture. Journal of Dentistry, Shiraz University of Medical Sciences (JDSUMS), 13(s4):s414-s420.

Mancini, D. A. P., Torres, R. P., Pinto, J. R., & Mancini, D. A. P., Torres, R. P., Pinto, J. R., & Mancini. (2009). Aloe-emodin is an interferon-inducing agent with antiviral activity against Japanese encephalitis virus and enterovirus 71. International journal of antimicrobial agents, 32(4), 355–359. https://doi.org/10.1016/j.ijantimicag.2008.04.018

Majewska, A., & Młynarczyk-Bonikowska, B. (2022). 40 years after the Registration of Acyclovir: Do We Need New Anti-Herpetic Drugs?. International journal of molecular sciences, 23(7), 3431. https://doi.org/10.3390/ijms23073431

Miraj, S., Rafieian-Kopaei, M., & Kiani, S. (2017). Melissa officinalis L: A Review Study With an Antioxidant Prospective. Journal of evidence-based complementary & alternative medicine, 22(3), 385–394. https://doi.org/10.1177/1565867216634333

Minf, S., & Aifa, S. (2015). Cumin (Cuminum cyminum) from traditional uses to potential biomedical applications. Chemistry & biodiversity, 12(5), 733–742. https://doi.org/10.1002/cbdv.201400305

Mohamadein, M. M., Farrag, R. M., & Mekaweiy, A. A. I. (2015). Antiviral and Antidermatophytic Activity of a Compound Extracted from Cuminum Cuminum Seeds. Biomedical and Pharmacology Journal (BPJ), 8(2), 573-580. https://dx.doi.org/10.13005/bpj/800

Motamedifar, M., Ghafari, N., & Talerzadeh, S. (2010). The effect of cumin seed extracts against herpes simplex virus type 1 in vero cell culture. The Iranian Journal of Medical Sciences (IJMS), 35, 304-309. https://ijms.sums.ac.ir/article_39801.html

Moradi, M. T., Karimi, A., Rafieian-Kopaei, M., Kheiri, S., Saedi-Marghamaleki, M. (2011). The inhibitory effects of myrtle (Myrtus communis) extract on herpes simplex virus-1 replication in baby hamster kidney cells. Journal of Shahrekord University of Medical Sciences, 12(4), 54-61. http://78.39.35.44/article-1-441-en.html

Mohammadi-Kamalabadi, M., Karimi, A., Rafieian, M., Amjad, L. (2014). Phytochemical study and anti viral effect evaluation of methanolic extract with fractions of aerial parts of euphorbia spiminidens. Journal of Babol University of Medical Sciences, 16(5), 25-34. http://eprints.skums.ac.ir/id/eprint/2149

Mokhlesi, S., ShamshiShahrabadi, M., Mortazkar, & P. (2008). The study of antiviral effects of glycyrrhizaglabra extract on HSV. The Journal of Medicinal Plants, 4, 81-86.

Mohan, S., Elhassan Taha, M. M., Makeen, H. A., Alhazmi, H. A., Al Bratty, M., Sultana, S., Ahsan, W., Najmi, A., & Khalid, A. (2020). Bioactive Natural Antivirals: An Updated Review of the Available Plants and Isolated Molecules.
Molecules (Basel, Switzerland), 25(21), 4878. https://doi.org/10.3390/molecules25214878

Mukhtar, M., Arshad, M., Ahmad, M., Pomerantz, R. J., Wigdahl, B., & Parveen, Z. (2008). Antiviral potentials of medicinal plants. Virus research, 131(2), 111–120. https://doi.org/10.1016/j.virusres.2007.09.008

Namazi, R., Zabiollahi, R., Behbahani, M., & Rezaei, A. (2013). Inhibitory Activity of Avicennia marina, a Medicinal Plant in Persian Folk Medicine, against HIV and HSV. The Iranian Journal of Pharmaceutical Research (IJPR), 12,435-443. https://pubmed.ncbi.nlm.nih.gov/24250619

Nance, C. L., Shearer, W. T. (2003). Is green tea good for HIV infection?. Journal of Allergy and Clinical Immunology, 112, 851–853.

Najafian, Y., Hamed, S. S., Farshchi, M. K., & Feyzabadi, Z. (2018). Plantago major in Traditional Persian Medicine and modern phytotherapy: a narrative review. Electronic physician, 10(2), 6390–6399. https://doi.org/10.19082%2Fe06390

Nikolić, M., & Stevović S. (2015). Family Asteraceae as a sustainable planning tool in phytomedicines and its relevance in urban areas. Urban Forestry and Urban Greening, 14, 782–789. https://doi.org/10.1016/j.ufug.2015.08.002

Nolkemper, S., Reichling, J., Carle, R., Stintzing, F. C., & Nikolić, M., & Stevović S. (2015). Family Asteraceae as Agents in the Protection of Human Health. Journal of Virology, 74(3), 2511–2519. https://doi.org/10.1128/jvi.74.3.2511-2519.2010

Ohishi, K., Toume, K., Arai, M. A., Sadhu, S. K., Ahmed, F., Mizoguchi, T., Oguri, H., Ryu, K., Yoneda, T., & Hosoki, R. (2021). Effective Search of Triterpenes with Anti-HSV-1 Activity Using a Classification Model by Logistic Regression. Frontiers in chemistry, 9, 763794. https://doi.org/10.3389/chem.2021.763794

Omidian, J., Sheikhi-Shooshasti, F., & Fazelzadeh, M. (2014). Inhibitory Effect of Mentha Piperita Extracts against Herpes Simplex Virus Isolated from Eye Infection. The Iranian Journal of Virology, 8 (1), 35–41. http://journal.isv.org.ir/article-1-222-fa.html

Parvez, M. K., Ahmed, S., Al-Dosari, M. S., Abdelwahid, M., Arbab, A. H., Al-Rehaily, A. J., & Al-Oqail, M. M. (2021). Novel Anti-Hepatitis B Virus Activity of Euphorbia schimperi and Its Quercetin and Kaempferol Derivatives. ACS omega, 6(43), 29100–29110. https://doi.org/10.1021/acsomega.1c04320

Parvek, A., Suthar, M., Rathore, G. S., & Bansal, V. (2011). Feverfew (Tanacetum parthenium L.): A systematic review. Pharmacognosy reviews, 5(9), 103–110. https://doi.org/10.4103/0973-7847.97105

Patil, S. M., Ramu, R., Shirahatti, P. S., Shivamallu, C., & Amacharadha, R. G. (2021). A systematic review on ethnopharmacology, phytochemistry and pharmacological aspects of Thymus vulgaris Linn. Helixon, 7(5), e07054. https://doi.org/10.1016/j.helixon.2021.e07054

Pebody, R. G., Andrews, N., Brown, D., Gopal, R., De Melker, H., François, G., Gatcheva, N., Hellenbrand, W., Jokinen, S., Klav, I., Kojouharova, M., Kortbeek, T., Kriz, B., Prosenc, K., Roubalova, K., Teoharopoulos, P., Thierfelder, W., Valle, M., Van Damme, P., & Vranckx, R. (2004). The seroepidemiology of herpes simplex virus type 1 and 2 in Europe. Sexually transmitted infections, 80(3), 185–191. https://doi.org/10.1136/sti.2003.005850

Pesola, J. M., & Coen, D. M. (2007). In vivo fitness and virulence of a drug-resistant herpes simplex virus 1 mutant. The Journal of general virology, 88(Pt 5), 1410–1414. https://doi.org/10.1099/vir.0.82778-0

Pirvu, L., Nicorescu, I., Hlevca, C., Albu, B. & Nicorescu, V. (2017). Burdock (Arctium lappa) Leaf Extracts Increase the In Vitro Antimicrobial Efficacy of Common Antibiotics on Gram-positive and Gram-negative Bacteria. Open Chemistry, 15(1), 92–102.

Plyumers, W., Neamati, N., Pannecoqueu, C., Fikkert, V., Marchand, C., Burke, T. R., Jr, Pommier, Y., Schols, D., De Clercq, E., Debyser, Z., & Witvrouw, M. (2000). Viral entry as the primary target for the anti-HIV activity of chicoric acid and its tetra-acetyl esters. Molecular pharmacology, 58(3), 641–648. https://doi.org/10.1515/chem-2017-0012

Raesi Vanani, A., Mahdavinia, M., Kalantari, H., Khoshnood, S., & Shirami, M. (2019). Antifungal effect of the effect of Securigera securidaca L. vaginal gel on Candida species. Current medical mycology, 5(3), 31–35. https://doi.org/10.18502/cmmn.v5i3.1744

Ranjbar, A., Khorami, S., Safariabad, M., Shahmoradi, A., Malekird, A. A., Vakilian, K., Mandegary, A., & Abdollahi, M. (2006). Antioxidant Activity of Iranian Echium amoenum Fisch & C.A. Mey Flower Decoction in Humans: A cross-sectional Before/After Clinical Trial. Evidence-based complementary and alternative medicine : eCAM, 3(4), 469–473. https://doi.org/10.1093/ecam/nfe031

Rajbhandari, M., Wegner, U., Jülich, M., Schöpke, T., & Mentel, R. (2001). Screening of Nepalese medicinal plants for antiviral activity. Journal of ethnopharmacology, 74(3), 251–255. https://doi.org/10.1016/s0378-8741(00)00374-3

Rezazadeh, F., Moshamervinia, M., Motamedifar, M., & Alyaseri, M. (2016). Assessment of Anti-HSV-1 Activity of Aloe Vera Gel Extract: an In Vitro Study. Journal of Dentistry, Shiraz University of Medical Sciences, 17(1), 49–54. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4771053/

Reuven, N. B., Staire, A. E., Myers, R. S., & Weller, S. K. (2003). The herpes simplex virus type 1 alkaline nuclease and single-stranded DNA binding protein mediate strand exchange in vitro. Journal of virology, 77(13), 7425–7433. https://doi.org/10.1128/jvi.77.13.7425-7433.2003

Roy, S., Sukla, S., De, A., & Biswas, S. (2022). Non-cytopathic herpes simplex virus type-1 isolated from acyclovir-treated patients with recurrent infections. Scientific reports, 12(1), 1345. https://doi.org/10.1038/s41598-022-05188-w

Rouf, R., Uddin, S. J., Sarker, D. K., Islam, M. T., Ali, E. S., Shilpi, J. A., Nahar, L., Tiralongo, E., & Sarker, S. D. (2020). Antiviral potential of garlic (Allium sativum) and its organosulfur compounds: A systematic update of pre-clinical and clinical data. Trends in food science & technology, 104, 219–234. https://doi.org/10.1016/j.tifs.2020.08.006

Rolnik, A., & Olas, B. (2021). The Plants of the Asteraceae Family as Agents in the Protection of Human Health. International journal of molecular sciences, 22(6), 3009. https://doi.org/10.3390/ijms22063009

Saha, S., Navid, M. H., Bandyopadhyay, S. S., Schnitzler, P., & Ray, B. (2012). Sulfated polysaccharides from Laminaria sp. inhibit Hepatitis B Virus Activity. Carbohydrate polymers, 87(1), 123–130. https://doi.org/10.1016/j.carbpol.2011.07.026
Sahoo, M., Jena, L., Rath, S. N., & Kumar, S. (2016). Identification of Suitable Natural Inhibitor against Influenza A (H1N1) Neuraminidase Protein by Molecular Docking. *Genomics & informatics*, 14(3), 96–103. https://doi.org/10.5808/gi.2016.14.3.96

Sadowski, L. A., Upadhyay, R., Greeley, Z. W., & Margulies, B. J. (2021). Current Drugs to Treat Infections with Herpes Simplex Viruses-1 and -2. *Viruses*, 13(7), 1228. https://doi.org/10.3390/2Fv13071228

Santoyo, S., Jaime, L., García-Risco, M. R., Ruiz-Rodríguez, A., & Reglero, G. (2014). Antiviral Properties of Supercritical CO2 Extracts from Oregano and Sage. *International Journal of Food Properties*, 17:1150–1161. https://doi.org/10.1080/10942912.2012.700539

Sayedi-pour, S.S., Bebahami, M., Moshtagian, S.J. (2012). Evaluation of Anti-Herpes Simplex Virus Type 2 (HSV-2) Activity of Methanol Extract of Securigera securidaciana by Cell Culture Method. *Genetics in the 3rd millennium*, 10,2802-2809.

Schnitzler, P., Schön, K., & Reichling, J. (2001). Antiviral activity of Australian tea tree oil and eucalyptus oil against herpes simplex virus in cell culture. *Die Pharmazie*, 56(4), 333–347. https://pubmed.ncbi.nlm.nih.gov/11338678/

Schnitzler, P., Koch, C., & Reichling, J. (2007). Susceptibility of drug-resistant clinical herpes simplex virus type 1 strains to essential oils of ginger, thyme, hyssop, and sandalwood. *Antimicrobial agents and chemotherapy*, 51(5), 1859–1862. https://doi.org/10.1122/acc.00426-06

Schnitzler, P., Nolkenper, S., Stintzing, F. C., & Reichling, J. (2008). Comparative in vitro study on the anti-herpetic effect of phytochemically characterized aqueous and ethanolic extracts of Salvia officinalis grown at two different locations. *Phytochemistry: international journal of phytotherapy and phytopharmacology*, 151(1-2), 62–70. https://doi.org/10.1016/j.phymed.2007.11.013

Schuhmacher, A., Reichling, J., & Schnitzler, P. (2003). Virucidal effect of peppermint oil on the enveloped viruses herpes simplex virus type 1 and type 2 in vitro. *Phytochemistry: international journal of phytotherapy and phytopharmacology*, 10(6-7), 504–510. https://doi.org/10.1007/984471103322331467

Scarpa, A., & Guerci, A. (1982). Various uses of the castor oil plant (*Ricinus communis L.*). A review. *Journal of ethnopharmacology*, 5(2), 117–137. https://doi.org/10.1016/0378-7417(82)90038-1

Semple SJ, Pyke SM, Reynolds GD, Flower RL. In vitro antiviral activity of the anthraquinone chrysophanic acid against poliovirus. *Antiviral Research*. 2001;49:169–178. https://doi.org/10.1016/s0166-3542(01)00125-5

Shen, M. X., Ma, N., Li, M. K., Liu, Y. Y., Chen, T., Wei, F., Liu, D. Y., Hou, W., Xiong, H. R., & Yang, Z. Q. (2019). Antiviral Properties of R. tanguticum Nanoparticles on Herpes Simplex Virus Type I In Vitro and In Vivo. *Frontiers in pharmacology*, 10, 959. https://doi.org/10.3389/fphar.2019.00959

Shamsabadipour, S., Ghanadian, M., Saeedi, H., Rahimnejad, M. R., Mohammad-Kamalabadi, M., Ayatollahi, S. M., & Salimazadeh, L. (2013). Triterpenes and Steroids from Euphorbia denticulata Lam. With Anti-Herpes Symplyx Virus Activity. *Iranian journal of pharmaceutical research*: *IJPR*, 12(4), 759–767. http://www.ncbi.nlm.nih.gov/pmc/articles/pmc3920720/

Sharifi-Rad, J., Salehi, B., Schnitzler, P., Ayatollahi, S. A., Kobarfard, F., Fathi, M., Eisaazadeh, M., & Sharifi-Rad, M. (2017). Susceptibility of herpetic simplex virus type 1 to monoterpenes thymol, carvacrol, p-cymene and essential oils of Sinapis arvensis L., Lallemantia royleana Benth, and Pulicaria vulgaris Gaertn. *Cellular and molecular biology (Noisy-le-Grand, France)*, 63(8), 42–47. https://doi.org/10.14715/cmb/2017.63.8.10

Shemluck M. (1982). Medicinal and other uses of the Compositae by Indians in the United States and Canada. *Journal of ethnomycnology*, 5(3), 303–358. https://doi.org/10.1016/0378-8741(82)90016-2

Shuanguo, D., Zhengguo, Z., Yunru, C., Xin, Z., Boaofeng, W., Lichao, Y., & Yan'an, C. (2006). Inhibition of the replication of hepatitis B virus by vitro in emodin. Medical science monitor: *international medical journal of experimental and clinical research*, 12(9), BR302–BR306. https://pubmed.ncbi.nlm.nih.gov/16949025/

Singh, N. A., Kumar, P., & Kumar, N. (2021). Spices and herbs: Potential antiviral preventives and immunity boosters during COVID-19. *Phytotherapy Research*, 35(5), 2745-2757. https://doi.org/10.1002/ptr.7019

Singhal, K., Raj, N., Gupta, K., & Singh, S. (2017). Probable benefits of green tea with genetic implications. *Journal of oral and maxillofacial pathology*: *JOMFP*, 21(1), 107–114. https://doi.org/10.1016/j.jomfp.2017.12.001

Smidling, D., Mitic-Culatic, D., Vukovic-Gacic, B., Simic, D., & Knezevic-Vukcevic, J. (2008). Evaluation of antiviral activity of fractionated extracts of Sage Salvia officinalis L. (Lamiaceae). *The Archives of Biological Sciences*, 60,421–9. https://doi.org/10.2298/ABS0803421S

Soares, A. R., Abrantes, J. L., Lopes Souza, T. M., Leite Fontes, C. F., Pereira, R. C., de Palmer Paixão Frugulhetli, I. C., & Teixeira, V. L. (2007). In vitro antiviral effect of meroditerpenes isolated from the Brazilian seaweed Stypopodium zonale (Dictyotales). *Planta medica*, 73(11), 1221–1224. https://doi.org/10.1055/s-2007-981589

Sowbhagyaa H. B. (2013). Chemistry, technology, and nutraceutical functions of cumin (*Cuminum cyminum L.*): an overview. *Critical reviews in food science and nutrition*, 53(1), 1–10. https://doi.org/10.1080/10408398.2010.500223

Stuart, P. M., & Keadle, T. L. (2012). Recurrent herpetic stromal keratitis in mice: a model for studying human HSK. *Clinical & developmental immunology*, 2012, 728480. https://doi.org/10.1155/2012/2728480

Subramanian, R. P., & Geraghty, R. J. (2007). Herpes simplex virus type 1 mediates fusion through a hemifusion intermediate by sequential activity of glycoproteins D, H, L, and F. *Proceedings of the National Academy of Sciences of the United States of America*, 104(8), 2903–2908. https://doi.org/10.1073/pnas.0608374104

Sydskiris, R. J., Owen, D. G., Lohr, J. L., Rosler, K. H., & Blomster, R. N. (1991). Inactivation of enveloped viruses by anthraquinones extracted from plants. *Antimicrobial agents and chemotherapy*, 35(12), 2463–2466. https://doi.org/10.1128/Aac.35.12.2463

Tada M., Okuno K., Chiba K., Ohnishi E., Yoshii T. Antiviral diterpenes from Saliva officinialis. *Phytochemistry*. 1994;35:539–541. https://doi.org/10.1016/S0031-9422(00)94798-8

Tepe, B., & Cilkiz, M. (2016). A pharmacological and phytochemical overview on Satureja. *Pharmaceutical biology*, 54(3), 375–412. https://doi.org/10.3109/13880209.2015.1043560
Tenório, J.A., Dulciana, S., da Silva, T.M., da Silva, T.G., & Ramos, C.S. (2016). Solanum paniculatum root extract reduces diarrhea in rats. The Revista Brasileira de Farmacognosia, 26(3), 375-378. https://doi.org/10.1016/j.bjp.2016.02.003

Terlizzi, M. E., Occhipinti, A., Luganini, A., Maffei, M. E., & Gribaudi, G. (2016). Inhibition of herpes simplex type 1 and type 2 infections by Oximacro®, a cranberry extract with a high content of A-type proanthocyanidins (PACs-A). Antiviral research, 132, 154-164. https://doi.org/10.1016/j.antiviral.2016.06.006

Thompson K. D. (1998). Antiviral activity of Viracea against acyclovir susceptible and acyclovir resistant strains of herpes simplex virus. Antiviral research, 39(1), 55-61. https://doi.org/10.1016/s0166-3542(98)00027-8

Tolo, F. M., Rukunga, G. M., Mulí, F. W., Njagi, E. N., Njue, W., Kumon, K., Mungai, G. M., Muthaura, C. N., Muli, J. M., Keter, L. K., Oishi, E., & Kofi-Tseko, M. W. (2006). Antiviral activity of the extracts of a Kenyan medicinal plant Carissa edulis against herpes simplex virus. Journal of ethnopharmacology, 104(1-2), 92-99. https://doi.org/10.1016/j.jep.2005.08.053

Tremil, J., Gazdová, M., Šmejkal, K., Sudomová, M., Kubatka, P., & Hassan, S. (2020). Natural Products-Derived Chemicals: Breaking Barriers to Novel Anti-HSV Drug Development. Viruses, 12(2), 154. https://doi.org/10.3390/v12020154

Trujillo, J., Chirino, Y. I., Molina-Jijón, E., Andérbäck-Romero, A. C., Tapia, E., & Pedraza-Chávez, J. (2013). Renoprotective effect of the antioxidant curcumin: Recent findings. Redox biology, 1(1), 448-456. https://doi.org/10.1016/j.redox.2013.09.003

Tshilanda, D.D., Ngoyi, E.M., Kabengele, C.N., Matondo, A., Bongo, G.N., Inoko, C.L., Mbadiko, C.M., Gbolo, B.Z., Lengebiye, E.M., Kilembe, J.A., Mwanangombo, D.T., Kasiama, G.N., Tshibangu, D.S., Ngola, K.N., & Mpiana, P.T. (2020). Ocimum Species as Potential Bioresources against COVID-19: A Review of Their Phytochemistry and Antiviral Activity. International Journal of Pathogen Research, 5(4), 42-54. https://doi.org/10.9734/ijpr/2020/v5i403143

Van Rossum, T. G., Tulo, A. G., de Man, R. A., Brouwer, J. T., & Schalm, S. W. (1998). Review article: glycyrrhizin as a potential treatment for chronic hepatitis C. Alimentary pharmacology & therapeutics, 12(3), 199–205. https://doi.org/10.1046/j.1365-2036.1998.00309.x

Valadares, Y. M., Brandão, G. C., Kroon, E. G., Filho, J. D., Oliveira, A. B., & Braga, F. C. (2009). Antiviral activity of Solanum paniculatum extract and constituents. Zeitschrift fur Naturforschung. C, Journal of biosciences, 64(11-12), 813-818. https://doi.org/10.1515/znc-2009-11-1210

Vaghela, D., Davies, E., Murray, G., Convery, C., & Walker, L. (2021). Guideline for the Management Herpes Simplex 1 and 2 Infections. The Jour nal of clinical and aesthetic dermatology, 14(6 Suppl 1), S11–S14. https://pubmed.ncbi.nlm.nih.gov/34976293

Vlase, L., Benedec, D., Hangau, D., Damian, G., Csilag, I., Sevastre, B., Mot, A. C., Silaghi-Dumitrescu, R., & Ticlea, I. (2014). Evaluation of antioxidant and antimicrobial activities and phenolic profile for Hyssopus officinalis, Ocimum basilicum and Teucrium chamaedrys. Molecules (Basel, Switzerland), 19(5), 5490–5507. https://doi.org/10.3390/molecules19055490

Wang, J., Prinz, R. A., Liu, X., & Xu, X. (2020). In Vitro and In Vivo Antiviral Activity of Gingerenone A on Influenza A Virus Is Mediated by Targeting Janus Kinase 2. Viruses, 12(10), 1141. https://doi.org/10.3390/v12101141

Wang, D., Bădărau, A. S., Swamy, M. K., Shaw, S., Maggi, F., da Silva, L. E., López, V., Yeung, A., Mocan, A., & Atanasev, A. G. (2019). Arctium Species Secondary Metabolites Chemodiversity and Bioactivities. Frontiers in plant science, 10, 834. https://doi.org/10.3389/fpls.2019.00834

Wahab, S., Annadurai, S., Abubakri, S. S., Das, G., Ahmad, W., Ahmad, M. F., Kandasamy, G., Vasudevan, R., Ali, M. S., & Amir, M. (2021). Glycyrrhiza glabra (Licorice): A Comprehensive Review on Its Phytochemistry, Biological Activities, Clinical Evidence and Toxicology. Plants (Basel, Switzerland), 10(12), 2751. https://doi.org/10.3390/plants10122751

Westh, H., Zinn, C. S., & Rosdahl, V. T. (2004). An international multicenter study of antimicrobial consumption and resistance in Staphylococcus aureus isolates in 15 hospitals in 4 countries. Microbial drug resistance (Larchmont, N.Y.), 10(2), 169–176. https://doi.org/10.1089/107662904130019

Wey, Y. P., Yao, L. Y., Wu, Y. Y., Liu, X., Peng, L. H., Tian, Y. L., Ding, J. H., Li, K. H., & He, Q. G. (2021). Critical Review of Synthesis, Toxicology and Detection of Ayclovir. Molecules (Basel, Switzerland), 26(21), 6566. https://doi.org/10.3390/molecules26216566

Weber, N. D., Murray, B. K., North, J. A., & Wood, S. G. (1994). The Antiviral Agent Hypericin has in vitro Activity against HSV-1 Through Non-Specific Association with Viral and Cellular Membranes. Antiviral Chemistry and Chemotherapy, 83–90. https://doi.org/10.1177/2095632294083024

Wiert, C., Kumar, K., Yusof, M. Y., Hamimah, H., Fauzi, Z. M., & Sulaiman, M. (2005). Antiviral Properties of Ent-Labdense Diternperes of Andrographis Paniculata Nees, Inhibitors of Herpes Simplex Virus Type 1. Phytot therapy Research, 19, 1069–1070. https://doi.org/10.1002/ptr.1765

Wößling, R. H., & Leonhardt, K. (1994). Local therapy of herpes simplex with dried extract from Melissa officinalis. Phytomedicine : international journal of phytotherapy and phytomedicinal products, 1(1), 25–31. https://doi.org/10.1016/0944-7113(94)80019-x

Zaker, S., Gavanji, S., Sayedipour, S., Bakhhtiari, A., Shirani Bidabadi, E., Larki, B., Golestannejad, Z. (2014). The Effect of Some Herbal Essential oils on Pathogenic Bacteria. Journal of Ethno-Pharmaceutical Products, 1(2), 23-34. https://civilica.com/doc/1297168/

Zamanian, M., Noormohammadi, Z., Sharifi, Z., Akbarzadeh, T., & Bineshian, F. (2021). Comparison of spring and autumn Artemisia atheria extracts in in inhibition of HSV-1 virus replication. New Cellular and Molecular Biotechnology Journal. 11 (44),19-28. http://ncmbjiau.ir/article-1-1416-en.html

Zamanian, M., Sharifi, Z., Noormohammadi, Z., Akbarzadeh, T., & Bineshian, F. (2021). Antiviral effect of Artemisia atheria aqueous extract on UL46 and US6 genes of HSV-1. Antiviral therapy, 26(1-2), 43-48. https://doi.org/10.1177/135965352011039907

Zandi, K., Taherzadeh, M., Yaghoubi, R., Tajbakhsh, S., Rastian, Z., & Sartavi, K. (2009). Antiviral activity of Aveneimia marina against herpes simplex virus type 1 and vaccine strain of poliovirus (An in vitro study). Journal of Medicinal Plants Research, 3,771-775.

Zhang, X., Xu, Y., Li, Y., Yuan, H., Liu, Z., & Zhang, T. (2022). Prevalence and correlates of Kaposi’s sarcoma-associated herpesvirus and herpes simplex type 2 infections among...
adults: evidence from the NHANES III data. *Virology journal*, 19(1), 5. https://doi.org/10.1186/s12985-021-01731-9

Zannou, O., Pashazadeh, H., Ghellam, M., Ibrahim, S. A., & Koca, I. (2021). Extraction of Anthocyanins from Borage (Echium amoenum) Flowers Using Choline Chloride and a Glycerol-Based, Deep Eutectic Solvent: Optimization, Antioxidant Activity, and In Vitro Bioavailability. *Molecules (Basel, Switzerland)*, 27(1), 134. https://doi.org/10.3390/molecules27010134

Zandi, K., Zadeh, M. A., Sartavim K., & Rastian, Z. (2007). Antiviral activity of aloe vera against herpes simplex virus type 2: an in vitro study. *African Journal of Biotechnology*, 6(15), 1770–1773. http://dx.doi.org/10.5897/AJB2007.000-2276

Zalilawati, M.R., Andriani, Y., Shaari, K., Bourgougnon, N., Ali, A.M., Muhammad, T.S.T., & Mohamad, H. (2015). Induction of apoptosis and anti HSV-1 activity of 3-(Phenethylamino) demethyl(oxy)aaptamine from a Malaysian Aaptos aaptos. *Journal of Chemical and Pharmaceutical Research*, 7, 330–341.

Zakaryan, H., Arabyan, E., Oo, A., & Zandi, K. (2017). Flavonoids: promising natural compounds against viral infections. *Archives of virology*, 162(9), 2539–2551. https://doi.org/10.1007%2Fs00705-017-3417-y

Zandi, K., Ramedani, E., Mohammadi, K., Tajbakhsh, S., Deilami, I., Rastian, Z., Fouladvand, M., Yousefi, F., & Farshadpour, F. (2010). Evaluation of antiviral activities of curcumin derivatives against HSV-1 in Vero cell line. *Natural product communications*, 5(12), 1935–1938. https://pubmed.ncbi.nlm.nih.gov/21299124/

Zhu, W., Chiu, L. C., Ooi, V. E., Chan, P. K., & Ang, P. O., Jr (2006). Antiviral property and mechanisms of a sulphated polysaccharide from the brown alga Sargassum patens against Herpes simplex virus type 1. *Phytomedicine : international journal of phytotherapy and phytopharmacology*, 13(9-10), 695–701. https://doi.org/10.1016/j.phymed.2005.11.003

Zheng, M. S., & Lu, Z. Y. (1990). Antiviral effect of mangiferin and isomangiferin on herpex simplex virus. *Chinese medical journal*, 103(2), 160–165. https://pubmed.ncbi.nlm.nih.gov/2167819/

Zhang, H. L., Dai, L. H., Wu, Y. H., Yu, X. P., Zhang, Y. Y., Guan, R. F., Liu, T., & Zhao, J. (2014). Evaluation of hepatocytetprotective and anti-hepatitis B virus properties of Cichoric acid from Cichorium intybus leaves in cell culture. *Biological & pharmaceutical bulletin*, 37(7), 1214–1220. https://doi.org/10.1248/bpb.b14-00137

Zolfaghari, M.E., Salamian, P., Riazi, A., Khaksa, A. (1997) Clinical trial of efficacy of myrtle oil in the treatment of herpex simplex. he Iranian Journal of Medical Sciences (IJMS), 22(3),134-137. https://pesquisa.bvsalud.org/portal/resource/pt/embr-96075

Zrig, A. (2022). The Effect of Phytoocompounds of Medicinal Plants on Coronavirus (2019-NCOV) Infection. *Pharmaceutical chemistry journal*, 55, 1080–1084. https://doi.org/10.1007/s11094-021-02540-8

Yang, Z., Liu, N., Huang, B., Wang, Y., Hu, Y., & Zhu, Y. (2005). Effect of anti-influenza virus of Arctigenin in vivo. *Journal of Chinese medicinal materials*, 28(11), 1012–1014. https://europepmc.org/article/med/16514891

Yang, W., Chen, X., Li, Y., Guo, S., Wang, Z., & Yu, X. (2020). Advances in pharmacological activities of terpenoids. *Natural Product Communications*, 15, 1934578X20093555. https://doi.org/10.1177%2F1934578X20903555
