Numerical simulation of inorganic Cs$_2$AgBiBr$_6$ as a lead-free perovskite using device simulation SCAPS-1D

Aminreza Mohandes. Mahmood Moradi. Hamid Nadgaran

Abstract
Double perovskite, Cs$_2$AgBiBr$_6$, is introduced as a lead-free perovskite solar cell. Device modeling of Cs$_2$AgBiBr$_6$ (DP) was accomplished to obtain the optimum parameters using the Solar Cell Capacitance Simulator (SCAPS). Two devices with two different hole transport layers (HTLs) were investigated, including P$_3$HT and Cu$_2$O. For both devices with different HTLs, an optimal thicknesses of 1200 nm and defect densities of 1.0×10^{14} cm$^{-3}$ for DP layer were attained. For both HTLs, conduction band offset, CBO, is -0.21 eV and valence band offset, VBO, is +0.16 eV. For shallow acceptor doping concentration of P$_3$HT and Cu$_2$O, the values of 5.0×10^{19} and 5.0×10^{17} cm$^{-3}$ were obtained, respectively. As far as the shallow donor density of electron transport layers (ETLs) is concerned, for both cases, the optimum value of 5.0×10^{19} cm$^{-3}$ were achieved. For capture cross section, $\sigma_{n,p}$, in absorber layer for both HTLs, the optimal value at $\sigma_{n,p}$ of 10^{-20} cm2 for $N_{L,DP}$ (defect density of DP) is 10^{16} cm$^{-3}$, at $\sigma_{n,p}$ of 10^{-19} cm2 for $N_{L,DP}$ is 10^{15} cm$^{-3}$, at $\sigma_{n,p}$ of 10^{-18} cm2 for $N_{L,DP}$ is 10^{14} cm$^{-3}$, at $\sigma_{n,p}$ of 10^{-17} cm2 for $N_{L,DP}$ is 10^{13} cm$^{-3}$, and at $\sigma_{n,p}$ of 10^{-16} cm2 for $N_{L,DP}$ is 10^{12} cm$^{-3}$. For P$_3$HT device, the interface defect density of P$_3$HT/Cs$_2$AgBiBr$_6$ is occurred at 1.0×10^{14} cm$^{-2}$, and for Cs$_2$AgBiBr$_6$/SnO$_2$ is happened at 1.0×10^9 cm$^{-2}$. For Cu$_2$O device, the interface defect density of Cu$_2$O/ Cs$_2$AgBiBr$_6$ is befallen at 1.0×10^{13} cm$^{-2}$, and for Cs$_2$AgBiBr$_6$/SnO$_2$ is happened at 1.0×10^{10} cm$^{-2}$. As for radiative recombination, for P$_3$HT device, the optimal value is happened at 2.3×10^{-13} cm3/s, however, for Cu$_2$O device is occurred at 2.3×10^{-12} cm3/s. Finally, for P$_3$HT device, a maximum power conversion efficiency, PCE, of 11.69% (open-circuit voltage, V_{oc}, of 2.02 V, short-circuit current density, J_{sc}, of 6.39 mA/cm2, and fill-factor, FF, of 0.90 (90%)) were achieved, and for Cu$_2$O device, a PCE of 11.32% (V_{oc} of 1.97 V, J_{sc} of 6.39 mA/cm2, and FF of 0.895 (89.5%)) were attained. This is the highest efficiency for Cs$_2$AgBiBr$_6$ double perovskite solar cell which was achieved till now. Finally, our results are providing towards fabricating a lead-free and inorganic solar cell.

Keywords Cs$_2$AgBiBr$_6$. Double perovskite solar cell. Lead-free perovskite. Conduction band offset (CBO). Valence band offset (VBO). SCAPS

1 Mahmood Moradi
mморadi@shirazu.ac.ir
Department of Physics, Shiraz University, College of Science, Shiraz 71946-84795, Iran
1 Introduction

Perovskite solar cells (PSCs) have gained more than 25% efficiency within a very short period (Usiobo et al. 2020). Although PSCs have some advantages such as indicating high charge carrier mobilities, high absorption coefficients, direct and tunable band gaps, long carrier diffusion lengths, and high performance (Zhang and Zhu 2020; Gu et al. 2020; Li and Zhang 2020), they endure from instability issue, mostly owing to perovskite material deterioration upon moisture and light exposure (He et al. 2020; Singh et al. 2020; Lee and Park 2020; Yang et al. 2020). Moreover, the stability of the PSCs are researching (Bouich et al. 2021; Mohseni et al. 2021). Despite some advantages, the presence of lead and the toxicity in these kind of cells is a major blockage to its commercialization (Xu et al. 2020). In order to overcome the existing shortcoming related to the presence of lead in the perovskite solar cell, the main competitor is to replace tin (Xu 2021; Poli et al. 2021; Liu et al. 2020; Jiang et al. 2020; Li et al. 2020) and germanium (Soto-Montero et al. 2020; Liu et al. 2020) belonging to the same lead group, therefore we expect the exhibition of similar properties. For lead-free perovskite solar cells, since tin has the same diameter as lead, the scientists are encouraged to replace tin with lead to form ASnX3 (Ogomi et al. 2014; Zuo et al. 2014; Noel et al. 2014; Liao et al. 2016; Xi et al. 2017; Shi et al. 2017). However, Sn2+ ion is unstable in these materials and easily oxidize to Sn4+ which results in degradation of photovoltaic performance.

The other way to develop the perovskite family for photovoltaic application is to replace Pb2+ ion with one monovalent B+ and one trivalent B3+ ion, forming A2B+B3+X6 double perovskite (DP) structure called elpasolite (Zhao et al. 2017). More than 300 diverse elpasolites have been synthesized till now (Giustino and Snaith 2016). Nevertheless, so far only three of them, including Cs2AgBiBr6 (Slavney et al. 2016), Cs2AgBiCl6 (McClure et al. 2016) and (CH3NH3)2AgBiBr6 (Wei et al. 2017) have been produced. The bandgap engineering of Cs2AgBiBr6 has been done by inducing defects and alloying of triple metals (Slavney et al. 2017; Du et al. 2017). Among the double perovskite family, Cs2AgBiBr6 is a suitable absorbing layer in solar cell devices, because it has high crystallinity, encouraging photovoltaic properties including long carrier recombination lifetime, good stability against air and moisture, low carrier effective masses and both thermal stability and fabricated in the ambient as compared to the perovskite structure, and long carrier diffusion length of around 700 nm (Yang et al. 2020; Longo et al. 2020; Burwig et al. 2020; Ghasemi et al. 2020; Zhang et al. 2020). While the double perovskite solar cell is more stable as compared to perovskite cell, it has much lower inherent efficiency than that of perovskite cell (Wu et al. 2018). For instance, for the device of ITO/SnO2/Cs2AgBiBr6/P3HT/Au, the efficiency was attained to be 1.44% experimentally (Wu et al. 2018).

Although P3HT (poly(3-hexylthiophene-2,5-diyl)) is a good candidate material for the realization of PSC industrialization, P3HT endures from some inherent drawbacks, such as elevated levels of occupied molecular orbital energy (HOMO) and narrow visible light absorption range (<650 nm), leads to low efficiency and low Voc (Kim et al. 2020; Chow et al. 2020). Lately, it has been reported that Cu2O (cuprous oxide) has emanated as a strong option for the HTL owing to its very high mobility, optimal direct bandgap and significantly inorganic, consequently it has low degradability characteristic (Mkhalid and Shawky 2021; Islam et al. 2020). Besides, 1.0 gr of P3HT is around 547 EURO depending on purity degrees, while 1.0 gr Cu2O is around 11.76 EURO depending on purity degrees (www.sigmaaldrich.com/germany.html). As far as price is concerned, it rises to the attention that Cu2O is the best example between two HTLs, in consequence of the lower cost.

Islam et al. 2020 used wxAMPS software to find the efficiency of Cs2AgBiBr6 double perovskite and as they mentioned in the conclusion of their report, they obtained the efficiency of 8.11 certainly. However, for the other double perovskite such as Cs2TiBr6, the efficiency in the experiment was attained to be 2.15% (Chen et al. 2018). After performing optimization, the efficiency is reached to 11.49%, which means that efficiency is improved theoretically by 434.41% (Ahmed et al. 2021).

In this work, the Cs2AgBiBr6 double perovskite is offered as a lead-free perovskite as an active layer in solar cell. Two devices with two different HTLs including P3HT and Cu2O are comprehensively surveyed in the simulation using SCAPS software and optimizing widely most of the parameters to get the highest efficiency.

2 Methodology

The Solar Cell Capacitance Simulator (SCAPS) is implemented in this research. The ver. 3.3.07 of this package established by University of Gent is used in our calculations (Burgelman et al. 2000). The SCAPS software is one dimensional simulation program that computes energy bands, concentrations, J-V characteristics, ac characteristics (C and G) as functions of V and f) and spectral response (QE) using the three basic semiconductor equations comprise of the continuity equations for hole and electron and Poisson’s equation, as shown in Eq. (1)-(3) under the steady-state conditions:

$$\frac{dn_p}{dt} = -\frac{n_p}{\tau_n} + n_p \mu_n \frac{df}{dx} + \mu_n \xi \frac{dn_p}{dx} + D_n \frac{d^2n_p}{dx^2}$$

(1)
\[
\frac{dp_n}{dt} = G_p - \frac{p_n - p_{n0}}{\tau_p} + \mu_p \frac{df}{dx} + D_p \frac{d^2p_n}{dx^2} + \xi \frac{dp_n}{dx} + \mu_p \frac{dD_p}{dx^2}
\]

(2)

\[
\frac{d}{dx} \left(-e(x) \frac{dp_n}{dx}\right) = q \left[p(x) - n(x) + N_d^p(x) - N_d^a(x) + p_t(x) - n_t(x)\right]
\]

(3)

where \(G_p\) indicates the generation rate of electrons and holes, \(\mu_n\) and \(\mu_p\) are electron and hole mobilities, \(\xi\) is the electric field, \(D\) is diffusion coefficient, \(\tau\) is the life time of electrons and holes, \(e\) is permittivity, \(\psi\) is electrostatic potential, \(q\) is electron charge, \(p_t(x)\) and \(n_t(x)\) are the concentrations of trapped holes and electrons, \(N_d\) and \(N_a\) are shallow donor and acceptor concentrations.

3 Device structure and simulation parameters

Figure 1 shows the schematic diagram of multilayer used in the double perovskite solar cell. The device contains of indium tin oxide (ITO)/electron transport layer (SnO\(_2\))/ absorber layer (Cs\(_2\)AgBiBr\(_6\))/ hole transport layer (P3HT)/ Au (Wu et al. 2018). We used the following arrangement to perform the simulation.

In Table 1, the simulation parameters of all layers such as thickness, band gap energy \(E_g\), electron affinity \(\chi\), relative permittivity \(\varepsilon_r\), effective density of states of conduction band \(N_C\), effective density of states of valence band \(N_V\), mobility of electron \(\mu_n\), mobility of hole \(\mu_p\), shallow donor density \(N_D\), shallow acceptor density \(N_A\) and defect density \(N_t\) are presented.

Some other parameters and settings are given in the following. The thermal velocity of electron and hole is 1.0 \(\times 10^7\) cm/s. The \(N_t\) suggests the defect density at the interface. The \(N_d\) quantities at SnO\(_2\)/Cs\(_2\)AgBiBr\(_6\) and Cs\(_2\)AgBiBr\(_6\)/P3HT interfaces are fixed to 2.3\(\times 10^{10}\) cm\(^{-2}\) to achieve the recombination velocities of 0.74 cm/s at both interfaces. The defect energy level is selected at the center of band gap and defect type is neutral. The energetic distribution is Gaussian and its characteristic energy is 0.1 eV.

\[R_s\] is the series resistance with the unit of \(\Omega\) \(\mathrm{cm}^2\). The \(N_t\) of the Cs\(_2\)AgBiBr\(_6\), shown in Table 1, is fixed to 3.678 \(\times 10^{16}\) cm\(^{-3}\), as stated by the following formula:

\[
N_t = \frac{2\varepsilon_0\varepsilon N_D V_{TFL}^2}{q^2}
\]

(4)

where \(\varepsilon_0\) is the vacuum permittivity and \(\varepsilon\) is the dielectric permittivity of Cs\(_2\)AgBiBr\(_6\) film. \(l\) is the thickness of the Cs\(_2\)AgBiBr\(_6\) film and \(q\) is the elementary charge. The \(V_{TFL}\) (the trap-filled limit voltage) of the Cs\(_2\)AgBiBr\(_6\) is 1.29 V, according to the Supporting Information of reference (Wu et al. 2018). For this compound, the carrier lifetime is 843.6 ns, \(L_n\) of 5.1 \(\mu\)m and \(L_p\) of 1 \(\mu\)m (Wu et al. 2018). Moreover, the optical reflection of front contact, see Fig. 1, is assumed to be 40%. The obtained capture cross section of electron and hole is 3.22 \(\times 10^{-18}\) cm\(^2\), according to the following formula:

\[
\sigma_{n,p} = \frac{1}{N_t V_{TFL} \tau_{n,p}}
\]

(5)

Where \(\sigma_{n,p}\) is capture cross section of electron and hole, \(N_t\) is defect density of Cs\(_2\)AgBiBr\(_6\) layer, \(V_{TFL}\) is thermal velocity of electron and hole and \(\tau_{n,p}\) is the carrier lifetime of electron and hole. Right and left contact work function are 4.8 eV (ITO) and 5.1 eV (Au), respectively. Pre-factor \(A_\alpha\) for Cs\(_2\)AgBiBr\(_6\) is set to 2.62\(\times 10^4\) cm\(^{-1}\) eV\(^{-1/2}\) to acquire absorption coefficient, \(\alpha\), as computed by \(\alpha = A_\alpha (h\nu - E_p)^{1/2}\), where the \(h\nu\) is the photon energy. All simulations are accompanied under AM 1.5G illumination and temperature 300 Kelvin.
Fig. 1 Device multilayer structure, ITO/SnO\(_2\)/Cs\(_2\)AgBiBr\(_6\)/P\(_3\)HT/Au, used in solar cells

The material parameters for the simulation are carefully selected from reported works (Wu et al. 2018; Ganvir 2016; Xu et al. 2019; Zhao et al. 2019; Minemoto et al. 2019; Islam et al. 2020; Coulibaly et al. 2019; Minbashi et al. 2018), as summarized in Table 1.

Parameters	ITO	SnO\(_2\)	Cs\(_2\)AgBiBr\(_6\)	P\(_3\)HT	Cu\(_2\)O
Thickness(\(\text{nm}\))	200	50	150	100	100
\(N_d(\text{cm}^{-3})\)	\(1.0 \times 10^{20}\)	\(2.0 \times 10^{19}\)	\(1.0 \times 10^{19}\)	0.0	0.0
\(N_a(\text{cm}^{-3})\)	0.0	0.0	\(1.0 \times 10^{19}\)	\(2.0 \times 10^{18}\)	\(2.0 \times 10^{18}\)
\(\varepsilon_r\)	8.9	9.0	5.8	3.0	7.1
\(\chi(\text{ev})\)	4.8	4.09	4.19	3.20	3.20
\(E_g(\text{ev})\)	3.65	4.04	2.05	2.0	2.17
\(\mu_n(\text{cm}^2\text{V}^{-1}\text{s}^{-1})\)	10.0	240	11.81	\(1.0 \times 10^{-4}\)	200
\(\mu_p(\text{cm}^2\text{V}^{-1}\text{s}^{-1})\)	10.0	25.0	0.49	\(1.0 \times 10^{-4}\)	80
\(N_i(\text{cm}^{-3})\)	\(5.2 \times 10^{18}\)	\(2.2 \times 10^{18}\)	\(1.0 \times 10^{16}\)	\(2.5 \times 10^{18}\)	\(2.02 \times 10^{17}\)
\(N_e(\text{cm}^{-3})\)	\(1.0 \times 10^{18}\)	\(1.8 \times 10^{19}\)	\(1.0 \times 10^{16}\)	\(1.8 \times 10^{19}\)	\(1.0 \times 10^{19}\)
\(N_r(\text{cm}^{-3})\)	\(1.0 \times 10^{15}\)	\(1.0 \times 10^{15}\)	\(3.678 \times 10^{16}\)	\(1.0 \times 10^{14}\)	\(1.0 \times 10^{14}\)
Radiative	\(2.3 \times 10^{-9}\)				

4 Results and discussion

Figure 2a presents the current density-voltage (J-V) curves computed for ITO/SnO\(_2\)/Cs\(_2\)AgBiBr\(_6\)/P\(_3\)HT/Au cell by using the factors given in Tables 1 and 2 and comparing with the experiment (Wu et al. 2018). As Fig. 2b shows, the computed external quantum efficiency, EQE, is commenced from zero at 330 nm and achieved quickly to the apex of
23.60% at 340 nm and then decreased to zero at 610 nm. The simulation and experimental results are compared in Table 3.

Table 2 Defect density at interfaces

Interface defect density	ETL/absorber	absorber/HTL
Defect type	Neutral	Neutral
Capture cross section electron (cm2)	3.22×10^{-18}	3.22×10^{-18}
Capture cross section hole (cm2)	3.22×10^{-18}	3.22×10^{-18}
Energy distribution	Single	Single
Reference for defect energy level E_i	Above the highest E_F	Above the highest E_F
Energy with respect to Reference (eV)	1.30	1.30
Total density (cm$^{-2}$)	2.3×10^{10}	2.3×10^{10}

![Fig. 2](image)

Fig. 2 a Comparison of our simulation and experimental results of current density-voltage curves. b Calculated external quantum efficiency of the double perovskite solar cell, for ITO/SnO$_2$/Cs$_2$AgBiBr$_6$/P$_3$HT/Au cell (Wu et al. 2018)

Table 3 Comparison of our simulation and experimental results of current density-voltage curves, for ITO/SnO$_2$/Cs$_2$AgBiBr$_6$/P$_3$HT/Au cell (Wu et al. 2018)

Cs$_2$AgBiBr$_6$	V_{oc} (V)	J_{sc} (mA/cm2)	FF	PCE (%)	R_s (Ω·cm2)
Simulation	1.09	1.73	0.76	1.44	9.25
Experiment	1.04	1.78	0.78	1.44	

In the next step, we are employing the other HTL such as Cu$_2$O. According to the data given in Tables 1 and 2, the current density-voltage curve and external quantum efficiency with Cu$_2$O layer are plotted in Figs. 3a and 3b, respectively. For ITO/SnO$_2$/Cs$_2$AgBiBr$_6$/Cu$_2$O/Au cell, the performance parameters are V_{oc} of 1.17 V, J_{sc} of 3.42 mA/cm2, FF of 0.78 and PCE of 3.13%. As shown in Fig. 3b, the computed external quantum efficiency is started at 330 nm and reached swiftly to the apex of 44.12% at 340 nm and then decreased to zero at 610 nm.
Fig. 3 a The current density-voltage curve, and b the computed external quantum efficiency, for ITO/SnO2/Cs2AgBiBr6/Cu2O/Au cell.

The performance parameters for two different HTLs are shown in Table 4, before optimizing parameters.

Table 4 Performance parameters attained for two different HTLs using SCAPS simulation

HTL	V_{oc} (V)	J_{sc} (mA/cm²)	FF	PCE(%)	R_s(Ω·cm²)
P3HT	1.09	1.73	0.76	1.44	9.25
Cu2O	1.17	3.42	0.78	3.13	9.25

To get the required efficiency, we used the obtained optimal value of each quantity. Nevertheless, in this research, the improvements made in the efficiency have been explicated in the following sub-sections for ITO/SnO2/Cs2AgBiBr6/P3HT/Au cell.

4.1 Effect of the double perovskite (absorber layer) thicknesses

The effect of absorber layer thickness on the parameters of the double perovskite solar cell was calculated. The thickness of the double perovskite layer was altered from 100 to 2500 nm, the attained parameters as a function of thickness are revealed in Fig. 4.

Figure 4a exhibits the current density-voltage curves for different thicknesses of absorber layer changing from 100 to 2500 nm. As a consequence of increasing the thickness of the absorbing layer, photons with longer wavelengths were also absorbed. This effect is associated with the enhancement of the collection of photogenerated carriers. According to Eq. (6), V_{oc} is function of both J_{sc} and the saturation current density of the device, J_0, which is also influenced by the thickness of the absorber layer:

$$V_{oc} = \frac{kT}{q} \ln \left(\frac{J_{sc}}{J_0} + 1 \right)$$

Figures 4b represents the performance parameters of V_{oc}, J_{sc}, FF and efficiency of the device as a function of thicknesses of absorber layer altering from 100 to 2500 nm. According to Fig. 4b, the efficiency was started from 1.05% at 100 nm and then amended to the amount of 3.65% at 1200 nm and decreased to 2.92% at 2500 nm, see Supporting Information of (Dang et. al 2020; Longo et. al. 2020) and (Keshavarz et al. 2020; Zhang et al. 2020). The FF, J_{sc}, and V_{oc} are also presented in Fig. 4b. Figure 4c exhibits the external quantum efficiency of Cs2AgBiBr6 device for different...
thicknesses altering in the same range. Therefore, the optimized parameter for this section is 1200 nm. The V_{oc} of 1.08 V, J_{sc} of 6.33 mA/cm2, FF of 0.53 and efficiency of 3.65% are attained.

Fig. 4 a Current density-voltage curves for different thicknesses of Cs$_2$AgBiBr$_6$. b The performance parameters of V_{oc}, J_{sc}, FF and efficiency of the device as a function of Cs$_2$AgBiBr$_6$ thicknesses. c The external quantum efficiency for various thicknesses of Cs$_2$AgBiBr$_6$.

4.2 Effect of defect densities, N_t, of Cs$_2$AgBiBr$_6$

For supplementary enhancement in performance, defect density is another serious parameter which should be disputed. Defect density in Cs$_2$AgBiBr$_6$ are mostly point defects including Vacancy, Interstitial, and Antisite. We do not specifically report each of these defects (Islam et al. 2020). The performance of double perovskite solar cell is noticeably reformed by the morphology and quality of absorber layer film. As the quality of film is not ideal, the defect density improved and the recombination rate of the carriers enlarged in the absorbing layer, thus it disturbs the performance of the solar cell (Zhu et al. 2020; Li et al. 2019; Tan et al. 2020).

Figure 5a demonstrates the current-density-voltage curves for numerous defect density (N_t) of Cs$_2$AgBiBr$_6$, changing from 10^{12} to 10^{17} cm$^{-3}$. Figure 5b indicates the performance parameters of V_{oc}, J_{sc}, FF and efficiency against defect density (N_t) of device varying from 10^{12} to 10^{17} cm$^{-3}$. As shown in Fig. 5b, the efficiency of device was initiated from 4.06% at 10^{12}, 10^{13} and 10^{14} cm$^{-3}$ and reduced to 4.04% at 10^{15} cm$^{-3}$, 3.93% at 10^{16} cm$^{-3}$, and 3.27% at 10^{17} cm$^{-3}$. The FF, J_{sc} and V_{oc} are also plotted in Fig. 5b. As Fig. 5b suggests, the optimized value of these parameters can be acquired at defect density of 10^{14} cm$^{-3}$. It is appeared that the high crystallinity of the double perovskite result in the minimum of defect density thereby dwindling charge recombination and thus higher efficiency are gained (Zhu et al. 2020; Li et al. 2019; Tan et al. 2020). The V_{oc} of 1.09 V, J_{sc} of 6.35 mA/cm2, the FF of 0.58 and efficiency of 4.06% are gained.

4.3 Effect of the valence band offset at the HTL side

The serious factor between Cs$_2$AgBiBr$_6$ and P$_3$HT layers is band offset which controls the carrier recombination at the interface and it measures V_{oc}. By changing the band gaps of P$_3$HT (1.5 -3.2 eV), the band offset can be attuned, according to Table 1 and the following formula:

$$VBO = (\chi_{HTL} + E_{g,HTL}) - (\chi_{DP} + E_{g,DP})$$ \hspace{0.5cm} (7)

Where χ_{DP} and χ_{HTL} are the affinity, $E_{g,DP}$ and $E_{g,HTL}$ are the band gap of Cs$_2$AgBiBr$_6$ and P$_3$HT, respectively. VBO is enhanced from -1.54 to +0.16 eV. Figure 6a exhibits the current-density-voltage curves for various band gaps of P$_3$HT changing from 1.5 to 3.2 eV. Figure 6b displays the energy band diagrams for the band gaps of P$_3$HT varying from 1.5 to 3.2 eV. As indicated by Fig. 6, the optimal value for VBO is happened at +0.16 eV (the band gap of P$_3$HT is 3.2 eV). Since VBO is positive, the spike is established. Meanwhile, the formed spike is lower than 0.2 eV, the hole can move...
to P3HT (Minemoto and Murata 2015). The V_{oc} of 1.87 V, J_{sc} of 6.38 mA/cm2, FF of 0.83 and efficiency of 10.0% are obtained.

Fig. 6 a The current density-voltage curves for VBO of P$_3$HT/CS$_2$AgBiBr$_6$ changing from -1.54 to +0.16 eV. b The energy band diagrams for VBO of P$_3$HT/CS$_2$AgBiBr$_6$ varying from -1.54 to +0.16 eV

4.4 Effect of the conduction band offset at the ETL side

The earnest factor between SnO$_2$ and CS$_2$AgBiBr$_6$ layers is band offset which controls the carrier recombination at the interface and it evaluates V_{oc}. By altering the affinity of SnO$_2$ in the range of 4.0 to 4.5 eV, the band offset can be adjusted. According to Table 1 and the following formula:

$$CBO = \chi_{DP} - \chi_{ETL}$$ \hspace{1cm} (8)

Where χ_{DP} and χ_{ETL} are the affinity of CS$_2$AgBiBr$_6$ and SnO$_2$, respectively. The obtained CBO is changed from +0.19 to -0.31 eV. Figure 7a exhibits the current density-voltage curves for the CBO of CS$_2$AgBiBr$_6$/SnO$_2$ changing from +0.19 to -0.31 eV, also Fig. 7b displays the energy band diagrams. As indicated by these figures, the optimal value for CBO is occurred at -0.21 eV (affinity of SnO$_2$ is 4.4 eV). The CBO is negative which means that the cliff is formed, the electron can simply drift to SnO$_2$ (Minemoto and Murata 2015). The V_{oc} of 1.87 V, J_{sc} of 6.39 mA/cm2, FF of 0.88 and efficiency of 10.57% are achieved.
4.5 Effect of doping concentration (\(N_A\)) of P3HT

Figure 8a displays the current density-voltage curves for various doping concentration of P3HT changing from \(5 \times 10^{12}\) to \(5 \times 10^{21}\) cm\(^{-3}\). According to this figure, the larger concentrations caused higher efficiency due to better charge transport and charge extraction at the P3HT/absorber interface. Figure 8b denotes the effect of \(N_A\) on the performance parameters. It determines that PCE is low at low level of \(N_A\) which is owing to high series resistance in line with the former studies (Daraie and Fattah 2020; Jamal et al. 2020; Wang et al. 2020). Thus, according to Fig. 8b, PCE is maximized at \(N_A = 5 \times 10^{19}\) cm\(^{-3}\) and larger values. The \(V_{oc}\) of 1.87 V, \(J_{sc}\) of 6.39 mA/cm\(^2\), FF of 0.88, and efficiency of 10.59% are found.
4.6 Effect of doping concentration \((N_D)\) of SnO\(_2\)

Figure 9a displays the current density-voltage curves with varying doping concentration of SnO\(_2\) changing from \(5 \times 10^{12}\) to \(5 \times 10^{21}\) cm\(^{-3}\). According to this figure, the greater concentrations produce the better charge transport and charge extraction at the SnO\(_2\)/absorber interface. Figure 9b shows the effect of \(N_D\) on the performance parameters. Again it defines that PCE is low at low level of \(N_D\) which is owing to high series resistance in agreement with aforementioned studies (Daraie and Fattah 2020; Jamal et al. 2020; Wang et al. 2020). Thus, according to Fig. 9b, PCE is maximized at 10.59\% for \(N_D = 5 \times 10^{19}\) cm\(^{-3}\), 10.55\% for \(N_D = 5 \times 10^{20}\) cm\(^{-3}\), and 10.48\% for \(N_D = 5 \times 10^{21}\) cm\(^{-3}\). As shown in Fig. 9b, the efficiency of 10.59\%, \(V_{oc}\) of 1.87 V, \(J_{sc}\) of 6.39 mA/cm\(^2\) and FF of 0.88 are obtained.

4.7 Effect of capture cross section in the absorber layer

Figure 10 demonstrates the current density-voltage curves for \(N_t,D_P\) (defect density of absorber layer) and different capture cross section \((\sigma_{n,p})\) varying from \(10^{-20}\) to \(10^{-12}\) cm\(^2\) (Shikoh et al. 2020; Bruzzi et al. 2020; Nithya and Sudheer 2020). After optimizing, we achieved the optimum values of \(\sigma_{n,p}\) and \(N_t,D_P\) (Jamal et al. 2015; Rai et al. 2020; Teimouri et al. 2020).
Fig. 10 The current density-voltage curves for (a) $\sigma_{n,p} = 10^{-20}$ cm2, (b) $\sigma_{n,p} = 10^{-19}$ cm2, (c) $\sigma_{n,p} = 10^{-18}$ cm2, (d) $\sigma_{n,p} = 10^{-17}$ cm2, (e) $\sigma_{n,p} = 10^{-16}$ cm2, (f) $\sigma_{n,p} = 10^{-15}$ cm2, (g) $\sigma_{n,p} = 10^{-14}$ cm2, (h) $\sigma_{n,p} = 10^{-13}$ cm2, and (i) $\sigma_{n,p} = 10^{-12}$ cm2.

Finally, here we report the highest PCE. It should be noted that we only draw the PCE curve. We avoid to draw V_{oc}, J_{sc}, and FF curves. The highest PCE is achieved at optimum values of $\sigma_{n,p}$ of 10^{-20} cm2 for $N_{t,DP}$ of 10^{16} cm$^{-3}$, at $\sigma_{n,p}$ of 10^{-19} cm2 for $N_{t,DP}$ of 10^{15} cm$^{-3}$, at $\sigma_{n,p}$ of 10^{-18} cm2 for $N_{t,DP}$ of 10^{14} cm$^{-3}$, at $\sigma_{n,p}$ of 10^{-17} cm2 for $N_{t,DP}$ of 10^{13} cm$^{-3}$, and at $\sigma_{n,p}$ of 10^{-16} cm2 for $N_{t,DP}$ of 10^{12} cm$^{-3}$. According to Fig. 11, the highest efficiency of 10.60%, V_{oc} of 1.87 V, J_{sc} of 6.39 mA/cm2, and FF of 0.88 are obtained.
Fig. 11 The PCE of solar cell against defect density of double perovskite for \(\sigma_{n,p} = 10^{-20}\text{cm}^2 \), \(\sigma_{n,p} = 10^{-19}\text{cm}^2 \), \(\sigma_{n,p} = 10^{-18}\text{cm}^2 \), \(\sigma_{n,p} = 10^{-17}\text{cm}^2 \), \(\sigma_{n,p} = 10^{-16}\text{cm}^2 \), \(\sigma_{n,p} = 10^{-15}\text{cm}^2 \), \(\sigma_{n,p} = 10^{-14}\text{cm}^2 \), \(\sigma_{n,p} = 10^{-13}\text{cm}^2 \), and \(\sigma_{n,p} = 10^{-12}\text{cm}^2 \)

4.8 Effect of interface defect density of P3HT/Cs2AgBiBr6 and Cs2AgBiBr6/SnO2

The serious factor of Cs2AgBiBr6 and P3HT or Cs2AgBiBr6 and SnO2 interfaces is band offset which controls the carrier recombination at the interface and it affects \(V_{oc} \). The \(V_{oc} \), \(J_{sc} \), and FF curves are not shown in Fig. 12, we only draw the PCE curve. According to Fig. 12, PCE is plotted against interface defect density of P3HT/Cs2AgBiBr6 and Cs2AgBiBr6/SnO2. As shown in Fig. 12a, the PCE is depicted against interface defect density of P3HT/Cs2AgBiBr6 changing from \(10^{12} \) to \(10^{18}\text{cm}^{-2} \). Figure 12b represents PCE against interface defect density of Cs2AgBiBr6/SnO2 changing from \(10^{7} \) to \(10^{14}\text{cm}^{-2} \). As shown in Fig. 12a, PCE is initiated from 10.60% at interface defect density of \(10^{12} \), \(10^{13} \), and \(10^{14}\text{cm}^{-2} \), decreased to 10.59% at \(10^{15}\text{cm}^{-2} \), 10.58% at \(10^{16}\text{cm}^{-2} \), 10.54% at \(10^{17}\text{cm}^{-2} \), and 10.51% at \(10^{18}\text{cm}^{-2} \). As far as this figure is concerned, the optimum value of \(10^{14}\text{cm}^{-2} \) is obtained, with PCE of 10.60%, \(V_{oc} \) of 1.87 V, \(J_{sc} \) of 6.39 mA/cm², and FF of 0.88. According to Fig. 12b, PCE is started from 10.61% at \(10^{7} \), \(10^{8} \), and \(10^{9}\text{cm}^{-2} \), reduced to 10.60% at \(10^{10}\text{cm}^{-2} \), 10.55% at \(10^{11}\text{cm}^{-2} \), 10.24% at \(10^{12}\text{cm}^{-2} \), 9.41% at \(10^{13}\text{cm}^{-2} \), and 8.40% at \(10^{14}\text{cm}^{-2} \). As shown in this figure, the optimum value is occurred at \(10^{9}\text{cm}^{-2} \), with PCE of 10.61%, \(V_{oc} \) of 1.88 V, \(J_{sc} \) of 6.39 mA/cm², and FF of 0.88.
In Cs₂AgBiBr₆, the Shockley-Reed-Hall (SRH) and radiative recombination are the most prominent recombinations (Islam et al. 2020). However, there is Auger recombination in Cs₂AgBiBr₆ when the double perovskite material is highly doped (Jani et al. 2020). Figure 13a represents the current density-voltage curves and Fig. 13b shows the PCE against radiative recombination changing from 2.3×10^{-8} to 2.3×10^{-14} cm³/s. According to Fig. 13b, the amount of radiative recombination is maximized at 2.3×10^{-13} cm³/s, with efficiency of 11.69%, Voc of 2.03 V, Jsc of 6.39 mA/cm², and FF of 0.90. The Voc, Jsc and FF curves are not shown. In addition to current density-voltage, we only draw the PCE curve.
As Fig. 14a shows, after performing all these optimizations for device of ITO/SnO$_2$/Cs$_2$AgBiBr$_6$/P$_3$HT/Au, the performance parameters of V_{oc} of 2.03 V, J_{sc} of 6.39 mA/cm2, FF of 0.90, and PCE of 11.69% are attained. For this device, the external quantum efficiency is depicted in Fig. 14b. As shown in this figure, the external quantum efficiency is commenced at the wavelength of 330 nm and improved rapidly to 58.87% at 340 nm and then reduced to zero at 610 nm.

Fig. 14

(a) The current density-voltage curve, and (b) the calculated external quantum efficiency for ITO/SnO$_2$/Cs$_2$AgBiBr$_6$/P$_3$HT/Au cell, after doing all optimization using SCAPS.

In this step, we examined the other HTL, named Cu$_2$O. Figure 15a exhibits the current density-voltage curve and Fig. 15b illustrates the external quantum efficiency, for ITO/SnO$_2$/Cs$_2$AgBiBr$_6$/Cu$_2$O/Au cell. After optimizing the mentioned parameters, the performance parameters are obtained as V_{oc} of 1.97 V, J_{sc} of 6.39 mA/cm2, FF of 0.895 (89.5%) and efficiency of 11.32%. As specified by Fig. 15b, the external quantum efficiency is started at the wavelength of 300 nm and enlarged rapidly to the apex of 59.34% at 340 nm and then decreased to zero at 610 nm.

Fig. 15

(a) The current density-voltage curve, and (b) the computed external quantum efficiency for ITO/SnO$_2$/Cs$_2$AgBiBr$_6$/Cu$_2$O/Au cell, after doing all optimization using SCAPS.
Double perovskites are a new class of material with good inherent stability. After performing all optimization, for both P3HT and Cu2O, the PCE of 11.69% and 11.32% are achieved, respectively. It is required to mention that, the PCE of 7.92% were reported in the simulation studies of Cs2AgBiBr6, employing different ETL and HTL layers (Savory et al. 2016).

As shown in Fig. 4, if the thickness of Cs2AgBiBr6 is chosen 600 nm (Islam et al. 2020), after doing the same procedure as mentioned in this manuscript, PCE of 8.47%, Voc of 1.97 V, Jsc of 4.73 mA/cm², and FF of 0.908 were obtained, which means that the efficiency of device is increased theoretically by 488.19% compared to the experiment. And for the other double perovskite, Cs2TiBr6, the thickness of this double perovskite is obtained as 800 nm (Jani et al. 2020). We are performing the same procedure in this thickness, PCE of 9.95%, Voc of 2.01 V, Jsc of 5.47 mA/cm², and FF of 0.90 were attained, which means that PCE is enhanced theoretically by 590.97% against the experiment.

5 Conclusion
In conclusion, due to the existing of lead in the structure of perovskite solar cell as well as the inherent low efficiency of the double perovskite solar cell, the current study aims to overcome the mentioned shortcomings by comparing two HTLs using SCAPS software. Two devices with two different HTLs were examined, P3HT and Cu2O. For both devices, an optimal thickness of 1200 nm and defect density of 1.0 × 10⁻¹⁶ cm⁻³ were obtained, respectively. As far as the shallon donor density of ETLs is concerned, for both cases, we achieved the optimal value of 5 × 10⁻²⁰ cm⁻². The optimal values of capture cross section (σn,p) in absorber layer for both HTLs are achieved to be σn,p of 10⁻²⁰ cm² for Np,DP of 10⁻¹⁶ cm⁻³, σp,n of 10⁻¹⁵ cm⁻² for Nd,DP of 10⁻¹⁵ cm⁻³, σp,n of 10⁻¹⁷ cm⁻² for Nd,DP of 10⁻¹⁵ cm⁻³, and σp,n of 10⁻¹⁶ cm² for Nd,DP of 10⁻¹₂ cm⁻³. For P3HT device, the optimal value of the interface defect density of P3HT/Cs2AgBiBr6 is occurred at 1.0×10⁻⁴ cm⁻², and for Cs2AgBiBr6/Cs2AgBiO3 is happened at 1.0×10⁻⁶ cm². For Cu2O device, the optimal value of the interface defect density of Cu2O/Cs2AgBiBr6 is befallen at 1.0×10⁻⁴ cm⁻², and for Cs2AgBiBr6/SnO2 is taken place at 1.0×10⁻⁶ cm². About radiative recombination, for P3HT device, the optimal value is happened at 2.3×10⁻¹⁵ cm⁻²/s, however, for Cu2O device is occurred at 2.3×10⁻¹² cm⁻²/s. Finally, for P3HT device, PCE of 11.69% (Voc of 2.02 V, Jsc of 6.39 mA/cm², and FF of 0.90 (90%)) were accomplished, and for Cu2O device, a PCE of 11.32% (Voc of 1.97 V, Jsc of 6.39 mA/cm², and FF of 0.895 (89.5%)) were attained. To sum up, the PCE for P3HT device has been enhanced theoretically by 711.80%, and for Cu2O device has been enlarged by 686.11% compared with the 1.44% efficiency reported in the experiment. The future research could be undertaken in these kind of double perovskite materials, due to having vigorous stability against decomposition and demonstrates flexible tunability band gaps of optoelectronic properties in the range of infrared to ultraviolet. Overall, the elicited results suggest that Cs2AgBiBr6 and some other double perovskites can play a momentous role as an absorbing layer towards the highly efficient lead-free and inorganic PSC technology, in designing eco-friendly PSC for future technologies.

Acknowledgement The authors would desire to acknowledge Professor Marc Burgelman from the Department of Electronics and Information Systems, University of Gent for the development of the SCAPS software and permitting its use.

References
Ahmed, S., Jannat, F., Khan, M.A.K., Alim, M.A.: Numerical development of eco-friendly Cs2TiBr6 based perovskite solar cell with all-inorganic charge transport materials via SCAPS-1D. Optik 225, 165765 (2021). https://doi.org/10.1016/j.ijleo.2020.165765
Bouichi, A., Mari, B., Aoutork, L., Ullah, S., Tourhami, M.E.: Shedding Light on the Effect of Diethyl Ether Antisolvent on the Growth of [(CH3)NH3]PbI3 Thin Films. JOM 73(2), 551-557 (2021). https://doi.org/10.1007/s11837-020-04518-5
Bouichi, A., Ullah, S., Mari, B., Aoutorki, L., Tourhami, M.E.: One-step synthesis of FAxGA1-xPbI3 perovskites thin film with enhanced stability of alpha (α) phase. Mater. Chem. Phys. 258, 123973 (2021). https://doi.org/10.1016/j.matchemphys.2020.123973
Bruzzi, M., Falsini, N., Calisi, N., Vinattieri, A.: Electrically Active Defects in Polycrystalline and Single Crystal Metal Halide Perovskite. Energies (7), 1643 (2020). https://doi.org/10.3390/en13071643
Burgelman, M., Nollet, P., Degrave, S.: Modeling Polycrystalline Semiconductor Solar Cells. Thin Solid Films 361, 527–532 (2000). https://doi.org/10.1016/S0040-6090(99)01082-1
Burwig, T., Guo, M., Izquierdo-Roca, V., Pistor, P.: Synthesis and Crystal Structure Evolution of Co-Evaporated Cs2AgBiBr6 Thin Films upon Thermal Treatment. J. Phys. Chem. C 124(17), 9249-9255 (2020). https://doi.org/10.1021/acs.jpcc.0c03480
Chen, M., Ju, M.-G., Carl, A.D., Zong, Y., Grimm, R.L., Gu, J., Zeng, X.C., Zhou, Y., Patdure, N.P.: Cesium titanium (IV) bromide thin films based stable lead-free perovskite solar cells. Joule 2(3), 558-570 (2018). https://doi.org/10.1016/j.joule.2018.01.009
Chow, P.C.Y., Someya, T.: Organic photodetectors for next-generation wearable electronics. Adv. Mater. 32(15), 1902045 (2020). https://doi.org/10.1002/adma.201902045
Coilubaly, A.B., Oyede, S.O., Kre, N.R., Aka, B.: Comparative study of lead-free perovskite solar cells using different Hole Transporter Materials. MNSMS 9(4), 97-107 (2019). https://doi.org/10.4236/mnsms.2019.94006
Dang, Y., Tong, G., Song, W., Liu, Z., Qiu, L., Ono, L.K., Qi, Y.: Interface engineering strategies towards Cs2AgBiBr6 single-crystalline photodetectors with good Ohmic contact behaviors. J. Mater. Chem. C 8(3), 276-284 (2020). https://doi.org/10.1039/c9tc04780h

Zhang, F., Zhu, K.: Additive engineering for efficient and stable perovskite solar cells. Adv. Energy Mater. 10(13), 1902579 (2020). https://doi.org/10.1002/aenm.201902579

Zhao, P., Lin, Z., Wang, J., Yue, M., Su, J., Zhang, J., Chang, J., Hao, Y.: Numerical Simulation of Planar Heterojunction Perovskite Solar Cells Based on SnO₂ Electron Transport Layer. ACS Appl. Energy Mater. 2(6), 4504–4512 (2019). https://doi.org/10.1021/acsaem.9b00755

Zhao, X.-G., Yang, J.-H., Fu, Y., Yang, D., Xu, Q., Yu, L., Wei, S.-H., Zhang, L.: Design of Lead-free Inorganic Halide Perovskites for Solar Cells via Cation-transmutation. J. Am. Chem. Soc. 139(7), 2630-2638 (2017). https://doi.org/10.1021/jacs.6b09645

Zhu, L., Liu, D., Wang, J., Wang, N.: Large Organic Cations in Quasi-2D Perovskites for High-Performance Light-Emitting Diodes. J. Phys. Chem. Lett. 11(20), 8502-8510 (2020). https://doi.org/10.1021/acs.jpclett.0c02476

Zuo, F., Williams, S.T., Liang, P.-W., Chueh, C.-C., Liao, C.-Y., Jen, A.K.-Y.: Binary-Metal Perovskites Toward High-Performance Planar-Heterojunction Hybrid Solar Cells. Adv. Mater. 26(37), 6454-6460 (2014). https://doi.org/10.1002/adma.201401641