A photogrammetric method for target monitoring in experiments with particle beams

G. Cavoto,1 G. Chiarello,2 M. Hildebrandt,3 A. Hofer,3 K. Ieki,4 M. Meucci,5 S. Milana,2 V. Pettinacci,2 F. Renga,2 and C. Voena2

1)Physics Department Sapienza Università di Roma, P.le Aldo Moro 2, 00185 Rome, Italy.
2)INFN Roma, P.le Aldo Moro 2, 00185 Rome, Italy.
3)Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland.
4)JICEPP, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
5)Physics Department, Sapienza Università di Roma, P.le Aldo Moro 2, 00185 Rome, Italy.

(Dated: 23 October 2020)

An automatic target monitoring method, based on photographs taken by a CMOS photo-camera has been developed for fixed target experiments with beams, where the target position needs to be well known to avoid biases and systematic errors in the measurement of the trajectories of the outcoming particles. A CMOS high resolution, high radiation tolerant and high magnetic field resistant photo-camera is placed inside the MEG-II detector, which searches for lepton flavor violation in muon decays at the Paul Scherrer Institute (Switzerland). The challenges of such a method are the presence of the spectrometer’s high magnetic field, the radiation environment, the space constraints and the need to limit the material in the tracking volume, which can affect the measurement of low momentum particles’ tracks. A pattern of dots is drawn on the thin MEG-II target, which is about 1 m far away from the detector endcaps where the photo-camera is placed. Target movements and deformations are monitored by determining and comparing pictures of the dots, taken at different times. Images are acquired with a Raspberry board and analyzed with a custom software. Global alignment with the spectrometer is guaranteed by corner cubes placed on the target support. As a result, the target position can be determined with a precision less than 100 μm, well within the need of the experiment.

I. INTRODUCTION

Magnetic spectrometers used to determine the momentum of charged particles in high-energy physics experiments (HEP) require an accurate reconstruction of the trajectory of the particle over a relatively large volume. This is usually achieved by measuring with high precision various positions in space and then connecting them to obtain the best evaluation of the trajectory. The relative uncertainty on the momentum of a charged particle is in fact equal to the relative uncertainty on the curvature of the trajectory. Typical particle detectors used in HEP spectrometers are gaseous drift chambers, time-projection chambers, etc. which can be made of sub-elements that require an accurate relative alignment. Moreover, it is important to measure their relative position with respect to other elements, as a production target where the charged particles under study are emerging from. In general a very good accuracy in the mechanical assembly to reach the desired performances is required. However, due to the complexity of the apparatuses, these measurements are most of the time difficult and ad-hoc solutions need to be developed. The spatial alignment of different sub-detectors must be performed with sub-millimetric precision and space constraints, while magnetic fields and high radiation levels pose several challenges in doing this. Different solutions were adopted in HEP, some of them exploiting optical detection of patterns printed on the detectors themselves.

The MEG-II experiment at the Paul Scherrer Institute (PSI, Villigen, Switzerland) is an upgrade of the MEG experiment, which set the best world limit on the decay of a muon into a positron and a photon, μ⁺ → e⁺γ. The observation of this decay, practically forbidden in the Standard Model of particle physics, but sought since a long time, would be the demonstration of new physics effects. The PSI beam of positive muons (7 × 10⁷) muons per second) is stopped on a thin plastic target at the center of the MEG-II detector, constituted by a spectrometer to measure the trajectory of the 52.8 MeV positrons possibly produced in the μ⁺ → e⁺γ decay, and a liquid Xenon (LXe) calorimeter to detect the photon (plus some auxiliary detectors). If the decay is not observed, MEG-II is expected to set an upper limit of 6 × 10⁻¹⁴ on its branching ratio, and the availability of higher intensity muon beams could further improve in the future the experimental sensitivity to this decay.

The MEG-II magnetic spectrometer is composed of a single volume multi-wire drift chamber in a solenoidal gradient magnetic field. One of the dominant systematic errors of the evaluation of the yield of μ⁺ → e⁺γ events in MEG was due to the uncertainty on the target position with respect to the spectrometer and its internal deformation which could not be measured directly. In order to identify a μ⁺ → e⁺γ event, it is necessary to measure the angles of the e⁺ trajectory at the point where the muon has decayed (muon decay point). This is done by back-propagating the trajectory measured by the spectrometer up to the target region, that is assumed to be a planar surface. The MEG-II spectrometer is expected to provide a precision of about 5 mrad on the θ (polar) and φ (azimuthal) angles of the positron trajectory at the target in a reference system where z is the axis along the beam direction. A precise knowledge of the target position is then required: given a radius of curvature of about 13 cm for the e⁺ trajectory

a) Also at INFN Roma, P.le Aldo Moro 2, 00185 Rome, Italy.
in $\mu^+ \to e^+ \gamma$ events, a displacement of the target by 500 μm along the direction normal to it implies a systematic deviation of about 4 mrad in the measured positron ϕ angle for $\phi = 0$, and a larger effect for non-zero ϕ. Figure 1 shows the effect of a displacement of the target in the direction orthogonal to its plane, on the reconstructed track angles. It can be seen that the impact on the azimuthal angle can be sizable while the effect on the polar angle is negligible. Moreover, deformations of the target planarity, which produce a similar effect, were observed through the MEG data taking. The uncertainty on the target position and deformation is the dominant systematic error on the MEG result. It causes a 5% variation of the upper limit on the branching fraction while other contributions are below 1%.

During the MEG data-taking the position of the target plane was measured every run period (i.e. every year) with an optical survey of crosses depicted on the target plane. Unfortunately the small field of view available for triangulation, combined with the distance of the target from the closest accessible point of view (about 1 m), prevented to achieve an accuracy better than 1 mm. Also, a target position monitoring over long data taking periods was possible by reconstructing the position of a few holes bored on the target itself. A map of the reconstructed muon decay points on the target clearly showed the position of such holes. If the target position assumed in the trajectory reconstruction procedure is not exact, the holes artificially appear at different positions for different e^+ angles. This allowed to reconstruct deviations of the target position from the nominal one. This method was also effective to catch and correct the deformation of the target planarity. On the other hand, it required a large amount of data, so that it could only be used to monitor the average target position over a few months of data taking, while the target was removed far from its working position (at least every week) to perform the calibration of the LXe detector. A pneumatic system was used for this, but it did not ensure a micrometric repeatability of the target positioning. While the target hole technique was precise enough for the MEG experiment, the improved resolutions of the MEG-II positron spectrometer imposed the development of an alternative method for a more frequent monitoring of the target position over the data taking period. This new method has to be able to resolve displacements equivalent to about 100 μm along the direction normal to the target plane.

We here present a photogrammetric approach which will employ a digital CMOS photo-camera to take pictures of a pattern drawn on the target itself. The photo-camera will be placed in the inner cavity of the MEG-II cylindrical drift chamber where muons travel along to reach the target. The engineering of the photo-camera mounting will play a key role: it must ensure dimensional mechanical stability over time in a high radiation environment and sufficient rigidity to adequately support the instrumentation. The support - although it must necessarily be compact in size - should avoid deformation and should not be affected by the high active magnetic field. All this requires a study of the materials to be used, which must therefore be non-magnetic. We will show that the photo-camera can be installed without affecting the muon propagation and the magnetic field. Together with the photo-camera described in this paper, a different photo-camera was installed and tested inside the MEG-II detector. Here, we propose different optical configuration and algorithms; moreover, a systematic analysis of the achievable resolution, obtained in a controlled bench-top set-up, will be presented.

![Sketch](image) FIG. 1. Sketch (not in scale) of the impact of a target displacement on the reconstructed track angles. The dashed (full) segment represents the assumed (true) target projection in the corresponding plane. Top: projection on the x-y plane, where the positron trajectory projection is a circle, $\delta \phi$ is the difference between the true and the reconstructed azimuthal angle of the track. Bottom: projection on the x-z plane, the curve represents the positron trajectory projection in this plane. $\delta \theta$ is the difference between the true and the reconstructed polar angle of the track.

II. THE PHOTOGRAMMETRIC APPROACH

A. The experimental setup

The MEG-II target is an elliptical foil (length of 270 mm and height of 66 mm) with 174 μm average thickness, made of scintillating material. Its normal direction lies on the horizontal plane and forms an angle of 75° with respect to the beam axis (z axis). The target foil is supported by two hollow carbon fiber frames. A pattern of white dots, superimposed on a black background, is printed on both the frame and the foil. The dots are elliptical with an height and a width of 0.51 mm and 1.52 mm on the target and 0.42 mm and 1.27 mm on the frame; the ratio of the two axes is chosen in such a way that, considering the target orientation and the photo-camera posi-
A photogrammetric method for target monitoring in experiments with particle beams

D. Palo, W. Molzon et al.

2.2. Target Construction

The support is fixed to the system for the target motion at a distance of about 1100 mm from the origin of the \(z \) axis, in correspondence of the drift chamber (tracking detector) end-plate. The transverse distance from the \(z \) axis is about 120 mm, with an angle of 6.3° with respect to the \(z \) axis. As a result, the photo-camera frames an area of about 110 mm \(\times \) 92 mm around the target center, which is enough to image all the target and its support frame. A picture of the photo-camera on the final Al support, installed in the MEG-II detector and a CAD detail are shown in Fig. 5.

In order to have the largest possible portion of the target reasonably on focus, the diaphragm of the photo-camera’s optics is kept as closed as possible, to have the largest depth of field. Given these conditions, an exposure of 750 ms was chosen in order to optimize the use of the sensor’s dynamic range for the best contrast.
FIG. 3. Picture (upper plot) and CAD detail (lower plot) of the installation of the photo-camera with the final Al support in the inner cavity of the cylindrical drift chamber.

B. The method

The pattern of dots can be reproduced by the photo-camera and the position of dots on the picture can be determined with standard image processing algorithms. If the target moves between two successive photo-camera shoots, the position of these patterns in the picture will change and a measurement of this displacement would allow to measure the corresponding displacement of the target with respect to the original position. Given the size of the target to be imaged and the resolution of our photo-camera, one pixel in the image corresponds to a distance of a few tens μm on the target. Moreover, since imaging algorithms allow to reach a sub-pixel precision on the position of dot patterns, the goal of determining displacements below 100 μm, at least in the transverse coordinates with respect to the optical axis, is within reach. Displacements along the optical axis can be detected considering that the distance d between two points on the target translates into a distance d_I between two points on the image plane according to the magnification (M) formula:

$$\frac{d_I}{d} = M = \frac{f}{f - L}$$

where f is the focal length and L is the distance of the target from the center of the photo-camera’s optical system. Hence, a movement along the optical axis (i.e. a change of L) can be detected as a change of d_I. As we will show later, this approach can obtain the required resolution also for the coordinate transverse to the optical axis.

III. THE TARGET POSITION MEASUREMENT ALGORITHM

In this section we describe in detail the algorithms used to determine the dots positions within the photo-camera image and to use the measured positions to extract the target position by means of a χ^2 fit.

A. Dot positions measurements

The dots positions are determined in a three-step procedure using standard image processing algorithms, as shown in Fig. 4, exploiting the fact that the size of the ellipse is chosen in a way to look circular when viewed by the camera. At first, a region of interest is automatically defined around each dot based on its expected position. A Canny edge detection algorithm is applied to build an image of the dot edges. Secondly, a circular Hough Transform is applied to find which pixels belong to the edge between the black contour and the white dot. Finally, a circumference is used to interpolate the positions of these pixels with a χ^2 minimization assuming 1 pixel uncertainty. The result of this fit procedure provides a measurement of the center of the white dot in the image. As an alternative approach, we evaluate a center of gravity of the picture light intensity to determine the center of the white dot, getting consistent results.

B. Target position and orientation measurement

The positions of the dots on the photo-camera image if the target and photo-camera positions are known can be inferred with simple arguments of geometrical optics. In particular, given the center of the optical system, rays can be traced from a dot position on the target, through the optical center, to the sensor plane, giving the dot position in the image. With respect to the use of first-order optical relationships, this approach minimizes the systematic uncertainties possibly introduced by the fact that, due to the target inclination, dots far from the center of the target are slightly out of focus.

The procedure can be formally described as an operator T acting on the 3-dimensional position $r_i = (x_i, y_i, z_i)$ of the real i^{th} dot in the MEG-II reference frame and producing a 2-dimensional position $s_i = (p_x^i, p_y^i)$ on the sensor:

$$s_i = T(r_i)$$

The operator T has 7 parameters: the position of the optical center (3 parameters), the independent components of the unit vector of the optical axis (2 parameters), the orientation of the sensor around the optical axis (1 parameter) and the distance of the sensor from the center of the optical system (1 parameter). The positions (p_x^i, p_y^i) are measured in units of
FIG. 4. Three-step procedure for the determination of the dot position: edge detection with the Canny algorithm (top); Identification of the white dot contour with a Hough transform (middle); χ^2 fit for a precise determination of the dot center (bottom).

number of pixels. The dots position in the MEG-II reference frame, r_i, can be derived from the dot positions in an arbitrarily defined target reference frame, $t_i = (u_i, v_i, w_i)$:

$$r_i = R \cdot t_i + T$$

(3)

where R is a rotation matrix and T is a translation vector. If we place the center of the target reference frame at the center of the target, and we orient the first and second components of t_i along the major and minor axis, respectively, the vector T gives the center of the target in the MEG-II reference frame, while the matrix R gives the target orientation. Hence, the knowledge of the corresponding 6 parameters (the 3 components of the translation vector and the 3 Euler angles of the rotation matrix) is sufficient to measure the target position in the MEG-II reference frame.

A χ^2 function of the measured dot positions in the image with respect to the expected positions from the target orienta-

$$\chi^2 = \sum_i [s_i - \mathcal{T} (R \cdot t_i + T)]^2$$

(4)

The parameters of \mathcal{T} and the dots position in the target reference frame can be inferred from surveys performed at the beginning of the data taking period, as we will explain below, so that the parameters of R and T (and hence the target position) can be determined by minimizing this χ^2.

The target is assumed to be perfectly planar when installed ($w_i = 0$ for any i). If a deformation occurs during the MEG-II data-taking run, it can be parameterized by an additional operator \mathcal{Z} acting on the original positions t_i. The χ^2 becomes

$$\chi^2 = \sum_i [s_i - \mathcal{T} (R \cdot \mathcal{Z} (t_i) + T)]^2$$

(5)

and it will be minimized as a function of the parameters of R, T and \mathcal{Z} in order to determine the target position, its orientation and its deformation.

The operator \mathcal{Z} is parameterized by means of the Zernike polynomials (10), which are defined in a 2D system of polar coordinates with $\rho = 1$ as:

$$Z_m^0 (\rho, \phi) = R_m^0 (\rho) \cos (m \phi)$$

(6)

$$Z_m^{-m} (\rho, \phi) = R_m^m (\rho) \sin (m \phi)$$

(7)

where m and n are non-negative integers with $n \geq m$ and:

$$R_m^n (\rho) = \sum_{k=0}^{n-m} \frac{(-1)^k (n-k)!}{k! (n+m-k)! (n-m-k)!} \rho^{n-2k}$$

(8)

The first non-null radial polynomials are:

$$R_0^0 (\rho) = 1$$

(9)

$$R_1^0 (\rho) = \rho$$

(10)

$$R_2^0 (\rho) = 2 \rho^2 - 1$$

(11)

$$R_2^2 (\rho) = \rho^2$$

(12)

$$R_3^3 (\rho) = 3 \rho^3 - 2 \rho$$

(13)

$$R_3^1 (\rho) = \rho^3$$

(14)

In the local (u, v, w) reference frame, in order to describe a deformation of the target which is constrained to be null at the border thanks to the stiffness of the target frame, we define:

$$\rho = \sqrt{(u/a)^2 + (v/b)^2}$$

(15)

where a and b are the major and minor semi-axis of the target ellipse, and we use the following parameterization:

$$\mathcal{Z} (u, v, w) = (u, v, w(u, v))$$

(16)

with:

$$w(u, v) = \sum_{n,m} \left[A_n^m r_m^m (u, v) + A_n^{-m} r_m^{-m} (u, v) \right]$$

(17)

$$\xi_m^\pm (u, v) = \frac{1}{2} \left[Z_m^+ (\rho, \phi) - Z_m^- (\rho, \phi) \right]$$

(18)

The first term of the series is:

$$w(u, v) = A_0^0 \frac{1}{2} \left[Z_0^0 (\rho, \phi) - Z_2^0 (\rho, \phi) \right] = A_0^0 (1 - \rho^2)$$

(19)

which describes a paraboloidal deformation.
C. Operational procedure

The positions of the dots in the target reference frame can be determined by a bench-top survey of the target foil, with an accuracy much better than 100 μm. Conversely, the position and orientation of the photo-camera (and hence the parameters of the operator \mathcal{T}) are not known with enough precision. To overcome this difficulty, we proceed as follows. The target position at the beginning of a MEG-II data-taking run will be precisely determined, with improved accuracy with respect to MEG, thanks to the installation of reflectors on the target frame for a laser survey. Immediately after, a set of pictures is taken (reference pictures). We can assume that the position, orientation and shape of the target (and hence the parameters of R, T and \mathcal{Z}) are known for these pictures thanks to the recent surveys. So they can be fixed and the χ^2 can be minimized with respect to the 7 parameters of \mathcal{T}. It provides a precise determination of these parameters. When a new measurement of the target position is needed using the photogrammetric method, a new picture is taken and, in this case, the parameters of \mathcal{T} are fixed from the reference fit, while the parameters of R, T and \mathcal{Z} are fitted.

In order to make the procedure more robust against systematic effects associated to the inaccuracy of the optical model and to the initial conditions of the target, when fitting the new pictures Eq. (5) is in fact replaced by:

$$\chi^2 = \sum_i \left\{ (s_i - s_i^0) - \left[\mathcal{T} (R \cdot \mathcal{Z} (t_i) + T) - (\mathcal{T} (R^0 \cdot \mathcal{Z}^0 (t_i) + T^0)) \right] \right\}^2$$ \hspace{1cm} (21)

where s_i^0 are measured and R^0, T^0 and \mathcal{Z}^0 are fitted from the reference picture. In practice, the fit to the target position is replaced by a fit to the target displacement. Anyway, the fitted parameters of R, T and \mathcal{Z} are still referred to the global MEG-II reference frame for an easy interface to the MEG-II reconstruction software.

An estimate of the uncertainty in the measured position of the dots is given by the minimum χ^2 divided by the number of degrees of freedom in the fit. It gives typically an error slightly below 1 pixel when the definition of Eq. (5) is used. It includes any possible inaccuracy in the optical model and aplanarity of the target. The error goes down to $\frac{1}{3}$ of a pixel when Eq. (21) is used, demonstrating the superior robustness of this approach against these inaccuracies.

Typically a few dots per picture cannot be measured properly by the automatic procedure. Although they could be mostly recovered with a manual procedure (by refining the regions of interest used to find and fit the dots), their impact is so small that we decided to simply remove a dot from the fit when its contribution to the χ^2 is larger than $25\sigma^2$, according to the estimate of the uncertainty described above.

It should be also stressed that several reference pictures need to be taken at the beginning of the data taking period, in order to reduce the statistical uncertainty on the estimate of the parameters of \mathcal{T} to a negligible level. On the other hand, the χ^2 defined in Eq. (21) requires a single reference picture. For this reason, we adopted the following procedure. One of the reference pictures is taken and used to get a preliminary estimate of the parameters of \mathcal{T}. This is used to fit for R, T and \mathcal{Z} in the other reference pictures. Since the target did not move in between, one would expect to get zero displacements on average. Instead, statistical fluctuations in the first picture can be observed as an average fake displacement in the other pictures. The picture producing the minimum average displacements when used as the reference is taken as the single reference picture for the whole data taking period.

IV. BENCH-TOP TESTS

A test of the full procedure was performed by installing the photo-camera, a LED and a target mock-up on an optical table, with the target mounted on a linear stage having a position accuracy of 2.5 μm.

The assembly has been arranged in order to reproduce accurately the real setup installed inside the experiment. Exploiting 3D printing technologies available at INFN Roma Mechanical Workshop, it has been possible to design and produce precise polycarbonate mechanical supports, able to hold all the components in the correct relative positions between themselves, and to interface properly optical table and the linear stage installed. The photo-camera, instead, is fixed to the optical table using Al supports, in order to reduce thermal deformations. A temperature sensor has been installed nearby the target for temperature monitoring while the environmental temperature is kept almost constant by air conditioning. Fig. 5 shows the installed setup.

FIG. 5. Picture of the experimental setup for the bench-top test of the photogrammetric system.

In order to evaluate the precision to which shifts in the target position can be determined, we performed a scan mov-
ing the target along the X and Z axis independently, using the stages. In our setup, we could not vary the target along the Y direction, but it should be noted that such movements have no impact on the track angles measurements in the MEG-II experiment. Before each scan, 10 pictures without moving the stages were taken, and one of them was chosen to serve as the reference picture, as described in the previous section. In this setup, the initial coordinates of the target center are assumed to be (0,0,0), thus the fit returns the coordinates T_x, T_y and T_z after the target movements.

Figs 6, 7, 8 show the fitted T_x, T_y and T_z as a function of the true T_x in the X scan. The pictures have been taken over ~6 hours, in a random order with respect to the true shifts, so that time-dependent and shift-dependent biases mix incoherently and can be thus checked independently. Linear fits have been performed to the distributions and the errors on the fitted shifts have been estimated by mean of a linear regression in the case of the fitted T_x. The resulting uncertainty on T_x is that we fully satisfy our precision requirements. The angular coefficients and the intercept are consistent with one and zero, as expected. A bias in T_z is observed, that is significantly different from 0 but still within the requirements. It is probably due to the residual uncertainty of the reference picture.

Figs 9, 10, 11 show the fitted T_x, T_y, T_z as a function of the true T_z in the Z scan. The pictures have been taken over ~6 hours, again in a random order with respect to the true shifts. Linear fits have been performed to the distributions and the error on the fitted T_z has been estimated by mean of a linear regression. The resulting uncertainty on T_z is $\sigma(T_z) = 82 \mu m$.

The angular coefficients and the intercept are consistent with one and zero, as expected, also in this case.

The dependencies of the fitted position of the target as a function of the environmental temperature changes has been observed by taking 75 pictures in 30 minutes without moving the stages. Figure 12 shows the variation of the temperature versus time, during the data taking period while Figs 13 show the fitted T_x, T_y, T_z from the reference picture. In these figures, the errors estimated from the X and Z scans described previ-
An example of the correlation matrix in all coordinates. Nonetheless, this result clearly demonstrates the possibility of giving a robust estimate of the sensitivity to these deformations. Moreover, we cannot know a priori the amount of deformation induced by the temperature changes. It makes not possible to give a robust estimate of the sensitivity to these deformations. Nonetheless, this result clearly demonstrates the possibility of monitoring this kind of effects with a precision below 100 µm in all coordinates.

A study of the correlations among the fitted parameters was also performed. An example of the correlation matrix extracted from one of the fit is shown in Tab. I. Very large correlations are observed among some parameters, owing to the misalignment between the optical axis and the Z axis. Indeed, we checked that correlations among single parameters are small if the fit is performed in a reference frame aligned with the optical axis, and emerge when the parameters are combined to get the position in the MEG-II reference frame. These effects need to be taken into account when calculating the resolution for displacements along the normal direction to the target plane. An uncertainty propagation that includes the correlation between T_x and T_z gives for instance a resolution of 32 µm for displacements along the direction normal to the target plane, the most dangerous for the positron track angle measurements. A calculation of the eigenvalues and eigenvectors of the covariance matrix does not give indications of directions in the parameter space along which there is very poor resolution (weak modes).

V. MEASUREMENTS IN THE MEG-II EXPERIMENT

We operated successfully the photo-camera during the MEG-II 2018 and 2019 engineering runs. As an example, fit results for T_x, T_y, T_z, assuming the reference position in (0,0,0), are shown in Fig. [14] for a time interval of one day. The time interval with no measurement corresponds to cycles of extraction and insertion of the target.

VI. CONCLUSIONS

A photogrammetric method for the monitoring of the target position during the MEG-II run is presented. The method exploits imaging techniques to find displacements of patterns drawn on the target with respect to a reference picture taken at the beginning of a data-taking run. By combining this information with the results of an optical survey performed just before taking the reference picture, it is possible to determine the position of the target during the run, when the target is...
TABLE I. Example of correlation matrix for a displacement of the target of 55 µm along the X axis with respect to the reference position. Translations are described by the three vector components of \mathbf{T}. Rotations are described by three Euler angles according to the conventions used in the MEG-II software.

	T_x	T_y	T_z	θ_1	θ_2	θ_3
T_x	1.000	-0.022	0.983	0.012	0.787	-0.006
T_y	-0.022	1.000	-0.022	0.005	-0.015	-0.010
T_z	0.983	-0.022	1.000	0.015	0.799	-0.011
θ_1	0.012	0.005	0.015	1.000	-0.001	-0.778
θ_2	0.787	-0.015	0.799	-0.001	1.000	0.006
θ_3	-0.006	-0.010	-0.011	-0.778	0.006	1.000
not accessible for a standard optical survey which requires the endcap of the detector to be open. The method described reaches the required resolution of less than 100 μm on the displacements along the axis normal to the target plane.

The photo-camera system has to be permanently installed inside the MEG-II magnetic field volume and operated with the magnetic field on. Hence, it has been designed to avoid the presence of any ferromagnetic component. Moreover, a USB communication interface has been selected to avoid failure observed with an Ethernet interface during the first engineering. Finally, the photo-camera will be placed at a sufficient distance from the beam axis in order not to interfere with the beam halo. All these features have been tested during the engineering 2017, 2018 and 2019 MEG-II runs.

A bench-top test has been performed at INFN Roma with the same photo-camera of the final system, in a geometrical arrangement which reproduces the situation inside the MEG-II magnetic field. The accuracy of the measurement of the target displacement with respect to a reference picture has been measured to be σ(Δx) = 12 μm, and σ(Δz) = 82 μm. Even in the worse situation of a large displacement of a few mm along the optical axis, the accuracy remains below the MEG-II requirements. We also notice that the performances are significantly affected by the presence of large correlations between displacements along X and Z. This could be significantly improved by combining the images of two photo-cameras looking at the target from two different points of view.

All these results make highly recommendable the installation of the system in the final setup of the MEG-II experiment, with no evident interference with the rest of the apparatus. Eventually, a two-photo-camera analysis will be developed to improve the performances.

1M. Beker et al., “The rasnik 3-point optical alignment system,” Journal of Instrumentation 14, P08010–P08010 (2019).
2A. Baldini et al., “The design of the MEG II experiment,” Eur. Phys. J. C 78, 380 (2018).
3A. Baldini et al., “Search for the lepton flavour violating decay with the full dataset of the MEG experiment,” Eur. Phys. J. C 76, 434 (2016).
4G. Cavoto, A. Papa, F. Renga, E. Ripiccini, and C. Voena, “The quest for μ → eγ and its experimental limiting factors at future high intensity muon beams,” Eur. Phys. J. C 78, 37 (2018).
5G. Chiarello et al., “The construction technique of the new MEG II tracker,” Nucl. Instrum. Meth. A 936, 495–496 (2019).
6A. Baldini et al., “The ultra light Drift Chamber of the MEG II experiment,” Nucl. Instrum. Meth. A 958, 162152 (2020).
7D. Palo et al., “Precise Photographic Monitoring of MEG II Thin-film Muon Stopping Target Position and Shape,” NIMA 944, 162511 (2019).
8J. Canay, “A computational approach to edge detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-8, 679–698 (1986).
9P. Hough, “Machine Analysis of Bubble Chamber Pictures,” Conf. Proc. C 590914, 554–558 (1959).
10F. Zernike, “Diffraction theory of the knife-edge test and its improved form, the phase-contrast method,” Mon. Not. R. Astron. Soc. 94, 377–384 (1934).