Structure–function analysis of the kinase-CPD domain of yeast tRNA ligase (Trl1) and requirements for complementation of tRNA splicing by a plant Trl1 homolog

Li Kai Wang, Beate Schwer1, Markus Englert2, Hildburg Beier2 and Stewart Shuman*4

Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10021, USA, 1Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA and 2Institut für Biochemie, Universität Würzburg, Biozentrum, D-97074, Würzburg, Germany

Received November 22, 2005; Revised and Accepted December 23, 2005

ABSTRACT

Trl1 is an essential 827 amino acid enzyme that executes the end-healing and end-sealing steps of tRNA splicing in \textit{Saccharomyces cerevisiae}. Trl1 consists of two domains—an N-terminal ligase component and a C-terminal 5'–kinase/2',3'–cyclic phosphodiesterase (CPD) component—that can function in tRNA splicing \textit{in vivo} when expressed as separate polypeptides. To understand the structural requirements for the kinase-CPD domain, we performed an alanine scan of 30 amino acids that are conserved in Trl1 homologs from other fungi. We thereby identified four residues (Arg463, His515, Thr675 and Glu741) as essential for activity \textit{in vivo}. Structure–function relationships at these positions, and at four essential or conditionally essential residues defined previously (Asp425, Arg511, His673 and His777), were clarified by introducing conservative substitutions. Biochemical analysis showed that lethal mutations of Asp425, Arg463, Arg511 and His515 in the kinase module abolished polynucleotide kinase activity \textit{in vitro}. We report that a recently cloned 1104 amino acid \textit{Arabidopsis} RNA ligase functions in lieu of yeast Trl1 and identify essential side chains in the ligase, kinase and CPD modules of the plant enzyme. The plant ligase, like yeast Trl1 but unlike T4 RNA ligase 1, requires a 2'-PO\textsubscript{4} end for tRNA splicing \textit{in vivo}.

INTRODUCTION

Yeast tRNA splicing occurs in three stages (1). First, a splicing endonuclease breaks the pre-tRNA at the exon–intron boundaries to yield 2',3'-cyclic phosphate and 5'-OH termini at both incision sites. Second, the ends of the broken tRNA halves are healed and then sealed by a tRNA ligase to form a 2'-PO\textsubscript{4}, 3'–5' phosphodiester at the splice junction. Third, the junction 2'-PO\textsubscript{4} is transferred to NAD+ to form the mature spliced tRNA, nicotinamide and ADP-ribose 1',2' cyclic phosphate. The yeast tRNA ligase (Trl1) catalyzes three essential reactions during the healing/sealing stage: (i) the 2',3'-cyclic phosphate terminus is hydrolyzed to a 3'-OH, 2'-PO\textsubscript{4} terminus by a 2',3'-cyclic phosphodiesterase (CPD) activity; (ii) the 5'-OH terminus is phosphorylated by a GTP-dependent polynucleotide kinase activity; and (iii) the resulting 3'-OH, 2'-PO\textsubscript{4} and 5'-PO\textsubscript{4} ends are sealed by an ATP-dependent RNA ligase activity (1–6).

Trl1 consists of an N-terminal ligase module that resembles bacteriophage T4 RNA ligase 1 (Rnl1), a central polynucleotide kinase module that resembles T4 polynucleotide kinase, and a C-terminal CPD module that resembles the 2H phosphotransferase superfamily. Initial structure–function studies showed that all three modules are essential \textit{in vivo}, though they need not be linked in the same polypeptide (6). Complementation of a lethal \textit{trl1} \textit{D} mutation by the plasmid shuffle method was achieved by expressing the ligase domain Trl1-(1–388) and the kinase-CPD domain Trl1-(389–827) as unlinked polypeptides. Moreover, each of the three component catalytic activities is essential for cell growth, insofar as alanine mutations in the active sites of the ligase, kinase and CPD modules are lethal \textit{in vivo}.

*To whom correspondence should be addressed. Tel: 212-639-7145; Fax: 212-717-3623; Email: s-shuman@ski.mskcc.org

© The Author 2006. Published by Oxford University Press. All rights reserved.

The online version of this article has been published under an open access model. Users are entitled to use, reproduce, disseminate, or display the open access version of this article for non-commercial purposes provided that: the original authorship is properly and fully attributed; the Journal and Oxford University Press are attributed as the original place of publication with the correct citation details given; if an article is subsequently reproduced or disseminated not in its entirety but only in part or as a derivative work this must be clearly indicated. For commercial re-use, please contact journals.permissions@oxfordjournals.org
The mechanism of the ligase component of yeast Trl1 is similar to that of T4 Rnl1, which joins broken tRNAs via three nucleotidyl transfer steps, as follows: (i) ligase reacts with ATP to form a covalent ligase-(lysyl-N)-AMP intermediate plus pyrophosphate; (ii) AMP is transferred from ligase adenylate to the 5'PO₄ RNA end to form an RNA adenylate intermediate (AppRNA); and (iii) ligase catalyzes attack by an RNA 3'-OH on the RNA adenylate to seal the two ends via a phosphodiester bond and release AMP (7–9). An important difference is that yeast tRNA ligase apparently requires the terminal 2'-PO₄ on the proximal tRNA half-molecule, whereas T4 Rnl1 does not (10). An extensive alanine scan of the N-terminal ligase domain of yeast Trl1 identified 28 individual amino acids essential for activity in vivo (6,11). Structure-activity relationships at these positions were then illuminated by conservative substitutions. The essential elements included: (i) putative equivalents of nucleotidyltransferase motifs I, II, IV, V, and V found in DNA ligases, T4 RNA ligases 1 and 2, and mRNA capping enzymes (12); (ii) an N-terminal segment shared with the T4 Rnl1 subfamily only; and (iii) a constellation of conserved residues specific to fungal tRNA splicing enzymes (11).

Less is known about the mechanisms and structure-activity relationships of the kinase and CPD domains. An initial alanine scan showed that mutations K404A and T405A in the P-loop (401GxGKT405) of the central kinase module had no effect on Trl1 function in vivo. The K404A and T405A mutations eliminated the ATP-dependent RNA kinase activity of Trl1 in vitro, but preserved GTP-dependent kinase activity. The double-alanine mutant K404A-T405A in the P-loop was lethal in vivo and abolished GTP-dependent kinase activity (6). These results indicated that GTP is the physiological substrate and that the Trl1 kinase has a single NTP binding site of which the P-loop is a component. Two other mutations in the central domain were lethal in vivo and either abolished (D425A) or severely reduced (R511A) GTP-dependent RNA kinase activity in vitro. Mutations of the two signature histidines of the ‘2H’ motifs in the CPD module were either lethal (H777A) or conferred a temperature sensitive growth phenotype (H673A). Here we conduct more extensive structure–function analyses of the kinase-CPD domain of yeast Trl1, entailing alanine scanning and conservative substitutions at 34 positions, which reveal unique structural requirements, or lack thereof, for the Trl1 kinase-CPD activity vis a vis those of T4 polynucleotide kinase or 2H phosphoesterase family members.

The phylogenetic distribution of Trl1-like proteins is surprisingly narrow, given the wide occurrence of tRNA introns in archaea and eukarya. Trl1 homologs are found in all genera of fungi for which genome sequences are available. Putative homologs of yeast Trl1 are also found in the kinetoplastid protozoa Trypanosoma and Leishmania (11). Yet, Trl1-like proteins are absent from archaea and metazoans. A multifunctional Trl1-like enzyme has been purified to near homogeneity from wheat germ (13–18) and the cDNA encoding Arabidopsis RNA ligase was identified recently (19). Although the plant RNA ligase polypeptide displays very limited global sequence similarity to yeast Trl1, it does contain counterparts of some of the signature ligase, kinase and CPD motifs found in yeast Trl1 (19), and they are arranged in the same linear order as in yeast Trl1, i.e. ligase-kinase-CPD. Here we ask whether plant RNA ligase is a true ortholog of Trl1, by testing its ability to complement growth of a trl1Δ yeast strain. We report that: (i) the RNA repair activity is portable from plants to fungi; (ii) plant tRNA ligase, like Trl1, is active in vivo as unlinked ligase and kinase-CPD domains; and (iii) the plant ligase, like yeast Trl1 but unlike T4 Rnl1, requires a 2'-PO₄ end for tRNA splicing in vivo. Also, we map constituents of the ligase, kinase and CPD active sites of plant RNA ligase, thereby resolving ambiguities about what motifs are relevant and underscoring the similarities between the plant and fungal tRNA splicing enzymes.

MATERIALS AND METHODS

Yeast vectors encoding missense mutants of Trl1-(389–827)

Missense mutations and overlapping diagnostic restriction sites were introduced into the TRL1-(389–827) open reading frame (ORF) via the two-stage PCR overlap extension method as described previously (6). The mutated PCR products were digested with BamHI and SacII and inserted into a CEN ADE2 plasmid to place expression of TRL1-(389–827) under the control of the native TRL1 promoter (6). The inserts were sequenced completely to confirm the presence of the desired mutations and to exclude the acquisition of unwanted coding changes during PCR amplification and cloning.

Test of Trl1-(389–827) function by plasmid shuffle

The trrl1Δ haploid strain YRS1 (MATα ura3-1 ade2-1 trp1-1 his3-11.15 leu2-3,11 can1-100 trl1::kanMX p360-TRL1) was cotransformed with a CEN TRP1 plasmid bearing TRL1-(1–388) and a wild-type or mutated version of the CEN ADE2 TRL1-(389–827) plasmid (6). Transformants were selected on medium lacking tryptophan and adenine. Two individual colonies were transferred to fresh selective medium. The isolates were then streaked on agar medium containing 0.75 mg/ml 5-FOA. The plates were incubated at 18, 25 and 30°C. Lethal mutations were those that did not allow formation of FOA-resistant colonies after 10 days at any of the temperatures tested. Other mutated alleles supported FOA-resistant colony formation at one or more of the growth temperatures. At least two individual colonies from each streak were picked from the FOA plate, transferred to yeast extract/peptone/dextrose (YPD) medium and then tested for growth on YPD agar at 18, 25, 30 and 37°C. TRL1-(389–827) mutants that formed ‘wild-type’ sized colonies at all temperatures were scored as +++. Temperature sensitive (ts) mutants grew at all temperatures except 37°C.

Recombinant Trl1-(389–827) proteins

DNA fragments encoding wild-type and mutated versions of the kinase-CPD domain were excised from the respective yeast TRL1-(389–827) plasmids with SacI and BamHI and inserted into pET28a. The resulting pET28a-His₁₀Trl1-(389–827) plasmids were transformed into Escherichia coli BL21(DE3). Single kanamycin-resistant colonies were inoculated into Luria–Bertani medium containing 0.06 mg/ml kanamycin. Cultures (100 ml) were incubated at 37°C until the A₆₀₀ reached 0.5. The cultures (100 ml) were placed on ice for 30 min, adjusted to 0.3 mM isopropyl-β-d-thiogalactopyranoside (IPTG) and 2% (v/v) ethanol.
Incubation was continued at 17°C for 16 h with constant shaking. Cells were harvested by centrifugation and the pellets stored at −80°C. All subsequent procedures were performed at 4°C. Thawed bacterial pellets were resuspended in 7 ml of lysis buffer [50 mM Tris–HCl (pH 7.5), 1.2 M NaCl, 15 mM imidazole, 10% glycerol, 1 mM benzamidine, 0.2 mM phenylmethylsulfonyl fluoride] containing 1 mg/ml lysozyme and 0.2% Triton X-100. The lysates were sonicated to reduce viscosity. Insoluble material was removed by centrifugation in a Sorvall SS34 rotor at 14,000 r.p.m. for 45 min. The soluble extracts were applied to 0.7 ml columns of Ni-NTA agarose (Qiagen) equilibrated with lysis buffer. The columns were washed with 3 ml of lysis buffer and then eluted step-wise with buffer A [50 mM Tris–HCl (pH 7.5), 0.2 M NaCl and 10% glycerol] containing 100 and 300 mM imidazole. The polypeptide compositions of the column fractions were monitored by SDS–PAGE. The recombinant Trl1-(389–827) proteins were retained on the column and recovered in the 300 mM imidazole eluates. Peak fractions were pooled and stored at −80°C. Protein concentrations were determined using the BioRad dye-binding assay with BSA as a standard.

Polynucleotide kinase assay

Reaction mixtures (10 μl) containing 50 mM Tris–HCl (pH 7.5), 10 mM MgCl₂, 5 mM DTT, 25 μM [γ-³²P]GTP, 50 pmol of a synthetic 5′-OH RNA oligonucleotide (5′-AUUCCGAUAGUGACUACA) and 10 ng wild-type or mutant Trl1-(389–827) were incubated for 20 min at 37°C. The reactions were quenched by adding 10 μl of stop solution (95% formamide, 20 mM EDTA, 0.05% bromophenol blue and 0.05% xylene cyanol). The products were analyzed by electrophoresis through a 15 cm 20% polyacrylamide gel containing 0.05% xylene cyanol. The radiolabeled products were visualized by autoradiography of the gel and quantified with a phosphorimager. The radiolabeled products were visualized by autoradiography of the gel and quantified with a phosphorimager.

Yeast vectors encoding Arabidopsis RNA ligase

A NotI–SalI DNA fragment containing the cDNA encoding full-length Arabidopsis thaliana RNA ligase (AtRNL) was excised from a pIVEX-WG vector (19) and inserted into pYX132 (CEN TRP1) so as to place the plant gene under the transcriptional control of a yeast TPII promoter. Missense mutations were introduced into the AtRNL ORF via the two-stage PCR overlap extension method. The mutated PCR products were inserted into pYX132. The inserts were sequenced completely to confirm the presence of the desired mutations and to exclude the acquisition of unwanted coding changes (compared to the wild-type cDNA clone). The ability of the wild-type and mutated versions of full-length plant ligase to complement the yeast trl1Δ strain was tested by plasmid shuffle. Individual Trp⁺ transformants were streaked on agar medium containing 0.75 mg/ml 5-FOA. The plates were incubated at 19, 30 and 37°C. Lethal mutations were those that did not allow formation of FOA-resistant colonies after 10 days at any of the temperatures tested. Other mutated alleles supported FOA-resistant colony formation at one or more of the growth temperatures. At least two individual colonies from each streak were picked from the FOA plate, transferred to YPD medium and then tested for growth on YPD agar at 19, 25, 30, 34 and 37°C. Strains that formed ‘wild-type’ sized colonies at all temperatures were scored as ‘+++’. Strains that formed pinpoint colonies at 25 and 30°C (defined as + growth) and failed to grow at 34 and 37°C (ts) were scored as ‘+ ts’.

Domains of Arabidopsis RNA ligase

Deleted versions of AtRNL were constructed by PCR amplification using oligonucleotide primers that introduced either a start codon at amino acid 676 and an upstream flanking NcoI site or a stop codon at amino acid 676 and a downstream flanking NheI site. The AtRNL-(1–675) ORF was inserted into yeast CEN TRP1 and CEN HIS3 vectors under the control of the TPII promoter. The AtRNL-(677–1104) ORF was inserted into a CEN TRP1 plasmid. The plasmids encoding ligase and kinase-CPD domain fragments were tested for trl1Δ complementation by pairwise transformation (with each other or with plasmids encoding analogous yeast and T4 domains), followed by plasmid shuffle as described in the preceding section.

RESULTS

Mutational analysis of the kinase module of yeast Trl1

A primary structure alignment of the kinase-CPD domain of Saccharomyces cerevisiae Trl1 with homologous proteins from other fungal species is shown in Figure 1. Our initial mutational analysis of the kinase module highlighted: (i) the P-loop motif GxGKT³⁰⁵ (underlined in Figure 1) as a determinant of NTP binding, as evinced by the selective effects of single alanine mutations on ATP-dependent versus GTP-dependent kinase activity; (ii) the essential role of the distal arginine of the RxxxxR⁵¹¹ motif (underlined in Figure 1); and (iii) the essentiality of Asp⁴²⁵ (shaded in Figure 1), but not Asp⁴⁵⁴ (6). These limited data suggested a relationship to the kinase domain of T4 polynucleotide kinase/phosphatase (Pnkp), the active site of which is composed of similar elements, including: (i) a classical P-loop motif (GxxGxGKS¹⁶) that coordinates the beta phosphate of the NTP donor; (ii) essential side chain Arg¹２⁶ (putative equivalent of Arg⁵¹¹ in Trl1), which also coordinates the NTP beta phosphate; and (iii) essential side chain Asp⁵³ (putative equivalent of Asp⁴²⁵ in Trl1), which we proposed functions as a general acid to activate the 5′-OH for attack on the NTP γ phosphate (20–23).

To better define the active site of the yeast kinase, and search for distinctive structural components that might account for its preference for GTP as the substrate in vitro and in vivo, we performed an alanine scan of the 20 positions in the kinase module of S.cerevisiae Trl1 that are conserved among fungal Trl1 proteins (Figure 1; Table 1). We focused on: (i) Arg, Lys and His residues that we regarded as candidates for a direct role in catalysis of phosphoryl transfer or substrate binding; (ii) Asp and His residues as candidates for binding the requisite divalent cation cofactor(s); (iii) Gln, Asn, Ser and Thr side chains that might engage in hydrogen bonding with NTP or RNA.

The twenty Trl1-(389–827)-Ala alleles were cloned into a CEN ADE2 plasmid so as to place their expression under the control of the native TRL1 promoter. The plasmids were then cotransformed with a TRL1-(1–388) plasmid into...
a *S. cerevisiae* thr1Δ strain. Growth of thr1Δ is contingent on maintenance of a wild-type *TRL1* allele on a *CEN URA3* plasmid (6). Therefore, the thr1Δ strain is unlikely to be first transformed with genes encoding biologically active ligase and kinase-CPD enzymes.

Two of the *TRL1*-(389–827)-Ala transformants failed to give rise to 5-FOA-resistant colonies after 10 days at 18, 25 or 30°C. The two new residues defined as essential by the alanine scan were Arg463 and His511 (shaded in Figure 1). Eighteen other *TRL1*-(389–827)-Ala mutants supported colony formation during selection on 5-FOA at either 18, 25 or 30°C. The viable *TRL1*-(389–827)-Ala strains were tested for growth on rich medium (YPD agar) at 18, 25, 30 and 37°C. All of the viable strains grew at all temperatures and their colony sizes were similar to that of wild-type *TRL1*-(1–388) *TRL1*-(389–827) cells (scored as ++ growth in Table 1). We surmise that Thr406, Gln423, Asn424, Arg463 and Arg511 were strictly essential, i.e. Lys and Gln substitutions were lethal, implying that neither positive charge nor negative charge are essential for Arabidopsis tRNA ligase activity.

To clarify the structure-activity relationships, we introduced conservative mutations at the essential Arg463 and His511 positions defined presently and at the essential Asp426, Lys430, Arg455, Asn456, Asn457, Arg461, Lys475, Arg511, and Arg528 in *S. cerevisiae* thr1Δ cells (scored as +++ growth in Table 1). We surmise that Thr406, Gln423, Asn424, Arg463 and Arg511 were strictly essential, i.e. Lys and Gln substitutions were lethal, implying that neither positive charge

Figure 1. Kinase-CPD domain of fungal tRNA ligases. The amino acid sequence of the kinase-CPD domain of *S. cerevisiae* (Sce) Thr1 from residues 396–795 is aligned to the sequences of the homologous proteins of Saccharomyces bayanus (Sba), Candida albicans (Cal), Coccidioides posadasii (Cpo), Magnaporthe grisea (Mgr), Neurospora crassa (Ncr), Aspergillus nidulans (Ani) and Schizosaccharomyces pombe (Spo). Gaps in the alignment are denoted by dashes. The P-loop and HXTRX motifs of the kinase module and the two HXTR motifs of the CPD module are underlined. Residues identified as essential by alanine scanning are indicated by + and highlighted in shaded boxes. Nonessential residues are indicated by −. Position His513 at which mutations conferred a Δ phenotype is indicated by Δ. **Table 1.** The nonessential residues are denoted by +. Position His513 at which mutations conferred a Δ phenotype is indicated by Δ.
nor hydrogen bonding potential at these positions sufficed for Trl1 activity in vivo. Our inference is that these arginines make bidentate interactions with the kinase substrates or other functional groups on the enzyme. His515 was also strictly essential, as neither Gln nor Asn (partial isosteres that can mimic the hydrogen bonding capacity of histidine Ne and Nδ, respectively) restored function. In contrast, glutamate was able to restore growth in lieu of Asp425, although asparagine was not (Table 1). We surmise that a carboxylate is critical at this position and that the enzyme can accommodate the extra methylene group of glutamate without severe functional interference.

Mutational effects on Trl1 kinase activity in vitro

Failure of in vivo complementation could result from loss of catalytic function of the mutated proteins or mutational effects on intracellular Trl1-(389–827) protein concentration (via decreased synthesis or accelerated turnover) or localization. Lacking an antibody to Trl1, we did not determine the steady-state levels of the mutant proteins. Thus, we cannot assign the basis for in vivo lethality for every defective mutant. However, an analysis of the catalytic activity of recombinant versions of selected mutant Trl1-(389–827) proteins was informative.

Wild-type Trl1-(389–827) and ten missense mutants were produced in *E.coli* as His10-tagged fusions and purified from soluble bacterial extracts by Ni-agarose chromatography (Figure 2A). The proteins were tested for kinase activity in vitro. The assay entails transfer of 32P-label from [γ-32P]GTP to an 18mer 5′-OH RNA oligonucleotide (6). Eight of the mutations that were lethal in vivo—D425N, R463A, R463K, R463Q, R511K, R511Q, H515A and H515Q—were found to reduce kinase activity in vitro to <1% of the wild-type level (Figure 2B). The lethal H515N mutation reduced the yield of labeled RNA product in vitro to 5% of the wild-type level. The D425E mutation, which restored activity in vivo, also revived kinase activity in vitro to ~31% of the wild-type level (Figure 2B). Thus, there was good agreement between mutational effects on growth and RNA kinase activity in vitro. Previous studies showed that the lethal R511A mutation reduced GTP-dependent kinase activity in vitro to ~14% of the wild-type level (6). Together, these data suggest that a threshold level of 5′ end-healing activity is required for yeast growth.

Mutational analysis of the CPD module of yeast Trl1

The CPD module of Trl1 contains the two signature HxT motifs of the 2H phosphoesterase family (underlined in Figure 1) (24). Alanine mutations of the histidines of the

Trl1(389–827) mutation	trl1Δ complementation
T406A	+++
Q423A	+++
N424A	+++
D426A	+++
K430A	+++
R455A	+++
N456A	+++
N457A	+++
R461A	+++
R463A	lethal
Q465A	+++
K485A	+++
R507A	+++
N513A	+++
N514A	+++
H515A	lethal
Q516A	+++
S517A	+++
D549A	+++
N569A	+++
D425E	++
D425N	lethal
R463K	lethal
R463Q	lethal
R511K	lethal
R511Q	lethal
H515Q	lethal
H515N	lethal

Figure 2. Mutational effects on polynucleotide kinase activity in vitro. (A) Aliquots (8 μg) of recombinant wild-type and mutated Trl1-(389–827) proteins were analyzed by SDS–PAGE. The Coomassie blue-stained gel is shown. The positions and sizes (kDa) of marker polypeptides are indicated on the left. (B) Kinase reaction mixtures contained [γ-32P]GTP, 18mer 5′-OH RNA substrate, and the indicated Trl1-(389–827) proteins. The products were resolved by PAGE and the radiolabeled 18mer RNA detected by autoradiography. The extent of product formation is indicated below the lanes.
Trl1 CPD domain were either lethal (H777; indicated by ‘|’ in Figure 1) or conferred a ts growth phenotype (H673; denoted by ‘∆’ in Figure 1) (6). Here we sought to identify additional essential residues by alanine scanning of 10 conserved positions in the fungal CPD domain (Table 2). The ten TRL1-(389–827)-Ala plasmids were cotransformed with a TRL1-(1–388) plasmid into the S. cerevisiae trl1 Δ strain and then tested for complementation by plasmid shuffle. Two of the CPD mutations were lethal, thereby defining Thr675 and Glu741 as essential. Eight other CPD module mutants were viable under 5-FOA selection and grew as well as wild-type TRL1-(1–388) TRL1-(389–827) cells on YPD agar, as gauged by colony size (+++ growth in Table 2). Thus, Gin669, His678, Arg683, Lys742, Asn773, Thr779, Ser792 and Asn793 are not essential for tRNA splicing in vivo. The nonessential residues in the CPD module are indicated by + in Figure 1.

Structure-activity relationships were probed by introducing conservative substitutions at the essential Thr675, Glu741 and His777 positions of the CPD module and at His673 in the proximal HxT motif, where an alanine change resulted in ts growth. Threonine was replaced by serine and valine; histidine by asparagine and glutamine; glutamate by aspartate and glutamine. Eight conservative mutants were tested by plasmid shuffle for trl1 Δ complementation (Table 2). Asn and Gln substitutions for His777 were lethal, implying that hydrogen bonding potential did not suffice for CPD activity in vivo. Serine was fully functional in lieu of Thr675, but valine was not, indicating that the hydroxyl group was critical at this position. Introducing either aspartate or glutamine in place of Glu741 restored CPD activity, signifying that a carboxylate is not critical and an amide suffices, presumably via its ability to engage in hydrogen bonding. Note that all of the fungal tRNA ligases shown in Figure 1 naturally have an aspartate at the position corresponding to Glu741 of the S. cerevisiae enzyme. The conditional growth phenotype observed for the H673A mutant was not ameliorated by conservative replacement of His673 with Asn or Gln (Table 2).

Our mutational data attest to the fact that the two HxT motifs of the CPD module are not functionally equivalent. Specifically, Thr675 in the proximal HxT motif of Trl1 is essential, whereas Thr779 in the distal HxT motif is not; H777 in the downstream HxT motif is unconditionally essential, while loss of the histidine in the proximal HxT element confers a ts growth phenotype.

Table 2. Effect of CPD module mutations on Trl1 activity in vivo

Trl1(389–827) mutation	trl1 Δ complementation
Q669A	++
T675A	lethal
H678A	++
R683A	++
E741A	lethal
K742A	++
N777A	++
T779A	++
S792A	++
N793A	++
H673N	ts
H673Q	ts
T675S	++
T675V	lethal
E741D	++
E741Q	++
H777N	lethal
H777Q	lethal

Table 3. Mutational effects on plant tRNA ligase activity

AitRL allele	trl1 Δ complementation
Wild-type	+++
K152A	lethal
E218A	lethal
E243A	+++
E326A	lethal
K436A	+++
K438A	+++
D529A	+++
K541A	lethal
K543A	lethal
D564A	+++
K586A	+++
K588A	+++
K700A	+++
S701A	lethal
D726A	lethal
R804A	+ ts
H999A	+ ts
T1001A	lethal
H1060A	lethal
T1062A	+++
Figure 3. Arabidopsis RNA ligase. The amino acid sequence of A. thaliana RNA ligase is shown. Candidate motifs subjected to mutational analysis are shaded. Peptide motifs containing an essential amino acid side chain are shaded black. Nonessential ‘impostor’ motifs in the N-terminal ligase domain are shaded gray.
The central portion of the plant ligase polypeptide contains a candidate P-loop motif GIPGSAKS701 (Figure 3). Alanine scanning showed that Lys\textsubscript{700} was nonessential, whereas the loss of the Ser\textsubscript{701} hydroxyl was lethal (Table 3). The dispensability of the P-loop lysine is a consistent finding in yeast and plant ligases, but the plant enzyme is apparently more reliant on the vicinal hydroxyamino acid of the P-loop. Located \textsim 100 amino acids downstream of the plant P-loop is a sequence RVLQR1038 that we considered a potential homolog of the RVIKR111 motif conserved in the fungal Trl1 proteins, which includes the Arg\textsubscript{511} residue essential for polynucleotide kinase activity. The corresponding R804A mutation which includes the Arg511 residue essential for polynucleotide kinase activity. The corresponding R804A mutation of plant RNA ligase elicited a severe growth defect in yeast; R804A cells formed pinpoint colonies on YPD agar at 19, 25 or 30°C and failed to grow at 34 or 37°C. We also mutated Asp726 in the plant RNA ligase and found it to be essential for activity in yeast (Table 3). Asp726 is located 25 amino acids downstream of the P-loop and is a plausible equivalent of the Asp425 side chain that we found to be essential for the kinase function of yeast Trl1.

Delineation of separable sealing and healing domains of plant tRNA ligase

The results of the alanine scan of plant RNA ligase show that tRNA splicing activity in vivo depends on all three catalytic modules. Moreover, the delineation of essential motifs provides valuable internal landmarks for comparing the plant ligase to other RNA repair enzymes. Because previous studies of yeast Trl1 showed that its component domains were autonomous and functional in trans, we asked whether this is also the case for the plant enzyme. We chose a plausible domain boundary between motif V of the ligase module and the P-loop of the kinase module and cloned the ORFs encoding the N-terminal ligase module (1–675) and the C-terminal kinase-CPD domain (677–1104) into yeast centromeric plasmids, where their expression is driven by a constitutive yeast promoter. The instructive finding was that complementation of the trl1\textDelta strain could be achieved by cotransformation with CEN HIS3 AtRNL-(1–675) and CEN TRP1 AtRNL-(677–1104) plasmids (Table 4). The AtRNL-(1–675) AtRNL-(677–1104) strain grew as well as a wild-type strain when transformed with the yeast ligase module. Here we find that the plant ligase module is also unable to function in tRNA splicing when paired with T4 Pnkp as the source of the end-healing activities. Because the kinase modules of the phage Pnkp and plant kinase-CPD enzymes generate identical products (a 5'-PO\textsubscript{4} RNA end), we ascribe the fact that the plant ligase functions only in tandem with plant or fungal kinase-CPD to the distinctive 3'-OH, 2'-PO\textsubscript{4} end configuration generated by yeast CPD versus the 3'-OH, 2'-OH end produced by Pnkp. In other words, the *Arabidopsis* tRNA ligase requires the 2'-PO\textsubscript{4} terminus to seal tRNAs in vivo. This inference is consistent with the requirements for a 2'-PO\textsubscript{4} for RNA joining in vitro by wheat germ RNA ligase (14,16,18).

DISCUSSION

The present study adds to our knowledge of tRNA splicing mechanisms by: (i) identifying the essential constituents of the kinase-CPD domain of fungal tRNA ligase; (ii) illuminating structure-activity relationships at the putative kinase and CPD active sites; (iii) demonstrating that an analogous RNA ligase from plants, AtRNL, is a bona fide tRNA splicing enzyme capable of performing all requisite tRNA healing and sealing steps in a trl1\textDelta yeast strain; and (iv) mapping the essential constituents of the ligase, kinase and CPD modules of AtRNL, thereby revealing the conservation of active site motifs between plant and fungal tRNA ligases, notwithstanding their very low level of global primary structure similarity. Below we discuss and interpret the functional data, drawing on the atomic structures of enzymes with biochemical activities similar to those of the tRNA ligase domains.

The kinase domain

The key landmarks of the fungal kinase domain are the 405Lys-Thr405 dipeptide of the P-loop, plus Asp425, Arg463, Arg511 and His515. These essential residues are strictly conserved among fungal tRNA ligases (Figure 1). Yet conservation per se is clearly not predictive of essentiality, insofar as nineteen other conserved residues subjected to alanine scanning were found to be nonessential for Trl1 activity in vivo. We can speculate about the roles of some of the essential components of the fungal kinase by reference to the crystal structures and extensive mutational analyses of the kinase domain of

Table 4. Separable Sealing and Healing Domains of Plant RNA Ligase

Sealing domain	Healing domain	trl1\textDelta complementation
AtRNL-(1–675)	AtRNL-(677–1104)	+++
AtRNL-(1–675)	None	—
none	AtRNL-(677–1104)	—
ArRNL-(1–675)	Trl1-(889–827)	+++
ArRNL-(1–388)	ArRNL-(677–1104)	+++
ArRNL-(1–675)	T4 Pnkp	—
The CPD domain

Atomic structures are available for several members of the 2H phosphotransferase family, including human and rat brain 2',3'-cyclic nucleotide phosphodiesterase (26,27), archaeal 2'-5' RNA ligase (28) and Arabidopsis ADP-ribose 1',2' CPD (29,30). These structures, and especially the structures of the plant CPD with sulfate or cyclic vanadate inhibitor bound and human CPD with phosphate bound, illuminated the likely catalytic roles of the HxT motifs and other functional groups in the active site. The 2H enzymes share a symmetrical bilobed tertiary structure with each lobe consisting of a three- or four-stranded beta sheet at the lobar interface and alpha helices on the periphery. The HxT motifs reside within beta strands lining the active site. Both histidines and both threonines make contacts to the phosphate oxygens in the ligand complexes. The proposed mechanism of the 2H enzymes invokes acid-base catalysis by the histidines of the HxT motifs. The histidine of the distal HxT motif is posited to act as a general base to activate a water for attack on the phosphorus center. The histidine of the proximal HxT motif is proposed to act as a general acid to donate a proton to the ribose O leaving group. The two threonines are supposed to stabilize the transition state via hydrogen bond donation to the phosphate oxygens.

Mutational analyses of rat brain, zebrafish and yeast 2H family enzymes underscore that both histidines are essential for catalysis (26,31–33). Yet, we find that only the distal histidine is strictly essential for the in vivo CPD function of both the yeast and plant tRNA ligases. Mutation of the proximal histidine of the yeast and plant proteins results in a conditional growth defect. Mutational analysis of brain CPD showed that both threonines are essential for catalysis of the 2'3' CPD reaction (26). The threonine of the distal HxT motif was also shown to be essential for the zebrafish 2',3'-CPD activity (31). In contrast, we find that only the proximal threonine is essential for tRNA splicing and mutation of the distal histidine had no apparent effect on the in vivo CPD activity of either the yeast or plant tRNA ligase. Thus, the contributions of the individual amino acids at the CPD active site are significantly different in the tRNA ligases vis a vis other 2H family members.

We speculate that the relaxed requirement for the proximal histidine in tRNA ligases might reflect the capacity to switch from a general acid mechanism, where the histidine donates a proton to the leaving O3' ribose atom, to one of specific acid catalysis in which a water can occupy the active site and act as a proton donor. Alternatively, another functional group on the enzyme or the tRNA could assist in leaving group expulsion when the histidine is missing. Whatever the mechanism, the proximal histidine-less ligases can apparently sustain a threshold level of CPD activity at lower growth temperatures, but not at 37°C.

The benign effect of the distal threonine mutations in the yeast and plant tRNA ligases signifies either that: (i) the proximal threonine suffices for binding the tRNA 2',3' cyclic phosphate and stabilizing the transition state or (ii) there are additional constituents of the enzyme that serve this role to the extent that the distal threonine is redundant. In the same vein, Nasr and Filipowicz (33) reported that neither of the hydroxyamino acids of the Hx(S/T) motifs of yeast ADP-ribose 1',2' CPD was required for activity with the physiological substrate Appr-p. However, when the yeast ADP-ribose 1',2' CPD was assayed with 2',3' cyclic AMP, the proximal threonine was essential, a situation that echoes our findings for the 2',3' CPD activity of tRNA ligases.

The plant ligase domain

We discussed previously the structure-activity relationships at the numerous essential residues within the ligase domain of yeast Trl1 and their interpretation in light of known ligase structures (11). The remarkable aspect of the plant RNA ligase domain is how little it resembles the fungal tRNA ligase or any other RNA ligase. By sorting out the functionally relevant
putative equivalents of the classical covalent nucleotidyltransferase motifs from other irrelevant impostors, we have placed the plant ligase firmly within the covalent nucleotidyltransferase superfamily, while highlighting the divergence in motif sequence and spacing in the plant protein versus other superfamily members. In particular, the large interval between motifs IV and V is unique to the plant ligase and accounts, in good part, for the much larger size of the autonomous ligase domain of AtRLN1 (675 amino acids) compared to that of yeast Tr11 (388 amino acids). A search of the nonredundant GenBank database with the 208 amino acid polypeptide sequence separating motifs IV and V uncovered no similar polypeptide from a non-plant source. It is conceivable that this large insert plays a plant-specific role in tRNA splicing (or some other RNA repair process).

The recently reported crystal structure of bacteriophage T4 Rnl1 bound to the nonreactive substrate mimetic AMPCPP (34) provides the closest structurally defined homolog of the T4 Rnl1 bound to the nonreactive substrate mimetic AMPCPP RNA repair process). Separating motifs IV and V uncovered no similar polypeptide in the plant tRNA ligase. In particular, the large interval between sequence and spacing in the plant protein versus other superfamily members. In particular, the large interval between sequence and spacing in the plant protein versus other superfamily members. In particular, the large interval between sequence and spacing in the plant protein versus other superfamily members. In particular, the large interval between sequence and spacing in the plant protein versus other superfamily members. In particular, the large interval between sequence and spacing in the plant protein versus other superfamily members. In particular, the large interval between sequence and spacing in the plant protein versus other superfamily members.

REFERENCES

1. Abelson, J., Trott, C.R. and Li, H. (1998) RNA splicing. J. Biol. Chem., 273, 12685–12688.
2. Greer, C.L., Peebles, C.L., Gegenheimer, P. and Abelson, J. (1983) Mechanism of action of a yeast RNA ligase in RNA splicing. Cell, 32, 537–546.
3. Apostol, B.L., Westaway, S.K., Abelson, J. and Greer, C.L. (1991) Deletion analysis of a multifunctional yeast tRNA ligase polypeptide: identification of essential and dispensable functional domains. J. Biol. Chem., 266, 7445–7455.
4. Phizicky, E.M., Consaul, S.A., Nehrke, K.W. and Abelson, J. (1992) Yeast tRNA ligase mutants are nonviable and accumulate tRNA splicing intermediaries. J. Biol. Chem., 267, 4577–4582.
5. Westaway, S.K., Belford, H.G., Apostol, B.L., Abelson, J. and Greer, C.L. (1993) Novel activity of a yeast ligase deletion polypeptide: evidence for GTP-dependent tRNA splicing. J. Biol. Chem., 268, 2435–2443.
6. Sawaya, R., Schwer, B. and Shuman, S. (2003) Genetic and biochemical analysis of the functional domains of yeast tRNA ligase. J. Biol. Chem., 278, 43298–43398.
7. Cranston, J.W., Silber, R., Malathi, V.G. and Hurwitz, J. (1974) Studies on ribonucleic acid ligase: characterization of an adenosine triphosphate-inorganic pyrophosphate exchange reaction and demonstration of an enzyme-adenylate complex with T4 bacteriophage-induced enzyme. J. Biol. Chem., 249, 7447–7456.
8. Sugino, A., Sonepok, T.J. and Cozzarelli, N.R. (1977) Bacteriophage T4 RNA ligase: reaction intermediates and interaction of substrates. J. Biol. Chem., 252, 1732–1738.
9. Amitsur, M., Levitz, R. and Kaufman, G. (1987) Bacteriophage T4 anticonod nuclease, polynucleotide kinase, and RNA ligase reprocess the host lysine tRNA. EMBO J., 6, 2499–2503.
10. Schwer, B., Sawaya, R., Ho, C.K. and Shuman, S. (2004) Portability and fidelity of RNA-repair systems. Proc. Natl Acad. Sci. USA, 101, 2788–2793.
11. Wang, L.K. and Shuman, S. (2005) Structure-function analysis of yeast tRNA ligase. RNA, 11, 966–975.
12. Shuman, S. and Lima, C.D. (2004) The polynucleotide ligase and RNA capping enzyme superfamily of covalent nucleotidyltransferases. Curr. Opin. Struct. Biol., 14, 757–764.
13. Gegenheimer, P., Gabius, H.J., Peebles, C.L. and Abelson, J. (1983) An RNA ligase from wheat germ which participates in transfer RNA splicing in vitro. J. Biol. Chem., 258, 8365–8373.
14. Schwartz, R.C., Greer, C.L., Gegenheimer, P. and Abelson, J. (1983) Enzymatic mechanism of an RNA ligase from wheat germ. J. Biol. Chem., 258, 8374–8383.
15. Pick, L. and Hurwitz, J. (1986) Purification of wheat germ RNA ligase: characterization of a ligase-associated 5′-hydroxyl polynucleotide kinase activity. J. Biol. Chem., 261, 6684–6693.
16. Pick, L., Fournier, H. and Hurwitz, J. (1986) Purification of wheat germ RNA ligase: mechanism of action of wheat germ RNA ligase. J. Biol. Chem., 261, 6694–6704.
17. Konarska, M., Filipowicz, W., Donohue, H. and Gross, H.J. (1981) Formation of a 2′-phosphomonoester, 3′,5′-phosphodiester linkage by a novel RNA ligase in wheat germ. Nature, 293, 112–116.
18. Konarska, M., Filipowicz, W. and Gross, H.J. (1982) RNA ligation via 2′-phosphomonoester, 3′,5′-phosphodiester linkage: requirement of 2′,3′-cyclic phosphate termini and involvement of a 5′-hydroxyl polynucleotide kinase. Proc. Natl Acad. Sci. USA, 79, 1474–1478.
19. Englert, M. and Beier, H. (2005) Plant RNA ligases are multifunctional enzymes that have diverged in sequence and substrate specificity from RNA ligases of other phylogenetic origins. Nucleic Acids Res., 33, 388–399.
20. Wang, L.K. and Shuman, S. (2001) Domain structure and functional analysis of T4 polynucleotide kinase. J. Biol. Chem., 276, 26686–26674.
21. Wang, L.K. and Shuman, S. (2002) Mutual analysis defines the 5′-kinase and 3′-phosphatase active sites of T4 polynucleotide kinase. Nucleic Acids Res., 30, 1073–1080.
22. Wang, L.K., Lima, C.D. and Shuman, S. (2002) Structure and mechanism of T4 polynucleotide kinase: an RNA repair enzyme. EMBO J., 21, 3873–3880.
23. Galburt, E.A., Pelletier, J., Wilson, G. and Stoddard, B.L. (2002) Structure of a tRNA repair enzyme and molecular biology workhorse: T4 polynucleotide kinase. Structure, 10, 1249–1260.
24. Mazumder, R., Iyer, L., Vasudevan, S. and Aravind, L. (2002) Detection of novel members, structure-function analysis and evolutionary classification of the 2H phosphoesterase family. Nucleic Acids Res., 30, 5229–5243.
25. Wang, S.P., Deng, L., Ho, C.K. and Shuman, S. (1997) Phylogeny of mRNA capping enzymes. Proc. Natl Acad. Sci. USA, 94, 9573–9578.
26. Kozlov, G., Lee, J., Elias, D., Gravel, M., Gutierrez, P., Ekiel, I., Braun, P.E. and Gehring, K. (2003) Structural evidence that brain cyclic nucleotide phosphodiesterase is a member of the 2H phosphodiesterase superfamily. J. Biol. Chem., 278, 46021–46028.
27. Sakamoto, Y., Tanaka, N., Ichiya, T., Kuribara, T. and Nakamura, K.T. (2005) Crystal structure of the catalytic fragment of human brain 2′,3′-cyclic nucleotide 3′-phosphodiesterase. J. Mol. Biol., 346, 789–800.
28. Kato, M., Shirouzu, M., Terada, T., Yamaguchi, M., Murayama, K., Sakai, H., Kuramitsu, S. and Yokoyama, S. (2003) Crystal structure of the 2′-5′ RNA ligase from Thermus thermophilus HB8. J. Mol. Biol., 329, 903–911.
29. Hofmann, A., Zdanov, A., Genschik, P., Ruvinov, S., Filipowicz, W. and Wlodawer, A. (2000) Structure and mechanism of the cyclic phosphodiesterase of ApprP, a product of the tRNA splicing reaction. EMBO J., 19, 6207–6218.
30. Hofmann, A., Grella, M., Botos, I., Filipowicz, W. and Wlodawer, A. (2002) Crystal structures of the semireduced and inhibitor bound forms of cyclic nucleotide phosphodiesterase from *Arabidopsis thaliana*. *J. Biol. Chem.*, 277, 1419–1425.

31. Ballestero, R.P., Dybowski, J.A., Levy, G., Agranoff, B.W. and Uhler, M.D. (1999) Cloning and characterization of zRICH, a 2',3'-cyclic-nucleotide 3'-phosphodiesterase induced during zebrafish optic nerve regeneration. *J. Neurochem.*, 72, 1362–1371.

32. Lee, J., Gravel, M., Gao, E., O’Neill, R.C. and Braun, P.E. (2001) Identification of essential residues in 2',3'-cyclic nucleotide 3'-phosphodiesterase. *J. Biol. Chem.*, 276, 14804–14813.

33. Nasr, F. and Filipowicz, W. (2000) Characterization of the *Saccharomyces cerevisiae* cyclic nucleotide phosphodiesterase involved in the metabolism of ADP-ribose 1',2'-cyclic phosphate. *Nucleic Acids Res.*, 28, 1676–1683.

34. El Omari, K., Ren, J., Bird, L.E., Bona, M.K., Klarmann, G., LeGrice, S.F.J. and Stammers, D.K. (2005) Molecular architecture and ligand recognition determinants for T4 RNA ligase. *J. Biol. Chem.* (in press).

35. Wang, L.K., Ho, C.K., Pei, Y. and Shuman, S. (2003) Mutational analysis of bacteriophage T4 RNA ligase 1: different functional groups are required for the nucleotidyl transfer and phosphodiester bond formation steps of the ligation reaction. *J. Biol. Chem.*, 278, 29454–29462.

36. Martins, A. and Shuman, S. (2004) Characterization of a baculovirus enzyme with RNA ligase, polynucleotide 5' kinase and polynucleotide 3' phosphatase activities. *J. Biol. Chem.*, 279, 18220–18231.