Review Article Open Access

Review of Cucurbita pepo (Pumpkin) its Phytochemistry and Pharmacology

Rosa Martha Perez Gutierrez*
Laboratorio de Investigación de Productos Naturales, Escuela Superior de Ingeniería Química e Industrias Extractivas IPN. Av. Instituto Politécnico Nacional S/N, Unidad Profesional Adolfo Lopez Mateos cp 07708, Mexico

Abstract

Cucurbita pepo, is widely used like food and in folk medicine around of the world. This aims a comprehensive of the pharmacological, chemical constituents, and clinical uses. Also have been identified the medicinally important phy-coconstituents belonging mainly to cucurbitosides, multiflorane-type triterpenoids, carotenoids, ent-kaurene-type dieterpene, and cucurbitaglycosides. Extracts and metabolites of this plant, particularly those from seeds and fruits possess useful pharmacological activities. A survey of the literature shows C. pepo, is mainly known for its improvement in prostatic hyperplasia (BPH), urinary dysfunction and cytotoxic properties, also has also been used extensively as a hypoglycaemic agent. Many pharmacological studies have demonstrated hepatoprotection, inhibit benign prostatic hyperplasia, antioxidant, anticancer, antimicrobial, antiinflammatory, anti-diabetic, and antilucre activities supporting its traditional uses.

Keywords: Antioxidant; Anticancer; Antimicrobial; Antiinflamatory; Cucurbita pepo; Curcurbitae family

Introduction

The Curcurbitaceae family, also referred as cucurbit form a very large group with approximately 130 genera and 800 species and can be cultivated in warmer region of worldwide and make popular food crop plants some of these species include squashes, pumpkins, melons and gourds. Cucurbita pepo is one of the oldest known cultivated species, with Mexican archaeological evidence from 7000 BC. Thus, it was widely cultivated by indigenous peoples throughout Mexico, Central, and North America before the arrival of Europeans. This plant is native of Northern Mexico and southwestern and eastern USA [1]. These family have medicinal and nutritional benefits. The immature fruits are consumed as a vegetable. The mature fruit is sweet and used to make confectionery, beverages are roasted, or cooked and can be incorporated into baked goods. The seeds, rich in oil, are also used in Mexico, with honey to prepare desserts known as palanquetas. Flower buds and flowers are also edible in Mexico to prepare quesadillas. Some fruit varieties are used with decorative purposes in Halloween party.

Uses in Traditional Medicine

Ethnopharmacological studies show that Cucurbita pepo is used in many countries for treating numerous diseases, e.g., as an anti-inflammatory, antiviral, analgesic urinary disorders, anti-ulcer, anti-diabetic and antioxidant [1,2]. Traditional medicine, particularly Ayurvedic systems [3], and Chinese [4] have used different parts of the plant including flesh of the fruits and seeds [5] (Table 1). Reporting that pumpkin exhibiting important physiological properties as wound healing, tumour growth inhibition, hypoglycaemic effects and immunomodulating [4]. The seeds are used as a vermifuge, treat problems of the urinary system, hypertension, prevents the formation of kidney stones, alleviate prostate diseases, and enhanced the erysipelas skin infection [6-14].

Phytochemistry

Fruits

These are characterized by a low content of fat (2.3%, pumpkin pulp is not a rich source of oil), carbohydrates (66%), proteins (3%) [14], and by a high-carotenoids content with values of 171.9 to 461.9 µg.g⁻¹ [15]. Food value per 100 g is: Calories 80 kcal, crude fibre 11.46%, ash 16%. The mineral analysis indicated that pumpkin pulp contained high levels of Mn (0.5 mg/kg), Fe (1.37 mg/kg), Cu (3.9 mg/kg), Pb (0.29 mg/kg), P (11.38 mg/kg), Ni (0.5 mg/kg), Ca (179 mg/kg), Mg (190 mg/kg), Na (159 mg/kg) and K (160 mg/kg) [16]. The level of Pb (0.21-0.25 mg/kg), and Cu (2-5 mg/kg) are within the acceptable range to FAO [17].

Seeds

Seeds of pumpkin are consumed either roasted or raw and used in cooking and baking as an ingredient of cereals, bread, cakes and salads. Pumpkin seed oil is accepted as edible oil and as a nutraceutical. Pumpkin seed and seed oil are a rich natural source of phytosterols [18], proteins, polysaturated fatty acids [19], antioxidant vitamins, carotenoids and tocopherols [20] and various elements [21] due to these components are attributed providing many health benefits.

Seeds contain oil with the main fatty acid components being palmitic (C 16:0, 10.68%), palmitoleic (C 16: 1, 0.58%), stearic (C 18:0, 8.67%) Oleic (C 18: 1, 38.42%) Linoleic (C 18:2, 39.84%), Linolenic (C18: 3, 0.68%), Gadoleic (C20: 1, 1.14%), total saturated fatty acids (19.35%), and total unsaturated fatty acids (80.65%) [1]. Also contain various components such as p-aminobenzoic acid, γ-aminoacetic acid, palischarcides, peptides, proteins, carotenoids as lutein, lutein epoxide, 15-cis-lutein (central-cis)-lutein, 9(9’)-cis-lutein, 13(13)’-cis-lutein, a-carotene, β-carotene violaxanthin, auroxanthin epimers, flavoxanthin, luteoxanthin, chrysanthenaxanthin, a-cryptoxanthin, β-cryptoxanthin [22].

Also have been isolated from the seeds sterols which the most abundan was Δ7,21-stigmastatrienol with values of 18.8 to 35.1 g/100 g of the total sterol content, following by the Δ6 sterol spinasterol with values of 18.2-23.3 g/100 g of the total sterol content. β-sitosterol...
and spisterol represented 41.1- 53.6 g/100 g of total sterol content. The third most abundant is the Δ^7-stigmasterol, with 12.5-20.3 g/100 and $\Delta^{2,25}$-stigmastadienol, with 5.8-8.0 g/100 g of total sterol content [23].

In seeds, the greatest concentrations of squalene were found with a range from 583.2 to 747 mg/100 g. Squalene is a triterpene produced by humans, animals and plants, is a precursor of steroid hormones, cholesterol, and vitamins D in their biosynthesis in the human body. Also, squalene is a compound that has positive effects in the treatment of certain types of cancer [23].

In addition, the seeds contain cucurbitosides which are acylated phenolic glycosides as well as cucurbitosides F-M [24].

Table 1: Ethnobotanical uses of *Cucurbita pepo* found world wide.

Place, Country	Part(s) used	Ethnico medical uses	Preparation(s)	References
Mongolia	Fruits	Treat cold and alleviate ache	Infusion or decoction	[7]
Mexico	Seeds	Treat irritable bladder	Are eaten in the diet	[8]
Egypt	Seeds	Prostatic complains	Are eaten in the diet	[8]
Europe	Seeds	Micturition caused by the prostate	Are eaten in the diet	[9]
China	Seeds	Deworming medicine	Are eaten in the diet	[10]
Europe	Seeds	Treatment of urinary and prostate disease	Are eaten in the diet	[11]
China	Seeds	Anti-parasitic	Are eaten in the diet	[12]
China	Seeds	Beneficial to the spleen and lungs	Are eaten in the diet	[13]
Central and North America	Seeds	Taenicide, diuretic, Gastritis, burns, enteritis and Febrile diseases	Oil of the pumpkin seeds, in doses of 6 to 12 drops, several times a day	[14]
Centro America	Seeds	Headaches and neuralgia	Compress	[6]
Centro America	Leaves	Reduced fever	Infusion or decoction	[14]
Southwestern USA	Fruits	Cure fatigue and thirst and purify the blood	Infusion or decoction	[14]
Southwestern USA	Leaves	A treatment for nausea, and a boost to haemoglobin content of the blood.	Infusion or decoction	[8]
Northern Mexico	Seeds	Diuretic, a cure for bronchitis and fever, is effective against parasitic worms	Infusion or decoction	[14]

Citation: Perez Gutierrez RM (2016) Review of *Cucurbita pepo* (Pumpkin) its Phytochemistry and Pharmacology. Med chem 6: 012-021. doi:10.4172/2161-0444.1000316
Examination of the seeds of *C. pepo* used HPLC leads to isolation of the following five multiflorane-type triterpenoids [25].

3α-Nitrobenzoylmultiflora-7,9(11)-dien-29-benzoate 3α-Acetoxymultiflora-7,9(11)-dien-29-benzoate

In another research thirteen compounds from *C. pepo* seeds, were isolated [26].

12α-(β-D-glucopyranosyloxy)-7β-(β-D-glucopyranosyloxy)-12α-7β-hydroxykaurenolide hydroxykaurenolide
Phytochemical study of the fruits of C. pepo cv dayangua has led to the isolation of two cucurbitane glycosides: cucurbitacin L 2-O-beta-D-glucopyranoside, and cucurbitacin K 2-O-beta-D-glucopyranoside [27].
Biological Activity

Scientific investigations on the medicinal properties of pumpkin dates back to the 1930s. A summary of the findings of these studies performed is presented below.

Antioxidant and free radical scavenger

Cellular damage or oxidative injury arising from free radicals or reactive oxygen species (ROS) now appears to be the fundamental mechanism underlying a number of human disorders including diabetes, digestive system disorders, viral infections, neurodegenerative disorders, autoimmune pathologies and inflammation. Free radicals are generated through environmental chemicals, xenobiotics, endogenous chemicals, as well as normal metabolism [28].

Tocopherols are non-glycoside compounds of vegetable oil, and are natural antioxidants. Seeds oil of the pumpkin containing a mixture of isomers β and δ-tocopherol in range from 29.92 to 53.60 mg/100 g making 79% and 84% respectively of the total tocopherol content [23].

The antioxidant activity of pumpkin seeds methanol extract was determined using free radical DPPH (2,2-diphenyl-1-picrylhydrazyl) scavenging and soybean lipoxigenase [LOX] inhibition. Results expressed as EC₅₀ values for scavenging activity on DPPH radical assay is 5.57 mg/ml. In addition, methanol extract inhibit 50% of LOX activity at concentrations ranging from 0.3 mg/ml to 1.02 mg/ml [29]. This extract contain higher amounts of phenolic compounds (5-11 µmol gallic acid 7-15% of total extractable phenolics). Radical scavenging effect depend on their total phenolic content. However, the lipoxigenase, inhibition and the phenolic content are not correlated.

In another study of a methanol seeds extract of varieties junona and Miranda both belonging to the species C. pepo had to higher total polyphenol content of 82.4 mgGA/100 g and 113 mgGA/100 g respectively [30]. In this study also was measured antioxidant activity from C. pepo by ABTS radical and ferric reducing antioxidant power (FRAO) assays. Results obtained with highest ranges from 0.443 to 1.220 µM Trolox/gFW (TEAC) for the hydrophilic form and lowest for lipophilic form of 3.33 to 0.1 TEAC. FRAP assay demonstrate a highest antioxidant effect of 1.83 mmol/100 g FW [30].

Pumpkin polysaccharides with different degree of substitution were phosphorylated using POCl₃ and pyridine. The antioxidant activity of the phosphorylated polysaccharides was determined using free radical DPPH, superoxide anion radical scavenging activity, reducing power and H₂O₂ -induced oxidative damages on rat thymic lymphocyte. All the phosphorylated polysaccharides derivatives tested showed higher antioxidant activities in both in cell system and in vitro due to highly phosphorylated derivatives have electron donating groups, capable of converting free radicals to stable compounds, indicating that connected moieties between the head and tail portions in electron donating groups have the ability to link using a negative interaction to allosteric sites. Pumpkin polysaccharide exhibit higher cytoprotective effect than the unmodified polysaccharide in vitro models, indicating that chemical modification could enhance the cytoprotective effect [31].

Hepatoprotective effects

The hepatoprotective effect of an protein isolated of seeds from C. pepo was studied on Sprague-Dawley rat liver damage induced by acetaminophen by monitoring serum transaminase including aspartate amino transferase (AST) and serum alanine amino transferase (ALT). The significant increased levels of plasma ALT and AST are the result of acetaminophen intoxication in the liver and kidney injury and leakage of cellular enzymes into the bloodstream as a result of the injury.

The treatment with C. pepo seed protein isolate significantly reduced the levels of ALT and AST. In addition, seed protein isolated has good antioxidants effect as revealed by chelating effect, antixanthine oxidase properties, and free radical scavenging activity [32].

In another study, the effect of an protein isolated of seeds from C. pepo on CCl₄-induced injury in low-protein fed rats was studied. Administration of this protein caused significant increase in the enzymes antioxidant including catalase (CA), superoxide dismutase (SOD), glutathione peroxidase (GSHps) as well as glucose-6-phosphatase (G6Pase). However, was significantly decreased the lipid peroxidation (LPO-malondialdehyde-MDA) levels in liver homogenate [33]. These studies have indicated the ability of seeds from C. pepo to reduce several parameters associated with liver injury.

Anti-hyperglycemic

Diabetes is a metabolic disease which is a serious problem of modern society due to the severe health complications associated with it. Pancreatic β-cells release insulin which is the hormone responsible for glucose homeostasis [34]. The inappropriate utilization of insulin leads to insulin resistance, which is characterised by the inability of cells to respond to normal levels of circulating insulin, thus leading to glucose metabolism disturbances are main factors leading to diabetes. For this reason therapeutic targets should lead a durable maintenance of glycemic control in the diabetic. Therefore, numerous herbal medicines, found to be effective in the long-term management of type 2 diabetes mellitus.

Tocopherol isomers (α, β, γ, and δ) from raw pumpkin seeds has been reported to be effective in the alleviation of diabetes through its antioxidant activities. Tocopherol was extracted and quantified of the seeds oil of C. pepo producing α- tocopherol ranged from 75 µg/g, 75 µg/g to 493 µg/g for γ-tocopherol, and from 35 µg/g to 1110 µg/g for δ-tocopherol. Tocopherol fraction of pumpkin seed oil was studied in hyperglycemia Wistar rats induced with nonionic copolymer PX-407 with impaired response and loss of β-cell sensitivity to glucose, which is considered as a appropriate model to study the activity of hypoglycemic drug. Results indicated a decreced of insulinemic, lipid profiles and glycemic levels. In addition, in silico constrained docking studies was performed using FRED and HYBRID programs to understand the mechanism of action with respect to three hypoglycemic proteins, PTPI B, PPAR-γ, and DPP-IV with respect to 10 botanicals. In nonconstraint docking, all the tocopherols showed interaction in the active sites of the proteins [35]. A significantly reduction in oxidative markers and enhanced cecal and pancreatic characteristics were also observed.

Other Cucurbitae as Cucurbita ficifolia Bouché (chilacayote) and Cucurbita moschata duh have properties hypoglycemic, increases serum insulin levels; produced a beta cell regeneration [36,37]. It has been shown that the bioactive component in Cucurbita moschata is a polysaccharide [38] though further research has been required to identify if this is true for all members of this family. It has been demonstrated that polysaccharides content in a water extract pumpkin produces higher hypoglycemic effects than those of the glibenclamide (GB) in alloxan-induced diabetic rats [38]. In addition, pumpkin fruit has high concentrations of pectin which is a fibre, when is consumed reduce the need for insulin and control glucose levels [39]. However, the protein-bound polysaccharides from pumpkin reduce the blood glucose levels, and improving the tolerance of glucose [40]. The structural characterization of the purified polysaccharide were evaluated as an acid heteropolysaccharide (Mw=27 kDa) including Ara, Gal, Glc and GaLA in ratio of 2.63:6.2:1 with an α-configuration.
It has a backbone composed of (1 → 5)-linked Ara, (1 → 6)-linked Gal with three branches attached to O-3 of (1 → 6)-linked Gal and terminated with either Gal or Gal and Glc, and all of Glc and the majority of GalA are distributed in branches [41]. This polysaccharide (50 mg/kg) administered orally in alloxan-induced diabetic increase the body weight, reduce water intake, and blood glucose levels of diabetic mice group compared with diabetic control group.

In another studies also on alloxan-induced diabetic rats demonstrate that polysaccharide from pumpkins has hypoglycemic effect [42]. Furthermore, the administration of fruit powder for a month in diabetic rats significantly reduced C-reactive protein (CRP), colestrol, glucose, triglycerides while insulin was increased in diabetic rats [43].

Protein-bound polysaccharides (PBPP) are isolated from water extract from pumpkin fruits to consist of 10.13% protein and 41.21% polysaccharides. Administration of this protein-bound polysaccharides to alloxan-induced diabetic rat model reduced significantly glucose levels [44]. All these studies indicate that polysaccharides and protein-bound polysaccharides are the bioactives antidiabetic of pumpkin. In clinical study, thirty T2DM diabetic patients were treated with pumpkin polysaccharide granules for four weeks. After treatment there is a reduction in both urination and plasma glucose [45].

Numerous plants are used in South Africa for the treatment of type II diabetes among them they is C. pepo which was evaluated using in vitro α-glucosidase and α-amylase activity. The results demonstrated inhibitory activity against both enzyme systems adding evidence to the traditional use in the management of the type II diabetic post-prandial hyperglycemia [46].

C. pepo may therefore be beneficial for the prevention of complications related to diabetes, also since its traditional use in diabetes is well established.

Anti ulcer activity

Cucurbitacin derivative was isolated from metanol extract of powdered seeds of C. pepo which showed dose dependent antiulcer activity decreasing ulcerative index indicated the ability of the compound to protect the gastric mucosa [47].

Prostatic hiperplasia (BPH) and urinary function

Benign prostatic hyperplasia (BPH) result of gradual overgrowth of the prostate gland, which is located at the base of the bladder and and surrounds the urethra. The enlarged prostate affects the urethra, and therefore BPH is associated with diminution in urinary function [48]. Management of this disease to include pumpkin seeds suggested that the actions of pumpkin seed oil may be attributed to the content of phytosterols, which are known to interfere with the actions of dihydrotestosterone. This is a potent androgen produced in the prostate, from testosterone by the enzyme 5α-reductase that lead growth of the prostate. This androgens playing an considerable part in the disease process of BPH, so dihydrotestosterone inhibition reduced growth of the prostate.

In one study, hiperplasia of the rat prostate was induced by a subcutaneous injection of testosterone at a dose of 0.3 mg/100 g daily for 20 days. Administration of pumpkin seeds oil (14 mg/kg) daily for 30 days inhibited testosterone-induced hyperplasia of the rat prostate involving a direct inhibition of growth of the prostate [48].

In a double-blind, placebo controlled study with curbicin isolated from C. pepo seeds in the treatment of patients with symptoms of prostatic hiperplasia over a three month period. The curbicin dose administered to 55 patients was of 160 mg of standardized extract from C. pepo (80 mg). After treatment with curbicin micturition time, frequency of micturition, urinary flow, and residual urine were significantly improvement [49].

In another study forty five patients with urinary dysfunction (overactive bladder, OAB) were orally treated with C. máxima seeds oil (10 g/ oil/day) for 12 weeks. Treatment with oil significantly reduced the degree OABSS in patients [50]. OABSS, a self-assessment of OAB symptoms, is recognized as a standard tool for diagnosis and evaluation of the severity of OAB, and has been used in clinical studies [51].

Furthermore, the pumkin seeds oil (10%) were investigated on citral induced BPH in Wistar rats. Citral significantly increased prostate weight. However, seeds oil significantly inhibited enlarged prostate, decrease of protein binding prostate (PBP) levels, weight of ventral prostate size, and amelioration histology of testis. Thus, indicate that seeds oil may be beneficial in the management of mild stage of benign prostatic hiperplasia [52].
These finding suggested that pumpkin seeds oil have the potential to be developed as new chemotherapeutic agents to prevent or to inhibit benign prostatic hyperplasia.

Antimicrobial activity

3β-hydroxycholest-7-en-24-one from C. pepo seeds, was isolated and evaluated for macrophage activation by the inhibitory assay of NO production in RAW264.7 mouse macrophages stimulated by LPS. 3β-hydroxycholest-7-en-24-one exhibited inhibitory effects on macrophage activation at 3-30 μM (produced NO: 81.3% at 3 μM, 61.2% at 10 μM, and 33.9% at 30 μM). Triterpene exhibited low cytotoxicity at 30 μM (cell viability: 85.9% at 30 μM), but not at effective concentrations, namely 3 and 10 μM. These results suggested that isolated steroid has potential as an anti-inflammatory agent [26].

23, 24-dihydrocucurbitacin D [53] blocked NO production from peritoneal macrophages activates with lipopolysaccharides and interferon γ, with values of ED₅₀ of 13 μM and the effect might occur via inhibiting NF-KB activation and iNOs gene transcription. However, did not show cytotoxic to peritoneal macrophages [54].

Anticancer/antitumour effects

Cancer is one of the main health problems of all the world. Cancer is responsible for 12% of the world's mortality. Treatments include chemotherapy surgery, and radio-therapy. However, chemotherapy suffers limitations of drug resistance, toxicity, side-effects and lacking specificity toward tumor cells [57]. Therefore, there is a strong interest in the use of plants as a promising source of more efficient anticancer drugs.

Currently more than 40 cucurbitacin-derived compounds and cucurbitacins have been isolated from the Cucurbitaceae family and from other species of the plant. The apoptotic effects of cucurbitacins is due of their ability to modify the genes, transcriptional activities via nuclear factors and mitochondrial trans-membrane potential and their capability to activate or inhibit pro- or anti-apoptotic proteins. Cucurbitacins are selective inhibitors of the JAK/STAT pathways; also, other mechanisms are implicated in their apoptotic effects, such as PARP cleavage, MAPK pathway, expression of active caspase-3, decreased JAK3 and pSTAT3 levels, as well as decreases in various downstream STAT3 targets such as Bcl-2, Mcl-1, cyclin D3, and Bcl-xl, all of which are implicated in the cell cycle control [58].

Alcoholic extract of Cucurbita pepo showed IC₅₀ values on cancer cell lines HepG2 and CT26 of 132.6 and 167.2 μg/ml respectively. The Ethanolic extract of fruits of C. pepo was observed to exhibit a significant dose-dependent inhibitory effect against HeLa cell growth [59].

Cucurbitacins have been reported mainly in the Cucurbetaceae, are a class of highly oxidized tetracyclic triterpenoids possess the biogenetically unusual 10α-cucurbit-5-ene[19(10 →19β)abeo-10α-lanostane skeleton which are well known for their cytotoxic activity. The Ethanolic extract of air-dried fruits of C. pepo was subjected to chromatography to give cucurbitaglycosides A and B. In vitro assay both compounds showed weak cytotoxic activity against HeLa cells with IC₅₀ values of 17.2 and 28.5 μg/ml respectively [60].
Feng et al. [53] found that *C. pepo* cv dayangua contain 23, 24-dihydrocucurbitacin F, 23, 24-dihydrocucurbitacin D, cucurbitacin B and cucurbitacin E.

The antiproliferative effect of 23, 24-dihydrocucurbitacin F, on human PCa cells might occur to the induction of the coflin-actin rod formation and actin aggregation producing to cell cytokinesis failure, inhibited cell growth cycle arrest at G2/M phase and apoptosis [61]. In addition, 23,24-dihydrocucurbitacin F have been inhibitory activity on Epstein-Barr virus (EBV) activation induced by the tumor promoter, 12-O-tetradecanoyl-phorbol-13-acetate (TPA) and also exhibit significantly anti-tumor-promotion activity on mouse skin tumor promotion [62].

Cucurbitacin B and cucurbitacin E characterized from *C. pepo* cv dayangua has been shown antiproliferative in breast (MCF-7), colon (HCT-116), brain (SF-268), lung cancer cells (A549) and lung (NCI-H460) cancer cell lines, among them cucurbitacin B demonstrated more than 80% proliferation inhibitory activity [63].

Treatment with cucurbitacins B and E showed growth inhibition accompanied by apoptosis and cell cycle arrest in breast cancer cell lines (MDA-MB-231 and MCF-7) [64]. They also modulated the expression of proteins involved in cell-cycle regulation in both of the estrogen-independent (MDA-MB-231) and estrogen-dependent (MCF-7) in human breast cancer cell lines [65]. Growth inhibition and cytotoxic effect of cucurbitacin B on breast cancer cell lines SKBR-3 and MCF-7 were attributed to G2/M phase arrest and apoptosis. Cucurbitacin B treatment inhibited Cyclin D1, c-Myc, and β-catenin expression levels, translocation to the nucleus of β-catenin and galectin-3. Western blot analysis showed increased PARP cleavage suggesting induced caspase activity and decreased mitogenic Wnt-associated signaling molecules galectin-3, β-catenin, c-Myc, and cyclin D1 with changes in phosphorylated GSK-3β levels [66].

Cucurbitacin E caused disruption of the cytoskeleton structure of actin and vimentin inhibiting the proliferation of prostate cancer cells [67]. Moreover, cucurbitacins also inhibited proliferation of endothelial cells accompanied by a disruption of the F-actin and tubulin microfilaments cytoskeleton, normal mitogen-induced T-lymphocytes [68] and reduced cell motility suggest an anti-angiogenesis and anti-metastasis role for cucurbitacins [67]. In addition is capable of inducing and maintaining high proliferation rates in lymphocytes [69].
These finding suggested that C. pepo extracts have the potential to be developed as new chemotherapeutic agents to prevent or to inhibit the growth of tumours and cancers.

References

1. Smith BD (1997) The initial domestication of Cucurbita pepo in the Americas 10,000 years ago. Sci 276: 932-934.
2. Wang XL, Liu J, Chen ZHB, Gao F, Liu JX, Wang XL (2001) Preliminary study on pharmacologically effect of Cucurbita pepo cv Dayanggua. J Trad Chin Vet Med 20: 6-9.
3. Ding YL, Deng XM, Wang XL, Wang IQ, Zhang YP (2002) Study on Newcastle disease virus effect of five traditional Chinese herbs. J Trad Chin Vet Med 21: 3-4.
4. Chaturvedi P (2012) Antidiabetic potentials of Momordica charantia: multiple mechanisms behind the effects. J Med Food 15: 101-107.
5. Caili F, Huan S, Quanhong L (2006) A review on pharmacological activities and utilization technologies of pumpkin. Plant Foods Hum Nutr 61: 73-80.
6. Dhiman K, Gupta A, Sharma DK, Gill NS, Goyal A (2012) A review on the medicinally important plants of the family Cucurbitaceae. Asian J Clin Nutr 4: 16-26.
7. Yang BM, Yang ST, Chen SN (2000) A preliminary study on the cultivating technique of Cucurbita pepo cv Dayanggua. Spec Econ Amin Plant 3: 28-34.
8. Kessler OJ, Keisari Y, Servadio C, Abramovici A (1998) Role of chronic inflammation in the promotion of prostatic hyperplasia in rats. J Urol 159: 1049-1053.
9. Madaus G (1979) Lehrbuch der biologischen heimittel. Band III. Hildesheim: Georg Olms Verlag, pg: 2384-2387.
10. State Administration of Traditional Chinese Medicine (1999) Zhong-hua-ben-cao: Shanghai Science Technology Press, Shanghai. pp: 2384-2387.
11. Bombardelli E, Morazoni P (1997) Pumpkin seed inhibitor of human factor XIIa. Biorganic Med Chem Lett 21: 1001-1003.
12. Bagabaghian HF, Kamalinejad M, Shojaei Am FMA (2012) Presenting antidiabetic plants in Iranian traditional medicine. J Diabetes Endocrinol 3: 70-76.
13. Song Y, Ni Y, Hu X, Li Q (2015) Effect of phosphorylation on antioxidant activities of pumpkin (Cucurbita pepo, Lady godiva) polysaccharide. Int J Biol Macromol 81: 41-48.
14. Xiang Z, Du Q (2011) Glucose-lowering activity of novel tetrasaccharide from pumpkin polysaccharide. J Med Food 15: 101-107.
15. Tong H, Liang Z, Wang G (2008) Structural characterization and hypoglycaemic activity of pumpkin seed (Cucurbita pepo) protein isolate in cci4-induced liver injury in low-protein fed rats. Phytother Res 20: 935-940.
16. Sesti G (2006) Pathophysiology of insulin resistance. Best Pract Res Clin Endocrinol Metab 20: 665-679.
17. Bharti SK, Kumar A, Sharma NK, Prakash BO, Jaiswal SK, et al. (2013) Tocopherol from seeds of Cucurbita pepo against diabetes: Validation by in vivo experiments supported by computational docking. J Formosan Med Assoc 112: 676-690.
18. Alancon-Aguilar FJ, Hernandez-Galicia E, Campose-Sepulveda AE, Xolalpa-Molina S, Rivas-Vilchis JF, et al. (2002) Evaluation of the hypoglycemic effect of Cucurbita ficifolia Bouche (Cucurbitaceae) in different experimental models. J Ethnovpharmacol 82: 185-189.
19. Zhang Y, Chen P, Zhang Y, Jin H, Zhu L, et al. (2013) Effects of polysaccharide from pumpkin on biochemical indicator and pancreatic tissue of the diabetic rabbits. Int J Biol Macromol 62: 574-581.
20. Quanhong L, Caili F, Yukui R, Guanghui H, Tongyi C (2005) Effects of protein-bound polysaccharide isolated from pumpkin in diabetic animals. Food Plants Hum Nutr 60: 13-16.
21. Tong H, Liang Z, Wang G (2008) Structural characterization and hypoglycaemic activity of a polysaccharide isolated from the fruit of Physalis alkekengi L. Carbohydrate Polym 71: 316-323.
22. Xiong X, Cao J (2001) Study of isolation and extraction of effective polysaccharide from Cucurbita pepo. J Agric Food Chem 55: 4005-4013.
23. Grew RH, Grew RS, Chuang LT, Huang YS, Millson M, et al. (2006) Amino acid, mineral and fatty acid content of pumpkin seeds (Cucurbita spp) and Cyperus: esculentus nuts in the Republic of Niger. Plant Foods Hum Nutr 61: 51-56.
24. Rabrenovic CC, Dimic EB, Novakovic MM, Tsesvic VV, Basic ZN (2014) The most important bioactive components of cold pressed oil from different pumpkin (Cucurbita pepo L.) seeds. Food Sci Technol 55: 521-527.
25. Matus Z, Molorn P, Szabo LG (1993) Main carotenoids in pressed seeds (Cucurbitaceae semen) of oil pumpkin (Cucurbita pepo cvarna. pepo var. styriaca). Acta Pharm Hung 63: 247-256.
26. Li W, Koike K, Tatsuzuki M, Koide A, Nikaido T (2005) Cucurbitosides F-M, acylated phenolic glycosides from the seeds of Cucurbita pepo. J Nat Prod 68: 1754-1757.
27. Tanaka R, Kikuchi T, Nakasuji S, Ue Y, Shuto D, et al. (2013) A novel 3x-p-Nitrobenzoylfloura:7-2H1-diene-29-benzoate and two new triterpenoids from the seeds of zucchini (Cucurbita pepo L.). Molecules 18: 7448-7459.
28. Kikuchi T, Ando H, Maekawa K, Arie H, Yamada T, et al. (2015) Two new ent-kaurane-type diterpene glycosides from zucchini (Cucurbita pepo L.) seeds. Fitoterapia 107: 69-76.
29. Wang DC, Pan HY, Deng XM, Xiang H, Gao HY, et al. (2007) Cucurbitane and hexanor cucurbitane glycosides from the fruits of Cucurbita pepo cv dayangua. J Asian Nat Prod Res 9: 525-529.
30. Masuda T, Inaba Y, Maekawa T, Takeda Y, Yamaguchi H, et al. (2003) Simple detection method of powerful antirradical compounds in the raw extract of plants and its appli- cation for the identification of antiradical plants constituents. J Agriculture Food Chem 51: 1831-1838.
31. Xanthopoulos MN, Nomikos T, Frappogolou E, Antonopoulou S (2009) Antioxidant and lipoxygenase inhibitory activities of pumpkin seed extracts. Food Res Intern 42: 641-646.
32. Nafwarska-Olszanska A, Kita A, Biiesiada A, Sokol Letowska A, Kucharska AZ (2013) Characteristics of antioxidant activity and composition of pumpkin seed oils in 12 cultivars. Food Chem 139: 155-161.
33. Zhang YJ (2004) Study on the hypoglycemic effects and extraction and analysis of polysaccharide from pumpkin on biochemical indicator and pancreatic tissue of the diabetic rabbits. Int J Biol Macromol 62: 574-581.
34. Xanthopoulos MN, Nomikos T, Frappogolou E, Antonopoulou S (2009) Antioxidant and lipoxygenase inhibitory activities of pumpkin seed extracts. Food Res Intern 42: 641-646.
35. Bharti SK, Kumar A, Sharma NK, Prakash BO, Jaiswal SK, et al. (2013) Tocopherol from seeds of Cucurbita pepo against diabetes: Validation by in vivo experiments supported by computational docking. J Formosan Med Assoc 112: 676-690.
36. Alancon-Aguilar FJ, Hernandez-Galicia E, Campose- Sepulveda AE, Xolalpa-Molina S, Rivas-Vilchis JF, et al. (2002) Evaluation of the hypoglycemic effect of Cucurbita ficifolia Bouche (Cucurbitaceae) in different experimental models. J Ethnovpharmacol 82: 185-189.
37. Zhang YJ (2004) Study on the hypoglycemic effects and extraction and analysis of pumpkin polysaccharide. J China Jiliang University 15: 0238-0241.
38. Guillon F, Champ M (2000) Structural and physical properties of dietary fibres and consequences of processing on human physiology. Food Research International 33: 233-245.
39. Quanhong L, Caili F, Yukui R, Guanghui H, Tongyi C (2005) Effects of protein-bound polysaccharide isolated from pumpkin in insulin in diabetic rats. Plant Foods Hum Nutr 60: 13-16.
40. Xiong X, Cao J (2001) Study of isolation and extraction of effective pumpkin polysaccharide component and its reducing glycemia function. Chinese J Modern Application Pharm 18: 662-664.
41. Sedighihe A, Jamal MS, Mahbubeh S, Sornayeh K, Mahmood R, et al. (2011) Hypoglycaemic and hypolipidemic effects of pumpkin (Cucurbita pepo L.) on alloxan-induced diabetic rats. Afr J Pharm Pharmacol 5: 2620-2626.
42. Shan J, Ren F, Tian G (2009) Structure characterization and hypoglycaemic activity of a glycoconjugate from atractylodes macrocephalae koidz. Functional Plant Sci Biotechnol 3: 36-41.
granules on glycemic control in type 2 diabetes. Central South Pharm 1: 275-276.

46. Boaduo NK, Katereke D, Eloff JN, Naidoo V (2014) Evaluation of six plant species used traditionally in the treatment and control of diabetes mellitus in South Africa using in vitro methods. Pharm Biol 52: 756-761.

47. Gill NS, Bali M (2011) Type triterpenoid from the seeds of Cucurbita pepo. Res J Phytochemistry 5: 70-79.

48. Gossell-Williams M, Davis A, O’Connor N (2006) Inhibition of testosterone-induced hyperplasia of the prostate of sprague-dawley rats by pumpkin seed oil. J Med Food 9: 284-286.

49. Carbin BE, Larsson B, Lindahl O (1990) Treatment of benign prostatic hyperplasia with phytoestrogens. Br J Urol 66: 639-641.

50. Nishimura M, Ohkawara T, Sato H, Takeda H, Nishihira J (2014) Pumpkin Seed Oil Extracted From Cucurbita maxima Improves Urinary Disorder in Human Overactive Bladder. J Tradit Complement Med 4: 72-74.

51. Homma Y, Yoshida M, Seki N, Yokoyama O, Kakizaki H, et al. (2006) Treatment of benign prostatic hyperplasia with phytoestrogens. Br J Urol 66: 639-641.

52. Abdel-Rahman MK (2006) Effect of pumpkin seed (Cucurbita pepo L.) diets of benign prostatic hyperplasia (bph): chemical and morphometric evaluation in rats. World J Chem 1: 33-40.

53. Peng XS, Wang DC, Cai H, Deng XM, Liu YR (2013) Determination of the cucurbitacins from Cucurbita pepo cv dayanguy by HPLC. Zhong Yao Cai 30: 418-420.

54. Park CS, Lim H, Han KJ, Baek SH, Sohn HO, et al. (2004) Inhibition of nitric oxide generation by 23,24-dihydrocucurbitacin D in mouse peritoneal macrophages. J Pharmacol Exp Ther 309: 705-710.

55. Noumedem JAK, Mihasan M, Lacmata ST, Stefan M, Kuiate JR, et al. (2013) Cytotoxic activities of cucurbitacins from Cucurbita andreana. Cancer Lett 189: 11-16.

56. Dubey A, Mishra N, Singh N (2010) Antimicrobial activity of some selected vegetables. JJABTP 1: 995-999.

57. Chen X, Bao J, Guo J, Ding Q, Lu J, et al. (2012) Biological activities and potential molecular targets of cucurbitacins: a focus on cancer. Anticancer Drugs 23: 777-787.