Key Role of Group V Secreted Phospholipase A₂ in Th2 Cytokine and Dendritic Cell-Driven Airway Hyperresponsiveness and Remodeling

William R. Henderson Jr¹*, Xin Ye¹*, Ying Lai², Zhanglin Ni², James G. Bollinger², Ying-Tzang Tien³, Emil Y. Chi³, Michael H. Gelb²,⁴*

1 Center for Allergy and Inflammation, UW Medicine at South Lake Union, Department of Medicine, University of Washington, Seattle, Washington, United States of America, 2 Department of Chemistry, University of Washington, Seattle, Washington, United States of America, 3 Department of Pathology, University of Washington, Seattle, Washington, United States of America, 4 Department of Biochemistry, University of Washington, Seattle, Washington, United States of America

Abstract

Background: Previous work has shown that disruption of the gene for group X secreted phospholipase A₂ (sPLA₂-X) markedly diminishes airway hyperresponsiveness and remodeling in a mouse asthma model. With the large number of additional sPLA₂s in the mammalian genome, the involvement of other sPLA₂s in the asthma model is possible—in particular, the group V sPLA₂ (sPLA₂-V) that like sPLA₂-X is highly active at hydrolyzing membranes of mammalian cells.

Methodology and Principal Findings: The allergen-driven asthma phenotype was significantly reduced in sPLA₂-V-deficient mice but to a lesser extent than observed previously in sPLA₂-X-deficient mice. The most striking difference observed between the sPLA₂-V and sPLA₂-X knockouts was the significant impairment of the primary immune response to the allergen ovalbumin (OVA) in the sPLA₂-V⁻/⁻ mice. The impairment in eicosanoid generation and dendritic cell activation in sPLA₂-V⁻/⁻ mice diminishes Th2 cytokine responses in the airways.

Conclusions: This paper illustrates the diverse roles of sPLA₂-V in the immunopathogenesis of the asthma phenotype and directs attention to developing specific inhibitors of sPLA₂-V as a potential new therapy to treat asthma and other allergic disorders.

Introduction

Leukotriene B₄ (LTB₄) and the cysteinyl leukotriene (CysLT) C₄, D₄, and E₄ (LTC₄, LTD₄, and LTE₄) are biologically potent 5-lipoxygenase (5-LO) products of arachidonic acid metabolism [1]. The leukotrienes are important mediators of allergen-induced airway inflammation and remodeling in asthma. They mobilize CD34⁺ pluripotent hematopoietic stem-cell progenitors from the bone marrow to the bloodstream where they promote adhesion to the endothelium, transmigration into sites of inflammation, and increased survival and activation of leukocytes [1]. Through cross-talk with type 2 helper T cell (Th2) cytokines IL-4, IL-5, and IL-13, the actions of both the Th2 cytokines and leukotrienes are amplified leading to dendritic cell (DC) activation, goblet cell mucus hypersecretion, endothelial cell increased vascular permeability, augmented collagen synthesis by fibroblasts and myofibroblasts, and smooth muscle cell proliferation in the airways [1]. In asthma, other eicosanoids such as the cyclooxygenase (COX) arachidonate product prostaglandin D₂ (PGD₂) also contribute to this Th2-driven inflammatory process.

The biosynthesis of eicosanoids is controlled in part by the availability of arachidonic acid, which is thought to be liberated from membrane phospholipids via the action of one or more lipolytic enzymes, most notably phospholipases A₂ (PLA₂)s. Mammalian cells contain multiple types of PLA₂ [2], but it is generally accepted that cytosolic PLA₂-a (cPLA₂-a, also known as group IVA PLA₂) plays a pivotal role in agonist-mediated arachidonate release for the biosynthesis of the eicosanoids. This is based on studies with cPLA₂-a inhibitors [3–6] and studies with cPLA₂-a-deficient mice [7–9]. The mammalian genome also encodes 10 secreted PLA₂s (sPLA₂)s. The role of these enzymes in eicosanoid biosynthesis is much less clear. A systematic investigation of the interfacial kinetic and binding properties of the full set of mouse and human sPLA₂s shows that the group X sPLA₂ (sPLA₂-X) stands out as having the highest specific phospholipid activation activity when added to cultured cells [10,11]. We have recently demonstrated that mice that lack group X sPLA₂ show a dramatic reduction in parameters of Th2-driven airway inflammation and remodeling [12]. Immunohistochemical studies demonstrate that group X sPLA₂ is expressed in airway epithelial...
cells and macrophages in bronchoalveolar lavage (BAL) fluid [12]. Airway hyperreactivity to methacholine challenge, a hallmark asthmatic phenotype, is largely suppressed in the group X sPLA2 knockout after ovalbumin (OVA) allergen challenge. Markers of airway remodeling such as occlusion of the airways by mucus and subepithelial deposition of collagen were reduced significantly when sPLA2-X was deleted. Although T cell function was unimpaired, sPLA2-X-deficiency was characterized by a marked reduction in trafficking of T cells to the allergen-challenged airways in the mouse asthma model [12]. OVA-induced CysLT and PGD2 production were near fully blocked in the sPLA2-X mouse indicating an important mechanism for the effect of group X sPLA2-deficiency. Human group X sPLA2 is also found in induced sputum samples in patients with exercise-induced asthma and its levels in BAL fluid correlated with asthma severity [13], supporting a role of this PLA2 in human airway inflammation [14].

Group V sPLA2 also displays relatively high specific activity when added to mammalian cells in culture that is second to group X sPLA2 but well above that of the other mammalian sPLA2s [10,15]. Exogenous addition of nanomolar concentrations of group V sPLA2 to neutrophils and eosinophils leads to augmentation of arachidonic acid release and eicosanoid formation [16,17]. In the case of neutrophils, exogenously added group V sPLA2 leads to an activation of cPLA2α-suggesting that these two enzymes work together to maximize arachidonic acid release [16]. In eosinophils, exogenously added group V sPLA2 acts without the involvement of the cytosolic PLA2 [17]. Disruption of the mouse group V sPLA2 leads to a ~50% reduction in LTC4 and prostaglandin E2 (PGE2) production in peritoneal macrophages that have been stimulated with the fungal-derived agent opsonized zymosan [10]. In these cells there is also crosstalk between group V sPLA2 and cPLA2α. The mechanistic basis for this crosstalk between secreted and cytosolic PLA2s remains to be determined. These studies point to the possible role of group V sPLA2 in promoting eicosanoid biosynthesis related to inflammation. It should be mentioned that, in general, the study of secreted enzymes with single types of primary cells or cell lines in culture is very different than the study of these enzymes in a whole animal disease model. Secreted enzymes including sPLA2 can obviously act on cells different than those that produce them.

Based on these early actions of group V sPLA2 and the need to carry out whole animal studies of sPLA2s, we investigated the possible role of group V sPLA2-V in mouse asthma models by using sPLA2-V-deficient mouse for studies of allergen-induced airway inflammation, hyperresponsiveness, and remodeling.

Results

Effect of sPLA2-V Deficiency on Acute Asthma Phenotype

The effect of sPLA2-V-deficiency on allergen-induced inflammatory cell infiltration in the BAL fluid and bronchial hyperresponsiveness was determined in a mouse acute asthma model (Figure 1). OVA-treated sPLA2-V+/+ mice had a marked increase in both total inflammatory cells and eosinophils recovered in BAL fluid compared with the saline group control (Figure 1A). The number of total inflammatory cells and eosinophils in the BAL fluid of OVA-treated sPLA2-V−/+ mice was reduced by 59% (P = 0.008) and 54% (P = 0.019) respectively compared to sPLA2-V+/+ controls (Figure 1A). The OVA-treated wild-type mice, in comparison to saline controls, had significantly increased responsiveness to aerosolized methacholine as determined by lung resistance (Rl) (Figure 1B). In contrast, hyperresponsiveness to methacholine after OVA challenge to sPLA2-V−/− was similar to that measured in saline-treated sPLA2-V−/+ mice (Figure 1B).

The effect of sPLA2-V deficiency on levels of eicosanoids derived from arachidonic acid via the cyclooxygenase pathway leading to PGD2 and via the 5-LO pathway leading to CysLTs, D4, and E4 was determined (Figure 2). Since PGD2 is unstable, it was converted to its stable methoxime (MOX) derivative prior to measurement. PGD2 and CysLTs were significantly increased in the BAL fluid of OVA-treated sPLA2-V−/+ mice on d 23 in comparison to saline controls (Figure 2). The BAL fluid levels of PGD2 and CysLTs of OVA-challenged sPLA2-V−/+ mice were decreased by 45% (P = 0.03) and 30% (P = 0.04) respectively compared to the OVA-treated wild-type mice (Figure 2).

Effect of sPLA2-V Deficiency on Chronic Asthma Phenotype

Lung sPLA2-V expression was examined on d 76 by immunocytochemistry in wild-type mice and in sPLA2-V−/+ mice as a control. sPLA2-V was undetected in saline-treated sPLA2-V−/+ controls and in sPLA2-V−/− mice after saline or OVA treatment (Figure 3). sPLA2-V expression was observed in the airway columnar epithelial cells, airway smooth muscle cells, and mononuclear leukocytes infiltrating the lung interstitium of OVA-treated wild-type mice (Figure 3). sPLA2-V was not detected in lungs from OVA-treated wild-type mice when immunocytochemistry was performed with pre-immune serum (not shown).

The effect of sPLA2-V deficiency on allergen-induced persistent infiltration of lung tissue by eosinophils and other inflammatory cells and airway goblet cell metaplasia, subepithelial fibrosis, and collagen and VEGF gene expression was examined in a chronic asthma model of lung remodeling (Figures 4–7). On d 76, sPLA2-V−/+ mice had a dense infiltrate in the lung interstitium of eosinophils and other inflammatory cells (Figure 4) and increase in airway goblet cells (Figure 5). By morphometric analysis, the total inflammatory cell and eosinophil infiltration was reduced by 61% (P = 0.01) and 67% (P = 0.001) respectively and the goblet cell metaplasia was diminished by 38% (P = 0.02) in OVA-treated sPLA2-V−/− mice compared to wild-type controls (Figure 6). After long-term OVA challenge, the sPLA2-V−/+ mice had increased deposition of subepithelial collagen and increased lung collagen content compared to saline-treated controls (Figure 7A,B). The subepithelial fibrosis and increased collagen content observed in OVA-treated wild-type mice were modestly reduced by 24% (P = 0.03) and 31% (P = 0.03) respectively in the allergen-challenged sPLA2-V−/+ mice (Figure 7B). By quantitative real-time PCR (qPCR), the OVA-treated sPLA2-V−/+ mice had marked impairment in collagen (i.e., COL1a1 and COL3a1), and VEGF (i.e., VEGF-A, VEGF-A2, VEGF-B, and VEGF-C) gene expression in their lungs compared to OVA-treated wild-type controls (Figure 7C).

Effect of sPLA2-V Deficiency on Th2 Cytokine and DC Responses

The effect of sPLA2-V-deficiency on Th2 cytokine responses was next examined. On d 23 and d 76, circulating levels of OVA-specific IgE in blood were decreased by 50% (P = 0.045, Figure 8A) and 71% (P = 0.012, Figure 8B) respectively in sPLA2-V−/+ mice compared to wild-type mice after OVA sensitization and challenge. Pulmonary expression of Th2 cytokines IL-4, IL-5, and IL-13 in lung tissue of sPLA2-V−/+ and sPLA2-V−/− mice was determined by qPCR (Figure 9). Gene expression of IL-4, IL-5, and IL-13 on d 23 (Figure 9A) and d 76...
Figure 1B) was increased in whole lung tissue of OVA-treated sPLA2-V^{−/−} mice, compared to saline-treated controls. On d 23, IL-4 expression was decreased 55% ($P = 0.005$) in OVA-treated sPLA2-V^{−/−} mice, compared to wild-type controls; IL-5 and IL-13 levels were not statistically different between the OVA-treated sPLA2-V^{−/−} and sPLA2-V^{+/+} mice (Figure 9A). On d 76, IL-4, IL-5, and IL-13 gene expression was decreased 22% ($P = 0.032$), 19% ($P = 0.045$), and 49% ($P = 0.048$) respectively in OVA-treated sPLA2-V^{−/−} mice, compared to sPLA2-V^{+/+} mice (Figure 9B).

The chronic asthma model was chosen for more detailed analyses of the nature of this relative impairment in Th2 cytokine responses in the sPLA2-V^{−/−} mice. On d 76, Th2 cytokine
responses of lung lymph node cells, splenocytes, and splenic CD4+ T cells were determined in OVA-treated sPLA2-V−/− mice compared to wild-type controls (Figures 10 and 11). Three different strategies were employed to assess the Th2 responses – antigen (i.e., OVA)-specific stimulation, protein kinase C activation (i.e., PMA plus ionomycin), and mimicking of T cell receptor (TCR) activation (i.e., anti-CD3/anti-CD28 stimulation). Lung lymph nodes were collected from the sPLA2-V−/− and sPLA2-V+/+ mice and stimulated with OVA in vitro (Figure 10A). The production of IL-4, IL-5, and IL-13 was significantly increased in the OVA-treated lung lymph node cells of the sPLA2-V−/− mice compared to saline-treated controls (Figure 10A). OVA-induced release of Th2 cytokines was impaired in the lung lymph node cells of the sPLA2-V−/− mice. In vitro production of IL-4, IL-5, and IL-13 proteins by OVA-treated lung lymph node cells obtained from sPLA2-V−/− mice treated with 0.1 mg/ml OVA was decreased by 77% (P = 0.012), 83% (P = 0.0001), and 87% (P = 1.1 x 10⁻⁵) respectively and 1 mg/ml OVA was reduced by 78% (P = 0.0001), 90% (P = 1.5 x 10⁻⁵), and 95% (P = 0.00001) respectively compared to wild-type controls (Figure 10A). In vitro production of IL-4, IL-5, and IL-13 proteins by OVA-treated lung lymph node cells obtained from sPLA2-V−/− mice treated with 0.1 mg/ml OVA was decreased by 24% (P = 0.019), 48% (P = 0.028), and 10% (P = 0.03) respectively and 1 mg/ml OVA was reduced by 26% (P = 0.014), 25% (P = 0.0006), and 15% (P = 0.019) respectively compared to wild-type controls (Figure 10B). Next, OVA- and PMA/ionomycin-stimulated production of IL-4 and IL-13 by splenic cells was determined by a single cell immunosspot assay (ELISPOT). The production of IL-4 and IL-13 by splenocytes of sPLA2-V−/− mice in response to OVA was decreased by 42% (P = 0.012) and 19% (P = 0.04) respectively and in response to PMA + ionomycin was reduced by 39% (P = 0.034) and 11% (P = 0.048) respectively, in comparison to wild-type controls (Figure 11A). In response to anti-CD3/anti-CD28 stimulation (Figure 11B), IL-4 and IL-13 production by splenic CD4+ T cells isolated from sPLA2-V−/− mice was decreased by 42% (P = 0.016) and 57% (P = 0.009) respectively compared to controls.

To understand the nature of the Th2 cytokine defect in the sPLA2-V-deficient mice, CD4+ T cell and DC proliferation, and DC antigen processing and eicosanoid production was studied (Figures 12 and 13). Although both sPLA2-V-deficient and wild-type splenic CD4+ T cells had a marked increase in proliferation under Th2 polarizing conditions in response to IL-2 and IL-4 after culture in anti-CD3-coated plates in vitro, the magnitude of this response was slightly decreased by 19% (P = 0.009) in the sPLA2-V-deficient mice (Figure 12A). The mixed lymphocyte reaction (MLR) cell proliferative response was compared between sPLA2-V−/− and sPLA2-V+/+ splenic DCs. Under basal conditions, increasing numbers (0-50000 DCs per well containing 2 x 10⁵ allogenic CD4+ T cells) of DCs from wild-type mice led to a marked increase in cell proliferation that was modestly reduced by 12% (P = 0.028) and 21% (P = 0.044) with 5000 and 50000 sPLA2-V−/− DCs/well respectively (Figure 12B). The effect of sPLA2-V-deficiency on proliferation of BMDCs in culture with GM-CSF and IL-4 was studied. At baseline, no difference in proliferation was observed between the sPLA2-V−/− and sPLA2-V+/+ BMDCs.
secreted Phospholipase A2-V Role in Asthma Models

Secreted Phospholipase A2-V (sPLA2-V) plays a role in asthma models, and we have previously shown that disruption of the gene for sPLA2-V in mice leads to a dramatic reduction in airway inflammation, remodeling, and hyperresponsiveness in a mouse model of asthma [12]. Given the large number of sPLA2s in the mammalian genome, it seems prudent to examine the involvement of other sPLA2s in an asthma model. Because sPLA2-V and sPLA2-X are very active at hydrolyzing the membranes of mammalian cells, these two enzymes have been our first priority in genetic disruptions studies of sPLA2s in complex disease models. In prior work, Munoz et al. reported a study of airway inflammation in OVA-administered sPLA2-V knockout mice [19]. Their observations are consistent with what we find in our independent study. In their and our study, sPLA2-V expression is upregulated after OVA sensitization, and the protein is found in airway epithelium, mononuclear cells, and smooth muscle cells. Both studies report that loss of sPLA2-V leads to a reduction in inflammatory cell infiltration into the airways in response to OVA. (i.e., the influx of total inflammatory cells and eosinophils, was decreased by 45% and 57% respectively in the Munoz study [19] and 59% and 54% respectively in the present report [Figure 1A].) Similar to Munoz et al. [19], we also found that sPLA2-V-deficiency impaired allergen-induced airway hyper-responsiveness to methacholine [Figure 1B].

The study by Munoz et al. [19], did not examine the effect of group V sPLA2-deficiency on allergen-induced airway remodeling (i.e., goblet cell metaplasia and subepithelial fibrosis) and provided little mechanistic insight (i.e., arachidonic acid metabolism and T cell/dendritic cell function was not examined) into the mechanism(s) by which group V sPLA2 regulates allergic pulmonary inflammation. Our study thus adds the important dimension that a drop in airway inflammation in this model due to sPLA2-V deletion is likely due to a reduction in the primary immune response as reflected by changes in eicosanoid and Th2 cytokine generation.

Giannattasio et al. [20] used dust mite Dermatophagoides farinae as antigen to induce pulmonary inflammation without systemic immunization in a mouse asthma model to explore the effect of sPLA2-V deficiency on the adaptive immune response. In this dust mite asthma model, they observed a greater reduction in eosinophil infiltration into the BAL fluid and goblet cell metaplasia (95% and 80% reductions respectively) than we did in the OVA model (54% and 58% reductions respectively) compared to wild-type controls. We also showed impairment in collagen and VEGF gene expression and modest reductions in lung collagen deposition in the OVA model (Figure 7), effects not examined in the Giannattasio study [20]. Whereas, no differences in eicosanoid production were observed between sPLA2-V−/− and sPLA2-V+/+ mice in the dust mite asthma model, a moderate reduction in eicosanoids (30% decrease in CysLTs and 45% decrease in PGD2) was seen in the BAL fluid of OVA-treated sPLA2-V−− mice compared to wild-type controls [Figure 2]. In both the D. farinae and OVA asthma models, antigen-specific IgE levels were reduced in the sPLA2-V-deficient mice compared to controls.
Figure 4. Impaired allergen-induced chronic airway inflammation in sPLA2-V*/* mice. Lung tissue was obtained on d 76 from saline- and OVA-treated sPLA2-V*/* wild-type mice and sPLA2-V*/* mice. Sections were stained with H&E. Scale bar, 100 μm. Micrographs are representative from 4–5 mice per group.
doi:10.1371/journal.pone.0056172.g004

Figure 5. Impaired chronic allergen-induced airway goblet cell metaplasia in sPLA2-V*/* mice. Lung tissue was obtained on d 76 from saline- and OVA-treated sPLA2-V*/* wild-type mice and sPLA2-V*/* mice. Sections were stained with alcian blue. Scale bar, 100 μm. Micrographs are representative from 4–5 mice per group.
doi:10.1371/journal.pone.0056172.g005
In the dust mite asthma model, Giannattasio et al. [20] observed significant reductions in total lung IL-5 and IL-13 transcripts in the sPLA2-V−/− knockouts and decreased IL-4, IL-5, and IL-13 Th2 cytokine levels from pulmonary lymph node cells after ex vivo restimulation with D. farinae [20]. In the acute asthma model, we found a 55% reduction in IL-4 transcripts in the OVA-treated sPLA2-X knockout mice but no decrease in IL-5 or IL-13 transcripts. In contrast, in the chronic asthma model (Figure 9B), each of the Th2 cytokine transcripts was modestly reduced in the sPLA2-deficient mice (i.e., reductions of 22% for IL-4, 19% for IL-5, and 49% for IL-13). Similar to the Giannattasio study [20], restimulation of lung lymph node cells with OVA allergen ex vivo in the chronic OVA model led to marked reductions in IL-4, IL-5, and IL-13 production (Figure 10A) with lesser reductions in these Th2 cytokines by OVA-restimulated spleen cells (Figure 10B). We also observed moderate impairment of sPLA2-V-deficient splenic T cell production of IL-4, IL-5, and IL-13 cytokines after ex vivo allergen-specific, protein kinase C, and TCR activation (Figure 11) and a small reduction in the ability of sPLA2-V-deficient splenic CD4+ T cells to proliferate under Th2 polarizing conditions (Figure 12A). Our data and that of Giannattasio et al. [20] suggest that the reduced airway inflammation in the OVA-driven sPLA2-V knockout mouse compared to the wild-type controls can be explained by a decrease in the primary immune response, leading to lower levels of OVA-specific IgE as well as Th2 cytokines. IL-4 induces class switching and release of IgE by B cells, and IL-5 plays an important role in the induction of the eosinophil influx into the lungs in allergen-driven models of asthma [21,22]. IL-13 is a key mucus secretagogue and profibrotic cytokine that causes fibroblast proliferation and collagen deposition in the airways [23]. IL-13 is also the primary Th2 cytokine in induction of airway hyperresponsiveness [24].

At this point, the role of sPLA2-V in augmenting the primary immune response is becoming better understood. Prior studies have

Figure 6. Morphometric analysis of chronic allergen-induced airway inflammation and goblet cell metaplasia in sPLA2-V−/− mice. Lung tissue was obtained on d 76 from saline- and OVA-treated sPLA2-V+/+ wild-type mice and sPLA2-V−/− mice. The intensity of the inflammatory cell infiltration (0–4+ scale), number of eosinophils per unit of lung tissue area (2,200 μm²), and the number of goblet cells as percentage of total airway epithelial cells positive for mucus glycoproteins were determined by morphometric analysis (n = 4–5, each group).

doi:10.1371/journal.pone.0056172.g006
demonstrated that peritoneal macrophages from sPLA2-V−/− mice phagocytose zymosan particles significantly less well than wild-type mice [25], clearance of immune complexes is reduced in sPLA2-V−/− mice [26], and that the presence of sPLA2-V in dendritic cells is key for cell maturation and antigen processing in dust mite-induced lung inflammation [20] suggesting that perhaps sPLA2-V deficiency may affect processing of allergen by dendritic cells. CysLTs have important actions on DC maturation and function. CysLTs augment the antigen-presenting capacity of dendritic cells in the lung [27]. LTC₄, but not LTD₄ or LTB₄, matures DCs in a superior fashion than PGE₂ to stimulate DC-driven CD4⁺ T cell responses and antigen-specific T cell induction [28]. CysLTs also increase the capacity of BMDCs to induce Th2 immune responses in the lungs after adoptive transfer in mice [29]. CysLTs promote the migration of dendritic cells to lymph nodes [30]. Pretreatment of asthmatics with a CysLT₁ receptor antagonist reduces the allergen-induced decrease in circulating CD3₃⁺ DCs indicating a role for CysLTs in the trafficking of myeloid DCs in vivo [31]. LTB₄ through its BLT₁ [32] and BLT₂ [33] receptors also promotes DC migration. CysLT-mediated activation and chemotaxis of monocyte-derived immature dendritic cells is inhibited by the immunoregulatory cytokine IL-10 suggesting a link between IL-10 regulatory responses and the 5-LO pathway [34]. Human DCs differentially express the CysLT receptors CysLT₁ and CysLT₂ depending upon maturation signals such as the Toll-like receptor (TRL) 4 agonist lipopolysaccharide (LPS) [35]. The TRL2 agonist zymosan down-regulates CysLT₁ receptor expression on human monocyte-derived DCs diminishing their responsiveness to LTD₄ [36]. In the D. farinae mouse asthma model, CysLT₂ receptor negatively regulates CysLT₁ receptor activation of BMDCs and also

Figure 7. Impaired chronic allergen-induced airway remodeling and collagen deposition in sPLA2-V−/− mice. Lung tissue was obtained on d 76 from sPLA2-V+/+ and sPLA2-V−/− mice treated with either saline or OVA. A. Sections underwent Masson’s trichrome staining. Scale bar, 50 μm. Micrographs are representative from 4–5 mice per group. B. Airway subepithelial fibrosis (0–4+ scale) was determined by morphometry, and lung collagen deposition (μg/lung) was determined by Sircol™ assay (n = 4–5, each group). C. Collagen (COL1α2 and COL3α1) and VEGF (VEGF-A, VEGF-A2, VEGF-B, and VEGF-C) gene expression in OVA-treated sPLA2-V+/+ (black bars) and sPLA2-V−/− (blue bars) mice was determined by qPCR; nd = not detected in samples from the sPLA2-V−/− mice. *P<0.05 OVA-treated sPLA2-V+/+ versus sPLA2-V−/− mice (n = 4–5, each group).

doi:10.1371/journal.pone.0056172.g007
the expression of the CysLT1 receptor on the surface of these DCs suggesting that a competitive balance between these two CysLT receptors may regulate allergic lung inflammation [37]. In this report, we also found that BMDCs from sPLA2-V-deficient mice have decreased proliferation after stimulation. The sPLA2-V/2 DCs exhibit defects in their uptake of OVA and ability to activate CD4+ cell proliferation and present OVA to OVA-transgenic T cells. These defects in DC function are associated with impairment in PGE2 production by these immunoregulatory cells. PGE2 has key effects on cytokine production by antigen-presenting cells such as DCs and T cells affecting DC and T helper cell differentiation and effector actions [38–40]. PGE2 promotes DC maturation, activation, and migration [41]. Recent studies have shown that PGE2 signaling through its EP1 and EP3 receptors is needed for optimal survival of DC progenitors and DC development in vivo via regulation of the receptor tyrosine kinase Flt3 on the DC progenitor cells [42]. Thus, impairment in eicosanoid generation (both 5-LO and COX arachidonate metabolites) in sPLA2-V/2 mice may lead to a diminution in both Th2 and DC responses in the airways. With the development of selective sPLA2 inhibitors [12], blockade of group V sPLA2 may provide a novel therapeutic opportunity in the treatment of asthma and other allergic disorders.

Materials and Methods

Ethics Statement

All animal use procedures were approved by the IACUC of the University of Washington (Animal Welfare Assurance No. A346401).

Allergen Challenge in Mice

Homzygous sPLA2-V/−/− mice were generated as previously described [18], and the genotype was verified by PCR. Acute- and chronic-term mouse asthma model protocols were employed. In the acute asthma model, sPLA2-V/−/− C57B6 mice and their wild-type sPLA2-V/+ littermates were immunized by intraperitoneal (i.p.) injection with 10 μg OVA (Pierce Biotechnology, Inc., Rockford, IL) and 1.125 mg alum (Sigma-Aldrich Corporation, St. Louis, MO) in 0.2 ml normal saline on d 0, 7, and 14 and exposed to 1% aerosolized OVA [43] for 40 min on d 21, 22, and 23 [12]. Control groups received 0.2 ml normal saline with alum i.p. on d 0, 7, and 14, and saline by aerosol on d 21, 22, and 23. In the chronic asthma model [44,45], mice received an i.p. injection of 100 μg of OVA (0.2 ml of 0.5 mg/ml) complexed with alum on d 0 and 14. Mice received an intranasal (i.n.) dose of 100 μg OVA (0.05 ml of 2 mg/ml) on d 14, and 50 μg OVA (0.05 ml of 1 mg/ml) on d 26, 27, 28, 47, 61, 73, 74, and 75. Control groups received 0.2 ml normal saline with alum i.p. on d 0 and 14 and 0.05 ml saline without alum i.n. on d 14, 26, 27, 28, 47, 61, 73, 74, and 75.

Pulmonary Function Testing

On d 23 (40 min after the last aerosol challenge with OVA or saline in the acute model), invasive pulmonary mechanics were measured in mice in response to methacholine as described [12]. Mice received aerosolized solutions of methacholine (0, 3.125, 6.25, 12.5, 25, and 50 mg/ml in normal saline) with RL determined from measures of pressure and flow and expressed

Figure 8. Reduced IgE levels in OVA-treated sPLA2-V−/− mice. OVA-specific IgE levels were determined in plasma obtained on d 23 (A) and d 76 (B) from saline (Saline)- and OVA (OVA)-treated sPLA2-V+/+ (+/+ and sPLA2-V−/− (−/−) mice (n = 4–5, each group). doi:10.1371/journal.pone.0056172.g008
as cm H₂O/ml/s using a Model PLY4111 plethysmography system (Buxco Research Systems, Wilmington, NC).

BAL Fluid and Blood Collection
After completion of plethysmography on d 23, the left lung was tied off at the mainstem bronchus, and the right lung lavaged three times with 0.5 ml of normal saline. After centrifugation at 250 × g for 5 min at 4°C, total BAL fluid cells were counted with eosinophils stained with 0.05% eosin [46]. BAL fluid eicosanoid analyses were performed only in mice that did not get the invasive RL measurements; the supernatant was processed for eicosanoid assays as described below. Lung tissue was collected for qPCR assay of Th2 cytokines. Plasma samples were obtained on d 23 and assayed for OVA-specific IgE.

Eicosanoid Analyses
For CysLTs and PGE₂ analyses, BAL fluid supernatant was processed on solid-phase extraction cartridges followed by detection using enzyme immunoassay (EIA) kits from Cayman Chemical Company (Ann Arbor, MI) as described [12]. PGD₂ was analyzed using a 0.25 ml aliquot of the BAL fluid supernatant using the PGD₂-MOX EIA kit (Cayman Chemical Company) [12].

Lung Tissue, Paratracheal Lymph Node, and Spleen Collection
On d 76 (24 h after the last i.n. dose of OVA or saline, chronic model), the lungs were collected for histopathology, collagen, and qPCR analyses. Paratracheal lymph nodes and spleens were collected for cytokine analyses and isolation of spleen cells, CD4⁺ T cells, and DCs as described below. Plasma samples were also obtained on d 76 and assayed for OVA-specific IgE.

Lung Histopathology
The upper and lower lobes of the left lung were collected and 5 mm sections prepared [46]. Ten airways (0.4–0.7 mm in diameter and surrounded by smooth muscle cells) per mouse were randomly selected for morphometric analysis by individuals blinded to the protocol design [46]. The sections were stained with hematoxylin and eosin (H&E) to determine total inflammatory cell infiltration [46] on a semi-quantitative scale (0–4⁺), and eosinophil number per unit lung tissue area (2,200 μm²) [47,48]. Alcian blue staining was used to identify airway goblet cells.

Immunocytochemistry
sPLA₂-V expression in mouse lung was determined by immunocytochemistry using light microscopy [49]. The sections were incubated with the primary antibody, polyclonal rabbit anti-sPLA₂-V specific antisera [50] at a 1:50 dilution for 25 min at room temperature followed by rinsing in PBS and incubation with the secondary antibody, goat anti-rabbit antibody conjugated to horseradish peroxidase (Vector Laboratories, Burlingame, CA) at a 1:20 dilution for 25 min. As controls, PBS or normal rabbit IgG (Vector Laboratories) were used in place of the primary antibody. To detect peroxidase, the sections were incubated with 0.5% 3',
3'-diaminobenzidine tetrachloride (Sigma-Aldrich Corporation) in PBS and 0.15% hydrogen peroxide for 15 min at room temperature; nuclei were counterstained with 1% methyl green in distilled water for 3 min.

Collagen Assay
Collagen content of the right lung was determined by the Sircol™ collagen assay (Biocolor Ltd., Newtownabbey, Northern Ireland, UK).

OVA-specific IgE Assay
For assay of OVA-specific IgE, Nunc 96-well flat bottomed plates (Nalge Nunc International, Rochester, NY) were coated with OVA (50 μg/ml) in 1X PBS overnight at room temperature, washed 3 times with 1X PBS containing 0.05% Tween-20, and blocked with 1X PBS containing 3% BSA for 60 min at room temperature. 100 μl plasma samples (1:1 in 1X PBS) or varying concentrations of internal standard (Clone C38-2 anti-mouse IgE, BD Biosciences, San Diego, CA) were added per well and incubated at 37°C for 90 min. 100 μl of 2,2'-azinobis (3-ethylbenzthiazoline-sulfonic acid (i.e., one tablet dissolved in 100 ml of 0.05 M phosphate-citrate buffer, pH 5.0 and 25 μl 30% H2O2; Sigma-Aldrich Corporation) substrate solution was added per well and after incubation for 30 min at room temperature, the plates were read at OD 405 nm with a standard curve constructed by linear regression analysis of the absorbances in comparison to serial dilutions of known concentrations of mouse IgE.

qPCR
Total RNA was isolated from the right lung using an RNeasy mini kit (QIAGEN Inc., Valencia, CA), and mRNA levels for IL-4, IL-5, IL-13, COL1a2, COL3a1, vascular endothelial growth factor (VEGF)-A, VEGF-A2, VEGF-B, VEGF-C, and GAPDH determined by qPCR using a model 7900HT Fast Real-Time PCR System [Applied Biosystems (ABI), Foster City, CA] as described [12]. PCR DNA sizes were ~100 bp and confirmed by gel electrophoresis.

Spleen Cell and CD4^+ T Cell Isolation
Spleens were placed in RPMI-1640 with 25 mmol/L HEPES (Invitrogen Corporation, Carlsbad, CA) supplemented with 10% (vol/vol) heat-inactivated fetal bovine serum (FBS; Invitrogen), cut into small pieces with scissors, and strained through a 70 μm BD...
A.

Elispot assay of IL-4 and IL-13 production by splenocytes obtained on d 76 from sPLA 2-V/ mice isolated from the total splenic cells obtained on d 76 from sPLA 2-V/ mice and CD28 antibodies (doi:10.1371/journal.pone.0056172.g011).

B. Elispot assay of IL-4 and IL-13 production by CD4+ T cells isolated from the total splenic cells obtained on d 76 from sPLA 2-V/ mice incubated in the absence (Untreated) or presence of anti-CD3/anti-CD28 antibodies (anti-CD3/anti-CD28).

doi:10.1371/journal.pone.0056172.g011

Falcon™ cell strainer (BD Biosciences, San Jose, CA) to create single-cell suspensions. Red cells were lysed using BD PharmLyse™ lysing buffer (BD Biosciences). CD4+ T cells were purified from splenic lymphocytes by magnetic depletion of B cells, macrophages, DCs, NK cells, granulocytes, erythroid precursors, and CD8+ cells using MACS® CD4+ T Cell Isolation Kit (Miltenyi Biotec Inc., Auburn, CA).

Th2 Cytokine Analyses

For Th2 cytokine production by lymph node and spleen cells after in vitro restimulation with OVA, paratracheal lymph node and spleen cells from OVA-treated sPLA 2-V/ mice and wild-type controls were cultured at a density of 2×10^6 per well in 96-well tissue culture plate in RPMI-1640 medium with 10% FBS containing OVA (0.1 and 1 mg/ml) or medium alone for 72 h at 37°C in 5% CO2/95% air at 37°C. IL-4, IL-5, and IL-13 levels in the supernatants were determined by EIA kits (eBioscience, San Diego, CA). For enzyme-linked IL-4 immunospot (ELISPOT) (BD Biosciences) and IL-13 ELISPOT (R&D Systems, Minneapolis, MN) assays, total spleen cells from OVA- and saline-treated sPLA 2-V/ mice and wild-type controls were collected, plated in 96-well plates (2×10^5 cells/well), and incubated in triplicate in 5% CO2/95% air at 37°C in the absence or presence of phorbol myristate acetate (PMA, 5 ng/ml, Sigma-Aldrich Corporation) and ionomycin (500 ng/ml, Sigma-Aldrich Corporation) for 24 h or OVA (50 µg/ml) for 5 d according to the manufacturer’s protocol (BD Biosciences). To assess CD4+ T cell Th2 cytokine production, splenic CD4+ T cells (4×10^4 cells/well) were incubated in triplicate in 5% CO2/95% air at 37°C in the absence or presence of hamster anti-mouse CD3e (1 µg/ml)/hamster anti-mouse CD28 (2 µg/ml) monoclonal antibodies (BD Biosciences) for 5 d and IL-4 and IL-13 ELISPOT assays performed.

CD4+ T Cell Proliferation

4×10^4 purified CD4+ T cells isolated from sPLA 2-V/ and sPLA 2-V/ mice were cultured in complete RPMI medium with 50 ng/ml recombinant mouse IL-4 and 10 ng/ml recombinant mouse IL-2 in 96-well plates coated with 10 mg/ml anti-CD3 (BD Biosciences) for 3 d at 37°C in 5% CO2 using the Cayman Chemical Co. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] Proliferation Assay Kit to assess cell proliferation.

Spleen DC Purification

Spleens were placed in 3 ml RPMI with 1 mg/ml DNase (Worthington Biochemical Corporation, Lakewood, NJ) and 50 mg/ml collagenase (Worthington Biochemical Corporation) in 6-well plates. 200 µl of this RPMI was injected in each spleen that was then cut into small pieces and strained through a 70 µm cell strainer (BD Biosciences). Red cells were lysed using BD PharmLyse™ lysing buffer (BD Biosciences). After washing with AutoMACSTM Rinsing solution (Miltenyi Biotec Inc.), DCs were purified with CD11cMicroBeads® (Miltenyi Biotec Inc.) [51].

MLR

2×10^7 allogeneic CD4+ cells from C57Bl6 mice were cultured with irradiated (3000 rad) splenic DCs (0-50000 cells/well) from wild-type or sPLA 2-V/ mice in complete RPMI-1640 at 37°C in 5% CO2 for 72 h. The MTT assay was used to determine cell proliferation [52].

Stimulatory Activities of DCs Against Antigen-specific T Cells

The antigen-presenting function of the DCs from the sPLA 2-V/ mice in comparison to wild-type controls was examined employing CD4+ T cells carrying the MHC class II restricted
Secreted Phospholipase A₂-V Role in Asthma Models

Figure 12. Effect of sPLA₂-V deficiency on CD4⁺ T cell and DC proliferation. A. Cell proliferation of wild-type and sPLA₂-V⁻/⁻ splenic CD4⁺ T cells cultured in the absence (Untreated) or presence of IL-2 and IL-4 in anti-CD3-coated plates (IL-2 + IL-4 + anti-CD3) for 72 h was determined by MTT assay (n = 4–5, each group). B. Allogeneic CD4⁺ cells from C57Bl6 mice were cultured with irradiated (3000 rad) splenic DCs (0–50000 cells/well) from wild-type or sPLA₂-V⁻/⁻ mice for 72 h with cell proliferation measured by MTT assay (n = 4–5, each group). C. BMDC proliferation was assessed by MTT assay on d 9 after 3 days in culture in the absence (Untreated) or presence of GM-CSF and IL-4 (GM-CSF + IL-4) (n = 4–5, each group).

doi:10.1371/journal.pone.0056172.g012
BMDC Culture

Murine DCs were generated from bone marrow of sPLA2-V−−/− mice and wild-type mice. Briefly, bone marrow was harvested by flushing femurs and tibias with PBS containing 1% FBS. Cells were resuspended at 2×10⁶ cells/ml in GIBCO® RPMI-1640 (Invitrogen Corporation) supplemented with 5 ng/ml of recombinant mouse GM-CSF (R&D Systems, Inc., Minneapolis, MN) and 10 ng/ml of recombinant mouse IL-4 (BD Biosciences). On d 3 and 5 of culture, half of the medium was replaced with fresh medium containing GM-CSF and IL-4. On d 6, loosely adherent cells were harvested and DCs purified with CD11c MicroBeads® according to the manufacturer’s instructions (Miltenyi Biotec Inc.) [52]

BMDC Cell Proliferation

BMDC cells from d 0, 3, and 6 in culture were cultured in triplicate at 2×10⁵ cells per well in 96-well plates for 3 d in complete GIBCO® RPMI-1640 (Invitrogen Corporation) supplemented with 5 ng/ml of recombinant mouse GM-CSF (R&D Systems, Inc.) and 10 ng/ml of recombinant mouse IL-4 (BD Biosciences) at 37°C in 5% CO₂ and assayed for cell proliferation using the MTT cell proliferation kit [51].

BMDC Cell OVA-Alexa Fluor 488 Phagocytosis

OVA-Alexa Fluor 488 (Invitrogen Corporation) was added to 1×10⁶ purified d 0, 3, and 6 BMDCs at a final concentration of 0.1 mg/ml. Endocytosis of the tracer was halted at 2 h by rapid cooling of the cells on ice and BMDC cells washed with ice-cold HBSS. The fluorescence intensity of the cells was analyzed by flow cytometry (FACSCanTM Flow Cytometry System, BD Biosciences). Incubation of cells with endocytic tracer on ice was used as background control. The mean fluorescence intensity (MFI) represented the amount of incorporated tracer by APC-CD11c-1 cells (eBioscience) [53].

Statistical Analysis

The data are reported as the mean ± SE of the mean. Differences were analyzed for significance (p<0.05) by analysis of variance (ANOVA) using the least significant difference method.

Acknowledgments

We thank Jonathan Arm (Harvard Medical School) for providing the sPLA2-V−−/− mice.

Author Contributions

Conceived and designed the experiments: WRH EYC MHG. Performed the experiments: XY YL ZN JGB YTT. Analyzed the data: WRH EYC MHG XY YL ZN JGB YTT. Wrote the paper: WRH EYC MHG.
22. Foster PS, Hogan SP, Ramsay AJ, Mathlouthi K, Young IG (1996) Interleukin 5 binding inhibitors of 5-kDa phospholipase A2 which do not inhibit 14-kDa phospholipase A2 inhibit release of free arachidonic in thrombin-stimulated human platelets. J Biol Chem 269: 15625–15630.

23. Ghomashchi F, Stewart A, Heuer Y, Ramadham S, Turk J, et al. (2001) A pyroglandin-dependent specific inhibitor of cytosolic phospholipase A2 blocks arachidonic acid release in a variety of mammalian cells. Biochem Biophys Acta 1513: 160–166.

24. Gijon MA, Spencer DM, Siddiqi AR, Bonventre JV, Leslie CC (2000) Cytosolic phospholipase A2-α is necessary for platelet-activating factor biosynthesis, efficient neutrophil-mediated bacterial killing, and the innate immune response to pulmonary infection. cPLA2-α does not regulate neutrophil NADPH oxidase activity. J Biol Chem 275: 7519–7529.

25. Gion MA, Spencer DM, Siddiqui AR, Bonventre JV, Leslie CC (2000) Cytosolic phospholipase A2 is required for macrophage arachidonic acid release by agents that do and do not mobilize calcium. Novel role of mitogen-activated protein kinase pathways in cytosolic phospholipase A2 regulation. J Biol Chem 275: 20146–20156.

26. Singer AG, Ghomashchi F, Le Calvez C, Bollinger J, Bezzine S, et al. (2002) Activation of group IVA phospholipase A2 induces group IVA phospholipase A2-independent secretory phospholipase A2-V role in asthma models. PLoS ONE 7: e56172.
50. Degousee N, Ghomashchi F, Stefanski E, Singer A, Smart BP, et al. (2002) Groups IV, V, and X phospholipases A2s in human neutrophils: role in eicosanoid production and gram-negative bacterial phospholipid hydrolysis. J Biol Chem 277: 5061–5073.

51. De Faudeur G, de Trez C, Muraille E, Leo O (2008) Normal development and function of dendritic cells in mice lacking IDO-1 expression. Immunol Lett 118: 21–29.

52. Takegahara N, Takamatsu H, Toyofuku T, Tsujimura T, Okuno T, et al. (2006) Plexin-A1 and its interaction with DAP12 in immune responses and bone homeostasis. Nature Cell Biology 8: 615–622.

53. Radhakrishnan S, Celis E, Pease LR (2005) B7-DC cross-linking restores antigen uptake and augments antigen-presenting cell function by matured dendritic cells. PNAS USA 102: 11438–11443.