Effect of integrated nutrient management on sweet corn–potato cropping system: Productivity, economic yield and soil nutrient balance

BS Gunjal, SP Shinde and SS Chitodkar

DOI: https://doi.org/10.22271/chemi.2020.v8.i1s.8447

Abstract

The study was conducted to estimate the productivity, economic yield and soil nutrient balance of integrated nutrient management in sweet corn-potato cropping sequence as was conducted during kharif and rabi season of 2014-15 to 2015-16 at Instructional Research Farm, Central Campus, Post Graduate Institute, Mahatma Phule Krishi Vidyapeeth, Rahuri. The performance of sweet corn–potato cropping sequence was assessed in terms of residual fertility status at the end of two years crop sequence. The treatment T1-100% GRDF to preceding crop sweet corn during kharif season registered maximum net gain of nitrogen, phosphorus and potassium (+49.19, +6.54 and +80.74 kg ha⁻¹) at the end of two years experimentation.

Keywords: Sweet corn, cropping system, nutrient balance, potato, soil fertility

Introduction

Integrated nutrient management (INM), a combined application of organic and inorganic sources of nutrients, maintains storage of plant nutrients in soil and improves nutrients-use efficiency that is essential for sustainable crop production. Organic matter acts as a source and a sink for plant nutrients as well as provides energy substrate for soil micro-organisms. Thus, it enhances activities of soil flora and fauna as well as intrinsic soil properties, soil nutrient capital, water-holding capacity and soil structure in turn makes soil less susceptible to leaching and erosion. Therefore, INM practices are essential to maintain/enhance the soil quality and sustainability of an agro-ecosystem (Carter et al. 2004) [8]. Kharif maize often face terminal drought resulted crop failure or very less productivity. It may be overcome by growing the maize for sweet corn instead of green cob. Besides farmyard manure (FYM), now-a-days vermicompost is gaining attention of both the researchers and the farmers due to its immense production potential using farm. Vermicomposting is a biotechnological and mesophilic (10–32 °C) process of composting. This process is faster and safer than the conventional composting as the material passes through the earthworm gut resulting earthworm castings is rich in microbial activity and have plant growth regulators. Vermicompost can be utilized in crop production as a component of INM and as a single source of all essential crop nutrients (Bejbarrnaha et al., 2009) [10]. All nutrients in vermicompost are in readily available form, thereby, enhancing nutrients uptake by plants (Banik and Sharma 2009) [5]. Still the information on this aspect is meager therefore a study thus designed to evaluate the different nutrient management practices on productivity, economic yield and soil nutrient balance of sweet corn–potato cropping system.

Materials and Methods

The field experiment was conducted for two consecutive years at the Post Graduate Institute Research Farm, M.P.K.V., Rahuri (M.S.) during the year 2014-15 and 2015-16. It is observed that, the soil of experimental site was clayey in texture. The chemical composition according criteria laid by Muhr et al. (1965) [20] indicated that soil was low in available nitrogen (241.35 kg ha⁻¹), medium in available phosphorous (22.85 kg ha⁻¹) and very high in potassium (365.75 kg ha⁻¹). The experiment was laid out in Randomized Block Design with three replications. The treatment consisted T₁ – 100% GRDF, T₂ - 75% RDN + 25% N through FYM, T₃ - 75%...
The nutrient balance sheet was calculated by multiplying dry matter content of the crop through readily available nutrients from synthetic fertilizers at initial stage and later stages through mineralization of organic manure into available form of nutrients for crop (Sarkar et al., 2011; Kumar et al., 2012) [26]. Thus, higher potato yield might be due to higher residual soil fertility built-up by organic manure. The results are in conformity with the findings of reported by Congera et al. (2013) [10]; Najm et al. (2013) [21]; Narayan et al. (2013) [22]; Balemi (2014)[4] and Biruk et al. (2014) [7].

Sweet corn equivalent yield (q ha⁻¹)

The sweet corn equivalent yield was significantly influenced by the various fertilizer levels to preceding sweet corn crop. The treatment T₇-100%-GRDF registered maximum sweet corn equivalent yield over rest of treatments and was at par with treatment T₅-125% RDN + 25% N through FYM. This is mainly due to higher market price of sweet corn and potato as these crops were grown and harvested as vegetables. The sweet corn-potato system produced significantly maximum sweet corn equivalent yield mainly due to inclusion of high value crops like potato. These results are in close conformity with the findings of several other researchers from different Agro-climatic conditions (Singh et al., 2011 and Dubey et al., 2014) [27, 11]. The productivity of cropping system in term of sweet corn-equivalent yield (system productivity) was significantly higher in treatment T₇ - 100% GRDF (309.71, 329.99 and 319.85 q ha⁻¹) (Table 1). Mahavishnan et al. (2005) [19] and Gaur et al. (1984) [12] also reported that when FYM was applied at less than 30% N, about 60–70% P and 75% K become available to the immediate follow-up crop. Thus, higher potato yield might be due to higher residual soil fertility built-up by organic manure. The results are in conformity with the findings of Banik and Sharma (2009) [5] and Bejbaruha et al. (2009) [6].

Nutrient balance sheet

The nutrient balance after harvest of sweet corn and potato crop considered in sweet corn - potato crop sequence was assessed during the study period to check the gain or deficit observed due to use of organic and inorganic fertilizers. The nutrients viz., nitrogen, phosphorus and potassium balance sheet as affected by different treatments tried is presented in Table 2 after harvest of sequential crops.

Effect of preceded crop

The performance of sweet corn–potato cropping sequence was assessed in terms of residual fertility status at the end of two years crop sequence. The treatment T₇ -100% GRDF to
preceding crop sweet corn during *kharif* season registered minimum net loss of nitrogen (~38.50 kg ha\(^{-1}\)) and maximum gain of phosphorus and potassium (+0.88 and +33.69 kg ha\(^{-1}\)) than rest of other treatments and followed by treatment T\(_6\) - 125% RDN + 25% N through FYM minimum net loss of nitrogen (~43.00 kg ha\(^{-1}\)) and maximum gain of phosphorus and potassium (+0.43 and +33.20 kg ha\(^{-1}\)). The effects of INM on nutrient dynamics were recorded, and it was concluded that combining FYM with inorganic fertilizers could maintain available N and P at either equal to or greater than the initial soil nutrient levels, thus maintaining soil fertility even under continuous cultivation. Chaudhary, et al. (2009) [9]. The maximum loss of nitrogen and phosphorus (~49.63 and ~2.27 kg ha\(^{-1}\)) minimum gain of potassium (+27.76 kg ha\(^{-1}\)) was observed under treatment T\(_3\) - 75% RDN + 25% N through VC at the end of two years experimentation.

Table 1: Chemical properties experimental site

S. No.	Particular	composition	Method adopted	References
(A)				
1	Organic carbon (g kg\(^{-1}\))	0.51	Walkley and Black’s rapid titration method	Piper (1966)
2	Available N (kg ha\(^{-1}\))	241.35	Alkaline KMNO\(_4\) method	Subbiah and Asija (1956)
3	Available P₂O₅ (kg ha\(^{-1}\))	22.85	0.5 N NaHCO\(_3\) Ascorbic acid	Olsen and Dean (1965)
4	Available K₂O (kg ha\(^{-1}\))	365.75	Flame photometer	Jackson (1973)
(B)				
1	Total N (%)	1.02	Macro-kjeldhalas method	A.O.A.C. (2005)
2	Total P₂O₅ (%)	0.50	Vanadomolybdate yellow colour method in nitric acid	Jackson (1973)
3	Total K₂O (%)	0.80	Flame photometer method	Knudsen et al. (1982)
(C)				
1	Total N (%)	0.50	Macro-kjeldhalas method	A.O.A.C. (1992)
2	Total P₂O₅ (%)	0.20	Vanadomolybdate yellow colour method in nitric acid	Jackson (1973)
3	Total K₂O (%)	0.44	Flame photometer method	Knudsen et al. (1982)

Table 1: Effect integrated nutrient on yield of sweet corn, yield of potato and equivalent yield sweet corn equivalent yield (BCEY) of the system.

Fertilizer levels to sweet corn	Treatment	Green cob yield (q ha\(^{-1}\))	Green fodder yield (q ha\(^{-1}\))	Tuber yield (q ha\(^{-1}\))	Haum yield (q ha\(^{-1}\))	Sweet corn equivalent yield (q ha\(^{-1}\))					
	100% GRDF	265.25	271.99	527.85	540.80	280.21	286.96	12.31	13.52	309.71	329.99
T\(_1\) : 75% RDN + 25% N through FYM	249.75	256.25	509.49	520.60	260.35	272.35	10.46	10.54	287.76	313.20	
T\(_2\) : 75% RDN + 25% N through VC	255.35	262.09	518.36	531.20	255.71	266.72	10.31	10.46	282.63	306.73	
T\(_3\) : 100% RDN + 25% N through FYM	258.45	264.84	522.07	534.76	265.53	276.51	10.90	11.12	293.48	317.99	
T\(_4\) : 100% RDN + 25% N through VC	260.74	267.04	524.09	536.58	261.65	274.71	10.66	10.97	289.19	315.92	
T\(_5\) : 125% RDN + 25% N through FYM	271.94	277.49	538.44	546.82	275.36	282.11	11.17	12.26	304.35	325.43	
T\(_6\) : 125% RDN + 25% N through VC	275.55	281.55	542.83	554.19	271.55	278.95	11.06	11.17	300.13	320.79	
C. D. at 5%	2.69	2.75	3.26	3.51	2.47	2.53	0.41	0.47	2.75	2.96	

Fertilizer levels to potato

F\(_1\) : 75% GRDF	264.66	274.75	10.69	10.95	292.52	315.96
F\(_2\) : 100% GRDF	270.21	279.60	10.98	11.64	298.65	321.54
S. Em. ±	2.44	1.04	0.13	0.11	1.03	0.88
C. D. at 5%	NS	NS	NS	NS	NS	NS
Interaction	NS	NS	NS	NS	NS	NS
General mean	267.44	277.18	10.83	11.29	295.59	318.75

Table 2: Soil nutrient balance sheet as influenced by different treatments after two years of sweet corn- potato sequence

Treatment	Initial nutrient status	Nutrient added	Nutrient uptake	Apparent nutrient status	Actual nutrient status	Gain (+)/loss (-)													
A (N)	B (P)	K (K)	N (N)	P (P)	K (K)	N (N)	P (P)	K (K)	X=(A+B+C)	Y=D-A									
T\(_1\) : 100% GRDF	800.02	85.63	1317.13	854	290	558	799.92	101.55	532.08	761.52	86.51	1350.82	854.10	274.08	1343.05	-38.50	0.88	33.69	
T\(_2\) : 75% RDN + 25% N through FYM	760.16	82.22	1269.35	754	280	518	636.92	81.64	385.31	711.92	80.38	1299.87	877.27	280.58	1402.04	-48.27	-1.84	30.52	
T\(_3\) : 75% RDN + 25% N through VC	748.51	81.72	1265.91	754	284	524	651.07	79.98	380.32	698.88	79.45	1293.67	851.44	285.74	1409.59	-49.63	-2.27	27.76	
T\(_4\) : 100% RDN + 25% N through FYM	770.76	83.36	1276.99	814	280	518	721.58	91.13	443.26	726.51	82.35	1308.98	863.18	272.23	1351.73	-44.25	-1.01	31.99	
T\(_5\) : 100% GRDF	766.05	83.06	1273.38	814	284	524	711.02	87.80	419.70	719.18	81.89	1304.05	869.03	269.26	1377.68	-46.87	-1.17	80.67	
Fertilizer levels to potato	RDN + 25% N through VC	T_e	RDN + 25% N through FYM	T_r															
---------------------------	------------------------	---------	------------------------	---------															
F_i	75% GRDF	779.81	84.99	1300.43	874	280	518	808.33	101.50	525.54	736.81	85.42	1333.63	847.48	263.49	1292.89	43.00	0.43	33.20
F_j	100% GRDF	775.68	84.39	1279.88	874	284	524	812.84	99.80	489.90	730.56	84.23	1311.95	836.84	268.59	1313.98	43.32	-0.16	32.07
General mean	771.90	83.65	1282.69	819.71	283.14	526.29	733.44	91.57	452.06	724.90	82.19	1313.21	858.17	275.23	1356.92	46.49	-1.46	30.52	

References

1. AOAC. Official Methods of analysis. 16th Edn. Association of Official Analytical Chemists. Washington D.C, 1992.
2. AOAC. Official Methods of Analysis, Association of Official Agricultural Chemists, Washington, D.C. 2005.
3. Arunkumar MA, Galian SK, Hebsur NS. Effect of different level of NPK on growth quality and yield parameters of sweet corn. Karnataka J Agric. Sci. 2007; 20(1):41 43.
4. Balemi T. Effect of integrated use of cattle manure and inorganic fertilizers on tuber yield of potato in Ethiopia. J Soil Sci. and Plant Nutrit. 2014; 14(2):253-261.
5. Banik P, Sharma RC. Effect of organic and inorganic sources of nutrients on the winter crops-rice based cropping systems in sub-humid tropics of India. Archive of Agrono and Soil Sci. 2009; 55:285-94.
6. Bejbaruha R, Sharma RC, Banik P. Direct and residual effect of organic and inorganic source of nutrients on rice based cropping systems in sub-humid tropics of India. J Sustainable Agril. 2009; 33:674-89.
7. Biruk MZ, Nigussie DR, Bekele A, Yibekal A, Tamado T. Influence of combined application of inorganic N and P fertilizers and cattle manure on quality and shelf-life of potato (Solanum tuberosum L.) tubers. J Post harv. Technl. 2014; (02(03)):152-168.
8. Carter MR. Soil quality for sustainable land management, organic matter and aggregation interactions that maintain soil functions. J Agron. 2002; 94:38-47.
9. Chaudhary S, Dheri GS, Brar BS. Long-term effects of NPK fertilizers and organic manures on carbon stabilization and management index under rice-wheat cropping system. Soil Tillage Res. 2017; 166:59-66. [Google Scholar] [CrossRef]
10. Congera A, Nanappa MA, Indiresh KM, Kumara BS. Effect of integrated nutrient management on tuber dry matter accumulation and uptake of nutrients by potato (Solanum tuberosum L.). Crop Res. 2013; 46(1-3):174-177.
11. Dubey R, Sharma RS, Dubey DP. Effect of organic, inorganic and integrate nutrient management on crop productivity, water productivity and soil properties under various rice-based cropping systems in Madhya Pradesh, India. Int. J Curr. Microb. App. Sci. 2014; 3(2):381-389.
12. Gaur AC, Neelakantan S, Dargan SK. Organic Manures. Ind. Council of Agricultural Research, New Delhi, 1984.
13. Jackson ML. Soil Chemical Analysis. Prentice Hall of India Pvt. Ltd, New Delhi, 1973.
14. Kannan P, Saravanam A, Krishnakumar S, Natarajan SK. Biological properties of soil as influenced by different organic manures. Res. J Agric. and Biol. Sci. 2005; 1(2):181-183.
15. Kar PP, Barik KC, Mahapatra PK, Garnayak LM, Rath BS, Bastia DK et al. Effect of planting geometry and nitrogen on yield, economics and nitrogen uptake of sweet corn (Zea mays). Indian J Agron. 2006; 51(1):43-45.
16. Keerthi S, Upendra Rao A, Ramana AV, Tejeswara Rao K. Effect of Integrated nutrient management practices on cob yield, protein content, NPK uptake by sweet corn and post harvest N, P₂O₅ and K₂O. Intern. J Appl. Biol. Res. 2013; 3(4):553-555.
17. Knudsen D, Peterson GA, Pratt PF. Lithium, sodium and potassium. In A.L. Page et al. (Ed.) methods of soil analysis, part II. 2nd edn. Agronomy Monogr. Madison. 1982, 225-246.
18. Kumar M, Baishya GK, Ghosh DC, Gupta VK. Yield and quality of potato (Solanum tuberosum) tubers as influenced by nutrients sources under rained conditions of Meghalaya. Indian J Agron. 2012; 56(3):260-266.
19. Mahavishnhan K, Prasad M, Rekha KB. Integrated nutrient management in cotton-sunflower cropping system in the sandy loam soils of north India. J Tropic. Agri L 2005; 43:29-32.
20. Muhr GR, Datta NP, Leley VK, Donahue RL. Soil testing in India. Second Ed. USAID, New Delhi, 1965.
21. Najm AA, Haj Seyed Hadi, Darzi MR, Fazeli MTF. Influence of nitrogen fertilizer and cattle manure on the vegetative growth and tuber production of potato. Int. J Agri. Crop Sci. 2013; 5(2):147-154.
22. Narayan Sumati, Kanth Raihana H, Narayan Raj Khan, Farooq A, Singh Parmeet, Rehman Shabir U. Effect of integrated nutrient management practices on yield of potato. Potato J. 2013; 40(1):84-86.
23. Olsen SR, Cole CV, Watanabe F, Dean LA. Estimation of available phosphorus in soil by extraction with sodium bicarbonate. USDA Circular No. 939, 1954.
24. Piper CS. Soil and plant analysis. Indian Ed. Hans Publisher, Mumbai, 1966, 186.
25. Sahoo SC, Mahapatra PK. Response of sweet corn (Zea mays) to nitrogen levels and plant population. Indian J Agric. Sci. 2004; 74(6):337-338.
26. Sarkar A, Sarkar S, Zaman A. Growth and yield of potato as influenced by combination of organic manures and inorganic fertilizers. Potato J. 2011; 38(1):78-80.
27. Singh NJ, Singh HA, Devi KN, Chontham ND, Singh BN, Sharma PT et al. Integrated nutrient management in potato based cropping pattern in south Bihar alluvial plains. Potato J. 2011; 38(2):162-169.
28. Singh SP, Vinay Singh, Singh RV, Lakhan R. Effect of phosphorus and farmyard manure application on yield, content and uptake of nitrogen, phosphorus and sulphate by potato (*Solanum tuberosum* L.). Indian J Agron. 1996; 41(4):630-632.
29. Subbiah BV Asija GL. A rapid procedure for estimation of available nitrogen in soil. Current Science. 1956; 25:259-60.
30. Syahmi Salleh, Nik MM, Nor Azwady. Effects of sewage sludge vermicompost and mineral fertilizer application on the above ground biomass and yield of (*Zea mays*). Malaysia Appl. Biol. 2015; 44(1):37-44.
31. Tandon HLS. Methods for Analysis of Soils, Plant, Water and Fertilizers. Development and Consultation Organization, New Delhi, India, 1993.
32. Zeinab AB, Zahedi Hossein, Sharghi Younes, Nik SS. Comparative assessment of conventional and organic nutrient management on yield and yield components of three corn cultivars. Intern. J Biosci. 2014; 4(12):281-287.