Hemodynamic monitoring by USCOM during rapid sequence intubation (RSI) with Etomidate/Fentanyl or Ketamine/Midazolam

Sandra Geiger¹, Hans Joachim Stemmler¹*, Nina Strecker¹, Johanna Tischer¹, Alessandro Pastore¹, Andreas Hausmann¹ and Sophia Horster²

Correspondence: Joachim.Stemmler@med.uni-muenchen.de

¹Medical Dept. III and ²Medical Dept. II, Intensive Care Unit F 2 b/c, Ludwig-Maximilians University of Munich, Campus Großhadern, Munich, Germany.

Abstract

Background: Critically ill and septic patients often require emergency orotracheal intubation. Etomidate is associated with a reversible adrenal insufficiency which potentially increases the in-hospital mortality, particularly in patients with sepsis. Moreover, standard anesthetization might severely aggravate shock symptoms during rapid sequence induction (RSI). Ketamine with its known stabilizing effects on hemodynamics might be a reasonable alternative, particularly in septic patients.

Methods: This non-randomised, observational pilot study focuses on the influence of ketamine-based (K) vs an etomidate-based (E) anesthetization on hemodynamic parameters during RSI. Forty pts were assigned alternately to etomidate/fentanyl (n=20), or ketamine/midazolam (n=20) while monitoring with invasive blood pressure (IBP) and ultrasound cardiac output monitor (USCOM) measurements during RSI. The levels of vasopressors required prior to, during and after RSI were recorded.

Results: Forty patients (median SAPS II score at ICU admission: 54 K, 50 E; median age: 59 yrs K, 56 yrs E) who needed sedation for emergency intubation were sedated either with etomidate/fentanyl or ketamine/midazolam. Noradrenalin demand and mean arterial pressure (MAP) prior to RSI were comparable (E: mean NA dose 0.2 mg/h, MAP 88 mmHg; K: mean NA dose 0.45 mg/h, MAP 75 mmHg) between the two groups. Moreover, mean MAP levels post RSI were 75 (E) and 76 (K) mmHg, respectively. The mean peak level of noradrenalin demand during RSI, though, was considerably higher within the etomidate group compared to the ketamine group (E 7.6 mg/h vs K 1.06 mg/h, p 0.01). Stroke volume index (SVI) and cardiac index (CI) increased during RSI (+3.8%/+3.0%) within the ketamine group, while SVI and CI decreased during RSI (-8.5%/-3.5%) within the etomidate group.

Conclusion: USCOM is an easily applicable and quick tool for the hemodynamic monitoring of critical ill patients. Moreover, this pilot study shows that RSI with ketamine/midazolam is a safe and valuable alternative to etomidate/fentanyl in patients who primarily require vasopressors.

Key words: Hemodynamic monitoring, USCOM, intubation, RSI, ketamine, etomidate

Background

Critically ill patients often require emergency orotracheal intubation. The concomitant use of a sedative and a paralytic agent is common for rapid sequence induction (RSI). Etomidate is one of the most often used hypnotic agents with outstanding intubation conditions and hemodynamic tolerance even in patients with shock. However, it can cause a reversible adrenal insufficiency by the inhibition 11b-hydroxylase [1,2]. An association between the use of etomidate and an increased morbidity of critically ill and septic patients due to adrenal insufficiency has been suggested in several studies [3-6].

Standard anesthetization might severely aggravate shock symptoms during RSI. Ketamine with its known stabilizing effects on hemodynamics might be a reasonable alternative, particularly in septic patients. A recently published randomized trial has shown that ketamine is a safe and valuable alternative to etomidate for endotracheal intubation in critically ill patients [7]. Jabre et al., found that the percentage of patients with adrenal insufficiency was significantly higher in the etomidate group than in the ketamine group [7]. However, 28-day mortality did not differ significantly. Thermodilution cardiac output measurements have been
routinely performed as part of intensive care practice since
the introduction of the balloon-directed thermistor-tipped
pulmonary artery catheter in the 1970s [8-10]. Introduced
by Swan and Ganz the pulmonary artery catheter (PAC)
became the gold standard for more than two decades [8,9].
However, arrhythmia, infection and possible pulmonary artery
disruption have always been concerns related to the use of
a PAC and led to a growing interest in the development of
non-invasive hemodynamic monitoring devices [11-13]. One
less invasive thermodilution-based technique consists of
the pulse induced cardiac output device (PICCO) but exclusively
ultrasound-based devices as the USCOM monitor are entirely
non-invasive methods for measuring CO [14-20]. Beside ac-
curacy and the method related risks another crucial criterion
consists of the time required for the determination of CO
[21]. USCOM is a feasible, continuous-wave Doppler-based
method which non-invasively measures CO in a fast and
economical way [22].

The present non-randomised, observational pilot study
study aimed at the influence of ketamine-based (ketamine/
midazolam) vs an etomidate-based (etomidate/fentanyl)
anesthetization on hemodynamic parameters during RSI.

Patients and methods

Study setting and patients

Fourty patients, who needed sedation for emergency intu-
bation, were included in this non-randomized, prospective
observational study. Patients were recruited from June 2010
until November 2010, on a ten-bed, non-cardiological medi-
cal ICU at the university hospital, Munich. The study protocol
was approved by the institutional ethics committee. Informed
consent was waived at inclusion because patients needed
urgent intubation. Consent for data processing was given
by patients, whenever possible, or by relatives and/or legally
authorised representatives.

Patients who were 18 years or older who needed sedation
for emergency intubation were prospectively enrolled in the
study. Exclusion criteria were cardiac arrest and resuscitation,
contraindications to one of the agents used for analgo-sedation,
known pregnancy.

Patients were alternately assigned to anaesthetization
either with etomidate /fentanyl or ketamine/midazolam for
intubation. Patients within the etomidate group received
first fentanyl (20-40 µg) followed by etomidate (0.2 mg/
kg). Those who were assigned to ketamine received 2-4
mg midazolam, followed by ketamine (1.5 mg/kg) and
immediately thereafter, rocuronium as intravenous bolus
(1 mg/kg). After confirmation of intubation and tube place-
ment (using capnometry), continuous sedation was initiated
by the use of midazolam or propofol combined with sufentanil.

All patients were continuously measured for hemodynamics
including heart rate, ECG, oxygen saturation, invasive blood
pressure (IBP) and, intermittently, left-sided USCOM (aortal
access) immediately prior to, during and after intubation (SVI,
stroke volume index; CI, cardiac index; SVRI, systemic vascular
resistance index). To exclude inter-individual observer variabil-
ity, measurements by USCOM were undertaken by the same
investigator. The investigator who performed all the USCOM
measurements was not blinded to the induction drugs given.
All USCOM measurements were performed immediately prior
to induction (first USCOM) and immediately post-intubation
(second USCOM) but, throughout the cohort, prior to the
start of the post-intubation sedation regime (with propofol
or midalolam plus sufentanil). Moreover, all second USCOM
measurements were undertaken during a similar ventilation
setting (fiO 2 1.0, PEEP 8 mbar).

The maximum use of norepinephrine during the procedure
was recorded.

USCOM

The USCOM-device (USCOM Ltd, Sydney, Australia) is a non-
invasive bedside method to evaluate cardiac output basing
on continuous-wave Doppler ultrasound. After starting the
USCOM device, the left-sided transaortic (CO US-A) or right-sided
transpulmonary access has to be choosen before the patients
data like height, weight and gender are typed in. The flow
profile is obtained by commonly using a 2.2 MHz transducer
placed on the chest in either the left parasternal position
or midalolam plus sufentanil). Moreover, all second USCOM
measurements were undertaken during a similar ventilation
setting (fiO 2 1.0, PEEP 8 mbar).

The maximum use of norepinephrine during the procedure
was recorded.

The present non-randomised, observational pilot study
study aimed at the influence of ketamine-based (ketamine/
midazolam) vs an etomidate-based (etomidate/fentanyl)
anesthetization on hemodynamic parameters during RSI.

Patients and methods

Study setting and patients

Fourty patients, who needed sedation for emergency intu-
bation, were included in this non-randomized, prospective
observational study. Patients were recruited from June 2010
until November 2010, on a ten-bed, non-cardiological medi-
cal ICU at the university hospital, Munich. The study protocol
was approved by the institutional ethics committee. Informed
consent was waived at inclusion because patients needed
urgent intubation. Consent for data processing was given
by patients, whenever possible, or by relatives and/or legally
authorised representatives.

Patients who were 18 years or older who needed sedation
for emergency intubation were prospectively enrolled in the
study. Exclusion criteria were cardiac arrest and resuscitation,
contraindications to one of the agents used for analgo-sedation,
known pregnancy.

Patients were alternately assigned to anaesthetization
either with etomidate /fentanyl or ketamine/midazolam for
intubation. Patients within the etomidate group received
first fentanyl (20-40 µg) followed by etomidate (0.2 mg/
kg). Those who were assigned to ketamine received 2-4
mg midazolam, followed by ketamine (1.5 mg/kg) and
immediately thereafter, rocuronium as intravenous bolus
(1 mg/kg). After confirmation of intubation and tube place-
ment (using capnometry), continuous sedation was initiated
by the use of midazolam or propofol combined with sufentanil.

All patients were continuously measured for hemodynamics
including heart rate, ECG, oxygen saturation, invasive blood
pressure (IBP) and, intermittently, left-sided USCOM (aortal
access) immediately prior to, during and after intubation (SVI,
stroke volume index; CI, cardiac index; SVRI, systemic vascular
resistance index). To exclude inter-individual observer variabil-
ity, measurements by USCOM were undertaken by the same
investigator. The investigator who performed all the USCOM
measurements was not blinded to the induction drugs given.
All USCOM measurements were performed immediately prior
to induction (first USCOM) and immediately post-intubation
(second USCOM) but, throughout the cohort, prior to the
start of the post-intubation sedation regime (with propofol
or midalolam plus sufentanil). Moreover, all second USCOM
measurements were undertaken during a similar ventilation
setting (fiO 2 1.0, PEEP 8 mbar).

The maximum use of norepinephrine during the procedure
was recorded.

USCOM

The USCOM-device (USCOM Ltd, Sydney, Australia) is a non-
invasive bedside method to evaluate cardiac output basing
on continuous-wave Doppler ultrasound. After starting the
USCOM device, the left-sided transaortic (CO US-A) or right-sided
transpulmonary access has to be choosen before the patients
data like height, weight and gender are typed in. The flow
profile is obtained by commonly using a 2.2 MHz transducer
placed on the chest in either the left parasternal position
or midalolam plus sufentanil). Moreover, all second USCOM
measurements were undertaken during a similar ventilation
setting (fiO 2 1.0, PEEP 8 mbar).

The maximum use of norepinephrine during the procedure
was recorded.
prior chemotherapy for solid tumors, and 10 patients suffered from other diseases. Intubation was indicated mainly for respiratory failure and/or sepsis (n = 33, 82.5%). Detailed patients characteristics are given in Table 1.

Blood pressure, heart rate and catecholamine use during RSI

Prior to RSI, patients within both groups (K ketamine, E etomidate) were comparable regarding heart rate (HR, K 104 vs E 107 bpm; p 0.67) and mean arterial pressure (MAP, K 75 vs E 88 mmHg; p 0.07). Moreover, the ‘baseline’ level of catecholamine use (norepinephrine, NA) was roughly similar (NA, K 0.45 vs E 0.2 mg/h; p 0.11).

Post RSI, HR and MAP were similarly comparable between the two groups (HR, K 115 vs E 113 mmHg; p 0.80) and mean arterial pressure (MAP, K 76 vs E 75 mmHg; p 0.9). The peak level of norepinephrine to maintain the MAP during sedation, though, was considerably higher in patients who received the etomidate regimen (NA, K 1.06 vs E 7.6 mg/h; p 0.01).

Detailed information is given in Table 2, Figure 1 and 2.

USCOM measurements during RSI (CI, SVI, SVRI)

USCOM measurements were performed immediately prior to RSI, during RSI and post RSI (mean ∆ between first and second

Table 1. Patient baseline characteristics (at ICU admission, prior to RSI)
baseline characteristics n=40
median age (years)
gender (m / f)
median SAPS II score
ketamine group n = 20
etomidate group n = 20
n (%)
Underlying disease
Liver cirrhosis & GI bleeding
Acute leukaemia
Lymphoma
Solid tumor
Other
Need for intubation, due to ...
Respiratory failure
and/or Sepsis
Sopor or coma *
GI bleeding
Outcome
Day 30 mortality rate
Mean time between USCOM
∆ (min. ±SD)
Abbreviations: *sopor or coma not related to sepsis (hepatic encephalopathy; GI, gastrointestinal; SD, standard deviation.

USCOM (minutes): 5.7 (K) vs 6.33 (E) (p 0.46). We recorded the following parameters: SVI, stroke volume index; CI, cardiac index; and SVRI, systemic vascular resistance index.

Prior to RSI, median CI and SVI was comparable within both groups (mean SVI E 29.3 mL/m² vs SVI K 31.3 mL/m², p 0.55; mean CI E 2.9 L/min/m² vs CI K 3.3 L/min/m², p 0.23). The mean SVRI (dyn x s x cm⁻²/m²) was higher in the etomidate group (2925(E) vs 2098 (K), p 0.04).

While mean SVI/CI (mL/m²/L/min/m²) minimally increased during RSI (prior RSI 31.3/3.3, post RSI: 32.5/3.4, ∆+3.8%/+3.0%) within the ketamine group, mean SVI/CI (mL/m²/L/min/m²) slightly decreased in the etomidate group (prior RSI 29.3/2.9, post RSI 26.8/2.8, ∆-8.5%/−3.5%). Mean SVRI (dyn x s x cm⁻²/m²) increased in the ketamine group and decreased in the etomidate group (∆ K +10.2%, ∆ E-3.8%). Detailed information is given in Table 2.

Table 2. Hemodynamic parameters (by USCOM) prior to and after RSI
Mean MAP (mmHg)
prior to RSI 75 ±21.1
post RSI 76 ±28.5
∆ MAP mmHg (%)
+1 (+1.3)
Mean HR (bpm)
prior to RSI 104 ±25.4
post RSI 115 ±24.4
∆ HR bpm (%)
+11 (+10.6)
Mean CI (L/min/m²)
prior to RSI 3.3 ±1.3
post RSI 3.4 ±1.5
∆ CI L/min/m² (%)
+0.1 (+3.0)
Mean SVI (ml/m²)
prior to RSI 31.3 ±10.2
post RSI 32.5 ±13.3
∆ SVI ml/m² (%)
+1.2 (+3.8)
Mean SVRI (dyn x s x cm⁻²/m²)
prior to RSI 2098 ±805
post RSI 2312 ±1118
∆ SVRI dyn x s x cm⁻²/m² (%)
+214 (+10.2)
Mean NA (maximum)*
prior to RSI (mg/h iv)
0.45 ±0.6
post RSI (mg/h iv)
1.06 ±0.7
∆ NA (%)
+0.61 (+136)

Abbreviations: MAP, mean arterial pressure; RSI, rapid sequence induction; * t-test; NA, norepinephrine; HR, heart rate; CI, cardiac index; SVI, stroke volume index; SVRI, systemic vascular resistance index; SV, stroke volume index; SVV, stroke volume variance; ±SD, standard deviation

*Norepinephrine 0.1 mg/h = 1.67 µg/min. (averaged 70 kg = 0.023 µg/kg/min)
Outcomes
Twelve of 20 patients within the ketamine group have died within 30 days (day 30 mortality rate 60%), and 10 of 20 patients have died in the etomidate group (day 30 mortality rate 50%). Overall day 30 mortality was 55%.

Discussion
Although adrenal axis dysfunction arises to some extent after etomidate use for RSI, the effect of such adrenal suppression on patients’ outcome remains debated. Several studies have reported increased mortality in patients who had received one bolus of etomidate [4,5,23]. However, these findings have not been confirmed by other investigators [24,25]. Results from a recent randomized trial indicated, that ketamine compared to the use of etomidate was comparable with regard to 28-day mortality [7]. The percentage of patients with adrenal insufficiency was significantly higher in regards to the etomidate group than in the ketamine group, but mortality did not differ significantly. Adrenal insufficiency is probably associated with increased mortality in critically ill patients, including those with sepsis; however, whether the adrenal axis suppression and mortality are the result of some underlying process, or whether it causes death, has never been established [7].

Jabre et al., concluded that ketamine is a safe and valuable alternative to etomidate for RSI in critically ill patients, particularly in septic patients, even though the study might not have had sufficient power to show a significant increase in morbidity related to the use of etomidate in patients with sepsis.

This pilot study aimed to evaluate the influence of a ketamine-based vs an etomidate-based anesthetization on hemodynamic parameters measured by USCOM immediately prior to, during and post RSI. Intubation was indicated mainly for respiratory failure and/or sepsis.

Clearly, the still accepted clinical standard for CO measurement is the intermittent thermodilution technique which itself has its own inherent variability [26-28]. USCOM is a noninvasive cardiac output monitor based on the transthoracic measurement of Doppler flow velocity over the aortic and pulmonary outflow tract. It is easy to operate, and CO is displayed ‘beat by beat’. Following a short booting time the device can be used immediately. The technique is reported to be easily learned after a short period by non-physicians [29,30]. Previously reported trials investigated the accuracy of USCOM in various settings and most of them found an acceptable agreement between the USCOM CO measurements and those determined by a thermodilution-based method [15,29,22,31-34,16,35,20]. Although, it is critical to report, that an inferior accuracy for USCOM was reported by other authors who found that CO measurements by USCOM do not reliably represent absolute values as compared to pulmonary artery catheter thermodilution technique [36,35].

Prior to RSI, patients were roughly comparable regarding baseline hemodynamic parameters (HR, MAP, CI, and SVI) and norepinephrine use. But the peak level of norepinephrine to maintain MAP during induction, though, was considerably higher in patients who received etomidate/fentanyl for sedation (NA, K 1.06 vs E 7.6 mg/h; p 0.01). Post RSI USCOM measurements showed slightly increased means of SVI/CI (mL/m², L/min/m²; ∆ +3.8%, +3.0%) within the ketamine group, whereas those in the etomidate group decreased (prior RSI 29.3/2.9, post RSI 26.8/2.8; ∆ -8.5%/-3.5%). The mean SVRI (dyn x s x cm⁻⁵/m²) increased in the ketamine group and decreased in the etomidate group (K +10.2%, E -3.8%).

The present data confirm the conclusion of Jabre et al., regarding safety and valubility of ketamine use for RSI. Moreover, USCOM measurements during RSI support the excellent hemodynamic tolerance of ketamine in the present patients setting. Considering the contraindications, ketamine advanced to our 1st choice sedative in septic patients requiring intubation.

However, drawing final conclusions from the present study is almost impossible. The patients’ number is considerably low. Moreover, patients were alternately, but not randomly assigned to receive either etomidate or ketamine. Moreo-
ver, there is a limitation since the patients have received a combination (etomidate/fentanyl vs ketamine/midazolam) for RSI. We cannot exclude that differences in hemodynamic changes during RSI can be attributed to the drug combination given. Furthermore, USCOM itself is associated with some restrictions. Patients in our study for instance, were ventilated mechanically post-RSI which contributes to difficulties in CO measurements by an ultrasound-based device. Moreover, some studies indicated that USCOM tends to underestimate the real CO value when it is relatively high [16-18]. On the contrary, such a difference does not appear in Su et al’s research [17,18]. They investigated patients with liver cirrhosis because of their unique hyperdynamic status with high CO values ranged up to 13.6 L/min, and found that even at high CO values, USCOM still reliably measures CO [17,18].

Conclusion
We agree with Jabre et al., that ketamine is a safe and valuable alternative to etomidate for RSI. Particularly, in septic patients, with primary necessity for vasopressants, USCOM measurements during RSI support the excellent hemodynamic tolerance of ketamine in such a patients setting. For hemodynamic monitoring, USCOM is easy to use, and the physician will obtain a result in an unbeatable period of time. It seems to be appropriate in situations where CO measurement is most pertinent to patient management.

Competing interests
The Author’s declare that they have no competing interests.

Authors contributions
Geiger S, Stemmler HJ, Strecker N, Horster S – study design, patient recruitment, USCOM examinations, preparation of manuscript
Tischer J, Pastore A, Hausmann A – data management, preparation of manuscript.

Publication history
Received: 10-May-2012 Revised: 10-July-2012 Accepted: 12-July-2012 Published: 02-Aug-2012

References
1. Malerba G, Romano-Girard F, Cravoisy A, Dousset B, Nace L, Levy B, et al.: Risk factors of relative adrenocortical deficiency in intensive care patients needing mechanical ventilation. Intensive Care Med 2005; 31;(3);388-92. | Article | PubMed
2. de Jong FH, Mallios C, Jansen C, Scheek PA, Lamberts SW: Etomidate suppresses adrenocortical function by inhibition of 11 beta-hydroxylation. J Clin Endocrinol Metab 1984; 59;(6);1143-7. | Article | PubMed
3. de Jong MF, Beishuizen A, Spijkstra JG, Groeneveld AB: Relative adrenal insufficiency as a predictor of disease severity, mortality, and beneficial effects of corticosteroid treatment in septic shock. Crit Care Med 2007; 35;(8);1896-903. | Article | PubMed
4. Lipiner-Friedman D, Sprung CL, Laterre PF, Weiss Y, Goodman SV, Vogeser M, et al.: Adrenal function in sepsis: the retrospec-
tive Corticus cohort study. Crit Care Med 2007; 35;(4);1012-8. | Article | PubMed
5. den Brinker M, Hokken-Koelega AC, Hazelzet JA, de Jong FH, Hop WC, Joosten KF: One single dose of etomidate negatively influences adrenocortical performance for at least 24h in children with meningococcal sepsis. Intensive Care Med 2008; 34;(1);163-8. | Article | PubMed Abstract | PubMed Full Text
6. Hildreth AN, Mejia VA, Maxwell RA, Smith PW, Dart BW, Barker DE: Adrenal suppression following a single dose of etomidate for rapid sequence induction: a prospective randomized study. J Trauma 2008; 65;(3);573-9. | Article | PubMed
7. Jabre P, Combes X, Lapostolle F, Dhaouadi M, Ricard-Hibon A, Vivien B, et al.: Etomidate versus ketamine for rapid sequence intubation in acutely ill patients: a multicentre randomised controlled trial. Lancet 2009; 374;(9686);293-300. | Article | PubMed
8. Swan HJ, Ganz W: Measurement of right atrial and pulmonary arterial pressures and cardiac output: clinical application of hemodynamic monitoring. Adv Intern Med 1982; 27;(453-73. | Article | PubMed
9. Ganz W, Donoso R, Marcus HS, Forrester JS, Swan HJ: A new technique for measurement of cardiac output by thermo-
dilution in man. Am J Cardiol 1971; 27;(4);392-6. | Article | PubMed
10. Rocco M, Spadetta G, Morelli A, Dell’Utri D, Porzi P, Conti G, et al.: A comparative evaluation of thermodynamic and partial CO2 rebreathing techniques for cardiac output assessment in critically ill patients during assisted ventilation. Intensive Care Med 2004; 30;(1);82-7. | Article | PubMed
11. Boldt J: Hemodynamic monitoring in the intensive care unit. Crit Care 2002; 6;(1);52-9. | Article | PubMed Abstract | PubMed Full Text
12. Cooper AB, Doig GS, Sibbald WJ: PULMONARY ARTERY CATHETERS IN THE CRITICALLY ILL: An Overview Using the Methodology of Evidence-Based Medicine. Critical Care Clinics 1996; 12;(4);777-94. | Article
13. Sakka SG, Reinhard K, Wegscheider K, Meier-Hellmann A: Is the placement of a pulmonary artery catheter still justified solely for the measurement of cardiac output? Journal of Cardiotho-
aric and Vascular Anesthesia 2000; 14;(2);119-24. | Article
14. Antonini M, Meloncelli S, Dantimi C, Tosti S, Ciotti L, Gasparetto A: [The PICCO system with brachial-axillary artery access in hemodynamic monitoring during surgery of abdominal aortic aneurysm]. Minerva Anestesiol 2001; 67;(6);447-56. | PubMed
15. Critchley LA, Peng ZY, Fok BS, Lee A, Phillips RA: Testing the Reliability of a New Ultrasonic Cardiac Output Monitor, the USCOM, by Using Aortic Flowprobes in Anesthetized Dogs. Anesthesia & Analgesia 2005; 100;(3);748-53. | Article
16. Tan HL, Pinder M, Parsons R, Roberts B, van Heerden PV: Clinical evaluation of USCOM ultrasonic cardiac output monitor in cardiac surgical patients in intensive care unit. Br J Anaesth 2005; 94;(3);287-91. | Article | PubMed
17. Su BC, Lin CC, Su CW, Hui YL, Tsai YF, Yang MW, et al.: Ultrasonic cardiac output monitor provides accurate measurement of cardiac output in recipients after liver transplantation. Acta Anaesthesiol Taiwan 2008; 46;(4);171-7. | Article | PubMed
18. Su BC, Yu HP, Yang MW, Lin CC, Kao MC, Chang CH, et al.: Reliability of a new ultrasonic cardiac output monitor in recipients of living donor liver transplantation. Liver Transpl 2008;
19. Knobloch K, Lichtenberg A, Winterhalter M, Rossner D, Picklmaier M, Phillips R: Non-invasive cardiac output determination by two-dimensional independent Doppler during and after cardiac surgery. *Ann Thorac Surg* 2005; 80;(4);:1479-83. | Article | PubMed

20. van Lelyveld-Haas LE, van Zanten AR, Borm GF, Tjan DH: Clinical validation of the non-invasive cardiac output monitor USCOM-1A in critically ill patients. *Eur J Anaesthesiol* 2008; 25;(11);:917-24. | Article | PubMed

21. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, et al.: Early goal-directed therapy in the treatment of severe sepsis and septic shock. *N Engl J Med* 2001; 345;(19);:1368-77. | Article | PubMed

22. Horster S, Stemmler HJ, Strecker N, Brettner F, Hausmann A, Cnossen J, et al.: Cardiac Output Measurements in Septic Patients: Comparing the Accuracy of USCOM to PICCO. *Crit Care Res Pract* 2012; 2012;(270631. | Article | PubMed Abstract | PubMed Full Text

23. Sprung CL, Annane D, Keh D, Moreno R, Singer M, Freivogel K, et al.: Hydrocortisone therapy for patients with septic shock. *N Engl J Med* 2008; 358;(2);:111-24. | Article | PubMed

24. Riche FC, Boutron CM, Valleur P, Berton C, Laisné MJ, Launay JM, et al.: Adrenal response in patients with septic shock of abdominal origin: relationship to survival. *Intensive Care Med* 2007; 33;(10);:1761-6. | Article | PubMed

25. Ray DC, McKeown DW: Effect of induction agent on vasopressor and steroid use, and outcome in patients with septic shock. *Crit Care* 2007; 11;(3);:R56. | Article | PubMed Abstract | PubMed Full Text

26. Jansen JR: The thermomethod for the clinical assessment of cardiac output. *Intensive Care Med* 1995; 21;(8);:691-7. | Article | PubMed

27. Thrush DN, Variotta D: Thermomethod for cardiac output: Comparison between automated and manual injection of indicator. *Journal of Cardiothoracic and Vascular Anesthesia* 1992; 6;(1);:17-9. | Article

28. Botero M, Kirby D, Lobato EB, Staples ED, Gravenstein N: Measurement of cardiac output before and after cardiopulmonary bypass: Comparison among aortic transit-time ultrasound, thermodilution, and noninvasive partial CO2 rebreathing. *Journal of Cardiothoracic and Vascular Anesthesia* 2004; 18;(5);:563-72. | Article

29. Dey I, Spriivulis P: Emergency physicians can reliably assess emergency department patient cardiac output using the USCOM continuous wave Doppler cardiac output monitor. *Emergency Medicine Australasia* 2005; 17(3);:193-9. | Article

30. Knobloch K, Hubrich V, Rohmann P, Lupkemann M, Gerich T, Krettek C, et al.: Feasibility of preclinical cardiac output and systemic vascular resistance in HEMS in thoracic pain—the ultrasonic cardiac output monitor. *Air Med J* 2006; 25;(6);:270-5. | Article | PubMed

31. Knobloch K: Non-invasive hemodynamic monitoring using USCOM in HEMS at the scene. *J Trauma* 2007; 62;(4);:1069-70; author reply 70. | Article | PubMed

32. Knobloch K, Tepe J, Rossner D, Lichtinghagen R, Luck HJ, Busch KH, et al.: Combined NT-pro-BNP and CW-Doppler ultrasound cardiac output monitoring (USCOM) in epirubicin and liposomal doxorubicin therapy. *Int J Cardiol* 2008; 128;(3);:316-25. | Article | PubMed

33. Siu CW, Tse HF, Lee K, Chan HW, Chen WH, Yung C, et al.: Cardiac resynchronization therapy optimization by ultrasonic cardiac output monitoring (USCOM) device. *Pacing Clin Electrophysiology* 2007; 30;(1);:50-5. | Article | PubMed

34. Stemmler HJ, Weigert O, Grüner N, Tschöp K, Lange V, et al.: Non-invasive hemodynamic monitoring in critically ill patients: Experience with the USCOM device. *Intensivmed* 2007; 44(44):366-71.

35. Van den Oever HL, Murphy EJ, Christie-Taylor GA: USCOM (Ultrasonic Cardiac Output Monitors) lacks agreement with thermodilution cardiac output and transoesophageal echocardiography valve measurements. *Anaesth Intensive Care* 2007; 35;(6);:903-10. | Article | PubMed

36. Knirsch W, Kretschmar O, Tomasse M, Stutz K, Nagdyman N, Balmer C, et al.: Cardiac output measurement in children: comparison of the Ultrasound Cardiac Output Monitor with thermodilution cardiac output measurement. *Intensive Care Med* 2008; 34;(6);:1060-4. | Article | PubMed

Citation:
Geiger S, Stemmler H J, Strecker N, Tischer J, Pastore A, Hausmann A and Horster S: Hemodynamic monitoring by USCOM during rapid sequence intubation (RSI) with Etomidate/Fentanyl or Ketamine/Midazolam. *journal of Anesthesiology and Clinical Science* 2012, 1:7. http://dx.doi.org/10.7243/2049-9752-1-7