Stability of Utility Maximization in Incomplete Markets

Gordan Žitković

Department of Mathematics
University of Texas at Austin

joint work with Kasper Larsen, CMU

Princeton, December 2006
Outline

1. Generalia
2. Well-posedness
3. Well-posedness: what we actually can do
4. Under the hood
5. Summary and Extensions
Outline

1. Generalia
2. Well-posedness
3. Well-posedness: what we actually can do
4. Under the hood
5. Summary and Extensions
Financial Markets

The model

- Pick your favorite viable (NA) financial model:
 - a semimartingale stock-price process
 \[(S_t)_{t \in [0, T]}, \text{ on } (\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in [0, T]}, \mathbb{P}) \].
 - a bond (numeraire) is normalized to \(S_0^0 \equiv 1 \).

- Trading in this model is implemented by a choice of a portfolio \((H_t)_{t \in [0, T]} \in L(S) \) (+ admissibility requirements).

- The terminal wealth of the portfolio (strategy) \(H \) is
 \[X_T^{x,H} = x + \int_0^T H_u \, dS_u, \]
 when the initial wealth is \(x \).
Financial Markets

The model

- Pick your favorite viable (NA) **financial model**:
 - a semimartingale stock-price process
 \[(S_t)_{t\in[0,T]}, \text{ on } (\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\in[0,T]}, \mathbb{P}).\]
 - a bond (numeraire) is normalized to $S_0^0 \equiv 1$.

- **Trading** in this model is implemented by a choice of a portfolio
 \[(H_t)_{t\in[0,T]} \in L(S) (+ \text{ admissibility requirements}).\]

- The **terminal wealth** of the portfolio (strategy) H is

\[X_{T}^{x,H} = x + \int_{0}^{T} H_u \, dS_u,\]

when the initial wealth is x.
The model

- Pick your favorite viable (NA) **financial model**:
 - a semimartingale stock-price process
 \[(S_t)_{t \in [0, T]}, \text{ on } (\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in [0, T]}, \mathbb{P}).\]
 - a bond (numeraire) is normalized to \(S^0_t \equiv 1\).
- **Trading** in this model is implemented by a choice of a portfolio \((H_t)_{t \in [0, T]} \in L(S)\) (+ admissibility requirements).
- The **terminal wealth** of the portfolio (strategy) \(H\) is
 \[X_T^{x,H} = x + \int_0^T H_u \, dS_u,\]
 when the initial wealth is \(x\).
Utility Maximization

Utility functions

- \(U : (0, \infty) \to \mathbb{R} : C^1 \), strictly concave, strictly increasing,
- \(\lim_{x \to 0} U'(x) = +\infty \), \(\lim_{x \to \infty} U'(x) = 0 \). (Inada conditions).
- \(\limsup_{x \to \infty} \frac{xU'(x)}{U(x)} < 1 \) (Reasonable asymptotic elasticity).

The utility-maximization problem

\[
 u(x) = \sup_{H \in \ldots} \mathbb{E}[U(x + \int_0^T H_u \, dS_u)].
\]

State of the art

Markowitz, Merton, Pliska, Cox, Huang, Karatzas, Lehoczky, Shreve, Xu, Kramkov, Schachermayer, . . .:

Under very mild regularity conditions, the optimal \(\hat{H} \) and \(\hat{X} \)
1) exist and 2) are unique.
Utility Maximization

Utility functions
- \(U : (0, \infty) \to \mathbb{R} : C^1 \), strictly concave, strictly increasing,
- \(\lim_{x \to 0} U'(x) = +\infty, \lim_{x \to \infty} U'(x) = 0 \). (Inada conditions).
- \(\limsup_{x \to \infty} \frac{xU'(x)}{U(x)} < 1 \) (Reasonable asymptotic elasticity).

The utility-maximization problem
\[
u(x) = \sup_{H \in \cdots} \mathbb{E}[U(x + \int_0^T H_u \, dS_u)].
\]

State of the art
Markowitz, Merton, Pliska, Cox, Huang, Karatzas, Lehoczky, Shreve, Xu, Kramkov, Schachermayer, . . . :

Under very mild regularity conditions, the optimal \(\hat{H} \) and \(\hat{X} \)
1) exist and 2) are unique.
Utility Maximization

Utility functions

- $U : (0, \infty) \to \mathbb{R}$: C^1, strictly concave, strictly increasing,
- $\lim_{x \to 0} U'(x) = +\infty$, $\lim_{x \to \infty} U'(x) = 0$. (Inada conditions).
- $\limsup_{x \to \infty} \frac{xU'(x)}{U(x)} < 1$ (Reasonable asymptotic elasticity).

The utility-maximization problem

$$u(x) = \sup_{H \in \ldots} \mathbb{E}[U(x + \int_0^T H_u \, dS_u)].$$

State of the art

Markowitz, Merton, Pliska, Cox, Huang, Karatzas, Lehoczky, Shreve, Xu, Kramkov, Schachermayer, . . .:

Under very mild regularity conditions, the optimal \hat{H} and \hat{X}

1) exist and 2) are unique.
Outline

1. Generalia
2. Well-posedness
3. Well-posedness: what we actually can do
4. Under the hood
5. Summary and Extensions
The stability problem
Hadamard

Hadamard

Requirements of Jacques Hadamard (1902) - still a template in applied mathematics

- existence
- uniqueness
- well-posedness (stability with respect to perturbations in problem data)

Another way of looking at utility maximization.

\[(x, U, (S_t)_{t \in [0, T]}) \mapsto \hat{H} \text{ (or } \hat{X})\]

A question

What are the continuity properties of the function \(S \mapsto \hat{X} \)?
The stability problem
Hadamard

Requirements of Jacques Hadamard (1902) - still a template in applied mathematics
- existence
- uniqueness
- well-posedness (stability with respect to perturbations in problem data)

Another way of looking at utility maximization.

$$(x, U, (S_t)_{t \in [0, T]}) \mapsto \hat{H} \text{ (or } \hat{X})$$

A question

What are the continuity properties of the function $S \mapsto \hat{X}$?
The stability problem
Hadamard

Hadamard

Requirements of Jacques Hadamard (1902) - still a template in applied mathematics

- existence
- uniqueness
- well-posedness (stability with respect to perturbations in problem data)

Another way of looking at utility maximization.

\[(x, U, (S_t)_{t\in[0,T]}) \mapsto \hat{H} \text{ (or } \hat{X})\]

A question

What are the continuity properties of the function } S \mapsto \hat{X}?
The stability problem
Hadamard

Hadamard

Requirements of Jacques Hadamard (1902) - still a template in applied mathematics

- existence
- uniqueness
- well-posedness (stability with respect to perturbations in problem data)

Another way of looking at utility maximization.

\[(x, U, (S_t)_{t \in [0, T]}) \mapsto \hat{H} \text{ (or } \hat{X})\]

A question

What are the continuity properties of the function \(S \mapsto \hat{X}\)?
The stability problem

Hadamard

Requirements of Jacques Hadamard (1902) - still a template in applied mathematics

- existence
- uniqueness
- well-posedness (stability with respect to perturbations in problem data)

Another way of looking at utility maximization.

\[(x, U, (S_t)_{t \in [0, T]}) \mapsto \hat{H} \text{ (or } \hat{X})\]

A question

What are the continuity properties of the function \(S \mapsto \hat{X}\)?
Marginal Utility-Based Prices

- When a contingent claim B is replicable in the market, the **NA-principle uniquely defines the “price”** p of B.
- When markets are incomplete, another ingredient is needed: the **risk-profile** of the investor, e.g.
- **MUBP (Davis’) price**: number $p \in \mathbb{R}$ such that

$$\sup_{H \in \ldots, q \in \mathbb{R}} \mathbb{E} \left[U \left(X_{T}^{x,H} + q(B - p) \right) \right] \leq \sup_{H \in \ldots} \mathbb{E} \left[U \left(X_{T}^{x,H} \right) \right]$$

Another question

What can we say about the continuity of the MUBP, as a function of the model $(S_t)_{t \in [0,T]}$?

Warning! - Hugonnier, Kramkov and Schachermayer (2005) show that MUBP exists, but does not have to be unique; a whole interval $[\mathcal{P}, \mathcal{P}]$ of prices is possible.
The stability problem II
Pricing in Incomplete Markets

Marginal Utility-Based Prices

- When a contingent claim B is replicable in the market, the **NA-principle uniquely defines the “price”** p of B.
- When markets are incomplete, another ingredient is needed: the **risk-profile** of the investor, e.g.
 - **MUBP (Davis’) price**: number $p \in \mathbb{R}$ such that
 \[
 \sup_{H \in \ldots, q \in \mathbb{R}} \mathbb{E} \left[U \left(X_T^{x,H} + q(B - p) \right) \right] \leq \sup_{H \in \ldots} \mathbb{E} \left[U \left(X_T^{x,H} \right) \right]
 \]

Another question

What can we say about the continuity of the MUBP, as a function of the model $(S_t)_{t \in [0, T]}$?

Warning! - Hugonnier, Kramkov and Schachermayer (2005) show that MUBP exists, but does not have to be unique; a whole interval $[\overline{P}, \underline{P}]$ of prices is possible.
The stability problem II
Pricing in Incomplete Markets

Marginal Utility-Based Prices

- When a contingent claim B is replicable in the market, the **NA-principle uniquely defines the “price”** p of B.
- When markets are incomplete, another ingredient is needed: the **risk-profile** of the investor, e.g.
- **MUBP (Davis’) price**: number $p \in \mathbb{R}$ such that
 \[
 \sup_{H \in \ldots, q \in \mathbb{R}} \mathbb{E} \left[U \left(X^x_H + q(B - p) \right) \right] \leq \sup_{H \in \ldots} \mathbb{E} \left[U \left(X^x_H \right) \right]
 \]

Another question

What can we say about the continuity of the MUBP, as a function of the model $(S_t)_{t \in [0,T]}$?

Warning! - Hugonnier, Kramkov and Schachermayer (2005) show that MUBP exists, but does not have to be unique; a whole interval $[\mathcal{P}, \mathcal{P}]$ of prices is possible.
Marginal Utility-Based Prices

- When a contingent claim B is replicable in the market, the NA-principle uniquely defines the “price” p of B.
- When markets are incomplete, another ingredient is needed: the risk-profile of the investor, e.g.
- **MUBP (Davis’) price**: number $p \in \mathbb{R}$ such that

$$\sup_{H \in \ldots, q \in \mathbb{R}} \mathbb{E} \left[U \left(X_T^{x,H} + q(B - p) \right) \right] \leq \sup_{H \in \ldots} \mathbb{E} \left[U \left(X_T^{x,H} \right) \right]$$

Another question

What can we say about the continuity of the MUBP, as a function of the model $(S_t)_{t \in [0,T]}$?

Warning! - Hugonnier, Kramkrov and Schachermayer (2005) show that MUBP exists, but does not have to be unique; a whole interval $[\mathcal{P}, \mathcal{P}]$ of prices is possible.
The stability problem II
Pricing in Incomplete Markets

Marginal Utility-Based Prices

- When a contingent claim B is replicable in the market, the **NA-principle uniquely defines the “price”** p of B.
- When markets are incomplete, another ingredient is needed: the **risk-profile** of the investor, e.g.
- **MUBP (Davis’) price**: number $p \in \mathbb{R}$ such that

$$\sup_{H \in \ldots, q \in \mathbb{R}} \mathbb{E} \left[U \left(X_T^x, H + q(B - p) \right) \right] \leq \sup_{H \in \ldots} \mathbb{E} \left[U \left(X_T^x, H \right) \right]$$

Another question

What can we say about the continuity of the MUBP, as a function of the model $(S_t)_{t \in [0, T]}$?

Warning! - Hugonnier, Kramkiov and Schachermayer (2005) show that MUBP exists, but does not have to be unique; a **whole interval** $[\mathcal{P}, \overline{\mathcal{P}}]$ of prices is possible.
Outline

1. Generalia
2. Well-posedness
3. Well-posedness: what we actually can do
4. Under the hood
5. Summary and Extensions

The model family I
Market Price of Risk

The model family

- $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in [0, T]}, \mathbb{P})$ - a filtered probability space (usual conditions)
- $(S_t)_{t \in [0, T]}$ - a continuous $(\mathcal{F}_t)_{t \in [0, T]}$-semimartingale.
- Schachermayer (1995): if NA holds, there exists
 - a continuous local martingale M, and
 - a predictable process λ such that $\lambda^2 \cdot \langle M \rangle < \infty$ a.s., and
 \[
 S_t = M_t + \int_0^t \lambda_u d\langle M \rangle_u, \ t \in [0, T].
 \]
- $(\lambda_t)_{t \in [0, T]}$ can be called the market price of risk - a sufficient statistic for pricing and utility maximization (not for hedging, though).
The model family I
Market Price of Risk

The model family

- \((\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\in[0,T]}, \mathbb{P})\) - a filtered probability space (usual conditions)
- \((S_t)_{t\in[0,T]}\) - a continuous \((\mathcal{F}_t)_{t\in[0,T]}\)-semimartingale.

- Schachermayer (1995): if NA holds, there exists
 - a continuous local martingale \(M\), and
 - a predictable process \(\lambda\) such that \(\lambda^2 \cdot \langle M \rangle < \infty\) a.s., and

 \[S_t = M_t + \int_0^t \lambda_u \, d\langle M \rangle_u, \quad t \in [0, T]. \]

- \((\lambda_t)_{t\in[0,T]}\) can be called the **market price of risk** - a **sufficient statistic** for pricing and utility maximization (not for hedging, though).
The model family I
Market Price of Risk

The model family

- \((\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in [0,T]}, \mathbb{P})\) - a filtered probability space (usual conditions)
- \((S_t)_{t \in [0,T]}\) - a continuous \((\mathcal{F}_t)_{t \in [0,T]}\)-semimartingale.
- Schachermayer (1995): if NA holds, there exists
 - a continuous local martingale \(M\), and
 - a predictable process \(\lambda\) such that \(\lambda^2 \cdot \langle M \rangle < \infty\) a.s., and

\[
S_t = M_t + \int_0^t \lambda_u d\langle M \rangle_u, \ t \in [0, T].
\]

- \((\lambda_t)_{t \in [0,T]}\) can be called the market price of risk - a sufficient statistic for pricing and utility maximization (not for hedging, though).
The model family I
Market Price of Risk

The model family

- \((\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in [0, T]}, \mathbb{P})\) - a filtered probability space (usual conditions)
- \((S_t)_{t \in [0, T]}\) - a continuous \((\mathcal{F}_t)_{t \in [0, T]}\)-semimartingale.
- Schachermayer (1995): if NA holds, there exists
 - a continuous local martingale \(M\), and
 - a predictable process \(\lambda\) such that \(\lambda^2 \cdot \langle M \rangle < \infty\) a.s., and

\[
S_t = M_t + \int_0^t \lambda_u \, d\langle M \rangle_u, \quad t \in [0, T].
\]

- \((\lambda_t)_{t \in [0, T]}\) can be called the market price of risk - a sufficient statistic for pricing and utility maximization (not for hedging, though).
The model family II
A parameterization

A parameterization

1. Pick a filtered probability space \((\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in [0, T]}, \mathbb{P})\), and a continuous local martingale \(M\).

2. Set \(\Lambda = \{\lambda : \text{predictable, } \lambda^2 \cdot \langle M \rangle < \infty, \text{ a.s.}\} = L(M)\).

3. Define \(S^\lambda_t = M_t + \lambda \cdot \langle M \rangle_t, \ t \in [0, T], (S^0)^\lambda \equiv 1\).

4. Solve the utility-maximization problem and for each \(\lambda \in \Lambda\) compute
 - \(u^\lambda(\cdot)\) - the value function
 - \(\hat{X}^\lambda_T\) - the optimal terminal wealth
 - the segment \([\mathcal{P}^\lambda, \mathcal{P}^\lambda]\) of MUBP.
The model family II
A parameterization

A parameterization

1. Pick a filtered probability space \((\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in [0, T]}, \mathbb{P})\), and a continuous local martingale \(M\).

2. Set \(\Lambda = \{\lambda : \text{predictable, } \lambda^2 \cdot \langle M \rangle < \infty, \ a.s. \} = L(M)\).

3. Define \(S^\lambda_t = M_t + \lambda \cdot \langle M \rangle_t, \ t \in [0, T], \ (S^0)^\lambda \equiv 1\).

4. Solve the utility-maximization problem and for each \(\lambda \in \Lambda\) compute
 - \(u^\lambda(\cdot)\) - the value function
 - \(\hat{X}_T^\lambda\) - the optimal terminal wealth
 - the segment \([\mathcal{P}^\lambda, \mathcal{P}^\lambda]\) of MUBP.
The model family II
A parameterization

Pick a filtered probability space \((\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\in[0,T]}, \mathbb{P})\), and a continuous local martingale \(M\).

Set \(\Lambda = \{\lambda : \text{predictable, } \lambda^2 \cdot \langle M \rangle < \infty, \text{ a.s.} \} = L(M)\).

Define \(S^\lambda_t = M_t + \lambda \cdot \langle M \rangle_t, \ t \in [0,T], \ (S^0)^\lambda \equiv 1\).

Solve the utility-maximization problem and for each \(\lambda \in \Lambda\) compute:

1. \(u^\lambda(\cdot)\) - the value function
2. \(\hat{X}^\lambda_T\) - the optimal terminal wealth
3. the segment \([\mathcal{P}^\lambda, \mathcal{P}^\lambda]\) of MUBP.
The model family II
A parameterization

A parameterization

1. Pick a filtered probability space \((\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in [0,T]}, \mathbb{P})\), and a continuous local martingale \(M\).

2. Set \(\Lambda = \{\lambda : \text{predictable, } \lambda^2 \cdot \langle M \rangle < \infty, \text{ a.s.} \} = L(M)\).

3. Define \(S_t^\lambda = M_t + \lambda \cdot \langle M \rangle_t, \ t \in [0, T], \ (S^0)^\lambda \equiv 1\).

4. Solve the utility-maximization problem and for each \(\lambda \in \Lambda\) compute
 - \(u^\lambda(\cdot)\) - the value function
 - \(\hat{X}_T^\lambda\) - the optimal terminal wealth
 - the segment \([\mathcal{P}^\lambda, \overline{\mathcal{P}}^\lambda]\) of MUBP.
The central problem

Questions reformulated

Find a natural pair of topologies on \(\Lambda \) and on the set \(\mathbb{L}^0 \) of finite random variables such that the mappings (correspondence)

1. \(\Lambda \ni \lambda \mapsto u^\lambda (x) \),
2. \(\Lambda \ni \lambda \mapsto \hat{X}^\lambda_t \), and
3. \(\Lambda \ni \lambda \mapsto [\mathcal{P}^\lambda, \overline{\mathcal{P}}^\lambda] \),

are continuous (hemi-continuous).
The central problem

Questions reformulated

Find a natural pair of topologies on Λ and on the set \mathbb{L}^0 of finite random variables such that the mappings (correspondence)

1. $\Lambda \ni \lambda \mapsto u^\lambda(x)$,
2. $\Lambda \ni \lambda \mapsto \hat{X}^\lambda_T$, and
3. $\Lambda \ni \lambda \mapsto [\mathcal{P}^\lambda, \overline{\mathcal{P}}^\lambda]$

are continuous (hemi-continuous).
The central problem

Questions reformulated

Find a natural pair of topologies on Λ and on the set \mathbb{L}^0 of finite random variables such that the mappings (correspondence)

1. $\Lambda \ni \lambda \mapsto u^\lambda(x)$,
2. $\Lambda \ni \lambda \mapsto \hat{X}^\lambda_T$, and
3. $\Lambda \ni \lambda \mapsto [\mathcal{P}^\lambda, \overline{\mathcal{P}}^\lambda]$,

are continuous (hemi-continuous).
The central problem

Questions reformulated

Find a natural pair of topologies on \(\Lambda \) and on the set \(\mathbb{L}^0 \) of finite random variables such that the mappings (correspondence)

1. \(\Lambda \ni \lambda \mapsto u^\lambda(x) \),
2. \(\Lambda \ni \lambda \mapsto \hat{X}_\lambda^T \), and
3. \(\Lambda \ni \lambda \mapsto [\mathcal{P}^\lambda, \overline{\mathcal{P}}^\lambda] \),

are continuous (hemi-continuous).
Existing results - a VERY limited survey

- **x-dependence** Kramkov and Schachermayer (1999), Kramkov and Sirbu (…), …
- **U-dependence** Jouini and Napp (2004), Carasus and Rásonyi (2005)
- **market-dependence** Hubalek and Schachermayer (1998), El-Karoui, Jeanblanc-Picqué and Shreve (1998), Prigent (2003)
Who did what

Existing results - a VERY limited survey

- **x-dependence** Kramkov and Schachermayer (1999), Kramkov and Sirbu (…), …

- **U-dependence** Jouini and Napp (2004), Carasus and Rásonyi (2005)

- **market-dependence** Hubalek and Schachermayer (1998), El-Karoui, Jeanblanc-Picqué and Shreve (1998), Prigent (2003)
Who did what

Existing results - a **VERY** limited survey

- **x-dependence** Kramkov and Schachermayer (1999), Kramkov and Sirbu (…), …
- **U-dependence** Jouini and Napp (2004), Carasus and Rásonyi (2005)
- **market-dependence** Hubalek and Schachermayer (1998), El-Karoui, Jeanblanc-Picqué and Shreve (1998), Prigent (2003)
Towards the main result

An example

\[U(x) = \log(x). \]
With \(Z(\lambda) = \mathcal{E}(-\lambda \cdot M)_T, \) \(||\lambda||_2^2 = \mathbb{E}[\int_0^T \lambda_u^2 \, d\langle M\rangle_u], \)

\[u^\lambda(x) = \log(x) + \frac{1}{2} ||\lambda||_2^2, \quad \hat{X}^\lambda_T = \frac{x}{Z(\lambda)}. \]

So, for convergence of \(u^\lambda, \) the topology on \(\Lambda \) should be aware of this.

Appropriate topologies I - we can do a little better:

- Fact: \(|| \cdot ||_2 \) convergence implies convergence in probability of \(Z(\lambda). \)
 Thus, \(\hat{X}^\lambda_T \) converges in probability, if \(\lambda \) converges in \(|| \cdot ||_2. \)
- A topology \(\tau \) on \(\Lambda \) is called *appropriate* if the mapping \(\lambda \mapsto Z(\lambda) \) is continuous in probability.
Towards the main result

An example

\[U(x) = \log(x). \] With \(Z(\lambda) = \mathcal{E}(-\lambda \cdot M)_T, \) \(\|\lambda\|_2^2 = \mathbb{E}[\int_0^T \lambda_u^2 \, d\langle M\rangle_u], \)

\[u^\lambda(x) = \log(x) + \frac{1}{2}\|\lambda\|_2^2, \quad \hat{X}_T^\lambda = \frac{x}{Z(\lambda)} \]

So, for convergence of \(u^\lambda, \) the topology on \(\Lambda \) should be aware of this.

Appropriate topologies I - we can do a little better:

- Fact: \(\| \cdot \|_2 \) convergence implies convergence in probability of \(Z(\lambda). \) Thus, \(\hat{X}_T^\lambda \) converges in probability, if \(\lambda \) converges in \(\| \cdot \|_2. \)

- A topology \(\tau \) on \(\Lambda \) is called *appropriate* if the mapping \(\lambda \mapsto Z(\lambda) \) is continuous in probability.
Towards the main result

An example

\[U(x) = \log(x). \text{ With } Z(\lambda) = \mathcal{E}(-\lambda \cdot M)_T, \|\lambda\|_2^2 = \mathbb{E}[\int_0^T \lambda_u^2 d\langle M\rangle_u], \]

\[u^\lambda(x) = \log(x) + \frac{1}{2}\|\lambda\|_2^2, \quad \hat{X}_T^\lambda = \frac{x}{Z(\lambda)} \]

So, for convergence of \(u^\lambda \), the topology on \(\Lambda \) should be aware of this.

Appropriate topologies I - we can do a little better:

- Fact: \(\| \cdot \|_2 \) convergence implies convergence in probability of \(Z(\lambda) \).
 Thus, \(\hat{X}_T^\lambda \) converges in probability, if \(\lambda \) converges in \(\| \cdot \|_2 \).

- A topology \(\tau \) on \(\Lambda \) is called \textit{appropriate} if the mapping \(\lambda \mapsto Z(\lambda) \) is continuous in probability.
Towards the main result

An example

\[U(x) = \log(x). \]
With \[Z(\lambda) = \mathcal{E}(-\lambda \cdot M)_T, \quad \|\lambda\|_2^2 = \mathbb{E}\left[\int_0^T \lambda_u^2 \, d\langle M \rangle_u \right], \]

\[u^\lambda(x) = \log(x) + \frac{1}{2}\|\lambda\|_2^2, \quad \hat{X}_T^\lambda = \frac{x}{Z(\lambda)} \]

So, for convergence of \(u^\lambda \), the topology on \(\Lambda \) should be aware of this.

Appropriate topologies I - we can do a little better:

- Fact: \(\| \cdot \|_2 \) convergence implies convergence in probability of \(Z(\lambda) \).
 Thus, \(\hat{X}_T^\lambda \) converges in probability, if \(\lambda \) converges in \(\| \cdot \|_2 \).

- A topology \(\tau \) on \(\Lambda \) is called appropriate if the mapping \(\lambda \mapsto Z(\lambda) \) is continuous in probability.
Towards the main result

An example

\(U(x) = \log(x) \). With \(Z(\lambda) = \mathcal{E}(-\lambda \cdot M)_T, \quad ||\lambda||_2^2 = \mathbb{E}\left[\int_0^T \lambda_\mu^2 \, d\langle M \rangle_\mu \right], \)

\[u^\lambda(x) = \log(x) + \frac{1}{2} ||\lambda||_2^2, \quad \hat{X}_T^\lambda = \frac{x}{Z(\lambda)} \]

So, for convergence of \(u^\lambda \), the topology on \(\Lambda \) should be aware of this.

Appropriate topologies I - we can do a little better:

- Fact: \(|| \cdot ||_2 \) convergence implies convergence in probability of \(Z(\lambda) \).

 Thus, \(\hat{X}_T^\lambda \) converges in probability, if \(\lambda \) converges in \(|| \cdot ||_2 \).

- A topology \(\tau \) on \(\Lambda \) is called appropriate if the mapping \(\lambda \mapsto Z(\lambda) \) is continuous in probability.
An example

A puzzling example

- Complete Itô-process market, 1-dim Brownian filtration,
 \[dS_t^\lambda = S_t^\lambda (\lambda_t \, dt + dB_t) \]

- Choose market-price-of-risk \(\lambda^n \) such that \(Z(\lambda_n) = \frac{1}{\mathbb{E}[f_n]} f_n \),

\[f^n(\omega) \triangleq \begin{cases}
 n & \text{if } B_T(\omega) \geq \alpha_n \\
 1 & \text{if } B_T(\omega) \in (\beta_n, \alpha_n) \\
 n^{-1} & \text{if } B_T(\omega) \leq \beta_n
\end{cases} \]

and \(p_n = \mathbb{P}[f^n = n] = \frac{1}{2} n^{-5}, \ q_n = \mathbb{P}[f^n = n^{-1}] = \frac{1}{2} n^{-3} \).

- Choice of \(p_n \) and \(q_n \) implies that \(\mathbb{E}[(Z(\lambda_n) - 1)^2] \to 0 \) and even \(\|\lambda_n\|_2 \to 0 \): markets converge towards \(dS_t = S_t \, dB_t \) in a very strong way (more than appropriately).
An example

A puzzling example

- Complete Itô-process market, 1-dim Brownian filtration,
 \[dS_t^\lambda = S_t^\lambda (\lambda_t dt + dB_t) \]
- Choose market-price-of-risk \(\lambda^n \) such that \(Z(\lambda_n) = \frac{1}{\mathbb{E}[f_n]} f_n \),
 \[
 f^n(\omega) \triangleq \begin{cases}
 n & \text{if } B_T(\omega) \geq \alpha_n \\
 1 & \text{if } B_T(\omega) \in (\beta_n, \alpha_n) \\
 n^{-1} & \text{if } B_T(\omega) \leq \beta_n
 \end{cases}
 \]
 and \(p_n = \mathbb{P}[f^n = n] = \frac{1}{2} n^{-5} \), \(q_n = \mathbb{P}[f^n = n^{-1}] = \frac{1}{2} n^{-3} \).
- Choice of \(p_n \) and \(q_n \) implies that \(\mathbb{E}[(Z(\lambda_n) - 1)^2] \to 0 \) and even \(\|\lambda_n\|_2 \to 0 \): markets converge towards \(dS_t = S_t dB_t \) in a very strong way (more than appropriately).
An example

A puzzling example

- Complete Itô-process market, 1-dim Brownian filtration,
 \[dS_t^\lambda = S_t^\lambda (\lambda_t \, dt + dB_t) \]
- Choose market-price-of-risk \(\lambda^n \) such that \(Z(\lambda_n) = \frac{1}{\mathbb{E}[f_n]} f_n \),
 \[f^n(\omega) \triangleq \begin{cases}
 n & \text{if } B_T(\omega) \geq \alpha_n \\
 1 & \text{if } B_T(\omega) \in (\beta_n, \alpha_n) \\
 n^{-1} & \text{if } B_T(\omega) \leq \beta_n
 \end{cases} \]
 and \(p_n = \mathbb{P}[f^n = n] = \frac{1}{2} n^{-5}, \) \(q_n = \mathbb{P}[f^n = n^{-1}] = \frac{1}{2} n^{-3} \).
- Choice of \(p_n \) and \(q_n \) implies that \(\mathbb{E}[(Z(\lambda_n) - 1)^2] \to 0 \) and even \(\|\lambda_n\|_2 \to 0 \): markets converge towards \(dS_t = S_t \, dB_t \) in a very strong way (more than appropriately).
An example II

Example cont’d

- Pick a power-utility $U(x) = \frac{4}{3}x^{3/4}$, and an initial wealth $x = 1$.
- The optimal terminal wealth is given by

$$\hat{X}_{T}^{\lambda_{n}} = I_{3/4}(y_{n}Z(\lambda_{n})) = y_{n}^{-4}(Z(\lambda_{n}))^{-4}, \quad y_{n}^{-4} = \frac{2}{3} + o(n),$$

so $\hat{X}_{T}^{\lambda_{n}} \to \frac{2}{3}$ in probability.
- In the limiting market, the price process S is a martingale, so the optimal policy is not to invest in it at all: $\hat{X}_{T} = 1$.
- Utility-maximization is not well-posed.
An example II

Example cont’d

- Pick a power-utility $U(x) = \frac{4}{3} x^{3/4}$, and an initial wealth $x = 1$.

- The optimal terminal wealth is given by

$$\hat{X}^\lambda_T = I_{3/4}(y_n Z(\lambda_n)) = y_n^{-4} (Z(\lambda_n))^{-4}, \quad y_n^{-4} = \frac{2}{3} + o(n),$$

so $\hat{X}^\lambda_T \rightarrow \frac{2}{3}$ in probability.

- In the limiting market, the price process S is a martingale, so the optimal policy is not to invest in it at all: $\hat{X}_T = 1$.

- Utility-maximization is not well-posed.
An example II

Example cont’d

- Pick a power-utility $U(x) = \frac{4}{3}x^{3/4}$, and an initial wealth $x = 1$.
- The optimal terminal wealth is given by

$$\hat{X}_T^{\lambda_n} = I_{3/4}(y_nZ(\lambda_n)) = y_n^{-4}(Z(\lambda_n))^{-4}, \quad y_n^{-4} = \frac{2}{3} + o(n),$$

so $\hat{X}_T^{\lambda_n} \to \frac{2}{3}$ in probability.

- In the limiting market, the price process S is a martingale, so the optimal policy is not to invest in it at all: $\hat{X}_T = 1$.
- Utility-maximization is not well-posed.
Example cont’d

- Pick a power-utility $U(x) = \frac{4}{3}x^{3/4}$, and an initial wealth $x = 1$.

- The optimal terminal wealth is given by

$$\hat{X}_T^{\lambda_n} = I_{3/4}(y_n Z(\lambda_n)) = y_n^{-4}(Z(\lambda_n))^{-4}, \quad y_n^{-4} = \frac{2}{3} + o(n),$$

so $\hat{X}_T^{\lambda_n} \to \frac{2}{3}$ in probability.

- In the limiting market, the price process S is a martingale, so the optimal policy is not to invest in it at all: $\hat{X}_T = 1$.

- Utility-maximization is not well-posed.
An example II

Example cont’d

- Pick a power-utility $U(x) = \frac{4}{3}x^{3/4}$, and an initial wealth $x = 1$.
- The optimal terminal wealth is given by

$$\hat{X}^{\lambda_n} = l_{3/4}(y_n Z(\lambda_n)) = y_n^{-4}(Z(\lambda_n))^{-4}, \quad y_n^{-4} = \frac{2}{3} + o(n),$$

so $\hat{X}^{\lambda_n} \rightarrow \frac{2}{3}$ in probability.

- In the limiting market, the price process S is a martingale, so the optimal policy is not to invest in it at all: $\hat{X}_T = 1$.

- Utility-maximization is not well-posed.
Towards the main results III

V-relative compactness

- **Legendre-Fenchel dual** $V : (0, \infty) \to \mathbb{R}$ of the utility U is given by

$$V(y) = \sup_{x > 0} (U(x) - xy).$$

- A subset Λ' of Λ is said to be \textit{V-relatively compact} if the family

$$\{ V^+(Z(\lambda)) : \lambda \in \Lambda' \}$$

is uniformly integrable.

- If U is bounded from above, the whole Λ is V-relatively compact.
Towards the main results III

V-relative compactness

- **Legendre-Fenchel dual** \(V : (0, \infty) \to \mathbb{R} \) of the utility \(U \) is given by
 \[
 V(y) = \sup_{x>0} (U(x) - xy).
 \]

- A subset \(\Lambda' \) of \(\Lambda \) is said to be **\(V \)-relatively compact** if the family
 \[
 \{ V^+(Z(\lambda)) : \lambda \in \Lambda' \}
 \]
 is uniformly integrable.

- If \(U \) is bounded from above, the whole \(\Lambda \) is **\(V \)-relatively compact**.
Towards the main results III

V-relative compactness

- *Legendre-Fenchel dual* $V : (0, \infty) \to \mathbb{R}$ of the utility U is given by

 $$V(y) = \sup_{x>0} (U(x) - xy).$$

- A subset Λ' of Λ is said to be *V-relatively compact* if the family

 $$\{ V^+(Z(\lambda)) : \lambda \in \Lambda' \}$$

 is uniformly integrable.

- If U is bounded from above, the whole Λ is V-relatively compact.
The main result

Theorem

Let $\Lambda' \subseteq \Lambda$ be V-relatively compact, and let τ be an appropriate topology on Λ. Then

- for any $\lambda \in \Lambda'$, the function $u^\lambda : (0, \infty) \rightarrow \mathbb{R}$ is finite-valued, and for each $x > 0$ there exists an a.s.-unique optimal terminal wealth $\hat{X}_{T}^{x, \lambda}$ for the utility maximization problem.

- the following mappings are jointly continuous

\[
\Lambda' \times (0, \infty) \ni (\lambda, x) \mapsto u^\lambda(x) \in \mathbb{R}, \text{ and } \\
\Lambda' \times (0, \infty) \ni (\lambda, x) \mapsto \hat{X}_{T}^{x, \lambda} \in \mathbb{L}^0_+
\]

- for a contingent claim $B \in \mathbb{L}^\infty$, the following correspondence is upper hemi-continuous (has closed graph)

\[
\Lambda' \times (0, \infty) \ni (\lambda, x) \mapsto [\mathcal{P}^\lambda(x, B), \overline{\mathcal{P}}^\lambda(x, B)] \subseteq \mathbb{R}
\]
The main result

Theorem

Let $\Lambda' \subseteq \Lambda$ be V-relatively compact, and let τ be an appropriate topology on Λ. Then

- for any $\lambda \in \Lambda'$, the function $u^\lambda : (0, \infty) \to \mathbb{R}$ is finite-valued, and for each $x > 0$ there exists an a.s.-unique optimal terminal wealth $\hat{X}_T^{x;\lambda}$ for the utility maximization problem.
- the following mappings are jointly continuous

\[
\Lambda' \times (0, \infty) \ni (\lambda, x) \mapsto u^\lambda(x) \in \mathbb{R}, \quad \text{and}
\]
\[
\Lambda' \times (0, \infty) \ni (\lambda, x) \mapsto \hat{X}_T^{x;\lambda} \in \mathbb{L}^0_+
\]

- for a contingent claim $B \in \mathbb{L}^\infty$, the following correspondence is upper hemi-continuous (has closed graph)

\[
\Lambda' \times (0, \infty) \ni (\lambda, x) \mapsto [\mathcal{P}^\lambda(x, B), \overline{\mathcal{P}}^\lambda(x, B)] \subseteq \mathbb{R}
\]
The main result

Theorem

Let $\Lambda' \subseteq \Lambda$ be V-relatively compact, and let τ be an appropriate topology on Λ. Then

- for any $\lambda \in \Lambda'$, the function $u^\lambda : (0, \infty) \rightarrow \mathbb{R}$ is finite-valued, and for each $x > 0$ there exists an a.s.-unique optimal terminal wealth $\hat{X}_{T}^{x;\lambda}$ for the utility maximization problem.

- the following mappings are jointly continuous

 $$\Lambda' \times (0, \infty) \ni (\lambda, x) \mapsto u^\lambda(x) \in \mathbb{R},$$

 $$\Lambda' \times (0, \infty) \ni (\lambda, x) \mapsto \hat{X}_{T}^{x;\lambda} \in \mathbb{L}_{+}^0$$

- for a contingent claim $B \in \mathbb{L}\infty$, the following correspondence is upper hemi-continuous (has closed graph)

 $$\Lambda' \times (0, \infty) \ni (\lambda, x) \mapsto [\mathcal{P}^\lambda(x, B), \overline{\mathcal{P}}^\lambda(x, B)] \subseteq \mathbb{R}$$
| Outline | |
|-------------------------------|-----------------------------|
| 1 Generalia | |
| 2 Well-posedness | |
| 3 Well-posedness: what we actually can do | |
| 4 Under the hood | |
| 5 Summary and Extensions | |
A quick glance under

Duality

- The dual problem is relaxed:
 \[\nu^\lambda(y) = \inf_{Q \in D^\lambda} \mathbb{V}(yQ) = \inf_{Q \in D^\lambda} \mathbb{E}[\mathbb{V}(y \frac{dQ}{dP})], \]
 where \(D^\lambda \) is the weak-* closure of \(M^\lambda \) (martingale “measures”) in \((L^\infty)^*\): dual elements are finitely-additive measures.

- Compactness of \(D^\lambda \) makes things happen (lower semi-continuity becomes full continuity)

Structure of \(M^\lambda \)

A nice multiplicative structure

\[\left\{ \frac{dQ}{dP} : Q \in M^\lambda \right\}^* = \{ Z(\lambda)H_T : \langle H, M \rangle = 0 \}. \]

of \(M^\lambda \) - only in the continuous-price-process case.
A quick glance under

Duality

- The dual problem is relaxed:
 \[\nu^\lambda(y) = \inf_{Q \in D^\lambda} V(yQ) = \inf_{Q \in D^\lambda} \mathbb{E}[V(y \frac{dQ}{dP})], \]
 where \(D^\lambda \) is the weak-* closure of \(\mathcal{M}^\lambda \) (martingale “measures”) in \((L^\infty)^* \): dual elements are finitely-additive measures.

- Compactness of \(D^\lambda \) makes things happen (lower semi-continuity becomes full continuity)

Structure of \(\mathcal{M}^\lambda \)

A nice multiplicative structure

\[\left\{ \frac{dQ}{dP} : Q \in \mathcal{M}^\lambda \right\} = \{ Z(\lambda)H_T : \langle H, M \rangle = 0 \}. \]

of \(\mathcal{M}^\lambda \) - only in the continuous-price-process case.
A quick glance under

Duality

- The dual problem is relaxed:
\[\nu^\lambda(y) = \inf_{Q \in D^\lambda} \mathbb{V}(yQ) = \inf_{Q \in D^\lambda} \mathbb{E}[\mathbb{V}(y \frac{dQ}{dP})], \]
where \(D^\lambda \) is the weak-* closure of \(M^\lambda \) (martingale "measures") in \((L^\infty)^*\): dual elements are finitely-additive measures.

- Compactness of \(D^\lambda \) makes things happen (lower semi-continuity becomes full continuity)

Structure of \(M^\lambda \)

A nice multiplicative structure

\[\left\{ \frac{dQ}{dP} : Q \in M^\lambda \right\}'' = '' \{ Z(\lambda)H_T : \langle H, M \rangle \equiv 0 \}. \]

of \(M^\lambda \) - only in the continuous-price-process case.
Still under the hood: two results

Theorem

The (\mathbb{P}-Radon-Nikodym derivative of the) regular part of the solution optimal \hat{Q}^* is the last element of a local martingale (as opposed to a supermartingale). In fact, any maximal regular part is!

Theorem

Let $\hat{D}^\lambda(y)$ denote the set of all optimal solutions $\hat{Q} \in D^\lambda$ of the dual problem. Then the interval $[\mathcal{P}^\lambda(x, B), \overline{\mathcal{P}}^\lambda(x, B)]$ of the MUBP for a contingent claim $B \in L^\infty$ is exactly equal to

$$[\inf_{Q \in \hat{D}^\lambda(y)} \langle Q, B \rangle, \sup_{Q \in \hat{D}^\lambda(y)} \langle Q, B \rangle],$$

where $y = (u^\lambda)'(x)$.
Still under the hood: two results

Theorem

The (\mathbb{P}-Radon-Nikodym derivative of the) regular part of the solution optimal \hat{Q}^* is the last element of a local martingale (as opposed to a supermartingale). In fact, any maximal regular part is!

Theorem

Let $\hat{D}^\lambda(y)$ denote the set of all optimal solutions $\hat{Q} \in D^\lambda$ of the dual problem. Then the interval $[\overline{P}^\lambda(x, B), \overline{P}^\lambda(x, B)]$ of the MUBP for a contingent claim $B \in L^\infty$ is exactly equal to

$$[\inf_{\hat{Q} \in \hat{D}^\lambda(y)} \langle \hat{Q}, B \rangle, \sup_{\hat{Q} \in \hat{D}^\lambda(y)} \langle \hat{Q}, B \rangle],$$

where $y = (u^\lambda)'(x)$.
Outline

1. Generalia
2. Well-posedness
3. Well-posedness: what we actually can do
4. Under the hood
5. Summary and Extensions
Summary and Extensions

Messages

- Oversensitivity to initial data is bad - requires study.
- Care is needed when utility maximization is used for investment/pricing.
- Estimate your parameters with a quadratic loss function on λ.

Outlook

- How about jumps? Other market perturbations? Random endowment?
- Zeroth order (continuity) \rightarrow First order (differentiability)?
- Phase transition from (in)complete to (in)complete?
Summary and Extensions

Messages
- Oversensitivity to initial data is bad - requires study.
- Care is needed when utility maximization is used for investment/pricing.
- Estimate your parameters with a quadratic loss function on λ.

Outlook
- How about jumps? Other market perturbations? Random endowment?
- Zeroth order (continuity) \rightarrow First order (differentiability)?
- Phase transition from (in)complete to (in)complete?
Summary and Extensions

Messages

- Oversensitivity to initial data is bad - requires study.
- Care is needed when utility maximization is used for investment/pricing.
- Estimate your parameters with a quadratic loss function on λ.

Outlook

- How about jumps? Other market perturbations? Random endowment?
- Zeroth order (continuity) \rightarrow First order (differentiability)?
- Phase transition from (in)complete to (in)complete?
Summary and Extensions

Messages

- Oversensitivity to initial data is bad - requires study.
- Care is needed when utility maximization is used for investment/pricing.
- Estimate your parameters with a quadratic loss function on λ.

Outlook

- How about jumps? Other market perturbations? Random endowment?
- Zeroth order (continuity) \rightarrow First order (differentiability)?
- Phase transition from (in)complete to (in)complete?
Summary and Extensions

Messages
- Oversensitivity to initial data is bad - requires study.
- Care is needed when utility maximization is used for investment/pricing.
- Estimate your parameters with a quadratic loss function on λ.

Outlook
- How about jumps? Other market perturbations? Random endowment?
- Zeroth order (continuity) \rightarrow First order (differentiability)?
- Phase transition from (in)complete to (in)complete?
Summary and Extensions

Messages

- Oversensitivity to initial data is bad - requires study.
- Care is needed when utility maximization is used for investment/pricing.
- Estimate your parameters with a quadratic loss function on λ.

Outlook

- How about jumps? Other market perturbations? Random endowment?
- Zeroth order (continuity) \rightarrow First order (differentiability)?
- Phase transition from (in)complete to (in)complete?
Summary and Extensions

Messages
- Oversensitivity to initial data is bad - requires study.
- Care is needed when utility maximization is used for investment/pricing.
- Estimate your parameters with a quadratic loss function on λ.

Outlook
- How about jumps? Other market perturbations? Random endowment?
- Zeroth order (continuity) \rightarrow First order (differentiability)?
- Phase transition from (in)complete to (in)complete?