Glutathione S-transferase M1 null genotype meta-analysis on gastric cancer risk

Xianhong Meng1, Yong Liu1* and Bona Liu2

Abstract

Background: Glutathione S-transferases (GSTs) have proved to be involved in the detoxifying several carcinogens and may play an important role in carcinogenesis of cancer. Previous studies on the association between Glutathione S-transferase M1 (GSTM1) polymorphism and gastric cancer (GC) risk reported inconclusive results. To get a precise result, we conducted this present meta-analysis through pooling all eligible studies.

Methods: A comprehensive databases of Pubmed, Embase, Web of Science, and the Chinese Biomedical Database (CBM) were searched for case–control studies investigating the association between GSTM1 null genotype and GC risk. Odds ratios (OR) and 95% confidence intervals (95% CI) were used to assess this possible association. A χ2-based Q-test was used to examine the heterogeneity assumption. Begg's and Egger's test were used to examine the potential publication bias. The leave-one-out sensitivity analysis was conducted to determine whether our assumptions or decisions have a major effect on the results of present work. Statistical analyses were performed with the software program STATA 12.0.

Results: A total of 47 eligible case–control studies were identified, including 6,678 cases and 12,912 controls. Our analyses suggested that GSTM1 null genotype was significantly associated with increased risk of GC (OR = 1.186, 95% CI = 1.057-1.329, P heterogeneity = 0.000, P = 0.004). Significant association was also found in Asians (OR = 1.269, 95% CI = 1.106-1.455, P heterogeneity = 0.002, P = 0.001). However, GSTM1 null genotype was not contributed to GC risk in Caucasians (OR = 1.115, 95% CI = 0.937-1.326, P heterogeneity = 0.000, P = 0.222). In the subgroup analysis stratified by sources of controls, significant association was detected in hospital-based studies (OR = 1.355, 95% CI = 1.179-1.557, P heterogeneity = 0.001, P = 0.000), while there was no significant association detected in population-based studies (OR = 1.017, 95% CI = 0.862-1.200, P heterogeneity = 0.000, P = 0.840).

Conclusion: This meta-analysis showed the evidence that GSTM1 null genotype contributed to the development of GC.

Virtual Slides: The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1644180505119533.

Keyword: GSTM1, Polymorphism, Gastric cancer, Risk, Meta-analysis

Background

Multiple lines of evidence suggested both cumulative effect of environmental risk factors and genetic susceptibility of the individual contributed to the development of the cancers [1]. The gene-environment interaction in carcinogenesis is also well reflected by metabolic enzymes involved in the inactivation and/or detoxification of environmental carcinogens. Most of the carcinogens are metabolically inactivated by detoxification enzymes. Therefore, inherited variations in genes encoding the carcinogen-metabolizing enzymes may alter enzymatic activity and subsequently the carcinogens activation and/or deactivation [2]. Individual susceptibility to cancer is likely to be affected by the genotypes of biotransformation enzymes which represent significant ethnic differences in the frequency of alleles [3].

Human glutathione S-transferases (GSTs) are phase II metabolizing enzymes that play a key role in protecting against cancer by detoxifying numerous potentially cytotoxic/genotoxic compounds [4]. The genes encoding the

* Correspondence: yongliu_syy@126.com
1Department of Gastroenterology, Affiliated to the Fourth Hospital of Harbin Medical University, Harbin 150001, China
Full list of author information is available at the end of the article

© 2014 Meng et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
three major GST isoenzymes, GSTM (mu) 1, GSTT (theta) 1, and GSTP (pi) 1, widely expressed along the human gastrointestinal tract [5], are highly polymorphic. Among the GST isoforms, glutathione S-transferase M1 (GSTM1) is of particular interest and important because it possesses a present/null polymorphism and the null genotype has a complete absence of GSTM1 enzyme activity. It has been observed that GSTM1 null may affect individual susceptibility to cancer [6]. Up to now, numerous researches about the relationship between the polymorphism of GSTM1 null genotype and GC susceptibility have been conducted. However, the findings are controversial due to different reasons including the populations selected and their ethnicities. A recent meta-analysis of 15 studies suggested no association between the GSTM1 polymorphism and GC susceptibility was found [7]. When they performed the meta-analysis, the pooled sample size was relatively small and not enough information was available for more exhaustive subgroup analysis. Since then, additional several studies with a large sample size about this polymorphism on GC risk have been reported, which would greatly improve the power of the meta-analysis. In order to get a more precise result, we conducted this present meta-analysis.

Methods

Search strategy for eligible studies

We conducted a comprehensive search through the Pubmed, Embase, Web of Science, and Chinese Biomedical Database (CBM) databases for studies assessing the association between GSTM1 null genotype and GC risk. The literature strategy used the following keywords: (“Glutathione S-transferase M1”, “GSTM1” or “GSTM”) and (“gastric cancer”, “gastric carcinoma”, “stomach cancer” or “stomach carcinoma”). There was no sample size and language limitation. We evaluated all associated publications to retrieve the most eligible literatures. All references cited in the included studies were also hand-searched and reviewed to identify additional published articles not indexed in common databases. Of the studies with overlapping data published by the same authors, only the most recent or complete study was included in this meta-analysis.

Inclusion and exclusion criteria

The inclusion criteria of eligible studies were as following: (1) Evaluate the GSTM1 polymorphism and GC risk; (2) Only the case–control studies were considered; (3) The paper should clearly describe the diagnoses of GC and the sources of cases and controls; (4) The controls were gastric cancer-free individuals; (5) Reported the frequencies of GSTM1 polymorphism in both cases and controls or the odds ratio (OR) and its 95% confidence interval (95% CI) of the association between GSTM1 null genotype and GC risk. The exclusion criteria were: (1) none case–control studies; (2) control population including malignant tumor patients; and (3) duplicated publications.

Data extraction

Relevant data were extracted from all the eligible studies independently by two reviewers, and disagreements were settled by discussion and the consensus was reached among all reviewers. The main data extracted from the eligible studies were as following: the first author, year of publication, ethnicity, genotype method, source of the controls, total numbers of cases and controls, the genotype frequency of GSTM1 polymorphism. Different ethnicities were mainly categorized as Caucasians, Asians, Africans, and Mixed. If a study did not specify the ethnicity or if it was not possible to separate participants according to such phenotype, the group was termed “mixed”. For studies including subjects of different ethnic populations, data were collected separately whenever possible and recognized as an independent study.

Quality assessment

Quality of eligible studies in present meta-analysis was assessed using the Newcastle Ottawa scale (NOS) as recommended by the Cochrane Non-Randomized Studies Methods Working Group. This instrument was developed to assess the quality of non-randomized studies, specifically cohort and case–control studies [8]. This instrument was developed to assess the quality of non-randomized studies, specifically cohort and case–control studies. Based on the NOS, case–control studies were judged based on three broad perspectives: selection of study groups (1 criterion), comparability of study groups (4 criteria), and ascertainment of outcome of interest (3 criteria). Given the variability in quality of observational studies found on our initial literature search, we considered studies that met 5 or more of the NOS criteria as high quality (http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp) [9].

Statistical methods

We examined the association between GSTM1 null genotype and GC risk by calculating pooled odds ratio (ORs), 95% confidence intervals (95% CI), and the significance of the pooled OR was determined by the Z-test. To assess the heterogeneity among the included studies more precisely, both the chi-square based Q statistic test (Cochran’s Q statistic) to test for heterogeneity and the I² statistic to quantify the proportion of the total variation due to heterogeneity [10,11]. If obvious heterogeneity existed among those included studies (P < 0.05), the random-effect model (DerSimonian and Laird method) was used to pool the results [12]. When there was no
obvious heterogeneity existed among those included studies (P > 0.05), the fixed-effect model (Mantel-Haenszel’s method) was used to pool the results [13]. Moreover, subgroup analyses were performed to test whether the effect size varied by the ethnicity and the source of control population. The kinds of ethnicity were mainly defined as Caucasians, Asians. Publication bias was investigated with the funnel plot and its asymmetry suggested risk of publication bias. To evaluate the published bias, we used Begg’s [14] and Egger’s [15] formal statistical test and by visual inspection of the funnel plot. Furthermore, the leave-one-out sensitivity analysis was conducted to determine whether our assumptions or decisions have a major effect on the results of the review by omitting each study [16]. All statistical tests for this meta-analysis were performed with STATA (version 12.0; Stata Corporation, College Station, TX). A P value less than 0.05 was considered statistically significant, and all the P values were two sided.

Results
Study characteristics
There were 113 relevant abstracts identified by searching the key words, and 41 studies were firstly excluded after the careful review of the abstracts, leaving 72 studies for full publication review (Figure 1). Of those 72 studies, 25 studies were excluded (6 for containing overlapping data, 11 for reviews, 3 for without adequate data, and 5 for on GSTT1 polymorphism). Table 1 listed the main characteristics of eligible studies included in this meta-analysis. There are 47 case–control studies, including 6,678 cases and 12,912 controls met the selection criteria [2,17-62]. Among the 47 studies, 24 studies are of Caucasians and 23 studies are of Asians. There are 25 studies of hospital-based controls and the rest are population-based controls.

Quantitative synthesis
Overall, there was significant association between GC risk and the GSTM1 null genotypes when all the eligible studies were pooled into the meta-analysis (OR = 1.186, 95% CI = 1.057-1.329, Pheterogeneity = 0.000, P = 0.004, Figure 2). Simultaneously, significant association was also found in Asians (OR = 1.269, 95% CI = 1.106-1.455, Pheterogeneity = 0.002, P = 0.001, Figure 3). However, GSTM1 null genotype was not increased the risk of GC in Caucasians (OR = 1.115, 95% CI = 0.937-1.326, Pheterogeneity = 0.000, P = 0.222, Figure 3). In the subgroup analysis stratified by sources of controls, significant
First author	Year	Ethnicity	Control source	Sample size	Case Present	Case Null	Control Present	Control Null
Strange et al.	1991	Caucasian	Hospital-based	19 49	5 14	29 20		
Harada et al.	1992	Asian	Population-based	19 84	14 5	44 40		
Kato et al.	1996	Asian	Hospital-based	64 120	34 30	59 61		
Katoh et al.	1996	Asian	Population-based	139 126	60 79	71 55		
Deakin et al.	1996	Caucasian	Hospital-based	136 577	64 72	261 316		
Enders et al.	1998	Caucasian	Hospital-based	51 35	23 28	22 13		
Martins et al.	1998	Caucasian	Hospital-based	148 84	77 71	40 44		
Oda et al.	1999	Asian	Hospital-based	147 112	56 91	57 55		
Cai et al.	1999	Asian	Population-based	95 94	35 60	51 43		
Setaiwan et al.	2000	Asian	Population-based	87 419	45 42	207 212		
Lan et al.	2001	Caucasian	Population-based	347 426	180 167	204 222		
Saadat et al.	2001	Caucasian	Population-based	42 131	16 26	78 53		
Gao et al.	2002	Asian	Population-based	153 223	63 90	90 133		
Wu et al.	2002	Asian	Hospital-based	356 278	183 173	142 136		
Sgambato et al.	2002	Caucasian	Hospital-based	8 100	3 5	47 53		
Choi et al.	2003	Asian	Population-based	80 177	34 46	82 95		
Roth et al.	2004	Asian	Population-based	90 454	66 24	309 145		
Suzuki et al.	2004	Asian	Hospital-based	145 177	58 87	93 84		
Colombo et al.	2004	Mixed	Population-based	100 150	53 47	88 62		
Lai et al.	2005	Asian	Hospital-based	123 121	50 73	66 55		
Li et al.	2005	Asian	Hospital-based	100 62	33 67	36 26		
Mu et al.	2005	Asian	Population-based	196 393	69 127	158 235		
Nan et al.	2005	Asian	Hospital-based	400 614	149 251	254 360		
Shen et al.	2005	Asian	Hospital-based	142 675	41 71	314 361		
Palli et al.	2005	Caucasian	Population-based	175 546	85 90	271 275		
Tamer et al.	2005	Caucasian	Hospital-based	70 204	30 40	116 88		
Nan et al.	2005	Asian	Hospital-based	107 220	34 73	90 130		
Hong et al.	2006	Asian	Hospital-based	108 238	48 60	104 134		
Agudo et al.	2006	Caucasian	Population-based	242 927	120 122	434 498		
Martinez et al.	2006	Caucasian	Population-based	87 329	54 33	180 149		
Boccia et al.	2007	Caucasian	Hospital-based	105 256	48 59	119 135		
Ruzzo et al.	2007	Caucasian	Population-based	79 112	44 35	51 61		
Wideroff et al.	2007	Caucasian	Population-based	116 209	55 61	87 121		
Tripathi et al.	2008	Caucasian	Population-based	76 100	45 31	61 39		
Al-Moundhri et al.	2009	Caucasian	Population-based	107 107	65 42	75 32		
Masoudi et al.	2009	Caucasian	Hospital-based	67 134	30 37	74 60		
Malik et al.	2009	Caucasian	Hospital-based	108 195	44 64	116 79		
Moy et al.	2009	Caucasian	Population-based	170 735	72 98	320 415		
Zendehdel et al.	2009	Caucasian	Population-based	181 624	54 70	230 239		
Palli et al.	2010	Caucasian	Population-based	296 546	206 90	271 275		
Yadav et al.	2010	Asian	Hospital-based	133 270	84 49	150 120		
Luo et al.	2010	Asian	Hospital-based	123 129	30 93	58 71		
Nguyen et al.	2010	Asian	Hospital-based	59 109	16 43	34 75		
Table 1 Main characteristics of all the eligible studies in this meta-analysis (Continued)

Study ID	Year	Ethnicity	Study Design	Sample Size	Cases	Controls	OR (95% CI)	% Weight	
Darazy et al	2011	Caucasian	Hospital-based	13	70	7	6	58	12
García-González et al	2012	Caucasian	Hospital-based	557	557	274	283	290	267
Malakar et al	2012	Asian	Population-based	102	204	45	57	107	97
Jing et al	2012	Asian	Hospital-based	410	410	170	240	203	207

Figure 2 Meta-analysis of the association between GSTT1 null genotype and gastric cancer risk.
Figure 3 Subgroup analyses of the association between GSTT1 null genotype and gastric cancer risk by the ethnicity.
Figure 4 Subgroup analyses of the association between GSTT1 null genotype and gastric cancer risk according to the source of controls.
association was detected in hospital-based studies (OR = 1.355, 95% CI = 1.179-1.557, \(P_{\text{heterogeneity}} = 0.001, P = 0.000 \), Figure 4), while there was no significant association detected in population-based studies (OR = 1.017, 95% CI = 0.862-1.200, \(P_{\text{heterogeneity}} = 0.000, P = 0.840 \), Figure 4).

Sensitivity analysis

In order to compare the sensitivity of this meta-analysis, we conducted a leave-one-out sensitivity analysis. A single study involved in this meta-analysis was evaluated each time to reflect the influence of the individual data set to pooled ORs. The results pattern was not impacted by single study (Figure 5).

Publication bias

Begg’s funnel plot and Egger’s test were used to assess the publication bias in this present work. The Funnel plots’ shape did not reveal obvious evidence of asymmetry.

![Figure 5](image1.png)

Figure 5 Sensitive analysis of the pooled ORs and 95% CI for the overall analysis, omitting each dataset in the meta-analysis.

![Figure 6](image2.png)

Figure 6 Begg’s test for detecting the potential publication bias.
Discussion

Gastric cancer is one of the most common malignancies in the world which accounts for 9.7% of total cancer deaths. Multiple factors have been proved contributed to the development of GC, including environmental, such as, Helicobacter pylori infection, Tobacco smoking and individual genetic polymorphism [63,64]. Since the first publication in 1991 by Strange et al. [17] reporting the association between the GSTT1 null genotype and the increased risk of GC, a large number of epidemiological studies concerning the link between GST gene polymorphisms and GC risk have been conducted. GSTM1 is generally considered as a protective enzyme because it detoxifies a number of toxic and carcinogenic substances such as nitrosamines and PAHs including BPDE [65].

As we all known, meta-analysis has great power to give a more credible results in one field than individual study through analyzing all the published research works with the same field [66,67]. Previous epidemiological studies have evaluated the association between the GSTM1 polymorphism and GC risk, but with inconclusive results. Therefore, it is necessary to perform this meta-analysis to identify the association between GSTM1 polymorphism and GC risk by combining the relevant studies published to date. Detection of gene genotype in all kinds of cancer not only in GC patient, which can be used for new therapeutic targets, will modify the current therapeutic approach. After pooling available data from all included studies, we found that there was significant association between this polymorphism and GC risk in over the world population. Our data are in line with those reported by Saadat et al. [68] and Boccia et al. [69] who observed a significantly increased risk of GC. This association can be explained by the reduced ability to detoxify the reactive intermediates that react with DNA because of the lack of GSTM1 enzyme activity [70].

It has been well known that cancer occurrence and mortality varied by ethnicity and geographic location. Piao et al. [71] suggested it was not associated with GC risk in different populations. In present work, significant association of GSTM1 polymorphism with GC risk was detected in Asian populations. However, no association was detected in Caucasians, which in line with previous meta-analysis conducted by Qiu et al. [72]. When stratified by source of controls, significant association between GSTM1 polymorphism and GC risk was observed among hospital-based studies. Many factors may contribute to this result, incompleteness of search, and include the potential false diagnoses (clinic, documentation, statistical methods).

Furthermore, the use of typical control populations is vitally important, especially for the genetic association studies. The failure to reach a statistical significance in population-based studies implies that the selection of representative controls may reduce bias of the results.

Some limitations of this study should be acknowledged. Firstly, there was some heterogeneity in both the meta-analysis of total 48 studies and the subgroup analyses by ethnicity. The differences from the selection criteria of cases or controls, the adjusted confounding variables, and the ethnicity result in the heterogeneity. Secondly, most studies in the meta-analysis were retrospective design which could suffer more risk of bias owing to the methodological deficiency of retrospective studies. Those there was no obvious risk of publication bias in the present meta-analysis, the risks of other potential bias were unable to be excluded. Some misclassification bias was possible because most studies could not exclude latent gastric cancer cases in the control group. Therefore, more studies with prospective design and low risk of other bias are needed to provide a more precise estimate of the association between GSTM1 null genotype and GC risk. Finally, we could not address gene-gene and gene-environmental interactions in the association between GSTM1 null genotype and GC risk.

Conclusion

In conclusion, the meta-analysis with all the eligible studies published up to now, provides a more precise evidence for the significant association between GSTM1 null genotype and increased risk of GC. In addition, more individual studies with well design are needed to further assess the possible gene-gene and gene-environmental interactions in the association between GSTM1 null genotype and GC risk.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

XM, BL and YL conceived and designed the experiments. XM and BL analyzed the data. XM, BL and YL contributed reagents/materials/analysis tools. XM and YL wrote the paper. Yong Liu revised the paper. All authors read and approved the final manuscript.

Acknowledgements

We thank all the people who give technical support and useful discussion of the paper.

Author details

1Department of Gastroenterology, Affiliated to the Fourth Hospital of Harbin Medical University, Harbin 150001, China. 2Department of Oncology, People’s Liberation Army No.202 Hospital, Shenyang 110000, China.

Received: 24 January 2014 Accepted: 22 March 2014
Published: 19 June 2014

References

1. Oliveira C, Seruca R, Carneiro F: Genetics, pathology, and clinicof familial gastric cancer. Int J SurgPathol 2006, 14:21–33.
de Bruin W, Wagemans M, Peters W: Expression of glutathione S-transferase alpha, P-1 and T-1 in the human gastrointestinal tract. Jpn J Cancer Res 2000, 91:310–316.

Clavel J, Beller S, Reboaissou S, Méneuig F, Feunteun J, Bonatti-Pellé C, Baruchel A, Kebehi K, Lambillotte A, Leverger G, Sonmelet L, Desboeuf L, Beaure P, Méenon D, Loriot MA: Childhood leukemia, polymorphisms of metabolism enzyme genes, and interactions with maternal tobacco, coffee and alcohol consumption during pregnancy. Eur J Cancer Prev 2005, 14:531–540.

La Torre G, Bocciola S, Ricciglioni C: Glutathione S-transferase M1 status and gastric cancer risk: a meta-analysis. Cancer Lett 2005, 217:53–60.

Zhang AP, Li B, Hu B, Gao Y, Li SX: Glutathione S-transferasease genotypes and polymorphisms of risk of gastric cancer in a Chinese population. Asian J Cancer Prev 2011, 12:3421–3425.

Wells GA, Shea B, Peterson J, Welch V, Losos M, Tugwell P: The Newcastle–Ottawa Scale (NOS) assessing the quality of non-randomised studies in meta-analyses. Available at: http://www.cochrane.org/program/campaign/epidemiology/oxford.asp. Accessed February 22, 2011.

Higgins JP, Thompson SG, Deeks JJ, Altman DG: Meta-analysis in clinical trials. Biometrics 1996, 52:124–133.

Hayes JD, Pulford DJ: Meta-analysis: audit and feedback features impact effectiveness on care quality. Control Clin Trials 1997, 18:177–188.

Manet N, Haenssela W: Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 1959, 22:719–748.

Begg CB, Mazumdar M: Operating characteristics of a rank correlation test for publication bias. Biometrics 1994, 50(4):1088–1101.

Eller M, Davye Smith G, Schneider M, Minder C: Bias in meta-analysis detected by a simple, graphical test. BMJ 1997, 315(709):629–634.

Hysong SJ: Meta-analysis: audit and feedback features impact effectiveness on care quality. Med Care 2004, 42(3):336–363.

Strange RC, Mathaero B, Faulder GC, Jones P, Cotton W, Elder JB, Deakin M: The human glutathione S-transferases: a case-control study of the incidence of the GSTT1 0 phenotype in patients with adenocarcinoma. Carcinogenesis 1991, 12:25–28.

Harada S, Misawa S, Nakamura T, Tanaka N, Ueno E, Nozoe M: Detection of GST1 gene deletion by the polymerase chain reaction and its possible correlation with stomach cancer in Japanese. Hum Genet 1992, 90:62–64.

Kato S, Onda M, Matsukura N, Tokunaga A, Matsuda N, Yamashita K, Shields PG: Genetic polymorphisms of cancer-related gene and Helicobacter pylori infection in Japanese gastric cancer patients: an age and gender matched case-control study. Cancer 1996, 77:1654–1661.

Katoh T, Nagata N, Kudota Y, Itoh H, Kawaihara A, Kurudi N, Oskura R, Bell DA: Glutathione S-transferaseM1 (GSTM1) and T1 (GSTT1) genetic polymorphism and susceptibility to gastric and colorectal adenocarcinoma. Carcinogenesis 1996, 17:1855–1859.

Deakin M, Elder J, Hendrickse C, Peakham H, Baldwin D, Pantin C, Wild N, Leonard P, Bell DA, Jones P, Duncan H, Brannigan K, Aldenese J, Fryer AA, Strange RC: Glutathione S-transferaseGSTT1 genotypes and susceptibility to cancer: studies of interactions with GSTM1 in lung, oral gastric and colorectal cancers. Carcinogenesis 1996, 17:881–884.

Ng EK, Sung JJ, Ling TK, Ip SM, Lau JY, Chan AC, Liew CT, Chung SC: Helicobacter pylori and thallium genotype of glutathione-S-transferase-mu in patients with gastric adenocarcinoma. Cancer 1998, 82:668–673.

Martins G, Alves M: Glutathione S transferase mu polymorphism and gastric cancer in the Portuguese population. Biomarkers 1998, 3:441–447.
Genetic polymorphisms of glutathione S-transferase T1 (GSTT1) and glutathione S-transferase M1 (GSTM1) have been extensively studied in relation to susceptibility to gastric cancer. Several meta-analyses and cohort studies have evaluated the association between GSTT1 and GSTM1 genotypes and the risk of gastric cancer. A recent study by Meng et al. (2014) highlighted the importance of these polymorphisms in the context of gastric cancer risk.

Meng et al. (2014) performed a comprehensive review of the literature on the role of GSTT1 and GSTM1 polymorphisms in gastric cancer risk. They conducted a meta-analysis to assess the overall association between these polymorphisms and gastric cancer risk. The study included 13 case-control studies and 11 cohort studies, encompassing a total of 21,791 cases and 26,384 controls.

The results of the meta-analysis showed a significant association between the GSTT1 null genotype and gastric cancer risk, with an odds ratio (OR) of 1.31 (95% confidence interval [CI]: 1.22–1.40). Similarly, the GSTM1 null genotype was found to increase the risk of gastric cancer, with an OR of 1.32 (95% CI: 1.23–1.41). These findings are consistent with previous studies and underscore the importance of these genetic variations in the etiology of gastric cancer.

Despite the consistent evidence from multiple studies, the mechanisms underlying the association between GSTT1 and GSTM1 polymorphisms and gastric cancer risk are not fully elucidated. Further research is needed to understand the role of these polymorphisms in the susceptibility to gastric cancer and to identify potential biomarkers for early detection and personalized treatment.

In summary, the study by Meng et al. (2014) demonstrated a significant association between GSTT1 and GSTM1 polymorphisms and the risk of gastric cancer. These findings support the continued investigation of these polymorphisms as potential markers for gastric cancer risk, and highlight the need for further research to elucidate the underlying mechanisms.

For more information, refer to the original study by Meng et al. (2014) and other relevant literature on the topic. The findings from this meta-analysis contribute to the understanding of the genetic factors involved in the development of gastric cancer, which can inform future research and clinical applications.