EXISTENCE OF KLYACHKO MODELS FOR $GL(n, \mathbb{R})$ AND $GL(n, \mathbb{C})$

DMITRY GOUREVITCH, OMER OFFEN, SIDDHARTHA SAHI, AND EITAN SAYAG

ABSTRACT. We prove that any unitary representation of $GL(n, \mathbb{R})$ and $GL(n, \mathbb{C})$ admits an equivariant linear form with respect to one of the subgroups considered by Klyachko.

CONTENTS

1. Introduction
2. Preliminaries
 2.1. Smooth vectors and induction
 2.2. Representations of $GL(n)$-notation
 2.3. The unitary dual of $GL(n)$ and the $SL(2)$-type
 2.4. The highest derivative
3. Representations with symplectic models
4. Proof of Theorem A
References

1. Introduction

Let F be either \mathbb{R} or \mathbb{C}. Let $G_n := GL(n, F)$ and let \widehat{G}_n denote the unitary dual of G_n. For $\pi \in \widehat{G}_n$ let π^∞ denote the Fréchet space of smooth vectors in π. For any decomposition $n = r + 2k$ we consider a subgroup of G_n defined by

$$H_{r,2k} = \left\{ \left(\begin{array}{cc} u & X \\ 0 & h \end{array} \right) \in G_n : u \in N_r, X \in M_{r \times 2k}(F) \text{ and } h \in Sp(2k) \right\}.$$

Here $N_r \subset G_r$ denotes the group of $r \times r$ upper unitriangular matrices and

$$Sp(2k) = \{ g \in G_{2k} : ^t g J_k g = J_k \} \text{ where } J_k = \begin{pmatrix} & w_k \\ -w_k & \end{pmatrix}$$

and $w_k \in G_k$ is the permutation matrix with (i,j)th entry equal to $\delta_{k+1-i,j}$. Let ψ be a non-trivial additive character of F. We associate to ψ the character ψ_r of N_r defined by

$$\psi_r(u) = \psi(u_{1,2} + \cdots + u_{r-1,r})$$

Date: July 26, 2011.
and the character \(\phi_{r,2k} \) of \(H_{r,2k} \) defined by

\[
\phi_{r,2k} \left(\begin{array}{cc} u & X \\ 0 & h \end{array} \right) = \psi_r(u).
\]

For \(\pi \in \hat{G}_n \) we consider the space \(\text{Hom}_{H_{r,2k}}(\pi^\infty, \phi_{r,2k}) \) of continuous \((H_{r,2k}, \phi_{r,2k})\)-equivariant linear forms on the Fréchet space \(\pi^\infty \) of smooth vectors in \(\pi \). We refer to a non-zero element of \(\text{Hom}_{H_{r,2k}}(\pi^\infty, \phi_{r,2k}) \) as a **Klyachko linear form** of type \((r, 2k)\). Let

\[
\mathcal{M}_{r,2k} = \{ f : G_n \to \mathbb{C} : f \text{ is smooth and } f(hg) = \phi_{r,2k}(h)f(g), \ h \in H_{r,2k}, \ g \in G_n \}.
\]

If \(\pi \) is an irreducible Hilbert representation of \(G_n \) then a non-zero element \(\ell \in \text{Hom}_{H_{r,2k}}(\pi^\infty, \phi_{r,2k}) \) defines a realization of \(\pi^\infty \) in the space of functions \(\mathcal{M}_{r,2k} \) via \(v \mapsto f_v : \pi^\infty \to \mathcal{M}_{r,2k} \) where \(f_v(g) = \ell(\pi(g)v), \ g \in G \). We therefore refer to \(\mathcal{M}_{r,2k} \) as the **Klyachko model** of type \((r, 2k)\). With this relation in mind for the rest of this paper we focus on Klyachko linear forms rather then Klyachko models.

An analogue of this finite family of spaces of linear forms associated with representations of \(GL(n) \) over a finite field was first considered by Klyachko [Kly84], followed by the work of Inglis-Saxl [IS91] and the work of Howlett-Zworestine [HZ00].

Over a \(p \)-adic field, the problem was first considered by Heumos-Rallis [HR90] and further studied by Offen-Sayag in [OS07a, OS08a, OS08b, OS09]. The outcome is disjointness and uniqueness of Klyachko linear forms (in fact for all irreducible admissible representations) and existence for any representation in the unitary dual. In fact, the type of Klyachko linear form that a given unitary representation \(\pi \) admits is made explicit as follows. Based on the classification of Tadic for the unitary dual \(\text{Ven05} \) Venkatesh associated in \(\text{Ven05} \) a partition \(\mathcal{V}(\pi) \), the \(SL(2) \)-type of \(\pi \), to any unitary \(\pi \). We recall the classification and the definition of the \(SL(2) \)-type in Section 2.3 below. If \(r \) is the number of odd parts of the partition \(\mathcal{V}(\pi) \) then \(\text{Hom}_{H_{r,2k}}(\pi^\infty, \phi_{r,2k}) \neq 0 \) (see [OS09, (5.1)])

The existence of a Klyachko linear form in the \(p \)-adic case is proved along the following lines. In the case \(r = 0 \) a linear form invariant by the symplectic group is constructed by a global (automorphic) argument for building blocks of unitary representations (namely, generalized Speh representations) [OS07]. For a general unitary representation associated with the case \(r = 0 \), the invariant linear form is obtained by an explicit construction for induced representations based on Bernstein’s principle of meromorphic continuation [OS07, Proposition 2]. The general case, treated in [OS08a], is obtained by a reduction to the case \(r = 0 \) using the theory of derivatives of Bernstein-Zelevinsky [BZ77].

In this work we address the existence of Klyachko linear forms over Archimedean fields. Disjointness and uniqueness are addressed in an upcoming work [AOS]. The partition \(\mathcal{V}(\pi) \) for every \(\pi \in \hat{G}_n \) is defined in [Ven05, §2.2] also in the Archimedean case. Our main result is

Theorem A. Let \(\pi \in \hat{G}_n \) and let \(r \) be the number of odd parts of the partition \(\mathcal{V}(\pi) \). Then \(\text{Hom}_{H_{r,2k}}(\pi^\infty, \phi_{n-r,k}) \neq 0 \).
The scheme of proof in the p-adic case, described above, serves us as a guideline to prove the Theorem. For the case $r = 0$ a global argument similar to the p-adic case treats Speh representations and an explicit construction for induced representations is based on the work of Carmona-Delorme [CD94].

However, a theory of derivatives is not available in this context. In order to reduce to the case $r = 0$ we apply the theory of highest derivatives developed by Sahi in [Sah89] for unitary representations. A recent result of Gourévitch-Sahi ([GS, Theorem B]) allows us to express the integer r in terms of the partition corresponding to π.

2. Preliminaries

2.1. Smooth vectors and induction. Let (π, \mathcal{H}) be a continuous Hilbert representation of a Lie group G. A vector $v \in \mathcal{H}$ is called smooth if the map $g \mapsto \pi(g)v : G \to \mathcal{H}$ is infinitely differentiable. Both G and its Lie algebra \mathfrak{g} act on the space of smooth vectors in \mathcal{H} and we denote the corresponding representation by $(\pi_\infty, \mathcal{H}_\infty)$. It is naturally a Fréchet representation of G.

Theorem 2.1.1 (Harish-Chandra). Let (π, \mathcal{H}) be a unitary representation of a real reductive group G. Then π is irreducible if and only if π_∞ is irreducible. (cf. [Wal88, Theorem 3.4.11]).

Remark 2.1.2. In fact [loc. cit.] says that π is irreducible if and only if π_K, the underlying (\mathfrak{g}, K) module with respect to a compact subgroup K of G, is irreducible. Since a G-invariant decomposition of π (resp. π_∞) clearly provides one of π_∞ (resp. π_K), the above Theorem is indeed straightforward from [loc. cit.].

Let G be a Lie group with a Lie algebra \mathfrak{g}. Denote by $\Delta_G : G \to \mathbb{R}_{>0}$ the modular function associated with G, i.e.

$$\Delta_G(g) = \left| \det(\text{Ad}(g)|_{\mathfrak{g}}) \right|.$$

Let H be a closed subgroup of G, (σ, V) a Hilbert representation of H and $\delta : H \to \mathbb{R}_{>0}$ defined by $\delta(h) = \Delta_H(h)/\Delta_G(h)$.

Let W denote the Hilbert space of equivalence classes of measurable functions $f : G \to V$ such that

$$f(hg) = \delta^{1/2}(h)\sigma(h)f(g) \quad \text{and} \quad \|f\|_W^2 := \int_{H \backslash G} \|f(g)\|_V^2 \, dg < \infty.$$

Let (π, W) be the representation of G defined by $\pi(g)f(x) = f(xg)$, $x, g \in G$. Denote the representation (π, W) by $\text{Ind}_H^G(\sigma)$, the normalized induction of σ from H to G. If (σ, V) is unitary then $\text{Ind}_H^G(\sigma)$ is also unitary.

Recall the following result of Poulsen. It can be interpreted as a representation-theoretic version of Sobolev’s embedding theorem.

Theorem 2.1.3 (see [Pou72], Theorem 5.1). Let (σ, V) be a unitary representation of H and let $(\pi, W) = \text{Ind}_H^G(\sigma)$. Then $\text{Ind}_H^G(\sigma)_{\infty}$ consists of all infinitely differentiable functions
\(f \in W \) such that all their derivatives with respect to left-\(G \)-invariant differential operators on \(G \) are square integrable.

We will apply Poulsen’s Theorem for certain Hilbert representations induced from a one dimensional twist of a unitary representation. For the rest of this section let \(\chi \) be a (not necessarily unitary) character of \(H \) that extends to a smooth function \(\chi' : G \to \mathbb{C}^* \).

Let \((\sigma, V)\) be a unitary representation of \(H \) and \((\pi, W) = \text{Ind}^G_H(\sigma)\).

There is an isomorphism of Hilbert representations \((\pi, W) \simeq \text{Ind}^G_H(\sigma \otimes \chi)\) given by \(f \mapsto \chi' f \), \(f \in W \) where \(\pi_\chi(g)f(x) = \chi'(x)(x^{-1}\chi'(xg)f(xg), g, x \in G \). Since \(\chi' \) is smooth it follows that \(w \in W \) is smooth with respect to \(\pi_\chi \) if and only if it is smooth with respect to \(\pi \). The following Corollaries are therefore immediate consequences of Poulsen’s Theorem.

Corollary 2.1.4. Every element of \(\text{Ind}^G_H(\sigma \otimes \chi)^\infty \) is an infinitely differentiable function on \(G \) with values in \(V \).

Corollary 2.1.5. Suppose that \(H \backslash G \) is compact and let \(f \in \text{Ind}^G_H(\sigma \otimes \chi) \). Then \(f \in \text{Ind}^G_H(\sigma \otimes \chi)^\infty \) if and only if \(f : G \to V \) is an infinitely differentiable function.

2.2. Representations of \(GL(n) \)-notation

Let \(F \) be either \(\mathbb{R} \) or \(\mathbb{C} \) and let \(G_n = GL(n, F) \). Let \(K = K_n \) be the standard maximal compact subgroup of \(G_n \), i.e. \(O(n) \) if \(F = \mathbb{R} \) and \(U(n) \) if \(F = \mathbb{C} \).

For a Hilbert representation \((\pi, V)\) of \(G_n \) and \(s \in \mathbb{C} \) we denote by \((|s| \pi, V)\) the Hilbert representation on the same space \(V \) given by \(g \mapsto |\det g|^s \pi(g) \).

Let \((n_1, \ldots, n_k)\) be a decomposition of \(n \) and let \(P = MU \) be the standard parabolic subgroup of \(G_n \) consisting of matrices in upper triangular block form, where

\[
M = \{\text{diag}(m_1, \ldots, m_k) : m_i \in G_{n_i}, i = 1, \ldots, k\}
\]

is the standard Levi subgroup of \(P \) and \(U \) is its unipotent radical. Let \((\sigma_i, V_i)\) be a Hilbert representation of \(G_{n_i}, i = 1, \ldots, k \) and let \((\sigma, V) = (\sigma_1 \otimes \cdots \otimes \sigma_k, V_1 \otimes \cdots V_k)\) be the associated Hilbert representation of \(M \). We also view \((\sigma, V)\) as a representation of \(P \) where \(U \) acts trivially. We use the following standard notation for normalized parabolic induction to \(G_n \)

\[
\sigma_1 \times \cdots \times \sigma_k = \text{Ind}^{G_n}_P(\sigma).
\]

For \(\varphi \in \text{Ind}^{G_n}_P(\sigma) \) let

\[
\varphi_s(g) = \prod_{i=1}^k |\det m_i|^{s_i} \varphi(g), \quad g = \text{umk} \in G_n, u \in U, m = \text{diag}(m_1, \ldots, m_k) \in M, k \in K_n.
\]

We further associate to \(\sigma \) a family \(I(\sigma, s) \) of induced representations parameterized by \(s = (s_1, \ldots, s_k) \in \mathbb{C}^k \) realized in the underlying vector space of \(\text{Ind}^{G_n}_P(\sigma) \). The representation \(I(\sigma, s) \) is defined by

\[
(I(g, \sigma, s))_s(x) = \varphi_s(xg), \quad \varphi \in \text{Ind}^{G_n}_P(\sigma), \quad g, x \in G_n.
\]

We have

\[
I(\sigma, s) \simeq |s_1|^{\sigma_1} \times \cdots \times |s_k|^{\sigma_k}
\]
and the underlying space for $I(\sigma, s)^\infty$ is independent of s (as explained in Section 2.1).

2.3. **The unitary dual of $GL(n)$ and the $SL(2)$-type.** The unitary dual \widehat{G}_n of G_n was classified by Vogan in [Vog86]. In [Tad86], Tadic classified the unitary dual of $GL(n)$ over a p-adic field and expressed the classification in a uniform language for both the Archimedean and non-Archimedean cases. We recall the classification as it appears in [Tad86, Theorem D]. (As noted in [ibid.] Tadic’ Theorem D is also valid in the Archimedean case, see also [Tad09].)

Let $\delta \in \widehat{G}_r$ be square-integrable (thus $r = 1$ if $F = \mathbb{C}$ and $r \in \{1, 2\}$ if $F = \mathbb{R}$). Denote by $U(\delta, t)$ the unique irreducible quotient of $\prod \frac{t^{\alpha_i} \delta}{\frac{t-1}{2} \delta} \times \cdots \times \frac{t^{\alpha_m} \delta}{\frac{t-m}{2} \delta}$ and for $\alpha \in \mathbb{R}$, $|\alpha| < \frac{1}{2}$ let

$\pi(\delta, t, \alpha) = |oU(\delta, t) \times |^{-\alpha}U(\delta, t).$

For $r = 1$ the representation $U(\delta, t)$ is one dimensional. For $r = 2$ it was constructed in [Spe83] using the theory of automorphic forms. Later it was given an explicit Hilbert space model in [SS90].

Let B be the set of all representations of the form $U(\delta, t)$ or $\pi(\delta, t, \alpha)$ as above. Then for any $\pi_1, \ldots, \pi_k \in B$ the representation $\pi_1 \times \cdots \times \pi_k \in \widehat{G}_n$ for an appropriate n and any $\pi \in \widehat{G}_n$ is of this form for a uniquely determined multi-set $\{\pi_1, \ldots, \pi_k\}$ in B.

In particular, for any $\pi \in \widehat{G}_n$ there exist integers $k_1, \ldots, k_m, t_1, \ldots, t_m$, square integrable representations $\delta_i \in \widehat{G}_{k_i} \text{ and } -\frac{1}{2} < \alpha_i < \frac{1}{2}$ such that

$\pi = |\det|^{\alpha_1} U(\delta_1, t_1) \times \cdots \times |\det|^{\alpha_m} U(\delta_m, t_m).$

The following is therefore immediate from [MW89, Proposition 1.9].

Lemma 2.3.1. Let $\pi_i \in \widehat{G}_{n_i}, i = 1, 2$. Then the set

$\{s \in \mathbb{C} : \pi_1 \times |\det|^s \pi_2 \text{ is reducible}\}$

is discrete in \mathbb{C}.

A partition of n is a multi-set of positive integers adding up to n. By abuse of notation we will sometimes denote a partition λ as a tuple (n_1, \ldots, n_k) but we keep in mind that order is irrelevant. The integers n_1, \ldots, n_k are referred to as the parts of λ. The transpose partition λ^t is the partition (m_1, \ldots, m_l) where $m_i = \#\{j : 1 \leq j \leq k, i \leq n_j\}$ (l is the maximal integer so that $\{j : 1 \leq j \leq k, l \leq n_j\}$ is not empty). If λ and μ are partitions their union (as a multi-set) is denoted by (λ, μ). We call a partition even if all its parts are even and odd if all its parts are odd. For two natural numbers r and n let

$\langle n \rangle_r = (n, \ldots, n)$

be the partition of nr with r equal parts.
The $SL(2)$-type associated to $\pi \in \hat{G}_n$ is denoted by $\mathcal{V}(\pi)$ and characterized by the following properties. For any $\delta \in \hat{G}_r$ square integrable, $0 < \alpha < \frac{1}{2}$, $\pi_1 \in \hat{G}_{n_1}$ and $\pi_2 \in \hat{G}_{n_2}$ we have

1. $\mathcal{V}(U(\delta, n)) = \langle n \rangle_r$;
2. $\mathcal{V}(\pi(U(\delta, n), \alpha)) = \langle n \rangle_{2r}$;
3. $\mathcal{V}(\pi_1 \times \pi_2) = (\mathcal{V}(\pi_1), \mathcal{V}(\pi_2))$.

Definition 2.3.2. A representation $\pi \in \hat{G}_n$ is called even if $\mathcal{V}(\pi)$ is even and odd if $\mathcal{V}(\pi)$ is odd. We denote by $r(\pi)$ the number of odd parts in $\mathcal{V}(\pi)$.

Note that a product of two even representations is even. The following statement is straightforward from the definitions and the classification of \hat{G}_n.

Corollary 2.3.3. Let $\pi \in \hat{G}_n$. There is a decomposition $n = k + l$, $k, l \geq 0$, $\pi_e \in \hat{G}_k$ an even representation and $\pi_o \in \hat{G}_l$ an odd representation, uniquely determined up to isomorphism, such that $\pi = \pi_e \times \pi_o$.

2.4. The highest derivative. The following convention will be used whenever convenient. For $n < m$ we view G_n as a subgroup of G_m through the imbedding $g \mapsto \text{diag}(g, I_{m-n})$. This convention will freely be used throughout the paper for subgroups of G_n without further notice.

For subgroups A_i of G_{k_i}, $i = 1, 2$, by $(A_1 \times A_2) \ltimes M_{k_1 \times k_2}(F)$ we mean the subgroup of $G_{k_1 + k_2}$ consisting of matrices of the form

$$\text{diag}(a_1, a_2) \ltimes X := \begin{pmatrix} a_1 & X \\ 0 & a_2 \end{pmatrix}, \quad a_i \in A_i, i = 1, 2, X \in M_{k_1 \times k_2}(F).$$

In accordance with our convention, when $A_2 = \{e\}$ we also set $A_1 \ltimes M_{k_1 \times k_2}(F) = (A_1 \times A_2) \ltimes M_{k_1 \times k_2}(F)$.

For a representation (σ, V) of $A_1 \times A_2$ and a character χ of $M_{k_1 \times k_2}(F)$ we denote by $(\sigma \ltimes \chi, V)$ the representation of $(A_1 \times A_2) \ltimes M_{k_1 \times k_2}(F)$ defined by

$$(\sigma \ltimes \chi)(\text{diag}(a_1, a_2) \ltimes X) = \chi(X)\sigma(\text{diag}(a_1, a_2)), \quad a_i \in A_i, i = 1, 2, X \in M_{k_1 \times k_2}(F).$$

We recall the Archimedean analog, as formulated in [Sah89], of the Bernstein-Zelevinsky notion of highest derivative [BZ77].

Denote by P_n the “mirabolic” subgroup of G_n consisting of matrices with last row $e_n := (0, 0, ..., 0, 1)$, i.e. $P_n = G_{n-1} \ltimes F^{n-1}$. Note that

$$\Delta_{P_n}(g) = |\text{det } g|, \quad g \in P_n.$$

The starting point of the Archimedean theory of highest derivatives is the following

Theorem 2.4.1. Let $\pi \in \hat{G}_n$, then $\pi|_{P_n}$ is irreducible.

Remark. The result was conjectured by Kirillov. In the p-adic case it was proved in [Ber84], in the complex case in [Sah89] and finally in the real case in [Bar03].
For a Hilbert representation \((\sigma, V)\) of \(G_n\) let \(E(\sigma) = \sigma \ltimes 1_{F^n}\) be the associated representation of \(P_{n+1}\) on the same space \(V\).

For a Hilbert representation \((\tau, V)\) of \(P_n\) let

\[I(\tau) = \text{Ind}_{F_n \times F^n}^{P_{n+1}} (\tau \ltimes \psi(e_n^*)) \]

Note that \(E|_{\widehat{G}_n} : \widehat{G}_n \rightarrow \widehat{P}_{n+1}\) and \(I|_{\widehat{P}_n} : \widehat{P}_n \rightarrow \widehat{P}_{n+1}\).

Based on Theorem [2.4.1] and Mackey theory Sahi observed that for \(\pi \in \widehat{G}_n\) there exists a unique integer \(d\), \(1 \leq d \leq n\) and a unique \(\sigma \in \widehat{G}_{n-d}\) such that

\[\pi|_{P_n} \simeq I^{d-1} E(\sigma). \]

The representation \(\sigma\) is called the highest derivative (or adduced) of \(\pi\) and is denoted by \(A(\pi)\). The integer \(d\) is called the depth of \(\pi\) and we denote it by \(\text{depth}(\pi)\).

Recursively we define \(A^{i+1}(\pi) = A(A^i(\pi))\) as long as \(A^i(\pi)\) is a representation of \(G_i\) for some integer \(i \geq 1\). Let \(k\) be such that \(A^k(\pi)\) is the trivial representation of \(G_0\). The depth sequence of \(\pi\) is defined to be

\[d(\pi) = (d_1, \ldots, d_k) \text{ where } d_{j+1} = \text{depth}(A^j(\pi)), \quad j = 0, \ldots, k - 1. \]

The following theorem follows from [GS, Theorem B].

Theorem 2.4.2. Let \(\pi \in \widehat{G}_n\) and \(d(\pi) = (d_1, \ldots, d_k)\) then \(d_1 \geq \cdots \geq d_k\) and viewed as a partition \(d(\pi)\) satisfies

\[\mathcal{V}(\pi) = d(\pi)^t. \]

Corollary 2.4.3. Let \(\pi \in \widehat{G}_n\). Then

1. \(\text{depth}(\pi)\) is the number of parts in \(\mathcal{V}(\pi)\). In particular, \(\text{depth}(\pi) \geq r(\pi)\) and equality holds if and only if \(\pi\) is odd.
2. If \(\pi\) is odd then \(A(\pi)\) is even.

Proof. We use the notation of the Theorem. It is clear that \(d_1\) is the number of parts in \(d(\pi)^t\). Since by definition \(d_1 = \text{depth}(\pi)\) the first part follows from [3]. It follows from the definitions that \(d(A(\pi)) = (d_2, \ldots, d_k)\). Applying [3] again we obtain that \(\mathcal{V}(A(\pi)) = d(A(\pi))^t\) consists of parts of the form \(\text{m} - 1\) where \(1 < \text{m}\) is a part of \(d(\pi)^t = \mathcal{V}(\pi)\). The second part follows. \(\square\)

Let \(n = m + r\). For Hilbert representations \(\pi\) of \(G_m\) and \(\tau\) of \(P_r\) we set

\[\pi \times \tau = \text{Ind}_{(G_m \times P_r) \times M_{m \times r}(F)}^{G_m \times P_r} ((\pi \otimes \tau) \ltimes 1_{M_{m \times r}(F)}). \]

Lemma 2.4.4. Let \(s \in \mathbb{C}\) and consider the Hilbert representations \(\pi\) of \(G_m\), \(\sigma\) of \(G_r\) and \(\tau\) of \(P_r\). We have

1. \(E(|^s \pi) = |^s E(\pi)\);
2. \(I(|^s \pi) \simeq |^s I(\pi)\);
3. \(E(\pi \times \sigma) = \pi \times E(\sigma)\);
4. \(I(\pi \times \tau) = \pi \times I(\tau)\).
Proof. Part (1) is straightforward. Indeed, the underlying representation space of both $E(\|^s \pi)$ and $\| E(\pi)$ is that of π and the two actions are identical. For part (2) set $f_s(p) = |\det p|^s f(p)$, $p \in P_n$. The map $f \mapsto f_s$ is an isomorphism from $\| E(\pi)$ to $E(\|^s \pi)$. Parts (3) and (4) are proved in [Sah89, Lemma 2.1 (ii) and (iii)] when π, σ and τ are unitary. The proof of [ibid.] is valid verbatim in the more general context of Hilbert representations.

Let $S_{m,r}$ be the subgroup of G_n defined by $S_{m,r} = (G_m \times N_r) \ltimes M_{m \times r}(F)$.

Proposition 2.4.5. Let $d \leq n$, $Q = MU$ a standard parabolic subgroups of G_{n-d} with its standard Levi decomposition $(M \simeq G_{m_1} \times \cdots \times G_{m_k})$, τ a non-zero unitary representation of M, $s \in \mathbb{C}^k$ and $(\sigma, V) = \text{Ind}_{Q}^{G_{n-d}}(\tau, s)$. Let $\pi = I^{d-1}E(\sigma)$.

(i) We have $\pi \simeq \text{Ind}_{S_{n-d,d}}^{P_{n-d}}((\sigma \otimes \psi_d) \ltimes 1_{M_{n-d \times d}(F)})$.

(ii) There is a continuous linear transformation $\text{pr}_{d,\sigma} : \pi^\infty \to V^\infty$ that is not identically zero on any P_n-invariant subspace of π^∞ and satisfies

\[\text{pr}_{d,\sigma}(\pi(s)v) = \psi_d(n)|\det g|^{\frac{d-1}{2}} \sigma(g)\text{pr}_{d,\sigma}(v), \quad v \in \pi^\infty \text{ and } s = \begin{pmatrix} g & X \\ 0 & n \end{pmatrix} \in S_{n-d,d} \]

where $g \in G_{n-d}$, $n \in N_d$ and $X \in M_{n-d \times d}(F)$.

Proof. Part (1) follows by iteratively applying transitivity of induction. For part (2) note that V^∞, the space of smooth vectors for σ, is also the space of smooth vectors of the representation $(\sigma \otimes \psi_k) \ltimes 1_{M_{n-d \times d}(F)}$ of $S_{n-d,d}$. Let

$\tau_1 = (\tau \otimes \psi_d) \ltimes 1_{M_{n-d \times d}(F)}$

be a unitary representation of the subgroup $Q_1 := (Q \times N_d) \ltimes M_{n-d \times d}(F)$ of $S_{n-d,d}$ and let

$\chi_1 = (\chi_s \times 1_{N_d}) \ltimes 1_{M_{n-d \times d}(F)}$

be a character of Q_1 where χ_s is the unramified character of Q associated to s by

$\chi_s(\text{diag}(g_1, \ldots, g_k)u) = \prod_{i=1}^{k} |\det g_i|^s$, \quad $g_i \in G_{m_i}$, $i = 1, \ldots, k$, $u \in U.$

It follows from Corollary 2.4.4 that the elements of $\text{Ind}_{Q_1}^{P_{n}}(\tau_1 \otimes \chi_1)^\infty$ are smooth functions on P_n with values in the space of τ. Let $\delta_1 = \Delta_{P_n}/\Delta_{S_{n-d,d}}$ then transitivity of induction gives the isomorphism

$f \mapsto \varphi_f : \text{Ind}_{Q_1}^{P_{n}}(\tau_1 \otimes \chi_1)^\infty \to \text{Ind}_{S_{n-d,d}}^{P_{n}}((\sigma \otimes \psi_d) \ltimes 1_{M_{n-d \times d}(F)})^\infty$

where $\varphi_f(p)(s) = \delta_1^{-1}(s)f(sp)$, $s \in S_{n-d,d}$, $p \in P_n$. Since f is a smooth function on P_n it now follows that φ_f is a smooth function on G with values in V. It further follows from Corollary 2.4.5 that $\varphi_f(p) \in V^\infty$ for $p \in P_n$.

To summarize so far, the elements of $\text{Ind}_{G_{n-1}}^{G_n}((\sigma \otimes \psi_d) \times 1_{M_{n-d}^d(F)})^\infty$ are smooth functions on P_n with values in V^∞.

Thus, $\text{pr}_{d,\sigma}(\varphi) := \varphi(e)$ is a well-defined linear transformation from $\text{Ind}_{G_{n-1}}^{G_n}((\sigma \otimes \psi_k) \times 1_{M_{n-d}^d(F)})^\infty$ to V^∞. Evaluation at the identity is clearly not identically zero on any P_n-invariant space of smooth functions on P_n. The equivariance property \[\text{Proposition 2.4.1}\] is immediate from the definition of an induced representation. The Proposition follows. \hfill \Box

Given a decomposition $n = m + r$ the Iwasawa decomposition on G_{n-1} implies that $P_n = [(G_m \times P_r) \ltimes M_{m 	imes r}(F)]K_{n-1}$. For $s = (s_1, s_2) \in C^2$ and $\varphi \in \pi \times \tau$ let

$$\varphi_s(p) = [\det g_1]^{s_1} [\det g_2]^{s_2} \varphi(p), \quad p = [\text{diag}(g_1, g_2) \ltimes X]k$$

where $g_1 \in G_m, g_2 \in G_r, X \in M_{m 	imes r}(F)$ and $k \in K_{n-1}$. It will also be convenient to denote by $I(\pi \otimes \tau, s)$ the representation of P_n on the space of $\pi \times \tau$ defined by

$$(I(p, \pi \otimes \tau, s) \varphi)(x) = \varphi_s(xp), \quad \varphi \in \pi \times \tau, \quad p, x \in P_n.$$

Thus

$$I(\pi \otimes \tau, s) \simeq | \pi | s_1 \times | \tau | s_2$$

and the underlying space of $I(\pi \otimes \tau, s)^\infty$ is independent of s. The following is straightforward from \[\text{Lemma 2.4.4}\].

Corollary 2.4.6. Consider the Hilbert representations ϱ of G_r and π of G_m and let $s \in C^2$. Then for every $j \geq 0$ we have

$$I(\pi \otimes I^j E(\varrho), s) \simeq I^j E(I(\pi \otimes \varrho, s)).$$

3. Representations with symplectic models

The purpose of this section is to study linear forms invariant by the symplectic group. We begin with a result on Speh representations that we obtain by global means.

Proposition 3.0.1. Let $n = 2mr$, $\delta \in \widehat{G_r}$ square integrable and $\pi = U(\delta, 2m) \in \widehat{G_n}$. Then $\text{Hom}_{Sp(2n)}(\pi^\infty, C) \neq 0$.

Proof. If $r = 1$ then $\pi = \delta \circ \text{det}$ is a character of G_n. The Proposition is obvious in this case. Assume from now on that $r = 2$ (and in particular that $F = \mathbb{R}$). To complete the Proposition we globalize π to a discrete automorphic representation for which the symplectic periods have already been studied.

Let Π be a cuspidal automorphic representation of $GL(2, \mathbb{A}_Q)$ with Archimedean component $\Pi_{\infty} \simeq \delta$. The existence of Π is verified, for example, using the Jacquet-Langlands correspondence. Indeed, let D be the multiplicative group of the standard quaternion algebra defined over \mathbb{Q}. Let δ' be a representation of $D(\mathbb{R})$ associated with δ by the local Jacquet-Langlands correspondence [JL70, §5]. Since $\mathbb{R}^* \backslash D(\mathbb{R})$ is compact, it is easy to construct using the trace formula an automorphic representation Π' of $D(\mathbb{A}_Q)$ so that $\Pi'_{\infty} \simeq \delta'$ and Π'_{p} is unramified for all primes $p > 2$. It then follows from [JL70, Theorem
that \(\pi \) is associated by the global Jacquet-Langlands correspondence to a cuspidal automorphic representation \(\Pi \) of \(GL(2, \mathbb{A}_\mathbb{Q}) \). In particular \(\Pi_\infty \simeq \delta \) as required.

Let \(\varrho \) be the unique irreducible quotient of \(|\det|^{\frac{m-1}{2}} \Pi \times |\det|^{\frac{m-3}{2}} \Pi \times \cdots \times |\det|^{\frac{1-m}{2}} \Pi \). It is a discrete automorphic representation of \(GL(n, \mathbb{A}_\mathbb{Q}) \) obtained by residues of Eisenstein series (see [MW89]). Furthermore, its local component at infinity is \(\varrho_\infty = \pi \). Let \(\varrho_{\text{aut}} \) be the space of automorphic forms in (the unitary representation) \(\varrho \). Based on [Off06 Theorem 3], the symplectic period defined on \(\varrho_{\text{aut}} \) by

\[
\ell(\phi) = \int_{Sp(n, \mathbb{Q}) \backslash Sp(n, \mathbb{A}_\mathbb{Q})} \phi(h) \, dh
\]

is not identically zero. Recall that \(\varrho_{\text{aut}} \simeq \otimes_{\nu \leq \infty} \tau_p \) where \(\tau_\infty = (\rho_\infty)_K \) is the \((\mathfrak{g}, K)\)-module of \(K \)-finite vectors in \(\varrho_\infty \) and \(\tau_p \) is the smooth part of \(\varrho_p \) for \(p < \infty \) [Fla79]. There is therefore an automorphic form \(\phi \in \varrho_{\text{aut}} \) that as a vector is of the form \(\phi_\infty \otimes \phi^\infty \) with \(\phi_\infty \in \tau_\infty \) and \(\phi^\infty \in \otimes_{\nu < \infty} \tau_p \) such that \(\ell(\phi) \neq 0 \). Define

\[
\lambda(v) = \ell(v \otimes \phi^\infty), \quad v \in \tau_\infty.
\]

Then \(\lambda \) is a non-zero \(Sp(n) \cap K \) and \(sp(n) \)-invariant linear form on \(\tau_\infty \) where \(sp(n) \) is the Lie algebra of \(Sp(n) \). By the automatic continuity for reductive symmetric spaces (cf. [vdBD88 Theorem 2.1] or [BD92 Theorem 1]) \(\lambda \) extends to an \(Sp(n) \)-invariant linear form on the smooth part of \(\rho_\infty \), i.e. it defines a non-zero element of \(\text{Hom}_{Sp(n)}(\pi^\infty, \mathbb{C}) \).

The Proposition follows. \(\square \)

Remark 3.0.2. In [GSS] an \(Sp(n) \)-invariant functional on the Speh representation \(U(\delta, 2m) \) is constructed by purely local means using [SS90].

Next we consider induced representations. Our main tool is a result of Carmona-Delorme that we now recall.

Let \((n_1, \ldots, n_k)\) be a decomposition of \(n \) and \(P = MU \) the standard parabolic subgroup of \(G_{2n} \) of type \((2n_1, \ldots, 2n_k)\) with unipotent radical \(U \) and standard Levi subgroup \(M \). Let \(J = \text{diag}(J_{n_1}, \ldots, J_{n_k}) \) where \(J_n \) is defined by [1] and

\[
H = Sp(j) = \{ g \in G_{2n} : {}^tgg = j \}.
\]

Set \(\tau(g) = {}^t(g^{-1})^{-1} \) and let \(\theta(g) = {}^t(g^{-1}) \) be the standard Cartan involution of \(G_{2n} \). Note that \(H = G^\tau \) and \(P \) is \(\theta \)-stable. Let \(\sigma_i \in G_{2n_i}^\sim \) and \(0 \neq \ell_i \in \text{Hom}_{Sp(2n_i)}(\sigma_i^\infty, \mathbb{C}) \), \(i = 1, \ldots, k \). Set \(\sigma = \sigma_1 \otimes \cdots \otimes \sigma_k \) and \(\ell = \ell_1 \otimes \cdots \otimes \ell_k \). Thus \(0 \neq \ell \in \text{Hom}_{M^\tau \cap H}(\sigma^\infty, \mathbb{C}) \). There is a permutation matrix \(\eta \in G_{2n} \) so that \({}^t\eta\eta = J_n \) and therefore \(\eta^{-1}Sp(j)\eta = Sp(2n) \). The following is therefore an application of [CD94 Proposition 2 and Theorem 3].

Proposition 3.0.3. With the above notation the integral

\[
\xi(\varphi; \ell, s) = \int_{(M \cap H) \backslash H} \ell(\varphi_s(h\eta)) \, dh, \quad \varphi \in (\sigma_1 \times \cdots \times \sigma_k)^\infty
\]
converges absolutely for \(\text{Re}(s_1) \gg \text{Re}(s_2) \gg \cdots \gg \text{Re}(s_k) \) and extends to a meromorphic function of \(s \in \mathbb{C}^k \). Whenever holomorphic at \(s \) it defines a non-zero element \(\xi(\ell, s) \in \text{Hom}_{\mathfrak{Sp}(2n)}(I(\sigma, s)\infty, \mathbb{C}) \).

Theorem 3.0.4. Let \(\pi \in \hat{G}_{2n} \) be an even representation then \(\text{Hom}_{\mathfrak{Sp}(2n)}(\pi\infty, \mathbb{C}) \neq 0 \).

Proof. By the classification of the unitary dual and the recipe for the \(SL(2) \)-type we may write \(\pi = I(\sigma, \alpha) \) where \(\sigma = U(\delta_1, 2m_1) \otimes \cdots \otimes U(\delta_k, 2m_k) \) with \(\delta_i \) square integrable and \(\alpha = (\alpha_1, \ldots, \alpha_k) \) with \(-\frac{1}{2} < \alpha_i < \frac{1}{2}, i = 1, \ldots, k \). Let \(n_i \) be such that \(U(\delta_i, 2m_i) \in \hat{G}_{2n_i} \). By Proposition 3.0.1 there exists \(0 \neq \ell_i \in \text{Hom}_{\mathfrak{Sp}(2n_i)}(\sigma_i\infty, \mathbb{C}) \). By Proposition 3.0.3 and using its notation we obtain a non-zero meromorphic family of linear forms \(\xi(\ell, s) \in \text{Hom}_{\mathfrak{Sp}(2n)}(I(\sigma, s)\infty, \mathbb{C}) \). There exists a generic direction \(s_0 \in \mathbb{C}^k \) such that \(\xi(\ell, \alpha + zs_0) \) is meromorphic in a punctured neighborhood of \(z = 0 \) in \(\mathbb{C} \). Let \(k_0 \) be the smallest integer \(k \) such that \(z^k \xi(\ell, \alpha + zs_0) \) is holomorphic at \(z = 0 \). We can now define

\[
L = \lim_{z \to 0} z^{k_0} \xi(\ell, \alpha + zs_0).
\]

Thus \(0 \neq L \in \text{Hom}_{\mathfrak{Sp}(2n)}(\pi\infty, \mathbb{C}) \).

\[\square\]

4. **Proof of Theorem A**

We change the setting by defining another family of Klyachko subgroups compatible with the theory of highest derivatives. Fix a decomposition \(n = 2k + r \) and let

\[
H'_{2k, r} = \left\{ \begin{pmatrix} h & X \\ 0 & u \end{pmatrix} \in G_n : u \in N_r, X \in M_{2k \times r}(F) \text{ and } h \in \text{Sp}(2k) \right\}.
\]

Let \(\phi'_{2k, r} \) be the character of \(H'_{2k, r} \) defined by

\[
\phi'_{2k, r}\left(\begin{pmatrix} h & X \\ 0 & u \end{pmatrix} \right) = \psi_r(u).
\]

Let \(\tau = (\psi_r)^{\prime} \) be the involution on \(G_n \) defined by \(g^\tau = w_n^t g^{-1} w_n \). Note that \(H'_{2k, r} = H_{r, 2k} \) and \(\phi'_{2k, r}(h) = \phi_{r, 2k}(h^\tau), h \in H'_{2k, r} \). It follows that for any \(\pi \in \hat{G}_n \), we have

\[
\text{Hom}_{\mathfrak{H}_{r, 2k}}(\pi\infty, \phi_{r, 2k}) \simeq \text{Hom}_{\mathfrak{H}'_{2k, r}}((\pi^\tau)\infty, \phi'_{2k, r}).
\]

By the Gelfand-Kazhdan Theorem \(\pi^\tau \simeq \tilde{\pi} \) where \(\tilde{\pi} \) denotes the dual of \(\pi \) (see e.g. [AGS08, Theorem 2.4.2]) and therefore

\[
\text{Hom}_{\mathfrak{H}_{r, 2k}}(\pi\infty, \phi_{r, 2k}) \simeq \text{Hom}_{\mathfrak{H}'_{2k, r}}(\tilde{\pi}\infty, \phi'_{2k, r}).
\]

It further follows from the classification and the definition of the partition \(\mathcal{V}(\pi) \) that \(\mathcal{V}(\tilde{\pi}) = \mathcal{V}(\pi) \) and hence \(r(\tilde{\pi}) = r(\pi) \). Theorem A is therefore equivalent to the statement

\[
(5) \quad \text{Hom}_{\mathfrak{H}'_{n-r(\pi), r(\pi)}}(\pi\infty, \phi'_{n-r(\pi), r(\pi)}) \neq 0, \quad \pi \in \hat{G}_n.
\]
Let $\pi \in \hat{G}_n$. If $r(\pi) = 0$, i.e. π is even, then (3) follows from Theorem 3.0.4. Assume from now on that $r = r(\pi) > 0$ and let $k = (n - r)/2$. Note then that $H'_{2k,r}$ is a subgroup of P_n.

Write $\pi = \pi_e \times \pi_o$ where $\pi_e \in \hat{G}_{2k_1}$ is even and $\pi_o \in \hat{G}_t$ is odd as in Corollary 2.3.3. For $s \in \mathbb{C}$ let

$$\pi_s = I(\pi_e \otimes \pi_o, (0, s))$$

be a representations of G_n and

$$\tau_s = I(\pi_e \otimes (\pi_o|_{P_t}), (\frac{1}{2}, -2k_1 + s))$$

a representation of P_n. By Corollary 2.1.3 restriction of functions to P_n is a well defined (and clearly P_n-equivariant) map

$$\kappa_s : \pi_s^\infty \to \tau_s^\infty.$$

In the parameter s it is holomorphic and non-zero at each s.

Let $d = \text{depth}(\pi_o)$. By Corollary 2.4.3 $d = r(\pi)$ and $A(\pi_o)$ is even. Recall that $\pi_o|_{P_t} = I^{d-1}E(A(\pi_o))$ and let

$$\sigma_s = I(\pi_e \otimes A(\pi_o), (\frac{1}{2}, -2k_1 + s)).$$

By Corollary 2.4.6 there is an isomorphism of Hilbert representations of P_n

$$\tau_s \simeq I^{d-1}E(\sigma_s).$$

Denote by

$$i_s : \tau_s^\infty \to I^{d-1}E(\sigma_s)^\infty$$

its restriction to the corresponding isomorphism between the spaces of smooth vectors. Thus

$$i_s \circ \kappa_s : \pi_s^\infty \to I^{d-1}E(\sigma_s)^\infty$$

is a holomorphic family of non-zero P_n-equivariant maps. Let

$$\text{pr}_{d,\sigma} : I^{d-1}E(\sigma_s)^\infty \to \sigma_s^\infty$$

be the map provided by Proposition 2.4.5. It is defined by evaluation at the identity and therefore it is independent of s. By Proposition 2.4.3 its restriction to the image of $i_s \circ \kappa_s$ is non-zero. Thus

$$\text{pr}_{d,\sigma} \circ i_s \circ \kappa_s : \pi_s^\infty \to \sigma_s^\infty$$

is non-zero. By (4) it is, in particular, G_{2k}-equivariant where $k = k_1 + \frac{r}{2}$. It follows from Theorem 3.0.4 together with Proposition 3.0.3 that there exists a non-zero holomorphic family of linear forms

$$\ell_s \in \text{Hom}_{Sp(2k,F)}(\sigma_s^\infty, \mathbb{C})$$

in a punctured disc centered at $s = 0$. By possibly taking a smaller disc it further follows from Lemma 2.3.1 that σ_s is irreducible in the punctured disc. By Theorem 2.1.1 in this punctured disc $\text{pr}_{d,\sigma} \circ i_s \circ \kappa_s : \pi_s^\infty \to \sigma_s^\infty$ has a dense image and therefore the holomorphic family of linear forms $L_s := \ell_s \circ \text{pr}_{d,\sigma} \circ i_s \circ \kappa_s$ on π_s^∞ is non-zero. By the
EXISTENCE OF KLYACHKO MODELS FOR $GL(n, \mathbb{R})$ AND $GL(n, \mathbb{C})$

equivariance property $\mathbf{4}$. $L_s \in \text{Hom}_{H_{2k,r}}(\pi_s \otimes, \phi^{2k,r})$. There is therefore an integer a such that $0 \neq L := \lim_{s \to 0} s^a L_s$. Thus $0 \neq L \in \text{Hom}_{H_{2k,r}}(\pi, \phi^{2k,r})$ and $\mathbf{5}$ follows. This completes the proof of Theorem \mathbf{A}.

REFERENCES

[AGS08] Avraham Aizenbud, Dmitry Gourevitch, and Eitan Sayag. (GL$^{n+1}(F), \text{GL}_n(F)$) is a Gelfand pair for any local field F. Compos. Math., 144(6):1504–1524, 2008.

[AOS] Avraham Aizenbud, Omer Offen, and Eitan Sayag. Disjoint gelfand pairs for $\text{GL}(n, \mathbb{R})$ and $\text{GL}(n, \mathbb{C})$. Preprint.

[Bar03] Ehud Moshe Baruch. A proof of Kirillov’s conjecture. Ann. of Math. (2), 158(1):207–252, 2003.

[BD92] Jean-Luc Brylinski and Patrick Delorme. Vecteurs distributions H-invariants pour les séries principales généralisées d’espaces symétriques réductifs et prolongement méromorphe d’intégrales d’Eisenstein. Invent. Math., 109(3):619–664, 1992.

[Ber84] Joseph N. Bernstein. P-invariant distributions on $\text{GL}(N)$ and the classification of unitary representations of $\text{GL}(N)$ (non-Archimedean case). In Lie group representations, II (College Park, Md., 1982/1983), volume 1041 of Lecture Notes in Math., pages 50–102. Springer, Berlin, 1984.

[BZ77] D. Flath. Decomposition of representations into tensor products. In Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, Proc. Sympos. Pure Math., XXXIII, pages 179–183. Amer. Math. Soc., Providence, R.I., 1979.

[GS] Dmitry Gourevitch and Siddhartha Sahi. Associated varieties, derivatives, Whittaker functionals, and rank for representations of $\text{GL}(n)$. arXiv:1106.0454v1.

[GSS] Dmitry Gourevitch, Siddhartha Sahi, and Eitan Sayag. Invariant functionals on the Speh representation. Preprint.

[HR90] Michael J. Heumos and Stephen Rallis. Symplectic-Whittaker models for Gl_n. Pacific J. Math., 146(2):247–279, 1990.

[HZ00] Robert B. Howlett and Charles Zworeskine. On Klyachko’s model for the representations of finite general linear groups. In Representations and quantizations (Shanghai, 1998), pages 229–245. China High. Educ. Press, Beijing, 2000.

[IS91] N. F. J. Inglis and J. Saxl. An explicit model for the complex representations of the finite general linear groups. Arch. Math. (Basel), 57(5):424–431, 1991.

[JL70] H. Jacquet and R. P. Langlands. Automorphic forms on $\text{GL}(2)$. Lecture Notes in Mathematics, Vol. 114. Springer-Verlag, Berlin, 1970.

[Kly84] A. A. Klyachko. Models for complex representations of groups $\text{GL}(n, q)$. Mat. Sb. (N.S.), 48(2)(3):365–378, 1984.

[MW89] C. Mœglin and J.-L. Waldspurger. Le spectre residual de $\text{GL}(n)$. Ann. Sci. École Norm. Sup. (4), 22(4):605–674, 1989.

[Off06] Omer Offen. Residual spectrum of GL_r, distinguished by the symplectic group. Duke Math. J., 134(2):313–357, 2006.

[OS07] Omer Offen and Eitan Sayag. On unitary representations of GL_2, distinguished by the symplectic group. J. Number Theory, 125(2):344–355, 2007.
Omer Offen and Eitan Sayag. Global mixed periods and local Klyachko models for the general linear group. *Int. Math. Res. Not. IMRN*, (1):Art. ID rnm 136, 25, 2008.

Omer Offen and Eitan Sayag. Uniqueness and disjointness of Klyachko models. *J. Funct. Anal.*, 254(11):2846–2865, 2008.

Omer Offen and Eitan Sayag. The SL(2)-type and base change. *Represent. Theory*, 13:228–235, 2009.

Nels Skovhus Poulsen. On C^∞-vectors and intertwining bilinear forms for representations of Lie groups. *J. Functional Analysis*, 9:87–120, 1972.

Siddhartha Sahi. On Kirillov’s conjecture for Archimedean fields. *Compositio Math.*, 72(1):67–86, 1989.

Birgit Speh. Unitary representations of $\text{GL}(n, \mathbb{R})$ with nontrivial (\mathfrak{g}, K)-cohomology. *Invent. Math.*, 71(3):443–465, 1983.

Siddhartha Sahi and Elias M. Stein. Analysis in matrix space and Speh’s representations. *Invent. Math.*, 101(2):379–393, 1990.

Marko Tadić. Classification of unitary representations in irreducible representations of general linear group (non-Archimedean case). *Ann. Sci. École Norm. Sup. (4)*, 19(3):335–382, 1986.

Marko Tadić. $\text{GL}(n, \mathbb{C})\dual$ and $\text{GL}(n, \mathbb{R})\dual$. In *Automorphic forms and L-functions II. Local aspects*, volume 489 of *Contemp. Math.*, pages 285–313. Amer. Math. Soc., Providence, RI, 2009.

Erik van den Ban and Patrick Delorme. Quelques propriétés des représentations sphériques pour les espaces symétriques réductifs. *J. Funct. Anal.*, 80(2):284–307, 1988.

Akshay Venkatesh. The Burger-Sarnak method and operations on the unitary dual of $\text{GL}(n)$. *Represent. Theory*, 9:268–286 (electronic), 2005.

David A. Vogan, Jr. The unitary dual of $\text{GL}(n)$ over an Archimedean field. *Invent. Math.*, 83(3):449–505, 1986.

Nolan R. Wallach. *Real reductive groups. I*, volume 132 of *Pure and Applied Mathematics*. Academic Press Inc., Boston, MA, 1988.

Dmitry Gourevitch, Faculty of Mathematics and Computer Science, Weizmann Institute of Science, POB 26, Rehovot 76100, Israel

E-mail address: dimagur@weizmann.ac.il
URL: http://www.wisdom.weizmann.ac.il/~dimagur

Omer Offen, Department of Mathematics, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel

E-mail address: offen@tx.technion.ac.il
URL: http://www.technion.ac.il/~offen/

Siddhartha Sahi, Department of Mathematics, Rutgers University, Hill Center - Busch Campus, 110 Frelinghuysen Road Piscataway, NJ 08854-8019, USA

E-mail address: sahi@math.rutgers.edu

Eitan Sayag, Department of Mathematics, Ben Gurion University of the Negev, P.O.B. 653 Be’er Sheva 84105, Israel

E-mail address: eitan.sayag@gmail.com
URL: http://www.math.bgu.ac.il/~sayage/