DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.

Paola Guglielmelli1, Alessio Mazzoni2, Laura Maggi2, Sble Tekle Kiros3, Lorenzo Zammarchi4, Sofia Pilerci1, Arianna Rocca3, Michele Spinicci4, Miriam Borella1, Alessandro Bartoloni6, Gian Maria Rossioli1, Francesco Annunziato6, Alessandro M. Vannucchi1

1Department of Experimental and Clinical Medicine, and Center Research and Innovation of Myeloproliferative Neoplasms (CRIMM), University of Florence, Careggi University Hospital, Florence
2Department of Experimental and Clinical Medicine, University of Florence, and Flow Cytometry Diagnostic Center and Immunotherapy (CDCI), Careggi University Hospital, Florence, Italy
3Department of Experimental and Clinical Medicine, University of Florence, and Microbiology and Virology Unit, Careggi University Hospital, Florence, Italy
4Department of Experimental and Clinical Medicine, University of Florence, and Infectious and Tropical Diseases Unit, Careggi University Hospital, Florence, Italy

Correspondence
Alessandro M. Vannucchi, Department of Experimental and Clinical Medicine, CRIMM, Center Research and Innovation of Myeloproliferative Neoplasms, University of Florence, Careggi University Hospital, Viale Pieraccini 6, 50110 Florence, Italy.
Email: amvannucchi@unifi.it

Paola Guglielmelli Alessio Mazzoni and Laura Maggi equally contributed.

ORCID
Alessandro M. Vannucchi https://orcid.org/0000-0001-5755-0730

REFERENCES

1. Passamonti F, Cattaneo C, Arcaini L, et al. Clinical characteristics and risk factors associated with COVID-19 severity in patients with haematological malignancies in Italy: a retrospective, multicentre, cohort study. Lancet Haematol. 2020;7(10):e737-e745.
2. Vijenthira A, Gong IV, Fox TA, et al. Outcomes of patients with hematologic malignancies and COVID-19: a systematic review and meta-analysis of 3377 patients. Blood. 2020;136(25):2881-2892.
3. Barbui T, Vannucchi AM, Alvarez-Larran A, et al. High mortality rate in COVID-19 patients with myeloproliferative neoplasms after abrupt withdrawal of ruxolitinib. Leukemia. 2021;35(2):485-493.
4. Barbui T, De Stefano V, Alvarez-Larran A, et al. Among classic myeloproliferative neoplasms, essential thrombocythemia is associated with the greatest risk of venous thromboembolism during COVID-19. Blood Cancer J. 2021;11(2):21.
5. Barbui T, Jurlo A, Masculi A, et al. Long-term follow-up of recovered MPN patients with COVID-19. Blood Cancer J. 2021;11(6):115.
6. Coltro G, Vannucchi AM. The safety of JAK kinase inhibitors for the treatment of myelofibrosis. Expert Opin Drug Saf. 2021;20(2):139-154.
7. McLornan DP, Khan AA, Harrison CN. Immunological consequences of JAK inhibition: friend or foe? Curr Hematol Malig Rep. 2015;10:370-379.
8. Zeiser R, Burchert A, Lengerke C, et al. Ruxolitinib in corticosteroid-refractory graft-versus-host disease after allogeneic stem cell transplantation: a multicenter survey. Leukemia. 2015;29:2062-2068.
9. Tefferi A, Pardanani A. Serious adverse events during ruxolitinib treatment discontinuation in patients with myelofibrosis. Mayo Clin Proc. 2011;86:1188-1191.
10. Coltro G, Mannelli F, Guglielmelli P, Pacilli A, Bosi A, Vannucchi AM. A life-threatening ruxolitinib discontinuation syndrome. Am J Hematol. 2017;92(8):833-838.
11. Vannucchi AM, Sordi B, Morettini A, et al. Compassionate use of JAK1/2 inhibitor ruxolitinib for severe COVID-19: a prospective observational study. Leukemia. 2020;35:1121-1133.
12. La Rosée P, Bremer HC, Gehrke I, et al. The Janus kinase 1/2 inhibitor ruxolitinib in COVID-19 with severe systemic hyperinflammation. Leukemia. 2020;34:1799-1804.
13. Tzafart KH, Guitwein O, Apel A, et al. BNT162b2 COVID-19 vaccine is significantly less effective in patients with hematologic malignancies. Am J Hematol. 2021;96(10):1195-1203. https://doi.org/10.1002/ajh.26284.
14. Mazzoni A, Maggi L, Capone M, et al. Cell-mediated and humoral adaptive immune responses to SARS-CoV-2 are lower in asymptomatic than symptomatic COVID-19 patients. Eur J Immunol. 2020;50(12):2013-2024.
15. Mazzoni A, Salvati L, Maggi L, et al. Impaired immune cell cytotoxicity in severe COVID-19 is IL-6 dependent. J Clin Invest. 2020;138:138554. https://doi.org/10.1172/JCI138554.
16. Vanderbeke L, Van Mol P, Van Herck Y, et al. Monocyte-driven atypical cytokine storm and aberrant neutrophil activation as key mediators of COVID-19 disease severity. Nat Commun. 2021;12(1):4117.

SUPPORTING INFORMATION

Additional supporting information may be found in the online version of the article at the publisher’s website.

Received: 11 June 2021 Revised: 27 July 2021 Accepted: 27 July 2021
DOI: 10.1002/ajh.26322

Serologic response to mRNA COVID-19 vaccination in lymphoma patients

To the Editor:

The development of effective COVID-19 vaccines has been essential in slowing the spread of SARS-CoV-2. However, unvaccinated populations as well as those who do not respond to vaccination still remain at risk. Very few cancer patients were included in the COVID-19 mRNA vaccine trials and any individuals receiving chemotherapy or immunotherapy within 6 months were excluded. Consequently, we have an inadequate knowledge of how well these vaccines work in the cancer patient population. However, by extrapolation from other vaccines, we hypothesized that patients with hematologic malignancies, especially those on
immunosuppressive therapy, would produce poor serological responses to a COVID-19 vaccine.2

In this single-center, observational cohort study we assessed antibody responses in lymphoma patients receiving a COVID-19 mRNA vaccine (BNT162b2, BioNTech/Pfizer, Germany/New York, NY; or mRNA-1273, Moderna, Cambridge, MA). All patients provided written informed consent to participate in observational research, and this study was approved by the Weill Cornell Medicine institutional review board (IRB 21-02023288). Serum samples were obtained before (when possible) and after vaccination. Post-vaccination samples were collected within 11–70 days of the second dose (median 24.5 days). In the healthcare worker (HCW) control group, the post-vaccination samples were obtained within 10–68 days of the second dose (median 40 days).1 Figure S1. We also include data from a healthy control group of 35 HCWs enrolled in the NYP-WELCOME (Weill Cornell Medicine Employees) observational trial (IRB 20-04021831). The use of this cohort in an mRNA vaccine study as well as the assay to quantify immunoglobulin G (IgG) antibodies to the SARS-CoV-2 S-protein has been described previously.3 Additionally, we determined whether any patients had serum antibodies to the SARS-CoV-2 nucleocapsid (N) protein, a marker for prior infection.

The anti-S protein response to mRNA vaccination was assessed by enzyme-linked immunosorbent assay using sera from 67 patients with lymphoma and 35 healthy HCWs controls. The majority of patients in this study were white (74.6%, Table S1). The median age of the study group was 71 (24–90). The most common comorbidities were hypertension (37.3%) and hyperlipidemia (50.7%). All patients were vaccinated with an mRNA vaccine (31 BNT162b2 and 36 mRNA-1273). The patients were categorized as having Hodgkin lymphoma (NHL; n = 4), chronic lymphocytic leukemia (CLL; n = 21), or other non-Hodgkin lymphomas (n = 42). Patients with other non-Hodgkin lymphomas included follicular lymphoma (7), marginal zone lymphoma (10), mantle cell lymphoma (8), diffuse large B-cell lymphoma (8), Waldenstrom macroglobulinemia (7), and other, unclassified lymphomas (2). No SARS-CoV-2 infections were identified during this study (February to April 2021).

The vaccine-induced IgG antibody responses to the SARS-CoV-2 S-protein are shown in Figure 1A. The median and mean endpoint titers in the HCW control group were higher than in the lymphoma patients, although the difference was not significant. There were also no significant differences in mean titers when patients with different lymphomas were compared. However, while all 35 healthy control group members responded to the vaccine, a substantial proportion of the lymphoma patients did not. Thus, the anti-S endpoint titers in nine of the 21 CLL patients and 17 of the 42 other NHL patients were <10 000 (a cut-off level marked on Figure 1), and were often undetectable. By contrast, the four Hodgkin lymphoma patients all responded to the vaccines. When the data were grouped according to whether the participants received the BNT162b2 or mRNA-1273 vaccine, no differences were apparent.

![Figure 1](image-url)
In total, eight lymphoma patients were anti-N-positive while all members of the HCW control group were anti-N-negative. For four of the eight anti-N-positive lymphoma patients, there was evidence of COVID-19 prior to the start of this study. Thus, three patients had prior documented positive SARS-CoV-2 polymerase chain reaction (PCR) tests, while the fourth was not PCR-tested but later had a positive commercial antibody test. Seven of these eight anti-N-positive patients responded to vaccination. Taken together, anti-N-positive lymphoma patients had significantly higher mean anti-S protein titers than their anti-N-negative counterparts ($p = 0.0001$) and the HCW group ($p = 0.02$). However, when anti-N-positive lymphoma patients were separated by treatment status (i.e., naïve, active therapy) the sample sizes were too small for comparisons to the anti-N-negative group.

We studied the CLL and other NHL patients in more detail to understand the implications of their treatment (Figure 1(B)). Every treatment-naïve and remote-therapy (no treatment in over 24 months) CLL patient responded to vaccination, whereas only 40% (6/15) of those currently being treated had anti-S protein titers above the designated cut-off value. A similar pattern was seen for the other NHL patients, although one individual in each of the treatment-naïve and remote-therapy groups failed to respond to the vaccine. Active therapy in this subgroup was again associated with a poor vaccine response, with only 21.4% (3/14) developing anti-S protein titers above the cut-off. The off-therapy subgroup, who had received treatment within 2 years but not at the time of vaccination, also had a lower vaccine response rate of 55.5% (5/9). The four non-responders in this group had all received an anti-CD20 mAb within the previous 2 years; two within 6 months, one within 1 year, and one within 18 months. None of the patients currently on anti-CD20 mAb therapy seroconverted after vaccination.

We next studied the relationship between when anti-CD20 mAb therapy ceased and the vaccine response (Figure 1(C)). None of the 11 CLL and other NHL patients receiving this treatment within 6 months of vaccination had anti-S protein titers above the cut-off, but longer intervals were associated with higher titers. Thus, CLL and other NHL patients who were last treated >24 months before vaccination had response rates of 66.7% (6/9) and 71.4% (10/14), respectively. It is notable that 3/3 CLL and 3/4 other NHL non-responders in this subgroup were receiving a different type of active therapy at the time of vaccination (Table S6). We suggest that even when anti-CD20 mAb therapy ceased >24 months before vaccination, other forms of ongoing active therapy can compromise the vaccine response.

Thus we demonstrated that commonly used lymphoma therapies can adversely influence the performance of COVID-19 vaccines, with anti-CD20 mAbs having the greatest impact. With regard to anti-CD20 mAbs, our results are consistent with a growing number of reports that patients on active, or with recent anti-CD20 mAb treatment do not respond to vaccination.4–6 Compared with other studies, we report a higher rate of seroconversion in patients on active BTKi monotherapy.4–5 Here, we found that 66.7% (4/6) of CLL patients and 50% (2/4) of other NHL patients did develop high-titer IgG antibodies after mRNA vaccination. In a study by Herishanu et al.4 only 16% (8/50) of CLL patients treated with a BTKi responded to vaccination with BNT162b2. In our study, CLL responders on BTKi monotherapy were on treatment for a median length of 53.5 (23–74) months prior to the first vaccine dose. In comparison, CLL non-responders on BTKi monotherapy were on treatment for a median of 2 (1–3) months. The CLL responders were described as having a good response to BTKi monotherapy, with two patients in complete remission and two patients with no progression of disease. All CLL responders were compliant with treatment and only one patient had a recent interruption in therapy. This patient was hospitalized for COVID-19 in April 2020 and treatment was held for approximately 3 weeks after which therapy was restarted. In this study, he was found to be anti-N-positive, consistent with pre-existing serologic immunity from prior infection.

Finally, we studied the avidity of IgG antibodies to the Receptor Binding Domain in the lymphoma and healthy control patients (Figure S1). The avidity was significantly higher ($p < 0.0001$) for anti-N-positive lymphoma patients than for anti-N-negative lymphoma patients as well as healthy controls, all of whom were anti-N-negative (Figure S1(A)). These findings suggest COVID-19 convalescent patients (i.e., anti-N positive) have had longer to affinity mature their anti-S antibodies, which are boosted by the mRNA vaccines. We noted that patients currently receiving venetoclax or a BTKi had lower avidity S-protein antibodies than the other groups, although the group sizes were too small for statistical significance (Figure S1(B)).

In conclusion, we found that most lymphoma patients respond to vaccination with an mRNA-based COVID-19 vaccine, but a substantial fraction (>40%) do not and therefore may remain at risk of infection and disease. There were no significant differences in the S-protein IgG antibody response rates or titers between the different lymphoma histologic subtypes. Treatment status was, however, a relevant variable. Treatment-naive lymphoma patients responded to vaccination in a similar manner to the HCW group, as did patients who had not received therapy for at least 2 years. However, this controlled study presents compelling evidence that patients on active therapy for lymphoma may not respond to vaccination. Our results are particularly concerning for patients on anti-CD20 mAb therapy, given that no patients who had received treatment within 6 months responded well to mRNA vaccination. Thus these patients probably remain at risk of infection with SARS-CoV-2. In this patient population, we suggest exploring alternative strategies for protection such as passive immunization with anti-S monoclonal antibody therapy or, if possible, delaying therapy until after vaccination.

ACKNOWLEDGMENTS

This study was funded by the WCM Lymphoma Program, John P. Moore, P. J. Klasse, Erik Francomeano and Thomas J. Ketas were supported by NIH grants R01 AI36082 and P01 AI110657.

CONFLICT OF INTEREST

PM has consulted for ADCT, AstraZeneca, Bayer, Beigene, BMS, Cellectar, Epizyme, Gilead, Janssen, Karyopharm, Merck, Regeneron, Takeda, Teneobio, and Verastem; and received research funding from Karyopharm. JPL has consulted for Sutro, Miltenyi, AstraZeneca, Epizyme, BMS/Celgene, Regeneron, Bayer, Gilead/Kite, Karyopharm, GenMab, Genentech/Roche, Abbvie, Incyte, and Janssen.

PM has consulted for ADCT, AstraZeneca, Bayer, Beigene, BMS, Cellectar, Epizyme, Gilead, Janssen, Karyopharm, Merck, Regeneron, Takeda, Teneobio, and Verastem; and received research funding from Karyopharm. JPL has consulted for Sutro, Miltenyi, AstraZeneca, Epizyme, BMS/Celgene, Regeneron, Bayer, Gilead/Kite, Karyopharm, GenMab, Genentech/Roche, Abbvie, Incyte, and Janssen.
SARS-CoV-2 vaccination in patients with autoimmune cytopenias: The experience of a reference center

To the Editor:
Both SARS-CoV-2 infection and vaccine have raised concern in immune mediated diseases, including autoimmune cytopenias (AIC, ie, autoimmune hemolytic anemia, AIHA; immune thrombocytopenia, ITP; autoimmune neutropenia, AIN; aplastic anemia, AA; and their combination, termed Evans syndrome, ES). Autoimmune cytopenias are highly heterogeneous conditions with variable severity and a clinical course. They are marked by several relapses often triggered by immune-activating events (infections, traumas, surgery) including vaccines.1-2 Some reports of ITP and AIHA exacerbations after SARS-CoV-2 vaccines (mRNA vaccines Pfizer-Biontech and Moderna, and Adenovirus based vaccine AstraZeneca) have been described,3-16 but evidence-based indications for their management are lacking.

Here we prospectively studied a large series of 108 patients with AIC (56 AIHA, 41 warm type, wAIHA and 15 cold, cAIHA, 38 ITP, 7 AIN, and 7 AA) prospectively followed at a reference hematologic center in Milan, Italy, who underwent SARS-CoV-2 vaccination from March, 24 until the end of June 2021. The study was conducted in accordance with Helsinki Declaration and each participant had given a written informed consent for data collection. Patients (median age 62 years, range 25–89 years, female/male ratio 1.7) were monitored with whole blood counts (and LDH levels in AIHA) the week before and the week after each vaccination dose. Importantly, ongoing AIC therapy (38% of cases, including steroids, cyclosporine, eltrombopag, and complement inhibitor sutimlimab) were kept stable within the 2 weeks before the first dose.

Table 1 summarizes hematologic trends and side effects observed after each dose in patients with ITP, AIHA, AIN, and AA. Seven patients had ES, of whom four ITP plus AIHA and one ITP plus neutropenia. Patients mainly received Pfizer-Biontech vaccine (N = 90), followed by Moderna (N = 16), and Astra-Zeneca (N = 2). Hematological parameters showed a wide distribution both at baseline and after vaccines. To better investigate intra-patient variation we calculated the delta% change of Hb and LDH for AIHA and of PLT in ITP patients, after the first and the second vaccine dose (supporting information Figure S1).

Regarding AIHA, four elderly patients experienced a clinically significant Hb reduction requiring treatment adjustment. In detail, patient number one was a 79-year-old female with warm type AIHA (wAIHA) who experienced an Hb decrease from 10.4 to 9.1 g/dL (LDH 1.2 to

REFERENCES

1. Corti C, Curigliano G. Commentary: SARS-CoV-2 vaccines and cancer patients. Ann Oncol. 2021;32:569-571.
2. Shadman M, Ujjani C. Vaccinations in CLL: implications for COVID-19. Blood. 2021;137:144-146.
3. Ketas TJ, Chaturbhuj D, Portillo VMC, et al. Antibody responses to SARS-CoV-2 mRNA vaccines are detectable in saliva. Pathog Immun. 2021;6:116-134.
4. Herishanu Y, Avivi I, Aharon A, et al. Efficacy of the BNT162b2 mRNA COVID-19 vaccine in patients with chronic lymphocytic leukemia. Blood. 2021;137:3165-3173.
5. Greenberger LM, Saltzman LA, Senefeld JW, Johnson PW, DeGennaro LJ, Nichols GL. Antibody response to SARS-CoV-2 vaccines in patients with hematologic malignancies. Cancer Cell. 2021;39(8):1031-1033.
6. Thakkar A, Gonzalez-Lugo JD, Goradia N, et al. Serocconversion rates following COVID-19 vaccination among patients with cancer. Cancer Cell. 2021;39:1081-1090.e2.

SUPPORTING INFORMATION

Additional supporting information may be found in the online version of the article at the publisher’s website.