Starlikeness of Analytic Functions with Subordinate Ratios

Rosihan M. Ali, Kanika Sharma, and V. Ravichandran

Abstract. Let \(h \) be a non-vanishing analytic function in the open unit disc with \(h(0) = 1 \). Consider the class consisting of normalized analytic functions \(f \) whose ratios \(f(z)/g(z) \), \(g(z)/zp(z) \), and \(p(z) \) are each subordinate to \(h \) for some analytic functions \(g \) and \(p \). The radius of starlikeness is obtained for this class when \(h \) is chosen to be either \(h(z) = \sqrt{1+z} \) or \(h(z) = e^z \). Further \(G \)-radius is also obtained for each of these two classes when \(G \) is a particular widely studied subclass of starlike functions. These include \(G \) consisting of the Janowski starlike functions, and functions which are parabolic starlike.

1. Classes of Analytic Functions

Let \(\mathcal{A} \) denote the class of normalized analytic functions \(f(z) = z + \sum_{k=2}^{\infty} a_k z^k \) in the unit disc \(\mathbb{D} = \{ z \in \mathbb{C} : |z| < 1 \} \). A prominent subclass of \(\mathcal{A} \) is the class \(\mathcal{S}^* \) consisting of functions \(f \in \mathcal{A} \) such that \(f(\mathbb{D}) \) is a starlike domain with respect to the origin. Geometrically, this means the linear segment joining the origin to every other point \(w \in f(\mathbb{D}) \) lies entirely in \(f(\mathbb{D}) \). Every starlike function in \(\mathcal{A} \) is necessarily univalent.

Since \(f'(0) \) does not vanish, every function \(f \in \mathcal{A} \) is locally univalent at \(z = 0 \). Further, each function \(f \in \mathcal{A} \) mirrors the identity mapping near the origin, and thus in particular, maps small circles \(|z| = r \) onto curves which bound starlike domains. If \(f \in \mathcal{A} \) is also required to be univalent in \(\mathbb{D} \), then it is known that \(f \) maps the disc \(|z| < r \) onto a domain starlike with respect to the origin for every \(r \leq r_0 := \tanh(\pi/4) \) (see [4, Corollary, p. 98]). The constant \(r_0 \) cannot be improved. Denoting by \(\mathcal{S} \) the class of univalent functions \(f \in \mathcal{A} \), the number \(r_0 = \tanh(\pi/4) \) is commonly referred to as the radius of starlikeness for the class \(\mathcal{S} \).

Another informative description of the class \(\mathcal{S} \) is its radius of convexity. Here it is known that every \(f \in \mathcal{S} \) maps the disc \(|z| < r \) onto a convex domain for every \(r \leq r_0 := 2 - \sqrt{3} \) [4, Corollary, p. 44]. Thus the radius of convexity for \(\mathcal{S} \) is \(r_0 = 2 - \sqrt{3} \).

To formulate a radius description for other entities besides starlikeness and convexity, consider in general two families \(\mathcal{G} \) and \(\mathcal{M} \) of \(\mathcal{A} \). The \(\mathcal{G} \)-radius for the class \(\mathcal{M} \), denoted by \(R_\mathcal{G}(\mathcal{M}) \), is the largest number \(R \) such that \(r^{-1}f(rz) \in \mathcal{G} \) for every \(0 < r \leq R \) and \(f \in \mathcal{M} \). Thus, for example, an equivalent description of the radius of starlikeness for \(\mathcal{S} \) is that the \(\mathcal{S}^* \)-radius for the class \(\mathcal{S} \) is \(R_{\mathcal{S}^*}(\mathcal{S}) = \tanh(\pi/4) \).

2020 Mathematics Subject Classification. 30C80, 30C45.

Key words and phrases. Starlike functions; subordination; radius of starlikeness.
In this paper, we seek to determine the radius of starlikeness, and certain other \(G \)-radius, for particular subclasses \(G \) of \(A \). Several widely-studied subclasses of \(A \) have simple geometric descriptions; these functions are often expressed as a ratio between two functions. Among the very early studies in this direction is the class of close-to-convex functions introduced by Kaplan \cite{9}, and Reade’s class \cite{22} of close-to-starlike functions. Close-to-convex functions are necessarily univalent, but not so for close-to-starlike functions. Several works, for example those in \cite{2}\cite{11}\cite{14}\cite{25}\cite{27}, have advanced studies in classes of functions characterized by the ratio between functions \(f \) and \(g \) belonging to given subclasses of \(A \).

In this paper, we examine two different subclasses of functions in \(A \) satisfying a certain subordination link of ratios. Interestingly, these classes contain non-univalent functions. An analytic function \(f \) is subordinated to an analytic function \(g \), written \(f \prec g \), if

\[
f(z) = g(w(z)), \quad z \in \mathbb{D},
\]

for some analytic self-map \(w \) in \(\mathbb{D} \) with \(|w(z)| \leq |z| \). The function \(w \) is often referred to as a Schwarz function.

Now let \(h \) be a non-vanishing analytic function in \(\mathbb{D} \) with \(h(0) = 1 \). The classes treated in this paper consist of functions \(f \in A \) whose ratios \(f(z)/g(z), g(z)/zp(z), \) and \(p(z), \) are each subordinate to \(h \) for some analytic functions \(g \) and \(p \):

\[
\frac{f(z)}{g(z)} \prec h(z), \quad \frac{g(z)}{zp(z)} \prec h(z), \quad p(z) \prec h(z).
\]

When \(p \) is the constant one function, then the class contains functions \(f \in A \) satisfying the subordination of ratios

\[
\frac{f(z)}{g(z)} \prec h(z), \quad \frac{g(z)}{z} \prec h(z).
\]

For \(h(z) = (1 + z)/(1 - z) \), and other appropriate choices of \(h \), these functions have earlier been studied, notably by MacGregor in \cite{11}\cite{14}, and Ratti in \cite{19}\cite{20}. Recent investigations include those in \cite{2}\cite{25}\cite{27}.

In this paper, two specific choices of the function \(h \) are made: \(h(z) = \sqrt{1+z} \), and \(h(z) = e^z \).

The Class \(T_1 \). This is the class given by

\[
T_1 := \left\{ f \in A : \frac{f(z)}{g(z)} \prec \sqrt{1+z}, \frac{g(z)}{zp(z)} \prec \sqrt{1+z} \text{ for some } g \in A, p(z) \prec \sqrt{1+z} \right\}.
\]

This class is non-empty: let \(f_1, g_1, p_1 : \mathbb{D} \to \mathbb{C} \) be given by

\[
f_1(z) = z(1 + z)^{3/2}, \quad g_1(z) = z(1 + z) \quad \text{and} \quad p_1(z) = \sqrt{1+z}.
\]

Then \(f_1(z)/g_1(z) \prec \sqrt{1+z} \) and \(g_1(z)/zp_1(z) \prec \sqrt{1+z} \), so that \(f_1 \in T_1 \). The function \(f_1 \) will be shown to play the role of an extremal function for the class \(T_1 \). Since \(f_1' \) vanishes at \(z = -2/5 \), the function \(f_1 \) is non-univalent, and thus, the class \(T_1 \) contains non-univalent functions. Incidentally, \(f_1 \) demonstrates the radius of univalence for \(T_1 \) is at most \(2/5 \). In Theorem \cite{27}, the radius of starlikeness for \(T_1 \) is shown to be \(2/5 \), whence \(T_1 \) has radius of univalence \(2/5 \).

The following is a useful result in investigating the starlikeness of the class \(T_1 \).
Lemma 1.1. Let \(p(z) \prec \sqrt{1 + z} \). Then \(p \) satisfies the sharp inequalities
\[
\sqrt{1 - r} \leq |p(z)| \leq \sqrt{1 + r}, \quad |z| \leq r,
\]
and
\[
\left| \frac{zp'(z)}{p(z)} \right| \leq \frac{r}{2(1 - r)}, \quad |z| \leq r.
\]

Proof. If \(p(z) \prec \sqrt{1 + z} \), then \(p^2(z) = 1 + w(z) \) for some Schwarz function \(w \). The well-known Schwarz lemma shows that \(|w(z)| \leq |z| \) and
\[
|w'(z)| \leq \frac{1 - |w(z)|^2}{1 - |z|^2}.
\]
Therefore,
\[
|p(z)|^2 = |1 + w(z)| \leq 1 + |w(z)| \leq 1 + |z| \leq 1 + r
\]
for \(|z| \leq r \), that is, \(|p(z)| \leq \sqrt{1 + r} \) for \(|z| \leq r \). Similarly, \(|p(z)| \geq \sqrt{1 - r} \) for \(|z| \leq r \).

Since \(2zp'(z)/p(z) = zw'(z)/(1 + w(z)) \), the inequality (1.3) readily shows
\[
2 \left| \frac{zp'(z)}{p(z)} \right| \leq \frac{|z||w'(z)|}{1 - |w(z)|} \leq \frac{|z|(|1 + w(z)|)}{1 - |z|^2} \leq \frac{|z|(|1 + |z|)}{1 - |z|^2} = \frac{|z|}{1 - |z|} \leq \frac{r}{1 - r}
\]
for \(|z| \leq r \). This proves (1.2). The inequalities are sharp for the function \(p(z) = \sqrt{1 + z} \).

For \(f \in \mathcal{T}_1 \), let \(p_1(z) = f(z)/g(z) \) and \(p_2(z) = g(z)/zp(z) \). Then \(f(z) = zp(z)p_1(z)p_2(z) \) and
\[
\left| \frac{zf'(z)}{f(z)} - 1 \right| \leq \left| \frac{zp'(z)}{p(z)} \right| + \left| \frac{zp_1'(z)}{p_1(z)} \right| + \left| \frac{zp_2'(z)}{p_2(z)} \right|.
\]
Since \(p, p_1, p_2 \prec \sqrt{1 + z} \), we deduce from (1.2) and (1.4) that
\[
\left| \frac{zf'(z)}{f(z)} - 1 \right| \leq \frac{3r}{2(1 - r)}, \quad |z| \leq r,
\]
for each function \(f \in \mathcal{T}_1 \). Sharp growth inequalities also follow from (1.1):
\[
r(1 - r)^{3/2} \leq |f(z)| \leq r(1 + r)^{3/2}
\]
for each \(f \in \mathcal{T}_1 \). Crude distortion inequalities can readily be obtained from (1.5) and the growth inequality; however, finding sharp estimates remain an open problem.

The Class \(\mathcal{T}_2 \). This class is defined by
\[
\mathcal{T}_2 := \left\{ f \in \mathcal{A} : \frac{f(z)}{g(z)} \prec e^z, \frac{g(z)}{zp(z)} \prec e^z \quad \text{for some} \quad g \in \mathcal{A}, \; p(z) \prec e^z \right\}.
\]
Let \(f_2, g_2, p_2 : \mathbb{D} \rightarrow \mathbb{C} \) be given by
\[
f_2(z) = ze^{3z}, \quad g_2(z) = ze^{2z} \quad \text{and} \quad p_2(z) = e^z.
\]
Evidently, \(f_2(z)/g_2(z) \prec e^z, \; g_2(z)/zp_2(z) \prec e^z \) so that \(f_2 \in \mathcal{T}_2 \), and the class \(\mathcal{T}_2 \) is non-empty. Similar to \(f_1 \in \mathcal{T}_1 \), the function \(f_2 \) plays the role of an extremal function for the class \(\mathcal{T}_2 \). The Taylor series expansion for \(f_2 \) is
\[
f_2(z) = z + 3z^2 + \frac{9z^3}{2} + \frac{9z^4}{2} + \frac{27z^5}{8} + \cdots.
\]
Comparing the second coefficient, it is clear that f_2 is non-univalent. Hence the class \mathcal{T}_2 contains non-univalent functions. The derivative f_2' vanishes at $z = -1/3$, which shows the radius of univalence for \mathcal{T}_2 is at most $1/3$. From Theorem 2.1 the radius of starlikeness is shown to be $1/3$, and so the radius of univalence for \mathcal{T}_2 is $1/3$.

Lemma 1.2. Every $p(z) < e^z$ satisfies the sharp inequalities

\[
e^{-r} \leq |p(z)| \leq e^r, \quad |z| \leq r,
\]

and

\[
\left| \frac{zp'(z)}{p(z)} \right| \leq \begin{cases} r, & |z| \leq \sqrt{2} - 1 \\ \frac{(1 + r^2)^2}{4(1 - r^2)}, & |z| = \sqrt{2} - 1. \end{cases}
\]

Proof. Let $p(z) < e^z$. Since $p(z) = e^{w(z)}$ for some Schwarz self-map w satisfying $|w(z)| \leq |z|$, it follows that

\[
|p(z)| = e^{Re(w(z))} \leq e^{|w(z)|} \leq e^{|z|}.
\]

The function w also satisfy the sharp inequality (see [41 Corollary, p. 199])

\[
|w'(z)| \leq \begin{cases} 1, & r = |z| \leq \sqrt{2} - 1 \\ \frac{(1 + r^2)^2}{4r(1 - r^2)}, & r \geq \sqrt{2} - 1. \end{cases}
\]

From $zp'(z)/p(z) = zw'(z)$, we conclude that

\[
\left| \frac{zp'(z)}{p(z)} \right| \leq \begin{cases} r, & r = |z| \leq \sqrt{2} - 1 \\ \frac{(1 + r^2)^2}{4(1 - r^2)}, & r \geq \sqrt{2} - 1. \end{cases}
\]

This inequality is sharp for $p(z) = e^z$ and $r = |z| \leq \sqrt{2} - 1$. It is also sharp in the remaining interval for the function $p(z) = e^{w(z)}$, where w is the extremal function for which equality holds in (1.8).

For $f \in \mathcal{T}_2$, let $p_1(z) = f(z)/g(z)$ and $p_2(z) = g(z)/zp(z)$. Then $f(z) = zp(z)p_1(z)p_2(z)$ and

\[
\left| \frac{zf'(z)}{f(z)} - 1 \right| \leq \left| \frac{zp'(z)}{p(z)} \right| + \left| \frac{zp_1'(z)}{p_1(z)} \right| + \left| \frac{zp_2'(z)}{p_2(z)} \right|.
\]

Since $p, p_1, p_2 < e^z$, estimates (1.7) and (1.8) show that

\[
\left| \frac{zf'(z)}{f(z)} - 1 \right| \leq \begin{cases} 3r, & r = |z| \leq \sqrt{2} - 1 \\ \frac{3(1 + r^2)^2}{4(1 - r^2)}, & r \geq \sqrt{2} - 1. \end{cases}
\]

for each function $f \in \mathcal{T}_2$. It also follows from (1.6) that

\[re^{-3r} \leq |f(z)| \leq re^{3r}\]

holds for each function $f \in \mathcal{T}_2$, and that these estimates are sharp.
In this paper, we shall adopt the commonly used notations for subclasses of \mathcal{A}. First, for $0 \leq \alpha < 1$, let $S^\alpha(\alpha)$ denote the class of starlike functions of order α consisting of functions $f \in \mathcal{A}$ satisfying the subordination

$$zf'(z) \leq f(z) < \frac{1 + (1 - 2\alpha)z}{1 - z}.$$

Thus

$$\Re \frac{zf'(z)}{f(z)} > \alpha, \quad z \in \mathbb{D}.$$

The case $\alpha = 0$ corresponds to the classical functions whose image domains are starlike with respect to the origin. Various other starlike subclasses of \mathcal{A} occurring in the literature can be expressed in terms of the subordination

$$zf'(z) < \varphi(z)$$

for suitable choices of the superordinate function φ. When $\varphi : \mathbb{D} \rightarrow \mathbb{C}$ is chosen to be $\varphi(z) := (1 + A\alpha)/(1 + B\alpha)$, $-1 \leq B < A \leq 1$, the subclass derived is denoted by $S^\alpha[A, B]$. Functions $f \in S^\alpha[A, B]$ are known as Janowski starlike. When $\varphi(z) := 1 + (2/\pi^2)((\log((1 + \sqrt{z})/(1 - \sqrt{z})))^2)$, the subclass is denoted by S^α_σ, and its functions are called parabolic starlike.

In Section 2 of this paper, the radius of starlikeness, Janowski starlikeness, and parabolic starlikeness are found for the classes T_i, with $i = 1, 2$. Section 3 deals with the determination of the G-radius for the class T_i with $i = 1, 2$, for certain other subclasses G occurring in the literature. These classes are associated with particular choices of the superordinate function φ in (1.11). As mentioned earlier, the G-radius for a given class \mathcal{M}, denoted by $R_G(\mathcal{M})$, is the largest number R such that $r^{-1}f(rz) \in G$ for every $0 < r \leq R$ and $f \in \mathcal{M}$. It will become apparent in the forthcoming proofs that there are common features in the methodology of finding the G-radius for each of these subclasses.

2. Starlikeness of order α, Janowski and parabolic starlikeness

The first result deals with the $S^\alpha(\alpha)$-radius (radius of starlikeness of order α) for the classes T_1 and T_2. This radius is shown to equal the S^α_α-radius, where S^α_α is the subclass containing functions $f \in \mathcal{A}$ satisfying $|zf'(z)/f(z) - 1| < 1 - \alpha$. The latter condition also implies that $S^\alpha_\alpha \subset S^\alpha(\alpha)$.

Theorem 2.1. Let $0 \leq \alpha < 1$. The radius of starlikeness of order α for T_1 and T_2 are

(i) $R_{S^\alpha(\alpha)}(T_1) = R_{S^\alpha_\alpha}(T_1) = 2(1 - \alpha)/(5 - 2\alpha)$,

(ii) $R_{S^\alpha(\alpha)}(T_2) = R_{S^\alpha_\alpha}(T_2) = (1 - \alpha)/3$.

Proof. (i) The function $\sigma(r) = (2 - 5r)/(2 - 2r)$ is a decreasing function on $[0, 1)$. Further, the number $R_1 := (2(1 - \alpha)/(5 - 2\alpha))$ is the root of the equation $\sigma(r) = \alpha$. For $f \in T_1$ and $0 < r \leq R_1$, the inequality (1.5) readily yields

$$\Re \frac{zf'(z)}{f(z)} \geq 1 - \frac{3r}{2(1 - r)} = 2 - 5r = \sigma(r) \geq \sigma(R_1) = \alpha$$

and

$$\left|\frac{zf'(z)}{f(z)} - 1\right| \leq \frac{3r}{2(1 - r)} = 1 - \sigma(r) \leq 1 - \sigma(R_1) = 1 - \alpha.$$
At \(z = -R_1 \), the function \(f_1 \in T_1 \) given by \(f_1(z) = z(1 + z)^{3/2} \) yields
\[
\frac{zf_1'(z)}{f_1(z)} = \frac{2 + 5z}{2 + 2z} = \frac{2 - 5R_1}{2 - 2R_1} = \alpha.
\]
Thus
\[
\Re \frac{zf_1'(z)}{f_1(z)} = \alpha \quad \text{and} \quad \left| \frac{zf_1'(z)}{f_1(z)} - 1 \right| = 1 - \alpha.
\]
This proves that the \(S^*(\alpha) \) and \(S^*_\alpha \) radii for \(T_1 \) are the same number \(R_1 \).

(ii) Consider \(\omega(r) = 1 - 3r, \quad 0 \leq r < 1 \). The number \(R_2 = (1 - \alpha)/3 < 1/3 \) is clearly the root of the equation \(\omega(r) = \alpha \). Since \(\omega \) is decreasing, then \(\omega(r) \geq \omega(R_2) = \alpha \) for each \(f \in T_2 \) and \(0 < r \leq R_2 \). It follows from (1.10) that
\[
\Re \frac{zf'(z)}{f(z)} \geq 1 - 3r = \omega(r) \geq \alpha,
\]
and
\[
\left| \frac{zf'(z)}{f(z)} - 1 \right| \leq 3r = 1 - \omega(r) \leq 1 - \alpha.
\]
Evaluating the function \(f_2(z) = ze^{3z} \) at \(z = -R_2 \) yields
\[
\frac{zf_2'(z)}{f_2(z)} = 1 - 3R = \alpha.
\]
Hence
\[
\Re \frac{zf_2'(z)}{f_2(z)} = \alpha \quad \text{and} \quad \left| \frac{zf_2'(z)}{f_2(z)} - 1 \right| = 1 - \alpha.
\]
This proves that the \(S^*(\alpha) \) and \(S^*_\alpha \) radii for the class \(T_2 \) are the same number \(R_2 \).

Next we find the \(S^*[A,B]\)-radius (Janowski starlikeness) for \(T_1 \) and \(T_2 \). Recall that \(S^*[A,B] \) consists of analytic functions \(f \in A \) satisfying the subordination \(zf'(z)/f(z) < (1 + Az)/(1 + Bz), -1 \leq B < A \leq 1 \).

Theorem 2.2. (i) Every \(f \in T_1 \) is Janowski starlike in the disc \(D_r = \{ z : |z| < r \} \) for \(r \leq 2(A - B)/(3(1 + |B|) + 2(A - B)). \) If \(B < 0 \), then \(R_{S^*[A,B]}(T_1) = 2(A - B)/(3 + 2A - 5B) \).
(ii) The radius of Janowski starlikeness for \(T_2 \) is \(R_{S^*[A,B]}(T_2) = (A - B)/(3(1 - B)). \)

Proof. Since \(S^*[A, -1] = S^*((1 - A)/2, \) the results in the case \(B = -1 \) follow from Theorem 2.1. We now prove the results when \(-1 < B < A \leq 1 \).

(i) Let \(f \in T_1 \) and write \(w = zf'(z)/f(z) \). Then (1.23) shows that \(|w - 1| \leq 3r/(2(1 - r)) \) for \(|z| \leq r \). For \(0 \leq r \leq R_1 := 2(A - B)/(3(1 + |B|) + 2(A - B)) \), then \(3R_1/(2(1 - R_1)) = (A - B)/(1 + |B|) \).

For \(0 \leq r \leq R_1 \), we first show that the disc
\[
\left\{ w : |w - 1| \leq \frac{3R_1}{2(1 - R_1)} = \frac{A - B}{1 + |B|} \right\}
\]
is contained in the images of the unit disc under the mapping \((1 + Az)/(1 + Bz) \). As \(B \neq -1 \), the image is the disc given by
\[
\left\{ w : \left| w - \frac{1 - AB}{1 - B^2} \right| < \frac{A - B}{1 - B^2} \right\}.
\]
Silverman [30, p. 50-51] has shown that the disc
\[\{ w : |w - c| < d \} \subset \{ w : |w - a| < b \} \]
if and only if \(|a - c| \leq b - d \). With the choices \(c = 1, d = (A - B)/(1 + |B|), a = (1 - AB)/(1 - B^2) \) and \(b = (A - B)/(1 - B^2) \), then \(|a - c| = |B|(A - B)/(1 - B^2) = b - d \). This proves that \(S^*[A, B] \) radius is at least \(R_1 \).

To prove sharpness, consider the function \(f_1 \in T_1 \) given by \(f_1(z) = z(1 + z)^{3/2} \). Evidently, \(zf'_1(z)/f_1(z) = (2 + 5z)/(2 + 2z) \). For \(B < 0 \), evaluating at \(z = -R_1 \), then \(zf'_1(z)/f_1(z) = 1 + 3z/(2 + 2z) = 1 - (A - B)/(1 + |B|) = (1 - A)/(1 - B) \). This shows that
\[
\frac{|zf'_1(z)|}{|f_1(z)|} \leq \frac{|A - B|}{1 - B^2},
\]
proving sharpness in the case \(B < 0 \).

(ii) Let \(f \in T_2 \) and \(w := zf'(z)/f(z) \). It follows from (1.10) that \(|w - 1| \leq 3r \) for \(|z| \leq r \). For \(0 \leq r \leq R_2 := (A - B)/(3(1 + |B|)) \), we see that the disc \(\{ w : |w - 1| \leq 3R_2 = (A - B)/(1 + |B|) \} \) is contained in the disc \(\{ w : |w - 1| \leq 3R_2 < (A - B)/(1 - B^2) \} \), as in the proof of (i). This proves that \(S^*[A, B] \) radius is at least \(R_2 \). The result is sharp for the function \(f_2 \in T_2 \) given by the function \(f_2(z) = ze^{3z} \).

The function \(\varphi_{PAR} : \mathbb{D} \to \mathbb{C} \) given by
\[
\varphi_{PAR}(z) := 1 + \frac{2}{\pi^2} \left(\log \frac{1 + \sqrt{z}}{1 - \sqrt{z}} \right)^2, \quad \text{Im} \sqrt{z} \geq 0,
\]
maps \(\mathbb{D} \) into the parabolic region
\[
\varphi_{PAR}(\mathbb{D}) = \{ w = u + iv : v^2 < 2u - 1 \} = \{ w : \text{Re} \, w > |w - 1| \}.
\]
The class \(C(\varphi_{PAR}) = \{ f \in A : 1 + zf''(z)/f'(z) < \varphi_{PAR}(z) \} \) is the class of uniformly convex functions introduced by Goodman [7]. The corresponding class \(S^*_p := S^*(\varphi_{PAR}) = \{ f \in A : zf''(z)/f'(z) < \varphi_{PAR}(z) \} \) introduced by Rønning [24] is known as the class of parabolic starlike functions. The class \(S^*_p \) consists of functions \(f \in A \) satisfying
\[
\text{Re} \left(\frac{zf''(z)}{f'(z)} \right) > \left| \frac{zf'(z)}{f(z)} - 1 \right|, \quad z \in \mathbb{D}.
\]
Evidently, every parabolic starlike function is also starlike of order 1/2. The radius of parabolic starlikeness for the class \(T_1 \) and \(T_2 \) is given in the next result.

Corollary 2.3. The radius of parabolic starlikeness for \(T_1 \) and \(T_2 \) is respectively equal to its radius of starlikeness of order 1/2. Thus,

(i) \(R_{S^*_p}(T_1) = 1/4 \).

(ii) \(R_{S^*_p}(T_2) = 1/6 \).

Proof. Shanmugam and Ravichandran [25, p. 321] proved that
\[
\{ w : |w - a| < a - 1/2 \} \subseteq \{ w : \text{Re} \, w > |w - 1| \}
\]
for \(1/2 < a \leq 3/2 \). Choosing \(a = 1 \), this implies that \(S^*_{1/2} \subset S^*_p \). Every parabolic starlike function is also starlike of order 1/2, whence the inclusion \(S^*_{1/2} \subset S^*_p \subset S^* \). Therefore, for any class \(\mathcal{F} \), readily \(R_{S^*_{1/2}}(\mathcal{F}) \leq R_{S^*_p}(\mathcal{F}) \leq R_{S^*_{(1/2)}}(\mathcal{F}) \).
When $\mathcal{F} = \mathcal{T}_i$, $i = 1, 2$, Theorem 2.1 gives $R_{\mathcal{S}^*_1}(\mathcal{T}_i) = R_{\mathcal{S}_{1}^*}(\mathcal{T}_i)$. This shows that $R_{\mathcal{S}^*_1}(\mathcal{T}_i) = R_{\mathcal{S}^*_2}(\mathcal{T}_i) = R_{\mathcal{S}^*(1/2)}(\mathcal{T}_i)$. Since $R_{\mathcal{S}^*(1/2)}(\mathcal{T}_1) = 1/4$ and $R_{\mathcal{S}^*(1/2)}(\mathcal{T}_2) = 1/6$ from Theorem 2.1, it follows that $R_{\mathcal{S}_{1}^*}(\mathcal{T}_1) = 1/4$ and $R_{\mathcal{S}_{1}^*}(\mathcal{T}_2) = 1/6$.

3. Further radius of starlikeness

In this section, we find the \mathcal{G}-radius for the class \mathcal{T}_i with $i = 1, 2$, for certain other widely studied subclasses \mathcal{G}. These are associated with particular choices of the superordinate function φ in (1.11).

Denote by $\mathcal{S}_{\exp}^* := \mathcal{S}^*(e^z)$ the class associated with $\varphi(z) := e^z$ in (1.11). This class was introduced by Mendiratta et al. [16], and it consists of functions $f \in \mathcal{A}$ satisfying the condition $|\log(zf'(z)/f(z))| < 1$. The following result gives the radius of exponential starlikeness for the classes \mathcal{T}_1 and \mathcal{T}_2.

Corollary 3.1. The \mathcal{S}_{\exp}^*-radius for the class \mathcal{T}_1 is

$$R_{\mathcal{S}_{\exp}^*}(\mathcal{T}_1) = (2 - 2e)/(2 - 5e) \approx 0.296475,$$

while that of \mathcal{T}_2 is

$$R_{\mathcal{S}_{\exp}^*}(\mathcal{T}_2) = (e - 1)/3e.$$

Proof. Mendiratta et al. [16], Lemma 2.2 proved that

$$\{w : |w - a| < a - 1/e\} \subseteq \{w : |\log w| < 1\}$$

for $e^{-1} \leq a \leq (e + e^{-1})/2$, and this inclusion with $a = 1$ gives $S_{1/e}^* \subseteq \mathcal{S}_{\exp}^*$. It was also shown in [16], Theorem 2.1 (i) that $\mathcal{S}_{\exp}^* \subset \mathcal{S}^*(1/e)$. Therefore, $S_{1/e}^* \subset \mathcal{S}_{\exp}^* \subset \mathcal{S}^*(1/e)$, which, as a consequence of Theorem 2.1 established the result.

Corollary 3.2 investigates the radius of cardioid starlikeness for each class \mathcal{T}_1 and \mathcal{T}_2. The class $\mathcal{S}_{\mathcal{C}}^* := \mathcal{S}^*(\varphi_{\mathcal{CAR}})$, where $\varphi_{\mathcal{CAR}}(z) := 1 + 4z^3 + 2z^2/3$ in (1.11), was introduced and studied in [21, 26, 23]. Descriptively, $f \in \mathcal{S}_{\mathcal{C}}^*$ provided $zf'(z)/f(z)$ lies in the region bounded by the cardioid $\Omega_{\mathcal{C}} := \{w = u + iv : (9u^2 + 9v^2 - 18u + 5)^2 - 16(9u^2 + 9v^2 - 6u + 1) = 0\}$.

Corollary 3.2. The following are the $\mathcal{S}_{\mathcal{C}}^*$-radius for the classes \mathcal{T}_1 and \mathcal{T}_2:

(i) $R_{\mathcal{S}_{\mathcal{C}}^*}(\mathcal{T}_1) = 4/13$,

(ii) $R_{\mathcal{S}_{\mathcal{C}}^*}(\mathcal{T}_2) = 2/9$.

Proof. Sharma et al. [27] proved that $\{w : |w - a| < a - 1/3\} \subseteq \Omega_{\mathcal{C}}$ for $1/3 < a < 5/3$, and this inclusion with $a = 1$ gives $S_{1/3}^* \subseteq \mathcal{S}_{\mathcal{C}}^*$. Thus $R_{S_{1/3}^*}(\mathcal{T}_i) \leq R_{\mathcal{S}_{\mathcal{C}}^*}(\mathcal{T}_i)$ for $i = 1, 2$.

To complete the proof, we demonstrate $R_{\mathcal{S}_{\mathcal{C}}^*}(\mathcal{T}_i) \leq R_{S_{1/3}^*}(\mathcal{T}_i)$ for $i = 1, 2$.

(i) Evaluating the function $f_1(z) = z(1 + z)^{3/2}$ at $z = -R = -R_{S_{1/3}^*}(\mathcal{T}_i) = -4/13$ gives

$$\frac{zf_1'(z)}{f_1(z)} = \frac{2 + 5z}{2 + 2z} = \frac{2 - 5R}{2 - 2R} = \frac{1}{3} = \varphi_{\mathcal{CAR}}(-1).$$

Thus, $R_{\mathcal{S}_{\mathcal{C}}^*}(\mathcal{T}_1) \leq 4/13$.

(ii) Similarly, at $z = -R = -R_{S_{1/3}^*}(\mathcal{T}_2) = -2/9$, the function $f_2(z) = ze^{3z}$ yields

$$\frac{zf_2'(z)}{f_2(z)} = 1 + 3z = 1 - 3R = \frac{1}{3} = \varphi_{\mathcal{CAR}}(-1).$$
This proves that $R_{S^*}(T_2) \leq 2/9$.

In 2019, Cho et al. [3] studied the class $S^*_\sin := S^*(1 + \sin z)$ consisting of functions $f \in \mathcal{A}$ satisfying the condition $zf'(z)/f(z) < 1 + \sin z$. We find the S^*_\sin-radius for the classes T_1 and T_2.

Corollary 3.3. The following are the S^*_\sin-radius for each class T_1 and T_2:

1. $R_{S^*_\sin}(T_1) = 2(\sin 1)/(3 + 2 \sin 1) \approx 0.35938$.
2. $R_{S^*_\sin}(T_2) = (\sin 1)/3$.

Proof. It was proved in [3] that $\{w : |w-a| < \sin 1-|a-1|\} \subseteq q(\mathbb{D})$ for $|a-1| \leq \sin 1$, where $q(z) := 1 + \sin z$. For $a = 1$, this implies that $S^*_{\sin 1} \subset S^*_\sin$. Thus $R_{S^*_{\sin 1}}(T_i) \leq R_{S^*_\sin}(T_i)$ for $i = 1, 2$. The proof is completed by demonstrating $R_{S^*_\sin}(T_i) \leq R_{S^*_{\sin 1}}(T_i)$ for $i = 1, 2$.

(i) Evaluating the function $f_1(z) = z(1 + z)^{3/2}$ at $z = -R = -R_{S^*_{\sin 1}}(T_1) = -2\sin 1/(3 + 2 \sin 1)$ gives

$$\frac{zf_1'(z)}{f_1(z)} = \frac{2 + 5z}{2 + 2z} = \frac{2 - 5R}{2 - 2R} = 1 - \sin 1 = q(-1).$$

Thus, $R_{S^*_\sin}(T_1) \leq 2\sin 1/(3 + 2 \sin 1)$.

(ii) Similarly, at $z = \pm R = \pm R_{S^*_{\sin 1}}(T_2) = \pm(\sin 1)/3$, the function $f_2(z) = ze^{3z}$ yields

$$\frac{zf_2'(z)}{f_2(z)} = 1 + 3z = 1 \pm 3R = 1 \pm \sin 1 = q(\pm 1).$$

This proves that $R_{S^*_\sin}(T_2) \leq (\sin 1)/3$.

Consider next the class $S^*_\ell := S^*(z + \sqrt{1 + z^2})$ introduced by Raina and Sokól in [18]. Functions $f \in S^*_\ell$ provided $zf'(z)/f(z)$ lies in the region bounded by the lune $\Omega_\ell := \{w : |w^2 - 1| < 2|w|\}$. The result below gives the radius of lune starlikeness for each class T_1 and T_2.

Corollary 3.4. The following are the S^*_ℓ-radius for each class T_1 and T_2:

1. $R_{S^*_\ell}(T_1) = 2(\sqrt{2} - 2)/(2\sqrt{2} - 7) \approx 0.280847$.
2. $R_{S^*_\ell}(T_2) = (2 - \sqrt{2})/3$.

Proof. It was shown by Gandhi and Ravichandran [5] Lemma 2.1 that $\{w : |w-a| < 1 - |\sqrt{2} - a|\} \subseteq \Omega_\ell$ for $\sqrt{2} - 1 < a \leq \sqrt{2} + 1$. Choosing $a = 1$, the inclusion gives $S^*_{\sqrt{2} - 1} \subset S^*_\ell$. Thus $R_{S^*_{\sqrt{2} - 1}}(T_i) \leq R_{S^*_\ell}(T_i)$ for $i = 1, 2$. We complete the proof by demonstrating $R_{S^*_\ell}(T_i) \leq R_{S^*_{\sqrt{2} - 1}}(T_i)$ for $i = 1, 2$.

(i) Evaluating the function $f_1(z) = z(1 + z)^{3/2}$ at $z = -R = -R_{S^*_{\sqrt{2} - 1}}(T_1) = -2(\sqrt{2} - 2)/(2\sqrt{2} - 7)$ gives

$$\left|\frac{zf_1'(z)}{f_1(z)} - 1\right| = \left|\frac{2 + 5z}{2 + 2z} - 1\right| = \left|\frac{2 - 5R}{2 - 2R} - 1\right| = 0.828 = 2 \left|\frac{zf_1'(z)}{f_1(z)}\right|.$$

Thus, $R_{S^*_\ell}(T_1) \leq 2(\sqrt{2} - 2)/(2\sqrt{2} - 7)$.

(ii) Similarly, at \(z = -R = -R_{S^*_{\sqrt{2}-1}}(T_2) = -(2 - \sqrt{2})/3 \), the function \(f_2(z) = ze^{3z} \) yields

\[
\left(\frac{zf'_2(z)}{f_2(z)} \right)^2 - 1 = |(1 + 3z)^2 - 1| = |(1 - 3R)^2 - 1| = 0.828 = 2 \frac{zf'_2(z)}{f_2(z)}.
\]

This proves that \(R_{S^*_{\sqrt{2}}}^*(T_2) \leq (2 - \sqrt{2})/3 \).

As a further example, consider next the class \(S^*_R := S^*(\eta(z)) \), where \(\eta(z) = 1 + ((z + z^2)/(k^2 - kz)) \), \(k = \sqrt{2} + 1 \). This class associated with a rational function was introduced and studied by Kumar and Ravichandran in [10].

Corollary 3.5. The following are the \(S^*_R \)-radius for the classes \(T_1 \) and \(T_2 \):

(i) \(R_{S^*_2}(T_1) = 2(-3 + 2\sqrt{2})/(4\sqrt{2} - 9) \approx 0.102642 \),

(ii) \(R_{S^*_2}(T_2) = (3 - 2\sqrt{2})/3 \).

Proof. It was shown in [10] that \(\{ w : |w - a| < a - 2(\sqrt{2} - 1) \} \subseteq \eta(\mathbb{D}) \) for \(2(\sqrt{2} - 1) < a \leq \sqrt{2} \). This inclusion with \(a = 1 \) gives \(S^*_2(\sqrt{2}-1) \subset S^*_R \). Thus \(R_{S^*_R}(T_i) \leq R_{S^*_2}(T_i) \) for \(i = 1, 2 \). We next show that \(R_{S^*_R}(T_1) \leq R_{S^*_2}(T_i) \) for \(i = 1, 2 \).

(i) At \(z = -R = -R_{S^*_2}(T_1) = -2(-3 + 2\sqrt{2})/(4\sqrt{2} - 9) \), the function \(f_1(z) = z(1 + z)^{3/2} \) yields

\[
\frac{zf'_1(z)}{f_1(z)} = \frac{2 - 5R}{2 - 2R} = 2(\sqrt{2} - 1) = \eta(1).
\]

Thus, \(R_{S^*_R}(T_1) \leq 2(-3 + 2\sqrt{2})/(4\sqrt{2} - 9) \).

(ii) Evaluating \(f_2(z) = ze^{3z} \) at \(z = -R = -R_{S^*_2}(T_2) = -(3 - 2\sqrt{2})/3 \) gives

\[
\frac{zf'_2(z)}{f_2(z)} = 1 - 3R = 2(\sqrt{2} - 1) = \eta(1).
\]

Thus \(R_{S^*_R}(T_2) \leq (3 - 2\sqrt{2})/3 \).

The class \(S^*_N_e := S^*(\psi(z)) \), where \(\psi(z) = 1 + z - z^3/3 \), was introduced and studied by Wani and Swaminathan in [31]. Geometrically, \(f \in S^*_N_e \) provided \(zf'(z)/f(z) \) lies in the region bounded by the nephroid: a 2-cusped kidney shaped curve \(\Omega_{N_e} := \{ w = u + iv : ((u - 1)^2 + v^2 - 4/9)^3 - 4v^2/3 = 0 \} \).

Corollary 3.6. The following are the \(S^*_N_e \)-radius for the classes \(T_1 \) and \(T_2 \):

(i) \(R_{S^*_N_e}(T_1) = 4/13 \),

(ii) \(R_{S^*_N_e}(T_2) = 2/9 \).

Proof. It was shown in [31] that \(\{ w : |w - a| < a - 1/3 \} \subseteq \Omega_{N_e} \) for \(1/3 < a \leq 1 \). This inclusion with \(a = 1 \) gives \(S^*_{1/3} \subset S^*_N_e \). This shows that \(R_{S^*_1}(T_i) \leq R_{S^*_N_e}(T_i) \) for \(i = 1, 2 \). We next show that \(R_{S^*_N_e}(T_i) \leq R_{S^*_1}(T_i) \) for \(i = 1, 2 \).

(i) Evaluating the function \(f_1(z) = z(1 + z)^{3/2} \) at \(z = -R = -R_{S^*_1}(T_i) = -4/13 \) results in

\[
\frac{zf'_1(z)}{f_1(z)} = \frac{2 - 5R}{2 - 2R} = \frac{1}{3} = \psi(-1).
\]
Thus, \(R_{S_{N_e}}(T_1) \leq 4/13 \).

(ii) Similarly, evaluating \(f_2(z) = ze^{3z} \) at \(z = -R = -R_{S_1/3}(T_2) = -2/9 \) yields

\[
\frac{zf_2(z)}{f_2(z)} = 1 - 3R = \frac{1}{3} = \psi(-1).
\]

This proves that \(R_{S_{N_e}}(T_2) \leq 2/9 \).

Finally, we consider the class \(S_{SG}^* := S^*(2/(1 + e^{-z})) \) introduced by Goel and Kumar in [6]. Here \(2/(1 + e^{-z}) \) is the modified sigmoid function that maps \(\mathbb{D} \) onto the region \(\Omega_{SG} := \{ w = u + iv : |\log(w/(2 - w))| < 1 \} \). Thus, \(f \in S_{SG}^* \) provided the function \(zf'(z)/f(z) \) maps \(\mathbb{D} \) onto the region lying inside the domain \(\Omega_{SG} \).

Corollary 3.7. The \(S_{SG}^* \)-radius for the class \(T_1 \) is

\[
R_{S_{SG}}(T_1) = (2e - 2)/(1 + 5e) \approx 0.23552,
\]

while that of \(T_2 \) is

\[
R_{S_{SG}}(T_2) = (e - 1)/(3(1 + e)).
\]

Proof. The inclusion \(\{ w : |w - a| < ((e - 1)/(e + 1)) - |a - 1| \} \subseteq \Omega_{SG} \) holds for \(2/(1 + e) < a < 2e/(1 + e) \) (see [6]). At \(a = 1 \), the set inclusion shows that \(S_{2/(e+1)}^* \subseteq S_{SG}^* \).

It was also shown in [6] that \(S_{SG}^* \subseteq S^*(\alpha) \) for \(0 \leq \alpha \leq 2/(e + 1) \). The desired result is now an immediate consequence of Theorem 2.1.

Acknowledgment

The first author gratefully acknowledge support from a USM research university grant 1001.PMATHS.8011101.

References

[1] R. M. Ali, N. K. Jain and V. Ravichandran, Radii of starlikeness associated with the lemniscate of Bernoulli and the left-half plane, Appl. Math. Comput. 218 (2012), no. 11, 6557–6565.

[2] R. M. Ali, N. K. Jain and V. Ravichandran, On the radius constants for classes of analytic functions, Bull. Malays. Math. Sci. Soc. (2) 36 (2013), no. 1, 23–38.

[3] N. E. Cho, V. Kumar, S. S. Kumar and V. Ravichandran, Radius problems for starlike functions associated with the sine function, Bull. Iranian Math. Soc. 45 (2019), no. 1, 213–232.

[4] P. L. Duren, *Univalent Functions*, GTM 259, Springer-Verlag, New York, 1983.

[5] S. Gandhi and Ravichandran, V. Starlike functions associated with a lune. Asian-Eur. J. Math. 10 (2017), no. 4, 1750064, 12 pp.

[6] P. Goel and S. Sivaprasad Kumar, Certain class of starlike functions associated with modified sigmoid function, Bull. Malays. Math. Sci. Soc. 43 (2020), no. 1, 957–991.

[7] A. W. Goodman, *Univalent Functions. Vol. II*, Mariner, Tampa, FL, 1983.

[8] W. Janowski, Extremal problems for a family of functions with positive real part and for some related families, Ann. Polon. Math. 23 (1970/1971), 159–177.

[9] W. Kaplan, Close-to-convex schlicht functions, *Michigan Math. J.* 1 (1952), 169–185 (1953).

[10] S. Kumar and V. Ravichandran, A subclass of starlike functions associated with a rational function, Southeast Asian Bull. Math. 40 (2016), no. 2, 199–212.

[11] T. H. MacGregor, The radius of convexity for starlike functions of order 1/2, Proc. Amer. Math. Soc. 14 (1963), 71–76.

[12] T. H. MacGregor, The radius of univalence of certain analytic functions, Proc. Amer. Math. Soc. 14 (1963), 514–520.
[13] T. H. MacGregor, The radius of univalence of certain analytic functions. II, Proc Amer. Math. Soc. 14 (1963), 521–524.

[14] T. H. MacGregor, A class of univalent functions, Proc. Amer. Math. Soc. 15 (1964), 311–317.

[15] W. C. Ma and D. Minda, A unified treatment of some special classes of univalent functions, in Proceedings of the Conference on Complex Analysis (Tianjin, 1992), 157–169, Conf. Proc. Lecture Notes Anal., I Int. Press, Cambridge, MA.

[16] R. Mendiratta, S. Nagpal and V. Ravichandran, On a subclass of strongly starlike functions associated with exponential function, Bull. Malays. Math. Sci. Soc. 38 (2015), no. 1, 365–386.

[17] Y. Polatoglu and M. Bolcal, Some radius problem for certain families of analytic functions, Turkish J. Math. 24 (2000), no. 4, 401–412.

[18] R. K. Raina and J. Sokol, Some properties related to a certain class of starlike functions, C. R. Math. Acad. Sci. Paris 353 (2015), no. 11, 973–978.

[19] J. S. Ratti, The radius of univalence of certain analytic functions, Math. Z. 107 (1968), 241–248.

[20] J. S. Ratti, The radius of convexity of certain analytic functions, Indian J. Pure Appl. Math. 1 (1970), no. 1, 30–36.

[21] V. Ravichandran and K. Sharma, Sufficient conditions for starlikeness, J. Korean Math. Soc. 52 (2015), no. 4, 727–749.

[22] M. O. Reade, On close-to-close univalent functions, Michigan Math. J. 3 (1955), 59–62.

[23] M. S. Robertson, Certain classes of starlike functions, Michigan Math. J. 32 (1985), no. 2, 135–140.

[24] F. Rønning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc. 118 (1993), no. 1, 189–196.

[25] T. N. Shanmugam and V. Ravichandran, Certain properties of uniformly convex functions, Computational Methods And Function Theory 1994 (Penang), 319–324, Ser. Approx. Decompos., 5 World Sci. Publ., River Edge, NJ.

[26] K. Sharma, N. E. Cho and V. Ravichandran, Sufficient conditions for strong starlikeness, Bull. Iranian Math. Soc. (2020), DOI:10.1007/s41980-020-00452-z.

[27] K. Sharma, N. K. Jain and V. Ravichandran, Starlike functions associated with a cardioid, Afr. Mat. (Springer) 27 (2016), no. 5, 923–939.

[28] K. Sharma and V. Ravichandran, Applications of subordination theory to starlike functions, Bull. Iranian Math. Soc. 42 (2016), no. 3, 761–777.

[29] K. Sharma and V. Ravichandran, Sufficient conditions for Janowski starlike functions, Stud. Univ. Babes-Bolyai Math. 61 (2016), no. 1, 63–76.

[30] H. Silverman and E. M. Silvia, Subclasses of starlike functions subordinate to convex functions, Canad. J. Math. 37(1985), no. 1, 48–61.

[31] L. A. Wani and A. Swaminathan, Starlike and convex functions associated with a nephroid domain, Bull. Malays. Math. Sci. Soc. (2020). https://doi.org/10.1007/s40840-020-00035-6

SCHOOL OF MATHEMATICAL SCIENCES, UNIVERSITI SAINS MALAYSIA, 11800 USM, PENANG, MALAYSIA

Email address: rosihan@usm.my

DEPARTMENT OF MATHEMATICS, ATMA RAM SANATAN DHARMA COLLEGE, UNIVERSITY OF DELHI, DELHI–110 021, INDIA

Email address: ksharma@arsd.du.ac.in; kanika.divika@gmail.com

DEPARTMENT OF MATHEMATICS, NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI–620 015, INDIA

Email address: ravich@nitt.edu; vravi68@gmail.com