Invited Paper

Twenty years after “The Impact of Chaos”: what have been achieved and what should be answered

Yoshito Hirata¹a)

¹ Institute of Industrial Science, The University of Tokyo
4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan

a) yoshito@sat.t.u-tokyo.ac.jp

Received November 20, 2017; Published April 1, 2018

Abstract: Twenty years has passed since the book of “The Impact of Chaos on Science and Society,” edited by Prof. Celso Grebogi and Prof. James A. Yorke, has been published. This book had influenced the researches held during the FIRST program and have been influencing the current researches following them. Thus, I would like to summarize how the questions posed in the book have been answered partly by our current generation and what questions and the other emerging questions should be considered by the next generation.

Key Words: deterministic chaos, nonlinear time series analysis, delay coordinates, universality, individuality, open questions

1. Introduction: The book

Deterministic chaos, found independently by Ueda [1] and Lorenz [2] and named by Li & Yorke [3], is a phenomenon within which a simple rule generates complex behavior. Since then, the idea of deterministic chaos has spread widely into various fields including neuroscience [4], biology [5], medicine [6], atmospheric science [7–9], seismology [10], social science [11] and economics [12]. In 1990, the influential paper by Sugihara and May [13] has been published in Nature for distinguishing chaos from noise based on time series data. Thus, at the time around 1990, chaos had been recognized as a way to explain the underlying dynamics for complicated phenomena in many areas. In 1991, a conference was organized by the United Nations University and the University of Tokyo for evaluating what kinds of impacts had been brought by the idea of deterministic chaos in natural and social sciences [14]. In the conference held in Tokyo, the researchers at the time, coming from various fields, discussed what impacts the deterministic chaos has brought until that time. This conference had been summarized in the book of Ref. [14]. Therefore, the book, containing 16 chapters, can be regarded as a good summary of how deterministic chaos influenced our thoughts until 1990s.

I noticed the existence of the book of Ref. [14] from around 10 years ago, when I found the book in our laboratory. Since I was interested in applying nonlinear time series analysis, it had become a good starting point to know what had been analyzed from the viewpoints of nonlinear dynamics before in a particular field. Sometime after, I do not remember when, the book had gone from the
bookshelf and I had lost its access.

In May 2017, I have happened to encounter again this book in a bookshop in Shibuya, Tokyo when I enjoyed a holiday looking for a book to read. After starting re-reading this book, I found that I had touched many of the problems included there. Thus, I wanted to summarize what questions the researchers had 20 years ago and how these questions had been solved, unsolved, or generating further questions.

1.1 Questions posed in the book
Based on the book of Ref. [14], I interpreted and summarized, in May 2017, that the following questions seem to have been posed at the conference held in 1991 for the future generation:

1. Machine learning should be used to find an optimal solution.
2. One needs to seek the applications of the “chaos theory”.
3. Question what biology can do for mathematics.
4. It was not known well whether chaos theory is effective in analyzing an economic phenomenon.
5. The impact of chaos theory to meteorology has been limited to its theory.
6. Applications of symbolic dynamics might be effective.

In the following section, I try to provide the current tentative answers for these questions.

2. Questions partly answered during the FIRST period
The “Funding Program for World Leading Innovative R&D on Science and Technology (FIRST Program) called the Aihara Innovative Mathematical Modelling Project, initiated by the Council for Science and Technology Policy (CSTP), supported by the Japan Society for the Promotion of Science (JSPS), had started in March 2010 until the end of March 2014. This project aimed at developing science and technology for complex systems, and applying them in various fields within which some solutions are necessary soon. Hence, here I mainly follow the researches spanning out from this project and try to answer the above questions.

2.1 Machine learning should be used to find an optimal solution
This question had been tried to be solved from various people since then. Because we had seen that computers defeated human professional players in board games including chess [15] and go [16] until now, this line of researches is getting reality. For example, in the FIRST program, Dr. Kamal and his co-workers considered how cars can be driven automatically [17].

Now we need to consider what future machine learning will bring us and how we can keep human welfare in such a society. In this line of research, I predicted how industrial structure will change in the future [18].

2.2 One needs to seek the applications of the “chaos theory”
I have multiple answers in this question. During the period of the FIRST program, two abstract terms had driven the applicational researches: individuality and universality [19, 20]. We need to observe individual systems closely for finding out what fundamental laws govern the systems. At the same time, we can extract what are common among the individual systems, which is universality. For this point, I would like to raise my own line of researches on point processes. It was about 13 years ago when I wanted to analyze spike trains generated by neurons from the viewpoint of dynamical systems theory. But, at that time, there were not good methods for this purpose. A spike train is a series of events, which are firings of a neuron. A series of events is more generally called a point process. There are lots of examples of point processes in natural and social sciences including, for example, neuronal firings, economic trades, earthquake activity, social network service, lightnings, and crimes. Hence, a series of events can be found universally, while there were not good ways for
analyzing them. Thus, we have created an approach [21–23], where we prepare a time window of fixed length. Second, we slide the time window by a fixed amount of time repeatedly to decide the positions of the time window. Third, we calculate the distance between every pair for the positions of the time window using distances for point processes [21, 24–26] and further analysis such as obtaining a recurrence plot [27, 28], estimating the maximal Lyapunov exponent [29, 30], and providing short-term prediction [31]. Moreover, by using this approach, we can combine a point process with a time series sampled with a fixed time interval seamlessly [32] for investigating the directional couplings between them [33], for instance. Therefore, by extracting individual characteristics for many systems and looking for their universality, one can use the “experience” gained by analyzing a system, for analyzing another system.

Therefore, a key idea in nonlinear time series analysis has stemmed from delay coordinates [34, 35], which can be constructed by making a vector using consecutive measurements from a dynamical system. If the dimension for the delay coordinates is more than twice than the dimension for the original dynamical system, then one can, in general, establish one-to-one correspondence between a state in the original dynamical system and its reconstruction by the delay coordinates [34, 35]. This theorem by Takens has been extended in several ways including forced systems by Stark [36, 37] and point processes by Sauer [38] and Huke and Broomhead [39]. This idea of delay coordinates can be used in various contexts where one needs to predict future values for a time series as well as identify directional couplings [33, 40].

Thus, the idea of delay coordinates had influenced in a great extent in our line of researches on mathematically modelling prostate cancer [41–45]. There, one usually has a one-dimensional observation of tumor marker called prostate specific antigen (PSA). Although we have the restricted observation, we had constructed a two or three dimensional system because from the observation of PSA, we can reconstruct the whole state space information.

In our prostate cancer work, another important influence from the “chaos” theory came from the “chaos” control including the OGY control [46] and the Pyragus control [47]. These examples of the chaos control had let us know that we can target a periodic orbit for improving the health condition under intermittent androgen suppression of prostate cancer [41]. Although we found later that we can target a periodic orbit for only a limited type of patients [48], the notion of “chaos” control gave the great influence for justifying the optimal treatment schedule for the intermittent androgen suppression.

2.3 Question what biology can do for mathematics

I can provide two stories here based on our researches. The first story stemmed from the analysis of a spike train. For analyzing a spike train, we found that combining a distance for a spike train [24] with a recurrence plot [27, 28] could provide us good standing points. Thus, since 2006, we started researches for defining distances for point processes [21, 25, 26, 49] as well as researches on recurrence plots [33, 50, 51]. A part of story has been given above. There is a side story. To justify the analysis using a recurrence plot, we showed that a recurrence plot can contain dynamical information sufficient enough for recovering the original time series [52, 53]. This technique was primarily used for reconstructing the driving forces. But, recently, the technique has gone back to biology again [54]: reconstruction of three-dimensional structure of chromosomes in a single cell from a molecular biological dataset of Hi-C data [55], where one records which parts of chromosomes are spatially neighbors for each other. Therefore, biology had influenced the formation of mathematics, which has given the feedback to biology already!

The second story is on the prostate cancer work. Although we found that the intermittent androgen suppression cannot always construct a periodic orbit as a controlled state [48], there is another story of partly successful control, within which we can delay the relapse, or the growth of PSA [56–58]. This is a method of control for an unstable system. In the field of medicine, delaying the relapse may be sufficient for improving the quality of life.
2.4 It was not known well whether chaos theory is effective in analyzing an economic phenomenon

By using a distance for a marked point process, we have shown that there is a time period when a foreign exchange market behaves as deterministic chaos [22]. Although the underlying dynamics of a foreign exchange market might evolve as time passes, I believe that the fundamental nature could be valid in the future. Thus, analyzing an economic phenomenon is becoming a matter of hedge funds rather than that of econophysics.

2.5 The impact of chaos theory to meteorology has been limited to its theory

The debate on whether or not there exists a climate or weather attractor has been discussed in 1980s and early 1990s [7–9]. Recently, we provided the results with more depths using surrogate data analysis combined with a statistic tuned for high-dimensional dynamics and short-term prediction that the Arctic Oscillation Index is consistent with deterministic chaos [59]. Thus, my current view is that climates and weathers are high-dimensional nonlinear systems, for which we might get benefits by using some methods developed in dynamical systems theory.

In addition, the chaos theory sees an opportunity for the recent meteorology, especially the applications for predicting renewable energy outputs [60–62]. For short-term predictions up to 2 hours, now it is believed that time series prediction may do better than numerical weather prediction [63]. In the future, these predictions will be combined soon to provide the better prediction in its quality and depth.

2.6 Applications of symbolic dynamics might be effective

At the stage when the conference was held in 1991, the best approach for using symbolic dynamics was with a generating partition [64, 65], which provides us one-to-one correspondence between a time series and its symbolic sequence. Although newer methods for estimating generating partitions have been proposed [66, 67] in 2000s, the practice of symbolic dynamics has been changed dramatically with permutations or ordinal patterns [68]. Especially, permutation entropy has enabled us to estimate the metric entropy without using a generating partition [68–70]. Recently, a new method has been proposed to improve the estimate by the permutation entropy [71]. In addition, permutations help us to distinguish deterministic time series from stochastic time series [72] as well as identify directional couplings based on multivariate time series [40, 73, 74].

We should consider what a non-generating partition can do [75]. Even if a partition is not generating, symbolic dynamics can provide more rigorous and faster calculations.

3. Discussions

We have already solved or is heading for the direction to solve almost all the questions posed in 20 years ago in Ref. [14]. Thus, I would like to raise questions for the future generation.

We should develop methods for analyzing stochastic nonlinear systems. We can classify dynamical systems into four classes using two axes (Fig. 1): either linear or nonlinear, and either deterministic or stochastic. As an example of a linear deterministic system, there is a model of electric circuits (Fig. 1A). In a class of linear stochastic systems (Fig. 1B), there exists the auto-regressive linear model [76]. Nonlinear deterministic systems (Fig. 1C) include deterministic chaos discussed above especially in Sections 2.2, 2.4 and 2.5. But, nonlinear stochastic systems (Fig. 1D) have not been considered seriously. In the past, researchers were attempting to distinguish deterministic nonlinear systems from stochastic linear systems [31]. In the future, we need to consider a stochastic nonlinear system [77–80]. I am feeling that a class of nonlinear stochastic systems might include dynamics in biology, medicine, geoscience (including weather, climate and earthquakes), and economies, although a rigorous method is necessary for identifying such nonlinear stochasticity.

One of the useful approaches for this purpose is that of symbolic dynamics (see Section 2.6). In the approach of symbolic dynamics, we can naturally use the idea in information theory in the practice of nonlinear time series analysis [81–83]. Furthermore, by dividing phase space by boxes, we can
approximate the underlying dynamics by a Markov model with which we can run some rigorous calculations [84].

Another promising direction is the analysis of nonstationary time series [85–87]. A key idea is probably to apply delay coordinates for forced systems [36, 37]. Although some applications have been proposed until now [33, 40, 52, 88, 89], we should get into this direction further to understand interactions among accessible and/or hidden components in the real world deeply. Permutations or ordinal patterns are easy to use and would be promising. I would like to pay attention how the researches of Refs. [74, 90–92] will develop in the future.

An important avenue is on the analysis of point processes. As I have raised previously, there are a lot of examples of point processes. But, methods for analyzing point processes are still limited. Probably, developing methods for analyzing point processes would generate other applications such as compression and communications, which are largely linked with practically engineering [93], and theoretically, biology especially neuroscience [94, 95] (see Section 2.3). Thus, I would like to seek a platform, namely a conference where researchers analyzing point processes in different fields can get together to exchange their ideas. The tentative name for the conference is “Current Opinions On Point Processes (COOPP)” . This is my homework to be done in the future.

To promote the researches in point processes, we may seek relationships between distances and kernels [49]. Distances show how different two corresponding times are, while kernels show how similar two corresponding instances are. Thus, generally, distances are related to kernels inverse-proportionally. Therefore, by introducing the techniques of kernel methods for analyzing of point processes, we may be able to prepare tools sufficient for understanding and/or modelling the underlying dynamics behind point processes. Hence, this direction of research will also enrich the researches in the machine learning community (see Section 2.1).

In addition, we need to ensure theoretically, by proofs, that methods for nonlinear dynamics work appropriately. For this sake, ordinal patterns [69], symbolic dynamics [67] and recurrence plots [53, 96–98] seem to have some advantages judging from the recent literature. For example, to identify directional couplings and slow driving forces from point processes, we need to combine two extensions.
of Takens’ theorems: one by Stark [36] and the other by Huke and Broomhead [39].

The other problem that should be considered intensively in the near future is how we can infer and predict using imperfect models [99–101] or partial models [102]. Takens’ embedding theorem [34] assumes that we only have some pieces of information for the underlying dynamics that are continuous and differentiable on an \(m \)-dimensional manifold. In the real world, we may have some extra pieces of information available for the underlying systems. One of the promising approaches would be to use the Bayesian theory [103]. But, the other approaches are definitely necessary.

We also have to seek other applications using and/or from the ideas of “chaos theory”. Our recent good example is the recurrence plot of recurrence plots [104], which coarse-grains a time series and roughly grasps “what’s going on” in a large time scale. In a similar way, we need to prepare other applications so that we can show various properties for the underlying dynamics.

Moreover, we should consider how to combine the “chaos theory” or more generally the dynamical systems theory, with the other fields including machine learning, statistics, signal processing, control theory, and information theory. Especially, combining multiple predictions [105] will provide new scopes for machine learning, statistics, and signal processing. Although we have used an idea of stabilizing a piecewise linear system and obtaining an optimal treatment schedule for prostate cancer, we need to extend this idea for a piecewise smooth (nonlinear) system [106]. In addition, but not least, applications of point processes will provide new problems for information theory. Thus, we need to consider real-world problems by removing the borders of the existing fields so that we can improve the quality of life, in general.

Otherwise, we should remind what we learned during the FIRST program: we should observe each system carefully and look for some common properties.

Acknowledgments
Y.H. thanks Dr. Miwa Fukino for providing invaluable comments on the early draft. Y.H. is currently supported by Kozo Keikaku Engineering Inc.

References
[1] Y. Ueda, “Computer simulation of nonlinear differential equations and non-periodic oscillations,” Trans. IECE, vol. 56A, no. 4, pp. 218–225, April 1973.
[2] D.N. Lorenz, “Deterministic nonperiodic flow,” J. Atmos. Sci., vol. 20, no. 2, pp. 130–141, March 1963.
[3] T.-T. Li and J.A. Yorke, “Period three implies chaos,” Am. Math. Mon., vol. 82, no. 10, pp. 985–992, December 1975.
[4] K. Aihara, G. Matsumoto, and M. Ichikawa, “An alternating periodic-chaotic sequence observed in neural oscillators,” Phys. Lett., vol. 111A, no. 5, pp. 251–255, September 1985.
[5] R.M. May, “Simple mathematical models with very complicated dynamics,” Nature, vol. 261, no. 5560, pp. 459–467, June 1976.
[6] M.R. Guevara, L. Glass, and A. Shrier, “Phase locking, period-doubling bifurcations, and irregular dynamics in periodically stimulated cardiac cells,” Science, vol. 214, no. 4527, pp. 1350–1353, December 1981.
[7] C. Nicolis and G. Nicolis, “Is there a climatic attractor?,” Nature, vol. 311, no. 5986, pp. 529–532, October 1984.
[8] P. Grassbarger, “Do climate attractors exist?,” Nature, vol. 323, no. 6089, pp. 609–612, October 1986.
[9] E.N. Lorenz, “Dimension of weather and climate attractors,” Nature, vol. 353, no. 6341, pp. 241–244, September 1991.
[10] Y.Y. Kagan, “Observational evidence for earthquakes as a nonlinear dynamic process,” Physica D, vol. 77, pp. 160–192, October 1994.
[11] H. Gregerssen and L. Sailer, “Chaos theory and its implications for social-science research,” Human relations, vol. 46, no. 7, pp. 777–802, July 1993.
[12] J.A. Scheinkman and B. LeBaron, “Nonlinear dynamics and stock returns,” *J. Bus.*, vol. 62, no. 3, pp. 311–337, 1989.

[13] G. Sugihara and R.M. May, “Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series,” *Nature*, vol. 344, pp. 734–741, 1990.

[14] C. Grebogi and J.A. Yorke, *The Impact of Chaos on Science an Society*, The United Nation Press, Tokyo, New York, Paris, 1997.

[15] M. Campbell, A.J. Hoane Jr., and F.-H. Hsu, “Deep blue,” *Artif. Intell.*, vol. 134, no. 1-2, pp. 57–83, January 2002.

[16] D. Silver et al., “Mastering the game of Go with deep neural networks and tree search,” *Nature*, vol. 529, no. 7587, pp. 484–489, January 2016.

[17] Md.A.S. Kamal, J. Imura, T. Hayakawwa, A. Ohata, and K. Aihara, “A vehicle-intersection coordination scheme for smooth flows of traffic without using traffic lights,” *IEEE Trans. Intell. Transp. Syst.*, vol. 16, no. 3, pp. 1136–1147, June 2015.

[18] Y. Hirata, “Mathematically modelling proportions of Japanese populations by industry,” *Physica A*, vol. 460, pp. 38–43, October 2016.

[19] K. Aihara, J. Imura, Y. Horio, H. Suzuki, and S. Horai, “Mathematical theory for modelling complex systems and its transdisciplinary applications in science and technology,” *Fundamentals Review*, vol. 8, no. 4, pp. 218–228, April 2015 (in Japanese).

[20] Visit http://www.sat.t.u-tokyo.ac.jp/first/en/research for the Research Project of the FIRST.

[21] Y. Hirata and K. Aihara, “Representing spike trains using constant sampling intervals,” *J. Neurosci. Meth.*, vol. 183, no. 2, pp. 277–286, October 2009.

[22] Y. Hirata and K. Aihara, “Timing matters in foreign exchange markets,” *Physica A*, vol. 391, no. 3, pp. 760–766, February 2012.

[23] Y. Hirata, K. Iwayama, and K. Aihara, “Possibility of short-term probabilistic forecasts for large earthquakes making good use of the limitations of existing catalogs,” *Phys. Rev. E*, vol. 94, no. 4, art. no. 042217, October 2016.

[24] J.D. Victor and K.P. Purpura, “Metric-space analysis of spike trains: Theory, algorithms and application,” *Network*, vol. 8, no. 2, pp. 127–164, May 1997.

[25] S. Suzuki, Y. Hirata, and K. Aihara, “Definition of distance for marked point process data and its application to recurrence plot-based analysis of exchange tick data of foreign currencies,” *Int. J. Bifurcat. Chaos*, vol. 20, no. 11, pp. 3699–3708, November 2010.

[26] K. Iwayama, Y. Hirata, and K. Aihara, “Definition of distance for nonlinear time series analysis of marked point process data,” *Phys. Lett. A*, vol. 381, no. 4, pp. 257–262, January 2017.

[27] J.-P. Eckmann, S.O. Kamphorst, and D. Ruelle, “Recurrence plots of dynamical systems,” *Europhys. Lett.*, vol. 4, no. 9, pp. 973–977, November 1987.

[28] N. Marwan, R.M. Carmen, M. Thiel, and J. Kurths, “Recurrence plots for the analysis of complex systems,” *Phys. Rep.*, vol. 483, no. 5-6, pp. 237–329, January 2007.

[29] M.T. Rosenstein, J.J. Collins, and C.J. de Luca, “A practical method for calculating largest Lyapunov exponents from small data sets,” *Physica D*, vol. 65, no. 1-2, pp. 117–134, May 1993.

[30] H. Kantz, “A robust method to estimate the maximal Lyapunov exponent of a time-series,” *Phys. Lett. A*, vol. 185, no. 1, pp. 77–87, January 1994.

[31] H. Kantz and T. Schreiber, *Nonlinear Time Series Analysis*, The Second edition, Cambridge University Press, Cambridge UK, 2004.

[32] Y. Hirata, E.J. Lang, and K. Aihara, “Recurrence plots and the analysis of multiple spike trains,” in Ed. N. Kasabov, *Springer Handbook of Bio-/Neuroinformatics*, Springer Berlin Heidelberg, pp. 735–744, 2014.

[33] Y. Hirata and K. Aihara, “Identifying hidden common causes from bivariate time series: A method using recurrence plots,” *Phys. Rev. E*, vol. 81, no. 1, art. no. 016203, January 2010.

[34] F. Takens, “Detecting strange attractors in turbulence,” *Lect. Notes Math.*, vol. 898, pp. 366–381, 1981.

[35] T. Sauer, J.A. Yorke, and M. Casdagli, “Embeddology,” *J. Stat. Phys.*, vol. 65, no. 3-4, pp. 579–616, November 1991.
[36] J. Stark, “Delay embeddings for forced systems. I. Deterministic forcing,” *J. Nonlinear Sci.*, vol. 9, no. 3, pp. 255–332, May-June 1999.

[37] J. Stark, D.S. Broomhead, M.E. Davies, and J. Huke, “Delay embeddings for forced systems. II. Stochastic forcing,” *J. Nonlinear Sci.*, vol. 13, no. 6, pp. 519–577, December 2003.

[38] T. Sauer, “Reconstruction of dynamical-systems from interspike intervals,” *Phys. Rev. Lett.*, vol. 72, no. 24, pp. 3811–3814, June 1994.

[39] J.P. Huke and D.S. Broomhead, “Embedding theorems for non-uniformly sampled dynamical systems,” *Nonlinearity*, vol. 20, no. 9, pp. 2205–2244, September 2007.

[40] Y. Hirata et al., “Detecting causality by combined use of multiple methods: climate and brain examples,” *PLoS One*, vol. 11, no. 7, art. no. e0158572, July 2016.

[41] A.M. Ida, G. Tanaka, T. Takeuchi, and K. Aihara, “A mathematical model of intermittent androgen suppression for prostate cancer,” *J. Nonlinear Sci.*, vol. 18, no. 6, pp. 593–614, December 2008.

[42] T. Shimada and K. Aihara, “A nonlinear model with competition between prostate tumor cells and its application to intermittent androgen suppression therapy of prostate cancer,” *Math. Biosci.*, vol. 214, no. 1-2, pp. 134–139, July-August 2008.

[43] Y. Hirata, N. Bruchovsky, and K. Aihara, “Development of a mathematical model that predicts the outcome of hormone therapy for prostate cancer,” *J. Theor. Biol.*, vol. 264, no. 2, pp. 517–527, May 2010.

[44] T. Suzuki, N. Bruchovsky, and K. Aihara, “Piecewise affine systems modelling for optimizing hormone therapy of prostate cancer,” *Phil. Trans. R. Soc. A*, vol. 368, no. 1930, pp. 5045–5059, November 2010.

[45] G. Tanaka, Y. Hirata, S.L. Goldenberg, N. Bruchovsky, and K. Aihara, “Mathematical modelling of prostate cancer growth and its application to hormone therapy,” *Phil. Trans. R. Soc. A*, vol. 368, no. 1930, pp. 5029–5044, November 2010.

[46] E. Ott, C. Grebogi, and J.A. Yorke, “Controlling chaos,” *Phys. Rev. Lett.*, vol. 64, no. 11, pp. 1196–1199, March 1990.

[47] K. Pyragas, “Continuous control of chaos by self-controlling feedback,” *Phys. Lett. A*, vol. 170, no. 6, pp. 421–428, November 1992.

[48] Y. Hirata and K. Aihara, “Ability of intermittent androgen suppression to selectively create a non-trivial periodic orbit for a type of prostate cancer patients,” *J. Theor. Biol.*, vol. 384, pp. 147–152, November 2015.

[49] H. Hino, K. Takano, and N. Murata, “mnpp: A package for calculating similarity and distance metrics for simple and marked temporal point processes,” *R Journal*, vol. 7, no. 2, pp. 237–248, December 2015.

[50] Y. Hirata and K. Aihara, “Devaney’s chaos on recurrence plots,” *Phys. Rev. E*, vol. 82, no. 3, art. no. 036209, September 2010.

[51] Y. Hirata and K. Aihara, “Statistical tests for serial dependence and laminarity on recurrence plots,” *Int. J. Bifurcat. Chaos*, vol. 21, no. 4, pp. 1077–1084, April 2011.

[52] Y. Hirata, S. Horai, and K. Aihara, “Reproduction of distance matrices and original time series from recurrence plots and their applications,” *Eur. Phys. J. Spec. Top.*, vol. 164, pp. 13–22, October 2008.

[53] Y. Hirata, M. Komuro, S. Horai, and K. Aihara, “Faithfulness of recurrence plots: a mathematical proof,” *Int. J. Bifurcat. Chaos*, vol. 25, no. 12, art. no. 1550168, November 2015.

[54] Y. Hirata, A. Oda, K. Ohta, and K. Aihara, “Three-dimensional reconstruction of single-cell chromosome structure using recurrence plots,” *Sci. Rep.*, vol. 6, art. no. 34982, October 2016.

[55] T. Nagano et al., “Single-cell Hi-C reveals cell-to-cell variability in chromosome structure,” *Nature*, vol. 502, no. 7469, pp. 59–64, October 2013.

[56] Y. Hirata, M. di Bernardo, N. Bruchovsky, and K. Aihara, “Hybrid optimal scheduling for intermittent androgen suppression of prostate cancer,” *Chaos*, vol. 20, no. 4, art. no. 045125, December 2010.

[57] Y. Hirata, S. Azuma, and K. Aihara, “Model predictive control for optimally scheduling inter-
mittent androgen suppression of prostate cancer,” *Methods*, vol. 67, no. 3, pp. 278–281, June 2014.

[58] S. Azuma, T. Takegami, and Y. Hirata, “Control of unstabilizable switched systems,” In Eds. K. Aihara, J. Imura, and T. Ueda, *Analysis and Control of Complex Dynamical Systems*, Springer Japan, pp. 161–169, 2015.

[59] Y. Hirata, Y. Shimo, H.L. Tanaka, and K. Aihara, “Chaotic properties of the Arctic Oscillation Index,” *SOLA*, vol. 7, pp. 033–036, 2011.

[60] Y. Hirata, T. Yamada, J. Takahashi, and H. Suzuki, “Real-time multi-step predictors from data streams,” *Phys. Lett. A*, vol. 376, no. 45, pp. 3092–3097, October 2012.

[61] Y. Hirata, T. Yamada, J. Takahashi, K. Aihara, and H. Suzuki, “Online multi-step prediction for wind speeds and solar irradiation: evaluation of prediction errors,” *Renewable Energy*, vol. 67, pp. 35–39, July 2014.

[62] Y. Hirata and K. Aihara, “Improving time series prediction of solar irradiance after sunrise: comparison among three methods for time series prediction,” *Solar Energy*, vol. 149, pp. 294–301, June 2017.

[63] P. Bacher, H. Madsen, and H.A. Nielsen, “Online short-term solar power forecasting,” *Sol. Energy*, vol. 93, pp. 1772–1793, 2009.

[64] P. Grassberger and H. Kantz, “Generating partitions for the dissipative Henon map,” *Phys. Lett. A*, vol. 113, no. 5, pp. 235–238, December 1985.

[65] R.L. Davidehchack, Y.-C. Lai, E.M. Bollt, and M. Dhamala, “Estimating generating partitions of chaotic systems by unstable periodic orbits,” *Phys. Rev. E*, vol. 61, no. 2, pp. 1353–1356, February 2000.

[66] M.B. Kennel and M. Buhl, “Estimating good discrete partitions from observed data: Symbolic false nearest neighbors,” *Phys. Rev. Lett.*, vol. 91, no. 8, art. no. 084102, August 2003.

[67] Y. Hirata, K. Judd, and D. Kilminster, “Estimating a generating partition form observed time series: Symbolic shadowing,” *Phys. Rev. E*, vol. 70, no. 1, art. no. 016215, July 2004.

[68] C. Bandt and B. Pompe, “Permutation entropy: A natural complexity measure for time series,” *Phys. Rev. Lett.*, vol. 88, no. 17, art. no. 174102, April 2002.

[69] J.M. Amigó, M.B. Kennel, and L. Kocarev, “The permutation entropy rate equals the metric entropy rate for ergodic information sources and ergodic dynamical systems,” *Physica D*, vol. 210, no. 1-2, pp. 77–95, October 2005.

[70] J.M. Amigó, “The equality of Kolmogorov-Sinai entropy and metric permutation entropy generalized,” *Physica D*, vol. 241, no. 7, pp. 789–793, April 2012.

[71] A. Politi, “Quantifying the dynamical complexity of chaotic time series,” *Phys. Rev. Lett.*, vol. 118, no. 14, art. no. 144101, April 2017.

[72] J.M. Amigó, S. Zambrano, and M.A.F. Sanjuán, “Combinatorial detection of determinism in noisy time series,” *EPL*, vol. 83, no. 6, art. no. 60005, September 2008.

[73] R. Monetti, W. Bunk, T. Aschenbrenner, S. Springer, and J.M. Amigó, “Information directionality in coupled time series using transcripts,” *Phys. Rev. E*, vol. 88, no. 2, art. no. 022911, August 2013.

[74] J.M. Amigó, R. Monetti, B. Graff, and C. Graff, “Computing algebraic transfer entropy and coupling directions via transcripts,” *Chaos*, vol. 26, no. 11, art. no. 113115, November 2016.

[75] E.M. Bollt, T. Stanford, Y.-C. Lai, and K. Zyczkowski, “What symbolic dynamics do we get with a misplaced partition? On the validity of threshold crossings analysis of chaotic time series,” *Physica D*, vol. 154, no. 3-4, pp. 259–286, June 2001.

[76] J.D. Hamilton, *Time Series Analysis*, Princeton University Press, Princeton, New Jersey, 1994.

[77] A.I. Mees, *Nonlinear Dynamics and Statistics*, Birkhäuser, Boston MA, 2000.

[78] H. Kantz, D. Holstein, M. Ragwitz, and N.K. Vitanov, “Markov chain model for turbulent wind speed data,” *Physica A*, vol. 342, no. 1-2, pp. 315–321, October 2004.

[79] T. Gautama, D.P. Mandic, and M.M. Van Hulle, “A novel method for determining the nature of time series,” *IEEE Trans. Biomed. Eng.*, vol. 51, no. 5, pp. 728–736, May 2004.

[80] D.P. Mandic, M. Chen, T. Gautama, M.M. Van Hulle, and A. Constantinides, “On the char-
acterization of the deterministic/stochastic and linear/nonlinear nature of time series,” Proc. Roy. Soc. A, vol. 464, no. 2093, pp. 1141–1160, May 2008.

[81] M.B. Kennel and A.I. Mees, “Testing for general dynamical stationarity with a symbolic data compression technique,” Phys. Rev. E, vol. 61, no. 3, pp. 2563–2568, March 2000.

[82] M.B. Kennel and A.I. Mees, “Context-tree modeling of observed symbolic dynamics,” Phys. Rev. E, vol. 66, no. 5, art. no. 056209, November 2002.

[83] Y. Hirata and A.I. Mees, “Estimating topological entropy via a symbolic data compression technique,” Phys. Rev. E, vol. 67, no. 2, art. no. 026205, February 2003.

[84] G. Froyland, “Extracting dynamical behavior via Markov models,” in Ref. [77], pp. 281–321, 2000.

[85] M.C. Casdagli, “Recurrence plots revisited,” Physica D, vol. 108, no. 1-2, pp. 12–44, September 1997.

[86] R. Hegger, H. Kantz, L. Matassini, and T. Schreiber, “Coping with nonstationarity by overembedding,” Phys. Rev. Lett., vol. 84, no. 18, pp. 4092–4095, May 2000.

[87] W.J. Fitzgerald, R.L. Smith, A.T. Walden, and P.C. Young, Nonlinear and Nonstationary Signal Processing, Cambridge University Press, Cambridge UK, 2000.

[88] T.D. Sauer, “Reconstruction of shared nonlinear dynamics in a network,” Phys. Rev. Lett., vol. 93, no. 19, art. no. 198701, November 2004.

[89] Y. Hirata and K. Aihara, “Dimensionless embedding for nonlinear time series analysis,” Phys. Rev. E, vol. 96, art. no. 032219, 2017.

[90] M. McCullough, K. Sakellariou, T. Stemler, and M. Small, “Counting forbidden patterns in irregularly time series I. The effect of under-sampling, random depletion, and timing jitter,” Chaos, vol. 26, no. 12, art. no. 123103, December 2016.

[91] K. Sakellariou, M. McCullough, T. Stemler, and M. Small, “Counting forbidden patterns in irregularly time series II. Reliability in the presence of highly irregular sampling,” Chaos, vol. 26, no. 12, art. no. 123104, December 2016.

[92] M. McCullough, K. Sakellariou, T. Stemler, and M. Small, “Regenerating time series from ordinal networks,” Chaos, vol. 27, no. 3, art. no. 035814, March 2017.

[93] W. Maas and C.M. Bishop, Pulsed Neural Networks, MIT Press, Cambridge MA, 1998.

[94] S.P. Strong, R. Koberle, R.R. de Ruyter van Steveninck, and W. Bialek, “Entropy and information in neural spike trains,” Phys. Rev. Lett., vol. 80, no. 1, pp. 197–200, January 1998.

[95] F. Rieke, D. Warland, R. de Ruyter van Steveninck, and W. Bialek, Spikes, MIT Press, Cambridge, MA, 1997.

[96] G. Robinson and M. Thiel, “Recurrences determine the dynamics,” Chaos, vol. 19, no. 2, art. no. 023104, June 2010.

[97] M. Grendár, J. Majerová, and V. Špitálský, “Strong laws for recurrence quantification analysis,” Int. J. Bifurcat. Chaos, vol. 23, no. 8, art. no. 1350147, August 2013.

[98] A. Khor and M. Small, “Examining k-nearest neighbour networks: superfamily phenomena and inversion,” Chaos, vol. 26, no. 4, art. no. 043101, April 2016.

[99] K. Judd and L.A. Smith, “Indistinguishable states II: The imperfect model scenario,” Physica D, vol. 196, no. 3-4, pp. 224–242, September 2004.

[100] K. Judd, “Forecasting with imperfect models, dynamically constrained inverse problems, and gradient descent algorithms,” Physica D, vol. 196, no. 3-4, pp. 224–242, September 2004.

[101] K. Judd, “Fifty years of forecasting chaos and the shadow of imperfect models,” NOLTA J., vol. 7, no. 2, pp. 234–249, 2016.

[102] F. Hamilton, T. Berry, and T. Sauer, “Predicting chaotic time series with a partial model,” Phys. Rev. E, vol. 92, no. 1, art. no. 010902, July 2015.

[103] Y. Hirata et al., “Intermittent androgen suppression: estimating parameters for individual patients based on initial PSA data in response to androgen deprivation therapy,” PLoS One, vol. 10, no. 6, art. no. e0130372, June 2015.

[104] M. Fukino, Y. Hirata, and K. Aihara, “Coarse-graining time series data: Recurrence plot of recurrence plots and its application for music,” Chaos, vol. 26, no. 2, art. no. 023116, February

164
[105] K. Morino, Y. Hirata, R. Tomioka, H. Kashima, K. Yamanishi, N. Hayashi, S. Egawa, and K. Aihara, “Predicting disease progression from short biomarker series using expert advice algorithm,” Sci. Rep., vol. 5, art. no. 8953, May 2015.

[106] M. di Bernardo, C. Budd, A.R. Champneys, and P. Kowalczyk, Piecewise-smooth Dynamical Systems: Theory and Applications, Springer, London, 2008.