Role of Polarons in Single-Atom Catalysts: Case Study of Me\textsubscript{1} [Au\textsubscript{1}, Pt\textsubscript{1}, and Rh\textsubscript{1}] on TiO\textsubscript{2}(110)

Panukorn Sombut1 · Lena Puntscher1 · Marlene Atzmueller1 · Zdenek Jakub1 · Michele Reticcioli2 · Matthias Meier1,2 · Gareth S. Parkinson1 · Cesare Franchini2,3

Accepted: 31 May 2022 / Published online: 27 June 2022 © The Author(s) 2022

Abstract
The local environment of metal-oxide supported single-atom catalysts plays a decisive role in the surface reactivity and related catalytic properties. The study of such systems is complicated by the presence of point defects on the surface, which are often associated with the localization of excess charge in the form of polarons. This can affect the stability, the electronic configuration, and the local geometry of the adsorbed adatoms. In this work, through the use of density functional theory and surface-sensitive experiments, we study the adsorption of Rh\textsubscript{1}, Pt\textsubscript{1}, and Au\textsubscript{1} metals on the reduced TiO\textsubscript{2}(110) surface, a prototypical polaronic material. A systematic analysis of the adsorption configurations and oxidation states of the adsorbed metals reveals different types of couplings between adsorbates and polarons. As confirmed by scanning tunneling microscopy measurements, the favored Pt\textsubscript{1} and Au\textsubscript{1} adsorption at oxygen vacancy sites is associated with a strong electronic charge transfer from polaronic states to adatom orbitals, which results in a reduction of the adsorbed metal. In contrast, the Rh\textsubscript{1} adatoms interact weakly with the excess charge, which leaves the polarons largely unaffected. Our results show that an accurate understanding of the properties of single-atom catalysts on oxide surfaces requires a careful account of the interplay between adatoms, vacancy sites, and polarons.

Keywords Single-atom catalysis · Density functional theory · Polarons · TiO\textsubscript{2}(110) surface · Scanning probe microscope

1 Introduction
Due to their particular local environment, single-atom catalysts (SACs) represent a new frontier in heterogeneous catalysis, resulting in a unique electronic structure in comparison with supported nanoparticle catalysts [1–7]. Metal atoms adsorbed on solid supports and their resulting catalytic properties combine the advantages of homogeneous catalysts (high activity and selectivity) and heterogeneous catalysts (stable and easy to separate), while minimizing the amount of precious metal used in heterogeneous catalysis [3, 8]. Therefore, SACs are expected to bridge the gap between heterogeneous and homogeneous catalysts. However, the tendency of isolated atoms to aggregate into small clusters due to their relatively high surface energy is problematic. A strong covalent metal-support interaction is capable of stabilizing SACs [9]. However, adsorption of SACs in atomic defects on the substrate surface is the most effective way to avoid clustering and stabilize isolated metal atoms on the support [10, 11], expanding the applicability and efficiency of single-atom catalysis.

Nonetheless, such defective surfaces can affect the properties of adsorbed adatoms, whether within or outside the defect itself, and must be carefully investigated. Further, the presence of point defects on transition-metal oxide surfaces can inject excess electrons which can locally couple with ionic vibrations and form small polarons [12]. Adsorbate/oxide-surface interactions are known to be significantly affected by defects and their associated polarons [13–15], but their effect on catalysis has been rarely considered [16, 17]. For instance, the properties of metal atom (Me\textsubscript{1}) species on reduced rutile TiO\textsubscript{2}(110) surface, a prototypical polaronic system, has been extensively studied as a SAC [18–23], but...
the potential effects of polarons are generally neglected. On the reduced TiO$_2$(110) surface, polarons tend to localize at a 6-fold coordinated Ti atom (Ti$_{6c}$) in the subsurface layer in the vicinity of the 2-fold coordinated oxygen vacancy (V$_{O2\sigma}$) site, reducing Ti$^{4+}$ to Ti$^{3+}$ ions [24]. At elevated temperatures, polaron diffusion between subsurface and surface layers may occur, altering the properties and nature of the polaronic state [24–26], and potentially affecting the stability and properties of the adatoms as well.

In recent years, computational studies have become a powerful tool to accurately describe catalytic reactions at the atomic scale in heterogeneous catalysis [27–29]. In particular, first-principles calculations, within the density functional theory (DFT) framework, have revealed several useful insights into the nature of active sites and the reaction mechanisms in the SAC models [30]. Furthermore, the advances brought about by DFT studies facilitate the interpretation of experimental measurements, and might propose specific substrate materials and metal atoms as optimal candidates for efficient SAC processes.

The purpose of this study is to investigate the effect of polarons on the stability and properties of single-metal atom catalysts. We consider the adsorption of Rh$_1$, Pt$_1$, and Au$_1$ transition metals on the reduced rutile TiO$_2$(110) surface. To investigate the interplay between electron polarons, oxygen vacancies, and the adatom on the TiO$_2$(110) surface, we performed DFT + U calculations and compared the results with experimental data taken from existing literature (Au$_1$ [31–35]) as well as new scanning tunneling microscopy data for the Pt$_1$ and Rh$_1$ systems. Accordingly, we confirm that charge transfer occurs for Pt$_1$ and Au$_1$ adatoms located in O vacancies (V$_O$), making them the preferred adsorption configurations, by carefully studying the most stable adsorption sites, the appropriate oxidation states, and the interactions among adatoms, O vacancies, and polarons. A low diffusion barrier on the surface of TiO$_2$(110) allows Pt$_1$ adatoms to reach O vacancies when dosed in low amount at room temperature. Au$_1$ adatoms exhibit the same behavior but at a lower temperature with an even lower diffusion barrier. Rh$_1$ is found to have no preference for such defects, leaving the polarons essentially unaffected in the subsurface. Our results show that the properties of single-atom catalysts on metal-oxide surfaces can be accurately described only by carefully considering the interaction with point defects and polarons, as well as the reduction of the adsorbed metals.

2 Methods

2.1 Computational Methods

All calculations were performed by using the Vienna ab initio simulation package (VASP) [36, 37]. The projector augmented wave method [38, 39] was used for the electron and ion interaction, with the plane-wave basis set cutoff energy set to 400 eV, optimized to include van der Waals interactions as proposed by Dion et al. [40] with the optimized functional (optPBE-DF) [41, 42]. However, DFT calculations have known drawbacks when dealing with electron localization effects [43]. Therefore, it is preferable to use first-principle schemes that account for the localized charge, such as the DFT + U method used here [44, 45]: we dressed the d orbitals of the Ti atoms with an effective on-site Coulomb repulsion term (U_{eff} of 3.9 eV) [46], previously determined by constrained-random-phase-approximation calculations in bulk rutile [25]. The unreconstructed rutile surface was modeled using an asymmetric slab containing five TiO$_2$ tri-layers in a large two-dimensional 6 × 2 unit cell and including a vacuum space region greater than 12 Å along the z-axis. The top three tri-layers were allowed to relax, while the bottom two tri-layers were kept fixed at their bulk positions. An alternative slab model in which the broken bonds at the bottom layer were saturated by pseudo-hydrogen atoms did not affect our conclusions regarding the adsorption energies and polaron stability. The convergence is achieved when the electronic energy step of 10$^{-5}$ eV is obtained and forces acting on ions become smaller than 0.01 eV/Å.

The adsorption energies were computed according to the formula:

$$E_{\text{ads}} = E_{\text{TiO}_2(110)+\text{adatom}} - (E_{\text{TiO}_2(110)} + E_{\text{adatom}})$$

where $E_{\text{TiO}_2(110)+\text{adatom}}$ is the total energy of the TiO$_2$(110) surface with the adsorbed adatom, $E_{\text{TiO}_2(110)}$ is the total energy of the clean TiO$_2$(110) surface with an oxygen vacancy and the most stable polaronic configuration [47, 48]. The E_{adatom} represents the energy of the atom in the gas phase. The surface slab is displayed in Fig. 1a.

The diffusion barriers of an adatom on the reduced TiO$_2$(110) surface were evaluated using the climbing image nudged elastic band (CI-NEB) method [49, 50] with three interpolated images. As initial and end states we carefully selected solutions including adatoms in the same oxidation state.

In order to inspect the different charge states of the metal atoms on different adsorption sites and the effect of the presence of polarons, we adopted the following strategy (see Fig. 2).

1. To inhibit polaron formation, we manually removed the two excess electrons (changed the flag NELECT in VASP), resulting in a positively charged slab. By doing so, we remove polaron-related energy contributions, such as polaron formation energies or polaron-
Me interactions, which allows for a more systematic and controlled approach to study Me single-atom sites.

(2) Adsorption sites were selected based on existing literature [22, 23, 31, 33–35, 51–54] (see Fig. 1). The Me single atoms are adsorbed at the different adsorption sites as neutral species Me^0 on the previously prepared surface (i.e., without polarons to interact with). The obtained Me^0 adsorption energies can be considered initial reference values.

(3) To account for the variation in relative adsorption strengths due to the oxidation state of the Me^1 atom, charge is slowly re-added to the system. By adding one and then two electrons, the single atom is able to achieve its most favorable oxidation state Me^0, Me^- or Me^{2-}:

(a) Adding one electron: The Me^1 can either retain its additional charge displaying the Me^- oxidation state or become neutral again by moving the electron to the support where it forms a polaron $[\text{Me}^0 + 1\text{pol}]$ vs. $[\text{Me}^- + 0\text{pol}]$.

(b) Adding two electrons: Me^0, Me^- and Me^{2-} become available oxidation states as a result of adding one more electron. Three different configurations can be obtained: $[\text{Me}^0 + 2\text{pol}]$ vs. $[\text{Me}^- + 1\text{pol}]$ vs. $[\text{Me}^{2-} + 0\text{pol}]$.

As a result of step 3(b), we have retrieved the initial charge neutrality, artificially altered in step 1. At this step, we have ensured that polarons are located at the lowest energy polaronic sites (in S1 in the vicinity of V_{O2c}) as they would in the pristine slab. Therefore, the remaining optimizations left are the interactions of polarons, if present, with the Me single atom, which is covered in step 4. Clearly, if the Me^{2-} state results as the preferred one, no polarons are formed in the slab.
(4) When polarons are formed (Me0 and Me$^-$), we inspect the energy stability with respect to different polaronic trapping sites (in S0 and S1). In this way we consider the effect of the spatial polaron-V_{O2c} and polaron-Me separation. It is known that the adatom adsorption energy is affected by the polaron orbital topology, degree of localization, and associated local structural distortions \[57\]. By comparing the final total energies of these charge-neutral slabs we determine the final ground state structure with the most favorable Me oxidation state previously determined and preferable polaron configurations.

The actual Me oxidation state is determined by counting the number of Ti$^{3+}$ in the charge-neutral slab (i.e. the number of polarons in the slab), the local spin moment at the Me single atom itself, and integrated pDOS.

To selectively control the charge localization in different Ti$^{3+}$ sites, we used the occupation matrix control tool \[55\], which consists of an initial constrained calculation (with an input occupation matrix kept fixed during the calculation) followed by an unconstrained calculation.

2.2 Experimental Details

Low temperature scanning tunneling microscopy (STM) was performed in a two-vessel UHV chamber consisting of a preparation chamber ($p < 1 \times 10^{-10}$ mbar) and an analysis chamber ($p < 2 \times 10^{-11}$ mbar). The preparation chamber is equipped with a commercial X-ray photoelectron spectroscopy (XPS). The analysis chamber is equipped with an Omicron LT-STM with a Qplus sensor and an in-vacuum preamplifier \[56\]. Room-temperature STM was performed in a second two-vessel UHV chamber consisting of a preparation chamber ($p < 1 \times 10^{-10}$ mbar) and an analysis chamber ($p < 5 \times 10^{-11}$ mbar). The analysis chamber is equipped with a nonmonochromatic Al Kα X-ray source (VG), a SPECS Phoibos 100 analyzer for XPS, and an Omicron μ-STM. STM in both UHV chambers was conducted in constant current mode with an electrochemically etched W tip on synthetic TiO$_2$(110) single crystals (from CrysTec GmbH) prepared in UHV by sputtering (1 kV, Ar+, 15 min) and annealing (20 min, 700 °C). Rh and Pt were deposited using an e-beam evaporator (FOCUS), with the flux calibrated using a temperature-stabilized quartz microbalance (QCM). The STM images were corrected of distortion and creep of the piezo scanner as described in ref \[57\].

3 Results

The rutile TiO$_2$(110) surface is one of the most intensively studied metal-oxide surfaces \[58–60\]. This surface layer consists of bridging oxygen rows (O$_{2C}$) and 5-fold coordinated titanium (Ti$_{5C}$) rows (see the structural model in Fig. 1). Bridging oxygen vacancies (V_{O2c}) can be easily created in UHV conditions by sputtering and annealing. Each V_{O2c} defect donates two excess electrons to the surface, which are trapped in Ti sites forming small polarons, clearly identified by sharp in-gap peaks \[12, 48, 61–63\]. We aim to elucidate the impact of polarons on the stability and properties of single-metal atoms (Pt$_1$, Au$_1$, and Rh$_1$) adsorbed on the rutile TiO$_2$(110) surface. The adsorption sites are labeled in Fig. 1b.

3.1 Pt$_1$ on the TiO$_2$(110) Surface

In order to investigate the adsorption of Pt$_1$ on TiO$_2$(110), we considered possible adsorption sites as reported in the available literature \[21, 22, 51, 52\] but including the presence of polarons. Figure 3a-c shows the three most stable adsorption sites and their corresponding calculated projected DOS (pDOS) as well as their oxidation states, taking polaronic effects into account. Pt$_1$ adsorbed at a bridging oxygen vacancy is the most stable adsorption site ($E_{ads} = − 3.22$ eV). The Pt$_1$ atom in this configuration shows an oxidation state of Pt$^{2−}$ due to the charge transfer of two excess electrons from the reduced surface to the Pt$_1$ adatom, meaning that it is more favorable to transfer the electrons to Pt$_1$ rather than using the excess charge to form polarons. The calculated pDOS indeed shows no in-gap Ti polaronic peaks. We note that Pt$^−$ in this configuration is less stable than Pt$^{2−}$ by 0.39 eV (Fig. S6). Pt$_1$ at the h$_1$ site is next in energy ($E_{ads} = − 2.84$ eV), with Pt0 being the most stable oxidation state. In this case, the two excess electrons prefer to be trapped in polaronic sites, and no evident net charge transfer to Pt$_1$ occurs. The pDOS also shows two polaronic in-gap peaks for two Ti$^{3+}$ sites, similar to the clean surface (Fig. S1). When polaron formation is maintained, as in the case of Pt0, polarons prefer to be trapped near the oxygen vacancy in the S1 layer \[24\]. The last possible adsorption site with comparatively large adsorption energy is Pt$_1$ adsorbed atop a 3-fold coordinated oxygen atom on the basal plane. Pt$^−$ is the most stable oxidation state at this site, with one polaron again preferably located in the S1 layer near the oxygen vacancy. Overall, the polarons prefer to be located in the S1 layer in the proximity of the V_{O2c} and maximize their distance with the adsorbed Pt$_1$ adatom due to the repulsive interaction between the negatively charged polaron and the adsorbed metal atom. A variation of the order of 300 meV...
in the adatom adsorption energy can be seen depending on polaron position and its distance to the adatom (Fig. S2).

The room-temperature STM image (Fig. 3d) shows Pt$_1$ adsorbed on the reduced rutile TiO$_2$(110) surface. The TiO$_2$(110) surface is characterized in STM by bright rows of 5-fold coordinated Ti$^{4+}$ alternating with dark rows of 2-fold bridging O$^{2-}$, which run along the [001] direction [60]. Small protrusions over the dark rows can be assigned to oxygen vacancies V$_{O2c}$, and brighter features on the dark rows can be assigned to bridging OH [64] and pairs of bridging OH. These originate from water dissociation at the V$_{O2c}$ [65–67]. Pt adatoms can be stabilized at low coverage, but clusters dominate the higher the coverage. The Pt adatoms adsorb in the 2-fold oxygen vacancies (marked in circle), which can be identified directly when rare events of adatoms diffuse occur. In this case, the Pt adatom diffuses from one V$_O$ to another (Fig. S7). Both the initial and final vacancies are imaged in STM. Dosing water or oxygen gas (O$_2$) at room temperature (2 L; 100 s 2×10^{-8} mbar) prior to the Pt deposition leads to the reparation of the V$_O$ site [66–68]. In such an experiment, only Pt clusters are observed (as seen in Fig. S8). These results show the direct correlation between oxygen vacancies and the Pt adatoms stabilization.

In order to account for dynamical effects involving diffusion of the metal species, we calculated the diffusion barrier of the adsorbed Pt$_1$ along the [001] direction. The calculated energy barrier is low (0.59 eV, see Fig. 3e) so that Pt$_1$ can diffuse already at room temperature and reach the best adsorption site (at the oxygen vacancies). The calculated results are therefore in-line with our room-temperature STM images, where only Pt$_1$ at oxygen vacancies have been observed on the reduced TiO$_2$(110) surface at low coverage. At lower dosing temperature, possible metastable adsorption configurations outside the V$_{O2c}$ can exist.

3.2 Au$_1$ on the TiO$_2$(110) Surface

Au$_1$ adsorbed on TiO$_2$(110) exhibits a similar structure than Pt$_1$, as shown in Fig. 4. The most stable adsorption site for Au$_1$ is located at V$_{O2c}$ (E$_{ads} = -2.06$ eV). Au$_1$ located at this site becomes negatively charged with an oxidation state of Au$^-$. Polaronic configurations are most favorable when the remaining polaron forms in the S1 layer close to the V$_{O2c}$ (Fig. 4a). We also considered the on-top 5-fold Ti atom adsorption site, as it was previously considered in other theoretical works [31, 32, 69]. The most stable valence state of Au$_1$ at this site is Au$^-$ with one polaron remaining in the S1 layer close to V$_{O2c}$, as shown in Fig. 4b (E$_{ads} = -1.46$ eV). The calculated pDOS in both cases shows that the valence d and s states are filled, with one characteristic in-gap polaronic peak. Similarly to Pt$_1$, the different polaronic configurations can modify the adsorption energy up to 300 meV (Figs. S3, S4).

Fig. 3 Minimum energy configuration of possible adsorption sites of Pt$_1$ on the TiO$_2$(110) surface. a Pt$_1$@V$_{O2c}$ without polarons resulting in a Pt$^{2-}$ configuration. b Pt$_1$ in h$_1$ with two polarons resulting in a Pt0 configuration. c Pt$_1$ atop O$_{5c}$ atom with one polaron resulting in a Pt$^-$ configuration, where O$_5$, Ti$^{4+}$, Ti$^{3+}$(polaron), Pt$_1$ are small red, big blue, big yellow, big green spheres and V$_O$ is a dashed-circle, respectively. Each configuration is aligned with its respective DOS panels, where the total DOS, pDOS of Pt (5d), pDOS of Pt (6s), and pDOS of Ti$^{3+}$(3d, polarons) are filled light blue, red line, green line, and black line, respectively. d Empty-state room temperature STM images of 0.007 ML Pt on the reduced rutile TiO$_2$(110) surface deposited at room temperature, with surface oxygen vacancies (V$_{O2c}$), OH groups (OH$_b$), pairs of OH groups (2(OH$_b$)), Pt adatoms (circle) and Pt clusters (dashed circle) labelled in the image. e Diffusion path of Pt$_1$ adatom on TiO$_2$(110) from one hollow site to the next in the neighboring unit cell without the perturbation from any V$_O$.
The diffusion barrier of Au_1 on the $\text{TiO}_2(110)$ from the 5-fold Ti atom to the next 5-fold Ti atom along [001] direction is low (0.2 eV), and even lower is the corresponding barrier for diffusing from the 5-fold Ti atom to the oxygen vacancy which is almost barrierless, indicating a facile diffusion (Fig. 4c). Based on our results, we can conclude that at very low Au coverage, all Au_1 adatoms will be trapped in the oxygen vacancies on the surface. This result agrees with the room temperature STM measurement at low coverage [35] and with the observation of the nucleation of gold clusters at oxygen vacancy sites at high coverage [31, 32].

3.3 Rh$_1$ on the TiO$_2(110)$ Surface

We studied the adsorption of Rh$_1$ adatoms on TiO$_2(110)$ by combining DFT + U calculations with XPS and STM experiments. The adsorption sites with their respective adsorption energy are summarized in Fig. 5. Interestingly, Rh$_1$ adsorbed at V_{O_2c} (Fig. 5c) is not the preferential configuration ($E_{\text{ads}} = -2.82$ eV). We assign a Rh$^-$ state to this configuration, due to the presence of an in-gap polaronic peak from one Ti$^{3+}$ atom. Two configurations at hollow sites are shown in Fig. 5a and b. The oxidation state of the Rh$_1$ adatom at hollow sites depends on the nearest oxygen atoms binding to it. For instance, the relaxed structures show that Rh0 binds to the O_{3c} and O_{2c} atoms ($E_{\text{ads}} = -3.24$ eV), whereas the Rh$^-$ at the hollow site near V_{O_2c} binds to only the O_{3c} atom ($E_{\text{ads}} = -3.05$ eV). A charge transfer occurs for Rh$_1$ near the V_{O_2c} where one excess electron transfers to Rh$_1^-$, leaving the second excess electron to form a polaron in the S1 layer near V_{O_2c}. The pDOS also shows that there is one characteristic in-gap polaronic peak. The Rh$_1$ at a hollow site that is distant from V_{O_2c} is assigned to Rh0 and has two remaining polarons in a preferential S1 configuration. The calculated pDOS shows the two in-gap polaronic peaks from Ti$^{3+}$ atoms. Polarons reside in the S1 layer minimizing the distance from V_{O_2c} while maximizing the distance from the Rh$_1$. However, the adsorption energies of Rh0 and Rh$^-$ are almost degenerate.

The adsorption of an adatom at the 3-fold oxygen vacancy (V_{O_3c}) has been proposed to rationalize the result from scanning transmission electron microscopy (STEM) experiments and DFT calculations for Pt$_1$ and Rh$_1$ [22, 23]. Other works argued that this adsorption does not exist on TiO$_2(110)$ due to the energetically unfavorable formation of the 3-fold oxygen vacancy (V_{O_3c}) on the bare TiO$_2(110)$ surface [35, 52]. Our calculations also show that the formation of V_{O_2c} defects is much more favorable than the V_{O_3c} vacancy by 1.39 eV on the pristine surface. Figure S5 shows, however, that when Rh$_1$ is present and adsorbs at a V_{O_3c}, it becomes the most thermodynamically stable adsorption site ($E_{\text{ads}} = -3.42$ eV) with respect to the V_{2O_3c} formation.

Despite the unfavorable 3-fold oxygen vacancy formation energy found for the pristine surface, the presence of adatoms can alter the energetic cost of creating different vacancies other than V_{O_2c} and therefore should not be excluded. While Rh$_1$ in V_{O_3c} is the most stable configuration found, the question arises whether it can be reached or not, as the as-prepared surface does not exhibit such defects prior to the deposition of Rh. We calculated the oxygen migration from V_{O_2c} to V_{O_3c} with the presence of Rh$_1$ (Fig. 6), ignoring the presence of polarons and changes in the oxidation state of Rh. A barrier of 0.62 eV is obtained, significantly higher than the diffusion of Rh (0.28 eV, Fig. 5d) on the bare surface, suggesting that prior to the formation of V_{O_3c} adsorbed Rh, the adatoms would sinter into clusters (assuming these would be favorable in energy).
Figure 7a–c shows STM images of TiO\(_2\)(110) before (a) and after deposition of 0.04 ML of Rh (b) and (c) at 100 K, where 1 ML corresponds to 1 Rh atom per surface unit cell. The images were acquired using liquid nitrogen as the cryogen for the LT-STM, giving the sample a temperature of 78 K. Features on the bright Ti\(^{4+}\) rows (Fig. 7a, b) with an apparent height of 90–100 pm can be assigned to molecular water adsorbed to Ti\(^{4+}\) [70]. Rh adatoms (marked in circles) are located atop the bright Ti\(^{4+}\) rows but slightly tilted towards the dark rows (bridging O\(^{2−}\)). All Rh adatoms adsorb at the same site but vary in apparent height between 140 and 180 pm. This behavior differs from the behavior of Au and Pt adatoms, which preferentially adsorb in the VO\(_{2c}\) of the TiO\(_2\)(110) surface [35]. Our data suggest no preferential interaction between Rh and VO\(_{2c}\) as the density of the visible VO\(_{2c}\) is identical before and after Rh deposition. This result agrees with our DFT calculations, where the best adsorption of Rh\(_1\) is located at the hollow between the bridging oxygen row and the Ti row.

Figure 7d shows XPS spectra and the corresponding STM images of the Rh 3d peak of the as-deposited Rh at 100 K and after subsequent annealing to 873 K. Between 100 K and 150 K the Rh 3d peak shifts to higher binding energy. This core-level shift could be related to a final state effect linked to the small size of the clusters, which appear in STM at 150 K. A similar effect can be recognised when comparing Au\(_1\) and Au\(_3\) to Au nanoparticles on the reduced TiO\(_2\)(110) surface. The Au 4f binding energies of Au\(_1\) and Au\(_3\) are similar to those at a higher coverage of Au. This effect occurs from a cancellation of initial and final state effects for Au\(_1\) and Au\(_3\). By increasing the coverage, the binding energy first decreases and finally increases [71]. Between 150 and 250 K the peak stays the same but when heating the sample to temperatures above 300 K the peak shifts gradually to lower binding energy. This is related to the formation of bigger clusters with increasing temperature. These experimental observations, where Rh is seen to cluster after heating just to 150 K (Fig. 7d) agree with our previous calculated diffusion barriers and preference to sintering.

4 Discussion and Conclusions

The presence of localized charges on surfaces in form of small polarons, unavoidably impacts adsorption and reaction processes and surface dynamics. Previous studies have shown that adsorbed CO exhibit different coupling regime (from attractive to repulsive) depending on the position and density of small polarons, revealing a polaron-mediated correlation between CO adsorption energy and reduction state of the sample [13]. Substantial polaron-charge transfer has been found in O\(_2\) adsorption, leading to the formation
of superoxo and peroxo species [14]. Here, we have shown that single-atom adsorption is also strongly coupled with polaron-charge transfer effect, which affects the adsorption energy and, importantly, the oxidation state of the metal atoms. For example, a Pt$^{2-}$ binds stronger than a Pt$^-$ at the VO site by 0.39 eV. This also implies that the reduction level and associated polaron density does affect the stability of the adsorbed metal atoms, and therefore its surface dynamics, but also its reactivity (i.e. charge transfer between the single-atom catalysts and adsorbed molecules).

For our model system, we found that Pt$_1$ and Au$_1$ adatoms have low diffusion barriers and preferably adsorb in V$_{O2c}$. At higher dosing amounts, clusters can be observed. Rather than forming polarons, the V$_{O2c}$ excess electrons are transferred to the metal atoms, altering their electronic structure by filling their valence states and result in modifying their relative stabilities. The fact that negatively Pt$_1$ and Au$_1$ adatoms form cluster means that during the diffusion process there must be a substantial charge transfer from the Pt$_1$ and Au$_1$ adatoms to the substrate [72, 73]. Rh$_1$ adatoms, however show no preference for the V$_{O2c}$ defect, leaving the excess charge to form polarons and instead adsorb at hollow sites, which is in agreement with our experimental STM observations where they quickly sinter into clusters with increasing temperature at low coverage.

The interaction between adsorbates and polarons is further complicated by the presence of additional species which could alter the surface charge balance. In this respect, it is also important to note that the TiO$_2$(110) surface is fully oxidized under realistic conditions. Therefore, V$_O$ is repaired by H$_2$O or O$_2$ molecules, leading to hydroxylated TiO$_2$(110) or oxidized TiO$_2$(110) surfaces. The oxidized TiO$_2$(110) surface was suggested to bind Au$_1$ stronger than the V$_O$ site on the reduced TiO$_2$(110) surface [53]. Contrary to the Au case, only Pt clusters were observed on the oxidized TiO$_2$(110) surface.

Nevertheless, the presence of small polarons is important even for a realistic TiO$_2$(110) surface, because repair of an oxygen vacancy by H$_2$O results in two electron polarons arising from two surface OH groups. Clearly, the modeling of such complicated multi-polaron...
configurational space (which might also involve the simultaneous formation of electron and hole polarons) is clearly unfeasible via conventional DFT. In order to efficiently explore the energy landscape, novel automated machine-learning based methods must be implemented and employed to determine the most favorable (structural and electronic) configurations and the most likely dynamical paths [74].

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s11244-022-01651-0.

Acknowledgements G.S.P., P.S., L.H., M.M. and M.A. acknowledge funding the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 864628). Z.L. was supported by the Austrian Science Fund (FWF, Y847-N20, START Prize). C.F., G.S.P., M.R. and M.M. were supported by the Austrian Science Fund (FWF) project SFB TACO (F81). The computational results presented have been achieved by using the Vienna Scientific Cluster.

Funding Open access funding provided by Austrian Science Fund (FWF).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References
1. Yang X, Wang A, Qiao B, Li JUN (2013) Single-atom catalysts: a new frontier. Acc Chem Res 46:1740–1748
2. Liu J (2017) Catalysis by supported single metal atoms. ACS Catal 7:34–59. https://doi.org/10.1021/acscatal.6b01534
3. Zhang H, Liu G, Shi L, Ye J (2018) Single-atom catalysts: emerging multifunctional materials in heterogeneous catalysis. Adv Energy Mater 8:1–24. https://doi.org/10.1002/aenm.201701343
4. Qiao B, Wang A, Yang X et al (2011) Single-atom catalysis of CO oxidation using Pt/FeOx. Nat Chem 3:634–641. https://doi.org/10.1038/nchem.1095
5. Jones J, Xiong H, DeLaRiva AT et al (2016) Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 353:150–154. https://doi.org/10.1126/science.aaf8800
6. Liang S, Hao C, Shi Y (2015) The power of single-atom catalysis. ChemCatChem 7:2559–2567. https://doi.org/10.1002/ccct.201500363
7. Gates BC, Flynzani-Stephanopoulos M, Dixon DA, Katz A (2017) Atomically dispersed supported metal catalysts: Perspectives and suggestions for future research. Catal Sci Technol 7:4259–4275. https://doi.org/10.1039/c7cy00881c
8. Chen F, Jiang X, Zhang L et al (2018) Single-atom catalysis: bridging the homo- and heterogeneous catalysis. Cuihua Xuebao Chin J Catal 39:893–898. https://doi.org/10.1016/S1872-2067(18)63047-5
9. Lang R, Xi W, Liu JC et al (2019) Non defect-stabilized thermally stable single-atom catalyst. Nat Commun 10:1–10. https://doi.org/10.1038/s41467-018-08136-3
10. Zhang J, Wu X, Cheong WC et al (2018) Cation vacancy stabilization of single-atomic-site Pt 1 /Ni(OH) x Catalyst for diboration of alkynes and alkenes. Nat Commun 9:1–8. https://doi.org/10.1038/s41467-018-03380-4
11. Wan J, Chen W, Jia C et al (2018) Effect effects on TiO 2 nanosheets: stabilizing single atomic site Au and promoting catalytic properties. Adv Mater 30(11):1705369. https://doi.org/10.1002/adma.201705369
12. Franchini C, Reticioli M, Setvin M, Diebold U (2021) Polaron in materials. Nat Rev Mater 6:560–586. https://doi.org/10.1038/s41578-021-00289-w
13. Reticioli M, Sokolović I, Schmid M et al (2019) Interplay between adsorbates and polarons: CO on rutile TiO 2 . (110). Phys Rev Lett 122:1–6. https://doi.org/10.1103/PhysRevLett.122.016805
14. Sokolović I, Reticioli M, Čalkovský M et al (2020) Resolving the adsorption of molecular O 2 on the rutile TiO 2(110) surface by noncontact atomic force microscopy. Proc Natl Acad Sci USA 117:14827–14837. https://doi.org/10.1073/pnas.190225112
15. Cao Y, Yu M, Qi S et al (2017) Scenarios of polaron-involved molecular adsorption on reduced TiO 2 (110) surfaces. Sci Rep 7:1–7. https://doi.org/10.1038/s41598-017-06557-6
16. Papageorgiou AC, Begliots NS, Pang CL et al (2010) Electron traps and their effect on the surface chemistry of TiO 2 (110). Proc Natl Acad Sci USA 107:2391–2396. https://doi.org/10.1073/pnas.0911349107
17. Gono P, Wiktor J, Ambrosio F, Pasquarello A (2018) Surface polarons reducing overpotentials in the oxygen evolution reaction. ACS Catal 8:5847–5851. https://doi.org/10.1021/acscatal.8b01120
18. Ly CQ, Liu JH, Guo Y et al (2016) DFT + U investigation on the adsorption and initial decomposition of methylene by a Pt single-atom catalyst supported on rutile (110) TiO 2 . Appl Surf Sci 389:411–418. https://doi.org/10.1016/j.apsusc.2016.07.111
19. Wang J, Zhang W, Zhu W et al (2020) Rutile TiO 2 supported single atom Au catalyst: a facile approach to enhance methanol dehydrogenation. Mol Catal 482:110670. https://doi.org/10.1016/j.mcat.2019.110670
20. Fung V, Hu G, Tao F, Jiang D (2019) Methane chemisorption on oxide-supported Pt single atom. ChemPhysChem 20:2217–2220. https://doi.org/10.1002/cphc.201900497
21. Ammal SC, Heyden A (2017) Titania-supported single-atom platinum catalyst for water-gas shift reaction. Chem-Ing-Tech 89:1343–1349. https://doi.org/10.1002/cite.201700046
22. Chang TY, Tanaka Y, Ishikawa R et al (2014) Direct imaging of pt single atoms adsorbed on TiO 2 (110) surfaces. Nano Lett 14:134–138. https://doi.org/10.1021/nl403520c
23. Tang Y, Asokan C, Xu M et al (2019) Rh single atoms on TiO 2 dynamically respond to reaction conditions by adapting their site. Nat Commun 10:1–10. https://doi.org/10.1038/s41467-019-12461-6
24. Reticioli M, Setvin M, Schmid M et al (2018) Formation and dynamics of small polarons on the rutile TiO 2 (110) surface. Phys Rev B 98:45306. https://doi.org/10.1103/PhysRevB.98.045306
25. Setvin M, Franchini C, Hao X et al (2014) Direct view at excess electrons in TiO 2 rutile and anatase. Phys Rev Lett 113:1–5. https://doi.org/10.1103/PhysRevLett.113.086402
66. Schaub R, Thostrup P, Lopez N et al (2001) Oxygen vacancies as active sites for water dissociation on rutile TiO$_2$(110). Phys Rev Lett. 87(26):266104. https://doi.org/10.1103/PhysRevLett.87.266104

67. Wendt S, Schaub R, Matthiesen J et al (2005) Oxygen vacancies on TiO$_2$(1 1 0) and their interaction with H2O and O$_2$: a combined high-resolution STM and DFT study. Surf Sci 598:226–245. https://doi.org/10.1016/j.susc.2005.08.041

68. Du Y, Deskins NA, Zhang Z et al (2009) Imaging consecutive steps of O 2 reaction with hydroxylated TiO$_2$(110): identification of HO 2 and terminal OH intermediates. J Phys Chem C 113:666–671. https://doi.org/10.1021/jp807030n

69. Li L, Li W, Zha C, Mao LF (2021) A DFT + U study about agglomeration of Au atoms on reduced surface of rutile TiO$_2$ (110). Mater Chem Phys 271:124944. https://doi.org/10.1016/j.matchemphys.2021.124944

70. Hugenschmidt MB, Gamble L, Campbell CT (1994) The interaction of H2O with a TiO$_2$ (110) surface. Surf Sci 302:329–340. https://doi.org/10.1016/0039-6028(94)90837-0

71. Mellor A, Wilson A, Pang CL et al (2020) Photoemission core level binding energies from multiple sized nanoparticles on the same support: TiO$_2$(110)/Au. J Chem Phys 152(2):024709. https://doi.org/10.1063/1.5135760

72. Williams OBJ, Katsiev K, Back B et al (2022) Direct visualization of a gold nanoparticle electron trapping effect. J Am Chem Soc 144:1034–1044. https://doi.org/10.1021/jacs.1c12197

73. Chřtien S, Metiu H (2007) Density functional study of the charge on Aun clusters (n = 1–7) supported on a partially reduced rutile TiO$_2$ (110): are all clusters negatively charged? J Chem Phys. https://doi.org/10.1063/1.2709886

74. Birschitzky VC, Ellinger F, Diebold U et al (2022) Machine learning for exploring small polaron configurational space. https://doi.org/10.48550/arXiv.2202.01042

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.