Aim: Originally developed for predicting the risk of stroke in patients with atrial fibrillation (AF), the CHA2DS2-VASc score also has the potential to predict the risk of other cardiovascular disease. This study aimed to investigate the prognostic value of the CHA2DS2-VASc score in patients with peripheral artery disease (PAD) requiring Femoral popliteal (FP) endovascular therapy (EVT).

Methods: This multicenter, retrospective study analyzed the clinical database of 2190 patients who underwent FP EVT for symptomatic PAD (Rutherford categories 2–4) between January 2010 and December 2018. We calculated the CHA2DS2-VASc score and then investigated the association between the score, as well as AF, and their prognosis. Outcome measures were major adverse cardiovascular events (MACEs) and major adverse limb events (MALEs).

Results: During a median follow-up of 3.0 years (interquartile range, 1.5–5.0 years), 532 MACEs and 562 MALEs occurred. The CHA2DS2-VASc score and AF were independently associated with an increased risk of MACEs; their adjusted hazard ratios [95% confidence intervals] were 1.28 [1.20–1.36] (P<0.001) per 1-point increase and 1.49 [1.06–2.09] (P=0.022), respectively. The CHA2DS2-VASc score was almost linearly associated with MACEs, without any clear threshold point. On the other hand, these variables were not associated with MALEs risk (P=0.32 and 0.48).

Conclusion: The CHA2DS2-VASc score and AF were independently associated with the increased risk of MACEs but not of MALEs in patients with symptomatic PAD who underwent FP EVT. The score might be useful in stratifying the MACEs risk in this type of patients.

Key words: Peripheral artery disease, Endovascular therapy, CHA2DS2-VASc score, Atrial fibrillation, Femoral popliteal artery lesion

Introduction

Peripheral artery disease (PAD) is a manifestation of systemic atherosclerotic disease and is one of the most serious global health problems, which have increased in prevalence in the aging society. Revascularization therapy is often required in symptomatic PAD cases refractory to conservative treatment. Advancements in endovascular techniques and devices have allowed more aggressive approaches to the treatment of femoral popliteal (FP) artery disease, with less invasiveness compared to bypass surgery. An increasing number of patients with PAD have now been treated with endovascular therapy.
Atrial fibrillation (AF) and PAD are equally associated with increasing morbidity and mortality\(^6\). These two diseases might be closely related to each other, whereas the causal relationship was not fully understood\(^7, 8\). In addition, the prognostic value of AF after EVT remains unknown.

The CHA\(_2\)DS\(_2\)-VASc score is a risk assessment tool used to predict stroke incidence in patients with AF and as a guide for anticoagulation therapy in clinical practice\(^6\). In this score, PAD is included as a main clinical risk factor\(^9\). The score also has the potential to predict the risk of other cardiovascular disease, especially in patients with cardiac diseases (e.g., coronary artery disease and heart failure)\(^10, 11\). However, its usefulness in patients with PAD remains unknown.

Aim

This study aimed to reveal the prognostic value of AF and the CHA\(_2\)DS\(_2\)-VASc score in patients with PAD after EVT for FP artery lesions.

Methods

Study Design

This retrospective, multicenter study analyzed the clinical database of consecutive symptomatic patients with PAD (Rutherford categories 2, 3, and 4) who underwent EVT for de novo FP (from the superficial femoral artery ostium to the proximal popliteal artery) lesions at five cardiovascular centers in Japan between 2010 and 2018 (University Hospital Medical Information Network Clinical Trial Registry: UMIN-CTR, no. 000045682). During this period, 2249 patients were recorded in the clinical database. However, 59 patients were excluded due to incomplete data; thus, 2190 patients were ultimately analyzed in this study. We calculated the CHA\(_2\)DS\(_2\)-VASc score and investigated the association of the score, as well as AF, with their prognosis. The baseline clinical and lesion characteristics and procedural data were collected from each hospital database. The hospital ethics committees approved the study protocol, and the study was performed in accordance with the Declaration of Helsinki.

Procedures and Follow-Up

Dual antiplatelet therapy (DAPT; 100 mg/day of aspirin and 75 mg/day of Clopidogrel) at least 2 days before the procedure was commonly recommended, although individual regimens of antiplatelet and anticoagulant drugs were determined at each physician’s discretion. A 5 or 6 Fr sheath was inserted into the common femoral artery, mostly using a contralateral approach. After 5,000 units of heparin was infused, a 0.035, 0.018, or 0.014 in. guidewire was inserted to cross the lesion. Thereafter, conventional balloon dilation was performed using an appropriately sized angioplasty balloon. The choice of bare metal stent (BMS), drug-eluting stent (DES), covered stent (CS), or drug-coated balloon (DCB) was at the operator’s discretion. Basically, DCB is indicated for cases with optimal dilation (no major flow-limiting dissection or residual stenosis <50%); for suboptimal dilation, stent implantation is commonly applied. The size of stents was approximately 1 mm larger than the vessel diameter. After stenting, post-dilation was routinely performed to achieve better stent expansion and apposition. However, no directional or rotational atherectomy devices were used because they were unavailable in Japan. The use of intravascular ultrasound during EVT was at the discretion of the operators. DAPT was prescribed for at least 1 month after procedures involving conventional balloon angioplasty, BMS implantation, or DCB angioplasty, but package insert instructions recommended continuing DAPT for at least 2 months after DES implantation and at least 6 months after CS implantation.

Follow-ups after discharge were scheduled at 1, 3, and 6 months, and thereafter, every 6 months. The follow-up assessment included clinical symptoms, ankle-brachial index, and duplex ultrasonography scan (DUS) images\(^12\).

Outcomes and Definitions

The outcome measures of this study were major adverse cardiovascular events (MACEs) and major adverse limb events (MALEs). MACEs was defined as a composite of all-cause mortality, stroke, and MI, and MALEs was defined as a composite of major amputation and any reintervention (either endovascular or surgical). Nonfatal MI was assessed according to the fourth universal definition of MI\(^13\). Stroke during follow-up was defined as an ischemic or hemorrhagic event necessitating hospitalization with symptoms lasting >24 h. Major amputation was defined as above-ankle amputation. Reintervention was performed for ≥50% stenosis (or >2.4 of peak systolic velocity ratio by DUS) with recurrent clinical symptoms\(^12\). The CHA\(_2\)DS\(_2\)-VASc scoring system assigned 1 point each for congestive heart failure (C), hypertension (H), diabetes mellitus (D), vascular
disease (V), and female sex category (Sc), whereas 2 points each for age \geq 75 years (A) and history of stroke, transit ischemic attack, or thromboembolism (S). The sum of these points indicated the CHA2DS2-VASc score, with a possible range of 0–9 points.\(^6,9\) In the scoring system, congestive heart failure was defined as the signs/symptoms of heart failure or objective evidence of reduced left ventricular ejection fraction ($<40\%)$. Hypertension was defined as resting blood pressure $>140/90$ mmHg on at least two occasions or current antihypertensive treatment. Diabetes mellitus was defined as fasting glucose >125 mg/dL (7 mmol/L) or treatment with an oral hypoglycemic agent and/or insulin. Vascular diseases included coronary artery disease and PAD\(^9\), considering that this study included patients who had PAD, the minimum CHA2DS2-VASc score in the current study population was 1 point. AF was identified by an electrocardiogram performed during hospitalization and/or from medical records including past history. The severity of calcification in treated vessels was assessed according to the Peripheral Arterial Calcium Scoring System (PACSS)\(^1\). Meanwhile, below-the-knee runoff was assessed by angiography after the procedure.

Statistical Analysis

Data are represented as means and standard deviations for continuous variables or as frequencies and percentages for discrete variables, if not otherwise mentioned. Moreover, $P<0.05$ was considered statistically significant, and 95% confidence intervals were reported when appropriate. The association of baseline characteristics, including the CHA2DS2-VASc score and AF, with clinical outcomes was investigated using the Cox proportional hazards regression model. All statistical analyses were performed using the R version 3.6.0 (R Development Core Team, Vienna, Austria).

Results

The baseline characteristics of the study population are summarized in Table 1. Their mean age was 73 ± 9 years, and 14.2% had AF. The mean CHA2DS2-VASc score was 4.6 ± 1.4 points (Fig. 1). During a median follow-up of 3.0 years (interquartile range, 1.5–5.0 years), 532 MACEs (431 deaths, 117 strokes, and 57 MIs) and 562 MALEs (553 reinterventions and 24 major amputations) were identified.

Table 2 demonstrates the association of baseline clinical characteristics with the MACEs and MALEs risks. A higher CHA2DS2-VASc score and the presence of AF, as well as earlier year of EVT, lower body mass index, end-stage renal disease, no statin use, PACSS classification grades 2 and 4 (i.e., arterial calcification ≥ 5 cm), and no below-the-knee runoff, were independently associated with increased MACEs risk. The adjusted hazard ratios of the CHA2DS2-VASc score and AF were 1.28 (1.20–1.36) per 1-point increase ($P<0.001$) and 1.49 (1.06–2.09) ($P=0.022$), respectively. However, the CHA2DS2-VASc score and

Table 1. Baseline characteristics of the study population
Age (years)
Male sex
Current smoking
Body mass index (kg/m2)
Atrial fibrillation
Hypertension
Diabetes mellitus
End-stage renal disease
Coronary artery disease
Heart failure
History of stroke
Dual antiplatelet therapy
Warfarin use
Reason of administration
Atrial fibrillation
Post prosthetic valve implantation
Venous thrombosis
Post coronary artery bypass grafting
DOAC use
Reason of administration
Atrial fibrillation
Venous thrombosis
Statin use
Rutherford classification
Category 2
Category 3
Category 4
Ankle-brachial index
Iliac revascularization
Distal reference vessel diameter (mm)
Chronic total occlusion
Lesion length (mm)
PACSS classification
Grade 0
Grade 1
Grade 2
Grade 3
Grade 4
No below-the-knee runoff
Bare metal stent use
Covered stent use
Drug-eluting stent use
Drug-coated balloon

Abbreviations: DOAC, direct oral anticoagulant; PACSS, Peripheral Arterial Calcium Scoring System

Continuous data are presented as mean \pm standard deviation. Categorical data are presented as the number (percentage).
Abbreviations: EVT, endovascular therapy; DOAC, direct oral anticoagulant; MACEs, major adverse cardiovascular events; MALEs, major adverse limb events; PACSS, Peripheral Arterial Calcium Scoring System.

Data represent the hazard ratios [95% confidence intervals] (P values). Adjusted hazard ratios were derived from the multivariate model in which all the variables listed in the table were entered. Asterisks indicate \(P < 0.05 \).
the presence of AF were not associated with the MALEs risk ($P=0.32$ and $P=0.48$, respectively). The MALEs risk increased with end-stage renal disease (adjusted hazard ratio, 1.88 [1.53–2.32]; $P<0.001$), Rutherford classification (1.23 [1.07–1.43]; $P=0.005$), lesion length (1.26 [1.14–1.38] per 100 mm increase; $P<0.001$), and no below-the-knee runoff (1.35 [1.04–1.75]; $P=0.025$), but it decreased with ankle-brachial index (0.94 [0.90–0.98] per 0.1 unit increase; $P=0.002$), reference vessel diameter (0.80 [0.72–0.88] per 1 mm increase; $P<0.001$), BMS use (0.61 [0.49–0.76]; $P<0.001$), CS use (0.31 [0.18–0.53]; $P<0.001$), DES use (0.66 [0.48–0.90]; $P=0.009$), and DCB use (0.53 [0.35–0.82]; $P=0.004$). As illustrated in Fig. 2, the CHA\(_2\)DS\(_2\)-VASc score was almost linearly associated with the MACEs risk, without any clear threshold point. Table 3 presents the association between baseline
characteristics and each component of MACEs and MALEs. The CHA2DS2-VASc score and AF were independently associated with the risk of all-cause mortality but not with that of reintervention.

Discussion

This study demonstrated that the CHA2DS2-VASc score and AF were independently associated with the MACEs risk but were not associated with the MALEs risk in patients with PAD who underwent EVT for FP artery lesions. The association of the CHA2DS2-VASc score with the MACEs risk was almost linear, without any clear threshold.

Meanwhile, AF was independently associated with the MACEs risk after EVT for FP artery lesions. A subgroup analysis of the Reduction of Atherothrombosis for Continued Health (REACH) registry reported that 10% of patients with PAD had AF, with a higher 2-year risk of cardiovascular events than those without AF15. In addition, Moussa Pacha et al. stated that patients who underwent limb revascularization and had AF had worse in-hospital outcomes than those without AF16. In analyzing a longer-term prognosis (a median follow-up of 3.0 years), our study findings were consistent with these previous reports. Meanwhile, AF was not associated with MALEs, of which most were reinterventions. The lack of association was also suggested by the REACH registry, although the registry reported that PAD patients with AF had a higher 2-year risk of amputation (either major or minor) than those without AF16. Moussa Pacha et al. also described that in-hospital major amputation was higher in patients with AF (5.2% vs. 3.9%)16. Their findings were apparently different from ours in which AF was not significantly associated with major amputation. However, the incidence of major amputation in the current study population was relatively low (24 events were observed, and the estimated cumulative incidence rate was 0.6% at 3.0 years). The statistical power would affect the findings. Given that major amputation after FP EVT for PAD other than ischemic tissue loss is currently rare in clinical practice, the difference of the risk would become clinically unimportant.

This study further revealed that a higher CHA2DS2-VASc score was independently associated with the MACEs risk. The relationship was almost linear, with no any clear threshold point. The potential of the CHA2DS2-VASc score for predicting cardiovascular outcomes was suggested by recent studies on patients with coronary artery disease and heart failure10, 11. As histological analyses indicated, patients with PAD are subject to progressive atherosclerosis17. Notably, a clear, linear relationship was observed between the CHA2DS2-VASc score and the MACEs risk even in patients with progressive atherosclerosis. Patients with PAD are consistent and powerful independent predictor of cardiovascular event and mortality. Therefore, estimating their prognosis is clinically important after EVT. Accordingly, some risk prediction tools have been developed18, 19; however, these tools often target a limited population, such as patients with chronic limb-threatening ischemia (CLTI), and focus on outcomes other than MACEs. The CHA2DS2-VASc score is simple and well known and can be easily calculated in clinical practice. The score would serve as a practically useful tool for evaluating the MACEs risk in patients with PAD free from ischemic tissue loss.

Moreover, the score might be clinically useful to identify patients who will benefit the most from intensive treatment against the progression and evolution of atherothrombosis. Although the best medical therapy was recommended in the guideline, especially the data in terms of heart failure in patients with PAD was limited2, 20. Therefore, further results of newer drugs [angiotensin receptor–neprilysin inhibitor (ARNI), inhibitors of sodium–glucose cotransporter 2 (SGLT2)] in patients with PAD are awaited.

AF and the CHA2DS2-VASc score were crudely associated with the risk of each component of MACEs. Although their adjusted association with stroke and MI was not evaluated due to the small number of events, these two variables were found to be independently associated with the risk of all-cause mortality. Patients with a high CHA2DS2-VASc score together with AF might need a more careful monitoring and follow-up due to their high incidence rate of cardiovascular events and all-cause mortality. Meanwhile, the CHA2DS2-VASc score was not associated with the MALEs risk. The score might not reflect limb prognosis after FP EVT. The risk of MALEs was rather increased with the lesion severity, a major risk factor for patency loss after FP EVT21. Moreover, the use of BMS, CS, DES, and DCB was associated with decreased MALEs risk, indicating that these devices might have a key role in reducing the MALEs risk.

Limitations

This study has several limitations. First, this study is a retrospective analysis, despite being a large-scale, multicenter database. Hence, the results would
be affected by relevant biases. Second, patients with CLTI (Rutherford categories 5 and 6) were not included in this study, because the risk stratification tool for the CLTI population has already reported18, 19. Also, this study did not include patients with PAD who underwent bypass surgery and EVT for aortoiliac lesion, whereas the outcomes of these patients may be different from FP artery lesions\textsuperscript{22). Further investigation is needed to confirm the validity of these findings in such patients. Third, patients with undiagnosed AF were categorized as those without AF in the current study. Although the AF prevalence in this study (14.2%) was similar to that in the previous registry15, we did not perform aggressive AF screening in clinical practice; thus, patients that had undiagnosed paroxysmal AF but presented sinus rhythm at EVT might be potentially overlooked. Clinical impact of such silent AF remained unknown.

Fourth, we did not distinguish the clinical phenotypes of AF (i.e., paroxysmal, persistent, and permanent) in this study. Fifth, we did not collect the data on the history of treatment for AF, including whether catheter ablation was performed for AF. Sixth, medication compliance was not monitored. Seventh, we included the cases with anticoagulant therapy according to the package insertion in Japan; therefore, the proportion of anticoagulation therapy was relatively low. This may have affected the outcomes. Although recent clinical trials reported that low-dose rivaroxaban was favorable outcomes than aspirin, the patients with AF required anticoagulant drugs and end-stage renal disease was excluded in these clinical trials\textsuperscript{23, 24). Therefore, further real-world clinical data will be needed. Finally, the proportion of patients on statin administration was relatively low because this data was between 2010 and 2018, although recent guideline was proposed that patients with PAD were considered as a very high cardiovascular risk\textsuperscript{2). These are the research tasks from now on.

Conclusion

The CHA\textsubscript{2}DS\textsubscript{2}-VASc score and AF were independently associated with the MACEs risk but were not associated with the MALEs risk in patients with PAD who underwent EVT for FP artery lesions. The CHA\textsubscript{2}DS\textsubscript{2}-VASc score might be a useful tool to stratify their cardiovascular prognosis.

Acknowledgements

The authors would like to acknowledge the catheterization laboratory medical staff, and thank to Enago (www.enago.jp) for the English language review.

Financial Support

None.

Disclosures

None.

References

1) Norgren L, Hiatt WR, Dormandy JA, Nehler MR, Harris KA, Fowkes FG; TASC II Working Group. Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II). J Vasc Surg, 2007; 45(suppl S): S5-S67

2) Aboyans V, Ricco JB, Bartelink MEL, Björck M, Brodmann M, Cohnert T, Collet JP, Czerny M, De Carlo M, Debus S, Espinola-Klein C, Kahan T, Kowmator S, Mazzolali L, Naylor AR, Roffi M, Röther J, Strynger M, Tendera M, Tepe G, Venermo M, Vlachopoulos C, Desormais I; ESC Scientific Document Group. 2017 ESC guidelines on the diagnosis and treatment of peripheral arterial diseases, in collaboration with the European Society for Vascular Surgery (ESVS): Document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteries. Endorsed by: the European Stroke Organization (ESO), The Task Force for the Diagnosis and Treatment of Peripheral Arterial Diseases of the European Society of Cardiology (ESC) and of the European Society for Vascular Surgery (ESVS). Eur Heart J, 2018; 39: 763-816

3) Takahara M, Iida O, Kohsaka S, Soga Y, Fujihara M, Shinke T, Amano T, Ikari Y; J-EVT and J-PCI investigators. Presentation Pattern of Lower Extremity Endovascular Intervention versus Percutaneous Coronary Intervention. J Atheroscler Thromb, 2020; 27: 761-768

4) Song P, Rudan D, Zhu Y, Fowkes FJI, Rahimi K, Fowkes FGR, Rudan I. Global, regional, and national prevalence and risk factors for peripheral artery disease in 2015: an updated systematic review and analysis. Lancet Glob Health, 2019; 7: e1020-e1030

5) Gerhard-Herman MD, Gornik HL, Barrett C, Barshes NR, Corriere MA, Drachman DE, Fleisher LA, Fowkes FG, Hamburg NM, Kinlay S, Lookstein R, Misra S, Mureebe L, Olin JW, Patel RA, Regensteiner JG, Schanzer A, Shishehbor MH, Stewart KJ, Treat-Jacobson D, Walsh ME. 2016 AHA/ACC Guideline on the management of patients with lower extremity peripheral artery disease: executive summary: a report of the american college of cardiology/american heart association task force on clinical practice guidelines. Circulation, 2017; 135: e686-e725

6) Kirchhof P, Benussi S, Kotecha D, Ahlsson A, Atar D, Casadei B, Castella M, Diener HC, Heidbuchel H, Hendrikx J, Hindricks G, Manolis AS, Oldgren J, Popescu BA, Schotten U, Van Putte B, Vardas P; ESC Scientific Document Group. 2016 ESC Guidelines for the
management of atrial fibrillation developed in collaboration with EACTS. Eur Heart J, 2016; 37: 2893-2962

7) Griffin WF, Salahuddin T, O’Neal WT, Soliman EZ. Peripheral arterial disease is associated with an increased risk of atrial fibrillation in the elderly. Europace, 2016; 18: 794-798

8) Anandasundaram B, Lane DA, Apostolakis S, Lip GY. The impact of atherosclerotic vascular disease in predicting a stroke, thromboembolism and mortality in atrial fibrillation patients: a systematic review. J Thromb Haemost, 2013; 11: 975-987

9) Lip GY, Nieuwlaat R, Pisters R, Lane DA, Crijns HJ. Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: the euro heart survey on atrial fibrillation. Chest, 2010; 137: 263-272

10) Wang X, Pei C, Bai Y, Dai Q, Deng X, Liu Y, Li Z, You J, Peng J, Lin L, Zou Y. Predictive value of CHA2DS2-VASc score for ischemic events in patients undergoing percutaneous coronary intervention. Angiology, 2019; 70: 878-886

11) Melgaard L, Gorst-Rasmussen A, Lane DA, Rasmussen LH, Larsen TB, Lip GY. Assessment of the CHA2DS2-VASc Score in Predicting Ischemic Stroke, Thromboembolism, and Death in Patients with Heart Failure With and Without Atrial Fibrillation. JAMA, 2015; 314: 1030-1038

12) Patel MR, Conte MS, Cutlip DE, Dib N, Geraghty P, Gray W, Hiatt WR, Ho M, Ikeda K, Ikono F, Jaff MR, Jones WS, Kawahara M, Lookstein RA, Mehran R, Misra S, Norgren L, Olin JW, Povsic TJ, Rosenfield K, Rundback J, Shamoun F, Tcheng J, Tsai TT, Suzuki Y, Vranckx P, Wiechmann BN, White CJ, Yokoi H, Krucoff MW. Evaluation and treatment of patients with lower extremity peripheral artery disease: consensus definitions from Peripheral Academic Research Consortium (PARC). J Am Coll Cardiol, 2015; 65: 931-941

13) Thygesen K, Alpert JS, Jaffe AS, Chaitman BR, Bax JJ, Morrow DA, White HD; Executive Group on behalf of the Joint European Society of Cardiology (ESC)/American College of Cardiology (ACC)/American Heart Association (AHA)/World Heart Federation (WHF) Task Force for the Universal Definition of Myocardial Infarction. Fourth Universal Definition of Myocardial Infarction (2018). J Am Coll Cardiol, 2018; 72: 2231-2264

14) Rocha-Singh KJ, Zeller T, Jaff MR. Peripheral arterial calcification: prevalence, mechanism, detection, and clinical implications. Catheter Cardiovasc Interv, 2014; 83: 212-220

15) Winkel TA, Hoeks SE, Schouten O, Zeymer U, Limbourg T, Baumgartner I, Bhatt DL, Steg PG, Goto S, Röther J, Cacoub PP, Verhegen HJ, Bax JJ, Poldermans D. Prognosis of atrial fibrillation in patients with symptomatic peripheral arterial disease: data from the Reduction of Atherothrombosis for Continued Health (REACH) Registry. Eur J Vasc Endovasc Surg, 2010; 40: 9-16

16) Moussa Pacha H, Al-Khadra Y, Darmoch F, Soud M, Zaitoun A, Kwok CS, Mamas MA, Kaki A, Garcia S, Banerjee S, Arain SA, Vetrovec GW, Glazier JJ, Alraies MC. Comparison of In-Hospital Outcomes in Patients Having Limb-Revascularization With Versus Without Atrial Fibrillation. Am J Cardiol, 2019; 124: 1540-1548

17) Herisson F, Heymann MF, Chètiveaux M, Charrier C, Battaglia S, Pilet P, Roulillon T, Krempf M, Lemarchand P, Heymann D, Goueffic Y. Carotid and femoral atherosclerotic plaques show different morphology. Atherosclerosis, 2011; 216: 348-354

18) Schanzner A, Mega J, Meadows J, Samson RH, Bandyk DF, Conte MS. Risk stratification in critical limb ischemia: derivation and validation of a model to predict amputation-free survival using multicenter surgical outcomes data. J Vasc Surg, 2008; 48: 1464-1471

19) Soga Y, Iida O, Takahara M, Hirano K, Suzuki K, Kawasaki D, Miyashita Y, Tsuchiya T. Two-year life expectancy in patients with critical limb ischemia. JACC Cardiovasc Interv, 2014; 7: 1444-1449

20) Abola MTB, Golledge J, Miyata T, Rha SW, Yan BP, Dy TC, Ganzon MSV, Handa PK, Harris S, Zhisheng J, Pinjala R, Robless PA, Yokoi H, Alajar EB, Bermudez-Delos Santos AA, Llanes EJB, Obrado-Nabablit GM, Pestaño NS, Punzalan FE, Tumanan-Mendoza B. Asia-Pacific Consensus Statement on the Management of Peripheral Artery Disease: A Report from the Asian Pacific Society of Atherosclerosis and Vascular Disease Asia-Pacific Peripheral Artery Disease Consensus Statement Project Committee. J Atheroscler Thromb, 2020; 27: 809-907

21) Soga Y, Iida O, Hirano K, Suzuki K, Tosaka A, Yokoi H, Nobuyoshi M. Utility of new classification based on clinical and lesional factors after self-expandable nitinol stenting in the superficial femoral artery. J Vasc Surg, 2011; 54: 1058-1066

22) Ko T, Higashitani M, Uemura Y, Utsunomiya M, Yamaguchi T, Matsui A, Ozaki S, Tobita K, Kodama T, Morita H, Komuro I. Clinical Outcome and Diverse Risk Factors for Different Therapeutic Target Locations of Peripheral Artery Disease. J Atheroscler Thromb, 2020; 27: 769-779

23) Anand SS, Caron F, Eikelboom JW, Bosch J, Dyf L, Aboyans V, Abola MT, Branch KRH, Keltai K, Bhatt DL, Verhamme P, Fox KAA, Cook-Brunns N, Laniau V, Connolly SJ, Yusuf S. Major Adverse Limb Events and Mortality in Patients With Peripheral Artery Disease: The COMPASS Trial. J Am Coll Cardiol, 2018; 71: 2306-2315

24) Bonaca MP, Baurersachs RM, Anand SS, Debus ES, Neher MR, Patel MR, Fanelli F, Capell WH, Diao L, Jaeger N, Hess CN, Pap AF, Kirtelson JM, Gudz I, Martys L, Krievins DK, Diaz R, Brodmann M, Muellhofer E, Haskell LP, Berkowitz SD, Hiatt WR. Rivalroxban in Peripheral Artery Disease after Revascularization. N Engl J Med, 2020; 382: 1994-2004