ABSTRACT

Moderate to severe forms of suboptimal mobility on dairy cows are associated with yield losses, whereas mild forms of suboptimal mobility are associated with elevated somatic cell count and an increased risk to be culled. Although the economic consequences of severe forms of suboptimal mobility (also referred as clinical lameness) have been studied extensively, the mild forms are generally ignored. Therefore, the aim of the current study was to determine the economic consequences associated with varying prevalence and forms of suboptimal mobility within spring calving, pasture-based dairy herds. A new submodel predicting mobility scores was developed and integrated within an existing pasture-based herd dynamic model. Using a daily timestep, this model simulates claw disorders, and the consequent mobility score of individual cows. The impact of a cow having varying forms of suboptimal mobility on production and reproduction was simulated. The economic impact was simulated including treatment costs, as well as the production and reproductive impacts of varying levels of suboptimal mobility. Furthermore, different genetic predispositions for mobility issues and their interaction with herd-level management associated with each level of suboptimal mobility were simulated. Overall, 13 scenarios were simulated, representing a typical spring calving, pasture-based dairy herd with 100 cows. The first scenario represents a perfect herd wherein 100% of the cows had mobility score 0 (optimal mobility) throughout the lactation. The remaining 12 scenarios represent a combination of (1) 3 different herd-management levels, and (2) 4 different levels of a genetic predisposition for suboptimal mobility. The analysis showed that a 17% decrease in farm net profit was achieved in the worst outcome (wherein just 5% of the herd had optimal mobility) compared with the perfect herd. This was due to reduced milk yield, increased culling, and increased treatment costs for mobility issues compared the ideal scenario.

Key words: lameness, dairy cattle, dynamic model, grass-based ruminant systems

INTRODUCTION

Suboptimal mobility refers to any deviation from normal or “optimal” mobility of a dairy cow. Throughout the literature, lameness is considered one of the most important health challenges of dairy cows (Huxley, 2012), and the use of the term lameness tends to refer to moderate to severe forms of suboptimal mobility. In the current study, we use the term suboptimal mobility, which also includes cows with quite mild deviations from optimal mobility. Using the UK Agriculture and Horticultural Development Board (AHDB) mobility scoring scale, good mobility refers to a cow with a mobility score 0, whereas suboptimal mobility refers to any mobility score >0. Specifically, a mobility score of 1 describes a cow with imperfect mobility, a mobility score of 2 describes a cow with impaired mobility, and mobility score of 3 describes a cow with severely impaired mobility (AHDB, 2022).

Moderate to severe forms of suboptimal mobility can have significant impacts on the welfare of dairy cows, due to the associated pain (Callaghan et al., 2003; Flower and Weary, 2009). Severe forms of suboptimal mobility have been shown to be associated with significant production losses in both nongrazing (Green et al., 2002; Bicalho et al., 2008) and pasture-based systems (O’Connor et al., 2020a). Also, in pasture-based systems, suboptimal mobility has been shown to be associated with elevated SCC, increased risk for culling, and prolonged calving interval length (O’Connor et al., 2020a). Although lameness is less of a problem within pasture-based herds compared with cows in year-round confinement type systems (Olmos...
et al., 2009), suboptimal mobility (mobility score >0) prevalence of 38% was previously reported in a pasture-based setting (O’Connor et al., 2019). Insights into the avoidable losses resulting from suboptimal mobility are paramount to the success of campaigns to improve the mobility of dairy cows in dairy systems.

A few previous studies have reported on the economic consequences related to lameness or specific claw disorders causing lameness (Bruijnis et al., 2010; Ettema et al., 2010). Ettema et al. (2010) estimated the economic cost associated with lameness to be up to €192 per cow per year, whereas Bruijnis et al. (2010) estimated the cost of specific claw disorders to be €53 per cow per year. Earlier studies, including that of Enting et al. (1997) and Kossaibati and Esslemont (1997), reported on lameness, perhaps comparable to moderate to severe forms of suboptimal mobility (imperfect gate would not generally have been classified as an animal being lame). Few studies have been published evaluating the economic consequences of mild forms of suboptimal mobility (score 1).

For the majority of the northwest European pasture-based systems, cows are housed during the winter months, but managed at pasture for the remainder of the year. Ireland enjoys a favorable climate for grass production and, therefore, the majority of dairy herds are managed under a spring calving, pasture-based seasonal system. In such a system, over 70% of cows calve between February and March (Irish Cattle Breeding Statistics, 2018). A compact calving season is favored in such a system in an effort to maximize milk produced from grazed grass by managing the interface between peak milk production and peak grass production (Dillon et al., 2005; Shalloo et al., 2014). Dairy cows in typical Irish spring calving, pasture-based systems are exposed to different risk factors compared with cows managed in confinement type systems (O’Connor et al., 2020b), which could potentially mean that the economic consequences of suboptimal mobility may also differ between systems. Therefore, the objective of the current study was to estimate the economic consequences of varying levels of suboptimal mobility (ranging from mild to severe deviations from optimal gait) within spring calving, pasture-based dairy herds.

MATERIALS AND METHODS

This is a modelling paper; no animal was used or involved in the creation of this paper. To simulate physical and financial performance of typical Irish spring calving, pasture-based, production systems, the following 2 models were combined and used: The Pasture Based Herd Dynamic Milk model (PBHDM; Ruelle et al., 2015) and the Moorepark Dairy Systems Model (MDSM; Shalloo et al., 2004). In such a system, cows are turned out to pasture postcalving during the spring as soon as ground conditions allow. More than 70% of the cows calve between January and March (Irish Cattle Breeding Statistics, 2018), and they remain outside grazing for the summer and autumn months, and are partially or fully housed during the winter months (December to January). Holstein, Jersey, and Friesian breeds made up 75, 13, and 9% of the training data, respectively, which is representative of the national dairy population (Ring et al., 2018). A typical diet for a dairy cow in an Irish pasture-based system consists mainly of grazed pasture, predominantly based on perennial rye grass (accounting for 60.2% of the DMI; O’Brien et al., 2018), followed by concentrate feed, accounting for 19% of the diet on a DM basis (Hanrahan et al., 2018). The remainder of the typical diet is made up of grass silage and alternative forages (O’Brien et al., 2018).

To simulate the production impacts of suboptimal mobility on cow performance, a specific mobility sub-model was developed within the PBHDM to simulate claw disorders and the resulting mobility scores for each cow within the herd. The definitions of each mobility score simulated by the submodel are based on the following UK AHDB 4-point scale (AHDB, 2022):

1. A score of 0 describes a cow with good mobility that walks with even weight bearing and rhythm on all 4 feet, with a flat back. Long and fluid strides are possible.
2. A score 1 describes a cow with imperfect mobility, with uneven steps or shortened strides affecting 1 or more limbs, and it may not be immediately identifiable.
3. A score 2 describes a cow with impaired mobility, which is a cow with uneven weight bearing on 1 or more limbs that is immediately identifiable, or has shortened strides, usually associated with an arched back, or the cow has all of these traits.
4. A score of 3 describes a cow with severely impaired mobility. A cow with this score is unable to walk as fast as the rest of the “healthy” herd due to more severely impaired mobility compared with score 2.

Description of the Models

The PBHDM model was developed and described in detail by Ruelle et al. (2015, 2016). The PBHDM is a dynamic, stochastic model developed in C++. The
PBHDM simulates the performance of individual dairy animals from birth to death, with a daily time step. For the lactating cows, the PBHDM simulates the production of milk, fat, and protein yield, whereby the simulation of milk production per day is calculated based on the interaction between the energy and protein intake of the cow, BCS change, and the milk yield of each individual animal. The grass growth in the model is predicted using the Moorepark St. Gilles Grass Growth model (Ruelle et al., 2018). Main outputs of the models include cow intake (both at grazing and indoors), milk production (yield, fat and protein), BCS, cow fertility, and grass growth on daily basis, which can be averaged by month and by year.

Genetic Inputs and the Economic Breeding Index

The Economic Breeding Index (EBI) was launched in Ireland in 2001 to identify genetically superior animals to increase profitability within Irish dairy herds (Veerkamp et al., 2002). The EBI and its sub-indices are described in detail by Berry et al. (2007). The EBI is expressed as the expected profit (€) per lactation of the progeny of the specific animal, and the genetic merit values of the component traits are expressed as PTA. In 2020, there were 7 sub-indices within the EBI, which are as follows: milk production (relative emphasis 33%; PTA of milk yield, protein yield, and fat yield), fertility [relative emphasis 33%; PTA of calving interval (in days), PTA of survival], calving (relative emphasis 10%), beef (relative emphasis of 8%), maintenance (relative emphasis 8%), management (relative emphasis 4%), and health (relative emphasis 4%; PTA of lameness, mastitis, and SCC). The PBHDM model has been linked directly with the milk and fertility sub-indices (Ruelle et al., 2018) through the relevant PTA.

The MDSM (Shalloo et al., 2004) is a stochastic budgetary simulation model and has been fully integrated into the PBHDM since 2019. The objective of the MDSM is to simulate pasture-based milk production systems across a range of economic indicators, including profit, when changes are made to the farm being simulated, for instance, to study the effect of mastitis on the profitability of Irish dairy farms (Geary et al., 2012). The model integrates animal inventory and valuation, milk supply, feed requirements, and land and labor utilization with economic analysis (Shalloo et al., 2004). Variable costs accounted for in the MDSM include fertilizer, contractor charges, veterinarian and health costs, artificial insemination, silage and reseeding. Fixed costs are also included, such as machinery maintenance and running costs, farm maintenance, car, telephone, electricity, labor, and insurance.

Mobility Submodel

The newly created submodel for mobility (developed within the PBHDM) and its impact on performance consists of 4 steps, which are outlined briefly in the flow diagram (Figure 1) and described in more detail below.

Step 1: Claw Disorders. Five specific claw disorders and their severities were simulated (Table 1). The probabilities were determined from a logistic regression model (Table 2) based on a study involving approximately 7,000 cows, as described in detail by O’Connor et al. (2019). Holstein, Jersey, and Friesian breeds made up 75, 13, and 9% of the data, respectively, which is representative of the national dairy population (Ring et al., 2018). The actual prevalence of the presence and severity of claw disorders for those 7,000 cows has also been reported on by O’Connor et al. (2019). The probability of developing a claw disorder is dependent on BCS, cow parity, as well as the genetic PTA for lameness, and the PTA for milk yield.

In the model, the probability of developing specific claw disorders is calculated on a daily basis and for each claw disorder separately (Table 2), with an interaction with the stage of lactation. The probability of developing a claw disorder has been limited to a period of time during the lactation depending on the claw disorder. For white line disease, the probability of developing the disorder was assumed to be from calving up to 120 DIM, and for sole ulcer, the possibility was assumed to be from calving up to 150 DIM (based on the findings of Amory et al., 2008). The possibility of contracting overgrown claws or sole hemorrhages was assumed to be from calving up to 45 DIM. In the case of an overgrown claw, this was due to the fact that the animals were housed before calving, leading to development of overgrown claw (Atkinson, 2013), which would only be visible once the lactation starts. In the case of sole hemorrhage, this assumption was based on the work of Räber et al. (2006), Bicalho et al. (2009), and Charfeddine and Pérez-Cabal (2017), related to the thickness of the fat pad in the digital cushion during this period. Finally, the possibility of contracting digital dermatitis was assumed to be from calving up to 60 DIM, based on the adaption by Mostert et al. (2018) of the study by Amory et al. (2008). During the specific periods as described above, the probability for a cow to develop a claw disorder on a given day originates from the regression models presented in Table 2. What this means is that the annual probability of developing a claw disorder for the cow is divided by the number of days the cow can develop the claw disorder, and not divided by 365 d (as this would be an underestimation of the probability). The model simulated specific claw disorders and their severity on a per cow basis rather...
than on a per leg/claw basis. Three different herd-management levels were defined as follows: (1) good management—referring to a herd with no added increase in the risk of developing claw disorders, (2) average management—referring to a herd with an additional 10% risk of developing claw disorders, and (3) poor management—referring to a herd with an additional 20% risk of developing claw disorders. The changed probability of developing claw disorders due to herd-level management issues were based on the outputs of O’Connor et al. (2020b), wherein certain herd-level factors were associated with an increased prevalence of suboptimal mobility within a herd. Each day, a cow has a certain probability of developing a specific severity of each claw disorder \(P_{\text{claw disorder}} \), which was calculated as follows:

\[
P_{\text{claw disorder}} = \frac{R + Mgt}{1 + R + \text{ndays}},
\]

where \(R \) is the exponential of the result of the regression for the corresponding claw disorder, as outlined in Table 2. Mgt is the value used to define the level of management at the herd level, where good, average, or poor Mgt refers to a 0%, 10%, or 20% increase in the risk of developing a claw disorder, respectively. The variable ndays represents the number of days a cow can develop that claw disorder, as described above.

When a cow is simulated to develop a specific claw disorder, the model randomly simulates the severity based on the study of O’Connor et al. (2019; Table 3),

\begin{table}[h]
\centering
\begin{tabular}{|l|c|c|c|}
\hline
Claw disorder & Severity score \\
\hline
Overgrown claw & 1 & 2 & 3 \\
White line disease & 1 & 2 & 3 \\
Sole hemorrhage & 1 & 2 & 3 \\
Sole ulcer & Present & — & — \\
Digital dermatitis & Present & — & — \\
\hline
\end{tabular}
\caption{Descriptions of claw disorders and their severities simulated within scenarios}
\end{table}

\begin{flushleft}
3Sole ulcer and digital dermatitis were recorded as binary variables either present or not present in the hind hooves. 11 = mild; 2 = moderate; 3 = severe.
\end{flushleft}
and the length of time the cow will have the developed claw disorder was simulated based on the reports of Bruijnis et al. (2010), and is outlined in Table 4. After this length of time, that specific claw disorder will be cured; however, that cow may have another claw disorder, which will determine her mobility score.

Step 2: Mobility Scoring Prediction. The mobility score of each cow is simulated daily depending on the specific claw disorder and severity that the cow has on that day (as simulated during the previous step). The prediction of the mobility scores is based on the study of O’Connor et al. (2019) using the UK AHDB 4-point mobility scoring scale as described above (AHDB, 2022). In the previous study by O’Connor et al. (2019), the association between mobility scores and claw disorders was reported on, and based on this association, the newly developed submodel predicts a cow mobility score, depending on the type and severity of the claw disorder(s) she already has.

The coefficients of the regression used to simulate mobility scores in the study of O’Connor et al. (2019) were used in the model presented in the current paper to predict the mobility score of each cow on a daily basis (Table 5). The probability for a cow to be in a specific mobility score category is dependent on claw disorder type and severity, BCS, cow parity, as well as the genetic PTA for lameness, and the PTA for milk yield. The calculation of the probability of having a certain mobility score \(P_{MS}\) is as follows, and is recalculated daily, whereby the mobility score with the highest probability is the one assigned to that cow for that day:

\[
P_{MS0} = \frac{1}{1 + R_1 + R_2 + R_3} \times 100, \\
P_{MS1} = \frac{R_1}{1 + R_1 + R_2 + R_3} \times 100, \\
P_{MS2} = \frac{R_2}{1 + R_1 + R_2 + R_3} \times 100,
\]

Table 3. Percentage chance for cows having a specific severity of each claw disorder with scenarios based on the findings of O’Connor et al. (2019)

Claw disorder	Severity	% of cows
Overgrown claw	1	68
	2	26
	3	6
Sole hemorrhage	1	62
	2	25
	3	12
White line disease	1	65
	2	19
	3	15

1Sole ulcer and digital dermatitis not included as these disorders were scored as present or not present and not scored for severity.
2\(n = 6,927\).
31 = mild; 2 = moderate; 3 = severe.

Table 4. Length of time (d) a cow has a claw disorder before treatment within scenarios adapted from Bruijnis et al. (2010)

Claw disorder	Day\(^{1,2}\) (n)
Overgrown claw	89
Sole hemorrhage	103
White line	89
Sole ulcer\(^3\)	77
Digital dermatitis\(^4\)	108

1All claw disorders with a severity score 1 and 2 (mild and moderate claw disorders) are treated at the end of the lactation by a professional hoof trimmer.
2Number of days present before treated by a veterinarian.
3Overgrown claw 3 refers to a severe form of an overgrown claw.
4Sole hemorrhage 3 refers to a severe form of a sole hemorrhage.
5White line 3 refers to a severe form of a white line.
6Sole ulcer and digital dermatitis were recorded as binary variables as either present or not present in the hind hooves and are treated the same way as severity score 3 of other types of claw disorders.
Step 3 Milk Losses and Culling. In the present study, milk yield loss due to suboptimal mobility was estimated based on the results reported by O’Connor et al. (2020a). Milk yield losses were assumed to happen for an average length of 3 mo after the development of a specific claw disorder, which was based on the length of time a cow is likely to have a claw disorder (Bruijnis et al., 2010). Therefore, cows with a mobility score 1 had no impact on milk yield, whereas a daily milk yield loss of 6% for each day appeared for a cow with mobility score 2, and 16% for each day at mobility score 3. Daily milk yield losses were based on an annual milk yield loss of 1.6% for mobility score 2 and 6% for mobility score 3, compared with the average yield corrected for a 305-d lactation O’Connor et al. (2020a), based on the score at the 2 scoring periods.

For cows simulated to have suboptimal mobility (mobility score >0) at any time throughout the lactation, there is an increased risk to be culled. The increased risk was calculated by multiplying the models base culling risk (circa 9% as the input for the base probability to be culled for any reason other than reproduction) by the odds ratios reported by O’Connor et al. (2020a). Therefore, a cow with a mobility score 0 had no additional risk to be culled for mobility reasons, a cow with a mobility score 1 had an additional 2% chance to be culled, a cow with a mobility score 2 had an additional 4% chance to be culled, and a cow with a mobility score 3 had an additional 28% chance to be culled. This was assumed to be based on the highest mobility score a cow had during the lactation. Because we had only 2 mobility score measurements, it is possible that the cow’s mobility score was different during the other periods. It is not expected that this would have a material impact on the conclusions of this study.

Step 4: Treatment. In the model presented in the current study, it was assumed that veterinary treatment was applied for all claw disorders with a severity score of 3 (severe disorder), and for cows simulated to have sole ulcers and digital dermatitis. A herd health approach was applied wherein veterinary assistance was applied once per month or where required on farm (i.e., at the end of each month the veterinarian was called to treat the animals simulated to have a claw disorder of severity level 3). If none were present in the herd, no veterinarian was called. In the current study, it was assumed that all treatment for mobility issues was carried out by a veterinarian (and not by the farmer themselves). The average veterinary call-out charge and the cost per cow to treat claw disorders is outlined in Table 6 (IFA, 2020). It was assumed that veterinary assistance would only be acquired during day time hours as it is highly unlikely that a farmer would call a veterinarian for lameness issues outside of normal working hours. Similar to the study of Bruijnis et al. (2010), it was also assumed that treatment occurred once per

\[
P_{MS3} = \frac{R_3}{1 + R_1 + R_2 + R_3} \times 100,
\]

where \(R \) is the exponential of the regression for the mobility score 0, 1, 2, or 3, as outlined in Table 5.

Table 5. Coefficients for predicting mobility scores within scenarios, based on the findings of O’Connor et al. (2019)

Item	Category	Mobility score 1	Mobility score 2	Mobility score 3
Intercept		−1.32	−3.70	−5.56
Overgrown claw	1	0.22	−0.18	−0.33
	2	0.40	0.77	0.37
	3	1.13	2.46	3.16
Sole hemorrhage	1	0.19	−0.16	−0.20
	2	0.27	0.19	0.24
	3	0.37	0.73	0.06
White line disease	1	0.11	0.33	−0.53
	2	0.22	0.62	−0.04
	3	0.33	1.48	1.34
Sole ulcer	Present	0.57	1.96	2.65
Digital dermatitis	Present	0.65	1.90	3.41
BCS	<3.00	Reference		
	≥3.00	−0.33	−0.70	−1.17
	≥3.00	−0.50	−1.13	−2.38
Parity	=1	Reference		
	=2	0.36	0.64	0.72
	≥3	0.92	1.63	1.80
PTA lame\(^1\)		6.03	12.20	18.91
PTA milk\(^2\)		0.00	0.00	0.00

\(^1\)Predicted transmitting ability for lameness.
\(^2\)Predicted transmitting ability for milk production.
claw disorder. The only exception to this assumption was for all cases of sole ulcers and digital dermatitis, which required 2 visits (described in Table 6). Finally, on a date around the time of the end of the lactation and when cows were being housed for the winter, a professional hoof trimmer visit was applied to the farm. During this visit, all cows with a suboptimal mobility were treated (i.e., only cows with a mobility score >0 were treated), as recommended by the mobility scoring scale used in this study (AHDB, 2022). Therefore, if all cows on the farm had a mobility score of 0, the professional hoof trimmer was not needed. The average call-out charge for a professional hoof trimmer is €60.00, which is the current industry standard in Ireland. The cost per cow after the call charge is €9.00 per cow.

Sensitivity Analysis and Model Evaluation

A sensitivity analysis was conducted concerning milk price by testing both a lower base milk price (26 cents per liter) and higher base milk price (32 cents per liter), relative to the base milk price implemented for the 4 scenarios (29 cents per liter). Model evaluation was completed by comparing the outputs of the model to the actual data. The outcomes of both the sensitivity analysis and the evaluation are described in the results section below.

Scenario Analysis

Thirteen scenarios were simulated and are listed below. Each scenario was simulated 500 times over a 10-yr period. Scenarios were simulated for a 100-cow dairy herd under typical Irish spring calving, pasture-based management.

The first scenario represents a perfect herd, wherein all the cows had mobility score 0 (optimal mobility) and no claw disorders throughout the lactation. This scenario resembles the best-case scenario. The remaining 12 scenarios represent a combination of (1) 3 different herd-management levels, including good, average, or poor,

\[M_{\text{Lame}}^{\text{Good}} \left(M_{\text{Lame}} = 0\% \text{ additional risk to develop claw disorders based on herd level management} \right) , \]

or \[M_{\text{Lame}}^{\text{Average}} \left(M_{\text{Lame}} = +10\% \text{additional risk} \right) , \]

or \[M_{\text{Lame}}^{\text{Poor}} \left(M_{\text{Lame}} = +20\% \text{additional risk} \right) ; \]

and (2) 4 different levels of a genetic predisposition for suboptimal mobility: very poor, good, average, or poor

\[P_{\text{Lame}}^{\text{Good}} \left(P_{\text{Lame}} \text{for lameness} = -0.5 \right), \]

or \[P_{\text{Lame}}^{\text{Average}} \left(P_{\text{Lame}} = 0.00 \right), \]

or \[P_{\text{Lame}}^{\text{Poor}} \left(P_{\text{Lame}} = +0.05 \right), \]

or \[P_{\text{Lame}}^{\text{Very poor}} \left(P_{\text{Lame}} = +0.2 \right). \]

The genetic levels (good, average, and poor) are comparative to real life scenarios, whereas the genetic level of “very poor” describes a hypothetical worst-case scenario.

The scenarios run are as follows:

1) Perfect herd, which refers to an entire herd of cows with good mobility (mobility score 0).

Table 6. Calculation of cost of veterinary treatment for claw disorders

Claw disorder	Category	Cost (€)
Overgrown claw	Present	32.08
Sole hemorrhage	Present	32.08
White line disease	Present	32.08
Sole ulcer	Present	60.15
Digital dermatitis	Present	55.15

1 Only claw disorders simulated to be severity level 3, and all cases of sole ulcer and digital dermatitis required veterinary treatment.

2 Call-out charge for a veterinarian estimated to be €52.50 divided by total number of cows requiring treatment (average cost in Ireland; IFA, 2020).

3 Veterinary cost of €104.30/h and 15 min required to treat a claw disorder was assumed.

4 Sole ulcer and digital dermatitis required 2 visits by a veterinarian; visit 1 wherein a shoe at an additional cost of €8 was applied to a case of sole ulcer, or a bandage at an additional cost of €3 was applied to a case of digital dermatitis, and visit 2 wherein shoe or bandage was removed.
O'Connor et al.: ECONOMIC IMPACTS OF MOBILITY SCORES

Table 7. Average prevalence of claw disorders and their severity within each simulation

Simulation	Disorder²	Management level¹	Genetics level²
	Disorder³	Optimal	Optimal
		Good Mgt_Lame	Good PTA_Lame
		Average	Average
		Poor Mgt_Lame	Poor PTA_Lame
		Very poor Mgt_Lame	Very poor PTA_Lame
Optimal	OG 1	0	0
	OG 2	0	0
	OG 3	0	0
	SH 1	0	0
	SH 2	0	0
	SH 3	0	0
	WL 1	0	0
	WL 2	0	0
	WL 3	0	0
	SU 1	0	0
	DD 1	0	0
Good Mgt_Lame	OG 1	25	10
	OG 2	3	21
	OG 3	5	8
	SH 1	21	6
	SH 2	5	6
	SH 3	9	2
	WL 1	25	7
	WL 2	7	7
	WL 3	1	3
	SU 1	3	3
	DD 1	3	3
Average Mgt_Lame	OG 1	26	10
	OG 2	3	23
	OG 3	5	9
	SH 1	23	7
	SH 2	9	2
	SH 3	7	1
	WL 1	25	8
	WL 2	7	7
	WL 3	1	3
	SU 1	3	3
	DD 1	3	3
Poor Mgt_Lame	OG 1	28	11
	OG 2	3	26
	OG 3	6	11
	SH 1	26	8
	SH 2	11	7
	SH 3	28	8
	WL 1	25	8
	WL 2	7	7
	WL 3	1	3
	SU 1	2	2
	DD 1	3	3
Very poor Mgt_Lame	OG 1	32	12
	OG 2	3	31
	OG 3	7	13
	SH 1	31	11
	SH 2	13	9
	SH 3	35	11
	WL 1	32	11
	WL 2	9	7
	WL 3	35	11
	SU 1	1	3
	DD 1	1	3

¹Refers to the specific level of increased risk for a cow to develop a claw disorder based on herd-level management (Mgt) factors.
²Cow-level genetic PTA for lameness.
³OG = overgrown claw; SH = sole hemorrhage; WL = white line disease; SU = sole ulcer; DD = digital dermatitis; OG/SH/WL 1 = mild, 2 = moderate, and 3 = severe; SU/DD 1 = present.

RESULTS AND DISCUSSION

In the current study, one of the aims was to simulate mobility scores (specifically the AHDB mobility scores) as this allows effects, actions, and treatments to be simulated for each mobility score for farmers. As outlined in Table 7 and 8 (and as described in the model validation section above), the submodel developed in the current study successfully simulated mobility scores for a typical spring calving, pasture-based dairy herd with reasonable agreement with actual data. Previously, Bruijnis et al. (2010) developed a model to predict specific claw disorders (as either subclinical or clinical) with a monthly time step within typical Dutch dairy systems. The model developed by Bruijnis et al. (2010) successfully predicted a prevalence of disorders corresponding to such systems. However, the model developed by Bruijnis et al. (2010) did not in turn predict mobility scores, which was the desired outcome of the present study, whereby predictions for cows to have specific severities of claw disorders (regardless of being clinical or not) were used to predict mobility scores. Similar to Bruijnis et al. (2010), Mostert et al. (2018) also developed a model to predict specific claw disorders. The main difference between the model developed by Mostert et al. (2018) and the model developed in the current study is that claw disorders in the current study can occur during a defined period of time. However, in the model developed by Mostert et al. (2018), claw disorders could only strictly be developed on just 1 specific day during the lactation.

Model Validation

Claw Disorders. The simulated prevalence of claw disorders within a herd in each scenario is outlined in Table 7. The good management herd scenarios \(\text{Mgt}_{\text{Lame}} - \text{PTA}_{\text{Good Lame}} \) or \(\text{PTA}_{\text{Average Lame}} \) or \(\text{PTA}_{\text{Poor Lame}} \) or \(\text{PTA}_{\text{Very Poor Lame}} \) consistently have a lower proportion of cows with any type claw disorders compared with the average mobility herd scenarios \(\text{Mgt}_{\text{Lame}} - \text{PTA}_{\text{Good Lame}} \) or \(\text{PTA}_{\text{Average Lame}} \) or \(\text{PTA}_{\text{Poor Lame}} \) or \(\text{PTA}_{\text{Very Poor Lame}} \).
Table 8. Prevalence of mobility score within each simulation

Management level	Genetics level	Mobility score 0	Mobility score 1	Mobility score 2	Mobility score 3
Optimal	Optimal	97, 1.93	3, 1.70	0, 0.45	0, 0.09
Good MgGoodLame	Good PTAGoodLame	90, 5.16	8, 4.93	1, 0.74	0, 0.16
Average MgGoodLame	Average PTAGoodLame	72, 10.24	25, 9.58	2, 1.46	0, 0.37
PoornMgLame	Poor PTAPoorLame	9, 4.13	61, 5.26	22, 4.44	8, 4.11
Average PoornMgLame	Average PTAPoorLame	92, 3.46	6, 2.95	1, 1.14	0, 0.33
PoornMgLame	Poor PTAPoorLame	81, 6.19	15, 5.57	3, 1.64	0, 0.60
Average PoornMgLame	Average PTAPoorLame	62, 9.30	31, 8.05	5, 2.50	1, 1.06
PoornMgLame	Very Poor PTAVery PoorLame	6, 3.56	53, 5.25	25, 4.66	16, 5.12
Average PoornMgLame	Average PTAPoorLame	86, 4.54	10, 3.85	3, 1.76	0, 0.57
PoornMgLame	Poor PTAPoorLame	73, 6.66	21, 5.74	5, 2.31	1, 1.00
Average PoornMgLame	Average PTAPoorLame	53, 8.29	35, 6.71	8, 3.14	3, 1.63
PoornMgLame	Very Poor PTAVery PoorLame	5, 3.12	46, 5.08	26, 4.86	23, 5.64

1Refers to the specific level of increased risk for a cow to develop a claw disorder based on herd-level management (Mg) factors.
2Cow-level genetic PTA for lameness.

\[
(Mg_{Lame}^{Poor} - PT_{Lame}^{Good}) \quad \text{or} \quad PT_{Lame}^{Average} \quad \text{or} \quad PT_{Lame}^{Poor} \quad \text{or} \quad PT_{Lame}^{Very Poor}
\]

mobility herds. This is in agreement with the actual data set; for example, in the simulated MgLame^{Good} – PT_{Lame}^{Good}, approximately 32, 13, and 3% of cows had a mild, moderate, or severe type overgrown claw disorders (Table 7), respectively, which is in reasonable agreement with the top 5 farms in the data set (referring to the 5 herds with highest prevalence of mobility score 0 cows), which consisted of 30, 11, and 2% of cows having mild, moderate, or severe type overgrown claw disorders, respectively.

Mobility Scores. The simulated scenarios are in reasonable agreement with the actual data set [for both claw disorders (Table 7) and mobility score prevalence (Table 8)], wherein the top 5, median 5, and bottom 5 farms (referring to herd-level prevalence of mobility score 0 from highest to lowest) in the actual data set are comparable to the MgLame^{Poor} – PT_{Lame}^{Good}, MgLame^{Good} – PT_{Lame}^{Average}, and MgLame^{Poor} – PT_{Lame}^{Poor} scenarios, respectively (Table 8). For example, in the MgLame^{Poor} – PT_{Lame}^{Good} scenario, on average 86, 10, 3, and 0% of cows have mobility score 0, 1, 2, and 3, respectively, whereas within the top 5 farms in the actual data set, 77, 18, 4, and 0% of cows have mobility score 0, 1, 2, and 3, respectively. For the MgLame^{Poor} – PT_{Lame}^{Average} scenario, 73, 21, 5, and 1% of cows have mobility score 0, 1, 2, and 3, respectively, which corresponds well to the actual data set wherein the median 5 farms is made of 65, 29, 5, and 1% mobility score 0, 1, 2, and 3 cows. Finally, for the MgLame^{Poor} – PT_{Lame}^{Poor} scenario, it was estimated that 53, 35, 8, and 3% of cows had a mobility score 0, 1, 2, and 3, respectively. Compared with the bottom 5 farms (in the actual data set) wherein 54, 31, 13, and 3% of cows had mobility score 0, 1, 2, and 3, respectively.

Milk Yield and Culling

Table 9 presents the impact of management and genetic level on the average culling rate, replacement rate, and milk yield per cow of each scenario. Table 10 presents the simulated average milk yield of cows with mobility score 2 or 3, compared with the potential milk yield (if that cow had optimal mobility, mobility score 0, throughout the lactation) within each scenario (cow with mobility score 1 did not have any milk yield loss due to the structure of the model). For example, a cow with mobility score 3 within the MgLame^{Good} – PT_{Lame}^{Poor} scenario was estimated to have an actual milk yield of 4% less than her estimated potential milk, whereas a cow with mobility score 2 within the same MgLame^{Good} – PT_{Lame}^{Poor} scenario was estimated to have actual milk yield of 1.4% less than her estimated potential milk yield.

The yield losses simulated in the current study for cows with suboptimal mobility were modeled based on the study of O’Connor et al. (2020a), and the predicted daily yield losses in the current study agree with the aggregated yield losses reported in O’Connor et al. (2020a). Furthermore, the yield losses simulated in the current study for a cow with mobility score 3 in the
PTA\textsubscript{Lame} Poor − MgtLame Poor scenario are also comparable to the losses reported in the study of Archer et al. (2010). The cows in the study of Archer et al. (2010) were managed under a year-round calving, pasture-based systems, wherein cows with severe mobility issues experienced milk yield losses of up to 4.8% throughout the lactation. In the current study, the estimated prevalence of mobility scores within each scenario, as outlined in Table 7, was based on the worst mobility score of that cow throughout the lactation, and not the average. Therefore, it is possible that a cow simulated to have a mobility score 3 was likely to have been a mobility score 1 or 2 for a period before progressing to mobility score 3, which results in a varying milk yield loss within each mobility score (Table 10).

In the current study, the model base culling risk (culling for any reason other than reproductive) was predicted to be 9% for all the scenarios except for the MgtLame Poor − PTA\textsubscript{Lame} Poor, MgtAverage − PTA\textsubscript{Lame} Very Poor, MgtLame Poor − PTA\textsubscript{Lame} Poor, and MgtLame − PTA\textsubscript{Lame} Very Poor scenarios, which were estimated to have a 11, 13, 10, and 14%, respectively (Table 9). The higher culling rates estimated for those scenarios is due to an increased prevalence of suboptimal mobility. This higher prevalence of suboptimal mobility within a herd is also a contributing factor for the lower average milk yield on a per cow basis (Table 9) within those scenarios, due to a higher replacement rate and, therefore, a higher proportion of parity 1 cows within the herd. The association between mobility issues and culling has been reported on throughout the literature (Booth et al., 2004; Machado et al., 2010). The current study predicts culling due to mobility issues based on the results of O’Connor et al. (2019), wherein an association between all levels of suboptimal mobility and culling was found, using mobility scores of cows at 2 time points throughout that lactation. This could lead to an overestimation of the impact of culling in this study, as some of the cows in O’Connor et al. (2019) scored as a 1 during the 2 locomotion scoring events would have more than likely been scored at 2 (or maybe even 3) at a different time of the lactation, leading to an overestimation of the impact of a score 1 on the culling probability.

Therefore, a limiting factor of the current study is that cows with a mobility score 1 (found to have an increased risk to be culled) were based on a mobility score from a single time point and not sequential data.

Receipts, Costs, and Profitability

The aspects of farm net profit that change due to milk yield loss, treatment costs and replacement rates are outlined in Tables 11 and 12. The greatest profit
Table 10. Average compared with the potential milk yield per cow (kg) and milk yield losses within each simulation

Management level	Genetics level	Mobility score 2	Mobility score 3	Entire herd				
		Milk yield	Ptn milk yield	Milk yield	Ptn milk yield	Milk yield	Ptn milk yield	
Optimal	Optimal	6.985	7.082	1.4	6.939	7.168	3.2	667,536
Good	Good PTA lame	6.925	7.014	1.3	6.834	7.063	3.2	667,226
Average	Average PTA lame	6.983	7.014	1.3	6.770	6.995	3.2	666,739
Very poor	Poor PTA lame	6.943	7.040	1.4	6.396	6.602	3.1	667,146
Poor	Good PTA lame	6.889	6.984	1.4	6.286	6.474	2.9	666,624
	Average PTA lame	6.844	6.938	1.3	6.235	6.416	2.8	665,865
	Poor PTA lame	6.967	7.065	1.4	6.543	6.814	4.0	667,510
	Average PTA lame	6.889	6.988	1.4	6.447	6.689	3.6	665,455
	Poor PTA lame	6.834	6.933	1.4	6.421	6.657	3.6	665,486
	Average PTA lame	6.762	6.890	1.9	6.254	6.587	5.1	663,877
	Poor PTA lame	6.714	6.843	1.9	6.196	6.588	5.4	656,216
	Average PTA lame	6.677	6.800	1.9	6.170	6.528	5.5	649,669

1 refers to the specific level of increased risk for a cow to develop a claw disorder based on herd-level management (MgL) factors.
2Cow-level genetic PTA for lameness.
3Kilograms of milk per cow.
4Potential (Ptn) milk yield refers to the milk yield that cow would have ideally produced if she did not have suboptimal mobility.
score 1 cows having treatment costs associated with them, whereas fewer treatments are applied in the study by Bruijnis et al. (2010).

Average total milk receipts for each scenario are outlined in Table 11. The perfect herd scenario had the greatest milk receipts, followed by the good management herd scenarios \(\text{Mg}_{\text{Good}} \text{tP}_{\text{TA Average}} \text{Lame Good} \), \(\text{Mg}_{\text{Good}} \text{tP}_{\text{TA Lame}} \), and \(\text{Mg}_{\text{Good}} \text{tP}_{\text{TA VeryPoor}} \), followed by the average and poor management herd scenarios. In Table 12, the economic losses due to milk yield reductions, increased culling, treatment costs, and overall farm net profit loss for the good, average, and poor management scenarios are compared with the perfect herd scenario. The greatest farm net profit loss (compared with the perfect herd scenario) was evident in the \(\text{Mg}_{\text{Poor}} \text{tP}_{\text{TA Lame VeryPoor}} \) scenario with €15,028. Of this, milk yield loss made up 45% (€6,684), increased culling made up 29% (€4,323), and treatment costs made up the remaining 26% (€3,803) of total farm net profit loss. In comparison, Bruijnis et al. (2010) estimated a total cost of approximately €1,800 (45% of total losses) due to milk yield losses (including discarded milk due to antibiotic treatment for severe mobility issues) associated with subclinical and clinical claw disorders in a typical Dutch dairy production herd, wherein the total costs were estimated to be approximately €4,000.

Sensitivity analysis concerning milk price was completed by testing both a lower base milk price (26 cents per liter) and higher base milk price (32 cents per liter), relative to the base milk price implemented for the 4 scenarios (29 cents per liter). For the \(\text{Mg}_{\text{Good}} \text{tP}_{\text{TA Lame Good}} \) scenario, the overall farm net profit was €65,554, €87,529, and €109,440 with the 26, 29, and 32 cents per liter base milk price. Across all scenarios when a higher base milk price (32 cent per liter) is implemented, the proportion of economic losses as a result of a lower milk yield is less important relative to the overall farm net profit.

This study uses mainly Irish data, enriched with published studies, to simulate mobility score and its impact on farm profitability. Like all modeling exercises, many assumptions are included in this analysis that create risks for the models to deviate from reality. However, ensuring that these assumptions are based on relevant studies reduces that risk. The new submodel to predict mobility scores is incorporated into the PBHDM and can be used in its current format by researchers. One of the main limitations of the current model is that it represents a dairy herd managed in a

Table 11: Average (± SD) treatment costs per mobility score, milk receipts, and farm net profit with each simulation

Management level	Mobility score	Average treatment cost (€)	Milk receipt	Farm net profit
Optimal	Optimal	213,192 (±3,942)	88,297 (±9,503)	
Good	Optimal	213,194 (±3,837)	87,529 (±9,477)	
Average	Optimal	213,078 (±4,047)	87,239 (±9,536)	
Poor	Optimal	212,938 (±4,134)	86,568 (±9,367)	
Very poor	Optimal	212,916 (±4,203)	86,018 (±9,281)	
Optimal	Average	213,194 (±3,942)	88,297 (±9,503)	
Good	Average	213,194 (±3,783)	87,529 (±9,477)	
Average	Average	213,078 (±4,047)	87,239 (±9,536)	
Poor	Average	212,938 (±4,134)	86,568 (±9,367)	
Very poor	Average	212,916 (±4,203)	86,018 (±9,281)	
Optimal	Poor	212,938 (±4,134)	86,568 (±9,367)	
Good	Poor	212,938 (±4,134)	86,568 (±9,367)	
Average	Poor	212,938 (±4,134)	86,568 (±9,367)	
Poor	Poor	212,938 (±4,134)	86,568 (±9,367)	
Very poor	Poor	212,938 (±4,134)	86,568 (±9,367)	

1Refers to the specific level of increased risk for a cow to develop a claw disorder based on herd level management (Mgt) factors.
2Cow level genetic PTA for lameness.

O’Connor et al.: ECONOMIC IMPACTS OF MOBILITY SCORES
We developed a simulation model for predicting claw disorders and mobility scores, which resulted in a realistic output in terms of prevalence of both claw disorders and mobility scores for typical Irish spring calving, pasture-based systems. From this study, we conclude that the prevalence of cows with suboptimal mobility scores (even mild suboptimal mobility scores) increases within a herd, the overall farm net profit decreases. This study concludes that overall farm net profit can decrease by up to €15,028 associated with a hypothetical worst-case mobility scenario, which represents a 17% loss compared with the best-case mobility scenario. Of this €15,028 loss, milk yield loss made up 45% and increased culling cost made up 29%, whereas treatment cost associated with claw disorders made up the remaining 26%. For the non-hypothetical worst-case scenario, overall farm net profit was reduced by €4,542, compared with the best-case scenario. Of this €4,542 loss, milk yield loss made up 22%, increased culling cost made up 22%, whereas treatment cost associated with claw disorders made up the remaining 56%. This decrease in overall farm net profit is due to increased culling, reduced milk yield, and treatment costs for cows within the herd with claw disorders and the resulting suboptimal mobility.

ACKNOWLEDGMENTS

Funding from the Irish Department of Agriculture, Food and the Marine STIMULUS research grant 14/S/801 (HealthyGenes) is greatly appreciated, as well as a research grant from Science Foundation Ireland and the Department of Agriculture, Food and Marine on behalf of the Government of Ireland under the grant 16/RC/3835 (VistaMilk). The authors also wish to acknowledge the cooperation of all participating farmers and recorders for data recording and collection, as well as the Walsh Fellowship. The authors have not stated any conflicts of interest.

REFERENCES

AHDB (Agriculture and Horticulture Development Board). 2022. Dairy mobility score sheet. Accessed Oct. 24, 2022. https://ahdb.org.uk/knowledge-library/dairy-mobility-scoresheet.
Amory, J. R., Z. E. Barker, J. L. Wright, S. A. Mason, R. W. Blowey, and L. E. Green. 2008. Associations between sole ulcer, white line disease and digital dermatitis and the milk yield of 1824 dairy cows on 30 dairy cow farms in England and Wales from February-November 2004. Prev. Vet. Med. 83:381–391. https://doi.org/10.1016/j.prevetmed.2007.09.007.

Archer, S. C., M. J. Green, and J. N. Huxley. 2010. Association between milk yield and serial locomotion score assessments in UK dairy cows. J. Dairy. Sci. 93:4045–4053.

Atkinson, O. 2013. Practical and effective management of foot lameness in dairy herds. In Pract. 35:171–182. https://doi.org/10.1136/inp.2013.

Berry, D. P., F. Buckley, and P. Dillon. 2007. Body condition score and live-weight effects on milk production in Irish Holstein-Friesian dairy cows. Animal 1:1351–1359. https://doi.org/10.1017/S1751731107000419.

Bicalho, R. C., L. D. Warnick, and C. L. Guard. 2008. Strategies to analyze milk losses caused by diseases with potential incidence throughout the lactation: A lameness example. J. Dairy Sci. 91:2653–2661. https://doi.org/10.3168/jds.2007-0744.

Booth, C. J., L. D. Warnick, Y. T. Gröhn, D. O. Maizoon, C. L. Guard, and D. Janssen. 2004. Effect of lameness on culling in dairy cows. J. Dairy Sci. 87:4115–4122.

Brujinis, M. R. N., H. Hogevoen, and E. N. Stassen. 2010. Assessing economic consequences of foot disorders in dairy cattle using a dynamic stochastic simulation model. J. Dairy Sci. 93:2419–2432. https://doi.org/10.3168/jds.2009-2721.

Callaghan, O., K. P. Cripps, D. Downham, and R. Murray. 2003. Subjective and objective assessment of pain and discomfort due to lameness in dairy cattle. Anim. Welf. 12:605–610.

Charfeddine, N., and M. A. Pérez-Cabal. 2017. Effect of claw disorders on milk production, fertility, and longevity, and their economic impact in Spanish Holstein cows. J. Dairy Sci. 100:653–665. https://doi.org/10.3168/jds.2016-11434.

Dillon, P., J. Roche, L. Shalloo, and B. Horan. 2005. Optimising financial return from grazing in temperate pastures. Pages 131–147 in Utilisation of grazed grass in temperate animal systems. J. J. Veerkamp, R. F., P. Dillon, E. Kelly, A. R. Cromie, and A. F. Groen. 2007. Expansion strategy for Irish dairy farms. Pages 119–121 in Proc. 2002. Dairy cattle breeding objectives combining yield, survival and live-weight effects on milk production in the subsequent lactation. J. Dairy Sci. 93:4071–4078.

Mostert, P. F., C. E. van Middelaar, I. J. M. de Boer, and E. A. M. Bokkers. 2018. The impact of foot lesions in dairy cows on greenhouse gas emissions of milk production. Agric. Syst. 167:206–212. https://doi.org/10.1016/j.agsy.2018.09.006.

O’Brien, D., B. Moran, and L. Shalloo. 2018. A national methodology to quantify the diet of grazing dairy cows. J. Dairy Sci. 101:8595–8604. https://doi.org/10.3168/jds.2017-13901.

O’Connor, A. H., E. A. M. Bokkers, I. J. M. de Boer, H. Hogevoen, R. Sayers, N. Byrne, E. Ruelle, B. Engel, and L. Shalloo. 2020b. Cow and herd-level risk factors associated with mobility scores in pasture-based dairy cows. Prev. Vet. Med. 181:105077. https://doi.org/10.1016/j.prevetmed.2020.105077.

O’Connor, A. H., E. A. M. Bokkers, I. J. M. de Boer, H. Hogevoen, R. Sayers, N. Byrne, E. Ruelle, and L. Shalloo. 2019. Associating cow characteristics with mobility scores in pasture-based dairy cows. J. Dairy Sci. 102:8332–8342. https://doi.org/10.3168/jds.2018-15719.

O’Connor, A. H., E. A. M. Bokkers, I. J. M. de Boer, H. Hogevoen, R. Sayers, N. Byrne, E. Ruelle, and L. Shalloo. 2020a. Associating mobility scores with production and reproductive performance in pasture-based dairy cows. J. Dairy S. 103:9238–9249. https://doi.org/10.3168/jds.2019-17103.

Olmos, G., L. Boyle, A. Hanlon, J. Patton, J. J. Murphy, and J. F. Mee. 2009. Hoof disorders, locomotion ability and lying times of cubicle-housed compared to pasture-based dairy cows. Livest. Sci. 125:199–207. https://doi.org/10.1016/j.livsci.2009.04.009.

Ring, S. C., A. J. Twomey, N. Byrne, M. M. Kelleher, T. Pabion, M. L. Doherty, and D. P. Berry. 2018. Genetic selection for hoof health traits and cow mobility scores can accelerate the rate of genetic gain in producer-scored lameness in dairy cows. J. Dairy Sci. 101:10034–10047. https://doi.org/10.3168/jds.2018-15009.

Ruelle, E., L. Delaby, M. Wallace, and L. Shalloo. 2016. Development and evaluation of the herd dynamic milk model with focus on the individual cow component. Animal 10:1986–1997. https://doi.org/10.1017/S1751731116000126.

Ruelle, E., L. Delaby, M. Wallace, L. Shalloo, A. Pol-van Dasselhaar, H. Aarts, A. d. Vliegher, A. Elgersma, D. Reheul, and J. Reijnveld. 2015. Using models to establish the most financially optimum expansion strategy for Irish dairy farms. Pages 119–121 in Proc. Grassland and Forages in High Output Dairy Farming Systems. Proceedings of the 18th Symposium of the European Grassland Federation, Wageningen, the Netherlands. Wageningen Academic Publishers.

Ruelle, E., D. Hennessy, and L. Delaby. 2018. Development of the Moorpark St Gilles grass growth model (MoSt GG model): A predictive model for grass growth for pasture based systems. Eur. J. Agron. 99:80–91. https://doi.org/10.1016/j.ejagro.2018.06.010.

Shalloo, L., P. Dillon, M. Rath, and M. Wallace. 2004. Description and validation of the Moorpark dairy system model. J. Dairy Sci. 87:1945–1959. https://doi.org/10.3168/jds.S0022-0302(04)17353-6.

Veerayung, R. F., P. Dillon, E. Kelly, A. R. Cromie, and A. F. Groen. 2002. Dairy cattle breeding objectives combining yield, survival and calving interval for pasture-based systems in Ireland under different milk quota scenarios. Livest. Prod. Sci. 76:137–151. https://doi.org/10.1016/S0301-6226(02)00006-4.

Machado, V. S., L. S. Caixaeta, J. A. McArt, and R. C. Bicalho. 2010. The effect of claw horn disruption lesions and body condition score at dry-off on survivability, reproductive performance, and milk production in the subsequent lactation. J. Dairy Sci. 93:4071–4078.