ABSTRACT

The aim of this research is to study accumulation of Chromium along with nutrients and its effect on the growth of Paddy plant (Oryza sativa L.). Thus, paddy seedlings grown in petriplates lined with filter paper undergoing, different treatments of Cr (0, 2.5, 5, 10, 25, 50, 75, 100 and 200 mg/L). After one week seedlings were removed and morphological parameters like root length, shoot length and dry weight of plants and accumulation of nutrients along with Cr content were determined. The results indicated that the concentrations more than 100 mg/L chromium cause the reduction of morphological parameters in the treatment plants rather than control plant and Cr addition in the cultures caused enhancement of chromium content paddy seedlings. Similarly nutrient accumulation also affected by increasing concentrations of chromium.

Keywords: Accumulation; Chromium; Growth; Heavy metal; paddy seedling;

INTRODUCTION

Environmental pollution by metals became extensive as mining and industrial activities increased in the late 19th and early 20th century. The current worldwide mine production of Cu, Cr, Cd, and Hg is considerable. These pollutants ultimately derived from a growing number of diverse anthropogenic sources such as industrial runoff, sewage treatment plants, urban runoff, agricultural fungicide runoff, domestic garbage dumps and mining operations. Particularly, the industrial effluents contain a wide variety of organic and inorganic pollutants with hazardous effects which create many serious physiological disorders in living organisms. Chromium is a heavy metal with risk to human health. Its presence in agricultural soils can be attributed to the use of organic wastes as fertilizer and the use of waste water for irrigation (Sankar ganesh et al., 2008). Chromium enters the food chain through consumption of plant material. A high concentration of Cr has been found to be harmful to vegetation. As the chromium concentration in plants increases, it adversely affects several biological parameters. Ultimately there is loss of vegetation, and land sometimes becomes barren (Dube et al., 2003). In recent years, contamination of the environment by chromium has become a major concern. Chromium is used on a large-scale in many different industries, including metallurgy, electroplating, production of paints and pigments, tanning, wood preservation, chemical production, and pulp and paper production (Zayed and Terry, 2003).
industries have become especially large contributors of Cr pollution, which can ultimately have significant adverse biological and ecological effects. Very high levels of Cr (VI) contamination (14,600 mg/kg in ground water and 25,900 mg/kg in soil) were reported at the United Chrome Products site in Corvallis, Oregon (Krishnamurthy and Wilkens, 1994). Symptoms of Cr phytotoxicity include inhibition of seed germination or of early seedling development, reduction of root growth, leaf chlorosis and depressed biomass (Sharma et al., 1995). There are many studies on Cr toxicity in crop plants. Chromium significantly affects the metabolism of plants such as barley (Hordeum vulgare) (Ali et al., 2004), citrus (Dube et al., 2003), cauliflower (Chatterjee and Chatterjee, 2000), vegetable crops (Zayed et al., 1998), wheat (Triticum aestivumcv.HD2204) (Sharma et al., 1995), maize (Zea mays) (Sharma and Pant, 1994) and Soy bean and Black gram (Sankar ganesh et al., 2006). Chromium is highly toxic non-essential element for microorganism and plants (Cervantes et al., 2001). The sources of chromium in environment are both natural and anthropogenic, natural source include burning of oil and coal, petroleum from Ferro chromate refractory material, chromium steels, pigments oxidants, catalyst and fertilizers. This element is also used in metal plating tanneries and oil well drilling (Abbassi et al., 1998). Sewage and fertilizers are also the sources of chromium (Pilay et al., 2003). Marked toxicity of chromium was found with respect to photosynthetic pigment, photosynthesis, nitrate reductase activity and protein content of some alga (Rai et al., 1992). The direct interaction of metal with cellular components can initiate variety of metabolic responses final leading to a shift in the development of the plant (Assche and Clijsters, 1990). Chromium toxicity produces chlorosis and necrosis in plants (Cervantes et al., 2001). Several polluting metal and compounds are discharged into the water streams by tanneries. With these aspects in view, the present investigation was made to study the effect of different concentrations of chromium on the growth, mineral nutrients and Accumulation of chromium in Paddy.

MATERIALS AND METHODS

Paddy (Oryza sativa) seeds were obtained from the Regional Rice Research station, Aaduthurai, Tamil Nadu, India. Uniform seeds were selected and surface sterilized with 0.01% Hgcl₂ solution for 2 minutes. Petriplates were lined with filter paper and treated with different concentrations (control, 2.5, 5, 10, 25, 50, 75, 100 and 200 mg/l) of Chromium. Three replicates were maintained. Plant Growth were measured by using centimeter scale and recorded. The same plant samples were taken for morphological studies were also used for the determination of dry weight by using electrical single pan balance. Their dry weights were determined by keeping the plant materials in a hot air oven at 80 °C for 24 hrs and recorded. The mineral elements such as Total nitrogen (Jackson, 1958), Phosphorus (Black, 1965), Potassium (Williams and Twine, 1960), Calcium and magnesium (Yoshida et al., 1972), manganese, iron; copper, zinc and chromium accumulation was also measured by using the method of Piper, 1966.

DISCUSSION

In this experiment, the percentage of germination decreased with the increase of chromium concentrations. In our findings, 200 mg/l chromium concentration reduced the seed germination up to 50 to 60 per cent over control. No germination was recorded beyond 200
mg/l concentration of chromium (Table -1). Similar inhibition of germination percentage at higher concentrations of chromium was observed in soybean (Sidharthan and Lakshmanachary, 1996), mungbean (Rout et al., 1997), cowpea (Lalitha et al., 1999), groundnut (Subramani et al., 1999), blackgram (Lakshmi and Sundaramoorthy, 2003), greengram (Samantary and Deo, 2004) and paddy, blackgram and soybean (Sankar Ganesh et al., 2006b; Sundaramoorthy et al., 2006a,b). The reduction in germination percentage of plants at higher chromium concentrations may be attributed to the interference of metal ions, which may inhibit seed germination by exerting unfavourable effect on the activities of hydrolytic enzymes involved in the mobilization of major seed reservoirs such as starch, protein, RNA and phytin (Dua and Sawhney, 1991).

The Root length and shoot length are gradually decreased with the increase in chromium concentrations (Table -1). The highest seedling length was observed in control paddy seedlings. More pronounced effect on seedling growth was observed above 75 mg/l chromium concentrations. The inhibition of root growth was influenced by the concentration of heavy metals because of the surface accumulation and sensitivity to root primordia. It was more pronounced at higher concentrations of chromium (Bitell et al., 1974). In this experiment; there was a gradual decrease in seedling dry weight with the progressive increase in chromium concentrations (Table -1). The lowest dry weight of paddy seedlings was recorded in seedlings treated with 200 mg/l chromium concentrations and the highest dry weight was registered at control. The reduction in seedling dry weight was observed from 2.5 mg/l chromium concentrations onwards. A decrease in biomass productivity might be attributed to a disruption in nitrogen metabolism of seedlings under chromium stress (Chatterjee and Chatterjee, 2000).

The mineral elements such as nitrogen, phosphorus, potassium, calcium, magnesium, manganese, iron, copper and zinc content of paddy are gradually decreased with the increase in chromium concentrations (Table-2). It may be due to competition of chromium ions with potassium, which in turn exercised a regulatory control on potassium uptake (Lanoreaux and Chaney, 1978). While the chromium accumulation increased gradually with the increase in chromium concentrations. Among treatments, a higher chromium content of paddy was observed at 200 mg/l chromium concentrations when compared to other chromium treatments. Similarly root accumulated higher amount of chromium than in shoot. It could be due to immobilization of chromium in the vacuoles of the root cells, thus rendering it less toxic which may be a natural toxicity response of the plant (Shanker et al., 2004a).

Conclusion

It can be concluded that the level of chromium above 200 mg/l is proved to be lethal to paddy crop. However, chromium contaminated water can be properly treated and then discharged into nearby water bodies in order to prevent water pollution. Both government and public sector should join hands in the creation of a clean and green environment.
Table 1. Seed germination, Seedling growth (Cm/seedling) and Seedling dry weight (g/seedling) of paddy (Oryza sativa L.) as influenced by different concentrations of chromium

Chromium concentrations (mg/l)	Germination percentage	Root length (cm/seedling)	Shoot length (cm/seedling)	Dry weight (g/seedling)
Control	98.0	10.6 ± 0.424	14.2 ± 0.71	0.256 ± 0.0128
2.5	94.0 (-4.08)	10.4 ± 0.415	13.6 ± 0.65	0.22 ± 0.0126
5	90.0 (-8.16)	9.5 ± 0.325	12.5 ± 0.60	0.20 ± 0.0164
10	84.0 (-14.28)	9.2 ± 0.462	11.2 ± 0.56	0.15 ± 0.0116
25	82.0 (-16.32)	9.0 ± 0.423	10.6 ± 0.55	0.14 ± 0.0114
50	74.0 (-24.48)	8.5 ± 0.315	8.7 ± 0.55	0.128 ± 0.0042
75	68.0 (-30.61)	8.0 ± 0.40	7.5 ± 0.45	0.113 ± 0.0038
100	58.0 (-40.81)	7.2 ± 0.315	7.2 ± 0.14	0.098 ± 0.0049
200	52.0 (-46.93)	6.0 ± 0.35	6.0 ± 0.35	0.076 ± 0.0035

± Standard deviation.

Table 2. Nutrient composition and chromium accumulation of paddy (Oryza sativa L.) under different concentrations of chromium

Chromium concentrations (mg/l)	P (µg/g)	K (µg/g)	Ca (ppm)	Mg (ppm)	Fe (ppm)	Zn (ppm)	Cu (ppm)	Mn (ppm)	Chromium (µg/g)	
Control	72.0 ± 3.6	18.2 ± 0.91	50.0 ± 2.0	30.0 ± 1.2	20.0 ± 1.0	32.5 ± 1.62	36.2 ± 1.44	16.0 ± 0.85	45.0 ± 1.8	–
2.5	70.5 ± 3.2	16.0 ± 0.88	48.0 ± 2.4	29.0 ± 1.2	18.5 ± 1.0	30.5 ± 1.60	34.5 ± 1.40	15.0 ± 0.80	43.5 ± 1.8	10.5 ± 0.9
5	66.3 ± 3.3	15.5 ± 0.85	47.5 ± 2.37	27.5 ± 1.3	18.0 ± 0.9	28.6 ± 1.55	30.5 ± 1.5	14.5 ± 0.72	40.2 ± 1.6	12.0 ± 1.0
10	60.1 ± 3.0	14.3 ± 0.80	47.0 ± 2.2	25.5 ± 1.2	16.5 ± 0.82	27.2 ± 1.40	29.2 ± 1.5	13.5 ± 0.65	38.5 ± 1.6	16.5 ± 1.0
References

[1] Abbassi, S.S.; Abbassi, N. and Soni, R. (1998). Heavy metals in the environment, Mittal Publication, New Delhi, India.

[2] Ali NA, Ater M.; Sunahara, Gl. and Robidoux, P.Y. (2004). Phytotoxicity and bioaccumulation of copper and chromium using barley (Hordeum Vulgare L.) in spiked artificial and natural forest soils. *Ecotoxicology and Environmental Safety* 57: 363-374.

[3] Assche F. Van and H. Clijsters: Effects of metals on enzyme activity in plants. *Plant Cell Environ.*, 13:195-206 (1990).

[4] Bitell, J.E., D.E. Koeppe and R.J. Miller, 1974. Sorption of heavy metal cations by corn mitochondria and the effects on electron and energy transfer reactions. *Physiol. Plantarum*, 30: 226-230.

[5] Black, C.A., 1965. In: Methods of Soil Analysis Part 2. Chemical and Microbiological Properties, American Society of Agronomy, Inc., Madison, Wisconsin, p. 242.

[6] Cervantes, C.; Campomanos-Garcia, J.; Debars, S.; Gutierrez-Corona, F.; Loza-Tavera, H.; Carlos Tarres-Gozman, M. and Moreno-Sanchez, R. (2001). Interaction of chromium with Microgenesis and plants. *FEMS Microbiol. Rev.*, 25: 335-347.

[7] Chatterjee, J. and Chatterjee, C. (2000). Phytoxicity of cobalt, chromium and copper in Cauliflower. *Environ. Pollut.*, 109:69-74.

[8] Dua, A. and S.K. Sawhney, 1991. Effect of chromium on activities of hydrolytic enzymes in germinating pea seeds. *Environ. Exp. Bot.*, 31: 133-139.

[9] Dube, B.K.; Tewari, K.; Chatterjee, J. and Chaterejee, C. (2003). Excess chromium alters uptake and translocation of certain nutrients in citrullus. *Chemosphere* 53: 1147-1153.

25	48.5 ± 2.8	12.2 ± 0.70	43.5 ± 2.0	25.0 ± 1.2	16.2 ± 0.80	26.2 ± 1.31	27.5 ± 1.4	13.0 ± 0.60	35.0 ± 1.7	22.2 ± 1.0
50	43.2 ± 2.5	11.5 ± 0.65	35.2 ± 1.8	23.5 ± 1.1	15.0 ± 0.75	24.5 ± 1.30	27.0 ± 1.4	12.5 ± 0.55	33.5 ± 1.5	24.0 ± 1.0
75	36.5 ± 2.5	10.2 ± 0.63	30.2 ± 1.6	22.0 ± 1.1	14.0 ± 0.70	22.0 ± 1.25	25.5 ± 1.3	12.2 ± 0.50	30.2 ± 1.6	25.5 ± 1.2
100	28.2 ± 2.3	9.5 ± 0.66	28.6 ± 1.5	20.2 ± 1.0	12.2 ± 0.60	20.5 ± 1.20	23.0 ± 1.2	10.00 ± 0.50	28.6 ± 1.2	28.2 ± 1.0
200	26.2 ± 2.0	8.2 ± 0.51	24.5 ± 1.5	19.5 ± 0.60	10.1 ± 0.60	20.0 ± 1.10	22.0 ± 1.2	9.2 ± 0.40	27.00 ± 1.0	30.0 ± 1.0

± Standard deviation.
[10] Jackson, M.L., 1958. Soil chemical analysis. Prentice Hall of India Private Limited, New Delhi, pp. 22-31.

[11] Krishnamurthy, S. and Wilkens, M.M. (1994). Environmental chemistry of Chromium. *Northeasteren geology*, 16: 14-17.

[12] Lakshmi, S. and P. Sundaramoorthy, 2003. Effect of chromium on germination and biochemical changes in blackgram. *J. Ecobiol.*, 15: 7-11.

[13] Lalitha, K., N. Balasubramanian and S. Kalavathy, 1999. Studies of impact of chromium on *Vigna unguiculata* (L.) Walp. var. Long. *J. Swamy Bot. Cl.*, 16: 17-20.

[14] Lanoreaux, R.J.W.R. and S. Chaney, 1978. The effect of cadmium on net photosynthesis, transpiration and dark respiration of excised silver maple leaves. *Plant Physiol.*, 43: 231-236.

[15] Pillay, A. E.; Williams, J. R.; EL Mardi, M. O.; AI-Lawawy, S.M.H.; Al-Hadibbi, M. H. and Al-Hamdi, A. (2003). Risk assessment of chromium and cadmium in date palm leaves used as livestock feed. *Environ. Intl.*, 1048: 1-5.

[16] Piper, C., 1966. Soil and plant analysis. Asian Hans Publishers, Bombay, pp. 11-36.

[17] Rai, U. N.; Tripathi, R. D. and Kumar, N. (1992). Bioaccumulation of chromium and toxicity on growth, photosynthetic pigments, photosynthesis, in vivo nitrate reductase activity and protein content in chlorococcalear green alga, *Glaucocystis nostochinearum* ltzigsohn. *Chromosphere*, 25:721-732.

[18] Rout, G.R., S. Samantary and B. Das, 1997. Differential chromium tolerance among eight mungbean cultivars grown in nutrient culture. *J. Plant Nutr.*, 20: 473-483.

[19] Samantary, S. and B. Das, 2014. Studies on chromium toxicity in mung bean (*Vigna radiata* L.). *Adv. Plant Sci.*, 17: 1-194.

[20] Sankar Ganesh, K., A.L.A. Chidambaram, P. Sundaramoorthy, L. Baskaran and M. Selvaraj, 2006a. Influence of chromium and cadmium on germination, seedling growth and photosynthetic pigments of soybean (*Glycine max* L. Merr.). *Indian J. Environ. Ecoplan.*, 12: 291-296.

[21] Sankar Ganesh, K., L. Baskaran, S. Rajasekaran, K. Sumathi, A.L.A. Chidambaram and P. Sundaramoorthy, 2008. Chromium stress induced alterations in biochemical and enzyme metabolism in aquatic and terrestrial plants. *Colloid. Surface. B*, 63: 159-163.

[22] Sankar Ganesh, K., P. Sundaramoorthy and A.L.A. Chidambaram, 2006b. Chromium toxicity effect on blackgram, soybean and paddy. *Poll. Res.*, 25: 257-261.

[23] Shanker, A.K., M. Djanaguiraman, R. Sudhagar, C.N. Chandrashekar and G. Pathmanabhan, 2004a. Differential antioxidative response of ascorbate glutathione pathway enzymes and metabolites to chromium speciation stress in greengram (*Vigna radiata* (L.) R. Wilczek, cv. CO 4) roots. *Plant Sci.*, 166: 1035-1043.
[24] Sharma, D. C.; Chatterjee, C. and Sharma, C. P. (1995). Chromium accumulation by barley seedlings (Hordeum vulgare L.). *Journal of experimental botany* 25: 241-251.

[25] Sharma, D.C. and Pant R. C. (1994). Chromium uptake its effects on certain plant nutrients in maize (Zea mays L. CV Ganga 5). *Journal of environmental science and health, Part A*, 29: 941-948

[26] Sidharthan, M. and A.S. Lakshmanachary, 1996. Efficacy of chromium on germination, growth and biochemical studies on Glycine max var. CO 1. In: Jha, P.K., G.P.S. Ghirmire, S.B. Kamacharya, S.R. Baral and P. Lacoul (eds.), Environment and Biodiversity, Ecological Society, Katmandu, Nepal, pp. 326-328.

[27] Subramani, A., P. Sundaramoorthy, S. Saravanan, M. Selvaraj and A.S. Lakshmanachary, 1999. Screening of groundnut cultivars for chromium sensitivity. *Ecoprint*, 6: 61-65.

[28] Sundaramoorthy, P., K. Sankar Ganesh, L. Baskaran, K. Sumathi and S. Rajasekaran, 2006b. Germination behaviour of some agricultural crops under chromium treatment. *Bull. Biol. Sci.*, 4: 99-101.

[29] Sundaramoorthy, P., K. Sankar Ganesh, S. Rajasekaran, L. Baskaran and K. Sumathi, 2006a. Studies on the effect of chromium on germination and growth of soybean (Glycine max) cultivars. *Bull. Agr. Sci.*, 4: 91-94.

[30] Williams, C.H. and V. Twine, 1960. In: Peach, K. and M.V. Tracey (eds.), Modern Methods of Plant Analysis, Vol. 5, Springer Verlag, Berlin, pp. 3-5.

[31] Yoshida, S., D. Fordo, J. Cork and K. Gomez, 1972. Laboratory manual for physiological studies of rice, 3rd edn., The International Rice Research Institute, Philippines, pp. 11-23.

[32] Zayed A. M. and Terry N. (2003). Chromium in the environment: factors affecting biological remediation. *Plant and Soil* 249: 139-156.

[33] Zayed, A.; Lytle C.M.; Qian, J.H. and Terry, N. (1998). Chromium accumulation, translocation and chemical speciation in vegetable crops, *Planta* 206: 293-299.