Diastolic Blood Pressure is a Risk Factor for Peri-procedural Stroke Following Carotid Endarterectomy in Asymptomatic Patients

D.D. de Waard a,b, G.J. de Borst b, R. Bulbulia c, A. Huibers a,b, A. Halliday b,* on behalf of the Asymptomatic Carotid Surgery Trial-1 Collaborative Group

Objective/Background: Carotid endarterectomy (CEA) prevents future stroke, but this benefit depends on detection and control of high peri-operative risk factors. In symptomatic patients, diastolic hypertension has been causally related to procedural stroke following CEA. The aim was to identify risk factors causing peri-procedural stroke in asymptomatic patients and to relate these to timing of surgery and mechanism of stroke.

Methods: In the first Asymptomatic Carotid Surgery Trial (ACST-1), 3,120 patients with severe asymptomatic carotid stenosis were randomly assigned to CEA plus medical therapy or to medical therapy alone. In 1,425 patients having their allocated surgery, baseline patient characteristics were analysed to identify factors associated with peri-procedural (<30 days) stroke or death. Multivariate analysis was performed on risk factors with a p value <.3 from univariate analysis. Event timing and mechanism of stroke were analysed using chi-square tests.

Results: A total of 36 strokes (27 ischaemic, four haemorrhagic, five unknown type) and six other deaths occurred during the peri-procedural period, resulting in a stroke/death rate of 2.9% (42/1,425). Diastolic blood pressure at randomisation was the only significant risk factor in univariate analysis (odds ratio [OR] 1.34 per 10 mmHg, 95% confidence interval [CI] 1.04–1.72; p = .02) and this remained so in multivariate analysis when corrected for sex, age, lipid lowering therapy, and prior infarcts or symptoms (OR 1.34, 95% CI 1.05–1.72; p = .02). In patients with diastolic hypertension (>90 mmHg) most strokes occurred during the procedure (67% vs. 20%; p = .02).

Conclusion: In ACST-1, diastolic blood pressure was the only independent risk factor associated with peri-procedural stroke or death. While the underlying mechanisms of the association between lower diastolic blood pressure and peri-procedural risk remain unclear, good pre-operative control of blood pressure may improve procedural outcome of carotid surgery in asymptomatic patients.

© 2017 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.
Article history: Received 22 December 2016, Accepted 1 February 2017, Available online XXX

Keywords: Blood pressure, Carotid artery stenosis, Carotid endarterectomy, Periprocedural stroke

INTRODUCTION

Large randomised trials in symptomatic and asymptomatic patients have shown that carotid endarterectomy (CEA) prevents stroke. The overall benefit depends on interventional hazard and the long-term benefit from stroke risk reduction. To reduce interventional hazard, it is important to understand mechanisms causing peri-procedural stroke and treat factors associated with increased risk. For asymptomatic patients there is usually time for optimisation before intervention, thereby minimising the hazards of surgery.

Haemodynamic instability has been identified previously as a risk factor for surgery, and remains important, even...
though blood pressure control has improved. Recently, the peri-procedural hazards of poor diastolic blood pressure (DBP) control were highlighted by a substudy from the SYMPTOMATIC International Carotid Stenting Study, which found DBP to be the single independent risk factor for peri-procedural complications (relative risk 1.30 for each +10 mmHg DBP, 95% confidence interval [CI] 1.02–1.66; p = .04) in symptomatic patients. 

In this study, using data from the large Asymptomatic Carotid Surgery Trial-1 (ACST-1), the aim was to: (i) identify modifiable risk factors for peri-procedural stroke or death following CEA; and (ii) relate these risk factors to the timing and mechanism of stroke.

METHODS

Patient selection
The ACST-1 protocol has been described previously. The trial included 3,120 patients with unilateral or bilateral carotid stenosis, who were randomised to either immediate CEA with medical therapy or to medical therapy alone. Only patients without ipsilateral neurological symptoms in the past 6 months were entered, and patients randomised to immediate surgery were expected to have their operation as soon as reasonably possible. Choice of surgical and anaesthetic technique was left to the surgeons’ discretion. All surgeons’ track records for CEA had been approved by the trial Technical Management Committee.

Only patients randomised to immediate intervention and who underwent ipsilateral CEA were included in this post-hoc study.

Outcome events
Patients were assessed by a neurologist following surgery and before discharge. Strokes and deaths within 30 days of CEA were considered to have been caused by or related to the procedure. Two independent members of the endpoint adjudication committee reviewed all events reported to the trial office. Any disagreement was resolved through discussion. Strokes were classified according to type (ischaemic or haemorrhagic), severity (non-disabling, disabling, fatal), laterality (ipsilateral, contralateral, vertebrobasilar), and timing (intra-procedural, day 0 post-procedural, day 1–30).

Classification of stroke mechanism
In a previous study involving patients from ACST-1, the most likely pathophysiological mechanisms for peri-procedural stroke were determined. Ischaemic strokes were classified as follows: (i) carotid-embolic, if there was direct visualisation of an intracranial embolus reported on angiographic brain imaging, or when there was a clear association between onset of symptoms and shunt insertion; (ii) haemodynamic, if there was intra- or post-procedural bradycardia (<40 beats per minute), asystole, or any hypotension requiring treatment; (iii) thrombosis or occlusion of the carotid artery if a residual stenosis or occlusion of the internal carotid artery (ICA) was found by either imaging or re-exploration, irrespective of the occurrence of an embolic or haemodynamic event; (iv) hyperperfusion, when seizures, a throbbing headache, or neurological deficit occurred in conjunction with intracerebral haemorrhage or cerebral oedema on post-procedural brain imaging; (v) cardio-embolic, if atrial fibrillation was detected on electrocardiography immediately after stroke; (vi) undetermined: (a) probably carotid embolic or haemodynamic, in case the ICA was found to be patent, but there was no radiographic evidence to classify stroke carotid-embolic or haemodynamic; (b) probably carotid-embolic or thrombotic occlusion, when stroke occurred intra-procedurally in the absence of any haemodynamic or cardio-embolic event; (c) all other strokes of undetermined origin.

Statistical analysis
Baseline patient characteristics were collected at time of randomisation and analysed as potential risk factors for the combined outcome of peri-procedural stroke or death. Blood pressure was measured according to local hospital protocol (usually bilateral) and the highest value for systolic blood pressure (SBP) and DBP was used for risk factor analysis. Age, blood pressure, and cholesterol were analysed as continuous variables, while ipsilateral and contralateral degree of stenosis were analysed as categorical variables. Patients with missing data were excluded from analysis. Univariate binomial logistic regression analysis was used to calculate odds ratios (OR) with 95% Wald CIs for occurrence of peri-procedural stroke or death. A multivariate logistic regression analysis was performed using variables with a p value <.05 in univariate analysis. Chi-square analysis of timing of stroke was performed comparing normotensive and hypertensive patients. Hypertension was defined as a DBP of >90 mmHg and a SBP >140 mmHg, according to the National Institute for Health and Care Excellence guidelines. Factors with p values <.05 were considered significant for all analyses.

RESULTS

Study population
In 1,560 patients allocated to immediate surgery, CEA was eventually undertaken in 1,425/1,560 (91.3%). Most patients (893/1,425; 62.7%) were operated on within 6 weeks of randomisation, and almost all who eventually had their allocated surgery did so within 1 year (1,388/1,425; 97.4%). Two thirds of participants were men (66.3%) and the mean ± SD age of all patients was 69 ± 7.5 years. Mean ± SD stenosis in the operated carotid artery was 80 ± 11%. The mean ± SD SBP and DBP at randomisation were 154 ± 22 mmHg and 83 ± 11 mmHg, respectively. Baseline patient characteristics and their peri-procedural risk of stroke or death are shown in Table 1.

Outcome events
Peri-procedural stroke or death was uncommon in ACST-1 (42/1,425; 2.9%) and events are shown in Table 2.
events were strokes (36/42; 85.7%) and these were usually ischaemic (27/36; 75.0%) and ipsilateral to the treated carotid artery (28/36; 77.8%). Four strokes were haemorrhagic and five could not be classified. Over half were fatal (11/36; 30.6%) or disabling (9/36; 25.0%). Most non-stroke deaths were due to cardiac causes (5/6; 83.3%).

Table 1. Baseline characteristics and univariate logistic regression.

| Event (per 5 y) | No. events/no. patients (%) | Unadjusted OR (95% CI) | p |
|----------------|-----------------------------|------------------------|---|
| Age (per 5 y)  | 42/1,425 (2.9)              | 1.14 (0.92—1.40)       | .24 |
| Sex            |                             |                        |    |
| Male           | 23/945 (2.4)                | 1.00                   | .11 |
| Female         | 19/480 (4.0)                | 1.65 (0.89—3.07)       |     |
| Diabetes       |                             |                        |    |
| No             | 32/1,136 (2.8)              | 1.00                   | .56 |
| Yes            | 10/289 (3.5)                | 1.24 (0.60—2.55)       |     |
| CHD            |                             |                        |    |
| No             | 26/947 (2.7)                | 1.00                   | .53 |
| Yes            | 16/478 (3.3)                | 1.23 (0.65—2.31)       |     |
| Antihypertensive treatment |                        |                        |    |
| No             | 14/498 (2.8)                | 1.00                   | .82 |
| Yes            | 28/927 (3.0)                | 1.08 (0.56—2.07)       |     |
| Antiplatelet treatment |                     |                        |    |
| No             | 4/146 (2.7)                 | 1.00                   | .88 |
| Yes            | 38/1,279 (3.0)              | 1.09 (0.38—3.09)       |     |
| Lipid lowering therapy |                     |                        |    |
| No             | 25/967 (2.6)                | 1.00                   | .24 |
| Yes            | 17/458 (3.7)                | 1.45 (0.78—2.72)       |     |
| Baseline cholesterol (per 1 mmol/L) |                |                        |    |
| No             | 40/1,355 (3.0)              | 0.97 (0.76—1.25)       | .84 |
| DBP (per 10 mmHg) |                             |                        |    |
| No             | 42/1,424 (2.9)              | 0.99 (0.86—1.14)       | .93 |
| Yes            | 42/1,424 (2.9)              | 1.34 (1.04—1.72)       | .02 |
| Pulse pressure (per 10 mmHg) |             |                        |    |
| No             | 42/1,424 (2.9)              | 0.88 (0.74—1.05)       | .15 |
| Yes            | 42/1,424 (2.9)              | 1.16 (0.92—1.45)       | .21 |
| MAP (per 10 mmHg) |                             |                        |    |
| No             | 42/1,424 (2.9)              | 0.97 (0.76—1.25)       | .84 |
| Yes            | 41/1,292 (3.2)              | 4.33 (0.59—31.71)      |     |
| Stenosis in treated artery (%) |             |                        |    |
| < 70           | 1/133 (0.8)                 | 1.00                   | .15 |
| ≥ 70           | 41/1,292 (3.2)              | 4.33 (0.59—31.71)      |     |
| Contralateral stenosis (%) |                     |                        |    |
| 0—49           | 22/851 (2.6)                | 1.00                   | .79 |
| 50—69          | 10/280 (3.6)                | 1.40 (0.65—2.98)       |     |
| 70—99          | 5/159 (3.1)                 | 1.22 (0.46—3.28)       |     |
| Occlusion       | 5/135 (3.7)                 | 1.45 (0.54—3.89)       |     |
| Echolucency    |                             |                        |    |
| Not echolucent | 11/335 (3.3)                | 1.00                   | .79 |
| Echolucent     | 13/356 (3.7)                | 1.12 (0.49—2.53)       |     |
| Infarction on imaging (CT or MRI) |             |                        |    |
| No infarction  | 19/619 (3.1)                | 1.00                   | .38 |
| Infarction     | 12/285 (4.2)                | 1.39 (0.66—2.90)       |     |
| Prior symptoms any side and/or infarction on imaging (CT/MRI) | |    |
| No             | 17/755 (2.3)                | 1.00                   | .10 |
| Yes            | 25/670 (3.7)                | 1.68 (0.90—3.14)       |     |

Note. OR = odds ratio; CI = confidence interval; CHD = coronary heart disease; SBP = systolic blood pressure; DBP = diastolic blood pressure; MAP = mean arterial pressure; CT = computed tomography; MRI = magnetic resonance imaging.

Risk factors for peri-procedural stroke or death

Results from univariate analysis of baseline characteristics are summarised in Table 1. DBP was the only risk factor significantly associated with stroke or death within 30 days (OR 1.34 per 10 mmHg, 95% CI 1.04—1.72; p = .02). The risk of peri-procedural stroke or death was almost twice as high in patients with diastolic hypertension (≥ 90 mmHg) than in patients with DBP < 90 mmHg (4.2% vs. 2.2%) (Fig. 1).

None of the other risk factors, including age (OR 1.14 per 5 years, 95% CI 0.92—1.41; p = .24), female sex (OR 1.65, 95% CI 0.89—3.07; p = .11), and ipsilateral stenosis ≥ 70% (OR 4.33, 95% CI 0.59—31.71; p = .15), were significantly associated with peri-procedural stroke or death in univariate analysis.

After adjustment for age, sex, lipid lowering therapy, ipsilateral degree of stenosis, and prior symptoms and/or infarcts (Table 3), DBP remained the only independent risk factor for peri-procedural stroke or death (OR 1.34 per 10 mmHg, 95% CI 1.05—1.72; p = .02).
Table 3. Multivariate logistic regression of peri-procedural stroke or death with predictors $p < .3$ in univariate analysis.

|                        | Adjusted OR (95% CI) | $p$  |
|------------------------|----------------------|------|
| Age (per 5 y)          | 1.14 (0.92–1.42)     | .22  |
| Sex                    |                      |      |
| Male                   | 1.00                 | .18  |
| Female                 | 1.54 (0.82–2.87)     |      |
| Lipid lowering therapy |                      |      |
| No                     | 1.00                 | .21  |
| Yes                    | 1.51 (0.80–2.86)     |      |
| DBP (per 10 mmHg)      | 1.34 (1.05–1.72)     | .02  |
| Stenosis in treated artery (%) |          |      |
| $< 70$                 | 1.00                 | .14  |
| $\geq 70$              | 4.56 (0.62–33.85)    |      |
| Prior symptoms and/or infarction on imaging |     |      |
| No                     | 1.00                 | .08  |
| Yes                    | 1.77 (0.94–3.31)     |      |

Note. OR = odds ratio; CI = confidence interval; DBP = diastolic blood pressure.

Timing of stroke and stroke mechanism

The mechanism likely to have caused stroke is summarised in Table 4. For five patients the type of stroke (ischaemic or haemorrhagic) could not be determined and were therefore excluded from Table 4. A definite stroke mechanism could be determined for most events (21/31; 67.7%) and for four others a likely mechanism was identified.

The median time from procedure to onset of neurological symptoms was 0 days for ischaemic stroke (range 0–26 days), with 11/27 (40.7%) occurring during the procedure. Haemorrhagic stroke occurred after the day of surgery in all cases (median 4.5 days, range 1–8 days). In patients with diastolic hypertension (DBP $\geq 90$ mmHg), stroke occurred more frequently during surgery than in normotensive (DBP < 90 mmHg) patients (67% vs. 20%; $p = .02$).

Table 4. Stroke mechanism according to procedural time interval.

| Ischaemic stroke | Total | $< 90$ mmHg | $> 90$ mmHg | Day 0, intra-procedural | $< 90$ mmHg | $> 90$ mmHg | Day 0, after procedure | $< 90$ mmHg | $> 90$ mmHg | Days 1–30 |
|------------------|-------|------------|------------|------------------------|------------|------------|------------------------|------------|------------|----------|
|                  |       | $n = 15$   | $n = 12$   | $n = 3$                | $n = 8$    | $n = 6$    | $n = 3$                | $n = 6$    | $n = 3$    | $n = 6$ |
| 1. Carotid-embolic | 2 (13)| 2 (17)   | 1 (33) | 1 (13) | 1 (17) | 1 (33) | 0 (0) | 0 (0) | 0 (0) |
| 2. Haemodynamic  | 3 (20)| 1 (8)    | 1 (33) | 1 (13) | 1 (17) | 0 (0) | 1 (17) | 0 (0) | 0 (0) |
| 3. Thrombosis/occlusion of artery | 6 (40)| 1 (8) | 1 (33) | 0 (0) | 4 (67) | 0 (0) | 1 (17) | 1 (100) |
| 4. Hyperperfusion | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
| 5. Cardio-embolic | 2 (13)| 1 (8) | 0 (0) | 1 (13) | 0 (0) | 0 (0) | 2 (33) | 0 (0) |      |
| Most likely mechanism | 0 (0) | 3 (25) | 0 (0) | 3 (38) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
| 1 or 2            |      |          |          |          |          |          |          |          |          |
| Most likely mechanism | 0 (0) | 1 (8) | 0 (0) | 1 (13) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
| 3 or 1            |      |          |          |          |          |          |          |          |          |
| Undetermined      | 2 (13)| 3 (25) | 0 (0) | 1 (13) | 0 (0) | 2 (67) | 2 (33) | 0 (0) |      |

| Haemorrhagic       | Total | $< 90$ mmHg | $> 90$ mmHg | Day 0, intra-procedural | $< 90$ mmHg | $> 90$ mmHg | Day 0, after procedure | $< 90$ mmHg | $> 90$ mmHg | Days 1–30 |
|-------------------|-------|------------|------------|------------------------|------------|------------|------------------------|------------|------------|----------|
|                   |       | $n = 2$   | $n = 2$   | $n = 0$                | $n = 0$    | $n = 0$    | $n = 0$                | $n = 0$    | $n = 0$    | $n = 2$ |
| Hyperperfusion     | 2 (100)| 1 (50) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 2 (100) | 1 (50) |
| Undetermined       | 0 (0) | 1 (50) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 1 (50) |

Note. Results shown by diastolic blood pressure groups. In five patients type of stroke could not be determined and they were therefore excluded from this table. Data are $n$.

DISCUSSION

It was found that baseline diastolic blood pressure (i.e., prior to CEA) was the only identifiable independent risk factor for peri-procedural stroke or death in this group of asymptomatic patients.

Hypertension is an important cause of stroke, with risk rising continuously as blood pressure increases above 115/75 mmHg.11,12 Evidence from clinical trials shows that this risk is reversible with control of blood pressure.13,14

SBP is important for autoregulation of cerebral blood flow.15 Arterial wall stiffening, part of the natural ageing process, is sometimes associated with isolated systolic hypertension (ISH). In a meta-analysis, patients with ISH also had an increased risk of stroke (1.22, 95% CI 1.04–1.40; $p = .02$).16

High pulse pressure (PP) is associated with the presence of carotid artery stenosis, but is more strongly related to subsequent cardiac events than to stroke.17 However, mean arterial pressure (MAP) is a better predictor of cerebrovascular events,18,19 and MAP is more dependent on DBP (MAP = 1/3 SBP + 2/3 DBP), suggesting that DBP may have an important role in stroke. This is consistent with the results, where DBP was the only clear predictor associated with peri-procedural stroke or death, while there was a much weaker association with MAP and no association with SBP or PP (Table 1).

Although the association between hypertension and long-term stroke risk is well known, the effects of hypertension during the peri-procedural period associated with carotid intervention are less clear. Post-procedural hypertension is common during and after CEA, and often needs treatment. Baroreceptor sensitivity is decreased in patients with carotid atheroma and may be further compromised by surgical trauma to sensory nerves within the arterial wall.6,20 Haemodynamic instability during the procedure and in the early post-operative period has been reported in...
just over half (54%) of patients undergoing CEA, and is more likely to occur when CEA is performed under general anaesthesia. Sudden blood pressure changes can cause ischaemic (and haemorrhagic) stroke, especially when autoregulation is diminished and arterial stiffness is high.

Haemodynamic disturbances have been shown to be an important mechanism of peri-procedural stroke during CEA in symptomatic patients. In the present study, almost half of strokes (10/21) had similar causes. However, there were a number of strokes of uncertain aetiology in the hypertensive group (seven of 12), which prevented any more definite conclusion being drawn from the comparison of stroke mechanism between hypertensive and normotensive patients.

Although more strokes occurred during CEA in patients with diastolic hypertension than in normotensive patients, the mechanism for half of intra-procedural strokes in the hypertensive group remained unclear. Severe hypotension caused by manipulation of the carotid sinus and by baroreceptor dysfunction and individual factors may make patients vulnerable to intra-procedural hypotension.

Post-operative hypertension, often associated with pre-operative hypertension, may be preventable and caused three of four haemorrhagic strokes. Monitoring of cerebral blood flow with transcranial Doppler measurements during and after CEA has been shown to be helpful in the early identification and treatment of hyperperfusion syndrome (>100% increase in cerebral blood flow).

The present results suggest that more attention should be paid to treating hypertension before surgery. Current international guidelines recommend blood pressure is kept <140/90 mmHg in the general population and <130/80 mmHg in patients with diabetes or patients with renal impairment. These guidelines may change following results from the SPRINT trial, showing that when all patients were treated to a target SBP of <120 mmHg, risks for all cardiovascular events fell; however, patients with borderline pressure dependent organ perfusion may be at increased risk of serious events, a caveat that may be particularly relevant for patients with tight carotid stenosis.

In the present study, 65% of patients were on antihypertensive treatment, but often the single measurement given at randomisation exceeded guideline targets. Mean DBP and SBP were significantly higher in treated patients than patients without antihypertensive treatment (DBP: 84 vs. 81 mmHg [p < .01]; SBP: 156 vs. 149 mmHg [p < .01]). Untreated diastolic and systolic hypertension was present in 10% and 19% of patients, respectively. Even in a clinical trial, albeit one with hundreds of thousands of patients with more peri-procedural events are needed.

CONCLUSION

In ACST-1, DBP was an independent risk factor for peri-procedural stroke or death in asymptomatic patients. Risk of intra-procedural stroke is higher in hypertensive patients. While the underlying mechanisms of the association between DBP and peri-procedural risk remains unclear, good pre-operative control of blood pressure may improve peri-procedural outcome of carotid surgery in asymptomatic patients.

ACKNOWLEDGEMENTS

The authors thank the patients who agreed to participate in the trial, and the many collaborating doctors and trial staff who worked hard to achieve reliable long-term follow-up. The members of the ACST-1 collaborative group are listed in the ACST Lancet publication.

CONFLICT OF INTEREST

None.

FUNDING

The ACST-1 trial was funded by the UK Medical Research Council, the UK Stroke Association, and British United Provident Association (BUPA) Foundation. Professor Halliday’s research is funded by the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre based at Oxford University Hospitals NHS Trust, and University of Oxford.

REFERENCES

1 European Carotid Surgery Trialists’ Group. Randomised trial of endarterectomy for recently symptomatic carotid stenosis: final results of the MRC European Carotid Surgery Trial (ECST). Lancet 1998;351:1379–87.
2 Halliday A, Harrison M, Hayter E, Kong X, Mansfield A, Marro J, et al. 10-year stroke prevention after successful carotid endarterectomy for symptomatic stenosis (ACST-1): a multicentre randomised trial. Lancet 2010;376:1074–84.
3 De Borst Gj, Moll Fl, van de Pavoortd HD, Mauser HW, Kelder JC, Ackerstaf RG. Stroke from carotid endarterectomy:
when and how to reduce perioperative stroke rate. *Eur J Vasc Endovasc Surg* 2001;21:484–9.

4 Huibers A, Calvet D, Kennedy F, Czuriga-Kovács KR, Featherstone RL, Moll FL, et al. Mechanism of procedural stroke following carotid endarterectomy or carotid artery stenting within the International Carotid Stenting Study (ICSS) randomised trial. *Eur J Vasc Endovasc Surg* 2015;50:281–8.

5 Rothwell PM, Slattery J, Warlow CP. Clinical and angiographic predictors of stroke and death from carotid endarterectomy: systematic review. *BMJ* 1997;315:1571–7.

6 Wong JH, Findlay JM, Suarez-Almazor ME. Hemodynamic instability after carotid endarterectomy: risk factors and associations with operative complications. *Neurosurgery* 1997;41:35–41.

7 Doig D, Turner EL, Dobson J, Featherstone RL, de Borst GJ, Stansby G, et al. Risk factors for stroke, myocardial infarction, or death following carotid endarterectomy: results from the International Carotid Stenting Study. *Eur J Vasc Endovasc Surg* 2015;50:688–94.

8 Halliday A, Thomas D, Mansfield A. The Asymptomatic Carotid Surgery Trial (ACST) rationale and design. *Eur J Vasc Surg* 1994;8:703–10.

9 Huibers A, de Borst GJ, Thomas DJ, Moll FL, Bulbula R, Halliday A. The mechanism of procedural stroke following carotid endarterectomy within the Asymptomatic Carotid Surgery Trial 1. *Cerebrovasc Dis* 2016;42:178–85.

10 National Institute for Health and Care Excellence. Hypertension in adults: diagnosis and management. Available at: https://www.nice.org.uk/guidance/cg127 [Accessed 13 February 2017].

11 Lawes CMM, Vander Hoorn S, Rodgers A. Global burden of blood-pressure-related disease, 2001. *Lancet* 2008;371:1513–8.

12 Lewington S, Clarke R, Qizilbash N, Peto R, Collins R. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. *Lancet* 2002;360:1903–13.

13 Grassi G, Quarti-Trevano F, Dell’oro R, Mancia G. Antihypertensive treatment and stroke prevention: from recent meta-analyses to the PROGRESS trial. *Curr Hypertens Rep* 2009;11:265–70.

14 SPRINT Research Group, Wright JT, Williamson JD, Whelton PK, Snyder JK, Sink KM, et al. A randomized trial of intensive versus standard blood-pressure control. *N Engl J Med* 2015;373:2103–16.

15 Chrysant SG. Current status of aggressive blood pressure control. *World J Cardiol* 2015;7:65–71.

16 Staessen JA, Gasowski J, Wang JG, Thijs L, Den Hond E, Boissel JP, et al. Risks of untreated and treated isolated systolic hypertension in the elderly: meta-analysis of outcome trials. *Lancet* 2000;355:865–72.

17 Franklin SS, Sutton-Tyrrell K, Belle SH, Weber MA, Kuller LH. The importance of pulsatile components of hypertension in predicting carotid stenosis in older adults. *J Hypertens* 1997;15:1143–50.

18 Verdecchia P, Schillaci G, Reboldi G, Franklin SS, Porcellati C. Different prognostic impact of 24-hour mean blood pressure and pulse pressure on stroke and coronary artery disease in essential hypertension. *Circulation* 2001;103:2579–84.

19 Amery A, Birkenhager W, Brixko P, Bulpitt C, Clement D, Deruyttere M, et al. Mortality and morbidity results from the European Working Party on High Blood Pressure in the Elderly trial. *Lancet* 1985;1:1349–54.

20 Landsberg G, Adam D, Berlatzy K, Akserlod S. Step baroreflex response in awake patients undergoing carotid surgery: time- and frequency-domain analysis. *Am J Physiol* 2006;290:H1590–7.

21 Bove EL, Fry WJ, Gross WS, Stanley JC. Hypotension and hypertension as consequences of baroreceptor dysfunction following carotid endarterectomy. *Surgery* 1979;85:633–7.

22 Sternbach Y, Illig KA, Zhang R, Shortell CK, Jeffrey M, Davies MG, et al. Hemodynamic benefits of regional anesthesia for carotid endarterectomy. *J Vasc Surg* 2002;35:333–9.

23 Sorond FA, Khavari R, Serrador JM, Lipsitz LA. Regional cerebral autoregulation during orthostatic stress: age-related differences. *J Gerontol A Biol Sci Med Sci* 2005;60:1484–7.

24 Strandgaard S, Olesen J, Skinhøj E, Lassen NA. Autoregulation of brain circulation in severe arterial hypertension. *BMJ* 1973;1:507–10.

25 Tan TW, Eslami MH, Kalish JA, Eberhardt RT, Doros G, Goodney PP, et al. The need for treatment of hemodynamic instability following carotid endarterectomy is associated with increased perioperative and 1-year morbidity and mortality. *J Vasc Surg* 2014;59:16–24.

26 Pennekamp CWA, Tromp SC, Ackerstaff RGA, Bots ML, Immink RV, Spiering W, et al. Prediction of cerebral hyperperfusion after carotid endarterectomy with transcranial Doppler. *Eur J Vasc Endovasc Surg* 2012;43:371–6.

27 Bouzi S, Thapar A, Shalhoub J, Jayasooriya G, Fernando A, Franklin LJ, et al. Hypertension and the post-carotid endarterectomy cerebral hyperperfusion syndrome. *Eur J Vasc Endovasc Surg* 2011;41:229–37.

28 Ricotta JJ, Aburahma A, Ascher E, Eskandari M, Faries P, Lal BK. Updated Society for Vascular Surgery guidelines for management of extracranial carotid disease. *J Vasc Surg* 2011;54:e1–31.

29 MRC Asymptomatic Carotid Surgery Trial (ACST) Collaborative Group. Prevention of disabling and fatal strokes by successful carotid endarterectomy in patients without recent neurological symptoms: randomised controlled trial. *Lancet* 2004;363:1491–502.