Facile Coating of HAP on Ti6Al4V for Osseointegration

Shafaq Asrar
Department of Metallurgical Engineering
NED University of Engineering and Technology
Karachi, Pakistan
shafaqfara@neduet.edu.pk

Muhammad Tufail
NED University of Engineering and Technology
Karachi, Pakistan
mtufail@neduet.edu.pk

Ali Dad Chandio
Department of Metallurgical Engineering
NED University of Engineering and Technology
Karachi, Pakistan
alidad@neduet.edu.pk

Abstract—Ti6Al4V alloy is a material with great strength, low-slung modulus, inferior density, and a virtuous blend of mechanical and exceptional corrosion resistance. However, it does not offer good osseointegration and bone development properties. Conversely, hydroxyapatite (HAP) is highly bioactive in nature to bind with the nearby bone tissues when implanted in the host body. In this work, we have extracted HAP from bovine bones by using the thermal decomposition method. This was followed by its deposition onto the Ti6Al4V alloy using the Electrophoretic Deposition (EPD) technique. TiO$_2$ is used as a bond coat layer to increase the adhesion between HAP and Ti6Al4V alloy substrates. The coated samples after sintering exhibited excellent adhesion. This was followed by characterization using Scanning Electron Microscopy (SEM) and Fourier Transformed Infrared Spectroscopy (FTIR). FTIR and SEM confirm the formation of HAP and its presence after the immersion in SBF. Vicker hardness tester confirms the increase in hardness value of coated samples up to 35%. Potentiostat tests were conducted to compare the corrosion rate of both samples. In addition, the particle sizes were also identified by a laser particle analyzer, whereas X-Ray Diffraction (XRD) technique was also used to determine the crystalline phases of alloy and HAP.

Keywords—corrosion; electrophoretic deposition; hydroxyapatite; simulated body fluid; Ti6Al4V alloy

I. INTRODUCTION

Materials having biotic nature or host tissue compatibility can be implanted into living organisms to augment or replace impaired parts. Generally, metals, ceramics, polymers, and composites are materials widely used in biomedical applications. Amongst them, titanium-based alloys are some of the most widely used as implant materials [1]. Titanium and its alloys bear enhanced properties like excellent strength [2], optimum elastic modulus [3], low density [4], blend of other mechanical properties [5], and excellent corrosion resistance [6-12], needed for various applications including orthopedic [13], dental [14], and surgical implants [15], artificial joints [15], etc. It should be noted that the elastic modulus of titanium-based alloys is considerably close to bones’ [16, 17] which makes it ideal for long term applications [18]. However, titanium based alloys do not possess good osseointegration [19] thereby requiring additional surface treatment. This means that there is a poor bond between titanium and bones causing implant loosening which is highly undesirable. Therefore, surface modification plays a vital role in optimum osseointegration [15, 20]. There are several techniques used in this regard such as: sand blasting [21, 22], etching [23], electrochemical treatment [24], and thermal spray coatings [25]. Amongst them, bio-ceramic coatings using, the hydroxyapatite (HAP - Ca$_{10}$(PO$_4$)$_6$(OH)$_2$) [26-28] are very promising for the modification of implant surfaces since they create strong bonding with bones [29-31]. One of the great advantages of the HAP is its great lifespan [32, 33]. The calcium phosphate (CaP) ratio of HAP is 1.67 which is highly stable at a normal temperature and its pH ranges from 4 to 12. However, the properties and resultant applications of HAP depend on morphology, size, chemical composition and crystallinity [31]. In addition, it provides speedy and durable fixation to the host bones and possesses osseoconductive properties [34], protecting the metal surfaces from the environmental effects and thereby reducing the discharge of metallic ions from the implant surface to the host body. The main advantage of CaP is that it is already present in the bones and teeth of the vertebrates [35]. Moreover, there are several methods to produce HAP such as: dry methods, wet methods, microwave (MW)-assisted methods, ball-milling or ultrasound, etc. [36]. Additionally, numerous coating strategies are available to coat HAP on metallic alloys, for instance: plasma spraying [37, 38], sol gel [39, 40], Electrophoretic Deposition (EPD) [11, 41-43], etc. Amongst them the most economically viable technique is EPD [44], offering a controlled coating composition with the process being highly pure [45], fast [41]
that could be used to coat complex shaped substrates [45]. In this study, HAP was produced from bovine bones since they are an abundant and economical source. This was followed by the deposition of HAP on chemically treated Ti6Al4V alloy.

II. EXPERIMENTAL PART

A. Materials

The materials utilized in this research are shown in Table I. All of them were of analytical grade and were used in as received condition.

S.No.	Chemicals / materials	Purity (%)	Supplier
1	Ti6Al4V	99.0	Baoji North Hongsheng Industry & Trade Co., Ltd.
2	Sodium chloride	99.0	Sigma Aldrich
3	Sodium bicarbonate	99.0	Sigma Aldrich
4	Potassium chloride	99.0	Sigma Aldrich
5	Di sodium phosphate trihydrate	99.0	Sigma Aldrich
6	Magnesium chloride hexa hydrate	99.0	Sigma Aldrich
7	Hydrochloric acid	99.0	Sigma Aldrich
8	Calcium chloride dehydrate	99.0	Sigma Aldrich
9	Di sodium sulphate	99.0	Sigma Aldrich
10	Cyano hydride tri methanol	99.0	Sigma Aldrich

B. Methods

1) Preparation of Hydroxyapatite

HAP was synthesized from bovine bones, purchased from the local market, by the thermal decomposition process. This was followed by their boiling in deionized water for about 3 hours to remove the unwanted fats. Additionally, second boiling was carried out for the deproteinization of bones. Thereafter, the bones were immersed in acetone for two hours in an ultrasonic bath for further cleaning. Subsequently, the bones were dried and cut into smaller sizes by mortar and pestle. The resultant powder was placed into a box furnace and heated at 1100°C at a heating rate of 5°C/min for 3 hours for the preparation of HAP. Later on, XRD and laser particle analysis were conducted to confirm the peaks and particle sizes of as-synthesized HAP powders respectively. The process details are shown in Figure 1.

3) EPD of HAP

For the enhancement of adhesion properties of hydroxyapatite, Titania (TiO$_2$) was used as an intermediate layer between HAP and Titanium alloy substrate. The process flow chart is shown in Figure 2. In this process, an electrolytic solution containing 0.5g TiO$_2$ and 0.5g HAP was dissolved in 100ml ethanol solution followed by sonication for 15 minutes and was ultrasonically shook for 30 minutes. It was then left for settling for 20 minutes and was stirred again for 25 minutes at 40°C. The EPD process was done at 20V for 5 minutes while keeping the distance between electrodes at 2cm. The resultant coating was sintered in the tube furnace at 800°C. Finally, the samples were ready for characterization to further evaluate the properties of Ti-6Al-4V alloy coated with hydroxyapatite.

Fig. 1. Steps of producing HAP from bovine bones, calcination cycle, and XRD pattern of successfully produced HAP.

Fig. 2. Process flowchart of coating HAP on Ti-6Al-4V substrate.
III. RESULTS AND DISCUSSION

A. Particle Size Analysis

We used the BT-9300H laser particle analyzer for the determination of particle size of HAP powder. The results are shown in Figure 3. The average obtained particle size was 25.73 microns with respect to cumulative percentage.

![Average particle size of HAP powder synthesized by bovine bones.](image)

Fig. 3. Average particle size of HAP powder synthesized by bovine bones.

B. XRD Analysis

The X-pert Pro XRD DY3313 XRD machine operating at 40kV and 30mA using CuKα radiation was used to analyze the phase of the HAP. The diffraction pattern was recorded over 20° to 79°. Figure 4 reveals the XRD spectra of bovine bones calcinated at 1100°C which is in good agreement with the standard HAP pattern [46, 47]. The calcinated sample peak at 31.8 confirms the formation of hydroxyapatite powder. Moreover, the XRD spectra of the chemically treated Ti alloy surface show the presence of TiO2 and coated alloy confirming the presence of the HAP layer on the chemically treated Ti6Al4V.

![XRD pattern of synthesised HAP, chemically treated surface and Titanium alloy coated with HAP powder after sintering.](image)

Fig. 4. XRD pattern of synthesised HAP, chemically treated surface and Titanium alloy coated with HAP powder after sintering.

C. Chemical Composition

The chemical composition of titanium alloy is found by using an X-ray fluorescence spectroscope (INNOV-X SYSTEMS) which is comparable to ASTM F136 standard [48]. The results are presented in Table II.

Alloy	Titanium	Vanadium	Aluminum
ASTM F136	Balance	3.5-4.5	5.5-6.75
Ti6Al4V	Balance	4.17	6.12

TABLE II. CHEMICAL COMPOSITION USING XRF ANALYSIS

![Chemical Composition using XRF analysis](image)

D. Microstructures

The polarized light microscope OLYMPUS GX51 was used to reveal the microstructure of the as-received samples. It was found that the titanium alloy consists of two different phases: equiaxed Alpha and transformed Beta phase [49] which are shown in Figure 5(a). Figure 5(b) shows the SEM image of the HAP powder. The powder comprises of agglomerated fine particles while the shape of the particles is angular and non-spherical [50]. Figure 5(c) shows Ti6Al4V alloy coated with HAP after sintering which revealed that there was an enhanced linkage and the interconnection of HAP powders that exist on the coated surface morphology [51]. Figure 5(d) shows the HAP coated on Ti6Al4V after the immersion in SBF [52].

![Microstructures](image)

Fig. 5. (a) Optical structure of as received sample. (b) SEM image of the produced HAP powder. (c) Ti6Al4V coated with HAP and sintered at 800°C. (d) After immersion in SBF solution.

E. Hardness

Micro Vickers hardness tester (DIN EN 6507) was used to examine the hardness of bare and coated Ti6Al4V alloy by applying a load of 500g with a dwell time of 10s. The results are shown in Table III. A significant increase in hardness value of 468HV was obtained for a coated sample as compared to the pristine sample with a hardness value of 340HV. The Ti-based alloy produced a high hardness value which is a major requirement in being compatible with the body environment.

![Hardness results](image)

TABLE III. HARDNESS RESULTS

Alloy	Hardness (HV)
Ti6Al4V (before coating)	340
Ti6Al4V (after coating)	468
F. Corrosion Behavior

1) Immersion Test of Coated Samples in SBF

The coated samples of the HAP were immersed in Simulated Body Fluid (SBF) solution which was prepared according to the procedure defined in [40]. The chemical composition of the SBF solution is shown in Table IV. The characterization was based upon the pH scale. For comparative analysis, the pH of the solution was measured before immersion and was found to be 7.4. The sample was then immersed in the solution enclosed in a glass beaker at 37°C for 7 days. Agitations and vibrations were provided to the beaker to create an artificial environment of fluid movement around the coating. After a passage of the prescribed time, the sample was removed from the solution. The solution pH was measured after the immersion and was found to be the same as before, i.e. 7.4. Therefore it was confirmed that no exchange of ions took place between the sample and SBF.

S.No.	Chemicals	Amount
1	Sodium chloride	6.559g
2	Sodium bicarbonate	2.26g
3	Potassium chloride	0.3773g
4	Di potassium phosphate tri hydrate	0.1496g
5	Magnesium chloride hexa hydrate	0.3411g
6	Hydrochloric acid	10ml
7	Calcium chloride dehydrate	0.3635g
8	Di sodium sulphate	0.0731g
9	Cyano hydride tri methanol	6.0662g

2) FTIR

FTIR (Perkin Elmer spectrum one system) was used to identify the functional groups of HAP coated samples in the area of 400-4000cm⁻¹. The FTIR spectra before and after the immersion in SBF solution is shown in Figures 6 and 7. The PO₄³⁻ group displays peaks at 560 and 600cm⁻¹ and at 1000–1100cm⁻¹. The peak at about 2600–3600cm⁻¹ links to the hydrated OH⁻ ion of HA [53]. The peak from 2000 to 2200cm⁻¹ shows the stretching of P-O-H [54]. The peak at 1490cm⁻¹ matches CO₃²⁻ which specifies that HAP is a carbonated-apatite (HCA) [55]. The representative peaks of PO₄³⁻ appear at 1090, 1014, and 590cm⁻¹. The peak at 1650cm⁻¹ shows the presence of H₂O [54].

G. Adhesion

For evaluating the adhesion of the coated samples we used the scratch tester machine M-TGN80 having diamond intender
landed on the coated substrate producing an indent on the substrate surface up to a maximum load of 60N as shown in Figure 9. The result shows an excellent strength for the coating [56]. The morphological measurements were taken in the stereo microscope under low magnifications (5X) which reveal the distances of the crack from various aspects.

IV. CONCLUSION

Hydroxyapatite is the furtheormost noticeable inorganic substance for biomedical applications. Research showed that natural HAP from bovine bones can be synthesized by using the thermal decomposition method. From this study, no significant difference was observed between bovine bone-derived HAP and naturally occurring HAP. HAP powder electrophoretically deposited on Ti-6Al-4V alloy was used as substrate. The characterization of the coated sample confirmed that the coating enhanced the osseointegration properties of the implant. Moreover, the hardness of the coated samples was observed to be increased up to 35% as compared to the pristine samples. The corrosion rate for coated samples was found to be decreasing from 33.53×10^{-3} mpwy to 11.95×10^{-3} mpwy. Therefore, the resultant structures show that our produced samples can be used for a wide variety of medical applications with minimal expenses.

ACKNOWLEDGMENT

The authors wish to express their gratitude to the Higher Education Commission of Pakistan for the funding under the NRPU "National Research Program for Universities 2017-18" grand. We also thank the NED University of Engineering and Technology for providing us the platform to carry out this work.

REFERENCES

[1] M. T. Mohammed, Z. A. Khan, and A. N. Siddiquee, "Surface Modifications of Titanium Materials for developing Corrosion Behavior in Human Body Environment: A Review," Procedia Materials Science, vol. 6, pp. 1610–1618, Jan. 2014, https://doi.org/10.1016/j.mspro.2014.07.144.

[2] F. Trevisan et al., “Additive manufacturing of titanium alloys in the biomedical field: processes, properties and applications,” Journal of Applied Biomaterials & Functional Materials, vol. 16, no. 2, pp. 57–67, Apr. 2018, https://doi.org/10.5301/jabfm.500371.

[3] M. Lepecka and M. Gradzka-Dahle, "Surface modification of Ti6Al4V titanium alloy for biomedical applications and its effect on tribological performance - A review," Reviews on Advanced Materials Science, vol. 46, no. 1, pp. 86–103, 2016.

[4] J. W. Nicholson, "Titanium Alloys for Dental Implants: A Review," Prosthesis, vol. 2, no. 2, pp. 100–116, Jun. 2020, https://doi.org/10.3390/prosthesist200011.

[5] W. Liu, S. Liu, and L. Wang, "Surface Modification of Biomedical Titanium Alloy: Micromorphology, Microstructure Evolution and Biomedical Applications," Coatings, vol. 9, no. 4, Apr. 2019, Art. no. 209, https://doi.org/10.3390/coatings9040249.

[6] M. L. Lourenço, G. C. Cardoso, K. dos S. J. Sousa, T. A. G. Donato, F. M. L. Pontes, and C. R. Grandini, "Development of novel Ti-Mo-Mn alloys for biomedical applications," Scientific Reports, vol. 10, no. 1, p. 6298, Apr. 2020, https://doi.org/10.1038/s41598-020-62685-y.

[7] M. Kulkarni, A. Mazare, and P. Schmuki, "Biomaterial Surface Modification Of Titanium and Titanium Alloys for Medical Applications," in Nanomedicine, Cheshire, UK: One Central Press, 2014, pp. 111–136.

[8] M. J. Jackson, J. Kopac, M. Balazic, D. Bombac, M. Brojnan, and F. Kosel, "Titanium and Titanium Alloy Applications in Medicine," in Surgical Tools and Medical Devices, W. Ahmed and M. J. Jackson, Eds. New York, NY, USA: Springer, 2016, pp. 475–517.

[9] Damish, I. N. Jujur, J. Sah, Agustanahaki, and D. H. Prajito, "Characteristics microstructure and microhardness of cast Ti-6Al-4V ELI for biomedical application submitted to solution treatment," AIP Conference Proceedings, vol. 1664, no. 1, May 2018, Art. no. 020037, https://doi.org/10.1063/1.5033819.

[10] D. Aroussi, B. Aouar, and A. S. Bouaziz, "A Comparative Study of 316L Stainless Steel and a Titanium Alloy in an Aggressive Biological Medium," Engineering, Technology & Applied Science Research, vol. 9, no. 6, pp. 5093–5098, Dec. 2019, https://doi.org/10.48084/etasr.3208.

[11] S.-W. Lee et al., "Hydroxyapatite and Collagen Combination-Coated Dental Implants Dispersed Better Bone Formation in the Peri-Implant Area Than the Same Combination Plus Bone Morphogenetic Protein-2-Coated Implants, Hydroxyapatite Only Coated Implants, and Uncoated Implants," Journal of Oral and Maxillofacial Surgery, vol. 72, no. 1, pp. 53–60, Jan. 2014, https://doi.org/10.1016/j.joms.2013.08.031.

[12] A. Boudjemline, M. Boujelbene, and E. Bayraktar, "Surface Quality of Ti-6Al-4V Titanium Alloy Parts Machined by Laser Cutting," Engineering, Technology & Applied Science Research, vol. 10, no. 4, pp. 6062–6067, Aug. 2020, https://doi.org/10.48084/etasr.3719.

[13] F. Zhang, A. Weidmann, J. B. Nebe, U. Beck, and E. Burkel, "Patterning, microstructures, mechanical properties, and cytocompatibility of TiMn alloys for biomedical applications," Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol. 94B, no. 2, pp. 406–413, 2010, https://doi.org/10.1002/jbm.b.31668.

[14] P. Shammagnapiya, V. Srimivasan, B. Karthikeyan, and T. V. Rajanurugan, "Surface modification of nano-composite Al2O3-G/C-HAP coating for improving wear and corrosion behaviour on Ti-6Al-4V alloy using sol–gel technique," Multiscale and Multidisciplinary Modeling. Experiments and Design, Jan. 2021, https://doi.org/10.1007/s41939-021-00089-3.

[15] L. Xia, Y. Xie, B. Fang, X. Wang, and K. Lin, "In situ modulation of crystallinity and nano-structures to enhance the stability and osseointegration of hydroxyapatite coatings on Ti-6Al-4V implants," Chemical Engineering Journal, vol. 347, pp. 711–720, Sep. 2018, https://doi.org/10.1016/j.cej.2018.04.045.

[16] X. Liu, S. Chen, J. K. H. Tsoi, and J. P. Matrinlinna, "Binary titanium alloys as dental implant materials—a review," Regenerative Biomaterials, vol. 8, no. 5, pp. 315–323, Oct. 2017, https://doi.org/10.1093/rb/rbx027.

[17] M. Alqattan, L. Peters, Y. Alshammari, F. Yang, and L. Bolzoni, "Antibacterial Ti-Mn-Cu alloys for biomedical applications," Scientific Reports, vol. 10, no. 1, p. 6298, Apr. 2020, https://doi.org/10.1038/s41598-020-62865-4.

[18] T. Hryniewicz, K. Rokosz, J. Valicek, and R. Rokicki, "Effect of magnetoelectropolishing on nanohardness and Young’s modulus of
Spray Coatings, Hydroxyapatite and Collagen Deposited Electrochemically and by Plasma

H. Daugaard, B. Elmengaard, J. E. Bechtold, T. Jensen, and K. Soballe, “Synthesis of hydroxyapatite for biomedical applications,” A. Szczes, L. Holysz, and E. Chibowski, “Synthesis of hydroxyapatite coatings,” M. Lukaszewska-Kuska, P. Krawczyk, A. Martyla, W. Hedzelek, and B. Family, M. Solati-Hashjin, S. Namjoy Nik, and A. Nemati, “Surface and Coatings Technology,” 2015, vol. 29, no. 2, pp. 176–187, Jun. 2015.

Y. Kirmanidou, “Improve the Mechanical Properties and the Biological Response to Coated Titanium Implants,” H. Naseri, M. Ghatee, A. Yazdani, M. Mohammadi, and S. Manafi, “Hydroxyapatite Coating of Titanium,” 2012, Feb. 2012, Art. no. e730693, https://doi.org/10.1155/2012/730693.

P. Habibovic, F. Barrere, C. A. V. Blitterswijk, K. de Groot, and P. Layrollle, “Biomimetic Hydroxyapatite Coating on Metal Implants,” Journal of the American Ceramic Society, vol. 85, no. 3, pp. 517–522, 2002, https://doi.org/10.1111/j.1151-2916.2002.tb00126.x.

V. Rattan, T. S. Sidhu, and M. Mittal, “An Overview of Hydroxyapatite Coated Titanium Implants,” Asian Journal of Engineering and Applied Technology, vol. 3, no. 2, pp. 40–43, Jul. 2012.

G. Ciobanu and M. Harja, “Investigation on hydroxyapatite coatings formation on titanium surface,” IOP Conference Series: Materials Science and Engineering, vol. 444, Nov. 2018, Art. no. 032007, https://doi.org/10.1088/1757-899X/444/3/032007.

M. Hadidi et al., “Electrophoretic-deposited hydroxyapatite–copper nanocomposite as an antibacterial coating for biomedical applications,” Surface and Coatings Technology, vol. 321, pp. 171–179, Jul. 2017, https://doi.org/10.1016/j.surfcoat.2017.04.055.

M. Komath, P. Rajesh, C. V. Muralleedharan, H. K. Varma, R. Reshmi, and M. K. Jayaraj, “Formation of hydroxyapatite coating on titanium at 200°C through pulsed laser deposition followed by hydrothermal treatment,” Bulletin of Materials Science, vol. 2, no. 34, pp. 389–399, 2011, https://doi.org/10.1007/s12051-011-0069-5.

F. Findik, “Surface Treatment of Ti-Alloys,” International Biomedical Engineering & Biosciences, vol. 8, no. 2, pp. 176–187, Jan. 2015.

A. Jaafar, C. Hecker, P. Arkí, and Y. Joseph, “Sol-Gel Derived Hydroxyapatite Coatings for Titanium Implants: A Review,” Bioengineering, vol. 7, no. 4, Dec. 2020, Art. no. 127, https://doi.org/10.3390/bioengineering7040127.

R. Family, M. Solati-Hashjin, S. Nanjoym Nik, and A. Nemati, “Surface modifications for the titanium alloy implant by sol-gel hydroxyapatite coating,” Caspian Journal of Internal Medicine, vol. 3, no. 3, pp. 460–465, 2012.

B.-O. Tarana, A. I. Bucur, and I. Sebarchievici, “Three-step procedure for the deposition of hydroxyapatite coatings,” Journal of Coatings Technology and Research, vol. 17, no. 4, pp. 1075–1082, Jul. 2020, https://doi.org/10.1007/s12034-019-00318-3.

M. H. Fathi and F. Azam, “Novel hydroxyapatite/ tantalum surface coating for metallic dental implant,” Materials Letters, vol. 61, no. 4, pp. 1238–1241, Feb. 2007, https://doi.org/10.1016/j.matlet.2006.07.013.

Q. Chen and G. A. Thouas, “Metallic implant biomaterials,” Materials Science and Engineering: R: Reports, vol. 87, pp. 1–57, Jan. 2015, https://doi.org/10.1016/j.mser.2014.10.001.

S. S. Bhasin, E. Parwez, S. Sachdeva, and R. Mallick, “Trends in prosthetic biomaterials in implant dentistry,” Journal of the International Clinical Dental Research Organization, vol. 7, no. 3, pp. 148–159, Dec. 2015, https://doi.org/10.4103/2231-0754.172936.

M. Manoj, R. Subbiah, D. Mangalaraj, N. Pompandian, C. Viswanathan, and K. Park, “Influence of Growth Parameters on the Formation of Hydroxyapatite (HAP) Nanostructures and Their Cell Viability Studies,” Nanobiomedicine, vol. 2, Jan. 2015, Art. no. 2, https://doi.org/10.5772/60116.

M. Łukaszewska-Kuska, P. Krawczyk, A. Martywa, W. Hedzelek, and B. Dorocka-Bobkowska, “Hydroxyapatite coating on titanium endosseous implants for improved osseointegration: Physical and chemical considerations,” Advances in Clinical and Experimental Medicine: Official Organ Wroclaw Medical University, vol. 27, no. 8, pp. 1055–1059, Aug. 2018, https://doi.org/10.17219/acem/69084.

H. Daugaard, B. Elmengaard, J. E. Bechtold, T. Jensen, and K. Soballe, “The effect on bone growth enhancement of implant coatings with hydroxyapatite and collagen deposited electrochemically and by plasma spray,” Journal of Biomedical Materials Research Part A, vol. 92A, no. 3, pp. 913–921, 2010, https://doi.org/10.1002/jbm.a.32303.

A. Szczes, L. Holysz, and E. Chibowski, “Synthesis of hydroxyapatite for biomedical applications,” Advances in Colloid and Interface Science, vol. 249, pp. 321–330, Nov. 2017, https://doi.org/10.1016/j.cis.2017.04.007.

A. Fihri, C. Len, R. S. Varma, and A. Solly, “Hydroxyapatite: A review of syntheses, structure and applications in heterogeneous catalysis,” Coordination Chemistry Reviews, vol. 347, pp. 48–76, Sep. 2017, https://doi.org/10.1016/j.ccr.2017.06.009.

K. Kuroda and M. Okido, “Hydroxyapatite Coating of Titanium Implants Using Hydroprocessing and Evaluation of Their Osteoconductivity,” Bioinorganic Chemistry and Applications, vol. 2012, Feb. 2012, Art. no. e730693, https://doi.org/10.1155/2012/730693.

P. Habibovic, F. Barrere, C. A. V. Blitterswijk, K. de Groot, and P. Layrollle, “Biomimetic Hydroxyapatite Coating on Metal Implants,” Journal of the American Ceramic Society, vol. 85, no. 3, pp. 517–522, 2002, https://doi.org/10.1111/j.1151-2916.2002.tb00126.x.

V. Rattan, T. S. Sidhu, and M. Mittal, “An Overview of Hydroxyapatite Coated Titanium Implants,” Asian Journal of Engineering and Applied Technology, vol. 3, no. 2, pp. 40–43, Jul. 2012.
Asrar et al.: Facile Coating of HAP on Ti6Al4V for Osseointegration

[52] P. A. F. Sossa et al., "Comparative study between natural and synthetic Hydroxyapatite: structural, morphological and bioactivity properties," *Materia (Rio de Janeiro)*, vol. 23, no. 4, 2018, https://doi.org/10.1590/s1517-7076201800040551.

[53] G. C. Gomes, F. F. Borghi, R. O. Ospina, E. O. López, F. O. Borges, and A. Mello, "Nd:YAG (532nm) pulsed laser deposition produces crystalline hydroxyapatite thin coatings at room temperature," *Surface and Coatings Technology*, vol. 329, pp. 174–183, Nov. 2017, https://doi.org/10.1016/j.surfcoat.2017.09.008.

[54] A. A. Abdeltwab, M. A. Shoelb, and S. G. Mohamed, "Electrophoretic deposition of hydroxyapatite coatings on titanium from dimethylformamide suspensions," *Surface and Coatings Technology*, vol. 206, no. 1, pp. 43–50, Oct. 2011, https://doi.org/10.1016/j.surfcoat.2011.06.034.

[55] H. Gheisari and E. Karamian, "Preparation and characterization of hydroxyapatite reinforced with lardystonite as a novel bio-nanocomposite for tissue engineering," *Nanomedicine Journal*, vol. 2, no. 2, pp. 141–152, Apr. 2015, https://doi.org/10.7508/nmj.2015.02.006.

[56] L. Mohan, D. Durgalakshmi, M. Geetha, T. S. N. Sankara Narayanan, and R. Asokamani, "Electrophoretic deposition of nanocomposite (HAp+TiO2) on titanium alloy for biomedical applications," *Ceramics International*, vol. 38, no. 4, pp. 3435–3443, May 2012, https://doi.org/10.1016/j.ceramint.2011.12.056.

AUTHORS PROFILE

Shafaq Asrar is currently serving as a Lecturer, and a Ph.D scholar in the department of Metallurgy Engineering, NED University. Muhammad Tufail is currently serving as a Pro-Vice Chancellor of NED University. He has acquired his Ph.D from the University of Nottingham, UK. Ali Dad Chandio is currently serving as a Chairman of the Metallurgical Engineering Department, NED University. He has acquired his Ph.D from the University of Manchester, UK.