QUASICONFORMAL HARMONIC MAPPINGS BETWEEN UNIT BALL AND SPATIAL DOMAIN WITH $C^{1,\alpha}$ BOUNDARY

ANTON GJOKAJ AND DAVID KALAJ

ABSTRACT. We prove the following. If f is a harmonic quasiconformal mapping between the unit ball in \mathbb{R}^n and a spatial domain with $C^{1,\alpha}$ boundary, then f is Lipschitz continuous in B. This generalizes some known results for $n = 2$ and improves some others in higher dimensional case.

1. Introduction

For $n > 1$, let \mathbb{R}^n be the standard Euclidean space with the norm $|x| = (x_1^2 + \ldots + x_n^2)^{\frac{1}{2}}$, where $x = (x_1, \ldots, x_n)$. We denote the unit ball $\{x \in \mathbb{R}^n: |x| < 1\}$ by B, and its boundary, the unit sphere $\{x \in \mathbb{R}^n: |x| = 1\}$ by S.

Let $U \subset \mathbb{R}^n$ be a domain. We say $f = (f_1, \ldots, f_n) : U \to \mathbb{R}^n$ is a harmonic mapping if the functions f_j are harmonic real mappings, i.e. satisfy the n-dimensional Laplace equation

$$\Delta u = \sum_{i=1}^{n} D_i f_j = 0.$$

Let

$$P(x, \xi) = \frac{1 - |x|^2}{|x - \xi|^n}$$

be the Poisson kernel for B, where $x \in B, \xi \in S$, and

$$P[u](x) = \int_{S} P(x, \xi) u(\xi) d\sigma(\xi)$$

the Poisson integral of continuous function u on S, where σ denotes the normalized surface-area measure on S. Then $P[u](x)$ is continuous on \overline{B} and harmonic on B. Since we will focus on continuous function u on \overline{B}, that are harmonic on B, then we will usually express them using the Poisson integral as

$$u = P[u]|_{S}(x).$$
A homeomorphism \(f : U \to V \), where \(U, V \) are domains in \(\mathbb{R}^n \), will be called \(K \) quasiconformal (see [32]) \((K \geq 1)\) if \(f \) is absolutely continuous on lines (i.e. absolutely continuous in almost every segment parallel to some of the coordinate axes and there exist partial derivatives which are locally \(L^n \) integrable in \(U \)) and

\[
|\nabla f(x)| \leq Kl(\nabla f(x)),
\]

for all points \(x \in U \), where

\[
l(\nabla f(x)) = \inf\{|f'(x)h| : |h| = 1\}.
\]

A function \(\Phi : U \subset \mathbb{R}^n \to \mathbb{R} \) is said to be \(\mu \)-Hölder continuous, \(\Phi \in C^\mu(U) \) if

\[
\sup_{x,y \in U, x \neq y} \frac{|\Phi(x) - \Phi(y)|}{|x - y|^{\mu}} < \infty.
\]

Similarly, one defines the class \(C^{1,\mu}(U) \) to consist of all functions \(\Phi \in C^{1}(U) \) such that \(\nabla \Phi \in C^\mu(U) \). The above two definitions extends in a natural way to the case of vector-valued mappings.

We say that \(\Omega \subset \mathbb{R}^n \) has a \(C^{1,\alpha} \) boundary if it is the image of the unit ball \(B \subset \mathbb{R}^n \) under a \(C^{1,\alpha} \) diffeomorphism up to the boundary.

Pavlović in [30] showed that harmonic quasiconformal mappings of the unit disk in \(\mathbb{R}^2 \) onto itself are bi-Lipschitz mappings. From then, several important results have been obtained regarding harmonic quasiconformal mappings in \(\mathbb{R}^2 \) and the Lipschitz continuity. The second author in [11] proved that, every quasiconformal harmonic mapping between Jordan domains with \(C^{1,\alpha} \) boundaries is Lipschitz continuous on the closure of domain.

The result in [11] was extended in [12] for Jordan domains with only Dini’s smooth boundaries. Lately, in [16] it was proved the Hölder continuity (but in general, Lipschitz continuity does not hold) of a harmonic quasiconformal mapping between two Jordan domains having only \(C^1 \) boundaries. Other important results for \(n = 2 \) with different conditions and settings can be found in [2], [5], [15], [19], [22], [28] and in their references.

For higher dimensional case there are some important results also (see e.g. [3], [20], [25], [13]). In [13] it was proven that a quasiconformal mapping of the unit ball onto a domain with \(C^2 \) smooth boundary, satisfying Poisson differential inequality, is Lipschitz continuous. This implies that harmonic quasiconformal mappings from unit ball \(B \) to \(\Omega \) with \(C^2 \) boundary are Lipschitz continuous. This was also proved by Astala and Manojlovic in [3] using a slight modification of the following statement also proved there: a harmonic \(K \)-quasiconformal mapping from \(B \) to \(B \) is Lipschitz with the Lipschitz constant depending on the value of \(K \), dimension of \(n \) and \(\text{dist}(f(0), S) \).

Our main result generalizes the result in [11] and improves the mentioned corollaries in [3] and [13]. It reads as follow.
Theorem 1.1. Let \(f : B \rightarrow \mathbb{R}^n \) be a quasiconformal harmonic (qch) mapping, \(u(B) = \Omega \), and \(\partial \Omega \in C^{1,\alpha} \). Then \(f \) is Lipschitz continuous in \(B \).

The proof of the corresponding result for 2-dimensional case in [11] uses conformal mappings, however conformal mappings in higher-dimensional setting are very rigid, and this is why we need to find another way to deal with the proof of Theorem 1.1. The initial idea lies on the following simple approach. Let \(\eta \in S \) and \(f(\eta) = q \in \partial \Omega \). We can suppose that \(q = 0 \) and the tangent plane of \(q \) at \(\partial \Omega \) is \(x_n = 0 \). This can be obtained in the following way: Using a isometry \(L \) we can postcompose \(f \) such that we get a function \(\tilde{f} \) from \(B \) to \(\Omega' \), \(\tilde{f}(\eta) = 0 \) and the tangent plane of this point on \(\partial \Omega' \) is \(x_n = 0 \). Observe that \(\tilde{f} \) is also harmonic and quasiconformal, because it is composed by a isometry. The Lipschitz continuity for function \(\tilde{f} \) would yield the proof of this property for the function \(f \) also, because the isometry preserves the distances.

The proof is given in Section 3. It uses an iteration procedure. A similar procedure has been used in [26] and in [17] for similar purpose but different setting. Before that, in next section, we give some basic preparations through Theorems 2.1

2. Auxiliary results

The next theorem is of general interest; on the other side it plays an important role in proving Theorem 1.1. Some versions of it, for \(n = 2 \), can be found in [10] and [26].

Theorem 2.1. Let \(u : \overline{B} \subset \mathbb{R}^n \rightarrow \mathbb{R} \) be a real harmonic function, \(\eta \in S \). Assume that \(|u(\xi) - u(\eta)| \leq M|\xi - \eta|^{\mu}, \forall \xi \in S \), for some \(\mu \in (0, 1) \). Then we have \(C = C(M, \mu, n) \) such that

\[
|\nabla u(x)|(1 - |x|)^{1-\mu} \leq C,
\]

where \(x = r\eta, \ r \in [0, 1) \).

Proof. Throught the proof, the constant \(C \) can change its value. Using the Poisson integral formula we have

\[
u(x) = \int_S \frac{1 - |x|^2}{(1 + |x|^2 - 2\langle \xi, x \rangle)^{\frac{n}{2}}} u(\xi) d\sigma(\xi).
\]

Observe that

\[
\nabla u(x) = \int_S Q(x, \xi) u(\xi) d\sigma(\xi), \tag{2.1}
\]
where

\[
Q(x, \xi) = \frac{(-2x)(1 + |x|^2 - 2\langle \xi, x \rangle) - n(1 - |x|^2)(1 + |x|^2 - 2\langle \xi, x \rangle)}{(1 + |x|^2 - 2\langle \xi, x \rangle)^n} \left(1 - |x|^2\right)
\]

\[
= \frac{(-2x)(1 + |x|^2 - 2\langle \xi, x \rangle) - n(1 - |x|^2)(x - \xi)}{(1 + |x|^2 - 2\langle \xi, x \rangle)^{n+1}} \cdot \frac{1}{(1 + |x|^2 - 2\langle \xi, x \rangle)^{n/2}}.
\]

Let \(h \in \mathbb{R}^n\) be an arbitrary vector. Then

\[
\langle \nabla u(x), h \rangle = \int_S \langle Q(x, \xi), h \rangle u(\xi) d\sigma(\xi).
\]

As

\[
1 = \int_S \frac{1 - |x|^2}{(1 + |x|^2 - 2\langle \xi, x \rangle)^{n/2}} d\sigma(\xi),
\]

we get

\[
0 = \int_S Q(x, \xi) u(\eta) d\sigma(\xi),
\]

which, together with (2.3), gives us

\[
\langle \nabla u(x), h \rangle = \int_S \langle Q(x, \xi), h \rangle [u(\xi) - u(\eta)] d\sigma(\xi).
\]

On the other side

\[
\left| \frac{-2(\langle \xi, x \rangle)(1 + |x|^2 - 2\langle \xi, x \rangle) - n(1 - |x|^2)(x - \xi, h)}{(1 + |x|^2 - 2\langle \xi, x \rangle)} \right| \leq 2|x||h| + n \frac{(1 - |x|^2)|x - \xi||h|}{|x - \xi|^2} \leq 2|x||h| + 2n|h| \frac{1 - |x|}{|x - \xi|} \leq (2 + 2n)|h|.
\]

In the last inequality it is used the fact that \(1 - |x| \leq |x - \xi|\), which is obviously true from the geometrical point of view, but is also equivalent to \(\langle \xi, x \rangle \leq |x|\) (Cauchy-Schwartz inequality).

From (2.2), (2.6), (2.7) we get

\[
|\langle \nabla u(x), h \rangle| \leq (2n + 2)|h| \int_S \frac{|u(\xi) - u(\eta)|}{(1 + |x|^2 - 2\langle \xi, x \rangle)^{n/2}} d\sigma(\xi)
\]
As h was taken arbitrary, then

$$|\nabla u(x)| \leq (2n + 2) \int_S \frac{|u(\xi) - u(\eta)|}{(1 + |x|^2 - 2\langle \xi, x \rangle)^{\frac{1}{2}}} d\sigma(\xi),$$

which is equivalent to

$$|\nabla u(r\eta)| \leq (2n + 2) \int_S \frac{|u(\xi) - u(\eta)|}{(1 + r^2 - 2r(\xi, \eta))^\frac{1}{2}} d\sigma(\xi),$$

$$= (2n + 2) \int_S \frac{|u(\xi) - u(\eta)|}{((1 - r)^2 + r^2|\xi - \eta|^2)^{\frac{1}{2}}} d\sigma(\xi),$$

where $x = r\eta$, $r = |x| \in [0, 1)$.

Using the condition of the theorem we get

$$|\nabla u(r\eta)| \leq M(2n + 2) \int_S \frac{|\xi - \eta|^\mu}{((1 - r)^2 + r^2|\xi - \eta|^2)^{\frac{1}{2}}} d\sigma(\xi).$$

1st case: $|x| = r \geq \frac{1}{2}$.

$$|\nabla u(r\eta)| \leq C \int_S \frac{|\xi - \eta|^\mu}{((1 - r)^2 + \frac{1}{2}|\xi - \eta|^2)^{\frac{1}{2}}} d\sigma(\xi).$$

Because of the symmetry, it is enough to show the required inequality for $\eta = (1, 0, \ldots, 0)$. We use spherical coordinates:

$$y_1 = \cos \phi_1$$
$$y_2 = \sin \phi_1 \cos \phi_2$$
$$\vdots$$
$$y_{n-1} = \sin \phi_1 \sin \phi_2 \cdots \sin \phi_{n-2} \cos \phi_{n-1}$$
$$y_n = \sin \phi_1 \sin \phi_2 \cdots \sin \phi_{n-2} \sin \phi_{n-1},$$

where $\phi_1, \ldots, \phi_{n-2} \in [0, \pi]$ and $\phi_{n-1} \in [0, 2\pi)$ and the area element is given by

$$dS V = \sin^{n-2} \phi_1 \sin^{n-3} \phi_2 \cdots \sin^2 \phi_{n-3} \sin \phi_{n-2}.$$

Elementary calculations show that $|\xi - \eta| = 2\sin \frac{\phi_1}{2}$, where $\xi = (y_1, \ldots, y_n)$. So we have

$$|\nabla u(r\eta)| \leq C \int_0^{2\pi} \int_0^{\pi} \int_0^{\pi} \frac{(2 \sin \frac{\phi_1}{2})^\mu}{((1 - r)^2 + 2 \sin^2 \frac{\phi_1}{2})^{\frac{1}{2}}} dS V d\phi_1 \cdots d\phi_{n-1}$$

$$= C \int_0^{2\pi} d\phi_{n-1} \int_0^\pi \sin \phi_{n-2} d\phi_{n-2} \cdots \int_0^\pi \frac{(2 \sin \frac{\phi_1}{2})^\mu}{((1 - r)^2 + 2 \sin^2 \frac{\phi_1}{2})^{\frac{1}{2}}} \sin^{n-2} \phi_1 d\phi_1.$$
As the first (left to right) $n - 2$ integrals are finite we have
\[
|\nabla u(r\eta)| \leq C \int_0^{\pi} \frac{(2 \sin \frac{\phi_1}{2})^\mu (2 \sin \frac{\phi_1}{2} \cos \frac{\phi_1}{2})^{n-2}}{(1 - r)^2 + 2 \sin^2(\frac{\phi_1}{2})((1 - r)^2 + 2 \sin^2(\frac{\phi_1}{2}))^{\frac{n-2}{2}}} d\phi_1.
\]
It is easily seen that
\[
\frac{(2 \sin \frac{\phi_1}{2} \cos \frac{\phi_1}{2})^{n-2}}{((1 - r)^2 + 2 \sin^2(\frac{\phi_1}{2}))^{\frac{n-2}{2}}} \leq 2^{\frac{n-2}{2}},
\]
so
\[
|\nabla u(r\eta)| \leq C \int_0^{\pi} \frac{\sin \frac{\phi_1}{2}^\mu}{(1 - r)^2 + 2 \sin^2(\frac{\phi_1}{2})} d\phi_1
\]
(2.13)
\[
= C \int_0^1 \frac{t^\mu}{(1 - r)^2 + 2t^2} \sqrt{1 - t^2} dt \leq C \int_0^1 \frac{t^\mu}{(1 - r)^2 + t^2} dt.
\]
Further,
\[
\int_0^1 \frac{t^\mu}{(1 - r)^2 + t^2} dt = (1 - r)^{\mu-1} \int_0^{1/r} \frac{s^\mu}{1 + s^2} ds \leq (1 - r)^{\mu-1} \int_0^\infty \frac{s^\mu}{1 + s^2} ds.
\]
As the last integral converges we finally have
\[
|\nabla u(r\eta)| (1 - r)^{1-\mu} \leq C, \quad r \in \left[\frac{1}{2}, 1\right),
\]
where C depends on M, μ and n only.

2nd case $r = |x| < \frac{1}{2}$

As
\[
\frac{|\xi - \eta|^{\mu(1 - r)^{1-\mu}}}{((1 - r)^2 + r|\xi - \eta|^2)^{\frac{\mu}{2}}} < \frac{2^{\mu} 2^{1-\mu}}{(\frac{1}{2})^n} = 2^{n+1},
\]
using (2.11) we get
\[
|\nabla u(r\eta)| (1 - r)^{1-\mu} \leq M(2n + 2)2^{n+1}.
\]

We conclude that the inequality is true for all $r \in (0, 1)$, with the final C being the larger of the obtained constants on the RHS of (2.14) and (2.16).

The idea of the proof in section 3 will be based on obtaining locally the C^μ condition of f on the unit sphere for $\mu < 1$, by increasing μ. In relation to a fixed point $\eta = S$ this will, in one moment, give us a similar inequality as the one from Theorem 2.1 but for $\mu > 1$. So, on this step, we need a
different version of the previous statement which is given in the following theorem. However, the proof of it is very similar to the proof of the previous one.

Theorem 2.2. Let $u : \overline{B} \subset \mathbb{R}^n \rightarrow \mathbb{R}$, be a harmonic function, $\eta \in S$. Assume that $|u(\xi) - u(\eta)| \leq M|\xi - \eta|^\mu$, $\forall \xi \in S$, for some $\mu > 1$. Then we have $C = C(M, \mu, n)$ such that

$$|\nabla u(r\eta)| \leq C,$$

for every $r \in [0, 1)$.

Proof. The proof of the theorem for $r \in [\frac{1}{2}, 1)$ is identical to the previous theorem until (2.13).

$$\int_0^1 \frac{t^\mu}{(1 - r)^2 + t^2} dt \leq \int_0^1 t^{\mu-2} dt = \frac{1}{\mu - 1}$$

shows that the inequality is valid.

For $r \in [0, \frac{1}{2})$, similar to (2.15) we see that

$$\frac{|\xi - \eta|^\mu}{((1 - r)^2 + r|\xi - \eta|^2)^{\frac{\mu}{2}}}$$

is bounded, so therefore again from (2.11) we have our inequality. \qed

The next celebrated theorem will also be used. The proof can be found in [8].

Theorem 2.3. (Mori’s theorem) Let g be a K-quasiconformal mapping of B onto B, $n \geq 2$, with $g(0) = 0$. Then

$$|g(x) - g(y)| \leq M(n, K)|x - y|^{\beta},$$

for all $x, y \in B$, where $\beta = K^{-\frac{n}{2}}$.

We collect now the following useful result. The proof can be found in [29]. We will formulate it in the form which corresponds to our notation and use.

Theorem 2.4. Let u be a real harmonic function on \overline{B} and $\mu \in (0, 1)$ such that

(2.17) $||u(r\eta)| - |u(\eta)|| \leq C(1 - r)^{\mu}$, $\forall r \in [0, 1), \eta \in S,$

where C is independent of r and η, then u is μ-Hölder continuous in \overline{B}, i.e.:

$$|u(x) - u(y)| \leq M|x - y|^\mu,$$

for all $x, y \in \overline{B}$.

Using the previous theorem we can easily prove the following lemma.
Corollary 2.5. Let \(u \) be a real harmonic function on \(\overline{B} \) and \(\mu \in (0, 1) \) such that
\[
|\nabla u(r\eta)| \leq C(1 - r)^{\mu - 1}, \quad \forall r \in (0, 1), \eta \in S,
\]
where \(C \) does not depend on \(r \) and \(\eta \), then \(u \) is \(\mu \)-Hölder continuous in \(\overline{B} \).

Proof. In order to prove this lemma, based on the Theorem 2.4 and the relation (2.17), it is sufficient to prove
\[
(2.18) \quad |u(r\eta) - u(\eta)| \leq C(1 - r)^{\mu}, \quad \forall r \in [0, 1), \eta \in S.
\]

We have
\[
(2.19) \quad u(r\eta) - u(\eta) = \int_{\gamma_r} D_1 u\,dx_1 + \ldots + D_n u\,dx_n,
\]
where \(\gamma_r \) is the radial segment with endpoints \(r\eta \) and \(\eta \).

Therefore, we have
\[
|u(r\eta) - u(\eta)| \leq \int_{r}^{1} |\langle \nabla u(t\eta), \eta \rangle|\,dt
\]
\[
\leq C \int_{r}^{1} (1 - t)^{\mu - 1}\,dt
\]
\[
\leq C \frac{(1 - r)^{\mu}}{\mu}.
\]

\(\Box \)

3. Proof of the main result - Theorem 1.1

Proof. First, let we prove the Hölder continuity of \(f \). Indeed, let \(G \) be a quasiconformal diffeomeorphism (recall that \(\Omega \) has a \(C^{1,\alpha} \) boundary) from \(B^n \) to \(\Omega \) which is Lipschitz continuous mapping up to the boundary, such that \(G(0) = f(0) \). Then the mapping \(g = G^{-1} \circ f \) is a \(K' \) quasiconformal mapping (as a composition of two quasiconformal mappings) of \(B \) onto \(B \), where \(g(0) = 0 \). According to Mori’s theorem 2.3, there exist a constant \(M_1(n, K') \) such that
\[
|g(x) - g(y)| \leq M_1(n, K') |x - y|^{K'/1-n},
\]
for all \(x, y \in B^n \).

As \(f = G \circ g \), then \(f \) satisfies a similar inequality, being a composition of Lipschitz and Hölder continuous functions:
\[
(3.1) \quad |f(x) - f(y)| \leq C_1 |x - y|^\beta,
\]
for all \(x, y \in \overline{B}^n \), where \(\beta \in (0, 1) \), and the constant \(C_1 \) depends on \(M_1 \) and the Lipschitz constant of \(G \).
In view of the remark after the formulation of Theorem 3.1 there exists a neighbourhood \mathcal{O} of the origin in \mathbb{R}^{n-1} which is the projection of $\partial \Omega \cap B(0, \rho)$ in \mathbb{R}^{n-1} and a $C^{1,\alpha}$ function $\Phi : \mathcal{O} \to \mathbb{R}$ such that $\partial \Omega \cap B(0, \rho)$ can be expressed as the graphic of the following function:

\begin{equation}
\mathcal{O} \ni (\zeta_1, \ldots, \zeta_{n-1}) \mapsto (\zeta_1, \ldots, \zeta_{n-1}, \Phi(\zeta_1, \ldots, \zeta_{n-1})).
\end{equation}

The function Φ has the properties $\Phi(0, \ldots, 0) = 0$ and $D_j \Phi(0, \ldots, 0) = 0$, for all $j \in \{1, 2, \ldots, n-1\}$, and

\begin{equation}
|\nabla \Phi(\zeta) - \nabla \Phi(\omega)| \leq C_2|\zeta - \omega|^{\alpha}.
\end{equation}

The constant C_2 is the same for all points $q \in \partial \Omega$, because of the $C^{1,\alpha}$ condition of $\partial \Omega$.

Also,

\begin{equation}
|\Phi(\zeta) - \Phi(\omega)| = |\langle \nabla \Phi(c), \zeta - \omega \rangle| \leq |\nabla \Phi(c)||\zeta - \omega|,
\end{equation}

where c belongs to the segment $[\zeta, \omega]$.

Using (3.3) we get

\begin{equation}
|\nabla \Phi(c)| \leq |\nabla \Phi(\zeta)| + |\nabla \Phi(\omega)|
\leq C_2 (|\zeta|^{\alpha} + |c - \zeta|^{\alpha}) \leq C_2 (|\zeta|^{\alpha} + |\zeta - \omega|^{\alpha}),
\end{equation}

\begin{equation}
|\nabla \Phi(c)| \leq |\nabla \Phi(c) - \nabla \Phi(\omega)|
\leq C_2 (|\omega|^{\alpha} + |c - \omega|^{\alpha}) \leq C_2 (|\omega|^{\alpha} + |\zeta - \omega|^{\alpha}),
\end{equation}

which yields to

\begin{equation}
|\nabla \Phi(c)| \leq C_2 \min\{|\zeta|^{\alpha}, |\omega|^{\alpha}\} + |\zeta - \omega|^{\alpha}.
\end{equation}

Therefore, from (3.3) we have:

\begin{equation}
|\Phi(\zeta) - \Phi(\omega)| \leq C_2|\zeta - \omega|\min\{|\zeta|^{\alpha}, |\omega|^{\alpha}\} + |\zeta - \omega|^{\alpha},
\end{equation}

for all ζ, ω in \mathcal{O}.

Let $F = (F_1, \ldots, F_n) = f|_S$ or $P[F] = f$. Notice that F is also C^β in S.

We will use the notation $\tilde{F}(\xi) = (F_1(\xi), \ldots, F_{n-1}(\xi))$. \tilde{F}, as F, also satisfies (3.1). In view of (3.2) we have that in a small neighbourhood of η in S, F_n is of the form

\[F_n(\xi) = \Phi(F_1(\xi), \ldots, F_{n-1}(\xi)). \]

We may also assume that this neighbourhood of η is of the form $V(\eta) = B(\eta, \delta) \cap S$, where δ is small enough positive constant for all $q \in \partial \Omega$. Indeed, let $\tilde{U}(q) = B(q, r_q) \cap \partial \Omega$ be the neighbourhood of q in $\partial \Omega$ such that after the isometry L_q (the one that sends q to 0 and which makes the plane $x_n = 0$ the tangent plane of $\partial \Omega$ at point 0), $L_q(\tilde{U}(q))$ is the neighbourhood of 0 which is the graphic of a function as in (3.2). Furthermore, we can choose r_q small enough, such that for every point $p \in \tilde{U}(q)$, the image of $\tilde{U}(q)$ under the respective isometry L_p is a graphic of a function.
Observe now $U(q) = B(q, \frac{r_1}{2}) \cap \partial \Omega$. The collection $\{U(q)\}_{q \in \partial \Omega}$ is a cover of $\partial \Omega$. As $\partial \Omega$ is compact, there exists a finite subcollection $\{U(q_k)\}_{k=1}^m$ which covers $\partial \Omega$. Let $\rho = \min\{\frac{r_1}{2}, \ldots, \frac{r_m}{2}\}$. As F is continuous on a compact, then there exists a $\delta > 0$ such that if $|\xi_1 - \xi_2| < \delta$, $\xi_1, \xi_2 \in S$, then $|F(\xi_1) - F(\xi_2)| < \frac{\rho}{2}$.

This ensures that the image of every $V(\eta) = B(\eta, \delta) \cap S$ under F is contained in a $B(q_j, r_{q_j}) \cap \partial \Omega = \tilde{U}(q_j)$, and further, after the mentioned isometry is done, this image is the graphic of a function as in (3.2).

We get back to our fixed η, such that $f(\eta) = 0$. Now

$$|F_n(\xi) - F_n(\eta)| = |\Phi(\tilde{F}(\xi)) - \Phi(0)|$$

(3.8)

$$\leq C_2|\tilde{F}(\xi)||\min\{|\tilde{F}(\xi)|^\alpha, 0\} + |\tilde{F}(\xi) - 0|^\alpha|$$

$$= C_2|\tilde{F}(\xi)|^{1+\alpha} \leq C_1^{1+\alpha} C_2|\xi - \eta|^{(1+\alpha)\beta},$$

for all $\xi \in V(\eta)$. The function F_n is bounded, because $F = f|_S$ is bounded ($|F(\xi)| \leq \tilde{M}$, for all $\xi \in S$), so if $\xi \in S \setminus V(\eta)$ then

$$|F_n(\xi) - F_n(\eta)| \leq 2\tilde{M} \leq \frac{2m}{\delta(1+\alpha)^\beta} |\xi - \eta|^{(1+\alpha)\beta}. $$

(3.9)

Taking $M = \max\{C_1^{1+\alpha} C_2, \frac{2\tilde{M}}{\delta(1+\alpha)^\beta}\}$ we get

$$|F_n(\xi) - F_n(\eta)| \leq M|\xi - \eta|^{(1+\alpha)\beta},$$

(3.10)

for all $\xi \in S$.

Now, from Theorem 2.1 we have

$$|\nabla f_n(r\eta)| \leq C(1 - r)^{(1+\alpha)\beta - 1}, \quad \forall r \in [0, 1).$$

As f is quasiconformal mapping then

$$\max_{|h_1|=1} \frac{|f'(x)|h_1|}{\min_{|h_2|=1}} \leq K < \infty, \quad \forall x \in B.$$

Taking, $h_1 = e_j$ and $h_2 = e_n$, for $x = r\eta$ we have

$$|\nabla f_j(r\eta)| \leq K|\nabla f_n(r\eta)| \leq K \cdot C(1 - r)^{(1+\alpha)\beta - 1},$$

for all $j \in \{1, \ldots, n - 1\}$. This implies

$$|\nabla f_j(r\eta)| \leq C(1 - r)^{(1+\alpha)\beta - 1},$$

(3.11)

where C is a new global constant for all $j \in \{1, \ldots, n\}$, and all $r \in [0, 1)$.

We want to prove (3.11) in B. Let $\eta_1 \neq \eta$ be an arbitrary point on S and $f(\eta_1) = q_1$. Let L_{q_1} be the isometry that maps q_1 to 0, with $x_n = 0$ the tangent plane of $L_{q_1}(\partial \Omega)$ at $L_{q_1}(q_1) = 0$.
Let $L_q \circ f = \tilde{f} = (\tilde{f}_1, \ldots, \tilde{f}_n)$. Then \tilde{f} has all the properties of the function f with η_1 in place of η: at $\tilde{f}(\eta_1) = 0$ the tangent plane of the surface $L_q(\partial \Omega)$ is $x_n = 0$ and $\tilde{f}(\eta_1)$ has a neighbourhood in $L_q(\partial \Omega)$ which can be presented as a part of a graphic of the form (3.2). Using the same procedure, we conclude that

$$|\tilde{f}_j (r \eta_1)| \leq C (1 - r)^{(1+\alpha)\beta - 1},$$

for all $j \in \{1, \ldots, n\}$, and all $r \in [0, 1)$. Constant C is universal and it does not depend on η_1, because δ and M are independent of the choice of $\eta \in S$. As $f = L_q^{-1} \tilde{f}$, (L_q^{-1} is also an isometry) we get

$$f_j (\xi) = b_j + \sum_{i=1}^{n} a_{i,j} \tilde{f}_j (\xi),$$

$j \in \{1, \ldots, n\}$, so

$$\nabla f_j (\xi) = \sum_{i=1}^{n} a_{i,j} \nabla \tilde{f}_j (\xi),\quad (3.12)$$

where $\{a_{i,j}\}$ is an orthogonal matrix. From (3.12) we have:

$$|\nabla f_j (\xi)| \leq \sum_{i=1}^{n} |a_{i,j}| |\nabla \tilde{f}_j (\xi)|$$

$$\leq \left(\sum_{i=1}^{n} |\nabla \tilde{f}_j (\xi)|^2 \right)^{\frac{1}{2}}.\quad (3.13)$$

In the last inequality it is used the Cauchy-Schwartz inequality and the orthogonality of matrix $\{a_{i,j}\}_{i,j=1}^{n}$. Taking $\xi = r \eta_1$ we get

$$|\nabla f_j (r \eta_1)| \leq \sqrt{n} C (1 - r)^{(1+\alpha)\beta - 1}.$$

As the point η_1 was arbitrary we conclude

$$|\nabla f_j (x)| \leq C (1 - r)^{(1+\alpha)\beta - 1}, \quad r = |x|,$$

for all $x \in B$.

From Lemma 2.5 it follows that $f_j \in C^{(1+\alpha)\beta} (\overline{B})$, for all $j \in \{1, \ldots, n\}$ and so $f \in C^{(1+\alpha)\beta} (\overline{B})$.

We could have chosen $\beta < \frac{1}{2}$ (by decreasing it, if necessary) so the numbers $(1+\alpha)^k \beta \neq 1$, for every k. As $1 + \alpha > 1$ there exists a unique integer k_0 such that $(1+\alpha)^{k_0} \beta < 1$ and $(1+\alpha)^{k_0+1} \beta > 1$. Repeating the procedure, we now get that $f \in C^{(1+\alpha)^{k_0} \beta} (\overline{B}), \ldots, C^{(1+\alpha)^{k_0+1} \beta} (\overline{B})$. Similar to (3.8) it follows that

$$|F_n (\xi) - F_n (\eta)| \leq M |\xi - \eta|^{(1+\alpha)^{k_0+1} \beta}, \quad \forall \xi \in S.$$

This time, using Theorem 2.2 we obtain

$$|\nabla f_n (r \eta)| \leq C, \quad \forall r \in [0,1).$$
Using the same order of implications, first we get the same inequality for every f_k on points $rη$. Then, using the isometries, we get the inequality on every point of B for a global constant C. This implies trivially, by mean value inequality, the Lipschitz continuity of function f in B.

\[\square\]

References

[1] L. Ahlfors: Lectures on Quasiconformal Mappings, Van Nostrnad, Princeton (1996).
[2] M. Arsenović, V. Božin, V. Manojlović: Moduli of Continuity of Harmonic Quasiregular Mappings in B^n, Potential analysis vol 34 (2011) 283-291.
[3] K. Astala, V. Manojlović: On Pavlovic theorem in space Potential Anal. 43, No. 3, 361–370 (2015).
[4] S. Axler, P. Bourdon, W. Ramey: Harmonic function theory, Springer-Verlag New York (2000).
[5] V. Božin, M. Matejević: Quasiconformal and HQC mappings between Lyapunov Jordan domains pp. 23 Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) DOI Number: 10.2422/2036-2145.201708_013.
[6] P. Caraman: n-dimensional quasiconformal (QCf) mappings Editura Academiei Romane, Bucharest; Abacus Press, Newfoundland, N.J., 1974.
[7] P. Duren: Harmonic mappings in the plane Cambridge University Press, 2004.
[8] R. Fehlmann, M. Vuorinen: Moris theorem for n-dimensional quasiconformal mappings Ann. Acad. Sci. Fenn. Ser. A I Math. 13 (1988), no. 1, 111-124
[9] F. W. Gehring, O. Martio: Lipschitz classes and quasiconformal mappings Ann. Acad. Sci. Fenn., Ser. A I Math. 10, 203-219 (1985).
[10] G.M. Goluzin: Geometric function theory of a Complex Variable, Transl. Of Math. Monographs 26. - Providence: AMS, 1969.
[11] D. Kalaj: Quasiconformal harmonic mapping between Jordan domains Math. Z. 260, No. 2, 237-252, 2008.
[12] D. Kalaj: Quasiconformal harmonic mappings between Dini’s smooth Jordan domains Pac. J. Math. 276, 213-228 (2015).
[13] D. Kalaj: A priori estimate of gradient of a solution to certain differential inequality and quasiconformal mappings Journal dAnalyse Math. Volume 119, 2013, pp 63-88.
[14] D. Kalaj: On boundary correspondences under quasiconformal harmonic mappings between smooth Jordan domains Math. Nachr. 285, No. 2-3, 283-294 (2012).
[15] D. Kalaj: Harmonic mappings and distance function Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 10, No. 3, 669-681 (2011).
[16] D. Kalaj: Harmonic quasiconformal mappings between C^1 smooth Jordan domains arXiv:2003.03665
[17] D. Kalaj, B. Lamel: Minimisers and Kellogg’s theorem, Mathematische Annalen (2020).
[18] D. Kalaj, M. Matejević: $(K, K’)$-quasiconformal harmonic mappings Potential Anal. 36(1), 117-135 (2012)
[19] D. Kalaj, M. Pavlović: Boundary correspondence under quasiconformal harmonic diffeomorphisms of a half-plane Ann. Acad. Sci. Fenn., Math. 30, No. 1, 159-165 (2005).
[20] D. Kalaj, A. Zlatićanin: Quasiconformal mappings with controlled Laplacian and Hölder continuity Ann. Acad. Sci. Fenn., Math. 44, No. 2, 797-803 (2019)
[21] O. Kellogg: On the derivatives of harmonic functions on the boundary Trans. Amer. Math. Soc. 33 (1931), 689-692.
[22] V. Manojlović: Bi-Lipschicity of quasiconformal harmonic mappings in the plane Filomat 23, No. 1, 85-89 (2009).
QCH mappings between unit ball and domain with $C^{1,\alpha}$ boundary

13

[23] O. Martio: On harmonic quasiconformal mappings Ann. Acad. Sci. Fenn., Ser. A I 425 (1968), 3-10.

[24] O. Martio, R. Näkki: Hölder continuity and quasiconformal mappings J. London Math. Soc. (2) 44 (1991), no. 2, 339-350.

[25] M. Matejić, M. Vuorinen: On harmonic quasiconformal quasi-isometries J Inequal. Appl. 2010, Article ID 178732, 19 p. (2010).

[26] J. C. C. Nitsche: The boundary behavior of minimal surfaces. Kellogg’s theorem and branch points on the boundary Invent. Math. 8, 313-333 (1969).

[27] D. Partyka, K. Sakai: On bi-Lipschitz type inequalities for quasiconformal harmonic mappings Ann. Acad. Sci. Fenn. Math. Vol 32, pp. 579-594 (2007).

[28] D. Partyka, K.I. Sakai, J.-F. Zhu: Quasiconformal harmonic mappings with the convex holomorphic part Ann. Acad. Sci. Fenn., Math. 43, No. 1, 401-418 (2018); erratum ibid. 43, No. 2, 1085-1086 (2018).

[29] M. Pavlović: Lipschitz conditions on the modulus of a harmonic function Rev. Mat. Iberoam. 23 (2007), no. 3, 831-845.

[30] M. Pavlović: Boundary correspondence under harmonic quasiconformal homeomorphisms of the unit disc Ann. Acad. Sci. Fenn., 27, 365-372 (2002).

[31] E. M. Stein: Singular integrals and differentiability properties of functions Princeton Mathematical Series 30. Princeton University Press, Princeton, N.J. 1970.

[32] J. Väisälä: Lectures on n-dimensional quasiconformal mappings, Lecture notes Math., 229, Springer-Verlag, Berlin-New York, 1971.

University of Montenegro, Faculty of Natural Sciences and Mathematics, Cetinjski put b.b. 81000 Podgorica, Montenegro

E-mail address: antondj@ucg.ac.me

E-mail address: davidk@ucg.ac.me