Duality and the geometric measure of entanglement of general multiqubit W states

Sayatnova Tamaryan
Theory Department, Yerevan Physics Institute, Yerevan, 375036, Armenia

Anthony Sudbery
Department of Mathematics, University of York, Heslington, York, YO10 5DD, U.K.

Levon Tamaryan
Physics Department, Yerevan State University, Yerevan, 375025, Armenia and
Theory Department, Yerevan Physics Institute, Yerevan, 375036, Armenia

We find the nearest product states for arbitrary generalised W states of \(n \) qubits, and show that the nearest product state is essentially unique if the W state is highly entangled. It is specified by a unit vector in Euclidean \(n \)-dimensional space. We use this duality between unit vectors and highly entangled W states to find the geometric measure of entanglement of such states.

PACS numbers: 03.67.Mn, 03.65.Ud, 02.10.Xm
Keywords: quantum entanglement, multiparticle systems, exactly solvable models

\(a. \ Introduction. \) Quantifying entanglement of multiparticle pure states presents a real challenge to physicists. Intensive studies are under way and different entanglement measures have been proposed over the years [1–6]. However, it is generally impossible to calculate their value because the definition of any multipartite entanglement measure usually includes a massive optimization over certain quantum protocols or states [7–9].

Inextricable difficulties of the optimization are rooted in a tangle of different obstacles. First, the number of entanglement parameters grows exponentially with the number of particles involved [10]. Second, in the multipartite setting several inequivalent classes of entanglement exist [11, 12]. Third, the geometry of entangled regions of robust states is complicated [13]. All of these make the usual optimization methods ineffective [13–15]. Concise and elegant tools are required to overcome this problem.

A widely used measure for multiparticle systems is the geometric measure of entanglement \(E_\vartheta \) [16], i.e. the distance from the nearest product state. For an \(n \)-part pure state \(\psi \) it is defined as \(E_\vartheta(\psi) = -2 \ln g(\psi), \) where the maximal product overlap \(g(\psi) \) is given by

\[
g(\psi) = \max_{u_1, u_2, \ldots, u_k} |\langle u_1 u_2 \ldots u_k | \psi \rangle|,
\]

and the maximization is performed over all product states. The maximal product overlap has many remarkable applications. Among them are: it singles out the multipartite states applicable for perfect quantum teleportation and superdense coding [13], it can create a generalized Schmidt decomposition for arbitrary \(n \)-part systems [17], it identifies irregularity in channel capacity additivity [18], it quantifies the difficulty of distinguishing multipartite quantum states by local means [19], it is a good entanglement estimator for quantum phase transitions in spin models [20], it detects a one-parameter family of maximally entangled states [21], and it can be easily estimated in experiments [22].

In what follows states with \(g^2 > 1/2 \) are referred to as highly entangled and states with \(g^2 < 1/2 \) are referred to as slightly entangled, states with \(g^2 = 1/2 \) are referred to as shared quantum states. In this Letter we show how to calculate the maximal product overlap of an arbitrary W state [11]. The method is to establish a one-to-one correspondence between highly entangled W states and their nearest product states.

Consider first generalized Greenberger-Horne-Zeilinger states [23], i.e. states that can be written \(|GHZ\rangle = a |00\ldots 0 \rangle + b |1\ldots 1 \rangle \) in some product basis. Such states are fragile under local decoherence, i.e. they become disentangled by the loss of any one party, and they are not highly entangled in the sense defined above. The geometric measure of these states is computed easily since the maximal overlap simply takes the value of the modulus of the larger coefficient, \(|a| \) or \(|b| \) [24]. Accordingly, the nearest separable state is the product state with the larger coefficient. Thus many generalized GHZ states with different maximal overlaps can have the same nearest product state.

Consider now generalized W-states [25], which can be written

\[
|W_n\rangle = c_1 |100\ldots 0 \rangle + c_2 |010\ldots 0 \rangle + \cdots + c_n |00\ldots 01 \rangle. \tag{1}
\]

Without loss of generality we consider only the case of positive parameters \(c_k \) since the phases of the coefficients \(c_k \) can be eliminated by redefinitions of local states \(|1_k\rangle, \ k = 1, 2, \ldots, n \). The states (1) are robust against decoherence [26], i.e. loss of any \(n - 2 \) parties still leaves them in a bipartite entangled state. Surprisingly, if the state is slightly entangled, then we have the same situation as for generalized GHZ states: the maximal overlap is the largest coefficient and, as before, many states can have the same nearest product state [27]. However, the situation is changed drastically when the state is highly entangled. The calculation of the maximal overlap in this case is a very difficult problem and the maximization has been performed only for relatively simple systems [9, 14, 16, 24, 27–30].

On the other hand, different highly entangled W-states have different nearest product states. This makes it possible to map the W-state to its nearest product state and quickly obtain its geometric measure of entanglement. More precisely,
we construct two bijections. The first one creates a map between highly entangled n-qubit W states and n-dimensional unit vectors x. The second one does the same between n-dimensional unit vectors and n-part product states. Thus we obtain a double map, or duality, as follows

$$|W_n\rangle \leftrightarrow x \leftrightarrow |u_1\rangle \otimes |u_2\rangle \otimes \cdots \otimes |u_n\rangle. \quad (2)$$

The main advantage of the map is that if one knows any of the three vectors, then one instantly finds the other two.

b. Classifying map. Now we prove a theorem that provides a basis for the map.

Theorem 1. Let $|W_n\rangle$ be an arbitrary W state (1) with non-negative real coefficients c_k, and let $|u_1\rangle \otimes |u_2\rangle \otimes \cdots \otimes |u_n\rangle$ be its nearest product state. Then the phase of $|u_k\rangle$ can be chosen so that

$$|u_k\rangle = \sin \theta_k |0\rangle + \cos \theta_k |1\rangle, \quad 0 \leq \theta_k \leq \frac{\pi}{2}, \quad k = 1, 2, \ldots, n.$$

where

$$\cos^2 \theta_1 + \cos^2 \theta_2 + \cdots + \cos^2 \theta_n = 1. \quad (3)$$

Proof. The nearest product state is a stationary point for the overlap with $|W_n\rangle$, so the states $|u_k\rangle$ satisfy the nonlinear eigenvalue equations [9, 16, 17]

$$\langle u_1 u_2 \cdots \hat{u}_k \cdots u_n | W_n \rangle = g |u_k\rangle; \quad k = 1, 2, \ldots, n \quad (4)$$

where the caret means exclusion. We can choose the phase of $|u_k\rangle$ so that $|u_k\rangle = \sin \theta_k |0\rangle + e^{i\phi_k} \cos \theta_k |1\rangle$, and then (4) gives the pair of equations

$$c_k \prod_{j \neq k} \sin \theta_j = g e^{i\phi_k} \cos \theta_k, \quad (5a)$$

$$\sum_{l \neq k} e^{-i\phi_l} c_l \cos \theta_l \prod_{j \neq k,l} \sin \theta_j = g \sin \theta_k. \quad (5b)$$

Eq. (5a) shows that $g e^{i\phi_k}$ is real, so $\phi_k = -\arg(g)$ is independent of k. Then the modulus of the overlap $|\langle u_1 \cdots u_n | W_n \rangle|$ is independent of ϕ, so we can assume that $\phi = 0$. Now multiplying eq.(5b) by $\sin \theta_k$ and using eq.(5a) gives Eq.(3).

Thus the angles $\cos \theta_k$ define a unit n-dimensional Euclidean vector x. We can also define a length r as follows. From Eq.(5a) it follows that the ratio $\sin 2\theta_k / c_k$ does not depend on k. If this ratio is non-zero we can define

$$\frac{1}{r} \equiv \frac{\sin 2\theta_1}{c_1} = \frac{\sin 2\theta_2}{c_2} = \cdots = \frac{\sin 2\theta_n}{c_n}. \quad (6)$$

c. Highly entangled W states. Equations (5) admit a trivial solution $\sin 2\theta_k = 0$, $k = 1, 2, \ldots, n$ and a special solution with nonzero values of all sines. The trivial solution gives the largest coefficient of $|W_n\rangle$ for the maximal overlap and is valid for slightly entangled states. We consider them later and now focus on the special solutions. From Eq.(6) it follows that

$$\cos^2 \theta_k = \frac{1}{2} \left(1 \pm \sqrt{1 - \frac{c_k^2}{r^2}}\right), \quad k = 1, 2, \ldots, n. \quad (7)$$

The plus sign means that $\cos 2\theta_k > 0$. Then from Eq.(3) it follows that this is possible for at most one angle; specifically, we prove that if $\cos 2\theta_k > 0$ for some k, then c_k is the largest coefficient in Eq.(1). Suppose $\cos 2\theta_k > 0$ but c_k is not the largest coefficient and there exists a greater coefficient, say c_l. Then from Eq.(6) it follows that $\sin 2\theta_l > \sin 2\theta_k > 0$ and consequently $|\cos 2\theta_l| < |\cos 2\theta_k|$. Now we rewrite Eq.(3) as follows:

$$-\cos 2\theta_1 - \cos 2\theta_2 - \cdots - \cos 2\theta_n = n - 2. \quad (8)$$

From $|\cos 2\theta_l| < |\cos 2\theta_k|$ and $\cos 2\theta_k > 0$ it follows that $-\cos 2\theta_k - \cos 2\theta_l < 0$ which is in contradiction with Eq.(8). Thus c_k must be the largest coefficient.

Without loss of generality we assume that $0 \leq c_1 \leq \cdots \leq c_n$. Then in (7) we must take the $-$ sign for $k = 1, \ldots, n$ and (3) becomes

$$\sqrt{1 - \frac{c_1^2}{r^2}} + \cdots + \sqrt{1 - \frac{c_n^2}{r^2}} = n - 2. \quad (9)$$

We will denote the left-hand sides of these equations as $f_\pm(r)$. We also use $f_0(r)$ to denote this expression without the last term. The function $r(c_1, c_2, \ldots, c_n)$ defined by $f_+(r) = n - 2$ is a completely symmetric function of the state parameters c_k. In contrast, the function defined by $f_-(r) = n - 2$ is an asymmetric function since its dependence on the maximal coefficient c_n is different. Thus in equation (9) the upper and lower signs describe symmetric and asymmetric entangled regions of highly entangled states, respectively.

For highly entangled states, eqs. (9)$_\pm$ uniquely define r as a function of the state parameters c_k. More precisely,

Theorem 2. There are two critical values r_1 and r_2 of the largest coefficient c_n, i.e. functions of c_1, \ldots, c_{n-1} such that

1. If $c_n \leq r_1$, there is a unique solution of (9)$_+$ and no solution of (9)$_-$;

2. If $c_n = r_1$, both (9)$_+$ and (9)$_-$ have a unique solution, the same for both;

3. If $r_1 < c_n \leq r_2$, there is no solution of (9)$_+$ and a unique solution of (9)$_-$;

4. If $c_n > r_2$, neither (9)$_+$ nor (9)$_-$ has a solution. In this case the state $|W_n\rangle$ is slightly entangled.
The value r_1 is the solution of $f_0(r_1) = n - 2$, which exists and is unique since $f_0(c_{n-1}) < n - 2$ and $f_0(r) \to n - 1$ monotonically as $r \to \infty$; and r_2 is defined by

$$r_2^2 = c_1^2 + \cdots + c_{n-1}^2.$$ (10)

Then $r_2 \geq r_1$, for $f_0(r_2) \geq n - 2 = f_0(r_1)$ using $\sqrt{x} \geq x$ for $0 \leq x \leq 1$. Since f_0 is an increasing function of r, it follows that $r_2 \geq r_1$. Now the theorem follows from the following properties of the functions $f_\pm(r)(f'_\pm$ is the derivative of $f_-)$:

1. f_0 and f_\pm are monotonically increasing functions of r.
2. $f_+(r) \to n$ as $r \to \infty$.
3. If $c_n \leq r_1$, $f_+(c_n) = f_0(c_n) \leq f_0(r_1) = n - 2$.
4. If $c_n \geq r_1$, then $f_+(r) \geq n - 2$ for all $r > r_1$.
5. If $c_n < r_1$, then $f_-(r) < n - 2$.
6. If $c_n > r_1$, then $f_-(c_n) > n - 2$.
7. If $c_n < r_2$, then $f_-(r) < n - 2$ for large r.
8. If $c_n > r_2$, then $f_-(r) > n - 2$ for large r.
9. $f'_-(c_n + \epsilon) < 0$ for small ϵ.
10. If $c_n > r_2$, then $f'_-(r) < 0$ for all $r \geq c_n$.

These properties are illustrated in Figure 1.

![Figure 1](image_url)

FIG. 1: (Color online) The behaviour of the functions f_\pm for five-qubit W states. The function $f_+(r)$ (dotted line) and $f_-(r)$ (solid line) are plotted against r in the four cases $c_n < r_1$, $c_n = r_1$, $r_1 < c_n < r_2$ and $c_n = r_2$.

d. **Geometric measure.** We can now identify the nearest product state, and the largest product state overlap $g(|W_n\rangle)$, for any W-state $|W_n\rangle$, as follows.

Theorem 3. If $c_n \geq 1/2$, the state $|W_n\rangle$ defined by (1) is slightly entangled. Its nearest product state is $|0\rangle \ldots |0\rangle$, with overlap $g(|W_n\rangle) = c_n$.

If $c_n \leq 1/2$, the state $|W_n\rangle$ is highly entangled and has nearest product state

$$|u_1\rangle \ldots |u_n\rangle$$ where $|u_k\rangle = \sin \theta_k |0\rangle + |e^{i\phi} \cos \theta_k |1\rangle$, (11)

with which its overlap is

$$g = 2r \sin \theta_1 \sin \theta_2 \ldots \sin \theta_n.$$ (12)

Here r is the solution of $(9)_k$, whose existence and uniqueness are guaranteed by Theorem 2; the phase ϕ is arbitrary; and θ_k is given by (7) with the $-\text{sign for } k = 1, \ldots, n - 1$, the $-\text{sign for } k = n$ if r satisfies $(9)_+$, the $+\text{sign if } r$ satisfies $(9)_-$.

Proof. The nonlinear eigenvalue equations (4) always have n solutions

$$g = c_k, \quad |u_i\rangle = \begin{cases} |0\rangle & \text{if } i \neq k, \\ |1\rangle & \text{if } i = k \end{cases}, \quad k = 1 \ldots n$$

If $c_n \geq 2$, i.e. in case (4) of Theorem 2, there are no other stationary values, so the largest overlap $g(|W_n\rangle)$ equals the largest coefficient c_n, the corresponding product state being $|0\ldots 0\rangle$.

If $c_n < 1/2$ there is another stationary value given by (12).

We will now show that this is larger than any of the trivial stationary values c_k. We use the following inequality: If y_1, \ldots, y_n are real numbers lying between 0 and 1, and satisfying $y_1 + \cdots + y_n \leq 1$, then

$$(1 - y_1)(1 - y_2) \cdots (1 - y_n) \geq 1 - y_1 - y_2 - \ldots - y_n. \quad (13)$$

This is readily proved by induction. We can apply (13) to $n - 1$ terms of Eq.(3) to get

$$(1 - \cos^2 \theta_1) \cdots (1 - \cos^2 \theta_{n-1}) \geq 1 - \cos^2 \theta_1 - \cdots - \cos^2 \theta_{n-1}$$

or

$$\sin^2 \theta_1 \sin^2 \theta_2 \sin^2 \theta_{n-1} \geq \cos^2 \theta_n. \quad (14)$$

Now from Eq.(5a) it follows that $g^2 \geq c_n^2$. Thus g is the maximal product overlap, and the nearest product state is $|0\ldots u_n\rangle$.

Next we prove that if $|W_n\rangle$ is normalised, then $g^2 < 1/2$.

For this we need another inequality: If y_1, \ldots, y_n are real numbers lying between 0 and 1, and satisfying $y_1 + \cdots + y_n = n - 1$, then

$$y_1 + \cdots + y_n \geq y_1^2 + \cdots + y_n^2 + 2y_1 y_2 \cdots y_n. \quad (15)$$

This can also be proved by induction.

From (6), and using $c_1^2 + \cdots + c_n^2 = 1$, we find

$$r^2 = \frac{1}{\sin^2 2\theta_1 + \cdots + \sin^2 2\theta_n}. \quad (16)$$

Hence (12) gives

$$g^2 = \frac{y_1 y_2 \cdots y_n}{y_1 (1 - y_1) + \cdots + y_n (1 - y_n)} \quad (17)$$

where $y_k = \sin^2 \theta_k$. But $y_1 + \cdots + y_n = n - 1$, so the inequality (15) applies, and gives $g^2 \leq 1/2$.

Finally, we summarise the correspondence between highly entangled W-states, their nearest product states, and unit vectors in \mathbb{R}^n.

Theorem 4. There is a 1:1 correspondence between highly entangled states $|W_n\rangle$ defined by (1), their nearest product states with real non-negative coefficients, and unit vectors $x \in \mathbb{R}^n$ with $0 < x_k < 1/\sqrt{2} (k = 1, \ldots, n - 1), 0 < x_n < 1$.

Proof. By Theorem 3, $|W_n\rangle$ is highly entangled if and only if $c_n < 1/2$. If this is the case, Theorem 1 and (7) show that its nearest product state is of the form (11) where $x = (\cos \theta_1, \ldots, \cos \theta_n)$ is a unit vector in \mathbb{R}^n in the region stated. The angles θ_k are given in terms of the coefficients c_k by (6), in which r is a function of the coefficients which, by Theorem 2, is uniquely defined. The nearest product states $|u_1\rangle|u_2\rangle\cdots|u_n\rangle$ are given by these angles, up to a phase $\phi_k = \sin \theta_k|0\rangle + e^{i\phi} \cos \theta_k|1\rangle$, so there is only one nearest product state with real non-negative coefficients, and only one unit vector x, for each highly entangled state $|W_n\rangle$. Conversely, given a unit vector $x = (\cos \theta_1, \ldots, \cos \theta_n)$, the quantity r is determined by (16), and then the coefficients c_1, \ldots, c_n are determined by (6). Thus the correspondences (2) are bijections.

The angles θ_k are determined by (6). Thus the correspondences (2) are bijections. Conversely, given a unit vector $x = (\cos \theta_1, \ldots, \cos \theta_n)$, the quantity r is determined by (16), and then the coefficients c_1, \ldots, c_n are determined by (6). Thus the correspondences (2) are bijections.

The equations (9±) cannot always be explicitly solved to give analytic expressions for r in terms of the coefficients c_k. However, in some cases, including all states for $n = 3$, explicit solutions can be obtained. Then the angles θ_k can be calculated from (6) and eq.(12) gives a formula for the maximal product overlap $g(|W_n\rangle)$. This formula is valid unless any of the angles θ_k vanishes, and restores all known results for the maximal overlap of highly entangled W states. When $n = 3$ it coincides with the formula (31) in Ref.[9]. When $c_1 = c_2 = \cdots = c_n$ it coincides with the formula (52) in Ref.[24]. And when $n = 4$ and $c_3 = c_4$ it coincides with the formula (37) derived in Ref.[27].

When $\max(c_1^2, c_2^2, \ldots, c_n^2) = r_2^2 = 1/2$ the two expressions for $g(|W_n\rangle)$ given in Theorem 3 coincide; these states are shared quantum states. The nearest product states and maximal overlaps of shared states are given by the first case of Theorem 3, but also they appear as asymptotic limits of the second case. Indeed, at the limit $\theta_n \to 0$ we have

\[\lim_{\theta_n \to 0} 2r \sin \theta_n \to c_n, \quad \lim_{\theta_n \to 0} 2r \cos \theta_k \to c_k, \ k \neq n. \quad (18) \]

Thus the angle θ_n vanishes and the length of the vector r goes to infinity, but their product has a finite limit. Substituting these limits into Eq.(3) one obtains $r_n^2 \to r_2^2$. Therefore entangled regions of highly and slightly entangled states are separated by the surface $c_n^2 = 1/2$; for states on the surface, $r \to \infty$. All of these states can be used as a quantum channel for the perfect teleportation and superdense coding [13].

Acknowledgments

This work was supported by ANSEF grant PS-1852.

References

[1] C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, Phys. Rev. Lett. 76, 722 (1996).
[2] C. H. Bennett, D. P. DiVincenzo, C. A. Fuchs, T. Mor, E. Rains, P. W. Shor, J. A. Smolin, and W. K. Wootters, Phys. Rev. A 59, 1070 (1999).
[3] A. Shimony, Ann. NY. Acad. Sci. 755, 675 1995.
[4] V. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight, Phys. Rev. Lett. 78, 2275 (1997).
[5] K. Zyczkowski, P. Horodecki, A. Sanpera, and M. Lewenstein, Phys. Rev. A 58, 883 (1998).
[6] A. Harrow and M. Nielsen, Phys. Rev. A 68, 012308 (2003).
[7] W. K. Wootters, Phys. Rev. Lett. 80, 2245 (1998).
[8] B. M. Terhal and K. G. H. Vollbrecht, Phys. Rev. Lett. 85, 2625 (2000).
[9] L. Tamaryan, D. K. Park and S. Tamaryan, Phys. Rev. A 77, 022325 (2008).
[10] T. Smolin, S. Popescu and A. Sudbery, Phys. Rev. Lett. 83, 243 (1999).
[11] W. Dür, G. Vidal and J. I. Cirac, Phys.Rev. A 62, 062314 (2001).
[12] F. Verstraete, J. Dehaene, B. De Moor, and H. Verschelde, Phys. Rev. A 65, 052112 (2002).
[13] L. Tamaryan, D. K. Park, J.-W Son, and S. Tamaryan, Phys. Rev. A 78, 032304 (2008).
[14] J. J. Hilling and A. Sudbery, arXiv:0905.2094v3[quant-ph].
[15] R. Hübener, M. Kleinmann, T.-C. Wei, and O. Gühne, Phys. Rev. A 80, 032324 (2009).
[16] T.-C. Wei and P. M. Goldbart, Phys. Rev. A 68, 042307 (2003).
[17] H. A. Carteret, A. Higuchi, and A. Sudbery, J. Math. Phys. 41, 7932 (2000).
[18] R. Werner and A. Holevo, J. Math. Phys. 43, 4353 (2002).
[19] M. Hayashi, D. Markham, M. Murao, M. Owari, and S. Virmani, Phys. Rev. Lett. 96, (2006) 040501.
[20] R. Orús, S. Dusuel, and J. Vidal, Phys. Rev. Lett. 101, 025701 (2008).
[21] S. Tamaryan, T.-C. Wei, and D.K. Park, Phys. Rev. A 80, 052315 (2009).
[22] O. Gühne, M. Reimpell and R. F. Werner, Phys. Rev. Lett. 98, 210502 (2007).
[23] D. M. Greenberger, M. A. Horne, and A. Zeilinger, Bell’s Theorem, Quantum Theory, and Conceptions of the Universe, M. Kafatos, ed., Kluwer, Dordrecht, 1989.
[24] Y. Shimoni, D. Shapira, and O. Biham, Phys. Rev. A 69, 062303 (2004).
[25] P. Parashar and S. Rana, Phys. Rev. A 80, 012319 (2009).
[26] R. G. Unanyan, M. Fleischhauer, N. V. Vitanov, and K. Bergmann, Phys. Rev. A 66, 042101 (2002).
[27] L. Tamaryan, H. Kim, E. Jung, M.-R. Hwang, D.K. Park, and S. Tamaryan, J. Phys. A: Math. Theor. 42, 475303 (2009).
[28] M. Hayashi, D. Markham, M. Murao, M. Owari, and S. Virmani, Phys. Rev. A, 77, 012104 (2008).
[29] J. Martin, O. Giraud, P. A. Braun, D. Braun, and T. Bastin, arXiv:1003.0593v1 [quant-ph].
[30] H. Zhu, L. Chen, and M. Hayashi, arXiv:1002.2511[quant-ph].