Elementary preservation of the Noetherian condition and the potential applications in computational physics

D A J Gómez-Ramírez¹, J D Vélez-Caidedo², and E Gallego-Gonzalez³

¹ Institución Universitaria Pascual Bravo, Medellín, Colombia
² Universidad Nacional de Colombia, Medellín, Colombia
³ Universidad de Antioquia, Medellín, Colombia

E-mail: daj.gomezramirez@gmail.com, jdvelez@unal.edu.co

Abstract. We give an elementary proof of the preservation of the Noetherian condition for commutative rings with unity R having at least one finitely generated ideal I such that the quotient ring is again finitely generated, and R is I–adically complete. Moreover, we offer as a direct corollary a new elementary proof of the fact that if a ring is Noetherian then the corresponding ring of formal power series in finitely many variables is Noetherian. Furthermore, we discuss the potential applications that this new elementary proof possesses regarding the simplification of conceptual generations in mathematics and computational physics based on the new computational paradigm of Artificial Mathematical Intelligence. In addition, we give a counterexample showing that the ‘completion’ condition cannot be avoided on the former theorem. Lastly, we give an elementary characterization of Noetherian commutative rings that can be decomposed as a finite direct product of fields.

1. Introduction
Among the most studied rings in commutative algebra are the Noetherian ones, i.e., commutative rings with unity such that every ideal can be finitely generated. Moreover, one needs to increase a little bit the level of formal sophistication in order to find simple examples of non-Noetherian structures such as the ring of polynomials in countable many variables over a field or the ring of algebraic integers. So, (elementary) results preserving and implying the Noetherian condition after the application of standard algebraic operations (such as completion, quotient, localization, etc.) are quite useful [1–4]. Similarly, new characterizations of (stronger forms of the) Noetherian condition are oft very valuable for enlightening our understanding of what finite generation in (non-)commutative algebra means [5–8].

2. Methodology
We will prove in an elementary way two results concerning, on the one hand, the preservation of the Noetherian condition for a commutative ring with unity R having at least one finitely generated ideal I such that the quotient ring is again finitely generated and R is I–adically complete. In addition, we also offer as a corollary a new elementary proof of the fact that the
ring of formal power series in finitely many variables is Noetherian, if its ring of coefficient so is, and we give a counterexample showing that the “completion” condition cannot be avoided.

On the other hand, we give a quite simple algebraic characterization of Noetherian commutative rings that can be decomposed as a finite direct product of fields. The former results have a huge potential in mathematics and in an extended manner in theoretical, computational and experimental physics due to the fact that one can meta-model artificially the mathematical structures (notions and proofs) described here via the meta-formalizations of the fundamental (meta-mathematical) cognitive mechanisms used by the mind in order to generated them [9]. Even more, due to the elementary nature of the arguments and notions used one can obtain more simple pseudo-precode [10] for the subsequent generation of the corresponding computer programs supporting and modeling such concepts and (mathematical) arguments. Moreover, such a computational framework has the additional potential of helping to get a better understanding (both computationally and conceptually) of related formal phenomena in elementary particle physics, string theory and related fields [11,12].

3. Results and discussion
In this section, we will prove the main results of this paper regarding the preservation of the Noetherian condition for formal power series under suitable conditions, together with an enlightening example for the obligatory nature of the completeness hypothesis. Subsequently, we describe a simple algebraic condition characterizing the fact of being a finite product of rings. By a ring we will mean a commutative ring with identity, not necessarily Noetherian.

3.1. Preservation properties of the noetherian condition involving a special class of finitely generated ideals
Let \(R \) be a ring, and let \(I \) be an ideal of \(R \). We will show that if \(I \) is finitely generated and \(R/I \) is Noetherian, then the completion of \(R \) with respect to the \(I \)-adic topology is also Noetherian. In general one cannot expect \(R \) to be Noetherian under these hypothesis, as shown in Example 3.1.1 below. This result can be regarded as a generalization of the following well known corollary to the Cohen structure theorems [13, 14]: if \((R, m)\) is a quasilocal complete ring (with respect to the \(m \)-adic topology) then \(R \) is Noetherian if \(m \) is finitely generated. The Noetherian property is deduced from the fact that under these hypothesis \(R \) is a quotient of a power series ring over a complete discrete valuation ring. We observe that this result can be recovered immediately from theorem 3.1 as the very special case when \(I \) is maximal, since \(R/I \) is a field, hence automatically Noetherian. While Cohen structure theorems require some machinery, the result below is totally elementary. As a corollary, we deduce a quite elementary new proof of the fact that If \(A \) is Noetherian, so it is the power series ring \(A[[x_1,\ldots,x_n]] \).

Theorem 1. Let \(R \) be a ring, and let \(I \) be a finitely generated ideal of \(R \). Suppose that \(R \) is \(I \)-adically complete, and that \(R/I \) is Noetherian. Then \(R \) is also Noetherian.

Proof. If \(R \) were not Noetherian, a standard argument using Zorn’s Lemma shows that there is a maximal ideal \(P \) in \(R \) with respect to the property of not being finitely generated, and this ideal is necessarily prime. It is clear that \(P \) does not contain \(I \), otherwise, since \(R/I \) is Noetherian, any lifting of a set of generator for \(P/I \) coupled with generators of \(I \) would also generate \(P \). Thus, we may assume that there exist \(z \in I \) such that \(z \notin P \). By the maximality of \(P \), the ideal \(P+Rz \) must be finitely generated. Let \(f_1+r_1z, i = 1,\ldots,n \) be any set of generators, with \(f_i \in P \). We claim that \(\{f_1,\ldots,f_n\} \) is a set of generators for \(P \). Let \(f \) be any element of \(P \). Then, since \(f \) is a priory in \(P+Rz \) there must be elements \(g_i^{(0)} \in R \) such that \(f \) is represented by Equation (1).
Proof. Let \(f(1) = \sum_{i=1}^{n} g_i^{(0)} r_i \). Hence, by Equation (1), which expresses \(f \) in terms of the generators of \(P + Rz, f - \sum_{i=1}^{n} g_i^{(0)} f_i = zf(1) \) is in \(P \). Since we are assuming \(z \notin P \), and \(P \) is prime we deduce \(f(1) \in P \).

The same reasoning applied to \(f(1) \) yields \(f^{(1)} = \sum_{i=1}^{n} g_i^{(1)} f_i + zf(2) \), for some elements \(g_i^{(1)} \in R \), and \(f^{(2)} \in P \). Replacing \(f(1) \) in Equation (1) by the right hand side of this last equation gives \(f = \sum_{i=1}^{n} (g_i^{(0)} + zg_i^{(1)}) f_i + z^2 f(2) \). Since \(z^t \notin P \) for any \(t > 0 \), a straightforward induction shows that \(f \) can be written as Equation (2).

\[
f = \sum_{i=1}^{n} (g_i^{(0)} + zg_i^{(1)} + \cdots + z^t g_i^{(t)}) f_i + z^{t+1} f^{(t+1)}, \tag{2}
\]

for certain elements \(g_i^{(t)} \in R \), and \(f^{(t+1)} \in P \). Since \(R \) is complete, the element (formal series) produced by the partial sums of the coefficients of the \(f_i \) (for \(i = 1, \cdots, n \)) of the Equation (2), \(h_i = \sum_{t=0}^{\infty} z^t g_i^{(t)} \) is a well defined element of \(R \). So, Equation (2) allows us to express \(f \) partially in terms of the \(f_i \) and their corresponding coefficients \(h_i \), for \(i = 1, \cdots, n \).

We now observe that \(R \) must be \(I \)-adically separated, i.e., \(\bigcap_{t=0}^{\infty} I^t \) is just the kernel of the canonical map \(i : R \rightarrow R^I \), which should be the zero ideal, because \(i \) is an isomorphism, since we are making the assumption that \(R \) is \(I \)-adically complete. From this, we deduce that \(f = \sum_{i=1}^{n} h_i f_i \), since Equation (3).

\[
f - \sum_{i=1}^{n} h_i f_i = f - \sum_{i=1}^{n} (g_i^{(0)} + zg_i^{(1)} + \cdots + z^t g_i^{(t)}) f_i - z^{t+1} \sum_{i=1}^{n} \left(\sum_{j=0}^{\infty} z^j g_i^{(j+t+1)} \right) f_i \tag{3}
\]

\[
= z^{t+1} \left(f^{(t+1)} - \sum_{i=1}^{n} \left(\sum_{j=0}^{\infty} z^j g_i^{(j+t+1)} \right) f_i \right),
\]

is an element of \(I^t \), for all \(t \). In conclusion, the Equation (3) helps us to describe the difference between \(f \) and \(\sum_{i=1}^{n} h_i f_i \) as an arbitrarily “small” element (regarding the \(I \)-adic topology). Thus, any element \(f \in P \) can be generated by the set \(\{ f_1, \cdots, f_n \} \subseteq P \). Therefore, \(P \) would be finitely generated, which contradicts our former assumption.

Corollary 1. If \(A \) is Noetherian, so it is \(A[[x_1, \ldots, x_n]] \).

Proof. Let \(R = A[[x_1, \ldots, x_n]] \) and \(I = (x_1, \ldots, x_n) \). A standard argument \([14, 15]\) shows that \(R = B^I \) where \(B = A[x_1, \ldots, x_n] \). Since \(R/I R \simeq A \) is Noetherian, the previous theorem gives that so it is \(R \).

In general, if \(R \) is not complete with respect to the \(I \)-adic topology, it is not true that \(R \) is Noetherian under the hypothesis of \(I \) being finitely generated and \(R/I \) being Noetherian, not even in the case where \(I \) is maximal, as the following example shows.
3.1.1. Enlightening example. Let \(\mathbb{N} \) denote the set of natural numbers, and let \(U \) be any non principal ultrafilter in \(\mathbb{N} \), that is, a collection of infinite subsets of \(\mathbb{N} \), closed under finite intersection, with the property that for any \(D \subset \mathbb{N} \), either \(D \) or its complement belongs to \(U \). Let \((R, m)\) be any discrete valuation ring, and let us denote by \(R_w \) a copy of \(R \) indexed by the natural \(w \in \mathbb{N} \). By \(S \) we will denote the ultraproduct, \(S = \varprojlim_{w \in \mathbb{N}} R_w \). We recall that this is defined as the set of equivalent classes in the cartesian product \(\prod_{w \in \mathbb{N}} R_w \), where two sequences \((a_w) \) and \((b_w) \) are regarded as equivalent if the set of indices \(w \) where \(a_w = b_w \) is an element of \(U \). This is a ring with the obvious operations, and it is also local with a principal maximal ideal \(m' \) generated by the class of \((p_w) \), where \(m_w = (p_w) \) is the maximal ideal of \(R_w \) \([16]\). If \(c \) denotes the class of the sequence of powers \((p_w)^w \), then it is clear that \(c \) belongs to the Jacobson radical of \(S \), \(\cap_{w=0}^{\infty} (m')^w \), and it is a nonzero element. Consequently, \(S \) cannot be Noetherian, even though its maximal ideal is finitely generated (actually, principal), and \(S/m' \) is a field.

3.2. A characterization of a Noetherian finite direct product of fields

In this section we will give an elementary algebraic re-formulation of the fact that a commutative Noetherian ring is the direct product of fields by means of an idempotent-membership condition, namely, the fact that any of its elements belongs to the ideal generated by its-own square.

Theorem 2. Let \(R \) be a commutative Noetherian ring. Then \(R \) is the finite direct product of fields if and only if any element \(f \in R \), holds that \(f \in (f^2) \).

Proof. If \(R \) is a finite product of fields, then clearly the desired condition is satisfied, since any element in \(R \) is the direct product of zeros and unities.

Conversely, let us assume, by contradiction, that \(R \) is a Noetherian ring which is not a finite product of fields. We want to prove that there is an element \(f \in R \) such that \(f \notin (f^2) \). In fact, we can reduced to the case of \(R \) connected, because if \(\text{Spec} R \) is not connected then, due to the Noetherian hypothesis, we can write \(\text{Spec} R = V(Q_1) \cup \cdots \cup V(Q_k) \), where \(V(Q_j) = \text{Spec}(R/Q_j) \) are the connected components of \(\text{Spec} R \). Hence, by the Chinese Remainder theorem \([17]\),

\[
R \cong \prod_{i=1}^k R/Q_i
\]

and by the previous assumption at least one of the \(R/Q_i \) is not a field. So, it is enough to find an \(f_i \in R/Q_i \) such that \(f_i \notin (f_i^2) \) to obtain the desired element \(f = (0, ..., f_i, ..., 0) \in R \).

Now, the connectedness of \(\text{Spec} R \) it is equivalent to saying that the only idempotent of \(R \) are trivial ones, namely, zero and one \([18]\).

Lastly, choose \(f \in R \) neither a unit nor idempotent. Then, \(f \notin (f^2) \). In fact, by contradiction, if \(f = cf^2 \), for some \(c \in R \), and so \(cf(1 - cf) = 0 \), which means that \(cf \) is idempotent. Hence, \(cf = 0 \) or \(cf = 1 \).

In the first case we have \(f = (cf)f = 0 \), and in the second case, \(f \) is a unit. Then both cases contradicts our hypothesis on \(f \).

4. Conclusions

In this paper we were able to present an elementary mathematical demonstration of the conservation of the Noetherian condition (finite generation for its ideals) for commutative rings with unity possessing one finitely generated ideal with the property that the corresponding quotient ring is also Noetherian and the original ring is complete regarding this ideal. Furthermore, we present as a direct elementary consequence of this, the fact that the formal power series in finitely many variables over a commutative ring (with unity) of coefficients \(R \) is Noetherian if \(R \) so is. In addition, we present a counterexample showing that the condition of completeness is a necessary one in the former theorem. Moreover, we state and prove an elementary characterization of (Noetherian) commutative rings that can be decomposed as a finite direct product of fields in terms of the existence of a single special element that can be generated by its square. Lastly, we discussed the huge potential application that the
former results possess for simplifying the conceptual artificial generation of those concepts and arguments from a perspective coming from artificial mathematical intelligence, and in an extended manner for mathematics and theoretical, computational and experimental physics. In particular, the computational-conceptual generation of a sound pseudo-precode of the former notions and arguments can implicitly ease the similar generation of additional pseudo-precode for related notions in string theory and theoretical particle physics.

Acknowledgements
The authors want to thank the Universidad Nacional de Colombia (UN) and Intituto Tecnológico Metropolitano (ITM), Colombia, for its support. In addition, Danny A. J. Gómez-Ramírez specially thanks Holger Brenner for all the inspiring discussions during the preparation of this work. D. A. J. Gómez-Ramírez was supported by the Institución Universitaria Pascual Bravo, Colombia, and previously by the Vienna Science and Technology Fund (WWTF) as part of the Vienna Research Group 12-004. Finally, he thanks deeply to Cognivisión S.A.S. and to Rubents Ramírez for being "nuestro milagro de vida" and for all the inspiration and to J. Muiua Kieninger for all the love and unconditional support.

References
[1] Kunz E 1976 On noetherian rings of characteristic p American Journal of Mathematics 98(4) 999–1013
[2] Eisenbud D 1970 Subrings of artinian and noetherian rings Mathematische Annalen 185(3) 247–249
[3] Richman F 1974 Constructive aspects of noetherian rings Proceedings of the American Mathematical Society 44(2) 436–441
[4] Jategaonkar A V 1986 Localization in Noetherian Rings vol 98 (Cambridge: Cambridge University Press)
[5] Van Huynh D 1996 A characterization of noetherian rings by cyclic modules Proceedings of the Edinburgh Mathematical Society 39(2) 253–262
[6] Vamos P 1968 The dual of the notion of “finitely generated” Journal of the London Mathematical Society s1-43(1) 643–646
[7] Bass H 1962 Injective dimension in noetherian rings Transactions of the American Mathematical Society 102(1) 18–29
[8] He Z X 1985 Characterizations of noetherian and hereditary rings Proceedings of the American Mathematical Society 93(3) 414–416
[9] Gómez-Ramírez D A J 2020 Artificial Mathematical Intelligence: Cognitive, (Meta)mathematical, Physical and Philosophical Foundations (New York: Springer International Publishing)
[10] Gómez-Ramírez D A J and Smaill A 2018 Formal conceptual blending in the (co-)invention of pure mathematics Concept Invention: Foundations, Implementations, Social Aspects and Applications Computational Synthesis and Creative Systems ed Confalonieri R and et al (Switzerland: Springer Cham) chap 8, pp 221–239
[11] Fahmy M H and Fahmy S 2002 On non-commutative noetherian local rings, non-commutative geometry and particle physics Chaos, Solitons & Fractals 14(9) 1353–1359
[12] Aspinwall P S 2013 Some applications of commutative algebra to string theory Commutative Algebra (New York: Springer Science+Business Media) pp 25–56
[13] Cohen I S 1946 On the structure and ideal theory of complete local rings Trans. of the Amer. Math. Soc. 59 54–106
[14] Eisenbud D 1995 Commutative Algebra with a View Toward Algebraic Geometry (GTM vol 150) (New York: Springer-Verlag)
[15] Matsumura H 1989 Commutative Ring Theory (Cambridge: Cambridge University Press)
[16] Schoutens H 2010 The Use of Ultraproducts in Commutative Algebra (Lecture Notes in Mathematics vol 1999) (Berlin: Springer-Verlag)
[17] Atiyah M F and Macdonald I 1969 Introduction to Commutative Algebra (Reading: Addison-Wesley)
[18] Hartshorne R 1977 Algebraic Geometry (GTM vol 52) (New York: Springer-Verlag)