Comparing the solar-to-fuel energy conversion efficiency of ceria and perovskite based thermochemical redox cycles for splitting H2O and CO2

Author(s):
Muhich, Christopher L.; Blaser, Samuel; Hoes, Marie C.; Steinfeld, Aldo

Publication Date:
2018-10-11

Permanent Link:
https://doi.org/10.3929/ethz-b-000292879

Originally published in:
International Journal of Hydrogen Energy 43(41), http://doi.org/10.1016/j.ijhydene.2018.08.137

Rights / License:
Creative Commons Attribution 4.0 International
Comparing the solar-to-fuel energy conversion efficiency of ceria and perovskite based thermochemical redox cycles for splitting H₂O and CO₂

Christopher L. Muhicha, Samuel Blaser, Marie C. Hoes, Aldo Steinfeld

A thermodynamic analysis was conducted on a solar thermochemical plant for syngas generation via H₂O/CO₂-splitting redox cycles in order to determine the performance of six candidate redox materials under an array of operation conditions. The values obtained for the solar-to-fuel energy conversion efficiency are higher in relative order Zr-doped CeO₂ > undoped CeO₂ > La₀.₆Ca₀.₄MnO₃ > La₀.₆Ca₀.₄Mn₀.₆Al₀.₄O₃ > La₀.₆Sr₀.₄MnO₃ > La₀.₆Sr₀.₄Mn₀.₆Al₀.₄O₃. This ordering is attributed to their relative reducibility and re-oxidizability, where the doped and undoped ceria, that favor oxidation, outperform perovskites, that favor reduction and therefore require high flowrates of excess H₂O and CO₂ during re-oxidation. Solids-solid heat recuperation during the temperature swing between the redox steps is crucial, particularly for ceria because of its low specific oxygen exchange capacity per mole and cycle. Conversely, the efficiencies of the perovskites are more dependent on gas-gas heat recuperation due to the massive excess of H₂O/CO₂. Redox material thermodynamics and plant/reactor performance are closely coupled, and must be considered together to maximize efficiency. Overall, we find that Zr-CeO₂ is the most promising redox material, while perovskites which seem promising due to high H₂/CO production capacities under large H₂O/CO₂ flow rates, perform poorly from an efficiency perspective due to the high heating duties, especially for steam.

© 2018 The Author(s). Published by Elsevier Ltd on behalf of Hydrogen Energy Publications LLC. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Introduction

Concentrated solar thermochemical gas splitting (STGS) of H₂O and/or CO₂ is a promising approach for renewable H₂ and/or CO production because of its high theoretical solar-to-fuel energy conversion efficiency ($\eta_{\text{solar-to-fuel}}$) as a result of the utilization of the entire solar spectrum [1–5]. The $\eta_{\text{solar-to-fuel}}$ is the ratio of the energy stored in the fuel to the solar energy required to produce the fuel [6]. In two-step STGS, concentrated sunlight drives the reduction of a metal oxide at T_red, releasing O₂, as shown in Eq. (1). In a second step, the reduced
material is re-oxidized by H₂O and/or CO₂, liberating the desired H₂ and/or CO, as shown in Eq. 2a and b:

\[
\begin{align*}
\text{MO}_x - \text{ox} & \rightarrow \text{MO}_x - \text{red} + \frac{\Delta \delta}{2} \text{O}_2 \\
\text{MO}_x - \text{red} + \Delta \delta \text{H}_2\text{O} & \rightarrow \text{MO}_x - \text{ox} + \Delta \delta \text{H}_2 \\
\text{MO}_x - \text{red} + \Delta \delta \text{CO}_2 & \rightarrow \text{MO}_x - \text{ox} + \Delta \delta \text{CO}
\end{align*}
\]

(1)

(2a)

(2b)

where \(\delta_{\text{red}}\) and \(\delta_{\text{ox}}\) are the reduction extents after reduction and oxidation, respectively, and \(\Delta \delta = \delta_{\text{red}} - \delta_{\text{ox}}\). The thermodynamic properties of the O-carrying metal oxide dictate the temperatures and pressures required for reduction and oxidation and the fuel production per cycle. These properties, therefore, critically influence the overall efficiency of the process. Several redox materials have been investigated for use in STGS cycles, including aluminate base spinels [7–9], ceria and doped ceria [3,10–19], and perovskites [20–24], which reduce through the formation of O-vacancies in the lattice that are filled upon re-oxidation rather than by decomposition/oxidation into a new phase. O-vacancy materials have lower H₂ or CO production capacities than phase change materials such as ZnO [25,26], or Fe₃O₄ [27] because the entire material does not reduce. Instead, the un-reduced material stabilizes the reduced material, thus preventing metal or metal oxide gas formation or melting which is common among the phase change material and is undesirable due to materials handling challenges. Therefore, we restrict this work to O-vacancy materials. However, we note that others have investigated the thermodynamics of decomposition based reactions [12,25,28,29], and multi-step (> 2) cycles such as the copper–chlorine or hydrogen sulfide cycles [30–34].

Among O-vacancy materials, ceria has become the standard for STGS because of its rapid reaction kinetics and stability over a range of reduction extents [3,4,35–39], which is dictated by both the temperature and the oxygen partial pressure in the system. However, it requires relatively high reduction temperatures (≈1773 K) to achieve substantial reduction extents [3,10–13]. Ceria has been doped with Hf and Zr to increase the reducibility of ceria, while other single element doping strategies have not been effective [3,14–19,40]. Recently perovskites, particularly those based on lanthanum manganates (La₃₋ₓMₓMn₁₂₋₁ₙY₃O₃, for example where X = Ca, Ga, Sr, and Y = Mn, Al) have attracted interest because they reduce under less extreme conditions than ceria and have been shown to produce more hydrogen than ceria when reduced at lower temperatures (<1673 K) under large H₂O or CO flows [20–24,41]. In general, STGS redox materials face a dual challenge: reduce substantially at low temperatures and high oxygen partial pressures (pO₂), and re-oxidize completely with low H₂O/CO₂ excesses at high temperatures. The latter is incommensurate with the former due to contradictory thermodynamic forces [42]. Along the continuum of possible materials properties, ceria materials favor the re-oxidation reaction while perovskites favor the reduction reaction. Because both reactions cannot be favored at once, analysis of the usefulness of an active material should not simply be based on the quantity of H₂/CO it is capable of generating after reduction at high temperatures and oxidation...
under high excesses of H_2O/CO_2 at low temperatures. Rather the active material should be judged based on its $\eta_{\text{solar-to-fuel}}$.

The analysis of materials based on their $\eta_{\text{solar-to-fuel}}$ is not as simple as Eqs. (1) and (2) suggest. An entire solar plant must be considered which takes into account the various ancillary processes which enable the redox cycle [3]. Sunlight must be collected, concentrated, and delivered to a solar reactor. During reduction, O_2 must be removed to maintain the pO_2 at a level sufficiently low for reduction to proceed. During oxidation, H_2O/CO_2 must be supplied and H_2/CO removed. The metal oxide must be heated and cooled between the reduction and oxidation reactions. The energy penalties associated with each of these general terms and with the temperature swing are affected by the operating points of the system i.e. the reduction and oxidation temperatures and pressures, and the quantity of excess H_2O/CO_2 [43]. Additionally, the effectiveness of the plant, i.e. the solar delivery system and heat recuperation, has a large impact on overall performance [44]. The selection of optimal operating points for a given material, and thus the determination of the maximum $\eta_{\text{solar-to-fuel}}$ is further complicated by the non-intuitive interactions of the operating points and materials properties [12]. As a simple example, a decrease in the oxidation temperature lowers the required H_2O flow rate and steam heat duty, but increases the energy required to re-heat the metal oxide from the oxidation temperature to the reduction temperature; which of these has a larger effect on the $\eta_{\text{solar-to-fuel}}$ depends on the heat capacity of the material, its re-oxidation thermodynamics, and the operating points [12].

Previous work has investigated some of these interactions to understand the effect of operation/system conditions for selected redox materials. Most models take a thermodynamic equilibrium approach and investigate a wide variety of behaviors such as the effects of various operational points (i.e. temperatures and pressure of the various reactions) [12,43,45–48], and the reactor system variables such as heat recovery effectiveness or method to remove O_2 [44,49–52]. Work has also been conducted into the effect of various materials using an entropy based method [53] and in systems based methods [12,23,54], which is the method we follow. In most cases, undoped ceria (CeO_2) was used as the redox material because its reduction extent (δ) is well documented across a wide range of temperatures and oxygen partial pressure [13]. Some works have investigated zirconia doped ceria (Zr-CeO$_2$) [54], perovskites [23], and ferrites [12]. A wide variety of assumptions have been made about the solar reactor, reduction/oxidation conditions, heat recuperation, the oxidizing gas/active material contacting patterns, which makes a comparison difficult.

In this contribution we expand upon the previous work by using a comprehensive system model to compare $\eta_{\text{solar-to-fuel}}$ of CeO_2, Zr-CeO$_2$ and several perovskites enabling us to fairly compare materials under various operating points and solar plant assumptions while minimizing the risk of selecting conditions which favor one material over another. Doped lanthanum manganates (La$_{0.6}$X$_{0.4}$Mn$_{0.6}$O$_{3-\delta}$ where X = Ca or Sr, and Y = Al or Mn) were chosen as the perovskites because they have well characterized non-stoichiometries (δ) and reduction thermodynamics at the temperatures relevant to STGS [23]. We find that, in almost all cases, the materials have relative $\eta_{\text{solar-to-fuel}}$ of Zr-CeO$_2$ > CeO$_2$ > La$_{0.6}$Ca$_{0.4}$Mn$_{0.6}$O$_{3}$ (LCM) > La$_{0.6}$Ca$_{0.4}$Mn$_{0.6}$Al$_{0.4}$O$_{3}$ (LCMA) > La$_{0.6}$Sr$_{0.4}$Mn$_{0.6}$O$_{3}$ (LSM) > La$_{0.6}$Sr$_{0.4}$Mn$_{0.6}$Al$_{0.4}$O$_{3}$ (LSMA). We also discuss how system and operation points interact with materials choices and make recommendations for further materials and reactor design points.

Modeling system efficiency

In order to determine the relative efficiencies of various STGS redox materials we implemented a thermodynamic model based on energy and mass balances in Matlab®. This model enabled us to identify optimal system operating points of various materials and plant assumptions and analyze their H_2O or CO_2 splitting system performance, particularly the $\eta_{\text{solar-to-fuel}}$. Fig. 1 shows a general diagram of the system, which was defined as generally as possible to minimize system specific considerations. The system model, including the equations for calculating heat sources, sinks and flow rates, is described in detail in Section Thermodynamic model while the re-oxidation conditions and model inputs, including materials and systems properties, are described in Sections Determination of reduction extents and excess H_2O flow rates and Model parameters, respectively. The models are based on the works of Ermanoski et al. [43] and Ehrhart et al., [12] therefore we provide only an overview of the model. For a complete discussion of the model see Ehrhart et al. [12].

Thermodynamic model

The STGS model determines the $\eta_{\text{solar-to-fuel}}$ for a set of materials in a solar plant with various system characteristics and at various operating conditions by calculating the ratio of the energy stored in the produced H_2 or CO to the solar energy required to produce it. This model operates under the assumption that concentrated sunlight is the only energy source.
input. We write the equations in terms of H2O splitting, and comment on any changes or modifications necessary for CO2 splitting to avoid redundancy. The overall figure of merit for the system is the n_solar-to-fuel defined by Eq. (3), where the energy stored in H2 is a product of the H2 molar flowrate (N_H2) and the higher heating value of hydrogen (HHV_H2), and Q_solar is the total solar energy input. For CO2 splitting the combustion enthalpy of CO at room temperature is used.

\[\eta_{\text{solar-to-fuel}} = \frac{N_{\text{H}_2} \cdot \text{HHV}_{\text{H}_2}}{Q_{\text{solar}}} \]

(3)

Our analysis was conducted using a 1 mol/s flow basis of H2/CO, where all other flows were scaled to meet this requirement. The system is assumed to operate at steady-state and thermodynamic equilibrium, meaning that all heat and mass fluxes are time independent. This enables the determination of the maximum n_solar-to-fuel for the materials because continuous production minimizes losses associated with moving materials and start up and cool down processes. Any kinetic impediments to the chemical reactions or heat transfer limitations only suppress the overall efficiency, and are therefore neglected from this analysis.

Solar concentration

The total solar energy delivered to the STGS plant must be sufficient to drive the thermochemical process (Q_TC), and to compensate for losses during collection, namely re-radiation (Q_rad) and convective losses (Q_conv), as shown in Eq. (4).

\[Q_{\text{solar}} = Q_{\text{TC}} + Q_{\text{rad}} + Q_{\text{conv}} = \alpha \cdot C \cdot I_{\text{solar}} \cdot \eta_{\text{optic}} \cdot A_{\text{reactor}} \]

(4)

The energy is delivered to the system through the solar receiver’s aperture and is a product of the reactor/material surface absorptivity (\(\alpha \)), direct normal solar irradiance DNI (I_solar), solar concentration ratio (C), aperture area (A_reactor) and optical efficiency (\(\eta_{\text{optic}} \)). The assumed values of these and all other general system parameters are shown in Table 1. These values were chosen to be consistent with previous models [12,43] based on experimental or theoretical work [55]. We note that optical efficiencies vary greatly and systems range from 60% [56] to up to 90% [57,58] depending on the design. We have chosen the upper value, based on a single reflection and high cleanliness factor, for use in this work. Any degradation in the optical performance will suppress the overall efficiency but the relative behavior of the materials will remain the same.

Table 1 — Parameters describing the solar plant.

Parameter	Value
\(\alpha \) (absorptivity)	0.95 [12]
\(\varepsilon \) (emissivity)	0.0482 [kW m^2°C] [55]
\(h_{\text{conv}} \) (effective convective loss coefficient)	0.0482 [kW m^2°C] [55]
\(\eta_{\text{optic}} \) (optics efficiency)	0.9 [57]
C (Concentration ratio)	3000 [12]
\(T_{\text{wall}} \) (reactor wall temperature)	\(T_{\text{red}} + 20 \) [K] [12]
\(I_{\text{solar}} \) (direct normal solar irradiance)	1 [kW m^2] [12]
\(h \) (effective height of solids lifting per cycle)	10 m [12]
\(\eta_{\text{mech}} \) (thermal-to-mechanical energy efficiency)	0.15 [12]

The solar concentration losses by re-radiation and convection through the aperture are calculated in Eqs. (5) and (6), respectively. The temperature of the reactor wall (\(T_{\text{wall}} \)) is assumed to be 20 K higher than the desired reactor temperature. By combining Eqs. (4)–(6), the required aperture area is easily calculated by Eq. (7). Therefore, the only remaining quantity needed to calculate the total solar energy input is the heat necessary to drive the thermochemical process (Q_TC).

\[Q_{\text{rad}} = A_{\text{reactor}} \cdot \sigma \cdot T_{\text{wall}}^4 \]

(5)

\[Q_{\text{conv}} = A_{\text{reactor}} \cdot h_{\text{conv}} \cdot (T_{\text{wall}} - T_{\text{amb}}) \]

(6)

\[Q_{\text{TC}} = A_{\text{reactor}} \cdot [\alpha C I_{\text{solar}} h_{\text{conv}} - \varepsilon \sigma T_{\text{wall}}^4 - h_{\text{conv}} (T_{\text{wall}} - T_{\text{amb}})] \]

(7)

Thermal cycling requirements

The Q_TC is a product of the flow rate of H2 or CO (set to be 1 mol/s) and the heat needed to produce 1 mol of the fuel (Q_mol), as shown in Eq. (8). Therefore, only Q_mol must be determined to calculate the n_solar-to-fuel. Q_mol includes the energy required to drive the reduction (\(\Delta H_{\text{red}} \)), heat the cycling metal oxide (Q_mox), and to run auxiliary processes (Q_aux), as shown in Eq. (9). The energy required to drive the H2O splitting reaction, i.e. Eq. (2), is provided by the energy stored in the reduced metal oxide (\(\Delta H_{\text{red}} \)) and is determined from the partial molar reduction thermodynamics of the active material.

\[Q_{\text{TC}} = \eta_{\text{H}_2} \cdot Q_{\text{mol}} \]

(8)

\[Q_{\text{mol}} = \Delta H_{\text{red}} + Q_{\text{misc}} + Q_{\text{aux}} \]

(9)

The solid heating duty (Q_misc) depends on the heat capacity of the solid (C_p_solid), the temperature swing between reduction and oxidation steps, and the flow rate of solids, Eq. (10). The molar flow rate of solids required to generate 1 mol of H2/CO is equal to the change in reduction extent between reactions (\(\Delta \delta \)), as shown in Eq. (2). A heat exchanger with a heat recuperation effectiveness \(\varepsilon_{\text{rec}} \) transfers heat between the solids cooling to the oxidation temperature and those heating to the reduction temperature. Therefore, only the quantity of heat not recovered must be provided by the high quality solar heat to re-heat the oxidized solid to the reduction temperature. The unrecovered solids cooling energy can be used to run auxiliary processes, such as H2O or CO2 heating, as discussed in the next section.

\[Q_{\text{misc}} = C_{\text{p_solid}} \cdot (T_{\text{red}} - T_{\text{ox}}) \cdot (1 - \varepsilon_{\text{rec}}) / \Delta \delta \]

(10)

Auxiliary heat requirements

Additional energy (Q_aux) is required to drive auxiliary processes which enable STGS, including removing the oxygen from the reduction chamber (QAux2-rem), heating unreacted H2O/CO2 to the oxidation temperature (Q_ox), any mechanical work (Q_mech), and separating the product H2/H2O or CO/CO2 mixture (Q_sep):

\[Q_{\text{Aux}} = Q_{\text{Aux2-rem}} + Q_{\text{ox}} + Q_{\text{mech}} + Q_{\text{sep}} - Q_{\text{H}_2} - Q_{\text{C}_2} \]

(11a)

\[Q_{\text{Aux}} = 0 \text{ if } Q_{\text{Aux2-rem}} + Q_{\text{ox}} + Q_{\text{mech}} + Q_{\text{sep}} - Q_{\text{H}_2} - Q_{\text{C}_2} < 0 \]

(11b)

Note that QAux2-rem includes the energy required to oxidize the reduced metal oxide and separate the oxygen from the gaseous stream and Q_ox is determined based on the maximum oxygen content from auxiliary processes.
However, there are available heat benefits which can provide energy for these processes, namely heat released during the exothermic oxidation reaction \((Q_{\text{ox}})\), heat not recuperated by the solid-solid heat exchanger \((Q_{\text{aux}})\), and the sensible heat of the oxygen gas exiting the reduction chamber \((Q_{\text{os}})\). The sources of these heat benefits are at a lower temperature than the reduction chamber or the solids heater, and thus cannot be used to provide energy for these purposes. Therefore, any heat benefits greater than those required to run the lower temperature auxiliary processes must be rejected (Eq. (11b)); in other words, \(Q_{\text{aux}}\) must always be positive or zero.

We assume that the energy required to remove \(O_2\) from the system \((Q_{\text{O2-rem}})\) is equivalent to the work required to compress \(O_2\) from the reduction pressure to the ambient pressure, and then adjusted by some \(O_2\) removal efficiency \((\eta_{\text{O2-rem}})\) which includes the heat to work conversion, as shown in Eq. (12). While this equation is the thermodynamic requirement for pumping, it represents the minimum work required to remove \(O_2\) from the system (before inflation). We do not suggest that \(O_2\) pumping, it represents the minimum work required to remove \(O_2\) from the system (before inflation). We do not suggest that \(O_2\) is necessarily removed by vacuum pumping because there are multiple other methods of \(O_2\) removal [51,59]; rather we use this formulation for convenience.

\[
Q_{\text{O2-rem}} = \frac{1}{2} R T_{\text{amb}} \ln \left(\frac{P_{\text{amb}}}{P_{\text{red}}} \right) - \frac{1}{\eta_{\text{O2-rem}}} \tag{12}
\]

The oxidizing gas heating requirement is determined by the moles of \(H_2O/CO_2\) required and the energy required to heat the gas to the oxidation temperature, as shown in Eq. (13a) and b for \(H_2O\) and \(CO_2\) respectively. Any excess \(H_2O/CO_2\) \((S)\) required to drive the oxidation reaction forward is also considered. All reactant gas and product \(H_2/\text{excess } H_2O\) or \(CO/\text{excess } CO_2\) cooling is assumed to occur in a heat exchanger with an effectiveness of \(\eta_{\text{gg}}\). The total energy required to heat \(H_2O/CO_2\) is:

\[
Q_{\text{gas}}(H_2O) = \left(c_{\text{pH2O}} \left(T_{\text{red}} - T_{\text{amb}} \right) + \Delta H_{\text{H2O}} + \int_{T_{\text{red}}}^{T_{\text{amb}}} c_{\text{pSteam}} dT \right) + \left(1 - \eta_{\text{gg}} \right) c_{\text{pH2O}} \left(T_{\text{red}} - T_{\text{amb}} \right) + \Delta H_{\text{H2O}} + \int_{T_{\text{red}}}^{T_{\text{amb}}} c_{\text{pSteam}} dT - \eta_{\text{gg}} \int_{T_{\text{red}}}^{T_{\text{amb}}} c_{\text{pH2O}} dT \tag{13a}
\]

\[
Q_{\text{gas}}(CO_2) = \int_{T_{\text{red}}}^{T_{\text{amb}}} c_{\text{pCO2}} dT + \left(1 - \eta_{\text{gg}} \right) c_{\text{pCO2}} \int_{T_{\text{red}}}^{T_{\text{amb}}} dT - \eta_{\text{gg}} \int_{T_{\text{red}}}^{T_{\text{amb}}} c_{\text{pCO2}} dT \tag{13b}
\]

A mechanical work requirement is included in a simple manner as shown by Eq. (14). This was chosen to depend on the quantity of solid cycled to produce 1 mol of fuel and is inflated by a mechanical efficiency, which accounts for heat to mechanical work conversion losses. Here we assume that the work stems from having to lift solids, as would be the case in a particle based reactor. While this is included for completeness, it has very little effect on the overall system, contributing almost nothing to the total energy requirements (see below), and only decreases the \(\eta_{\text{solar-to-fuel}}\) by 0.08% for the base case of ceria.

\[
Q_{\text{mech}} = \frac{M_{\text{solid}} \times g \times h}{\Delta S \times \eta_{\text{mech}}} \tag{14}
\]

We assume that product \((CO\text{ or } H_2)\) and reactant gases \((CO_2\text{ or } H_2O)\) are separated at a temperature \((T_{\text{sep}})\) of 298 K. \(H_2\) and \(H_2O\) have a natural phase separation without energy investment (i.e. \(Q_{\text{sep}} = 0\)). However, \(CO\) and \(CO_2\) must be separated by a different means. We calculate the separation work using the second law of thermodynamics and the entropy of separating the gases multiplied by a separation efficiency \((\eta_{\text{sep}})\), as shown in Eq. (15). Here \(n\) is the flow rate of the various streams entering or leaving the separator, \(\Delta S_{\text{mix}}\) is the entropy of mixing ideal gases of the various streams, and \(CO\) stream, \(CO_2\) stream and unsep stream indicators correspond to the \(CO\) rich and \(CO_2\) rich streams leaving the separator and the stream entering the separator respectively. The streams exiting the \(CO/CO_2\) separator are assumed to be 99% pure \(CO\) 1% \(CO_2\) and 100% pure \(CO_2\). The flow rates are determined from a simple mass balance.

\[
Q_{\text{sep}} = \frac{T_{\text{sep}} \times \Delta S_{\text{ent}}}{\eta_{\text{ent}}} = T_{\text{sep}} \times \left(n_{\text{CO stream}} \Delta S_{\text{mix}} \text{ CO stream} + n_{\text{CO_2 stream}} \Delta S_{\text{mix}} \text{ CO_2 stream} \right) - n_{\text{unsep stream}} \Delta S_{\text{mix}} \text{ unsep stream} \times \frac{1}{\eta_{\text{sep}}} \tag{15}
\]

The sensible heat recoverable from \(O_2\) \((Q_{\text{o2}})\), the heat released during re-oxidation, and the solids cooling enthalpy are calculated from Eqs. (16)–(18), respectively. They are determined from the simple sensible heat equation, reaction energies, and from the energy left in the solids after they cool down to the oxidation temperature, which is equivalent to the energy needed to re-heat the material.

\[
Q_{\text{o2}} = \frac{1}{2} \int_{T_{\text{red}}}^{T_{\text{red}}} c_{\text{pH2O}} dT \tag{16}
\]

\[
Q_{\text{KOCR}}(H_2O) = -\Delta H_{\text{red}} - \Delta H_i^{H_2O} \tag{17a}
\]

\[
Q_{\text{KOCR}}(CO_2) = -\Delta H_{\text{red}} - \Delta H_i^{CO_2} + \Delta H_i^{CO} \tag{17b}
\]

\[
Q_{\text{SC}} = Q_{\text{SH}} \tag{18}
\]

Determination of reduction extents and excess \(H_2O\) flow rates

The calculation of the mass and energy flow rates depend on the reduction extents of the metal oxide before and after the reduction and oxidation reactions. The extent of reduction after the reduction \((\delta_{\text{red}})\) is determined by the reduction temperature and \(O_2\) partial pressure. It is described by the thermodynamic reduction behavior of the material, from which temperature, \(O_2\) partial pressure, and reduction extent relationships can be developed as discussed in Section Model.
parameters. However, the determination of reduction extent after oxidation (δ_{ox}) is more complicated. We assume that the oxidation reaction occurs in a countercurrent reactor, and that there is intimate gas/solid contact and thermodynamic equilibrium at the ends of the reactor. This configuration ensures that the exiting H$_2$O/H$_2$ or CO$_2$/CO mixture is exposed to the strongest reducing agent, and the exiting metal oxide is exposed to the strongest oxidizing gas mixture, which results in the highest possible reaction extents of both metal oxide re-oxidation and H$_2$O/CO$_2$ conversion. Under these assumptions, the O$_2$ partial pressure of the re-oxidized metal oxide is equal to the equilibrium p_{O2} of the unreacted H$_2$O or CO$_2$ to the oxidation temperature (T_{ox}), which is easily calculated as:

$$p_{ox} = \left(\frac{K_{dissoc}(T_{ox}) \cdot p_{amb}}{2}\right)^{2}$$

(19)

where K_{dissoc} is the equilibrium constant for H$_2$O or CO$_2$ dissociation at the oxidation temperature, and p_{amb} is the pressure of the H$_2$O or CO$_2$ entering the oxidation chamber, assumed to be ambient pressure. The δ_{ox} of the material is subsequently determined from equilibrium data using T_{ox} and p_{ox}.

Similarly, the p_{O2} of the reduced material entering the oxidation chamber is equal to that of the exiting H$_2$O/H$_2$ or CO$_2$/CO mixture. Because we assume that the metal oxide does not re-oxidize during the temperature swing, δ_{red} remains unchanged and the p_{O2} at gas outlet of the oxidation chamber ($p_{ox,min}$) is determined using the thermodynamic relationship at δ_{red} and T_{ox}. The H$_2$O/H$_2$ or CO$_2$/CO ratio (S) is then calculated using $p_{ox,min}$ and thermodynamic data for gas splitting:

$$S = \frac{\frac{1}{2} \cdot \frac{\Delta h(\delta)}{R \cdot T} - \frac{\Delta s(\delta)}{R}}{p_{ox,min}}$$

(20)

Model parameters

To determine the $\eta_{solar-to-fuel}$ for a material, the thermodynamic behavior of the material and several system specifications must be known. The required material information includes the thermodynamic correlation between temperature, oxygen partial pressure and reduction extent, enthalpy of reaction and heat capacity. The system specific parameters include the efficiency of heat recuperation (ϵ_{gg} and ϵ_{sa}), O$_2$ removal efficiency (η_{O2-rem}) and the parameters, listed in Table 1. All gas phase and H$_2$O/CO$_2$ heat capacities and formation energies were calculated based on formulas taken from the NIST Chemistry WebBook [60,61].

Material properties

The experimentally determined dependence of metal oxide reduction extents on temperature and pressure is not available across the wide range necessary for the analysis in this work. Therefore, we calculated it from the partial molar entropies and enthalpies of reduction, which are available for the six materials studied here. We use the reduction thermodynamics as developed by Panlener et al. for ceria [13], Takacs et al. for Zr-CeO$_2$ [62], and Takacs et al. for the perovskites [23]. The oxygen partial pressure at various reduction extents and temperatures was tabulated for each material using Eq. (21), except for LSMA which used a defect model based approach to determine p_{O2} due to unphysical behavior using Eq. (21). For details on relating the defect model, partial molar properties, temperature and pressure see Takacs et al. [23]. The p_{O2} at a desired temperature and non-stoichiometry, or the non-stoichiometry at a desired temperature and oxygen partial pressure, were calculated by interpolating between the entries in the table.

$$p_{O2} = \exp\left[2^n \frac{\Delta h(\delta)}{R \cdot T} - \frac{\Delta s(\delta)}{R}\right]$$

(21)

The enthalpy of reduction was taken as the average partial molar reduction enthalpy. The heat capacity for ceria was taken to be 80 J/mol K [63] and was assumed to be the same for Zr-CeO$_2$. The heat capacity of perovskites was chosen to be 140 J/mol K because it is the value for many La-based perovskites [64–67] including Sr doped LaMnO$_3$ [68] at elevated temperatures, and because perovskites show general uniformity in their heat capacities [64–68].

System parameters

In this work we investigate systems with reduction temperatures of 1573–1773 K, and oxidation temperatures decreasing from the reduction temperature to 773 K. This temperature was selected as a minimum oxidation temperature because below this point kinetics are likely to require long oxidation times. Additionally, such large temperature swings are likely to induce thermal stresses in the material and structures, decreasing their lifetimes.

We also investigate the effect of heat recuperation and O$_2$ removal and separation efficiencies on the relative behaviors of the materials. Heat recuperation was considered to be from 0% to 90% effective, while O$_2$ removal and CO/CO$_2$ separation were considered to be 1%–50% effective. While it is obvious that more efficient and effective auxiliary processes result in higher $\eta_{solar-to-fuel}$, it is unlikely that a commercial system would achieve effectiveness and efficiency higher than 90%. By investigating the effects of various system parameters, we are able to determine if the optimal material is system dependent, and if so, where the various materials perform best.

Results

The $\eta_{solar-to-fuel}$ was calculated for each material under a variety of system assumptions (i.e. heat recovery effectiveness and O$_2$ removal and separation efficiency) and process conditions (reduction and oxidation temperatures and O$_2$ partial pressure during reduction). Each operation and system parameter was varied, having either an optimistic, neutral or pessimistic value, as is shown in Table 2. The optimistic value has been chosen to be higher than that which is currently experimentally demonstrated to show the potential of STGS, in particular for the case of solid/solid heating and O$_2$ removal. In all cases, the oxidation temperature was varied and the steam excess was calculated to give the highest $\eta_{solar-to-fuel}$ possible. We first describe the efficiency of ceria based STGS
system, followed by the efficiencies of the other redox materials in comparison to ceria.

The efficiency of ceria based STGS

The solar to hydrogen efficiency of a solar thermochemical H₂O splitting plant is determined as a function of the temperature swing between the reduction and oxidation steps, as shown in Fig. 2a, under the neutral system conditions of $T_{\text{red}} = 1673 \text{ K}$ and T_{opt} = 340 K. A further increase in the temperature swing results in a decrease in the $\eta_{\text{solar-to-fuel}}$. Across the range of temperature swings, the H₂ generated per mole of ceria is small, achieving a maximum of 0.017 at T_{opt} = 340 K. The $\eta_{\text{solar-to-fuel}}$ initially increases from 0% under isothermal conditions to a maximum of 15.9% at an optimal value (ΔT_{opt}) of 340 K. A further increase in the temperature swing results in a decrease in the $\eta_{\text{solar-to-fuel}}$. The overall solar-to-fuel of the plant is 14.8% which occurs at a $T_{opt} = 380 \text{ K}$, as shown in Fig. 3a. This is a slightly lower efficiency and larger optimal temperature swing than for H₂O splitting (15.9% and 340 K respectively). The lowered efficiency arises from the higher excess of CO₂ required to drive re-oxidation and additional work required for separation (which is 103 kJ/mol at T_{opt}). At the optimal operating point, 23 mol of excess CO₂ is required, as compared to only 16.5 excess moles of H₂O, which corresponds to heating duties of 607 kJ/mol for CO and 742 kJ/mol for H₂. At the optimal temperature for H₂O splitting a 40 mol excess of CO₂ is required, leading to a heating duty of 1078 kJ/mol. These requirements suppress the optimal oxidation temperature to decrease the required excess of CO₂, which increases the solids heating duty. The higher CO₂ excess required is because splitting H₂O is less exergonically unfavorable than splitting CO₂.

Effect of various system and operating conditions on ceria based STGS

Additional simulations of the ceria based system were conducted under different system and operation point assumptions. We investigated the effects of changing either one or two system assumptions in the efficiency model to determine not only the individual effects but also determine if there are correlations between the effects. Only the information from the optimal operating point are described as the behavior and trends are similar to that of the exemplary neutral operating point case. The results of the H₂O and CO₂ splitting systems are shown in Fig. 4 and Fig. 5, respectively, where the diagonal elements (i.e. those running from the upper left corner to the lower right corner) of the heat map show the effect of altering one assumption, and the off-diagonal elements correspond to two altered assumptions. We first describe single assumption effects before describing correlated effects, starting with the H₂O splitting system before extending the discussion to CO generation.

Of the five assumptions about the H₂O splitting system, the solid-solid heat recuperation has the largest effect on the $\eta_{\text{solar-to-fuel}}$ of a ceria based system. Additionally, the reduction temperature and pressure also play a large role in determining the overall $\eta_{\text{solar-to-fuel}}$. The pump efficiency and gas-gas heat recuperation effectiveness have a lower effect, and exhibit “on-off” behavior. As Fig. 4a shows, increasing (decreasing) the solid-solid heat recuperation effectiveness from 0.5 to 1.0 (0.0) increases (decreases) the solar efficiency from 60% to 30% (10%). The large dependency of $\eta_{\text{solar-to-fuel}}$ on solids heat recuperation arises from the low H₂ production capacity of ceria, see Fig. 4b, which therefore requires many moles of ceria to be cycled for each mole of H₂ produced and an associated large quantity of heat. This is of critical importance.
because efficient solid/solid heat recuperation is technically challenging. Depending on the reactor design, solid heat recuperation may range from 0% in designs with fixed monolithic structures [37] to 50% in design with rotating components [69,70] and higher values in designs with moving particles [71–73]. This work is not alone in identifying the criticality of solid-solid heat recuperation, its findings merely reaffirm the point. For similar reasons, the optimal temperature swings, shown in Fig. 4c, are relatively low and therefore the temperature over which the solids must be re-heated is minimized.

Decreasing the reduction pressure or increasing the reduction temperature to 1 Pa or 1773 K, respectively, increases the \(\eta_{\text{solar-to-fuel}} \) to roughly 21.75%. Conversely increasing the pressure or decreasing the temperature to 100 Pa or 1373 K, respectively, decreases efficiency to ~10%. These modifications, especially the adaption of the optimistic assumption, have a smaller effect than that of altering the solid-solid heating.

The gas-gas effectiveness and \(\text{O}_2 \) removal efficiency have a much smaller effect on the \(\eta_{\text{solar-to-fuel}} \) of ceria and increasing/decreasing the values does not give symmetric behavior. While increasing the gas-gas heat recuperation efficiency increases the efficiency of the system (from 15.7% at \(\varepsilon_{gg} = 0.5 \) to 18.4% at \(\varepsilon_{gg} = 0.9 \)), eliminating the gas-gas heat recuperation only decreases the \(\eta_{\text{solar-to-fuel}} \) by 1% (14.7%). This suggest that while any level of solids heat recover is good, there is a minimum gas-gas heat recovery necessary to significantly affect the overall efficiency of the system. We attribute this to the fact that little excess steam is required to drive the \(\text{H}_2\text{O} \) splitting reaction (see Fig. 4b) because of the strongly oxidizing nature of reduced CeO₂. Conversely, the \(\text{O}_2 \) removal is only a drag on the overall system efficiency. Improvements to the \(\text{O}_2 \) removal efficiencies above 5% effects little improvement in \(\eta_{\text{solar-to-fuel}} \), resulting in a \(\eta_{\text{solar-to-fuel}} \) increase from 15.7% to 15.9% at a \(\eta_{\text{O2-rem}} \) of 10%. However, a decrease in the removal efficiency to 1% decreases the \(\eta_{\text{solar-to-fuel}} \) to 12.6%. Therefore, it is necessary that the \(\text{O}_2 \) removal system be somewhat efficient. While it is unlike that vacuum pumping is capable of achieving such efficiencies at low pressures, methods such as electrochemical \(\text{O}_2 \) pumping, or thermochemical oxygen pumping, which does not require heat to work conversation, may be capable of achieve these efficiencies [74].

Fig. 2 – Solar thermal water splitting a) efficiency of CeO₂, b) required excess steam flow and change in the non-stoichiometry, and c) & d) associated energy requirements over a range of temperature swings. d) highlights the heat requirements in c). The plant and system operation points were: \(\varepsilon_{gg} = \varepsilon_{ss} = 0.5 \), \(\eta_{\text{O2-rem}} = 0.05 \), \(T_{\text{red}} = 1673 \text{K}, P_{\text{red}} = 10^{-4}\text{bar} \).
Improving two system variables at once has, unsurprisingly, a beneficial effect, while combined poor-system performance has a larger deleterious effect. However, the effect of improving only the solid-solid heat recuperation has more of a beneficial impact on the system than improving any other two system metrics. This shows the imperative of having solid-solid heat recuperation when the active material is ceria.

As discussed above, the CO2 splitting plant behaves similarly to the H2O splitting plant. We find that the CO2 splitting plant is slightly less efficient than the H2O splitting plant and operates with a higher temperature swing, as shown in Fig. 5a and b, because higher CO2 flow rates are required than H2O to reoxidize CeO2, as shown in Fig. 5. This however does not alter the finding that the solid-solid heat recuperation has the largest effect on the solar-to-fuel. Additionally, we find that while a higher separation efficiency is better, it has only a minor influence on the over system efficiency.

Overall, we conclude that having a high solids heat recuperation effectiveness is highly desirable, while reduction temperature and pressure should be increased and decreased, respectively, as much as possible. The O2 removal system merely needs to be able to achieve reasonable (~5%) efficiency, with the caveat that below this value the pumping begins to have a detrimental effect. Especially efficient gas-gas heat recuperation or CO2 separation is worthwhile only if it is highly effective.

Solar-to-fuel energy conversion efficiency of various redox materials

In addition to ceria, we investigated the ηsolar-to-fuel of Zr-CeO2, LSMA, LSM40, LCMA, and LCM40. The ηsolar-to-fuel and associated metrics for the base case assumptions about the solar plant (i.e. egg = e ss = 0.5, ηO2-rem = 0.05, ηsep = 0.1, Tred = 1673 K, Pred = 10^-4 bar) are shown in Fig. 6a for a range of temperature swings. Under these conditions, only Zr-CeO2 achieves higher system efficiencies than ceria, while the four perovskites perform significantly worse. Within the perovskites, those containing Ca achieve higher efficiencies than those containing Sr, and the materials without Al (LSM40/LCM40) perform better than those that do.

In all cases the efficiencies converge to ~0.3% at ΔT = 0. This is because the material does not change temperature and therefore the materials act merely to separate O2 evolution:
The pO2 in the system is set during oxygen removal and all materials reduce accordingly. In the re-oxidation step, sufficient H2O enters the system so that the effective pO2 is equal to the pO2 of the materials, which are all identical as the temperature has not changed. At DT = 0, the steam heating term dominates the heat input, as seen in Fig. 2c and d, and therefore the materials dependent effects are negligible on the overall system efficiency.

The relative h_solar-to-fuel of the materials comes from the trade-off between the H2 produced per cycle and the steam requirements. Zr-CeO2, which performs better than ceria at DT > 570 K, has a higher H2 production capacity and steam requirement than CeO2 at all DT. At low non-zero DT, Zr-CO2 requires substantially more steam than CeO2, and the rate of the decrease of steam required with the temperature swing is lower (Fig. 6b). This arises from the fact that CeO2 re-oxidation is more exothermic than Zr-CeO2, and CeO2 is therefore a stronger reducing agent than Zr-CO2. Because the steam heating duty initially controls the overall system efficiency, ceria initially has a higher h_solar-to-fuel than Zr-CeO2. However, Zr-CeO2 achieves higher reduction extents than CeO2, and therefore has a higher production capacity per cycle (seen in Fig. 6c). This cannot compensate for the high required H2O excess at low DT; however, at larger DT where the efficiency is controlled by solids heating, the higher production capacity per cycle of Zr-CeO2 results in lower material flow rates and solid heating requirements as compared to CeO2. This results in Zr-CeO2 having a higher h_solar-to-fuel than CeO2.

Fig. 4 – The heat map of the effect of altering system and operational parameters on the performance of a H2O splitting plant with CeO2 active material. a) The solar to hydrogen efficiency (h_solar-to-fuel), b) optimal temperature swing (ΔT_opt), c) excess steam to hydrogen ratio (s), d) change in oxidation state between the reduction and oxidation reaction (Δδ). The diagonal elements show altering only one parameter, off diagonal elements show the effects of altering two parameters, the upper right corner shows the base case (ε_gg = ε_ss = 0.5, η_pump = 0.05, T_red = 1673 K, and P_O2 = 10^-4 bar). Pluses or minuses correspond to the pessimistic and optimistic cases, which are 0.0 or 0.9 for heat recuperation (ε_gg and ε_ss), 0.01 or 0.1 for O2 removal efficiency (η_O2-rem), 10^-5 and 10^-7 bar for reduction O2 partial pressure (P_O2), and 1573 or 1773 K for reduction temperature (T_red), respectively.
The perovskites have larger production capacities than either ceria or Zr-CeO2, because they have lower reduction enthalpies and thus reduce more easily. However, this comes at the cost of higher steam requirements during oxidation. At most the perovskites have production capacity seven times higher than the ceria materials, which is dwarfed by the steam requirement which is several orders of magnitude higher than the ceria materials. Within the perovskites, those with lower steam requirements had higher $h_{\text{solar-to-fuel}}$, as shown in Fig. 6b. The relative $h_{\text{solar-to-fuel}}$ ordering for the perovskites is LCM40 > LCMA > LSM40 > LSMA. We attribute the better performance of Ca containing perovskites to their higher reduction energy as compared to the Sr containing perovskites. Similarly, the Al containing perovskites have lower partial molar reduction enthalpies than their non-Al containing counter parts at high degrees of reduction where the required steam excess is determined, meaning that Al containing perovskites require more steam and thus have lower $h_{\text{solar-to-fuel}}$.

It is worth noting that LSMA, in addition to being the lowest efficiency material, requires more H2O/CO2 as D_T increases which is the opposite of the other materials. This arises from its low partial molar reduction enthalpy and entropy at the degrees of non-stoichiometry achieved at the reduction temperature and pressure (~0.1), as measured by Takacs et al. [23]. The resulting free energy of re-oxidation by H2O/CO2 becomes less negative at larger D_T because the re-oxidation enthalpy (~260 kJ/mol) is only slightly larger in magnitude than the enthalpy of splitting the gases; this small energetic driving force cannot compensate for the entropy loss of gas reduction and therefore higher H2O/CO2 ratios are required as D_T increases to drive the reaction forward.
System effects
We investigated the behavior of all of the materials under a wide range of solar plant and operating condition assumptions. The results of the H₂O splitting plant are shown in Fig. 7, while the CO₂ plant is shown in Fig. 8. In general, the findings reported above, that the materials have relative η-solar-to-fuel of $\text{Zr-CeO}_2 > \text{CeO}_2 > \text{LCM40} > \text{LCMA} > \text{LSM40} > \text{LSMA}$ for H₂O splitting, hold under most of the conditions considered. However, for some conditions CeO₂ outperforms Zr-CeO₂ for CO₂ splitting. Therefore, we will only discuss general behaviors across the operation points, focusing on H₂O splitting and then commenting on CO₂ splitting.

Zr-CeO₂ has similar trends to undoped ceria, in that the solid-solid heat recuperation effectiveness has the largest effect on efficiency, which is unsurprising given their similar composition and thermodynamics. The only major difference is that Zr-CeO₂ generally has a higher solar conversion efficiency for H₂O splitting. The doped material shows the highest efficiency when the solid heat recuperation is high. This is logical because the material must be looped many times to produce each mole of H₂, owing to the low, but higher than CeO₂, production capacity per cycle. The re-oxidation temperatures of Zr-CeO₂ are all lower than those of CeO₂ and even reach the minimum allowed oxidation temperature of 773 K for high solids heat recuperation and low O₂ removal efficiency.

In some cases, however, CeO₂ has a higher η-solar-to-fuel than Zr-CeO₂ for CO₂ splitting. This occurs in the cases of high solids reheating effectiveness or in some cases with poor gas-gas heat recuperation. This is once again logical because Zr-CeO₂ requires more CO₂ to drive reoxidation than undoped CeO₂. Therefore, when the gas-gas heat recuperation is poor, the higher energy requirement associated with flowing more CO₂ outweighs the higher production capacity of Zr-CeO₂.

Fig. 6 – The effect of altering the redox material in a STGS plant for generating H₂ (a−c) or CO (d−f). a and d) The solar to fuel efficiency, b) and e) required steam flow, and c) and f) change in the non-stoichiometry over a range of temperature swings of CeO₂, Zr-CeO₂, LCM40, LCMA, LSM40, LSMA. The plant and system operation points were: $\epsilon_{gg} = \epsilon_{ss} = 0.5$, $\eta_{O2-rem} = 0.05$, $\eta_{sep} = 0.1$ (CO production), $T_{red} = 1673$ K, $P_{red} = 10^{-4}$ bar.
The effects of altering system and operational parameters on the performance of a water splitting plant with various active materials: a) CeO$_2$, b) Zr-CeO$_2$, c) LCM40, d) LCMA, e) LSM40 and f) LSMA. The diagonal elements show altering only one parameter, (with the altered parameter shown in the corner) off diagonal elements show the effects of altering two parameters, and the upper right corner shows the base case ($\varepsilon_{gg} = \varepsilon_{ss} = 0.5$, $\eta_{pump} = 0.05$, $T_{red} = 1673$ K, and $P_{O_2} = 10^{-4}$ bar). Pluses or minuses correspond to the pessimistic and optimistic cases, which are 0.0 or 0.9 for heat recuperation (ε_{gg} and ε_{ss}), 0.01 or 0.1 for O$_2$ removal efficiency ($\eta_{O_2\text{-rem}}$), 10^{-3} and 10^{-2} bar for reduction O$_2$ partial pressure (P_{O_2}), and 1573 or 1773 K for reduction temperature (T_{red}), respectively. Dark colors represent low values and bright colors are high values.
Fig. 8 – The effects of altering system and operational parameters on the performance of a CO₂ splitting plant with various active materials: a) CeO₂, b) Zr-CeO₂, c) LCM40, d) LCMA, e) LSM40 and f) LSMA. The diagonal elements show altering only one parameter (with the altered parameter shown), off diagonal elements show the effects of altering two parameters, and the upper right corner shows the base case ($\epsilon_{gg} = \epsilon_{ss} = 0.5$, $\eta_{\text{pump}} = 0.05$, $T_{\text{red}} = 1673$ K, $\eta_{\text{sep}} = 0.1$ and $P_{O_2} = 10^{-4}$ bar). Pluses or minuses correspond to the pessimistic and optimistic cases, which are 0.0 or 0.9 for heat recuperation (ϵ_{gg} and ϵ_{ss}), 0.01 or 0.1 for O₂ removal efficiency ($\eta_{O_2-\text{rem}}$), 0.05 or 0.5 for separation efficiency ($\eta_{\text{sep}} = 0.1$), 10^{-5} and 10^{-3} bar for reduction O₂ partial pressure (P_{O_2}), and 1573 or 1773 K for reduction temperature (T_{red}), respectively. Dark colors represent low values and bright colors are high values.
Similarly, when the solid-solid heat recuperation is high, the solids re-heating requirements of CeO2 is decreased and therefore the low production capacity effects are diminished. Once again the higher CO2 flowrates of Zr-CeO2 cause the lower \(\eta_{\text{solar-to-fuel}} \).

The perovskites behave differently than the ceria based materials. This is because they are much poorer reducing agents than the ceria materials, and H2O heating is the major controller of overall system efficiency. This is seen in the fact that the H2O flow rates are very high and that minimum possible oxidation temperature (773K) is the optimal AT for almost all cases, See SI Fig. S1–S5. Therefore, perovskite materials are affected strongly by a different set of system and operating conditions than the ceria materials. Rather than solid heat recuperation being the most important factor, reduction temperature and pressure, and the gas-gas heat recuperation controls the efficiency of perovskite processes. LCM40 and LSM40 both require a high reduction temperature and low reduction oxygen partial pressure in order to achieve moderate efficiencies. Without a high reduction temperature and low reduction \(P_{\text{O2}} \) these cycles perform very poorly (< 10% \(\eta_{\text{solar-to-fuel}} \)). Highly effective steam heat recovery also improves the overall efficiency, however without it the cycles are still capable of producing \(\text{H}_2 \) at a reasonable efficiency. This is because under high \(T_{\text{React}} \) or low \(P_{\text{O2}} \) conditions the material reduces significantly, and thus has a higher driving force for re-oxidation, and, therefore, the quantity of H2O required to generate a mole of \(\text{H}_2 \) is low compared to the other investigated conditions. The aluminum containing perovskites (LCMA and LSMA) require very effective gaseous heat recovery to perform even modestly well, and even then their \(\eta_{\text{solar-to-fuel}} \) is low. This arises from the fact that these materials require more than a 50 times excess of steam to re-oxidize the material under all conditions, and therefore it is logical that high gaseous heat recovery is necessary for even minimal \(\eta_{\text{solar-to-fuel}} \). This finding shows the need for a system based analysis of new STGS materials, because while the perovskites, LSMA in particular, have gained significant attention due to high \(H_2 \) production capacities, our system efficiency model suggest that they will not result in high \(\eta_{\text{solar-to-fuel}} \).

The trends discussed above for \(H_2O \) splitting hold for CO2 splitting for the perovskites (see SI Fig. S6–S10). Because the efficiency of these materials was already controlled by gas heating for \(H_2O \), which is a more oxidizing gas, using a less oxidizing gas (CO2) which requires higher gas flow rates only exacerbates the situation. For CO2 splitting, all perovskites exhibit poor \(\eta_{\text{solar-to-fuel}} \), except in cases where there is excellent gas-gas heat recuperation, and even then a low oxygen partial pressure or high reduction temperature are required.

Discussion

In all but three \(H_2O \) splitting configurations investigated (out of 121 total), Zr-CeO2 outperformed un-doped ceria by 3–5% \(\eta_{\text{solar-to-fuel}} \). Even in the three cases where CeO2 showed better performance the difference was less than 1% \(\eta_{\text{solar-to-fuel}} \). The most even performance between the two occurred for the low \(O_2 \) removal efficiency case (\(\eta_{\text{O2-rem}} = 1\% \)) where neither material had a \(\eta_{\text{solar-to-fuel}} \) of more than 14%. Therefore, assuming that the kinetics are roughly similar, or that they can be designed around, we suggest that Zr-CeO2 materials are superior in terms of overall hydrogen production efficiencies. When the system is used to drive CO2 splitting, the better material is more dependent on the system parameters, where CeO2 outperforms Zr-CeO2 when there is high solids heat recovery, or under the most pessimistic assumptions. Conversely, there are only two cases where a perovskite, namely LCM40 and LCMA outperform CeO2 for \(H_2O \) splitting, and this is where the gas-gas heat recuperation is very effective (90%) but the solid-solid recuperation is not (0%). This also is logical because the perovskites are not very sensitive to solids heat recuperation but are very sensitive to gas heat recuperation while the opposite is true for CeO2. Even under these conditions, Zr-CeO2 outperforms the perovskites. The fact that the perovskites only outperform ceria where they are at their best and ceria is at its worst, suggests that perovskites may not be optimal for STGS systems because they require steam excesses that are far too high. Similarly, the perovskites never outperform CeO2 or Zr-CeO2 for \(CO_2 \) splitting, once again because \(CO_2 \) splitting requires larger excesses of the oxidizing gases, which is the weak point of perovskites, even for \(H_2O \) splitting. Overall, the best performing material, Zr-CeO2 which is only slightly better than un-doped ceria, is the material with balanced thermodynamic properties which slightly favor the oxidation reaction.

Conclusions

In this work, we used a thermodynamic model to determine the solar-to-fuel energy conversion efficiency of six redox materials for thermochemically splitting \(H_2O \) and \(CO_2 \). We showed that the materials have relative performances of Zr-CeO2 > CeO2 > La0.6Ca0.4MnO3 > La0.6Ca0.4Mn0.6Al0.4O3 > La0.6Sr0.4MnO3 > La0.6Sr0.4Mn0.6Al0.4O3, and that this ordering is relatively independent of system parameters or operating points, with the caveat that CeO2 outperforms Zr-CeO2 for \(CO_2 \) splitting in systems with high solids heating recuperation. However, while the system parameters and operating points have little effect on the overall conclusion, the different materials are more or less sensitive to different parameters. The performance of ceria based materials (Zr-CeO2 and CeO2) are most influenced by the solid-solid heat recuperation, while the LCM and LSM are correlated to reduction temperature and \(O_2 \) partial pressure, and LCMA and LSMA are correlated to gas-gas heat recuperation. We attribute these effects to the re-oxidizability of the materials. The perovskites, which are appealing at first glance due to their high reducibility, require vast excesses of steam to drive re-oxidation and \(H_2 \) or \(CO \) generation, and are therefore highly limited by factors affecting re-oxidation. The ceria materials are limited by their reduction extents, and therefore their production capacity. Based on these finding we draw two general conclusions. 1) The redox material behavior dictates the requirements of the solar plant. This means that the system needs to be designed around the material, i.e. the system prioritizes high solid-solid heat recuperation for the ceria materials or high gas-gas heat recuperation for the LCM or LSM. 2) The search for new...
materials should concentrate on those that slightly favor the oxidation reaction, not the reduction reaction, as it has been previously thought; these new materials should oxidize well while not requiring reduction temperatures in excess of 1600 °C. Even at low temperatures the CeO2 and Zr-CeO2 have higher efficiencies than the perovskites which favor reduction. This is because the steam heating requirements quickly negate the benefits of additional production capacity. Overall, we have shown that STGS can achieve high ηsolar-to-fuel with available redox materials for solar reactors operating at optimal reduction temperature and pressure conditions and with adequate heat recovery.

Acknowledgements

We gratefully acknowledge the financial support by the Swiss National Science Foundation (Grant No. 200021_162435), the Swiss State Secretariat for Education, Research and Innovation (SERI) under contract number 16.0183, and the EU’s Horizon 2020 research and innovation program (INSHIP – No. 731287).

Appendix A. Supplementary data

Supplementary data related to this article can be found at https://doi.org/10.1016/j.ijhydene.2018.08.137.

References

[1] Fletcher EA, Moen RL. Hydrogen and oxygen from water. Science 1977;197:1050–6.
[2] Perkins C, Weimer AW. Solar-thermal production of renewable hydrogen. AIChE J 2009;55:286–93.
[3] Muhich CL, Ehrhart BD, Al-Shankiti I, Ward BJ, Musgrave CB, Weimer AW. A review and perspective of efficient hydrogen generation via solar thermal water splitting. Wiley Interdisciplinary Reviews: Energy Environ 2016;5:261–87.
[4] Bhosale RR, Takalkar G, Sutar P, Kumar A, AlMomani F, Khraisheh M. A decade of ceria based solar thermochemical H2O/CO2 splitting cycle. Int J Hydrogen Energy 2018 [in press].
[5] Wang Z, Roberts RR, Naterer GF, Gabriel KS. Comparison of thermochemical, electrolytic, photoelectrolytic and photochemical solar-to-hydrogen production. Int J Hydrogen Energy 2011;36:13435–41.
[6] Scaranto J, Idriss H. The effect of uranium cations on the redox properties of CeO2 within the context of hydrogen production from water. Top Catal 2015;58:143–8.
[7] Muhich C, Weibel D, Steinfeld A. Principles of doping ceria for the solar thermochemical redox splitting of H2O and CO2. J Mater Chem A 2017;5:15578–90.
[8] Scheffe JR, Weibel D, Steinfeld A. Lanthanum–strontium–manganese perovskites as redox materials for solar thermochemical splitting of H2O and CO2. Energy Fuels 2013;27:4250–7.
[9] Scaranto J, Idriss H. The effect of uranium cations on the redox properties of CeO2 within the context of hydrogen production from water. Top Catal 2015;58:143–8.
[10] Kang H, Su H, Li Z, Gao W, Zhang Q, Xue W, et al. Selective reduction of CO2 to CO using CeO2 as the catalyst. J Mater Chem A 2016;4:6385–92.
[11] Kaneko H, Miura T, Ishihara H, Taku S, Yokoyama T, Nakajima H, et al. Reactive ceramics of CeO2–MOx (M=Mn, Fe, Ni, Cu) for H2 generation by two-step water splitting using concentrated solar thermal energy. Energy 2007;32:656–63.
[12] Ehrhart BD, Muhich CL, Al-Shankiti I, Weimer AW. System efficiency for two-step metal oxide solar thermochemical hydrogen production – Part 1: thermodynamic model and impact of oxidation kinetics. Int J Hydrogen Energy 2016;41:19881–93.
[13] Panlener R, Blumenthal RN, Garnier JE. A thermodynamic study of nonstoichiometric cerium dioxide. J Phys Chem Solid 1975;36:1213–22.
[14] Le Gal A, Abanades S, Flamant G. CO2 and H2O splitting for thermochemical production of solar fuels using nonstoichiometric ceria and ceria/zirconia solid solutions. Energy Fuels 2011;25:4836–45.
[15] Scheffe JR, Jacot R, Patzke GR, Steinfeld A. Synthesis, characterization, and thermochemical redox performance of Hf4+ and Zr4+, and Sc3+ doped ceria for splitting CO2. J Phys Chem C 2013;117:24104–14.
[16] Meng Q-L, Lee C-J, Ishihara T, Kaneko H, Tamaura Y. Reactivity of CeO2-based ceramics for solar hydrogen production via a two-step water-splitting cycle with concentrated solar energy. Int J Hydrogen Energy 2011;36:13435–41.
reduction and water-decomposition steps. Int J Hydrogen Energy 2011;36:4757–67.

[28] Bhosale RR, Kumar A, AlMomani F, Ghosh U, Khrishekh M. A comparative thermodynamic analysis of samarium and erbium oxide based solar thermochemical water splitting cycles. Int J Hydrogen Energy 2017;42:23416–26.

[29] Bhosale RR. Thermodynamic analysis of Ni-ferrite based solar thermochemical H2O splitting cycle for H2 production. Int J Hydrogen Energy 2018 [in press].

[30] Ghandehariun S, Naterer GF, Dincer I, Rosen MA. Solar thermochemical plant analysis for hydrogen production with the copper--chlorine cycle. Int J Hydrogen Energy 2010;35:8511–20.

[31] Sayyaadi H, Saeedi Boroujeni M. Conceptual design, process integration, and optimization of a solar CuCl thermochemical hydrogen production plant. Int J Hydrogen Energy 2017;42:2771–89.

[32] Gillis RJ, Al-Ali K, Green WH. Thermochemical production of hydrogen from hydrogen sulfide with iodine thermochemical cycles. Int J Hydrogen Energy 19 July 2018;43(29):12393–47.

[33] Liberatore R, Bassi A, Turchetti L, Venturin M. Multi-objective optimization of a hydrogen production through the HyS process powered by solar energy in different scenarios. Int J Hydrogen Energy 2018;43:8683–97.

[34] Bhosale R, Kumar A, AlMomani F, Gupta RB. Solar thermochemical ZnO/ZnSO4 water splitting cycle for hydrogen production. Int J Hydrogen Energy 2017;42:23474–83.

[35] Abanades S, Flamant G. Thermochemical hydrogen production from a two-step solar-driven water-splitting cycle based on cerium oxides. Sol Energy 2006;80:1611–23.

[36] Chueh WC, Haile SM. Ceria as a thermochemical reaction medium for selectively generating syngas or methane from H2O and CO2. Chem sustain chem 2009;2:735.

[37] Chueh WC, Falter C, Abbott M, Scipio D, Furler P, Haile SM, et al. High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria. Science 2010;330:1797–801.

[38] Ackermann S, Sauvin L, Castiglioni R, Rupp JLM, Scheffe JR, Steinfeld A. Kinetics of CO2 reduction over nonstoichiometric ceria. J Phys Chem C 2015;119:16452–61.

[39] Chueh WC, Haile SM. A thermochemical study of ceria: exploiting an old material for new modes of energy conversion and CO2 mitigation. Phil Trans Math Phys Eng Sci 2010;368:3269.

[40] Zhu L, Lu Y, Li F. Reactivity of Ni, Cr, and Zr doped ceria in CO2 splitting for CO production via two-step thermochemical cycle. Int J Hydrogen Energy 26 July 2018;43(30):13754–63.

[41] Orfita M, Linares M, Molina R, Botas JA, Sanz R, Marugán J. Perovskite materials for hydrogen production by thermochemical water splitting. Int J Hydrogen Energy 2016;41:19329–38.

[42] McDaniel AH. Renewable energy carriers derived from concentrating solar power and nonstoichiometric oxide. Green and Sustain Chem 2017;4:37–43.

[43] Ermanoski I, Miller J, Allendorf M. Efficiency maximization in solar-thermochemical fuel production: challenging the concept of isothermal water splitting. Phys Chem Chem Phys 2014;16:8418–27.

[44] Ehrtart BD, Muhich CL, Al-Shankiti I, Weiner AW. System efficiency for two-step metal oxide solar thermochemical hydrogen production – Part 2: impact of gas heat recuperation and separation temperatures. Int J Hydrogen Energy 2016;41:19894–903.

[45] Siegel NP, Miller JE, Ermanoski I, Diver RB, Stechel EB. Factors affecting the efficiency of solar driven metal oxide thermochemical cycles. Ind Eng Chem Res 2013;52:3276–86.

[46] Bader R, Venstrom LJ, Davidson JH, Lipiński W. Thermodynamic analysis of isothermal redox cycling of ceria for solar fuel production. Energy Fuels 2013;27:5533–44.

[47] Venstrom LJ, De Smith RM, Hao Y, Haile SM, Davidson JH. Efficient splitting of CO2 in an isothermal redox cycle based on ceria. Energy Fuels 2014;28:2732–42.

[48] Scheffe JR, Steinfeld A. Thermodynamic analysis of cerium-based oxides for solar thermochemical fuel production. Energy Fuels 2012;26:1928–36.

[49] Krenzke PT, Davidson JH. On the efficiency of solar H2 and CO production via the thermochemical cerium oxide redox cycle: the option of inert-swept reduction. Energy Fuels 2015;29:1045–54.

[50] Lapp J, Davidson JH, Lipiński W. Efficiency of two-step solar thermochemical non-stoichiometric redox cycles with heat recovery. Energy 2012;37:591–600.

[51] Ehrhart BD, Muhich CL, Al-Shankiti I, Weimer AW. System efficiency for two-step metal oxide solar thermochemical hydrogen production – Part 3: various methods for achieving low oxygen partial pressures in the reduction reaction. Int J Hydrogen Energy 2016;41:19904–14.

[52] Ermanoski I. Cascading pressure thermal reduction for efficient solar fuel production. Int J Hydrogen Energy 2014;39:13114–7.

[53] Lange M, Roeb M, Sattler C, Pitz-Paal R. T–S diagram efficiency analysis of two-step thermochemical cycles for solar water splitting under various process conditions. Energy 2014;67:298–308.

[54] Buñín B, Lange M, de Oliveira L, Roeb M, Sattler C. Solar thermochemical hydrogen production using ceria zirconia solid solutions: efficiency analysis. Int J Hydrogen Energy 2016;41:19320–8.

[55] Falcone PK. A handbook for solar central receiver design. Livermore, CA (USA): Sandia National Labs.; 1986 [Medium: ED].

[56] Pitz-Paal R, Botero NB, Steinfeld A. Heliostat field layout optimization for high-temperature solar thermochemical processing. Sol Energy 2011;85:334–43.

[57] Ehrtart B, Gill D. Evaluation of annual efficiencies of high temperature central receiver concentrated solar power plants with thermal energy storage. Energy Procedia 2014;49:752–61.

[58] Dähler F, Wild M, Schappi R, Haueter P, Cooper T, Good P, et al. Optical design and experimental characterization of a solar concentrating dish system for fuel production via thermochemical redox cycles. Sol Energy 2018;170:568–75.

[59] Vieten J, Buñín B, Call F, Lange M, Schmucker M, Francke A, et al. Perovskite oxides for application in thermochemical air separation and oxygen storage. J Mater Chem 2016;4:13562–9.

[60] Sander R. Harry's law constants. In: Linstrom PJ, Mallard WG, editors. NIST Chemistry WebBook, standard reference database number 69. Gaithersburg, MD: National Institute of Standards and Technology.

[61] Domalski ES, Hearing ED. Condensed phase heat capacity data. In: Linstrom PJ, Mallard WG, editors. NIST Chemistry WebBook, standard reference database number 69. Gaithersburg, MD: National Institute of Standards and Technology.

[62] Takacs M, Scheffe JR, Steinfeld A. Oxygen nonstoichiometry and thermodynamic characterization of Zr doped ceria in the 1573–1773 K temperature range. Phys Chem Chem Phys 2015;17:7813–22.

[63] Ricken M, Nolting J, Riess I. Specific heat and phase diagram of nonstoichiometric ceria (CeO2-x). J Solid State Chem 1984;54:89–99.

[64] Zinkevich M, Solak N, Nitsche H, Ahrens M, Aldinger F. Stability and thermodynamic functions of lanthanum nickelates. J Alloy Comp 2007;438:92–9.

[65] Jacob KT, Ataluri M. Refinement of thermodynamic data for LaMnO3. J Mater Chem 2003;13:934–42.
[66] Stølen S, Grønvold F, Brinks H, Atake T, Mori H. Heat capacity and thermodynamic properties of LaFeO$_3$ and LaCoO$_3$ from $T=13$ K to $T=1000$ K. J Chem Therm 1998;30:365–77.

[67] Sakai N, Stølen S. Heat capacity and thermodynamic properties of lanthanum(III) chromate(III): LaCrO$_3$, at temperatures from 298.15 K. Evaluation of the thermal conductivity. J Chem Therm 1995;27:493–506.

[68] Szewczyk A, Gutowska M, Dabrowski B. Specific heat and phase diagram of heavily doped La$_{1-x}$Sr$_x$MnO$_3$ (0.45 ≤ x ≤ 1.0). Phys Rev B 2005;72:224429.

[69] Lapp J, Davidson JH, Lipiński W. Heat transfer analysis of a solid-solid heat recuperation system for solar-driven nonstoichiometric redox cycles. J Sol Energy Eng 2013;135:031004–11.

[70] Diver RB, Miller JE, Allendorf MD, Siegel NP, Hogan RE. Solar thermochemical water-splitting ferrite-cycle heat engines. J Sol Energy Eng 2008;130:041001.

[71] Welte M, Barhoumi R, Zbinden A, Scheffé JR, Steinfeld A. Experimental demonstration of the thermochemical reduction of ceria in a solar aerosol reactor. Ind Eng Chem Res 2016;55:10618–25.

[72] Ermanoski I, Siegel NP, Stechel EB. A new reactor concept for efficient solar-thermochemical fuel production. J Sol Energy Eng 2013;135:031002–10.

[73] Brendelberger S, Sattler C. Concept analysis of an indirect particle-based redox process for solar-driven H$_2$/CO$_2$ splitting. Sol Energy 2015;113:158–70.

[74] Brendelberger S, von Storch H, Bulfin B, Sattler C. Vacuum pumping options for application in solar thermochemical redox cycles — assessment of mechanical-, jet- and thermochemical pumping systems. Sol Energy 2017;141:91–102.