Active smoking among people with diabetes mellitus or hypertension in Africa: a systematic review and meta-analysis

Jean Jacques Noubiap1, Jobert Richie Nansseu2,3, Francky Teddy Endomba4, Anderson Ngouo4, Jan René Nkeck4, Ulrich Flore Nyaga4, Arnaud D. Kaze5 & Jean Joel Bigna6,7

The objective was to summarize existing data on the prevalence of active tobacco smoking among patients with hypertension or diabetes mellitus in Africa. We searched PubMed, EMBASE, and AJOL to include studies published from January 01, 2000 to August 23, 2017 reporting on the prevalence of active smoking in individuals aged ≥15 years with hypertension or diabetes mellitus residing inside Africa. We used a random-effects meta-analysis model to pool studies. The pooled prevalence of active smoking among patients with hypertension or diabetes was 12.9% (95%CI: 10.6–15.3; 50 studies; 16,980 patients) and 12.9% (95%CI: 9.6–16.6; 42 studies; 18,564 patients), respectively. For both conditions, the prevalence of active smoking was higher in males than in females (p < 0.001), and in Northern compared to sub-Saharan Africa (p < 0.001). There was no difference between urban and rural settings, and between community-based and hospital-based studies, except for patients with diabetes for whom the prevalence was higher in hospital-based studies (p = 0.032). The prevalence of active smoking is high among patients with hypertension or diabetes mellitus in Africa, with the heaviest burden in Northern Africa. Interventions for smoking prevention or cessation should be implemented in these high risk populations, targeting particularly the males.

The burden of cardiovascular diseases (CVD) has dramatically risen in Africa over the past decade, and CVD and there is an epidemiological transition in which the burden of CVD is overtaking that of infectious diseases on the continent by 2030. In sub-Saharan Africa (SSA) for instance, CVD were responsible for nearly 1 million deaths in 2013, representing 38.3% of non-communicable disease-related deaths and 11.3% of all-cause mortality. This surge in the burden of CVD is driven by the increasing prevalence in cardiovascular risk factors. Hypertension, diabetes mellitus, hypercholesterolemia, obesity, and smoking are the five major modifiable traditional cardiovascular risk factors. At least one of these five risk factors is present in 80% to 95% of individuals who experienced a fatal or non-fatal cardiovascular event. The most recent data from the Global Burden of Disease study showed that hypertension, diabetes mellitus and smoking remain among the five leading factors contributing to the global burden of disease. Much more, the interaction between these three risk factors is devastating. Indeed, all forms of smoking amplifies markedly the risk of all-cause, CVD and non-CVD morbidity and mortality in patients with hypertension and diabetes.

Smoking cessation and prevention is therefore a crucial component in the management of hypertension and diabetes mellitus. In Africa where hypertension and diabetes mellitus are highly prevalent, the magnitude of active smoking in patients with these conditions is not well known. We present here a systematic review and...
Methods
This review is reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The protocol was published in a peer-reviewed journal9, and is registered with PROSPERO (Registration number CRD42016052560). For this review, we used the same method as in previously published meta-analysis of prevalence studies10–13.

Literature search. We searched PubMed, Excerpta Medica Database (EMBASE), and African Journals Online (AJOL) to identify all relevant articles published from January 01, 2000 to August 23, 2017 on the prevalence of active smoking in individuals with hypertension or diabetes mellitus in Africa. No language restriction was applied. The full search strategy was published in the study protocol9. The reference list of all relevant articles were screened to identify other potential data sources.

Selection of studies for inclusion in the review. Cross-sectional and cohort studies reporting on the prevalence of active smoking in individuals aged more than 15 years with hypertension or diabetes mellitus residing in African continent or enough data to compute it were included. Hypertension had to be defined as the presence of systolic blood pressure \(\geq 140 \) mmHg and/or diastolic blood pressure \(\geq 90 \) mmHg or being on any antihypertensive treatment14. Diabetes mellitus was defined according to one of the following diagnostic criteria: being on any antidiabetic treatment, A1c haemoglobin \(\geq 6.5\% \) or fasting plasma glucose \(\geq 126 \) mg/dL (7.0 mmol/L) or 2 hours plasma glucose \(\geq 200 \) mg/dL (11.1 mmol/L) in the presence of classic symptoms of hyperglycemia15. Active smoking was defined as current use of any tobacco product in either smoked or smokeless form16. We excluded studies conducted among populations of African origin residing outside Africa, studies on non-systemic hypertension (intracranial hypertension, pulmonary hypertension) or studies on gestational diabetes, letters, case series with small sample size (less than 50 participants), reviews, commentaries and editorials. For studies published in more than one paper, the most comprehensive one reporting the largest sample size was considered.

Assessment of methodological quality and reporting of data. Methodological quality of included studies was evaluated using the tool developed by Hoy and colleagues17. A score of 1 (yes) or 0 (no) was assigned for each item, and scores summed across items to generate an overall quality score that ranged from 0 to 10. Studies were then classified as having a low (>8), moderate (6–8), or high (≤5) risk of bias. Three investigators (UFN, AN and JRN) independently assessed study methodological quality of a third of included studies for each of them, and all the assessments were independently reviewed by a fourth investigator (JJN) with disagreements being resolved through consensus.

Data extraction and management. A preconceived and standardized Google online data extraction form was used to collect information on first author's name, study country, African sub-region (Northern Africa vs sub-Saharan Africa), year of publication, study design (cross-sectional, cohort or case-control), setting (population-based vs hospital-based), area (rural vs urban), number of participants, mean or median age of the population, proportion of males, definition of smoking and the prevalence of active smoking. Three investigators

Figure 1. The review process.
Setting	Prevalence % (95% confidence interval)	N	N Participants	H (95% confidence interval)	I² (95% confidence interval)	p heterogeneity	p Egger	p difference subgroups
Overall	12.9 (10.6–15.3)	50	16980	4.5 (4.1–4.9)	95.1 (94.2–95.9)	<0.0001	0.686	
By sex								
Male	27.6 (19.6–36.4)	8	1412	3.5 (2.7–4.5)	91.6 (85.9–95.0)	<0.0001	0.741	<0.0001
Female	5.9 (4.1–8.0)	7	2384	1.9 (1.3–2.8)	71.2 (37.5–86.8)	0.002	0.948	
By region								
Northern Africa	27.2 (19.1–36.2)	4	1580	3.4 (2.3–5.0)	91.3 (80.9–96.1)	<0.0001	0.620	0.0002
Sub-Saharan Africa	11.8 (9.7–14.1)	46	15400	4.2 (3.8–4.6)	94.2 (93.0–95.2)	<0.0001	0.604	
By sub-region								
Northern Africa	27.2 (19.1–36.2)	4	1580	3.4 (2.3–5.0)	91.3 (80.9–96.1)	<0.0001	0.620	0.005
Southern Africa	14.2 (11.0–17.6)	7	2666	2.3 (1.6–3.2)	80.2 (59.7–90.3)	<0.0001	0.109	
Central Africa	14.0 (6.6–23.6)	3	567	2.9 (6.6–23.6)	87.7 (65.5–95.6)	0.0003	0.538	
Eastern Africa	11.6 (8.6–15.1)	16	5796	3.8 (3.2–4.5)	93.0 (90.1–95.0)	<0.0001	0.195	
Western Africa	10.7 (6.4–15.8)	18	5378	3.3 (4.7–6.1)	96.5 (95.4–97.3)	<0.0001	0.489	
By area								
Urban	12.0 (8.2–16.4)	18	5237	4.4 (3.8–5.1)	94.9 (93.2–96.2)	<0.0001	0.447	0.388
Rural	15.9 (8.8–24.6)	11	3588	6.3 (5.5–7.4)	97.5 (96.6–98.2)	<0.0001	0.536	
Setting								
Population-based	13.0 (10.1–16.1)	32	11639	4.7 (4.3–5.2)	95.5 (94.5–96.3)	<0.0001	0.690	0.959
Hospital-based	12.8 (9.0–17.0)	18	5341	4.3 (3.7–4.9)	94.5 (92.6–95.9)	<0.0001	0.890	

Table 1. Summary statistics of the prevalence of active tobacco smoking in people with hypertension in Africa.

We performed statistical analysis with R version 3.5.1 (The R Foundation for statistical computing, Vienna, Austria). Meta-analyses were conducted with the package ‘meta’. Unadjusted prevalence was recalculated based on the information of crude number of cases and sample size provided by each individual study. Each prevalence was reported with its 95% confidence interval (95%CI). The variance of each included study was stabilized with the Freeman–Tukey double arcsine transformation before meta-analysis. This was done to keep the effect of studies with extremely small or extremely large prevalence estimates on the overall estimate to a minimum14. Random-effects analysis was used to pool data. Funnel plot was drawn to investigate any asymmetry. The formal Egger’s test was used to definitively identify publication bias if p value < 0.1019. Heterogeneity was evaluated by the χ² test on Cochrane’s Q statistic20. The I² statistic, used to quantify heterogeneity, estimated the percentage of total variation across studies due to true between-study differences rather than chance. The I² values greater than 60–70% indicated the presence of substantial heterogeneity21. We also used H statistics to quantify heterogeneity. Subgroup analyses were performed for the following subgroups: sex (male versus female), regions (northern versus sub-Sahara Africa), sub-regions (northern, southern, central, eastern, and western), areas (urban versus rural), and settings (population versus hospital-based studies). To test for an effect of study and participants’ characteristics (year of publication, proportion of males, regions, areas, setting, and sample size), we used univariable and multivariable meta-regression analyses. We applied a manual forward selection procedure to identify sources of heterogeneity independently associated with the variation of overall prevalence of active tobacco smoking. We included in multivariable meta-regression analysis, all variables associated (p value < 0.20) with the variation of prevalence in univariable analysis. For categorical variables with 3 or more categories, the global p value was considered for the inclusion in multivariable models. A 2-sided p value < 0.05 was considered statistically significant.

Role of funding source. This study received no funding. All authors had full access to all study data and the corresponding author had final responsibility for the decision to submit the paper for publication.

Results
The review process and study characteristics. Initially, 2,871 records were identified. After elimination of duplicates, 2,683 records remained. Titles and abstracts were screened and 2,559 irrelevant records were excluded. Of the remaining 124 papers (full texts) scrutinized for eligibility, 37 were excluded with reasons. Finally, 87 full texts were retained in the meta-analysis with 45 including data for hypertension only22–66, 37 for diabetes mellitus only67–103 and five including both conditions104–108 (Fig. 1).

The review process and study characteristics. Initially, 2,871 records were identified. After elimination of duplicates, 2,683 records remained. Titles and abstracts were screened and 2,559 irrelevant records were excluded. Of the remaining 124 papers (full texts) scrutinized for eligibility, 37 were excluded with reasons. Finally, 87 full texts were retained in the meta-analysis with 45 including data for hypertension only22–66, 37 for diabetes mellitus only67–103 and five including both conditions104–108 (Fig. 1).

Supplementary Table 1 (Appendix) summarizes characteristics of included studies. For hypertension, most studies were from western Africa, were multicentre, were conducted in urban areas, were population-based, and used prospective and consecutive sampling. For diabetes mellitus, most studies originated from Eastern and Northern Africa, were conducted in urban areas, in a single centre, were hospital-based, and used prospective and consecutive sampling. Forty-two (48.3%) studies had low risk of bias, 38 (43.7%) studies had moderate and 7 (8.0%) studies had high risk of bias. Individual characteristics of each included study are shown in Supplementary Table 2 (Appendix).
Prevalence of active smoking in hypertension. In total, 16,980 participants were included from 18 countries. The prevalence varied widely from 0.5% to 58.4% both in Nigeria. Table 1 summarizes overall and subgroup statistics of the prevalence of active smoking in hypertension. The pooled overall prevalence of active smoking in hypertension was 12.9% (95%CI: 10.6–15.3; 50 studies) with substantial heterogeneity (Fig. 2). The prevalence was higher in males (27.6, 95%CI: 19.6–36.4) than in females (5.9, 95%CI: 4.1–8.7) (p < 0.0001) (Supplementary Figure 1, Appendix). The prevalence was higher in northern Africa (27.2%, 95%CI: 19.1–36.2) compared to sub-Saharan Africa (11.8%, 95%CI: 9.7–14.1) (p = 0.0002) (Fig. 2). This finding was confirmed for sub-regions analysis (Supplementary Figure 2, Appendix) and in meta-regression analysis (Supplementary Figure 2).
Prevalence of active smoking in diabetes mellitus. In total, 18,564 participants were included from 18 countries. The prevalence varied widely, from 0.0% in Tanzania to 55.7% in Tunisia. Table 2 summarizes overall and subgroup statistics of the prevalence of active smoking in diabetes mellitus. The pooled overall prevalence of active smoking in diabetes mellitus was 12.9% (95%CI: 9.6–16.6; 42 studies) with substantial heterogeneity (Fig. 3). The prevalence was higher in northern Africa (21.3% (14.5–29.0) compared to sub-Saharan Africa (10.3% (6.8–14.3) (p < 0.0001; 0.021). The prevalence was also higher in hospital-based (14.3% (10.5–18.6) and urban dwellers (11.7% (7.7–16.3) (p = 0.0002) compared to community-based studies (7.3% (1.8–15.8) (Supplementary Figure 3, Appendix) and between hospital-based compared to community-based studies (p = 0.19) in the prevalence of active smoking between rural (7.3% (0.0–6.5) and urban dwellers (7.3% (6.8–14.3) (p = 0.0002) (Fig. 3). This finding was confirmed for sub-regions analysis (Supplementary Figure 7, Appendix) and in meta-regression analysis (Supplementary Table 4, Appendix). There was no difference (p = 0.612) in hospital-based compared to community-based studies, except for patients with diabetes mellitus living in Africa. We compiled data from about 20,000 patients for each condition, and obtained a pooled prevalence of 13%. There was a wide variation between countries, from 0.5% to 58.4% both in Nigeria for patients with hypertension, and from 0.0% in Tanzania to 55.7% in Tunisia for patients with diabetes mellitus, with substantial heterogeneity between studies. Additionally, we found for both conditions that the prevalence of active smoking was higher in males than in females and in Northern Africa than in sub-Saharan Africa. However, there was no difference in prevalence estimates between urban and rural settings, and between community-based and hospital-based studies, except for patients with diabetes mellitus for whom the prevalence of active smoking was higher in hospital-based compared to community-based studies.

The prevalence of 13% found in this review concurs roughly with other reports from hypertensive or diabetes populations residing outside Africa. Likewise, our estimates align with what has been reported by the World Health Organization (WHO) for the prevalence of smoking among the African general population, around 12%. Similarly, the wide variation of prevalence estimates observed between studies or countries was previously reported. For instance, in a meta-analysis compiling data from 13 African countries mostly from Eastern, Western and Southern Africa, it was found that the prevalence of active tobacco smoking in the general population varied immensely, from 1.8 to 25.8%. Notwithstanding, the prevalence of active tobacco smoking

Setting	Prevalence % (95% confidence interval)	N Studies	N Participants	H (95% confidence interval)	I² (95% confidence interval)	p heterogeneity	p Egger	p difference subgroups
Overall	12.9 (9.6–16.6)	42	18564	6.7 (6.1–7.1)	97.7 (97.3–98.0)	<0.0001	0.372	
By sex								
Male	18.6 (9.7–29.6)	6	1130	4.0 (3.0–5.3)	93.6 (88.8–96.4)	<0.0001	0.752	0.0006
Female	2.1 (0.0–6.5)	6	1470	3.6 (2.7–4.9)	92.3 (86.0–95.8)	<0.0001	0.049	
By region								
Northern Africa	21.3 (14.5–29.0)	11	3250	4.8 (4.0–5.8)	95.7 (93.9–97.0)	<0.0001	0.671	0.006
Sub-Saharan Africa	10.3 (6.8–14.3)	31	15314	7.0 (6.5–7.6)	98.0 (97.6–98.3)	<0.0001	0.194	
By sub-region								
Northern Africa	21.3 (14.5–29.0)	11	3250	4.8 (4.0–5.8)	95.7 (93.9–97.0)	<0.0001	0.671	0.021
Southern Africa	16.8 (8.427.3)	6	7203	7.6 (6.3–9.2)	98.3 (97.5–98.8)	<0.0001	0.958	
Central Africa	15.0 (9.9–40.6)	4	967	9.0 (7.3–11.2)	98.8 (98.1–99.2)	<0.0001	0.065	
Western Africa	7.7 (3.5–13.3)	8	1141	2.8 (2.1–3.8)	87.6 (77.8–93.1)	<0.0001	0.232	
Eastern Africa	7.3 (1.8–15.8)	11	4607	8.5 (7.5–9.6)	98.6 (98.2–98.9)	<0.0001	0.612	
By area								
Urban	11.7 (7.7–16.3)	24	7010	5.4 (4.8–6.0)	96.5 (95.7–97.2)	<0.0001	0.570	0.191
Rural	3.8 (0.0–16.0)	3	520	4.1 (2.7–6.3)	94.0 (85.8–97.4)	<0.0001	0.090	
Setting								
Population-based	6.6 (2.5–12.3)	7	1989	3.3 (2.5–4.4)	91.0 (84.0–94.9)	<0.0001	0.029	0.032
Hospital-based	14.3 (10.5–18.6)	35	16575	7.0 (6.5–7.6)	98.0 (97.6–98.3)	<0.0001	0.669	

Table 2. Summary statistics of the prevalence of active tobacco smoking in people with diabetes mellitus in Africa.
in Africa seems lower than in European or American countries16,112,113, though all forms of tobacco consumption need to be taken into account.

The higher prevalence of smoking in men compared to women is unsurprising and corroborates previous reports16,112. Indeed, the global prevalence of smoking is about five times higher in men (37%) than in women (7%). In Africa specifically, it is 22% of males in comparison to only 2% of females who smoke16. Although reasons for this huge discrepancy between men and women’s attitude towards smoking remains mostly unexplored in Africa, it was hypothesized that there might be an influence of the culture or societal behaviour which discourages women from smoking114. On the other hand, the absence of difference between rural and urban settings

Figure 3. Forest plot of the meta-analysis prevalence of active smoking among people with diabetes mellitus in Africa.
countries are classified. This might be explained by the fact that cigarette is more affordable for populations with higher socioeconomic status. Furthermore, Northern African countries might be culturally more prone to smoke. Accordingly, special attention should be given to Northern Africa when monitoring the policies and interventions to reduce tobacco use on the continent. Considering the current provisions which announce an exponential increment in the prevalence of tobacco in Africa by 22% by 2030, it is likely that the prevalence of smoking in patients with hypertension or diabetes mellitus will also increase sharply. Despite these projections and up till now, tobacco control has received very low priority in Africa. Indeed, Africa is still very far behind full implementation of the WHO Framework Convention on Tobacco Control guidelines, particularly when it comes to protection from exposure to tobacco smoke, packaging and labelling of tobacco products, and tobacco advertising, promotion and sponsorship. Most importantly, raising taxes on tobacco products which is the best cost-effective strategy to reduce the burden of tobacco consumption is weakly and sparsely implemented in Africa.

Hence, it is high time African countries start adopting and implementing or reinforcing tobacco control strategies to reduce the current and/or future tobacco burden in the continent. This will contribute substantially in preventing people from starting to smoke. On the other hand and singularly, context-specific interventions for smoking cessation should be implemented, especially in hypertensive and diabetes populations, considering the devastating interaction between smoking, hypertension and/or diabetes, resulting in a sharp increase in all-cause mortality and cardiovascular morbidity and mortality. Indeed, smoking cessation is associated with many important improvements in health and quality of life and is pivotal in cardiovascular disease prevention. Several smoking cessation interventions including pharmacological treatment, physical exercise, individual and telephone counseling are well-equipped to provide adequate support to their patients for smoking prevention and cessation, including: nicotine replacement therapy, bupropion or varenicline may raise the risk of major cardiovascular disease events associated within the quitting period. However, it has been shown that these therapies do not increase the risk of cardiovascular disease. Patients should be continuously educated, and care givers trained and well-equipped to provide adequate support to their patients for smoking prevention and cessation, including pharmacological and behavioural therapies.

However, our findings should be interpreted in the context of some drawbacks. For instance and common to the majority of meta-analyses of this type, we found a substantial heterogeneity between studies; but we undertook sub-group and meta-regression analyses which contributed significantly in identifying the major sources of variability. Moreover, African sub-regions were disproportionately represented and a high number of studies were hospital-based or used consecutive sampling, which may have led to an overestimation of prevalence estimates in individual studies or may have hindered the translatability of our results to the entire African continent. Despite these limitations and to the very best of our knowledge, this is the first systematic review and meta-analysis which gives a clear and comprehensive estimation of the burden of active smoking in people with hypertension and/or diabetes mellitus residing in Africa. We used rigorous methodological procedures and robust statistical analyses to generate our estimates. Additionally, most studies that were included had a low risk of bias in their methodological quality.

Conclusion
This first systematic review and meta-analysis on the prevalence of active tobacco smoking among patients with hypertension or diabetes mellitus in Africa figured out a high burden of smoking in these populations. Accordingly, specific and effective interventions should be initiated or reinforced in these patients with either or both conditions, to prevent them from smoking or help them to be delivered from tobacco addiction. Special attention should be deserved to men and those living in Northern Africa.

Availability of Data and Material
All data generated or analyzed during this study are included in this published article and its supplementary information files.

References
1. WHO. Global status report on noncommunicable diseases, http://apps.who.int/iris/bitstream/10665/148114/1/9789241564854_eng.pdf?ua=1 (2014).
2. Mensah, G. A. et al. Mortality from cardiovascular diseases in sub-Saharan Africa, 1990–2013: a systematic analysis of data from the Global Burden of Disease Study 2013. Cardiovascular journal of Africa 26, 56–10, https://doi.org/10.5830/cjva-2015-036 (2015).
3. Canto, J. G. & Iskandrian, A. E. Major risk factors for cardiovascular disease: debunking the “only 50%” myth. Jama 290, 947–949, https://doi.org/10.1001/jama.290.7.947 (2003).
4. Greenland, P. et al. Major risk factors as antecedents of fatal and nonfatal coronary heart disease events. Jama 290, 891–897, https://doi.org/10.1001/jama.290.7.891 (2003).
5. Khot, U. N. et al. Prevalence of conventional risk factors in patients with coronary heart disease. Jama 290, 898–904, https://doi.org/10.1001/jama.290.7.898 (2003).
6. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. *Lancet (London, England)* 390, 1345–1422, https://doi.org/10.1016/s0140-6736(17)32366-8 (2017).

7. Fagard, R. H. Smoking amplifies cardiovascular risk in patients with hypertension and diabetes. *Diabetes care* 32(Suppl 2), S429–431, https://doi.org/10.2337/dc09-S254 (2009).

8. Matsuo, N., Papadopoulou, S. K., Echantidou, A. I., & Mikhailidis, D. P. Smoking and vascular risk: are all forms of smoking equally harmful to all types of vascular disease? *Public health* 127, 435–441, https://doi.org/10.1016/j.puhe.2012.12.021 (2013).

9. Wafeu, G. S. et al. Prevalence and associated factors of active smoking among individuals living with hypertension and/or diabetes in Africa: a systematic review and meta-analysis protocol. *BMJ* open 7, e015444, https://doi.org/10.1136/bmjopen-2016-015444 (2017).

10. Bigna, J. J., Nkeck, J. R., Ngouo, A., Nyaga, U. F. & Noubiap, J. J. Hepatitis B virus and HIV coinfection among adults residing in Cameroon: A systematic review and meta-analysis of prevalence studies. *Infection, Disease & Health* 23, 176–178, https://doi.org/10.1016/j.idh.2018.02.006 (2018).

11. Kenmoe, S. et al. Prevalence of human respiratory syncytial virus infection in people with acute respiratory tract infections in Africa: A systematic review and meta-analysis. *Influenza and other respiratory viruses* 12, 793–803, https://doi.org/10.1111/inrv.12584 (2018).

12. Noubiap, J. J. et al. Prevalence of dyslipidaemia among adults in Africa: a systematic review and meta-analysis. *The Lancet. Global health* 6, 998–e1007, https://doi.org/10.1016/s2214-109x(18)30237-4 (2018).

13. Noubiap, J. J., Nansseau, J. R., Nkeck, J. R., Nyaga, U. F. & Bigna, J. J. Prevalence of white coat and masked hypertension in Africa: A systematic review and meta-analysis. *Journal of clinical hypertension (Greenwich, Conn.)* https://doi.org/10.1016/j.jch.2013.12.019 (2018).

14. James, P. A. et al. 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). *JAMA* 311, 507–520, https://doi.org/10.1001/jama.2013.284427 (2014).

15. Diagnosis and classification of diabetes mellitus. *Diabetes care* 37 (Suppl 1), S81–90, https://doi.org/10.2337/dc14-5081 (2014).

16. WHO. *Global Status Report on Noncommunicable Diseases 2014: Attaining the Nine Global Noncommunicable Diseases Targets: A Shared Responsibility*. https://reliefweb.int/report/world/global-status-report-noncommunicable-diseases-2014-attaining-nine-global (2015).

17. Hoy, D. et al. Assessing risk of bias in prevalence studies: modification of an existing tool and evidence of interrater agreement. *Journal of clinical epidemiology* 65, 934–939, https://doi.org/10.1016/j.jclinepi.2011.10.014 (2012).

18. Barendregt, J. J., Doi, S. A., Lee, Y. Y., Norman, R. E. & Vos, T. Meta-analysis of prevalence. *Journal of epidemiology and community health* 67, 974–978, https://doi.org/10.1136/jech.2013-203104 (2013).

19. Egger, M., Davey Smith, G., Schneider, M. & Minder, C. Bias in meta-analysis detected by a simple, graphical test. *BMJ* (Clinical research ed.) 315, 629–634 (1997).

20. Cochran, W. G. *The Combination of Results of Different Experiments*. *Biometrics* 10, 101–129, https://doi.org/10.2307/3001666 (1954).

21. Higgins, J. P. & Thompson, S. G. Quantifying heterogeneity in a meta-analysis. *Statistics in medicine* 21, 1539–1558, https://doi.org/10.1002/sim.1136 (2002).

22. Abdulsalam, S., Oluwenga-Bello, A., Olarewaju, O. & Abdus-Salam, I. Sociodemographic correlates of modifiable risk factors for hypertension in a rural local government area of oyo state South west Nigeria. *International journal of hypertension* 2014, 842028, https://doi.org/10.1155/2014/842028 (2014).

23. Duncan, P. R., Howe, L. D., Manukuza, Z. & Purdy, S. Determinants of obesity and perception of weight in hypertensive patients in rural South Africa. *Journal of Clinical Nutrition* 27, 56–62 (2014).

24. Edwards, R. et al. Hypertension prevalence and care in an urban and rural area of Tanzania. *Journal of hypertension* 18, 145–152 (2000).

25. Addo, J., Amoah, A. G. & Koram, K. A. The changing patterns of hypertension in Ghana: a study of four rural communities in the Ga District. *Ethnicity & disease* 16, 894–899 (2006).

26. Aghai, M. N. Hypertension and Risk Factors Among Traders in Enugu, Nigeria. *International Journal of Medicine and Health Development* 13 (2008).

27. Akinramiye, L. & Osunkoya, A. O. Prevalence of chronic non-communicable diseases among rural and urban adults in Western Nigeria. *African journal of primary health care & family medicine* 5, 174–179, https://doi.org/10.1016/j.patbio.2011.03.007 (2012).

28. Abdullahi, M. S. & Oluwenga-Bello, A. Hypertension prevalence and care in an urban and rural area of Oyo state South-west Nigeria. *International journal of hypertension* 2014, 842028, https://doi.org/10.1155/2014/842028 (2014).

29. Mbanzou, J. M., Nseke, K. & Mbofung, C. B. Prevalence of hypertension and related conditions in a rural community in Cameroon. *ISRN preventive medicine* 2013, 740143, https://doi.org/10.5402/2013/740143 (2013).

30. Egger, M., Davey Smith, G., Schneider, M. & Minder, C. Bias in meta-analysis identified by a simple, graphical test. *BMJ* (Clinical research ed.) 315, 629–634 (1997).

31. Andy, J. J. et al. Prevalence and correlates of hypertension among the Ibibio/Annangs, Efiks and Obolos: a cross sectional survey in a rural community in Cross River State, Nigeria. *Ethnicity & disease* 22, 335–339 (2012).

32. Mundan, V., Muiva, M. & Kimani, S. Physiological, Behavioral, and Dietary Characteristics Associated with Hypertension among Kenyan Defence Forces. *JSRN preventive medicine* 2013, 740143, https://doi.org/10.5402/2013/740143 (2013).

33. Higginbotham, G. & Nuwaha, F. Prevalence, awareness and control of hypertension in Uganda. *PloS one* 8, e62236, https://doi.org/10.1371/journal.pone.0062236 (2013).

34. Tchendjio, E. & Nangua, P. Prevalence, awareness, and control of hypertension in Cameroon. *Pathologie-biologie* 60, 74–79, https://doi.org/10.1016/j.pathbio.2011.03.007 (2012).

35. Van der Veer, L. M. et al. Association of high-sensitivity C-reactive protein with carotid artery intima-media thickness in hypertensive older adults. *Journal of the American Society of Hypertension: JASH* 5, 395–400, https://doi.org/10.1016/j.jash.2011.03.004 (2011).

36. Chinn, J. H. et al. Determinants of Raised Blood Pressure in Urban Uganda: A Community-Based Case-Control Study. *Ethnicity & disease* 27, 15–20, https://doi.org/10.18865/ed.27.1.15 (2017).

37. Arue, C. et al. An Analysis of Anthropometric Indicators and Modifiable Lifestyle Parameters Associated with Hypertensive Nephropathy. *International Journal of 2016*, https://doi.org/10.1155/2016/6598921 (2016).
Acknowledgements

The authors thank Dr. Aurel Tankeu for their role during the conception of the study and development of the protocol. There was no funding source for this study.

Author Contributions

J.J.N., J.J.B. and J.R.N.anseau conceived the study and, together with F.T.E and A.D.K. developed the protocol. J.J.N. and J.J.B. conducted the literature search and selected the studies. U.F.N., A.N., J.R.N.ansseu, and J.J.B. extracted the relevant information. J.J.N. and J.J.B. synthesised the data. J.J.N., J.R.N.anseau, F.T.E. and J.J.B. wrote the first draft of the paper. J.J.N., J.J.B., U.F.N., A.D.K., J.R.N.anseau, J.R.N.ansseu and F.T.E. critically revised successive drafts of the paper and approved its final version. JJN is the guarantor of the review.

Additional Information

Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-37858-z.

Competing Interests: The authors declare no competing interests.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2019