The influence of microgrooved surfaces on the behavior and cellular function of osteoblasts

Qrong Li, Yuchen Guo and Yongyue Wang*
West China School of Stomatology Sichuan University, oral implantology, Chengdu, Sichuan 610041, China

Abstract
Since 1945 Weiss Paul described the phenomenon ‘contact guidance’ which means the cell elongates along the direction of the groove and migrates guided by the grooves. Cell could sense the surface topography where it lies and react to these surface cues. Many researches have devoted themselves to reveal the potential mechanisms. The interaction is mainly mediated by the cytoskeleton, the focal adhesions and the extracellular matrix (ECM). But how would the groove dimensions affect the cellular behavior is still obscure. Nowadays, micro fabrication techniques such as electron beam lithography have been applied to the production of microtextured surfaces. They are relatively fast and cheap, and could fabricate microgrooves of reasonable size. Thus, they have been widely utilized to generate (micro-) nano-topographical surfaces or scaffolds for in vitro cell research. According to the report of P. CLARK, the response of cells to micro-grooved surfaces is cell type-dependent, so the focus of this review is on the osteoblast(s) reaction to micro-grooved surfaces.

Introduction
A century ago, in 1911 Harrison depicted that cells cultured on spider’s webs grew along the fibers [1]. Later on, in 1945 Weiss P initially named the phenomenon ‘contact guidance’: a tendency of cells to align, grow, or migrate along the grooves [2]. Cell can ‘sense’ the surface topography and then take reaction to these surface cues. The interaction between substrates and cells is achieved through the effort of the cytoskeleton, the extracellular matrix (ECM) [3-5] and the focal adhesions [6].

In terms of the defined (micro-) nano-topographical surface, they are usually produced by the micromachining technology: lithographic patterning (photolithography, electron beam lithography, colloidal lithography), galvanoformung abformung process LIGA, focused ion beam-chemical vapor deposition FIB-CVD and so on. Some of these techniques such as electron beam lithography (EBL) have been developed for creating well-defined patterns with feature sizes <10 nm [7]. Recent years, femtosecond laser patterning has obtained a position of the micro/Nanofabrication technologies

A variety of methods such as Femtosecond laser microtexturing can be applied to the fabrication of microtextured surface. These nano/micro patterning techniques were early used in the semiconductor and microelectronics industries [11], later they were increasingly applied in biology, medicine, and biomedical engineering fields [12]. Researchers [13,14] use these techniques to manufacture materials, attempting to get a value that is optimal for the growth of cells. These technologies both have their adaptations as well as limitations, also they have got developments. Hence it is hard to define the best tech in this field [15].

Microgrooved surface influences cellular behavior

Cell adhesive to the grafting materials, more importantly, they are in reciprocity with them. Different surface materials and topographies may induce distinct cell morphology, proliferation, and gene expression [16]. Cells can “sense” substrate elasticity [17,18] as long as its surface patterns in the scope of 10 nm to 100 mm [19,20].

Different dimensions are thought to play varied roles in cellular behavior [10,21]. The average size of the osteoblasts is 20-30μm. When the dimensions of grooves/ridges are reduced to the sizes of the cells and less, topographic effects on cell orientation become more prominent [22]. As will be discussed below, a majority of results focused on groove width of the micro-or-nanoscaled surface, some reports show that ridge width is more important in conducting the cellular behavior, while maybe the groove depth is the leading factor inducing cellular activities.

Groove/ridge topographies are important modulators of both cellular adhesion and osteospecific function and that groove width is vital in determining cellular response [23]. Certain groove width guides the cell to align along the direction [8,9,24,25]. The change of the dimensions of grooves/ridges are reduced to the sizes of the cells and less, topographic effects on cell orientation become more prominent [22]. As will be discussed below, a majority of results focused on groove width of the micro-or-nanoscaled surface, some reports show that ridge width is more important in conducting the cellular behavior, while maybe the groove depth is the leading factor inducing cellular activities.

Micro/Nanofabrication technologies

A variety of methods such as Femtosecond laser microtexturing can be applied to the fabrication of microtextured surface. These nano/micro patterning techniques were early used in the semiconductor and microelectronics industries [11], later they were increasingly applied in biology, medicine, and biomedical engineering fields [12]. Researchers [13,14] use these techniques to manufacture materials, attempting to get a value that is optimal for the growth of cells. These technologies both have their adaptations as well as limitations, also they have got developments. Hence it is hard to define the best tech in this field [15].

Microgrooved surface influences cellular behavior

Cell adhesive to the grafting materials, more importantly, they are in reciprocity with them. Different surface materials and topographies may induce distinct cell morphology, proliferation, and gene expression [16]. Cells can “sense” substrate elasticity [17,18] as long as its surface patterns in the scope of 10 nm to 100 mm [19,20].

Different dimensions are thought to play varied roles in cellular behavior [10,21]. The average size of the osteoblasts is 20-30μm. When the dimensions of grooves/ridges are reduced to the sizes of the cells and less, topographic effects on cell orientation become more prominent [22]. As will be discussed below, a majority of results focused on groove width of the micro-or-nanoscaled surface, some reports show that ridge width is more important in conducting the cellular behavior, while maybe the groove depth is the leading factor inducing cellular activities.

Groove/ridge topographies are important modulators of both cellular adhesion and osteospecific function and that groove width is vital in determining cellular response [23]. Certain groove width guides the cell to align along the direction [8,9,24,25]. The change of the dimensions of grooves/ridges are reduced to the sizes of the cells and less, topographic effects on cell orientation become more prominent [22]. As will be discussed below, a majority of results focused on groove width of the micro-or-nanoscaled surface, some reports show that ridge width is more important in conducting the cellular behavior, while maybe the groove depth is the leading factor inducing cellular activities.

Micro/Nanofabrication technologies

A variety of methods such as Femtosecond laser microtexturing can be applied to the fabrication of microtextured surface. These nano/micro patterning techniques were early used in the semiconductor and microelectronics industries [11], later they were increasingly applied in biology, medicine, and biomedical engineering fields [12]. Researchers [13,14] use these techniques to manufacture materials, attempting to get a value that is optimal for the growth of cells. These technologies both have their adaptations as well as limitations, also they have got developments. Hence it is hard to define the best tech in this field [15].

Microgrooved surface influences cellular behavior

Cell adhesive to the grafting materials, more importantly, they are in reciprocity with them. Different surface materials and topographies may induce distinct cell morphology, proliferation, and gene expression [16]. Cells can “sense” substrate elasticity [17,18] as long as its surface patterns in the scope of 10 nm to 100 mm [19,20].

Different dimensions are thought to play varied roles in cellular behavior [10,21]. The average size of the osteoblasts is 20-30μm. When the dimensions of grooves/ridges are reduced to the sizes of the cells and less, topographic effects on cell orientation become more prominent [22]. As will be discussed below, a majority of results focused on groove width of the micro-or-nanoscaled surface, some reports show that ridge width is more important in conducting the cellular behavior, while maybe the groove depth is the leading factor inducing cellular activities.

Groove/ridge topographies are important modulators of both cellular adhesion and osteospecific function and that groove width is vital in determining cellular response [23]. Certain groove width guides the cell to align along the direction [8,9,24,25]. The change of the dimensions of grooves/ridges are reduced to the sizes of the cells and less, topographic effects on cell orientation become more prominent [22]. As will be discussed below, a majority of results focused on groove width of the micro-or-nanoscaled surface, some reports show that ridge width is more important in conducting the cellular behavior, while maybe the groove depth is the leading factor inducing cellular activities.

Micro/Nanofabrication technologies

A variety of methods such as Femtosecond laser microtexturing can be applied to the fabrication of microtextured surface. These nano/micro patterning techniques were early used in the semiconductor and microelectronics industries [11], later they were increasingly applied in biology, medicine, and biomedical engineering fields [12]. Researchers [13,14] use these techniques to manufacture materials, attempting to get a value that is optimal for the growth of cells. These technologies both have their adaptations as well as limitations, also they have got developments. Hence it is hard to define the best tech in this field [15].

Micro-Nanofabrication technologies

A variety of methods such as Femtosecond laser microtexturing can be applied to the fabrication of microtextured surface. These nano/micro patterning techniques were early used in the semiconductor and microelectronics industries [11], later they were increasingly applied in biology, medicine, and biomedical engineering fields [12]. Researchers [13,14] use these techniques to manufacture materials, attempting to get a value that is optimal for the growth of cells. These technologies both have their adaptations as well as limitations, also they have got developments. Hence it is hard to define the best tech in this field [15].
width affects cellular shape [26], attachment [27], cellular proliferation [28] as well as bone forming ability [25,26]. Form these opinions and Table 1 and 2, we can infer that substrates with the microgroove width of 1-5μm, particularly 2μm seems to be optimal for the biological behavior of osteoblasts. On 2μm-wide-grooves the cellular adhesion [29], proliferation [28], osteogenic differentiation [28,30] as well as calcification [28]. Also, these nanophase material increased adhesions of osteoblasts compared with the conventional materials [31]. Depicted in table 2, almost all of these dimensions guide the cells to align along the long axis of micropatterns. Some nano-dimensions display an osteogenic influencing function [25,30,32].

Those who focused on the effect of ridge part had some limited findings. Alexey Klymov et al. designed the substrates with ridge to groove ratios of 1:1, 1:3 and 3:1. He demonstrated that nano-grooved patterns with the ridge to groove ratio of 1.5μm deep and 10μm width showed cell attraction during cellular selective migration [33]. Apart from that the ridge width clearly enhanced differentiation of MSCs towards osteogenic influencing function [25,30,32]. In table 2, almost all of these dimensions guide the cells to align along the long axis of micropatterns. Some nano-dimensions display an osteogenic influencing function [25,30,32].

Actually there is no defined item about the influence of groove depth on the osteoblast. From the information Azeem A reported, 306nm and 2046nm promoted osteoblasts alignment parallel to underlined topography. Besides this size showed its osteogenesis ability [32]. Kenichi Matsuzaka observed that on a 0.5μm deep and 10μm wide groove, the cell descends into the groove, on a 1.5μm deep and 1μm wide groove. Besides, groove patterns with the ridge to groove ratio of 1:3 showed cell repelling, meanwhile grooves with the ridge to groove ratio of 3:1 partially showed cell attraction during cellular selective migration [33]. From the information, Azeem A reported, 306nm and 2046nm promoted osteoblasts alignment parallel to underlined topography. Besides this size showed its osteogenesis ability [32]. Kenichi Matsuzaka observed that on a 0.5μm deep and 10μm wide groove, the cell descends into the groove, on a 1.5μm deep and 1μm wide groove, cells attract during cellular selective migration [33]. From the information, Azeem A reported, 306nm and 2046nm promoted osteoblasts alignment parallel to underlined topography. Besides this size showed its osteogenesis ability [32]. Kenichi Matsuzaka observed that on a 0.5μm deep and 10μm wide groove, the cell descends into the groove, on a 1.5μm deep and 1μm wide groove, cells attract during cellular selective migration [33]. From the information, Azeem A reported, 306nm and 2046nm promoted osteoblasts alignment parallel to underlined topography. Besides this size showed its osteogenesis ability [32]. Kenichi Matsuzaka observed that on a 0.5μm deep and 10μm wide groove, the cell descends into the groove, on a 1.5μm deep and 1μm wide groove, cells attract during cellular selective migration [33].

Table 1. The influence of microscale microgrooves on osteoblasts’ function.

References	Cell and Substrate type	Groove width(μm)	Ridge width (μm)	Groove Depth (μm)	Results
Delgado-Ruiz et al. 2015	hFOB, zirconia	30	0	—	LSA, density and cellular activity increase
(Matsuzaka et al. 2003)	RBM cells, polystyrene	1, 2, 5, 10	1, 2, 5, 10	0.5, 1, 1.5	smooth and grooves >5 μm cells extensions close to substrates grooves 2 μm were bridged
(Puckett et al. 2009)	human osteobalts, titanium	80,48,22	45, 35 30	—	Attachment gradually decrease, cellular function increase, cellular shape change
(Biggs et al. 2009)	HOB, PMMA	10,100	10,100	300 nm	10μm focal adhesions and osteogenic lineage decrease adipspecific genes increased 100μm cellular adhesion increase
(Ismail et al. 2007)	MG63, silicon	2, 4, 8,10	1.5-2	—	smaller groove sizes smooth one’s better cell adhesion
(Abagnale et al. 2015)	MSCs, Polyimide	2,3,5,10,15	2,3,5,10,15	15 down to sub-micrometer	5 μm ridges increased, adipsogenic differentiation,2μm enhanced osteogenic differentiation
(Biggs et al. 2008)	HOBs, Silicon	10, 25, 100	10, 25, 100	330nm	planar adhesion more,100μm increased osteospecific function, 25μm reduction SFA increase FX formation, 10μm reduced, adhesion and induced an interplay of up- a and downregulation of gene expression
(Taniguchi et al. 2015)	MC3T3-E1, zirconia, polycrystal	2μm	—	—	proliferation was significantly greater, The Runx2 mRNA level increased time dependently, calcification and ALP activity and osteocalcin mRNA levels were higher
(Lu and Leng 2009)	osteoblast, myoblast, silicon	8, 24	—	2, 4, 10	8μm width strongly affect both osteoblasts and myoblasts 24μm strongly affect myoblasts only
(Lu and Leng 2003)	osteoblast, myoblast, silicon	8, 24	—	2, 4, 10	8μm width strongly affect both osteoblasts and myoblasts, 24μm strongly affect myoblasts only
(Lu and Leng 2003)	SaOS-2, Ti and HA	4, 8, 16, 24, 30, 38	—	2, 4, 10	No difference in orientation angle between HA and Ti microgrooves
(Koo et al. 2014)	human primary cells, titanium	15-, 30-, 60-	—	3.5-, 10-	lower levels of type I collagen α1 gene expression at day 14, extremely increase in osteopontin gene expression at days 21 and 28
(Hamilton and Brunette 2007)	Osteoblast cell, epoxy-resin	Pitch: 30-175	5-175	—	Total tyrosine phosphorylation increased Sre levels decrease, but FAK and ERK1/2 phosphorylation were highest, Inhibition of Src phosphorylation with PP2 inhibited FAK and ERK 1/2 phosphorylation
(Franssiska et al. 2013)	ROS, silicon	from 1 to 20	—	—	width less than 10 μm induced the alignment of osteoblasts, increase osteogenic proteins

Conclusions and outlook

With the acceptance of ‘contact guidance’ theory, many defined patterns were made by various micro/nano technologies, prompting the study of different dimensions to the cellular behavior. The limited collected data in the table 1 and 2 showed that the groove width is the most influencing factor affecting the osteoblasts. On the micropatterned substrates, osteoblasts adhere and elongate along the long axis of the microgrooves. Improper width of microgrooves may lead to adhesion down growth. On certain groove width cell density, proliferation and osteogenic ability show an improvement. The differentiation also can be affected by the nanotopography. However, the reports based on the virtues of the ridge width and the depth of the array still needs further exploration. Moreover, we can do a further step research on the effect of microneedle micropatterning to examine the influence of groove width and depth. The results show that the groove width and depth significantly affect the cell behavior and function.
of the wettability and inclination of ridge. Soluble biochemical cues, dynamic control and regulation of topographical features, as well as cell co-culture systems, have all been declared to act in synergy with microgrooves.

Acknowledgement

• The authors acknowledge funding from the Chengdu science and technology humanities and social sciences projects. China. 040305301462.

The authors declare no potential conflicts of interest with respect to the authorship and/or publication of this article.

References

1. Harrison RG (1911) On the stereotropism of embryonic cells. Science 34: 279-281. [Crossref]

2. Weiss P (1945) Experiments on cell and axon orientation in vitro: the role of colloidal exudates in tissue organization. J Exp Zoology 100: 353-386.

3. Rovenksy YA, Slavinska JL, Vasilev JM (1971) Behaviour of fibroblast-like cells on grooved surfaces. Exp Cell Res 65: 193-201. [Crossref]

4. Mose J, Wolburg H, von Recum AF (1993) Surface micromorphology and cellular interactions. J Biomat Sci: Polym Ed 4: 362-374. [Crossref]

5. Von Recum A, Van Kooten T (1995) The influence of micro-topography on cellular response and the implications for silicone implants. J Biomat Sci: Polym Ed 7: 181-198. [Crossref]

6. Biggs MJ, Richards RG, Dalby MJ (2010) Nanotopographical modification: a regulator of cellular function through focal adhesions. Nanomedicine 6: 619-633. [Crossref]

7. Vieu C, Carcenac F, Pecin A, Chen Y, Mejias M, et al. (2000) Electron beam lithography: resolution limits and applications. Appl Surf Sci 164: 111-117.

8. Delgado-Ruiz R, Calvo-Guirado J, Moreno P, Guardia J, Gomez-Moreno G, et al. (2011) Femtosecond laser microstructuring of zirconia dental implants. J Biomed Mater Res Part B: Applied Biomaterials 96: 91-100. [Crossref]

9. Delgado-Ruiz R, Gomez Moreno AG, Aguilar-Salvatierra A, Markovic A, Mate-Sánchez JL, et al. (2015) Human fetal osteoblast behavior on zirconia dental implants and zirconia disks with microstructured surfaces. An experimental in vitro study. Clin Oral Implants Res. 10. Clark P, Connolly P, Curtis AS, Dow JA, Wilkinson CD (1991) Cell guidance by ultraline topography in vitro. J Cell Sci 99: 73-77. [Crossref]

11. Nikkhah M, Edalat F, Manoucheri S, Khademhosseini A (2012) Engineering microscale topographies to control the cell-substrate interface. Biomaterials 33: 5230-5246. [Crossref]

12. Khademhosseini A, Langer R, Borenstein J, Vacanti JP (2006) Microscale technologies for tissue engineering and biology. Proceedings of the National Academy of Sciences of the United States of America. 103: 2480-2487. [Crossref]

13. Ricci JL, Alexander H (2001) Laser microtexturing of implant surfaces for enhanced tissue integration. Key Engineering Materials. Trans Tech Publ.

14. Delgado-Ruiz RA, Abboud M, Romanos G, Aguilar-Salvatierra A, Gomez-Moreno G, et al. (2014) Peri-implant bone organization surrounding zirconia-microgrooved surfaces circularly polarized light and confocal laser scanning microscopy study. Clin Oral Implants Res.

15. Wood M (2007) Colloidal lithography and current fabrication techniques producing in-plane nanotopography for biological applications. J Royal Society Interface 4: 1-17. [Crossref]

16. Yamano SA, Ma RM, Shunti SW, Kim K, Wada C, et al. (2010) The influence of different implant materials on human gingival fibroblast morphology, proliferation, and gene expression. The Int J Oral Maxillofacial Implants 26: 1247-1255.

17. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126: 677-689. [Crossref]

18. Schellenberg, A, S. Joussen, K. Moser, N. Hämpe, N. Hersh, et al. (2014) Matrix elasticity, replicative senescence and DNA methylation patterns of mesenchymal stem cells. Biomaterials 35: 6351-6358. [Crossref]

19. Dunn GA, Heath JP (1976) A new hypothesis of contact guidance in tissue cells. Exp Cell Res 101: 1-14. [Crossref]

20. Dalby MJ, Riehle, H. Johnstone, S. Affrossman, A.Curtis (2004) Investigating the limits of filopodial sensing: a brief report using SEM to image the interaction between 10 nm high nano-topography and fibroblast filopodia. Cell biology international 28: 229-236. [Crossref]

21. Lu X, Y.Leng (2009) Comparison of the osteoblast and myoblast behavior on hydroxyapatite microgrooves. Journal of Biomaterials Research Part B. Applied Biomaterials 90: 438-445
22. Clark P, Connolly P, Curtis A, Dow JA, Wilkinson CD (1987) Topographical control of cell behaviour. I. Simple step cues. Development 99: 439-448. [Crossref]

23. Biggs M, R. Richards, S. McFarlane, C. Wilkinson, R. Oreffo, M. (2008) Adhesion formation of primary human osteoblasts and the functional response of mesenchymal stem cells to 330 nm deep microgrooves. Journal of the Royal Society Interface 5: 1231-1242. [Crossref]

24. Calvo-Guirado J. L, A. Aguilar-Salvaterra, R. A. Delgado-Ruiz, B. Negri, M. P. R. Fernández, et al. (2015) Histological and histomorphometric evaluation of zirconia dental implants modified by femtosecond laser versus titanium implants: an experimental study in fox hound dogs. Clinical implant dentistry and related research 17: 525-532.

25. Lamer E, X.F. Walboomers, M. Domanski, J. te Riet, F. C. van Delft, et al. (2010) The influence of nanoscale grooved substrates on osteoblast behavior and extracellular matrix deposition. Biomaterials 31: 3307-3316. [Crossref]

26. Puckett S, R. Pareta, T. J. Webster (2008). Nano rough micron patterned titanium for directing osteoblast morphology and adhesion. International journal of nanomedicine 3: 229-241. [Crossref]

27. Matsuzaka K, Walboomers XF, Yoshihara M, Inoue T, Jansen JA (2003) The attachment and growth behavior of osteoblast-like cells on microtextured surfaces. Biomaterials 24: 2711-2719. [Crossref]

28. Taniguchi Y, K. Kakura, K. Yamamoto, H. Kido, J. Yamazaki (2015) Accelerated osteogenic differentiation and Bone Formation on Zirconia with Surface Grooves Created with Fiber Laser Irradiation. Clinical implant dentistry and related research. [Crossref]

29. Ismail FS, Rohanizadeh R, Atwa S, Mason RS, Roys AJ, et al. (2007) The influence of surface chemistry and topography on the contact guidance of MG63 osteoblast cells. J Mater Sci Mater Med 18: 705-714. [Crossref]

30. Abagana G, M Steger, VH Nguyen, N Hersch, A Sechi, et al. (2015) Surface topography enhances differentiation of mesenchymal stem cells towards osteogenic and adipogenic lineages. Biomaterials. 61: 316-326. [Crossref]

31. Webster TJ, Eijkel JF (2004) Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. Biomaterials 25: 4731-4739. [Crossref]

32. Azeem A, English A, Kumar P, Satyam A, Biggs M, et al. (2015) The influence of anisotropic nano- to micro-topography on in vitro and in vivo osteogenesis. Nanomedicine (Lond) 10: 693-711. [Crossref]

33. Klymov A, EM Bronkhorst, J te Riet, JA Jansen, XF Walboomers (2015) Bone marrow-derived mesenchymal cells feature selective migration behavior on submicro-and nano-dimensional multi-patterned substrates. Acta biomaterialia. 16: 117-125. [Crossref]

34. Dunn, G.A., Brown. (1986) Alignment of fibroblasts on grooved surfaces described by a simple geometric transformation. Journal of cell science 83: 313-340. [Crossref]

35. Ricci J, J Charvet, S Frenkel, R Chang, P Nadkami, et al. (2000) Bone response to laser microtextured surfaces. Bone Engineering. 25: 1-11.

36. Delgado-Ruiz RA, A Markovic, LJ Calvo-Guirado, L Lazic, A Piattelli, et al. (2014). Implant stability and marginal bone level of microgrooved zirconia dental implants: A 3-month experimental study on dogs. Vojnosanitetski pregled 71: 451-461.

37. Pecora GE, Cecarelli R, Bonelli M, Alexander H, Ricci JL. (2009) Clinical evaluation of laser microtexturing for soft tissue and bone attachment to dental implants. Implant Dent 18: 57-66. [Crossref]

38. Chen W, Shao Y, Li X, Zhao G, Fu J (2014) Nanotopographical Surfaces for Stem Cell Fate Control: Engineering Mechanobiology from the Bottom. Nano Today 9: 759-784. [Crossref]

39. Biggs MJ, Richards RG, Gadegaard N, Wilkinson CD, Oreffo RO, et al. (2009) The use of nanoscale topography to modulate the dynamics of adhesion formation in primary osteoblasts and ERK/MAPK signalling in STRO-1+ enriched skeletal stem cells. Biomaterials 30: 5094-5103. [Crossref]

40. Lu X, Leng Y (2003) Quantitative analysis of osteoblast behaviour on microgrooved hydroxyapatite and titanium substrata. J Biomed Mater Res A 66: 677-687. [Crossref]

41. Koo KT, Lee SW, Lee MH, Kim KH, Jung SH, et al. (2014) Time-dependent expression of osteoblast marker genes in human primary cells cultured on microgrooved titanium substrata. Clin Oral Implants Res 25: 714-722. [Crossref]

42. Hamilton DW, Brunette DM (2007) The effect of substratum topography on osteoblast adhesion mediated signal transduction and phosphorylation. Biomaterials 28: 1806-1819.

43. Fransiska, S, Ho MH, Li CH, Shih JL, Hsiao SW, Thien SDV (2013) To enhance protein production from osteoblasts by using micro-patterned surfaces. Biochem Engg J 78: 120-127.

44. Yim EK, Pang SW, Leong KW (2007) Synthetic nanostructures inducing differentiation of human mesenchymal stem cells into neuronal lineage. Exp Cell Res 313: 1820-1829. [Crossref]

45. Yang JY, Ting YC, Lai JY, Liu HL, Fang HW, et al. (2009) Quantitative analysis of osteoblast-like cells (MG63) morphology on nanogrooved substrata with various groove and ridge dimensions. J Biomed Mater Res A 90: 629-640. [Crossref]

46. Lenhart S, Meier MB, Meyer U, Chi L, Wiesmann HP (2005) Osteoblast alignment, elongation and migration on grooved polystyrene surfaces patterned by Langmuir-Blodgett lithography. Biomaterials 26: 563-570. [Crossref]

47. Lamers E, Walboomers XF, Domanski M, Prodanov L, Melis J (2012) In vitro and in vivo evaluation of the inflammatory response to nanoscale grooved substrates. Nanomedicine 8: 308-317. [Crossref]

48. Prodanov L, Semeins CM, van Loon JJ, te Riet J, Jansen JA, et al. (2013) Influence of nanosstructural environment and fluid flow on osteoblast-like cell behavior: a model for cell-mechanics studies. Acta Biomater 9: 6653-6662. [Crossref]

49. Prodanov L, te Riet J, Lamers E, Domanski M, Luttre R, et al. (2010) The interaction between nanoscale surface features and mechanical loading and its effect on osteoblast-like cells behavior. Biomaterials 31: 7758-7765. [Crossref]