Systematic Review on White Spot Lesions Treatments

Francesco Puleio1 Luca Fiorillo1,2,3 Francesca Gorassini1 Alfredo Iandolo4 Aida Meto5,6 Cesare D’Amico1,2 Gabriele Cervino1 Mirta Pinizzotto1 Giancarlo Bruno1 Marco Portelli1 Alessandra Amato2 Roberto Lo Giudice6

1Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Messina University, Messina, Italy
2Multidisciplinary Department of Medical-Surgical and Odontostomatological Specialties, University of Campania “Luigi Vanvitelli,” Naples, Italy
3Department of Implantology, Faculty of Dentistry, University of Aldent, Tirana, Albania
4Department of Medicine and Surgery, University of Salerno, Salerno, Italy
5Department of Dental Therapy, Faculty of Dental Medicine, University of Medicine, Tirana, Albania
6Department of Clinical and Experimental Medicine, Messina University, Messina, Italy

Address for correspondence Luca Fiorillo, DDS, PhD, MSc, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Messina University, Messina 98100, Italy (e-mail: lfiorillo@unime.it).

The difference in refractive index between the healthy enamel and the demineralized area generates a lesion with a milky white opaque appearance, clearly distinguishable from the surrounding healthy enamel. The aim of this systematic review was to evaluate if the infiltration technique is the most efficient treatment to resolve a white spot lesion when compared with remineralization and microabrasion techniques. The Population/Intervention/Comparison/Outcome question investigated: “in enamel WS lesion, the infiltration treatment compared to remineralization or microabrasion treatments is more or less effective in the camouflage effect?” The research was performed on electronic databases, including Ovid MEDLINE, PubMed, and web of science. The search was conducted up to April 1, 2020. The scientific search engines produced 324 results. Only 14 were screened after screening. Based on the articles analyzed in this systematic review, the resin infiltration technique seems to be the most effective and predictable treatment for the aesthetic resolution of WSLs.

Introduction

The enamel translucency is a characteristic related to the composition of the inter-crystalline space and could be quantitatively defined by the enamel refractive index (ERI).1 Therefore, any clinical situation that leads to an alteration of the enamel organization determines a variation of the ERI (1.62).1

The difference in refractive index between the healthy enamel and the demineralized area generates a lesion with a milky white opaque appearance, clearly distinguishable from the surrounding healthy enamel.2,3

Keywords

► white spot lesion
► resin infiltration
► enamel demineralization
► aesthetics
► enamel remineralization
► microabrasion

Eur J Dent 2022;16:41–48.

© 2021. The Author(s).
This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/).
Thieme Medical and Scientific Publishers Pvt. Ltd. A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

DOI https://doi.org/10.1055/s-0041-1731931
ISSN 1305-7456
Several treatments have been described in the literature to prevent the possible WSL progression and the cavitation and dyschromia appearance related.

Microabrasion could improve teeth aesthetic eliminating the outer defective enamel layer. This invasive technique uses 6.6% hydrochloric acid and 20- to 160-μm sized silicon carbide microparticles to remove superficial parts of the lesion.6,7

Remineralizing agents containing 5% fluoride or casein phosphopeptide (CPP-ACP) could be used as noninvasive treatments in the early stages of WSL.8-11 This minimally invasive approach does not solve the aesthetic problem in advanced lesions due to the limited infiltrating capacity of the agent that act in the enamel external part and therefore could result in an untreated discolored area.12,13

The resin infiltration technique (RIT) consists in etching and a 15% hydrochloric acid that increases enamel porosity followed by the infiltration of a highly viscous and highly penetrating resin in the thickness of WSLs. The resin stops the progression of the WSLs and creates a barrier against further cariogenic attacks.14 The resin refractive index is similar to the ERI one and masks the opaque white appearance typical of WSLs.

The resolution of these lesions exploits the camouflage effect resulted from different techniques to mask the dichromatism and to obtain an additional aesthetical clinical success.

The aim of this systematic review was to evaluate if the infiltration technique is the most efficient treatment to resolve a WSL when compared with remineralization and microabrasion techniques.

Methods

Protocol and Registration

This systematic review was conducted according to the guidelines of the Preferred Reporting Items of Systematic Reviews and Meta-Analyses (PRISMA) statement.15 Before starting the review, a detailed protocol of the methodology was developed. The review was registered in the CRD York website PROSPERO. The protocol number is CRD42020164187.

Search Strategy

The research was performed on electronic databases, including Ovid MEDLINE, PubMed, and web of science. The search was conducted up to April 1, 2020.

The following terms and their combination were searched: “White Spot,” “Resin Infiltration,” “Remineralization,” and “Microabrasion.” The choice of keywords was intended to collect and to record as much relevant data. The research was conducted by using a search formula as follows:

(((white spot) AND resin infiltration) OR white spot) AND remineralization) OR white spot) AND microabrasion.

The following focus question was developed according to the population, intervention, comparison, and outcome (PICO) study design:

“In enamel WS lesion, the infiltration treatment compared to remineralization or microabrasion treatments is more or less effective in the camouflage effect?”

The review included randomized clinical trial and in vitro studies that compared the results of the RIT to remineralization and microabrasion techniques for the WSL treatment. Only studies published between January 2013 and April 2020 were considered.

Eligibility Criteria

The full texts of all possibly relevant studies were selected considering the following inclusion criteria:

- Study that compared the results of WSLs treatment using the infiltration technique to remineralization and microabrasion techniques. Human trial (randomized controlled trial and clinical trial) and in vitro study.
- Studies involving patients with dental diseases (e.g., hypocalcification, hypoplasia, fluorosis, and hypoplastic molar-incisive syndrome)
- Studies that use infiltration technique only
- Studies that not compare infiltration technique to remineralization and microabrasion techniques
- Studies that compare RIT with other restorative materials (flow composite and adhesive system)
- Case report, case series, review, and meta-analysis
- Papers without full text available

Risk of Bias Assessment

The evaluation of in-vitro studies was based on a methodological index that use a checklist for in-vitro studies on dental materials (CONSORT). The checklist items focus on reporting how the study was designed, analyzed, and interpreted by using 14 domains.16 Randomized clinical trials were assessed according to the modified Cochrane Collaboration.17 Bias is assessed as a judgment (high, low, or unclear) for individual elements from five domains (selection, performance, attrition, reporting, and other).

Results

Study Selection

The scientific search engines produced 324 results. The duplicates were eliminated, obtaining a total number of 189 studies. Furthermore, 58 articles were deleted because review, meta-analysis, case report, or not full text by reading the abstract. After the first screening, 131 studies were subjected to a full-text examination. Of 131 articles, 6 were discarded because involved patients with dental diseases (e.g., hypocalcification, hypoplasia, fluorosis, and hypoplastic molar-incisive syndrome), 45 because irrelevant to the review’s objectives, 63 because does not compared RIT with any other techniques, 3 because compared RIT with other restorative materials. Fourteen studies were included in this review18-31 (Fig. 1). The selected studies are listed in Table 1.
Risk of Bias

- Tables 2 and 3 present the risk of bias of the in vitro studies and randomized clinical trials (RCT).

Discussion

The studies examined in this review mainly consist in-vitro studies. Five randomized clinical studies were also found. The risk of bias for these studies is presented in - Tables 2 and 3. Ten studies were considered as having a high risk of bias, mainly due to lack of random sequence generation and blinded investigator, potentially introducing selection bias. Only four studies were assessed as having a low risk of bias.

To evaluate how different treatments modify the clinical outcome for the resolution of WSLs, different combinations of evaluation methods and clinical parameters were compared in the articles included in this review.

The authors of the included studies used different evaluation methods, such as spectrophotometry, digital camera combined with software analysis, and laser fluorescence, to evaluate the effect of various treatments on WSLs.

The researches included, investigated various parameters alone or in combination as clinical outcome, such as color change, superficial roughness alteration, microhardness alterations, ability to stop the WSL progression, and penetration depth of the treatment. These authors used different detection methods such as optical profilometer, confocal laser, and transverse microradiography.

All the in vivo studies evaluated the aesthetic resolution of the lesion, showing a significant regression of WSLs using RIT (ICON), remineralizing agents, and microabrasion. The lesions treated with RIT had a statistically significant improvement in camouflage effect, compared with those treated with fluoride varnish. Although using a varnish with a very high concentration of fluoride (22,600 ppm) the lesions treated with RIT still show a significantly greater color change. Microabrasion improves the aesthetic appearance of WSLs, but with a significantly less refractive index reduction than the infiltration technique; moreover, the results obtained with the resin infiltration also remain stable after 12 months, while the lesions treated with microabrasion tend to recur. Turska-Szybka et al showed that it is possible to improve the results obtained using a fluoride varnish if a RIT treatment is also added.

In another study, RIT demonstrated a significantly better outcome than a resin-modified glass ionomer remineralizing agent (fluoride varnish), but after 3 and/or 6 months, the WSLs returned to be visible; however, lesion treated with fluoride varnish shows a superior long-term stability.

Nine in vitro studies were included in our systematic review. Attia et al. used bovine dental elements because these substrates have a similar behavior regarding stains and etchings. The in vitro studies analyzed does not concord among them when comparing their findings regarding the aesthetic results; moreover, one reported the failure of both RIT and remineralizing agents treatment for WSLs treatment.

When evaluating the aesthetic results, some of these studies demonstrate a better outcome obtained using RIT instead of remineralizing agents such as fluorinated solutions (with a more or less high percentage of fluorine), CPP-ACP, self-assembling peptide P11–4, and microabrasion.

Silva et al conclude that both RIT infiltration and microabrasion were not able to restore the tooth color.

However, it should be noted that the etching technique used in this research (15% HCl for 2’) was probably insufficient. The company suggests to repeat the application up to a maximum of three times lesions is still evident after the first etching agent application.

Some authors reported that the number of etching applications can be correlated to WSLs characteristics. Wide, deep, smooth, and shiny lesions need more etching steps, and they might remain visible after resin infiltration.

Depth of Penetration

Some studies included in our review have analyzed the aesthetic results linked to penetration ability of the resin and remineralizing agents.

Arora et al reported that fluorinated varnish cannot penetrate enamel as deeply as RIT. The same result is confirmed by Rosianu et al; they show how 5% fluoride gel topical application does not remineralize the deep layers of the lesion. These authors state that the RITs are more efficient in deep layer infiltration of WSLs.

The 15% hydrochloric acid required in the RIT, allows an enamel etching deeper than the orthophosphoric acid used in other remineralizing techniques.

According to Kane et al, the etching penetration allows a better infiltration of the resin in the treated enamel. The absence of gap inhibits the bacterial proliferation and WSLs progression (Fig. 2 and 3).
Study (Year)	Object of research	Intervention	Evaluation methods	Result
Behrouzi et al. (2020)	45 maxillary central incisors	RA, RI	Vickers hardness test	Color: RA: (p < 0.01) RI: (p > 0.05)
Torres et al. (2019)	80 flat enamel disks from bovine incisors	Co, RA, RI	Spectrophotometer	Color: RA: (p > 0.05) RI: (p < 0.01)
Yadav et al. (2019)	72 extracted premolars	Co, RA, RI	Spectrophotometer and laser fluorescence	Fluorescence: RA, RI: (p > 0.05)
Arora et al. (2019)	120 premolars	Co, RA, RI	Profilometer Vickers hardness tester	Surface roughness: RA, RI: (p < 0.01) RI vs. RA: (p < 0.01) Depth of penetration: RA, RI: (p < 0.01) RI vs. RA: (p < 0.01) Microhardness: RI: (p < 0.01) RA: (p > 0.05) RI vs. RA: (p < 0.01)
Silva et al. (2018)	Bovine incisors	Co, RI, MA	Spectrophotometer	Color: RA, RI: (p > 0.05)
Krishna et al. (2018)	90 maxillary permanent central incisors	RA, RI	Spectrophotometer	Color: RI: (p < 0.001) RA: (p > 0.05) RI vs. RA: (p < 0.001)
Wierichs et al. (2017)	300 enamel blocks from bovine incisors	Co, RA, RI	Transversal microradiographic images, digital photographs, spectrophotometer	Depth of penetration: RI: (p < 0.01) RA: (p > 0.05) Color: RI: (p < 0.05) RI: (p < 0.01) RI vs. RA: (p < 0.01)
Yuan et al. (2014)	52 premolars and molars	Co, RA, RI	Spectrophotometer, fluorescence	Color: RI: (p < 0.01) RA: (p > 0.05) Co: (p > 0.05) Fluorescence: RI: (p < 0.01) RA: (p > 0.05) Co: (p > 0.05)
Yetkiner et al. (2014)	96 bovine teeth	Co, RA, RI, MA	Spectrophotometer	Color: Co: (p > 0.0033) RA: (p > 0.0033) RI: (p > 0.0033) MA: (p > 0.0033)
Kannan et al. (2019)	240 WSLs in 193 postorthodontic teeth from 12 patients	RI, RA	Spectrophotometer	Color: RA: (p < 0.01) RI: (p < 0.01) RA vs. RI: (p < 0.01) Fluorescence: RA: (p < 0.01) RI: (p < 0.01)
Gu et al. (2019)	108 WSLs from 16 postorthodontic patients with debonding more than 3 mo previously	RI, MA	Spectrophotometer	Color: RA: (p < 0.001) RI: (p < 0.001) RI vs. RA: (p < 0.05)
Surface Microhardness

Two studies analyzed enamel microhardness variations subsequent to remineralizing or infiltrating treatment.\(^{18,21}\)

Behrouzi et al show how topical application of two fluoride gels (900 and 1450 ppm fluoride concentration) significantly increase the enamel microhardness; this effect was not reported by using RIT.\(^{18}\)

However, Arora et al showed a significant hardness increase of enamel infiltrated with resin compared with the one treated with remineralizing sealants. Arora et al concluded that the resin fills the lesion and improves the mechanical strength.\(^{21}\)
Enamel Roughness
Arora et al showed that resin infiltration leaves the glazed surface smoother, while any modification is observed by using fluoride varnish.21

Arnold et al in accordance with this study confirms that the infiltrated tooth surface is smoother, making more difficult plaque adhesion.40

Water Absorption
Some authors have investigated the ability of treated enamel to avoid the pigmentation.

In the studies included in this review, RIT was more susceptible to pigmentation than any other technique evaluated.22,25

The resin used for infiltration is mainly composed by TEGDMA. It possesses a higher capacity of water absorption than BisGMA and UDMA.41,42 This property has been correlated to a possible late pigmentation due to water carrier effect for pigments.43,44

To prevent color alteration overtime, some authors suggest to repeat the polishing phase of the treated surface over time. An alternative is the walking bleach technique with carbamide peroxide.45,46

The results of in vivo prospective studies, in contrast, do not show WSLs pigmentation when treated with RIT. But these studies limitation is the short follow-up (1 year).34,47-55

This process changes the refractive index in the light of the treated area (healthy enamel, normal, and hydrated) by saliva has a refractive index of 1.62, while the demineralized one of the white spots is between 1.00 and 1.33. By treating the defect with resinous infiltration, the enamel acquires an index equal to 1.52: a figure very close to that of healthy enamel, with a slight difference not perceptible to the human eye.

In other words, this treatment allows you to modify the interaction of light with the enamel and therefore the visual perception by the external observer.

It should be noted, however, that not all white enamel defects can be successfully applied: the deeper the white spot goes into the thickness of the enamel, the more “resistant” it will be to infiltration procedures. In the case of very deep and pigmented lesions—that is, which also have dark areas—this type of treatment may be of little or no effect.

Treatment alternatives can be identified in remineralization by using creams based on calcium and phosphate in casein matrix or in microabrasion of the enamel, even if the latter appears in some cases a risky procedure since it acts on the entire surface of the enamel and it can exposure the entire tooth surface to a fall in value or brightness (generally, microabrasion is indicated for translucent enamel where the fall in value is contained).56-62
Therefore, prospective studies with longer follow-up are needed to investigate the long-term stability of this treatment.

Limitations

The first limitation of this study is linked to the different methods used to evaluate the color change. These differences produce noncomparable results in a meta-analysis. Another limitation of in vitro studies considered is the high risk of bias due to the lack of blinded investigator and random sequence generation methodology. No RCT with long follow-up are present to date.

Conclusion

Based on the articles analyzed in this systematic review, the RIT seems to be the most effective and predictable treatment for the aesthetic resolution of WSLs. There is no strong evidence supporting microabrasion or remineralization technique. More RCT with a longer follow-up period are necessary to clarify the most effective approach for WSLs resolution.

Authors’ Contributions

F.P. conceptualized the study. A.I. and C.D.A. developed the methodology of study. A.A. supported in software analysis. M.P. involved in data curation. G.B. and R.L.G. drafted the original manuscript. L.F. and F.G. reviewed and edited the manuscript. L.F., G.C., A.M., and M.P. supervised the study. All authors have read and agreed to the published version of the manuscript.

Funding

None.

Conflict of Interest

None declared.

References

1. Rocha Gomes Torres C, Borges AB, Torres LMS, Gomes IS, de Oliveira RS. Effect of caries infiltration technique and fluoride therapy on the colour masking of white spot lesions. J Dent 2011;39(3):202–207
2. Gorelick L, Geiger AM, Gwinnett AJ. Incidence of white spot formation after bonding and banding. Am J Orthod 1982;81(2):93–98
3. Ogaard B, Reiss G, Arends J, ten Cate JM. Orthodontic appliances and enamel demineralization. Part 2. Prevention and treatment of lesions. Am J Orthod Dentofacial Orthop 1988;94(2):123–128
4. Guzmán-Armstrong S, Chalmers J, Warren JJ. Ask us. White spot lesions: prevention and treatment. Am J Orthod Dentofacial Orthop 2010;138(6):690–696
5. Richter AE, Arruda AO, Peters MC, Sohn W. Incidence of caries lesions among patients treated with comprehensive orthodontics. Am J Orthod Dentofacial Orthop 2011;139(5):657–664
6. Pini NI, Sundfied-Neto D, Aguiar FH, et al. Enamel microabrasion: an overview of clinical and scientific considerations. World J Clin Cases 2015;3(1):34–41
7. Bertoldo C, Lima D, Fragoso L, Ambrosano G, Aguiar F, Lovadino J. Evaluation of the effect of different methods of microabrasion and polishing on surface roughness of dental enamel. Indian J Dent Res 2014;25(3):290–293
8. Schirrmeister JF, Gebrande JP, Altenburger MJ, Mönning JS, Hellwig E. Effect of dentifrice containing 5000 ppm fluoride on non-cavitated fissure carious lesions in vivo after 2 weeks. Am J Dent 2007;20(4):212–216
9. Benson PE, Parkin N, Millett DT, Dyer FE, Vine S, Shah SA. Fluorides for the prevention of white spots on teeth during fixed brace treatment. The Cochrane Collaboration. Wellesley, UK: Wiley & Sons; 2007(3):1–35. Available at: https://www.cochrane.org/CD003809/ORAL_fluorides-preventing-early-tooth-decay-demineralised-lesions-during-fixed-brace-treatment. Accessed 2021
10. Aimutis WR. Bioactive properties of milk proteins with particular focus on anticariogenesis. J Nutr 2004;134(4):9895–9955
11. Tung MS, Eichmiller FC. Dental applications of amorphous calcium phosphates. J Clin Dent 1999;10(1 Spec No):1–6
12. Bailey DL, Adams GG, Tsao EE, et al. Regression of post-orthodontic lesions by a remineralizing cream. J Dent Res 2009;88(12):1148–1153
13. González-Cabezas C. The chemistry of caries: remineralization and demineralization events with direct clinical relevance. Dent Clin North Am 2010;54(3):469–478
14. Paris S, Meyer-Lueckel H. Infiltrants inhibit progression of natural caries lesions in vitro. J Dent Res 2010;89(11):1276–1280
15. Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009;6(7):e1000097
16. Faggion CM Jr. Guidelines for reporting pre-clinical in vitro studies on dental materials. J Evid Based Dent Pract 2012;12(4):182–189
17. Higgins JP, Altman DG, Gotzsche PC, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials BMJ (Clin. Res. ed.) 2011;343:d5928
18. Behrouzi P, Peshmat H, Hoorizad Ganjkar M, Tabatabaei SF, Khazarizad MF. Effect of two methods of remineralization and resin infiltration on surface hardness of artificially induced enamel lesions. J Dent (Shiraz) 2020;21(1):12–17
19. Torres CRG, Zanatta RF, Fonseca BM, Borges AB. Fluorescence properties of demineralized enamel after resin infiltration and dental bleaching. Am J Dent 2019;32(1):43–46
20. Yadav P, Desai H, Patel K, Patel N, Iyengar S. A comparative quantitative & qualitative assessment in orthodontic treatment of white spot lesion treated with 3 different commercially available materials - In vitro study. J Clin Exp Dent 2019;11(9):e776–e782
21. Arora TC, Arora D, Tripathi AM, Yadav G, Saha S, Dhinsa K. An In-Vitro evaluation of resin infiltration system and conventional pit and fissure sealant on enamel properties in white spot lesions. J Indian Soc Pedod Prev Dent 2019;37(2):133–139
22. Silva LO, Signori C, Peixoto AC, Cenci MS, Faria-E-Silva AL. Color restoration and stability in two treatments for white spot lesions. Int J Esthet Dent 2018;13(3):394–403
23. Prasad KL, Penta PK, Ramya KM. Spectrophotometric evaluation of white spot lesion treatment using novel resin infiltration material [ICON®] J Conserv Dent 2018;21(5):531–535
24. Wierichs RJ, Kogel J, Esteves-Oliveira M, Meyer-Lueckel H. Effects of self-assembling peptide P11-4, fluorides, and caries infiltration on artificial enamel caries lesions in vitro. Int J Dent 2018;9(4):435–440
25. Yuean H, Li J, Chen L, Cheng L, Cannon RD, Mei L. Esthetic comparison of white-spot lesion treatment modalities using spectrometry and fluorescence. Angle Orthod 2014;84(2):343–349
26. Yetkiner E, Wegehaupt F, Wiegand A, Attin R, Attin T. Colour improvement and stability of white spot lesions following infiltration, micro-abrasion, or fluoride treatments in vitro. Eur J Orthod 2014;36(5):595–602
European Journal of Dentistry Vol. 16 No. 1/2022 © 2021. The Author(s).

27 Kannan A, Padmanabhan S. Comparative evaluation of Icon® resin infiltration and Clinpro™ XT varnish on colour and fluorescence changes of white spot lesions: a randomized controlled trial. Prog Orthod 2019;20(1):23
28 Gu X, Yang L, Yang D, et al. Esthetic improvements of postorthodontic white-spot lesions treated with resin infiltration and microabrasion: A split-mouth, randomized clinical trial. Angle Orthod 2019;89(3):372–377
29 Gözetici B, Oztürk-Bozkurt F, Toz-Akalın T. Comparative evaluation of resin infiltration and remineralization of noncavitated smooth surface caries lesions: 6-month results. Oral Health Prev Dent 2019;17(2):99–106
30 Giray FE, Durhan MA, Haznedaroğlu E, Durmus B, Kalyoncu IO, Tanboga I. Resin infiltration technique and fluoride varnish on white spot lesions in children: preliminary findings of a randomized clinical trial. Niger J Clin Pract 2018;21(12):1564–1569
31 Ciftci ZZ, Hanimeli S, Karayilmaz H, Gungor OE. The efficacy of resin infiltrate on the treatment of white spot lesions and developmental opacities. Niger J Clin Pract 2018;21(11):1444–1449
32 Turska-Szybka A, Gozdowski D, Mierzwińska-Nastalska E, Ołczak-Kowalczyk D. Randomised clinical trial on resin infiltration and fluoride varnish vs fluoride varnish treatment only of smooth-surface early caries lesions in deciduous teeth. Oral Health Prev Dent 2016;14(6):485–491
33 Attia ML, Aguiar FH, Mathias P, Ambrosano GM, Fontes CM, Liporoni PC. The effect of coffee solution on tooth color during home bleaching applications. Am J Dent 2009;22(3):175–179
34 Knösel M, Eckstein A, Helms HJ. Durability of esthetic improvement following Icon resin infiltration of multibracket-induced white spot lesions compared with no therapy over 6 months: a single-center, split-mouth, randomized clinical trial. Am J Orthod Dentofacial Orthop 2013;144(1):86–96
35 Neuhaus KW, Graf M, Lussi A, Katsaros C. Late infiltration of post-orthodontic white spot lesions. J Orofac Orthop 2010;71(6):442–447
36 Sava Rosianu R, Codruta Podariu A, Negrutiu ML, Szuhanek C, Sinescu C. Low viscosity resin penetration degree in incipient cavities lesions. Rev Chim 2017:68:2588–2592
37 Attin R, Stawarczyk B, Keçik D, Knösel M, Wiechmann D. Shear bond strength of brackets to demineralized enamel and radicular cementum: a SEM evaluation of two restoration techniques. Indian J Dent Res 2012;23(6):763–769
38 Eckstein A, Helms HJ, Knösel M. Camouflage effects following resin infiltration of postorthodontic white-spot lesions in vivo: One-year follow-up. Angle Orthod 2015;85(3):374–380
39 Kane B, Karren J, Garcia-Godoy C, Garcia-Godoy F. Sealant adaptation and penetration into occlusal fissures. Am J Orthod 2012;82(1):56–61
40 El-Zankanoumy SM, El Fattah WM. Penetration depth and enamel microhardness of resin infiltrant and traditional techniques for treatment of artificial enamel lesions. Alex Dent J 2016;41:20–25
41 Kane B, Karren J, Garcia-Godoy C, Garcia-Godoy F. Sealant adaptation and penetration into occlusal fissures. Am J Dent 2009;22(2):89–91
42 Mandava J, Reddy YS, Kantheti S, Chalasani U, Ravi RC, Borugadda R. Microhardness and penetration of artificial white spot lesions treated with resin or colloidal silica infiltration. J Clin Diagn Res 2017;11:142–146
43 Arnold WH, Meyer AK, Naumova EA. Surface roughness of initial enamel caries lesions in human teeth after resin infiltration. Open Dent J 2016;10:505–515
44 Sideridou I, Tserki V, Papanastasiou G. Study of water sorption, solubility and modulus of elasticity of light-cured dimethacrylate-based dental resins. Biomaterials 2003;24(4):655–665
45 Lo Giudice R, Puleio F, Verrusio C, Matarese M, Alibrandi A, Lizio A. Bulk vs wedge shape layering techniques in V class cavities: Marginal infiltration evaluation. G Ital Endod 2017;31:73–77
46 Dietschi D, Campanile G, Holz J, Meyer JM. Comparison of the color stability of ten new-generation composites: an in vitro study. Dent Mater 1994;10(6):353–362
47 Rey N, Benbachir N, Bortolotto T, Krejci I. Evaluation of the staining potential of a caries infiltrant in comparison to other products. Dent Mater J 2014;33(1):86–91
48 Borges A, Caneppele T, Luz M, Pucci C, Torres C. Color stability of resin used for caries infiltration after exposure to different staining solutions. Oper Dent 2014;39(4):433–440
49 Araújo GS, Naufel FS, Alonso RC, Lima DA, Puppin-Rontani RM. Influence of staining solution and bleaching on color stability of resin used for caries infiltration. Oper Dent 2015;40(6):E250–E256
50 Lo Giudice G, Lipari F, Puleio F, et al. Spectrophotometric evaluation of enamel color variation using infiltration resin treatment of white spot lesions at one year follow-up. Dent J (Basel) 2020;8(2):35
51 Lo Giudice G, Lo Giudice R, Matarese G, et al. Evaluation of magnification systems in restorative dentistry. An in-vitro study. Dent Cadmos 2015;83(5):296–305
52 Lo Giudice G, Cicciù M, Cervino G, Lizio A, Visco AM. Flowable resin and marginal gap on tooth third medial cavity involving enamel and radicular cementum: a SEM evaluation of two restoration techniques. Indian J Dent Res 2012;23(6):763–769
53 Nastro E, Musolino C, Allegra A, et al. Bisphosphonate-associated osteonecrosis of the jaw in patients with multiple myeloma and breast cancer. Acta Haematol 2007;117(3):181–187
54 Stacchi C, Lombardi T, Cusimano P, et al. Bone Scrapers Versus Piezoelectric Surgery in the Lateral Antrostomy for Sinus Floor Elevation. J Craniofac Surg 2017;28(5):1191–1196
55 Herford AS, Lu M, Akin L, Cicciù M. Evaluation of a porcine matrix with and without platelet-derived growth factor for bone graft coverage in pigs. Int J Oral Maxillofac Implants 2012;27(6):1351–1358
56 Onwubu SC, Mdulisi PS, Singh S, Bharuth V. Remineralization potential of a modified eggshell-titanium composite-scanning electron microscope study. Eur J Dent 2019;13(2):187–192
57 Ishak H, Field J, German M. Baseline Specimens of Erosion and Abrasion Studies. Eur J Dent 2021;15(2):369–378
58 Hashemikamangar SS, Hoseinpour F, Komiarsi N, Dekahi MG, Kharazifard MJ. Effect of an optical whitening toothpaste on color stability of tooth-colored restorative materials. Eur J Dent 2020;14(1):85–91
59 Ebaya MM, Ali AI, Mohamud SH. Evaluation of marginal adaptation and microleakage of three glass ionomer–based class V restorations: in vitro study. Eur J Dent 2019;13(4):599–606
60 Marra PM, Iorio B, Itrò A, Santoro R, Itrò A. Association of tooth agenesis with dental anomalies in young subjects. Oral Maxillofac Surg 2021;25(1):35–39
61 Marra PM, Lupo G, Itrò A. Surgical management of compound odontomas: piezoelectric surgery or rotary instruments? A clinical study. Minerva Stomatol 2020;69(4):203–206
62 Meto A, Coombari B, Sala A, et al. Antimicrobial and antibiofilm efficacy of a copper/calcium hydroxide-based endodontic paste against Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans. Dent Mater J 2019;38(4):591–603