Magnetic Moments of Baryons containing all heavy quarks in Quark-Diquark Model

Kaushal Thakkar\(^1,\ast\), Ajay Majethiya\(^2\) and P. C. Vinodkumar\(^3\)

\(^1\) Department of Applied Sciences & Humanities, GIDC Degree Engineering College, Abrama, Navsari-396406, India
\(^2\) V S Patel College of Arts and Science, Bilimora-396321, India
\(^3\) Department of Physics, Sardar Patel University, Vallabh Vidyanagar-388 120, India

\ast Corresponding Author: kaushal2physics@gmail.com

Received: date / Revised version: date

Abstract. The triply heavy flavour baryons are studied using the Quark-diquark description of the three-body system. The confinement potential for present study of triply heavy flavour baryons is assumed as coulomb plus power potential with power index \(\nu\). We have solved Schrodinger equation numerically to calculate the masses of triply heavy flavour baryons. The masses and magnetic moments of triply heavy flavour baryons are computed for different power indices, \(\nu\), starting from 0.4 to 1.0. The predicted masses and magnetic moments are in good agreement with other theoretical predictions.

PACS. 12.39.-x Phenomenological quark models – 12.39.Jh Nonrelativistic quark model – 14.20.-c Baryons

1 Introduction

The field of heavy baryon spectroscopy is experiencing a rapid advancement in recent times. Numerous experimental data on heavy flavour baryons are reported. Particle Data Group (PDG 2014) has listed ground states of heavy baryons with single heavy quark \([1]\). Though theoretical data on the properties of heavy flavour baryons are available in literature, the ground state masses of doubly and triply heavy flavour baryons have not been measured experimentally. The SELEX Collaboration have claimed the observation of a \(\Xi_{cc}\) double charm baryon through the decay channel form all possible doubly heavy flavour baryon states \([2,3,4]\). Thus the theoretical predictions of the doubly and triply heavy baryon mass spectrum have become a subject of renewed interest and are relevant due to the recent experimental efforts at CMS, SELEX, LHCb etc. These experimental groups have been successful in discovering heavy baryonic states along with other heavy flavour mesonic states and it is expected that more heavy flavour baryon states will be detected at J-PARC, Panda, LHCb, and Belle II in their future efforts.

As in the case of \(\Delta^{++}\) (uuu), \(\Delta^-\) (ddd) and \(\Omega^-\) (sss) baryons in the light flavour sector, QCD predicts similar states made up of charm quarks, \(\Omega_{c+c}\) (ccc) and bottom quarks, \(\Omega_{bb}\) (bbb) in the heavy flavour sector. Though such a state yet to be observed experimentally. After the observation of the doubly charmed baryon by the SELEX group, it is expected that the triply heavy flavour baryonic state may be in the offing very soon. Though considerable amount of data on the properties of the singly-heavy baryons are available in literature \([5,6,7,8,9,10,11,12,13]\).

The study presented in this paper is organized as follows: In section 2 the Quark-diquark model and a brief introduction of Coulomb plus power potential employed for the present study are described. The details of magnetic moments and its dependence of confinement through effective quark mass are presented in section 3. We anal-
yse and discuss our results and make our own conclusions in section 4.

2 Theoretical Framework: Quark-diquark model

For the description of the 3-body system like the baryons, we have employed the quark-diquark model with interquark potential of the coulomb plus power potential form to study the masses and magnetic moments of baryons containing three heavy flavour quarks. Following Gell-Mann’s suggestion of the possibility of quark-diquark structure for baryons [22], various authors have introduced effective degrees of freedom of diquarks in order to describe baryons as composed of a constituent diquark and quark [23][24][25]. The presence of a coherent diquark structure within baryons helps us to treat the problem of three-body interaction to that of two two-body interactions.

In this case, Hamiltonian of the baryon is expressed in terms of a diquark Hamiltonian \((H_{jk})\) plus quark-diquark Hamiltonian \((H_{i,jk})\) as [27][28]

\[
H = H_{jk} + H_{i,jk}
\]

(1)

The internal motion of the diquark\((j,k)\) is described by

\[
H_{jk} = \frac{p^2}{2m_{jk}} + V_{jk}(r_{jk})
\]

(2)

and the Hamiltonian of the relative motion of the diquark\((d)\)-quark\((i)\) system is described by

\[
H_{i,d} = H_{i,jk} = \frac{q^2}{2m_{i,jk}} + V_{i,jk}(r_{id})
\]

(3)

where, \((p, r_{jk})\) represent the relative momenta and coordinate of the quarks within the diquark system and \((q, r_{id})\) is the relative momenta and coordinate of the quark-diquark system. The reduced mass of the two body systems appeared in Eqn. (2) and Eqn. (3) respectively are defined as

\[
m_{jk} = \frac{m_j m_k}{m_j + m_k}, m_{i,jk} = \frac{m_i(m_j + m_k)}{m_i + m_j + m_k}
\]

(4)

For the present study, we have assumed colour coulomb plus power potential for the interquark potential of Eqn. (2) as well as for the quark-diquark interaction of Eqn. (3). Accordingly, the diquark potential can be written as,

\[
V_{jk} = -\frac{2}{3}\alpha_s \frac{1}{r_{jk}} + b r_{jk}^\nu
\]

(5)

and the quark-diquark potential as

\[
V_{i,jk} = -\frac{4}{3}\alpha_s \frac{1}{r_{id}} + b r_{id}^\nu
\]

(6)

where, \(r_{id}\) is the quark-diquark separation distance, \(\nu\) is the exponent corresponding to the confining part of the potential and \(b\) is the strength of the potential, which is assumed to be same for the di-quark interaction as well as between the quark-diquark interaction. The Schrodinger equation corresponds to the Hamiltonian given in Eqn. (1) is numerically solved using the Runge-Kutta method. The degeneracy of the states are removed by introducing the spin dependent interaction potential given by [29]

\[
V_{SD}(r_{jk}) = \frac{2}{3}\alpha_s \frac{1}{3m_j m_k} S_j \cdot S_k [4\pi \delta(r_{jk})]
\]

(7)

among the diquark states, and

\[
V_{SD}(r_{id}) = \frac{4}{3}\alpha_s \frac{1}{3m_i m_j m_k} (S_d + L_d) \cdot S_q [4\pi \delta(r_{id})]
\]

(8)

among the quark-diquark\((id)\) system.

The model parameters are fixed for the potential index \(\nu = 0.4\) to 1.0 to get the spin average mass of the system \(\Omega_{cccc}^{++}\) (4746), \(\Omega_{ccbc}^{++}\) (8021), \(\Omega_{bbcc}^{++}\) (11283), \(\Omega_{bbbc}^{++}\) (14370). All other properties are predicted without changing any of these parameters. The model parameters of triple heavy flavour baryons are shown in Table 1, 2 and 3. Our results for \(J^P = \frac{1}{2}^+\) and \(\frac{3}{2}^+\) are also compared with other theoretical model predictions. It is interesting to note that our predictions are in good agreement with other theoretical model predictions. The mass variations of the heavy baryons with respect to \(\nu\) from 0.4 to 1.0 are found to be around 100 MeV only.

Table 1. Model parameters for \(\Omega_{cccc}\) systems in quark-diquark model.

\(\alpha_s\)	\(\nu\)	\(b\)	\(m_c\)
0.4	0.1975	1.360	
0.6	0.1010	1.435	
0.20	0.8	0.054	1.480
1.0	0.033	1.500	

Table 2. Model parameters for \(\Omega_{ccbc}\) and \(\Omega_{bbbc}\) systems in quark-diquark model.

\(\alpha_s\)	\(\nu\)	\(b\)	\(m_c\)	\(M_b\)
0.4	0.1875	1.360	4.720	
0.6	0.0955	1.435	4.780	
0.17	0.8	0.0495	1.480	4.815
1.0	0.0282	1.500	4.840	

3 Magnetic moments of QQQ baryons

According to the idea of constituent quark mass [30], the hadron mass \(M\) is given by the sum of the masses of its constituent quarks. Accordingly, the kinetic and binding energies must be incorporated in the constituent quark mass.
Table 3. Model parameters for $\Omega_{b\bar{b}b}$ system in quark-diquark model.

α_s	ν	b	m_b
0.17	0.4	0.097	4.720
0.6	0.015	4.780	

Table 4. Triply heavy baryon masses (in MeV) in quark-diquark model

Baryon	Model	$J^P = \frac{3}{2}^+$	Others	$J^P = \frac{1}{2}^-$
$\Omega_{c\bar{c}c}$	$\nu = 0.4$	4760	4965	(9) indicates $J^P = \frac{1}{2}^-$ state.
	0.6	4760	4760	119
	0.8	4760	4803	34
	1.0	4760	4790	35
		4773	4773	36
$\Omega_{c\bar{c}b}^+$	$\nu = 0.4$	7999	8245	37
	0.6	8002	8018	38
	0.8	8004	8028	39
	1.0	8005	7984	37
$\Omega_{b\bar{c}c}^0$	$\nu = 0.4$	11274	11535	33
	0.6	11275	11280	34
	0.8	11276	11285	35
	1.0	11277	11139	37
$\Omega_{b\bar{b}b}$	$\nu = 0.4$	14370	14384	36
	0.6	14370	14370	36
	0.8	14370	14370	36
	1.0	14370	14370	36

We define an effective mass to the constituting quarks within the baryons that takes care of the bound state effects including its internal motions and interactions among quarks as \[m_i^{eff} = m_i \left(1 + \frac{\langle H \rangle}{\sum_i m_i}\right) \quad (9) \]

For the computation of the magnetic moments, we consider the mass of bound quarks inside the baryons as its effective mass taking in to account of its binding interactions with other two quarks described by the Hamiltonian given in Eqn.(1). The effective mass for each of the constituting quark m_i^{eff} as defined in Eqn.(9), where, $\langle H \rangle = E + \langle V_{spin} \rangle$ are computed such that the corresponding mass of the baryon with spin angular momentum, J is given by

\[M_B^J = \sum_i m_i + \langle H \rangle_J = \sum_i m_i^{eff} \quad (10) \]

The spin wave functions and the magnetic moments in terms of their constituent quark magnetic moments corresponds to the various combinations of b, c quarks composition are listed in Table 5. Using the ground state masses predicted for the triple heavy flavour (QQQ, Q ∈ c, b) baryons based on Quark-diquark approaches as discussed in section 2, we compute the effective masses of the constituting heavy quarks. The predicted magnetic moments of all the spin $J^P = \frac{3}{2}^+$ and spin $J^P = \frac{1}{2}^+$ triple heavy baryons based on quark-diquark model are listed in Table 5.

4 Results and Discussions

The masses and magnetic moments of triply heavy baryons in the Quark-diquark approach with coulomb plus power potential have been studied. It is interesting to note that our predictions of the mass of QQQ (Q ∈ c, b) are in good agreement with existing predictions based on other theoretical models.
Table 6. Effective quark mass (in MeV) of triple heavy flavour baryons.

Baryon	\(m_{c/f} \)	\(m_{b/f} \)
\(\Omega_{cc}^{++} \)	1.586	-
\(\Omega_{cb}^{++} \)	1.531	4936
\(\Omega_{bb}^{++} \)	1.553	4951
\(\Omega_{cc}^{-} \)	1512	4881
\(\Omega_{cb}^{-} \)	1514	4890
\(\Omega_{bb}^{-} \)	-	4790

Table 7. Magnetic moments of triply heavy baryons in quark-diquark model in units of Nuclear magneton \(\mu_N \)

Baryon	Potential index \(\nu \)	\(\Omega_{cc}^{++} \)	\(\Omega_{cb}^{++} \)	\(\Omega_{bb}^{++} \)	\(\Omega_{cc}^{-} \)	\(\Omega_{cb}^{-} \)	\(\Omega_{bb}^{-} \)
\(\Omega_{cc}^{++} \)	0.4	1.182	1.182	1.182	1.182	1.182	1.182
\(\Omega_{cb}^{++} \)	0.6	0.560	0.560	0.560	0.560	0.560	0.560
\(\Omega_{bb}^{++} \)	0.8	0.807	0.807	0.807	0.807	0.807	0.807
\(\Omega_{cc}^{-} \)	1.0	-0.235	-0.227	-0.224	-0.223	-0.223	-0.223
\(\Omega_{cb}^{-} \)	0.325	0.297	0.288	0.285	0.285	0.285	0.285
\(\Omega_{bb}^{-} \)	-0.196	-0.196	-0.196	-0.196	-0.196	-0.196	-0.196

(*indicates \(J^P = \frac{1}{2}^+ \) state.)

The predictions of the magnetic moment of triply heavy flavour baryons studied here are with no additional free parameters. Our results for magnetic moments of triply heavy flavour baryons are listed in Table (7) and are compared with other model predictions. The inter-quark interactions within the baryons are considered in the calculation of magnetic moments through the calculation of effective mass of the constituent quarks within the baryon (Eqn. 9).

Our predicted results for masses of \(\Omega_{cc}^{++} \) and \(\Omega_{bb}^{-} \) are in good agreement with the masses predicted by [31], while our predictions for \(\Omega_{cb}^{++} \) and \(\Omega_{bb}^{-} \) are in good agreement with masses predicted by [31]. Our results for the magnetic moments of \(\Omega_{cc}^{++} \) and \(\Omega_{bb}^{-} \) are very close with NRQM predictions made by [39]. Our results on the magnetic moments of \(\Omega_{cc}^{-} \) and \(\Omega_{bb}^{-} \) are in agreement with the magnetic moments predicted by [38].

It is interesting to note that the masses and magnetic moments predicted in our model do not vary appreciably with different choices of \(\nu \) running from 0.4 to 1.0 as seen from Table (4) and Table (7). We look forward to see experimental data on these properties of triply heavy flavour baryons from future experimental facilities.

References

1. K.A. Olive et al., Chin. Phys. C 38, 090001 (2014).
2. M. Mattsson et al., SELEX Collaboration, Phys. Rev. Lett. 89, 112001 (2002).
3. A. Ocherashvili et al., SELEX Collaboration, Phys. Lett. B 628, 18 (2005).
4. J. Eigefried et al., SELEX Collaboration, Nucl. Phys. A 752, 121 (2005).
5. Zalak Shah, Kaushal Thakkar, Ajay Kumar Rai and P. C. Vinodkumar, [arXiv:1602.06834v2 [hep-ph]] (2016).
6. Kaushal Thakkar and P. C. Vinodkumar, proceedings of Science Hadron 2013, 055 (2013).
7. Ajay Majethiya, Bhavin Patel, P. C. Vinodkumar Eur. Phys. J. A 38:307-315 (2008).
8. D. Ebert, R. N. Faustov and V. O. Galkin, Phys. Rev. D 84, 014025 (2011).
9. H.-X. Chen, W. Chen, Q. Mao, A. Hosaka, , et al., Phys. Rev. D 91, 054034 (2015).
10. T. Yoshida, E. Hiyama, A. Hosaka, M. Oka, and K. Sadato, Phys. Rev. D 92, 114029 (2015).
11. B. Silvestre-Brac, Prog. Part. Nucl. Phys. 36, 855-893 (2014).
12. M. Ida et al, Phys. Rev. D 91, 054011 (2015).
13. U. Loring, K. Kretzschmar, B. Ch. Metsch, and H. R. Petry, Eur. Phys. J. A 10, 05404 (1999).
14. T. M. Aliev, K. Azizi and M. Savci, Journal of Physics G 41(06), 065003 (2014), -0.180.
15. M. Baranska, Robert G. Edwards, V. Vinniki, Michael Mathur and Michael Peardon, Phys. Rev. D 90, 074504 (2014).
16. T. M. Aliev, K. Azizi and M. Savci, Journal of High Energy Physics 2013(4), 1-10 (2013).
17. Stefan Meinel, Phys. Rev. D 85, 114510 (2012).
18. Felipe J. Llanes-Estrada, Olga I. Pavlova and Richard Williams, European Physical Journal C 72(6), 1-21 (2012).
19. Yu Jia, Journal of High Energy Physics 10, 073 (2006).
20. J. Vijande, A. Valcarce and H. Garciaizo, Phys. Rev. D 91, 054011 (2015).
21. Bhavin Patel, Ajay Majethiya and P. C. Vinodkumar, Praman Journal of Physics 72, 679-688 (2009).
22. M. Gell-Mann, Phys. Lett. B, 8, 214 (1964).
23. M. Ida et al., Progr. Theor. Phys. 8, 846 (1966).
24. D. B. Lichtenberg et al., Phys. Rev. 214, 1601 (1966).
25. M. Ancelin, E. Predazzi, S. Ekelin, S. Fredskrass and D. B. Lichtenberg, Rev. Mod. Phys. 65, 1199 (1993).
26. R. L. Jaffe et al., Phys. Rev. Lett. 91, 232003 (2003).
27. W. S. Carvalho et al., arXiv:hep-ph 9404298v1 (1994).
28. A. Majethiya, K. Thakkar and P. C. Vinodkumar, Chinese Journal of Physics 54, 495502 (2016).
29. S. S. Gershtein et al., Heavy Ion Physics 9, 133-144 (1999); Phys. Atom. Nucl., 63; 274-286, (2000).
30. Ya. B. Zeldovich et al., Sov. J. Nucl. Phys. A, 23, 2817 (2008).
31. A. P. Martynenko, Phys. Lett. B 663, 317 (2008).
32. J. D. Bjorken, FERMILAB-Conf-85/69 (1985).
33. S. Migura, D. Merten, B. Metsch and H. -R. Petry, Eur. Phys. J. A 28, 41 (2006).
34. K. Thakkar, B. Patel, A. Majethiya and P. C. Vinodkumar, Pramana J. Phys. 77, 1053 (2011).
35. W. Roberts and Muslema Pervin, Int. Jn. Mod. Phys. A 23, 2817 (2008).
36. A. P. Martynenko, Phys. Lett. B 663, 317 (2008).
37. J. D. Bjorken, FERMILAB-Conf-85/69 (1985).
38. S. Migura, D. Merten, B. Metsch and H. -R. Petry, Eur. Phys. J. A 28, 41 (2006).
39. A. Bernotas and V. Simonis, Lith. J. Phys. 49, 1928 (2009).
40. A. Faessler et al., Phys. Rev. D 73 094013(2006).
41. B. Silvestre-Brac, Proc. Part. Nucl. Phys.36, 263 (1996).