Inhibitory Effects of Ternary Mixtures of Sodium Dodecyl Sulfate and Heavy Metals to *Acinetobacter seifertii* from Otamiri River Sediment in Southeastern Nigeria

Okechi. R.N.¹; **Chukwura, E.I.**² & **Nweke, C.O.**³

¹Department of Biotechnology, Federal University of Technology Owerri, P.M.B. 1526 Owerri, Imo State, Nigeria
²Department of Applied Microbiology and Brewing, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria
³Department of Microbiology, Federal University of Technology Owerri, P.M.B. 1526 Owerri, Imo State, Nigeria

Received October 01, 2020; Accept February 21, 2021

Abstract

Toxicities of sodium dodecyl sulfate (SDS) and heavy metals, Pb(II), Cd(II), Ni(II), Zn(II) and Co(II), as individuals and ternary mixtures of two heavy metals and SDS to *Acinetobacter seifertii* isolated as preponderant bacterium from Otamiri river sediment, were assessed, using inhibition of dehydrogenase activity as end point. Among the individual toxicants, the EC₅₀ observed ranged from 0.011 ± 0.000 mM for Cd(II) to 2.810 ± 0.140 mM for SDS. The EC₅₀ of the toxicants were statistically different from one another and the order of increasing toxicities were SDS > Ni(II) > Pb(II) > Zn(II) > Co(II) >Cd(II). The responses of the bacterium were concentration -dependent. Arbitrary (ABCR) and EC₅₀ equieffect (EECR) fixed ratio mixtures were used to evaluate the combined toxicities of the toxicants. The concentration-response relationships of all mixtures and individual toxicants were sigmoidal and fitted with logistic function. The observed toxicities (EC₅₀) were compared with toxicities predicted from concentration addition (CA) and independent action (IA) models. In ABCR1 and ABCR3 mixture ratios of SDS+Ni(II)+Cd(II) and SDS+Co(II)+Cd(II) ternary mixtures, both CA- and IA-predicted EC₅₀ were not statistically different from each other. Furthermore, in all ternary mixtures, both models underestimated the mixture toxicities to *A. seifertii*, except in ABCR1 of SDS+Ni(II)+Cd(II) mixture, where both models almost correctly predicted the toxicities. Basically, synergistic interaction of the mixture components observed against *A. seifertii*, indicates their possible toxicological effects on the bacterial population of the aquatic ecosystems.

Keywords: Ternary mixtures, dehydrogenase activity, heavy metals, SDS, toxicants, synergy.

INTRODUCTION

Bacteria densely colonize freshwater and marine sediments where they constitute the primary agents of biogeochemical cycling of elements and also serve as food source for higher organisms (Nweke *et al*., 2007a). Heavy metal contamination of aquatic environment has been a serious problem because of their persistence and toxicity to most aquatic biota, including microorganisms (Lee *et al*., 2005). As noted by Ince *et al.* (1999), heavy metals have received much interest amongst other chemicals in toxicological studies, due to their exceptionally adverse effects on aquatic organisms as a result of their natural and anthropogenic discharge into aquatic ecosystems. Synthetic surfactants also have a wide range of applications at homes, industries and agriculture, as well as in remediation processes and are thus key contaminants of numerous aquatic environments (Masakorala *et al*., 2011). Although some researchers have reported anionic surfactants to be safe, investigations however showed that surfactants could change the adverse effect of heavy metals to fish and other aquatic lives (Karbe, 1975; Bianucci & Legnani, 1974; Swedimark *et al*., 1978). In aquatic ecosystems, sediments are the sinks for most of the discharged chemicals and play a major role...
in ecosystem processes (Burton et al., 2001). Metals attach to organic and inorganic particles that are finally deposited beneath the water bodies. Agitations can redistribute these sediment-associated contaminants in the water phase and impair the activities of suspended microorganisms (Hanson et al., 1993). The microbial communities in sediments process detrital organic matter and also serve as food source for higher organisms. Acinetobacter species has been widely reported in contaminated river and lake sediments by various authors and therefore could be a model bacterium for ecotoxicological studies involving chemical mixtures (Sheng et al., 2016; Huang et al., 2019). Co-contamination of aquatic ecosystems by chemical mixtures could lead to possible interactions among the mixture components, with varied effects on aquatic biota, especially the microbial community. Such interactions may result in mixture effects greater or less than the sum of the effects of the individual chemicals. These situations are referred to as synergism and antagonism respectively. However, when the resultant effect is equal to the sum of the mixture effects of the individual chemicals (no interaction), it is termed additivity (Price et al., 2002). Many researchers have reported such interactive effects of chemical mixtures against aquatic microbiota, using different microbial responses (Xu et al., 2011; Nweke et al., 2016; 2017; Regenmortel et al., 2017; Yoo et al., 2020).

Chemical pollution of Otamiri River is as a result of anthropogenic activities in Owerri and environs (Okoro et al., 2016; Ogah et al., 2018). Recently, Otamiri river water and sediment in Owerri, Imo State, Nigeria were reported to contain anionic surfactants, including sodium dodecyl sulfate (SDS) and heavy metals such as lead, cadmium, nickel, mercury, cobalt and zinc (Okechi & Chukwura, 2020). These heavy metals and surfactants have toxicological implications for the resident aquatic organisms. The toxicity of these pollutants to the microbial community of the river sediment has not been investigated. Furthermore, there is a lack of information on the toxicity of mixtures of organic pollutants and heavy metals to the bacterial population of the river and its sediment. This study was therefore aimed at investigating the combined toxicity of heavy metals and SDS to Acinetobacter seifertii isolated from the river sediment.

MATERIALS AND METHODS

Reagents

The deionized water used in reconstituting the reagents was sterilized by autoclaving and the stock reagents by membrane filtration. The heavy metal ions: Cd\(^{2+}\), Pb\(^{2+}\), Zn\(^{2+}\), Co\(^{2+}\) and Ni\(^{2+}\) were used as CdSO\(_4\)·8H\(\text{O}\), Pb(NO\(_3\))\(_2\), ZnNO\(_3\)·6H\(\text{O}\), CoCl\(_2\) and NiSO\(_4\)·6H\(\text{O}\), respectively. These metals, SDS and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) were all of analytical grades.

Test bacterium and cultural conditions

The test bacterium, A. seifertii was the most numerous bacterial isolate from Otamiri river sediment (Okechi & Chukwura, 2020). A. seifertii cells were prepared for bioassay by culturing in nutrient broth (Lab M) shaken at 150 rpm in a shaker incubator and incubated at 28 ± 2°C for 16 h. The cells were harvested and washed in sterile deionized water by repeated centrifugation (3000 rpm, 15 min, Newlife Centrifuge, NL80-2). Thereafter, the cells were suspended in sterile deionized water and the optical density adjusted to 0.1 at 540 nm in spectrophotometer (VIS Spectrophotometer 72 1D) (Nweke et al., 2014). This cell suspension was equivalent to 1.1x10\(^5\) cells/ml based on McFarland turbidity standards.

Ternary mixture ratios

The ternary mixtures consisted of SDS and two of the five heavy metals (Cd, Pb, Zn, Co and Ni), combined in fixed ratios. The ternary mixtures were SDS+Pb(II)+Zn(II), SDS+Cd(II)+Zn(II), SDS+Pb(II)+Ni(II), SDS+Ni(II)+Cd(II), SDS+Co(II)+Pb(II), and SDS+Co(II)+Cd(II). In each ternary combination of SDS and heavy metals, four mixture ratios including one EC\(_{50}\) equieffect concentration ratio (EECR50) and the three arbitrarily chosen mixture ratios (ABCR) were investigated. The relative proportion of SDS and heavy metals in each ternary combination are shown in Table 1. Each combination was prepared by mixing requisite volumes of the stock solutions of each component.

Table 1: Ternary mixtures of SDS and two heavy metals
Mixture

EECR50
ABCR1
ABCR2
ABCR3

Note: SDS = Sodium dodecyl sulfate, Pb = Lead, Zn = Zinc, Co = Cobalt, Ni = Nickel, Cd = Cadmium.
Toxicity assay

The cell viability assay with 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-Tetrazolium Bromide (MTT) was done in 2-ml volumes of nutrient broth-MTT medium containing graded concentrations of SDS, Cd(II), Pb(II), Zn(II), Co(II) or Ni(II) (for individual) or the mixtures in separate 15 ml screw-capped culture tubes (pH 7). In each tube, 0.5 ml portion of 0.8% nutrient broth and requisite volumes of sterile deionized water and stock solutions of the respective heavy metals, SDS or the ternary mixtures were added. Then, 0.1 ml each of 0.1% aqueous solutions of MTT and cell suspension were added to obtain final concentrations of 0.002 mM to 1.5 mM (individual heavy metal) and 1 mM to 10 mM (SDS). The final concentration of ternary mixtures varied between 0.02 mM and 2.0 mM. The control tubes contained the medium, MTT and bacterial inoculum but not SDS or heavy metals. The cultures were incubated at 28 ± 2°C for 24 h. After incubation, the purple coloured MTT-formazan (MTTF) produced in each tube was extracted in 4 ml of n-butanol. Absorbance of the extract was determined spectrophotometrically at 590 nm (VIS Spectrophotometer 72 1D) (Nweke et al., 2014).

Estimation of EC50s

The relative inhibitions of dehydrogenase activity at each concentration of individual toxicant or the ternary mixtures were computed as shown in Eq 1.

\[
R = \left[\frac{C_A - T_A}{C_A} \right] \times 100
\]

Where R is the inhibition (%) of dehydrogenase activity, \(C_A\) is the mean absorbance of MTTF extract in the control experiment and \(T_A\) is absorbance of MTTF extract in the test experiment containing different concentrations of SDS and heavy metal or their mixture.

The concentration-inhibition data for the individual toxicants and the mixtures were fitted with a logistic function of 2 parameters (Eq. 2).

\[
R = \frac{100}{1 + \left[\frac{x}{EC_{50}} \right]^b}
\]

Where \(x\) is the concentration of toxicant, \(EC_{50}\) is the concentration of toxicant that inhibited dehydrogenase activity by 50% and \(b\) is the slope at \(EC_{50}\).

Predicting mixture toxicities

The mixture toxicities were predicted from the toxicity of the individual component based on concentration addition (CA) model, Eq. 3. (Berenbaum, 1985).

\[
EC_{x(mix)} = \left[\sum_{i=1}^{n} \frac{\pi_i}{EC_{x(i)}} \right]^{-1}
\]

Where \(EC_{x(mix)}\) is the total concentration of the mixture that caused \(x\%\) effect, \(EC_{x}\) is the concentration of \(i\)th component that gave \(x\%\) as an individual, \(n\) is the number of components in the mixture, \(\pi_i\) is the relative proportion of \(i\)th component in the mixture. Using Eq. 3, the concentration-inhibition relationships were determined as described elsewhere (Nweke et al., 2018).

The independent action (IA) model (Eq. 4) assumes that the components of any mixture have different mechanisms of action (Altenburger et al., 2000; Faust et al., 2003): \[E(C_{mix}) = 1 - \prod_{i=1}^{n} \left[1 - E(c_i) \right] \] \[E(c_{mix}) = \left[\frac{1}{1 + \left(\pi_x \frac{x}{EC_{50x}} \right)^b} \right] \times 100 \]

Where, \(\pi_x\) is the concentration of \(i\)th component in the mixture. \(EC_{50x}\) and \(b_i\) are the \(EC_{50}\) and the corresponding slope for each \((i)\)th component. The concentration-inhibition relationships of the mixtures were calculated from Eq.5 encoded in Microsoft Excel 2007. The observed \(EC_{50}\) were compared with the predicted \(EC_{50}\) by Duncan post-hoc test implemented in SPSS statistics 21.

Toxic index (TI)

The Toxic Index (TI) of each mixture was calculated as sum of toxic units for all the mixture components (Eq. 6).

\[
TI = \sum_{i=1}^{n} \frac{C_i}{EC_{50i}} = \sum_{i=1}^{n} \frac{\pi_i \cdot EC_{50mix}}{EC_{50i}}
\]

Where \(C_i\) is the concentration of the \(i\)th component in the mixture at the \(EC_{50}\) of the mixture \((EC_{50mix})\) and \(EC_{50i}\) is the concentration of the \(i\)th component that caused 50% reduction in dehydrogenase activity when tested alone, \(n\) is the number of mixture components and \(\pi\) is the relative proportion of \(i\)th component in the mixture. The mixture is described as additive if TI equals 1. When TI is less than or greater than 1, the mixture is described as synergistic or antagonistic respectively (Boilot & Perrodin, 2008).

Model deviation ratios (MDR)

Model deviation ratios were calculated as shown in Eq. 7. MDR greater than 1 indicated synergism, while a value of less than 1 indicated antagonism. MDR of 1 indicated additivity.
Results

Toxicity of individual toxicant to A. seifertii

The observed and predicted EC_{50} of metals, SDS and the ternary mixtures on A. seifertii are shown in Table 2. SDS with EC_{50} of 2.810 ± 0.140 mM had the least toxicity while cadmium with EC_{50} of 0.011 ± 0.000 mM was the most toxic. EC_{50} of the individual toxicants were statistically different from one another ($P < 0.05$). The decrease in toxicities of the individual toxicants are as follow: Cd(II) > Co(II) > Zn(II) > Pb(II) > Ni(II) > SDS. The responses of the organism to the toxicity of the toxicants were concentration-dependent (Fig. 1). The toxicants increasingly inhibited dehydrogenase activity with increased concentrations, resulting in inhibitions of more than 95% at 0.4 mM for Pb(II), 0.05 mM for Co(II), 0.08 mM for Cd(II), 1 mM for Zn(II) and 10 mM for SDS. The concentration-response pattern for SDS and Ni(II) as well as for Cd(II) and Pb(II) were similar.

Toxicity of ternary mixtures of SDS and metals to A. seifertii

In Table 2, the observed EC_{50} in SDS + Pb(II) + Zn(II)

Toxicants and mixtures	Experimental†	CA-Predicted	IA-Predicted
Ni(II)	0.649 ± 0.053a	-	-
Cd(II)	0.011 ± 0.000b	-	-
Pb(II)	0.222 ± 0.005c	-	-
Zn(II)	0.075 ± 0.005d	-	-
Co(II)	0.041 ± 0.008e	-	-
SDS	2.810 ± 0.140f	-	-
SDS + Pb(II) + Zn(II)			
SDS 94.87% + Pb(II) 3.88% + Zn(II) 1.25% (EECR50)	0.328 ± 0.018a*	1.473 ± 0.068**	2.384 ± 1.018***
SDS 96% + Pb(II) 5% + Zn(II) 1% (ABCR1)	0.302 ± 0.016a*	1.535 ± 0.069**	2.490 ± 0.006***
SDS 93% + Pb(II) 5% + Zn(II) 2% (ABCR2)	0.368 ± 0.008b*	1.217 ± 0.058**	2.004 ± 0.197***
SDS 90% + Pb(II) 2% + Zn(II) 8% (ABCR3)	0.349 ± 0.023b*	0.679 ± 0.044**	0.868 ± 0.927***
SDS + Cd(II) + Zn(II)			
SDS 96.50% + Cd(II) 0.20% + Zn(II) 1.30% (EECR50)	0.713 ± 0.028a*	1.630 ± 0.082**	2.335 ± 0.831***
SDS 96% + Cd(II) 1% + Zn(II) 3% (ABCR1)	0.242 ± 0.020b*	1.274 ± 0.075**	1.707 ± 0.007***
SDS 95% + Cd(II) 2% + Zn(II) 3% (ABCR2)	0.639 ± 0.023c*	1.899 ± 0.097**	2.491 ± 0.093***
SDS 95% + Cd(II) 2% + Zn(II) 3% (ABCR3)	0.270 ± 0.030b*	1.210 ± 0.068**	1.715 ± 0.005***
SDS + Pb(II) + Ni(II)			
SDS 92.44% + Pb(II) 3.78% + Ni(II) 3.78% (EECR50)	0.538 ± 0.017a*	1.793 ± 0.076**	2.527 ± 0.467***
SDS 96% + Pb(II) 3% + Ni(II) 4% (ABCR1)	0.443 ± 0.018b*	1.894 ± 0.083**	2.532 ± 0.006***
SDS 95% + Pb(II) 2% + Ni(II) 3% (ABCR2)	0.270 ± 0.006b*	1.937 ± 0.083**	2.597 ± 0.047***
SDS 93% + Pb(II) 4% + Ni(II) 5% (ABCR3)	0.421 ± 0.012a*	1.720 ± 0.074**	2.448 ± 0.057***
SDS + Ni(II) + Cd(II)			
SDS 94.21% + Ni(II) 3.86% + Cd(II) 1.93% (EECR50)	0.116 ± 0.004a*	0.477 ± 0.024**	0.544 ± 1.100***
SDS 93% + Ni(II) 5% + Cd(II) 2% (ABCR1)	0.423 ± 0.018b*	0.460 ± 0.023*	0.521 ± 0.019***
SDS 94% + Ni(II) 4% + Cd(II) 2% (ABCR2)	0.267 ± 0.005c*	0.463 ± 0.023**	0.526 ± 0.023***
SDS 91% + Ni(II) 6% + Cd(II) 3% (ABCR3)	0.184 ± 0.012d*	0.326 ± 0.017**	0.357 ± 0.103***
SDS + Co(II) + Pb(II)			
SDS 95.22% + Co(II) 0.89% + Pb(II) 3.89% (EECR50)	0.277 ± 0.005a*	1.362 ± 0.117**	1.873 ± 0.879***
SDS 94% + Co(II) 3% + Pb(II) 3% (ABCR1)	0.334 ± 0.016b*	0.829 ± 0.112**	1.056 ± 0.045***
SDS 95% + Co(II) 3% + Pb(II) 2% (ABCR2)	0.197 ± 0.017c*	0.859 ± 0.120**	1.052 ± 0.055***
SDS 96% + Co(II) 2% + Pb(II) 2% (ABCR3)	0.261 ± 0.008a*	1.093 ± 0.134**	1.333 ± 0.138***
SDS + Co(II) + Cd(II)			
SDS 97.10% + Co(II) 0.91% + Cd(II) 2% (EECR50)	0.198 ± 0.016a*	0.428 ± 0.027**	0.480 ± 0.530***
SDS 96% + Co(II) 1% + Cd(II) 1% (ABCR1)	0.216 ± 0.008a*	0.676 ± 0.049**	0.801 ± 0.001***
SDS 96% + Co(II) 2% + Cd(II) 2% (ABCR2)	0.248 ± 0.011b*	0.385 ± 0.029**	0.425 ± 0.035***
SDS 95% + Co(II) 3% + Cd(II) 2% (ABCR3)	0.169 ± 0.008c*	0.352 ± 0.030**	0.388 ± 0.235***

Within column, among the individual toxicants, EC_{50} values with different letters differed significantly from each other
†Within columns, in each individual toxicant or toxicant mixture type, the experimental EC_{50} values with the same letters are not significantly different from each other ($P < 0.05$).
‡ Within rows, in each mixture ratio, comparing between the experimental EC_{50}, CA-predicted EC_{50} and IA-predicted EC_{50}, values with the same number of asterisks are not significantly different from each other ($P < 0.05$).
* Values are reported as Mean ± 1SD
mixture showed that ABCR2 mixture ratio was the least toxic (0.368 ± 0.008 mM) while ABCR1 mixture ratio was the most toxic (0.302 ± 0.016 mM). In addition, among the observed EC_{50}s, the EECR50 and ABCR1 mixture ratios were statistically different from ABCR2 and ABCR3. In SDS + Cd(II) + Zn(II) mixtures, the observed EC_{50} values ranged from 0.242 ± 0.020 mM for ABCR1 to 0.713 ± 0.028 mM for EECR50. The observed EC_{50} showed that EECR50 and ABCR2 mixture ratios were statistically different from ABCR1 and ABCR3 mixture ratios.

In SDS + Pb(II) + Ni(II) mixtures, for the observed EC_{50}s, EECR50 and ABCR2 mixture ratios were statistically different from ABCR1 and ABCR3 mixture ratios. In SDS + Ni(II) + Cd(II) mixtures, the observed EC_{50}s showed significant difference among mixture ratios. Similarly, the EC_{50} predicted by independent action model was statistically different from both the observed and concentration addition model-predicted EC_{50}s in ABCR1 mixture ratio (P < 0.05). In SDS + Co(II) + Pb(II) mixtures, among the observed EC_{50}s, ABCR1 and ABCR2 mixture ratios were significantly different from each other. In SDS + Co(II) + Cd(II) mixtures, the observed EC_{50}s of ABCR2 and ABCR3 mixture ratios were statistically different from each other. In ABCR3 mixture ratio, the observed EC_{50} was significantly lower than those predicted from CA and IA models (P < 0.05). However, in most mixture ratios, the observed EC_{50}s as well as those predicted from CA and IA models were statistically different from one another (P < 0.05).

Toxic index, model deviation ratio and effect of ternary mixtures of metals and SDS on *A. seifertii* are shown in Table 3. The TI values ranged from 0.139 ± 0.003 to 0.919 ± 0.019, while MDR values ranged from 1.088 ± 0.023 to 7.173 ± 0.148 for CA and 1.233 ± 0.041 to 9.621 ± 0.090 for IA. At all the tested mixture ratios, the ternary mixtures were synergistic in their actions against the bacterium, except for ABCR1 mixture ratio of SDS + Ni(II) + Cd(II) mixture, whose effect was rather additive. The observed concentration-response relationships of the ternary mixtures and the predictions made from CA and IA models for *A. seifertii* are shown in Figures 2-7. In the SDS + Pb(II) + Zn(II) mixture, both models greatly underestimated the toxicities except for ABCR3, where they slightly underestimated the toxicity (Figure 2).

In SDS + Cd(II) + Zn(II) and SDS + Pb(II) + Ni(II) mixtures, both CA and IA models also underestimated the toxicities relative to the observed data as shown in Figures 3 and 4 respectively.

Metal-SDS Mixtures	Toxic Index (TI)	CA	MDR	Effect
SDS + Pb (II)+Zn(II)	0.223 ± 0.002	4.493 ± 0.039	7.282 ± 0.384	Synergistic
SDS + Cd (II)+Zn(II)	0.499 ± 0.007	2.286 ± 0.025	3.278 ± 0.104	Synergistic
SDS + Ni (II)+Cd(II)	0.300 ± 0.003	3.329 ± 0.033	4.696 ± 0.122	Synergistic
SDS + Co (II)+Pb(II)	0.243 ± 0.004	4.084 ± 0.060	5.818 ± 0.152	Synergistic
Values are reported as Mean ± 1SD				

Table 3: Toxic index, MDR and effect of ternary mixtures of metals and SDS on *A. seifertii*
SDS + Ni(II) + Cd(II) mixture, the models slightly underestimated the toxicities and were toxic even at low concentrations, except in ABCR1 mixture ratio, where both models almost correctly predicted the experimentally-observed data at low concentrations, and underestimated the mixture toxicity at high concentrations. Similarly, in both SDS + Ni(II) + Cd(II) and SDS + Co(II) + Cd(II) mixtures, CA and IA models predicted similar toxicities, as their dose-response curves were almost superimposed (Figures 5 and 7). In ABCR1 mixture ratio of SDS + Co(II) + Pb(II) and all SDS + Co(II) + Cd(II) mixtures, both models slightly predicted lower toxicities than the experimentally-observed data and were toxic even at low concentrations. In other SDS + Co(II) + Pb(II) mixture ratios, both CA and IA models however grossly underestimated the mixture toxicities (Figures 6).

DISCUSSION

Sodium dodecyl sulfate (SDS) was the least toxic to the sediment bacterium, among the toxicants evaluated in this study. This result is in agreement with the report that SDS was less toxic than a variety of metals and non surfactants compounds by previous authors (Whitton, 1967; Wangberg & Blanck, 1988). Sodium dodecyl sulfate has been reported to inhibit certain processes in different organisms at various concentrations. For example, inhibition in cell multiplication and rate of phosphate assimilation in pure cultures of *Acinetobacter junii* has been reported at EC_{50} of $5.00 \pm 2.95 \times 10^{-6}$ mol/l (0.005 mM) and $3.33 \pm 0.96 \times 10^{-4}$ mol/l (0.33 mM) respectively (Hrenovic & Ivankovic, 2007). In a similar report, growth and nitrogen fixing ability in cyanobacterium *Gloeocapsa* were inhibited by SDS at 50 ppm (≈ 0.173 mM) (Cserhati et al., 2002). Furthermore, inhibition of overall uptake of metals without altering cell membrane permeability in marine macroalga, *Ulva lactuca* by SDS was reported by Masakorala et al. (2008). However, SDS was not particularly toxic to *Ulva lactuca* at a concentration range of 0-10 mg/l (≈ 0.04 mM) (Masakorala et al., 2011) and towards algae, and invertebrates at environmentally realistic concentrations (Sandback et al., 2000). In the present study, SDS inhibited dehydrogenase activity in *A. seifertii* by 50% at 2.810 ± 0.140 mM after 24 hours.

Due to their persistence and toxicity, environmental pollution by heavy metals, particularly in aquatic ecosystems,
Inhibitory effects of ternary mixtures of sodium... Ecotoxicol. Environ. Contam., v.16, n. 1, 2021

has been a serious concern. Heavy metals such as nickel, cobalt and zinc serve as micro nutrients to bacteria, required at trace concentrations. However, at higher concentrations, nickel, cobalt, zinc and “bad ions” (with no nutritional values) such as cadmium and lead are toxic to microorganisms (Nies, 1992). In the present study, the order of increasing toxicity among the trace metals were $\text{Ni} > \text{Zn} > \text{Co}$. Nickel was toxic to the bacterium, with an EC_{50} of 0.649 ± 0.053 mM. Possible mechanisms of nickel toxicity to microorganisms include: substitution of essential metal of metalloproteins, binding to catalytic residues of non-metalloenzymes, binding outside the enzyme’s catalytic site, resulting in allosteric inhibition and by indirectly causing oxidative stress (Macomber & Hausinger, 2011). Similarly, toxicity of cobalt to luminescent Vibrio fischeri has also been reported with a 15 min EC_{50} of 45.9 ± 4.59 mg/l (0.35 mM) (Fulladosa et al., 2005). In this study, cobalt inhibited dehydrogenase activity in $A. \text{seifertii}$ with a 24 hours EC_{50} of 0.011 ± 0.000 mM. Furthermore, cobalt was more toxic than nickel. Such greater inhibition by cobalt to cell growth than nickel has been reported elsewhere (Gikas, 2007).

Zinc as component of many microbial enzymes, is needed for their catalytic activities and structural stability (Choudhury & Srivastava, 2001). However, Zn(II) may become toxic to cells at high concentrations. For example, a 50% decrease in dehydrogenase activity by zinc was reported in sediment bacteria from New Calabar river at 0.166 and 0.873 mM respectively, for Bacillus and Micrococcus species (Nweke et al., 2007a). Similarly, a 15 min EC_{50} of 0.86 ± 0.11 mg/l (\approx 0.003 mM) was reported for zinc against luminescent bacterium Vibrio fischeri by Fulladosa et al. (2005). Zinc inhibited dehydrogenase activity of the sediment bacterium $A. \text{seifertii}$ in this study with 24 hours EC_{50} of 0.075 ± 0.005 mM. The variation in EC_{50} observed could be attributed to the different bacterial species adopted for the studies.

Cadmium and lead have no physiological functions in living organisms and can be toxic at low concentrations. For instance, 15 min IC_{50} of 0.537 mg/l (\approx 0.002 mM) and 1.231 mg/l (\approx 0.004 mM) were recorded for cadmium and lead respectively against $\text{Phosphobacterium phosphoreum}$ T3S (Zeb et al., 2016). In a similar study, Mansour et al. (2015)
reported 5 and 15 minutes EC₅₀ of 4.53 mg/l (≈ 0.018 mM) and 4.47 mg/l (≈ 0.014 mM), 6.60 mg/l (≈ 0.03 mM) and 5.83 mg/l (≈ 0.018 mM) for cadmium and lead respectively against inhibition of bioluminescence in *Vibrio fischeri*. In the present study however, cadmium and lead recorded 24 hours EC₅₀ of 0.011 ± 0.000 mM and 0.222 ± 0.005 mM against *A. seifertii*.

Though the concentrations of SDS and heavy metals recently reported in Otamiri river water and sediment by Okechi & Chukwura, (2020) were lower than the EC₅₀ of the toxicants employed in the present study, heavy metals are however known to be persistent and accumulative in the environment, and thus, could reach or even surpass these employed concentrations over time. Furthermore, progressive accumulation of heavy metals in Otamiri river sediment has been reported (Temitope et al., 2016). In addition, investigations have shown that surfactants can change the toxicity of heavy metals to aquatic organisms (Swedmark & Gramno, 1981; Masakorala et al., 2008). However, it is also possible that the bacterium may have evolved some tolerance mechanisms to these toxicants judging from their reported age long accumulation in the river, and as such, the response to the individual toxicants and their ternary mixtures may be different from that of *A. seifertii* isolated from unpolluted waterbodies. In addition, though metals have been reported to accumulate in Otamiri River, reasonable comparison cannot be made on the toxicities of heavy metals and surfactants on *A. seifertii* from the river. Not much work has been done on the ecotoxicological implications of these pollutants on the microbiological population of Otamiri River. Nweke et al (2017) assessed inhibition of INT-dehydrogenase activity in microbial community of Otamiri river water by Cd, Ni, Zn and Co). Although normal strength nutrient broth was used in the study, the microbial community with EC₅₀ of 0.265 ± 0.015 mM Pb(II) was more sensitive to lead than *A. seifertii* in the present study.

There is scarcity of information on the toxic effects of ternary mixtures of SDS and heavy metals on bacteria. In the present study, SDS modulated the toxicity of the heavy
Inhibitory effects of ternary mixtures of sodium dodecylsulfate (SDS) and heavy metals on the growth of A. seifertii

Figure 7: Observed (data points) and predicted (lines) inhibitory effects of ternary mixtures of SDS, cobalt and cadmium ions on A. seifertii dehydrogenase activity. Dotted lines represent toxicities obtained by nonlinear regression of observed data with logistic model (Eq. 2). Dashed and solid lines are toxicities predicted from the CA and IA models respectively.

metals and vice versa, thus giving EC_{50} generally lower than SDS and in few cases lead as individual toxicants. Li et al. (2018), similarly noted that the toxicities of all the mixtures of nanoTiO$_2$ and Cd$^{2+}$ with surfactant were lower than the single toxicity of Cd$^{2+}$ to Escherichia coli. Although some researchers have claimed that anionic surfactants are healthy, adverse health effects have nevertheless been reported from exposure to multiple chemicals at low concentrations, which does not cause harm individually (Brain et al., 2007; Smith et al., 2013; Kortenkamp, 2014). Although it has been established that some anionic surfactants can enhance the toxicities of coexisting chemical species, such as metals, and anthracene (Swedmark & Granmo, 1981; Flores et al., 2010), this was not established in this study. Furthermore, though ternary mixtures of SDS+Pb(II)+Ni(II) and SDS+Ni(II)+Cd(II) were more toxic than their individual toxicities against the sediment bacterium, this increase seems to be more attributable to the effects of Pb and Cd ions than SDS, as such enhanced toxicities were not reflected in the binary mixture of SDS with nickel (data not shown).

The model deviation ratios (MDR) and the toxic index model (TI) used to analyse the ternary mixture toxicities indicated similar results, with regards to the toxicity of SDS and metal mixtures to A. seifertii. The TI values obtained for all the ternary mixtures were well below 1, except SDS93% + Ni(II)5% + Cd(II)2% mixture ratio that was almost 1, thus describing synergistic and additive interactions respectively. This ternary combination was especially important as an example of how the form of toxicological interaction in ternary mixtures would change in relation to their binaries (Boltes et al., 2012). The binary mixtures were synergistic and antagonistic in their interactions. Similarly, the MDR values for all the ternary mixtures of SDS and metal ions in this study also showed synergistic interactions, except the same mixture ratio that showed additivity. Some authors have reported both synergistic and antagonistic interactions in studies with ternary mixtures of different heavy metals to bacteria and liver cells (Xu et al., 2011; Lin et al., 2016; Nweke et al., 2018). Similarly, depending on metals concentrations, antagonism, additivity and synergism were reported on the acute toxicity of the ternary mixtures of metals to Daphnia magna (Traudt et al., 2017). Reproduction in Ceriodaphnia dubia has also been reported to be significantly affected by the ternary mixtures of Cu+Pb+Zn, with more than additive effect (Cooper et al., 2009). It is important to note the variations in the mixtures components in these studies compared with the present study, as none had SDS as a component. It has been reported that the types of interactions exhibited by the components of mixtures largely depend on their relative proportions in the mixtures (Otitoloju, 2005).

Predictive models; CA and IA, have been used to predict the toxicity of chemical mixtures on the basis of concentration-response relationship of the mixture components. The CA model is based on the assumption that the mixture components act similarly while the IA model assumes that the mixture components act differently. In this study, CA and IA models either slightly or greatly underestimated the joint toxicity of the SDS and metals. Both models however made good predictions at low concentrations for ABCR1 mixture ratio of SDS + Ni(II) + Cd(II) mixture. Similar result was reported by Nweke et al. (2018). Furthermore, Regenmortel & De Schamphelaere, (2017) used both models to correctly predict Cu–Ni–Zn ternary mixtures on the growth of Pseudokirchneriella subcapitata in natural waters. It is important to note that there was no statistical difference between the observed EC_{50} and CA-predicted EC_{50} in ABCR1 mixture ratio of SDS + Ni(II) + Cd(II) mixture, indicating additive effect of the mixture components. SDS and heavy metals may have similar modes of action against the bacterium, thus there was no substantial difference between predicted values of mixture toxicities on the bases of CA and IA-models in ABCR3 mixture ratio of SDS + Co(II) + CdII) mixture. Huang et al. (2011) reported similar insignificant differences in the toxicity of mixtures predicted from CA and IA models for phenol containing.
compounds with related and different mechanisms of action. In addition, similar toxicities for the ternary mixtures of SDS + Ni(II) + Cd(II) and SDS + Co(II) + Cd(II) were also predicted from CA and IA models in this study. Studies have shown that the EC_{50} predicted from both models can be similar under certain conditions (Boedeker et al., 1993).

CONCLUSION

The toxicities of SDS and some heavy metals (Pb, Cd, Co, Zn, Ni) as individuals and in ternary mixtures to *A. seifertii*, isolated from Otamiri river sediment were examined, using inhibition of dehydrogenase activity as end point. The results of this study showed that both heavy metals and SDS exhibited varying toxicity levels to the sediment bacterium, both as individual toxicants and as ternary mixtures. The mixture interaction was generally synergistic, indicating the possibility of adverse effects of the mixture on the bacterial population of the river sediment.

REFERENCES

ALTENBURGER, R., BAUKHAUS, T., BOEDEKER, W., FAUST, M., SCHOLZE, M. & GRIMME, L. H. 2000. Predictability of the toxicity of multiple chemical mixtures to Vibrio fischeri: mixtures composed of similarly acting chemicals. Environ Toxicol. Chem. 19(9): 2341-2347. https://doi.org/10.1002/etc.5620190927

BERENBAUM, M. 1985. The expected effect of a combination of agents: The general solution. J. Theo. Biol. 114: 413 – 431. https://doi.org/10.1016/S0022-5193(85)80176-4

BIANUucci, F & LEGNANI, P. 1974. Toxicity of Alhurnus alhunus var. ahorella of hexavalent chromium and anionic detergent. Igene Mod. (It.), 66: 531. https://doi.org/10.1016/j.aquatox.2004.11.012.

BOEDEKER, W., DRESCHER, K., ALTENBURGER, R., FAUST, M & GRIMME, L.H. 2003. Joint algal toxicity of 16 dissimilar acting chemicals is predictable by the concept of independent action. Aqu. Toxiol. 63, 43 – 63. https://doi.org/10.1016/s0146-4562(02)00133-9.

BOILLOT, C. & PERRODIN, Y. 2008. Joint-action ecotoxicity of binary mixtures of glutaraldehyde and surfactants used in hospitals: use of the toxicity index model and isobologram representation. Ecotoxicol. Environ. Safety 71: 252 – 259. https://doi.org/10.1016/j.ecoenv.2007.08.010.

BOLTES, K., ROSAL, R & GARCÍA-CALVO, E. 2012. Toxicity of mixtures of perfluorooctane sulphonic acid with chlorinated hydrocarbons to benthic amphipod Grandidierella japonica. Ocean Sci. J. 40(2): 61-66. https://doi.org/10.1016/j.oceano.2011.08.006.

BOLTES, K., ROSAL, R & GARCÍA-CALVO, E. 2012. Toxicity of mixtures of perfluorooctane sulphonic acid with chlorinated hydrocarbons to benthic amphipod Grandidierella japonica. Ocean Sci. J. 40(2): 61-66. https://doi.org/10.1016/j.oceano.2011.08.006.

BOLTES, K., ROSAL, R & GARCÍA-CALVO, E. 2012. Toxicity of mixtures of perfluorooctane sulphonic acid with chlorinated hydrocarbons to benthic amphipod Grandidierella japonica. Ocean Sci. J. 40(2): 61-66. https://doi.org/10.1016/j.oceano.2011.08.006.

BOLTES, K., ROSAL, R & GARCÍA-CALVO, E. 2012. Toxicity of mixtures of perfluorooctane sulphonic acid with chlorinated hydrocarbons to benthic amphipod Grandidierella japonica. Ocean Sci. J. 40(2): 61-66. https://doi.org/10.1016/j.oceano.2011.08.006.

BOLTES, K., ROSAL, R & GARCÍA-CALVO, E. 2012. Toxicity of mixtures of perfluorooctane sulphonic acid with chlorinated hydrocarbons to benthic amphipod Grandidierella japonica. Ocean Sci. J. 40(2): 61-66. https://doi.org/10.1016/j.oceano.2011.08.006.

BOILLOT, C. & PERRODIN, Y. 2008. Joint-action ecotoxicity of binary mixtures of glutaraldehyde and surfactants used in hospitals: use of the toxicity index model and isobologram representation. Ecotoxicol. Environ. Safety 71: 252 – 259. https://doi.org/10.1016/j.ecoenv.2007.08.010.

BOLTES, K., ROSAL, R & GARCÍA-CALVO, E. 2012. Toxicity of mixtures of perfluorooctane sulphonic acid with chlorinated hydrocarbons to benthic amphipod Grandidierella japonica. Ocean Sci. J. 40(2): 61-66. https://doi.org/10.1016/j.oceano.2011.08.006.

BOLTES, K., ROSAL, R & GARCÍA-CALVO, E. 2012. Toxicity of mixtures of perfluorooctane sulphonic acid with chlorinated hydrocarbons to benthic amphipod Grandidierella japonica. Ocean Sci. J. 40(2): 61-66. https://doi.org/10.1016/j.oceano.2011.08.006.

BOLTES, K., ROSAL, R & GARCÍA-CALVO, E. 2012. Toxicity of mixtures of perfluorooctane sulphonic acid with chlorinated hydrocarbons to benthic amphipod Grandidierella japonica. Ocean Sci. J. 40(2): 61-66. https://doi.org/10.1016/j.oceano.2011.08.006.

BOLTES, K., ROSAL, R & GARCÍA-CALVO, E. 2012. Toxicity of mixtures of perfluorooctane sulphonic acid with chlorinated hydrocarbons to benthic amphipod Grandidierella japonica. Ocean Sci. J. 40(2): 61-66. https://doi.org/10.1016/j.oceano.2011.08.006.

BOLTES, K., ROSAL, R & GARCÍA-CALVO, E. 2012. Toxicity of mixtures of perfluorooctane sulphonic acid with chlorinated hydrocarbons to benthic amphipod Grandidierella japonica. Ocean Sci. J. 40(2): 61-66. https://doi.org/10.1016/j.oceano.2011.08.006.

BOLTES, K., ROSAL, R & GARCÍA-CALVO, E. 2012. Toxicity of mixtures of perfluorooctane sulphonic acid with chlorinated hydrocarbons to benthic amphipod Grandidierella japonica. Ocean Sci. J. 40(2): 61-66. https://doi.org/10.1016/j.oceano.2011.08.006.

BOLTES, K., ROSAL, R & GARCÍA-CALVO, E. 2012. Toxicity of mixtures of perfluorooctane sulphonic acid with chlorinated hydrocarbons to benthic amphipod Grandidierella japonica. Ocean Sci. J. 40(2): 61-66. https://doi.org/10.1016/j.oceano.2011.08.006.

BOLTES, K., ROSAL, R & GARCÍA-CALVO, E. 2012. Toxicity of mixtures of perfluorooctane sulphonic acid with chlorinated hydrocarbons to benthic amphipod Grandidierella japonica. Ocean Sci. J. 40(2): 61-66. https://doi.org/10.1016/j.oceano.2011.08.006.

BOLTES, K., ROSAL, R & GARCÍA-CALVO, E. 2012. Toxicity of mixtures of perfluorooctane sulphonic acid with chlorinated hydrocarbons to benthic amphipod Grandidierella japonica. Ocean Sci. J. 40(2): 61-66. https://doi.org/10.1016/j.oceano.2011.08.006.

BOLTES, K., ROSAL, R & GARCÍA-CALVO, E. 2012. Toxicity of mixtures of perfluorooctane sulphonic acid with chlorinated hydrocarbons to benthic amphipod Grandidierella japonica. Ocean Sci. J. 40(2): 61-66. https://doi.org/10.1016/j.oceano.2011.08.006.
Inhibitory effects of ternary mixtures of sodium...