Essentially Small Quasi-Dedekind modules and Anti-hopfian modules

Mukdad Qaess Hussain
College of Education for pure science, Diyala University.

Mukdadqaess2016@yahoo.com

Angham Abbas Dahash
College of Imam AL-Kadhum, Iraq.

Darya Jabar AbdulKareem
College of Bilad Al Rafidain University.
darya_jabbar@yahoo.com

Abstract: In this paper we study the relationship between Essentially Small Quasi-Dedekind modules and anti-hopfian modules. Also, we give some examples which illustrate these relations.

Keywords: Essentially small Quasi-Dedekind modules, anti-hopfian modules.

1. Introduction

Let P be a ring with identity and let U be a unitary left module over P. In[1],we give the definition of Essentially Small Quasi-Dedekind and give some examples with basic properties. An P-module U is called Essentially Small Quasi-Dedekind (ESQD) if Hom(U/V,U) = 0 ∀ V ⊆ U. A ring P is ESQD if P is an ESQD P-module[1]. An P-module U is anti-hopfian if U is nonsimple and all nonzero factor modules of U are isomorphic to U; that is for all V ⊆ U, U/V ≅ U [2]. In this paper we study the relationship between ESQD with other modules such as anti-hopfian modules and continuous modules. Also, we give some examples which illustrate these relations.

Proposition 1 Assume U be an anti-hopfian P-module. Then S = Endp(U) is an ESQD ring.

Proof: Since U is an anti-hopfian P-module, thus, S = Endp(U) is an integral domain [2], so S = Endp(U) is an ESQD ring[1].

Remark 2 Every anti-hopfian module is not ESQD module.

Proof: Assume U be an anti-hopfian module, then for all V ⊆ U, U/V ≅ U. So Hom(U/V,U) ≅ Hom(U,U) ≠ 0. Hence every small submodule N of U is not small quasi-invertible. Therefore U is not ESQD module.

An P-module U has C1 property if, ∀ V ⊆ U , there exists K ≤ U with V ⊆ K. And an P-module U has C2 property if, for all V ≤ U and K ≤ U with V ≅ K , then K ≤ U . And an P-module U has C3 property if, for all V1, V2 ≤ U with V1 ∩ V2 = O , then V1 ⊕ V2 ≤ U . A module satisfying C1 property is called extending(CS), and a module satisfying C1 and C3 properties is called quasi-continuous(π-injective), and a module satisfying C1 and C3 is called continuous[3].

Proposition 3 If U is continuous, then Q/Δ is a (von Neumann) regular ring and Δ equal J, the Jacobson radical of Q.
Proof: Assume $\alpha \in \mathbb{Q}$ and assume W be a complement of $K = \text{Ker} \alpha$. By C_1, $W \leq U_2$. Since $\alpha |_{W}$ is a monomorphism, $\alpha W \leq U_2$. Hence $(\alpha - \alpha \beta \alpha)(K \otimes W) = (\alpha - \alpha \beta \alpha)W = 0$, and so $K \otimes W \leq \text{Ker}(\alpha - \alpha \beta \alpha)$. Since $K \otimes W \leq \text{U}_{e} \alpha - \alpha \beta \alpha \in \Delta$. Subsequently Q / Δ is a regular ring. This also proves that $J \leq \Delta$.

Assume that $a \in \Delta$. Since $\text{Ker} a \cap \text{Ker}(1 - a) = 0$ and $\text{Ker} a \leq \text{U}_e \alpha$, $\text{Ker}(1 - a) = 0$. Hence $(1 - a)U \leq \text{U}_2$ by C_2. However $(1 - a)U \leq \text{U}_e$, since $\text{Ker} a \leq (1 - a)U$. Then $(1 - a)U = U$, and therefore $1 - a$ is a unit in S. It then follows that $a \in J$ and hence $\Delta \leq J$. Thus, $\Delta = J$.

Recall that an P-module U is called small K-nonsingular if, for each $f \in \text{End}_P(U)$, $\text{Ker} f \leq \text{U}_e U$ implies $f = 0$.[1].

Proposition 4 If U is a small K-nonsingular and continuous module, then $\text{End}_P(U)$ is regular and right continuous and $J(\text{End}_P(U)) = 0$.

Proof: Since U is continuous hence by Prop.3, $J(Q) = \{\varphi | \text{Ker} \varphi \leq \text{U}_e U\}$ and $Q / J(Q)$ is Von Neumann regular and right continuous. By small K-nonsingularity, $J(Q) = 0$.

Now, we give the following definition

An P-module U is called small self-injective (small quasi-injective), if it is small U-injective.

Proposition 5 Let U be a continuous P-module. If U is an ESQD P-module, then $\text{End}_P(U)$ is regular and $J(\text{End}_P(U)) = 0$.

Proof: by Proposition 4.

Corollary 6 If U is a small quasi-injective and ESQD P-module, then $\text{End}_P(U)$ is regular and $J(\text{End}_P(U)) = 0$.

Proof: Since U is a small quasi-injective P-module, so U is a continuous P-module. Hence the result is obtained by prop.5.

An P-homomorphism $f : U \to V$ is called small homomorphism if $\text{Ker} f \leq \text{U}_e U[4]$.

Assume U and V be P-modules, V is called small U-injective, if for each P-small monomorphism $f : A \to U$ (where A is P-module) and for each P-homomorphism $r : A \to V$, \exists an P-homomorphism $k : U \to V$ such that $k \circ f = r$.

Theorem 7 Assume that A be a small quasi-injective right P-module, and set $Q = \text{End}_P(A)$ then $J(Q) = \{f \in Q | \text{Ker} f \leq \text{U}_e A\}$.

Proof: Set $K = \{f \in Q | \text{Ker} f \leq \text{U}_e A\}$, consider any $f, g \in K$. Since $(\text{Ker} f) \cap (\text{Ker} g) \leq \text{Ker}(f - g)$, we infer that $\text{Ker}(f - g) \leq \text{U}_e A$, whence $f - g \in K$. Given any $h \in Q$, we have $\text{Ker}(fh) = h^{-1}(\text{Ker} f) \leq \text{U}_e A$, whence $fh \in K$. Also, since $\text{Ker} f \leq \text{Ker}(fh)$, we see that $fh \in K$ as well. Therefore K is a two-sided ideal of Q.

2
Given any \(f \in K \), we have \(\ker f \ll_e A \) and \([\ker (1-f)] \cap [\ker f] = 0\); hence \(\ker (1-f) = 0\). Then \(1-f \) provides an isomorphism of \(A \) onto \((1-f)A\), and the inverse isomorphism \((1-f) : A \to A \) extends to a map \(g \in Q \) such that \(g(1-f) = 1\). Thus \(f \) is a left quasi-regular element of \(Q \).

Now \(K \) is a left quasi-regular ideal of \(Q \), and so \(K \subseteq \mathcal{J}(Q) \). Before showing that \(K = \mathcal{J}(Q) \), we first prove that \(Q/K \) is regular ring, from which \(K = \mathcal{J}(Q) \) follows easily. Thus consider any \(f \in Q \), and let \(B \) be a relative complement for \(\ker f \) in \(A \). Noting that \(f \) restricts to isomorphism \(f_B : B \to B \) to some \(g \in Q \). Now \((gf)\mid_B \) is the identity on \(B \); hence \((fgf-f)B = 0\), and consequently \(B \oplus (\ker f) \leq \ker (fgf-f) \). In as much as \(B \oplus (\ker f) \ll_e A \), we thus obtain \(fgf-f \in K \), whence \(f \) in \(Q/K \) is regular ring.

Now \(K \) and \(\mathcal{J}(Q/K) \) have zero radical, therefore \(\mathcal{J}(Q/K) = 0 \). On the other hand, since \(K \subseteq \mathcal{J}(Q) \) we have \(\mathcal{J}(Q/K) = \mathcal{J}(Q)/K \), whence \(\mathcal{J}(Q) = K \).

Theorem 8 Let \(U \) be a small quasi-injective \(P \)-module such that \(\mathcal{J}(\text{End}_P(U)) = 0 \). If \(D \) is an essential small \(P \)-submodule of \(U \) then \(D \) is a small quasi-invertible \(P \)-submodule of \(U \).

Proof: Suppose that \(D \) is an essential small \(P \)-submodule of \(U \) and \(f \in \text{Hom}(U/D, U) \), \(f \neq 0 \). Define \(g = f \circ \pi \), where \(\pi : U \to U/D \) is the natural homomorphism. It is clear that \(g \in \text{End}_P(U) \), \(g \neq 0 \) and \(D \subseteq \ker g \). Since \(D \) is essential small, then \(\ker g \) is essential small by Th. 7, \(g \in \mathcal{J}(\text{End}(U)) \) and hence \(g = 0 \). Then \(f = 0 \). This is a contradiction. Therefore \(\text{Hom}(U/D, U) = 0 \) and hence \(D \) is a small quasi-invertible \(P \)-submodule.

Proposition 9 Let \(U \) be a small quasi-injective \(P \)-module with \(\mathcal{J}(\text{End}_P(U)) = 0 \). Then \(U \) is an ESQD \(P \)-module.

Proof: Let \(A \ll_e U \). So by Th. 8, \(A \) is a small quasi-invertible submodule of \(U \). Thus \(U \) is an ESQD \(P \)-module.

Corollary 10 If \(U \) is a small quasi-injective \(P \)-module. Then \(U \) is an ESQD \(P \)-module if and only if \(\mathcal{J}(\text{End}_P(U)) = 0 \).

Proof: By Prop. 9 and Coro 6, we get the result.

Remark 11 Note that the condition \(\mathcal{J}(\text{End}_P(U)) = 0 \) is necessarily in prop. 9, for example: \(Z_4 \) as \(Z \)-module is small quasi-injective, but it is not ESQD. In fact \(\mathcal{J}(\text{End}_P(Z_4)) \cong Z_2 \neq 0 \).

Proposition 12 If \(U \) is a \(P \)-module such that \(\text{End}_P(U) \) is a regular ring, then \(U \) is an ESQD \(P \)-module.

Proof: Suppose that \(f \in \text{End}_P(U) \), \(f \neq 0 \). To prove that \(\ker f \ll_e U \). Since \(\text{End}_P(U) \) is a regular ring, implies that, there exists \(O \neq g \in \text{End}_P(U) \) such that \(f = f \circ g \circ f \) and so that \(g = (g \circ f)^2 \), and \(g \circ f \neq 0 \). Hence \(g \circ f \) is an idempotent element in \(\text{End}_P(U) \), then \(U = \ker(g \circ f) \oplus \text{Im}(g \circ f) \), that is \(\ker(g \circ f) \leq \mathcal{J}(U) \), so \(\ker(g \circ f) \ll_e M \), because \(\text{Im}(g \circ f) \neq 0 \) and \(\ker(g \circ f) \cap \text{Im}(g \circ f) = 0 \). But \(\ker g \subseteq \ker(g \circ f) \), implies \(\ker f \ll_e U \). Thus \(U \) is an ESQD \(P \)-module.

Corollary 13 Assume that \(U \) be a small quasi-injective \(P \)-module. Thus \(U \) is an ESQD \(P \)-module if and only if \(\text{End}_P(U) \) is a regular ring.
Proof: It follows by Coro 6 and Prop 12.

Corollary 14 Let U be a multiplication P-module. If each cyclic submodule of U is injective, then U is an ESQD P-module.

Proof: Since U is a multiplication P-module with any cyclic submodule of U is injective, then by[5], $\text{End}_{P}(U)$ is a regular ring. Thus by Prop 12, U is an ESQD P-module.

The converse of Prop.12 is not true in general, consider the following example.

Example 15 It is well-known that Z as a Z-module is ESQD, but $\text{End}_Z(Z) \cong Z$ which is not a regular ring.

Proposition 16 Let U an P-module, and let $S = \text{End}_{P}(U)$. If U is an ESQD and quasi-continuous module, then S_{5} satisfies C_{3}. Conversely, if S_{5} has C_{3}, then U has C_{3}, for an arbitrary module U.

Proof: Since U is ESQD, so $\Delta = \{ \phi \in S : \text{Ker} \phi \ll_{e} U \} = 0$, where $S = \text{End}_{P}(U)$, and by[3], S_{5} has C_{3}.

To prove the converse. Assume $U_{1}, U_{2} \leq \oplus U$ with $U_{1} \cap U_{2} = 0$, implies $U = U_{1} \oplus K_{1}$, $U = U_{2} \oplus K_{2}$ for some $K_{1}, K_{2} \leq U$. Consider the following: $U \xrightarrow{\alpha} U_{1} \xrightarrow{\beta} U$ and $U \xrightarrow{i_{1}} U_{2} \xrightarrow{i_{2}} U$, where ρ_{1}, ρ_{2} are the natural projection mappings, and i_{1}, i_{2} are the inclusion mappings. Then $i_{1} \rho_{1} \in S = \text{End}_{P}(U)$, $i_{2} \rho_{2} \in S = \text{End}_{P}(U)$. So $i_{1} \rho_{1} = (i_{1} \rho_{1})^{2}$, then $i_{1} \rho_{1}$ is an idempotent element in S_{5}, thus $\rho \subseteq \rho \leq \rho S, \rho \subseteq \rho, \rho \subseteq \rho S, \rho \subseteq \rho$. But $(i_{1} \rho_{1})S \cap (i_{2} \rho_{2})S = 0$, because if, there exists $g \in (i_{1} \rho_{1})S$, $g \in (i_{2} \rho_{2})S$ such $g = (i_{1} \rho_{1})f_{1}$ and $g = (i_{2} \rho_{2})f_{2}$ for some $f_{1}, f_{2} \subseteq S$.

Hence $g(u) = (i_{1} \rho_{1})f_{1}(u) = (i_{1} \rho_{1})(u_{1} + k_{1}) = u_{1}$ and $g(u) = (i_{2} \rho_{2})f_{2}(u) = (i_{2} \rho_{2})(u_{2} + k_{2}) = u_{2}$, then $g(u) = u_{1} = u_{2}$, so $g(u) = U_{1} \cap U_{2} = 0$, thus $g = 0$. But S_{5} satisfies C_{3}, we get $(i_{1} \rho_{1})S \oplus (i_{2} \rho_{2})S \leq \rho S$. Thus $[(i_{1} \rho_{1})S \oplus (i_{2} \rho_{2})S] \oplus B = S$, for some $B \leq S$. Since $I \subseteq S$ (where $I = \text{identity map on } U$), therefore $I = [(i_{1} \rho_{1})g_{1} + (i_{2} \rho_{2})g_{2}] + \psi$, where $\psi \in B$, $g_{1}, g_{2} \subseteq S$.

Thus: $U = I(U) \equiv [(i_{1} \rho_{1})g_{1}(U) + (i_{2} \rho_{2})g_{2}(U)] + \psi(U) \equiv [(i_{1} \rho_{1})(U) + (i_{2} \rho_{2})(U)] + \psi(U) = (U \oplus U_{2}) \oplus \psi(U)$. Hence $U \oplus U_{2} \leq \oplus U$. Therefore U has C_{3}.

An P-module U is called to have (strong) summand intersection property (SSIP), if for an (infinite) finite index set I and $\forall (U_{i})_{i \in I}$ with $U_{i} \leq U$, $i \in I$, then $\bigcap_{i \in I} U_{i} \leq \oplus U$.

And a module U has the summand sum property (SSP), if $\forall V, K \leq \oplus U$, then $V + K \leq \oplus U$ [6].
The left annihilator of $V \subseteq U$ in $S = \operatorname{End}_{P}(U)$ (i.e. all elements $\phi \in S$ such that $\phi V = 0$) is denoted by $L_{0}(V)$, the right annihilator of $T \subseteq S$ in U (i.e. all elements $u \in U$ such that $Tu = 0$) is denoted by $r_{0}(T)$.[7]

Recall that an P-module U is Baer if, for all $V \subseteq U$, $L_{0}(V) = \{e\}$, with $e^{2} = e \in S = \operatorname{End}_{P}(U)$. Equivalently, U is Baer if, for all ideal $I \subset S$, $r_{0}(I) = eU$ with $e^{2} = e \in S = \operatorname{End}_{P}(U)$.[7]

Proposition 17 An ESQD and quasi-continuous P-module U has SSIP and SSP.

Proof: Since U has C_1 property; that is U is an extending P-module. But U be an essentially small quasi-Dedekind extending P-module, implies U is a Baer P-module, by[7]. So by[6], U has SSIP. Now, Assume $U_{1}, U_{2} \leq_{P} U$. Thus by SSIP, $U_{1} \cap U_{2} \leq_{P} U$. Let $H = U_{1} \cap U_{2}$, implies there exists $K \subseteq U$ such that $H \oplus K = U$. But $U_{1} \leq_{P} U$, implies $U_{1} \oplus A = U$, for some $A \subseteq U$. So, $H \oplus K = U = U_{1} \oplus A$. Similarly, $U_{2} \leq_{P} U$, so $U_{2} \oplus H = U$, for some $H \subseteq U$. We claim that $H \oplus (K \cap U_{1}) = U_{1}$...(1), $H \oplus (K \cap U_{2}) = U_{2}$...(2). To prove (1). Since $H \oplus (K \cap U_{1}) = (U_{1} \cap U_{2}) \oplus (K \cap U_{1}) \subseteq U_{1}$. Conversely, let $x \in U_{1}$, therefore $x = x + 0 \in U_{1} \oplus A = U = H \oplus K$, then $x = a + b$, where $a \in H = (U_{1} \cap U_{2})$ and $b \in K$, implies $b = x - a \in K \cap U_{1}$, thus $x = a + b \in H \oplus (K \cap U_{1})$, similarly we can get(2). Assume that $W_{1} = K \cap U_{1}$, $W_{2} = K \cap U_{2}$, $U_{1} + U_{2} = (H \oplus W_{1}) + (H \oplus W_{2}) = (U \oplus W_{1}) \oplus W_{2}$, thus $U_{1} + U_{2} = (H \oplus W_{1}) \oplus W_{2}$, but $H \oplus W_{1} = U_{1} \leq_{P} U$, also $W_{2} \leq_{P} U$, (since $H \oplus W_{2} = U_{2}$ and $U_{2} \oplus B = U$, therefore $H \oplus W_{2} \oplus B = U_{2} \oplus B = U$, then $W_{2} \leq_{P} U$). Now, to prove $(H \oplus W_{1}) \cap W_{2} = 0$. Let $x \in (H \oplus W_{1})$ and $x \in W_{2} = K \cap U_{2}$, hence $x = h + w_{1}$, $x \in K$, $x \in U_{2}$, therefore $w_{1} \in W_{1} = K \cap U_{1}$, so $w_{1} \in U_{1}$, also $h \in H = U_{1} \cap U_{2}$, so $h \in U_{1}$ and $h \in U_{2}$, thus $x = h + w_{1} \in U_{1}$, but $x \in U_{2}$, thus $x \in U_{1} \cap U_{2} = H$, but $x \in K$, thus $x \in K \cap H = 0$. Therefore by property C_{3}, $(H \oplus W_{1}) \oplus W_{2} \leq_{P} U$ and therefore $U_{1} + U_{2} \leq_{P} U$. So U has SSP.

Reference

[1] Mukdad Qaess Hussain, Marrwa Abdallah Salih "Essentially Small Quasi-Dedekind modules", 23 scientific conference of the college of Education, Al-mustansiriya university, 2017, p. 356-361.

[2] Hirao Y., Mogami I., "On restricted anti-hopfian Modules ", Math J. Okayama University, 28 (1986), p. 119 - 131.
[3] Mohamed S. H., Muller B. J., "Continuous and discrete Modules", London Math. Soc., LNC, 147 Cambridge univ. press, Cambridge, 1990.

[4] Kasch F., "Modules and rings", Academic press, London, 1982.

[5] Naoum A. G., "Regular multiplication Modules", Periodica Math., Hungarica, Vol. 31(2), 1995, p. 155 – 162.

[6] Rizvi S.T., Roman C.S., "On K- nonsingular Modules and applications", Comm. In Algebra, 35 (2007), p. 2960 – 2982.

[7] Roman C. S., "Baer and Quasi-Baer Modules", Ph. D. Thesis, M.S., Graduate, School of Ohio, State University, 2004.