Genomic and transcriptional changes in response to pinene tolerance and overproduction in evolved *Escherichia coli*

Fu-Xing Niu, Yuan-Bin Huang, Liang-Nian Ji, Jian-Zhong Liu

Institute of Synthetic Biology, MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China

Abstract

α-Pinene is an important monoterpene, which is widely used as a flavoring agent and in fragrances, pharmaceuticals and biofuels. Although an evolved strain *Escherichia coli* YZFP, which had higher tolerance to pinene and titer, has been successfully used to produce high levels of pinene, the pinene titer is much lower than that of hemiterpene (isoprene) and sesquiterpene (farnesene) to date. Moreover, the overall cellular physiological and metabolic changes caused by higher tolerance to pinene and overproduction of pinene remains unclear. To reveal the mechanism of *Escherichia coli* YZFP with the higher tolerance to pinene and titer, a comparative genomics and transcriptional level analyses combining with CRISPR activation (CRISPRa) and interference (CRISPRi) were carried out. The results show that the tolerance to pinene and the overproduction of pinene in *E. coli* may be associated with: 1) the mutations of the DXP pathway genes, the rpoA and some membrane protein genes, and their upregulations of transcription levels; and 2) the mutations of some genes and their down-regulation of transcriptional levels. These comparative omics analyses provided some genetic modification strategies to further improve pinene production. Overexpression of the mutated chpA, tabA, pitA, rpoA, sufBCDS, mutS, ispH, oppD, dusB, dnaK, dds, ddx and fglFGH genes further improved pinene production. This study also demonstrated that combining comparative omics analysis with CRISPRa and CRISPRi is an efficient technology to quickly find a new metabolic engineering strategy.

1. Introduction

α-Pinene is a natural and active monoterpene, which is widely used as flavoring agents [1], chemicals [2] and pharmaceuticals [3], especially as a good candidate for jet fuel replacement. As a result, the biotechnological production of pinene has received increasing attention. Yang et al. first engineered an *E. coli* to produce 5.4 mg/L pinene by the coexpression of a heterologous mevalonate (MEV) pathway and α-pinene synthase (Pt30) from *Pinus taeda* [4]. Then, the combinatorial expression of *Abies grandis* geranyl diphosphate synthase (GPPS)-pinene synthase (PS) fusion proteins further enhanced pinene production to 32 mg/L in *E. coli* [5]. The directed evolution of α-pinene synthase (Pt1) from *P. taeda* resulted in α-pinene production to 140 mg/L in *E. coli* [6]. Dunlop et al. reported that *E. coli* cannot grow in the presence of 0.5% [7]. To avoid high toxicity of pinene on the growth of *E. coli* and biosynthesis of pinene, we first improved pinene tolerance to 2.0% and pinene production to 9.9 mg/L from 5.6 mg/L through adaptive laboratory evolution after atmospheric and room temperature plasma (ARTP) mutagenesis and overexpression of the efflux pump to obtain the pinene tolerant strain *Escherichia coli* YZFP [8]. Then, we applied a combinatorial strategy of enzymatic directed evolution and modular co-culture engineering to further increase pinene production to 166.5 mg/L [8]. In addition, *Corynebacterium glutamicum* has also been successfully used as host for pinene biosynthesis. Coexpression of native 1-deoxy-d-xylulose-5-phosphate synthase (Dxs), isopentenyl diphosphate isomerase (Idi), *P. taeda* PS and *A. grandis* GPPS in *C. glutamicum* yielded pinene of 27 μg/g cell dry weight [9]. Although some progress has been made in pinene biosynthesis, the production level of pinene is much lower than that of hemiterpene (isoprene) (gram level) [8,10]. Thus, further work is required to increase the production of pinene.

In this study, we combined comparative genomics and transcriptional level analysis with CRISPR activation (CRISPRa) and interference (CRISPRi) to investigate the mechanism of *E. coli* YZFP with higher
tolerance to pinene and overproduction. Based on these results, over-expression of the mutants further improved pinene production.

2. Materials and methods

2.1. Strains, plasmids and primers

The bacterial strains and plasmids used in this study are listed in Table 1. The primers used in this study are listed in Supplementary Table 1.

2.2. Whole genome resequencing and data analyses

Genomic DNA from *E. coli* YZFP strain was extracted using TIANamp Bacterial DNA Kit (Tiangen Biotech Co., Beijing, China) according to the manufacturer's instructions. Genomic library construction of *E. coli* MG1655 using the BWA software (version 0.7.12). Potential mutations including point mutation and insertion/deletions were identified using the Samtools software (version 1.1) and GATK module (Unified Genotyper).

2.3. Transcriptional level analysis

The total RNA from *E. coli* cells grown for 30 h in shake flasks was isolated using an RNA extraction kit (Dongsheng Biotech, Guangzhou, China), following the manufacturer's instructions. RNase-free gDNAse (Dongsheng Biotech, Guangzhou, China) was treated during the isolation procedure to eliminate possible DNA contamination. Absence of DNA was verified by control PCR reactions using the RNA as a template. RNA concentration was quantified using a NanoDrop ND-1000 spectrophotometer (Thermo Scientific). Only the RNA samples with 260/280 ratio (an indication of protein contamination) greater than 1.8 and 260/230 ratio (an indication of reagent contamination) greater than 2.0 were used for the analysis. The first-strand cDNA was synthesized using an All-in-OneTM First-Strand cDNA Synthesis kit (GeneCopoeia, Guangzhou, China). Quantitative real-time PCR (qRT-PCR) was performed with the All-in-OneTM qPCR Mix kit (GeneCopoeia) by an iCycler IQ5 Real Time PCR system (Bio-Rad Laboratories, California, USA). The template was 100 ng of cDNA. The PCR conditions were as follows: 95°C for 10 min, followed by 45 cycles of denaturation at 95°C for 10 s, annealing at 60°C for 20 s, and extension at 72°C for 15 s. The primers for qRT-PCR were presented in Supplementary Table 1. All qRT-PCR quantifications were performed simultaneously with PCR amplification standard and no-template (water) controls. The expression levels were analyzed by the 2-ΔΔCt method described by Livak and Schmittgen [16] and normalized by *cysG* gene expression. Finally, the ratio of the transcriptional level of the evolved *E. coli* YZFP strain and original *E. coli* BW25113 (P75-dxs) strain of > 1.2 or < 0.8 (*P* < 0.05, Student’s t-test) was considered significant differential expression. Three biological replicates for each sample were used for qRT-PCR analysis and three technical replicates were analyzed for each biological replicate.

2.4. CRISPRa and CRISPRi of the mutant genes

Dong et al. developed a CRISPR-Cas system based on the actor SoxS with simultaneous activation and repression [17]. We applied this CRISPR-Cas SoxS system [17] for activating and repressing target genes in *E. coli* BW25113 (P75-dxs). To enhance specificity and reduce off-target effects, *dcas9*+ (K848A/K1003A/R1060A) was amplified from pCRIS-PathBrick* with primers dcas9+/- and then cloned into the ApaI/Xhol sites of pBB2K-GFP* to generate pBB2K-dCas9+. The pTargetA-MCPSoxS fragment was synthesized by GENWIZ (Shuzhou, China) and ligated into pUC57 to obtain pUC57-MCPSoxS. This fragment was cut from pUC57-MCPSoxS with BamHI/Xhol, and then cloned into BglII/Xhol-digested pBB2K-dCas9* to obtain pBB2K-dCas9*-MCPSoxS (Supplementary Fig. 1A).

Scaffold RNA (scRNA) expressing vector pTargetA was derived from pTargetB [8]. Pori-scRNA fragment was synthesized by GENWIZ (Shuzhou, China) and ligated into pUC57 to obtain pUC57-RMS. This fragment was cut from pUC57-RMS with NdeI/EcoRI, and then cloned into NdeI/EcoRI-digested pTargetB to obtain pTargetA.

The pTargetA-X series used in target single-gene activation or repression with a targeting N20 sequence of gene loci of interest, was designed to target at the non-template strand at the N20 sequence of gene loci of interest, was designed to target at the 5' end (about 100 bp downstream of ATG) of the gene on the non-template DNA strand. Because the scRNA fragment was flanked with BamHI and BglII, the scRNA expressing vector pTargetA-

Table 1

Name	Description	Sources
Strain	*E. coli* DH5α	Invitrogen [11]
E. coli BW25113 (P75-dxs)		[8]
E. coli YZFP		[6]
Strains and plasmids used in this study.		
pMEVIGPS	pbhA5C-MSAsAc-T14-MB0(0-T1002-tgfPPSS19186,tfn1781) coding for MET pathway enzymes to produce PinC from gltE in *E. coli*, p1FA ori, PinvUVV promoter, Cm'	[8]
pU57-RMS	pUC57 harboring Pinv promoter and scRNA sequences	This study
pCRISPathBrick*	Expressing dCas9(K848A/K1003A/R1060A), p15A ori, Cm'	[12,13]
pBB3K-GFP	Addgene plasmid #35345, Pinv promoter, Kan', PBBR1 ori	[1-4]
pHBB2K-GFP*	pbhB2K-GFP harboring Xhol endonuclease site after tet promoter	This study
pHBB2K-dCas9*	pbhB2K containing the dcas9 (K848A/K1003A/R1060A)	This study
pUC57-MCPSoxS	pUC57 harboring the fusion gene of the codon-optimized MCP and SoxS with a (GGGS) linker, Pinv, Promoter	This study
pBB2K-dCas9*-MCPSoxS	pbhB2K-dCas9* containing the MCPSoxS sequences	This study
pTargetB	E. coli scRNA expression vector, BglII vector, pMB1, Spe', scRNA	This study
pTargetA	E. coli scRNA expression vector, BglII vector, Pinv promoter, Spe', pMB1 ori	This study
pZEABP	Constitue expression vector, pBR322 ori, P37 promoter, Amp'	[15]
Name	Description	Sources
Strain	*E. coli* DH5α	Invitrogen [11]
E. coli BW25113 (P75-dxs)		[8]
E. coli YZFP		[6]
XY for multiple genes was constructed from pTargetA-X and pTargetA-Y by using the standard BglBrick assemble approach [14]. To investigate the effect of the activation and repression on growth, pBbB2K-dCas9*-MCPSoxS and pTargetA-X were co-transferred into E. coli BW25113(PT5-dxs). A single colony was grown in 5 mL LB medium in a falcon tube at 37 °C overnight. The overnight cultures were inoculated into 50 mL of LB medium supplement with 0.5% pinene and 200 nM anhydrous tetracycline with a starting OD600 of 0.09. The cultures were incubated at 37 °C (200 rpm) for 12 h. The strain harboring the empty vector pTargetA, E. coli BW25113(PT5-dxs) (pBbB2K-dCas9*-MCPSoxS, pTargetA), was set as the control.

To investigate the effect of the activation and repression on pinene production, pBbB2K-dCas9*-MCPSoxS, pTargetA-X and pMEVIGPS were co-transferred into E. coli BW25113(PT5-dxs) and then analyzed the production of pinene in shake flasks. The strain harboring the empty vector pTargetA, E. coli BW25113(PT5-dxs) (pBbB2K-dCas9*-MCPSoxS, pTargetA, pMEVIGPS) was set as the control.

2.5. Pinene production in shake flasks

A single colony was inoculated into 5 mL of LB medium in a falcon tube, which was cultured overnight at 37 °C and 200 rpm. The overnight seed culture was then inoculated into 50 mL of SBMSN medium with a starting OD600 of 0.1. SBMSN medium (pH 7.0) containing the following (g/L): sucrose 20, peptone 12, yeast extract 24, KH2PO4 1.7, K2HPO4 211.42, MgCl2·6H2O 1, ammonium oxalate 1.42, and Tween-80 2 mL. The main cultures were then incubated at 37 °C and 200 rpm until an OD600 of 0.8 was reached. Then, the cultures were induced with 1 mM IPTG and 200 nM anhydrous tetracycline, and overlaid with 20% dodecane to trap pinene. After induction, the cultures were incubated at 30 °C and 130 rpm for 72 h.

2.6. Whole-cell biocatalysis for pinene production

Genes were amplified from E. coli YZFP genomes using the responding primers (Supplementary Table 1) and cloned into pZEAB-gene series plasmids. E. coli PINE harboring the target plasmid pZEA-gene and E. coli MEVI harboring the pZEBAP were used for whole-cell biocatalysis. They were separately inoculated into 5 mL of SBMSN medium in a falcon tube, which was cultured overnight at 37 °C. The overnight cultures were then inoculated into 50 mL SBMSN medium with a starting OD600 of 0.1. The cultures were incubated at 20 °C for 16 h. The E. coli PINE culture was mixed with E. coli MEVI culture at the inoculation ration of 2:1. The mixed cells were harvested by centrifugation (6000 × g at 4 °C) and washed twice with cooled phosphate buffer. Finally, the above cells were resuspended in 10 mL of phosphate buffer (0.1 M, pH 7.0) containing 20 g/L of sucrose, 10 mM MgCl2 and 5 mM MnCl2 to form the cell suspension (OD600 = 30). The reaction mixture was overlaid with 20% dodecane. The catalysis was performed for 28 h at 30 °C and 130 rpm.

For inverse engineering using CRISPRi, E. coli PINE (pBbB2K-dCas9*-MCPSoxS, pTargetA-X) and E. coli MEVI (pBbB2K-GFP, pTargetA) were used for whole-cell biocatalysis as the above-mentioned process.

2.7. GC analysis

Pinene concentration in the dodecane layer was assayed as previously reported [8]. Take the dodecane layer and dilute it in ethylacetate spiked with the internal standard limonene. The samples were analyzed by GC-FID by using a standard curve of α-pinene (Sigma Aldrich). The GC-FID (Techcomp GC7900, Techcomp Ltd, China) was used with a TM-5 column (30 m × 0.32 mm × 0.50 μm). The inlet temperature was set to 300 °C, with a flow at 1 mL/min, oven at 50 °C for 30 s, ramp at 4 °C/min to 70 °C, and ramp at 25 °C/min to 240 °C.

2.8. Statistical analysis

All experiments were conducted in triplicate, and data were averaged and presented as the means ± standard deviation. One-way analysis of variance followed by Tukey’s test was used to determine significant differences using the OriginPro (version 9.0) package. Statistical significance was defined as p < 0.05.

Table 2

Type	Amounts of mutant	Amounts of gene
Synonymous SNV	93	84
Nonsynonymous SNV	184	175
Stop gaining SNV	11	11
Intergenic SNV	2	
Upstream SNV	14	
Downstream SNV	15	
Upstream and Downstream SNV	29	
Total	349	270
InDel	25	

* Mapped reads ratio of 99.79%, covered bases of 4612119 bp, unique read ratio of 97.77%, genome coverage of 99.36%, mean depth of 399X. The SNVs and InDels were identified with a frequency of 1.0.

Fig. 1. Pathway gene ontology enrichment analysis of the nonsynonymous mutant genes.
3. Results and discussion

3.1. Whole genome resequencing

In our previous study [8], we obtained an evolved strain *E. coli* YZFP, which showed a higher tolerance to pinene and titer. To investigate the relationship between the genotype and the phenotype of *E. coli* YZFP, the whole genome of *E. coli* YZFP was re-sequenced using a 2×150 paired-end (PE) configuration. The genome sequencing generated 13548860 clean reads and achieved a mean depth of 399× and the mapped reads ratio of 99.79% (Table 2). After alignment to the genome sequence of *E. coli* MG1655, a genome coverage of 99.36% with covered bases of 4612119 bp was obtained. A total of 349 single nucleotide variants (SNV) and 25 insertion/deletion (InDel) were identified. Of SNVs, 184 nonsynonymous mutations distributed among 175 mutated genes (Table 2 and Supplementary Table 2). These nonsynonymous mutant genes were mainly involved in the membrane protein transport processing (49 genes), the carbohydrate metabolism (26 genes), the stress response (11 genes), the amino acid metabolism (10 genes), the human diseases (7 genes), the nucleotide metabolism (6 genes), the biosynthesis of other secondary metabolism (5 genes), the lipid metabolism (4 genes), the metabolism of terpenoids and polyketides (4 genes), the glycan biosynthesis and metabolism (3 genes), the energy metabolism (3 genes), and the xenobiotics biodegradation and metabolism (2 genes) (Fig. 1).

3.2. Comparative transcriptional level analysis of the mutant genes

Although comparative transcriptome analysis can provide more information, it is difficult to confirm that transcriptome changes are caused by gene mutations. Thus, we only analyzed the changes in transcriptional levels of the mutant genes. To investigate whether gene mutations caused changes in transcriptional levels in *E. coli* YZFP, the transcriptional levels of the nonsynonymous mutant genes (174 genes) and genes observed SNV in the upstream (8 genes) were determined using qRT-PCR and were compared with those in *E. coli* BW25113(PT5-dxs). A total of 116 genes showed significantly different expression patterns. Of them, 96 genes were up-regulated and 20 genes were down-regulated in *E. coli* YZFP compared to *E. coli* BW25113(PT5-dxs) (Fig. 2).

3.3. Functional confirmation of the mutant genes

Dong et al. developed a CRISPR-Cas system based on the actor SoxS with simultaneous activation and repression [17]. Using this CRISPR-Cas-SoxS system, we can program control over multiple genes with simultaneous activation and repression. Thus, we first constructed a dCas9* and SoxS expressing plasmid pBbB2K-dCas9*-MCPSoxS and scRNA expressing vector pTargetA (Supplementary Fig. 1A). Then, we characterized the functions of the CRISPR-Cas-SoxS system. We constructed the scRNA plasmid for CRISPRa and CRISPRi to mCherry, respectively. When N20 sequence was designed to target the P37 promoter or the CDS of mCherry, mCherry was repressed (Supplementary Fig. 1B). When N20 sequence was designed to target the upstream of the P37 promoter, mCherry was activated (Supplementary Fig. 1C). These results demonstrate that the CRISPR-Cas-SoxS system can function with activation and repression.

Thus, we applied this CRISPR-Cas-SoxS system [17] for activating and repressing target genes in *E. coli* BW25113(PT5-dxs) to investigate their effects on growth and pinene production. Of 96 up-regulated genes, a total of 57 up-regulated genes with higher transcription level compared to *E. coli* BW25113(PT5-dxs) was selected to be activated with CRISPRa. pBB2K-dCas9*-MCPSoxS and pTargetA-X were co-transferred into *E. coli* BW25113(PT5-dxs). The growth and pinene production
were analyzed and compared to the control strain harboring the empty vector pTargetA. The results are presented in Table 3 and Supplementary Table 3. The activations of 23 genes resulted in increases both in tolerance to pinene and pinene production (Table 3). The activations of 9 genes only improved pinene production. The activations of 20 genes only enhanced the tolerance to pinene.

As shown in Table 3, the activations of dxr, dxx, ispH and ispU improved the production of pinene. The dxr, dxx, ispH and ispU is involved in 1-deoxy-o-xylulose-5-phosphate (DXP) pathway. These activations may increase the availability of pinene precursor isopentenyl diposphosphate (IPP), enhancing the production of pinene. The activation of ispH improved the tolerance to pinene and the production of pinene (Table 3). The ispH gene encodes 4-hydroxy-3-methylbut-2-enyl diphosphate reductase which catalyzes the formation of IPP. Li et al. reported that the activation of ispH eliminated the accumulation of the intermediate of 1-hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate of DXP pathway, improving the production of carotene [18]. It was reported that the mutations of DxsE289G/N455I/E598V and DxrK37N/K217N resulted in a 60% increase in the production of isoprene in E. coli BW25113(PT5-dxs).

Table 3

Gene	Protein	Ratio of growth	Ratio of pinene concentration
Carbohydrate metabolism			
yulA	1-xylulose 5-phosphate 3-epimerase	1.24 ± 0.01	1.06 ± 0.02
Metabolism of terpenoids and polyketides			
ispI	4-hydroxy-3-methylbut-2-enyl diphosphate reductase, 4Fe-4S protein	1.07 ± 0.01	1.19 ± 0.01
dxr	1-deoxy-o-xylulose 5-phosphate reductoisomerase	–	1.34 ± 0.02
ispU	1-deoxy-o-xylulose-5-phosphate synthase, thiamine triphosphate-binding, FAD-requiring	–	1.39 ± 0.02
Genetic Information Processing			
ptaA	RNA polymerase, alpha subunit	1.50 ± 0.01	1.09 ± 0.01
dxsB	oxygen sensor, c-di-GMP phosphodiesterase	1.56 ± 0.02	1.07 ± 0.01
mfsA	methyl-directed mismatch repair protein	1.10 ± 0.01	1.29 ± 0.01
cpxA	DnaK co-chaperone; curled DNA-binding protein/unccharacteized protein	1.30 ± 0.01	1.04 ± 0.01
ptaB	methytransferase for 505 ribosomal subunit protein.L11/trna-dihydrouridine synthase	1.46 ± 0.02	1.23 ± 0.01
Membrane protein transport			
psA	glutathione ABC transporter ATPase	1.09 ± 0.01	1.05 ± 0.01
nlpA	cytoplasmic membrane lipoprotein-28	1.64 ± 0.02	1.03 ± 0.02
suFBCDS	SuFBCD Fe-S cluster assembly protein	1.48 ± 0.02	1.32 ± 0.01
oppB	OPG periplasmic biosynthetic phosphoglycerol transferases I	1.10 ± 0.01	1.06 ± 0.01
setC	putative arabinose efflux transporter	1.14 ± 0.02	1.10 ± 0.01
oppF	oligopeptide ABC transporter ATPase	1.14 ± 0.01	1.13 ± 0.01
ypyK	CP4-57 prophage; putative inner membrane protein	1.16 ± 0.01	1.10 ± 0.02
bniB	vitamin B12/cobalamin outer membrane transporter	1.10 ± 0.01	1.11 ± 0.01
pihA	phosphate transporter, low-affinity; tellurine importer	1.15 ± 0.01	1.17 ± 0.01
ctaA	copper/silver efflux system, membrane component	1.15 ± 0.01	1.05 ± 0.01

Table 4

Gene	Protein	Ratio of growth	Ratio of pinene concentration
General			
yehA	putative fimbrial-like adhesin protein	1.48 ± 0.03	1.24 ± 0.02
mceD	protein that enables flagellar motor rotation	1.17 ± 0.02	1.16 ± 0.01
gyrGH	flagellar protein	1.56 ± 0.03	1.41 ± 0.01
yplA	adhesin-like autotransporter	1.12 ± 0.02	1.07 ± 0.01
tabA	transcriptional repressor for divergent bdcA/biofilm modulator regulated by toxins; DUF386 family protein, cupin superfamily protein	1.05 ± 0.01	1.05 ± 0.01
Stress response			
hulB	molecular chaperone and ATPase component of HslUV protease	1.53 ± 0.03	1.29 ± 0.02
fflF–fluF–fuelA–hulB		3.55 ± 0.03	1.71 ± 0.02

a The ratio of OD600, with CRISPRa and without.

b The ratio of pinene concentration with CRISPRa and without. #: means no change or negative effect.

Table 4

Gene	Protein	Ratio of growth	Ratio of pinene concentration
Lipid metabolism			
ydJ	putative FAD-linked oxidoreductase	1.07 ± 0.01	1.06 ± 0.02
Metabolism of cofactors and vitamins			
ybQ	thiamine phosphate synthase	1.08 ± 0.02	1.08 ± 0.02
Genetic Information Processing			
pykK	propionate catabolism operon regulatory protein	1.06 ± 0.01	1.07 ± 0.01
marK	transcripronal repressor of multiple antibiotic resistance	1.22 ± 0.02	1.09 ± 0.01
fabB	transcripronal repressor of fabA and fabB	1.09 ± 0.01	1.07 ± 0.02
Cellular Processes			
cedA	cell division modulator/catalase HPIL, heme d-containing	1.07 ± 0.01	1.07 ± 0.02
ydJ–yjbQ–prpR–marK–fabB–cedA		1.26 ± 0.02	1.13 ± 0.02

a The ratio of OD600, with CRISPRi and without.

b The ratio of pinene production with CRISPRi and without. #: means no change or negative effect.
production were analyzed. The results are presented in Table 4 and Supplementary Table 4. Repressions of 6 genes led to increases both in tolerance to pinene and pinene production. The reasons for the increased tolerance to pinene and pinene production may be associated with: 1) the mutations of the DXP pathway genes, 2) the production of pinene titer. The ultimate goal of systems metabolic engineering is to further improve the production of metabolite. The above results show that the activations of 26 up-regulated mutant genes improved the tolerance to pinene and pinene production. Thus, these genes were amplified from E. coli YZFP and then individually cloned into plasmid pZEABP to obtain pZEABP-gene. These plasmids were individually introduced into E. coli PINE. These strains E. coli PINE (pZEABP-gene) were individually co-cultured with E. coli MEVI (pZEABP) with whole-cell biocatalysis.

As shown in Fig. 3A, overexpression of the mutated cbpA, tabA, pitA, rpoA, sufBCDS, mutS, ispH, oppF, dusB, dnaK, dxs, dxr and fbgFGH increased the production of pinene by 7%, 9%, 9%, 10%, 10%, 11%, 12%, 15%, 17%, 26%, 28% and 31%, respectively. Except for ispH, dxs and dxr, other genes cannot be identified by general rational analysis. Some target genes difficulty found by rational analysis were identified. Table 4 shows that the repressions of 6 down-regulated mutant genes improved the tolerance to pinene and pinene production. Thus, we also assayed whether these repressions can improve the production of pinene in the modular co-culture system of the whole-cell biocatalysis. It can be seen from Fig. 3B that these repressions in the strain tolerant to pinene did not further improve the production of pinene.

In this study, the plasmid system was used for gene expression. However, the plasmid expression system has the drawbacks of genetic instability and antibiotics pollution problem. How about chromosome expression? In addition, the simultaneous activation of the multiple genes improved the production of pinene in E. coli BW25113(PrSp-dxs) (Table 3). Are there synergies effects between these genes in the modular co-culture system of the whole-cell biocatalysis? All these should be needed further to investigate.

4. Conclusions

In this study, we combined comparative genomics and transcriptional level analysis with CRISPRa and CRISPRi to investigate the regulation mechanism of E. coli YZFP with higher tolerance to pinene and pinene titer. The reasons for the increased tolerance to pinene and pinene production may be associated with: 1) the mutations of the DXP pathway genes (dxr, dxs, ispH and ispU), the rpoA and some membrane protein genes (gsiA, nlpA, sufBCDS, oppB, setC, oppF, yejK, bnuB, pitA and cusA), and their upregulation of transcription levels; and 2) the
mutations of some genes (ydiJ, yjbQ, prpR, marR, fabR and cedA) and their downregulation of transcriptional levels. Overexpression of the mutated cpgA, tabA, ptaA, rpoA, sufBCDS, mutS, ispH, oppF, dusB, dnuK, dxc, dxr and flgFGH genes further improved pinene production in the E. coli. coli modulatory co-culture system of whole-cell biocatalysis. This study also demonstrated that combining comparative omics analysis with CRISPRa and CRISPRi is an efficient technology to quickly find a new metabolic engineering strategy.

Acknowledgment

We are grateful to the National Natural Science Foundation of China (Grant NO. 201808248), the Natural Science Foundation of Guangdong Province (NO. 2018A030310255) and the Project of the Scientific and Technical Program of Guangzhou (No. 201607010028) for their financial support.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.synbio.2019.05.001.

References

[1] Gomes-Carneiro MR, Viana MES, Felzenszwalb FJR, Toxicology C. Evaluation of β-myrcene, α-pinene and (+)- and (-)-α-pinene in the Salmonella/microsome assay. Food Chem Toxicol 2005;43(2):247–52.
[2] Xiang J, Luo ZH. Study on the pinene isomerization catalyzed by TiM. Chin J Chem Eng 2018;26(12):2537–41.
[3] Zhao Y, Chen R, Wang Y, Yang Y. α-Pinene inhibits human prostate cancer growth in a mouse xenograft model. Chemotherapy 2017;63(1):1–7.
[4] Yang JM, Nie QJ, Ren M, Fung HR, Jiang XL, Zheng YN, Liu M, Zhang HB, Xian M. Metabolic engineering of Escherichia coli for the biosynthesis of alpha-pinene. Biotechnol Biofuels 2013;6(1):60.
[5] Sarria S, Wong B, Garcia Martin H, Keasling JD, Peralta-Yahya P. Microbial synthesis of pinene. ACS Synth Biol 2014;3(7):466–75.
[6] Tashiro M, Kiyota H, Kawai-Noma S, Saito K, Ikeuchi M, Iijima Y, Umeno D. Bacterial production of pinene by a laboratory-evolved pinene-synthase. ACS Synth Biol 2016;5(9):1011–20.
[7] Dunlop MJ, Dosani ZY, Szmidt HL, Chu HC, Lee TS, Keasling JD, Hadi MZ, Mukhopadhyay A. Engineering microbial biofuel tolerance and export using efflux pumps. Mol Syst Biol 2014;10(1):7487.
[8] Niu FX, He X, Wu YQ, Liu JZ. Enhancing production of pinene in Escherichia coli by using a combination of tolerance, evolution and modular co-culture engineering. Front Microbiol 2018;9:1623.