Research Article
Genetic and Chemical Diversity of Edible Mushroom
Pleurotus Species

Pei Lin,1,2 Zheng-Fei Yan,3 MooChang Kook,4 Chang-Tian Li,1 and Tae-Hoo Yi5

1Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, 130118 Jilin Province, China
2School of Pharmaceutical Sciences, Jiangnan University, 1800 Lihu 12 Avenue, Wuxi, 21422 Jiangsu Province, China
3State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 21422 Jiangsu Province, China
4Department of Food & Nutrition, Baewha Women’s University, Seoul, Republic of Korea
5College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea

Correspondence should be addressed to Zheng-Fei Yan; zhengfeiyan@jiangnan.edu.cn

Received 23 September 2021; Accepted 20 December 2021; Published 15 January 2022

Academic Editor: Marta Laranjo

Copyright © 2022 Pei Lin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The genus Pleurotus is one of the most widely cultivated and edible mushrooms with various cultivators. Three molecular characteristics were used to evaluate the genetic diversity of 132 tested samples. Phylogenetic analysis showed five clades for tested samples of the genus Pleurotus by the combined ITS and LSU sequences with strong bootstraps and Bayesian posterior probability supports. A total of 94 polymorphic fragments ranging from 10 to 100 bp were observed by using an intersimple sequence repeat (ISSR) marker. The DNA fragment pattern showed that Pleurotus ostreatus cultivator (strain P9) was clearly distinguished from wild strain based on their clear banding profiles produced. DNA GC content of the genus Pleurotus varied from 55.6 mol% to 43.3 mol%. Their chemical composition was also determined, including sugar, amino acid, polar lipid, mycolic acid, quinone, and fatty acid, which presented some high homogeneity. Most of the tested samples contained mycolic acid; glucose and arabinose as the main sugars; aspartic acid, arginine, lysine, tyrosine, and alanine as the main amino acids; and C16:0, C18:0, C18:2cis-9,12, anteiso-C14:0, and summed feature 8 as the main fatty acids. In addition, their polar lipid profiles were investigated for the first time, which significantly varied among Pleurotus species. The genus Pleurotus contained menaquinone-6 as the sole respiratory quinone, which showed a significant difference with that of its closely related genera. These results of this study demonstrated that the combined method above could efficiently differentiate each Pleurotus species and thus be considered an efficient tool for surveying the genetic diversity of the genus Pleurotus.

1. Introduction

The species of the genus Pleurotus are among the most cultivated and consumed edible mushrooms in the world [1]. Currently, several Pleurotus species can be grown commercially to high yields, such as Pleurotus ostreatus and Pleurotus eryngii. Their production has exceeded 15 million tons each year, which was ranked second following Lentinula edodes [2]. In addition to their nutritional value, the genus Pleurotus is a natural source of prebiotics and antioxidants [3] and is thus of great interest to the food industry. Also, the genus Pleurotus showed a broad spectrum of biological activities [4, 5], including antitumor, antidiabetic, and antibacterial activities.

Currently, the morphological characteristics have laid down the foundation for Pleurotus identification. Nonetheless, the characteristics of Pleurotus cultivars are unstable and dependent on the environmental conditions, which are too limited in terms of accurate identification [6]. With the development of molecular technology, highly conserved regions in ribosomal DNA are served as the reference points to investigate genetic and evolutionary relationships within
species for providing unequivocal species delimitation rule [7, 8], such as 18S, internal transcribed spacers (ITS), and large subunit rDNA (LSU) (Figure S1).

Besides, molecular fingerprinting is also an efficient tool in investigating the genetic diversities for the purpose of breeding programs because of its properties such as independence of environmental parameters and the high levels of detectable polymorphism [9], including simple sequence repeat (SSR), random amplified polymorphic DNA (RAPD), amplified fragment length polymorphism (AFLP), sequence-related amplified polymorphism (SRAP), and intersimple sequence repeat (ISSR) markers. Among them, an obvious advantage of the ISSR marker is that it has no sequence data for primer construction and is randomly distributed throughout the genome. ISSR primers (AG, GA, and (GATA)n repeats) that are anchored to genomic DNA making targeted simple sequence repeats could generate a wide array of amplification products, which provide sufficient information in determining genetic relationships [10]. DNA GC content as an important molecular characteristic has been widely used in taxonomic descriptions of species and genera [11]. However, only a few species of Pleurotus have been investigated to analyze their GC content [12, 13].

Chemical characteristics were provided as supplementary criteria to more accurately describe species, which are being given more and more attention [14]. These approaches were used way before DNA-based methods and are mainly regarded as obsolete or less informative nowadays, yet not necessarily useless. Sugar and amino acid profiles as a complementary tool have been applied to identify varieties of Gibberella fujikuroi [15]. Studies on chemical characteristics of the genus Pleurotus have made some progress [16, 17], but the study is not wide enough.

In the present study, a total of 132 tested samples were collected from Korean Agricultural Culture Collection (KACC, Korea), National Agrobiodiversity Center (NAAS, Korea), Korean Culture Center of Microorganisms (KCCM, Korea), Culture Center of Microorganisms Jilin Agricultural University (CCMJ, China), and market (Homeplus in Korea), Culture Center of Microorganisms Jilin Agricultural University (KCCM, Korea), National Agrobiodiversity Center (NAAS, Korea), and market (Homeplus in Korea) (Table S1). Subsequently, all tested samples were investigated to analyze their genetic and chemical diversity and to compare the differences between them. This information will promote the efficient identification of the genus Pleurotus.

2. Materials and Methods

2.1. Strains and Cultivation. All strains were cultivated in potato dextrose broth (PDB, BD products, Franklin Lakes, NJ, USA) at 32°C for 2 days as seed culture, and then, the seed culture (3% v/v) was transferred into 50 mL PDB at 32°C for 10 days. Mycelium was obtained by centrifugation at 10,000 g for 10 min and freeze-dried for further investigation as tested samples.

2.2. Phylogenetic Analysis. The genomic DNA from an overnight culture was obtained by using the Qiagen Genomic Tip 500G Kit, following the manufacturer’s instructions, except that the lysozyme was replaced with lysostaphin to a final concentration of 200 µg/mL and then was stored at -20°C. ITS and LSU regions were performed by using universal primers (primers ITS4 and ITS1 for ITS, primers LROR and LR3 for LSU). Then, amplification products were sequenced by Biofact Co. Ltd, (Seoul, Korea). All generated sequences were submitted to GenBank and are listed in Table S1.

The sequences of tested samples together with reference sequences from GenBank (Table S2) were aligned by using BioEdit and ClustalX. Alignment was manually adjusted to allow maximum alignment and to minimize gaps. Maximum parsimony analysis was applied to the combined ITS and LSU sequences. The sequence of Agaricus bisporus obtained from GenBank was used as an outgroup. PAUP version was carried out as a phylogenetic tree construction procedure. All characters were equally weighted with gaps as missing data. The phylogenetic tree was estimated by using TBR branch swapping and 1,000 random sequence additions. Max-trees were set to 5,000, branches of zero length were collapsed, and all parsimonious trees were saved. The robustness of clades was tested by using a bootstrap (BT) analysis with 1,000 replicates. Then, several factors of Maximum Parsimonious Tree (MPT) were calculated, such as homoplasy index (HI), descriptive tree statistics tree length (TL), rescaled consistency index (RC), retention index (RI), and consistency index (CI). The best evolution for each data set was determined for Bayesian inference (BY) by using MrModeltest 2.3. Bayesian inference was performed by using MrBayes 3.2.3 with a general time reversible (GTR) model of DNA substitution and a gamma distribution rate variation across sites. Four Markov chains were run for 2 runs from random starting trees for 2 million generations, and trees were sampled every 100 generations by discarding the first one-fourth generations as burn-in [18]. A majority rule consensus tree of all remaining trees was calculated. Branches were considered significantly supported with 80% of maximum parsimony (MP) and 0.95 of Bayesian posterior probabilities (BPP).

2.3. Genetic Diversity Analysis. A total of 24 primers were collected and applied in this study (Table 1). Then, primer, annealing temperature (47°C, 50°C, 53°C, 60°C, 65°C, and 70°C), and the number of cycles (10, 15, 20, 25, 30, and 35) were studied. The ISSR amplifications were carried out in a 20 µL reaction volume containing 50 ng of the template DNA, 0.75 µM of the primers, 2.5 mM of MgCl₂, 0.2 mM of dNTPs (TaKaRa, Japan), and 0.5 U of Taq DNA polymerase. The amplification conditions were as follows: an initial denaturation at 94°C for 5 min followed by the corresponding cycles each at 94°C for 30 s, 45 s at the annealing temperature, and 72°C for 90 s, followed by the final extension for 7 min at 72°C. The ISSR amplification products were detected on 1% agarose electrophoresis gels, and the images were captured using the ChemiDoc XR (Bio-Rad, USA). Unambiguous and reproducible bands in successive amplifications were selected for scoring. Each fragment was scored as “1” and “0” for the presence/absence, and a genetic distance matrix from raw data was constructed by using the PHYLIP 1.0 package [19]. Cluster analysis was performed.
2.5. Sugar Analysis. Cell wall sugars were extracted, purified by liquid chromatography (RP-HPLC). DNA GC content was determined by the method of Biotechnology Inc., Seongnam, South Korea). Briefly, the purified DNA was decomposed into nucleotides, and the DNA was purified by using genomic DNA purification kits (Intron). After air drying, dots were visualized by iodine fumigation.

2.6. Amino Acid Analysis. The amino acid profiles of each tested sample were determined by using HPLC analysis. Chromatography conditions were in accordance with the Agilent method [23]. Briefly, an amount equivalent to 2.5 μL of each sample was injected on a Zorbax Eclipse-AAA column (5 μm, 150 x 4.6 mm) (Agilent). At 40°C, with detection at 338 nm. Mobile phase A was 40 mM NaH2PO4, adjusted to pH 7.8 with NaOH, while mobile phase B was acetonitrile/methanol/water (45/45/10 v/v/v). The separation was obtained at a flow rate of 2 mL/min with a gradient program that allowed for 1.9 min at 0% B followed by a 16.3 min step that raised eluent B to 53%. Then, washing at 100% B and equilibration at 0% B were performed in a total analysis time of 26 min. The amino acid was identified by comparing calibration chromatogram established by 10 known amino acids, such as arginine (Arg), alanine (Ala), aspartic acid (Asp), valine (Val), cysteine (Cys), glutamic acid (Glu), glycine (Gly), lysine (Lys), threonine (Thr), and tyrosine (Tyr).

2.7. Polar Lipid Analysis. The polar lipids were extracted and identified by the 2D-TLC method [24]. And then, various lipids were identified by their different unique staining characteristics corresponding to their chemical structure.

2.8. Quinone Analysis. Quinone was extracted and analyzed by HPLC with the Zorbax-ODS column (4.6 x 250 mm) under the following conditions: mobile phase: methanol:disopropyl ether (3:1, v/v); flow rate: 1 mL/min; detector: photodiode-array detector scanning from 200 to 400 nm; and UV detector at 275 nm for ubiquinones and at 270 nm for menaquinones [25]. Their type was identified by comparing the relative retention times of peaks from standards, such as quinones-8 (Q-8), quinones-9 (Q-9), quinones-10 (Q-10), menaquinones-5 (MK-5), menaquinones-6 (MK-6), menaquinones-7 (MK-7), menaquinones-7(H2) (MK-7(H2)), menaquinones-7(H4) (MK-7(H4)), menaquinones-7(H6) (MK-7(H6)), menaquinones-8 (MK-8), menaquinones-8(H6) (MK-8(H6)), menaquinones-9 (MK-9), and menaquinones-10 (MK-10).

2.9. Mycolic Acid Analysis. To investigate the distribution of mycolic acid in the genus Pleurotus, mycolic acid was extracted, purified, and analyzed by using TLC with petroleum ether/acetone (95/5 v/v) as the developing solvents. After air drying, dots were visualized by iodine fumigation [26].

2.10. Fatty Acid Analysis. Fatty acid profiles were determined by gas-liquid chromatography and identified by using the Sherlock Microbial Identification System (MIDI) [27]. The relative percentage of each fatty acid was calculated by internal normalization of the chromatographic peak area.

3. Results and Discussion

3.1. Phylogenetic Analysis. In this study, about 100 equally parsimonious trees were produced by maximum parsimony analysis with RI = 0.652, TL = 1132, RC = 0.302, CI = 0.367, and HI = 0.632. The same topology was also obtained by Bayesian analysis with an average standard deviation of split frequencies (0.009). As shown in Figure 1, a well-resolved phylogenetic tree was constructed by using the combined sequences of ITS and LSU.

Table 1: The primers used in this study for ISSR analysis.
Primers

R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13
R14
R15
R16
R17
R18
R19
R20
R21
R22
R23
R24
Total
Mean
All tested strains were split into five clades, and most of these clades were recovered by the combined ITS and LSU sequences with strong bootstraps and Bayesian posterior probability supports. Clade I was formed and comprised four subclades, and subclade A was composed of *Pleurotus smithii* and *Pleurotus australis*, indicating that they were closer in a relationship. Subclade B included *Pleurotus abalonus* and *Pleurotus cystidiosus*. Previously reported *P. abalonus* was also considered to be a subspecies of *P. cystidiosus* (*P. cystidiosus* subsp. *abalonus*) [28], which strongly supports results of our study. However, there were significant differences in morphology between them. *P. cystidiosus* exhibited a specific anamorphic stage of the genus *Pleurotus*, which is manifested by the presence of arthroconidia on conidiophores assembled in the cereum macrostructures, suggesting the ability for asexual reproduction independently, as a possible mechanism for

![Figure 1: Phylogenetic analysis of species in the genus *Pleurotus*. Strict consensus tree was generated by maximum parsimony based on combined ITS+LSU sequences. Parsimony bootstrap proportions (before the/) higher than 80% and Bayesian posterior probabilities (after the/) more than 0.95 were indicated along branches. The reference sequences of *Pleurotus* (bold) were downloaded from GenBank (Table S2).](image-url)
effective dispersal of these species in the wild [29]. *P. tuber-
regium* was separated as an individual subclade (C) in clade
I. *Pleurotus rattenburyi* was identified as novel species by Red-
head and Norvell, which was closely related to *Pleurotus pur-
pureo-olivaceus* [30], and they made up subclade D in this
study. Clade II was composed of *Pleurotus dryinus*, *Pleurotus
citrinopileatus*, and *Pleurotus cornucopiae*. Among them, *P.
dryinus* was formed as an individual subclade (E). Both *P.
citrinopileatus* and *P. cornucopiae* made up subclade F, sug-
gest ing a closed relationship between them at the generic level.
P. citrinopileatus and *P. cornucopiae* were classified as belonging
to the same intersterility group, despite the confirmed dif-
f erences in their ITS sequences [31]. Then, Petersen and Krissi-
Greilhuber reconsidered *P. citrinopileatus* species status and
define it as *P. cornucopiae var. citrinopileatus* [32]. How-
ever, since differences between both species are detected not
only at the molecular level but also in their morphology, fur-
ther examinations and additional crosses between representa-
tives of both species are needed to definitively confirm or deny
the existence of interspecific reproductive barriers among
them. Clade III was composed of *Pleurotus fuscatus*, *Pleuro-
tus djamor*, *Pleurotus elongatipes*, *Pleurotus salmoneostra-
mineus*, *Pleurotus calyptratus*, *Pleurotus flabellatus*, *Pleurotus
ostreatoroseus*, *Pleurotus incarnatus*, and *Pleurotus nebroden-
sis*, which comprised three subclades (G, H, and I). *P. salmo-
neostamineus* was revised as *P. djamor*, but they are not in
the same subclade. Similar results also prevailed in *P. fusa-
latus* and *P. nebrodensis*. The origin and taxonomic status of *P.
flabellatus* were difficult to determine by previous data, which
was associated with *P. cornucopiae* [33], or considered an
intermediate between the *P. ostreatus* and the *P. eryngii* clades
[34]. Previous studies suggested that *P. calyptratus* is a varia-
tion within the *P. djamor* [35]. However, both species were
divided into two subclusters on the phylogram in this study.
Meanwhile, they are also differentiated by their habitat; for
example, *P. calyptratus* is distributed in the temperate climate
zone, while *P. djamor* is common in a warm tropical climate
zone. Their edibility is also different; for example, *P. djamor*
has been cultivated commercially and edible. In turn, *P. calyp-
tratus* are hard and are not edible. It was confirmed that *P.
calyptratus* and *P. djamor* represent a single species. Most
interestingly, the taxonomic position of *P. elongatipes*
remained uncertain, which was proposed as *Hypsizygus elon-
gatipes* in Index Fungorum and *P. elongatipes* in MycoBank.
In our study, two samples of *P. elongatipes* were gathered
obtained from GenBank were gathered together with *P. ostrea-
tus* by a weak support (less than 80% MP). Previous data has
been described that *P. floridanus* as the invalid name was
revised as *P. ostreatus* [30] and *P. florida* was geographical iso-
lates from the *P. ostreatus* complex, also called *P. ostreatus*
[39]. It was suggested that they might have a close genetic rela-
tionship, which strongly supported our results.

3.2 Genetic Diversity Analysis

A total of 24 primers were applied to investigate genetic diversities of the tested samples by using the ISSR marker (Figure S2). Among them, primers R1 and R3 failed to produce any PCR products and were discarded from further analysis. From the total number of bands obtained and the percentages of polymorphisms of each tested primer, 52 out of 76 bands were considered polymorphic, generating a polymorphism information content (PIC) overall average of 68.4%. The maximum percentage of polymorphism was observed using primer R17 (90.0%), while the lowest percentage was observed using primers R10 and R24 (50.0%). To increase the richness and legibility of fragments, optimal annealing temperature cycle number was detected at 53°C and 25, respectively (Figure S3). The annealing temperature was often higher than Tm, which has more polymorphic fragments than that of other annealing temperatures [10].

In this study, a total of 94 polymorphic fragments ranging
from 10 to 100 bp were observed, which have a higher polymorphism level than those in a previous study [40]. As shown in Figure 2, the average coefficient is 0.67, ranging from 0.37 to 0.97. Based on the UPGMA dendrogram, all tested samples were clustered into several clusters corre-
sponding to their respective taxa; polymorphic fragments
were almost consistent with the coefficient of 0.65 at the intraspecies level. A special polymorphic fragment was detected in the *P. ostreatus* cultivator (strain P9), which has significant differences in wild strain. The breeding stage might have a significant impact on the genetic diversity of *P. ostreatus*, which was consistent with a previous report [41]. The ISSR marker was also considered to be a more useful method in distinguishing *P. eryngii* isolates and varieties
[42, 43]. The genetic similarity among *P. eryngii*, *P. fuscus*,

Pleurotus columbinus, *Pleurotus spodoleucus*, *Pleurotus populi-
num*, *P. eryngii*, *Pleurotus fuscus* var. *floridana*, *Pleurotus fuscus*,
Pleurotus subareolatus, *Pleurotus eryngii* var. *ferulae*, *Pleurotus
euosmus*, *P. ostreatus*, and *P. abieticola*. Most of them formed
a monophyletic clade by a weak support (less than 80% MP).
Interestingly, *P. abieticola*, *P. columbinus*, and *P. spodoleucus*
fomed a well-supported monophyletic subclade with an 85-
100% bootstrap value and 1.00 Bayesian post probability,
respectively. Previous phylogenetic studies have given rise to
various ambiguities in the genus *Pleurotus*. *P. ostreatus*, *P. columbinus*, and *P. cornucopiae* have been in turn associated
in the same clade [36] or separated [34]. In our analysis, *P. cor-
ucopiae* on clade III and *P. columbinus* and *P. ostreatus* on the
clade V were included in two distinct clades. It was to be
noted that the close relationship between *P. columbinus* and
P. ostreatus has been previously reported [37] and that they
have recently been described as sexually compatible species
[38]. Sequences of *Pleurotus floridana* and *Pleurotus floridanus*
obtained from GenBank were gathered together with *P. ostrea-
tus* by a weak support (less than 80% MP). Previous data has
been described that *P. floridanus* as the invalid name was
revised as *P. ostreatus* [30] and *P. florida* was geographical iso-
lates from the *P. ostreatus* complex, also called *P. ostreatus*
[39]. It was suggested that they might have a close genetic rela-
tionship, which strongly supported our results.

P. fuscus var. ferulae, and P. eryngii var. ferulae ranged from 86% to 96%, indicating the existence of high genetic diversity between them, which was supported by previous studies [42].

P. eryngii var. ferulae and P. eryngii appeared to have a distinct polymorphic fragment, which was consistent with previous studies [44]. Interestingly, 33 strains of P. ostreatus were gathered into 2 subclades in the UPGMA dendrogram, which were obviously different from previous studies [44].

![Figure 2: Genetic diversity of species in the genus Pleurotus by UPGMA dendrogram. All data were analyzed by using the PHYLIPE 1.0 package. Cluster analysis was performed by the unweighted pair group method with arithmetic averaging (UPGMA).](image)

Table 2: DNA GC content of the genus Pleurotus.

Taxa	Previous data (mol%)	This study (mol%)
P. abalonus	—	47.1 ± 1.8
P. abieticola	44.49 [58]	47.0 ± 0.9
P. australis	—	49.3 ± 0.6
P. calyptratus	—	44.5 ± 0.4
P. citrinopileatus	49.2 [59], 44.8 [58]	49.0 ± 1.6
P. columbinus	—	46.8 ± 1.3
P. cornucopiae	—	50.4 ± 0.5
P. cystidiosus	—	47.3 ± 1.6
P. djamor	—	48.3 ± 1.8
P. dryinus	—	49.5 ± 1.2
P. elongatipes	—	46.5 ± 0.8
P. eous	—	50.0 ± 1.9
P. eryngii	49.1 [60], 49.4 [59], 49.3 [61]	49.4 ± 0.9
P. euosmus	—	51.7 ± 1.1
P. eryngii var. ferulae	49.9 [61]	50.4 ± 0.7
P. flabellatus	—	50.3 ± 0.7
P. ostreatus *	—	48.8 ± 0.8
P. ostreatus **	50.9 [61]	48.8 ± 1.9
P. fuscus	—	50.9 ± 1.1
P. fuscus var. ferulae	—	55.6 ± 0.6
P. incarnatus	—	47.8 ± 1.6
P. nebrodensis	—	44.5 ± 0.5
P. opuntiae	—	43.3 ± 0.9
P. ostreatoroseus	52.6 [12]	47.0 ± 1.9
P. ostreatus	50.4 [60], 50.9 [59], 50.8 [62]	47.4 ± 1.9
P. populinus	44.9 [58]	50.3 ± 1.1
P. pulmonarius	51.0 [53], 44.5 [58]	50.3 ± 1.3
P. purpuro-olivaceus	—	47.7 ± 0.8
P. rattenburyi	—	52.4 ± 1.0
P. salmoncostramineus	50.0 [59]	49.1 ± 0.9
P. sapidus	44.9 [58]	51.8 ± 1.5
P. smithii	—	45.1 ± 0.5
P. spodeleucus	—	46.6 ± 0.6
P. subareolatus	—	47.9 ± 0.8
P. tuber-region	46.1 [59]	46.1 ± 0.5

* P. ostreatus was also named as P. florida, including strains P144, P126, P123, P130, P138, P114, P107, P119, and P128. ** P. ostreatus was also named as P. floridanus, including strains P108, P145, P111, and P152. —: no data.
Table 3: Chemical characteristics of the genus *Pleurotus*.

Taxa	Sugar	Amino acid	Polar lipid
P. abalonus	Gal, Glu, Ara, Xyl, Rib	Asp, Arg, Lys, Thr, Glc, Tyr, Ala	DPG, PME, PC, PE, PS, GL, L
P. abieticola	Gal, Glu, Ara, Xyl, Rib, Rha	Asp, Gly, Arg, Lys, Thr, Glc, Tyr, Ala	DPG, PME, PC, PE, PG, PS, GL, L
P. australis	Glu, Ara, Xyl, Rib	Asp, Arg, Lys, Thr, Glc, Tyr, Ala	DPG, PME, PC, PE, PS, GL, L
P. calyptratus	Gal, Glu, Ara, Xyl, Rib	Asp, Gly, Arg, Lys, Thr, Glc, Tyr, Ala	DPG, PME, PC, PE, PG, PS, GL, L
P. citrinopileatus	Gal, Glu, Ara, Xyl, Rib, Rha	Asp, Arg, Lys, Thr, Glc, Tyr, Ala	DPG, PME, PC, PE, PG, PS, GL, L
P. columbinus	Gal, Glu, Ara, Xyl, Rib	Asp, Arg, Lys, Thr, Glc, Tyr, Ala	DPG, PME, PC, PE, PS, AL, GL, L
P. cornucopiae	Gal, Glu, Ara, Xyl, Rib	Asp, Arg, Lys, Thr, Glc, Tyr, Ala	DPG, PME, PC, PE, PG, PS, GL, L
P. cystidiosus	Gal, Glu, Ara, Xyl, Rib	Asp, Arg, Lys, Thr, Glc, Tyr, Ala	DPG, PME, PC, PE, PG, PS, GL, L
P. djamor	Gal, Glu, Ara, Xyl, Rib	Asp, Arg, Lys, Thr, Glc, Tyr, Ala	DPG, PME, PC, PE, PG, PS, GL, L
P. dryinus	Gal, Glu, Ara, Xyl, Rib	Asp, Arg, Lys, Thr, Glc, Tyr, Ala	DPG, PME, PC, PE, PG, PS, GL, L
P. eous	Gal, Glu, Ara, Xyl, Rib	Asp, Arg, Lys, Thr, Glc, Tyr, Ala	DPG, PME, PC, PE, PG, AL, L
P. eryngii	Gal, Glu, Ara, Xyl, Rib	Asp, Arg, Lys, Thr, Glc, Tyr, Ala	DPG, PME, PC, PE, PG, AL, L
P. euosmus	Gal, Glu, Ara, Xyl, Rib	Asp, Arg, Lys, Thr, Glc, Tyr, Ala	DPG, PME, PC, PE, PG, AL, L
P. ferulae	Gal, Glu, Ara, Xyl, Rib	Asp, Arg, Lys, Thr, Glc, Tyr, Ala	DPG, PME, PC, PE, PG, AL, L
P. flabellatus	Gal, Glu, Ara, Xyl, Rib	Asp, Arg, Lys, Thr, Glc, Tyr, Ala	DPG, PME, PC, PE, PG, AL, L
P. ostreatus	Glu, Ara, Xyl, Rib	Asp, Arg, Lys, Thr, Glc, Tyr, Ala	DPG, PME, PC, PE, PG, AL, L
P. fuscus	Gal, Glu, Ara, Xyl, Rib	Asp, Arg, Lys, Thr, Glc, Tyr, Ala	DPG, PME, PC, PE, PG, AL, L
P. fuscus var. ferulae	Gal, Glu, Ara, Xyl, Rib	Asp, Arg, Lys, Thr, Glc, Tyr, Ala	DPG, PME, PC, PE, PG, AL, L
P. incarnatus	Gal, Glu, Ara, Xyl, Rib	Asp, Arg, Lys, Thr, Glc, Tyr, Ala	DPG, PME, PC, PE, PG, AL, L
P. nebrodensis	Gal, Glu, Ara, Xyl, Rib	Asp, Arg, Lys, Thr, Glc, Tyr, Ala	DPG, PME, PC, PE, PG, AL, L
P. opuntiae	Glu, Ara, Xyl, Rib	Asp, Arg, Lys, Thr, Glc, Tyr, Ala	DPG, PME, PC, PE, PG, AL, L
P. ostreatoroseus	Gal, Glu, Ara, Xyl, Rib	Asp, Arg, Lys, Thr, Glc, Tyr, Ala	DPG, PME, PC, PE, PG, AL, L
P. ostreatus	Glu, Ara, Xyl, Rib	Asp, Arg, Lys, Thr, Glc, Tyr, Ala	DPG, PME, PC, PE, PG, AL, L
P. pulmonarius	Gal, Glu, Ara, Xyl, Rib	Asp, Arg, Lys, Thr, Glc, Tyr, Ala	DPG, PME, PC, PE, PG, AL, L
P. purpureo-olivaceus	Gal, Glu, Ara, Xyl, Rib	Asp, Arg, Lys, Thr, Glc, Tyr, Ala	DPG, PME, PC, PE, PG, AL, L
P. rattenburyi	Glu, Ara, Xyl, Rib	Asp, Arg, Lys, Thr, Glc, Tyr, Ala	DPG, PME, PC, PE, PG, AL, L
P. salmonoestramineus	Gal, Glu, Ara, Xyl, Rib	Asp, Arg, Lys, Thr, Glc, Tyr, Ala	DPG, PME, PC, PE, PG, AL, L
P. sapidus	Gal, Glu, Ara, Xyl, Rib	Asp, Arg, Lys, Thr, Glc, Tyr, Ala	DPG, PME, PC, PE, PG, AL, L
P. smithii	Gal, Glu, Ara, Xyl	Asp, Arg, Lys, Thr, Glc, Tyr, Ala	DPG, PME, PC, PE, PG, AL, L
P. spodoleucus	Gal, Glu, Ara, Xyl, Rib	Asp, Arg, Lys, Thr, Glc, Tyr, Ala	DPG, PME, PC, PE, PG, AL, L
P. subareolatus	Glu, Ara, Xyl, Rib, Rha	Asp, Arg, Lys, Thr, Glc, Tyr, Ala	DPG, PME, PC, PE, PG, AL, L
P. tuber-regium	Gal, Glu, Ara, Xyl, Rib, Rha	Cys, Arg, Lys, Glc, Tyr, Ala	PME, PC, PE, PG, GL

Gal: galactose; Glu: glucose; Ara: arabinose; Xyl: xylose; Rib: ribose; Rha: rhamnose; Cys: cysteine; Asp: aspartic acid; Gly: glycine; Arg: arginine; Lys: lysine; Thr: threonine; Glc: glutamic acid; Tyr: tyrosine; Ala: alanine; Val: valine; DPG: diphasphatidylglycerol; PG: phosphatidylglycerol; PME: phosphatidyl-N-methylethanolamine; PC: phosphatidylcholine; PS: phosphatidylserine; PE: phosphatidylethanolamine; PL: unidentified phospholipid; AL: unidentified aminolipid; GL: unidentified glycolipid; L: unidentified lipid. * *P. ostreatus* was also named as *P. floridanus* (invalid name), including strains P108, P145, P111, and P152. ** *P. ostreatus* was also named as *P. floridanus* (invalid name), including strains P108, P145, P111, and P152.
P152) and *P. florida* (P144, P126, P123, P130, P138, P114, P107, P119, and P128). Our results showed a significant difference polymorphic fragment between *P. floridanus*, *P. florida*, and *P. ostreatus*. It was confirmed that *P. floridanus* and *P. florida* represent a single species, which was in line with the opinion of Gonzalez and Labarère [45].

3.3. DNA GC Content Analysis. DNA GC content of the genus *Pleurotus* varied from 43.3 mol% in *P. opuntiae* to 55.6 mol% in *P. fuscus* var. *ferulae*. Meier-Kolthoff et al. confirmed that the threshold value of GC content was 3.5% within species [11]. Exceptions did exist, especially with fungi, which sometimes altered inconsistently with the above-said patterns. A threshold value of GC content was 8% in yeast [46] and 1% in the genus *Trichosporon* [47]. Only a few species of the genus *Pleurotus* have been investigated (Table 2). In addition, GC content of other species of the genus *Pleurotus*, such as *P. nebrodensis*, has not yet been determined despite their importance for different industries.

In this study, the range of GC content was slightly different from the values reported previously. This might be caused by incubation conditions of the mycelium, which was supported by Cui et al. [48].

3.4. Sugar Analysis. Sugar profiles of all tested samples showed some high homogeneity (Table 3). All of them contained Glu, Ara, and Xyl. Part sugars slightly varied among species, such as Gal, Rib, and Rha. This phenomenon also appeared in that of yeast [49]; for example, Xyl and Ara existed in different yeast species. Our results showed that the types of sugar in tested samples were in agreement with previous results [50]. Currently, sugar might play an important role in food and provide the majority of energy for human being. Meanwhile, Jacob et al. confirmed that *Pleurotus* was low in sugar and became a popular low-calorie food [51].

3.5. Amino Acid Analysis. A total of 10 types of amino acid were detected in the tested samples (Table 3), such as Asp, Arg, Lys, Tyr, Ala, Cys, Gly, Thr, Glc, and Val. All of them contained Asp, Tyr, and Ala. Then, other types of amino acid varied with the different species of the genus *Pleurotus*. For example, *P. eryngii* was distinguished from *P. eous* by the presence of Thr. Patil et al. found similar amino acid profiles in *P. ostreatus*, which strongly supports our results [52]. Previous reports also confirmed that cultivation materials of the genus *Pleurotus* have a significant effect on its content of amino acids; for example, *P. citrinopileatus* cultivated on paddy straw and other agrowaste combination has a higher content of amino acids than that on paddy straw alone [53].

3.6. Polar Lipid Analysis. Currently, only a few articles described the polar lipid of the genus *Pleurotus*, but most focused on its content and activity [54]. Polar lipid profiles of the genus *Pleurotus* were investigated for the first time in this study (Table 3). Both phosphatidylcholine (PC) and phosphatidyl-N-methylethanolamine (PME) were detected in all tested samples. And other types of polar lipid varied with the different species of the genus *Pleurotus*, such as diphasphatidylglycerol (DPG), phosphatidylglycerol (PG), phosphatidylserine (PS), phosphatidylethanolamine (PE), unidentified phospholipid (PL), unidentified aminolipid (AL), unidentified glycolipid (GL), and unidentified lipid (L). *P. tuber-regium* could be distinguished from others by the absence of DPG. Similar results also appeared in *P. elongatipes*, which was the lack of PE.

3.7. Quinone Analysis. So far, there were no correlated publications reporting quinone profiles of the genus *Pleurotus*. This study first investigated quinone profiles of the genus *Pleurotus* (Table 4). Our results showed that all tested samples contain MK-6 as the sole respiratory quinone, which was consistent with previous studies that menaquinone often exists in Gram-positive species with a high GC content [55]. As far as the genus *Pleurotus* is concerned, our results showed that there is no remarkable correlation between quinone types and *Pleurotus* species. Subsequently, closely related genera were also investigated to determine quinone types, such as *Lentinellus*, *Hohenbuehelia*, *Resupinatus*, and *Phylloplitopsis*. Results revealed that quinone type is different from that of the genus *Pleurotus* (Table 4), which was used as chemical characteristic in distinguishing the genus *Pleurotus* from its closely related genus. Environmental factors such as nutritional components, oxygen, and temperature are known to affect lipid content and composition in living organisms, including fungi [49].

3.8. Mycolic Acid Analysis. Mycolic acid has been characterized in Mycolata taxon [56]. However, there are no previous reports that record mycolic acid distribution in the genus *Pleurotus*. In our studies, the distribution of mycolic acid in the genus *Pleurotus* was detected for the first time. Results showed that mycolic acid was detected in all tested samples, except in *P. tuber-regium*. It was suggested that *P. tuber-regium* could be distinguished from others by using mycolic acid as a key indicator.

3.9. Fatty Acid Analysis. As shown in Table 5, a total of 43 types of fatty acid have been detected in the genus *Pleurotus*, including anteiso-C14:0, C16:0, C18:2cis-9,12, C18:0, C18:3cis,6,12,14, and summed feature 8 (C18:1ω7c and/or C18:1ω6c) as the main fatty acids. 16 of 43 types of fatty acid were observed for the first time, including Cω6c-C18:1ω7c, C18:0ω8c, C16:0ω5c, C16:0ω7c alcohol, C16:1cis-9 (ω7c), C16:1cis-11 (ω5c), C17:1cis-10 (ω7c), C19:ω7c, trans-7 (ω9c), C20:1ω9c alcohol, C20:1cis-11 (ω9c), iso-C14:1ω7c, iso-C15:1ω7c, iso-C17:1ω7c at 5 (ω12c), iso-C17:1ω7c (ω11c), and iso-C18:1ω7c. Other types of

Taxa	Quinone
Genus Pleurotus	MK-6
Lentinellus urinum	MK-7
Hohenbuehelia petaoides	MK-7(H2)
Resupinatus applicatus	MK-8
Phylloplitopsis nidulans	MK-5

* L. urinum YTH 267, H. petaoides YTH 3549, R. applicatus YTH 498, and P. nidulans YTH 5876 have been deposited in the College of Life Science, Kyung Hee University.
Table 3: Fatty acid analysis of the genus *Pleurotus.*

(a)

Fatty acid	Taxa no.
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
C9:0	6.7 3.8 1.2 5.0
C10:0	2.3 3.8 4.2 1.8
C12:0	5.0 4.1
C14:0	1.6 0.6
C15:0	3.2 2.6
C16:0	21.1 20.3 26.8 19.9 24.8 10.3 21.3 26.5 15.5 15.3 19.6
C18:0	17.9 31.4 9.8 4.0 17.5 7.4 6.9 4.0 8.7 3.6
C20:0	28.3 34.9 41 5.1 29.9 41 29.8 25.2 45.7 27.3 13.8 27.9 9.6 14.5 35.1 7.4 1.1

(b)

Fatty acid	Taxa no.
	20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
C9:0	6.7 3.8 1.2 5.0
C10:0	2.3 3.8 4.2 1.8
C12:0	5.0 4.1
C14:0	1.6 0.6
C15:0	3.2 2.6
C16:0	21.1 20.3 26.8 19.9 24.8 10.3 21.3 26.5 15.5 15.3 19.6
C18:0	17.9 31.4 9.8 4.0 17.5 7.4 6.9 4.0 8.7 3.6
C20:0	28.3 34.9 41 5.1 29.9 41 29.8 25.2 45.7 27.3 13.8 27.9 9.6 14.5 35.1 7.4 1.1

Ratio U:S

BioMed Research International
Fatty acid	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
C_{18:0}																	
C_{9:0}																	
C_{12:0}																	
C_{14:0}																	
C_{17:0}																	
C_{18:1}																	
C_{16:0},ω5c	2.3																
C_{16:0},ω7c alcohol																	
C_{16:1},cis-9 (ω7c)																	
C_{16:1},cis-11 (ω5c)																	
C_{17:1},cis-10 (ω7c)																	
C_{18:2},cis-9,12	25.3	15.7	29.3	6.2	24.8												
C_{18:2},cis-6,12,14																	
C_{19:trans-7} (ω9c)	5.6																
Iso-C_{10:0}																	
Iso-C_{14:1}																	
Iso-C_{16:1}																	
Iso-C_{17:1} G (ω11c)																	
Iso-C_{18:1}																	
Iso-C_{19:0}																	
Anteiso-C_{14:0}	14.9	7.9	25.9	1.8	23.0	5.4	10.8	17.2	7.4	2.3	6						
Anteiso-C_{15:0}																	
Anteiso-C_{16:0}																	
Anteiso-C_{17:0}																	
Summed feature 1*																	
Summed feature 8*	42.6	18.6	8.1	8.7	23.9												
Summed feature 12*																	
Total unsaturated	33.2	15.6	29.3	6.2	26.7	19.5	32.9	18.4	9.4	7.3	29.3	23.1	27				
Total saturated	29.9	65.7	62.6	73.7	49.3	80.4	52	41.5	90.5	45.1	22.4	41.7	68.7	61	51.2	72.9	66.4
Summed feature	42.6	18.6	8.1	8.7	23.9		15	40.1	0	43.2	48.2	35		20.4	35.1		
Ratio U:S*	1.1	0.2	0.4	0.08	0.5	0.2	0.6	0.4	0.1	0.1	0.1	1.3	0.5	0.3	0.2	0.3	0.1

Table 5 shows the different levels of major and minor fatty acids. *P. columbinus has the significantly highest proportion of C_{16:0} (100%) as solar fatty acid, which is reported for the first time in the genus Pleurotus. It was suggested that a particular species might intrinsically display a higher fatty acid profile.
proportion of a specific fatty acid when compared with others. The application of fatty acid composition data has now extended to studies of physiology, chemotaxonomy, and intrageneric differentiation, as well as human nutrition. But its content in mushrooms is extremely flexible and always influenced by environmental conditions such as media composition, pH, temperature, and growth stage [57].

4. Conclusion

Referring to these findings from this study, surveying the genetic variation through phylogenetic analysis, ISSR marker, and GC content could be useful in efficiently differentiating each *Pleurotus* species. The subsequent analysis of their chemical characteristics was consistent with the above results. The combined molecular and chemical analysis could provide a solid and reliable tool for *Pleurotus* classification and taxa delimitation.

Data Availability

The raw data of ITS and LSU have been submitted to NCBI.

Consent

Informed consent was not required for this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors’ Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and data analysis were performed by Pei Lin, MooChang Kook, Chang-Tian Li, and Tae-Hoo Yi. The manuscript was written and revised by Pei Lin and Zheng-Fei Yan, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Acknowledgments

We thank International Science Editing (http://www.internationalscienceediting.com) for editing the English text of a draft of this manuscript. This work was supported by the Opening Foundation of Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, and the Ministry of Agriculture, Food and Rural Affairs, Korea (118043-03).

Supplementary Materials

Supplementary Table S1: a list of species and GenBank accession number for sequences used in this study. Supplementary Table S2: a list of reference sequences from GenBank. Supplementary Figure S1: the conserved domains in the genus *Pleurotus* and primer locations. Supplementary Figure S2: optimal primer selection for ISSR analysis. Supplementary Figure S3: optimal annealing temperature and number of cycle selection for ISSR analysis (Supplementary Materials). (Supplementary Materials)

References

[1] A. Gregori, M. Svagelj, and J. Pohleven, "Cultivation techniques and medicinal properties of *Pleurotus spp.*,“ *Food Technology & Biotechnology*, vol. 45, pp. 238–249, 2007.

[2] D. J. Royse, J. Baars, and Q. Tan, "Current overview of mushroom production in the world,” in *Edible and Medicinal Mushrooms: Technology and Applications*, C. Z. Diego and A. Pardo-Giménez, Eds., pp. 5–13, Wiley-Blackwell, 2017.

[3] F. Aida, M. Shuhaimi, M. Yazid, and A. G. Maaruf, "Mushroom as a potential source of prebiotics: a review,” *Trends in Food Science and Technology*, vol. 20, pp. 567–575, 2009.

[4] F. Cateni, M. Zacchigna, G. Procida, G. Venturella, V. Ferraro, and M. L. Gargano, "Poly saccharides from *Pleurotus eryngii* var. *elaeoselini* (Agaricomycetes), a new potential culinary-medicinal oyster mushroom from Italy,” *International Journal of Medicinal Mushrooms*, vol. 22, pp. 431–444, 2020.

[5] M. Gargano, L. V. V. Griensven, O. Isikhuemhen et al., “Medicinal mushrooms: valuable biological resources of high exploitation potential,” *Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology*, vol. 151, pp. 548–565, 2017.

[6] G. I. Zervakis, "Molecular systematics, phylogeny and evolution in homobasidiomycota: the oyster-mushroom genus *Pleurotus*,” in *Plant Genome: Biodiversity and Evolution*, A. K. Sharma and A. Sharma, Eds., Science Publishers, Inc, 2004.

[7] G. I. Zervakis, S. Ntougias, M. L. Gargano et al., "A reappraisal of the *Pleurotus eryngii* complex-new species and taxonomic combinations based on the application of a polyphasic approach, and an identification key to Pleurotus taxa associated with Apiaceae plants,” *Fungal Biology*, vol. 118, pp. 814–834, 2014.

[8] G. Venturella, G. I. Zervakis, E. Polemis, and M. L. Gargano, “Taxonomic identity, geographic distribution, and commercial exploitation of the culinary-medicinal mushroom *Pleurotus neb rodensis* (basidiomycetes),” *International Journal of medicinal mushrooms*, vol. 18, pp. 59–65, 2016.

[9] L. Tang, Y. Xiao, L. Li, Q. Guo, and Y. Bian, "Analysis of genetic diversity among Chinese *Auricularia auricula* cultivars using combined ISSR and SRAP markers,” *Current Microbiology*, vol. 61, pp. 132–140, 2010.

[10] A. Eimanifar, B. Marden, M. S. Braun, and M. Wink, "Analysis of the genetic variability of *Artemia franciscana* Kellogg, 1906 from the Great Salt Lake (USA) based on mtDNA sequences, SSR genomic fingerprinting and biometry,” *Marine Biodiversity*, vol. 45, pp. 311–319, 2015.

[11] J. P. Meier-Kolthoff, H.-P. Klenk, and M. Göker, "Taxonomic use of DNA G+C content and DNA-DNA hybridization in the genomic age,” *International Journal of Systematic and Evolutionary Microbiology*, vol. 64, pp. 352–356, 2014.

[12] S. Dias da Silva, E. Carvalho dos Santos, W. M. C. da Silva et al., "Draft genome sequence of the wild edible mushroom *Pleurotus ostreatus*KDUPA 1720," *Microbiology Resource Announcements*, vol. 10, article e00840, 2021.

[13] L. Wang, W. Gao, X. Wu et al., "Genome-wide characterization and expression analyses of *Pleurotus ostreatus* MYB transcription factors during developmental stages and under heat stress based on de novo sequenced genome," *International Journal of Molecular Sciences*, vol. 19, p. 2052, 2018.

[14] A. A. Abu-Seidah, "Secondary metabolites as co-markers in the taxonomy of *Aspergilli*,” *Acta Microbiologica Polonica*, vol. 52, p. 15, 2003.
M. Shimada and T. Nishida, “Advantage of using secondary metabolites in fungal chemotaxonomy,” *Australian Journal of Basic and Applied Sciences*, vol. 6, pp. 95–103, 2012.

D. M. Dimou, A. Georgala, M. Komaitis, and G. Aggelis, “Mycelial fatty acid composition of *Pleurotus* spp. and its application in the intrageneric differentiation,” *Myological Research*, vol. 106, pp. 925–929, 2002.

A. Synytysa, K. Mickova, A. Synytysa et al., “Glucans from fruit bodies of cultivated mushrooms *Pleurotus ostreatus* and *Pleurotus eryngii*: structure and potential prebiotic activity,” *Carbohydrate Polymers*, vol. 76, pp. 548–556, 2009.

C. L. Zhao, B. K. Cui, and Y. C. Dai, “New species and phylogeny of *Perenniporia* based on morphological and molecular characters,” *Fungal Diversity*, vol. 58, pp. 47–60, 2013.

M. Shimada and T. Nishida, “A modification of the PHYLIP program: a solution for the redundant cluster problem, and an implementation of an automatic bootstrapping on trees inferred from original data,” *Molecular Phylogenetics and Evolution*, vol. 109, pp. 409–414, 2017.

S. Urbanelli, V. Della Rosa, P. Funelli et al., “DNA-fingerprinting (AFLP and RFLP) for genotypic identification in species of the *Pleurotus eryngii* complex,” *Applied Microbiology and Biotechnology*, vol. 74, pp. 592–600, 2007.

J. Tamaoka and K. Komagata, “Determination of DNA base composition by reversed-phase high-performance liquid chromatography,” *FEMS Microbiology Letters*, vol. 25, pp. 125–128, 1984.

J. P. Metraux, “Thin-layer chromatography of neutral and acidic sugars from plant cell wall polysaccharides,” *Journal of Chromatography. A*, vol. 237, pp. 525–527, 1982.

V. A. Diez and A. Alvarez, “Compositional and nutritional studies on two wild edible mushrooms from Northwest Spain,” *Food Chemistry*, vol. 75, pp. 417–422, 2001.

M. Costa, L. Albuquerque, M. Nobre, and R. Wait, “The identification of polar lipids in prokaryotes,” *Methods in Microbiology*, vol. 38, pp. 165–181, 2011.

Z. F. Yan, P. Lin, C. T. Li, M. Kook, and T. H. Yi, “Scepolbaccillus cellulolysiticus sp. nov., a cellulose-degrading bacterium isolated from tea,” *Antonie Van Leeuwenhoek*, vol. 111, pp. 2087–2094, 2018.

C. M. Dupont and L. Kremer, “Extraction and purification of mycobacterial mycic acids,” *Bio-Protocol*, vol. 4, article e1265, 2014.

S. W. Tighe, P. de Lajudie, K. Dipietro, K. Lindström, G. Nick, and B. D. Jarvis, “Analysis of cellular fatty acids and phenotypic relationships of *Agrobacterium*, *Bradyrhizobium*, *Mesorhizobium*, *Rhizobium* and *Sinorhizobium* species using the Sherlock Microbial Identification System,” *International Journal of Systematic and Evolutionary Microbiology*, vol. 50, pp. 787–801, 2000.

M. Stajic, J. Sikorski, S. Wasser, and E. Nevo, “Genetic similarity and taxonomic relationships within the genus *Pleurotus* (higher basidiomycetes) determined by RAPD analysis,” *Mycotaxon*, vol. 93, pp. 247–255, 2005.

G. I. Zervakis, “Mating competence and biological species within the subgenus *Coremiopleurotus*,” *Mycolgia*, vol. 90, pp. 1063–1074, 1998.

S. A. Redhead and L. L. Norvell, “MycoBank, Index Fungorum, and fungal names recommended as official nomenclatural repositories for 2013,” *IMA Fungus*, vol. 3, pp. 44-45, 2012.

D. P. Bao, S. Kinugasa, and Y. Kitamoto, “The biological species of oyster mushrooms (*Pleurotus* spp.) from Asia based on mating compatibility tests,” *Journal of Wood Science*, vol. 50, pp. 162–168, 2003.

R. Petersen and I. Krisai-Grellhuber, “Type specimen studies in *Pleurotus*,” *Persoonia*, vol. 17, pp. 201–219, 1999.

R. Vilgalys and B. L. Sun, “Ancient and recent patterns of geographic speciation in the oyster mushroom *Pleurotus* revealed by phylogenetic analysis of ribosomal DNA sequences,” *Proceedings of the National Academy of Sciences*, vol. 91, pp. 4599–4603, 1994.

G. Zervakis, J. Sourdis, and C. Balis, “Genetic variability and systematics of eleven *Pleurotus* species based on isozyme analysis,” *Mycolological Research*, vol. 98, pp. 329–341, 1994.

E. Albert, R. Petersen, K. Hughes, and B. Lechner, “Miscellaneous notes on *Pleurotus*,” *Persoonia*, vol. 18, pp. 55–69, 2002.

L. Beatrice and Z. Georgios, “Molecular systematics of the genus *Pleurotus*: analysis of restriction polymorphisms in ribosomal DNA,” *Microbiology*, vol. 141, pp. 1479–1490, 1995.

R. Vilgalys, A. Smith, B. L. Sun, and O. K. Miller, “Intersterility groups in the *Pleurotus ostreatus* complex from the continental United States and adjacent Canada,” *Canadian Journal of Botany*, vol. 71, pp. 113–128, 1993.

Z. Georgios and C. Balis, “A pluralistic approach in the study of *Pleurotus* species with emphasis on compatibility and physiology of the European morphotaxa,” *Mycolological Research*, vol. 100, pp. 717–731, 1996.

G. Guzman, L. Montoya, G. Mata, and D. Salomones, “Studies in the genus *Pleurotus*. III. The varieties of *P. ostreatus*-complex based in interbreeding strains and in the study of basidiomata obtained in culture,” *Mycotaxon*, vol. 50, pp. 365–378, 1994.

R. Jbir, N. Hasnaoui, M. Mars, M. Marrakchi, and M. Tiri, “Characterization of Tunisian pomegranate (*Punica granatum* L.) cultivars using amplified fragment length polymorphism analysis,” *Scientia Horticulturae*, vol. 115, p. 231, 2008.

Y. A. El-Kassaby and K. Ritland, “Impact of selection and breeding on the genetic diversity in Douglas-fir,” *Biodiversity and Conservation*, vol. 5, pp. 795–813, 1996.

A. E. Estrada, M. Jimenez-Gasco Mdel, and D. J. Royse, “*Pleurotus eryngii* species complex: sequence analysis and phylogeny based on partial EF1alpha and RP2B genes,” *Fungal Biology*, vol. 114, pp. 421–428, 2010.

C. S. Qiu, W. J. Yan, L. Peng, W. Q. Deng, and T. H. Li, “Evaluation of growth characteristics and genetic diversity of commercial and stored lines of *Hypsiglossus marmoreus*,” *International Journal of Agricultural and Biology*, vol. 15, pp. 479–485, 2013.

S. Urbanelli, C. Fanelli, A. A. Fabbri et al., “Molecular genetic analysis of two taxa of the *Pleurotus eryngii* complex: *P. eryngii* (DC.Fr.) Quél. var. eryngii and *P. eryngii* (DC.Fr.) Quél. var. ferulacei,” *Biological Journal of the Linnean Society*, vol. 75, pp. 125–136, 2002.

P. Gonzalez and J. Labarère, “Phylogenetic relationships of *Pleurotus* species according to the sequence and secondary structure of the mitochondrial small-subunit rRNA V4, V6 and V9 domains,” *Microbiology*, vol. 146, pp. 209–221, 2000.

T. Boekhout, “A revision of ballistoconidia-forming yeasts and fungi,” *Studies in Mycology*, vol. 33, pp. 1–194, 1991.

E. Gueho, G. S. De Hoog, and M. T. Smith, “Neotypification of the genus *Trichosporon*,” *Antonie Van Leeuwenhoek*, vol. 61, pp. 285–288, 1992.
[48] C. X. Cui, L. I. Peng Fei, W. R. Cao, M. X. Dai, and Z. J. Xia, "Determination of the DNA G+ C mol% in type strain ST307 of prospectively new species of genus Chromohalobacter by reversed-phase high performance liquid chromatography," Biotechnology, vol. 20, pp. 42–45, 2010.

[49] J. Guarro, J. Gene, and A. M. Stchigel, "Developments in fungal taxonomy," Clinical Microbiology Reviews, vol. 12, pp. 454–500, 1999.

[50] N. Sifat, F. Lovely, S. M. N. K. Zihad et al., "Investigation of the nutritional value and antioxidant activities of common Bangladeshi edible mushrooms," Clinical Phytoscience, vol. 6, p. 88, 2020.

[51] N. Mm, M. Dr, and M. Ll, "Nutritional properties and value addition of mushroom: a review," The Pharma Innovation Journal, vol. 9, pp. 395–398, 2020.

[52] S. Patil, S. A. Ahmed, S. Telang, and M. Baig, "The nutritional value of Pleurotus ostreatus (Jacq.:Fr.) kumm cultivated on different lignocellulosic agrowastes," Innovative Romanian food biotechnology, vol. 7, pp. 66–76, 2010.

[53] M. P. Singh and V. K. Singh, "Yield performance and nutritional analysis of Pleurotus citrinopileatus on different agrowastes and vegetable wastes," in Proceedings of the 7th International Conference on Mushroom Biology and Mushroom Products, Arcachon, France, 2011.

[54] S. Yamashita, T. Seino, M. Inobe, M. Jutanom, and M. Kinoshita, "Polar lipid fraction from golden oyster mushrooms (Pleurotus citrinopileatus) suppresses colon injuries from inflammatory stresses in vivo and in vitro," Journal of Oleo Science, vol. 69, pp. 751–757, 2020.

[55] H. Yu, G. Zeng, H. Huang et al., "Microbial community succession and lignocellulose degradation during agricultural waste composting," Biodegradation, vol. 18, pp. 793–802, 2007.

[56] D. E. Minnikin, I. G. Hutchinson, A. B. Caldicott, and M. Goodfellow, "Thin-layer chromatography of methanolysates of mycolic acid-containing bacteria," Journal of Chromatography. A, vol. 188, pp. 221–233, 1980.

[57] S. Renganathan and S. G. Raj, "Molecular characterization and phytochemical studies of Pleurotus sp to unveil species diversity and pharmacological activities," Journal of Pure and Applied Microbiology, vol. 11, pp. 891–901, 2017.

[58] A. Barh, V. P. Sharma, S. K. Annepu, S. Kamal, S. Sharma, and P. Bhatt, "Genetic improvement in Pleurotus (oyster mushroom): a review," Biotech, vol. 9, p. 322, 2019.

[59] Z. Zhang, J. Wen, J. Li et al., "The evolution of genomic and epigenomic features in two Pleurotus fungi," Scientific reports, vol. 8, p. 8313, 2018.

[60] Y. Dai, L. Sun, X. Yin, M. Gao, and Y. Zhao, "Pleurotus eryngii genomes reveal evolution and adaptation to the Gobi desert environment," Frontiers in Microbiology, vol. 10, pp. 2024–2024, 2019.

[61] Y. Y. Lee, G. Vidal-Diez de Ulzurrun, E. M. Schwarz, J. E. Stajich, and Y. P. Hsueh, "Genome sequence of the oyster mushroom Pleurotus ostreatus strain PC9," G3 Genes|Genomes|Genetics, vol. 11, article jkaa008, 2020.

[62] G. Vidal-Diez de Ulzurrun, Y. Y. Lee, J. E. Stajich, E. M. Schwarz, and Y. P. Hsueh, "Genomic analyses of two Italian oyster mushroom Pleurotus pulmonarius strains," G3 Genes|Genomes|Genetics, vol. 11, article jkaa007, 2021.