Effect of anesthetics on gastric damage using two models of portal hypertension

Paula RS Câmara, Gisele P Moi, José Geraldo P Ferraz, José Murilo R Zeitune

Abstract

AIM: To investigate the effect of sodium pentobarbitone (SP) or ketamine/xylazine (KX) anesthetics on acute gastric injury.

METHODS: Portal hypertension was induced by bile duct ligation (BDL) or portal vein stenosis (PVS). Ethanol (EtOH)-induced gastric damage was assessed using ex vivo gastric chamber experiments. Gastric blood flow (GBF) was also measured by laser doppler flowmetry.

RESULTS: EtOH-induced gastric damage was reduced in BDL rats under KX anesthesia in comparison to those under SP anesthesia. GBF dysfunction in fasted BDL rats was partially restored under KX anesthesia. In contrast, in fasted PVS rats, EtOH-induced gastric damage was increased under KX anesthesia while GBF was reduced.

CONCLUSION: The use of KX anesthesia in experimental procedures involving cirrhotic rats (but not those with pure portal hypertension) is preferable to SP anesthesia.

© 2010 Baishideng. All rights reserved.

Key words: Sodium pentobarbitone; Portal hypertension; Cirrhosis; Gastric damage; Ketamine/xylazine

Peer reviewer: Reidar Fossmark, MD, PhD, Department of Gastroenterology and Hepatology, St. Olav’s Hospital, Olav Kyrre’s gate 17, Trondheim N-7006, Norway

Câmara PRS, Moi GP, Ferraz JGP, Zeitune JMR. Effect of anesthetics on gastric damage using two models of portal hypertension. World J Gastrointest Pharmacol Ther 2010; 1(4): 81-86. Available from: URL: http://www.wjgnet.com/2150-5349/full/v1/i4/81.htm DOI: http://dx.doi.org/10.4292/wjgpt.v1.i4.81

INTRODUCTION

The use of anesthetics can differentially affect a number of physiological parameters (cardiovascular, metabolic and hemodynamic) in experimental models. As such, the use of certain anesthetics can affect the outcome of studies and different therapeutic interventions may be influenced by different anesthetic approaches. Ketamine is usually used as a short-acting anesthetic and analgesic agent that induces a trance-like anesthetic state known as dissociative anesthesia in both animals and humans. Xylazine is considered safe when used alone or in combination with other anesthetics and analgesics such as ketamine or isoflurane in animal research. Co-administration of ketamine with xylazine (KX) is a routine anesthetic regimen for domestic and laboratory animals including mice and rats. The sedative and muscle-relaxing properties of xylazine are beneficial in reducing side
effects of ketamine such as tremor and muscle rigidity. Recent research has revealed that KX may influence some physiological responses to surgical procedures or drug effects in small laboratory animals. In comparison to other anesthetics, it has been reported that KX increases the infarct size in cerebral ischemia, induces hyperglycemia in fed rodents, reduces TNF-α expression in rat spleen and influences lipopolysaccharide-induced endotoxemia. Some anesthetics have cardio- or renoprotective effects which may be relevant to designing ischemia-reperfusion protocols. They can affect the systemic hemodynamic and may induce moderate to severe tissue damage.

The laboratorial use of anesthetic agents such as ketamine associated with xylazine (KX) and sodium pentobarbitone (SP) could induce alterations of gastric blood flow (GBF) in portal hypertensive rats. In addition, special attention to GBF during anesthesia in the cirrhotic rats’ model could be important since the anesthetic agents could be worsening the gastric mucosa damage. This study aimed to evaluate the KX and SP anesthetic effects on GBF and ethanol (EtOH)-induced gastric damage in portal hypertensive rats.

MATERIALS AND METHODS

Animals
Male Sprague-Dawley rats (200-250 g) provided by the Animal House of the State University of Campinas were used in all experiments. They were housed in plastic cages and had free access to water and standard pellet chow. The experimental protocols were approved by the Ethical Principles in Animal Research adopted by the Brazilian College for Animal Experimentation.

Induction of portal hypertension
Portal hypertension was induced in male Sprague-Dawley rats anesthetized with either a mix of ketamine plus xylazine (100:10 mg/kg; ip) or SP (25-50 mg/kg; ip) using two procedures. Prehepatic portal hypertension was provoked by portal vein stenosis (PVS) according to Chojkier et al. (1981). The portal vein was isolated and a stenosis created by placing a single ligature of a 3-0 silk around both the portal vein and a 20-gauge blunt-tipped needle. The needle was then removed from the ligation, creating a calibrated constriction of the portal vein. In another experimental group, biliary cirrhosis induced intrahepatic portal hypertension was induced by common bile duct ligation (BDL) as described by Lee et al. (1986). Briefly, BDL was performed by isolating the common bile duct and placing two 4-0 sutures proximal/distal to the porta hepatitis. Next, a 5-10 mm segment between ligatures was resected. The abdomen was then sutured with 4-0 silk and the animals were allowed to recover. Controls had a sham operation. Experiments were performed 2 or 4 wk following surgery when pure portal hypertension and liver cirrhosis were established respectively.

Ethanol-induced gastric damage
Gastric resistance to a 40% EtOH-induced injury was investigated using an ex vivo gastric chamber preparation. Rats were fasted for 16 h prior to the procedure. Rats were anesthetized by SP or ketamine plus xylazine and placed over a heating pad connected to a rectal probe (Harvard Apparatus, Holliston, MS) to maintain body temperature at 37°C. The stomach was exposed following a midline laparotomy and opened with an incision along the greater curvature. It was pinned over a plexiglass platform and clamped with a plexiglass cylinder. The experiments consisted of six periods of 10 min each. The mucosa was bathed with phosphate buffered saline for two periods followed by 40% ethanol for one period and then HCl at pH 1.5 for three periods. All solutions were at 37°C when added to the chamber and continuously stirred at 200 r/m. The stomach was photographed at the end of experiments and damage (percent total glandular mucosa) analyzed using computerized planimetry by an observer blinded to the different treatment groups.

GBF was measured using laser-Doppler flowmetry and the ex vivo gastric chamber preparation. A pencil probe (type N, penetration 1 mm, Transonic, Ithaca, NY) connected to a flowmeter (BLF 21D, Transonic, Ithaca, NY) was placed over the corpus. The preparation was equilibrated for 5 min. Basal GBF was then recorded for 5 min. The stomach was photographed at the end of experiments and damage (percent total glandular mucosa) analyzed using computerized planimetry by an observer blinded to the different treatment groups.

Drugs/chemicals
All drugs were of analytical grade. SP (Hypnol®, Cristalia), Xylazine (Rompun®, Bayer) and ketamine (Ketalar®, Parke-Davis) were used as clinically available preparations.

Statistical analysis
Data are expressed as mean ± SEM and comparisons among groups (n = 5) were analyzed by one-way ANOVA followed by the Student’s Newman-Keul’s test for multiple comparisons. Statistical significance was considered when P < 0.05.

RESULTS

Effects of anesthetics on ethanol-induced injury in rats with portal hypertension
In control animals under SP or KX anesthesia, topical application of ethanol produced minimal gastric damage (20% ± 3%; n = 5, Figure 1). This was associated with a reduction in GBF followed by a hyperemic response when the mucosa was bathed with HCl (Figure 2A).

In BDL rats under SP anesthesia, the EtOH-induced damage increased over the control value to 76% ± 4% (n = 5; Figure 1). However significant (P < 0.001) protection in gastric damage was obtained when BDL rats were anesthetized with KX (50% ± 6%; n = 5; Figure 1). This was associated with the development of a hyperemic response to ethanol in BDL.

Gastric blood flow measurement
GBF was measured using laser-Doppler flowmetry and the ex vivo gastric chamber preparation. A pencil probe (type N, penetration 1 mm, Transonic, Ithaca, NY) connected to a flowmeter (BLF 21D, Transonic, Ithaca, NY) was placed over the corpus. The preparation was equilibrated for 5 min. Basal GBF was then recorded for 5 min. The stomach was photographed at the end of experiments and damage (percent total glandular mucosa) analyzed using computerized planimetry by an observer blinded to the different treatment groups.
In contrast to SP anesthesia, higher EtOH-induced gastric damage was observed in PVS rats under KX anesthesia (16% ± 3% for KX vs 5% ± 2% for SP; n = 5; Figure 1).

Effects of anesthetics on gastric blood flow

The effects of anesthetics on GBF responses submitted to 40% EtOH-induced injury were investigated in control and portal hypertensive rats. Control animals under SP or KX anesthesia did not show a difference in hyperemic responses (n = 5, Figure 2A). In BDL rats under SP anesthesia, any changes in GBF were observed throughout the experiments. On the other hand, KX anesthesia partially restored GBF dysfunction in BDL rats, contributing to the reduced gastric damage observed (n = 5, Figure 2B).

In contrast, KX anesthesia lowered GBF in PVS rats. This was associated with reduced hyperemic response to topical application of 40% ethanol over the gastric mucosa. However, under SP anesthesia GBF was increased in PVS rats (n = 5, Figure 2C).

DISCUSSION

This study demonstrates that sodium pentobarbitone (SP) and Ketamine/Xylazine (KX) anesthetics have significantly different effects on GBF in fasted portal hypertensive rats. The cirrhotic rats (e.g. BDL rats) treated under KX anesthesia had less gastric mucosal damage from ethanol stimulus. While the specific process by which KX anesthetics affect GBF is unknown, previous studies demonstrate that glucose levels are improved under treatment with KX anesthetics (via α2-adrenergic receptor activation) and in turn the glucose acts to impair vagal activity in the stomach. Therefore, it suggests that the increase of glucose serves to increase the pressure of GBF.

Physiological changes in the blood glucose concentration have been reported to modulate gastrointestinal motor function, particularly stomach motor function. For example, hyperglycemia has been documented to exert an inhibitory effect on gastric function under a number of experimental conditions and in a wide range of species.

The mechanism responsible for hyperglycemia-induced inhibition of gastric motility remains unclear. In terms of mechanism, it has been proposed by several investigators that glucose acts to impair vagal activity to the stomach. In addition, there are some studies showing that systematically administered glucose produces a decrease in efferent activity of the gastric vagus nerve. Moreover, it has been proposed that glucose acts in the hepatic portal area to inhibit hepatic afferent nerve traffic to the brain which results in a reflex reduction in efferent activity of the gastric vagus nerve. It has also been proposed that glucose acts in the brain to alter control of vagal mediated gastric motility.

Xylazine is analogue of clonidine and its effect as a α2-adrenergic agonist is known. It has been reported that activation of α2-adrenoceptor can increase, decrease or not change the levels of glucagon. Increased glucagon levels associated with decreased insulin levels may account for hyperglycemic effect of KX. In rats, xylazine increases urine flow rate by activating of the α2-adrenergic receptors in hypothalamic paraventricular nucleus which in turn decreases vasopressin release. Saha et al (2005) demonstrated that KX anesthetic increases blood glucose in fasted rats. It suggests that the acute hyperglycemia effect of KX reflects, in part, α2-adrenoceptor-dependent changes of glucoregulatory hormones including insulin, growth hormone, adrenocorticotropic hormone and corticosterone. Ketamine also induces changes in GBF. Rodrigues et al (2006) demonstrated that KX anesthesia reduced the constrictor effect of noradrenaline in mesenteric arterioles when compared to chloral hydrate anesthesia. The reduction may be explained by a direct effect of ketamine on vascular smooth muscle cells causing relaxation. Hence, this inhibition of contraction can be caused by agonists. It has been demonstrated in isolated aorta and in the mesenteric artery. These effects are primarily caused by the reduc-
A reduction in gastric blood flow (GBF) was observed in control rats followed by hyperemic response to topical ethanol administration. In contrast, when SP was administered in BDL rats, any changes in hyporesponsive GBF followed topical ethanol administration. In control KX in BDL rats partially restored the hyperemic gastric blood flow (GBF) promoted by ketamine. However, the effect was reduced in the KX-anesthetized rats. It occurred independent of the NO release reduction that it promoted by ketamine. The data of the research suggest that administration of KX in BDL rats partially restored the hyperemic gastric response to topical ethanol administration. In contrast, when SP was administered in BDL rats, any changes in hyporesponsive GBF followed topical ethanol administration.

The gastric mucosa of the PVS rats group responded differently to anesthetic treatments. Naturally, the PVS rats group have elevated GBF because of the presence of excessive vasoactive mediators. However, under KX anesthesia it was observed that the GBF is reduced in PVS rats whereas the high GBF of PVS rats under SP anesthesia was not altered. The high GBF protected the gastric mucosa from damage stimulus caused by topical ethanol administration.

PVS and common BDL are models used to evaluate portal hypertension in rats. However, the effects of ethanol on portal hypertensive gastric mucosa are different between these models. GBF differs between the models under SP anesthesia. Thus it is suspected that links exist between liver damage, the pentobarbital anesthesia and levels of vasoconstrictor mediators. Pentobarbital has important vascular effects in rats with portal hypertension and cirrhosis.

Studies have shown different results under the two models of portal hypertensive gastropathy: in the BDL model there is evidence of alterations of basal hemodynamic parameters which augment the gastric lesions. These lesions were reduced in the PVS model. The low damage resistance in the BDL group could be due to the fact that, at the same time, the liver is involved and the pentobarbital anesthesia was used.

In animal models, it is generally assumed that the physiological parameters under general anesthesia represent the basal state of the animal (before institution of the disease model). However, the anesthetic category can variably affect cardiovascular, neurohumoral and behavioral parameters. Similarly, if the fed and fasted states of animals are chosen arbitrarily, it may cause several changes in physiological parameters. Therefore, it is possible that the anesthetic category and/or fed and fasted states of animals used in the studies with different therapeutic interventions can influence the results.

This study suggests that are significant differences in the GBF and gastric damage after intraperitoneal injection of the anesthetic agents between PVS and common BDL models. In the latter model, the rats under SP anesthesia did not show any changes in GBF although it increased gastric damage. On the other hand, ketamine associated with xylazine (KX) anesthesia was able to partially restore GBF dysfunction in BDL rats, contributing to the reduced gastric damage.

The use of KX anesthesia in BDL model should be preferred to SP anesthesia, demonstrating that the choice of appropriate anesthetics should avoid misleading interpretation of experimental data.

Data from this research suggest that the choice of appropriate anesthetics in experimental models of portal hypertension present extreme relevance and should be taken in to consideration before the completion of these studies in order to avoid misleading interpretation of the data.

COMMENTS

Background

Portal vein obstruction can cause portal hypertension and other clinical disorders.
such as severe hemorrhage. So, it is very important to prevent hemorrhages in gastrointestinal surgical procedures. In addition, many kinds of drugs have vasoactive actions such as vasodilatation or vasoconstriction. Anesthetics are vasoactive drugs and should be used carefully in gastrointestinal surgical procedures due to side effects on gastric mucosal blood flow. In this work, the better anesthetic to use in surgery of the gastric mucosa of portal hypertensive rats was suggested.

Research frontiers

Ketamine/xylazine (KX) and sodium pentobarbitone (SP) are two anesthetics for experimental and medical use. In the area of preventing gastric hemorrhage and simultaneously reduce gastric damage, the effects of these anesthetics on gastric blood flow (GBF) response to 40% ethanol-induced injury were investigated in control and portal hypertensive rats using laser doppler flowmetry and gastric chamber techniques.

Innovations and breakthroughs

In order to reduce gastric damage and improve GBF from portal hypertensive rats, the rat gastric mucosa was submitted to ethanol stimulus under two different kinds of anesthetics. Bleeding and gastric damage in bile duct ligation (BDL) rats were reduced under KX anesthesia but not in pure portal hypertension. On the other hand, bleeding and gastric damage were increased in BDL rats under SP anesthesia while the GBF was reduced. The present study shows that the use of inappropriate anesthetic can aggravate gastric damage in portal hypertensive rats.

Applications

The results of this study suggest that the use of KX in experimental procedures involving cirrhotic rats is preferable to SP anesthesia, demonstrating that the choice of appropriate anesthetics should avoid misleading interpretations of experimental data.

Terminology

Portal Hypertensive Gastroopathy (PHG) is a subclinical entity from portal hypertension and it can cause severe hemorrhage. BDL and portal vein stenosis inappropriate anesthetic can aggravate gastric damage in portal hypertensive rats.

Peer review

This is a good descriptive study in which the authors analyze the effect of two different kinds of anesthetic drugs on gastric damage induced by ethanol in rats. The results are interesting and suggest that KX is a potential anesthetic that could be the better choice to reduce gastric hemorrhage in surgical procedures in PHG.

REFERENCES

1. Wixon SK, White WJ, Hughes HC Jr, Lang CM, Marshall WK. The effects of pentobarbital, fentanyl-droperidol, ketamine-xylazine and ketamine-diazepam on arterial blood pH, blood gases, mean arterial blood pressure and heart rate in adult male rats. *Lab Anim* 1997; 31:736-742

2. Rastaldo R, Penna C, Pagliaro P. Comparison between the effects of pentobarbital or ketamine/nitrous oxide anesthesia on metabolic and endothelial components of coronary reactive hyperemia. *Life Sci* 2001; 69:729-738

3. Brookes ZL, Brown NJ, Reilly CS. Response of the rat cremaster microcirculation to hemorrhage in vivo: differential effects of intravenous anesthetic agents. *Shock* 2002; 18:542-548

4. Bergman SA. Ketamine: review of its pharmacology and its use in pediatric anesthesia. *Anesth Prog* 1999; 46:10-20

5. Sumitra M, Manikanand P, Rao KV, Nayeem M, Manohar BM, Puvananakrishnan R. Cardiorespiratory effects of diazepam-ketamine, xylazine-ketamine and thiopeptone anesthesia in male Wistar rats--a comparative analysis. *Life Sci* 2004; 75: 1887-1896

6. Wright M. Pharmacologic effects of ketamine and its use in veterinary medicine. *J Am Vet Med Assoc* 1982; 180: 1462-1471

7. Lei H, Grinberg O, Nwaigwe CI, Hou HG, Williams H, Swartz HM, Dunn JF. The effects of ketamine-xylazine anesthetics on cerebral blood flow and oxygenation observed using nuclear magnetic resonance perfusion imaging and electron paramagnetic resonance oximetry. *Brain Res* 2001, 913:174-179

8. Kawai N, Keep RF, Betz AL. Hyperglycemia and the vascular effects of cerebral ischemia. *Stroke* 1997; 28: 149-154

9. Saha JK, Xia J, Grondin JM, Engle SK, Jakubowski JA. Acute hyperglycemia induced by ketamine/xylazine anesthesia in rats: mechanisms and implications for preclinical models. *Exp Biol Med* (Maywood) 2005; 230: 777-784

10. Bette M, Schlinnie S, Mutters R, Menendez S, Hoffmann S, Schultz S. Influence of different anesthetics on pre-inflammatory cytokine expression in rat spleen. *Lab Anim* 2004; 38: 272-279

11. Helmers KS, Cui Y, Chang I, Dewan A, Mercer DW. Effects of ketamine/xylazine on expression of tumor necrosis factor-alpha, inducible nitric oxide synthase, and cyclo-oxygenase-2 in rat gastric mucosa during endotoxemia. *Shock* 2003; 20: 65-69

12. Saha DC, Saha AC, Malik G, Astiz ME, Raczek EC. Comparison of cardiovascular effects of tiletamine-zolazepam, pentobarbital, and ketamine/xylazine in male rats. *J Am Assoc Lab Anim Sci* 2007; 46: 74-80

13. Lee HT, Ota-Setlik A, Fu Y, Naar SH, Emala CW. Differential protective effects of volatile anesthetics against renal ischemia-reperfusion injury in vivo. *Anesthesiology* 2004; 101: 1313-1324

14. Jansen BJ, De Celle T, Debets JJ, Brouns AE, Callahan MF, Smith TL. Effects of anesthetics on systemic hemodynamics in mice. *Am J Physiol Heart Circ Physiol* 2004; 287: H1618-H1624

15. Smiler KL, Stein S, Hrapikewicz KL, Hiben JR. Tissue response to intramuscular and intraperitoneal injections of ketamine and xylazine in rats. *Lab Anim Sci* 1990; 40: 60-64

16. Chojkier M, Grozszmann R. Measurement of portal-systemic shunting in the rat by using gamma-labeled microspheres. *Am J Physiol* 1981; 240: G379-G375

17. Lee SS, Bailloum A, Girod C, Geoffrroy P, Lebrec D. Haemodynamic rebound phenomena after abrupt cessation of propranolol therapy in portal hypertensive rats. *J Hepatol* 1986; 3: 38-41

18. Ferraz JG, Tigley AW, Appleyard CB, Wallace JL. TNF-alpha contributes to the pathogenesis of ethanol-induced gastric damage in cirrhotic rats. *Am J Physiol 1997; 272: C689-C684

19. Camara PR, Ferraz GJ, Franco-Penteado CF, Sbragia-Neto L, Meirelles LR, Teixeira SA, Muscara MN, Velloso LA, Antunes E, Ferraz JG. Ablation of primary afferent neurons by neonatal capsaicin treatment reduces the susceptibility of the portal hypertensive gastric mucosa to ethanol-induced injury in cirrhotic rats. *Eur J Pharmacol* 2008; 589: 245-250

20. Shi M, Jones AR, Niedergangus MS, Pearson RJ, Biehl AM, Ferreira M Jr, Sahibzad N, Verbalis JG, Gilliss RA. Glucose acts in the CNS to regulate gastric motility during hyperglycemia. *Am J Physiol Regul Integr Comp Physiol* 2003; 285: R1192-R1202

21. de Boer SY, Mascele AA, Lamers CB. Effect of hyperglycemia on gastrointestinal and gallbladder motility. *Scand J Gastroen* 1992; 194: 13-18

22. Jones KL, Kong MF, Berry MK, Rayner CK, Adamson U, Horowitz M. The effect of erythromycin on gastric emptying is modified by physiological changes in the blood glucose concentration. *Am J Gastroenterol* 1999; 94: 2074-2079

23. Samsom M, Akkermans LM, Jebbink RJ, van Isselt H, van Berge-Henegouwen GP, Smout AJ. Gastrointestinal motor mechanisms in hyperglycaemia induced delayed gastric emptying in type I diabetes mellitus. *Gut* 1997; 40: 641-646

24. Ishiguchi T, Nakajima M, Sone H, Tada H, Kumagai AK, Takahashi T. Gastric distension-induced pyloric relaxation: central nervous system regulation and effects of acute hyperglycaemia in the rat. *J Physiol* 2001; 533: 801-813

25. Ishiguchi T, Tada H, Nakagawa K, Yamamura T, Takahashi T. Hyperglycemia impairs antro-pyloric coordination and delays gastric emptying in conscious rats. *Autonomic Neuroscience: Basic and Clinical* 2002; 95: 112-120

26. Sakaguchi T, Yamaguchi K. Changes in efferent activities of the gastric vagus nerve in administration of glucose in the portal vein. *Experientia* 1979; 35: 875-876

27. Hirano T, Niijima A. Effects of 2-deoxy-D-glucose, glucose and insulin on efferent activity in gastric vagus nerve. *Experi-
Câmara PRS et al. Anesthetic effects on gastric damage models

28 Sakaguchi T, Shimojo E. Inhibition of gastric motility induced by hepatic portal injections of D-glucose and its anomers. *J Physiol* 1984; 351: 573-581

29 Sakaguchi T, Taguchi T, Okuda J. Different effects of D-glucose anomers on enhanced motility of the stomach. *Biochem Int* 1983; 7: 299-305

30 Ferreira MJr, Browning KN, Sahibzada N, Verbalis JG, Gillis RA, Travagli RA. Glucose effects on gastric motility and tone evoked from the rat dorsal vagal complex. *J Physiol* 2001; 536: 141-152

31 Saito M, Saitoh T, Inoue S. Alpha 2-adrenergic modulation of pancreatic glucagon secretion in rats. *Physiol Behav* 1992; 51: 1165-1171

32 Velliquette RA, Ernsberger P. The role of I(1)-imidazoline and alpha(2)-adrenergic receptors in the modulation of glucose metabolism in the spontaneously hypertensive obese rat model of metabolic syndrome X. *J Pharmacol Exp Ther* 2003; 306: 646-657

33 Cabral AD, Kapusta DR, Kenigs V, Varner KJ. Central alpha2-receptor mechanisms contribute to enhanced renal responses during ketamine-xylazine anesthesia. *Am J Physiol* 1998; 275: R1867-R1874

34 Kasuya E, Hodate K, Matsumoto M, Sakaguchi M, Hashizume T, Kanematsu S. The effects of xylazine on plasma concentrations of growth hormone, insulin-like growth factor-I, glucose and insulin in calves. *Endocr J* 1996; 43: 145-149

35 Hampshire J, Altszuler N. Clonidine or xylazine as provocative tests for growth hormone secretion in the dog. *Am J Vet Res* 1981; 42: 1073-1076

36 Rodrigues SF, de Oliveira MA, Martins JO, Sannomiya P, de Cassia Tostes R, Nigro D, Carvalho MH, Fortes ZB. Differential effects of chloral hydrate- and ketamine/xylazine-induced anesthesia by the s.c. route. *Life Sci* 2006; 79: 1630-1637

37 Longnecker DE, Miller FN, Harris PD. Small artery and vein response to ketamine HCl in the bat wing. *Anesth Analg* 1974; 53: 64-68

38 Wendling WW, Daniels FB, Chen D, Harakal C, Carlsson C. Ketamine directly dilates bovine cerebral arteries by acting as a calcium entry blocker. *J Neurosurg Anesthesiol* 1994; 6: 186-192

39 Yamanaka I, Dowe DG. The effects of ketamine on spiral-cut strips of rabbit aorta. *Anesthesiology* 1974; 40: 222-227

40 Kannura Y, Kajikuri J, Itoh T, Yoshitake J. Effects of ketamine on contraction and synthesis of inositol 1,4,5-trisphosphate in smooth muscle of the rabbit mesenteric artery. *Anesthesiology* 1993; 79: 571-579

41 Yamazaki M, Ito Y, Kuze S, Shibuya N, Momose Y. Effects of ketamine on voltage-dependent Ca2+ currents in single smooth muscle cells from rabbit portal vein. *Pharmacology* 1992; 45: 162-169

42 Miyawaki I, Nakamura K, Terasako K, Toda H, Kakuyama M, Mori K. Modification of endothelium-dependent relaxation by propofol, ketamine, and midazolam. *Anesth Analg* 1995; 81: 474-479

43 Ohta M, Kishihara F, Hashizume M, Kawanaka H, Tomikawa M, Higashi H, Tanoue K, Sugimachi K. Increased prostacyclin content in gastric mucosa of cirrhotic patients with portal hypertensive gastropathy. *Prostaglandins Leukot Essent Fatty Acids* 1995; 53: 41-45

44 Lee SS, Girod C, Valla D, Geoffroy P, Lebrec D. Effects of pentobarbital sodium anesthesia on splanchnic hemodynamics of normal and portal-hypertensive rats. *Am J Physiol* 1985; 249: G528-G532

S-Editor Li LF L-Editor Roemmele A E-Editor Yang C