Foreign body in the ear, nose and throat in children: A five year review in Niger delta

Matilda U. Ibekwe, Lucky O. Onotai, Barbara Otaigbe

ABSTRACT

Background: Foreign body (FB) injury in children is becoming increasingly common in developing countries. Children tend to be curious and exploratory hence the easily accessible orifices tend to be at risk of this form of injury. This study is to determine the prevalence, treatment outcome and complication of foreign body injury to the ear, nose and throat in children.

Materials and Methods: A retrospective study of all pediatric patients with FB in the ear, nose and throat (ENT) seen at the ENT surgery department and children emergency ward of our institution from January 2004 to December 2008. Demographic and clinical data were obtained from records of the patients and analyzed. Results: There were 202 children with ENT injuries within the period under study, 181 (89.60%) had FB injuries. There were 94 males (51.93%), 87 females (48.07%) male:female ratio of 1.1:1. Age ranged from 2 months -15 years with a mean of 3.71 ± 2.59 years, a mode of 3 years. Most of the patients were below age seven years, highest in the range 0-3 years (61.8%). The nose recorded the highest injury 88 (48.62%). Commonest FB was ornamental bead 51 (28.17%) found both in the ear and the nose. Fish bone constituted the highest FB in the laryngotraceobronchial (LTB) tree and the oesophagus. Twenty-three cases (12.7%) had emergency tracheostomy done. Conclusion: Foreign body injuries constitute a significant portion of pediatric ENT trauma in clinical practice. The under 3 years are most affected. There is need for more public education of parents and care givers so as to prevent this avoidable injury.

Key words: Ear nose and throat, foreign body, Niger delta

INTRODUCTION

Children are curious and exploratory hence foreign body (FB) in the ear, nose and throat is a common clinical problem encountered in children.[1] They either inserts, swallows them or the FB introduced into them by their playmates.[1]

FB injury is an avoidable cause of morbidity and mortality in children[2] and constitutes the commonest cause of Ear, Nose and Throat (ENT) emergencies.[2] They are known to cause serious complications.[3] FB in the ear and nose are easily removed in the clinic.[4] Aspirated FB is one of the common causes of upper airway obstruction in children. Suffocation due to FB is a leading cause of death in children aged 0-3 years.[5] Children in the bid to discover their environment are prone to this form of injuries.[6] Clue to FB aspiration could be sudden cough, choking, dyspnoea and stridor.[6,7] Earlier works in Lagos studied otologic[8] and laryngeal[9] FB in children while other studies in Jos,[10] Osogbo[11] and Ilorin[12] examined ENT injury in children. Paucity of information on FB injury in children in our environment necessitated this study to determine the prevalence, pattern and possible factors responsible for morbidity and mortality associated with FB injuries in children in our environment.

MATERIALS AND METHODS

This is a retrospective study of all pediatric patients with foreign body in the ear, nose and throat seen at the ENT surgery department within the period of January 2004 to December 2008. The institution has the largest ENT centre in the state, therefore, caters for most of the ENT cases in the city and its' surrounding areas of the Niger Delta. The ENT out-patient clinic, children emergency ward and the theatre were the sources of the data collection. The patient’s medical records were analyzed for age, sex, the type of FB, presentations, treatment, complications and outcome. Those patients that had trauma to the ear, nose and throat without
There were 202 children with various ENT traumas seen within this period and 181 of these were from foreign bodies in the ear, nose and throat. FB injuries accounted for 89.60% of patients with ENT trauma. There were 94 males (51.9%) and 87 females (48.1%) with a male:female ratio of 1.1:1. The age range was from 2 months to 15 years with a mode of 3 years and mean; 3.71 ± 2.59. The majority of the patients were in the age range 0-3 years (61.88%) [Table 1].

In Table 2, the nose had the highest lodgments 88 (48.62%) while the pharynx had the least (1.7%). Ornamental bead constituted the commonest FB in this study Overall, 51 (28.2%) was the most common in the nose and the ears. Fishbone was highest in the laryngotracheobronchial (LTB) and oesophagus. Majority of the FB in the 0-3 years was nasal, however almost all the FB in the LTB, 22 (88%) was in this group [Table 3]. While most patients with FB in the LTB presented with difficulty in breathing (80%), nasal FB presented mainly with rhinorrhoea, [Table 4]. There were emergency tracheostomy operations in 23 (12.7%). The foreign bodies were mostly removed without sequale; most of the complications were in the ear and nose [Table 5].

Plain radiograph of the lateral soft tissue neck and chest was done in all the oesophageal and LTB cases 32, one pharyngeal and two nasal FB. There was positive findings in about 27 (77.14%) and negative findings in 5 (14.28%) of all the 35 cases in which radiographs were required. In the LTB foreign bodies, opacity were found in 3 (12.5%) only, findings were more of emphysema and soft tissue-like shadows [Table 6]. FB in the LTB tends to present within the first 48 hours (88%) while the nasal and otologic FB (60%) presented within one week or more after incident.

DISCUSSION

Foreign body injuries accounted for 89.60% of patients with ENT trauma seen during the study period, an indication that this is quite common in our environment. In this study, there were more males than females [11-13] this could be due to the more physical and adventurous nature of the males than their female
Ibekwe, et al.: Ear, nose and throat foreign body in children

with respiratory difficulty. This is likely due to the FB in the pharynx and oesophagus causing compression to the airway. About 27.62% presented with complaint of FB insertion, ingestion or inhalation.

Distribution of location according to age showed that majority of the FB in the 0-3 years was nasal, however almost all the FB in the LTB was in this group. It is known that in children under 3 years, underdeveloped swallowing mechanism and 2nd molar with inability to grind food well makes them susceptible to foreign body inhalation.[23] Most of the emergency tracheostomy was also in this age group. It appears that FB is the commonest cause of upper airway obstruction in this study in contrast to previous studies in Ibadan[24] and Ilorin[25] where juvenile papilloma was the commonest cause.

There were 23(12.7%) emergency tracheostomy operations done in children with severe respiratory distress. These were found to be mostly patients with FB in the LTB and pharynx that presented late. Majority were in the larynx and trachea. Therefore to reduce mortality in these children there was need to secure airway first before attempt at extraction.[26] The bulk of the patients were found to present after 24 hours of injury. Majority with FB in the LTB presented within the first 48 hours of event, this is not too different with findings in a study in India[27] where 60% presented within 24 hours of aspiration however it is in contrast with an earlier local study where most of the children were brought in several days after incident.[28] In the nose, the presentation was usually after one week with some seen as incidental finding following chronic rhinitis.

Diagnosis of FB in ear and nose was mainly clinical, however for LTB, pharynx and oesophageal foreign bodies, minimum of plain radiograph of the area is required besides the clinician's high index of suspicion.[29-31] In the LTB, X-ray lateral soft tissue neck may show soft tissue-like shadows in the larynx and trachea most often or in metallic FB, opacity.

The treatment for most of these patients with FB in the LTB and oesophagus was examination under anaesthesia and rigid endoscopic removal [32,33] this was contrast to some other studies where balloon extraction[20] and flexible endoscopy were used. [34,35] The decision to use flexible or rigid endoscopy is often based on the type of foreign body, the large sharp FB are best removed using rigid scopes, experience of the surgeon. The availability is also determinant of what type to use. In our centre there is no flexible scope for FB removal. There are studies however that shows there

Table 5: Complications
Type of complication
Rhinitis
Bronchopneumonia
Suppurative otitis media
Otitis externa
Cranial nerve palsy
Deviated nasal septum
Alar collapse
Failed extraction
Mortality

LTB: Laryngotracheobronchial

Table 6: X-ray findings
X-ray
Opaque objects
Emphysema
Soft tissue shadow
Airoesophagogram
Pneumonic changes

LTB: Laryngotracheobronchial

counterpart. The age group 0-3 years accounted for most of the FB (61.8%).[7,11]

The commonest FB was ornamental bead 28.18%. This is very commonly used by parents to beautify their children's hair. It is also found as bullet in some toy guns and constituted the highest FB found both in the nose and the ear. This is in contrast to some earlier studies where coin was found to be the highest.[14-17] Coin is rarely in use presently in this country, and this may explain its absence as FB in the LTB and oesophagus in this study. Fish bone was the highest FB in the LTB and oesophagus[7,9,18,19] and not coin.[15-17,20] Other studies found foam, seeds and stones as the commonest FB in the nose.[3,4,19] There were more nasal than otologic FB in our study.[21]

The clinical presentations depended on the area of lodgment. The patients with nasal foreign bodies presented with foreign body in the orifice, epistaxis and sometimes as incidental findings following chronic rhinitis, however majority presented with unilateral fetid discharge; 27.6%.[22] The otologic presentations were blockage of the ear, tinnitus, foreign body insertion and mucopurulent otorrhoea when there is unskilled attempted removal. Some of the FB in the ear was also discovered while cleaning the external auditory canal of wax. In the LTB, the presentation was more of choking, cough, respiratory difficulty while those that presented late had fever, productive cough and wheezing. Oesophageal and pharyngeal FB presented with drooling of saliva, painful and difficulty in swallowing. Some of the FB in this group also came with respiratory difficulty. This is likely due to the FB in the pharynx and oesophagus causing compression to the airway. About 27.62% presented with complaint of FB insertion, ingestion or inhalation.

Diagnosis of FB in ear and nose was mainly clinical, however for LTB, pharynx and oesophageal foreign bodies, minimum of plain radiograph of the area is required besides the clinician's high index of suspicion.[29-31] In the LTB, X-ray lateral soft tissue neck may show soft tissue-like shadows in the larynx and trachea most often or in metallic FB, opacity.

The treatment for most of these patients with FB in the LTB and oesophagus was examination under anaesthesia and rigid endoscopic removal [32,33] this was contrast to some other studies where balloon extraction[20] and flexible endoscopy were used. [34,35] The decision to use flexible or rigid endoscopy is often based on the type of foreign body, the large sharp FB are best removed using rigid scopes, experience of the surgeon. The availability is also determinant of what type to use. In our centre there is no flexible scope for FB removal. There are studies however that shows there
is no significant difference in their success rate.[16,37]

There were 3 cases of misdiagnosis as bronchitis in those with late presentations. Delayed FB in the LTB can give a clinical picture of chronic bronchitis[38] the radiological findings in those 3 cases were pneumonic changes due to inflammation from the vegetable FB; groundnut.

Most foreign bodies in the nose and ear were diagnosed by rhinoscopy and otoscopy and were removed in the clinic.[4,39,40] The patients with button battery were diagnosed in some cases with plain radiograph which showed the radiopaque FB impacted deep in the nasal cavity. Button batteries are emerging as very dangerous FB due to its ability to cause tissue necrosis following delayed removal.[41] There several attempts by unqualified personnel at removal in two cases of FB in the nose, which did not only cause delayed presentation but also succeeded in pushing the FB deeper into the nasal cavity. This then necessitated removal under general anaesthesia with sequelae of alar collapse and septal deviation due to tissue necrosis.[42,43] This kind of foreign body is becoming increasingly important because it is commonly found in most wrist watches and battery operated toys.

Similarly, complications occurred in the ear when untrained personnel tried to remove FB from the external auditory canal, often times they perforate the ear drum in the process. One patient ended up with facial nerve palsy due to such attempted removal.[8]

The mortality recorded was from FB in the LTB (1.2%). These patients presented late and died from respiratory failure soon after arrival in the hospital.

The failed extraction was from a metallic FB in the LTB which was difficult to grasp with forceps because of its size, while the other was a spherical plastic object and both were removed by bronchotomy by the cardiothoracic surgeon. This could mean that not only is the type of foreign body important in terms of removal, the size and shape are also relevant for successful extraction.[44] The groundnut which is amongst the commonest FB in the LTB in this study often disintegrates with time and was therefore removed piecemeal. The fishbone on the other hand were found to be small and more often than not were seen in the larynx especially at the inlet hence the respiratory distress.

CONCLUSION

Foreign body injury in the ear, nose and throat constitutes a major cause of morbidity in children in our environment. Late presentations to the specialist and attempts at removal by the unqualified personnel increase the incidence of both morbidity and mortality. There is also a need for legislation to guide the manufacture and use of ornamental beads in the very young. Public enlightenment campaigns on the dangers of allowing children below 4 years to feed unsupervised should be undertaken.

REFERENCES

1. Narula AA, Ahluwalia S. Foreign body in the ear, nose and throat. Surg J 2004;8:182-3.
2. Khan AR, Anif S. Ear, nose and throat injuries in children. J Ayub Med Coll Abbottabad 2005;17:54-6.
3. Figueiredo RR, Azevedo AA, Kos AO, Tomita S. Complications of ear, nose and throat foreign body. Braz J Otorhinolaryngol 2008;74:7-15.
4. Okoye BC, OonaiLO. Foreign body in the nose. Niger J Med 2006;15:301-4.
5. Zigon G, Gregori D, Corradetti R, Morra B, Salemi L, Passali FM, et al. Child mortality due to suffocation in Europe (1980-1995): A review of official data. Acta Otorhinolaryngol Ital 2006;3:154-61.
6. Miller RS, Willing JP, Ryttter MJ, Rookkapah K. Chronic oesophageal foreign body in paediatric patients: A retrospective review. Int J Pediatr Otorhinolaryngol 2004;68:265-72.
7. Tokar B, Ozkan R, Ilhan H. Tracheobronchial foreign body in children: Importance of accurate history and plain chest radiography in delayed presentation. Clin Radiol 2004;59:609-15.
8. Ijaduola GT, Okeowo PA. Foreign body in the ear and its importance: The Nigerian experience. J Trop Pediatr 1986;32:4-6.
9. Ijaduola GT. Foreign body in the larynx in Nigerian children. J Trop Pediatr 1986;32:41-3.
10. Bhattia PL, Varinghese R. Pattern of otolaryngological diseases in Jos community. Niger Med J 1987;2:67-73.
11. Sogebi OA, Olaosun AO, Tobin JE, Adeleji TO, Adebola SO. Pattern of ear, nose and throat injuries in children at Ladoke Akintola University of technology (LAUTECH) Teaching Hospital, Osogbo, Nigeria. Afr J Paediatr Surg 2006;3:61-6.
12. Aremu SK, Alabi BS, Segun-Busari S, Omotowo W. Audit of pediatric ENT injuries. Int J Biomed Sci 2011;7:218-21.
13. Gregori D, Salemi L, Scarinci C, Morra B, Berchilla P, Snidaro S, et al. Foreign bodies in the upper airways causing complications and requiring hospitalization in children aged 0-14 years: Results from the ESFBI study. Eur Arch Otorhinolaryngol 2008;265:971-8.
14. Reilly BK, Stool D, Chen X, Rider G, Stool SE, Reilly JS. Foreign body injury in children in the 20th century: A modern comparison to the Jackson collection. Int J Pediatr Otorhinolaryngol 2003;67 Suppl 1: S171-4.
15. Okeowo PA. Foreign bodies in the pharynx and oesophagus: A ten years review of patients seen in Lagos. Nig Q J Hosp Med 1985;3:46-50.
16. Okafor BC. Foreign bodies in the pharynx and oesophagus. Niger Med J 1979;9:321-5.
17. Ahmad BM, Dogo D, Abubakar Y. Pharyngo-oesophageal foreign bodies in Maiduguri. N J Surg Res 2001;3:62-5.
18. Ibrahim S, Hamza UA, Abdelhameed WA, Abulmatty RA, Gowaeni NN, Moussa SA, et al. Inhaled foreign body: Management according to early or late presentation. Eur J Cardiothorac Surg 2005;28:369-74.
19. Endican S, Garap JP, Dubey SP. Ear, nose and throat foreign body in Melanesian children: An analysis of 1037 cases. Int J Pediatr Otorhinolaryngol 2006;70:1539-45.
20. Little DC, Shah SR, St Peter SD, Callkins CM, Morrow SE, Murphy JP, et al. Oesophageal foreign bodies in the paediatric population: Our first 500 cases. J Pediatr Surg 2006;41:914-8.

21. Mackle T, Colon B. Foreign body in the nose and ear in children should these be managed in the accident and emergency setting. Int J Pediatr Otorhinolaryngol 2006;70:425-8.

22. Afolabi OA, Suleiman AO, Aremu SK, Alabi BS, Segun-Busari S, et al. An audit of paediatric nasal foreign bodies in Ilorin, Nigeria. SAJCH 2009;3:65-7.

23. Martin WP, Van Hasselt CA. Foreign bodies in children`s airways: A challenge to clinicians and regulators. Hong Kong Med J 2009;15:3-5.

24. Ogunleye AO, Nwaorgu OG, Sogebi OA. Upper airway obstruction in Nigeria: An aetiological profile and review of literature. Trop Doct 2001;31:195-7.

25. Alabi BS, Ologe FE, Dunmade AD, Segun-Busari S, Olatoke F. Acute laryngeal obstruction in a Nigerian hospital: Clinical presentation and management. Niger Postgrad Med J 2006;13:240-3.

26. Diop EM, Tall A, Diouf R, Ndiaye IC. Laryngeal foreign bodies: Management in children in Senegal. Arch Pediatr 2000;7:10-5.

27. Shirakumar AM, Naik AS, Prashanth KB, Shetty KD, Praveen DS. Tracheobronchial foreign bodies. Indian J Pediatr 2003;70:793-7.

28. Anyanwu CH. Airway obstruction in Nigerian children. Clin Pediatr 1997;36:701-5.

29. Arslan A, Ho EC, Hall A, Molony N. Lateral soft tissue neck X-rays: Are they useful in management of upper aero-digestive tract foreign bodies. J Laryngol Otol 2008;122:845-7.

30. Cheng W, Tam PK. Foreign body ingestion in children: Experience with 1,265 cases. J Pediatr Surg 1999;34:1472-6.

31. Oviawe O, Abhulimhen-Igoha BI, Obaseki DE. Migrating foreign body in the tracheobronchial tree of children: Report of two cases. Niger Postgrad Med J 2011;18:154-7.

32. Mcguirt WF, Holmes KD, Feehs R, Browne JD. Tracheobronchial foreign bodies. Laryngoscope 1988;98:615-8.

33. Fajolu O. Foreign body impaction in the oesophagus: A review of ten years experience in a teaching hospital. J Natl Med Assoc 1986;78:987-90.

34. Brady PG. Oesophageal foreign body. Gastroenterol Clin North Am 1991;20:691-701.

35. Swason KL, Prakash UB, Midhun DE, Edell ES, Utz JP, Acdougall JC, et al. Flexible bronchoscopic management of airway foreign bodies in children. Chest 2002;121:1695-700.

36. Bergergreen PJ, Harrison ME, Sanowski RA, Ingebo K, Noland B, Zierer S. Techniques of and complications of oesophageal foreign bodies extraction in children and adults. Gastrointest Endosc 1993;39:626-30.

37. Lin HH, Lee SC, Chu HC, Chang WK, Chao YC, Hsieh TY. Emergency endoscopic management of dietary foreign body in the oesophagus. Am J Emerg Med 2007;25:662-5.

38. Karakoc F, Cakir E, Ersu R, Uyan ZS, Colak B, Karadaq B, et al. Latediagnosis of foreign body aspiration in children with chronic respiratory symptoms. Int J Pediatr Otorhinolaryngol 2007;71:241-6.

39. Kumar S. Management of foreign bodies in the ear, nose and throat. Emerg Med Australas 2003;16:17-20.

40. Iseh KR, Yaya M. Ear foreign bodies: Observations on the clinical profile in Sokoto Nigeria. Ann Afr Med 2008;7:18-23.

41. Gregori D. Preventing foreign body injury in children: A key role to play for the injury community. Inj Prev 2008;14:411.

42. Guidera AK, Stegehuis HR. Button batteries: The worst case scenario in nasal foreign bodies. N Z J Med Assoc 2010;123:1313.

43. Gomes CC, Sakano E, Lucchezi MC, Porto PR. Button battery as a foreign body in the nasal cavities. Special aspects. Rhinology 1994;32:98-100.

44. Rimell FL, Thome A Jr, Stool S, Reilly JS, Rider G, Stool D, et al. Characteristics of objects that can cause choking in children. JAMA 1995;274:1763-6.

Cite this article as: Ibekwe MU, Onotai LO, Otaigbe B. Foreign body in the ear, nose and throat foreign body in children: A five year review in Niger delta. Afr J Paediatr Surg 2012;9:3-7.

Source of Support: Nil. Conflict of Interest: None declared.
