Reference gene screening of *Batrachochytrium dendrobatidis* and *Batrachochytrium salamandrivorans* for quantitative real-time PCR studies

Elin Verbrugghe*, Frank Pasmans & An Martel

Real-time quantitative PCR studies largely depend on reference genes for the normalization of gene expression. Stable reference genes should be accurately selected in order to obtain reliable results. We here present a study screening commonly used reference genes (*TEF1*, *α-centractin*, *Ctsyn1*, *GAPDH*, *R6046*, *APRT* and *TUB*) in the chytrid fungi *Batrachochytrium dendrobatidis* (*Bd*) and *Batrachochytrium salamandrivorans* (*Bsal*), which cause the lethal amphibian skin disease chytridiomycosis. We evaluated the stability of the reference gene candidates during different growth stages of the fungi, using different statistical software packages: Δ Ct, BestKeeper, GeNorm, NormFinder and Reffinder. In order to reflect the *in vivo* situation, the stability of the candidates was assessed when taking all growth stages into account. Using an *ex-vivo* approach, we tested whether the expression of *GAPDH*, *TUB*, *R6046* and *APRT* (*Bd*) and *GAPDH*, *TUB*, *R6046* and *α-centractin* (*Bsal*) remained stable when these fungi came in contact with host tissue. Finally, their role as *in vivo* reference genes was examined in skin tissue of experimentally infected midwife toads (*Alytes obstetricans*) (*Bd*) and fire salamanders (*Salamandra salamandra*) (*Bsal*). Summarized, the present study provides guidance for selecting appropriate reference genes when analyzing expression patterns of these fungal organisms during different growth stages and in *Bd*- or *Bsal*-infected tissues.

Batrachochytrium dendrobatidis (*Bd*) and *Batrachochytrium salamandrivorans* (*Bsal*) have been described as the etiological agents of the amphibian fungal skin disease chytridiomycosis, which caused the greatest disease-driven loss of amphibian biodiversity ever documented. Both chytrid fungi infect the amphibian epidermis, residing intracellularly in the host keratinocytes. Although they show highly similar niche occupancy, the pathogenesis markedly differs between both fungi. *Bd* typically induces epidermal hyperplasia and hyperkeratosis, whereas *Bsal* induces the formation of skin ulcers. Both processes can lead to severe disturbance of skin functioning (including fluid and electrolyte homeostasis and respiration) and subsequent death.

Real-time quantitative polymerase chain reaction (RT-qPCR) is a widely used technique for relative gene expression analysis and it has been shown to be a powerful tool for analyzing mRNA expression of pathogens during host infection, uncovering fundamentals of host-pathogen interactions. With the genomes of *Bd* and *Bsal* being fully sequenced, RT-qPCR has already shown its added value in pathogenesis research of chytridiomycosis. RT-qPCR results however, largely depend on reference genes which serve as an internal control for standard correction or normalization. Reference gene mRNA expression should be stable, meaning that these genes exhibit little variation in their expression within different samples, and their abundance should be in correlation with the total amounts of mRNA in the sample. Selecting suitable reference genes is of utmost importance in order to create reliable results and using more than one reference gene is recommended. Determining reference genes for analyzing fungal gene expression inside host tissue can, however, be challenging. It is difficult to define the amount of pathogen RNA when extracting RNA from an infected tissue. As such, it is tough to determine whether changes in expression are linked to changes in pathogen loads or rather due to instability of the genes.

Faculty of Veterinary Medicine, Department of Pathology, Bacteriology and Avian Diseases, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium. *Email: Elin.Verbrugghe@UGent.be*
A thorough screening of reference genes is still lacking in chytrid research. In this study, we therefore examined the stability of 7 reference gene candidates in both Bd and Bsal. These include translation elongation factor 1-alpha (TEF1F), alpha-centractin (α-centractin), cysteinyl tRNA synthetase (Ctsyn1), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), ribosomal protein R6046 (R6046), anthralinate phosphoribosyltransferase (APRT) and beta tubulin (TUB). Using the statistical software packages ΔCT10, GeNorm11, NormFinder12, BestKeeper13 and RefFinder14, we assessed the stability of these candidate reference genes during different growth stages of Bd and Bsal. Subsequently we determined their suitability in host-pathogen research by using an ex-vivo approach and finally, we screened their expression profile and stability in tissues of experimentally infected midwife toads (Alytes obstetricans) and fire salamanders (Salamandra salamandra).

Results and Discussion

Cq variation of Bd and Bsal candidate reference genes during chytrid growth. Bd and Bsal growth and infection of amphibian hosts usually involves multiple developmental stages16,18. As such, the ideal in vivo reference genes should have a constant expression across different developmental stages of the chytrid fungi. Therefore, we investigated the RT-qPCR expression profiles from seven candidate reference genes during Bd and Bsal growth and determined the Cq values of fresh Bd and Bsal spores at day 0 (D0), sporangia at day 3 (D3) and mature sporangia at day 5 (D5) (Fig. 1). Different ranges of Cq values were found for the different candidate reference genes, with varying standard deviations (Fig. 1 and Supplementary Tables S1–S2).

For Bd, the candidate reference genes showed the least deviation in the spores D0 and sporangia D3 group compared to the mature sporangia at day 5 and a combination of all growth stages, with TUB (D0: 27.49 ± 0.37; D3: 26.32 ± 0.19) and APRT (D0: 28.27 ± 0.40; D3: 26.77 ± 0.33) showing the lowest standard deviation. In the mature sporangia at day 5, TUB (25.19 ± 0.57) and APRT (25.56 ± 0.67) also showed the least deviation compared to the other reference genes and when combining all growth stages together, TUB (26.33 ± 1.04) and APRT (26.87 ± 1.23) were ranked the 2nd and 3rd (Fig. 1a–d and Supplementary Tables S1–S2).

For Bsal, the candidate reference genes showed the least deviation in the sporangia group D3 compared to the other groups, with APRT (D3: 28.40 ± 0.40) showing the lowest standard deviation. In mature sporangia at day 5, α-centractin had the lowest deviation (D5: 27.69 ± 0.61). When examining the spore fraction and a combination of all growth stages, TUB was ranked first (D0: 23.41 ± 0.62; D0 + D3 + D5: 23.47 ± 0.72) (Fig. 1e–h and Supplementary Tables S1–S2).

Expression stability of Bd and Bsal candidate reference genes during chytrid growth using GeNorm. We evaluated the stability of the candidate reference genes during different growth stages of Bd and Bsal using multiple software packages, assessing different aspects of gene stability. Initially, we analysed the Cq data using GeNorm11 (Figs. 2 and 3). GeNorm is based on the expression stability “GeNorm M” value, derived from the average pairwise variation of a potential reference gene set with all other control genes. This means the higher the GeNorm M value, the lower the stability of the reference gene. A coefficient of variation (CV) is also calculated as a relative standard deviation. Ideal reference genes in homogeneous samples, should have an M value ≤ 0.5 and a CV ≤ 0.2, whereas medium reference gene stability (0.5 < M ≤ 1.0) is typically seen in heterogeneous samples17. In both Bd and Bsal, GeNorm M and CV values are the lowest in the spores D0 fraction, reflecting homogeneous samples (Figs. 2b,f and 3b,f).
Using Genorm analysis of pairwise variation "V" value, the optimal number of reference genes required for normalization was calculated (Figs. 2i–l and 3i–l). This value is an indication for how much difference it makes when using an extra reference gene for normalization. For example, the V2/3 value represents the pairwise variation of two genes compared to that with three genes, the V3/4 value represents the pairwise variation of three genes compared to that with four genes, and so on. If the added value of adding one more is limited (cut-off: V < 0.15), inclusion of an additional reference gene is not necessary. Such, based on Genorm, RT-qPCR analyses conducted in chytrid spores should contain Ctsyn1 and β-centractin (Bd: V2/3 < 0.15), or GAPDH and β-centractin (Bsal: V2/3 < 0.15). When working with only 3 day old sporangia, β-centractin, Ctsyn1 and R6046 (Bd: V3/4 < 0.15) or Ctsyn1 and APRT (Bsal: V2/3 < 0.15) should be included. In 5 day old mature sporangia APRT and TUB (Bd: V2/3 < 0.15) or TUB and β-centractin (Bsal: V2/3 < 0.15) provide the best normalization.

In relation to the in vivo situation, a combination of all growth stages could be expected in Bd- or Bsal-infected tissue. Therefore, we also analysed what reference genes should be included when working with Bd- or Bsal-infected tissue by taking a combination of all the growth stages into account (spores D0 + sporangia D3 + mature sporangia D5). For Bd, the optimal normalization factor could be calculated from APRT, TUB, R6046 and GAPDH. For Bsal, no optimal number of reference targets could be determined as the variability between sequential normalization factors was relatively high (V > 0.15). However, since the use of multiple (non-optimal) reference targets results in more accurate normalization compared to the use of a single non-validated reference target, we recommend the use of at least 3 reference gene candidates or to screen for additional reference genes. Based on the M-value stability, the targets showed the following ranking: APRT > Ctsyn1 > β-centractin > TUB > GAPDH > R6046 > TEF1F.

Expression stability of Bd and Bsal candidate reference genes during chytrid growth using ΔCT method, BestKeeper, NormFinder and Reffinder. We further analysed reference gene stability using the ΔCT method, BestKeeper, NormFinder and Reffinder (Table 1, Supplementary Tables S3–S4). The ΔCT method directly compares relative expression of ‘pairs of genes’ within each sample. The most stable reference genes are associated with the lowest standard deviations of ΔCt when these genes are compared with the other reference genes (Supplementary Tables S3–S4). BestKeeper software evaluates the expression stability of the candidate reference genes based on the standard deviation (SD) of the reference gene Cq values and the coefficient of variation (CV). As a third stability parameter, it calculates the BestKeeper Index from the geometric mean of each of the reference genes to the BestKeeper
index, resulting in a coefficient of correlation (r). Genes with low SD ± CV and high correlation coefficients are the most stable (Supplementary Tables S3–S5). Normally, any studied gene with a SD higher than 1 is considered inconsistent, however, when examining a combination of all developmental stages, including different samples, a low standard deviation for that group was not expected. NormFinder is based on a mathematical model that ranks the candidate reference genes according to their expression stability. This allows the estimation of the overall expression variation of the candidate genes, but also the variations between sample subgroups (e.g. spores day 0 vs sporangia day 3 vs mature sporangia day 5). For each reference gene, a stability value was calculated, taking both intra- and intergroup variations into account (Supplementary Tables S3–S4, Fig. S1). Genes with the lowest stability value are the most stable. In *Bd*, R6046 and in *Bsal*, α-centractin, showed the lowest intra- and intergroup variation and can be defined as the most stably expressed reference genes between and within the different developmental stages (Supplementary Fig. S1).

TEF1F (*Bd* and *Bsal*) showed the highest intergroup variation and can therefore be defined as the least stable candidate.

Depending on the algorithm used, varying rankings for *Bd* and *Bsal* candidate reference genes were observed (Supplementary Tables S3–S4). Therefore, we applied RefFinder, a tool developed to generate a comprehensive ranking of the most stable reference genes by integrating data obtained by ΔCT, GeNorm, NormFinder and BestKeeper. Using the ranking from each program, RefFinder assigns an appropriate weight to a candidate reference gene and it calculates the geometric mean of their weights for the overall ranking. The analysis of the comprehensive ranking revealed that indeed R6046, APRT, TUB and GAPDH are the most stably expressed genes throughout all the developmental stages of *Bd*. For *Bsal*, slightly deviant results were obtained compared to the results obtained by GeNorm analysis alone, as α-centractin, APRT and TUB instead of Ctsyn1, were shown to be most stably expressed. Also, in the separate growth stages, slight differences were observed between the GeNorm and overall RefFinder ranking (Table 1).

Ex vivo expression analysis of chytrid reference gene candidates in contact with skin tissue. In order to determine whether the targets are suitable as *in vivo* reference genes, we first analysed whether they stay stably expressed if the fungi come in contact with host skin using an *ex vivo* approach. Based on the results described above and with relation to the *in vivo* situation where infected skin tissue comprises different developmental stages of the fungus, we evaluated the stability of GAPDH, TUB, R6046 and APRT for *Bd* when a standardized amount of the fungus encounters host tissue. In *Bsal*, Ctsyn1 and APRT were shown to be among the most stably expressed genes in a combination of all growth stages (Fig. 3a), however with an average Cq value
of 28.07 ± 1.30 and 28.86 ± 1.02 (Fig. 1e and Supplementary Table S2). This is the highest of all tested targets, making these candidates less suitable as in vivo reference genes. TEFIF was shown to be the least stably expressed gene of all targets tested, with the highest intergroup variation (Table 1 and Supplementary Fig. 1). Therefore, we focused on the results obtained by GeNorm analysis (Fig. 4c,f and 5c,f) and "without" (Figs. 4b,e and 5b,e) skin tissue (Supplementary Table S1). However, this combination of fungal and host RNA was isolated. This led to a small variation in Cq values between the groups (0.75) and a combination of all life stages (D0 = 2.00), as well as for R6046 and α-centractin at a concentration of 10^3 spores. Despite the fact that we were dealing with mixed host and fungal RNA vs only fungal RNA, NormFinder analysis showed a relatively small intergroup variation for both Bd and Bsal. This indicates that these reference genes stay stably expressed when Bd and Bsal come in contact with host tissue and that they could serve as normalization factors for chytrid-infected skin samples.

Expression profile and stability of chytrid candidate reference genes in experimentally infected amphibians

Based on the above described results, GAPDH, TUB, R6046 and APTF were proposed as candidate reference genes in Bd and GAPDH, TUB, R6046 and α-centractin in Bsal for in vivo normalization. We now analysed whether they indeed could be validated as in vivo reference genes by examining their expression stability

Table 1. Comprehensive ranking of reference gene stability

D0 + D3 + D5	rank	GeNorm M value	RefFinder Geomean	D0	rank	GeNorm M value	RefFinder Geomean
Bd	1	APTF (0.58)	R6046 (1.86)	1	Ctsynl (0.16)	Ctsynl (1.56)	
	2	TUB (0.58)	APTF (2.63)	2	α-centractin (0.18)	α-centractin (2.00)	
	3	R6046 (0.65)	TUB (2.66)	3	GAPDH (0.19)	APTF (3.36)	
	4	GAPDH (0.73)	GAPDH (3.13)	4	APTF (0.29)	R6046 (3.41)	
	5	Ctsynl (0.78)	Ctsynl (4.21)	5	R6046 (0.32)	TUB (3.83)	
	6	α-centractin (0.83)	TEFIF (4.30)	6	TUB (0.37)	GAPDH (4.61)	
	7	TEFIF (0.90)	α-centractin (5.73)	7	TEFIF (0.46)	TEFIF (7.00)	

Bsal	1	APTF (0.55)	α-centractin (1.57)	1	GAPDH (0.27)	α-centractin (1.86)
	2	Ctsynl (0.61)	APTF (2.21)	2	α-centractin (0.28)	R6046 (1.86)
	3	α-centractin (0.68)	TUB (2.63)	3	R6046 (0.28)	GAPDH (2.21)
	4	TUB (0.87)	Ctsynl (3.16)	4	APTF (0.33)	TUB (3.83)
	5	GAPDH (1.39)	GAPDH (3.50)	5	TEFIF (0.39)	TEFIF (3.94)
	6	R6046 (1.64)	R6046 (6.00)	6	TUB (0.46)	TEFIF (5.23)
	7	TEFIF (1.82)	TEFIF (7.00)	7	Ctsynl (0.56)	Ctsynl (7.00)

D3	rank	GeNorm M value	RefFinder Geomean	**D5**	rank	GeNorm M value	RefFinder Geomean
Bd	1	α-centractin (0.36)	Ctsynl (1.32)	1	APTF (0.30)	TUB (2.24)	
	2	Ctsynl (0.37)	α-centractin (2.11)	2	TUB (0.33)	R6046 (2.38)	
	3	R6046 (0.42)	TEFIF (3.46)	3	TEFIF (0.34)	APTF (2.38)	
	4	TEFIF (0.44)	TUB (3.66)	4	R6046 (0.39)	TEFIF (2.71)	
	5	APTF (0.49)	R6046 (4.12)	5	GAPDH (0.49)	GAPDH (2.94)	
	6	TUB (0.52)	APTF (4.16)	6	Ctsynl (0.66)	Ctsynl (5.00)	
	7	GAPDH (0.57)	GAPDH (7.00)	7	α-centractin (0.89)	α-centractin (7.00)	

Bsal	1	Ctsynl (0.22)	TEFIF (2.00)	1	TUB (0.27)	TUB (1.19)
	2	APTF (0.23)	APTF (2.11)	2	α-centractin (0.30)	α-centractin (1.57)
	3	α-centractin (0.24)	Ctsynl (2.51)	3	APTF (0.32)	APTF (2.71)
	4	TEFIF (0.43)	α-centractin (2.71)	4	GAPDH (0.54)	R6046 (4.47)
	5	TUB (0.56)	TUB (3.50)	5	R6046 (0.61)	GAPDH (5.14)
	6	GAPDH (0.75)	GAPDH (6.00)	6	TEFIF (0.64)	TEFIF (6.00)
	7	R6046 (0.95)	R6046 (7.00)	7	Ctsynl (0.71)	Ctsynl (6.09)
in skin tissue of experimentally Bd-infected midwife toads and Bsal-infected fire salamanders and by assessing the expression of target genes. The chytrid loads differed between the different animals. As such, differences in Cq values were expected as a result of differences in pathogen load inside host tissue (Figs. 6a,b and 7a,b). When analyzing intracellular fungal pathogens, there is no straightforward method for separating fungal and host RNA, highlighting the need of good reference genes for the normalization of RT-qPCR data from mixed host-fungi RNA samples. When assessing the stability of Bd candidate reference genes in infected skin tissue of midwife toads using GeNorm, M values ≤ 0.5 (GAPDH, R6046, APRT and TUB) and CV values ≤ 0.2 (GAPDH, R6046, APRT) were observed, indicating high reference gene stability (Fig. 6c). In skin tissue of Bsal-infected fire salamanders a medium reference gene stability was observed (M ≤ 1.0) (Fig. 7c).

To examine the utility of the candidate reference genes, the expression of target genes CRN_23176 (Bd), BS_08640 (Bsal) and BS_08614 (Bsal) was determined using a combination of GAPDH, TUB, R6046 and APRT for Bd and GAPDH, TUB, R6046 and α-centractin for Bsal as normalizers. According to Farrer et al. (2017), the Crinkler and Necrosis gene CRN_23176 is highly expressed during early interaction of Bd with the host, whereas it is less expressed during advanced Bd infection of Tylototriton wenxianensis. We noticed a significant downregulation of CRN_23176 (p < 0.05) in skin tissue of Bd positive midwife toads compared to spores. This confirms the results by Farrer et al. (2017) in midwife toads as a host and validates the use of GAPDH, TUB, R6046 and APRT as Bd reference genes for in vivo screening of target genes (Fig. 6d). BS_08640 and BS_08614 are two target genes with an unknown function, however, using RNA-seq analysis they were shown to be highly expressed in the skin of Bsal-infected Tylototriton wenxianensis animals. When using GAPDH, TUB, R6046 and α-centractin as reference genes, a significant (p < 0.05) upregulation of both genes of more than 500 times was observed in Bsal-infected skin tissue of fire salamanders, compared to expression levels in spores (Fig. 7d). These results are in line with data described by Farrer et al. (2017), highlighting the utility of the Bsal reference gene candidates and the importance of BS_08640 and BS_08614 during infection of the host with Bsal.

All too often, only one reference gene or even non-validated reference genes are used in an RT-qPCR setup which can lead to misleading results. A careful selection of thoroughly validated reference genes prior to performing qPCR experiments is therefore recommended. However, the ideal set of reference genes does not exist,
i.e. reference genes whose expression is constant across all cells and tissues. *Bd* and *Bsal* are fungal organisms that show changes in expression among isolates\(^{19-21}\), by serial passages in artificial culture medium\(^{22}\) and depending on the amphibian host\(^ {22}\). As such, it should be taken into account that these factors and possibly others (e.g. chemical treatment, type of tissue or *in vivo* -infection conditions) could also affect the stability of the suggested reference genes. Therefore, our results serve as a guide during the *Bd* and *Bsal* reference gene hunt but depending on the experimental setup researchers should carefully think out the best normalization strategy.

Summarized, we investigated the stability of suitable reference genes during the development of *Bd* and *Bsal* and depending on the growth stage, different combinations of candidate reference genes should be used (Supplementary Table S6). We further focused on defining reference genes that can be used for mRNA expression analysis of infected host tissue and we propose that the optimal *in vivo* normalization factor can be calculated using *GAPDH*, *TUB*, *R6046* and *α*-centractin for *Bd* and *GAPDH*, *TUB*, *R6046* and *α*-centractin for *Bsal* (Supplementary Table S6). This study will enhance the accuracy of future RT-qPCR analyses of *in vitro*, *ex vivo* and *in vivo* *Bd* and *Bsal* studies.

Methods

Zooospore isolation. *Bd* and *Bsal* spores were collected from mature cultures in sterile distilled water. In order to reduce the percentage of mature cells, the water containing the zooospores was passed over a sterile mesh filter with pore size 10 µm (Pluristrainer, PluriSelect). The flow through was used as the zooospore fraction (>90% purity).

In vitro *Bd* and *Bsal* culture conditions. The zoospore fraction (3 ml) was seeded in 6-well plates at a density of \(2.5 \times 10^8\) spores/ml TGhL (1.6% tryptone, 0.4% gelatin hydrolysate and 0.2% lactose in H\(_2\)O) for *Bd* and \(7.5 \times 10^8\) spores/ml TGhL for *Bsal*. The spores were incubated during 5 days at 20°C or 15°C, respectively. RNA was extracted from the *Bd* and *Bsal* cultures during different growth stages, namely at day 0 (D0: fresh spores), day 3 (D3: sporangia) and day 5 (D5: mature sporangia containing zoospores). Every condition was tested in sixfold.

Figure 5. Ex vivo expression analysis of *Bsal* reference gene candidates. Shown is the variation in the mRNA expression (Cq) of *GAPDH*, *TUB*, *R6046* and *α*-centractin in (a–c) \(5 \times 10^6\) *Bsal* spores and (d–f) \(1 \times 10^7\) *Bsal* spores that were incubated for 2 hours at 15°C (c,f) with or (b,e) without skin tissue of fire salamanders, or (a,d) a combination of both. Every condition was tested in fivefold. The whiskers represent the median, the minimum and maximum values, and the first and third quartiles. A plus (+) indicates the mean Cq value. (G) GeNorm stability analysis providing a GeNorm M and coefficient of variation (CV) value, combined with NormFinder intergroup variation analysis.
Ex vivo Bd and Bsal infection experiments. Testing whether the reference gene candidates stay stable inside infected host tissue, can pose some problems. When extracting RNA from chytrid-infected tissue, there is no straightforward way of determining the amount of fungal RNA inside the pool of host and fungal RNA. Therefore, changes in reference gene expression could be the result of instability of these genes, or from an increase in pathogen load in host tissue. In order to determine whether candidate reference genes indeed stay stable when they come in contact with host tissue, we performed an ex vivo experiment. A standardized amount of spores (Bd: 2 × 10^7 and 5 × 10^7; Bsal: 5 × 10^6 and 1 × 10^7) were incubated for 2 hours in H2O with skin tissue of a chytrid-susceptible amphibian (Bd: midwife toad; Bsal: fire salamander), collected with a skin biopsy punch (6 mm)^23–26. As a control, we included Bd and Bsal zoospores that were incubated without tissue. All samples were incubated for 2 hours at 20 °C or 15 °C, respectively, after which RNA was extracted. Every condition was tested in fourfold (Bd) or fivefold (Bsal).

In vivo Bd and Bsal infection experiments. This study was carried out in strict accordance with the recommendation in the European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes. Animal experiments were performed with the approval of the ethical committee of the Faculty of Veterinary Medicine (Ghent University 2016/120 and 2016/55). All animals used were clinically healthy and free of Bd and Bsal as assessed by sampling the skin using cotton-tipped swabs and subsequent performing qPCR. All animals were acclimatized for 1 week before the onset of the experiments. The animals were housed individually at 15 ± 1 °C on moist tissue, with access to a hiding place and they were fed daily.

In a first experiment, six captive bred midwife toads were exposed to 1 ml of 10^6 Bd spores per ml water for 24 h at 15 ± 1 °C. Animals were followed up by clinical examination and the infection load was followed up weekly by taking swabs on which we performed qPCR. The animals were euthanized when clinical symptoms were observed (e.g. lethargy, loss of appetite, weight reduction). A part of the skin (10 mg: thigh) was stored in RNA later for 24 h and subsequently stored at −70 °C. Skin samples for histopathology were stored in formalin.

In a second experiment, three captive bred fire salamanders were exposed to 1 ml of 10^3 Bsal spores per ml water for 24 hours at 15 ± 1 °C. The animals were swabbed and euthanized at day 28 post-infection. A part of the skin (10 mg: belly, chin and tail) was stored in RNA later for 24 h and subsequently stored at −70 °C. Skin samples for histopathology were stored in formalin.

RNA extraction and cDNA synthesis. Using the RNeasy mini kit (Qiagen), total RNA was isolated from in vitro Bd and Bsal cultures, ex vivo Bd and Bsal-infected skin samples and in vivo Bd and Bsal-infected skin samples. The RNA concentration was measured by absorbance at 260 nm using a nanodrop spectrophotometer and the quality of the RNA samples was checked using an Experion RNA StdSens Analysis kit (Bio-Rad). Total RNA
(500 ng) was reverse transcribed to cDNA with the iScript cDNA synthesis kit (Bio-Rad) and cDNA was stored at −20 °C until further use.

Reference genes and primer design.
Bd and Bsal primers for α-centractin, R6046, TEF1F and GAPDH were used from previously published data. Bd and Bsal primers for APRT, Ctsyn1 and TUB were designed using Primer3plus (Supplementary Table S7). The specificity of each primer set was checked by nucleotide blast and by performing a standard PCR (40 cycles) on Bd and Bsal cDNA (diluted 1:5), followed by gel electrophoresis. The PCR products were checked on an agarose gel (1.5%) and single band amplification was confirmed (Supplementary Figs. S2–S3). Primer efficiency was evaluated by performing real-time quantitative PCR reactions on serial dilutions of a cDNA mix from the in vitro samples (1:5, 1:25, 1:125; 1:625). For every standard curve, we assessed the amplicon efficiency (E), correlation coefficients (R2) and slope (Supplementary Table S7). Water and no-template controls were used as negative controls for each primer set. Melting curves were analysed and for all primer pairs a single peak was detected (Supplementary Figs. S4-S5).

RT-qPCR analysis and data analysis.
Real-time quantitative PCR reactions were run in duplicate and the reactions were performed in 10μl volumes using the iQ SYBR Green Supermix (Bio-Rad) and 1μl 1/5 diluted cDNA. The experimental protocol for PCR (40 cycles) was performed on a CFX384™ RT-qPCR System with a C1000 Thermal Cycler (Bio-Rad, Hercules). The results were analysed using the Bio-Rad CFX manager 3.1. Quantification cycle (Cq) values were obtained using auto baseline settings and they were applied per primer set. The threshold for maximum Cq difference between the technical replicates was set to 0.5. We used different statistical algorithms to assess the stability of the candidate reference genes. Therefore, the RT-qPCR data obtained were exported into an Excel dataset and the raw Cq values (Supplementary Table S7) were used directly for analysis in qBase. The results are presented as means ± SEM with significant differences shown by the P value.

Validation of in vivo reference genes by expression analysis of target genes. The Bd Crinkler and Necrosis gene CRN_23176 and Bsal in vivo genes BS_08640 and BS_08614, were used as target genes to analyse the usefulness of the selected candidate reference genes. The results are shown as fold changes of mRNA expression, which were calculated based on the CNRQ values obtained in qBase. Statistics were performed using SPSS...
version 25 (SPSS Inc., Chicago, IL, USA), by performing a non-parametric Kruskal–Wallis analysis on the CNRQ values, with significance set to p < 0.05.

Data availability
All data generated or analysed during this study are included in this published article and its Supplementary Information Files.

Received: 13 March 2019; Accepted: 15 November 2019;
Published online: 06 December 2019

References
1. Longcore, J. E., Pessier, A. P. & Nichols, D. K. Batrachochytrium dendrobatidis gen. et sp. nov., a chytrid pathogenic to amphibians. Mycologia 91, 219–227 (1999).
2. Martel, A. et al. Batrachochytrium salamandriovirans sp. nov. causes lethal chytridiomycosis in amphibians. P Natl Acad Sci USA 110, 15325–15329 (2013).
3. Scheele, B. C. et al. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science 363, 1459–1463 (2019).
4. Van Rooij, P., Martin, A., Haesebrouck, F. & Pasmans, F. Amphibian chytridiomycosis: a review with focus on fungus-host interactions. Vet. Res. 46, 137 (2015).
5. Farrer, R. et al. Genomic innovations linked to infection strategies across emerging pathogenic chytrid fungi. Nat. Commun. 8, 14742 (2017).
6. Rosenblum, E. B., Stajich, J. E., Madden, N. & Eisen, M. B. Global gene expression profiles for life stages of the deadly amphibian pathogen Batrachochytrium dendrobatidis. P Natl Acad Sci USA 105, 17034–17039 (2008).
7. Evers, S. A. et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55, 611–622 (2009).
8. Evers, S. A. & Nolan, T. Talking the talk, but not walking the walk: RT-qPCR as a paradigm for the lack of reproducibility in molecular research. Eur. J. Clin. Invest. 47, 756–774 (2017).
9. Evers, S. A. & Wittwer, C. T. MIQE: A Step Toward More Robust and Reproducible Quantitative PCR. Clin. Chem. 63, 1537–1538 (2017).
10. Silver, N., Best, S., Jiang, J. & Thein, S. L. Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol. Biol. 7, 33 (2006).
11. Vandesompele, J. et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3, research 0034.1–0034.1 (2002).
12. Andersen, C. L., Jensen, J. L. & Orntoft, T. F. Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 64, 5245–5250 (2004).
13. Pfaffl, M. W., Tichopod, A., Prfomet, C. & Neuvians, T. P. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-Excel-based tool using pair-wise correlations. Biotechnol. Lett. 26, 509–515 (2004).
14. Xie, F., Xiao, P., Chen, D., Xu, L. & Zhang, B. miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol. Biol. 80, 75–84 (2012).
15. Berger, L., Hyatt, A. D., Speare, R. & Longcore, J. E. Life cycle stages of the amphibian chytrid Batrachochytrium dendrobatidis. Dis. Aquat. Organ. 68, 51–63 (2005).
16. Van Rooij, P. et al. Germ tube mediated invasion of Batrachochytrium dendrobatidis in amphibian skin is host dependent. Plos One 7, e41481 (2012).
17. Hellemans, J., Mortier, G., De Paepe, A., Speleman, F. & Vandesompele, J. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol. 8, R19 (2007).
18. Verbrugghe, E., Martel, A. & Pasmans, F. Reference Gene Validation for Quantitative Real-Time PCR Studies in Amphibian Kidney-Derived A6 Epithelial Cells. ATLA-Alter. Lab. Anim. 47, 63–70 (2019).
19. Evers, S. A. et al. Multiple emergences of genetically diverse amphibian-infecting chytrids include a globalized hypervirulent recombinant lineage. P Natl Acad Sci USA 108, 18732–18736 (2011).
20. O’Hanlon, S. J. et al. Recent Asian origin of chytrid fungi causing global amphibian declines. Science 360, 621–627 (2018).
21. Schloegl, L. M. et al. Novel, panzootic and hybrid genotypes of amphibian chytridiomycosis associated with the bullfrog trade. Mol. Ecol. 21, 5162–5177 (2012).
22. Ellison, A. R., DiRenzo, G. V., McDonald, C. A., Lips, K. R. & Zamudio, K. R. First in Vivo Batrachochytrium dendrobatidis Transcriptomes Reveal Mechanisms of Host Exploitation, Host-Specific Gene Expression, and Expressed Genotype Shifts. G3-Genes Genom. Genet. 7, 269–276 (2017).
23. Bosch, J., Martinez-Solano, I. & Garcia-Paris, M. Evidence of a chytrid fungus infection involved in the decline of the common midwife toad (Alytes obstetricans) in protected areas of central Spain. Biol. Conserv. 97, 331–337 (2001).
24. Pasmans, F. et al. Chytridiomycosis related mortality in a midwife toad (Alytes obstetricans) in Belgium. Vlaams Diergen. Tijds. 79, 460–462 (2010).
25. Walker, S. E. et al. Factors driving pathogenicity vs. prevalence of amphibian panzootic chytridiomycosis in Iberia. Ecol. Lett. 13, 372–382 (2010).
26. Martel, A. et al. Recent introduction of a chytrid fungus endangers Western Palearctic salamanders. Science 346, 630–631 (2014).

Acknowledgements
This work was supported by the Research Foundation Flanders (FWO grants 12E6616N and 1507119N). The technical assistance of Mark Greener is greatly appreciated. We also would like to thank Alexandra Laking for her diligent proofreading of the manuscript.

Author contributions
E.V. performed the experimental work. E.V., A.M., and F.P. conceived the study, participated in its design and coordination. E.V., A.M. and F.P. co-drafted the manuscript. All authors read and approved the final manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41598-019-54582-4.
Correspondence and requests for materials should be addressed to E.V.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2019