A Conserved Region Common to Chikungunya (ChikV), Dengue (DenV) and Zika Viruses (ZikV): Potential as a Tool for Simultaneous Diagnosis and Therapeutics of the Three Viruses [Short Communication]

Chetan Datta Poduri
Independent Researcher, India

Received February 1, 2020; Revised April 14, 2020; Accepted April 27, 2020

Abstract There is an increasing need to develop strategies for simultaneous detection of Chikungunya (ChikV), Dengue (DenV) and Zika Virus (ZikV) owing to their shared transmission ecology. Towards this aim, nine reference sequences of ChikV, DenV (1 — 4) and ZikV were aligned using ClustalW Omega Software available at the European Bioinformatics Institute (EBI) website. Internet search engines like Google (Scholar), PubMed, JSTOR, and ProQuest Central were used for literature search. Also, Conserved Domain Database (CDD) (NCBI) and ZikaVR database maintained by IMTECH, Chandigarh, India, formed constant references. One conserved region, 21 amino acids (aa) in length, common to the three viruses mapping to the Core protein of ChikV (aa 211 — 231); and the NS3 proteins of DenV (1 — 4) (aa 1608 – 1628) and ZikV (aa 1631/35 — 1651/55) has been identified by the current author in this study. This region is the part of a protease in all the three viruses studied. Thus, this conserved region can form one diagnostic tool/probe for simultaneous detection of ChikV, DenV and ZikV. Additionally, as this region is conserved, it may form one therapeutic target.

Keywords ChikV, DenV, ZikV, Simultaneous, Diagnosis, Conserved, Core, NS3

1. Introduction

Recent observations of the World Health Organization (WHO) indicate that the disease dynamics of Zika Virus (ZikV) and Dengue Virus (DenV) seem to be working in tandem. Note that after the year 2016, when there was an epidemic with ZikV, the number of DenV cases were relatively down [1, 2]. Also, ZikV, DenV and a third virus, the Chikungunya Virus (ChikV), share epidemiological parameters like transmission ecology [2, 3]. India is recognised as an endemic country to the viruses in context [4]. Furthermore, there are reports of the three viruses being isolated from a single mosquito and reports of natural co-infections with any two or all the three viruses in humans [5, 6, 7]. Additionally, the symptoms of many pathogenic infections overlap with those of the infections caused by either ChikV, DenV or ZikV. Thus, there is an urgent need for developing strategies for simultaneous diagnosis of the three viruses. Such a work would initially involve identification of regions that are common and conserved to the three viruses being studied for the present.

2. Materials and Methods

2.1. Literature Search

Literature search was performed using internet search engines like Google (Scholar), PubMed, JSTOR, and ProQuest Central (author’s personal membership at the British Council Library, Hyderabad). In addition to this, Conserved Domain Database (CDD) at the National Center for Biotecnology Information (NCBI) and ZikaVR database maintained by IMTECH, Chandigarh, India, formed constant references.

2.2. Reference Sequences

Characteristics of ChikV, DenV and ZikV are summarized as table 1.
A Conserved Region Common to Chikungunya (ChikV), Dengue (DenV) and Zika Viruses (ZikV): Potential as a Tool for Simultaneous Diagnosis and Therapeutics of the Three Viruses [Short Communication]

Table 1. Characteristics of the three viruses considered in the present study

Characteristic	Chikungunya Virus (ChikV)	Dengue Virus (DenV)	Zika Virus (ZikV)
Genus	Alphavirus	Flavivirus	Flavivirus
Family	Togaviridae	Flaviviridae	Flaviviridae
Natural Host	Vertebrates	humans, monkeys	Vertebrates
Vector / Reservoir	Aedes sp. (Mosquito)	Aedes sp. (Mosquito)	Aedes sp. (Mosquito)
Clinical Disease	Unsymptomatic rash, arthralgia, fever	Dengue (with or without symptoms) & Severe Dengue – characteristic high fever, rash	Zika fever (acute fever and rash) often self-limiting and asymptomatic
Nucleic Acid	(+) ss RNA	(+) ss RNA	(+) ss RNA

Legend. RNA – Ribonucleic acid; ss – Single stranded; Other abbreviations carry their usual significance.

Table 2. Details of the reference sequences used in the present study

Sl. No.	Virus	Protein	Accession Number	Length
1	Chikungunya Virus (ChikV)	Structural	ABN04200	1248 aa
2	Chikungunya Virus (ChikV)	Structural	ATW74975	1248 aa
3	Chikungunya Virus (ChikV)	Structural	NP_690589	1248 aa
4	Dengue Virus 1 (DenV 1)	Polypeptide	NP_659433	3392 aa
5	Dengue Virus 2 (DenV 2)	Polypeptide	NP_056776	3391 aa
6	Dengue Virus 3 (DenV 3)	Polypeptide	YP_001621843	3390 aa
7	Dengue Virus 4 (DenV 4)	Polypeptide	NP_073286	3387 aa
8	Zika Virus (ZikV)	Polypeptide	YP_002790881	3419 aa
9	Zika Virus (ZikV)	Polypeptide	AWH65848	3423 aa

Legend. aa – amino acid; Other abbreviations carry their usual significance.

Towards the present aim, nine reference sequences of ChikV, DenV (1 — 4) and ZikV were considered and accessed from the NCBI-PubMed databases at https://www.ncbi.nlm.nih.gov/pubmed/. Details of the reference sequences used in the present study are given as Table 2.

2.3. Alignment of the Sequences

The nine reference sequences were aligned using ClustalW Omega Software available at the European Bioinformatics Institute (EBI) website (https://www.ebi.ac.uk/). Default parameters were used for aligning the sequences.

2.4. Identification of Conserved Region Common to the Three Viruses Being Studied

From the alignment output, a conserved region of 21 amino acids in length was identified manually without the help of any software. Figure 1 shows the conserved region in the aligned sequences. Figure 2 shows the identification of hypervariable regions (HVR) in the three viruses.
Figure 1. Conserved region common to ChikV, DenV and ZikV identified in the present study (box)
3. Results and Discussion

Table 3 presents the details of the one conserved region, 21 amino acids (aa) in length, common to the three viruses mapping to the Core protein of ChikV (aa 211 — 231); and the NS3 proteins of DenV (1 — 4) (aa 1608 — 1628) and ZikV (aa 1631/35 — 1651/55) identified by the author in this study. This region is the part of a protease in all the three viruses studied. Thereby this region is of significance to the three viruses in context. Thus, this region not only forms one diagnostic tool but a potential therapeutic target. A simple BLAST search at NCBI done with the conserved sequences mentioned in table 3 shows relative conservation across Alphavirus species of which ChikV is a member (data not shown).

Goh et al [8] report the reactivity of monoclonal antibodies against 27 synthetic peptides of ChikV including the conserved region identified in this study. However, Goh et al could not find any reactivity against this conserved region. In addition to this, Goh et al report the presence of one potential phosphorylation site in the identified region. It is worth mentioning at this stage that phosphorylation is a post translational modification and forms one potential therapeutic target in many viruses [9]. Goh et al in their publication also mention that the conserved region GDSG (initial four amino acids of the conserved region identified in the present study) might be involved as the catalytic triad residues involved in the auto-proteolytic function of the core protein. The ZikaVR database developed by Gupta et al [10] lists a portion of the conserved region in the Zika virus as a potential MHC-I epitope.

A significant number of publications discuss the need for simultaneous detection of ChikV, DenV and ZikV. Notable among these is the publication of Lura et al [11] who describe the effectiveness of the commercially available kits. Despite this, none of the publications mention that the
identified region shown in figure 1 and table 3 is conserved among all the three viruses in context, which this publication does. A hypervariable region (HVR) is characteristic of RNA viruses. It may be noted that the three viruses are RNA viruses. In the present study it was also observed that all the three viruses exhibit variability in their sequences (Figure 2; data of individual virus strains comparisons not shown). Given these observations, the importance of identifying a conserved region in ChikV, DenV and ZikV gains momentum.

4. Conclusions

To the best of the authors’ knowledge, this is the first publication identifying a conserved region that is common to ChikV, DenV and ZikV. This conserved region can form one diagnostic tool/probe for simultaneous detection of ChikV, DenV and ZikV. Additionally, as this region contains one potential phosphorylation site, it may form one therapeutic target against ChikV, DenV and ZikV.

Acknowledgements

This is a self-financed study. The author wishes to acknowledge the anonymous reviewers for the constructive suggestions.

REFERENCES

[1] Anonymous. Dengue and Severe Dengue. World Health Organization. https://www.who.in 15 April 2019. Accessed online 22 June 2019 and again on 01 Dec 2019.

[2] Ramos-Castañeda J, Flavia Barreto dos Santos, Ruth Martínez-Vega, Josélio Maria Galvão de Araujo, Graham Joint, Elsa Sarti. Dengue in Latin America: Systematic Review of Molecular Epidemiological Trends. *PLoS Neglected Tropical Diseases*, Jan 2017; 11 (1): e0005224, 2017.

[3] Kamaraj US, Tan JH, Xin Mei O, Pan L, Chawla T, Uehara A, et al. (2019) Application of a targeted-enrichment methodology for full-genome sequencing of Dengue 1-4, Chikungunya and Zika viruses directly from patient samples. *PLoS Neglected Tropical Diseases*, Apr 2019; 13(4): e0007184. https://doi.org/10.1371/journal.pntd.0007184, 2019.

[4] Poduri CD. Exotic human viruses of India. *Virus Disease*, 2019. https://doi.org/10.1007/s13337-019-00523-8. Web/Published Abstract, 2019.

[5] Bagno FF, Figueiredo MM, Villarreal J, Pereira GC, Godoi LC, da Fonseca FG. Undetected Chikungunya virus co-infections in a Brazilian region presenting hyper-endemic circulation of Dengue and Zika. *Journal of Clinical Virology*. 2019 Apr; 113: 27-30. doi: 10.1016/j.jcv.2019.02.006, 2019.

[6] Magalhaes T, Braga C, Cordeiro MT, Oliveira ALS, Castanha PMS, Maciel APR, et al. (2017) Zika virus displacement by a chikungunya outbreak in Recife, Brazil. *PLoS Neglected Tropical Diseases* 11(11): e0006055. https://doi.org/10.1371/journal.pntd.0006055, 2017.

[7] Rückert C, Weger-Lucarelli J, Garcia-Luna SM, et al. Impact of simultaneous exposure to arboviruses on infection and transmission by *Aedes aegypti* mosquitoes. *Nature Communications*, 2017 May 19; 8:15412. doi: 10.1038/ncomms15412, 2017.

[8] Goh LYH, Hobson-Peters J, Prow NA et al. The Chikungunya Virus Capsid Protein Contains Linear B Cell Epitopes in the N- and C-Terminal Regions that are Dependent on an Intact C-Terminus for Antibody Recognition. *Viruses*, 2015; 7 (6): 2943–2964. Published 2015 Jun 8. doi: 10.3390/v7062754, 2015.

[9] Keating JA and Striker R. Phosphorylation events during viral infections provide potential therapeutic targets. *Reviews in Medical Virology*, 2012 May; 22(3), pp 166–181, 2012.

[10] Gupta AK, Kaur K, Rajput A, et al. ZikaVR: An Integrated Zika Virus Resource for Genomics, Proteomics, Phylogenetic and Therapeutic Analysis. *Scientific Reports* | 6:32713 | DOI: 10.1038/srep32713, 2016.

[11] Lura T, Su T, and Brown MQ. Preliminary evaluation of Thermo Fisher TaqMan® Triplex q-PCR kit for simultaneous detection of chikungunya, dengue, and Zika viruses in mosquitoes. *Journal of Vector Ecology*, 44 (1), pp 205 - 209, 2019.