Direct comparison of choline PET/CT and MRI in the diagnosis of lymph node metastases in patients with prostate cancer

Shi-ming Huang, MD, Liang Yin, MD, Jian-lan Yue, MD, Yan-feng Li, MD, Yang Yang, MD, Zhi-chun Lin, PhD

Abstract

Background: Lymph node detection in prostate cancer is challenging and critical to determine treatment policy. Choline PET/CT (positron emission tomography/computed tomography) and magnetic resonance imaging (MRI) have been used for the evaluation of lymph node metastasis in patients with prostate cancer for the past decade. However, only limited patients underwent direct comparison studies.

Purpose: To evaluate the diagnostic performance of choline PET/CT compared with MRI imaging for detecting lymph node metastases in prostate cancer patients.

Material and Methods: Relevant English-language articles published before February 2018 were searched in PubMed database, Embase database, and Cochrane Library databases search using the keywords: (Prostate Neoplasm OR Prostate Cancer OR prostate carcinoma) and (Lymph Node) and (PET/CT OR positron emission tomography/computed tomography) and (choline or 2-hydroxy-N,N,N-trimethylethanaminium) and (magnetic resonance imaging OR MRI). Articles were included that directly compare the diagnostic performance and clinical utility of choline PET/CT and MRI for detecting lymph node metastases in prostate cancer patients. Study quality was assessed with QUADAS criteria. Analyses were performed on a per patient and a per node basis. The pooled sensitivity, specificity, diagnostic odds ratio (DOR), positive likelihood ratio (LR+), and negative likelihood ratio (LR−) were calculated using Meta-Disc 1.4 software. Summary receiver-operating characteristic (SROC) curves constructed.

Results: A total of 362 patients from 8 studies involving fulfilled the inclusion criteria. On patient-based analysis, the pooled sensitivity, specificity, and DOR with a 95% confidence interval (CI) for choline PET/CT imaging were 0.59 (95%CI, 0.50–0.67), 0.92 (95%CI, 0.87–0.96), 17.37 (95%CI, 4.42–68.33), and for MRI imaging, they were 0.52 (95%CI, 0.44–0.61), 0.87 (95%CI, 0.81–0.92), 6.05 (95%CI, 3.09–11.85), respectively. On node-based, the corresponding values for choline PET/CT imaging were 0.51 (95%CI, 0.46–0.57), 0.99 (95%CI, 0.98–0.99), 65.55 (95%CI, 23.55–182.45), and for MRI imaging, they were 0.39 (95%CI, 0.34–0.44), 0.97 (95%CI, 0.96–0.97), 15.86 (95%CI, 8.96–28.08), respectively.

Conclusion: Choline PET/CT performed better than MRI imaging in evaluating the lymph nodes metastasis of prostate cancer patients and had the potential to be broadly applied in clinical practice.

Abbreviations: 18F-FDG = 18F-fluorodeoxyglucose, AUC = area under the curve, CI = confidence interval, CT = computed tomography, DOR = diagnostic odds ratio, FN = false negative, FP = false positive, LN = lymph node dissection, LR+= positive likelihood ratio, LR− = negative likelihood ratio, MRI = magnetic resonance imaging, PCa = prostate cancer, PET/CT = positron emission tomography / computed tomography, QUADA = diagnostic accuracy studies, SROC = summary receiver-operating characteristic, TN = true negative, TP = true positive.

Keywords: choline, lymph node, MRI, PET/CT, prostate cancer
lymph node metastasis of PCa, such as computed tomography (CT) and ultrasound. However, CT and ultrasound do not provide high diagnostic accuracy in detecting lymph node metastasis. In a cohort of more than 1500 PCa patients undergoing preoperative CT scan, radical prostatectomy and lymph node dissection at a single center, the sensitivity of CT scan as a preoperative nodal-staging was only 13%.[8] At present, magnetic resonance imaging (MRI) and positron emission tomography/computed tomography (PET/CT) are the most promising tools. Molecular imaging technique PET/CT, which combines the metabolic activity depicted by PET with the tissue anatomical structure by CT, can provide more diagnostic information in a single diagnostic session using a single device. Also the tracer choice is very important for PET/CT imaging, 18F-fluorodeoxyglucose (18F-FDG), is the most commonly used radiopharmaceutical for PET/CT in clinical. 18F-FDG uptake in metastatic PCa has been shown to correlate with tumor aggressiveness and grade. However, well-differentiated PCa has lower levels of glucose metabolism than other tumors types, and 18F-FDG is normally highly concentrated in the urine. In addition, pelvic pathology can be obscured or mimicked by urinary radiotracer activity (particularly in thin patients).

Among a variety of PET/CT radiotracers that have been used for PCa, 11C-choline or 18F-choline have been emerged as a promising molecular imaging tool to provide a body examination for PCa at present. The European Urology Association updated guidelines on PCa in 2016, stating the importance of PET with choline combined with CT to identify lymph node involvement and metastatic spread at all stages.[9] The fundamental of choline as a tracer labeled with 11C or 18F is that choline, as a precursor for the synthesis of phospholipids, is part of the cell membrane, whereby the upregulation of the key enzyme choline kinase in PCa cells leads to an increase in the demand for substrate (choline). Moreover, PCa cells show an upregulated transport rate with an increased expression of choline transporters. A major advantage of choline is its rapid uptake within prostate tissue (3–5 minutes) and rapid blood clearance (5 minutes).[10] This allows for early imaging prior to excretion of the radiotracer into the urine. Thus, the pelvis can be viewed before significant excretory activity becomes a potential confounder. Many researchers have used choline PET/CT for restaging PCa, especially for detecting distant metastases of lymph node. However, some different studies reported the diagnostic accuracy of the choline PET/CT imaging and MRI detecting lymph node metastasis in PCa patients is still controversial.[10–14] Notably, so far, no direct comparison of the diagnostic value between MRI with choline PET/CT in meta-analysis has been published.

The purpose of our meta-analysis of original research studies was to directly compare the diagnostic performance and clinical utility of choline PET/CT and MRI for detecting lymph node metastases in PCa patients.

2. Material and methods

2.1. Literature search

In the medical database PubMed, Embase, and Cochrane Library databases with no language restriction from inception to February 2018, we conducted a systematic search about studies in human subjects were performed to evaluate the diagnostic performance of choline PET/CT compared with MRI imaging for detecting lymph node metastases in PCa patients. We performed an extensive search filter by using the following search terms and Boolean logic words: (prostate neoplasm OR prostate cancer OR prostate carcinoma) and (lymph node) and (PET/CT OR positron emission tomography/computed tomography) and (choline or 2-hydroxy-N,N,N-trimethylammonium) and (magnetic resonance imaging OR MRI). In order to supplement the database searches, we reviewed the references of relevant review articles and eligible studies.

2.2. Inclusion and exclusion criteria

Two observers evaluated the title and abstracts independently. From the retrieved articles via our systematic search, we removed duplicates by using the Endnote X7 software and further examined full-text articles of potentially eligible citations. To solve the disagreements through mutual discussion, studies were included in the systematic review if the numbers of true positive (TP), false positive (FP), false negative (FN), and true negative (TN) test results were provided by the articles, which make the 2 × 2 contingency tables available; direct comparison of choline PET/CT and MRI in the diagnosis accuracy of lymph node metastases in PCa patients; use of histological examination with or without clinical follow-up as the reference standard to evaluate diagnostic performance; and at least 8 patients included.

We excluded studies that only evaluate the diagnostic performance of choline PET/CT or MRI in the diagnosis of lymph node metastases and without adequate information to allow construct 2 × 2 contingency tables. Review articles, conference abstract, preclinical studies, case reports, errata, and studies including ≤ 8 patients were excluded.

2.3. Study quality assessment

The Quality Assessment of Studies of Diagnostic Accuracy Studies (QUADA)[15] based on a 14-point scale was used to evaluate the quality of the 8 included studies. This quality assessment tool is produced to evaluate the quality of diagnostic accuracy studies in systematic reviews. The tool consists of 4 key domains and 7 aspects, with respect to risk of bias and concern about applicability of patient selection, index test, reference standard, and the bias risk of flow and timing. Each item of the QUADA checklists were answered with yes, no or unclear. An answer of “yes” gets one score, which means low risk of bias, whereas an answer of “no” or “unclear” gains a score of “0” which suggests that a high risk of bias may exist.

The 2 independent reviewers evaluate the quality of the 8 studies. Inconsistent findings between the 2 reviewers were solved by discussion, and thus the final report was agreed upon by consensus.

2.4. Data extraction

For each included study, 2 reviewers independently used a standardized spreadsheet to extract the following relevant information: first author’s surname, year of publication, method, patient demographic (the number of included patients who underwent PET/CT and MRI for the assessment of lymph node metastasis, age, sex), technical specifications of PET/CT and MRI, PET/CT and MRI results (TP, FP, FN, TN based on patients or lymph nodes).

2.5. Statistical analysis

All analyses were calculated based on 2 types of comparison method with statistical software MetaDisc version1.4 (Unit of
Clinical Biostatistics, Ramo’n y Cajal Hospital, Madrid, Spain; one is patient-based analysis, and the other is node-based analysis.

A patient-based data analysis uses the pathologically proven positive node in the same patient who had been identified to have metastatic lymph nodes by preoperative imaging, while node-based date analyses use the pathologically proven positive node in the corresponding node which had been described as containing positive node by preoperative imaging.

The pooled sensitivity, specificity, positive likelihood ratio (LR+), negative likelihood ratio (NL−), diagnostic odds ratio (DOR) with the respective 95% confidence intervals (95% CI) were calculated of each imaging technology. We also calculated summary receiver operating characteristics curves (SROC) and the area under the curve (AUC) to assess the interaction between summary receiver operating characteristics curves (SROC) and calculated of each imaging technology. We also calculated with the respective 95% confidence intervals.

Finally, a 2-sample Z-test was performed to evaluate a significant difference in sensitivity, specificity, DOR, AUC or the Q* index between these 2 techniques. A P value <.05 was considered to be statistically significant. All of the statistical analyses were performed using Meta-DiSc version 1.4[16] or SPSS 13.0 (SPSS Inc., Chicago, IL).

The I-square (I²) tests was used to evaluate the statistical heterogeneity. It was considered significant study heterogeneity if the I² value was >50%. When the I² value was >50%, the pooled estimates were carried out by random-effects model, otherwise performed by fixed-effects model for the meta-analysis.

3. Results
3.1. Study selection and characteristics

After the systematic search using the keywords and extensive review the references of relevant articles, we initially identified 296 studies in total. After exclusion duplicates (n=260), we reviewed the title and abstract of the remaining articles, and 81 review articles, 86 meeting abstracts, 8 case reports, 6 preclinical studies, and 3 errata were exclusion. We reviewed the remaining 76 articles, 8 studies[17-24] remained after applying the inclusion and exclusion criteria. The whole process of the literature search was shown in Figure 1.

The studies of included comprising 362 patients, with the average age 66.2. The included studies were reported from different countries, of those, 2 studies were performed in Belgium, 2 in Germany, 1 in America, 1 in United Kingdom, 1 in Italy, and 1 in France. All the included studies were conducted prospectively design. Six studies used 11C-choline as the radiotracer, and PET/CT scanning started between 2 and 5 minutes after intravenous injection with 11C-choline an additional low-dose CT in 10 studies. Whereas 2 studies used 18F-choline and PET/CT scanning started 60 minutes after intravenous injection with 18F-choline. The study populations and their characteristics of the 8 studies were summarized in Table 1.

3.2. Quality assessment

Quality assessment is showed in Table 2 using the QUADAS 2 tool consisting of 14 items, including representative spectrum of patients (item 1), selection criteria (item 2), reference standard (item 3), the time of between reference standard and index test (item 4), using a reference standard of diagnosis (item 5), receive the same reference standard (item 6), reference standard independent of the index test (item 7), execution of the index test described (item 8), execution of the reference standard described (item 9), index test results interpreted (item 10), reference standard results interpreted (item 11), clinical data available (item 12), uninterpretable/ intermediate test results reported (item 13), withdrawals from the study explained (item 14). The results are showed in Table 2.

3.3. Summary of diagnostic accuracy
3.3.1. Patient-based data analysis

Table 3 presents the performance of PET/CT and MRI for the detection of lymph node metastases from each study and the results of the statistical pooling, based on the patient-based data analysis. The pooled sensitivity, specificity, LR+, LR−, and DOR of PET/CT were 0.59 (95%CI, 0.50–0.67), 0.92 (95%CI, 0.87–0.96), 5.45 (95%CI, 2.65–11.22), 0.38 (95%CI, 0.19–0.76) and 17.37 (95%CI, 4.42–68.33), respectively, and those of MRI were 0.52 (95%CI, 0.44–0.61), 0.87 (95%CI, 0.81–0.92), 3.29 (95%CI, 2.08–5.22), 0.62 (95%CI, 0.50–0.77) and 6.05 (95%CI, 3.09–11.85), respectively. The specificity, LR+, LR− and DOR of PET/CT were significantly higher than those of MRI (P <.05). The SROC curves are presented in Figures 2 and 3. The AUC and Q* index of PET/CT were 0.9526 and 08940, respectively, and those values of MRI were 0.7782 and 0.7170, respectively. The AUC and Q* index of PET/CT were higher than those of MRI (P <.05).

3.3.2. Node-based data analysis. Table 3 presents the performance of PET/CT and MRI for detection of lymph node
metastases from each study and the results of the statistical pooling, based on the node-based data analysis. The pooled sensitivity, specificity, LR+, LR− and DOR of PET/CT were 0.51 (95%CI, 0.46–0.57), 0.99 (95%CI, 0.98–0.99), 23.73 (95%CI, 12.65–44.52), 0.42 (95%CI, 0.24–0.73) and 65.55 (95%CI, 23.55–182.45), respectively, and those of MRI were 0.39 (95%CI, 0.34–0.44), 0.97 (95%CI, 0.96–0.97), 8.31 (95%CI, 6.48–10.64), 0.61 (95%CI, 0.45–0.82) and 15.86 (95%CI, 8.96–28.05), respectively. The sensitivity, LR+, LR−, and DOR of PET/CT were significantly higher than those of MRI (P < 0.05). The SROC curves are shown in Figures 4 and 5. The AUC and Q∗ index of PET/CT were 0.9331 and 0.9485, respectively, and those of MRI were 0.9857 and 0.9485, respectively, and those of MRI were 0.9782 and 0.9857, respectively. The AUC and Q∗ index of PET/CT were higher than those of MRI (P < 0.05).

4. Discussion

Management of PCa patients strongly depends on accurate initial assessment of the tumor stage (T), the absence or the presence of lymph node involvement (N), and the absence or the presence of nonregional metastases (M), both in primary staging and restaging. Early clinical symptoms of PCa is not very significant, the biological characteristics of PCa is more complicated. Clinically, most of the patients with PCa are advanced stage of treatment, some have distant metastasis. Although the 10-year survival rate of early stage PCa is high, the prognosis is generally poor in the case of metastasis. Studies have shown that about 25% to 41% of patients with PCa have developed lymph node metastases, and the smallest metastasis only 2mm. Pelvic lymph nodes are the earliest and most common site of PCa metastasis. Patients with positive lymph node metastases have

Study	Countries	Patients	Lymph nodes	Mean age	Study design	PET/CT	Radiotracer doses	Uptake interval (min)	MRI	Reference standard
Budiharto T 2011	Belgium	36	733	64.6	Prospectively Siemens	740–1000 MBq 11C-choline	2	Siemens	HP	
Heck MM 2013	Germany	33	261	66.0	Prospectively Siemens	756±72 MBq 11C-choline	5	Siemens	HP	
Wieder H 2017	Germany	57	456	68.0	Prospectively GE	600–900 MBq 11C-choline	5	Siemens	HP	
Kitajima K 2014	America	70	122	65.7	Prospectively GE	370–555 MBq 11C-choline	5	GE	HP, CFU	
Contractor K 2011	UK	26	406	67.7	Prospectively GE	3 MBq/kg 11C-choline	Unclear	GE	HP	
Piccardo A 2014	Italy	21	55	77.2	Prospectively GE	3 MBq/kg 18F-choline	Unclear	Phillips	HP	
Pinayy JB 2014	France	44	482	63.0	Prospectively GE	4 MBq/kg 11C-choline	60	Phillips	HP	
Van den Bergh L 2015	Belgium	75	1665	64.6	Prospectively Siemens	740–1000 MBq 11C-choline	4	Siemens	HP	

CFU = clinical follow-up, HP = histopathology, MRI = Magnetic resonance Imaging, PET/CT = positron emission tomography/computed tomography.

Study	Item 1	Item 2	Item 3	Item 4	Item 5	Item 6	Item 7	Item 8	Item 9	Item 10	Item 11	Item 12	Item 13	Item 14	Total score
Budiharto T	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	13
Heck MM	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	12
Wieder H	Y	Y	Y	Y	Y	Y	Y	Y	Y	U	Y	Y	Y	Y	11
Kitajima K	Y	Y	Y	Y	Y	Y	Y	Y	Y	U	Y	Y	Y	Y	10
Contractor K	Y	Y	Y	Y	Y	Y	Y	Y	Y	N	Y	Y	Y	Y	12
Piccardo A	Y	Y	Y	Y	Y	Y	Y	Y	Y	N	Y	U	Y	Y	11
Pinayy JB	U	Y	Y	Y	Y	Y	Y	Y	Y	U	U	Y	Y	Y	10
Van den Bergh L 2015	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	13	

Y: yes = 1 score, N: no = 0 score, U: unclear = 0 score.

Study	SEN (95%CI)	SPE (95%CI)	LR+ (95%CI)	LR− (95%CI)	DOR (95%CI)	AUC	Q∗
Patient-based PET/CT	0.59 (0.50–0.67)	0.92 (0.87–0.96)	5.45 (2.65–11.22)	0.38 (0.19–0.76)	17.37 (4.42–68.33)	0.9526	0.8940
MRI	0.52 (0.44–0.61)	0.87 (0.81–0.92)	3.29 (2.08–5.22)	0.62 (0.50–0.77)	6.05 (3.03–11.85)	0.7782	0.7170
Node-based PET/CT	0.51 (0.46–0.57)	0.99 (0.98–0.99)	23.73 (12.65–44.52)	0.42 (0.24–0.75)	65.55 (23.55–182.45)	0.9857	0.9485
MRI	0.39 (0.34–0.44)	0.97 (0.96–0.97)	8.31 (6.48–10.64)	0.61 (0.45–0.82)	15.86 (9.69–28.05)	0.9331	0.8889

The following were no statistically significant differences: PET/CT versus MRI for pooled sensitivity by patient-based data and PET/CT versus MRI for pooled specificity by node-based data. DOR=diagnostic odds ratio, LR+=positive likelihood ratio, MRI=magnetic resonance imaging, LR−=negative likelihood ratio, PET/CT=positron emission tomography/computed tomography, SEN=sensitivity, SPE=specificity.
poor survival, and patients in this disease category were considered incurable.\(^{[27]}\)

Currently, the treatment options for PCa patients include radical prostatectomy, radiotherapy, chemotherapy, endocrine therapy, observation waiting, or a combination of these, and the selection of PCa treatment options needs to be based on the clinical staging of patients to maximize treatment efficacy and reduce treatment morbidity. The most effective treatment for PCa
is radical prostatectomy, which can greatly improve the survival rate. The literature\cite{28} has pointed out that pelvic lymph node dissection for the treatment of PCa micrometastasis in patients with more clinical significance. Once PCa spreads to the lymph nodes, most cases may lose the opportunity of cure with radical prostatectomy, while in other cases it will be significantly diminished. Currently, 30% to 40% of patients relapse after therapy, and about half of these patients are due to metastasis that were overlooked at the primary staging (mainly caused by lymph node metastases).\cite{29} In addition, direct surgical treatment

Figure 4. Summary receiver operating characteristic curve showing the performance of choline PET/CT for detecting lymph node metastases in prostate cancer patients on node-based data analysis. PET/CT = positron emission tomography/computed tomography.

Figure 5. Summary receiver operating characteristic curve showing the performance of MRI for detecting lymph node metastases in prostate cancer patients on node-based data analysis. MRI = magnetic resonance imaging.
The diagnosis of choline PET/CT positive lymph nodes requires an important differential diagnosis from inflammatory diseases. Therefore, the diagnosis of choline PET/CT positive lymph nodes requires an important differential diagnosis from inflammatory diseases.

In addition to that choline PET/CT imaging may be limited for the differentiation of malignant and benign lesions which is particularly important in lymph nodes. Therefore, the diagnosis of choline PET/CT positive lymph nodes requires an important differential diagnosis from inflammatory diseases.

In addition to that choline PET/CT imaging may be limited for the differentiation of malignant and benign lesions which is particularly important in lymph nodes. Therefore, the diagnosis of choline PET/CT positive lymph nodes requires an important differential diagnosis from inflammatory diseases. Therefore, the diagnosis of choline PET/CT positive lymph nodes requires an important differential diagnosis from inflammatory diseases.
standard, which is general weakness of various imaging modality for diagnostic efficiency in the diagnosing lymph node metastasis and most studies researching different tumors. As we all know, histological confirmation is the gold standard of lymph node metastases. However, due to the deep location of partially metastatic lymph nodes, it is technically and morally difficult to perform histopathological analysis for all histopathological changes, so the application of histopathological and clinical follow-up as a reference standard is unavoidable. In 8 of these included studies, 6 studies were using histopathology as reference standard, whereas histopathology and clinical follow-up were used in the other 2 studies. The negative findings under the reference standard of clinical follow-up were negative only during the follow-up, and the final findings may be TP, which may cause verification bias to our results. Due to this meta-analysis contains a limited number of studies, we did not conduct a subgroup analysis for the location of lymph node metastasis or the pathological type of prostate cancer. In addition, we cannot rule out the presence of relevant original reports when completing the systematic review in a rapidly evolving field of research. At last, heterogeneity may also be due to some unreported or unmeasured research features, which are inherent in meta-analysis based on published data. We deal with the problem of heterogeneity in 3 ways: When selecting the studies use inclusive criteria to minimize diversity, performed stratified analysis base on the factors that may result in the heterogeneity, use the validated tool (QUADAS) to provide objective and strict evaluating of quality of included articles.

5. Conclusion
In this meta-analysis, choline PET/CT for detecting lymph node metastases from PCa showed higher specificity, LR+, LR−, DOR, AUC, and Q* than MRI on patient-based data analysis. On node-based data analysis, choline PET/CT showed higher sensitivity, LR+, LR−, DOR, AUC and Q* than MRI. Therefore, PET/CT had excellent accuracy for the diagnosis of lymph node metastases superior to MRI and had the potential to be broadly applied in clinical practice. However, choline PET/CT and MRI exhibited in the present study a rather low sensitivity with less than three-fifth of clinical practice. However, choline PET/CT and MRI exhibited for preoperative lymph node staging in prostate cancer patients. Also MRI is still the most commonly used staging tool in daily clinical practice, despite its poor sensitivity and specificity to lymph node metastasis. However, with the increasing number of PET / CT centers, the use of 11C or 18F choline for staging of prostate cancer is increasing.

Author contributions
Data curation: Liang Yin.
Formal analysis: Yang Yang.
Methodology: Jian-lan Yue.
Project administration: Zhichun Lin.
Software: Yan-feng Li.
Writing – original draft: Shi-ming Huang.
Writing – review & editing: Zhichun Lin.

References
[1] Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin 2016;66:7–30.
[2] Pilleron S, Sarfati D, Janssen-Heijnen M, et al. Global cancer incidence in older adults, 2012 and 2035: a population-based study. Int J Cancer 2018;doi:10.1002/ijc.31664 [Epub ahead of print].
[3] Shen G, Deng H, Hu S, et al. Comparison of choline-PET/CT, MRI, SPECT, and bone scintigraphy in the diagnosis of bone metastases in patients with prostate cancer: a meta-analysis. Skeletal Radiol 2014;43:1203–13.
[4] Mapelli P, Picchio F, Nathan MA, et al. Choline positron emission tomography/computed tomography for lymph node involvement in intermediate-to-high-risk prostate cancer: a systematic literature review and meta-analysis. Eur Urol 2013;63:1040–8.
[5] Kitajima K, Murphy RC, Nathan MA. Choline PET/CT for imaging prostate cancer: an update. Ann Nucl Med 2013;27:581–91.
[6] Motter N, Bellmunt J, Bolla M, et al. EAU-ESTRO-SIOG guidelines on prostate cancer, Part 1: screening, diagnosis, and local treatment with curative intent. Eur Urol 2017;71:618–29.
[7] Beggani A, Abdollah F, Nini A, et al. Performance characteristics of computed tomography in detecting lymph node metastases in contemporary patients with prostate cancer treated with extended pelvic lymph node dissection. Eur Urol 2012;61:1132–8.
[8] Caccavillo V, di Stasio GD, Evangelista L, et al. Will (68)Ga PSMA-radiogand be the only choice for nuclear medicine in prostate cancer in the near future? A clinical update. Rev Esp Med Nucl Imagen Mol 2018;37:103–9.
[9] Schavina R, Scattoni V, Castellucci P, et al. 11C-choline positron emission tomography/computed tomography for preoperative lymph-node staging in intermediate-risk and high-risk prostate cancer: comparison with clinical staging nomograms. Eur Urol 2008;54:392–401.
[10] Huszarik DB, Miralbell R, Dubs M, et al. Evaluation of [18F]-choline PET/CT for staging and restaging of prostate cancer. Eur J Nucl Med Mol Imaging 2008;35:253–63.
[11] Poulsen MH, Bouchehouche K, Holsund-Carlsen PF, et al. [18F] fluoromethylcholine (FCH) positron emission tomography/computed tomography (PET/CT) for lymph node staging of prostate cancer: a prospective study of 210 patients. BJU Int 2012;110:1666–71.
[12] de Jong IJ, Pruim J, Elsinga PH, et al. Preoperative staging of pelvic lymph nodes in prostate cancer by 11C-choline PET. J Nucl Med 2003;44:331–2.
[13] Beheshi M, Imamovic L, Broniger G, et al. 18F choline PET/CT in the preoperative staging of prostate cancer in patients with intermediate or high risk of extracapsular disease: a prospective study of 130 patients. Radiology 2010;254:925–33.
[14] Whiting P, Rutjes AW, Westwood M, et al. Research and reporting methods accuracy studies. Ann Intern Med 2011;155:529–36.
[15] Zamaor J, Abiria V, Muriel A, et al. Meta-DisSc: a software for meta- analysis of test accuracy data. BMC Med Res Methodol 2006;6:1.
[16] Budiarto T, Joniau S, Lerut E, et al. Prospective evaluation of 11C-choline positron emission tomography/computed tomography and diffusion-weighted magnetic resonance imaging for the nodal staging of prostate cancer with a high risk of lymph node metastases. Eur Urol 2011;60:125–30.
[17] Heck MM, Souvatzoglou M, Retz M, et al. Prospective comparison of computed tomography, diffusion-weighted magnetic resonance imaging and [11C]choline positron emission tomography/computed tomography for preoperative lymph node staging in prostate cancer patients. Eur J Nucl Med Mol Imaging 2014;41:694–701.
[18] Wieder H, Beer AJ, Holzapfel K, et al. 11C-choline PET/CT and whole-body MRI including diffusion weighted imaging for patients with recurrent prostate cancer. Oncotarget 2017;8:66516–27.
[19] Kitajima K, Murphy RC, Nathan MA, et al. Detection of recurrent prostate cancer after radical prostatectomy: comparison of 11C-choline PET/CT with pelvic multiparametric MR imaging with endorectal coil. J Nucl Med 2014;55:223–30.
[20] Contractor K, Challapalli A, Barwick T, et al. Use of [11C]choline PET-CT as a noninvasive method for detecting pelvic lymph node status from prostate cancer and relationship with choline kinase expression. Clin Cancer Res 2011;17:7763–83.
[21] Pizzocaro A, Paparo F, Pizzocaro R, et al. Value of fused 18F-choline-PET/ MRI to evaluate prostate cancer relapse in patients showing biochemical recurrence after EBRT: preliminary results. BioMed Res Int 2014;2014:103718.
[22] Pinaquy JB, De Clermont-Gallier H, Pesticier G, et al. Comparative effectiveness of [18F]-fluorocholine PET-CT and pelvic MRI with
diffusion-weighted imaging for staging in patients with high-risk prostate cancer. Prostate 2015;75:323–31.

[24] Van Den Bergh L, Lerut E, Haustermans K, et al. Final analysis of a prospective trial on functional imaging for nodal staging in patients with prostate cancer at high risk for lymph node involvement. Urol Oncol 2015;33:199:e23–31.

[25] Mazzone F, Preisser F, Nazzani S, et al. Location of metastases in contemporary prostate cancer patients affects cancer-specific mortality. Clin Genitourin Cancer 2018;16:376–84.

[26] Bernstein AN, Shoag JE, Golan R, et al. Contemporary incidence and outcomes of prostate cancer lymph node metastases. J Urol 2018;199:1510–7.

[27] Kim YJ, Song C, Eom KY, et al. Lymph node ratio determines the benefit of adjuvant radiotherapy in pathologically 3 or less lymph node-positive prostate cancer after radical prostatectomy; a population-based analysis with propensity-score matching. Oncotarget 2017;8:110625–34.

[28] Preisser F, Marchioni M, Nazzani S, et al. The Impact of Lymph Node Metastases Burden at Radical Prostatectomy. Eur Urol Focus 2018.

[29] Giovacchini G, Picchio M, Coradeschi E, et al. Predictive factors of [(11)C]choline PET/CT in patients with biochemical failure after radical prostatectomy. Eur J Nucl Med Mol Imaging 2010;37:301–9.

[30] Chenam A, Panhar JS, Ruel N, et al. Lymph node-positive prostate cancer after robotic prostatectomy and extended pelvic lymphadenectomy. J Robot Surg 2017;12:425–31.

[31] Zattoni F, Nehra A, Murphy C, et al. Mid-term outcomes following salvage lymph node dissection for prostate cancer nodal recurrence status post-radical prostatectomy. Eur Urol Focus 2016;2:522–31.

[32] Shen G, Deng H, Hu S, et al. Potential performance of dual-time-point 18F-FDG PET/CT compared with single-time-point imaging for differential diagnosis of metastatic lymph nodes: a meta-analysis. Nucl Med Commun 2014;35:1003–10.

[33] Jonas S, Van den Bergh L, Lerut E, et al. Mapping of pelvic lymph node metastases in prostate cancer. Eur Urol 2013;63:450–8.

[34] Hansen J, Rink M, Bianchi M, et al. External validation of the updated Briganti nomogram to predict lymph node invasion in prostate cancer patients undergoing extended lymph node dissection. Prostate 2013;73:211–8.

[35] Ploussard G, Briganti A, de la Taille A, et al. Pelvic lymph node dissection during robot-assisted radical prostatectomy: efficacy, limitations, and complications—a systematic review of the literature. Eur Urol 2014;65:7–16.

[36] Brembilla G, Dell’Ogo P, Stabile A, et al. Preoperative multiparametric MRI of the prostate for the prediction of lymph node metastases in prostate cancer patients treated with extended pelvic lymph node dissection. Eur Radiol 2018;28:1969–76.

[37] Hessakkers RA, Hovels AM, Jager GJ, et al. MRI with a lymph-node-specific contrast agent as an alternative to CT scan and lymph-node dissection in patients with prostate cancer: a prospective multicohort study. Lancet Oncol 2008;9:850–6.

[38] Kitajima K, Yamamoto S, Odawara S, et al. Tiny obturator node metastasis from prostate cancer not shown by FDG-PET/CT, CT, or MRI detected by [(11)C]-choline PET/CT. Case Rep Oncol 2018;11:33–7.

[39] Zarrour JG, Galgano S, McConathy J, et al. Lymph node imaging in initial staging of prostate cancer: an overview and update. World J Radiol 2017;9:189–99.

[40] Beer AJ, Eiber M, Souvatzoglou M, et al. Restricted water diffusibility as measured by diffusion-weighted MR imaging and choline uptake in [(11)C]-choline PET/CT and [(11)C]-acetate PET/CT: comparative analysis for imaging prostate cancer. Mol Imaging Biol 2011;13:352–61.

[41] Broggsiter C, Zophel K, Kotzerke J, 185-Choline, 11C-choline and 11C-acetate PET/CT: comparative analysis for imaging prostate cancer patients. Eur J Nucl Med Mol Imaging 2013;40(suppl 1):S18–27.

[42] Hacker A, Jeschke S, Leeb K, et al. Detection of pelvic lymph node metastases in patients with clinically localized prostate cancer: comparison of [(18)F]-fluorocholine positron emission tomography-computerized tomography and laparoscopic radioisotope guided sentinel lymph node dissection. J Urol 2006;176:204–8.