Towards Practical Large-scale Randomized Iterative Least Squares Solvers through Uncertainty Quantification

Nathaniel Pritchard† and Vivak Patel‡

Abstract. As the scale of problems and data used for experimental design, signal processing and data assimilation grow, the oft-occurring least squares subproblems are correspondingly growing in size. As the scale of these least squares problems creates prohibitive memory movement costs for the usual incremental QR and Krylov-based algorithms, randomized least squares problems are garnering more attention. However, these randomized least squares solvers are difficult to integrate application algorithms as their uncertainty limits practical tracking of algorithmic progress and reliable stopping. Accordingly, in this work, we develop theoretically-rigorous, practical tools for quantifying the uncertainty of an important class of iterative randomized least squares algorithms, which we then use to track algorithmic progress and create a stopping condition. We demonstrate the effectiveness of our algorithm by solving a 0.78 TB least squares subproblem from the inner loop of incremental 4D-Var using only 195 MB of memory.

Key words. random sketching, linear systems, iterative methods, residual estimation, stopping criterion, least-squares, Coordinate Descent

AMS subject classifications. 65F10, 65F25, 60F10, 62L12

1. Introduction. Least squares problems are regularly solved as core subproblems in a variety of important algorithms for experimental design [14, 3], signal processing [27, 29], data assimilation [30, 9], and uncertainty quantification [31, 28]. Moreover, these least squares subproblems are growing in both the number of equations and the dimension of the unknown variables owing to two pressures: (1) improvements in technology have increased the permeation of higher-frequency sensors, which grows the volume of data being used and which, in turn, (usually) increases the number of equations in the least squares subproblem; and (2) the growing desire for more accurately simulating models (e.g., using finer meshes for partial differential equation models) increases the number of unknown variables in the least squares problems.

Unfortunately, the growth of least squares subproblems is a challenge for commonly used solvers. For instance, solving a least squares problem with many observations can be addressed in a memory-efficient manner using an incremental QR algorithm [18], so long as the resulting upper triangular term can be fit in memory. Unfortunately, if the number of unknowns is sufficiently larger, this least squares incremental QR algorithm will be unable to store and manipulate the resulting upper triangular matrix without substantial slowdowns induced by memory movement costs. As another example, Krylov-based least squares solvers can also be efficiently deployed [10], so long as matrix-vector and matrix-transpose-vector products can be efficiently computed. Unfortunately, if the system is sufficiently large that it cannot
be stored in memory, then Krylov-based least squares solvers are substantially slowed down also because of the memory movement costs needed to read in the matrix multiple times per iteration [16].

As these challenges to standard solvers are driven by size, randomized least squares solvers (e.g., iterative Hessian sketch [23] and generalized column subspace descent [21, 20, 22]) seem to be promising alternatives as they are able to compress the information in the original linear system to more manageable dimensions. However, such iterative randomized least squares solvers must first overcome a key practical challenge: as such solvers would be called repeatedly within an iterative algorithm, their solution accuracy must be controlled so as to ensure algorithmic efficiency. For example, in incremental 4D-Var [4], a least squares subproblem occurs at every iteration of the algorithm. Indeed, in the initial few iterations, the least squares subproblem only needs to be solved to low accuracy as this is usually enough to generate progress quickly, while later iterations will demand that the subproblem be solved to higher accuracy. Thus, achieving such control over the least squares subproblem solver’s accuracy ensures the efficiency of the overall algorithm.

When it comes to solving least squares problems, controlling the solver’s accuracy depends on tracking the progress of the iterations and defining clear stopping conditions, which are typically achieved by using the norm of the gradient of the least squares subproblem. Unfortunately, the gradient of a large least squares problem is calculated by applying a very large matrix in both its original and transposed orientation to a vector—a procedure that is very costly because of its guaranteed violation of the principal of spatial locality for memory accesses [16] (excepting the case in which the matrix is symmetric). This issue is further exacerbated for a randomized solver: the gradient at an iterate of a randomized solver is never explicitly calculated, and, even if it were calculated occasionally for monitoring progress, it would be less reliable as we now explain. As the iterates of the randomized solver are random, the gradient evaluated at these iterates inherits this randomness; thus, a wide range of gradient norm values would correspond to the same residual norm squared in the iterates (see the blue boxes in Figure 1), which results in the norm of the gradient being a poor reflection of the residual norm squared. To reiterate, the gradient norm is widely used for tracking and stopping least squares problems, but it is infeasible to calculate for large scale problems, and is unreliable for randomized solvers.

In the class of sketching-based randomized solvers that we consider in this work, the infeasibility of calculating the entire gradient can be addressed by using the sketch of the gradient, which is efficiently and regularly calculated by this class of randomized solvers. However, the sketched gradient norm inherits not only the randomness of the gradient at an iterate, but also the randomness from the sketching procedure. To see this, as shown by the red

1 In the case of this manuscript, the least squares problem we are considering is \(\min_{x \in \mathbb{R}^n} \|Ax - b\|^2_2 \), and thus the gradient is \(g_k = A^\top B(Ax_k - b) \).

2 We can mathematically represent the sketched gradient as \(\tilde{g}_k = S_{k+1}^\top g_k \), where \(S_{k+1} \) is a random matrix satisfying properties to be discussed in section 3.

3 While there are cases where this is not true, we generally accept the premise that randomly sketching a matrix can be efficiently calculated. For instance, the Fast Johnson-Lindenstrauss Transform leverages the fast fourier transform to efficiently sketch a matrix [2]. As another example, a Gaussian sketch can be efficiently applied using emerging photonic hardware, e.g., lighton.ai.
boxes in Figure 1, the sketched gradient norm has an even wider range for the same residual norm squared relative to the gradient norm. Thus, the sketched gradient norm, though feasibly calculated, is even less reliable for tracking and stopping an iterative randomized least squares solver.

![Box plots for distribution of gradients at different residual ranges for a Phillips Matrix](image)

Figure 1. We solve a Phillips linear system, which has a condition number of $O(10^9)$, from MatrixDepot [33] using an iterative random sketching method. We compute the norm squared of the true and sketched gradients of the iterates as well as the norm squared of the residual of the iterates. The box plots show the distribution of gradient values for the norms squared of the sketched and true gradients at different intervals of residual norm squared values. For instance, the red box plot and blue box plot over $(985, 990]$ represent the distribution of the norms squared of the sketched and true gradients that correspond to residual norm squared values between 985 and 990.

While the sketched gradient norm alone is insufficient to reliably track and stop the underlying randomized least squares solver, if the sketched gradient norm’s uncertainty could be quantified, then we could use this uncertainty set to create risk-informed metrics for tracking and stopping the corresponding underlying algorithm. In this work, we develop a practical, computationally-efficient method for quantifying the uncertainty set of the norm squared of the sketched gradient, and use it to develop risk-informed methods for tracking and stopping the underlying algorithm. In fact, we take this a step further by generalizing our method to a moving average of the sketched gradients, which turns out to be more reliable. We emphasize that our method, which requires only a small additional computational and memory cost over the solver, will accurately reflect the algorithm’s progress based on a user-defined threshold for risk, and will stop the algorithm based on a user-defined threshold for risk. We demonstrate the power of our methodology by solving a 0.78 TB least squares subproblem arising from the incremental 4D-Var algorithm using only 195 MB of memory, for which LSQR is infeasible.

4 By risk-informed, we mean that the user can specify probabilities for which the tracking metrics and stopping conditions can fail.
As a result of our methodology, we are enabling the practical integration of an important class of randomized least squares solvers into algorithms that are widely used in science and engineering, which will support solving larger problems in these fields.

Note in our previous work [24], we developed an analogous procedure for consistent linear systems. While at first glance these procedures seem identical owing to our effort to maintain notational consistency, the procedures and their analysis differ in two fundamental ways. First, the procedure and analysis in [24] relies on consistency, which is not available for the least squares problem. Because of consistency, the procedure in [24] can use left-sketching techniques, which are well studied [1, 2, 8, 26, 15, 21, 23]. Without consistency the procedure in [24] would fail to reflect the progress of the algorithm because left-sketching fails to adequately solve least squares problems [23, 25]. Hence, in this work, the procedure uses the less familiar right-sketching approach.

Second, as the procedure herein uses right-sketching, we must analyze the procedure using arguments about the column space, rather than arguments about the row space as in [24]. Thus, while we follow a similar sequence of steps to, and replicate notation from, [24], the underlying concepts in the analysis of the two procedures are rather distinct.

The remainder of this paper is organized as follows. In section 3, we specify the problem that we are solving, the algorithm used to solve this problem, our moving average of the norm squared of the gradient estimator, our estimate of its uncertainty set, and our stopping condition. In section 4, we rigorously establish the foundations of our estimators. In section 5, we numerically demonstrate the effectiveness of our estimators and compare our algorithm to a state-of-the-art solver. In section 6, we conclude.

2. Notation. We use the following the notation in this work.

Symbol	Description
A	A coefficient matrix in $\mathbb{R}^{m \times n}$.
B	A symmetric positive definite matrix in $\mathbb{R}^{m \times m}$.
b	A constant vector in \mathbb{R}^m.
S_k	A random matrix in $\mathbb{R}^{n \times p}$ that satisfies the Johnson-Lindenstrauss property (See Definition 3.1).
$\| \cdot \|_2$	The standard Euclidean norm.
x_k	The iterate at iteration k.
r_k	The residual at iteration k, i.e., $r_k = Ax_k - b$.
g_k	The gradient of the least squares problem at iteration k, i.e., $g_k = A^T B (Ax_k - b)$.
\tilde{g}_k	The sketched gradient of the least squares problem at iteration k, i.e., $\tilde{A}_{k+1}^T B (Ax_k - b)$.
P	The orthogonal projection matrix onto the range of $B^{1/2} A$.
ρ^λ_k	The moving average with window width λ of the norms squared of the gradients of the least squares problem.
3. Problem Formulation & Algorithm. We are interested in solving the following minimization problem

\[
\min_{x \in \mathbb{R}^n} \|Ax - b\|_B^2,
\]

where \(A \in \mathbb{R}^{m \times n}\) is a coefficient matrix; \(B \in \mathbb{R}^{m \times m}\) is any symmetric positive definite matrix; \(b \in \mathbb{R}^m\) is a constant vector; and both \(m\) and \(n\) are large. Note, we allow \(m\) and \(n\) to be arbitrary, so our methodology applies to overdetermined, underdetermined, and rank-deficient systems. Owing to the size of \(A\), we can only access \(A\) through matrix-vector multiplications; similarly, though we will not need it in our algorithm, we can access \(A^\top\) through matrix-vector multiplications, though this would be substantially more expensive owing to the needed memory access pattern [16]. For all other operations, we make use of efficiently-computed (see Footnote 3), sketches of \(A\), which we individually denote by (possibly with a subscript)

\[
\tilde{A} = AS \in \mathbb{R}^{m \times p},
\]
where p is generally significantly smaller than n (see Remark 4.6); and $S \in \mathbb{R}^{n \times p}$ is a random matrix that satisfies the Johnson–Lindenstrauss property [12] defined in the following manner.

Definition 3.1. A matrix $S \in \mathbb{R}^{n \times p}$ satisfies the Johnson-Lindenstrauss property if there exists constants $C, \omega > 0$ such that for all $\delta \geq 0$ and for any $x \in \mathbb{R}^n$,

$$
(3.3) \quad P \left(\frac{\|Sx\|_2^2 - \|x\|_2^2}{\|x\|_2^2} > \delta \|x\|_2^2 \right) < 2e^{-\min\left\{ \frac{Cp\delta^2}{2}, \frac{\delta^2}{2\omega} \right\}}.
$$

Remark 3.2. In Definition 3.1, the constants C and ω are determined by the method used to generate S. There are many choices of these methods, such as sparse Rademacher matrices [1], Fast Johnson Lindenstrauss Transform (FJLT) [2], and Gaussian matrices [5, 11, 17]. Estimates for these constants based on numerical experiments are supplied in Table 2.

Method	C	ω
Gaussian Matrix	1.1	0.47
Achlioptas	1.16	0.46
FJLT	0.83	0.70

Remark 3.3. By Definition 3.1, $\frac{\|Sx\|_2^2}{\|x\|_2^2}$ is a sub-Exponential (defined in Definition 4.8) random variable with parameters $(1/(Cp), \omega)$ [32].

To solve this problem we will employ an important subclass of generalized column-space descent methods (see [22]), which begins with an iterate $x_0 \in \mathbb{R}^n$ and generates a sequence of iterates, $\{x_k : k \in \mathbb{N}\}$, according to the recursive equation

$$
(3.4) \quad x_k = x_{k-1} - S_k u_k,
$$

$$
(3.5) \quad \text{where } u_k = \arg\min_{u \in \mathbb{R}^p} \|\tilde{A}_k u - (Ax_{k-1} - b)\|_B^2,
$$

and $\tilde{A}_k = S_k A$, which can be computed efficiently (see Footnote 3). This update is explicitly given by

$$
(3.6) \quad x_k = x_{k-1} - S_k (\tilde{A}_k^\top B \tilde{A}_k)^\dagger \tilde{A}_k^\top B (Ax_{k-1} - b),
$$

where \dagger is the Moore-Penrose pseudoinverse; $\{S_k : k \in \mathbb{N}\}$ are independent, identically distributed matrices satisfying Definition 3.1. This form is mathematically equivalent to

$$
(3.7) \quad x_k = x_{k-1} - S_k (S_k^\top A^\top B S_k)^\dagger S_k^\top A^\top B (Ax_{k-1} - b),
$$

which is a form that will be useful for proving theory relating to the convergence of (3.6), but which we do not explicitly use for the algorithm as A^\top is unfavorable to access for large matrices.
Algorithm 3.1 Tracking and Stopping for Least Squares

Require: $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $B^{1/2} \in \mathbb{R}^{m \times m}$, $x_0 \in \mathbb{R}^n, \{S_k\}$ satisfying Definition 3.1.
Require: Moving average window widths $\lambda_1 \leq \lambda_2 \in \mathbb{N}$.

Require: $\alpha > 0, \xi_1 \in (0,1), \xi_{II} \in (0,1), \delta_I \in (0,1), \delta_{II} > 1, \eta \geq 1, v > 0$.

1: $k \leftarrow 0, k' \leftarrow \infty, \rho_0^k \leftarrow 0, \tilde{t}_0^k \leftarrow 0, \lambda \leftarrow 1, FLAG \leftarrow \text{false}.$
2: while $k = 0$ or $\rho_{k-1}^k \geq v$ or

$$\sqrt{\tilde{t}_{k-1}^k} \geq \min \left\{ \frac{\lambda(1 - \delta_I)^2 v^2 C_p}{(1 + \log(\lambda))2 \log(1/\xi_I)\sqrt{\tilde{t}_{k-1}^k}}, \frac{\lambda v(1 - \delta_I)}{2 \log(1/\xi_I)\omega}, \frac{\lambda(\delta_{II} - 1)^2 v^2 C_p}{(1 + \log(\lambda))2 \log(1/\xi_{II})\sqrt{\tilde{t}_{k-1}^k}}, \frac{\lambda v(\delta_{II} - 1)}{2 \log(1/\xi_{II})\omega} \right\} \right.$$

do
3: # Iteration k
4: $r_k \leftarrow B^{1/2}(Ax_k - b)$
5: $\tilde{A}_{k+1} \leftarrow B^{1/2}AS_{k+1}$
6: $\tilde{g}_k \leftarrow \tilde{A}_{k+1}^tr_k$
7: if $k = 0$ then
8: $\lambda \leftarrow 1$
9: $\tilde{p}_0, \tilde{t}_0 \leftarrow \Vert \tilde{g}_0 \Vert_2^2, \tilde{g}_0 \Vert_2^2$
10: else
11: if (not $FLAG$) and $\Vert \tilde{g}_k \Vert_2^2 > \Vert \tilde{g}_{k-1} \Vert_2^2$ then
12: $FLAG \leftarrow \text{true}$
13: end if
14: if (not $FLAG$) and $k < \lambda_1$ then
15: $\lambda \leftarrow k + 1$
16: $\tilde{p}_k, \tilde{t}_k \leftarrow (k\tilde{p}_{k-1} + \Vert \tilde{g}_k \Vert_2^2)/\lambda, (k\tilde{t}_{k-1} + \Vert \tilde{g}_k \Vert_2^2)/\lambda$
17: else if (not $FLAG$) and $k \geq \lambda_1$ then
18: $\lambda \leftarrow \lambda_1$
19: $\tilde{p}_k, \tilde{t}_k \leftarrow (\lambda_1\tilde{p}_{k-1} + \Vert \tilde{g}_k \Vert_2^2 - \Vert \tilde{g}_{k-1} \Vert_2^2)/\lambda, (\lambda_1\tilde{t}_{k-1} + \Vert \tilde{g}_k \Vert_2^2 - \Vert \tilde{g}_{k-1} \Vert_2^2)/\lambda$
20: else if $FLAG$ and $\lambda < \lambda_2$ then
21: $\lambda \leftarrow \lambda + 1$
22: $\tilde{p}_k, \tilde{t}_k \leftarrow ((\lambda - 1)\tilde{p}_{k-1} + \Vert \tilde{g}_k \Vert_2^2)/\lambda, ((\lambda - 1)\tilde{t}_{k-1} + \Vert \tilde{g}_k \Vert_2^2)/\lambda$
23: else
24: $\lambda \leftarrow \lambda_2$
25: $\tilde{p}_k, \tilde{t}_k \leftarrow (\lambda_2\tilde{p}_{k-1} + \Vert \tilde{g}_k \Vert_2^2 - \Vert \tilde{g}_{k-2} \Vert_2^2)/\lambda, (\lambda_2\tilde{t}_{k-1} + \Vert \tilde{g}_k \Vert_2^2 - \Vert \tilde{g}_{k-2} \Vert_2^2)/\lambda$
26: end if
27: end if
28: Update the estimated $(1 - \alpha)$-interval by computing:

$$\tilde{p}_k^\lambda \pm \max \left\{ \sqrt{\frac{2\log(2/\alpha)\tilde{t}_k^2(1 + \log(\lambda))}{C_p\lambda \eta}}, \frac{2\log(2/\alpha)\sqrt{\tilde{t}_k^\omega}}{\lambda \eta} \right\} \right.$$

29: $u_{k+1} \leftarrow \arg\min_u \Vert \tilde{A}_{k+1}u - r_k \Vert_2^2$ # See [18] and [10]
30: $x_{k+1} \leftarrow x_k - S_k u_{k+1}$
31: $k \leftarrow k + 1$
32: end while
33: return x_k and estimated $(1 - \alpha)$-interval
Under this formulation, Algorithm 3.1 presents our methodology for practically tracking and stopping the progress of least squares solvers of the form (3.7) for matrices \(\{S_k\}\) that satisfy Definition 3.1. Algorithm 3.1 has several key components that we explain presently.5

1. At each iteration, we compute estimators of two key quantities to determine the progress and uncertainty of the algorithm. One quantity we wish to estimate is the moving average of the norms squared of the gradients, \(\tilde{\rho}_k^\lambda\), which we define as

\[
\tilde{\rho}_k^\lambda = \sum_{i=k-\lambda+1}^{k} \frac{\|g_i\|^2}{\lambda},
\]

where \(g_k = A^TB(\mathbf{x}_k - \mathbf{b})\) is the gradient at iterate \(x_k\); and where \(\lambda\) is the width of the moving window. When \(\lambda = 1\), we recover just the gradient at iteration \(x_{k-1}\), and, when \(\lambda > 1\), we have a moving average of the gradients. As it is infeasible to calculate \(\rho_k^\lambda\), we estimate \(\tilde{\rho}_k^\lambda\) with the norms squared of the sketched gradients that have already been computed in the updates of our algorithm (see (3.6)),

\[
\tilde{\rho}_k^\lambda = \sum_{i=k-\lambda+1}^{k} \frac{\|\tilde{g}_i\|^2}{\lambda},
\]

where \(\tilde{g}_k = \tilde{A}_{k+1}^TB(\mathbf{x}_k - \mathbf{b})\). When \(\lambda = 1\), we recover the sketched gradient norm at iterate \(x_k\), and, when \(\lambda > 1\), we have a moving average of the sketched gradient norms, which turns out to be more reliable.

2. We derive a distribution for \(\tilde{\rho}_k^\lambda\) in subsection 4.2. This distribution relies on an unknown quantity that we estimate using

\[
\tilde{\iota}_k^\lambda = \sum_{i=k-\lambda+1}^{k} \frac{\|\tilde{g}_i\|^4}{\lambda}.
\]

3. The matrix \(B^{1/2}\) is the square root of the positive definite matrix, \(B \in \mathbb{R}^{m \times m}\), used in the general norm. In practice, \(B^{1/2}\) can be computed using the Cholesky decomposition, if \(B\) is not too dense or large. Fortunately, in many problems that we consider, such as 4D-Var, \(B\) has an underlying structure that can be exploited to efficiently compute \(B^{1/2}\).

4. The constants \(C, \omega, \) and \(p\) play an important role in the algorithm owing to their relationship with Definition 3.1. The parameters \(C\) and \(\omega\) are constants relating to the size of the tail bound described in Definition 3.1, which depend on the chosen sketching method, can be found in Table 2. The constant \(p\) is the embedding dimension of the random matrix \(S_k\), and also appears in the tail bound of Definition 3.1. A small lower bound on the size of \(p\) is necessary for convergence (see Lemma 4.5, Remark 4.6).

5. Line 2 contains the conditions for stopping the algorithm. If \(\rho_k^\lambda\) could be practically calculated, then the algorithm could be stopped when \(\rho_k^\lambda\) falls below a user-specified threshold, 5

5In Algorithm 3.1, we use \(\tilde{A}\) to denote \(B^{1/2}AS\), possibly with a subscript. This is done to write Algorithm 3.1 in terms of 2-norms.
However, since we must instead use the estimator of \(\tilde{\rho}_k^\lambda \), stopping when \(\tilde{\rho}_k^\lambda \leq \nu \) leads to two possible sources of error.

5a. One type of error is associated with stopping the algorithm later than desired. Algorithmically, this scenario arises when \(\tilde{\rho}_k^\lambda \leq \nu \) while \(\tilde{\rho}_k^\lambda > \nu \). To control this error, we need two user-specified quantities. The first quantity specifies how far \(\tilde{\rho}_k^\lambda \) is below \(\nu \). In particular, we let the user choose \(\delta_I \in (0, 1) \), and we control the probability that \(\tilde{\rho}_k^\lambda \leq \delta_I \nu \) while \(\tilde{\rho}_k^\lambda > \nu \). The second quantity is a user-specified bound on this probability, \(\xi_I \), that indicates the user’s level of risk tolerance for possibly stopping too late.

5b. The second type of error is associated with stopping too early. Algorithmically, this scenario occurs when \(\tilde{\rho}_k^\lambda > \nu \), while \(\tilde{\rho}_k^\lambda \leq \nu \). Similar to the first scenario, we will let the user choose \(\delta_{II} > 1 \) to quantify how much larger \(\tilde{\rho}_k^\lambda \) is in comparison to \(\nu \), when \(\tilde{\rho}_k^\lambda < \nu \). Then, we control this probability with a user-specified value \(\xi_{II} \), which reflects the user’s level of risk tolerance for potentially stopping too early.

6. The user-specified parameter \(\eta \) is an optional parameter to adjust for the conservativeness of the theoretical confidence interval and stopping condition. If the user specifies \(\eta = 1 \), then there is no adjustment. Reasonable, yet still conservative choices for \(\eta \) can be found in Table 3, which are based on numerical simulations.

7. Lines 15, 18, 21, and 24 adaptively change the window width of the moving average. This procedure is necessary as there are two distinct phases of convergence in the algorithm. In the first phase, the iterates converge rapidly towards the solution, which necessitates a smaller moving average window width to reduce the impact of earlier iterates. In the second phase, the iterates begin to make less progress and the randomness of the algorithm is more pronounced in their behavior, which necessitates a larger moving average window width to smooth out this randomness. We identify the change point between the two phases to be the iteration where the norm of the sketched gradients are no longer monotonically decreasing, i.e., \(\| \tilde{g}_k \|_2^2 > \| \tilde{g}_{k-1} \|_2^2 \). At this point we slowly increase the width of the window from the narrow window width, \(\lambda_1 \), by one at each iteration until it reaches that of the wide window width, \(\lambda_2 \). While we choose the monotonic condition because of its simplicity and effectiveness, other conditions that attempt to estimate the change point between phases could also be used.

8. Lines 16, 19, 22, and 25 inexpensively update the estimators \(\tilde{\rho}_k^\lambda \) and \(\tilde{\iota}_k^\lambda \), requiring only four floating point operations to calculate. However, this update can suffer from issues of numerical stability, especially for \(\tilde{\iota}_k^\lambda \). If this is a concern, then \(\tilde{\rho}_k^\lambda \) and \(\tilde{\iota}_k^\lambda \) can be computed in \(O(\lambda_2) \) time simply by taking the mean of the nonzero entries in its storage vector, \(\rho \) or \(\iota \).

9. Line 28 describes a \(1 - \alpha \) credible interval designed to contain \(\rho_k^\lambda \) using the estimators \(\tilde{\rho}_k^\lambda \) and \(\tilde{\iota}_k^\lambda \) computed at iteration \(k \). As with the stopping condition, this credible interval is derived in subsection 4.3 from the tail bounding distribution described in subsection 4.2. The parameter \(\alpha \) is selected by the user.

Table 3

Method	Gaussian	FJLT	Achlioptas
\(\eta \)	3	4	3
4. Validity of the Credible Interval and Stopping Condition. With an understanding of the parts of Algorithm 3.1, we must now demonstrate the validity of Algorithm 3.1. In particular, we must show that Line 28 is a valid credible interval for $\hat{\rho}_k^\lambda$, and we must show that Line 2 controls the probabilities of the aforementioned errors at ξ_I and ξ_{II}. As both the credible interval and stopping condition depend on $\hat{\rho}_k^\lambda$ and \hat{i}_k^λ, we will need to establish the validity of these two estimators (i.e., their consistency) in order to establish the validity of the credible interval and stopping condition. In turn, as the consistency of $\hat{\rho}_k^\lambda$ and \hat{i}_k^λ depends on the convergence of the iterates, $\{x_k\}$, we show the convergence of the iterates in subsection 4.1 (specifically, see Theorem 4.7). Then, we show that $\hat{\rho}_k^\lambda$ and \hat{i}_k^λ are consistent estimators for their respective quantities ρ_k^λ and i_k^λ by deriving a tail bound for both quantities (see subsection 4.2 and Theorems 4.9 and 4.10). Now that we have established the validity of $\hat{\rho}_k^\lambda$ and \hat{i}_k^λ, we derive the credible interval (see subsection 4.2 and Corollary 4.11) and stopping condition (see subsection 4.2 and Corollary 4.12). Both the credible interval and stopping condition require a quantity that is impractical to compute, so we establish that using \hat{i}_k^λ as a plug-in estimator for the impractical quantity controls the relative error between the theoretical values for the credible interval and stopping condition, and the versions that use the plug-in estimator (see subsection 4.3 and Lemma 4.13).

4.1. Convergence of the Iterates. To show that the iterates converge to a solution, it is equivalent to show that the gradient of the least squares problem goes to zero. In turn, if B is the identity matrix, it is equivalent to show that the component of the residual of the linear system in the column space of A goes to zero. For general B, an analogous equivalence is established in the following lemma.

Lemma 4.1. Let $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{m \times m}$ be positive definite, and $x \in \mathbb{R}^n$. Let P be the orthogonal projection onto $\text{col}(B^{1/2}A)$. Then, the gradient of the least squares problem at x, $A^\top B(Ax - b) = 0$ if and only if $PB^{1/2}(Ax - b) = 0$.

Proof. Let $r = Ax - b$. Suppose $A^\top Br = 0$,

$$0 = A^\top Br = A^\top B^{1/2}(PB^{1/2}r + (I - P)B^{1/2}r) = A^\top B^{1/2}PB^{1/2}r,$$

where the last equality comes from $I - P$ being an orthogonal projector onto the null space of $A^\top B^{1/2}$. Since, $PB^{1/2}r$ is in the range of $B^{1/2}A$ we know that $A^\top B^{1/2}PB^{1/2}r$ will only be zero when $PB^{1/2}r = 0$.

Now suppose $PB^{1/2}r = 0$. Then,

$$A^\top Br = A^\top B^{1/2}(PB^{1/2}r + (I - P)B^{1/2}r) = A^\top B^{1/2}(I - P)B^{1/2}r = 0,$$

where the last equality follows from $I - P$ being an orthogonal projector onto the null space of $A^\top B^{1/2}$.

As the preceding lemma establishes, showing $\{PB^{1/2}r_k\} \to 0$ is equivalent to showing that the iterates converge to a solution. Thus, we establish a recursive relationship between $PB^{1/2}r_k$ and $PB^{1/2}r_{k-1}$. From (3.7),

$$r_k = (I - AS_k(S_k^\top A^\top BAS_k)^{\dagger}S_k^\top A^\top B)r_{k-1}.$$

This quantity has not yet been defined, but will be defined in subsection 4.2.
Multiplying both sides by $B^{1/2}$,

\[(4.4) \quad B^{1/2}r_k = (I - B^{1/2}AS_k(S_k^TA^TBAk)^\dagger S_k^TA^TB^{1/2})B^{1/2}r_{k-1}.\]

From here, let $\psi_k = B^{1/2}r_k$. Since $\text{col}(B^{1/2}A) \subset \text{col}(B^{1/2}AS_k)$, multiplying both sides by P produces

\[(4.5) \quad P\psi_k = (I - B^{1/2}AS_k(S_k^TA^TBAk)^\dagger S_k^TA^TB^{1/2})P\psi_{k-1}.\]

Finally, since $B^{1/2}AS_k(S_k^TA^TBAk)^\dagger S_k^TA^TB^{1/2}$ is an orthogonal projection matrix, we can define a matrix Q_k to be the matrix with orthonormal columns that span $\text{col}(B^{1/2}AS_k)$. Then we can write (4.5) as

\[(4.6) \quad P\psi_k = (I - Q_kQ_k^\dagger)P\psi_{k-1}.\]

With these relationships and notations established, we now turn to establishing convergence.

Geometric Reduction in Residual Components that lie in Column space of $B^{1/2}A$. Let $\tau_0 = 0$ and τ_1 being the first iteration where

\[(4.7) \quad \text{col}(Q_1) + \text{col}(Q_2) + \cdots + \text{col}(Q_{\tau_1}) = \text{col}(B^{1/2}A),\]

is satisfied. Noting that if (4.7) is not satisfied then τ_1 is infinite; otherwise, τ_1 is finite and the following lemma holds.

Lemma 4.2. Let $\psi_0 \in \mathbb{R}^m$ and let $\{P\psi_k\}$ be generated according to (4.5) for $\{S_k : k \in \mathbb{N}\}$, which are independent and identically distributed random matrices satisfying Definition 3.1. On the event, $\{\tau_1 < \infty\}$ there exists a $\gamma_1 \in (0, 1)$ such that

\[(4.8) \quad \|P\psi_{\tau_1}\|_2 \leq \gamma_1\|P\psi_0\|_2.\]

Proof. To prove this, it is only necessary to show that γ_1 exists. First, let $q_{k,1}, \ldots, q_{k,p}$ denote the columns of Q_k. Then we can write ψ_{τ_1} by (4.6) as,

\[(4.9) \quad P\psi_{\tau_1} = \left[\prod_{k=1}^{\tau_1} \left(I - q_{k,j}q_{k,j}^\dagger\right)\right]P\psi_0.\]

Since $P\psi_0 \in \text{col}(B^{1/2}A)$, [21, Theorem 4.1] implies that there $\exists \gamma_1 \in (0, 1)$ that is a function of $\{q_{1,1}, q_{1,2}, \ldots, q_{\tau_1,p}\}$ such that $\|P\psi_{\tau_1}\|_2 \leq \gamma_1\|P\psi_0\|_2$.\]

We can easily repeat this argument for more than just τ_1, in fact when $\{\tau_\ell < \infty\}$, define $\tau_{\ell+1}$ to be the first iteration after τ_ℓ where,

\[(4.10) \quad \text{col}(Q_{\tau_\ell+1}) + \text{col}(Q_{\tau_\ell+2}) + \cdots + \text{col}(Q_{\tau_{\ell+1}}) = \text{col}(B^{1/2}A),\]

otherwise let $\tau_{\ell+1}$ be infinite. The preceding argument for the existence of $\gamma_1 \in (0, 1)$ will then result in the following corollary.

Corollary 4.3. Let $\psi_0 \in \mathbb{R}^m$ and let $\{P\psi_k\}$ be generated according to (4.5) for $\{S_k : k \in \mathbb{N}\}$, which are independent and identically distributed random matrices satisfying Definition 3.1. On the event, $\cap_{\ell=1}^L \{\tau_\ell < \infty\}$ there exist $\gamma_\ell \in (0, 1)$ for $\ell = 1, \ldots, L$, such that

\[(4.11) \quad \|P\psi_{\tau_\ell}\|_2 \leq \left(\prod_{\ell=1}^L \gamma_\ell\right)\|P\psi_0\|_2.\]
Control of Random Rate and Random Iteration. While appearing to indicate the convergence of the \(P \), Corollary 4.3 does not guarantee that the portion of the \(\psi_k \) in the range of \(B^{1/2}A \) converges to 0. This lack of guarantee for convergence arises from two possible points of failure, one being the case where \(\gamma_\ell \to 1 \) as \(\ell \to \infty \) and the other being the case where \(\tau_\ell \) is infinite. The following result addresses the former issue using the independence of \(\{ S_k \} \).

Lemma 4.4. Let \(\{ S_k : k \in \mathbb{N} \} \) be independent and identically distributed random variables. If for any \(\ell \in \mathbb{N} \), \(\tau_\ell \) is finite, then \(\{ \tau_j - \tau_{j-1} : j \leq \ell \} \) exist and are independent and identically distributed; and \(\gamma_j : j \leq \ell \) are independent and identically distributed.

Proof. When \(\tau_\ell \) is finite, [7, Theorem 4.1.3] states that \(\{ Q_{\tau_\ell+1}, \ldots, Q_{\tau_\ell+k} \} \) given \(\tau_\ell \) are independent of \(\{ Q_1, \ldots, Q_{\tau_\ell} \} \) and are identically distributed to \(\{ Q_1, \ldots, Q_k \} \) for all \(k \). Therefore, \(\tau_{\ell+1} - \tau_\ell \) and \(\tau_1 \) are independent and identically distributed. It follows that \(\gamma_\ell \) are independent and identically distributed.

So far, we only know that \(\tau_0 = 0 \) is finite. Hence, we only know that the random variable \(\tau_1 - \tau_0 \) exists, but we do not know anything about its finiteness. The next result provides the appropriate remedy.

Lemma 4.5. Let \(\{ S_k : k \in \mathbb{N} \} \) be independent and identically distributed random variables satisfying Definition 3.1. If

\[
(4.12) \quad p > \frac{2 \log(2)}{C \delta^2}
\]

for some \(\delta \in (2 \omega \log(2), 1)^7 \), then \(\exists \pi \in (0,1) \) such that for all \(\ell \in \mathbb{N} \) and \(k > \text{rank}(A) \),

\[
(4.13) \quad P(\tau_\ell - \tau_{\ell-1} = k) \leq \left(\frac{k - 1}{\text{rank}(A) - 1} \right) (1 - \pi)^{k-\text{rank}(A)} \pi^{\text{rank}(A)}.
\]

Proof. We begin by verifying that for \(z \in \text{col}(B^{1/2}A) \) and \(z \neq 0 \), then \(S^T A^T B^{1/2} z \neq 0 \) with some nonzero probability. Definition 3.1 implies that for any \(\delta \in (0,1) \),

\[
(4.14) \quad P(\| S^T A^T B^{1/2} z \|_2^2 > 0) \geq P \left(\| S^T A^T B^{1/2} z \|_2^2 - \| A^T B^{1/2} z \|_2^2 \right) \leq \delta \| A^T B^{1/2} z \|_2^2
\]

\[
(4.15) \quad \geq 1 - 2e^{-\min \left\{ \frac{C \delta^2}{2 - \delta} \right\}}.
\]

When \(\delta \in (2 \omega \log(2), 1) \) is chosen such that (4.12) holds, then \(1 - 2e^{-\min \left\{ \frac{C \delta^2}{2 - \delta} \right\}} > 0 \). Moreover, as this bound is independent of \(z \in \text{col}(B^{1/2}A) \), we will refer to the lower bound of \(P(\| S^T A^T B^{1/2} z \|_2^2 > 0) \) by \(\pi \in (0,1) \) for any \(z \neq 0 \). Thus, owing to the relationship between \(Q_k \) and \(\text{col}(B^{1/2}A S_k) \), \(P(\| Q_k z \|_2^2 > 0) \geq \pi \) for all \(z \neq 0 \).

Given that \(\{ \text{col}(Q_k) : k \in \mathbb{N} \} \) are independent and identically distributed, we conclude that the probability that \(\text{col}(Q_1) + \cdots + \text{col}(Q_{k+1}) \) increases in dimension from \(\text{col}(Q_1) + \cdots + \text{col}(Q_k) \), when \(\dim(\text{col}(Q_1) + \cdots + \text{col}(Q_{k+1})) < \text{rank}(A) \) is at least \(\pi \). This implies that the probability

7The implicit restriction on \(\omega \leq \frac{1}{2 \log(2)} \) poses no real concerns in practice Table 2.
that the dimension increases $\text{rank}(A)$ times in the first k iterations with $k > \text{rank}(A)$ is dominated by a negative binomial distribution, i.e., for $k \geq \text{rank}(A)$,

\[(4.16) \quad \mathbb{P}(\tau_1 = k) \leq \left(\frac{k - 1}{\text{rank}(A) - 1} \right) (1 - \pi)^{k - \text{rank}(A)} \pi^{\text{rank}(A)}.
\]

As a result, τ_1 is finite with probability one. The result follows by Lemma 4.4.

Remark 4.6. If $\delta = .7$, for the Gaussian, Achlioptas, and FJLT sampling methods one should choose $p \geq 2$ to satisfy the hypothesis of Lemma 4.5.

Convergence of the Moments. With the establishment of the previous lemmas we can now conclude the following theorem.

Theorem 4.7. Let $x_0 \in \mathbb{R}^n$ and let \mathcal{P} be the orthogonal projection onto $\text{col}(B^{1/2}A)$. Suppose that $\{S_k : k \in \mathbb{N}\}$ are independent and identically distributed random variables satisfying Definition 3.1 and (4.12) for some $\delta \in (0, 1)$. Let $\{x_k : k \in \mathbb{N}\}$ be generated according to (3.6). Define $\psi_k = B^{1/2}(Ax_k - b)$. Then for any $d \in \mathbb{N}$, $\mathbb{E}[\|\mathcal{P}\psi_k\|_2^d] \to 0$ and $\mathbb{E}[\|\mathcal{P}\psi_k\|_2] = \mathbb{E}[\|A_{k+1}^{\top}B(Ax_k - b)\|_2] \to 0$ as $k \to \infty$. Furthermore, for any particular ℓ we have

\[(4.17) \quad \mathbb{E} \left[\|\mathcal{P}\psi_{\tau_\ell}\|_2^d\right] \leq \mathbb{E}[\gamma_1^d\ell]\|\mathcal{P}\psi_0\|_2^d.
\]

Proof. It is enough to show that $\mathbb{E}[\|\mathcal{P}\psi_{\tau_\ell}\|_2^d] \to 0$ as $k \to \infty$. By Lemma 4.2, $\|\mathcal{P}\psi_k\|_2$ is a non-increasing sequence. Thus, we only need to show a subsequence converges to zero. By Corollary 4.3 and Lemma 4.4 and Lemma 4.5,

\[(4.18) \quad \mathbb{E} \left[\|\mathcal{P}\psi_{\tau_\ell}\|_2^d\right] \leq \mathbb{E}[\gamma_1^d\ell]\|\mathcal{P}\psi_0\|_2^d,
\]

for all $\ell \in \mathbb{N}$, where $\mathbb{E}[\gamma_1^d] < 1$. Therefore, as $\ell \to \infty$, the conclusion follows.

4.2. Theoretical Values for the Credible Interval and Stopping Condition. With convergence in all moments established, we now turn to understanding the distributions of $\hat{\rho}_k^A$ and \hat{i}_k^A, in order to validate the estimators as well as derive the stopping condition and credible interval. We begin with an examination of the distribution of $\hat{\rho}_k^A$. To perform this examination, it is first important to present the definition of a sub-Exponential distribution for it will be used throughout this subsection.

Definition 4.8. For a random variable Y, with $\mathbb{E}[Y] = \mu$, $Y - \mu$ follows a sub-Exponential, $\text{SE}(\sigma^2, \omega)$, distribution with parameters σ^2 and ω if for all $\delta \geq 0$

\[(4.19) \quad \mathbb{P}(\|Y - \mu\| > \delta) \leq 2e^{-\min\{\delta^2/(2\sigma^2), \delta/(2\omega)\}}.
\]

Equivalently, a random variable $Y - \mu$ is sub-Exponential, $\text{SE}(\sigma^2, \omega)$, if

\[(4.20) \quad \mathbb{E}[e^t(Y - \mu)] \leq e^{t^2/2},
\]

when $|t| < 1/\omega$ [32].
With this definition established, we can note intuitively, if the terms of $\tilde{\rho}_k^\lambda$ were independent, we would trivially have that $\tilde{\rho}_k^\lambda$ satisfies Definition 4.8. Unfortunately, they are not independent. Thus, we innovate the following method to derive the distribution of $\tilde{\rho}_k^\lambda$ to handle the dependencies, which results in only an additional logarithmic term relative to what would have been the case if the terms had been independent.

Theorem 4.9. Suppose the setting of Theorem 4.7. Define $\mathcal{F}_{k-\lambda}$ to be the σ-algebra generated by $S_1, \ldots, S_{k-\lambda+1}$, then

$$
\tilde{\rho}_k^\lambda - \tilde{\rho}_k^\lambda \bigg| \mathcal{F}_{k-\lambda} \sim \mathbf{SE} \left(\frac{M_{k-\lambda}^4(1 + \log(\lambda))}{C p \lambda}, \frac{\omega M_{k-\lambda}^2}{\lambda} \right),
$$

where $M_{k-\lambda} = \|A^T B^{1/2}\|_2 \|P B^{1/2} r_{k-\lambda+1}\|_2$ and $r_{k-\lambda+1} = A x_{k-\lambda} - b$.

Proof. By induction, we prove, for $|t| \leq \lambda/(\omega M_{k-\lambda})$,

$$
E \left[\prod_{i=k-\lambda+1}^k \exp \left\{ \frac{1}{\lambda} \left(\|\tilde{g}_i\|_2^2 - \|g_i\|_2^2 \right) \right\} \bigg| \mathcal{F}_{k-\lambda} \right] \leq \exp \left(\frac{t^2 M_{k-\lambda}^4}{2C p \lambda} \sum_{j=1}^\lambda \frac{1}{j} \right),
$$

where $M_{k-\lambda} = \|A^T B^{1/2}\|_2 \|P B^{1/2} r_{k-\lambda+1}\|_2$ and the bound on t comes from Lemma B.1. We can then use a logarithm to bound the summation. As a result, the sub-Exponential distribution of $\tilde{\rho}_k^\lambda - \tilde{\rho}_k^\lambda$ follows by Definition 4.8.

The base case of $\lambda = 1$ follows trivially from $\|\tilde{g}_{k-\lambda+1}\|_2^2$ being sub-Exponential. Now assume that the result holds for $k - \lambda + 1$ to $k - 1$. Then,

$$
E \left[\prod_{i=k-\lambda+1}^k \exp \left\{ \frac{1}{\lambda} \left(\|\tilde{g}_i\|_2^2 - \|g_i\|_2^2 \right) \right\} \bigg| \mathcal{F}_{k-\lambda} \right]
$$

$$
= E \left[\prod_{i=k-\lambda+1}^k \exp \left\{ \frac{t}{\lambda} \left(\|\tilde{g}_i\|_2^2 - \|g_i\|_2^2 \right) \right\} \bigg| \mathcal{F}_{k-\lambda} \right],
$$

$$
= E \left[\exp \left\{ \frac{t}{\lambda} \left(\|\tilde{g}_i\|_2^2 - \|g_i\|_2^2 \right) \right\} \bigg| \mathcal{F}_{k-\lambda} \right] \prod_{i=k-\lambda+1}^{k-1} \exp \left\{ \frac{t}{\lambda} \left(\|\tilde{g}_i\|_2^2 - \|g_i\|_2^2 \right) \right\} \bigg| \mathcal{F}_{k-\lambda} \right],
$$

where we have made use of $\|\tilde{g}_k\|_2^2$ being sub-Exponential in the ultimate line. Now, applying Hölder’s inequality and the induction hypothesis,

$$
E \left[\exp \left\{ \frac{t^2}{2C p} \|g_k\|_2^2 \right\} \bigg| \mathcal{F}_{k-\lambda} \right] \leq E \left[\prod_{i=k-\lambda+1}^{k-1} \exp \left\{ \frac{t}{\lambda} \left(\|\tilde{g}_i\|_2^2 - \|g_i\|_2^2 \right) \right\} \bigg| \mathcal{F}_{k-\lambda} \right],
$$

$$
E \left[\prod_{i=k-\lambda+1}^{k-1} \exp \left\{ \frac{t}{\lambda} \left(\|\tilde{g}_i\|_2^2 - \|g_i\|_2^2 \right) \right\} \bigg| \mathcal{F}_{k-\lambda} \right] \leq \frac{1}{\lambda} \exp \left(\frac{t^2 M_{k-\lambda}^4}{2C p \lambda} \sum_{j=1}^\lambda \frac{1}{j} \right).\]
Lemmas 4.1 imply, with probability one,

\[\exp \left\{ \frac{t^2\|g_k\|^2}{2\lambda Cp} \right\} \left| \mathcal{F}_{k-\lambda} \right| \leq \exp \left\{ \frac{t^2M_{k-\lambda}^4}{2Cp(\lambda - 1)\sum_{j=1}^{\lambda-1} \frac{j}{j}} \right\}^{\frac{\lambda-1}{\lambda}}. \]

Now, Lemmas 4.1 and 4.4 and Corollary 4.3 imply, with probability one,

\[\|g_k\|^4_2 \leq \|A^T B^{1/2} r_k\|^4_2 \leq \|A^T B^{1/2}\|_2^4 \|PB^{1/2}r_{k-\lambda+1}\|^4_2 = M_{k-\lambda}. \]

Since \(M_{k-\lambda} \) is measurable with respect to \(\mathcal{F}_{k-\lambda} \), we apply the inequality of (4.30) to (4.29) to conclude the proof by induction.

With the establishment of the distribution around the difference between \(\tilde{\rho}_k^\lambda \) and \(\rho_k^\lambda \), we also obtain the consistency of \(\tilde{\rho}_k^\lambda \) for \(\rho_k^\lambda \) from Theorem 4.9 by allowing \(k \to \infty \), taking the expectation of the sub-Exponential tail bound Definition 4.8, and using the dominated convergence theorem to switch the limit and the integral. With this consistency result, we conclude that \(\tilde{\rho}_k^\lambda \) is a valid estimator for \(\rho_k^\lambda \).

Just as \(\tilde{\rho}_k^\lambda \) is an estimator for \(\rho_k^\lambda \), \(\tilde{\iota}_k^\lambda \) is an estimator for the quantity

\[\iota_k^\lambda = \sum_{i=k-\lambda+1}^{k} \frac{\|A^T(Ax_i - b)\|^4_\lambda}{\lambda}, \]

which is impractical to compute. We now turn to showing the validity of \(\tilde{\iota}_k^\lambda \) as an estimator for \(\iota_k^\lambda \). To show the validity of \(\tilde{\iota}_k^\lambda \) we transform \(\tilde{\iota}_k^\lambda - \iota_k^\lambda \) into a form where we can make repeated applications of (4.22). After making these applications, we get the consistency result for \(\tilde{\iota}_k^\lambda \) presented in the following theorem.

Theorem 4.10. Under the conditions of Theorem 4.7, we have for \(\epsilon > 0 \)

\[\mathbb{P} \left(\left| \tilde{\iota}_k^\lambda - \iota_k^\lambda \right| > \epsilon \right| \mathcal{F}_{k-\lambda} \right) \leq 2(1 + \lambda) \exp \left\{ - \min \left(\frac{\epsilon^2 Cp\lambda}{2(2M_{k-\lambda}^2 + \sqrt{\lambda\epsilon})^2 M_{k-\lambda}^2 (1 + \log(\lambda))}, \frac{\lambda\epsilon}{2(2M_{k-\lambda}^2 + \sqrt{\lambda\epsilon})^2 M_{k-\lambda}^2} \right) \right\}, \]

where \(M_{k-\lambda} = \|A^T B^{1/2}\|_2 \|PB^{1/2}r_{k-\lambda+1}\|_2 \) and \(r_{k-\lambda+1} = Ax_{k-\lambda+1} - b \). Thus, as \(k \to \infty \), \(\tilde{\iota}_k^\lambda \) is a consistent estimator for \(\iota_k^\lambda \).

Proof. Using the definitions of \(\tilde{\iota}_k^\lambda \) and \(\tilde{\iota}_k^\lambda \) we have

\[\mathbb{P} \left(\left| \tilde{\iota}_k^\lambda - \iota_k^\lambda \right| > \epsilon \right| \mathcal{F}_{k-\lambda} \right) \]

\[= \mathbb{P} \left(\sum_{i=k-\lambda+1}^{k} \left| \frac{\|\tilde{\vartheta}_i\|^2_2 - \|g_i\|^2_\lambda}{\lambda} \right| > \epsilon \right| \mathcal{F}_{k-\lambda} \right) \]
(4.35) \[\Pr \left(\sum_{i=k-\lambda+1}^{k} \left| \frac{\|\tilde{g}_i\|_2^2 - \|g_i\|_2^2}{\lambda} \right| > \epsilon \right| \mathcal{F}_{k-\lambda} \right) \leq \frac{1}{k-\lambda+1} \sum_{i=k-\lambda+1}^{k} \left| \frac{\|\tilde{g}_i\|_2^2 - \|g_i\|_2^2}{\lambda} \right| \left| \|\tilde{g}_i\|_2^2 + \|g_i\|_2^2 \right| > \epsilon \right| \mathcal{F}_{k-\lambda} \right) \]

(4.36) \[\Pr \left(\sum_{i=k-\lambda+1}^{k} \left| \frac{\|\tilde{g}_i\|_2^2 - \|g_i\|_2^2}{\lambda} \right| \left| \|\tilde{g}_i\|_2^2 + \|g_i\|_2^2 \right| > \epsilon \right| \mathcal{F}_{k-\lambda} \right) \]

Then, using any constant $G > 2M_{k-\lambda}^2$, we partition (4.36) into disjoint sets. Thus,

(4.37) \[\Pr \left(\sum_{i=k-\lambda+1}^{k} \left| \frac{\|\tilde{g}_i\|_2^2 - \|g_i\|_2^2}{\lambda} \right| \left| \|\tilde{g}_i\|_2^2 + \|g_i\|_2^2 \right| > \epsilon \right| \mathcal{F}_{k-\lambda} \right) \]

(4.38) \[= \Pr \left(\sum_{i=k-\lambda+1}^{k} \left| \frac{\|\tilde{g}_i\|_2^2 - \|g_i\|_2^2}{\lambda} \right| \left| \|\tilde{g}_i\|_2^2 + \|g_i\|_2^2 \right| > \epsilon, \quad \bigcup_{i=k-\lambda+1}^{k} \left\{ \left| \|\tilde{g}_i\|_2^2 + \|g_i\|_2^2 \right| \leq G \right\} \mathcal{F}_{k-\lambda} \right) \]

(4.39) \[\leq \Pr \left(\sum_{i=k-\lambda+1}^{k} \left| \frac{\|\tilde{g}_i\|_2^2 - \|g_i\|_2^2}{\lambda} \right| > \frac{\epsilon}{G} \mathcal{F}_{k-\lambda} \right) + \Pr \left(\bigcup_{i=k-\lambda+1}^{k} \left\{ \left| \|\tilde{g}_i\|_2^2 + \|g_i\|_2^2 \right| > G \right\} \mathcal{F}_{k-\lambda} \right) \]

From here we will present the bounds for the left and right terms of (4.39) separately. For the left-hand term of (4.39) we use a Chernoff bound and (4.22) resulting in

(4.40) \[\Pr \left(\sum_{i=k-\lambda+1}^{k} \left| \frac{\|\tilde{g}_i\|_2^2 - \|g_i\|_2^2}{\lambda} \right| > \frac{\epsilon}{G} \mathcal{F}_{k-\lambda} \right) \leq 2 \exp \left(\frac{t^2 M_{k-\lambda}^4 (1 + \log(\lambda))}{2Cp\lambda} - \frac{\epsilon t}{G} \right), \]

We next wish to minimize this bound. First note that if unconstrained, this minimization would be achieved by setting $t = \frac{\epsilon Gp\lambda}{2M_{k-\lambda}(1 + \log(\lambda))}$. However, from Definition 4.8 we know this Chernoff bound only holds when $0 \leq t \leq \frac{\lambda}{\omega M_{k-\lambda}^2}$, thus minimizing this bound requires the consideration of two cases. In the first case we consider when $\frac{\epsilon Gp\lambda}{2M_{k-\lambda}(1 + \log(\lambda))} < \frac{\lambda}{\omega M_{k-\lambda}^2}$ resulting in the minimum of the Chernoff bound of the left-hand term of (4.39) being

(4.41) \[2 \exp \left(- \frac{\epsilon^2 C p \lambda}{2G^2 M_{k-\lambda}^4 (1 + \log(\lambda))} \right). \]

In the second case we consider when $\frac{\epsilon Gp\lambda}{2M_{k-\lambda}(1 + \log(\lambda))} > \frac{\lambda}{\omega M_{k-\lambda}^2}$ and in this case we set $t = \frac{\lambda}{\omega M_{k-\lambda}^2}$, resulting in the minimum of the Chernoff bound of the left-hand term of (4.39) being

(4.42) \[2 \exp \left(- \frac{\epsilon \lambda}{2G^2 M_{k-\lambda}^2 \omega} \right). \]

Combining these two cases we get that

(4.43) \[\Pr \left(\sum_{i=k-\lambda+1}^{k} \left| \frac{\|\tilde{g}_i\|_2^2 - \|g_i\|_2^2}{\lambda} \right| > \frac{\epsilon}{G} \mathcal{F}_{k-\lambda} \right) \]
\[(4.44) \quad \leq 2 \exp \left(- \min \left(\frac{\epsilon^2 Cp\lambda}{2G^2M^{4}_{k-\lambda}(1 + \log(\lambda))}, \frac{\lambda\epsilon}{2G\omega M^{2}_{k-\lambda}} \right) \right). \]

We next address the right-hand term of \((4.39)\) for which we have

\[(4.45) \quad \mathbb{P} \left(\bigcup_{i=k-\lambda+1}^{k} \left\{ \|g_i\|_2^2 + \|g_i\|_2^2 > G \right\} \bigg| \mathcal{F}_{k-\lambda} \right) \]

\[(4.46) \quad = \mathbb{P} \left(\bigcup_{i=k-\lambda+1}^{k} \left\{ \|\tilde{g}_i\|_2^2 + \|g_i\|_2^2 > G \right\} \bigg| \mathcal{F}_{k-\lambda} \right) \]

\[(4.47) \quad \leq \mathbb{P} \left(\bigcup_{i=k-\lambda+1}^{k} \left\{ \frac{\|\tilde{g}_i\|_2^2 + \|g_i\|_2^2}{M^2_{k-\lambda}} > G - 2M^2_{k-\lambda} \right\} \bigg| \mathcal{F}_{k-\lambda} \right) \]

\[(4.48) \quad \leq \mathbb{P} \left(\|\tilde{g}_i\|_2^2 - \|g_i\|_2^2 > G - 2M^2_{k-\lambda} \bigg| \mathcal{F}_{k-\lambda} \right) \]

\[(4.49) \quad \leq 2\lambda \exp \left(\frac{t^2M^{4}_{k-\lambda}}{2 Cp} - t \left(G - 2M^2_{k-\lambda} \right) \right), \]

where \((4.47)\) comes from \((4.30)\), \((4.49)\) comes from the Chernoff bound and \((4.22)\). We next wish to minimize this bound. First note that if unconstrained, this minimization would be achieved by setting \(t = \frac{Cp(G-2M^2_{k-\lambda})}{M^2_{k-\lambda}}\). However, from Definition 4.8 we know this bound only holds when \(0 \leq t \leq \frac{1}{\omega M^2_{k-\lambda}}\), thus minimizing this Chernoff bounds requires the consideration of two cases. In the first case, \(\frac{Cp(G-2M^2_{k-\lambda})}{M^2_{k-\lambda}} < \frac{1}{\omega M^2_{k-\lambda}}\), which results in the minimum of the Chernoff bound of the right-hand term of \((4.39)\) being

\[(4.50) \quad 2\lambda \exp \left(- \frac{Cp(G-2M^2_{k-\lambda})^2}{2M^2_{k-\lambda}} \right). \]

In the second case \(\frac{Cp(G-2M^2_{k-\lambda})}{M^2_{k-\lambda}} \geq \frac{1}{\omega M^2_{k-\lambda}}\) and in this case we set \(t = \frac{\lambda}{\omega M^2_{k-\lambda}}\) resulting in the minimum of the Chernoff bound of the right-hand term of \((4.39)\) being

\[(4.51) \quad 2\lambda \exp \left(- \frac{(G-2M^2_{k-\lambda})}{2\omega M^2_{k-\lambda}} \right). \]

Combining these two cases gives us that

\[(4.52) \quad \mathbb{P} \left(\bigcup_{i=k-\lambda+1}^{k} \left\{ \|g_i\|_2^2 + \|g_i\|_2^2 > G \right\} \bigg| \mathcal{F}_{k-\lambda} \right) \]

\[(4.53) \quad \leq 2\lambda \exp \left(- \min \left(\frac{Cp(G-2M^2_{k-\lambda})^2}{2M^2_{k-\lambda}}, \frac{(G-2M^2_{k-\lambda})}{2\omega M^2_{k-\lambda}} \right) \right). \]
By combining the left-hand and right-hand terms of (4.39) we get

\begin{align}
\mathbb{P}\left(\left|\hat{\epsilon}_k^\lambda - \epsilon_k^\lambda\right| > \epsilon \mid F_{k-\lambda}\right) \\
\leq 2 \exp\left(-\min\left(\frac{e^2 C p \lambda}{2 G^2 M_{k-\lambda}^4 (1 + \log(\lambda))}, \frac{\lambda \epsilon}{2 G \omega M_{k-\lambda}^2}\right) \right) \\
+ 2 \lambda \exp\left(-\min\left(\frac{(G - 2 M_{k-\lambda}^2)^2 C p}{2 M_{k-\lambda}^4}, \frac{G - 2 M_{k-\lambda}^2}{2 M_{k-\lambda}^2 \omega}\right) \right),
\end{align}

This bound can be tightened by minimizing the bound with respect to \(G\). To do this minimization we first note that when \(G \geq 2 M_{k-\lambda}^2 + \sqrt{\lambda \epsilon} > 2 M_{k-\lambda}^2\) it is the case that

\begin{align}
\exp\left(-\min\left(\frac{e^2 C p \lambda}{2 G^2 M_{k-\lambda}^4 (1 + \log(\lambda))}, \frac{\lambda \epsilon}{2 G \omega M_{k-\lambda}^2}\right) \right) \\
\geq \exp\left(-\min\left(\frac{(G - 2 M_{k-\lambda}^2)^2 C p}{2 M_{k-\lambda}^4}, \frac{G - 2 M_{k-\lambda}^2}{2 M_{k-\lambda}^2 \omega}\right) \right).
\end{align}

We can then upper bound the right side of (4.32) in the following manner,

\begin{align}
\inf_{G > 2 M_{k-\lambda}^2} 2 \exp\left(-\min\left(\frac{e^2 C p \lambda}{2 G^2 M_{k-\lambda}^4 (1 + \log(\lambda))}, \frac{\lambda \epsilon}{2 G \omega M_{k-\lambda}^2}\right) \right) \\
+ 2 \lambda \exp\left(-\min\left(\frac{(G - 2 M_{k-\lambda}^2)^2 C p}{2 M_{k-\lambda}^4}, \frac{G - 2 M_{k-\lambda}^2}{2 M_{k-\lambda}^2 \omega}\right) \right),
\end{align}

\begin{align}
\leq \inf_{G > 2 M_{k-\lambda}^2 + \sqrt{\lambda \epsilon}} 2(1 + \lambda) \exp\left(-\min\left(\frac{e^2 C p \lambda}{2 G^2 M_{k-\lambda}^4 (1 + \log(\lambda))}, \frac{\lambda \epsilon}{2 G \omega M_{k-\lambda}^2}\right) \right) \\
= 2(1 + \lambda) \exp\left(-\min\left(\frac{e^2 C p \lambda}{2(2 M_{k-\lambda}^2 + \sqrt{\lambda \epsilon})^2 M_{k-\lambda}^4 (1 + \log(\lambda))}, \frac{\lambda \epsilon}{2(2 M_{k-\lambda}^2 + \sqrt{\lambda \epsilon}) \omega M_{k-\lambda}^2}\right) \right),
\end{align}

where the last line comes from recognizing that (4.58) is monotonically increasing when \(G > 0\).

We then conclude consistency by taking the expectation and the limit as \(k \to \infty\) of both sides. Then by using the dominated convergence theorem to switch the expectation and the limit we can then use the fact that Theorem 4.7 implies that \(M_{k-\lambda} \to 0\) as \(k \to \infty\) to get that the bound converges to zero. This implies the desired consistency result.

With the consistency and distributional results now established, we conclude that our estimators are valid; thus, we are now able to derive the credible interval\(^8\) corresponding to Line 28 and the stopping condition\(^9\) corresponding to Line 2 of Algorithm 3.1.

\(^8\)The proof to this corollary can be found in Appendix C.

\(^9\)The proof to this corollary can be found in Appendix D.
Corollary 4.11. Under the conditions of Theorem 4.7, a credible interval of level \(1 - \alpha\) for \(\hat{\rho}_k^\lambda\), corresponding to Line 28 in Algorithm 3.1, is

\[
\hat{\rho}_k^\lambda \pm \max \left(\sqrt{2 \log(2/\alpha) \frac{M_{k-\lambda}^2(1 + \log(\lambda))}{C_p\lambda}}, 2 \log(2/\alpha) \frac{M_{k-\lambda}^2\omega}{\lambda} \right).
\]

Corollary 4.12. Let \(\xi_I, \xi_{II}, \delta_I \in (0, 1), \delta_{II} > 1\) and \(\nu > 0\). Under the conditions of Theorem 4.7, the following statements are true.

\[
M_{k-\lambda}^2 \leq \min \left\{ \frac{\lambda(1 - \delta_I)^2\nu^2C_p}{(1 + \log(\lambda))2\log(1/\xi_I)M_{k-\lambda}^2}, \frac{\lambda\nu(1 - \delta_I)}{2\log(1/\xi_I)\omega} \right\}
\]

\[
\Rightarrow \mathbb{P} \left[\hat{\rho}_{k+1}^\lambda > \nu, \rho_k^\lambda \leq \delta_I \nu \big| \mathcal{F}_{k-\lambda} \right] < \xi_I,
\]

and

\[
M_{k-\lambda}^2 \leq \min \left\{ \frac{\lambda(\delta_{II} - 1)^2\nu^2C_p}{(1 + \log(\lambda))2\log(1/\xi_{II})M_{k-\lambda}^2}, \frac{\lambda\nu(\delta_{II} - 1)}{2\log(1/\xi_{II})\omega} \right\}
\]

\[
\Rightarrow \mathbb{P} \left[\hat{\rho}_{k+1}^\lambda \leq \nu, \rho_k^\lambda > \delta_{II} \nu \big| \mathcal{F}_{k-\lambda} \right] < \xi_{II}.
\]

4.3. Estimating the Credible Interval and Stopping Condition. Corollaries 4.11 and 4.12 provide a well-controlled uncertainty set and stopping condition, yet require knowing \(M_{k-\lambda}\), which is usually not available. As stated before, Corollaries 4.11 and 4.12 can be operationalized by replacing \(M_{k-\lambda}^4\) with \(\hat{i}_k^\lambda\). Of course, \(M_{k-\lambda}^4\) and \(\hat{i}_k^\lambda\) must coincide in some sense in order for this estimation to be valid. Indeed, by Theorems 4.7 and 4.10, both \(M_{k-\lambda}^4\) and \(\hat{i}_k^\lambda\) converge to zero as \(k \to \infty\), which would allow us to estimate \(M_{k-\lambda}^2\) with \(\hat{i}_k^\lambda\) to generate consistent estimators. However, we could also estimate \(M_{k-\lambda}^4\) by 0 to generate consistent estimators, but these would be uninformative during finite time. Therefore, we must establish that estimating \(M_{k-\lambda}^2\) by \(\hat{i}_k^\lambda\) is also appropriate within some finite time. In the next result, we establish that the relative error between \(M_{k-\lambda}^4\) and \(\hat{i}_k^\lambda\) is controlled by a constant (in probability).\(^{10}\)

Lemma 4.13. Under the conditions of Theorem 4.7, for \(\epsilon > 0\), \(M_{k-\lambda}\) as described in Theorem 4.9, \(\hat{i}_k^\lambda\) as defined in (3.10),

\[
\mathbb{P} \left(\left| \frac{M_{k-\lambda}^4 - \hat{i}_k^\lambda}{M_{k-\lambda}} \right| > 1 + \epsilon, M_{k-\lambda}^4 \neq 0 \big| \mathcal{F}_{k-\lambda} \right) \leq 2(1 + \lambda) \exp \left(- \min \left(\frac{\epsilon^2C_p\lambda}{2(2 + \sqrt{\lambda\epsilon})^2(1 + \log(\lambda))}, \frac{\lambda\epsilon}{2(2 + \sqrt{\lambda\epsilon})\omega} \right) \right).
\]

Owing to Lemma 4.13, the relative error between \(\hat{i}_k^\lambda\) and \(M_{k-\lambda}\) is reasonably well controlled for practical purposes. As a result, we can use \(\hat{i}_k^\lambda\) as a plug-in estimator for \(M_{k-\lambda}\) in the

\(^{10}\)The proof of Lemma 4.13 can be found in Appendix F.
credible interval, \((4.60)\), to produce the estimated credible interval suggested in Line 28 of Algorithm 3.1; and we do the same for the stopping condition controls in \((4.61)\) and \((4.62)\) to produce the estimated stopping condition in Line 2 of Algorithm 3.1.

5. Experimental results. Here, we have two goals. First, we demonstrate the correctness of our theory using numerical simulations. Specifically, we verify the consistency of \(\tilde{\rho}^\lambda_k\) and \(\tilde{\iota}^\lambda_k\) (see subsection 5.1); we verify the coverage probabilities of the credible intervals (see subsection 5.2); and we verify the effectiveness and error control for the stopping condition (see subsection 5.3). Second, we compare our method to state-of-the-art methods on an inner loop of incremental 4D-Var at very large scales (see subsection 5.4). A summary of these experiments can be found in Table 4.

Table 4

Section	Question being addressed	Matrices Used	Dimensions
subsection 5.1	Are \(\tilde{\rho}^\lambda_k\) and \(\tilde{\iota}^\lambda_k\) consistent estimators?	44 matrices from MatrixDepot	1024 by 512
subsection 5.2	Are the \((1 - \alpha)\) uncertainty sets of \(\tilde{\rho}^\lambda_k\) actually capturing \((1 - \alpha)%\) of \(\rho^\lambda_k\)?	Wilkinson, Rohess, and Golub matrices from MatrixDepot	512 by 256
subsection 5.3	Are we stopping the algorithm in accordance with user defined risks?	44 matrices from MatrixDepot	1024 by 512
subsection 5.4	How does this method work at scale?	Subproblem from Incremental 4-D Var for the Shallow Water Equation	\(2N_cN_t\) by \(2N_c\), using \(N_t = \{20, \ldots, 1280\} \times \{20 \ldots 640\}\)\(^{11}\). Additionally, we consider a 5120000 by 20480 system.

5.1. Consistency of Estimators. To verify the consistency of our estimators, we solve 44 least squares problems (512 unknowns, 1024 equations) with coefficient matrices generated from MatrixDepot \([33]\). Each of these least squares problems is solved three times, once for each of the FJLT, Gaussian, and Achlioptas sketching methods, using an embedding dimension of \(p = 20\), a narrow moving average window width of \(\lambda_1 = 1\), and a wide moving average window width of \(\lambda_2 = 100\) for 10,000 iterations. At each iteration, for each of the three different sketching methods and 44 matrix systems, the values of \(\tilde{\rho}^\lambda_k\), \(\tilde{\iota}^\lambda_k\), \(\rho^\lambda_k\), and \(\iota^\lambda_k\) are recorded. Using these values, we compute the relative error for both estimators, \(\tilde{\rho}^\lambda_k\) and \(\tilde{\iota}^\lambda_k\), by taking the absolute value of the difference between the value of the estimator and the value of the quantity being estimated divided by the value of the quantity being estimated. We then summarize the distribution of these relative errors by computing the min, 50th percentile, and max for both estimator types. In the top left graph of Figure 2, we plot these statistics for the relative error of \(\tilde{\rho}^\lambda_k\), \(|\tilde{\rho}^\lambda_k - \rho^\lambda_k|/\rho^\lambda_k\); in the top right graph, we do the same for the relative error of \(\tilde{\iota}^\lambda_k\), \(|\tilde{\iota}^\lambda_k - \iota^\lambda_k|/\iota^\lambda_k\). In the bottom graph we show a specific example of the absolute error \(|\tilde{\rho}^\lambda_k - \rho^\lambda_k|\) (orange line), and the absolute error \(|\tilde{\iota}^\lambda_k - \iota^\lambda_k|\) (black line) for the solver applied to a Hadamard matrix system from \([33]\). More detailed results for the max and min of these relative errors.
across all sampling types, for each of the 44 systems tested can be found in Table 5.

![Figure 2](image)

Figure 2. The top two plots are relative error plots of the min (red), 50th percentile (blue), and max (green) of the relative error between the estimator and actual value. The top left plot features the relative error of $\hat{\rho}_k^\lambda$ across 44 least squares problems solved three times, once using each of the Gaussian, Achlioptas, and FJLT sketching methods. The top right plot features the relative error of $\hat{\iota}_k^\lambda$ for those same problems. The bottom plot features the absolute error for $\hat{\rho}_k^\lambda$ and $\hat{\iota}_k^\lambda$ when applied to the Hadamard matrix system from MatrixDepot.

As Theorems 4.9 and 4.10 show that $\hat{\rho}_k^\lambda$ and $\hat{\iota}_k^\lambda$ are consistent estimators, it should be the case that we see constant relative error at all percentiles of the distribution. This is exactly what we obtain when we look at the top two plots in Figure 2 with all the percentiles corresponding to relative errors that fluctuate around a particular constant. This is confirmed in more detail when looking at Table 5 and observing that aside from the Foxgood and Ursell matrices all 44 systems see roughly the same minimum and maximum relative errors for each estimator. Looking at the bottom graph, which uses the Hadamard matrix system as an illustrative example, we can see that when ρ_k^λ converges, the absolute error of $\hat{\rho}_k^\lambda$ converges as well. The same is true for when ι_k^λ converges. Overall we can see that our estimators for ρ_k^λ and ι_k^λ are quite good performing similarly in terms of relative error of estimators across all systems, and clearly consistent when the value being estimated converges.

5.2. Coverage Probability. To verify that our credible intervals have the correct coverage probabilities, we perform a two phase experiment where we solve three linear systems (256 unknowns, 512 equations) with coefficient matrices generated from the Golub, Rohess, and Wilkinson matrices found in MatrixDepot [33]. These matrices are chosen owing to the range of their condition numbers, with the Golub, Rohess, and Wilkinson systems having condition numbers of $(81575, 1, 603)$ respectively, which should help reveal the interplay between the coverage of our intervals and the conditioning of the system. In the first phase of the experiment, we solve each system once for 500 iterations using a Gaussian sketching matrix.
Max and min relative errors (RE) for $\bar{\iota}$ and $\bar{\rho}$ and condition number for each of the 44 systems across each of the three sampling methods.

Matrix	Condition	Max RE ρ_1^k	Min RE ρ_1^k	Max RE ι_1^k	Min RE ι_1^k
rohess	1	0.63	2.6e-06	0.93	3.6e-05
hadamard	1	0.43	1.2e-05	0.82	1.7e-05
grcar	3.6	0.61	2.6e-05	1.3	3.4e-05
rosser	3.8	0.96	1.3e-06	2.8	7.9e-07
dingdong	4	0.63	1.7e-06	1.6	3.5e-05
parter	4	0.69	8.4e-06	1.6	1.7e-05
randcorr	4.8	0.69	7.8e-06	0.9	2.8e-05
kms	9	0.6	3.3e-06	1.1	4.7e-06
gilbert	10	0.8	2e-06	2.3	3.6e-06
oscillate	12	0.78	5.8e-07	1.6	4.5e-06
smallworld	34	0.59	1.3e-06	1.3	7.8e-06
rando	76	0.71	2.1e-06	1.2	1.1e-05
circul	5.1e+02	0.5	4.4e-06	1.2	5.6e-06
pei	5.1e+02	0.61	2.6e-05	1.6	9.2e-05
hankel	5.2e+02	0.5	1.9e-07	1.2	5.9e-06
wilkinson	1.2e+03	0.47	3.8e-08	1.2	1e-05
randvd	4.1e+04	0.74	6.7e-07	2	2.2e-05
tridig	1.1e+05	1.1	7e-07	3.3	3.3e-06
prolate	1.1e+05	0.61	1.7e-06	1.2	5.5e-07
golub	1.1e+05	0.52	2e-07	1.3	1.4e-05
tiedler	1.8e+05	0.76	1.4e-06	2.1	2.8e-07
toepilta	1.8e+05	0.76	4.9e-07	2.1	1.3e-06
lehmer	2.8e+05	0.7	3.6e-07	1.9	1.4e-05
deriv2	3.2e+05	0.52	7.1e-07	1.3	4.6e-06
minij	4.3e+05	0.65	3.5e-07	1.7	6e-06
phillips	1.8e+09	0.68	9.9e-07	1.8	1.6e-06
chebspec	2.2e+14	0.68	1.6e-06	1.8	1e-05
ursell	1.1e+15	0.47	0.002	1.2	0.011
chow	1.2e+16	0.6	8.6e-07	1.5	3.5e-06
sampling	2e+16	0.8	1.1e-06	2.2	2.5e-05
moler	3.2e+17	0.57	2.4e-07	1.5	4.5e-06
kahan	3.8e+17	0.42	6.6e-07	0.92	4.3e-06
baart	4.1e+17	0.55	5.2e-07	1.7	3.3e-06
cauchy	4.6e+18	0.8	6.2e-06	2.2	7.8e-06
hilb	5.8e+18	0.88	1.6e-06	2.5	3.5e-05
spikes	1.4e+19	0.79	3.6e-06	2.2	8.8e-06
frank	1.6e+19	0.67	2.5e-06	1.8	1.4e-06
lotkin	4.2e+19	0.7	8.1e-06	2.2	6.3e-06
shaw	1.7e+20	1.1	2.1e-06	3.4	5.1e-06
triw	2.6e+20	0.75	3.9e-06	1	4.6e-06
gravity	3e+20	0.68	1.2e-05	1.8	0.00025
magic	5.2e+20	0.75	6.6e-06	2.9	5.1e-07
foxgood	1e+21	0.54	0.074	0.79	0.15
heat	8.7e+124	0.31	4.8e-06	0.8	5.3e-06

with an embedding dimension of $p = 25$ and a constant moving average window width of $\lambda_1 = \lambda_2 = 15$. At each iteration during this phase, we save the iterate, $\{x_k\}$, $\bar{\rho}_1^k$, and the 95% credible interval. Once the first phase is complete we move onto the second phase. The goal of the second phase is to approximate the possible variation in ρ_{k+15} given the first phase’s iterate, x_k as starting points as dictated by the conditioning in Theorem 4.9. To accomplish this goal for each saved iterate x_k from the first phase, the second phase starts at that x_k and runs Algorithm 3.1 for 15 iterations. At each of those 15 iterations, the second phase saves
the true norm squared of the gradient, $\|g_k\|_2^2$. At the end of those 15 iterations the second phase uses the fifteen $\|g_k\|_2^2$s to compute ρ_k^{15}. This process is repeated 1000 independent times for each iterate saved in the first phase. This process results in 1000 observations of ρ_k^n for each iteration greater than 14. Upon the completion of the second phase, we test the coverage of the credible intervals by examining across all iterations how many times the second phase’s ρ_k^ns exceeded the estimated credible interval from the first phase for its corresponding iteration.

In Figure 3, we display for each iteration, k, the credible interval bound shifted by subtracting the first phase’s $\tilde{\rho}_k^\lambda$, resulting in an interval centered at zero (see black lines). Additionally, for each iteration, we display $\rho_k^\lambda - \tilde{\rho}_k^\lambda$ for each of the second phase’s 1000 different ρ_k^ns. If this difference is within the credible interval bound, the observation is colored green otherwise it is colored red. In the left-hand plots of Figure 3 we display the results for when the credible interval is computed with $\eta = 1$, while the right-hand plots display the results for a credible interval computed with η according to Table 3.

From Figure 3, we can observe that with $\eta = 1$ the credible intervals are conservative, with the coverage failure rates of the Golub, Rohess, and Wilkinson systems being (0.00548, 0.00000617, 0.00121) respectively all less than the 0.05 failure rate for which the intervals were designed. With the η parameter chosen according to Table 3, we observe far less conservative coverage rates across different systems. With the coverage failure rates for the Golub, Rohess, and Wilkinson matrices becoming (0.0765, 0.00565, 0.0202) respectively. Considering that the condition number for the Golub, Rohess, and Wilkinson matrices are (81575, 1, 603) these results seem to suggest that the choice in η value can be made more or less severe depending on the conditioning of the system, with poorer conditioned systems requiring an η value closer to 1, while better conditioned systems probably require higher η values than what is suggested by Table 3 in order for the intervals to have appropriate coverage rates. Overall, these results demonstrate that, while somewhat conservative, these intervals perform as designed.

5.3. Stopping Condition. To determine the effectiveness of the stopping condition we again consider 44 least squares problems (512 unknowns, 1024 equations) with coefficient matrices generated from MatrixDepot [33]. Each of these least squares problems is solved three times for each of the FJLT, Gaussian, and Achlioptas sketching methods with an embedding dimension of $p = 20$, a narrow moving average window width of $\lambda_1 = 1$, and a wide moving average window width of $\lambda_2 = 100$ for 10,000 iterations. After solving these systems, we then consider the frequency at which stopping errors of the form of (4.61) and (4.62) occur when the condition,

$$\sqrt{\tau_k^\lambda} \leq \min \left\{ \frac{\lambda(1 - \delta)\nu^2C_p}{(1 + \log(\lambda))2\log(1/\xi_I)\sqrt{\tau_k^\lambda}}, \frac{\lambda\nu(1 - \delta_I)}{2\log(1/\xi_I)\omega}, \frac{\lambda\nu(\delta - 1)}{2\log(1/\xi_I)\omega}, \frac{\lambda\nu(\delta_I - 1)}{2\log(1/\xi_I)\omega} \right\},$$

(5.1)

is satisfied. We do this by considering all iterations where (5.1) is satisfied, then determining the frequency that (4.61) —stopping too late—occurs in these iterations, as well as how often
Figure 3. Coverage results for credible intervals with $\alpha = 0.05$. The plots on the left display the coverage when the credible interval is calculated with $\eta = 1$, while those on the right are computed with η chosen according to Table 3. The green points display all the values of ρ^k_λ that remain within the interval, while the red points are the values of ρ^k_λ that fall outside the interval. The failure rates when $\eta = 1$ for the Golub, Rohess, and Wilkinson matrices are (0.00548, 0.00000617, 0.00121) respectively, while when the η parameter is set according to Table 3 these values change to (0.125, 0.0162, 0.0428).

(4.62) —stopping too early—occurs in this set of iterations. The parameters $(\nu, \delta_I, \delta_{II}, \xi_I, \xi_{II})$ are set to be (100, 0.9, 1.1, 0.01, 0.01).

Looking at the Figure 4, we observe that when (5.1) is satisfied, no error of the form (4.61) nor (4.62) occurs, and this continues to be the case even with η set according to Table 3. This low failure rate indicates that overall (5.1), stops the algorithm. Thus, if we stop when both $\tilde{\rho}^k_\lambda \leq \nu$ and (5.1) occur, we will make a stopping decision with a magnitude and error rate acceptable to the user.

5.4. 4D-Variational Data Assimilation. To demonstrate the utility of Algorithm 3.1 at scale, we consider the Incremental 4D-Variational Data Assimilation problem, 4D-Var [4]. This problem is solved by iteratively updating an initial estimate by minimizing the distance between noisy observations at different time points and predictions of these observations made
Figure 4. Graph depicting the stopping decision results by error type. The late category describes an error of the form (4.61), while early describes an error of the form (4.62). These results are displayed with $\eta = 1$; however, they remain unchanged even if η is chosen according to Table 3.

by evolving an estimate of the initial state to the same points in time as the observations. To evolve the initial state for our experiment, we use the dynamics defined by the one-dimensional Shallow Water Equations, which are

\begin{align}
\frac{\partial \phi(x, t)}{\partial t} &= -\frac{\partial}{\partial x} \phi(x, t) u(x, t), \text{ and} \\
\frac{\partial u(x, t)}{\partial t} &= -\frac{\partial}{\partial x} \left(\phi(x, t) + \frac{u(x, t)^2}{2} \right),
\end{align}

where x is the spatial coordinate; t is the time point; $\phi(x, t)$ is the potential energy; and $u(x, t)$ is the velocity[6].

To solve the 4D-Var problem with these Shallow Water dynamics, rather than directly considering Algorithm 3.1, we consider a modified version of Algorithm 3.1, Algorithm G.1, specifically tailored to the 4D-Var problem in a way that minimizes memory usage, and compare it to the LSQR solver [19] applied to the same system. For this comparison, we first demonstrate on small problems, those less than 32 GB in size, how Algorithm G.1 produces the same quality of solution as LSQR, has the same runtime scaling as LSQR, and uses substantially less memory than LSQR, when we vary either the number of time points or the number of coordinate points and keep the other at a constant size. We then show the capabilities of Algorithm G.1 exceed those of LSQR, by solving a 4D-Var problem where the system size at 0.78 TB far exceeds 32 GB memory constraint.

To perform both experiments, we generate a set of observations of the potential energy and velocity states for the Shallow Water equations with the desired number of time and coordinate points. This is done using Euler's method with the initial condition of potential energy being set to $\frac{(i-100)^2}{10000}$, where i is the index of the location, and the initial condition on velocity being set to 0.5 for all coordinates. Each time point is set to be 10^{-11} units apart and each coordinate point is 100 units apart to ensure that the system can be stably simulated when the number of coordinates and time points is large. Since in most practical instances, one would only observe either the potential energy or velocity at a particular location, we set all velocity components of the observations to zero. We then add a vector with mean zero, variance one, Gaussian entries to the potential energy states at each time point, which results
in our noisy observations.12

With these observations, we then solve a single inner iteration of the Incremental 4D-Var problem with an initial state estimate of \((j-100)\times10000\), where \(j\) is the entry index of the state vector, once with LSQR and once with Algorithm G.1. For Algorithm G.1, we use the Achlioptas sketching method with an embedding dimension of \(p = 20\), a narrow moving average window width of \(\lambda_1 = 1\), a wide moving average window width of \(\lambda_2 = 100\). In order to account for the floating point errors associated with solving large matrix systems, the threshold for stopping is set to be \(v = 10^{-9}(N_c(N_t+1))\), where \(N_c\) is the number of coordinates and \(N_t\) is the number of time points. The other stopping parameters, \((\delta_I, \delta_{II}, \xi_I, \xi_{II})\) are set to be \((.9, 1.1, .95, .95)\).

For both solvers we use a single thread of an Intel Xeon E5-2680 v3 @ 2.50GHz with a memory constraint of 32 GB. We consider systems with the number of time points varying from 20 to 640 by way of doubling, as well as with the number of coordinate points varying from 20 to 1280 by way of doubling. This results in matrix systems that range in size from 250 KB to 31.25 GB. The LSQR algorithm is stopped once a norm of the gradient of \(\sqrt{v}\) is achieved and Algorithm G.1 is stopped according to Line 2 of Algorithm 3.1. Once stopped, we compare the runtime scaling, memory usage, and norm squared of the residual of final solution for both methods in the cases where the number of coordinates changes, but the number of time points stays constant and vice versa.

The results for keeping the number of time points constant at 640 and varying the number of coordinates are displayed on the left of Figure 5, and the results for keeping the number of coordinates constant at 1280 and varying the number of time points are displayed on the right of Figure 5. In all instances, the minimum residual found by both methods is the same. When considering runtime, the runtime for the LSQR method is faster than Algorithm G.1, as long as the matrix system size is less than the memory constraint, and if the system size is greater than the memory constraint, the LSQR method fails. Since we care most about how the methods scale with changes in the number of coordinates or number of time points, we present how many times longer the runtime of the solver is at a particular system size, compared to the runtime of the same solver applied to a system with half as many coordinate or time points.

Looking at both sets of plots, we see that for a fixed time point, the LSQR method and Algorithm G.1 increase at close to the same rate with LSQR taking on average 4.57 times longer to solve a problem with twice as many coordinates and Algorithm G.1 taking 5 times longer to solve a problem with twice as many coordinates. This trend continues until we reach the system with 1280 coordinate points, at which point the LSQR runtime is 70 times longer than it was at 640 coordinate points, while Algorithm G.1 only takes 4.46 times longer. Evidence for why Algorithm G.1 does not experience the same scaling issues as LSQR is found in the memory frame of Figure 5 where we observe the memory usage for Algorithm G.1 remains relatively constant at every value of the number of coordinate points, while the memory usage for LSQR grows quadratically over the same span, reaching a maximum of 31.5 GB of memory used. A similar story can be observed if we vary the number of time points, with Algorithm G.1 and LSQR algorithm both doubling in runtime for every doubling in the number of time points, until 640 time points are reached, at which

12Precise formulations of the equations used for Euler’s method can be found in Appendix G.
point the scaling for LSQR becomes 37 times that of the previous system size, but remains constant for Algorithm G.1. Overall, we can conclude that to generate the same solution quality, Algorithm G.1 scales as well as LSQR, but with a longer overall runtime. Further, we can say that Algorithm G.1 is significantly more memory efficient than LSQR and is therefore able to avoid the poor scaling effects from memory usage for substantially longer than LSQR.

We finally consider the sketched residual and credible interval for a Shallow Water problem with 250 time points and 10240 spatial coordinates, which equates to a system with a storage requirement of 0.78 TB. We use Achlioptas sketching with an embedding dimension of $p = 20$, a narrow moving average window width of $\lambda_1 = 1$, and a wide moving average window width of $\lambda_2 = 100$. As with the previous problem we solve this system using a single thread of an Intel Xeon E5-2680 v3 @ 2.50GHz with a memory constraint of 32 GB of which Algorithm G.1 uses 194.68 MB.
We observe in Figure 6 that most of the progress is made within the first 100,000 iterations progressing from a $\hat{\rho}_k^\lambda$ value of 1.466019×10^{32} to a value of 6520.793. The likely cause for this stalled progress is the conditioning of the system, since even at larger sample sizes, $\hat{\rho}_k^\lambda$ does not improve beyond 6520.793. This leads us to claim we have solved the system sufficiently, and have done so under constraints for which LSQR fails to work.

6. Conclusions. To efficiently solve the large-scale least squares subproblems that arise in uncertainty quantification, such as 4D-Var, we have proposed an iterative method that leverages random sketching to solve these least squares problems with minimal memory load. The iterative nature of our solution leads to a need to track and stop our method with minimal computational cost, a goal we achieve by utilizing the moving average of the sketched gradients. Through our rigorous proofs, we are then able to verify that not only does our algorithm converge, but also that our estimators are consistent and have a quantifiable uncertainty despite their dependent structure. We perform numerous numerical experiments to verify that this theory holds in practice. In addition to the practical verification of our theory, we make clear the advantages of our method over one like LSQR by comparing both solvers on a 0.78 TB system. Through this comparison, we find that while the LSQR method fails because it reaches the 32 GB memory bound, our method can solve the system utilizing only 195 MB of memory. Our future work will involve improving the practicality of our methodology for solving large-scale scientific problems by examining the effects of the choice of embedding dimension on convergence rate and considering parallelization opportunities to reduce runtime.

Appendix A. Commutation of Projection Matrices. We begin by proving that when one orthogonal projection matrix projections onto a space that is a subset of the space projected onto by a second orthogonal projection matrix, the matrices commute. This allows for us to make the conclusion in (4.5).

Lemma A.1. If P_A is an orthogonal projection matrix onto the range of A and P_{AB} is an orthogonal projection matrix onto the range of AB, then it is the case

(A.1) $P_A P_{AB} = P_{AB} P_A$.
Proof. We begin by noting that from the properties of orthogonal matrices we have

(A.2) \[P_{AB} = P_A P_{AB}. \]

(A.3) \[P_{AB} = P_{AB}^\top = (P_A P_{AB})^\top = P_{AB}^\top P_A = P_{AB} P_A, \]

where the second equality comes from (A.2) and the second to last equality comes from the symmetry of orthogonal projection matrices. Combining (A.2) and (A.3) we get

(A.4) \[P_A P_{AB} = P_{AB} = P_{AB} P_A. \]

Appendix B. Scaling of Sub-Exponential distribution. We present the following useful lemma that is used in the proof of Theorem 4.9. The lemma presents how the distribution of \(\| \tilde{g}_k \|_2^2 - \| g_k \|_2^2 \) changes if we scale it by \(\| g_k \|_2^2 \).

Lemma B.1. For \(x_k \) generated according to (3.7) and \(S_{k+1} \) satisfying Definition 3.1, if we let \(\tilde{g}_k = S_{k+1}^\top A^\top (Ax_k - b) \), we let \(M_k - \lambda = \| A^\top B^{1/2} \|_2 \| PB^{1/2} r_{k-\lambda+1} \|_2 \), and we let \(F_k \) be the \(\sigma \)-algebra generated by \(S_1, \ldots, S_k \), then

(B.1) \[\| \tilde{g}_k \|_2^2 - \| g_k \|_2^2 \left| F_k \right| \sim SE(M_k^4/(C \lambda), \omega M_k^2) \]

Proof. We can conclude from Definitions 3.1 and 4.8 that if we define \(Y = \| \tilde{g}_k \|_2^2 - \| g_k \|_2^2 \), then \(Y|F_k \sim SE(1/(C \lambda), \omega) \). Thus, we have from Definition 4.8 that

(B.2) \[E[\exp(tY)|F_k] \leq \exp \left(\frac{t^2}{2C \lambda} \right) \]

when \(|t| \leq 1/\omega \). Now, since Lemmas 4.1 and 4.4 and Corollary 4.3 imply, with probability one,

(B.3) \[\| g_k \|_2 \leq \| A^\top B^{1/2} \|_2 \| PB^{1/2} r_k \|_2 \leq \| A^\top B^{1/2} \|_2 \| PB^{1/2} r_{k-\lambda+1} \|_2 = M_k - \lambda. \]

If we define a new random variable \(Z = \| g_k \|_2^2 Y \), we have that

(B.4) \[E[\exp(tZ)|F_k] = E[\exp \left(t \| g_k \|_2^2 Y \right) |F_k] \]

(B.5) \[\leq E[\exp \left(t M_k^2 - \lambda Y \right) |F_k] \]

(B.6) \[\leq \exp \left(\frac{t^2 M_k^4 - \lambda}{2C \lambda} \right), \]

where we use the fact that \(M_k^4 - \lambda \) is measurable with respect to \(F_k \) and can thus be treated as scaling of \(t \). This implies that the above holds for

(B.7) \[|t M_k^2 - \lambda| \leq 1/\omega, \]

which implies \(|t| \leq \frac{1}{\omega M_k^2}. \) Combining the bound and the constraint on \(t \) gives the desired result. \(\blacksquare \)
Appendix C. Details for Credible interval. We again state Corollary 4.11 and provide the proof of corollary below.

Corollary C.1. Under the conditions of Theorem 4.7, a credible interval of level $1 - \alpha$ for $\tilde{\rho}_k^\lambda$, corresponding to Line 28 in Algorithm 3.1, is

$$\tilde{\rho}_k^\lambda \pm \max \left(\sqrt{2 \log(2/\alpha)} \frac{M_{k-\lambda}(1 + \log(\lambda))}{C_p \lambda}, 2 \log(2/\alpha) \frac{M_{k-\lambda}^2 \omega}{\lambda} \right).$$

(C.1)

Proof. Using the sub-Exponential variance from Theorem 4.9, the tail bound result from Proposition 2.9 of [32],

$$P \left(|\tilde{\rho}_k^\lambda - \rho_k^\lambda| > \epsilon | F_{k-\lambda} \right) \leq 2 \exp \left(- \min \left(\frac{C_p \lambda \epsilon^2}{2 M_{k-\lambda}^2 (1 + \log(\lambda))}, \frac{\lambda \epsilon}{2 \omega M_{k-\lambda}^2} \right) \right).$$

(C.2)

From this tail probability it should be clear that the high probability region is controlled by the choice of ϵ; thus, if we choose ϵ such that it lines up with a specific quantile α, we will have our desired confidence region.

$$\alpha = 2 \exp \left(- \min \left(\frac{C_p \lambda \epsilon^2}{2 M_{k-\lambda}^2 (1 + \log(\lambda))}, \frac{\lambda \epsilon}{2 \omega M_{k-\lambda}^2} \right) \right).$$

(C.3)

Solving for ϵ in both cases supplies that

$$\epsilon = \max \left(\sqrt{2 \log(2/\alpha)} \frac{M_{k-\lambda}(1 + \log(\lambda))}{C_p \lambda}, 2 \log(2/\alpha) \frac{M_{k-\lambda}^2 \omega}{\lambda} \right).$$

(C.4)

Appendix D. Details for Stopping Condition. We again state Corollary 4.12 and provide the proof of corollary below.

Corollary D.1. Let $\xi_I, \xi_{II}, \delta_I \in (0, 1), \delta_{II} > 1$ and $v > 0$. Under the conditions of Theorem 4.7, the following statements are true.

$$M_{k-\lambda}^2 \leq \min \left\{ \frac{\lambda (1 - \delta_I)^2 v^2 C_p}{(1 + \log(\lambda)) 2 \log(1/\xi_I) M_{k-\lambda}^2}, \frac{\lambda v (1 - \delta_I)}{2 \log(1/\xi_I) \omega} \right\}$$

(D.1)

$$\Rightarrow P \left[\tilde{\rho}_{k+1}^{\lambda} > v, \rho_k^\lambda \leq \delta_I v | F_{k-\lambda} \right] < \xi_I,$$

and

$$M_{k-\lambda}^2 \leq \min \left\{ \frac{\lambda (\delta_{II} - 1)^2 v^2 C_p}{(1 + \log(\lambda)) 2 \log(1/\xi_{II}) M_{k-\lambda}^2}, \frac{\lambda v (\delta_{II} - 1)}{2 \log(1/\xi_{II}) \omega} \right\}$$

(D.2)

$$\Rightarrow P \left[\tilde{\rho}_k^\lambda \leq v, \rho_k > \delta_{II} v | F_{k-\lambda} \right] < \xi_{II}.$$
Proof. First,

\[P\left(\tilde{\rho}_k^\lambda > v, \rho_k^\lambda \leq \delta_I v \mid \mathcal{F}_{k-\lambda} \right) \]

(D.3)

\[\leq P\left(\tilde{\rho}_k^\lambda - \rho_k^\lambda > v(1 - \delta_I), \rho_k^\lambda \leq \delta_I v \mid \mathcal{F}_{k-\lambda} \right) \]

(D.4)

Using the sub-Exponential variance from Theorem 4.9 and the tail bound result from Proposition 2.9 of [32],

\[P\left(\tilde{\rho}_k^\lambda - \rho_k^\lambda > v(1 - \delta_I) \mid \mathcal{F}_{k-\lambda} \right) \leq \exp\left(- \min\left(\frac{\lambda v^2(1 - \delta_I)^2 C p}{2 M_{k-\lambda}^2 (1 + \log(\lambda))}, \frac{\lambda v (1 - \delta_I)}{2 \omega M_{k-\lambda}^2} \right) \right). \]

(D.5)

Thus, when \(M_{k-\lambda}^2 \) satisfies (4.61), the right-hand term of the preceding inequality is bounded by \(\xi_I \). We can repeat this argument to show that (4.62) is true.

Appendix E. Relative error bound for \(\iota_k^\lambda \). Here we define the relative error bound to be used in the proof of Lemma 4.13, which is simply a relative error version of Theorem 4.10. We present the exact derivation of this bound in the following lemma.

Lemma E.1. Under the conditions of Theorem 4.7, we have for \(\epsilon > 0 \)

\[P\left(\frac{|\tilde{\iota}_k^\lambda - \iota_k^\lambda|}{M_{k-\lambda}^2} > \epsilon \mid \mathcal{F}_{k-\lambda} \right) \leq 2(1 + \lambda) \exp\left(- \min\left(\frac{\epsilon^2 C p \lambda}{2(2 + \sqrt{\epsilon \lambda})^2 (1 + \log(\lambda))}, \frac{\epsilon \lambda}{2(2 + \sqrt{\epsilon \lambda}) \omega} \right) \right) \]

(E.1)

Proof. Using the definitions of \(\iota_k^\lambda \) and \(\tilde{\iota}_k^\lambda \) we have

\[P\left(\frac{|\tilde{\iota}_k^\lambda - \iota_k^\lambda|}{M_{k-\lambda}^2} > \epsilon \mid \mathcal{F}_{k-\lambda} \right) \]

(E.2)

\[= P\left(\left| \sum_{i=k-\lambda+1}^{k} \frac{\|\tilde{\ell}_i\|_2^2 - \|\ell_i\|_2^2}{\lambda M_{k-\lambda}^4} \right| > \epsilon \mid \mathcal{F}_{k-\lambda} \right) \]

(E.3)

\[\leq P\left(\sum_{i=k-\lambda+1}^{k} \left| \frac{\|\tilde{\ell}_i\|_2^2 - \|\ell_i\|_2^2}{\lambda M_{k-\lambda}^4} \right| > \epsilon \mid \mathcal{F}_{k-\lambda} \right) \]

(E.4)

\[\leq P\left(\sum_{i=k-\lambda+1}^{k} \left| \frac{\|\tilde{\ell}_i\|_2^2 - \|\ell_i\|_2^2}{\lambda M_{k-\lambda}^4} \right| \mid \frac{\|\tilde{\ell}_i\|_2^2 + \|\ell_i\|_2^2}{M_{k-\lambda}^2} \right| > \epsilon \mid \mathcal{F}_{k-\lambda} \right) \).

(E.5)
Then by defining a variable, $G > 2$, to partition (E.5) into disjoint sets and using the definition of measure,

\[(E.6)\] \[\mathbb{P}\left(\sum_{i=k-\lambda+1}^{k} \left| \frac{\|\tilde{g}_i\|_2^2 - \|g_i\|_2^2}{\lambda M_{k-\lambda}^2} \right| > \frac{\epsilon G}{\mathcal{F}_{k-\lambda}} \right) \]

\[(E.7)\] \[= \mathbb{P}\left(\sum_{i=k-\lambda+1}^{k} \left| \frac{\|\tilde{g}_i\|_2^2 + \|g_i\|_2^2}{\lambda M_{k-\lambda}^2} \right| > \frac{\epsilon G}{\mathcal{F}_{k-\lambda}} \right),\]

then by defining a variable, $G > 2$, to partition (E.5) into disjoint sets and using the definition of measure,

\[(E.8)\] \[\mathbb{P}\left(\sum_{i=k-\lambda+1}^{k} \left| \frac{\|\tilde{g}_i\|_2^2 - \|g_i\|_2^2}{\lambda M_{k-\lambda}^2} \right| > \frac{\epsilon G}{\mathcal{F}_{k-\lambda}} \right) \leq 2 \exp\left(\frac{t^2(1 + \log(\lambda))}{2 C p \lambda} - \frac{\epsilon t}{G} \right),\]

This bound only holds when $0 \leq t \leq \frac{\lambda}{G}$. It is first important to note in the unconstrained case the global minimizer of this function occurs at $t = \frac{C p \lambda}{2 G (1 + \log(\lambda))}$. However, since we have a constraint there are two cases we must consider. For the first case we have $\frac{C p \lambda}{2 G (1 + \log(\lambda))} < \frac{\lambda}{G}$, and we get the Chernoff bound to be

\[(E.9)\] \[2 \exp\left(-\frac{\epsilon^2 C p \lambda}{2 G^2 (1 + \log(\lambda))} \right).\]

In the second case, $\frac{C p \lambda}{2 G (1 + \log(\lambda))} > \frac{\lambda}{G}$ and in this case we minimize the function by setting $t = \frac{\lambda}{G}$, which causes the Chernoff bound to be

\[(E.10)\] \[2 \exp\left(-\frac{\epsilon \lambda}{2 G \omega} \right).\]
Combining these two cases we get that

\[
\Pr \left(\sum_{i=k-\lambda+1}^{k} \left| \frac{\|\tilde{g}_i\|^2}{\lambda M_{k-\lambda}^2} - \frac{\|g_i\|^2}{\lambda M_{k-\lambda}^2} \right| > \frac{\epsilon}{G} \right) \geq \left\{ 1 - \frac{\epsilon^2}{2G^2(1 + \log(\lambda))} - \frac{\epsilon \lambda}{2G\omega} \right\}.
\]

We next address the right side of (E.8) for which we have

\[
\Pr \left(\sum_{i=k-\lambda+1}^{k} \left\{ \frac{\|\tilde{g}_i\|^2}{M_{k-\lambda}^2} + \frac{\|g_i\|^2}{M_{k-\lambda}^2} > G \right\} \left| \mathcal{F}_{k-\lambda} \right) \leq 2 \exp \left(-\min \left(\frac{Cp\lambda}{G - 2}, \frac{\epsilon \lambda}{G\omega} \right) \right).
\]

where (E.16) comes from (4.30), (E.18) comes from the (4.22). Since (E.18) holds when \(0 \leq t \leq \frac{1}{\omega} \). We again must consider two cases to get the Chernoff bound. If the problem were unconstrained the minimum would occur at \(t = \frac{Cp(G - 2)}{\lambda M_{k-\lambda}^2} \). Since this problem is constrained we first consider the case when \(Cp(G - 2) \leq \frac{1}{\omega} \) at this point the Chernoff bound is

\[
2\lambda \exp \left(-\frac{Cp(G - 2)^2}{2} \right).
\]

The second case occurs when \(Cp(G - 2) > \frac{1}{\omega} \) and in this case the function is minimized by setting \(t = \frac{1}{\omega} \) at which point the bound is

\[
2\lambda \exp \left(-\frac{(G - 2)}{2\omega} \right).
\]

Combing these two cases gives us that

\[
\Pr \left(\sum_{i=k-\lambda+1}^{k} \left\{ \frac{\|\tilde{g}_i\|^2}{M_{k-\lambda}^2} + \frac{\|g_i\|^2}{M_{k-\lambda}^2} > G \right\} \left| \mathcal{F}_{k-\lambda} \right) \leq 2\lambda \exp \left(-\min \left(\frac{Cp(G - 2)^2}{2}, \frac{(G - 2)}{2\omega} \right) \right).
\]
With the left and right terms of (E.8) we can now progress to find the G that minimizes (E.8).

(E.23) \[P \left(\frac{\hat{\lambda}_k - \hat{\lambda}_k}{M_{k-\lambda}} > \epsilon \, \middle| \, F_{k-\lambda} \right) \]

(E.24) \[\leq \inf_{G > 2} 2 \exp \left(- \min \left(\frac{\epsilon^2 C \lambda}{2G^2(1 + \log(\lambda))}, \frac{\epsilon \lambda}{2G \omega} \right) \right) \]

(E.25) \[+ 2 \lambda \exp \left(- \min \left(\frac{C \lambda(G - 2)^2}{2(1 + \log(\lambda))}, \frac{(G - 2)^2}{2 \omega} \right) \right) \]

We can then observe that when $G \geq 2 + \sqrt{\epsilon \lambda}$ it is the case that

(E.26) \[\exp \left(- \min \left(\frac{C \lambda(G - 2)^2}{2}, \frac{(G - 2)^2}{2 \omega} \right) \right) \]

\[\leq \exp \left(- \min \left(\frac{\epsilon^2 C \lambda}{2G^2(1 + \log(\lambda))}, \frac{\epsilon \lambda}{2G \omega} \right) \right) \]

We can upper bound the right-hand term of (E.25) in the following manner,

(E.27) \[\inf_{G > 2} 2 \exp \left(- \min \left(\frac{\epsilon^2 C \lambda}{2G^2(1 + \log(\lambda))}, \frac{\epsilon \lambda}{2G \omega} \right) \right) \]

(E.28) \[+ 2 \lambda \exp \left(- \min \left(\frac{C \lambda(G - 2)^2}{2}, \frac{(G - 2)^2}{2 \omega} \right) \right) \]

(E.29) \[\leq \inf_{G > 2 + \sqrt{\epsilon \lambda}} 2(1 + \lambda) \exp \left(- \min \left(\frac{\epsilon^2 C \lambda}{2G^2(1 + \log(\lambda))}, \frac{\epsilon \lambda}{2G \omega} \right) \right) \]

(E.30) \[\leq 2(1 + \lambda) \exp \left(- \min \left(\frac{\epsilon^2 C \lambda}{2(2 + \sqrt{\epsilon \lambda}})^2(1 + \log(\lambda)), \frac{\epsilon \lambda}{2(2 + \sqrt{\epsilon \lambda}) \omega} \right) \right) \]

Where the last line comes from recognizing that (E.29) is an increasing function of G.

Appendix F. Proof of constant relative error. We restate Lemma 4.13 and provide a proof of the lemma below.

Lemma F.1. Under the conditions of Theorem 4.7, for $\epsilon > 0$, $M_{k-\lambda}^4$ as described in Theorem 4.9, $\hat{\lambda}_k$ as defined in (3.10),

\[\mathbb{P} \left(\left| \frac{M_{k-\lambda}^4 - \hat{\lambda}_k^4}{M_{k-\lambda}^4} \right| > 1 + \epsilon, M_{k-\lambda}^4 \neq 0 \, \middle| \, F_{k-\lambda} \right) \]

\[\leq 2(1 + \lambda) \exp \left(- \min \left(\frac{\epsilon^2 C \lambda}{2(2 + \sqrt{\epsilon \lambda})^2(1 + \log(\lambda))}, \frac{\lambda \epsilon}{2(2 + \sqrt{\epsilon \lambda}) \omega} \right) \right) \]

Proof. First,

(F.2) \[\left| \frac{M_{k-\lambda}^4 - \hat{\lambda}_k^4}{M_{k-\lambda}^4} \right| \leq \left| \frac{M_{k-\lambda}^4 - \hat{\lambda}_k^4}{M_{k-\lambda}^4} \right| + \left| \frac{\hat{\lambda}_k^4 - \hat{\lambda}_k^4}{M_{k-\lambda}^4} \right| , \]
Moreover,
\[
\iota_k^\lambda \in \left[\sigma_{\min}(A^T B^{1/2})^4 \|PB^{1/2}r_k\|_2^4, M_{k-\lambda}^4 \right].
\]
Applying this fact to (F.2),
\[
\left| \frac{M_{k-\lambda}^4 - i_k^\lambda}{M_{k-\lambda}^4} \right| \leq 1 + \left| \frac{i_k^\lambda - i_k^\lambda}{M_{k-\lambda}^4} \right|.
\]
We now apply a relative error version of the bound in Theorem 4.10, which supplies
\[
\mathbb{P} \left(\left| \frac{i_k^\lambda - \tilde{i}_k^\lambda}{M_{k-\lambda}^4} \right| > \epsilon \bigg| \mathcal{F}_{k-\lambda} \right) \leq 2(1 + \lambda) \exp \left(- \min \left(\frac{\epsilon^2 C_p \lambda}{2(2 + \sqrt{\lambda \epsilon})^2(1 + \log(\lambda))}, \frac{\lambda \epsilon}{2(2 + \sqrt{\lambda \epsilon})} \right) \right).
\]
The result follows by combining (F.4) and (F.5).

Appendix G. Shallow Water Model.

For the experiment in subsection 5.4, we use the one dimensional shallow water problem as defined in work of Dimet et al. [6], which involves solving the following system of partial differential equations:
\[\text{(G.1)} \quad \frac{\partial \phi(x,t)}{\partial t} = -\frac{\partial}{\partial x}(\phi(x,t)u(x,t))\]
and
\[\text{(G.2)} \quad \frac{\partial u(x,t)}{\partial t} = -\frac{\partial}{\partial x} \left(\phi(x,t) + \frac{u(x,t)^2}{2} \right).\]
The functions \(\phi(x,t)\) and \(u(x,t)\) are unknown functions of the position, \(x\), and time point, \(t\). The function \(\phi(x,t)\) represents the potential energy at a location at a particular time, and \(u(x,t)\) represents the velocity at a location at a particular time.

In this section we lay out the specifics of our 4D-Var problem by first discussing our simulation using Euler’s method, then writing out our Jacobian equations used in incremental 4D-Var, before for finally presenting our modified version of Algorithm 3.1.

The Forward Model. To generate noisy observations to be assimilated, it is necessary to simulate the system. This simulation will be generated using a forward Euler method, which requires the discretization of the differential equations. In order to discretize the system we use \(\Delta_t\) to represent an increment in time and \(\Delta_x\) to indicate an increment in position. With this notation defined, the discretization of (G.1) is
\[\text{(G.3)} \quad \frac{\partial \phi(x,t)}{\partial t} \approx \frac{\phi(x,t + \Delta_t) - \phi(x,t)}{\Delta_t} = \]
\[u(x, t) \left(\frac{\phi(x - \Delta x, t) - \phi(x + \Delta x, t)}{2\Delta x} + \phi(x, t) \frac{u(x - \Delta x, t) - u(x + \Delta x, t)}{2\Delta x} \right), \]

and the discretization of (G.2) is

\[\frac{\partial u(x, t)}{\partial t} \approx \frac{u(x, t + \Delta t) - u(x, t)}{\Delta t} = \frac{\phi(x - \Delta x, t) - \phi(x + \Delta x, t)}{2\Delta x} + u(x, t) \frac{u(x - \Delta x, t) - u(x + \Delta x, t)}{2\Delta x}. \]

From the discretization, we can then derive the state at a new time point for \(\phi \) and \(u \). Specifically, they are

\[\phi(x, t + \Delta t) = \phi(x, t) + \Delta t \left(\frac{u(x, t) \phi(x - \Delta x, t) - \phi(x + \Delta x, t)}{2\Delta x} + \phi(x, t) \frac{u(x - \Delta x, t) - u(x + \Delta x, t)}{2\Delta x} \right), \]

for \(\phi \) and

\[u(x, t + \Delta t) = u(x, t) + \Delta t \left(\frac{\phi(x - \Delta x, t) - \phi(x + \Delta x, t)}{2\Delta x} + u(x, t) \frac{u(x - \Delta x, t) - u(x + \Delta x, t)}{2\Delta x} \right), \]

for \(u \).

The tangent model. For incremental 4D-Var it is necessary to not only have the forward model, but also the first order linearization of that model [30]. This linearization requires the calculation of the Jacobian of the discretized model in terms of the functions \(u \) and \(\phi \) at all possible values of \(x \) [13]. The nonzero Jacobian values at a particular position \(x \) are:

\[\frac{\partial \phi(x, t + \Delta t)}{\partial \phi(x + \Delta x, t)} = -\frac{\Delta t}{2\Delta x} u(x, t), \]

\[\frac{\partial \phi(x, t + \Delta t)}{\partial \phi(x, t)} = 1 + \Delta t \frac{u(x - \Delta x, t) - u(x + \Delta x, t)}{2\Delta x}, \]

\[\frac{\partial \phi(x, t + \Delta t)}{\partial \phi(x - \Delta x, t)} = \frac{\Delta t}{2\Delta x} u(x, t), \]

\[\frac{\partial \phi(x, t + \Delta t)}{\partial u(x + \Delta x, t)} = -\frac{\Delta t}{2\Delta x} \phi(x, t), \]

\[\frac{\partial \phi(x, t + \Delta t)}{\partial u(x, t)} = \Delta t \frac{\phi(x - \Delta x, t) - \phi(x + \Delta x, t)}{2\Delta x}. \]
\[
\frac{\partial \phi(x, t + \Delta_t)}{\partial u(x - \Delta_x, t)} = \frac{\Delta_t}{2\Delta_x} \phi(x, t),
\]

(G.12)

\[
\frac{\partial u(x, t + \Delta_t)}{\partial \phi(x + \Delta_x, t)} = -\frac{\Delta_t}{2\Delta_x},
\]

(G.13)

\[
\frac{\partial u(x, t + \Delta_t)}{\partial \phi(x, t)} = 0,
\]

(G.14)

\[
\frac{\partial u(x, t + \Delta_t)}{\partial u(x + \Delta_x, t)} = -\frac{\Delta_t}{2\Delta_x} u(x, t),
\]

(G.15)

\[
\frac{\partial u(x, t + \Delta_t)}{\partial u(x - \Delta_x, t)} = \Delta_t \frac{\Delta_t}{2\Delta_x} u(x, t),
\]

(G.16)

\[
\frac{\partial u(x, t + \Delta_t)}{\partial u(x, t)} = 1 + \Delta_t \frac{u(x - \Delta_x, t) - u(x + \Delta_x, t)}{2\Delta_x},
\]

(G.17)

and

\[
\frac{\partial u(x, t + \Delta_t)}{\partial u(x - \Delta_x, t)} = \Delta_t \frac{\Delta_t}{2\Delta_x} u(x, t).
\]

(G.18)

\[G.1. \text{ A Reduced Memory Algorithm for 4D-Var.} \]

When solving the Incremental 4D-Variational data assimilation problem, we wish to find the incremental update \(u^k \) to an initial state estimate \(z_{k-1} \) by solving

\[
\min_{u^k} \frac{1}{2} \left(\| (z^{k-1} - z_0) - u^k \|_V^2 + \sum_{i=0}^{N_t} \| H_i^{k-1} M_{0,i}^{k-1} u^k - (y_i - H_i(x_i^{k-1})) \|_W^2 \right).
\]

(G.19)

Here \(V \) is the inverse covariance matrix for the background states, \(W \) is the inverse covariance matrix for the observations, \(N_t \) is the number of time points observed in the data, \(z_0 \) is the background state, \(z^{k-1} \) is the current state estimate, \(y_i \) is the observation at the \(i^{th} \) time point, \(x^{k-1} \) is the result of forward Euler applied to \(z^{k-1} \) from time 0 to time \(i \), \(H_i^{k-1} \) is the Jacobian of the observation function, \(H_i \), and \(M_{0,i}^{k-1} \) is the product of Jacobian matrices of the dynamics from time point zero to time point \(i \) [9]. Under this setup, this problem can be solved using least squares solvers, and has a convenient structure that can be exploited by a row solver such that the memory load is minimized. The main structural advantage comes from us being able to generate \(M_{0,i}^{k-1} \) as needed as we progress through the algorithm, meaning that by running the algorithm in a row-wise fashion and let \(N_c \) be the number of state variables, we only need to store a matrix of dimension \(N_c \times N_c \) rather than \(N_t N_c \times N_c \). We can additionally use right sketching to reduce the number of columns, which further reduces the storage costs to \(N_c \times p \), where \(p \) is the sketch size. This substantial reduction in memory
cost allows our solver to avoid substantial slowdowns from the full matrix memory accesses
encounter by Krylov based methods, such as LSQR.

Due to the inherent structure of the matrix system in the 4D-Var problem and our choice
of [18] as a solver, which can work on row based blocks of a matrix; we propose a modified
version of Algorithm 3.1, that does not require access to the full matrix system in the 4D-Var
problem.

Appendix H. Estimating the distributional constants. For accurate intervals, it is im-
portant to estimate the constants C and ω appearing in Definition 3.1. To estimate these
constants we lay out the following simulation study to determine conservative values of these
constants for each of the three sampling types (Achlio, Gauss, FJLT), when the sample size
is at least two. The experiment proceeds in accordance with the following steps.

Constant Estimation.
1. For a chosen sketching method of (Achlio, FJLT, or Gauss) generate a sketching ma-
trix $S_i \in \mathbb{R}^{p \times 128}$ and a random vector $x_i \in \mathbb{R}^{128}$ with entries from a Uniform$(0,1)$
distribution. With these values compute

\[
E_i = \frac{\|Sx\|^2_2 - \|x\|^2_2}{\|x\|^2_2}
\]

repeat 10,000,000 independently.
2. Use the relative errors from the previous step approximate the tail probability of the
distribution by computing

\[
\Pr(E_i > \delta) \approx P_{\delta} = \frac{1}{10,000,000} \sum_{i=1}^{10,000,000} (E_i > \delta)
\]

for δ on a one dimensional grid ranging from 1 to 20 by 0.01.
3. Remove any delta values corresponding to a $P_{\delta} < 5/10,000,000$.
4. Find the largest δ and the corresponding P_{δ}.
5. Compute $\omega = \frac{2 \log(2/P_{\delta})}{\delta}$.
6. Compute the variance of the relative errors, which can be referred to as Var and set
$C = p\text{Var}$.
7. Repeat this experiment 50 times and choose the largest C and ω from these 50 trials.

Remark H.1. The choice to remove all the values of δ with an empirical probability of being
exceeded less than $5/10,000,000$ arises from the density of observations being too sparse for
us to believe that the empirical probabilities are good representations of the true probabilities.

Remark H.2. The choice of an initial dimension of 128 is somewhat arbitrary. In some
preliminary experiments it seemed the initial dimension did not have a large impact on the
estimation of these constants. Thus, we chose the relatively small dimension of 128.

The results for running this experiment with $p = 2$ can be found in Table 6. We present
the maximum value observed, which is chosen to be the estimate for the constants, as well as
the mean and variance of the constants observed from the 50 trials.
Algorithm G.1 Tracking and Stopping for Least Squares

Require: Random sketching method satisfying Definition 3.1 and sketch size s.

Require: $V \in \mathbb{R}^{N_x \times N_c}$, $W \in \mathbb{R}^{N_y \times N_c}$, $b \in \mathbb{R}^m$, $z_0 \in \mathbb{R}^{N_c}$, $z_0 \in \mathbb{R}^{N_c}$, $u_0 \in \mathbb{R}^s$, \{\(y_i : i \in \{1, \ldots, N_t\}\}.

Require: Moving window size $\lambda_1 \leq \lambda_2 \in \mathbb{N}$.

Require: $\alpha > 0, \xi_1 > 0, \xi_2 > 0, \delta_1 \in (0, 1), \delta_2 > 1, \eta \geq 1, v > 0$.

Require: Function $h(.)$ which applies the observation operator to a vector.

Require: Function $\text{Jacobian}(.)$ generates the Jacobian matrix at a particular time point based on the state vector.

$k \leftarrow 0, k' \leftarrow \infty, \bar{\rho}_0 \leftarrow 0, \bar{r}_0 \leftarrow 0, \lambda \leftarrow 1, u_k \leftarrow \{0\}^n, R \leftarrow \{0\}^{s \times s}, Tab \leftarrow \{0\}^s, D \leftarrow \{0\}^s$.

2: while $k == 0$ or $\bar{\rho}_{k-1} \geq v$ or

\[
\sqrt{\bar{\rho}_{k-1}} \geq \min \left\{ \frac{\lambda(1 - \delta_1)^2 v^2 C_p}{(1 + \log(\lambda))2(1/\xi_1)\sqrt{\bar{\rho}_{k-1}}} \lambda v(1 - \delta_1) 2 \log(1/\xi_1) \omega, \right. \]
\[
\left. \frac{\lambda(\xi_1 - 1)^2 v^2 C_p}{(1 + \log(\lambda))2(1/\xi_1)\sqrt{\bar{\rho}_{k-1}}} \lambda v(\xi_1 - 1) 2 \log(1/\xi_1) \omega \right\}
\]

do # Iteration $k #

4: Generate S_k and $(AS)_0 \leftarrow S_k$.

$r_0 \leftarrow u_k - z_0 + z_0$

6: $\tilde{g}_k \leftarrow V(AS)_0 r_0$

Use Gentleman’s,[18], on the problem $\min_{u_p} \| (AS)_0 u_p - r \|_V^2$, to update R, Tab, and D.

8: Set $\text{evol}_0 \leftarrow z_0$

for $i = 1: \text{ntimes}$ do

10: $\text{evol}_i \leftarrow \text{ForwardEuler}(\text{evol}_{i-1})$.

$M_i \leftarrow \text{Jacobian}(\text{evol}_i)$.

12: $(AS)_i \leftarrow M_i(AS)_{i-1}$.

$r_k = M_i u_k - (y_i - h(\text{evol}_i))$

14: $\tilde{g}_k \leftarrow \tilde{g}_{k-1} + W(AS)_{i-1} r_k$

Use Gentleman’s,[18], on $\min_{u_p} \| (AS)_k u_p - r_k \|_V^2$, to update R, Tab, and D.

16: end for

$u_{k+1} \leftarrow R^{-1} Tab$

18: Perform Lines 7 - 28 of Algorithm 3.1.

$x_{k+1} \leftarrow x_k - S_k u_{k+1}$

20: $D \leftarrow \{0\}^s, Tab \leftarrow \{0\}^s, R \leftarrow \{0\}^{s \times s}$

$k \leftarrow k + 1$

22: end while

return x_k and estimated $(1 - \alpha)$-interval
Table 6

Sketch Type	Constant	Max	Mean	Variance
Gauss	C	1.1	1.09	2 × 10⁻⁵
Gauss	ω	0.47	0.44	0.0002
Achlio	C	1.16	1.14	4 × 10⁻⁵
Achlio	ω	0.46	0.40	0.0003
FJLT	C	0.83	0.83	2 × 10⁻⁵
FJLT	ω	0.70	0.62	0.0009

Table 7

Sketch Type	Constant	Max	Mean	Variance
Gauss	C	2.07	2.06	5 × 10⁻⁵
Gauss	ω	0.23	0.21	4 × 10⁻⁵
Achlio	C	2.16	2.15	6 × 10⁻⁵
Achlio	ω	0.22	0.20	5 × 10⁻⁵
FJLT	C	1.62	1.60	3 × 10⁻⁵
FJLT	ω	0.32	0.29	0.0002

These values are still quite conservative as it does appear that increasing p leads to tighter values for both C and $ω$ as can be seen in Table 7. This indicates that in fact at larger embedding dimensions more exact constants can be used.

REFERENCES

[1] D. Achlioptas, *Database-friendly random projections: Johnson-lindenstrauss with binary coins*, Journal of Computer and System Sciences, 66 (2003), pp. 671–687, https://doi.org/10.1016/S0022-0000(03)00025-4, https://www.sciencedirect.com/science/article/pii/S0022000003000254. Special Issue on PODS 2001.

[2] N. Ailon and B. Chazelle, *The fast johnson–lindenstrauss transform and approximate nearest neighbors*, SIAM J. Comput., 39 (2009), pp. 302–322.

[3] S. Chen, X. Hong, and C. J. Harris, *Sparse kernel regression modeling using combined locally regularized orthogonal least squares and d-optimality experimental design*, IEEE Transactions on Automatic Control, 48 (2003), pp. 1029–1036.

[4] P. Courtier, J.-N. Thépaut, and A. Hollingsworth, *A strategy for operational implementation of 4d-var, using an incremental approach*, Quarterly Journal of the Royal Meteorological Society, 120 (1994), pp. 1367–1387.

[5] S. Dasgupta and A. Gupta, *An elementary proof of a theorem of johnson and lindenstrauss*, Random Struct. Algorithms, 22 (2003), pp. 60–65.

[6] F.-X. L. Dimet and O. Talagrand, *Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects*, Tellus A, 38A (1986), pp. 97–110, https://doi.org/10.1111/j.1600-0870.1986.tb00459.x, https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1600-0870.1986.tb00459.x, https://arxiv.org/abs/https://onlinelibrary.wiley.
N. Pritchard and V. Patel

W. Johnson and J. Lindenstrauss
J. Matoušek
P. Richtárik and M. Takáč

I. Selesnick

K. Hayami, J.-F. Yin, and T. Ito

P. Indyk and R. Motwani

M. S. Lam, E. E. Rothberg, and M. E. Wolf

E. Kalnay

R. M. Gower and P. Richtárik

S. Gurol, A. Weaver, A. Moore, A. Piaccentini, H. Arango, and S. Gratton

R. Durrett, S. Gurol, A. Weaver, A. Moore, A. Piaccentini, H. Arango, and S. Gratton

J. Lacotte and M. Pilanci

A. Krishnan, L. J. Williams, A. R. McIntosh, and H. Abdi

H. C. So and L. Lin

C. C. Paige and M. A. Saunders

V. Patel, M. Jahangoshahi, and D. A. Maldonado

A. J. Miller

K. Singh, A. Sandu, M. Jardak, K. W. Bowman, and M. Lee

M. Pilanci and M. J. Wainwright

V. Patel, M. Jahangoshahi, and D. A. Maldonado

Residual tracking and stopping for iterative random sketching

An implicit representation and iterative solution of randomly sketched linear systems, SIAM Journal on Matrix Analysis and Applications, 42 (2021), pp. 800–831.

Randomized block adaptive linear system solvers, arXiv preprint arXiv:2204.01653, (2022).

Iterative hessian sketch: Fast and accurate solution approximation for constrained least-squares, J. Mach. Learn. Res., 17 (2016), p. 1842 – 1879.

Residual tracking and stopping for iterative random sketching, 2022, https://doi.org/10.48550/ARXIV.2201.05741, https://arxiv.org/abs/2201.05741.

A statistical perspective on randomized sketching for ordinary least-squares, 17 (2014).

Stochastic reformulations of linear systems: Algorithms and convergence theory, SIAM Journal on Matrix Analysis and Applications, 41 (2020), https://doi.org/10.1137/18M1179249.

Least squares with examples in signal processing, Connexions, 4 (2013).

A practical method to estimate information content in the context of 4d-var data assimilation, SIAM/ASA Journal on Uncertainty Quantification, 1 (2013), pp. 106–138, https://doi.org/10.1137/120884523, https://doi.org/10.1137/120884523.

Linear least squares approach for accurate received signal strength based source
localization, IEEE Transactions on signal processing, 59 (2011), pp. 4035–4040.

[30] O. Talagrand and P. Courtier, Variational assimilation of meteorological observations with the adjoint vorticity equation. I: Theory, Quarterly Journal of the Royal Meteorological Society, 113 (1987), pp. 1311–1328.

[31] A. Tarakanov and A. H. Elsheikh, Regression-based sparse polynomial chaos for uncertainty quantification of subsurface flow models, Journal of Computational Physics, 399 (2019), p. 108909, https://doi.org/10.1016/j.jcp.2019.108909.

[32] M. J. Wainwright, High-Dimensional Statistics: A Non-Asymptotic Viewpoint, Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge University Press, 2019, https://doi.org/10.1017/9781108627771.

[33] W. Zhang and N. Higham, Matrix depot: An extensible test matrix collection for julia, PeerJ Computer Science, 2 (2016), p. e58, https://doi.org/10.7717/peerj-cs.58.