Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Part 2: Adult basic life support

International Liaison Committee on Resuscitation

The consensus conference addressed many questions related to the performance of basic life support. These have been grouped into (1) epidemiology and recognition of cardiac arrest, (2) airway and ventilation, (3) chest compression, (4) compression—ventilation sequence, (5) postresuscitation positioning, (6) special circumstances, (7) emergency medical services (EMS) system, and (8) risks to the victim and rescuer. Defibrillation is discussed separately in Part 3 because it is both a basic and an advanced life support skill.

There have been several important advances in the science of resuscitation since the last ILCOR review in 2000. The following is a summary of the evidence-based recommendations for the performance of basic life support:

- Rescuers begin CPR if the victim is unconscious, not moving, and not breathing (ignoring occasional gasps).
- For mouth-to-mouth ventilation or for bag-valve-mask ventilation with room air or oxygen, the rescuer should deliver each breath in 1 s and should see visible chest rise.
- Increased emphasis on the process of CPR: push hard at a rate of 100 compressions per min, allow full chest recoil, and minimise interruptions in chest compressions.
- For the single rescuer of an infant (except newborns), child, or adult victim, use a single compression—ventilation ratio of 30:2 to simplify teaching, promote skills retention, increase the number of compressions given, and decrease interruptions in compressions. During two-rescuer CPR of the infant or child, healthcare providers should use a 15:2 compression—ventilation ratio.
- During CPR for a patient with an advanced airway (i.e. tracheal tube, Combitube, laryngeal mask airway [LMA]) in place, deliver ventilations at a rate of 8–10 per min for infants (excepting neonates), children and adults, without pausing during chest compressions to deliver the ventilations.

Epidemiology and recognition of cardiac arrest

Many people die prematurely from sudden cardiac arrest (SCA), often associated with coronary heart disease. The following section summarises the burden, risk factors, and potential interventions to reduce the risk.

Epidemiology

Incidence

Consensus on science. Approximately 400,000–460,000 people in the United States (LOE 5) and 700,000 people in Europe (LOE 7) experience SCA each year; resuscitation is attempted in approximately two thirds of these victims. Case series and cohort studies showed wide variation in the incidence of cardiac arrest, depending on the method.
of assessment:

1.5 per 1000 person-years based on death certificates (LOE 5).4
0.5 per 1000 person-years based on activation of emergency medical services (EMS) systems (LOE 5).5,6

In recent years the incidence of ventricular fibrillation (VF) at first rhythm analysis has declined significantly.7—9

Prognosis

Consensus on science. Since the previous international evidence evaluation process (the International Guidelines 2000 Conference on CPR and ECC),10 there have been three systematic reviews of survival-to-hospital discharge from out-of-hospital cardiac arrest (LOE 5).5,11,12 Of all victims of cardiac arrest treated by EMS providers, 5—10% survive; of those with VF, 15% survive to hospital discharge. In data from a national registry, survival to discharge from in-hospital cardiac arrest was 17% (LOE 5).11 The aetiology and presentation of in-hospital arrest differ from that of out-of-hospital arrests.

Risk of cardiac arrest is influenced by several factors, including demographic, genetic, behavioural, dietary, clinical, anatomical, and treatment characteristics (LOE 4—7).4,14—19

Recognition

Early recognition is a key step in the early treatment of cardiac arrest. It is important to determine the most accurate method of diagnosing cardiac arrest.

Signs of cardiac arrest

Consensus on science. Checking the carotid pulse is an inaccurate method of confirming the presence or absence of circulation (LOE 3)20; however, there is no evidence that checking for movement, breathing, or coughing (i.e. “signs of circulation”) is diagnostically superior (LOE 3).21,22 Agonal gasps are common in the early stages of cardiac arrest (LOE 5).22 Bystanders often report to dispatchers that victims of cardiac arrest are “breathing” when they demonstrate agonal gasps; this can result in the withholding of CPR from victims who might benefit from it (LOE 5).24

Treatment recommendation. Rescuers should start CPR if the victim is unconscious (unresponsive), not moving, and not breathing. Even if the victim takes occasional gasps, rescuers should suspect that cardiac arrest has occurred and should start CPR.

Airway and ventilation

The best method of obtaining an open airway and the optimum frequency and volume of artificial ventilation were reviewed.

Airway

Opening the airway

Consensus on science. Five prospective clinical studies evaluating clinical (LOE 3)25,26 or radiological (LOE 3)27—29 measures of airway patency and one case series (LOE 5)30 showed that the head tilt—chin lift manoeuvre is feasible, safe, and effective. No studies have evaluated the routine use of the finger sweep manoeuvre to clear an airway in the absence of obvious airway obstruction.

Treatment recommendation. Rescuers should open the airway using the head tilt—chin lift manoeuvre. Rescuers should use the finger sweep in the unconscious patient with a suspected airway obstruction only if solid material is visible in the oropharynx.

Devices for airway positioning

Consensus on science. There is no published evidence on the effectiveness of devices for airway positioning. Collars that are used to stabilise the cervical spine can make airway management difficult and increase intracranial pressure (LOE 431—33; LOE 534).

Foreign-body airway obstruction

Consensus on science. Like CPR, relief of foreign-body airway obstruction (FBAO) is an urgent procedure that should be taught to laypersons. Evidence for the safest, most effective, and simplest methods was sought.

Consensus on science. It is unclear which method of removal of FBAO should be used first. For conscious victims, case reports showed success in relieving FBAO with back blows (LOE 5)35—37.
abdominal thrusts (LOE 5),36–44 and chest thrusts (LOE 5).36 Frequently, more than one technique was needed to achieve relief of the obstruction.36,45–50 Life-threatening complications have been associated with the use of abdominal thrusts (LOE 5).48,51–72

For unconscious victims, case reports showed success in relieving FBAO with chest thrusts (LOE 5)49 and abdominal thrusts (LOE 5).73 One randomised trial of manoeuvres to clear the airway in cadavers (LOE 7)74 and two prospective studies in anaesthetised volunteers (LOE 7)75,76 showed that higher airway pressures can be generated by using the chest thrust rather than the abdominal thrust.

Case series (LOE 5)36,37,45 reported the finger sweep as effective for relieving FBAO in unconscious adults and children aged >1 year. Four case reports documented harm to the victim’s mouth (LOE 7)77,78 or biting of the rescuer’s finger (LOE 7).29,30

Treatment recommendation. Chest thrusts, back blows, or abdominal thrusts are effective for relieving FBAO in conscious adults and children >1 year of age, although injuries have been reported with the abdominal thrust. There is insufficient evidence to determine which should be used first. These techniques should be applied in rapid sequence until the obstruction is relieved; more than one technique may be needed. Unconscious victims should receive CPR. The finger sweep can be used in the unconscious patient with an obstructed airway if solid material is visible in the airway. There is insufficient evidence for a treatment recommendation for an obese or pregnant patient with FBAO.

Ventilation

Mouth-to-nose ventilation

W157A, W157B

Consensus on science. A case series suggested that mouth-to-nose ventilation of adults is feasible, safe, and effective (LOE 5).79

Treatment recommendation. Mouth-to-nose ventilation is an acceptable alternative to mouth-to-mouth ventilation.

Mouth-to-tracheal stoma ventilation

W158A, 158B

Consensus on science. There was no published evidence of the safety or effectiveness of mouth-to-stoma ventilation. A single crossover study of patients with laryngectomies showed that a paediatric face mask provided a better seal around the stoma than a standard ventilation mask (LOE 4).80

Tidal volumes and ventilation rates

W51, W156A

Consensus on science. There was insufficient evidence to determine how many initial breaths should be given. Manikin studies (LOE 6)81–83 and one human study (LOE 7)84 showed that when there is no advanced airway (such as a tracheal tube, Combitube, or LMA) in place, a tidal volume of 1 L produced significantly more gastric inflation than a tidal volume of 500 mL. Studies of anaesthetised patients with no advanced airway in place showed that ventilation with 455 mL of room air was associated with an acceptable but significantly reduced oxygen saturation when compared with 719 mL (LOE 7).85 There was no difference in oxygen saturation with volumes of 624 and 719 mL (LOE 7).85 A study of cardiac arrest patients compared tidal volumes of 500 mL versus 1000 mL delivered to patients with advanced airways during mechanical ventilation with 100% oxygen at a rate of 12 min−1 (LOE 2).86 Smaller tidal volumes were associated with higher arterial PCO2 and worse acidosis but no differences in PaO2.

Reports containing both a small case series (LOE 5) and an animal study (LOE 6)87,88 showed that hyperventilation is associated with increased intrathoracic pressure, decreased coronary and cerebral perfusion, and, in animals, decreased return of spontaneous circulation (ROSC). In a secondary analysis of the case series that included patients with advanced airways in place after out-of-hospital cardiac arrest, ventilation rates of >10 min−1 and inspiration times >1 s were associated with no survival (LOE 5).87,88 Extrapolation from an animal model of severe shock suggests that a ventilation rate of six ventilations per minute is associated with adequate oxygenation and better haemodynamics than ≥12 ventilations min−1 (LOE 6).89 In summary, larger tidal volumes and ventilation rates can be associated with complications, whereas the detrimental effects observed with smaller tidal volumes appear to be acceptable.

Treatment recommendation. For mouth-to-mouth ventilation with exhaled air or bag-valve-mask ventilation with room air or oxygen, it...
is reasonable to give each breath within a 1-s inspiratory time to achieve chest rise. After an advanced airway (e.g. tracheal tube, Combitube, LMA) is placed, ventilate the patient’s lungs with supplementary oxygen to make the chest rise. During CPR for a patient with an advanced airway in place, it is reasonable to ventilate the lungs at a rate of 8–10 ventilations min$^{-1}$ without pausing during chest compressions to deliver ventilations. Use the same initial tidal volume and rate in patients regardless of the cause of the cardiac arrest.

Mechanical ventilators and automatic transport ventilators

Consensus on science. Three manikin studies of simulated cardiac arrest showed a significant decrease in gastric inflation with manually triggered, flow-restricted, oxygen-powered resuscitators when compared with ventilation by bag-valve-mask (LOE 6).90—92 One study showed that firefighters who ventilated anaesthetised patients with no advanced airway in place produced less gastric inflation and lower peak airway pressure with manually triggered, flow-limited, oxygen-powered resuscitators than with a bag-valve-mask (LOE 5).93 A prospective cohort study of intubated patients, most in cardiac arrest, in an out-of-hospital setting showed no significant difference in arterial blood gas values between those ventilated with an automatic transport ventilator and those ventilated manually (LOE 4).94 Two laboratory studies showed that automatic transport ventilators can provide safe and effective management of mask ventilation during CPR of adult patients (LOE 6).95,96

Treatment recommendation. There are insufficient data to recommend for or against the use of a manually triggered, flow-restricted resuscitator or an automatic transport ventilator during bag-valve-mask ventilation and resuscitation of adults in cardiac arrest.

Chest compressions

Several components of chest compressions can alter effectiveness: hand position, position of the rescuer, position of the victim, depth and rate of compression, decompression, and duty cycle (see definition below). Evidence for these techniques was reviewed in an attempt to define the optimal method.

Chest compression technique

Hand position

Consensus on science. There was insufficient evidence for or against a specific hand position for chest compressions during CPR in adults. In children who require CPR, compression of the lower one third of the sternum may generate a higher blood pressure than compressions in the middle of the chest (LOE 4).97

Manikin studies in healthcare professionals showed improved quality of chest compressions when the dominant hand was in contact with the sternum (LOE 6).98 There were shorter pauses between ventilations and compressions if the hands were simply positioned “in the center of the chest” (LOE 6).99

Treatment recommendation. It is reasonable for laypeople and healthcare professionals to be taught to position the heel of their dominant hand in the centre of the chest of an adult victim, with the non-dominant hand on top.

Chest compression rate, depth, decompression, and duty cycle

Consensus on science

Rate. The number of compressions delivered per minute is determined by the compression rate, the compression–ventilation ratio, the time required to provide mouth-to-mouth or bag-valve-mask ventilation, and the strength (or fatigue) of the rescuer. Observational studies showed that responders give fewer compressions than currently recommended (LOE 5).100—103 Some studies in animal models of cardiac arrest showed that high-frequency CPR (120–150 compressions min$^{-1}$) improved haemodynamics without increasing trauma when compared with standard CPR (LOE 6),104—107 whereas others showed no effect (LOE 6).108 Some studies in animals showed more effect from other variables, such as duty cycle (see below).109 In humans, high-frequency CPR (120 compressions min$^{-1}$) improved haemodynamics over standard CPR (LOE 4).110 In mechanical CPR in humans, however, high-frequency CPR (up to 140 compressions min$^{-1}$) showed no improvement in haemodynamics when compared with 60 compressions min$^{-1}$ (LOE 5).111,112

Depth. In both out-of-hospital102 and in-hospital100 studies, insufficient depth of compression was observed during CPR when compared
Studies in animal models of adult cardiac arrest showed that deeper compressions (i.e., 3–4 in.) are correlated with improved ROSC and 24-h neurological outcome when compared with standard-depth compressions (LOE 6). A manikin study of rescuer CPR showed that compressions became shallow within one minute, but providers became aware of fatigue only after 5 min (LOE 6).

Decompression. One observational study in humans (LOE 5) and one manikin study (LOE 6) showed that incomplete chest recoil was common during CPR. In one animal study incomplete chest recoil was associated with significantly increased intrathoracic pressure, decreased venous return, and decreased coronary and cerebral perfusion during CPR (LOE 6). In a manikin study, lifting the hand slightly but completely off the chest during decompression allowed full chest recoil (LOE 6).

Duty cycle. The term duty cycle refers to the time spent compressing the chest as a proportion of the time between the start of one cycle of compression and the start of the next. Coronary blood flow is determined partly by the duty cycle (reduced coronary perfusion with a duty cycle >50%) and partly by how fully the chest is relaxed at the end of each compression (LOE 6). One animal study that compared duty cycles of 20% with 50% during cardiac arrest chest compressions showed no statistical difference in neurological outcome at 24 h (LOE 6). A mathematical model of Thumper CPR showed significant improvements in pulmonary, coronary, and carotid flow with a 50% duty cycle when compared with compression–relaxation cycles in which compressions constitute a greater percentage of the cycle (LOE 6). At duty cycles ranging between 20 and 50%, coronary and cerebral perfusion in animal models increased with chest compression rates of up to 130–150 compressions min$^{-1}$ (LOE 6). In a manikin study, duty cycle was independent of the compression rate when rescuers increased progressively from 40 to 100 compressions min$^{-1}$ (LOE 6). A duty cycle of 50% is mechanically easier to achieve with practice than cycles in which compressions constitute a smaller percentage of cycle time (LOE 7).

Treatment recommendation. It is reasonable for lay rescuers and healthcare providers to perform chest compressions for adults at a rate of at least 100 compressions min$^{-1}$ and to compress the sternum by at least 4–5 cm. Rescuers should allow complete recoil of the chest after each compression. When feasible, rescuers should frequently alternate “compressor” duties, regardless of whether they feel fatigued, to ensure that fatigue does not interfere with delivery of adequate chest compressions. It is reasonable to use a duty cycle (i.e., ratio between compression and release) of 50%.

Firm surface for chest compressions

Consensus on science. When manikins were placed on a bed supported by a pressure-relieving mattress, chest compressions were less effective than those performed when the manikins were placed on the floor. Emergency deflation of the mattress did not improve the efficacy of chest compressions (LOE 6). These studies did not involve standard mattresses or backboards and did not consider the logistics of moving a victim from a bed to the floor.

Treatment recommendation. Cardiac arrest victims should be placed supine on a firm surface (i.e., backboard or floor) during chest compressions to optimise the effectiveness of compressions.

CPR process versus outcome

Consensus on science. CPR compression rate and depth provided by lay responders (LOE 5), physician trainees (LOE 5), and EMS personnel (LOE 5) were insufficient when compared with currently recommended methods. Ventilation rates and durations higher or longer than recommended when CPR is performed impaired haemodynamics and reduced survival rates (LOE 6). It is likely that poor performance of CPR impairs haemodynamics and possibly survival rates.

Treatment recommendation. It is reasonable for instructors, trainees, providers, and EMS agencies to monitor and improve the process of CPR to ensure adherence to recommended compression and ventilation rates and depths.

Alternative compression techniques

CPR in the prone position

Consensus on science. Six case series that included 22 intubated hospitalised patients documented survival to discharge in 10 patients who received CPR in a prone position (LOE 5). CPR with the patient in a prone position is a reasonable alternative for intubated hospitalised patients who cannot be placed in the supine position.
Leg-foot chest compressions

Consensus on science. Three studies in manikins showed no difference in chest compressions, depth, or rate when leg-foot compressions were used instead of standard chest compressions (LOE 6). Two studies reported that rescuers felt fatigue and leg soreness when using leg-foot chest compressions. One study reported incomplete chest recoil when leg-foot chest compressions were used.

'Cough' CPR

Consensus on science. Case series (LOE 5) showed that repeated coughing every one to three seconds during episodes of rapid VF in supine, monitored, trained patients in the cardiac catheterisation laboratory can maintain a mean arterial pressure >100 mmHg and maintain consciousness for up to 90 s. No data support the usefulness of cough CPR in any other setting, and there is no specific evidence for or against use of cough CPR by laypersons in unsupervised settings.

Compression—ventilation sequence

Any recommendation for a specific CPR compression—ventilation ratio represents a compromise between the need to generate blood flow and the need to supply oxygen to the lungs. At the same time any such ratio must be taught to would-be rescuers, so that skills acquisition and retention are also important factors.

Effect of ventilations on compressions

Consensus on science. In animal studies interruption of chest compressions is associated with reduced ROSC and survival as well as increased postresuscitation myocardial dysfunction (LOE 6). Observational studies (LOE 5) and secondary analyses of two randomised trials (LOE 5) have shown that interruption of chest compressions is common. In a retrospective analysis of the VF waveform, interruption of CPR was associated with a decreased probability of conversion of VF to another rhythm (LOE 5).

Treatment recommendation. Rescuers should minimise interruptions of chest compressions.

Compression—ventilation ratio during CPR

Consensus on science. An observational study showed that experienced paramedics performed ventilation at excessive rates on intubated patients during treatment for out-of-hospital cardiac arrest (LOE 5). An in-hospital study also showed delivery of excessive-rate ventilation to patients with and without advanced airways in place. Two animal studies showed that hyperventilation is associated with excessive intrathoracic pressure and decreased coronary and cerebral perfusion pressures and survival rates (LOE 6).

Observational studies in humans showed that responders gave fewer compressions than currently recommended (LOE 5). Multiple animal studies of VF arrests showed that continuous chest compressions with minimal or no interruptions is associated with better haemodynamics and survival than standard CPR (LOE 6). In one animal model of cardiac arrest, use of a compression—ventilation ratio of 50:2 achieved a significantly greater number of chest compressions than using either 15:2 or 50:3 (LOE 6). In an animal model of cardiac arrest, use of a compression—ventilation ratio of 50:2 achieved a significantly greater number of chest compressions than using either 15:2 or 50:3 (LOE 6). Carotid blood flow was significantly greater at a ratio of 50:2 compared with 50:5 and not significantly different from that achieved with a ratio of 15:2. Arterial oxygenation and oxygen delivery to the brain were significantly higher with a ratio of 15:2 when compared with a ratio of either 50:5 or 50:2. In an animal model of cardiac arrest, a compression—ventilation ratio of 30:2 was associated with significantly shorter time to ROSC and greater systemic and cerebral oxygenation than with continuous chest compressions (LOE 6). A theoretical analysis suggests that a compression—ventilation ratio of 30:2 would provide the best blood flow and oxygen delivery (LOE 7).

An animal model of asphyxial arrest showed that compression-only CPR is associated with significantly greater pulmonary oedema than both compression and ventilation, with or without oxygenation (LOE 6).
Part 2: Adult basic life support

Treatment recommendation. There is insufficient evidence that any specific compression–ventilation ratio is associated with improved outcome in patients with cardiac arrest. To increase the number of compressions given, minimise interruptions of chest compressions, and simplify instruction for teaching and skills retention, a single compression–ventilation ratio of 30:2 for the lone rescuer of an infant, child, or adult victim is recommended. Initial steps of resuscitation may include (1) opening the airway while verifying the need for resuscitation, (2) giving 2–5 breaths when initiating resuscitation, and (3) then providing compressions and ventilations using a compression–ventilation ratio of 30:2.

Chest compression-only CPR

Consensus on science. No prospective studies have assessed the strategy of implementing chest compression–only CPR. A randomised trial of telephone instruction in CPR given to untrained lay responders in an EMS system with a short (mean: four minutes) response interval suggests that a strategy of teaching chest compressions alone is associated with similar survival rates when compared with a strategy of teaching chest compressions and ventilations (LOE 7).150

Animal studies of nonasphyxial arrest demonstrate that chest compression–only CPR may be as efficacious as compression–ventilation CPR in the initial few minutes of resuscitation (LOE 6).142,150 In another model of nonasphyxial arrest, however, a compression–ventilation ratio of 30:2 maintained arterial oxygen content at two thirds of normal, but compression-only CPR was associated with desaturation within two minutes (LOE 6).147 In observational studies of adults with cardiac arrest treated by lay responders trained in standard CPR, survival was better with compression-only CPR than with no CPR but not as good as with both compressions and ventilations (LOE 3;151 LOE 4).151

Treatment recommendation. Rescuers should be encouraged to do compression-only CPR if they are unwilling to do airway and breathing manoeuvres or if they are not trained in CPR or are uncertain how to do CPR. Researchers are encouraged to evaluate the efficacy of compression-only CPR.

Postresuscitation positioning

Recovery position

Consensus on science. No studies were identified that evaluated any recovery position in an unconscious victim with normal breathing. A small cohort study (LOE 5)156 and a randomised trial (LOE 7)157 in normal volunteers showed that compression of vessels and nerves occurs infrequently in the dependent limb when the victim’s lower arm is placed in front of the body; however, the ease of turning the victim into this position may outweigh the risk (LOE 5).154,155

Treatment recommendation. It is reasonable to position an unconscious adult with normal breathing on the side with the lower arm in front of the body.

Special circumstances

Cervical spine injury

For victims of suspected spinal injury, additional time may be needed for careful assessment of breathing and circulation, and it may be necessary to move the victim if he or she is found face-down. In-line spinal stabilisation is an effective method of reducing risk of further spinal damage.

Airway opening

Consensus on science. The incidence of cervical spine injury after blunt trauma was 2.4% (LOE 5)156 but increased in patients with craniofacial injuries (LOE 4),157 a Glasgow Coma Scale score of <8 (LOE 4),158 or both (LOE 4).159 A large cohort study (LOE 4)160 showed that the following features are highly sensitive (94% to 97%) predictors of spinal injury when applied by professional rescuers: mechanism of injury, altered mental status, neurological deficit, evidence of intoxication, spinal pain or tenderness, and distracting injuries (i.e. injuries that distract the victim from awareness of cervical pain). Failure to stabilise an injured spine was associated with an increased risk of secondary neurological injury (LOE 4).161,162 A case–control study of injured patients with and without stabilisation showed that the risk of secondary injury may be lower than previously thought (LOE 4).163

All airway manoeuvres cause spinal movement (LOE 5).163 Studies in human cadavers showed that both chin lift (with or without head tilt) and jaw thrust were associated with similar, substantial movement of the cervical vertebrae (LOE 6).164–166 LOE 7167,168. Use of manual in-line stabilisation (MILS)168 or spinal collars (LOE 6)166 did not prevent spinal movement. Other studies have shown that application of MILS during airway manoeuvres reduces spinal movement to physiological levels.
Airway manoeuvres can be undertaken more safely with MILS than with collars (LOE 3, 5). But a small study of anaesthetised paralysed volunteers showed that use of the jaw thrust with the head maintained in neutral alignment did not improve radiological airway patency (LOE 3). No studies evaluated CPR on a victim with suspected spinal injuries.

Treatment recommendation. Maintaining an airway and adequate ventilation is the overriding priority in managing a patient with a suspected spinal injury. In a victim with a suspected spinal injury and an obstructed airway, the head tilt–chin lift or jaw thrust (with head tilt) techniques are feasible and may be effective for clearing the airway. Both techniques are associated with cervical spinal movement. Use of MILS to minimise head movement is reasonable if a sufficient number of rescuers with adequate training are available.

Face-down victim

Consensus on science. Head position was an important factor in airway patency (LOE 5) and it was more difficult to check for breathing with the victim in a face-down position. Checking for breathing by lay and professional rescuers was not always accurate when done within the recommended 10 s (LOE 7). A longer time to check for breathing will delay CPR and may impair outcome.

Treatment recommendation. It is reasonable to roll a face-down, unresponsive victim carefully into the supine position to check for breathing.

Drowning

Drowning is a common cause of death worldwide. The special needs of the drowning victim were reviewed.

CPR for drowning victim in water

Consensus on science. Expired-air resuscitation in the water may be effective when undertaken by a trained rescuer (LOE 5; LOE 6). Chest compressions are difficult to perform in water and could potentially cause harm to both the rescuer and victim.

Treatment recommendation. In-water expired-air resuscitation may be considered by trained rescuers, preferably with a flotation device, but chest compressions should not be attempted in the water.

Removing drowning victim from water

Consensus on science. Human studies showed that drowning victims without clinical signs of injury or obvious neurological deficit, a history of diving, use of a waterslide, trauma, or alcohol intoxication are unlikely to have a cervical spine injury (LOE 4, 5; LOE 5).

Treatment recommendation. Drowning victims should be removed from the water and resuscitated by the fastest means available. Only victims with risk factors or clinical signs of injury or focal neurological signs should be treated as a victim with a potential spinal cord injury, with immobilisation of the cervical and thoracic spine.

EMS system

Dispatcher Instruction in CPR

Consensus on science. Observational studies (LOE 4) and a randomised trial (LOE 2) of telephone instruction in CPR by dispatchers to untrained lay responders in an EMS system with a short (mean 4 minutes) response interval showed that dispatcher instruction in CPR increases the likelihood of performance of bystander CPR but may or may not increase the rate of survival from cardiac arrest.

Treatment recommendation. Providing telephone instruction in CPR is reasonable.

Improving EMS response interval

Consensus on science. Cohort studies (LOE 3) and a systematic review (LOE 1) of cohort studies of patients with out-of-hospital cardiac arrest show that reducing the interval from EMS call to arrival increases survival to hospital discharge. Response time may be reduced by using professional first responders such as fire or police personnel or other methods.

Treatment recommendation. Administrators responsible for EMS and other systems that respond to patients with cardiac arrest should evaluate their process of delivering care and make resources available to shorten response time intervals when improvements are feasible.
Part 2: Adult basic life support

Risks to victim and resccuer

Consensus on science. Few adverse events from training in CPR have been reported by instructors and trainees even though millions of people are trained annually throughout the world. Case series reported the following infrequent adverse occurrences in trainees (LOE 5): infections, including herpes simplex virus (HSV); Neisseria meningitides; hepatitis B virus (HBV); stomatitis; tracheitis; and others, including chest pain or near-syncope attributed to hyperventilation and fatal myocardial infarction. There was no evidence that a prior medical assessment of “at-risk” trainees reduces any perceived risk (LOE 7).

Commonly used chemical disinfectants effectively removed bacteriologic and viral contamination of the training manikin (LOE 6). Another study showed that 70% ethanol with or without 0.5% chlorhexidine did not completely eradicate herpes simplex contamination after several hours (LOE 6).

Treatment recommendation. Training manikins should be cleaned between trainee ventilation sessions. It is acceptable to clean them with commercially available antiseptic, 30% isopropyl alcohol, 70% alcohol solution, or 0.5% sodium hypochlorite, allowing at least 1 minute of drying time between trainee ventilation sessions.

Risks to trainees

Consensus on science. Few adverse events resulting from providing CPR have been reported, even though CPR is performed frequently throughout the world. There were only isolated reports of persons acquiring infections after providing CPR, e.g. tuberculosis and severe acute respiratory distress syndrome (SARS). Transmission of HIV during provision of CPR has never been reported. Responders exposed to infections while performing CPR might reduce their risk of becoming infected by taking appropriate prophylactic steps (LOE 7). Responders occasionally experienced psychological distress.

No human studies have addressed the safety, effectiveness, or feasibility of using barrier devices during CPR. Laboratory studies showed that non-woven fibre filters or barrier devices with one-way valves prevented oral bacterial flora transmission from victim to rescuer during mouth-to-mouth ventilation (LOE 6). Giving mouth-to-mouth ventilation to victims of organophosphate or cyanide intoxication was associated with adverse effects for responders (LOE 5). One study showed that a high volume of air transmitting a highly virulent agent (i.e. SARS coronavirus) can overwhelm the protection offered by gowns, 2 sets of gloves, goggles, a full face shield, and a non-fit-tested N95 disposable respirator (LOE 5).

Treatment recommendation. Providers should take appropriate safety precautions when feasible and when resources are available to do so, especially if a victim is known to have a serious infection (e.g. HIV, tuberculosis, HBV, or SARS).

Risks for the victim

Consensus on science. The incidence of rib fractures among survivors of cardiac arrest who received standard CPR is unknown. Rib fractures and other injuries are commonly observed among those who die following cardiac arrest and provision of standard CPR (LOE 4). Another study showed an increased incidence of sternal fractures in an active compression-decompression (ACD)-CPR group when compared with standard CPR alone. The incidence of rib fractures after mechanically performed CPR appeared to be similar to that occurring after performance of standard CPR (LOE 4). One study (LOE 4) showed an increased incidence of sternal fractures in an active compression-decompression (ACD)-CPR group when compared with standard CPR alone. The incidence of rib fractures after mechanically performed CPR appeared to be similar to that occurring after performance of standard CPR (LOE 4). There is no published evidence of the incidence of adverse effects when chest compressions are performed on someone who does not require resuscitation.

Treatment recommendation. Rib fractures and other injuries are common but acceptable consequences of CPR given the alternative of death from cardiac arrest. After resuscitation all patients should be reassessed and re-evaluated for resuscitation-related injuries. If available, the use of a barrier device during mouth-to-mouth ventilation is reasonable. Adequate protective equipment and administrative, environmental, and quality control measures are necessary during resuscitation attempts in the event of an outbreak of a highly transmittable microbe such as the SARS coronavirus.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.resuscitation.2005.09.016.
References

1. American Heart Association. Heart Disease and Stroke Statistics—2005 Update. Dallas, Tex: American Heart Association, 2005.

2. Sans S, Kesteloot H, Kromhout D. The burden of cardiovascular diseases mortality in Europe Task Force of the European Society of Cardiology on Cardiovascular Mortality and Morbidity Statistics in Europe. Eur Heart J 1997;18:1231—48.

3. Chugh SS, Jui J, Guisson K, et al. Current burden of sudden cardiac death: multiple source surveillance versus retrospective death certificate based review in a large U.S. community. J Am Coll Cardiol 2004;44:1268—75.

4. Rea TD, Pearce RM, Raghunathan TE, et al. Incidence of out-of-hospital cardiac arrest. Am J Cardiol 2004;93:1455—60.

5. Rea TD, Eisenberg WS, Simbaldi G, White RD. Incidence of EMS-treated out-of-hospital cardiac arrest in the United States. Resuscitation 2004;63:17—24.

6. Vaillancourt C, Stiell IG. Cardiac arrest care and medical emergency services in Canada. Can J Cardiol 2004;20:1081—90.

7. Cobb LA, Fahrenbruch CE, Olsufka M, Copass MK. Changing incidence of out-of-hospital ventricular fibrillation. JAMA 2002;288:3038—33.

8. Parish DC, Dinesh Chandra KM, Dane FC. Success changes of defibrillator-capable emergency medical services for victims of out-of-hospital cardiac arrest. JAMA 1995;274:928—33.

9. Albert CM, Chae CU, Grodstein F, et al. Prospective study of risk factors for sudden coronary death among women in the United States. Circulation 1992;85:188—95.

10. American Heart Association in collaboration with International Liaison Committee on Resuscitation. Guidelines 2000 for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care: International Consensus on Science, Part 3: Adult Basic Life Support. Resuscitation 2000;46:29—72.

11. Kolb JC, Summers RL, Galli RL. Cervical collar-induced changes in intracranial pressure. J Trauma 1999;46:1090—6.

12. Greene DG, Elam JO, Dobkin AB, Studley CL. Cinefluorographic study of hyperextension of the neck and upper airway patency. JAMA 1961;176:570—3.

13. Ruppert M, Reith MW, Widmann JH, et al. Checking for breathing: evaluation of the diagnostic capability of emergency medical services personnel, physicians, medical students, and medical laypeople. Ann Emerg Med 1999;34:720—9.

14. Perkins GD, Stephenson B, Hulme J, Monseurs KG. Birmingham assessment of breathing study (BABS). Resuscitation 2005;64:109—13.

15. Clark JJ, Larsen MP, Culley LL, Graves JR, Eisenberg MS. Incidence of agonal respirations in sudden cardiac arrest. Ann Emerg Med 1992;21:1464—7.

16. Faiz R, Rea TD, Culley LL, Perry F, Becker L, Eisenberg MS. Factors impeding dispatcher-assisted telephone cardiopulmonary resuscitation. Ann Emerg Med 2003;42:731—7.

17. Guildner CW. Resuscitation: opening the airway A comparative study of techniques for opening an airway obstructed by the tongue. JACEP 1976;5:188—90.

18. Safran P, Aguto-Escarraga L. Compliance in apneic anesthetized adults. Anesthesiology 1959;20:283—9.

19. Greene DG, Elam JO, Dobkin AB, Studley CL. Cinefluorographic study of hyperextension of the neck and upper airway patency. JAMA 1961;176:570—3.

20. Ruben HM, Elam JO, Ruben AM, Greene DG. Investigation of upper airway problems in resuscitation 1 studies of pharynx x-rays and performance by laymen. Anesthesiology 1961;22:265—70.

21. Mabry RS, Relyea RA, Marsh JS, et al. Factors impeding dispatcher-assisted telephone cardiopulmonary resuscitation. Ann Emerg Med 2003;42:731—7.

22. Hunt K, Hallworth S, Smith M. The effects of rigid collar on intracranial pressure. JAMA 1961;176:570—3.

23. Ruppert M, Reith MW, Widmann JH, et al. Checking for breathing: evaluation of the diagnostic capability of emergency medical services personnel, physicians, medical students, and medical laypeople. Ann Emerg Med 1999;34:720—9.

24. Bahr J, Klingler H, Panzer W, Rode H, Kettler D. Skills of lay people in checking the carotid pulse. Resuscitation 1997;35:23—6.

25. Valenarcout C, Stiell IG. Cardiac arrest care and medical emergency services in Canada. Can J Cardiol 2004;20:1081—90.

26. Cobb LA, Fahrenbruch CE, Olsufka M, Copass MK. Changing incidence of out-of-hospital ventricular fibrillation. JAMA 2002;288:3038—33.

27. Guildner CW. Resuscitation: opening the airway A comparative study of techniques for opening an airway obstructed by the tongue. JACEP 1976;5:188—90.

28. Safran P, Aguto-Escarraga L. Compliance in apneic anesthetized adults. Anesthesiology 1959;20:283—9.

29. Greene DG, Elam JO, Dobkin AB, Studley CL. Cinefluorographic study of hyperextension of the neck and upper airway patency. JAMA 1961;176:570—3.

30. Ruben HM, Elam JO, Ruben AM, Greene DG. Investigation of upper airway problems in resuscitation 1 studies of pharynx x-rays and performance by laymen. Anesthesiology 1961;22:265—70.

31. Elam JO, Greene DG, Schneider MA, et al. Head-tilt method of oral resuscitation. JAMA 1960;202:812—5.

32. Davies G, Deakin C, Wilson A. The effect of a rigid collar on intracranial pressure. Injury 1996;27:647—9.

33. Kell JC, Sumners RL, Gailt RL. Cervical collar-induced changes in intracranial pressure. Am J Emerg Med 1999;17:135—7.

34. Hobbs RJ, Stoolley MA, Fuller J. Effect of cervical hard collar on intracranial pressure after head injury. ANZ J Surg 2002;72:189—91.

35. Hunt K, Hallworth S, Smith M. The effects of rigid collar placement on intracranial and cerebral perfusion pressures. Anaesthesia 2001;56:511—3.

36. Ingallis TH. Heimlich versus a slap on the back. N Engl J Med 1979;300:990.

37. Reardon JS. The choking controversy: critique of evidence on the Heimlich maneuver. Crit Care Med 1979;7:475—9.

38. Vike GM, Smith AM, Ray LJ, Steen PJ, Merrin PN, Chan TC. Airway obstruction in children aged less than 5 years: the prehospital experience. Prehosp Emerg Care 2004;8:196—9.

39. Heimlich HJ, Hoffmann KA, Canestri FR. Food-choking asphyxia among psychiatric patients. Am J Psychiatry 1961;118:265—70.

40. Reardon JS. The choking controversy: critique of evidence on the Heimlich maneuver. Crit Care Med 1979;7:475—9.

41. Vike GM, Smith AM, Ray LJ, Steen PJ, Merrin PN, Chan TC. Airway obstruction in children aged less than 5 years: the prehospital experience. Prehosp Emerg Care 2004;8:196—9.

42. Heimlich HJ. A life-saving maneuver to prevent food-choking. JAMA 1975;234:398—401.
Part 2: Adult basic life support

41. Nelson KR. Heimlich maneuver for esophageal obstruction. N Engl J Med 1985;312:1016.
42. Fioritto A, Gliaccotto L, Melega V. Choking incidents among psychiatric patients: retrospective analysis of thirty-one cases from the west Bologna psychiatric wards. Can J Psychiatry 1997;42:515—20.
43. Bousqueys S, Maltreboret P, Rost M. [Use of the Heimlich Maneuver on children in the Rhone-Alpes area]. Arch Fr Pediatr 1985;42:723—6.
44. Lapostolle F, Desmaizieres M, Adnet F, Hinadno J. Telephone-assisted Heimlich maneuver. Ann Emerg Med 2000;36:171.
45. Brauner DJ. The Heimlich maneuver: procedure of choice? Postgrad Med J 1983;59:935—44.
46. Heimlich HJ. First aid for choking children: back blows and chest thrusts cause complications and death. Pediatrics 1981;78:20—25.
47. Heimlich HJ. First aid for children: back blows and chest thrusts cause complications and death. Pediatrics 1982;70:385—9.
48. Nowitz A, Lewer BM, Galletly DC. An interesting complication of the Heimlich maneuver. Resuscitation 1998;39:129—31.
49. Skulberg A. Chest compression—an alternative to the Heimlich maneuver? [letter]. Resuscitation 1992;24:91.
50. Westfall R. Foreign body airway obstruction: when the Heimlich maneuver fails. Am J Emerg Med 1997;15:103—5.
51. Gaillardo A, Rosado R, Ramirez D, Medina P, Mezquita S, Sanchez J. Rupture of the lesser gastric curvature after a Heimlich maneuver. Surg Endosc 2003;17:1495.
52. Ayerdi J, Gupta SK, Sampson LN, Deshmukh N, Ayerdi J. Acute aortic thrombosis following the Heimlich maneuver. Cardiovasc Surg 2002;10:154—5.
53. Tung PH, Law S, Chu KM, Law WL, Wong J. Gastric rupture after Heimlich maneuver and cardiopulmonary resuscitation. Hepato-gastroenterology 2001;48:109—11.
54. Wajumard A, Sedman PC. Gastric rupture secondary to successful Heimlich maneuver. Postgrad Med J 1996;72:609—10.
55. Brintz M, Coghill TH. Gastric rupture after the Heimlich maneuver. J Trauma 1996;40:159—60.
56. Dupre MW, Silva E, Britton S. Traumatic rupture of the stomach secondary to Heimlich maneuver. Am J Emerg Med 1993;11:611—2.
57. van der Ham AC, Lange JF. Traumatic rupture of the stomach after Heimlich maneuver. J Emerg Med 1990;8:713—5.
58. Cowan M, Bardole J, Black M. Perforated stomach following the Heimlich maneuver. Am J Emerg Med 1987;5:121—2.
59. Croom DW. Rupture of stomach after attempted Heimlich maneuver. JAMA 1983;250:2602—3.
60. Venter KE, Balch RC. Ruptured stomach after Heimlich maneuver. Ann Emerg Med 1979;8:279—80.
61. Hart L, Forbes TS, Harris KA. Acute aortic thrombosis following incorrect application of the Heimlich maneuver. Ann Vasc Surg 2002;16:130—3.
62. Rueden ET, Tweit MW, Williams JR. Abdominal aortic thrombosis in association with an attempted Heimlich maneuver. Jama 1983;249:1186—7.
63. Kinshner RL, Green RA. Acute thrombosis of abdominal aortic aneurysm subsequent to Heimlich maneuver: a case report. J Vasc Surg 1985;2:594—6.
64. Rakotobinarisanda H, Petit E, Dumas P, Vandemarcq P, Gill R, Neau JP. [Internal carotid artery dissection after Heimlich maneuver]. Ann Fr Anesth Reanim 2003;22:43—5.
65. Wolf DA. Heimlich trauma: a violent maneuver. Am J Forensic Med Pathol 2001;22:65—7.
66. Valero V. Mesenteric laceration complicating a Heimlich maneuver. Ann Emerg Med 1986;15:105—6.
Part 2: Adult basic life support

88. Aufderheide TP, Sigurdsson G, Pirrallo RG, et al. High-ventilation CPR reduces hypotension during cardiopulmonary resuscitation. Circulation 2004;109:1960–5.

89. Pepe PE, Raeder C, Lurie KG, Wigginton JG. Emergency ventilatory management in hemorrhagic states: element or detriment? J Trauma 2003;54:1048–55, discussion 55–7.

90. Stangier A, Wenzel V, Wagner-Berger H, et al. Effects of decreasing inspiratory flow rate during simulated basic life support on function of a cardiac arrest patient on lung and stomach tidal volumes. Resuscitation 2002;54:167–73.

91. Osterwalder JJ, Schuhwerk W. Effectiveness of mask ventilation in a training manikin: A comparison between the Oxylator EM100 and the bag-valve device. Resuscitation 1998;36:23–7.

92. Nenigaizzi JJ, Wiskow HJ. In-vitro comparison of bag-valve-mask and manually triggered oxygen-powered breathing device. Acad Emerg Med 1994;1:29–33.

93. Noordengraaf GJ, van Dun PJ, Kramer BP, et al. Can first responders achieve and maintain normocapnia when sequentially ventilating with a bag-valve device and two oxygen-driven resuscitators? A controlled clinical trial in 104 patients. Eur J Anaesthesiol 2004;21:367–72.

94. Johannigman JA, Branson RD, Johnson DJ, Davis Jr K, Hurst JM. Out-of-hospital ventilation: bag-valve device vs transport ventilator. Acad Emerg Med 1995;2:719–24.

95. Updike G, Mosesso VNJ, Auble TE, Delgado E. Comparison of bag-valve-mask, manually triggered ventilator, and automated ventilator devices used while ventilating a non-intubated mannikin model. Preop Emerg Care 1998;2:52–5.

96. Johannigman JA, Branson RD, Davis Jr K, Hurst JM. Techniques of emergency ventilation: a model to evaluate tidal volume, airway pressure, and gastric insufflation. J Trauma 1991;31:93–8.

97. Orlovski JP. Optimum position for external cardiac compression in infants and young children. Ann Emerg Med 1986;15:667–73.

98. Kundra P, Dey S, Ravishankar M. Role of dominant hand position during external cardiac compression. Br J Anaesth 2000;84:491–3.

99. Handley AJ. Teaching hand placement for chest compression—a simpler technique. Resuscitation 2002;53:29–36.

100. Abella BS, Alvarado JP, Handley SA. Improving CPR performance using an audible feedback system suitable for incorporation into an automated external defibrillator. Resuscitation 2005;64:353–62.

101. Handley AJ, Handley JA. The relationship between rate of chest compression and compression:relaxation ratio. Resuscitation 1990;24:283–8.

102. Talley DB, Ornato JP, Clarke AM. Computer-aided characterization and optimization of the Thumper compression waveform in closed-chest CPR. Biomed Instrum Technol 1990;24:283–8.

103. Handley AJ, Handley JA. The relationship between rate of chest compression and compression:relaxation ratio. Resuscitation 1995;30:237–41.

104. Maier GW, Tyson JG, Olesen CO, et al. The physiology of external cardiac massage: high-impulse cardiopulmonary resuscitation. Circulation 1998;97:101–7.

105. Feneley MP, Maier GW, Kern KB, et al. Influnce of compression rate on initial success of resuscitation and 24 hour survival after prolonged manual cardiopulmonary resuscitation in dogs. Circulation 1988;77:240–50.

106. Swart GL, Mateer JR, DeBelheke DJ, Jameson JS, Osborn JL. The effect of compression duration on hemodynamics during mechanical high-impulse CPR. Acad Emerg Med 1994;1:450–7.
Part 2: Adult basic life support

124. Van Heuwyen RJJ, Bossaert LL, Mullie A, et al. Quality and efficacy of bystander CPR Belgian Cerebral Resuscitation Study Group. Resuscitation 1991;24:47–52.

125. Tobias JD, Mencio GA, Atwood R, Gurwitz GS. Intraoperative cardiopulmonary resuscitation in the prone position. J Pediatr Surg 1994;29:1537–8.

126. Dequin PF, Hauzoor E, Legras A, Lanotte R, Perrodiet D. Cardiopulmonary resuscitation: the prone position. Lowne-hoven revisited. Intensive Care Med 1996;22:1272.

127. Sun WZ, Huang FY, Kung HL, Fan SZ, Chen TL. Successful cardiopulmonary resuscitation of two patients in the prone position using reversed precordial compression. Anesthesiology 1992;77:202–4.

128. Brown J, Rogers J, Soar J. Cardiac arrest during surgery in the prone position. Ann Fr Anesth Reanim 1993;12:587–9.

129. Loewenthal A, De Albuquerque AM, Lehmann-Meurice C, Otten J. [Efficacy of external cardiac massage in a patient in the prone position]. Anesth Intensivther Notfallmed 1989;2:560–5.

130. Hackl W, Hausberger K, Sailer R, Ulmer H, Gassner R. Cephalic compression: self-administered from of cardiopulmonary resuscitation. JAMA 1978;239:2468–9.

131. Bithell LH, Regula GA. A new technique for external heart compression. JAMA 1979;242:2469–9.

132. Seifert P, Albert M. [External heart compression with the heel (author's transl)]. Anaesthesist 1979;28:540–5.

133. Thorpe J, Waites K. Effect of continuous chest compressions on the calculated probability of defibrillation success during out-of-hospital cardiac arrest. Resuscitation 2001;50:233–8.

134. Doxey J. Comparing 1997 Resuscitation Council (UK) recommendations with recovery position of 1992 European Resuscitation Council (ARRESUST). Resuscitation 2001;50:273–9.

135. Rathgeber J, Panzer W, Gunther U, et al. Observations of ventilation during resuscitation in a canine model. Circulation 1994;90:3070–5.

136. Butler T, Kuwata M, Otsuki M, Matsumoto Y, Tase C. Prehospital mixed mode CPR: a comparison of successful cardiopulmonary resuscitation in the prone position with recovery position of 1992 European Resuscitation Council. Circulation 1996;97:370–5.

137. Katsurasawa K, Murakawa M, Otuki M, Matsumoto Y, Tase C. Prehospital cardiopulmonary resuscitation in the prone position using reversed precordial compression. Ann Emerg Med 2001;38:193–201.

138. Posner KL, Lai WW, Goldberg SE, et al. Influence of different types of recovery positions on perfusion indices of the forearm. Resuscitation 1996;32:13–7.

139. Lowery DW, Wold MM, Browne BJ, Tigges S, Hoffman JR, Mower WR. Epidemiology of cervical spine injury victims. Ann Emerg Med 2001;38:12–6.

140. Hackl W, Hausberger K, Sailer R, Ulmer H, Gassner R. Incidence and severity of cervical spine injuries in patients with facial trauma. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2001;92:170–7.

141. Posner KL, Lai WW, Goldberg SE, et al. Influence of different types of recovery positions on perfusion indices of the forearm. Resuscitation 1996;32:13–7.

142. Lowery DW, Wold MM, Browne BJ, Tigges S, Hoffman JR, Mower WR. Epidemiology of cervical spine injury victims. Ann Emerg Med 2001;38:12–6.

143. Hackl W, Hausberger K, Sailer R, Ulmer H, Gassner R. Incidence and severity of cervical spine injuries in patients with facial trauma. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2001;92:170–7.

144. Holley U, Kelly DF, Counsell GJ, Bithell LH, Regula GA. Survival and neurologic outcome after cardiopulmonary resuscitation with four different chest compression–ventilation ratios. Ann Emerg Med 2004;43:553–62.

145. Dorph E, Wik L, Stromme TA, Eriksen M, Steen PA. Quality of CPR with three different ventilation:compression ratios. Resuscitation 2003;58:193–201.
204 Part 2: Adult basic life support

182. Green BA, Gabrielsen MA, Hall WJ, O’Heir J. Analysis of
181. Kewalramani LS, Kraus JF. Acute spinal-cord lesions from
180. Watson RS, Cummings P, Quan L, Bratton S, Weiss NS. Cere-
179. Branche CM, Sniezek JE, Sattin RW, Mirkin IR. Water
178. Hwang V, Shofer FS, Durbin DR, Baren JM. Prevalence
177. Perkins GD. In-water resuscitation: a pilot evaluation.
176. March NF, Matthews RC. New techniques in external cardiac
175. Szpilman D, Soares M. In-water resuscitation—–is it worth-
174. Boidin MP. Airway patency in the unconscious patient. Br J
173. Hastings RH, Wood PR. Head extension and laryngeal
172. Heath KJ. The effect of laryngoscopy of different
171. Lennarson PJ, Smith DW, Sawin PD, Todd MM, Sato Y,
170. Majernick TG, Bioreik R, Houston JB, Hughes HG. Cervical
169. Brimacombe J, Keller C, Kunzel KH, Gaber O, Boehler M,
168. Hauswald M, Sklar DP, Tandberg D, Garcia JF. Cervical
167. Hauswald M, Sklar DP, Tandberg D, Garcia JF. Cervical
166. Donaldson IIIrd WF, Heil BV, Donaldson VP, Silvaggio VJ. The
165. Donaldson IIIrd WF, Heil BV, Donaldson VP, Silvaggio VJ. The
effect of airway maneuvers on the unstable C1-C2 segment.
164. Abrahamian C, Thompson BM, Finger WA, Darin JC. Experi-
mental cervical spine injury model: evaluation of airway
management and splinting techniques. Ann Emerg Med
1984;13:584–8.
163. Donaldson IIIrd WF, Heit BV, Donaldson VP, Silvaggio VJ. The
162. Reid DC, Henderson R, Saboe L, Miller JD. Etiology and clinical
characteristics of missed spine fractures. J Trauma 1987;27:980–6.
161. Hauswald M, Ong G, Tandberg D, Omar Z. Out-of-hospital
spinal immobilization: its effect on neurologic injury. Acad
Emerg Med 1998;5:214–9.
160. Abravanel C, Thompson BM, Finger WA, Darin JC. Experi-
mental cervical spine injury model: evaluation of airway
management and splinting techniques. Ann Emerg Med
1984;13:584–8.
159. Donaldson IIIrd WF, Heit BV, Donaldson VP, Silvaggio VJ. The
effect of airway maneuvers on the unstable C1-C2 segment.
during adult cadaver studies. Ann Emerg Med 1997;29:864–8.
158. Donaldson IIIrd WF, Towers JD, Doctor A, Brand A, Donald-
son VP. A method to evaluate the effect of the unstable spine
during intubation techniques. Spine 1993;18:2002–3.
157. Hauswald M, Sklar DP, Tandberg D, Garcia JF. Cervical
spine movement during airway management: cinefluoro-
scopic appraisal in human cadavers. Am J Emerg Med
1991;9:535–8.
156. Brincacome J, Keller C, Kunzel KH, Gaber O, Boehler M,
Puhring F. Cervical spine motion during airway manage-
ment; a cinefluoroscopic study of the posteriorly destabi-
lized third cervical vertebrae in human cadavers. Anesth
Analog 2000;91:1274–8.
155. Majernick TG, Bioreik R, Houston JB, Hughes HG. Cervical
spine movement during oral-tracheal intubation. Ann Emerg
Med 1985;15:417–20.
154. Lawson CJ, Smith SW, Sawin PD, Todd MM, Satz Y,
Trapnell VC. Cervical spinal motion during intubation: effi-
cacy of stabilization maneuvers in the setting of complete
segmental instability. J Neurosurg Spine 2001;4:365–70.
153. Heath KJ. The effect of laryngoscopy of different
cervical spine immobilization techniques. Anesthesia
1994;49:843–5.
152. Hastings RH, Wood PR. Head extension and laryngeal
viewing during laryngoscopy with cervical spine stabilization
maneuvers. Anesthesiology 1994;80:325–31.
151. Gorling MC, Davis DP, Hamilton RS, et al. Effects of cervi-
cal spine immobilization technique and laryngoscope blade
selection on an unstable cervical spine in a cadaver model
of intubation. Ann Emerg Med 2000;36:293–300.
150. Boldin MP. Airway patency in the unconscious patient. Br J
Anaeth 1985;57:106–10.
149. Szpitlan D, Soares M. In-water resuscitation—–is it worth-
while? Resuscitation 2004;62:25–31.
148. March HF, Matthews RC. New techniques in external cardiac
compressions Aquatic cardiopulmonary resuscitation. JAMA
1980;244:1229–32.
147. Perkins GD. In-water resuscitation: a pilot evaluation.
Resuscitation 2005;65:321–4.
146. Hwang V, Shofer FS, Durbin DR, Baren JM. Prevalence of
traumatic injuries in drowning and near drowning in
children and adolescents. Arch Pediatr Adolesc Med
2003;157:50–7.
145. Branche CM, Sniezek JE, Sattin RW, Mirkin IR. Water
recreation-related spinal injuries: risk factors in natural
bodies of water. Accid Anal Prev 1991;23:13–7.
144. Watson RS, Cummings P, Quan L, Bratton S, Weiss NS. Cerv-
ical spine injuries among submersion victims. J Trauma
1980;21:568–62.
143. Niewaltmann LS, Kraus JP. Acute spinal-cord lesions from
swimming—epidemiological and clinical features. West J Med
1977;126:353–61.
142. Green BA, Gabrielsen MA, Hall WJ, O’Heir J. Analysis of
swimming pool accidents resulting in spinal cord injury.
Paraplegia 1980;18:94–100.
141. Good RP, Nickell VL. Cervical spine injuries resulting from
water sports. Spine 1980;5:502–6.
140. Goh SH, Low BY. Drowning and near-drowning—some
lessons learnt. Ann Acad Med Singapore 1999;28:183–8.
139. Bang A, Riber B, Ilaskon L, Lindqvist J, Herlitz J. Evalua-
tion of dispatcher-assisted cardiopulmonary resuscitation.
Eur J Emerg Med 1999;6:175–83.
138. Culyer LL, Clark JG, Eisenberg MS, Larsen MP. Dispatcher-
assisted telephone CPR: common delays and time standards
for delivery. Ann Emerg Med 1991;20:362–6.
137. Halststrom A, Cobb L, Johnson E, Copass M. Cardi-
pulmonary resuscitation by chest compression alone
or with mouth-to-mouth ventilation. N Engl J Med
2000;342:1546–51.
136. Lin CS, Chang H, Shyu KD, et al. A method to reduce
response times in prehospital care: the motorcycle experi-
ence. Am J Emerg Med 1998;16:711–3.
135. MacDonald RD, Mettley JL, Weinstein C. Impact of prompt
defibrillation on cardiac arrest at a major international air-
port. Prehosp Emerg Care 2002;6:1–5.
134. Myerburg RJ, Fenster J, Velez M, et al. Impact of
community-wide police car deployment of automated
external defibrillators on survival from out-of-hospital car-
diac arrest. Circulation 2002;106:1058–64.
133. van Alem AP, Wopenken RH, de Vos R, Tijssen JG, Koster RW.
Use of automated external defibrillator by first respondents
in out of hospital cardiac arrest: prospective controlled
trial. BMJ 2003;327:1312.
132. Maninis MJ, Wendel RT. Transmission of herpes simplex
during cardiopulmonary resuscitation training. Compr Ther
1984;10:15–7.
131. Mejicano GC, Maki DG. Infections acquired during car-
diopulmonary resuscitation: estimating the risk and
defining strategies for prevention. Ann Intern Med
1998;129:813–28.
130. Glaser JB, Nadler JP. Hepatitis B virus in a cardiopul-
monary resuscitation training course Risk of transmission
from a surface antigen-positive participant. Arch Intern
Med 1986;145:1653–5.
129. Nelsen R. Post manikin resuscitation stomatitis. J Ky Med
Assoc 1982;80:813–4.
128. Nicklin G. Manikin tracheitis. JAMA 1980;244:2046–7.
127. Greenberg M. CPR: a report of observed medical com-
lications during training. Ann Emerg Med 1983;12:194–5.
126. Memon AM, Salzer JE, Hillman Jr EC, Marshall CL. Fatal
myocardial infarct following CPR training: the question of
risk. Ann Emerg Med 1982;11:322–3.
125. Salzer J, Marshall C, Hillman EJ, Bullock J. CPR: A report of
observed medical complications during training. Ann Emerg
Med 1983;12:195.
124. Hudson AD. Herpes simplex virus and CPR training manikins—
reducing the risk of cross-infection. Ann Emerg Med
1984;13:1108–10.
123. Cavaglino RZ. Inoculation of herpesvirus on CPR manikins
utilized commonly recommended disinfecting procedure.
Infect Control 1985;6:456–8.
122. Helman KM, Auschenhelm C. Primary cutaneous tubercu-
losis resulting from mouth-to-mouth respiration. N Engl J
Med 1965;273:1035–6.
121. Christian MD, Loutfy M, McDonald LC, et al. Possible SARS
coronavirus transmission during cardiopulmonary resuci-
tation. Emerg Infect Dis 2004;10:287–93.
120. Axelson A, Herlitz J, Ekstrom L, Holmberg S. Bystander-
initiated cardiopulmonary resuscitation out-of-hospital A
first description of the bystanders and their experiences. Resuscitation 1994;33:3–11.
205. Axelsson A, Herritz J, Karlsson T, et al. Factors surrounding cardiopulmonary resuscitation influencing bystanders’ psychological reactions. Resuscitation 1998;37:13–20.
206. Gamble M. A debriefing approach to dealing with the stress of CPR attempts. Prof Nurse 2001;17:157–60.
207. Laws T. Examining critical care nurses’ critical incident stress after in hospital cardiopulmonary resuscitation (CPR). Aust Crit Care 2001;14:76–81.
208. Swanson RK. Psychological Issues in CPR. Ann Emerg Med 1993;22:350–3.
209. Cydulka RK, Connor PJ, Myers TF, Pavza G, Parker M. Prevention of oral bacterial flora transmission by using mouth-to-mask ventilation during CPR. J Emerg Med 1991;9:317–21.
210. Blenhorn JI, Buckingham SE, Zideman DA. Prevention of transmission of infection during mouth-to-mouth resuscitation. Resuscitation 1990;19:151–7.
211. Berumen Jr U. Dog poisons man. JAMA 1983;249:353.
212. Koksal N, Buyukbese MA, Guven A, Cetinkaya A, Hasanoglu HC. Organophosphate intoxication as a consequence of mouth-to-mouth breathing from an affected case. Chest 2002;122:740–1.
213. Black C, Busuttil A, Robertson C. Chest wall injuries following cardiopulmonary resuscitation. Resuscitation 2004;63:339–43.
214. Baubin M, Sumann G, Rabi W, Ebi G, Wenzel V, Mair P. Increased frequency of thorax injuries with ACD-CPR. Resuscitation 1999;41:33–8.
215. Holz RS, Chamberlain D. Skeletal chest injuries secondary to cardiopulmonary resuscitation. Resuscitation 2004;63:327–38.