Serological survey of antibodies against *peste des petits ruminants virus* (*pprv*) and *Mycoplasma capricolum subsp.* *capripneumoniae* (*mccp*) among small ruminants in northern Cameroon

Abubakar MB*1, Baba SS1, Souley HE1,2, El-Yuguda AD1, Aboubakar Y2 and Zoyem N2

1Virology Research Laboratory, Department of Veterinary Microbiology, Faculty of Veterinary Medicine, University of Maiduguri, Nigeria
2Laboratory National Veterinarian (LANAVET) Garou, Cameroon

Abstract

Serological survey to determine the prevalence of *Mccp* and *PPRV* in small ruminants was carried out in Northern Cameroon. Sera from 500 animals comprising of 300 goats and 200 sheep were obtained from 131 flocks, within (13) localities and tested for the presence of antibodies against *Mycoplasma capricolum subsp. capripneumoniae* (*mccp*) and *peste des petits ruminants* (*pprv*) using blocking-enzyme linked immunosorbent assay (B-ELISA), compliment fixation test (CFT) and competitive enzymes linked immunosorbent assay (C-ELISA) respectively. A total of 50 (16.7%) and 30 (10%) goat sera tested were positive to *Mccp* antigen using CFT and B-ELISA respectively and 73 (24.3%) were positive to PPRV virus antigen using C-ELISA. While 83 (41.5%) of the sheep sera reacted positively to *PPRV* antigen using C-ELISA and none of the sheep sera tested positive to *Mccp* using CFT. The prevalence was generally highest with PPRV infections only (46%) followed by *Mccp* only (34%) combined infection with *Mccp* and PPRV (14%). However, no evidence of coinfection was found in sheep, the highest prevalence of infection (98%) was noted to be PPRV only. In this study CFT was found to be more sensitive but less specific than B-ELISA in the detection of antibodies to *Mccp*. The use of C-ELISA for the detection of antibodies to PPRV was found to be more sensitive than the B-ELISA for detection of *Mccp*. The difference in the degree of homologous reaction to *PPRV*-N-Protein among the two species was statistically significant (P<0.05) was highest in sheep. Analysis of Geometric mean titre (GMT) and mean percentage inhibition (MPI) of antibodies revealed consistently higher titre analysis of antibodies to PPRV (65) in goat and in sheep (80). Further analysis of serological profiles for the circulation of these respiratory pathogens revealed high values in locations closed and/or shared geographical boundary with sahelian zone of Nigeria and the period also the neighboring countries were these diseases are endemic also coincided with the peak harmattan period usually characterized by dry, dusty weather in this zone of the country. It is therefore suggested that cold dry, dusty climate of sudano-sahelian savannah could be a significant role as an extrinsic epidemiological determinant in the establishment of PPRV and *Mccp* infections among small ruminants population in northern province of Cameroon. There is therefore the need to embark on mass vaccination against PPRV. Also, the need to impose strict quarantine measures as well as the practice of testing and slaughter of animals imported from *Mccp* endemic areas into northern Cameroon for breeding, are suggested to prevent both introduction and further spread of this disease into the country.

Introduction

Small ruminants are very important domestic animal in tropical livestock production both for subsistence and economic development of the African continent. The subsistence sector pastoralist often depends on them for much of their livelihood [1,2]. They provide a flow of essential food products throughout the year, they also sustain the employment and income of millions of people in many rural areas of the world including Cameroon, where the small ruminants population in the far-north and Northern provinces are estimated to be 3,770,838 representing 2,620,696 goat and 1,150,142 sheep [3]. The two province have the highest population of small ruminant in the country representing 54.5% and 55.2% of goats and sheep in the far-north and 14.5% and 11.6% of goats and sheep respectively in the North Province [4].

In Cameroon, small ruminant is kept as source of capital [4]. They contribute energy and manure for Crop Production and are the only food and cash security available to many Africans [5]. In addition to their significant contribution to rural income, they contribute a substantial proportion of the nation’s meat supply [6-8] as well as in ceremonial feasting. Annual report on meat and milk consumption per individual in Cameroon indicate an estimated of 12.2 kg and 11.6 litre of meat and milk consumption per annum respectively. Out of which goats and sheep meat account for 1.7 kg [4].

In spites of the economic importance of small ruminant a major constraint to their increased production in Africa has been the occurrence of infectious diseases, including respiratory disease in most part of the continent [9]. Among such disease are *Mccp*, *PPRV* and *Pasteurella multocida* [4,7,8,10]. Previous retrospective survey carried out in the study area have consistently revealed high mortality rates among small ruminants predominantly due to problems associated

*Correspondence to: Abubakar MB, Virology Research Laboratory, Department of Veterinary Microbiology, Faculty of Veterinary Medicine, University of Maiduguri, Nigeria; E-mail: mustydvm@gmail.com

Key words: peste des petits ruminants virus (*PPRV*), *Mycoplasma capricolum subsp.* *capripneumoniae* (*Mccp*), small ruminants; northern cameroon;

Received: April 10, 2017; Accepted: May 18, 2017; Published: May 22, 2017
with pulmonary disease [4]. PPRV infection continues to be the most important single major cause of small ruminant disease with mortalities of over 50% [11-14].

In addition, analysis of specimens collected from slaughtered animal during routine examination at Garoua abattoir (in the north-province) yielded several respiratory pathogens including Mycoplasma capricolum (Mcc), Pasteurella multocida and PPRV [15-17]. Mycoplasmas was reported to have been the major cause of economic losses in goat population in at least 30 countries in Africa and Asia containing a total goat population of more than 300 million [18,19]. The extent of the activity of these respiratory pathogens among small ruminant in the study area have not be adequately investigated, this study was designed to assess the prevalence of PPRV and Mccp infections among the small ruminant producing areas of far-north and north provinces of Cameroon, for better understanding of their effective control in the study areas.

Materials and methods

Study area

The study was carried out in thirteen (13) localities in the far-north and north province of Cameroon republic where the majority of the livestock population are owned and reared by nomads. Those locations in the north province include: Adoumiri, Denbo, Jalingo, Kismatori, Nassaroa, Biddzar and Guilder there are characterized by a classic Sudanese tropical climate and the vegetation is made up of windy grassland, and sudano-sahelian savannah on the other hand the far-north include: mayo-lone, Djamgliya, Koza and Mare are characterized by a tropical climate of moderate sahara type and the vegetation is mainly composed of thorny bush on sometimes rocky soils.

Animal and sampling procedure

A total of 500 blood samples were collected from 300 indigenes goats and 200 sheep from 131 flocks. Randomly selected from the two provinces (Northern and Far-north) in Cameroon republic. Samples were obtained by venipuncture from the every 5th animal in a flock under semi intensive system of animal husbandry. The sera were separated from the clotted blood sample by centrifugation at 700 x g for ten minutes then preserved at -20°C until tested.

Antigen control sera compliment and haemolytic system: the antigen used in this study include: inactivated Mccp derived from the reference F38 strain kindly supply by CIRAD-EMUT. Mouse monoclonal antibody (MAB) Mab "4.52" ascetic fluid against Mccp (The C-ELISA kit used in this procedure for the detection of specific anti PPRV antibody) was developed by CAMDA/OIE/EMVT and was kindly supplied by OIE. Commercially freeze-dried guinea pig C produced by Biomerieux ref. 72122 was used. The haemolytic system was prepared by adding equal volume of 3% meshed sieve nuts 1:700 diluted haemolytic serum.

CFT

The modified microtitre techniques described by O.I.E., 1996 was used in this work with minor modifications. 25 ml of 2folds dilution serum which has been decomplimented at 56°C for 30 minutes. Sample were treated against optimum dilution of the antigen and controlled individually. Readings were recorded at titres corresponding to the highest dilution that fixed 50% of C i.e., 50% haemolysis was considered as positive.

B-ELISA AND C-ELISA

The Mccp B-ELISA was carried out as previously described by [20]. The test detects anti-Mcc antibody following addition of a mouse monoclonal antibody (MAB) into a test serum-Mcc is determined by the optical density values.

The PPRV C-ELISA described previously by [21] was used in this procedure. The test detects specific anti-PPRV antibody as the test serum depending on the binding of the Mab (the mouse Mab against PPRV-virus-N protein) to a PPRV specific epitope in the presence of a positive serum. The test was performed in microtitre plate (Nunc-ImmunoTM Maxisorp/cat. 439454) which were sensitized with PPRV reference antigen consisted of PPRV virus-N protein produced in insect tissue culture cells infected with a recombinant baculovirus batch number "95-1".

Data analysis

The statistical differences between variables were analysed using the student ‘t’ test by pair wise comparison of variable. Were appropriate, the chi-square test and ANOVA were also employed for the test of statistical significance. They were all assessed at P<0.05 level of statistical significance.

Result

The result of the retrospective survey for the prevalence of antibodies against Mccp and PPRV in thirteen (13) localities in Northern Cameroon is summarized in Table 1.

Analysis of serological profiles for the presence of Contagious caprine pleuropneumoniae (CCFP) and peste des petits ruminants (PPR) showed comparable prevalence of antibody to the agents of the two diseases condition. In this study CFT (17%) was found to be more sensitive but less specific than blocking- ELISA (10%) in the detection of antibody to Mccp. Furthermore, the use of C-ELISA for the detection of antibodies to PPRV was found to be more sensitive than B-ELISA for detection of Mccp (Table 1). Analysis of the serological profile within sheep flock showed significantly higher prevalence of PPRV (42%) than Mccp (0%) among flocks studied. No antibody against Mccp was detected in the flock studied using CFT (Table 1).

Distribution of GMT and PMI of antibodies to PPRV and Mccp shows higher titre of antibodies to PPRV (65) in goats and in sheep (80) (Table 2) were consistently detected among small ruminants tested from Nassaroa which compared favorably with the pattern of antibody to Mcp in the same location (Table 2). The analysis of mixed infections among goatwas significantly higher combine infection with Mccp and PPRV. The prevalence was generally highest with PPRV infection only (46%) followed by Mccp only (34%) and combined infection with PPRV and Mccp (14%) (Table 3). However, no evidence of mixed infection was found in sheep; the highest prevalence of infection (98%) was noted to be PPRV only (Table 4).

There was no significant difference (P>0.05) in the distribution of the total number of sheep and goat studied. However, significant difference (P<0.05) were noted between locations with the highest distributions observed among goats in Djaoli 65 (21.7%) and Dembo 41(13.7%) similarly the highest number of sheep were studied in Guider 45(22.5%) and Bokle 37(18.5%) furthermore, significance sex difference (p<0.05) were also observe among the goat and sheep population studied. The number of male breed variations were generally observed among the sheep and goats studied. The number of female were consistently higher than those of male breed variations were generally...
Abubakar MB (2017) Serological survey of antibodies against *peste des petits ruminants virus* (pprv) and *Mycoplasma capricolum subsp. Capripneumoniae* (mccp) among small ruminants in northern Cameroon

Table 1. Serological test for demonstration of antibodies to PPRV and Mcc among small ruminants in Northern Cameroon

Location	Goat	Sheep				
	Mcc	PPRV	Mcc	PPRV		
	CFT (GMT)	B-ELISA	C-ELISA	CFT (GMT)	B-ELISA	C-ELISA
Adounmri	50/300 (16.5)	36/300 (16.5)	73/300 (24.3)	0/88 (0)	NT	83/300 (41.5)
Midre						
Total						

PPRV = Peste de petits ruminants virus
MCC = Mycoplasma Capricolum subsp. Capripnuemoniae
CCPP = Contagious caprine Pleuropneumiae
NT = Not tested

Table 2. Geometric mean titres, mean percentage inhibition of antibodies to respiratory pathogens in (Mccp, PPRV) small ruminnats in different locations studied.

Goats	Location	PPRV	Mccp	Sheep		
	Location	C-ELISA (MPI)*	CFT (GMT)	B-ELISA (MPI)	C-ELISA (MPI)	CFT (GMT)*
Adounmri	41.80	0	8.30	16.20	0	
Bokle	60.50	32	22.0	74.50	0	
Dembo	17.20	6.40	9.10	26.80	0	
Djalingo	49.20	8.0	11.0	44.80	0	
Djaoi	12.0	5.30	9.60	9.40	0	
Kismatari	52.0	4.0	11.40	60.40	0	
Nassarao	64.60	2.60	13.20	79.90	0	
Bidzar	13.80	4.80	10.20	12.90	0	
Guider	33.10	0	3.70	40.0	0	
Mayo-loue	40.20	4.0	6.50	24.30	0	
Djingliya	1.40	0	4.30	0.80	0	
Koza	10.80	0	3.90	3.80	0	
Midre	8.90	4.0	10.10	17.30	0	

B-ELISA >20% = Positive
C-ELISA >50% = Positive
CF-GMT > 1.4 = Positive
GMT = Geometric Mean Titre
*Geometric Mean Titre of Reciprocal of CF Antibody
MPI = Mean Percentage Inhibition
Mccp = *Mycoplasma capricolum subsp. capripnuemoniae
PPRV = Peste des petits ruminants virus

Table 3. Evidence of mixed infections of respiratory pathogens in goats studied.

Location	Mccp/Mycoplasmosis only	PPRV only	Pasteurella infection only	Mccp + PPRV	Mccp + Pasteurella infection	PPRV + Pasteurella infection	Mccp + Pasteurella infection + PPRV
Adounmri	0/6(10)	5/6(83.3)	1/6(16.67)	0/6(0)	0/6(0)	0/6(0)	0/6(0)
Bokle	0/2(0)	½ (50)	0/2(0)	1/2(50)	0/2(0)	0/2(0)	0/2(0)
Dembo	5/13(38.5)	4/13(30.8)	0/13(0)	3/13(23.1)	0/13(0)	0/13(0)	0/13(0)
Djalingo	1/5(20)	3/5(60.0)	0/5(0)	2/5(40.0)	0/5(0)	0/5(0)	0/5(0)
Djaoi	15/20(75)	0/20(0)	4/20(20.0)	0/20(0)	1/20(5)	1/20(5)	1/20(5)
Kismatari	8/22(36.4)	7/22(31.8)	0/22(0)	7/22(40.0)	0/22(0)	0/22(0)	0/22(0)
Nassarao	1/10(10)	5/10(50)	0/10(0)	4/10(40.0)	0/10(0)	0/10(0)	0/10(0)
Bidzar	4/6(66.7)	2/6(33.4)	0/6(0)	0/6(0)	0/6(0)	0/6(0)	0/6(0)
Guider	0/13(0)	13/13(100)	0/13(0)	0/13(0)	0/13(0)	0/13(0)	0/13(0)
Mayo-loue	2/13(15.4)	11/13(84.6)	0/13(0)	0	0	0	0
Djingliya	0	0	0	0	0	0	0
Koza	0/4(0)	4/4(100)	0/4(0)	0/4(0)	0/4(0)	0/4(0)	0/4(0)
Midre	5/6(83.4)	0/6(0)	0/6(0)	1/6(16.7)	0/6(0)	0/6(0)	0/6(0)
Total	41/120(34.2)	55/120(45.8)	5/12(4.2)	17/120(14.2)	1/120(0.8)	0/120(0.0)	1/120(0.8)

Anim Husb Dairy Vet Sci, 2017
doi: 10.15761/AHDVS.1000111
Volume 1(2): 3-6
Table 4. Evidence of mixed infections of respiratory pathogens in sheep studied.

Location	Mcpc/Mycoplasmosis only	PPRV only	Pesteurella infection only	Mccp + MPPRV	Mccp + Pasteurella infection	PPRV + Pasteurella infection	Mccp + Pasteurella + PPRV
Adoumri	0/2(0)	1/2(50)	1/2(50)	0/2(0)	0/2(0)	0/2(0)	0/2(0)
Bokle	0/3(0)	36/36(100)	36/36(100)	0/3(0)	0/3(0)	0/3(0)	0/3(60)
Dembo	0/2(0)	1/2(50)	1/2(50)	0/2(0)	0/2(0)	0/2(0)	0/2(0)
Django	0/3(0)	3/3(100)	3/3(100)	0/3(0)	0/3(0)	0/3(0)	0/3(0)
Djalai	0	0	0	0	0	0	0
Kismarati	0/10(0)	10/10(100)	10/10(100)	0/10(0)	0/10(0)	0/10(0)	0/10(0)
Nassarao	0/6(0)	6/6(100)	6/6(100)	0/6(0)	0/6(0)	0/6(0)	0/6(0)
Bidzar	0/1(0)	1/1(100)	1/1(100)	0/1(0)	0/1(0)	0/1(0)	0/1(0)
Guider	0/20(0)	20/20(100)	20/20(100)	0/20(0)	0/20(0)	0/20(0)	0/20(0)
Mayo-loue	0/1(0)	1/1(100)	0/1(0)	0/1(0)	0/1(0)	0/1(0)	0/1(0)

Table 5. Sex and breed distribution of small ruminants in different locations studied.

Location	Total	Goats	Sheep	Kirdi	Bororo	Ouda	Cattle	Equine	Swine	Avina														
Male	Female	Total	Male	Female	Total	Male	Female	Total	Kirdi	Male	Female	Total												
Adoumri	1	10	9	10	2	2	2	2	7	7	10	100	0	0	0	0	0	0	1	1	1	0	0	0
Bokle	0	2	2	2	3	3	3	3	37	37	2	100	0	0	0	0	0	0	0	0	0	0	0	0
Dembo	6	35	41	41	2	2	2	2	35	35	41	100	0	0	0	0	0	0	0	0	0	0	0	0
Django	3	6	9	9	1	1	1	1	9	9	0	100	0	0	0	0	0	0	0	0	0	0	0	0
Djalai	6	59	65	65	0	0	0	0	65	65	0	100	0	0	0	0	0	0	0	0	0	0	0	0
Kismarati	5	20	25	25	1	1	1	1	24	24	25	100	0	0	0	0	0	0	0	0	0	0	0	0
Nassarao	6	46	52	52	7	7	7	7	13	13	7	100	0	0	0	0	0	0	0	0	0	0	0	0
Bidzar	8	38	46	46	25	25	25	25	26	26	25	100	0	0	0	0	0	0	0	0	0	0	0	0
Guider	10	38	48	48	28	28	28	28	26	26	25	100	0	0	0	0	0	0	0	0	0	0	0	0
Mayo-loue	7	25	32	32	25	25	25	25	28	28	24	100	0	0	0	0	0	0	0	0	0	0	0	0
Djinglai	0	3	3	3	1	1	1	1	3	3	0	100	0	0	0	0	0	0	0	0	0	0	0	0
Koza	5	17	22	22	3	3	3	3	28	28	24	100	0	0	0	0	0	0	0	0	0	0	0	0
Midre	11	35	46	46	24	24	24	24	15	15	0	100	0	0	0	0	0	0	0	0	0	0	0	0
Total	68	227	300	300	82	82	82	82	400	400	320	320	0	0	0	0	0	0	0	0	0	0	0	0

Discussion

Seroepidemiological investigations carried out in the present study using different serological methods have revealed considerable activity of respiratory pathogens of CCPP and PPR. However, significant differences were observed in the relative sensitivities and specificities of the serological method used. For instance, CFT (17%) was found to be more sensitive but less specific than B-ELISA (10%) in the detection of antibody to Mccp. This observation seems to be inconsistent with previous efforts on the comparative sensitivity and
specificity of CFT and ELISA techniques in serological analysis as it had been demonstrated by previous workers [22]. Generally, this study has revealed a considerable activity of PPRV among the different age groups of small ruminants in northern Cameroon. These results confirm the earlier findings which indicate the high endemicity of PPR in the study areas [7,8,13,16,23-25]. In addition, this study has also shown a higher prevalence of PPR in sheep than goats which is contrary to some previous reports [7,26-28]. Since the disease has been well documented [10,25,26,29]. The present findings could be as a result of various factors, the period of study, location and breed of small ruminants studied.

There is need to embark on a mass vaccination programme against PPR in both species. TCRV has been reported to protect small ruminants against PPRV[7,10,11,30,31]. However, the homologous vaccine against the disease was found to be more effective[23], although yearly booster vaccination may be required in order to ensure long lasting protective immunity against the PPRV infection. Both vaccines are produced commercially at LANAVET Cameroon and commonly named Bovipestrovax® and Capripestovax® respectively.

Furthermore, the present study has also revealed for the first time the occurrence of CCPP in Cameroon due to the detection of antibodies against Mycoplasma capricolum subspecies Capripneumoniae (Mccp) the goat sera examined during the study. A serological survey carried out previously in the northern Cameroon had failed to sufficiently established the presence of Mccp in the study areas [15,16]. This study however had to be belief that Mccp might have been long existed in the study areas. Since introduction of new flock was not a common practice among the farmers in the study area [32]. This therefore suggest that there is high tendency to incriminate the uncontrolled animal movement between northern Cameroon and the neighboring countries in the east and west primarily with those in the east Africa were CCPP is common and Mccp has been isolate in Tchad as partly countries in the east and west primarily with those in the east Africa and Nigeria in particular. In: Hill, D.H. (ed.), Pestes des petit ruminants (PPR) and Rinderpest (RP) antibodies in clinically normal small ruminants (PPR) virus in small ruminants in Cameroon. Bull Anim Hlth Prod Afr 40: 49-53.

9. Egwu GO (1995) The application of Biotechnology in the diagnosis of Contagious Bovine Pleuropneumonia (CBPP) caused by Mycoplasma mycoides subsp. mycoides SC: A member of mycoplasma cluster. Faculty of Veterinary Medicine, University of Maiduguri, Borno state. Nigeria. Seminar papers, 1: 1-3.

10. Fakri F, Ghzal F, Daouam S, Elarkam A, Douieb L, Zouheir Y, et al. (2015) Development and field application of a new combined vaccine against Peste des Petits Ruminants and Sheep Pox. Trials in Vaccinology 4: 33-37.

11. Majiyagbe KA, Shamaki D, Kulu D, Udeani TKC (1992) Peste des petits ruminants (PPR) and Rinderpest (RP) antibodies in clinically normal small ruminants in Cameroon and Nigeria. Small Ruminant Research and Development in Africa. Proceedings of the second Biennial Conference of the African small ruminant research network, AICC, Arusha, Tanzania.

12. Bourdin P (1983) History, epidemiology and economic significance of PPR in West Africa and Nigeria in particular. In: Hill, D.H. (ed.), Pestes des petit ruminants (PPR)
in sheep and goats. Proceedings of the International Workshop held at I.I.T.A., Ibadan, Nigeria, 1-11.

13. Awa DN, Njoya A, Ngo Tama AC (2000) Economics of prophylaxis against peste des petits ruminants and gastrointestinal helminthosis in small ruminants in north Cameroon. Trop Anim Health Prod 32: 391-403. [Crossref]

14. Diallo A, Gerrit JN, (2007) Genus Capripoxvirus, Poxviruses, Birkhäuser Advances in Infectious Diseases, Birkhäuser Basel. 167-181.

15. Martrenchar A, Bouchel D, Zoyem N (1995a) Isolation and experimental studies of Mycoplasma mycoides subsp. Mycoides large colony and mycoplasma ovipneumoniae in goats in Northern Cameroon. Small Ruminant Res 16: 179-184.

16. Martrenchar A, Zoyem N, Ngangnou A, Bouchel D, Ngo Tama AC, et al. (1995b) [Main infectious agents involved in the etiology of lung diseases of small ruminants in northern Cameroon]. Rev Elev Med Vet Pays Trop48: 133-137. [Crossref]

17. Martrenchar A, Bouchel D, Zoyem N, Thiaccourt F, Lambert M (1997) Risk factors responsible for the appearance of individual clinical signs in small ruminants in Northern Cameroon. Small Ruminant Res 26: 45-52.

18. MacOwan KJ, Minette JE (1976) A mycoplasma from acute contagious caprine pleuropneumonia in Kenya. Trop Anim Health Prod 8: 91-95. [Crossref]

19. Woubri S, Lorenzon S, Peyraud A, Manso-Silván L, Thiaucourt F (2004) A specific haemagglutination-inhibition. Vet Microbiol104: 125-132. [Crossref]

20. Thiaccourt F, Bölske G, Libeau G, Le Goff C, Lefèvre PC (1994) The use of monoclonal antibodies in the diagnosis of contagious caprine pleuropneumonia (CCPP). Vet Microbiol41: 191-203. [Crossref]

21. Libeau G, Lancelot R, Colas F, Geurre L, Diallo A (1995) Development of a competitive ELISA for detecting antibodies to the peste des petits ruminants virus using a recombinant N protein. Res Vet Sci 58: 56-55 [Crossref]

22. Ferri NP, Dawson M (1988) Routine application of enzyme linked immunosorbent assays in comparison with complement fixation test for the diagnosis of FMD and swine vesicular stomatitis. Veterinary Microbiology 16: 201-209.

23. Martrenchar A, Zoyem N, Njoya A, Ngo Tama AC, Bouchel D, et al. (1999) Field study of a homologous vaccine against peste des petits ruminants in Northern Cameroon. Small ruminant res31: 277-290.

24. Batten CA, Banyard AC, King DP, Hemstock MR, Edwards L, et al. (2011) A real time RT-PCR assay for the specific detection of Peste des petits ruminants virus. J Virol Methods 171: 401-404. [Crossref]

25. El Harrak M, Touil N, Loutfi C, Hammouchi M, Parida S, et al. (2012) A reliable and reproducible experimental challenge model for peste des petits ruminants virus. J ClinMicrobiol50: 3738-3740. [Crossref]

26. Derojaie AO (1980) Brief notes on history, epizootiology and the economic importance of PPR in Nigeria. In: Hill, D.H. (ed.), Pestes des petits ruminants (PPR) in sheep and goats. Proceedings of the International workshop held at I.I.T.A., Ibadan, Nigeria, PP. 24-27.

27. Roeder PL, Abraham G, Kenfe G, Barrett T (1994) Peste des petits ruminants in Ethiopian goats. Trop Anim Health Prod 26: 69-73. [Crossref]

28. Hammouchi M, Loutfi C, Sebbar G, Touil N, Chaafni N, et al. (2012) Experimental infection of alpine goats with a Moroccan strain of Peste des Petits Ruminants virus (PPRV). Vet Microbiol 160: 240-244. [Crossref]

29. Desoutted LD (1994) Les pneumopathies des petits ruminants au Senegal: Etude sero-epidemiologique. Thesed’Universite Paris, xii Val De Marne.Creteil.

30. Abegunde A (1980) Problems connected with TCRV vaccination of sheep and goats. In: Hill, D.H. (ed.), Pestes des petit ruminants (PPR) in sheep and goats. Proceedings of the International Workshop held at I.I.T.A., Ibadan, Nigeria, 79-81.

31. Taylor WP (1980) The use of TCRV and PPRV to confer immunity to PPR. In: Hill, D.H. (ed.), Pestes des petits ruminants (PPR) in sheep and goats. Proceedings of the International workshop held at I.I.T.A., Ibadan, Nigeria, Pp. 72-73.

32. Baba SS, Fagbami AH, Ojeh CK (1999) Preliminary study on the use of solid-phase immunosorbent techniques for the rapid detection of veselsbron virus IgM by haemagglutination-inhibition. Comp ImmunolMicrobiol Infect Dis 22: 71-79. [Crossref]

33. Bölske G, Johanson KE, Heininen R, Panvuga PA, Twinnamasiko E (1996) Contagious caprine pleuropneumonia in Uganda and the isolation of Mycoplasma capricolum subsp. capripneumoniae from goats and sheep. Vet Rec137: 594. [Crossref]

Copyright: ©2017 Abubakar MB. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.