Revisiting Additive Compositionality: AND, OR, and NOT Operations with Word Embeddings

Masahiro Naito1,3, Sho Yokoi2,3, Geewook Kim4, Hidetoshi Shimodaira1,3
1Kyoto University 2Tohoku University 3RIKEN 4Naver
neiteng@sys.i.kyoto-u.ac.jp, yokoi@ecei.tohoku.ac.jp, kdrl7@naver.com, shimo@i.kyoto-u.ac.jp

Abstract

It is well-known that typical word embedding methods have the property that the meaning can be composed by adding up the embeddings (additive compositionality). Several theories have been proposed to explain additive compositionality, but the following problems remain: (i) The assumptions of those theories do not hold for practical word embedding. (ii) Ordinary additive compositionality can be seen as an AND operation of word meanings, but it is not well understood how other operations, such as OR and NOT, can be computed by the embeddings. We address these issues with the idea of frequency-weighted centering at its core. This method bridges the gap between practical word embedding and the assumption of theory about additive compositionality as an answer to (i). This paper also gives a method for taking OR or NOT of the meaning by linear operation of word embedding as an answer to (ii). Moreover, we confirm experimentally that the accuracy of AND operation, i.e., the ordinary additive compositionality, can be improved by our post-processing method (3.5x improvement in top-100 accuracy) and that OR and NOT operations can be performed correctly. We also confirm that the proposed method is effective for BERT embeddings.

1 Introduction

Word embedding (Mikolov et al., 2013b; Pennington et al., 2014; Devlin et al., 2019), a fundamental technology in natural language processing, has the property that meaning can be composed by adding up the embeddings. This property is called additive compositionality, e.g., \(v_{\text{king}} \approx v_{\text{royal}} + v_{\text{man}} \) (Mikolov et al., 2013b). In this paper, we raise and resolve two questions about additive compositionality, as described below.

(i) Are the existing theories of additive compositionality realistic and unified? Several theories have been proposed to explain why additive compositionality holds (Arora et al., 2016; Gittens et al., 2017; Allen and Hospedales, 2019); however, assumptions that do not hold for SGNS and GloVe have been made in these papers. Besides, since these theories depend on specific methods such as Skip-Gram (Mikolov et al., 2013a), a unified understanding with other methods such as GloVe (Pennington et al., 2014), and BERT (Devlin et al., 2019) remains a challenge in the field of natural language processing.

(ii) As will be explained later, ordinary additive compositionality corresponds to AND in logical operations. This means that AND corresponds to the addition of embeddings; what embedding operations do OR and NOT correspond to? Examples of OR are \(\text{case} \approx \text{box} \lor \text{instance} \) (polysemous word / homograph) and \(\text{child} = \text{boy} \lor \text{girl} \) (hypernym-hyponym). An example of NOT is \(\text{hate} \approx \neg \text{love} \) (antonym).

We provide the following theoretical and experimental contributions to the above-mentioned questions.

1. We show that the gap between SGNS/GloVe
AND (Additive Compositionality)

OR

NOT

Allen & Hospedales

This paper (§4)

Assumption : \(\text{PMI}(w, c) = v_w^T u_c \)

SGNS

GloVe

Remove the gap between the assumptions below and SGNS/GloVe (§3).

Figure 2: An overview of this paper and the previous research.

and the assumption of (Allen and Hospedales, 2019) almost disappears when word embeddings are centered using the frequency-weighted average of vocabulary words. In other words, by coupling our theory with (Allen and Hospedales, 2019) we explain the mechanism of additive compositionality in SGNS and GloVe. Besides, we propose a method to make additive compositionality more strongly hold. Our theory holds for both SGNS (Skip-Gram with Negative Sampling, one of the variations of Word2Vec by Mikolov et al. 2013b) and GloVe (Pennington et al., 2014). This implies that centering allows SGNS and GloVe to be described in an almost unified form. Pointing out the similarities between the limited BERT architecture and SGNS, we suggest that frequency-weighted centering may be applicable to BERT embeddings as well.

2. Utilizing the results obtained in 1. as a starting point, we extend the theory of ordinary additive compositionality (AND) to compositionality of OR and NOT (see Figure 1). OR operation is a frequency-weighted average for a specified subset of vocabulary words. NOT operation is based on a novel conditional embedding that is computed by frequency-weighted centering.

3. We experimentally confirm that our theory is correct (§5). The experimental results show that frequency-weighted centering makes additive compositionality, which corresponds to AND operation, hold more accurately (3.5x improvement in top-100 accuracy). We also confirm that this method is effective for BERT embeddings. We also showed that the proposed formula can successfully compute OR and NOT embeddings.

2 Preliminaries: Word Embedding

In this section, we briefly introduce some properties of popular word embedding methods. In the next section, we point out the gap between these properties and the assumption of the theory of additive compositionality (Allen and Hospedales, 2019), and propose a method to resolve it.

Word embedding methods based on co-occurrence information between words, such as SGNS and GloVe, are used across a wide range of fields, such as information retrieval and recommendation systems (Roy et al., 2018; Grover and Leskovec, 2016; Grbovic et al., 2015).

SGNS and GloVe (and maybe BERT) encode the co-occurrence information of words. Levy and Goldberg (2014) showed that optimally trained SGNS embedding satisfies

\[
\log \frac{p(w, c)}{p(w)q(c)} - \log k = v_w^T u_c, \tag{1}
\]

where \(p \) is the word distribution of corpus, \(q \) is the distribution of negative samples, \(k \) is the number of negative samples per co-occurring word pair \((w, c)\), \(v_w \) is the embedding of a target word \(w \), and \(u_c \) is the embedding of a context word \(c \). GloVe (Pennington et al., 2014) takes a direct approach to factorize the co-occurrence matrix, and the optimally learned embedding satisfies

\[
\log p(w, c) = v_w^T u_c + a_w + b_c - \log Z, \tag{2}
\]

where \(a_w, b_c \) are bias terms and \(Z \) is a normalization constant. In the following, we assume that SGNS and GloVe satisfy (1) and (2), respectively.

3 Structure Common to SGNS and GloVe

In this section, we show that when SGNS and GloVe are centered using the frequency-weighted average, they share a common structure.

Allen and Hospedales (2019) explained additive compositionality with the assumption

\[
\text{PMI}(w, c) = v_w^T u_c, \tag{3}
\]
where \(\text{PMI}(w, c) \) is the pointwise mutual information (PMI) between \(w \) and \(c \)

\[
\text{PMI}(w, c) := \log \frac{p(w, c)}{p(w)p(c)}. \tag{4}
\]

However, neither SGNS nor GloVe satisfies the assumption (3), as will be explained in §3.1. If we can adjust the word embeddings to satisfy assumption (3), then additive compositionality should hold more accurately.

In this section, we show a simple post-processing method for this adjustment of word embeddings, which can be applied to both SGNS and GloVe.

3.1 Error Terms in (3)

Rearranging the formulas of the word embedding assumptions (1) and (2), we have

\[
\text{SGNS} \quad \text{PMI}(w, c) = v_w^\top u_c + \log \frac{q(c)}{p(c)} + \log k, \tag{5}
\]

\[
\text{GloVe} \quad \text{PMI}(w, c) = v_w^\top u_c + (a_w - \log p(w)) + (b_c - \log p(c)) - \log Z. \tag{6}
\]

Clearly, they differ from (3). Allen and Hospedales (2019) ignores the second and subsequent terms on the right-hand side of (5) and (6); these ignored terms are considered as error terms in the assumption (3). Experiments in this paper show that these error terms are not negligible (§5.1).

3.2 Frequency-weighted Centering

First, we show that (3) can be derived by centering the SGNS/GloVe embedding in a form that includes some error terms. For the word embeddings \(v_w \) and \(u_c \), the frequency-weighted averages of word embeddings are

\[
\bar{v} = \sum_w p(w)v_w, \quad \bar{u} = \sum_c p(c)u_c, \tag{7}
\]

and the centered word embeddings are

\[
\tilde{v}_w = v_w - \bar{v}, \quad \tilde{u}_c = u_c - \bar{u}. \tag{8}
\]

Theorem 1. When the embedding of SGNS and GloVe satisfies (1) and (2), respectively, the following equality holds:

\[
\text{PMI}(w, c) = \tilde{v}_w^\top \tilde{u}_c + \bar{c} - \epsilon_w - \epsilon_c, \tag{9}
\]

where the error terms are defined, with KL-divergence, as \(\epsilon_w = D_{\text{KL}}(p(\cdot)\|p(\cdot|w)) \), \(\epsilon_c = D_{\text{KL}}(p(\cdot)\|p(\cdot|c)) \), and \(\bar{c} = \sum_w p(w)c_w \).

Proof. See Appendix A.

The following proposition shows that the error terms are negligible when \(|\text{PMI}(w, c)| \ll 1 \).

Proposition 2. Let \(\Delta = \max_{w,c} |\text{PMI}(w, c)| \). For sufficiently small \(\Delta \), \(\epsilon_w = O(\Delta^2) \), \(\bar{c} = O(\Delta^2) \).

Proof. See Appendix B.

3.3 Discussion

Interpretation Theorem 1 suggests that the centered SGNS and GloVe can be described in roughly the same form. In other words, we can say that (3) is a structure essentially common to SGNS and GloVe if properly centered.

Relation to experimental results The experiments described below confirm that the error in assumption (3) is significantly reduced by the frequency-weighted centering (§5.1), which supports the theory in §3.2. Furthermore, we have confirmed that the accuracy of additive compositionality is improved by frequency-weighted centering, as we expected. These improved word vectors are applicable to various downstream tasks.

Comparison with All-but-The-Top Mu and Viswanath (2018) suggested that uniform centering \(v_w \leftarrow v_w - \sum_c v_c/|V| \) is helpful as a post-processing method to get high-performance word embeddings. This method is described as adjusting the embeddings to satisfy isotropy, a property that the RAND-WALK model (Arora et al., 2016) should satisfy. However, its argument is not complete because the theoretical basis for RAND-WALK’s high performance on each downstream task is not clearly stated. On the other hand, since our method is designed with the goal of satisfying the assumption of the theory of additive compositionality (Allen and Hospedales, 2019), there is a direct connection between our theory and the experimental results.

4 Logical Operations with Word Embeddings

In this section, we point out that ordinary additive compositionality is an AND-like operation. We show that other logical operations, such as OR and NOT, can also be computed from embeddings. We adopt assumption (3) in this section as well as Allen and Hospedales (2019); embeddings satisfying (3) can be obtained by the simple post-processing of SGNS and GloVe (see §3).
4.1 AND Operation

Allen and Hospedales (2019) showed that when the PMI factorization structure (3) is strictly satisfied, a semantic AND composite such as queen = royal ∧ woman corresponds to vector additivity such as the following formula:

\[v_{\text{royal}} = v_{\text{royal}} + v_{\text{woman}}. \]

(10)

In this section, we outline the proof of Allen and Hospedales (2019).

4.1.1 Formulation with Co-occurrence Probability

Let \(w = w_1 \land w_2 \land \cdots \land w_s \). Let us assume, for example, that the probability of occurrence of queen meaning is the multiplication of the probabilities of royal and woman meaning. Generalizing this, we formulate AND-like compositionality as follows:

\[\forall c \in V, \quad p(w|c) = p(w_1|c) \cdots p(w_s|c), \]

(11)

\[p(w) = p(w_1) \cdots p(w_s) \]

(12)

4.1.2 Computation on Embedding Space

From the above formulation, additive compositionality is proved.

Theorem 3 (Allen and Hospedales 2019). When \(w, w_1, \ldots, w_s \) satisfy (3), (11) and (12),

\[v_w = \sum_{i=1}^{s} v_{w_i}. \]

(13)

Proof. Dividing (11) by (12) and taking the logarithm, we get PMI\((w, c) = \text{PMI}(w_1, c) + \cdots + \text{PMI}(w_s, c). \) From (3), \(v_w^T u_c = v_{w_1}^T u_c + \cdots + v_{w_s}^T u_c. \) Since \(c \in V \) is arbitrary, (13) follows. \(\square \)

4.2 OR Operation

As mentioned in §1, in addition to AND operation, OR operation can also be considered. In this section, we show that OR operation corresponds to the frequency-weighted average of the embeddings for a set of words.

4.2.1 Formulation with Co-occurrence Probability

OR operation is denoted by operator \(\lor \). Let \(w \) be the OR word of \(w_1, w_2, \ldots, w_s \), i.e. \(w = w_1 \lor w_2 \lor \cdots \lor w_s. \) For example, \(\text{case} \approx \text{box} \lor \text{instance}. \) The probability of occurrence of \(w \) in each context \(c \) can be formulated as the sum of the probabilities of occurrence of \(w_1, \ldots, w_s: \)

\[\forall c \in V, \quad p(w|c) = p(w_1|c) + \cdots + p(w_s|c). \]

(14)

From (14), we get \(p(w) = \sum_{i=1}^{s} p(w_i). \)

4.2.2 Computation on Embedding Space

On the basis of the above simple formulation, we give a method to perform OR operation on the embeddings.

Theorem 4 (OR formula). We assume that \(w, w_1, w_2, \ldots, w_s \) satisfy (3) and (14). When \(|\text{PMI}(w, c)| \ll 1 \), word embeddings satisfy

\[v_w \approx \sum_{i=1}^{s} \frac{p(w_i)}{p(w)} v_{w_i}. \]

(15)

Proof. See Appendix C. \(\square \)

OR formula (15) suggests that the embedding of case approximates the sum of the embeddings of box and instance, weighted by their probability of occurrence in the corpus. Note that the OR formula is invariant to the translation of the origin, so it is valid to some extent for SGNS and GloVe without the frequency-weighted centering.

4.2.3 Discussion

Relation to experimental results On the real data, \(|\text{PMI}(w, c)| \ll 1 \) does not strictly hold, but we confirmed that the OR formula holds well in the experiment in §5.3.

Comparison with previous work Arora et al. (2018) obtained the same formula by assuming the random walk of the context vector (RAND-WALK model), but the proof in this paper does not require that assumption.

4.3 Conditional Embedding and NOT Operation

With assumption (3), we derive not only AND and OR operations but also NOT operation. In this section, we formulate the NOT operation using the concept of conditional embedding, word embedding that expresses the local relationship between words in a small set of words \(A \subset V \). We derive that the conditional embedding of the antonym is proportional to \(\text{minus} \) of the conditional embedding of the original word.
4.3.1 Formulation with Co-occurrence Probability

In contrast to human senses, antonyms have the property of being dissimilar and similar at the same time (Cruse, 1986; Willners, 2001), e.g., hate and love have opposite meanings, but both of them are related to emotion. For this reason, antonyms tend to appear in similar contexts, and thus their word embeddings trained by the method based on the distributional hypothesis (Harris, 1954; Firth, 1957) exhibit a high similarity. Therefore, antonyms are related to synonyms, making it difficult to understand how they are embedded. In this section, we dispense with the mystery of antonyms by formulating them in a way that takes their similarity into account.

Let us take the following example: the opposite of mother is father in the “parent” category, but daughter in the “parent-child relationship” category. In this way, when considering antonyms, one needs to specify a category corresponding to the similarity portion of the antonyms. In this paper, a category is represented by a set of words \(A \). From the intuition that the antonym \(\neg w \) of word \(w \in A \) corresponds to the complement of \(w \) in \(A \) when viewed in a small word set \(A \), the co-occurrence probability of NOT word can be formulated by the following conditional probability:

\[
p(W = \neg w \mid W \in A, c) = p(W \in A \setminus \{w\} \mid W \in A, c),
\]

(16)

where word \(W \) denotes a random variable and \(p(\cdot \mid \cdot) \) denotes the conditional probability. Because the event \(W \in A \) appears in the conditioning for the probability of (16), we need embeddings conditioned on \(A \) instead of the whole vocabulary. In this paper, we refer to this embedding as conditional embedding on \(A \).

4.3.2 Conditional Embedding

From the analogy to (3), we consider the equality to be satisfied by the conditional embedding \(v_{w|A} \) of the word \(w \) in set \(A \) as follows:

\[
p(W = w \mid W \in A, c) = p(W = w \mid W \in A) \exp(v_{w|A}^\top \alpha_c).
\]

(17)

From the following Theorem 5, we can see that conditional embedding can be approximated by frequency-weighted centering on a subset \(A \).

\[v_{w|A} \approx v_w - v_A,\]

(18)

where \(p(A) = p(W \in A) = \sum_{w \in A} p(w) \) and \(v_A = \sum_{w \in A} \frac{p(w)}{p(A)} v_w \).

\[\text{Proof. See Appendix D.} \]

Theorem 5 allows us to explain the common practice of centering, although typically unweighted, on a particular set of words, e.g., implicit centering in PCA visualization.

4.3.3 Computation on Embedding Space

On the basis of the above formulation, we derive a method for computing NOT with word embeddings.

\[v_{\neg w|A} \approx \frac{p(W = w \mid W \in A)}{1 - p(W = w \mid W \in A)} v_{w|A}.
\]

(19)

\[\text{Proof. See Appendix E.} \]

From this formula, we can see that the conditional embedding of the NOT word of \(w \) is the vector in the negative direction of the conditional embedding of the original word \(w \).

4.4 Extension to BERT

BERT (Devlin et al., 2019), which has attracted attention in recent years, obtains word embeddings by predicting a word from its context, and can be regarded as an extension of SGNS for the following reasons. Consider a one-layer BERT model pre-trained by masked LM only. If the attention weight of a [MASK] token is a one-hot vector, BERT predicts [MASK] from one context word and can be regarded as a Skip-gram model (Mikolov et al., 2013b). Consider the input sentence \(c_1 c_2 \cdots c_\ell \) including [MASK]. Setting the attention weight \(\alpha \) to \(\alpha = [0, \ldots, 0, 1, 0, \ldots, 0]^\top \), one-hot vector with 1 at \(i \)-th element, BERT’s probability model is

\[
p([\text{MASK}] = w \mid \text{sentence } c_1 c_2 \cdots c_\ell) \\
= \alpha_c \exp\left(v_{[\text{MASK}]|A}^\top \alpha_c \begin{bmatrix} v_{c_1}^\text{BT} & \cdots & v_{c_\ell}^\text{BT} \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_\ell \end{bmatrix}\right) \\
= \exp\left(v_{[\text{MASK}]|A}^\text{BT} \cdot v_{c_\ell}^\text{BT}\right),
\]

(20)

where \(v^\text{BT} \) is input representation and \(u^\text{BT} \) is output representation. (20) is similar to Skip-gram.
model \(p(w|c) \propto \exp(v_c^\top u_w) \). Thus, BERT can be regarded as a generalization of Skip-gram. Therefore, we can expect that our proposed method will apply to BERT to some extent. Some experiments in §5 also provide results in BERT.

5 Experiments

In order to keep the description concise, the detailed experimental setup is described in Appendix F.

5.1 Centering and PMI Factorization

In this section, we experimentally confirm that (3) holds more accurately if we perform frequency-weighted centering (§3.2). To show that the accuracy of PMI factorization formula PMI\((w, c) = v_w^\top u_c\) is improved by centering the embeddings, we observed the distribution of the error \(e_{w,c} = \text{PMI}(w, c) - v_w^\top u_c \) in several experimental settings.

Embeddings We used 300-dimensional embeddings trained by SGNS and GloVe with text8 corpus.\(^2\) The results are shown for the following three sets of embeddings:

- **orig**: original embeddings.
- **unif**: embeddings with uniform centering\(^3\) (Mu and Viswanath, 2018), i.e., \(v_w \leftarrow v_w - \sum w' v_{w'}/|V| \).
- **freq**: embeddings with frequency-weighted centering.

Results We plotted the histogram of error \(e_{w,c} \) (Figure 3). We see that the magnitude of \(e_{w,c} \) of frequency-weighted centering (freq) is small and PMI\((w, c) = v_w^\top u_c\) holds more accurately regardless of whether the method is SGNS or GloVe. It is worth noting that frequency-weighted centering (freq) and uniform centering (unif) have substantially different results, which is non-trivial.

5.2 Assessing Accuracy of AND Formula

From Theorem 1, Proposition 2 and Allen and Hospedales (2019), frequency-weighted centering is expected to result in stronger additive compositionality (§3). In this section, we experimentally confirm that additive compositionality holds more accurately by frequency-weighted centering. The experiments are for three types of additive compositionality: word-to-sentence, word-to-phrase, and word-to-word. We also experimentally saw that the same result holds for BERT as well as SGNS and GloVe.

Embeddings We used 300-dimensional embeddings trained by SGNS and GloVe with Wikipedia\(^4\). For BERT embeddings, we used the first layer, which corresponds to the target vector of the skip-gram\(^5\). In the word-to-sentence experiment, the results for the final layer are also included (§G.1)\(^6\). We compared four types of embeddings: orig, unif, freq and All-but-the-Top (Mu and Viswanath, 2018) (ABTT\(^7\), for SGNS and GloVe), a post-processing method for embeddings that incorporates uniform centering.

5.2.1 Word-to-sentence compositionality

We evaluated sentence vectors by simply adding word vectors using semantic textual similarity task (Agirre et al., 2012). If additive compositionality holds more accurately, it is expected that sentence vectors are more accurate and scores increase.

Results The results are shown in Table 1. These values are Pearson’s correlation coefficients between the similarity of the two sentences (manually evaluated) and the cosine similarity between the two sentence vectors. As we can see, our proposed method freq consistently performs the best. All-but-the-Top is also a post-processing method for

\(^2\)http://mattmahoney.net/dc/textdata.html

\(^3\)This is a standard post-processing of word embedding (Mu and Viswanath, 2018).

\(^4\)https://dumps.wikimedia.org/

\(^5\)https://huggingface.co/

\(^6\)In the word-to-word experiment, only the results for the first layer are included because there is no point in contextualizing the word embedding.

![Figure 3: The distribution of the error \(e_{w,c} \) is plotted for the word pairs \((w, c)\) that co-occur more than once. The distribution of PMI\((w, c)\) itself is shown as purple dashed line for reference of the error order.](image-url)
Table 1: Results of semantic textual similarity tasks. The values are Pearson’s correlation coefficients between manually evaluated similarities of sentence pairs and cosine similarities of sentence vector pairs.

STS	SGNS	GloVe	BERT									
	orig	unif	ABTT	freq	orig	unif	ABTT	freq	orig	unif	ABTT	freq
12	0.53	0.53	0.52	0.55	0.32	0.32	0.35	0.37	0.52	0.49	0.53	
13	0.59	0.59	0.57	0.64	0.37	0.37	0.43	0.48	0.49	0.47	0.52	
14	0.60	0.60	0.59	0.68	0.38	0.38	0.44	0.52	0.57	0.54	0.62	
15	0.62	0.62	0.60	0.70	0.44	0.44	0.48	0.55	0.60	0.57	0.68	
16	0.55	0.55	0.53	0.65	0.33	0.33	0.38	0.51	0.60	0.57	0.69	

Figure 4: Top-n accuracy of rank (word-to-phrase). Upper left is better.

adjusting the embeddings (Arora et al., 2016), but ours is better in terms of additive compositionality.

5.2.2 Word-to-phrase compositionality

We evaluated how strongly word-to-phrase additive compositionality holds by learning phrase vectors.

Preprocessing of Corpus We trained phrase vectors by treating multiple words as single word, i.e., card game \rightarrow card_game. Only phrases with high compositionality included in (Farahmand et al., 2015; Ramisch et al., 2016; Reddy et al., 2011) were used.

Evaluation We calculated the cosine similarities between $v_{\text{word1}} + v_{\text{word2}}$ and all the v_w, $w \in V$, and how many words had a cosine similarity greater than or equal to the cosine similarity between $v_{\text{word1}_\text{word2}}$ and $v_{\text{word1}} + v_{\text{word2}}$; this number is simply denoted as rank8.

7These datasets include human ratings of the compositionality of phrases. Since words with weak compositionality are not suitable for the additive compositionality experiment, only phrases with a rating of 3 or 4 were used in Farahmand et al. (2015) and only phrases with a rating of 3.0 or higher were used in Reddy et al. (2011) or Ramisch et al. (2016).

8We should not simply use the similarity between $v_{\text{word1}} + v_{\text{word2}}$ and $v_{\text{word1}_\text{word2}}$ as the accuracy of additive compositionality. To be precise, if the similarity with $v_{\text{word1}_\text{word2}}$ is high and the similarity with other embeddings is low, we can say that additive compositionality is accurate. This paper uses rank as a metric that satisfies this requirement.

Results The top-n accuracy of rank is shown in Figure 4. The overall results show that centering, especially with frequency weights, improves the accuracy for additive compositionality. For SGNS, the top-10 accuracy improves by 1.7 times, and for GloVe, the top-100 accuracy improves by 3.5 times. Moreover, the results for GloVe are significantly different between uniform and frequency-weighted centering, which is consistent with the results in §5.1.

5.2.3 Word-to-word compositionality

We evaluated the additive compositionality of a word from words such as royal+woman=queen.

Dataset BATS (Gladkova et al., 2016), the dataset for the analogy task, specifies the relationship between the two words: the file country-capital contains word pairs such as bangkok:thailand and beijing:china. Using BATS, we created a dataset of word triples (x,y,z) that semantically satisfy $x + y = z$. For example, we assign thailand to x, capital to y, and bangok to z, where y is derived from the dataset name country-capital. There are a total of 9 datasets other than country-capital, (e.g. animal-sound, things-color), and y is determined in the same way for each.

Evaluation We used ranks of $v_x + v_y$ and v_z for evaluation. Mean Reciprocal Rank (MRR) was used as the representative value.
Results Table 2 shows the results. One can see that the proposed method freq consistently contributes to the performance improvement of additive compositionality. We can also see that, for GloVe and BERT, freq is superior to the other methods. freq loses to unif in SGNS, but this is related to the lack of significant difference in the structure of embeddings between unif and freq, as can be seen in Figure 3.

5.3 Assessing Accuracy of OR Formula
In this section, we confirm that the OR formula (15) is valid.

Embeddings We used 300-dimensional embeddings trained by SGNS and GloVe with a Wikipedia-based corpus.

5.3.1 Experiments with artificial OR words
We tested the validity of our theory by artificially creating OR words that exactly satisfy the modeling of OR.

Preprocessing of Corpus We generated 500 artificial OR words and learned their embeddings as follows. We constructed artificial OR words from two randomly selected words (e.g. apple, banana → apple OR banana), and created a new corpus in which all the selected words are replaced by the artificial OR words. Then we concatenated the original corpus with the new corpus and used it to train word embeddings.

Evaluation First, we evaluated the OR formula by cosine similarity and rank of word1 OR word2, as in §5.2.

Results The average cosine similarity was 0.936 for SGNS and 0.907 for GloVe. The average rank was 1.012 for SGNS and 1.000 for GloVe. Even though the OR formula is an approximation, the precision of the OR formula is high enough that it is almost always able to predict the correct answer (among 2M words). Since the OR formula is translation-invariant, the result is the same for orig, unif, and freq.

5.3.2 Experiments with actual OR words
Next, we used actual polysemous words and hypernym-hyponym to evaluate the OR formula. These words do not necessarily satisfy OR modeling exactly, unlike artificial ones. We created a dataset of tuples \((w, w_1, \ldots, w_s) \) satisfying \(w = w_1 \lor \cdots \lor w_s \) in the manner described in the

	SGNS	GloVe
WordNet(noun)	0.394 (0.199)	0.315 (0.148)
WordNet(verb)	0.356 (0.234)	0.322 (0.214)
Dasgupta et al.	0.444 (0.273)	0.439 (0.288)

Table 3: Cosine-similarity based accuracy of OR formula with the actual corpus (The values in parentheses are the result of randomly selecting word \(w \)).

\S F.2. For example, electronics = computer \lor phone, interaction = contact \lor give-and-take \lor interchange.

Table 3 shows the average cosine similarity between \(v_w \) and the vector calculated by the OR formula from \(v_{w_1}, \ldots, v_{w_s} \). The value in parentheses is the average of the cosine similarity when \(w \) is randomly chosen from the dataset. The cosine similarities are significantly high, indicating that the OR formula works well. Taking computer \lor phone = electronics as an example, the top ten words with high cosine similarity to \(\frac{p(\text{computer})}{p(\text{computer})+p(\text{phone})} \) \lor \(\frac{p(\text{phone})}{p(\text{computer})+p(\text{phone})} \) are computers, software, technology, internet, computing, devices, electronics, device, information, user. The words are abstracted from computer and phone, and it can be seen that the OR formula is appropriate.

5.4 Observation of NOT Formula
The visualization of the embeddings of the numbers from -9 to 9 is shown in Figure 5. Confining attention to \(A = \{1, \ldots, 9\} \), 1 and 9 are located in the negative direction of each other across the origin (red triangle) in the conditional embedding of \(A \); this confirms the NOT formula (19). On the other hand, if we expand set \(A \) to include negative numbers, 1 and 9 are located in a similar direction from the origin (black \(\times \)). In this case, the positive and negative numbers are on the opposite sides of the origin, which supports the NOT formula again. As you can see, it is important to determine the category in which antonyms are considered, and the NOT formula is able to formulate this fact well.

6 Connection to Previous Work
The summaries of the previous research on additive compositionality and their relationships to this study are given below.
Figure 5: The embeddings of numbers are visualized using PCA. The \times is the origin of the conditional embedding $v_{w|A}$ when $A = \{-9, \ldots, 9\} \setminus \{0\}$, and red triangle and blue triangle are the origins of A for positive numbers and negative numbers, respectively.

- **Arora et al. (2016, 2018)** explained the operations of analogy and OR by considering a latent variable model. On the other hand, there is a slight gap between the embedding properties suggested by their theory and the properties of the word embeddings used in practice. For example, their theory shows that high-frequency words have a large norm, but in actual word embeddings, the norm of medium and low-frequency words is large (Schakel and Wilson, 2015), and this is one of the reasons why additive construction works well (Yokoi et al., 2020). Our theory describes a more realistic embedding model.

- **Gittens et al. (2017)** explained the AND operation with the assumption $p(w) = 1/|V|$ in the Skip-Gram model (Mikolov et al., 2013a). While their theory succeeds in explaining the essential reason for additive compositionality, note that it makes the assumption that all words have the same frequency, an assumption that does not hold in practice. Word frequencies are known to have a skewed distribution (Piantadosi, 2014), and a feature of our theory is to incorporate this non-uniform distribution into the theory ($\S 4$).

- **Allen and Hospedales (2019)** explained additive compositionality (AND) and analogy operation based on the assumption (3). Our theory is positioned as contributing to the elaboration of their theory by resolving the problems of the arbitrariness of bias terms in GloVe and the log k shift in SGNS, which they had raised as an issue in their theory.

- **Ethayarajh et al. (2019)** proved a necessary and sufficient condition on co-occurrence frequency for analogy operation to hold in SGNS. They prove what relationship of co-occurrence statistics exists between words w_1, w_2, and w when additive compositionality $v_{w_1} + v_{w_2} = v_w$ holds, as a corollary of the theory of analogy. The difference between their theory and ours is that they focus on the co-occurrence statistics between w_1, w_2, and w, whereas we focus on the relationship of co-occurrence statistics between an arbitrary context c and each w_1, w_2, w.

7 Conclusion

In this paper, we show that when frequency-weighted centering is performed, SGNS and GloVe share a common structure and additive compositionality becomes more accurate. We also show how to compute OR and NOT operations by word embeddings in addition to the ordinal additive compositionality (AND). All these ideas are connected to each other by the key formula of PMI, which is represented as the inner product of word embeddings.

Our theory is limited to simple models such as SGNS and GloVe. We experimentally confirmed the effectiveness of our method on BERT in addition to SGNS and GloVe. In future work, we aim to interpret BERT theoretically and explain the results of these experiments on BERT and clarify the generality of the experimental results.

References

Eneko Agirre, Daniel Cer, Mona Diab, and Aitor Gonzalez-Agirre. 2012. SemEval-2012 task 6: A pilot on semantic textual similarity. In *SEM 2012: The First Joint Conference on Lexical and Computational Semantics – Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pages 385–393.

Carl Allen and Timothy Hospedales. 2019. Analogies explained: Towards understanding word embeddings. In Proceedings of the 36th International Conference on Machine Learning, volume 97, pages 223–231.

Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma, and Andrej Risteski. 2016. A latent variable model approach to PMI-based word embeddings. Transactions of the Association for Computational Linguistics, 4:385–399.
Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma, and Andrej Risteski. 2018. Linear Algebraic Structure of Word Senses, with Applications to Polysemy. Transactions of the Association for Computational Linguistics, 6:483–495.

David A. Cruse. 1986. Lexical Semantics. Cambridge University Press, Cambridge, UK.

Shib Dasgupta, Michael Boratko, Siddhartha Mishra, Shriya Atmakuri, Dhruvesh Patel, Xiang Li, and Andrew McCallum. 2022. Word2Box: Capturing Set-Theoretic Semantics of Words using Box Embeddings. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 2263–2276.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 4171–4186.

Kawin Ethayarajh, David Duvenaud, and Graeme Hirst. 2019. Towards understanding linear word analogies. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 3253–3262.

Meghdad Farahmand, Aaron Smith, and Joakim Nivre. 2015. A Multiword Expression Data Set: Annotating Non-Compositionality and Conventionalization for English Noun Compounds. In Proceedings of the 11th Workshop on Multiword Expressions, pages 29–33.

J. R. Firth. 1957. A synopsis of linguistic theory 1930–55. Studies in Linguistic Analysis (special volume of the Philological Society), 1952-59:1–32.

Alex Gittens, Dimitris Achlioptas, and Michael W. Mahoney. 2017. Skip-gram - Zipf + Uniform = Vector Additivity. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 69–76.

Anna Gladkova, Aleksandr Drozd, and Satoshi MATSUOKA. 2016. Analogy-based detection of morphological and semantic relations with word embeddings: what works and what doesn’t. In Proceedings of the NAACL Student Research Workshop, pages 8–15.

Mihajlo Grbovic, Vladan Radosavljevic, Nemanja Djuric, Narayan Bhamidipati, Jaikit Savla, Varun Bhagwan, and Doug Sharp. 2015. E-Commerce in Your Inbox: Product Recommendations at Scale. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, page 1809–1818.

Aditya Grover and Jure Leskovec. 2016. Node2vec: Scalable Feature Learning for Networks. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, page 855–864.

Zellig Harris. 1954. Distributional structure. Word, 10(2-3):146–162.

Omer Levy and Yoav Goldberg. 2014. Neural Word Embedding as Implicit Matrix Factorization. In Advances in Neural Information Processing Systems, pages 2177–2185.

Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013a. Efficient estimation of word representations in vector space. In 1st International Conference on Learning Representations, ICLR, Workshop Track Proceedings.

Tomás Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013b. Distributed representations of words and phrases and their compositionality. In Advances in Neural Information Processing Systems, pages 3111–3119.

Jiaqi Mu and Pramod Viswanath. 2018. All-but-the-top: Simple and effective postprocessing for word representations. In International Conference on Learning Representations.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, pages 1532–1543.

Steven Piantadosi. 2014. Zipf’s word frequency law in natural language: A critical review and future directions. Psychonomic bulletin and review, 21.

Carlos Ramisch, Silvio Cordeiro, Leonardo Zilio, Marco Idiart, and Aline Villavicencio. 2016. How Naked is the Naked Truth? A Multilingual Lexicon of Nominal Compound Compositionality. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pages 156–161.

Siva Reddy, Diana McCarthy, and Suresh Manandhar. 2011. An Empirical Study on Compositionality in Compound Nouns. In Proceedings of 5th International Joint Conference on Natural Language Processing, pages 210–218.

Dwiipayan Roy, Debasis Ganguly, Sumit Bhatia, Srikanta Bedathur, and Mandar Mitra. 2018. Using Word Embeddings for Information Retrieval: How Collection and Term Normalization Choices Affect Performance. In Proceedings of the 27th ACM International Conference on Information and Knowledge Management, page 1835–1838.

Adriaan M. J. Schakel and Benjamin J. Wilson. 2015. Measuring Word Significance using Distributed Representations of Words. CoRR, abs/1508.02297.

Caroline Willners. 2001. Antonyms in Context : A Corpus-Based Semantic Analysis of Swedish Descriptive Adjectives. Ph.D. thesis, General Linguistics.
Appendices

A Proof of Theorem 1

Proof. For SGNS, let $\zeta_w = 0$, $\xi_c = \log \frac{q(c)}{p(c)}$, $\gamma = \log k$; for GloVe, let $\zeta_w = a_w - \log p(w)$, $\xi_c = b_c - \log p(c)$, $\gamma = -\log Z$. Then, from (1), (2), we get

$$\text{PMI}(w, c) = v^T_w u_c + \zeta_w + \xi_c + \gamma. \quad (21)$$

Multiplying both sides of (21) by $p(w)$ and summing with respect to $w \in V$, we get

$$-\epsilon_c = \bar{v}^T u_c + \bar{\zeta} + \bar{\xi} + \gamma,$$ \hspace{1cm} (22)

where $\bar{\zeta} = \sum_{w \in V} p(w) \zeta_w$. From (21) and (22):

$$\text{PMI}(w, c) = \bar{v}^T_w u_c + (\zeta_w - \bar{\zeta}) - \epsilon_c. \quad (23)$$

Multiplying both sides of (23) by $p(c)$ and summing with respect to $c \in V$, we get

$$-\epsilon_w = \bar{v}^T_w \bar{u} + (\zeta_w - \bar{\zeta}) - \bar{\epsilon} \quad (24)$$

From (23) and (24), we have

$$\text{PMI}(w, c) = \bar{v}^T_w u_c + \bar{\epsilon} - \epsilon_w - \epsilon_c.$$

B Proof of Proposition 2

Proof. There exists $c_1 > 0$ such that for all $(w, c) \in V^2$,

$$\left| -1 + \frac{p(w, c)}{p(w)p(c)} \right| = \left| -1 + \exp(\text{PMI}(w, c)) \right| < c_1 \Delta. \quad (25)$$

$$\epsilon_w = -\sum_{c \in V} p(c) \log \frac{p(w, c)}{p(w)p(c)}$$

$$= -\sum_{c \in V} p(c) \left[-1 + \frac{p(w, c)}{p(w)p(c)} \right]$$

$$+ O \left(\left| -1 + \frac{p(w, c)}{p(w)p(c)} \right|^2 \right)$$

$$= \sum_{c \in V} p(c) - \sum_{c \in V} p(c|w)$$

$$- \sum_{c \in V} p(c) O \left(\left| -1 + \frac{p(w, c)}{p(w)p(c)} \right|^2 \right)$$

$$= - \sum_{c \in V} p(c) O \left(\left| -1 + \frac{p(w, c)}{p(w)p(c)} \right|^2 \right). \quad (26)$$
Therefore, there exists $c_2 > 0$ such that for all $w \in V$,
\[|\epsilon_w| < \sum_{c \in V} p(c) c_2 c_1^2 \Delta^2 = c_1^2 c_2 \Delta^2. \] (27)
\[|\epsilon| < c_1 c_2 \Delta^2 \] also readily follows. \qed

C Proof of Theorem 4

Proof. Calculating both sides of (14), we get
\[p(w|c) = p(w) \exp(\text{PMI}(w, c)) \]
\[\approx p(w) (1 + \text{PMI}(w, c)) \]
\[= p(w)(1 + v^\top w c), \] (28)
\[\sum_{i=1}^{s} p(w_i|c) = \sum_{i=1}^{s} p(w_i) \exp(\text{PMI}(w_i, c)) \]
\[\approx \sum_{i=1}^{s} p(w_i)(1 + v^\top w_i c) \]
\[= p(w) \left[1 + \left(\sum_{i=1}^{s} \frac{p(w_i)}{p(w)} v^\top w_i \right) c \right]. \] (29)
(15) follows the fact that for any $c \in V$, \((28) \approx (29) \). \qed

D Proof of Theorem 5

Proof. Calculating the left-hand side of (17) using assumption (3) and OR formula (15), we get
\[p(W = w \mid W \in A, c) \]
\[= \frac{p(W = w, W \in A \mid c)}{p(W \in A \mid c)} \approx \frac{p(w) \exp(v^\top w c)}{p(A) \exp(v^\top A c)} \]
\[= p(W = w \mid W \in A) \exp((v_w - v_A)^\top c), \] (30)
By comparing (17) and (30), we get (18). \qed

E Proof of Theorem 6

Proof. By using (15), the right-hand side of (16) is rearranged as
\[p(W \in A \setminus \{w\} \mid W \in A, c) \]
\[= \frac{p(W \in A \setminus \{w\} \mid c)}{p(W \in A \mid c)} \approx \frac{p(A \setminus \{w\})}{p(A)} \exp((v_{A \setminus \{w\}} - v_A)^\top c). \] (31)
Thus $v_{-w|A} \approx v_{A \setminus \{w\}} - v_A$, and further calculation yields
\[v_{-w|A} \approx \frac{p(A)}{p(W = w \mid W \in A)} \left(v_A - \frac{p(w)}{p(A)} v_w \right) - v_A \]
\[= -\frac{p(W = w \mid W \in A)}{1 - p(W = w \mid W \in A)} v_{w|A}. \] (32)

F Details of Experiments
The default parameters of the implementation\(^{10}\) were used for all but the most notable cases.

F.1 Details of §5.1

Corpus text8 corpus\(^{11}\), from which low-frequency words (< 100) were removed.

Hyperparameters for learning word embeddings We run 100 iterations for 300-dimensional vectors. The size of the context window is 5 words (symmetric context). For SGNS, the number of negative samples k is 15 and subsampling of high-frequency words was disabled. For GloVe, the parameter for the weights of the least-squares method x_{max} is 100.

Others For freq and unif, u_c is also centered.

F.2 Details of §5.2 and §5.3

Corpus Wikipedia\(^{12}\) (2.1G tokens)

Hyperparameters for learning word embeddings The dimension of the word embeddings is 300 and the size of the context window is 5 words. For SGNS, the number of negative samples k is 15. For GloVe, the parameter for the weights of the least-squares method x_{max} is 100.

Artificial OR words In §5.3.1, the words used to construct artificial polysemous words were those with more than 100 occurrences. In the calculation of rank, word1 and word2 were excluded from the search.

Actual OR words Each dataset shown in Table 3 was created in the following way.

Dasgupta et al. We used the dataset of OR words manually constructed by Dasgupta et al.

\(^{10}\)https://github.com/tmikolov/word2vec

\(^{11}\)http://mattmahoney.net/dc/textdata.

\(^{12}\)https://dumps.wikimedia.org/
STS12	orig	unif	freq
0.350	0.335	0.334	
0.254	0.277	0.280	
0.377	0.391	0.402	
0.457	0.486	0.493	
0.446	0.455	0.472	

Table 4: The results of semantic textual similarity using the final layer of BERT. The values are Pearson’s correlation coefficients between manually evaluated similarities of sentence pairs and cosine similarities of sentence vector pairs.

(2022). It mainly contains homographs that satisfy \(w \approx w_1 \lor w_2 \). The sample size was 22.

WordNet(noun) By extracting hypernym-hyponym relations from WordNet, we created a set of tuples \((w, w_1, \ldots, w_s)\) satisfying \(w \approx w_1 \lor \cdots \lor w_s \). We used nouns with a frequency of 100 or more. The sample size was 985.

WordNet(verb) It differs from WordNet(noun) only in that contained words are verbs. The sample size was 530.

F.3 Details of §5.4

Word embeddings GloVe pre-trained with Common Crawl (840G tokens)\(^\text{13}\)

Others 0 is not used because the sign cannot be defined.

G Additional Experimental Results

G.1 §5.2.1

The results of semantic textual similarity using the final layer of BERT are shown in Table 4. It can be seen that `freq` is almost consistently the best.

\(^{13}\)https://nlp.stanford.edu/projects/glove/