Topology of the Spaces of Functions
with Prescribed Singularities on Surfaces

E. A. Kudryavtseva¹,*

¹Moscow State University

Let M be a smooth connected orientable closed surface and $f_0 \in C^\infty(M)$ a function having only critical points of the A_μ-types, $\mu \in \mathbb{N}$. Let $\mathcal{F} = \mathcal{F}(f_0)$ be the set of functions $f \in C^\infty(M)$ having the same types of local singularities as those of f_0. We describe the homotopy type of the space \mathcal{F}, endowed with the C^∞-topology, and its decomposition into orbits of the action of the group of “left-right changings of coordinates”.

MSC 58E05, 57M50, 58K65, 46M18

Let M be a smooth connected orientable closed surface and $f_0 \in C^\infty(M)$ a function having only critical points of the A_μ-types, $\mu \in \mathbb{N}$. Let $\mathcal{F} = \mathcal{F}(f_0)$ be the set of functions $f \in C^\infty(M)$ having the same types of local singularities as those of f_0. Denote by $\mathcal{D}^0(M)$ the identity component in the group $\mathcal{D}(M) = \text{Diff}^+(M)$ of orientation-preserving self-diffeomorphisms of M. The group $\mathcal{D}(\mathbb{R}) \times \mathcal{D}(M)$ acts on \mathcal{F} by “left-right changings of coordinates”. We describe the homotopy type of the space \mathcal{F}, endowed with the C^∞-topology, and its decomposition into $\mathcal{D}(\mathbb{R}) \times \mathcal{D}^0(M)$-orbits. This result was announced in [1, 2]. Similar result for a Morse function f_0 and $\chi(M) < 0$ was obtained in [3–5].

Let us give a short historical overview, mostly for the case of a Morse function f_0 (see the paper [3] and references therein). A. T. Fomenko posed the question (1997) whether the space \mathcal{F} is arcwise connected; it was answered affirmatively by the author [6] for $M = S^2, \mathbb{R}P^2$, by S. V. Matveev [6] and H. Zieschang in the general case. Open $\mathcal{D}(\mathbb{R}) \times \mathcal{D}(M)$-orbits in \mathcal{F} were counted by V. I. Arnold [7] and E. V. Kulinich (1998). Homotopy type of any $\mathcal{D}^0(M)$-orbit in \mathcal{F} was studied by S. I. Maksymenko [8] (when f_0 was allowed to have certain degenerate types singularities) and by the author [3–5]. V. A. Vassiliev [9] proved the parametric h-principle and studied cohomology of spaces of smooth \mathbb{R}^N-valued functions not having too complicated singularities on any smooth manifold M. However the 1-parameter h-principle

* Electronic address: eakudr@mech.math.msu.su
fails for the spaces of Morse functions on some M with $\dim M > 5$ [10].

1. MAIN RESULT

For any function $f \in C^\infty(M)$, denote by C_f the set of its critical points, and by C_f^{triv} the set of critical points of the A_{2m}-types, $m \in \mathbb{N}$. Recall that, in a neighbourhood of such a point $x \in C_f$, there exist local coordinates u, v such that $f = \eta(u^{2m+1} + v^2) + f(x)$ for some sign $\eta \in \{+, -\}$. The integer ηm will be called the level of the point x.

Denote by C_{f}^{min} and C_{f}^{max} (respectively C_{f}^{saddle}) the set of critical points of f of A_{2m-1}-types, $m \in \mathbb{N}$, which are (respectively are not) points of local minima or local maxima. In a neighbourhood of such a point x, there exist local coordinates u, v such that $f = \eta(u^{2m} \pm v^2) + f(x)$ where $\eta \in \{+, -\}$. The integer $\eta(m-1)$ will be called the level of the point x.

The subset of degenerate critical points (i.e. those of non-zero levels) in $\hat{C}_{\text{extr}}^f := C_{f}^{\text{min}} \cup C_{f}^{\text{max}}$ will be denoted by \hat{C}_{extr}^f.

Suppose that an action of a group G on a topological space X, a stratified [11] orbifold Y and a continuous surjection $\kappa : X \to Y$ are given. If every G-orbit in X is the full pre-image of a stratum from Y, we will say that κ classifies G-orbits, while Y and κ are the classifying space and map.

The group $\mathcal{D}(\mathbb{R}) \times \mathcal{D}(M)$ acts on $M \times F$ by the homeomorphisms $(x, f) \mapsto (h^{-1}(x), h^{-1} \circ f \circ h)$, $(h_1, h) \in \mathcal{D}(\mathbb{R}) \times \mathcal{D}(M)$. Define the evaluation functional $\text{Eval} : M \times F \to \mathbb{R}$, $(x, f) \mapsto f(x)$, and

$$s := \max\{0, \chi(M) + 1\} > \chi(M).$$

Theorem. For every function $f_0 \in C^\infty(M)$ whose all critical points are of the A_{μ}-types, $\mu \in \mathbb{N}$, there exist smooth manifolds \mathcal{B} and \mathcal{E} and surjective submersions $k : F \to \mathcal{B}$, $\kappa : M \times F \to \mathcal{E}$, $\pi : \mathcal{E} \to \mathcal{B}$, $\varepsilon : \mathcal{E} \to \mathbb{R}$ such that the diagram

\[
\begin{array}{ccc}
M \times F & \xrightarrow{\text{Eval}} & \mathcal{E} \\
\downarrow \text{Pr} & & \downarrow \pi \\
F & \xrightarrow{k} & \mathcal{B}
\end{array}
\]

commutes, where $\text{Pr} : M \times F \to F$ is the projection and $\dim \mathcal{B} = 2s + 2|C_{f_0}^{\text{triv}}| + |C_{f_0}^{\text{extr}}| + |\hat{C}_{f_0}^{\text{extr}}| + 3|C_{f_0}^{\text{saddle}}| = \dim \mathcal{E} - 2$. Moreover:
(a) the maps k, π are homotopy equivalences and classify $D^0(M)$- and $D(\mathbb{R}) \times D^0(M)$-orbits in $\mathcal{F}, M \times \mathcal{F}$ for some stratifications of \mathcal{B}, \mathcal{E} whose all strata are submanifolds; the map π is a fibre bundle with fibres diffeomorphic to M.

(b) the map k (resp. π) induces a homotopy equivalence between every $D^0(M)$-invariant subset $B \subseteq \mathcal{F}$ (resp. $E \subseteq M \times \mathcal{F}$) and its image, e.g. between every orbit from item (a) and the corresponding stratum.

(c) the group $\text{MCG}(M) = D(M)/D^0(M)$ discretely acts on \mathcal{B}, \mathcal{E} by diffeomorphisms preserving the stratifications from item (a) and the function ε; the maps $p \circ k : \mathcal{F} \to \mathcal{B} := \mathcal{B}/\text{MCG}(M)$ and $P \circ \pi : M \times \mathcal{F} \to \mathcal{E} := \mathcal{E}/\text{MCG}(M)$ classify $D(M)$- and $D(\mathbb{R}) \times D(M)$-orbits in \mathcal{F} and $M \times \mathcal{F}$ for the induced stratifications on \mathcal{B}' and \mathcal{E}', where $p : \mathcal{B} \to \mathcal{B}'$ and $P : \mathcal{E} \to \mathcal{E}'$ are the projections.

Let us explain the term “submersion” in the case of functional spaces. If Q, R are smooth manifolds and $Q := Q \times \mathcal{F}$, denote by $C^\infty(R, Q)$ the preimage of $C^\infty(R, Q) \times C^\infty(R \times M)$ under the inclusion $C(R, Q) \hookrightarrow C(R, Q) \times C(R \times M)$, and by $C^\infty(Q, R)$ the set of maps inducing maps $C^\infty(\mathbb{R}^n, Q) \to C^\infty(\mathbb{R}^n, R)$ for all $n \in \mathbb{N}$. A map $p \in C^\infty(Q, R)$ will be called a submersion if, for any $q \in Q$, there exist a neighborhood U of the point $p(q)$ in R and a map $\sigma \in C^\infty(U, Q)$ such that $p \circ \sigma = \text{id}_U$.

2. CONSTRUCTING THE CLASSIFYING MANIFOLDS AND MAPS

Similarly to [12], by a framed function on an oriented surface M we will mean a pair (f, α) where $f \in C^\infty(M)$ has only the A_μ-types local singularities and α is a closed 1–form on $M \setminus C^\text{extr}_f$ such that (i) the 2-form $df \wedge \alpha$ has no zeros on $M \setminus C_f$ and defines a positive orientation, (ii) in a neighbourhood of every critical point $x \in C_f$ there exist local coordinates u, v such that either $f = \eta(u^{2m+1} + v^2) + f(x)$ and $\alpha = \eta d(v - uv)$, or $f = \eta(u^{2m} - v^2) + f(x)$ and $\alpha = \eta d(uv)$, or $f = \eta(u^{2m} + v^2) + f(x)$ and $\alpha = \eta \omega_x \frac{vdu - vdu}{u^2 + v^2}$ where $\omega_x = \text{const} > 0$, $m \in \mathbb{N}$, $\eta \in \{+, -\}$.

Denote by $\mathcal{F} = \mathcal{F}(f_0)$ the space of framed functions (f, α) such that $f \in \mathcal{F}$. Endow this space with the C^∞-topology [12]. Consider the right actions of $D(\mathbb{R}) \times D(M)$ on \mathcal{F} and $M \times \mathcal{F}$ by the homeomorphisms $(f, \alpha) \mapsto (h_1^{-1} \circ f \circ h, h^* \alpha)$ and $(x, f, \alpha) \mapsto (h^{-1}(x), h_1^{-1} \circ f \circ h, h^* \alpha)$, $(h_1, h) \in D(\mathbb{R}) \times D(M)$.

Let $x_1, x_2, \ldots \in M$ be pairwise distinct points. Denote by $D^0_1(M)$ the identity component
of the group $\mathcal{D}_r(M) := \{ h \in \mathcal{D}(M) \mid h(x_i) = x_i, 1 \leq i \leq r \}$, $r \in \mathbb{Z}_+$, whence $\mathcal{D}_0(M) = \mathcal{D}(M)$.

Define the classifying manifolds \mathcal{B} and \mathcal{E} as $\mathcal{B} := \mathcal{B}_s$, $\mathcal{E} := \mathcal{E}_s$, where \mathcal{B}_r and \mathcal{E}_r are the universal moduli spaces

$$\mathcal{B}_r := \mathbb{F}/\mathcal{D}_r^0(M), \quad \mathcal{E}_r := (M \times \mathbb{F})/\mathcal{D}_r^0(M)$$

of framed functions (resp. framed functions with one marked point) in \mathcal{F}, $r \in \mathbb{Z}_+$. One shows similarly to [3, 4] that \mathcal{B}_r and \mathcal{E}_r are orbifolds of dimensions $\dim \mathcal{B}_r = 2r + 2|C^\text{triv}| + |C^\text{extr}| + |\hat{C}^\text{extr}| + 3|C^\text{saddle}| = \dim \mathcal{E}_r - 2$. For every group $\mathcal{G} \in \{ \mathcal{D}_r^0(M), \mathcal{D}(\mathbb{R}) \times \mathcal{D}_r^0(M) \}$, we endow \mathcal{B}_r and \mathcal{E}_r with the stratifications whose every stratum is the full preimage of a point under the projection $\mathcal{B}_r \to \mathcal{F}/\mathcal{G}$ and $\mathcal{E}_r \to (M \times \mathcal{F})/\mathcal{G}$.

Due to the $\mathcal{D}(M)$-equivariance of the projection $M \times \mathbb{F} \to \mathbb{F}$ and the $\mathcal{D}(M)$-invariance of the evaluation functional $M \times \mathbb{F} \to \mathbb{R}$, $(x, f, \alpha) \mapsto f(x)$, they induce some maps $\pi_r : \mathcal{E}_r \to \mathcal{B}_r$ and $\varepsilon_r : \mathcal{E}_r \to \mathbb{R}$. Put $\pi = \pi_s$, $\varepsilon = \varepsilon_s$.

Similarly to [12, Theorem 2.5] and [3, Statement 5.3], one proves the following lemmata which readily imply the theorem.

Lemma 1. The projection $\text{Forg} : \mathbb{F} \to \mathcal{F}$, $(f, \alpha) \mapsto f$, is a homotopy equivalence and has a homotopy inverse map $i : \mathcal{F} \to \mathbb{F}$ and corresponding homotopies that respect the projections $q : \mathcal{F} \to \mathcal{F}/\mathcal{D}_r^0(M)$ and $q \circ \text{Forg} : \mathbb{F} \to \mathcal{F}/\mathcal{D}_r^0(M)$.

Lemma 2. If $r \geq s$ then \mathcal{B}_r is a smooth manifold, while the projection $\text{Ev}_r : \mathbb{F} \to \mathcal{F}_r$ is a homotopy equivalence and has a homotopy inverse map $i_r : \mathcal{F}_r \to \mathbb{F}$ and corresponding homotopies that respect Ev_r (whence $\text{Ev}_r \circ i_r = \text{id}_{\mathcal{F}_r}$).

Put $k_r = \text{Ev}_r \circ i : \mathcal{F} \to \mathcal{F}_r$. One defines similarly κ_r. Define the classifying maps $k = k_s$, $\kappa = \kappa_s$.

3. REDUCING TO THE CASE OF MORSE FUNCTIONS

If f_0 is a Morse function and $s = 0$, then the space \mathcal{B} from §2 coincides with the smooth stratified manifold $\widetilde{\mathcal{M}}$ (the universal moduli space of framed Morse functions) studied in [3–5]. It happens that every \mathcal{B}_r and \mathcal{E}_r can be described in terms of Morse functions.

Recall that a function $f \in C^\infty(M)$ is said to be Morse if all its critical points are nondegenerate (i.e. have the A_1-type, cf. §1). Denote by $\text{Morse}(f_0)$ the space of Morse functions on
having exactly $|C_{f_0}^{\text{min}}|$ and $|C_{f_0}^{\text{max}}|$ points of local minima and maxima and $|C_{f_0}^{\text{saddle}}|$ saddle points.

A Morse function $f \in \text{Morse}(f_0)$ will be called f_0-labeled if every its critical point $x \in C_f$ is labeled by an integer and, in the case when this integer does not vanish and $x \in C_{f_0}^{\text{extr}}$, also by a 1-dimensional subspace $\ell_x \subset T_x M$, moreover $|C_{f_0}^{\text{triv}}|$ of non-critical points of f are labeled by non-zero integers in such a way that the level (cf. §1) of every critical point of f_0 coincides with the integer label of the corresponding labeled point of f, for some bijections $C_{f_0}^{\text{min}} \approx C_{f}^{\text{min}}$, $C_{f_0}^{\text{max}} \approx C_{f}^{\text{max}}$, $C_{f_0}^{\text{saddle}} \approx C_{f}^{\text{saddle}}$ and a bijection between $C_{f_0}^{\text{triv}}$ and the set of labeled non-critical points of f.

Denote by $\text{Morse}^*(f_0)$ the space of framed (cf. §2) f_0-labeled Morse functions. It is not difficult to construct homeomorphisms

$$B_r \approx \text{Morse}^*(f_0)/\mathcal{D}^0_r(M), \quad \mathcal{E}_r \approx (M \times \text{Morse}^*(f_0))/\mathcal{D}^0_r(M), \quad r \in \mathbb{Z}_+.$$ (2)

4. RELATION WITH MEROMORPHIC FUNCTIONS AND THE CONFIGURATION SPACES

Suppose that M is either a sphere S^2 or a torus T^2. If $M = S^2$, denote by $\mathbb{A}(f_0)$ the space of rational functions R on the Riemann sphere $\overline{\mathbb{C}}$ such that all poles of the 1-form $\omega = R(z)dz$ are simple and have real residues, being positive at $|C_{f_0}^{\text{min}}|$ poles and negative at $|C_{f_0}^{\text{max}}|$ poles. If $M = T^2$, denote by $\mathbb{A}(f_0)$ the space of pairs (λ, R) where $\lambda \in \mathbb{C}$, $\text{Im} \lambda > 0$, and R is a meromorphic function on the torus $T^2_{\lambda} = \mathbb{C}/(\mathbb{Z} + \lambda\mathbb{Z})$, whose poles are all simple, all periods of the meromorphic 1-form $\omega = R(z)dz$ are purely imaginary, and the residues are positive at $|C_{f_0}^{\text{min}}|$ poles and negative at $|C_{f_0}^{\text{max}}|$ poles.

Let $\mathbb{A}_0(f_0)$ be the space of functions $R \in \mathbb{A}(f_0)$ or pairs $(\lambda, R) \in \mathbb{A}(f_0)$ such that $\omega = R(z)dz$ has only simple zeros.

Due to [13, Proposition 3.4], the assignment to a 1-form ω its poles and residues at them gives a bijection $\varphi : \mathbb{A}(f_0) \xrightarrow{\sim} C(f_0)$, where $C(f_0)$ is the “labeled configuration space” consisting of $|C_{f_0}^{\text{extr}}|$-points subsets of M equipped by $|C_{f_0}^{\text{min}}|$ positive and $|C_{f_0}^{\text{max}}|$ negative real marks with zero total sum. Thus $\mathbb{A}_0(f_0)$ is homeomorphic to the open subset $\varphi(\mathbb{A}_0(f_0)) \subseteq C(f_0)$ consisting of the “labeled configurations” that correspond to 1-forms ω without multiple zeros.
It is not difficult to derive from (2) with \(r = s \) (cf. (1) and [12, Remark 2.6]) that our manifold \(\mathcal{B} \) is homeomorphic to the space \(\mathcal{A}_0(f_0) \) of functions \(R \in \mathcal{A}_0(f_0) \) or pairs \((\lambda, R) \in \mathcal{A}_0(f_0)\), marked by \(f_0 \)-labels (cf. §3) at zeros and poles of the 1-form \(\omega = R(z)dz \) and at some other \(|C^{\text{triv}}_{f_0}|\) points, as well as by a “vertical” label consisting of (i) a real label and (ii) either a positive real label in the case of \(|C^{\text{saddle}}_{f_0}| = |C^{\text{extr}}_{f_0}| = 0\), or \(|C^{\text{extr}}_{f_0}|\) integral curves of the field \(\ker(\Re \omega) \) separating the poles from other labeled points. Thus, the manifold \(\mathcal{B} \approx \mathcal{A}_0(f_0) \) can be obtained from the “labeled configuration subspace” \(\varphi(\mathcal{A}_0(f_0)) \subseteq C(f_0) \) by assigning the \(f_0 \)-labels and the (topologically inessential) “vertical” label.

ACKNOWLEDGMENTS

The author wishes to express gratitude to S. Yu. Nemirovski for indicating the paper [13]. This work was done under the support of RFBR (grant № 15-01-06302-a) and the programme “Leading Scientific Schools of RF” (grant NSh-7962.2016.1).

1. Kudryavtseva E. A. The topology of spaces of functions with prescribed singularities on surfaces // Proc. Int. Conf. “XVII Geometrical Seminar” (Zlatibor, Sept. 3–8, 2012). Beograd: Matematički fakultet, 2012. 45–47. http://poincare.matf.bg.ac.rs/ geometricalseminar/abstracts

2. Kudryavtseva E. A. Topology and stratification of spaces of functions with prescribed singularities on surfaces // Proc. Int. Conf. “Analysis and singularities” (Moscow, Dec. 17–21, 2012). Moscow: Steklov Math. Inst. RAS, 2012. 141–143. http://arnold75.mi.ras.ru/Abstracts.pdf

3. Kudryavtseva E. A. The topology of spaces of Morse functions on surfaces // Math. Notes 92:2 (2012), 219–236. arXiv:1104.4792

4. Kudryavtseva E. A. On the homotopy type of the spaces of Morse functions on surfaces // Sborn. Math. 204:1 (2013), 75–113. arXiv:1104.4796

5. Kudryavtseva E. A. Special framed Morse functions on surfaces // Moscow Univ. Math. Bull. 67:4 (2012), 151–157. arXiv:1106.3116.

6. Kudryavtseva E. A. Realization of smooth functions on surfaces as height functions // Sb. Math. 190:3 (1999), 349–405.
7. Arnold V. I. Topological classification of Morse functions and generalisations of Hilbert’s 16-th problem // Math. Phys. Anal. Geom. 10:3 (2007), 227–236.

8. Maksymenko S. I. Homotopy types of stabilizers and orbits of Morse functions on surfaces // Ann. Glob. Anal. Geom. 29:3 (2006), 241–285. arXiv:0310067

9. Vasil’ev V. A. Topology of spaces of functions without compound singularities // Funct. Anal. Appl. 23:4 (1989), 277–286.

10. Chenciner A., Laudenbach F. Morse 2-jet space and h-principle // Bull. Brazil. Math. Soc. 40:4 (2009), 455–463. arXiv:0902.3692

11. Whitney H. Tangents to an analytic variety // Ann. Math. 81:3 (1965), 496–549.

12. Kudryavtseva E. A., Permyakov D. A. Framed Morse functions on surfaces // Sborn. Math. 201:4 (2010), 501–567.

13. Grushevsky S., Krichever I. The universal Whitham hierarchy and geometry of the moduli space of pointed Riemann surfaces // In: Surveys in Differ. Geom. 14 (2010). Int. Press, Somerville, MA. 111–129. arXiv:0810.2139