Research Article

The Effect of the Integrated Chinese and Western Medicine for the Treatment of Parkinson’s Disease: A Meta-Analysis

Zengmian Wang, Tianshu Wang, Baoying Sheng, Weidong Song, and Pengcheng Ji

1Department of Neurology, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
2Department of Orthopaedic Surgery, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
3Department of Orthopaedic Surgery, The Second Affiliated Hospital of Mudanjiang Medical College, Mudanjiang, China
4Department of Orthopaedic Surgery, Yakeshi Zhongmeng Hospital, Hulunbuir, China

Correspondence should be addressed to Pengcheng Ji; 161847038@masu.edu.cn

Received 8 February 2022; Revised 1 March 2022; Accepted 14 March 2022; Published 8 April 2022

Objective. Traditional Chinese medicine (TCM) has been used to treat Parkinson’s disease (PD), but the efficacy is still not clear. The aim of this study was to evaluate the effect of the integrated Chinese and Western medicine (ICWM) for PD through a meta-analysis.

Methods. We searched randomized controlled trials comparing integrated Chinese and Western medicine (ICWM) versus conventional Western medicine (CWM) for Parkinson’s disease. Data were extracted from eligible studies. We sought to evaluate pretreatment and posttreatment symptoms of PD patients and their quality of life and reduce adverse reactions. The results were expressed as risk ratio (RR) and mean difference (MD) with accompanying 95% confidence intervals.

Results. Twenty-three studies were included in this study with a total of 1769 patients. The pooled results revealed that ICWM significantly improved the UPDRS score than CWM, the MD of UPDRS-I, II, III, and IV was -1.05 (95% CI: -1.42 to -0.69, \(P < 0.00001 \)), -2.55 (95% CI: -3.19 to -1.90, \(P < 0.00001 \)), -3.64 (95% CI: -4.69 to -2.60, \(P < 0.00001 \)), and -0.61 (95% CI: -0.96 to -0.27, \(P = 0.0004 \)), respectively, and ICWM also had a better score of PDQ-39 (MD = -8.71, 95% CI: -13.52 to -3.90, \(P = 0.0004 \)) and MoCA scores (MD = 3.35, 95% CI: 1.65 to 5.04, \(P = 0.0001 \)) compared with CWM. ICWM had certain advantages in terms of effective rate (RR = 1.27, 95% CI: 1.18 to 1.37, \(P < 0.00001 \)) and adverse reactions (RR = 0.21, 95% CI: 0.13 to 0.36, \(P < 0.00001 \)). Conclusion. Our research supported that ICWM had important health benefits for patients with PD and can effectively improve the symptoms of PD patients and their quality of life and reduce adverse reactions. Due to the lower quality of the included studies, large sample and multicenter randomized control test should be performed to verify our conclusions.

1. Introduction

Parkinson’s disease (PD) is a central nervous system disease characterized by motor as the main manifestation (1). With the in-depth study of the disease, in addition to motor dysfunction, its nonmotor symptoms have also attracted attention, such as sleep disorder, anxiety and depression, cognitive dysfunction, and restless leg syndrome (2, 3). The incidence rate of common population in developed countries is about 0.3%, and the rate of people over 60 is about 1%, while it is up to 3% over 80 (4).

The treatment of PD takes compound levodopa, dopamine receptor agonist, and monoamine oxidase inhibitor as the main intervention measures (5, 6). These drugs not only alleviate the movement disorder but also play a good regulatory role in sleep. However, due to long-term use, they have side effects such as efficacy attenuation, switching phenomenon, and dyskinesia (7).

Traditional Chinese medicine (TCM) believes that PD belongs to "vibration disease," and those with muscle tension, spasm, and slowness of movement can be diagnosed as TCM detention disease; those with both obvious symp-
toms can be diagnosed as “shaking detention disease” in TCM (8). TCM uses the combination of disease and syndrome, syndrome differentiation, treatment according to syndrome, and other methods to treat PD and has achieved good clinical effects in terms of increasing efficiency and reducing toxicity and improving the patients’ quality of life (9). TCM is a holistic medical system, which includes herbal medicine, acupuncture, tai chi, massage, diet therapy, and qigong. Many studies have found that the combination of traditional Chinese medicine and Western medicine has both synergistic efficacy and the advantages of reducing the adverse reactions of Western medicine (10, 11).

So far, a large number of studies have been carried out to study the role of the integrated Chinese and Western medicine (ICWM) in the treatment of PD (12, 13). In view of the lack of relevant systematic evaluation, this study was aimed at comprehensively collecting the published randomized controlled trials (RCTs) of the ICWM for the treatment of PD and systematically evaluating the stability and safety of its efficacy by comparing the clinical efficacy of the ICWM and conventional Western medicine (CWM) in the treatment of PD, so as to provide basis for rational and safe drug use.

2. Methods

2.1. Literature Search Strategy. Two authors (Z Wang and T Wang) performed a systematic search in 6 electronic databases including Cochrane Central Register (CENTRAL), PubMed, China National Knowledge Internet (CNKI) Database, Chinese Biological Medical (CBM) Database, Wanfang Database, and China Science and Technology Journal Database (VIP) (up to December 31, 2021) with the following keywords: (1) traditional Chinese medicine; (2) Chinese medicine; (3) Parkinson’s disease; and (4) Parkinsonism. The search strategy was refined by combining the keywords using the Boolean operators “OR” or “AND.” There were no restrictions on the publication language in the literature search. Disagreements were resolved through consensus between the reviewers.

2.2. Study Selection. Inclusion criteria included the following: (1) researches comparing patients who receive integrated Chinese and Western medicine (ICWM) with conventional Western medicine (CWM); (2) patients with Parkinson’s disease; (3) containing indicators evaluating effectiveness between the two therapy; and (4) available in full text. The exclusion criteria were as follows: (1) ineligible article design; (2) duplicate articles; (3) reviews, protocols, or letters; and (4) no sufficient related outcomes.

2.3. Data Extraction and Quality Assessment. Two independent reviewers (B Sheng and W Song) performed the study selection, quality assessment, and data extraction. All available information related to our study topic was extracted from the included studies, including study authors, study design, treatment therapy, patients’ characteristics (age and gender), year of outset, and time of follow-up.

We assessed the methodological quality of the included studies by the Cochrane Collaboration tool, which was based on the following six items: allocation concealment, random sequence generation, blinding (objective outcomes), blinding (self-reported), selective and incomplete outcome reporting, and other bias presence.
Study	Study design	Intervention	Treatment	No. of patients	Gender (M/F)	Age Follow-up	Intervention	Control	Intervention	Control	Duration
Li Chengdong 2011 RCT	Herbal fumigation and washing prescription + medoba	Medoba	40	40	23/17	61 ± 11.83	61 ± 11.83	4 months	2006 to 2010		
Wan Fung Kum 2011 RCT	Jia Wei Liu Jun Zi Tang + CMW	CMW	22	25	14/8	64.82 ± 8.88	60.88 ± 9.41	24 weeks	NR		
Weidong Pan 2011 RCT	Zeng-xiao An-shen Zhi-chan 2 + CMW	CMW	56	54	34/22	62.82 ± 10.31	63.1 ± 10.2	13 weeks	2008 to 2010		
Yang Qingtang 2012 RCT	Shaoyao Gancao decoction + Ganmai Dazao decoction + medoba	Medoba	34	34	NR	NR	NR	12 weeks	2009 to 2011		
Yu Dengjun 2012 RCT	Ginseng Guipi decoction + medoba	Medoba	50	48	NR	70.02 ± 6.73	70.02 ± 6.73	4 weeks	2009 to 2011		
Zhong Cheng 2012 RCT	Bushen Huoxue Tongluo capsule + CMW	CMW	60	60	NR	51.82	51.82	3 months	2011 to 2012		
Chen Mengyun 2014 RCT	Zhizhan granule + CMW	CMW	57	51	38/19	66.44 ± 7.64	65.63 ± 7.37	12 weeks	2012 to 2013		
Chao Gu 2015 RCT	Di-Huang-Yi-Zhi + donepezil	Donepezil	30	30	14/16	67.33 ± 9.31	67.06 ± 9.63	6 months	2010 to 2013		
Wen Lili 2015 RCT	Cistanche wuxifeng granule + medoba	Medoba	29	28	15/14	70.79 ± 7.50	71.21 ± 5.95	3 months	2013 to 2014		
You Jiahua 2015 RCT	Shuijing dingzhan decoction + CMW	CMW	30	30	22/8	65.4 ± 7.9	65.1 ± 8.2	12 weeks	2013 to 2014		
Bai Yu 2016 RCT	Zishen Roujing decoction + CMW	CMW	54	54	33/21	66.81 ± 7.86	66.16 ± 7.72	12 weeks	2007 to 2015		
Xu Qingshui 2016 RCT	Cistanche Rongjing + levodopa	Levodopa	14	10	8/6	60.35 ± 8.17	63.22 ± 6.79	3 months	NR		
Ye Qing 2016 RCT	Yizhi Pingzhan recipe + levodopa	Levodopa	40	38	25/15	67.59 ± 7.89	65.93 ± 6.63	3 months	2013 to 2015		
Zhang Lijuan 2016 RCT	Qingxin Kaiqiao recipe + acupuncture + medoba	Medoba	49	49	NR	62.3 ± 11.2	63.1 ± 10.5	4 months	2015		
Cai Li 2017 RCT	Zhizhan decoction + CMW	CMW	43	43	25/18	57.24 ± 3.36	58.14 ± 4.12	12 weeks	2014 to 2016		
Chen Yu 2017 RCT	Tianma goutengyin and Shaoyao Gancao decoction + medoba	Medoba	36	36	22/14	68.8 ± 10.5	67.7 ± 9.9	3 months	2013 to 2015		
Wang Jiecheng 2017 RCT	Self-made prescription + dopashydrazine	Dopashydrazine	49	49	28/21	72.32 ± 10.72	73.81 ± 10.64	4 weeks	2016		
Mo Haizhen 2018 RCT	Yishen tiaogan lieyu recipe + dopashydrazine	Dopashydrazine	30	30	13/17	62.74 ± 4.89	64.57 ± 6.68	8 weeks	2016 to 2017		
Study	Study design	Treatment	No. of patients	Gender (M/F)	Age Follow-up	Duration					
-------------	--------------	------------	-----------------	--------------	---------------	----------					
Xu Xiao 2018	RCT	Shaoyao Gancao decoction+CMW	CMW	30	16/14	53 ± 11.45	3 months				
							2014 to 2017				
Cao Jianfeng	RCT	Dialectical prescription+levodopa	Levodopa	45	29/16	68.56 ± 2.71	8 weeks				
2020							2016 to 2018				
Liao Xun 2020	RCT	Dialectical prescription+dopashydrazine	Dopashydrazine	36	20/16	52.47 ± 1.36	11 weeks				
							2018 to 2019				
Zhao Lili 2020	RCT	Dialectical prescription+medoba	Medoba	60	NR	57.00 ± 13.87	5 weeks				
							2017 to 2019				
Zhang Quan 2021	RCT	Yangxue Pinggan granule+CMW	CMW	20	10/10	58.00 ± 14.05	8 weeks				
							2017 to 2019				

RCT: randomized controlled trial; CMW: conventional Western medicine; NR: not reported.
2.4. Statistical Analysis. All statistical analyses were performed by using Review Manager (version 5.4) software (RevMan; The Nordic Cochrane Centre, Copenhagen, Denmark, 2020). Continuous variables were expressed as mean difference (MD) with 95% confidence interval (CI), and risk ratio (RR) was used for classification data. Heterogeneity of the data was assessed using the chi test and I^2 values. I^2 of 25, 50 and 75% will be considered to represent low, medium, and high heterogeneity, respectively. A fixed effect model was applied in the absence of heterogeneity, while random effect model was used if heterogeneity was observed. Publication bias was evaluated by visual inspection of funnel plots and using Egger’s tests.

3. Results

3.1. Search Process. A total of 326 eligible studies were screened. After exclusion of 303 trials that did not meet our inclusion criteria, 23 randomized RCTs with a total of 1769 patients were included (14–36). The process of literature retrieval is shown in Figure 1.

3.2. Characteristics of the Included Studies. Table 1 showed the main characteristics of the included studies. The ICWM group treatment contained herbal prescription, decoction, capsule, and granule, and the CWM group was treated with medoba, donepezil, levodopa, or dopashydrazine. All these studies were published from 2011 to 2021. The sample size ranged from 24 to 120.

3.3. Results of the Quality Assessment. The quality of the included studies were assessed in accordance with Cochrane Collaboration tool. There were no high risk of six kinds of bias in each studies (Figure 2). A summary of the risk of bias assessment for all included studies is shown in Figure 3.

3.4. Results of the Heterogeneity Test

3.4.1. UPDRS Score. The Parkinson’s disease rating scale (UPDRS) scored the patient’s condition before and after treatment and evaluated the scores of four parts of UPDRS: I, II, III, and IV. Part I mainly evaluated the patient’s mental behavior and emotional factors, part II evaluated the patient’s ability of daily living, part III evaluated the patient’s motor ability, and part IV evaluated the complications during treatment. Ten, eleven, twelve, and eight trials compared the effect of the ICWM versus CWM according to changes in the UPDRS-I, II, III, and IV score, respectively.

The pooled results from the random effect model showed that the ICWM group had a higher decrease of UPDRS-I, II, III, and IV than the CWM group, as the MD of UPDRS-I, II, III, and IV were -1.05 (95% CI: -1.42 to -0.69, $P < 0.00001$), -2.55 (95% CI: -3.19 to -1.90, $P < 0.00001$), -3.64 (95% CI: -4.69 to -2.60, $P < 0.00001$), and -0.61 (95% CI: -0.96 to -0.27, $P = 0.00004$), respectively (Figure 4). The results demonstrated that ICWM showed a significant beneficial effect in improving mental behavior, emotional factors, ability of daily living, motor ability, and complications than CWM.
Random sequence generation (Selection bias)
Allocation concealment (Selection bias)
Blinding of participants and personnel (Performance bias)
Blinding of outcome assessment (Detection bias)
Incomplete outcome data (Attrition bias)
Selective reporting (Reporting bias)
Other bias

0% 25% 50% 75% 100%
Low risk of bias
Unclear risk of bias
High risk of bias

Figure 3: Quality assessment of the included studies: low risk (green), unclear (yellow), and high risk (red).

Study or Subgroup	Intervention Mean	Control Mean	Mean difference	IV, Random, 95% CI	Mean difference IV, Random, 95% CI
ICWM					
Chen meng 2014	-0.52 ± 0.69	0.02 ± 0.70	-0.54 ± 0.70		
Mo han 2014	-0.50 ± 0.68	0.06 ± 0.59	-0.56 ± 0.62		
Wang 2014	-0.49 ± 0.58	0.08 ± 0.61	-0.57 ± 0.65		
Li 2015	-0.48 ± 0.62	0.05 ± 0.62	-0.53 ± 0.68		
Wu 2016	-0.47 ± 0.63	0.04 ± 0.61	-0.51 ± 0.66		
Zhang 2017	-0.46 ± 0.62	0.04 ± 0.61	-0.50 ± 0.65		
Other bias					

Figure 4: Forest plot showing the mean difference in the UPDRS score between ICWM and CWM groups.
the Montreal Cognitive Assessment (MoCA). The MoCA
calculated 236 patients reported it by the instruments of
3.4.3. Cognitive Function. For cognitive function, three stud-
3.4.2. PDQ-39 Score. Six studies involving 430 patients con-
tributed to the analysis of life quality, by using the question-
naires of the 39-item Parkinson’s disease questionnaire
(PDQ-39). The pooled analysis indicated that, compared
with CWM group, the ICWM group resulted in a great
improvement in the PDQ-39 score with a MD of −8.71
(PDQ-39). The pooled analysis indicated that, compared
to the CWM group, the ICWM group resulted in a great
improvement in the PDQ-39 score with a MD of −8.71
(PDQ-39). The pooled analysis indicated that, compared
to the CWM group, the ICWM group resulted in a great
improvement in the PDQ-39 score with a MD of −8.71
(PDQ-39). The pooled analysis indicated that, compared
to the CWM group, the ICWM group resulted in a great
improvement in the PDQ-39 score with a MD of −8.71
(PDQ-39). The pooled analysis indicated that, compared
to the CWM group, the ICWM group resulted in a great
improvement in the PDQ-39 score with a MD of −8.71
(PDQ-39). The pooled analysis indicated that, compared
to the CWM group, the ICWM group resulted in a great
improvement in the PDQ-39 score with a MD of −8.71
(PDQ-39). The pooled analysis indicated that, compared
to the CWM group, the ICWM group resulted in a great
improvement in the PDQ-39 score with a MD of −8.71
(PDQ-39). The pooled analysis indicated that, compared
to the CWM group, the ICWM group resulted in a great
improvement in the PDQ-39 score with a MD of −8.71
(PDQ-39). The pooled analysis indicated that, compared
to the CWM group, the ICWM group resulted in a great
improvement in the PDQ-39 score with a MD of −8.71
(PDQ-39). The pooled analysis indicated that, compared
to the CWM group, the ICWM group resulted in a great
improvement in the PDQ-39 score with a MD of −8.71
(PDQ-39). The pooled analysis indicated that, compared
to the CWM group, the ICWM group resulted in a great
improvement in the PDQ-39 score with a MD of −8.71
(PDQ-39). The pooled analysis indicated that, compared
to the CWM group, the ICWM group resulted in a great
improvement in the PDQ-39 score with a MD of −8.71
(PDQ-39). The pooled analysis indicated that, compared
to the CWM group, the ICWM group resulted in a great
improvement in the PDQ-39 score with a MD of −8.71
(PDQ-39). The pooled analysis indicated that, compared
to the CWM group, the ICWM group resulted in a great
improvement in the PDQ-39 score with a MD of −8.71
(PDQ-39). The pooled analysis indicated that, compared
to the CWM group, the ICWM group resulted in a great
improvement in the PDQ-39 score with a MD of −8.71
(PDQ-39). The pooled analysis indicated that, compared
to the CWM group, the ICWM group resulted in a great
improvement in the PDQ-39 score with a MD of −8.71
(PDQ-39). The pooled analysis indicated that, compared
to the CWM group, the ICWM group resulted in a great
improvement in the PDQ-39 score with a MD of −8.71
(PDQ-39). The pooled analysis indicated that, compared
to the CWM group, the ICWM group resulted in a great
improvement in the PDQ-39 score with a MD of −8.71
(PDQ-39). The pooled analysis indicated that, compared
to the CWM group, the ICWM group resulted in a great
improvement in the PDQ-39 score with a MD of −8.71
(PDQ-39). The pooled analysis indicated that, compared
to the CWM group, the ICWM group resulted in a great
improvement in the PDQ-39 score with a MD of −8.71
(PDQ-39). The pooled analysis indicated that, compared
to the CWM group, the ICWM group resulted in a great
improvement in the PDQ-39 score with a MD of −8.71
(PDQ-39). The pooled analysis indicated that, compared
to the CWM group, the ICWM group resulted in a great
improvement in the PDQ-39 score with a MD of −8.71
(PDQ-39). The pooled analysis indicated that, compared
to the CWM group, the ICWM group resulted in a great
improvement in the PDQ-39 score with a MD of −8.71
(PDQ-39). The pooled analysis indicated that, compared
to the CWM group, the ICWM group resulted in a great
improvement in the PDQ-39 score with a MD of −8.71
(PDQ-39). The pooled analysis indicated that, compared
to the CWM group, the ICWM group resulted in a great
improvement in the PDQ-39 score with a MD of −8.71
(PDQ-39). The pooled analysis indicated that, compared
to the CWM group, the ICWM group resulted in a great
improvement in the PDQ-39 score with a MD of −8.71
(PDQ-39). The pooled analysis indicated that, compared
to the CWM group, the ICWM group resulted in a great
improvement in the PDQ-39 score with a MD of −8.71
(PDQ-39). The pooled analysis indicated that, compared
to the CWM group, the ICWM group resulted in a great
improvement in the PDQ-39 score with a MD of −8.71
(PDQ-39). The pooled analysis indicated that, compared
to the CWM group, the ICWM group resulted in a great
improvement in the PDQ-39 score with a MD of −8.71
(PDQ-39). The pooled analysis indicated that, compared
to the CWM group, the ICWM group resulted in a great
improvement in the PDQ-39 score with a MD of −8.71
(PDQ-39). The pooled analysis indicated that, compared

3.4.5. Adverse Reaction. A total of eight studies reported the adverse reaction. The forest plot showed that the rate of adverse reactions in the ICWM group was lower than the CWM group (RR = 0.21, 95% CI: 0.13 to 0.36, P < 0.00001) (Figure 8), without significant heterogeneity among studies ($I^2 = 0\%$, $P = 0.81$) (Figure 8).
3.5. Publication Bias. Funnel plots were performed to evaluate the publication bias. Two funnel plots were produced for indexes of effective rate and adverse reaction, and they showed some evidence of asymmetry (Figure 9), but the Egger’s linear regression for quantitative publication bias of two indexes was nonsignificant (effective rate, $P = 0.478$; adverse reaction, $P = 0.751$), which suggested that no significant publication bias existed in our meta-analysis.

4. Discussion

With the increasing global aging society, the prevalence and incidence of PD continue to increase. Studies have confirmed that almost all PD patients have at least one nonmotor symptom, which is closely related to the duration of PD, disease severity, and cognitive function (37). Damage is closely related, which is also the main factor affecting the quality of life of patients and even late disability. In terms of Western medicine treatment, levodopa is still the only reported drug that can prolong life expectancy, but after long-term replacement therapy treatment, it will become less and less advantageous, and more than 50% of PD patients will eventually experience severe movement disorders, sleep attacks, and adverse reactions, resulting in an immeasurable burden on patients, families, and society (38, 39). Traditional Chinese medicine is effective in alleviating various symptoms, especially age-related symptoms.

Compared with the traditional CWM, ICWM treatment can prolong the increase of CWM dosage and the time course of combined medication. At the same time, traditional Chinese medicine has less toxic and side effects (40). Therefore, taking advantage of the traditional Chinese medicine can not only improve the clinical symptom severity score of PD but also have fewer adverse reactions (41, 42).

The results of this study showed that the treatment of PD with ICWM was better than the simple CWM treatment in reducing the UPDRS score and improving the PDQ-39 (MD = −8.71, 95% CI: -13.52 to -3.90, $P = 0.0004$), and it was also better than CWM in the MoCA scores (MD = 3.35, 95% CI: 1.65 to 5.04, $P = 0.0001$). There are certain advantages in terms of effective rate (RR = 1.27, 95% CI: 1.18 to 1.37, $P < 0.00001$) and adverse reactions (RR = 0.21, 95% CI: 0.13 to 0.36, $P < 0.00001$). This is consistent with Tian’s research results (43).

This meta-analysis has the following limitations. First, most of the included studies were in Chinese, with only 3 articles in English, and the research subjects were all domestic patients. There may be bias in population selection and low research quality. Second, only 6 of the included studies used a random number table, and the rest of the studies mentioned “random” but did not specify the random method. Third, except for 3 studies that adopted double-blind method, the rest did not mention the specific blinding method. Fourth, sleep disorders in PD require long-term treatment, and the included studies lack long-term follow-up.

To sum up, ICWM can effectively improve the symptoms of PD patients and their quality of life and reduce adverse reactions. It is a safe and effective intervention method in clinical practice. Due to the limitations of the quality and quantity of the included studies, this systematic review still has many deficiencies. More randomized controlled trials should be implemented to further strengthen this evidence.

Data Availability

No data were used to support this study.

Ethical Approval

The authors are accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Disclosure

All authors have completed the ICMJE uniform disclosure form.

Conflicts of Interest

The authors have no conflicts of interest to declare.

Authors’ Contributions

Zengmian Wang and Tianshu Wang have contributed equally to this work and share first authorship.

References

[1] P. Jiang and D. W. Dickson, “Parkinson’s disease: experimental models and reality,” Acta Neuropathologica, vol. 135, pp. 1–20, 2018.

[2] H. H. Fernandez, M. E. Trieschmann, and J. H. Friedman, “Treatment of psychosis in Parkinson’s disease: safety considerations,” Drug Safety, vol. 23, pp. 568–574, 2018.

[3] J. J. Li, K. K. Chua, and M. Li, Constitutional study of Parkinson’s disease patients based on traditional Chinese medicine pattern differentiation,” Integrative Medicine International, vol. 1, pp. 170–175, 2015.

[4] R. Janet, H. H. Fernandez, and M. S. Okun, “Rationale for current therapies in Parkinson’s disease,” Expert Opin Pharmacother, vol. 4, pp. 1747–1761, 2019.

[5] L. M. F. Doyle, A. A. Kühn, M. Hariz, A. Kupsch, G. H. Schneider, and P. Brown, “Levodopa-induced modulation of subthalamic beta oscillations during self-paced movements in patients with Parkinson’s disease,” The European Journal of Neuroscience, vol. 21, pp. 1403–1412, 2005.

[6] J. D. Parkes, G. Curzon, P. J. Knott et al., “Treatment of Parkinson’s disease with amantadine and levodopa,” A one-year study. Lancet, vol. 1, pp. 1083–1086, 2018.

[7] H. J. Huang, C. C. Lee, and Y. C. Chen, “Pharmacological chaperone design for reducing risk factor of Parkinson’s disease from traditional Chinese medicine,” Evidence-based Complementary and Alternative Medicine: Ecam, vol. 34, pp. 1232–1238, 2014.

[8] S.-T. Feng, X.-L. Wang, Y.-T. Wang et al., “Efficacy of traditional Chinese medicine combined with selective serotonin
reuptake inhibitors on the treatment for Parkinson’s disease with depression: a systematic review and meta-analysis,” *The American Journal of Chinese Medicine*, vol. 21, pp. 467–483, 2021.

[9] G. Zhang, N. Xiong, Z. Zhang et al., “Effectiveness of traditional Chinese medicine as an adjunct therapy for Parkinson’s disease: a systematic review and meta-analysis,” *PLoS One*, vol. 10, pp. 118–125, 2015.

[10] Y. Wang, X. M. Lin, and G. Q. Zheng, "Traditional Chinese medicine for Parkinson’s disease in China and beyond," *Journal of Alternative & Complementary Medicine*, vol. 17, no. 5, pp. 385–388, 2011.

[11] W. Chen and X. Lian, "Systematic evaluation of traditional Chinese medicine for treating Parkinson’s disease," *Research on nerve regeneration*, vol. 5, pp. 9–12, 2010.

[12] Y. Qian, X. Yang, S. Xu et al., "Alteration of the fecal microbiota in Chinese patients with Parkinson’s disease," *Brain Behavior & Immunity*, vol. 5, pp. 584–589, 2018.

[13] D. Xiao, D. O. Stem, S. O. Artsciences et al., “Acupuncture for Parkinson’s disease: a review of clinical, animal, and functional magnetic resonance imaging studies,” *Journal of Traditional Chinese Medicine*, vol. 12, pp. 128–135, 2015.

[14] B. Yu, L. Shuqin, M. Xiaoli, and Z. R. Jing, "Decoction improves non motor symptoms of liver and kidney yin deficiency syndrome of Parkinson’s disease," *Chinese Journal of experimental prescriptions*, vol. 22, pp. 182–186, 2016.

[15] Z. Cheng, P. Huang, Z. G. Sun, and C. Wang, "120 cases of primary Parkinson’s disease treated with Bushen Huoxue Tongluo capsule," *Chinese Journal of experimental prescriptions*, vol. 18, pp. 343–346, 2012.

[16] X. Liao, "Clinical efficacy and safety analysis of integrated traditional Chinese and Western medicine in the treatment of Parkinson’s disease," *Chinese Journal of modern medicine*, vol. 18, pp. 54–55, 2016.

[17] Y. Qingtang and S. Yinnong, "Clinical observation of modified Shaoyao Gancao decoction and Ganmai Dazhao decoction in the treatment of Parkinson’s disease," *Clinical research of traditional Chinese Medicine*, vol. 4, pp. 1–2, 2012.

[18] Z. Lili, Y. Liang, Z. Shou et al., "Clinical observation on 75 cases of Parkinson’s disease treated with integrated traditional Chinese medicine," *Clinical research of traditional Chinese Medicine*, vol. 12, pp. 88–91, 2020.

[19] Z. Kefei, W. Bing, and S. Zhaorui, "Clinical efficacy of self-made traditional Chinese medicine combined with youzopidone tablets in the treatment of insomnia in Parkinson’s disease," *Contemporary Medicine*, vol. 25, pp. 150–152, 2019.

[20] C. Yu and L. Yan, "Clinical observation of modified Shaoyao Gancao decoction in the treatment of 36 cases of Parkinson’s disease with liver and kidney yin deficiency," *Fujian traditional Chinese Medicine*, vol. 48, pp. 52–53, 2017.

[21] X. Xia and D. Qin, "Clinical study on modified Shaoyao Gancao decoction in the treatment of Parkinson’s disease," *Henan traditional Chinese Medicine*, vol. 38, pp. 874–877, 2018.

[22] J. H. You, Y. F. Lou, J. J. Yao, G. R. Zhang, K. P. Wang, and L. K. Wang, "Effect of Shuqin dingzhan decoction on non motor symptoms of Parkinson’s disease," *Henan traditional Chinese Medicine*, vol. 35, pp. 3120–3121, 2015.

[23] C. Li, L. Yi, W. T. Li, and R. K. Li, "A randomized double-blind controlled study of zhizhan decoction combined with western medicine in the treatment of 43 cases of Parkinson’s disease,” *Jiangsu traditional Chinese Medicine*, vol. 49, pp. 33–35, 2017.

[24] Z. Lijuan, "Observation on the effect of combined treatment of Chinese and Western medicine in patients with Parkinson’s disease complicated with cognitive impairment," *Journal of clinical rational drug use*, vol. 9, pp. 80–81, 2016.

[25] H. Xin, "Observation on the curative effect of medopa combined with TCM syndrome differentiation in the treatment of senile Parkinson’s disease," *Journal of difficult diseases*, vol. 9, pp. 563–565, 2010.

[26] Z. Quan and Z. Jinwei, "Clinical observation of Yangxue Pinggan method in the treatment of Parkinson’s disease," *Journal of integrated traditional Chinese and Western Medicine*, vol. 19, pp. 3600–3602, 2021.

[27] Q. S. Xu, S. J. Xiao, S. Q. Chen, Y. N. Lin, S. Y. Chen, and W. Qin, "Effect of Cistanche deserticola combined with Kazu doule DOPA controlled release tablets on early Parkinson’s disease," *Journal of integrated traditional Chinese and Western Medicine*, vol. 14, pp. 2832–2835, 2016.

[28] W. Lili, H. Yan, and J. Lin, "Intervention of Cistanche wuxifeng granule on TCM syndrome, motor symptoms and quality of life of Parkinson’s disease," *Journal of Liaoning University of Traditional Chinese Medicine*, vol. 17, pp. 130–132, 2015.

[29] C. Jianfeng, D. Lan, and G. Yuhua, "45 cases of senile Parkinson’s disease complicated with depression treated with traditional Chinese medicine decoction combined with conventional Western medicine," *Medical Diet and Health*, vol. 18, pp. 2–3, 2020.

[30] W. Jiacheng, "Therapeutic effect of self-made traditional Chinese medicine prescription combined with dopaslydrazine on Parkinson’s disease with liver and kidney yin deficiency," *Shanxi Traditional Chinese Medicine*, vol. 38, pp. 1382–1383, 2017.

[31] L. Chengdong, "Observation on the curative effect of traditional Chinese medicine fumigation combined with Madopa in the treatment of Parkinson’s disease," *Shandong Medicine*, vol. 51, pp. 41–42, 2011.

[32] Q. Ye, H. Z. Zhang, D. F. Cai, J. Zhou, J. He, and S. X. Yuan, "Therapeutic effect of Yizhi Pingzhan decoction on Parkinson’s disease complicated with mild cognitive impairment," *Shanghai Journal of Traditional Chinese Medicine*, vol. 50, pp. 47–49, 2016.

[33] M. Y. Chen, Y. Liu, K. F. Ruan et al., "A randomized, double-blind, placebo-controlled clinical study of zhizhan granule combined with conventional western medicine in the treatment of Parkinson’s disease with deficiency of liver and kidney and deficiency of qi and blood," *Shanghai Journal of Traditional Chinese Medicine*, vol. 48, pp. 27–30, 2014.

[34] H. Z. Mo, Y. Y. Hu, H. Y. Liang, and X. X. Liu, "Clinical study of tonifying kidney, regulating liver and relieving depression in the treatment of Parkinson’s disease depression with liver and kidney yin deficiency," *Tianjin traditional Chinese Medicine*, vol. 35, pp. 11–14, 2018.

[35] L.-J. Yang, J.-B. Tian, Y.-H. Cai, X.-F. Liu, X.-L. Zhang, and A. B.-L. Geng, "Clinical observation on 60 cases of Parkinson’s disease treated with kangchanning," *World Journal of integrated traditional Chinese and Western Medicine*, vol. 6, pp. 125–127, 2011.

[36] D. J. Yu, H. Wang, Z. W. Hu, and X. Jiang, "Observation on 50 cases of non motor symptoms of senile fibrillation syndrome of qi and blood deficiency treated with ginseng Guipi decoction," *Zhejiang Journal of traditional Chinese Medicine*, vol. 47, pp. 175–176, 2012.
[37] P. Hagell and H. Widner, "Clinical rating of dyskinesias in Parkinson's disease: use and reliability of a new rating scale," *Movement Disorders*, vol. 14, pp. 448–455, 2015.

[38] M. G. Kaplitt, A. Feigin, C. Tang et al., "Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson's disease: an open label, phase I trial," *Lancet*, vol. 369, pp. 2097–2105, 2015.

[39] E. Lezcano, J. C. Gómez-Esteban, J. J. Zarranz et al., "Improvement in quality of life in patients with advanced Parkinson's disease following bilateral deep-brain stimulation in subthalamic nucleus," *European Journal of Neurology the Official Journal of the European Federation of Neurological Societies*, vol. 11, pp. 451–454, 2015.

[40] Y. Wang, C.-L. Xie, L. Lu, D.-L. Fu, and G.-Q. Zheng, "Chinese herbal medicine paratherapy for Parkinson's disease: a meta-analysis of 19 randomized controlled trials," *Evidence-Based Complementray and Alternative Medicine*, vol. 2012, article 534861, 15 pages, 2012.

[41] Y. Zhang, Z.-Z. Wang, H.-M. Sun, P. Li, Y.-F. Li, and N.-H. Chen, "Systematic review of traditional Chinese medicine for depression in Parkinson's disease," *The American Journal of Chinese Medicine*, vol. 42, pp. 1035–1051, 2014.

[42] Y. C. He, P. Huang, Q. Q. Li et al., "Mutation analysis of HTRA2 gene in Chinese familial essential tremor and familial Parkinson's disease," *Parkinson's Disease*, vol. 2017, pp. 1–6, 2017.

[43] H. L. Tian, J. Z. Tian, J. N. Ni, T. Li, and M. Q. Wei, "Systematic evaluation and meta-analysis of integrated traditional Chinese and Western medicine in the treatment of non motor symptoms of Parkinson's disease," *Journal of Tianjin University of traditional Chinese Medicine*, vol. 38, pp. 147–154, 2019.