DESCENT PROPERTIES OF THE TOPOLOGICAL CHIRAL HOMOLOGY

MATSUOKA, TAKUO

Abstract. We study descent properties of Jacob Lurie’s topological chiral homology. We prove that this homology theory satisfies descent for a factorising cover, as defined by Kevin Costello and Owen Gwilliam. We also obtain a generalisation of Lurie’s approach to this homology theory, which leads to a product formula for the infinity category of factorisation algebras, and its twisted generalisation.

Contents

0. Introduction 1
0.0. Factorisation algebra and the topological chiral homology 1
0.1. Descent properties of factorisation algebras 3
0.2. Twisted product formula 3
0.3. Outline 4
Acknowledgment 4
1. Terminology and notations 5
2. Descent properties of factorisation algebras 5
2.0. Locally constant factorisation algebra 6
2.1. Assumption on the target category 7
2.2. Descent for factorising covers 7
2.3. Isotopy invariance 8
2.4. Basic descent 12
3. Generalisations and applications 18
3.0. Push-forward 18
3.1. Case of a higher target category 18
3.2. (Twisted) algebras on a (twisted) product 23
References 27

0. Introduction

0.0. Factorisation algebra and the topological chiral homology. In this work, we study some foundational aspects of the theory of factorisation algebras on manifolds, developing on the work of Lurie [11, Chapter 5].

The mentioned objects are the counterparts on manifolds of chiral algebras introduced by Beilinson–Drinfeld on algebraic curves [2]. One motivation for studying factorisation algebras comes from their central role played in quantum field theory (generalising the role of chiral algebras for conformal field theory). Namely, observables of a quantum (or a classical) field theory form a factorisation algebra,
and this is the structure in terms of which one can rigorously understand quantisation of a physical theory (in perturbative sense) \[5\], analogously to the deformation quantisation of the classical mechanics \[3\].

Factorisation algebras are closely related to \textit{field theories} as functors on a cobordism category, as introduced by Atiyah \[9\] and Segal \[14\]. We study \textit{locally constant} factorisation algebras, which correspond to \textit{topological} field theories.

A locally constant factorisation algebra on the manifold \mathbb{R}^n is equivalent to what is known as an E_n-\textit{algebra}, first introduced in iterated loop space theory \[3\]. E_1-\textit{algebra} is an associative algebra, and an E_n-\textit{algebra} can be inductively defined as an E_{n-1}-\textit{algebra} with an additional structure of an associative algebra commuting with the E_{n-1}-structure. A locally constant factorisation algebra can be considered as a global version of an E_n-\textit{algebra} in a way analogous to how a chiral algebra is a global version of a vertex operator algebra. In particular, from any locally constant factorisation algebra on an n-dimensional manifold, one obtains an E_n-\textit{algebra} around any point by restricting the algebra to an open ball around the point. This E_n-\textit{algebra} is canonical up to a change of framing at the point, and can be thought of as a local form of the factorisation algebra.

There is an issue that the notion of an E_n-\textit{algebra} degenerates (unless $n \leq 1$) to that of a commutative algebra in a category whose higher homotopic structure is degenerate. Moreover, some further developments such as the theory of the Koszul duality for factorisation algebras \[12\] requires a nice higher homotopic structure in order to lead to fruitful results, even on the manifold \mathbb{R}^1. These issues force us to work in a homotopical setting. In order to work in such a setting, we use the convenient language of higher category theory. (For the main body, note our conventions stated in Section 1, which do not apply in this introduction.) We just remark here that associativity of an algebra in such a setting means a data for homotopy coherent associativity (which in particular is a structure rather than a property).

In this work, we study from the point of view that a factorisation algebra is a generalisation of a sheaf on a manifold (the term “locally constant” comes from this point of view). It takes values in a symmetric monoidal infinity category. A \textit{prealgebra} on a manifold M is a covariant functor A on the poset of open subsets of M, for which we have $A(U \cup V) \simeq A(U) \otimes A(V)$ for disjoint open subsets $U, V \subset M$, in a coherent way. (Covariance is chosen for consistency of the terminology with the intuition.) A is a \textit{factorisation algebra} if it satisfies a suitable gluing condition generalising that for a sheaf. Indeed, a locally constant cosheaf is a locally constant factorisation algebra with respect to the monoidal structure given by the coproduct.

The gluing condition of the factorisation algebra of observables of a physical theory reflects locality of the theory. In Atiyah–Segal framework, the same property corresponds to possibility of extending the functor on cobordisms to higher codimensional manifolds. A theory is \textit{fully extended} if it is extended to highest codimensional manifolds, namely, to points. The cobordism hypothesis of Baez–Dolan \[1\], proved in a much strengthened form by Hopkins–Lurie and Lurie \[10\], states that a fully extended topological field theory (on framed manifolds) is completely determined by its value for a point. Analogously, but in a simpler way, a factorisation algebra which is systematically defined on all (framed) manifolds, is determined by the E_n-\textit{algebra} which appear as its local form \[7\].

A sheaf is defined by its sections. One is often more interested in the \textit{derived} sections, or the cohomology. Since we work in a homotopical setting for factorisation algebras, the sections we consider for an algebra are \textit{always} the ‘derived’ ones. Thus, study of factorisation algebra can be considered as study of a kind of homology theory. This homology theory, for locally constant algebras, was defined by Lurie...
and was called topological chiral homology. Following Francis and Costello (who works with not necessarily locally constant algebras), we also call it factorisation homology.

This paper is based on, and slightly revises, part of the author’s thesis [13].

0.1. Descent properties of factorisation algebras. In the following, we assume that the target category \mathcal{A} of prealgebras is a symmetric monoidal infinity category which is closed under sifted homotopy colimits, and that the monoidal multiplication functors preserve sifted homotopy colimits variable-wise.

We have developed descent properties of locally constant factorisation algebras for covers, and for bases of topology. Our first result (Theorem 2.11) note the conventions stated in Section 1) proves (as a particular case, see Example 2.10) that topological chiral homology satisfies descent for a factorising cover in the sense of Costello–Gwilliam [5]. Therefore, this connects the ‘Čech’ approach of Costello–Gwilliam to factorisation homology, to Lurie’s approach, which is analogous to the singular approach to the local coefficient (co)homology. (Costello–Gwilliam in fact considered not necessarily locally constant algebras.) This, combined with ideas of Francis, lead to a proof of a version of Francis’ theorem [7]. This will be contained in the sequel [12] of this paper. This theorem can be considered as giving an Eilenberg–Steenrod approach to factorisation homology, and one concludes from these theorems that all three approaches are equivalent.

Moreover, we have generalised Lurie’s approach to factorisation homology in the following way. Namely, his definition of topological chiral homology uses the basis Disk(M) for the topology of a manifold M, consisting of open subdisks. He also uses disjoint unions of disks, which give another basis Disj(M) of M. This latter basis has a nice property in the spirit of Costello–Gwilliam, which we might call here factorisingness. Lurie’s definition is stated in terms of the pair Disk(M) \rightarrow Disj(M).

In Theorem 2.27 we have given a sufficient condition for a pair $\mathcal{E}_1 \rightarrow \mathcal{E}$ of bases to define the same notion of a locally constant factorisation algebra, when it replaces the pair Disk(M) \rightarrow Disj(M) in Lurie’s definition. Even though the theorem is slightly technical, the sufficient condition we have found is easy to check in practice. For example, it is quite easy to check whether we can find a suitable \mathcal{E}_1 if \mathcal{E} is a factorising basis of M, closed under disjoint union in M, and consists of open submanifolds homeomorphic to disjoint unions of disks.

Thus, this theorem is useful, and in particular leads to the following, as well as applications to be discussed in the next section. Let us denote by Alg$_M(A)$, the infinity category of locally constant factorisation algebras on a manifold M.

Theorem 0.0 (Theorem 2.41). The association $M \mapsto$ Alg$_M(A)$ (which is contravariantly functorial in open embeddings) is a sheaf of infinity categories.

It follows that there is a notion of a locally constant factorisation algebra on an orbifold.

0.2. Twisted product formula. As an application of our investigation of the descent properties of factorisation algebras, we have obtained the following basic theorem. In the special case where the manifolds are the Euclidean spaces, we recover a classical theorem of Dunn [6]. (See Remark 0.3 below for the precise relation to his theorem.)

Theorem 0.1 (Theorem 3.14). Let B, F be manifolds. Then, the restriction functor

$$\text{Alg}_{F \times B}(A) \rightarrow \text{Alg}_B(\text{Alg}_F(A))$$

is an equivalence.
Remark 0.2. If one swaps the factors of $B \times F$, then on the side of algebras, one recovers the canonical equivalence $\text{Alg}_B(\text{Alg}_F) \simeq \text{Alg}_F(\text{Alg}_B)$.

Remark 0.3. Dunn in fact obtains an equivalence at the level of operads [6]. In particular, in his case, the equivalence of algebras holds without any assumption on the target category. Even though our theorem applies to any manifold, the equivalence in this generality is proved only at the level of the category of algebras in this paper, since our proof depends on the property of the target category for the algebras.

Another slight difference with Dunn’s result is that he considers Boardman–Vogt’s little cubes operad [3] instead of factorisation algebras on a Euclidean space. We can use Theorem 2.27 once again to show that the difference is not essential. See Remark 3.16 for the details.

We have also obtained a natural generalisation of this, where the product is replaced by a fibre bundle (i.e., a ‘twisted’ product). In this case, the algebras on the right hand side needs to be twisted. Namely, it should take values in an algebra of categories on B. Once we allow this twisting, it is natural to consider further twisting for algebras. Namely, we consider algebras on the total space E of a fibre bundle taking values in a locally constant factorisation algebra \mathcal{A} of categories on E. For such \mathcal{A}, we have defined an algebra $\text{Alg}_{E/B}(\mathcal{A})$ of categories on the base manifold B, which is a twisted version of Alg_F in the previous theorem. The following generalisation of the previous theorem follows from (the infinity 2-categorical generalisations of) the previous theorem and the descent results.

Theorem 0.4 (Theorem 3.21). Let B be a manifold, and let $E \to B$ be a smooth fibre bundle over B. For a locally constant factorisation algebra \mathcal{A} on E of infinity categories, there is a natural equivalence $\text{Alg}_{E/B}(\mathcal{A}) \xrightarrow{\sim} \text{Alg}_B(\text{Alg}_{E/B}(\mathcal{A}))$ of infinity categories, given by a suitable ‘restriction’ functor.

Remark 0.5. For this theorem, no assumption on sifted colimits are needed for \mathcal{A}. If \mathcal{A} is instead a single fixed symmetric monoidal category, there is actually a slight difference between an algebra in \mathcal{A} (for which Theorem 0.1 may fail without assumption on sifted colimits), and an algebra taking values in the ‘constant’ algebra at \mathcal{A} (to which Theorem 0.4 always applies). The assumption on sifted colimits simply ensures equivalence of these two notions of an algebra.

0.3. **Outline.** Section 1 is for introducing conventions which are used throughout the main body.

In Section 2 we review Lurie’s definitions and results, and discuss descent properties of factorisation algebras.

In Section 3 we discuss further results including the twisted product formula.

Acknowledgment. This paper is based on part of the author’s thesis. I am particularly grateful to my advisor Kevin Costello for his extremely patient guidance and continuous encouragement and support. My contribution through this work to the subject of factorisation algebra can be understood as technical work of combining the ideas and work of the pioneers such as Jacob Lurie, John Francis, and Kevin. I am grateful to those people for their work, and for making their ideas accessible. Special thanks are due to John for detailed comments and suggestions on the drafts of my thesis, which were essential for many improvements of both the contents and exposition. Many of those improvements were inherited by this paper. I am also grateful to Owen Gwilliam for interesting conversations, which directly influenced some parts of the present work. I am grateful to Josh Shadlen, Owen, and Yuan Shen for their continuous encouragement.
1. Terminology and notations

By a 1-category, we always mean an infinity 1-category. We often call a 1-category (namely an infinity 1-category) simply a category. A category with discrete sets of morphisms (namely, a “category” in the more traditional sense) will be called (1, 1)-category, or a discrete category.

In fact, all categorical and algebraic terms will be used in infinity (1-) categorical sense without further notice. Namely, categorical terms are used in the sense enriched in the infinity 1-category of spaces, or equivalently, of infinity groupoids, and algebraic terms are used freely in the sense generalised in accordance with the enriched categorical structures.

For example, for an integer n, by an n-category (resp. infinity category), we mean an infinity n-category (resp. infinity infinity category). We also consider multicategories. By default, multimap in our multicategories will form a space with all higher homotopies allowed. Namely, our “multicategories” are “infinity operads” in the terminology of Lurie’s book [11].

Remark 1.0. We usually treat a space relatively to the structure of the standard (infinity) 1-category of spaces. Namely, a “space” for us is usually no more than an object of this category. Without loss of information, we shall freely identify a space in this sense with its fundamental infinity groupoid, and call it also a “groupoid”. Exceptions in which the term “space” means not necessarily this, include a “Euclidean space”, the “total space” of a fibre bundle, etc., in accordance with the common customs.

We use the following notations for over and under categories. Namely, if C is a category and x is an object of C, then we denote the category of objects C lying over x, i.e., equipped with a map to x, by C/x. We denote the under category for x, in other words, $(C^{op})/x$, by C/x^{op}.

More generally, if a category D is equipped with a functor to C, then we define $D/x := D \times_C C/x$, and similarly for D/x^{op}. Note here that C/x is mapping to C by the functor which forgets the structure map to x. Note that the notation is abusive in that the name of the functor $D \to C$ is dropped from it. In order to avoid this abuse from causing any confusion, we shall use this notation only when the functor $D \to C$ that we are considering is clear from the context.

By the lax colimit of a diagram of categories indexed by a category C, we mean the Grothendieck construction. We choose the variance of the laxness so the lax colimit projects to C, to make it an op-fibration over C, rather than a fibration over C^{op}. (In particular, if $C = D^{op}$, so the functor is contravariant on D, then the familiar fibred category over D is the op-lax colimit over C for us.) Of course, we can choose the variance for lax limits, so this lax colimit generalises to that in any 2-category.

2. Descent properties of factorisation algebras

In this section, we introduce the notion of a locally constant factorisation algebra following Lurie (although he did not use this particular term), and then investigate its descent properties. This will be a study of the descent properties of Lurie’s “topological chiral homology”.

Many notions and notations we introduce in this section are from Lurie’s book “Higher Algebra” [11], which has an index and an index for notations.
2.0. **Locally constant factorisation algebra.** Given a manifold M, let us denote by $\text{Open}(M)$ the poset of open submanifolds of M. It (considered as a category where a map is an inclusion) has a partially defined symmetric monoidal structure given by the disjoint union in M, \(\bigsqcup_S : \text{Open}(M)^{(S)} \to \text{Open}(M) \), where the domain here is the full subposet of $\text{Open}(M)^{(S)}$ consisting of pairwise disjoint family of open submanifolds of M indexed by the finite set S.

Definition 2.0. Let A be a symmetric monoidal category. Then a **prefactorisation algebra** (or just a “prealgebra”) on M (valued) in A, is a symmetric monoidal functor $\text{Open}(M) \to A$.

We say that a prealgebra is **locally constant** if A takes every inclusion $D \hookrightarrow D'$ between disks in M (namely, open submanifolds which is homeomorphic to an open disk), to an equivalence $A(D) \simeq A(D')$.

The category of **locally constant** prealgebras on M in A will be denoted by $\text{PreAlg}_M(A)$.

Let M be a manifold. Let n denote its dimension. Then, following Lurie, we denote by $\text{Disk}(M)$, the poset consisting of open submanifolds $U \subset M$ homeomorphic to an open disk of dimension n (by an unspecified homeomorphism). This poset has a structure of a symmetric multicategory where a multimap is a disjoint inclusion in M, so for every fixed source and target, the space of multimaps is either empty or contractible.

Recall that given symmetric multicategories \mathcal{A}, \mathcal{B}, an **algebra** on \mathcal{B} in \mathcal{A} is a morphism $\mathcal{B} \to \mathcal{A}$ of symmetric multicategories.

The following is a notion equivalent to an algebra over Lurie’s multicategory \mathbb{E}_M from [11]. See Theorem 5.2.4.9 there, also restated here as Theorem 2.12. Another equivalent notion has a natural name, and we use that name. All notions and equivalence between them will be reviewed below.

Definition 2.1. Let \mathcal{A} be a symmetric monoidal category. Then a **locally constant factorisation algebra** (or just a “(locally constant) algebra”, often in this work) on M valued in \mathcal{A}, is an algebra on $\text{Disk}(M)$ in \mathcal{A} whose underlying functor (of “colours”) inverts any map in $\text{Disk}(M)$ (which is an inclusion of a single disk into another). The category of locally constant algebras on M in \mathcal{A} will be denoted by $\text{Alg}_M(\mathcal{A})$.

Remark 2.2. This definition makes sense for \mathcal{A} just a symmetric multicategory, but for comparison with other notions, it is convenient to have \mathcal{A} to be symmetric monoidal.

Following Lurie, let us denote by $\text{Disj}(M)$ the poset of open submanifolds $U \subset M$ homeomorphic (by an unspecified homeomorphism) to the disjoint union of a finite number of disks. It has a partially defined monoidal structure given by the disjoint union in M. There is a functor $\text{Disk}(M) \to \text{Disj}(M)$ of multicategories, so a symmetric monoidal functor $\mathcal{A} : \text{Disj}(M) \to \mathcal{A}$ to a symmetric monoidal category \mathcal{A} restricts to a morphism $\text{Disk}(M) \to \mathcal{A}$ of symmetric multicategories. Moreover, any morphism $\text{Disk}(M) \to \mathcal{A}$ with \mathcal{A} symmetric monoidal category extends uniquely to a symmetric monoidal functor $\text{Disj}(M) \to \mathcal{A}$. Namely, an algebra on M can be also described as a symmetric monoidal functor $\text{Disj}(M) \to \mathcal{A}$.

Remark 2.3. Again, this is still true if the monoidal structure of \mathcal{A} is only partially defined, but this is not an important point for us.

Note that there is a (necessarily symmetric) monoidal embedding $\text{Disj}(M) \hookrightarrow \text{Open}(M)$. Given a functor $\text{Disj}(M) \to \mathcal{A}$, one has its left Kan extension $\text{Open}(M) \to \mathcal{A}$ at least if \mathcal{A} has colimits.
If the monoidal multiplication in \mathcal{A} distributes over colimits, then the Kan extension $\text{Open}(M) \to \mathcal{A}$ of a symmetric monoidal functor $\text{Disj}(M) \to \mathcal{A}$ becomes symmetric monoidal in a unique way, so its restriction to $\text{Disj}(M)$ becomes the original symmetric monoidal functor. In fact, Lurie proves that relevant colimits here can be described as sifted colimits (see Propositions 2.13 and 2.14 below). Therefore, it sufficed to consider just sifted colimits.

To summarise, if the target category \mathcal{A} has sifted colimits, and the monoidal multiplication in \mathcal{A} distributes over sifted colimits (equivalently, sifted colimits are preserved by the monoidal multiplication), then we have a functor $\text{Alg}_M(\mathcal{A}) \to \text{PreAlg}_M(\mathcal{A})$ given by left Kan extension. This functor is clearly fully faithful, and it is left adjoint to the functor given by restriction through the functor $\text{Disk}(M) \to \text{Open}(M)$ of symmetric multicategories. In this way, $\text{Alg}_M(\mathcal{A})$ is a right localisation of the category of locally constant prealgebras.

Within the category of locally constant prealgebras, the algebras can be characterised as those prealgebras which, as a functor, is the left Kan extension of its restriction to $\text{Disj}(M)$. We often identify Alg_M with this right localised full subcategory of PreAlg_M.

The following is basic.

Example 2.4 (See also Francis’ [7]). Let \mathcal{A} be a category closed under small colimits, and let us consider it as a symmetric monoidal category under the Cartesian coproduct. This symmetric monoidal multiplication $\mathcal{A} \times \mathcal{A} \to \mathcal{A}$ takes colimits in $\mathcal{A} \times \mathcal{A}$ to colimits in the target, so sifted colimits are preserved variablewise, so the arguments above applies to this symmetric monoidal structure.

In this case, any functor $\text{Disj}(M) \to \mathcal{A}$ has a unique lax symmetric monoidal structure, and this structure is strong monoidal if and only if the functor is the left Kan extension (in the canonical way) from its restriction to $\text{Disk}(M)$.

It follows that a locally constant algebra in \mathcal{A} with respect to the Cartesian coproduct, is the same thing as a locally constant cosheaf in \mathcal{A}.

Dually, if \mathcal{A} is closed under limits, then locally constant algebra in \mathcal{A}^{op} with respect to the Cartesian product of \mathcal{A}, is the same thing as a locally constant sheaf valued in \mathcal{A}.

2.1. Assumption on the target category. From now on, in this paper, we assume that the target category \mathcal{A} of prealgebras has sifted colimits, and the monoidal multiplication functor on \mathcal{A} preserves sifted colimits variable-wise. Equivalently, the monoidal multiplication should preserve sifted colimits for all the variables at the same time.

2.2. Descent for factorising covers. Note our assumption just stated.

For a prealgebra on M, being the Kan extension of its restriction to disjoint union of disks is a kind of descent property. We shall observe a more general descent satisfied by a locally constant algebra.

Definition 2.5. Let \mathcal{C} be a category and let $\chi: \mathcal{C} \to \text{Open}(M)$ be a functor. For $i \in \mathcal{C}$, denote $\chi(i)$ also by U_i within this definition. We shall call this data a **factorising cover** which is nice in Lurie’s sense, or briefly, **factorising l-nice cover**, of M if for any non-empty finite subset $x \subset M$, the full subcategory $\mathcal{C}_x := \{ i \in \mathcal{C} \mid x \subset U_i \}$ of \mathcal{C} has contractible classifying space.

Remark 2.6. The definition is inspired by the definition of a factorising cover by Costello–Gwilliam [5], and a condition introduced by Lurie for his generalised Seifert–van Kampen theorem [11, Appendix]. “Nice” is Lurie’s description of a cover satisfying his conditions, where he does not intend this to be a part of his terminology. However, we borrow this word “nice” and make it our term for the notion above, for unfortunate lack of creativity for a better name.
Example 2.7. If M is empty, then any cover of M, including the one indexed by the empty category, is factorising l-nice.

Example 2.8. The inclusion $\text{Disj}(M) \to \text{Open}(M)$ determines a factorising l-nice cover.

Example 2.9. Consider a cover of M by a filtered (or “directed”) inductive system of open submanifolds of M. Then this cover is factorising l-nice.

Example 2.10. Suppose given an open cover $U = \{U_s\}_{s \in S}$ of M, indexed by a set S. For simplicity, assume that this cover is closed under taking finite disjoint union. If this is not satisfied, replace S by the set of finite subsets T of S for which U_t are pairwise disjoint for $t \in T$. (For example, if $M = \emptyset$, then we are excluding the empty cover indexed by $S = \emptyset$.)

Denote by $\Delta_{/S}$ the category of combinatorial simplices whose vertices are labeled by elements of S. Namely, its objects are finite non-empty ordinal I equipped with a set map $s: I \to S$. Then the cover determines a functor $\chi: (\Delta_{/S})^{\text{op}} \to \text{Open}(M)$ by

$$(I, s: I \to S) \mapsto U_s := \bigcap_{i \in I} U_{s(i)}.$$

In Costello–Gwilliam’s terminology, the cover U is factorising if for this χ, the category $(\Delta_{/S})^{\text{op}}$ is non-empty for every finite subset $x \subset M$ (equivalently if there is $i \in S$ for which $x \subset U_i$).

It is immediate to see that χ determines a factorising l-nice cover if (and only if) the cover is factorising in Costello–Gwilliam’s sense.

Given a prealgebra A on M, the descent complex for U of Costello–Gwilliam is equivalent to $\text{colim}_C A\chi$.

The following generalises the Kan extension property from the values for disjoint union of disks.

Theorem 2.11. Let A be a locally constant algebra on M (in a symmetric monoidal category A satisfying our conditions stated in Section 2.7). Then for any factorising l-nice cover determined by $\chi: C \to \text{Open}(M)$, the map $A(M) \leftarrow \text{colim}_C A\chi$ is an equivalence.

For the proof, we need another description of locally constant algebras, due to Lurie. We shall give the proof after we give the description in Section 2.3.

2.3. **Isotopy invariance.** Let M be a manifold, and let n be its dimension.

Let E_M be the multicategory (i.e., an “infinity operad”) introduced by Lurie. Its objects are the open submanifolds of M homeomorphic to a disk of dimension n. The space of multimaps $\{U_i\}_{i \in S} \to V$ is that formed by an embedding $f: \coprod_i U_i \hookrightarrow V$ together with an isotopy on each U_i from the defining inclusion $U_i \hookrightarrow M$ to $f: U_i \hookrightarrow M$.

It is immediate from this description that the underlying category (the category of “colours”) of E_M is a groupoid equivalent to (the fundamental infinity groupoid of) the space naturally formed by its objects.

Consider the obvious morphism $\text{Disk}(M) \to E_M$ of multicategories.

Theorem 2.12 (Lurie, Theorem 5.2.4.9 of [11]). Restriction through the morphism $\text{Disk}(M) \to E_M$ induces a fully faithful functor between the categories of algebras on these multicategories. The essential image of the functor consists precisely of the locally constant algebras on M.

In particular, a locally constant algebra on M extends uniquely (up to a contractible space) to an algebra on E_M.
The property of an algebra on disks that it extends to \mathbb{E}_M, can be understood as isotopy invariance (where the way to be invariant can be specified functorially) of the functor. By the above theorem, this property is equivalent to being locally constant.

Let $D(M)$ be as defined by Lurie (Definition 5.3.2.11 of [11]). Its objects are open submanifolds of M which are homeomorphic to a finite disjoint union of disks. The space of maps $U \to V$ is the space formed by embeddings $f: U \hookrightarrow V$ together with an isotopy from the defining inclusion $U \hookrightarrow M$ to $f: U \hookrightarrow M$.

Disjoint union in M cannot be made into a partial monoidal structure on $D(M)$ since the isotopies we used in defining a morphism in $D(M)$, was required to be isotopies on the whole U, not just on each of its components. However, $D(M)$ can be extended to a symmetric partial monoidal category which has the same objects but where the mentioned restriction on the maps is discarded. Let us denote this partial monoidal category by \mathbb{E}_M. The composite $\mathbb{E}_M \to D(M) \to \mathbb{E}_M$ then has a canonical structure as a map of multicategories, and we can try to extend A to a symmetric monoidal functor on \mathbb{E}_M.

To see that this is possible, let us further try discarding the restriction on the objects. Namely, an object of \mathbb{E}_M is an object of $D(M)$, which can be considered as a disjoint family of disks in M, but we can instead include any family of disks (and define morphisms in the same way as in \mathbb{E}_M). The result is the symmetric monoidal category freely generated from \mathbb{E}_M. Therefore, an algebra A on \mathbb{E}_M can be extended to a symmetric monoidal functor on the free symmetric monoidal category, and then be restricted to \mathbb{E}_M through the symmetric monoidal inclusion. This symmetric monoidal functor on \mathbb{E}_M, as an algebra on a multicategory, extends the algebra A on \mathbb{E}_M.

Moreover, there is a commutative square

$$\begin{array}{ccc}
\text{Disk}(M) & \longrightarrow & \mathbb{E}_M \\
\downarrow & & \downarrow \\
\text{Disj}(M) & \longrightarrow & D(M)
\end{array}$$

which, with the functor $D(M) \to \mathbb{E}_M$, factorises a square

$$\begin{array}{ccc}
\text{Disk}(M) & \longrightarrow & \mathbb{E}_M \\
\downarrow & & \downarrow \\
\text{Disj}(M) & \longrightarrow & \mathbb{E}_M
\end{array}$$

where the bottom functor underlies a symmetric monoidal functor. It follows that, by restricting to $D(M)$ (the underlying functor of) the described symmetric monoidal functor on \mathbb{E}_M extending A, one gets a functor on $D(M)$ which extends both (the underlying functor of) A on \mathbb{E}_M, and (the underlying functor of) the symmetric monoidal functor on $\text{Disj}(M)$ uniquely extended from the algebra $A|_{\text{Disk}(M)}$ on $\text{Disk}(M)$.

Proposition 2.13 (Lurie, Proposition 5.3.2.13 (1) of [11]). The functor $\text{Disj}(M) \to D(M)$ is cofinal.

That is, for a functor defined on $D(M)$, its colimit over $D(M)$ gives the colimit of the restriction of the same functor to $\text{Disj}(M)$.

Proposition 2.14 (Lurie, Proposition 5.3.2.15 of [11]). The category $D(M)$ is sifted.
Corollary 2.15. Let A be a locally constant algebra on M. Consider it as an algebra on \mathbb{E}_M, and then extend its underlying functor to $D(M)$ in the explained way. Denote the resulting functor on $D(M)$ still by A. Then the canonical map

$$A(M) \leftarrow \colim_{D(M)}$$

is an equivalence.

We can now start a proof of Theorem 2.11. Recall that a functor $C \to D$ is cofinal if for every functor f with domain D, $\colim f$ (when this exists) is a colimit of f over C (in the canonical way). (Lurie [9] Definition 4.1.1.1, but see also Proposition 4.1.1.8.)

Definition 2.16. Let U be a cover of a manifold M, given by a functor $\chi: C \to \text{Open}(M)$, $i \mapsto U_i$. Then U is said to be effectively factorising l-nice if the canonical functor

$$\colim_i D(U_i) \to D(M)$$

is cofinal.

Remark 2.17. By Proposition 2.13 the condition of being an effectively factorising l-nice cover is equivalent to that the functor

$$\colim_i \text{Disj}(U_i) \to D(M)$$

is cofinal.

Theorem 2.11 immediately implies the following.

Lemma 2.18. Let A be a locally constant algebra on M. Then for any effectively factorising l-nice cover determined by $\chi: C \to \text{Open}(M)$, the canonical map $A(M) \leftarrow \colim_C A\chi$ is an equivalence.

Theorem 2.11 is an immediate consequence of this and the following, ‘factorising’ version of Lurie’s higher homotopical generalisation of the Seifert–van Kampen theorem. The factorising version is actually a consequence of the original theorem. Our proof will be similar to the proof of Theorem 5.1 of the paper [4] by Boavida de Brito–Weiss, and will also use some arguments similar to those from the proofs of the theorems above of Lurie.

Proposition 2.19. Let M be a manifold. Then every factorising l-nice cover of M is effectively factorising l-nice.

In the proof, we shall use the following standard fact from basic homotopy theory. Its proof is included for completeness.

Lemma 2.20. Let \mathcal{G} be a groupoid. Then a functor $C \to \mathcal{G}$ from a 1-category is cofinal if (and only if) the induced map $BC \to \mathcal{G}$ is an equivalence.

Proof. Assuming that $\mathcal{G} = BC$, we want to prove that the colimit of any functor L defined over \mathcal{G} is a colimit of L over C. (“Only if” part is trivial since BC is a colimit of the final diagram over C in the 1-category of groupoids.)

Note that it suffices to consider the case where L is taking values in the opposite of the category of spaces, since whether an object is a colimit is tested by homming to another object. Let us conveniently change the variance of C and \mathcal{G}, and consider the limits of a covariant functor L defined on \mathcal{G}. Thus, we want to prove that for $\mathcal{G} = BC = \colim_C \ast$, colimit taken in the category of groupoids, the induced map $\lim_\mathcal{G} L \to \lim_C L$ is an equivalence.
The crucial fact here is that for any object i of \mathcal{G}, $L(i)$ is the homotopy fibre of the projection $\colim_{\mathcal{C}} L \to \mathcal{G}$. Namely, $L(i)$ is the space of sections of this map over the point i.

It follows that $\lim_{\mathcal{C}} L$ is the space of global sections if $\mathcal{G} = \colim_{\mathcal{C}} *$. Thus, we have proved that $\lim_{\mathcal{C}} L$ is functorially equivalent to a space which is independent of \mathcal{C} as long as the map $B\mathcal{C} \to \mathcal{G}$ is an equivalence. (In particular, this independent space is identified with $\lim_{\mathcal{G}} L$ through the equivalence obtained in the case where the functor $\mathcal{C} \to \mathcal{G}$ is an equivalence.) This completes the proof.

Alternatively, one can apply Joyal’s generalisation of Quillen’s Theorem A [9], although as we have shown, this is not necessary. Again, assuming $\mathcal{G} = B\mathcal{C}$, we want to show that, for any object x of \mathcal{G}, the under category \mathcal{C}/x has contractible classifying space.

The point is that, since \mathcal{G} is a groupoid, \mathcal{C}/x coincides with the fibre of the functor $\mathcal{C} \to \mathcal{G}$ over x. The result is immediate from this since the geometric realisation functor preserves pull-backs. □

Proof of Proposition 2.19. Suppose that a factorising l-nice cover \mathcal{U} of M is given by a functor $\chi : \mathcal{C} \to \text{Open}(M)$, $i \mapsto U_i$. We want to show that the functor

$$\colim_i \text{D}(U_i) \to \text{D}(M)$$

is cofinal.

Recall that for open $U \subset M$, the category $\text{D}(U)$ was a comma category in the category Man of category of manifolds, in which the space of morphisms is the space of open embeddings. Namely, let D be the full subcategory of Man of manifolds whose objects are equivalent to disjoint union of disks of dimension n, where $n = \dim M$. Then $\text{D}(U)$ was the comma category whose object was a morphism from an object of D to U.

In other words, $\text{D}(U) = \text{laxcolim}_{D \in \text{D}} \text{Emb}(D, U)$, where $\text{Emb}(D, U)$, the infinity groupoid of embeddings, is the space of morphisms in Man, and the lax colimit is taken in the 2-category of categories.

It follows that it suffices to prove for every $D \in \text{D}$, the map

$$\text{laxcolim}_{i \in \mathcal{C}} \text{Emb}(D, U_i) \to \text{Emb}(D, M)$$

is cofinal for every $D \in \mathcal{D}$.

In view of Lemma 2.20 above, it suffices to prove that the map

$$\colim_{i \in \mathcal{C}} \text{Emb}(D, U_i) \to \text{Emb}(D, M)$$

is an equivalence.

Choose a homeomorphism $D \simeq S \times \mathbb{R}^n$ for a finite set S. In particular, we have picked a point in each component of D, corresponding to the origin in \mathbb{R}^n, together with a germ of chart at the chosen points. Then, given an embedding $D \hookrightarrow U$, restriction of it to the germs of charts at the chosen points gives us an injection $S \hookrightarrow U$ together with germs of charts in U at the image of S. This defines a homotopy equivalence of $\text{Emb}(D, U)$ with the space of germs of charts around distinct points in U, labeled by S.

Furthermore, for any U, this space is fibre over the configuration space $\text{Conf}(S, U) := \text{Emb}(S, U)/\text{Aut}(S)$, with fibres equivalent to $\text{Germ}_0(\mathbb{R}^n) \wr \text{Aut}(S)$, where $\text{Germ}_0(\mathbb{R}^n)$ is from [11, Notation 5.2.1.9].

Thus it suffices to show that the map

$$\colim_{i \in \mathcal{C}} \text{Conf}(S, U_i) \to \text{Conf}(S, M)$$

is an equivalence of spaces.
In order to prove this, Lurie’s generalised Seifert–van Kampen theorem implies that it suffices to prove that for every \(x \in \text{Conf}(S, M) \), the category \(\{ i \in \mathcal{C} \mid x \in \text{Conf}(S, U_i) \} \) has contractible classifying space. However, \(x \in \text{Conf}(S, U_i) \) is equivalent to \(\text{supp}_x \subset U_i \), where \(\text{supp}_x \) is the subset of \(M \) corresponding to the configuration \(x \), so the required condition is exactly our assumption that the cover is factorising l-nice.

\[
\square
\]

2.4. Basic descent. We continue with the assumptions introduced in Section 2.1. Namely, we assume that the target category \(\mathcal{A} \) of prealgebras has sifted colimits, and the monoidal multiplication functors on \(\mathcal{A} \) preserve sifted colimits (variable-wise).

Definition 2.21. Let \(M \) be a manifold, and let \(\mathcal{U} \) be an effectively factorising l-nice cover of \(M \), given by a functor \(\chi: \mathcal{C} \to \text{Open}(M) \), \(i \mapsto U_i \). We say that \(\mathcal{U} \) is an (effectively) factorising l-nice basis for the topology of \(M \), if for every open \(V \subset M \), the functor \(\chi: \mathcal{C}_{/V} \to \text{Open}(M)_{/V} = \text{Open}(V) \) determines an (effectively) factorising l-nice cover of \(V \).

Remark 2.22. There is an obvious non-factorising version of these notions.

It is immediate to see that a factorising l-nice basis is effectively so as well.

Example 2.23. Disjoint open disks of \(M \) form a factorising l-nice basis of \(M \).

We have the following as a corollary of Lemma 2.18 in view of the definition of an effectively factorising l-nice basis.

Proposition 2.24. Let \(M \) be a manifold with an effectively factorising l-nice basis \(\mathcal{U} \). Then any factorisation algebra \(A \), as a functor, is a left Kan extension of its restriction to \(\mathcal{U} \), namely, if the basis is given by a functor \(\chi: \mathcal{C} \to \text{Open}(M) \), then \(A \) is a Kan extension along \(\chi \) of \(A_{\chi} \).

In fact, the converse to this is true in the following sense.

Proposition 2.25. Let \(M \) be a manifold with an effectively factorising l-nice basis \(\mathcal{U} \). Suppose \(A \) is a prealgebra on \(M \), then it is a locally constant factorisation algebra if (and only if) it satisfies the following.

For any basic (in the basis) open \(U \), the conditions

0. \(A \) is locally constant when restricted to \(U \),
1. the map \(\text{colim}_{\text{Disj}(U)} A \to A(U) \) is an equivalence

are satisfied, and

2. the underlying functor of \(A \) is a left Kan extension of its restriction to the basis.

Theorem 2.26. The association \(M \mapsto \text{Alg}_M(A) \) (which is contravariantly functorial in open embeddings of codimension 0) satisfies descent for any effectively factorising l-nice basis.

Proof assuming Proposition. If \(A \) is a locally constant factorisation algebra on a manifold \(U \), then the conditions 0 and 1 of Proposition are satisfied. \(\square \)

Let us seek for a proof of Proposition. Having Proposition 2.24 the only non-trivial point of proof would be in showing that \(A \) is locally constant. Although Proposition 2.25 can be proved in a direct manner, we shall deduce it from a similar theorem in a more specific situation, with weaker looking local constancy assumption. The weaker assumption is more flexible, and the theorem will turn out to be useful.

The theorem is as follows. (We shall use its corollary 2.39 for our proof of Proposition 2.25.)
Theorem 2.27. Let M be a manifold, and let V be an effectively factorising l-nice basis of M, given by a (necessarily symmetric) monoidal functor $\psi: \mathcal{E} \to \text{Open}(M)$, $i \mapsto V_i$, from a symmetric partial monoidal category \mathcal{E}, landing in fact in $\text{Disj}(M)$. Let \mathcal{E}_1 be a category mapping to (the underlying category of) \mathcal{E}, for which the hypotheses 2.30 below are satisfied. Then a prealgebra A in \mathcal{A} on M is a locally constant factorisation algebra on M if and only if it satisfies the following.

1. $A\psi$ sends every morphism in \mathcal{E}_1 to an equivalence.
2. The underlying functor of A is a left Kan extension of its restriction $A\psi$ to the factorising basis.

In other words, any pair $\mathcal{E}_1 \to \mathcal{E}$ satisfying the hypotheses can replace the pair $\text{Disk}(M) \to \text{Disj}(M)$ in the definition of a locally constant factorisation algebra.

Remark 2.28. For every $U \subset M$, the section $\mathcal{E}_{(U)} \to \text{laxcolim}_{i \in \mathcal{E}_1(U)} \text{Disj}(V_i)$ to the canonical functor $\text{laxcolim}_{i \in \mathcal{E}_1(U)} \text{Disj}(V_i) \to \text{laxcolim}_{i \in \mathcal{E}_1(U)} *= \mathcal{E}_{(U)}$, sending i to the image of the (existing!) terminal object of $\text{Disj}(V_i)$ in the colimit, is cofinal.

In particular, the assumption that the basis is effectively factorising l-nice is equivalent to that the composite

$$\mathcal{E}_{(U)} \xrightarrow{\psi} \text{Disj}(U) \xrightarrow{} \text{D}(U)$$

is cofinal for every U, since this can be written as the composite

$$\mathcal{E}_{(U)} \xrightarrow{} \text{colim}_{i \in \mathcal{E}_1(U)} \text{Disj}(V_i) \xrightarrow{} \text{D}(U).$$

See Remark 2.17.

We need to introduce some notation to state the hypotheses. Note that, a map $f: D \to E$ in $\text{D}(M)$ is an equivalence if and only if the embedding $D \hookrightarrow E$ (call it g) contained as a part of data determining f, is the disjoint union of embeddings of a single disk into another. That is, if and only if there is a one-to-one correspondence between the connected components of D and those of E, such that g embeds each component of D into the corresponding component of E.

Given a finite set S, we denote by $D_S(M)$ the category whose objects are families $D = (D_s)_{s \in S}$ of disks labeled by elements of S, and pairwise disjointly embedded in M, and a morphism $D \to E = (E_s)_{s \in S}$ is an equivalence $\bigcup_s D \xrightarrow{\sim} \bigcup_s E$ in $\text{D}(M)$ which preserves the labels. (Note the difference of this with just maps $D_s \to E_s$ for every $s \in S$.) This groupoid is a model for the labeled configuration space of M. Analogously, let $\text{Disj}_S(M)$ denote the poset whose objects are families $D = (D_s)_{s \in S}$ of disks labeled by elements of S, and pairwise disjointly embedded in M, and a morphism $D \to E = (E_s)_{s \in S}$ is an inclusion in M such that $D_s \subset E_s$ for every $s \in S$. (This is the same as a family of inclusions labeled by $s \in S$.) For example, if S consists of 1 element, then $\text{Disj}_S = \text{Disk}$.

Disj_S fits into a Cartesian square

\begin{equation}
\begin{array}{ccc}
\text{Disj}_S(M) & \longrightarrow & D_S(M) \\
\downarrow & & \downarrow \\
\text{Disj}(M) & \longrightarrow & \text{D}(M).
\end{array}
\end{equation}

In particular, it follows from Proposition 2.13 that the functor $\text{Disj}_S(M) \to D_S(M)$ is cofinal (i.e., identifies $D_S(M)$ with the classifying space of $\text{Disj}_S(M)$). Note that $D_S(M)$ can be considered as the space of configurations in M of S-labeled points.

The hypotheses on the factorising basis are the following. For a finite set S, denote by \mathcal{E}_S the category of S-labeled families of objects of \mathcal{E}_1 for which the tensor product over S is defined in \mathcal{E}.
Hypothesis 2.30.

- $\psi_1 := \psi|_{E_1}$ lands in $\text{Disk}(M)$.
- ψ_1 defines a (non-factorising) effectively l-nice basis. (This is equivalent here to that $\psi_1: (E_1)/U \to \text{Disk}(U)$ is an equivalence on the classifying spaces for every open $U \subset M$. See Remark 2.28. $B\text{Disk}(U)$ is equivalent to U.)
- If a finite set S consists of 1 element, then E_S is the whole of E_1.
- For every finite set S, the square

$\begin{array}{ccc}
\mathcal{E}_S & \longrightarrow & \text{Disj}_S(M) \\
\bigotimes & \downarrow & \bigcup \\
\mathcal{E} & \longrightarrow & \text{Disj}(M)
\end{array}$

is Cartesian.

Remark 2.32. Considering the case where the finite set S consists of 1 element, we have a Cartesian square

$\begin{array}{ccc}
\mathcal{E}_1 & \longrightarrow & \text{Disk}(M) \\
\downarrow & \downarrow & \\
\mathcal{E} & \longrightarrow & \text{Disj}(M)
\end{array}$

In particular, the functor $\mathcal{E}_1 \to \mathcal{E}$ is a full embedding.

Other \mathcal{E}_S are (non-full) subcategories of \mathcal{E}.

Remark 2.33. The consequence of the last condition of the above hypothesis which will be actually used in the proof will be that for any object $D \in D_S(M)$, the square

$\begin{array}{ccc}
(E_S)_{D/} & \longrightarrow & \text{Disj}_S(M)_{D/} \\
\bigcup & \downarrow & \bigcup \\
E_{\bigcup D/} & \longrightarrow & \text{Disj}(M)_{\bigcup D/}
\end{array}$

is Cartesian.

This follows from the assumption since the assumption implies that the square

$\begin{array}{ccc}
(E_S)_{E/} & \longrightarrow & \text{Disj}_S(M)_{E/} \\
\bigcup & \downarrow & \bigcup \\
E_{E/} & \longrightarrow & \text{Disj}(M)_{E/}
\end{array}$

is Cartesian for every $E \in D(M)$, while the square

$\begin{array}{ccc}
(E_S)_{D/} & \longrightarrow & \text{Disj}_S(M)_{D/} \\
\bigcup & \downarrow & \bigcup \\
(E_S)_{\bigcup D/} & \longrightarrow & \text{Disj}(M)_{\bigcup D/}
\end{array}$

is always Cartesian for every $D \in D_S(M)$.

In order to have that the square is Cartesian for every $D \in D_S(M)$, we do need the full force of the assumption, since if we have that the map $(E_S)_{D/} \to [E \times \text{Disj}(M)_{D/}]_{D/}$ is an equivalence for every $D \in D_S(M)$, then the lax colimit of this over $D \in D_S(M)$ will be the original assumption.

The following is a situation where the hypotheses are satisfied.

Example 2.35. Suppose given a (non-factorising) effectively l-nice basis given by a functor $\psi_1: E_1 \to \text{Open}(M)$, $i \mapsto V_i$. Then we can freely generate a symmetric, partially monoidal category from E_1 by using the partial monoidal structure of
Open(M). Namely, we consider a category \mathcal{E} whose objects are pairs consisting of a finite set S and a family $(s_i)_{i \in S}$ of objects of \mathcal{E}_1 for which the open submanifolds $V_{s_i} \subset M$ are pairwise disjoint. The symmetric partial monoidal structure on \mathcal{E} is defined in the obvious way, and ψ_1 extends to a symmetric monoidal functor $\mathcal{E} \to \text{Open}(M)$, which we shall denote by ψ.

In this case, the underlying functor of ψ defines an effectively factorising l-nice basis of M at least if ψ_1 (and so ψ as well) is the inclusion of a full subposet.

If ψ_1 lands in Disk(M), then ψ lands in $\text{Disj}(M)$, and the square (2.31) is Cartesian by our construction of the partial monoidal category \mathcal{E}.

Example 2.36. For an example of the previous example, we can take \mathcal{E}_1 to be the full subposet of $\text{Open}(M)$ consisting of open submanifolds diffeomorphic (rather than homeomorphic) to a disk. In this case, \mathcal{E} is the full subposet of $\text{Open}(M)$ consisting of open submanifolds diffeomorphic to the disjoint union of a finite number of disks.

Remark 2.37. \mathcal{E}_1 has a structure of a multicategory where for a finite set S, the space of multimaps $i \to j$ for $i = (s_i)_{i \in S}$, $i, j \in \mathcal{E}_1$, is non-empty if and only if $i \in \mathcal{E}_S$, and in such a case,

$$\text{Multimap}_{\mathcal{E}_1}(i, j) = \text{Map}_{\mathcal{E}}(\bigotimes_{S} i, j).$$

A symmetric monoidal functor on \mathcal{E} restricts to an algebra on \mathcal{E}_1, and this gives an equivalence of categories. We may say that an algebra A on \mathcal{E}_1 or equivalently, on \mathcal{E}, is **locally constant** if A inverts all unary maps of \mathcal{E}_1, and may denote the category of locally constant algebras as $\text{Alg}^{\text{loc}}_{\mathcal{E}_1}(A) = \text{Alg}^{\text{loc}}_{\mathcal{E}}(A)$.

Our assumptions gives a functor $\mathcal{E}_1 \to \text{Disk}_1(M)$ of multicategories, and Theorem 2.27 may be stated as that the induced functor

$$\text{Alg}_M(A) \longrightarrow \text{Alg}^{\text{loc}}_{\mathcal{E}_1}(A)$$

is an equivalence.

Proof of Theorem 2.27. Necessity follows from the definition of local constancy and Proposition 2.24.

For sufficiency, it suffices to prove that the given conditions on A imply that the underlying functor of the restriction of A to $\text{Disj}(M)$ extends to $\text{D}(M)$. Indeed, once we have this, then Proposition 2.13 and the effective l-niceness of the basis imply that, for every open $U \subset M$, the map $\text{colim}_{\text{Disj}(U)} A_{\psi} \to \text{colim}_{\text{Disj}(U)} A$ is an equivalence, so A, which is assumed to be a left Kan extension from \mathcal{E}, will in fact be a Kan extension from $\text{Disj}(M)$.

In order to extend the underlying functor of $A|_{\text{Disj}(M)}$ to $\text{D}(M)$, let us show that the right Kan extension \overline{A} of $A|_{\text{Disj}(M)}$ to $\text{D}(M)$ coincides with A on $\text{Disj}(M)$. (For the solution for an issue here, see the remark after the proof.) It actually suffices to show that the map $\overline{A}(jV) \to A(V)$, is an equivalence for every V in the factorising basis, where $j : \text{Disj}(M) \to \text{D}(M)$ is the functor through which we are comparing the two categories. Indeed, if D is an arbitrary object of $\text{Disj}(M)$, and if we have equivalences

$$\text{colim}_{E_{/D}} \overline{A} \leftarrow \text{colim}_{E_{/D}} A_{\psi} \tilde{\rightarrow} \text{colim}_{E_{/D}} A_{\psi},$$

then by the Kan extension assumption on A, we have that the map $\overline{A}(D) \to A(D)$ is an equivalence.

In order to prove that the map $\overline{A}(jV) = \text{lim}_{\text{Disj}(M)/jV} A \to A(V)$ is an equivalence, we shall first replace the shape of the diagram over which this limit is taken, by a coinitial one. Decompose V into a disjoint union $\bigsqcup_{s \in S} \psi_i(s)$, S a finite set, where $s_i \in \mathcal{E}_1$ so $U_s := \psi(i_s) = \psi_1(i_s)$ is a disk. Then we shall prove that the
functors \((E_S)_{jU/} \to \text{Disj}_S(M)_{jU/}\), where \(U = (U_s)_{s \in S} \in \text{Disj}_S(M)\) (so \(jV = \bigsqcup s jU_s\), are coinitial.

The reason why the inclusion \(\text{Disj}_S(M)_{jU/} \hookrightarrow \text{Disj}(M)_{jV/}\) is coinitial is that their product \(\text{Disj}_S(M)_{jU/} \times \text{Disj}(M)_{jV/}\) is equivalent to \(\text{Disj}_S(M)_{jU/} \times \text{Disj}(M)_{jV/}\), which implies that their product is coinitial. This proves coinitiality of the functor \(\text{Disj}_S(M)_{jU/} \to \text{Disj}(M)_{jV/}\).

In order to prove that the functor \((E_S)_{jU/} \to \text{Disj}_S(M)_{jU/}\) is coinitial, let us consider an object of \(\text{Disj}_S(M)_{jU/}\), which, as an object of \(\text{Disj}(M)_{jV/}\), is given by the pair consisting of an object \(D\) of \(\text{Disj}(M)\) and a map \(f: jV \to jD\) in \(\text{D}(M)\).

Then, since we are requiring \(f\) to be a map in \(\text{D}(M), D\) can be written as a disjoint union \((\bigsqcup s D_s)\) of disks, where the embedding part \(g: V \hookrightarrow D\) of the data determining \(f\), embeds \(U_s\) into \(D_s\). With this notation, it follows from definitions that the over category \(\langle (E_S)_{jU/}\rangle_{(D,f)}\) which we want to prove has contractible classifying space (here, \(\langle (D, f)\rangle\) is considered as an object of \(\text{Disj}_S(M)_{jU/}\)) is coinitial.

It follows that the map \(\Lambda(jV) \to \lim (E_S)_{jU/}\) of the diagram for this limit is an equivalence, so in order to conclude the proof, it suffices to show that the map from this limit to \(A(V)\) is an equivalence.

To analyse this limit, all the maps which appear in the diagram for this limit are equivalences since they are induced from (a finite family of) maps of \(E_1\), which \(A\psi\) is assumed to invert.

Moreover, the indexing category has contractible classifying space. This follows from the Cartesian square

\[
\begin{array}{ccc}
(E_S)_{jU/} & \longrightarrow & \text{D}(M)_{jV/} \\
\downarrow & & \downarrow \\
E_{jV/} & \longrightarrow & \text{D}(M)_{jV/}
\end{array}
\]

since the functor \(j\psi: E \to \text{D}(M)\) is cofinal, and geometric realisation preserves pull-backs.

\begin{remark}
In the proof, we have used the right Kan extension of a functor taking values in \(A\). However, we do not need to assume existence of limits in \(A\) for the validity of Theorem. Indeed, our purpose for taking the Kan extension was to show that the prealgebra \(A\) was locally constant. In order to prove this in the described method, \(A\) could be fully embedded into a category which has all small limits (e.g., by the Yoneda embedding), and the right Kan extension could be taken in this larger category. Note that the monoidal structure of \(A\) was not used in this step of the proof.
\end{remark}

\begin{corollary}
Let \(M\) be a manifold and let \(V\) be an effectively factorising l-nice basis of \(M\) considered in Theorem 2.37 equipped with all the data, and satisfying all the assumptions. Let \(U\) be another effectively factorising l-nice basis of \(M\), given by a functor \(\chi: C \to \text{Open}(M)\), \(i \mapsto U_i\). Assume given a factorisation \(\psi = \chi i\), where \(i: E \to C\).

Then a prealgebra \(A\) (not assumed to be locally constant) on \(M\) is a locally constant factorisation algebra if (and only if) the following are satisfied.

1. \(A\psi\) inverts all morphisms of \(E_1\).

\end{corollary}
(1) The functor $A\chi$ on \mathcal{C} is a left Kan extension of its restriction $A\psi$ to \mathcal{E} through ι.

(2) The underlying functor of A is a left Kan extension of its restriction $A\chi$ to the basis \mathcal{U}.

Proof. A is a left Kan extension of its restriction to the basis \mathcal{V}, so the previous theorem applies.

Example 2.40. Consider the following discrete category $c\operatorname{man}$. An object is a compact smooth manifold with boundary. A map $\overline{U} \to \overline{V}$ is a smooth immersion of codimension 0 which restricts to an embedding $U \hookrightarrow V$, where U and V are the interior of \overline{U} and \overline{V} respectively. $c\operatorname{man}$ is a symmetric monoidal category under disjoint union.

Let \overline{M} be an object of this category, and let M denote its interior.

Then, in the corollary, we can take \mathcal{U} to be given by the map $\chi: (c\operatorname{man})/\overline{M} \to \operatorname{Open}(M)$ of partial monoidal posets sending $\overline{U} \to \overline{M}$ to its restriction $U \hookrightarrow M$ while taking \mathcal{E}_1 to be the full subposet of $(c\operatorname{man})/\overline{M}$ consisting of objects whose source has the diffeomorphism type of the closed disk, and \mathcal{E} to be the symmetric partial monoidal category freely generated by \mathcal{E}_1. Here, we are considering $(c\operatorname{man})/\overline{M}$ as a partial monoidal category under unions which is disjoint in interiors, and are inducing a structure of symmetric multicategory on \mathcal{E}_1 from this. \mathcal{E} is the full subposet of $(c\operatorname{man})/\overline{M}$ generated from \mathcal{E}_1 by the partial monoidal product.

In other words, a locally constant factorisation algebra on this M could be defined as a symmetric monoidal functor on $(c\operatorname{man})/\overline{M}$ whose underlying functor satisfies the first two conditions of Corollary. The original notion is recovered by taking the left Kan extension of the underlying functor, to $\operatorname{Open}(M)$, which obtains a canonical symmetric monoidal structure.

Proof of Proposition 2.25. Define $\mathcal{E} := \operatorname{laxcolim}_{i \in \mathcal{C}} \operatorname{Disj}(U_i)$, and let $\iota: \mathcal{E} \to \mathcal{C}$ be the canonical projection and let $\psi := \chi_\iota$. Let $\mathcal{E}_1 \subset \mathcal{E}$ be $\operatorname{laxcolim}_{i \in \mathcal{C}} \operatorname{Disk}(U_i)$.

It suffices to check that Corollary 2.39 applies.

Firstly, $\psi: \mathcal{E} \to \operatorname{Open}(M)$ defines an effectively factorising l-nice basis of \mathcal{M} since for every open $U \subset M$, the functors $\operatorname{Disj}(U_i) \to \mathcal{E}_1$, for $i \in \mathcal{C}_{/U}$, the functor $\operatorname{colim}_{i \in \mathcal{C}_{/U}} \mathcal{E}_1 \simeq \mathcal{E}$, and so the composite $\operatorname{colim}_{i \in \mathcal{C}_{/U}} \operatorname{Disj}(U_i) \to \mathcal{E}_{/U}$, as well as the composite $\operatorname{colim}_{i \in \mathcal{C}_{/U}} \operatorname{Disj}(U_i) \to \mathcal{E}_{/U} \to /U$ are cofinal.

Similarly, ψ_ι defines an effectively l-nice basis.

Moreover, for a finite set S, $\mathcal{E}_S = \operatorname{laxcolim}_{i \in \mathcal{C}_{/U}} \operatorname{Disj}_S(U_i)$, and the rest of Hypothesis 2.39 is satisfied.

Finally, we prove the following from Theorem 2.27.

Theorem 2.41. The presheaf $M \mapsto \operatorname{Alg}_M(A)$ of categories is a sheaf.

Proof. Let a cover of a manifold M be given by $\mathcal{U} = (U_s)_{s \in S}$ where S is an indexing set. Let $\mathcal{C} := \Delta_{/S}^{\text{op}}$ be as in Example 2.10 and define $\chi: \mathcal{C} \to \operatorname{Open}(M)$ in the way described there. We would like to prove that the restriction functor

$$(2.42) \quad \operatorname{Alg}_M(A) \longrightarrow \lim_{i \in \mathcal{C}} \operatorname{Alg}_{\chi(i)}(A)$$

is an equivalence. We shall construct an inverse.

For an open disk $D \in \operatorname{Disk}(M)$, define

$$\mathcal{C}_D := \{ i \in \mathcal{C} \mid D \subset \chi(i) \}.$$

Then this is either empty or has contractible classifying space. Indeed, $\mathcal{C}_D = \Delta_{/S_D}^{\text{op}}$, where $S_D := \{ s \in S \mid D \in U_s \}$.

We plan to apply Theorem 2.27 to the following pair of basis. Namely, define \(\mathcal{E}_1 \) to be the full subposet of \(\text{Disk}(M) \) consisting of disks \(D \) such that \(C_D \) is non-empty. This gives an l-nice basis of \(M \). Then define a factorising l-nice basis \(\mathcal{E} \) as in Example 2.33. The full inclusion \(\psi: \mathcal{E} \hookrightarrow \text{Disj}(M) \) is a map of (symmetric) partial monoidal posets, and the pair \(\mathcal{E}_1 \hookrightarrow \mathcal{E} \) of bases for the topology of \(M \) satisfies Hypothesis 2.30.

Let \((A_i)_{i \in C} \in \lim_{i \in C} \text{Alg}_{x(i)} \) be given. Then define \(B: \mathcal{E}_1 \to \mathcal{A} \) by \(D \mapsto \lim_{i \in C_D} A_i(D) \), so \(B(D) \) is canonically equivalent to \(A_i(D) \) for any \(i \in C_D \). Extend this uniquely to a symmetric monoidal functor \(B: \mathcal{E} \to \mathcal{A} \). Then the left Kan extension of the underlying functor \(\mathcal{E} \to \mathcal{A} \) through \(\psi: \mathcal{E} \to \text{Open}(M) \) of \(B \), has a symmetric monoidal structure which makes it a locally constant factorisation algebra by Theorem 2.27.

Moreover, it is immediate that this is inverse to the restriction functor (2.42). \(\square \)

It follows that there is a notion of a locally constant factorisation algebra on an orbifold, and locally constant factorisation algebras can be pulled back along a local diffeomorphism (between orbifolds).

3. Generalisations and applications

3.0. Push-forward. We continue with the assumption stated in Section 2.1.

Theorem 2.11 allows us to push forward an algebra along "locally constant" maps.

Given any map \(p: X \to M \) of manifolds, the map \(p^{-1}: \text{Open}(M) \to \text{Open}(X) \) is symmetric monoidal. It follows that any prealgebra on \(X \) can be precomposed with \(p^{-1} \) to give a prealgebra \(p_*A \) on \(M \). Namely, we define \(p_*A := A \circ p^{-1} \).

We may ask when \(p_*A \) is locally constant, whenever \(A \) is a locally constant factorisation algebra. It follows from Theorem 2.12 that a sufficient condition is that \(p \) is locally trivial in the sense that over every component of \(M \), it is the projection of a fibre bundle. (Note that in this case, \(p \) can be considered as giving a locally constant family of manifolds parametrised by points of \(M \).)

Proposition 3.0. If \(p: X \to M \) is locally trivial, then for every locally constant factorisation algebra on \(A \), the locally constant prealgebra \(p_*A \) is a factorisation algebra.

Proof. Given any open submanifold \(U \) of \(M \), \(p^{-1} \) maps the factorising l-nice cover \(\text{Disj}(U) \) of \(U \) to a factorising l-nice cover of \(p^{-1}U \). Therefore, the result follows from Theorem 2.11 applied to \(A|_{p^{-1}U} \). \(\square \)

Let us give the push-forward functoriality on the groupoid of locally trivial maps. By definition, this groupoid is modeled by a Kan complex \(K_\bullet \), whose \(k \)-simplex is a locally constant family over the standard \(k \)-simplex of locally trivial maps. In other words, a \(k \)-simplex is a map \(p: X \times \Delta^k \to M \times \Delta^k \) over \(\Delta^k \) which is locally trivial.

Note from Theorem 2.12 and Corollary 2.15 that a locally constant algebra \(A \) on \(X \) is functorial on the groupoid of open submanifolds of \(X \), which can be modeled by a Kan complex whose \(k \)-simplex is a locally constant family over the standard \(k \)-simplex of open submanifolds.

Now let \(p \) be an \(k \)-simplex of \(K_\bullet \). Then for every open submanifold \(U \) of \(M \), the projection \(p^{-1}(U \times \Delta^k) \to \Delta^k \) gives a \(k \)-simplex of the space of open submanifolds of \(X \). We obtain the desired functoriality of the push-forward immediately.

3.1. Case of a higher target category. A natural notion of a twisted factorisation algebra would be the notion of an algebra taking values in a factorisation algebra of categories, instead of in a symmetric monoidal category. A twisted algebra in this sense will turn out to be just a map between certain algebras taking
values in the Cartesian symmetric monoidal category \(\text{Cat} \) of categories (of some limited size). In particular, the space of twisted algebras is a part of the structure of a category of \(\text{Alg}_M(\text{Cat}) \). However, in order to capture the structure of a category (rather than just a space) of twisted algebras, we need to take into account the structure of a 2-category of \(\text{Alg}_M(\text{Cat}) \), coming from the 2-category structure of \(\text{Cat} \). We can consider algebras in a symmetric monoidal 2-category in general, and it is in fact natural to consider a symmetric monoidal \(n \)-category for any \(n \leq \infty \).

Definition 3.1. Let \(\mathcal{A} \) be a symmetric monoidal (infinity) infinity category. Let \(M \) be a manifold. Then a **locally constant factorisation algebra** on \(M \) in \(\mathcal{A} \) is an algebra in \(\mathcal{A} \) over \(E_M \).

If \(\mathcal{A} \) is an \(n \)-category, then algebras in \(\mathcal{A} \) form a \(n \)-category.

The first thing to note is that the underlying 1-category of the \(n \)-category of factorisation algebras in \(\mathcal{A} \) is just the category of algebras in the underlying 1-category of \(\mathcal{A} \).

In order to understand the structure of the \(n \)-category of factorisation algebras, we would like to see that Theorem 2.12 holds in this context, for the \(n \)-categories of algebras. It suffices to set \(n = \infty \).

Theorem 3.2. *Restriction through the morphism* \(\text{Disk}(M) \to E_M \) *induces a fully faithful functor between the (infinity) infinity categories of algebras on these multicategories, valued in a symmetric monoidal infinity category* \(\mathcal{A} \). *The essential image of the functor consists precisely of the locally constant algebras on* \(\text{Disk}(M) \).

In order to explain the proof this theorem, let us first review the proof of Theorem 2.12. It follows from Theorem 3.3 and Lemma 3.4 below.

The first theorem is as follows. We shall comment on the undefined terms in it after we complete the statement.

Theorem 3.3 *(A special case of Theorem 2.3.3.23 of [11])*. Let \(\mathcal{C} \) and \(\mathcal{O} \) be multicategories, and assume that the category of colours of \(\mathcal{O} \) is a groupoid. Let \(f: \mathcal{C} \to \mathcal{O} \) be a morphism, and assume that it is a weak approximation, and induces a homotopy equivalence on the classifying spaces of the categories of colours. Then, for every multicategory \(\mathcal{A} \), the functor

\[
f^*: \text{Alg}_\mathcal{O}(\mathcal{A}) \to \text{Alg}_\mathcal{C}(\mathcal{A})
\]

induces an equivalence \(\text{Alg}_\mathcal{O}(\mathcal{A}) \to \text{Alg}_\mathcal{C}^{\text{loc}}(\mathcal{A}) \), where \(\text{Alg}^{\text{loc}} \) here denotes the category of **locally constant** algebras, and \(\text{Alg} \) denotes the category of not necessarily locally constant algebras.

The **local constancy** here means that the underlying functor of the algebra inverts all (unary) morphisms between colours. We do not need to explain the term “weak approximation”, since we just quote the following.

Lemma 3.4 *(Lemma 5.2.4.10, 11 of [11]).* The assumptions on \(f \) of Theorem 3.3 are satisfied by the map \(\text{Disk}(M) \to E_M \).

Thus, Theorem 2.12 extends to Theorem 3.2 once we prove the following.

Proposition 3.5. Let \(\mathcal{C} \) and \(\mathcal{O} \) be multicategories, and let \(f: \mathcal{C} \to \mathcal{O} \) be a morphism. Assume that \(f \) satisfies the conclusion of Theorem 3.3 (for example, by satisfying its assumptions). Then the conclusion of the same theorem is true for any **infinity** multicategory \(\mathcal{A} \), instead of just 1-dimensional \(\mathcal{A} \) (so an equivalence of (infinity) **infinity** categories is the claimed conclusion).

Proof. It suffices to prove, for every finite \(n \), the conclusion for \(n \)-dimensional \(\mathcal{A} \). We shall do this by induction on \(n \). Since we know that the conclusion is true at
the level of the underlying 1-categories, it suffices to prove that the functor f^* is fully faithful.

Thus, suppose $n \geq 2$, and let $A, B \in \text{Alg}_O(A)$. We need to recall the Day convolution. Namely, we construct an $(n - 1)$-dimensional multicategory which we shall denote by $\text{Map}(A, B)$, equipped with a morphism to O, so that the $(n - 1)$-dimensional category $\text{Map}_{\text{Alg}_O(A)}(A, B)$, is by definition, the fibre over the universal O-algebra $id : O \to O$, of the induced functor $\text{Alg}_O(\text{Map}(A, B)) \to \text{Alg}_O(O)$. (This is actually a slightly modification of Day’s original construction, which captures lax, rather than genuine, morphisms of algebras.)

An object of $\text{Map}(A, B)$ is a pair (x, φ), where x is an object (or a “colour”) in O ($x \in O$), and $\varphi : A(x) \to B(x)$ in A. Given a family $(x, \varphi) = ((x_s, \varphi_s))_{s \in S}$ of objects indexed by a finite set S, and an object (y, ψ), we define the $(n - 2)$-category of multimaps by the equaliser diagram

$$\text{Map}((x, \varphi), (y, \psi)) \longrightarrow \text{Map}_O(x, y) \longrightarrow \text{Map}_A(A(x), B(y)),$$

where the two maps equalised are the composites

$$\text{Map}_O(x, y) \xrightarrow{B} \text{Map}_A(B(x), B(y)) \xrightarrow{\varphi^*} \text{Map}_A(A(x), B(y))$$

and

$$\text{Map}_O(x, y) \xrightarrow{A} \text{Map}_A(A(x), A(y)) \xrightarrow{\psi^*} \text{Map}_A(A(x), B(y)).$$

For example, a multimap $(x, \varphi) \to (y, \psi)$ is a pair (θ, α), where $\theta : x \to y$ in O, and $\alpha : B(\theta) \varphi \mapsto \psi \alpha (\theta)$ in $\text{Map}(A(x), B(y))$, filling the square

$$\begin{array}{ccc}
A(x) & \xrightarrow{\varphi} & B(x) \\
A(\theta) \downarrow & & \downarrow B(\theta) \\
A(y) & \xrightarrow{\psi} & B(y).
\end{array}$$

Note that $\text{Map}((x, \varphi), (y, \psi))$ is indeed an $(n - 2)$-category since every fibre of the functor $\text{Map}((x, \varphi), (y, \psi)) \to \text{Map}(x, y)$ is $(n - 2)$-dimensional, where the base is 0-dimensional.

The functor $\text{Map}(A, B) \to O$ is given on objects by $(x, \varphi) \mapsto x$, and on multimaps by the projection $\text{Map}((x, \varphi), (y, \psi)) \to \text{Map}(x, y)$.

We shall denote $\text{Map}(f^* A, f^* B)$ by $\text{Map}_C(A, B)$. The following is immediate from the definitions.

Lemma 3.6. The canonical square of multicategories

$$\begin{array}{ccc}
\text{Map}_C(A, B) & \longrightarrow & C \\
\downarrow & & \downarrow f \\
\text{Map}(A, B) & \longrightarrow & O
\end{array}$$

is Cartesian.

We shall continue with the proof of Proposition. We have already seen that it suffices to prove that the functor

$$f^* : \text{Map}_{\text{Alg}_O(A)}(A, B) \longrightarrow \text{Map}_{\text{Alg}_C(A)}(A, B)$$

is an equivalence. Lemma above implies that the square

$$\begin{array}{ccc}
\text{Alg}_C(\text{Map}_C(A, B)) & \longrightarrow & \text{Alg}_C(C) \\
\downarrow & & \downarrow f_* \\
\text{Alg}_C(\text{Map}(A, B)) & \longrightarrow & \text{Alg}_C(O)
\end{array}$$

is Cartesian.
is Cartesian.

From this, and the definition of $\text{Map}_{\text{Alg}_C(A)}(A, B)$, we obtain a Cartesian square

$$\begin{array}{ccc}
\text{Map}_{\text{Alg}_C(A)}(A, B) & \to & \text{Alg}_C(\text{Map}(A, B)) \times_{\text{Alg}_C(\mathcal{O})} \text{Alg}^\text{loc}_C(\mathcal{O}) \\
& \downarrow & \downarrow \\
* & \to & \text{Alg}^\text{loc}_C(\mathcal{O}).
\end{array}$$

From the inductive hypothesis, we also obtain a Cartesian square

$$\begin{array}{ccc}
\text{Map}_{\text{Alg}_C(A)}(A, B) & \to & \text{Alg}^\text{loc}_C(\text{Map}(A, B)) \\
& \downarrow & \downarrow \\
* & \to & \text{Alg}^\text{loc}_C(\mathcal{O}).
\end{array}$$

It follows that the square

$$\begin{array}{ccc}
\text{Map}_{\text{Alg}_C(A)}(A, B) & \to & \text{Alg}^\text{loc}_C(\text{Map}(A, B)) \\
& \downarrow & \downarrow \\
\text{Map}_{\text{Alg}_C(A)}(A, B) & \to & \text{Alg}_C(\text{Map}(A, B)) \times_{\text{Alg}_C(\mathcal{O})} \text{Alg}^\text{loc}_C(\mathcal{O})
\end{array}$$

is Cartesian.

Since in this square, the vertical map on the right is an inclusion between full subcategories of $\text{Alg}_C(\text{Map}(A, B))$, it follows that the vertical map on the left identifies its source with the full subcategory of its target consisting of those maps of algebras which, as an algebra in $\text{Map}(A, B)$, is locally constant.

The desired result now follows since the definition of a map of algebras implies that every map of locally constant C-algebras is indeed locally constant in this sense.

□

Definition 3.7. Let \mathcal{A} be a symmetric monoidal infinity category. Then a pre-algebra on a manifold M in \mathcal{A} is an algebra over $\text{Open}(M)$, in \mathcal{A}. We say that a prealgebra A is locally constant if the restriction of A to a functor on $\text{Disk}(M)$ is locally constant.

Our descent results in the case the target category was a 1-category, described a locally constant factorisation algebra as a prealgebra satisfying various local constancy and descent properties relative to a factorising cover or basis satisfying certain hypotheses. Recall that these results depended on cofinality of functors to $D(M)$. Now we would like to see if same proofs work in the case where the target category is now a symmetric monoidal infinity category. For example, we have proved that Theorem 2.12 holds in this context.

However, only this is a non-trivial result actually, and all of our other proofs work without any change. Namely, all of our descent results hold if our target is a symmetric monoidal infinity category which (or equivalently, whose underlying symmetric monoidal 1-category) satisfies assumptions of Section 2.1.

Finally, let us generalise Theorem 2.27 to twisted algebras. Thus, let M be a manifold, and let a basis for the topology of M be given as in Theorem 2.27, by a symmetric monoidal functor $\psi: E \to \text{Open}(M)$, $i \mapsto V_i$, equipped with all the data, and satisfying all the assumptions. In particular, $V_i \in \text{Disj}(M)$ for every $i \in E$.

Lemma 3.8. For $i \in E$, if the composite

$$\begin{align*}
\mathcal{E}_i & \to \mathcal{E}/V_i \xrightarrow{\psi} \text{Disj}(V_i) \to D(V_i)
\end{align*}$$

(3.9)

is Cartesian.
is cofinal, then this functor $\mathcal{E}/_i \to D(V_i)$ is universal among the functors from $\mathcal{E}/_i$ which invert maps which are inverted in $D(V_i)$. Namely, for any category C, the restriction through (3.9),

$$\text{Fun}(D(V_i), C) \longrightarrow \text{Fun}(\mathcal{E}/_i, C),$$

is fully faithful with image consisting of functors $\mathcal{E}/_i \to C$ which invert maps in $\mathcal{E}/_i$ inverted in $D(V_i)$.

Remark 3.10. From Remark 2.28, the assumption of the cofinality follows if the first map $\mathcal{E}/_i \to \mathcal{E}/_V$ of the composition (3.9) is cofinal, e.g., by being an equivalence.

Proof of Lemma. In order to show that the restriction functor is fully faithful, we may first embed C by a fully faithful functor (e.g. the Yoneda embedding) into a category which has all small limits in it, and show that the restriction functor is fully faithful for this larger target category, in place of C. Therefore, we do not lose generality by assuming that C has all small limits in it, as we shall do.

In this case, an argument similar to the proof of Theorem 2.27 implies that the restriction functor is the inclusion of a right localisation of $\text{Fun}(\mathcal{E}/_i, C)$. Namely, if $U \in D(V_i)$ is of the form $\bigsqcup_{s \in S} D_s$ for a family $D = (D_s)_{s \in S}$ of disjoint disks indexed by a finite set S, so $D \in \text{Disj}(V_i)$, then we have $\psi_s : (\mathcal{E}/)_j \to \text{Disj}(V_i)$, and the resulting functor $((\mathcal{E}/)_j)_{D_j} \to (\mathcal{E}/_i)_{U/i}$ is cofinal since it has a right adjoint. It follows that the right Kan extension of a functor $F \in \text{Fun}(\mathcal{E}/_i, C)$ to $D(V_i)$ associates to U the limit $\lim_{(i(\mathcal{E}/)_J)_U} F$. The claim follows immediately from this, so we have proved the full faithfulness of the restriction functor.

The identification of the image of the embedding is then also immediate. \qed

Let M be a manifold, and let Disj_M denote Disj considered as an algebra of categories on $\text{Disk}(M)$. Then in the 2-category $\text{Alg}_{\text{Disk}(M)}(\text{Cat})$ of (not necessarily locally constant) algebras of categories on $\text{Disk}(M)$, Disj_M corepresents the functor $\mathcal{A} \mapsto \text{Alg}_{\text{Disk}(M)}(\mathcal{A})$.

Similarly, let D_M denote D as a (locally constant) algebra on $\text{Disk}(M)$. The obvious functor $\text{Disj} \to D$ is a map of algebras. We obtain the following by applying Lemma to the basis $\text{Disj}(M)$ for the topology of M.

Corollary 3.11. Let M be a manifold, and let \mathcal{A} be an algebra of categories on $\text{Disk}(M)$. Then the restriction functor

$$\text{Map}_{\text{Alg}_{\text{Disk}(M)}}(D_M, \mathcal{A}) \longrightarrow \text{Map}_{\text{Alg}_{\text{Disk}(M)}}(\text{Disj}_M, \mathcal{A}) = \text{Alg}_{\text{Disk}(M)}(\mathcal{A})$$

through the map $\text{Disj} \to D$ is fully faithful, and the image consists precisely of the locally constant algebras in \mathcal{A}.

More generally, in our current situation as in Theorem 2.27 let D_E denote the restriction of D_M through the functor $\psi : \mathcal{E} \to \text{Disk}(M)$ of multicategories (see Remark 2.27). Then Lemma 3.10 implies that if the functor (3.9) is cofinal for every $i \in \mathcal{E}$, then D_E corepresents the functor $\mathcal{A} \mapsto \text{Alg}_{E}^{\text{loc}}(\mathcal{A})$ on $\text{Alg}_{\mathcal{E}}(\text{Cat})$. As a consequence, we obtain the following, twisted version of Theorem 2.27 from the 2-categorical generalisation of Theorem 2.27 (in the case of the target 2-category Cat).

Theorem 3.12. Let M be a manifold, and let \mathcal{A} be a locally constant factorisation algebra of categories on M. Then for a basis for the topology of M as in Theorem 2.27, if the functor (3.9) is cofinal for every $i \in \mathcal{E}$, then the restriction functor

$$\text{Alg}_M(\mathcal{A}) \longrightarrow \text{Alg}_{E}^{\text{loc}}(\mathcal{A})$$

is an equivalence.
Remark 3.13. See Remark 3.10 for a sufficient condition for the assumption here to be satisfied.

3.2. (Twisted) algebras on a (twisted) product. We shall illustrate applications of Theorem 2.27 and its generalisation Theorem 3.12.

Fix a target symmetric monoidal category satisfying the assumptions of Section 2.1, and drop the name of this category from the notation.

Theorem 3.14. Let B, F be manifolds. Then, the restriction functor

$$\text{Alg}_{F \times B} \to \text{Alg}_B(\text{Alg}_F)$$

is an equivalence.

Proof. Note that the category Alg_F has sifted colimits, and they are preserved by the tensor product (since these are the same colimits and tensor product on the underlying objects).

We would like to use Theorem 2.27 on $M := F \times B$. For this purpose, we consider the following basis for the topology of M.

The basis will be indexed by the symmetric partially monoidal category \mathcal{E} to be defined as follows. The underlying category of \mathcal{E} will be as follows. Its objects are any object D of $\text{Disj}(M)$ for which there exists objects D' of $\text{Disj}(B)$ and D'' of $\text{Disj}(F)$, such that any component of D is a component of $D' \times D'' \subset M$.

Morphisms in \mathcal{E} shall be just inclusions, so it is a full subposet of $\text{Disj}(M)$. We denote the inclusion by $\psi: \mathcal{E} \hookrightarrow \text{Disj}(M)$. Note that this determines a factorising l-nice (and hence effectively factorising l-nice by Proposition 2.19) basis of M.

The partial monoidal structure on \mathcal{E} will be defined as follows. Namely, for any finite set S, let $\text{Disj}(M)^{(S)}$ denote the full subposet of the Cartesian product $\text{Disj}(M)^S$ on which the disjoint union operation to $\text{Disj}(M)$ is defined. Then we define the poset $\mathcal{E}^{(S)}$ by the Cartesian square

$$\begin{array}{ccc}
\mathcal{E}^{(S)} & \longrightarrow & \text{Disj}(M)^{(S)} \\
\downarrow & & \downarrow \\
\mathcal{E} & \psi & \text{Disj}(M).
\end{array}$$

It is canonically a full subposet of \mathcal{E}^S, and we let it be the domain of definition of the S-fold monoidal operation of \mathcal{E}, where the operation is defined to be the left vertical map on the square (3.15). Since \mathcal{E} is a poset, this determines a partial monoidal structure on \mathcal{E}.

We define the full subposet \mathcal{E}_1 of \mathcal{E} to be the intersection $\mathcal{E} \cap \text{Disk}(M)$ taken in $\text{Disj}(M)$. (As a full subposet of $\text{Disk}(M)$, \mathcal{E}_1 is $\text{Disk}(F) \times \text{Disk}(B)$.)

For this factorising l-nice basis of M, equipped with auxiliary data required for Theorem 2.27, we would like to verify that the Hypothesis 2.30 is satisfied. All but the hypothesis that $\psi_1 := \psi_{\mathcal{E}_1}: \mathcal{E}_1 \to \text{Open}(M)$ determines an effectively l-nice basis, are easily verified from the construction. This remaining hypothesis follows from Lurie’s generalised Seifert–van Kampen Theorem, since it is immediate to see that ψ_1 determines an l-nice basis.

Now Theorem 2.27 implies that the restriction functor $\text{Alg}_{\mathcal{E}_1} \to \text{Alg}_{\mathcal{E}}^{\text{loc}}$ is an equivalence, where the target is the category of algebras on \mathcal{E} which is locally constant with respect to \mathcal{E}_1 in the sense that the maps in \mathcal{E}_1 are all inverted.

However, the restriction functor $\text{Alg}_{\mathcal{E}}^{\text{loc}} \to \text{Alg}_B(\text{Alg}_F)$ is nearly tautologically (namely, up to introduction and elimination of the unit objects and the unit operations as necessary) an equivalence.

This completes the proof. □
For example, a locally constant factorisation algebra on \mathbb{R}^2 is the same as an associative algebra in the category of associative algebras since a locally constant factorisation algebra on \mathbb{R}^1 can be directly seen to be the same as an associative algebra.

Inductively, a locally constant factorisation algebra on \mathbb{R}^n is an iterated associative algebra object.

Remark 3.16. A product manifold $M = B \times F$ has another interesting factorising basis. Namely, there is a factoring basis of M consisting of the disjoint unions of disks in M of the form $D' \times D''$ for disks D' in B and D'' in F. As observed in Example 2.35, Theorem 2.27 applies to the factorising basis freely generated by this basis. The result we obtain is another description of the category Alg_M, namely as the category of ‘locally constant’ algebras on this factorising basis.

Iterating this, one finds a description of the category of locally constant algebras on \mathbb{R}^n which identifies it essentially with the category of algebras over Boardman–Vogt’s “little cubes”. Therefore, Theorem 3.14 can be considered as a generalisation of a theorem of Dunn [6].

Remark 3.17. Dunn’s theorem actually identifies the E_n-operad with the n-fold tensor product of the E_1-operad. In particular, unlike our theorem in the case of \mathbb{R}^n, the target category of the algebras need not satisfy our assumptions on sifted colimits.
where F is the fibre over D' of p with respect to the chosen trivialisation, so the monoidal operation $\bigotimes_{s \in S} : \text{Alg}_F^S \to \text{Alg}_F$ becomes the desired operation

$$\prod_{s \in S} \text{Alg}_{E/B}(D_s) \to \text{Alg}_{E/B}(D').$$

This is compatible with the structure of symmetric multicategory on $\text{Disk}(B)$ since restriction of trivialisations clearly is.

The relation of this approach to the previous approach is that a trivialisation of p over a disk D in B, gives an identification of E_x, $x \in D$, with the fibre of p over D.

Next, we shall construct the “restriction” functor $\text{Alg}_E \to \text{Alg}_B(\text{Alg}_{E/B})$. Given an algebra A on E, we shall associate to it an object of $\text{Alg}_B(\text{Alg}_{E/B})$ denoted by $A_{E/B}$ as follows.

Given an open disk $D \subset B$, we pick a trivialisation of p over D, and denote by q the projection $p^{-1}D \to F$ with respect to the trivialisation, where F is the fibre of p over D (with respect to the trivialisation). Then we define $A_{E/B}(D) := q_*i^*A \in \text{Alg}_F = \text{Alg}_{E/B}(D)$, where $i : p^{-1}D \hookrightarrow E$ is the inclusion.

We need to check the well-definedness of this construction. Recall that we identified different models of the fibre of p over D by comparing the family $F \times D$ over D, for any one model F, with the family $p^{-1}D$, by the trivialisation making F be a model for the fibre over D.

Taking this into account, it is easy to see that, in order to eliminate the ambiguity of the construction, it suffices to give a path between the maps $q \times D : p^{-1}D \times D \to F \times D$ and $p^{-1}D \times D \xrightarrow{\text{pr}} p^{-1}D \simeq F \times D$, through locally trivial maps (maps with locally constant fibres) $p^{-1}D \times D \to F \times D$. Using the trivialisation $p^{-1}D \simeq F \times D$ again, this is equivalent to giving a path between the two projections $F \times D \times D \to F \times D$ through locally trivial maps.

We may instead choose a path between the two projections $D^2 \to D$, through locally trivial maps. We pick an embedding of D into a vector space as an open convex subdisk, which does not add more information than a choice of a point from a contractible space. Then we have a path of locally trivial maps $D^2 \to D$,

$$(x, y) \mapsto x + t(y - x), \; 0 \leq t \leq 1.$$

This clearly comes as a family over the said contractible space.

Let us now equip this association $D \mapsto q_*i^*A$ with a structure of an algebra over $\text{Disk}(B)$. The construction is similar to the construction of the algebra structure of $\text{Alg}_{E/B}$, which we have made before. Namely, if we are given an inclusion $D \hookrightarrow D'$ in B, where D is a disjoint union of disks, then a trivialisation of p over D' restricts to a trivialisation of p over D, and thus we can try to construct the desired map $A_{E/B}(D) \to A_{E/B}(D')$ as $A[(q|_{p^{-1}D})^{-1}(U) = q^{-1}(U) \cap p^{-1}D \hookrightarrow q^{-1}(U)]$ for disks $U \subset F$, F the fibre over D'.

It remains to check that this construction is compatible with the construction we have made to eliminate the ambiguity for the association $D \mapsto A_{E/B}(D)$. Again, assuming that D' is an open convex subdisk of a vector space, it does no harm to restrict D to ones which are disjoint unions of open convex subdisks of D' (convexity in the same vector space).

Then the path of locally constant maps $(D')^2 \to D'$ given above restricts to a similar path on each component of D. This verifies the compatibility of the constructions.

It follows that the construction above indeed defines an algebra $A_{E/B} \in \text{Alg}_B(\text{Alg}_{E/B})$.
Proposition 3.18. Let \(p: E \to B \) be a smooth fibre bundle as above. Then the restriction functor
\[
\text{Alg}_B \to \text{Alg}_B(\text{Alg}_{E/B})
\]
is an equivalence.

Proof. The functor can be written as
\[
\lim_{D \in \text{Disj}(B)} \text{Alg}_{p^{-1}D} \to \lim_{D \in \text{Disj}(B)} \text{Alg}_D(\text{Alg}_{p^{-1}D/D}).
\]
Indeed, we can apply Theorem 2.26 to the source, and the target is this limit essentially by definition.

The given functor is the limit of the restriction functors on \(D \in \text{Disj}(B) \).

However, on each \(D \), the restriction functor can be identified with that in Theorem 3.14 by using the decomposition \(p^{-1}D = F \times D \), where \(F \) is the fibre of \(p \) over \(D \). Therefore it is an equivalence by the assertion of the theorem.

It follows that the twisted version of the restriction functor is also an equivalence. \(\square\)

Remark 3.19. From the discussions of Section 3.1, Proposition holds for a higher target category by the same proof. If the target is an \(n \)-category, then the proposition states that we have an equivalence of \(n \)-categories of algebras. In the following, we shall use the 2-category case.

There is a natural further generalisation of this. Namely, the algebra \(\text{Alg}_{E/B} \) can be constructed when the algebra on \(E \) is twisted. That is, let \(\mathcal{A} \) be a locally constant (pre-)algebra on \(E \) of categories. Then, for a disk \(D \subset B \), define the category
\[
\text{Alg}_{E/B}(\mathcal{A})(D) := \text{Alg}_F(\mathcal{A}_{E/B}(D)),
\]
where \(\mathcal{A}_{E/B} \in \text{Alg}_B(\text{Alg}_{E/B}(\text{Cat})) \) (where \(\text{Cat} \) denotes the 2-category of categories in which \(\mathcal{A} \) is taking values) is the restriction of \(\mathcal{A} \) as in the previous proposition, and \(F \) is the fibre of \(p \) over \(D \), so \(\mathcal{A}_{E/B}(D) \in \text{Alg}_{E/B}(\text{Cat})(D) = \text{Alg}_F(\text{Cat}) \).

Moreover, a restriction functor
\[
(3.20) \quad \text{Alg}_E(\mathcal{A}) \to \text{Alg}_B(\text{Alg}_{E/B}(\mathcal{A}))
\]
can be defined by \(\mathcal{A} \mapsto \mathcal{A}_{E/B} \), where \(\mathcal{A}_{E/B} \in \text{Alg}_B(\text{Alg}_{E/B}(\mathcal{A})) \) associates to a disk \(D \subset B \), the object \(q_i^*A \in \text{Alg}_F(\mathcal{A}(D)) = \text{Alg}_{E/B}(\mathcal{A})(D) \). The algebra structure is exactly as before.

Theorem 3.21. For a locally constant (pre-)algebra \(\mathcal{A} \) on \(E \) of categories, the restriction functor (3.20) is an equivalence.

Let us first establish this in the case where the fibre bundle is trivial. A global choice of a trivialisation leads to simplification of the constructions as well.

Lemma 3.22. Let \(B, F \) be manifolds, and let \(\mathcal{A} \) be an object of \(\text{Alg}_B(\text{Alg}_F(\text{Cat})) \), or equivalently, a locally constant algebra of categories on \(F \times B \), by Theorem 3.14.

Then, the restriction functor
\[
\text{Alg}_{F \times B}(\mathcal{A}) \to \text{Alg}_B(\text{Alg}_F(\mathcal{A})),
\]
where \(\text{Alg}_F(\mathcal{A}) \) is a locally constant algebra of categories on \(B \), defined by \(\text{Alg}_F(\mathcal{A})(D) := \text{Alg}_F(\mathcal{A}(D)) \), is an equivalence.

Proof. Similar to the proof of Theorem 3.14. One simply notes that Theorem 3.12 applies here instead of Theorem 2.27. See Remark 3.13. \(\square\)
Proof of Theorem 3.21. The 2-categorical generalisation of Theorem 2.26 implies that the restriction functor \(\text{Alg}_E(\text{Cat}) \to \lim_{D \in \text{Disj}(B)} \text{Alg}_{p^{-1}D}(\text{Cat}) \) is an equivalence of 2-categories. From this, one obtains that the restriction functor

\[
\text{Alg}_E(A) \longrightarrow \lim_{D \in \text{Disj}(B)} \text{Alg}_{p^{-1}D}(A)
\]

is an equivalence.

Similarly, one would like to show that the restriction functor

\[
\text{Alg}_B(\text{Alg}_{E/B}(A)) \longrightarrow \lim_{D \in \text{Disj}(B)} \text{Alg}_D(\text{Alg}_{p^{-1}D/D}(A))
\]

is an equivalence. However, since it is easy to verify from the definitions, that the restriction of \(\text{Alg}_{E/B}(A) \) to \(D \subset B \) is \(\text{Alg}_{p^{-1}D/D}(A) \), the equivalence also follows from Theorem 2.26.

By the naturality of the restriction functor, we have reduced the statement to the case where the base is a disjoint union of disks. In this case the fibre bundle is trivial on each component, and the statement follows from Lemma. \(\square \)

Remark 3.23. The results of this section depended only on our descent results from Section 2. Therefore, by what have been seen in the previous section, all the results of this section have a version in which the target category is infinite dimensional, and we get an equivalence of infinity categories of algebras.

References

[0] Atiyah, Michael, Topological quantum field theories. Inst. Hautes Études Sci. Publ. Math. No. 68 (1988), 175–186 (1989).

[1] Baez, John C.; Dolan, James, Higher-dimensional algebra and topological quantum field theory. J. Math. Phys. 36 (1995), no. 11, 6073–6105.

[2] Beilinson, Alexander; Drinfeld, Vladimir, Chiral Algebras. American Mathematical Society Colloquium Publications, 51. American Mathematical Society, Providence, RI, 2004. vi+375 pp. ISBN: 0-8218-3528-9.

[3] Boardman, J. M.; Vogt, R. M., Homotopy invariant algebraic structures on topological spaces. Lecture Notes in Mathematics, Vol. 347. Springer-Verlag, Berlin-New York, 1973. x+257 pp.

[4] Boavida de Brito, Pedro; Weiss, Michael S., Manifold calculus and homotopy sheaves, arXiv:1202.1305.

[5] Costello, Kevin; Gwilliam, Owen, Factorization algebras in quantum field theory, draft available at http://www.math.northwestern.edu/˜costello/

[6] Dunn, Gerald, Tensor product of operads and iterated loop spaces. J. Pure Appl. Algebra 50 (1988), no. 3, 237–258.

[7] Francis, John, Factorization homology of topological manifolds. arXiv:1206.5522

[8] Kontsevich, Maxim, Operads and motives in deformation quantization. Moshe Flato (1937–1998). Lett. Math. Phys. 48 (1999), no. 1, 35–72.

[9] Lurie, Jacob, Higher Topos Theory. Annals of Mathematics Studies, 170. Princeton University Press, Princeton, NJ, 2009. xviii+925 pp. ISBN: 978-0-691-14049-0; 0-691-14049-9

[10] Lurie, Jacob, On the classification of topological field theories. Current developments in mathematics, 2008, 129–280, Int. Press, Somerville, MA, 2009.

[11] Lurie, Jacob, Higher Algebra, available at http://www.math.harvard.edu/˜lurie/

[12] Matszuka, T., Koszul duality for locally constant factorisation algebras. To be published.

[13] Matsuoka, T., Descent and the Koszul duality for locally constant factorisation algebras. Thesis, Northwestern University, 2014.

[14] Segal, Graeme, The definition of conformal field theory. Topology, geometry and quantum field theory, 421–577, London Math. Soc. Lecture Note Ser., 308, Cambridge Univ. Press, Cambridge, 2004.

E-mail address: motogeomtop@gmail.com