Supporting information

A triazatruexene-based molecular dyad for single-component organic solar cells

Antoine Labrunie a, Giacomo Londi b, Sergey V. Dayneko c, Martin Blais a, Sylvie Dabos-Seignon a, Gregory C. Welch c, David Beljonne b, Philippe Blanchard a,*, Clément Cabanetos a,*

Email(s): philippe.blanchard@univ-angers.fr; clement.cabanetos@univ-angers.fr

a CNRS UMR 6200, MOLTECH-Anjou, University of Angers, 2 Bd Lavoisier, 49045 Angers, France
b Chimie des Matériaux Nouveaux & Centre d’Innovation et de Recherche en Matériaux Polymères, Université de Mons - UMONS / Materia Nova, Place du Parc, 20, B-7000 MONS
c Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada

NMR Spectra:

Figure S1: 1H NMR (300 MHz) of TAT-Br in CDCl$_3$ at 20 °C.
Figure S2: 1H NMR (300 MHz) (top) and 13C NMR (76MHz) (bottom) of TAT-T in CDCl$_3$ at 20 °C.

Figure S3: 1H NMR (300 MHz) of TAT-T-CHO in CDCl$_3$ at 20 °C.
Figure S4: 1H NMR (300 MHz) (top) and 13C NMR (76MHz) (bottom) of TAT-σ-N$_3$ in CDCl$_3$ at 20 °C.
Figure S5: HRMS of TAT-\(\sigma\)-N\(_3\)
Figure S6: 1H NMR (300 MHz) (top) and 13C NMR (76MHz) (bottom) of TAT-σ C60 in CDCl3 at 20 °C.

Figure S7: HRMS of TAT-σ C60.
Figure S8: TAT-α-N₃ HOMO and LUMO and their corresponding energies calculated in vacuum (top) and including dichloromethane molecules as a polarizable continuum (bottom).

Figure S9: PC₆₁BM HOMO and LUMO and their corresponding energies calculated in vacuum (top) and including dichloromethane molecules as a polarizable continuum (bottom).
Electrochemical data:
Figure S10. Cyclic voltammograms of TAT-\(\sigma\)-N\(_3\) (red), TAT-\(\sigma\)-C\(_{60}\) (purple), and the PC\(_{61}\)BM (blue) in 0.1 M Bu\(_4\)NPF\(_6\)/CH\(_2\)Cl\(_2\), scan rate 100 mV s\(^{-1}\), Pt working and counter electrode.

Photovoltaic data:

Table S1. Photovoltaic data obtained from active layers processed with different solvents

Processing solvent	Voc (V)	Jsc (mA cm\(^{-2}\))	FF (%)	PCE (%)
CB	0.41	1.77	31.3	0.22
CF	0.81	1.80	28.6	0.41
MeTHF	0.04	1.40	24.5	0.01
Figure S11. J−V characteristics measured under AM 1.5 simulated solar light under illumination (100 mW.cm⁻²) of the best devices processed with CB (bleu), CF (black) and MeTHF (red).

Atomic Force Microscopy:

Chlorobenzene (CB) processed active layers: RMS = 0.65 nm
Chloroform (CB) processed active layers: RMS = 0.65 nm

2-methyltetrahydrofuran (MeTHF) processed active layers: RMS = 21 nm

Figure S12. 2D and 3D surface topography images of the different active layers probed by atomic force microscopy