Ultrametricity and clustering of states in spin glasses: A one-dimensional view

Helmut G. Katzgraber1,2 and Alexander K. Hartmann3

1Theoretische Physik, ETH Zurich, CH-8093 Zurich, Switzerland
2Department of Physics, Texas A&M University, College Station, Texas 77843-4242, USA
3Institut für Physik, Universität Oldenburg, D-26111 Oldenburg, Germany

We present results from Monte Carlo simulations to test for ultrametricity and clustering properties in spin-glass models. By using a one-dimensional Ising spin glass with random power-law interactions where the universality class of the model can be tuned by changing the power-law exponent, we find signatures of ultrametric behavior both in the mean-field and non-mean-field universality classes for large linear system sizes. Furthermore, we confirm the existence of nontrivial connected components in phase space via a clustering analysis of configurations.

PACS numbers: 75.50.Lk, 75.40.Mg, 05.50.+q, 64.60.-i

An ultrametric (UM) space is a special kind of metric space in which the triangle inequality $d_{\alpha \gamma} \leq d_{\alpha \beta} + d_{\beta \gamma}$ [3, 6] is replaced by a stronger condition where $d_{\alpha \gamma} \leq \max\{d_{\alpha \beta}, d_{\beta \gamma}\}$, i.e., the two longer distances must be equal and the states thus lie on an isosceles triangle. The concept appears in many branches of science, such as p-adic numbers, linguistics, as well as taxonomy of animal species. It is also an intrinsic property of Parisi’s mean-field solution of the Sherrington-Kirkpatrick (SK) infinite-range spin glass. Hence, in general, the nature of the spin-glass state can be analyzed via clustering and ultrametricity-probing methods.

The nature of the spin-glass state is controversial and it is unclear if the mean-field replica symmetry breaking (RSB) picture, the droplet picture, or an intermediate phenomenological scenario dubbed as TNT (for “trivial–nontrivial”) describes the nature of the spin-glass state best. One way to settle the applicability of the RSB picture to short-range (SR) spin glasses is by testing if the phase space is UM. Unfortunately, the existence of an UM phase structure for SR spin glasses is controversial, mainly because only small linear system sizes have been accessible so far. Recent results suggest that SR systems are not UM, whereas other opinions exist [12, 13, 14, 15]. Thus it is of paramount importance to test if SR spin glasses have an UM phase space.

In this work we approach the problem from a different angle: First, we use a one-dimensional (1D) Ising spin-glass with power-law interactions. The model has the advantage that large linear system sizes can be studied. Furthermore, by tuning the exponent of the power law, the universality class of the model can be tuned between a mean-field and a non-mean-field universality class. This allows us to test our analysis method on the mean-field SK model and then apply it to regions of phase space where the system is not mean-field like. We perform a clustering analysis of the data similar to the work of Hed et al. [11] to obtain nontrivial triangles in phase space and introduce a novel correlator which allows us to see an UM signature for low temperatures and delivers no signal for high temperatures. Furthermore, we use a clustering analysis to search for connected components in phase space. The proposed method can be applied to any field of science to test for an UM structure of phase space, thus making the method generally applicable.

Our results for low temperatures show that for this model the phase space has an UM signature and exhibits many phase-space components, the number growing with system size in the mean-field as well as non-mean-field case. This suggests that for large enough system sizes SR spin glasses at low enough temperatures might have an UM phase space structure.

Model.— The Hamiltonian of the 1D Ising chain with long-range power-law interactions is given by

$$H = - \sum_{i<j} J_{ij} S_i S_j, \quad J_{ij} = c(\sigma) \frac{\epsilon_{ij}}{r_{ij}^\sigma}, \quad (1)$$

where $S_i \in \{\pm 1\}$ are Ising spins and the sum ranges over all spins in the system. The L spins are placed on a ring and $r_{ij} = (L/\pi) \sin(\pi |i-j|/L)$ is the distance between the spins. ϵ_{ij} are Normal random couplings. The constant $c(\sigma)$ is chosen such that the mean-field transition temperature to a spin-glass phase is $T_{c}^{MF} = 1$ [17].

The model has a very rich phase diagram when the exponent σ is tuned [17]: Both the universality class and

\[\begin{array}{c|cccc}
\sigma & 0 & 1/2 & 2/3 & 1 \\
\hline
SK & & & & \\
MF & & & & \\
non-MF & & & & \\
\end{array}\]

no signal for high temperatures. Furthermore, we use a clustering analysis to search for connected components in phase space. The proposed method can be applied to any field of science to test for an UM structure of phase space, thus making the method generally applicable.

Our results for low temperatures show that for this model the phase space has an UM signature and exhibits many phase-space components, the number growing with system size in the mean-field as well as non-mean-field case. This suggests that for large enough system sizes SR spin glasses at low enough temperatures might have an UM phase space structure.

Model.— The Hamiltonian of the 1D Ising chain with long-range power-law interactions is given by

$$H = - \sum_{i<j} J_{ij} S_i S_j, \quad J_{ij} = c(\sigma) \frac{\epsilon_{ij}}{r_{ij}^\sigma}, \quad (1)$$

where $S_i \in \{\pm 1\}$ are Ising spins and the sum ranges over all spins in the system. The L spins are placed on a ring and $r_{ij} = (L/\pi) \sin(\pi |i-j|/L)$ is the distance between the spins. ϵ_{ij} are Normal random couplings. The constant $c(\sigma)$ is chosen such that the mean-field transition temperature to a spin-glass phase is $T_{c}^{MF} = 1$ [17].

The model has a very rich phase diagram when the exponent σ is tuned [17]: Both the universality class and
the range of the interactions of the model can be continuously tuned by changing the power-law exponent, see Fig. 1. In this work we study the SK model \(\sigma = 0, T_c = 1 \) to test our analysis protocol, as well as the 1D chain for \(\sigma = 0.75 [T_c \sim 0.69] \) and \(0.85 [T_c \sim 0.49] \); both corresponding to the non-mean-field regime. We choose two values of \(\sigma \) to be able to discern any trends when the effective dimensionality is reduced.

Numerical details.— We generate spin-glass configurations by first equilibrating the system at \(T \approx 0.4 T_c \) using the exchange Monte Carlo method \([13]\), i.e., \(T = 0.4 \) for the SK model, 0.27 for \(\sigma = 0.75 \) and 0.20 for \(\sigma = 0.85 \). Once the system is in thermal equilibrium we record states ensuring that these are well separated in the Markov process and thus not correlated by measuring autocorrelation times. In practice, if we equilibrate the system for \(\tau_{eq} \) Monte Carlo sweeps, we generate for each disorder realization \(10^3 \) states separated by \(\tau_{eq}/10 \) Monte Carlo sweeps. We test equilibration using the test presented in Ref. \([18]\); see Table I for simulation details.

Analysis details.— We use an approach closely related to the one used by Hed et al. \([11]\). \(M = 10^5 \) equilibrium states at \(T \approx 0.4 T_c \)—to probe deep within the spin-glass phase—are sorted using the average-linkage agglomerative clustering algorithm \([21]\): Distances are measured in terms of the hamming distance \(d_{\alpha\beta} = (1 - |q_{\alpha\beta}|) \), where \(q_{\alpha\beta} = N^{-1} \sum q_\alpha q_\beta \) is the spin overlap between states \(\{S^\alpha\} \) and \(\{S^\beta\} \). The clustering procedure starts with \(M \) clusters containing each exactly one state. Distances between clusters are introduced, which are initially equal to the distances between the corresponding states. Iteratively the two closest clusters \(C_a \) and \(C_b \) are merged into one cluster \(C_d \), reducing the number of clusters by one. The distances of the new cluster \(C_d \) to the other remaining clusters have to be calculated: The distance between two clusters is the average distance between all pairs of members of the clusters. The procedure is iterated until one cluster remains. The sequence of mergers can be displayed by a tree, referred to as a dendrogram. The root of the dendrogram corresponds to the last cluster, while the leaves correspond to the initial states, see Fig. 2. Furthermore, we also show in Fig. 2 the distance matrix \(d_{\alpha\beta} \) having ordered the states according to the leaves of the dendrogram. The matrix elements are encoded in gray scale (black corresponds to zero distance). The complex phase-space structure is clearly visible: The matrix has a block-diagonal form, the blocks again being subdivided in a block-diagonal structure.

To analyze the matrix quantitatively for ultrametricity, we randomly select three states from different branches of the tree \([21]\) and sort the distances: \(d_{\text{max}} \geq d_{\text{med}} \geq d_{\text{min}} \). We compute the correlator

\[
K = (d_{\text{max}} - d_{\text{med}})/g(d),
\]

where \(g(d) \) is the width of the distribution of distances. Note that the definition of \(K \) in Eq. (2) differs from the definition used in Ref. \([11]\) where the normalization is performed with \(d_{\text{min}} \). Our choice ensures that any apparent change of an UM measure is scaled out, which is just caused by a width change of the distance distribution. The definition used in Ref. \([11]\) can only tell if there is no ultrametricity, i.e., a random bit string will also show an UM response. The definition in Eq. (2) alleviates this problem: For \(T > T_c \) (or a random bit string) there is no UM signature in \(K \), whereas for \(T \ll T_c \) we see a clear UM response for the SK model. Thus we are able to discern between “trivial ultrametricity,” which occurs from equilateral triangles at \(T > T_c \), and a true UM phase-space structure. If the phase space is UM then we expect \(d_{\text{max}} = d_{\text{med}} \) for \(L \to \infty \). Thus \(P(K) \to \delta(K = 0) \) for \(L \to \infty \) \([22]\). We have also computed \(P(K) \) for a Migdal-Kadanoff spin glass \([23]\) finding no UM signal for systems up to \(N = 149798 \) spins, as one would expect.

We also analyze the connected components in phase space (visible in the distance matrices \(d_{\alpha\beta} \) by extend-

Table I: Simulation parameters for the 1D chain and different power-law exponents \(\sigma \). \(L \) is the system size, \(N_{\text{eq}} \) is the number of disorder realizations, \(\tau_{eq} \) is the number of equilibration sweeps, \(T_{\text{min}} \) is the lowest temperature and \(N_t \) the number temperatures used in the exchange Monte Carlo method.

\(\sigma \)	\(L \)	\(N_{\text{eq}} \)	\(\tau_{eq} \)	\(T_{\text{min}} \)	\(N_t \)			
0.00	0.75	0.85	32	4000	10000	0.20	20	
0.00	0.75	0.85	4.00	64	4000	10000	0.20	20
0.00	0.75	0.85	4.00	128	4000	10000	0.20	20
0.00	0.75	0.85	4.00	256	4000	65000	0.20	20
0.00	0.75	0.85	4.00	512	2000	200000	0.20	20
0.00	0.75	0.85	4.00	512	2000	650000	0.20	20
0.00	0.75	0.85	4.00	1024	1000	320000	0.40	20

FIG. 2: A dendrogram obtained by clustering 100 configurations (see text) for a sample system with \(\sigma = 0.0 \) and \(L = 512 \) at \(T = 0.4 \) together with the matrix \(d_{\alpha\beta} \) shown in gray scale (distance 0 is black). The order of the states is given by the leaves of the dendrogram (figure rotated clockwise by 90°).
ing the approach of Kelley et al. 24. During the i’th iteration of the clustering algorithm one encounters $M(i) = M - i$ clusters. Thus the goal is to find the number of clusters which represents the data best corresponding to the highest-level blocks in the ordered $d_{\alpha\beta}$ matrix. To obtain a better resolution at the scale of small distances, we use a logarithmic scale $d_{\alpha\beta} \sim 1 - \log d_{\alpha\beta}$, normalized to values $[0, 1]$ 23. To measure the component property of the configuration space, we calculate for each cluster $\Gamma = \{\alpha_i\}$ obtained during the algorithm the average distance within the cluster (“spread”) $s_{\Gamma} = 2 \sum_{\alpha \neq \beta \in \Gamma} d_{\alpha\beta} / |\Gamma|(|\Gamma| - 1)$. Here $|\Gamma|$ is the number of states in the cluster Γ. Then, for each iteration i, the average spread s_{Γ_i} among the $M(i)$ clusters is calculated. Once the clustering analysis is completed, all M average spread values are normalized to lie in the interval $[1, M - 1]$, resulting in $s_{\Gamma, norm}$. For each realization the minimum M_{\min} of $s_{\Gamma, norm} + \gamma M(i)$ as a function of $M(i)$ is determined, where γ is a sensitivity parameter (the method of Ref. 24 corresponds to $\gamma = 1$). Then $n_C = M_{\min}$ is the number of phase-space components. Note that the larger γ is, the fewer components are found. Since a paramagnet should exhibit only one component, we determine for each system size L $\gamma(L)$ such that for $M = 10^3$ random bit strings ($T = \infty$), averaged over 10^2 runs, on average 1.01 components are obtained 24.

Results.— In Fig. 3 the distribution $P(K)$ is shown for $\sigma = 0$ (SK model), 0.75 (non-mean-field), 0.85 (non-mean-field) for $T \approx 0.4T_c$. In all three cases, $P(K)$ seems to converge to a delta function for $L \to \infty$. This is clearly visible when looking at the variance of the distribution which decays with a power-law of the system size (see Fig. 4). Note that $P(K)$ does not change with system size close to T_c [inset to Fig. 3a]. A similar lack of divergence has also been found for simulations for $\sigma = 4.0$ in the SR universality class [inset to Fig. 3c]. For random bit strings [inset to Fig. 3b] the correlator also shows no sign of UM. Therefore, the correlator [Eq. (2)] can clearly distinguish between “trivial” ultrametricity—which is due to equilateral triangles—and ultrametricity created by a complex energy landscape. We have also performed an equivalent analysis by replacing the spin overlap $q_{\alpha\beta}$ by the link overlap $q_{\alpha\beta} = N_{\text{chains}}^{-1} \sum_{i<j} S_i^\alpha S_j^\beta S_i^\sigma S_j^\delta$. In this case, for all values of σ, $P(K)$ does not converge to a delta function. This is to be expected, since a different approach is needed 14 to obtain evidence for UM using $q_{\alpha\beta}$.

In Fig. 3 the number of components n_C is shown for the SK model as function of L for different T. Below T_c n_C increases with L, while for larger T it decreases. Other values of σ show a similar behavior (not shown). Interestingly, n_C is largest in the spin-glass phase and close to T_c (inset to Fig. 3). The reason is probably that at higher T more energy landscape valleys are accessible, including those who have high-lying minima, still separated by energy barriers rarely overcome. For even higher temperatures even more states are highly populated, leading to one big component in the energy landscape. The exact peak position shifts slightly with σ.

Summary and discussion.— We have studied numerically the low-temperature configuration landscape of a 1D long-range spin glass with power-law interactions characterized by an exponent σ. By using a hierarchical clustering method and analyzing the resulting distance matrices we have studied the UM properties, as well as counted the phase space components. For this purpose we have introduced a novel way to quantify ultrametricity and we have extended a method to count components by analyzing the distance matrix structure. We observe that for σ values spanning the infinite-range SK universality class ($\sigma = 0$) to the non-mean-field universality class ($\sigma > 2/3$) an UM organization and a

\begin{figure*}[h]
\centering
\includegraphics[width=\textwidth]{figure3.png}
\caption{(Color online) Distribution $P(K)$ for different system sizes (all panels have the same horizontal scale). (a) Data for the SK model. The distribution diverges for $K \to 0$ thus signaling an UM phase structure. Inset: For $T \to T_c$ no divergence is visible. (b) Data for the 1D chain for $\sigma = 0.75$ (non-mean-field universality class). The distribution diverges. Inset: For random bit strings the distribution shows no divergence. (c) $\sigma = 0.85$ (non-mean-field universality class). The distribution diverges. Inset: For $\sigma = 4$ (corresponding to a system with $d_{\alpha\beta} \leq 2$ the distribution shows no divergence.)}
\end{figure*}
plex clustered landscape seem to emerge for the system sizes studied. To check if these results persist at larger length scales, it would be of interest to study even larger systems.\footnote{L. Leuzzi et al., Phys. Rev. Lett. \textbf{101}, 107203 (2008).} This important since the crossover to any putative UM behavior presumably might depend on the system size.

We thank E. Domany, G. Hed, T. Jörg, F. Krzakala and A. P. Young for the useful discussions, as well as T. Jörg for providing test data for the Migdal-Kadanoff spin glasses. We especially thank W. Radenbach for his participation in an initial stage of the project. The simulations have been performed on the ETH Zürich clusters. H.G.K. acknowledges support from the Swiss National Science Foundation under Grant No. PP002-114713.

\begin{thebibliography}{99}
\bibitem{1} R. Rammal, G. Toulouse, and M. A. Virasoro, Rev. Mod. Phys. \textbf{58}, 765 (1986).
\bibitem{2} G. Parisi, Phys. Rev. Lett. \textbf{43}, 1754 (1979).
\bibitem{3} K. Binder and A. P. Young, Rev. Mod. Phys. \textbf{58}, 801 (1986).
\bibitem{4} M. Mézard \textit{et al.}, Phys. Rev. Lett. \textbf{52}, 1156 (1984).
\bibitem{5} D. Sherrington and S. Kirkpatrick, Phys. Rev. Lett. \textbf{35}, 1792 (1975).
\bibitem{6} M. Mézard, G. Parisi, and M. A. Virasoro, \textit{Spin Glass Theory and Beyond} (World Scientific, Singapore, 1987).
\bibitem{7} A. J. Bray and M. A. Moore, in \textit{Heidelberg Colloquium on Glassy Dynamics and Optimization}, edited by L. Van Hemmen and I. Morgenstern (Springer, New York, 1986), p. 121.
\bibitem{8} D. S. Fisher and D. A. Huse, Phys. Rev. Lett. \textbf{56}, 1601 (1986).
\bibitem{9} P. Krzakala and O. C. Martin, Phys. Rev. Lett. \textbf{85}, 3013 (2000).
\bibitem{10} M. Palassini and A. P. Young, Phys. Rev. Lett. \textbf{85}, 3017 (2000).
\bibitem{11} G. Hed, A. P. Young, and E. Domany, Phys. Rev. Lett. \textbf{92}, 157201 (2004).
\bibitem{12} S. Franz and F. Ricci-Tersenghi, Phys. Rev. E \textbf{61}, 1121 (2000).
\bibitem{13} T. Jörg and F. Krzakala, Phys. Rev. Lett. \textbf{100}, 159701 (2008).
\bibitem{14} P. Contucci \textit{et al.}, Phys. Rev. Lett. \textbf{99}, 057206 (2007).
\bibitem{15} P. Contucci \textit{et al.}, Phys. Rev. Lett. \textbf{100}, 159702 (2008).
\bibitem{16} G. Kotliar, P. W. Anderson, and D. L. Stein, Phys. Rev. B \textbf{27}, R602 (1983).
\bibitem{17} H. G. Katzgraber and A. P. Young, Phys. Rev. B \textbf{67}, 134410 (2003).
\bibitem{18} H. G. Katzgraber and A. P. Young, Phys. Rev. B \textbf{72}, 184416 (2005).
\bibitem{19} K. Hukushima and K. Nemoto, J. Phys. Soc. Jpn. \textbf{65}, 1604 (1996).
\bibitem{20} A. K. Jain and R. C. Dubes, \textit{Algorithms for Clustering Data} (Prentice-Hall, Englewood Cliffs, USA, 1988).
\bibitem{21} According to Ref. \cite{11}, from each subtree T_{a}, T_{b} and T_{1} one state is selected randomly. The root has two subtrees T_{1} and T_{2}, T_{1} being the larger one. T_{a} and T_{b} are the two subtrees of T_{1}.
\bibitem{22} Note that for the definition of K in Ref. \cite{11} $P(K) \rightarrow 0(0)$ for $L \rightarrow \infty$ also when the system is trivially ultrametric.
\bibitem{23} A. K. Hartmann, T. Jörg, H. G. Katzgraber, and F. Krzakala, in preparation.
\bibitem{24} L. A. Kelley \textit{et al.}, Prot. Engin. \textbf{9}, 1063 (1996).
\bibitem{25} The value $d_{a,b} = 1$, i.e., two equal configurations, does occur with exponentially-small probability for large systems but was never observed.
\bibitem{26} If one required an average value of exactly 1 component(s), the sensitivity would depend on the number of samples.
\bibitem{27} L. Leuzzi \textit{et al.}, Phys. Rev. Lett. \textbf{101}, 107203 (2008).
\end{thebibliography}