Phenotype profiling of white-nose syndrome pathogen \textit{Pseudogymnoascus destructans} and closely-related \textit{Pseudogymnoascus pannorum} reveals metabolic differences underlying fungal lifestyles [version 1; referees: 1 approved, 2 approved with reservations]

Vishnu Chaturvedi1,2, Holland DeFiglio1, Sudha Chaturvedi1,2

1Mycology Laboratory, New York State Department of Health, Albany, NY, 12208, USA

2Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, 12208, USA

Abstract

\textbf{Background:} \textit{Pseudogymnoascus destructans}, a psychrophile, causes bat white-nose syndrome (WNS). \textit{Pseudogymnoascus pannorum}, a closely related fungus, causes human and canine diseases rarely. Both pathogens were reported from the same mines and caves in the United States, but only \textit{P. destructans} caused WNS. Earlier genome comparisons revealed that \textit{P. destructans} contained more deduced proteins with ascribed enzymatic functions than \textit{P. pannorum}.

\textbf{Methods:} We performed metabolic profiling with Biolog PM microarray plates to confirm \textit{in silico} gene predictions.

\textbf{Results:} \textit{P. pannorum} utilized 78 of 190 carbon sources (41\%), and 41 of 91 nitrogen sources (43\%) tested. \textit{P. destructans} used 23 carbon compounds (12\%) and 23 nitrogen compounds (24\%). \textit{P. destructans} exhibited more robust growth on the phosphorous sources and nutrient supplements (83\% and 15\%, respectively) compared to \textit{P. pannorum} (27\% and 1\%, respectively.). \textit{P. pannorum} exhibited higher tolerance to osmolytes, pH extremes, and a variety of chemical compounds than \textit{P. destructans}.

\textbf{Conclusions:} An abundance of carbohydrate degradation pathways combined with robust stress tolerance provided clues for the soil distribution of \textit{P. pannorum}. The limited metabolic profile of \textit{P. destructans} validated \textit{in silico} predictions of far fewer proteins and enzymes. \textit{P. destructans} ability to catabolize diverse phosphorous and nutrient supplements might be critical in the colonization and invasion of bat tissues. The present study of 1,047 different metabolic activities provides a framework for future gene-function investigations of the unique biology of the psychrophilic fungi.

\textbf{Keywords}

Psychrophilic fungi, phenotype microarray, metabolism, catabolism, gene function

Open Peer Review

\textbf{Referee Status:} ? ? ?

\textbf{Invited Referees}

\begin{tabular}{l}
\textbf{version 1} \textbf{report} \textbf{report} \textbf{report} \\
\textbf{published} 25 May 2018
\end{tabular}

\begin{itemize}
\item \textbf{1} Christine Salomon, University of Minnesota, USA
\item \textbf{2} Christopher T Cornelison, Kennesaw State University, USA
\item \textbf{3} Flavia Pinzari, Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment (CREA-AA), Italy
\end{itemize}

Discuss this article

Comments (0)
Corresponding author: Vishnu Chaturvedi (Vishnu.Chaturvedi@health.ny.gov)

Author roles: Chaturvedi V: Conceptualization, Data Curation, Formal Analysis, Funding Acquisition, Investigation, Methodology, Project Administration, Resources, Supervision, Validation, Visualization, Writing – Original Draft Preparation, Writing – Review & Editing; DeFiglio H: Data Curation, Formal Analysis, Investigation, Methodology, Validation, Visualization, Writing – Review & Editing; Chaturvedi S: Conceptualization, Funding Acquisition, Investigation, Project Administration, Resources, Supervision, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

How to cite this article: Chaturvedi V, DeFiglio H and Chaturvedi S. Phenotype profiling of white-nose syndrome pathogen Pseudogymnoascus destructans and closely-related Pseudogymnoascus pannorum reveals metabolic differences underlying fungal lifestyles [version 1; referees: 1 approved, 2 approved with reservations] F1000Research 2018, 7:665 (doi: 10.12688/f1000research.15067.1)

Copyright: © 2018 Chaturvedi V et al. This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Data associated with the article are available under the terms of the Creative Commons Zero "No rights reserved" data waiver (CC0 1.0 Public domain dedication).

Grant information: This study was supported by the National Science Foundation (Award Number 1203528). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

First published: 25 May 2018, 7:665 (doi: 10.12688/f1000research.15067.1)
Introduction

Pseudogymnoascus destructans causes white-nose syndrome (WNS), a disseminated disease afflicting hibernating bats in North America since 2006\(^1\). WNS is linked to mass mortality and now afflicts bats over large geographic areas in the United States and Canada. *P. destructans*’ pathogenic mechanisms remain mysterious especially as no other human or animal fungal pathogen expresses virulence attributes at such low temperatures. *Pseudogymnoascus pannorum*, a closely related fungus, is widely distributed in the soil and substrates of caves and mines in North America\(^2\). *P. pannorum* grows both at psychrophilic and mesophilic temperature ranges and causes human and canine diseases rarely\(^3\). However, *P. pannorum* does not cause any disease in hibernating bats. These facts raise the exciting possibilities that *P. destructans* is more specialized for the pathogenic lifestyle on bats while *P. pannorum* successfully colonizes a broader range of substrates in nature.

Environmental studies on the psychrophilic and psychrotolerant fungi documented the versatility of *Pseudogymnoascus (Geomyces) pannorum* for the utilization of complex carbohydrates and keratin-enriched substrates, and tolerance to high salt\(^4\). Additional laboratory studies demonstrated extensive saprotrophic enzymatic activities that would allow resource capture by the non-pathogenic *Pseudogymnoascus* species vis-a-vis *P. destructans*\(^5\). *P. destructans* is known to secrete proteolytic, lipolytic, and keratinolytic exoenzymes, and possesses specialized catabolic activities that contribute to its growth and survival in the nutrient-poor caves and mines\(^6\). Although their draft genomes are similar in size (~30 Mb), there are numerous repeats and far fewer proteins and enzymes in *P. destructans* (2,052 proteins) than in *P. pannorum* (2,734 proteins)\(^7\). In the present study, we report the results of extensive Biolog Phenotype Microarray metabolic profiling to confirm *in silico* gene predictions, and find clues for the different lifestyles of these psychrophilic fungi.

Methods

The metabolic analysis was conducted using *P. destructans* (M1379) and *P. pannorum* (M1372)\(^8\). The PM1-10 and PM21, 23–25 phenotype microarray plates were procured from Biolog, Hayward, CA. The fungal spores were harvested in sterile water from 3 - 5-week-old, heavily sporulating culture on potato dextrose agar (PDA) flasks at 15°C. In preliminary experiments, spore counts and viability were determined on agar plates using a hemocytometer and colony forming units (CFU). For the final tests, the spores were harvested, washed once in sterile water by centrifugation, and the suspension adjusted to an OD\(_{550}\) of 0.2 (transmittance = 62%). This suspension equated to between 550 and 950 spores per well in a 96-well microplate. The PM plates were inoculated per Biolog protocol and incubated for 10 days at 15°C\(^12\). The presence or absence of growth was measured by OD\(_{550}\) on day 10 for *P. destructans*, and day 7 for *P. pannorum*. Negative control wells were growth positive for both *P. destructans* and *P. pannorum*. Therefore, the corresponding negative control well reading from each experiment were averaged together and used to normalize the OD values averages for each test compound. The phenotypic assay was repeated once, and the average of two readings used in the subsequent analysis.

Results

Nearly 1,047 different metabolic activities were analyzed for each test fungus (Figure 1 and Datasets 1–4\(^9\)). *P. pannorum* metabolized far more carbon and nitrogen compounds; *P. destructans* exhibited prominent activity on phosphorous sources and nutrient supplements (Figure 2). *P. pannorum* utilized 78 of 190 carbon sources (41%), and 41 of 91 nitrogen sources (43%) tested. *P. destructans* used 23 carbon compounds (12%) and 23 nitrogen compounds (24%). *P. destructans* exhibited more robust growth on the phosphorous sources and nutrient supplements (83% and 15%, respectively) compared to *P. pannorum* (27% and 1%, respectively). *P. pannorum* metabolized nearly all carbon intermediates in the major fungal metabolic cycles\(^10\) (Figure 3). *P. destructans* utilized only a few simple sugars in glycolysis with no activity on a range of carbon intermediates. *P. pannorum* used a wider variety of nitrogen sources including amino acids, amino bases, and alkanes while *P. destructans* had a preference for the simple N sources and dipeptides\(^11\) (Figure 4). Most phosphorous sources tested were utilized by *P. destructans* while *P. pannorum* only grew on few phosphosugars and phosphorylated nucleosides (Figure 5). Both fungi did not utilize sulfur intermediates (Datasets 1–4\(^12\)). Fifteen of ninety-five nutrient supplements supported good growth of *P. destructans* while *P. pannorum* grew only on D-Pantothenic acid. *P. pannorum* grew at very high salt concentrations and extreme acidic and basic pH ranges while *P. destructans* was sensitive to high salt and basic pH (Figure 6). *P. pannorum* showed extreme tolerance to 96 xenobiotics in PM21, PM23 - PM25 plates in contrast to severe sensitivity observed in *P. destructans* (Figure 1).

Discussion

Metabolic profiles of *P. destructans* and *P. pannorum* validated *in silico* predictions about the notable differences in the number of protein-encoding genes in their genomes\(^13\). *P. destructans* contained enzymes and catabolic pathways that support fungal growth on a limited range of substrates of non-plant origin and showed high sensitivity to stress. *P. pannorum* was remarkably adapted for the nutrient poor environments of the caves and mines (‘extremophile’) with oligotrophic metabolism, osmotolerance, xerotolerance, and xenobiotic tolerance.

The findings in the present study confirm and expand on results from other reports on *P. destructans*’ adaptation and persistence in the North American caves and mines in the face of possible competitive interactions with the native fungal species\(^13\). Both Raudabaugh and Miller (2013) and Reynolds and Barton...
Figure 1. Summary of Biolog phenotype microarray plates for *Pseudogymnoascus destructans* (PD) and *Pseudogymnoascus pannorum* (PP). Green squares include substrates with positive reactions; red boxes denote lack of metabolic activity in some plates.
Figure 2. A comparison of carbon, nitrogen, phosphorous and nutrient supplements utilized by Pseudogymnoascus destructans and Pseudogymnoascus pannorum.

Figure 3. Catabolism of Carbon compounds by Pseudogymnoascus destructans (PD) and Pseudogymnoascus pannorum (PP).
Figure 4. Use of nitrogen compounds by *Pseudogymnoascus destructans* (PD) and *Pseudogymnoascus pannorum* (PP).

Figure 5. Use of phosphorus compounds by *Pseudogymnoascus destructans* (PD) and *Pseudogymnoascus pannorum* (PP).
(2014) used a variety of biochemical tests to probe the metabolic activities in a collection of *Pseudogymnoascus* species isolates. The authors of the former study surmised the suitability of *P. destructans* as a saprobe in the affected caves and mines in limited biotic competition (‘resource island’). Reynolds and Barton (2014) found a reduced saprotrophic ability in *P. destructans* isolates vis-à-vis *P. pannorum* and other *Pseudogymnoascus* species, which suggested ‘co-evolution with the host’. Wilson *et al.* (2017) performed a variety of tests including Biolog FF Microplate with 95 different substrates, and found limited saprotrophic ability in *P. destructans* in comparison to other *Pseudogymnoascus* species.

Further Phenotype Microarray profiling of *P. destructans* and *P. pannorum* would be crucial to fill-in current gaps in their genome sequences, define gene functions, and elucidate pathophysiological attributes. We and others hope to accomplish these milestones with the recent availability of a high-quality *P. destructans* genome and data pipelines to automate Biolog analysis.

Data availability

Datasets 1–4: Excel sheets with OD values for all Biolog plates tested in this study. DOI, 10.5256/f1000research.15067.d20467

Competing interests

No competing interests were disclosed.

Grant information

This study was supported by the National Science Foundation (Award Number 1203528).

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References

1. Blehert DS, Hicks AC, Behr M, *et al.*: Bat white-nose syndrome: an emerging fungal pathogen? *Science*. 2009; 323(5911): 227. PubMed Abstract | Publisher Full Text
2. Chaturvedi V, Springer DJ, Behr MJ, *et al.*: Morphological and molecular characterizations of psychrophilic fungus *Geomyces destructans* from New York bats with White Nose Syndrome (WNS). *PloS One*. 2010; 5(5): e10783. PubMed Abstract | Publisher Full Text | Free Full Text
3. Minnis AM, Lindner DL: Phylogenetic evaluation of *Geomyces* and allies reveals no close relatives of *Pseudogymnoascus destructans*, comb. nov., in bat hibernacula of eastern North America. *Fungal Biol*. 2013; 117(9): 638–49. PubMed Abstract | Publisher Full Text
4. Christen-Zaech S, Patel S, Mancini AJ: Recurrent cutaneous *Geomyces pannorum* infection in three brothers with ichthyosis. *J Am Acad Dermatol*. 2008; 58(5 Suppl 1): S112–3. PubMed Abstract | Publisher Full Text
5. Marshall WA: Aerial Transport of Keratinaceous Substrate and Distribution of the Fungus *Geomyces pannorum* in Antarctic Soils. *Microb Ecol*. 1998; 36(2): 212–9. PubMed Abstract | Publisher Full Text
6. Ference M, Selbmann L, Zuccori L, *et al.*: Production of extracellular enzymes by Antarctic fungal strains. *Polar Biol*. 1997; 17(3): 275–80. Publisher Full Text
7. Kochkina GA, Ivanushkina NE, Akimov VN, *et al.*: [Halo- and psychrotolerant *Geomyces* fungi from arctic cryopegs and marine deposits]. *Microbiology*. 2007; 76(1): 31–8. Publisher Full Text
8. Wilson MB, Held BW, Freiborg AH, *et al.*: Resource capture and competitive ability of non-pathogenic *Pseudogymnoascus* spp. and *P. destructans*, the cause of white-nose syndrome in bats. *PloS One*. 2017; 12(6): e0178968. PubMed Abstract | Publisher Full Text | Free Full Text
9. Reynolds HT, Barton HA: Comparison of the white-nose syndrome agent Pseudogymnoascus destructans to cave-dwelling relatives suggests reduced saprotrophic enzyme activity. PLoS One. 2014; 9(1): e86437. PubMed Abstract | Publisher Full Text | Free Full Text

10. Raudabaugh OB, Miller AN: Nutritional capability of and substrate suitability for Pseudogymnoascus destructans, the causal agent of bat white-nose syndrome. PLoS One. 2013; 8(10): e78300. PubMed Abstract | Publisher Full Text | Free Full Text

11. Chibucos MC, Crabtree J, Nagaraj S, et al.: Draft Genome Sequences of Human Pathogenic Fungus Geomyces pannorum Sensu Lato and Bat White Nose Syndrome Pathogen Geomyces (Pseudogymnoascus) destructans. Genome Announc. 2013; 1(6): pii: e01045-13. PubMed Abstract | Publisher Full Text | Free Full Text

12. Bochner BR, Gadzinski P, Panomitros E: Phenotype microarrays for high-throughput phenotypic testing and assay of gene function. Genome Res. 2001; 11(7): 1246–55. PubMed Abstract | Publisher Full Text | Free Full Text

13. Nai C, Wong HY, Panneebercker A, et al.: Nutritional physiology of a rock-inhabiting, model microcolonial fungus from an ancestral lineage of the Chaetothyriales (Ascomycetes). Fungal Genet Biol. 2013; 56: 54–66. PubMed Abstract | Publisher Full Text

14. Chaturvedi V, DeFiglio H, Chaturvedi S: Dataset 1 in: Phenotype profiling of white-nose syndrome pathogen Pseudogymnoascus destructans and closely-related Pseudogymnoascus pannorum reveals metabolic differences underlying fungal lifestyles. F1000Research. 2018. Data Source

15. Cuevas DA, Garza D, Sanchez SE, et al.: Elucidating genomic gaps using phenotypic profiles [version 2; referees: 1 approved, 1 approved with reservations]. 2016; 3: 210. Publisher Full Text

16. Mackie AM, Hassan KA, Paulsen IT, et al.: Biolog Phenotype Microarrays for phenotypic characterization of microbial cells. Methods Mol Biol. 2014; 1096: 123–30. PubMed Abstract | Publisher Full Text | Free Full Text

17. Vehkala M, Shubin M, Connor TR, et al.: Novel R pipeline for analyzing Biolog Phenotypic MicroArray data. PLoS One. 2015; 10(3): e0118392. PubMed Abstract | Publisher Full Text | Free Full Text

18. Drees KP, Palmer JM, Sebra R, et al.: Use of Multiple Sequencing Technologies To Produce a High-Quality Genome of the Fungus Pseudogymnoascus destructans, the Causative Agent of Bat White-Nose Syndrome. Genome Announc. 2016; 4(3): pii: e00445-16. PubMed Abstract | Publisher Full Text | Free Full Text
Flavia Pinzari
Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment (CREA-AA), Rome, Italy

The manuscript is focused on a comparison between two *Pseudogymnoascus* fungal species, which belong to different species but have a partly overlapped ecological niche, based on the use of metabolic profiling with Biolog Phenotype Microarray commercial multiwell plates. These plates are used with redox dyes to evaluate substrate use. With fungi this colorimetric approach is very complicated, and as the authors actually did, the fungal growth in the wells is usually measured as a change in optical density.

The interesting aspects and merits of this work are the following:

- This is a brilliant use of this technique, since the comparison between a pathogenic/parasitic species and a mainly saprophytic one can really highlight important clues on the nutritional requirements for the pathogenic organism to spread and develop.

- The two compared species *P. destructans* and the closely related species *P. pannorum* are truly interesting from different points of view. They live in caves, they live at low temperatures, they are very close but behave differently, they attack mammals, etc.

The main criticisms regard:

- The description of the methods (very poor: it is difficult to understand the procedure followed both in data production and analysis), and the way data are presented.

- Figure 1 is really useless. Figure 3 is informative, but little or nothing is reported on data analysis in the methodological section.

- Apparently, the authors harvested the two fungi for inoculum preparation in two different moments (different sporification time: 3 to 5 weeks, it can be very different). They also chose two different incubation times for comparing the catabolism of the two fungi. These choices should be discussed and justified. The two fungi have different development times. This can be the main reason for the differences observed. A better description and motivation of the chosen approach would make the work stronger and clearer.

- Instead of single time-point comparison the authors could have used empirical models and regression splines that allow extrapolation of curve parameters of biological interest, namely, lag time, maximum rate of increase and maximum absorbance. Curve integration and the resulting area under the curve condenses these three parameters into a single estimate that can also be used to compare kinetics across substrates and samples. Curve parameters offer the main
advantage of being independent of incubation time, while also accounting for potential differential rates of colour development across substrates and plates. An example of this approach is given in the following work: Canfora et al (2017)¹, and theory is reported in the references therein.

- The authors tested only one strain for each species (I agree that PM plates are very expensive, but drawing a result using only one strains in the comparison is a limitation in case of intraspecific variability, even if they used two replicates)
- The lowest value on the heat map is an OD of “zero”. How was data scaling performed?
- What the red and green lines stand for in Figure 3? Legends are needed.
- References list is lacking of some important elements. One is the following: Atanasova L, Druzhinina IS².
- The authors reported that predicted enzymes are related to the number of carbon sources that can be utilized by the two fungal species however, a better definition of the kind of correlations observed between genotype and phenotype is needed to better understand this connection.

References
1. Canfora L, Abu-Samra N, Tartanus M, Łabanowska BH, Benedetti A, Pinzari F, Malusà E: Co-inoculum of Beauveria brongniartii and B. bassiana shows in vitro different metabolic behaviour in comparison to single inoculums. Sci Rep. 2017; 7 (1): 13102 PubMed Abstract I Publisher Full Text
2. Atanasova L, Druzhinina IS: Review: Global nutrient profiling by Phenotype MicroArrays: a tool complementing genomic and proteomic studies in conidial fungi. J Zhejiang Univ Sci B. 2010; 11 (3): 151-68 PubMed Abstract I Publisher Full Text

Is the work clearly and accurately presented and does it cite the current literature?
Partly

Is the study design appropriate and is the work technically sound?
Partly

Are sufficient details of methods and analysis provided to allow replication by others?
No

If applicable, is the statistical analysis and its interpretation appropriate?
Partly

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Partly

Competing Interests: No competing interests were disclosed.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.
The manuscript, "Phenotype profiling of white-nose syndrome pathogen *Pseudogymnoascus destructans* and closely-related *Pseudogymnoascus pannorum* reveals metabolic differences underlying fungal lifestyles", describes the comparative analysis of metabolic profiling of 2 closely related fungal pathogens with vastly different hosts and virulence. The manuscript utilizes the well known BioLog system to accomplish the comparison. In general the study is well designed and executed and the manuscript well written. The conclusions are not surprising considering previous publications regarding the genomics of Pd and its loss of carbon utilization related gene content. Accordingly the impact of the findings on the field are modest and the sophistication of the analysis is simplistic. Regardless the manuscript does support previous findings and although the methods are limited in scope they are sound and well vetted. Accordingly it is my recommendation that the manuscript is acceptable as it is.

Is the work clearly and accurately presented and does it cite the current literature? Yes

Is the study design appropriate and is the work technically sound? Yes

Are sufficient details of methods and analysis provided to allow replication by others? Yes

If applicable, is the statistical analysis and its interpretation appropriate? Not applicable

Are all the source data underlying the results available to ensure full reproducibility? Yes

Are the conclusions drawn adequately supported by the results? Yes

Competing Interests: No competing interests were disclosed.

Referee Expertise: Emerging fungal pathogens, microbial control, applied microbiology.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.
This paper describes a relatively straightforward study focused on comparing the nutrient utilization capacity of the fungal bat pathogen *Pseudogymnoascus destructans* versus the closely related species *P. pannorum* using the well established Biolog phenotype system. In general, the results suggest that *P. pannorum* can more readily utilize most carbon and nitrogen sources compared to *P. destructans* under the experimental conditions tested (15 deg C, and 7 and 10 days, respectively). The bat pathogen was also more sensitive to pH extremes and less tolerant to high salt. The authors conclude that these results validate their previous whole genome studies which compared the predicted protein numbers between these two species. In general, the results also support previous metabolic capacity studies of *P. destructans* and other non-pathogenic *Pseudogymnoascus* species.

There are some important questions that should be addressed, and additional details that would improve this manuscript:

- How was the incubation time of 10 and 7 days for each species determined? Presumably by comparison of equivalent growth in the control wells, but this detail should be provided. If this time is increased, does the utilization capacity of *P. destructans* eventually catch up?

- More details should be provided about the cut-off value determination for growth versus no growth. Also, there should be some analysis of the range of results, versus simply using the average of the two readings. For example, what was the standard deviation for replicates?

- It would be helpful to have a map of the nutrient sources, xenobiotics, etc. in the supplementary data to accompany the OD data (the numerical data alone is impossible to interpret without any other identifying information)--presumably Biolog provides this as a document.

- It's not clear how the heat map values were generated, if the starting spore inoculum had an OD of 0.2. (since the lowest value on the heat map is “0” OD). Presumably, if no growth occurred under a given condition, it would remain at the starting OD? Also, is 1.0 the highest OD obtained or was the data scaled to 0-1.0?

- The heat map figure for the “nutrient supplements” is missing (also, I’m not sure what compounds this category encompasses, so some information about this would also be helpful, perhaps even just referring to the plate map in the supplementary data if that is added).

- For Figure 6, the solid and dotted green and red lines seem to indicate relative growth, but the numerical cutoffs should be provided in the methods (or figure legend). For example, the growth in the well for 2% NaCl looks (labeled with a solid green line above) looks similar to the well for pH 9 with a dotted green line, but presumable are numerically different.

- Part of the justification for doing this work is stated as confirming the in silico gene predictions (from a previous publication by the authors). However, it's not entirely clear that the just comparing the overall numbers of predicted proteins is actually correlated to the overall number of nutrient sources that can be utilized. This seems likely to be true, but the two studies don’t necessarily test/confirm this connection. The reference cited is a short report on the overall sequencing of the *P. destructans* and *P. pannorum* genomes, and prediction of encoded proteins, but no significant functional analysis. It might be more relevant to include references that include more functional data on metabolic and enzymatic capacities.

Overall, this work adds important information about the competitive ability and metabolic specificity of *P. destructans* and could provide additional insight into fungal life history strategies and potential ways to
control or mitigate white nose syndrome in bats. Some additional details (highlighted above) would provide critical information that would allow others to replicate or expand on this work.

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
No

If applicable, is the statistical analysis and its interpretation appropriate?
Partly

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Partly

Competing Interests: No competing interests were disclosed.

Referee Expertise: Microbial ecology, microbial natural products chemistry, fungal and bacterial infectious disease, biological control

I have read this submission. I believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.