THE JACOBI OPERATOR AND ITS DONOGHUE m-FUNCTIONS

FRITZ GESZTESY, MATEUSZ PIORKOWSKI, AND JONATHAN STANFILL

Abstract. In this paper we construct Donoghue m-functions for the Jacobi differential operator in $L^2((-1,1);(1-x)^\alpha(1+x)^\beta dx)$, associated to the differential expression

$$\tau_{\alpha,\beta} = -(1-x)^{-\alpha}(1+x)^{-\beta}(d/dx)((1-x)^{\alpha+1}(1+x)^{\beta+1})(d/dx),$$

whenever at least one endpoint, $x = \pm 1$, is in the limit circle case. In doing so, we provide a full treatment of the Jacobi operator’s m-functions corresponding to coupled boundary conditions whenever both endpoints are in the limit circle case, a topic not covered in the literature.

1. Introduction

This paper should be regarded as a sequel to the recent [27] in which the Donoghue m-function was derived for singular Sturm–Liouville operators. To illustrate the theory, we now apply it to a representative example, the Jacobi differential operator associated with $L^2((-1,1);(1-x)^\alpha(1+x)^\beta dx)$-realizations of the differential expression,

$$\tau_{\alpha,\beta} = -(1-x)^{-\alpha}(1+x)^{-\beta}(d/dx)((1-x)^{\alpha+1}(1+x)^{\beta+1})(d/dx),$$

whenever at least one endpoint, $x = \pm 1$, is in the limit circle case (see, e.g. [1, Ch. 22], [4], [9], [20, Sect. 23], [38, Ch. 4], [44, Sects. VII.6.1, XIV.2], [62, Ch. 18], [66, Ch. 7], [69, Ch. 9]).

Date: February 12, 2022.

2020 Mathematics Subject Classification. Primary: 34B20, 34B24, 34L05; Secondary: 47A10, 47E05.

Key words and phrases. Singular Sturm–Liouville operators, Jacobi equation, boundary values, boundary conditions, Donoghue m-functions.
[71, Ch. IV]). In particular, this provides a full treatment of \(m \)-functions corresponding to coupled boundary conditions whenever both endpoints are in the limit circle case, a new result.

To set the stage we briefly discuss abstract Donoghue \(m \)-functions following [29, 25, 27, and 28]. Given a self-adjoint extension \(A \) of a densely defined, closed, symmetric operator \(\dot{A} \) in \(\mathcal{H} \) (a complex, separable Hilbert space) with equal deficiency indices and the deficiency subspace \(N'_i \) of \(\dot{A} \) in \(\mathcal{H} \), with

\[
N'_i = \ker ((A)^* - iI_\mathcal{H}), \quad \dim (N'_i) = k \in N \cup \{\infty\},
\]

the Donoghue \(m \)-operator \(M^{Do}_{A,N'_i} (\cdot) \in \mathcal{B}(N'_i) \) associated with the pair \((A,N'_i)\) is given by

\[
M^{Do}_{A,N'_i} (z) = P_{N'_i}(zA + I_\mathcal{H})(A - zI_\mathcal{H})^{-1}P_{N'_i} |_{N'_i},
\]

\[
= zI_{N'_i} + (z^2 + 1)P_{N'_i}(A - zI_\mathcal{H})^{-1}P_{N'_i} |_{N'_i}, \quad z \in \mathbb{C} \setminus \mathbb{R},
\]

with \(I_{N'_i} \) the identity operator in \(N'_i \), and \(P_{N'_i} \) the orthogonal projection in \(\mathcal{H} \) onto \(N'_i \). The special case \(k = 1 \), was discussed in detail by Donoghue [17]; for the case \(k \in \mathbb{N} \) we refer to [31].

More generally, given a self-adjoint extension \(A \) of \(\dot{A} \) in \(\mathcal{H} \) and a closed, linear subspace \(\mathcal{N} \) of \(N'_i \), the Donoghue \(m \)-operator \(M^{Do}_{A,N} (\cdot) \in \mathcal{B}(\mathcal{N}) \) associated with the pair \((A,\mathcal{N})\) is defined by

\[
M^{Do}_{A,N} (z) = P_{\mathcal{N}}(zA + I_\mathcal{H})(A - zI_\mathcal{H})^{-1}P_{\mathcal{N}} |_{\mathcal{N}} = zI_{\mathcal{N}} + (z^2 + 1)P_{\mathcal{N}}(A - zI_\mathcal{H})^{-1}P_{\mathcal{N}} |_{\mathcal{N}}, \quad z \in \mathbb{C} \setminus \mathbb{R},
\]

with \(I_{\mathcal{N}} \) the identity operator in \(\mathcal{N} \) and \(P_{\mathcal{N}} \) the orthogonal projection in \(\mathcal{H} \) onto \(\mathcal{N} \).

Since \(M^{Do}_{A,N} (z) \) is analytic for \(z \in \mathbb{C} \setminus \mathbb{R} \) and satisfies (see [29, Theorem 5.3])

\[
[\text{Im}(z)]^{-1}\text{Im}(M^{Do}_{A,N}(z)) \geq 2 \left[(|z|^2 + 1) + \left((|z|^2 - 1)^2 + 4(\text{Re}(z))^2 \right)^{1/2} \right]^{-1} I_{\mathcal{N}},
\]

\[
z \in \mathbb{C} \setminus \mathbb{R},
\]

\(M^{Do}_{A,N}(\cdot) \) is a \(\mathcal{B}(\mathcal{N}) \)-valued Nevanlinna–Herglotz function. Thus, \(M^{Do}_{A,N}(\cdot) \) admits the representation

\[
M^{Do}_{A,N}(z) = \int_{\mathbb{R}} d\Omega^{Do}_{A,N}(\lambda) \left[\frac{1}{\lambda - z} - \frac{\lambda}{\lambda^2 + 1} \right], \quad z \in \mathbb{C} \setminus \mathbb{R},
\]

where the \(\mathcal{B}(\mathcal{N}) \)-valued measure \(\Omega^{Do}_{A,N}(\cdot) \) satisfies

\[
\Omega^{Do}_{A,N}(\lambda) = (\lambda^2 + 1)(P_{\mathcal{N}} E_A(\lambda) P_{\mathcal{N}} |_{\mathcal{N}}),
\]

\[
\int_{\mathbb{R}} d\Omega^{Do}_{A,N}(\lambda)(1 + \lambda^2)^{-1} = I_{\mathcal{N}},
\]

\[
\int_{\mathbb{R}} d(\xi, \Omega^{Do}_{A,N}(\lambda)\xi)_{\mathcal{N}} = \infty \quad \text{for all} \; \xi \in \mathcal{N} \setminus \{0\},
\]

with \(E_A(\cdot) \) the family of strongly right-continuous spectral projections of \(A \) in \(\mathcal{H} \) (see [25] for details). Operators of the type \(M^{Do}_{A,N}(\cdot) \) and some of its variants have attracted considerable attention in the literature. They appear to go back to Krein [45] (see also [46]), Saakjan [70], and independently, Donoghue [17]. The interested reader can find a wealth of additional information in the context of (1.3)–(1.9) in
without going into further details (see [29, Corollary 5.8] for details) we note that the prime reason for the interest in $M \cdot \Omega_{\mathcal{A}, N_i}(\cdot)$ lies in the fundamental fact that the entire spectral information of \mathcal{A} contained in its family of spectral projections $E_{\mathcal{A}}(\cdot)$, is already encoded in the $B(N_i)$-valued measure $\Omega_{\mathcal{A}, N_i}(\cdot)$ (including multiplicity properties of the spectrum of \mathcal{A}) if and only if \mathcal{A} is completely non-self-adjoint in \mathcal{H} (that is, if and only if \mathcal{A} has no invariant subspace on which it is self-adjoint, see [29, Lemma 5.4]).

We also note that a particularly attractive feature of the Donoghue m-operator, that distinguishes it from the Weyl–Titchmarsh–Kodaira m-operator, consists of the explicit appearance of the resolvent $(\mathcal{A} - zI)_{\mathcal{H}}^{-1}$, $z \in \mathbb{C} \setminus \mathbb{R}$, in it’s definition (1.3) (resp., (1.4)).

In the remainder of this paper, we will exclusively focus on the particular case $\mathcal{N} = \mathcal{N}_i = \ker((\mathcal{A})^* - iI_{\mathcal{H}})$, with \mathcal{A} being a singular Sturm–Liouville operator.

Turning to the content of each section, we discuss the necessary background in connection to singular Sturm–Liouville operators in Section 2. In Sections 3 and 4 we recall the Donoghue m-functions in the two limit circle and one limit circle endpoint cases, respectively, following [27]. The Jacobi operator and its Donoghue m-functions are the topic of Section 5, with Appendices A–C providing a detailed treatment of solutions of the Jacobi differential equation and the associated hypergeometric differential equations.

Finally, some comments on some of the basic notation used throughout this paper. If T is a linear operator mapping (a subspace of) a Hilbert space into another, then $\text{dom}(T)$ and $\ker(T)$ denote the domain and kernel (i.e., null space) of T. The spectrum and resolvent set of a closed linear operator in a Hilbert space will be denoted by $\sigma(\cdot)$ and $\rho(\cdot)$, respectively. Moreover, we denote the scalar product and norm in $L^2((a,b);dx)$ by $(\cdot, \cdot)_{L^2((a,b);dx)}$ (linear in the second argument) and $\| \cdot \|_{L^2((a,b);dx)}$.

2. Some Background

In this section we briefly recall the basics of singular Sturm–Liouville operators. The material is standard and can be found, for instance, in [5, Ch. 6], [14, Chs. 8, 9], [18, Sects. 13.6, 13.9, 13.10], [19], [33, Ch. 4], [39, Ch. III], [59, Ch. V], [60], [64, Ch. 6], [72, Ch. 9], [73, Sect. 8.3], [74, Ch. 13], [76, Chs. 4, 6–8].

Throughout this section we make the following assumptions:

Hypothesis 2.1. Let $(a, b) \subseteq \mathbb{R}$ and suppose that p, q, r are (Lebesgue) measurable functions on (a, b) such that the following items (i)–(iii) hold:

(i) $r > 0$ a.e. on (a, b), $r \in L^1_{\text{loc}}((a,b);dx)$.
(ii) $p > 0$ a.e. on (a, b), $1/p \in L^1_{\text{loc}}((a,b);dx)$.
(iii) q is real-valued a.e. on (a, b), $q \in L^1_{\text{loc}}((a,b);dx)$.

Given Hypothesis 2.1, we study Sturm–Liouville operators associated with the general, three-coefficient differential expression τ of the form

$$\tau = \frac{1}{r(x)} \left[\frac{d}{dx} p(x) \frac{d}{dx} + q(x) \right] \text{ for a.e. } x \in (a,b) \subseteq \mathbb{R}. \quad (2.1)$$
If \(f \in AC_{\text{loc}}((a,b)) \), then the quasi-derivative of \(f \) is defined to be \(f^{[1]} := pf' \). Moreover, the Wronskian of two functions \(f, g \in AC_{\text{loc}}((a,b)) \) is defined by

\[
W(f, g)(x) = f(x)g^{[1]}(x) - f^{[1]}(x)g(x) \quad \text{for a.e. } x \in (a,b). \tag{2.2}
\]

Assuming Hypothesis 2.1, the maximal operator \(T_{\text{max}} \) in \(L^2((a,b); rdx) \) associated with \(\tau \) is defined by

\[
T_{\text{max}}f = \tau f, \quad f \in \text{dom}(T_{\text{max}}) = \{ g \in L^2((a,b); rdx) \mid g, g^{[1]} \in AC_{\text{loc}}((a,b)); \tau g \in L^2((a,b); rdx) \}. \tag{2.3}
\]

The preminimal operator \(\hat{T}_{\text{min}} \) in \(L^2((a,b); rdx) \) associated with \(\tau \) is defined by

\[
\hat{T}_{\text{min}}f = \tau f, \quad f \in \text{dom}(\hat{T}_{\text{min}}) = \{ g \in L^2((a,b); rdx) \mid g, g^{[1]} \in AC_{\text{loc}}((a,b)); \text{supp}(g) \subset (a,b) \text{ is compact}; \tau g \in L^2((a,b); rdx) \}. \tag{2.4}
\]

One can prove that \(\hat{T}_{\text{min}} \) is closable, and one then defines the minimal operator \(T_{\text{min}} \) by \(T_{\text{min}} = \hat{T}_{\text{min}} \).

Still assuming Hypothesis 2.1, one can prove the following basic fact,

\[
(\hat{T}_{\text{min}})^* = T_{\text{max}}, \tag{2.5}
\]

and hence \(T_{\text{max}} \) is closed. Moreover, \(\hat{T}_{\text{min}} \) is essentially self-adjoint if and only if \(T_{\text{max}} \) is symmetric, and then \(\hat{T}_{\text{min}} = T_{\text{min}} = T_{\text{max}} \).

The celebrated Weyl alternative can be stated as follows:

Theorem 2.2 (Weyl’s Alternative).
Assume Hypothesis 2.1. Then the following alternative holds: Either

(i) for every \(z \in \mathbb{C} \), all solutions \(u \) of \((\tau - z)u = 0\) are in \(L^2((a,b); rdx) \) near \(b \) (resp., near \(a \)),

or,

(ii) for every \(z \in \mathbb{C} \), there exists at least one solution \(u \) of \((\tau - z)u = 0\) which is not in \(L^2((a,b); rdx) \) near \(b \) (resp., near \(a \)). In this case, for each \(z \in \mathbb{C} \setminus \mathbb{R} \), there exists precisely one solution \(u_b \) (resp., \(u_a \)) of \((\tau - z)u = 0 \) (up to constant multiples) which lies in \(L^2((a,b); rdx) \) near \(b \) (resp., near \(a \)).

This yields the limit circle/limit point classification of \(\tau \) at an interval endpoint as follows.

Definition 2.3. Assume Hypothesis 2.1.
In case (i) in Theorem 2.2, \(\tau \) is said to be in the limit circle case at \(b \) (resp., \(a \)). (Frequently, \(\tau \) is then called quasi-regular at \(b \) (resp., \(a \)).)

In case (ii) in Theorem 2.2, \(\tau \) is said to be in the limit point case at \(b \) (resp., \(a \)).

If \(\tau \) is in the limit circle case at \(a \) and \(b \) then \(\tau \) is also called quasi-regular on \((a,b)\).

The next result links self-adjointness of \(T_{\text{min}} \) (resp., \(T_{\text{max}} \)) and the limit point property of \(\tau \) at both endpoints. Here, and throughout, we shall employ the notation

\[
N_z = \ker(T_{\text{max}} - zI_{L^2((a,b); rdx)}), \quad z \in \mathbb{C}. \tag{2.6}
\]
Theorem 2.4. Assume Hypothesis 2.1, then the following items (i) and (ii) hold:

(i) If τ is in the limit point case at a (resp., b), then
\[W(f,g)(a) = 0 \quad \text{(resp., } W(f,g)(b) = 0) \] for all $f, g \in \text{dom}(T_{\text{max}}). \] (2.7)

(ii) Let $T_{\text{min}} = \overline{T_{\text{min}}}$. Then
\[n_{\pm}(T_{\text{min}}) = \dim (N_{\pm}) \]
\[= \begin{cases} 2 & \text{if } \tau \text{ is in the limit circle case at } a \text{ and } b, \\ 1 & \text{if } \tau \text{ is in the limit circle case at } a \\ & \text{and in the limit point case at } b, \text{ or vice versa,} \\ 0 & \text{if } \tau \text{ is in the limit point case at } a \text{ and } b. \end{cases} \] (2.8)

In particular, $T_{\text{min}} = T_{\text{max}}$ is self-adjoint if and only if τ is in the limit point case at a and b.

All self-adjoint extensions of T_{min} are then described as follows:

Theorem 2.5. Assume Hypothesis 2.1 and that τ is in the limit circle case at a and b (i.e., τ is quasi-regular on (a,b)). In addition, assume that $v_j \in \text{dom}(T_{\text{max}})$, $j = 1, 2$, satisfy
\[W(\overline{v_1}, v_2)(a) = W(\overline{v_1}, v_2)(b) = 1, \quad W(\overline{v_1}, v_2)(a) = W(\overline{v_1}, v_2)(b) = 0, \quad j = 1, 2. \] (2.9)

(E.g., real-valued solutions v_j, $j = 1, 2$, of $(\tau - \lambda)u = 0$ with $\lambda \in \mathbb{R}$, such that $W(v_1, v_2) = 1$.) For $g \in \text{dom}(T_{\text{max}})$ we introduce the generalized boundary values
\[\tilde{g}_1(a) = -W(v_2, g)(a), \quad \tilde{g}_1(b) = -W(v_2, g)(b), \quad \tilde{g}_2(a) = W(v_1, g)(a), \quad \tilde{g}_2(b) = W(v_1, g)(b). \] (2.10)

Then the following items (i)–(iii) hold:

(i) All self-adjoint extensions $T_{\gamma, \delta}$ of T_{min} with separated boundary conditions are of the form
\[T_{\gamma, \delta} f = \tau f, \quad \gamma, \delta \in [0, \pi), \] (2.11)
\[f \in \text{dom}(T_{\gamma, \delta}) = \left\{ g \in \text{dom}(T_{\text{max}}) \left| \begin{array}{l} \cos(\gamma)\tilde{g}_1(a) + \sin(\gamma)\tilde{g}_2(a) = 0, \\
\cos(\delta)\tilde{g}_1(b) + \sin(\delta)\tilde{g}_2(b) = 0 \end{array} \right. \right\}. \]

(ii) All self-adjoint extensions $T_{\varphi, R}$ of T_{min} with coupled boundary conditions are of the type
\[T_{\varphi, R} f = \tau f, \] (2.12)
\[f \in \text{dom}(T_{\varphi, R}) = \left\{ g \in \text{dom}(T_{\text{max}}) \left| \begin{array}{l} \left(\begin{array}{c} \tilde{g}_1(b) \\ \tilde{g}_2(b) \end{array} \right) = e^{i\varphi} R \left(\begin{array}{c} \tilde{g}_1(a) \\ \tilde{g}_2(a) \end{array} \right) \end{array} \right. \right\}, \]
where $\varphi \in [0, \pi)$, and R is a real 2×2 matrix with $\det(R) = 1$ (i.e., $R \in SL(2, \mathbb{R})$).

(iii) Every self-adjoint extension of T_{min} is either of type (i) (i.e., separated) or of type (ii) (i.e., coupled).

One can now detail the characterization of $\text{dom}(T_{\text{min}})$ by
\[T_{\text{min}} f = \tau f, \] (2.13)
\[f \in \text{dom}(T_{\text{min}}) = \left\{ g \in \text{dom}(T_{\text{max}}) \left| \tilde{g}_1(a) = \tilde{g}_2(a) = \tilde{g}_1(b) = \tilde{g}_2(b) = 0 \right. \right\}. \]
Finally, we turn to the characterization of generalized boundary values in the case where T_{\min} is bounded from below following [26] and [60].

We briefly recall the basics of oscillation theory with particular emphasis on principal and nonprincipal solutions, a notion originally due to Leighton and Morse [50] (see also Rellich [66], [67] and Hartman and Wintner [36, Appendix]). Our outline below follows [13], [18, Sects. 13.6, 13.9, 13.10], [33, Ch. 7, [35, Ch. XI], [60], [76, Chs. 4, 6–8].

Definition 2.6. Assume Hypothesis 2.1.

(i) Fix $c \in (a, b)$ and $\lambda \in \mathbb{R}$. Then $\tau - \lambda$ is called nonoscillatory at a (resp., b), if every real-valued solution $u(\lambda, \cdot)$ of $\tau u = \lambda u$ has finitely many zeros in (a, c) (resp., (c, b)). Otherwise, $\tau - \lambda$ is called oscillatory at a (resp., b).

(ii) Let $\lambda_0 \in \mathbb{R}$. Then T_{\min} is called bounded from below by λ_0, and one writes $T_{\min} \geq \lambda_0 I_{L^2((a,b);rdx)}$, if

$$
(u, [T_{\min} - \lambda_0 I_{L^2((a,b);rdx)}]u)_{L^2((a,b);rdx)} \geq 0, \quad u \in \text{dom}(T_{\min}).
$$

The following is a key result.

Theorem 2.7. Assume Hypothesis 2.1. Then the following items (i)–(iii) are equivalent:

(i) T_{\min} (and hence any symmetric extension of T_{\min}) is bounded from below.

(ii) There exists a $\nu_0 \in \mathbb{R}$ such that for all $\lambda < \nu_0$, $\tau - \lambda$ is nonoscillatory at a and b.

(iii) For fixed $c, d \in (a, b)$, $c \leq d$, there exists a $\nu_0 \in \mathbb{R}$ such that for all $\lambda < \nu_0$, $\tau u = \lambda u$ has (real-valued) nonvanishing solutions $u_a(\lambda, \cdot) \neq 0, \tilde{u}_a(\lambda, \cdot) \neq 0$ in the neighborhood $(a, c]$ of a, and (real-valued) nonvanishing solutions $u_b(\lambda, \cdot) \neq 0, \tilde{u}_b(\lambda, \cdot) \neq 0$ in the neighborhood $[d, b)$ of b, such that

$$
W(\tilde{u}_a(\lambda, \cdot), u_a(\lambda, \cdot)) = 1, \quad u_a(\lambda, x) = o(\tilde{u}_a(\lambda, x)) \quad x \downarrow a,
$$

$$
W(\tilde{u}_b(\lambda, \cdot), u_b(\lambda, \cdot)) = 1, \quad u_b(\lambda, x) = o(\tilde{u}_b(\lambda, x)) \quad x \uparrow b,
$$

$$
\int_a^c dx \frac{1}{p(x)^{-1}u_a(\lambda,x)^{-2}} = \int_d^b dx \frac{1}{p(x)^{-1}u_b(\lambda,x)^{-2}} = \infty,
$$

$$
\int_a^c dx \frac{1}{p(x)^{-1}\tilde{u}_a(\lambda,x)^{-2}} < \infty, \quad \int_d^b dx \frac{1}{p(x)^{-1}\tilde{u}_b(\lambda,x)^{-2}} < \infty.
$$

Definition 2.8. Assume Hypothesis 2.1, suppose that T_{\min} is bounded from below, and let $\lambda \in \mathbb{R}$. Then $u_a(\lambda, \cdot)$ (resp., $u_b(\lambda, \cdot)$) in Theorem 2.7 (iii) is called a principal (or minimal) solution of $\tau u = \lambda u$ at a (resp., b). A real-valued solution $\tilde{u}_a(\lambda, \cdot)$ (resp., $\tilde{u}_b(\lambda, \cdot)$) of $\tau = \lambda u$ linearly independent of $u_a(\lambda, \cdot)$ (resp., $u_b(\lambda, \cdot)$) is called nonprincipal at a (resp., b). In particular, $\tilde{u}_a(\lambda, \cdot)$ (resp., $\tilde{u}_b(\lambda, \cdot)$) in (2.15)–(2.18) are nonprincipal solutions at a (resp., b).

Next, we revisit in Theorem 2.5 how the generalized boundary values are utilized in the description of all self-adjoint extensions of T_{\min} in the case where T_{\min} is bounded from below.

Theorem 2.9 ([26, Theorem 4.5]). Assume Hypothesis 2.1 and that τ is in the limit circle case at a and b (i.e., τ is quasi-regular on (a,b)). In addition, assume that $T_{\min} \geq \lambda_0 I$ for some $\lambda_0 \in \mathbb{R}$, and denote by $u_a(\lambda_0, \cdot)$ and $\tilde{u}_a(\lambda_0, \cdot)$ (resp.,
one obtains for all $g \in (2.21)$

\[W(\tilde{u}_a(\lambda_0, \cdot), u_a(\lambda_0, \cdot)) = W(\tilde{u}_b(\lambda_0, \cdot), u_b(\lambda_0, \cdot)) = 1. \]

(2.19)

Introducing $v_j \in \text{dom}(T_{\max})$, $j = 1, 2$, via

\[v_1(x) = \begin{cases} \tilde{u}_a(\lambda_0, x), & \text{for } x \text{ near } a, \\ \tilde{u}_b(\lambda_0, x), & \text{for } x \text{ near } b, \end{cases} \]

\[v_2(x) = \begin{cases} u_a(\lambda_0, x), & \text{for } x \text{ near } a, \\ u_b(\lambda_0, x), & \text{for } x \text{ near } b, \end{cases} \]

(2.20)

one obtains for all $g \in \text{dom}(T_{\max})$,

\[\tilde{g}(a) = -W(v_2, g)(a) = \tilde{g}_1(a) = -W(u_a(\lambda_0, \cdot), g)(a) = \lim_{x \to a} \frac{g(x)}{u_a(\lambda_0, x)}, \]

\[\tilde{g}(b) = -W(v_2, g)(b) = \tilde{g}_b(b) = -W(u_b(\lambda_0, \cdot), g)(b) = \lim_{x \to b} \frac{g(x)}{u_b(\lambda_0, x)}, \]

(2.21)

\[\tilde{g}'(a) = W(v_1, g)(a) = \tilde{g}_2(a) = W(\tilde{u}_a(\lambda_0, \cdot), g)(a) = \lim_{x \to a} \frac{g(x) - \tilde{g}(a)\tilde{u}_a(\lambda_0, x)}{u_a(\lambda_0, x)}, \]

\[\tilde{g}'(b) = W(v_1, g)(b) = \tilde{g}_b(b) = W(\tilde{u}_b(\lambda_0, \cdot), g)(b) = \lim_{x \to b} \frac{g(x) - \tilde{g}(b)\tilde{u}_b(\lambda_0, x)}{u_b(\lambda_0, x)}. \]

(2.22)

In particular, the limits on the right-hand sides in (2.21), (2.22) exist.

The Friedrichs extension T_F of T_{\min} now permits a particularly simple characterization in terms of the generalized boundary values $\tilde{g}(a), \tilde{g}(b)$ as derived by Niessen and Zettl [60] (see also [30], [40], [41], [42], [55], [67], [68], [75]):

Theorem 2.10. Assume Hypothesis 2.1 and that τ is in the limit circle case at a and b (i.e., τ is quasi-regular on (a, b)). In addition, assume that $T_{\min} \geq \lambda_0 I$ for some $\lambda_0 \in \mathbb{R}$. Then the Friedrichs extension $T_F = T_{0, 0}$ of T_{\min} is characterized by

\[T_F f = \tau f, \quad f \in \text{dom}(T_F) = \{ g \in \text{dom}(T_{\max}) \mid \tilde{g}(a) = \tilde{g}(b) = 0 \}. \]

(2.23)

3. Donoghue m-functions: Two Limit Circle Endpoints

The Donoghue m-functions in the case where τ is in the limit circle case at a and b is the primary topic of this section following [27, Sect. 6].

Hypothesis 3.1. In addition to Hypothesis 2.1 assume that τ is in the limit circle case at a and b. Moreover, for $z \in \rho(T_{0, 0})$, let $\{u_j(z, \cdot)\}_{j=1, 2}$ denote solutions to $\tau u = zu$ which satisfy the boundary conditions

\[\tilde{u}_1(z, a) = 0, \quad \tilde{u}_1(z, b) = 1, \]

\[\tilde{u}_2(z, a) = 1, \quad \tilde{u}_2(z, b) = 0. \]

(3.1)

Assume Hypotheses 3.1. By Theorem 2.5 or Theorem 2.9, the following statements (i)-(iii) hold.

(i) If $\gamma, \delta \in [0, \pi)$, then the operator $T_{\gamma, \delta}$ defined by

\[T_{\gamma, \delta} f = T_{\max} f, \]

\[f \in \text{dom}(T_{\gamma, \delta}) = \left\{ g \in \text{dom}(T_{\max}) \mid \begin{align*} \cos(\gamma)\tilde{g}(a) + \sin(\gamma)\tilde{g}'(a) = 0, \\ \cos(\delta)\tilde{g}(b) + \sin(\delta)\tilde{g}'(b) = 0 \end{align*} \right\}, \]

is a self-adjoint extension of T_{\min}.

(ii) If $\varphi \in [0, \pi)$ and $R \in \text{SL}(2, \mathbb{R})$, then the operator $T_{\varphi, R}$ defined by

$$T_{\varphi, R} f = T_{\text{max}} f,$$

$$f \in \text{dom}(T_{\varphi, R}) = \left\{ g \in \text{dom}(T_{\text{max}}) \mid \left(\bar{g}(b) \overline{g'(b)} \right) = e^{i\varphi} R \left(\bar{g}(a) \overline{g'(a)} \right) \right\},$$

is a self-adjoint extension of T_{min}.

(iii) If T is a self-adjoint extension of T_{min}, then either $T = T_{\gamma, \delta}$ for some $\gamma, \delta \in [0, \pi)$, or $T = T_{\varphi, R}$ for some $\varphi \in [0, \pi)$ and some $R \in \text{SL}(2, \mathbb{R})$.

Notational Convention. To describe all possible self-adjoint boundary conditions associated with self-adjoint extensions of T_{min} effectively, we will frequently employ the notation $T_{A, B, M^P_{A, B} (\cdot)}$, etc., where A, B represents γ, δ in the case of separated boundary conditions and φ, R in the context of coupled boundary conditions.

Choosing $\gamma = \delta = 0$ in (3.2) yields the self-adjoint extension with Dirichlet-type boundary conditions at a and b, equivalently, the Friedrichs extension T_{F} of T_{min}:

$$\text{dom}(T_{0, 0}) = \text{dom}(T_{F}) = \left\{ g \in \text{dom}(T_{\text{max}}) \mid \bar{g}(a) = \bar{g}(b) = 0 \right\}.$$

Since the coefficients of the Sturm–Liouville differential expression are real, the following conjugation property holds:

$$\overline{u_j(z, \cdot)} = u_j(\overline{z}, \cdot), \quad z \in \rho(T_{0, 0}), \quad j \in \{1, 2\}.$$

Applying (3.1), one computes

$$W(u_1(z, \cdot), u_2(z, \cdot))(a) = -\overline{u_1'(z, a)},$$

$$W(u_1(z, \cdot), u_2(z, \cdot))(b) = \overline{u_2'(z, b)}, \quad z \in \rho(T_{0, 0}).$$

In particular, since the Wronskian of two solutions is constant,

$$\overline{u_2'(z, b)} = -\overline{u_1'(z, a)}, \quad z \in \rho(T_{0, 0}).$$

We begin by recalling the orthonormal basis for $\mathcal{N}_{\pm i}$ given by $\{v_j(\pm i, \cdot)\}_{j=1,2}$,

$$v_1(\pm i, \cdot) = c_1(\pm i) u_1(\pm i, \cdot),$$

$$v_2(\pm i, \cdot) = c_2(\pm i) \left[u_2(\pm i, \cdot) - \frac{(u_1(\pm i, \cdot), u_2(\pm i, \cdot))_{L^2((a, b); rdrx)}}{||u_1(\pm i, \cdot)||_{L^2((a, b); rdrx)}^2} u_1(\pm i, \cdot) \right].$$

with

$$c_1(\pm i) = \left[||u_1(\pm i, \cdot)||_{L^2((a, b); rdrx)}^2 \right]^{-1/2},$$

$$c_2(\pm i) = \left[\frac{\text{Im}(\overline{u_2'(i, b)})}{\text{Im}(\overline{u_1'(i, b))}} \right] u_1(\pm i, \cdot).$$

$$= \left[\pm \text{Im}(\overline{u_2'(i, a)}) \pm \frac{\text{Im}(\overline{u_2'(i, b)})^2}{\text{Im}(\overline{u_1'(i, b))}} \right].$$

The Donoghue m-function $M^P_{T_{A, B, \mathcal{N}_{{\gamma}}(\cdot)}}$ with $T_{A, B}$ any self-adjoint extension of T_{min} is provided next (cf. Theorems 6.1–6.3 in [27]).
Theorem 3.2. Assume Hypothesis 3.1 and let \(\{v_j(i, \cdot)\}_{j=1,2} \) be the orthonormal basis for \(N_i \) defined in (3.8)–(3.11). The Donoghue m-function \(M^D_{T_{\theta,0},N_i}(\cdot) : \mathbb{C}\setminus \mathbb{R} \to \mathcal{B}(N_i) \) for \(T_{0,0} \) satisfies

\[
M^D_{T_{0,0},N_i}(\pm i) = \pm iI_{N_i},
\]

\[
M^D_{T_{0,0},N_i}(z) = -\sum_{j,k=1}^2 \left[i\tilde{\delta}_{j,k} + W_{j,k}(z)\right](v_k(i, \cdot), \cdot)_{L^2((a,b);rdx)}v_j(i, \cdot)_{N'_i}, \tag{3.12}
\]

\[
= -iI_{N'_i} - \sum_{j,k=1}^2 W_{j,k}(z)(v_k(i, \cdot), \cdot)_{L^2((a,b);rdx)}v_j(i, \cdot)_{N'_i},
\]

\[
z \in \mathbb{C}\setminus \mathbb{R}, \ z \neq \pm i,
\]

where the matrix \((W_{j,k}(\cdot))_{j,k=1}^2 \), \(z \in \mathbb{C}\setminus \mathbb{R}, \ z \neq \pm i \), is given by

\[
W_{1,1}(z) = [c_1(i)]^2\left[\tilde{u}'_1(z, b) - \tilde{u}'_1(-i, b) \right], \tag{3.13}
\]

\[
W_{1,2}(z) = c_1(i)c_2(i)\left\{ \frac{\text{Im}(\tilde{u}'_2(i, b))}{\text{Im}(\tilde{u}'_1(i, b))}\left[\tilde{u}'_1(-i, b) - \tilde{u}'_1(z, b) \right] + \tilde{u}'_2(z, b) + \tilde{u}'_1(-i, a) \right\}, \tag{3.14}
\]

\[
W_{2,1}(z) = -c_1(i)c_2(i)\left\{ \frac{\text{Im}(\tilde{u}'_2(i, b))}{\text{Im}(\tilde{u}'_1(i, b))}\left[\tilde{u}'_1(z, b) - \tilde{u}'_1(-i, b) \right] + \tilde{u}'_2(-i, b) + \tilde{u}'_1(z, a) \right\}, \tag{3.15}
\]

\[
W_{2,2}(z) = [c_2(i)]^2\left[\tilde{u}'_2(-i, b) - \tilde{u}'_2(z, b) + \frac{\text{Im}(\tilde{u}'_2(i, b))}{\text{Im}(\tilde{u}'_1(i, b))}\left[\tilde{u}'_1(z, b) - \tilde{u}'_1(-i, b) \right] \frac{\text{Im}(\tilde{u}'_2(i, b))}{\text{Im}(\tilde{u}'_1(i, b))}\left[\tilde{u}'_1(z, a) - \tilde{u}'_1(-i, a) \right] + \tilde{u}'_2(-i, a) - \tilde{u}'_2(z, a) + \frac{\text{Im}(\tilde{u}'_2(i, b))}{\text{Im}(\tilde{u}'_1(i, b))}\left[\tilde{u}'_1(z, a) - \tilde{u}'_1(-i, a) \right] \right]. \tag{3.16}
\]

Furthermore, the following items \((i)–(v)\) hold.

(i) If \(\gamma, \delta \in (0, \pi) \), then the Donoghue m-function \(M^D_{T_{\gamma,\delta},N_i}(\cdot) : \mathbb{C}\setminus \mathbb{R} \to \mathcal{B}(N_i) \) for \(T_{\gamma,\delta} \) satisfies

\[
M^D_{T_{\gamma,\delta},N_i}(\pm i) = \pm iI_{N_i},
\]

\[
M^D_{T_{\gamma,\delta},N_i}(z) = M^D_{T_{0,0},N_i}(z) + (i - z) \sum_{j,k,\ell=1}^2 \left[K_{\gamma,\delta}(z)^{-1} \right]_{j,k} W^K_{\ell,\ell}(z)(u_\ell(z, \cdot), \cdot)_{L^2((a,b);rdx)}v_j(i, \cdot)_{N'_i},
\]

\[
z \in \mathbb{C}\setminus \mathbb{R}, \ z \neq \pm i,
\]

\[
(3.17)
\]
where the invertible matrix \(K_{\gamma, \delta} (\cdot)\) and \((W_{\ell, k}^{K_r} (\cdot))_{\ell, k=1}^2\) are given by

\[
K_{\gamma, \delta}(z) = \begin{pmatrix}
\cot(\delta) + \overline{u}_1'(z, b) & -\overline{u}_1'(z, a) \\
-\overline{u}_2'(z, b) & -\cot(\gamma) - \overline{u}_2'(z, a)
\end{pmatrix},
\]

where \(0 < \delta < \pi\) and \(\gamma, \delta\) are given by

\[
\begin{align*}
W_{1,1}^{K_r}(z) &= c_1(i)[\overline{u}_1'(z, b) - \overline{u}_1'(-i, b)], \\
W_{1,2}^{K_r}(z) &= c_1(i)[\overline{u}_1'(z, b) + \overline{u}_1'(-i, a)], \\
W_{2,1}^{K_r}(z) &= \overline{v}_2(-i, b)\overline{u}_1'(z, b) - \overline{v}_2'(-i, b) - \overline{v}_2(-i, a)\overline{u}_1'(z, a) \\
&= -c_2(i)\left\{\frac{\text{Im}(\overline{u}_2'(i, b))}{\text{Im}(\overline{u}_1'(i, b))}\right\} + \overline{u}_1'(-i, b) + \overline{u}_1'(z, a)
\end{align*}
\]

\[
W_{2,2}^{K_r}(z) = \overline{v}_2(-i, b)\overline{u}_2'(z, b) - \overline{v}_2(-i, a)\overline{u}_2'(z, a) + \overline{v}_2'(i, a)
\]

(ii) If \(\varphi \in [0, \pi]\) and \(R \in \mathcal{S}(2, \mathbb{R})\) with \(R_{1,2} \neq 0\), then the Donoghue \(m\)-function \(M_{T_{\varphi, R}, N_i}(\cdot) : \mathbb{C} \setminus \mathbb{R} \rightarrow \mathcal{B}(N_i)\) for \(T_{\varphi, R}\) satisfies

\[
M_{T_{\varphi, R}, N_i}(\pm i) = \pm i N_i,
\]

\[
M_{T_{\varphi, R}, N_i}(z) = M_{T_{0,0}, N_i}(z) + (i - z) \sum_{j,k=1}^2 [K_{\varphi, R}(z)^{-1}]_{j,k} W_{L^2((a,b),rdx)}^{K_r}(u_j(\overline{\varphi}, \cdot); u_k(i, \cdot))|_{N_i},
\]

where \((W_{L^2}^{K_r}(\cdot))_{\ell, k=1}^2\) is once again given in (3.19)–(3.22) and the invertible matrix \(K_{\varphi, R}(\cdot)\) is given by

\[
K_{\varphi, R}(z) = \begin{pmatrix}
\frac{-R_{2,2}}{R_{1,2}} + \overline{u}_1'(z, b) & e^{-i\varphi} \frac{R_{1,2}}{R_{1,2}} - \overline{u}_1'(z, a) \\
e^{i\varphi} \frac{R_{1,2}}{R_{1,2}} + \overline{u}_2'(z, b) & -\frac{R_{1,1}}{R_{1,2}} - \overline{u}_2'(z, a)
\end{pmatrix}.
\]

(iii) If \(\gamma \in (0, \pi)\), then the Donoghue \(m\)-function \(M_{T_{0,0}, N_i}(\cdot) : \mathbb{C} \setminus \mathbb{R} \rightarrow \mathcal{B}(N_i)\) for \(T_{0,0}\) satisfies

\[
M_{T_{0,0}, N_i}(\pm i) = \pm i N_i,
\]

\[
M_{T_{0,0}, N_i}(z) = M_{T_{0,0}, N_i}(z) + \frac{z - i}{\cot(\gamma) + \overline{u}_2'(z, a)} \sum_{\ell=1}^2 [u_2(\overline{\varphi}, \cdot); u_k(i, \cdot)]L^2((a,b);rdx) |_{N_i},
\]

where \(\cot(\gamma) + \overline{u}_2'(z, a) \neq 0\) and the scalars \(\{W_{L^2}^{K_r}(\cdot)\}_{\ell=1,2}\) are given by (3.20) and (3.22).

(iv) If \(\delta \in (0, \pi)\), then the Donoghue \(m\)-function \(M_{T_{0,\delta}, N_i}(\cdot) : \mathbb{C} \setminus \mathbb{R} \rightarrow \mathcal{B}(N_i)\) for \(T_{0,\delta}\) satisfies

\[
M_{T_{0,\delta}, N_i}(\pm i) = i N_i,
\]
where \(\cot(\delta) + \tilde{u}_1(z, b) \neq 0 \) and the scalars \(\{W_{\ell,1}(\cdot)\}_{\ell=1}^2 \) are given by (3.19) and (3.21).

(v) If \(\varphi \in [0, \pi) \) and \(R \in SL(2, \mathbb{R}) \) with \(R_{1,2} = 0 \), then the Donoghue \(m \)-function \(M_{T_0,R,N_\ell}^D(\pm i) = \pm i I_{N_\ell} \),

\[
M_{T_0,R,N_\ell}^D(z) = M_{T_0,R,N_\ell}^D(z)
\]

\[
- \frac{z - i}{k_{\varphi,R}(z)}(u_{\varphi,R}(\zeta, \cdot) + W_{\ell,1}(z) u_{\varphi,R}(\zeta, \cdot)) \left\{ e^{i\varphi} R_{2,1} K_{0,k}^R(z) + R_{2,2} K_{0,k}^R(z) \right\} u_{\varphi,R}(z, b),
\]

where the matrix \(\{W_{\ell,1}(\cdot)\}_{\ell=1}^2 \) is once again given in (3.19)–(3.22) and the nonzero scalar \(k_{\varphi,R}(\cdot) \) is given by

\[
k_{\varphi,R}(z) = -R_{2,1} R_{2,2} - e^{i\varphi} R_{2,2} \tilde{u}_{\varphi,R}(z, a) + \tilde{u}_{\varphi,R}(z, b),
\]

where

\[
u_{\varphi,R}(\zeta, \cdot) = e^{-i\varphi} R_{2,2} u_2(\zeta, \cdot) + u_1(\zeta, \cdot), \quad \zeta \in \rho(T_0,0).
\]

Remark 3.3. For the Krein extension, \(T_{0,R_K} \), under the additional assumption that \(T_{min} \geq \varepsilon I \left| L^2((a,b);rdx) \right| \) for some \(\varepsilon > 0 \), applying [24, Theorem 3.5(ii)], one computes for the matrix \(K_{0,R_K} \),

\[
K_{0,R_K}(z) = \begin{pmatrix} \tilde{u}_1^j(z,b) - \tilde{u}_1^j(0,b) & \tilde{u}_1^j(0,a) - \tilde{u}_1^j(z,a) \\ \tilde{u}_2^j(z,b) - \tilde{u}_2^j(0,b) & \tilde{u}_2^j(0,a) - \tilde{u}_2^j(z,a) \end{pmatrix}, \quad z \in \rho(T_0,0) \cap \rho(T_{0,R_K}),
\]

where we note that \(0 \in \sigma(T_{0,R_K}) \).

4. DONOGHUE \(m \)-FUNCTIONS: ONE LIMIT CIRCLE ENDPOINT

In this section we recall the Donoghue \(m \)-functions in the case where \(\tau \) is in the limit circle case at precisely one endpoint (which we choose to be \(a \) without loss of generality) following [27, Sect. 5].

Hypothesis 4.1. In addition to Hypothesis 2.1 assume that \(\tau \) is in the limit circle case at \(a \) and in the limit point case at \(b \). Moreover, for \(z \in \rho(T_0) \), let \(\psi(z, \cdot) \) denote the unique solution to \((\tau - z) y = 0 \) that satisfies \(\psi(z, \cdot) \in L^2((a,b);rdx) \) and \(\tilde{\psi}(z, a) = 1 \).

Assume Hypothesis 4.1. By Theorem 2.5 or Theorem 2.9, the following statements (i) and (ii) hold.
Theorem 4.2. Assume Hypothesis

\[T_\gamma f = T_{\max} f, \]

\[f \in \text{dom}(T_\gamma) = \{ g \in \text{dom}(T_{\max}) \mid \cos(\gamma)g(a) + \sin(\gamma)g'(a) = 0 \}, \] (4.1)

is a self-adjoint extension of \(T_{\min} \).

(ii) If \(T \) is a self-adjoint extension of \(T_{\min} \), then \(T = T_\gamma \) for some \(\gamma \in [0, \pi) \).

Statements analogous to (i) and (ii) hold if \(\tau \) is in the limit point case at \(a \) and in the limit circle case at \(b \); for brevity we omit the details.

Choosing \(\gamma = 0 \) in (4.1) yields the self-adjoint extension \(T_0 \) with a Dirichlet-type boundary condition at \(a \):

\[\text{dom}(T_0) = \{ g \in \text{dom}(T_{\max}) \mid g(a) = 0 \}. \] (4.2)

Since the coefficients \(p, q, \) and \(r \) are real-valued, the solution \(\psi(z, \cdot) \) has the following conjugation property:

\[\overline{\psi(z, \cdot)} = \psi(\overline{z}, \cdot), \quad z \in \rho(T_0). \] (4.3)

We now turn to the Donoghue \(m \)-function \(M^D_{\gamma, N_0}(\cdot) \) with \(T_\gamma \) any self-adjoint extension of \(T_{\min} \) (cf. Theorems 5.1 and 5.2 in [27]).

Theorem 4.2. Assume Hypothesis 4.1 and let \(\gamma \in [0, \pi) \). The Donoghue \(m \)-function \(M^D_{\gamma, N_0}(\cdot) : \mathbb{C} \setminus \mathbb{R} \to \mathcal{B}(N_0) \) for \(T_\gamma \) satisfies

\[M^D_{\gamma, N_0}(\pm i) = \pm iN_0, \quad \gamma \in [0, \pi), \]

\[M^D_{\gamma, N_0}(z) = \left[-i + \frac{\overline{\psi}'(z, a) - \overline{\psi}'(-i, a)}{\text{Im}(\psi(i, a))} \right] N_0, \quad z \in \mathbb{C} \setminus \mathbb{R}, \quad z \neq \pm i, \]

\[M^D_{\gamma, N_0}(z) = M^D_{\gamma, N_0}(\overline{z}) \quad \text{if} \quad z \in \mathbb{R}, \quad z \neq \pm i. \] (4.4)

5. The Jacobi Operator and its Donoghue \(m \)-functions

We now turn to the principal topic of this paper, the Jacobi differential expression

\[\tau_{\alpha, \beta} = -(1 - x)^{-\alpha}(1 + x)^{-\beta}(d/dx)((1 - x)^{\alpha+1}(1 + x)^{\beta+1})(d/dx), \]

\[x \in (-1, 1), \quad \alpha, \beta \in \mathbb{R}, \] (5.1)

that is, in connection with Sections 2 one now has

\[a = -1, \quad b = 1, \]

\[p(x) = p_{\alpha, \beta}(x) = (1 - x)^{\alpha+1}(1 + x)^{\beta+1}, \quad q(x) = q_{\alpha, \beta}(x) = 0, \] (5.2)

\[r(x) = r_{\alpha, \beta}(x) = (1 - x)^{\alpha}(1 + x)^{\beta}, \quad x \in (-1, 1), \quad \alpha, \beta \in \mathbb{R} \]

(see, e.g. [1, Ch. 22], [4], [9], [20, Sect. 23], [38, Ch. 4], [44, Sects. VII.6.1, XIV.2], [62, Ch. 18], [71, Ch. IV]).

\(L^2 \)-realizations of \(\tau_{\alpha, \beta} \) are thus most naturally associated with the Hilbert space \(L^2((-1, 1); r_{\alpha, \beta}dx) \). However, occasionally the weight function is absorbed into the Hilbert space leading to an equivalent differential expression in the Hilbert
Returning to the concrete Jacobi case at hand, one can choose

\[y_1(x) = 1, \quad x \in (-1, 1), \]

\[y_2(x) = \int_0^x dx' (1 - x')^{-1-\alpha}(1 + x')^{-1-\beta} \]

(5.4)

Thus, one has the classification,

\[
\tau_{\alpha,\beta} \begin{cases}
\text{regular at } -1 \text{ if and only if } \alpha \in \mathbb{R}, \beta \in (-1, 0), \\
\text{in the limit circle case at } -1 \text{ if and only if } \alpha \in \mathbb{R}, \beta \in [0, 1), \\
\text{in the limit point case at } -1 \text{ if and only if } \alpha \in \mathbb{R}, \beta \in (-1, 1), \\
\text{regular at } +1 \text{ if and only if } \alpha \in (-1, 0), \beta \in \mathbb{R}, \\
\text{in the limit circle case at } +1 \text{ if and only if } \alpha \in [0, 1), \beta \in \mathbb{R}, \\
\text{in the limit point case at } +1 \text{ if and only if } \alpha \in \mathbb{R} \setminus (-1, 1), \beta \in \mathbb{R}.
\end{cases}
\]

(5.5)

The maximal and preminimal operators, \(T_{\max,\alpha,\beta} \) and \(T_{\min,0,\alpha,\beta} \), associated to \(\tau_{\alpha,\beta} \) in \(L^2((-1, 1); r_{\alpha,\beta} dx) \) are then given by

\[
T_{\max,\alpha,\beta} f = \tau_{\alpha,\beta} f, \\
f \in \text{dom}(T_{\max,\alpha,\beta}) = \{ g \in L^2((-1, 1); r_{\alpha,\beta} dx) \mid g, g^{[1]} \in AC_{loc}((-1, 1)); \tau_{\alpha,\beta} g \in L^2((-1, 1); r_{\alpha,\beta} dx) \},
\]

(5.6)

and

\[
T_{\min,0,\alpha,\beta} f = \tau_{\alpha,\beta} f, \\
f \in \text{dom}(T_{\min,0,\alpha,\beta}) = \{ g \in L^2((-1, 1); r_{\alpha,\beta} dx) \mid g, g^{[1]} \in AC_{loc}((-1, 1)); \tau_{\alpha,\beta} g \in L^2((-1, 1); r_{\alpha,\beta} dx) \}.
\]

(5.7)
The fact (5.4) naturally leads to principal and nonprincipal solutions $u_{\pm 1, \alpha, \beta}(0, x)$ and $\tilde{u}_{\pm 1, \alpha, \beta}(0, x)$ of $\tau_{\alpha, \beta} y = 0$ near ± 1 as follows:

$$
u_{-1, \alpha, \beta}(0, x) = \begin{cases} -2^{-\alpha-1} \beta^{-1}(1 + x)^{-\beta}[1 + O(1 + x)], & \beta \in (-\infty, 0), \\ 1, & \beta \in [0, \infty), \end{cases} \quad \alpha \in \mathbb{R}$$

$$\tilde{u}_{-1, \alpha, \beta}(0, x) = \begin{cases} 1, & \beta \in (-\infty, 0), \alpha \in \mathbb{R}, \\ -2^{-\alpha-1} \ln((1 + x)/2), & \beta = 0, \\ 2^{-\alpha-1} \beta^{-1}(1 + x)^{-\beta}[1 + O(1 + x)], & \beta \in (0, \infty), \end{cases}$$

(5.8)

and

$$u_{+1, \alpha, \beta}(0, x) = \begin{cases} 2^{-\beta-1} \alpha^{-1}(1 - x)^{-\alpha}[1 + O(1 - x)], & \alpha \in (-\infty, 0), \\ 1, & \alpha \in [0, \infty), \end{cases} \quad \beta \in \mathbb{R}$$

$$\tilde{u}_{+1, \alpha, \beta}(0, x) = \begin{cases} 1, & \alpha \in (-\infty, 0), \beta \in \mathbb{R}, \\ 2^{-\beta-1} \ln((1 - x)/2), & \alpha = 0, \\ -2^{-\beta-1} \alpha^{-1}(1 - x)^{-\alpha}[1 + O(1 - x)], & \alpha \in (0, \infty), \end{cases}$$

(5.9)

Combining the fact (5.5) with Theorem 2.2, $T_{\min, 0, \alpha, \beta}$ is essentially self-adjoint in $L^2((-1, 1); r_{\alpha, \beta} dx)$ if and only if $\alpha, \beta \in \mathbb{R} \setminus (-1, 1)$. Thus, boundary values for $T_{\max, \alpha, \beta}$ at -1 exist if and only if $\alpha \in \mathbb{R}$, $\beta \in (-1, 1)$, and similarly, boundary values for $T_{\max, \alpha, \beta}$ at $+1$ exist if and only if $\alpha \in (-1, 1)$, $\beta \in \mathbb{R}$.

Employing the principal and nonprincipal solutions (5.8), (5.9) at ± 1, according to (2.22), (2.23), generalized boundary values for $g \in \text{dom}(T_{\max, \alpha, \beta})$ are of the form

$$\overline{g}(-1) = \begin{cases} g(-1), & \beta \in (-1, 0), \\ -2^{\alpha+1} \lim_{x \downarrow -1} g(x)/\ln((1 + x)/2), & \beta = 0, \\ 2^{\beta+1} \lim_{x \downarrow -1} (1 + x)^{\beta} g(x), & \beta \in (0, 1), \end{cases} \quad \alpha \in \mathbb{R},$$

$$\overline{g}'(-1) = \begin{cases} g^{[1]}(-1), & \beta \in (-1, 0), \\ \lim_{x \downarrow -1} \left[g(x) + \overline{g}(-1) 2^{\alpha-1} \ln((1 + x)/2) \right], & \beta = 0, \\ \lim_{x \downarrow -1} \left[g(x) - \overline{g}(-1) 2^{\alpha-1} \beta^{-1}(1 + x)^{-\beta} \right], & \beta \in (0, 1), \end{cases}$$

(5.10)

$$\overline{g}(1) = \begin{cases} g(1), & \alpha \in (-1, 0), \\ 2^{\beta+1} \lim_{x \uparrow 1} g(x)/\ln((1 - x)/2), & \alpha = 0, \\ -\alpha 2^{\beta+1} \lim_{x \uparrow 1} (1 - x)^{\alpha} g(x), & \alpha \in (0, 1), \end{cases} \quad \beta \in \mathbb{R},$$

$$\overline{g}'(1) = \begin{cases} g^{[1]}(1), & \alpha \in (-1, 0), \\ \lim_{x \uparrow 1} \left[g(x) - \overline{g}(1) 2^{-\beta-1} \ln((1 - x)/2) \right], & \alpha = 0, \\ \lim_{x \uparrow 1} \left[g(x) + \overline{g}(1) 2^{-\beta-1} \alpha^{-1}(1 - x)^{-\alpha} \right], & \alpha \in (0, 1), \end{cases}$$

(5.11)

As a result, the minimal operator T_{\min} associated to $\tau_{\alpha, \beta}$, that is, $T_{\min} = T_{\min, 0}$, is thus given by

$$T_{\min, \alpha, \beta} f = \tau_{\alpha, \beta} f, \quad f \in \text{dom}(T_{\min, \alpha, \beta}) = \{ g \in L^2((-1, 1); r_{\alpha, \beta} dx) \mid g, g^{[1]} \in AC_{\text{loc}}((-1, 1)) \},$$

(5.12)
The Jacobi Donoghue m-function is given by

\[
\bar{g}(-1) = \bar{g}'(-1) = \bar{g}(1) = \bar{g}'(1) = 0; \quad \tau_{\alpha,\beta} g \in L^2((-1, 1); r_{\alpha,\beta} dx). \]

For a detailed treatment of solutions of the Jacobi differential equation and the associated hypergeometric differential equations we refer to Appendices A–C.

Remark 5.1. We now mention a few special cases of interest. The Legendre equation ($\alpha = \beta = 0$) has frequently been discussed in the literature, see, for instance, [26] and the extensive list of references cited therein. The Gegenbauer, or ultraspherical, equation (see, e.g., [1, Ch. 22], [62, Ch. 18], [71, Ch. IV]) can be realized by choosing $\mu = 1$ in the Gegenbauer equation, or $\mu = 0$ in the Jacobi equation, or $\alpha = \beta = -1/2$ in the Jacobi equation (see, e.g., [1, Ch. 22], [62, Ch. 18], [71, Ch. IV]), whereas the second kind is realized by choosing $\alpha = 1$ in the Gegenbauer equation, or $\alpha = \beta = 1/2$ in the Jacobi equation (see, e.g., [1, Ch. 22], [62, Ch. 18], [71, Ch. IV]).

We now determine the solutions $\phi_{0,\alpha,\beta}(z, \cdot)$ and $\theta_{0,\alpha,\beta}(z, \cdot)$ of $\tau_{\alpha,\beta} u = zu, z \in \mathbb{C}$, that are subject to the conditions

\[
\begin{align*}
\bar{\phi}_{0,\alpha,\beta}(z, -1) &= 0, & \bar{\phi}'_{0,\alpha,\beta}(z, -1) &= 1, \\
\bar{\theta}_{0,\alpha,\beta}(z, -1) &= 1, & \bar{\theta}'_{0,\alpha,\beta}(z, -1) &= 0.
\end{align*}
\]

In particular, one obtains from (C.1),

\[
\begin{align*}
\phi_{0,\alpha,\beta}(z, x) &= \begin{cases} 2^{-\alpha-1}\beta^{-1}y_{2,\alpha,\beta,-1}(z, x), & \beta \in (-1, 0), \\
y_{1,\alpha,\beta,-1}(z, x), & \beta \in [0, 1), \end{cases} \\
\theta_{0,\alpha,\beta}(z, x) &= \begin{cases} y_{1,\alpha,\beta,-1}(z, x), & \beta \in (-1, 0), \\
2^{-\alpha-1}y_{2,\alpha,0,-1}(z, x), & \beta = 0, \\
2^{-\alpha-1}\beta^{-1}y_{2,\alpha,\beta,-1}(z, x), & \beta \in (0, 1), \end{cases}
\end{align*}
\]

5.1. The Regular and Limit Circle Case $\alpha, \beta \in (-1, 1)$. In this section we compute the Donoghue m-function when the Jacobi problem considered is either in the regular or limit circle case at ± 1.

Using (5.13), the solutions in (3.1) for this example are given by

\[
\begin{align*}
u_{1,\alpha,\beta}(z, x) &= \frac{\phi_{0,\alpha,\beta}(z, x)}{\bar{\phi}_{0,\alpha,\beta}(z, 1)} \\
&= \begin{cases} y_{2,\alpha,\beta,-1}(z, x)/\bar{y}_{2,\alpha,\beta,-1}(z, 1), & \beta \in (-1, 0), \\
y_{1,\alpha,\beta,-1}(z, x)/\bar{y}_{1,\alpha,\beta,-1}(z, 1), & \beta \in [0, 1), \end{cases} \\
u_{2,\alpha,\beta}(z, x) &= \theta_{0,\alpha,\beta}(z, x) - \bar{\theta}_{0,\alpha,\beta}(z, 1)/\bar{\phi}_{0,\alpha,\beta}(z, 1)\phi_{0,\alpha,\beta}(z, x) \\
&= \begin{cases} y_{1,\alpha,\beta,-1}(z, x) - [\bar{y}_{1,\alpha,\beta,-1}(z, 1)/\bar{y}_{2,\alpha,\beta,-1}(z, 1)]y_{2,\alpha,\beta,-1}(z, x), & \beta \in (-1, 0), \\
2^{-\alpha-1}y_{2,\alpha,0,-1}(z, x) - [\bar{y}_{2,\alpha,0,-1}(z, 1)/\bar{y}_{1,\alpha,0,-1}(z, 1)]y_{1,\alpha,0,-1}(z, x), & \beta = 0, \\
2^{-\alpha-1}\beta^{-1}y_{2,\alpha,\beta,-1}(z, x) - [\bar{y}_{2,\alpha,\beta,-1}(z, 1)/\bar{y}_{1,\alpha,\beta,-1}(z, 1)]y_{1,\alpha,\beta,-1}(z, x), & \beta \in (0, 1), \end{cases}
\end{align*}
\]
where the generalized boundary values are given in (C.2)–(C.4). Hence substituting (5.15) into (3.8)–(3.11) and applying Theorem 3.2 yields the (Nevanlinna–Herglotz) Donoghue m-function $M_{T_{0,RK,\alpha,\beta}}^{\sigma}(\cdot)$ for any self-adjoint extension $T_{\alpha,B,\alpha,\beta}$ of T_{min} with $\alpha, \beta \in (-1, 1)$.

As an example of coupled boundary conditions, we consider the Krein–von Neumann extension following Example 4.3 found in [24]. For $\alpha, \beta \in (-1, 1)$, the following five cases are associated with a strictly positive minimal operator $T_{\text{min},\alpha,\beta}$ and we now provide the corresponding choices of $R_{K,\alpha,\beta}$ for the Krein–von Neumann extension $T_{0,RK,\alpha,\beta}$ of $T_{\text{min},\alpha,\beta}$:

\[T_{0,RK,\alpha,\beta} f = \tau_{\alpha,\beta} f, \quad (5.16) \]

\[f \in \text{dom}(T_{0,RK,\alpha,\beta}) = \left\{ g \in \text{dom}(T_{\text{max},\alpha,\beta}) \mid \begin{array}{l}
\left(1 - 2^{1-\alpha} - 1, \frac{\Gamma(-\alpha)\Gamma(-\beta)}{\Gamma(-\alpha - \beta)} \right)
\end{array} \right\}, \quad \alpha, \beta \in (-1, 0), \]

\[R_{K,\alpha,\beta} = \begin{cases}
0 & \alpha \in (0, 1), \beta \in (-1, 0), \\
1 & \alpha \in (-1, 0), \beta = 0,
\end{cases} \quad (5.17) \]

where we interpret $1/\Gamma(0) = 0, \psi(\cdot) = \Gamma'/(\cdot) \Gamma(\cdot)$ denotes the Digamma function, and $\gamma_E = -\psi(1) = 0.57721\ldots$ represents Euler's constant. Obviously, $\det(R_{K,\alpha,\beta}) = 1$ in all five cases. Furthermore, as $R_{1,2} \neq 0$ for each case, Theorem 3.2 (ii) applies and one obtains the Donoghue m-function $M_{T_{0,RK,\alpha,\beta}}^{\sigma}(\cdot)$ for the Krein–von Neumann extension $T_{0,RK,\alpha,\beta}$ by utilizing (5.15) and (5.17) as well as the explicit form of $K_{0,RK} (\cdot)$ in (3.30). We note once again that $M_{T_{0,RK,\alpha,\beta}}^{\sigma}(\cdot)$ is a Nevanlinna–Herglotz function.

In the remaining four cases not covered by (5.17), given by all combinations of $\alpha = 0, \beta = 0, \alpha \in (0, 1)$, and $\beta \in (0, 1)$, one observes that [24, Theorem 3.5] is not applicable as the underlying minimal operator, $T_{\text{min},\alpha,\beta}$, is nonnegative but not strictly positive. In particular, the Jacobi polynomials satisfy Friedrichs boundary conditions for $\alpha, \beta \in [0, 1)$, hence $0 \in \sigma(T_{F,\alpha,\beta}), \alpha, \beta \in [0, 1)$ and $T_{\text{min},\alpha,\beta} \geq 0$ is nonnegative, but not strictly positive when $\alpha, \beta \in [0, 1)$.

5.2. Precisely One Interval Endpoint in the Limit Point Case. In this section we determine the Donoghue m-function in all situations where precisely
one interval endpoint is in the limit point case. We will focus on the case when
$\alpha \in (-\infty, -1)$ or $\alpha \in [1, \infty)$, so that the right endpoint $x = 1$ represents
the limit point case. The converse situation can be obtained by reflection with respect to
the origin (i.e., considering the transform $(-1, 1) \ni x \mapsto -x \in (-1, 1)$).

We recall from [26, Sect. 6] that the Weyl–Titchmarsh–Kodaira solution and
m-function corresponding to the Friedrichs (resp., Dirichlet) boundary condition at
$x = -1$ is determined via the requirement

$$\psi_{0, \alpha, \beta}(z, \cdot) = \theta_{0, \alpha, \beta}(z, \cdot) + m_{0, \alpha, \beta}(z)\phi_{0, \alpha, \beta}(z, \cdot) \in L^2((c, 1); r_{\alpha, \beta}dx),$$

$z \in \mathbb{C} \backslash \sigma(T_{F, \alpha, \beta}), \ \alpha \in (-\infty, -1) \cup [1, \infty), \ \beta \in (-1, 1), \ c \in (-1, 1)$.

(5.18)

In particular, since $\widetilde{\psi}_{0, \alpha, \beta}(z, -1) = m_{0, \alpha, \beta}(z)$ one finds from Theorem 4.2,

$$M_{T_{0, \alpha, \beta}, N_i}^D(z) = \left[-i + \frac{m_{0, \alpha, \beta}(z) - m_{0, \alpha, \beta}(-i)}{\text{Im}(m_{0, \alpha, \beta}(i))} \right] I_{N_i},$$

$$M_{T_{0, \alpha, \beta}, N_i}^D(z) = M_{T_{0, \alpha, \beta}, N_i}^D(z) + (i - z) \frac{m_{0, \alpha, \beta}(z) - m_{0, \alpha, \beta}(-i)}{\text{cot}(\gamma) + m_{0, \alpha, \beta}(z)} \times \langle \psi_{0, \alpha, \beta}(z, \cdot) \rangle |_{N_i}, \ \gamma \in (0, \pi),$$

$\alpha \in (-\infty, -1) \cup [1, \infty), \ \beta \in (-1, 1), \ z \in \mathbb{C} \backslash \mathbb{R}$,

(5.19)

where $\psi_{0, \alpha, \beta}(z, \cdot)$ and $m_{0, \alpha, \beta}(z, \cdot)$ are given by the following:

(I) The Case $\alpha \in [1, \infty)$ and $\beta \in (-1, 0)$:

$$\psi_{0, \alpha, \beta}(z, x) = y_{1, \alpha, \beta, -1}(z, x) - 2^{-\alpha - 1}y_{2, \alpha, \beta, -1}(z, x)m_{0, \alpha, \beta}(z),$$

$$m_{0, \alpha, \beta}(z) = 2^{1 + \alpha + \beta} \Gamma(1 + \beta) \frac{1}{\Gamma(1 - \beta)} \times \frac{\Gamma(1 + \alpha - \beta + \sigma_{\alpha, \beta}(z))/2}{\Gamma(1 + \alpha + \beta + \sigma_{\alpha, \beta}(z))/2} \Gamma(1 + \alpha - \beta - \sigma_{\alpha, \beta}(z))/2 \Gamma(1 + \alpha + \beta - \sigma_{\alpha, \beta}(z))/2,$$

$z \in \rho(T_{F, \alpha, \beta}), \ \alpha \in [1, \infty), \ \beta \in (-1, 0)$,

$$\sigma(T_{F, \alpha, \beta}) = \{ (n - \beta)(n + 1 + \alpha) \}_{n \in \mathbb{N}_0}, \ \alpha \in [1, \infty), \ \beta \in (-1, 0),$$

(5.20)

with

$$\sigma_{\alpha, \beta}(z) = [(1 + \alpha + \beta)^2 + 4z]^{1/2}.$$

(5.21)

(II) The Case $\alpha \in [1, \infty)$ and $\beta = 0$:

$$\psi_{0, \alpha, 0}(z, x) = -2^{-\alpha - 1}y_{2, \alpha, 0, -1}(z, x) + y_{1, \alpha, 0, -1}(z, x)m_{0, \alpha, 0}(z),$$

$$m_{0, \alpha, 0}(z) = -2^{-\alpha - 1} \{ 2\gamma_E + \psi([1 + \alpha + \sigma_{\alpha, 0}(z])/2) + \psi([1 + \alpha - \sigma_{\alpha, 0}(z])/2) \},$$

$z \in \rho(T_{F, \alpha, 0}), \ \alpha \in [1, \infty), \ \beta = 0$,

$$\sigma(T_{F, \alpha, 0}) = \{ n(n + 1 + \alpha) \}_{n \in \mathbb{N}_0}, \ \alpha \in [1, \infty), \ \beta = 0.$$

(5.22)
(III) The Case $\alpha \in [1, \infty) \text{ and } \beta \in (0, 1)$:

$$
\psi_{0,\alpha,\beta}(z, x) = 2^{-\alpha -1}\beta^{-1}y_{2,\alpha,\beta,-1}(z, x) + y_{1,\alpha,\beta,-1}(z, x)m_{0,\alpha,\beta}(z),
$$

$$
m_{0,\alpha,\beta}(z) = \beta^{-1}2^{-1-\alpha-\beta}\Gamma(1-\beta)
\frac{\Gamma(1+\alpha+\beta)}{\Gamma(1+\beta)} \times \frac{\Gamma(1+\alpha+\beta-\sigma_{\alpha,\beta}(z))/2}{\Gamma(1+\alpha-\beta-\sigma_{\alpha,\beta}(z))/2} \frac{\Gamma((1+\alpha-\beta-\sigma_{\alpha,\beta}(z))/2)}{} \left(5.23\right)
$$

$$
z \in \rho(T_{F,\alpha,\beta}), \ \alpha \in [1, \infty), \ \beta \in (0, 1),
$$

$$
\sigma(T_{F,\alpha,\beta}) = \{n(n+1+\alpha+\beta)\}_{n \in \mathbb{N}_0}, \ \alpha \in [1, \infty), \ \beta \in (0, 1).
$$

(IV) The Case $\alpha \in (-\infty, -1) \text{ and } \beta \in (-1, 0)$:

$$
\psi_{0,\alpha,\beta}(z, x) = y_{1,\alpha,\beta,-1}(z, x) - 2^{-\alpha -1}\beta^{-1}y_{2,\alpha,\beta,-1}(z, x)m_{0,\alpha,\beta}(z),
$$

$$
m_{0,\alpha,\beta}(z) = 2^{1+\alpha+\beta}\beta\Gamma(1+\beta)
\frac{\Gamma(1-\beta)}{\Gamma(1+\beta)} \times \frac{\Gamma(1-\alpha-\beta-\sigma_{\alpha,\beta}(z))/2}{\Gamma(1-\alpha-\beta+\sigma_{\alpha,\beta}(z))/2} \frac{\Gamma((1-\alpha-\beta+\sigma_{\alpha,\beta}(z))/2)}{\Gamma((1-\alpha+\beta+\sigma_{\alpha,\beta}(z))/2)} \left(5.24\right)
$$

$$
z \in \rho(T_{F,\alpha,\beta}), \ \alpha \in (-\infty, -1), \ \beta \in (-1, 0),
$$

$$
\sigma(T_{F,\alpha,\beta}) = \{(n+\alpha+\beta)(n+1)\}_{n \in \mathbb{N}_0}, \ \alpha \in (-\infty, -1), \ \beta \in (-1, 0).
$$

(V) The Case $\alpha \in (-\infty, -1) \text{ and } \beta = 0$:

$$
\psi_{0,\alpha,0}(z, x) = -2^{-\alpha -1}y_{2,\alpha,0,-1}(z, x) + y_{1,\alpha,0,-1}(z, x)m_{0,\alpha,0}(z),
$$

$$
m_{0,\alpha,0}(z) = -2^{-\alpha -1}\{2\gamma_E + \psi(1-\alpha+\sigma_{\alpha,0}(z))/2 + \psi(1-\alpha-\sigma_{\alpha,0}(z))/2\},
$$

$$
z \in \rho(T_{F,\alpha,0}), \ \alpha \in (-\infty, -1), \ \beta = 0,
$$

$$
\sigma(T_{F,\alpha,0}) = \{(n+\alpha)(n+1)\}_{n \in \mathbb{N}_0}, \ \alpha \in (-\infty, -1), \ \beta = 0. \left(5.25\right)
$$

(VI) The Case $\alpha \in (-\infty, -1) \text{ and } \beta \in (0, 1)$:

$$
\psi_{0,\alpha,\beta}(z, x) = 2^{-\alpha -1}\beta^{-1}y_{2,\alpha,\beta,-1}(z, x) + y_{1,\alpha,\beta,-1}(z, x)m_{0,\alpha,\beta}(z),
$$

$$
m_{0,\alpha,\beta}(z) = -\beta^{-1}2^{-1-\alpha-\beta}\Gamma(1-\beta)
\frac{\Gamma(1+\beta)}{\Gamma(1+\beta)} \times \frac{\Gamma(1+\beta+\alpha+\sigma_{\alpha,\beta}(z))/2}{\Gamma(1+\beta-\alpha-\sigma_{\alpha,\beta}(z))/2} \frac{\Gamma((1+\beta-\alpha-\sigma_{\alpha,\beta}(z))/2)}{\Gamma((1+\beta+\alpha+\sigma_{\alpha,\beta}(z))/2)} \left(5.26\right)
$$

$$
z \in \rho(T_{F,\alpha,\beta}), \ \alpha \in (-\infty, -1), \ \beta \in (0, 1),
$$

$$
\sigma(T_{F,\alpha,\beta}) = \{(n+\alpha)(n+1+\beta)\}_{n \in \mathbb{N}_0}, \ \alpha \in (-\infty, -1), \ \beta \in (0, 1).
$$

APPENDIX A. THE HYPERGEOMETRIC AND JACOBI DIFFERENTIAL EQUATIONS

In this appendix we provide the connection between the hypergeometric differential equation (cf. [1, Sect. 15.5])

$$
\xi(1-\xi)\ddot{\psi}(\xi) + [c(a+b+1)]\dot{\psi}(\xi) - abw(\xi) = 0, \ \xi \in (0, 1), \tag{A.1}
$$

(21) and the Jacobi differential equation

$$
\tau_{\alpha,\beta}y(z, x) = -(1-x^2)y''(z, x) + [\alpha - \beta + (\alpha + \beta + 2)x]y'(z, x) = zy(z, x), \ \alpha, \beta \in \mathbb{R}, \ x \in (-1, 1), \tag{A.2}
$$

\(A.1 \) and \(A.2 \)
(where \(t = d/dz \)). Making the substitution \(\xi = (1 + x)/2 \) in (A.2) yields
\[
\xi(1 - \xi) \ddot{y}(z, \xi) + [\beta + 1 - (\alpha + \beta + 2)\xi]\dot{y}(z, \xi) + zy(z, \xi) = 0,
\]
\(\alpha, \beta \in \mathbb{R}, \, \xi \in (0,1). \) \hspace{1cm} (A.3)

which is equal to (A.1) once one identifies,
\[
a = [1 + \alpha + \beta + \sigma_{\alpha, \beta}(z)]/2, \quad b = [1 + \alpha + \beta - \sigma_{\alpha, \beta}(z)]/2, \quad c = 1 + \beta,
\]
\(\sigma_{\alpha, \beta}(z) = [(1 + \alpha + \beta)^2 + 4z]^{1/2}. \) \hspace{1cm} (A.4)

At the endpoint \(x = -1 \) of the Jacobi equation the substitution used to arrive at (A.3) yields \(\xi = 0 \), hence we next consider solutions of (A.1) near \(\xi = 0 \) (cf. [1, Eqs. 15.5.3, 15.5.4]) (analogous solutions near \(\xi = 1 \) are found in (A.13))
\[
w_{1,0}(\xi) = F(a, b; c; \xi) = \sum_{n \in \mathbb{N}_0} \frac{(a)_n(b)_n \xi^n}{(c)_n n!}, \quad a, b \in \mathbb{C}, \, c \in \mathbb{C}(\mathbb{N}_0),
\]
\[
w_{2,0}(\xi) = \xi^{1-c} F(a-c+1, b-c+1; 2-c; \xi), \quad a, b \in \mathbb{C}, \, (c-1) \in \mathbb{C}\backslash \mathbb{N}, \quad \xi \in (0,1). \) \hspace{1cm} (A.5)

Here \(F(\cdot, \cdot; \cdot; \cdot) \) (frequently written as \({}_2F_1(\cdot, \cdot; \cdot; \cdot) \)) denotes the hypergeometric function (see, e.g., [1, Ch. 15]), \(\psi(\cdot) = \Gamma'(\cdot)/\Gamma(\cdot) \) the Digamma function, \(\gamma_E = -\psi(1) = 0.57721 \ldots \) represents Euler’s constant, and
\[
(\zeta)_0 = 1, \quad (\zeta)_n = \Gamma(\zeta + n)/\Gamma(\zeta), \quad n \in \mathbb{N}, \quad \zeta \in \mathbb{C}(\mathbb{N}_0), \) \(\zeta \in (0,1). \) \hspace{1cm} (A.6)

abbreviates Pochhammer’s symbol (see, e.g., [1, Ch. 6]).

In addition,
\[
w_{1,0} \text{ and } w_{2,0} \text{ are linearly independent if } c \in \mathbb{C}\backslash \mathbb{Z}, \) \hspace{1cm} (A.7)

which can be seen by noticing the different behaviors of \(w_{1,0}(\xi), \, w_{2,0}(\xi) \) around \(\xi = 0 \). One notes that only the case \(c = 1 + \beta \in (0,2) \) is needed. Thus, for \(c = 1 \) we will use instead
\[
w_{1,0}(\xi) = F(a, b; 1; \xi), \quad a, b \in \mathbb{C},
\]
\[
w_{2,0}^{\ln}(\xi) = F(a, b; 1; \xi) \ln(\xi) + \sum_{n \in \mathbb{N}} \frac{(a)_n(b)_n \xi^n}{(n)_n (n+1)^2} \xi^n \times [\psi(a + n) - \psi(a) + \psi(b + n) - \psi(b) - 2\psi(n+1) - 2\gamma_E], \quad a, b \in \mathbb{C}\backslash \mathbb{N}_0, \quad \xi \in (0,1), \) \hspace{1cm} (A.8)

where the superscript \(\text{“ln”} \) indicates the presence of a logarithmic term (familiar from Frobenius theory).

Using (A.4) in formulas (A.5) and (A.8), one obtains for the solutions of the Jacobi differential equation \(\gamma_{\alpha, \beta} y(z, \cdot) = zy(z, \cdot) \) (cf. (A.2)) near \(x = -1, \)
\[
y_{1,0,\beta,-1}(z, x) = F(a_{\alpha, \beta, \sigma_{\alpha, \beta}(z)}; a_{\alpha, \beta, -\sigma_{\alpha, \beta}(z)}; 1 + \beta; (1 + x)/2), \quad \beta \in \mathbb{R}\backslash \mathbb{N}, \) \hspace{1cm} (A.9)
\]
\[
y_{2,0,\beta,-1}(z, x) = (1 + x)^{-\beta} F(a_{\alpha, \beta, -\sigma_{\alpha, \beta}(z)}; a_{\alpha, -\beta, -\sigma_{\alpha, \beta}(z)}; 1 - \beta; (1 + x)/2), \quad \beta \in \mathbb{R}\backslash \mathbb{N}_0, \) \hspace{1cm} (A.10)
\]
\[
y_{2,0,0,-1}(z, x) = F(a_{\alpha, 0, \sigma_{\alpha, 0}(z)}; a_{\alpha, 0, -\sigma_{\alpha, 0}(z)}; 1; (1 + x)/2) \ln((1 + x)/2)
\]
Again, for independent
\(\beta \in \mathbb{R} \) and for
\[
\begin{align*}
 &\alpha \in \mathbb{R}, \ z \in \mathbb{C}, \ x \in (-1, 1),
\end{align*}
\]
where we abbreviated
\[
\alpha_{\mu,\nu,\pm\sigma} = \lfloor 1 + \mu + \nu \pm \sigma \rfloor/2, \quad \mu, \nu, \sigma \in \mathbb{C}
\]
(A.12)
Again one observes that for
\(z \in \mathbb{C}, \ y_{1,\alpha,\beta,-1}(z, \cdot) \) and \(y_{2,\alpha,\beta,-1}(z, \cdot) \) are linearly independent for \(\alpha \in \mathbb{R}, \ \beta \in \mathbb{R}\setminus\mathbb{Z} \). Similarly, for \(z \in \mathbb{C}, \ y_{1,\alpha,0,-1}(z, \cdot) \) and \(y_{2,\alpha,0,-1}(z, \cdot) \) are linearly independent for \(\alpha \in \mathbb{R} \).
In precisely the same manner solutions of (A.1) are given by
\[
\begin{align*}
 w_{1,1}(\xi) &= F(a, b; a + b - c + 1; 1 - \xi), \quad a, b \in \mathbb{C}, \ c - a - b \in \mathbb{C}\setminus\mathbb{N}, \\
 w_{2,1}(\xi) &= (1 - \xi)^{c-a-b} F(c - a, c - b; c - a - b + 1; 1 - \xi),
 \quad a, b \in \mathbb{C}, \ a + b - c \in \mathbb{C}\setminus\mathbb{N},
\end{align*}
\]
and for \(a + b = c \),
\[
\begin{align*}
 w_{1,1}(\xi) &= F(a, b; 1; 1 - \xi), \quad a, b \in \mathbb{C}, \\
 w_{2,1}^{(n)}(\xi) &= F(a, b; 1; 1 - \xi) \ln(1 - \xi) + \sum_{n \in \mathbb{N}} \frac{(a)_n (b)_n}{(n!)^2} (1 - \xi)^n \\
 &\times [\psi(a + n) - \psi(a) + \psi(b + n) - \psi(b) - 2\psi(n + 1) - 2\gamma_E],
 \quad a, b \in \mathbb{C}, \ \xi \in (0, 1).
\end{align*}
\]
which are obtained from (A.5) and (A.8) by the change of variables
\[
(a, b, c, \xi) \rightarrow (a, b, a + b - c + 1, 1 - \xi).
\]
Together with the identification \(x = (1 + \xi)/2 \) and (A.4) one obtains the following solutions of \(\tau_{a,\beta} y(z, \cdot) = zy(z, \cdot) \) near \(x = +1 \),
\[
\begin{align*}
 y_{1,\alpha,\beta,+1}(z, x) &= F(a_{\alpha,\beta,\sigma_{a,\beta}}(z), a_{\alpha,\beta,-\sigma_{a,\beta}}(z); 1 + \alpha; (1 - x)/2), \quad \alpha \in \mathbb{R}\setminus(-\mathbb{N}), \\
 y_{2,\alpha,\beta,+1}(z, x) &= (1 - x)^{-\alpha} F(a_{-\alpha,\beta,\sigma_{a,\beta}}(z), a_{-\alpha,\beta,-\sigma_{a,\beta}}(z); 1 - \alpha; (1 - x)/2), \quad \alpha \in \mathbb{R}\setminus\mathbb{N},
\end{align*}
\]
\[
\begin{align*}
 y_{2,0,\beta,+1}(z, x) &= F(a_{0,\beta,\sigma_{0,\beta}}(z), a_{0,\beta,-\sigma_{0,\beta}}(z); 1; (1 - x)/2) \ln((1 - x)/2) \\
 + \sum_{n \in \mathbb{N}} \frac{(a_{0,\beta,\sigma_{0,\beta}}(z)_n (a_{0,\beta,-\sigma_{0,\beta}}(z)_n)}{(2n(n!)^2} (1 - x)^n \\
 &\times [\psi(a_{0,\beta,\sigma_{0,\beta}}(z) + n) - \psi(a_{0,\beta,\sigma_{0,\beta}}(z)) + \psi(a_{0,\beta,-\sigma_{0,\beta}}(z) + n) \\
 - \psi(a_{0,\beta,-\sigma_{0,\beta}}(z)) - 2\psi(n + 1) - 2\gamma_E], \quad \alpha = 0, \\
 \beta \in \mathbb{R}, \ z \in \mathbb{C}, \ x \in (-1, 1).
\end{align*}
\]
Again, for \(z \in \mathbb{C}, \ y_{1,\alpha,\beta,+1}(z, \cdot) \) and \(y_{2,\alpha,\beta,+1}(z, \cdot) \) are linearly independent for \(\alpha \in \mathbb{R}\setminus\mathbb{Z}, \ \beta \in \mathbb{R} \). Similarly, for \(z \in \mathbb{C}, \ y_{1,0,\beta,+1}(z, \cdot) \) and \(y_{2,0,\beta,+1}(z, \cdot) \) are linearly independent for \(\beta \in \mathbb{R} \).
where we used the fact

\[\text{Eq. 18.5.7} \]

and quasi-rational eigenfunctions. The A.1 Remark

\[\alpha \geq x, \]

\[x \]

differential equation (A.2) with Neumann boundary conditions at

\[\text{In particular, one can verify that the Jacobi polynomials are solutions of the Jacobi} \]

with

\[n \leq 1 \] is a polynomial of degree at most \(\alpha, \beta \)

and can be defined by continuity for all parameters \(\alpha, \beta \in \mathbb{R} \). Note that \(P_n^{\alpha, \beta}(x) \)

one infers that

\[\text{Moreover } y_{j, \alpha, \beta, \pm 1}(z, x), \] for \(j = 1, 2 \), are entire with respect to \(z \in \mathbb{C} \).

\[\text{(A.19)} \]

Moreover \(y_{j, \alpha, \beta, \pm 1}(z, x) \) satisfy the relations (cf. (A.28))

\[y_{1, \alpha, \beta, -1}(z, x) = (1 + x)^{-\beta}y_{2, \alpha, -\beta, -1}(z + (1 + \alpha)\beta, x), \] \(\alpha \in \mathbb{R}, \beta \in \mathbb{R} \setminus \{0\} \),

\[y_{2, \alpha, \beta, -1}(z, x) = (1 + x)^{-\beta}y_{1, \alpha, -\beta, -1}(z + (1 + \alpha)\beta, x), \] \(\alpha \in \mathbb{R}, \beta \in \mathbb{R} \setminus \{0\} \),

\[y_{1, \alpha, \beta, +1}(z, x) = (1 - x)^{-\alpha}y_{2, -\alpha, \beta, +1}(z + (1 + \beta)\alpha, x), \] \(\alpha \in \mathbb{R} \setminus \{0\}, \beta \in \mathbb{R} \),

\[y_{2, \alpha, \beta, +1}(z, x) = (1 - x)^{-\alpha}y_{1, -\alpha, \beta, +1}(z + (1 + \beta)\alpha, x), \] \(\alpha \in \mathbb{R} \setminus \{0\}, \beta \in \mathbb{R} \),

where we used the fact

\[\sigma_{\alpha, \beta}(z) = \begin{cases}
\sigma_{\alpha, \beta}(z + (1 + \alpha)\beta), \\
\sigma_{\alpha, \beta}(z + (1 + \beta)\alpha), \\
\sigma_{\alpha, \beta}(z + \alpha + \beta).
\end{cases} \] \(\text{(A.24)} \)

Remark A.1. We conclude this appendix by briefly discussing Jacobi polynomials and quasi-rational eigenfunctions. The \(n \)th Jacobi polynomial is defined as (see [61, Eq. 18.5.7])

\[P_n^{\alpha, \beta}(x) := \frac{(\alpha + 1)n}{n!}F(-n, n + \alpha + \beta + 1; \alpha + 1; (1 - x)/2), \] \(n \in \mathbb{N}_0, -\alpha \notin \mathbb{N}, -n - \alpha - \beta - 1 \notin \mathbb{N}, \)

and can be defined by continuity for all parameters \(\alpha, \beta \in \mathbb{R} \). Note that \(P_n^{\alpha, \beta}(x) \)

it satisfies the equation

\[\tau_{\alpha, \beta}P_n^{\alpha, \beta}(x) = \lambda_n^{\alpha, \beta}P_n^{\alpha, \beta}(x), \]

with

\[\lambda_n^{\alpha, \beta} := n(n + 1 + \alpha + \beta). \] \(\text{(A.27)} \)

In particular, one can verify that the Jacobi polynomials are solutions of the Jacobi differential equation (A.2) with Neumann boundary conditions at \(x = +1 \) (resp. \(x = -1 \)) if \(\alpha \in (-1, 0) \) (resp. \(\beta \in (-1, 0) \)) and Friedrichs boundary conditions if \(\alpha \geq 0 \) (resp. \(\beta \geq 0 \)).
One notes that poles occur on the right-hand side of (B.1), (B.2) whenever $(1 + x)^{± \beta}$ and $(1 - x)^{± \alpha}$ are regarded as formal multiplication operators. This is summarized in Table 1, which is taken from [8]. Here $(1 - x)^{-\alpha} P_n^{\alpha,\beta}(x)$ satisfy at $x = +1$ the Friedrichs boundary condition for $\alpha \leq 0$ and Neumann for $\alpha \in (0,1)$, while at $x = -1$ they satisfy the Friedrichs for $\beta \geq 0$ and Neumann for $\beta \in (-1,0)$. For $(1 + x)^{-\beta} P_n^{\alpha,\beta}(x)$ the roles of α and β interchange compared to the last case, meaning Friedrichs at $x = +1$ for $\alpha \geq 0$, Neumann for $\alpha \in (-1,0)$, and at $x = -1$, Friedrichs for $\beta \leq 0$, Neumann for $\beta \in (0,1)$. Finally $(1 - x)^{-\alpha}(1 + x)^{-\beta} P_n^{\alpha,\beta}(x)$ satisfy at $x = +1$ (resp. $x = -1$) the Friedrichs boundary condition for $\alpha \leq 0$ (resp. $\beta \leq 0$) and Neumann for $\alpha \in (0,1)$ (resp. $\beta \in (0,1)$).

Table 1. Formal quasi-rational eigensolutions of $\tau_{\alpha,\beta}$

Eigenfunctions	Eigenvalues
$P_n^{\alpha,\beta}(x)$	$n(n + 1 + \alpha + \beta)$
$(1 - x)^{-\alpha} P_n^{\alpha,\beta}(x)$	$n(n + 1 - \alpha + \beta) - \alpha(1 + \beta)$
$(1 + x)^{-\beta} P_n^{\alpha,\beta}(x)$	$n(n + 1 + \alpha - \beta) - \beta(1 + \alpha)$
$(1 - x)^{-\alpha}(1 + x)^{-\beta} P_n^{\alpha,\beta}(x)$	$n(n + 1 - \alpha - \beta) - (\alpha + \beta)$

More generally, all quasi-rational solutions, meaning the logarithmic derivative being rational, can be derived from the the Jacobi polynomials together with

\[(1 + x)^{-\beta} \circ \tau_{\alpha,\beta} \circ (1 + x)^{\beta} = \tau_{\alpha,\beta} + (1 + \alpha)\beta,\]
\[(1 - x)^{-\alpha} \circ \tau_{\alpha,\beta} \circ (1 - x)^{\alpha} = \tau_{\alpha,\beta} + (1 + \beta)\alpha,\]
\[(1 - x)^{-\alpha}(1 + x)^{-\beta} \circ \tau_{\alpha,\beta} \circ (1 - x)^{\alpha}(1 + x)^{\beta} = \tau_{\alpha,\beta} + \alpha + \beta,\]

where $(1 + x)^{\pm \beta}$ and $(1 - x)^{\pm \alpha}$ are regarded as formal multiplication operators. This is summarized in Table 1, which is taken from [8]. Here $(1 - x)^{-\alpha} P_n^{\alpha,\beta}(x)$ satisfy at $x = +1$ the Friedrichs boundary condition for $\alpha \leq 0$ and Neumann for $\alpha \in (0,1)$, while at $x = -1$ they satisfy the Friedrichs for $\beta \geq 0$ and Neumann for $\beta \in (-1,0)$. For $(1 + x)^{-\beta} P_n^{\alpha,\beta}(x)$ the roles of α and β interchange compared to the last case, meaning Friedrichs at $x = +1$ for $\alpha \geq 0$, Neumann for $\alpha \in (-1,0)$, and at $x = -1$, Friedrichs for $\beta \leq 0$, Neumann for $\beta \in (0,1)$. Finally $(1 - x)^{-\alpha}(1 + x)^{-\beta} P_n^{\alpha,\beta}(x)$ satisfy at $x = +1$ (resp. $x = -1$) the Friedrichs boundary condition for $\alpha \leq 0$ (resp. $\beta \leq 0$) and Neumann for $\alpha \in (0,1)$ (resp. $\beta \in (0,1)$).

Appendix B. Connection Formulas

In this appendix we provide the connection formulas utilized to find the solution behaviors in Appendix C. We express them using $w_{1,0}(\xi)$ and $w_{2,0}(\xi)$ ($w_{2,0}^n(\xi)$) and their analogs $w_{1,1}(\xi)$ and $w_{2,1}(\xi)$ ($w_{2,1}^n(\xi)$) at the endpoint $\xi = 1$.

We recall the relations (A.4) connecting the parameters a, b, c and α, β.

(I) The case $\alpha \in \mathbb{R}\setminus\mathbb{Z}$, $\beta \in (-1,1)\setminus\{0\}$, that is, $c \in (0,2)\setminus\{1\}$, $a + b - c \in \mathbb{R}\setminus\mathbb{Z}$:

The two connection formulas are given by (cf. [62, Eq. 15.10.21–22])

\[w_{1,0}(\xi) = \frac{\Gamma(c)(c - a - b)}{\Gamma(c - a)\Gamma(c - b)} w_{1,1}(\xi) + \frac{\Gamma(c)(c - a - b)}{\Gamma(a)\Gamma(b)} w_{2,1}(\xi),\]
\[w_{2,0}(\xi) = \frac{\Gamma(2 - c)(c - a - b)}{\Gamma(1 - a)\Gamma(1 - b)} w_{1,1}(\xi) + \frac{\Gamma(2 - c)(c - a - b)}{\Gamma(a - c + 1)\Gamma(b - c + 1)} w_{2,1}(\xi).\]

One notes that poles occur on the right-hand side of (B.1), (B.2) whenever $(a + b - c) \in \mathbb{Z}$. Using (A.15) one can also express $w_{1,1}(\xi)$ or $w_{2,1}(\xi)$ as a linear combination of $w_{1,0}(\xi)$ and $w_{2,0}(\xi)$:

\[w_{1,1}(\xi) = \frac{\Gamma(a + b - c + 1)(1 - c)}{\Gamma(a - c + 1)(b - c + 1)} w_{1,0}(\xi) + \frac{\Gamma(a + b - c + 1)(c - 1)}{\Gamma(a)\Gamma(b)} w_{2,0}(\xi),\]
\[w_{2,1}(\xi) = \frac{\Gamma(1 + c - a - b)(1 - c)}{\Gamma(1 - a)(1 - b)} w_{1,0}(\xi) + \frac{\Gamma(1 + c - a - b)(c - 1)}{\Gamma(c - a)(c - b)} w_{2,0}(\xi),\]

(B.4)
The two relations (B.9) immediately imply differential expression. Since this case was treated in detail in [26], we shall only present the connection formulas for completeness.

$$w_{1,0}(\xi) = F(a, b; a + b; \xi)$$ can be expanded at $\xi = 1$ (cf. [1, Eq. 15.3.10]):

$$F(a, b; a + b; \xi) = \frac{\Gamma(a + b)}{\Gamma(a)\Gamma(b)} \sum_{n \in \mathbb{N}_0} \frac{(a)(a)_{n}(b)_{n}}{(n!)^{2}} [2\psi(n + 1) - \psi(a + n) - \psi(b + n) - \ln(1 - \xi)](1 - \xi)^{n}. \quad (B.5)$$

Meanwhile, two linearly independent solutions at $\xi = 1$ are taken from (A.14). The connection formula for $w_{1,1}(\xi)$ is given by (B.3) with $a + b = c$. To obtain a second connection formula one compares the expansion of $w_{1,1}^{ln}(\xi)$ at $\xi = 1$ with the expansion of $F(a, b; a + b; \xi)$ at $\xi = 1$, using (B.5), and then obtains

$$w_{2,1}^{ln}(\xi) = -[\psi(1 - a) + \psi(1 - b) + 2\gamma_{E}] \frac{\Gamma(1 - a - b)}{\Gamma(1 - a)\Gamma(1 - b)} w_{1,0}(\xi)$$

$$- [\psi(a) + \psi(b) + 2\gamma_{E}] \frac{\Gamma(a + b - 1)}{\Gamma(a)\Gamma(b)} w_{2,0}(\xi). \quad (B.6)$$

The case $\alpha = 0$, $\beta = 0$, that is, $c = 1$, $a + b \in \mathbb{R}\setminus\mathbb{Z}$:

This case is analogous to the previous case, with the roles of α and β interchanged. Concretely, this means that the connection formulas (B.5) and (B.6) must be changed through the renaming (A.15) with $c \rightarrow a + b - c + 1 = a + b$, as $c = 1$. As c does not appear in (B.5) and (B.6) (it was eliminated via $c = a + b$), one can adopt the aforementioned formulas directly, only changing the second index in the w^{s}

$$w_{1,0}(\xi) = \frac{\Gamma(1 - a - b)}{\Gamma(1 - a)\Gamma(1 - b)} w_{1,1}(\xi) + \frac{\Gamma(a + b - 1)}{\Gamma(a)\Gamma(b)} w_{2,1}(\xi), \quad (B.7)$$

$$w_{2,0}(\xi) = -[\psi(1 - a) + \psi(1 - b) + 2\gamma_{E}] \frac{\Gamma(1 - a - b)}{\Gamma(1 - a)\Gamma(1 - b)} w_{1,1}(\xi)$$

$$- [\psi(a) + \psi(b) + 2\gamma_{E}] \frac{\Gamma(a + b - 1)}{\Gamma(a)\Gamma(b)} w_{2,1}(\xi). \quad (B.8)$$

The case $\alpha = \beta = 0$, that is, $a + b = c = 1$:

For $\alpha = 0$ and $\beta = 0$ the Jacobi differential expression (5.1) becomes the Legendre differential expression. Since this case was treated in detail in [26], we shall only present the connection formulas for completeness.

The special solutions $w_{1,i}(\xi)$ and $w_{2,i}^{ln}(\xi)$ for $i = 1, 2$ are given by (A.8) and (A.14), respectively. Note that the following relations hold

$$w_{1,1}(\xi) = w_{1,0}(1 - \xi), \quad w_{2,1}^{ln}(\xi) = w_{2,0}(1 - \xi). \quad (B.9)$$

Using [1, Eq. 15.3.10] together with $w_{1,0} = F(a, b; a + b, \xi)$ and Euler’s famous reflection formula, $\Gamma(\pi)\Gamma(1 - \pi) = \pi \csc(\pi\pi)$ (cf. [1, Eq. 6.1.17]), one obtains

$$w_{1,0}(\xi) = -\pi^{-1} \sin(\pi a) (\psi(a) + \psi(b) + 2\gamma_{E}) w_{1,1}(\xi) + w_{2,1}(\xi). \quad (B.10)$$

The two relations (B.9) immediately imply

$$w_{1,1}(\xi) = -\pi^{-1} \sin(\pi a) (\psi(a) + \psi(b) + 2\gamma_{E}) w_{1,0}(\xi) + w_{2,0}(\xi), \quad (B.11)$$

1Formula (B.7) could have been obtained directly from (B.1) by setting $c = 1$.

References

1. JACOBI DONOGHUE m-FUNCTIONS, m-Functions, 23.
\[w_{2,1}^{1n}(\xi) = \pi^{-1} \sin(\pi a) \left[(\psi(a) + \psi(b) + 2\gamma_E)^2 - \pi^2 [\sin(\pi a)]^{-2} \right] w_{1,0}(\xi) + \psi(a) + \psi(b) + 2\gamma_E w_{2,1}^{1n}(\xi). \]

Appendix C. Behavior of \(y_{j,a,b,\pm 1}(z,x) \), \(j = 1, 2 \), near \(x = \pm 1 \)

In this appendix we focus on the generalized boundary values for the solutions \(y_{j,a,b,-1}(z,x) \), \(j = 1, 2 \) at \(x = \mp 1 \). One obtains for \(z \in \mathbb{C} \),

\[
\bar{y}_{1,a,b,-1}(z,-1) = \begin{cases}
1, & \beta \in (-1,0), \\
0, & \beta = 0, \\
0, & \beta \in (0,1),
\end{cases} \\
\bar{y}'_{1,a,b,-1}(z,-1) = \begin{cases}
0, & \beta \in (-1,0), \\
1, & \beta = 0, \\
1, & \beta \in (0,1),
\end{cases} \\
\bar{y}_{2,a,b,-1}(z,-1) = \begin{cases}
0, & \beta \in (-1,0), \\
-2^{\alpha+1}, & \beta = 0, \\
-2^{\alpha+1}, & \beta \in (0,1),
\end{cases} \\
\bar{y}'_{2,a,b,-1}(z,-1) = \begin{cases}
0, & \beta \in (-1,0), \\
\beta = 0, \\
0, & \beta \in (0,1),
\end{cases}
\]

and employing connection formulas for the endpoint \(x = +1 \),

\[
\bar{y}_{1,a,b,-1}(z,1) = \begin{cases}
\frac{\Gamma(1+\beta)\Gamma(-\alpha)}{\Gamma(a_{-a,b,\sigma_{a,b}}(z))\Gamma(a_{-a,b,-\sigma_{a,b}}(z))}, & \alpha \in (-1,0), \\
-2^{1+\alpha+\beta} \Gamma(1+\alpha)\Gamma(1+\beta), & \alpha \in [0,1),
\end{cases} \\
\bar{y}'_{1,a,b,-1}(z,1) = \begin{cases}
\frac{2^{1+\alpha+\beta} \Gamma(1+\alpha)\Gamma(1+\beta)}{\Gamma(a_{-a,b,\sigma_{a,b}}(z))\Gamma(a_{-a,b,-\sigma_{a,b}}(z))}, & \alpha \in (-1,0), \\
\frac{\Gamma(a_{0,b,\sigma_{a,b}}(z))\Gamma(a_{0,b,-\sigma_{a,b}}(z))}{\Gamma(a_{0,b,\sigma_{a,b}}(z))\Gamma(a_{0,b,-\sigma_{a,b}}(z))} \left[2\gamma_E + \psi(a_{0,b,\sigma_{a,b}}(z)) + \psi(a_{0,b,-\sigma_{a,b}}(z))\right], & \alpha = 0, \\
\frac{\Gamma(1+\beta)\Gamma(-\alpha)}{\Gamma(a_{-a,b,\sigma_{a,b}}(z))\Gamma(a_{-a,b,-\sigma_{a,b}}(z))}, & \alpha \in (0,1), \\
\end{cases}
\]

\[
\bar{y}_{2,a,b,-1}(z,1) = \begin{cases}
\frac{-2^{\beta} \Gamma(1-\beta)\Gamma(-\alpha)}{\Gamma(a_{-a,b,\sigma_{a,b}}(z))\Gamma(a_{-a,b,-\sigma_{a,b}}(z))}, & \alpha \in (-1,0), \\
\frac{-2^{\alpha+1} \Gamma(1+\alpha)\Gamma(1-\beta)}{\Gamma(a_{-a,b,\sigma_{a,b}}(z))\Gamma(a_{-a,b,-\sigma_{a,b}}(z))}, & \alpha \in [0,1),
\end{cases}
\]
\[
\bar{y}_{2,a,\beta,-1}(z,1) = \begin{cases}
\frac{2^{\alpha+1}\Gamma(1+\alpha)\Gamma(1-\beta) - 2^{\beta}\Gamma(1-\beta)}{\Gamma(a_{\alpha,-\beta,\sigma_{\alpha,\beta}(z)})\Gamma(a_{\alpha,-\beta,-\sigma_{\alpha,\beta}(z)})}, & \alpha \in (-1, 0), \\
\frac{2^{\gamma_E} + \psi(a_{\alpha,0,\sigma_{\alpha,0}(z)}) + \psi(a_{\alpha,-\sigma_{\alpha,0}(z)})\Gamma(-\alpha)}{\Gamma(a_{\alpha,0,\sigma_{\alpha,0}(z)})\Gamma(a_{\alpha,0,-\sigma_{\alpha,0}(z)})}, & \alpha \in (0, 1), \\
\beta \in (-1, 0) \cup \{0\}, & \\end{cases}
\]

\[\bar{y}_{2,a,0,-1}(z,1) = \begin{cases}
\frac{-2^{\gamma_E} + \psi(a_{\alpha,0,\sigma_{\alpha,0}(z)}) + \psi(a_{\alpha,-\sigma_{\alpha,0}(z)})\Gamma(-\alpha)}{\Gamma(a_{\alpha,0,\sigma_{\alpha,0}(z)})\Gamma(a_{\alpha,0,-\sigma_{\alpha,0}(z)})}, & \alpha \in (-1, 0), \\
\frac{2^{\gamma_E} + \psi((1 + \sigma_{0,0}(z))/2)\Gamma((1 - \sigma_{0,0}(z))/2) + \psi((1 - \sigma_{0,0}(z))/2)\Gamma((1 + \sigma_{0,0}(z))/2)}{\Gamma(a_{\alpha,0,\sigma_{\alpha,0}(z)})\Gamma(a_{\alpha,0,-\sigma_{\alpha,0}(z)})}, & \alpha \in (0, 1), \\
\beta = 0. & \\end{cases}\]

References

[1] M. Abramowitz and I. A. Stegun, *Handbook of Mathematical Functions*, 9th printing, Dover, New York, 1972.

[2] D. Alpay and J. Behrndt, *Generalized Q-functions and Dirichlet-to-Neumann maps for elliptic differential operators*, J. Funct. Anal. 257, 1666–1694 (2009).

[3] W. O. Amrein and D. B. Pearson, *M operators: a generalization of Weyl-Titchmarsh theory*, J. Comp. Appl. Math. 171, 1–26 (2004).

[4] P. Bailey, W. Everitt, and A. Zettl, *Algorithm S10: The SLEIGN2 Sturm-Liouville Code*, ACM Trans. Math. Software 27, 143–192 (2001).

[5] J. Behrndt, S. Hassi, and H. De Snoo, *Boundary Value Problems, Weyl Functions, and Differential Operators*, Monographs in Math., Vol. 108, Birkhäuser, Springer, 2020.

[6] J. Behrndt and M. Langer, *Boundary value problems for elliptic partial differential operators on bounded domains*, J. Funct. Anal. 243, 536–565 (2007).

[7] J. Behrndt and J. Rohleder, *Titchmarsh–Weyl theory for Schrödinger operators on unbounded domains*, J. Spectral Theory 6, 67–87 (2016).

[8] N. Bonneux, *Exceptional Jacobi polynomials*, J. Approx. Theory 239, 72–112 (2019).

[9] S. Bochner, *Über Sturm-Liouvilleische Polynomsysteme*, Mathematische Zeitschrift 29, 730–736 (1929).

[10] J. F. Brasche, M. Malamud, and H. Neidhardt, *Weyl function and spectral properties of self-adjoint extensions*, Integr. Eq. Oper. Th. 43, 264–289 (2002).
[11] B. M. Brown, G. Grubb, and I. G. Wood, M-functions for closed extensions of adjoint pairs of operators with applications to elliptic boundary problems, Math. Nachr. 282, 314–347 (2009).

[12] J. Brüning, V. Geyler, and K. Pankrashkin, Spectra of self-adjoint extensions and applications to solvable Schrödinger operators, Rev. Math. Phys. 20, 1–70 (2008).

[13] S. Clark, F. Gesztesy, and R. Nichols, Principal solutions revisited, in Stochastic and Infinite Dimensional Analysis, C. C. Bernido, M. V. Carpio-Bernido, M. Grothaus, T. Kuna, M. J. Oliveira, and J. L. da Silva (eds.), Trends in Mathematics, Birkhäuser, Springer, 2016, pp. 85–117.

[14] E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, Krieger Publ., Malabar, FL, 1985.

[15] V. Derkach, S. Hassi, M. Malamud, and H. de Snoo, Boundary relations and generalized resolvents of symmetric operators, Russian J. Math. Phys. 16, 17–60 (2009).

[16] V. A. Derkach, M. M. Malamud, and E. R. Tsekanovskii, Sectorial extensions of a positive operator, and the characteristic function, Sov. Math. Dokl. 37, 106–110 (1988).

[17] W. F. Donoghue, On the perturbation of spectra, Commun. Pure Appl. Math. 18, 559-579 (1965).

[18] N. Dunford and J. T. Schwartz, Linear Operators. Part II: Spectral Theory, Wiley-Interscience, New York, 1988.

[19] J. Eckhardt, F. Gesztesy, R. Nichols, and G. Teschl, Weyl–Titchmarsh theory for Sturm–Liouville operators with distributional potentials, Opuscula Math. 33, 467–563 (2013).

[20] W. N. Everitt, A catalogue of Sturm–Liouville differential equations, in Sturm-Liouville Theory: Past and Present, W. O. Amrein, A. M. Hinz, D. B. Pearson (eds.), Birkhäuser, Basel, 2005, pp. 271–331.

[21] W. N. Everitt, K. H. Kwon, L. L. Littlejohn, R. Wellman and G. J. Yoon, Jacobi–Stirling numbers, Jacobi polynomials, and the left-definite analysis of the classical Jacobi differential expression, J. Comput. Appl. Math. 208, 29–56 (2007).

[22] D. Frymark, Boundary triples and Weyl m-functions for powers of the Jacobi differential operator, J. Diff. Eq. 269, 7931–7974 (2020).

[23] D. Frymark and C. Liaw, Properties and Decompositions of Domains for Powers of the Jacobi Differential Operator, J. Math. Anal. Appl. 489, 124–155 (2020).

[24] G. Fucci, F. Gesztesy, K. Kirsten, L. L. Littlejohn, R. Nichols, and J. Stanfill, The Krein–von Neumann extension revisited, Applicable Anal., 25p. (2021). DOI: 10.1080/00036811.2021.1938005

[25] F. Gesztesy, N.J. Kalton, K.A. Makarov, and E. Tsekanovskii, Some applications of operator-valued Herglotz functions, in Operator Theory, System Theory and Related Topics. The Moshe Livšic Anniversary Volume, D. Alpay and V. Vinnikov (eds.), Operator Theory: Adv. Appl., Vol. 123, Birkhäuser, Basel, 2001, pp. 271–321.

[26] F. Gesztesy, N. Naboko, R. Weikard, and M. Zinchenko, Donoghue-type m-functions for Schrödinger operators with operator-valued potentials, J. d’Analyse Math. 137, 373–427 (2019).

[27] F. Gesztesy and L. Pittner, On the Friedrichs extension of ordinary differential operators with strongly singular potentials, Acta Phys. Austriaca 51, 259–268 (1979).

[28] F. Gesztesy and E. Tsekanovskii, On matrix-valued Herglotz functions, Math. Nachr. 218, 61–138 (2000).

[29] U. Grünewald, Jacobische Differentialoperatoren, Math. Nachr. 63(1), 239–253 (1974).

[30] P. Hartman, Ordinary Differential Equations. SIAM, Philadelphia, 2002.
[36] P. Hartman and A. Wintner, On the assignment of asymptotic values for the solutions of linear differential equations of second order, Amer. J. Math. 77, 475–483 (1955).

[37] S. Hassi, M. Malamud, and V. Mogilevskii, Unitary equivalence of proper extensions of a symmetric operator and the Weyl function, Integral Equ. Operator Theory 77, 449–487 (2013).

[38] M. Ismail, Classical and Quantum Orthogonal Polynomials in One Variable, Encyclopedia of Mathematics and its Applications 98, Cambridge Univ. Press, 2005.

[39] K. Jörgens and F. Rellich, Eigenwerttheorie Gewöhnlicher Differentialgleichungen, Springer-Verlag, Berlin, 1976.

[40] H. Kalf, On the characterization of the Friedrichs extension of ordinary or elliptic differential operators with a strongly singular potential, J. Funct. Anal. 10, 230–250 (1972).

[41] H. Kalf, A characterization of the Friedrichs extension of Sturm–Liouville operators, J. Lon- don Math. Soc. (2) 17, 511–521 (1978).

[42] H. G. Kaper, M. K. Kwong, and A. Zettl, Characterizations of the Friedrichs extensions of singular Sturm–Liouville expressions, SIAM J. Anal. 17, 772–777 (1986).

[43] T. Koornwinder, A. Kostenko and G. Teschl, Jacobi polynomials, Bernstein-type inequalities and dispersion estimates for the discrete Laguerre operator, Adv. Math. 333, 796–821 (2018).

[44] A. Krall, Hilbert Space, Boundary Value Problems and Orthogonal Polynomials, Birkhäuser-Verlag, Berlin, 2002.

[45] M. G. Krein, Concerning the resolvents of an Hermitian operator with the deficiency-index (m, m), Comptes Rendue (Doklady) Acad. Sci. URSS (N.S.), 52, 651–654 (1946). (Russian.)

[46] M. G. Krein, H. Langer, Defect subspaces and generalized resolvents of an Hermitian operator in the space H_N, Funct. Anal. Appl. 5, 136–146; 217–228 (1971).

[47] M. G. Krein and I. E. Ovčarenko, Inverse problems for Q-functions and resolvent matrices of positive Hermitian operators, Sov. Math. Dokl. 19, 1131–1134 (1978).

[48] A. Kuijlaars, A. Martínez-Finkelshtein and R. Orive, Orthogonality of Jacobi polynomials with general parameters, Electron. Trans. Numer. Anal. 19, 1–17 (2005).

[49] H. Langer and B. Textorius, On generalized resolvents and Q-functions of symmetric linear relations (subspaces) in Hilbert space, Pacific J. Math. 72, 135–165 (1977).

[50] W. Leighton and M. Morse, Singular quadratic functionals, Trans. Amer. Math. Soc. 40, 252–286 (1936).

[51] M. M. Malamud, Certain classes of extensions of a lacunary Hermitian operator, Ukrain. Math. J. 44, 190–204 (1992).

[52] M. Malamud and H. Neidhardt, On the unitary equivalence of absolutely continuous parts of self-adjoint extensions, J. Funct. Anal. 260, 613–638 (2011).

[53] M. Malamud and H. Neidhardt, Sturm–Liouville boundary value problems with operator potentials and unitary equivalence, J. Diff. Eq. 252, 5875–5922 (2012).

[54] M. Marletta, Eigenvalue problems on exterior domains and Dirichlet to Neumann maps, J. Comp. Appl. Math. 171, 367–391 (2004).

[55] M. Marletta and A. Zettl, The Friedrichs extension of singular differential operators, J. Diff. Eq. 160, 404–421 (2000).

[56] V. Mogilevskii, Boundary triplets and Titchmarsh–Weyl functions of differential operators with arbitrary deficiency indices, Meth. Funct. Anal. Topology 15, 280–300 (2009).

[57] S. N. Naboko, Boundary values of analytic operator functions with a positive imaginary part, J. Soviet Math. 44, 786–795 (1989).

[58] S. N. Naboko, The boundary behavior of BE_h-valued functions analytic in the half-plane with nonnegative imaginary part, Functional Analysis and Operator Theory, Banach Center Publica-

[59] M. A. Naimark, Linear Differential Operators. Part II: Linear Differential Operators in Hilbert Space, Transl. by E. R. Dawson, Engl. translation edited by W. N. Everitt, Ungar Publishing, New York, 1968.

[60] H.-D. Niessen and A. Zettl, Singular Sturm–Liouville problems: the Friedrichs extension and comparison of eigenvalues, Proc. London Math. Soc. (3) 64, 545–578 (1992).

[61] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark (eds.), NIST Handbook of Mathematical Functions, National Institute of Standards and Technology (NIST), U.S. Dept. of Commerce, and Cambridge Univ. Press, 2010.
[62] F. W. J. Olver et al., *NIST Handbook of Mathematical Functions*, http://dlmf.nist.gov/, Release 1.0.26 of 2020-03-15.

[63] K. Pankrashkin, *An example of unitary equivalence between self-adjoint extensions and their parameters*, J. Funct. Anal. 265, 2910–2936 (2013).

[64] D. B. Pearson, *Quantum Scattering and Spectral Theory*, Academic Press, London, 1988.

[65] A. Posilicano, *Boundary triples and Weyl functions for singular perturbations of self-adjoint operators*, Meth. Funct. Anal. Topology 10, 57–63 (2004).

[66] F. Rellich, *Die zulässigen Randbedingungen bei den singulären Eigenwertproblemen der mathematischen Physik. (Gewöhnliche Differentialgleichungen zweiter Ordnung.)*, Math. Z. 49, 702–723 (1943/44).

[67] F. Rellich, *Halbbeschrankte gewöhnliche Differentialoperatoren zweiter Ordnung*, Math. Ann. 122, 343–368 (1951). (German.)

[68] R. Rosenberger, *A new characterization of the Friedrichs extension of semibounded Sturm–Liouville operators*, J. London Math. Soc. (2) 31, 501–510 (1985).

[69] V. Ryzhov, *A general boundary value problem and its Weyl function*, Opuscula Math. 27, 305–331 (2007).

[70] Sh. N. Saakjan, *Theory of resolvents of a symmetric operator with infinite defect numbers*, Akad. Nauk. Armjan. SSR Dokl., 41, 193–198 (1965). (Russian.)

[71] G. Szegö, *Orthogonal Polynomials*, 4th Edition, Colloquium Publications, Vol. 23, Amer. Math. Soc., Providence, RI 1975.

[72] G. Teschl, *Mathematical Methods in Quantum Mechanics. With Applications to Schrödinger Operators*, 2nd ed., Graduate Studies in Math., Vol. 157, Amer. Math. Soc., RI, 2014.

[73] J. Weidmann, *Linear Operators in Hilbert Spaces*, Graduate Texts in Mathematics, Vol. 68, Springer, New York, 1980.

[74] J. Weidmann, *Lineare Operatoren in Hilberträumen. Teil II: Anwendungen*, Teubner, Stuttgart, 2003.

[75] S. Yao, J. Sun, and A. Zettl, *The Sturm–Liouville Friedrichs extension*, Appl. Math. 60, 299–320 (2015).

[76] A. Zettl, *Sturm–Liouville Theory*, Mathematical Surveys and Monographs, Vol. 121, Amer. Math. Soc., Providence, RI, 2005.

DEPARTMENT OF MATHEMATICS, BAYLOR UNIVERSITY, SID RICHARDSON BLDG., 1410 S. 4TH STREET, WACO, TX 76706, USA

Email address: Fritz_Gesztesy@baylor.edu
URL: http://www.baylor.edu/math/index.php?id=935340

MATHEMATICAL SCIENCES AND RESEARCH INSTITUTE, UC BERKELEY, 17 GAUSS WAY, CA 94720, USA

Email address: Mathpiorkowski@gmail.com

DEPARTMENT OF MATHEMATICS, BAYLOR UNIVERSITY, SID RICHARDSON BLDG., 1410 S. 4TH STREET, WACO, TX 76706, USA

Email address: Jonathan_Stanfill@baylor.edu
URL: http://sites.baylor.edu/jonathan-stanfill/