Normal Range of Cambridge Low Contrast Test; a Population Based Study

Hadi Ostadimoghaddam1,2, PhD; Akbar Fotouhi3, MD, PhD; Hassan Hashemi4, MD; Abbas Ali Yekta1,2, PhD; Javad Heravian1,2, PhD; Tahereh Abdollahinia4, MS; Reza Norouzi Rad5, MS; Soheila Asgari4, MS; Mehdi Khabazkhoob6, MS

1Refractive Error Research Center, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran 2Department of Optometry, Mashhad University of Medical Sciences, Mashhad, Iran 3Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran 4Noor Ophthalmology Research Center, Noor Eye Hospital, Tehran, Iran 5Dezful University of Medical Sciences, Dezful, Iran 6Department of Epidemiology, Faculty of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Purpose: To determine the range of contrast sensitivity (CS) and its determinants in a normal population, Mashhad, Iran.

Methods: In this cross-sectional population based study, 4,453 individuals were invited of whom 3,132 persons agreed to participate (response rate, 70.4%). CS data from 2,449 eligible individuals were analyzed. CS was determined using the Cambridge low contrast square-wave grating test, and its associations with age, gender, best-corrected visual acuity (BCVA) and manifest refractive spherical equivalent (MRSE) refractive error, were analyzed.

Results: Mean age of the participants was 29.1±17.3 (range, 4–89) years and 66.4% were female. Mean CS was 239.6±233.3 and 234.6±228.6 cps in right and left eyes, respectively.

Mean binocular CS was 310.9±249.0 cps. Multiple linear regression showed that CS was inversely correlated with older age (β=-1.1, P<0.001), female gender (β=-40.1, P<0.001), poorer BCVA (β=-165.4, P<0.001), and severity of myopia (β=-10.2, P<0.001).

Conclusion: The normal range of Cambridge low-contrast grating test reported herein may serve as a reference for the general population in Iran. Our findings can be used for both research and clinical applications, particularly for evaluations of the outcomes of refractive surgery. In the current study, CS was lower in older subjects, myopic individuals and patients with lower BCVA.

Keywords: Normal Value; Contrast Sensitivity; Cambridge Test; Population Based Study

INTRODUCTION

Contrast sensitivity (CS) provides valuable information on visual function, independent of visual acuity (VA).1 CS is the ability of the eye to detect a slight difference in luminance of two regions without distinct contours, whereas VA is the ability to distinguish one object from another and to detect fine details of a visible object.2 In a healthy eye, CS and VA are strongly correlated, however CS may be decreased despite normal vision.3 Studies have shown that CS is of importance in detecting low-contrast moving objects,4 driving,4 working with computers, studying,5 and performing daily activities.6
Measurement of CS can be useful for detection, screening and evaluation of a variety of ocular diseases such as cataracts, glaucoma, age-related macular degeneration (AMD), and diabetic retinopathy. CS can also be used for assessment of intraocular lenses, prescription of contact lenses, and post-refractive surgery.

Evaluation of low-contrast CS is particularly important in patients with visual complaints but only a slight decrease in VA who report visual disturbances even after optical correction. For early detection of prognostic factors or indicators of disease progression, normal values should first be determined based on population based studies.

Two types of tests (letter and grating tests) are used to measure CS. Grating tests include the Cambridge low-contrast grating test and the CSV-1000; letter tests include Pelli-Robson and Mars letters. Some researchers believe that grating tests are superior to letter tests. However, values based on these two sets of tests are different and not interchangeable.

The Cambridge low-contrast test is readily available, inexpensive, and easy to use with acceptable repeatability. This psychophysical test evaluates CS at a spatial frequency of 4 cycles per degree (cpd), and the results are based on Michelson’s formula. In CS testing, minimum contrast is determined across a range of spatial frequencies. In CS testing, contrast sensitivity function is determined across a range of spatial frequencies, but Cambridge test evaluates CS at only one spatial frequency. This test has been used in the diagnosis and treatment of ocular and neurologic diseases in pre-schoolers, school-age children and adults.

Given the application of CS and the importance of its normal range in different populations, the goal of this study was to determine the normal range of CS and its determinants in a representative sample of the general population in Mashhad, Iran using the Cambridge low-contrast test.

METHODS
This cross-sectional study was performed on the urban population of Mashhad, the second most populated city in Iran located in the Northeast of the country. The sampling methodology has been described elsewhere. In summary, 4,453 individuals were invited, of whom 3,132 agreed to participate (response rate, 70.4%). Individuals with any type of ocular disease, ocular surgery or trauma were excluded from the study.

Random cluster sampling was used in 120 clusters. The cluster sample size was based on the cluster’s population relative to the total population. The target population of this study was the over 4-year-old urban population. All examinations were performed at an optometry clinic in the city. The Institutional Review Board approved this project. After explaining the objective of the study, written informed consent was obtained from each individual.

Examinations included determination of uncorrected visual acuity (UCVA), visual acuity with current glasses, dry and cycloplegic refraction, best corrected visual acuity (BCVA), slit lamp biomicroscopy, direct and indirect ophthalmoscopy, and contrast sensitivity.

Manifest refraction was performed in all persons prior to measuring corrected visual acuity. Visual acuity was assessed using a Snellen E-chart and a mirror system. Manifest, subjective and cycloplegic refraction were evaluated using Topcon 8000 autorefractometer (Topcon Corporation, Tokyo, Japan) and retinoscope (Beta 200, Heine Corporation, Herrsching, Germany). Cycloplegic refraction was performed following CS measurement in all individuals aged ≤15 years, 30 minutes following instilling of 3 drops of cyclopentolate 1% at 5-minute intervals. Myopia and hyperopia were defined as manifest refraction spherical equivalent (MRSE) refractive error less than −0.5 D or more than +0.5 D, respectively.

CS was first measured without optical correction and then with best spectacle correction when UCVA was less than 20/20. CS assessment was measured using the Cambridge low-contrast grating test (Clement Clarke, London, UK) at spatial frequency of 4 cpd, equal to acuity of 20/150. Each eye was first tested separately followed by binocular assessment. The test included 12 pairs of plates with luminance of 150 cd/m². The series of plate pairs were presented in descending contrast, and a forced
choice procedure was used four times for each eye. The observer was told to choose whether the top or bottom plate contained the grating. The test score was determined by adding the number of pages for which an error occurred. CS was determined using a conversion table.

Statistical analysis was performed using SPSS version 16 (IBM, USA). Descriptive data was reported for the right, left, and both eyes. Only data from the right eye was considered for analysis. Pearson’s correlation coefficient was used to evaluate the correlation between quantitative variables. An independent samples t-test was used to compare mean values. One-way ANOVA was used to evaluate differences in CS among age groups. Multiple linear regression was used to determine the adjusted effect of multiple variables on CS. The design effect of the cluster sampling protocol was considered when calculating 95% confidence intervals (CI) and the results were adjusted appropriately.

RESULTS

Of 3,132 individuals who agreed to participate, 2,449 persons met the inclusion criteria and their data was analyzed. Mean age of the participants was 29.1±17.3 (range, 4–89) years including 66.4% female subjects.

Mean CS score for right and left eyes and under binocular conditions was 239.6±233.3, 234.6±228.6, and 310.9±249.0, respectively. Table 1 summarizes CS values for right, left, and both eyes based on age and gender. Table 2 shows descriptive data associated with CS in the study population. Mean values of data for right and left eyes were as follows: BCVA, 0.03±0.12 and 0.03±0.17 logMAR; astigmatism, -0.42±0.67 and -0.42±0.71 D; MRSE, 0.26±1.39 and 0.28±1.45 D, respectively.

Independent sample t-test showed that CS was higher in men than women (P<0.001). Pearson’s correlation coefficient showed that CS score significantly decreased with increasing age, lower BCVA, higher astigmatism, and severity of myopia (P<0.001).

CS scores for the right, left, and both eyes were significantly different between individuals with normal (UCVA of 20/20) and decreased (UCVA <20/20) binocular vision (P<0.001, Figure 1). One-way ANOVA and post-hoc analyses revealed that difference in

Table 1. Mean and standard deviation of contrast sensitivity stratified by age and gender in the study population (n=2,449)

Age (years)	OD	OS	OU
Male			
<20	287.2 ± 158.4	276.7 ± 159.5	352.2 ± 168.6
20-40	295.4 ± 139.8	284.3 ± 145.3	372.4 ± 134.3
41-60	238.3 ± 132.2	221.8 ± 131.3	304.5 ± 143.9
>60	154.7 ± 114.8	139.3 ± 94.7	199.9 ± 129.6
total	269.9 ± 140.0	258.1 ± 138.3	337.2 ± 144.4
Female			
<20	241.4 ± 155.2	234.7 ± 144.1	318.3 ± 157.5
20-40	227.8 ± 159.0	226.7 ± 153.2	301.2 ± 167.3
41-60	205.7 ± 152.4	209.3 ± 177.1	276.7 ± 189.1
>60	170.9 ± 104.6	170.1 ± 109.4	223.6 ± 121.9
total	224.9 ± 134.1	223.3 ± 132.9	298.3 ± 149.3
Total	239.6 ± 233.3	234.6 ± 228.6	310.9 ± 249.0

OD, right eye; OS, left eye; OU, both eyes

Table 2. Distribution of contrast sensitivity in the study population (n=2,449)

	Mode	Median	Percentile 5	Percentile 95	Minimum	Maximum	Kurtosis	Skewness	P-value †
OD	290.0	210.0	49.0	520.0	10.0	560.0	-0.4	0.6	<0.001
OS	290.0	210.0	49.0	520.0	8.0	560.0	-0.3	0.7	<0.001
OU	560.0	290.0	78.0	560.0	20.0	560.0	-1.0	0.1	<0.001

† Kolmogorov-Smirnov test
OD, right eye; OS, left eye; OU, both eyes
Normal Values of Cambridge Contrast Sensitivity; Ostadimoghaddam et al

CS scores between emmetropic and hyperopic individuals was not significant, but CS score was significantly lower in myopic subjects as compared to emmetropic and hyperopic individuals (P<0.001, Table 3).

Multiple linear regression analysis revealed that CS was significantly and inversely correlated with older age (β=-1.1, P<0.001), female gender (β=-40.1, P<0.001), poorer BCVA (β=-165.4, P<0.001), and severity of myopia (B=-10.2, P<0.001). Specifically, CS showed a decrease of 1.1 units with each year of older age, a reduction of 165.4 units for each 1 logMAR unit of poorer BCVA, and an increase of 10.2 units for each 1 D increase in MRSE, and was 40.1 units higher in men.

DISCUSSION

There have been few population based studies on CS. To the best of our knowledge, this is the first population based report on CS assessed by the Cambridge test to determine the normal range of this index and therefore comparison with other reports is not possible. Studies have shown that binocular CS is always higher than monocular CS.26,27 Hirvea et al28 reported binocular CS logarithm of 2.2 in individuals aged ≥70 years using the low contrast Cambridge test. Binocular CS logarithm of individuals aged ≥60 years in our study was 2.1 which is lower than that in the above-mentioned study. One reason for this might be demographic differences in the populations.

In a study by Abrishami et al9 using the Cambridge test, CS was reported to be 309.3±113.4 and 217.6±152.4 in healthy subjects and patients with diabetic retinopathy, respectively. Their reported CS values were similar to those in our study.

Consistent with the literature, our study showed a decrease in CS with age.26,29,30 Different techniques have been used to evaluate optical and neural contributions to this decrease in CS with age, but no consensus has been reached. One possible explanation is that there are individual differences in the extent of the decrease in CS with age, which would make each study dependent upon the composition of its population.31 The contrast of the retinal image decreases with age as a result of increased light scatter due to increased media opacity. Increased high order aberrations,32 a decrease in the number of retinal cones,33 and a decrease in neuroadaptative mechanisms34 with age are other reasons for lower CS among the elderly. Also, conditions such as cataracts, glaucoma, and retinal disorders associated with aging are other causes of decreased CS. Considering the effect of age on CS, it is prudent to employ an age-specific normal range for CS in each age group to ensure accurate comparisons.

The relationship between gender and CS is controversial and results have been contradictory. Solberg et al35 found no gender difference whereas Korth et al36 reported that CS was higher in women. However, in another population-based study conducted in Iran, CSV-

Table 3. Mean and standard deviation of contrast sensitivity with different refractive errors (n=2,449)

	Myopia	Emmetropia	Hyperopia		
	>3.0 D	-3.0 to -0.5 D	+0.5 to +2.0 D	+2.0 to +4.0 D	
Number of subjects	367	1,249	833		
CS OD	185.4 ± 145.3	216.3 ± 146.2	240.3 ± 129.5	257.3 ± 145.8	230.4 ± 163.4
CS OS	182.4 ± 142.7	203.1 ± 135.9	256.5 ± 129.9	251.4 ± 141.0	240.4 ± 175.3
CS OU	245.2 ± 156.4	265.3 ± 146.0	317.3 ± 145.1	330.7 ± 150.3	270.0 ± 140.7

D, diopter; CS, contrast sensitivity; OD, right eye; OS, left eye; OU, both eyes
1000 CS was reported to be higher in men.\(^3\) A possible reason for these discrepancies may be hormonal changes in women, which may result in changes in the structure of the lens and the composition of the aqueous humor.\(^3\)

CS has always shown a significant inverse correlation with VA (in logMAR notations) in both diseased eyes and healthy individuals; in other words, CS decreases with worsening vision.\(^3,22,28\) Moreover, even in individuals with normal vision, CS is very variable. Similar to Shahroud eye cohort study using CSV-1000,\(^3\) our study showed that CS was lower in myopic individuals as compared to hyperopic and emmetropic participants, possibly due to global retinal expansion and loss of some ganglion cells. In cases with less severe myopia, neural processes may be responsible for decreased visual function.\(^39\)

A significant inverse correlation between CS and astigmatism was also noted; CS decreases as astigmatism increases. This correlation was also reported in another study\(^40\) and is believed to result from distorted and defocused retinal images in astigmatic eyes.

In summary our study revealed that CS is lower in the elderly, women, myopic individuals, and those with decreased VA. CS scores obtained herein can be regarded as the normal range for the Cambridge low-contrast grating test, and may be used for the evaluation of disease course and treatment outcomes associated with procedures such as refractive surgery. However, the wide variation in CS among individuals with normal vision should also be noted.

Conflicts of Interest
None.

REFERENCES
1. Haegerstrom-Portnoy G. The Glenn A. Fry Award Lecture 2003: Vision in elders-summary of findings of the SKI study. Optom Vis Sci 2003;80:87-93.
2. Choudhry RM, Choudhry S, Goel P, Bagmar A, Agarwal A. contrast sensitivity. In: Agarwal S, Agarwal A, Apple DJ, Espallargues M, et al. Textbook of Ophthalmology. Vol. 1. New Delhi: Jaypee Brothers Medical Publishers; 2002: 178-182.
3. Bansback N, Czoski-Murray C, Carlton J, Lewis G, Hughes L, Espallargues M, et al. Determinants of health related quality of life and health state utility in patients with age related macular degeneration: the association of contrast sensitivity and visual acuity. Qual Life Res 2007;16:533-543.
4. Owsley C. Contrast sensitivity. Ophthalmol Clin North Am 2003;16:171-177.
5. Crossland MD, Culham LE, Rubin GS. Predicting reading fluency in patients with macular disease. Optom Vis Sci 2005;82:11-17.
6. Haymes SA, Johnston AW, Heyes AD. Relationship between vision impairment and ability to perform activities of daily living. Ophthalmic Physiol Opt 2002;22:79-91.
7. Fristrom B, Lundh BL. Colour contrast sensitivity in cataract and pseudophakia. Acta Ophthalmol Scand 2000;78:506-511.
8. Richman J, Lorenzana LL, Lankaranian D, Dugar J, Mayer J, Wizov SS, et al. Importance of visual acuity and contrast sensitivity in patients with glaucoma. Arch Ophthalmal 2010;128:1576-1582.
9. Abrishami M, Heravian J, Derakhshan A, Mousavi M, Banaee T, Daneshvar R, et al. Abnormal Cambridge low-contrast grating sensitivity results associated with diabetic retinopathy as a potential screening tool. East Mediterr Health J 2007;13:810-818.
10. Santhiago MR, Netto MV, Barreto J Jr., Gomes BA, Mukai A, Guermandi AP, et al. Wavefront analysis, contrast sensitivity, and depth of focus after cataract surgery with aspherical intraocular lens implantation. Am J Ophthalmal 2010;149:383-389.
11. Packer M, Fine IH, Hoffman RS. Contrast sensitivity and measuring cataract outcomes. Ophthalmol Clin North Am 2006;19:521-533.
12. Wei RH, Khor WB, Lim L, Tan DT. Contact lens characteristics and contrast sensitivity of patients with keratoconus. Eye Contact Lens 2011;37-307-311.
13. Wicker D, Sanislo S, Green DG. Effect of contact lens correction of sine wave contrast sensitivity in keratoconus patients after penetrating keratoplasty. Optom Vis Sci 1992;69:342-346.
14. Ginsburg AP. Contrast sensitivity: determining the visual quality and function of cataract, intraocular lenses and refractive surgery. Curr Opin Ophthalmal 2006;17:19-26.
15. Daniel E, Thiripurasundary, Appavoo R, Chacko S, Ragupathy A, Raju R. Impaired contrast sensitivity among leprosy patients with normal visual acuity. Lepr Rev 2005;76:55-64.
16. Frenette B, Mergler D, Bowler R. Contrast-sensitivity loss in a group of former microelectronics workers with normal visual acuity. Optom Vis Sci 1991;68:556-560.
17. Plainis S, Anastasakis AG, Tsilimbaris MK. The value of contrast sensitivity in diagnosing central serous chorioretinopathy. Clin Exp Optom 2007;90:296-298.
18. Elliott DB, Whitaker D. Clinical contrast sensitivity chart evaluation. Ophthalmic Physiol Opt 1992;12:275-280.
19. Jones HS, Moseley MJ, Thompson JR. Reliability of the Cambridge Low Contrast Gratings. Ophthalmic Physiol Opt 1994;14:287-289.
20. Wilkins AJ, Della Sala S, Somazzi L, Nimmo-Smith I. Age-related norms for the Cambridge low contrast gratings, including details concerning their design and use. Clin Vis Sci 1988;2:201-212.
21. Nielsen LS, Nielsen SK, Skov L, Jensen H. Contrast sensitivity-an unnoticed factor of visual perception in children with developmental delay: normal data of the Cambridge Low Contrast Gratings test in children. J Child Neurol 2007;22:151-155.
22. Akeo K, Hiida Y, Saga M, Inoue R, Oguchi Y. Correlation between contrast sensitivity and visual acuity in retinitis pigmentosa patients. Ophthalmologica 2002;216:185-191.
23. Rydberg A, Han Y, Lernerstrand G. A comparison between different contrast sensitivity tests in the detection of amblyopia. Strabismus 1997;5:167-184.
24. Leat SJ, Woo GC. The validity of current clinical tests of contrast sensitivity and their ability to predict reading speed in low vision. Eye (Lond) 1997;11:893-899.
25. Ostadimoghaddam H, Fotouhi A, Hashemi H, Yekta A, Heravi J, Revzan F, et al. Prevalence of the refractive errors by age and gender: the Mashhad eye study of Iran. Clin Experiment Ophthalmol 2011;39:743-751.
26. Derefeldt G, Lernerstrand G, Lundh B. Age variations in normal human contrast sensitivity. Acta Ophthalmol (Copenh) 1979;57:679-690.
27. Ross JE, Clarke DD, Bron AJ. Effect of age on contrast sensitivity function: unisocular and binocular findings. Br J Ophthalmol 1985;69:51-56.
28. Hirvela H, Koskela P, Laatikainen L. Visual acuity and contrast sensitivity in the elderly. Acta Ophthalmol Scand 1995;73:111-115.
29. Owse C, Sekuler R, Siemsen D. Contrast sensitivity throughout adulthood. Vision Res 1983;23:689-699.
30. Nomura H, Ando F, Niino N, Shimokata H, Miyake Y. Age-related change in contrast sensitivity among Japanese adults. Jpn J Ophthalmol 2003;47:299-303.
31. Nio YK, Jansonius NM, Fidler V, Geraghty E, Norby S, Kooijman AC. Age-related changes of defocus-specific contrast sensitivity in healthy subjects. Ophthalmic Physiol Opt 2000;20:323-334.
32. Amano S, Amano Y, Yamagami S, Miyai T, Miyata K, Samejima T, et al. Age-related changes in corneal and ocular higher-order wavefront aberrations. Am J Ophthalmol 2004;137:988-992.
33. Keunen JE, van Norren D, van Meel GJ. Density of foveal cone pigments at older age. Invest Ophthalmol Vis Sci 1987;28:985-991.
34. Jay JL, Mammo RB, Allan D. Effect of age on visual acuity after cataract extraction. Br J Ophthalmol 1987;71:112-115.
35. Solberg JL, Brown JM. No sex differences in contrast sensitivity and reaction time to spatial frequency. Percept Mot Skills 2002;94:1053-1055.
36. Korth M, Horn F, Storck B, Jonas JB. Spatial and spatiotemporal contrast sensitivity of normal and glaucoma eyes. Graefes Arch Clin Exp Ophthalmol 1989;227:428-435.
37. Hashemi H, Khabazkhoob M, Jafarzadehpur E, Emamian MH, Shariati M, Fotouhi A, et al. Contrast sensitivity evaluation in a population based study in Shahroud, Iran. Ophthalmology 2012;119:541-546.
38. Guaschino S, Grimaldi E, Sartore A, Mugittu R, Mangino F, Bortoli P, et al. Visual function in menopause: the role of hormone replacement therapy. Menopause 2003;10:53-57.
39. Atchison DA, Schmid KL, Pritchard N. Neural and optical limits to visual performance in myopia. Vision Res 2006;46:3707-3722.
40. Zheng KY, Du J, Zhang JS, Liu SB, Nie XL, Zhu XH, et al. Contrast sensitivity and higher-order aberrations in patients with astigmatism. Chin Med J (Engl) 2007;120:882-885.