 Genetic modification of wood quality for second-generation biofuel production

Shanfa Lu,1,* Laigeng Li2,* and Gongke Zhou3

1Medicinal Plant Cultivation Research Center; Institute of Medicinal Plant Development; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing, China; 2Laboratory of Synthetic Biology; Institute of Plant Physiology and Ecology; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; Shanghai, China; 3Bioresources Center; Qingdao Institute of Bioenergy and Bioprocess Technology; Chinese Academy of Sciences; Qingdao, China

Key words: tree, biofuel, lignin, cellulose, hemicellulose, genetic transformation, populus, pinus

How the abundant tree biomass resources can be efficiently used for future biofuel production has attracted a great deal of interest and discussion in the past few years. Capable technologies are expected to be developed to realize the production of biofuel from wood biomass. A significant effort is put into the field of modifying wood properties of trees and simplifying the process of biomass-to-ethanol conversion, which includes mainly genetic engineering of lignin, cellulose and hemicellulose of woods. Current research in this field has achieved some promising results and opened up new opportunities to utilize wood biomass efficiently. This review will discuss the main developments in genetic modification of lignin, cellulose and hemicellulose biosynthesis in trees as well as other potential genetic technology of biofuel production from wood biomass.

Introduction

With the increasing demand for energy and growing concerns of accelerated greenhouse gas emission, great efforts have been made worldwide to develop nonfossil-based renewable energy from biological materials.1-3 Raw materials that have been used for this purpose include mainly starch or sugar produced by food crops such as corn and sugarcane. However, using food crops as raw materials has caused problems because of agricultural land limitation. Thus, food crop-derived biofuel is considered only the first-generation biofuel. A second-generation biofuel will be made from more sustainable biological materials. Trees, which produce large amounts of lignocellulosic biomass and are able to grow on previously uncultivated land, are accounted a great potential source of biomass for biofuel production.

Tree biomass (wood) consists mainly of cellulose, hemicellulose and lignin. Cellulose is embedded in the matrix of hemicellulose and lignin. The proportion of cellulose, hemicellulose and lignin varies among plant species and cell types within a species.4

Angiosperm wood, such as poplar wood, contains ~45% cellulose, ~30% hemicellulose and ~20% lignin, respectively; while the proportions in gymnosperm wood are roughly 42, 27 and 28%, respectively.5 Lignin in gymnosperm wood consists of two phenylpropane units, p-hydroxyphenyl (H) unit and guaiacyl (G) unit; however, there is an additional syringyl (S) unit in angiosperm wood, which increases the extractability of lignin during conversion of angiosperm wood to ethanol.

The conversion of wood to ethanol can be divided into three main steps: pretreatment, hydrolysis of cellulose into sugars and the fermentation of sugars into ethanol.5 The pretreatment step, which disrupts the lignocellulosic matrix to increase the accessibility of chemicals or enzymes to cellulose, is extremely important in improving the configuration and efficiency of the following hydrolysis step.7-11 Wood with low lignin content and a high S/G ratio is easier to pretreat. In a few cases, the pretreatment step can be bypassed if low lignin biomass is used.12 After pretreatment, cellulose is hydrolyzed chemically or by enzymes. The crystalline and noncrystalline forms of cellulose further affect the efficiency of hydrolysis.13 The noncrystalline form of cellulose is more accessible to chemicals and enzymes and is more efficiently converted into sugars.

Research so far has shown that the production of ethanol may be significantly improved when woody feedstocks with more cellulose, less hemicellulose, less lignin or lignin with a high S/G ratio and cellulose with reduced crystallinity are used as starting materials. Great efforts are being made to produce such materials through genetic modification. This review will summarize and discuss recent progress of genetically modifying trees for second-generation biofuel production.

Lignin Biosynthesis and Genetic Modification

Lignin is a complex biopolymer composed of H, G and S units, which are derived from three monolignols, p-coumaryl alcohol, coniferyl alcohol and sinapyl alcohol, respectively.14,15 Lignin disrupts the access of chemicals or enzymes to cellulose for hydrolysis and is one of the major barriers in biomass-to-ethanol conversion. Reducing the lignin content or changing the monolignol ratio may help overcome this barrier.

The pathway of monolignol biosynthesis in trees involves at least ten gene families which encode phenylalanine ammonia-lyase (PAL), cinamate 4-hydroxylase (C4H), 4-coumarate:CoA
ligase (4CL), p-hydroxycinnamoyl-CoA:D-quinate/shikimate p-hydroxycinnamoyltransferase (HCT), p-coumaroyl shikimate/quinate 3’-hydroxylase/coumarate 3-hydroxylase (C3H), caffeoyl-CoA 3-O-methyltransferase (CCoAOMT), cinnamoyl-CoA reductase (CCR), coniferaldehyde 5-hydroxylase/ferulate 5-hydroxylase (F5H), cinnamyl/sinapyl alcohol dehydrogenase (CAD/SAD) and caffeic acid/5-hydroxyconiferaldehyde 3-O-methyltransferase (COMT), respectively.16,17 Up or downregulation of these genes for alternation of lignin content or composition has been achieved in various tree species through genetic modification using sense, antisense or RNAi approaches.

Suppression of 4CL expression through the antisense approach has repeatedly shown significant reduction of lignin content in both angiosperm and gymnosperm trees.18-20 The reduction can be up to 55% by a decrease in both G and S units in aspen (Populus tremuloides Michx) or up to 50% by the depletion in G unit in pine (Pinus radiata). Lignin reduction in antisense 4CL transgenic aspen trees was accompanied with a normal or enhanced growth rate and an increased cellulose content;18,19 while the growth of 4CL-downregulated pine trees was dwarfed and the content of galactose, a sugar monomer in hemicellulose, was found to be doubled in these transgenic pine trees,20 suggesting differential responses to downregulation of 4CL expression in angiosperm and gymnosperm trees.

Downregulation of C3H gene using the RNAi approach in hybrid poplar trees, P. grandidentata x P. alba resulted in up to a 60% reduction of the total lignin content by dry weight of wood, accompanied with an up to a 13% increase of cell wall carbohydrates.21 The lignin reduction is mainly due to a decrease in G unit, since the content of S unit remains constant and the content of H unit is increased in C3H transgenics compared with those in wild type trees. The increased carbohydrates included glucose, xylose and arabinose, suggesting both hemicellulose and cellulose contents were increased.21 Moreover, downregulation of C3H led to the production of phenylglycosides which increased poplar resistance against biotic pests.21

Poplar (P. tremula x P. alba) harboring a sense or an antisense CCoAOMT transgene showed 12 or 40% lignin reduction by decreases in both G and S units.22,23 Suppression of CCoAOMT also led to an increase in S/G ratio.24,25 However, the alternation of lignin had no significant effect on plant growth and morphology.22

Expression of an antisense CCR gene in Norway spruce resulted in up to an 8% reduction in lignin content.25 The transgenics exhibited a normal phenotype but smaller stem widths compared to control plants.25 Downregulation of CCR by sense or antisense approaches in 8 year-old, field-grown transgenic poplar (P. tremula x P. alba) caused up to a 50% reduction in lignin content and a low S/G ratio resulting from a greater reduction in S than G units.26 In addition, a reduced hemicellulose biosynthesis and increased remodeling of hemicellulose was observed in CCR-downregulated poplar. The reduced levels of lignin and hemicellulose were associated with an increased proportion of cellulose.26

F5H catalyzes hydroxylation at the 5-position on the aromatic ring of cinnamic intermediates and is a key enzyme controlling S lignin biosynthesis.27,28 Overexpression of this enzyme is a promising strategy for improving trees for ethanol production and has been tested in various transgenics.19,29 Overexpression of an Arabidopsis F5H gene under the control of cinnamate 4-hydroxylase (C4H) promoter in hybrid poplar trees (Populus tremula x P. alba) resulted in a significant increase in S lignin content.29,30 Expressing a F5H transgene in quaking aspen resulted in a three-fold S/G ratio increase.31 In quaking aspen expressing an antisense 4CL and a sense F5H transgene, up to 52% lignin reduction, 64% higher S/G ratio and 30% more cellulose was found.32

Downregulation of COMT by antisense approach in a P. tremula x P. alba clone caused up to a 6-fold S/G ratio reduction due to a decrease in S lignin and an increase in G lignin, with the level of lignin content similar to that in controls.33 Similar results were also obtained by Lapierre et al. (1999).32 Whereas, downregulation of COMT activity by introduction of a sense homologous transgene in the same hybrid poplar species caused a 17% reduction in total lignin content with an almost complete lack of S units and the incorporation of 5-hydroxyguaiacyl (5-OH-G) units.33

CAD is involved in the last step of monolignol biosynthesis. Downregulation of CAD by an antisense transgene resulted in a slight lignin reduction and an increased proportion of syringaldehyde and diarylpropane structures in 2 year-old or older transgenic poplar trees (P. tremula x P. alba).32,34 The growth indicators and interactions with insects were normal compared to that of control plants, confirming the possibility of modifying wood for biofuel production without interfering with tree growth or fitness.32,34

Thus, up or downregulation of genes involved in monolignol biosynthesis has been successfully employed to reduce lignin content and alter monomeric composition in trees. Though the extent of lignin content reduction and monomeric composition alteration depends on the gene manipulated, the approach used and the tree species targeted, the results certainly confirmed the promising utilization of transgenic woods as raw materials for ethanol production.

Cellulose Biosynthesis and Genetic Modification

It is estimated that approximately 1.5 x 1015 kilograms of cellulose is produced annually, which makes it an abundant renewable biomaterial.35,36 Cellulose is a simple and linear polymer typically having a DP of 500–14,000 glucosyl residues.37 The glucose units are linked together through β-1→4 glycosidic bonds by condensation. In plant cell walls, 36 glucan chains are held firmly together through hydrogen bonds that are formed among hydroxyl groups of the glucose residues.37 The aggregated chains form cable-like structural microfibrils, which are cable-like structures with high strength. In microfibrils, the glucan chains are oriented in parallel and form highly ordered, crystalline regions that are interspersed with more disordered, amorphous regions.38 The crystalline regions are highly resistant to chemical or enzymatic hydrolysis; while the amorphous regions are more susceptible. Strategies of genetic modification of cellulose for ethanol production include enhancing cellulose biosynthesis and reducing
cellulose crystallinity. The later allow easier access of chemicals and enzymes to the glucan chains for hydrolysis.

The crystalline state and degree of crystallinity depend on the source of cellulose. There are two distinct types of native crystalline cellulose: Iα and Iβ.\(^{40,41}\) They differ from each other in the manner of chain packing. Type Iα has a one-chain triclinic unit cell, whereas type Iβ has a two-chain monoclinic unit cell.\(^{42}\) Type Iβ is more stable and more difficult to hydrolyze than cellulose Iα.\(^{5,44}\) Generally, cellulose from natural sources contains both types in varying proportions.\(^{45,46}\) Higher plants such as trees and corn contain a higher proportion of type Iβ and the Iβ/Iα ratio is usually greater than four.\(^{47}\) The regulatory mechanisms of cellulose crystallization in plant cell walls are poorly understood.

Cellulose is synthesized in the plasma membrane by coordination of multiple proteins.\(^{37,48,50}\) These proteins are assembled into terminal complexes (TCs), which subsequently use uridine diphospho-glucose (UDP-Glc) as a substrate for glucan chain elongation.\(^{49,51}\) TCs can be observed as particle arrays by freeze-fracture electron microscopy.\(^{52}\) In bacteria and some algae, TCs are arranged in single or multiple rows; however, in higher plants, they are hexagonal rosette structures with six-fold symmetry.\(^{49,50}\) The rosettes are assembled in the Golgi and then transported to the plasma membrane.\(^{39,49}\) Organisms with TCs in single or multiple rows tend to synthesize cellulose with lower Iβ/Iα ratio, whereas organisms containing rosettes synthesize cellulose with higher Iβ/Iα ratio.\(^{49}\)

The only identified components of rosette are cellulose synthases (CesAs), which include multiple isoforms in plants.\(^{54,55}\) Generally, to form a functional rosette, three different isoforms are required.\(^{55}\) These enzymes have eight transmembrane domains, two at the amino terminus and six at the carboxy terminus, which form a channel in the plasma membrane for secretion of the glucan chain. Between the two regions of transmembrane domains, there is a large central, cytoplasmic domain containing a highly conserved D,D,D,Q/RXXRW motif, which are thought to participate in the enzyme’s catalytic activity.\(^{37,49,50}\) In the amino terminal region of CesA, there are eight highly conserved cysteine residues in four pairs of CX2C, forming the putative LIM-like zinc-binding domain/RING finger domain.\(^{57}\) This domain may mediate the interaction of CesA proteins to form homo or heterodimers under oxidative conditions.\(^{49,50,58}\) The half-life of CesAs is very short in vivo (less than 30 min for GhCesA1 protein).\(^{49,59,60}\)

Mutations in CesAs affect cellulose crystallization. The genetic evidence first came from the analysis of the Arabidopsis rsw1 mutant.\(^{57}\) This mutant has a single base pair change in AtCesA1 gene, which results in substituting Val for Ala\(^{59}\) in the translated protein. rsw1 grows normally at 21°C, but exhibits swelling of roots and stunted growth at 31°C. Shoots of rsw1 seedlings grown at the restrictive temperature (31°C) have less crystalline cellulose of root cells cultured at 31°C.\(^{57}\) Analysis of the Arabidopsis gene, which results in substituting Val for Ala549 in the translated gene, demonstrated the importance of this amino acid in the regulation of cellulose crystallinity.

Hemicellulose Biosynthesis and Genetic Modification

Hemicellulose is the second most abundant polysaccharide in nature.\(^{99,100}\) It is usually a heterogeneous branched polysaccharide and consists of a variety of sugar monomers. The degree and type of branch and monomer proportions vary among plant species and cell wall types.\(^{16,99}\) In hardwood, the dominant hemicellulose is glucuronoxylan that is composed of linear chains of β-1,4-linked xylosyl residues, α-1,2-linked glucuronic acid residues and 4-O-methylglucuronic acid residues. The minor hemicellulose is glucomannan, which has a backbone of β-1,4-linked mannosyl residues. Softwood hemicellulose is composed mainly of galactoglucomannan and a small amount of arabino- or arabinogalactan.\(^{100,101}\) Galactosyl residues are linked to glucomannan by α-1,6-bonds in galactoglucomannan; while arabinosyl residues are linked to glucomannan by α-1,3-bonds in arabino- or arabinogalactan. Arabinogalactan has a backbone of β-1,3-linked galactosyl residues.\(^{100,101}\)
The biosynthesis of hemicelluloses is a complicated bioprocess that includes glycan backbone assembly and side chain addition. A large number of genes are involved in hemicellulose biosynthesis. However, few have been identified and characterized. Known genes include some of the cellulose synthase-likes (CSLs) that seem to be responsible for hemicellulose backbone elongation and glycosyltransferases (GTs), such as galactosyltransferase, fucosyltransferase, α-xyllosyltransferase and others, which are associated with side-chain additions. Analysis of mannan formation in guar (Cyamopsis tetragonoloba) seeds led to the identification of β-mannan synthase (GmManS) that catalyzes the biosynthesis of β-1, 4-linked-D-mannan backbone of galactomannan. This gene belongs to the CslA family of Csl superfamily. Three Arabidopsis CslA genes, AtCslA2, AtCslA7 and AtCslA9 and two poplar genes, PtCslA1 and PtCslA3, were consequently identified by homology to be associated with mannan formation. Further functional analysis of the members of CslA gene family from diverse plant species supports the hypothesis that the function of the CslA genes is conserved in all plants. Additionally, a member of the rice CslF subfamily was found to be involved in the biosynthesis of β-1, 3-1,4-D-glucans, which are usually absent in dicots.

Several Arabidopsis GTs have been characterized for their biochemical function in side chain additions in primary cell walls. It includes a galactosyltransferase, two fucosyltransferases (AtFT1 and AtFUT1), and an α-xyllosyltransferase. Moreover, several GTs were found to be associated with hemicellulose synthesis in secondary wall formation, though their biochemical function has not been completely elucidated. For instance, Arabidopsis FRA8/F8H, IRX8, IRX9 and PARVUS/GATL1 appear to be involved in glucuronoxylan biosynthesis, however, due to lack of enzymatic functions, it is not clear how they are involved in the biosynthesis of glucuronoxylan. Peña and coworkers’ results further suggest that IRX9 is required for normal elongation of the glucuronoxylan backbone, while IRX8 and IRX7/FRA8 play roles in the addition of residues at the reducing end. Overexpression of poplar homologous in fra8, irx8, irx9 and parvus plants respectively rescues the defects in secondary cell wall thickness and glucuronoxylan synthesis, suggesting that poplar GT47C, GT8D, GT43A/B and PdGATL1.1/1.2/ GT8E/F are functional orthologs of FRA8/IRX7, IRX8, IRX9 and PARVUS, respectively.

Hemicellulose binds to cellulose via hydrogen bonds and can be cross-linked to lignin, so the structure and content of hemicellulose are critical factors affecting biomass-to-ethanol conversion. Modifying sugar composition or changing structure of hemicellulose by genetic engineering may improve the efficiency of ethanol production. For example, suppression of poplar PoGT47C, an ortholog of the Arabidopsis GT47 family member involved in glucuronoxylan biosynthesis, resulted in a drastic reduction in the thickness of secondary cell walls, a deformation of vessels and a decreased amount of glucuronoxylan without causing a significant alteration in plant growth.

PoGT47C-suppressed transgenic wood is more easily digested by cellulases, demonstrating that the quality of wood used for ethanol production can be improved by modification of glucuronoxylan. On the other hand, suppression of AtBXL1, a putative Arabidopsis β-xylpidase gene involved in hemicellulose biosynthesis in secondary cell walls, resulted in the alteration of hemicellulose in secondary cell walls, indicating another possible approach to modify hemicellulose. Additionally, hemicellulose content can be modified by downregulation of UDP-glucuronate decarboxylase that catalyzes the production of UDP-xylene, a precursor for xylan biosynthesis. The xylem cell walls of transgenic tobacco plants with downregulated UDP-glucuronate decarboxylase exhibit a reduced hemicellulose content and show an increase of cellulose extractability.

Concluding Remarks

Significant advances have been made in genetic modification of trees for improved wood quality for second-generation biofuel production. Reducing lignin content or altering monomeric composition by regulating monolignol biosynthesis genes has been successfully achieved. Modification of cellulose and hemicellulose content and composition in woods has also shown promising results, such as the increase of non-crystalline cellulose and the change of sugar composition in cell walls. These approaches have shed light on wood quality improvement for ethanol production. Moreover, recent studies on transcription factors and small RNAs indicate that they are able to regulate total biomass production or specific biomass component during plant growth and development; however, transcription factors and small RNAs have not been used to modify wood quality and quantity for biofuel production.

The current main challenge in wood-based biofuel production is how the novel knowledge and experimental discoveries can be transferred into capable technology for large scale utilization. More has to be done. For example, various genetically modified woods have been produced; however, few studies were performed to evaluate their ethanol conversion efficiency. It is also unclear how wood composition affects ethanol conversion quantitatively. Fitness of transgenic trees grown in the field and the influence of genetically modified trees on environments also need to be examined in more detail. Above all, transgenic woods have shown a good potential in replacing food crops for biofuel production; while more studies are expected in order to develop capable technologies of cost-competitive ethanol production from wood on a large scale.

Acknowledgements

This work was supported by the National High-Tech Research and Development Program (863 Program) of China (2009AA10Z101) and the National Natural Science Foundation of China (31070534).
17. Colema HD, Park JY, Nair R, Chappel C, Mansfield SD. RNAi-mediated suppression of p-coumaroyl-CoA 3-hydroxylase in hybrid poplar impacts on lignin deposition and soluble secondary metabolism. Proc Natl Acad Sci USA 2008; 105:4501-6.
21. Kimura S, Laosinchai W, Itoh T, Cui X, Linder CR, M_redis AM, Shiverick KK, et al. Lignin biosynthesis: current views and evolving concepts. Ann Bot 2005; 13:1491-51.
22. Nagai K, Yamasaki T, Yasuda T. 3-O-methylglucuronic acid in transgenic trees through multigene cotransformation. Proc Natl Acad Sci USA 2010; 107:8439-44.
25. Angell AL, Commin-Livron C, Binfield L, Elie M, et al. Combinatorial modification of multiple lignin traits in trees. Nat Biotechnol 1999; 17:808-12.
26. Li L, Zhou Y, Cheng X, Sun J, Marita JM, Ralph J, et al. Combinatorial modification of multiple lignin traits in trees through multigene cotransformation. Proc Natl Acad Sci USA 2010; 107:8439-44.
28. Wagnier A, Donaldson L, Kim H, Phillips L, Flait H, Steward D, et al. Suppression of 4-coumarate-CoA ligase in the coniferous gymnosperm Pinus radiata. Plant Physiol 2009; 149:370-83.

References
1. Clarke D, Jablonski S, Moran B, Anandarajah G, Taylor G. How can accelerated development of bioenergy contribut to the future UK energy mix? Insights from a MARKAL modelling exercise. Biotechnol Biofuels 2009; 2:13.
2. Gnanasambou E, Production and use of lignocellulosic bioethanol in Europe: Current situation and perspec- tives. Biotechnol Biofuels 2010; 1:4842-50.
3. Pepe D, Saller S, Vinco E. Bioethanol from lignocel- luloses: Status and perspectives in Canada Biotechnol 2010; 10:4806-13.
4. Pauly M, Keegstra K. Plant cell wall polymers as precursors for biofuels. Curr Opin Plant Biol 2010; 13:905-12.
5. Singh A, Platt D, Korres NE, Nizami AS, Prasad S, Murphy JD. Key issues in life cycle assessment of ethanol production from lignocellulosic biomass: Challenges and perspectives. Biotechnol Biofuels 2010; 101:5003-12.
6. Pan X, Gillies N, Kadla J, Pye K, Saka S, Gregg D, et al. Bioconversion of hybrid poplar to bioethanol and co-products using an organosolv fractionation process: optimization of process yields. Biofuels Biorefining 2006; 9:451-61.
7. Arai T, Toro-Pomposelli B, Ballesteros M, Negos MJ. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Biotechnol Biofuels 2010; 101:4851-63.
8. Fischer WJ Jr, Lien SJ, Couchene CE, DeMartini NR, Liu G, Seubert AJ, Tea K. Production of ethanol from carbohydrates from loblolly pine: (Pinus taeda) loblolly pine: a technical and eco- nomic assessment. Biotechnol Biofuels 2008; 99:5051-7.
9. Gray KA, Zhao L, Empgate M, Bioethanol. Curr Opin Chem Biol 2006; 10:141-6.
10. Wyman CE, Dale BE, Elander RT, Holtzapple M, et al. Physicochemical characterization of cellulose from loblolly pine: a technical and eco- nomic assessment. Biotechnol Biofuels 2008; 99:5051-7.
11. Wyman CE, Dale BE, Elander RT, Li L, Lu S, Chiang V. A genomic and molecular view of cellulose synthase. Proc Natl Acad Sci USA 2002; 99:13623-8.
12. Li L, Su S, Chiang V. Monomeric unit of cellulose in higher plants. Annu Rev Plant Physiol Plant Mol Biol 2005; 56:417-39.
13. Li L, Su S, Chiang V. Monomeric unit of cellulose in higher plants. Annu Rev Plant Physiol Plant Mol Biol 2005; 56:417-39.
14. Li L, Su S, Chiang V. Monomeric unit of cellulose in higher plants. Annu Rev Plant Physiol Plant Mol Biol 2005; 56:417-39.
15. Li L, Su S, Chiang V. Monomeric unit of cellulose in higher plants. Annu Rev Plant Physiol Plant Mol Biol 2005; 56:417-39.
16. Li L, Su S, Chiang V. Monomeric unit of cellulose in higher plants. Annu Rev Plant Physiol Plant Mol Biol 2005; 56:417-39.
17. Li L, Su S, Chiang V. Monomeric unit of cellulose in higher plants. Annu Rev Plant Physiol Plant Mol Biol 2005; 56:417-39.
18. Li L, Su S, Chiang V. Monomeric unit of cellulose in higher plants. Annu Rev Plant Physiol Plant Mol Biol 2005; 56:417-39.
19. Li L, Su S, Chiang V. Monomeric unit of cellulose in higher plants. Annu Rev Plant Physiol Plant Mol Biol 2005; 56:417-39.
20. Li L, Su S, Chiang V. Monomeric unit of cellulose in higher plants. Annu Rev Plant Physiol Plant Mol Biol 2005; 56:417-39.
21. Li L, Su S, Chiang V. Monomeric unit of cellulose in higher plants. Annu Rev Plant Physiol Plant Mol Biol 2005; 56:417-39.
22. Li L, Su S, Chiang V. Monomeric unit of cellulose in higher plants. Annu Rev Plant Physiol Plant Mol Biol 2005; 56:417-39.
23. Li L, Su S, Chiang V. Monomeric unit of cellulose in higher plants. Annu Rev Plant Physiol Plant Mol Biol 2005; 56:417-39.
24. Li L, Su S, Chiang V. Monomeric unit of cellulose in higher plants. Annu Rev Plant Physiol Plant Mol Biol 2005; 56:417-39.
25. Li L, Su S, Chiang V. Monomeric unit of cellulose in higher plants. Annu Rev Plant Physiol Plant Mol Biol 2005; 56:417-39.
26. Li L, Su S, Chiang V. Monomeric unit of cellulose in higher plants. Annu Rev Plant Physiol Plant Mol Biol 2005; 56:417-39.
27. Li L, Su S, Chiang V. Monomeric unit of cellulose in higher plants. Annu Rev Plant Physiol Plant Mol Biol 2005; 56:417-39.
28. Li L, Su S, Chiang V. Monomeric unit of cellulose in higher plants. Annu Rev Plant Physiol Plant Mol Biol 2005; 56:417-39.
29. Li L, Su S, Chiang V. Monomeric unit of cellulose in higher plants. Annu Rev Plant Physiol Plant Mol Biol 2005; 56:417-39.
30. Li L, Su S, Chiang V. Monomeric unit of cellulose in higher plants. Annu Rev Plant Physiol Plant Mol Biol 2005; 56:417-39.
31. Li L, Su S, Chiang V. Monomeric unit of cellulose in higher plants. Annu Rev Plant Physiol Plant Mol Biol 2005; 56:417-39.
32. Li L, Su S, Chiang V. Monomeric unit of cellulose in higher plants. Annu Rev Plant Physiol Plant Mol Biol 2005; 56:417-39.
33. Li L, Su S, Chiang V. Monomeric unit of cellulose in higher plants. Annu Rev Plant Physiol Plant Mol Biol 2005; 56:417-39.
34. Li L, Su S, Chiang V. Monomeric unit of cellulose in higher plants. Annu Rev Plant Physiol Plant Mol Biol 2005; 56:417-39.
35. Li L, Su S, Chiang V. Monomeric unit of cellulose in higher plants. Annu Rev Plant Physiol Plant Mol Biol 2005; 56:417-39.
36. Li L, Su S, Chiang V. Monomeric unit of cellulose in higher plants. Annu Rev Plant Physiol Plant Mol Biol 2005; 56:417-39.
37. Li L, Su S, Chiang V. Monomeric unit of cellulose in higher plants. Annu Rev Plant Physiol Plant Mol Biol 2005; 56:417-39.
38. Li L, Su S, Chiang V. Monomeric unit of cellulose in higher plants. Annu Rev Plant Physiol Plant Mol Biol 2005; 56:417-39.
39. Li L, Su S, Chiang V. Monomeric unit of cellulose in higher plants. Annu Rev Plant Physiol Plant Mol Biol 2005; 56:417-39.
40. Li L, Su S, Chiang V. Monomeric unit of cellulose in higher plants. Annu Rev Plant Physiol Plant Mol Biol 2005; 56:417-39.
41. Li L, Su S, Chiang V. Monomeric unit of cellulose in higher plants. Annu Rev Plant Physiol Plant Mol Biol 2005; 56:417-39.
42. Li L, Su S, Chiang V. Monomeric unit of cellulose in higher plants. Annu Rev Plant Physiol Plant Mol Biol 2005; 56:417-39.
43. Li L, Su S, Chiang V. Monomeric unit of cellulose in higher plants. Annu Rev Plant Physiol Plant Mol Biol 2005; 56:417-39.
44. Li L, Su S, Chiang V. Monomeric unit of cellulose in higher plants. Annu Rev Plant Physiol Plant Mol Biol 2005; 56:417-39.
60. Jacob-Wilk D, Kurek I, Hogan P, Delmer DP. The cotton fiber zinc-binding domain of cellulose synthase A1 from *Gossypium barbadense* displays rapid turnover in vitro and in vivo. Proc Natl Acad Sci USA 2006; 103:12191-6.

61. Harrison S, Zolk J, Debolt S. Generic modification in cellulose-synthase reduces crystallinity and improves biochemical conversion to fermentable sugar. GCB Bioenergy 2009; 1:51-61.

62. Beeckman T, Przemeck GKH, Stamatigou G, Lau R, Terryn N, De Rycke R, et al. Genetic complexity of cellulose synthase gene function in Arabidopsis embryogenesis. Plant Physiol 2002; 130:1883-93.

63. Burn JE, Hocart CH, Birch RJ, Cork AC, Williamson RE. Functional analysis of the cellulose synthase genes CesA1, CesA2 and CesA3 in Arabidopsis. Plant Physiol 2002; 129:797-807.

64. Drezet T, Vernhettes S, Fagard M, Regefriger F, Desnos T, Aletti E, et al. Resistance against herbicide isoxaben and cellulose deficiency caused by distinct mutations in same cellulose synthase isoform CESAs. Plant Physiol 2002; 128:482-90.

65. Scheible WR, Eshed I, Richmond T, Delmer D, Somerville CR. Modifications of cellulose synthase confer resistance to isoxaben and thiazolidinone herbicides in Arabidopsis *Eri1* mutants. Proc Natl Acad Sci USA 2001; 98:10790-5.

66. Zhong BQ, Morrison WH, Frehoub GD, Hahn MG, Ye ZH. Expression of a mutant form of cellulose synthase AtCesA7 causes dominant negative effect on cellulose biosynthesis. Plant Physiol 2003; 132:786-95.

67. Taylor NG, Scheible WR, Carlier S, Somerville CR, Turner SR. The irregular xylem locus of Arabidopsis encodes a cellulose synthase required for secondary cell wall synthesis. Plant Cell 1999; 11:769-79.

68. Taylor NG, Laurie S, Turner SR. Multiple cellulose synthase catalytic subunits are required for cellulose synthesis in Arabidopsis. Plant Cell 2000; 12:2529-39.

69. Turner SR. The irregular xylem locus of Arabidopsis encodes a cellulose synthase required for secondary cell wall synthesis. Plant J 2000; 22:495-502.

70. Coleman HD, Yan J, Mansfield SD. Sucrose synthase affects carbon partitioning to increase cellulose production and altered cell wall ultrastructure. Proc Natl Acad Sci USA 2009; 106:13118-23.

71. Lane DR, Carles A, Peng LC, Hofre H, Vernhettes S, Drezet T, et al. Temperature-sensitive alleles of RSW2 link the KORRIGAN endo-1,4-β-glucanase to cellulose synthesis and cytokinesis in Arabidopsis. Plant Physiol 2001; 126:278-88.

72. Nicol F, His I, Jauney A, Vernhettes S, Canut H, Hofre H. A plasma membrane-bound putative endo-1,4-β-D-glucanase is required for normal wall assembly and cell elongation in Arabidopsis. EMBO J 1998; 17:5563-76.

73. Molhoj M, Ulvskov P, Döl Degen F. Characterization of a functional soluble form of a *Brassica napus* membrane-anchored endo-1,4-β-glucanase heterogeneously expressed in *Pichia pastoris*. Plant Physiol 2001; 127:674-84.

74. Molhoj M, Pagant S, Hofre H. Towards understanding the role of membrane-bound endo-1,4-β-glucanases in cellulose biosynthesis. Plant Cell Physiol 2002; 43:1399-406.

75. Master ER, Rudsander UJ, Zhou WL, Henriksson H, Divine C, Demann S, et al. Recombinant expression, enzymatic and pharmacological characterization of *PrtCesA19*, a KOR homologue from *Populus tremula x tremuloides*. Biochemistry 2004; 43:10080-9.

76. Sato S, Kato T, Kagekawa K, Ishii T, Liu YG, Awan T, et al. Role of the putative membrane bound endo-1,4-β-glucanase KORRIGAN in cell elongation and cellulose synthesis in *Arabidopsis thaliana*. Plant Cell Physiol 2001; 42:251-63.

77. Stryanowicz PM, McKinnon I, Taylor NG, Gardiner J, Jarvis MC, Turner SR. The irregular xylem 2 mutant is an allele of korrigan that affects the secondary cell wall of *Arabidopsis thaliana*. Plant J 2004; 37:570-40.

78. Molhoj M, Johansen B, Ulvskov P, Bockhardt B. Expression of a membrane-anchored endo-1,4-beta-glucanase from *Brassica napus*, orthologous to KOR from *Arabidopsis thaliana*, is inversely correlated to elongation in light-grown plants. Plant Mol Biol 2001; 45:93-105.

79. Peng L, Kawagoe Y, Hogan P, Delmer D. Sisosterol-betaglucoside as primer for cellulose synthesis in plants. Science 2002; 295:147-90.

80. Brummell DA, Catala C, Lashbrook CC, Bennett AB. A membrane-anchored E-type endo-1,4-beta-glucanase is localized on Golgi and plasma membranes of higher plants. Proc Natl Acad Sci USA 1997; 94:4794-9.

81. Zuo J, Niu QW, Nishizawa N, Wu Y, Kost B, Chua NH. KORRIGAN, an Arabidopsis endo-1,4-beta-glucanase, localizes to the cell plate by polarized targeting and is essential for cytokinesis. Plant Cell 2002; 12:1317-20.

82. Takahashi J, Rudsander UJ, Hedenström M, Banasiak A, Harbolt J, Amelot S, et al. KORRIGAN1 and its aspen homolog PrtCesA1A decrease cellulose crystallinity in Arabidopsis stems. Plant Cell Physiol 2009; 50:1099-115.

83. Malathianakis V, Mansfield SD. Characterization and varied expression of a membrane-bound endo-beta-1,4-glucanase in hybrid poplar. Plant Biotechnol J 2010; 8:294-307.

84. Schaal B, Bloch P, Richter H, Hoch G. Quantification and monosaccharide composition of hemicelluloses from different plant functional types. Plant Physiol Biochem 2010; 48:1-8.

85. Timell TE. Recent progress in the chemistry of wood hemicelluloses. Wood Sci Technol 1965; 1:45-70.

86. Sjöström E. Wood Chemistry. Academic Press, Inc., San Diego, Calif 1993.

87. Carlier S, Somerville C. Cloning in silico. Curr Biol 1997; 7:108-11.

88. Perrin RM, Wilkerson CG, Kegrega K. Golgi enzymes that synthesize plant cell wall polysaccharides: finding and evaluating candidates in the genomica era. Plant Mol Biol 2003; 51:17-50.

89. Haasen SP, Scott CSJ, Weldon JD. Cellulose-synthesizing genes of rice. Plant Physiol 2002; 128:336-40.

90. Coutinho PM, Deleury E, Hentiss B. The families of carbohydrate-active enzymes in the genomica era. J Appl Glycosci 2003; 50:241-18.

91. Dhugga KS, Barreiro R, Whitton B, Stecca K, Hazebroek J, Randhawa GS, et al. Guar seed β-mannan synthase is a member of the cellulose synthase super gene family. Science 2004; 303:363-6.

92. Girke T, Larchiria J, Tran H, Kegrega K, Raikhel N. The wall cell navigator database. A synmys-based approach to organism-unrestricted mining of protein families involved in cell wall metabolism. Plant Physiol 2004; 136:3003-8.

93. Liepman AH, Wilkerson CG, Kegrega K. Expression of cellulose-synthesizing (Cel) genes in insect cells reveals that CelA family members encode mannan synthases. Proc Natl Acad Sci USA 2005; 102:2221-6.

94. Liepman AH, Nairn CJ, Willats WGT, Sørensen I, Roberts AW, Kegrega K. Functional genomic analysis supports conservation of function among cellulose synthase-like A gene family members and suggests diverse roles of mannanin in plants. Plant Physiol 2007; 143:1881-93.

95. Burton RA, Wilson SM, Hrnova M, Harvey AJ, Shirley NJ, Medhurst A, et al. Cellulose-synthesizing (Cel) genes mediate the synthesis of cell wall (1,3)-1,4-D-glucans. Science 2006; 311:1940-2.

96. Edwards ME, Dickson CA, Chengappa S, Sidebottom C, Cidley MJ, Reid JSG. Molecular characterization of a membrane-bound galactosyltransferase of plant cell wall matrix polysaccharide biosynthesis. Plant J 1999; 19:691-7.

97. Madison M, Dunand C, Li X, Verma R, Vanzin GF, Caplan J, et al. The MUR3 gene of Arabidopsis encodes a xyloglucan galactosyltransferase that is evolutionarily related to animal exostosins. Plant Cell 2003; 15:1662-70.

98. Perrin RM, DeRoche AE, Bar-Peled M, Zeng W, Norambuena L, Orellana A, et al. Xyloglucan fosylltransferase, an enzyme involved in plant cell wall biosynthesis. Science 1999; 284:1796-9.

99. Vanzin GF, Madison M, Carpita NC, Raikhel NV, Kegrega K, Reiter WD. The mur2 mutant of *Arabidopsis thaliana* lacks fosylyxoglucan because of a lesion in a fosylltransferase AFUT1. Proc Natl Acad Sci USA 2002; 99:3340-5.

100. Faiz A, Price NJ, Raikhel NV, Kegrega K. An Arabidopsis gene encoding an α-xylosyltransferase involved in xyloglucan biosynthesis. Proc Natl Acad Sci USA 2002; 99:7797-802.

www.landesbioscience.com

GM Crops 235
116. Zhong R, Pena MJ, Zhou GK, Nairn CJ, Wood-Jones A, Richardson EA, et al. Arabidopsis Fragile Fiber8, which encodes a putative glucuronotransferase, is essential for normal secondary wall synthesis. Plant Cell 2005; 17:3990-408.

117. Lee C, Zhong R, Richardson EA, Himmelbach DS, McPhail BT, Ye ZH. The PARVUS gene is expressed in cells undergoing secondary wall thickening and is essential for glucuronoxylan biosynthesis. Plant Cell Physiol 2007; 48:1659-72.

118. Zhou GK, Zhong R, Richardson EA, Morrison WH, 3rd, Nairn CJ, Wood-Jones A, et al. The poplar glycosyltransferase GT47C is functionally conserved with Arabidopsis Fragile Fiber8. Plant Cell Physiol 2006; 47:1229-40.

119. Zhou GK, Zhong R, Richardson EA, Himmelbach DS, McPhail BT, Ye ZH. Molecular characterization of PoGTBD and PoGT43B, two secondary wall-associated glycosyltransferases in poplar. Plant Cell Physiol 2007; 48:689-99.

120. Lee C, Teng Q, Huang W, Zhong R, Ye ZH. Downregulation of PoGT47C expression in poplar results in a reduced glucuronoxylan content and an increased wood digestibility by cellulase. Plant Cell Physiol 2009; 50:1075-89.

121. Lee C, Teng Q, Huang W, Zhong R, Ye ZH. The F8H glycosyltransferase is a functional paralog of FR8 involved in glucuronoxylan biosynthesis in Arabidopsis. Plant Cell Physiol 2009; 50:812-27.

122. Persson S, Caffall KH, Feshour G, Hilley MT, Bauer S, Poindexter P, et al. The Arabidopsis irregular xylemB mutant is deficient in glucuronoxylan and homogalacturonan, which are essential for secondary cell wall integrity. Plant Cell 2007; 19:237-55.

123. Peña MJ, Zhong R, Zhou GK, Richardson EA, O’Neill MA, Darvill AG, et al. Arabidopsis irregular xylem8 and irregular xylem9: implications for the complexity of glucuronoxylan biosynthesis. Plant Cell 2007; 19:549-63.

124. Kong YZ, Zhou GK, Avvai U, Gu XG, Jones C, Yin YB, et al. Two poplar glycosyltransferase genes, PoGATL1.1 and PoGATL1.2, are functional orthologs to PARVUS/AtGATL1 in Arabidopsis. Mol Plant 2009; 2:1040-50.

125. Goujon T, Minic Z, El Amrani A, Lerouxel O, Aletti E, Lapierre C, et al. ArBRL1, a novel higher plant (Arabidopsis thaliana) putative beta-xylolnase gene, is involved in secondary cell wall metabolism and plant development. Plant J 2003; 33:677-90.

126. Bindschedler LV, Tiereck J, Maunders M, Ruel K, Peit-Coul M, Danoun S, et al. Modification of hemi-cellulose content by antisense downregulation of UDP-glucuronate decarboxylase in tobacco and its consequences for cellulose extractability. Phytochemistry 2007; 68:2635-48.

127. Grant EH, Fujino T, Beers EP, Brunner AM. Characterization of NAC domain transcription factors implicated in control of vascular cell differentiation in Arabidopsis and Populus. Planta 2010; 232:337-52.

128. Zhong R, Demura T, Ye ZH, SND1, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibers of Arabidopsis. Plant Cell Physiol 2006; 48:3138-58.

129. Zhong R, Lee C, Ye ZH. Functional characterization of poplar wood-associated NAC domain transcription factors. Plant Physiol 2010; 152:1044-55.

130. Lu S, Sun YH, Shi R, Clark C, Li L, Chiang VL. Novel and mechanical stress-responsive microRNAs in Populus trichocarpa that are absent from Arabidopsis. Plant Cell 2005; 17:2186-203.

131. Lu S, Sun YH, Chiang VL. Stress-responsive microRNAs in Populus. Plant J 2008; 55:131-51.

132. Lu S, Sun YH, Chiang VL. Adenylation of plant miRNAs. Nucleic Acids Res 2009; 37:1878-85.

133. Li B, Yin W, Xia X. Identification of microRNAs and their targets from Populus euphratica. Biochem Biophys Res Commun 2009; 388:272-7.

134. Jia X, Ren L, Chen QJ, Li R, Tang G. UV-B-responsive microRNAs in Populus tremula. J Plant Physiol 2009; 166:2046-57.

135. Jia X, Wang WX, Ren L, Chen QJ, Mendu V, Willcut B, et al. Differential and dynamic regulation of miR398 in response to ABA and salt stress in Populus tremula and Arabidopsis thaliana. Plant Mol Biol 2009; 71:53-9.

136. Klev Ehreng D, Street NR, Fahlgren N, Kasschau KD, Carrington JC, Lundeberg J, et al. Genome-wide profiling of Populus small RNAs. BMC Genomics 2009; 10:620.

137. Barakat A, Wall PK, Díaz-Cunqueiro M, Depamphilis CW, Carlson JE. Conservation and divergence of microRNAs in Populus. BMC Genomics 2007; 8:481.

138. Handa A, Heyden C, Penning B, Brandt AS, Kessans SA, Yong W, Scofield SR, et al. Small-interfering RNAs from natural antisense transcripts derived from a cellulose synthase gene modulate cell wall biosynthesis in barley. Proc Natl Acad Sci USA 2008; 105:20534-9.