Attenuated RORC Expression in the Presence of EMT Progression in Somatotroph Adenomas following Treatment with Somatostatin Analogs Is Associated with Poor Clinical Recovery

Tove Lekva¹,²,³*, Jens Petter Berg⁴,⁵, Ansgar Heck¹,³, Stine Lyngvi Fougner⁶, Ole Kristoffer Olstad⁵, Geir Ringstad⁷, Jens Bollerslev¹,³, Thor Ueland²,³

¹ Section of Specialized Endocrinology, Department of Endocrinology, Oslo University Hospital, Oslo, Norway, ² Research Institute for Internal Medicine, Oslo University Hospital, Oslo, Norway, ³ Faculty of Medicine, University of Oslo, Oslo, Norway, ⁴ Institute of Clinical Medicine, Oslo University Hospital, Oslo, Norway, ⁵ Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway, ⁶ Department of Endocrinology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway, ⁷ Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway

Abstract

Somatostatin analogs (SA) have been established as the first line medical treatment for acromegaly, but following long-term treatment, SA normalizes GH and IGF-I levels in only 40–60% of patients. The epithelial marker E-cadherin plays a crucial role in the epithelial mesenchymal transition (EMT) and is associated with a poor response to SA treatment. We hypothesized that the characterization of transcripts regulated by SA in somatotroph adenomas with high and low E-cadherin expression may identify signaling pathways and mediators that can explain the poor response to SA treatment. We performed a microarray analysis of sixteen adenomas with different levels of E-cadherin and SA treatment to identify regulated transcripts. Candidate transcripts were further explored in vivo in sixty-five adenomas, and interactions between SA treatment and EMT progression on mRNA expression profiles and associations with clinical recovery were assessed. Finally, the effects of SA treatment on adenoma cells in vitro from acromegalic patients were determined. Microarray analysis of selected adenomas with differential E-cadherin expression, as a marker of EMT progression, identified 172 genes that displayed differential expression that was dependent on SA treatment. The validation of selected candidates in the entire cohort identified 9 transcripts that showed an interaction between E-cadherin expression and SA treatment. Further analysis of the impact of these genes suggests that attenuated RORC expression in somatotroph adenomas is associated with increased tumor size and a blunted clinical response. Our study indicates that attenuated RORC may be involved in the poor clinical response to SA treatment in patients with acromegaly.

Introduction

Somatostatin analogs (SA) have been established as the first line medical treatment for acromegaly and should result in the suppression of elevated blood GH and IGF-I levels and/or a significant tumor size reduction [1]. The response to SA depends on the presence and/or ratio of somatostatin receptor subtypes (SSTR₁–₅) on tumor cells; SSTR₂, especially, has been positively correlated to the GH-lowering effect of hitherto clinically available analogs [2–5]. However, following long-term treatment, SA normalizes GH and IGF-I levels in only 40–60% of patients [6].

Previous studies in somatotroph adenomas suggest that attenuated E-cadherin expression, which is lost in the epithelial mesenchymal transition (EMT), is associated with reduced responsiveness to SA treatment as well as increased tumor size and invasiveness [7,8]. E-cadherin has also been positively correlated with the SSTR₂ protein receptor subtype [7]. Using microarray analysis, we have recently demonstrated that a large number of RNA transcripts are associated with E-cadherin expression in somatotroph adenomas and thus may be implicated in EMT progression in these tumors [8]. Further investigation of transcripts at different stages of EMT and the response to somatostatin analogs may identify signaling pathways and mediators that can explain the poor response to SA treatment. In the present study, the modulators of the poor response to SA treatment were explored through a microarray analysis of adenomas with different expression levels of E-cadherin, as a marker of EMT progression, to identify transcripts that were differentially expressed after SA treatment of tumors and that were associated with E-cadherin mRNA expression. The clinical importance of these transcripts was then investigated by correlating mRNA expression levels with clinical indices of disease activity and treatment response.

Citation: Lekva T, Berg JP, Heck A, Lyngvi Fougner S, Olstad OK, et al. (2013) Attenuated RORC Expression in the Presence of EMT Progression in Somatotroph Adenomas following Treatment with Somatostatin Analogs Is Associated with Poor Clinical Recovery. PLoS ONE 8(6): e66927. doi:10.1371/journal.pone.0066927

Editor: Hari Koul, University of Colorado, United States of America

Received December 12, 2012; Accepted May 13, 2013; Published June 25, 2013

Copyright: © 2013 Lekva et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Competing Interests: The authors have declared that no competing interests exist.

E-mail: tove.lekva@medisin.uio.no
Materials and Methods

Patients and Samples
One hundred nine patients with active acromegaly, based on clinical evaluation and biochemical workup [7, 9, 10], who all underwent transsphenoidal pituitary surgery in the period from 1996 to 2011, were consecutively enrolled in the present study. Of these, sixty-five patients were included based on the availability of an adequate RNA specimen (Figure 1A) from the tumor as assessed with an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA), of whom thirty-eight were untreated and twenty-seven were preoperatively treated with SA for 6 months (median). Table 1 provides an overview of the study population. The study was approved by the Regional Committee for Medical and Research Ethics, South-East, Norway, and was conducted according to the Declaration of Helsinki II. Written informed consent was obtained from all patients.

Biochemical Measurements
Blood samples were drawn after an overnight fast, and the serum was isolated. Serum IGF-I levels were measured with a RIA (Nichols Institute, Nijmegen, The Netherlands) and Immulite 2000 (Siemens, Munich, Germany), and the mean daytime (3–5 times) GH (detection limit 0.3 mU/l) was measured by AutoDelfia (Wallac Oy, Turku, Finland) and, after 2005, by Immulite 2000 (Siemens) calibrated to the WHO standard IS 98/574. When the methods were changed, a cross-calibration was performed. An acute somatostatin test was performed in 59 patients prior to any treatment; the test measured the serum GH concentration before and 2–4 hours after the test dose [7]. The relative reduction was calculated by comparing the mean GH values before the injection with the mean GH levels measured 2–4 hours after the test dose [2].

Estimation of Tumor Size by MRI
The formula of width x height x length x 0.5 was used by a neuroradiologist to estimate the size of each tumor. For the patients treated primarily with SA, MRI scans were available for twenty-six patients before and after SA treatment.

Microarray Analysis
The methods used for the analysis of E-cadherin mRNA levels and the subsequent microarray analysis in selected adenomas have been previously reported [8]. Briefly, based on the E-cadherin mRNA expression determined by quantitative real-time RT-PCR (RT-qPCR in all 65 adenomas), mRNA from 16 patients, 8 with the lowest E-cadherin expression (from tertile 1), of which 4 were pretreated with SA, and 8 with the highest E-cadherin expression (from tertile 3), of which 4 pretreated with SA, was chosen for microarray analysis (Figure 1A). As reported [8], 100 ng of total RNA was processed with a GeneChip HT One-Cycle cDNA Synthesis Kit and a GeneChip HT IVT Labeling Kit, following the manufacturer’s protocol for whole genome gene expression analysis (Affymetrix, Santa Clara, CA, USA). Labeled and fragmented single stranded cDNAs were hybridized to the GeneChip Human Gene 1.0 ST Arrays (28569 transcripts) (Affymetrix). The arrays were washed and stained using a FS-450 fluidics station (Affymetrix). Signal intensities were detected with a Hewlett Packard Gene Array Scanner 3000 7G (Hewlett Packard, Palo Alto, CA, USA). The scanned images were processed using the Affymetrix GeneChip Command Console (AGCC). The CEL files were imported into the Partek Genomics Suite software (Partek, Inc. MO, USA). Robust microarray analysis (RMA) was applied for normalization. The cluster analysis was generated in the Partek Genomics Suite. All raw microarray data have been deposited in the Gene Expression Omnibus (GEO) database under the accession number GSE46311.

Protein Extraction and Western Blot Analysis
The adenoma tissue was frozen at −70 °C shortly after pituitary surgery. The tissue was homogenized in TRIZol reagent (Invitrogen Corp., Carlsbad, CA), and the protein was extracted following the manufacturer’s instructions. The proteins were precipitated and washed; the protein concentration was then measured, and the Western blot performed as previously described [7] with 15 μg of total protein applied per lane. The blots were probed with a mouse monoclonal anti-E-cadherin antibody (1:1000, ab4116; Abcam PLC, Cambridge, UK), mouse monoclonal anti-glucyl-aldhyde-3-phosphate dehydrogenase (GAPDH) antibody (1:10,000, G8795; Sigma-Aldrich Corp., St. Louis, MO) and secondary antibody antinouse IgG (1:10 000, Jackson Immunoresearch Laboratories Europe, Suffolk, UK), as previously described. The Multi Gauge software (Fuji fiilm Corp., Tokyo, Japan) was used for the data analysis of the protein levels. The band signal for each antibody was adjusted for background. The E-cadherin to GAPDH ratio for each adenoma was calculated (E-cadherin/GAPDH) and used as a measure of the E-cadherin protein level.

RNA Isolation and RT-qPCR
The extraction of total RNA was performed using Trizol (Invitrogen, Carlsbad). The RNA was purified using a QIAGEN RNaseasy mini kit (Qiagen, Valencia, CA). The integrity was assessed using an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA), and the concentrations were determined by OD readings on a Nanodrop ND-1000 Spectrophotometer (Nanodrop Technologies, Wilmington, DE). Reverse transcription was performed using a High Capacity cDNA Archive Kit (Applied Biosystems, Foster City, CA). The mRNA quantification was performed using the standard curve method of the ABI Prism 7500 (Applied Biosystems). For the RT-qPCR, sequence specific exon-exon spanning oligonucleotide primers were designed using the Primer Express software version 2.0 (Applied Biosystems). The transcript expression levels were normalized to the GAPDH mRNA levels in human pituitary samples and expressed as relative mRNA levels (data were log transformed to normal distribution in human pituitary adenomas).

Octreotide Treatment of Adenoma Cells from Acromegalic Patients in vitro
Adenoma tissue from five patients was used for the primary culture to examine the in vitro effects of octreotide treatment, as previously reported [7]. Approximately 1 × 10^5 cells/well were cultured with and without 10^-6 M octreotide for 6 and 24 hours, in quadruplicate. Two of the adenomas had an E-cadherin mRNA expression level 300 times lower than the other three. The expression levels of RORC was normalized to the β-actin mRNA levels and expressed as relative mRNA levels. All the adenomas had been preoperatively treated with SA except for one adenoma.

Statistics
Differences in the patient demographics were analyzed with the Mann-Whitney U-test. The transcripts analyzed in all patients by RT-qPCR were not normally distributed and were log transformed prior to the regression analysis. The interaction between E-cadherin and SA treatment was analyzed by univariate
regression with the transcripts as the dependent variable and the E-cadherin level, treatment with SA and the interaction term between E-cadherin and SA treatment (log E-cadherin*SA treatment) as covariates by direct entry. Stepwise linear regression was performed to identify transcripts that were predictors of tumor size and the response to the acute SA test as well as tumor size- and IGF-1-reduction following SA treatment. A two-sided p value <0.05 was considered significant, except when analyzing the effect of the interaction term, when p<0.1 was considered significant. Differentially expressed genes between groups were identified using one-way ANOVA of the microarray data.

Differentially expressed genes between groups were identified using one-way ANOVA of the microarray data. An unpaired Student's sample t-test (two-tailed) was used to evaluate the differences between untreated and octreotide-treated adenoma cells in the in vitro studies.
Microarray

Results

The clinical characteristics of the study population are given in Table 1. Patients receiving preoperative SA were characterized by higher serum GH levels and larger tumor sizes. No other differences between the two groups were detected.

Microarray

To screen for differentially expressed transcripts in relation to the E-cadherin expression levels and SA treatment, total RNA from sixteen of the pituitary GH adenomas, as described above, with the highest and lowest E-cadherin expression (i.e., 8 of each, of which 4 were pretreated with SA, figure 1A) levels as determined by RT-qPCR, were subjected to whole-genome gene expression profiling as reported previously [8]. The mRNA levels were associated with previously published E-cadherin protein levels [7] from 45 adenomas (r = 0.65, p < 0.001) (Figure 1B), presented by western blot in two of the adenomas, and the E-cadherin protein ratio from the adenomas in tertile 1 and 3 are included in the graph (Figure 1B). Our primary goal was to identify potentially interesting transcripts that could be validated in the total patient population (n = 65) (Figure 1A) levels as described in the methods section. As presented in Figure 2, which shows the individual genes according to E-cadherin and SA treatment, the expression of the selected 24 transcripts were quantified by RT-qPCR in the initial 65 GH-producing adenomas. The interaction between SA treatment and E-cadherin was assessed by univariate regression, as described in the methods section. As presented in Table 1, of the 54 regulated transcripts, 11 had been described in the literature as being associated with the EMT process or E-cadherin expression [11–23], and the remaining 13 were chosen because of their strong regulation by the different levels of E-cadherin induced by SA (Figure 1D–E).

RT-qPCR

To verify the interaction between tumor E-cadherin expression and SA treatment, the expression of the selected 24 transcripts were quantified by RT-qPCR in the initial 65 GH-producing adenomas. The interaction between SA treatment and E-cadherin was assessed by univariate regression, as described in the methods section. As presented in Table 1, of the 54 regulated transcripts, 11 had been described in the literature as being associated with the EMT process or E-cadherin expression [11–23], and the remaining 13 were chosen because of their strong regulation by the different levels of E-cadherin induced by SA (Figure 1D–E).

Table 1. Demographics of the study population.

Groups	Total (n = 65)	Direct surgery (n = 38)	Preoperative SA (n = 27)
Age (yr)	47 (41, 57)	49 (42, 56)	47 (37, 60)
Women/men (n)	28/37	16/22	12/15
Tumor size (cm³)	1.21 (0.54, 3.12)	0.68 (0.46, 2.08)⁺	2.19 (0.81, 5.40)
Biochemistry			
Serum GH (mU/L)	32 (20, 70)	28 (15, 46)	53 (24, 108)
Serum IGF-I (nmol/L)	106 (83, 131)	96 (83, 125)	109 (90, 139)
SMS response			
GH reduction (%) n = 59⁵	88 (69, 92)	84.2 (62, 90)	89 (69, 95)
IGF-I reduction (%) n = 27*	54 (12, 62)	54 (12, 62)	54 (12, 62)
GH reduction (%) n = 27*	73 (41, 95)	73 (41, 95)	73 (41, 95)
Tumor size reduction (%) n = 26*	26 (5, 43)	26 (5, 43)	26 (5, 43)

Unless stated, data are given as median (25th, 75th percentile).

¹P < 0.05 vs. Preoperative SA.

²During acute octreotide test in patients not preoperatively treated with a somatostatin analog.

*after median 6 months (range 2–32 months) preoperative SA treatment.

Doi:10.1371/journal.pone.0066927.t001

adenomas. To narrow the list for further analyses, we selected transcripts that were regulated with a p-value < 0.01, which reduced the total number of transcripts from 172 to 54. Of these 54 regulated transcripts, 11 had been described in the literature as being associated with the EMT process or E-cadherin expression [11–23], and the remaining 13 were chosen because of their strong regulation by the different levels of E-cadherin induced by SA (Figure 1D–E).
The main goal of treating acromegaly is to normalize GH and IGF-I levels and to reduce or control tumor volume. When correlating the transcripts that were verified in the total patient population with important clinical parameters, including tumor size, acute somatostatin test, reduction in IGF-I levels (%) and tumor size reduction (%), several significant correlations were found (Table 2). In addition to the transcripts chosen, we also included SSTR2 mRNA levels as an independent variable because SSTR2 was discovered as the target of octreotide therapy. The association between the transcripts that were verified in the total patient population with important clinical parameters, including tumor size, acute somatostatin test, reduction in IGF-I levels (%) and tumor size reduction (%), several significant correlations were found (Table 2). In addition to the transcripts chosen, we also included SSTR2 mRNA levels as an independent variable because SSTR2 was discovered as the target of octreotide therapy.

Discussion

In the present study, we investigated interactions between SA treatment and EMT progression on mRNA expression profiles in somatotroph adenomas and associations with clinical recovery. Our main and novel findings were as follows: i) Microarray analysis of selected adenomas with different E-cadherin expression levels, as a marker of EMT progression, identified 172 genes that displayed differential expression dependent on SA treatment. ii) Validation of selected candidates in the entire cohort identified 9 transcripts that showed an interaction between E-cadherin expression and SA treatment response. iii) Further analysis of the impact of these genes suggests that attenuated RORC expression in somatotroph adenomas is associated with an increased tumor size and a blunted clinical response following SA treatment.

We have previously shown that increased E-cadherin mRNA levels in pituitary tumor tissue is associated with an enhanced response to SA treatment [8], supporting an interaction between SA response and EMT progression. In this study, we further explored this interaction in somatotroph adenomas and identified a large number of transcripts that displayed a differential mRNA expression depending on treatment with SA and E-cadherin mRNA levels, and 9 of 24 transcripts were validated (see discussion on validation below). The EMT-related genes that supported an interaction between E-cadherin and SA treatment were the transcripts involved in TGFβ signaling, which play a role in tumor progression. These genes included RORC, ITGA1, and SSTR2, which are involved in the regulation of extracellular matrix degradation and proliferation.

The nuclear receptor RORC is involved in the regulation of circadian behaviors and clock gene expression [26], and it has also been implicated in lymphoma formation [27]. RORC is known to regulate inflammation through mechanisms involving an interaction with VE-cadherin and N-cadherin processing [17,23], which are a cell surface receptor and a redox mediator, respectively. Furthermore, VLDLR has been shown to be involved in fibrin-induced leukocyte transmigration, while KCNIP3 may regulate inflammation through mechanisms involving an interaction with VE-cadherin and N-cadherin processing [17,23], which are involved in promoting neurite outgrowth and alternative splicing [29,30], respectively. SA is known to inhibit intracellular Ca²⁺ via the

Figure 2. Quantitative real time RT-PCR of selected gene transcripts in somatotroph adenomas, which supported an interaction between E-cadherin expression levels and SA treatment. The transcripts of (A) RORC (B) ITGA1 (C) CTTNBP2 (D) TIMP1 (E) DOK5 (F) MBNL3 (G) NOX4 (H) VLDLR and (I) KCNIP3 in 65 growth hormone-producing adenomas were selected based on the interaction between E-cadherin and SA (p<0.1, interaction tested with continuous E-cadherin, but presented as tertiles), quantified and distributed according to tertiles of E-cadherin mRNA expression (normalized to GAPDH mRNA levels and expressed as relative mRNA levels). The results are presented as the mean ± SEM and presented relative to tertile 1. P-values represent the interaction between E-cadherin and SA in the univariate analysis. doi:10.1371/journal.pone.0066927.g002

Associations between Selected Transcripts and Clinical Variables

The main goal of treating acromegaly is to normalize GH and IGF-I levels and to reduce or control tumor volume. When correlating the transcripts that were verified in the total patient population with important clinical parameters, including tumor size, acute somatostatin test, reduction in IGF-I levels (%) and tumor size reduction (%), several significant correlations were found (Table 2). In addition to the transcripts chosen, we also included SSTR2 mRNA levels as an independent variable because SSTR2 was discovered as the target of octreotide therapy. The association between the transcripts that were verified in the total patient population with important clinical parameters, including tumor size, acute somatostatin test, reduction in IGF-I levels (%) and tumor size reduction (%), several significant correlations were found (Table 2). In addition to the transcripts chosen, we also included SSTR2 mRNA levels as an independent variable because SSTR2 was discovered as the target of octreotide therapy.
Table 2. Associations between selected transcripts and clinical variables.

Transcript	Acute somatostatin test	Tumor size	% reduction IGF-1	% reduction tumor size				
	Univariate^a	Multivariate^b	Univariate^a	Multivariate^b	Univariate^a	Multivariate^b	Univariate^a	Multivariate^b
SA treatment	0.22 (0.10)	0.30 (0.02)	NA	NA	0.52 (<0.01)	10.90 (4.42), t = 2.46, p = 0.02	0.42 (0.03)	0.42 (0.03)
SSTR2	0.37 (<0.01)	1.35 (0.35), t = 3.86, p < 0.01	0.30 (0.02)	0.72 (0.25), t = 2.83, p < 0.01	1.01 (0.68), t = 1.49, p = 0.14	0.30 (0.02)	0.21 (0.10)	0.52 (<0.01)
TIMP1	-0.23 (0.08)	-1.08 (0.42), t = -2.61, p = 0.01	0.30 (0.02)	0.72 (0.25), t = 2.83, p < 0.01	0.52 (<0.01)	10.90 (4.42), t = 2.46, p = 0.02	0.42 (0.03)	0.42 (0.03)
KCNIP3	-0.15 (0.26)	-0.52 (0.26), t = -2.00, p = 0.05	-0.25 (0.21)	0.52 (0.25), t = 2.26, p = 0.01	-0.12 (0.56)	14.62 (3.84), t = 3.81, p < 0.01	-0.31 (0.13)	-0.31 (0.13)
ROCA	0.17 (0.19)	-0.39 (<0.01)	0.39 (<0.01)	7.50 (3.54), t = 2.11, p = 0.05	0.42 (0.03)	7.50 (3.54), t = 2.11, p = 0.05	0.59 (<0.01)	14.62 (3.84), t = 3.81, p < 0.01
IGAV	-0.08 (0.55)	-0.18 (0.15)	-0.02 (0.91)	0.05 (0.82)	-0.05 (0.80)	0.05 (0.82)	-0.05 (0.80)	0.05 (0.80)
CTTNBP2	0.02 (0.91)	-0.08 (0.51)	0.14 (0.48)	0.06 (0.76)	0.06 (0.76)	0.06 (0.76)	0.06 (0.76)	0.06 (0.76)
DOCK6	-0.03 (0.80)	-0.28 (0.03)	-0.13 (0.07), t = -1.74, p = 0.09	0.05 (0.82)	-0.09 (0.64)	0.05 (0.82)	-0.09 (0.64)	0.05 (0.82)
MBNL3	0.24 (0.07)	-0.09 (0.49)	0.36 (0.06)	0.35 (0.08)	0.36 (0.06)	0.35 (0.08)	0.36 (0.06)	0.35 (0.08)
NOX4	-0.14 (0.28)	-0.20 (0.11)	-0.13 (0.09), t = -1.53, p = 0.13	-0.17 (0.40)	-0.35 (0.09)	-0.48 (3.12), t = -1.56, p = 0.13	-0.35 (0.09)	-0.35 (0.09)
VLDLR	-0.14 (0.29)	0.06 (0.66)	-0.02 (0.93)	0.05 (0.82)	-0.30 (0.14)	0.05 (0.82)	-0.30 (0.14)	0.05 (0.82)

^aUnivariate, Pearson correlation: r (p =). ^bMultivariate, Stepwise linear regression: B (SE), t = , p = . NA, not applicable.

doi:10.1371/journal.pone.0066927.t002
SSTR2 receptor and thereby reduced the release of GH [31]. The SSTR2 content in the tumor is a well-known contributor to the response to treatment [2,32], and we confirmed that increased SSTR2 mRNA expression is associated with a good response to the acute SA test. The multiple analyses identified several covariates that were not associated with the dependent variable in the univariate analysis (e.g., TIMP1 and KCNIP3 for response to the acute SA test; KCNIP3 for the % reduction in IGF-I and tumor reduction), and the impact of mRNA expression on these responses should be interpreted with caution. However, it is tempting to speculate that the indirect regulation of KCNIP3 transcript levels by SA could contribute to the short- and long-term clinical responses through EMT-related mechanisms, such as N-cadherin processing and calcium signaling [17,33]. Although further studies of these transcripts may reveal important information about the pathology of SA treatment and EMT progression in somatotroph adenomas, only RORC was associated with tumor size prior to SA treatment, as well as tumor reduction and IGF-I reduction following SA treatment, both in the univariate and multiple analyses.

The RORC gene consists of two isoforms, γ1 and γ2 [γ2; RORC1], the isoform regulated in the microarray analysis of the somatotroph adenomas, is expressed in many tissues [27]. RORC exhibits an oscillatory expression pattern in different tissues, and mouse deficient in the expression of RORC exhibit a high incidence of thymic lymphomas that metastasize frequently to the liver and spleen [27]. The loss of RORC γ1 is shown to affect the peak expression of several clock genes [26], some of which are important for tumor progression [34,35]. Our in vivo findings in somatotroph adenomas demonstrating a correlation between low RORC mRNA expression and increased tumor size support the biological significance of attenuated RORC expression in somatotroph adenomas. Furthermore, this low RORC expression levels could be a particularly unfavorable effect of SA treatment in patients with attenuated E-cadherin expression. In contrast, increased RORC expression was associated with SA treatment in patients with high pituitary E-cadherin mRNA levels. Thus, attenuated RORC expression was correlated with a blunted tumor size- and IGF-I reduction in patients treated with SA, indicating that these analogs may adversely affect clinical recovery in the presence of EMT progression (i.e., low E-cadherin) involving RORC-mediated mechanisms. These observations were supported in vitro in primary cultures treated with octreotide; tumors characterized by low E-cadherin expression displayed an attenuated effect on RORC expression, while cultures from tumors with high E-cadherin expression showed an increase in RORC mRNA levels.

Some limitations of the study should be mentioned. Of the 24 transcripts selected for further verification in the whole cohort, only 9 confirmed an interaction between SA treatment and E-cadherin. In contrast, our previous study [8] investigating transcripts associated with E-cadherin expression, which used a similar approach, confirmed nearly all candidates in the whole cohort by qPCR. As discussed, this discrepancy was not a technical issue but could instead be due partly to the more straightforward approach in the previous study (i.e., 2 × 2 vs. 4 × 4) and the number of observations in each group (n = 8 vs. n = 4), making confirmation more likely. Furthermore, the inability to confirm the findings for more transcripts could also reflect the heterogeneous nature of pituitary tumors and response to treatment. Additionally, there are some inherent biases in our study design that should be mentioned. Our findings may partly be influenced by different tumor phenotypes because a massively invasive adenoma is more likely to receive medical treatment before operation than a small, resectable adenoma. However, the numbers of SA-treated adenomas in the different tertiles of E-cadherin expression were similar. It could also be argued that an a priori separation of low vs. high E-cadherin will identify surrogate markers. Thus, future functional studies are needed to evaluate and confirm the importance of the candidate transcripts and mechanisms involved. Most of the adenomas cultured in vitro had been treated with SA before surgery, and we cannot exclude that this treatment may have interfered with the in vitro experiments. Finally, although we were able to detect RORC protein by western blot in some adenomas with very high total protein levels, the amount of protein was in general too low to reliably detect RORC protein expression in the in vivo adenoma as well as in the primary cultures in vitro (data not shown).

Pituitary somatotroph adenomas are heterogeneous and have been classified into multiple subtypes. It has been argued that the loss of E-cadherin, while associated with the loss of epithelial differentiation, is not always indicative of EMT, as not all adenohypophysial cells express E-cadherin at the same level. However, it has been suggested recently that, within the EMT, the epithelial and mesenchymal cells can be regarded as the two extremes, indicating that intermediate phenotypes may correspond to partial EMTs [36]. Furthermore, the loss of adherens junctions and subsequent E-cadherin repression is a hallmark of
EMT, and investigating associations between E-cadherin mRNA levels and candidates identified by microarray as continuous variables in the entire cohort in relation to clinical variables may therefore take into account the impact of partial EMT on these outcomes, which we believe is a strength of our study. This study identified several transcripts in somatotroph adenomas that were differentially expressed after SA treatment depending on E-cadherin mRNA levels. In particular, adenomas with low E-cadherin expression was associated with decreased RORC expression following SA treatment and a blunted clinical response as demonstrated by attenuated IGF-1 and tumor size reduction. Further studies are needed to elucidate the interaction between EMT progression and RORC expression as well as the mechanism by which SA treatment may adversely affect this interaction and lead to poor clinical responses in patients with acromegaly.

Supporting Information

Figure S1 Quantitative real time RT-PCR of selected gene transcripts in somatotrophinomas with different E-cadherin expression levels and SA pretreatment, with no significant interaction between E-cadherin and SA. The transcripts of (A) WFDC1 (B) NDRG1 (C) MMP16 (D) MSN (E) PDK1 (F) POMC (G) RPH3A (H) SLC24A2 (I) HCN1 (J) VAT1L (K) ITPR2 (L) SEMA5A (M) NDNP (N) GALNT5 and (O) TMEM47 in 65 growth hormone producing adenomas quantitated and distributed according to tertiles of E-cadherin mRNA expression (normalized to GAPDH mRNA levels and expressed as relative mRNA levels) and SA treatment. Results are presented as mean ± SEM and presented relative to tertile 1. (TIF)

Table S1 Primer sequences used in PCR reactions. (DOCX)

Acknowledgments

The authors are grateful to John Hald, M.D., Ph.D., for supervising the measurements of tumor volume, and to Jon Ramm-Pettersen, M.D., for providing the neurosurgical evaluation and collection of the tissue.

Author Contributions

Conceived and designed the experiments: TL JPB AH SLF OKO GR JB. Performed the experiments: TL OKO TU. Analyzed the data: TL TU. Contributed reagents/materials/analysis tools: JPB JB. Wrote the paper: TL TU.

References

1. Melmed S, Colao A, Barkan A, Molitch M, Grossman AB, et al. (2009) Guidelines for acromegaly management: an update. J Clin Endocrinol Metab 94: 1509–1517.

2. Fougner SL, Borota OC, Berg JP, Hald JK, Ramm-Pettersen J, et al. (2008) The clinical response to somatostatin analogues in acromegaly correlates to the somatostatin receptor subtype 2a protein expression of the adenoma. Clin Endocrinol (Oxf) 68: 458–465.

3. Holland KJ, van der HJ, van Ketsveld FM, de Herder WW, Waaigers M, et al. (2004) The novel somatostatin analog SOM230 is a potent inhibitor of hormone release by growth hormone-prolactin-secreting pituitary adenomas in vitro. J Clin Endocrinol Metab 89: 1577–1585.

4. Saveamu A, Gunez G, Dufour H, Caron P, Fina F, et al. (2001) Bim-23244, a somatostatin receptor subtype 2- and 5-selective analog with enhanced efficacy in suppressing growth hormone (GH) from octreotide-resistant human GH-secreting adenomas. J Clin Endocrinol Metab 86: 140–145.

5. Taboada GF, Luque RM, Neto LV, Machado EO, Shaffi BC, et al. (2008) Quantitative analysis of somatostatin receptor subtypes (1-5) gene expression levels in somatotrophomas and correlation to in vivo hormonal and tumor volume responses to treatment with octreotide LAR. Eur J Endocrinol 158: 295–303.

6. Sherlock M, Woods C, Sheppard MC (2011) Medical therapy in acromegaly. Nat Rev Endocrinol 7: 291–300.

7. Fougner SL, Lekva T, Borota OC, Hald JK, Bollerslev J, et al. (2010) The expression of E-cadherin in somatotroph pituitary adenomas is related to tumor size, invasiveness, and somatostatin analog response. J Clin Endocrinol Metab 95: 2334–2342.

8. Lekva T, Berg JP, Fougner SL, Olsfad OK, Ueland T, et al. (2012) Gene Expression Profiling Identifies ESRR1 as a Potential Regulator of Epithelial Mesenchymal Transition in Somatotroph Adenomas from a Large Cohort of Patients with Acromegaly. J Clin Endocrinol Metab 97: E1506–E1514.

9. Fougner SL, Casar-Borota O, Heck A, Berg JP, Bollerslev J (2012) Adenoma granulation pattern correlates with clinical variables and effect of somatostatin analogue treatment in a large series of patients with acromegaly. Clin Endocrinol (Oxf) 76: 106–112.

10. Heck A, Ringstad G, Fougner SL, Casar-Borota O, Nome T, et al. (2012) Intensity of pituitary adenoma on T2-weighted magnetic resonance imaging predicts the response to octreotide treatment in newly diagnosed acromegaly. Clin Endocrinol (Oxf) 77: 72–78.

11. Delalsus GS, Cho H, Hoang S, Elvirer GL (2010) Many new down- and up-regulatory signaling pathways, from known cancer progression suppressors to regulatory signaling pathways, from known cancer progression suppressors to.

12. Feng Q, Di R, Tao F, Chang Z, Lu S, et al. (2010) PDK1 regulates vascular remodeling and promotes epithelial-mesenchymal transition in cardiac development. Mol Biol Cell 30: 3711–3721.

13. Haynes J, Srivastava J, Madison N, Wittmann T, Barber DL (2011) Dynamic actin remodeling during epithelial-mesenchymal transition depends on increased mrosin expression. Mol Biol Cell 22: 4750–4764.

14. Hellman NE, Spector J, Robinson J, Zuo X, Saunier S, et al. (2008) Matrix metalloproteinase 13 (MMP13) and tissue inhibitor of matrix metalloproteinase 1 (TIMP1), regulated by the MAPK pathway, are both necessary for Madin-Darby canine kidney tubulogenesis. J Biol Chem 283: 4272–4282.

15. Hines AD, Fidder RM, Raetzman LT (2011) N-cadherin loss in POMC-expressing cells leads to pituitary disorganization. Mol Endocrinol 25: 482–491.

16. Iizumi M, Liu W, Pai SK, Furuta E, Watabe K (2008) Drug development against metastasis-related genes and their pathways: a rationale for cancer therapy. Biochem Biophys Acta 1786: 87–104.

17. Jung C, Choi JK, Na YJ, Jung B, Wasco W, et al. (2011) Calsenilin regulates presenilin 1/gamma-secretase-mediated N-cadherin epilum-eclavage and beta-catenin signaling. FASEB J 25: 4174–4183.

18. Jung HS, Liu LW, Chiores R, Warner RB, Friedman R, et al. (2012) TIMP-1 Induces an EMT-Like Phenotypic Conversion in MDCK Cells Independent of Its MMP-Inhibitory Domain. PLoS One 7: e38737–.

19. Kachhap SK, Faith D, Qian DZ, Shabbir S, Galloway NL, et al. (2007) The N-MyC down regulated Gene1 (NDRG1) Is a Rab6a effector involved in vesicular recycling of E-cadherin. PLoS One 2: e684.

20. McAlhany SJ, Ayala GE, Frolov A, Resler SJ, Wheeler TM, et al. (2004) Decreased stromal expression and increased epithelial expression of WDF1/Pdsh in prostate cancer is associated with reduced recurrence-free survival. Prostate 61: 182–191.

21. Sun H, Hu K, Wu M, Xiong J, Yuan L, et al. (2011) Contact by melanoma cells causes malignant transformation of human epithelial-like stem cells via alpha V integrin activation of transforming growth factor beta signaling. Exp Biol Med (Maywood) : 236: 352–365.

22. Xiao L, Ge Y, Sun L, Xu X, Xie P, et al. (2012) Cordycepin inhibits albumin-induced epithelial-mesenchymal transition of renal tubular epithelial cells by reducing reactive oxygen species production. Free Radic Res 46: 174–183.

23. Yakouv S, Mikhailenko I, Cao C, Zhang L, Strickland DK, et al. (2012) Identification of VLDLR as a novel endothelial cell receptor for fibrin that modulates fibrin-dependent transendothelial migration of leukocytes. Blood 119: 637–644.

24. Boudreau HE, Carterline BW, Rada B, Kozhenivoska A, Leto TL (2012) Nociception in TGF-beta and SMAD-driven induction of the epithelial-to-mesenchymal transition and migration of breast epithelial cells. Free Radic Biol Med 53: 1489–1499.

25. Ushio-Fukai M, Nakamura Y (2008) Reactive oxygen species and angiogenesis: NADPH oxidase as target for cancer therapy. Cancer Lett 263: 1509–1517.

26. Takeda Y, Jothi R, Birault V, Jetten AM (2012) RORgamma directly regulates the circadian expression of clock genes and downstream targets in vivo. Nucleic Acids Res 40: 8519–8535.

27. Jetten AM (2009) Retinoid-related orphan receptors (RORs): critical roles in development, immunity, circadian rhythm, and cellular metabolism. Nuel Cell Res Signa 7: e003–.

28. Chen YK, Hsueh YP (2012) Cortactin-binding protein 2 modulates the mobility of cortactin and regulates dendritic spine formation and maintenance. J Neurosci 32: 1043–1053.
29. Ho TH, Charlet B, Poulos MG, Singh G, Swanson MS, et al. (2004) Muscleblind proteins regulate alternative splicing. EMBO J 23: 3103–3112.
30. Li W, Shi L, You Y, Gong Y, Yin B, et al. (2010) Downstream of tyrosine kinase/docking protein 6, as a novel substrate of tropomysin-related kinase G receptor, is involved in neurotrophin 3-mediated neurite outgrowth in mouse cortex neurons. BMC Biol 8: 86.
31. Petrucci C, Cervia D, Buzzi M, Biondi C, Bagnoli P (2000) Somatostatin-induced control of cytosolic free calcium in pituitary tumour cells. Br J Pharmacol 129: 471–484.
32. Casarini AP, Jallad RS, Pinto EM, Soares IC, Nomogaki S, et al. (2009) Acromegaly: correlation between expression of somatostatin receptor subtypes and response to octreotide-lar treatment. Pituitary 12: 297–303.
33. Sours-Brothers S, Ma R, Koulen P (2009) Ca2+-sensitive transcriptional regulation: direct DNA interaction by DREAM. Front Biosci 14: 1851–1856.
34. Grechez-Cassiau A, Rayet B, Guillaumond F, Teboul M, Delaunay F (2008) The circadian clock component BMAL1 is a critical regulator of p21WAF1/ CIP1 expression and hepatocyte proliferation. J Biol Chem 283: 4535–4542.
35. Takeda Y, Kang HS, Angers M, Jetten AM (2011) Retinoic acid-related orphan receptor gamma directly regulates neuronal PAS domain protein 2 transcription in vivo. Nucleic Acids Res 39: 4769–4782.
36. Jordan NV, Johnson GL, Abell AN (2011) Tracking the intermediate stages of epithelial-mesenchymal transition in epithelial stem cells and cancer. Cell Cycle 10: 2865–2873.