Abstract—Control of permanent magnet synchronous machines (PMSMs) requires absolute rotor position measurement/estimation, as well as the magnet polarity detection for the machine start-up, encoders/resolvers being normally used for this purpose. However, these sensors can account for a large portion of the overall drive cost, and require additional room and cabling, therefore penalizing the size and reliability of the drive. This article proposes a method to emulate a resolver in machines using low cost Hall-effect sensors. The proposed Hall-effect resolver system is a new type of angular position sensor for PMSMs. This allows to control machines which do not include a resolver from inverters which require a resolver signal to operate.

Index Terms—Hall-effect sensors, permanent magnet synchronous machines (PMSMs), resolver emulation, rotor speed and position measurement.

I. INTRODUCTION

PERMANENT magnet synchronous machines (PMSMs) have become very popular during the last decades due to their high efficiency, high power density, and superior dynamic response compared with other types of machines, e.g., induction, wound field, or synchronous reluctance machines. Control of PMSMs requires the absolute position of the rotor, i.e., including magnet polarity prior to startup of the machine [1], [2]. Both absolute encoders [3]–[6] and resolvers [16]–[22] comply with this requirement. On the contrary, incremental encoders will require some additional mechanism to obtain the rotor initial position. Combined use of incremental encoder and Hall-effect sensors [3]–[10] provides the absolute position.

Table I shows a comparative analysis of position sensors normally used in industry applications. Optical encoders are likely the preferred option in general purpose applications; however, they are less robust than magnetic encoders and resolvers, the last being the preferred option for, e.g., hybrid-electric vehicles and electric vehicles motors [13]–[15], aircrafts, satellite antennas, or robots [11]–[13]. Although resolvers provide absolute position, its use always implies additional hardware (a resolver to digital converter is needed [12], [17], [18]), room and cabling, therefore penalizing cost, size, and reliability of the drive.

In addition of conventional position sensors, a number of alternative solutions have been reported in the literature. A planar angular position sensor is proposed in [23], with a similar working principle as a variable reluctance (VR) resolver. However, this sensor is highly sensitive to electromagnetic interference due to its construction and requires additional electronic circuit to operate. The sensor proposed in [24] provides angular position output that is not compatible with standard encoder or resolver signals. In [25], a contactless capacitive angular position sensor is proposed, but it is characterized for presenting a nonlinear behavior. Other noncontact angular positions sensors based on Hall-effect devices for automotive applications (e.g., throttle position detection, shaft position, etc.) are also commercially available [26], [27]. The main drawbacks of these methods are the robustness decrease, inertia increase, and extra room.

This article proposes a method to emulate resolvers using the signals provided by low-cost Hall-effect sensors, Hall-effect
resolver (HER), which is an extension of [28]. Stability of the HER system is evaluated and compared with standard sensors. Uses of the HER system could be twofold: first, it would enable the use of machines that do not include a resolver, with electric drives that require a resolver signal to operate and second, a new type of position sensor for PMSM. Appealing properties of the HER system are reduced cost as well as simple, light, and robust construction, as there are no moving parts or couplings.

This article is organized as follows: design and operation principles of resolvers are presented in Section II, emulation of a resolver using Hall-effect sensors is presented in Section III, machine and Hall-effect sensors placement is presented in Section IV, experimental results are presented in Section V, and conclusions are presented in Section VI.

II. RESOLVER DESIGN AND PRINCIPLES OF OPERATION

This section briefly reviews the design and operating principles of resolvers. Commercial resolvers can be classified into wound field (WF) [16]–[19] and VR [20], [21]. WF resolvers include an excitation winding in the rotor, which is magnetically coupled with two identical stator windings having 90° mutual electrical phase shift [16]–[19]. A sinusoidal voltage, typically called carrier, is applied to the rotor windings, via brushes and rings or alternatively by means of a magnetic coupling (i.e., rotating transformer) [16]–[19]. The resulting voltages in the two-stator windings are a sine and cosine signal whose angle is modulated by the rotor angle. WF resolvers have a wide temperature range of operation, are small and light, and with a simple and robust construction; in addition they are highly insensitive to noise and tolerate long transmission cables length [16]–[19]. On the other hand, VR resolvers have both the output and the excitation windings in the stator; no brushes or rotating transformer being therefore required. In general, VR resolvers are even less expensive and more robust than WF resolvers [13], [14], [20], [21].

Resolvers can be seen as a special type of rotary transformer that couples a primary winding [Input, see Fig. 1(a)] with two secondary windings [Output 1 and 2, see Fig. 1(a)] that are 90 electrical degrees phase shifted; note that Fig. 1(a) shows a schematic representation of a VR resolver. Excitation signal, i.e., V_{source} in Fig. 1(a), is typically a sinusoidal signal (1), see Fig. 1(b), where V_0 and ω_{source} are the magnitude and frequency of the excitation signal, respectively. The excitation frequency depends on the resolver type. Brushless resolvers typically operate in the range of 1 to 10 kHz, while VR resolvers operate around 10 kHz. For the sake of compatibility with conventional resolvers, frequencies of 2 and 10 kHz will be used in this article.

The output signals of the resolver are (2) and (3), $V_{\text{out,1}}$ and $V_{\text{out,2}}$, respectively, see Fig. 1(c) and (d), where k is the transformation ratio of the resolver, θ_r is the position of the resolver, ω_r is the rotating frequency of the resolver, and X is a multiplicative factor for the angle [13]

$$V_{\text{source}} = V_0 \sin (\omega_{\text{source}} t)$$

$$V_{\text{out,1}} = V_0 \sin (\omega_{\text{source}} t) \cdot k \cdot \sin (X \theta_r)$$

$$V_{\text{out,2}} = V_0 \sin (\omega_{\text{source}} t) \cdot k \cdot \cos (X \theta_r) .$$

$V_{\text{out,1}}$ and $V_{\text{out,2}}$ fed a resolver-to-digital (R/D) converter [11]–[22], which typically includes a demodulation stage [12], [17]–[19], [32], [33]; $V_{\text{out,1}}$ and $V_{\text{out,2}}$ after the demodulation being expressed by (4) and (5). A large variety of methods have been proposed to obtain the rotor position, θ_r, from (4) and (5) [12], [17]–[19], [32], [33]

$$V'_{\text{out,1}} = k \cdot \sin (X \theta_r)$$

$$V'_{\text{out,2}} = k \cdot \cos (X \theta_r) .$$

III. EMULATION OF A RESOLVER USING HALL-EFFECT SENSORS

This section presents the proposed system to emulate a resolver using Hall-effect sensors.

Hall-effect sensors are typically used to convert a magnetic flux density signal into a voltage signal (i.e., Hall voltage). It consists on a semiconductor element (i.e., Hall element), see Fig. 2, which fed with a current I_z. In the presence of a magnetic field B_y in Fig. 2, the induced Hall voltage (V_H) is proportional to both the current applied, I_z, and the magnetic flux density, B_y, (6), where hw is the cross-sectional area of the element, e is the
charge of the electron, and \(n \) stands for the charge carrier density. Since \(e, \hbar, \) and \(n \) are constants, \(V_H \), will be proportional to \(\overline{B_y} \) and \(I_z \).

\[
V_H = \frac{I_Z \overline{B_y}}{\hbar we} \quad (6)
\]

\[
V_H = k(I_Z \overline{B_y}). \quad (7)
\]

Fig. 3 shows and schematic representation of the test machine that will be used for the experimental verification of the proposed HER system. The HER system consists of two Hall-effect sensors, 90 electrical degrees phase shifted, HALL-1 and HALL-2 in Fig. 3(a). The sensors will be mounted on the end frame of the machine, measuring field in the radial direction; i.e., the sensors will measure the leakage flux in y-axis direction \(B_y \), see Fig. 3(b) and (c), which will vary as the rotor rotates [29]. The output of HALL-1 and HALL-2 will consist of a sine and cosine waveforms containing the position information [28]–[30].

Hall sensors are normally fed using a dc current. The resulting output signals of the two Hall-effect sensors are shifted by 90° as shown in Fig. 4(a).

However, it is possible to feed the sensors using a sinusoidal signal (either voltage or current), i.e., same as WF and VR resolvers [16]–[21]. The output signals from the two Hall-effect sensors are shown in Fig. 4(b). The peak value of the resulting signals will be proportional to the magnet leakage flux density seen by the sensor and to the current feeding the sensor (7). Similarities between the signals in Fig. 4(b) are those produced by traditional resolvers in Fig. 1(c) and (d) evident, what strongly support the idea that the same signal processing used with the resolver signals could be applied to the signals produced by the Hall sensors. It is noted that in this case, there is no element attached to the rotor, the solution being therefore simple, compact, and robust.

It must be noted that the proposed method assumes a linear response of the sensor with the excitation signal. To validate this assumption, a sensor was placed on top of a PM [see Fig. 5(a)], being subjected therefore to a constant field. The sensor was fed with a sinusoidal voltage \(V_{in} \) shown in Fig. 5(b) [see Fig. 5(a)]. Fig. 5(c) and (d) shows the output signals of the sensor, \(V_{out} \), and excitation signal \(V_{in} \) versus output of the sensor \(V_{in} - V_{out} \), see Fig. 5(d)]. The results in Fig. 5 confirm the linear response of the sensor with respect its sinusoidal excitation.

IV. EXPERIMENTAL TEST BENCH

The HER system has been implemented in an IPMSM, its design being shown in Fig. 3. Table II shows the ratings and dimensions of the machine. Hall-effect sensors [31] have been attached to the end shield to the machine, see Fig. 3(c); i.e., the sensors are placed between the rotor and end shield.

Assembly of the sensors does not differ from standard Hall-effect sensors already available in some machines [34], [35], while cabling between sensors and drive is the same as for standard resolvers [16]–[21]. The phase shift among sensors is 90 electrical degrees, which corresponds to 30 mechanical degrees in a 6-pole machine, see Fig. 6(a); the output of the two Hall-effect sensors will be therefore two sinusoidal signals, 90° phase shifted (i.e., sine and cosine waveforms). Hall-effect
sensors that have been used, [31], are standard sensors typically used for motion control in PMSMs [28]–[30]. Standard Hall-effect sensors used in PMSM drives measure the magnetic flux density along one direction, i.e., they are 1-D sensors; Hall-effect sensors used in this work are oriented in the radial direction, i.e., y-axis direction [see Fig. 6(a)], which is expected to provide high sensitivity to PM leakage flux and low sensitivity to stator current [28]–[30].

Stator of the machine is shown in Fig. 6(b). Fig. 6(c) shows the test bench consisting of the test machine and a load machine [36]. Fig. 6(d) shows a schematic representation of the test bench, including load machine, test machine, and connection between the test machine and drive. It can be observed from Fig. 6(d) that the Hall-effect sensors are mounted on the end shield of the non-drive end of the machine; Hall-effect sensors being connected to the “Resolver to digital” control board of the drive [37].

TABLE II	MACHINE PARAMETERS	
	P_{rated} (kW)	7.5
	ω_{rated} (rpm)	4000
	No. of stator slots	36
	Poles	6
	Magnet position (mm)	44.6
	Magnet dimensions: width (mm)	42x6x10
	Height and length (mm)	
	Airgap length (mm)	0.8
	Outer stator radius (mm)	88
	Sensor position:	
	Distance from the rotor in axial direction (mm)	44.6

Fig. 4. Schematic representations of the Hall-effect sensors supply system and resulting signals as the machine rotates at $\omega = 10$ Hz for: (a) dc excitation and (b) ac excitation.

Fig. 5. (a) Schematic representation of the setup for testing Hall-effect sensor linearity. (b) Excitation of the Hall-effect sensor, V_{in}, (c) Output of the Hall-effect sensor, V_{out}. (d) V_{source} versus V_{out}. $\omega_{source} = 2 \pi \cdot 2000$ rad/s, $V_{source} = 2.3$ V.

V. EXPERIMENTAL RESULTS

Experimental results of the HER system are presented in this section for different working conditions of the machine.

A 2 kHz, 5 V_{peak} signal was used to feed the sensor in Figs. 7 and 8, 10 kHz 10 V was used in Figs. 10 to 13. These signals are similar to those used by conventional resolvers, meaning that they can feed directly any existing circuitry designed for the signal processing of conventional resolvers.

It is finally noted that the input impedance of the Hall sensor is ~ 725 Ω [31], the total power consumption of the HER sensor (RMS) being ~ 34.5 mW (~ 17.2 mW per sensor). Input impedance of conventional resolvers (VR and Brushless) varies from ~ 50 Ω to ~ 150 Ω, leading to power consumptions in the range of 250 to 500 mW.

Fig. 7(b) and (c) shows the output signals of the two Hall-effect sensors, $V_{out,1}$ (sine) and $V_{out,2}$ (cosine) when the machine is rotating at 40 Hz and with no fundamental current. Fig. 8(a) and (b) shows the speed and position measured using the HER sensor, an encoder with 4096 pulses per revolution is also shown for comparison purposes. Fig. 8(c) shows position error. It is observed that under no load condition the peak error in the estimated position is <0.07 rad.

Fig. 9 shows the signal processing used for speed and position estimation. Measured flux densities H_{1} and H_{2} are multiplied by
Fig. 6. Machine desing and experimental setup. (a) Machine end shield with the Hall-effect sensors. (b) Machine stator. (c) Test bench. (d) Schematic representation of the test bench and drive.

The bandwidth of the proposed HER will depend primarily on the bandwidth of the PLL, which has been set to 230 Hz. The bandwidth of the Hall sensor 250 kHz, and can be therefore safely neglected.

A. Influence of dq Axes Currents

Both \(d\)- and \(q\)-axis stator currents \([29]\) are expected to interfere with the leakage flux due to the magnets measured by the carrier signal at the demodulation. A second-order low pass filter with a cutoff frequency of 1 kHz is used to remove high frequency noise. The angle of the resulting \(V_\alpha\) and \(V_\beta\) signals \((8)\) is obtained using a synchronous reference frame phase-locked loop, which provides the estimated rotor speed and position \([38]\)

\[
\vec{V}_{s\alpha\beta} = V_\alpha + jV_\beta \\
\vec{V}_{s\alpha\beta} = \vec{V}_{s\alpha\beta}e^{-j\theta_r}. \tag{8}
\]

\[
\vec{V}_{s\alpha\beta} = \vec{V}_{s\alpha\beta}e^{-j\theta_r}. \tag{9}
\]

The experimental results using the HER system (blue) and a conventional encoder (red) show the measured speed, position, and position error for \(\omega_{\text{source}} = 2000 \, \text{rad/s}, V_{\text{source}} = 5 \, \text{V}, \omega_r = 40 \, \text{rad/s}, I_d = I_q = 0 \, \text{pu}\).
Fig. 9. Schematic representation of the signal processing used for speed and position estimation.

Fig. 10. Angular position error (a) when I_d is varied (flux weakening), (b) when I_q is varied (torque current), with and without compensation. $\omega_{\text{source}} = 2\pi \cdot 10000 \text{ rad/s}$, $V_{\text{source}} = 10 \text{ V}$, $\omega_r = 200 \text{ rpm}$.

Fig. 11. Response to a d-axis current step (a) d- and q-axis current, (b) measured position using the HER without and with q-axis current compensation, as from the encoder, and (c) estimated position error. $\omega_{\text{source}} = 2\pi \cdot 10000 \text{ rad/s}$, $V_{\text{source}} = 10 \text{ V}$, $\omega_r = 200 \text{ rpm}$.

Fig. 12. Response to a q-axis current step (a) d- and q-axis current, (b) estimated position using the HER without and with q-axis current compensation. Position provided by the encoder is also shown, and (c) estimation error. $\omega_{\text{source}} = 2\pi \cdot 10000 \text{ rad/s}$, $V_{\text{source}} = 10 \text{ V}$, $\omega_r = 200 \text{ rpm}$.

Hall-effect sensors. d-axis current will affect only to the amplitude of the measured signals, but with no effect on the angles, as it is aligned with the magnet. q-axis current affects the phase of the leakage flux waveform, resulting therefore in a position error.

Fig. 10(a) shows the estimated position error when I_d is varied from 0 to –1 pu (i.e., flux weakening) in steps of 0.25 pu. As expected, d-axis currents do not affect to the accuracy. Similarly Fig. 9(b) shows the results when I_q is varied from 0 to 1 pu in steps of 0.25 pu. As expected, the error increases almost linearly with the q-axis current. However, this error can be compensated, two different options have been evaluated.

1) Linear compensation using (10): the compensation angle, $\Delta \theta$ being proportional to the q-axis current

$$\Delta \theta = a I_q.$$ (10)
2) Trigonometric compensation using (11); the compensation angle that relies on two constants, a and b

$$\Delta \theta = \tan^{-1}\left(\frac{aI_q}{b}\right). \tag{11}$$

Compensation constants are experimentally approximated. Fig. 10(b) shows the position error using these two compensation methods, both leading to similar results (i.e., error <0.1 rad).

Performance of the proposed HER during transient operation has been also analyzed. Fig. 11 shows the experimental results when a d-axis current step of -0.5 pu is applied at $t = 0.35 \text{ s}$ with the machine operating at constant speed. Fig. 11(a) shows the measured d- and q-axis currents. Fig. 11(b) shows the rotor position measured with the proposed system without and with compensation of q-axis current effects as well as the rotor position measured with the encoder. It is noted that the error does not increase due to transients in the d-axis current.

Similarly, Fig. 12 shows the case when a q-axis current step of -0.5 pu is applied (at $t = 0.35 \text{ s}$ for the case of without and with linear compensation, in the second case the error remaining <0.1 rad).

B. Operation at Variable Speed

Performance of the HER is expected to be independent of speed. Fig. 13 shows the sensor signals and the estimated speed and position when the speed varies as shown in Fig. 13(a). Results in Fig. 13(d) show a maximum position error of $\pm 0.05 \text{ rad}$ in steady state, which slightly increases during transients. Maximum error of commercially available VR resolvers ranges from $\pm 0.01 \text{ rad}$ for four-pole variable resolvers to $\pm 0.018 \text{ rad}$ for two-pole variable resolvers. Maximum error of commercially available brushless resolvers is in the range of $\pm 0.006 \text{ rad}$.

VI. Conclusion

This article proposes a method to emulate a resolver using low cost Hall-effect sensors. The proposed HER device consists of two Hall-effect sensors, mounted on the end shield of the machine, 90 electrical degrees phase shifted, which measure the magnetic flux leakage of the PMSM.

Compared to commercial resolvers, the proposed HER sensor has higher error, but in turn it provides several advantages.

1) Very low cost.
2) Reduced size, which eases its integration in the drive, its impact on system inertia being negligible.
3) Increased robustness, as there are no moving parts or coupling.
4) Lower power consumption than conventional resolvers and full compatibility with resolver circuitry.
5) Experimental results have been provided to demonstrate the viability of the proposed HER system.

REFERENCES

[1] R. Nalepa and T. Orlowska-Kowalska, “Optimum trajectory control of the current vector of a non-salient pole PMSM in the field-weakening region,” *IEEE Trans. Ind. Electron.*, vol. 59, no. 7, pp. 2867–2876, Jul. 2012.

[2] D. C. Hanselman, *Brushless Permanent Magnet Motor Design*. New York, NY, USA: Mc-Graw Hill, 1994.

[3] Maxonmotorusa.com, “Maxon sensor—Key information,” Mar. 23, 2017. [Online]. Available: http://www.maxonmotorusa.com/
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 56, NO. 5, SEPTEMBER/OCTOBER 2020

C. Attaianese and G. Tomasso, “Position measurement in industrial drives,” Proc. IEEE Energy Convers. Congr. Expo., vol. 59, no. 1, pp. 4515–4525, Sep./Oct. 2017.

Y. Park et al., “Online detection of rotor eccentricity and demagnetization faults in PMSMs based on Hall-Effect field sensor measurements,” IEEE Trans. Ind. Appl., vol. 55, no. 3, pp. 2499–2509, 2019.

ChenYang-Sensors and Measurements, “Selection guide of Hall effect sensor elements/ICs,” CYS106C, Jan. 2, 2019. [Online]. Available: http://www.hallsensors.de

F. Janabs-Sharifit, V. Hayward, and C.-S. J. Chen, “Discrete-time adaptive windowing for velocity estimation,” IEEE Trans. Control Syst. Technol., vol. 8, no. 6, pp. 1003–1009, Nov. 2000.

Y. Yiyong, B. Zhuo, and C. Pengfei, “Simulation on the angular velocity and displacement measuring system based on DSRF-PLL,” in Proc. IEEE Int. Conf. Sens. Technol. Sci. Eng., Jul. 2014, pp. 221–226.

Faulhaber.com, “Brushless DC servomotors,” Series 22…BX432 3268…BX4. Jan. 9, 2019. [Online]. Available: https://www.faulhaber.com

2020. [Online]. Available: http://www.allegromicro.com/en/Products/Magnetic-Linear-And-Angular-Position-Sensor-ICs/Linear-Position-Sensor-ICs/A1301-2.aspx

ABB motors, “Low-voltage three-phase induction motor, M2QA25M2A,” Jan. 9, 2019. [Online]. Available: https://www.abb.com/product

Jonanber-Sharifi, V. Hayward, and C.-S. J. Chen, “Discrete-time adaptive windowing for velocity estimation,” IEEE Trans. Control Syst. Technol., vol. 8, no. 6, pp. 1003–1009, Nov. 2000.

J. Bergas-Jané, C. Ferrater-Simón, G. Gross, R. Ramírez-Pisco, S. Galceran-Arellano, and J. Rull-Duran, “High-accuracy all-digital resolver-to-digital conversion,” IEEE Trans. Ind. Electron., vol. 59, no. 1, pp. 326–333, Jan. 2012.

Daniel Fernandez (Member, IEEE) received the M.S. degree in power electronic engineering and the Ph.D. degree in electrical and electronic engineering from the University of Oviedo, Gijón, Spain, in 2013 and 2017 respectively.

From July to December 2013, he was an Intern with the Nissan Advanced Technology Center, Japan. From August to November 2015, he was a Visiting Student with The University of Sheffield, and from May to July 2019, he was a Visiting Professor with the University of Padova. He is currently an Assistant Professor with the University of Oviedo. His research interests include design, control, and diagnostics of electric machines and drives.

Mr. Fernandez was the recipient of a Fellowship of the Personnel Research Training Program funded by the Regional Ministry of Education and Science of the Principality of Asturias in 2013. He was also the recipient of the University of Oviedo Outstanding Ph.D. Thesis Award in 2018.

Diego Fernandez received the B.S. degree in industrial electronic engineering in 2016 and the M.S. degree in electric energy conversion and power electronics engineering in 2018, from the University of Oviedo, Gijón, Spain. He is currently working toward the Ph.D. degree in electrical engineering from the University of Oviedo, Gijón, Spain. He has been a Researcher with the Department of Electrical, Electronic, Computers and Systems Engineering, University of Oviedo, since 2018. His research interests include electric machines and power electronics for electric vehicles, wireless measurement systems, and digital signal processing.
Maria Martínez (Student Member, IEEE) received the M.S. and Ph.D. degrees in electrical engineering from the University of Oviedo, Gijón, Spain, in 2017 and 2020, respectively. She is currently a Postdoctoral Researcher with the Department of Electrical, Electronic, Computers and Systems Engineering, University of Oviedo. She was an Intern with the Nissan Advanced Technology Center, Atsugi, Japan, in 2019, and a Visiting Student with Aalborg University, Aalborg, Denmark, in 2015. Her topics of interest include machine diagnostics, wireless measurement systems, sensorless control and digital signal processing. Ms. Martínez is currently a Board Member of the IAS/PELS/PES Student Branch Chapter of the University of Oviedo.

David Reigosa (Member, IEEE) was born in Spain, in 1979. He received the M.E. and Ph.D. degrees in electrical engineering from the University of Oviedo, Gijón, Spain, in 2003 and 2007, respectively. He is currently an Associate Professor with the Department of Electrical Engineering, University of Oviedo. He was a Visitor Scholar with the Wisconsin Electric Machines and Power Electronics Consortium, University of Wisconsin, Madison, in 2007. He was a Visitor Professor with the University of Sheffield, Sheffield, U.K., Electrical Machines and Drives Group, in 2016. His research interests include sensorless control of induction motors, permanent magnet synchronous motors, and digital signal processing.

Dr. Reigosa was the recipient of the Fellowship of the Personnel Research Training Program funded by Regional Ministry of Education and Science of the Principality of Asturias, from 2004 to 2008. He was also the recipient of eight IEEE Industry Applications Society Conference and IEEE Energy Conversion Congress and Exposition prize paper awards.

Alberto B. Diez (Member, IEEE) received the M.S. and Ph.D. degrees from the University of Oviedo, Gijón, Spain, in 1983 and 1988, respectively. He is currently a Full Professor and the Director with the Department of Electrical Engineering, University of Oviedo. He was a member of the Executive Committee D2 “Rolling-Flat Products” of European Commission from 1998 to 2004. His research interests include control systems, high-performance ac drive control, and industrial supervision, and control processes.

Fernando Briz (Senior Member, IEEE) received the M.S. and Ph.D. degrees from the University of Oviedo, Gijón, Spain, in 1990 and 1996, respectively. He is currently a Full Professor with the Department of Electrical, Computer and Systems Engineering, University of Oviedo. His topics of interest include electronic power converters and ac drives, power systems, machine monitoring and diagnostics, and digital signal processing.

Dr. Briz was the recipient of the IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS Award and nine IEEE Industry Applications Society Conference and IEEE Energy Conversion Congress and Exposition prize paper awards. He is currently the Vice-Chair of the Industrial Power Conversion System Department of the IAS.