ANONLINE ANALYSIS OF FIBROUS REINFORCED CONCRETE SLABS BY ASSUMED STRAIN AND HETEROSIS ELEMENTS

Dr. A. A. Abdul-Razzak
Assist. Professor
College of Engineering/ Mosul University, Mosul-Iraq
Nuha H. Al-Jubory
Assist. lecturer

Abstract

In the present work, the finite element method has been used to investigate the behavior of fibre reinforced concrete slabs in the pre and post-cracking levels up to the ultimate load. Assumed transverse shear strain is used in the formulation to overcome the shear locking, and Heterosis elements are employed in the analysis.

Both an elastic-perfectly plastic and strain hardening plasticity approach have been employed to model the compressive behavior of the fibre concrete. The yield condition is formulated in terms of the first two stress invariants. Concrete crushing is a strain-controlled phenomenon, which is monitored by a fracture surface similar to the yield surface. A layered approach is adopted to discretize the concrete through the thickness. A tension stiffening model has been suggested by making a regression analysis of the experimental results, with index of determination (90.61%).

The steel is considered either as an elastic perfectly plastic material or as an elastic-plastic material with linear strain hardening. Steel reinforcement is assumed to have similar tensile and compressive stress-strain relationship.

Keywords: Finite Element Method, Slab, Steel Fibre Reinforced Concrete, Tension Stiffening Model.
NOTATIONS

\(d \) Equivalent diameter of fibre.
\(E_c \) Concrete elastic modulus.
\(E_{cf} \) Modulus of elasticity of SFRC.
\(E_i \) Initial modulus of elasticity of concrete.
\(E_i, E_s \) Initial and second modulus of elasticity for steel.
\(f_c' \) Uniaxial compressive strength of plain concrete.
\(f_{cf}' \) Uniaxial compressive strength of SFRC.
\(f_t' \) Uniaxial tensile strength of matrix.
\(f_{tf} \) Uniaxial tensile strength of composite.
\(f_u \) Average tensile stress of fibres crossing the cracked section.
\(G_f \) Fracture energy of SFRC.
\(l_f \) Length of fibre.
\(N_f \) Effective number of fibres per unit cross section area
\(V_f \) Volume fraction of fibre.
\(\varepsilon_1, \varepsilon_2 \) Strain in principal direction 1 and 2 respectively.
\(\varepsilon_{cuf} \) Ultimate crushing strain of SFRC.
\(\varepsilon_m \) Limiting tensile strain normal to the crack.
\(\varepsilon_{pf} \) Compressive strain at peak stress of SFRC.
\(\varepsilon_t \) Tensile strain at peak stress of matrix.
\(\varepsilon_{tf} \) Tensile strain at peak stress of composite.
\(\sigma_t \) Tensile stress.
\(\tau_u \) Average characteristic bond strength.
\(\nu \) Poisson's ratio.

Introduction

The purpose of the present paper is to study the behavior of fiber reinforced concrete slabs by using heterosis elements [1] and assumed strain elements [2]. Heterosis elements are a 9-node quadrilateral, which employs serendipity shape function for the transverse displacement, and Lagrange shape function for the rotations.

To enhance the weak properties of concrete such as tensile strength and ductility, steel, glass, polymer and other types of fibres have been added as reinforcement, thus producing a composite material. The mechanical behavior of the resulting composite material is substantially different from that of the matrix material and possessing higher tensile strength, ductility and fracture toughness.

Huang [2] used an artificial method for the elimination of shear locking by interpolating new shear strain fields from the strain values at the sampling points which are appropriately located in individual elements.

The Behavior of Fibrous Concrete in Uniaxial Compression

The additional of fibre to the concrete increased the compressive strength and the peak strain as defined below [3]:

\[
\begin{align*}
 f_{cf}' &= f_c' + 3.6 \frac{V_f l_f}{d_f} \\
 \varepsilon_{pf} &= 0.0021 + 0.0007 \frac{V_f l_f}{d_f}
\end{align*}
\]

where

\(f_{cf}', f_c' \) is the compression strength of standard cylinder for plain and fibre reinforced concrete in (MPa).
\(V_f \) is fibre percentage by volume.
l_f, d_f is fibre length and diameter.

The modulus of elasticity of fibre reinforced concrete calculated using the following equation [4]:

$$E_{cf} = 0.43E_s V_f + E_c (1 - V_f)$$

(3)

E_s, E_c is modulus of elasticity of steel fibre and concrete respectively.

The ultimate strain in compression can be calculated using the following equation [5]:

$$\varepsilon_{cu} = (3011 + 2295 V_f) \times 10^{-6}$$

(4)

The Behavior of Fibrous Concrete in Uniaxial Tension

a) The ascending part:

A simple expression that has been used for defining uniaxial tensile stress-strain curve up to the peak stress value of plain concrete[6]. This model is used by taking the effect of fibre reinforced concrete parameters [7], the comparison between experimental [8] and numerical model shown in Fig.(1):

$$\sigma_t = f_g \left[1 - \left(1 - \frac{\varepsilon_t}{\varepsilon_{gt}} \right)^A \right]$$

(5)

f_g: tensile stress at tensile strain ε_{gt}

$$f_g = \frac{f_t}{1 + 0.016N_f^{1/3} + 0.05 \pi d_f l_f N_f}$$

(6)

Where:

N_f is the number of fibres crossing a unit area

$N_f = 1.64 V_f / \pi d_f^2$

(7)

$$A = \frac{E_i \varepsilon_{gt}}{f_g}$$

(8)

E_i: initial tangent modulus.

b) The descending part:

By making regression analysis of the experimental results of references [9 and 10], the following model is adopted to express the relationship between post-peak stress and strain [7], the comparison between experimental and numerical model shown in Fig.(2), (with index of determination=90.61%):

$$\sigma_t = f_g e^{-f_g \left[\frac{\varepsilon_t}{\varepsilon_{gt}} \right]^R}$$

(9)
Where S and R : constants depend on fibre volume fraction V_f and aspect ratio $\frac{l_f}{d_f}$.

$$S = 0.66875 - 0.48842 \left(V_f \frac{l_f}{d_f} \right) + 0.1125 \left(V_f \frac{l_f}{d_f} \right)^2$$ \hspace{1cm} (10)

$$R = 6.26513 \left(\frac{l_f}{V_f d_f} \right)^{-0.50327}$$ \hspace{1cm} (11)

After crack happened the elastic modulus and Poisson's ratio are reduced to zero in the direction perpendicular to the crack and a reduced shear modulus is employed to simulate aggregate interlock. Two different approaches are used to reduce the shear modulus:

(i) **Approach named G1:** This approach was proposed initially by Al-Mahaidi [11], and modified by many investigations [5,12 and 13] by substituting ε_{ef} for ε_t. The shear modulus of cracked concrete G can be calculated as follows:

$$G' = \frac{0.4G}{(\varepsilon_t/\varepsilon_f)}$$ \hspace{1cm} (12)

(ii) **Approach named G2:** This approach was proposed initially by Abdul-Razzak [5]. According to this approach, for concrete cracked in direction 1:

$$G'_{12} = 0.25G \left[\frac{\varepsilon_1 - \varepsilon_m}{\varepsilon_{ef} - \varepsilon_m} \right]^2 \quad \text{for} \quad \varepsilon_1 < \varepsilon_m$$

$$G'_{12} = 0 \quad \text{for} \quad \varepsilon_1 > \varepsilon_m$$ \hspace{1cm} (13)

Where:

$$\varepsilon_m = \frac{3G_f}{h_f f_u} + \varepsilon_{ef}$$ \hspace{1cm} (14)

$$G_f = 0.04592\frac{V_f l_f^2}{d_f}$$ \hspace{1cm} (15)

$$f_u = 0.4V_f \tau_u l_f / d_f$$ \hspace{1cm} (16)

$$\tau_u = 2.62 - 0.0036N_f$$ \hspace{1cm} (17)
Numerical Application

Example 1.

A simply supported square slab was tested by Ali [14]. The test specimen has (1800*1800)mm with (125)mm thickness and an effective depth of (100)mm to steel reinforcement. The material properties of tested slab are summarized in Table(1). The slab was modeled by four elements. Due to the symmetry of the slab, only quarter of the slab is analyzed. Four steel layers are used to represent the reinforcement and eight concrete layers are found to be enough for the analysis. All dimension and detail of the slab shown in Fig.(3).

![Figure 3: Dimension and detail of slab No.(S-2) [14]](image-url)

Table (1) Details of the slab of reference [14].

Slab No.	E_{cf}	E_s	V^*_c	f'_{cf}	f'	f_y	l_f/d_f	A_{s}	A_s	ε_{cuf}
S-2	35480	204000	0.6	34.8	3.44	460	100	7-Φ8	12-Φ10	0.0044

$V^*_c = 0.15$.

* Crimped steel fibre 0.5*50 mm

Fig. (4) shows a comparison between two models of cracked shear modulus G_1 and G_2. These two models give good agreement compared with experimental results. However, G_1 model gives ultimate load less than G_2 model for both the assumed and heterosis elements. Both of G models give ductile results compared to experimental results.

Fig. (5) shows a comparison between the assumed strain element and 9-node Lagrangian degenerate element. The used of 9-node Lagrangian degenerate element shows stiff results and larger failure loads, this may be due to the shear locking that happened in 9-node Lagrangian degenerate element.

Fig. (6) shows a comparison between the assumed strain element and heterosis element. Both elements show a good agreement compared with experimental results.
Fig.(7) shows the cross section of the slab (S-2), it is seen the cracks that happened in the slab at the ultimate load, and the yield of concrete under the load.

Fig.(8) shows crack patterns at 84kN, 156kN, 192kN and at ultimate load using G2 model, it is seen that the cracks increased when the load increased.

Fig.(4) The effect of G1 and G2 models on load deflection curves.

Fig.(5) The comparison between assumed and lagrangian element on load deflection curves.

Fig.(6) The comparison between assumed strain and heterosis elements on load deflection curves.

Fig.(7) Cross section of slab (S-2) at ultimate load
Example 2.

A simply supporting circular slab was tested by Walraven J. et al [15]. The diameter of slab was (1750) mm and the total depth was (140) mm, and the effective depth of (110) mm to steel reinforcement. The material properties of the tested slab are summarized in Table (2). The slab is modeled by three elements. Due to the symmetry of the slab, only are quarter of the slab is analyzed. Two steel layers are used to represent the reinforcement and eight concrete layers are found to be enough for the analysis. All dimensions and details of the slab shown in Fig.(9), and finite element mesh shown in Fig.(10).

Slab No.	E_{cf}	E_s	V_r	f_{cf}	f_{if}	f_y	l_f/d_f	ρ	ε_{cf}
S-6	29317	200000	1.0	38.8	3.5	465	62.5	1.0	0.0053

$V_r = 0.15$.

*Paddled steel fibre 0.8*50 mm
Fig. (11) shows a comparison between two models of cracked shear modulus G_1 and G_2. These two models give small softening when compared with experimental results. However, G_2 gives results of ultimate load more than G_1 model.

Fig. (12) shows a comparison between the used of assume strain elements and heterosis elements. The used of two elements show a good agreement with experimental results.

Fig. (11) The effect of G_1 and G_2 model on load deflection
Fig. (12) The comparison between Assume strain and Heterosis element on load deflection curves.

Conclusions
1. The developed models for fiber concrete concerning the strain hardening plasticity and tension stiffening models proved to give satisfactory results for the analysis of reinforced concrete slabs subjected to incremental loading up to failure.
2. Two shear moduli of cracked fibre concrete is used and it is concluded that the shear crack approach G2 gives better results than G1 approach compared to experimental results.
3. The assumed strain and heterosis elements proved to be efficient for nonlinear analysis of fibrous reinforced concrete slabs, and no locking was detected in these types of elements.

References
1. Hughes, T.J.R., and Cohen, M., “The heterosis finite element for plate bending”, J. of Computers and Structures Vol. 9, 1978, pp. 445 – 480.
2. Huang, H.C., “Static and Dynamic Analysis of Plates and Shells theory, Software and Applications”, Springer, Verlag, Berlin, Heidelberg 1989.
3. Soroushian, P., and Lee, C. D., “Constitutive modelling of steel fiber reinforced concrete under direct tension and compression”, Proc. of the Inter. conf. on recent developments in fiber reinforced cements and concrete, 18-20 Sept. 1989, Cardiff (U.K.), Eds. Swamy and Barr, Elsevier Applied Science, pp. 363-377.
4. Patton, M.E., and Whittoker, W.L., “Effects of fiber content and damaging load on steel fiber reinforced concrete stiffness ”, ACI J., Vol. 80, No. 2, January – February 1983, pp. 13 – 16.
5. Abdul-Razzak, A.A., “Nonlinear finite element analysis of fibrous reinforced concrete structural members ” Ph.D. Thesis, University of Mosul, Iraq, Aug. 1996, 233 pps.
6. Gopalaratnam, V.S., and Shah, S.P., “Softening response of plain concrete in direct tension”, ACI J., Vol. 82, No. 27, May – June 1985, pp. 310 – 323.
The work was carried out at the University of Mosul