Синдром полиорганный недостаточности (СПОН) – это суккупность патологических изменений, которые возникают в терминальной стадии функционирования багатых органов и характеризуются включением в них органов, при которых они не могут включить токсические вещества без нарушения жизнедеятельности организма. На данный момент не разработано точных клинических рекомендаций и ведущих к селезёнки.

У эксперименте разработана модель системного урежения организма тетрахлорометаном [4], которая грунтуется на включении оксидативного стресса, что вызывает развитие СПОН у человека [5] и сопровождается патологическими изменениями печени, почек и селезёнки [1, 5].

На стадии этапа развитию медицины для коррекции различных патологий перспективным обёктом в качестве вспомогательные мезенхимальные стволовые клетки, которые могут быть легко отмирают в разных джерел [3]. Используют повсеместное распространение за счет использования мезенхимальных стволовых клеток, изо целеледования дыхательного резервуар, рубцовых изменений миокарда [3]. На данный момент существует возможность использования клеток для восстановления функции селезёнки.

У зв'язку із вищенаведеними методами отказано было дословление морфологических особенностей селезёнки

Многоорганная недостаточность (МОФС) – это сложная синдром, характеризующаяся нарушением функции многих органов, ведущая к смерти. МОФС может быть вызвана различными факторами, включая токсическое действие, стресс и воспаление.

Материалы и методы. В работе использовались 2–3-месячные белые мыши (n = 45), весившие 22–24 г. Животные были разделены на группы.

Результаты. Установлено, что мезенхимальные стволовые клетки могут быть использованы для коррекции различных патологических изменений в органах.

Заключение. Выводы исследования подтверждают возможность использования мезенхимальных стволовых клеток для лечения системных заболеваний.

Ключевые слова: регенерация, мезенхимальные стволовые клетки, морфологические особенности селезёнки.

Key words: regeneration, mesenchymal stem cells, morphological features of spleen.

Многие исследования показывают, что мезенхимальные стволовые клетки могут быть использованы для коррекции различных патологических изменений в органах.

Выводы. Результаты исследования подтверждают возможность использования мезенхимальных стволовых клеток для лечения системных заболеваний.

Ключевые слова: регенерация, мезенхимальные стволовые клетки, морфологические особенности селезёнки.
Роботу виконували на 2–3-місячних мишах \(n = 45 \) лінії ICR, масою 22–24 г. Тварин розділяли на групи. Контрольну групу \(n = 5 \) склали тварини, яким внутрішньовидріли вводили 0,3 мл 0,9%-го розчину NaCl, без моделювання патології. Тваринам експериментальної групи \(n = 20 \) моделювали поліорганну недостатність внутрішньоочеревинним введенням 0,3 мл 30%-го масляного розчину тетрахлорметану 2 рази на тиждень протягом 12 тижнів.

Мишам експериментальної групи \(n = 20 \) одразу ж після закінчення моделювання СПОН (внутрішньоочеревинне введення, 0,3 мл 30%-го масляного розчину тетрахлорметану 2 рази на тиждень протягом 12 тижнів) однакрatically внутрішньовидріли вводили \(1 \times 10^6 \) ембріональних мезенхімальних фібробластоподібних клітин мишей лінії ICR, носіїв гену GFP. Використовували вказану дозу мезенхімальних фібробластоподібних стовбурових клітин мишей лінії ICR, оскільки результати попередніх досліджень довели, що введення більшої їх концентрації недоцільне [2].

Первинну культуру мишиніх ембріональних клітин отримували з м’яких тканин 15–17-денних ембріонів мишей. Фрагменти тканин вимитували в розчин пепсину та стрептоміцину, обробляли триспином, ресуспендували та висівали на середовище DMEM. У експерименті використовували клітини не вище другого пасажу.

Через 3 та 9 тижнів після введення стовбурових клітин усіх тварин виводили з експерименту. Для гістологічного аналізу забирали фрагменти селезінки. Після стандартної обробки виготовляли парафінові зрізи, які забарвлювали гематоксиліном та еозином. Мікропрепарати досліджували на мікроскопі «Olympus BX51» («Olympus», Японія). Мікрофотографії аналізували за допомогою програми аналізу біомедичних зображень «ImageJ v. 1.50» («National Institutes of Health», США). Морфометрично визначали середню площу лімфоїдних фолікулів, питому площі білої пульпи.

Утримання тварин, маркування та необхідні маніпуляції виконували з дотриманням принципів біотехніки та положень Директив 2010/63/EU Ради Європи та Європейського парламенту ‘Щодо захисту лабораторних тварин, які використовуються з науковою метою’.

Отримані цифрові дані обробляли за допомогою статистичного пакету «GNU PSPP» («Free software foundation», США) із перевіркою на нормальност розподілу критерієм Колмогорова–Смирнова, а також критерієм Крускала–Уолліса, для порівняння ознак груп. The control group \(n = 5 \) comprised the animals with intravenous injection of 0.3 ml of 0.9% NaCl, with no pathology simulation. In animals of experimental group \(n = 20 \) we simulated a multiple organ failure via intraperitoneal administration of 0.3 ml of a 30% tetrachloromethane oil solution twice a week for 12 weeks. Immediately after completing MOFS simulation (intraperitoneal administration of 0.3 ml of a 30% tetrachloromethane oil solution twice a week for 12 weeks) the mice of experimental group \(n = 20 \) were intravenously injected with \(1 \times 10^6 \) embryonic mesenchymal fibroblast-like stem cells of ICR mice, GFP gene carriers. We used here just the mentioned dose of mesenchymal fibroblast-like stem cells of ICR mice, since their higher concentration was proven to be inexpedient in previous findings [2].

The primary cell culture was derived from soft tissues of 15–17-day murine embryos. The tissue fragments were kept in Penicillin and Streptomycin solution, treated with trypsin, resuspended and inoculated in DMEM. The cells from cultures not older than passage 2 were used in the experiment.

In 3 and 9 weeks after stem cell administration, all the animals were sacrificed. Spleen fragments were taken for histological analysis. After their standard treatment, the paraffin sections were prepared, further stained with hematoxylin and eosin. The micropreparations were analyzed with microscope Olympus BX51 (Olympus, Japan). Microphotographs were processed by the Image J (version 1.50) software (National Institutes of Health, USA). An average area of lymphoid follicles and a specific one of white pulp were determined morphometrically.

Animal housing, labeling and necessary manipulations were carried out in compliance with bioethical principles and provisions of the Directive 2010/63/EU of the European Parliament and of the Council ‘On the Protection of Animals Used for Scientific Purposes’.

The obtained digital data was processed using the software for statistical analysis GNU PSPP (Free Software Foundation, USA). The normal distribution was verified with the Kolmogorov–Smirnov test and Kruskal–Wallis one as well. The Mann-Whitney U test was used to compare the characteristics between the groups.

The analysis of spleen histological preparations of animals of control group demonstrated the spleen parenchyma to be of a normal structure, consisted of red and white pulp (Fig. 1). In spleen of the animals control group the white pulp area was 53.49%. The amount of connective tissue was minimal. The white pulp was represented by medium-sized follicles (lymph nodes) and periartrial sheaths. An average area of follicle was \((75,667.24 \pm 4,389.65) \mu \text{m}^2 \). The red pulp was formed by Billroth’ striae and venous sinuses.
Анализ гистологических препаратов селезенки тварин контрольной группы в отличие, что паренхима селезенки мала нормальную будущую и складывалась из червоной и белой пульпы (рис. 1). В селезенке тварин контрольной группы площадь белой пульпы дорожка из 53,49%. Количество спорыночной ткани минимальное. Белая пульпа представлена фолликулами, прилегающими к очерёдному розу (лимфобластные клетки) и периферидермальными пяточками. Сердечная пульса органа складывалась (75667,24 ± 4389,65) мкм². Червоная пульпа формировалась селезениковыми тяжами Бельская и венозными венами.

На гистологических препаратах селезенки тварин экспериментальной группы I выявлено, что паренхима складывалась из червоной и белой пульпы. Морфологическая структура селезенки тварин данной группы мала ознаки атрофии, которые были близко выражены через 3 тяжки после останной их части трахеи и белика на 9-му тяжке (рис. 2). На 3-му тяжке площадь белой пульпы складывалась 42,0% и уменьшилась до 37,2% на 9-му тяжке. Розмер фолликулов уменьшился, в них были низкие незначительные длины фиброзу. Сердечная пульса органа складывалась на 3-му тяжке (48591,74 ± 2229,70) мкм², что значительно меньше, нежели в тварин контрольной группы (p < 0,05). На 9-му тяжке после закрепления моделирования СПОН сердечная площадь фолликулов складывалась (25413,46 ± 4808,64) мкм², что значительно меньше порывково с поперечным спрессованием (p < 0,05). Червоная пульпа мала ознаки фиброзу.

В сечениях животных селеznьи экспериментальной группы I в очевидной мере тяжкей была в составе и белой пульпы. Морфологическая структура селезенки тварин данной группы мала ознаки атрофии, которые были близко выражены через 3 тяжки после останной их части трахеи и белика на 9-му тяжке (рис. 2). На 3-му тяжке площадь белой пульпы складывалась 42,0% и уменьшилась до 37,2% на 9-му тяжке. Розмер фолликулов уменьшился, в них были низкие незначительные длины фиброзу. Сердечная пульса органа складывалась на 3-му тяжке (48591,74 ± 2229,70) мкм², что значительно меньше, нежели в тварин контрольной группы (p < 0,05). На 9-му тяжке после закрепления моделирования СПОН сердечная площадь фолликулов складывалась (25413,46 ± 4808,64) мкм², что значительно меньше порывково с поперечным спрессованием (p < 0,05). Червоная пульпа мала ознаки фиброзу.

In sections of the animals spleen of experimental group 1 the parenchyma was revealed to consist of red and white pulp. The morphological structure of spleen of animals in this group had signs of atrophy, which were more pronounced in 3 weeks after last injection of tetrachloromethane and were kept to week 9 (Fig. 1). To week 3 the area of white pulp was 42.0% and decreased down to 37.2% to week 9. The size of follicles was reduced, and there were insignificant areas of fibrosis in them. An average area of follicle to week 3 was (48,591.74 ± 2,229.70) µm², being significantly lower than in the animals of control group (p < 0.05). To week 9 after completing the MOFS simulation, the average area of follicles was (25,413.46 ± 4,808.64) µm², which was significantly lower than in previous observation period (p < 0.05). The red pulp had signs of fibrosis.

In animals spleen of experimental group 2, subjected to the MOFS model and stem cell administration, the histological sections, stained with hematoxylin and eosin, demonstrated a typical pathomorphological picture of reactive changes and signs of antigenic stimulation in 3 and 9 weeks after the last injection of tetrachloromethane. To week 3 after completing MOFS simulation and stem cell administration, a part of white pulp from the cutting area was 64.5% with a decrease down to 62.4% to week 9. The follicles in spleen had a large size and dark color, and the fibrosis zones were practically absent in them. The average area of spleen follicles 3 weeks...
У селезінці тварин експериментальної групи 2, з моделлю СПОН та введенням стовбурових клітин, на гістологічних препаратах, забарвлених гематоксиліном і еозином, через 3 та 9 тижнів після останньої ін’єкції тетрахлорометану виявлено типову патоморфологічну картину реактивних змін та ознаки антигенної стимуляції. На 3-му тижні після закінчення моделювання СПОН та введення стовбурових клітин частка білої пульпи від площі зрізу складала 64,5% із зменшенням до 62,4% на 9-му тижні. Фолікули в селезінці мали великий розмір та темний колір, зони фіброзу у них практично відсутні. Середня площа фолікулів селезінки через 3 тижні після введення стовбурових клітин складала (93635,66 ± 12765,69) мкм², що значно більше, ніж у тварин групи 1 (p < 0,05). На 9-му тижні середній розмір фолікулів складав (77467,09 ± 7535,83) мкм², що значно більше, ніж у тварин попередньої групи (p < 0,05), та не відрізнявся від контролю (p = 0,23). При цьому у біологічному матеріалі тварин, який досліджували через 9 тижнів після ін’єкції, розмір фолікулів наблизився до норми, а щільність клітин білої пульпи збільшилася (рис. 3). Червона пульпа була щільно заповнена клітинними елементами.

Атрофія білої пульпи та зменшення кількості клітин лімфоцитарного ряду в селезінці тварин із моделлю СПОН, можливо, є ознакою вираження імунної системи та свідчить про міграцію клітинних елементів до уражених органів (печінка, легені, нирки). Відновлення структури фолікулів та збільшення кількості лімфоцитів білої пульпи в селезінці тварин із моделлю СПОН та введенням стовбурових клітин свідчать про активацію імунної відповіді.

Таким чином, встановлені морфологічні зміни у селезінці тварин контрольної та обох експериментальних груп опосередковано свідчать про імуномодулюючий вплив мезінхімальних стовбурових клітин на організм після моделювання поліорганної недостатності введенням тетрахлорометану. Перспективно подальші дослідження свідчать про зв’язок відносин введення клітинних елементів у різних органах за допомогою флуоресцентної мікроскопії.

Література

1. Ferrari R.S., Tieppo M., Rosa D.P. et al. Lung and liver changes due to the induction of cirrhosis in two experimental models. Arq Gastroenterol 2013; 50 (3): 208–213.

2. Kim Y., Kim J., Huh J. et al. The therapeutic effects of optimal dose of mesenchymal stem cells in a murine model of an elastase induced-emphysema. Tuberc Respir Dis 2015; 78(3): 239.
3. Kobolak J., Dinnyes A., Memic A. et al. Mesenchymal stem cells: Identification, phenotypic characterization, biological properties and potential for regenerative medicine through biomaterial micro-engineering of their niche. Methods 2016; 99: 62–68.
4. Kordium V., Chaikovsky Y., Irodov D. et al. Modelling of systemic lesion of organism for development of multitarget cellular and cytokine therapy. Biopolymers and Cell 2016; 32(5): 381–394.
5. Ricon A.R., Covarrubias A., Pedraza-Chaverri J. et al. Differential effect of CCl_4 on renal function in cirrhotic and non-cirrhotic rats. Exp Toxic Pathol 1999; 51: 199–205.
6. Rogobete A., Sandesc D., Papurica M. et al. The influence of metabolic imbalances and oxidative stress on the outcome of critically ill polytrauma patients: a review. Burns & Trauma. 2017; 5(1): 256–234.

References
1. Ferrari R.S., Tieppo M., Rosa D.P. et al. Lung and liver changes due to the induction of cirrhosis in two experimental models. Arq Gastroenterol 2013; 50 (3): 208–213.
2. Kim Y., Kim J., Huh J. et al. The therapeutic effects of optimal dose of mesenchymal stem cells in a murine model of an elastase induced-emphysema. Tuberc Respir Dis 2015; 78(3): 239.
3. Kobolak J., Dinnyes A., Memic A. et al. Mesenchymal stem cells: Identification, phenotypic characterization, biological properties and potential for regenerative medicine through biomaterial micro-engineering of their niche. Methods 2016; 99: 62–68.
4. Kordium V., Chaikovsky Y., Irodov D. et al. Modelling of systemic lesion of organism for development of multitarget cellular and cytokine therapy. Biopolymers and Cell 2016; 32(5): 381–394.
5. Ricon A.R., Covarrubias A., Pedraza-Chaverri J. et al. Differential effect of CCl_4 on renal function in cirrhotic and non-cirrhotic rats. Exp Toxic Pathol 1999; 51: 199–205.
6. Rogobete A., Sandesc D., Papurica M. et al. The influence of metabolic imbalances and oxidative stress on the outcome of critically ill polytrauma patients: a review. Burns & Trauma 2017; 5(1): 256–234.