Infant leukaemias, Congenital leukaemias, Neonatal leukaemias

Karen M. Chisholm

Department of Laboratories, Seattle Children’s Hospital, Seattle, WA, USA; karen.chisholm@seattlechildrens.org

Published in Atlas Database: October 2019

Online updated version: http://AtlasGeneticsOncology.org/Anomalies/InfantLeukID1084.html
Printable original version: http://documents.irevues.inist.fr/bitstream/handle/2042/70770/10-2019-InfantLeukID1084.pdf
DOI: 10.4267/2042/70770

This article is an update of:
Huret JL. Infant leukaemias. Atlas Genet Cytogenet Oncol Haematol 1999;3(2)

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence.
© 2020 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Abstract

Review on congenital/neonatal and infant leukemias, with data on clinics, pathology, and involved genes.

Keywords
congenital, infant, KMT2A, leukemia, neonatal

Identity

Congenital and neonatal leukemias are defined as those diagnosed within the first 4 weeks of life. Account for <1% of childhood leukemias. Infant leukemias are defined as those diagnosed within the first year of life.

Clinics and pathology

EPIDEMIOLOGY

Neonatal/congenital leukemia is estimated at 1-5 cases/million live births (~2 cases per year in the UK) (Roberts et al., 2018).

Infant leukemia is estimated at ~160 cases/year (41 cases per million) in the United States (Brown et al., 2019).

Infant ALL accounts for 2.5% of pediatric ALL cases (Pui et al., 1994).

Infant AML accounts for 6-20% of pediatric AML. Data has shown that patients, diagnosed to have a leukemia at age 5 mths and 2 yrs, already had a KMT2A/ AFF1 (then MLL-AF4) fusion gene in their neonatal blood spots/Guthrie cards (Gale et al., 1997).

Infant leukaemias have been suspected to have an environmental component (Greaves, 1996):
- Some of the leukaemias known to be often related to genotoxic exposure, such as the 11q23 leukaemias and the t(8;16) leukaemia, may also be found in infants.
- There has been a significant increase in infant acute leukaemias incidence of around 2.5% per year for 15 yrs, suggesting the presence of an environmental factor.
- Studies have found an increased risk after maternal marijuana use and alcohol consumption.
- Maternal exposure to dietary flavonoids during pregnancy may contribute to the risk of KMT2A rearranged leukemias.
- Infants with leukaemia (excluding Down syndrome cases) have more congenital anomalies (heart defects, digestive tract anomalies, mental delay).

CLINICS

Sex ratio is balanced, both in AML and in ALL cases.

Neonatal leukemias:

Common to have hepatosplenomegaly (~80% of cases), skin lesions (leukemia cutis, ~50% of cases), CNS involvement (~50% of cases), and/or hyperleukocytosis.

Cutaneous involvement can be the presenting feature and can manifest as the so-called “blueberry muffin baby” appearance with blue, purple, brown, or red nodules.
- 2/3 of AML cases have cutaneous involvement.
- 1/2 of ALL cases have cutaneous involvement.
Anemia, thrombocytopenia, and neutropenia can lead to increased bleeding tendency, infections, and failure to thrive. Infiltration of the CNS can cause cranial nerve palsies, seizures, and papilledema. Meningeal infiltration can manifest as a bulging fontanelle.

Infant leukemias:
Many have aggressive features including high WBC counts, hepatosplenomegaly, frequent CNS involvement, and/or skin infiltrations (leukemia cutis). **PATHOLOGY/CYTGENETICS**

Neonatal leukemia - 2/3 AML; 1/3 ALL
Infant leukemia - more likely ALL than AML

ALL
11q23 (KMT2A) gene rearrangements in 70-80% of infants and up to 91% of those infants younger than 6 months (Pieters et al., 2007; Zweidler-McKay and Hilden, 2008).
Most common KMT2A partners are AFF1, MLLT1, MLLT3, and MLLT10 (Pieters et al., 2007).
Usually express CD19, CD22, and TdT by flow cytometry. Those without KMT2A fusions usually express CD10; those with KMT2A rearrangements often lack CD10 but express CD15.

AML
Usually myelomonocytic (FAB M4), monoblastic/monocytic (FAB M5), or megakaryoblastic leukemia (FAB M7).
11q23 (KMT2A) gene rearrangements in 50% of infants (Brown et al., 2019; Zweidler-McKay and Hilden, 2008).
Most common KMT2A partners are MLLT3, MLLT10, and ELL (Pieters et al., 2007).
Usually express CD13 and CD33 by flow cytometry; M4 and M5 also express CD14 and CD15; M7 also expresses CD61, CD42b, and/or CD41 by flow cytometry.

TREATMENT
ALL: Infant-99 protocol uses a 7-day prednisone prophase and then a hybrid regimen of standard ALL therapy with some AML therapy elements (including cytarabine) (Brown et al., 2019; Pieters et al., 2007).
AML: Generally treated on the same clinical protocols as older children with multiagent chemotherapy plus CNS-directed therapy (Brown et al., 2019).

PROGNOSIS
ALL
4yr event free survival is 47% and 4-year overall survival is 55.3% (Pieters et al., 2007).
However, 4-year EFS of those with KMT2A rearrangements was 37% compared to 74% in those without KMT2A rearrangements.
High WBC (>300 K/uL), young age (<6 months), presence of KMT2A rearrangement, and poor prednisone response were significant predictors of poor outcome (Pieters et al., 2007).

Survival after relapse is low, with 3-year overall survival after relapse of 20.9% (Driessen et al., 2016).
In those who relapse, outcome is negatively impacted by age at original diagnosis (<6 months of age), higher WBC count at diagnosis, and relapse within 1 year after diagnosis (Driessen et al., 2016).
In those with congenital leukemia, the 2-year EFS and OS is 20% (van der Linden et al., 2009).

AML
Outcomes are similar in infants to those of older children with 5-year overall survival of 51% and 5-year event free survival of 44%.
Spontaneous regression/remission can occur in rare cases (Bresters et al., 2002; Roberts et al., 2018; van den Berg et al., 2004).
Survivors of infant leukemia demonstrate increased risk of late effects including growth problems, learning difficulties, hypothyroidism, and pubertal development (Roberts et al., 2018).
Use of hematopoietic stem cell transplantation is controversial and findings are not conclusive as to whether it improves survival.

Disease
Transient abnormal myelopoiesis (TAM) of Down syndrome

Epidemiology
Restricted to newborns with trisomy 21 or mosaic for trisomy 21.

Clinics
Some infants (10-25%) are asymptomatic, only presenting with increased circulating blasts (Massey et al., 2006; Klusmann et al., 2008). Most neonates present at 3-7 days of age with a leukocytosis and an abnormal platelet count (usually thrombocytopenia, but thrombocytopenia has also been identified). Hepatomegaly is common due to fibrosis and/or megakaryoblastic infiltration. Other clinical findings include splanchnomegaly, exudative effusions (including pleural, pericardial, and ascites), and respiratory distress (due to hepatomegaly). In utero presentations include hydrops fetalis and anemia.

Genes
GATA1 somatic mutations are present.

Evolution
Spontaneous resolution of blasts and symptoms occurs in 66-84% of infants over a time period of 2-3 months without a need for intervention (Klusmann et al., 2008; Gamis et al., 2011). The remaining infants may need supportive therapy or chemotherapy. Overall, approximately 15-20% of cases still die, though some of these are due to other abnormalities associated with trisomy 21 (Klusmann et al., 2008; Gamis et al., 2011). Approximately 16-30% of infants, whether they were asymptomatic or had clinical symptoms, develop myeloid leukemia.
associated with Down syndrome (Klusmann et al., 2008).

Disease

11q23 abnormalities

Phenotype/cell stem origin

Acute monoblastic/monocytic or myelomonocytic leukaemia (AML) or CD19+ B-cell acute lymphoblastic leukaemia (B-ALL).

Epidemiology

11q23 (KMT2A) gene rearrangements are present in 70-80% of infants with B-ALL and up to 91% of those infants younger than 6 months with B-ALL (Pieters et al., 2007). 11q23 (KMT2A) gene rearrangements are present in 50% of infants with AML (Brown et al., 2019).

Clinics

Organomegaly; frequent CNS involvement; high WBC count (Huret et al., 1993; Johansson et al., 1998).

Pathology

In those with ALL and KMT2A gene rearrangements, flow cytometry immunophenotyping often shows expression of CD19, CD22, TdT, and CD15 with absence of CD10; CD13 and CD33 may be expressed. In those with ALL and KMT2A gene rearrangements, there is often overexpression of FLT3. In those with AML, there is often expression of CD13, CD14, CD15, and CD33.

Prognosis

4 year event free survival is 37% (Pieters et al., 2007). t(4;11)(q21;q23) KMT2A/AFF1: may have worse outcome (Heerema et al., 1994)

Cytogenetics

t(4;11)(q21;q23) KMT2A/AFF1: most common infant translocation; usually ALL (49% of B-ALL cases, and more often in those <6 months of age), but can be AML (<5%) (acute monoblastic/monocytic or myelomonocytic leukemia), or mixed phenotype acute leukemia (Johansson, et al., 1998).

t(9;11)(p23;q23) KMT2A/MLLT3: found in 22% infant acute monoblastic/monocytic or myelomonocytic AML and 17% of infant ALL (Köller et al., 1989; Swansbury et al., 1998). t(10;11)(p12;q23) KMT2A/MLLT10: found in 27% infant acute monoblastic/monocytic or myelomonocytic AML and 5% of infant ALL (Lillington et al., 1998). t(11;19)(q23;p13.3) KMT2A/MLLT1: found in 22% infant ALL, mixed phenotype acute leukemia, and 15% acute monoblastic/monocytic or myelomonocytic leukemia (Huret et al., 1993; Moorman et al., 1998).

t(11;19)(q23;p13.1) KMT2A-ELL: found in 17% AML, usually acute myelomonocytic or monoblastic/monocytic leukemia (Moorman et al., 1998). other 11q23 rearrangements are rarely found in infants leukaemias.

Disease

t(1;22)(p13;q13) RBM15/MKL1

Phenotype/cell stem origin

Acute megakaryoblastic leukemia (M7 AML).

Note

This is a cryptic fusion not identified by routine karyotyping, and usually requiring RNA sequencing for identification.

Epidemiology

This leukaemia is (nearly) restricted to infant cases; median age is 2-4 months (Bernstein et al., 1999; Chan et al., 1991; Lion and Haas, 1993); accounts for <1% AML.

Clinics

Organomegaly, liver and bone marrow fibrosis.

Prognosis

Remission is obtained in only half cases, median survival is 8 months (Bernstein et al., 1999).

Disease

AML with inv(16)(p13q24) CBFA2T3/GLIS2

Phenotype/cell stem origin

Acute megakaryoblastic leukemia in most cases, though rare other AML subtypes are identified with this fusion.

Epidemiology

Usually presents in infants (Bolouri et al., 2017; Hara et al., 2017).

Prognosis

Poor prognosis with 4-5-year OS ranging from 14-41.7% and 4-5-year EFS ranging from 8-33% (de Rooij et al., 2016; de Rooij et al., 2017; Hara et al., 2017).

Disease

AML with t(11;12)(p15;p13) NUP98/KDM5A

Phenotype/cell stem origin

Acute megakaryoblastic leukemia in most cases, though rare other AML subtypes are identified with this fusion.

Epidemiology

Can present in infants (de Rooij et al., 2016).
Prognosis

Usually a poor prognosis with 4-5-year OS ranging from 22-50% and 4-5-year EFS ranging from 22-36% (de Rooij et al., 2013; de Rooij et al., 2016; de Rooij et al., 2017; Hará et al., 2017).

Disease

inv(16)(p13q22)

Phenotype/cell stem origin

Myelomonocytic leukemia (M4 AML)

Epidemiology

At least 3 cases reported.

Clinics

High WBC, CNS involvement in 2/3 (Pui et al., 1987).

Prognosis

unknown; CR in 5/5.

Disease

t(8;16)(p11;p13) KAT6A/CREBBP

Phenotype/cell stem origin

Acute myelomonocytic or monocytic AML.

Clinics

Leukemia cutis, hepatosplenomegaly.

Prognosis

Has shown spontaneous regression in some cases, though some do relapse (Dinulos et al., 1997; Roberts et al., 2018) Other cases require chemotherapy from diagnosis.

Disease

Juvenile myelomonocytic leukemia

Epidemiology

Annual incidence is approximately 0.67 cases/million with a median age of 1.1-1.8 years and male to female ratio of 2-3:1. (Hasle et al., 1999; Niemeyer et al., 1997; Passmore et al., 2003).

Clinics

Splenomegaly, lymphadenopathy, and skin rashes are common (Hess et al., 1996). The diagnostic criteria for JMML are (Locatelli and Neimeyer, 2015; Baumann, et al., 2017).

Clinical and hematologic features (all 4 required)

Peripheral blood monocyte count $\geq 1 \times 10^9$/L.

Peripheral blood and bone marrow blast percentages $<20\%$.

Genes involved and proteins

KMT2A (MLL)

Location

11q23

DNA/RNA

Encodes a histone-lysine N-methyltransferase, a 431 kDa protein; contains 3 AT hook DNA-binding domains, Zinc fingers, a SET domain which is responsible for its DNA methyltransferase activity, and a bromodomain.

Protein

Regulates gene expression during early development and hematopoiesis; regulates transcription of many target genes, including HOX genes. The fusion proteins usually include the N-terminus AT hook and DNA methyltransferase from KMT2A fused to (little or most of) the partner C-term part from the other chromosome.

References

Bernstein J, Dastugue N, Haas OA, Harbott J, Heerema NA, Huret JL, Landman-Parker J, LeBeau MM, Leonard C, Mann G, Pages MP, Perot C, Pirc-Danoewinata H, Rötzheim B, Rubin CM, Stociak M, Viguie F. Nineteen
cases of the t(1;22)(p13;q13) acute megakaryoblastic leukemia of infants/children and a review of 39 cases: report from a t(1;22) study group. Leukemia. 2000 Jan;14(1):216-8

Chen CS, Sorensen PH, Dorner PH, Reaman GH, Korsmeyer SJ, Heerema NA, Hammond GO, Kersey JH. Molecular rearrangements on chromosome 11q23 predominate in infant acute lymphoblastic leukemia and are associated with specific biologic variables and poor outcome. Blood. 1993 May 1;81(9):2386-93

Dinulos JG, Hawkins DS, Clark BS, Francis JS. Spontaneous remission of congenital leukemia. J Pediatr. 1997 Aug;131(2):300-3

Gale KB, Ford AM, Repp R, Borkhardt A, Keller C, Eden OB, Greaves MF. Backtracking leukemia to birth: identification of clonotyic gene fusion sequences in neonatal blood spots. Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13950-4

Greaves MF. Infant leukemia biology, aetiology and treatment. Leukemia: official journal of the Leukemia Society of America, Leukemia Research Fund, U.K. 1996; 10 (2): 372-377.

Heerema NA, Arthur DC, Sather H, Albo V, Feusner J, Lange BJ, Steinherz PG, Zeltzer P, Hammond D, Reaman GH. Cytogenetic features of infants less than 12 months of age at diagnosis of acute lymphoblastic leukemia: impact of the 11q23 breakpoint on outcome: a report of the Childrens Cancer Group. Blood. 1994; 83 (8): 2274-2284.

Huret JL, Brizard A, Slater R, Charrin C, Bertheas MF, Guilhot F, Hahlen K, Kroes W, van Leeuwen DJ, Defossez P, Drijfhout JW, Huret JL, Brizard A, Slater R, Charrin C, Bertheas MF, Guilhot F, Hahlen K, Kroes W, van Leeuwen DJ, Defossez P, Drijfhout JW. The 11q23 breakpoint on outcome: a report of the Childrens Cancer Group. Blood. 1994; 83 (8): 2274-2284.

Johansson B, Moorman AV, Haas OA, Wilmott AE, Cheung KL, Swanton S, Secker-Walker LM. Hematologic malignancies with t(11;19)(q23;p13) – a cytogenetic, morphologic, immunophenotypic and clinical study of 183 cases. European 11q23 Workshop participants. Leukemia: official journal of the Leukemia Society of America, Leukemia Research Fund, U.K. 1993; 7 (2): 152-160.

Köller U, Haas OA, Ludwig WD, Bartram CR, Harbott J, Panzer-Grünauer R, Hansen-Hagge T, Ritter J, Creutzig U, Knapp W. Phenotypic and genotypic heterogeneity in infant acute leukemia. Leukemia: official journal of the Leukemia Society of America, Leukemia Research Fund, U.K. 1998; 12 (5): 779-787.

Kübler U, Haas OA, Ludwig WD, Bartram CR, Harbott J, Panzer-Grünauer R, Hansen-Hagge T, Ritter J, Creutzig U, Knapp W. Phenotypic and genotypic heterogeneity in infant acute leukemia. Leukemia: official journal of the Leukemia Society of America, Leukemia Research Fund, U.K. 1998; 12 (5): 779-787.

Lillingston DM, Young BD, Berger R, Martineau M, Moorman AV, Secker-Walker LM. The t(10;11)(p21;q23) translocation in acute leukemia: a cytogenetic and clinical study of 20 patients. European 11q23 Workshop participants. Leukemia: official journal of the Leukemia Society of America, Leukemia Research Fund, U.K. 1998; 12 (5): 801-804.

Moorman AV, Hagemeijer A, Charrin C, Rieder H, Secker-Walker LM. The translocations, t(11;19)(q23;p13.1) and t(11;19)(q23;p13.3): a cytogenetic and clinical profile of 53 patients. European 11q23 Workshop participants. Leukemia: official journal of the Leukemia Society of America, Leukemia Research Fund, U.K. 1998; 12 (5): 805-810.

Pui CH, Behm FG, Downing JR, Hancock ML, Shurtleff SA, Ribeiro RC, Head DR, Mahmoud HH, Sandlund JT, Furman WL. 11q23/MLL rearrangement confers a poor prognosis in infants with acute lymphoblastic leukemia. Journal of clinical oncology: official journal of the American Society of Clinical Oncology. 1994; 12 (5): 909-915.

Pui CH, Raimondi SC, Murphy SB, Ribeiro RC, Kalwinsky DK, Dahi GV, Crisp WM, Williams DL. An analysis of leukemic cell chromosomal features in infants. Blood. 1987; 69 (5): 1289-1293.
M, Pieters R. Outcome of relapsed infant acute lymphoblastic leukemia treated on the interfant-99 protocol. Leukemia. 2016 May;30(5):1184-7.

Gamis AS, Alonzo TA, Gerbing RB, Hilden JM, Sorrell AD, Sharma M, Loew TW, Arcoci RJ, Barnard D, Doyle J, Massey G, Perentesis J, Ravindranath Y, Taub J, Smith FO. Natural history of transient myeloproliferative disorder clinically diagnosed in Down syndrome neonates: a report from the Children's Oncology Group Study A2971. Blood. 2011 Dec 22;118(26):6752-9

Hara Y, Shibata N, Okhi K, Tabuchi K, Yamato G, Park MJ, Tomizawa D, Kinoshita A, Shimada A, Arakawa H, Saito AM, Kiyokawa N, Tawa A, Horibe K, Taga T, Adachi S, Taki T, Hayashi Y. Prognostic impact of specific molecular profiles in pediatric acute megakaryoblastic leukemia in non-Down syndrome Genes Chromosomes Cancer. 2017 May;56(4):394-404

Hasle H, Arico M, Basso G, Biondi A, Cantù Rajnoldi A, Creutzig U, Fenu S, Fontans C, Haas OA, Harbott J, Kardos G, Kerndrup G, Mann G, Niemeyer CM, Ptoszkova H, Ritter J, Slater R, Starý J, Stollmann-Gibbens B, Testi AM, van Wering ER, Zimmermann M. Myelodysplastic syndrome, juvenile myelomonocytic leukemia, and acute myeloid leukemia associated with complete or partial monosomy 7. European Working Group on MDS in Childhood (EWOG-MDS). Leukemia : official journal of the Leukemia Society of America, Leukemia Research Fund, U.K. 1999 ; 13 (3) : 376-385.

Hess JL, Zutter MM, Castleberry RP, Emanuel PD. Juvenile chronic myelogenous leukemia. American journal of clinical pathology. 1996 ; 105 (2) : 238-248.

Klussmann JH, Creutzig U, Zimmermann M, Dworzak M, Joch N, Langebrake C, Pekrun A, Macakova-Reinhardt K, Reinhardt D.. Treatment and prognostic impact of transient leukemia in neonates with Down syndrome. Blood. 2008 Mar 15;111(6):2991

Lion T, Haas OA. Acute megakaryocytic leukemia with the t(1;22)(p13;q13) Leuk Lymphoma. 1993 Sep;11(1-2):15-20

Locatelli F, Niemeyer CM. How I treat juvenile myelomonocytic leukemia Blood. 2015 Feb 12;125(7):1083-90.

Locatelli F, Nöllke P, Zecca M, Korthof E, Laino E, Peters C, Pession A, Kabisch H, Uderzo C, Bonfim CS, Bader P, Dilloo D, Starý J, Fischer A, Révéz T, Führer M, Hasle H, Trebo M, van den Heuvel-Eibrink MM, Fenu S, Strahm B, Giorgianì G, Bonora MR, Dufner U, Niemeyer CM; European Working Group on Childhood MDS; European Blood and Marrow Transplantation Group.. Hematopoietic stem cell transplantation (H SCT) in children with juvenile myelomonocytic leukemia (JMML): results of the EWOG-MDS/EBMT trial. Blood. 2005 Jan 1;105(1):410-9.

Massey GV, Zipursky A, Chang MN, Doyle JJ, Nasim S, Taub JW, Ravindranath Y, Dahl G, Weinstein HJ; Children's Oncology Group (COG). A prospective study of the natural history of transient leukemia (TL) in neonates with Down syndrome (DS): Children's Oncology Group (COG) study POG-9481. Blood. 2006 Jun 15;107(12):4606-13.

Niemeyer CM, Arico M, Basso G, Biondi A, Cantu Rajnoldi A, Creutzig U, Haas O, Harbott J, Hasle H, Kerndrup G, Locatelli F, Mann G, Stollmann-Gibbles B, van’t Veer-Korthof ET, van Wering E, Zimmermann M, and members of the European Working Group on Myelodysplastic Syndromes in Childhood (EWOG-MDS). Chronic myelomonocytic leukemia in childhood: a retrospective analysis of 110 cases. Blood. 1997 May 15;89(10):3534-43.

Passmore SJ, Chessells JM, Kempski H, Hann IM, Brownbill PA, Stiller CA.. Paediatric myelodysplastic syndromes and juvenile myelomonocytic leukaemia in the UK: a population-based study of incidence and survival. Br J Haematol. 2003 Jun;121(6):758-67

Pieters R, Schrappe M, De Lorenzo P, Hann I, De Rossi G, Felice M, Hovi L, LeBlanc T, Szczepanski T, Fenster A, Janka G, Rubnitz J, Silverman L, Starý J, Campbell M, Li CK, Mann G, Supphiah R, Biondi A, Vora A, Valsecchi MG. A treatment protocol for infants younger than 1 year with acute lymphoblastic leukaemia (Interfant-99): an observational study and a multicentre randomised trial. Lancet. 2007 Jul 21;370(9583):240-250

Roberts I, Fordham NJ, Rao A, Bain BJ. Neonatal leukaemia Br J Haematol. 2018 Jul;182(2):170-184.

van den Berg H, Hopman AH, Kraakman KC, de Jong D. Spontaneous remission in congenital leukemia is not related to (mosaic) trisomy 21: case presentation and literature review. Pediatr Hematol Oncol. 2004 Mar;21(2):135-44.

van der Linden MH, Creemers S, Pieters R.. Diagnosis and management of neonatal leukaemia. Semin Fetal Neonatal Med. 2012 Aug;17(4):192

van der Linden MH, Valsecchi MG, De Lorenzo P, Möricke A, Janka G, Leblanc TM, Felice M, Biondi A, Campbell M, Hann I, Rubnitz JE, Starý J, Szczepanski T, Vora A, Fenster A, Hovi L, Silverman LB, Pieters R. Outcome of congenital acute lymphoblastic leukaemia treated on the Interfant-99 protocol Blood. 2009 Oct 29;114(18):3764-8.

Zweidler-McKay PA, Hildén JM. The ABCs of infant leukemia. Curr Probl Pediatr Adolesc Health Care. 2008 Mar;38(3):78-94

This article should be referenced as such:

Chisolm KM. Infant leukaemias, Congenital leukaemias, Neonatal leukaemias.. Atlas Genet Cytogenet Oncol Haematol. 2020; 24(7):278-283.