CC-14-1 and CC-18-2 Progenies of Chinese Cabbage Derived from Somatic Hybridization for Resistance to Bacterial Soft Rot

Jianping Ren, Michael H. Dickson, and Elizabeth D. Earle1
Department of Plant Breeding, Cornell University, Ithaca, NY 14853

Additional index words. backcross, Brassica rapa, broccoli, disease resistance, Erwinia carotovora subsp. carotovora, protoplast fusion

Bacterial soft rot, caused by Erwinia carotovora subsp. carotovora, is a serious disease in Chinese cabbage (Brassica rapa L., Pekinensis Group). No effective control methods are available. Phytosanitary and cultural practices are the usual means for reducing the disease infection. Variation of susceptibility among genotypes of B. rapa has been reported (Ren et al., 2001b; Shimizu et al., 1958). It has also been observed that some crucifer species are more resistant to bacterial soft rot than others, and Brassica oleracea L. is generally more resistant than B. rapa (Ren et al., 2001b). By repeated backcrosses to Chinese cabbage after interspecific hybridization between Chinese cabbage and cabbage (B. oleracea L., Capitata Group), a relatively resistant cultivar of Chinese cabbage, ‘Hiratsuka No. 1’, was developed by Shimizu et al. (1962). Genes for resistance to soft rot were also introduced from a nontuber-bearing wild potato into a cultivated potato through protoplast fusion (Austin et al., 1988). Relatively resistant materials of Chinese cabbage and broccoli (B. oleracea L., Italica Group) were identified and selected in previous work (Ren et al., 2000). The materials described herein originated from protoplast fusion between these materials followed by two generations of backcrossing to Chinese cabbage. They showed higher resistance than their fusion parents and likely contain resistance genes from both parents.

Origin

Chinese cabbage CC-14-1 and CC-18-2 were derived from interspecific somatic hybridization between Chinese cabbage (G30449) and broccoli (‘Shogun’, Sakata America). G30449 was obtained from the U.S. Dept. of Agriculture–Agricultural Research Station (USDA–ARS), Plant Genetic Resources Unit, Geneva, N.Y. C3-28, a Chinese cabbage breeding line, derived from recurrent selection (Ren et al., 2001a), served as the recurrent parent in backcrosses. G30449, C3-28, and ‘Shogun’ were identified as more resistant to bacterial soft rot than other tested materials. The breeding scheme is illustrated in Fig. 1.

Somatic hybrids (Ren et al., 2000) were evaluated for resistance to soft rot disease by seedling mist-chamber assay with four replications and six plants per line per replication. Statistical analysis of mean disease severity ratings (MDSR) showed no significant differences among the lines except for CC25, which was significantly more susceptible than the others (Table 1). There was a large plant to plant variation in the morphology and resistance of BC1 lines. Individual BC1 plants with low disease severity ratings and leaf morphology most like Chinese cabbage and plants from the parents were selected and re-evaluated twice by detached leaf assays 2 and 3 months later. In each assay, two or three leaves from each plant were inoculated, and disease lesions were measured 3 d later. The results from the two detached leaf assays were similar (Table 1). The selected BC1 plants CC-14-1 and CC-18-2 had much less disease (0.4- to 0.8-cm lesions) than Chinese cabbage C3-28 and G30449 (1.7- to 14.0-cm lesions). The nuclear DNA content of CC-14-1 and CC-18-2 measured by flow cytometry (Arumuganathan and Earle, 1991) was the same as that of regular Chinese cabbage (1.00 pg/2c). The plants also showed leaf morphology similar to Chinese cabbage.

Their pedigree and disease ratings are given in Table 1. Detailed information about the somatic hybrids and the BC1 generation was previously reported by Ren et al. (2000).

Description and performance

Seven BC1 lines, three parental lines, and a susceptible check CC25 (B. rapa L., Chinensis Group) were evaluated by a seedling mist-chamber assay with four replications and six plants per line per replication. Statistical analysis of mean disease severity ratings (MDSR) showed no significant differences among the lines except for CC25, which was significantly more susceptible than the others (Table 1). There was a large plant to plant variation in the morphology and resistance of BC1 lines. Individual BC1 plants with low disease severity ratings and leaf morphology most like Chinese cabbage and plants from the parents were selected and re-evaluated twice by detached leaf assays 2 and 3 months later. In each assay, two or three leaves from each plant were inoculated, and disease lesions were measured 3 d later. The results from the two detached leaf assays were similar (Table 1). The selected BC1 plants CC-14-1 and CC-18-2 had much less disease (0.4- to 0.8-cm lesions) than Chinese cabbage C3-28 and G30449 (1.7- to 14.0-cm lesions). The nuclear DNA content of CC-14-1 and CC-18-2 measured by flow cytometry (Arumuganathan and Earle, 1991) was the same as that of regular Chinese cabbage (1.00 pg/2c). The plants also showed leaf morphology similar to Chinese cabbage.

Their pedigree and disease ratings are given in Table 1. Detailed information about the somatic hybrids and the BC1 generation was previously reported by Ren et al. (2000).

Description and performance

Seven BC1 lines, three parental lines, and a susceptible check CC25 (B. rapa L., Chinensis Group) were evaluated by a seedling mist-chamber assay with four replications and six plants per line per replication. Statistical analysis of mean disease severity ratings (MDSR) showed no significant differences among the lines except for CC25, which was significantly more susceptible than the others (Table 1). There was a large plant to plant variation in the morphology and resistance of BC1 lines. Individual BC1 plants with low disease severity ratings and leaf morphology most like Chinese cabbage and plants from the parents were selected and re-evaluated twice by detached leaf assays 2 and 3 months later. In each assay, two or three leaves from each plant were inoculated, and disease lesions were measured 3 d later. The results from the two detached leaf assays were similar (Table 1). The selected BC1 plants CC-14-1 and CC-18-2 had much less disease (0.4- to 0.8-cm lesions) than Chinese cabbage C3-28 and G30449 (1.7- to 14.0-cm lesions). The nuclear DNA content of CC-14-1 and CC-18-2 measured by flow cytometry (Arumuganathan and Earle, 1991) was the same as that of regular Chinese cabbage (1.00 pg/2c). The plants also showed leaf morphology similar to Chinese cabbage.

Fig. 1. Breeding scheme used to select for bacterial soft rot resistance in Chinese cabbage.
Table 1. The pedigree and disease ratings of the selected BC2 and their parents.

Material and pedigree	Seedling mist-chamber assay MDSR	Selected plant	Detached leaf assay lesion length (cm) ± SE
BC2			
14 [(S + C4)-8 × C3-28] × C3-28	4.8	CC-14-1	0.4 ± 0.2
18 [(S + C4)-1 × C3-28] × C3-28	5.0	CC-18-2	0.4 ± 0.2
Parents			
B. rapa G30449 (C4)	3.8	C4-1	4.4 ± 1.9
C3-28	3.6	C3-28-1	1.7 ± 0.1
B. oleracea Shogun (S)	5.6	S-1	1.1 ± 0.8
Susceptible check			
B. rapa CC25	8.0	---	---
LSD0.05	2.0	---	---

*Mean disease severity rating averaged from individual plants on a 0–9 scale, where 0 = no disease and 9 = plant dead (Ren et al., 2000b).

*Average lesion length from two to three leaves per plant.

*Minimum significant difference of MDSR based on Fisher multiple comparison.

Availability

Seeds from self-pollination of plants CC-14-1 and CC-18-2 can be obtained from Elizabeth D. Earle, Dept. of Plant Breeding, Cornell Univ., Ithaca, NY 14853-1901.

Literature Cited

- Arumuganathan, K. and E.D. Earle. 1991. Estimation of nuclear DNA content of plants by flow cytometry. Plant Mol. Biol. Rptr. 9:221–231.
- Austin, S., E. Lojkowaka, M.K. Ehlenfeldt, A. Kelman, and J.P. Helgeson. 1988. Fertile interspecific somatic hybrids of *Solanum*: A novel source of resistance to *Erwinia* soft rot. Phytopathology 78(9):1216–1220.
- Ren, J.P., M.H. Dickson, and E.D. Earle. 2000. Improving resistance to bacterial soft rot by protoplast fusion between *B. rapa* and *B. oleracea*. Theor. Appl. Genet. 100:810–819.
- Ren, J.P., R. Petzoldt, and M.H. Dickson. 2001a. Genetics and population improvement of resistance to bacterial soft rot in Chinese cabbage. Euphytica 117:197–207.
- Ren, J.P., R. Petzoldt, and M.H. Dickson. 2001b. Screening and identification of resistance to bacterial soft rot in *Brassica rapa*. Euphytica 118:271–280.
- Shimizu, S., K. Kanazawa, and T. Kobayashi. 1958. Studies on the breeding of Chinese cabbage for resistance to soft rot. I. Difference of resistance among varieties under field conditions (In Japanese with English summary). Bul. Natl. Inst. Agr. Sci. Ser. (Japan) E 6:75–108.
- Shimizu, S., K. Kanazawa, and T. Kobayashi. 1962. Studies on the breeding of Chinese cabbage for resistance to soft rot. III. The breeding of the resistant variety ‘Hiratsuka No. 1’ by interspecific crossing (In Japanese with English summary). Bul. Hort. Res. Sta. (Japan) A1:157–174.