Efficacy and Safety of Radiotherapy Plus EGFR-TKIs in NSCLC Patients with Brain Metastases: A Meta-Analysis of Published Data

Xueyan Wang*, 1, Ye Xu*, 1, Weiqing Tang†, 1 and Lingxiang Liu*

*Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; †Division of Surgery, Guilin Medical University, Guilin, Guangxi, 541000, China

Abstract

Background: The role of radiotherapy (RT) combined with epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) in non-small cell lung cancer (NSCLC) patients with brain metastasis (BM) remains controversial. Therefore, we conducted a meta-analysis to comprehensively evaluate the efficacy and safety of RT plus EGFR-TKIs in those patients. Materials and Methods: Relevant literatures published between 2012 and 2017 were searched. Objective response rate (ORR), disease control rate (DCR), overall survival (OS), intracranial progression-free survival (I-PFS) and adverse events (AEs) were extracted. The combined hazard ratios (HRs) and relative risks (RRs) were calculated using random effects models. Results: Twenty-four studies (2810 patients) were included in the analysis. Overall, RT plus EGFR-TKIs had higher ORR (RR = 1.32, 95%CI: 1.13–1.55), DCR (RR = 1.12, 95%CI: 1.04–1.22), and longer OS (HR = 0.72, 95%CI: 0.59–0.89), I-PFS (HR = 0.64, 95%CI: 0.50–0.82) than monotherapy, although with higher overall AEs (20.2% vs 11.8%, RR = 1.34, 95% CI: 1.11–1.62). Furthermore, subgroup analyses found concurrent RT plus EGFR-TKIs could prolong OS (HR = 0.69, 95% CI: 0.55–0.86) and I-PFS (HR = 0.57, 95% CI: 0.44–0.75). Asian ethnicity and lung adenocarcinoma (LAC) patients predicted a more favorable prognosis (HR = 0.69, 95% CI: 0.54–0.88, HR = 0.66, 95% CI: 0.53–0.83, respectively). Conclusion: RT plus EGFR-TKIs had higher response rate, longer OS and I-PFS than monotherapy in NSCLC patients with BM. Asian LAC patients with EGFR mutation had a better prognosis with concurrent treatment. The AEs of RT plus EGFR-TKIs were tolerated.

Translational Oncology (2018) 11, 1119–1127

Introduction

Lung cancer is the leading cause of cancer-related morbidity and mortality worldwide [1]. Approximately 80% of lung cancers were diagnosed non-small cell lung cancer (NSCLC). About 40% of NSCLC patients developed brain metastasis (BM) during the course of diseases, and 10%–25% of advanced NSCLC patients had BM at initial diagnosis, the risk even higher in those with epidermal growth factor receptor (EGFR) mutation [2,3]. The median overall survival (OS) remains disappointing, less than 3 months, for untreated BM patients [4].

Whole-brain radiotherapy (WBRT) has long been a standard therapy for NSCLC with multiple BMs, providing symptom palliation and prolonging survival [5]. Moreover, stereotactic radiosurgery (SRS) has emerged as a principal alternative treatment for oligo-brain metastasis, allowing for precise tumor targeting with minimal invasive [6,7]. Currently, EGFR tyrosine kinase inhibitors (TKIs) have been recognized as the first-line treatment for advanced NSCLC patients with EGFR mutation-positive [8–10]. Gefitinib and erlotinib can be able to cross the blood–brain barrier (BBB) after disrupted by brain radiotherapy (RT) [11,12]. Particularly, RT and EGFR TKIs might have synergistic anti-tumor effect, with sustained clinical efficacy and favorable safety [13–15]. However, the role of RT combined with EGFR-TKIs for NSCLC patients with BM remains...
controversial [16,17]. Therefore, we performed the meta-analysis to comprehensively evaluate the efficacy and safety of RT plus EGFR-TKIs in those patients.

Materials and Methods

Search Strategy and Selection Criteria

Relevant literatures, published between January 1, 2012 and November 28, 2017 from PubMed, EMBASE, Web of Science, Google Scholar, and Cochrane Library were collected, using the terms “lung cancer”, “lung neoplasms”, “lung tumor”, “brain metastasis”, “brain neoplasms” “radiotherapy”, and “tyrosine kinase inhibitors”.

To be included in the analysis, each study had to fulfill the following criteria: (1) histologically or cytologically confirmed NSCLC and had been diagnosed with one or more BMs by imaging modalities; (2) prospective or retrospective studies; (3) treatment-naive to the BMs; (4) combination therapy: RT (WBRT, SRS or three-dimensional conformal radiotherapy) combined with EGFR-TKIs; monotherapy: EGFR-TKIs alone or RT ± chemotherapy(CT); (5) only the latest and most complete article was included if duplicate studies were from the same population; (6) full text articles in English or Chinese language were available. Two reviewers independently determined study eligibility, disagreements were resolved by consensus.

Data Extraction

Two investigators conducted independently with the standardized forms according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. The following data were collected from each study: first author, year of publication, source of patients, trial phase, histology, number of patients, median ages, number of female, intervention methods, outcomes and adverse events (AEs). In addition, the result was double-checked by a third reviewer and discrepancies were settled by group discussion.

Methodological Assessment

Two reviewers independently assessed the quality of the included literatures according to The Cochrane Handbook for Systematic Reviews (Version 5.1.0), based on the following criteria: (1) random sequence generation; (2) allocation concealment; (3) blinding of participants and personnel; (4) blinding of outcome assessment; (5) incomplete outcome data; (6) selective reporting; (7) other bias. We evaluated methodological quality as low, unclear or high risk of bias. Literatures were defined as low risk of bias (A) when all criteria were assessed as low risk; defined as moderate risk of bias (B) or high risk of bias (C) when one or more criteria were assessed as unclear risk or high risk, respectively.

Definition of Outcomes and Comparisons

The primary outcomes were the OS and I-PFS, then stratified by monotherapy, treatment sequence, ethnicity, histologic type and published year. The effective value of OS and I-PFS were determined by the combination of hazard ratio (HR) and 95% confidence interval (CI), if the CI included 1, then the HR was nonsignificant. For time-to-event data, if a direct report of HR and 95% CI was not possible, estimated value was derived indirectly from other presented data using the methods proposed by Tierney et al. [18].
Furthermore, objective response rate (ORR), disease control rate (DCR) and AEs were estimated by the Relative risk (RR). Response rate was calculated using the Response Evaluation Criteria in Solid Tumors. Complete remission: all tumor lesions completely disappeared and normalization of tumor marker level; Partial response: at least a 30% decrease in the sum of the longest diameters (LD) of target lesions; Progressive disease: at least a 20% increase in the LD of target lesions or the appearance of one or more new lesions. Stabilized disease: neither sufficient shrinkage to qualify for partial response nor sufficient increase to qualify for progressive disease; AEs were evaluated according to the National Cancer Institute Common Terminology Criteria for Adverse Events.

Statistical analysis

χ² and I² tests were used to test the statistical heterogeneity of different studies, no heterogeneity was considered when I² < 50% and P > .1, then the fixed-effects model was used. Otherwise, the random effects model was applied (I² > 50% and P < .1). Z test was used to determine the significance of the pooled HR or RR, and P < .05 was considered statistically significant.

Publication bias were assessed by Egger’s regression and Begg’s funnel plot [19,20], whereas P < .1 was set as statistical significance. Sensitivity analysis was performed to determine the influence of each study regarding overall effective size. OS and I-PFS were calculated using effect variables; ORR, DCR and AEs (Grade ≥ 3) were not mentioned in the paper; Y, have mentioned in the paper; NA, not available.

Table 1. Main characteristics of 24 included studies

Author	Year	S of Pts	Phase	Histology	NP	MA	Female	Combination therapy	Treatment sequence	Monotherapy	Outcomes	AEs	SQ
Zhu [21]	2017	CN Ret	LAC	67/66	56/56	37/35	WBRT/SRS + TKI (gefitinib/erlotinib)	Concurrent TKI (gefitinib/erlotinib)	OS, I-PFS	N B			
Fan [13]	2017	CN Ret	LAC	56/41	56/59	34/20	WBRT/SRS + icotinib	Sequential icotinib	OS, I-PFS, ORR, DCR	N B			
Dohery [22]	2017	CA Ret	NSCLC	157/127	59/65	111/14	WBRT/SRS+ TKI	Concurrent TKI	OS, I-PFS, ORR, DCR	N B			
Wang [23]	2016	CN Ret	NSCLC	37/161	NA	NA	WBRT/SRS + TKI	Sequential WBRT/SRS + CT	OS, I-PFS, ORR, DCR	Y B			
Jiang [16]	2016	CN Ret	NSCLC	51/116	NA	26/62	WBRT+TKI (gefitinib/ erlotinib)	Concurrent TKI	OS, I-PFS, DCR, ORR	N B			
Chen [24]	2016	CN Ret	LAC	53/79	52/52	29/52	WBRT+TKI	Concurrent TKI	OS, I-PFS, ORR	N B			
Byeon [25]	2016	KR Ret	NSCLC	59/62	60/60	36/47	WBRT+SRS + TKI (gefitinib/erlotinib)	Sequential TKI (gefitinib/erlotinib)	OS, ex-PFS	N B			
Xiang [26]	2015	CN Ret	NSCLC	39/96	NA	NA	WBRT+TKI	Concurrent WBRT+CT	OS	N C			
Wang [27]	2015	CN Pro	NSCLC	37/36	61/62	12/13	3D-RT + gefitinib	Concurrent 3D-RT + VMP	OS, ORR, DCR	Y B			
Liu [28]	2015	CN Ret	NSCLC	35/15	46.3/47.5	18/8	WBRT+TKI	Concurrent WBRT	ORR, DCR	N C			
Li [29]	2015	CN Ret	NSCLC	62/34	54/54	12/10	SRS + TKI	Concurrent SRS	OS, I-PFS	Y B			
Lee [14]	2014	UK II	NSCLC	40/40	61.3/62.2	25/29	WBRT+ erlotinib	Concurrent WBRT+ placebo	OS, I-PFS	Y A			
Cai [31]	2014	CN Ret	NSCLC	104/178	65/65	42/60	WBRT/SRS + TKI	Concurrent WBRT/SRS	OS, I-PFS, ex-PFS	N B			
Zhuang [15]	2013	CN Ret	NSCLC	36/22	NA	21/11	WBRT+TKI	Concurrent WBRT+CT	ORR, DCR	Y C			
Chen [26]	2013	CN Ret	NSCLC	35/15	46.3/47.5	18/8	WBRT+TKI	Concurrent WBRT+CT	OS	N C			
Cai [35]	2013	CN Pro	NSCLC	65/92	66/66	25/29	WBRT+ gefitinib	Concurrent gefitinib	OS, I-PFS, ORR, DCR	Y B			
Fu [39]	2012	CN Ret	NSCLC	38/123	NA	NA	WBRT+TKI	Concurrent WBRT	ORR, DCR	Y C			

Abbreviations: NP, number of patients; MA, median ages; S of Pts, source of patients; C/M, combination therapy/monotherapy; AEs: adverse events; SQ: study quality; CN, China; KR, Korea; CA, Canada; UK, the United Kingdom; MC, Multicenter; SL, Switzerland; Ret: retrospective; Pro: prospective; NSCLS: non-small cell lung cancer; LAC, lung adenocarcinoma; TKI, tyrosine kinase inhibitor; WBRT, whole brain radiotherapy; SRS, stereotactic radiosurgery; 3D-CRT, three-dimensional conformal radiotherapy; TMZ, temozolomide; CT, chemotherapy; OS, overall survival; I-PFS, intracranial progression-free survival; ex-PFS, extracranial progression-free survival; ORR, objective response rate; DCR, disease control rate; N, no mention in the paper; Y, have mentioned in the paper; NA, not available.
analyzed using dichotomous variables. Statistical computations were all performed with STATA Version 12.0 (Stata Corporation LP, College Station, TX). All p values were two sided.

Results

Trial Flow

Literature search process was depicted in Figure 1. We identified 186 potentially relevant abstracts, and then 119 were excluded for the following reasons: 68 no target interventions; 27 single-arm studies; 13 reviews and 11 cases reports. Finally, after carefully reading the full-text, 24 studies were included in the analysis. The characteristics of these 24 studies were shown in Table 1.

Study Characteristics

Totally, 2810 patients with BM from 24 studies were enrolled in the analysis. RT plus EGFR-TKIs was performed in 1241 (44.2%) patients, while EGFR-TKIs alone in 470 (16.8%) patients, and RT ± CT in 1099 (39%) patients. In addition, 8 prospective studies [14,15,17,27,33,35,37,38] (665 patients, 23.7%) including one phase III [17] and three phase II [14,15,37] clinical trials and 16 retrospective studies (2145 patients, 76.3%) were included. 20 studies (2402 patients, 85.5%) were conducted among Asian while 4 studies [14,17,22,37] (408 patients, 14.5%) among non-Asian and 8...
studies [13,14,16,21,24,25,29,30] (857 patients, 30.5%) were performed exclusively in patients with EGFR mutations. As for the intervention methods, 8 studies (1020 patient, 36.3%) were conducted with WBRT/SRS plus TKIs versus TKIs alone [13,16,21,22,24,25,29,36], one study (73 patients, 2.6%) with 3D-CRT plus TKIs/VM-26 (teniposide) [27], the other 15 studies [13,16,21,22,24,25,29,36,37], one study (73 patients, 2.6%) with WBRT plus TKI vs. TKI alone/RT ± CT. We also conducted multiple subgroup analyses, shown in Table 2. As for concurrent versus sequential treatment, we found that concurrent RT plus EGFR-TKIs could significantly prolong OS (HR = 0.69, 95% CI: 0.59–0.89, P = .002, Figure S2 A) and I-PFS (HR = 0.64, 95% CI: 0.50–0.82, P = .000) than monotherapy, except for ex-PFS (HR = 0.64, 95% CI: 0.35–1.15, P = .133) (Figure S2 B). However, the subgroup analysis of combination therapy versus TKIs alone showed no improvement in OS (HR = 0.78, 95% CI: 0.59–1.03, P = .08, Figure 3C), although prolonged I-PFS (HR = 0.67, 95% CI: 0.45–0.98, P = .04, Figure 3D) was found in NSCLC patients with BM. Moreover, the analysis was limited to EGFR mutations, no improvement was found in combination therapy for OS (HR 0.85, 95% CI: 0.66–1.08, P = .125, Figure S3 A) and I-PFS (HR 0.79, 95% CI: 0.60–1.05, P = .100, Figure S3 B), regardless of concurrent vs. sequential treatment, RT plus TKI vs. TKI alone/RT ± CT.

Assessment of Study Quality

We evaluated the 24 studies using the seven aspects mentioned above, the risk of bias in this analysis were shown in Figure 2, while the details in Figure S1. Four studies were with random allocation [14,17,27,37], while two with the methods discussion [17,37]. One study concealed the allocation and blinding method [15]. All of the articles applied the intention-to-treat analysis. Finally, 1/24 studies received quality scores of A, while 18/24 of B and 5/24 of C, as shown in Table 1.

Meta-Analysis of Objective Response Rate and Disease Control Rate

ORR and DCR were assessed respectively in 16 studies [13,15,16,22–25,27,28,30,32,33,35–39]. The overall ORR was 64.0% (13.0%–85.7%) in combination therapy and 40.5% (14.4%–78.0%) in monotherapy; the overall DCR was 82.7% (27.9%–98.2%) in combination therapy and 71.9% (31.3–97.6%) in monotherapy. Random effects models were used to pool the RR in both ORR and DCR due to the statistical heterogeneity ($I^2 = 61.6\%$, $P = .001$; $I^2 = 65.9\%$, $P = .000$, respectively). As a result, combination therapy resulted in higher ORR (RR = 1.32, 95%CI: 1.13–1.55, $P = .000$) and DCR (RR = 1.12, 95%CI: 1.04–1.22, $P = .005$) than monotherapy. However, subgroup analysis of combination therapy versus TKIs alone showed no improvement in both ORR (RR = 1.25, 95%CI: 0.99–1.56, $P = .057$, Figure 3A) and DCR (RR = 1.10, 95%CI: 0.93–1.29, $P = .254$, Figure 3B) in NSCLC patients with BM.
Figure 4. Subgroup analysis of OS and I-PFS in concurrent and sequential treatment (A and B), Asian and non-Asian (C and D), LAC and NSCLC (E and F), respectively. Abbreviations: OS = overall survival; I-PFS = intracranial progression-free survival; LAC = Lung adenocarcinoma; NSCLC = non-small cell lung cancer.
patients have asymptomatic or single-brain metastasis. RT, including WBRT and SRS, has long been recognized as a standard therapy in NSCLC patients with BM, even when the incidence of BM due to the prolonged survival with targeting agents and another update [48] had issues involved in 1/15 studies. Therefore, we comprehensive analysis of 24 studies with different monotherapy, treatment sequence, ethnicity, histologic type and published year for both OS and I-PFS. Besides, the stratified analyses for overall AEs were also been performed. As a result, we present more precise update information about the efficacy and safety of RT plus EGFR-TKIs in NSCLC patients with BM.

This meta-analysis showed that combination therapy produced higher ORR and DCR, with longer OS and I-PFS than monotherapy in NSCLC patients with BM. The common AEs of EGFR-TKIs which were tolerated, were rash, dry skin and diarrhea. As for subgroup analyses, we found that combination therapy versus TKIs alone showed no improvement in OS, ORR and DCR, although prolonged I-PFS was found. Thus, the increased efficacy of combination therapy was interpreted cautiously by the TKI therapy. Furthermore, concurrent RT plus EGFR-TKIs could prolong the OS and I-PFS while sequential treatment had no improvement. Then, it confirmed the synergistic effect of RT and EGFR-TKIs [3,31,46]. Additionally, a larger retrospective study had demonstrated that upfront RT, especially SRS, and followed by EGFR-TKIs could prolong OS in NSCLC patients with EGFR mutation and BM [49]. However, it needs to be confirmed by prospective studies. Likewise, Asian LAC patients with BM had an improvement for both OS and I-PFS, which may be ascribed to TKIs. As is known, Asian NSCLC patients had a higher EGFR mutation rate between primary (0%) and brain metastatic tumors (32%) was found [52,53]. Therefore, molecular mechanisms need to be studied with EGFR-TKIs in the process of BM.

Moreover, EGFR-TKIs such as gefitinib and erlotinib, which have the possibility of crossing the BBB and competing with adenosine triphosphate, could enhance radiosensitization [45,46]. Hence, RT combined with EGFR-TKIs seems to be promising strategy for NSCLC patients with BM.

Table 3. Stratified Analysis of the Reported Overall Adverse Events in the 12 Included Studies

Adverse event	NS	NP	Incidence rate(%)	Treatment group	Control group	RRs (95%CI)	P	Heterogeneity test	
headache	6	470	22.0(35.4)	21.4(10.31.8)	1.130(81.1.58)	0.469	4.79	0.05	0.481
fatigue	5	576	20.50(44.2)	12.7(6.96.5)	1.070(74.1.50)	0.721	1.95	0.06	0.744
dizziness	3	242	25.55(6.47.8)	19.10(21.7)	1.510(80.2.83)	0.200	2.70	26.0	0.259
rash	8	763	42.21(40.44)	6.70(44.4)	6.71(162.2786)	0.099	55.84	87.5	0.000
dry skin	2	134	15.92(3.5.9)	1.40(3.3)	8.16(151.41.7)	0.015	0.54	0.04	0.462
mucositis	2	113	5.13(4.6.3)	1.40(3.2)	2.85(036.2.29)	0.319	0.68	0.05	0.409
nausea & vomiting	8	903	26.60(31.9)	17.30(48.1)	1.14(90.1.40)	0.266	4.65	0.05	0.703
anorexia	2	134	195(43.5)	15.57(5.25.8)	1.58(90.4.5)	0.397	0.72	0.05	0.205
diarrhea	8	816	19.65(42.2)	7.80(37.8)	2.16(13.1.45)	0.020	12.27	42.9	0.092
constipation	2	134	17.52(17.5.75)	11.30(25.8)	1.74(0.83.63)	0.141	0.12	0.05	0.725
pneumonitis	3	327	9.30(30.4)	4.90(22.6)	1.78(032.9.92)	0.510	3.72	46.3	0.155
dyspnea	2	139	28.61(25.35)	18.10(37.5)	2.32(019.28.83)	0.512	3.03	67.0	0.082
leucopenia/neutropenia	5	541	13.68(28.9)	16.80(7.25)	0.90(5.0.61)	0.722	5.75	30.5	0.218
anemia	5	562	7.40(15.2)	7.35(10.9)	0.93(035.2.49)	0.889	6.19	35.3	0.186
thrombocytopenia	3	325	5.20(8.7)	9.36(5.14.7)	0.70(10.2.5)	0.586	3.04	34.2	0.219
myelosuppression	2	219	18.70(27.8)	8.26(6.5.9)	0.29(8.0.1.07)	0.064	2.32	56.8	0.128
transaminases	3	171	3.40(5)	9.4(7.10)	2.15(075.6.17)	0.155	2.17	7.8	0.338
myopathy	2	111	8.15(3.11)	11.90(3.31.8)	0.43(10.0.1.83)	0.253	0.16	0.05	0.693
overall	12	1150	20.20(51.9)	11.80(46.5)	1.34(101.62)	0.003	127.26	45.0	0.000

Abbreviations: NS, number of studies; NP, number of patients; RRs, risk rates; CI, confidence interval.

The most common AEs in combination therapy versus monotherapy were rash (42.2% vs 6.7%, RR = 6.72, 95%CI: 1.62–27.86; P = .009), dry skin (15.9% vs 1.4%, RR = 8.16, 95%CI: 1.51–44.17; P = .015) and diarrhea (19.6% vs 7.8%, RR = 2.17, 95%CI: 1.13–4.15; P = .020), as shown in Table 3 and Figure S6.

Test of Heterogeneity and Sensitivity Analysis

The heterogeneity was found with the systemic analysis of OS ($I^2 = 67.1\%$, $\chi^2 = 54.79$, $P = .000$) and I-PFS ($I^2 = 74.1\%$, $\chi^2 = 41.92$, $P = .000$). More importantly, no heterogeneity was detected in the subgroup analysis of non-Asian and sequential treatment for OS. The statistical heterogeneity was reduced after the subgroup analyses for OS (RT + TKI vs TKI, Asian, LAC, published year 2015–2017) and I-PFS (RT + TKI vs RT ± CT, Asian, sequential treatment and published year 2012–2014) (Table 2). Therefore, the most important sources of heterogeneity were different ethnicity, treatment sequence and histologic types.

Furthermore, the results of sensitivity analysis regarding OS and I-PFS were relatively stable, and excluded each of the study did not influence the overall effective size. Thus, there were no potential and important bias factors associated with interventions (Figure S7).

Publication Bias

The Begg’s funnel plot and Egger’s regression test were applied for detecting publication bias in the meta-analysis. No funnel plot asymmetry was found for OS and I-PFS (Begg’s test, $P = .944$, $P = .428$; Egger’s test, $P = .474$, $P = .631$, respectively). Therefore, there was no evidence of significant publication bias in the analysis (Figure S8).

Discussion

BM is a common complication of lung cancer and associated with poor outcomes. Patients with driver mutations may have a higher incidence of BM due to the prolonged survival with targeting agents [40,41]. RT, including WBRT and SRS, has long been recognized as a standard therapy in NSCLC patients with BM, even when the patients have asymptomatic or single-brain metastasis [42–44].
our results. Secondly, several important information such as number of BMs, performance status, EGFR mutation, and extracranial disease control were not consistently reported. But no significant difference was found in each of the included studies. Thirdly, heterogeneity was found in this meta-analysis. Multiple subgroup analyses indicated that different ethnicity, treatment sequence and histologic types may be the major sources of heterogeneity. Last but not least, although the publication bias were not found in this analysis, English and Chinese articles only could not completely avoid language bias.

Conclusion

Our comprehensive analysis suggested that RT plus EGFR-TKIs resulted in higher response rate, with longer OS and I-PFS than monotherapy in NSCLC patients with BM. Asian LAC patients with EGFR mutation will have a better prognosis with concurrent treatment. The common AEs of EGFR-TKIs were rash, dry skin and diarrhea. Nonetheless, more high quality and large-scale clinical trials are necessary to confirm the efficacy and safety of RT plus EGFR-TKIs in NSCLC patients with BM.

Supplementary data to this article can be found online at https://doi.org/10.1016/j.tranon.2018.07.003.

Acknowledgments

This study is supported by National Natural Science Foundation of China (81472782); Natural Science Foundation of Jiangsu Province (BK20141491); and the project of National Key Research and Development Plan of China (2017YFC1309201).

Disclosures

The authors report no conflicts of interest in this work.

References

[1] Siegel R, Miller K, and Jemal A (2017). Cancer Statistics, 2017. CA Cancer J Clin 67, 7–30.

[2] Ruhimi H, Hemminki A, Fallah M, Thomsen K, Sundquist J, and Hemminki K (2014). Metastatic sites and survival in lung cancer. Lung Cancer 86, 78–84.

[3] Berger LA, Riesenberg H, Bokemeyer C, and Atanackovic D (2013). CNS metastases in non-small-cell lung cancer: current role of EGFR-TKI therapy and future perspectives. Lung Cancer 80, 242–248.

[4] Sperduto PW, Kasel N, Robere D, Xu Z, Shanley R, Luo X, Sneed PK, Chao SX, and Chen LK (2015). Blood-brain barrier permeability of gefitinib in patients with brain metastases from non-small-cell lung cancer before and during whole brain radiation therapy. Oncotarget 6, 8366–8376.

[5] Shi YK, Wang L, Han BH, Li W, Yu P, Liu YP, Ding CM, Song X, Ma ZY, and Ren XL, et al (2017). First-line icotinib versus cisplatin/pemetrexed plus pemetrexed maintenance therapy for patients with advanced EGFR mutation-positive lung adenocarcinoma (CONVINCe): a phase 3, open-label, randomized study. Ann Oncol 28, 2434–2450.

[6] Zeng YD, Liao H, Qin T, Zhang L, Wei WD, Liang JZ, Xu F, Dinglin MX, Ma SX, and Chen LK (2015). Blood-brain barrier permeability of gefitinib in patients with brain metastases from non-small-cell lung cancer before and during whole brain radiation therapy. Oncotarget 6, 116–120.

[7] Fan Y, Xu YJ, Gong L, Fang L, HY Lu, Qin J, Han X, Nie FJ, Qiu GQ, and Huang ZY (2017). Effects of icotinib with and without radiation therapy on patients with EGFR mutant non-small cell lung cancer and brain metastases. Sci Rep 7, 10.

[8] Lee SM, Lewanski CR, Counsell N, Oetremeyer C, Bates A, Patel N, Wadsworth C, Ngiy Y, Hackshaw A, and Faivre-Finn C (2014). Randomized Trial of Erlotinib Plus Whole-Brain Radiotherapy for NSCLC Patients With Multiple Brain Metastases. J Natl Cancer Inst 106.

[9] Zhuang H, Yuan Z, Wang J, Zhao L, Peng Q, and Wang P (2013). Phase II study of whole brain radiotherapy with or without erlotinib in patients with multiple brain metastases from lung adenocarcinoma. Drug Des Devel Ther 7, 1179–1186.

[10] Jiang T, Su C, Li X, Zhao C, Zhou F, Ren S, Zhou C, and Zhang J (2016). EGFR TKIs plus WBRT Demonstrated No Survival Benefit Other Than That of TKIs Alone in Patients with NSCLC and EGFR Mutation and Brain Metastases. J Thorac Oncol 11, 1718–1728.

[11] Sperduto PW, Wang M, Robini HM, Schell MC, Werner-Wasik M, Komaki R, Souhami L, Buyyounouski MK, Khuntia D, and Demas W, et al (2013). A phase 3 trial of whole brain radiation therapy and stereotactic radiosurgery alone versus WBRT and SRS with temozolomide or erlotinib for non-small cell lung cancer and 1 to 3 brain metastases: Radiotherapy Therapy Oncology Group 0320. Int J Radiat Oncol Biol Phys 85, 1312–1318.

[12] Tierney JF, Stewart LA, Gherzi D, Burdett S, and Sydes MR (2007). Practical methods for incorporating summary time-to-event data into meta-analysis. Trials 8, 16.

[13] Egger M, Davey Smith G, Schneider M, and Minder C (1997). Bias in meta-analysis detected by a simple, graphical test. BMJ 315, 629–634.

[14] Begg CB and Mazumdar M (1994). Operating characteristics of a rank correlation test for publication bias. Biometrics 50, 1088–1101.

[15] Zhu Q, Sun Y, Cui Y, Ye K, Yang C, Yang D, Ma J, Liu X, J Yu, and Ge H (2017). Clinical outcome of tyrosine kinase inhibitor alone or combined with radiotherapy for brain metastases from epidermal growth factor receptor (EGFR) mutant non small cell lung cancer (NSCLC). Oncotarget 8, 13304–13311.

[16] Doherty MK, Korpanty GJ, Tomaisini P, Alizadeh M, Jao K, Labbe C, Mascaux CM, Martin P, Kamel-Reid S, and Tsao MS, et al (2017). Treatment options for patients with brain metastases from EGFR/ALK-driven lung cancer. Radioter Oncol 123, 195–202.

[17] Wang Y, Fang J, Nie J, Dai L, Hu W, Zhang J, Ma X, Han J, Chen X, and Tian G, et al (2016). Timing of Brain Radiation Therapy Impacts Outcomes in Patients with Non-Small Cell Lung Cancer Who Develop Brain Metastases. Zhongguo Fei Ai Za Zhi 19, 508–514.

[18] Chen Y, Yang J, Li X, Hao D, Wu X, Yang Y, He C, Wang W, and Wang J (2016). First-line epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor alone or with whole-brain radiotherapy for brain metastases in patients with EGFR-mutated lung adenocarcinoma. Cancer Sci 107, 1800–1805.

[19] Byeon S, Ham JS, Sun J-M, Lee S-H, Ahn JS, Park K, and Ahn MJ (2016). Analysis of the benefit of sequential cranial radiotherapy in patients with EGFR mutant non-small cell lung cancer and brain metastasis. Med Oncol 33.

[20] Xiang Z, Chen J, Zhang H, Shen L, and Wei Q (2015). Whole Brain Radiotherapy-Based Combined Modality Treatment of Brain Metastases from
Non-Small Cell Lung Cancer: A Retrospective Analysis of Prognostic Factors. Oncol Res Treat 38, 35–40.

Wang F, Ning F, Liu C, Hao Y, Li L, Yu Z, Chen S, and Li B (2015). Comparison of Gefitinib versus VMP in the combination with radiotherapy for multiple brain metastases from non-small cell lung cancer. Cell Biochem Biophys 71, 1261–1265.

Liu Z (2015). Effect of whole brain radiotherapy combined with targeted therapy and concurrent chemotherapy in the treatment of non-small cell lung cancer. Chin Foreign Med Rev 13, 13–14.

Liu S, Qiu B, Chen L, Wang F, Liang Y, Cai P, Zhang L, Chen Z, Liu S, and Liu M, et al (2015). Radiotherapy for asymptomatic brain metastasis in epidermal growth factor receptor mutant non-small cell lung cancer without prior tyrosine kinase inhibitors treatment: a retrospective clinical study. Radiat Oncol 10, 118.

Kim HJ, Kim WS, Kwon DH, Cho YH, and Choi C-M (2015). Effects of an Epithelial Growth Factor Receptor-Tyrosine Kinase Inhibitor Add-on in brain metastasis from non-small cell lung cancer. J Neuro-Oncol 120, 423–430.

Zhou D, Xu X, Xie H, Ma X, and Bai Y (2013). Therapeutic effects of whole brain radiotherapy with targeted therapy and concomitant chemo-radiotherapy in treatment of non-small cell lung cancer with brain metastasis. Shanghai Jiaotong Univ (Med Sci) 33, 480–484.

Liu P (2013). The effect of epidermal growth factor receptor tyrosine kinase inhibitors combined with radiotherapy in non-small cell lung cancer patients with brain metastasis. Chin Pract Diagn Ther 27, 693–694.

Fan Y, Huang Z, Fang L, Miu L, Lin N, Gong L, H Yu, Yang H, and Mao W (2013). Chemotherapy and EGFR tyrosine kinase inhibitors for treatment of brain metastases from non-small-cell lung cancer: survival analysis in 210 patients. Oncotarget 6, 1789–1803.

Cai Y, Wang JY, and Liu H (2013). Clinical observation of whole brain radiotherapy concomitant with targeted therapy for brain metastasis in non-small cell lung cancer patients with chemotherapy failure. Asian Pac J Cancer Prev 14, 5699–5703.

Zeng YD, Zhang L, Liao H, Liang Y, Xu F, Liu JL, Dinglin XX, and Chen LK (2012). Gefitinib alone or with concomitant whole brain radiotherapy for patients with brain metastasis from non-small cell lung cancer: a retrospective study. Asian Pac J Cancer Prev 13, 909–914.

Pesce GA, Klingebiel D, Ribi K, Zouhair A, von Moos R, Schlaeppi M, Caspar CB, Fischer N, Anchisi S, and Peters S, et al (2012). Outcome, quality of life and cognitive function of patients with brain metastases from non-small cell lung cancer treated with whole brain radiotherapy combined with gefitinib or temozolomide. A randomised phase II trial of the Swiss Group for Clinical Cancer Research (SAKK 70/03). Eur J Cancer 48, 377–384.

Wu T, Lin D, Wang Z, and Peng Y (2012). Effects of gefitinib combined with whole brain radiation on brain metastasis from non-small-cell lung cancer. Chin J Gen Pract 10, 893–895.

Fu H, Zhang X, Xiao Y, Liu X, Long C, and Hu Y (2012). Evaluation of gefitinib plus radiotherapy in non-small-cell lung cancer patients with brain metastases. Zhonghua Yi Xue Za Zhi 92, 524–527.

Brower JV and Robins HI (2016). Erlotinib for the treatment of brain metastases in non-small cell lung cancer. Expert Opin Pharmacother 17, 1013–1021.

Park SJ, Kim HT, Lee DH, Kim KP, Kim SW, Suh C, and Lee JS (2012). Efficacy of epidermal growth factor tyrosine kinase inhibitors for brain metastasis in non-small cell lung cancer patients harboring either exon 19 or 21 mutation. Lung Cancer 77, 556–560.

Khunta D, Brown P, Li J, and Mehta MP (2006). Whole-brain radiotherapy in the management of brain metastasis. J Clin Oncol 24, 1295–1304.

Khan AJ and Dicker AP (2013). On the merits and limitations of whole-brain radiation therapy. J Clin Oncol 31, 11–13.

Murai T, Yamada K, Oshita E, Sato K, Tatewaki K, Yokota N, Ohga S, Iwata H, Iwabuchi M, and Sadao S, et al (2014). Stereotactic radiation therapy for brain metastases from advanced non-small cell lung cancer with or without endothelial growth factor receptor (EGFR) mutations: influence of gefitinib treatment. Int J Radiat Oncol Biol Phys 90, S322–S332.

Porta R, Sanchez-Tortes JM, Par-Ares L, Massari B, Reguart N, Mayo C, Lianes P, Queralt C, Guillem V, and Salinas P, et al (2011). Brain metastases from lung cancer responding to erlotinib: the importance of EGFR mutation. Eur Respir J 37, 624–631.

Weber B, Wintzerdahl M, Memon A, Sorensen BS, Keiding S, Sorensen L, Nexo E, and Meldgaard P (2011). Erlotinib accumulation in brain metastases from non-small cell lung cancer: visualization by positron emission tomography in a patient harboring a mutation in the epidermal growth factor receptor. J Thorac Oncol 6, 1287–1289.

Luo S, Chen L, Chen X, and Xie X (2015). Evaluation on efficacy and safety of tyrosine kinase inhibitors plus radiotherapy in NSCLC patients with brain metastases. Oncotarget 6, 16725–16734.

Jiang T, Min W, Li Y, Yue Z, Wu C, and Zhou C (2016). Radiotherapy plus EGFR TKIs in non-small cell lung cancer patients with brain metastases: an update meta-analysis. Cancer Med 5, 1055–1065.

Maghniaou WJ, Lester-Coll NH, Wu AJ, Yang TJ, Lockney NA, Gerber NK, Beal K, Amini A, Padil T, and Kavanagh BD, et al (2017). Management of brain metastases in tyrosine kinase inhibitor-naïve epidermal growth factor receptor-mutant non-small cell lung cancer: a retrospective multi-institutional analysis. J Clin Oncol 35, 1070–1077.

Shin DY, Na II, Kim CH, Park S, Baek H, and Yang SH (2014). EGFR mutation and brain metastasis in pulmonary adenocarcinomas. J Thorac Oncol 9, 195–199.

Li C, Fang R, Sun Y, Han X, Li F, Gao B, Iafrate AJ, Liu XY, Pao W, and Chen H, et al (2011). Spectrum of oncogenic driver mutations in lung adenocarcinomas from East Asian never smokers. PLoS One 6e28204.

Burel-Vandenbos F, Ambrosetti D, Coutts M, and Pedeutour F (2013). EGFR mutation status in brain metastases of non-small cell lung carcinoma. J Neuro-Oncol 111, 1–10.

Whitsett TG, Inge LJ, Dhruv HD, Cheung PY, Weiss GJ, Bremner RM, Winkles JA, and Tran NL (2013). Molecular determinants of lung cancer metastasis to the central nervous system. Transl Lung Cancer Res 2, 273–283.