The association between non-occupational TV and computer screen-time viewing and cancer risk: Findings from the UK Biobank, a large prospective cohort study

CURRENT STATUS: UNDER REVIEW

International Journal of Behavioral Nutrition and Physical Activity ▪ BMC

Ruth Hunter ✉️ ruth.hunter@qub.ac.uk
Queen's University Belfast
Corresponding Author
ORCID: 0000-0001-7315-0382

Jennifer M. Murray
Queen's University Belfast Centre for Public Health

Helen G. Coleman
Queen's University Belfast Centre for Public Health

DOI: 10.21203/rs.2.18993/v1

SUBJECT AREAS Physical Medicine & Rehab Nutrition & Dietetics

KEYWORDS Sedentary behaviour, Cancer, Cohort study, Epidemiology
Abstract

Background

Evidence is suggestive of sedentary behaviour being associated with an increased risk of endometrial cancer, but the evidence base is too limited to draw any conclusions for other cancers. The aim of the study was to investigate the association between sedentary behaviour and total cancer incidence and site-specific cancer incidence.

Methods

This prospective population-based cohort study involved data from the UK Biobank (470,578 adults; 53.8% females; mean age 56.3 years). Sedentary behaviours including television viewing time, computer use time and daily total screen time were the exposure variables. Primary and secondary outcome measures included incident total cancer, and site-specific cancers identified from the International Classification of Diseases, 9th and 10th revisions (ICD-9 and ICD-10). Cox proportional hazards models were used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) showing the relationship between sedentary behaviour and cancer using continuous (hours/day) and categorical exposure variables. Partition models and isotemporal substitution models were used to investigate the impact of substituting sedentary behaviour with physical activity.

Results

During a mean follow-up time of 7.6 years, 28,992 incident cancers were identified. A 1-hour increase in daily TV screen time was associated with higher risk of oropharyngeal cancer (HR 1.06, 95% CI: 1.02, 1.11), stomach cancer (HR 1.06, 95% CI: 1.001, 1.13), oesophagus and stomach cancer (HR 1.04, 95% CI: 1.005, 1.09),
and colon cancer (HR 1.04, 95% CI: 1.01, 1.06) in fully adjusted models. Participants who reported ≤1 hour/day of TV screen time had a lower risk of lung cancer (HR 0.85, 95% CI: 0.73, 0.997), breast (female only) cancer (HR 0.92, 95% CI: 0.85, 0.996), stomach cancer (HR 0.66, 95% CI: 0.45, 0.97), and oesophagus and stomach cancer (HR 0.78, 95% CI: 0.62, 0.98) compared to participants who reported 1-≤3 hours/day of TV screen time. Isotemporal substitution models showed reduced risk of total cancer (HR 0.97, 95% CI: 0.95, 0.99) and some site-specific cancers when replacing 1-hour/day of TV viewing with moderate-intensity physical activity or walking.

Conclusions

Our findings show that sedentary behaviours were associated with some site-specific cancers (including oropharyngeal, oesophagus and stomach, colon and lung cancer), particularly for TV viewing time. Our findings were less consistent for time spent on computer and daily total screen time. Substitution models showed that replacing 1-hour per day of TV viewing with 1-hour of moderate-intensity physical activity or walking was associated with lower risk of total cancer and lower risk of several site-specific cancers. Health promotion strategies should endorse the message to minimise sedentary behaviour, replacing it with health-enhancing physical activity, and to particularly target TV viewing.

INTRODUCTION

Research in sedentary behaviours has grown rapidly over recent years (1). Such behaviours are seen as distinct from physical inactivity or sleep, and have been defined as “any waking behaviour characterised by an energy expenditure ≤ 1.5 metabolic equivalents (METs), while in a sitting, reclining or lying posture” (1,2).
This definition is typically operationalised as self-reported sitting (including in recreational and occupational activities), television (TV) viewing or other screen-time. The most recent UK Chief Medical Officers' Physical Activity Guidelines lists behaviours such as TV viewing and computer-use as examples of sedentary behaviour, highlighting that self-reported screen time is among the most common measures of sedentary behaviour cited in the literature (3). Screen-time can take many forms including social media use, internet use, gaming, general Smartphone use, watching TV and computer use (regardless of what these devices are used for) (4).

The UK Government guidance on sedentary behaviours, published in 2011 and 2019, suggests that we should minimise time spent in prolonged sedentary behaviours for health benefits (3,5). However, owing to the relative early stage of the evidence base, no further recommendations were provided around a timeframe for what would be deemed a ‘harmful’ level of sedentary time exposure. Even the most recent US guidance published in 2018 does not provide more specific recommendations for minimising sedentary time (6).

Evidence demonstrates that prolonged sedentary time is associated with increased risk of non-communicable diseases (NCDs). Mechanistically, sedentary behaviour is thought to impact particularly on cardio-metabolic diseases through adverse effects on lipid and glucose metabolism (7,8). Recent evidence from a meta-analysis has demonstrated a significant direct association between 6–8 hours daily sedentary time and increased all-cause mortality, cardiovascular disease mortality and Type 2 Diabetes Mellitus risk (9). Prolonged sedentary behaviour is therefore a significant burden on our healthcare systems. In 2016–2017, for example, it was estimated to cost the UK National Health Service £0.8 billion (10).
However, much less is known about sedentary behaviour and cancer, and known biological mechanisms are less well understood (11). The World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR) global report in 2018 stated that evidence on sedentary behaviours is limited but is suggestive as being associated with an increased risk of endometrial cancer (pooled risk estimate from three studies comparing the highest versus lowest levels of sitting time was 1.46, 95% CI: 1.21, 1.76, cases = 1579) (11–14). The evidence base was deemed too limited to draw any conclusions for other cancers (11). However, in a 2018 meta-analysis, Patterson et al. demonstrated significant linear associations of TV viewing with cancer mortality (N = 4 studies; relative risk [RR] 1.02, 95% CI: 1.01, 1.03 per 1-hour increase in TV viewing per day) (9).

More recent evidence from analyses of the large, prospective UK Biobank cohort shows mixed evidence for an association between sedentary behaviour and cancer outcomes (15). Celis-Morales et al (2018) found significant associations of discretionary screen-time (time spent in TV viewing or computer screen use during leisure time) exposure and all-cause mortality (hazard ratio [HR] 1.06, 95% CI: 1.05, 1.07), and cancer incidence (HR 1.04, 95% CI: 1.03, 1.04). This study also found that these results were substantially attenuated by physical activity, cardiorespiratory fitness and grip strength (15). Our research group have previously found no association between non-occupational screen-based sedentary behaviour levels and oesophago-gastric cancer risk within the UK Biobank cohort (16). In contrast, higher levels of TV viewing time were associated with a greater risk of colon cancer in the same study population (HR for ≥ 5 hours per day vs ≤ 1 hour per day = 1.32, 95% CI: 1.04, 1.68) (17), although time spent using computers (excluding using a computer at work) was not associated with colorectal cancer risk.
in the UK Biobank cohort (17). The findings of a 2017 meta-analysis including six studies also demonstrated significant associations between the highest compared with the lowest levels of occupational sedentary behaviour, and risk of colon cancer (pooled RRs 1.44, 95% CI: 1.28, 1.62) (18). On the other hand, there was little evidence of an association between sedentary behaviour and rectal cancer risk (18). Many of the previous studies investigating the association between sedentary behaviour and health outcomes have attempted to adjust for physical activity levels in their analysis. A recent US Government report has highlighted limited evidence on the role of physical activity in displacing the mortality risks associated with sedentary behaviour (6). An improved understanding of these interactive effects would enable more specific recommendations to be made regarding quantifying prolonged sedentary time. Analytical techniques such as partition models and isotemporal substitution models (19) could help to model such predictions, but have yet to be extensively applied in large cohort analyses.

Therefore, this study aimed to investigate sedentary behaviour (including TV viewing, computer use and total screen-use) in relation to total cancer risk and risk of site-specific cancers (including endometrial, colorectal, pre- and post-menopausal breast, prostate, lung, and other cancers) in the large UK Biobank cohort study. The study investigated whether associations varied by gender, age, socio-economic status, smoking and excess body weight. Finally, partition and isotemporal substitution models were used to investigate the impact of substituting sedentary behaviour with physical activity.

METHODS

Study design
Between 2006 and 2010, UK Biobank recruited a cohort of 502,619 adults (5.5% response rate) aged 40–69 years from the general population (20,21). Approximately 9.2 million invitations were mailed to potential participants who were registered with the National Health Service (NHS) and living within a 25-mile radius of one of the 22 assessment centres across England, Scotland and Wales. From this overall cohort, we excluded participants if: (1) they had been diagnosed with malignant cancer (excluding non-melanoma skin cancer) at baseline (n = 26,868); and (2) they did not complete the self-report assessments of their TV screen time (n = 5078), computer time (n = 8000) or total screen time (n = 11,232); (3) they requested to be removed from the UK Biobank dataset as per General Data Protection Regulation (GDPR) (n = 95). This resulted in 470,578 participants being included in the analysis for TV screen time, 467,656 participants being included in the analysis for computer screen time and 464,424 participants being included in the analysis for total screen time. All participants provided informed consent.

Screen time assessment

Relevant screen-time exposure variables were assessed by self-reported time spent watching TV, time spent using the computer outside of work, which were used to derive total screen time. Self-reported TV screen time was assessed for all participants by asking the following question: “In a typical DAY, how many hours do you spend watching TV? (Put 0 if you do not spend any time doing it)” Self-reported computer screen time was assessed for all participants by asking the following question: “In a typical DAY, how many hours do you spend using the computer? (Do not include using a computer at work; put 0 if you do not spend any time doing it).” Durations of < 0 hours were set to missing, as were responses of "Do not know" or "Prefer not to answer". If the respondent replied "Less than an
hour a day", this was recoded to 0.5 hours. Total screen time was then computed as the sum of hours spent watching TV and hours spent using the computer. If the summation of total hours spent watching TV and hours spent using the computer was greater than 24, this was set to missing (n = 35).

Physical activity assessment
Self-report physical activity was assessed for all participants using the validated short-form International Physical Activity Questionnaire (IPAQ) (22) on which participants reported the frequency (i.e. days/week) and duration (i.e. minutes/day) of walking, moderate- and vigorous-intensity physical activity in the past seven days. For each domain (walking, moderate, vigorous), durations of < 10 minutes/day were recoded to 0 and durations of > 180 minutes were truncated at 180 minutes/day in line with IPAQ processing rules. This was used to derive hours/day spent in walking, moderate- and vigorous-intensity physical activity. All data processing was carried out according to official IPAQ rules (23).

Assessment of covariates
Height (m), weight (kg), and waist and hip circumference (cm) were measured by staff at the UK Biobank study centre. Body mass index (BMI) was then calculated from the weight and height measurements (kg/m²). Waist circumference measurements were taken from the level of the umbilicus and regarded as a measure of central obesity, using official cut-off values established by the International Diabetes Federation (> 94 cm in men and > 80 cm in women) (24). Age, sex and postcodes were acquired from a central registry for all participants and updated by the participant. Participants also self-reported their ethnicity, educational attainment, lifestyle behaviours (smoking status, alcohol consumption,
dietary intake and sunscreen/ultraviolet (UV) protection use) and medical history using electronic questionnaires. Townsend deprivation scores were derived from postcodes (25). Core confounders for all models included socio-demographic factors (i.e. age, sex, ethnicity, educational attainment and deprivation index), smoking status, alcohol consumption, fruit and vegetable consumption, BMI, height and waist-hip ratio. Cancer site-specific confounders included use of sun/UV protection (melanoma), self-reported oesophageal reflux (oesophagus cancer), diabetes at baseline (pancreatic and colorectal cancers), aspirin use (colorectal cancers), red and processed meat intake (colorectal cancers), hormone replacement therapy (HRT) use (breast, uterus and colorectal cancers), oral contraceptive use (breast and uterus cancers), number of live births (breast and uterus cancers), age at menarche (breast and uterus cancers), age at menopause (breast and uterus cancers), hysterectomy status (breast and uterus cancers) and self-reported family history of cancer (total cancer, lung, prostate, and breast cancers), based on known aetiological risk factors for these tumours.

Proportions of missing data were less than 1% for all variables apart from aspirin use (1.9%), red meat intake (1.1%), age at menarche (1.6%), age at menopause (2.1%), education (1.5%), fruit and vegetable consumption (2.6%), hysterectomy status (5.9%), family history of cancer (1.5%), minutes of moderate-intensity physical activity (14.0%), vigorous-intensity physical activity (10.5%) and walking (12.7%).

Cancer ascertainment

For the present analysis, the main outcomes were incident total cancer (excluding non-melanoma skin cancer) and site-specific cancers. Incident cancers for participants in the UK Biobank cohort were identified through records maintained at
national cancer registries (Health and Social Care Information Centre and the NHS Central Register) and identified from the International Classification of Diseases, 9th and 10th revisions (ICD-9 and ICD-10 (26)). Cancer outcomes were coded according to ICD-9 and ICD-10 as follows: all cancers excluding non-melanoma skin cancer (ICD-10: C00-C97 excluding C44; ICD9: 140-209 excluding 173), melanoma (ICD-10: C43; ICD-9: 172), oropharyngeal cancers (ICD-10: C00-C14; ICD-9: 140-149), lung (ICD-10: C33-C34; ICD-9: 162), breast: female only (ICD-10: C50; ICD-9: 174), uterus (ICD-10: C54; ICD-9: 182), ovary (ICD-10: C56; ICD-9: 183), prostate (ICD-10: C61; ICD-9: 185), oesophagus, (ICD-10: C15; ICD-9: 150) stomach (ICD-10: C16; ICD-9: 151), hepatobiliary tract cancers (ICD-10: C22-C24; ICD-9: 155-156), pancreatic (ICD-10: C25; ICD-9: 157), kidney (ICD-10: C64-C65; ICD-9: 189.0-189.1), bladder (ICD-10: C66-C67; ICD-9: 188, 189.2), colorectal (ICD-10: C18-C21; ICD-9: 153-154), colon (ICD-10: C18; ICD-9: 153), rectum (ICD-10: C19-C20; ICD-9: 1540-1541), brain tumours (ICD-10: C71; ICD-9: 191), thyroid (ICD-10: C73; ICD-9: 193), and haematological malignancies (ICD-10: C81-C96; ICD-9: 200-208), including separate analysis of non-Hodgkin’s lymphoma (ICD-10: C82-C85; ICD-9: 200, 202).

Statistical analyses

Descriptive statistics for all covariates are presented according to participants’ total daily TV screen time. Categorical variables are presented as participant numbers and percentages. Means and standard deviations (SDs) are presented for continuous variables. Follow-up time in days from baseline was used as the timescale and for each participant end of follow-up occurred at: (1) cancer diagnosis date; (2) date of emigration; (3) date of death; or (4) end of follow-up (14th December 2016), whichever came first.

Cox proportional hazards models were used to estimate hazard ratios (HRs) and
95% confidence intervals (CIs) showing the relationship between a 1-hour increase/day in TV screen time and cancer. All analyses were adjusted for age and sex in the baseline model. Additional covariates were added in the second adjusted model and included ethnicity (white/other), deprivation index (quintiles), education (University degree, A-levels/HNC/HND/NVQ, GCSE/O-level/CSE, Other, None), BMI (kg/m2), height (m), smoking status (never, former light smoker [< 20 pack-years], former heavy smoker [≥ 20 pack-years], current light smoker [< 20 pack-years], current heavy smoker [≥ 20 pack-years]), alcohol intake (never, former, current [< once/week], current [≥ once/week]) and fruit and vegetable intake (< 5 portions/day, ≥ 5 portions/day). Cancer site-specific covariates were included in the third adjusted model for each type of cancer (details included in the footnotes of Tables 2–6). These included use of sun/UV protection, HRT use, oral contraceptive use, number of live births, age at menarche, age at menopause, hysterectomy status, diabetes at baseline, aspirin use, red meat intake, processed meat intake. For analyses including gender-specific covariates (e.g. incident total cancers, colorectal cancer, colon cancer and rectum cancer), separate models were run for males and females and HRs were combined using inverse variance meta-analysis and a fixed-effects model (27–29). Participants were excluded from the analysis if they did not have the complete exposure and covariate data required for each model. We did not adjust for total dietary energy intake as the large amount of missing data (for 57.6% of participants) made this unfeasible. Further analyses were conducted to investigate the role of anthropometric factors by running all models with and without adjustment for waist-hip ratio, as a proxy for central adiposity. Models including incident total cancers, breast cancer, prostate cancer and lung cancer were run with and without adjustment for self-report family history (mother,
father, siblings). The oesophageal cancer model was also run with and without adjustment for self-reported gastro-oesophageal reflux Disease (GORD).

These analyses were repeated separately to investigate the relationship between a 1-hour increase/day in (1) time spent using the computer; (2) total screen time; and cancer risk. Since the association between time spent in sedentary behaviour and cancer risk may not be linear (9,30), we repeated these analyses with categorised independent variables as follows: daily TV screen time (1-≤3 hours [reference category]; ≤1 hour; 3-≤5 hours; >5 hours), computer screen time (≤1 hour [reference category]; none; 1-≤3 hours; >3 hours) and total screen time (1-≤4 hours [reference category]; ≤1 hour; 4-≤8 hours; >8 hours) categorised based on previously published categories (17). The analysis including total screen time was not considered to be the primary analysis since summing the time spent watching TV and the time spent using computers may overestimate total screen time through double counting (if participants watched TV and used computers at the same time). Therefore, the daily TV screen time analysis was considered to be the primary analysis.

A series of partition models and isotemporal substitution models (19) were used for each type of cancer to examine the associations of daily TV screen time, time spent walking/day, time spent in moderate-intensity physical activity/day, time spent in vigorous-intensity physical activity/day and cancer incidence (19,31-34). Partition models examined all behaviours simultaneously, without adjusting for total physical activity time. Therefore, the HR for one type of physical activity represented the effect of increasing this type of physical activity (by 1-hour/day) while holding the other physical activities constant. Since total physical activity time is not included in the model (and thus is not held constant), these results represent the effect of
adding a physical activity type whilst holding the others constant. The effects of substituting one physical activity type by another for the same amount of time (i.e. replacing 1-hour/day of TV screen time for 1-hour/day of walking, moderate-intensity physical activity or vigorous-intensity physical activity) was investigated using isotemporal substitution models which adjusted for time spent walking/day, time spent in moderate-intensity physical activity/day, time spent in vigorous-intensity physical activity/day and total activity time/day (i.e. the summation of walking, moderate activity, vigorous activity and TV screen time). In this case, since total physical activity is included the model (and thus is held constant), these results represent the effect of replacing TV screen time with the same amount of another physical activity type (i.e. walking, moderate- or vigorous- activity) while holding the others constant.

Sensitivity analyses were conducted by confining the analysis to cancers diagnosed at least two years following baseline to examine the impact of removing prevalent disease. Subgroup analyses were conducted by selected baseline characteristics. These included sex, age, deprivation index, smoking status and BMI with reference to obese/non-obese thresholds defined for various ethnic groups by gender in a previous UK Biobank study (35), assuming that participants with mixed backgrounds or ‘other’ ethnicities had the same obesity thresholds as white participants since cut-off points were not available for this group. Further analyses were conducted by creating four categories based on body fat percentage and physical activity levels defined according to the IPAQ. Body fat percentage cut-points were derived from previously established thresholds defined by age, gender, ethnicity and BMI (36). We assumed participants with mixed backgrounds or ‘other’ ethnicities had the same body fat percentage thresholds as white participants. Subgroup analyses were
also conducted by menopausal status for female-specific cancers (i.e. breast, uterus, ovary cancers). Interactions were tested using the Wald test for homogeneity and declared significant if \(p < 0.01 \) in line with previous studies (37).

The proportional hazards assumption was tested for each model formally using Schoenfeld residuals (\(p < 0.05 \) indicated potential violation of the proportional hazards assumption), and by visual inspection of scaled Schoenfeld residual plots (38) and log-log plots (parallel curves indicated that there was no evidence for violation of the proportional hazards assumption). Analyses were carried out using Stata 13 (39).

RESULTS

Participant characteristics according to total daily screen time are shown in Table 1. Among the 470 578 participants included in this analysis, 53.8% were women and the mean age was 56.3 years. Most participants reported that they spent between 2 and 8 hours/day watching TV or using the computer. During a mean follow-up time of 7.6 (SD 1.4) years (median 7.8 years, interquartile range 7.0-8.5), 28 992 incident cancers were identified.

Total TV screen time	≤ 1 hour per day	1-≤3 hours per day	3-≤5 hours per day	> 5 hours/day
No./mean %/SD				
Total participants	470 578	100.0%	97 419	20.7%
Self-report total screen time (hours/day; mean/SD)	3.9	2.1	2.0	1.5

Table 1

Baseline characteristics by self-report TV screen time. Values are numbers and percentages unless otherwise stated.
	2.8	1.7	0.7	0.4	2.5	0.5	4.3	0.5	6.9	1.8					
Time spent watching TV	1.1	1.4	1.2	1.5	1.1	1.3	1.0	1.3	1.1	1.7					
(hours/day; mean/S D)															
Time spent using	2.8	1.7	0.7	0.4	2.5	0.5	4.3	0.5	6.9	1.8					
computers (hours/day;															
mean/S D)															
IPAQ physical activity	314.0	325.6	297.3	309.3	320.9	330.6	321.7	331.4	280.9	311.9					
(mean/S D)															
Minutes of walking	234.5	304.4	226.5	294.8	238.3	307.4	242.4	310.6	195.1	281.1					
physical activity															
Minutes of moderate-	83.2	146.7	90.3	143.7	85.9	147.5	76.3	148.6	58.4	138.0					
intensity physical															
activity															
Minutes of vigorous	56.3	8.1	54.2	8.0	55.9	8.1	58.5	7.6	59.0	7.6					
intensity physical															
activity															
Age at baseline	1.7	0.1	1.7	0.1	1.7	0.1	1.7	0.1	1.7	0.1					
(mean/S D)															
Height (m) (mean/S D)															
Sex															
Female	253	188	53.8%	53	500	54.9%	127	135	53.7%	59	553	54.0%	13	000	50.3%
Male	217	390	46.2%	43	919	45.1%	109	853	46.4%	50	781	46.0%	12	837	49.7%
Ethnicity															
White	443	484	94.6%	90	405	93.3%	224	142	94.9%	104	922	95.4%	24	015	93.3%
Black	750	110	1.6%	1549	1.6%	3358	1.4%	1846	1.7%	752	2.9%				
South Asian	9395	20.0%	2582	2.7%	4721	2.0%	1639	1.5%	453	1.8%					
Chinese	1501	0.3%	465	0.5%	717	0.3%	266	0.2%	53	0.2%					
Mixed background or	7069	1.5%	1949	2.0%	3299	1.4%	1354	1.2%	467	1.8%					
others															
Townsend deprivation															
quintile 1 (Least	94	590	20.1%	19	860	20.4%	51	164	21.6%	20	497	18.6%	30	69	11.9%
deprived)															
2	93	950	20.0%	18	854	19.4%	49	804	21.0%	21	691	19.7%	36	01	14.0%
3	94	166	20.0%	18	857	19.4%	48	706	20.6%	22	379	20.3%	42	24	16.4%
Smoking status	Never	Former light smoker	Former heavy smoker	Current light smoker	Current heavy smoker	Alcohol intake	Dietary intake (mean/SD)	Body Mass Index (Kg/m²) (mean/SD)							
----------------	-------	---------------------	--------------------	---------------------	---------------------	----------------	-------------------------	----------------------------------							
Smoker status															
Never	257 696	55.0%	58 981	60.7%	132 976	56.3%	54 858	49.9%							
Former light smoker	119 085	25.4%	24 556	25.3%	61 147	25.9%	27 891	25.4%							
Former heavy smoker	42 251	9.0%	5350	5.5%	19 256	8.2%	13 521	12.3%							
Current light smoker	27 794	5.9%	5535	5.7%	13 706	5.8%	6646	6.1%							
Current heavy smoker	22 082	4.7%	2735	2.8%	9094	3.9%	6972	6.3%							
Alcohol intake							3281	12.8%							
Never	20 749	4.4%	4873	5.0%	9428	4.0%	4868	4.4%							
Former drinker	16 659	3.5%	3330	3.4%	7128	3.0%	4342	3.9%							
Current drinker: < once/week	106 020	22.6%	19 466	20.0%	50 958	21.5%	27 939	25.3%							
Current drinker: ≥ once/week	326 759	69.5%	69 676	71.6%	169 324	71.5%	73 089	66.3%							
Dietary intake (mean/SD)															
Fruits and vegetables (portion/day)	4.7	3.1	5.1	3.2	4.7	3.0	4.5	3.0	4.2	3.3					
Red meat (portion/week)	2.1	1.5	2.0	1.4	2.1	1.4	2.2	1.5	2.4	1.7					
Processed meat (portion/week)	1.5	1.4	1.3	1.4	1.5	1.4	1.6	1.4	1.9	1.6					
Body Mass Index (Kg/m²) (mean/SD)	27.4	4.8	26.0	4.3	27.3	4.6	28.5	4.9	29.7	5.8					
Body Mass Index (Kg/m²)	<18.5	0.5%	825	0.9%	1113	0.5%	352	0.3%	128	0.5%					
-------------------------	-------	------	-----	------	------	------	-----	------	-----	------					
18.5-<25	152	32.6%	44	44.5%	77	31.9%	26	23.8%	4794	18.8%					
≥25-<30	199	24.6%	37	38.7%	103	43.7%	48	44.3%	9957	39.1%					
30+	113	24.3%	14	15.0%	54	23.0%	34	31.6%	10610	41.6%					

| Body fat percentage (mean/SD) | 31.3 | 8.5 | 28.9 | 8.3 | 31.1 | 8.4 | 33.2 | 8.4 | 34.3 | 8.8 |

| Waist:Hip ratio | 0.9 | 0.1 | 0.9 | 0.1 | 0.9 | 0.1 | 0.9 | 0.1 | 0.9 | 0.1 |

| Below IDF guideline | 202 | 54.3%| 54 | 54.3%| 104 | 54.3%| 36 | 54.3%| 6596| 25.7%|

| Above IDF guideline | 266 | 56.8%| 42 | 43.6%| 131 | 55.8%| 73 | 44.2%| 19032|74.3%|

| Health status |

| Diabetes | 24 | 347 | 5.2% | 3085 | 3.2% | 10404 | 4.4% | 7687 | 7.0% | 3171 | 12.4% |

| Gastroesophageal reflux | 22 | 495 | 4.8% | 3233 | 3.3% | 10672 | 4.5% | 6648 | 6.0% | 1942 | 7.5% |

| Family history |

| Prostate cancer | 37 | 225 | 8.0% | 8431 | 8.8% | 18607 | 8.0% | 8332 | 7.7% | 1855 | 7.3% |

| Breast cancer | 49 | 524 | 10.7%| 10520| 10.9%| 24986 | 10.7%| 11360| 10.5%| 2658 | 10.5% |

| Lung cancer | 59 | 042 | 12.7%| 9596 | 10.0%| 29218 | 12.5%| 16107| 14.9%| 4121 | 16.3% |

| Bowel cancer | 52 | 109 | 11.2%| 10181| 10.6%| 25851 | 11.1%| 12943| 11.9%| 3134 | 12.4% |

| Use of sun/UV protection |

| Never/rarely/sometimes | 203 | 968 | 43.7%| 43450| 44.9%| 99121 | 42.1%| 48286| 44.1%| 13111| 51.4% |

| Most of the time/always | 260 | 241 | 55.7%| 52699| 54.5%| 135033| 57.4%| 60493| 55.3%| 12016| 47.1% |

| Do not go out in sunshine | 2770 | 0.6%| 538 | 0.6%| 1136 | 0.5%| 717 | 0.7%| 379 | 1.5% |

| Aspirin use |

| Regularly uses aspirin | 64 | 822 | 14.0%| 9711 | 10.1%| 29908 | 12.9%| 19246| 17.8%| 5957 | 23.7% |

| HRT use |

| Ever | 95 | 369 | 37.8%| 14791| 27.8%| 46587 | 36.8%| 27639| 46.6%| 6352 | 49.1% |
used HRT Oral contraceptive use	205 528	81.4%	44 285	83.0%	104 772	82.7%	46 695	78.7%	9776	75.6%
Ever taken oral contraceptive pill	1.8	1.2	1.8	1.2	1.8	1.2	1.9	1.2	2.0	1.3
Number of live births (0, 1, 2, 3 + live births)	49.8	5.1	50.0	4.7	49.9	5.0	49.6	5.4	49.0	5.8
Age at menarche (mean/SD)	13.0	1.6	13.0	1.6	13.0	1.6	13.0	1.7	13.0	1.7
Age at menopause (mean/SD)	151 101	59.8%	27 736	51.9%	74 075	58.4%	40 399	68.0%	8891	68.6%
Menopausal status	62 570	24.8%	18 659	34.9%	33 174	26.1%	9075	15.3%	1662	12.8%
Hysterectomy status	39 065	15.5%	7002	13.1%	19 684	15.5%	9969	16.8%	2410	18.6%
Had menopause	17 530	7.8%	2458	5.0%	8193	7.2%	5483	10.6%	1396	12.7%
Not had menopause	207 953	92.2%	46 846	95.0%	105 238	92.8%	46 232	89.4%	9637	87.4%

CSE: Certificate of Secondary Education; GCSE: General Certificate of Secondary Education; HNC: Higher National Certificate; HND: Higher National Diploma; HRT: hormone-replacement therapy; IDF: International Diabetes Federation; MVPA: moderate-vigorous intensity physical activity; NVQ: National Vocational Qualifications; UV: ultraviolet.

\(a\) Defined in terms of pack-years: light (< 20 pack-years), heavy (\(\geq\) 20 pack-years).

\(b\) Based on IDF criteria (waist circumference > 94 cm in men; >80 cm in women).

\(c\) Diagnosed by doctor.

\(d\) Self-reported.

\(e\) Based on self-reported illnesses of father, mother and siblings.

\(f\) Regular use defined as most days of the week for the last 4 weeks.

\(g\) Female participants only.

Association of cancer risk and daily TV screen time
Table 2 and Fig. 1 show the association between daily TV screen time and total cancer risk and site-specific cancer risk. A 1-hour increase in daily TV screen time was associated with higher risk of oropharyngeal cancer (HR 1.06, 95% CI: 1.02, 1.11), stomach cancer (HR 1.06, 95% CI: 1.001, 1.13), oesophagus and stomach cancer (HR 1.04, 95% CI: 1.005, 1.09), and colon cancer (HR 1.04, 95% CI: 1.01, 1.06) in fully adjusted models. In addition, the categorical analysis showed that participants who reported > 5 hours/day of TV screen time had a higher risk of oropharyngeal cancer (HR 1.48, HR: 1.09, 2.01) and a lower risk of uterus cancer (HR 0.61, 95% CI: 0.42, 0.88) compared to participants who reported 1-≤3 hours/day of TV screen time. Participants who reported 3-≤5 hours/day of TV screen time had a higher risk of bladder cancer (HR 1.21, 95% CI: 1.002, 1.45) compared to participants who reported 1-≤3 hours/day of TV screen time, but no dose-response association was evident for greater duration of screen time.

Table 2. Results of Cox proportional hazards analyses investigating the association between self-report TV screen time and cancer incidence.
Disease	Cases	HR (95% CI)*	P-value	HR (95% CI)†	P-value
Lung	2076	1.12 (1.08	<0.001	1.17 (1.14	<0.001
		1.17 (1.14	1.00	1.00	1.00
		1.06 (1.02	0.12**	0.09	0.12**
		0.97 (0.93	1.00	0.96	1.00
		1.003 (0.98	0.59**	0.92	0.59**
		1.02 (1.03)	1.00	0.95	1.00
Breast	5702	1.01 (0.99	0.43	0.93	0.43
(female only)		1.02 (1.01)	1.00	0.97	1.00
		1.003 (0.98	0.77**	0.94	0.77**
		0.979 (0.93	1.00	0.96	1.00
		1.02 (1.03)	0.59**	0.92	0.59**
		1.01 (0.99	1.00	0.95	1.00
Uterus	872	1.04 (0.999	0.053	0.97	0.053
		1.009 (1.002)	1.00	0.97	1.00
		0.97 (0.93	0.21	0.94	0.21
		1.02 (1.02)	1.00	0.96	1.00
		0.97 (0.93	0.24	1.03	0.24
		1.02 (1.03)	1.00	0.95	1.00
Ovary	578	1.002 (0.95	0.93	0.95	0.93
		1.05 (1.09)	1.00	0.92	1.00
		1.003 (0.98	0.53	0.90	0.53
		0.979 (1.02)	1.00	0.93	1.00
		1.002 (0.96	0.53	0.90	0.53
		1.09 (1.08)	1.00	0.93	1.00
Prostate	5979	0.96 (0.95	<0.001	1.08	<0.001
		0.98 (0.98)	1.00	0.96	1.00
		0.99 (0.97	0.12**	1.05	0.12**
		1.004 (1.07)	1.00	1.01	1.00
		0.99 (0.97	0.17**	1.04	0.17**
		1.01 (1.08)	1.00	1.01	1.00
Oesophagus	541	1.10 (1.05	<0.001	1.15	<0.001
		1.15 (1.15)	1.00	1.30	1.00
		1.03 (0.98	0.31**	0.85	0.31**
		1.08 (1.08)	1.00	1.09	1.00
		1.02 (0.97	0.34**	0.86	0.34**
		1.08 (1.08)	1.00	1.09	1.00
Stomach	356	1.14 (1.08	<0.001	0.61	<0.001
		1.03 (1.09)	1.00	1.34	1.00

Note: HR = Hazard Ratio, CI = Confidence Interval.
Colon	1.20	0.88	1.70	2.24		
HR (95% CI)	1.06	0.045	1.00	1.03		
	(1.001	0.45	(0.87	(0.69		
	1.13)	0.97	1.44)	1.53)		
Colorectal	1.06	0.045	1.00	1.03		
HR (95% CI)	0.66	0.45	1.00	1.03		
	(0.45	0.97	(0.87	(0.69		
	1.13)	1.44	1.53)			
Bladder	Cases	891	105	405	297	84
HR (95% CI)	1.12	<0.001	0.73	1.33	1.50	
	(1.08	0.59	(1.15	(1.19		
	1.15)	0.90	1.55)	1.90)		
HR (95% CI)	1.04	0.03	1.00	1.04		
	(1.005	0.62	1.00	0.81		
	1.09)	0.98	(1.31	1.34)		
HR (95% CI)	1.04	0.03	1.00	1.04		
	(1.005	0.62	1.00	0.81		
	1.09)	0.98	(1.31	1.34)		
Oesophagus	Cases	456	74	203	130	49
Hepatobiliary	Cases	456	74	203	130	49
Tract	HR (95% CI)	1.08	0.002	1.00	1.15	
		(1.03	(1.02	(1.00	(1.77	
		1.14)	0.78	1.44)	(2.43)	
HR (95% CI)	1.01	0.62	1.00	0.98		
	(0.96	(0.82	1.00	0.90		
	1.07)	1.43	(1.24	1.77)		
Pancreatic	Cases	615	97	283	187	48
HR (95% CI)	1.07	0.004	0.96	1.37		
	(1.02	(0.76	(0.99	(1.25		
	1.11)	1.21	1.43)	(1.70)		
HR (95% CI)	1.04	0.15	0.99	1.12		
	(0.99	(0.78	(0.92	(0.77		
	1.09)	1.27	1.36)	(1.49)		
HR (95% CI)	1.03	0.20	0.996	1.11		
	(0.98	(0.78	(0.92	(1.03		
	1.08)	1.27	1.36)	(1.44)		
Kidney	Cases	779	113	390	206	70
HR (95% CI)	1.06	0.007	0.79	1.37		
	(1.02	(0.64	(0.99	(1.06		
	1.10)	0.98	1.17)	1.76)		
HR (95% CI)	0.996	0.86**	0.92	1.08		
	(0.95 1.04)	(0.74	(0.82	(0.82		
	1.14)	1.14	1.05)	1.42)		
Bladder	Cases	677	92	295	221	69
HR (95% CI)	1.10	<0.001	0.90	1.32		
	(1.05	(0.71	(1.10	(1.25		
	1.14)	1.14	(1.57	(2.11)		
HR (95% CI)	1.04	0.13**	1.04	1.29		
	(0.99	(0.81	(0.97	(0.97		
	1.09)	1.32	1.32)	1.73)		
Colorectal	Cases	3358	538	1643	936	241
HR (95% CI)	1.03	0.001**	0.90	1.05		
	(1.01	(0.82	(0.97	(1.11		
	1.05)	0.99	(1.14	(1.28)		
HR (95% CI)	1.02	0.07**	0.93	1.03		
	(0.999	(0.84	(0.88	(0.88		
	1.04)	1.03	1.12)	1.20)		
Colon	Cases	2155	329	1041	614	171
HR (95% CI)	1.05	<0.001*	0.87	1.08		
	(1.02	(0.77	(0.98	(1.05		
	1.08)	0.99	(1.19	(1.45)		
	HR (95% CI)†	0.007**	0.92 (0.81 1.05)	1.00	1.05 (0.94 1.17)	1.19 (1.003 1.42)
-------------------	--------------	---------	------------------	------	--------------------	-------------------
HR (95% CI)e, g	1.04 (1.01 1.07)	0.02**	0.93 (0.81 1.06)	1.00	1.05 (0.94 1.16)	1.17 (0.98 1.41)
HR (95% CI)†	0.996 (0.96 1.04)	0.84**	0.98 (0.82 1.16)	1.00	1.04 (0.89 1.20)	0.84 (0.63 1.11)
HR (95% CI)†	0.99 (0.95 1.03)	0.67	0.96 (0.81 1.14)	1.00	1.01 (0.87 1.18)	0.82 (0.62 1.10)
Cases	1127	196	556	307	68	

Rectum
HR (95% CI)*	1.04 (1.01 1.06)	0.53**	0.96 (0.81 1.13)	1.00	1.04 (0.90 1.20)	0.94 (0.74 1.21)
HR (95% CI)*	0.996 (0.96 1.04)	0.84**	0.98 (0.82 1.16)	1.00	1.04 (0.89 1.20)	0.84 (0.63 1.11)
HR (95% CI)*	0.99 (0.95 1.03)	0.67	0.96 (0.81 1.14)	1.00	1.01 (0.87 1.18)	0.82 (0.62 1.10)
Cases	463	82	237	114	30	

Brain tumours
HR (95% CI)*	1.04 (1.01 1.06)	0.53**	0.96 (0.81 1.13)	1.00	1.04 (0.90 1.20)	0.94 (0.74 1.21)
HR (95% CI)*	1.04 (1.01 1.06)	0.53**	0.96 (0.81 1.13)	1.00	1.04 (0.90 1.20)	0.94 (0.74 1.21)
HR (95% CI)*	0.996 (0.96 1.04)	0.84**	0.98 (0.82 1.16)	1.00	1.04 (0.89 1.20)	0.84 (0.63 1.11)
HR (95% CI)*	0.99 (0.95 1.03)	0.67	0.96 (0.81 1.14)	1.00	1.01 (0.87 1.18)	0.82 (0.62 1.10)
Cases	242	48	124	57	13	

Haematological malignancies
HR (95% CI)*	0.99 (0.91 1.07)	0.75	0.95 (0.88 1.13)	1.00	0.97 (0.90 1.09)	0.97 (0.89 1.09)
HR (95% CI)*	1.001 (0.92 1.09)	0.98	0.92 (0.83 1.05)	1.00	0.93 (0.85 1.02)	0.96 (0.83 1.06)
HR (95% CI)*	1.001 (0.92 1.09)	0.98	0.92 (0.83 1.05)	1.00	0.93 (0.85 1.02)	0.96 (0.83 1.06)
Cases	2468	438	1208	652	170	

Non-Hodgkin’s lymphoma
HR (95% CI)*	1.01 (0.98 1.05)	0.52	0.995 (0.89 1.11)	1.00	0.99 (0.90 1.09)	0.96 (0.91 1.25)
HR (95% CI)*	0.996 (0.96 1.04)	0.84**	0.98 (0.82 1.16)	1.00	0.94 (0.88 1.08)	0.97 (0.82 1.16)
HR (95% CI)*	1.002 (0.98 1.03)	0.89	0.97 (0.87 1.09)	1.00	0.97 (0.88 1.08)	0.97 (0.82 1.16)
Cases	1193	197	586	337	73	

*Models adjusted for age and sex (total observations=470 578).
†Models adjusted for age, sex, ethnicity (white/other), deprivation index (quintiles), education (University degree, A-levels/HNC/HND/NVQ, GCSE/O-level/CSE, OTHER,
None), fruit and vegetable intake (<5 portions/day, ≥5 portions/day), BMI (kg/m²), height (m), smoking status (never, former light smoker [<20 pack-years], former heavy smoker [≥20 pack-years], current light smoker [<20 pack-years], current heavy smoker [≥20 pack-years]) and alcohol intake (never, former, current [<once/week], current [≥once/week]).

\(^a\)Additional site-specific covariates in the final model include use of sun/UV protection (Never/rarely/sometimes; most of the time/always; do not go out in sunshine).

\(^b\)Additional site-specific covariates in the final model include HRT use (ever used/never used), oral contraceptive use (ever used/never used), number of live births (0, 1, 2, 3+ live births), age at menarche (early menarche [<12 years], menarche at 12-14 years, late menarche [≥15 years]), age at menopause (<40 years, 40-44 years, 45-49 years, 50-54 years, 55-59 years, 60-64 years, ≥65 years, not had menopause/unsure), hysterectomy status (had hysterectomy, not had hysterectomy/unsure).

\(^c\)Additional site-specific covariates in the final model include HRT use (ever used/never used), oral contraceptive use (ever used/never used), number of live births (0, 1, 2, 3+ live births), age at menarche (early menarche [<12 years], menarche at 12-14 years, late menarche [≥15 years]), age at menopause (<40 years, 40-44 years, 45-49 years, 50-54 years, 55-59 years, 60-64 years, ≥65 years, not had menopause/unsure), hysterectomy status (had hysterectomy, not had hysterectomy/unsure).

\(^d\)Additional site-specific covariates in the final model include diabetes at baseline (yes/no).
Additional site-specific covariates in the final model include diabetes at baseline (yes/no), aspirin use (regular use/non-regular use or no use), HRT use (ever used/never used), red meat intake (portion/week), processed meat intake (portion/week).

Final model also adjusted for waist-hip ratio (>94cm in men, >80cm in women).

Results for males and females combined using meta-analysis as covariates are different.

Final model also adjusted for family history of cancer (mother/father/sibling had cancer, no family history).

Schoenfeld test indicated potential violation of the proportional hazards assumption (p<0.05).

Participants who reported ≤ 1 hour/day of TV screen time had a lower risk of lung cancer (HR 0.85, 95% CI: 0.73, 0.997), breast (female only) cancer (HR 0.92, 95% CI: 0.85, 0.996), stomach cancer (HR 0.66, 95% CI: 0.45, 0.97), and oesophagus and stomach cancer (HR 0.78, 95% CI: 0.62, 0.98) compared to participants who reported 1-≤3 hours/day of TV screen time.

After excluding cancers diagnosed within the first 2 years following baseline, all associations were attenuated except those for oesophagus and stomach cancers, and colon cancers (Table 3). Whilst the results of the Schoenfeld residual tests indicated that some of our models may not have been in line with the proportional hazards assumption, our visual inspection of log-log plots and Schoenfeld residual plots showed no serious violations. Therefore, we proceeded with the analyses as planned.

Table 3
Results of Cox proportional hazards analyses investigating the association between self-report TV screen time and cancer incidence (excluding cancers diagnosed within the first 2 years following baseline).
Cancer Type	Cases	1 hour increase in TV screen time	1 hour	≤1 hour	1–≤3 hours (reference)	3–≤5 hours	>5 hours		
All cancers excluding non-melanoma skin cancer	18190	1.01 (0.99, 1.02) 0.07**	0.96 (0.92, 1.001)	1.00	1.01 (0.97, 1.04)	1.002 (0.9, 1.07)			
Skin, melanoma	1,192	1.02 (0.98, 1.06) 0.39**	0.93 (0.80, 1.09)	1.00	1.04 (0.90, 1.20)	1.004 (0.7, 1.33)			
Oropharyngeal	410	1.04 (0.99, 1.10) 0.12	0.90 (0.68, 1.19)	1.00	1.02 (0.80, 1.30)	1.27 (0.89, 1.84)			
Lung	1,461	1.02 (0.99, 1.05) 0.21**	0.87 (0.73, 1.03)	1.00	0.97 (0.86, 1.10)	1.10 (0.93, 1.30)			
Breast (female only)	3,288	1.004 (0.9, 1.03) 0.76**	0.90 (0.82, 0.99)	1.00	0.96 (0.87, 1.04)	0.94 (0.79, 1.11)			
Uterus	567	0.98 (0.93, 1.04) 0.56**	1.05 (0.83, 1.33)	1.00	1.06 (0.87, 1.29)	0.75 (0.50, 1.10)			
Ovary	404	1.02 (0.95, 1.09) 0.20**	0.98 (0.87, 1.16)	1.00	1.01 (0.80, 1.29)	0.93 (0.59, 1.46)			
Prostate	4,235	0.99 (0.97, 1.01) 0.34**	1.02 (0.94, 1.10)	1.00	0.98 (0.91, 1.06)	0.94 (0.82, 1.08)			
Oesophagus	392	1.04 (0.98, 1.10) 0.20**	0.79 (0.57, 1.10)	1.00	1.08 (0.86, 1.37)	1.11 (0.77, 1.60)			
Stomach	250	1.06 (0.99, 1.14) 0.09	0.57 (0.37, 0.89)	1.00	0.996 (0.74, 1.33)	0.96 (0.60, 1.53)			
Oesophagus and stomach	638	1.05 (1.01, 1.03) 0.03**	0.71 (0.54, 0.92)	1.00	1.07 (0.89, 1.28)	1.07 (0.80, 1.42)			
Hepatobiliary tract	348	1.03 (0.97, 1.10) 0.29	0.9999 (0.72, 1.38)	1.00	1.001 (0.7, 1.29)	1.36 (0.94, 1.95)			
Pancreatic	463	1.01 (0.95, 1.06) 0.85	1.02 (0.78, 1.33)	1.00	1.09 (0.88, 1.36)	0.91 (0.62, 1.34)			
Kidney	583	0.99 (0.94, 1.04) 0.75	1.02 (0.80, 1.30)	1.00	0.95 (0.77, 1.15)	1.11 (0.81, 1.51)			
Bladder	461	1.03 (0.98, 1.09) 0.25**	0.88 (0.65, 1.19)	1.00	1.19 (0.96, 1.47)	1.10 (0.77, 1.55)			
Colorectal	2,281	383	1.118	621	159				
Location	Cases	HR (95\%CI)^a	g,f	HR (95\%CI)^b	g,f	HR (95\%CI)^c	g,f	HR (95\%CI)^d	g,f
---------------------------	-------	------------------------	-----	------------------------	-----	------------------------	-----	------------------------	-----
Colon	1,478	1.04 (1.01,1.07)		0.97 (0.84,1.13)		1.00		1.05 (0.92,1.19)	
Rectum	754	1.00 (0.96,1.05)		0.98 (0.80,1.20)		1.00		1.03 (0.87,1.23)	
Brain tumours	333	1.03 (0.96,1.11)		0.85 (0.62,1.15)		1.00		0.89 (0.68,1.17)	
Thyroid	161	0.99 (0.89,1.09)		0.91 (0.60,1.38)		1.00		0.88 (0.59,1.32)	
Haematological malignancies	1,786	1.003 (0.97,1.03)		0.96 (0.84,1.10)		1.00		0.98 (0.87,1.10)	
Non-Hodgkin’s lymphoma	886	1.02 (0.98,1.07)		0.84 (0.69,1.02)		1.00		1.12 (0.95,1.31)	

^aAdditional site-specific covariates in the final model include use of sun/UV protection (Never/rarely/sometimes; most of the time/always; do not go out in sunshine).

^bAdditional site-specific covariates in the final model include HRT use (ever used/never used), oral contraceptive use (ever used/never used), number of live births (0, 1, 2, 3 + live births), age at menarche (early menarche [<12 years], menarche at 12–14 years, late menarche [≥15 years]), age at menopause (<40 years, 40–44 years, 45–49 years, 50–54 years, 55–59 years, 60–64 years, ≥65 years, not had menopause/unsure), hysterectomy status (had hysterectomy, not had hysterectomy/unsure).

^cAdditional site-specific covariates in the final model include diabetes at baseline (yes/no), aspirin use (regular use/non-regular use or no use), HRT use (ever used/never used), red meat intake (portion/week), processed meat intake (portion/week).

Final model also adjusted for waist-hip ratio (>94 cm in men, >80 cm in women).

Final model also adjusted for family history of cancer (mother/father/sibling had cancer, no family history).

^dSchoenfeld test indicated potential violation of the proportional hazards assumption (p < 0.05).

Subgroup analyses and tests of effect modification (supplement 1, tables 1.2–1.8) showed that HR estimates for total cancer risk in females differed according to BMI (p = 0.0002) and that HR estimates differed for lung cancer risk according to socio-economic status (p = 0.004). HR estimates differed according to the combined body fat percentage and physical activity level category for lung cancer (p = 0.003) and haematological malignancies (p = 0.0004). The results of all other subgroup
analyses were non-significant.

Results of partition models and isotemporal substitution models

Partition models showed there was an association between a 1-hour increase in daily TV screen time and a higher risk of total cancer (HR 1.01, 95% CI: 1.002, 1.02), oropharyngeal cancer (HR 1.11, 95% CI: 1.05, 1.17), and lung cancer (HR 1.04, 95% CI: 1.01, 1.07) when holding daily time spent in moderate-intensity physical activity, vigorous-intensity physical activity and walking constant. There was an association between a 1-hour increase in daily time spent in moderate-intensity physical activity and a lower risk of breast (female only) cancer (HR 0.91, 95% CI: 0.86, 0.96), and colon cancer (HR 0.89, 95% CI: 0.81, 0.97) when holding daily TV screen time, and time spent in vigorous-intensity physical activity and walking constant (supplement 1, Table 1.1).

Isotemporal substitution models showed there was an association between replacing 1-hour of daily TV screen time with 1-hour of moderate-intensity physical activity and a lower risk of total cancer (HR 0.97, 95% CI: 0.95, 0.99), breast (female only) cancer (HR 0.90, 95% CI: 0.85, 0.96), colorectal cancer (HR 0.92, 95% CI: 0.86, 0.99), and colon cancer (HR 0.87, 95% CI: 0.79, 0.95) when holding time spent in vigorous-intensity physical activity and walking constant. There was an association between replacing 1-hour of daily TV screen time with 1-hour of walking and a lower risk of oropharyngeal cancer (HR 0.79, 95% CI: 0.67, 0.92), and lung cancer (HR 0.89, 95% CI: 0.82, 0.97) when holding time spent in moderate- and vigorous-intensity physical activity constant (Table 4).

Table 4. Results of isotemporal substitution models showing the impact on cancer incidence of replacing a 1-hour of total daily TV screen time with the same amount of daily moderate activity, daily vigorous activity or daily...
walking time, holding the other activities constant.

	1-hour increase in daily moderate activity	1-hour increase in daily vigorous activity	1-hour increase in daily walking time
HR (95% CI)			
All cancers			
excluding non-melanoma skin cancer [cases=19167]	**0.97 (0.95, 0.99)**	**1.001 (0.96, 1.05)**	**0.98 (0.96, 1.01)**
Skin melanoma			
[cases=1256]	**0.98 (0.89, 1.09)**	**0.97 (0.81, 1.17)**	**1.03 (0.94, 1.12)**
Oropharyngeal			
[cases=411]	**0.91 (0.77, 1.08)**	**0.86 (0.63, 1.18)**	**0.79 (0.67, 0.92)**
Lung			
[cases=1355]	**1.0003 (0.92, 1.09)**	**0.84 (0.71, 1.004)**	**0.89 (0.82, 0.97)**
Breast (female only)	**0.90 (0.85, 0.96)**	**1.02 (0.89, 1.16)**	**0.99 (0.94, 1.05)**
[cases=3454]			
Uterus	**1.001 (0.86, 1.17)**	**1.05 (0.76, 1.46)**	**0.99 (0.86, 1.13)**
[cases=570]			
Ovary	**1.09 (0.93, 1.28)**	**1.12 (0.81, 1.55)**	**0.97 (0.83, 1.13)**
[cases=405]			
Prostate	**1.01 (0.96, 1.06)**	**1.05 (0.97, 1.15)**	**0.9997 (0.95, 1.05)**
[cases=4629]			
Oesophagus	**1.09 (0.93, 1.28)**	**1.06 (0.80, 1.42)**	**0.91 (0.77, 1.06)**
[cases=386]			
Stomach	**1.06 (0.87, 1.29)**	**0.77 (0.52, 1.15)**	**0.91 (0.76, 1.10)**
[cases=264]			
Oesophagus and stomach [cases=644]	**1.08 (0.95, 1.22)**	**0.94 (0.74, 1.18)**	**0.90 (0.80, 1.02)**
Hepatobiliary tract [cases=331]	**0.84 (0.69, 1.02)**	**1.01 (0.71, 1.43)**	**1.03 (0.87, 1.21)**
Pancreatic	**1.07 (0.92, 1.24)**	**0.92 (0.69, 1.23)**	**0.95 (0.82, 1.09)**
[cases=467]			
Kidney	**1.01 (0.88, 1.17)**	**1.12 (0.87, 1.44)**	**0.95 (0.83, 1.09)**
[cases=559]			
Bladder	**0.98 (0.85, 1.13)**	**0.83 (0.62, 1.09)**	**1.03 (0.90, 1.17)**
[cases=502]			
Colorectal	**0.92 (0.86, 0.99)**	**0.997 (0.87, 1.14)**	**1.01 (0.95, 1.08)**
(males)			
Colon	**0.87 (0.79, 0.95)**	**0.96 (0.81, 1.14)**	**1.001 (0.92, 1.09)**
[cases=1530]			
Rectum	**0.99 (0.88, 1.12)**	**1.06 (0.86, 1.30)**	**1.01 (0.90, 1.12)**
[cases=821]			
Brain tumours	**0.85 (0.70, 1.03)**	**0.85 (0.59, 1.23)**	**1.04 (0.88, 1.23)**
[cases=345]			
Thyroid	**0.94 (0.72, 1.23)**	**0.80 (0.46, 1.40)**	**1.07 (0.85, 1.35)**
[cases=181]			
Haematological malignancies [cases=1794]	**0.98 (0.90, 1.06)**	**1.07 (0.93, 1.24)**	**0.99 (0.92, 1.07)**
Non-Hodgkin’s lymphoma [cases=864]	**0.99 (0.88, 1.11)**	**1.07 (0.87, 1.32)**	**0.95 (0.85, 1.06)**

All models were adjusted for age, sex, ethnicity (white/other), deprivation index (quintiles), education (University degree, A-levels/HNC/HND/NVQ, GCSE/O-level/CSE,
OTHER, None), fruit and vegetable intake (<5 portions/day, ≥5 portions/day), BMI (kg/m2), height (m), smoking status (never, former light smoker [<20 pack-years], former heavy smoker [≥20 pack-years], current light smoker [<20 pack-years], current heavy smoker [≥20 pack-years]) and alcohol intake (never, former, current [<once/week], current [≥once/week]).

a Additional site-specific covariates in the final model include use of sun/UV protection (Never/rarely/sometimes; most of the time/always; do not go out in sunshine).

b Additional site-specific covariates in the final model include HRT use (ever used/never used), oral contraceptive use (ever used/never used), number of live births (0, 1, 2, 3+ live births), age at menarche (early menarche [<12 years], menarche at 12-14 years, late menarche [≥15 years]), age at menopause (<40 years, 40-44 years, 45-49 years, 50-54 years, 55-59 years, 60-64 years, ≥65 years, not had menopause/unsure), hysterectomy status (had hysterectomy, not had hysterectomy/unsure).

c Additional site-specific covariates in the final model include HRT use (ever used/never used), oral contraceptive use (ever used/never used), number of live births (0, 1, 2, 3+ live births), age at menarche (early menarche [<12 years], menarche at 12-14 years, late menarche [≥15 years]), age at menopause (<40 years, 40-44 years, 45-49 years, 50-54 years, 55-59 years, 60-64 years, ≥65 years, not had menopause/unsure), hysterectomy status (had hysterectomy, not had hysterectomy/unsure).

d Additional site-specific covariates in the final model include diabetes at baseline (yes/no).
Additional site-specific covariates in the final model include diabetes at baseline (yes/no), aspirin use (regular use/non-regular use or no use), HRT use (ever used/never used), red meat intake (portion/week), processed meat intake (portion/week).

Final model also adjusted for waist-hip ratio (>94cm in men, >80cm in women).

Results for males and females combined using meta-analysis as covariates are different.

Final model also adjusted for family history of cancer (mother/father/sibling had cancer, no family history).

Association of cancer risk and daily time spent on the computer

Table 5 shows the association between a 1-hour increase in daily time spent using computers and total cancer risk and site-specific cancer risk. A 1-hour increase in daily computer screen time was associated with lower risk of oropharyngeal cancer (HR 0.93, 95% CI: 0.87, 0.998). The categorical analysis showed that participants who reported that they spent no hours using computers had a higher risk of oropharyngeal cancer (HR 1.27, 95% CI: 1.03, 1.56), and ovary cancer (HR 1.23, 95% CI: 1.01, 1.50) compared to participants who reported ≤ 1 hour of daily time spent using the computer.

Participants who reported > 3 hours using computers had a higher risk of lung cancer (HR 1.36, 95% CI: 1.12, 1.65) compared to participants who reported ≤ 1 hour of daily time spent using the computer.

Table 5. Results of Cox proportional hazards analyses investigating the association between self-report computer screen time and cancer
Person-years	Cases	HR (95% CI)*	HR (95% CI)†	HR (95% CI)‡	HR (95% CI)§	
Uterus (female only)	3 498 487	969 721	1.06 (1.03 1.09)	1.00	1.04 (0.99 1.06)	1.06 (1.01 1.12)
Oropharyngeal	404	852	0.77 (0.68 0.86)	1.00	0.90 (0.79 1.04)	0.92 (0.74 1.14)
Skin, melanoma	1621	404	0.77 (0.68 0.86)	1.00	0.90 (0.79 1.04)	0.92 (0.74 1.14)
Lung	2040	894	1.56 (1.29 1.88)	1.00	0.97 (0.76 1.23)	0.81 (0.54 1.23)
Breast (female only)	5650	2931	1.68 (1.39 2.03)	1.00	1.17 (1.03 1.34)	1.33 (1.10 1.62)
Uterus	863	315	1.18 (1.02 1.38)	1.00	1.25 (1.03 1.53)	1.12 (0.78 1.60)
Ovary	567	211	1.16 (0.98 1.37)	1.00	1.08 (0.87 1.35)	0.95 (0.64 1.40)

Incidence	1 hour increase in computer screen time	p-value	None	≤1 hour (reference)	1≤3 hours	>3 hours
All cancers excluding non-melanoma skin cancer	9012	13 124	4992	1569	201 813	
Skin, melanoma	404	852	276	89	25	
Oropharyngeal	209	239	88	25	25	
Lung	700	316	130			
Breast (female only)	2931	762	229			
Subsystem	Cases	HR (95% CI)**	HR (95% CI)**	HR (95% CI)**		
---------------------------	-------	----------------	---------------	---------------		
Prostate	9333	1.01 (0.91 1.04)	1.01 (0.91 1.04)	1.01 (0.91 1.04)		
Oesophagus	530	0.98 (0.91 0.98)	0.98 (0.91 0.98)	0.98 (0.91 0.98)		
Stomach	349	0.98 (0.90 0.98)	0.98 (0.90 0.98)	0.98 (0.90 0.98)		
Oesophagus and stomach	873	0.97 (0.92 0.97)	0.97 (0.92 0.97)	0.97 (0.92 0.97)		
Hepatobiliary tract	451	0.97 (0.90 0.97)	0.97 (0.90 0.97)	0.97 (0.90 0.97)		
Pancreatic	606	0.99 (0.92 0.99)	0.99 (0.92 0.99)	0.99 (0.92 0.99)		
Kidney	783	0.98 (0.92 0.98)	0.98 (0.92 0.98)	0.98 (0.92 0.98)		
Bladder	670	0.98 (0.93 0.98)	0.98 (0.93 0.98)	0.98 (0.93 0.98)		
Colorectal	3312	0.99 (0.96 0.99)	0.99 (0.96 0.99)	0.99 (0.96 0.99)		
Location	Cases	HR (95% CI)*	HR (95% CI)†	HR (95% CI)†		
----------	-------	--------------	--------------	--------------		
Colon	2124	0.98 (0.96 1.01)	0.99 (0.96 1.02)	0.99 (0.95 1.02)		
		1.06 (0.97 1.16)	1.04 (0.94 1.15)	1.04 (0.99 1.09)		
		1.00 (0.95 1.05)	1.00 (0.94 1.06)	1.00 (0.97 1.03)		
Rectum	1115	0.98 (0.94 1.03)	0.97 (0.93 1.02)	0.97 (0.93 1.02)		
		1.12 (0.98 1.29)	1.10 (0.98 1.24)	1.10 (0.98 1.24)		
		1.00 (0.97 1.04)	1.00 (0.97 1.04)	1.00 (0.97 1.04)		
Thyroid	237	1.02 (0.92 1.12)	1.01 (0.91 1.11)	1.01 (0.91 1.11)		
		0.76 (0.98 1.61)	0.86 (0.99 1.87)	0.86 (0.99 1.87)		
		1.31 (0.98 1.76)	1.36 (0.99 1.87)	1.36 (0.99 1.87)		
		1.00 (1.00 1.00)	1.00 (1.00 1.00)	1.00 (1.00 1.00)		
Brain tumours	463	1.02 (0.95 1.09)	1.03 (0.96 1.10)	1.03 (0.96 1.10)		
		0.62 (0.77 1.19)	0.39 (0.72 1.17)	0.38 (0.72 1.17)		
		0.95 (0.87 1.05)	0.92 (0.72 1.17)	0.92 (0.72 1.17)		
		1.00 (1.00 1.00)	1.00 (1.00 1.00)	1.00 (1.00 1.00)		
Haematologic malignancies	2446	1.03 (0.998 1.06)	1.02 (0.99 1.05)	1.02 (0.99 1.05)		
		0.06 (0.87 1.05)	0.24 (0.86 1.06)	0.24 (0.86 1.06)		
		0.95 (1.00 1.05)	0.95 (0.87 1.05)	0.95 (0.87 1.05)		
		1.00 (1.00 1.00)	1.00 (1.00 1.00)	1.00 (1.00 1.00)		
Non-Hodgkin's lymphoma	1182	1.02 (0.98 1.06)	1.01 (0.97 1.06)	1.01 (0.97 1.06)		
		0.37 (0.85 1.11)	0.65 (0.86 1.15)	0.65 (0.86 1.15)		
		0.97 (0.85 1.11)	0.996 (0.86 1.15)	0.996 (0.86 1.15)		
		1.00 (1.00 1.00)	1.00 (1.00 1.00)	1.00 (1.00 1.00)		

*Models adjusted for age and sex (total observations=467 656).

†Models adjusted for age, sex, ethnicity (white/other), deprivation index (quintiles), education (University degree, A-levels/HNC/HND/NVQ, GCSE/O-level/CSE, OTHER, None), fruit and vegetable intake (<5 portions/day, ≥5 portions/day), BMI (kg/m2), height (m), smoking status (never, former light smoker [<20 pack-years], former
heavy smoker [≥20 pack-years], current light smoker [<20 pack-years], current heavy smoker [≥20 pack-years]) and alcohol intake (never, former, current [<once/week], current [≥once/week]).

a Additional site-specific covariates in the final model include use of sun/UV protection (Never/rarely/sometimes; most of the time/always; do not go out in sunshine).

b Additional site-specific covariates in the final model include HRT use (ever used/never used), oral contraceptive use (ever used/never used), number of live births (0, 1, 2, 3+ live births), age at menarche (early menarche [<12 years], menarche at 12-14 years, late menarche [≥15 years]), age at menopause (<40 years, 40-44 years, 45-49 years, 50-54 years, 55-59 years, 60-64 years, ≥65 years, not had menopause/unsure), hysterectomy status (had hysterectomy, not had hysterectomy/unsure).

c Additional site-specific covariates in the final model include HRT use (ever used/never used), oral contraceptive use (ever used/never used), number of live births (0, 1, 2, 3+ live births), age at menarche (early menarche [<12 years], menarche at 12-14 years, late menarche [≥15 years]), age at menopause (<40 years, 40-44 years, 45-49 years, 50-54 years, 55-59 years, 60-64 years, ≥65 years, not had menopause/unsure), hysterectomy status (had hysterectomy, not had hysterectomy/unsure).

d Additional site-specific covariates in the final model include diabetes at baseline (yes/no).

e Additional site-specific covariates in the final model include diabetes at baseline (yes/no), aspirin use (regular use/non-regular use or no use), HRT use (ever...
used/never used), red meat intake (portion/week), processed meat intake (portion/week).

Final model also adjusted for waist-hip ratio (>94cm in men, >80cm in women).

Results for males and females combined using meta-analysis as covariates are different.

Final model also adjusted for family history of cancer (mother/father/sibling had cancer, no family history).

Schoenfeld test indicated potential violation of the proportional hazards assumption (p<0.05).

Association of cancer risk and daily total screen time

Table 6 shows the association between a 1-hour increase in total daily screen time and total cancer risk and site-specific cancer risk. A 1-hour increase in daily total screen time was associated with a higher risk of lung cancer (HR 1.03, 95% CI: 1.004, 1.05).

Participants who reported > 8 hours of daily total screen time had a higher risk of lung cancer (HR 1.45, 95% CI: 1.19, 1.77) but a lower risk of oesophagus cancer (HR 0.54, 95% CI: 0.29, 0.99) compared to participants who reported 1-≤4 hours of daily total screen time.

Table 6. Results of Cox proportional hazards analyses investigating the association between self-report total screen time and cancer incidence.

Person-years	1 hour increase in total screen time	≤1 hour	1-≤4 hours (reference)	4-≤8 hours	>8 hours	
All cancers excluding non-melanoma skin cancer	28475	1751	16402	9348	974	
HR (95% CI)*	1.02 (1.01	0.97 (0.93	1.00	1.05	1.14 (1.07	1.12)
HR (95% CI)†	1.003 (0.997	0.998 (0.95 1.05	1.00	1.01 (0.98	1.04 (0.97	1.12)

Person-years: 3474425 (254147), 2111765 (997699), 12171 (10815).
	HR (95% CI)	Cases	Cases	Cases	Cases	Cases	Cases
Stomach							
Prostate							
Ovary							
Uterus							
Breast (female only)							
Lung							
Oropharyngeal							
Skin, melanoma							

* CI = Confidence Interval
* HR = Hazard Ratio

Note: The table continues with similar entries for other locations and conditions, showing hazard ratios (HR) and confidence intervals (CI) along with case numbers for each location.
Site	Cases	HR (95% CI)	pvalue								
Oesophagus and stomach	870	1.03 (0.98	1.08)	0.19	0.75 (0.43	1.32)	1.00	1.12 (0.89	1.42)	1.07 (0.61	1.85)
Colorectal	604	1.05 (1.01	1.10)	0.02	0.84 (0.54	1.29)	1.00	1.11 (0.90	1.35)	1.45 (0.91	2.31)
Kidney	771	1.00 (1.01	1.08)	0.001	0.69 (0.46	1.04)	1.00	1.21 (1.03	1.42)	1.36 (0.93	2.00)
Bladder	662	1.02 (0.98	1.06)	0.45	0.86 (0.58	1.26)	1.00	1.08 (0.91	1.30)	0.99 (0.63	1.57)
Colorectal	3290	1.02 (1.00	1.04)	0.03	0.88 (0.76	1.03)	1.00	1.04 (0.97	1.12)	1.16 (0.97	1.40)
Rectum	1107	1.03 (1.01	1.05)	0.003	0.86 (0.70	1.04)	1.00	1.08 (0.99	1.19)	1.21 (0.96	1.53)
Brain tumours	458	1.01 (0.97	1.06)	0.50	0.96 (0.65	1.42)	1.00	0.99 (0.81	1.22)	1.07 (0.65	1.77)
	HR (95% CI)*		HR (95% CI)†		HR (95% CI)‡						
-------------------------------	--------------	---	--------------	---	--------------	---					
Thyroid	1.02 (0.98	0.31	0.98 (0.66	1.00	1.001 (0.81	1.13 (0.67					
	1.07)		1.46)		1.24)	1.91)					
	1.03 (0.98	0.28	0.97 (0.65	1.00	1.01 (0.81	1.13 (0.67					
	1.07)		1.45)		1.25)	1.92)					
	0.99 (0.93	0.86	0.78 (0.46	1.00	0.87 (0.65	0.71 (0.29					
	1.06)		1.32)		1.18)	1.72)					
	0.999 (0.93	0.97	0.76 (0.44	1.00	0.88 (0.64	0.70 (0.28					
	1.07)		1.32)		1.20)	1.72)					
	0.999 (0.93	0.97	0.76 (0.44	1.00	0.88 (0.64	0.70 (0.28					
	1.07)		1.32)		1.20)	1.72)					
Haematological malignancies	1.02 (0.998	0.09	0.95 (0.80	1.00	1.04 (0.96	1.12 (0.90					
	1.04)		1.12)		1.14)	1.40)					
	1.01 (0.99	0.43	0.96 (0.80	1.00	1.02 (0.93	1.07 (0.85					
	1.03)		1.15)		1.12)	1.34)					
Non-Hodgkin's lymphoma	1.01 (0.99	0.43	0.96 (0.80	1.00	1.02 (0.93	1.07 (0.85					
	1.03)		1.15)		1.12)	1.34)					
	1.02 (0.99	0.28	0.93 (0.72	1.00	1.06 (0.93	1.10 (0.80					
	1.04)		1.19)		1.20)	1.52)					
	1.01 (0.98	0.43	0.93 (0.72	1.00	1.08 (0.95	1.06 (0.75					
	1.04)		1.20)		1.23)	1.48)					
	1.01 (0.98	0.43	0.93 (0.72	1.00	1.08 (0.95	1.06 (0.75					
	1.04)		1.20)		1.23)	1.48)					

*Models adjusted for age and sex (total observations=464,424).
†Models adjusted for age, sex, ethnicity (white/other), deprivation index (quintiles), education (University degree, A-levels/HNC/HND/NVQ, GCSE/O-level/CSE, OTHER, None), fruit and vegetable intake (<5 portions/day, ≥5 portions/day), BMI (kg/m2), height (m), smoking status (never, former light smoker [<20 pack-years], former heavy smoker [≥20 pack-years], current light smoker [<20 pack-years], current heavy smoker [≥20 pack-years]) and alcohol intake (never, former, current [<once/week], current [≥once/week]).

aAdditional site-specific covariates in the final model include use of sun/UV protection (Never/rarely/sometimes; most of the time/always; do not go out in sunshine).

bAdditional site-specific covariates in the final model include HRT use (ever used/never used), oral contraceptive use (ever used/never used), number of live births (0, 1, 2, 3+ live births), age at menarche (early menarche [<12 years],
menarche at 12-14 years, late menarche [≥15 years]), age at menopause (<40 years, 40-44 years, 45-49 years, 50-54 years, 55-59 years, 60-64 years, ≥65 years, not had menopause/unsure), hysterectomy status (had hysterectomy, not had hysterectomy/unsure).

Additional site-specific covariates in the final model include HRT use (ever used/never used), oral contraceptive use (ever used/never used), number of live births (0, 1, 2, 3+ live births), age at menarche (early menarche [<12 years], menarche at 12-14 years, late menarche [≥15 years]), age at menopause (<40 years, 40-44 years, 45-49 years, 50-54 years, 55-59 years, 60-64 years, ≥65 years, not had menopause/unsure), hysterectomy status (had hysterectomy, not had hysterectomy/unsure).

Additional site-specific covariates in the final model include diabetes at baseline (yes/no).

Additional site-specific covariates in the final model include diabetes at baseline (yes/no), aspirin use (regular use/non-regular use or no use), HRT use (ever used/never used), red meat intake (portion/week), processed meat intake (portion/week).

Final model also adjusted for waist-hip ratio (>94cm in men, >80cm in women).

Results for males and females combined using meta-analysis as covariates are different.

Final model also adjusted for family history of cancer (mother/father/sibling had cancer, no family history).

**Schoenfeld test indicated potential violation of the proportional hazards assumption (p<0.05).
Participants who reported \(\leq 1 \) hour/day of TV screen time had a lower risk of lung cancer (HR 0.85, 95% CI: 0.73, 0.997), breast (female only) cancer (HR 0.92, 95% CI: 0.85, 0.996), stomach cancer (HR 0.66, 95% CI: 0.45, 0.97), and oesophagus and stomach cancer (HR 0.78, 95% CI: 0.62, 0.98) compared to participants who reported 1-\(\leq 3 \) hours/day of TV screen time.

After excluding cancers diagnosed within the first 2 years following baseline, all associations were attenuated except those for oesophagus and stomach cancers, and colon cancers (Table 3). Whilst the results of the Schoenfeld residual tests indicated that some of our models may not have been in line with the proportional hazards assumption, our visual inspection of log-log plots and Schoenfeld residual plots showed no serious violations. Therefore, we proceeded with the analyses as planned.

Table 3

Results of Cox proportional hazards analyses investigating the association between self-report TV screen time and cancer incidence (excluding cancers diagnosed within the first 2 years following baseline).

	1 hour increase in TV screen time	p-value	\(\leq 1 \) hour	1-\(\leq 3 \) hours (reference)	3-\(\leq 5 \) hours	> 5 hours	
All cancers excluding non-melanoma skin cancer	Cases 18190	3.213	9,003	4,802	1,172		
Skin, melanoma	HR (95% CI) \(^a, b, c, d, e, g, h \) 1.01(0.99, 1.02)	0.07**	0.96(0.92, 1.001)	1.00	1.01(0.97, 1.04)	1.002(0.9, 1.07)	
Oropharyngeal Cancer	Cases 410	69	197	105	39		
Lung	HR (95% CI) \(^a \) 1.04(0.99, 1.10)	0.12	0.90(0.68, 1.19)	1.00	1.02(0.80, 1.13)	1.04(0.79, 1.09)	
Breast (female)	Cases 3,288	657	1,724	756	151		
Tissue	Cases	HR (95% CI)	95% CI	95% CI	95% CI	95% CI	
-----------------	-------	-------------	--------	--------	--------	--------	
Uterus	567	1.004 (0.98, 1.03)	0.76**	0.90 (0.82, 0.99)	1.00	0.96 (0.87, 1.04)	0.94 (0.79, 1.11)
Ovary	404	0.98 (0.93, 1.04)	0.56**	1.05 (0.83, 1.33)	1.00	1.06 (0.87, 1.29)	0.75 (0.50, 1.10)
Prostate	4,235	1.02 (0.95, 1.09)	0.60	0.88 (0.67, 1.16)	1.00	1.01 (0.80, 1.29)	0.93 (0.59, 1.46)
Oesophagus	392	0.99 (0.97, 1.01)	0.34**	1.02 (0.94, 1.10)	1.00	0.98 (0.91, 1.06)	0.94 (0.82, 1.08)
Stomach	250	1.06 (0.99, 1.14)	0.09	0.57 (0.37, 0.89)	1.00	0.996 (0.7, 1.33)	0.96 (0.60, 1.53)
Oesophagus and stomach	638	1.05 (1.01, 1.10)	0.03**	0.71 (0.54, 0.92)	1.00	1.07 (0.89, 1.28)	1.07 (0.80, 1.42)
Hepatobiliary tract	348	1.03 (0.97, 1.09)	0.29	0.9999 (0.72, 1.38)	1.00	1.001 (0.71, 1.38)	1.00 (0.77, 1.60)
Pancreatic	463	1.01 (0.95, 1.06)	0.85	1.02 (0.78, 1.33)	1.00	1.09 (0.88, 1.36)	0.91 (0.62, 1.34)
Kidney	583	0.99 (0.94, 1.04)	0.75	1.02 (0.80, 1.30)	1.00	0.95 (0.77, 1.15)	1.11 (0.81, 1.51)
Bladder	461	1.00 (0.94, 1.06)	0.25**	0.88 (0.65, 1.19)	1.00	1.19 (0.96, 1.47)	1.10 (0.77, 1.55)
Colorectal	2,281	1.03 (0.99, 1.07)	0.07**	0.95 (0.85, 1.07)	1.00	1.03 (0.93, 1.14)	1.10 (0.93, 1.31)
Colon	1,478	1.04 (1.01, 1.07)	0.02**	0.97 (0.84, 1.13)	1.00	1.05 (0.92, 1.19)	1.22 (0.99, 1.50)
Rectum	754	1.00 (0.96, 1.11)	0.38	0.85 (0.62, 1.15)	1.00	0.89 (0.68, 1.17)	0.81 (0.48, 1.35)
Brain tumours	333	1.03 (0.96, 1.11)	0.85 (0.62, 1.15)	1.00	0.89 (0.68, 1.17)	0.81 (0.48, 1.35)	
Thyroid	161	0.99 (0.89, 1.09)	0.78	0.91 (0.60, 1.38)	1.00	0.88 (0.59, 1.32)	0.998 (0.4, 2.03)
Haematological malignancies	1,786	1.00 (0.96, 1.11)	0.38	0.85 (0.62, 1.15)	1.00	0.89 (0.68, 1.17)	0.81 (0.48, 1.35)
Non-Hodgkin's lymphoma	886	1.00 (0.96, 1.11)	0.38	0.85 (0.62, 1.15)	1.00	0.89 (0.68, 1.17)	0.81 (0.48, 1.35)

*Additional site-specific covariates in the final model include use of sun/UV protection (Never/rarely/sometimes; most of the time/always; do not go out in sunshine).
Additional site-specific covariates in the final model include HRT use (ever used/never used), oral contraceptive use (ever used/never used), number of live births (0, 1, 2, 3 + live births), age at menarche (early menarche [< 12 years], menarche at 12–14 years, late menarche [≥ 15 years]), age at menopause (< 40 years, 40–44 years, 45–49 years, 50–54 years, 55–59 years, 60–64 years, ≥ 65 years, not had menopause/unsure), hysterectomy status (had hysterectomy, not had hysterectomy/unsure).

Additional site-specific covariates in the final model include diabetes at baseline (yes/no), aspirin use (regular use/non-regular use or no use), HRT use (ever used/never used), red meat intake (portion/week), processed meat intake (portion/week).

Final model also adjusted for waist-hip ratio (> 94 cm in men, > 80 cm in women).

Results for males and females combined using meta-analysis as covariates are different.

Final model also adjusted for family history of cancer (mother/father/sibling had cancer, no family history).

Schoenfeld test indicated potential violation of the proportional hazards assumption (p < 0.05).

Subgroup analyses and tests of effect modification (supplement 1, tables 1.2–1.8) showed that HR estimates for total cancer risk in females differed according to BMI (p = 0.0002) and that HR estimates differed for lung cancer risk according to socio-economic status (p = 0.004). HR estimates differed according to the combined body fat percentage and physical activity level category for lung cancer (p = 0.003) and haematological malignancies (p = 0.0004). The results of all other subgroup analyses were non-significant.

Results of partition models and isotemporal substitution models

Partition models showed there was an association between a 1-hour increase in daily TV screen time and a higher risk of total cancer (HR 1.01, 95% CI: 1.002, 1.02), oropharyngeal cancer (HR 1.11, 95% CI: 1.05, 1.17), and lung cancer (HR 1.04, 95% CI: 1.01, 1.07) when holding daily time spent in moderate-intensity physical activity, vigorous-intensity physical activity and walking constant. There was an association between a 1-hour increase in daily time spent in moderate-intensity physical activity and a lower risk of breast (female only) cancer (HR 0.91, 95% CI: 0.86, 0.96), and colon cancer (HR 0.89, 95% CI: 0.81, 0.97) when holding daily TV screen time, and time spent in vigorous-intensity physical activity and
walking constant (supplement 1, Table 1.1).

Isotemporal substitution models showed there was an association between replacing 1-hour of daily TV screen time with 1-hour of moderate-intensity physical activity and a lower risk of total cancer (HR 0.97, 95% CI: 0.95, 0.99), breast (female only) cancer (HR 0.90, 95% CI: 0.85, 0.96), colorectal cancer (HR 0.92, 95% CI: 0.86, 0.99), and colon cancer (HR 0.87, 95% CI: 0.79, 0.95) when holding time spent in vigorous-intensity physical activity and walking constant. There was an association between replacing 1-hour of daily TV screen time with 1-hour of walking and a lower risk of oropharyngeal cancer (HR 0.79, 95% CI: 0.67, 0.92), and lung cancer (HR 0.89, 95% CI: 0.82, 0.97) when holding time spent in moderate- and vigorous-intensity physical activity constant (Table 4).

Table 4. Results of isotemporal substitution models showing the impact on cancer incidence of replacing a 1-hour of total daily TV screen time with the same amount of daily moderate activity, daily vigorous activity or daily walking time, holding the other activities constant.
All cancers excluding non-melanoma skin cancer	1-hour increase in daily moderate activity	1-hour increase in daily vigorous activity	1-hour increase in daily walking time
HR (95% CI)	HR (95% CI)	HR (95% CI)	
All cancers	0.97 (0.95, 0.99)	1.001 (0.96, 1.05)	0.98 (0.96, 1.01)
Skin melanoma [cases=1256]	0.98 (0.89, 1.09)	0.97 (0.81, 1.17)	1.03 (0.94, 1.12)
Oropharyngeal [cases=411]	0.91 (0.77, 1.08)	0.86 (0.63, 1.18)	0.79 (0.67, 0.92)
Lung [cases=1355]	1.0003 (0.92, 1.09)	0.84 (0.71, 1.004)	0.89 (0.82, 0.97)
Breast (female only) [cases=3454]	0.90 (0.85, 0.96)	1.02 (0.89, 1.16)	0.99 (0.94, 1.05)
Uterus [cases=570]	1.001 (0.86, 1.17)	1.05 (0.76, 1.46)	0.99 (0.86, 1.13)
Ovary [cases=405]	1.09 (0.93, 1.28)	1.12 (0.81, 1.55)	0.97 (0.83, 1.13)
Prostate [cases=4629]	1.01 (0.96, 1.06)	1.05 (0.97, 1.15)	0.9997 (0.95, 1.05)
Oesophagus [cases=386]	1.09 (0.93, 1.28)	1.06 (0.80, 1.42)	0.91 (0.77, 1.06)
Stomach [cases=264]	1.06 (0.87, 1.29)	0.77 (0.52, 1.15)	0.91 (0.76, 1.10)
Oesophagus and stomach [cases=644]	1.08 (0.95, 1.22)	0.94 (0.74, 1.18)	0.90 (0.80, 1.02)
Hepatobiliary tract [cases=331]	0.84 (0.69, 1.02)	1.01 (0.71, 1.43)	1.03 (0.87, 1.21)
Pancreatic [cases=467]	1.07 (0.92, 1.24)	0.92 (0.69, 1.23)	0.95 (0.82, 1.09)
Kidney [cases=559]	1.01 (0.88, 1.17)	1.12 (0.87, 1.44)	0.95 (0.83, 1.09)
Bladder [cases=502]	0.98 (0.85, 1.13)	0.83 (0.62, 1.09)	1.03 (0.90, 1.17)
Colorectal [cases=2405]	0.92 (0.86, 0.99)	0.997 (0.87, 1.14)	1.01 (0.95, 1.08)
Colon [cases=1530]	0.87 (0.79, 0.95)	0.96 (0.81, 1.14)	1.001 (0.92, 1.09)
Rectum [cases=821]	0.99 (0.88, 1.12)	1.06 (0.86, 1.30)	1.01 (0.90, 1.12)
Brain tumours [cases=345]	0.85 (0.70, 1.03)	0.85 (0.59, 1.23)	1.04 (0.88, 1.23)
Thyroid [cases=181]	0.94 (0.72, 1.23)	0.80 (0.46, 1.40)	1.07 (0.85, 1.35)
Haematological malignancies [cases=1794]	0.98 (0.90, 1.06)	1.07 (0.93, 1.24)	0.99 (0.92, 1.07)
Non-Hodgkin’s lymphoma [cases=864]	0.99 (0.88, 1.11)	1.07 (0.87, 1.32)	0.95 (0.85, 1.06)

All models were adjusted for age, sex, ethnicity (white/other), deprivation index (quintiles), education (University degree, A-levels/HNC/HND/NVQ, GCSE/O-level/CSE, OTHER, None), fruit and vegetable intake (<5 portions/day, ≥5 portions/day), BMI
(kg/m²), height (m), smoking status (never, former light smoker [<20 pack-years], former heavy smoker [≥20 pack-years], current light smoker [<20 pack-years], current heavy smoker [≥20 pack-years]) and alcohol intake (never, former, current [<once/week], current [≥once/week]).

³Additional site-specific covariates in the final model include use of sun/UV protection (Never/rarely/sometimes; most of the time/always; do not go out in sunshine).

⁴Additional site-specific covariates in the final model include HRT use (ever used/never used), oral contraceptive use (ever used/never used), number of live births (0, 1, 2, 3+ live births), age at menarche (early menarche [<12 years], menarche at 12-14 years, late menarche [≥15 years]), age at menopause (<40 years, 40-44 years, 45-49 years, 50-54 years, 55-59 years, 60-64 years, ≥65 years, not had menopause/unsure), hysterectomy status (had hysterectomy, not had hysterectomy/unsure).

⁵Additional site-specific covariates in the final model include HRT use (ever used/never used), oral contraceptive use (ever used/never used), number of live births (0, 1, 2, 3+ live births), age at menarche (early menarche [<12 years], menarche at 12-14 years, late menarche [≥15 years]), age at menopause (<40 years, 40-44 years, 45-49 years, 50-54 years, 55-59 years, 60-64 years, ≥65 years, not had menopause/unsure), hysterectomy status (had hysterectomy, not had hysterectomy/unsure).

⁶Additional site-specific covariates in the final model include diabetes at baseline (yes/no).

⁷Additional site-specific covariates in the final model include diabetes at baseline
(yes/no), aspirin use (regular use/non-regular use or no use), HRT use (ever used/never used), red meat intake (portion/week), processed meat intake (portion/week).

Final model also adjusted for waist-hip ratio (>94cm in men, >80cm in women).

Results for males and females combined using meta-analysis as covariates are different.

Final model also adjusted for family history of cancer (mother/father/sibling had cancer, no family history).

Association of cancer risk and daily time spent on the computer

Table 5 shows the association between a 1-hour increase in daily time spent using computers and total cancer risk and site-specific cancer risk. A 1-hour increase in daily computer screen time was associated with lower risk of oropharyngeal cancer (HR 0.93, 95% CI: 0.87, 0.998). The categorical analysis showed that participants who reported that they spent no hours using computers had a higher risk of oropharyngeal cancer (HR 1.27, 95% CI: 1.03, 1.56), and ovary cancer (HR 1.23, 95% CI: 1.01, 1.50) compared to participants who reported ≤ 1 hour of daily time spent using the computer.

Participants who reported > 3 hours using computers had a higher risk of lung cancer (HR 1.36, 95% CI: 1.12, 1.65) compared to participants who reported ≤ 1 hour of daily time spent using the computer.

Table 5. Results of Cox proportional hazards analyses investigating the association between self-report computer screen time and cancer incidence.

1 hour	p-value	None	≤1 hour	1-3	>3 hours

46
Person-years	Increase in computer screen time	(reference) hours					
All cancers excluding melanoma skin cancer	3 498 487	969 721	1 744 785	582 168	201 813		
HR (95% CI)* Cases 28 697	1.0004 (0.99 1.01)	1.06 (1.03 1.09)	1.00	1.03 (0.99 1.06)	1.06 (1.01 1.12)		
HR (95% CI)* Cases 13 124	0.998 (0.99 1.01)	1.03 (0.99 1.06)	1.00	1.002 (0.97 1.04)	1.02 (0.97 1.08)		
HR (95% CI)* Cases 28 697	0.998 (0.99 1.01)	1.02 (0.99 1.06)	1.00	0.99 (0.96 1.03)	1.03 (0.97 1.09)		
Skin, melanoma	1621	404	852	276	89		
HR (95% CI)* Cases 561	1.01 (0.98 1.05)	0.77 (0.68 0.86)	1.00	0.90 (0.79 1.04)	0.92 (0.74 1.14)		
HR (95% CI)* Cases 1621	0.91 (0.87 0.95)	0.97 (0.95 1.00)	1.00	0.91 (0.85 1.12)	0.99 (0.79 1.24)		
Oropharyngeal cancer	561	2931	762	130			
HR (95% CI)* Cases 1621	0.93 (0.87 0.99)	0.93 (0.90 0.96)	1.00	0.91 (0.71 1.17)	0.77 (0.51 1.17)		
Lung cancer	2040	2931	762	229			
HR (95% CI)* Cases 561	0.97 (0.93 1.00)	1.02 (0.99 1.05)	1.00	1.01 (0.98 1.04)	1.03 (1.00 1.06)		
Breast (female only)	5650	1728	762	229			
HR (95% CI)* Cases 561	0.93 (0.88 0.98)	0.93 (0.90 0.96)	1.00	0.92 (0.85 0.99)	0.99 (0.87 1.14)		
Uterus	863	315	127	32			
HR (95% CI)* Cases 561	1.01 (0.95 1.07)	1.18 (1.02 1.38)	1.00	1.25 (1.03 1.53)	1.12 (0.78 1.60)		
Ovary	567	211	63	27			
HR (95% CI)* Cases 561	0.96 (0.90 1.02)	0.98 (0.90 1.04)	1.00	0.96 (0.90 1.04)	0.98 (0.91 1.09)		
Prostate	5933	1543	1298	393			
HR (95% CI)* Cases 561	1.005 (0.99 1.01)	0.91 (1.04 1.17)	1.00	0.97 (0.91 0.97)	0.87 (0.78 0.97)		
Tumor Site	HR (95% CI)*	HR (95% CI)+	HR (95% CI)+	HR (95% CI)+	HR (95% CI)+		
------------	--------------	--------------	--------------	--------------	--------------		
Oesophagus	0.998 (0.98 1.02)	0.98 (0.92 1.05)	1.00 (0.93, 1.06)	0.998 (0.90 1.12)			
Cases	530	174	221	108	27		
Stomach	0.97 (0.90 1.03)	0.32 (0.98 1.47)	1.00 (1.30, 1.42)	0.94 (0.63 1.19)			
Oesophagus and stomach	0.98 (0.91 1.07)	0.71 (0.88 1.51)	1.00 (0.35, 1.69)				
Cases	873	305	352	168	48		
Hepatobiliary tract	0.97 (0.92 1.02)	0.25 (0.95 1.53)	1.00 (0.93, 1.19)				
Cases	451	170	168	91	22		
Pancreatic	0.97 (0.90 1.04)	0.74 (0.95 1.53)	1.00 (0.997 1.69)				
Cases	606	189	276	114	27		
Kidney	0.98 (0.92 1.05)	0.62 (0.83 1.21)	1.00 (0.87, 1.29)				
Cases	713	251	333	149	50		
Bladder	0.98 (0.93 1.04)	0.54 (0.97 1.45)	1.00 (0.96, 1.25)				
Cases	674	227	271	142	30		
Colorectal	0.99 (0.96 1.02)	0.45 (0.89 1.32)	1.00 (0.87, 1.13)				
Cases	3312	1059	1512	556	185		
Tissue	Cases (males)	2124	681	980	348	115	
-----------------	---------------	------	-----	-----	-----	-----	
Colon	HR (95% CI)*	0.99 (0.96 1.03)	0.63**	1.04 (0.94 1.15)	1.00	0.94 (0.83 1.06)	1.04 (0.86 1.26)
	HR (95% CI)†	0.99 (0.95 1.02)	0.50**	1.04 (0.93 1.15)	1.00	0.93 (0.82 1.06)	1.02 (0.83 1.24)
	HR (95% CI)e. g. f (males)	0.99 (0.95 1.02)	0.42**	1.03 (0.92 1.14)	1.00	0.93 (0.82 1.06)	1.02 (0.83 1.25)
Rectum	Cases	1115	354	501	195	65	
	HR (95% CI)*	0.98 (0.94 1.03)	0.42**	1.12 (0.98 1.29)	1.00	0.97 (0.82 1.14)	1.04 (0.80 1.35)
	HR (95% CI)†	0.97 (0.93 1.02)	0.28	1.20 (1.03 1.39)	1.00	0.97 (0.82 1.15)	1.03 (0.79 1.35)
	HR (95% CI)e. g	0.97 (0.93 1.02)	0.28	1.16 (0.99 1.36)	1.00	0.96 (0.81 1.15)	0.999 (0.76 1.32)
Thyroid	Cases	237	82	106	35	14	
	HR (95% CI)*	1.02 (0.92 1.12)	0.76	1.31 (0.98 1.76)	1.00	1.10 (0.75 1.61)	1.32 (0.76 2.31)
	HR (95% CI)†	1.01 (0.91 1.11)	0.86	1.36 (0.99 1.87)	1.00	1.08 (0.73 1.59)	1.28 (0.73 2.25)
	HR (95% CI)e. g	1.01 (0.91 1.11)	0.86	1.36 (0.99 1.87)	1.00	1.08 (0.73 1.59)	1.28 (0.73 2.25)
Brain tumours	Cases	463	130	221	87	25	
	HR (95% CI)*	1.02 (0.95 1.09)	0.62	0.95 (0.77 1.19)	1.00	1.02 (0.79 1.31)	0.93 (0.61 1.40)
	HR (95% CI)†	1.03 (0.96 1.10)	0.39	0.92 (0.72 1.17)	1.00	1.03 (0.80 1.34)	0.96 (0.63 1.47)
	HR (95% CI)f	1.03 (0.96 1.10)	0.38	0.92 (0.72 1.17)	1.00	1.04 (0.80 1.34)	0.97 (0.63 1.48)
Haematologic	malignancies	2446	714	1137	445	150	
	HR (95% CI)*	1.03 (0.99 1.06)	0.06	0.95 (0.87 1.05)	1.00	1.02 (0.92 1.14)	1.14 (0.96 1.36)
	HR (95% CI)†	1.02 (0.99 1.05)	0.24	0.95 (0.86 1.06)	1.00	0.997 (0.89 1.12)	1.11 (0.93 1.32)
	HR (95% CI)f	1.02 (0.99 1.05)	0.24	0.95 (0.86 1.06)	1.00	0.997 (0.89 1.12)	1.11 (0.93 1.32)
Non-Hodgkin’s	lymphoma	1182	349	545	225	63	
	HR (95% CI)*	1.02 (0.98 1.06)	0.37	0.97 (0.85 1.11)	1.00	1.09 (0.94 1.28)	1.02 (0.78 1.32)
	HR (95% CI)†	1.01 (0.97 1.06)	0.65	0.996 (0.86 1.15)	1.00	1.07 (0.91 1.26)	1.03 (0.79 1.34)
	HR (95% CI)	1.01 (0.97 1.06)	0.65	0.996 (0.86 1.15)	1.00	1.07 (0.91 1.26)	1.03 (0.79 1.34)

*Models adjusted for age and sex (total observations=467 656).

†Models adjusted for age, sex, ethnicity (white/other), deprivation index (quintiles), education (University degree, A-levels/HNC/HND/NVQ, GCSE/O-level/CSE, OTHER, None), fruit and vegetable intake (<5 portions/day, ≥5 portions/day), BMI (kg/m2), height (m), smoking status (never, former light smoker [<20 pack-years], former heavy smoker [≥20 pack-years], current light smoker [<20 pack-years], current...
heavy smoker \(≥20\) pack-years)) and alcohol intake (never, former, current [<once/week], current \(≥\) once/week)).

\(^a\)Additional site-specific covariates in the final model include use of sun/UV protection (Never/rarely/sometimes; most of the time/always; do not go out in sunshine).

\(^b\)Additional site-specific covariates in the final model include HRT use (ever used/never used), oral contraceptive use (ever used/never used), number of live births (0, 1, 2, 3+ live births), age at menarche (early menarche \(<12 \) years, menarche at 12-14 years, late menarche \(≥15 \) years), age at menopause (<40 years, 40-44 years, 45-49 years, 50-54 years, 55-59 years, 60-64 years, \(≥65 \) years, not had menopause/unsure), hysterectomy status (had hysterectomy, not had hysterectomy/unsure).

\(^c\)Additional site-specific covariates in the final model include HRT use (ever used/never used), oral contraceptive use (ever used/never used), number of live births (0, 1, 2, 3+ live births), age at menarche (early menarche \(<12 \) years, menarche at 12-14 years, late menarche \(≥15 \) years), age at menopause (<40 years, 40-44 years, 45-49 years, 50-54 years, 55-59 years, 60-64 years, \(≥65 \) years, not had menopause/unsure), hysterectomy status (had hysterectomy, not had hysterectomy/unsure).

\(^d\)Additional site-specific covariates in the final model include diabetes at baseline (yes/no).

\(^e\)Additional site-specific covariates in the final model include diabetes at baseline (yes/no), aspirin use (regular use/non-regular use or no use), HRT use (ever used/never used), red meat intake (portion/week), processed meat intake.
(portion/week).

\(^{f}\) Final model also adjusted for waist-hip ratio (>94cm in men, >80cm in women).

\(^{g}\) Results for males and females combined using meta-analysis as covariates are different.

\(^{h}\) Final model also adjusted for family history of cancer (mother/father/sibling had cancer, no family history).

\(^{**}\) Schoenfeld test indicated potential violation of the proportional hazards assumption (p<0.05).

Association of cancer risk and daily total screen time

Table 6 shows the association between a 1-hour increase in total daily screen time and total cancer risk and site-specific cancer risk. A 1-hour increase in daily total screen time was associated with a higher risk of lung cancer (HR 1.03, 95% CI: 1.004, 1.05).

Participants who reported > 8 hours of daily total screen time had a higher risk of lung cancer (HR 1.45, 95% CI: 1.19, 1.77) but a lower risk of oesophagus cancer (HR 0.54, 95% CI: 0.29, 0.99) compared to participants who reported 1-≤4 hours of daily total screen time.

Table 6. Results of Cox proportional hazards analyses investigating the association between self-report total screen time and cancer incidence.

Person-years	1 hour increase in total screen time	p-value	≤1 hour	1≤4 hours (reference)	4≤8 hours	>8 hours																					
All cancers excluding non-melanoma skin cancer	Cases HR (95% CI)*	28 475	**1.02 (1.01 1.02)**	<0.001*	1751	**0.97 (0.93 1.02)**	16 402	**1.05 (1.03 1.08)**	9348	**1.14 (1.07 1.22)**																	
	HR (95% CI)+	1.003 (0.997 1.01)	0.31**	0.998 (0.95 1.05)	1.00	1.01 (0.98 1.04)	1.04 (0.97 1.12)																				
	HR (95% CI)+, b, c, d	1.004 (0.997)	0.24**	0.98 (0.93 1.04)	1.00	1.01 (0.98 1.04)	1.04 (0.97 1.12)																				
Disease	Cases	HR (95% CI)*	HR (95% CI)†	HR (95% CI)‡	HR (95% CI)§																						
---------------	-------	--------------	--------------	--------------	--------------																						
Skin, melanoma	Cases	1614	1.01	1.01	1.01																						
		0.99 (0.97	0.62	0.70	0.99																						
		1.02	0.64**	1.22	0.80																						
		0.93 (0.76	0.97 (0.78	0.99 (0.80	1.07																						
		1.14	1.19	1.22	1.19																						
		1.00	1.00	1.00	1.07																						
		1.02	1.00	1.07	1.07																						
Oropharynx, l. g. h	Cases	552	24	191	25																						
		1.05	0.69	1.13	1.05																						
		(1.01	(0.46	1.00	(0.95																						
		1.09	1.05	1.00	1.05																						
		1.00	1.18	1.00	1.16																						
		1.07	1.39	1.00	1.39																						
Lung	Cases	2014	119	774	126																						
		1.11	1.13	1.00	2.49																						
		(1.09	(1.03	1.00	(2.07																						
		1.13	1.37	1.00	1.50																						
		0.99	1.37	1.00	1.50																						
Breast (female only)	Cases	5609	418	1522	143																						
		1.12	1.00	0.97	1.00																						
		(0.91	(0.92	(0.97	(0.85																						
		0.85	1.04	1.00	1.04																						
Uterus	Cases	856	70	264	18																						
		0.97	1.11	1.00	0.93																						
		(0.93	(0.87	1.00	(0.79																						
		0.87	1.43	1.00	1.09																						
Ovary	Cases	561	44	354	14																						
		0.97	0.75	0.99	0.96																						
		(0.93	(0.72	(0.91	(0.91																						
		1.04	1.35	1.00	1.35																						
Prostate	Cases	5898	335	2032	191																						
		0.98	1.06	1.01	1.01																						
		(0.97	(0.94	(0.95	(0.95																						
		0.97	1.19	1.00	1.07																						
Oesophagus	Cases	528	28	272	12																						
		1.05	1.02	1.00	1.34																						
		(1.02	(1.00	1.00	(1.12																						
		1.00	1.50	1.00	1.60																						
Stomach	Cases	348	14	177	16																						
		1.08	0.77	1.00	1.37																						
		(1.04	(0.45	1.00	(1.09																						
		1.13	1.33	1.00	1.71																						
		0.77	1.36	1.00	1.36																						
		1.04	1.36	1.00	1.36																						
		0.77	1.39	1.00	1.39																						
		1.08	1.42	1.00	1.42																						
		0.75	1.42	1.00	1.42																						
		0.75	1.42	1.00	1.42																						
Tumour Type	Cases	HR (95% CI)*	95% CI†	HR (95% CI)‡	95% CI§	HR (95% CI)∥	95% CI¶	HR (95% CI)*	95% CI†	HR (95% CI)‡	95% CI§	HR (95% CI)∥	95% CI¶	HR (95% CI)*	95% CI†	HR (95% CI)‡	95% CI§	HR (95% CI)∥	95% CI¶	HR (95% CI)*	95% CI†	HR (95% CI)‡	95% CI§	HR (95% CI)∥	95% CI¶		
---------------------	-------	--------------	---------	--------------	---------	--------------	---------	--------------	---------	--------------	---------	--------------	---------	--------------	---------	--------------	---------	--------------	---------	--------------	---------	--------------	---------	--------------	---------	--------------	---------
Oesophagus and stomach	870	1.07 (1.04 1.10)	0.93 (0.68 1.28)	1.00	1.36 (1.18 1.57)	1.09 (0.74 1.59)																					
Rectum	42	1.02 (0.98 1.05)	0.31	0.99 (0.72 1.36)	1.00	1.14 (0.98 1.32)	0.76 (0.50 1.14)																				
Colon	444	1.02 (0.98 1.05)	0.34	0.99 (0.72 1.37)	1.00	1.13 (0.98 1.31)	0.76 (0.50 1.14)																				
Bladder	446	1.05 (1.01 1.10)	0.02	0.84 (0.54 1.29)	1.00	1.11 (0.90 1.35)	1.45 (0.91 2.31)																				
Kidney	604	1.04 (1.004 1.08)	0.03	0.85 (0.58 1.23)	1.00	1.17 (0.99 1.33)	1.22 (0.78 1.89)																				
Pancreatic	771	1.02 (0.98 1.06)	0.37	0.86 (0.58 1.26)	1.00	1.10 (0.92 1.31)	1.01 (0.64 1.60)																				
Hepatobiliary tract	1.02 (0.98 1.06)	0.45	0.86 (0.58 1.26)	1.00	1.08 (0.91 1.30)	0.99 (0.63 1.57)																					
Kidney	717	1.04 (1.01 1.08)	0.01	0.98 (0.71 1.34)	1.00	1.19 (1.02 1.38)	1.38 (0.96 1.98)																				
Bladder	662	1.06 (1.02 1.09)	0.001	0.69 (0.46 1.04)	1.00	1.21 (1.03 1.42)	1.36 (0.93 2.00)																				
Colorectal	3290	1.02 (1.002 1.04)	0.03**	0.88 (0.76 1.03)	1.00	1.04 (0.97 1.12)	1.16 (0.97 1.40)																				
Bladder	3221	1.02 (1.002 1.04)	0.03**	0.88 (0.76 1.04)	1.00	1.09 (0.91 1.07)	1.08 (0.88 1.32)																				
Colon	2110	1.03 (1.01 1.05)	0.003**	0.86 (0.70 1.04)	1.00	1.08 (0.99 1.19)	1.21 (0.96 1.53)																				
Rectum	1107	1.02 (0.998 1.04)	0.08**	0.91 (0.75 1.11)	1.00	1.04 (0.95 1.15)	1.16 (0.91 1.48)																				
Brain tumours	458	1.02 (0.98 1.07)	0.31	0.98 (0.66 1.46)	1.00	1.001 (0.81 1.24)	1.13 (0.67 1.91)																				
Colon	458	1.01 (0.97 1.06)	0.50	0.96 (0.65 1.42)	1.00	0.99 (0.81 1.22)	1.07 (0.65 1.77)																				
Brain tumours	458	1.02 (0.98 1.07)	0.31	0.98 (0.66 1.46)	1.00	1.001 (0.81 1.24)	1.13 (0.67 1.91)																				

*: Significant at the 0.05 level
†: Significant at the 0.01 level
‡: Significant at the 0.001 level
§: Significant at the 0.0001 level
¶: Significant at the 0.00001 level
	HR (95% CI)	95% CI	HR (95% CI)	95% CI	HR (95% CI)	95% CI
Thyroid Cases	1.03 (0.98	1.07	0.97 (0.65	1.45	1.00	1.01
	1.07	1.45	1.07	1.45	1.07	1.45
HR (95% CI)*	0.99 (0.93	1.06	0.99 (0.93	1.07	0.99 (0.93	1.07
	1.06	1.07	1.07	1.07	1.07	1.07
HR (95% CI)†	0.99 (0.93	1.07	0.99 (0.93	1.07	0.99 (0.93	1.07
	1.07	1.07	1.07	1.07	1.07	1.07
Thyroid	236	15	154	62	154	62
Haematological malignancies	2427	142	1396	806	806	83
HR (95% CI)*	1.02 (0.99	1.04	0.95 (0.80	1.12	1.00	1.04
	1.04	1.12	1.12	1.12	1.12	1.12
HR (95% CI)†	1.01 (0.99	1.03	0.96 (0.80	1.15	1.00	1.02
	1.03	1.15	1.07	1.34	1.07	1.34
HR (95% CI)	1.01 (0.99	1.03	0.96 (0.80	1.15	1.00	1.02
	1.03	1.15	1.07	1.34	1.07	1.34
Non-Hodgkin's lymphoma	1174	68	675	392	392	39
HR (95% CI)*	1.02 (0.99	1.04	0.93 (0.72	1.19	1.00	1.06
	1.04	1.19	1.10	1.52	1.10	1.52
HR (95% CI)†	1.01 (0.98	1.04	0.93 (0.72	1.20	1.00	1.08
	1.04	1.20	1.06	1.48	1.06	1.48
HR (95% CI)	1.01 (0.98	1.04	0.93 (0.72	1.20	1.00	1.08
	1.04	1.20	1.06	1.48	1.06	1.48

*Models adjusted for age and sex (total observations=464,424).
†Models adjusted for age, sex, ethnicity (white/other), deprivation index (quintiles), education (University degree, A-levels/HNC/HND/NVQ, GCSE/O-level/CSE, OTHER, None), fruit and vegetable intake (<5 portions/day, ≥5 portions/day), BMI (kg/m2), height (m), smoking status (never, former light smoker [<20 pack-years], former heavy smoker [≥20 pack-years], current light smoker [<20 pack-years], current heavy smoker [≥20 pack-years]) and alcohol intake (never, former, current [<once/week], current [≥once/week]).

a Additional site-specific covariates in the final model include use of sun/UV protection (Never/rarely/sometimes; most of the time/always; do not go out in sunshine).

b Additional site-specific covariates in the final model include HRT use (ever used/never used), oral contraceptive use (ever used/never used), number of live births (0, 1, 2, 3+ live births), age at menarche (early menarche [<12 years], menarche at 12-14 years, late menarche [≥15 years]), age at menopause (<40
years, 40-44 years, 45-49 years, 50-54 years, 55-59 years, 60-64 years, ≥65 years,
not had menopause/unsure), hysterectomy status (had hysterectomy, not had
hysterectomy/unsure).

Additional site-specific covariates in the final model include HRT use (ever
used/never used), oral contraceptive use (ever used/never used), number of live
births (0, 1, 2, 3+ live births), age at menarche (early menarche [<12 years],
menarche at 12-14 years, late menarche [≥15 years]), age at menopause (<40
years, 40-44 years, 45-49 years, 50-54 years, 55-59 years, 60-64 years, ≥65 years,
not had menopause/unsure), hysterectomy status (had hysterectomy, not had
hysterectomy/unsure).

dAdditional site-specific covariates in the final model include diabetes at baseline
(yes/no).

eAdditional site-specific covariates in the final model include diabetes at baseline
(yes/no), aspirin use (regular use/non-regular use or no use), HRT use (ever
used/never used), red meat intake (portion/week), processed meat intake
(portion/week).

fFinal model also adjusted for waist-hip ratio (>94cm in men, >80cm in women).

gResults for males and females combined using meta-analysis as covariates are
different.

hFinal model also adjusted for family history of cancer (mother/father/sibling had
cancer, no family history).

**Schoenfeld test indicated potential violation of the proportional hazards
assumption (p<0.05).
DISCUSSION

Overview of key findings

This large, prospective cohort study indicates that sedentary behaviours were associated with some site-specific cancers (notably oropharyngeal, oesophagus and stomach, colon and lung cancer), particularly for TV viewing time. Results for oesophagus and stomach cancers, and colon cancers were robust to the omission of cancers occurring within the first two years of follow-up. Our study provides no evidence for an association between sedentary behaviour and total cancer risk. However, the results of our isotemporal substitution models revealed a benefit in terms of reduced total cancer risk and reduced risk of several site-specific cancers when replacing 1-hour of TV viewing per day with 1-hour of moderate-intensity physical activity or walking. Results were less consistent for time spent on computer and daily total screen time. This may suggest that the mechanism of action is more nuanced and complex than the act of being sedentary, but the specific activity that is being undertaken during sedentary time (i.e. watching TV or using the computer) is an important mechanistic driver. Indeed, Patterson F et al (2018) suggested that sedentary behaviour was not a homogenous behaviour and found that different sedentary behaviours had different determinants (40). This will be explored further below.

TV viewing and cancer risk

Television viewing was the most common sedentary behaviour in this population. Our results showed that a 1-hour increase in TV viewing time was associated with higher risk of oropharyngeal, stomach, oesophagus and stomach, and colon cancers. Compared with our reference group of 1–3 hours of TV viewing per day, reporting
less than 1-hour TV viewing per day was associated with decreased risk of lung, breast, stomach, and oesophagus and stomach cancers. Thus our analytical approach has allowed us to contribute a novel finding to the literature, highlighting the benefits of zero TV screen-time hours for these cancers. There is some evidence in the literature that higher levels of physical activity may reduce lung cancer. Mechanistically, this is likely to be due to increased respiratory ventilation, reducing the concentration of carcinogenic agents in the lungs (41). Previous research also provides evidence for a relationship between higher levels of physical activity and lower risk of incident breast cancer due to decreased sex and metabolic hormone levels, decreased adiposity, reductions in insulin resistance and reduced inflammation (37,42-45). It is plausible that similar mechanisms could be applied to the relationship between these cancers and sedentary behaviour.

Previous research has suggested that individuals who have increased TV viewing time tend to have poor lifestyle behaviours, such as being more likely to smoke, eating a poor diet, doing little, if any, physical activity, and being overweight or obese (7). Further, Ogden et al (2013) discussed the concept of ‘mindless eating’, where the distraction of watching the TV led to individuals consuming more calories (46). A review of the literature on sedentary behaviour and biological pathways by Lynch (2010) supported the hypothesised role of adiposity and metabolic dysfunction as mechanisms operant in the association between sedentary behaviour and cancer (7). Our findings and other evidence would suggest that sedentary behaviour is much more than an act of not being ‘active’ or being in a stationary position for a prolonged period, but rather a range of sedentary behaviours where the ‘activity’ being undertaken while sedentary is very important. Subsequently, mechanisms of action are likely to act via a number of complex pathways, such as
indirectly. For example, TV viewing has been associated with increased risk of being obese or overweight (47), and there is also a strong evidence base associating being overweight or obese to increased cancer risk (7,48). However we adjusted for BMI in our models to try to account for this. Known mechanisms associated with body fatness, such as sex hormones, insulin, and inflammation, may explain part of the association between sedentary behaviours and cancer risk. The association between prolonged TV viewing time and lower levels of vitamin D have also been hypothesised as a possible mechanistic pathway (7,11).

Computer use and cancer risk

The mean computer use time was 1.1 hours/day, which is almost three times less prevalent as a sedentary behaviour than daily TV viewing time within this UK population. Paradoxically, our findings showed that a 1-hour/day increase in computer use was associated with lower risk of oropharyngeal cancer and the results of the categorical analysis showed that 0 hours/day of computer use was associated with higher risk of oropharyngeal and ovary cancers compared with ≤ 1 hour/day. Reporting > 3 hours/day of computer use was also associated with increased risk of lung cancer. It is difficult to compare the findings for computer use with other literature given the explicit exclusion of ‘using a computer at work’ from our measure. Most of the previous literature is focused on occupational sedentary time which largely encompasses computer use [17].

Daily total screen-time and cancer risk

The mean daily total screen-time was almost 4 hours/day, reflecting combined TV and computer screen time. The most notable associations were observed for an increased risk of lung cancer in both continuous and categorical analysis. Previous
literature has demonstrated that household air pollution exposure from solid fuel is associated with high rates of lung cancer, especially in low- and middle-income countries, such as China (49). However, this seems an unlikely mechanistic pathway in the UK. It is plausible that indoor sedentary behaviour may be linked to increased residential radon exposure which is known to be associated with an increased risk of lung cancer, particularly in European populations (50). Results were somewhat mixed for other cancers which may be due to the combined nature of essentially two different behaviours (i.e. TV viewing and computer use).

Findings in relation with other literature

Our observations are somewhat mixed to those previously reported for total cancer incidence (15), oesophago-gastric cancer risk (16) and colon cancer risk (17) in relation to sedentary behaviour. However, it is difficult to draw direct comparisons between these studies and our current analysis, since each of those used the lowest category of screen-time exposure as their reference category. Due to our a priori hypothesis that individuals with less than 1-hour of screen time may have different characteristics, we chose 1–3 hours of screen-time as our reference category. This revealed some novel associations not previously identified, such as protective associations for lung, breast, oesophageal, stomach, and oropharyngeal cancers in individuals with the lowest screen-time exposure, and increased risks of lung cancer in individuals with higher levels of exposure to screen time.

Implications of findings

Our findings would support the continued promotion of public health messages and interventions to minimise and reduce sedentary behaviours. However, rather than broad messaging and strategies to simply ‘sit less’, our findings suggest that there
is a need to tackle specific sedentary behaviours, in particular TV viewing. Such
messages should not only promote the need to reduce sitting time but to also be
mindful of the unhealthy behaviours, such as mindless eating, associated with
watching TV.

Public health practitioners should also think about what activities they should
promote while displacing sedentary behaviour. Results from our partition and
substitution models show the benefits of replacing 1-hour of TV viewing time with 1-
hour of moderate-vigorous intensity physical activity or 1-hour of walking,
particularly for total cancer, breast, colorectal, colon, oropharyngeal, and lung
cancers. So rather than messages and interventions to ‘sit less’, such strategies
should also promote healthy, displacement physical activity.

Strengths and limitations

This study provides a comprehensive overview of sedentary behaviours for total
cancer risk and site-specific cancers. The findings from the partition and
isotemporal substitution models are the first, to our knowledge, to model the impact
of displacing 1-hour of sedentary behaviour with more physically active behaviours.
The UK Biobank has previously been criticised for not being a representative sample
for physical activity levels, obesity prevalence and other co-morbidities, indicating a
healthy volunteer bias. However, the cohort is representative of the UK population
in terms of age, sex, ethnicity and deprivation for the targeted age group (15,51)
and a recently published generalisability study suggest that the results of UK
Biobank studies can be generalised to England and Scotland (52). All models were
adjusted for important socio-demographic, health and behavioural variables,
including BMI which is hypothesised to be on the causal pathway between sedentary
behaviour and cancer incidence. Some have argued that this may lead to over-
adjustment and therefore underestimation of the strength of the tested associations (15). Due to the large amount of missing data, the analyses were not adjusted for total calorie consumption or dietary habits other than total fruit and vegetable intake, red and processed meat consumption. Further, we have interpreted our results of effect modification with caution owing to the number of cancer sites and number of subgroups which have been investigated.

The analysis uses self-report sedentary behaviour data, which may be subject to social desirability and recall bias, and the measure has not been investigated for criterion validity (15). However, the estimates are in line with previous population estimates (53,54). Although the UK Biobank cohort does measure sedentary behaviour using accelerometers, we were unable to use this data to examine the association with cancer incidence as the follow-up time was too short (mean follow-up time 1.9 years). The nature of the observational study means that we cannot attribute causal interpretations to our results owing to the potential for residual confounding. Finally, some associations were attenuated when excluding cancers diagnosed within the first two years of follow-up, suggesting that our results could have been affected by a possible reverse causation bias.

Future research

Given the contrasting findings for TV viewing time and computer use time, future research should take a more nuanced approach to exploring sedentary behaviours. This might help provide a better understanding of the underlying mechanisms of action. The literature to date is dominated by daily and weekly duration of sedentary behaviours. Increasing our knowledge about the role of bouts of sedentary behaviour and the impact of breaks in sedentary behaviour could help us develop more specific time-based recommendations and contribute to the
development of much needed cancer prevention strategies. Analysing accelerometer data in large prospective cohorts in future will allow such analysis to be conducted. Accelerometer data has been assessed in UK Biobank during secondary waves of data collection, and so this will be possible given longer follow-up in due course. In addition, the current analysis focussed on cancer risk, but much remains unknown about the interactive effects of physical activity and sedentary behaviour on cancer mortality. These areas of research have been highlighted as important evidence gaps in the US 2018 physical activity guidelines (6).

CONCLUSIONS

In summary, the current study adds to the much-needed evidence base on sedentary behaviours and cancer risk, including total cancer risk and site specific cancers (particularly lung cancer). Our findings show that sedentary behaviours were associated with some site-specific cancers (including oropharyngeal, oesophagus and stomach, colon and lung cancer), particularly for TV viewing time. Our findings were less consistent for time spent on computer and daily total screen time. Substitution models showed that replacing 1-hour per day of TV viewing with 1-hour of moderate-intensity physical activity or walking was associated with lower risk of total cancer and lower risk of several site-specific cancers. Health promotion strategies should endorse the message to minimise sedentary behaviour, replacing it with healthy physical activities, and to particularly target TV viewing.

Abbreviations

AICR
American Institute for Cancer Research
BMI
Body mass index
CI
confidence intervals
GCSE
General Certificate of Secondary Education
GDPR
General Data Protection Regulation
GORD
Gastro-Oesophageal Reflux Disease
HNC
Higher National Certificate
HND
Higher National Diploma
HR
Hazard Ratio
HRT
hormone replacement therapy
ICD
International Classification of Diseases
IPAQ
International Physical Activity Questionnaire
METs
Metabolic equivalents
NCDs
Non-communicable diseases
NHS
National Health Service
NVQ
National Vocational Qualification
RR
Relative Risk
SD
Declarations

Ethics approval and consent to participate: UK Biobank received ethical approval from the North West Multi-centre Research Ethics Committee (REC reference: 11/NW/03820). All participants gave written informed consent before enrolment in the study, which was conducted in accord with the principles of the Declaration of Helsinki.

Consent for publication: Not applicable.

Availability of data and materials: The data that support the findings of this study are available from UK Biobank but restrictions apply to the availability of these data, which were used under license for the current study, and so are not publicly available. Data are however available from the authors upon reasonable request and with permission of UK Biobank.

Competing interests: The authors declare that they have no competing interests.

Funding: The UK Biobank was supported by the Wellcome Trust, Medical Research Council, Department of Health, Scottish government, and Northwest Regional
Development Agency. It has also had funding from the Welsh Assembly government and British Heart Foundation. The research was designed, conducted, analysed, and interpreted by the authors entirely independently of the funding sources. All authors had full access to all of the data (including statistical reports and tables) in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Authors’ contributions: RH had the initial idea for the study. RH JM and HC contributed to the design of the study, advised on all statistical aspects, and interpreted the data. JM performed the statistical analysis. RH and JM drafted the manuscript. RH, JM and HC reviewed the manuscript and approved the final version to be published. RH, JM and HC had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. RH is the guarantor.

Acknowledgements: This research was conducted using the UK Biobank resource. We thank the participants of the UK Biobank. The authors would like to thank Dr. Christopher R. Cardwell (Queen's University Belfast) for providing on-going advice on conducting and interpreting statistical analyses.

References

1. Tremblay MS, Aubert S, Barnes JD, Saunders TJ, Carson V, Latimer-Cheung AE, et al. Sedentary Behavior Research Network (SBRN) – Terminology consensus project process and outcome. Int J Behav Nutr Phys Act. 2017;14(1):75.

2. Sedentary Behaviour Research Network. Letter to the Editor: Standardized use of the terms “sedentary” and “sedentary behaviours.” Appl Physiol Nutr Metab. 2012;37(3):540–2.
3. Department of Health and Social Care. Physical activity guidelines: UK Chief Medical Officers’ report. 2019. Available from: https://www.gov.uk/government/publications/physical-activity-guidelines-uk-chief-medical-officers-report

4. Dickson K, Richardson M, Kwan I, MacDowall W, Burchett H, Stansfield C, et al. Screen-based activities and children and young people’s mental health: a systematic map of reviews. London: EPPI-Centre, Social Science Research Unit, UCL Institute of Education, University College London.; 2018.

5. Department of Health. Start Active, Stay Active. A report on physical activity for health from the four home countries’ Chief Medical Officers. 2011. Available from: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/216370/dh_128210.pdf

6. U.S. Department of Health and Human Services. Physical Activity Guidelines for Americans, 2nd edition. Washington DC; 2018. Available from: https://health.gov/paguidelines/second-edition/pdf/Physical_Activity_Guidelines_2nd_edition.pdf

7. Lynch BM. Sedentary behavior and cancer: a systematic review of the literature and proposed biological mechanisms. Cancer Epidemiol Biomarkers Prev. 2010;19(11):2691-709.

8. Young DR, Hivert M-F, Alhassan S, Camhi SM, Ferguson JF, Katzmarzyk PT, et al. Sedentary behavior and cardiovascular morbidity and mortality: a science advisory from the American Heart Association. Circulation. 2016;134(13).

9. Patterson R, McNamara E, Tainio M, de Sá TH, Smith AD, Sharp SJ, et al. Sedentary behaviour and risk of all-cause, cardiovascular and cancer mortality, and incident type 2 diabetes: a systematic review and dose response meta-
analysis. Eur J Epidemiol. 2018;33(9):811–29.

10. Heron L, O’Neill C, McAneney H, Kee F, Tully MA. Direct healthcare costs of sedentary behaviour in the UK. J Epidemiol Community Heal. 2019;73(3):625-629.

11. World Cancer Research Fund/American Institute for Cancer Research. Diet, Nutrition, Physical Activity and Cancer: A Global Perspective. Continuous Update Project Expert Report 2018. 2018. Available from: dietandcancerreport.org

12. Patel A V., Feigelson HS, Talbot JT,McCullough ML, Rodriguez C, Patel RC, et al. The role of body weight in the relationship between physical activity and endometrial cancer: results from a large cohort of US women. Int J Cancer. 2008;123(8):1877–82.

13. Moore SC, Gierach GL, Schatzkin A, Matthews CE. Physical activity, sedentary behaviours, and the prevention of endometrial cancer. Br J Cancer. 2010;103(7):933–8.

14. Friberg E, Mantzoros CS, Wolk A. Physical activity and risk of endometrial cancer: a population-based prospective cohort study. Cancer Epidemiol Biomarkers Prev. 2006;15(11):2136–40.

15. Celis-Morales CA, Lyall DM, Steell L, Gray SR, Iliodromiti S, Anderson J, et al. Associations of discretionary screen time with mortality, cardiovascular disease and cancer are attenuated by strength, fitness and physical activity: findings from the UK Biobank study. BMC Med. 2018;16(1):77.

16. Kunzmann AT, Mallon KP, Hunter RF, Cardwell CR, McMenamin ÚC, Spence AD, et al. Physical activity, sedentary behaviour and risk of oesophago-gastric cancer: a prospective cohort study within UK Biobank. United Eur Gastroenterol
17. Morris JS, Bradbury KE, Cross AJ, Gunter MJ, Murphy N. Physical activity, sedentary behaviour and colorectal cancer risk in the UK Biobank. Br J Cancer. 2018; 118(6):920-929.

18. Mahmood S, MacInnis RJ, English DR, Karahalios A, Lynch BM. Domain-specific physical activity and sedentary behaviour in relation to colon and rectal cancer risk: a systematic review and meta-analysis. Int J Epidemiol. 2017;46(6):1797-813.

19. Mekary RA, Lucas M, Pan A, Okereke OI, Willett WC, Hu FB, et al. Isotemporal substitution analysis for physical activity, television watching, and risk of depression. Am J Epidemiol. 2013;178(3):474-83.

20. Allen N, Sudlow C, Downey P, Peakman T, Danesh J, Elliott P, et al. UK Biobank: current status and what it means for epidemiology. Heal Policy Technol. 2012;1(3):123–6.

21. Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, et al. UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLOS Med. 2015;12(3):e1001779.

22. Craig CL, Marshall AL, Sjöström M, Bauman AE, Booth ML, Ainsworth BE, et al. International Physical Activity Questionnaire: 12-country reliability and validity. Med Sci Sport Exerc. 2003;35(8):1381-95.

23. IPAQ Research Committee. Guidelines for data processing and analysis of the International Physical Activity Questionnaire (IPAQ)-short and long forms. 2005. Available from: https://www.researchgate.net/publication/267932370_Guidelines_for_data_processing_ar

24. Alberti KGM, Zimmet P, Shaw J, IDF Epidemiology Task Force Consensus Group.
The metabolic syndrome—a new worldwide definition. Lancet. 2005;366(9491):1059–62.

25. Townsend P. Deprivation. J Soc Policy. 1987;16(02):125.

26. World Health Organization. International Statistical Classification of Diseases and Related Health Problems 10th Revision. 2016. Available from: https://www.who.int/classifications/icd/icd10onlineversions/en/

27. Higgins JP, Green S. Cochrane Handbook for Systematic Reviews of Interventions version 5.1.0 [updated March 2011]. The Cochrane Collaboration. 2011. Available from: http://handbook.cochrane.org/

28. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7(3):177–88.

29. Stukel TA, Demidenko E, Dykes J, Karagas MR. Two-stage methods for the analysis of pooled data. Stat Med. 2001;20(14):2115–30.

30. Ma P, Yao Y, Sun W, Dai S, Zhou C. Daily sedentary time and its association with risk for colorectal cancer in adults: a dose-response meta-analysis of prospective cohort studies. Medicine. 2017;96(22):e7049.

31. Wijndaele K, Sharp SJ, Wareham NJ, Brage S. Mortality risk reductions from substituting screen time by discretionary activities. Med Sci Sport Exerc. 2017;49(6):1111–9.

32. Mekary RA, Willett WC, Hu FB, Ding EL. Isotemporal substitution paradigm for physical activity epidemiology and weight change. Am J Epidemiol. 2009;170(4):519–27.

33. Huang YW, Heung S, Wong S, Salmon J. Isotemporal substitution analysis for sedentary behavior and body mass index. Med Sci Sports Exerc. 2016;48(11):2135.
34. Yasunaga A, Shibata A, Ishii K, Koohsari MJ, Inoue S, Sugiyama T, et al. Associations of sedentary behavior and physical activity with older adults’ physical function: an isotemporal substitution approach. BMC Geriatr. 2017;17(1):280.

35. Ntuk UE, Gill JMR, Mackay DF, Sattar N, Pell JP. Ethnic-specific obesity cutoffs for diabetes risk: cross-sectional study of 490,288 UK Biobank participants. Diabetes Care. 2014;37(9):2500–7.

36. Gallagher D, Heymsfield SB, Heo M, Jebb SA, Murgatroyd PR, Sakamoto Y. Healthy percentage body fat ranges: an approach for developing guidelines based on body mass index. Am J Clin Nutr. 2000;72(3):694–701.

37. Moore SC, Lee I-M, Weiderpass E, Campbell PT, Sampson JN, Kitahara CM, et al. Association of leisure-time physical activity with risk of 26 types of cancer in 1.44 million adults. JAMA Intern Med. 2016;176(6):816.

38. Schoenfeld D. Partial residuals for the proportional hazards regression model. Biometrika. 1982; 69(1):239–41.

39. StataCorp. Stata Statistical Software: Release 13. College Station, TX: StataCorp LP. College Station, Texas (TX): StataCorp LP; 2013.

40. Patterson F, Lozano A, Huang L, Perkett M, Beeson J, Hanlon A. Towards a demographic risk profile for sedentary behaviours in middle-aged British adults: a cross-sectional population study. BMJ Open. 2018;8(7):e019639.

41. Courneya KS, Friedenreich CM. Physical Activity and Cancer. Springer; 2011.

42. Hildebrand JS, Gapstur SM, Campbell PT, Gaudet MM, Patel A V. Recreational physical activity and leisure-time sitting in relation to postmenopausal breast cancer risk. Cancer Epidemiol Biomarkers Prev. 2013;22(10):1906–12.

43. Loprinzi PD, Cardinal BJ, Smit E, Winters-Stone KM. Physical activity and breast
cancer risk. J Exerc Sci Fit. 2012;10(1):1-7.

44. Lope V, Martín M, Castelló A, Casla S, Ruiz A, Baena-Cañada JM, et al. Physical activity and breast cancer risk by pathological subtype. Gynecol Oncol. 2017;144(3):577-85.

45. Kyu HH, Bachman VF, Alexander LT, Mumford JE, Afshin A, Estep K, et al. Physical activity and risk of breast cancer, colon cancer, diabetes, ischemic heart disease, and ischemic stroke events: systematic review and dose-response meta-analysis for the Global Burden of Disease Study 2013. BMJ. 2016;354:i3857.

46. Ogden J, Coop N, Cousins C, Crump R, Field L, Hughes S, et al. Distraction, the desire to eat and food intake. Towards an expanded model of mindless eating. Appetite. 2013;62:119-26.

47. Cassidy S, Chau JY, Catt M, Bauman A, Trenell MI. Low physical activity, high television viewing and poor sleep duration cluster in overweight and obese adults; a cross-sectional study of 398,984 participants from the UK Biobank. Int J Behav Nutr Phys Act. 2017;14(1):57.

48. Stone TW, McPherson M, Gail Darlington L. Obesity and cancer: existing and new hypotheses for a causal connection. EBioMedicine. 2018;30:14-28.

49. Seow WJ, Hu W, Vermeulen R, Hosgood III HD, Downward GS, Chapman RS, et al. Household air pollution and lung cancer in China: a review of studies in Xuanwei. Chin J Cancer. 2014;33(10):471-5.

50. Zhang Z-L, Sun J, Dong J-Y, Tian H-L, Xue L, Qin L-Q, et al. Residential radon and lung cancer risk: an updated meta-analysis of case-control studies. Asian Pacific J cancer Prev. 2012;13(6):2459-65.

51. Fry A, Littlejohns T, Sudlow C, Doherty N, Allen N. OP41 The representativeness
of the UK Biobank cohort on a range of sociodemographic, physical, lifestyle and health-related characteristics. J Epidemiol Community Health. 2016;70(Suppl 1):A26.

52. Batty GD, Gale C, Kivimaki M, Deary I, Bell S. Generalisability of results from UK Biobank: comparison with a pooling of 18 cohort studies. medRxiv. 2019;19004705.

53. Wijndaele K, Brage S, Besson H, Khaw K-T, Sharp SJ, Luben R, et al. Television viewing and incident cardiovascular disease: prospective associations and mediation analysis in the EPIC Norfolk Study. Kiechl S, editor. PLoS One. 2011;6(5):e20058.

54. Wijndaele K, Brage S, Besson H, Khaw K-T, Sharp SJ, Luben R, et al. Television viewing time independently predicts all-cause and cardiovascular mortality: the EPIC Norfolk Study. Int J Epidemiol. 2011;40(1):150–9.

Figures
Figure 1: Summary hazard ratio estimates by cancer site

Cancer site	HR (95% CI)	p-value
All cancers excluding non-melanoma skin cancer	1.008 (0.995, 1.016)	0.067
Oropharyngeal	1.064 (1.016, 1.114)	0.009
Stomach	1.062 (1.001, 1.127)	0.045
Oesophagus and stomach	1.044 (1.005, 1.085)	0.028
Brain tumours	1.040 (0.980, 1.103)	0.201
Bladder	1.037 (0.990, 1.086)	0.128
Colon	1.035 (1.006, 1.064)	0.016
Pancreatic	1.033 (0.983, 1.085)	0.201
Oesophagus	1.025 (0.974, 1.078)	0.344
Lung	1.022 (0.997, 1.047)	0.085
Colorectal	1.018 (0.995, 1.041)	0.131
Ovary	1.013 (0.963, 1.077)	0.332
Hepatobiliary tract	1.015 (0.959, 1.074)	0.516
Non-Hodgkin's lymphoma	1.014 (0.976, 1.052)	0.478
Breast (female only)	1.006 (0.985, 1.026)	0.585
Skin, melanoma	1.004 (0.970, 1.039)	0.838
Haematological malignancies	1.002 (0.976, 1.029)	0.891
Thyroid	1.001 (0.971, 1.035)	0.981
Kidney	0.995 (0.952, 1.042)	0.859
Rectum	0.991 (0.952, 1.032)	0.674
Prostate	0.988 (0.971, 1.005)	0.165
Uterus	0.972 (0.927, 1.019)	0.241

Hazard ratio (per 1-hour increase in TV screen time)

Figure 1

The association between daily TV screen time and total cancer risk and site-specific risk.

Supplementary Files

This is a list of supplementary files associated with the primary manuscript. Click to download.

Supplementary file 1 9th Dec 2019.docx
STROBE_checklist 9th Dec 2019.doc
