Group 2i Isochrysidales produce characteristic alkenones reflecting sea ice distribution

Wang, KJ

http://hdl.handle.net/10026.1/16781

10.1038/s41467-020-20187-z
Nature Communications
Springer Science and Business Media LLC

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Group 2i Isochrysidales produce characteristic alkenones reflecting sea ice distribution

Karen Jiaxi Wang1,2✉, Yongsong Huang1,2✉, Markus Majaneva3, Simon T. Belt4, Sian Liao2,5, Joseph Novak1, Tyler R. Kartzinel2,6, Timothy D. Herbert1,2, Nora Richter1,2,7 & Patricia Cabedo-Sanz4

Alkenones are biomarkers produced solely by algae in the order Isochrysidales that have been used to reconstruct sea surface temperature (SST) since the 1980s. However, alkenone-based SST reconstructions in the northern high latitude oceans show significant bias towards warmer temperatures in core-tops, diverge from other SST proxies in down core records, and are often accompanied by anomalously high relative abundance of the C37 tetra-unsaturated methyl alkenone (%C37:4). Elevated %C37:4 is widely interpreted as an indicator of low sea surface salinity from polar water masses, but its biological source has thus far remained elusive. Here we identify a lineage of Isochrysidales that is responsible for elevated C37:4 methyl alkenone in the northern high latitude oceans through next-generation sequencing and lab-culture experiments. This Isochrysidales lineage co-occurs widely with sea ice in marine environments and is distinct from other known marine alkenone-producers, namely Emiliania huxleyi and Gephyrocapsa oceanica. More importantly, the %C37:4 in seawater filtered particulate organic matter and surface sediments is significantly correlated with annual mean sea ice concentrations. In sediment cores from the Svalbard region, the %C37:4 concentration aligns with the Greenland temperature record and other qualitative regional sea ice records spanning the past 14 kyrs, reflecting sea ice concentrations quantitatively. Our findings imply that %C37:4 is a powerful proxy for reconstructing sea ice conditions in the high latitude oceans on thousand- and, potentially, on million-year timescales.

1 Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, RI 02912, USA. 2 Institute at Brown for Environment and Society, Brown University, Providence, RI 02912, USA. 3 Norwegian Institute for Nature Research (NINA), NO-7485 Trondheim, Norway. 4 Biogeochemistry Research Centre, School of Geography, Earth and Environmental Sciences, Plymouth University, Plymouth PL4 8AA, UK. 5 Department of Chemistry, Brown University, Providence, RI 02912, USA. 6 Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA. 7 Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Texel, The Netherlands. ✉ Email: karen_wang@brown.edu; yongsong_huang@brown.edu

https://doi.org/10.1038/s41467-020-20187-z

OPEN
A lkenones are among the best proxies for paleo sea surface temperature (SST) reconstructions, and their exceptional diagenetic stability has enabled the generation of palaeotemperature records spanning tens of millions of years of Earth’s history1–3. They are a class of C_{35, 42} methyl and ethyl ketones with two to four double bonds produced exclusively by the algae in the order Isochrysidales1,4–6; in ocean settings Emiliania huxleyi and the closely related Gephyrocapsa oceanica have been considered as the exclusive producers of di-unsaturated (C_{37, 2}) and tri-unsaturated (C_{37, 3}) methyl alkenones1,4,5. The unsaturation index of alkenones (U_{SI}) defined as C_{37, 2}/(C_{37, 2} + C_{37, 3}) is positively correlated with temperature, as validated both by algal culture experiments and global core-top calibrations9–13.

However, application of U_{SI}-SST calibrations in the northern high latitude oceans has encountered major difficulties. Variable warm bias in U_{SI}-based SST reconstructions is often accompanied by the occurrence of tetra-unsaturated alkenone (C_{37, 4}), which is usually absent in mid-to-low latitude oceans and E. huxleyi cultures even under exceedingly low growth temperature8. This pattern is reported in surface sediment and seawater filtered particulate organic matter (POM) samples from the Nordic Seas and the Bering Sea14–16, and downcore sediment records in Okhotsk Sea during glacial periods17–19. As a result, Rosell-Melé14 concluded that U_{SI} was unreliable when the percentage of C_{37, 4} among the total C_{37} methyl alkenones (%C_{37, 4}) is >5%. Yet, %C_{37, 4} greater than 5% is widely reported in sediment records in the northern high latitude oceans, thereby complicating SST reconstructions from these regions (Supplementary Fig. 1).

On the other hand, negative correlations between %C_{37, 4} and sea surface salinity (SSS) on a regional scale were observed14,15,20, with elevated %C_{37, 4} often associated with fresher and colder water mass21,22. The mechanisms for these observations, however, are poorly defined, with previous studies suggesting unknown oceanographic parameters14 and/or alkenone producers22 as the possible explanations. The occurrence of miscellaneous compounds that co-elute with C_{37, 4} alkenone in sediment samples extracts adds an additional level of complication when interpreting %C_{37, 4} data23. Regardless of these problems, elevated %C_{37, 4} is widely applied as an indicator of fresher and colder polar water mass or decreased SSS (Supplementary Table 1). More recently, it has been applied as an indicator of sea ice margin based on co-occurrence with benthic foraminifera signal suggesting sea ice breakup24. The interpretation of %C_{37, 4} as a proxy for SSS stands in direct contrast to results from culture experiments, which show positive or no correlation between salinity and %C_{37, 4} in marine and brackish Isochrysidales species25–27. Such conflict suggests that elevated %C_{37, 4} is not a physiological response to decreased SSS, but rather that unidentified producers of C_{37, 4} occur in high latitude marine environments14,22.

In this study, we used next-generation sequencing (NGS) to identify Isochrysidales in water column, sea ice, and sediment samples in northern high latitude marine environments. We show that Isochrysidales communities in subarctic regions are composed of a lineage that is distinct from E. huxleyi and any other described species. Culture of this lineage isolated from sea ice demonstrates that they are prolific producers of C_{37,4}, %C_{37, 4} in POM and surface sediments in northern high latitude oceans show strong correlation with annual mean sea ice concentrations, which is further corroborated by downcore sediment records from the Svalbard region spanning the past 14 kyr. Our results suggest that %C_{37, 4} has great potential as a paleo sea ice proxy, which may provide crucial information about sea ice distributions prior to satellite observations.
Canadian Arctic Archipelago is likely produced by ward transportation into sea
production by other Group 2 Isochrysidales and differing from huxleyi.

Fig. 1 Phylogenetic position of the novel Group 2 ice lineage (Group 2i) Isochrysidales. Maximum-likelihood tree based on 18S rRNA gene from 99 sequences spanning three groups of Isochrysidales and 6 from the Coccolithales outgroup. The numbers shown on branches represent bootstrap support for the node (only those >50% are shown). Numbers in the parentheses represent numbers of sequences included in the collapsed groups, and the numbers shown on branches represent bootstrap percentages. ALGO HAP49 (AM490997) and ALGO HAP17 (AM490998) are most likely to have diverged from Group 1 and Group 2, respectively, followed by

Elevated %C37:4 from surface sediment and seawater POM gives rise to the possibility of using %C37:4 as a reliable sea ice proxy. Elevated %C37:4 from surface sediment and seawater POM is located at regions with seasonal sea ice in the Northern Hemisphere (Fig. 2b). %C37:4 in both POM and surface sediment were positively and significantly correlated with sea ice concentrations (Fig. 3a, c). Differences in the calibration could be results of stronger seasonality of POM, uncertainty in the age of the surface sediment, and advection influencing the linkage between sediment and overlying surface water. The positive correlation between sea ice concentration and %C37:4 most likely reflect increasing alkenone contribution from Group 2i Isochrysidales with increasing sea ice concentration and %C37:4 significantly correlated with sea ice concentrations (Fig. 3a, c).

Implications for sea ice, SSS, and SST reconstructions. The identification of the novel and widespread Group 2i Isochrysidales gives rise to the possibility of using %C37:4 as a reliable sea ice proxy. Elevated %C37:4 from surface sediment and seawater POM is located at regions with seasonal sea ice in the Northern Hemisphere (Fig. 2b). %C37:4 in both POM and surface sediment were positively and significantly correlated with sea ice concentrations (Fig. 3a, c). Differences in the calibration could be results of stronger seasonality of POM, uncertainty in the age of the surface sediment, and advection influencing the linkage between sediment and overlying surface water. The positive correlation between sea ice concentration and %C37:4 most likely reflect increasing alkenone contribution from Group 2i Isochrysidales with increasing sea ice concentration and %C37:4 showed negative and significant correlations with SSS in POM and surface sediments (Fig. 3b, d), consistent with prior research. However, this relationship is a byproduct of the negative correlation between SSS and sea ice concentrations in the

sediment samples from lakes in China, Canada, the USA, and Antarctica, where C37:4 was the predominant alkenone. High %C37:4 alkenone production is thus likely a shared characteristic across Group 2i Isochrysidales. Culture of RCC5486 also showed an absence of C38 methyl alkenones (C38Me), matching alkenone production by other Group 2 Isochrysidales and differing from E. huxleyi. However, C38Me was present in the Canadian Arctic Archipelago surface sediments, even though Group 2i was the only Isochrysidales detected through NGS. The C38Me detected in Canadian Arctic Archipelago is likely produced by E. huxleyi even though their DNA was not detected. The discrepancy between DNA and alkenone preservation could result from differences in the life cycles of Group 2i compared to E. huxleyi: the former potentially forms cysts and enters a resting stage in surface sediment, while the latter does not form resting spores during winter, after the bloom they die and disaggregate during downward transportation into sea floor.
above sample sites, which reflects the temporal influence of melting sea ice on near-surface salinity (Supplementary Fig. 5). Thus variations in $\%C_{37:4}$ cannot be attributed to SSS changes, and regional relationship between $\%C_{37:4}$ and SSS should not be extrapolated for global-scale SSS reconstruction. So far there is no mechanistic explanation that supports a direct response of $\%C_{37:4}$ to changes in SSS, except in low salinity (0–6 ppt) or estuarine environments where Group 1 Isochrysidales are present and contribute to elevated $\%C_{37:4}$. Group 1 Isochrysidales are typically found in freshwater to oligosaline environments and predominantly produce C$_{37:4}$. Alkenone contribution from Group 1 can be identified through the presence of C$_{37:3b}$ isomer, which is not produced by Groups 2 and 3. Our results show that both Group 1 and the Group 2i are present in brackish water underlying sea ice in the northwest of Gulf of Finland, Baltic Sea (Supplementary Fig. 6). However, Group 1 Isochrysidales are very sparse within sea ice in the Baltic Sea and are absent in other sea ice samples examined in this study (Fig. 2). Thus, we conclude that the majority of C$_{37:4}$ production in the northern high latitude oceans distal from coast can be attributed to the presence of sea ice and Group 2i Isochrysidales.

Alkenones produced by the Group 2i are also a potential source of bias in U_{37}^{SST} SST reconstructions. Surface sediment samples from regions covered by winter sea ice in the North Atlantic experience significant warm bias in U_{37}^{SST}. A similar warm bias is also observed in calculated SSTs from surface sediments examined in this study, including the Canadian Arctic Archipelago samples where Group 2i was detected (Fig. 2c); however, the exact mechanism leading to the warm bias is still a question. Group 2i may produce alkenones within multiyear sea ice, but there is no prior report of alkenones detected from the surface sediments in the central Arctic. Bloom of Group 2i has been observed upon ice-melt in Lake George, USA, followed by a bloom of non-ice lineage Isochrysidales. Group 2i and other Group 2 Isochrysidales are able to form cysts in sediments and potentially re-emerge to surface water during water-overturning under extended insolation, which could occur in blooms during ice-melt. Prolonged seasonal sea ice and the Group 2i Isochrysidales within sea ice could potentially shift the phenology of E. huxleyi from colder to warmer seasons. They are also likely to have a U_{37}^{SST} SST calibration different from E. huxleyi. The bias in U_{37}^{SST} SST introduced by Group 2i could thus be more prominent during periods with extended seasonal sea ice coverage in downcore records. More experimental and field studies are needed to fully understand the causes for the warm SST bias inferred by U_{37}^{SST} in high latitude oceans.

Validation of $\%C_{37:4}$ as paleo sea ice proxy in downcore sediments. Elevated $\%C_{37:4}$ has long been observed in concordance with other sea ice proxies, such as IRD, diatoms, foraminifera assemblages, and IP25 in sediment records spanning the Late Pliocene to the Holocene. However, the interpretations of $\%C_{37:4}$ were essentially derived from long-term SSS change instead of the occurrence of sea ice in previous studies (Supplementary Table 1). To further evaluate $\%C_{37:4}$ as a sea ice proxy within a paleoceanographic context, we compared $\%C_{37:4}$ records with the widely applied sea ice proxy IP25 and coarse fraction contents (% of grain size > 63 µm) in the Svalbard area during the past ca.
increasing %C37:4 corresponding to decreasing temperature, and is positively correlated with IP25 concentration and coarse fraction content in M23258-2 (Supplementary Fig. 7). The high values of %C37:4 in both M23258-2 and JM09-020-GC (76.31°N, 19.70°E) located in the glacial trough of Storfjordrenna during the Bolling–Allerød (13.95–12.8 kyr BP) may represent partial sea ice cover and a retreating ice edge; high coarse fraction content during this time in M23258-2 suggests rapid breakup of the Svalbard–Barents Sea ice sheet. The highest peak in %C37:4 in M23258-2 occurs at the beginning of the Younger Dryas (YD, ~12.8 kyr BP), indicating an expansion of sea ice. This is in agreement with increases in the coarse grain-size fraction and IP25 from M23258-2 and increases in IP25 at nearby site JM09-KA11-GC (74.87°N, 16.48°E). The gradual decrease in %C37:4 observed in M23258-2 and JM09-020-GC after the termination of YD (~11.7 kyr BP) is coincident with increasing Northern Hemisphere summer insolation and temperature. Low %C37:4 in M23258-2 and the closely adjacent core SV04 (74.957°N, 13.899°E) suggests that sea ice extent retreated and was present in low concentrations at these sites between 10.8 and 4 kyr BP during the Holocene Thermal Maximum, while the fluctuating

Fig. 3 %C37:4 showing significant positive correlation with annual mean sea ice concentration and negative correlation with sea surface salinity.

- Linear regression between water filter POM %C37:4 compiled from previous studies and mean sea ice concentration 12 months prior to sample collection (n = 40 independent samples).
- Linear regression between water filter POM %C37:4 and measured SSS during collection (n = 40 independent samples).
- Linear regression between surface sediment %C37:4 and 1980-2010 annual mean sea ice concentration (n = 42 independent samples).
- Linear regression between surface sediment %C37:4 and 1980-2010 annual mean SSS (n = 42 independent samples). Surface sediment samples from Baltic Sea are not included in the regressions in c and d. Sea ice concentrations were obtained from NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration, Version 3, with a spatial resolution of 25 km × 25 km (https://doi.org/10.7265/N59P2ZTG). The dashed lines denote 95% confidence interval for the regression.

14.5 kyr (Figs. 4 and 5). IP25 is a C25 isoprenoid lipid synthesized by certain Arctic sea ice diatoms and is deposited in underlying sediments following ice-melt in spring. Coarse sediment fraction at this site is largely composed of lithic grains and foraminifera, reflecting sea ice formation off the western Barents shelf. The Fram Strait is the major gateway between the North Atlantic and the Arctic Ocean, and sea ice distribution in our study area is highly sensitive to surface temperature variability in modern time. Over longer timeframes, such as the Holocene, variations in sea ice extent in the Fram strait, the Greenland Sea, and the northern Barents Sea co-occurred with changes in Northern Hemisphere solar insolation and changes in Greenland air temperature. Marine sediment core M23258-2 is located close to the modern maximum winter sea ice extent in the northeastern Norwegian Sea where temporal variations of sea ice conditions have been identified. Alkenones were not detected prior to 14.1 kyr BP in M23258-2, likely due to seasonally extended sea ice cover limiting productivity. The general trend of %C37:4 from M23258-2 is in direct agreement with inferred-temperature trends from the δ18O values of Renland ice core located in east Greenland, with increasing %C37:4 corresponding to decreasing temperature, and is positively correlated with IP25 concentration and coarse fraction content in M23258-2 (Supplementary Fig. 7). The high values of %C37:4 in both M23258-2 and JM09-020-GC (76.31°N, 19.70°E) located in the glacial trough of Storfjordrenna during the Bolling–Allerød (13.95–12.8 kyr BP) may represent partial sea ice cover and a retreating ice edge; high coarse fraction content during this time in M23258-2 suggests rapid breakup of the Svalbard–Barents Sea ice sheet. The highest peak in %C37:4 in M23258-2 occurs at the beginning of the Younger Dryas (YD, ~12.8 kyr BP), indicating an expansion of sea ice. This is in agreement with increases in the coarse grain-size fraction and IP25 from M23258-2 and increases in IP25 at nearby site JM09-KA11-GC (74.87°N, 16.48°E). The gradual decrease in %C37:4 observed in M23258-2 and JM09-020-GC after the termination of YD (~11.7 kyr BP) is coincident with increasing Northern Hemisphere summer insolation and temperature. Low %C37:4 in M23258-2 and the closely adjacent core SV04 (74.957°N, 13.899°E) suggests that sea ice extent retreated and was present in low concentrations at these sites between 10.8 and 4 kyr BP during the Holocene Thermal Maximum, while the fluctuating
%C37:4 in JM09-020-GC suggests a variable ice-edge condition at Storfjordrenna during this period. %C37:4 in M23258-2 increased after ca. 4 kyr BP indicating a slight expansion of the sea ice margin during the neoglacial cooling period in the Northern Hemisphere, as the coarse fraction contents in this core also increased, reflecting sediment injections caused by cascades of dense brine water down the Barents shelf induced by seasonal sea ice.56 IP25 in M23258-2 is, however, absent (or below detection limit) during this time period. The return to partial seasonal sea ice cover during neoglacialiation is also evident in the rapid IP25 increase in the Fram Strait (MSM5/5-723-2; 79.16°N, 5.33°E) and northern Barents Sea records (NP05-11-70GC; 78.40°N, 60°E), as well as the re-emergence of IP25 in JM09-KA11-GC.

In this study, we demonstrate that %C37:4 is a reliable and sensitive indicator for paleo sea ice, and has the potential for quantitative sea ice reconstructions based on surface sediment calibrations. As alkenones are solely produced by Isochrysidales,6 quantitive sea ice reconstructions based on surface sediment samples was performed by Jonah Ventrues, Boulder, CO, USA (https://jonahventures.com/). Genomic DNA was extracted from the samples using the DNeasy PowerSoil HTP 96, then a two-step PCR protocol was performed. First, a portion of 185 rRNA was amplified by an adapted version of primer pair 528Flong and PYROM1–7 (F: CGGCTATGATCCAGCCCTCAGA; R: GATCAGTGAACACATCTCCGG, Egge et al.69). The first PCR step following the program described in Egge et al.69 was performed in M23258-2 reactions containing Phusion GC Buffer, 0.4 mM of each primer, 0.2 mM dNTP, DMSO 3%, 0.5 U Phusion polymerase (Thermo Scientific), and 2 μl of DNA template. After cleanup of the amplicons, a second round of PCR was performed to give each sample a unique 12-nucleotide index sequence. The final indexed amplicons were then cleaned and normalized using Seqalprep Normalization Kit (Life Technologies, Carlsbad, CA) and proceeded to sequencing on an Illumina MiSeq using V2 600-Cycle Kit (San Diego, CA). Sequencing success and read quality was verified using FastQC v0.11.8. The forward and reverse primers were removed from the sequences, and sequences with length below 100 bp were discarded. The ASVs were compiled for each sample after denoising using UNOISE3 algorithm with an alpha value of 5 to remove sequencing error.70 Taxonomy of the ASVs was assigned using the SILVA reference database (including 506 Isochrysidales sequences) and assign_taxonomy.py as implemented in QIIME/1.9.171.

Reanalyses of environmental sequences and phylogeny. We searched for short-read studies including the term “sea ice” on the European Nucleotide Archive, and runs from studies targeting subfragments of 185 rRNA that included sea ice or seawater samples were downloaded. Primers were removed from the downloaded raw reads using cutadapt,72 except from Roche 454 sequenced reads where forward primers were removed after quality trimming. ASVs were compiled after the reads were quality trimmed using DADA2,73 except for studies with available quality trimmed ASVs.74 The DADA2 parameters were adjusted based on the quality profiles of the sequencing runs. Taxonomic affiliations of the ASVs were identified using the assignTaxonomy command in DADA2 and, as reference sequences, the Protist Ribosomal Reference database (including 159 expert-curated Isochrysidales sequences from each taxonomic groups). Sequences classified to the order level or above were selected to proceed to further analysis. Close relatives of the environmental sequences were identified through BLAST search against NCBI GenBank and compiled as reference sequences for phylogeny. All sequences were then aligned against a curated alignment from Gran-Stadiniczko et al.76 using PyNAST.77 In total, the alignment contains 105 sequences, including 6 Coccolithophorids, 16 Groups 2 and 3 Isochrysidales.174 published environmental sequences from GenBank, and 37 recovered or reanalyzed environmental sequences from this study. A maximum-likelihood phylogeny was inferred using the RAXML78 program with substitution model GTRCAT with 1000 bootstraps through CIPRES.79

Culture experiments. We obtained the RCC5486 strain (GenBank accession: MH764930) from the Roscoff Culture from the National Institute for Environmental Studies. The strain was acclimatized to 3 and 6 °C for 10 days before the start of corresponding culture experiments. The f/2 medium was prepared from filtered and sterilized seawater collected from Vineyard Sound, Woods Hole, MA, USA, adjusted to 15, 21, 26, 31, and 38 ppt. Cultures were grown under a light-dark cycle set at 16:8h. The light intensity was 140 μEm−2 ·s−1. Culture experiments under each salinity and temperature condition were triplicated.

Cultures were harvested at early stationary phase (monitored using hemocytometer counts (Hauser Scientific, PA, USA)) by filtering onto 0.7 μm glass fiber filters (Merck Millipore, MA, USA). All filters were wrapped with aluminum foils and immediately frozen at −20 °C before further extraction and analysis. For alkenones analyses, all of the filters were freeze-dried overnight and then dissolved in dichloromethane (DCM) and sonicated (3 × 30 min, 40 ml each time). The total extracts were separated and analyzed for alkenones as described in the section “Alkenones analyses.”

Alkenones analyses. Surface sediment samples were analyzed for lipids by extracting around 10 g of freeze-dried sediment using a Dionex80 accelerated solvent extraction system with DCM/methanol mixture (9:1, v/v) to obtain a total lipid extract (TLE). The TLE was then separated into alkane, ketone, and polar fractions through silica gel columns by eluents with increasing polarity: hexane,
Fig. 5 Sea ice reconstructions at the Svalbard region during the past ca. 14.5 kyr. a δ18O from Renland ice core65. b Mid-July 65°N insolation67. c %C37:4 from M23258-263. d %C37:4 from SV0467. e %C37:4 from J09-020-GC52. f %C37:4 from J09-020-GC32. g C37 methyl alkenone concentration from M23258-263. h %C37:4 from M23258-256. i IP25 concentration from M23258-2 (this study), J09-KA11-GC64,66, MSMS/5-723-2,60 and NPO5-11-70GC68. Black triangles represent age control points in M23258-256.

DCM, and methanol. The ketone fraction containing alkenones was analyzed by gas chromatography–flame ionization detection Agilent 7890N Series instrument equipped with mid-polarity column RTX-200 (105 m × 250 μm × 0.25 μm) with the oven program described in Zheng et al.80. This method is able to fully eliminate the co-elution between alkenones and alkenoates, as well as co-elution between C19 methyl and ethyl alkenones80. Alkenone peaks were identified and quantified based on retention time compared with standard Group 1 alkenone samples extracted from BrayaSø Lake (Greenland) through Agilent ChemStation B.03.02. A gas chromatography–mass spectrometer GC-MS, Agilent 7890B interfaced to 5977e mass spectrometric detector. IP25 was identified and quantified based on the mass spectra. Quantiﬁcation was achieved using Ag-ion chromatography–mass spectrometer (Supelco Discovery® Ag-Ion; 0.1 g). After elution of saturated hydrocarbons (hexane; 1 ml), unsaturated hydrocarbons including IP25 were collected in single-ion monitoring mode. The resulting peak areas for IP25 were normalized to internal standard responses, instrumental response factors, and sediment mass.

IP25 analyses. Analysis of IP25 in core M23258-2 was carried out as described by Belt et al.81 with minor modiﬁcation. An internal standard (9-octylexanes-8-ene; 9-OHE; 0.1 μg) was added to dried sediment material (ca. 2 g), which was extracted using DCM/methanol (MeOH) (2:1 v/v; 3 × 6 ml) and ultrasonication. Following evaporation of the total organic extract (TOE) to dryness (N2 stream; room temperature), elemental S was removed according to Cabedo-Sanz and Belt82. Thus, the TOE was dissolved in hexane (1 ml) followed by addition of tetra-butylammonium sulfite (1 ml) and propan-2-ol (2 ml). After brief shaking by hand (1 min), ultrahigh purity water (3 ml) was added, reagitated (1 min), and centrifuged (2 min; 2500 rpm). The hexane layer was transferred to a clean vial and the procedure repeated twice more. Combined hexane extracts were dried using N2. Partially puriﬁed TOEs were resuspended in hexane and puriﬁed using column chromatography (SiO2; ca. 0.5 g in a glass pipette), with fractions containing IP25 collected using hexane (6 ml). Final puriﬁcation was achieved using Ag-ion chromatography (Supelco Discovery® Ag-Ion; 0.1 g). After elution of saturated hydrocarbons (hexane; 1 ml), unsaturated hydrocarbons including IP25 were collected in acetone (2 ml).

Identification and quantification of IP25 in puriﬁed sediment extracts was carried out via GC–MS using established methods45 with an Agilent 7890 gas chromatograph equipped with a HP5MS fused-silica column (30 m; 0.25 μm film thickness; 0.25 mm internal diameter) coupled to an Agilent 5975 series mass spectrometric detector. IP25 was identiﬁed by its characteristic retention index (RIHP5-MS = 2081) and mass spectrum. Quantification was carried out in single-ion monitoring mode. The resulting peak areas for IP25 were normalized to internal standard responses, instrumental response factors, and sediment mass.
Received: 28 August 2020; Accepted: 12 November 2020; Published online: 04 January 2021

References
1. Brassell, S. C., Eglinton, G., Marlowe, I. T., Pfaumer, U. & Sarthmein, M. Molecular stratigraphy: a new tool for climatic assessment. Nature 320, 128–133 (1986).
2. Liu, Z. et al. Global cooling during the Eocene-Oligocene climate transition. Science 323, 1187–1190 (2009).
3. Herbert, T. D. et al. Late Miocene global cooling and the rise of modern ecosystems. Nat. Geosci. 9, 843–847 (2016).
4. Volkman, J. K., Eglinton, G., Corner, E. D. S. & Forsberg, T. E. V. Long-chain ketone compositions for palaeotemperature assessment. Nature 367, 337–340 (1990).
5. Harada, N., Shin, K. H., Murata, A., Uchida, M. & Nakatani, T. Characteristics of alkenones synthesized by a bloom of Emiliania huxleyi in the Bering Sea. Geochim. Cosmochim. Acta 67, 1507–1519 (2003).
6. Bendle, J. & Rosell-Melé, A. Interhemispheric appraisal of the value of alkenone indices as temperature and salinity proxies in high-latitude locations. Palaeoceanogr. 34(1), 131–133 (1989).
7. Harada, N., Sato, M. & Sakamoto, T. Freshwater impacts recorded in terrigenous alkenones and alkenone surface water temperatures from the Okhotsk Sea across millennial-scale cycles. Palaeogeogr. Palaeoclimatol. Palaeoecol. 230, 281–301 (2006).
8. Bendle, J. & Rosell-Melé, A. Distributions of U\(^{29}\)C and U\(^{30}\)C in the surface waters and sediments of the Nordic Seas: implications for paleoceanography. Geochim. Cosmochim. Acta 62, 1757–1772 (1998).
9. Conte, M. H. et al. Global temperature calibration of the alkenone unsaturation index (U\(^{29}\)C) in surface waters and comparison with surface sediments. Geochim. Cosmochim. Acta 70, 2250–2260 (2006).
10. Tierney, J. E. & Tingley, M. P. BAYSPLINE: A new calibration for the alkenone paleothermometer. Palaeoceanogr. Palaeoclimatol. Palaeoecol. 33, 281–301 (2018).
11. Hegseth, E. N. & Sundfjord, A. Intrusion and blooming of Atlantic phytoplankton species in the high Arctic. J. Mar. Syst. 74, 108–119 (2008).
12. Rosell-Melé, A. & Comes, P. Alkenone sea surface temperatures from the Sea of Okhotsk over the last 85 kyrs. Earth Planet. Sci. Lett. 380, 175–182 (2013).
13. Filippova, A., Kienast, M., Frank, M. & Schneider, R. R. Alkenone paleothermometry in the North Atlantic: a review and synthesis of surface sediment data and calibrations. Geochem. Geophys. Geosystems 17, 1370–1385 (2016).
14. Bendle, J. & Rosell-Melé, A. Distributions of U\(^{29}\)C and U\(^{30}\)C in the surface waters and sediments of the Nordic Seas: implications for paleoceanography. Geochim. Cosmochim. Acta 62, 1757–1772 (1998).
15. Harada, N., Shin, K. H., Murata, A., Uchida, M. & Nakatani, T. Characteristics of alkenones synthesized by a bloom of Emiliania huxleyi in the Bering Sea. Geochim. Cosmochim. Acta 67, 1507–1519 (2003).
16. Bendle, J. & Rosell-Melé, A. Interhemispheric appraisal of the value of alkenone indices as temperature and salinity proxies in high-latitude locations. Palaeoceanogr. Palaeoclimatol. Palaeoecol. 33, 281–301 (2018).
17. Rosell-Melé, A. New insights into environmental controls on the occurrence and abundance of Group I alkenones and their paleoclimatic applications: evidence from volcanic lakes of northeastern China. Earth Planet. Sci. Lett. 527, 115792 (2019).
18. Rosell-Melé, A. & Comes, P. Alkenone sea surface temperatures from the Sea of Okhotsk over the last 85 kyrs. Earth Planet. Sci. Lett. 380, 175–182 (2013).
19. Filippova, A., Kienast, M., Frank, M. & Schneider, R. R. Alkenone paleothermometry in the North Atlantic: a review and synthesis of surface sediment data and calibrations. Geochem. Geophys. Geosystems 17, 1370–1385 (2016).
20. Hegseth, E. N. & Sundfjord, A. Intrusion and blooming of Atlantic phytoplankton species in the high Arctic. J. Mar. Syst. 74, 108–119 (2008).
21. Rosell-Melé, A. New insights into environmental controls on the occurrence and abundance of Group I alkenones and their paleoclimatic applications: evidence from volcanic lakes of northeastern China. Earth Planet. Sci. Lett. 527, 115792 (2019).
22. Rosell-Melé, A. & Comes, P. Alkenone sea surface temperatures from the Sea of Okhotsk over the last 85 kyrs. Earth Planet. Sci. Lett. 380, 175–182 (2013).
23. Filippova, A., Kienast, M., Frank, M. & Schneider, R. R. Alkenone paleothermometry in the North Atlantic: a review and synthesis of surface sediment data and calibrations. Geochem. Geophys. Geosystems 17, 1370–1385 (2016).
24. Bendle, J. & Rosell-Melé, A. Distributions of U\(^{29}\)C and U\(^{30}\)C in the surface waters and sediments of the Nordic Seas: implications for paleoceanography. Geochim. Cosmochim. Acta 62, 1757–1772 (1998).
25. Harada, N., Sato, M. & Sakamoto, T. Freshwater impacts recorded in terrigenous alkenones and alkenone surface sea temperatures from the Okhotsk Sea across millennial-scale cycles. Palaeogeogr. Palaeoclimatol. Palaeoecol. 230, 281–301 (2006).
26. Bendle, J. & Rosell-Melé, A. Interhemispheric appraisal of the value of alkenone indices as temperature and salinity proxies in high-latitude locations. Palaeoceanogr. Palaeoclimatol. Palaeoecol. 33, 281–301 (2018).
27. Rosell-Melé, A. New insights into environmental controls on the occurrence and abundance of Group I alkenones and their paleoclimatic applications: evidence from volcanic lakes of northeastern China. Earth Planet. Sci. Lett. 527, 115792 (2019).
28. Rosell-Melé, A. & Comes, P. Alkenone sea surface temperatures from the Sea of Okhotsk over the last 85 kyrs. Earth Planet. Sci. Lett. 380, 175–182 (2013).
29. Filippova, A., Kienast, M., Frank, M. & Schneider, R. R. Alkenone paleothermometry in the North Atlantic: a review and synthesis of surface sediment data and calibrations. Geochem. Geophys. Geosystems 17, 1370–1385 (2016).
47. Bachem, P. E., Risebrobakken, B., De Schepper, S. & McClymont, E. L. Highly variable Pliocene sea surface conditions in the Norwegian Sea. Clim. Past 13, 1355–1370 (2017).
48. Stein, R., Blackman, D., Inagaki, F. & Larsen, H. C. Earth and Life Processes Discovered from Subseaflow Environments—a Decade of Science Achieved by the Integrated Ocean Drilling Program (IODP), Vol. 7 (Elsevier, 2014).
49. Sánchez-Montes, M. L. et al. Late Pliocene Cordilleran ice sheet development with warm northeast Pacific sea surface temperatures. Clim. Past 16, 299–313 (2020).
50. Horiwaki, K. et al. Pliocene cooling enhanced by flow of low-salinity Bering Sea water to the Arctic Ocean. Nat. Commun. 6, 1–9 (2015).
51. McClymont, E. L., Rosell-Melé, A., Haug, G. H. & Lloyd, J. M. Expansion of subarctic water masses in the North Atlantic and Pacific oceans and implications for mid-Pleistocene ice sheet growth. Paleoceanography 23, PA4214 (2008).
52. Łęcka, M. et al. Postglacial paleoceanography of the western Barents Sea: implications for alkenone-based sea surface temperatures and primary productivity. Quat. Sci. Rev. 224, 105973 (2019).
53. Belt, S. T. et al. A novel chemical fossil of paleo sea ice: IP25. Org. Geochem. 38, 16–27 (2007).
54. Brown, T. A., Belt, S. T., Tatarek, A. & Mundy, C. J. Source identification of the Arctic sea ice proxy IP25. Nat. Commun. 5, 1–7 (2014).
55. Belt, S. T. Source-specific biomarkers as proxies for Arctic and Antarctic sea ice. Org. Geochem. 125, 277–298 (2018).
56. Walin, M. et al. Centennial-to-millennial-scale periodicities of Holocene climate and sediment injections off the western Barents shelf, 75°N. Boreas 32, 447–461 (2003).
57. Comiso, J. C., Parkinson, C. L., Gersten, R. & Stock, L. Accelerated decline in the Arctic sea ice cover. Geophys. Res. Lett. 35, L01703 (2008).
58. Müller, J., Massé, G., Stein, R. & Belt, S. T. Variability of sea-ice conditions in the North Atlantic and Pacific oceans and implications for mid-Pleistocene ice sheet growth. Paleoceanography 23, PA4214 (2008).
59. Werner, K. et al. Holocene cooling culminates in sea ice oscillations in Fram Strait. Quat. Sci. Rev. 47, 1–14 (2012).
60. Werners, K. et al. Holocene sea subsurface and surface water masses in the Fram Strait—comparisons of temperature and sea-ice reconstructions. Quat. Sci. Rev. 147, 194–209 (2016).
61. Belt, S. T. et al. Identiﬁcation of paleo Arctic winter sea ice limits and the marginal ice zone: optimised biomarker-based reconstructions of late Quaternary Arctic sea ice. Earth Planet. Sci. Lett. 431, 127–139 (2015).
62. Johns, S. J. et al. Oxygen isotope and palaeotemperature records from six Greenland ice-core stations: Camp Century, Dye-3, GRIP, GISP2, Renland and NorthGRIP. J. Quat. Sci. 16, 299–307 (2001).
63. Rigoal-Hernández, A. S. et al. Svalbard ice-sheet decay after the Last Glacial Maximum: new insights from micropaleontological and organic biomarker paleoceanographical reconstructions. Palaeogeogr. Palaeoclimatol. Palaeoecol. 465, 225–236 (2017).
64. Koseoglu, D., Belt, S. T., Husum, K. & Knies, J. An assessment of biomarker-based multivariate classification methods versus the IP25 index for paleo Arctic sea ice reconstruction. Org. Geochem. 125, 89–94 (2018).
65. Egge, E. et al. 454 pyrosequencing to describe microbial eukaryotic community composition, diversity and relative abundance: a test for marine haptophytes. PLoS ONE 8, e74371 (2013).
66. Edgar, R. C. UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. https://doi.org/10.1101/081257 (2016).
67. Caporaso, J. G. et al. QiIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).
68. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBO J. 17, 10–12 (2011).
69. Callahan, B. J. et al. DADA2: high-resolution sample inference from illumina amplicon data. Nat. Methods 13, 581–583 (2016).
70. Majaneva, M., Enberg, S., Autio, R., Blomster, J. & Rintala, J. Mamiellophyceae shift in seasonal predominance in the Baltic Sea. Aquat. Microb. Ecol. 83, 181–187 (2019).
71. Guillou, L. et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 41, D597–D604 (2012).
72. Gran-Strandniczenko, S., Šupraha, L., Egge, E. D. & Edvardsen, B. Haptophyte diversity and vertical distribution explored by 18S and 28S ribosomal RNA gene metabarcoding and scanning electron microscopy. J. Eukaryot. Microbiol. 64, 514–532 (2017).
73. Caporaso, J. G. et al. PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26, 266–267 (2010).
74. Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).
75. Müller, J. A., Pfeiffer, W. & Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In 2010 Gateway Computing Environments Workshop (GCE) 1–8 (IEEE, 2010). https://doi.org/10.1109/GCE.2010.5676129.
76. Zheng, Y., Tarozzo, R. & Huang, Y. Optimizing chromatographic resolution for simultaneous quantification of long chain alkanoens, alkenoates and their double bond positional isomers. Org. Geochem. 111, 136–143 (2017).
77. Belt, S. T. et al. A reproducible method for the extraction, identification and quantification of the Arctic sea ice proxy IP25 from marine sediments. Anal. Methods 4, 705 (2012).
78. Cabeldo-Sanz, P. & Belt, S. T. Identification and characterisation of a novel mono-unsaturated highly branched isoprenoid (HBI) alken in ancient Arctic sediments. Org. Geochem. 81, 34–39 (2015).
79. Locarnini, R. A. et al. World Ocean Atlas 2018, Vol. 1: Temperature. NOAA Atlas NESDIS 82, 51 (2018).
80. Peng, G., Meier, W. N., Scott, D. J. & Savoie, M. H. A long-term and reproducible passive microwave sea ice concentration data record for climate studies and monitoring. Earth Syst. Sci. Data 5, 311–318 (2013).
81. Zweng, M. et al. World Ocean Atlas 2018, Vol. 2: Salinity. NOAA Atlas NESDIS 82, 51 (2018).
82. Jakobsson, M. et al. The International Bathymetric Chart of the Arctic Ocean (ICCAO) Version 3.0: ICCAO Version 3.0. Geophys. Res. Lett. 39, L12609 (2012).
83. Laskar, J. et al. A long-term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 428, 261–285 (2004).

Acknowledgements

This work was supported by the United States National Science Foundation (NSF) under grant EAR-1762431 and an IBEES seed grant to Y.H., IBEES Graduate Research, Training & Travel Award to K.J.W., and NSF DEB-190820 to T.R.K. We would like to thank Dr. Beth Caisse for surface sediment samples from Bering Sea, and Dr. Daniel Sigman, Dr. Cara Manning, Dr. Anissa Merzouk, Dr. Alexandre Forest, Dr. Camille Wilhelmy, Dr. Philippe-Olivier Dumais, Dr. Diana Saltymakova, Dr. Katarzyna Polcwart, and Dr. Cindy Grant for surface sediment samples from Amundsen cruise. We would like to thank GEOMAR Helmholtz Centre for Ocean Research, BOSCORP repository, and Lamont-Doherty Core Repository, Columbia University, for other surface sediment samples. We would also like to thank Dr. Robert Sippelhagen for sediment samples from core M23258-2.

Author contributions

Y.H. initiated the research idea. K.J.W. and Y.H. co-designed the study after discussions with T.R.K., T.D.H., and S.T.B. Authors K.J.W., M.M., T.R.K., and N.R. analyzed the DNA and the phylogenetic data. S.L. conducted the culture experiment. J.N., S.L., K.J.W., Y.H., and T.D.H. conducted the alkenone analyses. S.T.B. and P.C.-S. conducted the IP25 analyses. K.J.W. and Y.H. cowrote the manuscript with contributions from coauthors.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s41467-020-20187-z.

Correspondence and requests for materials should be addressed to K.J.W. or Y.H.

Peer review information Nature Communications thanks Marco Coolen and other, anonymous, reviewers for their contributions to the peer review of this work. Peer review reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
