Mechanical Methods for the Induction of Labour After Previous Caesarean Section – An Updated, Evidence-based Review

Mechanische Methoden zur Geburtseinleitung nach vorangegangener Sectio – eine aktualisierte, evidenzbasierte Übersicht

Authors
Werner Rath, Lars Hellmeyer, Panagiotis Tsikouras, Patrick Stelzl

Affiliations
1 Medizinische Fakultät, Gynäkologie und Geburtshilfe, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
2 Klinik für Gynäkologie und Geburtsmedizin, Vivantes Klinikum im Friedrichshain, Berlin, Germany
3 Department of Obstetrics and Gynecology, Democritus University of Thrace, Alexandroupolis, Greece
4 Universitätsklinik für Gynäkologie, Geburtshilfe und Gynäkologische Endokrinologie, Kepler Universitätsklinikum, Johannes Kepler Universität Linz, Altenberger Straße 69, 4040 Linz, Austria

Key words
induction of labour after Caesarean section, balloon catheter, hygroscopic cervical dilators, prostaglandins, uterine rupture

Schlüsselwörter
Geburtseinleitung nach vorangegangener Sectio, Ballonkatheter, hygroskopische Zervixdilatatoren, Prostaglandine, Uterusruptur

ABSTRACT

There are currently no up-to-date evidence-based recommendations on the preferred method to induce labour after previous Caesarean section, especially for patients with unripe cervix, as randomised controlled studies are lacking. Intravenous oxytocin and misoprostol are contraindicated in these women because of the high risk of uterine rupture. In women with ripe cervix (Bishop Score > 6), intravenous administration of oxytocin is an effective procedure with comparable rates of uterine rupture to those with spontaneous onset of labour. Vaginal prostaglandin E2 (PGE2) and mechanical methods (balloon catheters, hygroscopic cervical dilators) are effective methods to induce labour in pregnant women with unripe cervix and previous Caesarean section. According to current guidelines, the administration of PGE2 is associated with a higher rate of uterine rupture compared to balloon catheters. Balloon catheters are therefore a suitable alternative to PGE2 to induce labour after previous Caesarean section, even though this is an off-label use. In addition to two meta-analyses published in 2016, 12 mostly retrospective cohort/observational studies with low to moderate levels of evidence have been published on mechanical methods of cervical ripening after previous Caesarean section. But because of the significant heterogeneity of the studies, substantial differences in...
Introduction

Given the globally increasing rates of Caesarean sections and the increasing rates of labour inductions, the obstetric procedures used in subsequent pregnancies are particularly important. In Germany, previous Caesarean delivery is the most common indication for repeat C-section, with 31.8% of C-sections carried out for this reason [1].

Induction of labour is medically indicated in 18–27% of these women [2] and the numbers are still rising. A 2017 Cochrane analysis (8 randomised controlled studies, n = 707) was unable to make any evidence-based recommendations about the most suitable method to induce labour after previous Caesarean section because of the heterogeneity of the included studies and the limited number of cases [3].

In addition to other factors (e.g., maternal age, body mass index, previous Caesarean section), the efficacy of the methods used to induce labour and the risk of uterine rupture depend on whether the patient had a previous vaginal delivery and on the degree of cervical ripening before starting induction [4, 5, 6, 7].

The rate of vaginal deliveries in women with unripe cervix (Bishop Score [BS] < 6) without a previous vaginal delivery is only 45% but is 77% in women with a previous vaginal delivery [4, 6]. The rate of uterine rupture has shown to be significantly lower for women with a previous vaginal delivery compared to those without (0.8 vs. 1.5%) [4]. Depending on the method used to induce labour, the rupture rate in women with unripe cervix is 3 to 4 times higher than that in women with ripe cervix [4, 8, 9].

The induction of labour after previous Caesarean section in women with unripe cervix is therefore particularly challenging for obstetricians.

According to the manufacturer’s product information, the use of prostaglandin E2 (PGE2) in this setting is contraindicated because of the increased risk of uterine rupture, as is the use of misoprostol (overview in [10]). Intravenous administration of oxytocin to induce labour should only be used in cases with ripe cervix [11].

Pregnant women must be informed in detail about the risks and benefits of inducing labour after previous Caesarean section, and written consent is required [11].
As the efficacy of mechanical methods to induce labour is comparable to the efficacy of PGE₃ [12], the benefits of using balloon catheters or hygroscopic cervical dilators (Dilapan-S) are a significantly lower rate of uterine hyperstimulation (PGE₃: 3–20%, balloon catheter: 0–2.7%) [13, 14], lower monitoring costs (CTG) during the cervical ripening period, lower overall costs, and the option of carrying out cervical ripening on an outpatient basis [15], although in cases with previous Caesarean section this should only be done in the context of clinical studies. According to current guidelines, the risk of uterine rupture is significantly lower when using balloon catheters compared to using vaginal PGE₃ [6, 11, 16, 17]; however, the risk of rupture after PGE₃ reported in the guidelines is based on “historical” studies [18, 19, 20].

It should be noted that mechanical methods require the additional administration of intravenous oxytocin to induce/augment labour more often (mean: 70%) [21] compared to using PGE₃ to induce labour (mean: 40%) [22].

The maternal risk of infection following the use of balloon catheters is no higher than the risk of infection when using vaginal PGE₃ [23].

Foley catheters have not been generally approved for cervical ripening/induction of labour; double-balloon catheters have been approved, however, their use is contraindicated for labour induction in women with a previous Caesarean section when considering product informations. Cervical ripening with the Dilapan-S dilator is not contraindicated after previous Caesarean section, however, according to our recent PubMed search there are only 2 prospective studies on this issue conducted by the same working group [24, 25].

A number of further studies have been published since our meta-analysis of 2016 [21], and they highlight the importance of re-evaluating the efficacy and safety of mechanical methods to induce labour after previous Caesarean section in order to develop evidence-based recommendations for clinical practice.

Comparison of Induction of Labour with Balloon Catheters versus Spontaneous Onset of Labour

A retrospective cohort study from Finland [26] evaluated 361 pregnant women with unripe cervix (BS < 6) and previous Caesarean section who underwent induction of labour with a Foley catheter followed by amniotomy/intravenous administration of oxytocin once the cervix is ripe; women whose cervix was still unripe were given oral (50 µg every 4 h) or vaginal misoprostol (25 µg every 4–6 h). This group was compared to 1198 women with spontaneous onset of labour. The primary endpoints of the study were the rates of repeat Caesarean sections and of severe maternal complications. The rate of repeat Caesarean sections after the use of balloon catheters was 38% while the rate following spontaneous onset of labour was 20.2% (p = 0.001); the rates of complete uterine rupture were 0.3 and 0.8%, respectively (p = 0.47), and the rates of suture dehiscence were 2.2 and 1.0%, respectively (p = 0.10). There were no significant differences in perinatal outcomes. The retrospective study design (LoE III), significant differences in number of cases and the significantly higher risk profile of women treated with balloon catheters (selection bias) limit the validity of this study. It should be noted that despite the oral/vaginal administration of misoprostol during the subsequent induction of labour, the rate of complete uterine rupture was lower than the rate in patients with spontaneous onset of labour (Table 1).

Comparison of Induction of Labour with Balloon Catheter vs. Intravenous Oxytocin

There are a total of 3 recent studies on this topic (cf. Table 1).

It is debatable whether it is appropriate to compare the induction of labour using a Foley catheter or a double-balloon catheter left in place for up to 24 hours in women with unripe cervix (BS < 6) with the induction of labour using intravenous oxytocin in women with ripe cervix (BS ≥ 6); moreover, the evidence level of this retrospective cohort study is low (LoE III) [27]. As the degree of cervical ripening has a significant impact on the method’s efficacy and the risk of uterine rupture, both methods cannot be compared. It is therefore unsurprising that the vaginal delivery rate (primary endpoint) for women with ripe cervix who received oxytocin was higher (63.9%) than the rate for women with unripe cervix treated with balloon catheters (45.8%). There was no difference between groups with regard to the frequency of uterine rupture.

The results of another retrospective cohort study (LoE III) which compared double-balloon catheters vs. intravenous oxytocin administration in women with unripe cervix is shown in Table 1 [29]. Although the study investigated women with unripe cervix, the rate of vaginal deliveries following the intravenous administration of oxytocin was surprisingly higher (70.7%) compared to the rate when using balloon catheters (50%); there was no statistically significant difference with regard to the risk of uterine rupture [29].

A randomised controlled multicentre study compared induction of labour with the Foley catheter (n = 101, left in place for 12 h) in women with previous Caesarean section and unripe cervix (BS ≤ 4) to labour induction with intravenous oxytocin at increasing doses (n = 103) ([35], LoE Ib). Endpoint of the study was the rate of vaginal deliveries, which was significantly higher following the use of balloon catheters (50.0%) compared to the administration of intravenous oxytocin (37.5%); there were no significant differences in uterine rupture rates or perinatal outcomes between groups (Table 1). This again raises the question why the authors used oxytocin in cases with (very) unripe cervix contrary to guideline recommendations and the product information. The low rate of vaginal deliveries with oxytocin underlines this assumption.
Table 1 Balloon catheters for the induction of labour after previous Caesarean section in women with unripe cervix: studies 2016–2021.

Author/year	n	Balloon/filling volume	Vaginal delivery rate (%)	Uterine rupture (n/%)	Oxytocin (%)	Comparison group
Kruit 2017	361	Foley: 50 ml	62	1/0.3 SD: 8/2.2	85.7	Spontaneous onset of labour: n = 1198 Vaginal delivery: 79.8 % (S) Uterine rupture: 0.8 % (NS) SD: 1.0 % (NS) Intra-/postpartum infection: 6.1 vs. 1.8 % 5.3 vs. 1.3 % (S)
Radan 2017	107	Foley: 60 ml DB: up to 80 ml	45.8	1/0.9 SD: 5/4.7	n/s	Oxytocin with BS ≥ 6, n = 72 Vaginal delivery: 63.9 % (S) Uterine rupture: 1.4 % (NS) SD: 5.6 % (NS)
De Bonrostro-Torralba 2017	418	DB: 80 ml	51.4	5/1.2	72.2	None
Shah 2017	69	DB: 80 ml	50.0	0	Primary: 100 %	Oxytocin IV: n = 150 Vaginal delivery: 70.7 % (S) Uterine rupture: 1.3 % (NS)
Vital 2018	105	DB: 80 ml	43.8	0	n/s	None
Wallström 2018 [31]	335	Foley: 50 ml	69.0	7/2.1	88.4 (S)	Vaginal PGE2 gel: n = 281 – vaginal delivery: 57.1 % (S) – uterine rupture: 5 % (S) Oral misoprostol: n = 295 – vaginal delivery: 69.2 % (NS) – uterine rupture: 2 % (NS)
Atia 2018	108	Foley: 50 ml	39.8	0	No oxytocin	None
Boisen 2019	304	DB: 80 ml	50.3	3/1.0 SD: 3/1.0	n/s	Unsuccessful induction of labour with PGE2/misoprostol → DB (n = 58) without previous Caesarean section
Boujenah 2019 [34]	59	DB: 80 ml	50.8	1/1.7	64	None
Sarreau 2019 [35]	101	Foley: 50 ml	50.0	0/0 SD: 2/2	n/s	IV Oxytocin: n = 103 Vaginal delivery: 37 % (S) Uterine rupture: 0 % (NS) SD: 0.98 % (NS)
Huisman 2019 [36]	993	Foley: 30–50 ml DB: 60–80 ml	56.4	11/1.1 SD: 7/0.7	77.5	Elective repeat Caesarean section: n = 321 – uterine rupture: 0.3 %, SD: 0.96 – overall maternal morbidity: 7.8 vs. 4.5 % (NS)
Korb 2020	117	DB: 10–80 ml	57.3	0/0 SD: 2/1.7	76.9	Intracervical PGE2 → vaginal misoprostol: n = 127 – vaginal delivery: 57.5 % (NS) – uterine rupture: 0.7 % (NS), SD: 1.5 % (NS) – oxytocin: 55.1 % (S)
Overall:	3077		52.2*	29/0.94 % without SD	77.5	

* Excluding the study by Atia et al. 2018 (no oxytocin): 53.3 %

Abbreviations: DB: double balloon; n/s: not specified; SD: uterine suture dehiscence; S/NS: significant or not significant versus the comparison group.
Balloon Catheter for Induction of Labour with no Comparison Group (cf. ►Table 1)

Three retrospective cohort/observational studies used double-balloon catheters (filling volume 80 ml, time left in place for 12–24 h) to induce labour in women with previous Caesarean section and unripe cervix (BS ≤ 5); intravenous oxytocin was applied to induce/augment labour once the cervix was ripe (BS ≥ 6). Primary endpoints of the studies were the vaginal delivery rate [28, 34] and an improved BS [30]. The respective vaginal delivery rates were 51.4%, 43.8% and 50.8% [28, 30, 34]. During and after placement of the catheter, regular contractions leading to birth occurred in 20.8 and 15.2% of pregnant women, respectively [28, 30]. Additional findings of these studies (e.g., uterine rupture, oxytocin administration) are shown in ►Table 1. In the study by Vital et al. [30], 70.5% of pregnant women had a BS ≥ 6 (primary endpoint) after removal of the catheter. Multivariate regression analysis showed that an initial mean BS of 4 and a BS ≥ 6 after catheter removal were significant predictive parameters for vaginal delivery.

None of the studies provide information on uterine hyperstimulation. Quite apart from the low levels of evidence (LoE III), these studies are not helpful to determine the most appropriate method for labour induction in women with a previous Caesarean section as they lack proper comparison groups.

A cohort study from Saudi Arabia investigated how effective Foley catheters (filling volume 50 ml, time left in place for 12–24 h) followed by amniotomy once the cervix is ripe and without the additional administration of uterotonic drugs are in inducing labour in women with previous Caesarean section and unripe cervix [32]. The vaginal delivery rate (primary study endpoint) was 39.8%, the rate of uterine rupture was 0. No uterine hyperstimulation and no uterine rupture occurred with the balloon catheters. This study is relevant for women rejecting uterotonic drugs for further labour induction.

Comparison of Induction of Labour with Balloon Catheter vs. Prostaglandins

There are 3 recent retrospective cohort studies (LoE III) on this topic, each with a completely different study design, making it impossible to compare their respective findings.

A Swedish cohort study compared the induction of labour using a Foley catheter (n = 335, filling volume 50 ml, time left in place up to 10 h) in women with unripe cervix (BS ≤ 5) and previous Caesarean delivery at ≥ 34 weeks of gestation with the induction of labour using oral misoprostol (25 µg every 2 h until the onset of painful contractions, n = 295) or the administration of 1–2 mg vaginal PGE2 gel (3 applications at intervals of 6 h, n = 281) [31]. Primary study endpoint was the uterine rupture rate, which was significantly higher following vaginal PGE2 than after placement of a Foley catheter or oral misoprostol; the efficacy of the latter two methods was comparable (►Table 1). The limitations of this study are the retrospective analysis of data obtained from coded patient files (potential coding errors), the lack of randomisation, and a selection bias based on the initial mean BS (balloon catheter: BS = 4, vaginal PGE2: BS = 2.4, oral misoprostol: BS = 2.9, p < 0.001).

Another retrospective cohort study [33] compared using a double-balloon catheter (mean time left in place 18 h) to induce labour in 304 women with previous Caesarean delivery and unripe cervix (BS ≤ 5) with the induction of labour in 58 pregnant women without previous C-section who underwent placement of a double-balloon catheter following prior unsuccessful attempts to induce labour with oral (25 µg every 2 h) or vaginal (50 µg every 4 h) misoprostol over a period of 48 hours when amniotomy was not possible. The results of this study are shown in ►Table 1. The clinically relevant finding of this study was the observation that the use of a double-balloon catheter after an unsuccessful attempt to induce labour with misoprostol still resulted in a vaginal delivery in 51.7% of cases; otherwise, the study design should be viewed critically as it compared women with to women without a previous Caesarean section. Hence, the comparison of both groups is questionable.

A retrospective data analysis by Korb et al. [37] evaluated the induction of labour in pregnant women with prior Caesarean delivery and unripe cervix (BS ≤ 6) using a double-balloon catheter (time left in place up to 24 h) followed by the administration of oxytocin (n = 117) and compared this group with another group of women who underwent complex procedures to induce labour (n = 127): 0.5 mg intracervical PGE2 gel/day for 3 days, followed by 25–50 µg vaginal misoprostol/day until day 7.

The primary endpoint of this study was the rate of Caesarean deliveries. Caesarean section rates did not differ significantly between groups (42.5 vs. 42.7%), nor did the rates of uterine rupture (►Table 1).

Induction/augmentation of labour was required significantly more often after placement of a balloon catheter than after the application of PGE2 (76.9 vs. 55.1%; p < 0.001), and the rate of postpartum bleeding (blood loss > 500 ml) was significantly higher (12% vs. 2.4%; p = 0.004). There were no significant differences in neonatal outcomes. Despite the low level of evidence (LoE III), this raises the question whether such a procedure to induce labour over several days can be implemented in clinical practice; moreover, notwithstanding the low rate of uterine rupture of 0.7%, the vaginal application of misoprostol is in contrast with current guideline recommendations.

Comparison of Labour Induction Using Balloon Catheters and Elective Repeat Caesarean Section

A prospective multicentre study [36] compared the efficacy and safety of inducing labour in women with previous Caesarean section and unripe cervix (no information about the BS) using a Foley catheter (time left in place 12–24 h) or a double-balloon catheter followed by intravenous oxytocin once the cervix is ripe with the outcomes of pregnant women who underwent primary repeat Caesarean section (LoE IIb).

Primary endpoint of the study was composite maternal morbidity. With maternal morbidity rates of 7.4 vs. 4.5%, there was no significant difference between groups (aOR 1.58; 95% CI: 0.88–
Discussion

Despite a Cochrane analysis in 2017 [3], several meta-analyses/systematic reviews [21, 38, 39] and the publication of 12 additional, mostly retrospective, cohort or observational studies since 2016 (Table 1), it is still unclear which method should be recommended to induce labour in women with previous Caesarean section based on the method’s efficacy and safety. Important criteria which should guide clinical practice are the rate of vaginal deliveries and the incidence of uterine rupture. Uterine rupture is the most serious complication which occurs during the induction of labour in women with previous Caesarean section and rupture is also associated with hypoxic-ischaemic encephalopathy (mean frequency: 6.2%) [16].

The higher rate of uterine rupture associated with PGE2 (compared to the onset of spontaneous labour or the use of mechanical induction methods) reported in “historical” studies has affected the recommendations made in guidelines and led to PGE2 being contraindicated in product information leaflets. But following a recent meta-analysis (45 studies) which reported a pooled incidence of uterine ruptures of 0.2–0.9% [22], this contraindication should be revisited. There are currently no randomised controlled studies (RCT) comparing the outcomes after vaginal PGE2 with those of mechanical methods used to induce labour in women with previous Caesarean section [3]. A currently recruiting prospective randomised study which aims to compare the outcomes of using a Foley catheter to induce labour in women with previous Caesarean section and unripe cervix (BS ≤ 5) with the results of inducing labour using vaginal tablets containing 3 mg PGE2 could shed more light on the issue [40]. However, it is unlikely that the number of planned pregnant women (50 in each group) will reach statistical power as regards the risk of uterine rupture.
According to meta-analyses/systematic reviews, the mean rate of complete uterine rupture following the use of balloon catheters is between 0.56 and 0.7% (Table 2); in our systematic review it is 0.94% (Table 1). This does not differ significantly from the rates associated with vaginal PGE2 [22] or the rates associated with the onset of spontaneous labour which are reported to be 0.4–0.9% [5, 6, 16, 41]. In a recent comprehensive prospective cohort study (aOR 2.02; 95 % CI: 0.71–5.78 and aOR 1.32; 95 % CI: 0.37–4.72), uterine rupture after placement of a balloon catheter does not usually occur during the cervical ripening period but during intravenous administration of oxytocin [21, 36].

The mean frequency of uterine rupture after intravenous administration of oxytocin to induce labour in women with previous Caesarean section is reported to be 1.4% (0.4–2.3%) [5, 41], which is up to 3 times higher than the rates reported after the onset of spontaneous contractions [5, 43]. The risk of rupture is even higher if oxytocin is used to augment labour, irrespective of whether it is used to induce labour (2.2 %) or used after spontaneous onset of labour (1.7 %) [41]; when PGE2 and oxytocin are applied sequentially, the risk of rupture is up to 16 times higher [44]. Oxytocin should not be used in women with unripe cervix (BS <6) because it is not sufficiently effective [35] and is also associated with a 3–4 times higher risk of rupture compared to oxytoxin applied in women with ripe cervix [4, 8, 9].

According to current guidelines [6, 11, 16], the use of misoprostol to induce labour in women with previous Caesarean section is contraindicated because the mean risk of rupture is 6.2% (0–18%) [10]. It should be noted, however, that these figures are based entirely on studies carried out prior to 2004, in which vaginal misoprostol was mostly applied in a single dose of >50 µg [10]. According to recent studies, the use of oral misoprostol (25 µg every 2 h) does not lead to a significantly higher rate of uterine rupture compared to vaginal PGE2 and balloon catheters [31, 45]. In this respect randomised controlled studies are urgently needed.

It should be noticed, that studies often do not provide a precise definition of uterine rupture (complete/incomplete, uterine suture dehiscence) [16].

According to meta-analyses, the mean rate of vaginal deliveries after induction with a balloon catheter followed by amniotomy/intravenous oxytocin is 54–58%; the figure in our study is 53.3% (Table 2), the mean vaginal delivery rate after vaginal application of PGE2 was 66% [22], and the mean vaginal delivery rate following the administration of IV oxytocin was 60.7 % [41]; this is significantly lower than the mean rate of vaginal deliveries after spontaneous onset of labour which was 72% (60–80%) [4, 43, 46]. Both the risk of rupture and the efficacy of labour induction depend significantly on various independent influencing factors, especially on whether the pregnant woman has had a previous vaginal delivery and on her cervical status (see above). Uterine hyperstimulation occurs significantly less often (0–2.7%) with balloon catheters [14] compared to the application of vaginal PGE2 (mean rate: 7.2%; 0–25% [22]).

The 12 studies on the use of balloon catheters published since 2016 have low to moderate levels of evidence, and analysis of the studies highlighted the following obvious problems: significant heterogeneity between studies (e.g., different study designs, different/no comparison groups, different induction methods), a selection bias (e.g., different initial BS prior to initiating induction, comparisons of study groups with different risk profiles), a lack of statistical power with regard to maternal complications (especially uterine rupture) because of limited case numbers, and often no data about relevant outcome parameters (e.g., induction-to-delivery interval, use of oxytocin, maternal infection, perinatal/neonatal morbidity).

The use of hygroscopic cervical dilators (Dilapan-S) is an alternative mechanical method of cervical ripening [47]. According to AWMF guideline 015/088 [11], this approach is considered safe in women with unripe cervix, and even in women with a previous Caesarean section, where hygroscopic cervical dilators are the only method not being contraindicated. It is surprising that according to our recent PubMed search there are only two prospective observational studies on cervical ripening using the Dilapan-S in women with previous Caesarean delivery. Both studies are from the same working group [24, 25] and it is not yet possible to make definite evidence-based recommendations based solely on these studies.

Well-designed, prospective, randomised studies including a sufficient number of patients are needed which compare the use of balloon catheters vs. hygroscopic cervical dilators on the one hand and these mechanical methods vs. vaginal PGE2/oral misoprostol on the other hand.

Table 2 Use of balloon catheters for cervical ripening/induction of labour after previous Caesarean delivery. Results of prospective/retrospective studies; there are no randomised controlled studies.

Author/year	Study	N	Vaginal deliveries (%)	Oxytocin (%)	Uterine rupture (%)
Kehl S, Rath W 2016 [21]	meta-analysis	1406	56.4	68.4	0.7
Lamourdedieu C 2016 [39]	meta-analysis	1278	58	n/s	0.62
Boujenah J 2019 [34]	systematic review	2936	54	n/s	0.56
This review	systematic review (from 2016–2021)	3077	53.3	77.5	0.94
Conclusions

Even after evaluating the studies from 2016 to 2021, it is still unclear which induction method should be preferred for women with previous Caesarean section, especially if the cervix is unripe. For a comparative analysis of the different methods used to induce labour after previous Caesarean delivery, the most important parameters are the efficacy of the method (rate of vaginal deliveries) and the risk of uterine rupture, which significantly affects maternal and perinatal/neonatal morbidity and mortality.

Intravenous oxytocin should not be administered to women with unripe cervix because of its lack of efficacy and the increased risk of uterine rupture compared to women with a ripe cervix (no increased risk of rupture compared to women with the onset of spontaneous labour); according to the product information, the use of oxytocin in women with unripe cervix is contraindicated. Vaginal PGE2 and balloon catheter are effective methods to induce labour in women with previous Caesarean delivery, even though randomised controlled studies with sufficient case numbers are lacking. According to meta-analyses/systematic reviews, vaginal delivery in women with unripe cervix can be achieved in more than 50% of cases with the use of balloon catheters and in 66% of women with the use of vaginal PGE2 while approximately 72% of women have a vaginal delivery after the onset of spontaneous labour. According to current guidelines, the major disadvantage of vaginal PGE2 compared to mechanical methods is the higher rate of uterine rupture, however, when considering a recent meta-analysis (mean rate of uterine rupture 0.5%) this statement should be re-evaluated and be taken into account in further guidelines. The mean risk of uterine rupture when using balloon catheters is between 0.56 and 0.94% which is within the ranges reported for vaginal PGE2 and the onset of spontaneous labour (0.4–0.9%). It has to be mentioned that these results only apply to women with a prior transverse lower uterine segment incision. Uterine rupture associated with balloon catheters does commonly not occur during the cervical ripening period but occurs during the time when intravenous oxytocin is administered.

According to the product information, hydrosopic cervical dilators (Dilapan-S) are currently the only method for cervical ripening in women with previous Caesarean delivery which is not contraindicated, however, available data are completely insufficient. However, the data for this is completely inadequate. After some initial promising results, further clinical research will be necessary to determine whether oral misoprostol might be a suitable option to induce labour in women with previous Caesarean section. But until no more data are available, misoprostol remains contraindicated for labour induction in women with previous Caesarean delivery.

The question whether induction of labour, if medically indicated, is preferable to repeat elective Caesarean section also remains unanswered as there is only one recent not randomised study with a moderate evidence [36].

Well-designed, randomised, controlled trials comparing balloon catheter vs. Dilapan-S on the one hand and mechanical methods vs. vaginal PGE2/lowsd oral misoprostol on the other hand are urgently needed to underpin evidence-based recommendations for clinical practice.

Conflict of Interest

Patrick Stelzl has a part-time job agreement as consultant and speaker and is member of the Steering Committee in concerns of the LION (“Labour Induction Outcomes Network”) project for Angusta 25 µg tablets from Norgine Pharma GmbH. / Patrick Stelzl hat eine werks-vertraglich geregelte nebenberufliche Berater- und Referenten-Tätigkeit und ist Steering Committee Mitglied im Rahmen des LION (“Labour Induction Outcomes Network”) Projektes für das Einleitungs-Präparat Angusta 25 µg Tabletten von der Firma Norgine Pharma GmbH.

References/Literatur

[1] Institut für Qualitätssicherung und Transparenz im Gesundheitswesen (IQTIG). Basisauswertung zum Erfassungsjahr 2017. Geburtshilfe 2018. . Accessed November 21, 2021 at: https://iquiorg/downloads/auswertung/2017/16 n1gebh/QSKH-16 ns.GFH.2017-BWAV-V02-2018-08-01.pdf
[2] Locatelli A, Regalla AL, Chidini A et al. Risk of induction of labour in women with a uterine scar from previous low transverse caesarean section. BJOG 2004; 111: 1394–1399
[3] West HM, Joziwak M, Dodd JM. Methods of term labour induction for women with a previous caesarean section (Review). Cochrane Database Syst Rev 2017(06): CD009792. doi:10.1002/14651858.CD009792.pub3
[4] Grobman WA, Gilbert S, Landon MB et al. Outcomes of induction of labor after one prior cesarean. Obstet Gynecol 2007; 109: 262–269. doi:10.1097/AOC.0000154.149346.e9
[5] Ophir E, Odeh M, Hirsh Y et al. Uterine rupture during trial of labor: Controversy of induction’s methods. Obstet Gynecol Surv 2012; 67: 734–745
[6] Royal College of Obstetricians and Gynaecologists (RCOG). Birth after previous caesarean birth. Green-top Guideline No. 45. October 2015. . Accessed November 21, 2021 at: https://www.rcog.org.uk/globalassets/documents/guidelines/gtg_45.pdf
[7] Haumonte JB, Reyht M, Christophe M et al. French validation and adaptation of the Grobman nomogram for prediction of vaginal birth after cesarean delivery. J Gynecol Obstet Hum Reprod 2018; 47: 127–131
[8] Harper LM, Cahill AG, Boslaugh S et al. Association of induction of labor and uterine rupture in women attempting vaginal birth after cesarean: a survival analysis. AJOG 2012; 206: 51.e1–51.e6
[9] Gohliott S, Shenassia A, Coston AL et al. Obstetric outcomes associated with induction of labour after caesarean section. J Gynecol Obstet Hum Reprod 2018; 47: 539–543. doi:10.1016/j.jogoh.2018.09.006
[10] Rath W, Tsikouras P. Misoprostol for induction of labour after previous caesarean section – forever a “No go”? Geburtshilfe Frauenheilkd 2015; 75: 1140–1147. doi:10.1055/s-0035-1558171
[11] Kehl S, Hösl I, Pecks U et al. Induction of Labour. Guideline of the DGGG, OEGGG and SGGG (S2 k, AWMF Registry No. 015–032). Berlin: DGGG, OEGGG, SGGG; 2017. doi:10.1055/a-1519-7713
[12] de Vaan MD, ten Eikelder MI, Joziwak M et al. Mechanical methods for induction of labour. Cochrane Database Syst Rev 2019(10): CD001233
[13] Rath W, Pecks U. Medikamentöse Geburtseinleitung. 2 ed. Bremen, London: Uni Med; 2010.
[14] Gommers JSM, Diederen M, Wilkinson C et al. Risk of maternal, fetal and neonatal complications associated with the use of the transcervical balloon catheter in induction of labour: a systematic review. Eur J Obstet Gynecol Reprod Bio 2017; 216: 73–83
[15] Rath W, Stelzl P, Kehl S. Outpatient induction of labor – are balloon catheters an appropriate method? Geburtshilfe Frauenheilkd 2021; 81: 70–80. doi:10.1055/a-1308-2341
Kehl S, Weiss Ch, Rath W. Balloon catheters for induction of labour at previ-ous cesarean: guidelines for clinical practice from the French College of Gynecologists and Obstetricians (CNGOF). Eur J Obstet Gynecol Reprod Biol 2013; 170: 25–32. doi:10.1016/j.ejogrb.2013.05.015

Lydon-Rochelle M, Holt VL, Easterling TR et al. Risk of uterine rupture de-livery labor among women with a prior cesarean delivery. N Engl Med J 2001; 345: 3–8

Ravasia DJ, Wood SL, Pollard JK. Uterine rupture during indicated trial of labor among women with previous cesarean delivery. AJOG 2000; 183: 1176–1179

Taylor DR, Doughty AS, Kaufman H et al. Uterine rupture with the use of PGE2 vaginal inserts for labor induction in women with previous cesarean sections. J Reprod Med Obstet Gynecol 2002; 47: 549–554

Kehl S, Weiss Ch, Rath W. Balloon catheters for induction of labour at term after previous cesarean section: a systematic review. Eur J Obstet Gynecol Reprod Biol 2016; 204: 44–58

Chiassi G, Di Amico R, Tramontano AL et al. Prevalence of uterine rupture among women with one prior low transverse cesarean and women with unscarred uterus undergoing labor induction with PGE2: a systematic re-view and meta-analysis. PloS One 2021; 16: e0253957. doi:10.1371/jou-rnal.pone.0253957

Mc Master K, Sanchez-Ramos L, Kauznt AM. Evaluation of a transcervical Foley catheter and a source of infection: a systematic review and meta-analysis. Obstet Gynecol 2015; 126: 539–551

Maier JT, Metz M, Watermann W et al. Induction of labour in patients with unfavourable cervix after cesarean using an osmotic dilatator versus vaginal prostaglandin. J Perinat Med 2018; 46: 299–307. doi:10.1515/jpm-2017-0029

Königbauer JT, Schalinski E, Jerschau U et al. Cervical ripening after cesar-ean section: a prospective dual centre study comparing a mechanical os-motic dilator vs. prostaglandin E2. J Perinat Med 2021; 49: 797–805

Kruit H, Wilkman H, Tekay A et al. Induction of labour by Foley catheter com-pared with spontaneous onset of labor after previous cesarean sec-tion: a cohort study. J Perinatol 2017; 37: 787–792. doi:10.1038/jp.2017 7.50

Radan AP, Armilid-Mohr S, Mosimann B et al. Safety and effectiveness of labour induction after cesarean section using balloon catheter or oxyto-cin. Swiss Med Wkly 2017; 217: w14532. doi:10.4414/smw.2017.14532

De Bonrostro-Torralba C, Cabrejas EL, Gamboa SM et al. Double-balloon catheter for induction of labour in women with a previous cesarean sec-tion, could it be the best choice? Arch Gynecol Obstet 2017; 295: 1135–1143

Shah U, Bellows P, Drexler K et al. Comparison of induction of labor methods for unfavourable cervices in trial of labor after cesarean delivery. J Matern-Fetal Neonatal Med 2017; 30: 1010–1015. doi:10.1080/14767058.2016.1197903

Vital M, Grange J, Thbuat A et al. Prediction factors for successful cervical ripening using a double-balloon catheter after previous cesarean deliv-ery. Int J Gynecol Obstet 2018; 142: 288–294

Wallstrom T, Bjorklund J, Frykman J et al. Induction of labor after one previous cesarean section in women with an unfavourable cervix: a retro-spective cohort study. PloS One 2018; 13: e0200024. doi:10.1371/journ-al.pone.0200024

Atia H, Ellaihmy M, Altraigy A et al. Mechanical induction of labor and ecbolic-less vaginal birth after cesarean section: a cohort study. Taiwan J Obstet Gynecol 2018; 57: 421–426. doi:10.1016/j.tjog.2018.04.017

Boisen AB, Lokkegaard EC, Fuglsang J. Double-balloon catheter for induc-tion of labor in 362 women with and without prior cesarean section. Eur J Obstet Gynecol Reprod Biol 2019; 4: 100033. doi:10.1016/j.eurox.2019 9.100033

Boujenah J, Fleury C, Tighazin A et al. Induction of labour in women with previous cesarean delivery with balloon catheter: is it work it? Gynecol Obstet Fertil Senol 2019; 47: 279–280

Serreau M, Isly H, Poulain P et al. Balloon catheter vs. oxytocin alone for induction of labor in women with a previous cesarean section: a random-ized controlled trial. Acta Obstet Gynecol Scand 2019; 99: 259–266. doi:10.1111/aogs.13712

Huisman CMA, ten Ekelder MLG, Mast K et al. Balloon catheter for induc-tion of labor in women with one previous cesarean and an unfavourable cervix. Acta Obstet Gynecol Scand 2019; 98: 920–928. doi:10.1111/aog.s.13558

Korb D, Renard S, Morin C et al. Double-balloon catheter versus prostag-landin for cervical ripening to induce labor after previous cesarean deliv-ery. Arch Gynecol Obstet 2020; 301: 931–940. doi:10.1007/s00404-0 20-05473-x

Rossi AC, Prefumo F. Pregnancy outcome of induced labor in women with previous cesarean section: a systematic review and meta-analysis. Arch Gynecol Obstet 2015; 291: 273–280. doi:10.1007/s00404-014-344 4-9

Lamourediecu C, Gnicis A, Agostini A. Risk of uterine rupture after cervi-cal ripening with balloon catheter on uterus with previous cesarean sec-tion. J Gynecol Obstet Biol Reprod 2016; 45: 496–501

Choo SN, Kanneganti A, Abdul-Aziz M et al. Mechanical Dilatation of the Cervix in a Scarred uterus (MEDICS): the study protocol of a randomized controlled trial comparing a single cervical catheter balloon and prostaglandin E2 PGE2 for cervical ripening and labour induction following caesarean delivery. BJM Open 2019; 9: e028896. doi:10.1136/bmjopen-201 9-028896

Zhang H, Liu H, Lou S et al. Oxytocin use in trial of labor after cesarean and its relationship with risk of uterine rupture in women with one pre-vious cesarean section: a meta-analysis of observational studies. PMC Pregnancy Childbirth 2021; 21: 11

Katz-Eriksson JL, Chandrasekaran S, Delaney JS. Is Foley catheter use dur-ing trial of labor after cesarean associated with uterine rupture? Am J Obstet Gynecol 2019; 36: 1431–1436

Landon MB, Grobman WA, Eunice Kennedy Shriver National Institute of Child Health and Human Development Maternal-Fetal Medicine Units Network. What have we learned about trial of labor after cesarean deliv-ery from the Maternal-Fetal Medicine Units Cesarean Registry? Semin Perinatol 2011; 40: 281–286. doi:10.1053/j.semperi.2016.03.003

Al-Zirqui I, Daltveit AK, Forsen L et al. Risk factors for complete uterine rupture. ACOG Practice bulletin no. 115: Vaginal birth after previous cesarean delivery. Obstet Gynecol 2010; 116: 450–463

Sentilhes L, Vayssiere C, Beucher G et al. Delivery for women with a pre-vious cesarean: guidelines for clinical practice from the French College of Gynecologists and Obstetricians (CNGOF). Eur J Obstet Gynecol Reprod Biol 2013; 170: 25–32. doi:10.1016/j.ejogrb.2013.05.015