The complete plastome of tropical fruit *Garcinia mangostana* (Clusiaceae)

Sangjin Jo, Hoe-Won Kim, Young-Kee Kim, Jung-Yeon Sohn, Se-Hwan Cheon and Ki-Joong Kim

Division of Life Sciences, Korea University, Seoul, Korea

ABSTRACT

The complete plastome sequence of *Garcinia mangostana* L. (Clusiaceae) is completed in this study (NCBI acc. no. KX822787). This is a first complete plastome sequence from the Clusiaceae. The complete plastome size is 158,179 bp in length and consists of a large single copy of 86,458 bp and a small single copy of 17,703 bp, separated by two inverted repeats of 27,009 bp. The *G. mangostana* plastome shows four minor structural modifications including infA gene loss, *rpl32* gene loss, *ycf3* gene intron loss and a 363 bp inversion between *tRNA*-UAC and *atpE* gene. The plastome contains 111 genes, of which 77 are protein-coding genes, 30 are tRNA genes and four are rRNA genes. The average A-T content of the plastome is 63.9%. A total of 110 simple sequence loci are identified from the genome. Phylogenetic analysis reveals that *G. mangostana* is a sister group of *Erythroxylum novogranatense* (Erythroxylaceae) with 78% bootstrap support.

Garcinia mangostana L. is commonly known as ‘the queen of fruits’ or mangosteen. It is one of the most delicious tropical fruits originated in Malaysia and Indonesia (Kim 2011). It belongs to the family Clusiaceae of Malpighiales (APG IV 2016). The family Clusiaceae consists of 13 genera and approximately 750 species including many fruit crops (Christenhusz and Byng 2016). But, the complete plastome sequence is not known from the family. Therefore, we first report the complete plastome of *G. mangostana* (Clusiaceae) in this study. It will be a useful reference for the phylogenetic and evolutionary studies of Malpighiales.

The leaves of *G. mangostana* used in this study were collected from the Korea University greenhouse, where we grew the plants from seeds originally collected from Thailand. A voucher specimen was deposited in the Korea University Herbarium (KUS acc. no. 2014-0243). Fresh leaves were ground into powder in liquid nitrogen and total DNAs were extracted using the cetyl trimethyl ammonium bromide (CTAB) method (Doyle and Doyle 1987). The DNAs were further purified by the ultracentrifugation and dialysis (Palmer 1986). The genomic DNAs are deposited in the Plant DNA Bank in Korea (PDBK acc. no. 2014-0243). The complete plastome sequence was generated using an Illumina HiSeq 2000 system (Illumina Inc., San Diego, CA). An average coverage of sequences was 346 times of its annotated plastome size. Annotations were performed using the National Center for Biotechnology Information (NCBI) BLAST and tRNAscan-SE programmes (Lowe and Eddy 1997).

The gene order and structure of the *G. mangostana* plastome are similar to those of a typical angiosperm (Shinozaki et al. 1986; Kim and Lee 2004; Yi and Kim 2012) except four minor modifications. The infA and *rpl32* genes were lost in the *G. mangostana* plastome. The two gene losses were also reported from other Malpighialian families (Tangphatsornruang et al. 2011; Huang et al. 2014; Bardon et al. 2016; Cheon et al. 2017). The *ycf3* gene usually consists of three exons and two introns in angiosperm. But, the second intron was lost in *G. mangostana* plastome. The *G. mangostana* plastome had a small 363 bp inversion between *tRNA*-UAC and *atpE* region. The palindromic repeats of 15 bp (ACATCCTATTCTTTT/AAAGAAATAGGATGT) were located on the two break points of inversion. This is a new inversion report, but there are several reports of other small inversions due to palindromic repeats (Kim and Lee 2004; Catalano et al. 2009).

The complete plastome is 158,179 bp in length and consists of a large single copy (LSC) region of 86,458 bp and a small single copy (SSC) region of 17,703 bp separated by two inverted repeats (IR) of 27,009 bp. The plastome comprises 111 unique genes (77 protein-coding genes, 30 tRNA genes and four rRNA genes). Seven protein-coding, seven tRNA and four rRNA genes are duplicated in the IR regions. The average A-T content of the plastome is 63.9%, whereas that in the LSC, SSC and IR regions is 66.5%, 69.8% and 57.8%, respectively. Seventeen genes have one intron and one gene (*clpP*) has two introns. A total of 110 simple sequence repeat (SSR) loci are scattered among the plastome. Among these, 88, 15 and 7 are mono-SSR, di-SSR and tri-SSR loci, respectively.

To validate the phylogenetic relationships of *G. mangostana* in rosids, we constructed a maximum likelihood (ML) tree by using 40 super-rosids taxa. Phylogenetic analysis was performed on a data set that included 78 protein-coding genes and four rRNA genes using RAxML version 7.7.1.
The 82 gene sequences (77,445 bp in length) were aligned with the MUSCLE programme using Geneious version 6.1.8 (Biomatters Ltd.; Kearse et al. 2012). As a result, *G. mangostana* forms a clade with *Erythroxylum novogranatense* (Erythroxylaceae) with a 78% bootstrap value (Figure 1). In previous phylogenetic studies, Clusiaceae belongs to the clusioids group and has been known to be the closest relationship to Bonnetiaceae (Wurdack and Davis 2009; Ruhfel et al. 2011; Xi et al. 2012). There are 36 families in Malphigiales. But, the complete plastomes were reported from only six families so far. In order to solidify the interfamilial relationships in Malphigiales, we need a complete plastome sequences from other families.

Disclosure statement

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Funding

This work was supported by the National Research Foundation of Korea (NRF) under the grants nos. of NRF-2015M3A9B8030588 and NRF-2015M3A9B8047398 to KJK.

References

APG IV. 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc. 181:1–20.

Bardon L, Sothers C, Prance GT, Malé PJG, Xi Z, Davis CC, Murienne J, Garcia-Villarcorta R, Coissac E, Laverge S. 2016. Unraveling the biogeographical history of Chrysobalanaceae from plastid genomes. Am J Bot. 103:1089–1102.

Catalano SA, Saidman BO, Vilardi JC. 2009. Evolution of small inversions in chloroplast genome: a case study from a recurrent inversion in angiosperms. Cladistics. 25:93–104.

Cheon KS, Yang JC, Kim KA, Jang SK, Yoo KO. 2017. The first complete chloroplast genome sequence from Violaceae (*Viola seoulensis*). Mitochondrial DNA A DNA Mapp Seq Anal. 28:67–68.

Christenhusz MJ, Byng JW. 2016. The number of known plants species in the world and its annual increase. Phytotaxa. 261:201–217.

Doyle JJ, Doyle JL. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull. 19:11–15.

Huang DI, Hefer CA, Kolosova N, Douglas CJ, Cronk QC. 2014. Whole plastome sequencing reveals deep plastid divergence and cytonuclear discordance between closely related balsam poplars, *Populus balsamifera* and *P. trichocarpa* (Salicaceae). New Phytol. 204: 693–703.

Kearse M, Mair R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C. 2012. Geneious Basic: an
integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 28:1647–1649.

Kim K-J. 2011. Tropical fruit resources. Seoul: Geobook.

Kim K-J, Lee HL. 2004. Complete chloroplast genome sequences from Korean ginseng (Panax schinseng Nees) and comparative analysis of sequence evolution among 17 vascular plants. DNA Res. 11:247–261.

Lowe TM, Eddy SR. 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25:955–964.

Palmer JD. 1986. Isolation and structural analysis of chloroplast DNA. Methods Enzymol. 118:167–186.

Ruhfel BR, Bittrich V, Bove CP, Gustafsson MH, Philbrick CT, Rutishauser R, Xi Z, Davis CC. 2011. Phylogeny of the clusioid clade (Malpighiales): evidence from the plastid and mitochondrial genomes. Am J Bot. 98:306–325.

Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K. 1986. The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J. 5:2043–2049.

Stamatakis A, Hoover P, Rougemont J. 2008. A rapid bootstrap algorithm for the RAxML web servers. Syst Biol. 57:758–771.

Tangphatsornruang S, Uthaipaisanwong P, Sangsraotruck D, Chanprapert J, Yoocha T, Jomchai N, Tragoonrung S. 2011. Characterization of the complete chloroplast genome of Hevea brasiliensis reveals genome rearrangement, RNA editing sites and phylogenetic relationships. Gene. 475:104–112.

Wurdack KJ, Davis CC. 2009. Malpighiales phylogenetics: gaining ground on one of the most recalcitrant clades in the angiosperm tree of life. Am J Bot. 96:1551–1570.

Xi Z, Ruhfel BR, Schaefer H, Amorim AM, Sugumaran M, Wurdack KJ, Endress PK, Matthews ML, Stevens PF, Davis CC. 2012. Phylogenomics and a posteriori data partitioning resolve the Cretaceous angiosperm radiation Malpighiales. Proc Natl Acad Sci USA. 109:17519–17524.

Yi D-K, Kim K-J. 2012. Complete chloroplast genome sequences of important oilseed crop Sesamum indicum L. PLoS One. 7:e35872.