Research Article

Anti-Inflammatory Activity and Composition of Senecio salignus Kunth

Cuauhtemoc Pérez González,1 Roberto Serrano Vega,1 Marco González-Chávez,2 Miguel Ángel Zavala Sánchez,1 and Salud Pérez Gutiérrez1

1 Universidad Autónoma Metropolitana-Xochimilco, AP 23-181, Mexico
2 Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Avenida Dr. Manuel Nava 6, Zona Universitaria, 78210 San Luis Potosí, SLP, Mexico

Correspondence should be addressed to Salud Pérez Gutiérrez; msperez@correo.xoc.uam.mx

Received 13 September 2012; Revised 26 March 2013; Accepted 27 March 2013

Academic Editor: Fabio Ferreira Perazzo

Copyright © 2013 Cuauhtemoc Pérez González et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We investigated the anti-inflammatory activity of Senecio salignus. This medicinal plant is often used in Mexico for the treatment of fever and rheumatism. Chloroform and methanol extracts of the plant were tested on 12-O-tetradecanoylphorbol-13-acetate-(TPA-) induced edema in mice ears. The methanol extract of the plant inhibited edema by 36±4.4% compared with the control, while the chloroform extract exhibited an even greater level of inhibition (64.1%). The chloroform extract was then fractionated, and the composition of the active fraction was determined by GC-MS. The anti-inflammatory activity of this fraction was then tested on TPA-induced ear edema in mice, and we found that the active fraction could inhibit edema by 46.9%. The anti-inflammatory effect of the fraction was also tested on carrageenan-induced paw edema in rats at doses of 100 mg/kg; a 58.9±2.8% reduction of the edema was observed 4 h after administration of carrageenan, and the effect was maintained for 5 h.

1. Introduction

Inflammatory diseases are a major cause of morbidity and mortality in the world. These diseases are mainly treated with nonsteroidal anti-inflammatory drugs (NSAIDs) and steroidal drugs, which have proven effective but can have negative side effects. For instance, NSAIDs may induce gastric and intestinal ulcers, anaemia, platelet inhibition in uterine motility, and, in some reported cases, an increased risk of myocardial infarction [1]. Steroidal anti-inflammatory drugs prevent or suppress inflammation but do not attack the root cause of the disease, and the prolonged use of these compounds can inhibit the synthesis of the inducible isoform of nitric oxide synthase enzyme and cause pituitary-adrenal suppression, hyperglycaemia, glycosuria, and an increased susceptibility to infections and peptic ulcers [2]. Therefore, searching for new molecules with anti-inflammatory activity but with fewer side effects is vital, and plants may represent a potential source of such compounds.

Ancient Mexican culture is rich in information on the plants used in traditional medicine, one of which is Senecio salignus. This plant is used to treat intermittent fevers and rheumatism, and in the state of Chiapas, it is used as an insecticide in corn stores and also as an ornamental plant [3, 4].

S. salignus is a leafy shrub with many branches; its leaves are sessile and are generally very narrow (up to 1.5 cm wide) and pointed, with numerous dense inflorescences and cones. Each inflorescence bears 5 to 6 bright yellow flowers. The plants grow in areas of desert scrub at altitudes less than 2870 m [5].

From the aerial parts of S. salignus, some pyrrolizidine alkaloids, lactones, furoeremophilanes, sesquiterpenes, and other compounds have been isolated [6]. However, there are no reports of anti-inflammatory activity for this plant.

In the present study, we investigated the anti-inflammatory activity of S. salignus and the composition of the active fraction of the plant.
2. Materials and Methods

2.1. Biological Material. Senecio salignus Kunth (Compositae) was collected around Tenancingo in the state of Mexico in July 2010. Dr. Abigail Aguilar Contreras authenticated the species, and a voucher was deposited in the herbarium of the Instituto Mexicano del Seguro Social (IMSSM 15,546). The aerial parts of the plant were dried in the shade at room temperature.

2.2. Experimental Animals. The present study used male Wistar rats (180 to 200 g) and CD-1 male mice (20 to 25 g) provided by the Unidad de Producción y Experimentación de Animales de Laboratorio (UPEAL) at the Universidad Autónoma Metropolitana Xochimilco. The animals were provided with food and water ad libitum and housed in a facility with light and dark periods of 12 hours.

All experiments were carried out according to the guidelines of laboratory animal care of the Guide for the Care and Use of Laboratory Animals [7].

2.3. Extract Preparation. A mixture of 500 g of dried, ground leaves and 3.5 L of chloroform or methanol was placed into a 5 L flask with a reflux condenser. The mixture was heated for 4 h at boiling temperature and then cooled and filtered; the solvent was then evaporated in a rotary evaporator to dryness under reduced pressure. The yield was 0.6% and 1.2%, respectively.

2.4. Chloroform Extract Fractionation. The chloroform extract was separated by column chromatography; the column was packed with silica gel (Kieselgel 60, 70–230 mesh ASTM), which was prepared using hexane as the mobile phase, and then the polarity was increased with ethyl acetate. Fractions of 100 mL were collected and compared by thin-layer chromatography; fractions with the same chromatographic pattern were then pooled. The resulting fractions were tested on ear edema in mice induced by TPA, and the composition of the fractions with the highest activity was then determined.

2.5. Active Fraction Analysis (AF). The analysis was performed on a gas chromatograph coupled to a mass spectrometer (Agilent Technology, model 6890N); this was coupled to a mass selective detector (model 5973) with a DB-5HT capillary column (15 m in length, 0.25 mm internal diameter, and 0.10 μm film thickness). We used a temperature program starting at 100°C for 3 min with a heating rate of 10°C per min up to 320°C; this temperature was maintained for 5 min. The splitless injection was performed at a ratio of 1:100, and the injector temperature was 320°C. The spectra were determined at 70 eV, and the mass range analysed was from 33 to 800 m/z. The compounds were identified from the mass spectra and by comparing the spectra to the spectra reported in the NIST database (Wiley09/NIST11).

2.6. Anti-Inflammatory Activity

2.6.1. 12-O-Tetradecanoylphorbol-13-Acetate- (TPA-) Induced Mouse Ear Edema. The model for TPA-induced edema in mouse ears has been described previously [8]. A solution containing 2.5 μg of TPA in 25 μL of acetone was applied topically to the inner and outer surfaces of the right ears in a group of eight male CD1 mice. Thirty minutes later, 2.0 mg of the chloroform extract or AF or indomethacin dissolved in acetone was topically applied to the right ear, and acetone was applied to the left ear. Six hours later, the animals were sacrificed, and 6 mm plugs of the central portion of both ears were weighed. The percentage inhibition of edema was determined.

2.6.2. Carrageenan-Induced Rat Paw Edema. The model for carrageenan-induced edema in the rat paw has been described previously [9]. Paw edema was induced by intradermal injection of 0.1 mL of a 1% carrageenan suspension in the left hind footpad. One hour prior to carrageenan injection, groups of eight rats each were treated with 50, 100, 200, or 400 mg/kg CESS or AF, while another group received 8 mg/kg indomethacin. The control group received the vehicle alone (polyvinyl pyrrolidone (PVP)). The paw volume was measured by the volume displacement method using a plethysmometer (Ugo Basile) at 1, 2, 3, 4, and 5 h after carrageenan administration, and the percentage of edema inhibition was determined [10].

2.6.3. Acute Toxicity. AF was orally administered as a single dose at different concentrations (312–5000 mg/kg) to groups of mice (n = 5). After administration, the animals were observed under open-field conditions for a 72 h period. The number of animal deaths and signs of clinical toxicity were recorded [11].

2.7. Statistical Analysis. Data are expressed as the mean ± S.E.M. The statistical analysis was performed using Student’s t-test (P < 0.05), and ANOVA followed by Dunnett’s test (P < 0.05) was used to determine significance.

3. Results and Discussion

The methanol extract of S. salignus inhibited TPA-induced ear edema by 36.4 ± 4.4%, while the chloroform extract (CESS) diminished the ear edema by 64.1 ± 3.9%; the effect was higher than that obtained with indomethacin (41.5 ± 4.3%). The study was then continued with the CESS, which was separated by column chromatography to give 12 fractions. Fraction 5 (AF) (hexane: AcOEt 7:3) showed the highest inhibition of TPA-induced ear edema (46.9 ± 5.3%).

The inflammation induced by TPA is mediated by protein kinase C, which stimulates phospholipase A2 [12] and cyclooxygenase, resulting in the release of arachidonic acid and prostaglandin E2 [13]. The AF displayed good activity, which suggested that at least one of the compounds present in S. salignus may inhibit the production of protein kinase C, resulting in the observed effect.
Results are expressed as percentage of inhibition and mean of eight determinations ± SE. One-way ANOVA, Dunnett test *P < 0.05 (P = 0.04) for the comparison of S. salignus with indomethacin-treated groups.

Time (H)	Indomethacin	Senecio salignus			
	8 mg/kg	50 mg/kg	100 mg/kg	200 mg/kg	400 mg/kg
1	15.1 ± 2.8*	10.3 ± 4.02*	15.03 ± 3.1*	17.5 ± 2.3*	27.5 ± 3.8
2	28.3 ± 3.8*	21.3 ± 2.4*	27.8 ± 3.1	29.1 ± 3.1	34.5 ± 2.2*
3	43.4 ± 3.2*	26.6 ± 2.1	47.5 ± 4.02*	44.6 ± 3.8*	57.3 ± 2.6
4	61.1 ± 3.8*	37.2 ± 4.6	58.9 ± 2.8*	63.5 ± 2.2*	70.3 ± 4.5
5	62.2 ± 3.9*	38.9 ± 3.3	60.1 ± 4.7*	62.9 ± 2.04*	80.1 ± 4.5

Results are expressed as percentage of inhibition and mean of eight determinations ± SE. One-way ANOVA, Dunnett test *P < 0.05 for comparison of S. salignus with indomethacin-treated groups.
Acknowledgment

The authors acknowledge the financial support of the Instituto de Ciencia y Tecnología del Distrito Federal (Project no. 3410766).

References

[1] J. Hippisley-Cox and C. Coupland, "Risk of myocardial infarction in patients taking cyclo-oxygenase-2 inhibitors or conventional non-steroidal anti-inflammatory drugs: population based nested case-control analysis," British Medical Journal, vol. 330, no. 7504, pp. 1366–1369, 2005.

[2] R. G. Ogirala, J. B. Enden, and M. H. Williams, "High-dose intramuscular triamcinolone in severe, chronic, life-threatening asthma," The New England Journal of Medicine, vol. 324, no. 9, pp. 585–589, 1991.

[3] D. Martínez-Moreno, R. Alvarado-Flores, M. Mendoza-Cruz, and F. Basurto-Peña, "Medicinal plants of four markets in the state of Puebla, Mexico," Boletín de la Sociedad Mexicana, vol. 79, pp. 79–87, 2006.

[4] E. López-Pérez, C. Hernandez, L. Arenas, and R. Ortega-Garza, "Biological activity of root subfasciatus Boehman against Zabrote in stored beans," Agrociencia, vol. 41, no. 1, pp. 95–102, 2007.

[5] http://www.conabio.gob.mx/malezasdemexico/asteraceae/senecio-salignum/fichas/ ficha.htm.

[6] F. Bohlmann, C. Zdero, J. Jakupovic et al., "Further pyrrolizidine alkaloids and furoeremophilanes from Senecio species," Phytochemistry, vol. 25, no. 5, pp. 115–119, 1989.

[7] National Academy of Medicine, Guidelines for Research with Animals, Guide for the Care and Use of Laboratory Animals, Academic Press, México City, Mexico, 1999.

[8] L. M. de Young, J. B. Kheifets, S. J. Ballaron, and J. M. Young, "Edema and cell infiltration in the phorbol ester-treated mouse ear are temporally separate and can be differentially modulated by pharmacologic agents," Agents and Actions, vol. 26, no. 3–4, pp. 335–341, 1989.

[9] C. A. Winter, E. A. Risley, and C. W. Nuss, "Carrageenin-induced edema in hind paw of the rat as an assay for antiinflammatory drugs," Proceedings of the Society for Experimental Biology and Medicine, vol. 111, pp. 544–547, 1962.

[10] A. O. Olajide, A. S. Olubusayo, M. J. Modupe et al., "Studies on the anti-inflammatory, antipyretic and analgesic properties of Alstonia boonei stem bark," Journal of Ethnopharmacology, vol. 71, no. 1–2, pp. 179–186, 2000.

[11] "Acute oral toxicity—fixed dose procedure," OECD Guideline for Testing of Chemicals 420, 2001.

[12] C. L. Ashendel and R. K. Boutwell, "Direct measurement of specific binding of highly lipophilic phorbol diester to mouse epidermal membranes using cold acetone," Biochemical and Biophysical Research Communications, vol. 99, no. 2, pp. 543–549, 1981.

[13] P. Crunkhon and B. K. Meacock, "Mediators of the anti-inflammatory, analgesic and antipyretic effects of an Aqueous extract of Erythraea centarium," Plant Medicine, vol. 57, pp. 34–37, 1971.

[14] M. A. António and A. R. M. S. Brito, "Oral anti-inflammatory and anti-ulcerogenic activities of a hydroalcoholic extract and partitioned fractions of Turnera ulmifolia (Turneraceae)," Journal of Ethnopharmacology, vol. 61, no. 3, pp. 215–228, 1998.

[15] E. Speroni, R. Cervellati, G. Innocenti et al., "Anti-inflammatory, anti-nociceptive and antioxidant activities of Balanites aegyptiaca (L.) Delile," Journal of Ethnopharmacology, vol. 98, no. 1–2, pp. 117–125, 2005.

[16] R. S. Bhakuni, D. C. Jain, R. P. Sharma, and S. Kumar, "Secondary metabolites of Artemisia annua and their biological activity," Current Science, vol. 80, no. 1, pp. 35–49, 2001.

[17] A. P. Simopoulos, "Essential fatty acids in health and chronic disease," The American Journal of Clinical Nutrition, vol. 70, pp. 560–569, 1999.

[18] W. E. Connor, "Alpha-linolenic acid in helath and disease," The American Journal of Clinical Nutrition, vol. 69, pp. 188–189, 1999.