Thermal dissipation in the quantum Hall regime in graphene

Jing-Yun Fang, Ning-Xuan Yang, Qing Yan, Ai-Min Guo, and Qing-Feng Sun

1International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
2CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
3Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China
4Beijing Academy of Quantum Information Sciences, West Bld. #3, No.10 Xibeiwang East Rd., Haidian District, Beijing 100193, China

(Dated: June 28, 2021)

It is widely accepted that both backscattering and dissipation cannot occur in topological systems because of the topological protection. Here we show that the thermal dissipation can occur in the quantum Hall (QH) regime in graphene in the presence of dissipation sources, although the Hall plateaus and the zero longitudinal resistance still survive. Dissipation appears along the downstream chiral flow direction of the constriction in the Hall plateau regime, but it occurs mainly in the bulk in the Hall plateau transition regime. In addition, dissipation processes are accompanied with the evolution of the energy distribution from non-equilibrium to equilibrium. This indicates that topology neither prohibits the appearance of dissipation nor prohibits entropy increasing, which opens a new topic on the dissipation in topological systems.

I. INTRODUCTION

Topological systems have been attracting extensive and ongoing interests because of potential applications in low-dissipation electronic devices and topologically protected edge or surface states. The quantum Hall (QH) effect is a prime phenomenon in topological systems, which was firstly discovered in a two-dimensional electron gas (2DEG) system. With the influence of a strong perpendicular magnetic field, the energy spectrum forms a series of impurity broadened discrete Landau levels, where the extended states exist in center and the localized states exist at the edge of the band. This special energy band leads to many peculiar properties. For example, it supports topologically protected chiral edge states, which are characterized by the topological properties of the wave functions distribution in two-dimensional lattice momentum space, and the corresponding topological invariant is TKNN number, also known as Chern number.

When the Fermi energy is between the Landau levels, the chiral edge states exhibit quantized Hall resistance and the corresponding longitudinal resistance is zero. The QH effect can occur in macroscopic systems. In experiment, the quantized Hall resistance is very specified and it is insensitive to the details of the sample, which leads to the establishment of a new metrological standard. Moreover, the charge carriers in the chiral edge states are very resistant to scattering and are expected to used in dissipationless electronic devices.

Graphene, a kind of two-dimensional topological material with an isolated single layer hexagonal lattice of carbon atoms, has been found to be an ideal material for realization of the QH effect recently. Graphene has unique band structure with a linear dispersion relation near the Dirac points, which leads to many fancy properties. Its quasiparticles obey the massless Dirac-type equation and its Hall plateaus are assumed at the half-integer values.

The dissipation sources (e.g., the electron-phonon interaction, impurities) inevitably exist in real systems and could lead to thermal dissipation with the energy transfer from electric energy to heat energy in charge transport processes. As dissipation is usually associated with resistance generating, one would expect that dissipation cannot occur in the QH plateau regime albeit the existence of dissipation sources, and dissipation only appears in the QH plateau transition regime. However, it was shown that dissipation can take place at the QH edges through resonant impurities and electron-phonon interactions. In particular, using high-sensitive non-contact nano-thermometer, Margueriteet al. reported an amazing experiment that dissipative transport happens along the chiral QH edge states in graphene but in the bulk no dissipation occurs in either QH plateau or plateau transition regimes. In view of this, a thorough and reliable analysis of thermal dissipation accompanied with energy relaxation and electron redistribution is urgent in the QH effect.

In this paper, we theoretically study the thermal dissipation of a six-terminal graphene device under a perpendicular magnetic field. The thermal dissipation processes require energy transfer from electronic system to environment. Here we simulate the dissipation sources by introducing the Büttiker’s virtual leads, where the energy of moving electrons leaks into these virtual leads and induces thermal dissipation. By using the tight-binding model and the Landauer-Büttiker formalism together with the non-equilibrium Green’s function, the local heat generation and equivalent temperature are calculated. Our results indicate that the thermal dissipation can occur in the QH plateau regime, deviating from the principle that backscattering and dissipation cannot happen in the QH effect due to the topological protection.
The thermal dissipation mainly appears along the downstream chiral flow direction of the constriction, with the relaxation length determined by the dissipation strength. These features are in excellent agreement with the recent experiment. On the other hand, in the plateau transition regime, the thermal dissipation primarily appears in the bulk of graphene, which is the same as previous physical intuition.

The first and second terms describe the graphene system including central region and six terminals. c_i^\dagger (c_i) is the creation (annihilation) operator at site i, ϵ_i is the on-site energy, and t is the nearest-neighbor coupling. Here $i = (x, y)$ is also the spatial position coordinate, as shown in Fig. 1(a). The magnetic field B is expressed as $\phi_{ij} = \frac{\hbar}{e} \mathbf{A} \cdot d\mathbf{l}/\phi_0$, with the vector potential $\mathbf{A} = (-By, 0, 0)$ in leads 1, 4 and the central region, $\mathbf{A} = (0, Bx, 0)$ in leads 2, 3, 5, 6, and $\phi_0 = \hbar/e$ the flux quantum, see the Appendix A. We stress that our results still hold in square-lattice systems (or 2DEG systems).

The third term $H_d = \sum_{i,k} \epsilon_i a_i^\dagger a_i + (t_k c_i^\dagger c_i + \text{H.c.})$ represents the Hamiltonian of Büttiker’s virtual leads and their couplings to central sites, which is used to simulate the dissipation sources. a_i^\dagger (a_i) is the creation (annihilation) operator of the electrons in the virtual lead i, t_k is the coupling strength between the virtual leads and the graphene. In fact, the virtual leads can be used as dephasing probes, voltage probes or temperature probes, which depend on the boundary conditions of the virtual leads. When the virtual leads are set as dephasing probes, electrons can lose phase memories by going into and coming back from the virtual leads, and the electric currents in these virtual leads are zero. When they are set as voltage probes, the electric currents in the virtual leads are also zero and the voltage in the virtual leads are studied. While when they are set as temperature probes, both the heat currents and the electric currents are zero. Here we use the virtual leads to simulate the dissipation sources, in this case electrons can lose energy by going into and coming back from the virtual leads, i.e., the electric currents are zero and we focus on the heat currents in the virtual leads. In addition, we consider that the dissipation sources only exist in the region enclosed by the red (green) solid lines in Fig. 1(a), where each site is attached by a virtual lead.

By using the mult probe Landauer-Büttiker formula, the electric current and the heat current in real leads r ($r = 1, 2, \ldots, 6$) and virtual ones i can be expressed as

$$J_p = \frac{2e}{\hbar} \sum_q \int T_{pq}(E) [f_p(E) - f_q(E)] dE,$$

$$Q_p = -\frac{2}{\hbar} \sum_q \int (E - \mu_p) T_{pq}(E) [f_p(E) - f_q(E)] dE,$$

(2)

where $p, q \in r$ or i. For convenience, we define the electric current J_p flows from lead p into central region as the positive direction, while the heat current Q_p flows from central region to lead p as the positive direction. Here, the heat current Q_p is induced by the flow of the electric current, so we will call it the current-induced local heat generation in the following. In Eq. (2), $T_{pq}(E) = \text{Tr}[\Gamma_p G^q \Gamma_q G^p]$ is the transmission coefficient from lead q to lead p, where the Green’s function $G^q(E) = [G^{q\dagger}(E)]^\dagger = [E - \mathbf{H}_{cen} - \sum_p \Sigma_p^q]^{-1}$ and the linewidth function $\Gamma_p(E) = i(\Sigma_p^q(E) - \Sigma_p^q(E))$. \mathbf{H}_{cen} is the Hamiltonian of the central region. $\Sigma_p^q(E) = [\Sigma_p^q(E)]^\dagger$ is the retarded self-energy due to the coupling to lead p. For real leads p ($p \in r$), the self-energy Σ_p^q can be

![FIG. 1. (a) Schematic diagram for a six-terminal graphene device with a narrow constriction on the left side (i.e., the narrow constriction is between lead 1 and leads 2, 6). The region surrounded by the red (green) solid lines contains dissipation sources. In this diagram, the sizes of device are $N = 16, M = 8, W = 4, L_1 = 4, L_p = 2, L_q = 4, L_3 = 3$ and $L_4 = 4$. (b) and (c) show the Hall resistance R_H and longitudinal resistance R_{xx} vs the magnetic field B for $M = N$ and $M = 8$, respectively. $L_q = 80$ and the dissipation sources are in the red solid lines surrounding region.](image-url)
calculated numerically. For virtual leads \(p (p \in \mathbb{N}) \), \(\Sigma_{p} = -\frac{1}{2}\Gamma_{d} \), with the dissipation strength \(\Gamma_{d} = 2\pi \rho L_{T} \) and \(p \) the density of states in the virtual leads. We assume that \(\Gamma_{p} \) is independent of the energy, i.e., in the wide-band approximation.

\[f_{p}(E) = \left[e^{(E - \mu_{p})/k_{B}T_{p}} + 1 \right]^{-1} \]

is the Fermi distribution function in lead \(p \), with the temperature \(T_{p} \), the chemical potential \(\mu_{p} = E_{F} + eV_{p} \), and the voltage \(V_{p} \) in lead \(p \).

By using the Green’s function, the energy distribution function at the site \(i \) can be expressed as

\[F_{i}(E) = \frac{n(i, E)}{LDOS_{i}(E)}, \]

where \(n(i, E) = -\frac{1}{\pi}G_{ii}^{0}(E) \) is the electron density per unit energy at the lattice site \(i \) and \(LDOS_{i}(E) = -\frac{1}{\pi}ImG_{ii}^{0}(E) \) is the local density of states at the lattice site \(i \). According to the Keldysh equation, the lesser Green’s function \(G_{ii}^{<}(E) = \sum_{p}G_{ip}^{r}G_{pi}^{a}G_{ii}^{a} \) and the lesser self-energy \(\Sigma_{i}^{<}(E) = -\sum_{p}f_{p}(E)(\Sigma_{i}^{r}(E) - \Sigma_{i}^{a}(E)) \).

When a small bias \(V_{b} \) is applied between leads 1 and 4 with \(V_{1} = V_{b} \) and \(V_{4} = 0 \), the current flows along the longitudinal direction. It is reasonable to assume that the transmission coefficient \(T_{pq}(E) \) is approximately independent of energy \(E \) since the bias is small. The leads 2, 3, 5, 6 are set as voltage probes and their electric currents are zero. Besides, the electric currents in the virtual leads are also zero, because electrons go into and come back from the virtual leads, only losing energy. The Fermi distribution function is \(f_{p}(E) = \theta(\mu_{p} - E) \) at zero temperature. Thus, Eq. (2) can be expressed as

\[J_{p} = \frac{2e^{2}}{h} \sum_{q \neq p} T_{pq}(E_{F})(V_{p} - V_{q}), \]

\[Q_{p} = -\frac{2e^{2}}{h} \sum_{q \neq p} T_{pq}(E_{F})(V_{p}V_{q} - \frac{1}{2}v_{p}^{2} - \frac{1}{2}v_{q}^{2}). \]

Combining \(J_{p} = 0 (p \in \{1, 2, 3, 5, 6\}) \) with Eq. (4), the voltages \(V_{p} \), the current-induced local heat generation \(Q_{p} \) in these leads and the longitudinal current \((J = J_{1} = -J_{4}) \) can be obtained. The current \(J \) is proportional to the bias \(V_{b} \) and the heat generation \(Q_{p} \) to \(V_{b}^{2} \). The local heat generation \(Q_{L}(x, y) \) at position \(i = (x, y) \) is \(Q_{L}(x, y) = Q_{i} \). Finally, the longitudinal resistance \(R_{xx} = R_{14, 23} = (V_{2} - V_{3})/J \) and the Hall resistance \(R_{xy} = R_{14, 26} = (V_{2} - V_{6})/J \) can be calculated straightforwardly. And the local heat generation \(Q_{L}(x, y) \) will be studied in Sec. III.A.

On the other hand, if the thermal conductivity between the sample and environment is poor, the local heat generation \(Q_{1} \) disappears and the local electron temperature \(T_{i} \) (i.e., the temperature in the virtual leads) rises. In this case, the virtual leads act as both the dissipation sources and the temperature detection terminals (temperature probes), and both \(J_{1} \) and \(Q_{1} \) are zero. Notice that although both \(J_{1} \) and \(Q_{1} \) are zero in the virtual leads, the heat current density \(\sum_{q}(E - \mu_{p})T_{pq}(E)[f_{p}(E) - f_{q}(E)] \) and the electric current density \(\sum_{q}T_{pq}(E)[f_{p}(E) - f_{q}(E)] \) are usually non-zero. So the dissipation can occur and the virtual leads still play the role of the dissipation sources. Provided that the six real leads have the same temperature \((T_{1} = T_{2} = T_{3} = T_{4} = T_{5} = T_{6} = T) \). At low temperature and small voltage, the current \(J_{p} \) and the current-induced local heat generation \(Q_{p} \) in Eq. (2) can be reduced as

\[J_{p} = \frac{2e^{2}}{h} \sum_{q \neq p} T_{pq}(E_{F})(V_{p} - V_{q}), \]

\[Q_{p} = -\frac{2e^{2}}{h} \sum_{q \neq p} T_{pq}(E_{F}) \left[\frac{\pi^{2}}{6} k_{B}^{2}(T_{p}^{2} - T_{q}^{2}) - \frac{1}{2} e^{2}(V_{p} - V_{q})^{2} \right]. \]

FIG. 2. (a-d) show the local heat generation \(Q_{L} \) vs lattice position \((x, y) \) in the QH plateau regime with a narrow constriction on the left side (i.e., the narrow constriction is between lead 1 and leads 2, 6 in Fig. 1(a)). \(B = 0.02 \) (\(\nu = 1 \)) in (a), (b). \(0.01 \) (\(\nu = 3 \)) in (c), (d), and dissipation strengths \(\Gamma_{d} = 0.005 \) in (a), (c), \(0.02 \) in (b), (d). (e) shows \(Q_{L} \) at \(B = 0.02 \) for the device with a narrow constriction on the right side (i.e., the narrow constriction is between lead 4 and leads 3, 5 in Fig. 1(a)) and \(\Gamma_{d} = 0.02 \). (f) shows \(Q_{L} \) in the Hall plateau transition regime \((B = 0.0116) \) with \(L_{q} = 80 \), \(W = 60 \) and \(\Gamma_{d} = 0.005 \). The dissipation sources are in the region surrounded by the red solid lines in Fig. 1(a).
Here k_B is the Boltzmann constant and T_p is the temperature in lead p. In the expression of the current-induced local heat generation Q_p in Eq. (5), the linear term $\Delta T_p \equiv T_p - T$ exists, but the linear term $V_p - V_q$ disappears because we now focus on the heat generation at the low temperature and small voltage, see the Appendix B for the detail. This is different from some previous literatures on thermoelectric effects and Peltier effect in linear response, which includes the linear term $V_p - V_q$. Notice that the temperature $T_p (p \in i)$ in the virtual leads may not be equal to the background temperature T. Then by using the boundary conditions that the net currents J_p flowing through real leads 2, 3, 5, 6 and all the virtual leads are zero and the heat generation Q_p in all the virtual leads are also zero, the local equivalent electron temperature T_i and voltage $V_p (p \in \{r \text{ or } i\})$ can be obtained. Also note that the electron at the site i of the graphene is in non-equilibrium. Here T_i is the temperature of the virtual lead i, which is in equilibrium. Because that the virtual leads are in thermal contact with graphene and the heat current Q_i from the graphene to the virtual leads is zero, we can use the temperature T_i as an equivalent temperature of the local non-equilibrium electron at the site i. In Sec. III.B, we will numerically study the local equivalent temperature T_i.

III. NUMERICAL RESULTS AND DISCUSSIONS

In the numerical calculations, we set the hopping energy $t = 2.75$ eV, the on-site energy $\epsilon_i = 0.2t$ (i.e., the energy of Dirac point), and the Fermi energy $E_F = 0$. Taking into account the spin degeneracy, we will use $\hbar/2e^2$ as the resistance unit. The corresponding filling factors are taken as odd integers ($\nu = 1, 3, 5, \ldots$) instead of even integers ($\nu = 2, 6, 10, \ldots$), which are actually in accordance with the experiment result. The zigzag edge graphene ribbon is considered [Fig. 1(a)] and the results still hold for the armchair one. The magnetic field is expressed as the Peierls phase. The magnetic flux threading a single hexagon and the unit of B being $4\hbar/(3\sqrt{3}\alpha^2)$, where $\alpha = 0.142$ nm is the lattice constant of graphene. The device sizes are $N = 120, W = 30, L_1 = 10, L_p = 10, L_q = 180, L_3 = 50, L_4 = 50, B = 0.02$, and the temperature $T = 0$ for all leads, which will be used in the calculations unless stated otherwise.

A. Hall resistance and thermal dissipation

Figures 1(b) and 1(c) show the Hall resistance R_H and the longitudinal one R_{xx} as functions of magnetic field B with different dissipation strengths Γ_d. In the absence of dissipation sources ($\Gamma_d = 0$) and narrow constriction, R_H increases with increasing B and R_{xx} oscillates. At large B, the expected plateaus at $R_H = (1/\nu)h/2e^2$ with filling factors $\nu = 1, 3, 5, \ldots$ are found, and R_{xx} is zero except in the plateau transition regime, owing to the formation of Landau levels and chiral edge states. In particular, the QH plateaus and zero R_{xx} remain well in the case of either dissipation sources or narrow constriction exist. These phenomena are consistent with previous experimental and theoretical works and that is, the QH effect is topologically protected, so no dissipation and no backscattering are naively expected.

Next, we focus on the heat generation in the presence of the dissipation sources. Without the narrow constriction, i.e., $M = N = 120$, the current-induced local heat generation Q_L is almost zero in the QH plateau regime, because the charge carriers flow along the topologically protected chiral edge states. This means that thermal dissipation and backscattering cannot occur as expected. However, the results are different in the presence of narrow constriction ($M = 8$).

Figures 2(a) and 2(b) show the heat generation Q_L at $M = 8$ in the QH plateau regime with $B = 0.02$ ($\nu = 1$). When $B = 0.02$, the magnetic length $l_B = h/(\pi B) \approx 8a = M$, thus backscattering will happen at the constriction and the electrons will be in non-equilibrium states after passing through the constriction, leading to voltage drop and work generation at the constriction.

From Figs. 2(a) and 2(b), one can see that Q_L is quite large at the constriction region and the device edges, indicating the emergence of thermal dissipation, contrary
to the intuition that the QH effect is dissipationless. Furthermore, thermal dissipation mainly appears along the downstream chiral flow direction of the constriction and is very weak in the bulk. These results are in good agreement with the recent experiment. When away from the constriction, the heat generation Q_L is gradually declined with a relaxation length λ. For small dissipation strength Γ_d, λ is very long and Q_L is almost the same along the downstream channel [Fig. 2(a)], similar to the experimental results. While for large Γ_d, λ is short and Q_L decays significantly [Fig. 2(b)]. With the increase of dissipation strength Γ_d, the total local heat generation $Q_{LT} = \sum_{x,y} Q_L(x,y)$ in the virtual leads increases. Notice that although the thermal dissipation appears, the QH plateau and zero longitudinal resistance R_{xx} remain well [Figs. 1(b) and 1(c)].

Figures 2(c) and 2(d) show the local heat generation Q_L for the higher filling factor $\nu = 3$ ($B = 0.01$). For the higher ν, the thermal dissipation increases significantly, since there are more edge states. From Figs. 2(c) and 2(d), we can see that Q_L mainly appears along the downstream chiral flow direction of the constriction, and is still very weak in the bulk. When away from the constriction, the heat generation Q_L is gradually declined with a relaxation length λ. With the increase of dissipation strength Γ_d, the total local heat generation Q_{LT} increases while the relaxation length λ decreases. These results are similar to the case of filling factor $\nu = 1$. In addition, for the higher filling factor, the thermal dissipation is slightly delocalized to the edge of the system, because the higher edge states are more extended. Figure 2(e) shows the local heat generation Q_L for the situation that the constriction locates at the right side. Now the thermal dissipation mainly occurs at the lower edge, which is still aligned with the downstream chiral flow direction of the constriction.

While in the Hall plateau transition regime, one can see from Fig. 2(f) that the thermal dissipation mainly occurs in the bulk as expected, because the Fermi energy locates at the spatially extended Landau level. The thermal dissipation is slightly larger in the upper part than the lower one, as the electrons move toward the upper part under the magnetic field, which is different from the recent experiment where the thermal dissipation occurs along both the downstream and upstream directions with no visible chirality. This experimental phenomenon may originate from the edge reconstruction in graphene, which induces additional non-topological counterpropagating channels. Our results predict that the thermal dissipation mainly occurs in the bulk in the plateau transition regime if there is no edge reconstruction in graphene or for 2DEG systems (e.g., GaAs/AlGaAs heterostructures). It is worth mentioning that the edge reconstruction has little effect on the thermal dissipation in the QH plateau regime, because the Fermi energy E_F locates far from the Landau levels in this case.

Now, we offer a detailed discussion that $L_p = 10$ in Fig. 2 is reasonable and the local heat generation is almost zero in the bulk in the Hall plateau regime. Figure 3 shows the local heat generation Q_L for $L_p = 30$ and the magnetic field $B = 0.02$. When $B = 0.02$, the system is in the first QH plateau regime. From Fig. 3, we can see that for the case of $L_p = 30$, which is much larger than L_B, the thermal dissipation along the left edge still occurs, and mainly appears in the region with $x < 10$,
regardless of the dissipation strength Γ_d. Therefore, it is reasonable to assume $L_p = 10$. What’s more, there is no thermal dissipation in the bulk in the Hall plateau regime. The thermal dissipation mainly occurs along the downstream chiral flow direction of the narrow constriction, with a relaxation length λ related to the dissipation strength. With the increase of dissipation strength Γ_d, the total local heat generation Q_{LT} in the virtual leads increases, while the relaxation length reduces. These results are completely the same as those in Figs. 2(a) and 2(b).

In the discussion above, the dissipation sources exist at the constriction, so that the transmission coefficient of the constriction will be affected by Γ_d. In order to eliminate the interaction between the constriction and the dissipation sources, here we consider the situation that the dissipation sources only appear in the region enclosed by the green solid lines in Fig. 1(a). From Figs. 4(a) and 4(b), we can see a large heat generation Q_L still appears along the downstream chiral flow direction (the upper edge of the system) when $\Gamma_d \neq 0$, and the heat generation is almost zero along the upstream chiral flow direction (the lower edge of the system), just like Figs. 2(a) and 2(b).

Then, we study the thermal dissipation in more details in the QH plateau regime. The curves in Figs. 5(a) and 5(b) are extracted from Fig. 4 by fixing the transverse location y or the longitudinal location x. Figure 5(a) shows the local heat generation Q_L versus longitudinal location x with a fixed transverse location y for different Γ_d. For small dissipation strength Γ_d, the local heat generation Q_L is almost the same regardless of x. While for large Γ_d, Q_L is dramatically declined with increasing x. Figure 5(b) plots the local heat generation Q_L versus transverse location y. It clearly appears that the thermal dissipation is almost zero at the lower boundary (the upstream direction) and mainly occurs at the upper boundary (the downstream direction). Furthermore, the thermal dissipation obviously reduces with the increase of longitudinal location x. For example, Q_L at $x = 50$ is much larger than that at $x = 100$, and Q_L at $x = 150$ is nearly zero. Besides, at a fixed x, the thermal dissipation oscillates with y. The wave function $|\Psi(y)|^2$ of the chiral edge state is also shown in Fig. 5(b). $|\Psi(y)|^2$ oscillates with y, which is very similar to the curve Q_L-y. This indicates that the thermal dissipation originates from the topologically protected chiral edge states.

When the dissipation sources only appear in the region enclosed by the green solid lines in Fig. 1(a), the transmission coefficient through the narrow constriction is $T = \sum_{q=2}^6 T_{q1} + \sum_{T_{11}}$. Figure 5(c) shows the transmission coefficient T versus the magnetic field B. T is non-integer and depends on the magnetic field B. For $B = 0.02$ (in the first Hall plateau regime), $T = 0.4858$, and for $B = 0.0116$ (in the Hall plateau transition regime), $T = 0.5466$. In addition, the transmission coefficient T will be hardly affected by the dissipation strength Γ_d. Figure 5(d) plots the total local heat generation Q_{LT} versus the dissipation strength Γ_d. Without the dissipation sources ($\Gamma_d = 0$), the total local heat generation Q_{LT} is zero. With the increase of Γ_d, Q_{LT} increases monotonically. For the dissipation sources only exist at the sample (in the green solid lines surrounding region in Fig. 1(a)), Q_{LT} at large Γ_d limit tends to a saturation value, $Q_{LT}^\text{max} = \frac{1}{2} h (1 - T)V_b^2 e^2 / \hbar$, see the green curve in Fig. 5(d). For example, $Q_{LT} \approx 0.1249 V_b^2 e^2 / \hbar$ at $\Gamma_d = 0.2$, which is very close to $Q_{LT}^\text{max} \approx 0.125 V_b^2 e^2 / \hbar$. On the other hand, when the dissipation sources exist at both the narrow constriction and the sample (in the red solid lines surrounding region in Fig. 1(a)), the total local heat generation Q_{LT} is much larger than that of the dissipation sources in the green solid lines surrounding region, but is less than $2Q_{LT}^\text{max}$. In addition, our numerical results also indicate that the total heat generation ($Q_T = Q_{LT} + \sum_{p=1}^6 Q_p$) in the whole device is equal to the Joule heating $J V_b$, since the electric current J_p ($p \in \{1, 2, 3, 5, 6\}$) is zero and the energy of the system is conserved, demonstrating the validity of our numerical results.

B. Equivalent temperature

In the above, the temperature of the environment (the virtual leads) is equal to the electronic system (the real leads). While for poor thermal conductivity between the

FIG. 6. Equivalent temperature $k_B \Delta T_i (\Delta T_i \equiv T_i - T)$ vs lattice position $i = (x, y)$ with $\Gamma_d = 0.005$ (a), 0.01 (b), 0.02 (c) and 0.05 (d). The background temperature $k_B T / (e V_b) = 0.1$. The dissipation sources exist in the region surrounded by the red solid lines in Fig. 1(a). The light cyan area is added artificially to show the part without coupling of the virtual leads.
FIG. 7. Equivalent temperature $k_B\Delta T_i (\Delta T_i \equiv T_i - \mathcal{T})$ vs lattice position $i = (x, y)$ with $\Gamma_d = 0.01$ (a) and 0.05 (b). The background temperature $k_B\mathcal{T}/(eV_b) = 0.1$. The dissipation sources exist in the region surrounded by the green solid lines in Fig. 1(a). The light cyan area is added artificially to show the part without coupling of the virtual leads.

Sample and the environment, the local heat generation Q_i disappears and the local electron temperature rises. Figures 6 and 7 show the equivalent temperature $\Delta T_i (\Delta T_i \equiv T_i - \mathcal{T})$ versus the position $i = (x, y)$ for the dissipation sources in the red and green solid lines surrounding regions in Fig. 1(a), respectively. The equivalent temperature along the downstream chiral flow direction (the upper edge of the system) increases significantly because of the chiral heat transport in the QH plateau regime.52,53 But at the upstream direction (the lower edge of the system), the local temperature T_i is almost equal to the background temperature \mathcal{T}. What’s more, the equivalent temperature does not reduce with the increase of the longitudinal location x and is almost independent of the dissipation strength Γ_d.

For example, when the dissipation strength $\Gamma_d = 0.005$, $k_B\Delta T_i \approx 0.1931eV_b$ at the upper edge, which is almost the same as $k_B\Delta T_i \approx 0.1926eV_b$ at $\Gamma_d = 0.05$ [see Fig. 6]. Recent experimental work31 has developed a temperature detection technique using an ultrasonic scanning nanothermometer with a superconducting quantum interference device placed on a tip. This technique allows one to obtain a spatial temperature variation with sub-microkelvin sensitivity.

C. Evolution of the energy distribution

In this subsection, let us discuss why thermal dissipation can occur at the topologically protected chiral edge states in the QH plateau regime. When the electrons injected from lead 1 arrive at the narrow constriction, some of them will be reflected back and the others flow through the constriction, leading to a non-integer transmission coefficient [see Fig. 5(c)]. Subsequently, the electron distribution at the downstream edge states of the constriction is non-equilibrium. For example, at zero temperature, the distribution function of the downstream edge states satisfies $F(E) = 1$ for energy $E < 0$, $F(E) = T(E)$ for $0 < E < eV_b$, and $F(E) = 0$ for $eV_b < E$ [see Figs. 8(a) and 8(b)]. In other words, the downstream edge states are completely occupied for $E < 0$, partially occupied for $0 < E < eV_b$, and empty for $eV_b < E$. In the presence of dissipation sources, these non-equilibrium electrons will tend to be equilibrium and hence the thermal dissipation appears. The maximum thermal dissipation is the energy difference between the non-equilibrium states and the equilibrium ones, i.e., $Q_{\text{Th}}^{\text{max}} = \frac{1}{2}(1-T)V_b^22e^2/h$. At $B = 0.02$, $T \approx 0.5$ and $Q_{\text{Th}}^{\text{max}} \approx 0.125V_b^22e^2/h$. Our numerical results show that $Q_{\text{Th}} \approx 0.1249V_b^22e^2/h$ at $\Gamma_d = 0.2$ [see Fig. 5(d)], which is very close to $Q_{\text{Th}}^{\text{max}}$. Here are two points worth mentioning: (i) Although the thermal dissipation occurs in the QH plateau regime, backscattering cannot take place, because during the dissipation process the electrons transfer from the high energy edge state to the low one with unchanged propagating direction. As a result, the QH plateaus and zero R_{xx} can survive well [Figs. 1(b) and 1(c)]. (ii) The thermal dissipation and entropy generation always occur as long as the electron distribution is non-equilibrium, no matter whether the system is topologically protected or not. In a word, topology only protects no backscattering but cannot protect no dissipation.

Figures 8(a) and 8(b) display the distribution $F_x(E)$ at different locations x along the downstream direction. When the electrons pass through the constriction, they locate in severe non-equilibrium states and the corresponding distribution strongly deviates from the Fermi distribution function, as can be seen from the curves of $x = 5$ in Figs. 8(a) and 8(b). In the dissipation region, the local heat and entropy generate, which is accompa-
nied with the decrease of higher-energy electrons and the increase of lower-energy electrons, and then the distribution function will evolve gradually from non-equilibrium to equilibrium with increasing \(x \). After a long distance, the distribution will turn back to the equilibrium Fermi distribution [Fig. 8(b)]. While for small \(\Gamma_d \), the distribution cannot return to the Fermi distribution even at \(x = 160 \) [Fig. 8(a)].

Figures 8(c) and 8(d) show the distribution \(F_I(E) \) versus energy \(E \) for poor thermal conductivity between the sample and the environment. Similarly, the non-equilibrium distribution \(F \) of the two-step shape also evolves gradually into the equilibrium Fermi distribution with higher temperature, although the local heat generation is zero. For small \(x \) (near the narrow constriction), the distribution of the electron is severely non-equilibrium with a two-step shape. Along the \(+x \) direction, the electron relaxation process occurs due to the presence of the dissipation sources, and the non-equilibrium distribution evolves gradually into the equilibrium Fermi distribution. Without the energy loss, the temperature of the final equilibrium distribution rises. This indicates that dissipation and entropy can still increase.

IV. CONCLUSIONS

In summary, the thermal dissipation processes in the QH regime in graphene are studied. We find that the thermal dissipation can occur in the QH regime, with a relaxation length is affected by the dissipation strength. The thermal dissipation mainly appears along the downstream chiral flow direction of the constriction in the QH plateau regime, although the Hall plateaus and the zero longitudinal resistance remain well. While in the QH plateau transition regime, thermal dissipation mainly occurs in the bulk. Besides, for the poor thermal conductivity case, the local heat generation is zero but the local electron temperature rises, and it is not affected by the dissipation strength. Furthermore, accompanying with the thermal dissipation, the energy distribution of electrons evolves gradually from non-equilibrium distribution to equilibrium Fermi distribution. This work indicates that topology can only protect the propagating direction of carriers, but cannot prohibit the emergence of dissipation and the increase of entropy.

ACKNOWLEDGMENTS

This work was financially supported by National Key R and D Program of China (Grant No. 2017YFA0303301), NSF-China (Grant No. 11921005 and No. 11874428), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB28000000), and Beijing Municipal Science & Technology Commission (Grant No. Z191100007219013). We acknowledge the High-performance Computing Platform of Peking University for providing computational resources.

APPENDIX A: THE PHASES \(\phi_{ij} \) IN THE LONGITUDINAL LEAD

In the numerical calculation, the Hamiltonian of the leads 2, 3, 5, 6 is required to obey the translational invariance along \(y \) direction, and the Hamiltonian of the leads 1, 4 needs to obey the translational invariance along \(x \) direction. So we choose the vector potential \(\vec{A} = (-By,0,0) \) in leads 1,4 and the central region, \(\vec{A} = (0,Bx,0) \) in the longitudinal leads 2, 3, 5, 6. In Fig. 9, we show the phases \(\phi_{ij} \) in the lead 2 and the coupling between lead 2 and the central region in Fig. 1(a). The arrows and values represent the phase \(\phi_{ij} \) from the site \(i \) to \(j \). The absence of arrow and value in some lines indicates that their phases are zero.
APPENDIX B: THE DISAPPEARANCE OF THE LINEAR TERM OF THE VOLTAGE DIFFERENCE ΔV_{pq} IN THE EXPRESSION OF THE HEAT GENERATION

In Eq. (2) in the main text, Q_p is electronic heat current from the central region to the lead p, which includes the heat currents caused by the temperature difference, by Peltier effect, and by the flow of electric current. When a small bias is applied between leads 1 and 4, the electric current flows through the device, then the thermal dissipation occurs and the Joule heat generates while in the presence of the dissipation sources. Notice that the current-induced local heat generation is proportional to $(\Delta V_{pq})^2$ $(\Delta V_{pq} \equiv V_p - V_q)$. This is essentially different from the heat current caused by Peltier effect, which is proportional to ΔV_{pq}.

Now let us discuss under what conditions the current-induced local heat generation (the quadratic term $(\Delta V_{pq})^2$) dominates the heat current Q_p. In order to clearly show this issue, we set that the temperatures of all leads are equal ($T_p = T$). Expanding the Fermi function up to the second order term, we have:

$$f_p(E) \approx f(E) - \epsilon f'(E) + \frac{e^2V^2}{2} f''(E) \quad \text{(B1)}$$

where $f(E) = \frac{1}{e^{E/T} + 1}$, $f'(E) = -\frac{1}{e^{E/T} + 1}$, $f''(E) = \frac{e^{E/T}}{(e^{E/T} + 1)^2}$, and $\epsilon = \frac{eV}{k_B T}$. Considering the Sommerfeld expansion for the transmission coefficient:

$$T_{pq}(E) = T_{pq}(E_F) + (E - E_F)T'''_{pq}. \quad \text{(B2)}$$

with $T'''_{pq} = \left. \frac{dT_{pq}(E)}{dT} \right|_{E=E_F}$. Substituting Eqs. (B1) and (B2) into Eq. (2), Q_p changes into:

$$Q_p = \frac{2}{h} \sum_q \left\{ \int dE(E - \mu_p) \left[T_{pq}(E_F) + (E - E_F)T'''_{pq} \right] \times \right.$$

$$\left[e(V_p - V_q)f'(E) - (e^2/2)(V_p^2 - V_q^2)f''(E) \right]$$

$$\left. + \frac{1}{2} e^2(V_p^2 - V_q^2)T''_{pq}(E_F) \right\} \quad \text{(B3)}$$

At the small voltage difference ΔV_{pq} limit and the finite temperature T, the leading term of Q_p is $-\frac{e^2}{2} k_B T^2 \Delta V_{pq} T''_{pq}$, which is the linear term ΔV_{pq}, depends on $T_{pq}(E_F)$ (not $T_{pq}(E_F)$), and describes Peltier effect. However, when both the voltage difference ΔV_{pq} and the temperature T are small, the leading term of Q_p, in Eq. (B3) is the second term, $\frac{1}{2} e^2(V_p^2 - V_q^2)T''_{pq}(E_F)$. This term is proportional to $(\Delta V_{pq})^2$, depends on $T_{pq}(E_F)$, and describes the Joule heat generation by the electric current. Because the present work studies the heat generation and assumes the small temperature and small voltage, the term $\frac{1}{2} e^2(V_p^2 - V_q^2)T''_{pq}(E_F)$ emerges in Eqs. (4) and (5) in the main text.

* sunf@pku.edu.cn

1 C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005).
2 C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005).
3 B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Science 5806, 1757 (2006).
4 X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
5 M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
6 C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das Sarma, Rev. Mod. Phys. 80, 1083 (2008).
7 K. von Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 494 (1980).
8 M. Büttiker, Phys. Rev. B 38, 9375 (1988).
9 D. C. Tsui, H. L.Stormer, and A. C. Gossard, Phys. Rev. Lett. 48, 1559 (1982).
10 S. He, X. C. Xie, and F. C. Zhang, Phys. Rev. Lett. 68, 3460 (1992).
11 R. B. Laughlin, Phys. Rev. B 23, 5632 (1981).
12 R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).
13 R. B. Laughlin, Phys. Rev. Lett. 52, 2304 (1984).
14 Q. Niu, D. J. Thouless, and Y.-S. Wu, Phys. Rev. B 31, 3372 (1985).
15 B. I. Halperin, Phys. Rev. B 25, 2185 (1982).
16 F. Delahaye, D. Dominguez, F. Alexandre, J. P. Andre, J. P. Hirtz, and M. Razeghi, Metrologia 22, 103 (1986).
17 B. Jeckelmann and B. Jeanneret, Rep. Prog. Phys. 64, 1603 (2001).
18 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature (London) 438, 197 (2005).
19 Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Nature (London) 438, 201 (2005).
20 K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, Science 315, 1379 (2007).
21 A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).
22 C. W. J. Beenakker, Rev. Mod. Phys. 80, 1337 (2008).
23 G. W. Semenoff, Phys. Rev. Lett. 53, 2449 (1984).
24 V. P. Gusynin and S. G. Sharapov, Phys. Rev. Lett. 95, 146801 (2005).
25 Q.-F. Sun and X. C. Xie, Phys. Rev. B 75, 155306 (2007).
26 J. Liu, J. Song, Q.-F. Sun, and X. C. Xie, Phys. Rev. B 79, 161309(R) (2009).
27 S.-W. Wang, D. Xiao, Z. Dou, M. Cao, Y.-F. Zhao, N. Samarth, C.-Z. Chang, M. R. Connolly, and C. G. Smith,
