Prevalence of free-living amoebae in swimming pools and recreational waters, a systematic review and meta-analysis

Beni Jequicene Mussengue Chaúque1,2 · Denise Leal dos Santos1 · Davood Anvari3 · Marilise Brittes Rott1,4

Received: 28 May 2022 / Accepted: 16 August 2022 / Published online: 30 August 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
Free-living amoebae (FLA) are cosmopolitan microorganisms known to be pathogenic to humans who often have a history of contact with contaminated water. Swimming pools and recreational waters are among the environments where the greatest human exposure to FLA occurs. This study aimed to determine the prevalence of FLA in swimming pools and recreational waters, through a systematic review and meta-analysis that included studies published between 1977 and 2022. A total of 106 studies were included and an overall prevalence of FLA in swimming pools and recreational waters of 44.34% (95% CI = 38.57–50.18) was found. Considering the studies published up to 2010 (1977–2010), between 2010 and 2015, and those published after 2010 (>2010–2022), the prevalence was 53.09% (95% CI = 43.33–62.73) and 37.07% (95% CI = 28.87–45.66) and 45.40% (95% CI = 35.48–55.51), respectively. The highest prevalence was found in the American continent (63.99%), in Mexico (98.35%), and in indoor hot swimming pools (52.27%). The prevalence varied with the variation of FLA detection methods, morphology (57.21%), PCR (25.78%), and simultaneously morphology and PCR (43.16%). The global prevalence by genera was Vahlkampfia spp. (54.20%), Acanthamoeba spp. (33.47%), Naegleria spp. (30.95%), Hartmannella spp./Vermamoeba spp. (20.73%), Stenamoeba spp. (12.05%), and Vannella spp. (10.75%). There is considerable risk of FLA infection in swimming pools and recreational waters. Recreational water safety needs to be routinely monitored and, in case of risk, locations need to be identified with warning signs and users need to be educated. Swimming pools and artificial recreational water should be properly disinfected. Photolysis of NaOCl or NaCl in water by UV-C radiation is a promising alternative to disinfect swimming pools and artificial recreational waters.

Keywords Free-living amoebae · Risk of infection · Swimming pool · Recreational waters

Introduction
Free-living amoebae (FLA) are cosmopolitan and ubiquitous microorganisms widely distributed in the environment and can be opportunistic and/or pathogenic.
The prevalences of deaths (as well as erratic or late diagnosis, contributes to a high trial meningoencephalitis (since the symptoms are similar), PAM, combined with the ease of being confused with bacteria, fungi, and viruses survive and multiply within them; these microorganisms are called amoeba-resistant microorganisms (ARM) (Greub and Raoult 2004; Scheid 2014; Delafont et al. 2016; Hubert et al. 2021; Rayamajhee et al. 2021). A wide range of pathogens of public health importance have been described as being ARM, including Legionella pneumophila, Mycobacterium leprae, Pseudomonas spp., Candida auris, and various viruses (Maschio et al. 2015; Staggemeier et al. 2016; Balczun and Scheid 2017; Turankar et al. 2019; Nisar et al. 2020; Hubert et al. 2021). The participation of FLA in the environmental persistence of severe acute respiratory syndrome 2 (SARS-CoV-2) has also been proposed (Chaúque et al. 2022; Dey et al 2022). All these aspects that characterize the profile of FLA constitute the main attributes that determine the great importance of these protozoa for human health and the environment.

Although increasingly prevalent, diseases caused by FLA remain rare; however, the presence of these protozoa, especially in the aquatic environment, is well documented (Milanez et al. 2022; Stapleton 2021; Saburi et al. 2017; Caumo et al. 2022; Dey et al 2022). It was determined that the prevalence of Naegleria spp. in different water sources around the world (considering data from 35 countries) was 26.42%, in recreational water it was 21.27% (10.80–34.11), and in swimming pools was 44.80% (16.19–75.45) (Saberi et al. 2020); however, the global prevalence of FLA in swimming pools and recreational waters remains to be determined. The present systematic review and meta-analysis aimed to determine the prevalence of FLA in swimming pools and recreational waters worldwide.

Methods

Article search strategy

The present study, which aimed to determine the prevalence of FLA in swimming pools and recreational waters, was planned and carried out based on the PRISMA 2020 guidelines (Page et al. 2021) (Fig. 1). The search for scientific articles was performed in different databases, including Web of Science, Scopus, PubMed, ScienceDirect,
EMBASE, ProQuest, and CAPES periódicos, between July 4 and 9, 2022. In these databases, articles were retrieved using a combination of the following search terms combined with appropriate Boolean operators: “Free-living amoeba,” “swimming pool,” “recreational water,” “prevalence,” “epidemiology,” and “hot springs.” The references of the selected articles were examined in search of some interesting literature. The search for articles in the database was performed by B.J.M.C, and the accuracy of the searches was verified by D.L.S.

Selection and exclusion criteria

The screening focused essentially on the title and then on the abstract of the articles. All retrieved articles written in English (reporting primary data), with accessible full text, dealing with the presence of FLA in swimming pools and human recreation waters were selected. Studies based on natural surface waters that do not clearly state that the samples were collected in places where human recreational activities certainly take place were not selected. Studies whose data were insufficient, unclear, or duplicated were excluded. Case studies that do not report the prevalence of FLA in swimming pools and human recreation waters were also excluded.

Data analysis procedure

Data were independently extracted and verified by two authors (B.J.M.C and D.L.S); data verification was performed three times. Data extracted from all articles that met the inclusion criteria were included in the calculation of the global prevalence of FLA in swimming pools and recreational waters. To calculate the prevalence of each FLA genera, only data extracted from articles that included molecular methods for the identification of FLA were used. Data analysis was performed by two authors (D.A and B.J.M.C) using Stata software (version 14; Stata Corp, College Station, TX, USA) and GraphPad prism 8.02. A random-effects model meta-analysis was performed to estimate the combined and weighted prevalence of FLA in swimming pools and recreational waters, using a 95% confidence interval, and the results are visualized using a forest plot. Cochran’s Q test (chi-square) and the Higgins I^2 statistic were used to calculate the heterogeneity index among the selected studies. I^2 values < 25%, 25%–50%, and > 50% meant low, moderate, and high heterogeneity, respectively. The Egger’s test was used to assess the significance of publication bias among the selected studies; $P < 0.001$ was considered significant.

Results

From the total of 2034 documents returned by the databases accessed, using the search strategy and inclusion criteria described above, 106 articles were selected (Table 1). These studies are distributed in a total of 30 countries, namely Iran (33), Taiwan (12), Egypt (8), Malaysia (6), Brazil (4), Italy (4), Turkey (4), USA (4), Mexico (3), Saudi Arabia (3), China (2), France (2), Philippines (2), Spain (2), and Thailand (2). One study was included from each of the following countries: Belgium, Bulgaria, Cape Verde, Chile, Finland, Germany, Hungary, India, Jamaica, Japan, Norway, Poland, Portugal, Sweden, and Switzerland. Among the studies, 74.52% (79/106) used or included molecular methods to identify FLA, while 25.47% (27/106) used only morphological methods.

The included studies were published between 1977 and 2022, and the distribution of studies by year and the average percentage value of positive samples per year are shown in Fig. 2. FLA were detected in at least 1 sample of 97.17% (103/106) of selected studies (Table 1).

Publication bias was checked by Egger’s regression test, showing that it may have a substantial impact on total prevalence estimate (Egger bias: 6.8, $P < 0.001$) (Fig. 3). This suggests that the reported global prevalence may have been impacted by publication bias. Based on the random-effects model meta-analysis, the pooled prevalence of FLA in water sources was 44.34% (95% CI = 38.57–50.18). The included studies demonstrated a strong heterogeneity ($Q = 2198.0$, df = 102, $I^2 = 95.4\%$, $P < 0.0001$) (Fig. 4).

The global prevalence of FLA in swimming pools and recreational waters considering studies published up to 2010 (1977–2010) was considerably higher 53.09% (95%
Table 1 Description of included studies reporting the prevalence of live amoebae in swimming pools and recreational waters

References	Country	Sample source (total)	Analyzed samples	Positive samples	Methods	Identity
Brown And Cursons (1977)	Norway	Swimming area	50	34	Morphology	Acanthamoeba spp., Naegleria fowleri, and Naegleria gruberi
Lyons and Kapur (1977)	USA	Swimming pool	30	27	Morphology	Acanthamoeba spp. and/or Hartmannella spp.
Pernin and Riany (1978)	France	Swimming pool (9)	44	39	Morphology	Acanthamoeba spp., Hartmannella spp., and Naegleria spp.
De Jonckheere (1979)	Belgium	Swimming pool	16	13	Morphology	Acanthamoeba spp. and Naegleria spp.
Janitschke et al. (1980)	Germany	Swimming pool	14	10	Morphology	Acanthamoeba spp.
Scaglia et al. 1983	Italy	Thermal pool and mud basin spa	30	7	Morphology, fluorescent-antibody technique	N. australiensis
Gogate and Deodhar (1985)	India	Public swimming pool	12	1	Morphology	Naegleria spp.
Scaglia et al. 1987	Italy	Thermal bath and mud basin (34)	51	34	Morphology, pathogenicity test	Naegleria spp., Acanthamoeba spp., Vahlkampfia spp., and Hartmannella spp.
Hamadto et al. 1993	Egypt	Swimming pool (16)	16	12	Morphology, pathogenicity test	Naegleria spp. and Acanthamoeba spp.
Penas-Ares et al. 1994	Spain	Thermal spa water (12)	12	8	Morphology	Vahlkampfia longicauda, Vahlkampfia salina, Vahlkampfia baltica, Vahlkampfia sp., A. polyphaga, Acanthamoeba lenticulata, Naegleria spp., Lingulamoeba sp., Paramoeba aesturina, and Flabellula sp.
Vesaluoma et al. (1995)	Finland	Public swimming pool and whirlpool (21)	34	14	Morphology	Acanthamoeba spp., Vexillifera spp., Flabellula spp., Hartmannella spp., and Rugipes spp.
Munoz et al. 2003	Chile	Swimming pool	8	5	Morphology, PCR	H. vermiformes, Vanella spp., Naegleria spp., and Acanthamoeba spp.
Sheehan et al. 2003	USA	Hot spring (22)	22	12	Morphology, PCR	N. australiensis, N. dobsoni, N. americana, N. pagei, N. polaris, and N. fultoni
Izumiyama et al. 2003	Japan	Whirlpool bath and hot spring spa (251)	549	197	Morphology, PCR	N. fowleri, N. lowiensi, and N. australiensis
Górnik and Kuźna-Grygiel (2004)	Poland	Public swimming pools (13)	72	42	Morphology	Acanthamoeba spp.
Tsvetkova et al. 2004	Bulgaria	Swimming pool (6)	31	15	Morphology, PCR	Acanthamoeba spp. and Hartmannella spp.
Lekkla et al. 2005	Thailand	Hot spring (13)	68	26	Morphology	Acanthamoeba spp. and Naegleria spp.
Sukthana et al. 2005	Thailand	Hot spring	57	15	Morphology	Naegleria spp. and Acanthamoeba spp.
Rezaeian et al 2008	Iran	Swimming pool	2	2	Morphology	Acanthamoeba spp.
Caumo et al. (2009)	Brazil	Swimming pool	65	13	Morphology, PCR	Acanthamoeba spp.
Gianinazzi et al. (2009)	Switzerland	Indoor hot swimming pool	1	1	Morphology, PCR	Acanthamoeba lenticulata
Table 1 (continued)

References	Country	Sample source (total)	Analyzed samples	Positive samples	Methods	Identity
Hsu et al. (2009a, b)	Taiwan	Recreational hot spring	55	9	PCR	Acanthamoeba griffini and Acanthamoeba jacobi
Hsu et al. (2009a)	Taiwan	Mud recreation area water	34	20	Morphology, PCR	Acanthamoeba spp., Hartmannella spp., and Naegleria spp.
Gianinazzi et al. (2010)	Sweden	Hot springs (4)	31	9	Morphology, PCR	Acanthamoeba haileyi, Stenoamoeba sp., Hartmannella vermiformis, and Echinamoeba exudans
Huang and Hsu (2010a, b)	Taiwan	Hot spring and waste water in recreation area	52	11	PCR	Acanthamoeba T1, Acanthamoeba T2, Acanthamoeba T3, Acanthamoeba T4, Acanthamoeba T5, Acanthamoeba T6, and Acanthamoeba T15 Naegleria lovaniensis, Naegleria australiensis, Naegleria clarki, Naegleria americana, and Naegleria pagei
Huang and Hsu (2010a)	Taiwan	Hot spring and hot spring facilities	106	15	Morphology, PCR	Naegleria spp.
Init et al. (2010)	Malaysia	Public swimming pool (14)	14	14	Morphology	Acanthamoeba spp. and Naegleria spp.
Lanes-Villa et al. 2010	Mexico	Natural recreational water (2)	24	24	PCR	Thermophilic amoebae, thermophilic Naegleria spp., and N. fowleri
Badizadeh et al. (2011)	Iran	Recreational hot spring	28	12	Morphology, PCR	Vahlkampfiid and Acanthamoeba castellanii T4 Naegleria spp.
Huang and Hsu (2011)	Taiwan	Recreational water	107	19	PCR	Naegleria spp.
Ithoi et al. (2011)	Malaysia	Recreational pool, lake, and stream	33	33	Morphology, PCR	Naegleria spp.
Nazar et al. (2011)	Iran	Water in recreation area	50	16	Morphology, PCR	Acanthamoeba spp. T4 and Acanthamoeba spp. T5 Acanthamoeba spp.
Alves et al. (2012)	Brazil	Public swimming pool (7)	7	7	Morphology, PCR	Naegleria philippinensis, N. clarki, Naegleria galica, Na. americana, N. australiensis, Naegleria dobsoni, Na. gruberi, and Naegleria schusteri
Kao et al. (2012a, b, c)	Taiwan	Recreation and drinking water source (2)	211	13	PCR	Naegleria spp., Hartmannella vermiformis and Vanella persistens
Kao et al. (2012a)	Taiwan	Recreational hot spring (4)	60	9	Morphology, PCR	Acanthamoeba T15, Acanthamoeba T4, Acanthamoeba T2, and Acanthamoeba spp. Naegleria mexicana, and N. gruberi
Kao et al. (2012b)	Taiwan	Hot spring	60	26	Morphology, PCR	N. australiensis, N. lovaniensis, Naegleria mexicana, and N. gruberi
Nazar et al. (2012)	Iran	Recreational water (22)	50	8	Morphology, PCR	Hartmannella vermiformis and Vanella persistens
Niyayati et al. (2012)	Iran	River recreation area (10)	55	15	Morphology, PCR	Acanthamoeba spp. (T4 and T15) and Naegleria spp. (N. pagei, N. clarki, and Naegleria fultoni)
Rahdar et al. 2012	Iran	Swimming pool (4)	4	2	Morphology, PCR	Acanthamoeba T4
References	Country	Sample source (total)	Analyzed samples	Positive samples	Methods	Identity
-----------------------------	-------------	--	------------------	------------------	-----------------------	--
Solgi et al. (2012a, b)	Iran	Hot spring	30	8	Morphology, PCR	Hartmannella vermiformis and Naegleria (N. carteri and Naegleria spp.)
Solgi et al. (2012a)	Iran	Therapeutic hot spring	60	12	Morphology, PCR	Acanthamoeba T4 and T3
Kao et al. 2013a, b	China	Thermal spring water	48	4	PCR	Naegleria spp.
Kao et al. 2013a	China	Thermal spring	48	5	PCR	Acanthamoeba spp.
Moussa et al. (2013)	France	Recreational geothermal waters (6)	73	35	Morphology, PCR	N. fowleri and N. lovaniensis
Tung et al. (2013)	Taiwan	Hot spring (1)	25	13	Morphology, PCR	Naegleria spp. (N. fowleri) and Acanthamoeba spp.
Al-Herrawy et al. (2014)	Egypt	Swimming pool (10)	120	59	Morphology, PCR	Acanthamoeba spp.
Ji et al. (2014)	Taiwan	Hot spring	61	29	Morphology, PCR	Naegleria spp.
Ji et al. (2014)	Taiwan	Hot spring	61	17	Morphology, PCR	Acanthamoeba spp.
Ji et al. (2014)	Taiwan	Hot spring	61	11	Morphology, PCR	Vermamoeba vermiformis
Kiss et al. (2014)	Hungary	Swimming pool (20)	164	68	Morphology, PCR	Acanthamoeba spp.
Onichandran et al. 2014	Philippines	Recreational river (4)	23	12	Morphology, PCR	Acanthamoeba spp. and Naegleria spp.
Sifuentes et al. (2014)	USA	Recreational water (33)	103	18	PCR	Thermophilic amoebae and N. fowleri
Behniafar et al. (2015)	Iran	Recreational water and hot spring	40	7	Morphology, PCR	Acanthamoeba spp.
Evyapan et al. (2015)	Turkey	Swimming pool and hot spring	50	21	Morphology, PCR	Acanthamoeba spp., Acanthamoeba castellani T4, A. castellanii T4, and A. jacobi T15
Niyayti et al. (2015a, b)	Iran	Recreational water (lakes, pools, and streams)	60	9	Morphology, PCR	N. australiensis and N. pagei
Niyayti et al. (2015a)	Iran	Recreational water	50	15	Morphology, PCR	A. castellanii T4
Todd et al. (2015)	Jamaica	Recreational water	83	42	Morphology, PCR	Acanthamoeba T4, Acanthamoeba T5, Acanthamoeba T10, and Acanthamoeba T11
Al-Herrawy et al. (2016)	Egypt	Swimming pool (1)	48	30	Morphology, PCR	Acanthamoeba spp., Naegleria spp., and Hartmannella
Armand et al. (2016)	Iran	Swimming pool	17	12	Morphology, PCR	Vermamoeba spp. and Acanthamoeba spp.
Azlan et al. 2016	Malaysia	Recreational lake	7	7	Morphology	Acanthamoeba spp.
Fabres et al. (2016)	Brazil	Hot tubs and thermal pool	72	20	Morphology, PCR	Acanthamoeba T3, Acanthamoeba T4, Acanthamoeba T5, and Acanthamoeba T15
Latifi et al. (2016)	Iran	Hot spring	66	2	Morphology, PCR	Balamuthia mandrillaris
Niyayti et al. (2016a, b)	Iran	Geothermal water source	40	20	PCR	Acanthamoeba T4 and T2
Niyayti et al. (2016a)	Iran	Recreational water	25	25	Morphology	Vahlkampfiae spp., Acanthamoeba spp., Thecamoeba spp., and Miniamoeba spp.
Table 1 (continued)

References	Country	Sample source (total)	Analyzed samples	Positive samples	Methods	Identity
Al-Herrawy et al. (2017)	Egypt	Swimming pool (2)	144	37	Morphology, PCR	Acanthamoeba spp. and Naegleria spp.
Di Filippo et al. (2017)	Italy	Geothermal spring	36	26	Morphology, PCR	N. australiensis, Naegleria italica, N. lovaniensis, and Naegleria spp.
Javanmard et al. (2017)	Iran	Swimming pool and hot spring	33	6	Morphology, PCR	N. pagei and N. gruberi
Latifi et al. (2017)	Iran	Recreation hot spring	22	12	Morphology, PCR	Naegleria spp. (N. australiensis, N. americana, N. dobsoni, N. pagei, N. polaris, and N. fultonii)
Mafi et al. (2017)	Iran	Swimming pool and park pond (40)	75	18	Morphology	Acanthamoeba spp., Hartmannella spp., and Vahlkampfids
Reyes-Batlle et al. (2017)	Spain	Recreational water (10)	10	1	Morphology, PCR	Naegleria spp.
Toula and Elahl 2017	Saudi Arabia	Swimming pool (6)	16	6	Morphology	Acanthamoeba spp. and Naegleria spp.
Dodangeh et al. (2018)	Iran	Recreational hot spring	24	11	Morphology, PCR	Acanthamoeba castellanii T4
Ghaderifar et al. 2018	Iran	Parks pond water (13)	90	31	Morphology, PCR	Acanthamoeba T4
Hikal et al (2018)	Egypt	Swimming pool (5)	100	24	Morphology, PCR	Naegleria fowleri
Hikal et al. (2018)	Egypt	Swimming pool (5)	100	79	Morphology, PCR	N. lovaniensis, A. jacobi, Stenamoeba sp., and Vermamoeba vermiformis
Lares-Jiménez et al. (2018)	Mexico	Hot spring (1)	8	8	Morphology, PCR	Acanthamoeba spp. and Naegleria spp.
Latiff et al. (2018)	Malaysia	Recreational hot spring (5)	52	38	Morphology	Acanthamoeba T3 and Acanthamoeba T4
Poor et al. (2018)	Iran	Swimming pool and hot tubs (10)	40	8	Morphology, PCR	Acanthamoeba spp.
Vijayakumar (2018)	Saudi Arabia	Pools and recreation waters	27	7	Morphology	Acanthamoeba spp.
Xue et al. 2018	USA	lake recreation areas (10)	160	56	PCR	N. fowleri
Gabriel et al. 2019	Malaysia	Recreational place	57	40	Morphology, PCR	Acanthamoeba castellanii T4, Vermamoeba vermiformis, N. australiensis, N. pagei, and N. gruberi
Haddad et al. (2019)	Iran	Hot springs	54	15	Morphology, PCR	Acanthamoeba T4, T15, T3, T5, T11, and T17
Hussain et al. (2019)	Malaysia	Recreational hot spring (5)	50	38	Morphology, PCR	Acanthamoeba spp.
Maghsudlooonad et al. 2019	Iran	Recreational park water	30	8	Morphology, PCR	Acanthamoeba spp. and Acanthamoeba spp. T4 and Acanthamoeba spp. T15
Salehi et al. 2019	Iran	Park pool and swimming pool	14	12	Morphology, PCR	Acanthamoeba spp. and Acanthamoeba spp. T5 and T11
Attariani et al. (2020)	Iran	Swimming pool	42	3	Morphology, PCR	Acanthamoeba spp.
Ballares et al. 2020	Philippines	Recreational water (6)	16	6	Morphology, PCR	Acanthamoeba T4, Acanthamoeba T5, and Acanthamoeba T9
Bonilla-Lemus et al. 2020	Mexico	Recreational water (9)	9	9	Morphology, PCR	N. australiensis, N. gruberi, N. fowleri, N. clarki, and N. pagei
Değerli et al. (2020)	Turkey	Thermal swimming pool	434	148	Morphology, PCR	Acanthamoeba spp. and Naegleria spp.
References	Country	Sample source (total)	Analyzed samples	Positive samples	Methods	Identity
-----------------------------	---------------	-----------------------	-------------------	------------------	------------------	--
El-Badry et al. 2020	Egypt	Swimming pool (7)	28	0	Morphology, PCR	Acanthamoeba T4
Esboei et al. (2020)	Iran	Swimming pools	30	12	Morphology, PCR	Acanthamoeba (T3, T4 e T5), V. vermiciformis, and Naegleria spp.
Latifi et al. (2020)	Iran	Hot spring and beach	81	54	Morphology, PCR	Acanthamoeba T3, Acanthamoeba T4, Acanthamoeba T11, Acanthamoeba sp., Protacanthamoeba bohemica, and N. lovaniensis
Paknejad et al. (2020)	Iran	Swimming pool and bathtub	166	31	Morphology, PCR	Acanthamoeba T3, Acanthamoeba T4, Acanthamoeba T11, Acanthamoeba sp., Protacanthamoeba bohemica, and N. lovaniensis
Sarmadian et al. (2020)	Iran	Swimming pool (6)	6	1	Morphology	Acanthamoeba spp.
Sarmadian et al. (2020)	Iran	Swimming pool (6)	576	1	Morphology	Acanthamoeba spp.
Zeybek and Türkmen 2020	Turkey	Swimming pool	25	7	Morphology, FISH	V. vermiformis, N. australiensis, Acanthamoeba T4, and Acanthamoeba T15
Aykur and Dagci (2021)	Turkey	Swimming pool	26	3	PCR	Acanthamoeba T2, T4, and T5
Bakri et al. 2021	Saudi Arabia	Swimming pool	10	4	Morphology, PCR	Acanthamoeba spp. and Naegleria spp.
Berrilli et al. (2021)	Italy	Hot spring (2)	36	33	Morphology, PCR	V. vermiformis, N. australiensis, Acanthamoeba T4, and Acanthamoeba T15
Eftekhari-Kenzerki et al. (2021)	Iran	Indoor public swimming pool (20)	80	32	Morphology, PCR	Acanthamoeba spp.
Reyes-Batlle et al. (2021)	Portugal	Swimming pool facilities (20)	20	0	PCR	Acanthamoeba spp. and Naegleria spp.
Nageeb et al. (2022)	Egypt	Swimming pool (2)	8	0	Morphology, PCR	Acanthamoeba T2, T3, T4, T11, and T15
Rocha et al. 2022	Brazil	Swimming pool (9)	36	15	Morphology	Acanthamoeba (T2, T3, T4, T11, and T15)
Salehi et al. 2022	Iran	Swimming pool and park pool	20	17	Morphology, PCR	Acanthamoeba sp. T4 and Vamella sp.
Sousa-Ramos et al. 2022	Cape Verde	Recreational fountain and swimming pool	4	2	Morphology, PCR	Acanthamoeba sp. T4 and Vamella sp.
CI = 43.33–62.73) than in studies published between 2010 and 2015, 37.07% (95% CI = 28.87–45.66), and those published after 2015 (>2015–2022) 45.40% (95% CI = 35.48–55.51) (Table 2).

Considering the continents covered by the selected studies, the highest prevalence 63.99% (95% CI = 45.03–80.92) was reported in America and the lowest 37.38% (95% CI = 30.12–44.93) in Asia. Among the countries from which more than one study was included, Mexico had the highest prevalence of FLA in swimming pools and recreational waters 98.35% (95% CI = 92.56–99.96), and the lowest prevalence 10.15% (95% CI = 4.99–16.87) was recorded in China (Table 2).

Considering the different sampling sources, the highest prevalence of FLA 52.27% (95% CI = 14.55–88.50) was obtained in indoor hot swimming pools, and the lowest prevalence 39.12% (95% CI = 30.48–48.13) was obtained in hot springs (Table 2).

The analysis of data from studies that used only morphological methods to identify FLA showed the highest prevalence 57.21% (95% CI = 37.99–7535), the lowest prevalence 25.78% (95% CI = 14.18–39.44) was obtained from studies based only on molecular methods (PCR), and an intermediate prevalence value 43.16% (95% CI = 37.73–48.67) was obtained by analyzing studies that simultaneously used morphological and molecular methods (Table 2).

The subgroup analysis revealed that there were statistically significant differences between the overall prevalence of FLA in water sources and year ($X^2 = 449.4, P < 0.001$), continent ($X^2 = 156.7, P < 0.001$), country ($X^2 = 26.0, P < 0.001$), and diagnostic method ($X^2 = 373.5, P < 0.001$) (Table 2).

The highest values of the global prevalence of different genera of FLA in swimming pools and recreational waters were from *Vahlkampfia* spp. (54.20%), *Acanthamoeba* spp. (33.47%), and *Naegleria* spp. (30.95%). For other genera, *Hartmannella* spp./*Vermamoeba* spp., *Stenamoeba* spp., and *Vannella* spp., the global prevalence values were 20.73%, 12.05%, and 10.75%, respectively (Table 3). The results of Egger’s regression test, as well as the forest plot of the worldwide prevalence of each of these FLA genera...
Fig. 4 Forest plot of the worldwide prevalence of free-living amoebae in swimming pools and recreational waters.
Discussion

FLA are cosmopolitan microorganisms ubiquitous in all matrices of natural and anthropogenic environments, including water resources. The presence of FLA in pools and recreational waters is worrying, since some of these microorganisms are human pathogens/opportunists, as well as being widely implicated in persistence and/or pseudo-resistance of pathogenic bacteria, viruses, and fungi in water, including in water treated with disinfectants (Thomas et al. 2004; Staggemeier et al. 2016; Mavridou et al. 2018; Gomes et al. 2020; Hubert et al. 2021).

The studies included in present review are distributed by five continents; however, they have a heterogeneous spatial distribution within the territories of the continents; this can suggest differences in the level of FLA importance for health in the contexts of different countries, as well as differences in the frequency of cases diseases associated with the FLA. The frequency of cases of FLA-related diseases can

Year	Prevalence (95% CI)	I^2 (%)	Heterogeneity (Q)	P-value	Interaction test (χ^2)	P-value
> 2010	53.09 (43.33–62.73)	89.5%	210.4	$P<0.001$	449.4	$P<0.001$
2010–2015	37.07 (28.87–45.66)	93.6%	519.5	$P<0.001$		
< 2010	45.40 (35.48–55.51)	96.7%	1366.2	$P<0.001$		

Table 2 Subgroup analysis of FLA in water sources

Subgroup variable	Prevalence (95% CI)	I^2 (%)	Heterogeneity (Q)	P-value	Interaction test (χ^2)	P-value
Africa	51.27 (35.08–67.33)	93.5%	107.8	$P<0.001$	156.7	$P<0.001$
America	63.99 (45.03–80.92)	94.5%	201.7	$P<0.001$		
Asia	37.38 (30.12–44.93)	95.7%	1403.3	$P<0.001$		
Europe	51.99 (42.52–61.40)	89.5%	190.6	$P<0.001$		

in swimming pools and recreational waters, can be seen in Fig. S1, S2, S3, S4, S5, and S6 of the supplementary material, respectively.

in swimming pools and recreational waters, can be seen in Fig. S1, S2, S3, S4, S5, and S6 of the supplementary material, respectively.
be influenced by the difference in the predominance of risk factors and the sensitivity of the health surveillance strategy of each country, as well as the heterogeneous distribution of trained professionals carrying out research in this area. In addition, the ease of confusing symptoms of diseases associated with the FLA with those caused by other microorganisms, combined with some cases of rapid deterioration of the patient’s health and death (Jahangéer et al. 2020) can contribute to the rarity of reports or even the lack of association of diseases with FLA, especially in contexts where post-mortem study policies are not robust.

Our findings show that the global prevalence of FLA in swimming pools and recreational waters is 44.34%; however, a higher (53.09%) and intermediate (45.40%) prevalence value was obtained when considering the data from studies published up to 2010 and studies published after 2015, respectively. A lower prevalence value (37.07%) was obtained when analyzing data from studies published between 2010 and 2015 (Table 2). A similar result was reported in a study that aimed to determine the prevalence of Naegleria spp. in water resources (Saberi et al. 2020). This reduction in the prevalence reported in most recent studies was attributed to the most accurate diagnosis and reduction of false positive results (Jahangéer et al. 2020; Saberi et al. 2020), as contrary to studies published up to 2010, the vast majority of studies published after 2010 used molecular methods for FLA identification. Curiously, our results show that the overall prevalence of FLA considering studies that used both morphological and molecular methods is close to the mean of the prevalence values obtained from data from studies that used only one of the methods (Table 2). This may suggest that the simultaneous use of these two methods reduces the extreme values obtained separately by each of the methods, and that these methods can be complementary, especially in studies that aim to assess the presence or absence of viable FLA in water samples. The authors agree that the morphological method (generally based on culture) is more laborious and less precise than molecular methods in the identification of FLA (Saberi et al. 2020; Hikal et al. 2018).

The subgroup analysis considering the distribution of the studies by the continents showed that FLA are more prevalent in the swimming pools and recreational water from America (63.99%), followed by Europe (51.99%) and Africa (51.27%). In relation to countries, the highest value of the prevalence of FLA was obtained in Mexico (98.35%), followed by Malaysia (87.38%), France (69.62%), and Italy (64.76%), and the lowest values were obtained in China (10.15%), Taiwan (26.33%), Turkey (30.60), and Thailand (32.68%). As for the sample source, the indoor hot swimming pools presented a higher value (52.27%) of FLA prevalence, followed by public swimming pools (49.47%) and thermal swimming pools (46.05%). The genera Vahlkampfia spp., Acanthamoeba spp., and Naegleria spp. were more prevalent, presenting the following prevalence values, 54.20%, 33.47%, and 30.95%, respectively (Table 3). The lowest prevalence value was for Vannella spp. (10.75%). These results are in accordance with other authors whose studies reported high prevalence of FLA (Acanthamoeba spp. 48.5%, Naegleria spp. 46.0%, Vahlkampfia spp. 4.7%, and Balamuthia spp. 0.7%) in hot springs (Fabros et al. 2021). Saberi et al. (2020) reported the following prevalence values for Naegleria spp. 44.80%, 32.88%, and 21.27%, in swimming pools, hot springs, and recreational waters, respectively. The subgroup analysis showed that prevalence values are statistically different (P < 0.001) for all variables studied (Table 2). These findings are in accordance with other studies that reported a variable distribution in abundance and diversity of FLA species around the world (Jahangéer et al. 2020; Saberi et al. 2020; Fabros et al. 2021).

The global prevalence of FLA reported in the present study (44.34%) is worrying, since direct contact between humans and these waters is often established. In addition, several studies have reported the isolation of several potentially pathogenic FLA (Caumo et al. 2009; Alves et al. 2012; Behniafar et al. 2015) and others with proven pathogenicity in ex vivo and in vivo trials (Brown and Cursons 1977; Janitschke et al. 1980; Rivera et al. 1983, 1993; Gianinazzi et al. 2009). Most of these FLA are identified as N. fowleri, Acanthamoeba spp., and Balamuthia mandrillaris. Most isolates of Acanthamoeba spp. reported as pathogens are distributed among the T5, T11, T15, T3, and T4 genotypes, and among them, the T4 genotype is more prevalent
in hot springs (Mahmoudi et al. 2015; Fabros et al. 2021) and is associated with most cases of Acanthamoeba keratitis (Diehl et al. 2021; Bellini et al. 2022). The presence and abundance of FLA in swimming pool water clearly indicate that in addition to these microorganisms being resistant to chlorine in the dosage used in the treatment of drinking water (Thomas et al. 2004; Majid et al. 2017; Gomes et al. 2020), they are also resistant to chlorine and other disinfectants in the dosage used for swimming pools and artificial recreational waters (Rivera et al. 1983; Kiss et al. 2014; Zeybek et al. 2017). Acanthamoeba castellanii trophozoites and cysts have been reported to be resistant to exposure for more than 2 h to NaOCl and NaCl at concentrations up to 8 mg/L and 40 g/L, respectively. On the other hand, exposure to the combined effect of NaOCl or NaCl with ultraviolet C (UV-C) radiation resulted in rapid inactivation of trophozoites even when lower concentrations of NaOCl and NaCl were used (Chaúque and Rott 2021a, b). Cyst inactivation was achieved by twice as long exposure (300 min) to the combined effect of NaOCl or NaCl and UV-C, with redosing of NaOCl. Despite having demonstrated that both methods are effective, and that they have a strong potential to be used in the effective disinfection of swimming pool water, it was found that the use of NaCl is more cost-effective, as it is cheaper and has a residual effect; redosing is not necessary and is simple to apply (Chaúque and Rott 2021a, b). On the other hand, the use of solar UV radiation (UV-A and B) in place of UV-C (which depends on electricity) can further reduce the cost of the disinfection process. The effectiveness of using solar UV to photolyse NaOCl to inactivate chlorine-resistant microorganisms has been previously documented (Zhou et al. 2014). Readers interested in solar water disinfection technology applicable to recreational water treatment are directed to the appropriate literature (Chaúque and Rott 2021a; Chaúque et al. 2022).

The main aspects that constituted limitations for the present study are the following: the lack of studies carried out in most countries of the world; the heterogeneous distribution of the number of studies among the included countries; difference in FLA identification methods among many studies and discrepancy in the number of samples considered positive by the morphological and molecular method in the same study. The loss of isolates from positive samples in some studies, due to fungal contamination of non-nutrient agar plates prior to molecular identification of the amoebae, was also a limitation.

Conclusion

It is concluded that the prevalence of FLA in swimming pools and recreational waters is high and, therefore, of concern, since there is a risk of contracting infection by pathogenic amoebae or other pathogens (such as fungi, bacteria, and viruses) that may be harbored and dispersed by FLA in water (Mavridou et al. 2018). Thus, it is necessary to implement disinfection techniques that are effective in eliminating microorganisms, including FLA, in swimming pools and artificial recreational waters. The use of the combined effect of NaCl and UV-C has great potential to be used to eliminate or minimize the risk of infection by FLA in swimming pools and other artificial recreational waters. The potential risk of infection by FLA in natural recreational waters needs to be routinely quantified by health surveillance. Warning signs need to be placed where there is minimal risk of infection by FLA, and people using these water bodies need to be educated about the potential risk and possible safety measures. These measures include not diving in recreational waters wearing contact lenses, preventing water from entering the airways and eyes, and avoiding jumping into the water. Health care workers (especially those working near recreational water use sites with risk of infection by FLA) need to be trained to be on the lookout for symptoms suggestive of infection by FLA, especially in summer.

Supplementary information The online version contains supplementary material available at https://doi.org/10.1007/s00436-022-07631-3.

Acknowledgements The authors would like to thank CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) for the scholarship granted to Chaúque, BJM, and CNPq for the researcher grant to Rott, MB.

Author contribution B.J.M.C. conceived the idea, wrote the project, collected and analyzed the data, and wrote the manuscript. D.S. participated in the conception of the idea, performed the data verification, and wrote and revised the manuscript. D.A. performed data analysis and manuscript review. M.B.R. managed the project and reviewed the manuscript. All authors approved the publication of this version of the manuscript.

Data availability Not applicable.

Declarations

Ethics approval Not applicable.

Consent to participate Not applicable.

Consent for publication Not applicable.

Conflict of interest The authors declare no competing interests.

References

Aksozek A, Mcclellan K, Howard K et al (2002) Resistance of Acanthamoeba castellanii cysts to physical, Chemical, and Radiological Conditions. J Parasitol 88(3):621–623. https://doi.org/10.1645/0022-3395%282002%29088%0621:ROACCT2.0.CO;2

Al-Herrawy A, Bahgat M, Mohammed AE et al (2014) Acanthamoeba species in swimming pools of Cairo, Egypt. Iran J Parasitol 9(2):194–201
Eftekhar-Kenzerki R, Solhjoo K, Babaei Z (2021) High occurrence of Acanthamoeba spp. in the water samples of public swimming pools from Kerman Province, Iran. J Water Health 19(5):864–871. https://doi.org/10.21666/wt.2021.162
El-Badry AA, Afony SM, El-Wakil ES et al (2020) First identification of Naegleria species and Vahlkampfia cigauna in Nile water, Cairo, Egypt: seasonal morphology and phylogenetic analysis. J Microbiol Immunol Infect 53(2):259–265. https://doi.org/10.1016/j.jmii.2018.06.003
Esbœi BR, Fakhar M, Saberi R (2020) Genotyping and phylogenetic study of Acanthamoeba isolates from human keratitis and swimming pool water samples in Iran. Parasite Epidemiol Control 11:e00164. https://doi.org/10.1016/j.parepi.2020.e00164
Evyan G, Koltas IS, Eroglu F (2015) Genotyping of Acanthamoeba T15: the environmental strain in Turkey. Trans R Soc Trop Med Hyg 109(3):221–224. https://doi.org/10.1093/trstmh/tru179
Fabres LF, Dos Santos SPR, Benitez LB, Rott MB (2016) Isolation and identification of Acanthamoeba spp. from thermal swimming pools and spas in Southern Brazil. Acta Parasitol. 61(2):221–7.
Fowler M, Carter RF (1965) Acute pyogenic meningitis probably due to Acanthamoeba sp. a preliminary report. British medical journal 2(5464):740–742. https://doi.org/10.1136/bmj.2.5464.734-a
Gabriel S, Khan NA, Siddiqui R (2019) Occurrence of free-living amoebae (Acanthamoeba, Balamuthia, Naegleria) in water samples in Peninsular Malaysia. J Water Health 17(1):160–171. https://doi.org/10.21666/wt.2018
Garajová M, Mrva M, Vaškovcová N et al (2019) Cellulose fibrils formation and organisation of cytoskeleton during encystment are essential for Acanthamoeba cyst wall architecture. Sci Rep 9:4466. https://doi.org/10.1038/s41598-019-41084-6
Gelman BB (2001) Amoebic Encephalitis Due to Sappinia diploidea. JAMA 285(19):2450. https://doi.org/10.1001/jama.285.19.2450
Ghaderifar S, Najafpoor AA, Zarrinifar H et al (2018) Isolation and identification of Acanthamoeba from pond water of parks in a tropical and subtropical region in the Middle East, and its relation with physicochemical parameters. BMC Microbiol 18(1):139. https://doi.org/10.1186/s12866-018-1303-x
Gianinazzi C, Schild M, Wüthrich F et al (2009) Potentially human pathogenic Acanthamoeba isolated from a heated indoor swimming pool in Switzerland. Exp Parasitol 121(2):180–186. https://doi.org/10.1016/j.exppara.2008.11.001
Gianinazzi C, Schild M, Zumkehr B et al (2010) Screening of Swiss hot spring forests for potentially pathogenic free-living amoebae. Exp Parasitol 126(1):45–53. https://doi.org/10.1016/j.exppara.2009.12.008
Gogate A, Deodhar L (1985) Isolation and identification of pathogenic Naegleria fowleri (aerobia) from a swimming pool in Bombay. Trans R Soc Trop Med Hyg 79(1):134. https://doi.org/10.1016/0035-9203(85)90258-5
Gomes TS, Vaccaro L, Magnet M (2020) Presence and interaction of free-living amoebae and amoeba-resisting bacteria in water from drinking water treatment plants. Sci Total Environ 719:137080. https://doi.org/10.1016/j.scitotenv.2020.137080
Göörnek K, Kuźna-Grygiel W (2004) Presence of virulent strains of amphotrophic amoebae in swimming pools of the city of Szczecin. Ann Agric Environ Med 11(2):233–236
Greb G, Raoult D (2004) Microorganisms resistant to free-living amoebae. Clin Microbiol Rev 17:413–433
Haddad MHF, Khoshnood S, Mahmoudi MR et al (2019) Molecular identification of free-living amoebae (Naegleri spp., Acanthamoeba spp. and Vermamoeba spp.) isolated from un-improved hot springs, Guilan Province, Northern Iran. Iran J Parasitol 14(4):584–591
Hamadto HH, Aufy SM, el-Hayawan IA et al (1993) Study of free living amoebae in Egypt. J Egypt Soc Parasitol 23(3):631–637
Hikal WM, Hikal W, Dkhil MA, Dkhil M (2018) Nested PCR assay for the rapid detection of Naegleria fowleri from swimming pools in Egypt. Acta Ecol Sin 38:102–107. https://doi.org/10.1016/j.chnaes.2017.06.013
Hsu B-H, Ma P-H, Liu T-S (2009) Identification of 18S ribosomal DNA genotype of Acanthamoeba from hot spring recreation areas in the central range, Taiwan. J Hydrod 367(3–4):249–254. https://doi.org/10.1016/j.jhydrod.2009.01.018
Hsu BM, Lin CL, Shih FC (2009) Survey of pathogenic free-living amoebae and Legionella spp. in mud spring recreation area. Water Res 43(11):2817–28. https://doi.org/10.1016/j.watres.2009.04.002
Huang SW, Hsu BM (2010) Isolation and identification of Acanthamoeba from Taiwan spring recreation areas using culture enrichment combined with PCR. Acta Trop 115(3):282–287. https://doi.org/10.1016/j.actatropica.2010.04.012
Huang SW, Hsu BM (2010) Survey of Naegleria and its resisting bacteria-Legionella in hot spring water of Taiwan using molecular method. Parasitol Res 106:1395–1402. https://doi.org/10.1007/s00430-010-1815-0
Huang SW, Hsu BM (2011) Survey of Naegleria from Taiwan recreational waters using culture enrichment combined with PCR. Acta Trop 119(2–3):114–118. https://doi.org/10.1016/j.actatropica.2011.04.016
Hubert F, Rodier MH, Minoza A (2021) Free-living amoebae promote Candida auris survival and proliferation in water. Lett Appl Microbiol 72(1):82–89. https://doi.org/10.1111/lam.13395
Hussain RHM, Ishak AR, Ghanmi MKA et al (2019) Occurrence and molecular characterisation of Acanthamoeba isolated from recreational hot springs in Malaysia: evidence of pathogenic potential. J Water Health 17(5):813–825. https://doi.org/10.21666/wt.2019.214
Init I, Lau YL, Fadzli AA, Foead AI (2010) Detection of free living amoebae, Acanthamoeba and Naegleria, in swimming pools, Malaysia. Trop Biomed 27(3):566–577
Ithoi I, Ahmad AF, Nissapatorn V et al (2011) Detection of Naegleria species in environmental samples from Peninsular Malaysia. PLoS ONE 6(9):e24327. https://doi.org/10.1371/journal.pone.0024327
Izumiya K, Miyasa Y, Yagita K, Furushima-Shigemura R et al (2003) Occurrence and distribution of Naegleria species in thermal waters in Japan. J Eukaryot Microbiol 50(Suppl):514–515. https://doi.org/10.1111/j.1550-7408.2003.tb00614.x
Jahangeer M, Mahmood Z, Munir NR et al (2020) Naegleria fowleri: sources of infection, pathophysiology, diagnosis, and management; a review. Clin Exp Pharmacol Physiol 47(2):199–212. https://doi.org/10.1111/1440-1681.13192
Janitschke K, Werner H, Müller G (1980) Das Vorkommen von freilebenden Amöben mit möglichen pathogenen Eigenschaften in Schwimmbeäumen [Examinations on the occurrence of free-living amoebae with possible pathogenic traits in swimming pools (author’s transl)]. Zentralbl Bakteriol b 170(1–2):108–122
Javanmard E, Niyayati M, Lorenzo-Morales J et al (2017) Molecular identification of waterborne free living amoebae (Acanthamoeba, Naegleria and Vermamoeba) isolated from municipal drinking water and environmental sources, Semnan province, north half of Iran. Exp Parasitol 183:240–244. https://doi.org/10.1016/j.exppara.2017.09.016
Ji WT, Hsu BM, Chang TY et al (2014) Surveillance and evaluation of the infection risk of free-living amoebae and Legionella in different aquatic environments. Sci Total Environ 499:212–219. https://doi.org/10.1016/j.scitotenv.2014.07.116
Johnson RO, Cope JR, Moskovitz M et al MJ (2016) Notes from the Field: primary amebic meningoencephalitis associated with exposure to swimming pool water supplied by an overland pipe - Inyo County, California, 2015. MMWR Morb Mortal Wkly Rep. 65(16):424. https://doi.org/10.15585/mmwr.mm6516a4

Kang H, Sohn HJ, Seo GE et al (2020) Molecular detection of free-living amoeboae from Namhangang (southern Han River) in Korea. Sci Rep 10(1):335. https://doi.org/10.1038/s41598-019-57347-1

Kao PM, Hsu BM, Chen NH et al (2012) Isolation and identification of Acanthamoeba species from thermal spring environments in southern Taiwan. Exp Parasitol 130(4):354–358. https://doi.org/10.1016/j.expparasit.2012.02.008

Kao P-M, Hsu B-M, Chiu Y-C et al (2012) Identification of the Naegleria species in natural watersheds used for drinking and recreational purposes in Taiwan. J Environ Eng 138(8):893–898. https://doi.org/10.1061/(ASCE)EE.1943-7770.0000549

Kao PM, Tung MC, Hsu BM et al (2012) Occurrence and distribution of Naegleria species from thermal spring environments in Taiwan. Lett Appl Microbiol 56(1):1–7. https://doi.org/10.1111/lam.12006

Kao PM, Tung MC, Hsu BM et al (2013a) Quantitative detection and identification of Naegleria spp. in various environmental water samples using real-time quantitative PCR assay. Parasitol Res 112(4):1467–74. https://doi.org/10.1007/s00436-013-3290-x

Kao PM, Tung MC, Hsu BM et al (2013) Real-time PCR method for the detection and quantification of Acanthamoeba species in various types of water samples. Parasitol Res 112(3):1131–1136. https://doi.org/10.1007/s00436-012-3242-x

Kiss C, Barna Z, Vargha M, Török JK (2014) Incidence and molecular diversity of Naegleria species isolated from public baths in Hungary. Parasitol Res 113:2551–2557. https://doi.org/10.1007/s00436-014-3905-x

Król-Turmińska K, Olender A (2017) Human infections caused by free-living amoebae: an update from selected Southeast Asian countries. PLoS ONE 12(2):e0169448. https://doi.org/10.1371/journal.pone.0169448

Maschio JV, Corçao G, Rott MB (2015) Identification of Pseudomonas spp. as amoeba-resistant microorganisms in isolates of Acanthamoeba. Rev Inst Med Trop Sao Paulo 57(1):81–83. https://doi.org/10.1590/S0036-46552015000100012

Mavridou A, Pappa O, Papatzitze O et al (2018) Exotic tourist destinations and transmission of infections by swimming pools and hot springs—a literature review. Int J Environ Res Public Health 15(12):2730. https://doi.org/10.3390/ijerph15122730

Milanez GD, Masangkay FR, Martin IGL (2022) Epidemiology of free-living amoebae in the Philippines: a review and update. Pathog Glob Health 3:1–10. https://doi.org/10.1080/20477724.2022.2035626

Moussa M, De Jonckheere JF, Guerlotté J et al (2013) Survey of Naegleria fowleri in geothermal recreational waters of Guadeloupe (French West Indies). PLoS ONE 8(1):e54414. https://doi.org/10.1371/journal.pone.0054414

Munoz V, Reyes H, Toche P et al (2003) Isolation of free-living amoeba Naegleria from potable water systems. Pathogens 9(4):286. https://doi.org/10.3390/pathsogens9040286

Lyons TB, Kapur R (1977) Limax amoebae in public swimming pools of Albany, Schenectady, and Rensselaer Counties, New York: their concentration, correlations, and significance. Appl Environ Microbiol 33(3):551–555. https://doi.org/10.1128/aeem.33.3.551-555.1977

Mafi M, Niyati M, Haghhighi A, Lasjerdi Z (2017) Contamination of swimming pools and park ponds with free living amoebae in Tehran. Med J Tabriz Uni Med Sciences Health Services 38(6):2783–2031. https://mj.tbmed.ac.ir/Article/15215

Magooshoodoorad S, Magooshoodoorad E, Tavakoli Kesharsh E et al (2019) Thermotolerant Acanthamoeba spp. isolated from recreational water in Gorgan City, north of Iran. J Parasit Dis 43(2):240–245. https://doi.org/10.1007/s12639-018-01081-4

Mahmoudi MR, Rahmati B, Seyedpour SH, Karanis P (2015) Occurrence and molecular characterization of free-living amoeba species (Acanthamoeba, Hartmannella, and Saccamoeba limax) in various surface water resources of Iran. Parasitol Res 114(12):4669–4674. https://doi.org/10.1007/s00436-015-4712-8

Majid MAA, Mahboob T, Mong BG et al (2017) Pathogenic waterborne-free-living amoebae: an update from selected Southeast Asian countries. PLoS ONE 12(2):e0169448. https://doi.org/10.1371/journal.pone.0169448
in the suburbs of Tehran. Iran J Water Health 10(1):140–146. https://doi.org/10.2166/wh.2011.068
Niyayati M, Lasjerdi Z, Zarein-Dolab S et al (2015a) Morphological and molecular survey of Naegleria spp. in water bodies used for recreational purposes in Rashi city, Northern Iran. Iran J Parasitol 10(4):523–529
Niyayati M, Nazar M, Lasjerdi Z (2015b) Reporting of T4 genotype of Acanthamoeba isolates in recreational water sources of Gilan Province, Northern Iran. Novel Biomed 3(1):20–4. https://doi.org/10.22037/nbm.v3i1.7177
Niyayati M, Saberi R, Latifi A, Lasjerdi Z (2016) Distribution of Naegleria spp. in farmland soils and recreational places in Iran. Acta Parasitol 65(1):36–43. https://doi.org/10.1317/HEI.S38349
Niyayati M, Saberi R, Lorenzo-Morales J, Salehi R (2016) High occurrence of potentially-pathogenic free-living amoebae in tap water and recreational water sources in South-West Iran. Trop Biomed 33(1):95–101
Onichandran S, Kumar T, Salibay CC (2014) Waterborne parasites: a current status from the Philippines. Parasit Vectors 7:244. https://doi.org/10.1186/1756-3305-7-244
Page MJ, McKenzie JE, Bossuyt PM et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ (Clin Res Ed) 372:71. https://doi.org/10.1136/bmj.n7171
Paknejad N, Hajjalioto E, Saraei M, Javadi A (2020) Isolation and identification of Acanthamoeba genotypes and Naegleria spp. from the water samples of public swimming pools in Quazvin, Iran. J Water Health 18(2):244–251. https://doi.org/10.2166/jwh.2019.074
Paltiel M, Powell E, Lynch J et al (2004) Disseminated cutaneous acanthamebiasis: a case report and review of the literature. Cutis 73(4):241–248
Pazoki H, Niyayati M, Javanmard E et al (2015a) Pathogenic and non-pathogenic free-living amoebae in the suburbs of Tehran, Iran. Iran J Parasitol 3(1):44–47
Rivera F, Ramírez E, Bonilla P et al (1993) Pathogenic and free-living amoebae isolated from swimming pools and physiotherapy tubs in Mexico. Environ Res 62(1):43–52. https://doi.org/10.1006/ens.1993.1087
Rivera F, Ramírez P, Vilacra D et al (1983) A survey of pathogenic and free-living amoebae inhabiting swimming pool water in Mexico City. Environ Res 32(1):205–211. https://doi.org/10.1016/0013-9316(83)90207-4
Rocha MJ, Sousa KK, Carneiro JLS, Weber DM (2022) Isolation of potentially pathogenic free-living amoebae in swimming pools for collective use located in the municipality of Redenção, Pará, Brazil. Rev Ciênc Med 31:e225222. https://doi.org/10.24220/2318-0897v31e2022a5222
Saber R, Seifi Z, Dodejeh S et al (2020) A systematic literature review and meta-analysis on the global prevalence of Naegleria spp. in water sources. Transbound Emerg Dis. 67(6):2389–2402. https://doi.org/10.1111/tbed.13635
Saber R, Fakhar M, Makhloogh A, Sedighi O, Tabaripour R, Asfaram S, Latifi A, Espahbodi F, Shariifpour A (2021) First evidence for colonizing of acanthamoeba T4 genotype in urinates of patients with recurrent urinary tract infections. Acta Parasitologica 66(3):932–937. https://doi.org/10.1007/s11686-021-00358-8
Saburi E, Rajaii T, Behdari A et al (2017) Free-living amoebae in the water resources of Iran: a systematic review. J Parasit Dis 41(4):919–928. https://doi.org/10.1007/s12639-017-0950-2
Salehi M, Nazakar HR, Nasirzadeh A (2019) Isolation and genotyping of Acanthamoeba strains from water sources of Kermanshah, Iran. Ann Parasitol 65(4):397–402. https://doi.org/10.17420/ap6504.226
Salehi M, Spotin A, Haji-zadeh F et al (2022) Molecular characterization of Acanthamoeba spp. from different sources in Gonabad, Razavi Khorasan, Iran. Gene Reports 27:101573. https://doi.org/10.1016/j.gene rep.2022.101573
Santos DL, Virginio VG, Kwitko S et al (2021) Profile of contact lens wearers and associated risk factors for Acanthamoeba spp., In: Nascimento RM (ed) Microbiologia: clínica, ambiental e alimentos. Editora Atena, cap. 14:151–161. https://doi.org/10.22533/at ed.543210120
Santos LC, Oliveira MS, Lobo RD et al (2009) Acanthamoeba spp. in urine of critically ill patients. Emerg Infect Dis 15(7):1144–1146. https://doi.org/10.3201/eid1507.081415
Sarink MJ, van der Meij NL, Denzer K et al (2022) Three encephalitis-causing amoebae and their distinct interactions with the host. Trends Parasitol 38(3):230–245. https://doi.org/10.1016/j.pt.2021.10.004
Sarmadian H, Hazbavi Y, Dehdahd M et al (2020) Fungal and parasitic contamination of indoor public swimming pools in Arak, Iran. J Egypt Public Health Assoc 95(1):8. https://doi.org/10.1186/s42506-020-0036-3
Scaglia M, Gatti S, Brustia R et al (1987) Pathogenic and non-pathogenic Naegleria and Acanthamoeba spp.; a new autochthonous isolate from an Italian thermal area. Microbiologia 10(2):171–82
Scaglia M, Strosselli M, Grazioi V et al (1983) Isolation and identification of pathogenic Naegleria australiensis (amoebida, Nkahumpididae) from a spa in northern Italy. Appl Environ Microbiol 46(6):1282–1285. https://doi.org/10.1128/aem.46.6.1282-1285.1983
Scheid P (2014) Relevance of free-living amoeba as hosts for phylogenetically diverse microorganisms. Parasitol Res 113(7):2407–2414. https://doi.org/10.1007/s00436-014-3932-7
Sheehan KB, Fagg JA, Ferris MJ et al (2003) PCR detection and analysis of the free-living amoeba Naegleria in hot springs in Yellowstone and Grand Teton National Parks. Appl Environ
Microbiol 69(10):5914–5918. https://doi.org/10.1128/AEM.69.10.5914-5918.2003
Siddiqui R, Khan NA (2014) Primary amebic meningoencephalitis caused by Naegleria fowleri: an old enemy presenting new challenges. PLoS Negl Trop Dis 8:e3017. https://doi.org/10.1371/journal.pntd.0003017
Sifuentes LY, Choate BL, Gerba CP et al (2014) The occurrence of Naegleria fowleri in recreational waters in Arizona. J Environ Sci Health A Tox Hazard Subst Environ Eng 49(11):1322–1330. https://doi.org/10.1080/10934529.2014.910342
Soares SS, Souza TK, Berté FK et al (2017) Occurrence of infected free-living amoeba in cooling towers of Southern Brazil. Curr Microbiol 74(12):1461–1468. https://doi.org/10.1007/s00284-017-1341-8
Solgi R, Niyayati M, Haghighi A et al (2012a) Thermotolerant Acanthamoeba spp. isolated from therapeutic hot springs in Northwestern Iran. J Water Health 10(4):650–6. https://doi.org/10.2166/wh.2012.032
Solgi R, Niyayati M, Haghighi A, Mojarad EN (2012b) Occurrence of thermotolerant Hartmannella vermiformis and Naegleria spp. in hot springs of Ardebil Province, Northwest Iran. Iran J Parasitol 7(2):47–52
Sousa-Ramos D, Reyes-Batlle M, Bellini NK et al (2022) Pathogenic free-living amoeba from water sources in Cape Verde. Parasitol Res 121(8):2399–2404. https://doi.org/10.1007/s00436-022-07563-y
Staggemeier R, Arantes T, Caumo KS et al (2016) Detection and quantification of human adenovirus genomes in Acanthamoeba isolated from swimming pools. An Acad Bras Cienc 88(1):635–641. https://doi.org/10.1590/0001-3765201620150151
Stapleton F (2021) The epidemiology of infectious keratitis. Ocul Surf 19(1):2920. https://doi.org/10.1016/j.jtos.2021.08.007
Sukthanka Y, Lekka L, Suthikornchai C et al (2005) Spa, springs and safety. SE Asian J Trop Med Public Health 36(Suppl 4):10–16
Thomas V, Bouchez T, Nicolas V et al (2004) Amebae in domestic water systems: resistance to disinfection treatments and implication in Legionella persistence. J App Microbiol 97:950–963. https://doi.org/10.1111/j.1365-2672.2004.02391.x
Thomas V, Loret JF, Jousset M, Greub G (2008) Biodiversity of amoebae and amoeba-resistant bacteria in a drinking water treatment plant. Environ Microbiol 102728–2745.https://doi.org/10.1111/j.1462-2920.2008.01693.x
Todd CD, Reyes-Batlle M, Piñero JE et al (2015) Isolation and molecular characterization of Acanthamoeba genotypes in recreational and domestic water sources from Jamaica, West Indies. J Water Health 13(3):909–919. https://doi.org/10.2166/jwh.2015.232
Toula FH, Elahi SAS (2017) Isolation and identification of free living Amebae from water sources with respect to Acanthamoeba, Naegleria in Jeddah City, Saudi Arabia. Int J Pharm Res Allied Sci 6(2):01–08
Tsvetkova N, Schld M, Panaiotov S et al (2004) The identification of free-living environmental isolates of amoebae from Bulgaria. Parasitol Res 92(5):405–413. https://doi.org/10.1007/s00436-003-1052-x
Tung MC, Hsu BM, Tao CW et al (2013) Identification and significance of Naegleria fowleri isolated from the hot spring which related to the first primary amebic meningoencephalitis (PAM) patient in Taiwan. Int J Parasitol 43(9):691–696. https://doi.org/10.1016/j.ijpara.2013.01.012
Turankar RP, Lavania M, Darlong J, Siva Sai KSR, Sengupta U, Jadhav RS (2019) Survival of Mycobacterium leprae and association with Acanthamoeba from environmental samples in the inhabitant areas of active leprosy cases: a cross sectional study from endemic pockets of Purulia, West Bengal. Infect Genet Evol 72:199–204. https://doi.org/10.1016/j.meegid.2019.01.014
Vesalouma K, Kalso S, Jokipiiti L et al (1995) Microbiological quality in Finnish public swimming pools and whirlpools with special reference to free living amoebae: a risk factor for contact lens wearers? Br J Ophthalmol 79(2):178–181. https://doi.org/10.1136/bjo.79.2.178
Vijayakumar R (2018) Isolation, identification of pathogenic Acanthamoeba from drinking and recreational water sources in Saudi Arabia. J Adv Vet Anim Res 5(4):439–444. https://doi.org/10.5455/javar.2018.e296
Visvesvara GS, Moura H, Schuster FL (2007) Pathogenic and opportunistic free-living amoebae: Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri, and Sappinia diploidea. FEMS Immunol Med Microbiol 50(1):1–26. https://doi.org/10.1111/j.1574-695X.2007.00232.x
Wopereis DB, Bazzo ML, de Macedo JP et al (2020) Free-living amoebae and their relationship to air quality in hospital environments: characterization of Acanthamoeba spp. obtained from air-conditioning systems. Parasitology. 147(7):782–790. https://doi.org/10.1017/S0031182020000487
Xue J, Lamar FG, Zhang B (2018) Quantitative assessment of Naegleria fowleri and fecal indicator bacteria in brackish water of Lake Pontchartrain. Louisiana Sci Total Environ 622–623:8–16. https://doi.org/10.1016/j.scitotenv.2017.11.308
Zeybek Z, Demir B, Ustunturk-Onan M (2017) Unnoticed microorganisms in disinfection of swimming pools: free-living amoeba. Fresenius Environ Bull 26(12A):7651–7657
Zeybek Z, Türkmen A (2020) Investigation of the incidence of Legionella and free-living amoeba in swimming pool waters and biofilm specimen in Istanbul by different methods. Mikrobiyol Bul 54(1):55–67. https://doi.org/10.5578/mb.68962
Zhou P, Giovanni GDD, Meschke JS et al (2014) Enhanced inactivation of Cryptosporidium parvum oocysts during solar photolysis of free available chlorine. Environ Sci Technol 48(23):13657–13666. https://doi.org/10.1021/es50270u

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.