Combined explanation of W-mass, muon $g - 2$, $R_{K^{(*)}}$ and $R_{D^{(*)}}$ anomalies in a singlet-triplet scalar leptoquark model

Arvind Bhaskar,1,* Anirudhan A. Madathil,2,† Tanumoy Mandal,2,‡ and Subhadip Mitra1, §

1Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500 032, India
2Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Kerala, 695 551, India

In addition to the long-standing anomalies seen in the muon $g - 2$, $R_{K^{(*)}}$, and $R_{D^{(*)}}$ observables by various independent experiments, the CDF Collaboration has found another significant one in the W-boson mass. These anomalies might be intertwined at a fundamental level and have a single new-physics explanation. In this paper, we present a simultaneous solution to these anomalies with two scalar leptoquarks of roughly equal mass—one weak-singlet S_1 and the other a weak-triplet S_3—which mix through a Higgs portal. The solution has only a few new couplings and TeV-scale leptoquarks, making the solution testable at the LHC. We put a lower and upper bound on the leptoquark masses in this setup from the current LHC data and the assumption that all new couplings are within the perturbative limit.

I. INTRODUCTION

Even though the direct experimental searches for TeV-scale new physics have been unsuccessful, over the past few years, various anomalies reported by different experimental collaborations have created excitement in the physics community. The most recent one was the W-boson mass measurement by the CDF Collaboration [1], which showed a 1σ departure from the Standard Model (SM) value. Previously, the Fermilab had reported a 4.2σ deviation in the anomalous magnetic moment of the muon [2] from the SM value computed by the Muon $g - 2$ Theory Initiative [3].

In the backdrop, there have been the decade-old persistent anomalies in the $R_{K^{(*)}}$ and $R_{D^{(*)}}$ observables of B-meson decays independently measured by various experimental collaborations [6].

Various new-physics explanations of the W-boson mass anomaly have already been proposed in the literature [7]. However, these low-energy anomalies may not have independent origins; they could be manifestations of a single high-energy beyond-the-SM theory. It would be fascinating if there were a new-physics scenario which can simultaneously explain the above anomalies and, at the same time, can be tested at the LHC.

One explanation could be in terms of leptoquarks (LQs). LQs are hypothetical bosons with nonzero lepton and baryon numbers appearing in various new-physics models [8]. A recent experiment at the LHCb detector strongly hints towards the existence of LQs [9] (also see Ref. [10]). Various LQs are known to resolve different anomalies (see, e.g., Refs. [11, 12]). In this paper, we present a simple solution to these anomalies with two TeV-scale scalar leptoquarks (SLQs)—a weak-singlet $S_1 (\bar{3}, 1, 1/3)$ and a weak-triplet $S_3 (\bar{3}, 3, 1/3)$—that agrees with all relevant experimental bounds. The solution is interesting because (a) it is simple and economical as it requires only a few free parameters and (b) it is testable at the LHC; as we shall see, the current LHC data already restrict parts of the parameter space.

The plan of the paper is as follows. In Sec. II, we discuss our $S_1 + S_3$ model and the flavour ansatz. We analyse the anomalies in Sec. III and present the result of the parameter scan and discuss the relevant experimental bounds in Sec. IV. Finally, we present our conclusions in Sec. V.

II. THE LEPTOQUARK MODEL

Some $S_1 + S_3$ models have been studied in different contexts earlier [13–16]. The Yukawa part of the Lagrangian can be written as [17]

\[
\mathcal{L}_Y \supset x_{ij}^{L} \bar{Q}_i^L S_1 (i \sigma_2) L_j^L + x_{ij}^{R} \bar{u}_i^R S_1 c_j^R \\
+ y_{ij}^{L} \bar{L}_i^L (i \sigma_2 \cdot \bar{S}_3) L_j^L + \text{h.c.,}
\]

(1)

where we ignore the diquark interactions. The indices i, j denote the generations of the SM fermions, while Q_i^L and L_i^L are the i-th generation (charge-conjugated) quark and lepton doublets, respectively. The Pauli matrices are denoted by σ_i. In general, the couplings x_i^L, x_i^R and y_i^L are 3×3 complex matrices, but for simplicity, we assume all couplings are real. The triplet S_3 has three components with charges $-2/3, 1/3$, and $4/3$. To produce a shift in m_w, we need a mass split among the components. We consider a Higgs portal to mix two different LQs where a mass split appears after the electroweak symmetry breaking (EWSB) [18]. The relevant terms in the scalar potential are given by

\[
\mathcal{L}_S \supset - \sum_{i=1,3} \left[M_{S_i}^{2} S_i^2 S_i + \lambda_{S_i}^{ij} (H^H) \left(S_i^i S_i^j \right) \\
+ \lambda_{S_i} \left(S_i^i S_i^j \right)^2 \right] - \left[\lambda H^H \left(\bar{S}_3^i S_3^j \right) H S_3^i + \text{h.c.} \right].
\]

(2)

Here, H is the SM Higgs doublet, and $M_{S_i}^{2}, \lambda_{S_i}^{ij}, \lambda_{S_i}$, and λ are positive quantities. The charge-1/3 components of the
two SLQs (S_1 and $S_3^{1/3}$) mix in the presence of a nonzero λ after EWSB. We get the following mass matrix for the charge-1/3 fields:

$$\mathcal{M}^2 = \begin{pmatrix} M_2^2 & \frac{\lambda v^2}{2} & M_3^2 \\ \frac{\lambda v^2}{2} & M_2^2 & M_3^2 \\ M_3^2 & M_3^2 & M_3^2 \end{pmatrix},$$

(3)

where $M_i^2 = M_i^2 + \lambda_i^H v^2$. An orthogonal transformation can diagonalise it:

$$\begin{pmatrix} S_- \\ S_+ \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} S_{1/3} \end{pmatrix},$$

(4)

where S_{\pm} are the mass eigenstates with masses m_{\pm}, and θ is the mixing angle:

$$M_{\pm} = \frac{1}{2} \left[M_0^2 + M_1^2 \pm \frac{1}{2} \sqrt{ \left(M_0^2 - M_1^2 \right)^2 + (\lambda v^2/2)^2 } \right],$$

(5)

$$\theta = \frac{1}{2} \tan^{-1} \left(\frac{\lambda v^2/2}{M_2^2 - M_3^2} \right) \in [-\pi/4, \pi/4].$$

(6)

A. Flavour ansatz

We use a flavour ansatz:

$$x^{L/R} = \begin{pmatrix} 0 & 0 & x_{32}^{L} \\ 0 & 0 & 0 \end{pmatrix}; \quad y^{L} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & y_{32}^{L} & 0 \end{pmatrix},$$

(7)

which leads us to the following interaction terms:

$$\mathcal{L} \supset \left[x_{32}^{L} \left(V_{1d} \bar{u}_L^c \mu_L + V_{2d} \bar{c}_L^c \mu_L + V_{1b} \bar{u}_L^c \mu_L \right) - x_{32}^{R} \bar{b}^c_L \nu_{\mu} \right] + \left[x_{23}^{R} \left(V_{1d} \bar{u}_L^c \mu_L + V_{2d} \bar{c}_L^c \mu_L + V_{1b} \bar{u}_L^c \mu_L \right) + y_{22}^{L} \left(V_{1d} \bar{c}_L^c \mu_L + V_{2d} \bar{d}_L^c \mu_L \right) + V_{1b} \bar{u}_L^c \mu_L \right] s^{1/3} + \frac{\sqrt{2}}{2} \frac{\sqrt{3}}{2} \left(V_{1d} \bar{d}_L^c \mu_L \right) + V_{1b} \bar{c}_L^c \mu_L \right] + x_{23}^{R} \left(V_{1d} \bar{u}_L^c \mu_L + V_{2d} \bar{c}_L^c \mu_L \right) S_{2/3}^{1/3} + \frac{\sqrt{2}}{2} \frac{\sqrt{3}}{2} \left(V_{1d} \bar{d}_L^c \mu_L \right) + V_{1b} \bar{c}_L^c \mu_L \right] \nu_{\mu} \right] + x_{23}^{R} \left(V_{2d} \bar{c}_L^c \mu_L + V_{1b} \bar{u}_L^c \mu_L \right) S_{3/2}^{1/3} - \frac{\sqrt{2}}{2} \frac{\sqrt{3}}{2} \left(V_{1d} \bar{d}_L^c \mu_L \right) + V_{1b} \bar{c}_L^c \mu_L \right] \nu_{\mu} \right] + x_{23}^{R} \left(V_{1d} \bar{u}_L^c \mu_L + V_{2d} \bar{c}_L^c \mu_L \right) S_{4/3}^{1/3}.$$

(8)

Here, we have assumed the LQ interactions to be aligned with the down quarks and suppressed the neutrino-mixing matrix (since neutrino mixing would not affect the short-ranged experimental measurements of the low-energy observables). Our choice of new couplings is economical, because each plays an essential role in resolving the anomalies simultaneously. (Note that the zeros in the coupling matrices are phenomenological and may not be strictly applicable in specific models [19].) The rationales behind the flavour ansatz are as follows:

1. Based on the chiralities of the initial and final muons, the contributions of the SLQs to Δa_{μ} can be split into two parts—chirality-preserving and chirality-flipping. The chirality-preserving terms are small, since they are proportional to m_n^2; whereas the chirality-flipping ones go as $m_n m_q$ (q is the quark that runs in the loop). Hence, for heavy quarks like the top, the chirality-flipping contribution is bigger than the chirality-preserving one. With $q = t$, the muon $g - 2$ discrepancy can be accommodated with perturbative couplings. We primarily consider the $x_{32}^{L/R}$ couplings of the S_1 for this purpose.

2. The S_1 contributes to the $b \rightarrow s \mu \mu$ decay at the loop level, and hence needs large Yukawa couplings to resolve the $R_{K^{(*)}}$ anomalies. Such large couplings would either be ruled out or be in tension with the LHC dilepton data. However, the charge-4/3 component of S_3, $S_3^{4/3}$, can contribute to $R_{K^{(*)}}$ at the tree level, and it therefore requires smaller couplings. In order to contribute to the $b \rightarrow s \mu \mu$ decay, it needs two nonzero couplings—namely, $b u S_3^{1/3}$ and $s u S_3^{4/3}$. We get the required interactions by considering the couplings v_{32}^{L} and v_{32}^{R} to be nonzero. (If the S_3 couplings are aligned with the up quarks, the two necessary interactions could be generated from only v_{32}^{L} or v_{32}^{R}. The other essential coupling would then be generated through the CKM mixing. However, due to the small off-diagonal CKM elements, it has to be large, and hence in conflict with the LHC data.)

3. We consider the x_{23}^{R} coupling to generate a positive tree-level contribution to the $\rho^{(c)}_\mu$ observables from the S_1. The coupling allows the charge-1/3 LQs to couple with a τ-lepton–c-quark pair. To resolve the $\rho^{(c)}_\mu$ anomalies, the product $x_{23}^{L} x_{23}^{R}$ needs to be order 1 for TeV-scale LQs. (Note that one could also use the x_{23}^{L} coupling for this purpose. However, a large $x_{23}^{L} x_{23}^{R}$ or $x_{23}^{L} x_{23}^{R}$ would get into conflict with the current $R_{K^{(*)}}$ measurements unless some additional constraints are enforced [13] in this case.)

We show some representative Feynman diagrams contributing to the anomalies in Fig. 1.
III. CONTRIBUTION TO THE ANOMALIES

A. W mass

Due to the $S_1 \leftrightarrow S_3^{1/3}$ mixing, a mass split is induced among the components of S_3. This shifts the oblique parameters, which induce a shift in the W mass (the corrections to the oblique parameters due to SLQs are studied in Ref. [20]). In the $S_1 + S_3$ model, the shift of the T parameter, ΔT, is given by

$$\Delta T = \frac{3}{4\pi^2} \frac{1}{m_W^2} \left[F(M_3, M_3) c_\theta^2 + F(M_3, M_3) s_\theta^2 \right],$$

where s_W is the sine of the Weinberg angle, $c_\theta = \cos(\theta)$ and $s_\theta = \sin(\theta)$. The function $F(m_a, m_b)$ is given as

$$F(m_a, m_b) = m_a^2 + m_b^2 - \frac{2m_a^2m_b^2}{m_a^2 - m_b^2} \log \left(\frac{m_a^2}{m_b^2} \right).$$

It goes to zero in the limit $m_a = m_b$. The W-boson mass is connected to the oblique parameters through the following relation:

$$\Delta m_W^2 = \frac{\alpha_2 c_\theta^2 m_W^2}{c_W^2 - s_W^2} \left[-\frac{\Delta S}{2} + c_W^2 \Delta T + \frac{c_W^2 - s_W^2}{4s_W^2} \Delta U \right],$$

where α_2 is the fine-structure constant at the Z pole and $c_W^2 = 1 - s_W^2$. The recent CDF measurement puts the W-boson mass at $m_W^{\text{CDF}} = 80.4335 \pm 0.0094$ GeV [1], about 7σ away from its SM value, $m_W^{\text{SM}} = 80.361 \pm 0.006$ GeV [21]. In our model, the main contribution comes from ΔT; we neglect the smaller shifts in the S and U parameters. The sign of $\Delta M = M_3 - M_1$ is important; we use $\Delta M > 0$ in our analysis.

B. Muon g – 2

The 4.2σ discrepancy in muon $g - 2$ translates to $\Delta a_\mu = a_\mu^{\text{Exp}} - a_\mu^{\text{SM}} = (2.51 \pm 0.59) \times 10^{-9}$. In our model, S_\pm and $S_3^{1/3}$ contribute to the muon $g - 2$. The total contribution to Δa_μ is obtained in Package-X [22] as,

$$\Delta a_\mu = \frac{N_c}{16\pi^2} \left[\frac{m_\mu m_t}{m_t^2} \left\{ \frac{7}{6} + \frac{2}{3} \ln \left(\frac{m_t^2}{m_\mu^2} \right) \right\} \right] \left[2x \frac{2\bar{c}_S + v_S^2}{2\bar{c}_S + v_S^2} \right] + \left(\frac{1}{3} \frac{v_S^2}{v_S^2} \right) c_\theta^2 - \frac{1}{3} \frac{v_S^2}{v_S^2} s_\theta^2,$$

$$+ \left(\frac{1}{3} \frac{v_S^2}{v_S^2} \right) c_\theta^2 - \frac{1}{3} \frac{v_S^2}{v_S^2} s_\theta^2 - \frac{1}{6} \frac{m_\mu^2}{m_t^2} \left(\frac{v_S^2}{v_S^2} + \frac{v_S^2}{v_S^2} \right),$$

where $V_t = |V_{td}|^2 + |V_{ts}|^2 + |V_{tb}|^2$ and $V_c = (|V_{cd}|^2 + |V_{cs}|^2 + |V_{cb}|^2).$ Since the top-quark mass enhances the chirality-flipping terms, the corresponding couplings need not be large, and thus would have no conflict with the current LHC data.

C. $R_{K^{\ast}}$ and $R_{D^{\ast}}$ observables

Our flavour ansatz implies that $S_3^{1/3}$ generates two Wilson operators, $\mathcal{O}_9 = (\bar{s}_a P_L b) (\bar{b}_L \gamma^\mu \tau^a \mu)$ and $\mathcal{O}_{10} = (\bar{s}_a P_L b) (\bar{b}_L \gamma^\mu \tau^a \mu)$, relevant for the $R_{K^{\ast}}$ observables. The corresponding coefficients can be expressed in terms of the model parameters,

$$\mathcal{C}_9 = -\mathcal{C}_{10} = \frac{\pi v^2 y_{32}^2 x_{32}}{\alpha V_{tb} V_{ts} M_t^2}. \tag{13}$$

The global fit for $\mathcal{C}_9 = -\mathcal{C}_{10}$ stands at $-0.39^{+0.07}_{-0.07}$ [23]. The negative value implies both the Yukawa couplings are either positive or negative, since V_{ts} is also negative. There is a small loop-level contribution to $R_{K^{\ast}}$ from S_{\pm}, which we ignore.

Both the charge-1/3 components, S_{\pm}, contribute to the $R_{D^{\ast}}$ observables at the tree level. From the interactions in

$$r_D = \frac{R_D^{\text{SM}}}{R_D^{\text{SM}}} \approx 1 + 1.02 \left| \mathcal{C}_9 \right|^2 + 0.9 \left| \mathcal{C}_{10} \right|^2,$$

$$r_D^\rho = \frac{R_D^{\text{SM}}}{R_D^{\text{SM}}} \approx 1 + 0.04 \left| \mathcal{C}_9 \right|^2 + 16.07 \left| \mathcal{C}_{10} \right|^2,$$

$$-0.11 \Re \left[\mathcal{C}_9 \right] - 5.12 \Re \left[\mathcal{C}_{10} \right]. \tag{16}$$
The current averages of the $R_{\mu(\tau)}$ anomalies imply that \[r_D = 1.137 \pm 0.101 \quad \text{and} \quad r_D' = 1.144 \pm 0.057. \] (17)

The \mathcal{O}_{S_2} and \mathcal{O}_{T_1} operators also contribute to the $F_L(D^*)$ and $P_1(D^*)$ observables as,

\begin{equation}
F_L(D^*) \equiv \frac{F_L(D^*)}{F_{SM}(D^*)} \approx \frac{1}{r_{D^*}} \left\{ 1 + 0.08 |\mathcal{O}_{S_2}|^2 + 7.02 |\mathcal{O}_{T_2}|^2 - 0.24 \text{Re}[\mathcal{O}_{S_2}] - 4.37 \text{Re}[\mathcal{O}_{T_2}] \right\}, \end{equation}

\begin{equation}
P_1(D^*) \equiv \frac{P_1(D^*)}{P_{1SM}(D^*)} \approx \frac{1}{r_{D^*}} \left\{ 1 - 0.07 |\mathcal{O}_{S_2}|^2 - 1.86 \times |\mathcal{O}_{T_2}|^2 + 0.22 \text{Re}[\mathcal{O}_{S_2}] - 3.37 \text{Re}[\mathcal{O}_{T_2}] \right\}. \end{equation}

The couplings that contribute to the $R_{K^{(*)}}$ and $R_{\phi(\tau)}$ observables also contribute to the flavour-changing neutral-current process $b \to s\nu\nu$, which is loop-induced and suppressed by the Glashow-Iliopoulos-Maiani mechanism in the SM. In our model, the $R_K^{(*)}$ observable receives the following correction [24]:

\begin{equation}
R_K^{(*)} = 1 + \frac{\mathcal{O}^2}{3V_{tb}V_{ts}} \left\{ \frac{\gamma_{22}^L \gamma_{22}^L}{M^2} + \frac{\gamma_{22}^L \gamma_{22}^L}{M^2} + \frac{\gamma_{22}^L \gamma_{22}^L}{M^2} - \frac{x_{22}^L V_{tb} V_{ts}}{M^2} \right\}^2 \end{equation}

where $\mathcal{O} = \sqrt{\pi^2}/(|e^2 G_F| C_{SM}^{\text{eff}})$ with $C_{SM}^{\text{eff}} \approx -6.38$ [24]. Note that Ref. [13] essentially imposed a relation among the couplings through a discrete symmetry to satisfy the $R_{\phi(\tau)}$ and $R_{K^{(*)}}$ measurements simultaneously; our solution to that problem is completely different.

IV. PARAMETER SCAN AND EXPERIMENTAL BOUNDS

We prefer a solution that is directly testable at the LHC. Hence, we consider the LQ mass scale as close to a TeV as possible. As we shall argue below, the lightest LQ the current LHC data allows in our setup is about 1.5 TeV. We perform a random scan of the five nonzero couplings in Eq. (7) to locate the parameter regions where our $S_1 + S_2$ model explains the anomalies simultaneously, keeping the LQ masses fixed at $M_1 = 1.5$ TeV and $M_2 = 1.525$ TeV. The small mass difference, $\Delta M = M_1 - M_1 \approx 25$ GeV, is necessary to explain the W-mass anomaly. Currently, there is no bound on the Higgs-portal coupling, λ, that controls the mixing between S_1 and S_2—we set it to 1.

These five couplings would contribute to observables other than those mentioned above as well. We list these observables and the experimental bounds on them in Table I. We show the results of the scan with two-dimensional projections in Fig. 2. The light-green and blue patches are the regions where the $S_1 + S_2$ model resolves the anomalies simultaneously while satisfying the bounds in Table I within 2σ.

A. LHC bounds

The LHC is insensitive to the small off-diagonal CKM-suppressed couplings. There are direct and indirect bounds on other LQ parameters from the LHC searches [37–42].

Direct bounds: We consider the exclusion bounds from the direct LHC searches on differently charged components separately.

(a) For our flavour ansatz in Eq. (7), the charge-1/3 SLQs would decay to the μ, $b\nu$, $c\tau$, $s\nu$, and $c\mu$ final states. Now, since x_{32}^R tends to be small in the favoured parameter regions (the light-green regions in Fig. 2), individually none of these decay modes can have roughly more than a 50% branching ratio (BR). (This is because if we ignore the CKM-suppressed decays of a charge-1/3 LQ, each left-type coupling opens up two decay modes whereas a right-type coupling leads to only one.) Of these, the $c\tau$ mode does not have any direct search limit and, among the others, the strongest one stands at about 1.4 TeV for a 50% BR in the $c\mu$ mode [40].

(b) The limits on $S_{1/3}^{2/3}$ decaying mainly to tv and cv final states are weaker—less than a TeV. Hence, our 1.5 TeV solution trivially agrees with all direct LHC bounds on the charge-1/3 and charge-2/3 components.

(c) The strongest collider bound on our setup comes from the direct limits on $S_{1/3}^{4/3}$. In our model, $S_{1/3}^{4/3}$ decays to $b\mu$ and $s\mu$ final states via y_{32} and y_{22}, respectively. The ATLAS Collaboration has put the lower limit on SLQs that decay to the $b\mu$ ($b\mu$) state with a 100% BR at 1721 (1733) GeV [40]. For the limit in the $b\mu$ ($s\mu$) mode to come down to 1.5 TeV,
The light-green and blue points belong to the parameter regions where the 1.5 TeV $S_3 + S_3$ model resolves the W-mass, muon $g - 2$, R_{K^0}, and R_{D^0} anomalies without violating the limits shown in Table I. However, once the LHC bounds [the upper limits on couplings from the high-p_T dilepton data (dot-dashed lines) and the direct-search exclusion limits] are applied, only the blue regions survive. Panels (a)-(j) are self-explanatory. Panel (k) shows the relevant part of Panel (j) with higher magnification.

\[
\text{BR}(S_3^{4/3} \to b(s)\mu) \lesssim 0.53 \,(0.6), \quad \text{which forces } |y_{L3}^f| \text{ to be close to } |y_{L2}^f|, \quad \text{since } \ BR(S_3^{4/3} \to b\mu) + \ BR(S_3^{4/3} \to s\mu) = 1 \text{ in our case [see Figs. 2(j) and 2(k)].}
\]

Indirect bounds: The indirect upper bounds on the Yukawa couplings come from the dilepton $(\mu\mu, \tau\tau)$ data [41, 42]. Since these searches are agnostic about the number of associated jets, the LQs can contribute to the dilepton signals in a number of ways [43, 44] (see Fig. 3):

(a) They could be pair produced [Fig. 3(a)], $pp \to S_{LQ}S_{LQ} \to \ell\ell + 2j$. (Here we use the same notation
for a particle and its antiparticle for simplicity; ℓ represents a charged light lepton and j denotes a light jet.) The pair production processes are mostly strong-coupling mediated, and hence their contributions to the dilepton signal depend on the new couplings mainly through the BRs.

(b) A LQ can also be produced singly [Fig. 3(b)], $pp \to S_{LQ}/S_{LQ}j \to \ell+\text{jet(s)}$. The single-production cross sections are proportional to κ^2, where κ represents the $q\bar{q}S_{LQ}$ coupling involved. (To avoid double counting while calculating the two-body and three-body single-production cross sections, we follow the method explained in Ref. [45].)

(c) The strongest sensitivity to κ comes from the $q\bar{q} \to \ell\ell$ processes mediated by t-channel LQ exchanges [Fig. 3(c)], which also interfere with the SM $q\bar{q} \to Z \to \ell\ell$ processes. For 1.5 TeV SLQs, the resonant productions are more phase-space suppressed than the nonresonant processes. Hence, at this mass, essentially all of the contribution to the dilepton signals comes from the $\sigma(\kappa^2)$ terms from the t-channel processes and the $\sigma(\kappa^2)$ interference terms. (This can also be seen from Ref. [43] which obtains the limits on S_1 couplings.) Hence, we consider only the nonresonant contributions to obtain the indirect limits on the new couplings.

We encode the Lagrangian in Eq. (8) in FeynRules [46] to generate the Universal FeynRules Output [47] files. We use MadGraph5 [48] to generate parton-level events from the nonresonant processes. These events are then passed through Pythia6 [49] for showering and hadronisation. We use Delphes v3 [50] to simulate the detector environments.

We use two observed distributions from Refs. [41, 42]—the invariant mass distribution of muon pairs and the total transverse mass distribution of tau pairs—to put bounds on the LQ parameters. We apply the same cuts on the SLQ signal events and make a χ^2 estimation of the 2σ limits on the new couplings:

$$\chi^2 = \sum_i \left(\frac{N_i(M_{S_{LQ}}, \{\kappa\}) - N_i^{\text{SM}}}{\Delta N_i} \right)^2$$ \hspace{1cm} (21)

with

$$N_i(M_{S_{LQ}}, \{\lambda\}) = N_i^{\text{true}}(M_{S_{LQ}}, \{\kappa\}) + N_i^{\text{SM}}.$$ \hspace{1cm} (22)

$$\Delta N_i = \sqrt{(\Delta N_i^{\text{stat}})^2 + (\Delta N_i^{\text{syst}})^2}.$$ \hspace{1cm} (23)

Here, $N_i^{\text{true}}(M_{S_{LQ}}, \{\kappa\})$ and N_i^{SM} are the total number of events from the nonresonant production modes passing the selection cuts and the total SM background in the ith bin; $\Delta N_i^{\text{stat}} = \sqrt{N_i^{\text{stat}}}$, and we assume a uniform 10% systematic error—i.e., $\Delta N_i^{\text{syst}} = \delta' \times N_i^{\text{SM}}$ with $\delta' = 0.1$. Instead of κ, we use $\{\kappa\}$ to indicate that multiple large new couplings can simultaneously contribute to a specific dilepton signal—for example, both the two couplings shown in Fig. 2(j) can contribute to the $\mu\mu$ final state leading to the elliptic upper bound. A more elaborate explanation of the method for obtaining the limits on a number of Yukawa couplings is found in our previous papers [43, 44].

We show the indirect bounds with dot-dashed lines in Fig. 2 and mark the common parts between the regions favoured by the anomalies and those agreeing with the LHC limits with blue. From a comparison of the light-green and blue regions in Fig. 2, it is clear that our solution is testable at the LHC—the current LHC bounds severely restrict the parameter space of the 1.5 TeV LQs. The LHC data do not allow the LQ mass scale to be smaller than ~ 1.5 TeV. This can be seen from Figs. 2(j) and 2(k) as follows. The $\theta_0 = -\theta_{10}$ global fit implies that both $|y_{S2}^2|$ and $|y_{S3}^2|$ cannot be large simultaneously; whereas the LHC direct limits on $S_2^{1/3}$ require $|y_{S2}^2| \sim |y_{S3}^2|$, severely constraining the parameter space. For a lighter LQ mass, the upper limit on BR($S_3^{1/3} \to b(s)\mu$) will be tighter and impossible to satisfy.

The 1.5 TeV lower bound points to a tradeoff between the LHC direct bounds and the degree of freedom in the model. By introducing more large couplings, one can reduce the BR of the restrictive modes and reduce the direct limit on the mass scale. However, with more new (large) couplings, the solutions become less appealing or fine-tuned. Note that for LQ masses 1.5 TeV and above, the indirect limits cannot be diluted significantly by introducing additional coupling(s) as they are essentially independent of the LQ BRs.

V. CONCLUSIONS

This paper presents a simple solution to the recent W-boson mass anomaly along with the long-standing muon $g-2$, $R\kappa^{(\mu)}$, and $R\eta^{(\mu)}$ anomalies with a model of S_1 and S_3 SLQs. While various $S_1 + S_3$ models have been seen to address different combinations of these anomalies [13–16], ours is a new solution that is economical (i.e., it has fewer
degrees of freedom than the known solutions; see, e.g., Ref. [16]), does not require any fine-tuned parameters, and is testable at the LHC. We have shown that our solution satisfies all known low-energy bounds. We also obtained the bounds from the LHC data including those from the direct LQ searches and the high-pte dijet data. The testability of the 1.5 TeV setup at the LHC is clear from the scan shown in Fig. 2. If the LQs are heavier, more parameter space will open up—heavier particles are less restricted by the low-energy and LHC bounds. However, heavier SLQs would need larger couplings to accommodate the anomalies. If we limit all the couplings to be perturbative, we get an upper bound on the LQ mass scale—the heaviest it can go (assuming no additional new couplings are turned on) is about 8 TeV. Of course, if the LQs are significantly heavier than 2 TeV, the direct searches would not be useful, but the model can still be probed via indirect searches. Future data with better statistics are expected to give better indirect bounds and reduce the upper limit on the LQ mass scale. The large cross-generation couplings (e.g., \(\lambda_{12}^\mu, \lambda_{22}^\mu \)) indicate that the model will have exotic signatures (like \(\tau \), \(\mu \)) at the LHC, and the single productions mediated by these couplings could have good prospects (see, e.g., Refs. [45, 50]). They could also be tested indirectly from the high-pte dilepton or monolepton + \(E_T \) data [43].

To summarise, we have presented a testable economical new-physics model that can explain all the anomalies simultaneously without any fine-tuned parameters. Or equivalently, one could also argue that the anomalies together strongly indicate the existence of the LQs.

ACKNOWLEDGMENTS

We thank C. Neeraj for a helpful discussion and acknowledge the support from the high-performance computing facility at IISER Thiruvananthapuram, India.

1. T. Aaltonen et al. (CDF), Science 376, 170 (2022).
2. G. W. Bennett et al. (Muon g-2), Phys. Rev. D 73, 072003 (2006), arXiv:hep-ex/0602035; B. Abi et al. (Muon g-2), Phys. Rev. Lett. 126, 141801 (2021), arXiv:2104.03281 [hep-ex].
3. T. Aoyama et al., Phys. Rept. 887, 1 (2020), arXiv:2006.04822 [hep-ph]; T. Aoyama, M. Hayakawa, T. Kinoshita, and M. Nio, Phys. Rev. Lett. 109, 111808 (2012), arXiv:1205.5370 [hep-ph]; T. Aoyama, T. Kinoshita, and M. Nio, Atoms 7, 28 (2019); M. Davier, A. Hoecker, B. Malaescu, and Z. Zhang, Eur. Phys. J. C 77, 827 (2017), arXiv:1706.09436 [hep-ph]; A. Keshavarzi, D. Nomura, and T. Teubner, Phys. Rev. D 97, 114025 (2018), arXiv:1802.02995 [hep-ph]; G. Colangelo, M. Hoferichter, and P. Stoffer, JHEP 02, 006 (2019), arXiv:1810.00007 [hep-ph]; M. Hoferichter, B.-L. Hoid, and B. Kubis, JHEP 08, 137 (2019), arXiv:1907.01556 [hep-ph]; M. Davier, A. Hoecker, B. Malaescu, and Z. Zhang, Eur. Phys. J. C 80, 241 (2020), [Erratum: Eur.Phys.J.C 80, 410 (2020)], arXiv:1908.00921 [hep-ph]; A. Keshavarzi, D. Nomura, and T. Teubner, Phys. Rev. D 101, 014029 (2020), arXiv:1911.00367 [hep-ph]; A. Kurz, T. Liu, P. Marquard, and M. Steinhauser, Phys. Lett. B 734, 144 (2014), arXiv:1403.6400 [hep-ph]; B. Chakraborty et al. (Fermilat Lattice, LATTICE-HPQCD, MILC), Phys. Rev. Lett. 120, 152001 (2018), arXiv:1710.11212 [hep-lat]; S. Boronski et al. (Budapest-Marseille-Wuppertal), Phys. Rev. Lett. 121, 022002 (2018), arXiv:1711.04980 [hep-lat]; T. Blum, P. A. Boyle, V. Gürpörs, T. Izubuchi, L. Jin, C. Jung, A. Jüttner, C. Lehner, A. Portelli, and J. T. Tsang (RBC, UKQCD), Phys. Rev. Lett. 121, 022003 (2018), arXiv:1801.07224 [hep-lat]; D. Giusti, V. Lubicz, G. Martinelli, F. Sanfilippo, and S. Simula, Phys. Rev. D 99, 114502 (2019), arXiv:1901.10462 [hep-lat]; E. Shintani and Y. Kuramashi (PACS), Phys. Rev. D 100, 034517 (2019), arXiv:1902.00885 [hep-lat]; C. T. H. Davies et al. (Fermilat Lattice, LATTICE-HPQCD, MILC), Phys. Rev. D 101, 034512 (2020), arXiv:1902.04223 [hep-lat]; A. Gérardin, M. Cé, G. von Hippel, B. Hörz, H. B. Meyer, D. Mohler, K. Ottmann, J. Wilhelm, and H. Wittig, Phys. Rev. D 100, 014510 (2019), arXiv:1904.03120 [hep-lat]; C. Aubin, T. Blum, C. Tu, M. Golterman, C. Jung, and S. Peris, Phys. Rev. D 101, 014503 (2020), arXiv:1905.09307 [hep-lat]; D. Giusti and S. Simula, PoS LATTICE2019, 104 (2019), arXiv:1910.03874 [hep-lat]; K. Melnikov and A. Vainshtein, Phys. Rev. D 70, 113006 (2004), arXiv:hep-ph/0312226; P. Majstun and P. Sanchez-Puertas, Phys. Rev. D 95, 054026 (2017), arXiv:1701.05829 [hep-ph]; G. Colangelo, M. Hoferichter, M. Procura, and P. Stoffer, JHEP 04, 161 (2017), arXiv:1702.07347 [hep-ph]; M. Hoferichter, B.-L. Hoid, B. Kubis, S. Leupold, and S. P. Schneider, JHEP 10, 141 (2018), arXiv:1808.04823 [hep-ph]; A. Gérardin, H. B. Meyer, and A. Nyffeler, Phys. Rev. D 100, 034520 (2019), arXiv:1903.09471 [hep-lat]; J. Bijnens, N. Hermannsson-Truedsson, and A. Rodríguez-Sánchez, Phys. Lett. B 798, 134994 (2019), arXiv:1908.03331 [hep-ph]; G. Colangelo, F. Hagelstein, M. Hoferichter, L. Laub, and P. Stoffer, JHEP 03, 101 (2020), arXiv:1910.13432 [hep-ph]; V. Pauk and M. Vanderhaeghen, Eur. Phys. J. C 74, 3008 (2014), arXiv:1401.0832 [hep-ph]; I. Danilkin and M. Vanderhaeghen, Phys. Rev. D 95, 014019 (2017), arXiv:1611.04646 [hep-ph]; F. Jegerlehner, The Anomalous Magnetic Moment of the Muon, Vol. 274 (Springer, Cham, 2017); M. Knecht, S. Narison, A. Rabemana-njara, and D. Rabetiarivony, Phys. Lett. B 787, 111 (2018), arXiv:1808.03484 [hep-ph]; G. Eichmann, C. S. Fischer, and R. Williams, Phys. Rev. D 101, 054515 (2020), arXiv:1910.06795 [hep-ph]; P. Roig and P. Sanchez-Puertas, Phys. Rev. D 101, 074019 (2020), arXiv:1910.02881 [hep-ph]; G. Colangelo, M. Hoferichter, A. Nyffeler, M. Passera, and P. Stoffer, Phys. Lett. B 735, 90 (2014), arXiv:1403.7512 [hep-ph]; T. Blum, N. Christ, M. Hayakawa, T. Izubuchi, L. Jin, C. Jung, and C. Lehner, Phys. Rev. Lett. 124, 132002 (2020), arXiv:1911.08123 [hep-lat]; A. Czarnecki, W. J. Marciano, and A. Vainshtein, Phys. Rev. D 67, 073006 (2003), [Erratum: Phys.Rev.D 73,
[15] S. Saad, Phys. Rev. D 102, 015019 (2020), arXiv:2005.04352 [hep-ph].
[16] V. Gherardi, D. Marzocca, and E. Venturini, JHEP 01, 138 (2021), arXiv:2008.09548 [hep-ph].
[17] W. Buchmuller, R. Ruckl, and D. Wyler, Phys. Lett. B 191, 442 (1987), [Erratum: Phys.Lett.B 448, 320–320 (1999)]; I. Doršner, S. Fajfer, A. Greljo, J. F. Kamenik, and N. Košnik, Phys. Rept. 641, 1 (2016), arXiv:1603.04993 [hep-ph].
[18] I. Doršner, S. Fajfer, and O. Semensari, JHEP 06, 089 (2020), arXiv:1910.03877 [hep-ph].
[19] M. Bordone, O. Cattà, and T. Feldmann, JHEP 01, 067 (2021), arXiv:2010.02641 [hep-ph]; M. Bordone, O. Cattà, T. Feldmann, and R. Mandal, JHEP 03, 122 (2021), arXiv:2010.03297 [hep-ph].
[20] A. Crivellin, D. Müller, and F. Saturnino, JHEP 11, 094 (2020), arXiv:2006.10758 [hep-ph].
[21] C. Patrignani et al. (Particle Data Group), Chin. Phys. C 40, 100001 (2016).
[22] H. H. Patel, Comput. Phys. Commun. 197, 276 (2015), arXiv:1503.01469 [hep-ph].
[23] W. Altmannshofer and P. Stangl, Eur. Phys. J. C 81, 952 (2021), arXiv:2103.13370 [hep-ph]; A. Carvunis, F. Dettori, S. Gangal, D. Guadagnoli, and C. Normand, JHEP 12, 078 (2021), arXiv:2102.13390 [hep-ph].
[24] Y. Cai, J. Gargalionis, M. A. Schmidt, and R. R. Volkas, JHEP 10, 047 (2017), arXiv:1704.05849 [hep-ph].
[26] S. Iguro, T. Kitahara, Y. Omura, R. Watanabe, and K. Yamamoto, JHEP 02, 194 (2019), arXiv:1811.08899 [hep-ph].
[27] J. Grygier et al. (Belle), Phys. Rev. D 96, 091101 (2017), [Addendum: Phys.Rev.D 97, 099902 (2018)], arXiv:1702.03224 [hep-ex].
[28] B. Aubert et al. (BaBar), Phys. Rev. Lett. 104, 021802 (2010), arXiv:0908.2381 [hep-ex].
[29] A. G. Akeroyd and C.-H. Chen, Phys. Rev. D 96, 075011 (2017), arXiv:1708.04072 [hep-ph].
[30] M. Bordone, M. Jung, and D. van Dyk, Eur. Phys. J. C 80, 74 (2020), arXiv:1908.09398 [hep-ph].
[31] A. Abdesselam et al. (Belle), 10th International Workshop on the CKM Unitarity Triangle, (2019), arXiv:1903.03102 [hep-ex].
[32] S. Schael et al. (ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group, SLD Heavy Flavour Group), Phys. Rept. 427, 257 (2006), arXiv:hep-ex/0509008.
[33] R. Aaij et al. (LHCb), Phys. Lett. B 725, 15 (2013), arXiv:1305.5059 [hep-ex].
[34] K. Hayasaka et al., Phys. Lett. B 687, 139 (2010), arXiv:1001.3221 [hep-ex].
[35] R. L. Workman (Particle Data Group), PTEP 2022, 083C01 (2022).
[36] M. Bona et al. (UTfit), Phys. Rev. Lett. 97, 151803 (2006), arXiv:hep-ph/0605213.
[37] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018).
[38] A. M. Sirunyan et al. (CMS), Phys. Rev. D 98, 032005 (2018), arXiv:1805.10228 [hep-ex].
[39] A. M. Sirunyan et al. (CMS), Phys. Rev. Lett. 121, 241802 (2018), arXiv:1809.05558 [hep-ex].
[40] A. Aboud et al. (ATLAS), JHEP 06, 144 (2019), arXiv:1902.08103 [hep-ex].
[41] G. Aad et al. (ATLAS), JHEP 10, 112 (2020), arXiv:2006.05872 [hep-ex].
[42] G. Aad et al. (ATLAS), Phys. Rev. Lett. 125, 051801 (2020), arXiv:2002.12223 [hep-ex].
[43] A. M. Sirunyan et al. (CMS), JHEP 07, 208 (2021), arXiv:2103.02708 [hep-ex].
[44] T. Mandal, S. Mitra, and S. Raz, Phys. Rev. D 99, 055028 (2019), arXiv:1811.03561 [hep-ph].
[45] A. Bhaskar, D. Das, T. Mandal, S. Mitra, and C. Neeraj, Phys. Rev. D 104, 035016 (2021), arXiv:2101.12069 [hep-ph].
[46] T. Mandal, S. Mitra, and S. Seth, JHEP 07, 028 (2015), arXiv:1503.04689 [hep-ph]; T. Mandal and S. Mitra, Phys. Rev. D 87, 095008 (2013), arXiv:1211.6394 [hep-ph].
[47] A. Alloul, N. D. Christensen, C. Degrande, C. Duhr, and B. Fuks, Comput. Phys. Commun. 185, 2250 (2014), arXiv:1310.1921 [hep-ph].
[48] C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer, and T. Reiter, Comput. Phys. Commun. 183, 1201 (2012), arXiv:1108.2040 [hep-ph].
[49] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H. S. Shao, T. Stelzer, P. Torrielli, and M. Zaro, JHEP 07, 079 (2014), arXiv:1405.0301 [hep-ph].
[50] T. Sjostrand, S. Mrenna, and P. Z. Skands, JHEP 05, 026 (2006), arXiv:hep-ph/0603175 [hep-ph].
[51] J. de Favereau, C. Delaere, P. Demin, A. Giammanco, V. Lemaitre, A. Mertens, and M. Selvaggi (DELPHES 3), JHEP 02, 057 (2014), arXiv:1307.6346 [hep-ex]; K. Chandak, T. Mandal, and S. Mitra, Phys. Rev. D 100, 075019 (2019), arXiv:1907.11194 [hep-ex]; A. Bhaskar, T. Mandal, and S. Mitra, Phys. Rev. D 101, 115015 (2020), arXiv:2004.01096 [hep-ph]; A. Bhaskar, T. Mandal, S. Mitra, and M. Sharma, Phys. Rev. D 104, 075037 (2021), arXiv:2106.07605 [hep-ph].