Modern Robot Integrated Manufacturing Cell According to the Needs of Industry 4.0

Madis Moor1,2; Kristo Vahe1,2; Jüri Riives 1; Tavo Kangru 2; Tauno Otto1

1 Tallinn University of Technology (TalTech), Estonia
2 TTK University of Applied Sciences, Tallinn, Estonia

madis@tktk.ee

Abstract. The continuous need to develop Industry 4.0 branches has led to a position, where highly sophisticated and multi-layer smart robotic systems are conducting the way in future manufacturing. This study aims to build a connectivity and system intelligent layer on top of a Co-bot integrated CNC-based Manufacturing cell. The connectivity layer is used to bypass all the data from machines to the upper intelligent layer vice versa. When raw data is arriving in the intelligent layer it is converted to information and again to knowledge for reflection back to the cell. Machine to Machine Communication and Digital Twin process for optimization is used for data conversions. This study is a down-scale example of the CPS for further development of existing robot cells.

1. Introduction

The combination of technologies, such as Smart Sensors, Internet of Things (IoT) \cite{1}, Machine to Machine Communication (M2M) \cite{2}, and AI-based solutions have fundamental importance in the process of further development of existing manufacturing cells. The next phase for production units in the future is to implement data collecting level as criteria for decision-making possibilities for existing robot cells. This can be achieved by using virtual environments for data processing and management of the actual robot cell. In this article, possible solutions and methods have been investigated for upgrading existing production cells to the level of automation and intelligence needed for Industry 4.0 (I4.0).

The goal is to define possibilities how to develop existing production system to meet the needs of I4.0 principles by applying Smart Sensor technology. The information is collected, processed and controlled by Manufacturing Execution System (MES) \cite{3} to ensure continuous workflow in every production unit as a whole system.

2. Ontology of Modern Manufacturing

In a knowledge-based economy and production which is characterized by continuously shortening product life cycles, but continuously increasing demands towards products’ functionality, quality, and other customers’ requirements. The orientation towards development and improvement of the production system and its efficient use is extremely important. A company is an entire system that operates in a certain location and customer-oriented field of activity. A company may belong to a group or network, whereby its belonging to the network may be abstract or the company may have certain connections or functions with the network \cite{4}.
The production system has certain resources, processes, and strategies (Fig. 1). The production system is characterized by the physical environment (number, type, layout, and location) and functional environment that is expressed by technological possibilities of machine tools. Machine tools have mutual logistical relations inside the system as well as relations with the external environment. Technological possibilities of a company’s production system evolve mainly based on machinery (CNC tools, IRs and Co-bots, presses, welding equipment, etc). Technological possibilities can be defined as a set of characteristics of the current device for producing a specified workpiece or performing a certain technological task.

![Fig. 1 Ontology in manufacturing [4]](image)

The Industrial Production of the future will be characterized by the strong individualization of products under the conditions of highly flexible production, the extensive integration of customers and business partners in value-added processes. Future manufacturing combines technology, knowledge, information, and human ingenuity to develop and apply manufacturing intelligence. It comprises the smart use of networked information for demand-dynamic economics such as: integrated enterprise and supply chain and broad-based workforce engagement; industrial robots that work safely with people in shared spaces; and metal-based additive manufacturing. Driven by the software connected to the Internet, the real and virtual worlds are growing closer and closer together to form the IoT.

In this article, we focus mainly on the workplace level, which we mean a robotic workplace, and look at it as an integration of different hardware and software tools forming a Cyber-Physical System (CPS) (Fig. 2). The CPS is based on a multi-dimensional complex space that generates and evolves diverse subspaces to contain different types of individuals interacting with, reflecting, or influencing each other directly or through the cyber physical subspace. “CPS are engineered systems that are built from and depend upon the synergy of computational and physical components.”

![Fig. 2 Robot Cell with CPS functionality](image)
Three main functionalities for modern robot-cells are:
- Internet of Things (IoT),
- Machine to Machine communication (M2M),
- Big Data.

IoT gives the possibility to connect more devices to a central controller. This set-up allows manufacturers to gather more data and streamline and digitize their processes more efficiently. With the M2M the success of data exchange and autonomous automation would be achieved, and it depends on the machines’ ability to communicate and their real-time responses with one another. The role of data and information is increasing currently in manufacturing. Extended supply chain, but also horizontal and vertical value stream are based on data exchange and information processing. Thanks to IoT, data transfer possibilities, data analytics, different decision-making algorithms, it will come possible to use AI possibilities in the workplace for intelligent manufacturing with adaptive control, agile planning and real-time management.

3. Integration and Connectivity
The new manufacturing architecture follows the need to integrate vertical and horizontal value chains. As the production is going more intensive, more digital solutions (ERP, PLM, MES, CAD/CAM/CAQ, etc) in both value chains are implemented to the general computing architecture trends. Over time smaller computers and PCs distributed functions over networks, and distributed computing has been refined in many ways with Service Oriented Architecture, HTTP, Remote Procedure Call (RPC), and other functions.

This integration and connectivity are formalized with the ISA 95.00-xx standard [5]. Traditionally, ISA95 has been implemented in a 5-layer system network architecture, implying that each level only communicates through adjacent levels (Fig. 3). This implementation was built around the technology available at the time it was conceived, which has changed significantly with high power computers, high-performance networking, and embedded edge computing, all supported by more sophisticated and refined software that has been developed for general computing [6].

![Fig. 3 Integration and connectivity in manufacturing according ISA 95.00 [6]](image)

The technical innovation of Industry 4.0 towards smart manufacturing is characterized by the integration of manufacturing systems, using digital twin principles in the different value chain positions, virtual reality and augmented reality in designing and execution stages, big data, and data analytics for continuous improvement.
4. Integrated Manufacturing Implementation
In this article, we focused on implementation of miniature production system which have been under development at TTK University of Applied Sciences. The equipment and component description have been used in [7], and the multi-layer CPS uses similar ontology of manufacturing stated above (Fig. 1).

![TTK Industry 4.0 CPS](image)

The entire system works autonomously, where incoming orders are planned in the ERP system, M2M communication and the sequence of production operations is managed by a program created at the MES level. All devices in the system are connected to MES via LAN or Wi-Fi but are independent of each other and do not require constant communication with a higher-level program (Fig. 5). All the units are programmed for each operation, and the MES program distributes only start commands and waits for execution confirmation to distribute new commands. Error reports from devices are forwarded to MES where necessary decisions are made for further operations. According to the number of details needed to produce, MES is capable of evaluating unused workstations and is capable to decide how to produce parallelly similar items or details.

![Developed system schematic diagram](image)

The system design is flexible and easy to reconfigure according to I4.0 principles, with the possibility to add new production equipment to the entire system without the need to make major
changes to the control system. The mobile robot arm plays a major role in this factory, which makes it possible to apply a similar method in the existing factory without making major adjustments for the robots. Each unit is equipped with photoelectric sensors (PNP output) [8] to monitor and give feedback about the current situation at the workplace, first of all, to PLC and then to MES for management of other units. Another important part of CPS is RFID technology [9] with the RFID chip [10], -reader [11], -communication module, and power module. Each production plate and storage box are equipped with an RFID chip and every unit and also MES has live information.

5. Conclusion

Modern Manufacturing has been changing rapidly in the last decade. The sophisticated and multi-layered robot integrated manufacturing is not far in the future. Our entrepreneurs have the machinery and equipment to manufacture products according to the customer needs, but continuously shortening product life cycle and product’s increasing complexity forces us to raise the efficiency of the existing system. In this paper, we have reviewed the possibilities to implement I4.0 principles to existing downscaled IR and Co-bot based manufacturing system, by using Smart Sensors and M2M connectivity combined with IoT based manufacturing software. The study we have conducted indicates that the usage of I4.0 technologies is strictly based on the needs and the purpose is to raise the efficiency of the certain robot-based manufacturing cell.

References

[1] R. S. Batth, A. Nayyar and A. Nagpal, "Internet of Robotic Things: Driving Intelligent Robotics of Future - Concept, Architecture, Applications and Technologies," 2018 4th International Conference on Computing Sciences (ICCS), Jalandhar, 2018, pp. 151-160, doi: 10.1109/ICCS.2018.00033.

[2] I. Stojmenovic, "Machine-to-Machine Communications With In-Network Data Aggregation, Processing, and Actuation for Large-Scale Cyber-Physical Systems," in IEEE Internet of Things Journal, vol. 1, no. 2, pp. 122-128, April 2014, doi: 10.1109/JIOT.2014.2311693.

[3] B. Saenz de Ugarte, A. Artiba & R. Pellerin (2009) Manufacturing execution system – a literature review, Production Planning & Control, 20:6, 525-539, DOI: 10.1080/09537280902938613

[4] Rives, J.; Lõun, K.; & Otto, T. Framework for Extended Use of Technological Resources in the Network of Enterprises. 7th International DAAAM Baltic Conference “Industrial Engineering”, 22-24 April 2010, Tallinn, Estonia.

[5] ANSI / ISA-95.00-xx. Enterprise Control System Integration

[6] ISA 95 in the IoT and Digitalization Era. By Bill Lydon, Contributing Editor, Automation.com. January 06, 2020

[7] Vaher, K.; Vainola, V.; Otto, T. (2019). Industry 4.0 Laboratory. Industry 4.0, Technological Basis of "Industry 4.0", 1/5: IV International Scientific Conference, Industry 4.0. Summer session, 24-27.06.2019, Burgas, Bulgaria. Industry 4.0 Proceedings: 108 Rakovski str; 1000 Sofia, 52–53

[8] Omron Corporation (2021, January 24), Photoelectric sensor E3F1-DP22, Retrieved from https://industrial.omron.eu/en/products/E3F1-DP22

[9] R. Want, "An introduction to RFID technology," in IEEE Pervasive Computing, vol. 5, no. 1, pp. 25-33, Jan.-March 2006, doi: 10.1109/MPRV.2006.2.

[10] Siemens Corporation (2021, January 24), RFID chip MDS D124, Retrieved from https://mall.industry.siemens.com/mall/en/WW/Catalog/Products/10047932

[11] Siemens Corporation (2021, January 24), RFID reader RF340R (GEN2), Retrieved from https://support.industry.siemens.com/cs/pd/467302?ptid=pi&dl=en&lc=en-GB