Reaction cross section of proton scattering consistent with PREX-II

Tomotsugu Wakasa, Shingo Tagami, Jun Matsui, and Masanobu Yahiro

Department of Physics, Kyushu University, Fukuoka 819-0395, Japan

Maya Takechi

Niigata University, Niigata 950-2181, Japan

(Dated: March 19, 2022)

Background: The neutron skin thickness \(R_{\text{skin}} \) of PREX-II is presented in Phys. Rev. Lett. **126**, 172502 (2021). The reaction cross section \(\sigma_R \) is useful to determine the matter radius \(R_m \) and \(R_{\text{skin}} \). For proton scattering, the reaction cross section \(\sigma_R \) are available for \(E_{\text{lab}} \geq 400 \text{ MeV} \).

Method and results: We determine \(R_{\text{PV}}^{\text{exp}} \) = 5.727 ± 0.071 fm and \(R_{\text{PV}}^{\text{exp}} \) = 5.617 ± 0.044 fm from \(R_{\text{PV}}^{\text{exp}} = 5.444 \text{ fm} \) and \(R_{\text{PV}}^{\text{skin}} \). The \(R_{\text{PV}}^{\text{GHFB}} \) calculated with Gongny-D1S HFB (GHFB) with the angular momentum projection (AMP) agrees with \(R_{\text{PV}}^{\text{exp}} \). The neutron density calculated with GHFB+AMP is scaled so as to \(R_{\text{PV}}^{\text{scaling}} \) = 5.727 fm. The Love-Franey \(t \)-matrix model with the scaled densities reproduces the data on \(\sigma_R \).

Aim: Our aim is to find the \(\sigma_R \) of proton scattering consistent with \(R_{\text{PV}}^{\text{PV}} \).

Conclusion: The \(\sigma_R \) of proton scattering consistent with \(R_{\text{PV}}^{\text{PV}} \) are \(\sigma_R^{\text{PV}} \) at \(E_{\text{lab}} = 534.1, 549, 806 \text{ MeV} \).

I. INTRODUCTION AND CONCLUSION

Background: Horowitz et al. [1] proposed a direct measurement for neutron skin \(R_{\text{skin}} \). The measurement is composed of parity-violating (PV) weak scattering and elastic electron scattering. The neutron radius \(R_n \) is determined from the former experiment, whereas the proton radius \(R_p \) is from the latter.

Very recently, the PREX collaboration presented the PREX-II value [2]:

\[
R_{\text{PV}}^{\text{PV}} = 0.283 \pm 0.071 \text{ fm},
\]

combining the original Lead Radius EXperiment (PREX) result [3,4] with the updated PREX-II result. The \(R_{\text{PV}}^{\text{PV}} \) value is most reliable at the present stage, and provides crucial tests for the equation of state (EoS) of nuclear matter [5-9] as well as nuclear structure and reaction. In particular, Reed et al. [10] report a value of the slope parameter of the EoS and experiment on the impact of such a stiff symmetry energy on some critical neutron-star observables. The \(R_{\text{PV}}^{\text{PV}} \) value is considerably larger than the other experimental values which are significantly model dependent [11-14].

The nonlocal dispersive-optical-model (DOM) analysis of \(^{208}\text{Pb} \) deduces \(R_{\text{PV}}^{\text{DOM}} = 0.25 \pm 0.05 \text{ fm} \) [15]. The chiral (Kyushu) \(g \)-matrix folding model determines \(R_{\text{PV}}^{\text{PV}} = 0.27 \pm 0.03 \text{ fm} \) from reaction cross section \(\sigma_R \) in 30 ≤ \(E_{\text{lab}} \) ≤ 100 MeV [16]. These values are consistent with \(R_{\text{PV}}^{\text{PV}} \).

Aim: The aim is to find the \(\sigma_R \) of \(p + ^{208}\text{Pb} \) scattering that supports \(R_{\text{PV}}^{\text{PV}} \) (PREXII).

Method and results: The reaction cross section \(\sigma_R \) is a powerful tool of evaluating the matter radius \(R_m \). We first determine \(R_{\text{PV}}^{\text{exp}} = 5.727 \pm 0.071 \text{ fm} \) and \(R_{\text{PV}}^{\text{exp}} = 5.617 \pm 0.044 \text{ fm} \) from \(R_{\text{PV}}^{\text{exp}} = 5.444 \text{ fm} \) and \(R_{\text{PV}}^{\text{PV}} \). The \(R_{\text{PV}}^{\text{GHFB}} \) calculated with Gongny-D1S HFB (GHFB) with the angular momentum projection (AMP) agrees with \(R_{\text{PV}}^{\text{exp}} \) of electron scattering.

The neutron density calculated with GHFB+AMP is scaled so as to \(R_{\text{PV}}^{\text{scaling}} \) = 5.727 fm. The Love-Franey \(t \)-matrix model with the scaled densities reproduces the data on \(\sigma_R \).

Conclusion: The \(\sigma_R \) of proton scattering consistent with \(R_{\text{PV}}^{\text{PV}} \) are \(\sigma_R^{\text{PV}} \) at \(E_{\text{lab}} = 534.1, 549, 806 \text{ MeV} \).

II. MODEL

Our model is the folding model based on Love-Franey (LF) \(t \)-matrix [18].

The formulation of the folding model is shown below. For proton-nucleus scattering, the potential \(U(R) \) between an incident proton and a target (T), has the direct and exchange parts, \(U^{\text{DR}} \) and \(U^{\text{EX}} \), as

\[
U^{\text{DR}}(R) = \sum_{\mu} \int \rho^\mu_T(\mathbf{r}_T) \frac{e^{i \mathbf{K} \cdot s}}{\mu - 1/2, \nu} \mathbf{d}\mathbf{r}_T, \quad (2a)
\]

\[
U^{\text{EX}}(R) = \sum_{\mu} \int \rho^\mu_T(\mathbf{r}_T, \mathbf{r}_T + s) \cdot \frac{e^{i \mathbf{K} \cdot s}}{\mu - 1/2, \nu} \mathbf{d}\mathbf{r}_T, \quad (2b)
\]

where \(\mathbf{K}(R) \) is the local momentum between an incident proton and T, and \(M = A/(1 + A) \) for the target mass number \(A \); see Ref. [20] for the validity of the localization.

The direct and exchange parts, \(t_{\mu \nu}^{\text{DR}} \) and \(t_{\mu \nu}^{\text{EX}} \), of the matrix
are described as
\[
\begin{align*}
\hat{\rho}_{\mu\nu}^{\text{DR}}(s) &= \frac{1}{8} \sum_{S,T} \hat{S}_T \hat{S}_S^{\mu\nu}(s) + \text{for } \mu + \nu = \pm 1 \\
&= \frac{1}{8} \sum_{S,T} \hat{S}_T \hat{S}_S^{\mu\nu}(s) + \text{for } \mu + \nu = 0 \\
\hat{\rho}_{\mu\nu}^{\text{EX}}(s) &= \frac{1}{8} \sum_{S,T} (-1)^{S+T} \hat{S}_T \hat{S}_S^{\mu\nu}(s) + \text{for } \mu + \nu = \pm 1 \\
&= \frac{1}{8} \sum_{S,T} (-1)^{S+T} \hat{S}_T \hat{S}_S^{\mu\nu}(s) + \text{for } \mu + \nu = 0
\end{align*}
\]
where \(\hat{S} = \sqrt{2S + 1}\) and \(\hat{S}_T \hat{S}_S^{\mu\nu}\) are the spin-isospin components of the \(t\)-matrix interaction. We apply the LF \(t\)-matrix folding model for \(p^{+208}\text{Pb}\) scaling in \(E_{\text{lab}} = 400, 534.1, 549, 806\) MeV.

The relative wave function \(\psi\) is decomposed into partial waves \(\chi_L\), each with different orbital angular momentum \(L\). The elastic \(S\)-matrix elements \(S_L\) are obtained from the asymptotic form of the \(\chi_L\). The total reaction cross section \(\sigma_R\) is calculable from the \(S_L\) as
\[
\sigma_R = \frac{\pi}{K^2} \sum_L (2L + 1)(1 - |S_L|^2),
\]
where \(hK\) is an incident momentum.

As proton and neutron densities, \(\rho_p = -\frac{1}{2}\) and \(\rho_n = \frac{1}{2}\), we use the densities calculated with GHFB+AMP \(21\). As a way of taking the center-of-mass correction to the densities, we use the method of Ref. \(22\), since the procedure is quite simple. The \(R_p^{\text{GHFB}}\) calculated with GHFB+AMP agrees with \(R_p^{\text{exp}} = 5.444\) fm \(17\). The neutron density calculated with GHFB+AMP is scaled so as to \(R_n^{\text{scaling}} = 5.727\) fm (the central value of \(R_n^{\text{exp}} = 5.727 \pm 0.071\) fm determined in Sec. \(1\)). The scaled densities based on \(R_n^{\text{skin}}\) and \(R_n^{\text{exp}}\) are used for analyses of \(p^{+208}\text{Pb}\) scattering.

Now we explain the scaling of density \(\rho(r)\). We can obtain the scaled density \(\rho_{\text{scaling}}(r)\) from the original density \(\rho(r)\) as
\[
\rho_{\text{scaling}}(r) = \frac{1}{\alpha^3} \rho(r/\alpha)
\]
with a scaling factor
\[
\alpha = \sqrt{\frac{\langle r^2 \rangle_{\text{scaling}}}{\langle r^2 \rangle}}.
\]

III. RESULTS

The LF \(t\)-matrix folding model with the GHFB+AMP densities underestimates the \(\sigma_R\) data in \(400 \leq E_{\text{lab}} \leq 900\) MeV only by a factor of \(0.96\), as shown in Fig. \(1\). The LF \(t\)-matrix folding model with the scaled densities reproduces the data in \(E_{\text{lab}} = 534.1, 549, 806\) MeV. This indicates that the LF \(t\)-matrix folding model with the scaled densities is useful in \(400 \leq E_{\text{lab}} \leq 900\) MeV.

![FIG. 1. E_{lab} dependence of reaction cross sections \(\sigma_R\) for p+^{208}\text{Pb} scattering. Open circles stand for the results of the LF \(t\)-matrix folding model with GHFB+AMP densities, whereas closed circles correspond to those of the LF \(t\)-matrix folding model with the scaled densities. The data are taken from Refs. \(23, 24\).](image)

IV. DISCUSSIONS

Now we discuss how good the LF \(t\)-matrix folding model with the scaled densities is for \(p^{+12}\text{C}\) scattering at \(E_{\text{lab}} = 800\) MeV and \(p^{+40}\text{Ca}\) scattering at \(E_{\text{lab}} = 700\) MeV.

For \(^{40}\text{Ca}\), Zenihiro \textit{et al.} determined neutron radius \(R_n^{\text{exp}} = 3.375\) fm, \(R_p^{\text{exp}} = 3.385\) fm and \(R_n^{\text{exp}} = -0.01 \pm 0.049\) fm from the differential cross section and the analyzing powers for \(p^{+40}\text{Ca}\) scattering \(25\). The GHFB+AMP densities are scaled so as to \(R_p^{\text{scaling}} = R_p^{\text{exp}}\) and \(R_n^{\text{scaling}} = R_n^{\text{exp}}\).

For \(^{12}\text{C}\), Tanihata \textit{et al.} determined matter radius \(R_m^{\text{exp}} = 2.35(2)\) fm from interaction cross sections \(\sigma_I\) \(26\). We deduce neutron radius \(R_n^{\text{exp}} = 2.37\) fm from the \(R_m^{\text{exp}}\) and the \(R_p^{\text{exp}} = 2.33\) fm of electron scattering. The GHFB+AMP densities are scaled so as to \(R_p^{\text{scaling}} = R_p^{\text{exp}}\) and \(R_n^{\text{scaling}} = R_n^{\text{exp}}\).

Figure \(2\) shows \(\sigma_R\) for \(p^{+40}\text{Ca}\) scattering at \(700\) MeV and \(p^{+12}\text{C}\) scattering at \(800\) MeV. The LF \(t\)-matrix folding model with the scaled densities is good for \(p^{+40}\text{Ca}\) scattering at \(E_{\text{lab}} = 700\) MeV, and almost reproduces the data for \(p^{+12}\text{C}\) scattering at \(E_{\text{lab}} = 800\) MeV.
ACKNOWLEDGMENTS

We would like to thank Dr. Toyokawa for providing his code and Prof. M. Nakano for useful information.

[1] C. J. Horowitz, S. J. Pollock, P. A. Souder, and R. Michaels, Phys. Rev. C 63, 025501 (2001).
[2] D. Adhikari et al. (PRES), Phys. Rev. Lett. 126, 172502 (2021).
[3] S. Abrahamyan, Z. Ahmed, H. Albataineh, K. Aniol, D. S. Armstrong, W. Armstrong, T. Averett, B. Babineau, A. Barbieri, V. Bellini, et al. (PRES Collaboration), Phys. Rev. Lett. 108, 112502 (2012).
[4] C. J. Horowitz, Z. Ahmed, C.-M. Jen, A. Rakham, P. A. Souder, M. M. Dalton, N. Liyanage, K. D. Paschke, K. S. Kumar, D. McNulty, L. Mercado, S. Riordan, J. Wexler, R. W. Michaels, and G. M. Urciuoli, Phys. Rev. C 85, 032501 (2012).
[5] S. J. Novario, G. Hagen, G. R. Jansen, and T. Papenbrock, Phys. Rev. C 102, 051303 (2020).
[6] H. Shen, F. Ji, J. Hu, and K. Sumiyoshi, Astrophys. J. 891, 148 (2020).
[7] C. Horowitz, Ann. Phys. (Amsterdam) 411, 167992 (2019).
[8] Wei, Jin-Biao, Lu, Jia-Jing, Burgio, G. F., Li, Zeng-Hua, and Schulze, H.-J., Eur. Phys. J. A 56, 63 (2020).
[9] M. Thiel, C. Sfienti, J. Piekarewicz, C. J. Horowitz, and M. Vanderhaeghe, J. Phys. G: Nucl. Part. Phys. 46, 093003 (2019).
[10] B. T. Reed, F. J. Fattoyev, C. J. Horowitz, and J. Piekarewicz, arXiv:2101.03193 [nucl-th].
[11] A. Trzcinski, J. Jastrzebski, P. Lubinski, F. J. Hartmann, R. Schmidt, T. von Egidy, and B. Klos, Phys. Rev. Lett. 87, 082501 (2001).
[12] J. Zenhiro, H. Sakaguchi, T. Murakami, M. Yosoi, Y. Yasuda, S. Terashima, Y. Iwao, et al., Phys. Rev. C 82, 044611 (2010).
[13] A. Tamii, I. Poltoratska, P. von Neumann-Cosel, Y. Fujita, T. Adachi, C. A. Bertulani, J. Carter, et al., Phys. Rev. Lett. 107, 062502 (2011).
[14] C. M. Tarbert, D. P. Watts, D. I. Glazier, P. Aguilar, J. Ahrens, J. R. M. Annand, H. J. Arends, R. Beck, V. Bekrenev, B. Boillat, et al. (Crystal Ball at MAMI and A2 Collaboration), Phys. Rev. Lett. 112, 242502 (2014).
[15] M. C. Atkinson, M. H. Mahzoon, M. A. Keim, B. A. Bordelon, C. D. Pruitt, R. J. Charity, and W. H. Dickhoff, Phys. Rev. C 101, 044303 (2020).
[16] S. Tagami, T. Wakasa, J. Matsui, M. Takechi, and M. Yahiro, (2020), arXiv:2010.02450 [nucl-th].
[17] A. B. Jones and B. A. Brown, Phys. Rev. C 90, 067304 (2014).
[18] W. G. Love and M. A. Franey, Phys. Rev. C 24, 1073 (1981).
[19] F. Brieva and J. Rook, Nucl. Phys. A 291, 299 (1977); Nucl. Phys. A 291, 317 (1977); Nucl. Phys. A 297, 206 (1978).
[20] K. Minomo, K. Ogata, M. Kohno, Y. R. Shimizu, and M. Yahiro, J. Phys. G: Nucl. Part. Phys. 37, 085011 (2010).
[21] S. Tagami, M. Tanaka, M. Takechi, M. Fukuda, and M. Yahiro, Phys. Rev. C 101, 014620 (2020).
[22] T. Sumi, K. Minomo, S. Tagami, M. Kimura, T. Matsumoto, K. Ogata, Y. R. Shimizu, and M. Yahiro, Phys. Rev. C 85, 064613 (2012).
[23] F. S. Dietrich et al., J. Nucl. Sci. Tech. 39, 269 (2002).

[24] M. Nakano, Y. Yamaguchi, and Y. Uozumi, Phys. Rev. C 103, 044608 (2021).

[25] J. Zenihiro et al., (2018), arXiv:1810.11796 [nucl-ex].

[26] A. Ozawa, T. Suzuki, and I. Tanihata, Nucl. Phys. A 693, 32 (2001).

[27] B. D. Anderson, P. R. Bevington, F. H. Cverna, M. W. McNaughton, H. B. Willard, R. J. Barrett, N. S. P. King, and D. J. Ernst, Phys. Rev. C 19, 905 (1979).

[28] M. Trzaska et al., Z. Phys. A 340, 325 (1991).