Draft genome sequences of Pantoea agglomerans and Pantoea vagans isolates associated with termites

Palmer, Marike; de Maayer, Pieter; Thomas-Poulsen, Michael; Steenkamp, Emma T; van Zyl, Elritha; Coutinho, Teresa A; Venter, Stephanus N

Published in:
Standards in Genomic Sciences

DOI:
10.1186/s40793-016-0144-z

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Palmer, M., de Maayer, P., Thomas-Poulsen, M., Steenkamp, E. T., van Zyl, E., Coutinho, T. A., & Venter, S. N. (2016). Draft genome sequences of Pantoea agglomerans and Pantoea vagans isolates associated with termites. DOI: 10.1186/s40793-016-0144-z
Draft genome sequences of *Pantoea agglomerans* and *Pantoea vagans* isolates associated with termites

Marike Palmer1,2, Pieter de Maayer1,3, Michael Poulsen4, Emma T. Steenkamp1,2, Elritha van Zyl1,2, Teresa A. Coutinho1,2 and Stephanus N. Venter1,2*

Abstract

The genus *Pantoea* incorporates many economically and clinically important species. The plant-associated species, *Pantoea agglomerans* and *Pantoea vagans*, are closely related and are often isolated from similar environments. Plasmids conferring certain metabolic capabilities are also shared amongst these two species. The genomes of two isolates obtained from fungus-growing termites in South Africa were sequenced, assembled and annotated. A high number of orthologous genes are conserved within and between these species. The difference in genome size between *P. agglomerans* MP2 (4,733,829 bp) and *P. vagans* MP7 (4,598,703 bp) can largely be attributed to the differences in plasmid content. The genome sequences of these isolates may shed light on the common traits that enable *P. agglomerans* and *P. vagans* to co-occur in plant- and insect-associated niches.

Keywords: Pantoea, Bacteria, Insect, Symbiosis

Introduction

The bacterial genus *Pantoea* contains several economically important plant pathogens, as well as strains of clinical importance [10]. Amongst the plant pathogens, *Pantoea ananatis*, with its broad host range (e.g. onion, eucalyptus and pineapple) and *P. stewartii* subsp. *stewartii*, the causal agent of Stewart’s wilt on maize, are the best known. The human pathogens include species such as *P. septica* and *P. brenneri* [9], although some plant-associated species have also been isolated from immunocompromised patients [12, 17]. *P. agglomerans* and *P. vagans* are most commonly isolated from similar ecological niches, including both plant and insect hosts [41].

Three plasmids (pPag1, pPag2 and pPag3) were identified in the genome of the biocontrol strain *P. vagans* C9-1 [45] and it is thought that the presence of these plasmids may play a role in the physiological and ecological functioning of this strain. The plasmid, pPag1, codes for sucrose metabolism, while the plasmid, pPag2, harbours genes for an antimicrobial peptide and sorbitol utilization [33, 46]. The megaplasmid pPag3 belongs to the LPP-1 plasmids conserved among all sequenced *Pantoea* species to date and carries genes involved in pigment production, thiamine biosynthesis and maltose metabolism [19, 46]. In contrast to *P. vagans*, some strains of *P. agglomerans* are also known to induce galls on *Gypsophila* spp., beet (*Beta vulgaris*), Douglas fir (*Pseudotsuga menziesii*) and *Wisteria* spp. [6, 37]. This ability has been linked to a genomic island that encodes a Type III secretion system and pPath plasmid genes involved in the biosynthesis of the plant hormones, indole-3-acetic acid and cytokinins [6]. *P. agglomerans* strains have also been shown to cause opportunistic infections in humans [15, 18].

In this study we summarize the features of a *P. agglomerans* (Mn107) and a *P. vagans* (Mn109) that were isolated from two different colonies of the fungus-growing termite *Macrotermes natalensis* in South Africa, and provide an overview of the draft genome sequences and annotations for these two strains. The genome sequences provide some understanding of the shared genomic features that could be linked to their survival in...
similar environments and the unique features that characterise the species.

Organism information

Classification and features

Both *P. agglomerans* MP2 (LMG 29065) and *P. vagans* MP7 (LMG 29064) are members of the *Enterobacteriaceae* in the class *Gammaproteobacteria*, and are thus Gram-negative, motile, non-spore-forming, rods (Fig. 1, Table 1). After incubation on Luria-Bertani agar (10 g tryptone, 5 g yeast extract, 5 g NaCl, and X g agar per litre) at 28 °C for 24 h, colonies of *P. agglomerans* MP2 and *P. vagans* MP7 are yellow, convex and round with entire margins.

The 16S rRNA gene sequences of the enteric bacteria tend to provide insufficient resolution and the phylogenetic relationships of *P. agglomerans* MP2 and *P. vagans* MP7 were therefore inferred with multi-locus sequence analysis. This analysis included closely related members in the genus *Pantoea* with available genome sequences, and was based on partial nucleotide sequences of four protein coding genes (i.e., *atpD*, *carA*, *gyrB*, *infB*, *recA* and *rpoB*) [57]. Our results showed that *P. agglomerans* and *P. vagans* group as sister-species (Fig. 2).

The two isolates (strain codes: MP2 = Mn109-1w1C and MP7 = Mn107-old1M) were isolated from *Macrotermes natalensis* termite mounds in 2010. The surface of worker termite was rinsed using phosphate buffer saline and MP2 was isolated from the rinsate, which was inoculated directly onto chitin medium (4 g chitin, 0.7 g K$_2$HPO$_4$, 0.3 g KH$_2$PO$_4$, 0.5 g MgSO$_4$.5H$_2$O, 0.01 g FeSO$_4$.7H$_2$O, 0.001 g ZnSO$_4$, 0.001 g MnCl$_2$, and 20 g of agar per litre), while MP7 was isolated from fungus comb ground in PBS and inoculated onto Carboxymethyl cellulose medium (10 g carboxymethyl cellulose and 20 g agar per litre). Isolates were streaked onto Yeast Malt Extract Agar medium (4 g yeast extract, 10 g malt extract, 4 g D-glucose and 20 g bacteriological agar per litre), and once in pure culture, they were stored in 10 % glycerol at −20 °C. The specificity and possible role of associations between fungus-growing termites and the two *Pantoea* isolates have not been determined, but the abundance of members of the *Enterobacteriaceae* in both fungus-growing termite guts [40] and fungus combs [4] suggests the possibility of a specific association.

Genome sequencing information

Genome project history

The genomes of both isolates were sequenced using the Illumina platform. Velvet [56] and Mauve [16] were employed for the assembly of the genomes and annotations were done using the Rapid Annotation using Subsystem Technology [5] and WebMGA. The genomes will remain as high quality drafts and are available from the National Center for Biotechnology Information (Tables 2 and 3). The Whole Genome Shotgun projects have been deposited at DDBJ/EMBL/GenBank under the accessions JPKQ00000000 and JPKP00000000, respectively. The versions described in this paper are version JPKQ00000000.1 and JPKP00000000.1.

Growth conditions and genomic DNA preparation

Pure cultures of the MP2 and MP7 isolates that were initially grown at 28 °C on YMEA plates was then cultured in Luria-Bertani broth (10 g tryptone, 5 g yeast
DNA was subsequently extracted from the cultures using the Qiagen DNeasy blood and tissue kit (Qiagen, CA). DNA quality was assessed using a NanoDrop™ spectrophotometer.

Genome sequencing and assembly

The genomes of the two isolates were sequenced using mate-paired Illumina sequencing using the HiSeq Platform at the Beijing Genomics Institute. Libraries with an insert size of 500 bp were generated and sequence lengths of 90 bp in both directions were obtained. After filtering out reads with >10 % Ns and/or 25–35 bases of low quality (≤Q20), and removing adapter and duplication contamination as well as trimming read ends, approximately 850 Mb of sequence data remained per isolate. The sequence reads were assembled using Velvet [56] and the sequencing and assembly metrics are given in Table 2. Contigs generated in this way were further assembled into contiguous scaffolds by alignment against the closest complete genomes, based on BLAST, of *P. vagans* C9-1 [45] and the draft genome of *Pantoea* sp. SL1-M5 [1] using the progressive Mauve algorithm in Mauve 2.3.1 [16]. The final genomes had coverage of ca. 180 ×, where that of MP2 consisted of 16 contigs and that of MP7 consisted of 8 contigs (Figs. 3 and 4).

Table 1 Classification and general features of *P. agglomerans* MP2 and *P. vagans* MP7

MIGS ID	Property	*Pantoea agglomerans* MP2	Evidence code	*Pantoea vagans* MP7	Evidence code
	Classification	Bacteria	NAS [25]	Bacteria	NAS [25]
	Proteobacteria	NAS [23]	Proteobacteria	NAS [23]	
	Gammaproteobacteria	NAS [24, 51]	Gammaproteobacteria	NAS [24, 51]	
	Enterobacteriaceae	NAS [42, 44]	Enterobacteriaceae	NAS [42, 44]	
	Enterobacteriales	NAS [25]	Enterobacteriales	NAS [25]	
	Pantoea	NAS [9, 26]	Pantoea	NAS [9, 26]	
	Pantoea agglomerans	NAS [26, 39]	*Pantoea vagans*	NAS [10]	
	Gram stain	Negative	NAS [26]	Negative	NAS [10]
	Cell shape	Straight rods	NAS [26]	Short rods	NAS [10]
	Motility	Motile	NAS [26]	Motile	NAS [10]
	Sporulation	Non-sporeforming	NAS [26]	Non-sporeforming	NAS [10]
	Temperature range	Mesophile	NAS [26]	Mesophile	NAS [10]
	Optimum temperature	30 °C	NAS [54]	30 °C	NAS [54]
	pH range; Optimum	4 - 8; 5–6	IDA	4 - 9; 5–6	IDA
	Carbon source	D-Glucose, L-arabinose, D-galactose, maltose, D-mannitol, D-mannose, L-rhamnose, sucrose, trehalose, D-xylose	NAS [54]	Malonic acid, L-ornithine, D-glucose, L-arabinose, D-galactose, D-ribose, D-galactose, sucrose, maltose	NAS [10]
	Energy source	Chemoorganotroph	NAS [54]	Chemoorganotroph	NAS [54]
	Terminal electron receptor	Not available		Not available	
	Habitat	Termite	IDA	Termite	IDA
	Salinity	Not available		Not available	
	Oxygen requirement	Facultative anaerobic	NAS [54]	Facultative anaerobic	NAS [54]
	Biotic relationship	Potential termite symbiont		Potential termite symbiont	
	Pathogenicity	Not available		Not available	
	Geographic location	Pretoria, South Africa		Mookgophong, South Africa	
	Sample collection	January 2010		January 2010	
	MIGS-4.1 MIGS-4.2 Latitude – Longitude	525 43 45.6 E28 14 09.9	S24 40 30.5 E28 47 50.4		
	MIGS-4.3 Depth	N/A	N/A		
	MIGS-4.4 Altitude	1344 m	1046 m		

IDA Inferred from Direct Assay, TAS Traceable Author Statement (i.e., a direct report exists in the literature), NAS Non-traceable Author Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are derived from the Gene Ontology project.

Evidence codes
Genome annotation

The genomes were annotated using the RAST pipeline [5]. RAST initiated the annotation by predicting RNA molecules, followed by an initial gene prediction and placing of the genome into phylogenetic context. The most closely related genomes were used to assess protein families using FIGfams (i.e., sets of protein sequences that are similar along their full length and that likely represent isofunctional homologs). The remaining genes were then assessed against the FIGfam database.

Table 2: Project information

MIGS ID	Property	P. agglomerans MP2	P. vagans MP7
MIGS-31	Finishing quality	High-quality draft	High-quality draft
MIGS-28	Libraries used	500 bp	500 bp
MIGS-29	Sequencing platforms	Illumina HiSeq mate-pair	Illumina HiSeq mate-pair
MIGS-31.2	Fold coverage	179 x	184 x
MIGS-30	Assemblers	Velvet	Velvet
MIGS-32	Gene calling method	RAST	RAST
Genbank ID	JPKQ00000000.1	JPKP00000000.1	
Genbank Date of Release	23/9/2014	23/9/2014	
GOLD ID	Gp0099200	Gp0099199	
BIOPROJECT	PRJNA254768	PRJNA254769	
MIGS-13	Source material identifier	SAMN02095153	SAMN02095155
Project relevance	Potential termite symbiont	Potential termite symbiont	
Table 3 Summary of the genomes

Label	Size (Mb)	Topology	INSDC identifier	RefSeq ID
Pantoea agglomerans MP2				
Chromosome 1	3988.2	circular	JPKQ0100001-13	NZ_JPKQ01000001-13.1
Plasmid 1	184.9	circular	JPKQ01000014	NZ_JPKQ01000014.1
Plasmid 2	292.9	circular	JPKQ01000015	NZ_JPKQ01000015.1
Plasmid 3	531.5	circular	JPKQ01000016	NZ_JPKQ01000016.1
Pantoea vagans MP7				
Chromosome 1	3913.1	circular	JPKP01000001-6	NZ_JPKP01000001-6.1
Plasmid 1	176.9	circular	JPKP01000007	NZ_JPKP01000007.1
Plasmid 2	508.6	circular	JPKP01000008	NZ_JPKP01000008.1

Fig. 3 The genome structure of *P. agglomerans* MP2. The genome consists of 1 chromosome and 3 plasmids. The order of the contigs was based on the publicly available complete genome sequence of *P. vagans* C9-1 [45]. The sizes of the contigs varied significantly with the smallest being just below 5 kbp (contig 5) and the largest being just less than 800 kbp (contig 3). The open-reading frames (ORFs) for the forward and reverse strands are indicated in the inner tracks, flanked by the COG classes associated with the respective ORFs. The GC content across the genome is indicated in black, with the GC skew (calculated as \((G-C)/(G+C)\)) indicated in green and purple, respectively [48].
Fig. 4 (See legend on next page.)

- **P. vagans MP7**
 - pPag1
 - 176,191 bp
- **P. vagans MP7**
 - pPag 3
 - 508,639 bp

P. vagans MP7

Chromosome

3,913,850 bp
followed by metabolic reconstruction. The number of protein-coding genes with functional predictions was thus based on the subsystem technology of RAST.

Both genomes were also subjected to analysis on WebMGA, where comparisons to the Clusters of Orthologous Genes [50] and Protein family (pfam) databases [7] were performed with rpsblast [2]. Signal peptide prediction and transmembrane helix prediction for the protein-coding genes in the genomes were performed using Phobius [32]. CRISPR repeats were detected using the CRISPRs database [29] (Table 4).

Genome properties
The total genomes of \textit{P. agglomerans} MP2 and \textit{P. vagans} MP7 were 4,733,829 bp and 4,598,703 bp in size, respectively (Table 4; Figs. 3 and 4). The \textit{P. agglomerans} MP2 genome includes three closed plasmids which show high sequence similarity and synten with pPag1, pPag2 and pPag3 of \textit{P. vagans} C9-1. The genome of \textit{P. vagans} MP7 on the other hand incorporates only copies of pPag1 and pPag3. The pPag2-harbored herbicolin biosynthetic locus of \textit{P. vagans} C9-1 is absent from the genomes of both MP2 and MP7 [33], while the pPATH pathogenicity island [37] is likewise absent from both strains. For \textit{P. agglomerans} MP2, 85.4 \% (4,043,819 bp) of the genome coded for 4,449 genes. Of these, 4,355 genes were protein-coding. For \textit{P. vagans} MP7, 85.9 \% (3,948,783 bp) of the genome coded for 4,181 protein-coding genes. The majority of protein-coding genes had functional predictions using both RAST annotations and the COG database (Table 4). A high number of genes code for proteins that are involved in metabolism (COG codes C, G, E, F, H, I, P and Q) with fewer genes involved in all other classes (Table 5).

Insights from the genome sequences
The genomes of the sequenced isolates were compared to the publicly available genomes of \textit{P. agglomerans} 190 and \textit{P. vagans} C9-1 [45] to determine the average nucleotide identity [28, 43] values between the isolates (Table 6). The ANI calculations were done with JSpecies [43] using the BLAST function, which is based on fragmenting the genomic sequence into pieces of 1,020 bp.

Table 4 Nucleotide content and gene count levels of the genomes

Attribute	\textit{Pantoea agglomerans} MP2 (total)	\textit{Pantoea vagans} MP7 (total)
Genome size (bp)	4,733,829	4,598,703
DNA coding (bp)	4,043,819	3,948,783
DNA G + C (bp)	2,614,812	2,541,699
DNA scaffolds	16	8
Total genes\(^{b}\)	4,449	4,277
Protein coding genes	4,355	4,181
RNA genes	94	91
Pseudo genes	-	2
Genes in internal clusters	-	-
Genes with function prediction	3470	3351
Genes assigned to COGs	3,686	3,608
Genes with Pfam domains	2,124	2,064
Genes with signal peptides	810	768
Genes with transmembrane helices	927	906
CRISPR repeats	4	3

\(^{a}\)The percentage of total is based on either the size of the genome in base pairs or the total number of protein coding genes in the annotated genome

\(^{b}\)Also includes pseudogenes and other genes
nucleotides long and performing similarity searches to determine homology between the genomic fragments.

The number of shared genes within and between species ranged from 3,400 to 3,500. Based on the ANI values, the isolates grouped with representatives of the designated species, as species cut-off values are suggested at 95 % for ANI [28].

Conclusion

The two bacteria described in this report were phylogenetically and genomically very closely related, but clearly belonged to different species. The ANI values supported the identification of isolates MP2 and MP7 as *P. agglomerans* and *P. vagans*, respectively.

Their similarity in genomic content may allow *P. agglomerans* and *P. vagans* to occupy the same or overlapping niches and perform the same or similar functional roles. This is consistent with what has been observed before where isolates of *P. agglomerans* and *P. vagans* occur in similar environmental niches and may even co-occur in the same environment [40]. Although recombination among micro-organisms occupying the same niche is common [3, 27], our data indicated that *P. agglomerans* and *P. vagans* have remained sufficiently distinct to identify them as separate species. This suggests that their ability to occupy the same niche is likely a function of their shared genes [13, 30, 35], but that the integrity of their individual genomic complements is protected by barriers that limit genetic exchange or gene flow between these species [14, 47].

Members of the genus *Pantoea* are often considered generalists that are isolated from a wide variety of environments [10, 19, 26]. Large metabolic repertoires (unpublished data, Marike Palmer) may allow species of this

Table 5 Number and proportion of genes associated with 25 COG functional categories

Code	*P. agglomerans MP2*	% of total	*P. vagans MP7*	% of total	Description
J	196	4.50 %	194	4.54 %	Translation
A	1	0.02 %	2	0.05 %	RNA processing and modification
K	358	8.22 %	331	7.74 %	Transcription
L	147	3.38 %	137	3.20 %	Replication, recombination and repair
B	-	-	-	-	Chromatin structure and dynamics
D	42	0.96 %	42	1.00 %	Cell cycle control, Cell division, chromosome partitioning
Y	-	-	-	-	Nuclear structure
V	48	1.10 %	50	1.17 %	Defence mechanisms
T	228	5.24 %	225	5.26 %	Signal transduction mechanisms
M	239	5.49 %	242	5.66 %	Cell wall/membrane biogenesis
N	90	2.07 %	92	2.15 %	Cell motility
Z	-	-	-	-	Cytoskeleton
W	-	-	-	-	Extracellular structures
U	78	1.79 %	82	1.92 %	Intracellular trafficking and secretion
O	137	3.15 %	133	3.11 %	Posttranslational modification, protein turnover, chaperones
C	209	4.80 %	206	4.82 %	Energy production and conversion
G	395	9.07 %	378	8.84 %	Carbohydrate transport and metabolism
E	405	9.30 %	405	9.47 %	Amino acid transport and metabolism
F	96	2.20 %	100	2.34 %	Nucleotide transport and metabolism
H	164	3.77 %	165	3.86 %	Coenzyme transport and metabolism
I	117	2.69 %	106	2.48 %	Lipid transport and metabolism
P	244	5.60 %	248	5.80 %	Inorganic ion transport and metabolism
Q	77	1.77 %	69	1.61 %	Secondary metabolites biosynthesis, transport and catabolism
R	450	10.33 %	430	10.05 %	General function prediction only
S	393	9.02 %	387	9.05 %	Function unknown
-	669	15.36 %	669	15.64 %	Not in COGs

a The total is based on the total number of predicted protein coding genes in the annotated genomes
	P. agglomerans 190	*P. agglomerans* MP2	*P. vagans* C9-1	*P. vagans* MP7	*P. anthophila* 11-2	*P. ananatis* LMG 2665	*P. stewartii* sp. stewartii DC283	*P. stewartii* sp. indologenes LMG2632	*P. dispersa* EGD-AAK13	*P. rwandensis* ND04
P. agglomerans 190	—	98.06	90.66	90.83	87.96	78.79	78.87	78.73	78.83	78.05
P. agglomerans MP2	98.75	—	91.88	91.81	89.08	79.89	79.72	79.64	79.89	78.95
P. vagans C9-1	90.66	91.12	—	96.62	87.56	78.79	78.81	78.75	78.75	78.1
P. vagans MP7	90.87	91.17	96.71	—	87.57	78.9	78.84	78.69	78.6	78.11
P. anthophila 11-2	88.03	88.49	87.65	87.59	—	78.97	78.9	78.72	78.92	77.93
P. ananatis LMG 2665	78.65	79.28	78.71	78.77	78.81	—	83.77	83.62	77.19	76.69
P. stewartii subsp. stewartii DC283	79.01	79.48	78.99	78.98	79.05	83.87	—	98.99	77.54	76.92
P. stewartii subsp. indologenes LMG2632	78.58	79.2	78.59	78.6	78.57	83.6	98.72	—	77.13	76.61
P. dispersa EGD-AAK13	78.68	79.35	78.69	78.64	78.85	77.3	77.37	—	82.97	—
P. rwandensis ND04	78.03	78.44	78.02	78.01	77.97	76.81	76.78	76.73	83.02	—
Pantoea isolates outcompeting potentially harmful bacteria in the respective environments as microbial antagonists. This is likely also true for *P. agglomerans* and *P. vagans* and their association with termites, however recent evidence (unpublished data, Michael Poulsen) suggest that the bacterial species may provide nitrogen fixation capabilities to the termites. It is possible that the antimicrobial [21, 22, 41] and metabolic capabilities (especially pectinolytic and other carbohydrate degrading enzymes) [8] of these bacteria allow them to outcompete other, potentially harmful micro-organisms, while also providing carbohydrates and other compounds for the termites to utilize [20].

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
MPa performed annotations, constructed genome maps, calculated the genome metrics and drafted the manuscript. PDM constructed the genome assemblies, assisted with the submission of sequences, provided guidance for the annotations and revised the manuscript. MPo performed collections and isolations of the isolates and provided support with drafting and revising the manuscript. EVZ provided organism information, performed culturing of the organisms and assisted with submission of isolates and revision of the manuscript. ETS, TAC and SNV participated in the coordination of the study, provided support with interpretation of the data and helped draft the manuscript. All authors read and approved the final manuscript.

Acknowledgements
The authors would like to acknowledge funding from the Danish Council for Independent Research, Natural Sciences (STENO grant: Michael Poulsen), the National Research Foundation (NRF) (RCA Fellowship: Pieter De Maayer) and the NRF/Dept. of Science and Technology Centre of Excellence in Tree Health Biotechnology (CTHB), South Africa. We would like to thank Wai-Yin Chan for assistance with the annotation of the genomes.

Author details
1. Department of Microbiology and Plant Pathology and the Genome Research Institute, University of Pretoria, Pretoria 0002, South Africa.
2. DST-NRF Centre of Excellence in Tree Health Biotechnology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa.
3. Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria 0002, South Africa.
4. Department of Biology, Centre for Social Evolution, Section for Ecology and Evolution, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen East, Denmark.

Received: 19 October 2015 Accepted: 20 January 2016

Published online: 01 March 2016

References

1. Adams AS, Jordan MS, Adams SM, Suen G, Goodwin LA, Davenport KW, Currie CR and Raffa KF. Cellulose-degrading bacteria associated with the invasive woodwasp *Sirex noctilio*. ISME J. 2011;5:1323–31.
2. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, and Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–402.
3. Andam CP, Gogarten JP. Biased gene transfer in microbial evolution. Nat Rev Microbiol. 2011;9:543–55.
4. Aylward FO, Suen G, Biedermann JP, Adams AS, Scott JJ, Malfatti SA, Glavina del Río T, Tinge SG, Poulsen M, Raffa KF, Klepzig KD, Currie CR. Convergent bacterial microbiotas in the fungal agricultural systems of insects. mBio. 2014;5. doi:10.1128/mBio.02077-14.
5. Aziz R, Bartels D, Best A, DeLong M, Disz T, Edwards R, Formisna K, Gerdes S, Glass E, Kubal M, Meyer F, Olsen G, Rolan Gu, Osterman A, Overbeek R, McNeil L, Paarmann D, Paczian T, Parrello B, Pusch G, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A and Zagrino A. The RAST Server: Rapid Annotations using Subsystems Technology. BMC Genomics. 2008;9:75.
6. Barash I, Manulis-Sasson S. Recent evolution of bacterial pathogens: the gall-constituting *Pantoea agglomerans* case. Annual Review of Phytopathology. 2009;47:133–52.
7. Bateman A, Birney E, Durbin R, Eddy SR, Howe KL, Sonnhammer ELL. The Pfam protein families database. Nucleic Acids Res. 2002;28:263–70.
8. Behar A, Jurkevitch E, Yuval B. Bringing back the fruit into fruit fly–bacteria interactions. Mol Ecol. 2008;17:975–86.
9. Brady CL, Greenwerk J, Venter SN, Engelbeen K, De Vos P and Coutinho TA. Emended description of the genus *Pantoea*, description of four species from human clinical samples, *Pantoea septica* sp. nov., *Pantoea eucrina* sp. nov., *Pantoea breneri* sp. nov. and *Pantoea connisincia* sp. nov. and transfer of Pectobacterium *cyripedii* (Hori. Brenner et al. 1973 emend. Hauben et al. 1998 to the genus *Pantoea* as *Pantoea* cyripedii comb. nov. Int J Syst Evol Microbiol. 2009;59:2339–40.
10. Brady CL, Venter SN, Greenwerk J, Engelbeen K, Vancanneyt M, Swings J, and Coutinho TA. *Pantoea* vagans sp. nov., *Pantoea eucrylata* sp. nov., *Pantoea deleyi* sp. nov. and *Pantoea anthophila* sp. nov. Int J Syst Evol Microbiol. 2011;61:402.
11. Brady CL, Greenwerk J, Van der Westhuizen L, Venter SN, Coutinho TA, De Vos P. *Pantoea radixii* sp. nov., *Pantoea radionovis* sp. nov. and *Pantoea wallisi* sp. nov. isolated from *Eucalyptus*. International journal of systematic and evolutionary microbiology. 2012;62:1457–64.
12. Cataba JC, Echeverri LM, Szela C. Bacterial contamination of clothes and environmental items in a third-level hospital in Colombia. Interdiscip Perspect Infect Dis. 2012. doi:10.1155/2012/507640.
13. Coenye T, Gevers D, Van de Peer Y, Vandamme P, Swings J. Towards a prokaryotic genomic taxonomy. FEMS Microbiol Rev. 2005;29:147–67.
14. Cohan FM. What are bacterial species? Annu Rev Microbiol. 2002;56:457–87.
15. Cruz AT, Caazuc AC, Allen CH. *Pantoea agglomerans* – a plant pathogen causing human disease. J Clin Microbiol. 2007;45(6):1989–1992.
16. Darling AE, Mau B, Perna NT. progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS ONE. 2010;5:e11147.
17. De Baere T, Verhelst R, Labit C, Verschaeren G, Wauters G, Claey S, and Vanechocuter M. Bacterial infection with *Pantoea* ananatis. J Clin Microbiol. 2004;42:4393–31.
18. De Champs C, Le Saux S, Dubost JI, Boisgard S, Sauvezie B, Sirot J. Isolation of *Pantoea agglomerans* in two cases of septic monoarthritis associated with *Eucalyptus*. Int J Syst Evol Microbiol. 2004;54:2171–6.
19. De Maayer P, Chan W-Y, Blom J, Venter S, Duffy B, Smits T, and Coutinho TA. Analysis of the *Pantoea* species genome of *Pantoea agglomerans* species in a biocontrol strain of *P. agglomerans* in Canadian midge midges. ISME J. 2011;5:1323–41.
20. Denengen H, Sijdeh N, Heben MOS, and Coutinho TA. The gut bacteria of insects: nonpathogenic interactions. Annu Rev Entomol. 2004;49:1–27.
21. Dillon RJ, Charnley AK. Chemical barriers to gut infection in the desert locust: in vivo production of antimicrobial phenols associated with the bacterium *Pantoea agglomerans*. J Invertebr Pathol. 1995;66:72–5.
22. Dillon RJ, Dillon WM. The gut bacteria of insects: nonpathogenic interactions. Annu Rev Entomol. 2004;49:71–92.
23. Garrity GM, Bell JA, Libburn T. *Pseudomonas* phylogeny. In: Garrity GM, Brenner DJ, Krieg NR, Staley JT, editors. Bergey’s manual of systematic bacteriology, second edition, volume 2, part B. New York: Springer; 2005. p. 1.
24. Garrity GM, Bell JA, Libburn T, Class III, Czarnard, D, Kelterer, K and De Ley J. Transfer of *Enterobacteriaceae* bacilli (Beijerinck 1888) and Fife 1972 to *Pantoea* gen. nov. as *Pantoea agglomerans* comb. nov. and description of *Pantoea dispersa* sp. nov. Int J Syst Bacteriol. 1989;39:337–45.
25. Gogarten JP, Doolittle WF, Lawrence JG. Prokaryotic evolution in light of gene transfer. Mol Biol Evol. 2002;19:226–38.
et al. Standards in Genomic Sciences

and Erwinia ananas species using whole genome sequence data. Antonie van And the fire blight antagonist Pantoea stewartii biocontrol strain C9-1 lacking the 530-kb megaplasmid pPag3. FEMS

subsp. Pantoea stewartii and Erwinia amylovora betae Erwinia herbicola

Pantoea gen. nov., sp. nov., a member of the family Enterobacteriaceae found in clinical specimens. J Clin Microbiol. 1981:14:79–88.

Kull L, Krogh A, Sonnhammer E.L. Advantages of combined transmembrane topology and signal peptide prediction: the Phobius web server. Nucleic Acids Res. 2007;35:W429–32.

Kamber T, Smits TM, Rezzonico F, Duffy B. Genomics and current genetic understanding of Erwinia amylovora and the fire blight antagonist Pantoea vagans. Trees. 2012;26:227–38.

Kim WS, Gardan L, Rhim SL, Geider K. Erwinia pyrifoliae sp. nov., a novel pathogen that affects Asian pear trees (Pyrus pyrifolia Nakai). International Journal of Systematic Bacteriology. 1999;49(2):899–906.

Lan R, Reeves PR. Intraspecies variation in bacterial genomes: the need for a species genome concept. Trends Microbiol. 2000;8:396–401.

Lanave C, Preparata G, Sacone C, Serio G. A new method for calculating evolutionary substitution rates. J Mol Evol. 1984;20:86–93.

Manulis S, Barash I. Pantoea agglomerans pv. gyrophilae and betae, recently evolved pathogens? Mol Plant Pathol. 2003;4:307–14.

Mergaert J, Verdonck L, Kersters K. Transfer of Erwinia anatolica, synonym, Erwinia uredovora and Erwinia stewartii to the genus Pantoea emend. as Pantoea ananatis, Serrano 1928 comb. nov. and Pantoea stewartii, Smith 1898 comb. nov., respectively, and description of Pantoea stewartii subsp. indologenes subsp. nov. Int J Syst Bacteriol. 1993;43:162–73.

Mergaert J, Houben L, Cnockaert MC, Swings J. Reclassification of non-pigmented Erwinia herbicola strains from trees as Erwinia billingiae sp. nov. Int J Syst Bacteriol. 1999;49:377–83.

Otani S, Mikaelian A, Nobre T, Hansen LH, Koné NA, Sørensen SJ, Aanen DK, Boomsma JJ, Brune A and Poulsen M. Identifying the core microbial community in the gut of fungus-growing termites. Mol Ecol. 2014;23:4631–44.

Pusey PL. Biological control agents for fire blight of apple compared under conditions limiting natural dispersal. Plant Dis. 2002;86:639–44.

Rahn O. New principles for the classification of bacteria. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene Abteilung II. 1937;92:273–86.

Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci. 2009;106:19126–31.

Skerman VBD, McGowan V, Sneath PHA. Approved lists of bacterial names. Int J Syst Bacteriol. 1980;30:225–420.

Smits THM, Rezzonico F, Kamber T, Geissmann A, Ishimaru CA, Stockwell VO, Frey JE and Duffy B. Genome sequence of the biocontrol agent Pantoea vagans strain C9-1. J Bacteriol. 2010;192:4684–8.

Smits THM, Rezzonico F, Pelludat C, Geissmann A, Frey JE, Duffy B. Genomic and phenotypic characterization of a non-pigmented variant of Pantoea vagans biocontrol strain C9-1 lacking the 530-kb megaplasmid pPag3. FEMS Microbiol Letters. 2010;308:48–54.

Sorek R, Zhu Y, Creevey CJ, Francino MP, Bork P, Rubin EM. Genome-wide experimental determination of barriers to horizontal gene transfer. Science. 2007;318:1449–52.

Stothard P, Wishart DS. Circular genome visualization and exploration using CGView. Bioinformatics. 2004;20:537–9.

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol Biol Evol. 2013;30:2725–9.

Tatusov RL, Galperin MY, Natale DA, Koonin EV. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 2000;28:33–6.

Validation of publication of new names and new combinations previously effectively published outside the IJSEM. List no. 106. Int J Syst Evol Microbiol. 1999;49:377–83.

Validation of the publication of new names and new combinations previously effectively published outside the IJSEM. List No. 8. Int J Syst Bacteriol. 1981;31:2725–9.

Vorwerk S, Martinez-Torres D, Forneck A. Pantoea agglomerans-associated bacteria in grape phylloxera (Daktulosphaira vititifoliae, Fitch). Agric For Entomol. 2007;5:57–64.

Whitman WB, Goodfellow M, Kämpfer P, Busse HJ, Trujillo ME, Suzuki K, and Ludwig W. Bergey’s manual® of systematic bacteriology (vol 5). New York: Springer; 2012.

Winslow CEA, Broadhurst J, Buchanan RE, Krumwiede C, Rogers LA, Smith GH. The families and genera of the bacteria: final report of the committee of the society of American bacteriologists on characterization and classification of bacterial types. J Bacteriol. 1920;5:191–229.

Zentino DR, Binney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008;18:821–9.

Zhang Y, Qiu S. Examining phylogenetic relationships of Erwinia and Pantoea species using whole genome sequence data. Antonie van Leeuwenhoek. 2015;108:1037–46.