Research Article

Diagnosis and Clinical Management of Neuroendocrine Tumor of the Breast: Report of Six Cases and Systematic Review of Existing Literature

Corrado Tinterri¹, Giulia Puliani², Emilia Marrazzo¹, Andrea Sagona¹, Erika Barbieri¹, Wolfgang Gatzemeier¹, Giuseppe Canavese, Alberto Bottini, Alessandro De Luca³ and Federico Frusone³

¹Humanitas Research Hospital and Cancer Center, Breast Surgery Department, Milan, Rozzano, Italy
²Sapienza University of Rome, Department of Experimental Medicine
³Sapienza University of Rome, Department of Surgical Sciences

Article history:
Received: 25 December, 2019
Accepted: 9 January, 2020
Published: 4 February, 2020

Keywords:
Neuroendocrine tumor (NET) breast
neuroendocrine carcinoma
carcinoid
neuroendocrine neoplasia

Abstract

Introduction: Neuroendocrine neoplasms of the breast (bNETs) are considered a rare disease, even if in WHO data they represent about 2-5% of all breast cancer. The last WHO classification includes: well-differentiated neuroendocrine tumor (bNET), neuroendocrine carcinoma (NEC) and invasive carcinoma with neuroendocrine differentiation. The current knowledge on clinical management of bNETs is poor and patients are usually treated according to non-endocrine tumor components guidelines.

Materials and Methods: We presented our experience of six cases of bNETs. Moreover, we conducted a systematic review of published data on diagnosis, treatment and outcome of this kind of tumors.

Results: bNENS usually presented as palpable breast masses, classically appearing as irregular hypoechoic lesions at US examination and as hyperdense masses at mammography. Usually pre-operative tumor biopsy is not able to recognize the neuroendocrine components and the final diagnosis is performed only on definitive histopathological assessment. The most frequent subtype seems to be neuroendocrine carcinoma and synaptophysin is positive in most specimens. Treatment strategies, including surgical treatment, radiotherapy and medical treatment are nowadays based on current non-endocrine breast cancer guidelines, independently from neuroendocrine components, even if some studies have proposed the use of somatostatin analogues for bNET and cisplatin-etoposide for NEC. Prognosis of all bNETs, especially of poorly differentiated neoplasia, seems worse compared to non-neuroendocrine breast cancer and stage and morphology seem the best predictor of tumor outcome.

Conclusions: We provide an algorithm for clinical management of bNETs, basing on available data. More studies are necessary for confirming the best treatment strategy for these patients, in order to improve clinical outcome.

© 2020 Corrado Tinterri. Hosting by Science Repository. All rights reserved.

Introduction

The first description of a neuroendocrine tumor (NET) of the breast dates back to 1963: an invasive breast cancer morphologically similar to intestinal carcinoids [1]. World Health Organization (WHO) recognized neuroendocrine tumors of the breast as a separate entity of breast cancer only in 2003, defining them as primary neuroendocrine carcinomas exhibiting morphological features of gastrointestinal and pulmonary NETs in which more than 50% of the cells expresses neuroendocrine markers (chromogranin A and synaptophysin) [2]. In 2012 the cut-off of 50% of the cells expressing neuroendocrine markers was eliminated and bNENS were divided in groups according to morphology: well-differentiated (carcinoid-like) neuroendocrine tumor (bNET), poorly differentiated neuroendocrine carcinoma (NEC) small-cell neuroendocrine carcinoma (SCNC) and invasive carcinoma with neuroendocrine differentiation (ICNE) [3]. According to WHO data, bNETs represent about 2.5% of all breast cancer [4]. In data from SEER database bNENS represent less than 0.1% of total invasive carcinomas of the breast [5]. Probably these frequencies may underestimate the real
incidence of bNENs: retrospective studies on breast tumor specimens showed high incidence of neuroendocrine cells with positive neuroendocrine markers [6, 7]. Nowadays, the impact of neuroendocrine differentiation of breast cancer on diagnosis, treatment and outcome is still unclear. Because of the low incidence of this kind of neoplasia, no clinical trials or guidelines are available on this topic. The aim of this systematic review is to summarize clinical presentation, diagnosis, treatment and outcomes of all available cases in Literature, adding our personal experience of six cases.

Materials and Methods

I Article Identification

We searched PubMed, Embase, Google Scholar and Cochrane databases for English language studies on neuroendocrine tumor of the breast. Search terms used were: “neuroendocrine tumor” AND breast, “neuroendocrine tumour” AND breast, “neuroendocrine cancer” AND breast; “neuroendocrine carcinoma” AND breast.

II Eligibility Criteria

We included English-language studies on humans with any of the following design: randomized clinical trials, prospective non-randomized trials, retrospective studies, case reports and case series. We selected cases classified by the pathologist as neuroendocrine breast tumor, according to WHO classification used at time of publication (2003 or 2012). For article published before 2003, we included cases defined as breast neuroendocrine tumors or carcinoids by the Authors. We included in the systematic reviews only articles with data on at least one of the following topics: clinical presentation, treatments and outcomes of neuroendocrine tumors of the breast. Last search date was February 2019.

III Article Selection

Each study was screened by abstract and title and potentially eligible studies were further assessed in detail by retrieving full-length articles. Each full-length article was independently reviewed by two separate Authors following inclusion criteria. Two authors independently extracted data from the articles that met the inclusion criteria. A standardized form was used to extract the following information: year of publication, type of study, number of patients included, age at diagnosis, sex, familiarity for breast tumors, other known risk factors for breast cancer, clinical presentation, palpability, diagnostic procedures (ultrasound, mammography, MRI, CT, PET, fine needle aspiration and biopsy), treatment strategy (surgery, medical treatment, radiotherapy), histopathological examination including immunohistochemistry, stadiation and outcomes.

Results

I Case Series

We present six cases of bNENs diagnosed in Humanitas Research Hospital of Milan from 2012 to 2018. All patients provided written informed consent to case publication. All cases were females, mean age 64.2 ± 13.7. All patients presented with breast lumps (in one case painful). When performed, breast ultrasound (US) always showed a mass (in three cases hypoechoic mass) and mammography showed 4 spiculated and 1 regular margin hyperdense lesion of 0.8-2.7 cm of maximum diameter. Breast magnetic resonance imaging (MRI) was not performed in all cases due to lack of indication. Biopsy showed in all cases infiltrating breast carcinoma but only in one case succeeded in identifying neuroendocrine differentiation. All patients underwent surgical intervention. Surgery on tumor mass was in 4 cases breast conservative surgery (BCS) and in 2 cases total mastectomy; axillary surgery consisted of 3 lymphadenectomies and 3 sentinel lymph node biopsies. Radiotherapy was performed in the 4 cases of BCS. Definitive histopathological evaluation confirmed in all cases the neuroendocrine differentiation: 2 bNET, 2 breast NEC and 2 ICNE. In our case series synaptophysin has been the most important neuroendocrine marker, been positive in 6/6 cases. Chromogranin was positive in 1/3 cases while NSE was never evaluated. 5/6 (83.3%) cases showed positivity for both oestrogen and progesterone receptors. Ki67 ranged from 10 to 90%.

After definitive diagnosis, all patients performed a total body scans (¹⁸FDG PET/CT and contrast-enhanced total body CT scans) for excluding neuroendocrine neoplasm of other origin. After surgical removal, patients underwent chemotherapy or hormonal therapy according to associated non-endocrine breast tumor histotype guidelines (2 only hormone therapy, 1 chemotherapy, 3 hormone therapy associated to chemotherapy). One patient with NEC developed liver and bone metastasis after 6 months and is now alive with metastatic disease after one year of follow-up. Medium follow-up of other cases was 65 (35-120) months: 3 patients are today alive and disease free, two are alive with local recurrence. All data are summarized in Table 1A.

Figure 1: Flowchart of literature eligibility assessment process.

II Systematic Review

From the initial search we retrieved 445 articles. After screening for title and abstract we identified 140 potentially eligible articles. After full text examination a total of 117 articles were included in this systematic review (Figure 1). 102 articles were case reports on a total of 113 bNENs. Available data are summarized in Table 1B. 15 articles were retrospective studies or case series on a total number of 731 patients: data are summarized in Table 2.
Table 1A: Case series.

Case	Age	Clin pres	US	MX	CT	PET	Bio / Cit	Nadj treat	Surgery	Adj treat	Adj RT	pTNM	Tum size	LNs	Histo-type	CrA	Syn	ER	PR	Her2	Ki67	FUP (mo)	Alive status
1	66	BL	NA	NA	Neg	Neg	Bio	NO	BCS + ALND	ADR/CPA + DTX + Ana	Yes	T2N3aM0	12/14	ICNE	NA	+	70%	60%	0	10%	120	AWD	
2	54	BL	HyBM	SBM	Neg	Neg	Bio	NO	Mast + SLNB	ADR/CPA + DTX + Ana	No	T2N0M0	0/1	NET	-	+	95%	29%	0	70%	60	NED	
3	43	PBMB	HyBM, N+	SBM	Neg	BoMet, LMet	Bio	Yes	Mast + ALND	CDDP + VP-16	Yes	T4bN3aM1	9/14	NEC	+	0	0	0	90%	12	AWD		
4	66	BL	BM	HypBM	Neg	Neg	Bio	NO	BCS + ALND	ADR/CPA + DTX + Ana	Yes	T1N3aM0	13/15	ICNE	NA	+	80%	70%	0	12%	53	AWD	
5	78	BL	HyBM	SBM	Neg	Neg	Bio	NO	BCS + SLNB	Ana	No	T1cN0M0	0/16	NET	-	+	95%	95%	1+	25%	76	NED	
6	78	BL	BM	SBM	Neg	Neg	Bio	NO	BCS + SLNB	Ana	Yes	T1cN0M0	0/2	NEC	NA	+	95%	95%	0	20%	70	NED	

HeadingS: NA = Not available data; Clin Pres = Clinical presentation; US = breast Ultrasound; MX = mammography; Bio = biopsy; Cit = citology; Ad treat = adjuvant treatment (chemotherapy and/or hormone therapy); Adj RT = adjuvant radiotherapy; Tum size = tumor size (centimeters); LNs = lymph nodes removed; CrA = Chromogranin A; Syn = Synaptophisin; ER = Estrogen receptor; PR = Progesterone receptor; Her2 = her2-neu receptor; FUP = follow-up (months).

Clinical and radiological findings: Pos = positive for malignancy; Neg = negative for malignancy; BM = Breast Mass; CM = carcinomatous mastitis; N+ = axillary adenopathy; PBMB = Painful breast mass; BL = breast lump; SR = Skin retraction, NR = nipple retraction, PLM = Paget-like Mass; BND = Bloody nipple discharge; UBM = Ulcerated Breast Mass; MBM = Multilobulated breast mass; HyBM = Hypoechoic (US) / Hypodense (MX) breast mass; Hyp = Hyperechoic (US) / Hyperdense breast mass; HeBM = Heterogeneous breast mass; SBM = Spiculated breast mass; Mic = microcalcifications, BoMet = Bone Metastases; LMet = Lung metastasis; PAMet = Perianal metastases, PiMet = Pituitary metastases; PaMet = Pancreatic metastases; PE = Pleural effusion; MMet = Multiple metastases; IBM = Isoechoic breast mass; Neg = Negative; Sus = suspicious; LMet = lung metastasis.

Mast: Mastectomy; BCS = Breast Conservative Surgery; SLNB = Sentinel Lymph Node Biopsy; ALND = Axillary Lymph Node Dissection.

Chemotherapy: ChT = chemotherapy (not defined); HoT = hormone therapy (not defined); CDDP = Cisplatin, CBL = Carboplatin, VP-16 = Etoposide, CPT-11 = Irinotecan, 5-FU = Fluorouracil, EPI = Epirubicin, CAP = Capetitabine, DTX = Docetaxel, 5'-DFUR = 50 deoxy-5-fluorouridine, Tor = Toremifene, CPA = Cyclophosphamide, EPI = Epirubicin, Tam = Tamoxifen, Let = Letrozole, S = Streptozocin, MTX = Methotrexate, Ana = Anastrazole, AI = Aromatase inhibitor, LHRH = Lenising hormone releasing hormone analogue, UFT = Uracil & Tegafur, PTX = Paclitaxel, ADR = Adriamycin (Doxorubicin), Sando = Sandostatin, Som = Somatostatin; Ever = Everolimus, Bev = Bevacizumab, Erl = Erlotinib; Palb = Palbociclib; Oct = Octreotide.

Histology: SCNC = Small Cell Neuroendocrine Carcinoma, ICNE = Invasive carcinoma with neuroendocrine differentiation; NET = well-differentiated neuroendocrine tumor; NEC = poorly differentiated neuroendocrine carcinoma.

Follow-up: NED = No evidence of disease; AWD = Alive with disease; DOD = Died of disease; DUC = Died of Uncertain cause

†Median follow-up.
Table IB: Case reports available in literature.

Author (year)	Preoperative diagnosis	Treatment	Tumor biology	Follow-up
Wade [23] 1983	UBM N+ MBM MBM Neg NO Bio	NO Mast + ALND VP-16 NO	pTNM Tum size LNs Histo-type CrA Syn ER PR Her2 Ki67 FUP (mo) Alive status	1987 25/25 SCNC NA NA NA NA NA NA NA NA
Jendr [24] 1984	NA NA NA NA NA	NA NA NA NA	TXN1M1 NA +/? NA NA NA NA NA NA 14 DOD	
Francois [25] 1995	BM HoBM HBM Neg NO Cit	NO Mast + ALND CPA/ADR/VP-16 Yes	T2N0M0 4 0/12 SCNC NA NA - NA NA 21 DUC	
Chua [26] 1997	BM NA NA NA NA Bio	NO BCS NA NO	T2N0MX 4.5 NA SCNC - + - - NA <1 NED	
Yalcin [27] 1997	BM BM BM BM Neg NO Bio	NO Mast + ALND NO	T2N0M0 5 0/7 NET + NA NA NA NA 18 NED	
Fukunaga [28] 2004	BM Neg BM Neg BM NA	NA Mast + ALND NA NA	T2N0M0 2.5 0/59 NET + + + - NA 16 NED	
Fukunag [29] 2004	BM BM BM BM Neg NO NA	NO Mast + ALND NO NO	T2N1M0 2.5 1/7 NEC + + - - NA 12% 72 NED	
Samli [30] 2004	BM BM BM BM Neg NO Bio	Yes Mast + ALND CDDP/VP-16+ 5-FU CPA/MTX/5-FU Yes	T4N1M0 4.5 10/11 SCNC + + + + NA 6 AWD	
Yamasaki [32] 2001	BM Neg SBM Neg Sus Cit	NO Mast + ALND CPA/MTX/5-FU NO	T2N0M0 3.5 1/0 SCNC + - - - NA 16 NED	
Huang [33] 2001	NA NA NA NA NA NA	NA		
Salme [34] 2001	NA NA NA NA NA NA	NO BCS ChT YES	T2N0M0 4 NA NA NA NA NA NA NA	9 NED
Bertui [35] 2001	LMet Neg Neg LMet NO NA	Yes LMet resection Tam NO	TXN1M1 NA NA NEC + + + - 12 144 NED	
Bigoti [36] 2004	CM BM BM BM NA Neg Bio	Yes NO ChT + Som NO	T2N1M0 18 2/9 SCNC - + + + - NA 15 DOD	
Bergman [37] 2004	BL BM BM BM Neg Bio	NO Mast + ALND NO	T2N1M0 2.5 2/5 SCNC - - - - NA 14 NED	
Jochems [38] 2004	BM BM BM BM Neg NO	NO Mast + ALND Tam NO	T2N0M0 3 0/10 NEC + + + + - NA 12 NED	
Mariscal [39] 2004	BM, SR, N+ HyBM BM, N+ Neg Bio	Yes BCS + ALND HoT NO	T2N1M0 5.5 1/7 SCNC NA + NA NA NA 6 NED	
Sridhar [40] 2004	NA NA NA NA NA NA	NO BCS ChT YES	T2N1M0 2 NA NA NA NA NA NA NA	18 NED
Yamamoto [41] 2004	NA NA NA NA NA NA	NO Neo Mast + ALND NO	T2N0M0 6.5 NA NA NA NA NA NA NA	34 NED
Adegbola [42] 2005	BL NA NA NA NA Neg NO	NO BCS CDDP/VP-16+ Yes	T1N1M0 1 0 SCNC + + - NA - NA 48 NED	
Hennessey [46] 2007	PAMet Neg PAMet NO Bio	NO Mast + SLNB ChT/Tam NO	TXN1M1 NA NA NEC + + NA NA NA NA 14 NED	
Kitakata [47] 2007	BL HyBM BM BM Neg Neg	NO Mast + ALND CPA/Epi + DTX NO	T2N1M0 4.5 2/15 SCNC - + + + - NA 22 NED	
La Rosal [48] 2007	BL Pos Pos NO NO Cit NO Mast ChT NO	T2N1M0 2.5 NA NEC + + + + - NA 16 NED		
Vidulich [49] 2007	BM, N+, PE BM, N+ NA NA LMet MMet Cit. Bio	NO NO Oct/Ever, Bev/Eri NO	T4N1M1 5 NA NEC + + + + - NA 16 AWD	

Annals of Clinical Oncology doi:10.31487/ajc.ACO.2020.01.02 Volume 3(1): 4-14
Diagnosis and Clinical Management of Neuroendocrine Tumor of the Breast: Report of Six Cases and Systematic Review of Existing Literature

Year	Cases	Method	Treatment	Outcome
2007	76	NA	NA Mast + ALND	NA Mast + ALND
2008	39	BL	HypBM NO Mast + ALND	Ctx / Hot
2008	27	BM	HeBM Neg Bio	BCS + ALND
2008	31	BL	HyBM Neg MMet	Mast + ALND
2008	30	PLM	NA No BCS + SLNB	T2N0M0
2008	62	NA	NA Mast + ALND	NA T1N2MX
2008	41	NA	NA Mast + ALND	NA T2N1MX
2008	33	NA	NA Mast + ALND	NA T2N1MX
2008	60	BM	MBT Neg	T2N0M0
2009	40	BL, N+	NA Mast + ALND	NA
2009	84	NA	NA Mast + ALND	NA T2N0M0
2009	40	BM	NA BM Neg	NA BCS
2009	50	NA	NA Mast + ALND	NA T2N0M0
2009	68	NA	NA Mast + ALND	NA T2N0M0
2009	60	NA	NA Mast + ALND	NA T2N0M0
2009	65	BM	HyBM Neg	T4N2M1
2009	63	BM HyBM Neg	NA Mast + ALND	NA
2009	41	NA	NA Mast + ALND	NA T2N0M0
2009	81	NA	NA Mast + ALND	NA T2N0M0
2009	48	BoMet	NA Mast + ALND	NA T2N0M0
2009	70	NA	NA Mast + ALND	NA T2N0M0
2009	64	BM BM	Bl Neg	NA Mast + ALND
2009	51	BM BM	Neg Bio	NA Mast + ALND
2010	61	NA	NA Mast + ALND	NA
2010	40	NA	NA Mast + ALND	NA T2N0M0
2010	54	BIND	HyBM	NA Mast + ALND
2010	65	NA	NA Mast + ALND	NA T2N0M0
2010	53	BM	Neg BM	NA Mast + ALND
2010	60	NA	NA Mast + ALND	NA T2N0M0
2010	72	NA	NA Mast + ALND	NA T2N0M0
2011	63	Na	Na Pos	Na BCS
2011	68	BM N+	BL	HypBM Mast + ALND
2011	64	BM N+	BN Neg	Mast + ALND
2011	28	BL	BN NA Bio	Mast + ALND
2011	43	BM	BM NA NA	Mast + ALND
2011	67	UMB	BM BM NA	Mast + ALND

Overall

Year	Cases	Method	Treatment	Outcome
2007	76	NA	NA Mast + ALND	NA Mast + ALND
2008	39	BL	HypBM NO Mast + ALND	Ctx / Hot
2008	27	BM	HeBM Neg Bio	BCS + ALND
2008	31	BL	HyBM Neg MMet	Mast + ALND
2008	30	PLM	NA No BCS + SLNB	T2N0M0
2008	62	NA	NA Mast + ALND	NA T1N2MX
2008	41	NA	NA Mast + ALND	NA T2N1MX
2008	33	NA	NA Mast + ALND	NA T2N1MX
2008	60	BM	MBT Neg	T2N0M0
2009	40	BL, N+	NA Mast + ALND	NA
2009	84	NA	NA Mast + ALND	NA T2N0M0
2009	40	BM	NA BM Neg	NA BCS
2009	50	NA	NA Mast + ALND	NA T2N0M0
2009	68	NA	NA Mast + ALND	NA T2N0M0
2009	60	NA	NA Mast + ALND	NA T2N0M0
2009	65	BM	HyBM Neg	T4N2M1
2009	63	BM HyBM Neg	NA Mast + ALND	NA T2N0M0
2009	41	NA	NA Mast + ALND	NA T2N0M0
2009	81	NA	NA Mast + ALND	NA T2N0M0
2009	48	BoMet	NA Mast + ALND	NA T2N0M0
2009	70	NA	NA Mast + ALND	NA T2N0M0
2009	64	BM BM	Bl Neg	NA Mast + ALND
2009	51	BM BM	Neg Bio	NA Mast + ALND
2010	61	NA	NA Mast + ALND	NA T2N0M0
2010	40	NA	NA Mast + ALND	NA T2N0M0
2010	54	BIND	HyBM	NA Mast + ALND
2010	65	NA	NA Mast + ALND	NA T2N0M0
2010	53	BM	Neg BM	NA Mast + ALND
2010	60	NA	NA Mast + ALND	NA T2N0M0
2010	72	NA	NA Mast + ALND	NA T2N0M0
2011	63	Na	Na Pos	Na BCS
2011	68	BM N+	BL	HypBM Mast + ALND
2011	64	BM N+	BN Neg	Mast + ALND
2011	28	BL	BN NA Bio	Mast + ALND
2011	43	BM	BM NA NA	Mast + ALND
2011	67	UMB	BM BM NA	Mast + ALND

Systematic Review of Existing Literature

- **Mast + ALND**: Mastectomy + Axillary lymph node dissection
- **BCS + ALND**: Breast conserving surgery + Axillary lymph node dissection
- **HyBM**: Hyperthyroidism
- **BM**: Breast mass
- **MB**: Metastatic breast
- **ICNE**: Incomplete carcinoma of neuroendocrine
- **NEC**: Neuroendocrine carcinoma
- **AWD**: Advanced
- **NED**: Not evaluable due to death

Outcome

- **Mast + ALND**: Mastectomy + Axillary lymph node dissection
- **BCS + ALND**: Breast conserving surgery + Axillary lymph node dissection
- **HyBM**: Hyperthyroidism
- **BM**: Breast mass
- **MB**: Metastatic breast
- **ICNE**: Incomplete carcinoma of neuroendocrine
- **NEC**: Neuroendocrine carcinoma
- **AWD**: Advanced
- **NED**: Not evaluable due to death
| Navrozoglou[86] | 2011 | 73 | NO | BN | BN | NA | Neg | Bio | NO | Mast + ALND | NO | NO | T1N0M0 | 1,1 | 0/17 | NET | + | + | NA | NA | NA | NA | 48 | NED | |
| Nicoletti[87] | 2011 | 40 | BM | BN | BN | Neg | NO | Bio | NO | Mast + ALND | ADRC/CPA + CBL/V-16 + Triamcinolone | NO | T2N1M0 | 3 | 1/16 | SCNC | + | + | + | - | + | 96 | NED |
| Nozoe[88] | 2011 | 57 | BL | HyBM | BM | NA | NA | NA | NO | Mast + ALND | CMF + AI | NA | NA | 3 | 0/7 | NEC | NA | + | + | - | NA | NA | NA |
| Zhang[89] | 2011 | 29 | BND | BM | BM | NO | NO | Cit | NO | BCS + SLNB | CPA/EP/5-FU + DTX + Tor | NO | T2N0M0 | 2 | 0/2 | NET | + | + | - | - | 1% | 20 | NED |
| Alkaied[90] | 2012 | 83 | Anorexia | Neg | Neg | NO | Pos | Bio | Yes | NO | Letrozole + Ana | NO | TXNM1 | NA | NA | SCNC | - | + | + | NA | NA | NA | NA | 12 | NED |
| Flessas[91] | 2012 | 59 | NO | NA | Mic | NO | NO | Bio | NO | BCS + ALND | NA | NA | T2N0M0 | 2.8 | 1/7 | ICNE | + | + | - | NA | NA | NA | NA | NA |
| Graça[92] | 2012 | 83 | BM | BM | BM | Neg | Neg | Cit | NO | BCS + SLNB | HoT | NO | T2N0M0 | 2.4 | 0/1 | NEC | NA | + | + | NA | NA | NA | NA | NA | NED |
| Menéndez[93] | 2012 | 44 | NO | NA | BM | NA | NA | NA | NO | BCS + ALND | 5-FU/EP/CPA | Yes | T2N0M0 | 2 | 1/7 | NEC | NA | + | + | - | NA | 48 | NED |
| Zhang[94] | 2012 | 68 | NO | NA | BM | NA | NA | NA | NO | BCS + SLNB | 5-FU/EP/CPA + DTX + Ana | Yes | 3.6 | NA | NEC | NA | + | + | - | NA | 24 | NED |
| Miura[94] | 2012 | 69 | NO | HyBM | BM | NA | NA | NA | NA | BCS + SLNB | 5-FU/EP/CPA | Yes | T1N0M0 | 1 | 0/1 | NEC | NA | + | + | - | NA | 8 | AWD |
| Psona[95] | 2012 | 72 | NO | NA | NA | Neg | NA | Cit, Bio | NO | BCS + SLNB | NA | NA | T1N0M0 | 1.4 | 0/1 | ICNE | + | + | + | - | 10% | 2 | NED |
| Sui[96] | 2012 | 46 | BM | HyBM | HxHyBM | Neg | NO | NA | NO | Mast + ALND | CDDP/EP/VP-16 | Yes | T3N0M0 | 6.5 | NA | NET | + | NA | NA | NA | NA | 6 | NED |
| Watrowski[97] | 2012 | 75 | PB | BM | HyBM | Neg | NA | NO | Bio | NO | Mast + ALND | Letrozole | NO | T2N0M0 | 4 | 0/7 | ICNE | + | + | + | - | NA | 20 | NED |
| Yavas[98] | 2012 | 56 | BM | HyBM | NA | NO | NO | Bio | NO | BCS + SLNB | CPA/EP/5-FU + HoT | Yes | T1N0M0 | 1.7 | 0/1 | NET | NA | + | + | - | 46% | 15 | NED |
| Abbas[99] | 2013 | 37 | BL, N+ | NA | NA | BoMet | NA | Bio | NO | Mast + ALND | 5-FU/ADR/CPA + CDDP + VP-16 | No | T3N2M1 | 7.5 | 9/19 | ICNE | + | NA | NA | NA | NA | 6 | NED |
| Angarita[100] | 2013 | 31 | BL | Neg | SBM | Neg | NO | Bio | Yes | BCS + ALND | CDDP/VP-16 + PTX | NA | T2N0M0 | 3.2 | 0/7 | ICNE | + | + | - | NA | >20% | 13 | AWD |
| Chang[101] | 2013 | 42 | BL | MBM | HyBM | NO | Neg | Cit | No | NO | NA | NA | T2N1M0 | NA | +/?- | NEC | + | + | NA | - | NA | NA | NA | NA |
| Hannon[102] | 2013 | 60 | PB | MBM | Neg | Neg | NO | Bio | NO | BCS | CBL/V-16 | NO | T1N2M0 | 1.4 | 4/11 | NEC | - | + | + | NA | - | NA | NA | NA |
| Senetla[103] | 2013 | 82 | Asthenia | BM | NA | Pimet | NO | Bio | NO | BCS + SLNB | CPA/EP/5-FU + HoT | NO | T1N0M1 | 2.3 | NA | NEC | + | + | - | 10 | NA | NA | NA |
| Yoon[8] | 2013 | 44 | BM | HyBM | HyBM | Neg | Neg | Bio | NA | Mast + ALND | CPA/AD | NA | T2N0M0 | 2 | NA | NEC | + | + | + | NA | 2 | NED |
| Cnikir[104] | 2014 | 75 | BM | BM | BM | NA | NA | Bio | NO | Mast + ALND | CDDP/VP-16 | Yes | T0N0M0 | 0 | 0/7 | SCNC | + | + | + | 5% | 30% | NED |
| Pagano[105] | 2014 | 77 | PB | SBM | SBM | NA | NA | Bio | NO | Mast + ALND | CPA/MTX/5-FU + Tamoxifen | NO | T2N0M0 | 2.3 | NA | NEC | + | + | + | - | 10% | 9% | NED |
| Suhani[106] | 2014 | 51 | BL, NR | NA | BM | Neg | NA | Bio | NO | Mast + ALND | CPA/AD/5-FU + AI | Yes | T3N1M0 | 6.5 | 1/15 | NET | NA | + | + | - | NA | 48 | NED |
| Suhani[106] | 2014 | 66 | BL | NA | NA | Neg | NA | Bio | NO | Mast + ALND | CPA/AD/5-FU + AI | Yes | T2N0M0 | 4.5 | 2/16 | NET | + | + | - | NA | 36 | NED |

*Abbreviations: ADRC, adjuvant double dose; APA, adjuvant peglated epirubicin; BCS, breast conserving surgery; CT, chemotherapy; DM, docetaxel; E, docetaxel; F, fluorouracil; II, second line; I, first line; IV, third line; MBA, tamoxifen; MC, mitotane; M, melphalan; N, cyclophosphamide; T, taxol; T, taxotere; T, tamoxifen."
Case	Age	Sex	Hist	Size	Malignancy	Treatment	Follow-up	Status
1	50	BL	NA	NA	Neg	Mast + ALND	Yes	T2N0M0
2	60	BL, BND	NA	NA	Neg	Mast + ALND	Yes	T3N1M0
3	2015	34	BL	Neg	HypBM	NA	Yes	T2N0M0
4	2015	60	SR	HyBM	NA	NO	YES	T3N0M0
5	2015	65	BL	NA	Neg	NO	NA	T3N2M0
6	2015	80	BM	Neg	NO	Yes	NO	T4NXM1
7	2016	60	BL, N+	NA	NA	NA	NO	NA
8	2015	43	BM	HyBM	MBM	NO	Yes	T2N1M0
9	2016	53	BL	Neg	MBM	NO	Cit	T2N0M0
10	2016	73	SR	BM	BM	PaMet	NA	T2N3M1
11	2016	50	BL	Neg	Neg	NA	NA	NA
12	2016	42	BL	HyBM	HypBM, Mic	NA	NA	T2N1M0
13	2016	46	PBM	HyBM, N+	NA	NA	NA	T2N2M0
14	2016	57	Neuralgia	NA	NA	NA	NA	NA
15	2017	47	NO	NA	BM, NO	Neg	Bio	NA
16	2017	67	Neurajla	HyBM	BM, MMet	MMet	Bio	NO
17	2017	57	BL	HyBM	BM	NA, BoMet	NO	BCS

Headings: NA = Not available data; Clin Pres = Clinical presentation; US = breast Ultrasound; MX = mammography; Bio = biopsy; Cit = citology; Ad treat = adjuvant treatment (chemotherapy and/or hormone therapy); AdJ RT = adjuvant radiotherapy; Tum size = tumor size (centimeters); LNs = lymph nodes removed; CrA = Chromogranin A; Syn = Synaptophisin; ER = Estrogen receptor; PR = Progesterone receptor; Her2 = her2-neu receptor; FUP = follow-up (months)

Clinical and radiological findings: Pos = positive for malignancy; Neg = negative for malignancy; BM = Breast Mass; CM = carcinomatous mastitis; N+ = axillary adenopathy, PBM = Painful breast mass; BL = breast lump; SR = Skin retraction, NR = nipple retraction, PLM = Paget-like Mass; BND = Bloody nipple discharge; UBM = Ulcerated Breast Mass; MBM = Multilobulated breast mass; HyBM = Hypoechoic (US) / Hypodense breast mass, HeBM = Heterogeneous breast mass, SPM = Spiculated breast mass, Mic = microcalcifications, BoMet = Bone Metastases; LMet = Lung metastasis; PAMet = Pancreatic metastases; PE = Pleural effusion; MMet = Multiple metastases; IBM = Isoechoic breast mass Neg = Negative; Sus = suspicious; LMet = lung metastasis Mast = Mastectomy; BCS = Breast Conservative Surgery; SLNB = Sentinel Lymph Node Biopsy; ALND = Axillary Lymph Node Dissection

Chemotherapy: ChT = chemotherapy; HoT = hormone therapy; CDDP = Cisplatin, CBL = Carboplatin, VP-16 = Etoposide, CPT-11 = Irinotecan, 5-FU = Fluorouracil, EPI = Epirubicin, CAP = Cyclophosphamide, DTX = Docetaxel, 5'-DFUR = 50 deoxy-5-fluorouridine, Tam = Tamoxifen, LHRH = Leutinising hormone releasing hormone analogue, UFT = Uracil & Tegafur, PTX = Paclitaxel, ADR = Adriamycin (Doxorubicin), Sando = Sandostatin, Som = Somatostatin; Ever = Everolimus, Bev = Bevacizumab, Erl = Erlotinib; Palb = Palbociclib; Oct = Octreotide

Diagnosis and Clinical Management of Neuroendocrine Tumor of the Breast: Report of Six Cases and Systematic Review of Existing Literature
Histology: SCNC = Small Cell Neuroendocrine Carcinoma, ICNE = Invasive carcinoma with neuroendocrine differentiation; NET = well-differentiated neuroendocrine tumor; NEC = poorly differentiated neuroendocrine carcinoma

Follow-Up: NED = No evidence of disease; AWD = Alive with disease; DOD = Died of disease; DUC = Died of Uncertain cause

†Median follow-up

Table 2: Case series and retrospective studies reported in literature.

Author	Year	Study type	N. patients	Mean age (range)	Only breast	N+ (%)	M1 (%)	ER+	PR+	Her2+	CxA+	Syn+	Mast	BCS	No surgery	Adj RT	Adj CHT	Adj OT	Mean FUP (range)	
Papotti[122]	1992	CS*	4	56 (41-64)	25,00%	75,00%	50,00%	NA	NA	NA	NA	NA	NA	NA	100,00%	0,00%	0,00%	25,00%	25,00% (9-44)	
Shin[123]	2000	CS*	9	55.4 (43-70)	44,44%	55,56%	0,00%	66,67%	55,56%	0,00%	44,44%	44,44%	33,33%	66,67%	0,00%	44,44%	77,78%	0,00% (3-35)		
Zekioglu[124]	2003	CS**	12	65.0 (43-49)	91,67%	8,33%	0,00%	91,67%	91,67%	16,67%	41,67%	91,67%	50,00%	50,00%	0,00%	NA	NA	NA	24,1 (1-54)	
Bonet[125]	2008	CS**	7	61,3 (35-88)	57,14%	42,86%	NA	100,00%	100,00%	14,29%	0%	100%	71,43%	14,29%	14,29%	28,57%	28,57%	100,00%	51,64 (2-7-115,5)	
Tian[126]	2011	Ret***	74	61 (29-82)	52,70%	41,89%	8,11%	95,00%	80,00%	9,00%	NA	NA	40,54%	57,81%	17,27%	NA	NA	NA	46,92 (0-260)	
Kanat[127]	2011	CS**	7	43,8 (29-56)	14,29%	85,71%	28,57%	28,57%	28,57%	0,00%	57,14%	100%	85,71%	14,29%	0,00%	71,43%	85,71%	28,57%	22,40 (9-48)	
Kawasaki[128]	2011	Ret**	27	47,8 (28-74)	95,83%	4,17%	0,00%	100,00%	100,00%	54,17%	NA	NA	37,50%	62,50%	0,00%	NA	NA	NA	83,7 (64-101)	
Zhang[129]	2013	Ret**	107	65 (25-95)	NA	NA	NA	94,39%	85,05%	2,80%	NA	NA	NA	NA	NA	NA	NA	NA	27,4 (3-134)	
Wu[130]	2012	Ret**	13	55,4 (36-78)	92,31%	7,69%	7,69%	100,00%	100,00%	0,00%	69,23%	30,77%	100,00%	0,00%	0,00%	NA	NA	100,00%	67,5 (41-89)	
Rovera[131]	2013	Ret**	96	70,1 (40-94)	NA	NA	NA	NA	90,00%	75,00%	1,04%	NA	NA	30,21%	31,25%	36,46%	48,00%	5,00%	75,00%	88,4 (4-242)
Zhu[132]	2013	Ret**	22	52,5 (29-77)	NA	NA	NA	NA	90,91%	95,00%	25,00%	95,00%	14,29%	68,18%	31,82%	0,00%	0,00%	63,64%	90,91%	64,5 (4-89)
Charfi[133]	2013	Ret***	15	62,3 (37-78)	73,33%	26,67%	0,00%	80,00%	93,33%	0,00%	73,33%	6,67%	80,00%	20,00%	0,00%	86,67%	46,67%	60,00%	40,14 (3-125)	
Cloyd[134]	2014	Ret***	284	NA	43,40%	36,20%	20,40%	46,5%	35,6%	NA	NA	NA	35,20%	36,60%	27,80%	41,50%	NA	NA	NA	38,6 (21-76)
Jeon[135]	2014	Ret***	11	54,7 (29-79)	NA	NA	NA	NA	100,00%	100,00%	0,00%	54,55%	0,00%	36,36%	63,64%	0,00%	NA	NA	NA	38,6 (21-76)
Reina[136]	2017	Ret***	43	66 (NA)	55,8%	39,53%	9,3%	97,70%	86,10%	4,70%	69,80%	0,00%	58,20%	39,60%	2,27%	74,40%	34,09%	75,00%	NA	30,2 (21-44)

Headings: Ret = retrospective; CS = Case Series;
*Previous to 2003 criteria, ** According to 2003 criteria, *** According to WHO 2012 criteria

†Median follow-up
Clinical Characteristics

From the analysis of 113 reported cases (Table 1), the most frequent clinical presentation was breast mass, which was present in 37 cases (in 7 cases also associated to axillary adenopathy and in 5 cases painful) followed by breast lump in 22 patients (of which 3 associated to axillary adenopathy, 2 to bloody nipple discharge, 1 to nipple retraction) and symptoms due to metastatic diffusion (1 jaundice, 1 haematuria, 1 bone pain, 1 respiratory symptoms, 1 perianal pain, 2 neuralgia). Less frequent clinical presentations were: isolated bloody nipple discharge (3 cases), only skin retraction (2 cases), anorexia (2 cases), locally advance disease in 3 cases (2 ulcerated breast masses, 1 carcinomatous mastitis, 1 Paget like mass). In 33 cases clinical presentation was not reported. Tumor was palpable in 58/77 cases (75%).

Radiological Findings

Radiological findings of bNENs were often similar to other breast cancer histotype, like ductal or lobular breast tumors. From available data, sonography was performed in 61 cases. In 11 cases US failed to detect breast lesions. In the other cases tumor appeared as irregular hypoechoic lesion. Data on mammographic finding was present in 61 cases and tumor always appeared as hyperdense mass. Notably, tumor was detected in all cases in which US and mammography were both performed. Only in 14 cases reported data on breast MRI: tumors were detectable in all cases in which US and mammography were performed. Only in 14 cases reported data on breast MRI: tumors were detected in 11 cases and not detected in 3 cases. Notably, tumor was detected in 14 cases in which US and mammography were both performed.

Histopathological Assessment

According to morphology, NEC was the most common histotype (36 cases), followed by bNET (20 cases), SCNC (20 cases), ICNE (10 cases). In 27 cases morphology was not described. Estrogen receptors were positive in 60/85 cases, progesterone receptors were positive in 50/53 cases, HER2 were positive in 18/53 cases. Considering neuroendocrine markers, chromogranin was positive in 62/75 cases (83%), synaptophysin was positive in 70/78 cases (90%). Considering data from case series and retrospective study (Table 2) chromogranin was positive in 41.67%- 95% of specimen, synaptophysin in 0%-100%.

Treatment

Most of the patients received surgical treatment (97/108 cases). The most frequent type of surgical intervention was total mastectomy, performed in 54/97 cases, followed by breast conservative surgery, in 43/97 cases. These data are concordant with retrospective studies and large case series available, in which mastectomy was performed in 30.21-100% of patients, breast conservative in 0-66.67% and no surgical treatment in 0-36.46% of patients. Considering case reports, radiotherapy was performed in 37/84 cases (44%), similarly to data from retrospective studies and large case series in which radiotherapy rate range from 25 to 86.67%.

Medical therapy was suggested in 79% of patients (73/92). Hormone therapy was indicated in 18/92 (19%), chemotherapy alone 36/92 (39%) and a combination of these two treatments were indicated in 38/92 cases (41%). Somatostatin analogue, the most used drugs in neuroendocrine tumors of other origin, was used only in three cases.

Outcome

Data on tumor outcome are available only for 91 patients: 18 patients were alive with active disease, 8 were dead of disease, 1 dead of uncertain causes and 63 were alive with no evidence of disease with a mean follow-up of 24.01 ± 29.8 months.

Discussion

bNENs are rare entities and no guidelines are available for the management of this kind of neoplasia. According to our systematic review, the most frequent clinical presentation is palpable breast mass, sometimes associated to axillary adenopathy or bloody nipple discharge. bNENs appears as hypervascular and irregular hypoechoic lesions at US examination and as hyperdense masses at mammography [8]. The detection rate of these two instrumental evaluations is high, even if is not possible to clearly differentiate this kind of tumor from another breast cancer histotype [9]. When performed, breast MRI shows irregular masses, usually hyperintense in T2-weighted sequences [8]. Before establishing treatment strategies, as recommended in all suspicious breast lesions, tumor biopsy should be performed, even if it is not always able to recognize a breast neuroendocrine tumor, which is often detected only by definitive histopathological assessment [10].

The contemporary presence of neuroendocrine cells with ductal carcinoma is usually considered a sign of the breast origin of the neuroendocrine lesions, even if a total body examination is mandatory for excluding neuroendocrine neoplasm of other origin [11]. Recommended imaging techniques are total body CT or PET/CT scan: 66Gallium PET/CT in case of well-differentiated neuroendocrine tumors or 18FDG PET/CT in case of poorly differentiated NEN (NEC, ICNE, SCNC) as commonly performed in other neuroendocrine neoplasia [12]. Considering available data, the most frequent subtype is NEC. Most all cases were positive for synaptophysin staining, followed by chromogranin; hormone receptors and Her2 expressions were heterogeneous but luminal type (estrogen and progesterone receptors positive and HER2 negative) was the most common, as previously published [13]. This finding is in accordance with the hypothesis that bNENs develop from breast stem cells which divides into neuroendocrine and epithelial cells [14].

Surgical treatment strategies are nowadays based on tumor size and lymph node status basing on current breast cancer guidelines, independently of neuroendocrine component. Likewise, radiotherapy is usually performed after BCS [10, 15]. Medical therapy depends on immunohistochemical analysis: in case of strong hormone receptors positivity, hormonal therapy is usually indicated [10]. In hormone-negative tumors, chemotherapy regimen, based on anthracyclines and or taxanes, is often used [10]. The possibility of using a cisplatin and etoposide regimen in breast NEC, as indicated for small cell carcinomas of other origin, has been evaluated only in small studies [16]. Specific treatment for well-differentiated neuroendocrine component is not routinely used. Only in 3 on 113 cases somatostatin analogues have been used as adjuvant therapy. Even if somatostatin analogues are considered first line therapy in the treatment of neuroendocrine tumors of other origin according to ENETS guidelines, this kind of drug is not approved for bNET, probably because of the paucity of data. Interestingly,
somatostatin receptors have been found in non-neuroendocrine breast tumors with high estrogen and progesterone receptor expression and low HER2 [17-20]. Moreover, somatostatin analogues are able to reduce breast cancer cells proliferation especially in case of low estrogen levels, providing the rationale for contemporary administration of hormonal therapy and somatostatin analogue therapy [21, 22]. In Figure 2, we propose a diagnostic and therapeutic algorithm for bNENs.

Finally, if the prognosis of all bNENs is different compared to non-neuroendocrine breast cancer is still debated. From the published cases, only 8 patients on a total of 91 deceased for the disease. When available, histotype of these neoplasms was NEC/SCNC. In the other 4 cases, tumor histology was not reported but tumor stage was advanced, implying that tumor stage and histology could be the main predictors of poor outcome. Data from the SEER database, comparing 142 breast NEC and non-neuroendocrine breast tumors, demonstrated a shorter overall survival and disease-specific survival of breast NEC and in a multivariate analysis neuroendocrine differentiation was an independent determinant of poorer prognosis [5]. Similarly, Bogina et al. have demonstrated a worse prognosis in 55 breast NEC patients compared to 115 matched non-neuroendocrine breast tumors patients [7].

Conclusions

bNENs are rare tumors, usually identified only during definitive histopathological examinations of surgical specimen. bNENs are nowadays treated similarly to non-neuroendocrine breast cancer, but they are very heterogeneous and not well understood. Similarly, to NEN of other origin, we should probably distinguish between well differentiated tumors, NET, and poorly differentiated tumors, NEC/small cells carcinomas regarding treatment and prognosis. Specific trials on adjuvant therapy, for example with somatostatin analogues for well differentiated form, bNET, or classical chemotherapy with cisplatin and etoposide in NEC and SCNC are necessary for establishing the best treatment strategy for these patients and improving clinical outcome.

Abbreviations

NET: neuroendocrine tumor
bNENs: breast neuroendocrine neoplasia
NEC: neuroendocrine carcinoma
ICNE: invasive breast tumor with endocrine differentiation
WHO: World Health Organization
US: ultrasound
MRI: magnetic resonance imaging
BCS: breast conservative surgery

Consent for Publication

All patients provided written informed consent to case publication.

Conflicts of Interests

The Authors have no conflicts of interest for this Paper. All authors disclose any financial and personal relationships with other people or organizations in the writing of this Paper.

Funding

None.

Author Contributions

Dr. Federico Frusone and Dr. Giulia Puliani cowrote this paper. Dr. Federico Frusone collected information of the case series from the database of Humanitas Research Hospital of Milan. Dr. Andrea Sagona,
Dr. Emilia Marrazzo and Dr. Erika Barbieri helped analysing the results of the case series. Dr. Giulia Puliani and Dr. Federico Frusone performed literature research and analysed the results. Dr. Alessandro De Luca helped analysing these results. Dr. Wolfgang Gatzemeier, Dr. Alberto Bottini and Dr. Corrado Tinti reviewed the manuscript. All the authors read and approved the final manuscript.

Acknowledgement

We are grateful to Elena Bissolotti who helped us with cases retrieval and to all those who have contributed through discussion and collaboration to the writing of this paper.

REFERENCES

1. Feyter F, Hartmann G (1963) [on the Carcinoid Growth Form of the Carcinoma Mammae, Especially the Carcinoma Solidum (Gelatinous) Mammare]. Frankf Z Pathol 73: 24-39. [Crossref]
2. Ellis P, Schnitt S, Sastre-Garau X (2003) Invasive breast carcinoma. In Tavassoli FA, Deylpee P, editors Tumors of the Breast and Female Genital Organ: Pathology and Genetics Lyon; France, IARC Press, .
3. Lakhani SR, Ellis IO, Schnitt SJ, Tan P, Van de Vijver M (2012) WHO Classification of Tumours of the Breast. Fourth Edition. In WHO Classification of Tumours Volume 4.
4. Tavassoli F, Deylpee P (2003) Pathology and Genetics: Tumours of the Breast and Female Genital Organs. WHO Classification of Tumours series, Volume 4 3 Lyon, France: IARC Press: .
5. Wang J, Wei B, Albarracin CT, Hu J, Abraham SC et al. (2014) Invasive neuroendocrine carcinoma of the breast: a population-based study from the surveillance, epidemiology and end results (SEER) database. BMC Cancer 14: 147. [Crossref]
6. Brask JB, Talman ML, Wielenga VT (2014) Neuroendocrine carcinoma of the breast - a pilot study of a Danish population of 240 breast cancer patients. APMIS 122: 585-592. [Crossref]
7. Bogina G, Munari E, Brunelli M, Bortesi L, Marconi M et al. (2016) Neuroendocrine differentiation in breast carcinoma: clinicopathological features and outcome. Histopathology 68: 422-432. [Crossref]
8. Yoon YS, Kim SY, Lee JH, Kim SY, Han SW (2014) Primary neuroendocrine carcinoma of the breast - a study of a Danish population of 240 breast cancer patients. APMIS 122: 585-592. [Crossref]
9. Adams RW, Dyson P, Barthelmes L (2014) Neuroendocrine breast tumours: breast cancer or neuroendocrine cancer presenting in the breast? Breast 23: 120-127. [Crossref]
10. Gradishar WJ, Anderson BO, Balassanian R, Blair SL, Burstein HJ et al. (2017) NCCN Guidelines Insights: Breast Cancer, Version 1.2017. J Natl Compr Canc Netw 15: 433-451. [Crossref]
11. Ogawa H, Nishio A, Satake H, Naganawa S, Imai T et al. (2008) Neuroendocrine tumor in the breast. Radiat Med 26: 28-32.
12. Zhang P, Yu J, Li J, Shen L, Li N et al. (2018) Clinical and Prognostic Value of PET/CT Imaging with Combination of (68)Ga-DOTATATE and (18)F-FDG in Gastroenteropancreatic Neuroendocrine Neoplasms. Contrast Media Mol Imaging 2018: 2340389. [Crossref]
13. Papotti M, Macri L, Finzi G, Capella C, Eusebi V et al. (1989) Neuroendocrine differentiation in carcinomas of the breast: a study of 51 cases. Semin Diagn Pathol 6: 174-188. [Crossref]
14. Miremadi A, Pinder SE, Lee AH, Bell JA, Paish EC et al. (2002) Neuroendocrine differentiation and prognosis in breast adenocarcinoma. Histopathology 40: 215-222. [Crossref]
15. Castaneda SA, Strasser J (2017) Updates in the Treatment of Breast Cancer with Radiotherapy. Surg Oncol Clin N Am 26: 371-382. [Crossref]
16. Yildirim Y, Elagoz S, Koyuncu A, Aydin C, Karadag K (2011) Management of neuroendocrine carcinomas of the breast: A rare entity. Oncol Lett 2: 887-890. [Crossref]
17. Falconi M, Eriksson B, Kaltzas G, Bartsch DK, Capdevila J et al. (2016) ENETS Consensus Guidelines Update for the Management of Patients with Functional Pancreatic Neuroendocrine Tumors and Non-Functional Pancreatic Neuroendocrine Tumors. Neuroendocrinology 103: 153-171. [Crossref]
18. O’Toole D, Kianmamesh R, Caplin M (2016) ENETS 2016 Consensus Guidelines for the Management of Patients with Digestive Neuroendocrine Tumors: An Update. Neuroendocrinology 103: 117-118. [Crossref]
19. Delle Fave G, O’Toole D, Sundin A, Taal B, Ferolla P et al. (2016) ENETS Consensus Guidelines Update for Gastrointestinal Neuroendocrine Neoplasms. Neuroendocrinology 103: 119-124. [Crossref]
20. Reubi JC, Waser B, Schaer JC, Laissue JA (2001) Somatostatin receptor sst1-ss5 expression in normal and neoplastic human tissues using receptor autoradiography with subtype-selective ligands. Eur J Nucl Med 28: 836-846. [Crossref]
21. Setyono-Han B, Henkelman MS, Foekens JA, Klijn GM (1987) Direct inhibitory effects of somatostatin (analogaes) on the growth of human breast cancer cells. Cancer Res 47: 1566-1570. [Crossref]
22. Szepeshazi K, Milovanovic S, Lapis K, Gross K, Schally AV (1992) Growth inhibition of estrogen independent MXT mouse mammary carcinomas in mice treated with an agonist or antagonist of LH-RH, or an analog of somatostatin, or a combination. Breast Cancer Res Treat 21: 181-192. [Crossref]
23. Wade PM Jr, Mills SE, Read M, Cloud W, Lambert MJ 3rd et al. (1983) Small cell neuroendocrine (oat cell) carcinoma of the breast. Cancer 52: 121-125. [Crossref]
24. Jundt G, Schulz A, Heitz PU, Osborn M (1984) Small cell neuroendocrine (oat cell) carcinoma of the male breast. Immunocytochemical and ultrastructural investigations. Virchows Arch A Pathol Anat Histopathol 404: 213-221. [Crossref]
25. Francois A, Chatikhine VA, Chevallier B, Ren GS, Berry M et al. (1995) Neuroendocrine primary small cell carcinoma of the breast. Report of a case and review of the literature. Am J Clin Oncol 18: 133-138.
26. Chua RS, Torno RB, Vuletin JC (1997) Fine needle aspiration cytology of small cell neuroendocrine carcinoma of the breast. A case report. Acta Cytol 41: 1341-1344. [Crossref]
27. Yalcin S, Zengin N, Tekuzman G, Kucukali T (1997) Primary neuroendocrine tumor of the breast. Med Oncol 14: 121-123. [Crossref]
28. Fukunaga M (1998) Neuroendocrine carcinoma of the breast: a case report of pure type. APMIS 106: 1095-1100. [Crossref]
29. Fukunaga M (1998) Neuroendocrine carcinoma of the breast with Merkel cell carcinoma-like features. Pathol Int 48: 557-561. [Crossref]
30. Sebenik M, Nair SG, Hamati HF (1998) Primary small cell anaplastic carcinoma of the breast diagnosed by fine needle aspiration cytology: a case report. Acta Cytol 42: 1199-1203. [Crossref]
31. Samli B, Celik S, Evrensel T, Orhan B, Tasdelen I (2000) Primary neuroendocrine small cell carcinoma of the breast. Arch Pathol Lab Med 124: 296-298. [Crossref]
32. Yamasaki T, Shimazaki H, Aida S, Tamai S, Tamaki K et al. (2000) Primary small cell (oat cell) carcinoma of the breast: a report of a case and review of the literature. Pathol Int 50: 914-918. [Crossref]
33. Hoang MP, Matra A, Gazdar AF, Alboreos-Saavedra J (2001) Primary mammary small-cell carcinoma: a molecular analysis of 2 cases. Hum Pathol 32: 753-757. [Crossref]
34. Salmo EN, Connolly CE (2001) Primary small cell carcinoma of the breast: report of a case and review of the literature. Histopathology 38: 277-278. [Crossref]
35. Errutti A, Saini A, Leonardo E, Cappia S, Borasio P et al. (2004) Management of neuroendocrine differentiated breast carcinoma. Breast 13: 527-529. [Crossref]
36. Bigotti G, Coli A, Buttì A, del Vecchio M, Tartaglione R et al. (2004) Primary small cell neuroendocrine carcinoma of the breast. J Exp Clin Cancer Res 23: 691-696.
37. Bergman S, Hoda SA, Geisinger KR, Creager AJ, Trupiano JK (2004) Small cell carcinoma of breast mimicking metastatic melanoma. Am J Clin Dermatol 5: 119-120. [Crossref]
38. Jochens L, Tjasma WA (2004) Primary small cell neuroendocrine tumour of the breast. Eur J Obstet Gynecol Reprod Biol 115: 231-233. [Crossref]
39. Mariscal A, Balliu E, Diaz R, Casas JD, Gallart AM (2004) Primary oat cell carcinoma of the breast: imaging features. AJR Am J Roentgenol 183: 1169-1171. [Crossref]
40. Sridhar P, Matey P, Aluwhare N (2004) Primary carcinoma of breast with small-cell differentiation. Breast 13: 149-151. [Crossref]
41. Yamamoto J, Ohshima K, Nabeshima K, Ikeda S, Iwasaki H et al. (2004) Comparative study of primary mammary small cell carcinoma, carcinoma with endocrine features and invasive ductal carcinoma. Oncol Rep 11: 825-831.
42. Adegbola T, Connolly CE, Mortimer G (2005) Small cell neuroendocrine carcinoma of the breast: a report of three cases and review of the literature. J Clin Pathol 58: 775-778. [Crossref]
43. Stein ME, Gershuny A, Abdach L, Quigley MM (2005) Primary small-cell carcinoma of the breast. Clin Oncol (R Coll Radiol) 17: 201-202. [Crossref]
44. Tsai WC, Yu JC, Lin CK, Hsieh CT (2005) Primary alveolar-type large cell neuroendocrine carcinoma of the breast. Breast J 11: 487.
45. Fujimoto Y, Yagyu R, Murase K, Kawajiri H, Ohtani H et al. (2007) A case of solid neuroendocrine carcinoma of the breast in a 40-year-old woman. Breast Cancer 14: 250-253. [Crossref]
46. Hennessy BT, Gilcrease MZ, Kim E, Gonzalez-Angulo AM (2007) Breast carcinoma with neuroendocrine differentiation and myocardial metastases. Clin Breast Cancer 7: 892-894. [Crossref]
47. Kitakata H, Yasumoto K, Sudo Y, Minato H, Takahashi Y (2007) A case of primary small cell carcinoma of the breast. Breast Cancer14: 414-419. [Crossref]
48. La Rosa S, Usellini L, Riva C, Capella C (2007) Well-differentiated neurotensin-producing neuroendocrine carcinoma of the breast. Report of a case. Histopathology 51: 846-847.
49. Vidulich KA, Donley SE, Davic M (2007) Multinodular cutaneous spread in neuroendocrine tumor of the breast: an unusual presentation. Am J Clin Dermatol 8: 379-383. [Crossref]
50. Yaren A, Kelten C, Akbulut M, Teke Z, Duzcan E et al. (2007) Primary neuroendocrine carcinoma of the breast: a case report. Tumori 93: 496-498.
51. Jeong AK, Cha HJ, Ko BK, Park SB, Kang BS et al. (2008) Primary neuroendocrine carcinoma of the breast involving the nipple-areolar complex. J Ultrasound Med 27: 1401-1405. [Crossref]
52. Kim JY, Woo OH, Cho KR, Seo BK, Yong HS et al. (2008) Primary large cell neuroendocrine carcinoma of the breast: radiologic and pathologic findings. J Korean Med Sci 23: 1118-1120. [Crossref]
53. Kinoshita S, Hirano A, Komine K, Kobayashi S, Kyoda S et al. (2008) Primary small-cell neuroendocrine carcinoma of the breast: report of a case. Surg Today 38: 734-738.
54. Lopez Garcia J, Mesas Lorenzo R, de la Morena Valenzuela E (2008) [Pure neuroendocrine breast tumour]. Cir Esp 83: 273-274. [Crossref]
55. Mecca P, Busam K (2008) Primary male neuroendocrine adenocarcinoma involving the nipple simulating Merkel cell carcinoma - a diagnostic pitfall. J Cutan Pathol 35: 207-211. [Crossref]
56. Pagani A, Iandolo M (2008) Invasive breast carcinoma with features of neuroendocrine carcinoma and carcinoma with osteoclastic cells: fine-needle aspiration cytology and histology of two cases. Pathologica 100: 176-180. [Crossref]
57. Sadanaga N, Okada S, Shiotani S, Morita M, Kakeji Y et al. (2008) Clinical characteristics of small cell carcinoma of the breast. Oncol Rep 19: 981-985.
58. Ulamec M, Tomas D, Peric-Balja M, Spajic B, Hes O et al. (2008) Neuroendocrine breast carcinoma metastatic to renal cell carcinoma and ipsilateral adrenal gland. Pathol Res Pract 204: 851-855. [Crossref]
59. Akhtar K, Zaheer S, Ahmad SS, Hassan MJ (2009) Primary neuroendocrine carcinoma of the breast. Indian J Pathol Microbiol 52: 71-73. [Crossref]
60. Burckhardt O MM, Fiche M, Demartines N (2009) Primary Neuroendocrine criteria. Neuroendocrinology 90: 101-102.
61. El Hassani LK, Bensouda Y, MRabiti H, Boutayeb S, Kamouni M et al. (2009) Primary neuroendocrine carcinoma of the breast, which chemotherapy? Indian J Cancer 46: 352-354.
62. Ersahin C, Bandyopadhyay S, Bhargava R (2009) Thyroid transcription factor-1 and “basal marker”—expressing small cell carcinoma of the breast. Int J Surg Pathol 17: 368-372. [Crossref]
63. Haji AG, Sharma S, Vijaykumar DK, Mukherjee P, Babu RM et al. (2009) Primary mammary small-cell carcinoma: A case report and review of the literature. Indian J Med Paediatr Oncol 30: 31-34.
64. Hojo T, Kinoshita T, Shien T, Terada K, Hirose S et al. (2009) Primary small cell carcinoma of the breast. Breast Cancer 16: 68-71.
65. Lee YC, Chen YL, Chan SE, Tseng HS, Chen DR (2009) Neuroendocrine Carcinoma of the Breast: Case Report and Literature Review. Breast Care (Basel) 4: 324-327.
66. Okoshi K, Saiga T, Hisamori S, Iwaisako K, Kobayashi H et al. (2012) A case of cytokeratin 20-positive large-cell neuroendocrine carcinoma of the breast. Breast Cancer 19: 360-364. [Crossref]
67. Quiros Rivero J, Munoz Garcia JL, Cabrera Rodriguez JJ, Gonzalez Ferreja JA, Samper Ots P et al. (2009) Extraluminal primary small cell carcinoma in breast and prostate. Clin Transl Oncol 11: 698-700.
68. Rineer J, Choi K, Sanmuganarajah J (2009) Small cell carcinoma of the breast. J Natl Med Assoc 101: 1061-1064. [Crossref]
69. Salama AR, Jham BC, Papadimitriou JC, Schepet MA (2009) Metastatic neuroendocrine carcinomas to the head and neck: report of
4 cases and review of the literature. *Oral Surg Oral Med Oral Pathol Oral Radiol Endod* 108: 242-247. [CrossRef]

70. Sartori A, Scomerisi S, Spivach A, Vigna S (2009) Neuroendocrine carcinoma of the breast: a rare entity. *Chir Ital* 61: 265-267. [CrossRef]

71. Sita W, Trabelsi A, Gharbi O, Mokni M, Korbi S (2009) Primary solid neuroendocrine carcinoma of the breast. *Can J Surg* 52: E289-E290. [CrossRef]

72. Yamaguchi R, Tanaka M, Otsuka H, Yamaguchi M, Kaneko Y et al. (2009) Neuroendocrine small cell carcinoma of the breast: report of a case. *Med Mol Morphol* 42: 58-61.

73. Christie M, Chin-Lenn L, Watts MM, Tsai AE, Buchanan MR (2010) Primary small cell carcinoma of the breast with TTF-1 and neuroendocrine marker expressing carcinoma in situ. *Int J Clin Exp Pathol* 3: 629-633. [CrossRef]

74. Goucha A, Rekik W, Ben Mna N, Ben Hassouna J, Debbabi B et al. (2010) Primary neuroendocrine carcinoma of the breast. *Tunis Med* 88: 290-292.

75. Honami H, Sotome K, Sakamoto G, Iri H, Tanaka Y et al. (2014) Synchronous bilateral neuroendocrine ductal carcinoma in situ. *Breast Cancer* 21: 508-513. [CrossRef]

76. Huettmann U LE, Neumann M, Vesper A, Janni W, Nestle-Kraemling C (2010) Primary metastatic neuroendocrine breast cancer: an extraordinary case report. *Arch Gynecol Obst* 282: 102-103.

77. Latif N, Rosa M, Samian L, Rana F (2010) An unusual case of primary small cell neuroendocrine carcinoma of the breast. *Breast J* 16: 647-651. [CrossRef]

78. Saglam S OKS, Dogagolu N, Turkmen C, Yavuz E, Ozturk N (2010) Neuroendocrine carcinoma of the breast: a case presenting with Octroscan positive skin metastases. *Turk Onkol Derg* 25: 63-66.

79. Salman BO, Yilmaz U, Cakir A, Kerem A, Aydin A (2010) Primary neuroendocrine carcinoma in the breast: a case report. *J Breast Cancer* 13: 115-119.

80. Buttar A, Mittal K, Khan A, Bathini V (2011) Effective role of hormonal therapy in metastatic primary neuroendocrine breast carcinoma. *Clin Breast Cancer* 11: 342-345. [CrossRef]

81. Cesaretti M, Guarnieri A, Gaggeri I, Tirone A, Francioli N et al. (2011) Small cell carcinoma of the breast. Report of a case. *Ann Ital Chir* 82: 61-64.

82. Ghanem S S GM, Naciri S, Khoysi N, Kabbaj M, Khanoussi B, Errihani H (2011) A Rare Tumor Of The Breast: Solid Neuroendocrine Carcinoma. Webmed Central *BREAST* WMC001591.

83. Jack R, Piskorz T, Przeszlakowski D, Huras H, Ptryinski K et al. (2011) Solid papillary carcinoma of the breast with neuroendocrine features in a pregnant woman: a case report. *Neuro Endocrinol Lett* 32: 405-407. [CrossRef]

84. Kawasaki T, Suda M, Kondo T, Nakazawa T, Mochizuki K et al. (2011) Micronvasive neuroendocrine carcinoma arising from a central papilloma of the breast. *J Clin Pathol* 64: 549-551. [CrossRef]

85. Kawashima N, Nomimatsu Y, Funakoshi M, Kamei T, Sonobe H et al. (2011) Fine needle aspiration cytology of solid neuroendocrine carcinoma of the breast: a case report. *Diagn Cytopathol* 39: 527-530. [CrossRef]

86. Navrozoglou I, Vrekoussis T, Zervoudis S, Doukas M, Zinosiav I et al. (2011) Primary atypical carcinoid of the breast: a case report and brief overview of evidence. *World J Surg Oncol* 9: 52. [CrossRef]

87. Nicoletti S, Papini M, Drudi F, Fantini M, Canuti D et al. (2010) Small cell neuroendocrine tumor of the breast in a 40 year-old woman: a case report. *J Med Case Rep* 4: 201. [CrossRef]

88. Nozoe T, Suemitsu K, Morii E, Iguchi T, Egashira A et al. (2011) Primary neuroendocrine carcinoma of the breast: report of a case. *Surg Today* 41: 829-831.

89. Zhang JY, Chen WJ (2011) Bilateral primary breast neuroendocrine carcinoma in a young woman: report of a case. *Surg Today* 41: 1575-1578. [CrossRef]

90. Alkaied H, Harris K, Azab B, Dai Q (2012) Primary neuroendocrine breast cancer, how much do we know so far? *Med Oncol* 29: 2613-2618. [CrossRef]

91. Flessas I, Tsamis D, Michalopoulos NV, Chrysikos D, Liakou P et al. (2012) Dual carcinoma of the breast with neuroendocrine differentiation. *Am Surg* 78: E457-E458.

92. Graca S, Esteves J, Costa S, Vale S, Maciel J (2012) Neuroendocrine breast cancer. *BMJ Case Rep* 2012 : bcr2012015343. [CrossRef]

93. Menendez P, Garcia E, Rabadian L, Pardo R, Padilla D et al. (2012) Primary neuroendocrine breast carcinoma. *Clin Breast Cancer* 12: 300-303.

94. Miura K, Nasu H, Ogura H (2012) Double neuroendocrine ductal carcinomas in situ coexisting with a background of diffuse idiopathic neuroendocrine cell hyperplasia of breast: a case report and hypothesis of neuroendocrine tumor development. *Pathol Int* 62: 331-334. [CrossRef]

95. Psoma E, Nikolaidou O, Stavrogianni T, Mavromati A, Lytras K et al. (2012) A rare case report of a primary large-cell neuroendocrine carcinoma of the breast with coexisting Paget disease. *Clin Imaging* 36: 599-601. [CrossRef]

96. Su CH, Chang H, Chen CJ, Liu LC, Wang HC et al. (2012) The carcinoembryonic antigen as a potential prognostic marker for neuroendocrine carcinoma of the breast. *Anticancer Res* 32: 183-188. [CrossRef]

97. Watrowski R, Jager C, Mattem D, Horst C (2012) Neuroendocrine carcinoma of the breast–diagnostic and clinical implications. *Anticancer Res* 32: 5079-5082. [CrossRef]

98. Yavas G, Karabagli P, Araz M, Yavas C, Ate O (2015) HER-2 positive primary solid neuroendocrine carcinoma of the breast: a case report and review of the literature. *Breast Cancer* 22: 432-436. [CrossRef]

99. Abbas N, Zahr J, Sheikh AS, Khan AA, Ali F et al. (2013) Solid neuroendocrine carcinoma of the breast. *J Coll Physicians Surg Pak* 23: 820-822.

100. Angarita FA, Rodriguez JL, Mee K, Sanchez JO, Tawil M et al. (2013) Locally-advanced primary neuroendocrine carcinoma of the breast: case report and review of the literature. *World J Surg Oncol* 11: 128. [CrossRef]

101. Chang ED, Kim MK, Kim JS, Whang YI (2013) Primary neuroendocrine tumor of the breast: imaging features. *Korean J Radiol* 14: 395-399. [CrossRef]

102. Hanna MY, Leung E, Rogers C, Pilgrim S (2013) Primary large-cell neuroendocrine tumor of the breast. *Breast J* 19: 204-206. [CrossRef]

103. Menetrier C, Castellano I, Garbossa D, Sapino A, Cassoni P (2013) Pituitary metastasis of an unknown neuroendocrine breast carcinoma mimicking a pituitary adenoma. *Pathology* 45: 422-424. [CrossRef]

104. Cinkir HY DU, Helvacı K, Bal O, Demirici A, Alkıs N, Öksüzoglu B (2014) Primary Neuroendocrine Carcinoma Of The Breast. *Int J Hematol Oncol* 24: 281-283.
105. Pagano M, Asensio SN, Zanelli F, Lococo F, Cavazza A et al. (2014) Is there a role for hormonal therapy in neuroendocrine carcinoma of the breast? A Paradigmatic case report. Clin Breast Cancer 14: e99-e101. [Crossref]

106. Suhani, Ali S, Desai G, Thomas S, Aggarwal L et al. (2014) Primary neuroendocrine carcinoma breast: our experience. Breast Dis 34: 95-99.

107. Janosky M, Bian J, Dhage S, Levine J, Silverman J et al. (2015) Primary large cell neuroendocrine carcinoma of the breast, a case report with an unusual clinical course. Breast J 21: 303-307. [Crossref]

108. Kawasaki T, Ishida M, Tada T, Matsuya H, Saitoh M et al. (2015) Well-differentiated neuroendocrine tumor of the breast with recurrence due to needle tract seeding. Virchows Arch 466: 479-481. [Crossref]

109. Rana V, Kakkar S, Anand S, Singh Y (2015) Primary neuroendocrine carcinoma of breast: A rare tumor. Indian J Cancer 52: 85-86.

110. Santos-Juanes J, Fernandez-Vega I, Coto-Segura P, Vivanco-Allende B, Garcia-Pravia C (2015) Cutaneous spread of primary neuroendocrine breast carcinoma with apocrine differentiation. J Eur Acad Dermatol Venereol 29: 1440-1441. [Crossref]

111. Sherwell-Cabello S, Mafu-Aziz A, Hernandez-Hernandez B, Bautista-Pena V, Rodriguez-Cuevas S (2015) Primary neuroendocrine tumor of the breast. Breast J 21: 312-313. [Crossref]

112. Wei X, Chen C, Xi D, Bai J, Huang W et al. (2015) A case of primary neuroendocrine breast carcinoma that responded to neo-adjuvant chemotherapy. Front Med 9: 112-116. [Crossref]

113. Alva KA, Tauro LF, Shetty P, Saldanha E (2015) Primary neuroendocrine carcinoma of the breast: A rare and distinct entity. Indian J Cancer 52: 636-637.

114. Christensen L, Mortensen MB, Dellesøn S (2016) Breast Carcinoma With Unrecognized Neuroendocrine Differentiation Metastasizing to the Pancreas: A Potential Diagnostic Pitfall. Int J Surg Pathol 24: 463-467. [Crossref]

115. D’Antonio A, Addesso M, Memoli D, Cascone A, Cremon L (2016) A case of multicentric low-grade neuroendocrine breast tumor with an unusual histological pattern. Breast Dis 36: 161-164. [Crossref]

116. Meciarova I, Sojakova M, Mego M, Mardiak J, Poholed K (2016) High-Grade Neuroendocrine Carcinoma of the Breast With Focal Squamous Differentiation. Int J Surg Pathol 24: 738-742. [Crossref]

117. Nakai T, Kawasaki T, Tada T, Ishida M, Iwakoshi A et al. (2016) Well-differentiated neuroendocrine tumor of the breast with extensive lymphatic and vascular infiltration. Pathol Int 66: 706-707. [Crossref]

118. Takamani T, Ota Y, Suzuki M (2017) Pterygopalatine fossa metastasis with severe trigeminal neuralgia from neuroendocrine carcinoma of the breast. Auris Nasus Larynx 44: 131-133. [Crossref]

119. Abou Dalle I, Abbas J, Boulos F, Salem Z, Assi HI (2017) Primary small cell carcinoma of the breast: a case report. J Med Case Rep 11: 290. [Crossref]

120. Maqoood A, Khoury T, Kumar P, Papanicolaou-Sengos A, Early AP (2017) Neuroendocrine Carcinoma of the Breast With Endobronchial Metastases and Syndrome of Inappropriate Antidiuretic Hormone Secretion. Clin Breast Cancer 17: e229-e232. [Crossref]

121. Soe AM, Joseph G, Guevara E, Xiao P (2017) Primary Neuroendocrine Carcinoma of the Breast Metastatic to the Bones. Which Chemotherapy? Breast J 23: 589-593. [Crossref]