Correlation of polymorphous variants (ApaI, TagI, BsmI) of the VDR receptor gene with the vitamin D level and liver fibrosis in children with autoimmune hepatitis

V. S. Berezenko1,3,A,EF, Kh. Z. Mykhailiuk*1,3,A-D, Z. I. Rossokha2,4,A,EF, S. P. Kyriachenko2,5,CE

1SI "Institute of Pediatrics, Obstetrics and Gynecology named after academician O. M. Lukianova of NAMS of Ukraine", Kyiv, 2SI “Reference Center for Molecular Diagnostics of the Ministry of Health of Ukraine”, Kyiv, 3Bogomolets National Medical University, Kyiv

A – research concept and design; B – collection and/or assembly of data; C – data analysis and interpretation; D – writing the article; E – critical revision of the article; F – final approval of the article

Key words: children, autoimmune hepatitis, fibrosis, vitamin D, genetic polymorphism, VDR gene.

The aim. To study the correlation of the frequency distribution of alleles, genotypes and their combinations for the allelic variants of Apal, Tagl, BsmI of the Vitamin D receptor gene (VDR) with the vitamin D levels and the stage of fibrosis in children with autoimmune hepatitis.

Materials and methods. 51 children with autoimmune hepatitis were examined between 2016 and 2018. In all children, the diagnosis was confirmed in accordance with the International Guidelines for the study of liver diseases (European Association for the Study of Liver (EASL) Clinical Practice Guidelines: Autoimmune Hepatitis, 2015). In the examined children, the elastography of the liver parenchyma was performed by the shear wave method. Needle biopsy of the liver with histological examination of the specimens was performed in 42 children. The disease activity was determined using the histological activity index (HAI) by Knodell based on the results of a morphological study of the liver biopsy and biochemical parameters. The stage of the disease was evaluated by the histological index of fibrosis using the METAVIR scoring system and semi-quantitatively using the share wave elastography of liver parenchyma. A level of 25(OH)D was determined in the blood serum. The determination of the Apal, Tagl, BsmI polymorphic loci of vitamin D receptor (VDR) was carried out using the molecular-genetic method. The association of polymorphic variants of the VDR gene with the level of vitamin D and the stage of liver fibrosis in children with autoimmune hepatitis has been evaluated.

Results. 72,0 % of the examined children had advanced severe liver fibrosis (F3-4 by the METAVIR score), among them 34,0 % of children had signs of liver cirrhosis. Children with advanced severe fibrosis (F3-4 by the METAVIR score) had the CC genotype of the polymorphic version of the Tagl of the VDR gene significantly more often (χ² = 3.953, P < 0.05), and the genotype AA/CC/AA according to the investigated allelic variants of the VDR gene (χ² = 3.953, P < 0.05). In 72,5 % of the examined children, there was a deficiency of vitamin D. In children with severe fibrosis (F3-4 by the METAVIR score) vitamin D deficiency was significantly more frequent as compared to children with less severe fibrosis (F1-2 by the METAVIR score) (χ² = 5.207, P = 0.023). The genotype GA of the BsmI polymorphic variant was associated with a decrease in serum vitamin D levels (P < 0.05). At the AC/TC/GA combination of the Apal, Tagl and BsmI allelic variants of the VDR gene, vitamin D deficiency was registered significantly more frequently (P < 0.05).

Conclusions. The level of vitamin D in children with autoimmune hepatitis was dependent on the stage of fibrosis. Children with severe fibrosis had a genetically determined vitamin D deficiency significantly more often. Vitamin D deficiency was associated with the CC genotype presence of the Tagl polymorphic variant of the VDR gene in patients as well as the GA genotype of the BsmI polymorphic variant and the AC/TC/GA genotype of the three allelic variants of the gene studied.
Introduction

Genetically determined predisposition, linkage to the antigens of the human main histocompatibility complex (HLA), alleles 1-B8-DR3, DR4, DR7, DR17, leads to the development of a severe, progressive liver disease such as autoimmune hepatitis in individuals who have lost their immunological tolerance to liver antigens [28]. In recent years, one of the trigger factors in the development and progression of autoimmune hepatitis is recognized as a violation of the vitamin D metabolism in the body as a factor that can accelerate the progression of the pathological process in the liver and negatively affect the effectiveness of therapy [1,2]. Low levels of 25 (OH) D in patients with chronic liver disease (CLD) occur in 90 % of cases, including those in whom the severe deficiency is correlated predominantly with histological changes, degree of the disease progression and liver fibrosis development as well as the response to treatment [2,3].

Vitamin D has been shown to play a key role in cell differentiation and proliferation, apoptosis, angiogenesis, and immunomodulation [4,5]. This action is regulated by more than 900 genes [6–8]. Biological effects (autocrine, paracrine, immunoregulatory) are due to the hormonally active form of 1 alpha, 25-dihydroxyvitamin D (1 alpha, 25(OH)2D; calcitriol) by binding to vitamin D receptors of (VDR). VDR belongs to a huge family of nuclear receptors of steroid hormones that are present in more than 30 tissues, including liver, pancreatic islet cells, epithelial cells of the gastrointestinal tract, genitourinary system, organs of endocrine system, endothelium, hematopoietic cells, myocardium and striated muscle, neurons, placental cells, as well as in monocytes of blood and activated T and B lymphocytes [9–12]. D-hormone, penetrating into the nucleus of a cell, binds to a nuclear receptor encoded by the vitamin D receptor gene (VDR). D-hormone functions as an endocrine and paracrine hormone. All these effects are mediated by the active form of vitamin D (1 alpha, 25(OH)2D3).

In humans, vitamin D has a primary physiological role in the regulation of calcium and phosphate metabolism. In association with the parathyroid hormone (PTH) and 1,25-dihydroxyvitamin D (1 alpha, 25(OH)2D3), it controls the absorption of calcium from the intestine in the parathyroid gland and bones. In addition, vitamin D is involved in the regulation of mineralization of bone. More than 200 genes, including enzymes, cell receptors, and nuclear receptors, have been identified among vitamin D response elements. These include genes involved in cell growth, differentiation, and apoptosis, as well as genes involved in immune regulation and circadian rhythm [13].

Vitamin D deficiency is associated with diseases of the cardiovascular system, including hypertension, atherosclerosis, and myocardial infarction [14,15]. In diabetes mellitus, vitamin D deficiency is associated with the development of complications, including renal disease, nephropathy, and other complications [16]. Moreover, vitamin D deficiency is associated with resistance to the effects of insulin and the development of insulin resistance [17]. In children, vitamin D deficiency is associated with rickets and osteomalacia [18]. In adults, vitamin D deficiency is associated with bone disease, especially osteoporosis [19]. Many studies have shown that vitamin D deficiency is associated with the development of cancer [20]. Vitamin D deficiency is associated with an increased risk of breast cancer [21], prostate cancer [22], and colorectal cancer [23]. Additionally, vitamin D deficiency is associated with an increased risk of infections, such as respiratory infections [24], urinary tract infections [25], and gastrointestinal infections [26].
The molecular-genetic study of polymorphous variants of the VDR gene was performed by the polymerase chain reaction (PCR) method. Initially, DNA was extracted from the peripheral blood using the commercial Quick-DNA MiniPrep Plus Kit test system (manufactured by Zymo Research, USA). For the determination of the polymorphic variants of the BsmI G/A (rs1544410), TaqI T/C (rs731236) [30] and Apal A/C (rs7975232) [31] of the VDR gene, the modified protocols with oligo-nucleotide primers and the restriction fragment length polymorphism (RFLP) analysis were used. The investigated genes were amplified using specific primers (produced by Metabion, Germany) and the commercial Dream Taq Green PCR Master Mix (manufactured by Thermo Scientific, USA). The test tubes with the final amplification mixture were transferred to the Flex Cycler BU amplifier (Analytic Jena, Germany) to provide an appropriate temperature regime.

The products of the DNA fragments amplification (amplicons) of the VDR gene were subjected to hydrolytic cleavage by restriction endonuclease BsmI, TaqI and Apal (produced by Thermo Scientific, USA), respectively. For the restriction analysis, separate mixtures were prepared and transferred into the pre-labeled test tubes, and then amplicons were added. The proportional composition of the components in the template mixture is given in Table 1.
The reaction of the fragments restriction for BsmI G/A (rs1544410) and VDR ApaI A/C (rs7975232) of the VDR gene was carried out according to the manufacturer’s recommendations in a solid-state microthermostat at 37 °C for 16 hours. The process was stopped by raising the temperature to 65 °C for 20 minutes. The restriction of TaqI T/C (rs731236) of the VDR gene was incubated at 65 °C for 16 hours without further thermo-inactivation of the enzyme (in accordance with the manufacturer’s instructions). The state of the restriction fragments of the VDR gene was analyzed on 3 % agarose gel (agarose produced by Cleaver Scientific, UK) stained with ethidium bromide. Gene Ruler 50 bp DNA Ladder molecular weight marker (manufactured by Thermo Scientific, USA) was added to evaluate the fragments size (Fig. 1–3).

As shown in Fig. 1, the VDR gene BsmI G/A (rs1544410) amplifiers were subjected to hydrolytic digestion at an existing restriction site 5’-GAATGCN↓-3’, resulting in fragmentation having a molecular weight of 644 bp and 179 bp – the GG genotype. The restriction site disappeared at the nucleotide substitution from G to A, so if the size of the amplified DNA fragments after interaction with the restriction nuclease remained unchanged (823 bp), the AA genotype was recorded. Accordingly, in the heterozygous genotype (GA), all three types of fragments were observed simultaneously: 823, 644 and 179 bp.

Fig. 2 shows the electrophoregram of the VDR gene TaqI (rs731236) T/C restriction fragments. The amplicons were subjected to hydrolytic digestion by the TaqI restriction endonuclease at the specific restriction site 5′-T↓CGA-3’. On the amplified fragments of the VDR gene, one of these sites was always present that formed fragments of 496 and 249 bp under the action of TaqI endonuclease. By their presence, the TT genotype was determined. In response to the nucleotide substitution from T to C, an additional restriction site appeared. As a result, in the CC genotype, in addition to 249 bp, restriction fragments with a molecular weight of 295 bp and 201 bp were formed. In the heterozygous genotype (TC), fragments 496 bp, 295 bp, 249 bp and 201 bp, respectively, were observed.

The size of the amplified Apal (rs7975232) A/C fragment of the VDR gene remained the same (501 bp) under the influence of the Apal restriction endonuclease in the absence of a nucleotide substitution (the AA genotype). (Fig. 3). The presence of a polymorphic variant was determined by the appearance of the restriction site 5’-GGGCC↓C-3’, resulting in formation of fragments 288 bp and 213 bp in size (the CC genotype). The heterozygous genotype (AC) was characterized by the all types of fragments presence: 501 bp, 288 bp, and 213 bp.

The obtained data were statistically analyzed using the Statistica 6.1 software package and SPSS17.0 (SPSS, Inc., Chicago, Illinois, USA). The general statistical analysis included median (Me) and interquartile intervals (UQ-LQ) calculations. Laboratory indices were presented in the form of arithmetic data (mean (M ± m), standard error of the mean (SEM)). For nominal variables, the correlation was calculated using the Pearson (xy2) criterion and Fisher’s (two-tailed) criterion; those differences were considered statistically significant, for which a P value was <0.05.

Table 1. Composition of the template mixtures for RFLP analysis

Gene (polymorphism)	Reagents	Volume	The size of the restriction fragments
VDRBsmI G/A (rs1544410)	10xBufferR	1 μl	GG genotype: 644 and 179 bp
	Enzyme BsmI	1 μl	GA genotype: 823, 644 and 179 bp
	Water	6 μl	AA genotype: 823 bp
	Amplicon	5 μl	
VDRTaqI T/C (rs731236)	10xBuffer TaqI	1 μl	TT genotype: 496 and 249 bp
	Enzyme TaqI	1 μl	CT genotype: 496, 295, 249, and 201 bp
	Water	8 μl	CC genotype: 295, 249, and 201 bp
	Amplicon	5 μl	
VDR ApaI A/C (rs7975232)	10xBuffer Apal	1 μl	AA genotype: 501 bp
	Enzyme Apal	1 μl	AC genotype: 501, 288 and 213 bp
	Water	8 μl	CC genotype: 288 and 213 bp
	Amplicon	5 μl	
Table 2. Frequency distribution of the alleles and genotypes of the Apal, Tagl and Bsml polymorphisms of the VDR gene in children with autoimmune hepatitis (abs., %)

Genotype	n	%	Genotype	n	%	Genotype	n	%
AA	16	31.0	TT	21	41.0	GG	20	40.0
AC	26	51.0	TC	22	43.0	GA	15	29.0
CC	9	18.0	CC	8	16.0	AA	16	31.0
A allele	58	57.0	T allele	64	63.0	G allele	55	54.0
C allele	44	43.0	C allele	48	37.0	A allele	47	46.0

Table 3. Vitamin D levels in children with autoimmune hepatitis depending on the stage of fibrosis, abs., %

Stage of fibrosis by the METAVIR score, (n = 51)	Vitamin D levels, abs., %		
	Optimal level (n = 6)	Insufficiency (n = 8)	Deficiency (n = 37)
--	---------------------------		
F1–2 (n = 15)	4 (27.0)	3 (20.0)	8 (53.0)*
F3–4 (n = 36)	2 (5.5)	5 (14.0)	29 (80.5)

*: the difference is significant (P < 0.05) between the groups of children with the stage of fibrosis F1–2 and F3–4.

Fig. 4. Distribution of children with AIH by the stage of fibrosis (n = 51), (%).

Results

Among the surveyed children (n = 51), girls dominated and accounted for 61.0 %, and boys made up 39.0 %. Such a distribution corresponds to the clinical features of the disease, which is more often recorded among girls. Higher prevalence among females is associated with the HLA antigens system: HLA-A-B8-DR3 or DR4 [24–26]. Autoimmune hepatitis (AIH) belongs to orphan diseases with a small frequency in the general population that has caused a small number of children included in the study. While Verma et al. [26] believe that the prevalence of AIH in the world is between 2 and 17 per 100,000 children, and it may vary within ethnic groups. The disease is more often diagnosed at the age of 10–30 years. The average age of patients at the time of our study was 11 [8; 15] years, corresponding to the literature data [28]. The average age for boys was 10 [8; 14] years, for girls 11.5 [9; 15]. 62.7% (n = 32) of patients were in the age group of 11–18 years.

We did not find a significant difference between the frequency distributions of the of alleles and genotypes of the Apal, Tagl and Bsml polymorphic variants of the VDR gene in children with AIH by gender and age (P > 0.05), so further analysis of the studied gene variations effects was performed in the general group of patients. The results of the identified peculiarities of distribution in the general group are presented in Table 2. Distribution of genotypes based on the VDR Apal, Tagl, Bsml genetic variants was analyzed according to the Hardy-Weinberg Law. The concordance with the Hardy-Weinberg law was found for the Apal and Tagl genotype variants but not for the Bsml variant, that may be associated with a higher risk of multifactorial disease development such as autoimmune hepatitis.

According to our data, 72.0 % (n = 36) of the subjects had advanced liver fibrosis (F 3-4 METAVIR), and 34.0 % of them (n = 17) had signs of liver cirrhosis. Distribution of children by the stage of fibrosis is shown in Fig. 4.

The mean concentration of vitamin D in the examined children was 16.3 [10.9; 22.0] ng/ml corresponding to vitamin D deficiency. The vitamin D levels in children with AIH, depending on the stage of fibrosis, are given in Table 3.

12.0 % (n = 6) of children had optimal levels of vitamin D, deficiency was diagnosed in 15.5 % (n = 8), and deficiency was found in 72.5 % (n = 37) of the subjects. For computational convenience, we combined the subgroups of children with the stage of fibrosis F1 and F2, as well as F3 and F4.

According to our data, vitamin D levels in children depended on the stage of liver fibrosis. Patients with advanced fibrosis (F3-4 METAVIR) were significantly more likely to have vitamin D deficiency (χ² = 5.21; P = 0.022) compared to children with F1–2 fibrosis by the METAVIR score (Table 5).

The evaluation of the AIH genetic risk was not the goal of our research. However we studied the effects of genetic variants on the complicated course of the disease associated with liver cirrhosis development by intra-group comparisons. We calculated genetic risk models including additive, recessive, dominant, multiplicative and co-dominant for complicated AIH development. The study of the association between genotypes of Apal, Bsml and Tagl polymorphic variants of the VDR gene with the stage of fibrosis in children with AIH demonstrated that children with advanced fibrosis (F3-4 METAVIR) were significantly more likely to have the CC genotype of the polymorphic variant Tagl of the VDR gene (χ² = 3.953; P < 0.05) compared to children with the fibrosis stage F1–2 by the METAVIR score (Table 4). The highest predictive ability was shown for recessive inheritance model.

In children of the general group, the association between the serum levels of vitamin D and the VDR gene polymorphism was investigated. There was no significant difference in the levels of vitamin D depending on the geno-
types studied with the exception of the BsmI allelic variant. In children with the GA genotype by the BsmI polymorphic variant, there was a significant decrease in serum vitamin D levels (12.442 ± 5.515) compared to those with the AA (18.540 ± 7.805) and GG (19.230 ± 7.057) genotypes. For the TagI and BsmI of the VDR gene polymorphic variants in children with AIH, there was no significant difference in the levels of vitamin D (Table 5).

According to the results of our study, the following combinations of the genotypes in the three allelic variants of the gene were not found among the examined patients: AA/TT/GG, AA/TT/GA, AA/TT/AA, AA/TC/GA, AA/TC/AA, AA/CC/GA, AA/CC/AA, AA/CC/GG, AC/TT/GA, AC/TT/AA, AC/TT/GG, CC/TT/AA, CC/TT/GA, CC/CC/GA, CC/CC/AA, CC/CC/AC, CC/CC/GC, CC/CC/GG. The following six combinations of the genotypes were detected in the examined patients: AA/TC/AA (n = 8), AA/ CC/AA (n = 8), AC/TT/GG (n = 11), AC/TT/AA (n = 1), AC/ TC/AA (n = 14), CC/TT/GG (n = 9). We analyzed the effects of three allelic variants combinations of the VDR gene (ApaI, TagI, BsmI) on the vitamin D levels and the liver fibrosis severity in this contingent (Tables 6, 7).

The results demonstrated that children with the AA/TC/ AA, AC/TT/GG and CC/TT/GG genotype combinations were significantly more likely to have higher vitamin D serum levels than children with the AC/TC/AA genotype combination of the polymorphic variants Apal, Tagl, BsmI of the VDR gene (P < 0.05). In general, all the examined children had varying degrees of vitamin D deficiency. Children with the AA/TC/AA genotype combination had the highest level of 25(OH)D – 19.84 ± 8.29 ng/ml.

The correlation analysis of the VDR gene allelic variant combinations with the fibrosis stage showed that children with the genotype AA/CC/AA combination were significantly more likely to have advanced fibrosis F 3-4 by the META VIR score (χ² = 3.953; P < 0.05) (Table 7).

Discussion

While searching for the scientific research results in PubMed, EMBASE and Cochrane Library we did not find any studies on the association between polymorphic variants of the VDR gene with the risk of AIH development or their peculiarities in the pediatric population, only some studies conducted among adults were revealed. Most studies were devoted to polymorphisms of the VDR gene in patients with primary biliary cirrhosis [20–23,29]. Thus, M. Vogel and co-authors, analyzing the effect of the VDR gene polymorphisms in AIH and primary biliary cirrhosis, revealed the association between BsmI and TagI polymorphisms of the VDR and primary biliary cirrhosis in the German population, as well as the association between FokI and TaqI polymorphisms and AIH. The authors established a significant correlation between the GA (χ² = 8.33; P = 0.004; OR = 0.44 [0.25; 0.78]) and AA (χ² = 7.37; P = 0.001; OR = 2.1 [1.22; 3.62]) genotypes in patients with primary biliary cirrhosis compared with the control group. A noticeably weaker association with primary biliary cirrhosis was additionally demonstrated for the TC genotype (χ² = 4.79; P = 0.003; OR = 0.54 [0.31; 0.94]). The analysis of the FokI polymorphic locus distribution showed that the frequency of the CC genotype was increased significantly (χ² = 8.09; 10 = 7.37; P = 0.001; OR = 2.1 [1.22; 3.62]) genotypes in patients with primary biliary cirrhosis compared with the control group. A noticeably weaker association with primary biliary cirrhosis was additionally demonstrated for the TC genotype (χ² = 4.79; P = 0.003; OR = 0.54 [0.31; 0.94]). The analysis of the FokI polymorphic locus distribution showed that the frequency of the CC genotype was increased significantly (χ² = 8.09; *: the difference is significant (P < 0.05).
P = 0.004; OR = 1.94 [1.23; 3.07]), and the frequency of the TT genotype was decreased compared with the control group (x^2 = 5.13; P = 0.002; OR = 0.50 [0.28; 0.92]) [21].

The information retrieval conducted by us has validated our study on the possibility of the VDR gene analysis application in the pediatric hepatology as a prognostic marker for the unfavorable course of AIH with progression to liver cirrhosis.

Analysis of the FokI polymorphic locus in our AIH patients was not performed. The distribution of allelic and genotype frequencies found in our study were similar to those found in patients from Germany.

Conclusions

Thus, according to our data, deficiency of vitamin D was found in 72.5 % of patients with AIH. The level of vitamin D depended on the stage of liver fibrosis. Children with advanced fibrosis F3–4 by the METAVIR score were significantly more likely to have vitamin D deficiency.

Vitamin D deficiency was associated with the genetic peculiarities of the patients: the GA genotype of the BsmI polymorphic variant presence and the AC/TC/GA genotype combination of the Apal, Tagl and BsmI polymorphic variants of the VDR gene.

The CC genotype of the Tagl polymorphic variant and the AA/CC/AA genotype combination of the Apal, Tagl and BsmI polymorphic variants of the VDR gene were associated with advanced fibrosis F3–4 by the METAVIR score in children with AIH.

Conflicts of interest: authors have no conflict of interest to declare.

References

[1] Luong, K. V., & Nguyen, L. T. (2013). The Role of Vitamin D in Autoimmune Hepatitis. J ClinMedRes. 5(6), 407–415. doi: 10.4021/jcrrn150b

[2] Efe, C., Kay, T., Aydin, C., Cengiz, M., Imga, N. N., Purnak, et al. (2014). Low Serum Vitamin D Levels Are Associated with Severe Histological Features and Poor Response to Therapy in Patients with Autoimmune Hepatitis Article in Digestive Diseases and Sciences. DiatDisSci. 59(12), 3035–42. doi: 10.1016/j.tdiscs.2014-3267-3

[3] Elayeb, A. A., Abdou, M. A., Abdel-aal, A. M., & Othman, D. H. (2015). Vitamin D status and viral response to the rapy in hepatitis C infected children. World J Gastroenterol., 21(4), 1284–1291. doi: 10.3748/wjg.v21.i4.1284

[4] Kamen, D. L., & Tangrichia, V. (2010). Vitamin D and molecular actions on the immune system: modulation of innate and autoimmune. J Mol. Med., 88, 441–450. doi: 10.1007/s00109-010-0599-9

[5] Inuzuka, P., Terán, A., Crespo, J., & Fabrega, E. (2014). Vitamin D deficiency in chronic liver disease. J Hepatol., 61(2), 901–915. doi: 10.1016/j.jhep.2014.03.033

[6] Povorozniuk, V. V., & Plutova, P. (2014). Definitly st na dostatošti vitamintu D: epidemiológia, diagnostika, profilaktika ta likuvannia [Vitamin D-deficiency and insufficiency: epidemiology, diagnostics, prevention and treatment]. Donec. [in Ukrainian].

[7] Kilson, M. T., & Roberts, S. K. (2012). D-living the message: The importance of vitamin D status in chronic liver disease. J Hepatol., 57(4), 897–898. doi: 10.1016/j.jhep.2014.03.033

[8] Mora, J. R, Iwata, m., vonAndrian, U. H. (2008). Vitamin effects on the immune system: modulation of innate and autoimmune J Mol Med (Berl), 86(5), 441–450. doi: 10.1007/s00109-010-0599-9

[9] Agmon-Levin, N., Theodor, E., Segal, R. M., & Shoferyd, Y. (2013). Vitamin D in systemic and organ-specific autoimmune diseases. Clin Rev Allergy Immunol, 45, 226–268. doi: 10.1007/s12016-012-8342-y

[10] Kamen, D. L., & Tangrichia, V. (2010). Vitamin D and molecular actions on the immune system: modulation of innate and autoimmune. J Mol Med, 86(5), 441–450. doi: 10.1007/s00109-010-0599-9

[11] Malham, M., Jorgersen, S. P., Ott, P., Agnholt, J., Vilstrup, H., Borre, J., & Dahlberg, J. F. (2011). Vitamin D deficiency in cirrhosis relates to liver dysfunction rather than aetiology. World J Gastroenterol., 17(7), 922–925. doi: 10.3748/wjg.v17.i7.922

[12] Yokovka, O. A., Nikolaou, O. M., Dorotheev, I. A., & Sichon, N. V. (2017). Geneticisheks polimorfizm receptors vitamint D opredeljaet ego metabolizm i e'ffektivnost' [Genetic polymorphism of vitamin D receptor determines its metabolism and efficiency]. Bol. Sustav. Povznomochn. 7(2), 73–78. doi: 10.22141/2224-1507.7.2.2017.108899

[13] Peterlik, M., & Cross, H. S. (2009). Vitamin D and calcium insufficien- cy-related chronic diseases: molecular and cellular pathophysiology. European Journal of Clinical Nutrition., 63, 1377–1386. doi: 10.1038/ejn2009.105

[14] Arloth, J., Nair, S., & Nair, S. (2010). Prevalence of vitamin D deficiency in chronic liver disease. Dig Dis Sci., 59(5), 2624–26. doi: 10.1007/s10620-009-0969-9
[16] Fan, L., Tu, X., Zhu, Y., Zhou, L., Pfeiffer, T., Feltens, R., et al. (2005) Genetic association of vitamin D receptor polymorphisms with autoimmune hepatitis and primary biliary cirrhosis in the Chinese. J Gastroenterol Hepatol., 20(2), 249–55. doi: 10.1111/j.1440-1746.2005.03532.x

[17] Luong, K. V., & Nguyen, L. T. (2013). The Role of Vitamin D in Autoimmune Hepatitis. J Clin Med Res., 5(6), 407–415. doi: 10.4021/jcmer150x

[18] Altieri, B., Muscogiuri, G., Barrea, L., Mathieu, Ch., Vallone, C. V., Mascitelli, L., et al. (2017). Does vitamin D play a role in autoimmune endocrine disorders? A proof of concept. Rev Endocr Metab Disord., 18(3), 335–346. doi: 10.1007/s11154-016-9405-9

[19] Konstantakis, C., Tsakokouni, P., Kalafati, M., & Triantos, C. (2016). Vitamin D deficiency in patients with liver cirrhosis. Ann Gastroenterol., 29(3), 297–306. doi: 10.20524/ag.2016.0037

[20] Kempfínska-Podhorecka, A., Wunsch, E., Jarowicz, T., Raszewska-Wyszomirska, J., Loniewska, B., Kaczmarczyk, M., et al. (2012). Vitamin D Receptor Polymorphisms Predispose to Primary Biliary Cirrhosis and Severity of the Disease in Polish Population. Gastroenterology Research and Practice, 2012, 408723. doi: 10.1155/2012/408723

[21] Vogel, A., Strassburg, C. P., & Manns, M. (2002). Genetic association of vitamin D receptor polymorphisms with primary biliary cirrhosis. Hepatology, 35(1), 126–31. doi: 10.1053/jhep.2002.30084

[22] Tanaka, A., Nezu, S., Uegaki, S., Kikuchi, K., Shibuya, A., Miyakawa, H., et al. (2009). Vitamin D receptor polymorphisms are associated with increased susceptibility to primary biliary cirrhosis in Japanese and Italian populations. J Hepatol., 50(6), 1202–6. doi: 10.1016/j.jhep.2009.01.015

[23] Adorini, L. (2009). Vitamin D receptor polymorphisms in primary biliary cirrhosis: A functional connection? Journal of Hepatology, 50(6), 1071–1073. doi: https://doi.org/10.1016/j.jhep.2009.03.005

[24] Czaja, A. J., Carpenter, H. A., & Moore, S. B. (2008). HLA DRB1*13 as a risk factor for type 1 autoimmune hepatitis in North American patients. Dig Dis Sci, 53(2), 522–528. doi: 10.1007/s10620-007-9859-4

[25] Ferri Liu, P. M., de Miranda, D. M., Fagundes, E. D., Ferreira, A. R., & Simões e Silva, A. C. (2013). Autoimmune hepatitis in childhood: The role of genetic and immune factors. World J Gastroenterol., 19(26), 4455–4463. doi: 10.3748/wjg.v19.i26.4455

[26] Verma, S., Torbenson, M., & Thuluvath, P. (2007). The impact of ethnicity on the natural history of autoimmune hepatitis. Hepatology, 46(6), 1528–1535. doi: 10.1002/hep.21964

[27] Radhakrishnan, K. R., Akhtar, N., Worley, S., Ariffin, S., Hupertz, V., Kay, M., et al. (2010). Autoimmune hepatitis in children: Impact of cirrhosis at presentation on natural history and long-term outcome. Dig Liver Dis., 42(10), 724–728. doi: 10.1016/j.dld.2010.01.002

[28] European Association for TheStudy of the Liver (2015). EASL Clinical Practice Guidelines: Autoimmune hepatitis. Journal of Hepatology, 63(4), 971–1004. doi: 10.1016/j.jhep.2015.06.030

[29] Rasheed, H., Hegazy, R. A., Gwadat, H. I., Mehany, D. A., Kamel, M. M., Fawzy, M. M., et al. (2016) Serum vitamin D and vitamin D receptor gene polymorphism in mycosis fungoides patients: a case control study. PLoS One., 11(6), e0158014. doi:10.1371/journal.pone.0158014

[30] Obukhova, O. A. (2014). Rozpored polimorfizmiv VDR-hena v ukrainskoi narodnosti ta postav ykh zv'язku iz rozvytkom aterotrombotychnoho insultu. [The distribution of polymorphisms in the VDR-gene in Ukrainian population and search of their association with the development of atherothrombotic stroke.] Dr. biol. sci. diss.]. Kyiv. [in Ukrainian].

[31] Berzigotti, A., & Castella L. (2013). Update on ultrasound imaging of liver fibrosis. Journal of Hepatology., 59, 185–182. doi:10.1016/j.jhep.2012.12.028