General constraints on Horndeski wormhole throats

Roman Korolev, Francisco S. N. Lobo, and Sergey V. Sushkov

Institute of Physics, Kazan Federal University, Kremliovskaya str. 16a, Kazan 420008, Russia
Instituto de Astrofísica e Ciências do Espaço, Faculdade de Ciências da Universidade de Lisboa, Edifício C8, Campo Grande, P-1749-016, Lisbon, Portugal

Dated: April 28, 2020

In this work, we consider the full Horndeski Lagrangian applied to wormhole geometries and present the full gravitational field equations. We analyse the general constraints imposed by the flaring-out conditions at the wormhole throat and consider a plethora of specific subclasses of the Horndeski Lagrangian, namely, quintessence/phantom fields, k-essence, scalar-tensor theories, covariant galileons, nonminimal kinetic coupling, kinetic gravity braiding, and the scalar-tensor representation of Gauss-Bonnet couplings, amongst others. The generic constraints analysed in this work serve as a consistency check of the main solutions obtained in the literature and draws out new avenues of research in considering applications of specific subclasses of the Horndeski theory to wormhole physics.

Keywords: traversable wormhole; Horndeski theory; modified gravity.

PACS numbers: 04.20.Cv, 04.50.Kd, 04.20.Fy, 04.50.-h

I. INTRODUCTION

Traversable wormholes are hypothetical shortcuts in spacetime, where the key ingredient involves the flaring-out condition at the throat [1–4]. In general relativity, through the Einstein field equation this restriction entails the violation of the null energy condition (NEC), which is defined as $T_{\mu\nu}k^\mu k^\nu \geq 0$, for any null vector k^μ [5, 6]. However, in modified theories of gravity, it has been shown that the NEC can be satisfied for normal matter threading the wormhole throat, and it is the higher order curvature terms that sustain the wormhole geometry [5]. In fact, wormhole physics has been extensively explored in modified theories of gravity, such as in $f(R)$ gravity [7], extended theories with a nonminimal curvature-matter coupling [8, 9], scalar-tensor theories with nonminimal derivative coupling [11, 12], hybrid metric-Palatini gravity [13] and its generalized version [14], and higher-dimensional theories [15–19], amongst many other theories (we refer the reader to Ref. [4] for a recent review). These extended theories of gravity admit an equivalent scalar-tensor representation.

Indeed, scalar fields are popular building blocks used to construct physical theories and are appealing as such fields are ubiquitous in theories of high energy physics beyond the standard model. Given the large number of models, the question arises how we should study and compare them in a unified manner. A particularly useful tool in this direction is the realisation that all these classes of models are special cases of the most general Lagrangian which leads to second order field equations, namely, the Horndeski Lagrangian [20], which was recently rediscovered [21]. The Horndeski action can be given by

\[S = \int d^4x \sqrt{-g} \sum_{i=2}^{5} L_i + S_M[g_{\mu\nu}, \chi_M], \tag{1.1} \]

where g is the determinant of metric tensor $g_{\mu\nu}$, S_M is the matter action, in which χ_M collectively denotes all matter fields. The Lagrangians L_i are defined by

\[
L_2 = G_2(\phi, X), \\
L_3 = -G_3(\phi, X)\Box \phi, \\
L_4 = G_4(\phi, X)R + G_{4,X}(\phi, X) \left[(\Box \phi)^2 - (\nabla_{\mu} \nabla_{\nu} \phi)^2 \right] \\
L_5 = G_5(\phi, X)G_{\mu\nu}\nabla_{\mu} \nabla_{\nu} \phi - \frac{1}{6} G_{5,X} \times \left[(\Box \phi)^3 - 3 \Box (\nabla_{\mu} \phi \nabla_{\nu} \phi)^2 + 2 (\nabla_{\mu} \nabla_{\nu} \phi)^3 \right], \tag{1.2}
\]

respectively, where R is the Ricci scalar and $G_{\mu\nu}$ is the Einstein tensor; the factors G_i ($i = 2, 3, 4, 5$) are arbitrary functions of the scalar field ϕ and the canonical kinetic term, $X = -\frac{1}{2} \nabla^{\mu} \phi \nabla_{\mu} \phi$. We consider the definitions $G_{i,X} \equiv \partial G_{i}/\partial X$, $(\nabla_{\mu} \nabla_{\nu} \phi)^2 = \nabla_{\mu} \nabla_{\nu} \phi \nabla^{\nu} \phi \nabla^{\mu} \phi$, and $(\nabla_{\mu} \nabla_{\nu} \phi)^3 = \nabla_{\mu} \nabla_{\nu} \phi \nabla^{\nu} \phi \nabla_{\rho} \nabla^{\rho} \phi$. Furthermore, we assume that the matter fields χ_M are minimally coupled to gravity.

Note that by choosing the functions G_i appropriately, one may reproduce any second-order scalar-tensor tensor theory. For instance, the G_2 term is used in k–essence [22, 23], and the G_3 term was explored in the context of kinetic gravity braiding [24]. One may also consider theories in which the scalar field is nonminimally coupled to the Ricci scalar R in the form $G_4(\phi)R$ [22], where a representative example is Brans-Dicke (BD) theory [20] with a scalar potential $V(\phi)$. The specific assumption of $G_4 = \text{constant}$ provides the Hilbert-Einstein term. The
choices of \(G_4 = X\) or \(G_5 = -\phi\) have been used in non-minimal couplings of the form \(G_{\mu\nu} \nabla^\mu \nabla^\nu \phi\) \cite{27, 28}. We refer the reader to \cite{29} for a plethora of specific cases. These theories all belong to a subclass of more general second-order scalar-tensor theories denoted by Horndeski theories \cite{20}.

An interesting application of scalar-tensor theories is in wormhole physics, where a wide variety of solutions have been obtained in the literature \cite{30, 31}, especially related to the stability issues \cite{33, 34}. These (and other) solutions are specific sub-classes of the Horndeski action \cite{35}, so it is important to consider the most general conditions that are needed to obtain wormhole geometries in Horndeski theories. Thus, in this work, we consider the analysis restricted to the wormhole throat and analyse a wide variety of subclasses of the Horndeski Lagrangian. This proves to be extremely useful as it serves as consistency checks for the solutions obtained in the literature and paves the way for new avenues of research related to subclasses of Horndeski wormhole solutions.

This work is organised in the following manner: In Sec. II we present the wormhole metric and the general constraints of the full Horndeski Lagrangian at the wormhole throat. In Sec. III we consider specific subclasses of the Horndeski theory, namely, quintessence/phantom fields, \(k\)-essence, scalar-tensor theories, covariant galileons, non-minimal kinetic coupling, kinetic gravity braiding, and the scalar-tensor representation of Gauss-Bonnet couplings, amongst others. In Sec. IV we conclude and discuss our results.

In addition to this, as the gravitational field equations for the full Horndeski theory are extremely lengthy, we opt to present these in Appendix A. The field equations at the throat are written in Appendix B which are then used to deduce the most general flaring-out condition for Horndeski wormholes, in terms of the scalar field \(\phi\), the kinetic term \(X\), the factors \(G_i\) and their derivatives, and presented in Appendix C.

II. GENERAL ANALYSIS AT THE WORMHOLE THROAT

A. Metric and flaring-out condition

Consider a static and spherical symmetric configuration in the theory \cite{11}. In this case the spacetime metric can be taken as follows:

\[
d s^2 = -A(u) dt^2 + A^{-1}(u) du^2 + r^2(u) d\Omega^2,
\]

where \(d\Omega^2 = d\theta^2 + \sin^2 \theta d\varphi^2\) is the linear element of the unit sphere, and the metric functions \(A(u), r(u)\) and the scalar field \(\phi\) are functions of the radial coordinate \(u\). Here the radial coordinate lies the range \(u \in (-\infty, +\infty)\), so that two asymptotically flat regions exist, i.e., \(u \to \pm \infty\), and are connected by the throat. In addition to this, the function \(r(u)\) possesses a global positive minimum at the wormhole throat \(u = u_0\), which one can set at \(u_0 = 0\), without a loss of generality.

The wormhole throat is defined as \(r_0 = \min \{r(u)\} = r(0)\). In order to avoid event horizons and singularities throughout the spacetime, one imposes that the function \(A(u)\) is positive and regular everywhere. Taking into account these restrictions, namely, the necessary conditions for the minimum of the function imposes the flaring-out conditions, translated as

\[
r_0' = 0, \quad r_0'' > 0.
\]

B. Generic constraints at the wormhole throat

We present the full field equations for the Horndeski action \cite{41}, using the metric \cite{21}, in Appendix A. Thus, taking into account the field equations \cite{A1, A2, A3}, evaluated at the throat, and using the condition \(A_0' = 0\), one obtains restrictions for the wormhole geometry. More specifically, setting \(r_0 = 0\) at the throat, we obtain a set of linear algebraic equations for the second derivatives \(r_0'', A_0'', \phi_0''\). In this work, we use the three components of the gravitational field equations \cite{A1, A3} and the scalar field equation \cite{A4} presented in Appendix A.

The \((rr)\)-component \(A2\) of the field equations is of first order and represents a constraint on initial conditions, and is given by

\[
\frac{1}{r_0'} = -\frac{1}{2} \frac{G_2 + A_0 \phi_0'^2 (G_{2,X} - G_{3,0})}{G_4 + A_0 \phi_0'^2 (G_{4,X} - \frac{1}{2} G_{5,0})} \bigg|_{u_0}.
\]

This condition places an additional constraint on the wormhole geometry, as \(1/r_0'' > 0\). Note that, taking into account the metric \(2.1\), the kinetic term at the throat is negative and takes the form \(X_0 = -\frac{1}{2} A_0 \phi_0'^2 < 0\).

Furthermore, in order to obtain the flaring-out condition, we have to resolve the linear algebraic equations with respect to \(r_0''\), which places further constraints on the wormhole geometry through the flaring-out condition \(2.2\). For this purpose, we write out the field equations at the throat, presented in Appendix A by taking into account the conditions \(r_0' = 0\) and \(A_0' = 0\), so that Eqs. \(A1, A3\) and the scalar field equation \(A4\) reduce to...
Eqs. (3.1)–(3.3) in Appendix B. Finally, eliminating the terms A_0^ν and ϕ_0^ν, one finally arrives at the most general flaring-out condition for Horndeski wormholes, solely in terms of the scalar field ϕ, the kinetic term X, the factors G, and their derivatives, given by Eq. (C1), which due to its extremely lengthy and messy form is presented in Appendix C. We then refer to this condition, when analysing specific subclasses of the Horndeski action.

Note that these relations are constrained by the imposition $r_0^\nu > 0$ and the flaring-out condition, $r_0^\nu > 0$, at the throat. Thus, in order to be a wormhole solution, these equations impose tight restrictions on the spacetime geometry. The strategy to follow is to take into account these conditions in order to analyse and serve as a consistency check on specific solutions obtained in the literature. In addition to this, one can obtain generic impositions to obtain novel solutions and which may trace out new avenues of research in wormhole physics, in the context of subclasses of Horndeski theories.

III. SUBCLASSES OF HORNDESKI THEORY

A. Quintessence/phantom fields

Recent observations suggest that a large fraction of the energy density of the universe has negative pressure, where a possible explanation is in the form of a scalar field slowly evolving down a potential, denoted quintessence [42–44]. The latter possesses a positive kinetic energy, however, phantom scalar fields with a negative kinetic energy [45] have also been considered.

For the specific case of quintessence/phantom fields, consider the following functions

$$G_2 = \epsilon X - V(\phi), \quad G_4 = \frac{1}{10\pi}, \quad G_3 = G_5 = 0,$$

where $\epsilon = \pm 1$. Note that the case $\epsilon = +1$ corresponds to the standard canonical term [42–44], and $\epsilon = -1$ to a phantom field which possesses a negative kinetic energy [45]. In fact the phantom field rolls up the potential due to the negative kinetic energy, so that if the potential is unbounded from above, the energy density tends to infinity.

Recall that taking into account the metric (2.1), the kinetic term at the throat is negative, i.e., $X_0 = -\frac{3}{2} A_0 \phi_0^2 < 0$. Thus, Eqs. (2.3) and (C1) reduce to

$$\frac{1}{r_0^\nu} = 8\pi (\epsilon X_0 + V_0),$$

$$\frac{r_0^\nu}{r_0} = \frac{8\pi \epsilon X_0}{A_0},$$

respectively, from which we verify that Eq. (3.3) is consistent with the flaring-out condition, i.e., $r_0^\nu > 0$, only if $\epsilon < 0$, corresponding to a phantom field. This reproduces the well-known result that a wormhole solution in general relativity is only permitted with a minimally coupled phantom scalar field with negative kinetic energy.

B. k-essence

As quintessence is based on a canonical scalar field with a potential, it is known that scalar fields with non-canonical kinetic terms appear in high energy physics. This motivates the presence of an arbitrary function of the scalar field and the kinetic term in the gravitational Lagrangian. Therefore, one may consider the following functions, which generalize the case studied above

$$G_2 = K(\phi, X), \quad G_4 = \frac{1}{16\pi}, \quad G_3 = G_5 = 0,$$

so that Eqs. (2.3) and (C1) take the form

$$\frac{1}{r_0^\nu} = -8\pi (K_0 - 2X_0 K_{X_0}),$$

$$\frac{r_0^\nu}{r_0} = \frac{8\pi X_0 K_{X_0}}{A_0},$$

respectively.

Thus, Eqs. (3.5) and (3.6) impose the following conditions at the wormhole throat

$$K_0 - 2X_0 K_{X_0} < 0, \quad K_{X_0} < 0.$$

(The first condition can be written in the following form $K_0 + A_0 \phi_0^2 K_{X_0} < 0$). More specifically, $K_{X_0} < 0$, imposes that $K_0 < A_0 \phi_0^2 |K_{X_0}|$. These conditions are consistent with those presented in Ref. [57], where static and spherically symmetric configurations in the context of k-essence theories defined by a function depending solely on the kinetic term, i.e., $K = K(X)$, were presented. In fact, a no-go theorem was proved, claiming that a possible black-hole-like Killing horizon of finite radius cannot exist if the function $K(X)$ is required to have a finite derivative dK/dX.

As a specific example, consider the case of a ghost condensate model [58], given by the function $K = -X + X^2/M^4$, so that conditions (3.7) impose

$$X_0 - \frac{3}{M^4} X_0^2 < 0, \quad -1 + \frac{2}{M^4} X_0 < 0,$$

which taking into account that $X_0 < 0$, are automatically satisfied.
One may also consider actions arising from low-energy effective string theory, which gives rise to higher-order derivative terms coming from loop corrections to the tree-level action [55]. For instance, consider the specific case: $K(\phi, X) = K(\phi)X + L(\phi)X^2$, so that $K_X = K + 2LX$, and conditions [3.7] impose:

$$K(\phi) < -2X_0L(\phi), \quad K(\phi_0) < -3X_0L(\phi_0), \quad (3.9)$$

where the bounds essentially depend on the signs of the functions $K(\phi_0)$ and $L(\phi_0)$.

C. Scalar-tensor theories

Scalar fields have a long history in gravitation, starting with Brans-Dicke theory [26], in which gravity is mediated by the scalar field and the metric tensor field. In fact, modified theories of gravity may be written in a scalar-tensor representation, by introducing specific Legendre transformations, which motivates the further analysis of specific cases of scalar-tensor theories in more detail. Consider the general nonminimally coupled theories given by the couplings [60–65]:

$$G_2 = \omega(\phi)X - V(\phi), \quad G_4 = F(\phi), \quad G_3 = G_5 = 0, \quad (3.10)$$

so that Eqs. [2.3] and [C1] take the form

$$\frac{1}{r_0^2} = \frac{1}{2F_0}(V_0 + \omega X_0), \quad (3.11)$$

and

$$\frac{r_0''}{r_0} = \left\{ \omega X F + 2F'' \right\} + \left(\omega X + V \right) F'2 + \left[2AF \left(\omega F + F' + 2F'' \right) \right] \mid_{0}, \quad (3.12)$$

respectively.

In order to have wormhole geometries, as mentioned above, these quantities are imposed to be positive. We will analyse specific cases below, namely, Brans-Dicke theory with a potential, and the scalar-tensor representations of several modified theories of gravity.

1. Brans-Dicke theory

Wormholes physics has been extensively explored in the context of Brans-Dicke theory [66–74]. Here, we consider the most general conditions for the existence of these exotic geometries. In Brans-Dicke theory [26] with the scalar potential $V(\phi)$, we have

$$G_2 = \frac{1}{16\pi} \left(\frac{\omega_{BD}}{\phi} X - V(\phi) \right), \quad G_4 = \frac{1}{16\pi} \phi, \quad G_3 = G_5 = 0. \quad (3.13)$$

In the limit that $\omega_{BD} \to \infty$, we recover GR with a quintessence scalar field.

For this case, Eqs. [2.8] and [C1] take the form

$$\frac{1}{r_0^2} = \frac{1}{2\phi_0^2} \left(\omega_{BD}X_0 + \phi_0 V_0 \right), \quad (3.14)$$

$$\frac{r_0''}{r_0} = \frac{\omega_{BD}X_0}{2A_0\phi_0^2} + \frac{V_0(1 + \phi_0) - V_0\phi_0}{2A_0(1 + \omega_{BD} + \phi_0)}, \quad (3.15)$$

respectively. Note that in the absence of the potential, $V = 0$, conditions [3.14] and [3.15] impose that $\omega_{BD} < 0$, which is consistent with the literature. However, considering a non-zero potential alleviates this restriction, where inequality [3.14] imposes a general condition on the value of the potential at the throat given by $\phi_0V_0 > -\omega_{BD}X_0$ (note that this relaxes the restriction $\omega_{BD} < 0$). On the other hand, inequality [3.15] imposes an inequality on the derivative of the potential, assuming that $2 + \omega_{BD} + \phi > 0$, given by

$$V_0' < \frac{(2 + \omega_{BD} + \phi)\omega_{BD}X_0}{\phi_0} + \frac{V_0(1 + \phi_0)}{\phi_0}. \quad (3.16)$$

Below, we consider specific cases of modified theories of gravity, that can be represented as particular cases of Brans-Dicke theory.

2. $f(R)$ gravity: metric formalism

An extension of general relativity that has recently been explored in detail is $f(R)$ gravity, in order to explain the late-time cosmic acceleration [73, 76]. The action of $f(R)$ gravity is given by

$$S_\text{H} = \frac{1}{16\pi} \int d^4x\sqrt{-g}f(R), \quad (3.17)$$

where $f(R)$ is an arbitrary function of R. The metric $f(R)$ gravity, which corresponds to the variation of [3.17] with respect to $g_{\mu\nu}$, is represented by the following choices of the Lagrangian

$$G_2 = -\frac{1}{16\pi} (RF - f), \quad G_4 = \frac{1}{16\pi} F, \quad G_3 = G_5 = 0, \quad (3.18)$$

where $F(R) \equiv \partial f/\partial R$. This corresponds to the Jordan frame representation of the action of a Brans-Dicke theory with $\omega_{BD} = 0$ and we define the scalar potential as $V = (RF - f)$ [77, 78]. Here the scalar degree of freedom $\phi = F(R)$ arises from the gravitational sector.

Note, however, that it has been argued in the literature that traversable wormhole geometries are only valid in the interval $-3/2 < \omega_{BD} < -4/3$ [68], consequently apparently excluding $f(R)$ gravity wormholes, which are equivalent their Brans-Dicke counterparts, with $\omega_{BD} = 0$. However, it was shown that this referred interval is only valid for a specific choice of an integration constant of the field equations derived from the basis of a post-Newtonian weak field approximation, and there is no reason for it
to hold in the presence of compact objects with strong gravitational fields \[71]\.

For this case, Eqs. (2.36) and (C1) take the form

\[
\frac{1}{r_0^2} = \frac{V_0}{2\phi_0}, \quad (3.19)
\]

\[
\frac{r''_0}{r_0} = \frac{V_0(1 + \phi_0) - V_0'\phi_0}{2A_0\phi_0(2 + \phi_0)}, \quad (3.20)
\]

respectively. Here, inequality (3.19) imposes the following generic restriction \(V_0/\phi_0 > 0\), which may be interpreted as a constraint on the potential at the throat. Inequality (3.20) imposes a generic condition on the derivative of the potential at the throat, assuming that \(2 + \phi_0 > 0\), given by

\[
V_0' < \frac{V_0(1 + \phi_0)}{\phi_0}. \quad (3.21)
\]

Note that this restriction is consistent with considering \(\omega_{BD} = 0\) in inequality (3.16).

3. \(f(R)\) gravity: Palatini approach

The Palatini \(f(R)\) gravity, which corresponds to the variation of (3.17) with respect to \(g_{\mu\nu}\) and the connection, in the scalar-tensor representation corresponds to a Brans-Dicke theory with the BD parameter \(\omega = -3/2\) \[70\]. Thus, Eqs. (3.14) and (3.15) reduce to

\[
\frac{1}{r_0^2} = \frac{2\phi_0 V_0 - 3X_0}{4\phi_0^2}, \quad (3.22)
\]

\[
\frac{r''_0}{r_0} = \frac{-3X_0}{4A_0\phi_0^2} + \frac{V_0(1 + \phi_0) - V_0'\phi_0}{A_0\phi_0(1 + 2\phi_0)}, \quad (3.23)
\]

Condition (3.22) provides \(\phi_0 V_0 > 3X_0/2\), while inequality (3.23) imposes the following generic constraint on the derivative of the potential evaluated at the throat, assuming that \(1 + 2\phi_0 > 0\)

\[
V_0' < \frac{-3(1 + 2\phi_0)X_0}{4\phi_0^2} + \frac{V_0(1 + \phi_0)}{\phi_0}. \quad (3.24)
\]

In fact, in this context, nontrivial wormhole topologies in Planck-suppressed quadratic extensions of General Relativity (GR) formulated in the Palatini formalism have been explored and the physical significance of curvature divergences in theory and the topology change issue have been analysed in the literature \[80-83\]. This study supports the view that spacetime could have a foamy-like microstructure pervaded by wormholes generated by quantum gravitational effects.

4. Hybrid metric-Palatini theory

It has been established that both metric and Palatini versions of \(f(R)\) theories of gravity have interesting features but also manifest severe and different downsides. A hybrid combination of theories, containing elements from both these two formalisms, turns out to be also very successful accounting for the observed phenomenology and is able to avoid some drawbacks of the original approaches \[13, 54, 80\]. More specifically, this approach consists of adding to the Einstein-Hilbert Lagrangian an \(f(R)\) term constructed \(a la\) Palatini \[54\]. Using the respective dynamically equivalent scalar-tensor representation, it has been shown that the theory passes the Solar System observational constraints even if the scalar field is very light. This implies the existence of a long-range scalar field, which is able to modify the cosmological and galactic dynamics, but leaves the Solar System unaffected.

The action of the hybrid metric-Palatini theory is given by \[84\]:

\[
S = \frac{1}{16\pi} \int d^4x \sqrt{-g} \left(R + f(R) \right) + S_m, \quad (3.25)
\]

where \(S_m\) is the matter action, \(R\) is the Einstein-Hilbert term, \(\mathcal{R} \equiv g^{\mu\nu}R_{\mu\nu}\) is the Palatini curvature, and \(R_{\mu\nu}\) is defined in terms of an independent connection given by \(R_{\mu\nu} \equiv \hat{\Gamma}^\alpha_{\mu\nu,\alpha} - \hat{\Gamma}^\alpha_{\mu\nu,\alpha} + \hat{\Gamma}^\alpha_{\alpha\lambda} \hat{\Gamma}^\lambda_{\mu\nu} - \hat{\Gamma}^\alpha_{\mu\lambda} \hat{\Gamma}^\lambda_{\alpha\nu}\).

The action (3.25) may be expressed as the following scalar-tensor theory

\[
S = \frac{1}{16\pi} \int d^4x \sqrt{-g} \left[(1 + \phi) R + \frac{3}{2\phi} \partial_\mu \phi \partial^\mu \phi - V(\phi) \right] + S_m, \quad (3.26)
\]

which differs from \(w = -3/2\) Brans-Dicke theory in the coupling of the scalar to the curvature, which in the \(w = -3/2\) theory is \(\phi R\).

Thus, the Horndeski \(G_i\) factors are given by

\[
G_2 = \frac{1}{16\pi} \left(-\frac{3}{2\phi} X - V(\phi) \right),
\]

\[
G_4 = \frac{1}{16\pi} (1 + \phi), \quad G_5 = G_6 = 0. \quad (3.27)
\]

Thus, Eqs. (2.3) and (C1) take the form

\[
\frac{1}{r_0^2} = \frac{2\phi_0 V_0 - 3X_0}{4\phi_0^2}, \quad (3.28)
\]

\[
\frac{r''_0}{r_0} = \left\{ \frac{4\phi_0^2 V_0(2 + \phi_0) - 4V'_0\phi_0^2(1 + \phi_0)}{4A_0\phi_0(2\phi_0^2 + 5\phi_0^2 - 3)} \right\} + 3X_0 [1 - \phi_0(3 + 2\phi_0)], \quad (3.29)
\]

Assuming that \(\phi_0(1 + \phi_0) > 0\), then condition (3.28) imposes \(\phi_0 V_0 - 3X_0/2 > 0\) in order to have wormhole solutions \[87\], and the positivity of condition (3.29) may be interpreted as a condition of the derivative of the potential.

D. Nonminimal kinetic coupling

One of the simplest Lagrangians in the Horndeski theory contains a nonminimal kinetic coupling of a scalar
field to the curvature. In fact, cosmological applications have been explored in the literature [88,91]. Relative to wormhole physics, solutions with a nonminimal kinetic coupling were studied in [11,12]. More specifically, general solutions describing asymptotically flat traversable wormholes were obtained by means of numerical methods [12], and particular exact wormhole solutions in an analytical form have been found by using the Rinaldi method [11].

Consider the functions

\[G_2 = \epsilon X - V(\phi) , \quad G_3 = 0 , \quad G_4 = \frac{1}{16\pi} , \quad G_5 = \frac{1}{2}\eta \phi , \]

so that Eqs. (2.3) and (C1) take the form

\[\frac{1}{r_0^G} = \frac{8\pi (\epsilon X_0 + V_0)}{1 + 8\pi \eta X_0} , \quad \frac{r_0''}{r_0} = \frac{8\pi X_0 (\epsilon - 8\pi \eta V_0)}{A_0 (1 + 8\pi \eta X_0)^2} , \]

which is consistent with the results extensively explored in Ref. [11]. Indeed, rather than analyse these results, we refer the reader to [11,12] for more details.

E. Kinetic gravity braiding (KGB)

A large class of scalar-tensor models with interactions containing the second derivatives of the scalar field, but not leading to additional degrees of freedom, has been introduced. These models exhibit peculiar features, such as an essential mixing of scalar and tensor kinetic terms [24], and have been denoted by kinetic braiding. It is interesting that this braiding essentially causes the scalar stress tensor to deviate from the perfect-fluid form [92], and in particular, in cosmology these models possess a rich phenomenology. In fact, the late-time asymptotic is a de Sitter state, and the scalar field can exhibit a phantom behaviour that is able to cross the phantom divide with neither ghosts nor gradient instabilities.

For the kinetic gravity braiding, consider the functions

\[G_2 = \epsilon X - V(\phi) , \quad G_3 \neq 0 , \quad G_4 = \frac{1}{16\pi} , \quad G_5 = 0 , \]

so that Eqs. (2.3) and (C1) take the form

\[\frac{1}{r_0^G} = 8\pi [X_0 (\epsilon - 2G_{3,\phi}) + V_0] , \quad \frac{r_0''}{r_0} = \frac{8\pi X_0 (2G_{3,\phi} - \epsilon - 4X + (2G_{3,\phi} - \epsilon)^2 + G_{3,\phi} (2G_{3,\phi} - \epsilon + \epsilon' - V')}_{|_{\epsilon = 2G_{3,\phi}}} + X G_{3,\phi} (48\pi X G_{3,\phi} - 1)]_{|_{a_0}} , \]

respectively.

From Eq. (3.31), one finds that the general condition \(X_0 (\epsilon - 2G_{3,\phi}) + V_0 < 0 \) is imposed. However, one cannot extract much information from inequality (3.35), and we will resort to specific cases. For instance, consider the case of \(G_3 = \lambda g(\phi) \), so that Eqs. (3.34) and (3.35) reduce to

\[\frac{1}{r_0^G} = -8\pi X_0 (2g'\lambda - \epsilon - V_0) , \quad \frac{r_0''}{r_0} = -8\pi X_0 (2g'\lambda - \epsilon) , \]

which impose the conditions \((2g'\lambda - \epsilon - V_0) > 0\) and \((2g'\lambda - \epsilon) > 0\). For the specific simple linear case of \(g(\phi) = \phi \) and with zero potential \(V = 0 \), one has the generic condition imposed on the wormhole throat \(2\lambda > \epsilon \).

For the specific case of functions solely on the kinetic term, namely, \(G_2 = K(X) \) and \(G_3 = G_3(X) [92] \), for instance, taking into account \(G_2 = -X + \lambda X^2 \) and \(G_3 = \eta X \), the conditions (3.34) and (3.35) reduce to the following:

\[\frac{1}{r_0^G} = -8\pi X_0 (1 - 3\lambda X_0) , \]

and

\[\frac{r_0''}{r_0} = -\frac{8\pi X_0}{A_0} \left[1 + \eta X_0 (1 - 6\pi \eta X_0) (1 - 3\lambda X_0) - 4\lambda X_0 \times (2 - 3\lambda X_0) \right] / (1 + \eta X_0 - 6\lambda X_0 - 48\pi \eta^2 X_0^2) , \]

respectively. Taking into account \(X_0 < 0 \), condition (3.38) imposes the generic constraint \(3\lambda X < 1 \). Note that for \(\lambda \geq 0 \), condition (3.38) is automatically satisfied, and for the specific case of \(\lambda = 0 \), condition (3.39) simplifies to:

\[\frac{r_0''}{r_0} = -\frac{8\pi X_0}{A_0} \left[1 + \eta X_0 - 48\pi \eta^2 X_0^2 \right] / (1 + \eta X_0 - 48\pi \eta^2 X_0^2) , \]

which imposes constraints of the factor \(\eta \), so that the term in parenthesis should be positive; note that \(\eta = 0 \) is automatically satisfied, reduces to the phantom case with zero potential.

F. Covariant galileons

In the context of the original Galileons, the field equations are invariant under the shift \(\partial_\mu \phi \to \partial_\mu \phi + b_\mu \) in Minkowski spacetime [24]. However, in curved spacetime, the construction of covariant Galileon Lagrangians [92] maintains the equations of motion up to second order, and recovers the Galilean shift symmetry in the Minkowski limit. Indeed, covariant Galileons are characterized by the functions

\[G_2 = \beta_1 X - m^2 \phi , \quad G_3 = \beta_3 X , \quad G_4 = \frac{M^2}{2} + \beta_4 X^2 , \quad G_5 = \beta_5 X^2 , \]

for the particular cases considered here.
where \(m \) and \(\beta_i \) (with \(i = 1, 3, 4, 5 \)) are constants. More specifically, in the absence of the linear potential \(V(\phi) = m^2 \phi, \text{i.e., for } m = 0 \), a self-accelerating de Sitter solution exists that satisfies \(X = \text{constant} \). Below we consider this case, for simplicity.

Thus, for covariant Galileons, taking into account \(m = 0 \), the conditions (2.23) and (3.1) take the following form

\[
\frac{1}{r_0^2} = \frac{8\pi \beta_1 X_0}{1 - 48\pi \beta_1 X_0^3}, \quad (3.42)
\]

\[
\frac{r''_0}{r_0} = \frac{8\pi \beta_1 X_0}{A_0} \left[\beta_3^2 \pi^3 (\beta_1 \beta_3 - 3 \beta_3 \beta_4) X_0^7 + \frac{\pi^3}{3} (\beta_1^2 \beta_3^2 - 2 \beta_1 \beta_3 \beta_4 + 9 \beta_1 \beta_3^2 + 3 \beta_3^2 \beta_4) X_0^6 + \frac{\pi^2 \beta_4}{24} \left(\beta_1 \beta_3 - \frac{5}{2} \beta_3 \beta_4 \right) X_0^5 \right.
\]

\[
+ \frac{3 \pi^2 \beta_4}{16} \left(\beta_1 \beta_4 + \frac{2}{9} \beta_3 \beta_4 \right) X_0^4 - \frac{\pi}{768} (\beta_1 \beta_3 + \beta_3 \beta_4) X_0^3
\]

\[
+ \frac{\pi}{768} \left(\beta_1 \beta_4 - \beta_3 \beta_4 \right) X_0^2 + \frac{\beta_3 X_0}{12288} - \frac{\beta_1}{12288} \right]
\]

\[
= \frac{8\pi \beta_1 X_0}{A_0} \left[\beta_1 \beta_3 X_0 - 48\pi \beta_1 X_0^3 \right]. \quad (3.43)
\]

respectively. Note that not much information can be extracted from this lengthy expression, so it is useful to consider specific cases.

For instance, consider the case of \(\beta_4 = 0 \) and \(\beta_5 = 0 \), so that Eqs. (3.42) and (3.43) reduce to

\[
\frac{1}{r_0^2} = \frac{8\pi \beta_1 X_0}{1 - 48\pi \beta_1 X_0^3}, \quad (3.44)
\]

\[
\frac{r''_0}{r_0} = \frac{8\pi \beta_1 X_0}{A_0} \left(\beta_1 \beta_3 X_0 + 16\pi \beta_3 X_0^3 \right) \quad (3.45)
\]

Condition (3.44) imposes that \(\beta_1 < 0 \), and (3.45) places specific restrictions on \(\beta_3 \).

Second, consider the case of \(\beta_3 = 0 \) and \(\beta_4 = 0 \), so that Eqs. (3.42) and (3.43) reduce to

\[
\frac{1}{r_0^2} = \frac{8\pi \beta_1 X_0}{1 - 48\pi \beta_1 X_0^3}, \quad (3.46)
\]

which impose that \(\beta_1 < 0 \), in order to have wormhole geometries.

Third, consider the case of \(\beta_3 = 0 \) and \(\beta_5 = 0 \), so that Eqs. (3.42) and (3.43) reduce to

\[
\frac{1}{r_0^2} = \frac{8\pi \beta_1 X_0}{1 - 48\pi \beta_1 X_0^3}, \quad (3.47)
\]

\[
\frac{r''_0}{r_0} = \frac{8\pi \beta_1 X_0}{A_0} \left(1 - \frac{16\pi \beta_4 X_0^3}{1 - 48\pi \beta_4 X_0^3} \right). \quad (3.48)
\]

Now, if \(\beta_4 < 0 \), both conditions above impose that \(\beta_1 < 0 \), to have wormhole geometries. If \(\beta_4 > 0 \), then we have two restrictions, namely: (i) the conditions \(\beta_1 < 0 \) and \(\beta_4 > 1/(48\pi X_0^3) \) are imposed, or (ii) \(\beta_1 > 0 \) and \(\beta_4 < 1/(48\pi X_0^3) \), to have wormhole solutions. Furthermore, if \(\beta_4 = 0 \), this reduces to \(\beta_1 < 0 \), and to the phantom case without a potential, where we identify \(\beta_1 = \epsilon \).

G. Gauss-Bonnet couplings

An interesting modified gravitational theory is the Gauss-Bonnet coupling given by the action \(\int \sqrt{-g} \left[\frac{1}{16\pi} R + X - V(\phi) + \xi(\phi) G \right] \), which includes a coupling of the form \(\xi(\phi) G \), where \(\xi(\phi) \) is a function of \(\phi \) and \(G \) is the Gauss-Bonnet curvature invariant defined by

\[
G = R^2 - 4R_{\alpha\beta} R^{\alpha\beta} + 4R_{\alpha\beta\gamma\delta} R^{\alpha\beta\gamma\delta}. \quad (3.50)
\]

These theories can be accommodated in the framework of Horndeski theories for the following choice of the factors

\[
G_2 = \epsilon X - V(\phi) + 8\xi(4)(\phi) X^2 (3 - \ln(-X)) ,
\]

\[
G_3 = -4\xi(3)(\phi) X (7 + 3\ln(-X)) ,
\]

\[
G_4 = \frac{1}{16\pi} + 4\xi(2)(\phi) X (2 - \ln(-X)) ,
\]

\[
G_5 = -4\xi(1)(\phi) \ln X ,
\]

where \(\xi(n)(\phi) \equiv \partial^n \xi(\phi) / \partial \phi^n \).

Now, Eq. (2.3) provides the following general relation:

\[
\frac{1}{r_0^2} = \frac{8\pi \epsilon X_0 + V_0 - 48\pi X_0^2 \xi(4)(\phi_0) \left(\ln |X_0| - \frac{7}{3} \right)}{1 - 48\pi \beta_4 X_0^3} \quad (3.52)
\]

However, Eq. (3.41) yields an extremely lengthy expression, from which it is difficult to extract any useful information. Thus, we rather restrict ourselves to simple examples, such as, a zero potential \(V(\phi) = 0 \), and two specific cases for the couplings, namely, (i) the linear coupling \(\xi(\phi) = \lambda_1 \phi \), for which the theory is shift symmetric i.e., it is invariant for \(\phi \rightarrow \phi + \text{const.} \); and (ii) a quadratic function \(\xi = \lambda_2 \phi^2 \), which leads to a spontaneous scalarization of nonperturbative scalar field configurations.
For the linear case, conditions (2.3) and (C1) simplify to
\[\frac{1}{r_0} = 8\pi\epsilon X_0, \quad \frac{r''}{r_0} = \frac{8\pi\epsilon X_0}{A_0}, \tag{3.53} \]
where both conditions are satisfied for the case \(\epsilon = -1 \).

For the quadratic case \(\xi = \lambda_2 \phi^2 \), Eqs. (2.3) and (C1) yield
\[\frac{1}{r_0} = 8\pi\epsilon X_0, \tag{3.54} \]
\[\frac{r''}{r_0} = \frac{8\pi\epsilon X_0}{A_0} \left[-\frac{\lambda_2^2\pi^2\phi_0}{8} X_0^2 \ln(-X_0) + \lambda_2^2\pi^3\epsilon\phi_0^2 X_0^2 \right. \]
\[+ \frac{\lambda_2^2\pi^2 X_0^2 (\phi_0 - 2)}{4} + \frac{\lambda_2\pi X_0 (\phi_0 - 6)}{1024} - \frac{1}{65536} \left. \right] /
\[- \frac{\lambda_2^2\pi^2\phi_0}{8} X_0^2 \ln(-X_0) + \lambda_2^2\pi^3\epsilon\phi_0^2 X_0^2 \]
\[+ \frac{\lambda_2^2\pi^2 X_0^2 \phi_0}{4} + \frac{\lambda_2\pi X_0 (\phi_0 - 4)}{1024} - \frac{1}{65536} \]. \tag{3.55}

Note that condition (3.54) imposes that \(\epsilon = -1 \), in order to have wormhole geometries. Condition (3.55) provides one with the most general condition for this subclass of quadratic Gauss-Bonnet couplings.

IV. CONCLUSIONS

A fundamental ingredient in wormhole physics is the flaring-out condition at the throat which, in classical general relativity, entails the violation of the null energy condition. However, it has been shown that in the context of modified gravity, one may impose that the matter fields threading the wormhole throat satisfy all of the energy conditions, and it is the higher order curvature terms, which may be interpreted as a gravitational fluid, that support these nonstandard wormhole geometries. Thus, it was explicitly shown that wormhole geometries can be theoretically constructed without the presence of exotic matter, but are sustained in the context of modified gravity. This has recently spurred research of wormhole physics in modified gravity. Indeed, most of these extended theories of gravity can be cast into an equivalent scalar-tensor representation. Given the large number of models, the question arises how we should study and compare them in a unified manner.

A particularly useful tool in this direction, is the realisation that all these classes of models are special cases of the most general Lagrangian which leads to second order field equations, namely, the Horndeski Lagrangian [20], which was recently rediscovered [21]. It enables researchers to adopt a unifying framework, and to determine subsets within this general theory that have appealing theoretical properties. In combination with the need to fit observations such properties are helpful in preferring regions of this general theory, and hence particular models. One example of such an appealing theoretical property is the possibility that terms within the Horndeski Lagrangian can be used to partially explain the huge discrepancy between the value of the vacuum energy in particle physics, and the value of the cosmological constant as inferred from cosmological observations.

In this work, we consider the full Horndeski Lagrangian applied to wormhole geometries and present the full gravitational field equations. We analyse the general constraints imposed by the flaring-out conditions at the wormhole throat and consider a plethora of specific subclasses of the Horndeski Lagrangian, namely, quintessence/phantom fields, k-essence, scalar-tensor theories, covariant galileons, nonminimal kinetic coupling, kinetic gravity braiding, and the scalar-tensor representations of Gauss-Bonnet couplings and Gauss-Bonnet gravity, amongst others. The generic constraints analysed in this work serves as a consistency check of the main solutions obtained in the literature and draws out new avenues of research in considering applications of specific subclasses of the Horndeski theory to wormhole physics.

ACKNOWLEDGMENTS

FSNL acknowledges support from the Fundação para a Ciência e a Tecnologia (FCT) Scientific Employment Stimulus contract with reference CEECIND/04057/2017, and the research grants No. UID/FIS/04434/2019 and No. PTDC/FIS-OUT/29048/2017. S.V.S. and R.K. are supported by the RSF grant No. 16-12-10401. Partially, this work was done in the framework of the Russian Government Program of Competitive Growth of the Kazan Federal University.

Appendix A: Full gravitational field equations

1. Effective Einstein field equations

Varying the action (1.1) with respect to \(g_{\mu\nu} \), we obtain the following equations of motion:

\[tt - \text{component}: \]
\[- A^2 \phi'^4 G_{5,XX} \left(\frac{r'^2}{2r^2} A' \phi' + \frac{r'^2}{r^2} A \phi'' \right) + A \phi^3 G_{5,XX} \left(\frac{r'^2}{r^2} A \phi' + \frac{2r'}{r} A \phi'' - \frac{r'}{r} A' \phi' \right) \\
+ 2G_{5,\phi \phi} \frac{r'}{r} A \phi'^3 + \phi' G_{5,XX} \left(- \frac{A \phi'^2}{2r^2} - \frac{A \phi''}{r^2} - \frac{A^3 \phi'^2}{6A} - \frac{2}{3} A^2 \phi' \phi'' - \frac{2}{3} AA' \phi'^2 + \frac{5r'^2}{2r^2} AA' \phi'^2 \right) \\
+ \frac{3r'^2}{r^2} A^3 \phi' \phi'' + \frac{2r'^2}{r^2} A^2 \phi'^2 \right) + G_{5,\phi} \left(\frac{4r'}{r} A \phi' \phi'' + \frac{2r'}{r} A \phi'^2 + \frac{3r'}{r} A \phi'^2 + \frac{r'^2}{r^2} A \phi'^2 + \frac{3r'^2}{r^2} A \phi'^2 + \frac{r'^2}{r^2} A \phi'^2 + \frac{\phi'^2}{r^2} \right) \\
+ \phi^3 G_{4,XX} \left(2AA' \phi'^2 + \frac{2r'}{r} AA' \phi' + \frac{4r'}{r} A^2 \phi'^2 \right) + G_{4,XX} \left(2A \phi'^2 \phi'' + A \phi'^3 - \frac{4r'}{r} A \phi'^3 \right) \\
- 2\phi^2 G_{4,\phi \phi} - 2G_{4,XX} \left(\frac{2r'}{r} A \phi' \phi'' + \frac{2r'}{r} A \phi'^2 + \frac{4r'}{r} \phi'' \phi' + \frac{4r'}{r} \phi'' + \frac{A'}{A} \phi' \right) \\
+ G_{4} \left(\frac{2}{r^2 A} - \frac{4r'}{r^2} - \frac{2r'^2}{r^2 A} - \frac{1}{r^2} \right) - \phi'^2 G_{3,XX} \left(\frac{1}{2} A' \phi' + A \phi'' \right) + \phi'^2 G_{3,XX} \left(\frac{1}{2} A' \phi' + A \phi'' \right) + \phi^2 G_{2,XX} + \frac{1}{A} G_2 = 0, \quad (A1)\]

rr-component:

\[- A' \phi'^3 G_{5,XX} \left(\frac{1}{12} A^2 \phi'^2 + \frac{1}{3} A^2 \phi'^2 + \frac{1}{3} AA' \phi' \phi'' - \frac{r'^2}{2r^2} A^2 \phi'^2 \right) - A \phi^3 G_{5,XX} \left(\frac{r'}{r} A' + \frac{r'^2}{r^2} A \phi'' \right) \\
- A' \phi' G_{5,XX} \left(\frac{A'^2 \phi'^2}{6A} \phi'^2 + \frac{2}{3} A' \phi' \phi'' + \frac{2}{3} A \phi'^2 - \frac{5r'^2}{2r^2} A \phi'^2 + \frac{\phi'^2}{2r^2} \right) + \phi^2 G_{5,XX} \left(\frac{3r'^2 A}{r^2} + \frac{3r'}{r} A' - \frac{1}{r^2} \right) \\
+ \phi^3 G_{4,XX} \left(A^2 \phi'^2 + \frac{2}{3} A' \phi' \phi'' + \frac{2}{3} AA' \phi' + \frac{4r'}{r} A^2 \phi'^2 \right) + \phi^3 G_{4,XX} \left(\frac{4r'}{r} A + A' \right) \\
+ 2\phi^2 G_{4,XX} \left(\frac{1}{r^2} - \frac{2r'}{r^2} - \frac{r'^2}{r^2} A \right) - \phi' G_{4,XX} \left(\frac{4r'}{r} A' + \frac{A'}{A} \right) + \phi^2 G_{4,XX} \left(\frac{1}{r^2} - \frac{2r'}{r^2} - \frac{r'^2}{r^2} A \right) \\
- \phi^3 G_{3,XX} \left(\frac{1}{2} A' + \frac{r'}{r} A \right) - \phi'^2 G_{3,\phi} + \phi^2 G_{2,XX} + \frac{1}{A} G_2 = 0, \quad (A2)\]

$\theta \theta$-component:

\[- \frac{1}{2} AA' \phi'^4 G_{5,XX} \left(\frac{r'}{r} A \phi'^2 + \frac{r'}{2r} A \phi' \right) - \phi'^3 G_{5,XX} \left(\frac{1}{4} A^2 \phi' + \frac{1}{2} AA' \phi'' - \frac{r'}{2} A^2 \phi'' \right) \\
+ \phi^3 G_{5,\phi \phi} \left(\frac{1}{2} A' + \frac{r'}{2r} A \right) + \phi' G_{5,XX} \left(\frac{r'}{2r} AA' \phi'^2 - \frac{2}{3} AA' \phi'^2 + \frac{r'}{r} A^2 \phi'^2 - \frac{A'^2 \phi'^2}{6A} - \frac{2}{3} A^2 \phi' \phi'' \right) \\
+ \frac{r'}{2r} AA' \phi'^2 + \frac{3r'}{2r} AA' \phi' \phi'' \right) + G_{5,\phi} \left(A' \phi' \phi'' + \frac{2r'}{r} A \phi' \phi'' + \frac{r'}{r} A \phi'^2 + \frac{1}{2} A' \phi'^2 + \frac{A'^2 \phi'^2}{2} + \frac{2r'}{r} A' \phi'^2 \right) \\
+ \phi^3 G_{4,XX} \left(\frac{3}{2} A^2 \phi' + 3AA' \phi'' + \frac{2r'}{r} AA' \phi' + \frac{2r'}{r} AA' \phi' \phi'' \right) \\
+ G_{4,\phi} \left(2A \phi' \phi'' - \frac{2r'}{r} A \phi'^3 \right) - 2\phi'^2 G_{4,\phi \phi} - G_{4,XX} \left(A' \phi' \phi'' + \frac{2r'}{r} A \phi' \phi'' + \frac{r'}{r} A \phi'^2 \phi'' \right) \\
+ A' \phi'^2 + \frac{A'^2 \phi'^2}{2A} + \frac{3r'}{2r} A' \phi'^2 \right) - G_{4,\phi} \left(2\phi'' + \frac{2r'}{r} \phi'' + \frac{2A' \phi'}{A} \right) \\
- G_{4} \left(\frac{2r'}{r} A' + \frac{2r'}{r} A \right) - \phi'^2 G_{3,XX} \left(\frac{1}{2} A' \phi' + A \phi'' \right) + \phi'^2 G_{3,\phi} + \frac{1}{A} G_2 = 0. \quad (A3)\]

2. **Scalar field equation**

The scalar field equation reads

\[
\nabla^\mu \left(\sum_{i=2}^{5} J^\mu_i \right) = \sum_{i=2}^{5} P^i, \quad (A4)
\]
where the terms $\nabla^\mu J^i_\mu$ are given by

$$\nabla^\mu J_\mu^2 = G_{2XX} A \phi^2 \left(A \phi'' + \frac{1}{2} A' \phi' \right) - G_{2X \phi} A \phi'^2 - G_{2X} \left(A \phi'' + A' \phi' + 2 \frac{r''}{r} A \phi' \right),$$

$$\nabla^\mu J_\mu^3 = -G_{3XX} A \phi^3 \left(\frac{1}{2} A A' \phi'' + 2 \frac{r'}{r} A^2 \phi' + \frac{1}{4} A^2 A' \phi' + \frac{r'}{r} A A' \phi' \right)$$
$$+ G_{3X \phi} A \phi^2 \left(-2 A \phi'' - \frac{1}{2} A' \phi' + 2 \frac{r'}{r} A \phi' \right) + 2 G_{3 \phi} A \phi'^2 + 2 G_3 \phi \left(A' \phi' + A \phi'' + 2 \frac{r'}{r} A \phi' \right)$$
$$+ G_{3X \phi} \left(4 \frac{r'}{r} A^2 \phi' + 2 \frac{r'}{r} A^2 \phi' + 2 \frac{2}{r} A^2 \phi' + A A' \phi'' + \frac{5 \frac{r'}{r} A A' \phi'}{3} + \frac{1}{2} A A' \phi'' + \frac{1}{2} A^2 A' \phi' \right),$$

$$\nabla^\mu J_\mu^4 = 2 G_{4X} \left(\frac{r'^2}{r'^2} A^2 \phi'' + \frac{r'}{r} A A' \phi'' + \frac{r'}{r} A A' \phi' + \frac{r'}{r} A A'' \phi' + 3 \frac{r'^2}{r'^2} A A' \phi' + 2 \frac{r'^2}{r'^2} A^2 \phi' + \frac{r'}{r} A^2 \phi' - \frac{A' \phi'}{r'^2} \right)$$
$$- 2 G_{4X \phi} \left(2 \frac{r''}{r''} A^2 \phi'' + \frac{r'}{r} A A' \phi'' + 4 \frac{r'}{r} A A' \phi' + \frac{1}{2} A A' \phi'' + \frac{1}{2} A^2 A' \phi' \right)$$
$$+ 2 G_{4X \phi} \left(4 \frac{r'}{r} A^2 A^2 \phi'' + 4 \frac{r'}{r} A^2 \phi'' + 5 \frac{r'}{r} A A^2 \phi'' + \frac{r'}{r} A^2 A' \phi'' + \frac{r'}{r} A^2 A' \phi' \right)$$
$$+ 2 G_{4X \phi} \left(2 \frac{r'}{r} A^3 A' \phi'' + 2 \frac{r'^2}{r'^2} A^3 A' \phi'' + \frac{r'}{r} A^2 A'' \phi'' + \frac{r'}{r} A^2 A'' \phi' \right),$$

$$\nabla^\mu J_\mu^5 = 2 G_{5 \phi} \left(\frac{A' \phi'}{r'^2} + \frac{A \phi''}{r''} - 2 \frac{r''}{r'} A A' \phi'' - \frac{r'}{r} A A'' \phi' - \frac{r'}{r} A A' \phi' - \frac{1}{2} A \phi'' + 3 \frac{r'^2}{r'^2} A A' \phi' \right)$$
$$- \frac{r'}{r} A^2 \phi' + \frac{r'}{r} A^2 \phi' + \frac{1}{2} A \phi'' G_{5 \phi} \left(\frac{1}{2} A \phi'' - \frac{r'}{r} A^2 \phi' \right)$$
$$+ G_{5 \phi} \left(2 \frac{r'}{r} A^2 A' \phi'' + \frac{r'}{r} A A'' A' \phi'' + \frac{r'}{r} A A'' A' \phi' + \frac{7 r'^2}{2 r^2} A^2 A' \phi' - \frac{2 A^2 \phi''}{r'} + \frac{A A' \phi''}{2 r} \right)$$
$$+ \frac{4 r'^2}{4 r^2} A^3 A' \phi'' + 4 \frac{r'^2}{r^2} A^2 A' \phi'' + 4 \frac{r'^2}{r^2} A^2 A' \phi'' - \frac{2 A^2 \phi''}{r'} + \frac{A A' \phi''}{2 r} \right),$$

respectively, and the factors P^i are provided by

$$P^2 = G_{2 \phi},$$

$$P^3 = G_{3 \phi} \phi - \frac{1}{2} A \phi^2 G_{3 X \phi} (2 A \phi'' + A' \phi'),$$

$$P^4 = G_4 \phi \left(-A'' - \frac{4 \frac{r'}{r} A - 2 \frac{r'^2}{r'^2} A - 4 \frac{r'}{r} A' + \frac{2}{r'} \right)$$
$$+ G_{4X \phi} \left(4 \frac{r'}{r} A^2 \phi'' + 2 \frac{r'^2}{r'^2} A^2 \phi'' + A A' \phi'' + 4 \frac{r'}{r} A A' \phi'' + \frac{1}{2} A^2 A' \phi' \right).$$
respectively. Note that we have removed the subscript \(0\).

Here, we write out the field equations, presented in Appendix A at the throat, by taking into account the conditions \(r_0' = 0\) and \(A_0' = 0\), so that Eqs. (A1), (A3) and the scalar field equation (A4) reduce to the following

\[
P_{\phi} = G_{5,\phi} \left(\frac{r^2}{r} A^2 \phi'^2 + \frac{r'}{r} A A' \phi'^2 - \frac{A \phi'^2}{r^2} \right) + G_{5,X} \left(-2 \frac{r^2}{r} A^3 \phi'^3 \phi'' - 2 \frac{r}{r} A^2 A' \phi'^2 \phi'' \right) - 3 \frac{r^2}{2r^2} A^2 A' \phi'^3 - \frac{r'}{r} A A^2 \phi'^3 + \frac{A^2 \phi'^2 \phi''}{r^2} + \frac{A A' \phi'^3}{2r^2} \right),
\]

(A12)

Appendix B: Gravitational field equations at the throat

Here, we write out the field equations, presented in Appendix A at the throat, by taking into account the conditions \(r_0' = 0\) and \(A_0' = 0\), so that Eqs. (A1), (A3) and the scalar field equation (A4) reduce to the following

\[
\frac{r''}{r} \left(2A \phi'^2 G_{5,\phi} - 4A \phi'^2 G_{4,X} - 4G_{4} \right) + \phi'' \left(2A \phi'^2 G_{4,X\phi} - \frac{A \phi'^2}{r^2} G_{5,X} - 2G_{4,\phi} - A \phi'^2 G_{3,X} \right)
\]

\[= - \frac{\phi'^2}{r^2} G_{5,\phi} + 2 \phi'^2 G_{4,\phi\phi} - \frac{2}{r^2} A G_{4} - \phi'^2 G_{3,\phi} - \frac{1}{A} G_{2}, \]

(B1)

\[
\frac{r''}{r} \left(A \phi'^2 G_{5,\phi} - 2A \phi'^2 G_{4,X} - 2G_{4} \right) + \phi'' \left(A \phi'^2 G_{4,X\phi} - \frac{1}{2} \phi'^2 G_{5,\phi} - \phi'^2 G_{4,X} - \frac{G_{4}}{A} \right)
\]

\[+ \phi'' \left(2A \phi'^2 G_{4,X\phi} - 2G_{4,\phi} - A \phi'^2 G_{3,X} \right) = 2 \phi'^2 G_{4,\phi\phi} - \phi'^2 G_{3,\phi} - \frac{1}{A} G_{2}, \]

(B2)

and

\[
\frac{r''}{r} \left(4A \phi'^2 - 4A \phi'^2 G_{4,X\phi} + 2A \phi'^2 G_{3,X} \right) + A'' \left(\frac{A \phi'^2}{2r^2} G_{5,X} - A \phi'^2 G_{4,X\phi} + \frac{1}{2} A \phi'^2 G_{3,X} + G_{4} \phi \right)
\]

\[+ \phi'' \left(\frac{A}{r^2} G_{5,\phi} - 3 \frac{A^2 \phi'^2}{r^2} G_{5,X} - 2A \frac{r}{r^2} G_{4,X} + \frac{A^2 \phi'^2}{r^2} G_{4,XX} - 2A \phi'^2 G_{3,X\phi} + 2A G_{3,\phi} + A^2 \phi'^2 G_{2,XX} - A G_{2,X} \right)
\]

\[= -3 \frac{A \phi'^2}{r^2} G_{5,\phi} + 2 \frac{A \phi'^2}{r^2} G_{4,\phi\phi} + \frac{2}{r^2} A G_{4,\phi} + (\phi' - 2 \phi'^2) G_{3,\phi\phi} + A \phi'^2 G_{2,XX} + G_{2,\phi}, \]

(B3)

respectively. Note that we have removed the subscript \(u_0\), denoting evaluation at the wormhole throat, from the expressions above, in order to not overload the notation.

Appendix C: General flaring-out condition at the throat

Finally, eliminating the terms \(A_0''\) and \(\phi_0''\), one finally arrives at the most general flaring-out condition for Horndeski wormholes, solely in terms of the scalar field \(\phi\), the kinetic term \(X\), the factors \(G_i\) and their derivatives, given by (as above, we have removed the subscript \(u_0\) as not to overload the notation):

\[
\frac{r''}{r_0} = \left\{ -2A^2 \left(2 \left(G_{4,X} - \frac{G_{5,\phi}}{2} \right) \left[\frac{1}{2} (G_{2,XX} + G_{3,X\phi}) G_{5,\phi} + (G_{2,X\phi} + G_{3,\phi\phi}) G_{4,X\phi} + \left(\frac{G_{2,X\phi}}{2} - G_{3,\phi\phi} \right) G_{3,X} \right.
ight.
ight.
\]

\[+ G_{4,\phi\phi} (G_{2,XX} - G_{3,X}) \right) r^4 + \left[\frac{1}{2} (G_{2,XX} - G_{3,X\phi}) G_{5,\phi} + (G_{2,X\phi} + G_{3,\phi\phi}) G_{4,X\phi} + \left(\frac{G_{2,X\phi}}{2} + G_{3,\phi\phi} \right) G_{5,X} \right.
\]

\[+ \frac{1}{2} (G_{4,XX} - 3 \frac{G_{5,XX}}{2} \right) G_{3,\phi} + 4G_{2,XX}^2 - 3 (G_{5,\phi\phi} + G_{3,X}) G_{4,X\phi} + \frac{G_{3,X}^2}{2} + \frac{3}{2} G_{5,\phi\phi} G_{5,X}
\]

\[-2 \left(G_{4,XX} - 3 \frac{G_{5,XX}}{2} \right) G_{4,\phi\phi} \right\] G_{5,\phi} + \left[(G_{2,XX} - 2G_{3,\phi\phi}) G_{5,X} + (G_{2,XX} + 3G_{5,XX}) G_{3,\phi} - 4G_{2,XX}^2
\]

\[+ 2 (3G_{5,\phi\phi} + G_{3,X}) G_{4,X\phi} - 3 (G_{5,\phi\phi} + G_{3,X}) G_{4,X\phi} + 4 \left(G_{4,XX} - 3 \frac{G_{5,XX}}{2} \right) G_{4,\phi\phi} \right\] G_{4,X}

\[-2 \left(G_{4,\phi\phi} - \frac{G_{3,\phi}}{2} \right) \left(G_{4,X\phi} - \frac{G_{3,X}}{2} \right) G_{5,X} \right\] r^2 + \left[(G_{4,XX} - 3 \frac{G_{5,XX}}{2} \right) G_{5,\phi}^2 + \left[(G_{2,XX} + 3G_{5,XX}) G_{4,\phi\phi} \right] G_{4,X}
\]
\[-2 \left(G_{4,X} - \frac{3G_{5,\phi}}{4} - \frac{G_{3,X}}{4} \right) G_{5,X} \right] G_{5,\phi} + 2 \left[\left(G_{4,X} - \frac{3G_{5,\phi}}{2} \right) G_{4,X} + \frac{1}{2} \left(G_{4,\phi} - \frac{G_{3,\phi}}{2} \right) G_{5,X} \right] G_{5,X} \phi^6 \]
\[-2A^2 \left(G_{4,X} - \frac{G_{3,\phi}}{2} \right) \left\{ (-2G_{4,X} + G_{3,X}) r^2 + G_{5,X} \right\} G_{3,\phi} r^2 \phi^6 - 4A^2 \left\{ \left[\left(\frac{1}{2} (-G_{2,XX} + G_{3,X}) \right) G_{3,\phi} + \left(G_{2,XX} + G_{3,X} \right) r^2 \phi^6 \right] + \left(G_{2,XX} - G_{3,X} \phi \right) G_{4,\phi} \right\} G_{4,\phi} \]
\[+ \left(\frac{G_{2,XX} - G_{3,\phi}}{2} \right) \left\{ \left[\left(\frac{G_{3,\phi}}{2} - G_{3,\phi} \right) G_{5,X} + \left(G_{4,XX} - \frac{3G_{3,\phi}}{2} \right) (2G_{4,\phi} - G_{3,\phi}) + \left(G_{3,\phi} - 2G_{5,\phi} \right) G_{4,\phi} \right\} G_{4,\phi} \right\} + \left(\frac{G_{2,XX} - G_{3,\phi}}{2} \right) \left\{ \left[\left(\frac{G_{3,\phi}}{2} - G_{3,\phi} \right) G_{5,X} + \left(G_{4,XX} - \frac{3G_{3,\phi}}{2} \right) \left(G_{4,\phi} - \frac{G_{3,\phi}}{2} \right) G_{4,\phi} \right\} G_{4,\phi} \right\} \phi^4 \]
\[-4A G_{3,\phi}^2 r^2 \left\{ \left[\left(G_{3,\phi} - \frac{G_{3,\phi}}{2} \right) G_{4,XX} + \left(G_{4,XX} - \frac{3G_{3,\phi}}{2} \right) G_{4,\phi} \right\} G_{4,\phi} \right\} G_{4,\phi} \phi^4 \]
\[-4A \left\{ \left[\left(G_{3,\phi} - \frac{G_{3,\phi}}{2} \right) G_{4,XX} + \left(G_{4,XX} - \frac{3G_{3,\phi}}{2} \right) G_{4,\phi} \right\} G_{4,\phi} \right\} G_{4,\phi} \phi^4 \]
\[\left[(-G_{2,XX} - 2G_{4,X} + G_{3,\phi} + G_{3,\phi}) G_{5,\phi} + \left[\left(G_{2,XX} - G_{3,\phi} \right) G_{4,\phi} \right] G_{4,\phi} \right\] G_{4,\phi} \phi^4 \]
\[-4A \left\{ \left[\left(G_{3,\phi} - \frac{G_{3,\phi}}{2} \right) G_{4,XX} + \left(G_{4,XX} - \frac{3G_{3,\phi}}{2} \right) G_{4,\phi} \right\} G_{4,\phi} \right\} G_{4,\phi} \phi^4 \]
\[\left[(2G_{4,\phi} - G_{2,XX} + G_{3,\phi}) G_{4,\phi} + G_{2,XX} - G_{3,\phi} \right\] G_{4,\phi} \phi^4 \]
\[8A \left\{ \left(G_{4,XX} - \frac{3G_{5,\phi}}{2} \right) (2G_{4,XX} - G_{5,\phi}) + \left(G_{4,XX} - \frac{3G_{5,\phi}}{2} \right) G_{5,\phi} \right\} \phi^4 \]
Note that this relation is constrained by the imposition of the flaring-out condition, \(r_0^p > 0 \), at the throat. Thus, in order to be a wormhole solution, this equation, in addition to \(r_0 > 0 \) given by condition \(\text{(2.3)} \), impose tight restrictions on the spacetime geometry.

[1] M. S. Morris and K. S. Thorne, “Wormholes in spacetime and their use for interstellar travel: A tool for teaching general relativity,” Am. J. Phys. 56, 395 (1988).
[2] M. S. Morris, K. S. Thorne and U. Yurtsever, “Wormholes, Time Machines, and the Weak Energy Condition,” Phys. Rev. Lett. 61, 1446 (1988).
[3] M. Visser, “Lorentzian wormholes: From Einstein to Hawking,” Woodbury, USA: AIP (1995).
[4] F. S. N. Lobo, “Wormholes, Warp Drives and Energy Conditions,” Fundam. Theor. Phys. 180, pp. (2017).
[5] S. Capozziello, F. S. N. Lobo and J. P. Mimoso, “Energy conditions in modified gravity,” Phys. Lett. B 730 (2014), 280-283 [arXiv:1312.0784 [gr-qc]].
[6] S. Capozziello, F. S. N. Lobo and J. P. Mimoso, “Generalized energy conditions in Extended Theories of Gravity,” Phys. Rev. D 91 (2015) no.12, 124019 [arXiv:1407.7293 [gr-qc]].
[7] T. Harko, F. S. N. Lobo, M. K. Mak and S. V. Sushkov, “Modified-gravity wormholes without exotic matter,” Phys. Rev. D 87, no. 6, 067504 (2013) [arXiv:1301.6875 [gr-qc]].
[8] F. S. N. Lobo and M. A. Oliveira, “Wormhole geometries in f(R) modified theories of gravity,” Phys. Rev. D 80, 104012 (2009) [arXiv:0909.5539 [gr-qc]].
[9] N. M. Garcia and F. S. N. Lobo, “Wormhole geometries supported by a nonminimal curvature-matter coupling,” Phys. Rev. D 82, 104018 (2010) [arXiv:1007.3040 [gr-qc]].
[10] N. Montelongo Garcia and F. S. N. Lobo, “Nonminimal curvature-matter coupled wormholes with matter satisfying the null energy condition,” Class. Quant. Grav. 28, 085018 (2011) [arXiv:1012.2413 [gr-qc]].
[11] S. V. Sushkov and R. Korolev, “Scalar wormholes with nonminimal derivative coupling,” Class. Quant. Grav. 29, 085008 (2012) [arXiv:1111.3115 [gr-qc]].
[12] R. V. Korolev and S. V. Sushkov, “Exact wormhole solutions with nonminimal kinetic coupling,” Phys. Rev. D 90, 124025 (2014) [arXiv:1408.1235 [gr-qc]].
[13] S. Capozziello, T. Harko, T. S. Koivisto, F. S. N. Lobo and G. J. Olmo, “Wormholes supported by hybrid metric-Palatini gravity,” Phys. Rev. D 86, 127504 (2012) [arXiv:1209.5862 [gr-qc]].
[14] J. L. Rosa, J. P. S. Lemos and F. S. N. Lobo, “Wormholes in generalized hybrid metric-Palatini gravity obeying the matter null energy condition everywhere,” Phys. Rev. D 98, no. 6, 064054 (2018) [arXiv:1808.08975 [gr-qc]].
[15] M. Kord Zangeneh, F. S. N. Lobo and M. H. Dehghani, “Traversable wormholes satisfying the weak energy condition in third-order Lovelock gravity,” Phys. Rev. D 92, no. 12, 124049 (2015) [arXiv:1510.07089 [gr-qc]].
[16] M. R. Mehdizadeh, M. Kord Zangeneh and F. S. N. Lobo, “Higher-dimensional thin-shell wormholes in third-order Lovelock gravity,” Phys. Rev. D 92, no. 4, 044022 (2015) [arXiv:1506.03427 [gr-qc]].
[17] M. R. Mehdizadeh, M. Kord Zangeneh and F. S. N. Lobo, “Einstein-Gauss-Bonnet traversable wormholes satisfying the weak energy condition,” Phys. Rev. D 91, no. 8, 084004 (2015) [arXiv:1501.04773 [gr-qc]].
[18] M. K. Zangeneh, F. S. N. Lobo and N. Riazi, “Higher-dimensional evolving wormholes satisfying the null energy condition,” Phys. Rev. D 90, no. 2, 024072 (2014) [arXiv:1406.5703 [gr-qc]].
[19] M. R. Mehdizadeh and F. S. N. Lobo, “Novel third-order Lovelock wormhole solutions,” Phys. Rev. D 93, no. 12, 124014 (2016) [arXiv:1604.02913 [gr-qc]].
[20] G. W. Horndeski, “Second-order scalar-tensor field equations in a four-dimensional space,” Int. J. Theor. Phys. 10, 363 (1974).
[21] C. Deffayet, X. Gao, D. A. Steer and G. Zahariade, “From k-essence to generalised Galileons,” Phys. Rev. D 84, 064039 (2011) [arXiv:1103.3260 [hep-th]].
[22] T. Chiba, T. Okabe and M. Yamaguchi, “Kinetically driven quintessence,” Phys. Rev. D 62, 064039 (2000) [astro-ph/9912463].
[23] C. Armendariz-Picon, V. F. Mukhanov and P. J. Steinhardt, “A Dynamical solution to the problem of a small cosmological constant and late time cosmic acceleration,” Phys. Rev. Lett. 85, 4438 (2000) [astro-ph/0004134].
[24] C. Deffayet, O. Pujolas, I. Sawicki and A. Vikman, “Imperfect Dark Energy from Kinetic Gravity Braiding,” JCAP 1010, 026 (2010) [arXiv:1008.0048 [hep-th]].
[25] Y. Fujii and K. Maeda, “The scalar-tensor theory of
gravitation,” Cambridge University Press (2003).
[26] C. Brans and R. H. Dicke, “Mach’s principle and a relativistic theory of gravitation,” Phys. Rev. 124, 925 (1961).
[27] E. N. Saridakis and S. V. Sushkov, “Quintessence and wormhole cosmology with non-minimal derivative coupling,” Phys. Rev. D 81, 083510 (2010) [arXiv:1002.3478 [gr-qc]].
[28] C. Germani and A. Kehagias, “New Model of Inflation with Non-minimal Derivative Coupling of Standard Model Higgs Boson to Gravity,” Phys. Rev. Lett. 105, 011302 (2010) [arXiv:1003.2653 [hep-th]].
[29] R. Kase and S. Tsujikawa, “Dark energy in Horndeski theories after GW170817: A review,” Int. J. Mod. Phys. D 28, no. 05, 1942005 (2019) [arXiv:1809.08735 [gr-qc]].
[30] C. Barcelo and M. Visser, “Scalar fields, energy conditions, and traversable wormholes,” Class. Quant. Grav. 17, 3843 (2000) [gr-qc/0003025].
[31] C. Barcelo and M. Visser, “Traversable wormholes from massless conformally coupled scalar fields,” Phys. Lett. B 466, 127 (1999) [gr-qc/9908029].
[32] K. A. Bronnikov, M. V. Skvortsova and A. A. Starobinsky, “Notes on wormhole existence in scalar-tensor and F(R) gravity,” Grav. Cosmol. 16, 216 (2010) [arXiv:1005.3263 [gr-qc]].
[33] K. A. Bronnikov and S. Grinyov, “Instability of wormholes with a nonminimally coupled scalar field,” Grav. Cosmol. 7, 297 (2001) [gr-qc/0201083].
[34] T. Matos and D. Núñez, “Rotating scalar field wormhole,” Class. Quant. Grav. 23, 4485 (2006) [gr-qc/0508117].
[35] R. Shaikh and S. Kar, “Wormholes, the weak energy condition, and scalar-tensor gravity,” Phys. Rev. D 94, no. 2, 024011 (2016) [arXiv:1604.02557 [gr-qc]].
[36] P. E. Kashargin and S. V. Sushkov, “Slowly rotating scalar field wormholes: The Second order approximation,” Phys. Rev. D 78, 064071 (2008) [arXiv:0809.1923 [gr-qc]].
[37] J. A. Gonzalez, F. S. Guzman and O. Sarbach, “Instability of wormholes supported by a ghost scalar field. I. Linear stability analysis,” Class. Quant. Grav. 26, 015010 (2009) [arXiv:0806.0608 [gr-qc]].
[38] J. A. Gonzalez, F. S. Guzman and O. Sarbach, “Instability of wormholes supported by a ghost scalar field. II. Nonlinear evolution,” Class. Quant. Grav. 26, 015011 (2009) [arXiv:0806.1370 [gr-qc]].
[39] P. Kanti, B. Kleihaus and J. Kunz, “Wormholes in Dilatonic Einstein-Gauss-Bonnet Theory,” Phys. Rev. Lett. 107, 271101 (2011) [arXiv:1108.3003 [gr-qc]].
[40] P. Kanti, B. Kleihaus and J. Kunz, “Stable Lorentzian Wormholes in Dilatonic Einstein-Gauss-Bonnet Theory,” Phys. Rev. D 85, 044007 (2012) [arXiv:1111.4049 [hep-th]].
[41] V. Dzhunushaliev, V. Folomeev, B. Kleihaus and J. Kunz, “Mixed neutron-star-plus-wormhole systems: Linear stability analysis,” Phys. Rev. D 87, no. 10, 104036 (2013) [arXiv:1302.5217 [gr-qc]].
[42] T. Chiba, N. Sugiyama and T. Nakamura, “Cosmology with x matter,” Mon. Not. Roy. Astron. Soc. 289, L5 (1997) [astro-ph/9704199].
[43] R. R. Caldwell, R. Dave and P. J. Steinhardt, “Cosmological imprint of an energy component with general equation of state,” Phys. Rev. Lett. 80, 1582 (1998) [astro-ph/9708069].
[44] I. Zlatev, L. -M. Wang and P. J. Steinhardt, “Quintessence, cosmic coincidence, and the cosmological constant,” Phys. Rev. Lett. 82, 896 (1999) [astro-ph/9807002].
[45] K. A. Bronnikov, “Spherically symmetric false vacuum: No go theorems and global structure,” Phys. Rev. D 64, 064013 (2001) [gr-qc/0104092].
[46] S. V. Sushkov, “Wormholes supported by a phantom energy,” Phys. Rev. D 71, 043520 (2005) [gr-qc/0502084].
[47] F. S. N. Lobo, “Phantom energy traversable wormholes,” Phys. Rev. D 71, 084011 (2005) [gr-qc/0502099].
[48] F. S. N. Lobo, “Stability of phantom wormholes,” Phys. Rev. D 71, 124022 (2005) [gr-qc/0506001].
[49] K. A. Bronnikov and A. A. Starobinsky, “No realistic wormholes from ghost-free scalar-tensor phantom dark energy,” JETP Lett. 85, 1 (2007) [Pisma Zh. Eksp. Teor. Fiz. 85, 3 (2007)] [gr-qc/0612032].
[50] R. Garattini and F. S. N. Lobo, “Self sustained phantom wormholes in semi-classical gravity,” Class. Quant. Grav. 24, 2401 (2007) [gr-qc/0701020].
[51] M. Cataldo, P. Labrana, S. del Campo, J. Crisostomo and P. Salgado, “Evolving Lorentzian wormholes supported by phantom matter with constant state parameters,” Phys. Rev. D 78, 104006 (2008) [arXiv:0811.2715 [gr-qc]].
[52] J. A. Gonzalez, F. S. Guzman, N. Montelongo-Garcia and T. Zannias, “On Wormholes supported by phantom energy,” Phys. Rev. D 79, 064027 (2009) [arXiv:0906.5590 [gr-qc]].
[53] K. A. Bronnikov, R. A. Konoplya and A. Zhidenko, “Instabilities of wormholes and regular black holes supported by a phantom scalar field,” Phys. Rev. D 86, 024028 (2012) [arXiv:1205.2224 [gr-qc]].
[54] F. S. N. Lobo, F. Parsaei and N. Riazi, “New asymptotically flat phantom wormhole solutions,” Phys. Rev. D 87, no. 8, 084030 (2013) [arXiv:1212.5806 [gr-qc]].
[55] B. Kleihaus and J. Kunz, “Rotating Ellis Wormholes in Four Dimensions,” Phys. Rev. D 90, 121503 (2014) [arXiv:1409.1503 [gr-qc]].
[56] R. R. Caldwell, M. Kamionkowski and N. N. Weinberg, “Phantom energy and cosmic doomsday,” Phys. Rev. Lett. 91, 071301 (2003) [astro-ph/0302056].
[57] K. A. Bronnikov, J. C. Fabris and D. C. Rodrigues, “On horizons and wormholes in k-essence theories,” Grav. Cosmol. 22, no. 1, 26 (2016) [arXiv:1511.08036 [gr-qc]].
[58] N. Arkani-Hamed, H. C. Cheng, M. A. Luty and S. Mukohyama, “Ghost condensation and a consistent infrared modification of gravity,” JHEP 0405, 074 (2004) [hep-th/0312099].
[59] M. Gasperini and G. Veneziano, “The Pre - big bang scenario in string cosmology,” Phys. Rept. 373, 1 (2003) [hep-th/0207130].
[60] V. Faraoni, “Cosmology in scalar tensor gravity,” Fundamental Theories of Physics 139, Kluwer academic Publishers (2004).
[61] M. Gasperini and G. Veneziano, “Pre-big bang in string cosmology,” Astropart. Phys. 1, 317 (1993) [hep-th/9211021].
[62] T. Damour and K. Nordtvedt, “Tensor-scalar cosmological models and their relaxation toward general relativity,” Phys. Rev. D 48, 3436 (1993).
[63] T. Chiba, “Quintessence, the gravitational constant, and gravity,” Phys. Rev. D 60, 083508 (1999) [gr-qc/9903094].
N. Bartolo and M. Pietroni, “Scalar tensor gravity and quintessence,” Phys. Rev. D 61, 023518 (2000) [hep-ph/9908521].

B. Boisseau, G. Esposito-Farese, D. Polarsi and A. A. Starobinsky, “Reconstruction of a scalar tensor theory of gravity in an accelerating universe,” Phys. Rev. Lett. 85, 2236 (2000) [gr-qc/0001066].

A. G. Agnese and M. La Camera, “Wormholes in the Brans-Dicke theory of gravitation,” Phys. Rev. D 51, 2011 (1995).

L. A. Anchordoqui, S. E. Perez Bergliaffa and D. F. Torres, “Brans-Dicke wormholes in nonvacuum spacetime,” Phys. Rev. D 55, 5226 (1997) [gr-qc/9610070].

K. K. Nandi, B. Bhattacharjee, S. M. K. Alam and J. Evans, “Brans-Dicke wormholes in the Jordan and Einstein frames,” Phys. Rev. D 57, 823 (1998) [arXiv:9806.0181 [gr-qc]].

K. K. Nandi, A. Islam and J. Evans, “Brans wormholes,” Phys. Rev. D 55, 2497 (1997) [arXiv:9606.0430 [gr-qc]].

A. Bhattacharya, I. Nigmatzyanov, R. Izmailov and K. K. Nandi, “Brans-Dicke Wormhole Revisited,” Class. Quant. Grav. 26, 235017 (2009) [arXiv:0910.1109 [gr-qc]].

F. S. N. Lobo and M. A. Oliveira, “General class of vacuum Brans-Dicke wormholes,” Phys. Rev. D 81, 067501 (2010) [arXiv:1001.0995 [gr-qc]].

N. Montelongo Garcia and F. S. N. Lobo, “Exact solutions of Brans-Dicke wormholes in the presence of matter,” Mod. Phys. Lett. A 40, 3067 (2011) [arXiv:1106.3216 [gr-qc]].

S. V. Sushkov and S. M. Kozyrev, “Composite vacuum Brans-Dicke wormholes,” Phys. Rev. D 84, 124026 (2011) [arXiv:1109.2273 [gr-qc]].

E. Papantonopoulos and C. Vlachos, “Wormhole solutions in modified Brans-Dicke theory,” Phys. Rev. D 101, no. 6, 064025 (2020) [arXiv:1912.04003 [gr-qc]].

T. P. Sotiriou and V. Faraoni, “$f(R)$ Theories Of Gravity,” Rev. Mod. Phys. 82, 451 (2010) [arXiv:0805.1726 [gr-qc]].

F. S. N. Lobo, “The Dark side of gravity: Modified theories of gravity,” Dark Energy-Current Advances and Ideas, 173-204 (2009), Research Signpost, ISBN 978-81-308-0341-8 [arXiv:0807.1640 [gr-qc]].

J. O’Hanlon, “Intermediate-range gravity - a generally covariant model,” Phys. Rev. Lett. 29, 137 (1972).

T. Chiba, “$f(R)$ gravity and scalar - tensor gravity,” Phys. Lett. B 575, 1 (2003) [astro-ph/0307338]

G. J. Olmo, “Palatini Approach to Modified Gravity: f(R) Theories and Beyond,” Int. J. Mod. Phys. D 20, 413 (2011) [arXiv:1101.3864 [gr-qc]].

F. S. N. Lobo, J. Martinez-Asencio, G. J. Olmo and D. Rubiera-Garcia, “Planck scale physics and topology change through an exactly solvable model,” Phys. Lett. B 731, 163 (2014) [arXiv:1311.5712 [hep-th]].

F. S. N. Lobo, G. J. Olmo and D. Rubiera-Garcia, “Microscopic wormholes and the geometry of entanglement,” Eur. Phys. J. C 74, no. 6, 2924 (2014) [arXiv:1402.5099 [hep-th]].

F. S. N. Lobo, J. Martinez-Asencio, G. J. Olmo and D. Rubiera-Garcia, “Dynamical generation of wormholes with charged fluids in quadratic Palatini gravity,” Phys. Rev. D 90, no. 2, 024033 (2014) [arXiv:1403.0103 [hep-th]].

C. Bejarano, F. S. N. Lobo, G. J. Olmo and D. Rubiera-Garcia, “Palatini wormholes and energy conditions from the prism of General Relativity,” Eur. Phys. J. C 77, no. 11, 776 (2017) [arXiv:1607.01259 [gr-qc]].

T. Harko, T. S. Koivisto, F. S. N. Lobo and G. J. Olmo, “Metric-Palatini gravity unifying local constraints and late-time cosmic acceleration,” Phys. Rev. D 85 (2012) 084016 [arXiv:1110.1049 [gr-qc]].

S. Capozziello, T. Harko, T. S. Koivisto, F. S. N. Lobo and G. J. Olmo, “Cosmology of hybrid metric-Palatini $f(X)$-gravity,” JCAP 1304 (2013) 011 [arXiv:1209.2895 [gr-qc]].

K. A. Bronnikov, “Spherically symmetric black holes and wormholes in hybrid metric-Palatini gravity,” arXiv:1908.02012 [gr-qc].

S. V. Sushkov, “Exact cosmological solutions with non-minimal derivative coupling,” Phys. Rev. D 80, 103505 (2009) [arXiv:0910.0980 [gr-qc]].

S. Sushkov, “Realistic cosmological scenario with non-minimal kinetic coupling,” Phys. Rev. D 85, 123520 (2012) [arXiv:1204.6372 [gr-qc]].

L. N. Granda, “Non-minimal kinetic coupling and the phenomenology of dark energy,” Class. Quant. Grav. 28, 025006 (2011) [arXiv:1009.3963 [hep-th]].

L. N. Granda, “Inflation driven by scalar field with non-minimal kinetic coupling with Higgs and quadratic potentials,” JCAP 1104, 016 (2011) [arXiv:1104.2253 [hep-th]].

O. Pujolas, I. Sawicki and A. Vikman, “The Imperfect Fluid behind Kinetic Gravity Braiding,” JHEP 1111, 156 (2011) [arXiv:1103.5360 [hep-th]].

T. Kobayashi, M. Yamaguchi and J. Yokoyama, “G-inflation: Inflation driven by the Galileon field,” Phys. Rev. Lett. 105, 231302 (2010) [arXiv:1008.0603 [hep-th]].

A. Nicolis, R. Rattazzi and E. Trincherini, “The Galileon as a local modification of gravity,” Phys. Rev. D 79, 064036 (2009) [arXiv:0811.2197 [hep-th]].

C. Deffayet, G. Esposito-Farese and A. Vikman, “Cosmological Galileon,” Phys. Rev. D 79, 084003 (2009) [arXiv:0901.1314 [hep-th]].

A. De Felice and S. Tsujikawa, “Cosmology of a covariant Galileon field,” Phys. Rev. Lett. 105, 111301 (2010) [arXiv:1007.2700 [astro-ph.CO]].

A. De Felice and S. Tsujikawa, “Generalized Galileon cosmology,” Phys. Rev. D 84, 124029 (2011) [arXiv:1008.4236 [hep-th]].

C. Burrage, C. de Rham, D. Seery and A. J. Tolley, “Galileon inflation,” JCAP 1101, 014 (2011) [arXiv:1009.2497 [hep-th]].

S. Nojiri, S. D. Odintsov and M. Sasaki, “Gauss-Bonnet dark energy,” Phys. Rev. D 71, 123509 (2005) [hep-th/0504052].

T. Koivisto and D. F. Mota, “Gauss-Bonnet dark energy,” JCAP 1110, 016 (2011) [arXiv:1104.2253 [hep-th]].

S. Tsujikawa and M. Sami, “String-inspired cosmology:
Late time transition from scaling matter era to dark energy universe caused by a Gauss-Bonnet coupling,” JCAP **0701**, 006 (2007) [*hep-th/0608178*].

[103] D. Lovelock, “The Einstein tensor and its generalizations,” J. Math. Phys. **12**, 498 (1971).

[104] T. Kobayashi, M. Yamaguchi and J. Yokoyama, “Generalized G-inflation: Inflation with the most general second-order field equations,” Prog. Theor. Phys. **126**, 511 (2011) [*arXiv:1105.5723 [hep-th]*].

[105] N. Yunes and X. Siemens, “Gravitational-Wave Tests of General Relativity with Ground-Based Detectors and Pulsar Timing-Arrays,” Living Rev. Rel. **16**, 9 (2013) [*arXiv:1303.3473 [gr-qc]*].

[106] T. P. Sotiriou and S. Y. Zhou, “Black hole hair in generalized scalar-tensor gravity: An explicit example,” Phys. Rev. D **90**, 124063 (2014) [*arXiv:1408.1698 [gr-qc]*].

[107] D. D. Doneva and S. S. Yazadjiev, “New Gauss-Bonnet Black Holes with Curvature-Induced Scalarization in Extended Scalar-Tensor Theories,” Phys. Rev. Lett. **120**, no. 13, 131103 (2018) [*arXiv:1711.01187 [gr-qc]*].

[108] H. O. Silva, J. Sakstein, L. Gualtieri, T. P. Sotiriou and E. Berti, “Spontaneous scalarization of black holes and compact stars from a Gauss-Bonnet coupling,” Phys. Rev. Lett. **120**, no. 13, 131104 (2018) [*arXiv:1711.02080 [gr-qc]*].