Early direct competition does not determine the community structure in a desert riparian forest

Guilin Wu1,2,3, Shaowei Jiang2,3, Hui Liu2,4, Shidan Zhu5, Duoduo Zhou1,3, Ying Zhang1,3, Qi Luo2,3 & Jun Li1

In riparian zones along the Tarim River in northeastern China, the co-dominance by Populus euphratica and Tamarix ramosissima at the early succession stage shifts to P. euphratica dominance in the late stages. However, little is known about how this shift is mediated by the highly variable water conditions in riparian zones. Here we conducted a mesocosm experiment in which we measured the physiological and morphological traits of these two co-occurring species grown in mixtures under simulated favorable groundwater condition and no groundwater availability. Results indicated that T. ramosissima, in comparison to P. euphratica, had much lower WUE, less proportion of root biomass under favorable groundwater condition. Under no groundwater condition, T. ramosissima also showed higher maximal quantum yield of PSII which allowed it to accumulate higher aboveground and total biomass. Therefore, regardless of groundwater conditions, T. ramosissima exhibited superior competitive advantages against P. euphratica under direct competition condition, which demonstrates that the dominance shift was not resulted from the direct competition at seedling stage. Our findings further imply that a strategy of “sit and wait” in P. euphratica might favor its growth and survival when suffered flooding disturbances, thus allowing P. euphratica not being excluded through competition at early successional stage.

Environmental variability is often considered as an important influence on community structure because of its effects on population growth and species interactions such as competition. In particular, temporal environmental variability is commonly believed to promote species diversity by preventing competitive exclusion that would otherwise occur12. In theory, given a constant environment, species with superior advantage would drive out the weaker ones. When the environment is variable, one species might not always have superior advantage over others, thus results in coexistence3–5. Study the competition effects under various environment, not only helps us to explain how species replacement and community succession, but also provides guidelines for forest management and reconstruction5,6.

Riparian plants are subject to high variability in water availability due to hydrological fluctuations5,7–10. The spatial-temporal variations of water availability, interacted with plant-plant competition, can further determine the riparian plant distribution11. Because competition takes place in the context of environmental conditions, competitive advantages need to be considered over a range of conditions12. In desert riparian environment, for example, species with the ability to grow rapidly in wet years and tolerate water deficit in drought years may be more competitive13.

Tarim River is a 1321-km-long inland river, located in the arid region of northwestern China. Desert riparian forest occurs along the river, dominated by a tree species Populus euphratica Oliv.14. However, at the seedling stage near the active river channel, there are seedlings of another species, T. ramosissima, co-establish and co-dominate the riparian community15. The shift from the dominance of both species at the seedling stage to the dominance

1State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China. 2Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou, 510650, PR China. 3University of Chinese Academy of Sciences, Yuquan road 19A, Beijing, 100049, China. 4Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou, 510650, China. 5Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, 530004, China. Correspondence and requests for materials should be addressed to J.L. (email: lijun@ms.xjb.ac.cn)
of only *P. euphratica* at late successional stage suggests that *P. euphratica* out-competes *T. ramosissima* during the succession. Because *P. euphratica* is a tree species while *T. ramosissima* is a shrub species, earlier occupancy of the riparian space to avoid being suppressed by the other species would win a competitive advantage, so that early competition is critical for the riparian community succession.

Previous studies showed that competition during the succession is mediated by environment variability. Implications from the southwestern USA riparian ecosystems where *Tamarix* have replaced native popular and willow species indicate that the dominance of *Tamarix* was largely resulted from reduced competition intensity by native species due to groundwater decline and/or flood disappearance. Another example was that Synedra was competitively advantage over Fragilaria in both constant and varying cultures, but the rate of competitive exclusion was slower in varying cultures. As for the two species in the Tarim River riparian community, seedlings of *T. ramosissima* exhibits competitive advantages over seedlings of *P. euphratica* even under favorable water environment where *P. euphratica* was more likely expected to out compete *T. ramosissima*. *T. ramosissima* was also more drought tolerant and able to accumulate more biomass under variable groundwater conditions in monocultures. These studies all suggested that *T. ramosissima* was more competitive than *P. euphratica*, contrary to the dominant position of *P. euphratica* in the forests along the Tarim River. Thus further work on plant interactions between the two species under variable water environment is needed.

Since the growth of both species are highly depended on groundwater availability in Tarim River Basin, here we examined the competition outcome between these two co-occurring species under simulated groundwater-available condition (the groundwater was shallow but no plants were inundated) and groundwater-unavailable environment (the groundwater is not available for seedlings). Under each condition, *P. euphratica* and *T. ramosissima* seedlings were grown in mixtures and ecophysiological traits relative to competitive ability were measured, including leaf photosynthesis, biomass allocation and root distribution. We asked: (1) whether competition between the two species was mediated by groundwater conditions, and then (2) whether the direct competition at the early stage is responsible for the shift of dominant species during the community succession in the fields of the Tarim desert riparian forests.

Results

Plant water status. *ψ*ₚₐ and *ψ*ₚₖ in *P. euphratica* were significantly higher (*P < 0.05*) than those of *T. ramosissima* regardless of water environments (Fig. 1).

Leaf gas exchange. Maximum net photosynthesis rate (*A*ₘₐₓ) and water use efficiency (WUE) were significantly higher (*P < 0.05*) in *P. euphratica* than *T. ramosissima* under available groundwater condition, but there was no significant difference between the two species under no groundwater environment (Fig. 2a,b). Maximal quantum yield of PSII (*F*ₚₒ/*F*ₚₚₒ) was significantly higher (*P < 0.05*) in *T. ramosissima* under no groundwater condition, while there was no significant difference under available groundwater environment (Fig. 2c).

Biomass allocation and root distribution. Total biomass and aboveground biomass were significantly higher (*P < 0.05*) in *T. ramosissima* than that of *P. euphratica* regardless of water environments (Fig. 3a,b). Root biomass was significantly higher (*P < 0.05*) in *T. ramosissima* than *P. euphratica* under available groundwater environment, while there was no significant difference between the two species under no groundwater condition (Fig. 3c).

The percentage of root biomass in *P. euphratica* was significantly higher (*P < 0.05*) than *T. ramosissima*, shoot biomass in *P. euphratica* was significantly lower (*P < 0.05*) than *T. ramosissima* regardless of water condition (Fig. 4).

There was significant difference in total root length between the two species. Under available groundwater condition, with the increasing of soil depth, total root length for *T. ramosissima* increased at first, then decreased, it reached the maximum at 40 cm depth. While root length of *P. euphratica* increased firstly, then stayed constant.
from 40 cm to 80 cm, reached the peak at 100 cm depth. Under no groundwater condition, root length of *T. ramosissima* peaked at 100 cm depth, while *P. euphratica* peaked at 120 cm depth (Fig. 5).

Both species showed positive relationships between log (height) and log (aboveground biomass). Height of *P. euphratica* increased with aboveground biomass quicker (higher regression slope) than *T. ramosissima* (Fig. 6).

Discussion

Our results indicated that *T. ramosissima* had competitive advantages over *P. euphratica*, evidenced by higher aboveground as well as total biomass regardless of groundwater conditions. The consistent results under two groundwater conditions suggested that the dominance shift from early to late successional stages in Tarim desert riparian forests was not resulted from early direct competition. Furthermore, we found that the competition outcome was associated with the growth strategies in the studied species at the early stage. *P. euphratica* allocated

Figure 2. Photosynthetic rate (A_{max}), water use efficiency (WUE), Maximal quantum yield of PSII (F_v/F_m) for *P. euphratica* and *T. ramosissima* under available groundwater and no groundwater environment. Values are mean ± SD (n = 3).
higher proportional biomass to roots under both groundwater conditions, a strategy favoring survival rather than growth in riparian environments. On contrary, the relationships between plant height and biomass suggested that *T. ramosissima* tends to occupy horizontal space, a strategy as weeds that suppress its competitors through rapid growth.

Ecophysiological traits of plants reflect adaptation strategies to various environments, which provide guidelines for species replacement during forest community succession. In agreement with Wu et al., in our study, *T. ramosissima* had superior advantages over *P. euphratica* under available groundwater conditions (Figs 1 and 3). *T. ramosissima* accumulated more biomass in two ways. Firstly, the significantly lower WUE suggested that *T. ramosissima* accumulated carbon at high expense of water (Fig. 2), which was in agreement with Brotherson &
Secondly, although *T. ramosissima* had lower net photosynthetic rate, and much lower percent of root biomass allocation in *T. ramosissima* (Fig. 4) indicated that it invested more to aboveground biomass with higher potential to increase leaf areas, thus advantaged more CO₂ accumulation. Li *et al.* demonstrated that *T. ramosissima* had significant higher percent leaf biomass than *P. euphratica* under various groundwater conditions. Benefited from these traits, *T. ramosissima* could suppress *P. euphratica* under available groundwater condition. Under no groundwater environment, *T. ramosissima* showed more negative Ψ_{md} than *P. euphratica* (−2.9 MPa for *T. ramosissima* versus −2.0 MPa for *P. euphratica*, Fig. 1). *T. ramosissima* also has a more negative water potential inducing 50% loss of hydraulic conductivity (P₅₀) (−4.5 MPa for *T. ramosissima* and −0.70 MPa for *P. euphratica*)^{20,27}, thus according to the estimation of hydraulic safety margin by Choa *et al.*²⁸, it is clear that *P. euphratica* was in a higher risk of hydraulic failure. Furthermore, significantly lower maximal quantum yield of PSII F_v/F_m of *P. euphratica* (Fig. 2) also demonstrated the higher degree of water stress. Under no groundwater condition, both species had similar WUE, the higher drought tolerance ensured *T. ramosissima* to accumulate more biomass (Fig. 3). Overall, our results demonstrated that stronger competitiveness of *T. ramosissima* in our experiment benefited from its water waste strategy and higher aboveground biomass allocation under available groundwater condition, and more drought tolerance under no ground water condition.

Water availability in riparian zone in arid and semi-arid region was highly variable due to hydrological fluctuations^{10,29}. Thus, root allocation strategy in such environment is critical for the survival and growth in species. Higher proportion of roots allocation and deeper roots distribution was advantage survival of species when water is unfavorable water environment, but would restrict plant growth under favorable water environments. Less...
biomass and horizontal growth have higher risk of being uprooted by extreme floods. So plants invest more to disturb by runoff of river, seedlings near channel were more vulnerable. Plants with higher aboveground biomass have higher risk of loss more in desert riparian zone, while the strategy in P. euphratica might make it suffer less loss from disturbance. Moreover, P. euphratica have lancet-like leaves at seedling stage, and such leaf shape is known to decrease flush resistance, thus favoring decreasing aboveground biomass loss during floods. As suggested by the “storage effect” theory, P. euphratica might “store” more underground biomass in various groundwater environments, which buffered the effects of disturbance. All the above competition strategies explained the coexistence of both species at the seedling stage. As long as P. euphratica can survive the early stage (as we observed that the mortality in P. euphratica seedlings was negligible although they were obviously suppressed by T. ramosissima), it will out compete T. ramosissima in the late stage of the plant community in the Tarim riparian zones.

Our study implied that the success of P. euphratica in Tarim riparian zone probably rely on disturbance that change or weaken competition direction in T. ramosissima. Shafroth et al. suggested the changing of hydrological environment in Tarim region, which might lead to the expansion of T. ramosissima. Therefore, management of natural flow in Tarim River is critical for final community structure in Tarim region, and for the maintenance of P. euphratica forest.

Our study demonstrate that T. ramosissima has overwhelming competition advantages at the seedling stage over P. euphratica regardless of groundwater conditions, so that the early direct competition between the two species is not the reason for the dominance of P. euphratica in late successional stages in the Tarim River Basin. In details, seedlings of P. euphratica allocated more proportional biomass to root, and tended to grow higher at the cost of lateral growth when suppressed by T. ramosissima. Such a strategy allows P. euphratica to survive at the early successional stage. A strategy of “sit and wait” in P. euphratica might favor its growth and survival when
suffered flooding disturbances, which could release the intensity of direct competition at the early successional stage, leading to the dominance by *P. euphratica* in the riparian plant communities in fields. Therefore, it is critical to maintain natural flooding regimes for the management of the desert riparian forest in the Tarim Basin.

Materials and Methods

Study sites. Experiments were carried out at the Aksu Water Balance Station, Chinese Academy of Sciences (40°27′N, 80°45′E, hereafter Aksu Station), located in the Tarim Basin, northwestern China. The region is characterized by a hyperarid climate, with an annual mean precipitation of 45.7 mm but an annual mean potential evaporation greater than 2500 mm. In August 2011, seeds of both species were collected from natural populations and then sown in a common garden in the Aksu Station. Then in March 2013, seedlings with heights ranging from 35 to 42 cm were transplanted into outdoor concrete pools designed for simulating different groundwater conditions.

Experimental design. The experimental pools, 5 m² of each in size, were filled with soil collected from riparian zones of the Tarim River, with drainage valves at different depths to control groundwater depth. Details of the experiment design were described by Wu et al. Briefly, seedlings of both species were grown alternatively at a space of 0.4 m × 0.4 m, total 28 seedlings in each pool that was similar in density to field communities at this stage. There were 6 pools in total, three for favorable groundwater treatment, and the other 3 for no groundwater available. For the available groundwater treatment, a drainage valve at 0.4 m depth in each pool was maintained open, and flooding irrigations were carried out weekly during the experiment, through which the groundwater stage was maintained within a range between 0.4 and 0.6 m below soil surface. For no groundwater treatment, irrigation was ceased after middle July when the seedlings were successfully established in pools. For the extremely low precipitation and great evaporative demand in Tarim region, rainfall was not excluded for the no groundwater treatment.

Data collections. We determined plant water status by measuring leaf water potential at predawn (Ψsat) and midday (Ψmid) with a pressure chamber (PMS, Corvallis, OR, USA). Measurements were carried out between 06:30 and 07:30 for Ψsat and between 15:30–16:30 for Ψmid. A minimum of five fully expanded mature leaves from three individuals per species in each pool were sampled for leaf water potential measurements. Water status for *P. euphratica* and *T. ramosissima* were measured three times from July to September.

Leaf gas exchange was measured between 10:30 and 12:30 using a portable photosynthesis system equipped with a CO₂ injector (LI6400, Li-Cor, Lincoln, USA). Based on preliminary trials, the photosynthetic photon flux density was set at 1500 μmol m⁻² s⁻¹ to ensure that light-saturated photosynthesis rates were reached for the two study species. Ambient CO₂ was maintained at 400 μmol mol⁻¹. Similar to the sampling way for leaf water potential measurements, a minimum of nine fully expanded mature leaves from three individuals per species in each pool were selected, for the quantification of maximum net CO₂ assimilation rate (Amax), stomatal conductance (gₛ) and transpiration rate (Tₑ), leaf water use efficiency (WUE) was calculated as Amax/Tₑ. Chlorophyll fluorescence parameters (Fm/F₀) were measured in a standard fluorescence leaf chamber with a Li-6400 portable photosynthesis system. Prior to the measurement in the early morning, a clip was placed on each leaf for 30–40 min for dark adaptation. Gas exchange for *P. euphratica* and *T. ramosissima* were also measured three times from July to September.

At the end of the experiment, nine seedlings of each species for each treatment were harvested to measure aboveground biomass. We dug a ditch around the pool thus made an earth cube in the center of the pool. Then the cube was soaked with water for a few hours to facilitate removal of roots from the loamy soils with a spray nozzle. We used tape to measure root length at each layer for the selected individuals. All biomass was dried in an oven at 65 °C for 72 h and then weighed.

Data analysis. We use t-test to analysis xylem water potential, above-, below-biomass, Amax, WUE, Fm/F₀ between species in each water treatment. We fitted the relationship between log-transformed height and between species in each water treatment. We fitted the relationship between log-transformed height and

References

1. Chesson, P. et al. Resource pulses, species interactions, and diversity maintenance in arid and semi-arid environments. *Oecologia* **141**, 236–253 (2004).
2. Descamps-Julien, B. & González, A. Stable coexistence in a fluctuating environment: an experimental demonstration. *Ecology* **86**, 2815–2824 (2005).
3. Chesson, P. L. & Warner, R. R. Environmental variability promotes coexistence in lottery competitive systems. *Am. Nat.* **117**, 923–943 (1981).
4. Chesson, P. Multi-species competition in variable environments. *Theor. Popul. Biol.* **45**, 227–276 (1994).
5. Chesson, P. Mechanisms of maintenance of species diversity. *Ann. Rev. Ecol. Syst.* **31**, 343–66 (2000).
6. Martorell, C. & Freckleton, R. P. Testing the roles of competition, facilitation and stochasticity on community structure in a species-rich assemblage. *J. Ecol.* **102**, 74–85 (2014).
7. Naiman, R. J. & Décaps, H. The ecology of interfaces: riparian zones. *Ann. Rev. Ecol. Syst.* **28**, 621–658 (1997).
8. Lyle, D. A. & Poff, N. L. Adaptation to natural flow regimes. *Trends Ecol. Evol.* **19**, 94–100 (2004).
9. Stromberg, J. C., Thuczek, M. G. F., Hazelton, A. F. & Ajami, H. A century of riparian forest expansion following extreme disturbance: spatio-temporal change in *Populus/Salis/Tamarix* forests along the Upper San Pedro River, Arizona, USA. *For. Ecol. Manage.* **239**, 1181–1189 (2010).
10. Stella, J. C., Rodríguez-González, P. M., Dufour, S. & Bendix, J. Riparian vegetation research in Mediterranean-climate regions: common ecological processes, and considerations for management. *Hydrobiologia* **719**, 291–315 (2013).
11. Kotowski, W. et al. Waterlogging and canopy interact to control species recruitment. *Hydrobiologia* **719**, 291–315 (2013).
12. Sher, A. A. & Marshall, D. L. Seeding competition between native *Populus deltoides* (Salicaceae) and exotic *Tamarix ramosissima* (Tamaricaceae) across water regimes and substrate types. *Am. J. Bot.* **90**, 413–422 (2003).
13. Cleverly, J. R., Smith, S. D., Sala, A. & Devitt, D. A. Invasive capacity of Tamarix ramosissima in a Mojave Desert floodplain: the role of drought. *Oecologia* 111, 12–18 (1997).
14. Zhang, Y. M., Chen, Y. N. & Pan, B. R. Distribution and floristics of desert plant communities in the lower reaches of Tarim River, southern Xinjiang, People's Republic of China. *J. Arid Environ.* 63, 772–784 (2005).
15. Li, J., et al. Physiological and morphological responses of Tamarix ramosissima and *Populus euphratica* to altered groundwater availability. *Tree Physiol.* 33, 57–68 (2013).
16. Glenn, E. P. & Nagler, P. L. Comparative ecophysiology of *Tamarix ramosissima* and native trees in western U.S. riparian zones. *J. Arid Environ.* 61, 419–446 (2005).
17. Merritt, D. M. & Poff, N. L. Shifting dominance of riparian *Populus* and *Tamarix* along gradients of flow alteration in western North American rivers. *Ecol. Appl.* 20, 135–152 (2010).
18. Grover, J. P. Dynamics of competition in a variable environment: experiments with two diatom species. *Ecology* 69, 408–417 (1988).
19. Wu, G. et al. Competition between *Populus euphratica* and *Tamarix ramosissima* seedlings under simulated available groundwater availability. *J. Arid Land* 8, 293–303 (2016).
20. Gries, D. et al. Growth and water relations of *Tamarix ramosissima* and *Populus euphratica* on Taklamakan desert dunes in relation to depth to a permanent water table. *Plant Cell Environ.* 26, 725–736 (2003).
21. Zhang, X. W., Cheng, T. Y., Chen, H. W. & Tian, X. M. Underground water monitoring and analysis on Tarim River Basin. *Journal of Shitiezi University: Natural Science* 25, 364–368 (2007). (In Chinese).
22. Tomaso, D. J. M. Impact, biology, and ecology of saltcedar (*Tamarix* spp.) in the southwestern United States. *Weed Technol.* 12, 326–336 (1998).
23. Dudley, T. L. & Deloach, C. J. Saltcedar (*Tamarix* spp.), Endangered Species, and Biological Weed Control—Can They Mix? *Weed Technol.* 18, 1542–1551 (2004).
24. McCull, B. J., Enquist, B. J., Weiber, E. & Westoby, M. Rebuilding community ecology form functional traits. *Trends Ecol. Evol.* 21, 178–185 (2006).
25. Zhu, S. D., Song, J. J., Li, R. H. & Ye, Q. Plant hydraulics and photosynthesis of 34 woody species from different successional stages. *J. Exp. Bot.* 61, 419–446 (2005).
26. Brotherson, J. D. & Field, D. J. Impact, biology, and ecology of saltcedar (*Tamarix* spp.) in the southwestern United States. *Weed Technol.* 12, 326–336 (1998).
27. Hukin, D. Cavitation vulnerability in roots and shoots: does *Populus euphratica* Oliv., a poplar from arid areas of Central Asia, differ from other poplar species? *J. Exp. Bot.* 56, 2003–2010 (2005).
28. Choat, B. et al. Global convergence in the vulnerability of forests to drought. *Nature* 491, 752–755 (2012).
29. Stromberg, J. C. et al. Altered stream flow regimes and invasive plant species: the *Tamarix* case. *Global Ecol. Biogeogr.* 16, 381–393 (2007).
30. Busch, D. E. & Smith, S. D. Mechanisms associated with decline of woody species in riparian ecosystems of the Southwestern US. *Ecol. Monogr.* 65, 347–370 (1995).
31. Horton, J. L. & Clark, J. L. Water table decline alters growth and survival of *Salix gooddingii* and *Tamarix chinesis* seedlings. *Forest Ecol. Manag.* 140, 239–247 (2001).
32. Yokozawa, M. & Harata, T. A canopy photosynthesis model for the dynamics of size-structure and self-thinning in plant populations. *Ann. Bot.* 70, 305–316 (1992).
33. Weiher, J. et al. Size variability and competition in plant monocultures. *Oikos* 47, 211–222 (1986).
34. Anten, N. P. R. & Wurger, M. J. A canopy structure and nutrient distribution in dominant and subordinate plants in a dense stand of *Amaranthus dubius* L. with a size hierarchy of individuals. *Oecologia* 105, 30–37 (1996).
35. Usherwood, J. R., Ennos, A. E. & Ball, D. J. Mechanical and anatomical adaptations in terrestrial and aquatic buttercups to their respective environments. *J. Ecol.* 84, 163–175 (1996).
36. Shafroth, P. B., Stromberg, J. C. & Patten, D. T. Riparian vegetation response to altered disturbance and stress regimes. *Ecol. Appl.* 12, 107–123 (2002).
37. Chen, Y. et al. Progress, challenges and prospects of eco-hydrological studies in the Tarim River basin of Xinjiang, China. *Environ. Manag.* 51, 138–153 (2013).
38. Zhou, X. C. et al. Spatial pattern of riparian vegetation in desert of the lower Tarim River basin. *Chinese Journal of Plant Ecology* 39, 1053–1061 (2015). (In Chinese).
39. Yi, Y. H., Fan, D. Y., Xie, Z. Q. & Chen, F. Q. Effects of waterlogging on the gas exchange, Chlorophyll Fluorescence and water potential of *Quercus variabilis* and *Pterocarya stenoptera*. *J. Plant Ecol.-UK* 30, 960–968 (2006).

Acknowledgements

We would like to thank Tian Xiaohua and Wang Wenliang for their assistance during the experiment. This work was supported by grants from the National Natural Science of China (41171037 and U1403281).

Author Contributions

L.J. and W.G.L. designed and performed the experiment, analyzed and interpreted data, and wrote the manuscript. J.S.W. performed the experiment. L.H., Z.S.D., Z.Y. and L.Q. wrote the manuscript. All authors have read, reviewed the intellectual content, corrected and approved the final manuscript.

Additional Information

Competing Interests: The authors declare no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2018