Particle motion around magnetized black holes: Preston-Poisson space-time.

R.A. Konoplya
Instituto de Física, Universidade de São Paulo
C.P. 66318, 05315-970, São Paulo-SP, Brazil

We analyze motion of massless and massive particles around black holes immersed in an asymptotically uniform magnetic field and surrounded by some mechanical structure, which provides the magnetic field. The space-time is described by Preston-Poisson metric, which is the generalization of the well-known Ernst metric with a new parameter, tidal force, characterizing the surrounding structure. The solution is very accurate for $r\ll 1$, where r is the distance form the black hole, a is the length scale of the mechanical structure. Indeed, comparison with the exact Ernst solution shows that next order corrections are of order B^4, and are very small.

In the present paper we generalize analysis of works \cite{6} and \cite{5} and study motion of test particles near black holes immersed in asymptotically uniform magnetic field and some gravitating surrounding structure, which provides the magnetic field. The paper is organized as follows: In Sec. II we reduce the Preston-Poisson metric to the Ernst-like form, by going over to a new coordinates. Then in Sec. III we consider the Hamilton-Jacobi equation in the equatorial plane, and use it for analysis of massless particles. There the lens effects for Preston-Poisson metric is considered. Motion of massive particles is described in Sec. IV, where the binding energy for particles on circular orbits are calculated.

I. 1. INTRODUCTION.

Black holes in the centres of galaxies are immersed in a strong magnetic field due to charged matter surrounding them. The strong magnetic field in the centre of galaxies is stipulated by toroidal currents around galactic black holes \cite{1}. Therefore an exact solution of Einstein-Maxwell equations describing a black hole immersed in an asymptotically uniform magnetic field, known as Ernst solution \cite{3}, was of considerable interest \cite{5}. The light and particle motion around Ernst-Schwarzschild black hole was analyzed in a few papers \cite{5}, \cite{2}. In particular, in \cite{2} it was shown that Hamilton-Jacoby equation allow separation of variables in the equatorial plane, where the motion of neutral and charged particles were analyzed. In \cite{5} the motion of neutral particles were considered for a more general situation of magnetized Kerr background. There it was shown that the release of binding energy is considerably increased because of presence of electromagnetic field, and the binding energy for circular orbits was calculated. Yet, in a more realistic situation, the strong magnetic field in the central region near black hole is created by some surrounding matter, such as accretion disk or an active galactic nuclei. This surrounding structure exerts strong gravitational tidal force on particles moving near black holes, so that magnetic influence of the structure might be even much smaller than its gravitational influence. Therefore a more physical situation should include into consideration, the corrections to the black hole metric due-to that structure. Fortunately, recently Preston and Poisson \cite{4} have found such a corrected metric. This is the solution to the perturbative Einstein-Maxwell equations depending on three parameters: the black hole mass M, magnetic field B, and a new parameter K, which characterize the above surrounding structure. The solution is very accurate for $r^2B^2 \ll 1$, $M/a \ll 1$, and $r^2K \ll 1$, where r is the distance form the black hole, a is the length scale of the mechanical structure. Indeed, comparison with the exact Ernst solution shows that next order corrections are of order B^4, and are very small.

In the present paper we generalize analysis of works \cite{6} and \cite{5} and study motion of test particles near black holes immersed in asymptotically uniform magnetic field and some gravitating surrounding structure, which provides the magnetic field. The paper is organized as follows: In Sec. II we reduce the Preston-Poisson metric to the Ernst-like form, by going over to a new coordinates. Then in Sec. III we consider the Hamilton-Jacobi equation in the equatorial plane, and use it for analysis of massless particles. There the lens effects for Preston-Poisson metric is considered. Motion of massive particles is described in Sec. IV, where the binding energy for particles on circular orbits are calculated.

II. PRESTON-POISSON METRIC

Following \cite{4}, let us consider a model consisting of a non-rotating black hole immersed in a uniform magnetic field, and a large mechanical structure, such as a giant solenoid, producing the magnetic field of strength B. The structure has a mass M' and its linear extension is $\sim a$. In order to have magnetic field which is uniform for $r \gg M$, one chooses

$$A^{1/2}B\phi^\alpha,$$ (1)

where ϕ^α is the rotational Killing vector of the unperturbed Schwarzschild metric.

The metric which describes the space-time of the above model, written in light-cone gauge, is \cite{4}

$$ds^2 = -g_{tt}dt^2 + 2dvdr + g_{\phi\phi}d\phi^2 + g_{\theta\theta}d\theta^2 + g_{\phi\phi}d\phi^2,$$ (2)
where
\[g_{rr} = -(1 - (2M/r)) - \frac{1}{9} B^2 r (3r - 8M) - \frac{1}{B^2} (3r^2 - 14Mr + 18M^2) + K (r - 2M)^2 \]
\begin{equation}
\text{(3)}
\end{equation}
\[g_{\theta\theta} = r^2 + \left(\frac{1}{3} B^2 r^2 + B^2 M^2 + K (r^2 - 2M^2) \right) r^2 \sin^2 \theta \]
\begin{equation}
\text{(5)}
\end{equation}
\[g_{\phi\phi} = r^2 \sin^2 \theta + B^2 r^2 \left(-\frac{1}{3} r^2 - M^2 \right) - K (r^2 - 2M^2) r^2 \right) \sin^4 \theta \]
\begin{equation}
\text{(6)}
\end{equation}
The above metric is accurate through order \((B^2, K)\), whenever \(r^2 B^2 \ll \) and \(r^2 K \ll 1\). The new parameter \(K\) characterizing the mechanical structure, containing the black hole, can be interpreted as a tidal gravity or Weyl-curvature when \(r \gg M\). Thus we have a three-parameter solution.

From now on, we shall consider motion in the equatorial plane \(\theta = \pi/2\). Therefore, we shall put \(\theta = \pi/2\) in formulas (1)-(5). Then, let us make the following coordinate transformations:
\[v = t + \mathcal{P} + 2M \ln |(\mathcal{P}/2M) - 1|, \]
\begin{equation}
\text{(7)}
\end{equation}
\[r = \mathcal{P}(1 + (1/6)B^2 r^2 + (1/3)(K - (1/2)B^2)(\mathcal{P} - 2M)\mathcal{P} + O(B^4, K^2). \]
\begin{equation}
\text{(8)}
\end{equation}
These transformations are generalization of transformations (3.06-3.61) of \([1]\) in the equatorial plane and they cast the metric (1) into the diagonal form
\[ds^2 = g_{\mu\nu} d\xi^\mu d\xi^\nu + g_{\theta\phi} d\theta^2 + g_{\phi\phi} d\phi^2, \]
\begin{equation}
\text{(9)}
\end{equation}
where the metric components (neglecting orders \(O(B^4, K^2)\) and higher) are
\[g_{rr} = (1 - 2M/\mathcal{P})^{-1} + \left(\frac{4M - 3\mathcal{P}}{6M - 3\mathcal{P}} \right) K - \frac{2M \mathcal{P}^2}{6M - 3\mathcal{P}} B^2, \]
\begin{equation}
\text{(10)}
\end{equation}
\[g_{tt} = (1 - 2M/\mathcal{P}) + (1/3)(-8M^2 + 10M\mathcal{P} - 3\mathcal{P}^2)K + \]
\[(2/3)M(2M - \mathcal{P})B^2, \]
\begin{equation}
\text{(11)}
\end{equation}
\[g_{\theta\theta} = \mathcal{P}^2 + (1/3)\mathcal{P}^2(-6M^2 - 4M\mathcal{P} + 5\mathcal{P}^2)K + \]
\[(1/3)\mathcal{P}^2(3M - \mathcal{P})(M + \mathcal{P})B^2, \]
\begin{equation}
\text{(12)}
\end{equation}
\[g_{\phi\phi} = \mathcal{P}^2 - (1/3)\mathcal{P}^2(-6M^2 + 4M\mathcal{P} + 5\mathcal{P}^2)K - \]
\[(1/3)\mathcal{P}^2(3M^2 - 2M\mathcal{P} + \mathcal{P}^2)B^2. \]
\begin{equation}
\text{(13)}
\end{equation}
This form of the metric does not have non-diagonal components in the equatorial plane and is much simpler for consideration of motion of test particles. To be exact, non-diagonal components are of order \((B^4, K^2)\) and higher, and therefore can be safely neglected.

III. Motion of Massless Particles

From now and on we shall write \(r\) instead of \(\mathcal{P}\). The four-momentum is
\[p_\mu = g_{\mu\nu} \frac{dx^\nu}{ds}, \]
\begin{equation}
\text{(14)}
\end{equation}
where \(s\) is an invariant affine parameter. The Hamiltonian has the form
\[H = \frac{1}{2} g^{\mu\nu} p_\mu p_\nu. \]
\begin{equation}
\text{(15)}
\end{equation}
The action can be represented in the form:
\[S = -\mu s - Et + L\phi + S_r(r) + S_\theta(\theta), \]
\begin{equation}
\text{(16)}
\end{equation}
where \(E\) and \(L\) are the particle’s energy and angular momentum respectively.

Then, the Hamilton-Jacobi equations for null geodesics read
\[\frac{1}{2} g^{\mu\nu} \frac{\partial S}{\partial x^\mu} \frac{\partial S}{\partial x^\nu} = - \frac{\partial S}{\partial s} = \mu^2. \]
\begin{equation}
\text{(17)}
\end{equation}
It is evident that the equations of motions allow separation of variables in the equatorial plane \(\theta = \pi/2\). The first integrals of motion are
\[\mu g_{rr} \frac{dr}{ds} = \pm \sqrt{-\frac{g_{rr}}{g_{tt}} (E^2 - U_{eff}^2)}, \]
\begin{equation}
\text{(18)}
\end{equation}
\[p_\phi = \mu g_{\phi\phi} \frac{d\phi}{ds} = L, \]
\begin{equation}
\text{(19)}
\end{equation}
\[p_t = \mu g_{tt} \frac{dt}{ds} = -E, \]
\begin{equation}
\text{(20)}
\end{equation}
\[U_{eff}^2 = -\mu g_{t\phi} \left(1 + \frac{L^2}{\mu^2 m^2 g_{\phi\phi}} \right). \]
\begin{equation}
\text{(21)}
\end{equation}
The trajectory and propagation equations take the form
\[\left(\frac{dr}{dt} \right)^2 = -\frac{g_{tt}}{g_{rr}} \left(1 + \frac{g_{tt}}{g_{\phi\phi}} \left(\frac{p_\phi}{p_t} \right)^2 - \frac{g_{rr} m^2}{p_t^2} \right), \]
\begin{equation}
\text{(22)}
\end{equation}
\[
\left(\frac{d\phi}{d\alpha} \right)^2 = -\frac{g_{\phi\phi}}{g_{rr}} \left(1 + \frac{g_{\phi\phi}}{g_{tt}} \left(\frac{p_t}{p_\phi} \right)^2 - \frac{m^2}{P_\phi^2} \right). \tag{23}
\]

For massless particles, from the above equations (22), (23), one can see that propagation and trajectory equations contain only ratio \(b = L/E \), which is called the impact parameter. The qualitative description of the motion of massless particles can be made by considering the effective potential of the motion (21, where \(\alpha = 0 \). The equation for radii of circular orbits can be found from the condition \(dU_{eff}/dr = 0 \):

\[
g_{tt}g_{\phi\phi} = g_{\phi\phi}g_{tt} \cdot \tag{24}
\]

This gives the algebraic equation for \(r \):

\[
-6(B^2 - 2K)M^3 - 2r + 10(B^2 - 2K)M^2r + (4/3)(B^2 + K)r^3 + M(6 - 6B^2r^2 + 4Kr^2) = 0. \tag{25}
\]

When \(B^2 \ll M \), and \(K \ll M \), we have, that above some critical region of values of \(B \) and \(K \), there are two null circular orbits with radii

\[
r_1 = (3M + 12M^3K + (3M^3 + 120M^5K)B^2, \tag{26}
\]

\[
r_2 = \frac{2K(\sqrt{6} - 6\sqrt{K}M)(1 + 2KM^2) - B^2(\sqrt{6} + \sqrt{K}M(-15 + 13\sqrt{6}KM + 6KM^2))}{4(K)^{3/2}}. \tag{27}
\]

When \(B = K = 0 \), \(r_1 \) takes its Schwarzschild value \(3M \). Unfortunately, we cannot find accurate values for the critical region \((B, K) \), because the values we get is quite large, and, for instance for \(K = B^2/2 \) is about \(0.189M \), what is on the boundary of applicability of the approximate metric under consideration. Physical situation corresponds to some tidal force \(K \), which is larger than its pure Ernst value \(B^2/2 \). Therefore, further we shall consider the new parameter \(h \), which is given by the relation:

\[
K = \frac{B^2}{2} + h. \]

Now, let us consider the effect of tidal gravitational attraction of the surrounding structure upon such lens effects as light bending angle and time delay. For this, let us follow the approach of [3].

If we know the distance of minimal approach \(r_{min} \) with great accuracy, we can perform integrations for finding bending angle:

\[
\alpha = \phi_s - \phi_o = -\int_{r_s}^{r_{min}} \frac{d\phi}{dr} dr + \int_{r_{min}}^{r_o} \frac{d\phi}{dr} dr - \pi. \tag{28}
\]

Here \(r_o \) is radial coordinate of an observer and \(r_s \) is radial coordinate of the source.

In a similar fashion one can find the time delay, which is the difference between the light travel time for the actual ray, and the travel time for the ray the light would have taken in the Minkowskian space-time:

\[
t_s - t_o = -\int_{r_s}^{r_{min}} \frac{dt}{dr} dr + \int_{r_{min}}^{r_o} \frac{dt}{dr} dr - \frac{d\phi_o}{\cos B}. \tag{29}
\]

Table I: Bending angle \(\alpha \) and propagation time \(\tau \) for Ernst-Schwarzschild space-times (in geometrical units, \(M = 1 \)) for \(b = 6 \). "Observer" and "source" are supposed to be situated not far from the black hole in order to estimate influence of magnetic field in the central region of the black hole: \(r_o = r_s = 20, b = 6 \).

\(B \)	\(h \)	\(\alpha + \pi \)	\(t_s - t_o + d_{\phi_o}/\cos B \)
0	0	4.252334	56.84556
0	5 \cdot 10^{-4}	4.406231	57.25224
0	10^{-3}	4.577176	57.72044
5 \cdot 10^{-4}	0	4.252388	56.84567
5 \cdot 10^{-4}	5 \cdot 10^{-4}	4.406293	57.25240
5 \cdot 10^{-4}	10^{-3}	4.577247	57.72063

Here the term \(d_{\phi_o}/\cos B \) represents the propagation time for a ray of light, if the black hole is absent. The distance of minimal approach is the corresponding root of the equation \(dr/dt = 0 \). For pure Schwarzschild black hole it would be the largest root, yet in our case it the second largest root of the equation:

\[
r^3(-3 + B^2(3M^2 - 2Mr + r^2) + K(-6M^2 + 4Mr + r^2))
- (2M - r)(3 + 2B^2Mr + Kr(-4M + 3r)b^2 = 0. \tag{30}
\]

Looking numerically for the solution of the equation (30) one can see that the tidal force \(K \) pull out the radius
angular momentum \(L \) (21) is shown in Figures 1 and 2 for zero and non-zero angle and time delay near the black hole. We also can see from the table I, that the presence of the mechanical structure leads to increasing of the banding of minimal approach further from the black hole.

The effective potential for massive neutral particles (21) is shown in Figures 1 and 2 for zero and non-zero angular momentum \(L \) of the particle.

From the above figures one can see that the effective potential can have form of the barrier or of a monotonically increasing function.

For circular orbits the equation \(V_{eff,r} = 0 \) gives

\[-L^2 (g_{tt,r} g_{\phi\phi} - g_{\phi\phi} g_{tt,r}) + \mu^2 g_{tt,r} g_{\phi\phi} = 0. \] (31)

If one solves (27) for \(L \), and uses it in the equation \(dr/dt = 0 \), or, equivalently, in

\[U_{eff}^2 = E^2, \] (32)

one obtains rather cumbersome system of equations for determination of the parameters of orbits of massive particles.

The values \(L/\mu \) and \(E/\mu \) as a function of radius of circular orbits are presented on Fig. 3 and 4. They are found there from accurate equations (31) and (32). From Fig. 3 and 4, one can see that particle angular momentum and energy per units mass is monotonically growing as functions of the radius of circular orbit \(r_c \), starting from some minimal value. This minimum value of the test particle angular momentum corresponds to the orbit with the innermost stable circular radius \(r_{ic} \). The large \(K \), the more radius of the innermost stable circular orbit \(r_{ic} \) is pulled toward the black hole.

The binding energy is defined as the amount of energy that is released by the test particle going from a stable circular orbit \(r_c \), to the innermost stable orbit of radius \(r_{ic} \), i.e.

\[\text{Binding energy} = \frac{(E/\mu)_{r_{ic}} - (E/\mu)_{r_c}}{(E/\mu)_{r_{ic}}}. \] (33)

A test particle in an unstable circular orbits will fall into black hole and the infall time is small compared to the radiative time, so that the particle energy will be brought to the black hole almost completely.

From the Figure (5) one can see the two features: first, that the binding energy is greater for larger radius of circular orbit, and this dependence on radius is strictly monotonic. Second, is that the larger tidal force \(K \), the larger the binding energy for a given radius of the circular orbit of the particle \(r_c \). The last feature means that in presence of surrounding attracting structure a test particle, when going from its stable orbit to the innermost stable one, releases more energy, than it would release without the above structure.

Finally, let us give the explicit form of the equations (31), (32) through the orders \(B^2, K \).

From the above figures one can see that the effective potential can have form of the barrier or of a monotonically increasing function.

For circular orbits the equation \(V_{eff,r} = 0 \) gives

\[-L^2 (g_{tt,r} g_{\phi\phi} - g_{\phi\phi} g_{tt,r}) + \mu^2 g_{tt,r} g_{\phi\phi} = 0. \] (31)

If one solves (27) for \(L \), and uses it in the equation \(dr/dt = 0 \), or, equivalently, in

\[U_{eff}^2 = E^2, \] (32)

one obtains rather cumbersome system of equations for determination of the parameters of orbits of massive particles.

The values \(L/\mu \) and \(E/\mu \) as a function of radius of circular orbits are presented on Fig. 3 and 4. They are found there from accurate equations (31) and (32). From Fig. 3 and 4, one can see that particle angular momentum and energy per units mass is monotonically growing as functions of the radius of circular orbit \(r_c \), starting from some minimal value. This minimum value of the test particle angular momentum corresponds to the orbit with the innermost stable circular radius \(r_{ic} \). The large \(K \), the more radius of the innermost stable circular orbit \(r_{ic} \) is pulled toward the black hole.

The binding energy is defined as the amount of energy that is released by the test particle going from a stable circular orbit \(r_c \), to the innermost stable orbit of radius \(r_{ic} \), i.e.

\[\text{Binding energy} = \frac{(E/\mu)_{r_{ic}} - (E/\mu)_{r_c}}{(E/\mu)_{r_{ic}}}. \] (33)

A test particle in an unstable circular orbits will fall into black hole and the infall time is small compared to the radiative time, so that the particle energy will be brought to the black hole almost completely.

From the Figure (5) one can see the two features: first, that the binding energy is greater for larger radius of circular orbit, and this dependence on radius is strictly monotonic. Second, is that the larger tidal force \(K \), the larger the binding energy for a given radius of the circular orbit of the particle \(r_c \). The last feature means that in presence of surrounding attracting structure a test particle, when going from its stable orbit to the innermost stable one, releases more energy, than it would release without the above structure.

Finally, let us give the explicit form of the equations (31), (32) through the orders \(B^2, K \).
These expressions are much simpler than exact equations (31), (32).

For massive charged particles in vicinity of uncharged black holes, one should change the angular momentum of the particle L, to the generalized momentum:

$$L \rightarrow L + g_{\phi\phi} \frac{eB}{2}.$$ \hspace{1cm} (36)

The effective potentials for the case of charged particles in shown on Fig. (6)-(8). The situation is dependent on the sign of the charge, because the Lorentz force acting on the charged particles has opposite directions for positive and negative charges.

There are two reasons why we do not analyze the case of charged particles in detail: First, the magnetic field used for derivation of the considered metric is given only through the first order in B. Second, the effect of strong magnetic field for charged particles is stipulated by the factor eB/μ (when $M = 1$), and is very large even for small $B \ll M$, because of the large ratio e/μ. Therefore, it is generally accepted, to neglect "geometric" influence on propagation of charged particles, and to consider the more realistic decaying magnetic fields on the black hole background.

V. CONCLUSION

We have considered the motion of massless and massive test particles near black holes immersed in asymptotically uniform magnetic field and some surrounding structure which provides this field. The tidal force from the surrounding structure has considerable influence on the parameters of the test particle motion. Let us enumerate them: a) it pulls radius of the circular orbits off the black hole, b) increases the radius of minimal approach for light, c) increases the time delay and bending angle for light, d) increases the energy and momentum (per unit mass) for a circular orbit of a given radius, e) increases the binding energy of massive particles, which releases when a particle goes from a given stable circular orbit to the innermost stable circular orbit, f) the radius
of the innermost stable circular orbit is pulled closer to the black hole.

The used Preston-Poisson metric gives an excellent opportunity to investigate the motion of test particles in the vicinity of a supermassive "dirty" black hole, surrounded by some distribution of matter and uniform magnetic field, and to approach, thereby, a more realistic situation than that given by the Ernst solution.

References:
[1] See W. M. Zhang, Y. Lu, S. N. Zhang, astro-ph/0501365, J. L. Han, astro-ph/0603512 and references therein.
[2] F. J. Ernst, Journ. of Math. Phys. v. 17, p. 54 (1976).
[3] A. N. Aliev and D. V. Galtsov, Magnetized Black Holes, Sov. Phys. Usp. 32 (1), 75 (1989); A. K. Gorbatsievich, S. M. T. Ho and E. Schmutzer, Acta Phys. Polon. B 26 (1995) 1439; M. Ortaggio, JHEP 0505 (2005) 048 [arXiv:gr-qc/0410048]. E. Radu, Mod. Phys. Lett. A 17 (2002) 2277 [arXiv:gr-qc/0211035]. M. Agop, E. Radu and R. Slagter, Mod. Phys. Lett. A 20 (2005) 1077; W. A. Hiscock, J. Math. Phys. 22 (1981) 1828; M. Ortaggio, Phys. Rev. D 69 (2004) 064034 [arXiv:gr-qc/0311088]; A. A. Bytsenko and Y. P. Goncharov, Int. J. Mod. Phys. A 18 (2003) 2153 [arXiv:hep-th/0305030].
[4] B. Preston, E. Poisson, Phys. Rev. D 74, 064010 (2006). For lensing in a strong limit see for instance G. N. Gushchev and S. S. Yazadjiev, arXiv:gr-qc/0611110 and references therein.
[5] V. D. Galtsov, V. I. Petuhov, Zh.E.T.F, p. 801, v. 74 (1978).
[6] E. P. Esteban, E. Ramos, Phys. Rev. D. 38, 2963 (1988).
[7] R. A. Konoplya, gr-qc/0608066.
[8] A. R. Prasanna, R. K. Varna, Pramana 8, 229 (1977); A. R. Prasana, Riv. Nuovo Cimento 11, 1 (1980); A. N. Aliev and N. Ozdemir, Mon. Not. Roy. Astron. Soc. 336: 241-248, 2002 [gr-qc/0208025]. A. R. Prasana, S. Sengupta, Phys. Lett A 193, 25 (1994); S. Sengupta, Int. J. Mod. Phys. D 6, 691 (1997); G. Preti, Classical and Quantum Gravity 21, 3433 (2004); G. Preti, Phys. Rev D 70, 024012 (2004); G. Preti, F. de Felice, Phys. Rev D 71, 024009 (2005);