Dear Sirs,

Cortical influences over low-order vestibular function such as the vestibular–ocular reflex (VOR) are widely accepted [1–3]. Hallpike and colleagues originally demonstrated that patients with temporal lobe lesions, exhibit a strong asymmetry (i.e. “directional preponderance”), in the vestibular nystagmus elicited during caloric stimulation” [3]. Recent work to establish the neural correlates of human vestibular cortical processing have implemented three main approaches. Functional imaging [4–6], clinical lesion studies [2, 7, 8] and brain stimulation data [9–11] have all implicated tempo-parietal areas, usually with right hemisphere dominance. However, it was not until the seminal paper by Dieterich et al. [4] that the concept of handedness-related vestibular hemispheric dominance took shape, showing that the right hemisphere is vestibular dominant in right-handed individuals and vice versa in left handers.

In this context, we read with interest the letter published on the 28th of October in this journal by Brandt and Dieterich, in which they state that vestibular dominance is concerned solely with “higher” but not “lower” order vestibular functions [12]. Here we firstly review our previously published data and secondly present new findings, which in contradiction to Brandt and Dietrich’s statement, demonstrates that handedness-related vestibular dominance is linked to “lower-order” functions such as the VOR.

Initially, we demonstrated for the first time behaviourally (previous studies were fMRI based) [4–6] a handedness-related cortical modulation of the VOR [13]. We rotated (i.e. velocity step 90°/s) subjects on a motorised Barany chair, whilst either viewing bi-stable visual perceptions (i.e. motion binocular rivalry) or performing a visuo-spatial working memory task, and found that the post-rotational VOR was asymmetrically suppressed. Notably, the directionality of the asymmetrical modulation was related to handedness. That is, in right handers we observed that the post-rotational VOR (i.e. stopping response) was suppressed following rightward rotations (left-beating vestibular nystagmus). Conversely, in left handers we observed that the post-rotational VOR was suppressed following leftwards rotation (right-beating nystagmus) [13] (Fig. 1a).

To probe the neural mechanisms underpinning such asymmetrical suppression, we modulated parietal cortex excitability using trans-cranial direct current stimulation (tDCS). We measured the VOR elicited via cold water (30 °C) caloric irrigations which induce a vestibular nystagmus that beats towards the non-stimulated ear, before and after tDCS in right-handed subjects. Facilitation of the right hemisphere (anodal stimulation) and concurrent inhibition of the left hemisphere (cathodal stimulation) resulted in a suppressed VOR during right ear cold irrigations (left-beating nystagmus) but normal responses during left ear cold irrigations (right-beating nystagmus). To identify the active electrode, we subsequently applied unipolar tDCS and found that cathodal stimulation of the left hemisphere resulted in a bilateral but asymmetrical suppression of the VOR. That is, right ear cold irrigations that previous fMRI studies have shown to be predominantly processed by the left hemisphere were suppressed to a greater degree than left ear cold irrigations which are predominantly processed by the right hemisphere (Fig. 1b) [5, 6, 11]. We previously proposed that the differential
effects (i.e. unilateral as opposed to bilateral suppression) observed upon the VOR in the two different tDCS montages was most likely attributable to the facilitation of the right hemisphere during bi-hemispheric stimulation [11]. Accordingly, we predicted that in left-handed subjects, inhibition of the right not the left hemisphere (Fig. 2a) should induce an asymmetrical modulation of the VOR. Herewith, we report that in six left-handed subjects we found this to be the case, specifically for those caloric irrigations that in left handers are predominantly right hemisphere based (right ear cold irrigations (30°C) [5, 6] (Fig. 2b, c). A 2 × 2 repeated-measures ANOVA revealed a significant main effect for side of caloric irrigation [F (1,5) = 39.85, p < 0.001], time (i.e. pre-post tDCS) [F (1,5) = 25.74, p < 0.004 and a significant interaction for side*time [F (1,5) = 37.29, p < 0.002]. Post hoc paired
tests (Bonferroni corrected) revealed significant differences for right but not left ear cold irrigations following right cathodal stimulation ($p < 0.001$, $t = 9.8$ and $p > 0.05$, respectively. A separate 2×2 repeated-measures ANOVA showed no main effect for either side or time following left cathodal stimulation ($p > 0.05$) (Fig. 2b, c).

To conclude, handedness-related vestibular dominance does concern both lower [11, 13, 14] and higher order vestibular function [7–10]. However, this does not detract from the hypothesis presented by Dieterich and Brandt, which focuses on the independent development in the child of hand dexterity and vestibular function [12]. Experimental and developmental studies in the future will have to examine whether data supports such a hypothesis. The task will be exciting but challenging given the widespread property of the human brain to lateralise large functional modules such as language, hand dexterity and spatial attentional/navigational functions that we now know also include vestibular cortical processing. Incidentally, a typographical error in the Brandt and Dieterich letter incorrectly states that language is lateralised to the right hemisphere!

Conflict of interest The authors report that they have no conflict of interest.

Ethical standard Ethical approval for this study was granted from our local Research Ethics Committee.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

1. Barr CC, Schultheis LW, Robinson DA (1976) Voluntary, non-visual control of the human vestibulo-ocular reflex. Acta Otolaryngol 81:365–375
2. Ventre-Dorange J, Nighoghossian N, Denise P (2003) Evidence for interacting cortical control of vestibular function and spatial representation in man. Neuropsychologia 41:1884–1898
3. Fitzgerald G, Hallpike C (1942) Studies in human vestibular function: I. Observations on directional preponderance (“Nystagmusbereitschaft”) of caloric nystagmus resulting from cerebral lesions. Brain 65(2):115–137
4. Dieterich M, Bense S, Lutz S, Drzezga A, Stephan T, Bartenstein P, Brandt T (2003) Dominance for vestibular cortical function in the non-dominant hemisphere. Cereb Cortex 13:994–1007
5. Lopez C, Blanke O, Mast FW (2012) The human vestibular cortex revealed by coordinate-based activation likelihood estimation meta-analysis. Neuroscience 212:159–179
6. Suzuki M, Kitano H, Ito R, Kitanishi T, Yazawa Y, Ogawa T, Shimo A, Kitajima K (2001) Cortical and subcortical vestibular response to caloric stimulation detected by functional magnetic resonance imaging. Cogn Brain Res 12:441–449
7. Brandt T, Dieterich M (1994) Vestibular syndromes in the roll plane: topographic diagnosis from brainstem to cortex. Ann Neurol 36:337–347
8. Perennou DA, Mazibrada G, Chauvineau V, Greenwood R, Rothwell J, Gresty MA, Bronstein AM (2008) Lateropulsion, pushing and verticality perception in hemisphere stroke: a causal relationship? Brain 131:2401–2413
9. Seemungal BM, Rizzo V, Gresty MA, Rothwell JC, Bronstein AM (2008) Posterior parietal rTMS disrupts human path integration during a vestibular navigation task. Neurosci Lett 437:88–92
10. Kheradmand A, Lasker A, Zee DS (2015) Transcranial magnetic stimulation (TMS) of the supramarginal gyrus: a window to perception of upright. Cereb Cortex 25(3):765–771
11. Arshad Q, Nigmatullina Y, Roberts RE, Bhrugubanda V, Asavarut P, Bronstein AM (2014) Left cathodal trans-cranial direct current stimulation of the parietal cortex leads to an asymmetrical modulation of the vestibulo-ocular reflex. Brain Stimul 7:85–91
12. Brandt T, Dieterich M (2015) Does the vestibular system determine the lateralization of brain functions? J Neurol 262(1):214–215
13. Arshad Q, Nigmatullina Y, Bronstein AM (2013) Handedness-related cortical modulation of the vestibular-ocular reflex. J Neurosci 33:3221–3227
14. Arshad Q, Nigmatullina Y, Bhrugubanda V, Asavarut P, Obrocki P, Bronstein AM, Roberts RE (2013) Separate attentional components modulate early visual cortex excitability. Cortex 49:2938–2940