Computation Domination and γ – Domination Topological Indices of Hexane Isomers via φ_p – Polynomial with QSPR Analysis

Hanan Ahmed 1, Rangarajan Raghavachar 2, Abdu Alameri 3, Ruby Salestina Morgan 1

1 Department of Mathematics, Yuvarajas College, University of Mysore, Mysuru, India; hananahmed1a@gmail.com (H.A); ruby.salestina@gmail.com (R.S);
2 Department of Studies in Mathematics, Manasagangotri, University of Mysore, Mysuru, India; ajra63@gmail.com (R.R.);
3 Department of Biomedical Engineering, Faculty of Engineering, University of Science and Technology, Yemen; a.alameri2222@gmail.com (A.A.);

Correspondence: hananahmed1a@gmail.com (H.A.);
Scopus Author ID 57222051555

Received: 14.11.2021; Accepted: 17.12.2021; Published: 2.04.2022

Abstract: The properties that characterize the different chemical compounds are closely related to the molecular structure of these compounds. A topological index is a number or numerical quantity derived from the graph of a chemical compound. It is used to model compounds' physical and chemical properties and activities, such as hexane isomers. It was presented new topological indices known as the domination and γ – domination topological indices. In this paper, we study the importance and applications of these indicators in determining some physical and chemical properties of hexane isomers. Moreover, the φ_p – polynomial is used in calculating these indices.

Keywords: Domination and γ-domination topological indices; domination degree; domination value; hexane isomers.

© 2022 by the authors. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

1. Introduction

Chemical graph theory is one of the branches of mathematical chemistry, as it is important and necessary for a better understanding and explanation of the nature of the chemical structure. By International Union of Pure and Applied Chemistry (IUPAC) terminology, a topological index is a numerical value correlation of chemical structure with different physical and chemical properties. In exact phrase, topological indices are numerical parameters of the graph, such that these parameters are the same for the graph, which are isomorphism. A molecular graph [1, 2] is a simple connected graph such that the vertices and edges are supposed to be atoms and chemical bonds, respectively. Chemical graph theory is an important branch of both chemistry and graph theory. It has taken a lot of attention because of the important results obtained in chemical graph theory and has been applied in many applications such as chemical engineering and pharmaceutical. The main idea of chemical graph theory is that molecules' physical and chemical properties can be studied and explained using information. It can also be noted that in the contemporary mathematical and chemical literature, there are many descriptors of molecular structure based on vertex degree. Let $G = (V(G),E(G))$ be a finite simple connected graph consisting of a set of objects $V(G)$ called vertices, and another set $E(G)$ whose elements are called edges. A set $D \subseteq V$ is said to be a
dominating set of graph \(G \) if, for any vertex \(v \in V - D \), there exists a vertex \(u \in D \) such that \(u \) and \(v \) are adjacent. A dominating-set \(D = \{v_1, v_2, \ldots, v_r\} \) is minimal if \(D - v_i \) is not a dominating set [3], a dominating set of \(G \) of minimum cardinality is said to be a minimum dominating set. For specifics on domination in graphs, see [4-6]. Hanan Ahmed et al. [7-9] presented novel topological indices known as the domination and \(\gamma \) – domination topological indices. The first and second domination Zagreb, forgotten domination, hyper domination indices are defined as:

\[
DM_1(G) = \sum_{v \in V(G)} d_d^3(v), \quad DM_2(G) = \sum_{uv \in E(G)} d_d(u)d_d(v),
\]

\[
DM'_1(G) = \sum_{uv \in E(G)} (d_d(u) + d_d(v)) \quad DM'_2(G) = \sum_{uv \in E(G)} (d_d^2(u) + d_d^2(v)),
\]

\[
DF(G) = \sum_{v \in V(G)} d_d^3(v), \quad DH(G) = \sum_{uv \in E(G)} (d_d(u) + d_d(v))^2.
\]

where \(d_d(v) \) is the domination degree of \(v \in V(G) \) and defined as the number of minimal dominating sets of \(G \) which contains \(v \). The \(\gamma \) – domination Zagreb, \(\gamma \) – domination forgotten, \(\gamma \) – domination hyper indices are defined as:

\[
\gamma M_1(G) = \sum_{v \in V(G)} d_\gamma^2(v), \quad \gamma M_2(G) = \sum_{uv \in E(G)} d_\gamma(u)d_\gamma(v),
\]

\[
\gamma F(G) = \sum_{v \in V(G)} d_\gamma^3(v), \quad \gamma H(G) = \sum_{uv \in E(G)} (d_\gamma(u) + d_\gamma(v))^2,
\]

\[
\gamma M'_1(G) = \sum_{uv \in E(G)} (d_\gamma(u) + d_\gamma(v)), \quad \gamma F'(G) = \sum_{uv \in E(G)} (d_\gamma^2(u) + d_\gamma^2(v)).
\]

where \(d_\gamma(v) \) is the domination value of \(v \) and defined as the number of minimum dominating sets of \(G \) which contains \(v \). More recent outcomes of topological indices and their applications are reported in [10-25].

Definition 1.1.

Let \(G = (V, E) \) be a graph, \(d_p(v) \) be the \(P \) set degree of the vertex \(v \) denoted by:

\[
d_p(v) = |\{Q \subseteq V(G): Q \ has \ property \ P \ and \ v \in Q\}|.
\]

The minimum and maximum \(P \) set degree of \(G \) denoted as \(\delta_p(G) = \delta_p \) and \(\Delta_p(G) = \Delta_p \) respectively. Such that \(\delta_p = \min\{d_p(v): v \in V(G)\} \) and \(\Delta_p = \max\{d_p(v): v \in V(G)\} \).

Let \(d_{pm_{i,j}}(G) = |\{e = uv: d_p(u) = i, d_p(v) = j\}| \). The \(\varphi_p \)-polynomial is defined as:

\[
\varphi_p(G, x, y) = \sum_{\delta_p \leq i \leq \Delta_p} d_{pm_{i,j}}(G)x^iy^j.
\]

Table 1. The description of some domination and \(\gamma \) – domination topological indices.

D indices	\(f(d_d(u), d_d(v)) \)	\(\gamma D \) indices	\(f(d_\gamma(u), d_\gamma(v)) \)
\(DM_1(G) \)	\(d_d(u) + d_d(v) \)	\(\gamma M_1(G) \)	\(d_\gamma(u) + d_\gamma(v) \)
\(DM_2(G) \)	\(d_d^3(u) + d_d^3(v) \)	\(\gamma M_2(G) \)	\(d_\gamma^2(u) + d_\gamma^2(v) \)
\(DM'_1(G) \)	\(\frac{1}{2}d_d(u) + \frac{1}{2}d_d(v) \)	\(\gamma M'_1(G) \)	\(d_\gamma(u)d_\gamma(v) \)
\(DM'_2(G) \)			
\(DF(G) \)	\(d_d^3(u) + d_d^3(v) \)	\(\gamma F(G) \)	\(d_\gamma^3(u) + d_\gamma^3(v) \)
\(HD(G) \)	\(d_d^2(u) + d_d^2(v) + 2d_ad_d(v) \)	\(\gamma H(G) \)	\(d_\gamma^2(u) + d_\gamma^2(v) + 2d_\gamma d_\gamma(v) \)

Domination (D) and \(\gamma \) – Domination (\(\gamma D \)) indices defined on \(E(G) \) can be written as in Table1 and:

\[
D(G) = \sum_{uv \in E(G)} f(d_d(u), d_d(v)), \quad \gamma D(G) = \sum_{uv \in E(G)} f(d_\gamma(u), d_\gamma(v)).
\]
Table 2. Derivation of domination and γ –domination topological indices from φ_P –polynomials.

D indices	Derivation from φ_d(G)	γD indices	Derivation from φ_γ(G)
DM'_1(G)	(D_x + D_y)(φ_d(G))	γM'_1(G)	(D_x + D_y)(φ_γ(G))
DF'(G)	(D_x^2 + D_y^2)(φ_d(G))	γF'(G)	(D_x^2 + D_y^2)(φ_γ(G))
DM'_2(G)	(D_xD_y)(φ_d(G))	γM'_2(G)	(D_xD_y)(φ_γ(G))
HD(G)	(D_x + D_y)^2(φ_d(G))	γH(G)	(D_x + D_y)^2(φ_γ(G))

Here D_x(f(x,y)) = x \frac{∂(f(x,y))}{∂x}, D_y(f(x,y)) = y \frac{∂(f(x,y))}{∂y}.

2. Materials and Methods

The main results acquired in this article are based on domination and γ- domination topological indices of hexane isomers with the help of φ_P-polynomials. In the diagram (Figure 1), we consider only the vertices, which are not hydrogen atoms, as a hydrogen atom does not produce any contribution. We have used an edge segmentation method, analytical methods, and the score-counting method to draw conclusions. We have computed all minimal dominating sets and minimum dominating sets, and with these sets, we have computed the domination degree and the domination value for all vertices of the graph. We also divided the edges based on the new degrees and calculated φ_P-polynomials, since through these φ_P-polynomials we can get domination and γ-domination indices with the help of Table 2. We use R software for calculating the linear regression analysis.

3. Results and Discussion

3.1. Domination and γ –domination indices of hexane isomers.

Hexane C_6H_{14} is an alkane hydrocarbon compound, the first part "hex" means the six carbon atoms, while the second part "ane" means that single chemical bonds link the carbon atoms. Hexane isomers are often used as inert solvents in many organic chemical reactions because they are non-polar compounds.

![Molecular graph of hexane isomers except for 3-methylpentane.](image)
They can also be considered as components of gasoline and adhesives that can be used in footwear or leather products. Hexane can also be used in solvents for the purpose of extracting oils for cooking, and in the laboratory, it can be used to extract grease and oils from water or soil. In this section, we will calculate the exact values of the domination topological indices using \(\varphi_p \) -polynomial. Hexane has five isomers: Hexane, 2-methylpentane, 3-methylpentane, 2, 2-dimethylbutane, and 2, 3-dimethylbutane.

In this study, we include hexane isomers except for 3-methylpentane (Figures 1, 2). The 3-methylpentane isomer was excluded because of the extreme values of the topological indices in this isomer.

![Chemical structures of hexane isomers except for 3-methylpentane.](image)

Figure 2. Chemical structures of hexane isomers except for 3-methylpentane.

Theorem 3.1.1.

Let \(G_1 \) be the molecular graph of hexane. Then:

\[
\varphi_d(G_1, x, y) = x^2(y^4 + y^2 + y^3) + 2x^3y^3,
\]

\[
\varphi_\gamma(G_1, x, y) = 4y + 1.
\]

Proof. If \(G_1 \) is the molecular graph of hexane; note that the total number of minimal dominating sets of \(G_1 \) are six minimal dominating sets. Among them, there is only one minimum dominating set \(D = \{v_2, v_5\} \). Hence by using the definition of domination degree and domination value, we get, \(d_d(v_1) = 4, d_d(v_2) = d_d(v_3) = 2, d_d(v_4) = d_d(v_5) = d_d(v_6) = 3, \) and \(d_\gamma(v_1) = d_\gamma(v_3) = d_\gamma(v_4) = d_\gamma(v_6) = 0, d_\gamma(v_2) = d_\gamma(v_5) = 1. \) And the partition of edges of \(G_1 \) depends on domination degree and domination value are given in Table 3.

Table 3. Edge partitions.

\(d_d m_{ij} \)	(2,4)	(2,2)	(2,3)	(3,3)
No. of edges	1	1	1	2
\(d_\gamma m_{ij} \)	(0,1)	(0,0)	4	1

Then:

\[
\varphi_d(G_1, x, y) = \sum_{\delta_d \leq i \leq j \leq \Delta_d} d_d m_{i,j}(G_1)x^iy^j
\]

\[
= x^2(y^4 + y^2 + y^3) + 2x^3y^3,
\]

\[
\varphi_\gamma(G_1, x, y) = \sum_{\delta_\gamma \leq i \leq j \leq \Delta_\gamma} d_\gamma m_{i,j}(G_1)x^iy^j
\]

\[
= 4y + 1.
\]

In Figure 3, we plot of \(\varphi_d \) -polynomial and \(\varphi_\gamma \) -polynomial of hexane.
Proposition 3.1.2.

Suppose G_1 is the molecular graph of hexane, then:

$$DM_1^*(G_1) = 27, \quad \gamma M_1^*(G_1) = 4, \quad DM_2(G_1) = 36, \quad \gamma M_2(G_1) = 0,$$
$$DF^*(G_1) = 77, \quad \gamma F^*(G_1) = 4, \quad DH(G_1) = 149, \quad \gamma H(G_1) = 4,$$
$$DM_1(G_1) = 51, \quad \gamma (G_1) = 2, \quad DF(G_1) = 161, \quad \gamma F(G_1) = 2.$$

Proof. We have:

$$\varphi_d(G_1, x, y) = x^2(y^4 + y^2 + y^3) + 2x^3y^3,$$
$$\varphi_r(G_1, x, y) = 4y + 1.$$

Using Table 2, we have:

$$DM_1^*(G_1) = x^2(6y^4 + 4y^2 + 5y^3) + 12x^3y^3|_{x=y=1} = 27,$$
$$DM_2(G_1) = 2x^2(4y^4 + 2y^2 + 3y^3) + 18x^3y^3|_{x=y=1} = 36,$$
$$DF^*(G_1) = x^2(20y^4 + 8y^4 + 13y^3) + 36x^3y^3|_{x=y=1} = 77,$$
$$DH(G_1) = x^2(36y^4 + 16y^2 + 25y^3) + 72x^3y^3|_{x=y=1} = 149,$$
$$\gamma M_1^*(G_1) = 4y|_{x=y=1} = 4, \quad \gamma M_2(G_1) = 0, \quad \gamma F^*(G_1) = 4y|_{x=y=1} = 4,$$
$$\gamma H(G_1) = 4y|_{x=y=1} = 4.$$

By using the definition of $DM_1(G_1)$, $DF(G_1)$, $\gamma M_1(G_1)$ and $\gamma F(G_1)$ we get:
$$DM_1(G_1) = 51, \quad \gamma M_1(G_1) = 2, \quad DF(G_1) = 161, \quad \gamma F(G_1) = 2.$$

Theorem 3.1.3.

Suppose G_2 is the molecular graph of 2-methylpentane, then:

$$\varphi_d(G_2, x, y) = 2x^2y^3 + y^3(x^3 + x) + xy^2,$$
$$\varphi_r(G_2, x, y) = 5y.$$

Proof. Let G_2 is the molecular graph of 2-methylpentane. It is easy to see that the total number of minimal dominating sets is five; among them, there is only one set $D = \{v_2, v_5\}$ which is minimum. Applying the definition of domination degree and domination value, one can get the following:
$$d_d(v_1) = d_d(v_2) = d_d(v_6) = 3, \quad d_d(v_3) = d_d(v_5) = 2, \quad d_d(v_4) = 1.$$
and \(d_\gamma(v_1) = d_\gamma(v_3) = d_\gamma(v_4) = d_\gamma(v_5) = 0, d_\gamma(v_2) = d_\gamma(v_6) = 1\). The partition of edges of \(G_2\) depends on domination degree and domination value are given in Table 4.

\(d_\alpha m_{ij}\)	(2,3)	(3,3)	(1,3)	(1,2)
No. of edges	2	1	1	1
\(d_\gamma m_{ij}\)	(0,1)			
No. of edges	5			

Then:

\[
\varphi_\alpha(G_2, x, y) = \sum_{\delta_\alpha \leq i \leq j \leq \Delta_\alpha} d_\alpha m_{i,j}(G_2)x^iy^j
\]

\[
= 2x^2y^3 + y^3(x^3 + x) + xy^2,
\]

\[
\varphi_\gamma(G_2, x, y) = \sum_{\delta_\gamma \leq i \leq j \leq \Delta_\gamma} d_\gamma m_{i,j}(G_2)x^iy^j
\]

\[
= 5y.
\]

In Figure 4, we plot of \(\varphi_\alpha\) – polynomial and \(\varphi_\gamma\) – polynomial of 2-methylpentane.

Figure 4. Plotting of (a) \(\varphi_\alpha\) – polynomial and (b) \(\varphi_\gamma\) – polynomial of 2-methylpentane.

Proposition 3.1.4.

Suppose \(G_2\) is the molecular graph of 2-methylpentane, then:

\[
DM_1^*(G_2) = 23, \quad \gamma M_1^*(G_2) = 5, \quad DM_2(G_2) = 26, \quad \gamma M_2(G_2) = 0,
\]

\[
DF^*(G_2) = 59, \quad \gamma F^*(G_2) = 5, \quad DH(G_2) = 111, \quad \gamma H(G_2) = 5,
\]

\[
DM_1(G_2) = 36, \quad \gamma (G_2) = 2, \quad DF(G_2) = 98, \quad \gamma F(G_2) = 2.
\]

Proof. We have:

\[
\varphi_\alpha(G_2, x, y) = 2x^2y^3 + y^3(x^3 + x) + xy^2,
\]

\[
\varphi_\gamma(G_2, x, y) = 5y.
\]

Using Table 2, we get:

\[
DM_1^*(G_2) = 10x^2y^3 + y^3(6x^3 + 4x) + 3xy^2|_{x=y=1} = 23,
\]

\[
DM_2(G_2) = 12x^2y^3 + 3y^3(3x^3 + x) + 2xy^2|_{x=y=1} = 26,
\]

\[
DF^*(G_2) = 26x^2y^3 + y^3(18x^3 + 10x) + 5xy^2|_{x=y=1} = 59,
\]

https://doi.org/10.33263/BRIAC132.182
\[DH(G_2) = 50x^2y^3 + y^3(36x^3 + 16x) + 9xy^2|_{x=y=1} = 111, \]
\[yM_1^*(G_2) = 5y|_{x=y=1} = 5, \ yM_2(G_2) = 0, \ yF^*(G_2) = 5y|_{x=y=1} = 5, \]
\[yH(G_2) = 5y|_{x=y=1} = 5. \]

By using the definition of \(DM_1(G_2), \ DF(G_2), \ yM_1(G_2) \) and \(yF(G_2) \) we get:
\[DM_1(G_2) = 36, \ yM_1(G_2) = 2, \ DF(G_2) = 98, \ yF(G_2) = 2. \]

Theorem 3.1.5.

 Suppose \(G_3 \) is the molecular graph of 2, 2-dimethylbutane, then:
\[\phi_d(G_3, x, y) = 5x^2y^2, \]
\[\phi_y(G_3, x, y) = y^2(3 + x) + xy. \]

Proof. Suppose \(G_3 \) is the molecular graph of 2, 2-dimethylbutane. It is easy to see that the total number of minimal dominating sets is four. Among them, there are two minimum dominating sets \(D_1 = \{v_2, v_5\} \), and \(D_2 = \{v_2, v_6\} \). Applying the definition of domination degree and domination value, one can get the following: \(d_d(v) = 2 \) for all \(v \in G_3 \) and \(d_y(v_1) = d_y(v_3) = d_y(v_4) = 0, d_y(v_2) = 2, d_y(v_5) = d_y(v_6) = 1 \). The partition of edges of \(G_3 \) depends on domination degree and domination value are given in Table 5.

	\(d_d m_{ij} \)	(2,2)	(0,2)	(1,2)	(1,1)
No. of edges	5	3	1	1	

Then:
\[\phi_d(G_3, x, y) = \sum_{\delta_d \leq i \leq j \leq \Delta_d} d_d m_{i,j}(G_3)x^i y^j \]
\[= 5x^2y^2, \]
\[\phi_y(G_3, x, y) = \sum_{\delta_y \leq i \leq j \leq \Delta_y} d_y m_{i,j}(G_3)x^i y^j \]
\[= y^2(3 + x) + xy. \]

In Figure 5, we plot of \(\phi_d \) –polynomial and \(\phi_y \) –polynomial of 2, 2-dimethylbutane.

Figure 5. Plotting of (a) \(\phi_d \) – polynomial and (b) \(\phi_y \) – polynomial of 2, 2-dimethylbutane.
By applying Theorem 3.1.5. and Table 2, one can prove the following Proposition.

Proposition 3.1.6.

Suppose G_3 is the molecular graph of 2, 2-dimethylbutane, then:

$DM_1^*(G_3) = 20, \quad \gamma M_1^*(G_3) = 11, \quad DM_2(G_3) = 20, \quad \gamma M_2(G_3) = 3,$

$DF^*(G_3) = 40, \quad \gamma F^*(G_3) = 19, \quad DH(G_3) = 80, \quad \gamma H(G_3) = 25,$

$DM_1(G_3) = 24, \quad \gamma M_1(G_3) = 6, \quad DF(G_3) = 48, \quad \gamma F(G_3) = 10.$

Using a similar way, one can prove the following Theorem and Proposition.

Theorem 3.1.7.

Let G_4 be the molecular graph of 2, 3-dimethybutane. Then:

$\varphi_d(G_4, x, y) = 5x^2y^2,$

$\varphi_{\gamma}(G_4, x, y) = y(4 + x).$

In Figure 6, we plot φ_d–polynomial and φ_{γ}–polynomial of 2, 3-dimethybutane.

![Figure 6](image)

Figure 6. Plotting of (a) φ_d–polynomial and (b) φ_{γ}–polynomial of 2, 3-dimethybutane.

Proposition 3.1.8.

Suppose G_4 is the molecular graph of 2, 3-dimethybutane, then:

$DM_1^*(G_4) = 20, \quad \gamma M_1^*(G_4) = 6, \quad DM_2(G_4) = 20, \quad \gamma M_2(G_4) = 1,$

$DF^*(G_4) = 40, \quad \gamma F^*(G_4) = 6, \quad DH(G_4) = 80, \quad \gamma H(G_4) = 8,$

$DM_1(G_4) = 24, \quad \gamma M_1(G_4) = 2, \quad DF(G_4) = 48, \quad \gamma F(G_4) = 2.$

3.2. Motivation and application.

In this part, we will show the importance of domination of topological indices in determining the physicochemical properties in Table 7. In this study, we used the linear regression analysis modeled as $y = a + bx$, where y is the physicochemical properties of hexane isomers, and x represents the domination topological indices. These were calculated using R software for the values of four physicochemical properties and the twelve domination and γ–domination topological indices of hexane isomers. The exact values of domination and γ–domination topological indices were calculated by φ_P–polynomial of hexane isomers is given in Table 6.
Hexane isomers DM_1 DM_2 DF^* DH DM_3 DF γM_1 γM_2 γF^* γH γM_3 γF

Hexane isomers	DM_1	DM_2	DF^*	DH	DM_3	DF	γM_1	γM_2	γF^*	γH	γM_3	γF
Hexane	27	36	77	149	51	161	4	0	4	4	2	2
2-methylpentane	23	26	59	111	36	98	5	0	5	5	2	2
2,2-dimethylbutane	20	20	40	80	24	48	11	3	19	25	6	10
2,3-dimethylbutane	20	20	40	80	24	48	6	1	6	8	2	2

Hexane isomers	FLI	SLI	$\text{BP}. F^*$	E.C./eV
Hexan	222	140	155.7	-6448.22
2-methylpentane	168	94	140.5	-6448.21
2,2-dimethylbutane	120	65	121.5	-6448.2
2,3-dimethylbutane	130	72	136.4	-6448.15

By using the above model of linear regression analysis, we can get the different linear models for domination and γ–domination topological indices as follows:

1- Modified first domination Zagreb index

$$FLI = -152.27 + 13.87 \text{DM}_1^*(G),$$

$$SLI = -135.3 + 10.13 \text{DM}_1^*(G),$$

$$B.P = 52.5 + 3.8 \text{DM}_1^*(G),$$

$$E.C = (-6.448e + 03) - (6.667e - 03) \text{DM}_1^*(G).$$

2- Second domination Zagreb index:

$$FLI = 4.9 + 6.1 \text{DM}_2(G),$$

$$SLI = -21.1 + 4.46 \text{DM}_2(G),$$

$$B.P = 95.77 + 1.67 \text{DM}_2(G),$$

$$E.C = (-6.448e + 03) - (2.865e - 03) \text{DM}_2(G).$$

3- Modified forgotten domination index:

$$FLI = 20.37 + 2.58 \text{DF}^*(G),$$

$$SLI = -8.4 + 1.87 \text{DF}^*(G),$$

$$B.P = 100.1 + 0.7 \text{DF}^*(G),$$

$$E.C = (-6.448e + 03) - (1.279e - 03) \text{DF}^*(G).$$

4- Hyper domination index:

$$FLI = 12.5 + 1.4 \text{DH}(G),$$

$$SLI = -14.75 + 1.027 \text{DH}(G),$$

$$B.P = 97.9 + 0.386 \text{DH}(G),$$

$$E.C = (-6.448e + 03) - (6.797e - 04) \text{DH}(G).$$

5- First domination Zagreb index:

$$FLI = 38.76 + 3.59 \text{DM}_3(G),$$

$$SLI = 4.34 + 2.6 \text{DM}_3(G),$$

https://doi.org/10.33263/BRIAC132.182
\[B.P = 105.13 + 0.98 \, DM_1(G), \]
\[E.C = (-6.448e + 03) - (1.735e - 03) \, DM_1(G). \]

6- Forgotten domination index:
\[FLI = 83.8 + 0.858 \, DF(G), \]
\[SLI = 37.17 + 0.62 \, DF(G), \]
\[B.P = 117.54 + 0.23 \, DF(G), \]
\[E.C = (-6.448e + 03) - (4.144e - 04) \, DF(G). \]

7- Modified first \(\gamma \) –domination Zagreb index:
\[FLI = 234.4 - 11.44 \, \gamma M_1^*(G), \]
\[SLI = 145.3 - 8.08 \, \gamma M_1^*(G), \]
\[B.P = 165.7 - 4.18 \, \gamma M_1^*(G), \]
\[E.C = (-6.448e + 03) - (1.379e - 03) \, \gamma M_1^*(G). \]

8- Second \(\gamma \) –domination Zagreb index:
\[FLI = 185 - 25 \, \gamma M_2(G), \]
\[SLI = 110.08 - 17.33 \, \gamma M_2(G), \]
\[B.P = 147.39 - 8.8 \, \gamma M_2(G), \]
\[E.C = (-6.448e + 03) - (5.000e - 03) \, \gamma M_2(G). \]

9- Modified forgotten \(\gamma \) –domination index:
\[FLI = 197.19 - 4.37 \, \gamma F^*(G), \]
\[SLI = 118.79 - 3.06 \, \gamma F^*(G), \]
\[B.P = 153.22 - 1.72 \, \gamma F^*(G), \]
\[E.C = (-6.448e + 03) + (4.273e - 14) \, \gamma F^*(G). \]

10- Hyper \(\gamma \) –domination index:
\[FLI = 194.58 - 3.29 \, \gamma H(G), \]
\[SLI = 116.89 - 2.299 \, \gamma H(G), \]
\[B.P = 151.75 - 1.259 \, \gamma H(G), \]
\[E.C = (-6.448e + 03) + (2.076e - 04) \, \gamma H(G). \]

11- First \(\gamma \) –domination Zagreb index:
\[FLI = 200 - 13.33 \, \gamma M_1(G), \]
\[SLI = 120.5 - 9.25 \, \gamma M_1(G), \]
\[B.P = 155.55 - 5.67 \gamma M_1(G), \]
\[E.C = (-6.448e + 03) - (1.667e - 03)\gamma M_1(G). \]

12- Forgotten \(\gamma \) – domination index:
\[FLI = 186.667 - 6.667 \gamma F(G), \]
\[SLI = 111.25 - 4.6 \gamma F(G), \]
\[B.P = 149.87 - 2.8 \gamma F(G), \]
\[E.C = (-6.448e + 03) - (8.333e - 04) \gamma F(G). \]

Now, we present the correlation coefficients of domination and \(\gamma \) – domination indices with physicochemical properties of hexane isomers listed in Table 8.

Table 8. Correlation coefficients.

	\(DM_1^* \)	\(DM_2 \)	\(DF^* \)	\(DH \)	\(DM_1 \)	\(DF \)	\(\gamma M_1^* \)	\(\gamma M_2 \)	\(\gamma F^* \)	\(\gamma H \)	\(\gamma M_1 \)	\(\gamma F \)
FLI	0.9959	0.994	0.993	0.996	0.996	0.996	-0.77	-0.76	-0.667	-0.699	-0.57	-0.577
SLI	0.994	0.996	0.983	0.991	0.992	0.992	-0.743	-0.724	-0.638	-0.667	-0.546	-0.546
BP	0.902	0.899	0.898	0.901	0.901	0.902	-0.925	-0.892	-0.866	-0.879	-0.807	-0.807
E.C	-0.71	-0.67	-0.73	-0.72	-0.72	-0.71	0.14	0.23	3.4e-12	0.067	-0.12	-0.12

From Table 8, we see: there is a very strong (+) correlation between ELI and \(DM_1^* \) and the same can be observed with \(DM_2, DF^*, DH, DM_1, \) and \(DF \), and a strong (-) correlation between ELI with \(\gamma M_1^*, \gamma M_2, \gamma F^*, \gamma H \), and moderate (-) with \(\gamma M_1, \gamma F \) (Figure 7). There is a very strong (+) correlation between SLI with \(DM_1^* \), and the same can be observed with \(DM_2, DF^*, DH, DM_1, \) and \(DF \). The correlation between SLI with \(\gamma M_1^*, \gamma M_2, \gamma F^*, \gamma H \) is strong(-) while, the correlation is moderate (-) \(\gamma M_1 \) and \(\gamma F \) (Figure 8).

Figure 7. Linear fitting of FLI with domination and \(\gamma \) – domination indices.

There is a very strong (+) correlation between B.P. with \(DM_1^* \) and the same can be observed with \(DM_2, DF^*, DH, DM_1, \) and \(DF \). Also, there is a very strong (-) correlation with \(\gamma M_1^*, \gamma M_2, \gamma F^*, \gamma H, \gamma M_1 \) and \(\gamma F \) (Figure 9). There is a very strong (-) correlation between E.C. with \(DM_1^* \) and the same can be observed with \(DM_2, DF^*, DH, DM_1, \) and \(DF \) (Figure 10). While there is a very weak(+) correlation with \(\gamma M_1^*, \gamma M_2, \gamma H \), and a very weak (-) correlation
with γM_1 and γF. E.C. with γF^* closed to independent, the change in E.C. will not affect the change in γF^*. Then domination topological indices have a very strong (+) correlation with ELI, SLI, B.P., and a strong (-) correlation with E.C. While, γ – domination indices have a very strong (-) correlation with B.P and a strong (-) correlation with ELI and SLI except with γM_1, γF it is moderate (-). And γ – domination indices have a very weak (-) correlation with E.C.

4. Conclusions

In this paper, we have studied some of the physicochemical properties of hexane isomers through some indices based on domination degree and domination value. First, we calculate ϕ_d-polynomial and ϕ_γ-polynomial with their respective 3D graphs. Then from these polynomials, we compute the domination and γ-domination indices. We found a better...
correlation coefficient between domination and γ—domination topological indices and some physicochemical properties of hexane isomers.

Figure 10. Linear fitting of E.C with domination and γ—domination indices.

Funding

This research received no external funding.

Acknowledgments

The authors are very grateful to the referees for their constructive suggestions and useful comments, which greatly improved this work.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Gutman, I.; Polansky, O.E. Mathematical Concepts in Organic Chemistry 1986, Springer, Berlin, https://doi.org/10.1007/978-3-642-70982-1.
2. Gutman, I.; Rucic, B.; Trinajstic, N.; Wilcox, C.F. Graph theory and molecular orbitals. XII. Acyclic polyenes. *J. Chem. Phys.* 1975, 62, 3399–3405, https://doi.org/10.1063/1.430994.
3. Couturier, J. F.; LeTourneau, R.; Liedloff, M. On the number of minimal dominating sets on some graph classes. *Theoretical Computer Science* 2015, 562, 634–642, https://dx.doi.org/10.1016/j.tcs.2014.11.006.
4. Cockayne, E.J.; Hedetniemi, S.T. Towards a Theory of Domination in Graphs. *Networks* 1977, 7, 247–261, https://doi.org/10.1002/net.3230100304.
5. Dorfling, M.; Henning, M.A. A note on power domination in grid graphs. *Discrete Applied Mathematics* 2006, 1023–1027, https://doi.org/10.1016/j.dam.2005.08.006.
6. Desormeaux, W.J.; Haynes, T.W.; Henning, M.A. Domination Parameters of a Graph and Its Complement. *Discussiones Mathematicae Graph Theory* 2017, 38, 203–215, https://doi.org/10.7151/dmgt.2002.
7. Ahmed, H.; Salestina, R.M.; Alwardi, A.; Soner, N.D. Forgotten domination, hyper domination and modified forgotten domination indices of graphs. *Journal of Discrete Mathematical Sciences and Cryptography* 2021, 24, 353-368, https://doi.org/10.1080/09720529.2021.1885805.
8. Ahmed, H.; Alwardi, A.; Salestina, R.M.; Soner, N.D. Domination, φ_p -- Polynomial of Some Chemical Structures Applied for the Treatment of COVID-19 Patients. *Biointerface Research in Applied Chemistry* **2021**, *5*, 13290-13302, https://doi.org/10.33263/BRIAC115.1329013302.

9. Hanan Ahmed, A.M.; Alwardi, A.; Salestina, R.M. On Domination Topological Indices of Graphs. *Int. J. Anal. Appl.* **2021**, *19*, 47-64, https://doi.org/10.28924/2291-8639-19-2021-47.

10. Ahmed, H.; Farahani, R.M.; Alwardi, A.; Salestina, R.M. Domination topological properties of some chemical structures using φ_p-polynomial approach. *Eurasian Chemical Communications* **2021**, *3*, 210-218, https://dx.doi.org/10.22034/ecc.2021.271992.1133.

11. Alameri, A.; Al-Rumaima, M.; Almazah, M. Y-coindex of graph operations and its applications of molecular descriptors. *Journal of Molecular Structure* **2020**, *1221*, 128754, http://dx.doi.org/10.1016/j.molstruc.2020.128754.

12. Alsina, A.; Alwardi, A.; Ahmed, H.; Soner, N.D. Leap Zagreb indices for the Central graph of graph. *Journal of Prime Research in Mathematics* **2021**, *17*, 73–78.

13. Alsharafi, M.; Alameri, A. The F-index and coindex of V-Phenylenic Nanotubes and Nanotorus and their molecular complement graphs. *Nanosystems: Physics Chemistry Mathematics* **2021**, *12*, 263-270, https://doi.org/10.17586/2220-8054-2021-12-3-263-270.

14. Javaraju, S.; Ahmed, H.; Alsina, A.; Soner, N.D. Domination topological properties of carbidopa-levodopa used for treatment Parkinson’s disease by using φ_p-polynomial. *Eurasian Chemical Communications* **2021**, *3*, 614-621, https://dx.doi.org/10.22034/ecc.2021.295039.1203.

15. De, N. Computing Reformulated First Zagreb Index of Some Chemical Graphs as an Application of Generalized Hierarchical Product of Graphs. *Open Journal of Mathematical Sciences* **2018**, *2*, 338-350, http://dx.doi.org/10.30538/oms2018.0039.

16. Gao, W.; Asif, M.; Nazeer, W. The Study of Honey Comb Derived Network via Topological Indices. *Open Journal of Mathematical Analysis* **2018**, *2*, 10-26, http://dx.doi.org/10.30538/pjma2018.0014.

17. Zheng, L.; Wang, Y.; Gao, W. Topological Indices of Hyaluronic Acid-Paclitaxel Conjugates’ Molecular Structure in Cancer Treatment. *Open Chemistry* **2019**, *17*, 81-87, https://doi.org/10.1515/chem-2019-0009.

18. Qing, X.; Wang, Z.; Munir, M.; Oushi, A.H. Molecular Irregularity Indices of Nanostar, Fulleren, and Polymer Dendrimers. *J. Chem. 2020*, 1-12, https://doi.org/10.1155/2020/9437612.

19. Hussain, Z.; Munir, M.; Rafique, S.; Hussnain, T.; Ahmad, H.; Kwon, Y.C.; Kang, S.M. Imbalance-Based Irregularity Molecular Descriptors of Nanostar Dendrimers. *Processes* **2019**, *7*, 517-532, https://doi.org/10.3390/pr7080517.

20. Kulli, V. On Hyper KV and Square KV Indices and their Polynomials of Certain Families of Dendrimers. *J. Comp. Math. Sci.* **2019**, *10*, 279-286, http://dx.doi.org/10.29055/jcms/1007.

21. Gao, W.; Iqbal, Z.; Ishaq, M.; Sarfraz, R.; Aamir, M.; Aslam, A. On Eccentricity-Based Topological Indices Study of a Class of Porphyrin-Cored Dendrimers. *Biomolecules* **2018**, *8*, 71-81, https://doi.org/10.3390/bi8030071.

22. Kang, S.M.; Zahid, M.A.; Virk, A.U.R.; Nazeer, W.; Gao, W. Calculating the Degree-based Topological Indices of Dendrimers. *Open Chem.* **2018**, *16*, 681-688, https://doi.org/10.1515/chem-2018-0071.

23. Ayache, A.; Alameri, A.; Alsharafi, M.; Ahmed, H. The Second Hyper-Zagreb Coindex of Chemical Graphs and Some Applications. *Journal of Chemistry* **2021**, *2*, https://doi.org/10.1155/2021/3687533.

24. Imran, M.; Bokhary, S.; Manzoor, S.; Siddiqui, M.K. On molecular topological descriptors of certain families of nanostar dendrimers. *Eurasian Chemical Communications* **2020**, *2*, 680-687, http://dx.doi.org/10.33945/SAMI/ECC.2020.6.5.

25. Mondal, S.; De, N.; Pal, A. Topological Properties of Graphene Using Some Novel Neighborhood Degree-Based Topological Indices. *International Journal of Mathematics for Industry* **2019**, *11*, 1950006, https://doi.org/10.1142/S2661335219500060.