HYPERSPACES OF CLOSED LIMIT SETS

ALDO J. LAZAR

Abstract. We study Michael’s lower semifinite topology and Fell’s topology on the collection of all closed limit subsets of a topological space. Special attention is given to the subfamily of all maximal limit sets.

1. Introduction

The collection of all closed subsets of a topological space has been for long of interest to topologists and functional analysts. It seems that the modern investigation of the subject began with [8]. It is well known that there is a one-to-one correspondence between the closed two-sided ideals of a C^*-algebra and the closed subsets of its primitive ideal space as detailed in [4, Proposition 3.2.2]. Naturally, this correspondence attracted the interest of operator algebraists in the hyperspace of the closed subsets of a topological space. It led Fell to the definition in [6] of a topology on this hyperspace that is of significance in topology and several branches of analysis. Moreover, according to [2, Proposition 3.2], when one restricts this correspondence to the closed limit subsets of the primitive ideal space, a very interesting class of ideals is obtained. The wealth of information given in [1] on this class of ideals stimulated the present investigation and a significant portion of the results that appear here were proved in [1] for this special family of ideals of a C^*-algebra. However, no knowledge of the theory of C^*-algebras is required for the understanding of the following; we discuss the properties of two topologies on the collection of all the closed limit subsets of a topological space. All the definitions beyond the common knowledge of a topologist or an analyst are given in the next section. Of course, all our results are significant only for non Hausdorff spaces, as the primitive ideal spaces often are.

1991 Mathematics Subject Classification. Primary: 54B20; Secondary: 54D45, 46L05.

Key words and phrases. the hyperspace of the closed subsets, the lower semifinite topology, Fell’s topology.
In section 3 we study the Michael’s lower semifinite topology on the family of all closed limit sets. We establish that with this topology this hyperspace is a locally compact Baire space. We restrict the discussion to the collection of all maximal limit sets in section 4. The Fell topology and the lower semifinite topology coincide on this hyperspace. This hyperspace is also a Baire space and if the initial space is second countable and locally compact then the hyperspace of maximal limit sets is a $G_δ$ subspace in the space of all closed limit sets equipped with the Fell topology.

2. Preliminaries

For a topological space X we shall denote by $\mathcal{F}(X)$ the hyperspace of all its closed subsets and $\mathcal{F}'(X)$ will stand for the collection of all the non-void closed subsets of X. A subset L of X is called a limit set if there is a net that converges to all the points of L. By [5, Lemme 9], $L \subset X$ is a limit set if and only if every finite family of open subsets that intersect L has a non-void intersection. The collection of all the closed limit sets of X will be denoted by $\mathcal{L}(X)$ and we set $\mathcal{L}'(X) := \mathcal{L}(X) \cap \mathcal{F}'(X)$. It easily follows from the lemma quoted above and Zorn’s lemma that each $L \in \mathcal{L}(X)$ is contained in a maximal limit set. Obviously, every maximal limit set is closed and non-void. $\mathcal{M}\mathcal{L}(X)$ will denote the collection of all maximal limit sets. There is a natural map $\eta_X : X \to \mathcal{L}'(X)$ defined by $\eta_X(x) := \{x\}$. This map is one to one if and only if X is a T_0 space.

Some of the results below are valid under the restriction that the topological space X is locally compact that is, each point in X has a fundamental system of compact neighbourhoods. Such spaces were called locally quasi-compact in [31, 9, Ex. 29].

For C be a compact subset and Φ a finite family of open subsets of X let

$$\mathcal{U}(C, \Phi) := \{ A \in \mathcal{F}(X) \mid A \cap C = \emptyset, A \cap O \neq \emptyset, O \in \Phi \}. $$

The collection of all such $\mathcal{U}(C, \Phi)$ forms a base for a topology on $\mathcal{F}(X)$ that was defined by Fell in [6] and which will be denoted here by τ_s. It was shown in [6] that with this topology $\mathcal{F}(X)$ is a compact space that is Hausdorff if X is locally compact. If X is locally compact and has a countable base then $(\mathcal{F}(X), \tau_s)$ is metrizable, see [5, Lemme 2].
The collection of all $\mathcal{U}(\emptyset, \Phi)$ when Φ runs through all the finite families of open subsets of X is the base of a T_0 topology on $\mathcal{F}(X)$, weaker than τ_s, which we shall denote by τ_w. It was called the lower semifinite topology in [8, Definition 9.1] and was further discussed in [7]. It is easily seen that if \mathcal{B} is a base for the topology of X then the collection of all $\mathcal{U}(\emptyset, \Phi)$ when Φ runs through all the finite subfamilies of \mathcal{B} is a base for $\mathcal{F}(X)$. Thus, if X is second countable then $(\mathcal{F}(X), \tau_w)$ is also second countable. Clearly $F'_X = \mathcal{U}(\emptyset, \{X\})$ hence F'_X is τ_w-open in $\mathcal{F}(X)$. The only τ_w-open subset of $\mathcal{F}(X)$ to which the empty subset of X belongs is $\mathcal{F}(X)$ itself so F'_X is τ_w-dense in $\mathcal{F}(X)$ and $L'(X)$ is τ_w-dense in $L(X)$. Obviously, $ML(X)$ is also τ_w-dense in $L(X)$. For every $A \in \mathcal{F}(X)$ the τ_w-closure of $\{A\}$ is $\{B \in \mathcal{F}(X) \mid B \subset A\}$ and this entails the T_0 separation property for $(\mathcal{F}(X), \tau_w)$. The map η_X is τ_w continuous; it is a homeomorphism on its image if X is T_0. Generalizing [1, Proposition 3.1], we claim that always the τ_w-closure of $\eta_X(X)$ is $L(X)$. Indeed, it is easily seen that $A \in \mathcal{F}(X)$ is in the τ_w-closure of $\eta_X(X)$ if and only if every finite family of open subsets that intersect A has a non-void intersection that is, if and only if $A \in L(X)$. In particular, $L(X)$ is τ_w-closed hence also τ_s-closed. Thus $(L(X), \tau_s)$ is a compact Hausdorff space. From the τ_w-density of $\eta_X(X)$ in $L(X)$ it follows that $(L(X), \tau_w)$ is connected when X is connected. However, trivial examples show that $(L(X), \tau_s)$ need not be connected if X is connected.

Concerning the τ_s-convergence of nets the following was proved in [9, Lemma H.2]:

Proposition 2.1. Let $\{A_i\}$ be a net of closed subsets of the topological space X and $A \in \mathcal{F}(X)$. The net τ_s-converges to A if (a) given $x_i \in A_i$ such that the net $\{x_i\}$ converges to x, then $x \in A$, and (b) if $x \in A$ then there is a subnet $\{A_{i_{n}}\}$ and points $x_{i_{n}} \in A_{i_{n}}$ such that $\{x_{i_{n}}\}$ converges to x. When X is locally compact the converse is true too: the net $\{A_i\}$ τ_s-converges to A only if the conditions (a) and (b) hold.

The characterization of the τ_s-convergence of nets given below is in line with our attempt to investigate the links between the two topologies on the hyperspace of closed subsets noted above. A net in a topological space was called by Fell primitive
Proposition 2.2. Let \(X \) be a topological space. If \(\{A_i\} \) is a primitive net in \((\mathcal{F}(X), \tau_w) \) and the set of all its \(\tau_w \)-limits is \(\{B \in \mathcal{F}(X) \mid B \subset A\} \) where \(A \in \mathcal{F}(X) \) then \(\{A_i\} \) \(\tau_s \)-converges to \(A \). If \(X \) is locally compact then the converse holds: a net \(\{A_i\} \) that is \(\tau_s \)-convergent to \(A \) in \(\mathcal{F}(X) \) is primitive in \((\mathcal{F}(X), \tau_w) \) and the set of all its \(\tau_w \)-limits is \(\{B \in \mathcal{F}(X) \mid B \subset A\} \).

Proof. Suppose \(\{A_i\} \) is a \(\tau_w \)-primitive net in \(\mathcal{F}(X) \) and the set of all its limits is \(\{B \mid B \subset A\} \). Let \(U(C, \Phi) \) be a basic \(\tau_s \)-neighbourhood of \(A \). If we assume that \(\{A_i\} \) is not eventually in \(U(C, \Phi) \) then, by passing to a subnet and relabelling, we have \(A_i \cap C \neq \emptyset \) for each \(i \). We choose points \(x_i \in A_i \cap C \). There is a subnet \(\{x_{i_\kappa}\} \) that converges to a point \(x \) in the compact set \(C \). We claim that \(\{A_{i_\kappa}\} \) \(\tau_w \)-converges to \(\{x\} \). Indeed, let \(\Phi_1 \) be a finite family of open subsets of \(X \) all of which intersect \(\{x\} \) that is, such that \(x \) belongs to the intersection \(V \) of all the sets in \(\Phi_1 \). Then \(x_{i_\kappa} \) is eventually in \(V \). Thus, for \(\kappa \) large enough \(A_{i_\kappa} \cap V \neq \emptyset \) and the claim is established. Thus \(\{x\} \) is a \(\tau_w \)-cluster point of the primitive net \(\{A_i\} \) hence \(\{x\} \subset A \). We got \(A \cap C \neq \emptyset \), a contradiction.

Suppose now that \(X \) is locally compact and the net \(\{A_i\} \) \(\tau_s \)-converges to \(A \). It follows readily from the definition of the topologies on \(\mathcal{F}(X) \) that \(\{A_i\} \) \(\tau_w \)-converges to every closed subset \(B \) of \(X \) which is a subset of \(A \). Assume that there is a subnet \(\{A_{i_\kappa}\} \) that \(\tau_w \)-converges to some \(B \in \mathcal{F}(X) \) with \(B \setminus A \neq \emptyset \) and let \(x \in B \setminus A \). There is a compact set \(C \subset X \) such that \(x \in Int(C) \subset C \subset X \setminus A \). \(U(C, \{x\}) \) is a \(\tau_s \)-neighbourhood of \(A \) hence \(A_{i_\kappa} \cap C = \emptyset \) eventually. On the other hand, \(U(\emptyset, \{Int(C)\}) \) is a \(\tau_w \)-neighbourhood of \(B \) hence \(A_{i_\kappa} \cap Int(C) \neq \emptyset \) and we got a contradiction. We have proved that each \(\tau_w \)-cluster point of \(\{A_i\} \) is a subset of \(A \) and we are done.

\(\square \)

3. THE TOPOLOGY \(\tau_w \)

First we want to establish the local compactness of \(\mathcal{F}(X) \), \(\mathcal{F}'(X) \), \(\mathcal{L}(X) \), and \(\mathcal{L}'(X) \) with their \(\tau_w \)-topology when the space \(X \) is locally compact. The result for the first two spaces is likely to be known but we have no reference for it. The
local compactness of $\mathcal{L}(X)$ and $\mathcal{L}'(X)$ was established when X is the primitive ideal space of a C^*-algebra in [1, Theorem 3.7] by using special properties of such spaces.

Lemma 3.1. Let C_1, \ldots, C_n be compact subsets of the topological space X. Then $S := \{ A \in \mathcal{F}(X) \mid A \cap C_i \neq \emptyset, 1 \leq i \leq n \}$ is τ_w-compact.

Proof. Let $\{M_\alpha \mid \alpha \in A\}$ be a net in S and $x_\alpha^i \in M_\alpha \cap C_i$. By passing to successive subnets we may suppose that each of the nets $\{x_\alpha^i \mid \alpha \in A\}, 1 \leq i \leq n$, converges to a point $x_i \in C_i$. Denote by M the closure of $\{x_1, \ldots, x_n\}$ and suppose $E := \{U_1, \ldots, U_p\}$ is a finite family of open subsets of X such that $M \in \mathcal{U}(\emptyset, E)$. Then for each $k, 1 \leq k \leq p$, there is $1 \leq i_k \leq n$ such that $x_{i_k} \in U_k$. Hence there is $\alpha_0 \in A$ such that for all $1 \leq k \leq p$ and $\alpha > \alpha_0$ we have $x_\alpha^{i_k} \in U_k$. Thus, if $\alpha > \alpha_0$ then $M_\alpha \cap U_k \neq \emptyset, 1 \leq k \leq p$. We have established that $\{M_\alpha\}$ converges weakly to M and clearly $M \in S$.

Theorem 3.2. If X is a locally compact space then $\mathcal{F}(X), \mathcal{F}'(X), \mathcal{L}(X)$, and $\mathcal{L}'(X)$ are locally compact spaces with their τ_w topology.

Proof. Suppose X is a locally compact space and let A be a closed subset of X. For a basic τ_w-neighbourhood $\mathcal{U}(\emptyset, \{U_i\}_{i=1}^n)$ of A we choose $x_i \in A \cap U_i, 1 \leq i \leq n$. Let V_i be a compact neighbourhood of x_i contained in U_i and $W_i := Int(V_i)$. Then

$$A \in \mathcal{U}(\emptyset, \{W_i\}_{i=1}^n) \subset \mathcal{V} := \{B \in \mathcal{F}(X) \mid B \cap V_i \neq \emptyset, 1 \leq i \leq n\} \subset \mathcal{U}(\emptyset, \{U_i\}_{i=1}^n).$$

Thus \mathcal{V} is a neighbourhood of A that is compact by the preceding lemma. We have proved that $(\mathcal{F}(X), \tau_w)$ is locally compact.

As remarked above, $\mathcal{F}'(X)$ is τ_s-open in $F(X)$, $\mathcal{L}(X)$ is τ_w-closed, $\mathcal{L}'(X) = \mathcal{L}(X) \cap \mathcal{F}'(X)$ is relatively open in $\mathcal{L}(X)$ and the conclusion follows.

The next result was stated in [1, Proposition 3.4] for the primitive ideal space of a C^*-algebra. However, the proof given there is valid for any topological space and we reproduce it here.

Proposition 3.3. If X is a Baire topological space then $(\mathcal{L}(X), \tau_w)$ and $(\mathcal{L}'(X), \tau_w)$ are Baire spaces.
Proof. For each natural number \(n \) let \(U_n \) be a \(\tau_w \)-dense open subset of \(\mathcal{L}(X) \). Since \(\eta_X(X) \) is \(\tau_w \)-dense in \(\mathcal{L}(X) \) and \(\eta_X \) is \(\tau_w \)-continuous, \(\eta_X^{-1}(U_n) \) is an open dense subset of \(X \). From the hypothesis it follows that \(\cap_{n \geq 1} \eta_X^{-1}(U_n) \) is dense in \(X \). But then

\[
\eta_X(\cap_{n \geq 1} \eta_X^{-1}(U_n)) = \eta_X(X) \cap (\cap_{n \geq 1} U_n)
\]

is \(\tau_w \)-dense in \(\mathcal{L}(X) \). In particular, \(\cap_{n \geq 1} U_n \) is \(\tau_w \)-dense in \(\mathcal{L}(X) \).

\(\mathcal{L}'(X) \) is an open dense subset of \((\mathcal{L}(X), \tau_w) \) so it is a Baire space too.

\[\square \]

Proposition 3.4. If \(X \) has a base consisting of open and compact sets then the same is true for \((\mathcal{F}(X), \tau_w) \) and its subspaces \(\mathcal{F}'(X), \mathcal{L}(X), \) and \(\mathcal{L}'(X) \).

Proof. Suppose \(\mathcal{B} \) is a base for the topology of \(X \) consisting of open and compact sets. Then the collection of all the families \(U(\emptyset, \Phi) \) where \(\Phi \) runs through all the finite subfamilies of \(\mathcal{B} \) is a base for \((\mathcal{F}(X), \tau_w) \). Each \(U(\emptyset, \Phi) \) is \(\tau_w \)-compact by Lemma 3.1. We get a base for \(\mathcal{F}'(X) \) by requiring \(\Phi \) to run through the nonempty finite subfamilies of \(\mathcal{B} \). Intersecting each of the elements of the bases we got for \(\mathcal{F}(X) \) and \(\mathcal{F}'(X) \) with the \(\tau_w \)-closed set \(\mathcal{L}(X) \) we get bases as needed for \(\mathcal{L}(X) \) and \(\mathcal{L}'(X) \), respectively.

\[\square \]

4. The Hyperspace \(\mathcal{M}\mathcal{L}(X) \)

The next result generalizes [1, Theorem 4.2] where the framework is that of a certain family of ideals of a \(C^* \)-algebra and the proof uses \(C^* \)-algebraic methods. The "if" part of the statement is also a consequence of [5, Lemme 15].

Theorem 4.1. The identity map \((\mathcal{L}(X), \tau_w) \to (\mathcal{L}(X), \tau_s) \) is continuous at \(A \in \mathcal{L}(X) \) if and only if \(A \in \mathcal{M}\mathcal{L}(X) \).

Proof. Suppose \(A \) is a maximal limit set. Let \(C \) be a compact subset of \(X \) and \(\Phi \) a finite family of open subsets of \(X \) such that \(A \in \mathcal{U}(C, \Phi) \). We claim that there is a finite family \(\Psi \supset \Phi \) of open subsets of \(X \) each of which has a nonempty intersection with \(A \) and such that \(\mathcal{U}(\emptyset, \Psi) \cap \mathcal{L}(X) \subset \mathcal{U}(C, \Phi) \cap \mathcal{L}(X) \). This, of course, will establish the continuity of the identity map at \(A \).
Assume there is no such Ψ. Then for each finite family $\Psi \supset \Phi$ of open subsets of X such that every set in Ψ has a nonempty intersection with A there is $B_\Psi \in (U(0, \Psi) \setminus U(C, \Phi)) \cap \mathcal{L}(X)$. Denote the collection of all such families Ψ by Λ and order it by inclusion. Clearly $\Psi \in \Lambda$ implies $B_\Psi \cap C \neq \emptyset$. Choose $x_\Psi \in B_\Psi \cap C$. The net $\{x_\Psi\}$ has a converging subnet to some point $x \in C$. We have $x \notin A$ hence $A \cup \{x\} \not\subset A$. We shall show that $A \cup \{x\}$ is a limit set hence $A \cup \{x\} \in \mathcal{L}'(X)$, and this will yield a contradiction to the maximality of A.

Let \mathcal{N} be the family of all the open neighbourhoods of x. We order $\mathcal{N} \times \Lambda$ by defining $(V_1, \Psi_1) \prec (V_2, \Psi_2)$ if $V_1 \supset V_2$ and $\Psi_1 \subset \Psi_2$. Denote by Γ the collection of all the pairs $(V, \Psi) \in \mathcal{N} \times \Lambda$ such that the finite family of open sets $\{V\} \cup \Psi$ has a nonempty intersection. For $(V_1, \Psi_1), (V_2, \Psi_2) \in \mathcal{N} \times \Lambda$ there is $(V, \Psi) \in \Gamma$ such that $(V_1, \Psi_1) \prec (V, \Psi)$ and $(V_2, \Psi_2) \prec (V, \Psi)$. Indeed, $V := V_1 \cap V_2$ is an open neighbourhood of x and $\Psi_1 \cup \Psi_2 \in \Lambda$ hence there is $\Psi \in \Lambda$ that satisfies $\Psi \supset \Psi_1 \cup \Psi_2$ and $x_\Psi \in V$. Thus $x_\Psi \in V \cap B_\Psi$ and since B_Ψ is a limit set that belongs to $U(0, \Psi)$, the family of open sets $\{V\} \cup \Psi$ has a nonempty intersection by the previously quoted Lemme 9 of [5]. We got $(V, \Psi) \in \Gamma$ as needed. In particular, Γ is a directed set with this order restricted to it. For each $(V, \Psi) \in \Gamma$ we choose $y_{(V, \Psi)}$ in the intersection of the family $\{V\} \cup \Psi$. The net $\{y_{(V, \Psi)}\}$ converges to every point of $\{x\} \cup A$. It is clear that the net converges to x. Let now y be a point of A and W an open neighbourhood of y. With $\Psi_0 := \{W\} \cup \Phi$ we have $(X, \Psi_0) \in \mathcal{N} \times \Lambda$. By the order property of Γ proved above there is $(V_1, \Psi_1) \in \Gamma$ such that $(X, \Psi_0) \prec (V_1, \Psi_1)$. Clearly if $(V, \Psi) \in \Gamma$ and $(V_1, \Psi_1) \prec (V, \Psi)$ then $W \in \Psi$ hence $y_{(V, \Psi)} \in \cap \{O \mid O \in \Psi\} \subset W$. We have proved that the net $\{y_{(V, \Psi)} \mid (V, \Psi) \in \Gamma\}$ converges to y as claimed.

Let now L be a non-maximal closed limit set of X. There are $z \in X \setminus L$ and a net that converges to all the points of $L \cup \{z\}$. The set L belongs to the τ_s-open set $U(\{z\}, \{X\})$ but no τ_w-neighbourhood of L in $\mathcal{L}(X)$ is contained in $U(\{z\}, \{X\})$ thus the identity map from $(\mathcal{L}(X), \tau_w)$ to $(\mathcal{L}(X), \tau_s)$ is not continuous at L. Indeed, if $U(\emptyset, \Phi)$ is any basic τ_w-neighbourhood of L then $L \cup \{z\} \in U(\emptyset, \Phi) \cap \mathcal{L}(X)$ but $L \cup \{z\} \notin U(\emptyset, \Phi) \cap \mathcal{L}(X)$.

\[\square \]

Corollary 4.2. The restrictions of τ_w and τ_s to $\mathcal{M} \mathcal{L}(X)$ coincide.
A point y of a topological space Y is called separated in Y if, for every $z \in Y \setminus \{y\}$, y and z have disjoint neighbourhoods; equivalently, $\{y\}$ is a maximal limit set (see [5, Définition 16]). It is proved in [5, Théorème 19] that if Y is a second countable locally compact Baire space then the subset of all separated points in Y is a dense $G_δ$. For any topological space X the density of the set of all separated points in $(\mathcal{L}(X), \tau_w)$ is an immediate corollary of the next result.

Theorem 4.3. Let X be a topological space. An element A of $\mathcal{L}(X)$ is separated in $(\mathcal{L}(X), \tau_w)$ if and only if A is a maximal limit set.

Proof. If $A \in \mathcal{L}(X)$ is not maximal then there is $A_1 \in \mathcal{L}(X)$ such that $A_1 \supsetneq A$. Then A_1 does not belong to the τ_w-closure of $\{A\}$ in $\mathcal{L}(X)$. However, A is in the τ_w-closure of $\{A_1\}$ in $\mathcal{L}(X)$ hence A and A_1 cannot be separated by disjoint τ_w-open sets.

Suppose now that A is a maximal limit set and $A_1 \in \mathcal{L}(X)$ does not belong to the τ_w-closure of $\{A\}$ that is, A_1 is not included in A. Then $A \cup A_1 \in \mathcal{F}(X) \setminus \mathcal{L}(X)$. By [5, Lemme 9] there is a finite family Φ of open subsets of X such that each of them has a nonempty intersection with $A \cup A_1$ but the intersection of all the sets in Φ is void. Let Ψ be the subfamily of Φ consisting of those sets that have a nonempty intersection with A. Since $A_1 \in \mathcal{L}(X)$ we must have, by the above quoted lemma of Dixmier, $\Psi \neq \emptyset$. Similarly, $\Psi_1 := \Phi \setminus \Psi$ is not empty since $A \in \mathcal{L}(X)$. Now, $\mathcal{U}(\emptyset, \Psi) \cap \mathcal{L}(X)$ is a τ_w-neighbourhood of A in $\mathcal{L}(X)$ and $\mathcal{U}(\emptyset, \Psi_1) \cap \mathcal{L}(X)$ is a τ_w-neighbourhood of A_1 in $\mathcal{L}(X)$. We have

$$\mathcal{U}(\emptyset, \Psi) \cap \mathcal{U}(\emptyset, \Psi_1) \cap \mathcal{L}(X) = \emptyset$$

hence A and A_1 can be separated by disjoint τ_w-open sets. Indeed, if the above equality does not hold and $B \in \mathcal{U}(\emptyset, \Psi) \cap \mathcal{U}(\emptyset, \Psi_1) \cap \mathcal{L}(X)$ then

$$\cap\{V \mid V \in \Phi\} = (\cap\{V \mid V \in \Psi\}) \cap (\cap\{V \mid V \in \Psi_1\}) \neq \emptyset$$

since $B \in \mathcal{L}(X)$, a contradiction.

\square

The following two propositions were stated and proved in [1] in the language of C^*-algebras. We only had to rewrite the proofs to be fit in a more general situation.
Proposition 4.4 ([1] Proposition 4.9). \(\mathcal{ML}(X) \) is a Baire space if \(X \) is a Baire space.

Proof. Let \(\{ V_n \} \) be a sequence of \(\tau_w \)-open subsets of \(\mathcal{L}(X) \) such that every \(U_n := V_n \cap \mathcal{ML}(X) \) is dense in \(\mathcal{ML}(X) \). Since \(\mathcal{ML}(X) \) is \(\tau_w \)-dense in \(\mathcal{L}(X) \) we get that each \(V_n \) is \(\tau_w \)-dense in \(\mathcal{L}(X) \). By Proposition 3.3, \(\cap V_n \) is \(\tau_w \)-dense in \(\mathcal{L}(X) \).

Let now \(U \) be an open set in \(\mathcal{ML}(X) \). Then \(U = V \cap \mathcal{ML}(X) \), \(V \) being a \(\tau_w \)-open set in \(\mathcal{L}(X) \). There exist \(B \in (\cap V_n) \cap \mathcal{ML}(X) \) with \(B \subset B_1 \). Since \(B_1 \) belongs to any \(\tau_w \)-open set of \(\mathcal{L}(X) \) to which \(B \) belongs, we have

\[
B_1 \cap (U) = (\cap U_n) \cap \mathcal{ML}(X) = (\cap U_n) \cap U.
\]

Hence \(\cap U_n \) is dense in \(\mathcal{ML}(X) \).

□

Proposition 4.5 ([1] Corollary 4.6). If \(X \) is a second countable locally compact Baire space then the family \(\{ \{ x \} | x \text{ is separated in } X \} \) is dense in \(\mathcal{ML}(X) \).

Proof. As mentioned before, [5] Théorème 19] asserts that the set

\[
T := \{ x \in X | x \text{ is separated in } X \}
\]

is dense in \(X \). Since \(\eta_X(X) \) is \(\tau_w \)-dense in \(\mathcal{L}(X) \) and \(\eta_X(X) \) is \(\tau_w \)-continuous we can infer that \(\eta_X(T) \) is \(\tau_w \)-dense in \(\mathcal{L}(X) \). In particular, \(\eta_X(T) = \eta_X(X) \cap \mathcal{ML}(X) \) is dense in \(\mathcal{ML}(X) \).

□

We shall have more to say about the set considered in the statement of Proposition 4.5 in Corollary 4.10.

Theorems 4.1 and 4.3 give us some information about the way \(\mathcal{ML}(X) \) is imbedded in \(\mathcal{L}(X) \). Theorem 4.8 will show us another aspect of this imbedding when the space is second countable. First we need two lemmas.

Lemma 4.6. Let \(Y \) be a compact space, \(M \subset Y \times Y \) and

\[
S(M) := \{ y \in Y | \{ y \} \times Y \subset M \}.
\]

If \(M \) is open then \(S(M) \) is open and if \(M \) is a \(G_\delta \) set then \(S(A) \) is a \(G_\delta \) set too.
Proof. Suppose M is an open set. If $y \in S(A)$ then, by using the compactness of Y, we can infer that there are open subsets $\{U_i\}_{i=1}^n$ and $\{V_i\}_{i=1}^n$ of Y such that

$$\{y\} \times Y \subset \bigcup_{i=1}^n (U_i \times V_i) \subset M.$$

Then

$$y \in \bigcap_{i=1}^n U_i \subset S(M)$$

and $\bigcap_{i=1}^n U_i$ is open.

Suppose now M is a G_δ set, $M = \bigcap_1^\infty M_n$ with each M_n open in $Y \times Y$. Since $S(M) = \bigcap_1^\infty S(M_n)$ and $S(M_n)$ is open by the first part of the proof, the conclusion obtains.

\[\square\]

Lemma 4.7. Let X be a locally compact space. Then

$$E := \{(A, B) \in \mathcal{L}(X) \times \mathcal{L}(X) \mid A \subset B\}$$

is $(\tau_s \times \tau_s)$-closed in $\mathcal{L}(X) \times \mathcal{L}(X)$.

Proof. Let $\{(A_i, B_i)\}$ be a net in E that $(\tau_s \times \tau_s)$-converges to (A, B). Given $x \in A$ there exists, by Proposition 2.1, a subnet $\{A_{i,\kappa}\}$ of $\{A_i\}$ and points $x_{i,\kappa} \in A_{i,\kappa} \subset B_{i,\kappa}$ such that $\{x_{i,\kappa}\}$ converges to x. Again by Proposition 2.1 $x \in B$ and we have shown $A \subset B$ that is $(A, B) \in E$. \[\square\]

Theorem 4.8. If X is a second countable locally compact space then $\mathcal{ML}(X)$ is a G_δ subset of $(\mathcal{L}(X), \tau_s)$.

Proof. Set

$$D := \{(A, A) \mid A \in \mathcal{L}(X)\}, \quad E := \{(A, B) \in \mathcal{L}(X) \times \mathcal{L}(X) \mid A \subset B\},$$

and

$$T := \mathcal{L}(X) \times \mathcal{L}(X) \setminus (E \setminus D).$$

Then for $A \in \mathcal{L}(X)$ we have $A \in \mathcal{ML}(X)$ if and only if $\{A\} \times \mathcal{L}(X) \subset T$. \[\square\]

Remark 4.9. If X is a second countable locally compact space then $\mathcal{ML}(X)$ is a Baire space since it is a G_δ subset of the compact metrizable space $(\mathcal{L}(X), \tau_s)$.

Corollary 4.10. If X is a second countable locally compact space in which every closed subset is a Baire space then $\{\overline{\{x\}} \mid x \text{ is separated in } X\}$ is a G_δ subset of $\mathcal{L}(X)$; it is also a dense subset of $\mathcal{ML}(X)$.

Proof. By [5, Theorem 7], $\eta_X(X)$ is a G_δ subset of $\mathcal{F}(X)$ hence it is a G_δ subset of $\mathcal{L}(X)$. Then $\{\overline{\{x\}} \mid x \text{ is separated in } X\} = \eta_X(X) \cap \mathcal{ML}(X)$ is a dense G_δ subset of $\mathcal{ML}(X)$ by Proposition 4.5 and a G_δ subset of $\mathcal{L}(X)$ by Theorem 4.8.

Remark 4.11. The primitive ideal space of a separable C^*-algebra with its hull-kernel topology satisfies the hypothesis of Corollary 4.10.

References
1. R. J. Archbold, Topologies for primal ideals, J. London Math. Soc. (2) 36 (1987), 524–542.
2. R. J. Archbold and C. J. K. Batty, On factorial states of operator algebras, III, J. Operator Theory 15 (1986), 53–81.
3. N. Bourbaki, General Topology, Part I, Elements of Mathematics, Addison-Wesley, Reading, MA, 1966.
4. J. Dixmier, C^*-algebras, North-Holland, Amsterdam, 1977.
5. J. Dixmier, Sur les espaces localement quasi-compacts, Canad. J. Math. 20 (1968), 1093–1100.
6. J. M. G. Fell, A Hausdorff topology for the closed subsets of a locally compact non-Hausdorff space, Proc. Amer. Math. Soc. 13 (1962), 472–476.
7. E. Kirchberg, Dini functions on spectral spaces, SFB487 preprint, nr. 321, University of Münster, Münster 2004.
8. E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), 152–182.
9. D. P. Williams, Crossed products of C^*-algebras, Mathematical Surveys and Monographs, vol. 134, American Mathematical Society, Providence, RI, 2007.

School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69778, Israel
E-mail address: aldo@post.tau.ac.il