BMJ Open

Traumatic stress symptoms in family caregivers of patients with acute leukaemia: protocol for a multisite mixed methods, longitudinal, observational study

Lindsay A Jibb, Stephanie M Nanos, Sarah Alexander, Carmine Malfitano, Anne Rydall, Sumit Gupta, Aaron D Schimmer, Camilla Zimmermann, Sarah Hales, Charles Marmor, Katharina Schultebraucks, Kenneth Mah, Gary Rodin

ABSTRACT

Introduction The diagnosis, progression or recurrence of cancer is often highly traumatic for family caregivers (FCs), but systematic assessments of distress and approaches for its prevention and treatment are lacking. Acute leukaemia (AL) is a life-threatening cancer of the blood, which most often presents acutely, requires intensive treatment and is associated with severe physical symptoms. Consequently, traumatic stress may be common in the FCs of patients with AL. We aim to determine the prevalence, severity, longitudinal course and predictors of traumatic stress symptoms in FCs of patients with AL in the first year after diagnosis, and to understand their lived experience of traumatic stress and perceived support needs.

Methods and analysis This two-site longitudinal, observational, mixed methods study will recruit 223 adult FCs of paediatric or adult patients newly diagnosed with AL from two tertiary care centres. Quantitative data will be collected from self-report questionnaires at enrolment, and 1, 3, 6, 9 and 12 months after admission to hospital for initial treatment. Quantitative data will be analysed using descriptive and machine learning approaches and a multilevel modelling (MLM) approach will be used to confirm machine learning findings. Semi-structured qualitative interviews will be conducted at 3, 6 and 12 months and analysed using a grounded theory approach.

Ethics and dissemination This study is funded by the Canadian Institutes of Health Research (CIHR number PJT 173255) and has received ethical approval from the Ontario Cancer Research Ethics Board (CTO Project ID: 2104). The generalisability of our findings may be limited by caregiver enrolment from cancer care centres in a single metropolitan area and the potential for selection bias.

STRENGTHS AND LIMITATIONS OF THIS STUDY

⇒ This study will examine the longitudinal course and predictors of traumatic stress symptoms of family caregivers of patients diagnosed with acute leukaemia at key timepoints in their disease and treatment trajectory.
⇒ Qualitative interviews analysed using a grounded theory approach will preserve the complexity and context of the caregiver experience and will integrate with the quantitative data to deepen our understanding of their traumatic stress symptoms.
⇒ The inclusion of a diverse group of family caregivers with variance in characteristics such as age, sex, gender, race, ethnicity, attachment style, relationship to patient and type of leukaemia provides an opportunity to understand the impact of caregiver factors on traumatic stress symptoms.
⇒ The generalisability of our findings may be limited by caregiver enrolment from cancer care centres in a single metropolitan area and the potential for selection bias.

INTRODUCTION

Acute leukaemia (AL) is a life-threatening haematological malignancy characterised by rapid onset, the requirement for immediate hospitalisation to initiate care and intensive and prolonged medical treatment. The primary types of AL are acute lymphoblastic leukaemia (ALL) and acute myeloid leukaemia (AML). Both occur in patients of all ages, but the epidemiology, disease features and outcomes vary with age and disease type. Treatment of AL is associated with the risk of serious and potentially fatal side effects including bleeding, infection, mucositis, nausea and vomiting, pain and multiple other drug-specific side effects. There is now robust evidence showing that the diagnosis of AL in patients from infants...
to older adults is a singularly stressful event, followed by a period of intense and difficult life choices and experiences.4–9 Those who are cured of AL may still endure long-term treatment sequelae including neurocognitive deficits, infertility, endocrine, musculoskeletal and cardiac impairments, and risk of secondary cancers.6 10–14

The impact of AL on family caregivers

The diagnosis of AL and its treatment impose a substantial burden on family caregivers (FCs), who may be partners, adult children or parents.7–9 FCs of patients with cancer are increasingly expected to assume lead roles in complex clinical tasks, such as coordination of care, symptom management, medication administration and direct patient care, while maintaining other ongoing responsibilities, such as employment and care for other dependents.15–23 These multiple roles, coupled with financial strain due to the cost of non-reimbursed medical care, travel, other family caregiving and home responsibilities, and the loss of employment income, are major sources of distress for FCs.16 24–29 This burden of caring, which falls disproportionately on women,36 and the constant threat that a partner, parent or child will suffer or die, constitute substantial threats to the mental and physical health of FCs.27–29

Traumatic stress symptoms

The immediate psychological response to the diagnosis of a life-threatening cancer of both patients and FCs is often traumatic stress (TS) symptoms.24 28 30 These symptoms include hyperarousal (eg, hypervigilance, decreased concentration, heightened startle response, insomnia, irritability), intrusive thoughts (eg, nightmares, flashbacks, altered sense of reality), emotional detachment or numbing and depression.31 32 Symptoms of TS occurring within 1 month of the traumatic event may meet the Diagnostic and Statistical Manual of Mental Disorders (DSM) criteria for acute stress disorder (ASD) and those that persist for longer than a month may meet diagnostic criteria for post-traumatic stress disorder (PTSD).33 Risk factors for ASD and PTSD following a traumatic event include younger age, female sex, feminine gender role and direct or vicarious exposure to traumatic events, including in first responders to trauma victims.33–35 Gender is not only a risk factor for PTSD in its own right but is also a proxy for multiple interacting social, economic and political influences on distress.36 As a whole, TS disorders are highly disturbing to those affected and are associated with a subsequent 10-fold increase in the risk of completed suicide37 and an increased risk of cardiovascular, metabolic and musculoskeletal disorders38 and all-cause mortality.39

The social context of TS symptoms

The social environment in which individuals exposed to trauma are situated has been shown to directly affect the severity and nature of TS symptoms.36 In that regard, the inverse relationship between symptoms of PTSD and social support, including that received from healthcare professionals (HCPs), is one of the most consistent relationships observed in trauma research.40–42 Internalised representations of support and the capacity to make use of it, reflected in the construct of attachment security,43 have also been shown to protect from the development of PTSD following exposure to trauma.44 Measured on dimensions of attachment anxiety and attachment avoidance,45 46 attachment security has been shown to play a critical role in the management of terror, specifically that related to death anxiety.47

TS symptoms in FCs

Clinically significant TS symptoms are common in FCs of patients with metastatic cancer, with similar rates in partners and parents of patients.28 48 Risk factors that have been identified for the development of TS symptoms in FCs of patients include: (i) FC variables such as female sex26 and identification with traditionally feminine gender roles,28 50 younger age,27 less social support and less attachment security,42 lower family income29 and higher perceived burden of caregiving tasks52 53; (ii) patient variables such as younger age54 and greater disease severity55; and (iii) the nature of the caregiver–patient relationship,56 with close familial relationships being associated with greater TS.57 58

Research has demonstrated the psychological impact of metastatic cancer on patients59 60 and their FCs.58 Several studies have highlighted the psychological impact of haematological malignancies on FCs, and systematic approaches to prevent and alleviate distress in this high-risk population have not been developed. The acute onset of AL, the intensive and prolonged treatment, the substantial burden of caregiving and the uncertainty regarding clinical outcomes suggest that TS symptoms may be common in FCs. However, the prevalence, severity, and predictors of TS over time, and the experience of FCs of patients with AL across the life course have not been determined.

Study objectives

The objectives of the present study are to determine in FCs of patients with AL:

1. The prevalence, severity, longitudinal course and predictors of TS symptoms over the first year following a new diagnosis of AL.
2. The FC experience of TS, including the impact of AL on their lives and that of their families, the nature of their distress, their relationship with HCPs, and their perceived resources and met and unmet support needs.

The findings from this study will provide essential information to inform research, clinical practice and health policy regarding the comprehensive and family-centred treatment of AL.
METHODS AND ANALYSIS

Patient and public involvement
This study will be conducted with the early and ongoing engagement of FCs and other stakeholders. Specifically, our FC collaborators and HCP collaborators have informed the construction of this study, including the mixed methods approach and relevant sampling time-points, will be closely involved in the interpretation and dissemination of the data, and will lead in advocacy efforts to support policy change related to the care of FCs. The patient and family advisory councils at our study sites will also be engaged to support study conduct from implementation to dissemination.

Study design and setting
This is a prospective, observational study using mixed quantitative and qualitative methodology. FCs will be recruited from the Princess Margaret Cancer Centre, part of the University Health Network, and the Hospital for Sick Children, both in Toronto, Canada.

Eligibility criteria
FCs will be: (i) the self-identified primary or co-primary caregiver (ie, defined in this study as the person assuming at least 40% of patient care activities) of a paediatric or adult patient newly diagnosed with primary AL (AML or ALL) within 3 months of admission to either of our study sites; (ii)≥18 years old; and (iii) fluent in English.

Ineligibility criteria
FCs of patients with acute promyelocytic leukaemia or who do not receive induction chemotherapy with curative intent will be ineligible.

Table 1 Timeline of study activities

Enrolment baseline	1 month follow-up	3 month follow-up	6 month follow-up	9 month follow-up	12 month follow-up
Recruitment					
Confirm eligibility	✓	✓			
Initial approach	✓	✓			
Caregiver quantitative informed consent	✓	✓	✓	✓	✓
Caregiver qualitative informed consent	✓	✓	✓	✓	✓
Patient informed consent/assent†	✓	✓	✓	✓	✓
Quantitative data collection					
Demographics	✓	✓			
PCL-5	✓	✓	✓	✓	✓
SASRQ-II	✓	✓	✓	✓	✓
ECR-M16	✓	✓	✓	✓	✓
PHQ-9	✓	✓	✓	✓	✓
CRA	✓	✓	✓	✓	✓
ESSI	✓	✓	✓	✓	✓
FAMCARE	✓	✓	✓	✓	✓
TMF	✓	✓			
Qualitative data collection					
Interview	✓	✓			
Patient chart data collection					
Medical abstraction	✓	✓	✓	✓	✓

†FCs recruited 2 weeks to 3 months after admission to the hospital will complete a baseline questionnaire package at enrollment, or at the 1 month or 3 month timepoint. Follow-up questionnaire packages will be completed at subsequent timepoints.

CRA, Caregiver Reaction Assessment Scale; DSM-5, Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition; ECR-M16, Modified and brief Experiences in Close Relationships Scale; ESSI, ENRICH Social Support Instrument; FAMCARE, Family Satisfaction with End-of-Life Care Scale; PCL-5, PTSD Checklist for DSM-5; PHQ-9, Patient Health Questionnaire-9; PTSD, post-traumatic stress disorder; SASRQ-II, Stanford Acute Stress Reaction Questionnaire II; TMF, Traditional Masculinity-Femininity Scale.
Box 1 Example questions from the semi-structured qualitative interview guide

Impact of the disease
⇒ Can you describe what it was like for you when you first heard about (patient’s) diagnosis of leukaemia?
⇒ How, if at all, have things changed for you since (patient’s) diagnosis of leukaemia?

Experience of support
⇒ How supported have you felt?
⇒ What types of support have you received?

Experience of care
⇒ What is your experience with the care (patient) has received from the hospital?
⇒ Can you describe your relationship with the medical team?

Data collection
FC recruitment will occur over 36 months and is expected to be completed in 2024. Following informed consent, participating FCs will complete a demographics questionnaire and the disease-related characteristics of the associated patient will be abstracted from the patient’s medical chart (table 1). FCs will then complete a baseline outcome questionnaire package on REDCap (ie, a secure online browser-based application for building and managing online surveys and research databases), and follow-up online outcome questionnaire packages at 1, 3, 6, 9 and 12 months after the patient’s admission to the hospital for a new diagnosis of AL (table 1). Questionnaire package completion time is expected to be 20–30 min at each assessment point. A subgroup of FCs will be invited to participate in audio- and/or video-recorded, semi-structured, qualitative interviews at 3, 6 and 12 months. Interviewees may participate in interviews at more than one sampling timepoint. Sampling for interviews will be purposeful in an attempt to achieve maximum variation in FC characteristics including age, sex, gender, gender role, FC–patient relationship, scores on quantitative measures, race, ethnicity and patient’s AL type. The interviews will be conducted by a trained interviewer and will focus on the FC experience of caring for someone with AL, the impact of caring on the lives of FCs and that of their families, FC met and unmet support needs, and the FC experience with the patient’s treatment and HCPs (box 1). Interviews are expected to last between 30–60 min.

Outcome measures
Primary outcome

1. TS symptoms, will be measured with the 30-item Stanford Acute Stress Reaction Questionnaire (SASRQ-II)62 63 updated to be DSM-5-concordant31 for ASD symptoms. This scale is one of the most widely used scales for measuring TS symptoms and has demonstrated test–retest reliability,62 63 and predictive, construct, discriminant and convergent validity across diverse samples.62–66 The English DSM-5-concordant version of the SASRQ (ie, SASRQ-II) has not yet been validated. Therefore, the 20-item PTSD Checklist for DSM-5 (PCL-5) will also be administered.67 The PCL-5 is widely used to assess TS symptoms and the revised DSM-5 version has demonstrated good psychometric properties.68–70

Predictors
1. Attachment security, will be measured with the modified and brief Experiences in Close Relationships (ECR-M16) scale.46 The ECR-M16 is a widely used, reliable and valid 16-item measure of attachment security with subscales assessing anxious and avoidant attachment.

2. Depressive symptoms, will be measured with the Patient Health Questionnaire-9 (PHQ-9).71 The PHQ-9 is a reliable and valid 9-item measure routinely administered to screen for depressive symptoms in cancer. Two additional items assessing suicidal intent and interference with life have been added.72 73

3. Caregiver burden, will be measured with the Caregiver Reaction Assessment (CRA) scale.74 The CRA is a reliable and valid 24-item scale assessing positive and negative reactions to five domains of caregiver burden: disrupted schedule, financial problems, lack of family support, health problems and the impact on self-esteem.

4. Perceived social support, will be measured with the ENRICHD Social Support Instrument (ESSI).75 The ESSI is a 7-item scale assessing the perceived availability of social support. This measure has been used in AL and has shown good reliability and validity.76 77

5. FC satisfaction with care, will be measured with the Family Satisfaction with End-of-Life Care (FAMCARE) scale.78 The FAMCARE is a reliable and valid 20-item scale measuring satisfaction with the behaviour of HCPs towards FCs and the patients they care for diagnosed with advanced cancer.

6. Gender role, will be measured (at baseline only) with the Traditional Masculinity-Femininity (TMF) scale.79 The TMF is a 6-item scale that assesses the degree to which people view their interests, selves, behaviour and other aspects as masculine or feminine. It has been validated in multiple cultural and age-group contexts.80

Sample size
Quantitative
Our sample size calculation for determining TS prevalence in FCs is based on the following established formula81 to estimate sample sizes for descriptive studies:

\[
n = \frac{Z^2 P(1-P)}{d^2}
\]

where \(n\) = sample size, \(Z = Z\) statistic for confidence level, \(P = \) expected prevalence and \(d = \) level of precision. Based on previous prevalence estimates of TS in our adult sample of patients with AL (ie, 14% meeting criteria for ASD as measured with the SASRQ)4 and the 11.8% PTSD prevalence in FCs of solid tumour patients,48 we have conservatively set our expected prevalence to .14, Jibb LA, et al. BMJ Open 2022;12:e065422. doi:10.1136/bmjopen-2022-065422
Our anticipated attrition rate is 15% based on previous longitudinal research at our study sites. To compensate for attrition, the enrollment of at least 213 FCs is required to achieve our objective of determining TS prevalence in FCs. Based on expected new AL cases at both sites, we can feasibly recruit 225 FCs within our 36-month recruitment period and will therefore aim for this target.

We will also use multi-level modelling (MLM) as a non-machine learning (ML) benchmark model to determine potential TS predictors and have, therefore, calculated a power estimate for N=185 using GLIMMIX V.3 online software, which performs power and sample size calculations for multilevel designs. We derived power estimates for the following parameters, with the SASRQ total score as the outcome: a design with eight groups (ie, to reflect crossing of caregiver gender (categorical predictor; female/male), patient age (continuous predictor; younger/older), and attachment security (continuous predictor; lower/higher) as the possible main three MLM predictors of interest) and six time-points; decreasing intercorrelation across repeated measures, from .60 to .52; and mean and standard deviation (SD) scaling factors of 1 and 1.5, to account for uncertainty about observed means and SDs. Power estimates were calculated for each two-way predictor x time interaction as the main hypothesis tested. Entered mean and SD estimates for the SASRQ were based on estimates from a recent phase II longitudinal clinical trial of a psychological-palliative care intervention for patients with AL. The ranges of computed power estimates for a calculated sample size of 185 are: for Caregiver Gender x Time, .34–.89 (power estimate for means and SDs without scaling=0.51); for Attachment Security x Time, .81–1.00 (power estimate without scaling=0.95); and for Patient Age x Time, .85–1.00 (power without scaling=0.97).

Qualitative
Our interview sample size will be determined by data saturation. Based on our previous qualitative work and our heterogeneous sample, we estimate that a purposeful subgroup of 30 FCs will participate in interviews at the 3, 6 and 12-month timepoints.

Analysis
Quantitative
All quantitative analyses will be conducted with R software and alpha will be set to .05. Descriptive statistics will be used for FC sociodemographic and patient medical characteristics. We will descriptively characterise the prevalence and severity (with variability) of TS symptoms. A broad range of candidate predictors of TS symptoms have been identified. However, the heterogeneity of risk factors, the clinical appearance and aetiology of TS hampers the analysis of risk factors using traditional regression models. The high dimensionality and likely multicollinearity among predictors and interaction of predictors pose challenges for statistical models and require the application of advanced computational approaches. Studies using advanced ML have been developed to examine predictors of psychiatric risk such as PTSD risk and to facilitate the implementation of precision psychiatry in clinical practice. We will use a supervised ML approach that is based on well-established methodologies in clinical prediction modelling including data pre-processing, such as handling of missing values, guarding against ‘overfitting’, and rigorous model validation in terms of established metrics for discrimination and calibration. Confidence intervals for all point estimates will be calculated to communicate uncertainty of the model. Moreover, to assess the generalisability of the model on data not used to develop the model, we will partition the data to perform a held-out validation test.

We will use latent growth mixture modelling (LGMM) to identify heterogeneous longitudinal trajectories of TS response. Individuals will be assigned to trajectories based on their most likely class membership. The best-fitting model will be selected based on the Information Criteria (Akaike Information Criteria, Bayesian Information Criteria (BIC), and Sample Size Adjusted BIC), along with fit statistics (such as the Bootstrap Log Likelihood Test), as well as parsimony and interpretability consistent with recommendations from the literature.

We will test diverse predictive models for robustness in predicting LGMM trajectories, including random forest and support vector machines. As the final model, we will select the simplest model within one standard error of the best model to allow for a more parsimonious model. We will benchmark our predictive model with computational simpler models (including MLM). Predictors included in our models will be FC age, sex, gender role, family income, baseline attachment security, perceived social support, caregiver burden, and satisfaction with provided care, relationship to patient, and patient age and treatment response. We will use Explainable Machine Learning using SHAP (SHapley Additive exPlanation) to identify those features that are mainly responsible for driving the individual outcome prediction. It is an additive feature attribution method that uses kernel functions and a well-established method to interpret ML models. We will also use SHAP dependence plots to examine potential interactions among the three most important predictors in the ML model.

We will confirm our predictor-related findings using MLM, which permits cases with missing data to be included in longitudinal modelling. In this case, we will use the three most important predictors to prevent ‘overfitting’, identified in the ML approach to test for direct linear relationships. The main effects of each of these predictors, their individual interactions with Time, and their random effects will be examined. Sociodemographic and medical covariates, including disease type (ALL vs AML) and depressive symptoms, will be entered to control for their effects.
Qualitative
All interview audio-recordings will be transcribed verbatim by a trained member of the team, verified for accuracy, de-identified to protect privacy and imported, along with field notes, into NVivo software for data management and analysis. Consistent with a constant comparative method, data analyses will begin once the first interview has been transcribed, allowing data from early interviews to inform later interviews. Data will be independently coded in duplicate using a line-by-line approach by trained qualitative analysts using a coding tree developed using the team’s expertise and the TS scientific literature. Using content analysis, codes will be grouped into categories based on between-code relationships and categories will then be grouped into themes according to the predictors and longitudinal course of TS symptoms. Categories and themes will then be compared across FC traits to understand similarities and differences in experiences depending on these characteristics. Quantitative data will be integrated into the analysis process to illustrate or clarify qualitative results related to the FC experience using a mixed methods matrix approach. Any discrepancies in opinion regarding coding will be resolved using arbitration with our study team at regularly occurring data analysis review meeting. An audit trail consisting of a detailed chronology of data collection and analytical decisions will be kept to enhance validity.

ETHICS AND DISSEMINATION

Ethics
The study received provincial approval from the Ontario Cancer Research Ethics Board (CTO Project ID: 2104) on 22 July 2021, and centre approval for both sites in October 2021. Institutional authorisation was provided by both sites in November 2021.

Dissemination
We have designed an evidence-based dissemination strategy aimed at increasing awareness and knowledge of the psychological risks to FCs of patients with AL, as well as FC-level and patient-level factors associated with these risks, to inform scientific investigation in the field and change point-of-care practice. Our dissemination strategy will include the presentation of results at major psychosocial and medical oncology conferences, publications in leading medical or oncology journals, and postings on key websites such as the Global Institute of Psychosocial, Palliative and End-of-Life Care (GIPPEC; www.gippec.org) based at the Princess Margaret Cancer Centre and the University for Sick Children and Kyle Fitzgibbon, Ally Yu, Rebecca Wong, and Angela Mathews at the Princess Margaret Cancer Centre, for their continued support of this project.

Contributors
All authors in this manuscript have contributed to the conception, design, acquisition, analysis or interpretation of data. GR, LJ, SA, AR, and CM contributed to the conceptualisation of the project. SG, AS, CZ, SH, RN and CM contributed to the design, as did KS and KM, who conceived the sample size calculations and statistical analysis. SN revised the protocol, and is responsible for data collection, analysis, interpretation. GR, LJ, SA, AR, SH, RN, KS and KM will also analyse and interpret the data. All authors read and provided final approval for this manuscript to be published. The authors understand their role in taking responsibility and being accountable for what is published. They are committed to transparency and have disclosed all relationships, activities and interests related to the content of this manuscript.

Funding
This work was supported by a project grant from the Canadian Institutes of Health Research (CIHR) grant number PJT 173255; Co-Principal Investigators: GR and LJ.

Competing interests
ADS has received research funding from Takeda Pharmaceuticals, BMS and Medivir AB, and consulting fees/honorarium from Takeda, Novartis, Jazz, and Otsuka Pharmaceuticals. ADS is named on a patent application for the use of Double Negative T (DNT) cells to treat AML.

Patient and public involvement
Patients and/or the public were involved in the design, or conduct, or reporting, or dissemination plans of this research. Refer to the Methods section for further details.

Patient consent for publication
Not applicable.

CONCLUSION
The present mixed methods, longitudinal study of the psychological impact on FCs of individuals diagnosed with AL across the life cycle is the first of its kind and will provide a comprehensive understanding of the FC lived experience and subjective distress, as well as associated supportive care needs. The quantitative and qualitative results will inform the development of a tailored psychosocial intervention to prevent or alleviate TS in this high-risk population and have the potential to be applied to other life-threatening medical conditions.

Author affiliations
1Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, Ontario, Canada
2Lawrence S. Bloomberg Faculty of Nursing, University of Toronto, Toronto, Ontario, Canada
3Department of Supportive Care, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
4Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
5Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
6Department of Medical Oncology/Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
7Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
8Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
9Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
10Department of Emergency Medicine, Columbia University Irving Medical Center, New York, New York, USA
11Department of Psychiatry, Columbia University, New York, New York, USA

Twitter Lindsay A Jibb @lindsayajibb and Gary Rodin @gary_rodin

Acknowledgements
The authors thank research coordinators Elham Hashemi at the Hospital for Sick Children and Kyle Fitzgibbon, Ally Yu, Rebecca Wong, and Angela Mathews at the Princess Margaret Cancer Centre, for their continued support of this project.

Funding
This work was supported by a project grant from the Canadian Institutes of Health Research (CIHR) grant number PJT 173255; Co-Principal Investigators: GR and LJ.

Competing interests
ADS has received research funding from Takeda Pharmaceuticals, BMS and Medivir AB, and consulting fees/honorarium from Takeda, Novartis, Jazz, and Otsuka Pharmaceuticals. ADS is named on a patent application for the use of Double Negative T (DNT) cells to treat AML.

Patient and public involvement
Patients and/or the public were involved in the design, or conduct, or reporting, or dissemination plans of this research. Refer to the Methods section for further details.

Patient consent for publication
Not applicable.
REFERENCES

1. Palmboog Asa, Lüttvall R, Cardëa E, et al. Emotion and Symptom-focused Engagement (EASE): a randomized phase II trial of an integrated psychological and palliative care intervention for patients with acute leukemia. Support Care Cancer 2020;28:163–76.

2. Zimmermann C, Yuan D, Misichetille A, et al. Symptom burden and supportive care in patients with acute leukemia. Leuk Res 2013;37:731–6.

3. Shaulov A, Rodin G, Popovich G, et al. Pain in patients with newly diagnosed or relapsed acute leukemia. Support Care Cancer 2019;27:2789–97.

4. Rodin G, Yuan D, Misichetille A, et al. Traumatic stress in acute leukemia. Psychooncology 2013;22:299–307.

5. Rodin G, Deckert A, Tong E, et al. Traumatic stress in patients with acute leukemia: a prospective cohort study. Psychooncology 2018;27:515–23.

6. Baker KS, Ness KK, Weisendorf D, et al. Late effects in survivors of acute leukemia treated with hematopoietic cell transplantation: a report from the Bone Marrow Transplant Survivor Study. Leukemia 2010;24:2039–47.

7. Kazak AE, Hwang W-T, Chen FF, et al. Screening for family psychosocial risk in pediatric cancer: validation of the Psychosocial Assessment Tool (PAT) version 3. J Pediatr Psychol 2018;43:737–48.

8. Richardson AE, Morton RP, Broadbent EA. Illness perceptions and coping predict post-traumatic stress in caregivers of patients with head and neck cancer. Support Care Cancer 2016;24:4443–50.

9. Wadhwa D, Burman D, Swami N, et al. Quality of life and mental health in caregivers of outpatients with advanced cancer. Psychooncology 2013;22:403–10.

10. Gibson TM, Mostoufi-Moab S, Stratton KL, et al. Temporal patterns in the risk of chronic health conditions in survivors of childhood cancer diagnosed 1970–99: a report from the Childhood Cancer Survivor Study cohort. Lancet Oncol 2018;19:1590–601.

11. Mulrooney DA, Hyun G, Ness KK, et al. The changing burden of long-term health outcomes in survivors of childhood acute lymphoblastic leukaemia: a retrospective analysis of the St Jude LifeTime Cohort Study. Lancet Haematol 2019;6:e306–16.

12. Timilshina N, Breunis H, Tomlinson GA, et al. Long-term recovery of quality of life and physical function over three years in adult survivors of acute myeloid leukemia after intensive chemotherapy. Leukemia 2019;33:15–23.

13. Leung W, Hudson MM, Strickland DK, et al. Late effects of treatment in survivors of childhood acute myeloid leukemia. J Clin Oncol 2000;18:3273–9.

14. van der Does-van den Berg A, de Vaan GA, van Weerden JW, et al. Late effects among long-term survivors of childhood acute leukemia in the Netherlands: a Dutch Childhood Leukemia Study Group report. Pediatr Res 1995;38:802–7.

15. Geng H-M, Chuang D-M, Yang F, et al. Prevalence and determinants of depression in caregivers of cancer patients: a systematic review and meta-analysis. Medicine 2018;97:e11963.

16. Mohammad S, Swami N, Pope A, et al. “I didn’t want to be in charge and yet I was”: bereaved caregivers’ accounts of providing home care for family members with advanced cancer. Psychooncology 2018;27:1229–36.

17. Burge F, Lawson B, Johnston G. Trends in the place of death of cancer patients, 1992–1997. CMAJ 2003;168:265–70.

18. Boyle D, Blodgett L, Gnesdilof J, et al. Caregiver quality of life after autologous bone marrow transplantation. Cancer Nurs 2000;23:193–203. quiz 204–5.

19. Cai R, MacLean M, Sellick S. Giving support and getting help: informal caregivers’ experiences with palliative care services. Palliat Support Care 2004;2:265–72.

20. Glajchen M. The emerging role and needs of family caregivers in cancer care. J Support Oncol 2004;2:145–55.

21. Manne S. Cancer in the marital context: a review of the literature. Cancer Invest 1996;18:188–202.

22. Nijboer C, Tempelaar R, Sanderman R, et al. Cancer and caregiving: the impact on the caregiver’s health. Psychooncology 1998;7:3–13.

23. Pitschally C, Maguire P. The psychological impact of cancer on patients’ partners and other key relatives: a review. Eur J Cancer 2003;39:1517–24.

24. Halpern MT, Fiero MH, Bell ML. Impact of caregiver activities and social supports on multidimensional caregiver burden: analyses from nationally-representative surveys of cancer patients and their caregivers. Qual Life Res 2017;26:1587–95.

25. Williams AM, Wang L, Kitchen P. Differential impacts of caregiving across three caregiver groups in Canada: end-of-life care, long-term care and short-term care. Health Soc Care Community 2014:22:187–96.

26. Schrank B, Ebert-Vogel A, Ameing M, et al. Gender differences in caregiver burden and its determinants in family members of terminally ill cancer patients. Psychooncology 2016;25:808–14.

27. Shaffer KM, Jacobs JM, Nipp RD, et al. Mental and physical health correlates among family caregivers of patients with newly-diagnosed incurable cancer: a hierarchical linear regression analysis. Support Care Cancer 2017;25:965–71.

28. van Warmerdam J, Zabin V, Kurdyp J, et al. Prevalence of anxiety, depression, and posttraumatic stress disorder in parents of children with cancer: a meta-analysis. Pediatr Blood Cancer 2018;66:e27677.

29. van Warmerdam J, Sutradhar R, Kurdyp J, et al. Long-term mental health outcomes in mothers and siblings of children with cancer: a population-based, matched cohort study. J Clin Oncol 2020;38:51–62.

30. Liang J, Lee SJ, Storer BE, et al. Rates and risk factors for post-traumatic stress disorder symptomatology among adult hematopoietic cell transplant recipients and their informal caregivers. Blood Blood Marrow Transplant 2019;25:145–50.

31. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5). Washington, DC: American Psychiatric Association Publishing, 2013.

32. Spiegel D. Treatment of acute traumatic stress reactions. J Trauma Dissociation 2005;6:101–8.

33. Shalev A, Libenzon I, Marmar C. Post-Traumatic stress disorder. N Engl J Med 2017;376:2469–79.

34. Kessler RC, Sonnega A, Bromet E, et al. Posttraumatic stress disorder in the National Comorbidity Survey. Arch Gen Psychiatry 1995;52:1048–60.

35. Street AE, Dardis CM. Using a social construction of gender lens to understand gender differences in posttraumatic stress disorder. Clin Psychol Rev 2018;66:97–105.

36. Kimerling R, Allen MC, Duncan LE. Chromosomes to social contexts: sex and gender differences in PTSD. Curr Psychiatry Rep 2018;20:114.

37. Gradus JL, Ol M, Lincoln AK, et al. Acute stress reaction and completed suicide. Int J Epidemiol 2010;39:1478–84.

38. Ryder AL, Azzarate PM, Cohen BE. PTSD and physical health. Curr Psychiatry Rep 2018;20:116.

39. Schlinger WE, Corry NH, Williams CS, et al. A prospective study of mortality and trauma-related risk factors among a nationally representative sample of Vietnam veterans. Am J Epidemiol 2015;182:980–90.

40. Chen S-C, Lai Y-H, Liao C-T, et al. Unmet supportive care needs and characteristics of family caregivers of patients with oral cancer after surgery. Psychooncology 2017;26:239–47.

41. Vogt D, Erbes CR, Polusny MA. Role of social context in posttraumatic stress disorder (PTSD). Curr Opin Psychol 2017;14:138–42.

42. Watson P. PTSD as a public mental health priority. Curr Psychiatry 2019;21:61.

43. Goldberg S. Attachment and Development. Part of: Texts in Developmental Psychology Series. New York, NY: Routledge, 2000.
44 Mikulincer M, Shaver PR, Solomon Z. An attachment perspective on traumatic and posttraumatic reactions. In: Safir MP, Wallach HS, Rizzo AS, eds. Future Directions in Post-traumatic Stress Disorder. New York, NY: Springer, 2015:79–96.

45 Zhang F, Layard-Viel G. Stability and fluctuation in adult attachment style over a 6-year period. Attach Hum Dev 2004;6:419–37.

46 Lo C, Walsh A, Mikulincer M, et al. Measuring attachment security in patients with advanced cancer: psychometric properties of a modified and Brief Experiences in Close Relationships Scale. Psychooncology 2009;18:490–9.

47 Willis E, Mah K, Shapiro GK, et al. Testing terror management theory in advanced cancer. Death Stud 2021;1–10.

48 Moschopoulos E, Hutchison I, Bhi K, et al. Post-Traumatic stress in head and neck cancer survivors and their partners. Support Care Cancer 2018;26:3003–11.

49 Unseld M, Krammer K, Lubowitzki S, et al. Screening for post-traumatic stress disorders in 1017 cancer patients and correlation with anxiety, depression, and distress. Psychooncology 2019;28:2392–9.

50 Kim Y, Mitchell H-R, Ting A. Application of psychological theories on the role of gender in caregiving to psycho-oncology research. Psychooncology 2019;28:228–54.

51 Segrin C, Badger TA, Sikorski A, et al. A dyadic analysis of stress processes in Latinos with breast cancer and their family caregivers. Psychooncology 2018;27:838–46.

52 Burnette D, Ducu V, Dhembo E. Psychological distress, social support, and quality of life among cancer caregivers in Albania. Psychooncology 2017;26:779–86.

53 Danzo H, Ino F. The burden of care and quality of life of caregivers of leukemia and lymphoma patients following peripheral stem cell transplantation. J Psychosoc Oncol 2015;33:250–62.

54 Shahi V, Lapid MI, Kung S, et al. Do age and quality of life of patients with cancer influence quality of life of the caregiver? J Geriatr Oncol 2014;5:331–6.

55 Juth V, Silver RC, Sender L. The shared experience of adolescent and young adult cancer patients and their caregivers. Psychooncology 2015;24:1746–53.

56 Alam S, Hannon B, Zimmermann C. Palliative care for family caregivers. J Palliat Med 2020;38:926–36.

57 Tang ST, Chang WC, Chen JS, et al. Course and predictors of depressive symptoms among family caregivers of terminally ill cancer patients until their death. Psychooncology 2013;22:1312–8.

58 Braun M, Mikulincer M, Rydall A, et al. Hidden morbidity in cancer: spouse caregivers. J Clin Oncol 2007;25:4829–34.

59 Lo C, Zimmermann C, Rydall A, et al. Longitudinal study of depressive symptoms in patients with metastatic gastrointestinal and lung cancer. J Clin Oncol 2010;28:3084–9.

60 Rodin G, Lo C, Zimmermann C, et al. Pathways to distress: the multiple determinants of depression, hopelessness, and the desire for hastened death in metastatic cancer patients. Soc Sci Med 2009;68:562–9.

61 El-Jawhari A, Abel GA, Traeger L, et al. Quality of life and mood of older patients with acute myeloid leukemia (AML) receiving intensive and non-intensive chemotherapy. Leukemia 2019;33:2393–402.

62 Palmborg A, Löttvall R, Cardeña E. Acute stress among nurses in Sweden during the COVID-19 pandemic. Eur J Trauma Dissociation 2022;6:100269.

63 Löttvall R, Palmborg Å, Cardeña E. A 20-years+ review of the Stanford Acute Stress Reaction Questionnaire (SASRQ): psychometric properties and findings. Eur J Trauma Dissociation 2022;6:100269.

64 Cardeña E, Koopman C, Classen C, et al. Psychometric properties of the Stanford Acute Stress Reaction Questionnaire (SASRQ): a valid and reliable measure of acute stress. J Trauma Stress 2000;13:719–34.

65 Cardeña E, Spiegel D. Dissociative reactions to the San Francisco Bay area earthquake of 1989. Am J Psychiatry 1993;150:474–8.

66 Freinkel A, Koopman C, Spiegel D. Dissociative symptoms in media eyewitnesses of an execution. Am J Psychiatry 1994;151:1335–9.

67 Weathers FW, Litz BT, Keane TM, et al. The PTSD checklist for DSM-5 (PCL-5): scale available from the National Center for PTSD, 2013. Available: www ptsd va gov [Accessed 07 Mar 2022].

68 Blevins CA, Weathers FW, Davis MT, et al. The Posttraumatic Stress Disorder Checklist for DSM-5 (PCL-5): development and initial psychometric evaluation. J Trauma Stress 2015;28:489–98.

69 Bovin MJ, Marx BP, Weathers FW, et al. Psychometric properties of the PTSD Checklist for diagnostic and Statistical Manual of Mental Disorders-Fifth Edition (PCL-5) in veterans. Psycho Assess 2016;28:1379–91.

70 Wortmann JH, Jordan AH, Weathers FW, et al. Psychometric analysis of the PTSD Checklist-5 (PCL-5) among treatment-seeking military service members. Psychol Assess 2016;28:1392–403.

71 Kroenke K, Spitzer RL, Williams JB. The PHQ-9: validity of a brief depression severity measure. J Gen Intern Med 2001;16:606–13.

72 Lo C, Hales S, Rydall A, et al. Managing Cancer and Living Meaningfully: study protocol for a randomized controlled trial. Trials 2015;16:391.

73 Rodin G, Lo C, Rydall A, et al. Managing Cancer and Living Meaningfully (CALM): a randomized controlled trial of a psychological intervention for patients with advanced cancer. J Clin Oncol 2018;36:2422–32.

74 Nijsboer C, Triemstra M, Tempelaar R, et al. Measuring both negative and positive reactions to giving care to cancer patients: psychometric qualities of the Caregiver Reaction Assessment (CRA). Soc Sci Med 1999;48:1259–69.

75 The ENRICHD Investigators. Enhancing recovery in coronary heart disease patients (ENRICHD): study design and methods. Am Heart J 2000;139:1–9.

76 Zhang F, Layard-Viel G. Stability and fluctuation in adult attachment style over a 6-year period. Attach Hum Dev 2004;6:419–37.

77 Weymouth M, Vief G. Stability and fluctuation in adult attachment style over a 6-year period. Attach Hum Dev 2004;6:419–37.

78 Weymouth M, Vief G. Stability and fluctuation in adult attachment style over a 6-year period. Attach Hum Dev 2004;6:419–37.

79 Weymouth M, Vief G. Stability and fluctuation in adult attachment style over a 6-year period. Attach Hum Dev 2004;6:419–37.

80 Weymouth M, Vief G. Stability and fluctuation in adult attachment style over a 6-year period. Attach Hum Dev 2004;6:419–37.

81 Weymouth M, Vief G. Stability and fluctuation in adult attachment style over a 6-year period. Attach Hum Dev 2004;6:419–37.

82 Weymouth M, Vief G. Stability and fluctuation in adult attachment style over a 6-year period. Attach Hum Dev 2004;6:419–37.

83 Weymouth M, Vief G. Stability and fluctuation in adult attachment style over a 6-year period. Attach Hum Dev 2004;6:419–37.

84 Weymouth M, Vief G. Stability and fluctuation in adult attachment style over a 6-year period. Attach Hum Dev 2004;6:419–37.

85 Weymouth M, Vief G. Stability and fluctuation in adult attachment style over a 6-year period. Attach Hum Dev 2004;6:419–37.

86 Weymouth M, Vief G. Stability and fluctuation in adult attachment style over a 6-year period. Attach Hum Dev 2004;6:419–37.

87 Weymouth M, Vief G. Stability and fluctuation in adult attachment style over a 6-year period. Attach Hum Dev 2004;6:419–37.

88 Weymouth M, Vief G. Stability and fluctuation in adult attachment style over a 6-year period. Attach Hum Dev 2004;6:419–37.

89 Weymouth M, Vief G. Stability and fluctuation in adult attachment style over a 6-year period. Attach Hum Dev 2004;6:419–37.

90 Weymouth M, Vief G. Stability and fluctuation in adult attachment style over a 6-year period. Attach Hum Dev 2004;6:419–37.

91 Weymouth M, Vief G. Stability and fluctuation in adult attachment style over a 6-year period. Attach Hum Dev 2004;6:419–37.
a machine learning multicenter cohort study. *Neurobiol Stress* 2021;14:100297.

94 Schultebraucks K, Shalev AY, Michopoulos V, et al. A validated predictive algorithm of post-traumatic stress course following emergency department admission after a traumatic stressor. *Nat Med* 2020;26:1084–8.

95 Schultebraucks K, Qian M, Abu-Amara D, et al. Pre-deployment risk factors for PTSD in active-duty personnel deployed to Afghanistan: a machine-learning approach for analyzing multivariate predictors. *Mol Psychiatry* 2021;26:5011–22.

96 Schultebraucks K, Choi KW, Galatzer-Levy IR, et al. Discriminating heterogeneous trajectories of resilience and depression after major life stressors using polygenic scores. *JAMA Psychiatry* 2021;78:744–52.

97 Schultebraucks K, Ben-Zion Z, Admon R, et al. Assessment of early neurocognitive functioning increases the accuracy of predicting chronic PTSD risk. *Mol Psychiatry* 2022;27:2247–54.

98 Collins GS, Reitsma JB, Altman DG, et al. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. *Br J Surg* 2015;102:148–58.

99 Hemingway H, Croft P, Perel P, et al. Prognosis research strategy (progress) 1: a framework for researching clinical outcomes. *BMJ* 2013;346:e5595.

100 Moons KGM, Altman DG, Reitsma JB, et al. New guideline for the reporting of studies developing, validating, or updating a multivariable clinical prediction model: the TRIPOD statement. *Adv Anat Pathol* 2015;22:303–5.

101 Steyerberg EW, Moons KGM, van der Windt DA, et al. Prognosis research strategy (progress) 3: prognostic model research. *PLoS Med* 2013;10:e1001931.

102 Cawley GC, Talbot NLC. On over-fitting in model selection and subsequent selection bias in performance evaluation. *J Mach Learn Res* 2010;11:2079–107. https://www.jmlr.org/papers/volume11/cawley10a/cawley10a.pdf

103 Steyerberg EW, Harrell FE. Prediction models need appropriate internal, internal-external, and external validation. *J Clin Epidemiol* 2016;69:245–7.

104 Kuhn M, Johnson K. *Applied Predictive Modeling*. New York, NY: Springer, 2013. https://link.springer.com/book/10.1007/978-1-4614-6849-3?page=2&toc

105 Carlson LE, Bultz BD, Speca M, et al. Partners of cancer patients: I. impact, adjustment, and coping across the illness trajectory. *J Psychosoc Oncol* 2000;18:39–63.

106 Muthén LK, Muthén BO. *Mplus User’s Guide: Statistical Analysis with Latent Variables*. Eighth Edition. Los Angeles, CA: Muthén & Muthén, 1998-2017. https://www.statmodel.com/download/usersguide/MplusUserGuideVer_8.pdf

107 van de Schoot R, Sijbrandij M, Winter SD, et al. The GRoLTS-Checklist: guidelines for reporting on latent trajectory studies. *Structural Equation Modeling: A Multidisciplinary Journal* 2017;24:451–67.

108 Lundberg SM, Lee SI. A unified approach to interpreting model predictions. In: Guyon I, Luxburg UV, Bengio S, et al., eds. *Advances in Neural Information Processing Systems 30 (NIPS 2017)*, 2017: 4765–74. https://papers.nips.cc/paper/2017/hash/8a20a8621978632d76c439dfc286c7767-Abstract.html

109 QSR International Pty Ltd. NVivo (released in March 2020), 2020. Available: https://www.qsrinternational.com/nvivo-qualitative-data-analysis-software/home

110 Lingard L, Albert M, Levinson W. Grounded theory, mixed methods, and action research. *BMJ* 2008;337:a567.

111 Sandelowski M. Whatever happened to qualitative description? *Res Nurs Health* 2000;23:334–40.

112 Sandelowski M, Moen S. What’s in a name? Qualitative description revisited. *Res Nurs Health* 2010;33:77–84.

113 O’Cathain A, Murphy E, Nicholl J. Three techniques for integrating data in mixed methods studies. *BMJ* 2010;341:c4587.

114 Morrow SL. Quality and trustworthiness in qualitative research in counseling psychology. *J Couns Psychol* 2005;52:250–60.10.1037/0022-0167.52.2.250

115 Grimshaw JM, Eccles MP, Lavis JN, et al. Knowledge translation of research findings. *Implement Sci* 2012;7:50.