Competitive Analysis for Two Variants of Online Metric Matching Problem*

Shuichi Miyazaki\(^1\) and Makoto Satake\(^2\)

\(^1\) Academic Center for Computing and Media Studies, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
shuichi@media.kyoto-u.ac.jp

\(^2\) Graduate School of Informatics, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
satake@net.ist.i.kyoto-u.ac.jp

Abstract. In this paper, we study two variants of the online metric matching problem. The first problem is the online metric matching problem where all the servers are placed at one of two positions in the metric space. We show that a simple greedy algorithm achieves the competitive ratio of 3 and give a matching lower bound. The second problem is the online facility assignment problem on a line, where servers have capacities, servers and requests are placed on 1-dimensional line, and the distances between any two consecutive servers are the same. We show lower bounds 3, 11/3, and 4 on the competitive ratio when the numbers of servers are 3, 4 and 5, respectively.

Keywords: Online algorithm, Competitive analysis, Online matching problem

1 Introduction

The online metric matching problem was introduced independently by Kalyanasundaram and Pruhs [7] and Khuller, Mitchell and Vazirani [10]. In this problem, \(n\) servers are placed on a given metric space. Then \(n\) requests, which are points on the metric space, are given to the algorithm one-by-one in an online fashion. The task of an online algorithm is to match each request immediately to one of \(n\) servers. If a request is matched to a server, then it incurs a cost which is equivalent to the distance between them. The goal of the problem is to minimize the sum of the costs. The papers [7] and [10] presented a deterministic online algorithm (called Permutation in [7]) and showed that it is \((2n - 1)\)-competitive and optimal.

In 1998, Kalyanasundaram and Pruhs [8] posed a question whether we can have a better competitive ratio by restricting the metric space to a line, and

* This work was partially supported by the joint project of Kyoto University and Toyota Motor Corporation, titled “Advanced Mathematical Science for Mobility Society” and JSPS KAKENHI Grant Numbers JP16K00017 and JP20K11677.
introduced the problem called the online matching problem on a line. Since then, this problem has been extensively studied, but there still remains a large gap between the best known lower bound 9.001 [5] and upper bound $O(\log n)$ [10] on the competitive ratio.

In 2020, Ahmed, Rahman and Kobourov [1] proposed a problem called the online facility assignment problem and considered it on a line, which we denote OFAL for short. In this problem, all the servers (which they call facilities) and requests (which they call customers) lie on a 1-dimensional line, and the distance between every pair of adjacent servers is the same. Also, each server has a capacity, which is the number of requests that can be matched to the server. In their model, all the servers are assumed to have the same capacity. Let us denote OFAL(k) the OFAL problem where the number of servers is k. Ahmed et al. [1] showed that for OFAL(k) the greedy algorithm is $4k$-competitive for any k and a deterministic algorithm Optimal-fill is k-competitive for any $k > 2$.

1.1 Our contributions

In this paper, we study a variant of the online metric matching problem where all the servers are placed at one of two positions in the metric space. This is equivalent to the case where there are two servers with capacities. We show that a simple greedy algorithm achieves the competitive ratio of 3 for this problem, and show that any deterministic online algorithm has competitive ratio at least 3.

We also study OFAL(k) for small k. Specifically, we show lower bounds 3, $\frac{11}{3}$ and 4 on the competitive ratio for OFAL(3), OFAL(4) and OFAL(5), respectively. We remark that our lower bound 3 for OFAL(3) does not necessarily imply optimality of Optimal-fill since upper bounds by Ahmed et al. [1] are with respect to the asymptotic competitive ratio, while our lower bounds are with respect to the strict competitive ratio (see Sec. 2.3).

1.2 Related work

In 1990, Karp, Vazirani and Vazirani [9] first studied an online version of the matching problem. They studied the online matching problem on unweighted bipartite graphs with $2n$ vertices that contain a perfect matching, where the goal is to maximize the size of the obtained matching. In [9], they first showed that a deterministic greedy algorithm is $\frac{1}{2}$-competitive and optimal. They also presented a randomized algorithm Ranking and showed that it is $(1 - \frac{1}{e})$-competitive and optimal. See [12] for a survey of the online matching problem.

As mentioned before, Kalyanasundaram and Pruhs [7] studied the online metric matching problem and showed that the algorithm Permutation is $(2n - 1)$-competitive and optimal. Probabilistic algorithms for this problem were studied in [4,13].

Kalyanasundaram and Pruhs [8] studied the online matching problem on a line. They gave two conjectures that the competitive ratio of this problem is 9 and that the Work-Function algorithm has a constant competitive ratio,
both of which were later disproved in [11] and [5], respectively. This problem was studied in [2, 3, 6, 14–16], and the best known deterministic algorithm is the Robust Matching algorithm [15], which is $\Theta(\log n)$-competitive [14, 16].

Besides the problem on a line, Ahmed, Rahman and Kobourov [1] studied the online facility assignment problem on an unweighted graph $G(V, E)$. They showed that the greedy algorithm is $2|E|$-competitive and Optimal-Fill is $\frac{|E|}{k}$-competitive, where $|E|$ is the number of edge of G and r is the radius of G.

2 Preliminaries

In this section, we give definitions and notations.

2.1 Online metric matching problem with two servers

We define the online metric matching problem with two servers, denoted OMM(2) for short. Let (X, d) be a metric space, where X is a (possibly infinite) set of points and $d(\cdot, \cdot)$ is a distance function. Let $S = \{s_1, s_2\}$ be a set of servers and $R = \{r_1, r_2, \ldots, r_n\}$ be a set of requests. A server s_i is characterized by the position $p(s_i) \in X$ and the capacity c_i that satisfies $c_1 + c_2 = n$. This means that s_i can be matched with at most c_i requests ($i = 1, 2$). A request r_i is also characterized by the position $p(r_i) \in X$.

S is given to an online algorithm in advance, while requests are given one-by-one from r_1 to r_n. At any time of the execution of an algorithm, a server is called free if the number of requests matched with it is less than its capacity, and full otherwise. When a request r_i is revealed, an online algorithm must match r_i with one of free servers. If r_i is matched with the server s_j, the pair (r_i, s_j) is added to the current matching and the cost $d(r_i, s_j)$ is incurred for this pair. The cost of the matching is the sum of the costs of all the pairs contained in it. The goal of OMM(2) is to minimize the cost of the final matching.

2.2 Online facility assignment problem on a line

We give the definition of the online facility assignment problem on a line with k servers, denoted OFAL(k). We state only differences from Sec. 2.1. The set of servers is $S = \{s_1, s_2, \ldots, s_k\}$ and all the servers have the same capacity ℓ, i.e., $c_i = \ell$ for all i. The number of requests must satisfy $n \leq \sum_{i=1}^k c_i = k\ell$. All the servers and requests are placed on a real number line, so their positions are expressed by a real, i.e., $p(s_i) \in \mathbb{R}$ and $p(r_j) \in \mathbb{R}$. Accordingly, the distance function is written as $d(r_i, s_j) = |p(r_i) - p(s_j)|$. We assume that the servers are placed in an increasing order of their indices, i.e., $p(s_1) \leq p(s_2) \leq \ldots p(s_k)$. In this problem, any distance between two consecutive servers is the same, that is, $|p(s_i) - p(s_{i+1})| = d$ ($1 \leq i \leq n - 1$) for some constant d.
2.3 Competitive ratio

To evaluate the performance of an online algorithm, we use the competitive ratio. For an input σ, let $\text{ALG}(\sigma)$ and $\text{OPT}(\sigma)$ be the costs of the matchings obtained by an online algorithm ALG and an optimal offline algorithm OPT, respectively. Then the competitive ratio of ALG is the supremum of c that satisfies $\frac{\text{ALG}(\sigma)}{\text{OPT}(\sigma)} \leq c$ for any input σ.

3 Online Metric Matching Problem with Two Servers

3.1 Upper bound

In this section, we define a greedy algorithm GREEDY for $\text{OMM}(2)$ and show that it is 3-competitive.

Definition 1. When a request is given, GREEDY matches it with the closest free server. If a given request is equidistant from the two servers and both servers are free, GREEDY matches this request with s_1.

In the following discussion, we fix an optimal offline algorithm OPT. If a request r is matched with the server s_x by GREEDY and with s_y by OPT, we say that r is of type $\langle s_x, s_y \rangle$. We then define some properties of inputs.

Definition 2. Let σ be an input to $\text{OMM}(2)$. If every request in σ is matched with a different server by GREEDY and OPT, σ is called anti-opt.

Definition 3. Let σ be an input to $\text{OMM}(2)$. Suppose that GREEDY matches its first request r_1 to the server $s_x \in \{s_1, s_2\}$. If GREEDY matches r_1 through r_{c_x} to s_x (note that c_x is the capacity of s_x) and r_{c_x+1} through r_n to the other server s_{3-x}, σ is called one-sided-priority.

For an input σ, we define $\text{Rate}(\sigma) = \frac{\text{GREEDY}(\sigma)}{\text{OPT}(\sigma)}$. By the following two lemmas, we show that it suffices to consider inputs that are anti-opt and one-sided-priority. We then show that GREEDY is 3-competitive for such inputs.

Lemma 1. For any input σ, there exists an anti-opt input σ' such that $\text{Rate}(\sigma') \geq \text{Rate}(\sigma)$.

Proof. If σ is already anti-opt, we can set $\sigma' = \sigma$. Hence, in the following, we assume that σ is not anti-opt. Then there exists a request r in σ that is matched with the same server s_x by OPT and GREEDY. Let σ'' be an input obtained from σ by removing r and subtracting the capacity of s_x by 1. By this modification, neither OPT nor GREEDY changes a matching for the remaining requests. Therefore,

$$\text{Rate}(\sigma'') = \frac{\text{GREEDY}(\sigma') - d(r, s_x)}{\text{OPT}(\sigma) - d(r, s_x)} \geq \frac{\text{GREEDY}(\sigma)}{\text{OPT}(\sigma)} = \text{Rate}(\sigma).$$
Let σ' be the input obtained by repeating this operation until the input sequence becomes anti-opt. Then σ' satisfies the conditions of this lemma.

Lemma 2. For any anti-opt input σ, there exists an anti-opt and one-sided-priority input σ' such that $\Rate(\sigma') \geq \Rate(\sigma)$.

Proof. If σ is already one-sided-priority, we can set $\sigma' = \sigma$. Hence, in the following, we assume that σ is not one-sided-priority.

Since σ is anti-opt, σ contains only requests of type $\langle s_1, s_2 \rangle$ or $\langle s_2, s_1 \rangle$. Without loss of generality, assume that in execution of GREEDY, the server s_1 becomes full before s_2, and let r_i be the request that makes s_1 full (i.e., r_i is the last request of type $\langle s_1, s_2 \rangle$).

Because σ is not one-sided-priority, σ includes at least one request r_i of type $\langle s_2, s_1 \rangle$ before r_i. Let σ'' be the input obtained from σ by moving r_i to just after r_i. Since the set of requests is unchanged in σ and σ'', an optimal matching for σ is also optimal for σ'', so $\text{OPT}(\sigma'') = \text{OPT}(\sigma)$. In the following, we show that GREEDY matches each request to the same server in σ and σ''. The sequence of requests up to $r_i - 1$ are the same in σ'' and σ, so the claim clearly holds for r_1 through $r_{i - 1}$. The behavior of GREEDY for $r_{i + 1}$ through r_i in σ'' is also the same for those in σ, because when serving these requests, both s_1 and s_2 are free in both σ and σ''. Just after serving r_i in σ'', s_1 becomes full, so GREEDY matches $r_i, r_{i + 1}, \ldots, r_n$ with s_2 in σ''. Note that these requests are also matched with s_2 in σ. Hence $\text{GREEDY}(\sigma'') = \text{GREEDY}(\sigma)$ and it results that $\Rate(\sigma'') = \Rate(\sigma)$. Note that σ'' remains anti-opt.

Let σ' be the input obtained by repeating this operation until the input sequence becomes one-sided-priority. Then σ' satisfies the condition of the lemma.

We can now prove the upper bound.

Theorem 1. The competitive ratio of GREEDY is at most 3 for OMM(2).

Proof. By Lemma 1 it suffices to analyze only anti-opt inputs. In an anti-opt input, the number of requests of type $\langle s_1, s_2 \rangle$ and that of type $\langle s_2, s_1 \rangle$ are the same and the capacities of s_1 and s_2 are $n/2$ each. By Lemma 2 it suffices to analyze only the inputs where the first $n/2$ requests are of type $\langle s_1, s_2 \rangle$ and the remaining $n/2$ requests are of type $\langle s_2, s_1 \rangle$.

Let σ be an arbitrary such input. Then we have that

$$\text{GREEDY}(\sigma) = \sum_{i=1}^{n/2} d(r_i, s_1) + \sum_{i=n/2+1}^{n} d(r_i, s_2)$$

and

$$\text{OPT}(\sigma) = \sum_{i=1}^{n/2} d(r_i, s_2) + \sum_{i=n/2+1}^{n} d(r_i, s_1).$$
When serving \(r_1, r_2, \ldots, r_{n/2} \), both servers are free but GREEDY matched them with \(s_1 \). Hence \(d(r_i, s_1) \leq d(r_i, s_2) \) for \(1 \leq i \leq n/2 \). By the triangle inequality, we have \(d(r_i, s_2) \leq d(s_1, s_2) + d(r_i, s_1) \) for \(n/2 + 1 \leq i \leq n \). Again, by the triangle inequality, we have \(d(s_1, s_2) \leq d(r_i, s_1) + d(r_i, s_2) \) for \(1 \leq i \leq n \).

From these inequalities, we have that

\[
ALG(\sigma) = \sum_{i=1}^{n/2} d(r_i, s_1) + \sum_{i=n/2+1}^{n} d(r_i, s_2) \\
\leq \sum_{i=1}^{n/2} d(r_i, s_2) + \sum_{i=n/2+1}^{n} (d(s_1, s_2) + d(r_i, s_1)) \\
= OPT(\sigma) + \frac{n}{2} d(s_1, s_2) \\
= OPT(\sigma) + \frac{1}{2} \sum_{i=1}^{n} d(s_1, s_2) \\
\leq OPT(\sigma) + \frac{1}{2} \sum_{i=1}^{n} (d(r_i, s_1) + d(r_i, s_2)) \\
= OPT(\sigma) + \frac{1}{2} (OPT(\sigma) + ALG(\sigma)) \\
= \frac{3}{2} OPT(\sigma) + \frac{1}{2} ALG(\sigma).
\]

Thus \(ALG(\sigma) \leq 3 OPT(\sigma) \) and the competitive ratio of GREEDY is at most 3.

3.2 Lower bound

Theorem 2. The competitive ratio of any deterministic online algorithm for OMM(2) is at least 3.

Proof. We prove this lower bound on a 1-dimensional real line metric. Let \(p(s_1) = -d \) and \(p(s_2) = d \) for a constant \(d \). Consider any deterministic algorithm ALG. First, our adversary gives \(c_1 - 1 \) requests at \(p(s_1) \) and \(c_2 - 1 \) requests at \(p(s_2) \). OPT matches the first \(c_1 - 1 \) requests with \(s_1 \) and the rest with \(s_2 \). If there exists a request that ALG matches differently from OPT, the adversary gives two more requests, one at \(p(s_1) \) and the other at \(p(s_2) \). Then, the cost of OPT is zero, while the cost of ALG is positive, so the ratio of them becomes infinity.

Next, suppose that ALG matches all these requests with the same server as OPT. Then the adversary gives the next request at the origin 0. Let \(s_x \) be the server that ALG matches this request with. Then OPT matches this request with the other server \(s_{3-x} \). After that, the adversary gives the last request at \(p(s_x) \). ALG has to match it with \(s_{3-x} \) and OPT matches it with \(s_x \). The costs of ALG and OPT for this input is \(3d \) and \(d \), respectively. This completes the proof.
4 Online Facility Assignment Problem on Line

In this section, we show lower bounds on the competitive ratio of OFAL\((k)\) for \(k = 3, 4, \) and 5. We start with \(k = 3\).

Theorem 3. The competitive ratio of any deterministic online algorithm for OFAL\((3)\) is at least 3.

Proof. Our adversary first gives \(c_i - 1\) requests at \(p(s_i)\) for each \(i = 1, 2, \) and 3. \(OPT\) matches every request \(r\) with the server at the same position \(p\). If \(ALG\) matches some request \(r\) with a server not at \(p\), then the adversary gives three more requests, one at each position of the server. The cost of \(ALG\) is positive and the cost of \(OPT\) is zero, so the ratio of the costs is infinity.

Next, suppose that \(ALG\) matches all these requests to the same server as \(OPT\). Then, the adversary gives a request \(r_1\) at \(p(s_2)\). If \(ALG\) matches \(r_1\) with \(s_1\) or \(s_3\), the adversary gives requests \(r_2\) and \(r_3\) at \(p(s_1)\) and \(p(s_3)\). Then \(OPT\)'s cost is zero and \(ALG\)'s cost is positive, so again the ratio is infinity. So suppose that \(ALG\) matches \(r_1\) with \(s_2\). The rest of the proof is similar to that of Theorem 2. The adversary gives a request \(r_2\) at \(p(s_2)\). If \(ALG\) matches \(r_2\) with \(s_1\), the adversary gives a request \(r_3\) at \(p(s_3)\). \(OPT\) matches \(r_2\) with \(s_3\) and \(r_3\) with \(s_1\). The cost of \(ALG\) is 3\(d\), while the cost of \(OPT\) is \(d\). The other case is symmetric; if \(ALG\) matches \(r_2\) with \(s_3\), the adversary gives a request \(r_3\) at \(p(s_3)\). \(OPT\) matches \(r_2\) with \(s_1\) and \(r_3\) with \(s_3\) and the costs of \(ALG\) and \(OPT\) are 3\(d\) and \(d\), respectively.

\(\square\)

To simplify the proof for \(k = 4\) and 5, we give Definitions 4 and 5 and Proposition 1 that allow us to restrict online algorithms to consider. These are observed in \([3, 11]\).

Definition 4. When a request \(r\) is given, the surrounding servers for \(r\) are the closest free server to the left of \(r\) and the closest free server to the right of \(r\).

Definition 5. If, for any input, an algorithm \(ALG\) matches every request with one of the surrounding servers, \(ALG\) is called surrounding-oriented.

Proposition 1. For any algorithm \(ALG\), there exists a surrounding-oriented algorithm \(ALG'\) such that \(ALG'(\sigma) \leq ALG(\sigma)\) for any input \(\sigma\).

Theorem 4. The competitive ratio of any deterministic online algorithm for OFAL\((4)\) is at least \(\frac{11}{3}\).

Proof. By Proposition 1 it suffices to consider only surrounding-oriented algorithms. Let \(ALG\) be any such algorithm.

The adversary first gives \(c_i - 1\) requests at \(p(s_i)\) for \(i = 1, 2, 3, \) and 4. \(OPT\) matches every request \(r\) with the server at \(p\). If \(ALG\) matches some request \(r\) with a server not at \(p\), then the adversary gives four more requests, one at each position of the server. The cost of \(ALG\) is positive and the cost of \(OPT\) is zero, so the ratio becomes infinity.
Next, suppose that ALG matches all these requests to the same server as OPT. Then, the adversary gives a request r_1 at $p(s_2) + p(s_3)$. Without loss of generality, assume that ALG matches it with s_2. Then, the adversary gives a request r_2 at $p(s_2)$. We consider two cases depending on the behavior of ALG.

Case 1. ALG matches r_2 with s_2.
See Fig. 1. The adversary gives the next request r_3 at $p(s_1)$. ALG has to match r_3 with s_3. Finally, the adversary gives a request r_4 at $p(s_4)$ and ALG matches it with s_4. The cost of ALG is $7d/2$ and the cost of OPT is $d/2$.

![Fig. 1. Requests and ALG’s matching for Case 1 of Theorem 4.](image)

Case 2. ALG matches r_2 with s_3.
The adversary gives the next request r_3 at $p(s_3)$. We have two subcases.

Case 2(1). ALG matches r_3 with s_1.
See Fig. 2. The adversary gives a request r_4 at $p(s_4)$ and ALG has to match it with s_4. The cost of ALG is $13d/2$ and the cost of OPT is $3d/2$.

![Fig. 2. Requests and ALG’s matching for Case 2(1) of Theorem 4.](image)

Case 2(2). ALG matches r_3 with s_4.
See Fig. 3. The adversary gives a request r_4 at $p(s_4)$ and ALG has to match r_4 with s_1. The cost of ALG is $11d/2$ and the cost of OPT is $3d/2$.

In any case, the ratio of ALG’s cost to OPT’s cost is at least $11/3$. This completes the proof. □
Theorem 5. The competitive ratio of any deterministic online algorithms for
\text{OFAL}(5) is at least 4.

Proof. By Proposition 1 it suffices to consider only surrounding-oriented algo-
rithms. Let ALG be any such algorithm.

The adversary first gives \(c_i - 1 \) requests at \(p(s_i) \) for \(i = 1, 2, 3, 4, \) and 5. \text{OPT} matches every request \(r \) with the server at \(p(r) \). If ALG matches some request \(r \) with a server not at \(p(r) \), then the adversary gives five more requests, one at each position of the server. The cost of ALG is positive and the cost of \text{OPT} is zero, so the ratio becomes infinity.

Next, suppose that ALG matches all these requests to the same server as \text{OPT}. Then, the adversary gives a request \(r_1 \) at \(p(s_3) \). If ALG matches this with \(s_2 \) or \(s_4 \), the adversary gives the remaining requests at \(p(s_1) \), \(p(s_2) \), \(p(s_4) \) and \(p(s_5) \). \text{OPT}’s cost is zero, while ALG’s cost is positive, so the ratio is again infinity. Therefore, assume that ALG matches \(r_1 \) with \(s_3 \). The adversary then gives a request \(r_2 \) at \(p(s_3) \). Without loss of generality, assume that ALG matches it with \(s_2 \). Next, the adversary gives a request \(r_3 \) at \(p(s_2) \). We consider two cases depending on the behavior of ALG.

Case 1. ALG matches \(r_3 \) with \(s_1 \).
See Fig. 4. The adversary gives the next request \(r_4 \) at \(p(s_1) \). ALG has to match it with \(s_4 \). Finally, the adversary gives a request \(r_5 \) at \(p(s_5) \) and ALG matches it with \(s_5 \). The cost of ALG is \(5d \) and the cost of \text{OPT} is \(d \).
Case 2. ALG matches r_3 with s_4.
The adversary gives the next request r_4 at $p(s_4)$. We have two subcases.

Case 2(1). ALG matches r_4 with s_1.
See Fig. 5. The adversary gives a request r_5 at $p(s_1)$ and ALG has to match it with s_5. The cost of ALG is $10d$ and the cost of OPT is $2d$.

![Fig. 5. Requests and ALG’s matching for Case 2(1) of Theorem 5.](image)

Case 2(2). ALG matches r_4 with s_5.
See Fig. 6. The adversary gives a request r_5 at $p(s_5)$ and ALG has to match it with s_1. The cost of ALG is $8d$ and the cost of OPT is $2d$.

![Fig. 6. Requests and ALG’s matching for Case 2(2) of Theorem 5.](image)

In any case, the ratio of ALG’s cost to OPT’s cost is at least 4, which completes the proof.

5 Conclusion

In this paper, we studied two variants of the online metric matching problem. The first is a restriction where all the servers are placed at one of two positions in the metric space. For this problem, we presented a greedy algorithm and
showed that it is 3-competitive. We also proved that any deterministic online algorithm has competitive ratio at least 3, giving a matching lower bound. The second variant is the Online Facility Assignment Problem on a line with a small number of servers. We showed lower bounds on the competitive ratio $3, \frac{11}{4},$ and 4 when the numbers of servers are $3, 4,$ and 5, respectively.

One of the future work is to analyze the online metric matching problem with three or more server positions. Another interesting direction is to consider an optimal online algorithm for the Online Facility Assignment Problem on a line when the numbers of servers are $3, 4,$ and 5.

References

1. Ahmed, A., Rahman, M., Kobourov, S.: Online facility assignment. Theoretical Computer Science 806, 455–467 (2020)
2. Antoniadis, A., Barcelo, M., Nugent, M., Pruhs, N., Scquizzato, M.: A $o(n)$-competitive deterministic algorithm for online matching on a line. WAOA 2012 pp. 11–22 (2014)
3. Antoniadis, A., Fischer, C., Tönnis, A.: A collection of lower bounds for online matching on the line. LATIN 2018 pp. 52–65 (2018)
4. Bansal, N., Buchbinder, N., Gupta, A., Naor, J.: An $o(\log^2 k)$-competitive algorithm for metric bipartite matching. ESA 2007 pp. 522–533 (2007)
5. Fuchs, B., Hochstättler, W., Kern, W.: Online matching on a line. Theoretical Computer Science 332, 251–264 (2005)
6. Gupta, A., Lewi, K.: The online metric matching problem for doubling metrics. ICALP 2012 pp. 424–435 (2012)
7. Kalyanasundaram, B., Pruhs, K.: Online weighted matching. Journal of Algorithms 14(3), 478–488 (1993)
8. Kalyanasundaram, B., Pruhs, K.: Online network optimization problems. Online Algorithms. Lecture Notes in Computer Science 1442, 268–280 (1998)
9. Karp, R., Vazirani, U., Vazirani, V.: An optimal algorithm for on-line bipartite matching. STOC 1990 pp. 352–358 (1990)
10. Khuller, S., Mitchell, S., Vazirani, V.: On-line algorithms for weighted bipartite matching and stable marriages. Theoretical Computer Science 127(2), 255–267 (1994)
11. Koutsoupias, E., Nanavati, A.: The online matching problem on a line. WAOA 2003 pp. 179–191 (2004)
12. Mehta, A.: Online matching and ad allocation. Theoretical Computer Science 8(4), 265–368 (2012)
13. Meyerson, A., Nanavati, A., Poplawski, L.: Randomized online algorithms for minimum metric bipartite matching. SODA 2006 pp. 954–959 (2006)
14. Nayyar, K., Raghvendra, S.: An input sensitive online algorithm for the metric bipartite matching problem. FOCS 2017 pp. 505–515 (2017)
15. Raghvendra, S.: A robust and optimal online algorithm for minimum metric bipartite matching. APPROX/RANDOM 2016 60, 18:1–18:16 (2016)
16. Raghvendra, S.: Optimal analysis of an online algorithm for the bipartite matching problem on a line. SoCG 2018 pp. 67:1–67:14 (2018)