The Visual Survey Group: A Decade of Hunting Exoplanets and Unusual Stellar Events with Space-Based Telescopes

Martti H. K. Kristiansen¹, Saul A. Rappaport², Andrew M. Vanderburg², Thomas L. Jacobs³, Hans Martin Schwengeler⁴, Robert Gagliano⁵, Ivan A. Terentev⁶, Daryll M. LaCourse⁷, Mark R. Omohundro⁴, Allan R. Schmitt⁶, Brian P. Powell⁶ and Veselin K. B. Kostov⁹,¹⁰,¹¹

Abstract
This article presents the history of the Visual Survey Group (VSG) - a Professional-Amateur (Pro-Am) collaboration within the field of astronomy working on data from several space missions (Kepler, K2 and TESS). This paper covers the formation of the VSG, its survey-methods including the most common tools used and its discoveries made over the past decade. So far, the group has visually surveyed nearly 10 million light curves and authored 69 peer-reviewed papers which mainly focus on exoplanets and discoveries involving multistellar systems found using the transit method. The preferred manual search-method carried out by the VSG has revealed its strength by detecting numerous sub-stellar objects which were overlooked or discarded by automated search programs, uncovering some of the most rare stars in our galaxy, and leading to several serendipitous discoveries of unprecedented astrophysical phenomena. The main purpose of the VSG is to assist in the exploration of our local Universe, and we therefore advocate continued crowd-sourced examination of time-domain data sets, and invite other research teams to reach out in order to establish collaborating projects.

Keywords
Pro-Am, amateur astronomy, citizen science, exoplanetary systems, eclipsing binaries, dipper stars, black swans

1 Introduction
The field of astronomy has a long history of collaboration between professional and amateur astronomers dating back centuries (see e.g. Boyd (2011), Lintott (2020)). In recent times, largescale projects such as MilkyWay@Home (Newberg et al. 2013), SETI@home (Anderson et al. 2000), Stardust@home (Westphal et al. 2005) and Galaxy Zoo (Lintott et al. 2008) became widespread, counting millions of participating volunteers to date. The popularity of Galaxy Zoo evolved into the citizen science platform Zooniverse which at the time of writing has 2.455.914 registered users alone¹. One particular project from this platform, Planet Hunters (PH, Fischer et al. (2012)), was created on 16 December 2010 alongside the launch of the Kepler spacecraft and its wonderful photometric data stream (Koch et al. 2010). In the PH-project, citizen scientists were given an optional tutorial and shown light curves in which they were asked to identify exoplanetary transits (Lintott et al. 2013). This effort was intended to serve as an aid to the Transiting Planet Search algorithm developed by the Kepler team (TPS, Jenkins et al. (2010a), Jenkins et al. (2010b)). Initially, in order for a suspected Planet Candidate (PC) to be upgraded to a Threshold Crossing Event (TCE), the TPS-algorithm needed at least three consistent transits with a statistical significance ≥ 7.1σ (Jenkins et al. 2002). Consequently, these criteria left a large portion of parameter space initially unexplored, but at the same time, an open door for focused visual surveying by citizen scientists. Those collective efforts quickly proved to be particularly effective with respect to the dearth of long-period exoplanet detections, the improvement of which betters the census of planet occurrence rates². In the primary Kepler mission (Borucki et al. 2010), few long-period exoplanets (i.e. planets with < 3 transits) were identified by professional astronomers (see e.g. Batalha et al. (2013), Foreman-Mackey et al. (2016), Uehara et al. (2016), Schmitt et al. (2017)). Similar circumstances emerged for the K2-mission (Howell et al. 2014). Although the presence of

¹Brorfeld Observatory, Observer Gyldenkernes Vej 7, DK-4340 Tølløse, Denmark
²Department of Physics, and Kavli Institute for Astrophysics and Space Research, M.I.T., Cambridge, MA 02139, USA
³Amateur Astronomer, 12812 SE 69th Place, Bellevue, WA 98006
⁴PhD student, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH, UK
⁵Amateur Astronomer, Glendale, Arizona
⁶Amateur Astronomer, 7507 52nd Pl NE, Marysville, WA 98270
⁷Amateur Astronomer, 616 W. 53rd St., Apt. 101, Minneapolis, MN 55419, USA
⁸Amateur Astronomer, 189 Bernardo Ave, Suite 200, Mountain View, CA 94043, USA
⁹GSFC Sellers Exoplanet Environments Collaboration

Coresponding author: Martti H. Kristiansen, Brorfeld Observatory, Observer Gyldenkernes Vej 7, DK-4340 Tølløse, Denmark
Email: martti@outinto.space & marki@holb.dk
more single transits was expected for K2, due to its 80-day observation campaigns, few were detected (see e.g. Osborn et al. (2016)). In the Transiting Exoplanet Survey Satellite mission (TESS, Ricker et al. (2014)), the estimated single transit harvest exceeds that of K2 (Cooke et al. (2018), Villanueva Jr et al. (2019)), partly due to even shorter observation intervals (∼27 days).

In this paper, we describe the efforts of a Professional-Amateur (Pro-Am) collaboration called the Visual Survey Group (VSG) with the goal of searching for long-period planets and other unusual astrophysical phenomena. Even though astronomers have developed new methods (e.g. Olmschenk et al. (2021); Osborn (2021); Cui et al. (2021)), the hunt for single transits is time consuming and incomplete. Visual surveying therefore continues to be a viable detection method for these signals. Moreover, some of the new automated methods designed to detect irregular light curve features (The Weird Detector, Wheeler and Kipping (2019)) and exocomets (Kennedy et al. 2019) were inspired by discoveries made by the VSG. Therefore, in spite of significant advances in automated search approaches over the last decade, the pattern recognition ability of the human mind and the steadfast participation of amateurs is far from being rendered a useless or frivolous endeavor.

In this work, we describe the history of the VSG (Section 2), while Section 3 covers the manual and visual search approach primarily undertaken by the VSG and tools used. Section 4 discusses the scientific discoveries made by the VSG which amongst others consist of exoplanets, light curve anomalies which have turned out to be all manner of dusty occultations, including exocomets, and eclipsing binaries which we have found to be part of trilply eclipsing triples, and higher-order stellar systems. In Section 5 we carry out a discussion and our conclusion.

2 The Visual Survey Group

The Visual Survey Group (hereafter, VSG) consists of seven citizen scientists (TLJ, RG, MRO, DML, IAT, HMS and MHK) from four countries (USA, Russia, Switzerland and Denmark). Their professions (or former employment in the case of retirement) range over the fields of business, medicine, programming, aerospace engineering, information technology, mathematics and astronomy. Three group members are formally retired. In addition, two professional astronomers situated at the Massachusetts Institute of Technology (MIT; SAR and AV) and two at NASA’s Goddard Space Flight Center (NASA GSFC; BPP and VBK) complete the VSG-collaboration.

The establishment of the VSG is outlined in the following subsection but for the purpose of historical recordkeeping, we here mention three individuals who no longer are affiliated with the VSG but nonetheless made important contributions in the earlier stages: Troy Winarski, Alexander Venner and Kian J. Jek (see references in Sect. 4 and Venner et al. (2021)). Kian J. Jek received the American Astronomical Society Chambliss Amateur Achievement Award in 2012 which also was awarded to a VSG-member (DML) in 2016.

2.1 Common Grounds

All members met on the Zooniverse platform at the now defunct, original Planet Hunters project led by Yale University between 2010 and 2013. For each individual, the exact pathway towards the VSG-collaboration varies and is therefore summarized in a timeline in Figure 1. At the outset, the hunt for exoplanets was done using ingested data from the Kepler mission (Borucki et al. 2010), which were shown in light curve snips (light curves from single Kepler-Quarters were divided in smaller portions) followed by the question: “Does the star have any transit features?” (Fig. 1, Lintott et al. (2013)). Subsequently, the users could either continue to the next classification or get involved in a discussion.
Figure 2. A TESS Quick Look Pipeline (QLP) light curve for TIC 123738465 showing a multistellar candidate signal. Highlighted in green, is the primary signal of the short-period eclipsing binary detected by LcViewer via its automated QuickFind search feature.

concerning the most recently classified star (‘Talk-section’). The Talk-section connected the VSG-members and was also heavily used by other so-called ‘superusers’ (see Sect. 2 in Schwamb et al. (2013)).

By the time of Kepler’s repurposed two-wheel mission, K2 (Howell et al. 2014), the PH-website was redesigned. It was during the K2-revival that AV joined PH as an official Science Team member and TLJ, DML, and MHK made contact with SAR on a more informal basis. All seven citizen scientists made the transition to the new PH-website, however a lack of certain improvements of the interface backend, specifically common to how potential targets of interest were tracked, tallied and subsequently analyzed, resulted in this being a limited visit for some individuals (first TLJ, DML and later MHK). This said, connections to the PH-science team were maintained, and some of the VSG-members were engaged in public outreach (see e.g. the PH-science team’s Reddit science ‘Ask me anything’4, PH-interviews5 and earlier PH-blog posts6).

Meanwhile, a new Zooniverse project arose which also dealt with data from K2, the Exoplanet Explorers7 (Christiansen et al. 2018), and later a third project, Planet Hunters TESS8 (Eisner et al. 2020) working on TESS-data. From the VSG, HMS and IAT participated in both projects.

Instead of running several parallel surveys of similar nature, the subteams joined forces in January 2020 and once again found common ground. In doing so, the workflow was streamlined in both light curve surveying and vetting. Two years later, in January 2022, BPP and VBK formally joined the VSG, adding two more professional colleagues to the collaboration which had begun in September 2020.

3 Approach, Tools and Data

The VSG operates on Linux, Macintosh, and Windows systems. The primary approach has since the beginning been visual and manual surveying, which still has many advantages compared to state-of-the-art computer software. All communications about potential discoveries are made within a day via e-mail contact to all members. When members find potentially interesting new objects they are immediately shared among the entire VSG via e-mail. Discussions about the viability of each discovery is then continued via a continuous e-mail stream.

3.1 The LcTools Approach

Since 2012, the VSG-members have worked closely with the LcTools project (Kipping et al. (2015), Schmitt et al. (2019), Schmitt and Vanderburg (2021)) whose purpose is to provide citizen scientists, students, and universities worldwide with custom applications, data, and consulting services for viewing and analyzing light curves from NASA space missions. Based on their research needs and objectives, the VSG members have contributed many ideas for improvement in the product and have assisted in testing the product prior to public release.

LcTools has revolutionized visual surveying of stellar light curves. Since becoming available in 2012, the product has been gradually upgraded with sophisticated packages such as VARTOOLS (Hartman 2012). However, its manual and visual features should undoubtedly be credited with the underlying success of the VSG. This Windows-based software allows its users to efficiently scan light curves in a matter of seconds. For instance, upon release of a K2-campaign consisting of ≈ 20,000 light curves, a VSG-member could normally survey the entire data set within a day.

LcTools provides many user-friendly custom-designed features, some not found in any other publicly available product. These include, but not limited to (1) a near instantaneous display of light curves using a simple one-button click to rapidly scan through a large list of light curve files in a directory, (2) optimized light curve presentation to facilitate the visual detection of signals, (3) fast and efficient light curve navigation operations such as panning and zooming, (4) real-time tracking of time and flux at the cursor, (5) ability to measure signals and time/flux intervals using the mouse, (6) display of mission-based and community-based signals such as TCEs, Kepler Objects of Interest (KOIs), K2 Objects of Interest (K2OIs), Community TESS Objects of Interest (CTOIs) and TESS Objects of Interest (TOIs) to avoid known signals being re-discovered, (7) automatic detection of periodic signals and single events using the QuickFind and Box Least Squares (BLS) signal detection methods, (8) recording and display of user defined signals, (9) ability to phase-fold periodic signals over different time domains, (10) manual detrending of light curves based on easy-to-use flattening levels, (11) display
of the host star properties for a light curve, (12) creation of signal based property reports in Excel, (13) building of light curve files (individually or bulk) for the Kepler, K2 and TESS missions and associated High Level Science Products (HLSPs) using the source data from the Mikulski Archive for Space Telescopes (MAST)\(^9\).

At present, light curve files are obtained in a .txt-format from the LcTools website\(^10\) if available or built using the LcGenerator application in LcTools. Otherwise, data are directly obtained at the source (see Tab. 1). Most of the discoveries made by the VSG (Sect. 4) were initially flagged using the LcViewer application in LcTools. Figure 2 shows the Quick Look Pipeline (QLP) light curve for TIC 123738465 in LcViewer and the accompanying user interface for finding signals automatically using the QuickFind signal detection method.

3.2 Additional Survey Tools

During the Kepler mission (Borucki et al. 2010), and prior to the first release of LcTools, the seven citizen scientists primarily made use of the PH-interface for light curve classification and the MAST for data acquisition. This was accompanied by services such as Tool for OPerations on Catalogues And Tables (TOPCAT, Taylor (2011)) and Fv (Pence and Chai 2012) used for light curve files and Target Pixel Files (TPFs), the SkyView Query Form\(^11\) to identify the stellar vicinity of a target star, and the Amateur Kepler Observer (AKO, Winarski (private software)) to search for Transit Timing Variations (TTVs), i.e. in order to produce ‘Winarski-plots’ which now are commonly known as river-plots (see e.g. Fig. 4 in Agol and Fabrycky (2018)).

In the K2-era (Howell et al. 2014), VSG also made use of VESPA to statistically validate transiting exoplanets (Morton 2015), and Kadenza (Barentsen and Cardoso 2018) in order to obtain raw cadence pixel files for quick-views of targets of interest, and other light curve extraction software for operating TPFs (PyKE, Still and Barclay 2012; AKO-TPF, (Winarski, private software)). The latter is comparable to the interactive features of Lightkurve (Lightkurve Collaboration: Cardoso et al. 2018), which now is a standard ingredient in the VSG-vetting process for TESS data. In the VSG, Lightkurve is mostly used to look for contamination, e.g. EBs mimicking PCs, and Solar System Objects (SSOs) mimicking PCs or stellar flares/outbursts. These SSOs are identified using the Sky Body Tracker (SkyBoT, Berthier et al. (2006), Berthier et al. (2016)).

Furthermore, Lightkurve has been proven extremely useful when assessing hierarchical eclipsing candidates due to the large pixel size (21″) of TESS as illustrated in Figure 3. During the TESS-mission, TPFs have also been obtained using TESScut\(^12\) (Brasseur et al. 2019).

Information concerning stellar parameters can be found at the Exoplanet Follow-up Observing Program (ExoFOP)\(^13\), the Gaia-collaboration\(^14\) (Collaboration and Wilkinson (2016), Brown et al. (2021)), the Aladin Lite finding charts at Swarthmore, the MAST or at databases operated by the
strabourgh astronomical Data Center (CDS)15 - SIMBAD (Wenger et al. 2000) and VizieR (Genova et al. 2000). In addition, while evaluating dipper candidates (Sect. 4.4), the online search engine16 of the wide-field Infrared Survey Explorer (WISE, Wright et al. (2010)) is used to search for IR-excess. Moreover, custom programs written in python, C, Fortran, and JavaScript languages have been created by the VSG over the years.

In addition to this work, the analysis, expertise and guidance from the members at MIT and NASA help ensure the prospects of follow-up observations at suitable facilities. Follow-up also includes searching for archival photometry at the digital access to a sky century @ harvard (DASCH, Grindlay et al. (2009)), the all sky automated survey (ASAS, Pojmanski (1997)), the all sky automated survey for supernovae (ASAS-SN, Shappee et al. (2014)) and the asteroid terrestrial-impact last alert system (ATLAS, Tony et al. (2018)).

When validating a target, several steps are taken into consideration: For each source that looks potentially interesting, the VSG-team, usually starting with the person who initially found the source, checks such archival resources as (i) simbad, (ii) the wise-images in four bands, (iii) PanSTARRS-images (Chambers et al. 2016), (iv) the VizieR spectral energy distribution and (v) Gaia. These provide some immediate indication of (i) what is already known about the object and pointers to the literature, (ii) whether the object has any obvious near infrared excess, (iii) if there are any nearby neighbors that might be contaminating the signal, (iv) what is known about the overall spectral shape of the source, and (v) to see if the star has any bound neighbors. This individual also checks for earlier TESS sectors in which the source might have been observed. Archival data from such publicly available resources as ASAS-SN, ATLAS, and DASCH are downloaded to investigate the source activity over intervals of six years to possibly a century. We also check with team members of ground-based surveys to determine if there is any archival data for these sources (see e.g. Rappaport et al. (2022) and references herein).

There are a few members of the VSG-team who are expert in measuring the light centroid of the time varying part of the signal, and this is checked to be certain that the correct star has been identified. In cases where potential planet candidates have been found, initial checks of the folded light curve are made to inspect transit shapes and to check for odd-even effects. Our group also has access to many experts in various subfields of astronomy with whom we consult for opinions about classes of objects that are outside the immediate expertise of the professional astronomy members of the VSG-team. If necessary, we have access to astronomers who can take spectra or high-resolution images for us (speckle or adaptive optics).

3.3 Data under the Bridge

Table 1 lists different data sources including numbers of light curves manually surveyed by the VSG. The estimated numbers do not refer to unique stars due to overlaps for the three missions, and for K2 and TESS, also overlapping campaign and sector targets. In cases where a light curve has been surveyed multiple times, or by additional surveyors, it only counts once. In this manner, the VSG has so far surveyed nearly 10 million distinct light curves.

Data source	Quarter/Campaign/Sector	Light curves
Kepler	Q1 - 17	181,300
K2 SFF	ET - C19	421,600
TIC CTL	S1 - 48	907,200
OELKER	S1 - 5	543,300
CDIPS	S6 - 13	67,200
PATHOS	S4 - 14	31,800
TIC CTL	S1 - 40	1,573,000
GSFC	S1 - 40	1,573,000

| Total | | 9,672,800|

On the PH-website, it is impossible to assess the number of Kepler-targets (Brown et al. 2011) surveyed by the individual VSG-members. However, it is fair to estimate that all seven citizen scientists have surveyed more than half of the stars in the primary Kepler mission, and the entire Kepler-data set was later fully scrutinized by TLJ twice using LeTools. All seven citizen scientists have individually surveyed the entire K2 Self Flat Fielding (SFF) data set from Vanderburg and Johnson (2014).

In the TESS-mission a number of data sources have been surveyed including the TESS Input Catalog Candidate Target List (TIC CTL, Stassun et al. (2018)), the Science Processing Operations Center (SPOC, Caldwell et al. (2020)), OELKER (Oelkers and Stassun 2018), the PSF-based Approach to TESS High quality data Of Stellar clusters (PATHOS, Nardiello et al. (2019)), the Cluster Difference Imaging Photometric Survey (CDIPS, Bouma et al. (2019)), the MIT Quick Look Pipeline (QLP, Huang et al. (2020a), Huang et al. (2020b)), the TESS Image Calibrator Full Frame Images (TICA, Fausnaugh et al. (2020)) from which we generate custom light curves of one-orbit TESS-data previews that are available earlier than the standard mission products, and the Goddard Space Flight Center (GSFC, see Sect. 2, Powell et al. (2021a)). For a combined, more detailed description of the various TESS data sources, we direct the reader to Section 2.1 of Capistrant et al. (in-review).

4 Scientific Impacts

The VSG has collectively authored 72 papers (69 peer-reviewed) distributed amongst six main topics: (I) exoplanets, (II) eclipsing binaries (EBs), (III) multistellar systems, including triply eclipsing triple stars, (IV) variable stars, including pulsators and stellar flares, (V) black swans, i.e., unanticipated, new, or rare events, and (VI) dipper stars, i.e., young stars which typically exhibit quasi-regular dipping-flux behavior, which is presumably due to orbiting dusty material. By far, most discoveries made by the VSG are found by several team members within a short time frame. However, there are a few exceptions, where only one VSG-member made the discovery. These cases can be explained by

15 Strasbourg astronomical Data Center (CDS)

16 online search engine
some of us having different personal interests, which thereby creates an intensified lookout for particular types of objects. Usually, the papers are led by one of the four professional astronomers on the team, or a professional astronomer from outside the VSG with whom we regularly collaborate and/or who may be the appropriate expert on the type of source we are reporting. Table 2 gives an overview of research topics covered by the VSG including primary and secondary focus topics. The references mentioned from this section represent the VSG’s prior and current collaborators in its entirety, and the group’s participation in these discoveries is described in what follows.

Table 2. Publication categories for 72 publications authored by the VSG including primary and secondary topics of the papers.

Topic	Pri.	Sec.	Highlight
Exoplanets	30	33	Vanderburg et al. (2016)
Eclipsing binaries	12	25	LaCourse et al. (2015)
Multistellar systems	12	15	Powell et al. (2021a)
Variable stars	6	8	Handler et al. (2020)
Black swans	7	9	Boyajian et al. (2016)
Dipper stars	5	6	Capistrant et al. (in-review)
Total	72		Section 4

4.1 Exoplanets

The effort to search for additional, previously undetected exoplanets naturally arose by virtue of the team’s involvement in the PH-enterprise. At first, this pursuit was either directed towards single transiting exoplanets (Lintott et al. (2013), Wang et al. (2013b), Wang et al. (2013a), Schmitt et al. (2015), Wang et al. (2015)) and/or multiplanet systems due to the main purpose of the PH-project (Schmitt et al. (2014a), Schmitt et al. (2014b)). In addition, contributions were also made in the Exoplanet Explorers project (Zink et al. 2019). The pursuit of lone-signals continued past the close of the collaboration with the original PH science team (Osborn (2017), LaCourse and Jacobs (2018), Quinn et al. (2021)) which led to the discovery of the longest period exoplanet found in K2 (Fig. 4.1 and Giles et al. (2018)) and several long-period planets found with TESS photometry (Eisner et al. (2020), Dalba et al. (2020), Dalba et al. (2022b), Dalba et al. (2022a)). Additionally, the VSG has assisted in discovering several multiplanet systems, including a star hosting three planets (David et al. 2018), four planets (Daylan et al. (2021)), five planets (Vanderburg et al. (2016), Becker et al. (2018), Quinn et al. (2019)) and six planets (Rodriguez et al. (2018), Christiansen et al. (2018), Hardegree-Ullman et al. (2021), Leleu et al. (2021)).

In addition, multistellar systems with orbiting planets were found including a quadruple with a circumbinary planet (Schwamb et al. 2013), and a second planet in the closest M-dwarf system (triple M-dwarf system) known to host transiting planets (Winters et al. 2022). Also, several lower-order systems at high significance include two planets orbiting a young Sun-like star (Mann et al. (2020), Dai et al. (2020)), a planet around a star in a young star cluster (Mann et al. 2016), planetary transits for a naked-eye star (V =
Figure 5. Further snapshots of some VSG highlight results. Starting from the first row of panels, and working downward, these are: (1) a zoom-in on mysterious dips from Boyajian’s star (Boyajian et al. 2016); (2) all 28 dips of the Random Transiter after removal of stellar spot modulations (Rappaport et al. 2019a); (3) the asymmetric ≈ 80% flux occultation (EPIC 204376071, Rappaport et al. (2019b)); (4) stellar pulsator in a binary whose pulsation axis has been tilted to align with the tidal axis of the binary (HD 74423, Handler et al. (2020)); (5) a likely exocomet transit (KIC 3542116, Rappaport et al. (2018)); (6) light curve profiles of three ‘dipper’ stars (EPICs 204638512, 205151387 and 203850058, Ansdell et al. (2016a)).

4.2 Eclipsing Binaries

Although the primary focus by the VSG initially was directed towards exoplanet detections, signals from EBs can resemble that of planets, making a vast collection of EBs a natural byproduct (Schmitt et al. 2016). This has resulted in large catalogues for Kepler (Kirk et al. 2016), K2 (LaCourse et al. (2015), Armstrong et al. (2015)) and TESS (Prša et al. 2022). Also, LaCourse and Jacobs (2018) presented a catalogue of single eclipses found in K2 C0-C14. The VSG also hunts for cataclysmic variable stars (Gies et al. (2013), Yu et al. (2019)), active, spotted eclipsing giant stars (Oláh et al. (2018), Oláh et al. (2020)) and EBs with pulsating components (Lee et al. (2018), Lee et al. (2019), Lee et al. (2020)). Also, a post-Algol system experiencing occultations from an active accretion disk was found (Zhou et al. 2018).

4.3 Multistellar Systems

In recent years, the VSG has developed a growing interest in hierarchical systems which has resulted in discoveries of triply eclipsing triple systems (Borkovits et al. (2019), Borkovits et al. (2020)) (Fig 4.3) and Borkovits et al. (2022)), several quadruple systems where both binaries are eclipsing (Fig. 4.4 and Borkovits et al. (2022)).
et al. (2018)) including a strongly interacting quadruple (Rappaport et al. 2017), the nearest known quadruple (Borkovits et al. 2021), and the most eccentric, low-mass, short-period, eclipsing binary known (Han et al. 2021), which is also part of a quadruple system. Using TESS, the VSG presented the largest catalogue of newly discovered doubly eclipsing quadruple candidates (Kostov et al. 2022), and also contributed to the PH-TESS discovery of a massive, compact hierarchical system (Eisner et al. 2022). Adding to this collection, are a quintuple system (Rappaport et al. 2016) and the first sextuply eclipsing sextuple star system (Powell et al. 2021a).

4.4 Variable Stars
While searching for exoplanets and EBs, the VSG-members record a variety of others objects, e.g. variable stars (Armstrong et al. 2015), stars with rigidly rotating magnetospheres (Jayaraman et al. 2022) and stellar flares (Günther et al. 2020, Ilin et al. 2021). In this regard, a catalogue of false positive flare signals and newly discovered SSO-candidates is being compiled for a K2-campaign (Kristiansen et al. (in prep.)). During a TESS-survey, the VSG discovered a brand new and important class of pulsators in binary systems called ‘Tidally Tilted Pulsators’ (TTPs). In these systems, the pulsation axis has been tilted into the plane of the binary along the tidal axis. This allows the observer, for the first time, to view a pulsator at aspect angles all the way from 0 to 360 degrees (Fig. 5.4 and Handler et al. (2020), Kurtz et al. (2020)).

4.5 Black Swans
KIC 8462852, also known as Boyajian’s star (Fig. 5.1 and Boyajian et al. 2016, Boyajian et al. 2018) was the first black swan discovery with VSG-contribution. The media quickly dubbed it an alien megastructure by way of inspiration from Wright et al. (2015). Despite the apparent rarity of the system (a properly comparable analog has yet to be discovered in Kepler, K2 or TESS data), subsequent ground-based observations have established that dusty material is the most likely explanation for the irregular sharp variations in flux (see e.g. Hitchcock et al. 2019)). Also found with Kepler photometry, Capistrant et al. (in-review) presents the largest catalogue of dippers to date and thereby double the known dipper population. Most of the dippers in this catalogue were found by the VSG.

5 Discussion and Conclusion
In this work, we have presented the Visual Survey Group (VSG) and its Pro-Am collaborative nature, including its history, survey-methods and discoveries. Over the past decade, the VSG has collectively surveyed nearly 10 million light curves manually and authored 69 peer-reviewed papers primarily focusing on exoplanets, eclipsing multistar objects and ‘black swans’. However, the quantity of data produced by TESS is too immense to keep up a completely updated, thorough and manual search. Although the manual search-method by far has been the dominant approach used by the VSG, a combination of automated and manual searches is becoming more frequent. This said, no group members intend to phase out the manual search since it not only complements the prevailing approaches but simultaneously is able to reveal some of the hidden gems of our local Universe.

Concerning manual searches, there are several limitations worth mentioning. These include eye fatigue, light curve scrolling misses due to classification speed, light curve size, i.e number of data points, light curve presentation degradation caused by computer monitor resolution, and simply the loss of focus which most frequently occurs after numerous hours of surveying. By way of example, no additional stars similar to Boyajian’s star are expected to hide in the Kepler-data set, but additional shallow exocomets may have been missed, because they are isolated and hard to distinguish in a full light curve. Likewise, manual surveys do not perform particularly well for small exoplanets buried in the noise floor. Also, the human eye is not very good at seeing very short period (comparable to the sampling time) periodic events with low signal to noise, which can be easy to find with various periodogram searches (e.g., Fourier transforms, BLS transforms).

On the other hand, automated programs are not particularly good at recognizing new object patterns, and might thereby discard new and interesting types of phenomena. Several of our findings have illustrated this effect. Overall, we have found that manual surveys nicely complement automated searches and are able to complete occurrence rate studies. In addition, years of experience with manual surveying makes light curve artefacts stand out more and thereby reduces wasted time and effort in tracking down spurious signals that relatively new surveyors might not recognize.

Finally, we invite other researchers to contact us with the purpose of collaboration in mind. We are very open to looking for particular classes of objects that we might not otherwise have paid attention to, but which others find quite
interesting. Also, we welcome other experienced surveyors to join the hunt with us in the VSG.

Acknowledgements

We thank the anonymous referee for feedback which has significantly improved the clarity of the paper. We very much appreciate help and advice from, and consultations with, various professional astronomers in different sub-fields, including Tamas Borkovits, Hugh Osborn, Eric Gaidos, Jonathan Labadie-Bartz, Don Kurtz, Gerald Handler, Rahul Jayaraman, Chelsea Huang, Maximilian Günther, Melinda Soares-Furtado, Joey Rodriguez, Paul Dalba, Katalin Oláh, Jae Woo Lee, Andrej Piša, Petr Zasche, Pierre Maxted, Andrei Tokovinin, Ekaterina Il’in, Jennifer Winters, Andrew Mann, Megan Ansdell, Kevin Hardegree-Ullman, Adrien Leleu, Samuel Quinn, Tansu Daylan, Luca Malavolta, David Armstrong and the former PH-science team. This paper includes data collected by the Kepler mission and obtained from the MASTER data archive at the Space Telescope Science Institute (STScI). Funding for the Kepler mission is provided by the NASA Science Mission Directorate. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5–26555. This paper includes data collected with the TESS mission, obtained from the MASTER data archive at the Space Telescope Science Institute (STScI). Funding for the TESS mission is provided by the NASA Explorer Program. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5–26555. This research has made use of the Exoplanet Follow-up Observation Program website, which is operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration and operated by the California Institute of Technology.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Notes

1. https://www.zooniverse.org/
2. Planet Occurrence Rates
3. The AAS’s Chambliss Amateur Achievement Award recipients
4. Science AMA Series: We’re the Planet Hunters team using crowd-sourcing to search for exoplanets in the Kepler space telescope data. Ask us anything (and join the search)!
5. “Without Planet Hunters, none of the subsequent discoveries would have been possible.”
6. PH-blog posts by TLJ, DML and Kian J. Jek.
7. https://www.zooniverse.org/projects/fanc2/exoplanet-explorers/
8. https://www.zooniverse.org/projects/nora-dot-eisner/planet-hunters-tess
9. https://archive.stsci.edu/prepds/index.html/
10. https://sites.google.com/a/lctools.net/lctools/
11. https://skyview.gsfc.nasa.gov/current/cgi/query.pl
12. https://mast.stsci.edu/tesscut/
13. https://exofop.ipac.caltech.edu/t
14. https://gea.esac.esa.int/archive/
15. http://cdsweb.u-strasbg.fr/about
16. https://irsa.ipac.caltech.edu/applications/wise/

References

Agol E and Fabrycky D (2018) Transit-timing and duration variations for the discovery and characterization of exoplanets, 7, doi: 10.1007.
Anderson D, Werthimer D, Cobb J, Korpela E, Lebofsky M, Gedy D and Sullivan WT (2000) Seti@ home: internet distributed computing for seti. In: Bioastronomy 99, volume 213.
Ansdell M, Gaidos E, Jacobs TL, Mann A, Manara CF, Kennedy GM, Vanderburg A, Kenworthy M, Hirano T, LaCourse DM et al. (2019) The little dippers: transits of star-grazing exocomets? Monthly Notices of the Royal Astronomical Society 483(3): 3579–3591.
Ansdell M, Gaidos E, Rappaport S, Jacobs T, LaCourse D, Jek K, Mann A, Wyatt M, Kennedy G, Williams J et al. (2016a) Young “dipper” stars in upper sco and oph observed by k2. The Astrophysical Journal 816(2): 69.
Ansdell M, Gaidos E, Williams J, Kennedy G, Wyatt M, LaCourse D, Jacobs T and Mann A (2016b) Dipper discs not inclined towards edge-on orbits. Monthly Notices of the Royal Astronomical Society: Letters 462(1): L101–L105.
Armstrong D, Kirk J, Lam K, McCormac J, Osborn H, Spake J, Walker S, Brown D, Kristiansen M, Pollacco D et al. (2015) K2 variable catalogue–ii. machine learning classification of variable stars and eclipsing binaries in k2 fields 0–4. Monthly Notices of the Royal Astronomical Society 456(2): 2260–2272.
Barentsen G and Cardoso JVDM (2018) Kadenza: Kepler/k2 raw cadence data reader. Astrophysics Source Code Library: ascl–1803.
Batalha NM, Rowe JF, Bryson ST, Barclay T, Burke CJ, Caldwell DA, Christiansen JL, Mullally F, Thompson SE, Brown TM et al. (2013) Planetary candidates observed by kepler. iii. analysis of the first 16 months of data. The Astrophysical Journal Supplement Series 204(2): 24.
Becker JC, Vanderburg A, Adams FC, Rappaport SA and Schwengeler HM (2015) Wasp-47: A hot jupiter system with two additional planets discovered by k2. The Astrophysical Journal Letters 812(2): L18.
Becker JC, Vanderburg A, Rodriguez JE, Omohundro M, Adams FC, Stassun KG, Yao X, Hartman J, Pepper J, Bakos G et al. (2018) A discrete set of possible transit ephemerides for two long-period gas giants orbiting hip 41378. The Astronomical Journal 157(1): 19.
Berthier J, Carry B, Vachier F, Eggel S and Santerne A (2016) Prediction of transits of solar system objects in kepler/k2 images: An extension of the virtual observational service skybot.
Brown AG, Vallenari A, Prusti T, De Bruijne J, Babusiaux C, Brasseur C, Phillip C, Fleming SW, Mullally S and White RL (2019) Astrocut: Tools for creating cutouts of tess images. The Astrophysical Journal Letters 853(1): L8.

Boyajian TS, LaCourse D, Rappaport S, Fabrycky D, Fischer D, Gandolfi D, Kennedy G, Korhonen H, Liu M, Moor A et al. (2016) Planet hunters ix. kic 8462852: where’s the flux? Monthly Notices of the Royal Astronomical Society 457(4): 3988–4004.

Boyd D (2011) Pro-am collaboration in astronomy-past, present and future. Journal of the British Astronomical Association 121: 73–90.

Brasseur C, Phillip C, Fleming SW, Mullally S and White RL (2019) Astrocut: Tools for creating cutouts of tess images. Astrophysics Source Code Library : ascl–1905.

Brown AG, Vallenari A, Prusti T, De Bruijne J, Babusiaux C, Biermann M, Creevey O, Evans D, Eyer L, Hutton A et al. (2021) Gaia early data release 3-summary of the contents and survey properties. Astronomy & Astrophysics 649: A1.

Brown TM, Latham DW, Everett ME and Esquerdo GA (2011) Kepler input catalog: Photometric calibration and stellar classification. The Astronomical Journal 142(4): 112.

Caldwell DA, Tenenbaum P, Twicken JD, Jenkins JM, Ting E, Smith JC, Hedges C, Fausnaugh MM, Rose M and Burke C (2020) Tess science processing operations center ftf target list products. Research Notes of the AAS 4(11): 201.

Chambers KC, Magnier E, Metcalfe N, Flewelling H, Huber M, Waters C, Denneau L, Draper P, Farrow D, Finkbeiner D et al. (2016) The pan-stars1 surveys. arXiv preprint arXiv:1612.05560.

Christiansen JL, Crossfield IJ, Barentsen G, Lintott CJ, Barclay T, Simmons BD, Petigura E, Schlieder JE, Dressing CD, Vanderburg A et al. (2018) The k2-138 system: A near-resonant chain of five sub-neptune planets discovered by citizen scientists. The Astronomical Journal 155(2): 57.

Collaboration G and Wilkinson M (2016) Gaia data release 1: Summary of the astrometric, photometric, and survey properties.

Cooke BF, Pollacco D, West R, McCormac J and Wheatley PJ (2018) Single site observations of tess single transit detections. Astronomy & Astrophysics 619: A175.

Cui K, Liu J, Feng F and Liu J (2021) Identify light-curve signals with deep learning based object detection algorithm. i. transit detection. The Astronomical Journal 163(1): 23.

Dai F, Roy A, Fulton B, Robertson P, Hirschl L, Isaacson H, Albrecht S, Mann AW, Kristiansen MH, Batalha NM et al. (2020) The tess-keck survey. iii. a stellar obliquity measurement of toi-1726 c. The Astronomical Journal 160(4): 193.

Dalba PA, Gupta AF, Rodriguez JE, Dragomir D, Huang CX, Kane SR, Quinn SN, Bieryla A, Esquerdo GA, Fulton BJ et al. (2020) The tess–keck survey. i. a warm sub-saturn-mass planet and a caution about stray light in tess cameras. The Astronomical Journal 159(5): 241.

Dalba PA, Jacobs TL, Omohundro M, Gagiano R, Jursich J, Kristiansen MH, LaCourse DM, Schwengeler HM and Terentev IA (2022a) The refined transit ephemeris of toi-2180 b. Research Notes of the AAS 6(4).

Dalba PA, Kane SR, Dragomir D, Villanueva S, Collins KA, Jacobs TL, LaCourse DM, Gagiano R, Kristiansen MH, Omohundro M et al. (2022b) The tess-keck survey. viii. confirmation of a transiting giant planet on an eccentric 261 day orbit with the automated planet finder telescope. The Astronomical Journal 163(2): 61.

David TJ, Crossfield IJ, Benneke B, Petigura EA, Gonzales EJ, Schlieder JE, Yu L, Isaacson HT, Howard AW, Ciardi DR et al. (2018) Three small planets transiting the bright young field star k2-233. The Astronomical Journal 155(5): 222.

Daylan T, Pingle K, Wright J, Günther MN, Stassun KG, Kane SR, Vanderburg A, Jontof-Hutter D, Rodriguez JE, Shporer A et al. (2021) Tess discovery of a super-earth and three sub-neptunes hosted by the bright, sun-like star hd 108236. The Astronomical Journal 161(2): 85.

Eisner N, Barragán O, Aigrain S, Lintott C, Miller G, Zicher N, Boyajian T, Briceño C, Bryant E, Christiansen J et al. (2020) Planet hunters tess i: Toi 813, a subgiant hosting a transiting giant planet on an eccentric 261 day orbit with the automated planet finder telescope. The Astronomical Journal 162(4): 112.

Eisner NL, Johnston C, Toonen S, Frost AJ, Janssens S, Lintott CJ, Aigrain S, Sana H, Abdul-Masih M, Arellano-Córdova KZ et al. (2022) Planet hunters tess iv: a massive, compact...
hierarchical triple star system tic 470710327. *Monthly Notices of the Royal Astronomical Society* 511(4): 4710–4723.

Fausnagh MM, Burke CJ, Ricker GR and Vanderspek R (2020) Calibrated full-frame images for the tess quick look pipeline. *Research Notes of the AAS* 4(12): 251.

Fischer DA, Schwamb ME, Schawinski K, Lintott C, Brewer J, Giguere M, Lynn S, Parrish M, Sartori T, Simpson R et al. (2012) Planet hunters: the first two planet candidates identified by the public using the kepler public archive data. *Monthly Notices of the Royal Astronomical Society* 419(4): 2900–2911.

Foreman-Mackey D, Morton TD, Hogg DW, Agol E and Schölkopf B (2016) The population of long-period transiting exoplanets. *The Astronomical Journal* 152(6): 206.

Gaidos E, Jacobs T, LaCourse D, Vanderburg A, Rappaport S, Berger T, Pearce L, Mann A, Weiss L, Fulton B et al. (2019) Planetesimals around stars with tess (past)–i. transient dimming of a binary solar analog at the end of the planet accretion era. *Monthly Notices of the Royal Astronomical Society* 488(4): 4465–4476.

Genova F, Egret D, Biemajmund O, Bonnel A, Dubois P, Fernique P, Jasieniewicz G, Lesteven S, Monier R, Ochsenbein F et al. (2000) The cds information hub–on–line services and links at the centre de données astronomiques de strasbourg. *Astronomy and astrophysics supplement series* 143(1): 1–7.

Gies DR, Guo Z, Howell SB, Still MD, Boyajian TS, Hoekstra AJ, Jek KJ, LaCourse D and Winarski T (2013) Kic 9406652: An unusual catalysmic variable in the kepler field of view. *The Astrophysical Journal* 775(1): 64.

Giles H, Osborn H, Blanco-Cuaresma S, Lovis C, Bayliss D, Eggenberger P, Cameron AC, Kristiansen M, Turner O, Bouchy F et al. (2018) Transiting planet candidate from k2 with the longest period. *Astronomy & Astrophysics* 615: L13.

Grindlay J, Tang S, Simcoe R, Laycock S, Los E, Mink D, Doane A and Champigne (2009) Dasch to measure (and preserve) the Harvard plates: Opening the 100-year time domain astronomy window. In: Preserving Astronomy’s Photographic Legacy: Current State and the Future of North American Astronomical Plates, volume 410. p. 101.

Günter MN, Berardo DA, Ducrot E, Murray CA, Stassun KG, Olah K, Bouma L, Rappaport S, Winn JN, Feinstein AD et al. (2022) Complex modulation of rapidly rotating young m dwarfs: Adding pieces to the puzzle. *The astronomical journal* 163(4): 144.

Günther MN, Zhan Z, Seager S, Rimmer PB, Ranjan S, Stassun KG, Oelkers RJ, Daylan T, Newton E, Kristiansen MH et al. (2020) Stellar flares from the first tess data release: exploring a new sample of m dwarfs. *The Astronomical Journal* 159(2): 60.

Han E, Rappaport S, Vanderburg A, Tofflemire B, Borkovits T, Schwengeler H, Zasche P, Krolikowski D, Muirhead P, Kristiansen M et al. (2021) A 2+ 1+1 quadruple star system containing the most eccentric, low-mass, short-period, eclipsing binary known. *Monthly Notices of the Royal Astronomical Society* .

Handler G, Kurtz DW, Rappaport S, Saio H, Fuller J, Jones D, Guo Z, Chowdhury S, Sowicka P, Alčačav FK et al. (2020) Tidally trapped pulsations in a close binary star system discovered by tess. *Nature Astronomy* 4(7): 684–689.

Hardegue-Ullman KK, Christiansen JL, Ciardi DR, Crossfield IJ, Dressing CD, Livingston JH, Volk K, Agol E, Barclay T, Barentsen G et al. (2021) K2-138 g: Spitzer spots a sixth planet for the citizen science system. *The Astronomical Journal* 161(5): 219.

Hartman J (2012) Vartools: Light curve analysis program. *Astrophysics Source Code Library*: ascl–1208.

Hitchcock J, Fossey SJ and Savini G (2019) Non-gray, month-long brightening of kic 8462852 in the immediate aftermath of a deep dip. *Publications of the Astronomical Society of the Pacific* 131(1002): 084204.

Howell SB, Sobeck C, Haas M, Still M, Barclay T, Mullally F, Troeltzsch J, Aigrain S, Bryson ST, Caldwell D et al. (2014) The k2 mission: characterization and early results. *Publications of the Astronomical Society of the Pacific* 126(938): 398.

Huang CX, Vanderburg A, Pál A, Sha L, Yu L, Fong W, Fausnagh M, Shporer A, Guerrero N, Vanderspek R et al. (2020) Photometry of 10 million stars from the first two years of tess full frame images: Part i. *Research Notes of the AAS* 4(11): 204.

Huang CX, Vanderburg A, Pál A, Sha L, Yu L, Fong W, Fausnagh M, Shporer A, Guerrero N, Vanderspek R et al. (2020b) Photometry of 10 million stars from the first two years of tess full frame images: Part ii. *Research Notes of the AAS* 4(11): 206.

Ilin E, Schmidt SJ, Poppenhäger K, Davenport JR, Kristiansen MH and Omohundro M (2021) Flares in open clusters with k2–ii. pleiades, hyades, præsepe, ruprecht 147, and m 67. *Astronomy & Astrophysics* 645: A42.

Jayaraman R, Hubrig S, Holdsworth DL, Schöller M, Järvinen S, Kurtz DW, Gagliano R and Ricker GR (2022) Could the magnetic star hd 135348 possess a rigidly rotating magnetosphere? *The Astrophysical Journal Letters* 924(1): L10.

Jenkins JM, Caldwell DA and Borucki WJ (2002) Some tests to establish confidence in planets discovered by transit photometry. *The Astrophysical Journal* 564(1): 495.

Jenkins JM, Caldwell DA, Chandrasekaran H, Twicken JD, Bryson ST, Quintana EV, Clarke BD, Li J, Allen C, Tenenbaum P et al. (2010a) Overview of the kepler science processing pipeline. *The Astrophysical Journal Letters* 713(2): L87.

Jenkins JM, Chandrasekaran H, McCauliff SD, Caldwell DA, Tenenbaum P, Li J, Klaus TC, Cote MT and Middour C (2010b) Transiting planet search in the kepler pipeline. In: *Software and Cyberinfrastructure for Astronomy*, volume 7740. International Society for Optics and Photonics, p. 77400D.

Kane SR, Yalcınkaya S, Osborn HP, Dalba PA, Nielsen LD, Vanderburg A, Močnik T, Hinkel NR, Ostberg C, Esmer EM et al. (2020) Transits of known planets orbiting a naked-eye star. *The Astronomical Journal* 160(3): 129.

Kennedy GM, Hope G, Hodgkin ST and Wyatt MC (2019) An automated search for transiting exomoons. *Monthly Notices of the Royal Astronomical Society* 482(4): 5587–5596.

Kipping DM, Schmitt AR, Huang X, Torres G, Nesvorný D, Bouchy LA, Hartman J and Bakos GÁ (2015) The hunt for exomoons with kepler (hek). v. a survey of 41 planetary candidates for exomoons. *The Astrophysical Journal* 813(1): 14.

Kirk B, Conroy K, Prša A, Abdul-Masih M, Kochoska A, Matijević G, Hambleton K, Barclay T, Bloemen S, Boyajian T et al. (2016) Kepler eclipsing binary stars. vii. the catalog of

Prepared using sagej.cls
eclipsing binaries found in the entire Kepler data set. *The Astronomical Journal* 151(3): 68.

Koch DG, Borucki WJ, Basri G, Batalha NM, Brown TM, Caldwell D, Christensen-Dalsgaard J, Cochran WD, DeVore E, Dunham EW et al. (2010) Kepler mission design, realized photometric performance, and early science. *The Astrophysical Journal Letters* 713(2): L79.

Kostov VB, Powell BP, Rappaport SA, Borkovits T, Gagliano R, Jacobs TL, Kristiansen MH, LaCourse DM, Omohundro M, Orosz J et al. (2022) 97 eclipsing quadruple star candidates discovered in tess full frame images. *arXiv preprint arXiv:2202.05790*.

Kurtz DW, Handler G, Rappaport S, Saio H, Fuller J, Jacobs T, Schmitt A, Jones D, Vanderburg A, LaCourse D et al. (2020) The single-sided pulsator co camelopardalis. *Monthly Notices of the Royal Astronomical Society* 494(4): 5118–5133.

LaCourse DM and Jacobs TL (2018) Single transits and eclipses observed by k2. *Research Notes of the AAS* 2(1): 28.

LaCourse DM, Jek KJ, Jacobs TL, Winarski T, Boyajian TS, Rappaport SA, Sanchis-Ojeda R, Conroy KE, Nelson L, Barclay T et al. (2015) Kepler eclipsing binary stars--vi. identification of eclipsing binaries in the k2 campaign 0 data set. *Monthly Notices of the Royal Astronomical Society* 452(4): 3561–3592.

Lee JW, Hong K and Kristiansen MH (2018) The eclipsing δ scuti star epic 245932119. *The Astronomical Journal* 157(1): 17.

Lee JW, Hong K and Kristiansen MH (2020) Tess photometry of the eclipsing δ scuti star ai hydrae. *Publications of the Astronomical Society of Japan* 72(3): 37.

Lee JW, Kristiansen MH and Hong K (2019) The pulsating eclipsing binary tic 309658221 in a 7.59-day orbit. *The Astronomical Journal* 157(6): 223.

Leleu A, Alibert Y, Hara N, Hooton M, Wilson T, Robutel P, Delisle JB, Laskar J, Hoyer S, Lovis C et al. (2021) Six transiting planets and a chain of laplace resonances in to1-78. *Astronomy & Astrophysics* 649: A26.

Lightkurve Collaboration: Cardoso JVDm, Hedges C, Gully-Santiago M, Saunders N, Cody AM, Barclay T, Hall O, Sagear S, Turtelboom E, Zhang J et al. (2018) Lightkurve: Kepler and tess time series analysis in python. *Astrophysics Source Code Library*: ascl–1812.

Lintot C (2020) Citizen science: The past 200 years. *Astronomy & Geophysics* 61(2): 2–20.

Lintott CJ, Schawinski K, Slosar A, Land K, Bamford S, Thomas D, Raddick MJ, Nichol RC, Szalay A, Andreescu D et al. (2008) Galaxy zoo: morphologies derived from visual inspection of galaxies from the Sloan digital sky survey. *Monthly Notices of the Royal Astronomical Society* 389(3): 1179–1189.

Lintott CJ, Schwamb ME, Barclay T, Sharcer C, Fischer DA, Brewer J, Gigueré M, Lynn S, Parrish M, Batalha N et al. (2013) Planet hunters: New kepler planet candidates from analysis of quarter 2. *The Astronomical Journal* 145(6): 151.

Malavolta L, Mayo AW, Louden T, Rajpaul VM, Bonomo AS, Buchhave LA, Kreidberg L, Kristiansen MH, Lopez-Morales M, Mortier A et al. (2018) An ultra-short period rocky super-earth with a secondary eclipse and a neptune-like companion around k2-141. *The Astronomical Journal* 155(3): 107.

Mann AW, Gaidos E, Mace GN, Johnson MC, Bowler BP, LaCourse D, Jacobs TL, Vanderburg A, Kraus AL, Kaplan KF et al. (2016) Zodiacal exoplanets in time (zeot). i. a neptune-sized planet orbiting an m4.5 dwarf in the hyades star cluster. *The Astrophysical Journal* 818(1): 46.

Mann AW, Johnson MC, Vanderburg A, Kraus AL, Rizzuto AC, Wood ML, Bush JL, Rockliffe K, Newton ER, Latham DW et al. (2020) Tess hunt for young and maturing exoplanets (thyme). iii. a two-planet system in the 400 myr ursa major group. *The Astronomical Journal* 160(4): 179.

Morton TD (2015) Vesper: False positive probabilities calculator. *Astrophysics Source Code Library*: ascl–1503.

Nardiello D, Borsato L, Piotto G, Colombo L, Manthopoulou E, Bedin L, Granata V, Lacedelli G, Libralato M, Malavolta L et al. (2019) A psf-based approach to tess high quality data of stellar clusters (pathos)–i. search for exoplanets and variable stars in the field of 47 tuc. *Monthly Notices of the Royal Astronomical Society* 490(3): 3806–3823.

Newberg HJ, Newby M, Desell T, Magdon-Ismail M, Szymanski B and Varela C (2013) Milkyway@ home: Harnessing volunteer computers to constrain dark matter in the milky way. *Proceedings of the International Astronomical Union* 9(S298): 98–104.

Oelkers RJ and Stassun KG (2018) Precision light curves from tess full-frame images: A different imaging approach. *The Astronomical Journal* 156(3): 132.

Oláh K, Rappaport S, Borkovits T, Jacobs T, Latham D, Bieryla A, Biró I, Bartus J, Kóvári Z, Vida K et al. (2018) Eclipsing spotted giant star with k2 and historical photometry. *Astronomy & Astrophysics* 620: A189.

Oláh K, Rappaport S, Dekeras A and Vanderburg A (2020) The importance of studying active giant stars in eclipsing binaries–and the role of citizen scientists in finding them. *Contrib. Astron. Obs. Skalnaté Pleso* 50: 390–394.

Olmschenk G, Silva SI, Rau G, Barry RK, Kruse E, Cacciapuoti L, Kostov V, Powell BP, Wyrwas E, Schnittman JD et al. (2021) Identifying planetary transit candidates in tess full-frame image light curves via convolutional neural networks. *The Astronomical Journal* 161(6): 273.

Osborn H (2017) Long-period exoplanets from photometric transit surveys. *Ph. D. Thesis*.

Osborn H (2021) Monotools – a python package for planets of uncertain period. *The Journal of Open Source Software*: x.

Osborn H, Armstrong D, Brown D, McCormac J, Doyle A, Louden T, Kirk J, Spake J, Lam K, Walker S et al. (2016) Single transit candidates from k2: detection and period estimation. *Monthly Notices of the Royal Astronomical Society* 457(3): 2273–2286.

Pence W and Chai P (2012) Fv: Interactive fits file editor. *Astronomy and Astrophysics Source Code Library*: ascl–1205.

Pojmanski G (1997) The all sky automated survey. *Publications of the Astronomical Society of Japan* 49: 380–3823.

Powell BP, Kostov VB, Rappaport SA, Borkovits T, Zasche P, Tokovinin A, Kruse E, Latham DW, Montet BT, Jensen EL et al. (2021a) Tic 168789840: A sextuply eclipsing sextuple star system. *The Astronomical Journal* 161(4): 162.

Powell BP, Kostov VB, Rappaport SA, Tokovinin A, Shporer A, Collins KA, Corbett H, Borkovits T, Gary BL, Chiang E et al. (2021b) Mysterious dust-emitting object orbiting tic 389: an ancient binary in the hyades star cluster. *The Astronomical Journal* 162(6): 299.

Prša A, Kochoska A, Conroy KE, Eisner N, Hey DR, Jspeert L, Kruse E, Fleming SW, Johnston C, Kristiansen MH et al. (2022) Tess eclipsing binary stars. i. short-cadence observations of 4584 eclipsing binaries in sectors 1–26. *The Journal of Open Source Software*: x.
Schmitt AR, Hartman JD and Kipping DM (2019) Lctools: a windows-based software system for finding and recording signals in lightcurves from nasa space missions. Monthly Notices of the Royal Astronomical Society.

Rappaport S, Borkovits T, Gagliano R, Jacobs T, Kostov V, Powell B, Terentev I, Omohundro M, Torres G, Vanderburg A et al. (2022) Six new compact triply eclipsing triples found with tess. Monthly Notices of the Royal Astronomical Society.

Schmitt JR, Jenkins JM and Fischer DA (2017) A search for lost planets in the kepler multi-planet systems and the discovery of the long-period, neptune-sized exoplanet kepler-150 f. The Astronomical Journal 153(4): 180.

Schmitt JR, Tokovinin A, Wang J, Fischer DA, Kristiansen MH, LaCourse DM, Gagliano R, Tan AJV, Schwengeler HM, Omohundro MR et al. (2016) Planet hunters. x. searching for nearby neighbors of 75 planet and eclipsing binary candidates from the k2 kepler extended mission. The Astronomical Journal 151(6): 159.

Schmitt JR, Wang J, Fischer DA, Jek KJ, Moriarty JC, Boyajian TS, Schwamb ME, Lintott C, Lynn S, Smith AM et al. (2014b) Planet hunters. vii. planet hunters. vii. an independent characterization of koi-351 and several long period planet candidates from the kepler archival data. The Astronomical Journal 148(2): 28.

Schmitt JR, Wang J, Fischer DA, Jek KJ, Moriarty JC, Boyajian TS, Schwamb ME, Lintott C, Lynn S, Smith AM et al. (2015) Planet hunters. vii. planet hunters. vii. an independent characterization of koi-351 and several long period planet candidates from the kepler archival data”(2014, aj, 148, 28). The Astronomical Journal 150(1): 38.

Schwamb ME, Orosz JA, Carter JA, Welsh WF, Fischer DA, Torres G, Howard AW, Crepp JR, Keel WC, Lintott CJ et al. (2013) Planet hunters: A transiting circumbinary planet in a quadruple star system. The Astrophysical Journal 768(2): 127.

Shappee B, Prieto J, Stanek K, Kochanek C, Holoien T, Jencson J, Basu U, Beacom J, Szemygiel D, Pojmanski G et al. (2014) All sky automated survey for supernovae (asas-sn or “assassin”). In: American Astronomical Society Meeting Abstracts vol 223, volume 223, pp. 236–03.

Stassun KG, Oelkers RJ, Pepper J, Paegert M, De Lee N, Torres G, Latham DW, Charpinet S, Dressing CD, Huber D et al. (2018) The tess input catalog and candidate target list. The Astronomical Journal 156(3): 102.

Still M and Barclay T (2012) Pyke: Reduction and analysis of kepler simple aperture photometry data. Astrophysics Source Code Library : ascl–1208.

Taylor M (2011) Topcat: tool for operations on catalogues and tables. Astrophysics Source Code Library 1501010.

Tonry J, Denneau L, Heinze A, Stalder B, Smith K, Smartt S, Stubbs C, Weiland H and Rest A (2018) Atlas: a high-cadence all-sky survey system. Publications of the Astronomical Society of the Pacific 130(988): 064505.

Uehara S, Kawahara H, Masuda K, Yamada S and Aizawa M (2016) Transiting planet candidates beyond the snow line detected by visual inspection of 7557 kepler objects of interest. The Astrophysical Journal 832(1): 2.

Vanderburg A, Becker JC, Kristiansen MH, Bieryla A, Duev DA, Jensen-Clem R, Morton TD, Latham DW, Adams FC, Baranec C et al. (2018) Five planets transiting a ninth magnitude star. The Astrophysical Journal Letters 877(1): L10.

Vanderburg A and Johnson JA (2014) A technique for extracting highly precise photometry for the two-wheeled kepler mission. Publications of the Astronomical Society of the Pacific 126(944): 948.

Venner A, Vanderburg A and Pearce LA (2021) True masses of the long-period companions to hd 92987 and hd 221420 from hipparcos–gaia astrometry. The Astronomical Journal 162(1): 12.
Villanueva Jr S, Dragomir D and Gaudi BS (2019) An estimate of the yield of single-transit planetary events from the transiting exoplanet survey satellite. *The Astronomical Journal* 157(2): 84.

Wang J, Fischer DA, Barclay T, Boyajian TS, Crepp JR, Schwamb ME, Lintott C, Jek KJ, Smith AM, Parrish M et al. (2013a) Erratum: Planet hunters. v. a confirmed jupiter-size planet in the habitable zone and 42 planet candidates from the kepler archive data (2013, ApJ, 776, 10). *The Astrophysical Journal* 778(1): 84.

Wang J, Fischer DA, Barclay T, Boyajian TS, Crepp JR, Schwamb ME, Lintott C, Jek KJ, Smith AM, Parrish M et al. (2013b) Planet hunters. viii. characterization of 41 long-period exoplanet candidates from kepler archival data. *The Astrophysical Journal* 815(2): 127.

Wenger M, Ochsenbein F, Egret D, Dubois P, Bonnarel F, Bowler BP, Schmitt JR, Boyajian TS, Jek KJ, LaCourse D et al. (2015) Planet hunters. viii. characterization of 41 long-period exoplanet candidates from kepler archival data. *The Astrophysical Journal* 815(2): 127.

Wenger M, Ochsenbein F, Egret D, Dubois P, Bonnarel F, Bowler BP, Schmitt JR, Boyajian TS, Jek KJ, LaCourse D et al. (2000) The simbad astronomical database-the cds reference database for astronomical objects. *Astronomy and Astrophysics Supplement Series* 143(1): 9–22.

Westphal AJ, Butterworth AL, Snead CJ, Craig N, Anderson D, Jones SM, Brownlee DE, Farnsworth R and Zolensky ME (2005) Stardust@ home: a massively distributed public search for interstellar dust in the stardust interstellar dust collector. *Lunar and Planetary Science XXXVI, Part 21*.

Wheeler A and Kipping D (2019) The weird detector: flagging periodic, coherent signals of arbitrary shape in time-series photometry. *Monthly Notices of the Royal Astronomical Society* 485(4): 5498–5510.

Winters JG, Cloutier R, Medina AA, Irwin JM, Charbonneau D, Astudillo-Defru N, Bonfils X, Howard AW, Isaacson H, Bean JL et al. (2022) A second planet transiting ltt 1445a and a determination of the masses of both worlds. *The Astronomical Journal* 163(4): 168.

Wright EL, Eisenhardt PR, Mainzer AK, Ressler ME, Cutri RM, Jarrett T, Kirkpatrick JD, Padgett D, McMillan RS, Skrutskie M et al. (2010) The wide-field infrared survey explorer (wise): mission description and initial on-orbit performance. *The Astronomical Journal* 140(6): 1868.

Wright JT, Cartier KM, Zhao M, Jontof-Hutter D and Ford EB (2015) The search for extraterrestrial civilizations with large energy supplies. iv. the signatures and information content of transiting megastructures. *The Astrophysical Journal* 816(1): 17.

Yu Z, Thorstensen J, Rappaport S, Mann A, Jacobs T, Nelson L, Gaensicke BT, LaCourse D, Borkovits T, Aiken J et al. (2019) A 9-hr cv with one outburst in 4 years of kepler data. *Monthly Notices of the Royal Astronomical Society*.

Zhou G, Rappaport S, Nelson L, Huang C, Senhadji A, Rodriguez J, Vanderburg A, Quinn S, Johnson C, Latham D et al. (2018) Occultations from an active accretion disk in a 72-day detached post-algol system detected by k2. *The Astrophysical Journal* 854(2): 109.

Zink JK, Hardegree-Ullman KK, Christiansen JL, Crossfield IJ, Petigura EA, Lintott CJ, Livingston JH, Ciardi DR, Barentsen G, Dressing CD et al. (2019) Catalog of new k2 exoplanet candidates from citizen scientists. *Research Notes of the AAS* 3(2): 43.