Musical practice and BDNF plasma levels as a potential marker of synaptic plasticity: an instrument of rehabilitative processes

Alessandro Minutillo 1,2 · Gabriele Panza 1 · Massimo Carlo Mauri 1

Received: 7 May 2020 / Accepted: 8 September 2020 / Published online: 17 September 2020
© The Author(s) 2020

Abstract
Background and objectives The aim of the study was to investigate the influence of musical practice on brain plasticity. BDNF (brain-derived neurotrophic factor) is a neurotrophin involved in neuroplasticity and synaptic function.

Materials and methods We recruited 48 healthy subjects of equal age and sex (21 musicians and 27 non-musicians). All subjects were administered the AQ (Autism-Spectrum Questionnaire) and plasma levels (PLs) of BDNF, oxytocin (OT), and vasopressin (VP) were measured in the blood sample of every participant.

Results. The difference between BDNF PLs in the two groups was found to be statistically significant ($t = -2.214$, $p = 0.03$). Furthermore, oxytocin (OT) PLs and musical practice were found to be independent positive predictors of BDNF PLs ($p < 0.04$). We also found a negative correlation between BDNF PLs and AD (attention to detail) sub-scale score of AQ throughout the whole sample. Assuming BDNF PLs to be a marker of synaptic plasticity, higher PLs could be associated with the activation of alternative neural pathways: a lower score in the “attention to detail” sub-scale could imply greater flexibility of higher cerebral functions among musicians.

Further researches should be conducted to assess the rehabilitative usefulness of these findings among patients affected by psychiatric disorders.

Keywords Psychiatric rehabilitation · Biological neurosciences · BDNF · Synaptic plasticity · Music

Introduction

In this study, we deal with the relationship between music and the brain. Music developed throughout human activities (becoming a crucial cultural aspect in every historical age), bearing interesting neurophysiological mechanisms. These ones underlie both listening and musical practice, and account for the evolutionary “success” of music, especially looking at its effects on the neural circuits of gratification [62]. Among the emotional responses elicited by music, pleasure is remarkably and intimately linked to the neural circuits of gratification (reward). The transition from perception to pleasure probably depends on a series of phenomena that connect the two [62].

The basis for these processes consists essentially of the following: temporal expectations, their associated forecasts, and the intensity of the reward generated by the satisfaction of these forecasts. The interactions between the cortical auditory regions and the frontal cortex (FC) are fundamental to allow the working memory to generate tonal and temporal expectations based on the structural regularities proper to music [33].

The satisfaction of the forecasts leads to a release of dopamine in the striatum (nucleus accumbens, NAcc), a response that is further intensified when the reward is better than expected.

The interaction between the auditory cortices and the striatum demonstrates the existence of an intense communication between structures of analysis/pattern processing (cortical) and reward systems (subcortical).

Some aspects about cellular neurobiology are crucial when trying to understand how the human brain is able to adapt to learning music. The term “brain plasticity” generally describes the brain adaptation of a sensory or a motor system to environmental stimuli and functional requests, or the compensation of damaged structures [6, 12, 18, 23, 25, 29, 37–40, 43, 44, 47–49, 51, 52, 59, 62, 65].
These neurobiological aspects can be important to explain the increased brain plasticity found in musicians by many neuroimaging studies [50]. On the other hand, these evidences might be considered the biological basis of clinical and rehabilitative implications investigated by numerous studies on music intervention (MI) programs (interactive or passive, like singing songs, instrumental improvisations, and listening music tracks) which showed the effectiveness of MI in cognitive, mood, and behavior disorders [17, 36, 57].

In our study, we investigated if these adaptations can reflect functional differences between musicians and non-musicians [50] focusing on an important neurotrophic factor involved in synaptic plasticity, the brain-derived neurotrophic factor (BDNF).

BDNF is a 14-kDa protein that, in humans, is encoded by the BDNF gene, located on the short arm of chromosome 11 (11p14.1) [27, 34, 46, 56]. Like all neurotrophic factors, it is found in both the central and peripheral nervous systems.

There are multiple mechanisms by which neuronal activity can increase the specific expression of BDNF; one of these, is the activation of NMDA postsynaptic receptor and then the activation of a biosignal pathway mediated by the Erk, CaM KII/IV, PI3K, and PLC proteins, which is able to start the transcription of BDNF [63].

BDNF is released from the postsynaptic membrane in an activity-dependent way, as it acts on local TrkB receptors [32].

Furthermore, the activation of the D5 dopamine receptor promotes the expression of BDNF in the prefrontal cortex [42].

Among the single-nucleotide polymorphisms (SNPs) of this gene, the Val66Met is probably the most studied, since it is able to influence in a rather significant way the structure and the function of the central nervous system [5, 15].

BDNF acts on some neurons of the nervous system, increasing their survival and stimulating the generation, growth, and differentiation of new neurons and synapses [1, 7, 8, 11, 19, 21, 22, 24, 35, 41, 53–55, 60, 64].

This study examined plasma levels (PLs) of BDNF (brain-derived neurotrophic factor), oxytocin (OT), and vasopressin (VP) in musicians and compared them with controls of equal age and sex. Furthermore, every participant was administered the Autism-Spectrum Quotient (AQ) questionnaire (AQ).

Study aim

The study aims to evaluate the possible correlation between the neurobiochemical variables BDNF, OT, and VP PLs and musical practice; this could help to understand the neurobiological differences between musicians and the general population, in terms of synaptic brain plasticity, in the light of the rehabilitative efficacy of music therapy in neuropsychiatric disorders.

Materials and methods

A case-control study was designed recruiting 48 healthy subjects: 21 musicians and 27 non-musicians. To be defined as a “musician,” the practice of any musical instrument or voice was required for at least 3 h a week. This practice had to be stable and continued for at least 5 years and the subject had to have been achieved a musical degree.

An informed consent was obtained from each participant and the research was conducted according to the principles of the Helsinki Declaration.

Inclusion criteria

Being a musician, defined as follows:

- Practice of any musical instrument or voice for at least 3 h a week.
- The musical practice had to be stable and continued for at least 5 years.
- The subject had to own a musical degree in a specific instrument.

Exclusion criteria

- Age < 18 years.
- Presence of major internal or surgical diseases.
- Presence of psychiatric disorders.
- Presence of allergic diathesis.
- For female subjects: pregnancy.

Assessment

After the recruitment, everyone was asked to complete the AQ (Autism-Spectrum Quotient) questionnaire and to provide a blood sample. The biological sample was taken at 10:00 am (in order to minimize a potential circadian rhythm) from the antecubital vein and stored in a vacutainer tube. The blood was immediately centrifuged at 1000 g for 15 min and the plasma obtained was aliquoted and stored at −20 °C until analysis. BDNF, OT, and VP PLs were dosed using an ELISA method (enzyme-linked immunosorbent assay) (R&D Systems, Inc. Minneapolis, MN) according to the manufacturer’s instructions.

Autism-Spectrum Quotient

The Autism-Spectrum Quotient (AQ) is a questionnaire developed by Baron-Cohen and colleagues [3], and consists of a rapid and self-administered clinical tool designed to measure where a normal-IQ adult is placed in the continuum of autistic socio-communicative disability, that is, how much he or she presents “autistic traits” or, as defined by Bailey [2], the “extended phenotype.” Anyway, the AQ represents only a screening test and not a real diagnostic tool.
It is made up by 50 questions divided into 5 sub-groups of 10 questions each, which evaluate 5 different areas of ability: social skills (SS), attention switching (AS), attention to details (AD), communication (C), and imagination (I). According to the indications of Baron-Cohen [3], the cut-off which distinguishes individuals with clinical levels of potentially significant autistic traits is a score of 32.

Oxytocin and vasopressin

Oxytocin (OT) and vasopressin (VP or ADH, antidiuretic hormone) are two nonapeptides produced mainly by the supraoptic and paraventricular nuclei of the hypothalamus. OT plays an important “pro-social” role, favoring empathy and “mind-reading,” probably leading to an increase in the salience of social stimuli. Studies conducted in humans showed that exogenous administration of oxytocin increases confidence towards other people [31], generosity [61], empathy [4], and altruism [13]. Moreover, both OT and VP facilitate sexual and parenting behaviors in mammals: OT promotes sexual relations, maternal attachment to the newborn, and pair bond [9]. In contrast, VP mediates typically male behaviors such as aggression and territoriality; moreover, it seems to play an important role in memory and anxiety [20].

Statistical analysis

A descriptive statistic has been calculated for all the variables. The normally distributed variables were presented as mean and standard deviation (SD); the variables not normally distributed were presented as medians and interquartile ranges, while the categorical variables were expressed as raw numbers and percentages. The differences between the two groups at the baseline were evaluated by the Student’s t test. The correlations between variables were evaluated by the Pearson coefficient. A multivariate linear regression model was used, using BDNF PLs as a dependent variable and sex, musical practice, total AQ, VP PLs, and OT PLs as independent predictors. A two-tailed p value < 0.05 was considered statistically significant. All analyses were performed using the SPSS 20.0 software.

Results

The general characteristics of our sample and their mean results ± SD in the total AQ and its sub-scales are shown in Table 1. The subjects were mostly young adults and both genders were equally represented.

The age was not statistically different between the two groups (t = 0.082, p = 0.93). Similarly, the gender of the participants was also uniformly distributed.

Taking into account the AQ scores and its sub-scales, no statistically significant differences were found between the two groups (total AQ: t = 0.70, p = 0.487; AD: t = 1.843, p = 0.072; AS: t = 0.033, p = 0.973; C: t = −0.642, p = 0.524; I: t = 0.415, p = 0.68; SS: t = −0.085, p = 0.93).

Looking at biochemical parameters, the difference in VP PLs was not statistically significant in the two groups (t = 1.132, p = 0.264). A similar result was found for OT PLs (t = 1.177, p = 0.861).

BDNF PLs were statistically different in the two groups (t = −2.214, p = 0.03), as also reported in the graph showed in Fig. 1.

Observing the correlations existing between the various parameters, there was a statistically significant negative relationship between BDNF PLs and the AD sub-scale (r = −0.30, p = 0.04) (Fig. 2).

Using a multivariate linear regression with BDNF PLs as a dependent variable and sex, musical practice, total AQ, VP

| Table 1 Age, sex, and mean ± SD of AQ results of the sample studied |
|---------------------------------|-----------------|-----------------|-----------------|-----------------|
| | Musicians (n = 21) | Non-musicians (n = 27) | p value |
| Age (years) | 47.20 ± 24.45 | 55.30 ± 37.63 | ns |
| Sex (%) | | | ns |
| Male | 56.5% (12) | 44.4% (12) | |
| Female | 43.6% (9) | 55.6% (15) | |
| AQ (total) | 15.43 ± 6.00 | 16.59 ± 5.68 | ns |
| AD (attention to detail) | 4.73 ± 2.14 | 5.81 ± 1.92 | ns |
| AS (attention switching) | 4.32 ± 2.38 | 4.27 ± 1.40 | ns |
| C (communication) | 2.32 ± 1.84 | 2.00 ± 1.60 | ns |
| I (imagination) | 2.23 ± 1.44 | 2.42 ± 1.77 | ns |
| SS (social skills) | 2.05 ± 1.46 | 2.00 ± 2.12 | ns |
| Vasopressin (pg/mL) | 45.59 ± 18.96 | 54.53 ± 34.60 | ns |
| BDNF (ng/mL) | 9.72 ± 11.73 | 3.98 ± 2.09 | 0.03 |
| Oxytocin (pg/mL) | 524.61 ± 279.09 | 542.25 ± 285.08 | ns |
PLs, and OT PLs as independent predictors, the resulting model ($p = 0.011$) was able to explain 48% of the variance of the dependent variable. The only significant predictors were musical practice ($p = 0.05$) and OT PLs ($p = 0.02$) (Table 2).

Discussion

Our study showed higher BDNF PLs in musicians compared with control of the same age and gender. Furthermore, OT PLs and musical practice were found to be independent positive predictors of BDNF PLs.

Given that there is a direct relationship between BDNF PLs and its concentrations in the central nervous system [30], it could be hypothesized that higher PLs in musicians correspond to higher concentrations in their brain. This data could provide a neurobiochemical explanation to the increased brain plasticity found in musicians by many neuroimaging studies [50].

The clinical and rehabilitative implications of this phenomenon have been investigated by numerous studies, since a broad spectrum of music intervention programs (interactive or passive) are known. Singing songs of the repertoire of light and popular music, music/movement associations, instrumental improvisation, and listening to music tracks, and showing the effectiveness of MI in cognitive, mood, and behavior disorders [17, 26, 57]. Functional magnetic resonance imaging (fMRI) studies conducted during music rehabilitative interventions (e.g., music listening) have shown connectivity modifications in different brain networks, enhancing also cognitive and mood aspects: memory, attention, executive functions, and depression [28, 45]. In schizophrenia or schizophrenia-like disorders, some evidences suggest that music therapy as an addition to standard care can improve the global state, mental state (including negative and general symptoms), social functioning, and quality of life. On the other hand, effects seem to depend on the number of music therapy sessions as well as the quality of the music therapy provided [16]. In dementia, music listening coupled with cognitive elements (reminiscence and attention training) showed to improve overall cognitive performances and neuropsychiatric symptoms versus the standard care [58]. Furthermore, a randomized controlled study showed that music therapy, added to pharmacological treatment in adult psychiatric patients (affected by schizophrenia, bipolar disorder, schizoaffective disorder, major depressive disorder, or specific personality disorder), determined a significantly greater reduction in neuroleptic dosage among the participants who received group music therapy versus the control group [14].

In the present study, we also observed an inverse correlation between BDNF PLs and AD (attention to detail) scores in the whole sample: this could furtherly suggest a close link among BDNF, synaptic plasticity, and cognitive processes. In fact, a greater synaptic plasticity, expressed by higher BDNF PLs, could establish alternative neural pathways, with a consequent lower rigidity of the cognitive functioning [26]: a lower score in the AD sub-scale could be interpreted as an index of greater flexibility of the higher order brain capacities.

The study bears some limitations to consider before interpreting the results. First of all, its design does not allow

Table 2 Multivariate linear regression model between BDNF PLs and sex, musical practice, total AQ, vasopressin PLs, and oxytocin PLs as independent predictors

Variable	b	β	p value
Sex	-0.730	-0.114	0.485
Musical practice	2.112	0.331	0.05*
AQ (total)	0.124	0.239	0.158
Vasopressin (pg/mL)	-0.012	-0.104	0.529
Oxytocin (pg/mL)	-0.006	-0.548	0.002*

$R^2 = 0.483$, adjusted $R^2 = 0.360$

*p < 0.05

AQ, Autism-Spectrum Quotient
to draw causal conclusions about the observed variables. For this purpose, a prospective study with multiple determinations of BDNF PLs in musicians and controls may be able to better clarify the observed relationship. Moreover, our sample is not large enough and consists mainly of young subjects. Future researches will be necessary in order to corroborate the results obtained, with larger sample sizes and a broader age range. Finally, we cannot state BDNF PLs to be a consequence of practice alone and not also of music listening: our control group, although not composed by music lovers, presented a minimum of listening activity which was difficult to quantify.

Therefore, it is possible to consider a future study which could analyze, in addition to musical practice, also the intensity of music listening, comparing three groups: poor musical listening, high musical listening, and musical and musical practice together. On the other hand, the BDNF PLs measured before and after a MI program could be used as a potential biological marker of the outcome, of course, combined with the clinical evaluation.

We believe that music is a fundamental constituent in every area of the anthropological sphere, so much that it is also used for experimental and hopefully ever more rehabilitative purposes in many neuropsychiatric conditions [10].

Acknowledgements Open access funding provided by Università degli Studi di Milano within the CRUI-CARE Agreement.

Authors’ contribution Alessandro Minutillo: design of the work, acquisition, investigation, analysis and interpretation of data, visualization, and final approval

Gabriele Panza: work drafting, analysis and interpretation of data, revising

Massimo Carlo Mauri: supervision, methodology, analysis and interpretation of data, validation, and data curation

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Ethical approval The study procedure was approved by the local Ethics Committee. An informed consent was obtained from each participant and the research was conducted according to the principles of the Helsinki Declaration.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Acheson A, Conover JC, Fandell JP, Dechiara TM, Russell M, Thadani A, Squinto SP, Yancopoulos GD, Lindsay RM (1995) A BDNF autocrine loop in adult sensory neurons prevents cell death. Nature 374(6521):450–453
2. Bailey A, Palferman S, Heavey L, Le Couture A (1998) Autism: the phenotype in relatives. J Autism Dev Disord 28(5):369–392
3. Baron-Cohen S, Wheelwright S, Skinner R, Martin J, Clubley E (2001) The autism-spectrum quotient (AQ): evidence from aasperger syndrome/high-functioning autism, males and females, scientists and mathematicians. J Autism Dev Disord 31(1):5–17
4. Bartz JA, Zaki J, Bolger N, Holland E, Ludwig NN, Kolodziej A, Ochsner KN (2010) Oxytocin selectively increases empathetic accuracy. Psychol Sci 21(10):1426–1428
5. Bat K, Lee FS (2006) Variant BDNF (Val66met) impact on brain structure and function. Cogn Affect Behav Neurosci 6(1):79–85
6. Blood AJ, Zatorre RJ (2001) Sex differences in music-related responses to music correlate with activity in brain regions implicated in reward and emotion. Proc Natl Acad Sci 98(20):11818–11823
7. Briones TL, Suh E, Jozsa BM, Satter H, Chai J, Wadowska M (2004) Behaviorally-induced ultrastructural plasticity in the hippocampal region after cerebrovascular ischemia. Brain Res 997(2):137–146
8. Caldeira MV, Carvalho C, Pereira DB, Carvalho R, Correia SS, Backos DS, Carvalho AL, Esteban JA, Duarte CB (2007) Brain-derived neurotrophic factor regulates the expression and synaptic delivery of glia-meat3-hydroxy-5-methyl-4-isoxazole propionic acid receptor subunits in hippocampal neurons. J Biol Chem 282(17):12619–12628
9. Campbell A (2008) Attachment, aggression and affiliation: the role oxytocin in female social behavior. Biol Psychol 77(1):1–10
10. Carr C, Oedel-Miller H, Priebe S (2013) A systematic review of music therapy practice and outcomes with adult psychiatric in-patients. PLoS One 8:e70252
11. Chou WH, Wang D, McMahon T, Qi ZH, Song M, Zhang C, Shokat KM, Messing RO (2010) GABAA receptor trafficking is regulated by protein kinase Cε and the N-ethylmaleimide-sensitive factor. J Neurosci 30(42):13955–13965
12. Cohen LG, Bandinelli S, Findley TW, Hallett M (1991) Motor reorganization after upper limb amputation in man: a study with focal magnetic stimulation. Brain 114(1):615–627
13. De Dreu CKW, Greer LL, Handgraaf MJJ, Shalvi S, Van Kleef GA, Baas M, Ten Velden FS, Van Dijk E, Feit S (2010) The neuroepetide oxytocin regulates parochial altruism in inter-group conflict among humans. Science 328(5984):1408–1411
14. Degli Stefani M, Biasotti M (2016) Effects of music therapy on drug therapy of adult psychiatric outpatients: a pilot randomized controlled study. Front Psychol 7:1618
15. Egan MF, Koijma M, Callcott J, Goldberg TE, Kolachana BS, Bertolino A, Zaitsev E, Gold B, Goldman D, Dean M, Lu B, Weinberger DR (2003) The BDNF Val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112(2):257–269
16. Geretsegger M, Mösslauer KA, Bieleninik L, Chen XJ, Heldal TO, Gold C (2017) Music therapy for people with schizophrenia and schizophrenia-like disorders. Cochrane Database Syst Rev 2017(5)
17. Gilbertson RM, Klett MD (2017) Mindfulness in motion for people with multiple sclerosis: a feasibility study. Int J MS Care 19(5):225–231
18. Hallett M (1995) The plastic brain. Ann Neurol 38(1):4–5
19. Hawkins RD, Kandel ER, Bailey CH (2006) Molecular mechanisms of memory storage in Aplysia. Biol Bull 210(3):174–191
20. Heinrichs M, Domes G (2008) Neuropeptides and social behaviour: effects of oxytocin and vasopressin in humans. In Prog Brain Res 170:337–350
21. Henneman C, Jüttner R, Rothe T, Grantyn R (2002) Postsynaptic action of BDNF on GABAergic synaptic transmission in the superficial layers of the mouse superior colliculus. J Neurophysiol 88(2):595–603
22. Huang EJ, Reichardt LF (2001) Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 24(1):677–736
23. Hund-Georgiadis M, von Cramon DY (1999) Motor-learning-related changes in piano players and non-musicians revealed by functional magnetic resonance signals. Exp Brain Res 125(4):417–425
24. Iwasaki Y, Gay B, Wada K, Koizumi S (2002) Association of the Sre family tyrosine kinase Fyn with TrkB. J Neurochem 71(1):106–111
25. Jacobs K, Donoghue J (1991) Reshaping the cortical motor map by unmasking latent intracortical connections. Science 251(4996):944–947
26. Jansma JM, Ramsey NF, Slagter HA, Kahn RS (2001) Functional anatomical correlates of controlled and automatic processing. J Cogn Neurosci 13(6):730–743
27. Jones KR, Reichardt LF (1990) Molecular cloning of a human gene that is a member of the nerve growth factor family. Proc Natl Acad Sci 87(20):8060–8064
28. Karmonik C, Brandt A, Anderson JR, Brooks F, Lyle J, Silverman E, Frazier JT (2016) Music listening modulates functional connectivity and information flow in the human brain. Brain Connectivity 6(8):632–641
29. Kami A, Meyer G, Rey-Hippolito C, Jezzard P, Adams MM, Turner R, Ungerleider LG (1998) The acquisition of skilled motor performance: fast and slow experience-driven changes in primary motor cortex. Proc Natl Acad Sci 95(3):861–868
30. Klein AB, Williamson R, Santini MA, Clemmensen C, Ettrup A, Rios M, Knudsen GM, Aznar S (2011) Blood BDNF concentrations reflect brain-tissue BDNF levels across species. Int Neuropsychopharmacol 14(3):347–353
31. Kostfeld M, Heinrichs M, Zak PJ, Fischbachieh D, Feltt J (2005) Oxytocin increases trust in humans. Nature 435(7042):673–676
32. Kuzumaki N, Ikegami D, Tamura R, Harahana N, Itami S, Narita M, Torigoe K, Nikiura K, Takeshima H, Ando T, Igarashi K, Kanno J, Ushijima T, Suzuki T, Narita M, Saito H (2007) Hippocampal epigenetic modification at the brain-derived neurotrophic factor gene induced by an enriched environment. Hippocampus 21(2):127–132
33. Large EW, Palmer CG (2002) Receptive temporal regularity in music. J Cogn Sci 26(1):1–3.
34. Maisonneuve P, Le Beau J, Espinosa R, Ip NY, Belluscio L, de la Monte SM, Squinto S, Furth ME, Yancopoulos GD (1991) Human and rat brain-derived neurotrophic factor and neurotrophin-3: gene structures, distributions, and chromosomal localizations. Genomics 12(3):548–568
35. Manceau J, Harboura C, Taya C, Guo X, Kimura H, Parada LF, Huda T (2010) Dock3 induces axonal outgrowth by stimulating mTOR recruitment of the WAVE complex. Proc Natl Acad Sci USA 107(16):7586–7591
36. N. J. Jones V, Vinciguerra C, Correale P, Guida C, Tini P, Reginelli A, Cappabianca S (2020) Music therapy and radiation oncology: state of art and future directions. Complement Ther Clin Pract 39(May):101124
37. Nudo RJ, Jenkins WM, Merzenich MM, Prejean T, Grenda R (1992) Neurophysiological correlates of hand preference in primary motor cortex of adult squirrel monkeys. J Neurosci 12(8):2918–2947
38. Pascual A, Wassermann EM, Sadato N, Hallett M (1995) The role of reading activity on the modulation of motor cortical outputs to the reading hand in braille readers. Ann Neurol 38(6):910–915
39. Pascual-Leone A, Grafman J, Hallett M (1994) Modulation of cortical motor output maps during development of implicit and explicit knowledge. Science 265(5151):1287–1289
40. Pascual-Leone A, Nguyen D, Cohen LG, Brasil-Neto JP, Camamarra A, Hallett M (1995) Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills. J Neurophysiol 74(3):1037–1045
41. Penzes P, Johnson RC, Sattler R, Zhang X, Haggan RL, Kambampati V, Mains RE, Epper BA (2001) The mammalian rhGIF Kalirin-7 interacts with PDZ domain-containing proteins and regulates dendritic morphogenesis. Neuron 20(1):229–242
42. Perreault ML, Jones-Tabah J, O’Dowd BF, George SR (2013) A physiological role for the dopamine D5 receptor as a regulator of BDNF and Akt signalling in recent prefrontal cortex. Int J Neuropsychopharmacol 16(2):477–483
43. Rauschecker JP (1995) Compositional plasticity and sensory substitution in the cerebral cortex. Trends Neurosci 18(1):36–43
44. Recanzone GH, Allard TT, Jenkins WM, Merzenich MM (1990) Receptive-field changes induced by peripheral nerve stimulation in SI of adult cats. J Neurophysiol 63(5):1213–1225
45. Ripollès P, Royer C, Grua-Sánchez J, Amengual JL, Cámara E, Marco-Pallés J, Encadella M, Vazquez L, Rubio F, Duarte E, Garrido C, Soler M, Münte TF, Rodriguez-Fornells A (2016) Music supported therapy promotes motor plasticity in individuals with chronic stroke. Brain Imaging Behav 10(4):1289–1307
46. Robinson RC, Radziewicz C, Stuart DI, Jones EY (1995) Structure of the brain-derived neurotrophic factor/neurotrophin 3 receptor. Biochemistry 34(13):4139–4146
47. Rose FC, Charness ME, and Schlaug G (2010) “Brain mapping in musicians.” In Neurology of the Arts, edited by Imperial College Press, 153–73
48. Salimpoor Valorie N, Benovoy M, Longo G, Cooperstock JR, and Zatorre RJ. (2009) “The rewarding aspects of music listening are related to degree of emotional arousal.” Edited by Jan Lauwereyns. PLoS One 4 (10): e7487
49. Salimpoor VN, van den Bosch I, Kovacevic N, McIntosh AR, Dagher A, Zatorre RJ (2013) Interactions between the nucleus accumbens and auditory cortices predict music reward value. Science 340(6129):216–219
50. Schlaug G (2001) The brain of musicians: a model for functional and structural adaptation. Ann N Y Acad Sci 930:281–299
51. Seitz RJ, Roland PE, Bohm C, Greitz T, Stone-Elander S (1990) Motor learning in man. NeuroReport 1(1):57–60
52. Seitz RJ, Höflisch P, Binkofski F, Tellmann L, Herzog H, Freund H-J (1998) Role of the premotor cortex in recovery from middle cerebral artery infarction. Arch Neurol 55(8):1081–1084
53. Slack SE, Pezet S, McMahon SB, Thompson SWN, Malcangio M (2004) Brain-derived neurotrophic factor induces NMDA receptor subunit one phosphorylation via ERK and PKC in the rat spinal cord. Eur J Neurosci 20(7):1769–1778
54. Stevens RJ, Littleton JT (2011) Synaptic growth: dancing with adducin. Curr Biol 21(10):R402–R405
55. Tamura M, Gu J, Danen EHJ, Takino T, Miyamoto S, Yamada KM (1999) PTEN interactions with focal adhesion kinase and suppressor of cytokine signalling 3. J Biol Chem 274(29):20693–20703
56. Villarreal D, Freeman RH (1995) The role of brain-derived neurotrophic factor in recovery from middle cerebral artery infarction. Arch Neurol 55(8):1081
57. Vinciguerra C (2017) Music intervention efficacy in elderly: a promising non-pharmacological approach to cognitive dysfunctions. Neurol Sci 38(6):933–934
58. Vinciguerra C, De Stefano N, Federico A (2019) Exploring the role of music therapy in multiple sclerosis: brief updates from research to clinical practice. Neurol Sci 40(11):2277–2285

59. Wang X, Merzenich MM, Sameshima K, Jenkins WM (1995) Remodelling of hand representation in adult cortex determined by timing of tactile stimulation. Nature 378(6552):71–75

60. Wu K, Len GW, McAuliffe G, Ma C, Tai JP, Xu F, Black IB (2004) Brain-derived neurotrophic factor acutely enhances tyrosine phosphorylation of the AMPA receptor subunit GluR1 via NMDA receptor-dependent mechanisms. Mol Brain Res 130(1–2):178–186

61. Zak PJ, Stanton AA, and Ahmadi S (2007) “Oxytocin increases generosity in humans.” Edited by Sarah Brosnan. PLoS One 2 (11): e1128

62. Zatorre RJ, Salimpoor VN (2013) From perception to pleasure: music and its neural substrates. Proc Natl Acad Sci U S A 110(Suppl. 2):10430–10437

63. Zheng F, Wang H (2009) NMDA-mediated and self-induced Bdnf exon IV transcriptions are differentially regulated in cultured cortical neurons. Neurochem Int 54(5–6):385–392

64. Zhong L, Yan C-H, Lu C-Q, Xu J, Huang H, Shen X-M (2009) Calmodulin activation is required for the enhancement of hippocampal neurogenesis following environmental enrichment. Neurol Res 31(7):707–713

65. Zilles K (1992) Neuronal plasticity as an adaptive property of the central nervous system. Ann Anat 174(5):383–391

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.