Malignant Subdural Hematoma Associated with High-Grade Meningioma

Shinichiro Teramoto, MD1 Akira Tsunoda, MD1 Kaito Kawamura, MD1 Natsuki Sugiyama, MD1 Rikizo Saito, MD1 Chikashi Maruki, MD1

1Department of Neurosurgery, Koshigaya Municipal Hospital, Saitama, Japan

Surg J 2018;4:e91–e95.

Address for correspondence Shinichiro Teramoto, MD, Department of Neurosurgery, Koshigaya Municipal Hospital, 10-47-1 Higashikoshigaya, Koshigaya City, Saitama 343-0023, Japan (e-mail: tera.2@hotmail.co.jp).

Abstract

A 70-year-old man, who had previously undergone surgical resection of left parasagittal meningioma involving the middle third of the superior sagittal sinus (SSS) two times, presented with recurrence of the tumor. We performed removal of the tumor combined with SSS resection as Simpson grade II. After tumor removal, since a left dominant bilateral chronic subdural hematoma (CSDH) appeared, it was treated by burr hole surgery. However, because the CSDH rapidly and repeatedly recurred and eventually changed to acute subdural hematoma, elimination of the hematoma with craniotomy was accomplished. The patient unfortunately died of worsening of general condition despite aggressive treatment. Histopathology of brain autopsy showed invasion of anaplastic meningioma cells spreading to the whole outer membrane of the subdural hematoma. Subdural hematoma is less commonly associated with meningioma. Our case indicates the possibility that subdural hematoma associated with meningioma is formed by a different mechanism from those reported previously.

Keywords
►high-grade meningioma
►recurrent chronic subdural hematoma
►outer membrane of subdural hematoma

Case Report

A 70-year-old man, who had previously undergone surgical resection of left parasagittal meningioma involving the middle third of the superior sagittal sinus (SSS) two times, presented with right lower limb weakness. The incidence of recurrent chronic subdural hematoma (CSDH) accounts for ~5 to 33% of postsurgical cases.1 CSDH recurs most frequently between 1 and 3 months after surgery.1 Early recurrence of CSDH is determined as relapse of symptoms or re-accumulation of the hematoma within 3 months following surgery.1 There are many etiologies for recurrence of CSDH.1,2 Subdural hematoma is a less frequent complication in meningioma.3 Besides, CSDH is rarely associated with meningioma.3–Table 1 summarizes previously reported cases of meningioma in association with CSDH.3–18 Although several mechanisms to cause subdural hematoma in meningioma have been previously reported,3,15,19 our case suggested a different mechanism from them. We describe a case of malignant subdural hematoma that rapidly and repeatedly recurred in association with meningioma.

received March 6, 2018
accepted after revision May 1, 2018

DOI https://doi.org/10.1055/s-0038-1660511.

License terms

Copyright © 2018 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.
Tel: +1(212) 584-4662.
Table 1 Summary of previously reported cases of meningioma associated with chronic subdural hematoma

No.	Author	Year	Sex	Age	Side	Side	Location	Histology	Outcome
1	Cusick and Bailey⁴	1972	F	47	Bilateral	Right	Convexity	Transitional	Dead
2	Modesti et al⁵	1976	F	49	Left	Left	Parasagittal	Meningothelial	SD
3	Walsh et al⁶	1977	F	77	Right	Right	Olfactory groove	Meningothelial	Dead
4	Sakai et al⁷	1981	M	36	Right	Right	Sphenoid ridge	Meningothelial	Dead
5	Baskinis et al⁸	1984	M	68	Right	Right	Convexity	Angiomatous	GR
6	Tomita et al⁹	1985	F	61	Right	Right	Convexity	Meningothelial	GR
7	Wang et al¹⁰	1985	F	62	Left	Left	Convexity	N/A	N/A
8	Itoyama et al¹¹	1987	F	63	Bilateral	Left	Sphenoid ridge	Transitional	GR
9	Chen et al¹²	1992	M	79	Left	Left	Convexity	Meningothelial	MD
10	PoZZi et al¹³	1993	F	73	Left	Left	Convexity	Transitional	N/A
11	Popovic et al¹⁴	1994	F	47	Right	Right	Convexity	Meningothelial	N/A
12	Tanaka et al¹⁵	1994	F	47	Right	Right	Convexity	Meningothelial	GR
13	Sinha and Dharker¹⁶	2001	M	68	Left	Left	Convexity	N/A	GR
14	Di Rocco et al³	2006	M	72	Right	Right	Convexity	Meningothelial	GR
15	Czyz et al¹⁷	2011	F	69	Bilateral	Bilateral	Parasagittal	Microcystic	GR
16	Nery et al¹⁸	2017	F	85	Left	Left	Convexity	Microcystic	GR

Abbreviations: CSDH, chronic subdural hematoma; GR, good recovery; MD, moderate disability; N/A, not applicable; SD, severe disability.

Fig. 1 (a–c) Preoperative MRI showing recurrent left parasagittal meningioma located in the middle third of the superior sagittal sinus. (d–f) Postoperative MRI showing tumor removal combined with superior sagittal sinus resection as Simpson grade II without distinct dural tail sign. MRI, magnetic resonance imaging.
clinical history, such as head injury, antithrombotic therapy, coagulation disorders, and alcohol abuse. In addition, postoperative images revealed no signs of CSDH. The left subdural hematoma alone was treated by burr hole surgery, which was successful (►Fig. 2b). However, recurrence of CSDH occurred 5 days after surgery. Although a second burr hole evacuation of subdural hematoma was performed, a third evacuation was required owing to its rapid recurrence within 2 days after the second evacuation. Because CSDH eventually changed to acute subdural hematoma (►Fig. 2c), craniotomy was accomplished 10 days after the third hematoma evacuation (►Fig. 2d). The hematoma and outer membrane of the subdural hematoma were eliminated as much as possible. Furthermore, the dura mater within the craniotomy area was removed and replaced with artificial dura mater. Histopathological features of the outer membrane of the subdural hematoma showed anaplastic meningioma, WHO grade III. Unfortunately, the patient died of worsening of general condition despite aggressive treatment one and a half months since the onset of CSDH although the subdural hematoma had obviously not recurred. His brain was investigated by autopsy after death. Histopathology of brain autopsy demonstrated invasion of anaplastic meningioma cells spreading to the whole outer membrane of the subdural hematoma (►Fig. 3).

Discussion

Numerous causative factors for recurrence of CSDH have been addressed including advanced age, antithrombotic medications, coagulopathy, and various neuroimaging features of hematoma. Although subdural hematoma formation in meningioma is rare, several mechanisms have been proposed as follows: (1) bleeding of the tumor into the subdural space, (2) rupture of abnormal vascular networks supplying the tumor in the subdural space, and (3) collapse of the subdural vessels due to compression of the tumor.

No correlation between the occurrence of subdural hematoma and the location or histological characteristics of meningioma has been described. On the other hand, the malignant histological type has been reported with a high frequency in meningioma complicated with subdural
hematoma. Patil observed that a dural reaction of the meningioma formed the neomembrane similar to the outer membrane of CSDH despite neither subdural fluid collection nor blood clots. Moreover, they noticed that tumor cells were not expressed in the neomembrane originating from the meningioma. In our case, the outer membrane of the subdural hematoma was entirely infiltrated by meningioma cells. To the best of our knowledge, no previous report has investigated the outer membrane of subdural hematoma should be investigated. The subdural hematoma needs to be treated with caution when tumor infiltration is demonstrated in the outer membrane.

Acknowledgments
None.

References
1. Yadav YR, Parihar V, Namdev H, Bajaj J. Chronic subdural hematoma. Asian J Neurosurg 2016;11(04):330–342
2. Yamamoto H, Hirashima Y, Hamada H, Hayashi N, Origasa H, Endo S. Independent predictors of recurrence of chronic subdural hematoma: results of multivariate analysis performed using a logistic regression model. J Neurosurg 2003;98(06):1217–1221
3. Di Rocco F, Mannino S, Puca A, Lauriola L, Pompacci I. Intracranial meningiomas associated with non-traumatic chronic subdural hematoma. Acta Neurochir (Wien) 2006;148(10):1097–1102, discussion 1102
4. Cusick JF, Bailey OT. Association of ossified subdural hematomas and a meningioma. Case report. J Neurosurg 1972;37(06):731–734
5. Modesti LM, Binet EF, Collins GH. Meningiomas causing spontaneous intracranial hematomas. J Neurosurg 1976;45(04):437–441
6. Walsh JW, Winston KR, Smith T. Meningioma with subdural hematoma. Surg Neurol 1977;8(04):293–295
7. Sakai N, Ando T, Yamada H, Ikeda T, Shimokawa K. [Meningioma associated with subdural hematoma—report of a case and review of 15 reported cases (author's transl)]. Neurol Med Chir (Tokyo) 1981;21(03):329–336
8. Baskinis N, Grotenhuis A, Wandt H. Chronic subdural hematoma associated with an intracapsular meningioma. Case report and short review of the literature. J Neurosurg Sci 1984;28(01):17–23
9. Tomita Y, Kikuchi Y, Nanami T, Furukawa K, Onodera E, Kanaya H. [A case of convexity meningioma associated with chronic subdural hematoma]. No Shinkei Geka 1985;13(10):1115–1119
10. Wang AM, Chinwuba CE, O'Reilly GV, Kleefield J. Subdural hematoma in patients with brain tumor: CT evaluation. J Comput Assist Tomogr 1985;9(03):511–513
11. Itoyama Y, Fukumura A, Itoh Y, Urasaki E, Koga K. [Primary brain tumor complicating subdural hematoma]. No To Shinkei 1987;39(12):1157–1161

Fig. 3 Histopathological photomicrograph of the brain autopsy. (a) H&E stain and (b) epithelial membrane antigen immunostain of coronal brain section showing the outer membrane of the subdural hematoma entirely infiltrated by meningioma cells. Magnification, ×10. (c) High-magnification image of the black dotted square box of the H&E stain revealing high cellular density, nuclear polymorphisms, and numerous mitoses, indicating anaplastic meningioma. Magnification, ×400. H&E, hematoxylin and eosin; SSS, superior sagittal sinus.
Subdural Hematoma Associated with Meningioma

Chen JW, U HS, Grafe MR. Unsuspected meningioma presenting as a subdural haematoma. J Neurol Neurosurg Psychiatry 1992;55(02):167–168

Pozzi M, Dario A, Marra A, Scamoni C, Dorizzi A. Associated chronic subdural haematoma and meningeal neoplasm. Two case reports. J Neurosurg Sci 1993;37(02):113–117

Popovic EA, Lyons MK, Scheithauer BW, Marsh WR. Mast cell-rich convexity meningioma presenting as chronic subdural haematoma: case report and review of the literature. Surg Neurol 1994;42(01):8–13

Tanaka N, Yamamoto M, Jimbo M, Ide M, Kubo O. Meningioma associated with chronic subdural hematoma and meningotheial cell cluster within the hematoma capsule—case report. Neurol Med Chir (Tokyo) 1994;34(03):176–179

Sinha VD, Dharker SR. Meningioma associated with contralateral chronic subdural haematoma: a short report. Neurol India 2001;49(02):204–206

Czyż M, Jarmundowicz W, Szarek D, Tabakow P, Markowska-Wojciechowska A. Bilateral chronic subdural haematomas in a patient with meningioma of the superior sagittal sinus - case report and pathophysiological study. Neurol Neurochir Pol 2011;45(05):500–504

Nery B, Costa RAF, Pereira LCT, et al. Spontaneous subdural hematoma associated with microcystic meningioma: first case report in the literature. Br J Neurosurg 2017;1:1–4

Lefranc F, Nagy N, Dewitte O, Balériaux D, Brotchi J. Intracranial meningiomas revealed by non-traumatic subdural haematomas: a series of four cases. Acta Neurochir (Wien) 2001;143(10):977–982, discussion 982–983

Chaskis C, Raftopoulos C, Noterman J, Flamant-Durand J, Brotchi J. Meningioma associated with subdural haematoma: report of two cases and review of the literature. Clin Neurol Neurosurg 1992;94(03):269–274

Patil AA. Intracranial meningioma with subdural membrane. A case report. Acta Neurochir (Wien) 1982;66(1-2):103–107

Enam SA, Abdulrauf S, Mehta B, Malik GM, Mahmood A. Metastasis in meningioma. Acta Neurochir (Wien) 1996;138(10):1172–1177, discussion 1177–1178

Kimura S, Kotani A, Takimoto T, Yoshino A, Katayama Y. Acute aggravation of subdural fluid collection associated with dural metastasis of malignant neoplasms: case report and review of the literature. Brain Tumor Pathol 2014;31(04):299–303

Reszec J, Hermanowicz A, Rutkowski R, Turek G, Mariak Z, Chyczewski L. Expression of MMP-9 and VEGF in meningiomas and their correlation with peritumoral brain edema. BioMed Res Int 2015;2015:646853

Hong HJ, Kim YJ, Yi HJ, Ko Y, Oh SJ, Kim JM. Role of angiogenic growth factors and inflammatory cytokine on recurrence of chronic subdural hematoma. Surg Neurol 2009;71(02):161–165, discussion 165–166

Bosnjak R, Derham C, Popović M, Ravnik J. Spontaneous intracranial meningioma bleeding: clinicopathological features and outcome. J Neurosurg 2005;103(03):473–484