Crystal structure of the new palladium complexes tetrakis(1,3-dimethylimidazolium-2-ylidene)-palladium(II) hexadecacarbonyltetra-rhenium diethyl ether disolvate and octa-μ-carbonyl-di-carbonyltetrakis(triphenylphosphane)palladium-dirhenium (unknown solvate)

Sergey Shapovalov,* Olga Tikhonova and Ivan Skabitsky

Kurnakov Institute of General and Inorganic Chemistry, 119991, Leninskii pr. 31, Moscow, Russian Federation.
*Correspondence e-mail: schss@yandex.ru

The investigation of the coordination chemistry of heterometallic transition-metal complexes of palladium (Pd) and rhenium (Re) led to the isolation and crystallographic characterization of tetrakis(1,3-dimethylimidazolium-2-ylidene)palladium(II) hexadecacarbonyltetra-rhenium diethyl ether disolvate, [Pd(C5H8N2)4][Re6(CO)16]·2C2H5O or [Pd(IMe)4][Re6(CO)16]·2C2H5O, (1), and octa-μ-carbonyl-di-carbonyltetrahedral(triphenylphosphane)palladium-dirhenium, [Pd4Re2(C18H15P)4(C10)=CO]·Pd4Re2(PPh3)4(μ-CO)8(CO)2, (2), from the reaction of Pd(PPh3)4 with 1,3-dimethylimidazolium-2-carboxylate and Re2(CO)10 in a toluene–acetonitrile mixture. In complex 1 the Re–Re bond lengths [2.9767 (3)–3.0133 (2) Å] are close to double the covalent Re radii (1.51 Å). The palladium–rhenium carbonyl cluster 2 has not been structurally characterized previously; the Pd–Re bond lengths [2.7582 (2)–2.7796 (2) Å] are about 0.1 Å shorter than the sum of the covalent Pd and Re radii (1.39 + 1.51 = 2.90 Å). One carbene ligand and a diethyl ether molecule are disordered over two positions with occupancy ratios of 0.5:0.5 and 0.625 (15):0.375 (15) in 1. An unidentified solvent is present in compound 2. The given chemical formula and other crystal data do not take into account the unknown solvent molecule(s).

1. Chemical context

Bimetallic catalysts comprising palladium (Pd) and rhenium (Re) have important applications in alkane reforming, industrial chemical production, hydrodechlorination and biomass conversion (Thompson & Lamb, 2016; Bonarowska et al., 1999; Malinowski et al., 1998; Juszczyk & Karpinski, 2001). Heterometallic Pd–Re clusters are suitable precursors for such a catalytic system. We found that the reaction of Pd(PPh3)4 with 1,3-dimethylimidazolium-2-carboxylate and Re2(CO)10 in a toluene–acetonitrile mixture produces a mixture of two compounds: [Pd(IMe)4][Re6(CO)16]·2C2H5O (1) and Pd4Re2(PPh3)4(μ-CO)8(CO)2 (2) where IMe is 1,3-dimethylimidazolium-2-ylidene. Two other products, triphenylphosphine oxide and the known complex Re2(CO)8(PPh3)2 (Adams et al., 2013) were isolated from the reaction mixture.
2. Structural commentary

The displacement ellipsoid plot of 1 is depicted in Fig. 1. The molecular unit of 1 comprises a palladium(II) cation with four coordinated N-heterocyclic carbenes (NHC) lying on a twofold rotoinversion axis, and one [Re₄(CO)₁₆] anion. The geometry around the Pd atom is square-planar with one carbene unit being disordered. The C—Pd—C angles range from 86.9 (4) to 97.7 (4)°. The cluster anion lying on the inversion center has a perfectly flat rhombus geometry with the shortest Re—Re bond [2.9767 (3) Å] corresponding to the short diagonal. The other four Re—Re bond lengths [3.001 (2)–3.0132 (2) Å] are also close to double the covalent Re radii (1.51 Å; Cordero et al., 2008). The Re—Re—Re angles are 59.330 (6)–60.542 (6)°.

The displacement ellipsoid plot of 2 is depicted in Fig. 2. The geometry of the Re₂Pd₄ core is found to be slightly distorted from that of a D₄h-symmetric tetragonal–bipyramidal prism. In complex 2, the Pd—Re bond lengths [2.7582 (2)–2.7796 (2) Å] are close to the sum of the covalent Pd and Re radii (1.39 + 1.51 = 2.90 Å). In comparison, the Pd—Re bond lengths in the PdRe₄(CO)₁₀(μ-SbPh₂)₂(μ-H)₂ clus (Adams et al., 2015) are in the range 2.9348 (18)–2.9823 (19) Å. The Pd₄ fragment has an almost square geometry [the Pd—Pd—Pd angles are 89.865 (6)–90.135 (6)° and the Pd—Pd bond lengths are 2.9678 (2)–2.99 (2) Å).

3. Supramolecular features

In the ionic crystal of 1, each cation is surrounded by six anions and vice versa (Fig. 3). No classical hydrogen-bonding interactions are observed between cations and anions, but...
and many carbonyl-O···H$_2$C and carbonyl-O···HC intermolecular contacts (Table 1) are present. The diethyl ether molecule resides in voids between four adjacent cations and anions featuring an O···HC contact (2.32 Å) with one of the carbenes at the palladium atom. No π-π stacking is observed in structure 2, but several weak C···H···π and C···H···OC contacts (Fig. 4 and Table 2) are present. The axial CO groups of the Re(CO)$_5$ fragments point towards voids filled with an unidentified solvent (Fig. 5).

4. Database survey

A search for related structures of palladium cations in the Cambridge Structural Database (CSD Version 5.42, update of November 2020; Groom et al., 2016) resulted in 27 hits. Of the structures found, the closest structures considering the connectivity of the atoms are tetrakis(N-methylimidazol-2-ylidene)palladium(II) diiodide (JOKCIV; Fehlhammer et al., 1992) and bis[methylenebis(3-methylimidazol-2-ylidene)]palladium(II) diiodide dimethylsulfoxide solvate (REFQID; Heckenroth et al., 2006). The cation in 1 is the first structurally characterized palladium complex ion containing four NHC ligands with substituents at the 1,3 positions of the imidazole ring. There are a number of compounds containing the tetranuclear [Re$_4$(CO)$_{16}$]$_2^{2-}$ anion, which is also found in the compound reported here. A search of the CSD found two closely related cluster compounds, viz. bis(tetraethylammonium) hexadecacarbonyl-tetrarhenium (EAMCRE; Ciani et al., 1978) and bis(tetra-n-butylammonium)hexadecacarbonyl-tetrarhenium (BATCRE10; Churchill & Bau, 1968). The palladium–rhenium carbonyl cluster in 2 has not been structurally characterized previously.

5. Synthesis and crystallization

Under a nitrogen atmosphere, Pd(PPh$_3$)$_4$ (241 mg, 0.185 mmol) was added to a toluene–acetonitrile mixture (8 and 6 mL, respectively) and 1,3-dimethylimidazolium-2-carboxylate (104 mg, 0.704 mmol). The reaction mixture was refluxed for 1.5 h, then Re$_4$(CO)$_{16}$ (242 mg, 0.141 mmol) was added, the solution turned dark red and the solvents were removed in vacuo. The solid was washed with benzene (3 × 5 ml) and recrystallized from an acetonitrile–diethyl ether mixture. X-ray quality crystals of Pd(IMe)$_4$Re$_4$(CO)$_{16}$–2C$_2$H$_6$O (37 mg, 13%) were grown from a dichloromethane–diethyl ether mixture at 277 K. 1H NMR (300.13 MHz, DMSO-d_6, ppm): 3.41 (s, 24H, 8Me), 7.37 (s, 24H, 8CH). 13C{H} NMR

![Figure 4](image4.png)

A view of the packing of compound 2.

![Figure 5](image5.png)

The axial CO groups of the Re(CO)$_5$ fragments in 2 point towards voids filled with an unidentified solvent.

Table 1

D−H ·· A	D−H	H ·· A	D ·· A	D−H ·· A
C11−H11A···O4	0.98	2.49	3.436 (6)	161
C13−H13···O9ii	0.95	2.44	3.36 (3)	165
C13−H13···O9Aii	0.95	2.32	3.25 (5)	163
C15−H15A···O6iii	0.98	2.44	3.326 (5)	150
C16−H16B···O9	0.98	2.57	3.49 (3)	158
C18−H18···O7iii	0.95	2.43	3.230 (9)	141
C19−H19···O7iii	0.95	2.56	3.483 (16)	163
C20−H20C···O5ii	0.98	2.35	3.203 (12)	145
C20−H20C···O5ii	0.98	2.54	3.491 (11)	149
C21−H21C···O5	0.98	2.59	3.494 (12)	153
C24−H24B···O8iv	0.99	2.58	3.473 (12)	150

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+1, −z+1; (iii) x, −y+2, z+1$\frac{1}{2}$; (iv) x−1, y, −z+1$\frac{1}{2}$; (v) −x, −y+2, −z; (vi) −x+y+1, y+1, −z+1$\frac{1}{2}$; (vii) x+1, y+1, z+1$\frac{1}{2}$.

Table 2

D−H ·· A	D−H	H ·· A	D ·· A	D−H ·· A
C9−H9···O5iii	0.95	2.49	3.188 (3)	130
C39−H39···O2iv	0.95	2.60	3.491 (4)	157
C20−H20C···Cg1	0.95	2.84	3.635 (3)	142
C34−H34···Cg3iv	0.95	2.90	3.683 (3)	140

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+1, −z+2; (iii) −x+1, −y+2, −z+1; (iv) x, y, z.

![Image](image.png)
Table 3
Experimental details.

1	2	
Crystal data	[Pd(C,H,N),][Re(CO),]2C,H,O	[Pd-Re(C,H,P),]4(CO),]
Chemical formula	1832.13	2127.18
M	Monoclinic, C2/c	Triclinic, P
Crystal system, space group	100	100
Temperature (K)	21.1079 (9), 14.0026 (6), 19.4346 (8)	12.9278 (4), 13.5132 (5), 14.1184 (5)
a, b, c (Å)	90, 10.342 (1), 90	100
α, β, γ (°)	5420.0 (4)	2060.09 (12)
V (Å³)	218.6 (CO)	201.1 (CO)
Z	IR (ATR, benzene solution, after several days, by slow ether diffusion	197.7 (CO)
Radiation type	Mo Kα	Mo Kα
μ (mm⁻¹)	9.30	3.91
Crystal size (mm)	0.17 × 0.11 × 0.03	0.23 × 0.18 × 0.18

Data collection

	Bruker APEXII CCD	Bruker APEXII CCD
Diffractometer	Multi-scan (SADABS; Krause et al., 2015)	Multi-scan (SADABS; Krause et al., 2015)
Absorption correction	Tmin, Tmax	0.11, 0.23
No. of measured, independent and observed [F > 2σ(F)] reflections	128368, 9046, 7392	151194, 11588, 10906
Rint	0.087	0.042
(sin θ/λ)max (Å⁻¹)	0.736	0.696

Refinement

R[F² > 2σ(F²)], wR(F²), S	0.028, 0.065, 1.06	0.018, 0.042, 1.10
No. of reflections	9046	11588
No. of parameters	427	461
No. of restraints	45	0
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained
Δρmax, Δρmin (e Å⁻³)	1.43, −1.83	0.95, −0.70

Computer programs: APEX2 and SAINT (Bruker, 2015), SHELXT2014/5 (Sheldrick, 2015a), SHELXL2014/7 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

A few crystals of Pd-Re2(PPh3)4(m-CO)8(CO)2 suitable for X-ray diffraction analysis were obtained from a yellow benzene solution, after several days, by slow ether diffusion into a concentrated solution of benzene at 277 K. IR (ATR, ν, cm⁻¹): 3850 (vw), 3054 (vw, br), 2955 (vw, br), 2986 (s), 1821 (vs, br), 1585 (vw), 1571 (vw), 1515 (vw), 1477 (w), 1434 (m), 1307 (vw), 1263 (vw), 1236 (vw, br), 1182 (vw), 1159 (vw), 1119 (vw), 1092 (m), 1071 (vw), 1026 (vw), 997 (w), 907 (vw), 846 (vw), 741 (m), 690 (vs), 618 (vw), 565 (w), 541 (vw), 496 (m), 436 (vw), 412 (vw).

Triphenylphosphine oxide (14 mg, 28%) and Re(CO)₄(PPh₃)₂ (29 mg, 14%) were also isolated from this crystallization.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å (sp²), 0.98 Å (methyl) and 0.99 Å (methylene), with common isotropic temperature factors for all hydrogen atoms of the aromatic rings and methyl groups. SADI restraints on bond lengths and DELU restraints on anisotropic thermal parameters were used to model the disordered carbene ligand and diethyl ether molecule over two positions. For the refinement of 2, four reflections (100, 010, 200, 021) were omitted because they showed a significantly lower intensity than calculated, most probably caused by obstruction from the beam stop. The residual electron density in 2 was difficult to model and therefore, the SQUEEZE routine (Spek, 2015) in PLATON (Spek, 2020) was used to remove the contribution of the electron density in the solvent region from the intensity data and the solvent-free model was employed for the final refinement. The cavity with a volume of ca 311 Å³ contains approximately 98 electrons.

Acknowledgements

This work was carried out on equipment of the Center for Collective Use of the Kurnakov Institute of General and Inorganic Chemistry (Russian Academy of Sciences).

Funding information

Funding for this research was provided by: Russian Foundation for Basic Research (grant No. 19-33-90199 to RFBR).
References

Adams, R. D., Pearl, W. C., Wong, Y. O., Hall, M. B. & Walensky, J. R. (2015). Inorg. Chem. 54, 3536–3544.
Adams, R. D., Wong, Y. O. & Zhang, Q. (2013). Organometallics, 32, 7540–7546.
Bonarowska, M., Malinowski, A. & Karpiński, Z. (1999). Appl. Catal. Gen. 188, 145–154.
Bruker. (2015). APEX2 and SAINT, v8, 37A. Bruker AXS Inc, Madison, Wisconsin, USA.
Churchill, M. R. & Bau, R. (1968). Inorg. Chem. 7, 2606–2614.
Ciani, G., D’Alfonso, G., Freni, M., Romiti, P. & Sironi, A. (1978). J. Organomet. Chem. 157, 199–208.
Cordero, B., Gómez, V., Platero-Prats, A. E., Revés, M., Echeverría, J., Cremades, E., Barragán, F. & Alvarez, S. (2008). Dalton Trans. pp. 2832–2838.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
Fehlhammer, W. P., Bliss, T., Fuchs, J. & Holzmann, G. (1992). Z. Naturforsch. Teil B. 47, 79–89.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
Heckenroth, M., Neels, A., Stoeckli-Evans, H. & Albrecht, M. (2006). Inorg. Chim. Acta. 359, 1929–1938.
Juszczyk, W. & Karpiński, Z. (2001). Appl. Catal. Gen. 206, 67–78.
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
Malinowski, A., Juszczyk, W., Bonarowska, M., Pielaszek, J. & Karpinski, Z. (1998). J. Catal. 177, 153–163.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
Spek, A. L. (2015). Acta Cryst. C71, 9–18.
Spek, A. L. (2020). Acta Cryst. E76, 1–11.
Thompson, S. T. & Lamb, H. H. (2016). ACS Catal. 6, 7438–7447.
Crystal structure of the new palladium complexes tetrakis(1,3-dimethylimidazolium-2-ylidene)palladium(II) hexadecacarbonyltetrarhenium diethyl ether disolvate and octa-µ-carbonyl-dicarbonyltetrakis(triphenylphosphane)palladiumdirhenium (unknown solvate)

Sergey Shapovalov, Olga Tikhonova and Ivan Skabitsky

Computing details

For both structures, data collection: APEX2 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Tetrakis(1,3-dimethylimidazolium-2-ylidene)palladium(II) hexadecacarbonyltetrarhenium diethyl ether disolvate (1)

Crystal data

\[\text{[Pd(C}_5\text{H}_8\text{N}_2\text{)}_4][\text{Re}_4\text{(CO)}_{16}]\cdot2\text{C}_4\text{H}_10\text{O}\]

\[M_p = 1832.13\]

Monoclinic, \(\text{C}_2/\text{c}\)

\(a = 21.1079 (9) \text{ Å}\)

\(b = 14.0026 (6) \text{ Å}\)

\(c = 19.4346 (8) \text{ Å}\)

\(\beta = 109.342 (1)^\circ\)

\(V = 5420.0 (4) \text{ Å}^3\)

\(Z = 4\)

\(F(000) = 3448\)

\(D_x = 2.245 \text{ Mg m}^{-3}\)

\(\lambda = 0.71073 \text{ Å}\)

Cell parameters from 9678 reflections

\(\theta = 2.9−31.5^\circ\)

\(\mu = 9.30 \text{ mm}^{-1}\)

\(T = 100 \text{ K}\)

Plate, brownish yellow

0.17 × 0.11 × 0.03 mm

Data collection

Bruker APEXII CCD

\(\varphi\) and \(\omega\) scans

Absorption correction: multi-scan

(SADABS; Krause et al., 2015)

\(T_\text{min} = 0.285, \ T_\text{max} = 0.746\)

128368 measured reflections

9046 independent reflections

7392 reflections with \(I > 2\sigma(I)\)

\(R_{\text{int}} = 0.087\)

\(\theta_{\text{max}} = 31.5^\circ, \ \theta_{\text{min}} = 1.8^\circ\)

\(h = -31\rightarrow 31\)

\(k = -20\rightarrow 20\)

\(l = -28\rightarrow 28\)

Refinement

Refinement on \(F^2\)

Least-squares matrix: full

\(R(F^2 > 2\sigma(F^2)) = 0.028\)

\(wR(F^2) = 0.065\)

\(S = 1.06\)

9046 reflections

427 parameters

45 restraints

Primary atom site location: dual
Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

\[w = \frac{1}{\sigma^2(F_o^2) + (0.0239P)^2 + 18.7547P} \]
where \(P = (F_o^2 + 2F_c^2)/3 \)

\((\Delta \sigma)_{\text{max}} = 0.002\)

\(\Delta \rho_{\text{max}} = 1.43 \text{ e Å}^{-3}\)

\(\Delta \rho_{\text{min}} = -1.83 \text{ e Å}^{-3}\)

Extinction correction: SHELXL-2014/7

(Sheldrick, 2015b),

\[F_c^e = kF_c[1 + 0.001xF_c^2\lambda^3/\sin(2\theta)]^{1/4} \]

Extinction coefficient: 0.000167 (12)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)

	x	y	z	U(eq)
Re1	0.24123 (2)	0.64550 (2)	0.00757 (2)	0.01933 (4)
Re2	0.12119 (2)	0.77460 (2)	-0.02794 (2)	0.01862 (4)
O1	0.26345 (18)	0.6591 (2)	0.17414 (18)	0.0402 (8)
O2	0.33004 (14)	0.4665 (2)	0.04457 (16)	0.0282 (6)
O3	0.21798 (18)	0.6155 (2)	-0.15832 (16)	0.0395 (8)
O4	0.12446 (17)	0.5083 (3)	-0.0062 (3)	0.0723 (15)
O5	0.14525 (17)	0.7926 (3)	0.13868 (17)	0.0467 (9)
O6	0.02877 (15)	0.9489 (2)	-0.05934 (19)	0.0360 (7)
O7	0.09872 (16)	0.7518 (2)	-0.19407 (16)	0.0298 (6)
O8	0.00308 (15)	0.6418 (2)	-0.03953 (18)	0.0344 (7)
C1	0.2553 (2)	0.6594 (3)	0.1126 (2)	0.0259 (8)
C2	0.30013 (19)	0.5380 (3)	0.0300 (2)	0.0222 (7)
C3	0.2273 (2)	0.6311 (3)	-0.0977 (2)	0.0265 (8)
C4	0.1656 (2)	0.5633 (3)	-0.0026 (3)	0.0436 (13)
C5	0.1390 (2)	0.7867 (3)	0.0783 (2)	0.0284 (8)
C6	0.06388 (19)	0.8834 (3)	-0.0472 (2)	0.0265 (8)
C7	0.10950 (19)	0.7595 (3)	-0.1328 (2)	0.0203 (7)
C8	0.0477 (2)	0.6912 (3)	-0.0359 (2)	0.0240 (7)
Pd1	0.0000	0.73266 (3)	0.2500	0.01708 (8)
N1	0.01104 (15)	0.5294 (2)	0.20006 (16)	0.0208 (6)
N2	0.08671 (16)	0.7599 (2)	0.40944 (16)	0.0207 (6)
N3	0.14126 (16)	0.6837 (3)	0.35200 (18)	0.0264 (7)
C9	0.0000	0.5885 (3)	0.2500	0.0163 (9)
C10	0.0072 (2)	0.4355 (3)	0.2188 (2)	0.0291 (8)
H10	0.0135	0.3810	0.1927	0.035*
C11	0.0244 (2)	0.5602 (3)	0.1342 (2)	0.0280 (8)
H11A	-0.0169	0.5553	0.0921	0.042*
H11B	0.0591	0.5194	0.1264	0.042*
H11C	0.0399	0.6266	0.1400	0.042*
C12	0.08194 (18)	0.7269 (3)	0.34247 (19)	0.0197 (7)
C13	0.1480 (2)	0.7374 (3)	0.4598 (2)	0.0272 (8)
H13	0.1630	0.7529	0.5102	0.033*
C14	0.1825 (2)	0.6895 (3)	0.4242 (2)	0.0306 (9)
Atom	x	y	z	Ueq
------	-------	-------	-------	------
H14	0.2265	0.6643	0.4445	0.037*
C15	0.0357 (2)	0.8150 (3)	0.4261 (2)	0.0263 (8)
H15A	0.0515	0.8807	0.4381	0.040*
H15B	0.0265	0.7864	0.4678	0.040*
H15C	−0.0055	0.8154	0.3837	0.040*
C16	0.1617 (2)	0.6371 (4)	0.2951 (3)	0.0372 (11)
H16A	0.1578	0.5677	0.2988	0.056*
H16B	0.2084	0.6538	0.3015	0.056*
H16C	0.1327	0.6587	0.2471	0.056*
N4	−0.0689 (5)	0.9322 (6)	0.2333 (5)	0.0253 (17) 0.5
N5	0.0364 (4)	0.9444 (6)	0.2548 (5)	0.0250 (16) 0.5
C17	−0.0127 (4)	0.8789 (5)	0.2461 (10)	0.0184 (18) 0.5
C18	−0.0558 (5)	1.0282 (6)	0.2331 (5)	0.038 (2) 0.5
H18	−0.0875	1.0788	0.2239	0.045* 0.5
C19	0.0112 (8)	1.0359 (6)	0.2485 (19)	0.037 (4) 0.5
H19	0.0361	1.0935	0.2541	0.044* 0.5
C20	−0.1373 (5)	0.8957 (8)	0.2173 (6)	0.034 (2) 0.5
H20A	−0.1550	0.8755	0.1662	0.051* 0.5
H20B	−0.1659	0.9462	0.2261	0.051* 0.5
H20C	−0.1367	0.8411	0.2491	0.051* 0.5
C21	0.1067 (6)	0.9243 (7)	0.2723 (6)	0.030 (2) 0.5
H21A	0.1261	0.9091	0.3243	0.045* 0.5
H21B	0.1295	0.9803	0.2612	0.045* 0.5
H21C	0.1126	0.8698	0.2433	0.045* 0.5
O9	0.3252 (14)	0.7269 (9)	0.3616 (17)	0.034 (3) 0.625 (15)
C23	0.3548 (9)	0.5629 (10)	0.3719 (8)	0.038 (3) 0.625 (15)
H23A	0.3132	0.5457	0.3330	0.057* 0.625 (15)
H23B	0.3473	0.5604	0.4191	0.057* 0.625 (15)
H23C	0.3903	0.5177	0.3721	0.057* 0.625 (15)
C22	0.3752 (7)	0.6610 (9)	0.3592 (8)	0.027 (3) 0.625 (15)
H22A	0.4184	0.6774	0.3970	0.033* 0.625 (15)
H22B	0.3815	0.6642	0.3110	0.033* 0.625 (15)
C24	0.3390 (5)	0.8233 (8)	0.346 (6)	0.032 (2) 0.625 (15)
H24A	0.3523	0.8250	0.3021	0.038* 0.625 (15)
H24B	0.3766	0.8490	0.3877	0.038* 0.625 (15)
C25	0.2780 (5)	0.8827 (7)	0.3352 (5)	0.045 (2) 0.625 (15)
H25A	0.2418	0.8594	0.2924	0.068* 0.625 (15)
H25B	0.2881	0.9493	0.3274	0.068* 0.625 (15)
H25C	0.2639	0.8784	0.3783	0.068* 0.625 (15)
O9A	0.333 (3)	0.7156 (16)	0.371 (3)	0.033 (6) 0.375 (15)
C22A	0.3655 (13)	0.6404 (13)	0.3477 (13)	0.029 (5) 0.375 (15)
H22C	0.4123	0.6592	0.3540	0.035* 0.375 (15)
H22D	0.3422	0.6280	0.2952	0.035* 0.375 (15)
C24A	0.3289 (11)	0.8017 (10)	0.3296 (9)	0.027 (4) 0.375 (15)
H24C	0.2916	0.7966	0.2827	0.032* 0.375 (15)
H24D	0.3712	0.8108	0.3188	0.032* 0.375 (15)
C23A	0.3655 (13)	0.5520 (12)	0.3901 (11)	0.020 (3) 0.375 (15)
H23D	0.3939	0.5037	0.3783	0.030* 0.375 (15)
Atomic displacement parameters (Å²)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Re1	0.01832 (7)	0.01206 (7)	0.02740 (8)	0.00109 (5)	0.00727 (5)	-0.00045 (5)
Re2	0.01763 (7)	0.01595 (7)	0.02921 (7)	0.00130 (5)	0.00757 (5)	-0.00270 (5)
O1	0.0373 (18)	0.075 (3)	0.0284 (16)	0.0133 (18)	0.0116 (14)	-0.0083 (17)
O2	0.0276 (14)	0.0205 (15)	0.059 (2)	0.0059 (12)	0.0128 (14)	-0.0041 (14)
O3	0.0316 (16)	0.0266 (16)	0.0279 (15)	0.0001 (12)	0.0122 (12)	0.0020 (12)
O4	0.0324 (15)	0.0296 (17)	0.0465 (18)	-0.0084 (13)	0.0202 (14)	-0.0073 (14)
C1	0.0295 (19)	0.0196 (19)	0.035 (2)	0.0015 (15)	0.0191 (17)	0.0027 (16)
C2	0.0258 (17)	0.0211 (19)	0.0217 (16)	-0.0004 (14)	0.0107 (14)	0.0010 (14)
C3	0.0299 (19)	0.0134 (18)	0.032 (2)	0.0042 (15)	0.0052 (16)	-0.0015 (15)
C4	0.0262 (16)	0.027 (2)	0.088 (4)	0.0035 (17)	0.018 (2)	0.001 (2)
C5	0.0239 (18)	0.030 (2)	0.032 (2)	0.0046 (16)	0.0101 (16)	-0.0061 (17)
N1	0.0257 (15)	0.0122 (14)	0.0230 (14)	-0.0005 (12)	0.0062 (12)	-0.0024 (12)
N2	0.0265 (15)	0.0175 (16)	0.0190 (14)	-0.0068 (12)	0.0085 (12)	-0.0013 (11)
N3	0.0223 (15)	0.0286 (19)	0.0294 (17)	-0.0082 (13)	0.0101 (13)	-0.0123 (14)
C9	0.0152 (12)	0.020 (2)	0.020 (2)	0.00 (2)	0.0026 (17)	0.000 (2)
C10	0.036 (2)	0.022 (2)	0.0274 (19)	0.0000 (17)	0.0123 (17)	-0.0041 (16)
C11	0.0253 (17)	0.0152 (17)	0.0201 (16)	-0.0068 (14)	0.0096 (14)	-0.0023 (13)
C12	0.0213 (2)	0.026 (2)	0.0219 (17)	-0.0112 (16)	0.0042 (15)	-0.0039 (15)
C13	0.0220 (18)	0.031 (2)	0.034 (2)	-0.0065 (16)	0.0023 (16)	-0.0061 (18)
C14	0.033 (2)	0.026 (2)	0.0236 (18)	-0.0035 (17)	0.0148 (16)	-0.0063 (16)
C15	0.025 (2)	0.0047 (3)	0.041 (2)	-0.0039 (19)	0.0137 (18)	-0.0019 (2)
N4	0.035 (4)	0.023 (4)	0.021 (4)	0.014 (4)	0.012 (5)	0.004 (3)
N5	0.041 (4)	0.020 (4)	0.019 (4)	-0.005 (3)	0.017 (4)	-0.004 (3)
C17	0.030 (6)	0.015 (3)	0.013 (4)	0.004 (3)	0.011 (7)	0.000 (3)
C18	0.074 (6)	0.019 (4)	0.026 (5)	0.018 (4)	0.024 (5)	0.010 (3)
C19	0.068 (9)	0.016 (3)	0.029 (4)	-0.001 (5)	0.020 (12)	-0.001 (5)
C20	0.039 (5)	0.041 (7)	0.027 (5)	0.018 (4)	0.017 (5)	0.009 (5)
C21	0.043 (5)	0.020 (5)	0.032 (5)	-0.017 (5)	0.018 (6)	-0.003 (4)
O9	0.038 (5)	0.033 (5)	0.037 (9)	-0.011 (5)	0.021 (6)	-0.010 (5)
Geometric parameters (Å, °)

C23	0.043 (8)	0.046 (5)	0.022 (7)	0.000 (5)	0.008 (6)	0.001 (4)													
C22	0.021 (4)	0.036 (5)	0.026 (5)	-0.005 (4)	0.010 (4)	-0.005 (4)													
C24	0.035 (4)	0.036 (5)	0.023 (5)	-0.008 (4)	0.006 (4)	-0.006 (4)													
C25	0.050 (6)	0.043 (5)	0.038 (5)	0.002 (4)	0.008 (4)	-0.006 (4)													
O9A	0.055 (15)	0.022 (5)	0.028 (9)	0.000 (6)	0.022 (10)	0.002 (5)													
C22A	0.037 (11)	0.028 (8)	0.019 (8)	0.001 (7)	0.005 (7)	0.003 (7)													
C24A	0.044 (9)	0.016 (6)	0.015 (7)	-0.005 (6)	0.002 (6)	-0.006 (4)													
C23A	0.023 (7)	0.023 (6)	0.009 (8)	-0.007 (5)	-0.001 (6)	-0.005 (5)													
C25A	0.044 (8)	0.024 (6)	0.046 (8)	0.005 (5)	0.016 (7)	-0.006 (5)													

Acta Cryst. (2021). E77, 1014-1018
Bond	Distance (Å)	Bond	Distance (Å)
C11—H11A	0.9800	C24A—H24C	0.9900
C11—H11B	0.9800	C24A—H24D	0.9900
C11—H11C	0.9800	C24A—C25A	1.479 (14)
C13—H13	0.9500	C23A—H23D	0.9800
C13—C14	1.338 (6)	C23A—H23E	0.9800
C14—H14	0.9500	C23A—H23F	0.9800
C15—H15A	0.9800	C25A—H25D	0.9800
C15—H15B	0.9800	C25A—H25E	0.9800
C15—H15C	0.9800	C25A—H25F	0.9800
C16—H16A	0.9800		
Re1°—Re1—Re2	60.542 (6)	H15B—C15—H15C	109.5
Re1°—Re1—Re2i	60.127 (5)	N3—C16—H16A	109.5
Re2—Re1—Re2i	120.669 (6)	N3—C16—H16B	109.5
C1—Re1—Re1i	91.41 (12)	N3—C16—H16C	109.5
C1—Re1—Re2i	91.11 (12)	H16A—C16—H16B	109.5
C1—Re1—Re2	90.28 (12)	H16A—C16—H16C	109.5
C1—Re1—C3	179.77 (18)	H16B—C16—H16C	109.5
C2—Re1—Re1i	134.85 (11)	C17—N4—C18	112.1 (9)
C2—Re1—Re2	164.59 (11)	C17—N4—C20	126.2 (8)
C2—Re1—Re2i	74.73 (11)	C18—N4—C20	121.7 (9)
C2—Re1—C1	88.73 (16)	C17—N5—C19	111.2 (8)
C2—Re1—C3	91.05 (15)	C17—N5—C21	125.8 (8)
C2—Re1—C4	90.39 (17)	C19—N5—C21	122.9 (9)
C3—Re1—Re1i	88.79 (11)	N4—C17—Pd1	130.5 (6)
C3—Re1—Re2	89.91 (11)	N5—C17—Pd1	125.7 (6)
C3—Re1—Re2i	88.89 (12)	N5—C17—N4	103.8 (8)
C4—Re1—Re1i	134.75 (13)	N4—C18—H18	127.0
C4—Re1—Re2	165.04 (13)	C19—C18—N4	105.9 (9)
C4—Re1—Re2i	74.23 (13)	C19—C18—H18	127.0
C4—Re1—C1	90.0 (2)	N5—C19—H19	126.5
C4—Re1—C3	89.9 (2)	C18—C19—N5	107.0 (9)
Re1—Re2—Re1i	59.330 (6)	C18—C19—H19	126.5
C5—Re2—Re1i	89.40 (12)	N4—C20—H20A	109.5
C5—Re2—Re1	87.57 (12)	N4—C20—H20B	109.5
C5—Re2—C7	176.24 (15)	N4—C20—H20C	109.5
C6—Re2—Re1i	163.81 (12)	H20A—C20—H20B	109.5
C6—Re2—C5	104.51 (12)	H20A—C20—H20C	109.5
C6—Re2—C7	91.43 (17)	H20B—C20—H20C	109.5
C6—Re2—C8	91.67 (16)	N5—C21—H21A	109.5
C7—Re2—Re1	88.86 (10)	N5—C21—H21B	109.5
C7—Re2—Re1i	87.76 (11)	H21A—C21—H21B	109.5
C8—Re2—Re1i	163.93 (12)	H21A—C21—H21C	109.5
C8—Re2—C5	104.61 (12)	H21B—C21—H21C	109.5
C8—Re2—C7	90.28 (17)	C22—O9—C24	113.7 (13)
C8—Re2—C7	91.76 (15)	H23A—C23—H23B	109.5
C1—C1—Re1	174.2 (4)	H23A—C23—H23C	109.5
Bond	Value (Å)	Bond	Value (Å)
----------------------	-----------	----------------------	-----------
O2—C2—Re1	172.3 (3)	C23—C22—H22A	109.7
O2—C2—Re1	174.7 (4)	C22—C23—H22B	109.7
O4—C4—Re1	174.2 (4)	C22—C23—H22B	109.5
O5—C5—Re2	175.9 (4)	C22—C23—H22C	109.5
O6—C6—Re2	179.4 (4)	C22—C22—H22A	109.7
O7—C7—Re2	175.8 (3)	O9—C22—H22B	109.7
O8—C8—Re2	178.7 (4)	O9—C22—H22B	109.7
C9—Pd1—C12	87.72 (10)	O9—C22—H22B	109.7
C9—Pd1—C12	87.72 (10)	O9—C22—H22B	109.7
C12a—Pd1—C12	173.0 (2)	O9—C24—H24A	109.8
C12a—Pd1—C12	175.4 (2)	O9—C24—H24B	109.8
C12—N2—C13	111.0 (3)	C24—C25—H25C	109.5
C12—N2—C15	125.0 (3)	C24—C25—H25B	109.5
C12—N3—C14	110.9 (3)	C25—C25—H25C	109.5
C12—N3—C16	126.1 (3)	C25—C25—H25B	109.5
N1—C9—Pd1	127.7 (2)	C22A—C22A—H22C	109.5
N1—C9—Pd1	127.7 (2)	C22A—C22A—H22D	109.5
N1—C10—C11	125.2 (3)	O9A—C24A—C25A	109.5
N1—C10—C11	124.0 (3)	O9A—C24A—C25A	109.5
N1—C10—C11	111.0 (3)	O9A—C24A—C25A	109.5
N1—C10—C11	125.0 (3)	O9A—C24A—C25A	109.5
H11A—C11—H11B	109.5	O9A—C24A—C25A	109.5
H11A—C11—H11C	109.5	O9A—C24A—C25A	109.5
H11B—C11—H11C	109.5	O9A—C24A—C25A	109.5
N2—C12—Pd1	127.2 (3)	C22A—C22A—H22B	109.5
N2—C12—Pd1	128.1 (3)	C22A—C22A—H22B	109.5
N2—C12—Pd1	104.6 (3)	C22A—C22A—H22B	109.5
N3—C12—N2	126.5	C22A—C22A—H22B	109.5
N3—C12—N2	126.7	C22A—C22A—H22B	109.5
N3—C12—N2	106.6 (4)	C22A—C22A—H22B	109.5
N3—C12—N2	126.5	C22A—C22A—H22B	109.5
C14—C13—N2	126.5	C22A—C22A—H22B	109.5
C14—C13—N2	107.0 (3)	C22A—C22A—H22B	109.5
C14—C13—N2	126.5	C22A—C22A—H22B	109.5
C14—C13—N2	106.6 (4)	C22A—C22A—H22B	109.5
C14—C13—N2	126.7	C22A—C22A—H22B	109.5
C14—C13—N2	107.0 (3)	C22A—C22A—H22B	109.5
C14—C13—N2	126.7	C22A—C22A—H22B	109.5
C14—C13—N2	106.6 (4)	C22A—C22A—H22B	109.5
C14—C13—N2	126.7	C22A—C22A—H22B	109.5
C14—C13—N2	107.0 (3)	C22A—C22A—H22B	109.5
C14—C13—N2	126.7	C22A—C22A—H22B	109.5
C14—C13—N2	106.6 (4)	C22A—C22A—H22B	109.5
H15A—C15—H15B	109.5	C22A—C22A—H22B	109.5
H15A—C15—H15C	109.5	C22A—C22A—H22B	109.5
Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
C11—H11A···O4iii	0.98	2.49	3.436 (6)	161
C13—H13···O9vi	0.95	2.44	3.36 (3)	165
C13—H13···O9Av	0.95	2.32	3.25 (5)	163
C15—H15A···O6v	0.98	2.44	3.326 (5)	150
C16—H16B···O9	0.98	2.57	3.49 (3)	158
C18—H18···O7vi	0.95	2.43	3.230 (9)	141
C19—H19···O7v	0.95	2.56	3.483 (16)	163
C20—H20C···O5vi	0.98	2.35	3.203 (12)	145
C21—H21A···O2vii	0.98	2.54	3.413 (11)	149
C21—H21C···O5	0.98	2.59	3.494 (12)	153
C24—H24B···O8viii	0.99	2.58	3.473 (12)	150

Octa-\(\mu\)-carbonyl-dicarbonyltetrakis(triphenylphosphane)palladiumdirhenium (2)

Crystal data

\[\text{[Pd}_4\text{Re}_2\text{(C}_18\text{H}_{15}\text{P})_4\text{(CO)}_{10}]\]

\(M_r = 2127.18\)
Triclinic, \(\overline{P}\)
\(a = 12.9278 \text{ (4) Å}\)
\(b = 13.5132 \text{ (5) Å}\)
\(c = 14.1184 \text{ (5) Å}\)
\(\alpha = 120.983 (1)°\)
\(\beta = 108.510 (1)°\)

\(\gamma = 106.051 (1)°\)

\(y = 106.129 (1)^\circ\)

\(V = 2060.09 \text{ (12) Å}^3\)

\(Z = 1\)

\(F(000) = 1026\)

\(D_o = 1.715 \text{ Mg m}^3\)

\(\text{Mo Kα radiation, } \lambda = 0.71073 \text{ Å}\)

\(\theta = 2.8–29.6°\)

Cell parameters from 9325 reflections
Supporting information

\(\mu = 3.91 \text{ mm}^{-1} \)
\(T = 100 \text{ K} \)
Block, red
\(0.23 \times 0.18 \times 0.18 \text{ mm} \)

Data collection

Bruker APEXII CCD
diffractometer
\(\varphi \) and \(\omega \) scans
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
\(T_{\text{min}} = 0.515, T_{\text{max}} = 0.746 \)
151194 measured reflections

Refinement

Refinement on \(F^2 \)
Least-squares matrix: full
\(R[F^2 > 2\sigma(F^2)] = 0.018 \)
\(wR(F^2) = 0.042 \)
\(S = 1.10 \)
11588 reflections
461 parameters
0 restraints
Primary atom site location: dual
Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

\[w = 1/[\sigma^2(F_o^2) + (0.0148P)^2 + 2.1161P] \]
where \(P = (F_o^2 + 2F_c^2)/3 \)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)

	x	y	z	\(U_{ ext{iso}}/U_{ ext{eq}} \)
Re1	−0.03789 (2)	0.58284 (2)	0.59592 (2)	0.01288 (3)
Pd1	0.11939 (2)	0.64837 (2)	0.50923 (2)	0.01377 (3)
Pd2	0.13798 (2)	0.50124 (2)	0.63029 (2)	0.01360 (3)
P1	0.27753 (4)	0.79978 (4)	0.52970 (4)	0.01537 (9)
P2	0.27280 (5)	0.48255 (4)	0.77255 (4)	0.01634 (10)
O1	−0.11990 (18)	0.71938 (18)	0.74578 (16)	0.0433 (5)
O2	−0.12746 (15)	0.42760 (14)	0.70708 (13)	0.0266 (3)
O3	0.18975 (14)	0.70585 (13)	0.81880 (12)	0.0236 (3)
O4	0.03880 (14)	0.82425 (13)	0.59258 (13)	0.0240 (3)
O5	0.30356 (13)	0.45945 (14)	0.53745 (13)	0.0236 (3)
C1	−0.0874 (2)	0.66930 (19)	0.69145 (18)	0.0246 (4)
C2	−0.10429 (18)	0.45891 (18)	0.64488 (17)	0.0198 (4)
C3	0.12010 (18)	0.64157 (17)	0.73175 (16)	0.0178 (4)
C4	0.03254 (17)	0.73328 (17)	0.57964 (16)	0.0175 (4)
C5	0.20750 (18)	0.45438 (17)	0.51815 (16)	0.0174 (4)
C6	0.37893 (17)	0.75557 (17)	0.48099 (17)	0.0188 (4)
C7	0.4316 (2)	0.69504 (19)	0.53169 (19)	0.0242 (4)
H7	0.4156	0.6822	0.5894	0.029*

Acta Cryst. (2021). E77, 1014-1018
Atom	x	y	z	Ueq
C8	0.5067 (2)	0.65387 (19)	0.4984 (2)	0.0270 (5)
H8	0.5409	0.6118	0.5322	0.032*
C9	0.5315 (2)	0.6744 (2)	0.41544 (19)	0.0283 (5)
H9	0.5830	0.6464	0.3924	0.034*
C10	0.4819 (2)	0.7353 (2)	0.36630 (19)	0.0278 (5)
H10	0.5008	0.7504	0.3106	0.033*
C11	0.40389 (18)	0.77520 (18)	0.39750 (17)	0.0215 (4)
H11	0.3683	0.8154	0.3619	0.026*
C12	0.38172 (18)	0.90224 (17)	0.66794 (16)	0.0180 (4)
C13	0.34659 (19)	0.91169 (18)	0.75257 (17)	0.0216 (4)
H13	0.2686	0.8649	0.7381	0.026*
C14	0.4253 (2)	0.9896 (2)	0.85853 (18)	0.0264 (5)
H14	0.4004	0.9956	0.9156	0.032*
C15	0.5392 (2)	1.0578 (2)	0.88081 (19)	0.0299 (5)
H15	0.5922	1.1113	0.9527	0.036*
C16	0.5758 (2)	1.0476 (2)	0.7971 (2)	0.0292 (5)
H16	0.6544	1.0935	0.8122	0.035*
C17	0.49795 (19)	0.97081 (18)	0.69209 (18)	0.0230 (4)
H17	0.5237	0.9645	0.6356	0.028*
C18	0.22924 (18)	0.88071 (17)	0.45395 (16)	0.0184 (4)
C19	0.3060 (2)	0.98359 (18)	0.46489 (18)	0.0229 (4)
H19	0.3875	1.0152	0.5148	0.027*
C20	0.2634 (2)	1.0399 (2)	0.4029 (2)	0.0281 (5)
H20	0.3162	1.1093	0.4102	0.034*
C21	0.1449 (2)	0.9955 (2)	0.3312 (2)	0.0347 (6)
H21	0.1161	1.0346	0.2897	0.042*
C22	0.0676 (2)	0.8933 (3)	0.3198 (2)	0.0387 (6)
H22	0.0676 (2)	0.8933 (3)	0.3198 (2)	0.0387 (6)
C23	0.1098 (2)	0.8368 (2)	0.3815 (2)	0.0282 (5)
H23	0.0566	0.7676	0.3742	0.034*
C24	0.42622 (18)	0.57138 (19)	0.80973 (17)	0.0208 (4)
C25	0.5207 (2)	0.5376 (2)	0.8357 (2)	0.0294 (5)
H25	0.5070	0.4651	0.8366	0.035*
C26	0.6346 (2)	0.6093 (2)	0.8602 (2)	0.0401 (6)
H26	0.6982	0.5855	0.8774	0.048*
C27	0.6561 (2)	0.7155 (3)	0.8598 (2)	0.0409 (6)
H27	0.7342	0.7642	0.8765	0.049*
C28	0.5630 (2)	0.7502 (3)	0.8347 (3)	0.0415 (7)
H28	0.5776	0.8233	0.8353	0.050*
C29	0.4486 (2)	0.6779 (2)	0.8087 (2)	0.0326 (5)
H29	0.3850	0.7015	0.7901	0.039*
C30	0.26705 (19)	0.34177 (18)	0.75156 (17)	0.0199 (4)
C31	0.3181 (2)	0.3138 (2)	0.83814 (19)	0.0296 (5)
H31	0.3604	0.3699	0.9103	0.036*
C32	0.3073 (3)	0.2043 (2)	0.8192 (2)	0.0365 (6)
H32	0.3425	0.1860	0.8784	0.044*
C33	0.2453 (2)	0.1214 (2)	0.7143 (2)	0.0335 (5)
H33	0.2382	0.0465	0.7018	0.040*
Atomic displacement parameters (Å²)

	U₁₁	U₂₂	U₃₃	U₁₂	U₁₃	U₂₃
Re1	0.01245 (4)	0.01357 (4)	0.01647 (4)	0.00659 (3)	0.00863 (3)	0.00710 (3)
Pd1	0.01249 (7)	0.01311 (7)	0.01861 (7)	0.00468 (5)	0.00858 (5)	0.00854 (5)
Pd2	0.01236 (7)	0.01464 (7)	0.01648 (7)	0.00662 (5)	0.00670 (5)	0.00807 (5)
P1	0.0134 (2)	0.0141 (2)	0.0215 (2)	0.00506 (18)	0.00935 (18)	0.00943 (19)
P2	0.0163 (2)	0.0175 (2)	0.0174 (2)	0.00879 (19)	0.00679 (18)	0.00836 (19)
O1	0.0443 (11)	0.0454 (11)	0.0439 (11)	0.0246 (9)	0.0282 (9)	0.0054 (9)
O2	0.0308 (8)	0.0263 (8)	0.0236 (7)	0.0053 (7)	0.0156 (7)	0.0124 (6)
O3	0.0248 (8)	0.0196 (7)	0.0221 (7)	0.0100 (6)	0.0058 (6)	0.0062 (6)
O4	0.0241 (8)	0.0162 (7)	0.0341 (8)	0.0097 (6)	0.0128 (7)	0.0111 (6)
O5	0.0180 (7)	0.0314 (8)	0.0300 (8)	0.0145 (6)	0.0135 (6)	0.0156 (7)
C1	0.0216 (10)	0.0260 (11)	0.0263 (10)	0.0104 (9)	0.0120 (9)	0.0075 (9)
C2	0.0168 (9)	0.0221 (10)	0.0220 (9)	0.0069 (8)	0.0104 (8)	0.0090 (8)
C3	0.0190 (9)	0.0182 (9)	0.0213 (9)	0.0089 (8)	0.0109 (8)	0.0109 (8)
C4	0.0138 (8)	0.0190 (9)	0.0199 (9)	0.0070 (7)	0.0074 (7)	0.0073 (7)
C5	0.0190 (9)	0.0161 (9)	0.0218 (9)	0.0082 (7)	0.0109 (8)	0.0101 (7)
C6	0.0142 (9)	0.0151 (9)	0.0270 (10)	0.0041 (7)	0.0108 (8)	0.0079 (8)
C7	0.0234 (10)	0.0231 (10)	0.0361 (12)	0.0112 (9)	0.0180 (9)	0.0177 (9)
C8	0.0252 (11)	0.0224 (11)	0.0411 (13)	0.0132 (9)	0.0172 (10)	0.0163 (10)
C9	0.0222 (11)	0.0284 (12)	0.0331 (12)	0.0127 (9)	0.0131 (9)	0.0063 (9)
C10	0.0257 (11)	0.0367 (13)	0.0256 (10)	0.0144 (10)	0.0157 (9)	0.0113 (9)
C11	0.0174 (9)	0.0242 (10)	0.0233 (10)	0.0077 (8)	0.0092 (8)	0.0104 (8)
C12	0.0175 (9)	0.0154 (9)	0.0226 (9)	0.0069 (7)	0.0079 (8)	0.0100 (7)
C13	0.0216 (10)	0.0218 (10)	0.0255 (10)	0.0108 (8)	0.0098 (8)	0.0132 (8)
C14	0.0305 (12)	0.0291 (11)	0.0236 (10)	0.0146 (10)	0.0112 (9)	0.0139 (9)
C15	0.0316 (12)	0.0213 (11)	0.0251 (11)	0.0071 (9)	0.0031 (9)	0.0071 (9)
C16	0.0219 (11)	0.0220 (11)	0.0326 (12)	0.0024 (9)	0.0058 (9)	0.0089 (9)
C17	0.0201 (10)	0.0196 (10)	0.0287 (10)	0.060 (8)	0.0104 (8)	0.0110 (8)
C18	0.0200 (9)	0.0191 (9)	0.0228 (9)	0.0097 (8)	0.0122 (8)	0.0120 (8)
C19	0.0243 (10)	0.0201 (10)	0.0284 (10)	0.0082 (8)	0.0143 (9)	0.0126 (8)
C20	0.0370 (13)	0.0227 (11)	0.0358 (12)	0.0133 (10)	0.0215 (10)	0.0190 (10)
C21	0.0403 (14)	0.0394 (14)	0.0441 (14)	0.0236 (12)	0.0217 (12)	0.0318 (12)
C22	0.0243 (12)	0.0525 (17)	0.0478 (15)	0.0158 (12)	0.0116 (11)	0.0357 (14)
C23	0.0199 (10)	0.0316 (12)	0.0356 (12)	0.0069 (9)	0.0106 (9)	0.0219 (10)
C24	0.0159 (9)	0.0252 (10)	0.0209 (9)	0.0081 (8)	0.0070 (8)	0.0097 (8)
C25	0.0229 (11)	0.0282 (12)	0.0347 (12)	0.0144 (9)	0.0076 (9)	0.0103 (10)
C26	0.0217 (12)	0.0435 (15)	0.0497 (16)	0.0166 (11)	0.0105 (11)	0.0130 (13)
C27	0.0200 (11)	0.0465 (16)	0.0527 (16)	0.0072 (11)	0.0150 (11)	0.0218 (14)
C28	0.0262 (13)	0.0395 (15)	0.0630 (18)	0.0097 (11)	0.0167 (12)	0.0322 (14)
C29	0.0216 (11)	0.0350 (13)	0.0496 (15)	0.0127 (10)	0.0150 (11)	0.0278 (12)
C30	0.0208 (10)	0.0204 (10)	0.0236 (10)	0.0118 (8)	0.0100 (8)	0.0115 (8)
C31	0.0352 (13)	0.0260 (11)	0.0273 (11)	0.0163 (10)	0.0071 (10)	0.0134 (9)
C32	0.0438 (15)	0.0329 (13)	0.0403 (14)	0.0248 (12)	0.0120 (12)	0.0223 (11)
C33	0.0376 (13)	0.0249 (12)	0.0465 (14)	0.0204 (11)	0.0179 (12)	0.0183 (11)
C34	0.0304 (12)	0.0219 (11)	0.0335 (12)	0.0132 (9)	0.0152 (10)	0.0087 (9)
C35	0.0213 (10)	0.0202 (10)	0.0238 (10)	0.0097 (8)	0.0098 (8)	0.0093 (8)
C36	0.0226 (10)	0.0250 (10)	0.0195 (9)	0.0154 (8)	0.0091 (8)	0.0120 (8)
C37	0.0246 (11)	0.0393 (14)	0.0319 (12)	0.0155 (10)	0.0143 (10)	0.0157 (10)
C38	0.0430 (16)	0.0624 (19)	0.0491 (16)	0.0326 (15)	0.0350 (14)	0.0348 (15)
C39	0.076 (2)	0.0585 (19)	0.0360 (14)	0.0490 (18)	0.0393 (15)	0.0307 (14)
C40	0.068 (2)	0.0340 (14)	0.0219 (11)	0.0274 (14)	0.0168 (12)	0.0101 (10)
C41	0.0364 (13)	0.0240 (11)	0.0215 (10)	0.0124 (10)	0.0105 (9)	0.0094 (9)

Geometric parameters (Å, °)

Re1—Pd1	2.7748 (2)	C15—H15	0.9500
Re1—Pd1i	2.7555 (2)	C15—C16	1.394 (4)
Re1—Pd2	2.7796 (2)	C16—H16	0.9500
Re1—Pd2i	2.7582 (2)	C16—C17	1.383 (3)
Re1—C1	1.921 (2)	C17—H17	0.9500
Re1—C2	2.058 (2)	C17—C18	1.400 (3)
Re1—C3	2.062 (2)	C18—C19	1.391 (3)
Re1—C4	2.092 (2)	C19—H19	0.9500
Re1—C5i	2.087 (2)	C19—C20	1.393 (3)
Pd1—Re1	2.7747 (2)	C20—H20	0.9500
Pd1—Pd2	2.9678 (2)	C20—C21	1.379 (4)
Pd1—Pd2i	2.9909 (2)	C21—H21	0.9500
Pd1—P1	2.3291 (5)	C21—C22	1.393 (4)
Pd1—C2i	2.170 (2)	C22—H22	0.9500
Pd1—C4	2.088 (2)	C22—C23	1.392 (3)
Pd2—Re1	2.7796 (2)	C23—H23	0.9500
Pd2—Pd1	2.9910 (2)	C24—C25	1.398 (3)
Pd2—P2	2.3317 (5)	C24—C29	1.393 (3)
Pd2—C3	2.158 (2)	C25—H25	0.9500
Pd2—C5	2.094 (2)	C25—C26	1.387 (4)
P1—C6	1.825 (2)	C26—H26	0.9500
P1—C12	1.830 (2)	C26—C27	1.385 (4)
P1—C18	1.825 (2)	C27—H27	0.9500
Bond	Length (Å)	Bond	Length (Å)	Bond	Length (Å)
P2—C24	1.822 (2)	C27—C28	1.389 (4)	P2—C30	1.819 (2)
P2—C30	1.821 (2)	C28—H28	0.9500	O1—C1	1.140 (3)
P2—C36	1.158 (3)	C29—H29	0.9500	O2—C2	1.162 (2)
O1—C1	1.158 (3)	C30—C31	1.398 (3)	O3—C3	1.167 (3)
O2—C2	1.140 (3)	C30—C35	1.396 (3)	O4—C4	1.161 (2)
O3—C3	1.162 (2)	C31—H31	0.9500	O5—C5	1.161 (2)
O4—C4	1.167 (3)	C31—C32	1.386 (3)	C2—Pd1ⁱ	2.170 (2)
O5—C5	1.161 (2)	C32—H32	0.9500	C5—Re¹	2.087 (2)
C2—Pd1ⁱ	2.170 (2)	C32—C33	1.387 (4)	C6—C7	1.403 (3)
C5—Re¹	2.087 (2)	C33—H33	0.9500	C6—C11	1.389 (3)
C6—C7	1.403 (3)	C33—C34	1.383 (4)	C7—H7	0.9500
C6—C11	1.389 (3)	C34—H34	0.9500	C7—C8	1.385 (3)
C7—H7	0.9500	C34—C35	1.390 (3)	C8—H8	0.9500
C7—C8	1.385 (3)	C35—H35	0.9500	C8—C9	1.385 (3)
C8—H8	0.9500	C36—C37	1.398 (3)	C9—H9	0.9500
C8—C9	1.385 (3)	C36—C41	1.386 (3)	C9—C10	1.376 (3)
C9—H9	0.9500	C37—H37	0.9500	C10—H10	0.9500
C9—C10	1.376 (3)	C37—C38	1.386 (4)	C10—C11	1.398 (3)
C10—H10	0.9500	C38—H38	0.9500	C11—H11	0.9500
C11—H11	0.9500	C38—C39	1.379 (5)	C12—C13	1.394 (3)
C12—C13	1.394 (3)	C39—H39	0.9500	C12—C17	1.400 (3)
C12—C17	1.400 (3)	C39—C40	1.374 (5)	C13—H13	0.9500
C13—H13	0.9500	C40—H40	0.9500	C13—C14	1.397 (3)
C13—C14	1.397 (3)	C40—C41	1.386 (3)	C14—H14	0.9500
C14—H14	0.9500	C41—H41	0.9500	C14—C15	1.381 (3)

Bond Angles:

Angle		Angle		Angle	
Pd1—Re1—Pd1ⁱ	99.105 (5)	C6—C7—H7	119.7		
Pd1—Re1—Pd1²	65.413 (5)	C6—C7—C6	120.6 (2)		
Pd1—Re1—Pd2ⁱ	64.596 (5)	C8—C7—H7	119.7		
Pd1—Re1—Pd2²	65.131 (5)	C7—C8—H8	120.2		
Pd2—Re1—Pd1ⁱ	65.445 (5)	C7—C8—C9	119.6 (2)		
Pd2—Re1—Pd2²	99.238 (5)	C9—C8—H8	120.2		
C1—Re1—Pd1	131.04 (7)	C8—C9—H9	119.9		
C1—Re1—Pd1ⁱ	129.69 (7)	C10—C9—C8	120.3 (2)		
C1—Re1—Pd2	133.48 (7)	C10—C9—H9	119.9		
C1—Re1—Pd2ⁱ	127.28 (7)	C9—C10—H10	119.7		
C1—Re1—C2	83.99 (9)	C9—C10—C11	120.7 (2)		
C1—Re1—C3	85.84 (9)	C11—C10—H10	119.7		
C1—Re1—C4	83.85 (9)	C6—C11—C10	119.5 (2)		
C1—Re1—C5ⁱ	81.63 (9)	C6—C11—H11	120.3		
C2—Re1—Pd1	141.37 (6)	C10—C11—H11	120.3		
C2—Re1—Pd1ⁱ	50.76 (6)	C13—C12—P1	119.88 (16)		
C2—Re1—Pd2	78.91 (6)	C13—C12—C17	118.49 (19)		
C2—Re1—Pd2ⁱ	109.51 (6)	C17—C12—P1	121.62 (16)		
C2—Re1—C3	87.43 (8)	C12—C13—H13	119.8		
C2—Re1—C4	166.84 (8)	C12—C13—C14	120.4 (2)		
Bond	Distance (Å)	Angle (°)			
-----------------------	-------------	------------			
C2—Re1—C5i	91.78 (8)				
C3—Re1—Pd1^1	109.34 (6)	C14—C13—H13	119.8		
C3—Re1—Pd1	105.38 (6)	C13—C14—H14	119.8		
C3—Re1—Pd2	50.73 (6)	C15—C14—H14	120.4 (2)		
C3—Re1—Pd2^1	143.08 (6)	C14—C15—H15	119.8		
C3—Re1—C4	86.69 (8)				
C3—Re1—C5i	167.46 (8)	C16—C15—H15	120.2		
C4—Re1—Pd1	48.71 (5)	C15—C16—H16	119.9		
C4—Re1—Pd1^1	142.40 (5)	C17—C16—C15	120.2 (2)		
C4—Re1—Pd2	82.00 (5)	C17—C16—H16	119.9		
C4—Re1—Pd2^1	106.14 (5)	C12—C17—H17	119.5		
C5^—Re1—Pd1	107.18 (6)	C16—C17—C12	120.9 (2)		
C5^—Re1—Pd1^1	79.46 (5)				
C5^—Re1—Pd2	141.24 (5)	C19—C18—P1	123.40 (16)		
C5^—Re1—Pd2^1	48.43 (5)	C23—C18—P1	117.73 (16)		
C5^—Re1—C4	91.42 (8)	C23—C18—C19	118.9 (2)		
Re1—Pd1—Re1^1	80.894 (5)	C18—C19—H19	119.8		
Re1—P1—Pd1—Pd2	57.781 (5)	C20—C19—C18	120.3 (2)		
Re1—P1—Pd1—Pd2^1	57.011 (4)				
Re1—Pd1—Pd2^2	57.477 (4)				
Re1—Pd1—Pd2^2^1	57.681 (5)				
Pd2—Pd1—Pd2^1	90.135 (6)				
P1—Pd1—Re1^1	133.608 (14)				
P1—Pd1—Re1^2	143.861 (14)				
P1—Pd1—Pd2^1	143.699 (14)				
P1—Pd1—Pd2^2	125.624 (14)				
C2—Pd1—Re1^1	47.26 (6)	C23—C22—C21	119.9 (2)		
C2—Pd1—Re1^2	122.58 (6)	C23—C22—H22	120.0		
C2—Pd1—Pd2	72.07 (5)	C18—C23—C22	120.6 (2)		
C2—Pd1—Pd2^2	100.12 (6)	C18—C23—H23	119.7		
C2—Pd1—P1	93.27 (6)	C22—C23—H23	119.7		
C4—Pd1—Re1^1	48.82 (6)	C25—C24—P2	123.95 (18)		
C4—Pd1—Re1^2	125.79 (6)	C29—C24—P2	117.27 (17)		
C4—Pd1—Pd2	99.39 (6)	C29—C24—C25	118.8 (2)		
C4—Pd1—Pd2^2	76.94 (5)	C24—C25—H25	119.8		
C4—Pd1—P1	100.27 (6)	C26—C25—C24	120.3 (2)		
C4—Pd1—C2^1	143.15 (8)	C26—C25—H25	119.8		
Re1—Pd2—Re1^1	80.762 (5)	C25—C26—H26	119.8		
Re1—Pd2—Pd1^1	57.545 (5)	C27—C26—C25	120.5 (2)		
Re1—Pd2—Pd1^2	57.623 (5)	C27—C26—H26	119.8		
Re1—Pd2—Pd1^2^1	57.392 (5)	C26—C27—H27	120.2		
Re1—Pd2—Pd1^2^2	56.904 (4)	C26—C27—C28	119.7 (2)		
Pd1—Pd2—Pd1^2^1	89.865 (6)	C28—C27—H27	120.2		
P2—Pd2—Re1^1	139.454 (14)	C27—C28—H28	120.0		
P2—Pd2—Re1^2	138.742 (14)	C27—C28—C29	119.9 (3)		
P2—Pd2—Pd1^1	128.138 (15)	C29—C28—H28	120.0		
P2—Pd2—Pd1^2	141.995 (15)	C24—C29—H29	119.6		
C3—Pd2—Re1	47.70 (5)	C28—C29—C24	120.8 (2)		
Bond	Angle (°) (E)	Bond	Angle (°) (E)		
----------------------	--------------	----------------------	--------------		
C3—Pd2—Re1	123.96 (5)	C28—C29—H29	119.6		
C3—Pd2—Pd1	99.53 (5)	C31—C30—P2	122.07 (17)		
C3—Pd2—Pd1i	74.39 (5)	C35—C30—P2	119.19 (16)		
C3—Pd2—P2	96.08 (6)	C35—C30—C31	118.7 (2)		
C5—Pd2—Re1	124.34 (6)	C30—C31—H31	119.9		
C5—Pd2—Re1i	48.21 (6)	C32—C31—C30	120.3 (2)		
C5—Pd2—Pd1i	99.26 (6)	C32—C31—H31	119.9		
C5—Pd2—Pd1	74.81 (6)	C31—C32—H32	119.8		
C5—Pd2—P2	96.36 (6)	C31—C32—C33	120.5 (2)		
C6—P1—Pd1	143.64 (8)	C33—C32—H32	119.8		
C6—P1—C12	112.32 (7)	C32—C33—H33	120.0		
C12—P1—Pd1	100.69 (9)	C34—C33—C32	119.9 (2)		
C12—P1—Pd1	117.97 (7)	C34—C33—H33	120.0		
C18—P1—Pd1	112.89 (7)	C33—C34—H34	120.1		
C18—P1—C6	105.65 (10)	C33—C34—C35	119.8 (2)		
C18—P1—C12	105.98 (9)	C35—C34—H34	120.1		
C24—P2—Pd2	111.89 (7)	C30—C35—C35	119.6		
C30—P2—Pd2	116.83 (7)	C34—C35—C30	120.9 (2)		
C30—P2—C24	106.51 (10)	C34—C35—H35	119.6		
C30—P2—C36	101.65 (10)	C37—C36—P2	117.43 (17)		
C36—P2—Pd2	114.10 (7)	C41—C36—P2	123.41 (18)		
C36—P2—C24	104.65 (10)	C41—C36—C37	119.1 (2)		
O1—C1—Re1	178.1 (2)	C36—C37—H37	119.9		
Re1—C2—Pd1i	81.98 (7)	C38—C37—C36	120.1 (2)		
O2—C2—Re1	152.98 (18)	C38—C37—H37	119.9		
O2—C2—Pd1i	124.90 (17)	C37—C38—H38	119.8		
Re1—C3—Pd2	81.57 (7)	C39—C38—C37	120.4 (3)		
O3—C3—Re1	152.27 (17)	C39—C38—H38	119.8		
O3—C3—Pd2	126.08 (16)	C38—C39—H39	120.2		
Pd1—C4—Re1	124.90 (17)	C40—C39—C38	119.6 (2)		
O4—C4—Re1	149.43 (17)	C40—C39—H39	120.2		
O4—C4—Pd1	128.10 (16)	C39—C40—H40	119.6		
Re1i—C5—Pd2	83.36 (7)	C39—C40—C41	120.8 (3)		
O5—C5—Re1i	149.52 (17)	C41—C40—H40	119.6		
O5—C5—Pd2	127.10 (16)	C36—C41—C40	120.0 (3)		
C7—C6—P1	115.78 (16)	C36—C41—H41	120.0		
C11—C6—P1	124.87 (17)	C40—C41—H41	120.0		
C11—C6—C7	119.32 (19)	C15—C16—C17—C12	0.0 (4)		
Pd1—P1—C6—C7	−58.98 (17)	C17—C12—C13—C14	1.2 (3)		
Pd1—P1—C6—C11	119.34 (17)	C18—P1—C6—C7	177.54 (16)		
Pd1—P1—C12—C13	−21.58 (19)	C18—P1—C6—C11	−4.1 (2)		
Pd1—P1—C12—C17	157.12 (15)	C18—P1—C12—C13	106.03 (18)		
Pd1—P1—C18—C19	171.11 (16)	C18—P1—C12—C17	−75.28 (19)		
Pd1—P1—C18—C23	−9.1 (2)	C18—C19—C20—C21	0.8 (4)		
Pd2—P2—C24—C25	−139.46 (18)	C19—C18—C23—C22	0.9 (4)		
Pd2—P2—C24—C29	38.6 (2)	C19—C20—C21—C22	−0.6 (4)		
Pd2—P2—C30—C31	−162.18 (17)				
Pd2—P2—C30—C35 14.8 (2) C20—C21—C22—C23 0.6 (4)
Pd2—P2—C36—C37 66.91 (19) C21—C22—C23—C18 −0.8 (4)
Pd2—P2—C36—C41 −109.26 (18) C23—C18—C19—C20 −0.9 (3)
P1—C6—C7—C8 177.66 (18) C24—P2—C30—C31 72.0 (2)
P1—C6—C11—C10 −178.91 (17) C24—P2—C30—C35 −111.09 (18)
P1—C12—C13—C14 179.96 (17) C24—P2—C36—C37 −170.48 (18)
P1—C12—C17—C16 −179.77 (18) C24—P2—C36—C41 13.4 (2)
P1—C18—C19—C20 188.85 (17) C24—C25—C26—C27 0.3 (4)
P1—C18—C23—C22 −178.9 (2) C25—C26—C27—C28 −0.9 (5)
P2—C24—C25—C26 178.2 (2) C25—C26—C27—C28 0.1 (5)
P2—C24—C29—C28 −179.2 (2) C26—C27—C28—C29 1.4 (5)
P2—C30—C31—C32 177.2 (2) C27—C28—C29—C24 0.1 (4)
P2—C30—C35—C34 −176.80 (17) C30—P2—C24—C25 −10.7 (2)
P2—C30—C35—C34 −176.80 (17) C30—P2—C36—C37 −59.76 (19)
P2—C36—C37—C38 175.83 (19) C30—P2—C36—C41 124.07 (19)
P2—C36—C37—C38 175.83 (19) C31—C30—C35—C34 0.2 (3)
P1—C6—C7—C8 −144.12 (17) C31—C32—C33—C34 −0.1 (4)
P1—C6—C11—C10 34.58 (19) C32—C33—C34—C35 0.5 (4)
P1—C12—C13—C14 179.96 (17) C33—C34—C35—C30 −0.6 (4)
P1—C12—C17—C16 67.42 (18) C34—C35—C30—C31 1.1 (4)
P1—C18—C19—C20 −1.1 (4) C35—C30—C31—C32 0.2 (4)
P1—C18—C23—C22 67.42 (18) C36—P2—C24—C25 96.5 (2)
P1—C18—C23—C22 67.42 (18) C36—P2—C24—C29 −85.4 (2)
P1—C18—C23—C22 67.42 (18) C36—P2—C30—C31 −37.3 (2)
P1—C18—C23—C22 67.42 (18) C36—P2—C30—C35 139.62 (18)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
C9—H9···O5ii	0.95	2.49	3.188 (3)	130
C39—H39···O2ii	0.95	2.60	3.491 (4)	157
C20—H20···Cg1iv	0.95	2.84	3.635 (3)	142
C34—H34···Cg3v	0.95	2.90	3.683 (3)	140

Symmetry codes: (ii) −x, −y+1, −z+1; (iii) −x, −y+1, −z+2; (iv) −x+1, −y+2, −z+1; (v) x, y−1, z.

Supplementary tables are available in the supporting information.