High Molecular Weight Polymers Block Cortical Granule Exocytosis in Sea Urchin Eggs at the Level of Granule Matrix Disassembly

Douglas E. Chandler, Michael Whitaker,* and Joshua Zimmerberg*

Department of Zoology, Arizona State University, Tempe, Arizona 85287; *Department of Physiology, University College London, London WC1E 6BT, United Kingdom; and Physical Sciences Laboratory, Division of Computer Science and Technology, and Section on Biological Physics, Laboratory of Biochemistry and Metabolism, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892

Abstract. Recently, we have shown that high molecular weight polymers inhibit cortical granule exocytosis at total osmolalities only slightly higher than that of sea water (Whitaker, M., and J. Zimmerberg. 1987. J. Physiol. 389:527-539). In this study, we visualize the step at which this inhibition occurs. Lytechinus pictus and Strongylocentrotus purpuratus eggs were exposed to 0.8 M stachyose or 40% (wt/vol) dextran (average molecular mass of 10 kD) in artificial sea water, activated with 60 μM of the calcium ionophore A23187, and then either fixed with glutaraldehyde and embedded or quick-frozen and freeze-fractured. Stachyose (2.6 osmol/kg) appears to inhibit cortical granule exocytosis by eliciting formation of a granule-free zone (GFZ) in the egg cortex which pushes granules away from the plasma membrane thus preventing their fusion. In contrast, 40% dextran (1.58 osmol/kg) does not result in a GFZ and cortical granules undergo fusion. In some specimens, the pores joining granule and plasma membranes are relatively small; in other cases, the exocytotic pocket has been stabilized in an omega configuration and the granule matrix remains intact. These observations suggest that high molecular weight polymers block exocytosis because of their inability to enter the granule matrix: they retard the water entry that is needed for matrix dispersal.

Cortical granule exocytosis in sea urchin eggs is initiated at the point of sperm entry and sweeps over the egg surface 15–45 s after insemination (Just, 1919; Anderson, 1968; Eddy and Shapiro, 1976; Chandler and Heuser, 1979). This biologically important event releases enzymes and structural proteins that lead to assembly of the fertilization envelope, an extracellular matrix which prevents polyspermy and protects the early embryo (Endo, 1961; Veron et al., 1977; Chandler and Heuser, 1980a; Kay and Shapiro, 1985). Cortical granule exocytosis also serves as an excellent model system for studying the mechanisms of exocytosis. Granule–plasma membrane fusion is initiated by micromolar levels of calcium both in intact eggs and in isolated egg cortices (Steinhardt et al., 1977; Whitaker and Baker, 1983; Zimmerberg and Whitaker, 1985; Swann and Whitaker, 1986).

Recently, it has been shown that hyperosmotic sea water and sea water containing high molecular weight polymers inhibit cortical granule exocytosis in intact eggs as well as in isolated egg cortices (Zimmerberg and Whitaker, 1985; Whitaker and Zimmerberg, 1987). Low molecular weight salts and sugars, however, inhibit at a different stage than do high molecular weight polymers (e.g., dextran). Membrane capacitance measurements in intact eggs show that low molecular weight osmoticants block exocytosis before granule fusion, while dextran polymers block at a point after fusion (Whitaker and Zimmerberg, 1987). To interpret these observations mechanistically, we have determined by electron microscopy the exact point at which exocytosis is arrested. The ultrastructural data we present here indicate that granule fusion in hyperosmotic sea water is prevented by formation of granule-free zone (GFZ)† at the cortex that separates the cortical granules from the plasma membrane. The few granules that do fuse with the plasma membrane are arrested at early stages of pore formation that have not been previously visualized. In contrast, polymer (10-kD dextran) solutions do not block granule–plasma membrane fusion. Instead, exocytotic pockets are wide open but contain undischarged granule matrix cores. This suggests that dextran polymers retard water entry into the matrix thus preventing proper dispersal of granule components. These observations allow us to separate cortical granule exocytosis, normally a single continuous process, into four consecutive, but distinct, steps.

Materials and Methods

Lytechinus pictus and Strongylocentrotus purpuratus, obtained commercially (Marinus, Inc., Long Beach, CA), were kept at 12°C in aquaria filled with sea water prepared from sea salts (Tropic Marin; Dr. Biener GmbH, Wartenberg, West Germany). Shedding of gametes was induced by injecting

† Abbreviations used in this paper: ASW, artificial sea water; GFZ, granule-free zone; 0Ca0MgASW, divalent cation-free artificial sea water.
Results

In normal sea water, *L. pictus* eggs have a single layer of cortical granules just below the plasma membrane (Fig. 1). Virtually all granules lie within 0.2 μm of the plasma membrane and, in some cases, one can see small domains in which granule and plasma membranes are in close approximation. Activation of the egg with the calcium ionophore A23187 results in nearly complete exocytosis of cortical granules within 90 s (data not shown). At 5 min after activation, degranulation is >90% complete (Table II) and exocytotic pockets have flattened out (Fig. 2). In addition, the hallmarks of cortical reorganization after activation are present: microvilli each with a thick base and several fingerlike extensions and endocytic invaginations with narrow necks (Fig. 2, arrow) have appeared on the egg surface.

Incubation of eggs in low molecular weight osmotica, such as 0.8 M stachyose, results in a very different ultrastructural picture. Within 5 min, the majority of cortical granules have been separated from the plasma membrane by a GFZ (Fig. 3, GFZ). This zone is from 0.5 to 1 μm thick and contains no formed organelles except occasional tubules of endoplasmic reticulum (Fig. 3, arrows). Upon activation with the calcium ionophore A23187, the majority of cortical granules do not fuse with the plasma membrane but remain well separated from the cell surface by the GFZ (Fig. 4). The presence of this zone can not be a fixation artifact (e.g., due to the osmotic strength of the fixative) since such a zone is present in both quick-frozen and glutaraldehyde-fixed specimens. A similar GFZ is formed when *S. purpuratus* eggs are incubated in 0.8 M stachyose (data not shown) or in ASW to which has been added other low molecular weight osmotica, such as sodium sulfate, sodium Hepes, or sucrose (Merkle, C. J., and D. E. Chandler, unpublished observations).

As a result, 0.8 M stachyose blocks >90% of ionophore-induced granule fusion (Table II). There is still a small minority (>9%) of granules that do fuse, possibly because they remain docked near the plasma membrane. Within this group we see examples of what appears to be a series of early events during exocytosis that have been stabilized by hyperosmotic conditions and then captured by quick-freezing (Fig. 5). In some instances the plasma membrane invaginates toward the granule membrane as if to initiate contact with the granule in a very localized region (Fig. 5 a). In other cases, small pores ~20–30 nm in diameter have formed, connecting the granule interior with the extracellular medium (Fig. 5 b, arrow). Finally, some granules are connected to the cell surface by one or more larger pores (Fig. 5 c). These examples suggest that 0.8 M stachyose, in addition to blocking...
Figures 1 and 2. (Fig. 1) The cortex of an unactivated L. pictus egg in ASW (1.02 osmol/kg). Cortical granules (CG) lie just beneath the plasma membrane. Specimen was fixed with glutaraldehyde. Bar, 0.2 μm. (Fig. 2) Freeze-fracture replica of an L. pictus egg cortex fixed 5 min after activation. Degranulation is complete and exocytotic pockets have flattened. Each microvillus has several fingerlike branches extending from a thick base. Endocytic pits with narrow necks are present (arrow). Bar, 0.1 μm.

granule plasma membrane fusion, must inhibit exocytosis after pore formation as well. Normally, at 5 min after activation, exocytotic pockets are no longer present and microvilli have formed (Fig. 2). In hyperosmotic stachyose, none of these processes have taken their normal course, and granules that have fused remain arrested at stages that should have taken place within 10–30 s after ionophore addition.

Treatment of eggs with dextran solutions results in a quite different series of events. Unactivated eggs incubated in 40% dextran exhibit a relatively normal cortex with cortical granules docked just below the plasma membrane (Fig. 6). One unusual feature is the presence of small blebs (Fig. 6, arrows) that appeared in freeze-fracture replicas as protrusions on the P face of the plasma membrane (data not shown). Upon ionophore activation in either 30 or 40% dextran, virtually all cortical granules fuse with the plasma membrane (Table II). However, even 5 min after activation, the exocytotic pockets remain well formed and the encased granule matrix has not been properly discharged (Figs. 7 and 8). Of the granules that have fused, 65% exhibit such a core (Table II). Lack of granule core discharge is seen in both quick-frozen (Fig. 9) and chemically fixed samples (Fig. 8), indicating that chemical fixation has not altered core disassembly. The vitelline layer (Fig. 8, arrow) is not elevated or converted to the fertilization envelope in these samples, suggesting that enzymatic activities stored within the cortical granules have not been properly solubilized. In some cases, granules are seen at relatively early stages of exocytosis. In Fig. 10, a dim-
polymer inhibition of granule matrix dispersal is not due to the modest increase in total osmolality, but is related to the higher molecular mass of the solute instead.

Effective polymer inhibition requires the presence of mono- and divalent cations in the medium (Whitaker and Zimmerberg, 1987). The requirement for divalent cations can be readily demonstrated at the ultrastructural level. Sea urchin eggs were washed in 0Ca0MgASW and resuspended in 0Ca0MgASW containing 30% dextran. These eggs were then activated with the calcium ionophore A23187 using the standard protocol (see Materials and Methods). Table II shows that, 5 min after activation, cortical granule exocytosis is virtually complete. In thin sections (Fig. 13), exocytotic pockets have smoothed out and microvillar growth is underway. A few partially intact cores are seen in the perivitelline space (Fig. 13, arrow). In contrast, when divalent cations are present, the granule cores do not dissociate but remain embedded in the exocytotic pockets (Fig. 8 and 9).

Discussion

A major finding in this study is that high molecular weight osmotics, such as dextran polymers, inhibit exocytosis in a completely different manner than do low molecular weight osmotics, such as stachyose, a tetrascarbohydrate. Low molecular weight solutes cause cytoskeletal rearrangements that result in formation of a GFZ just below the plasma membrane, physically separating cortical granules from their normal association with the plasma membrane. This barrier prevents granule–plasma membrane fusion. Formation of this zone occurs whether the osmotant is stachyose (this study), sodium sulfate, sodium Hepes, or sucrose, and the extent of granule separation resulting is dependent on osmotic strength (Merkle, C. J., and D. E. Chandler, unpublished observations). Additional study will be required to determine the mechanism of formation, but our present hypothesis is that this zone results from actin polymerization in the cortex, not unlike that seen after fertilization.

The presence of this zone was completely unexpected. We began this study with the thought that hyperosmotic media would halt exocytosis at early stages in fusion/pore formation. Indeed, hyperosmotic media have been shown to slow

Table II. Effect of Stachyose-, Dextran-, and Sucrose-containing Sea Water on Ionophore-induced Degranulation in Sea Urchin Eggs

Medium	Unfused granules/100 μm of cortex	Fused granules (stabilized)/100 μm of cortex	Cores in perivitelline space/100 μm of cortex	
ASW control	93 ± 8	0	0	
ASW + A23187	8 ± 5	0	0	
Stachyose control	100 ± 17	1 ± 2	0	
Stachyose + A23187	100 ± 23	10 ± 7	0	
40% dextran control	87 ± 7	0	0	
40% dextran + A23187	9 ± 5	82 ± 5	53 ± 26	1 ± 2
30% dextran + A23187	1 ± 1	88 ± 4	58 ± 8	1 ± 1
0Ca0Mg Dextran + A23187	2 ± 1	2 ± 3	0	20 ± 6
Isoosmotic dextran + A23187	25 ± 21	29 ± 17	20 ± 14	30 ± 31
1.14 M sucrose + A23187	8 ± 10	0	0	
0.77 M sucrose + A23187	4 ± 5	0	0	

L. pictus eggs were fixed 5 min after activation with the calcium ionophore A23187 (using the standard protocol in Materials and Methods) and scored for degranulation by projecting images of thin sections at 30,000 x. Controls were treated identically, except that they were not exposed to ionophore. For each condition, six to eight eggs from three different experiments were chosen randomly and counted. Cortical granules (fused or unfused) lying within 1 μm of the plasma membrane and exhibiting a cross section of >0.5 μm in diameter were scored. Scoring is expressed as mean ± SD per 100 linear micrometers of egg cortex. Fused cortical granules, both empty pockets and those with cores, were included in the total. Perivitelline granule cores were scored for those found in the perivitelline space not in contact with the egg surface.
Figures 3 and 4. (Fig. 3) Cortex of an L. pictus egg quick-frozen in 0.8 M stachyose (2.60 osmol/kg). Cortical granules are separated from the plasma membrane by an organelle-free zone (GFZ) ~0.8 μm thick (inset). The only formed organelles within this zone are tubules of endoplasmic reticulum (arrows). Bars: 0.1 μm; (inset) 0.5 μm. (Fig. 4) Cortex of an L. pictus egg quick-frozen 5 min after activation in 0.8 M stachyose. Cortical granules have not fused with the plasma membrane. Bar, 0.2 μm.
or block exocytosis in many cell types, including adrenal chromaffin cells, neutrophils, and platelets (Pollard et al., 1977; Hampton and Holz, 1983; Pollard et al., 1984; Kazilek et al., 1988). Likewise, osmotic gradients are known to promote fusion of unilamellar phospholipid vesicles with a planar bilayer. Cohen et al. (1980, 1984) have shown in such a system that calcium induces a prefusion adherence between the vesicular and planar membranes. Membrane fusion follows providing that an osmotic gradient exists between the inside of the vesicle and the trans side of the planar membrane. These observations have been interpreted as suggesting that the water flow into secretory granules, before fusion, provides a driving force for membrane fusion and pore formation (Zimmerberg, 1987). It is now clear, in the sea urchin egg, that this interpretation is incorrect. Fusion is prevented not by elimination of the osmotic driving force but rather by granule separation from the plasma membrane.

Even in the face of GFZ formation, a small portion of cortical granules remain docked at the plasma membrane and these are arrested during pore formation. Pores, as small as 20 nm in diameter, were seen in quick-frozen cells exposed to stachyose. These are considerably smaller than any pores seen during cortical granule exocytosis in normal sea water (Chandler, 1984b) and are similar in size to pores seen in stimulated mast cells (Chandler and Heuser, 1980b; Zimmerberg et al., 1987). They support our contention that exocytosis begins with membrane fusion at one highly localized region and does not require close apposition of granule and plasma membrane over a large area (Chandler, 1988).

We still do not have a good understanding of how pore formation is arrested by low molecular weight osmoticants. An osmotic explanation appears to be ruled out since these osmoticants are small enough to penetrate the granule core after pore formation and therefore could not prevent the inward movement of water. Osmotic effects on granule core swelling, however, might be exerted at the molecular level. The topography of individual core proteins may contain cavities small enough to exclude even low molecular weight solutes (Zimmerberg and Parsagian, 1986). These would then represent sites at which osmotic stress could retard water movements required for conformational changes in core proteins during granule swelling. On the other hand, we can not rule out such indirect effects as an arrest of pore widening by a cortex that has been stiffened by actin polymerization.

In contrast to low molecular weight osmoticants, dextran solutions in sea water do not halt pore widening but do inhibit a subsequent stage in secretion: disassembly of the granule matrix. The small pores formed first have enlarged, and most exocytotic pockets are wide open. Granule cores have not dissociated, and the pockets surrounding them have not become integrated with the cell surface. These data substantiate the conclusion reached by Whitaker and Zimmerberg (1987) that polymer solutions block exocytosis after

Figure 5. Early events in exocytosis captured in S. purpuratus eggs quick-frozen 5 min after activation in 0.8 M stachyose. (a) An invagination of the plasma membrane comes in close approach to a cortical granule membrane. (b) A small pore (arrow), 23 nm in diameter, has formed between plasma and granule membrane. (c) An exocytotic pocket remains joined to the plasma membrane by two enlarged pores. Bars: (a and b) 0.05 μm; (c) 0.1 μm.
membrane fusion. The fact that dextran solutions isoosmotic with sea water also block granule matrix dispersal indicates that total osmotic strength itself is not the determining factor in inhibition. Furthermore, since exocytosis is normal and complete in isoosmotic sucrose and in sucrose having an osmotic strength equivalent to 40% dextran ASW, it would appear that the molecular mass of the osmotant is the important parameter for inhibition.

Whitaker and Zimmerberg (1987), in fact, have shown at the light microscopy level that polymers >3,500 D inhibit matrix dispersal, while those below this figure do not unless very high osmolalities are reached. Our data support their contention that high molecular weight polymers cannot enter the granule matrix and therefore reduce water activity outside the matrix and retard water flow into the granule core during disassembly. Light microscopy of exocytosis in chromaffin cells suggests a similar series of events (Edwards et al., 1984). Upon ionophore stimulation, small blebs of low refractive index, about the size of chromaffin granules, appear transiently on the cell surface. These blebs probably represent granule cores that undergo extrusion and dissolution during exocytosis; like cortical granule cores, they are
stabilized in the presence of polymers such as Ficol (Edwards, C. D., personal communication).

Inhibition of exocytosis by low molecular weight osmoticants and by high molecular weight dextrans at specific stages allows us to separate the complete process into four steps: membrane adherence, membrane fusion/pore formation, pore widening, and granule matrix discharge (Fig. 14; Zimmerberg, 1987). Membrane adherence is characterized by dimpling of the plasma membrane inward and contact of the two membranes in a highly localized region. Dimpling of the plasma membrane is similar to that described in mast cells (Chandler and Heuser, 1980b), amebocytes (Ornberg and Reese, 1981), and, previously, sea urchin eggs (Zimmerberg et al., 1985). Step two, membrane fusion, occurs within the region of adherence through formation of a small pore. Ultrastructural studies in amebocytes (Ornberg and Reese, 1981), mast cells (Chandler and Heuser, 1980b; Chandler, 1984a), and sea urchin eggs (Chandler, 1984b) indicate the presence of pores 10-30 nm in diameter, while electrophysiological studies in mast cells (Zimmerberg et al., 1987) suggest that initial pores may be as small as 1 or 2 nm in diameter. Clearly, pore formation requires membrane adherence since separation of cortical granules from the plasma membrane in hyperosmotic media (>2.0 osmol/kg) blocks granule fusion completely. The third step, pore widening, is also blocked in hyperosmotic media (see Fig. 5, b and c). Pore widening is slowed by hyperosmotic solutions in beige mouse mast cells as well (Zimmerberg et al., 1987). In this system, electrophysiological measurements show that pore widening is an extremely variable and dynamic process (Curran, M., J. Zimmerberg, and F. S. Cohen, unpublished observations). Additional experiments are needed to discern which cellular elements are responding to osmotic pressure at this step.

In the fourth and final step, the granule matrix must be discharged into the extracellular space. This step appears to require water movement into the matrix since it is inhibited only by polymers which, due to their exclusion, selectively reduce water activity outside of the matrix. Dispersal is also retarded by the presence of divalent cations; one possibility is that calcium and/or magnesium ions help bind the matrix together by charge interaction with anionic matrix constituents and that calcium must be displaced during matrix discharge. A similar sequence may occur in nematocyst discharge: x-ray microanalysis has shown that calcium is lost rapidly from the cyst matrix during release (Lubbock et al., 1981). This is opposite to the role for charge interactions in secretory granule discharge found in a number of cells. Trichocyst discharge in Paramecium, for example, is accompanied by rapid matrix expansion that appears to be due to extracellular calcium displacing phosphate ions that cross-link matrix contents (Bilinski et al., 1981; Gilligan and Satir, 1983). Likewise, swelling of mucopolysaccharides from iso-
lated secretory granules is extremely rapid and is triggered by entry of calcium ions into the granule which bind to the granule contents creating repulsive forces that drive content dispersal (Verdugo, 1984).

Finally, a rather interesting observation in this study is that exocytotic pockets do not flatten out even though the granule core is discharged; the two processes appear to be coupled. Apparently, the intact core is able to maintain pocket integrity and in doing so halts further cortical reorganization, such as endocytosis and microvillar growth. Again, one might expect that it is hyperosmolality that stabilizes exocytotic pocket architecture since the egg has a high surface-to-volume ratio in this configuration. This does not seem to be the case, however, since flattening of these pockets occurs entirely normally in sucrose solutions of the same osmolality as inhibitory dextran solutions.

We would like to thank Lily Painter for excellent technical assistance and for thin sectioning and electron microscopy of embedded specimens. We also thank Michael Junius for drawing Fig. 14 and Kathleen Church and Ronald Alvarado for use of their objective lenses and osmometer, respectively.

This study was supported by grants from the National Science Foundation (DCB-8407152 and DCB-8810200 to D. E. Chandler), the National Institutes of Health (HD-00619 to D. E. Chandler), and the Science and Engineering Research Council (to M. J. Whittaker).

Received for publication 31 March 1989 and in revised form 16 June 1989.

References

Anderson, E. 1968. Oocyte differentiation in the sea urchin, Arbacia punc-

ulta, with particular reference to the origin of cortical granules and their participation in the cortical reaction. J. Cell Biol. 37:514–538.

Bilinski, M., H. Plattner, and H. Matt. 1981. Secretory protein decondensation as a distinct, calcium-mediated event during the final steps of exocytosis in Paramecium cells. J. Cell Biol. 88:179–188.

Chandler, D. E. 1984a. Exocytosis involves highly localized membrane fu-
sions. Biochem. Soc. Trans. 12:961–963.

Chandler, D. E. 1984b. Comparison of a fixed and quick frozen sea urchin eggs: exocytosis is preceded by a local increase in membrane mobility. J. Cell Sci. 72:23–36.

Chandler, D. E. 1988. Exocytosis and endocytosis: membrane fusion events captured in rapidly frozen cells. Curr. Top. Membr. Trans. 32:169–202.

Chandler, D. E., and J. Heuser. 1979. Membrane fusion during secretion: cortical granule exocytosis in sea urchin eggs as studied by quick-freezing and freeze-fracture. J. Cell Biol. 83:91–108.

Chandler, D. E., and J. Heuser. 1980a. The vitelline layer of the sea urchin egg and its modification during fertilization: a freeze-fracture study using quick-freezing and deep-etching. J. Cell Biol. 84:618–632.

Chandler, D. E., and J. Heuser. 1980b. Arrest of membrane fusion events in mast cells by quick-freezing. J. Cell Biol. 86:666–674.

Cohen, F. S., J. Zimmerberg, and A. L. Finkelstein. 1980. Fusion of phospholipid vesicles with planar bilayer membranes. II. Incorporation of a vesicular marker into the planar membrane. J. Gen. Physiol. 75:251–270.

Cohen, F. S., M. H. Akabas, J. Zimmerberg, and A. Finkelstein. 1984. Parameters affecting the fusion of unilamellar phospholipid vesicles with planar bilayer membranes. J. Cell Biol. 98:1054–1062.

Eddy, E. M., and B. M. Shapiro. 1976. Changes in the topography of the sea urchin egg after fertilization. J. Cell Biol. 71:35–48.

Edwards, C. D., D. Engelt, D. Leshob, and H.-Z. Ye. 1984. Light microscopic observations on the release of vesicles by isolated chromaffin cells. Arch. Microbiol. 140:297–303.

Endo, Y. 1961. The role of cortical granules in the formation of the fertilization membrane in the eggs of sea urchins. Exp. Cell Res. 25:518–528.

Gilligan, D. M., and B. H. Satir. 1983. Stimulation and inhibition of secretion in Paramecium: role of divergent cations. J. Cell Biol. 97:224–234.

Haughton, R. Y., and R. W. Holz. 1983. Effects of changes in osmolality on the stability and function of cultured chromaffin cells and the possible role of osmotic forces in exocytosis. J. Cell Biol. 96:1082–1088.

Heuser, J., T. S. Reese, M. J. Dennis, Y. Jan, L. Jan, and L. Evens. 1979. Synaptic vesicle exocytosis captured by quick-freezing and correlated with vesicle transmitter release. J. Cell Biol. 81:275–300.

Just, E. E. 1919. The fertilization reaction in the oocyte of the sea urchin. Proc. R. Soc. Lond. 101:2333–2342.

Lubber, R., B. L. Gupta, and T. A. Hall. 1981. Novel role of calcium in exo-
cytois: mechanism of nematocyst discharge as shown by x-ray micro-

analysis. Proc. Natl. Acad. Sci. USA. 78:3624–3628.

Ornberg, R. L., and T. S. Reese. 1981. Beginning of exocytosis captured by rapid-freezing of Limulus amebocytes. J. Cell Biol. 90:40–50.

Pollard, H. B., K. Tack-Goldman, C. J. Pazzoles, C. E. Creutz, and N. R. Shul-
man. 1977. Evidence for control of serotonin secretion from human platelets by hydroxyl ion transport and osmotic lysis. Proc. Natl. Acad. Sci. USA. 74:2925–2929.

Pollard, H. B., C. J. Pazzoles, C. E. Creutz, J. H. Scott, O. Zinder, and A. Hotchkiss. 1984. An osmotic mechanism for exocytosis from dissociated chromaffin cells. J. Biol. Chem. 259:1141–1121.

Steinhardt, R. A., R. Zucker, and O. Schatten. 1977. Intracellular calcium re-
lease at fertilization in the sea urchin egg. Dev. Biol. 58:185–196.

Whittaker, M., and J. Zimmerberg. 1987. Inhibition of secretory granule dis-
charge during exocytosis in sea urchin eggs by polymer solutions. J. Cell Biol. 101:2333–2342.

Verdugo, P. 1984. Hydration kinetics of exocytosed mucus in cultured secretory cells of the rabbit trachea: a new model. CIBA Found. Symp. 109:212–225.

Verdes, C., E. Eddy, and B. M. Shapiro. 1977. Sequential biochemical and morphological events during assembly of the fertilization membrane of the sea urchin. Cell. 10:321–328.

Whittaker, M., and P. F. Baker. 1983. Calcium-dependent exocytosis in an in vitro secretory granule plasma membrane preparation from sea urchin eggs and the effects of some inhibitors of cytoskeletal function. Proc. R. Soc. Lond. B Biol. 218:397–413.

Zimmerberg, M., and J. Zimmerberg. 1987. Inhibition of secretory granule discharge during exocytosis in sea urchin eggs by polymer solutions. J. Physiol. (Lond.) 389:527–539.

Zimmerberg, J. 1987. Molecular mechanisms of membrane fusion: steps during phospholipid and exocytotic membrane fusion. Biosci. Rep. 7:251–268.

Zimmerberg, J., and V. A. Paragian. 1989. Polymer inaccessible volume changes during opening and closing of a voltage-dependent ion channel. Nature (Lond.) 323:36–39.

Zimmerberg, J., and M. Whittaker. 1985. Irreversible swelling of secretory granules during exocytosis caused by calcium. Nature (Lond.) 315:581–584.

Zimmerberg, J., C. Sardet, and D. Eped. 1985. Exocytosis of sea urchin egg cortical vesicles in vitro is retarded by hyperosmotic sucrose: kinetics of fusion monitored by quantitative light-scattering microscopy. J. Cell Biol. 101:2398–2410.

Zimmerberg, J. M., M. Curran, F. S. Cohen, and M. Brodwick. 1987. Simul-
taneous electrical and optical measurements show that membrane fusion pre-
cedes secretory granule swelling during exocytosis of beige mouse mast cells. Proc. Natl. Acad. Sci. USA. 84:1585–1589.