A NOVEL DIFFERENTIAL EVOLUTION ALGORITHM FOR ECONOMIC POWER DISPATCH PROBLEM

Pooja
Department of Electronics and Communication
University of Allahabad, Prayagraj, India

Abstract. In power systems, Economic Power dispatch Problem (EPP) is an influential optimization problem which is a highly non-convex and non-linear optimization problem. In the current study, a novel version of Differential Evolution (NDE) is used to solve this particular problem. NDE algorithm enhances local and global search capability along with efficient utilization of time and space by making use of two elite features: self-adaptive control parameter and single population structure. The combined effect of these concepts improves the performance of Differential Evolution (DE) without compromising on quality of the solution and balances the exploitation and exploration capabilities of DE. The efficiency of NDE is validated by evaluating on three benchmark cases of the power system problem having constraints such as power balance and power generation along with nonsmooth cost function and is compared with other optimization algorithms. The Numerical outcomes uncovered that NDE performed well for all the benchmark cases and maintained a trade-off between convergence rate and efficiency.

1. Introduction. Taking power system into consideration, Economy Power dispatch Problem (EPP) is an important optimization problem [9] in which the main motive is the distribution of the total power demand among the various generators engaged and minimizing the total fuel cost of the system under several equality and inequality constraints. EPP has been solved by many traditional methods some of which are: linear programming, nonlinear programming, quadratic programming and newton-based methods etc. Usually, these methods work with the hypothesis that the fuel cost function of any generator is a simple convex function but practically, it could not always possible whereas generally, an EPP holds prohibited operating zones, ramp rate limit, value points and multiple fuel option. That’s why, the EPP is considered as a non-convex optimization problem which could not be handled by traditional methods.

During last few years, some evolutionary algorithms and swarm intelligence inspired algorithms such as genetic algorithm (GA) [17], differential evolution (DE) [10], evolutionary programming (EP) [30], particle swarm optimization (PSO) [11], biogeography-based optimization (BBO) [5] and chaotic bat algorithm [2] etc. have been implemented to deliver a solution for this multiconstrained economic power dispatch problem.

2010 Mathematics Subject Classification. Primary: 68T20; Secondary: 90-08.
Key words and phrases. Economic Power dispatch Problem; Control Parameters; Constraint Handling; Population Structure; Differential Evolution.
The paper is handled by Gerhard-Wilhelm Weber as guest editor.
2. Background and Motivation. Numerous studies have been drawn on this particular problem with different criteria. Besides, there are several improved algorithms proposed to provide a solution to this problem such as He et al. proposed a hybrid strategy of genetic algorithm with differential evolution to solve economic dispatch with valve-point effect [15]. A selforganizing hierarchical particle swarm optimization (SPSO) has been designed by Chaturvedi et al. [8]. Biswas et al. proposed a chemotactic differential evolution algorithm [6], which strengthens its global search ability. Safari et al. used iteration particle swarm optimization (IPSO) procedure for economic load dispatch with generator constraints [29] to prevent local optima problem. Then, the problem is solved with improved harmony search with wavelet mutation (IHSWM) proposed by Pandi et al. [24]. Rahmani et al. provided an evolutionary technique to initialize the population for particle swarm optimization (MPSO) [28].

Further, in order to enhance the efficiency of the algorithm, a hybrid method of particle swarm optimization and bacteria foraging algorithm with time-varying coefficient (HPSOTVAC) is developed by Abedinia et al. [1]. Qu et al. [27] and Zaman et al. [32] adopted evolutionary algorithms to solve EPP. Recently, an invasive weed optimization algorithm [12], an integrated approach based on artificial intelligence and novel meta-heuristic algorithms [13]-[14], an improved differential evolution algorithm [16], a novel quantum behaved particle swarm optimization algorithm [25] and Robust bi-level programming [20]-[22] have been delivered and worked well.

However, the major limitations of these methods are tuning the control parameter and efficient utilization of space and time due to which the algorithms may be sensitive to get stuck in the situations like premature convergence and local optima. Therefore, it is hard to find a feasible solution for nonlinear optimization problems which are multiconstrained. A Novel Differential Evolution (NDE) [26] algorithm is a variant DE algorithm [31] which is relatively a new population based stochastic search technique annexed to Evolutionary Algorithm (EA) to handle non-linear and complex optimization problem. DE is compact, easy to use, efficient and robust evolutionary algorithm. DE has also been applied to constrained problems [3], [23].

Gap research for this EPP is shown in Table 1 where it can be easily seen that different algorithms are applied on EPP different criteria and tests are drawn for different case studies as well. To get the quality solution, DE should be tuned with its control parameters. In Literature, the theory of self-adaptive control parameter has been adapted to overcome this situation of tuning the control parameters. Now a day, there are several variants of DE which are grounded on control parameter tuning to provide a solution to optimization problems; novel DE with self-adaptive parameter control [7], fuzzy adaptive-based variant of DE [19] and self-adaptive approach for parameter control of DE [18].

Therefore, this paper uses NDE [26] algorithm to solve EPP problems of power systems where NDE which adopts a new technique for controlling parameters (scaling factor F and crossover C_r) inlayed with single population frame applied to solve constrained optimization problems. Apart from previous research which has been discussed in the literature, the presented approach considers; a) Primarily a mathematical function is preserved to generate control parameter settings which will be passed to crossover and mutation operators to make it easily adopt these parameters, b) Single population structure which enhances the performance of the algorithm by reducing #FEs, memory space and CPU time consumption [4]. By
Table 1. Survey on related work

Reference	Problem	Algorithms	Case Study
[17]	ELD with valve point effect	GA	13 generating units
[30]	ELD	EP	3, 13, and 40 generating units
[11]	ELD with generator constraints	PSO	6, 15, and 40 generating units
[15]	ELD with valve-point effect	HGA	13 and 40 generating units
[8]	ELD	SPSO	6, 15 and 40 generating units
[6]	ELD	CDE	6 and 13 generating units
[5]	ELD	BBO	6, 10, 20 and 40 generating units
[29]	ELD with generator constraints	IPSO	6 and 15 generating units
[24]	ELD	IHSWM	40 generating units
[28]	ELD	MPSO	3, 6, 15, and 40 generating units
[1]	ELD	HPSOTVAC	6, 15 and 38 generating units
[10]	Dynamic ELD	ADE	(1) 5-unit thermal system with Ploss for a 24-hours planning horizon;
			(2) 10-unit thermal system without Ploss for a 12-hours planning horizon;
			(3) 10-unit thermal system without Ploss for a 24-hours planning horizon;
[2]	ELD	CBA	6, 13, 20, 40 and 160 generating units
[32]	Dynamic ELD	EA	(1) 5-unit thermal problems with and without Ploss;
			(2) 10-unit thermal problems with and without Ploss;
			(3) 7-unit hydro-thermal problem without Ploss;
			(4) 19-unit solar-C-thermal system without Ploss;
			(5) 6-unit wind-C-thermal system with Ploss
[27]	Environmental/Economic Dispatch	MOEA	(1) 6-generator 30-bus standard test system;
			(2) 13-generator 57-bus system;
			(3) 3-generator system;
			(4) 6-generator system;
			(5) 14-generator 118-bus system;
			(6) 40-generator system;
			(7) 10-generator system;
[16]	Economic and Emission Dispatch	IDE	6 generating units
[25]	ELD	QPSO	6, 15 and 40 generating units
[20]	Renewable Energy Location	Robust Bi-Level Programming	Locating renewable energy sites
This research	EPP	NDE	6, 15 and 40 generating units

ELD: Economic Load Dispatch
EPP: Economic Power dispatch
GA: Genetic Algorithm
EP: Evolutionary Programming
PSO: Particle Swarm Optimization
HGA: Hybrid Genetic Algorithm approach based on Differential Evolution
SPSO: Self-organizing Hierarchical Particle Swarm Optimization
CDE: Chemotactic Differential Evolution Algorithm
BBO: Biogeography-Based Optimization
IPSO: Iteration Particle Swarm Optimization
IHSWM: Improved Harmony Search with Wavelet Mutation
MPSO: Particle Swarm Optimization by Evolutionary Technique
HPSOTVAC: Hybrid Particle Swarm Optimization with Time-Varying Acceleration Coefficients
ADE: Automated Differential Evolution
CBA: Chaotic Bat Algorithm
EA: Evolutionary Algorithms
MOEA: Multi-Objective Evolutionary Algorithms
IDE: Improved Differential Evolution Algorithm
SG-QPSO: Novel Quantum-Behaved Particle Swarm Optimization Algorithm
NDE: Novel Differential Evolution
making use of these features of NDE, the proposed methodology works well on the EPP optimization problem.

The research paper is consolidated as: Section-3 elucidates the problem statement of economic power dispatch problem and provides a short introduction of parent DE algorithm whereas the details of adopted methodology along with constraint handling and the pseudo code of the NDE algorithm has been discussed in section-4. All experiment settings, results and analysis on three benchmark cases are inscribed in section-5. Later, the gist earned from the research study has been presented under section-6.

3. Problem Statement.

3.1. Economic Power Dispatch Problem. The main motive behind the EPP is to get an optimal fusion of the generators so that the total fuel cost i.e., the sum of cost function of each generator, can be minimized while satisfying several equality and inequality constraints associated with it. The mathematical formulation of the objective function for EPP is given below:

\[\min F = \sum_{i=1}^{N} F_i(pwr_i), \]

where \(F \) is the total fuel cost of the power system; \(pwr_i \) is the real power of \(i^{th} \) generator (in MW); \(N \) is the number of generators in the system; \(F_i \) is the fuel cost of the \(i^{th} \) generator which is generally represented in polynomial function as:

\[F_i(pwr_i) = a_i(pwr_i)^2 + b_i(pwr_i) + c_i, \]

where \(a_i, b_i \) and \(c_i \) are cost coefficients for \(i^{th} \) generating unit. In this context, the primary constraints are power balance constraint and power limit of generator constraints which are given below:

Constraint 1: Power balance
The generator power should be equal to total load demand plus total line losses.

\[pwr_D + pwr_L - \sum_{i=1}^{N} pwr_i = 0, \]

where \(pwr_D \) is total load demand (in MW); \(pwr_L \) is transmission loss (in MW). The transmission losses are represented as a quadratic function in terms of constant loss formula coefficient or B-coefficient and generators power [6] which are associated in the form,

\[pwr_L = \sum_{i=1}^{N} \sum_{j=1}^{N} pwr_i B_{ij} pwr_j + \sum_{j=1}^{N} B_{0j} pwr_j + B_{00}, \]

where \(B_{ij} \) is \(ij^{th} \) term of the loss coefficient square matrix; \(B_{0j} \) is the \(j^{th} \) term of the loss coefficient vector; \(B_{00} \) is the loss coefficient constant.

Constraint 2: Power Generation
Each generating unit has a minimum and maximum power generation limit. Therefore, the corresponding inequality constraints for \(i^{th} \) generator is defined as:

\[pwr_i^{min} \leq pwr_i \leq pwr_i^{max}, \]
In the current study, ramp rate limit, prohibited operating zone and transmission losses are considered. At specific operating interval, the constraints of EPP are explained here:

- **Ramp-rate limit constraint**: To regulate the generator operation between two adjacent intervals, operating bounds for all active generating units need to satisfy the ramp-rate limit. The inequality ramp-rate constraint is,

\[
\max(p_{\text{min}}^i, p_{t-1}^i - DR_i) \leq p_t^i \leq \min(p_{\text{max}}^i, p_{t-1}^i + UR_i),
\]

where \(p_{\text{min}}^i\) and \(p_{\text{max}}^i\) are the present and the previous output power respectively; \(DR_i\) is the down-ramp limit and \(UR_i\) is the up-ramp limit for \(i^{th}\) generating unit (in MW/time period).

- **Prohibited operating zone constraint**: The feasible operating zone for the generating unit can be achieved by avoiding the prohibited area. The constraints are,

\[
p_{\text{low}}^{i,k} \leq p_t^i \leq p_{\text{low}}^{i,k+1} \\
p_{\text{up}}^{i,k} \leq p_t^i \leq p_{\text{max}}^i, \quad k = 2, 3, ..., z_i
\]

where \(p_{\text{low}}^{i,k}\) and \(p_{\text{up}}^{i,k}\) are lower and upper boundaries of \(k^{th}\) prohibited zone of \(i^{th}\) generating unit respectively while \(z_i\) is the number of prohibited zone of \(i^{th}\) generating unit. These are the constraints taken under consideration for this problem.

3.2. **Differential Evolution.** This section elucidates the parent DE algorithm \cite{31} in short. The working of DE starts with NP individuals in a population \(P\) as we do in other classical EAs. DE makes use of same mutation, crossover and selection operators as of classical EA operators to push the solution towards the optima.

At generation \(g\), the \(i^{th}\) randomly generated individual of the population will be represented as \(\vec{x}_g^i, (i = 1, ..., NP)\)

Mutation

As a prime operator of DE, mutation commenced working with three randomly selected candidate solutions which are exclusively distinct and got selected from the population at each generation \(g\) which then constructs a perturbed vector \(\vec{v}_g^i = (v_{1,i}, v_{2,i}, ..., v_{d,i})\) for each candidate solution of the current population. Mutation operator is given below:

\[
DE/rand/1 : \vec{v}_g^i = \vec{x}_g^a_1 + F \ast (\vec{x}_g^a_2 - \vec{x}_g^a_3),
\]

where \(1 \leq a1, a2, a3 \leq NP\) are randomly picked solutions with a restriction that, \(a1 \neq a2 \neq a3 \neq ai, \ 0 \leq F \leq 1\) is a control parameter called scaling factor and used to amplify difference vectors.

Crossover

In crossover phase, the trial vector \(\vec{u}_g^i = (u_{1,i}, u_{2,i}, ..., u_{d,i})\) for the current generation \(g\) is generated using the perturbed vector \(\vec{v}_g^i = (v_{1,i}, v_{2,i}, ..., v_{d,i})\) and target
vector \(\vec{x}_i^g = (x_{1,i}^g, x_{2,i}^g, \ldots, x_{d,i}^g) \). The working phenomenon is shown here:

\[
\begin{align*}
\vec{u}_j^g_{i} = & \begin{cases}
\vec{v}_j_{i}^g & \text{if } \text{rand}_j \leq Cr \text{ or } j = j_{\text{rand}}, \\
x_{j,i}^g & \text{otherwise,}
\end{cases}
\end{align*}
\]

(9)

where \(j = 1, \ldots, d, j_{\text{rand}} \in \{1, \ldots, d\} \) is produced randomly once for each value of \(i \). \(\text{rand}_j \) is defined as \(0 < \text{rand}_j < 1 \), it is a uniformly distributed random number which will be generated for each \(j \) of the current generation and \(0 \leq Cr \leq 1 \) is the crossover control parameter taken as per user’s choice.

Selection

This is the decision-making phase where it will be decided that using tournament selection process which vector will participate as a member of the population for next generation \(g + 1 \), whether it is the target vector \(\vec{x}_i^g \) or the corresponding trial vector \(\vec{u}_i^g \). It is defined as:

\[
\begin{align*}
\vec{x}_{i}^{g+1} = & \begin{cases}
\vec{u}_i^g & \text{if } f(\vec{u}_i^g) \leq f(\vec{x}_i^g), \\
\vec{x}_i^g & \text{otherwise.}
\end{cases}
\end{align*}
\]

(10)

This selection scheme makes sure that the candidates found are better or not worse than candidates of current population.

4. **Proposed Methodology.** Here, the phases of DE algorithm with modifications have been discussed in addition to the pseudo code of the proposed algorithm.

4.1. **Selection of control parameters.** As it is defined in literature that to get good quality solution, DE requires to fine-tune its control parameter’s value. In order to enhance the performance of parent DE, several self-adaptive variants are proposed in literature [7] to deal with unconstraint as well as constraint problem domain where it can be easily found that control parameter settings is a major aspect for designing an efficient DE algorithm. To find a suitable parameter setting for a particular problem is a tedious job.

For each iteration during evolution, a new strategy has been implemented to produce these parameter (\(F \) and \(Cr \)) values. The values of these parameters will be generated within a specified range of \([F_0, F_1]\) and \([Cr_0, Cr_1]\) respectively, which is set as \([0.1, 0.5]\) and \([0.5, 0.9]\) respectively. The mathematical model used for generation of \(F \) and \(Cr \) is as follows:

\[
F = \begin{cases}
F_0 + r_1 + r_2 + r_3, & \text{if } P_F < r_4, \\
F_1, & \text{otherwise,}
\end{cases}
\]

(11)

\[
Cr = \begin{cases}
Cr_0 + r_5, & \text{if } P_{Cr} < r_5, \\
Cr_1, & \text{otherwise,}
\end{cases}
\]

(12)

where, \(r_k \) is a uniformly generated random numbers and is defined as: \(r_k \in (0,1), \forall k \in 1, 2, 3, 4, 5 \). \(r \) is obtained by \(r = r_1 + r_2 + r_3/2 \). \(P_F \), scaling factor and \(P_{Cr} \), crossover probabilities are adjusted at value 0.5. As the values of \(F \) and
Cr may go beyond specified boundaries to keep the values within the specified boundaries, the bound conditions are as follows.

\[F = \begin{cases}
2 * F_0 - F, & \text{if } F < F_0, \\
2 * F_1 - F, & \text{if } F > F_1,
\end{cases} \tag{13} \]

\[Cr = \begin{cases}
2 * Cr_0 - Cr, & \text{if } Cr < Cr_0, \\
2 * Cr_1 - Cr, & \text{if } Cr > Cr_1,
\end{cases} \tag{14} \]

\(F \) and \(Cr \), evaluated for each and every iteration, directly affects the randomness of the solution reckoned post mutation and crossover operation. The major benefit of using this approach is that there is no need to make any guess and to predefine the parameter settings for any problem.

4.2. Single Population Structure. Babu and Angira [4] proposed the concept of single population. Current and advanced populations are maintained in parent DE simultaneously which eventually leads to higher \#FEs, CPU time consumption and extra memory. Whereas, only one population is preserved in single population structure based DE where candidate solutions are updated which are worse than or not good as the newly generated candidate solutions.

In case of parent DE algorithm, an advanced population is supported for this operation where these candidate solutions took part in mutation and crossover operation leading to next generation which gives rise to extramemory consumption. Whereas, in single population structure these newly generated candidate solutions can be entertained for participation in mutation and crossover operations for the current generation as well which is another striking feature of this methodology.

The interested reader may refer to Pooja et. al [26] for complete elucidation of NDE, where performance of NDE has been successfully demonstrated on constrained benchmark problems.

4.3. Constraint Handling. Evolutionary algorithms have been exercised successfully to solve several unconstrained optimization problems in past few decades. As, the mechanism to handle constrains is not provided with basic evolutionary algorithms which will force the search process towards feasible region. Therefore, EAs require extra efforts to play with constrains and be able to handle Constraint Optimization Problems (COPs). A number of researches have been conducted in the field of COP [3], [23].

In this study, Penalty function method as a constraint handling approach, which is quite simple and frequently used, has been taken under consideration. In this method, based on the weighted mean of constraint violation, the constrained problems are converted into unconstrained ones by adding or subtracting a penalty term to the objective function value. The exterior penalty function formulation is given by

\[f' = f + \sum_{i=1}^{L} \sigma_i \text{Max}(0, g_i(x))^2 + \sum_{j=1}^{M} \lambda_j \text{Max}(0, |h_j(x)|)^2, \tag{15} \]

where \(\sigma_i \) and \(\lambda_j \) are taken as positive constant number and known as penalty factors. Usually, all equalities are transformed into inequalities using the inequality
given below; however, equality and inequality constraints can be handled by penalty function methods:

\(|h_j(x)| - \delta \leq 0\), where \(\delta\) is a small value and known as tolerance allowed.

4.4. **Pseudo Code of proposed NDE.** In this section the pseudo code of the proposed NDE algorithm has been demonstrated.

Initialize, initial population with respect to uniformly generated NP random solutions, \(P = \{\vec{x}_1^0, \vec{x}_2^0, ..., \vec{x}_i^0\}\).

\(x_{j,i} = \text{low}_j + \text{rand}(0,1) \times (\text{up}_j - \text{low}_j)\); where \(i = 1\) to \(NP\), \(j = 1\) to \(d\).

Evaluate \(f(\vec{x}_i^0)\).

According to the fitness value, sort the population.

While (Termination criteria achieved)

For (i=1: NP)

Randomly select three solutions \((\vec{x}_{a1}^0, \vec{x}_{a2}^0, \vec{x}_{a3}^0)\) which must be different from each other as well as from target vector, \(\vec{x}_i^0\).

Set the mutation factor \(F\) and crossover factor \(Cr\) values, according to the Eq. 11 and Eq. 12 respectively.

Maintain the values of control parameters \(F\) and \(Cr\) within the specified limits by using Eq. 13 and Eq. 14 respectively.

Perform Mutation and Crossover operations using Eq. 8 and 9 respectively.

Evaluate \(f(\vec{u}_i)\).

Select fittest candidate out of \(\vec{u}_i\) and \(\vec{x}_i\) which will be updated in the same population.

End for loop

Sort the population.

End While loop

5. **Experimental Settings.** The source code for EPP is fetched from the URL http://www.ntu.edu.sg/home/EPNSugan. The experiments are run on a computer with Intel(R) Core (TM) i3-2328M CPU@2.20GHz and RAM size is 4-GB.

5.1. **Parametric Settings.** All type of PC and parametric setting with performance measures for testing are given in section.

- Population size \(NP\) 100.
- \(P_F, P_{Cr}\) 0.5, 0.5 respectively for NDE.
- \(F, Cr\) 0.5, 0.9 respectively for DE [22]; Adapted using Eq. 11-14 for NDE.
- \(\delta\) \(10^{-4}\) [26].
- \(\sigma\) and \(\lambda\) \(10^5\) and \(10^3\).

All the algorithms, that are exercised to handle this problem, are executed thirty times for each case. However, the termination criteria for each run are predefined.

5.2. **Results and Discussion.** To show the exhibition of NDE [26], EPP is considered and validated on 6-unit, 15-unit and 40-unit power frameworks. The input information is taken from literature [6], [15] and (http://www.ntu.edu.sg/home/EPNSugan).
Case Study 1: 6-Unit Generator System

In this case study, we have taken six thermal power generating units with total demand of 1,263 MW. The cost coefficient with boundary value is listed in Table 2, while ramp rate with prohibited zones limits are given in Table 3. However, the coefficient matrix B for transmission loss is given by:

$$
B_{ij} = 10^{-3} \begin{bmatrix}
1.7 & 1.2 & 0.7 & -0.1 & -0.5 & -0.2 \\
1.2 & 1.4 & 0.9 & 0.1 & -0.6 & -0.1 \\
0.7 & 0.9 & 3.1 & 0.0 & -1.0 & -0.6 \\
-0.1 & 0.1 & 0.0 & 2.4 & -0.6 & -0.8 \\
-0.5 & -0.6 & -1.0 & -0.6 & 12.9 & -0.2 \\
-0.2 & -0.1 & -0.6 & -0.8 & -0.2 & 15.0
\end{bmatrix}
$$

$$
B_{0i} = 10^{-3} \begin{bmatrix}
-0.3908 & -0.1297 & 0.7047 & 0.0591 & 0.2161 & -0.6635 \\
0.0056
\end{bmatrix}
$$

Table 2. Cost coefficient and bound values for 6-unit system.

Unit no.	a_i (MW)	b_i (MW)	c_i (MW)	pwr_i^{min} (MW)	pwr_i^{max} (MW)
1	0.007	7	240	100	500
2	0.0095	10	200	50	200
3	0.009	8.5	220	80	300
4	0.009	11	200	50	150
5	0.008	10.5	220	50	200
6	0.0075	12	190	50	120

Table 3. Ramp rate and prohibited zones limits for 6-unit system.

Unit no.	UR_i	DR_i	$pwr_i(0)$ (MW)	Zone-1	Zone-2
1	80	120	440	210-240	350-380
2	50	90	170	90-110	140-160
3	65	100	200	150-170	210-240
4	50	90	150	80-90	110-120
5	50	90	190	90-110	140-150
6	50	90	110	75-85	100-105

The experimental results obtained for 6-unit generating system is reported in Table 4. The results of NDE are compared with basic DE, GA [11] and PSO [11] in terms of mean fitness function, i.e., cost(/$/Hr) and total power loss of the system. It could be easily illustrated that in comparison to other algorithms, the proposed approach NDE acquired minimum cost for this particular benchmark case study. Total generated power obtained by NDE is 1,276.029 which is less than that of DE and GA. In this system, the mean total power loss observed is 15,448.48, which is also lower in comparison of other algorithms.

Case Study 2: 15-Unit generator System

This system includes 15 thermal power generating units, while the total load demand for this system is 2,630 MW. Input data for 15-unit system is given in Table 5-Table 6 [14].
Table 4. Experimental results of NDE, DE and other comparative algorithms for 6-unit system.

Unit no.	NDE	DE	GA	PSO
1	441.8657	460.7157	474.8066	447.497
2	169.6242	172.7829	178.6363	173.3221
3	249.2367	259.1119	262.2089	263.4745
4	139.5649	142.234	134.2826	139.0594
5	160.22	165.8878	151.9039	165.4761
6	105.0001	88.735	74.1812	87.128

| pwr_L | 13.0289 | 12.4673 | 13.0217 | 12.9584 |

Total output power 1,276.03 1,275.47 1,276.03 1,276.01

Min cost ($/hr) 15,444.09 15,449.48 15,459 15,450

Mean cost ($/hr) 15,448.48 15,452.28 15,469 15,454

Table 5. Cost coefficient and bound values for 15-unit system.

Unit no.	a_i (MW)	b_i (MW)	c_i (MW)	pwr_i^{min} (MW)	pwr_i^{max} (MW)
1	0.000299	10.1	671	455	150
2	0.000183	10.2	574	455	150
3	0.001126	8.8	374	130	20
4	0.001126	8.8	374	130	20
5	0.000205	10.4	461	470	150
6	0.000301	10.1	630	460	135
7	0.000364	9.8	548	465	135
8	0.000338	11.2	227	300	60
9	0.000807	11.2	173	162	25
10	0.001203	10.7	175	160	25
11	0.003586	10.2	186	80	20
12	0.005513	9.9	230	80	20
13	0.000371	13.1	225	85	25
14	0.001929	12.1	309	55	15
15	0.004447	12.4	323	55	15

The derived results of NDE for 15-unit generating system are elaborated in Table 7 in terms of mean fitness function, i.e., cost ($/Hr) and total power loss of the system which are also compared with DE, PSO [11], GA [11], IPSO [29] and MPSO [28]. As given in Table 7, NDE preserves total cost and total output power equals to $32,561.89 and 2,659.8923 MW respectively. Hence, it can be easily shown that in comparison to results drawn with other algorithms, the NDE obtained minimum cost. Total power loss in the system reported by NDE is 29.8923 which are also low in comparison to other algorithms except MPSO which gives second best performance by achieving total cost $32,569.9512. With the results, it is clear that NDE performed best among all considered algorithms.
Table 6. Ramp rate and prohibited zones limits for 15-unit system.

Unit no.	UR_i	DR_i	pwr_i(0)	Zone-1	Zone-2	Zone-3
1	180	120	400	150-150	150-150	150-150
2	180	120	300	185-255	305-335	430-450
3	130	130	105	20-20	20-20	20-20
4	130	130	100	20-20	20-20	20-20
5	80	120	90	180-200	305-335	390-430
6	80	120	400	230-255	335-395	430-455
7	80	120	350	135-135	135-135	135-135
8	65	100	95	60-60	60-60	60-60
9	60	100	105	60-60	25-25	25-25
10	60	100	110	25-25	25-25	25-25
11	80	80	60	20-20	20-20	20-20
12	80	80	40	30-40	55-65	20-20
13	80	80	30	25-25	25-25	25-25
14	55	55	20	15-15	15-15	15-15
15	55	55	20	15-15	15-15	15-15

Table 7. For 15-unit system (Experimental outcomes and comparison).

Unit no.	NDE	DE	MPSO	GA	PSO	IPSO
1	446.3316	454.998	455	415.31	455	455
2	366.7521	379.996	455	359.72	380	380
3	127.9874	129.9991	130	104.43	130	129.97
4	129.1781	129.9899	130	74.99	130	130
5	165.6126	169.9968	286.4128	380.28	170	169.93
6	423.1885	429.9944	460	426.79	460	459.88
7	415.0202	429.9944	465	341.32	430	429.25
8	132.9585	120.1228	60	124.79	60	60.43
9	124.8283	47.6016	25	133.14	71.05	158.02
10	82.68406	146.0069	37.5603	89.26	159.85	158.02
11	68.83981	79.99735	20	60.06	80	80
12	71.96576	79.9997	80	50	80	78.57
13	37.01169	25.0118	25	38.77	25	25
14	25.78839	16.8516	15	41.94	15	15
15	24.5418	20.6135	15	22.64	15	15

Pow_L	29.8923	31.1792	28.9734	38.278	30.908	30.858
Total Output Power	2,659.89	2,661.20	2,658.97	2,668.40	2,660.90	2,660.80
Mean Cost ($/Hr)	32,561.89	32,747.16	32,569.95	33,113	32,708	32,709

Case Study 3: 40-Unit generator System

This system considers 40 thermal power units and the total load requirement for this system is 10,500MW. This 40-unit system is a large and more nonlinear in nature. Therefore, it might achieve more local minima solutions and it is more complicated to get a solution as well as to reach the global optima solutions. Here, the Input data for 40-unit system is given in Table 8.
Table 8. Cost coefficient and bound values for 40-unit system.

Unit no.	\(a_i \) (MW)	\(b_i \) (MW)	\(c_i \) (MW)	\(\text{pwr}_{\text{min}}^i \) (MW)	\(\text{pwr}_{\text{max}}^i \) (MW)
1	0.00708	9.15	1728.3	114	36
2	0.00313	7.97	647.85	114	36
3	0.00313	7.95	649.69	120	60
4	0.00313	7.97	647.83	190	80
5	0.00313	7.97	647.81	97	47
6	0.00298	6.63	785.96	140	68
7	0.00298	6.63	785.96	300	110
8	0.00284	6.66	794.53	300	135
9	0.00284	6.66	794.53	300	135
10	0.00277	7.1	801.32	300	130
11	0.00277	7.1	801.32	375	94
12	0.52124	3.33	1055.1	375	94
13	0.52124	3.33	1055.1	500	125
14	0.52124	3.33	1055.1	500	125
15	0.0114	5.35	148.89	500	125
16	0.0016	6.43	222.92	500	125
17	0.0016	6.43	222.92	500	220
18	0.0016	6.43	222.92	500	220
19	0.0001	8.95	107.87	550	242
20	0.0001	8.62	116.58	550	242
21	0.0001	8.62	116.58	550	254
22	0.0161	5.88	307.45	550	254
23	0.0161	5.88	307.45	550	254
24	0.0161	5.88	307.45	550	254
25	0.00313	7.97	647.83	550	254
26	0.00708	9.15	1728.3	550	254
27	0.00313	7.97	647.85	150	10
28	0.00313	7.95	649.69	150	10
29	0.00313	7.97	647.83	150	10
30	0.00313	7.97	647.81	97	47
31	0.00298	6.63	785.96	190	60
32	0.00298	6.63	785.96	190	60
33	0.00284	6.66	794.53	190	60
34	0.00284	6.66	794.53	200	90
35	0.00277	7.1	801.32	200	90
36	0.00277	7.1	801.32	200	90
37	0.52124	3.33	1055.1	110	25
38	0.52124	3.33	1055.1	110	25
39	0.52124	3.33	1055.1	110	25
40	0.0114	5.35	148.89	550	242
In Table 9, the results of NDE are captured and compared with respect to DE, IHSWM [24], HPSOTVAC [1], SPSO [8] and BBO [5] for EPP 40-unit generating system. However, in this case study, it can be easily observed that the average cost obtained by NDE is $1,21,992.2 which is less than that obtained by DE and SPSO. Similarly, NDE gives promising results in terms of minimum fitness value as compared to that observed with other comparative algorithms. Total output power obtained by NDE is 10,500MW which means that there is no power loss in the system. Similarly, IHSWM, HPSOTVAC and SPSO give the same results in terms of power loss.

Table 9. For 40-unit system (Experimental outcomes and comparison).

Unit no.	NDE	DE	IHSWM	HPSOTVAC	SPSO	BBO
1	90.59008	113.035	113.9088	113.9907	113.97	110.8158
2	160.0214	180.7317	179.7332	175.0364	179.77	179.7549
3	81.69155	87.3028	88.7117	91	97	88.20832
4	107.7849	110.2516	139.9992	140	91.01	139.9866
5	278.066	259.0112	259.6372	260.3635	259.87	259.935
6	268.3649	284.6521	284.6106	288.1256	286.99	284.6749
7	95.41785	96.508	97.402	120	109.19	97.40261
8	160.0214	180.7317	179.7332	175.0364	179.77	179.7549
9	81.69155	87.3028	88.7117	91	97	88.20832
10	228.3208	131.3615	130	130	204.05	130.0298
11	286.0884	243.8422	168.7992	170	94	94.01459
12	309.307	302.4883	214.7593	210.0287	212.3	212.3472
13	346.2984	394.1255	394.2774	390.0677	393.76	394.264
14	354.3069	394.3787	394.2762	300.0056	392.05	392.2472
15	442.9098	489.715	489.2787	487.0486	489.49	489.2737
16	440.5635	492.2923	489.2787	485.0793	489.35	489.3047
17	503.2849	516.0751	511.2827	510.541	512.39	512.3087
18	481.891	512.4736	511.2768	511.3472	512.19	512.3495
19	506.4365	506.0514	504.5207	507.6247	503.62	503.5057
20	496.2304	524.5663	523.2794	526	523.65	523.3144
21	512.3193	524.3457	523.4772	523.9211	523.06	523.3629
22	511.7555	524.2132	523.2928	525.612	520.72	523.2883
23	507.4037	525.7952	523.3047	521.02	524.86	524.2989
24	493.267	522.6361	523.2762	520.1457	525.22	523.2802
25	10.30096	10.1786	10	10	10	10.0281
26	19.53625	12.3112	10.0022	10	10	10.00321
27	87.11869	90.3572	88.362	89.7002	87.64	87.1459
28	184.1883	187.5783	190	190	190	189.9913
29	174.4745	167.4291	190	190	190	189.9888
30	169.4674	177.3801	189.9935	190	190	189.9998
31	171.0925	166.2373	164.7992	167.0209	200	164.8542
32	176.4929	185.5927	164.8923	200	167.18	192.9576
33	172.1041	173.4381	164.864	200	172.12	199.9876
34	94.5799	89.3767	110	110	110	109.9941
35	85.26457	91.0112	110	110	110	109.9992
36	93.85836	91.6815	109.9965	110	95.58	109.9833
37	83.38011	512.0169	511.2828	511.0323	510.85	511.2794

Powloss	0	0.001	0	0	0	0.28
Total Output Power	10,500.00	10,500.00	10,500.00	10,500.00	10,500.00	10,500.28
Min Cost ($/Hr)	1,21,721.62	1,21,974.50	1,21,416.26	1,21,070.64	1,22,049.66	1,21,479.50
Mean Cost ($/Hr)	1,21,992.20	1,22,580.30	1,21,553.42	1,21,075.74	1,22,327.36	1,21,512.05
Figure 1. Convergence graph between total cost and #FE for EPP: (a) 6-unit generating system, (b) 15-unit generating system, (c) 40-unit generating system.

The experimental outcomes obtained for 6, 15 and 40-unit generating system are reported in Table 4, 7 and 9 respectively. Also, the convergence graph of NDE and DE for 6, 15 and 40-unit generating system is drawn in Figure 1 with respect to their convergence speed where it can be easily observed that NDE is more efficient in comparison to DE in terms of convergence speed also.

6. Conclusion. In the present study, a Novel DE variant named as NDE is used to handle the complex mathematical real-life problems i.e., EPP. For population based stochastic search techniques like DE, this problem is very challenging. NDE worked very effectively as compared to other algorithm for all three benchmark cases. Numerical experiments show very competitive results and gives best performance in terms of total output power and loss of power in the system. It can be concluded that NDE proved to be very effective and efficient tool for real life optimization problems as shown with the achieved results. The application of NDE on EPP with value point effect and other industrial problems will be focused in future.
REFERENCES

[1] O. Abedinia, N. Amjady, A. Ghasemi and Z. Hejrati, Solution of economic load dispatch problem via hybrid particle swarm optimization with time–varying acceleration coefficients and bacteria foraging algorithm techniques, *International Transactions on Electrical Energy Systems*, 23(8) (2012), 1504–1522.

[2] B. R. Adarsh, T. Raghunathan, T. Jayabarathi and X. S. Yang Economic dispatch using chaotic bat algorithm, *Energy*, 96 (2016), 666–675.

[3] W. M. Ali and H. Z. Sabry, Constrained optimization based on modified differential evolution algorithm, *Information Sciences*, 194 (2012), 171–208.

[4] B. V. Babu and R. Angira, Modified differential evolution (MDE) for optimization of nonlinear chemical processes, *Comput. Chem. Engin*, 30 (2006), 989–1002.

[5] A. Bhattacharya and P. K. Chattopadhyay, Solving complex economic load dispatch problems using biogeography–based optimization, *Expert Systems with Applications*, 37 (2010a), 3605–3615.

[6] A. Biswas, S. Dasgupta, B. K. Panigrahi, V. R. Pandi, S. Das, A. Abraham and Y. Badr, Economic load dispatch using a chemotactic differential evolution algorithm, *4th International Conference on Hybrid Artificial Intelligent Systems, LNAI*, 5572 (2009), 252–260.

[7] J. Brest, V. Zumer and M. S. Maucec Control parameters in self-adaptive differential evolution, *Bioinspired Optimization Methods and Their Applications*, (2006), 35–44.

[8] K. T. Chaturvedi, M. Pandit and L. Srivastava, Self–organizing hierarchical particle swarm optimization for nonconvex economic dispatch, *IEEE Transactions on Power Systems*, 23 (2008), 1079–1087.

[9] B. H. Choudhary and S. Rahman, A review of recent advances in economic dispatch, *IEEE Trans. on Power System*, 5 (1990), 1248–1259.

[10] S. Elsayed, M. F. Zaman and R. Sarkar, Automated differential evolution for solving dynamic economic dispatch problems, *Intelligent and Evolutionary Systems, Proceedings in Adaptation, Learning and Optimization*, 5 (2016), 357–369.

[11] Z. L. Gaing, Particle swarm optimization to solving the economic dispatch considering generator constraints, *IEEE Trans. on Power Systems*, 18 (2003), 1187–1195.

[12] A. Goli, H. K. Zareh, R. Tavakkoli–Moghaddam and A. Sadeghieh, Application of robust optimization for a product portfolio problem using an invasive weed optimization algorithm, *Soft Computing*, 9 (2005), 448–462.

[13] A. Goli, H. Khademi–Zare, R. Tavakkoli–Moghaddam, A. Sadeghieh, M. Sasanian and R. M. Kordestanizadeh, An integrated approach based on artificial intelligence and novel meta–heuristic algorithms to predict demand for dairy products: a case study, *Network: Computation in Neural Systems*, 32 (2021), 1–35.

[14] A. Goli, H. K. Zareh, R. Tavakkoli–Moghaddam and A. Sadeghieh, A comprehensive model of demand prediction based on hybrid artificial intelligence and metaheuristic algorithms: A case study in dairy industry, *Journal of Industrial and Systems Engineering*, 11 (2018), 190–203.

[15] D. He, F. Wang and Z. Mao, A hybrid genetic algorithm approach based on differential evolution for economic dispatch with valve-point effect, *International Journal of Electrical Power and Energy Systems*, 30 (2008), 31–38.

[16] N. T. Hung, N. Hung, P. D. V. Nguyen and D. T. Viet, Application of improved differential evolution algorithm for economic and emission dispatch of thermal power generation plants, *Proceedings of the 3rd International Conference on Machine Learning and Soft Computing*, (2019), 93–98.

[17] J. O. Kim, D. J. Shin, J. N. Park and C. Singh, Atavistic genetic algorithm for economic dispatch with valve point effect, *Electric Power Systems Research*, 62 (2002), 201–207.

[18] P. Kumar, M. Pant and V. P. Singh, Two self adaptive variants of differential evolution algorithm for global optimization, *Int. J. of Appl. Math. and Mech.*, 8 (2012), 22–34.

[19] J. Liu and J. Lampinen, A fuzzy adaptive differential evolution algorithm, *Soft Computing*, 9 (2005), 448–462.

[20] R. Lotfi, N. Mardani and G. W. Weber, Robust bi–level programming for renewable energy location, *International Journal of Energy Research*, 45 (2021), 7521–7534.

[21] R. Lotfi, Z. Yadegari, S. H. Hosseini, A. H. Khameneh, E. B. Tirkolaece and G. W. Weber, A robust time–cost–quality–energy–environment trade–off with resource–constrained in
project management: A case study for a bridge construction project, *Journal of Industrial & Management Optimization*, **13** (2020).

[22] R. Lotfi, Y. Z. Mehrjerdi, M. S. Pishvaee, A. Sadeghieh and G. W. Weber, A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk, *Numerical Algebra, Control & Optimization*, **11** (2021), 221–253.

[23] E. Mezura–Montes, M. E. Miranda-Varela and R. C. Gómez-Ramón, Differential evolution in constrained numerical optimization: an empirical study, *Information Sciences*, **180** (2010), 4223–4262.

[24] V. R. Pandi, B. K. Panigrahi, A. Mohapatra and M. K. Mallick, Economic load dispatch solution by improved harmony search with wavelet mutation, *International Journal of Computational Science and Engineering*, **6** (2011), 122–131.

[25] L. Ping, J. Sun and Q. Chen, Solving Power economic dispatch problem with a novel quantum–behaved particle swarm optimization algorithm, *Mathematical Problems in Engineering*, **2020** (2020), 1–11.

[26] Pooja, P. Chaturvedi, P. Kumar and A. Tomar, A novel differential evolution approach for constraint optimisation, *Int. J. Bio-Inspired Computation*, **12** (2018), 254–265.

[27] B. Y. Qu, Y. S. Zhu, Y. C. Jiao, M. Y. Wu, P. N. Suganthan and J. J. Liang, A survey on multi-objective evolutionary algorithms for the solution of the environmental/economic dispatch problems, *Swarm and Evolutionary Computation*, **38** (2018), 1–11.

[28] R. Rahmani, M. F. Othman, R. Yusof and M. Khalid, Solving economic dispatch problem using particle swarm optimization by an evolutionary technique for initializing particles, *Journal of Theoretical and Applied Information Technology*, **46** (2012), 526–536.

[29] A. Safari and H. Shayeghi, Iteration particle swarm optimization procedure for economic load dispatch with generator constraints, *Expert Systems with Applications*, **38** (2011), 6043–6048.

[30] N. Sinha, R. Chakrabarti and P. K. Chattopadhyay, Evolutionary programming techniques for economic load dispatch, *IEEE Trans. Evol. Comput.*, **7** (2003), 83–94.

[31] R. Storn and K. Price, Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces, *Journal of Global Optimization*, **11** (1997), 341–359.

[32] M. F. Zaman, S. M. Elsayed, T. Ray and R. A. Sarker, Evolutionary algorithms for dynamic economic dispatch problems, *IEEE Transactions on Power Systems*, **31** (2016), 1486–1495.

Received March 2021; 1st revision July 2021; Final revision September 2021; Early access October 2021.

E-mail address: cs.pooja@allduniv.ac.in
E-mail address: cs.pooja188@gmail.com